INTERNET OF MEDICAL THINGS

Architettura, motivazioni e sfide in ambito sanitario

Perché l'IoMT?

Complessità crescente della sanità

Innovazione guidata da IoT

Mercato in forte espansione

Sfide Architetturali in Sanità

Dispositivi eterogenei e dati sensibili

Interoperabilità e scalabilità

Sicurezza come requisito chiave

Architettura IoMT Proposta

Tre livelli: Things – Intermediate – Back-end

Separazione logica/funzionale

Supporto a Big Data e Cloud

03

Things Layer

Dispositivi medici, sensori, pazienti, operatori

Comunicazioni: RFID, Bluetooth, Wi-Fi

Raccolta dati vitali

Intermediate Layer

Gateway/Middleware come cuore dell'IoMT

Tecnologie: RESTful, fog computing, multi-agent

Sicurezza: access control, watermarking

Back-end Computing Layer

Cloud per archiviazione e analisi dati

Big Data Analytics per supporto clinico

Protocolli avanzati di sicurezza

Motivazioni all'adozione

S. No.	Motivational Factors	References
1	Innovative healthcare systems and technologies	[13], [14], [18], [23], [24], [30]–[34]
2	Cost and time reduction, and quality improvement	[13], [15], [17], [18], [23], [26], [27], [33], [35], [36]
3	Support for heterogeneous System and network	[15], [16], [19], [20], [25]–[27], [33]
4	Support for different class of patient	[15], [18], [19], [27], [31], [37], [36]
5	Remote sensing, monitoring and medication	[14], [18], [23], [24], [27], [32], [38]
6	Context aware decision making and new drug discovery	[16], [21], [22], [25], [26], [34], [35]
7	Continuity and preventive health care	[15], [22], [26], [27], [32], [34], [35]
8	Ubiquitous and wireless technology and gadgets	[14], [15], [18]–[20], [33], [36]
9	Emergency response System	[15], [19], [22], [27], [31], [36], [38]
10	Telemedicine, diagnosis and, physician and patient interaction	[14], [19], [22], [26], [36], [34]
11	Adoption for the advanced technologies	[15], [23], [25], [27], [33]
12	Resource and energy efficiency, sustainability	[17], [22], [25], [33], [35]
13	Support for medical equipment and procedures	[15], [22], [33], [36], [34]
14	Connected health vision	[15]–[17], [20], [30]
15	Threat identification, security and, authentication and access control	[14], [21], [27], [38]
16	Support for the chronic deceases	[18], [21], [36]
17	Reduction of information and medication errors	[14], [17], [33]

Riduzione costi e tempi

Telemedicina e continuità delle cure

Supporto pazienti cronici ed emergenze

07

Impedimenti Principali

Sicurezza e privacy dei dati

Vulnerabilità dispositivi low-power

Mancanza di standard consolidati

Trade-off Architetturali

Sicurezza vs performance

Interoperabilità vs complessità

Scalabilità vs costi

Conclusioni e Sviluppi Futuri

IoMT come paradigma trasformativo

Architettura a 3 livelli come riferimento

Urgenza di soluzioni di sicurezza e standard

Domande?

Grazie mille dell'attenzione!

Internet of medical things:

<u>Architectural model, motivational factors and impediments</u>

Autori: Irfan, Ahmad

Anno: 2018

Editore: IEEE