RS∧°Conference2022

San Francisco & Digital | June 6 – 9

SESSION ID: OST-T01

Sigstore, the Open Source Software Signing Service

Luke Hinds

Security Engineering Lead, Office of the CTO Red Hat

Disclaimer

Presentations are intended for educational purposes only and do not replace independent professional judgment. Statements of fact and opinions expressed are those of the presenters individually and, unless expressly stated to the contrary, are not the opinion or position of RSA Conference LLC or any other co-sponsors. RSA Conference does not endorse or approve, and assumes no responsibility for, the content, accuracy or completeness of the information presented.

Attendees should note that sessions may be audio- or video-recorded and may be published in various media, including print, audio and video formats without further notice. The presentation template and any media capture are subject to copyright protection.

©2022 RSA Conference LLC or its affiliates. The RSA Conference logo and other trademarks are proprietary. All rights reserved.

Speaker Intro

Luke Hinds

- Founder of sigstore
- OpenSSF TAC Member
- Confidential Computing Board
- Bug bounty programs (kubernetes)

Software Supply Chain Attacks

Dependency

(container,.)

Consumers / End Users

- Replay / freeze attacks
- Compromised keys
- Account Compromise
- Swapped hashes
- Compromise of build systems
- Easy reconnaissance (open configuration)
- Typosquatting
- Developer Burnout 'act out'

Software Supply Chain Attacks

650%

Increase in supply chain attacks in 2021

Sonatype's State of the Software Supply Chain

What can be done?

Who is signing?

What gaps are present?

- 1. A significant lack of code signing adoption
- 1. A lack of credible & trustworthy provenance

1. Key management still a challenge!

Digital Signatures

So what does software signing get us?

Verifies **integrity** of content (signature cannot be verified if even 1 bit is altered)

Non-repudiation (i.e. entity that possesses the private key can not state that they did not sign the artifact)

Authentication: if a private key is conceptually bound to an identity, the sender of signed messages can be assumed

If signature includes a (third-party signed)

timestamp, consumers can have greater

assurances of when the artifact was signed

System	Signing Tools	Trust Model
Linux Kernel	PGP	Mostly TOFU (trust on first use)
Node.js Core	PHP	PKs in git repo (insecure)
Kubernetes	sigstore	sigstore
Python	PGP	Keys on website (insecure)
OpenSSL	PGP	Keys on website (insecure)

Who is signing (Package Managers)?

System	Signatures	Cert Systems	In Use
PyPi	Optional	PGP	Rarely
NPM	PHP	NA	0%
Maven Central	Required	PGP/x509	100%
Containers	PGP	PGP/x509	Rarely
Go	N/A		
Ruby	Optional	x509	Rarely
Crates.io	No	No	No

Managing security of private keys is difficult and expensive

Handling key rotation and key compromise

Fear of Key compromise

MOTHERBOARD

Tooling is cumbersome to use and has not been modernised...

What if signing and key management were greatly simplified and provided for free to all?

Why reinvent the wheel?

Case Study: HTTPS

HTTPS based websites 2015 - 2020

Percentage of sites redirecting to HTTPS

Month	% HTTPS
Mar 2020	60.93%
Sep 2019	57.66%
Feb 2019	58.44%
Aug 2018	51.78%
Feb 2018	38.42%
Aug 2017	30.78%
Feb 2017	19.96%
Aug 2016	13.76%
Feb 2016	9.39%
Aug 2015	6.71%

What happened in 2015 and beyond?

September, 2015	First Let's Encrypt Certificate issued
October, 2015	Trusted by all major browsers
July, 2018	Chrome v68 (non HTTPS "insecure")
November, 2020	Firefox 83 introduces HTTPS-Only Mode

Month	% HTTPS
Mar 2020	60.93%
Sep 2019	57.66%
Feb 2019	58.44%
Aug 2018	51.78%
Feb 2018	38.42%
Aug 2017	30.78%
Feb 2017	19.96%
Aug 2016	13.76%
Feb 2016	9.39%
Aug 2015	6.71%

Browsers Close in...

What if we could do the same for software?

What is sigstore?

Under the OpenSSF (open source software foundation)

Provides software signing as a public good service

Combination of services and clients

Can be deployed privately / internal network

· sigstore

sigstore projects

Fulcio: CA issues code signing certificates based on OIDC identity

Rekor: signature transparency log - append-only, immutable

Cosign: container signing tool

Many other clients: maven, rust, ruby gems, python..

Other formats supported

OpenID Connect Signing

KMS (AWS, Azure, GCP, Vault)

PKCS11 (YubiKey, HSM)

Algs RSA, ECDSA, Ed25519, GPG

sigstore OIDC signing

sigstore ODIC signing

GitHub Action:

```
"Subject Alternative Name":

"https://github.com/lukehinds/widgets/.github/workflows/dock
er-publish.yml@refs/heads/main"
```

Email:

```
"Subject Alternative Name": "lhinds@redhat.com"
```


sigstore public transparency log

logs are publically transparent?

#RSAC

- Publicly verifiable
- Has my key been used?
- Has my OIDC been used?
- What is the blast radius of a key compromise?
- Who has signed X digest?

Open Source Adoption

GitHub Actions

Kubernetes

Trending Innovation Security Business Finance Education Home & Office More

Must read: Misinformation needs tackling and it would help if politicians stopped muddying the water

Kubernetes taps Sigstore to thwart opensource software supply chain attacks

The Kubernetes project takes a step forward in shielding users from supply chain attacks on its users.

Maven Central

STATUS & NEWS

Central Status

Latest News

News Archive

Maven Central and Sigstore

As custodians of the Maven Central registry, it's important to us here at Sonatype to ensure Central remains accessible, secure and modern for users and publishers.

With this in mind, over the past few years we have been investing heavily in Maven Central with the goal of modernizing the platform, improving the security of publishing and consumption and providing the developer experience consistent with expectations of contemporary software registries. This is a wide ranging effort that is expected to improve upon nearly every aspect of the platform.

As we work through design and planning activities, the emergence of sigstore as a solution to address provenance concerns that are critical to software supply chains is particularly exciting to us.

Table of contents

What's Next?

Many More

Other projects onboarding

Ruby Gems

PyPi

Rust Crates

JReleaser

Alpine Linux

Npm

Nuget

Maven Central

Vitess

How to find us.

Project Website

https://sigstore.dev

code

https://github.com/sigstore

Slack

https://sigstore.slack.com

twitter

https://twitter.com/projectsigstor

<u>e</u>

