

Polar3™ HiPerFET™ **Power MOSFET**

IXFK64N60P3 IXFX64N60P3

N-Channel Enhancement Mode Avalanche Rated Fast Intrinsic Diode

Symbol	Test Conditions	Maximum F	Ratings
V _{DSS}	$T_J = 25^{\circ}\text{C to } 150^{\circ}\text{C}$	600	V
V _{DGR}	$T_J = 25^{\circ}\text{C to } 150^{\circ}\text{C}, R_{gs} = 1\text{M}\Omega$	600	V
V _{GSS}	Continuous	± 30	V
V _{GSM}	Transient	± 40	
I _{D25}	$T_{\rm c} = 25^{\circ}{\rm C}$	64	A
I _{DM}	$T_{\rm c} = 25^{\circ}{\rm C}$, Pulse Width Limited by $T_{\rm JM}$	160	A
I _A	$T_c = 25^{\circ}C$	32	A
E _{AS}	$T_c = 25^{\circ}C$	1.5	J
P _D	T _C = 25°C	1130	W
dv/dt	$I_{S} \le I_{DM}, V_{DD} \le V_{DSS}, T_{J} \le 150^{\circ}C$	35	V/ns
T _J T _{JM} T _{stg}		-55 +150 150 -55 +150	O° O°
T _L	Maximum Lead Temperature for Soldering	300	°C
T _{SOLD}	Plastic Body for 10s	260	
M _d	Mounting Torque (TO-264)	1.13/10	Nm/lb.in
F _c	Mounting Force (PLUS247)	20120 /4.527	N/lb
Weight	TO-264	10	g
	PLUS247	6	g

SymbolTest ConditionsCharacteristics $(T_J = 25^{\circ}C)$ Unless Otherwise Specified)Min.		cteristic Typ.	Values Max.		
BV _{DSS}	$V_{GS} = 0V, I_D = 1mA$	600			V
$V_{GS(th)}$	$V_{DS} = V_{GS}, I_{D} = 4mA$	3.0		5.0	V
I _{GSS}	$V_{GS} = \pm 30V$, $V_{DS} = 0V$			± 200	nA
I _{DSS}	$V_{DS} = V_{DSS}, V_{GS} = 0V$ $T_1 = 125^{\circ}C$;		25 3	μA mA
R _{DS(on)}	V _{GS} = 10V, I _D = 0.5 • I _{D25} , Note 1			100	mΩ

600V 64A D25 = $\mathbf{R}_{\mathrm{DS(on)}}$ $100 \mathrm{m}\Omega$ ≤ 250ns ≤

TO-264 (IXFK)

PLUS247 (IXFX)

G = Gate D = Drain S = SourceTab = Drain

Features

- Dynamic dv/dt Rating
- Avalanche Rated
- Fast Intrinsic Diode
- Low Q_G
- Low R_{DS(on)}
 Low Drain-to-Tab Capacitance
- Low Package Inductance

Advantages

- Easy to Mount
- Space Savings

Applications

- DC-DC Converters
- Battery Chargers
- Switch-Mode and Resonant-Mode Power Supplies
- Uninterrupted Power Supplies
- AC Motor Drives
- High Speed Power Switching Applications

•	Symbol Test Conditions Chara (T ₁ = 25°C Unless Otherwise Specified) Min.		cteristic Values Typ. Max.		
g _{fs}		$V_{DS} = 10V, I_{D} = 0.5 \cdot I_{D25}, \text{ Note 1}$	36	60	S
C _{iss})			9.9	nF
C _{oss}	}	$V_{GS} = 0V, V_{DS} = 25V, f = 1MHz$		920	pF
\mathbf{C}_{rss}	J			4.0	pF
R_{gi}		Gate Input Resistance		1.1	Ω
t _{d(on)})	Resistive Switching Times		43	ns
t,	Ţ	$V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{DSS}$		17	ns
$\mathbf{t}_{d(off)}$		$R_{\rm G} = 10$ (External)		66	ns
t _f	J	Ti _G = 132 (External)		11	ns
$\mathbf{Q}_{g(on)}$)			145	nC
Q_{gs}	}	$V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{D25}$		44	nC
\mathbf{Q}_{gd}	J			35	nC
R _{thJC}					0.11 °C/W
R _{thCS}				0.15	°C/W

Source-Drain Diode

Symbo	I Test Conditions	Characteristic Values			
$(T_J = 28)$	5°C, Unless Otherwise Specified)	Min.	Тур.	Max.	
Is	$V_{GS} = 0V$			64	Α
I _{sm}	Repetitive, Pulse Width Limited by $T_{_{JM}}$			260	Α
V _{SD}	$I_F = I_S$, $V_{GS} = 0V$, Note 1			1.5	V
t _{rr}	I ₌ = 32A, -di/dt = 100A/μs			250	ns
$\mathbf{Q}_{_{\mathrm{RM}}}$	}		1.2		μC
I _{RM}	$V_{R} = 100V, V_{GS} = 0V$		12.6		Α

Note 1. Pulse test, $t \le 300\mu s$, duty cycle, $d \le 2\%$.

6.04

1.57

6.30

1.83

.238

.062

.248

.072

Terminals: 1 - Gate 2 - Drain 3 - Source

Dim.	Milli	meter	Inches		
	Min.	Max.	Min.	Max.	
Α	4.83	5.21	.190	.205	
A_1	2.29	2.54	.090	.100	
A ₂	1.91	2.16	.075	.085	
b	1.14	1.40	.045	.055	
b₁	1.91	2.13	.075	.084	
b ₂	2.92	3.12	.115	.123	
С	0.61	0.80	.024	.031	
D	20.80	21.34	.819	.840	
E	15.75	16.13	.620	.635	
е	5.45	BSC	.215 BSC		
L	19.81	20.32	.780	.800	
L1	3.81	4.32	.150	.170	
Q	5.59	6.20	.220	0.244	
R	4.32	4.83	.170	.190	

 $\ensuremath{\mathsf{IXYS}}$ Reserves the Right to Change Limits, Test Conditions, and Dimensions.

Fig. 13. Maximum Transient Thermal Impedance

