Semaine du 24/04 au 01/05

1 Cours

Séries numériques

Généralités Définition, sommes partielles. Nature d'une série, somme. Si $\sum u_n$ converge, alors (u_n) converge vers 0. Divergence grossière. Nature et somme d'une série géométrique. Reste d'une série convergente. Opérations sur les séries.

Comparaison à une intégrale Encadrement de $\sum f(n)$ où f est monotone. Nature d'une série de Riemann.

Séries à termes positifs Une série à terme positif converge ou diverge vers $+\infty$. Si $0 \le u_n \le v_n$, lien entre la convergence ou la divergence des séries $\sum u_n$ et $\sum v_n$. Absolue convergence. La convergence absolue implique la convergence. Relations de comparaison : lien entre domination/négligeabilité/équivalence et convergence/divergence des séries.

Développement décimal Existence et unicité d'un développement décimal propre.

2 Méthodes à maîtriser

- ▶ Établir la convergence d'une série et calculer sa somme par télescopage.
- ▶ Utiliser une décomposition en éléments simples pour déterminer par télescopage la somme d'une série $\sum F(n)$ où F est une fraction rationnelle.
- ▶ Comparer la somme partielle ou le reste d'une série à une intégrale.
- ▶ Déterminer un équivalent de la somme partielle d'une série divergente ou du reste d'une série convergente par comparaison à une intégrale.
- ► Comparer à une série de Riemann ou une série géométrique pour déterminer la nature d'une série.

3 Questions de cours

▶ BCCP 05

- 1. On considère la série de terme général $u_n = \frac{1}{n(\ln n)^{\alpha}}$ où $n \ge 2$ et $\alpha \in \mathbb{R}$.
 - (a) Cas $\alpha \ge 0$.

En utilisant une minoration très simple de u_n , démontrer que la série diverge.

(b) Cas $\alpha > 0$.

Étudier la nature de la série. Indication : on pourra utiliser la fonction $f: x \mapsto \frac{1}{x(\ln x)^{\alpha}}$.

2. Déterminer la nature de la série

$$\sum_{n \ge 2} \frac{\left(e - \left(1 + \frac{1}{n}\right)^n\right) e^{\frac{1}{n}}}{(\ln(n^2 + n))^2}$$

Remarque. Dans le corrigé «officiel», le cas $\alpha > 0$ est traité à l'aide d'un théorème qui n'est pas au programme de première année. Mais ce cas a été traité en classe «à la main» via la méthode des rectangles lors de l'étude des séries de Bertrand (horsprogramme, je le rappelle).

▶ BCCP 07

- 1. Soient (u_n) et (v_n) deux suites de nombres réels positifs. On suppose que (u_n) et (v_n) sont non nulles à partir d'un certain rang. Montrer que si $u_n \underset{n \to +\infty}{\sim} v_n$, alors $\sum u_n$ et $\sum v_n$ sont de même nature.
- 2. Etudier la convergence de la série

$$\sum_{n \ge 2} \frac{((-1)^n + i)\ln(n)\sin(1/n)}{\sqrt{n+3} - 1}$$

ightharpoonup Constante γ d'Euler

- 1. Montrer que la série $\sum_{n \ge 2} \frac{1}{n} \ln(n) + \ln(n-1)$ converge.
- 2. En déduire qu'il existe $\gamma \in \mathbb{R}$ tel que

$$\sum_{k=1}^{n} \frac{1}{k} = \ln(n) + \gamma + o(1)$$

- ▶ Série exponentielle Soit $x \in \mathbb{R}$. Montrer que la série $\sum_{n \in \mathbb{N}} \frac{x^n}{n!}$ converge et que sa somme vaut e^x à l'aide de l'inégalité de Taylor-Lagrange.
- ▶ Equivalent d'une somme partielle A l'aide d'une comparaison série/ntégrale, déterminer un équivalent de la somme partielle de la série $\sum_{n\in\mathbb{N}^*} \frac{1}{\sqrt{n}}$.
- ► Equivalent d'un reste A l'aide d'une comparaison série/intégrale, déterminer un équivalent du reste de la série $\sum_{n \in \mathbb{N}^*} \frac{1}{n\sqrt{n}}$.

 REMARQUE. J'autorise les étudiants à utiliser des intégrales impropres (i.e. à borne infinie).
- ▶ Série alternée Soit $(u_n)_{n\in\mathbb{N}}$ une suite décroissante de limite nulle. Montrer que la série $\sum_{n\in\mathbb{N}} (-1)^n u_n$ converge.