[']用語(1)

- state (space)
 □ 状態(空間)
- decision (space)
 - □ 決定(空間)
 - □ action も同じ意味で使用
- reward
 - □ 利得
- terminal reward
 - □ 終端利得
- additive
 - □ 加法型

- transition (law)
 - □ 推移(法則)
 - □ transition system と transition law は同じ意味で 使用
- deterministic
 - 口 確定的
- stochastic
 - □ 確率的
- stage
 - □期
- □ time:時刻も同じ意味で使用

用語(2)

- decision function
 - □ 決定関数
- policy
 - □ 政策
 - □ Markov policy:マルコフ政策
 - □ general policy:一般政策
- subproblem
 - □ 部分問題
- recursive
 - □ 再帰的
 - □ recursive equation:再帰式
 - = recursive formula

- optimal value function
 - □ 最適値関数
 - □ value function:値関数も同じ 意味で使用
- Markov
 - □ 現在にのみ依存する(過去に 依存しない)性質を持つもの に用いられる
 - Markov transition は stochastic transition の意
- decision process
 - □ 決定過程

■ 再帰式の導出

$$\begin{array}{ll} \text{Maxmize} & r_1(x_1,u_1) + r_2(x_2,u_2) + r_G(x_3) \\ \text{subject to} & \text{(i)} & x_{n+1} = f(x_n,u_n) \ , \quad n=1,2 \\ & \text{(ii)} & u_1,u_2 \in U \end{array}$$

部分問題群

$$v^3(x_3) = r_G(x_3) , \quad x_3 \in X$$

$$v^{2}(x_{2}) = \underset{x_{2} \in U}{\operatorname{Max}} [r_{2}(x_{2}, u_{2}) + r_{G}(x_{3})], \quad x_{2} \in X$$

$$v^{1}(x_{1}) = \underset{u_{1}, u_{2} \in U}{\text{Max}} [r_{1}(x_{1}, u_{1}) + r_{2}(x_{2}, u_{2}) + r_{G}(x_{3})], \quad x_{1} \in X$$

(ただし、
$$x_{n+1} = f(x_n, u_n), n = 1, 2$$
)

例題1.1(投資問題)

1000万円の投資資金を4つの投資先に分配し、投資した結果得られる利益を 最大にしたい。1単位を100万円とし、10単位をどのように配分すれば良いだろうか。 1000万円

投資先1 投資先2 才	投資先3	投	資先4	
投資量 u \各投資先の回収利益	$r_1(u)$	$r_2(u)$	$r_3(u)$	$r_4(u)$
0	0	0	0	0
1	0.28	0.25	0.15	0.20
2	0.45	0.41	0.25	0.33
3	0.65	0.55	0.40	0.42
4	0.78	0.65	0.50	0.48
5	0.90	0.75	0.62	0.53
6	1.02	0.80	0.73	0.56
7	1.13	0.85	0.82	0.58
8	1.23	0.88	0.90	0.60
9	1.32	0.90	0.96	0.60
10	1.38	0.90	1.00	0.60

例題1.2 (Deterministic Maximization)

数值例

2 期間 - 3 状態 - 2 決定 問題:

Maximize
$$r_1(u_1) + r_2(u_2) + r_G(x_3)$$

subject to (i)
$$x_{n+1} = f(x_n, u_n)$$
 $n = 1, 2$

(ii)
$$u_1, u_2 \in U$$

ただし, データは以下のとおり:

$$r_G(s_1) = 0.4$$
, $r_G(s_2) = 1.0$, $r_G(s_3) = 0.8$

$$r_2(a_1) = 0.8$$
 $r_2(a_2) = 0.6$

$$r_1(a_1) = 0.5, \quad r_1(a_2) = 0.9$$

$$\begin{array}{c|cccc} x \setminus u & a_1 & a_2 \\ \hline s_1 & s_2 & s_3 \\ s_2 & s_1 & s_2 \\ s_3 & s_2 & s_1 \\ \end{array}$$

f(x, u)

$$X = \{s_1, s_2, s_3\}, U_1(x) = U_2(x) = U = \{a_1, a_2\}$$

$$f_1 = f_2 = f$$
, $r_n(x, u) = r_n(u)$

-列挙法による解法

再帰式による解法 (1/3)

定理 4.2(4.1) より

$$v^3(x) = r_G(x), \quad x = s_1, s_2, s_3$$

$$v^{2}(x) = \max_{u \in \mathbb{Z}} [r_{2}(u) + v^{3}(f(x, u))], \quad x = s_{1}, s_{2}, s_{3}$$

$$v^{1}(x) = \max_{u=a_{1},a_{2}} [r_{1}(u) + v^{2}(f(x,u))], \quad x = s_{1}, s_{2}, s_{3}$$

を順に計算していけばよい.

まず、 v^3 を求める

$$v^3(s_1) = r_G(s_1) = 0.3$$

$$v^3(s_2) = r_G(s_2) = 1.0$$

$$v^3(s_3) = r_G(s_3) = 0.8$$

再帰式による解法 (2/3)

次に、 v^2 を求める

$$v^{2}(s_{1}) = \max_{u,v \in S_{1}} [r_{2}(u) + v^{3}(f(s_{1}, u))]$$

$$= \operatorname{Max}[\{r_2(a_1) + v^3(f(s_1, a_1))\}, \{r_2(a_2) + v^3(f(s_1, a_2))\}]$$

$$= \operatorname{Max}[\{0.8 + v^3(s_2)\}, \{0.6 + v^3(s_3)\}]$$

$$= \ \operatorname{Max}[\{0.8+1.0\},\ \{0.6+0.8\}]$$

$$= \operatorname{Max}[1.8, 1.4] = 1.8, \qquad \pi_2^*(s_1) = a_1$$

同様にして

$$v^2(s_2) = 1.6, \quad \pi_2^*(s_2) = a_2$$

再帰式による解法 (3/3)

最後に、 v^1 を求めると

$$v^1(s_1) = \underline{\hspace{1cm}}, \quad \pi_1^*(s_1) = \underline{\hspace{1cm}}$$

$$v^1(s_2) = \underline{}, \quad \pi_1^*(s_2) = \underline{}$$

$$v^1(s_3) = \underline{\qquad}, \quad \pi_1^*(s_3) = \underline{\qquad}$$

従って、最大値は初期状態 $x_1=s_1,s_2,s_3$ に対しそれぞれ

となり、最適政策は次で与えられる.

$$\pi^* = \{\pi_1^*, \ \pi_2^*\}$$

終了集合

終了時刻 N が未定の問題に対しては終了集合という概念を導入する:

終了集合 $T \subset X$ が与えられたとき、システムは

$$x_n \in T$$

を満たした時点で終了するものとする。

必要に応じて以下も用いられる

 $X_n(x,u)\subset X$: 第n-1期の状態 x と決定 u に対し、第n 期に生じ得る 状態の集合

 $U_n(x)\subset U$: 第 n 期において、状態 x に対し取り得る決定の集合(より一般には $U_n(x_1,u_1,x_2,u_2,\ldots,x_n)$)