Computation

1 Programs

1.1 Logical Instructions

Define \mathcal{L} ; an ordered set of logical operations s_i

$$\mathcal{L} := \{s_1, s_2, ..., s_N\}$$

1.2 Memory

Define Memory \mathcal{M} ; a set of elements, magnitudes, or sets b_i

$$\mathcal{M} := \{b_1, b_2, ..., b_M\}$$

1.3 State

Define state; the memory b_i utilized to perform program P

$$P := \{s_1, s_2, ..., s_N | b_1, b_2, ..., b_M\} = \{s_1, s_2, ..., s_N, b_1, b_2, ..., b_M\}$$

1.4 Boolean Programs

Define a boolean program; boolean programs can represent functions with inputs x_i , input set C, and boolean output y_o

$$X = \{x_1, ..., x_n, C\}; \quad C = \{u_1, u_2, ..., u_c\}$$

$$P = P[X] := \{s_1, s_2, ..., s_N \mid b_1, b_2, ..., b_M, y_o\} =$$

$$P[X] \to y_o \in \{\mathbb{T}, \mathbb{F}\}$$

1.5 Void Programs

Define a void program; a program with inputs x_i , input set C, and no output

$$X = \{x_1, ..., x_n, C\}$$

$$P = P[X] := \{s_1, s_2, ..., s_N \mid b_1, b_2, ..., b_M\}$$

1.6 Numerical Programs

Define a numerical program; a program with inputs x_i , input set C, and real, rational output y_o

$$X = \{x_1, ..., x_n, C\}$$

$$P = P[X] := \{s_1, s_2, ..., s_N \mid b_1, b_2, ..., b_M, y_o\} =$$

$$P[X] \to y_o \in \mathbb{Q} \ y_o \geqslant 0$$

1.7 System Programs

Define a system program; a program with inputs x_i , input set C, and real, output set Y_o

$$X = \{x_1, ..., x_n, C\}$$

$$P = P[X] := \{s_1, s_2, ..., s_N \mid b_1, b_2, ..., b_M, Y_o\} =$$

$$P[X] \to Y_o = \{y_1, y_2, ..., y_K\}$$

1.8 Mathematical Programs

Define a mathematical program; a program with inputs x_i , input set C and numerical output y_o

$$X = \{x_1, ..., x_n, C\}$$

$$P = P[X] := \{s_1, s_2, ..., s_N \mid b_1, b_2, ..., b_M, y_o\} =$$

$$P[X] \to y_o \in \mathbb{Q}$$

- 2 No-op;
- 2.1 Definition

$$;:=\varnothing$$

2.2 Property of No-op

No-op can be inserted into any set with equality

$$S = \{s_1, s_2, ..., s_N\}$$

$$S_{;} = insert[S, ;, i]$$

$$S_{;} = S_1 \ \forall i$$

$$|S_{;}| = |S| \ \forall i$$

2.3 Proof

by definition of magnitude of null = 0 with Set And

3 Problem Definition

Also denoted as a "Question"

$$X_i = \{x_1, ..., x_n\}$$
$$Q := f[X_i] = Y_o \subseteq \Omega \quad \forall X_i$$

3.1 Set of Questions

Define \mathbb{Q} ; the set of questions

$$\mathbb{Q} := \{Q_1, Q_2, \ldots\} :$$

$$Q_i = f[X_j] = Y_o \subseteq \Omega \ \forall X_j, i$$

3.2 Decision Questions / Decision Problems

3.2.1 Definition

Define decision problem; a function with inputs x_i and boolean output "answer" a_o

$$X_i = \{x_1, ..., x_n\}$$
$$D := f[X_i] = a_o \in \{\mathbb{T}, \mathbb{F}\} \quad \forall X_i$$

3.3 Numerical Questions / Numerical Problems

3.3.1 Definition

Define numerical problem; a function with inputs x_i and numerical output y_o

$$X_i = \{x_1, ..., x_n\}$$
$$Q := f[X_i] = y_o \in \mathbb{R} \quad \forall X_i$$

3.4 System Questions / System Problems

3.4.1 Definition

Define system problem; a function with inputs x_i and outputs y_j

$$X_i = \{x_1, ..., x_n\}$$

 $Q := f[X_i] = Y_o = \{y_1, ..., y_m\} \quad \forall X_i$

4 General Solutions

4.1 Definition

Program P is a general solution s^+ to decision problem D if

- 1. P outputs answer a_o for all inputs $X_i \ \forall i$ and
- 2. $s^+[X_i]$ is a subset of $s^+[\hat{X}_i]$

$$X_{i} = \{x_{1}, ..., x_{n}, C\}; \quad \hat{X}_{i} = \{x_{1}, ..., x_{n}, x_{n+1}, C\}$$

$$D := f[X_{i}] \rightarrow a_{o} \in \{\mathbb{T}, \mathbb{F}\} \quad \forall X_{i}$$

$$s^{+} = s^{+}[X_{i}] := P :$$

$$(P[X_{i}] \rightarrow y_{o} == a_{o} \quad \forall X_{i}) \quad \cap \quad (P[\hat{X}_{i}] \supseteq P[X_{i}] \quad \forall X_{i}, \hat{X}_{i})$$

$$P[X_{i}] = \{s_{1}, s_{2}, ..., s_{N} | b_{1}, b_{2}, ..., b_{M}, y_{o}\}$$

$$s^{+} = P[X_{i}] = \{s_{1}, s_{2}, ..., s_{O_{T}[n]}, b_{1}, b_{2}, ..., b_{O_{S}[n]}, y_{o}\} \quad \forall X_{i}$$

4.1.1 Property of No-op;

No-op ; can be added to any solution S_i without modifying the output y_o

$$s^{+} = \{s_{1}, s_{2}, ..., s_{O_{T}[n]}, b_{1}, b_{2}, ..., b_{O_{S}[n]}, y_{o}\}$$
$$\hat{s}^{+} \rightarrow \hat{y}_{o} = insert[s^{+}, ;, k]$$
$$\hat{y}_{o} = y_{o} \ \forall k$$

4.2 Definition of S^+

Define S^+ ; the set of solutions to decision problem D

$$X_{i} = \{x_{1}, ..., x_{n}, C\}; \quad \hat{X}_{i} = \{x_{1}, ..., x_{n}, x_{n+1}, C\}$$

$$D := f[X_{i}] \to a_{o} \in \{\mathbb{T}, \mathbb{F}\} \quad \forall X_{i}$$

$$s_{j}^{+} = s_{j}^{+}[X_{i}] := P :$$

$$(P[X_{i}] \to y_{o} == a_{o} \quad \forall X_{i}) \quad \cap \quad (P[\hat{X}_{i}] \supseteq P[X_{i}] \quad \forall X_{i}, \hat{X}_{i})$$

$$S^{+} := \{s_{j}^{+}, ...\} \quad \forall j$$

4.3 Definition of Solvable

Define solvable

$$X_{i} = \{x_{1}, ..., x_{n}, C\}; \quad \hat{X}_{i} = \{x_{1}, ..., x_{n}, x_{n+1}, C\}$$

$$D := f[X_{i}] \rightarrow a_{o} \in \{\mathbb{T}, \mathbb{F}\} \quad \forall X_{i}$$

$$solvable := solvable[D] \rightarrow b_{o} \in \{\mathbb{T}, \mathbb{F}\} =$$

$$\exists P : (P[X_{i}] \rightarrow y_{o} == a_{o} \quad \forall X_{i}) \quad \cap \quad (P[\hat{X}_{i}] \supseteq P[X_{i}] \quad \forall X_{i}, \hat{X}_{i})$$

5 The set of all Decision Problems \mathbb{D}

5.1 Definition

Define the set of decision problems \mathbb{D}

$$X_i = \{x_1, ..., x_n, C\}$$

$$D_j := f_j[X_i] \to a_o \in \{\mathbb{T}, \mathbb{F}\} \quad \forall X_i$$

$$\mathbb{D} := \{D_j, ...\} \quad \forall j$$

6 Instruction and Memory Notation

Define \mathcal{L} a set of logical operations Define \mathcal{M} a set of memory elements, magnitudes, and sets

$$X_{i} = \{x_{1}, ..., x_{n}, C\};$$

$$P[X_{i}] \rightarrow y_{o} = \{s_{1}, s_{2}, ..., s_{O_{T}[n]}, b_{1}, b_{2}, ..., b_{O_{S}[n]}, y_{o}\}$$

$$\mathcal{L} := \{s_{1}, s_{2}, ..., s_{O_{T}[n]}\}$$

$$\mathcal{M} := \{b_{1}, b_{2}, ..., b_{O_{S}[n]}\}$$

$$P[X_{i}] = \{\mathcal{L}, \mathcal{M}, y_{o}\}$$

7 Complexity

7.1 Time Complexity of a Decision Problem $O_T[n]$

Define Time Complexity $O_T[n]$ of solution s^+ to Decision Problem D as the total number of logical operations

$$X_{i} = \{x_{1}, ..., x_{n}, C\}; \quad \hat{X}_{i} = \{x_{1}, ..., x_{n+1}, C\}$$

$$D := f[X_{i}] \rightarrow a_{o} \in \{\mathbb{T}, \mathbb{F}\} \quad \forall X_{i}$$

$$s^{+}[X_{i}] := P :$$

$$(P[X_{i}] \rightarrow y_{o} == a_{o} \quad \forall X_{i}) \quad \cap \quad (P[\hat{X}_{i}] \supseteq P[X_{i}] \quad \forall X_{i}, \hat{X}_{i})$$

$$s^{+} = \{s_{1}, s_{2}, ..., s_{N} | b_{1}, b_{2}, ..., b_{M}, y_{o}\} = \{s_{1}, s_{2}, ..., s_{O_{T}[n]}, b_{1}, b_{2}, ..., b_{O_{S}[n]}, y_{o}\}$$

$$= \{\mathcal{L}, \mathcal{M}, y_{o}\}$$

$$O_{T}[n] := |\mathcal{L}| = N$$

7.2 Space Complexity $O_S[n]$

Define Space Complexity $O_S[n]$ of solution s^+ to Decision Problem D as the total number of memory elements

$$X_{i} = \{x_{1}, ..., x_{n}, C\}; \quad \hat{X}_{i} = \{x_{1}, ..., x_{n+1}, C\}$$

$$D := f[X_{i}] \rightarrow a_{o} \in \{\mathbb{T}, \mathbb{F}\} \quad \forall X_{i}$$

$$s^{+}[X_{i}] := P :$$

$$(P[X_{i}] \rightarrow y_{o} == a_{o} \quad \forall X_{i}) \quad \cap \quad (P[\hat{X}_{i}] \supseteq P[X_{i}] \quad \forall X_{i}, \hat{X}_{i})$$

$$s^{+} = \{s_{1}, s_{2}, ..., s_{N} | b_{1}, b_{2}, ..., b_{M}, y_{o}\} = \{s_{1}, s_{2}, ..., s_{O_{T}[n]}, b_{1}, b_{2}, ..., b_{O_{S}[n]}, y_{o}\}$$

$$= \{\mathcal{L}, \mathcal{M}, y_{o}\}$$

$$O_{S}[n] := |\mathcal{M}| + |y_{o}|^{*} = M + 1$$

8 Definition of Complexity

Define Complexity O[n] as a vector of dimension Y

$$\mathbf{O}[n] := \langle O_T[n], O_S[n], O_3[n], O_4[n]..., O_V[n] \rangle$$

9 Total Complexity

$$O[n] := O_T[n] + O_S[n] + \sum_{i=3}^{V} O_i[n]$$

^{*}It is convention to reserve one memory element for output y_o . Void programs do not require the y_o memory element for output

10 Simple Computational Complexity

The remainder of this document assumes simple computational complexity of dimension 2

10.1 Definition

Define simple computational complexity of dimension 2

$$\mathbf{O}[n] := \langle O_T[n], O_S[n] \rangle$$

10.2 Time Complexity

Restate definition of Time Complexity $O_T[n]$ of solution s^+

$$s^+ = \{\mathcal{L}, \mathcal{M}, y_o\}$$

$$O_T[n] := |\mathcal{L}| = N$$

10.3 Space Complexity

Restate definition of Time Complexity $O_S[n]$ of solution s^+

$$s^+ = \{\mathcal{L}, \mathcal{M}, y_o\}$$

$$O_S[n] := |\mathcal{M}| + |y_o| = M + 1$$

10.4 Total Complexity

$$O[n] := O_T[n] + O_S[n]$$

= $|\mathcal{L}| + |\mathcal{M}| + |y_o| = N + M + 1$

10.5
$$O_S[n] > 0$$

10.5.1 Proof

Assume $O_S[n] = 0$

$$O_S[n] := |\mathcal{M}| + |y_o|$$

 $O_S[n] = 0 \Rightarrow \mathcal{M} = y_o = \emptyset$

$$y_o = \emptyset; \ y_o \in \{\mathbb{T}, \mathbb{F}\}$$
 by definition of s^+

 $\therefore O_S[n] = 0$ contradicts the definition of solution s^+ of a decision problem

$$O_S[n] \geqslant 0$$
 by definition of magnitude

$$\therefore O_S[n] > 0$$

10.6 $O_T[n] > 0$

10.6.1 Proof

Assume $O_T[n] = 0$

$$O_T[n] := |\mathcal{L}|$$

$$O_T[n] = 0 \Rightarrow y_o \notin \{\mathbb{T}, \mathbb{F}\}$$

 $y_o \notin \{\mathbb{T}, \mathbb{F}\}; \ y_o \in \{\mathbb{T}, \mathbb{F}\} \text{ by definition of } s^+$

 $\therefore O_T[n] = 0$ contradicts the definition of solution s^+ of a decision problem

 $O_T[n] \geqslant 0$ by definition of magnitude

$$\therefore O_T[n] > 0$$

10.7 O[n] > 0

10.7.1 Proof

$$O[n] := O_T[n] + O_S[n]$$

$$O_T[n] > 0; \ O_S[n] > 0$$

$$\therefore O[n] > 0$$

10.8 $O[n] > O_T[n]$

10.8.1 **Proof**

$$O[n] := O_T[n] + O_S[n]$$

$$O_S[n] > 0$$

$$\therefore O[n] > O_T[n]$$

10.9 $O[n] > O_S[n]$

10.9.1 **Proof**

$$O[n] := O_T[n] + O_S[n]$$

$$O_T[n] > 0$$

 $\therefore O[n] > O_S[n]$

10.10
$$O[n+1] \geqslant O[n]$$

10.10.1 Proof

$$X_{i} = \{x_{1}, ..., x_{n}, C\}; \quad \hat{X}_{i} = \{x_{1}, ..., x_{n+1}, C\}$$

$$O[n] = |s^{+}[X_{i}]|$$

$$O[n+1] = \hat{O}[n] = |s^{+}[\hat{X}_{i}]|$$

For general solutions s^+

$$s^{+}[\hat{X}_{i}] \supseteq s^{+}[X_{i}]$$

$$\Rightarrow |s^{+}[\hat{X}_{i}]| \geqslant |s^{+}[X_{i}]|$$

$$\therefore \hat{O}[n] = O[n+1] \geqslant O[n]$$

11 Polynomial Complexity

11.1 Definition

Decision problem D with solution s^+ has polynomial total complexity O[n] if

$$\exists K, C, \lambda_1 ... \lambda_K :$$

$$O[n] = (\lambda_K n)^K + (\lambda_{K-1} n)^{K-1} ... + \lambda_1 n + C \quad \forall n$$

11.2 Polynomial Problems

Define \mathbb{P} , the set of Decision Problems that can be solved with Polynomial Complexity

$$\mathbb{P}:=\{D_1,D_2,\ldots\}:$$

$$\exists K,C,\lambda_1...\lambda_K:$$

$$O[n]=(\lambda_K n)^K+(\lambda_{K-1} n)^{K-1}...+\lambda_1 n+C \quad \forall n,D_i\in\mathbb{P}$$

11.3 Polynomial Order of Complexity

Solution s^+ with total complexity O[n] is said to be of order n^K

$$O[n] \sim n^K$$

$$O[n] = (\lambda_K n)^K + (\lambda_{K-1} n)^{K-1} \dots + \lambda_1 n + C \quad \forall n$$

11.4 Property of Polynomial Complexity 1

Solutions with polynomial complexity have convergent complexity

$$\lim_{n\to\infty} \frac{O[n+1]}{O[n]} = 1$$

11.4.1 Proof

$$O[n] = (\lambda_K n)^K + (\lambda_{K-1} n)^{K-1} \dots + \lambda_1 n + C$$

$$O[n+1] = (\lambda_K (n+1))^K + (\lambda_{K-1} (n+1))^{K-1} \dots + \lambda_1 (n+1) + C$$

$$= (\lambda_K n)^K + (\tilde{\lambda}_{K-1} n)^{K-1} \dots + \tilde{\lambda}_1 n + \tilde{C}$$

$$\lim_{n \to \infty} \frac{O[n+1]}{O[n]}$$

$$= \lim_{n \to \infty} \frac{(\lambda_K n)^K + (\tilde{\lambda}_{K-1} n)^{K-1} \dots + \tilde{\lambda}_1 n + \tilde{C}}{(\lambda_K n)^K + (\lambda_{K-1} n)^{K-1} \dots + \lambda_1 n + \tilde{C}}$$

$$\begin{split} = \lim_{n \to \infty} & \frac{(\lambda_K n)^K}{(\lambda_K n)^K + (\lambda_{K-1} n)^{K-1} \dots + \lambda_1 n + C} + \frac{(\tilde{\lambda}_{K-1} n)^{K-1}}{(\lambda_K n)^K + (\lambda_{K-1} n)^{K-1} \dots + \lambda_1 n + C} + \dots + \\ & \frac{\tilde{\lambda}_1 n}{(\lambda_K n)^K + (\lambda_{K-1} n)^{K-1} \dots + \lambda_1 n + C} + \frac{\tilde{C}}{(\lambda_K n)^K + (\lambda_{K-1} n)^{K-1} \dots + \lambda_1 n + C} \\ & = 1 = \lim_{n \to \infty} \frac{O[n+1]}{O[n]} \end{split}$$

11.5 Property of Polynomial Complexity 2

$$\exists K, \hat{C}, \hat{\lambda}_1, ..., \hat{\lambda}_{K-1} :$$

$$O[n+1] - O[n] = f_{n+1}[n] = (\hat{\lambda}_{K-1}n)^{K-1} ... + \hat{\lambda}_1 n + \hat{C} \quad \forall n$$

11.5.1 Proof

$$O[n] = (\lambda_K n)^K + (\lambda_{K-1} n)^{K-1} \dots + \lambda_1 n + C$$

$$O[n+1] = (\lambda_K (n+1))^K + (\lambda_{K-1} (n+1))^{K-1} \dots + \lambda_1 (n+1) + C$$

$$= (\lambda_K n)^K + (\tilde{\lambda}_{K-1} n)^{K-1} \dots + \tilde{\lambda}_1 n + \tilde{C}$$

$$O[n+1] - O[n] = ((\tilde{\lambda}_{K-1} - \lambda_{K-1}) n)^{K-1} \dots + (\tilde{\lambda}_1 - \lambda_1) n + (\tilde{C} - C)$$

$$O[n+1] - O[n] = (\hat{\lambda}_{K-1} n)^{K-1} \dots + \hat{\lambda}_1 n + \hat{C}$$

11.6 Total Polynomial Complexity Implies Time bounded Polynomial Complexity

$$D \in \mathbb{P} \Longrightarrow O_T[n] < (\lambda_K n)^K + (\lambda_{K-1} n)^{K-1} \dots + \lambda_1 n + C$$

11.6.1 Proof

$$O[n] = (\lambda_K n)^K + (\lambda_{K-1} n)^{K-1} \dots + \lambda_1 n + C \ \forall n$$

$$O[n] := O_T[n] + O_S[n]; \ O_S[n] > 0$$

$$\therefore O_T[n] < (\lambda_K n)^K + (\lambda_{K-1} n)^{K-1} \dots + \lambda_1 n + C \ \forall n$$

11.7 Total Polynomial Complexity Implies Space bounded Polynomial Complexity

$$D \in \mathbb{P} \Longrightarrow O_S[n] < (\lambda_K n)^K + (\lambda_{K-1} n)^{K-1} \dots + \lambda_1 n + C$$

11.7.1 Proof

$$O[n] = (\lambda_K n)^K + (\lambda_{K-1} n)^{K-1} \dots + \lambda_1 n + C \ \forall n$$

$$O[n] := O_T[n] + O_S[n]; \ O_T[n] > 0$$

 $\therefore O_S[n] < (\lambda_K n)^K + (\lambda_{K-1} n)^{K-1} \dots + \lambda_1 n + C \ \forall n$

12 Non-Polynomial Complexity

12.1 Definition

Decision problem \tilde{D} with solution s^+ has non-polynomial total complexity O[n] if

$$\sharp K, C, \lambda_1 ... \lambda_K :$$

$$O[n] = (\lambda_K n)^K + (\lambda_{K-1} n)^{K-1} ... + \lambda_1 n + C \quad \forall n$$

12.2 Non-Polynomial Problems

Define \mathcal{N} , the set of Decision Problems that cannot be solved with Polynomial Complexity

12.3 \mathbb{P} and \mathcal{N} are disjoint

$$\mathbb{P} \cap \mathcal{N} = \emptyset$$

12.3.1 Proof

Let $D \in \mathcal{N}$

$$\sharp K, C, \lambda_1 ... \lambda_K :$$

$$O[n] = (\lambda_K n)^K + (\lambda_{K-1} n)^{K-1} ... + \lambda_1 n + C \quad \forall n$$

Assume $D \in \mathbb{P}$

$$\exists K, C, \lambda_1 ... \lambda_K :$$

$$O[n] = (\lambda_K n)^K + (\lambda_{K-1} n)^{K-1} ... + \lambda_1 n + C \quad \forall n$$
 Contradicts the definition of \mathcal{N}

$$\therefore D \in \mathcal{N} \Rightarrow D \notin \mathbb{P}$$

Let $D \in \mathbb{P}$

$$\exists K, C, \lambda_1...\lambda_K :$$

$$O[n] = (\lambda_K n)^K + (\lambda_{K-1} n)^{K-1}... + \lambda_1 n + C \quad \forall n$$

Assume $D \in \mathcal{N}$

13 Divergent Complexity

13.1 Defintion

Decision problem \hat{D} with solution s^+ has divergent total complexity O[n] if

$$\lim_{n\to\infty} \frac{O[n+1]}{O[n]} \ diverges \ \forall n$$

13.2 Divergent Problems

$$\hat{\mathcal{D}} := \{\hat{D}_1, \hat{D}_2, ...\} :$$

$$\lim_{n \to \infty} \frac{O[n+1]}{O[n]} \ diverges \ \forall s^+ \in S_i^+, \ \hat{D}_i \in \hat{\mathcal{D}}$$

13.3 The Set of Polynomial Solutions and the Set of Divergent Solutions are disjoint

$$\mathbb{P} \cap \hat{D} = \varnothing$$

13.4 Proof

Let $D \in \hat{\mathcal{D}}$

$$\lim_{n\to\infty} \frac{O[n+1]}{O[n]}$$
 diverges by definition

Assume $D \in \mathbb{P}$

$$\lim_{n\to\infty} \frac{O[n+1]}{O[n]} = 1$$

 $\lim_{n \to \infty} \frac{O[n+1]}{O[n]} = 1$ contradicts the definition of Divergent Problems

$$\therefore D \in \hat{\mathcal{D}} \Rightarrow D \notin \mathbb{P}$$

Let $D \in \mathbb{P}$

 $\lim_{n\to\infty} \frac{O[n+1]}{O[n]} = 1$ by property of Polynomial complexity

Assume $D \in \hat{D}$

$$\lim_{n\to\infty} \frac{O[n+1]}{O[n]}$$
 diverges

 $\lim_{n\to\infty}\frac{O[n+1]}{O[n]}$ diverges contradicts a property of Polynomial complexity

$$\therefore D \in \mathbb{P} \Rightarrow D \notin \hat{\mathcal{D}}$$

$$\therefore \mathbb{P} \cap \hat{\mathcal{D}} = \emptyset$$

14 Inductive Functions

14.1 Inductive Function f_{n+1}

$$O[n] := O_T[n] + O_S[n]$$

$$O[n+1] = O_T[n+1] + O_S[n+1]$$

$$f_{n+1}[n] := O[n+1] - O[n]$$

14.2 Inductive Space and Time Formulas

$$f_{n+1}^{T}[n] := O_{T}[n+1] - O_{T}[n]$$

$$O_{T}[n+1] = O_{T}[n] + f_{n+1}^{T}[n]$$

$$f_{n+1}^{S}[n] := O_{S}[n+1] - O_{S}[n]$$

$$O_{S}[n+1] = O_{S}[n] + f_{n+1}^{S}[n]$$

14.3 Inductive Function Expressions

Relate $f_{n+1}[n]$ to equivalence functions

$$D \in \mathbb{P}$$

$$O[n] := O_T[n] + O_S[n]$$

$$O[n+1] = O_T[n+1] + O_S[n+1] = O[n] + f_{n+1}[n]$$

$$O_T[n] = O[n] - O_S[n]$$

$$O_S[n] = O[n] - O_T[n]$$

$$f_{n+1} = O[n+1] - O[n]$$

$$f_{n+1} = O_T[n+1] + O_S[n+1] - O[n]$$

$$f_{n+1} = O_T[n+1] - O_T[n] + O_S[n+1] - O_S[n]$$

$$f_{n+1} = O[n+1] - O_T[n] - O_S[n]$$

$$f_{n+1}[n] = f_{n+1}^T[n] + f_{n+1}^S[n]$$

14.4 Zero Order Inductive Function

$$Let \ O_S[n] \sim n^0$$

$$f_{n+1} = O_T[n+1] - O_T[n] + O_S[n+1] - O_S[n] = O_T[n+1] - O_T[n]$$

14.5 Property of Polynomial Complexity

$$limit_{n\to\infty} \frac{f_{n+1}[n]}{O[n]} = 0$$

14.5.1 **Proof**

$$limit_{n\to\infty} \frac{O[n+1]}{O[n]} = 1$$

$$limit_{n\to\infty} \frac{O[n] + f_{n+1}[n]}{O[n]} = 1$$

$$limit_{n\to\infty} \frac{O[n]}{O[n]} + \frac{f_{n+1}[n]}{O[n]} = 1$$

$$limit_{n\to\infty} 1 + \frac{f_{n+1}[n]}{O[n]} = 1$$

$$limit_{n\to\infty} \frac{f_{n+1}[n]}{O[n]} = 0$$

15 Subfunctions

15.1 Restate the subfunction condition of general solutions

Recall the definition of general solution s^+

$$X_{i} = \{x_{1}, ..., x_{n}, C\}; \quad \hat{X}_{i} = \{x_{1}, ..., x_{n+1}, C\}$$

$$s^{+} = s^{+}[X_{i}] := P:$$

$$(P[X_{i}] \rightarrow y_{o} == a_{o} \quad \forall X_{i}) \quad \cap \quad (P[\hat{X}_{i}] \supseteq P[X_{i}] \quad \forall X_{i}, \hat{X}_{i})$$

The subfunction condition is one of two conditions for a general solution

$$P[\hat{X}_i] \supseteq P[X_i] \ \forall X_i, \hat{X}_i$$

15.2 Prove O[n] is a non-decreasing function

Consider solution s^+ with complexity O[n]

$$X_{i} = \{x_{1}, ..., x_{n}, C\}; \quad \hat{X}_{i} = \{x_{1}, ..., x_{n+1}, C\}$$

$$s^{+} = s^{+}[X_{i}] := P :$$

$$(P[X_{i}] \rightarrow y_{o} == a_{o} \quad \forall X_{i}) \quad \cap \quad (P[\hat{X}_{i}] \supseteq P[X_{i}] \quad \forall X_{i}, \hat{X}_{i})$$

$$s^{+} = \{s_{1}, s_{2}, ..., s_{N} | b_{1}, b_{2}, ..., b_{M}, y_{o}\} = \{s_{1}, s_{2}, ..., s_{O_{T}[n]}, b_{1}, b_{2}, ..., b_{O_{S}[n]}, y_{o}\}$$

$$= \{\mathcal{L}, \mathcal{M}, y_{o}\}$$

$$O[n] := O_{T}[n] + O_{S}[n]$$

$$O_{T}[n] := |\mathcal{L}| = N$$

$$O_{S}[n] := |\mathcal{M}| + |y_{o}| = M + 1$$

O[n+1] denotes the total complexity for solution $s^+[\hat{X}_i]$

$$s^+[\hat{X}_i] = \hat{s}^+$$

Let

$$O[n+1] < O[n]$$

$$\Rightarrow \hat{N} + \hat{M} < N + M$$

$$\hat{s}^+ = \{s_1, s_2, ..., s_{\hat{N}} | b_1, b_2, ..., b_{\hat{M}}, y_o\}$$

$$\Rightarrow \hat{s}^+ \not \supseteq s^+$$

$$P[\hat{X}_i] \not\supseteq P[X_i] \quad \forall X_i, \hat{X}_i$$

 $\therefore O[n+1] < O[n]$ contradicts the definition of solution s^+ $O[n+1] \geqslant O[n]$

15.3 Definition of Subfunction

$$X_{i} = \{x_{1}, ..., x_{n}, C\}; \quad \hat{X}_{i} = \{x_{1}, ..., x_{n+1}, C\}$$

$$s^{+} = s^{+}[X_{i}] := P :$$

$$(P[X_{i}] \rightarrow y_{o} == a_{o} \quad \forall X_{i}) \quad \cap \quad (P[\hat{X}_{i}] \supseteq P[X_{i}] \quad \forall X_{i}, \hat{X}_{i})$$

$$s^{+} = \{s_{1}, s_{2}, ..., s_{N} | b_{1}, b_{2}, ..., b_{M}, y_{o}\} = \{s_{1}, s_{2}, ..., s_{O_{T}[n]}, b_{1}, b_{2}, ..., b_{O_{S}[n]}, y_{o}\}$$

$$= \{\mathcal{L}, \mathcal{M}, y_{o}\}$$

$$Sub[X_{i}] := S = \{s_{j}, ... | b_{k}, ..., y_{o}\} :$$

$$s_{j}, b_{k} \in s^{+} \quad \forall s_{j}, b_{k} \in S$$

15.3.1 $s^+[X_i]$ is a subfunction of $s^+[\hat{X}_i]$

$$\begin{split} s^+ &= \{s_1, s_2, ..., s_N | b_1, b_2, ..., b_M, y_o\} = \{s_1, s_2, ..., s_{O_T[n]}, b_1, b_2, ..., b_{O_S[n]}, y_o\} \\ \hat{s}^+ &= \{s_1, s_2, ..., s_N, ..., s_{\hat{N}} | b_1, b_2, ..., b_M, ..., b_{\hat{M}}, y_o\}; \quad \hat{N} + \hat{M} \geqslant N + M \end{split}$$

By definition of solution

$$\hat{s}^+ = P[\hat{X}_i] \supseteq P[X_i] = s^+ \quad \forall X_i, \hat{X}_i$$

$$\Rightarrow s_i, b_k \in \hat{s}^+ \quad \forall s_i, b_k \in s^+$$

15.4 Subfunction Decomposition of Solutions

FIX Double check conditions!!! Solutions s^+ can be written as the union of subfunctions $Sub_k[X_i]$

$$\begin{split} X_i &= \{x_1, ..., x_n, C\}; \quad \hat{X}_i = \{x_1, ..., x_{n+1}, C\} \\ s^+ &= s^+[X_i] := P: \\ (P[X_i] \to y_o == a_o \quad \forall X_i) \quad \cap \quad (P[\hat{X}_i] \supseteq P[X_i] \quad \forall X_i, \hat{X}_i) \\ s^+ &= \{s_1, s_2, ..., s_N | b_1, b_2, ..., b_M, y_o\} = \{s_1, s_2, ..., s_{O_T[n]}, b_1, b_2, ..., b_{O_S[n]}, y_o\} \\ &= \{\mathcal{L}, \mathcal{M}, y_o\} \\ s^+ &= Sub_1[X_i] \cup Sub_2[X_i] \cup ... \cup Sub_z[X_i] \\ &= \{\mathcal{L}_1 | \mathcal{M}_1, y_o\} \cup \{\mathcal{L}_2 | \mathcal{M}_2, y_o\} \cup ... \cup \{\mathcal{L}_z | \mathcal{M}_z, y_o\} : \\ \mathcal{L}_j \cap \mathcal{L}_k = \varnothing \quad \forall j, k \neq j \\ s^+ &= \{s_1^1, ..., s_{N_1}^1 | b_1^1, ..., y_o\} \cup \{s_1^2, ..., s_{N_2}^2 | b_1^2, ..., y_o\} \cup ... \cup \{s_1^z, ..., s_{N_z}^z | b_1^z, ..., y_o\} : \\ \sum_{l=1}^z N_l = N = O_T[n] \end{split}$$

16 Subfunction Complexity

16.1 Disjoint Subfunction Operations

$$\mathcal{L}_i \cap \mathcal{L}_j = \emptyset \ \forall i, j \neq i$$

16.2 Shared Subfunction Memory

$$|\mathcal{M}_i \cap \mathcal{M}_i| \geqslant 0 \ \forall i, j \neq i$$

16.2.1 Time Complexity of Subfunctions

Subfunction time complexity is additive

$$s^{+} = \{\mathcal{L}, \mathcal{M}, y_{o}\}$$

$$Sub_{i}[X] := S_{i} = \{s_{j}, \dots | b_{k}, \dots, y_{o}\} :$$

$$s_{j}, b_{k} \in s^{+} \quad \forall s_{j}, b_{k} \in S_{i}$$

$$s^{+} = \{\mathcal{L}_{1} | \mathcal{M}_{1}, y_{o}\} \cup \{\mathcal{L}_{2} | \mathcal{M}_{2}, y_{o}\} \cup \dots \cup \{\mathcal{L}_{z} | \mathcal{M}_{z}, y_{o}\} :$$

$$\mathcal{L}_{i} \cap \mathcal{L}_{j} = \emptyset \quad \forall i, j \neq i$$

$$\mathcal{L} = \bigcup_{i=1}^{z} \mathcal{L}_{i}$$

$$\mathcal{L}_{i} \cap \mathcal{L}_{j} = \emptyset \ \forall i, j \neq i$$

$$O_{T}[n] = |\mathcal{L}| = N$$

$$O_{T}[n] = | \bigcup_{i=1}^{z} \mathcal{L}_{i} | = \sum_{i=1}^{z} |\mathcal{L}_{i}|^{*} = |\mathcal{L}_{1}| + |\mathcal{L}_{2}| + \dots + |\mathcal{L}_{z}|$$

$$= O_{T_{1}}[n] + O_{T_{2}}[n] + \dots + O_{T_{z}}[n] = N_{1} + N_{2} + \dots + N_{z}$$

*Due to the disjoint condition of subfunction operations $\mathcal{L}_i \cap \mathcal{L}_j = \emptyset \ \forall i, j \neq i$

16.2.2 Space Complexity of Subfunctions

Subfunctions can access the full memory \mathcal{M} with no added space complexity

$$s^{+} = \{\mathcal{L}, \mathcal{M}, y_{o}\}$$

$$Sub_{i}[X] := S_{i} = \{s_{j}, \dots | b_{k}, \dots, y_{o}\} :$$

$$s_{j}, b_{k} \in s^{+} \quad \forall s_{j}, b_{k} \in S_{i}$$

$$s^{+} = \{\mathcal{L}_{1} | \mathcal{M}_{1}, y_{o}\} \cup \{\mathcal{L}_{2} | \mathcal{M}_{2}, y_{o}\} \cup \dots \cup \{\mathcal{L}_{z} | \mathcal{M}_{z}, y_{o}\} :$$

$$\mathcal{L}_{i} \cap \mathcal{L}_{j} = \emptyset \quad \forall i, j \neq i$$

$$s^{+} = \{\mathcal{L}_{1} | \mathcal{M}, y_{o}\} \cup \{\mathcal{L}_{2} | \mathcal{M}, y_{o}\} \cup \dots \cup \{\mathcal{L}_{z} | \mathcal{M}, y_{o}\} :$$

$$\mathcal{L}_{i} \cap \mathcal{L}_{j} = \emptyset \quad \forall i, j \neq i$$

$$\mathcal{M} = \cup_{i=1}^{z} \mathcal{M}_{i} = \cup_{i=1}^{z} \mathcal{M}$$

$$O_{S}[n] = |\mathcal{M}| = M$$

$$O_{S}[n] = |\cup_{i=1}^{z} \mathcal{M}_{i}| = M$$

16.2.3 Shared State Notation

$$s^{+} = \{\mathcal{L}, \mathcal{M}, y_o\}$$

$$Sub_i[X] := S_i = \{s_j, \dots | b_k, \dots, y_o\} :$$

$$s_j, b_k \in s^{+} \quad \forall s_j, b_k \in S_i$$

$$s^{+} = \{\mathcal{L}_1 | \mathcal{M}, y_o\} \cup \{\mathcal{L}_2 | \mathcal{M}, y_o\} \cup \dots \cup \{\mathcal{L}_z | \mathcal{M}, y_o\} :$$

$$\mathcal{L}_i \cap \mathcal{L}_j = \emptyset \ \forall i, j \neq i$$

17 Polynomial Solution Subfunction Properties

17.1 Restate Definition of Subfunction

$$\begin{split} X_i &= \{x_1, ..., x_n, C\}; \quad \hat{X}_i = \{x_1, ..., x_{n+1}, C\} \\ s^+ &= s^+[X_i] := P: \\ (P[X_i] \to y_o == a_o \quad \forall X_i) \quad \cap \quad (P[\hat{X}_i] \supseteq P[X_i] \quad \forall X_i, \hat{X}_i) \\ s^+ &= \{s_1, s_2, ..., s_N | b_1, b_2, ..., b_M, y_o\} = \{s_1, s_2, ..., s_{O_T[n]}, b_1, b_2, ..., b_{O_S[n]}, y_o\} \\ &= \{\mathcal{L}, \mathcal{M}, y_o\} \\ \\ Sub[X_i] := S = \{s_j, ... | b_k, ..., y_o\}: \\ s_j, b_k \in s^+ \quad \forall s_j, b_k \in S \end{split}$$

17.2 Property of Polynomial Solution Subfunctions

Let

$$D \in \mathbb{P}$$

$$X_{i} = \{x_{1}, ..., x_{n}, C\}; \quad \hat{X}_{i} = \{x_{1}, ..., x_{n+1}, C\}$$

$$s^{+} = s^{+}[X_{i}] := P :$$

$$(P[X_{i}] \to y_{o} == a_{o} \quad \forall X_{i}) \quad \cap \quad (P[\hat{X}_{i}] \supseteq P[X_{i}] \quad \forall X_{i}, \hat{X}_{i})$$

$$\exists K, C, \lambda_{1} ... \lambda_{K} :$$

$$O[n] = (\lambda_{K}n)^{K} + (\lambda_{K-1}n)^{K-1} ... + \lambda_{1}n + C \quad \forall n$$

$$s^{+} = Sub_{1}[X_{i}] \cup Sub_{2}[X_{i}] \cup ... \cup Sub_{z}[X_{i}]$$

$$\lim_{t \to \infty} \frac{O[n+1]}{O[n]} = 1$$

$$= \lim_{t \to \infty} \frac{O^{1}_{T}[n+1] + O^{2}_{T}[n+1] + ... + O^{2}_{T}[n+1] + O_{S}[n+1]}{O^{1}_{T}[n] + O^{2}_{T}[n] + ... + O^{2}_{T}[n] + O_{S}[n]}$$

$$= \lim_{t \to \infty} \frac{O^{1}_{T}[n] + O^{2}_{T}[n] + ... + O^{2}_{T}[n] + O_{S}[n]}{O^{1}_{T}[n] + O^{2}_{T}[n] + ... + O^{2}_{T}[n] + O_{S}[n]} = 1$$

$$= \lim_{t \to \infty} 1 + \frac{f^{1}_{T_{n+1}}[n] + f^{2}_{T_{n+1}}[n+1] + ... + f^{2}_{T_{n+1}}[n] + f_{S_{n+1}}[n]}{O^{1}_{T}[n] + O^{2}_{T}[n] + ... + O^{2}_{T}[n] + O_{S}[n]}} = 1$$

$$\Rightarrow limit_{n\to\infty} \frac{f_{T_{n+1}}^{1}[n] + f_{T_{n+1}}^{2}[n+1] + \dots + f_{T_{n+1}}^{z}[n] + f_{S_{n+1}}[n]}{O_{T}^{1}[n] + O_{T}^{2}[n] + \dots + O_{T}^{z}[n] + O_{S}[n]} = 0^{*}$$

$$\Rightarrow limit_{n\to\infty} \frac{f_{T_{n+1}}^{i}[n] + f_{S_{n+1}}[n]}{O_{T}^{1}[n] + O_{T}^{2}[n] + \dots + O_{T}^{z}[n] + O_{S}[n]} = 0 \quad \forall i$$

$$limit_{n\to\infty} \frac{f_{n+1}^{i}[n]}{O[n]} = 0 \quad \forall i$$

* O[n] is a positive, non-decreasing function

- 18 Solution Spaces
- 18.1 Definition of Solution Space

$$\mathbb{S} = \{c_1^+, c_2^+, ..., c_{C[n]}^+\}$$

$$s^+[X_n] = \vee_{c_i^+ \in \mathbb{S}} \ c_i^+$$

- 18.2 Existence, Uniqueness, etc.
- 18.3 Worst Case

19 Fundamental Theorem of Computation

The Fundamental Theorem of Computation relates the complexity of optimal solution to the number of candidate solutions in the Solution Space.

$$\mathbb{S} = \{c_1^+, c_2^+, ..., c_{C[n]}^+\}$$

$$s^+[X_n] = \vee_{c_i^+ \in \mathbb{S}} c_i^+$$

 $O_{opt}[n]$ has the same order as $\mathbf{C}[\mathbf{n}]$

- 19.1 Proof by Induction
- 19.2 Proof by Contradiction

20 Sum to N Problem with 2 integers

20.1 State formal definition of Sum to N: $x_i + x_j == N$

$$X_{n} = \{x_{1}, ..., x_{n}\}$$

$$D := f[X_{i}, N] = a_{o} \in \{\mathbb{T}, \mathbb{F}\} \quad \forall X_{i}$$

$$s^{+}[X_{n}] = P[X_{n}] :$$

$$(P[X_{i}] = y_{o} == a_{o} \quad \forall X_{i}) \quad \cap \quad (P[X_{n+1}] \supseteq P[X_{n}] \quad \forall X_{n+1})$$

$$s^{+} = \{s_{1}, s_{2}, ..., s_{O_{T}[n]}, b_{1}, b_{2}, ..., b_{O_{S}[n]}, y_{o}\} = \{\mathcal{L}, \mathcal{M}, y_{o}\}$$

$$D = f[X_{i}] = \exists x_{j}, x_{k} \in X_{n} \quad j \neq k :$$

$$x_{j} + x_{k} == N$$

20.2 Express a formal solution : $O_S[n] \sim n^0$

$$s^{+} = \{s_{1}, s_{2}, ..., s_{O_{T}[n]}, b_{1}, b_{2}, ..., b_{O_{S}[n]}, y_{o}\} = \{\mathcal{L}, \mathcal{M}, y_{o}\}$$

$$s_{1} = y_{o} \leftarrow \mathbb{F};$$

$$\forall i < n \ , \ n \geqslant j > i$$

$$\begin{split} s_2, s_3, s_8, s_9, \dots, s_{3ij-4}, s_{3ij-3} \dots, s_{3n(n-1)-4}, s_{3n(n-1)-3} &= b_1 \leftarrow x_i + x_j \\ s_4, s_5, s_{10}, s_{11}, \dots, s_{3ij-2}, s_{3ij-1} \dots, s_{3n(n-1)-2}, s_{3n(n-1)-1} &= b_1 \leftarrow b_1 == N \\ s_6, s_7, s_{12}, s_{13} \dots, s_{3ij}, s_{3ij+1} \dots, s_{3n(n-1)}, s_{3n(n-1)+1} &= y_o \leftarrow y_o \vee b_1 \\ s^+ &= \{y_o \leftarrow \mathbb{F}, y_o \leftarrow y_o \vee (x_i + x_j == N) \quad \forall i, j > i \mid b_1, y_o \} \end{split}$$

20.3 Prove s^+ satisfies the subfunction condition of solutions: $P[X_{n+1}] \supseteq P[X_n] \ \forall X_{n+1}$

$$X_{n} = \{x_{1}, x_{2}, ..., x_{n}\}; \quad X_{n+1} = \{x_{1}, x_{2}, ..., x_{n}, x_{n+1}\}$$

$$s^{+} = \{s_{1}, s_{2}, ..., s_{O_{T}[n]}, b_{1}, b_{2}, ..., b_{O_{S}[n]}, y_{o}\} = \{\mathcal{L}, \mathcal{M}, y_{o}\}$$

$$s^{+}_{n+1} = s^{+} \cup \hat{s}^{+}$$

$$s_{1} = y_{o} \leftarrow \mathbb{F};$$

$$\forall i < n , n \ge j > i$$

$$s_2, s_3, s_8, s_9, \dots, s_{3ij-4}, s_{3ij-3} \dots, s_{3n(n-1)-4}, s_{3n(n-1)-3} = b_1 \leftarrow x_i + x_j$$

$$s_4, s_5, s_{10}, s_{11}, \dots, s_{3ij-2}, s_{3ij-1} \dots, s_{3n(n-1)-2}, s_{3n(n-1)-1} = b_1 \leftarrow b_1 == N$$

$$s_6, s_7, s_{12}, s_{13} \dots, s_{3ij}, s_{3ij+1} \dots, s_{3n(n-1)}, s_{3n(n-1)+1} = y_o \leftarrow y_o \lor b_1$$

$$\forall k < n+1$$

$$s... = b_1 \leftarrow x_k + x_{n+1}$$

$$s... = b_1 \leftarrow b_1 == N$$

$$s... = y_0 \leftarrow y_0 \lor b_1$$

$$s^{+} = \{ y_{o} \leftarrow \mathbb{F}, y_{o} \leftarrow y_{o} \lor (x_{i} + x_{j} == N) \quad \forall i, j > i \mid b_{1}, y_{o} \}$$

$$\hat{s}^{+} = \{ y_{o} \leftarrow y_{o} \lor (x_{k} + x_{n+1} == N) \quad \forall k < n+1 \mid b_{1}, y_{o} \}$$

$$s^{+}_{n+1} = \{ y_{o} \leftarrow \mathbb{F}, y_{o} \leftarrow y_{o} \lor (x_{i} + x_{j} == N) \quad \forall i, j > i \mid b_{1}, y_{o} \} \quad \cup$$

$$\{ y_{o} \leftarrow y_{o} \lor (x_{k} + x_{n+1} == N) \quad \forall k < n+1 \mid b_{1}, y_{o} \}$$

$$s^{+}_{n+1} = s^{+} \cup \hat{s}^{+} = P[X_{n+1}] \supseteq P[X_{n}] = s^{+}$$

20.4 Determine $O[n], O_S[n], O_T[n], f_{n+1}[n], f_{n+1}^T[n], f_{n+1}^S[n]$ for the above solution

$$O_S[n] = |y_o| + |b_1| = 2$$

$$O_T[n] = 3n(n-1) + 1 = 3n(n-1) - 1 + O_S[n]$$

$$O[n] = 3n(n-1) + 3 = 3n^2 - 3n + 3$$

$$f_{n+1}^S[n] = 0$$

$$f_{n+1}^T[n] = 6n$$

$$f_{n+1}^S[n] = f_{n+1}^S[n] + f_{n+1}^T[n]$$

20.5 Verify
$$O[n+1] = O[n] + f_{n+1}[n]$$

$$O[n+1] = O[n] + \hat{O}[n]$$

$$3(n+1)^2 - 3(n+1) + 3 = 3n^2 - 3n + 3 + 6n$$

$$3n^2 + 6n + 3 - 3n - 3 + 3 = 3n^2 + 3n + 3$$

$$3n^2 + 3n + 3 = 3n^2 + 3n + 3$$

20.6 Show s^+ has Polynomial Complexity by the definition of Total Polynomial Complexity

$$O[n] = 3n^2 - 3n + 3$$

20.7 Show the limit $_{n\to\infty}\frac{O[n+1]}{O[n]}$ does not Diverge

$$\begin{split} limit_{n\to\infty} \frac{O[n+1]}{O[n]} = \\ limit_{n\to\infty} \frac{3n^2 + 3n + 3}{3n^2 - 3n + 3} = \\ limit_{n\to\infty} (\frac{3n^2 - 3n + 3}{3n^2 - 3n + 3} + \frac{6n}{3n^2 - 3n + 3}) = \\ limit_{n\to\infty} (1 + \frac{6n}{3n^2 - 3n + 3}) = 1 \end{split}$$

21 The Knapsack Problem

21.1 The Knapsack Problem

The Knapsack Problem is a famous problem in computer science which asks if objects can be stored in a knapsack. Typically the problem is designed with two constraints, weight and value. Given objects x_i , each with a respective weight w_i and value v_i , does there exist a combination of objects lighter than input weight W and more valuable than input value V?

21.2 Formal Definition

$$X_n = \{x_1, x_2, ..., x_n\} = \{\{w_1, v_1\}, \{w_2, v_2\}, ..., \{w_n, v_n\}\}\}$$

$$I = \{i_1, i_2, ..., i_n\} : i_l \in \{0, 1\} \ \forall i_l \in I$$

$$D := f[X_n, W, V] = a_o \in \{\mathbb{T}, \mathbb{F}\} = \exists I :$$

$$(\sum_{j=1}^n i_j w_j < W) \land (\sum_{j=1}^n i_j v_j \geqslant V)$$

- 21.3 Express a solution s^+ to the Knapsack Problem
- 21.4 Prove s^+ satisfies the subfunction condition of solutions
- **21.5** Determine $O[n], O_T[n], O_S[n], f_{n+1}[n]$
- **21.6** Show $s^+ \notin \mathbb{P}$
- 21.7 Express the Solution Space $\mathbb S$ for The Knapsack Problem
- 21.8 Prove a lower bound for all solutions $s^+ \in S^+ := O_{lower}[n]$
- 21.9 Prove $D \notin P$

Citations

- [1] chatgpt
- $[2] \ https://stackoverflow.com/questions/3518973/floating-point-exponentiation-without-power-function$
- $[3] \ https://stackoverflow.com/questions/27086195/linear-index-upper-triangular-matrix$
- $[4] \ http://www.math.uchicago.edu/\ may/VIGRE/VIGRE2011/REUPapers/Riffer-Reinert.pdf$