MAT2006 Tutorial #11

- 1. Assume $\{f_n\}$ and $\{g_n\}$ are uniformly convergent sequences of functions defined on A.
 - (a) Show that $\{f_n + g_n\}$ is a uniformly convergent sequence of functions.
 - (b) Give an example to show that the product $\{f_ng_n\}$ may not converge uniformly.
- (c) Prove that if there exists an M > 0 such that $|f_n(x)| \leq M$ and $|g_n| \leq M$ for all $n \in \mathbb{N}$ and $x \in A$, then $\{f_n g_n\}$ does converge uniformly.
- 2. Consider the sequence of functions defined by

$$g_n(x) = \frac{x^n}{n}.$$

- (a) Show $\{g_n\}$ converges uniformly on [0,1] and find $g=\lim_{n\to\infty}g_n$. Show that g is differentiable and compute g'(x) for all $x\in[0,1]$.
- (b) Now, show that g'_n converges on [0,1]. Is the convergence uniform? Set $h = \lim_{n \to \infty} g'_n$ and compare h and g'. Are they the same?
- **3.** (a) Show that

$$g(x) = \sum_{n=1}^{\infty} \frac{\cos(2^n x)}{2^n}$$

is continuous on all of \mathbb{R} .

- (b) The function g was cited previously as an example of a continuous nowhere differentiable function. What happens if we try to use the Differentiable Limit Theorem to explore whether g is differentiable?
- 4. Recall that

$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + \dots, \qquad \forall |x| < 1.$$

Using the above formula to find values for $\sum_{n=1}^{\infty} n/2^n$ and $\sum_{n=1}^{\infty} n^2/2^n$.

— End —