

CENTRO UNIVERSITÁRIO DE BRASÍLIA DISCIPLINA: CIRCUITOS ELETRÔNICOS PROFESSOR: IVANDRO DA SILVA RIBEIRO

TRABALHO PRÁTICO DA DISCIPLINA DE CIRCUITOS ELETRÔNICOS

EDUARDO AFONSO DA SILVA INÁCIO, 21908507 MATHEUS BARCELOS DE CARVALHO, 21907159 VINÍCIUS DE OLIVEIRA PERPÉTUO, 21908298

INTRODUÇÃO

Esse trabalho foi feito com a finalidade de desenvolver um sistema de automação através da ferramenta virtual Tinkercad, fazendo o uso da placa Arduino UNO e a programando para que o sistema funcione corretamente.

Os componentes utilizados foram:

- Placa LCD;
- Potenciômetro;
- Buzzer;
- Phototransistor (sensor de luz);
- TMP36 (sensor de temperatura);
- Transistor bipolar;
- Ventoinha 12V (no Tinkercad foi utilizado um Hobby Gear Motor para simular o cooler).

Desse modo, ao prontificar todo o circuito com os respectivos componentes, e executar o código no Arduino UNO, a temperatura ambiente e a necessidade ou não de iluminação apareceram na placa LCD. O Phototransistor tem o papel de controlar a iluminação, transmitindo para o Arduino UNO qual led deve ser ligado de acordo com a necessidade do sistema. Assim, caso o ambiente necessite de iluminação do sistema, o led branco é aceso simulando o acionamento de uma lâmpada. O led RGB funciona do seguinte modo, quando o sistema é ligado ele emite uma luz verde e quando o sensor de temperatura bate 40°C, o led fica vermelho.

O TMP36 é o equipamento utilizado para medir a temperatura ambiente, que é mostrada na placa LCD. Quando a temperatura atingir ou ultrapassar 40°C, um buzzer é acionado para emitir um alerta sonoro, que fica 5 segundos ligado e 5 desligado enquanto a temperatura não volta para menos que isso. Para que isso aconteça, o Hobby Gear Motor é acionado para reduzir a temperatura e só é desligado quando volta para menos de 40°C.

DESENVOLVIMENTO

Primeiramente, dividimos o projeto em partes separadas e unificamos em seguida para funcionar como um todo. Assim, conectamos o LED RGB na protoboard e testamos o código com as cores. Utilizamos 3 resistores de 300Ω em cada cor, ligando diretamente no Arduino UNO, nas entradas 11, 10 e 9, respectivamente.

```
12
                 13
                     const int azul = 10;
                                              // led rgb
                     const int verde = 9;
                                              // led rgb
                 14
                    const int vermelho = 11;// led rgb
                    String cor = "Verde";
                 16
                 18
                    void setup()
                 19
                 20
                      Serial.begin(9600);
      . 6
                      pinMode(azul, OUTPUT);
pinMode(verde, OUTPUT);
                                                    // led rgb
                 22
                                                    // led rgb
                       pinMode (vermelho, OUTPUT); // led rgb
                 23
                 24
                 25
                 26
        P
                    void vermelhoFuncao() {
        U
                 28
                      digitalWrite(azul, LOW);
        9
                       digitalWrite(verde, LOW);
                 30
                      digitalWrite(vermelho, HIGH);
27
                 31
                    void verdeFuncao() {
                       digitalWrite(azul, LOW);
                       digitalWrite(verde, HIGH);
                       digitalWrite(vermelho, LOW);
                    void brancoFuncao() {
                       digitalWrite(azul, HIGH);
                       digitalWrite(verde, HIGH);
                       digitalWrite(vermelho, HIGH);
```

Figura 1 - Setup do LED RGB

Após isso, configuramos o sensor TMP36 (que foi utilizado para aferir a temperatura ambiente), conectando sua saída na entrada analógica A0 do Arduino UNO e utilizamos um cálculo que converte o valor que o sensor lê em graus Celsius. No caso do sensor de luz, utilizamos o Phototransistor junto a um resistor de $10K\Omega$, conectando na entrada analógica A1 do Arduino UNO.

Figura 2 - Setup dos sensores de temperatura e de luz

Depois de colocarmos os dois sensores e o LED RGB, já podíamos entrar com a placa LCD para mostrar na tela os valores. Fizemos as seguintes conexões: GND no negativo da protoboard; VCC no positivo da protoboard; VO no negativo da protoboard com resistor de $1K\Omega$; RS na porta 12; RW no negativo; E na porta 13; DB4 na porta 7; DB5 na porta 6; DB6 na porta 5; DB7 na porta 4; e os LEDs no potenciômetro e no ground. Para regular a iluminação da placa, o potenciômetro foi conectado com um resistor de 200Ω no positivo.

No nosso projeto, fizemos com que o LED RGB ligasse verde e instantaneamente já mudasse para branco, já que o sensor no início da simulação aponta um ambiente sem iluminação.

Figura 3 - Circuito LCD com lâmpada branca acesa e primeira parte do código

Durante a implementação da luz vermelha, chegamos a conclusão de que ela deveria ter máxima prioridade dentre todas as outras cores, já que é uma luz de alerta.

Figura 4 - Circuito LCD com luz vermelha de alerta acesa e segunda parte do código

Figura 5 - Circuito LCD com luz verde acesa e terceira parte do código

Finalmente, depois de configurar todo o sistema, com os sensores e o display, o que faltava era o buzzer com um transistor bipolar e adicionar no código. Para isso, utilizamos o buzzer provido pelo Tinkercad chamado Piezo conectando seu negativo por um resistor de $5K\Omega$ e seu positivo na porta 3, e um transistor NPN (BJT), sendo o transistor bipolar conectado a porta 2 do Arduino Uno com um resistor de $1K\Omega$ e seu coletor conectado ao motor do sistema. Nesse sistema, nosso motor servirá para representar uma ventoinha, apesar de o mesmo não ser uma. Aqui, utilizamos um Hobby Gear Motor apenas para ligar e desligar quando for necessário.

Figura 6 - Sistema do buzzer e ventoinha com transistor bipolar

Dessa forma, após programar os códigos e juntá-los, juntamos todas as peças e colocamos o projeto para funcionar. O display LCD mostrará o valor da temperatura em graus Celsius. O sensor de luz estará sempre regulando a lâmpada branca e o sensor de temperatura estará sempre regulando o buzzer juntamente com o motor e a luz vermelha. Sempre que a temperatura detectar 40°C ou acima, acionará um sistema de duração de 10 segundos onde a luz vermelha acenderá, a ventoinha irá ligar e o buzzer ficará emitindo som por 5 segundos ligado e 5 desligado. Se a temperatura continuar acima de 40°C, esse sistema continuará ativo até que a temperatura esteja no valor desejado, no caso, abaixo de 40°C. No mais, o sistema apresentará apenas uma luz verde, indicando que o sistema está ligado ou uma luz branca caso o ambiente esteja escuro.

Figura 7 - Circuito completo

Código Fonte:

#include <LiquidCrystal.h>

#include <ctype.h>

LiquidCrystal lcd(12, 13, 7, 6, 5, 4); // Pinagem do LCD

int base = 2; // transistor bipolar

int sensor=A0; // sensor tmp36

int pinoSensorLuz = A1;


```
int valorLuz = 0;
int buzzer = 3;
const int azul = 10; // led rgb
const int verde = 9; // led rgb
const int vermelho = 11;// led rgb
String cor = "Verde";
void setup()
{
 cor = "Verde";
  if(cor=="Verde"){
  verdeFuncao();
  }
 lcd.begin(16, 2); // Inicia o lcd de 16x2
 Serial.begin(9600);
                         // led rgb e sensor tmp
 pinMode(azul, OUTPUT);
                             // led rgb
 pinMode(verde, OUTPUT); // led rgb
 pinMode(vermelho, OUTPUT); // led rgb
 pinMode(buzzer,OUTPUT); // BUZZER
 pinMode(base,OUTPUT); // transistor bipolar
}
void vermelhoFuncao(){
 digitalWrite(azul, LOW);
 digitalWrite(verde, LOW);
 digitalWrite(vermelho, HIGH);
}
```



```
void verdeFuncao(){
 digitalWrite(azul, LOW);
 digitalWrite(verde, HIGH);
 digitalWrite(vermelho, LOW);
}
void brancoFuncao(){
 digitalWrite(azul, HIGH);
 digitalWrite(verde, HIGH);
 digitalWrite(vermelho, HIGH);
}
void apagadoFuncao(){
 digitalWrite(azul, LOW);
 digitalWrite(verde, LOW);
 digitalWrite(vermelho, LOW);
}
void mostrarDados(){
 float valor=analogRead(sensor);
 float tensao=(valor/1024)*5;
 float temperatura=(tensao-0.5)*100;
 valorLuz = analogRead(pinoSensorLuz);
 lcd.clear();
 lcd.setCursor(0, 0);
 lcd.print("Celsius: ");
 lcd.println(temperatura);
 lcd.setCursor(0, 1);
```



```
lcd.print("Luz: ");
 if(valorLuz < 67){
 lcd.println("acesa");
 }else{
  lcd.println("apagada");
 }
}
void loop()
{
  float valor=analogRead(sensor);
 float tensao=(valor/1024)*5;
 float temperatura=(tensao-0.5)*100;
  valorLuz = analogRead(pinoSensorLuz);
  if(Serial.available()){
  cor = Serial.readString();
  Serial.println(cor);
 }
  mostrarDados();
 digitalWrite(base,LOW);
  if(temperatura>=40){
  mostrarDados();
  digitalWrite(base,HIGH);
     cor = "Vermelho";
  if (cor=="Vermelho"){
   vermelhoFuncao();
```



```
}
  tone(buzzer,150);
delay(500);
mostrarDados();
noTone(buzzer);
delay(500);
mostrarDados();
```



```
delay(500);
 mostrarDados();
   }else if(valorLuz<67){
 cor = "Branco";
 if(cor=="Branco"){
  brancoFuncao();
 }
}else{
 cor = "Verde";
```



```
if(cor=="Verde"){
  verdeFuncao();
}

delay(500);
}
```


• CONCLUSÃO

Portanto, ao realizar esse trabalho, foi possível simular o funcionamento do circuito como um todo e viabilizou por em prática conhecimentos teóricos da disciplina de Circuitos Eletrônicos adquiridos no decorrer do semestre. Como por exemplo, como o uso de resistores, evitando danos nos componentes; uso e leitura de sensores, para analisar e desempenhar as funções do sistema todo e o uso de transistores em um circuito, controlando o acionamento do motor.

REFERÊNCIAS

- → https://www.embarcados.com.br/arduino-uno/#:~:text=A%20placa%20Arduino%20UNO%20é,feita%20através%20do%20protocolo%20STK500.
- → https://multilogica-shop.com/sensor-de-temperatura-tmp36#:~:text=O%2 https://multilogica-shop.com/sensor-de-temperatura-tmp36#:~:text=O%2 <a href="https://multilogica-shop.com/sensor-de-temperatura-tmp36#:~:text=O%2 <a href="https://
- https://doc-0o-b4-apps-viewer.googleusercontent.com/viewer/secure/pdf/hrqrn1qa3845lv2lok83i3u0sv3o5egi/i20vdkprbeaqpci56576ipbdvs0uucei/1624579200000/drive/08526946867258917380/ACFrOgChDMtXdt-1tDW89B9jlPOruEUNDiCgY4N6qxR26M6FEdpW-YZDDk7hUZnTKYCbSJanveofs2pK3FfNjoUvzOvHsehO1rVWwtqgclnrtoWiLlljEiT60jw2ZHZ4si6YHgQZ0THi36ZWxil0?print=true&nonce=300cto81ep59s&user=08526946867258917380&hash=3u54829b9unn24u07j1b2kh4paboapvk
- → https://portal.vidadesilicio.com.br/usando-o-buzzer-com-arduino-transdut https://portal.vidadesilicio.com.br/usando-o-buzzer-com-arduino-transdut https://portal.vidadesilicio.com.br/usando-o-buzzer-com-arduino-transdut https://portal.vidadesilicio.com.br/usando-o-buzzer-com-arduino-transdut https://portal.vidadesilicio.com.br/usando-o-buzzer-com-arduino-transdut https://portal.vidadesilicio.com.br/usando-o-buzzer-com-arduino-transdut https://portal.vidadesilicio.com