Лабораторная работа №16

Худицкий Василий

НКНбд-01-19

Москва

2022 г

Задача

На пограничном контрольно-пропускном пункте транспорта имеются 2 пункта пропуска. Интервалы времени между поступлением автомобилей имеют экспоненциальное распределение со средним значением μ. Время прохождения автомобилями пограничного контроля имеет равномерное распределение на интервале [a, b].

Предлагается две стратегии обслуживания прибывающих автомобилей:

- 1) автомобили образуют две очереди и обслуживаются соответствующими пунктами пропуска;
- 2) автомобили образуют одну общую очередь и обслуживаются освободившимся пунктом пропуска.

Исходные данные: $\mu = 1$, 75 мин, a = 1 мин, b = 7 мин.

Первая стратегия

```
GENERATE (Exponential(1,0,1.75)); прибытие автомобилей
TEST LE Q$Other1,Q$Other2,Obsl 2 ; длина оч. 1<= длине оч. 2
TEST E Q$Other1,Q$Other2,Obsl \overline{1}; длина оч. 1= длине оч. 2
TRANSFER 0.5, Obsl 1, Obsl 2; длины очередей равны,
; выбираем произв. пункт пропуска
; моделирование работы пункта 1
Obsl 1 QUEUE Other1; присоединение к очереди 1
SEIZE punkt1; занятие пункта 1
DEPART Other1; выход из очереди 1
ADVANCE 4,3; обслуживание на пункте 1
RELEASE punkt1; освобождение пункта 1
TERMINATE ; автомобиль покидает систему
; моделирование работы пункта 2
Obsl 2 QUEUE Other2; присоединение к очереди 2
SEIZE punkt2; занятие пункта 2
DEPART Other2 ; выход из очереди 2
ADVANCE 4,3 ; обслуживание на пункте 2
RELEASE punkt2; освобождение пункта 2
TERMINATE; автомобиль покидает систему
; задание условия остановки процедуры моделирования
GENERATE 10080 ; генерация фиктивного транзакта,
; указывающего на окончание рабочей недели
; (7 дней х 24 часа х 60 мин = 10080 мин)
TERMINATE 1; остановить моделирование
START 1 ; запуск процедуры моделирования
```

Вторая стратегия

```
GENERATE (Exponential(1,0,1.75)); прибытие автомобилей punkt STORAGE 2

; моделирование работы пункта QUEUE Other; присоединение к очереди 1 ENTER punkt, 1; занятие пункта 1 DEPART Other; выход из очереди 1 ADVANCE 4,3; обслуживание на пункте 1 LEAVE punkt, 1; освобождение пункта 1 TERMINATE; автомобиль покидает систему

; задание условия остановки процедуры моделирования GENERATE 10080; генерация фиктивного транзакта,; указывающего на окончание рабочей недели; (7 дней х 24 часа х 60 мин = 10080 мин) TERMINATE 1; остановить моделирование START 1; запуск процедуры моделирования
```

Сравнение стратегий

Показатель	стратегия 1			стратегия 2
	Пункт 1	Пункт 2	В целом	
Поступило автомобилей	2928	2925	5853	5719
Обслужено автомобилей	2540	2536	5076	5049
Коэффициент загрузки	0.996	0.997	0.9965	1
Максимальная длина очереди	393	393	786	668
Средняя длина очереди	187.098	187.114	374.212	344.466
Среднее время ожидания	644.107	644.823	644.465	607.138

Определение оптимального числа пропускных пунктов

- Варианты с 1 и 2 пропускным пунктами не являются оптимальными, так как не удовлетворяют ни одному критерию.
- Варианты с 3 и 4 пунктами являются оптимальными, так как соответствуют всем трем критериям.
- Лучшим вариантом является 3.

Выводы

В ходе выполнения лабораторной работы:

- составлены модели для двух стратегий обслуживания;
- они были сравнены по 6 показателям;
- по результатам моделирования был сделан вывод о наилучшей стратегии обслуживания автомобилей;
- также было определено оптимальное число пропускных пунктов (от 1 до 4) для каждой из стратегий.