

5.6 Ruang baris, ruang kolom, ruang nul

Review: Bebas Linear

Antara dua vektor:

a dan **b** bebas linear $\Leftrightarrow k_1$ **a** + k_2 **b** = **0** mempunyai tepat satu solusi trivial $k_1 = k_2 = 0$.

Himpunan:

 $S = \{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_r\}$ bebas linear $\iff k_1\mathbf{v}_1 + k_2\mathbf{v}_2 + ... + k_r\mathbf{v}_r = \mathbf{0}$ mempunyai tepat satu solusi trivial $k_1 = k_2 = ... = k_r = 0$

> S ha told sahu, dua, atom lebih anggota

{x} bebas/ bergantung linear?

Contoh

- a. $\{(1, 1)\}$
- b. $\{x^2\}$
- c. $\{(0, 0, 0)\}$
- d. $\{0\} \subseteq \mathbb{R}$

Bagaimana solusi $k \mathbf{v} = \mathbf{0}$

{v} bebas/ bergantung linear?

Kasus 1: $\mathbf{v} \neq \mathbf{0}$

Persamaan $k\mathbf{x} = \mathbf{0}$ dipenuhi hanya apabila k = 0.

Maka: {v} bebas linear

(ingat definisi hump bebas linear di slide 2)

{v} bebas/ bergantung linear?

Kasus 1: $\mathbf{v} \neq \mathbf{0}$

Persamaan $k\mathbf{x} = \mathbf{0}$ dipenuhi hanya apabila k = 0.

Maka: {v} bebas linear

Kasus 2: $\mathbf{v} = \mathbf{0}$,

Persamaan $k\mathbf{0} = \mathbf{0}$ dipenuhi misalnya untuk k = 2 (solusi tidak trivial). Jadi $\{\mathbf{0}\}$ bergantung linear.

{**v**} bebas linear jika dan hanya jika **v** ≠ **0**

Dimensi {0}

Didefinisikan dim({0}) adalah 0

Ruang vektor {0} tidak mempunyai basis

B/S: Basis {0} adalah Ø (himp kosong)

Jawab: Salah Ptidah merentang ruang veletor Span (44) = 44

Dimensi {0}

- $\{0\} = span(\{0\})$
- **{0}** bergantung linear
- **{0**} bukan basis dari ruang vektor **{0**}

{0} tidak mempunyai basis

Didefinisikan: $dim(\{0\}) = 0$

Row(A), Coll(A), Null(A), $Null(A^T)$

MODUL E-LEARNING ALJABAR LINIER FAKULTAS ILMU KOMPUTER, UNIVERSITAS INDONESIA

Tujuan pembelajaran

Mahasiswa mampu

- mengonstruksi
 - 1. ruang baris
 - 2. ruang kolom dan
 - 3. ruang null

dari suatu matriks

- menentukan basis ruang baris, kolom dan null
- menentukan rank dan nulitas matriks

FGD: sebagian menunjukkan CT tinggi

$$A \square \begin{bmatrix} 1 & 10 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Dipandang sebagai:

(1, 10, 0, 0, 0, 1)

(1, 10, 0) dan (0, 0, 1) (kumpulan dua vektor baris)

(1, 0), (10, 0), (0, 1) (kumpulan 3 vektor kolom)

$$2-3x \square 8x^2 \square x^4$$

Dipandang sebagai:

(2, -3, 8, 0, 4)

Matriks

$$A \square \begin{bmatrix} 1 & 10 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

- Pada pembahasan ruang vektor: A sebagai satu entitas vektor dalam ruang M^{2x3}.
- Pada pembahasan ruang baris, kolom, dan null: A terdiri tiga vektor kolom dan dua vektor baris

Review: Span(S) A | 1 10 0 0 0 1

- S = himpunan baris-baris A= {(1, 10, 0), (0, 0, 1)} subset R^3
- T = himpunan kolom-kolom A= { (1, 0), (10, 0), (0, 1) }
 - Span(S) = himpunan semua kombinasi linear vektor-vektor di S= Row(A) = {(a, 10a, b)| a, b bil real}
 - \circ Span(T) =
 - Himpunan semua solusi Ax = 0 =

Ruang baris, ruang kolom, ruang null

 \mathcal{D} efinisi: A tdd baris-baris $\mathbf{r}_1, \mathbf{r}_2, \dots, \mathbf{r}_n$

kolom-kolom $\mathbf{c}_1, \mathbf{c}_2, ..., \mathbf{c}_m$

- Ruang baris A: Row(A) = Span($\{\mathbf{r}_1, \mathbf{r}_2, ..., \mathbf{r}_n\}$)
- Ruang kolom A: Coll(A) = Span ($\{c_1, c_2, ..., c_m\}$)
- Ruang Null A: Null(A) = himp semua penyelesaian Ax = 0.

Coll(A), Row(A), Null(A)

$$A \square \begin{bmatrix} 1 & 10 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

•
$$Coll(A) =$$

• Row(
$$A$$
) =

$$A^T \square \begin{bmatrix} 1 & 0 \\ 10 & 0 \\ 0 & 1 \end{bmatrix}$$

•
$$Coll(A^T) =$$

• Row(
$$A^T$$
) =

• Null(
$$A^T$$
) =

$$A^{T} = 3 \text{subruang R}$$

$$A^{T} = 3 \text{subruang R}$$

Subruang yang dibentuk dari A

Ruang baris, kolom dan nul: Row(A), Coll(A), Null(A), Null(A^T)

Tentukan Row(A) dan Coll(A)

$$\begin{array}{cccc}
 & \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}
\end{array}$$

$$\begin{bmatrix}
 1 & 1 & 1 \\
 1 & 1 & 0 \\
 1 & 0 & 0
 \end{bmatrix}$$

$$\begin{array}{cccc}
 & \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}
\end{array}$$

Row(A), Coll(A), Null(A): A mempunyai inverse

$$\bullet \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$$

A mempunyai inverse

Jika A_{nxn} mempunyai inverse maka

• Row(A) = Coll(A) = R^n

Dimensi Row(A) = dimensi Coll(A) = n

$$Rank(A) = n$$

• $NuII(A) = \{0\}$

Dimensi Null(A) = 0

Nulitas(A) = 0

Basis Ruang Baris, Kolom, Null

Tentukan ruang baris $Row(A_i)$

$$A_1 \Box \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$A_2 \Box \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

$$A_{1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \qquad A_{2} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \qquad A_{3} = \begin{bmatrix} 1 & 10 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \qquad A_{4} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 10 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$A_4 \ \Box \begin{bmatrix} 1 & 0 & 0 \\ 0 & 10 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Tentukan ruang Null

$$A_1 \Box \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$A_2 \ \Box \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

$$A_{1} \square \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \qquad A_{2} \square \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \qquad A_{3} \square \begin{bmatrix} 1 & 10 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \qquad A_{4} \square \begin{bmatrix} 1 & 0 & 0 \\ 0 & 10 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\mathbf{A}_{4} \ \Box \begin{bmatrix} 1 & 0 & 0 \\ 0 & 10 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Contoh (lanj):

$$A_1 \Box \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$A_2 \Box \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

$$A_3 \Box \begin{bmatrix} 1 & 10 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

- $Null(A_1) = Null(A_2) = Null(A_3)$ karena obe tidak mengubah penyelesaian spl.
- Penyelesaian umum spl Ax = 0 adalah:

$$a = 0$$

$$b = 0$$

$$c = t$$

• Setiap vektor berbentuk (0, 0, t) adalah penyelesaian spl Ax = 0. Basis ruang null adalah $\{(0, 0, 1)\}$.

Tentukan ruang kolom $Coll(A_i)$

$$A_1 \Box \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$A_2 \Box \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

$$A_{1} \square \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \qquad A_{2} \square \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \qquad A_{3} \square \begin{bmatrix} 1 & 10 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \qquad A_{4} \square \begin{bmatrix} 1 & 0 & 0 \\ 0 & 10 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$A_4 \Box \begin{vmatrix} 1 & 0 & 0 \\ 0 & 10 & 0 \\ 0 & 0 & 0 \end{vmatrix}$$

$$Coll(A_1) =$$

$$Coll(A_2) =$$

$$Coll(A_3) =$$

$$Coll(A_4) =$$

Contoh 20:

	$A_1 \Box \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$	$A_2 \Box \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$	$A_3 \Box \begin{bmatrix} 1 & 10 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$
Coll(A _i)	$ \left\{ \begin{bmatrix} a \\ b \\ 0 \end{bmatrix} : a, b \in R \right\} $	$ \left\{ \begin{bmatrix} a \\ 0 \\ b \end{bmatrix} : a, b \in R \right\} $	$ \left\{ \begin{bmatrix} a \\ b \\ 0 \end{bmatrix} : a, b \in R \right\} $
$Row(A_i)$	a b 0 a, b ∈ R	a b 0↓a,b∈R	a b 0 a,b∈R

Ruang baris tidak berubah oleh obe. Ruang kolom dapat berubah oleh obe

Jawablah dan jelaskan

- 1. B/S ruang kolom pasti berubah oleh OBE.
- 2. B/S ruang kolom dapat berubah oleh OBE
- 3. B/S ruang baris dapat berubah oleh OBE
- 4. B/S ruang baris pasti tidak berubah oleh OBE
- 5. B/S ruang null(A) bisa berubah oleh OBE
- 6. B/S ruang null(A) tidak berubah oleh OBE

Pengaruh operasi baris elementer

Operasi baris elementer (obe)

- 1. tidak mengubah ruang null suatu matriks.
- 2. tidak mengubah ruang baris dari suatu matriks.
- 3. dapat mengubah ruang kolom matriks.
- 4. tidak mengubah hub dependensi linier kolom-kolom A.

Cara menenentukan basis Coll(A), Row(A), Null(A): melakukan OBE pada A.

OBE dan ruang baris, kolom, null

Jeorema: Operasi baris elementer (obe) tidak mengubah ruang null dan ruang baris matriks.

Jeorema: Operasi baris elementer (obe) dapat mengubah ruang kolom matriks.

hubungan dependesi kolom-kolom

- B_2 diperoleh dari B_1 dengan tukar baris $R_2 \leftrightarrow R_3$
- B_3 diperoleh dari B_1 dengan $R_2 \leftarrow 10*R_2$
- B_4 diperoleh dari B1 dengan $R_2 \leftarrow R_2 + 2*R_3$

$$B_1 = \begin{bmatrix} 1 & 10 & 0 \\ 5 & 50 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$

$$B_2 = \begin{bmatrix} 1 & 10 & 0 \\ 0 & 0 & 3 \\ 5 & 50 & 0 \end{bmatrix}$$

$$B_1 \square \begin{bmatrix} 1 & 10 & 0 \\ 5 & 50 & 0 \\ 0 & 0 & 3 \end{bmatrix} \qquad B_2 \square \begin{bmatrix} 1 & 10 & 0 \\ 0 & 0 & 3 \\ 5 & 50 & 0 \end{bmatrix} \qquad B_3 \square \begin{bmatrix} 1 & 10 & 0 \\ 10 & 100 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$

$$B_4 \square \begin{bmatrix} 1 & 10 & 0 \\ 5 & 50 & 6 \\ 0 & 0 & 3 \end{bmatrix}$$

hubungan dependesi kolom-kolom

$$B_1 = \begin{bmatrix} 1 & 10 & 0 \\ 5 & 50 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$

$$B_2 \Box \begin{bmatrix} 1 & 10 & 0 \\ 0 & 0 & 3 \\ 5 & 50 & 0 \end{bmatrix}$$

$$B_{1} \square \begin{bmatrix} 1 & 10 & 0 \\ 5 & 50 & 0 \\ 0 & 0 & 3 \end{bmatrix} \qquad B_{2} \square \begin{bmatrix} 1 & 10 & 0 \\ 0 & 0 & 3 \\ 5 & 50 & 0 \end{bmatrix} \qquad B_{3} \square \begin{bmatrix} 1 & 10 & 0 \\ 10 & 100 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$

$$B_4 \square \begin{bmatrix} 1 & 10 & 0 \\ 5 & 50 & 6 \\ 0 & 0 & 3 \end{bmatrix}$$

- Pada setiap matriks berlaku: $\mathbf{c}_2 = 10 \, \mathbf{c}_1$ $\{c_1, c_3\}$ bebas linier $\{\mathbf{c}_2, \mathbf{c}_3\}$ bebas linier
- Hubungan dependensi linier kolom-kolom tidak berubah oleh obe

Obe dan ruang baris, kolom, null

Jeorema: Apabila A dan B ekuivalen, maka:

- a. Himpunan vektor-vektor kolom dari A bebas linier jika dan hanya jika vektor-vektor kolom yang sesuai B bebas linear.
- b. Himpunan vektor-vektor kolom dari A membentuk basis untuk ruang kolom dari A jika dan hanya jika kolom yang sesuai vektor B membentuk basis untuk ruang kolom B.

Obe dapat merubah ruang kolom suatu matriks.