1 KRMILJA

Krmilje je tehniški sistem z vhodnimi in izhodnimi spremenljivkami in zakonitostjo, ki funkcijsko povezuje izhodne spremenljivke z vhodnimi.

Slika 1: Krmilje

Krmilja so lahko mehanska, elektromehanska in elektronska, ki so danes najpogostejša. Načelno zgradbo elektronskega krmilja pa prikazuje spodnje slika.

Slika 2: Načelna zgradba elektronskega krmilja

Glede na izvedbo delimo krmilja na:

- Trajno (fiksno) ožičena krmilja (elektromehanska, elektronska)
 V trajno ožičenih logičnih krmiljih se vsa vhodna stanja obdelujejo sočasno in v odvisnosti od teh stanja se v skladu z logično funkcijo postavljajo ali brišejo posamezni izhodni signali.
- *Prosto programirljiva krmilja* (PPK ali tudi programabilni logični krmilniki PLK, Programmable Logic Controllers PLC)

V tem primeru se posamezna vhodna stanja obdelujejo zaporedoma, kot je to določeno s *programom*.

Slika 3: Zgradba PLK-ja

Glede na funkcijsko odvisnost med vhodnimi in izhodnimi spremenljivkami delimo krmilja na:

- *logična ali kombinacijska krmilja* (stanja izhodnih spremenljivk so odvisna izključno od stanj vhodnih spremenljivk)
- *koračna ali sekvenčna krmilja* (Izhodne spremenljivke se spreminjajo korakoma iz enega diskretnega stanja v drugo diskretno stanje. Prehod iz enega v drugo stanje je pogojen z nekim dogodkom ali pa s časovnim intervalom.).

Najbolj pogosti načini opisovanja krmilij pa so:

- *algoritem* (algoritem je navodilo s katerim rešujemo določen problem, algoritem krmilja pa je tehniški opis kako naj krmilje deluje),
- *časovni diagram* (prikazuje časovne poteke vhodnih in izhodnih spremenljivk in njihove medsebojne časovne odnose),

Na sliki 4 je zgled časovnega diagrama za hišno alarmno napravo.

S0, S1, S2....svetlobna stikala

Slika 4: Zgled časovnega diagrama

- pravilnostna tabela in logična enačba (sta zelo primerni za opisovanje logičnih oz. kombinacijskih krmilij),
- funkcijski načrt (za risanje funkcijskega načrta uporabljamo simbole in sicer bomo mi uporabljali simbole po standardu IEC 617-12, dobro pa je poznati tudi simbole po ANSI standardu),
- *krmilni načrt* (predstavlja realizacijo logične funkcije s pomočjo elektromehanskih krmilij, kjer vhodne spremenljivke ponazarjamo s kontakti, izhodne pa z releji),
- kontaktni načrt (lestvični diagram ladder diagram),

Slika 5: Lestvični diagram

- *koračna veriga* (kadar si postopki ali koraki sledijo po nekem stalnem in vnaprej določenem zaporedju, korak za korakom,
- programski modul (nabor ukazov-NUK, angl. Statement list STL)

0	LD	X000	Značilno za programske jezike za različne krmilnike je, da		
1	ORI	X001	je programski jezik <i>mnemotehnični</i> . To pomeni, da		
٤	AND	X003	uporablja črke ali kratice iz posameznih besed (npr.		
3	OUT	¥000	LOADLD)		
4	END				

1.1 LOGIČNA (KOMBINACIJSKA) KRMILJA

Logična krmilja sestavljajo pretežno logične funkcije NE, IN, ALI ter izpeljanke teh funkcij. Krmilja imajo končno število vhodov X in izhodov Y. Pri teh krmiljih so signali v vsakem trenutku odvisni <u>samo od vhodnih signalov</u>. Vhodne spremenljivke predstavljajo stanja procesnih veličin, ki jih zaznavajo senzorji v procesu, tipke, stikala in podobno. Izhodne spremenljivke so signali, ki delujejo na izvršne elemente v procesu, kot so releji, elektromagnetni ventili, signalni elementi...

Logično povezavo med vhodnimi in izhodnimi signali lahko prikažemo s pravilnostno tabelo. Iz te tabele pa napišemo ustrezne logične enačbe, ki jih po potrebi še minimiziramo. V praksi zelo pogosto nastopajo potrebe po časovnih funkcijah (razne pavze, zakasnitve vklopov, izklopov,..) in po pomnilnih funkcijah. Tedaj nimamo več opravka s čistimi logičnimi krmilji in minimizacijske metode odpovedo.

Smiselno je, da uvodoma, ko začnemo razvijati krmilje, podrobno definiramo vse vhodne spremenljivke, pripadajoče kontakte v procesu, njihove oznake v načrtu in prirejene vhodne

operande. Podobno naredimo za izhodne signale in izvršne člene. Tako dobimo *priredbeni seznam* za vhode in izhode.

Slika 6: Simbolični prikaz logičnega krmilja

Priredbeni seznam (tabela vhodov in izhodov):

VHODI:

Oznaka v načrtu	Naslov operanda	Vrsta kontakta	Pomen

IZHODI:

Oznaka v načrtu	Naslov operanda	Aktiven pri	Pomen

Zgledi: S pritiskom na tipko S_0 vklopimo zvonec. Zvoni le toliko časa, kolikor je tipka pritisnjena.

Pravilnostna tabela:

VHOD	IZHOD
S_0	H_0
0	0
1	1

Priredbeni seznam:

VHODI

Oznaka v	Naslov	Vrsta	Pomen
načrtu	operanda	kontakta	
S0	X0	O, tipka	zahteva za vklop sirene

IZHODI

Oznaka v	Naslov	Aktiven pri	Pomen
načrtu	operanda		
Н0	Y0	1	vklop zvonca