V FERNANDE/

MAMA ESQUERDA COM DIBH

- LA mama esquerda é a que costuma acarretar mais complicações, especialmente quanto a toxicidade no coração
- Ly Uma alternativa é realizar o tratamento em DIBH (Deep Inspiration Breath Hold)
- L Fusão RespLivre e AvG DIBH → Avaliar se o coração se afasta do PTV

PROTOCOLO

Ly Existem diversos protocolos de mama. O usado foi 4005 cGy (15 × 267 cGy)

STRUCTURE SET

L PTV, PTV EVAL, Coração, Pulmão, Mama Contralateral, Esôfago, Prótese

CONFIGURAÇÃO DE CAMPOS

ENERGIA \to 6 *MV* (2061416)

GEOMETRIA $(25 \times 200 \ cGy) \rightarrow \text{Dois campos}$, AP-PA na tangência da mama e em meio feixe [1][2]

CONFIGURAÇÃO: AP-PA					
CAMPO	Int	Ext			
GANTRY *	300°	120°			
COLIMADOR	00	0^o			
MESA	00	0^o			

* Angulação obtida sobrepondo as bordas da mama

MLC

- → Ajustar 0.7 cm (circular)
- Lado interno (pulmão): fechar no PTV (de $0.2 cm \sim 0 cm$)
 - L Fechar no CTV → caso o pulmão seja crítico
- Lado externo → margem da respiração → 2 cm do PTV
- Ly Fechar JAWs o máximo possível e as lâminas dentro dos JAWs → diminui transmissão

NORMALIZAÇÃO

Ly Isodose de 100% cobrindo 95% do PTV_EVAL

- La Distribuição de dose gerada por dois campos paralelo-opostos, pós normalização (100% / 95%)
- Nessa situação já podemos inserir os campos modulados

MODULAÇÃO

Modular para diminuir pontos quentes

CAMPOS MODULADOS					
PAR	1	2	3	4 *	
ISODOSE	110%	110%	107%	107%	
UМ	7	8 ~ 10	7~8	7~8	

^{*} Nem sempre precisaremos de muitos campos.

DISTRIBUIÇÃO DE ISODOSES - CORTE AXIAL

La Desenhar válvula e artefatos [1]

DVH DO TRATAMENTO

FINALIZAÇÃO

- Lomo o planejamento foi feito em inspiração profunda (CT AvG_DIBH) e a paciente será posicionada em respiração livre, precisaremos fazer alguns ajustes para casar as duas situações
- La Copiamos o TP0 da MamaRespLivre para o planejamento Mama DIBH

V FERNANDE/

L Corrigir TP0 caso necessário

Ly Precisamos criar um plano "falso" para posicionamento e CBCT, chamado "CBCT_RespLivr" com 3 campos:

Ly O campo de tratamento deve ter o mesmo isocentro do Mama_DIBH, além de 1 UM e MLC aberto em um ponto que não atinja a paciente (critérios de segurança). Os outros dois campos são de setup (CBCT e SSD), e seguem o mesmo padrão dos demais tratamentos.

Não esquecer do ponto de normalização para o cálculo paralelo

REFERÊNCIAS

[1] – TROMBETTA, Débora M. et al. Influence of the presence of tissue expanders on energy deposition for post-mastectomy radiotherapy. **PLoS One**, v. 8, n. 2, p. e55430, 2013.