

Chapter 4: Intermediate SQL

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan See www.db-book.com for conditions on re-use

Chapter 4: Intermediate SQL

- Join Expressions
- Views
- Transactions
- Integrity Constraints
- SQL Data Types and Schemas
- Authorization

Joined Relations

- 基本语义: Join operations take two relations and return as a result another relation.
 - A join operation is a Cartesian product which requires that tuples in the two relations match (under some condition). It also specifies the attributes that are present in the result of the join
- 用途: The join operations are typically used as subquery expressions in the **from** clause

Join operations – Example

Relation course

course_id	title	dept_name	credits
BIO-301	Genetics	Biology	4
CS-190	Game Design	AND THE PERSON NAMED AND THE P	4
CS-315	Robotics	Comp. Sci.	3

Relation prereq

course_id	prereg_id
BIO-301	BIO-101
CS-190	CS-101
CS-347	CS-101

Observe that

prereq information is missing for CS-315 and course information is missing for CS-347

Outer Join

- 扩展目的: An extension of the join operation that avoids loss of information.
- 基本语义: Computes the join and then adds tuples form one relation that does not match tuples in the other relation to the result of the join.
 - Uses null values.

Left Outer Join

course natural left outer join prereq

course_id	title	dept_name	credits
		Biology	4
CS-190	Game Design	Comp. Sci.	4
	Robotics	Comp. Sci.	3

course_id	prereg_id
BIO-301	BIO-101
CS-190	CS-101
CS-347	CS-101

course_id	title	dept_name	credits	prere_id
BIO-301	Genetics	Biology	4	BIO-101
CS-190	Game Design	Comp. Sci.	4	CS-101
CS-315	Robotics	Comp. Sci.	3	null

Right Outer Join

course natural right outer join prereq

course_id	title	dept_name	credits
BIO-301	Genetics	Biology	4
CS-190	Game Design	Comp. Sci.	4
CS-315	Robotics	Comp. Sci.	3

course_id	prereq_id
BIO-301	BIO-101
CS-190	CS-101
CS-347	CS-101

course_id	title	dept_name	credits	prere_id
BIO-301	Genetics	Biology	4	BIO-101
CS-190	Game Design	Comp. Sci.	4	CS-101
CS-347	null	null	null	CS-101

连接运算规则

- **Join operations** take two relations and return as a result another relation.
 - typically used as subquery expressions in the from clause

■ 结果集依赖于

 Join condition – defines which tuples in the two relations match, and what attributes are present in the result of the join.

Join types
inner join
left outer join
right outer join
full outer join

Join Conditions
natural
on < predicate>
using $(A_1, A_1,, A_n)$

 Join type – defines how tuples in each relation that do not match any tuple in the other relation (based on the join condition) are treated.

Full Outer Join

course natural full outer join prereq

course_id	title	dept_name	credits
BIO-301	Genetics	Biology	4
CS-190	Game Design	Comp. Sci.	4
CS-315	Robotics	Comp. Sci.	3

course_id	prereq_id
BIO-301	BIO-101
CS-190	CS-101
CS-347	CS-101

course_id	title	dept_name	credits	prere_id
BIO-301	Genetics	Biology	4	BIO-101
CS-190	Game Design	Comp. Sci.	4	CS-101
CS-315	Robotics	Comp. Sci.	3	null
CS-347	null	null	null	CS-101

Joined Relations – Examples

course_id	title	dept_name	credits
BIO-301	Genetics	Biology	4
CS-190	Game Design	Comp. Sci.	4
CS-315	Robotics	Comp. Sci.	3

course inner join prereq on course.course_id = prereq.course_id

course_id	prereq_id
BIO-301	BIO-101
CS-190	CS-101
CS-347	CS-101

course_id	title	dept_name	credits	prereq_id	course_id
BIO-301	Genetics	Biology	4	BIO-101	BIO-301
CS-190	Game Design	Comp. Sci.	4	CS-101	CS-190

- What is the difference between the above, and a natural join?
- course left outer join prereq on course.course_id = prereq.course_id

course_id	title	dept_name	credits	prereq_id	course_id
BIO-301	Genetics	Biology	4	BIO-101	BIO-301
CS-190	Game Design	Comp. Sci.	4	CS-101	CS-190
CS-315	Robotics	Comp. Sci.	3	null	null

Joined Relations – Examples

course_id	title	dept_name	credits
BIO-301	Genetics	Biology	4
CS-190	Game Design	Comp. Sci.	4
CS-315	Robotics	Comp. Sci.	3

course natural right outer join prereq

course_id	prereq_id
BIO-301	BIO-101
CS-190	CS-101
CS-347	CS-101

course_id	title	dept_name	credits	prere_id
BIO-301	Genetics	Biology	4	BIO-101
CS-190	Game Design	Comp. Sci.	4	CS-101
CS-347	null	null	null	CS-101

course full outer join prereq using (course_id)

course_id	title	dept_name	credits	prereq_id
BIO-301	Genetics	Biology	4	BIO-101
CS-190	Game Design	Comp. Sci.	4	CS-101
CS-315	Robotics	Comp. Sci.	3	null
CS-347	null	null	null	CS-101

Levels of Abstraction

- Physical level: describes how a record (e.g., customer) is stored.
- Logical level: describes data stored in database, and the relationships among the data.
- View level: describes only part of the entire database.

 The system may provide many views for the same database.

Views

- 针对情况: In some cases, it is not desirable for all users to see the entire logical model (that is, all the actual relations stored in the database.)
 - Consider a person who needs to know an instructors name and department, but not the salary. This person should see a relation described, in SQL, by

select *ID*, *name*, *dept_name* **from** *instructor*

- 解决方法: A **view** provides a mechanism to hide certain data from the view of certain users.
- 定义: Any relation that is not of the logical model but is made visible to a user as a "virtual relation" is called a view.

View Definition

■ 定义语法: A view is defined using the **create view** statement which has the form

create view v as < query expression >

where <query expression> is any legal SQL expression. The view name is represented by *v*.

- 效果: Once a view is defined, the view name can be used to refer to the virtual relation that the view generates.
 - View definition is not the same as creating a new relation by evaluating the query expression
 - Rather, a view definition causes the saving of an expression;
 the expression is substituted into queries using the view.

Example Views

- A view of instructors without their salary create view faculty as select ID, name, dept_name from instructor
 - Find all instructors in the Biology department select name
 from faculty
 where dept_name = 'Biology'
- Create a view of department salary totals create view departments_total_salary(dept_name, total_salary) as select dept_name, sum (salary) from instructor group by dept_name;

Views Defined Using Other Views

- create view physics_fall_2009 as
 select course.course_id, sec_id, building, room_number
 from course, section
 where course.course_id = section.course_id
 and course.dept_name = 'Physics'
 and section.semester = 'Fall'
 and section.year = '2009';
- create view physics_fall_2009_watson as select course_id, room_number from physics_fall_2009 where building= 'Watson';

View Expansion

Expand use of a view in a query/another view

```
create view physics_fall_2009_watson as
create view physics_fall_2009 as
                                                 select course_id, room_number
 select course_id, sec_id, building, room_number
                                                 from physics_fall_2009
 from course, section
 where course.course_id = section.course_id
                                                 where building= 'Watson';
      and course.dept name = 'Physics'
      and section semester = 'Fall'
      and section.year = '2009';
        create view physics_fall_2009_watson as
        (select course_id, room_number
        from (select course_id, building, room_number
              from course, section
              where course_id = section.course_id
                  and course.dept_name = 'Physics'
                  and section semester = 'Fall'
                  and section.year = '2009')
        where building= 'Watson');
```


视图依赖

- One view may be used in the expression defining another view
- A view relation v_1 is said to depend directly on a view relation v_2 if v_2 is used in the expression defining v_1
- A view relation v_1 is said to depend on view relation v_2 if either v_1 depends directly to v_2 or there is a path of dependencies from v_1 to v_2
- A view relation *v* is said to be *recursive* if it depends on itself.

View Expansion过程

- 作用: A way to define the meaning of views defined in terms of other views.
- Let view v_1 be defined by an expression e_1 that may itself contain uses of view relations.
- View expansion of an expression repeats the following replacement step:

repeat

Find any view relation v_i in e_1 Replace the view relation v_i by the expression defining v_i **until** no more view relations are present in e_1

 As long as the view definitions are not recursive, this loop will terminate

Update of a View

Add a new tuple to faculty view which we defined earlier insert into faculty values ('30765', 'Green', 'Music');
 This insertion must be represented by the insertion of the tuple

('30765', 'Green', 'Music', null)

into the *instructor* relation

create view faculty as select ID, name, dept_name from instructor

instructor

ID
name
dept_name
salary

Some Updates cannot be Translated Uniquely

- create view instructor_info as select ID, name, building from instructor, department where instructor.dept_name= department.dept_name;
- insert into instructor_info values ('69987', 'White', 'Taylor');
 - which department, if multiple departments in Taylor?
 - what if no department is in Taylor?
- Most SQL implementations allow updates only on simple views
 - The from clause has only one database relation.
 - The select clause contains only attribute names of the relation, and does not have any expressions, aggregates, or distinct specification.
 - Any attribute not listed in the select clause can be set to null
 - The query does not have a group by or having clause.

And Some Not at All

- create view history_instructors as
 select *
 from instructor
 where dept_name= 'History';
- What happens if we insert ('25566', 'Brown', 'Biology', 100000) into history_instructors?

Materialized Views

- Materializing a view(物化视图): create a physical table containing all the tuples in the result of the query defining the view
- If relations used in the query are updated, the materialized view result becomes out of date
 - Need to maintain the view, by updating the view whenever the underlying relations are updated.

Transactions

- Unit of work
- Atomic transaction
 - either fully executed or rolled back as if it never occurred
- Isolation from concurrent transactions
- Transactions begin implicitly
 - Ended by commit work or rollback work
- But default on most databases: each SQL statement commits automatically
 - Can turn off auto commit for a session (e.g. using API)
 - In SQL:1999, can use: begin atomic end
 - Not supported on most databases

Integrity Constraints

- Integrity constraints 是指数据库实例必须满足的条件.
 - A checking account must have a balance greater than \$10,000.00
 - A salary of a bank employee must be at least \$4.00 an hour
 - A customer must have a (non-null) phone number

Integrity Constraints on a Single Relation

- not null
- primary key
- unique
- check (P), where P is a predicate

Not Null and Unique Constraints

not null

Declare name and budget to be not null

```
name varchar(20) not null budget numeric(12,2) not null
```

- **unique** ($A_1, A_2, ..., A_m$)
 - The unique specification states that the attributes A1, A2, ...
 Am
 form a candidate key.
 - Candidate keys are permitted to be null (in contrast to primary keys).

The check clause

check (P)
where P is a predicate

Example: ensure that semester is one of fall, winter, spring or summer:

```
create table section (
    course_id varchar (8),
    sec_id varchar (8),
    semester varchar (6),
    year numeric (4,0),
    building varchar (15),
    room_number varchar (7),
    time_slot id varchar (4),
    primary key (course_id, sec_id, semester, year),
    check (semester in ('Fall', 'Winter', 'Spring', 'Summer'))
);
```


Referential Integrity

- Ensures that a value that appears in one relation for a given set of attributes also appears for a certain set of attributes in another relation.
 - Example: If "Biology" is a department name appearing in one of the tuples in the *instructor* relation, then there exists a tuple in the *department* relation for "Biology".
- 外键引用完整性: Let A be a set of attributes. Let R and S be two relations that contain attributes A and where A is the primary key of S. A is said to be a **foreign key** of R if for any values of A appearing in R these values also appear in S.

Cascading Actions in Referential Integrity

```
create table course (
  course_id char(5) primary key,
              varchar(20),
  title
  dept_name varchar(20) references department
                                       course
                                                       department
                                     course id
                                     title
                                                        dept name
create table course (
                                     dept name
                                                        building
                                     credits
                                                        budget
  dept_name varchar(20),
  foreign key (dept_name) references department
          on delete cascade
          on update cascade,
```

alternative actions to cascade: set null, set default

Integrity Constraint Violation During Transactions

E.g.

```
create table person (
    ID char(10),
    name char(40),
    mother char(10),
    father char(10),
    primary key ID,
    foreign key father references person,
    foreign key mother references person)
```

- How to insert a tuple without causing constraint violation?
 - insert father and mother of a person before inserting person
 - OR, set father and mother to null initially, update after inserting all persons
 - (not possible if father and mother attributes declared to be not null)
 - OR defer constraint checking

Complex Check Clauses

- check (time_slot_id in (select time_slot_id from time_slot))
 - why not use a foreign key here?

- Unfortunately: subquery in check clause not supported by pretty much any database
 - Alternative: triggers (later)
- create assertion <assertion-name> check cpredicate>;
 - Also not supported by anyone

Built-in Data Types in SQL

- date: Dates, containing a (4 digit) year, month and date
 - Example: date '2005-7-27'
- time: Time of day, in hours, minutes and seconds.
 - Example: time '09:00:30'time '09:00:30.75'
- timestamp: date plus time of day
 - Example: timestamp '2005-7-27 09:00:30.75'
- **interval:** period of time
 - Example: interval '1' day
 - Subtracting a date/time/timestamp value from another gives an interval value
 - Interval values can be added to date/time/timestamp values

Index Creation

- create table student (ID varchar (5), name varchar (20) not null, dept_name varchar (20), tot_cred numeric (3,0) default 0, primary key (ID))
- create index studentID_index on student(ID)
- Indices are data structures used to speed up access to records with specified values for index attributes
 - e.g. select *from studentwhere ID = '12345'

can be executed by using the index to find the required record, without looking at all records of *student*

More on indices in Chapter 11

User-Defined Types

create type construct in SQL creates user-defined type

create type Dollars as numeric (12,2) final

 create table department (dept_name varchar (20), building varchar (15), budget Dollars);

Domains

create domain construct in SQL-92 creates user-defined domain types

create domain person_name char(20) not null

- Types and domains are similar. Domains can have constraints, such as **not null**, specified on them.
- create domain degree_level varchar(10)
 constraint degree_level_test
 check (value in ('Bachelors', 'Masters', 'Doctorate'));

Large-Object Types

- Large objects (photos, videos, CAD files, etc.) are stored as a large object.
 - blob: binary large object -- object is a large collection of uninterpreted binary data (whose interpretation is left to an application outside of the database system)
 - clob: character large object -- object is a large collection of character data
 - When a query returns a large object, a pointer is returned rather than the large object itself.

Authorization

Forms of authorization on parts of the database:

- Read allows reading, but not modification of data.
- Insert allows insertion of new data, but not modification of existing data.
- Update allows modification, but not deletion of data.
- Delete allows deletion of data.

Forms of authorization to modify the database schema

- Index allows creation and deletion of indices.
- Resources allows creation of new relations.
- Alteration allows addition or deletion of attributes in a relation.
- Drop allows deletion of relations.

Authorization Specification in SQL

- The grant statement is used to confer authorization grant <privilege list> on <relation name or view name> to <user list>
 - <user list> is:
 - a user-id
 - public, which allows all valid users the privilege granted
 - A role (more on this later)
- 注意以下几点
 - Granting a privilege on a view does not imply granting any privileges on the underlying relations.
 - The grantor of the privilege must already hold the privilege on the specified item (or be the database administrator).

Privileges in SQL

- select: allows read access to relation, or the ability to query using the view
 - Example: grant users U_1 , U_2 , and U_3 select authorization on the *instructor* relation:

grant select on instructor to U_1 , U_2 , U_3

- insert: the ability to insert tuples
- update: the ability to update using the SQL update statement
- delete: the ability to delete tuples.
- all privileges: used as a short form for all the allowable privileges

Revoking Authorization in SQL

The revoke statement is used to revoke authorization.

revoke <privilege list>

on <relation name or view name> from <user list>

Example:

revoke select on branch from U_1 , U_2 , U_3

- 注意以下几点
 - <privilege-list> may be all to revoke all privileges the revokee may hold.
 - If <revokee-list> includes public, all users lose the privilege except those granted it explicitly.
 - If the same privilege was granted twice to the same user by different grantees, the user may retain the privilege after the revocation.
 - All privileges that depend on the privilege being revoked are also revoked.

Roles

- 语句
 - create role instructor;
 - grant instructor to Amit;
- Privileges can be granted to roles:
 - grant select on takes to instructor,
- Roles can be granted to users, as well as to other roles
 - create role teaching_assistant
 - grant teaching_assistant to instructor,
 - Instructor inherits all privileges of teaching_assistant
- Chain of roles
 - create role dean;
 - grant instructor to dean;
 - grant dean to Satoshi;

Authorization on Views

- create view geo_instructor as
 (select *
 from instructor
 where dept_name = 'Geology');
- grant select on geo_instructor to geo_staff
- Suppose that a geo_staff member issues
 - select * from geo_instructor,
- What if
 - geo_staff does not have permissions on instructor?
 - creator of view did not have some permissions on instructor?

Other Authorization Features

- references privilege to create foreign key
 - grant reference (dept_name) on department to Mariano;
 - why is this required?
- transfer of privileges
 - grant select on department to Amit with grant option;
 - revoke select on department from Amit, Satoshi cascade;
 - revoke select on department from Amit, Satoshi restrict;
- Etc. read Section 4.6 for more details we have omitted here.

End of Chapter 4

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan See www.db-book.com for conditions on re-use