Big Mart Sales Prediction

By Juhi Aggarwal

Content

- Understanding Problem Statement & Data
- Data Exploration
- Data Cleaning
- Model Training
- Optimizing

Problem Statement

BigMart is a chain of e-commerce outlets. Provided is the data with certain product and outlet attributes. We had to make a prediction model after analysing and cleaning the provided statement.

The Data

Variable

Item_Identifier

Item_Weight

Item_Fat_Content

Item_Visibility

Item Type

Item_MRP

Outlet Identifier

identifier

Outlet_Establishment_Year
Outlet Size

Outlet Location Type

Outlet_Type

Item Outlet Sales

Understanding data

Numerical Features:

count mean std min	7060.000000 12.857645 4.643456	8523.000000 0.066132	8523.000000 140.992782	8523.000000
std	,,_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.066132	140.992782	
1000000	4 6424E6		1.0.002702	2181.288914
min	4.043430	0.051598	62.275067	1706.499616
	4.555000	0.000000	31.290000	33.290000
25%	8.773750	0.026989	93.826500	834.247400
50%	12.600000	0.053931	143.012800	1794.331000
75%	16.850000	0.094585	185.643700	3101.296400
max	21.350000	0.328391	266.888400	13086.964800

Understanding data

No. of Values of Categorical Features:

1	Item_Fat_Content	2
2	Item_Type	16
3	Outlet_Size	3
4	Outlet_Location_type	3
5	Outlet_Type	4
6	Outlet_Identifier	10
7	Outlet_Establishment_Year	9

First Iteration

Data Cleaning:

The mess in Data:

- A. Uniform Fat Content;
 - Replace the different upper and lower case values to two categories: Low Fat and Regular Fat
- B. Missing Item-Weights
 Filled by mean of their Item_types weights
- C. Dropping Item_Identifier, Outlet_Identifier columns.
- D. Also Dropping Outlet_Size column due to many missing values.

Model:

INDEX	MODEL	Mean_Squared_Error		r2_Score	
		Unscaled Data	Scaled Data	Unscaled Data	Scaled Data
1.	Linear Regression	1283941.064	0.422	0.561	0.550
2.	KNN	0.479	1599667.26	0.489	0.453
3.	Lasso Regression	1283899.75	0.420	0.561	0.552
4.	Random Forest Regression	1190071.579	0.391	0.593	0.583

Final Iteration

Data Cleaning

The mess in Data:

- A. Uniform Fat Content;
 - Replace the different upper and lower case values to two categories: Low Fat and Regular Fat
- **B.** Missing Item-Weights
 Filled by mean of their Item_types weights
- C. Missing Outlet_Size
 By observing the data, Outlet_Type was mapped with Outlet_Size.
- D. Retaining Outlet_Identifier

MODEL

INDEX	MODEL	Mean_Squared_Error		r2_Score	
		Unscaled Data	Scaled Data	Unscaled Data	Scaled Data
1.	Linear Regression	2.696e-26	1.753e-26	1.0	1.0
2.	KNN	11.466	0.134	0.837	0.998
3.	Lasso Regression	0.661	0.065	0.991	0.999
4.	Random Forest Regression	0.150	0.150	0.998	0.998

Conclusion with the main learnings

- DO NOT drop any column without proper reason!!
- Accuracy and evaluation metrics of the model is highly dependent on data we provide!!

Thank you!!