컴네 중간정리 Chapter1

컴퓨터 네트워크 용어 (자주 언급되는용어들)

Chapter 1: roadmap

- 1. 인터넷이 무엇일가? (2가지 관점)
 - a. nuts and bolts view (하드웨어적 측면)
 - host는 end systems이라 함 . 그럼 host들이 network application 들을 실행 하고있음
 - 그런 computing devices들을 연결하기 위한 communication links들이 있음
 - 1. fiber,copper,radio,satelite(광케이블,구리,무선,위성)
 - 2. transmition rate: (communication link들 성능을 나타내는 것) 다른 말로 bandwidth라고도함.
 - network 장비들이 있음(router) switch라고도 불림
 이들은 packet을 forwarding함(배달함)

a-1. nuts and bolt view(소프트웨어적 측면)

- · Internet: networks of netwokrs
- protocols(control sending, receving of messages)
 - ex) TCP,IP,HTTP,Skype, 802.11
- Internet standards(인터넷 표준) 이것들이 protocol을 정의함
 - RFC: Request for comments
 - IETF: Internet Engineering Task Force

b. service view (인터넷이 나에게 어떤 서비스를 제공해줄수 있는지?)

- network applications에 service를 제공하는 infrastructure(기반시설)의 일종 이다.
 - ex) Web, VoIP,email,games
- programming interface(API)를 제공해줘야함

o postal service (우편서비스)와 비슷한 일을 함

2. 프로토콜의 역할 protocol(규학,규칙)

정의 : message를 sent and received하는 format과 order를 정의하고 그 message를 받거나 줬을 때 무슨 action을 취했을 때 정의하는지

→ 통신할 때 두개의 디바이스간의 필요한 규칙

3. Network를 구성하는 3가지 요소

- a. network edge (인터넷의 가장자리)
 - i. host가 존재함 (그 host는 client와 server로 나뉨)
 - 1. ex) computer, notebook, cell phone

b. acces networks,physical media (network edge와 network core를 연결시 켜주는거)

- i. access network들은 wired, wireless communication link로 나뉨)
- ii. bandwith(bits per second)가 있는데 이것들이 shared인지 dedicated인지에 따라 속도가 다르게 나옴)
- c. network core (router들이 연결되어 있는거) ISP라고도 불림

4. Acces network를 더 자세히보기

- a. How to connect and system to edge router?
 - i. residential access nets(주거지역)
 - ii. instiutional access (school,company)기관
 - iii. mobile access networks(모바일(무선))
- b. access network
 - a. digital subscriber line(DSL) (1개의 채널밖에 없음)
 - a. 기존의 전화선을 사용함(비용절감, 가입속도 상승)
 - b. DSLAM(splitter)을 사용하면 전화선으로 인터넷까지 쓸 수 있음)
 - c. (속도,성능이 잘 나오지않음)
 - a. upstream(컴퓨터에서 internet으로 보내는거) 는 느림

- b. downstream(internet에서 사용자의 end system에 보내는거) 는 어 느정도 속도는 나옴
- b. cable network (shared access network)
 - a. frequency division multiplexing (전체 큰 대역폭을 주파수 대역 별로 나 눠서 보냄)
 - b. 많은 채널을 사용할 수 있음
 - c. HFC: hybrid fiber coax(구리선과 광케이블을 결합함) 속도 자체는 어느정도 나와도 다같이 쓰므로 느릴수 있음
- c. home network(집 내에서도 여러기기를 사용해야 하기 때문)
 - a. router하나를 끼고 공유기를 사용하여 device들끼리 사용할 수 있는 network를 만듬
- d. Enterpricse access network(Ethernet)
 - a. 회사나 기관에서 사용 주로 유선을 많이 사용한다.
 - b. 속도는 좋다.
- 5. Host(end system)에서 일어나는 일 살펴보기
 - a. 보내는 기능(sends packets of data)
 - i. application을 잘개 쪼갬(이를 pakcets 이라고함) packet의 size는 L bit라고 가정

각각의 packet을 access network로 보내는데 이 access network가 보내는 전송률을

transmission rate (R)이라고 함. 이는 capacity, link bandwidth라고도 불림

Introduction 1-20

- b. Physical media (이것을 통해 bit가 전송됨)
 - i. bit (0또는 1비트)들이 송신자와 수신자들 사이에 전송이 됨
 - ii. physical link (송신자와 수신자 사이에 존재하는 것)
 - 1. guided media(신호가 solid media를 통해 전송됨)

- a. ex) copper, fiber, coax
- 2. unguided media(신호가 아주 자유롭게 감)
 - a. ex) radio
- 3. 가장 많이 사용하는 것 tswisted pair(TP) category별로 성능이 다름. 2개의 inulated copper wires임
- iii. coaxial cable (2개의 center(축이 같음)
 - 1. 2개의 구리유도체가 있고 양방향 통신이 가능함
- iv. fiber optic cable (광케이블)
 - 1. high-speed operation
 - 2. low error rate
- v. Radio(전파를 사용함)
 - 1. no physical "wire"선이 없음
 - 2. 양방향 통신 가능
 - 3. 벽에 의해 반사되거나 물체가 막거나 공기중에 간섭현상이 일어나는 단점 들이 있음

6. network core에 대해 알아보기

- a. network core(router)의 개념
 - i. interconnected router(정의: 연결되어있는 router들의 집합)
 - ii. packet-switching: host에서 application이 주는 data를 쪼개가지고 packet 들을 만들어서 전송해주는 방식을 사용함, packet들을 전송해주는 역할.
 - iii. packet들은 full link capacity를 사용해서 전송함
- b. packet-switching 방식에 대해 알아보기(store-and-forward)

1. store and forward 방식이다. store를 하고 전송을 한다.

- 2. router에서 온전하게 packet을 전부 다 받은 다음에 destination으로 보낸다.
- 3. end end delay가 총 2* L/R이 된다.
- 4. ex) L = 7.5 Mbits, R = 1.5Mbps 이면 one-hop transmission delay는 5sec 가 걸림 따라서 종합 10초가 걸림
- c. Packet switching : queueing delay, loss(2가지 문제점)이 있음

Packet Switching: queueing delay, loss

- A,B 에서 보내는 속도가 router에서 나가는 속도보다 빠를때 queueing delay
 가 발생함
- 이때 que memory의 용량을 초과할때 packet을 drop함(loss 발생)

d. Two key network-core-functions

- a. source에서 destination까지 packet을 전달해야하는데 2가지 작업을 함
 - a. routing(여러 router들끼리 협력하여 만듬)
 - routing algorithm ,즉 경로를 정해줌 forwarding table을 만듬
 - b. forwarding(하나의 router에서 하는일)
 - a. forwarding table을 보고 packet이 들어오면 header value를 보고 output link에 해당하는 router에 전달

e. packet switching에 상반되는 circuit switching

- a. source와 destination이 있으면 보낼 자원을 미리 router들 사이의 line들 중 어떤 line으로 보낼지 할당하여 보냄 (dedicate 함)
- b. 사용하지 않을 때 낭비되는 단점이 있음 (전화 network에서 주로 사용했었음)

f. Circut switching: FDM versus TDM

- 1. FDM: 대역폭을 여러 개의 작은 채널로 분할하여 여러 단말기가 동시에 이용하는 방식
- 2. TDM: 시간단위로 쪼개서 여러개의 작은 채널을 분배해서 이용하는 방식
- g. Packet switching(demand allocation) vs circuit switching (reserved resources)

- 1. 일방적인 상황에선 packet switching이 좀 더 많은 user를 허용함
- 2. 그러나 packet swiching이 항상 좋지는 않음
 - a. packet switching은 great for bursty data (데이터를 보내는시기와 보내지 않은 시기가 분리되어있을 때 유리함

b. excessive congestion possible: 그 router가 처리하는 양보다 더 많은 양이 들어오면, 즉 혼잡한 상황이 되면 안좋음 (혼잡을 제어할 수 있는 protocol이 필요함)

7. Internet structure

- 1. peering link: global ISP들끼리 연결해주는 link
- 2. acceess net 과 global ISP들끼리 연결해주는 regional net을 만듬
- 3. 사진과 같은 계층 구조를 갖게됨

8. delay, loss, throughput in networks

- a. 어떻게 loss와 delay가 일어나는가?
 - i. packets queue in router buffers
 - 1. packet 들어오는 link의 비율이 나가는 output link 수용력보다 초과할 때
 - 2. packets queue는 turn을 기다림
- b. Four sources of packet delay

Four sources of packet delay

헤더들보고 절23에서 내보내는 시간 $\bigcirc d_{\text{proc}}$: nodal processing

- check bit errors
- determine output link
- typically < msec
- 큐안에서 메거나오는 시간. \mathfrak{D} d_{queue} : queueing delay
 - time waiting at output link for transmission
 - depends on congestion level of router

Introduction 1-45

∼queue SHIPS PUCKET COM SIE BITES IMBELINE AT kinky 2'E bith the nodertal d_{trans} : transmission delay: d_{prop} : propagation delay: L: packet length (bits) d: length of physical link R: link bandwidth (bps) s: propagation speed (~2x10⁸ m/sec)

c. 참고

- i. 1 bytes = 8 bit
- ii. $1K bps = 10^3 = 1000bps$
- iii. 1M bps = 10^6 = 1,000,000 bps (Mb/s :Mega bit/sec, MB/s: Mega Btye/sec)
- iv. $1 \text{ G bps} = 10^9 = 1,000,000,000 \text{ bps}$
- v. 1 K bit = 10^3 = 1000 bit
- vi. 1M bit = $10^6 = 1,000,000$ bit
- vii. 1G bit = $10^9 = 1,000,000,000$ bit

d. Caravan analogy

Caravan analogy

- 1. 12개의 car가 톨게이트를 통과하는데 걸리는 시간은 120초 → 2분
- 2. 1에서 2톨게이트까지 100km인데 car 가 시속 100km이니까 1시간이 걸림 따라서 1시간 + 2분, 62분이 소요됨

Introduction 1-48

Caravan analogy (more)

- suppose cars now "propagate" at 1000 km/hr
- and suppose toll booth now takes one min to service a car
- Q: Will cars arrive to 2nd booth before all cars serviced at first booth?
 - A: Yes! after 7 min, first car arrives at second booth/three cars still at first booth
- 3. 첫번째차는 propagate가 높으므로 10대의차가 toll booth를 다 지나기전에 이미 second toll booth에 도착하게 됨
- e. Queueing delay(revisted)
 - i. R: link bandwidth (bps) R bit만큼 처리가능
 - ii. L: packet length(bits) packet의 사이즈

- iii. a: average packet arrival rate(1초당 몇개의 packet이 도달하느냐)
- iv. traffic intensity = L*a/R 이 성립하게 됨 ,이때 total이 0에 수렴하면 queing delay가 작음, 1에 수렴하면 queueing delay가 큼, 1 보다 크면 average delay가 무한대에 수렴하게 됨

v. "Real" Internet delays and routes

- 1. traceroute program: source에서 destination까지 router까지 얼마나 있는지 알수 있는 프로그램
 - a. ping 이라는 명령어: ping (Packet INternet Groper)는 대상 컴퓨터를 향해 일정 크기의 패킷을 보낸 후, 대상 컴퓨터가 이에 대한 응답 메세지를 보내면 이를 수신하여 대상 컴퓨터 동작 여부 혹은 네트워크 상태를 파악할수 있음

f. Packet loss

- a. lost packet은 restransmited가 된다.
 - a. previous node
 - b. source end system
 - c. not at all
- b. throughput: sender에서 reciver까지 1초에 몇 bit 를 보내는지
 - a. instantaneous: 어떤 특정의 rate에서 기나이 걸릴 때
 - b. average: 평균 throughput
 - c. bottleneck link: 2개의 링크가 하나의 router를 통해 연결되어있을때 들어 오고 나가는 link의 throughput 이 있을 때 하나의 link에 의해 결정됨. 이 를 bottle neck이라고 부름

9. Protocol "layer"

- a. Networks are complex, with many "pieces"
 - i. layer: 각각의 layer는 service를 제공함
 - ii. 구조체를 identification으로 구조체를 쪼갬
 - iii. 조각난 시스템의 기능을 계층별로 구분함
- b. Internet protocol stack (표준은 아님)
 - i. application : network applications을 도와줌
 - 1. ex) FTP,SMTP,HTTP

- ii. transport: process 와 process들의 data transfer를 도와줌
 - 1. ex) TCP, UDP
- iii. network: packet을 source부터 destination까지 전달하는 역할
 - 1. ex) IP, routing protocols
- iv. link: 인접한 neighboring network elements에서 data를 옮김
- v. physical: 물리계층의 비트

c. ISO/OSI reference model

- i. application : network applications을 도와줌
 - 1. ex) FTP,SMTP,HTTP
- ii. presentaion: application이 데이터의 의미를 해석 할 수 있도록 허용
- iii. session: 동기화,체크 포인트,데이터 교환복구
- iv. transport: process 와 process들의 data transfer를 도와줌
 - 1. ex) TCP, UDP
- v. network: packet을 source부터 destination까지 전달하는 역할
 - 1. ex) IP, routing protocols
- vi. link: 인접한 neighboring network elements에서 data를 옮김
- vii. physical: 물리계층의 비트

d. 각 layer를 통해 진행하는 상황

- i. application에서 message 를 보냄
- ii. transport에서 message에 header를 추가해에 segment(packet)로 만들고 그 segment를 network에 보냄
- iii. network는 그 segment에 hearder를 추가하여 datagram(packet)을 만들고 그 datagram을 link로 보냄
- iv. link에선 그 datagram에 header를 추가하여 frame(packet)을 만들고 이를 physical로 보냄

10. Network Security

- a. Bad guys: put malware into hosts via internet
 - i. malware를 host한테 감염시킬수 있음(2가지 종류가 있음)
 - 1. virus: 스스로 복제하여 감염시킴
 - 2. worm: 스스로 실행하여 감염시킴

b. Bad guys: attack server, network 감염

- i. Denial of Service(Dos): 어떤 서버가 resource를 다 사용하게 만듬. 과부화로 인해 정상적인 traffic을 사용할 수 없게 만듬
 - 1. select target
 - 2. break into hots around the network(see botnet)
 - 3. send packets to target from compromised hots

c. Bad guys: packet "sniffing"

- i. shared link일 경우에 가능(ex) cable network, Ethernet)
 - 1. 호스트에서 서버로 packet을 보내는데 중간에 packet을 가로채서 읽음
 - 2. wireshark라는 소프트웨어 (packet sniffing 예시)
 - 3. IP spoofing : 실제로는 자기가 아닌 다른 source를 만들어서 보내는 것 서버가 packet을 받았을 때 착각하게됨.