

Global United Technology Services Co., Ltd.

Report No.: GTS201609000124E06

FCC REPORT

Applicant: Shanghai Sunmi Technology Co.,Ltd.

Address of Applicant: Room 605, Block 7, KIC Plaza, No.388 Song Hu Road Yang

Pu District, Shanghai 200433, China

Equipment Under Test (EUT)

Product Name: POS System

Model No.: W1403

FCC ID: 2AH25W1403

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.407:2015

Date of sample receipt: September 19, 2016

Date of Test: September 20-October 13, 2016

Date of report issue: October 17, 2016

Test Result: PASS *

Authorized Signature:

Robinson Lo
Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the GTS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of GTS or testing done by GTS in connection with, distribution or use of the product described in this report must be approved by GTS in writing.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description
00	October 17, 2016	Original

Prepared By:	Edward. Pan	Date:	October 17, 2016
	Project Engineer		
Check By:	Andy w	Date:	October 17, 2016
	Poviower		

3 Contents

			Page
1	CO	VER PAGE	1
2	VEI	RSION	2
3	СО	NTENTS	3
4	TES	ST SUMMARY	4
	4.1	MEASUREMENT UNCERTAINTY	4
5	GE	NERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF EUT	5
	5.3	TEST MODE	6
	5.4	TEST FACILITY	6
	5.5	TEST LOCATION	
	5.6	DESCRIPTION OF SUPPORT UNITS	
	5.7	DEVIATION FROM STANDARDS	
	5.8	ABNORMALITIES FROM STANDARD CONDITIONS	
	5.9	OTHER INFORMATION REQUESTED BY THE CUSTOMER	
	5.10	TEST INSTRUMENTS LIST	7
5	TES	ST RESULTS AND MEASUREMENT DATA	9
	5.1	ANTENNA REQUIREMENT:	
	5.2	CONDUCTED EMISSIONS	
	5.3	EMISSION BANDWIDTH AND 99% OCCUPIED BANDWIDTH	
	5.4	PEAK TRANSMIT POWER	
	5.5	PEAK POWER SPECTRAL DENSITY	
	5.6	BAND EDGE	
	5.7	RADIATED EMISSION	
	5.8	FREQUENCY STABILITY	
6	TES	ST SETUP PHOTO	36
7	FII	T CONSTRUCTIONAL DETAILS	37

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203	PASS
AC Power Line Conducted Emission	15.207	PASS
Peak Transmit Power	15.407(a)(1)	PASS
Power Spectral Density	15.407(a)(1)	PASS
Undesirable Emission	15.407(b)(6), 15.205/15.209	PASS
Radiated Emission	15.205/15.209	PASS
Band Edge	15.205	PASS
Frequency Stability	15.407(f)	PASS

Remark:

Pass: The EUT complies with the essential requirements in the standard.

4.1 Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes	
Radiated Emission	9kHz ~ 30MHz	± 4.34dB	(1)	
Radiated Emission	30MHz ~ 1000MHz	± 4.24dB	(1)	
Radiated Emission	1GHz ~ 40GHz	± 4.68dB	(1)	
AC Power Line Conducted Emission	0.15MHz ~ 30MHz	± 3.45dB	(1)	

Note (1): The measurement uncertainty is for coverage factor of k=2 and a level of confidence of 95%.

Remark: Test according to ANSI C63.10:2013 and ANSI C63.4:2014

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

5 General Information

5.1 Client Information

Applicant:	Shanghai Sunmi Technology Co.,Ltd.
Address of Applicant:	Room 605, Block 7, KIC Plaza, No.388 Song Hu Road Yang Pu District, Shanghai 200433, China
Manufacturer:	Shanghai Sunmi Technology Co.,Ltd.
Address of Manufacturer:	Room 605, Block 7, KIC Plaza, No.388 Song Hu Road Yang Pu District, Shanghai 200433, China
Factory:	Huizhou BYD Electronics Co.,Ltd.
Address of Factory:	Xiangshui River,Economic Development Zone,Daya Bay, Huizhou,Guangdong,P.R.China

5.2 General Description of EUT

Product Name:	POS System		
Model No.:	W1403		
Operation Frequency:	802.11a/802.11n(HT20): 5180MHz ~ 5240MHz;		
	802.11n(HT40): 5190MHz ~ 5230MHz		
Channel numbers:	802.11a/802.11n(HT20): 4;		
	802.11n(HT40): 2		
Channel separation:	802.11a/802.11n(HT20): 20MHz;		
	802.11n(HT40): 40MHz		
Modulation technology:	OFDM(64QAM, 16QAM, QPSK, BPSK)		
Antenna Type:	Integral antenna		
Antenna gain:	-5.1dBi		
Power supply:	AC Adaptor		
	Model No.:EA10681P-240		
	Input: AC 100-240V, 50/60Hz, 2.0A		
	Output: DC 24V, 2.5A		

5.3 Test mode

Transmitting mode	Keep the EUT in transmitting with modulation.
	EUT was test with 99% duty cycle at its maximum power control level.

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

5.4 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC —Registration No.: 600491

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 600491, June 22, 2016.

• Industry Canada (IC) —Registration No.: 9079A-2

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. Has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A-2, August 15, 2016.

5.5 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

Address: No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, sBaoan District, Shenzhen, Guangdong, China 518102

Tel: 0755-27798480 Fax: 0755-27798960

5.6 Description of Support Units

None.

5.7 Deviation from Standards

None.

5.8 Abnormalities from Standard Conditions

None.

5.9 Other Information Requested by the Customer

None.

Global United Technology Services Co., Ltd.

No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone,

Xixiang Road, Baoan District, Shenzhen, Guangdong, China

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

5.10 Test Instruments list

Rad	Radiated Emission:					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	July. 03 2015	July. 02 2020
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	June. 29 2016	June. 28 2017
4	Spectrum analyzer	Agilent	E4447A	GTS516	June. 29 2016	June. 28 2017
5	Spectrum Analyzer	Agilent	E4440A	GTS533	June. 29 2016	June. 28 2017
6	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	June. 29 2016	June. 28 2017
7	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	9120D-829	GTS208	June. 29 2016	June. 28 2017
8	Horn Antenna	ETS-LINDGREN	3160	GTS217	June. 29 2016	June. 28 2017
9	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
10	Coaxial Cable	GTS	N/A	GTS213	June. 29 2016	June. 28 2017
11	Coaxial Cable	GTS	N/A	GTS211	June. 29 2016	June. 28 2017
12	Coaxial cable	GTS	N/A	GTS210	June. 29 2016	June. 28 2017
13	Coaxial Cable	GTS	N/A	GTS212	June. 29 2016	June. 28 2017
14	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	June. 29 2016	June. 28 2017
15	Amplifier(2GHz-20GHz)	HP	8349B	GTS206	June. 29 2016	June. 28 2017
16	Amplifier (18-40GHz)	MITEQ	AMF-6F-18004000-29- 8P	GTS534	June. 29 2016	June. 28 2017
17	Band filter	Amindeon	82346	GTS219	June. 29 2016	June. 28 2017
18	Constant temperature and humidity box	Oregon Scientific	BA-888	GTS248	June. 29 2016	June. 28 2017
19	D.C. Power Supply	Instek	PS-3030	GTS232	June. 29 2016	June. 28 2017
20	Universal radio communication tester	Rohde & Schwarz	CMU200	GTS235	June. 29 2016	June. 28 2017
21	Splitter	Agilent	11636B	GTS237	June. 29 2016	June. 28 2017
22	Power Meter	Anritsu	ML2495A	GTS540	June. 29 2016	June. 28 2017
23	Power Sensor	Anritsu	MA2411B	GTS541	June. 29 2016	June. 28 2017

Con	Conducted Emission:					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.		Cal.Due date
					(mm-dd-yy)	(mm-dd-yy)
1	Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	GTS252	May 16 2014	May 15 2019
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June 29 2016	June 28 2017
3	Pulse Limiter	R&S	ESH3-Z2	GTS224	June 29 2016	June 28 2017
4	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	June 29 2016	June 28 2017
5	Artificial Mains Network	SCHWARZBECK MESS	NSLK8127	GTS226	June 29 2016	June 28 2017
6	Coaxial Cable	GTS	N/A	GTS227	June 29 2016	June 28 2017
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
8	Thermo meter	KTJ	TA328	GTS233	June 29 2016	June 28 2017

Gen	General used equipment:					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date	Cal.Due date
	1.01				(mm-dd-yy)	(mm-dd-yy)
1	Barometer	ChangChun	DYM3	GTS257	June 29 2016	June 28 2017

5 Test results and Measurement Data

5.1 Antenna requirement:

Standard requirement: FCC Part15 C Section 15.203

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

E.U.T Antenna:

The antenna is Integral antenna. The best case gain of the antenna is -5.1dBi.

5.2 Conducted Emissions

Test Requirement:	FCC Part15 C Section 15.207	,			
Test Method:	ANSI C63.10:2013				
Test Frequency Range:	150KHz to 30MHz				
Class / Severity:	Class B				
Receiver setup:	RBW=9KHz, VBW=30KHz				
Limit:	,	Limit (d	IRuV)		
-	Frequency range (MHz)	Frequency range (MHz) Quasi-peak Average			
	0.15-0.5	66 to 56*	56 to 46*		
	0.5-5	56	46		
	5-30	60	50		
	* Decreases with the logarithn				
Test procedure Test setup:	The E.U.T and simulators are connected to the main power through a line impedance stabilization network(L.I.S.N.). The provide a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refers to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2013 on conducted measurement.				
rest setup.	LISN 40cm		er — AC power		
Test Instruments:	Refer to section 5.10 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Pass				

Measurement Data

An initial pre-scan was performed on the line and neutral lines with peak detector. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Line:

Site : Shielded room

Condition : FCC PART15 CLASSB QP LISN-2016 LINE

Job No. : 0124 Test mode : WiFi mode Test Engineer: Boy

	Freq	Read Leve1	LISN Factor	Cable Loss	Leve1	Limit Line	Over Limit	Remark
	MHz	dBuV	dB	₫B	dBuV	dBuV	dB	
1 2 3	0. 150 0. 150 0. 184	54. 22 33. 63 49. 06	0. 42 0. 42 0. 42	0. 12 0. 12 0. 13	54. 76 34. 17 49. 61	56.00	-11. 24 -21. 83 -14. 67	Average
4 5 6	0. 184 0. 535 0. 535	30. 73 36. 80 27. 62	0. 42 0. 35 0. 35	0. 13 0. 11 0. 11	31. 28 37. 26 28. 08	56.00	-18.74	Average QP Average
6 7 8 9	1. 716 1. 716 2. 678	21. 38 12. 16 20. 87	0. 21 0. 21 0. 20	0. 14 0. 14 0. 15	21. 73 12. 51 21. 22	56.00 46.00	-34.27	QP Average
10 11 12	2. 678 2. 678 14. 986	10. 66 32. 95 22. 20	0. 20 0. 22 0. 22		11. 01 33. 39 22. 64	46.00 60.00	-34. 99 -26. 61	Average

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Neutral:

Site : Shielded room

Condition : FCC PART15 CLASSB QP LISN-2016 NEUTRAL

Job No. : 0124 Test mode : WiFi mode Test Engineer: Boy

	Freq	Read Level	LISN Factor	Cable Loss	Leve1	Limit Line	Over Limit	Remark
	MHz	dBuV	₫B	₫B	dBuV	dBuV	dB	
1	0.157	52.51	0.41	0.12	53.04		-12.56	
2 3	0. 157 0. 169	34.05 50.25	0. 41 0. 41	0. 12 0. 12	3 4. 58 50. 78		-21. 02 -14. 21	Average OP
	0.169	30.80	0.41	0. 12	31.33			Average
4 5	0.541	36.61	0.32	0.11	37.04		-18.96	
6	0.541	26.11	0.32	0.11	26.54			Average
7	0.634	3 4. 46	0.26	0.13	3 4. 85	56.00	-21. 15	QP
8	0.634	2 4. 23	0.26	0.13	2 4. 62	46.00	-21.38	Average
9	1. 223	21.50	0.21	0.13	21.84	56.00	-34. 16	QP
10	1. 223	12.20	0.21	0.13	12.54	46.00	-33.46	Average
11	15.388	37.09	0.23	0.22	37.54	60.00	-22.46	QP
12	15.388	27.35	0.23	0.22	27.80	50.00	-22.20	Average

5.3 Emission Bandwidth and 99% Occupied Bandwidth

Test Requirement:	FCC Part15 E Section 15.407					
Test Method:	KDB 789033 D02 General UNII Test Procedures New Rules v01					
Limit:	N/A					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test procedure:	According to KDB 789033 D02 General UNII Test Procedures New Rules v01.					
Test Instruments:	Refer to section 5.10 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Pass					

Measurement Data:

CH. No.	Frequency	99% Occupied I	Bandwidth (MHz)	26dB Occupied Bandwidth (MHz)		
	(MHz)	802.11a	802.11n(HT20)	802.11a	802.11n(HT20)	
36	5180.00	16.639	17.743	22.052	21.258	
40	5200.00	16.631	17.748	22.458	22.167	
48	5240.00	16.625	17.723	21.781	21.559	

CH.	Frequency	99% Occupied Bandwidth (MHz)	26dB Occupied Bandwidth (MHz)		
No.	(MHz)	802.11n(HT40)	802.11n(HT40)		
38	5190.00	36.126	43.284		
46	5230.00	36.125	41.672		

Xixiang Road, Baoan District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Test plots as followed:

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

5.4 Peak Transmit Power

Test Requirement:	FCC Part15 E Section 15.407					
Test Method:	KDB 789033 D02 General UNII Test Procedures New Rules v01					
Limit:	For the band 5.15-5.25 GHz, the maximum conducted output power over the frequency bands of operation shall not exceed 250mW.					
Test setup:	Power Meter E.U.T Non-Conducted Table					
	Ground Reference Plane					
Test procedure:	(i) Measurement using an RF average power meter (i) Measurements may be performed using a wideband RF power meter with a thermocouple detector or equivalent if all of the conditions listed below are satisfied a) The EUT is configured to transmit continuously or to transmit with a constant duty cycle. b) At all times when the EUT is transmitting, it must be transmitting at its maximum power control level. c) The integration period of the power meter exceeds the repetition period of the transmitted signal by at least a factor of five.					
	 (ii) If the transmitter does not transmit continuously, measure the duty cycle, x, of the transmitter output signal as described in section B). (iii) Measure the average power of the transmitter. This measurement is an average over both the on and off periods of the transmitter. (iv) Adjust the measurement in dBm by adding 10 log(1/x) where x is the duty cycle (e.g., 10log(1/0.25) if the duty cycle is 25 percent). 					
Test Instruments:	Refer to section 5.10 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Pass					

Measurement Data

	802.11a mode									
CH No.	Frequency (MHz)	Measured Power (dBm)	Duty Factor	Output Power (dBm)	Limit (dBm)	Result				
36	5180.00	11.80	0.04	11.84	24	Pass				
40	5200.00	12.05	0.04	12.09	24	Pass				
48	5240.00	11.18	0.04	11.22	24	Pass				

	802.11n(HT20) mode									
CH No.	Frequency (MHz)	Measured Power (dBm)	Duty Factor	Output Power (dBm)	Limit (dBm)	Result				
36	5180.00	13.06	0.04	13.10	24	Pass				
40	5200.00	13.36	0.04	13.40	24	Pass				
48	5240.00	12.06	0.04	12.10	24	Pass				

	802.11n(HT40) mode									
CH No.	Frequency (MHz)	Measured Power (dBm)	Duty Factor	Output Power (dBm)	Limit (dBm)	Result				
38	5190.00	11.74	0.04	11.78	24	Pass				
46	5230.00	12.56	0.04	12.60	24	Pass				

Note: Output Power = Measured Power + Duty Factor

Duty Factor = 10 log (1/Duty Cycle)

5.5 Peak Power Spectral Density

Test Requirement:	FCC Part15 E Section 15.407				
Test Method:	KDB 789033 D02 General UNII Test Procedures New Rules v01				
Limit:	11dBm/MHz				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test procedure:	 Create an average power spectrum for the EUT operating mode being tested by following the instructions in section E)2) for measuring maximum conducted output power using a spectrum analyzer or EMI receiver: select the appropriate test method (SA-1, SA-2, SA-3, or alternatives to each) and apply it up to, but not including, the step labeled, "Compute power". Use the peak search function on the instrument to find the peak of the spectrum. Make the following adjustments to the peak value of the spectrum, if applicable: a) If Method SA-2 or SA-2 Alternative was used, add 10 log(1/x), where x is the duty cycle, to the peak of the spectrum. b) If Method SA-3 Alternative was used and the linear mode was used in step E)2)g)(viii), add 1 dB to the final result to compensate for the difference between linear averaging and power averaging. The result is the PPSD. 				
Test Instruments:	Refer to section 5.10 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Pass				

Measurement Data

	802.11a mode									
Channel No.	Frequency (MHz)	Measured PPSD (dBm/MHz)	Duty Factor	Total PPSD (dBm/MHz)	Limit (dBm/MHz)	Result				
36	5180.00	0.51	0.04	0.55	11	Pass				
40	5200.00	0.84	0.04	0.92	11	Pass				
48	5240.00	2.41	0.04	2.45	11	Pass				

	802.11n(HT20) mode									
Channel No.	Frequency (MHz)	Measured PPSD (dBm/MHz)	Duty Factor	Total PPSD (dBm/MHz)	Limit (dBm/MHz)	Result				
36	5180.00	-0.65	0.04	-0.61	11	Pass				
40	5200.00	1.10	0.04	1.15	11	Pass				
48	5240.00	1.33	0.04	1.37	11	Pass				

	802.11n(HT40) mode								
Channel No.	Frequency (MHz)	Measured PPSD (dBm/MHz)	Duty Factor	Total PPSD (dBm/MHz)	Limit (dBm/MHz)	Result			
38	5190.00	-2.92	0.04	-2.88	11	Pass			
46	5230.00	-1.77	0.04	-1.73	11	Pass			

Note: Total PPSD = Measured PPSD + Duty Factor Duty Factor = 10 log (1/Duty Cycle)

5.6 Band Edge

Test Requirement:	FCC Part15 E Se	FCC Part15 E Section 15.407 and 5.205							
Test Method:	ANSI C63.10:201	3							
Test site:	Measurement Dis	stance: 3m (S	emi-Anecho	ic Chambe	r)				
Receiver setup:					.				
·	Frequency	Detector	RBW	VBW	Remark				
	30MHz-1GHz	Quasi-peak	100KHz	300KHz	Quasi-peak Value				
	Above 1GHz	Peak	1MHz	3MHz	Peak Value				
	710070 10112	AV	1MHz	3MHz	Average Value				
Limit:	Frequency Limit (dBuV/m @3m) Remark								
	Frequen	•	,		Remark				
	30MHz-88		40.0		Quasi-peak Value				
	88MHz-216 216MHz-96		43.5 46.0		Quasi-peak Value				
	960MHz-1		54.0		Quasi-peak Value				
	90010172-1	GI7Z	54.0 54.0		Quasi-peak Value Average Value				
	Above 1G	GHz ├─	74.0		Peak Value				
			74.0	,	reak value				
Test Procedure:	outside of the dBm/MHz. (2) For transmitte outside of the dBm/MHz. If generate emapplicable terband (includemission EIR) (3) For transmitte outside of the dBm/MHz. a. The EUT was ground at a 3	ers operating at 5.15-5.35 Gers operating at 5.15-5.35 Gers operations in the chical requiring indoor uning i	in the 5.25- GHz band shating in the et 5.15-5.2 ements for a se) or alter dBm/MHz in the 5.47-5 GHz band sl	5.35 GHz hall not exc e 5.25-5.3 GHz ba experation in rnatively m hathe 5.15-5 6.725 GHz hall not exc ttating table was rotate	band: all emissions eed an EIRP of -27 band: all emissions eed an EIRP of -27 band that and must meet all the 5.15-5.25 GHz eet an out-of-band band: all emissions eed an EIRP of -27 also makes to degree to				
	antenna, which tower. c. The antenna	s set 3 meters ch was mount height is varie	away from ed on the to ed from one	the interfere p of a varia meter to fo					
	 c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotable table was turned from 0 degrees to 360 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values 								

	Topolition. G1020100000127E00					
	have 10dB margin would be re-tested one by one using peak, quasi- peak or average method as specified and then reported in a data sheet.					
Test setup:	Antenna Tower Horn Antenna Spectrum Analyzer Amplifier					
Test Instruments:	Refer to section 5.10 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Pass					

Remark:

According to KDB 789033 D02V01 section G) 1) (d), for For measurements above 1000 MHz @ 3m distance, the limit of field strength is computed as follows:

E[dBuV/m] = EIRP[dBm] + 95.2;

For example, if EIRP = -27dBm

E[dBuV/m] = -27 + 95.2 = 68.2dBuV/m.

Measurement Data:

Мо	de:	802	.11a	Frequency:		5180	MHz
Antenna Pol.	Frequency (MHz)	Reading Level (dBuV)	Factor (dB/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over limit(dB)	Detector
Н	5150.00	34.62	17.18	51.80	68.2	-16.40	PK
Н	5150.00	28.65	17.18	45.83	54.0	-8.17	AV
V	5150.00	33.47	17.18	50.65	68.2	-17.55	PK
V	5150.00	27.48	17.18	44.66	54.0	-9.34	AV
Мо	de:	802	.11a	Frequency:		5240MHz	
Antenna Pol.	Frequency (MHz)	Reading Level (dBuV)	Factor (dB/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over limit(dB)	Detector
Н	5350.00	33.58	17.2	50.78	68.2	-17.42	PK
Н	5350.00	21.66	17.2	41.86	54.0	-12.14	AV
V	5350.00	39.25	17.2	56.45	68.2	-11.75	PK
V	5350.00	30.19	17.2	47.39	54.0	-6.61	AV

Мо	de:	802.11r	802.11n(HT20)		Frequency:		5180MHz	
Antenna Pol.	Frequency (MHz)	Reading Level (dBuV)	Factor (dB/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over limit(dB)	Detector	
Н	5150.00	37.88	17.18	55.06	68.2	-13.14	PK	
Н	5150.00	29.47	17.18	46.55	54.0	-7.35	AV	
V	5150.00	44.34	17.18	61.52	68.2	-6.68	PK	
V	5150.00	33.20	17.18	50.38	54.0	-3.62	AV	
Mo	de:	802.11r	n(HT20)	Frequency:		5240MHz		
Antenna Pol.	Frequency (MHz)	Reading Level (dBuV)	Factor (dB/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over limit(dB)	Detector	
Н	5350.00	33.41	17.2	50.61	68.2	-17.59	PK	
Н	5350.00	24.75	17.2	41.95	54.0	-12.05	AV	
V	5350.00	40.35	17.2	57.55	68.2	-10.65	PK	
V	5350.00	32.21	17.2	47.41	54.0	-6.59	AV	

Мо	de:	802.11r	802.11n(HT40)		Frequency:		MHz
Antenna Pol.	Frequency (MHz)	Reading Level	Factor	Measure Level	Limit (dBuV/m)	Margin (dB)	Detector
Н	5150.00	33.21	17.18	50.39	68.2	-17.81	PK
Н	5150.00	25.97	17.18	43.15	54.0	-10.85	AV
V	5150.00	33.49	17.18	50.67	68.2	-17.53	PK
V	5150.00	26.33	17.18	43.51	54.0	-10.49	AV
Mo	de:	802.11r	n(HT40)	Frequency:		5230MHz	
Antenna Pol.	Frequency (MHz)	Reading Level	Factor	Measure Level	Limit (dBuV/m)	Margin (dB)	Detector
Н	5350.00	31.38	17.2	51.35	68.2	-16.85	PK
Н	5350.00	22.98	17.2	40.18	54.0	-13.82	AV
V	5350.00	33.42	17.2	54.80	68.2	-13.40	PK
V	5350.00	24.06	17.2	41.26	54.0	-12.74	AV

5.7 Radiated Emission

5.1 Radiated	I EIIIISSIOII					
Test Requir	rement:	FCC Part15 C S	Section 15.20	9 and 15.205		
Test Metho	d:	ANSI C63.10:20	013			
Test Freque	ency Range:	30MHz to 40GH	l z			
Test site:		Measurement D	Distance: 3m (Semi-Anecho	ic Chambe	r)
Receiver se	etup:	Frequency	Frequency Detector		VBW	Value
		1GHz			300KHz	Quasi-peak Value
		Above 1GHz	Peak AV	1MHz 1MHz	3MHz 3MHz	Peak Value Average Value
Limit:		Freque	ency	Limit (dBuV	/m @3m)	Remark
		30MHz-8		40.0)	Quasi-peak Value
		88MHz-2		43.5		Quasi-peak Value
		216MHz-9		46.0		Quasi-peak Value
		960MHz-		54.0		Quasi-peak Value
Test Proced		1GHz and meter cam position of 2. The EUT vantenna, vantenna to 3. The anten the ground Both horiz make the result of the ground Both horiz o	test procedure test procedure test procedure test procedure test procedure test placed on 1.5 meters for the highest rawas set 3 met which was moower. In a height is very to determine ontal and vert measurement test procedure then the antered the rotable to find the maxes eceiver system and with the EUT would be 10dB marges in peak or avery the test procedured the test port on the turned by the procedured the test procedured the test port on the turned by the procedured test procedured the test port on the turned by the procedured test port on the turned by the procedured test port on the turned to correspond the test procedured test port on the turned by the procedured test port on the turned test port on the turned by the procedured test port on the turned test port on the turned test procedured test	as below: re: the top of a ro r above 1GHz was rotated adiation. ers away from unted on the telephone aried from one the maximum ical polarizatio ission, the EU na was turne imum reading n was set to F th Maximum F the EUT in pea testing could I d be reported. in would be re rerage method are: up graph above rotable and in vider. oriented initial	otating table a) above the 360 degree a the interfe top of a vari e meter to f a value of th ons of the a by the interfe a to heights ed from 0 oc. becak Detect hold Mode. ak mode wa be stopped Otherwise e-tested on as specifie ve,the EUT the positio ly for vertic quency of the	e (0.8m for below e ground at a 3 es to determine the erence-receiving iable-height our meters above he field strength. Antenna are set to enged to its worst from 1 meter to 4 degrees to 360 es Function and as 10dB lower than and the peak the emissions that e by one using d and then reported eshall be placed at an closest to normal al polarization and the transmitter. The

receiver.

- 3. The transmitter shall be switched on, if possible, without modulation and the measuring receiver shall be tuned to the frequency of the transmitter under test.
- 4. The test antenna shall be raised and lowered from 1m to 4m until a maximum signal level is detected by the measuring receiver. Then the turntable should be rotated through 360° in the horizontal plane, until the maximum signal level is detected by the measuring receiver.
- 5. Repeat step 4 for test frequency with the test antenna polarized horizontally.
- 6. Remove the transmitter and replace it with a substitution antenna
- 7. Feed the substitution antenna at the transmitter end with a signal generator connected to the antenna by means of a nonradiating cable. With the antennas at both ends vertically polarized, and with the signal generator tuned to a particular test frequency, raise and lower the test antenna to obtain a maximum reading at the spectrum analyzer. Adjust the level of the signal generator output until the previously recorded maximum reading for this set of conditions is obtained. This should be done carefully repeating the adjustment of the test antenna and generator output.
- 8. Repeat step 7 with both antennas horizontally polarized for each test frequency.
- 9. Calculate power in dBm into a reference ideal half-wave dipole antenna by reducing the readings obtained in steps 7 and 8 by the power loss in the cable between the generator and the antenna, and further corrected for the gain of the substitution antenna used relative to an ideal half-wave dipole antenna by the following formula:

EIRP(dBm) = Pg(dBm) - cable loss (dB) + antenna gain (dBi) where:

Pg is the generator output power into the substitution antenna.

Test setup:

Below 1GHz

Above 1GHz

Global United Technology Services Co., Ltd.

No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone,

Xixiang Road, Baoan District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Page 29 of 37

Measurement Data:

Below 1GHz

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
33.92	48.79	14.31	0.60	30.08	33.62	40.00	-6.38	Vertical
39.44	44.91	15.44	0.65	30.05	30.95	40.00	-9.05	Vertical
90.22	46.16	13.99	1.11	29.74	31.52	43.50	-11.98	Vertical
134.56	46.52	10.56	1.47	29.49	29.06	43.50	-14.44	Vertical
250.30	42.71	14.07	2.12	29.65	29.25	46.00	-16.75	Vertical
744.87	32.18	21.39	4.26	29.20	28.63	46.00	-17.37	Vertical
82.07	39.42	11.28	1.05	29.79	21.96	40.00	-18.04	Horizontal
125.01	42.35	11.70	1.40	29.54	25.91	43.50	-17.59	Horizontal
177.51	41.43	11.49	1.73	29.29	25.36	43.50	-18.14	Horizontal
250.30	42.22	14.07	2.12	29.65	28.76	46.00	-17.24	Horizontal
375.94	36.07	16.56	2.75	29.61	25.77	46.00	-20.23	Horizontal
729.36	32.92	21.19	4.19	29.20	29.10	46.00	-16.90	Horizontal

Above 1GHz:

Only the data of worst case at each channel plan (nominal bandwidth =20MHz) is reported.

	802.11 n(HT20) mode									
CH. No.	Antenna Pol.	Frequency (MHz)	Reading Level	Factor	Measure Level	Limit (dBuV/m)	Over limit(dB)	Detector		
	Н	10360.00	17.68	21.64	39.32	54(Note3)	-14.68	PK		
26	Н	15540.00	13.64	21.80	35.44	54(Note3)	-18.56	PK		
36	V	10360.00	14.31	21.64	35.95	54(Note3)	-18.05	PK		
	V	15540.00	19.96	21.80	41.76	54(Note3)	-12.24	PK		
	Н	10400.00	20.11	21.67	41.78	54(Note3)	-12.22	PK		
40	Н	15600.00	21.32	21.83	43.15	54(Note3)	-10.85	PK		
40	V	10400.00	14.68	21.67	36.35	54(Note3)	-17.65	PK		
	V	15600.00	13.15	21.83	34.98	54(Note3)	-19.02	PK		
	Н	10480.00	19.73	21.64	41.37	54(Note3)	-12.63	PK		
40	Н	15720.00	12.46	22.16	34.62	54(Note3)	-19.38	PK		
48	V	10480.00	11.90	21.64	33.54	54(Note3)	-20.46	PK		
	V	15720.00	20.84	22.16	43.00	54(Note3)	-11.00	PK		

	802.11n(HT40) mode										
CH. No.	Antenna Pol.	Frequency (MHz)	Reading Level	Factor	Measure Level	Limit (dBuV/m)	Margin (dB)	Detector			
	Н	10380.00	12.87	21.64	34.51	54(Note3)	-19.49	PK			
38	Н	15570.00	20.43	21.80	42.23	54(Note3)	-11.77	PK			
30	V	10380.00	20.09	21.64	41.73	54(Note3)	-12.27	PK			
	V	15570.00	11.67	21.80	33.47	54(Note3)	-20.53	PK			
	Н	10460.00	14.65	21.67	36.32	54(Note3)	-17.68	PK			
46	Н	15690.00	16.30	21.83	38.13	54(Note3)	-15.87	PK			
40	V	10460.00	18.21	21.67	39.88	54(Note3)	-14.12	PK			
	V	15690.00	18.73	21.83	40.56	54(Note3)	-13.44	PK			

Note:

- 1. Measure Level = Reading Level + Factor.
- 2. The test trace is same as the ambient noise (the test frequency range: 18GHz~40GHz), therefore no data appear in the report.
- 3. This limit applies for using average detector, if the test result on peak is lower than average limit, then average measurement needn't be performed.

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

5.8 Frequency stability

Test Requirement:	FCC Part15 C Section 15.407(g)					
Test Method:	ANSI C63.10:2013, FCC Part 2.105	5				
Limit:	stability such that an emission is ma	Manufactures of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified				
Test Procedure:	The EUT was setup to ANSI C63.4, 2014; tested to 2.1055 for compliance to FCC Part 15.407(g) requirements.					
Test setup:	Spectrum analyzer Att. Note: Measurement setup for testing on A	Temperature Chamber EUT Variable Power Supply Intenna connector				
Test Instruments:	Refer to section 5.10 for details					
Test mode:	Refer to section 5.3 for details	Refer to section 5.3 for details				
Test results:	Pass					

Measurement data:

Frequency stability versus Temp.									
		Pov	wer Supply: DC 3.7V						
Temp.	Operating	0 minute	2 minute	5 minute	10 minute				
(°C)	Frequency	Measured	Measured	Measured	Measured				
(0)	(MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)				
	5180	5176.0687	5182.8249	5181.2442	5177.7389				
-30	5200	5198.5202	5202.6701	5202.2740	5199.3058				
-30	5220	5219.7007	5220.2992	5221.1674	5219.7837				
	5240	5239.8969	5240.6706	5240.1099	5239.6216				
	5180	5179.7573	5180.2944	5180.6480	5179.9911				
20	5200	5199.5906	5200.4019	5200.0567	5199.7522				
-20	5220	5219.2967	5220.4812	5220.1215	5219.7237				
	5240	5239.3734	5240.2079	5240.4396	5239.1181				
	5180	5179.0013	5180.3317	5180.1444	5179.0542				
-10	5200	5199.8815	5200.7827	5200.9887	5199.1987				
	5220	5219.6089	5220.6000	5220.2218	5219.4777				
	5240	5239.4328	5240.5442	5240.8986	5239.3408				
0	5180	5179.9919	5180.4698	5180.3014	5179.2583				
	5200	5199.4327	5200.6270	5200.7563	5199.8542				
	5220	5219.0438	5220.0291	5220.0082	5219.9771				
	5240	5239.4398	5240.6346	5240.2855	5239.5282				
	5180	5179.1846	5180.0709	5180.8798	5179.3336				
40	5200	5199.3751	5200.1582	5200.5461	5199.8214				
10	5220	5219.1598	5220.2019	5220.0809	5219.8280				
	5240	5239.0553	5240.5216	5240.6426	5239.6225				
	5180	5179.7902	5180.2032	5180.3252	5179.3511				
00	5200	5199.6511	5200.4005	5200.8141	5199.4444				
20	5220	5219.4130	5220.6676	5220.3710	5219.5744				
	5240	5239.1440	5240.8696	5240.3374	5239.3192				
	5180	5179.8476	5180.8221	5180.1961	5179.7338				
00	5200	5199.2194	5200.2297	5200.2910	5199.5565				
30	5220	5219.2583	5220.4507	5220.9143	5219.5430				
	5240	5239.5687	5240.2940	5240.7564	5239.9917				
	5180	5179.8886	5180.6081	5180.1391	5179.9885				
40	5200	5199.4928	5200.6900	5200.8309	5199.7044				
40	5220	5219.3797	5220.5214	5220.5883	5219.6076				
	5240	5239.3262	5240.8700	5240.6540	5239.9958				
	5180	5179.4018	5180.4764	5180.3674	5179.2140				
50	5200	5199.2490	5200.7946	5200.2013	5199.2759				
50	5220	5219.7416	5220.8228	5220.5299	5219.3600				
-	5240	5239.4667	5240.2276	5240.0121	5239.2702				

Frequency stability versus Voltage					
Temperature: 25°C					
Power	Operating	0 minute	2 minute	5 minute	10 minute
Supply	Frequency	Measured	Measured	Measured	Measured
(VDC)	(MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)
3.3	5180	5183.9048	5181.9198	5176.2708	5178.5336
	5200	5203.8262	5200.1891	5196.7549	5198.0041
	5220	5220.7493	5220.2034	5217.4129	5219.8387
	5240	5240.7087	5240.7518	5238.4864	5239.3392
3.7	5180	5180.9781	5180.2992	5179.2130	5179.3551
	5200	5200.1740	5200.5893	5199.8789	5199.2439
	5220	5220.9553	5220.2861	5219.6715	5219.6681
	5240	5240.0801	5240.7848	5239.3405	5239.7950
4.1	5180	5180.1700	5180.5389	5179.2287	5179.2840
	5200	5200.3835	5200.4865	5199.2229	5199.3899
	5220	5220.0028	5220.8285	5219.1584	5219.3015
	5240	5240.6934	5240.4117	5239.6403	5239.0381

6 Test Setup Photo

Radiated Emission

Conducted Emission

7 EUT Constructional Details

Reference to the test report No. GTS201609000124E01

---END---