Reaction-diffusion equations —Outline

- Signaling and Diffusion
- Traveling waves
- Lab session

— Signaling and Diffusion — Diffusion and random walks:

Unit mass particle moving randomly along x-axis:

- ightharpoonup x = mh, h = space-step;
- \blacktriangleright $t = N\tau$, $\tau = \text{time-step}$;
- ightharpoonup p(x,t)= probability to find the particle at position x and time t.

Objective: take the limit $h \to 0$ and $\tau \to 0$.

— Signaling and Diffusion — Diffusion and random walks

Unit mass particle moving randomly along x-axis:

- ightharpoonup x = mh, h = space-step;
- $ightharpoonup t = N\tau$, $\tau = \text{time-step}$;
- ightharpoonup p(x,t)= probability to find the particle at position x and time t.

Objective: take the limit $h \to 0$ and $\tau \to 0$.

The position x is a random variable. We have:

$$\mathbb{E}[x] = 0, \qquad \mathbb{V}\operatorname{ar}[x] = \mathbb{E}[x^2] = Nh^2 = t\frac{h^2}{\tau}.$$

 \Rightarrow In order to keep $\mathbb{E}[x^2]$ finite in the limit, $h^2 \sim \tau!$

— Signaling and Diffusion — Diffusion and random walks

Unit mass particle moving randomly along x-axis:

- ightharpoonup x = mh, h = space-step;
- \blacktriangleright $t = N\tau$, $\tau =$ time-step;
- ightharpoonup p(x,t)= probability to find the particle at position x and time t.

Objective: take the limit $h \to 0$ and $\tau \to 0$.

The position x is a random variable. We have:

$$\mathbb{E}[x] = 0, \qquad \mathbb{V}\operatorname{ar}[x] = \mathbb{E}[x^2] = Nh^2 = t\frac{h^2}{\tau}.$$

 \Rightarrow In order to keep $\mathbb{E}[x^2]$ finite in the limit, $h^2 \sim \tau!$

Now we compute the limit, so p(x, t) satisfies the diffusion equation:

$$\boxed{\frac{\partial p}{\partial t} = \mathsf{D} \frac{\partial^2 p}{\partial x^2}, \qquad \mathsf{D} := \lim_{h,\tau \to 0} \frac{h^2}{2\tau}.}$$

Not rigorous, p(x, t) should be a *probability density* in the limit.

— Signaling and Diffusion — Fundamental solution for $D=1,\ T\in [0,2]$

— Signaling and Diffusion — Diffusion distance and other effects

In \mathbb{R}^n we have $\mathrm{D}:=\lim_{h,\tau\to 0}\frac{h^2}{2n\tau}$: dimension matters! [Youtube]

On average, we reach a point at distance L in about $T \sim \frac{L^2}{2n \mathsf{D}}.$

— Signaling and Diffusion — Diffusion distance and other effects

In \mathbb{R}^n we have $\mathrm{D}:=\lim_{h,\tau\to 0}\frac{h^2}{2n\tau}$: dimension matters! [Youtube]

On average, we reach a point at distance L in about $T \sim \frac{L^2}{2n \mathsf{D}}.$

Example Smoke in the air ~ 0.22 cm/s².

$$\begin{array}{ccccc} L = & 1 \text{ cm} & \rightarrow & T = 1 \text{ second} \\ L = & 10 \text{ cm} & \rightarrow & T = 1 \text{ minutes} \\ L = & 1 \text{ m} & \rightarrow & T = 2 \text{ hours} \\ L = & 10 \text{ m} & \rightarrow & T = 9 \text{ days} \end{array}$$

— Signaling and Diffusion — Diffusion distance and other effects

In
$$\mathbb{R}^n$$
 we have $\mathrm{D}:=\lim_{h,\tau\to 0}\frac{h^2}{2n\tau}$: dimension matters! [Youtube]

On average, we reach a point at distance L in about $T \sim \frac{L^2}{2n \mathsf{D}}.$

Example Smoke in the air ~ 0.22 cm/s².

$$\begin{array}{ccccc} L = & 1 \text{ cm} & \rightarrow & T = 1 \text{ second} \\ L = & 10 \text{ cm} & \rightarrow & T = 1 \text{ minutes} \\ L = & 1 \text{ m} & \rightarrow & T = 2 \text{ hours} \\ L = & 10 \text{ m} & \rightarrow & T = 9 \text{ days} \end{array}$$

In the air, diffusion alone is not enough: indeed, turbulence is the missing ingredient (advection dominated process).

— Signaling and Diffusion — Diffusion distance and other effects

In
$$\mathbb{R}^n$$
 we have $\mathsf{D}:=\lim_{h,\tau\to 0}\frac{h^2}{2n\tau}$: dimension matters! [Youtube]

On average, we reach a point at distance L in about $T \sim \frac{L^2}{2n\mathsf{D}}.$

Example Smoke in the air ~ 0.22 cm/s².

$$\begin{array}{ccccc} L = & 1 \text{ cm} & \rightarrow & T = 1 \text{ second} \\ L = & 10 \text{ cm} & \rightarrow & T = 1 \text{ minutes} \\ L = & 1 \text{ m} & \rightarrow & T = 2 \text{ hours} \\ L = & 10 \text{ m} & \rightarrow & T = 9 \text{ days} \end{array}$$

In the air, diffusion alone is not enough: indeed, turbulence is the missing ingredient (advection dominated process).

Another problem is that diffusion dissipates energy, so the signal is attenuated on long distances.

Idea: invest some energy to "rekindle" the process (reaction). [Youtube].

— The cable equation — Electric analogue of the cellular membrane

$$\begin{split} \mathcal{C}_{\mathrm{m}} &= \mathrm{membrane} \ \mathrm{capacitance}, \\ \mathcal{I}_{\mathrm{ionic}} &= \mathrm{ionic} \ \mathrm{currents}, \\ V_{\mathrm{i,e}} &= \mathrm{intra-} \ \mathrm{and} \ \mathrm{extra-cellular} \ \mathrm{electric} \ \mathrm{potential}, \\ r_{\mathrm{i,e}} &= \mathrm{intra-} \ \mathrm{and} \ \mathrm{extra-cellular} \ \mathrm{resistence}. \end{split}$$

— The cable equation —

Equation and dimensionless form

$$\left[p \left(\mathcal{C}_{\mathsf{m}} \frac{\partial V}{\partial t} + \mathcal{I}_{\mathsf{ionic}}(V, t) \right) = \frac{1}{r_{\mathsf{e}} + r_{\mathsf{i}}} \frac{\partial^2 V}{\partial x^2}. \right]$$

$$ightarrow rac{1}{R_{
m m}} = \left. rac{{
m d} \mathcal{I}_{
m ionic}}{{
m d} \, V}
ight|_{V=V_0}$$
 is the membrane conductance;

$$\lambda_{\rm m} = \sqrt{\frac{R_{\rm m}}{p(r_{\rm i} + r_{\rm e})}}$$
 is the typical length–scale of the problem;

ho $au_{
m m} = \mathcal{C}_{
m m} R_{
m m}$ is the typical time—scale of the problem.

After rescaling the variables $x \mapsto \frac{x}{\lambda_m}$ and $t \mapsto \frac{t}{\tau_m}$ we obtain:

$$\left(\frac{\partial V}{\partial t} = \frac{\partial^2 V}{\partial x^2} + f(V, t).\right)$$

The cable equation —Reaction term and boundary conditions

The cable equation is reaction–diffusion PDE, and it can be reinterpreted as a infinite dimensional ODE:

$$\dot{\mathbf{u}} = \mathsf{A}\mathbf{u} + f(\mathbf{u}, t).$$

Equilibria, stability, attractors, etc... can be defined in this context.

The cable equation — Reaction term and boundary conditions

The cable equation is reaction—diffusion PDE, and it can be reinterpreted as a infinite dimensional ODE:

$$\dot{\mathbf{u}} = \mathsf{A}\mathbf{u} + f(\mathbf{u}, t).$$

Equilibria, stability, attractors, etc... can be defined in this context.

We need additional information to define the problem:

- ▶ Initial condition: V(x,0) = ...;
- Boundary conditions:
 - ▶ Voltage-clamp: $V(x_b, t) = V_b$;
 - ▶ Short–circuit: $V(x_b, t) = 0$;
 - ► Current injection: $\partial_x V(x_b, t) = -r_i \lambda_m \mathcal{I}(t)$;
 - ▶ Sealed ends: $\partial_x V(x_b, t) = 0$.

— The cable equation — Reaction term and boundary conditions

The cable equation is reaction—diffusion PDE, and it can be reinterpreted as a infinite dimensional ODE:

$$\dot{\mathbf{u}} = \mathsf{A}\mathbf{u} + f(\mathbf{u}, t).$$

Equilibria, stability, attractors, etc... can be defined in this context.

We need additional information to define the problem:

- ▶ Initial condition: V(x,0) = ...;
- Boundary conditions:
 - ▶ Voltage-clamp: $V(x_b, t) = V_b$;
 - ▶ Short–circuit: $V(x_b, t) = 0$;
 - Current injection: $\partial_x V(x_b, t) = -r_i \lambda_m \mathcal{I}(t)$;
 - ▶ Sealed ends: $\partial_x V(x_b, t) = 0$.

The reaction term f(V, t) is generally:

- highly non-linear for excitable systems;
- ▶ a linear resistance f(V) = -V for dendrite (passive systems).

The cable equation —Dendritic conduction

Traveling waves — Excitable cells

We consider now an excitable cell, so f(V) is one of the (several) models available in the literature (see previous lecture).

A general model could be:

$$\begin{cases} \frac{\partial V}{\partial t} = \frac{\partial^2 V}{\partial x^2} + f(V, \mathbf{w}, \mathbf{c}), \\ \frac{\partial w_i}{\partial t} = \alpha_i(V) (1 - w_i) + \beta_i(V) w_i, \\ \frac{\partial \mathbf{c}}{\partial t} = \mathbf{h}(V, \mathbf{w}, \mathbf{c}), \end{cases}$$

$$I_{\text{ionic}}$$

where the 2nd equation describes gating variables (i.e. ionic channels dynamics), and the 3rd describes intracellular ionic concentrations

Models in literature: FitzHugh-Nagumo (2 eq.), Fenton-Karma (4), Luo-Rudy (9), Ten Tusscher-Panfilov (18), Flaim (80), ...

We focus on the simplest version of non–linearity:

$$f(V) = aV(1 - V)(V - \alpha).$$

We focus on the simplest version of non–linearity:

$$f(V) = aV(1 - V)(V - \alpha).$$

Equilibria and their stability

- $V \equiv 0$, stable;
- $ightharpoonup V \equiv 1$, stable;
- $V \equiv \alpha$, unstable (saddle);
- ▶ Possibly many others (non trivial): see lab session.

We focus on the simplest version of non-linearity:

$$f(V) = aV(1 - V)(V - \alpha).$$

Equilibria and their stability

- $V \equiv 0$, stable;
- $ightharpoonup V \equiv 1$, stable;
- $V \equiv \alpha$, unstable (saddle);
- ▶ Possibly many others (non trivial): see lab session.

Observe that there is no recovery!

Once excited, the cell cannot return to a resting state.

We focus on the simplest version of non-linearity:

$$f(V) = aV(1 - V)(V - \alpha).$$

Equilibria and their stability

- $V \equiv 0$, stable;
- $V \equiv 1$, stable;
- $V \equiv \alpha$, unstable (saddle);
- ▶ Possibly many others (non trivial): see lab session.

Observe that there is no recovery!

Once excited, the cell cannot return to a resting state.

Problem: What happens when (say) half of the cell is excited and the other half is resting?

We focus on the simplest version of non-linearity:

$$f(V) = aV(1 - V)(V - \alpha).$$

Equilibria and their stability

- $V \equiv 0$, stable;
- $V \equiv 1$, stable;
- $V \equiv \alpha$, unstable (saddle);
- ▶ Possibly many others (non trivial): see lab session.

Observe that there is no recovery!

Once excited, the cell cannot return to a resting state.

Problem: What happens when (say) half of the cell is excited and the other half is resting?

Solution must be continuous, so we have to connect those two states.

⇒ Travelling waves.

— Traveling waves —Construction of traveling waves

Solution of type $V(x,t) = U(x+ct) = U(\xi)$.

Construction of traveling waves

Solution of type $V(x,t)=U(x+ct)=U(\xi)$. Associate problem:

Find
$$(U,c)$$
 s.t.
$$\begin{cases} -cU'(\xi) = U''(\xi) + f(U(\xi)), & \xi \in \mathbb{R}, \\ U(-\infty) = 1, \ U(+\infty) = 0. \end{cases}$$

Analysis with PPLANE.

Construction of traveling waves

Solution of type $V(x,t)=U(x+ct)=U(\xi)$. Associate problem:

$$\text{Find } (U,c) \text{ s.t. } \begin{cases} -cU'(\xi) = U''(\xi) + f(U(\xi)), & \xi \in \mathbb{R}, \\ U(-\infty) = 1, \ U(+\infty) = 0. \end{cases}$$

Analysis with PPLANE.

— Traveling waves —Heteroclinic bifurcation

— Traveling waves — Solution

Existence, uniqueness (up to translations) and stability for general bistable nonlinearities (not only cubic).

— Traveling waves — Solution

Existence, uniqueness (up to translations) and stability for general bistable nonlinearities (not only cubic).

Exact solution for cubic nonlinearity:

$$\begin{split} U(x,t) &= \frac{1}{2} \left[1 + \tanh \left(\frac{x + ct}{\varepsilon} \right) \right], \\ c &= \frac{\lambda_{\mathsf{m}} \sqrt{2a}}{2\tau_{\mathsf{m}}} (1 - 2\alpha), \\ \varepsilon &= \frac{4\lambda_{\mathsf{m}} \sqrt{2}}{\sqrt{a}}. \quad \approx \text{front thickness.} \end{split}$$

Extension to FitzHugh-Nagumo (recovery)

Not trivial, there are several analytical results but the spectrum of solutions is vast.

Pulse waves: the objective is to find a homoclinic orbit of the system obtained from the substitution V(x,t)=U(x+ct), since we connect the resting state with itself.

The system is in \mathbb{R}^3 , and the origin is a saddle point. The stable manifold in 2d, plus a 1d unstable manifold.

Extension to FitzHugh-Nagumo (recovery)

Not trivial, there are several analytical results but the spectrum of solutions is vast.

Pulse waves: the objective is to find a homoclinic orbit of the system obtained from the substitution V(x,t)=U(x+ct), since we connect the resting state with itself.

The system is in \mathbb{R}^3 , and the origin is a saddle point. The stable manifold in 2d, plus a 1d unstable manifold.

Extension to FitzHugh–Nagumo (recovery)

Not trivial, there are several analytical results but the spectrum of solutions is vast.

Pulse waves: the objective is to find a homoclinic orbit of the system obtained from the substitution V(x,t)=U(x+ct), since we connect the resting state with itself.

The system is in \mathbb{R}^3 , and the origin is a saddle point. The stable manifold in 2d, plus a 1d unstable manifold.

— Multidimensional cable equation — Informal generalization

$$\tau \frac{\partial V}{\partial t} = \nabla \cdot (\mathsf{D}\nabla V) + f(V, t).$$

Remark: We only substitute the diffusion, with D a symmetric positive–definite tensor of conductivity.

Multidimensional cable equation — Informal generalization

$$\tau \frac{\partial V}{\partial t} = \nabla \cdot (\mathsf{D}\nabla V) + f(V, t).$$

Remark: We only substitute the diffusion, with D a symmetric positive–definite tensor of conductivity.

Possible solutions:

▶ Planar waves: $V(x,t) = U(x \cdot k + ct)$;

— Multidimensional cable equation — Informal generalization

$$\tau \frac{\partial V}{\partial t} = \nabla \cdot (\mathsf{D}\nabla V) + f(V, t).$$

Remark: We only substitute the diffusion, with D a symmetric positive–definite tensor of conductivity.

Possible solutions:

- ▶ Planar waves: $V(x,t) = U(x \cdot k + ct)$;
- ▶ Spherical waves: V(x,t) = U(r+ct), r = ||x||;

— Multidimensional cable equation — Informal generalization

$$\tau \frac{\partial V}{\partial t} = \nabla \cdot (\mathsf{D}\nabla V) + f(V, t).$$

Remark: We only substitute the diffusion, with D a symmetric positive–definite tensor of conductivity.

Possible solutions:

- ▶ Planar waves: $V(x,t) = U(x \cdot k + ct)$;
- ▶ Spherical waves: V(x,t) = U(r+ct), r = ||x||;
- **Spiral waves:** possible in \mathbb{R}^2 , at least with FitzHugh–Nagumo;
- **Scroll waves:** possible in \mathbb{R}^3 ;
- **...**

In the first two cases derivation is exactly as in one-dimensional case.

Multidimensional cable equation — Effect of the curvature

The local speed of the front depends on the curvature:

$$\left(c = c_0 - \kappa\right)$$

This is the eikonal equation.

Lab session

1d traveling waves 2d planar, circular and spiral waves

Bistable equation (non-dimensional form):

$$\begin{cases} V_t = V_{xx} - V(1 - V)(V - \alpha), & x \in (-L, L), \\ V_x(-L, t) = V_x(L, t) = 0, \\ V(x, 0) = V_0(x). \end{cases}$$

- 1. Discretize in time with backward Euler method;
- 2. Write the variational formulation;
- 3. Solve for different α and different $V_0(x)$:

$$V_0(x) = \frac{1}{2} \left[1 + \tanh\left(\frac{\sqrt{2}}{4}x\right) \right];$$

$$V_0(x) = \frac{\alpha}{2} \left[1 + \tanh\left(-\frac{\alpha\sqrt{2}}{4}x\right) \right];$$

$$V_0(x) = \begin{cases} \beta & x \in (-\gamma, \gamma) \\ 0 & \text{otherwise} \end{cases}$$

$$V_0(x) = 2\alpha \frac{\tanh^2(\frac{\sqrt{\alpha}}{2}x) - 1}{a_1 \tanh^2(\frac{\sqrt{\alpha}}{2}x) - a_2}, \ a_{1,2} = \frac{2(\alpha + 1) \pm \sqrt{4 - 10\alpha + 4\alpha^2}}{3}.$$

Multidimensional bistable equation (non-dimensional form):

$$\begin{cases} V_t = \mu \Delta V - V(1-V)(V-\alpha), & x \in \Omega = (-L, L)^2, \\ \partial_n V(x,t) = 0, & x \in \partial \Omega \\ V(x,0) = V_0(x). \end{cases}$$

- 1. Extend the previous code to this one;
- 2. Solve for different $V_0(x)$:

$$V_0(x) = \frac{1}{2} \left[1 + \tanh\left(\sqrt{\frac{a}{8\mu}} x_1\right) \right];$$

- ▶ As before, but in *x*₂−direction;
- As before, but in direction $\mathbf{n} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$;

$$V_0(x) = \frac{1}{2} \left[1 - \tanh\left(\sqrt{\frac{a}{8\mu}}\sqrt{x_1^2 + x_2^2}\right) \right];$$

3. Find a circular front which doesn't propagate at all.

Multidimensional FitzHugh-Nagumo equation:

$$\begin{cases} V_t = \Delta V - V(1-V)(V-\alpha), & x \in \Omega = (-L,L)^2, \\ w_t = \varepsilon \left(\frac{1}{2}V-w\right), & x \in \Omega = (-L,L)^2, \\ \partial_n V(x,t) = 0, & x \in \partial \Omega \\ V(x,0) = V_0(x), \\ w(x,0) = 0. \end{cases}$$

- 1. Solve for different $V_0(x)$:
 - $V_0(x) = \begin{cases} 1 & x < 0, \\ 0 & \text{otherwise;} \end{cases}$
 - $V_0(x) = \begin{cases} 1 & ||x|| < 0.2, \\ 0 & \text{otherwise;} \end{cases}$
 - $V_0(x) = \begin{cases} 1 & \|x + 0.5\| < 0.2 \text{ or } \|x 0.5\| < 0.2, \\ 0 & \text{otherwise:} \end{cases}$
- 2. Initialize a spiral wave;
- 3. Add a region of the domain where reaction is deactivated.