Aufgabe 1: Die Ebene $\Sigma_1 \subset \mathbb{R}^4$ sei durch die Punkte $P_1(0,0,0,0)$, $P_2(1,0,0,0)$ und $P_3(0,1,0,0)$ und die Ebene $\Sigma_2 \subset \mathbb{R}^4$ durch die Punkte $Q_1(0,0,0,0)$, $Q_2(0,0,1,0)$ und $Q_3(0,0,0,1)$ eines kartesischen Koordinatensystems $(O,\mathbf{e}_1,\mathbf{e}_2,\mathbf{e}_3,\mathbf{e}_4)$ festgelegt.

- (a) Geben Sie jeweils eine Parameterdarstellung der Ebenen Σ_1 und Σ_2 an.
- (b) Zeigen Sie, dass sich die Ebenen Σ_1 und Σ_2 in genau einem Punkt S schneiden und geben Sie den Schnittpunkt an.
- (c) Bestimmen Sie den Schnitt beider Ebenen mit dem 3-dimensionalen Unterraum, beschrieben durch die Gleichung $x_4 = 0$, wenn x_1, x_2, x_3, x_4 die Koordinaten eines Punktes bezüglich $(O, \mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3, \mathbf{e}_4)$ sind.

Aufgabe 2: (Mathematischer "Zaubertrick")

Gegeben seien die Eckpunkte P_i $(i=1,2,\ldots,8)$ eines Würfels in \mathbb{R}^3 mit

$$P_1(0,0,0), P_2(1,0,0), P_3(1,1,0), P_4(0,1,0),$$

$$P_5(0,0,1), P_6(1,0,1), P_7(1,1,1), P_8(0,1,1),$$

bezüglich des kartesischen Koordinatensystems $(O, \mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3)$.

- (b) Ermitteln Sie die Koordinaten des Mittelpunktes M des Würfels bezüglich des Koordinatensystems $(O, \mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3)$.
- (a) Geben Sie Parameterdarstellungen der Seitenflächen F_i (i = 1, 2, ... 6) des Würfels bezüglich des kartesischen Koordinatensystems $(O, \mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3)$ an.
- (c) Jedem Punkt $P(x_1, x_2, x_3) \in \mathbb{R}^3$ kann der Punkt $P'(x_1, x_2, x_3, 0) \in \mathbb{R}^4$ zugeordnet werden und umgekehrt.

Auf diese Weise wird der 3-dimensionale Unterraum (Hyperebene) in \mathbb{R}^4 , beschrieben durch die Gleichung $x_4 = 0$, mit \mathbb{R}^3 identifiziert. Betrachten Sie den Würfel W und den Punkt M, wie eben beschrieben, in \mathbb{R}^4 .

Zeigen Sie, dass sich der Mittelpunkt M aus dem Inneren des Würfels nach Außen bewegen läßt (durch geeignete Bewegungen in \mathbb{R}^4 !), ohne dabei die Seitenflächen zu durchdringen.

(d) Wie stellt sich dieser Vorgang in der Hyperebene $x_4 = 0$ dar?