

B

Oct 07, 2020

fastGRO

Elisa Barbieri¹, Connor Hill^{1,2}, Alessandro Gardini¹

¹The Wistar Institute; ²The University of Pennsylvania

1 Works for me

dx.doi.org/10.17504/protocols.io.bbmgik3w

Elisa Barbieri

DOI

dx.doi.org/10.17504/protocols.io.bbmgik3w

PROTOCOL CITATION

Elisa Barbieri, Connor Hill, Alessandro Gardini 2020. fastGRO. **protocols.io** https://dx.doi.org/10.17504/protocols.io.bbmgik3w

LICENSE

This is an open access protocol distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

CREATED

Jan 22, 2020

LAST MODIFIED

Oct 07, 2020

PROTOCOL INTEGER ID

32136

MATERIALS

NAME	CATALOG #	VENDOR
1.5 mL Eppendorf tubes		
Chloroform		
Isopropanol		
PBS		
NEBNext Ultra II Directional RNA Library Prep Kit for Illumina - 24 rxns	E7760S	New England Biolabs
0.5M EDTA	AM92606	
2 mL Eppendorf		
Glycerol		
RNA Clean & Concentrator-5 Kit	R1015	Zymo Research
Corning® 15 ml Centrifuge Tubes		Corning
M280 streptavidin beads		Invitrogen - Thermo Fisher
5M NaCl	AM9760G	Ambion
Capillary electrophoresis instrument (e.g. Agilent Tapestation 4200)		
1M MgCl2 solution	AM9530G	Thermo Fisher Scientific
50ml Falcon tubes	352070	Corning
Qubit RNA HS Assay Kit	Q32852	Thermo Fisher Scientific
1M Tris-HCl (pH 8.0)	15568025	Thermo Fisher Scientific
Tween-20		
Ethanol		

mprotocols.io

10/07/2020

Citation: Elisa Barbieri, Connor Hill, Alessandro Gardini (10/07/2020). fastGRO. https://dx.doi.org/10.17504/protocols.io.bbmgik3w

NAME	CATALOG #	VENDOR
KCI 2M	AM9640G	
Sarkosyl	L7414	Sigma Aldrich
4-thiouridine (4sU)	T4509	Sigma Aldrich
TRIzol™ LS Reagent	10296028	Thermo Fisher
ATP	18330019	Thermo Fisher
CTP	18331017	Thermo Fisher
GTP	18332015	Thermo Fisher
EZ-Link™ HPDP-Biotin, No-Weigh™ Format	A35390	Thermo Fisher
SUPERase• In™ RNase Inhibitor (20 U/μL)	AM2696	Thermo Fisher
Qubit™ 3 Fluorometer	Q33216	Thermo Fisher
IGEPAL® CA-630	18896	Sigma Aldrich
Glycogen	10901393001	Millipore Sigma
1M DTT	43816-10ML	Sigma
1M Tris-HCl pH 7.5	15567027	Thermo Fisher Scientific
1M CaCl2	21115	Sigma-aldrich
NN-Dimethylformamide	227056-100ML	Sigma Aldrich
4-Thiouridine-5-Triphosphate (4-thio-UTP)	N-1025-1	
RNA ScreenTape and Reagents		Agilent Technologies
Bioruptor USD-200		Diagenode

BEFORE STARTING

Prepare spike-in RNA or Nuclei

Prepare 50 mM of 4-thiouridine (4sU) in DEPC-treated water. Aliquot and store in the dark at -20 °C. Incubate drosophila cells for 5 minutes with 50mM of 4sU in their growing medium. Wash cells with 1X PBS, lyse in

Trizol reagent. Extract RNA, aliquot, snap-freeze in liquid nitrogen and store at -80 °C.

Can also prepare drosophila nuclei to control for the Nuclear run-on. Can be done using same nuclei extraction protocol (steps 1-9) and drosophila nuclei can be added to your sample at steps 8 or 12 to 5-10% of amount of nuclei from your sample.

Prepare buffers and solutions.

Swelling Buffer (SB) - Add 2 U/ml Superare-In before use.

- 10 mM Tris-HCL pH 7.5
- 2 mM MgCl₂
- 3 mM CaCl₂

Store at 4 °C.

Swelling Buffer + 10% Glycerol (GSB) - Add 2 U/ml Superare-In before use. Store at 4 °C.

Lysis Buffer (LyB) - Add 2 U/ml Superare-In before use.

- 10 mM Tris-HCL pH 7.5
- 2 mM MgCl₂
- 3 mM CaCl₂
- 10% Glycerol
- 1% Idepal

Store at 4 °C.

Freezing Buffer (FB) - Add 2 U/ml Superare-In before use.

40% glycerol

Citation: Elisa Barbieri, Connor Hill, Alessandro Gardini (10/07/2020). fastGRO. https://dx.doi.org/10.17504/protocols.io.bbmgik3w

- 5 mM MgCl₂
- 0.1 mM EDTA
- 50 mM Tris-HCL pH8

Store at 4 °C.

1 mg/mL EZ-link HPDP Biotin

Resuspend 1 mg in 1 ml of DMF in polypropylene tubes, vortex and incubate at 36 $^{\circ}$ C for 30 min. Store at -20 $^{\circ}$ C.

10x Biotinylation Buffer

100 mM Tris pH 7.5 10 mM EDTA pH 8.0 Store at 4 °C.

Nuclei isolation

- 1 Harvest cells and wash in cold 1X PBS
- 2 Resuspend cells in $\blacksquare 10 \text{ mL}$ of ice-cold SB.

Incubate for **© 00:05:00**.

Spin **3400 x g, 00:10:00**.

- 3 Remove supernatant and resuspend in **10 mL** GSB
 - Volume of GSB should be at least 5 times the volume of cell pellet
- 4 Vortex lightly while adding 10 mL of LyB
- 5 Incubate on ice for © 00:05:00

6 Flick to loosen pellet and resuspend in

25 mL of LyB.

Centrifuge @ 600 x g, 00:05:00

7 Remove supernatant and resuspend in **10 mL** of FB.

Take $\blacksquare 10 \mu I$ for cell count.

8 Centrifuge **900 x g, 00:06:00** and resuspend using wide-end pipette tips in FB to a concentration of 2x10⁷ nuclei per 10 μl of FB.

Nuclei can be stored at 8 -80 °C for months. Nuclear Run On 10 Prepare fresh 2x Nuclear run-on buffer (NRO). (100 µl /sample) • 10 mM Tris-HCl ph8 5 mM MgCl₂ 300 mM KCl 1 mM DTT 500 μM ATP 500 μM GTP 500 μM 4-thio-UTP 2 μM CTP 200 μ/ml Superase-in • 1% Sarkosyl (N-Laurylsarcosine sodium salt solution) Per library, use 1.5-2 x10⁷ nuclei 11 Warm the NRO buffer at § 30 °C . 12 Thaw nuclei § On ice . 5-10% drosophila nuclei can be added to your sample as spike-in if not using 4S-U labelled drosophila RNA in step 26. 13 Mix $\blacksquare 100 \ \mu I$ of thawed nuclei solution with $\blacksquare 100 \ \mu I$ of 2xNRO buffer. Pipette up and down 15 times using end-cut pipette tip. 14 Incubate (>00:07:00 at \$30 °C . 15 Add **□600 µI** Trizol LS. Incubate \circlearrowleft 00:05:00 at & Room temperature .

Citation: Elisa Barbieri, Connor Hill, Alessandro Gardini (10/07/2020). fastGRO. https://dx.doi.org/10.17504/protocols.io.bbmgik3w

STOP POINT: Freeze with liquid nitrogen, and store at -80 °C

Total RNA precipitation

- Add $\Box 160 \, \mu I$ of chloroform, shake vigorously by hand for $\bigcirc 00:00:15$
- 17 Incubate © 00:02:00 at & Room temperature.
- 18 Centrifuge at **(3)12000 rpm, 4°C, 00:15:00**.
- 19 Transfer upper, aqueous phase into new 1.5 mL centrifuge tube.
- 20 Add 400 µl of isopropanol to precipitate RNA and incubate at 8 Room temperature for © 00:10:00.
 - Can add 1-2 ul of 2 μg/μL glycogen to allow for visualization of pellet with lower RNA concentrations.
- 21 Centrifuge at **312000 rpm, 4°C, 00:10:00** .
- Wash RNA pellet using □1 mL of cold 75 % ethanol Centrifuge at ⊕12000 rpm, 4°C, 00:10:00 .
- 23 Completely remove ethanol and air-dry pellet.

 Dissolve in 100 μl of nuclease-free water.
- 24 Determine concentration by Nanodrop or Qubit.

RNA fragmentation

25 Transfer \Box 150 µg of RNA to a 1.5 ml tube and add water up to \Box 500 µl .

Save 5 μ l of unfragmented RNA to be run on TapeStation as a control for fragmented RNA and to check quality of RNA.

፩ protocols.io 5 10/07/2020

- Add 5-10% of labelled spike-in RNA if using instead of drosophila nuclei. 26 27 Fragment RNA using Bioruptor with the following settings using: 1 cycle: 30 sec / 30 sec ON / OFF at high settings. 28 Transfer fragmented RNA to 2 ml tube. Analyze fragmentation efficiency of fragmented versus unfragmented RNA on Agilent 2200 TapeStation. 29 30 Sonicated RNA can be snap-frozen in liquid nitrogen and stored at 8 -80 °C EZ-link HPDP-Biotinylation 31 Transfer 150 µg of fragmented RNA in one 2 ml Eppendorf tube. Use only polypropylene tubes during biotinylation. 32 Incubate RNA at § 65 °C for © 00:10:00 , then § On ice for © 00:05:00 . Prepare Biotin-RNA mix in 2 ml tube. Follow the order: 33
 - up to 150 μg of fragmented RNA in **3500** μl
 - **100** µl Biotinylation Buffer
 - 200 μl DMF
 - 200 µl EZ-link HPDP Biotin
 - 34 Incubate in the dark at § 24 °C and § 800 rpm for § 02:00:00.

Precipitation of biotinylated RNA

35 tube. 36 Centrifuge at § 4 °C and @16000 x g © 00:05:00 37 Transfer upper phase into new tube (appr 1 mL). 38 Add 1/10 volume (100 μ l) of 5 M NaCl and mix. If needed at 1-2 μL of 2 μg/μL Glycogen to allow for visualization of pellet with lower RNA concentrations. 39 Add 1 volume (1 ml) of isopropanol and mix for **© 00:00:15** manually. 40 Centrifuge @16000 x g, 4°C, 00:05:00 . 41 Remove supernatant. 42 Wash pellet with 11 mL of ice-cold 75% ethanol. Centrifuge @10006 x g, 4°C, 00:30:00 . 43 Remove supernatant. 44 Spin quickly at 84 °C and remove remaining supernatant with 200 μ l and 10 μ l pipettes. Biotinylated RNA should NOT dry.

⋈ protocols.io 7 10/07/2020

45	Resuspend RNA in □100 μI of nuclease-free water.		
	Biotinylated RNA can be stored at 8 -80 °C.		
Enrichr	nent of biotinylated RNA		
46	Prepare Wash Buffer (WB): 100 mM Tris pH 7.5 10 mM EDTA pH 8.0 1M NaCl 0.1% (vol/vol) Tween-20		
47	Leave half volume of WB at & Room temperature and heat the other half at & 65 °C .		
48	Prepare the M280 Streptavidin Dynabeads:		
	48.1 Take 100 μl of beads per sample.		
	48.2 Wash the beads twice with 2 volumes (□200 μI per sample) of wash buffer.		
	48.3 Resuspend in 1 Volume (□100 μl per sample) of wash buffer.		
49	Increase the volume of the solution of RNA-biotin to 200 μl with nuclease-free water.		
	Can also scale down to 100 μL if you have less than 150 μg and use 50uL of beads.		
50	Incubate at & 65 °C for © 00:10:00 . Place on ice for © 00:05:00 .		

፩ protocols.io 8 10/07/2020

51 Add 100 µl of prepared Invitrogen streptavidin beads to 200 µl of RNA-biotin. 52 Incubate at & 4 °C for © 00:15:00 in rotation. 53 Transfer tubes to a magnetic rack. Remove supernatant. Do not disturb beads. 54 Wash at least 3 times with ■900 µl of warm (§ 65 °C) WB. 55 Wash at least 3 times with $\boxed{900 \, \mu l}$ of room temperature WB. 56 Resuspend beads in in $\boxed{100 \text{ } \mu\text{l}}$ of 100 mM DTT and incubate $\bigcirc{00:05:00}$. Transfer tubes to the magnetic rack. 57 Collect the 4-thio-labeled RNA in a new tube. 58 Repeat steps 57-58 and collect the eluted RNA in the same tube (200 µl total volume). Purification of labelled RNA with RNA Clean and Use buffers provided with the RNA Clean and Purification kit-5 (Zymo Research). Add ethanol to wash and pre-wash buffers and resuspend DNAse in water. 60 Add $\mathbf{400} \mu \mathbf{I}$ of RNA Binding Buffer to each sample and mix. 61 Add \blacksquare 600 μ I of ethanol (95-100%) and mix. 62 Transfer the sample to the Zymo-Spin IC Column in a Collection Tube and centrifuge for 🔾 00:00:30 . Discard the flow-through.

- Add $\Box 400~\mu I$ of RNA Wash Buffer to the column and centrifuge for 316000~x~g, 00:00:30. Discard the flow-through.
- 64 For each sample to be treated, prepare DNase I reaction mix in an RNase-free tube. Mix well by gentle inversion:
 - **5 μl** DNase I
 - **35** μl DNA Digestion Buffer
- Add $\Box 40~\mu I$ reaction mix directly to the column matrix. Incubate at δ Room temperature for \odot 00:15:00.
- 66 Add ⊒400 µl RNA Prep Buffer to the column and centrifuge for ⊚ 00:00:30 . Discard the flow-through.
- 67 Add □700 µl RNA Wash Buffer to the column and centrifuge for ⊙00:00:30. Discard the flow-through.
- Add 400 µl RNA Wash Buffer to the column and centrifuge for © 00:02:00. Discard the flow-through.
- 69 Centrifuge for **© 00:01:00** at full speed to ensure complete removal of the wash buffer. Transfer the column carefully into an RNase-free tube.
- 70 Add **a**6 μl DNase/RNase-Free Water directly to the column matrix, incubate for **00:01:00** and centrifuge for **00:00:30**
- 71 Measure concentration of labelled RNA by Qubit fluorometer.
- 72 Libraries can be prepared with NEBNext Ultra II Directional RNA Library Prep or other library prep kits.