Funções do 2º Grau

Prof. Eanes Torres Pereira

Fundamentos de Matemática Para Ciência da Computação - I

Roteiro

1. Funções do 2º Grau

2. Inequações do 2º Grau

Funções do 2º Grau

▶ Uma aplicação f de R em R recebe o nome de função quadrática ou do segundo grau quando associa a cada $x \in R$ o elemento $(ax^2 + bx + c) \in R$, em que a, b, c são números reais dados e $a \neq 0$.

$$f(x) = ax^2 + bx + c \ (a \neq 0)$$

► O gráfico da função quadrática é uma parábola.

Concavidade

- A parábola representativa da função quadrática y = ax² + bx + c pode ter concavidade voltada para cima ou voltada para baixo:
 - Se a > 0, a concavidade da parábola está voltada para cima.
 - Se a < 0, a concavidade da parábola está voltada para baixo.

Zeros ou Raízes

As soluções da equação do segundo grau $ax^2 + bx + c = 0$, são dadas por:

$$x = \frac{-b \pm \sqrt{\Delta}}{2a}$$

$$\mathsf{Com}\ \Delta = b^2 - 4ac$$

- Quanto ao número de raízes temos três casos a considerar:
 - 1. $\Delta > 0$, a equação apresentará duas raízes distintas;
 - 2. $\Delta = 0$, a equação apresentará duas raízes iguais;
 - 3. Δ < 0, a equação não apresenta raízes reais.

Determine os zeros reais das funções:

1.
$$f(x) = x^2 - 3x + 2$$

Determine os zeros reais das funções:

1.
$$f(x) = x^2 - 3x + 2$$

Resposta:
$$x = 1$$
 ou $x = 2$

2.
$$f(x) = -x^2 + \frac{3}{2}x + 1$$

Determine os zeros reais das funções:

1.
$$f(x) = x^2 - 3x + 2$$

Resposta: x = 1 ou x = 2

2.
$$f(x) = -x^2 + \frac{3}{2}x + 1$$

Resposta:
$$x = -\frac{1}{2}$$
 ou $x = 2$

3.
$$f(x) = x^2 + (1 - \sqrt{3})x - \sqrt{3}$$

Determine os zeros reais das funções:

1.
$$f(x) = x^2 - 3x + 2$$

Resposta:
$$x = 1$$
 ou $x = 2$

2.
$$f(x) = -x^2 + \frac{3}{2}x + 1$$

Resposta:
$$x = -\frac{1}{2}$$
 ou $x = 2$

3.
$$f(x) = x^2 + (1 - \sqrt{3})x - \sqrt{3}$$

Resposta:
$$x = -1$$
 ou $x = \sqrt{3}$

Vértice da Parábola

- ▶ O ponto $V(\frac{-b}{2a}, \frac{-\Delta}{4a})$ é chamado de vértice da parábola representativa da função quadrática.
- ► Exercício. Determine os vértices das parábolas:

1.
$$y = -x^2 + \frac{1}{2}x + \frac{3}{2}$$

Vértice da Parábola

- ▶ O ponto $V(\frac{-b}{2a}, \frac{-\Delta}{4a})$ é chamado de vértice da parábola representativa da função quadrática.
- ► Exercício. Determine os vértices das parábolas:

1.
$$y = -x^2 + \frac{1}{2}x + \frac{3}{2}$$

Resposta: $V(\frac{1}{4}, \frac{25}{16})$

$$2. \ \ y = x^2 - \frac{7}{3}x - 2$$

Vértice da Parábola

- ▶ O ponto $V(\frac{-b}{2a}, \frac{-\Delta}{4a})$ é chamado de vértice da parábola representativa da função quadrática.
- ► Exercício. Determine os vértices das parábolas:

1.
$$y = -x^2 + \frac{1}{2}x + \frac{3}{2}$$

Resposta:
$$V(\frac{1}{4}, \frac{25}{16})$$

2.
$$y = x^2 - \frac{7}{3}x - 2$$

Resposta:
$$V(\frac{7}{6}, -\frac{121}{36})$$

Esboço do Gráfico da Função Quadrática

- ► Para fazermos o esboço do gráfico da função do segundo grau, podemos seguir os seguintes critérios:
 - 1. Determinar o eixo de simetria, $x = \frac{-b}{2a}$;
 - 2. Determinar a concavidade: para cima (a > 0), ou para baixo (a < 0)
 - 3. Determinar os zeros da função usando a fórmula de Bhaskara.
 - 4. Determinar o vértice da parábola.

Esboce o gráfico das seguintes funções em R:

1.
$$y = x^2 - 2x - 3$$

2.
$$y = 4x^2 - 10x + 4$$

3.
$$y = -x^2 + \frac{1}{2}x + \frac{1}{2}$$

Sinal da Função Quadrática

Prof. Eanes Torres Pereira

► Estude o sinal das seguintes funções:

1.
$$y = x^2 - 2x - 3$$

2.
$$y = 4x^2 - 10x + 4$$

3.
$$y = -x^2 + \frac{1}{2}x + \frac{1}{2}$$

Roteiro

1. Funções do 2º Grau

2. Inequações do 2º Grau

Inequações

- ► Se $a \neq 0$, as inequações $ax^2 + bx + c > 0$, $ax^2 + bx + c < 0$, $ax^2 + bx + c \ge 0$ e $ax^2 + bx + c \le 0$ são denominadas inequações do segundo grau.
- ► Por exemplo, resolver a inequação $ax^2 + bx + c > 0$ é responder à pergunta: "existe x real tal que $f(x) = ax^2 + bx + c$ seja positiva?"

Inequações - Exemplo

► Resolva a inequação $x^2 - 2x + 2 > 0$.

Solução. Considerando $f(x) = x^2 - 2x + 2$, temos a = 1 > 0 e $\Delta = -4 < 0$. Então, f(x) > 0, $\forall x \in \mathbb{R}$.

Como a inequação é f(x) > 0, obtemos: S = R

- ► Resolva as inequações em R:
 - 1. $x^2 2x + 1 \le 0$

- ► Resolva as inequações em R:
 - 1. $x^2 2x + 1 \le 0$

Resposta: $S = \{1\}$

 $2. -2x^2 + 3x + 2 \ge 0$

- ► Resolva as inequações em R:
 - 1. $x^2 2x + 1 \le 0$

Resposta:
$$S = \{1\}$$

2.
$$-2x^2 + 3x + 2 \ge 0$$

Resposta:
$$S = \{x \in \mathbb{R} | -\frac{1}{2} \le x \le 2\}$$

3.
$$(x^2-x-2)(-x^2+4x-3)>0$$

- ▶ Resolva as inequações em R:
 - 1. $x^2 2x + 1 \le 0$

Resposta: $S = \{1\}$

2. $-2x^2 + 3x + 2 \ge 0$

Resposta: $S = \{x \in \mathbb{R} | -\frac{1}{2} \le x \le 2\}$

3. $(x^2 - x - 2)(-x^2 + 4x - 3) > 0$

Resposta: $S = \{x \in \mathbb{R} | -1 < x < 1 \text{ ou } 2 < x < 3\}$

4. $(1-4x^2)(2x^2+3x)>0$

► Resolva as inequações em R:

1.
$$x^2 - 2x + 1 \le 0$$

Resposta: $S = \{1\}$

2.
$$-2x^2 + 3x + 2 > 0$$

2.
$$-2x + 3x + 2 \ge 0$$

Resposta: $S = \{x \in \mathbb{R} | -\frac{1}{2} \le x \le 2\}$

3.
$$(x^2 - x - 2)(-x^2 + 4x - \overline{3}) > 0$$

Resposta: $S = \{x \in \mathbb{R} | -1 < x < 1 \text{ ou } 2 < x < 3\}$

4.
$$(1-4x^2)(2x^2+3x) > 0$$

Resposta: $S = \{x \in \mathbb{R} | -\frac{3}{2} < x < -\frac{1}{2} \text{ ou } 0 < x < \frac{1}{2} \}$

$$5. \ \frac{2x^2 + x - 1}{2x - x^2} \le 0$$

▶ Resolva as inequações em R:

1.
$$x^2 - 2x + 1 \le 0$$

Resposta: $S = \{1\}$

2.
$$-2x^2 + 3x + 2 > 0$$

Resposta:
$$S = \{x \in \mathbb{R} | -\frac{1}{2} \le x \le 2\}$$

3.
$$(x^2 - x - 2)(-x^2 + 4x - 3) > 0$$

Resposta: $S = \{x \in \mathbb{R} | -1 < x < 1 \text{ ou } 2 < x < 3\}$

4.
$$(1-4x^2)(2x^2+3x) > 0$$

Resposta: $S = \{x \in \mathbb{R} | -\frac{3}{2} < x < -\frac{1}{2} \text{ or } x \in \mathbb{R} \}$

Resposta:
$$S = \{x \in \mathbb{R} | -\frac{3}{2} < x < -\frac{1}{2} \text{ ou } 0 < x < \frac{1}{2} \}$$

5.
$$\frac{2x^2+x-1}{2x-x^2} \le 0$$

Resposts: $S = \{ y \in \mathbb{R} | y \le -1 \}$

Resposta:
$$S = \{x \in \mathbb{R} | x \le -1 \text{ ou } 0 < x \le \frac{1}{2} \text{ ou } x > 2\}$$

$$6. \ \frac{x^2 + 3x - 16}{-x^2 + 7x - 10} \ge 1$$

▶ Resolva as inequações em R:

1.
$$x^2 - 2x + 1 \le 0$$

Resposta: $S = \{1\}$

$$2. -2x^2 + 3x + 2 \ge 0$$

Resposta:
$$S = \{x \in \mathbb{R} | -\frac{1}{2} \le x \le 2\}$$

3. $(x^2 - x - 2)(-x^2 + 4x - 3) > 0$

Resposta:
$$S = \{x \in \mathbb{R} | -1 < x < 1 \text{ ou } 2 < x < 3\}$$

4.
$$(1 - 4x^2)(2x^2 + 3x) > 0$$

Resposta: $S = \{x \in \mathbb{R} | -\frac{3}{2} < x < -\frac{1}{2} \text{ ou } 0 < x < \frac{1}{2} \}$

5.
$$\frac{2x^2+x-1}{2x-x^2} \le 0$$

Resposta: $S = \{x \in \mathbb{R} | x \le -1 \text{ ou } 0 < x \le \frac{1}{2} \text{ ou } x > 2\}$

6.
$$\frac{x^2+3x-16}{-x^2+7x-10} \ge 1$$

Resposta: $S = \{x \in \mathbb{R} | -1 \le x < 2 \text{ ou } 3 \le x < 5\}$

Referências

► Fundamentos de Matemática Elementar. Gelson lezzi e Carlos Murakami. Volume 1.