

Audiovizuální technika

Předzpracování obrazu a videosignál

Karel Fliegel (fliegek@fel.cvut.cz)

České vysoké učení technické v Praze Fakulta elektrotechnická Katedra radioelektroniky

Technická 2 166 27 Praha 6 Česká republika

28/4/2025

Obsah přednášky

Předzpracování obrazu

- Vzorkování a kvantizace obrazu
- Histogram a převodní charakteristika LUT
- Diskrétní 2D konvoluce a filtrace obrazu
- 2D DFT a filtrace obrazu v oblasti prostorových kmitočtů

Videosignál

- Nelineární převodní charakteristika a korekce gamma
- Vznik videosignálu v analogové televizi
- Přenosové signály barevné televize
- Digitalizace videosignálu a bitové toky
- Barevné vzorkovací rastry
- Videosignály podle doporučení ITU-R Rec. BT. 601, 709, 2020
- Rozšířený barevný gamut WCG

- Aspekty digitalizace obrazu ve snímacím systému
 - **Digitalizace** spojité obrazové funkce f(x, y)
 - Vzorkování obrazu v matici $M \times N$ obrazových bodů
 - Kvantování jasové úrovně každého vzorků do n intervalů
 - Jemnější vzorkování (větší M, N) a kvantování (větší n) \rightarrow lepší aproximace a kvalita obrazu
 - Vzorkování obrazu zahrnuje dvě úlohy
 - (1) Uspořádání vzorkovacích bodů do rastru
 - Obvykle se používá pravidelná mřížka → nejčastěji čtvercová
 - (2) Vzdálenost mezi vzorky (vzorkovací teorém)

- * Kvantování jasové úrovně
 - Nejčastěji se kvantuje do n stejných intervalů
 - Pro b bitů na pixel (**bits per pixel** [bpp]) potom je počet úrovní $n=2^b$
 - V multimédiích obvykle 8 bpp pro standardní dynamický rozsah SDR

MTG-

Předzpracování obrazu

Kvantizace obrazu v multimediální technice

- Stanovení minimálního počtu kvantizačních úrovní
 - Vychází z Weber-Fechnerova zákona a prahového kontrastu

$$\frac{\Delta L}{L_0} = k \approx 0.015 \div 0.02$$

Gradační stupnice jasu s těmito úrovněmi

$$L_{\min} < L_1 < L_2 < \dots < L_i < L_{i+1} < \dots < L_{\max}$$

Pro každý stupeň platí vzhledem k prahovému kontrastu

$$\frac{L_{i+1} - L_i}{L_i} = k \Rightarrow \frac{L_{i+1}}{L_i} = 1 + k$$

Počet rozlišitelných gradačních stupňů n

$$\frac{L_{\text{max}}}{L_{\text{min}}} = (1+k)^n \Rightarrow n = \frac{\log \frac{L_{\text{max}}}{L_{\text{min}}}}{\log(1+k)}$$

- ullet Pro zvolený prahový kontrast k=0,02 a dynamický rozsah $rac{L_{
 m max}}{L_{
 m min}}=100$
- Minimální počet kvantizačních úrovní $n = 230 \Rightarrow 8 \text{ bpp}$

- Demonstrace vzorkování (1/4)
 - Ukázka vlivu volby hustoty vzorkování na vzorkovaný obraz

Vzorkování 256x256

- Demonstrace vzorkování (2/4)
 - Ukázka vlivu volby hustoty vzorkování na vzorkovaný obraz

Vzorkování 128x128

- Demonstrace vzorkování (3/4)
 - Ukázka vlivu volby hustoty vzorkování na vzorkovaný obraz

Vzorkování 64x64

- Demonstrace vzorkování (4/4)
 - Ukázka vlivu volby hustoty vzorkování na vzorkovaný obraz

Vzorkování 32x32

- **□ Demonstrace kvantizace** (1/5)
 - Ukázka vlivu počtu kvantizačních úrovní na kvantovaný obraz

Kvantizace 6 bitů, 64 úrovní

- **□ Demonstrace kvantizace** (2/5)
 - Ukázka vlivu počtu kvantizačních úrovní na kvantovaný obraz

Kvantizace
4 bity, 16 úrovní

- **□ Demonstrace kvantizace** (3/5)
 - Ukázka vlivu počtu kvantizačních úrovní na kvantovaný obraz

Kvantizace
3 bity, 8 úrovní

- **Demonstrace kvantizace** (4/5)
 - Ukázka vlivu počtu kvantizačních úrovní na kvantovaný obraz

Kvantizace 2 bity, 4 úrovně

- **□ Demonstrace kvantizace** (5/5)
 - Ukázka vlivu počtu kvantizačních úrovní na kvantovaný obraz

Kvantizace 1 bit, 2 úrovně

- Demonstrace vzorkování a kvantizace
 - Ukázka současného vlivu vzorkování a kvantizace

Vzorkování 64x64 Kvantizace 3 bity, 8 úrovní

Histogram digitálního obrazu

- Popisuje statistické vlastnosti obrazu
- Diskrétní funkce

$$h(r_k) = n_k$$

- $-r_k$ je k-tá úroveň intenzity obrazu
- $-n_k$ je počet obrazových bodů s intenzitou r_k
- * Histogram se často normuje

$$p(r_k) = \frac{n_k}{M N}$$

- -MN je celkový počet obrazových bodů
- Histogram tvoří základ řady metod
 - Manipulace s histogramem
 - Vylepšení obrazu,...
 - ... metoda vyrovnání histogramu
 - Statistické vlastnosti z histogramu
 - Komprese, segmentace,...

- Převodní charakteristika LUT (Look-Up Table)
 - * Transformace intenzity pomocí převodní charakteristiky
 - Patří mezi bodové operátory aplikované v prostorové oblasti
 - Zpracování v prostorové oblasti

$$g(x,y) = T[f(x,y)]$$

Zpracování pro nejmenší okolí (1x1)

$$s = T(r)$$

- Transformace intenzity
- Ukázka převodní charakteristiky

Převodní charakteristika LUT (Look-Up Table)

- Vybrané převodní charakteristiky
 - Negativ
 - Převod negativ pozitiv

$$s = T(r) = L - 1 - r$$

- Log transformace
 - Mapování většího rozsahu

$$s = T(r) = c \log(1+r)$$

- Gamma charakteristika
 - Korekce gamma zkreslení

$$s = T(r) = cr^{\gamma}$$

Gonzalez, R. C., Woods, R. E. Digital image processing, Prentice-Hall, 2007.

Roztažení histogramu

- Zvýšení kontrastu (roztažení histogramu, contrast stretching)
 - Rozšíří dynamiku obrazu do plného rozsahu
 - Snížený kontrast dán např. špatným nasvícením scény, malým DR snímače, špatnou expozicí, ...
 - Po úsecích lineární převodní charakteristika
 - Tvar charakteristiky dán pozicí řídicích bodů

$$(r_1, s_1), (r_2, s_2)$$

Typické nastavení

$$(r_1, s_1) = (r_{\min}, 0)$$

 $(r_2, s_2) = (r_{\max}, L - 1)$

Bere v úvahu minimální a maximální intenzitu

Intenzita vstupního obrazu r Prahování

. Woods, R. E. Digital image processing, Prentice-Hall,

MTG

- Vyrovnání (ekvalizace) histogramu
 - Metoda pro vylepšení kontrastu v obraze
 - Obraz s diskrétními hodnotami intenzity
 - Normovaný histogram obrazu

$$p_r(r_k) = \frac{n_k}{M N}, \ k = 0, 1, 2, ..., L - 1$$

- $-r_k$ je k-tá **úroveň intenzity** obrazu
- $-n_k$ je **počet** obrazových **bodů** s **intenzitou** r_k
- -MN je celkový **počet obrazových bodů**
- -L celkový počet možných diskrétních úrovní v obraze
- Diskrétní podoba transformace pro vyrovnání (ekvalizaci) histogramu

$$s_k = T(r_k) = (L-1) \sum_{j=0}^k p_r(r_j) =$$

$$= \frac{L-1}{M N} \sum_{j=0}^k n_j, \ k = 0, 1, 2, \dots, L-1$$

- Vyrovnání (ekvalizace) histogramu
 - Metoda pro vylepšení kontrastu v obraze
 - Diskrétní podoba transformace pro vyrovnání (ekvalizaci) histogramu

$$s_k = T(r_k) = \frac{L-1}{M N} \sum_{j=0}^k n_j$$

 $k = 0, 1, 2, \dots, L-1$

Ukázka aplikace vyrovnání histogramu

Ukázka roztažení histogramu (zvýšení kontrastu)

Vstupní obrázek

Aplikace převodní charakteristiky LUT (Look-Up Table)

MIG

Předzpracování obrazu

Ukázka vyrovnání (ekvalizace) histogramu

Vstupní obrázek

Aplikace převodní charakteristiky LUT (Look-Up Table)

$$s_k = T(r_k) = \frac{L-1}{M} \sum_{j=0}^k n_j$$

 $k = 0, 1, 2, \dots, L-1$

Výstupní obrázek

- 2D konvoluce ve spojitém prostoru
 - Definována konvolučním integrálem

$$g(x,y) = f(x,y) * h(x,y) = \int_{\mathbb{R}^2} f(\alpha,\beta) h(x-\alpha,y-\beta) d\alpha d\beta$$

- 2D konvoluce v diskrétní podobě
 - Různé definice (zde kladné indexy...)

Vyhlazující prostorové filtry

- Používají se k vyhlazení obrazu a potlačení šumu
- V předzpracování obrazu
 - Potlačení detailů, potlačení šumu (lineární, nelineální), ...
- Lineární vyhlazující filtry
 - Průměrování obrazových bodů pod konvoluční maskou
 - Průměrující filtry, dolní propust
 - Nahrazení hodnoty obrazového bodu průměrem z okolních bodů
 - Potlačení ostrých přechodů v obraze
 - Aritmetický průměr a váhovaný průměr
 - Váhovaný průměr dává větší význam střednímu obrazovému bodu

$\frac{1}{9}$ ×	1	1	1
	1	1	1
	1	1	1

	1	2	1
$\frac{1}{16}$ ×	2	4	2
	1	2	1

- Vyhlazující prostorové filtry
 - Lineární vyhlazující filtry
 - Aritmetický průměr příklad
 - Potlačení šumu, detailů

3 x 3

Originál

3 x 3

5 x 5

15 x 15

- Zostřující prostorové filtry
 - Použití směrových derivací (gradient)
 - Diskrétní aproximace gradientu pomocí masky (3 x 3)
 - Aproximace gradientu pomocí Sobelova operátoru (3 x 3)
 - Lze vypočítat pomocí lineární filtrace

$$g_x(x,y) = \frac{\partial f(x,y)}{\partial x} = (z_7 + 2z_8 + z_9) - (z_1 + 2z_2 + z_3)$$

$$g_y(x,y) = \frac{\partial f(x,y)}{\partial y} = (z_3 + 2z_6 + z_9) - (z_1 + 2z_4 + z_7)$$

-1	-2	-1	-1	0	1
0	0	0	-2	0	2
1	2	1	-1	0	1

 z_1

 z_3

 z_9

 z_8

– Aproximace velikosti gradientu (nelineární operace)

$$M(x,y) \approx |(z_7 + 2z_8 + z_9) - (z_1 + 2z_2 + z_3)| +$$

 $+ |(z_3 + 2z_6 + z_9) - (z_1 + 2z_4 + z_7)|$

- Sobelův operátor provádí mírné vyhlazení
 - Větší důraz na střední řádek/sloupec (koeficienty 2)
 - Součet prvků v masce dává nulu
 - Toto je základní vlastnost derivačního operátoru

- Zostřující prostorové filtry
 - Použití neostré masky (unsharp masking)

- Odečtení vyhlazeného obrazu od originálu
- Postup aplikace

(1) Rozostření (vyhlazení) originálního obrázku

$$h_{\sigma} * I$$

(2) Odečtení vyhlazeného obrázku od originálu (maska)

$$I_{high} = I - (h_{\sigma} * I)$$

(3) Přičtení masky k originálu

Nastavení filtrace (síly ostření) konstantou α

- $-\alpha = 1$ Neostrá maska (unsharp masking)
- $-\alpha > 1$ Zesílení vysokých kmitočtů (highboost filtering)
- $-\alpha < 1$ Potlačení vlivu neostré masky

- Zostřující prostorové filtry
 - Použití neostré masky (unsharp masking)
 - Originální obrázek

Original image

- Zostřující prostorové filtry
 - Použití neostré masky (unsharp masking)
 - Zostřený obrázek příklad efektu přeostření

Sharpened by the unsharp mask - sigma = 5, alpha = 1,5

2D diskrétní Fourierova transformace

Dvoudimenzionální diskrétní FT (2D DFT)

$$F(u,v) = \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x,y)e^{-j2\pi \left(\frac{ux}{M} + \frac{vy}{N}\right)}$$

$$u = 0,1,2,...,M-1$$

$$v = 0,1,2,...,N-1$$

- f(x,y) digitální obraz o rozměru $M \times N$
- u, v diskrétní prostorové kmitočty
- Inverzní dvoudimenzionální diskrétní FT (2D IDFT)

$$f(x,y) = \frac{1}{MN} \sum_{u=0}^{M-1} \sum_{v=0}^{N-1} F(u,v) e^{j2\pi \left(\frac{ux}{M} + \frac{vy}{N}\right)}$$
$$x = 0,1,2,...,M-1$$
$$y = 0,1,2,...,N-1$$

- F(u,v) diskrétní 2D spektrum o rozměru $M \times N$
- x, y diskrétní prostorové souřadnice

2D diskrétní Fourierova transformace

Ukázka výpočtu a zobrazení spektra

Základy filtrace v kmitočtové oblasti

- Filtrovaný obraz v prostorové oblasti se vypočítá jako g(x,y) = IDFT[H(u,v)F(u,v)]
 - F(u,v) **2D DFT** obrazové funkce f(x,y) o rozměru $M \times N$
 - H(u, v) **Přenosová funkce** filtru (filtrační maska)
- **Ukázka filtrace** v kmitočtové oblasti

Gonzalez, R. C., Woods, R. E. Digital image processing, Prentice-Hall, 2007

- Vyhlazování obrazu v kmitočtové oblasti
 - Ukázka aplikace ideálního filtru

Vyhlazování obrazu v kmitočtové oblasti

- Ukázka aplikace ideálního filtru
 - Ukázka filtrace v kmitočtové oblasti pomocí jednoduchého filtru (ideální dolní propust)

Videosignál

Snímání a reprodukce v klasickém televizním systému

- Principiální nelinearita
 - Nelineární převodní charakteristika mezi jasem ve scéně a výstupním napětím u starších snímacích elektronek
 - Lineární převodní charakteristika u novějších elektronek a CCD/CMOS
- Reprodukce obrazu
 - Jas snímané scény je na displeji reprodukován v příslušném poměru
 - Nelinearita v kameře a na displeji

Poynton, C., Digital video and HDTV algorithms and interfaces, Morgan Kaufmann, 2003.

Videosignál

Snímání a reprodukce v klasickém televizním systému

- Typická převodní charakteristika původních CRT displejů
 - Nelineární závislost jasu na budicím napětí
 - Jas je přibližně úměrný 2,5 mocnině budicího napětí (prakticky $\gamma_E = 2 \div 2,8$) $L = U^{\gamma_E}$

- Zpracování v TV kameře
 - Gama korekce (podle doporučení Rec. 709)
 - Založen na mocninné křivce s mocninou $\gamma_D=0.45$

$$U=L^{\gamma_D}$$

- Sklon takové křivky v počátku je nekonečný
- Potlačení šumu v tmavých oblastech díky lineárnímu počátku

- Snímání a reprodukce v klasickém televizním systému
 - Nelinearity v jednotlivých částech řetězce

- Další významné dopady korekce gama
 - Příznivě ovlivňuje poměr signál/šum
 - Šum je viditelnější v tmavých částech obrazu
 - Korekcí gama v kameře jsou nízké úrovně zesíleny
 - Při zobrazení jsou nízké úrovně kvadratickou charakteristikou stlačeny
 - Tím dochází k potlačení šumových složek
 - * Korekce gama se používá i dnes
 - Snímače a zobrazovače mají obvykle lineární převodní charakteristiku
 - To je nutno na straně kamery a displeje korigovat

Vznik videosignálu v analogové televizi

- Postupné rastrové snímání řádků obrazového pole
 - Obraz rozdělen na půlsnímky
 - Prokládané řádkování
 - Snímání lichých a sudých řádků
 - Vyšší půlsnímkový kmitočet
 potlačení jevu blikání při zachování
 snímkového kmitočtu
 - "Evropský" televizní standard
 - Počet řádků n=625
 - Snímkový kmitočet f = 25 fps
 - Poměr stran r=4:3
 - Maximální kmitočet
 obrazového signálu f_{max}

$$f_{\text{max}} = \frac{1}{2} \cdot n \cdot r \cdot n \cdot f \approx 6.5 \text{ MHz}$$

Vznik videosignálu v analogové televizi

- Periodický charakter videosignálu
 - Diskrétní čárové spektrum
 - Vzdálenost hlavních čar dána řádkovým kmitočtem $f_h=15~625~{
 m Hz}$
 - Vzdálenost postranních čar dána půlsnímkovým kmitočtem $f_v = 50 \; \mathrm{Hz}$
 - "Evropský" televizní standard
 - Maximální kmitočet $f_{
 m max}$

$$f_{\rm max} \approx 6.5 \, \rm MHz$$

- Počet řádek n=525
- Snímkový kmitočet f = 30 fps
- Maximální kmitočet $f_{
 m max}$

$$f_{\rm max} \approx 5.5 \, \rm MHz$$

Přenosové signály barevné televize

- Výběr vhodných přenosových signálů
 - RGB signál transformován
 - Jasový (luma) signál Y
 - Barevné rozdílové(chroma) signály R-Y, B-Y
 - Kompatibilita s černobílou televizí
 - Ušetření přenosového pásma
 - HVS má menší prostorové rozlišení v barvách
- Základní barvy analogové TV
 - Určeno podle CRT fosforů

-R:
$$x = 0.67$$
 $y = 0.33$ $\lambda = 610$ nm

$$-G$$
: $x = 0.21$ $y = 0.71$ $\lambda = 537$ nm

-B:
$$x = 0.14$$
 $y = 0.08$ $\lambda = 472$ nm

Volba přenosových

Přenosové signály barevné televize

❖ Maticová konverze RGB → Y, R-Y, B-Y

$$\begin{bmatrix} Y \\ R - Y \\ B - Y \end{bmatrix} = \begin{bmatrix} 0.299 & 0.587 & 0.114 \\ 0.701 & -0.587 & -0.114 \\ -0.299 & -0.587 & 0.886 \end{bmatrix} \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$

❖ Maticová konverze Y, R-Y, B-Y → RGB

$$\begin{bmatrix} R \\ G \\ B \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 \\ 1 & -0.509 & -0.194 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} Y \\ R - Y \\ B - Y \end{bmatrix}$$

Princip konstantního jasu

- Veškerá informace o jasu scény je přenášena jasovým signálem
- Rozdílové chrominanční signály R-Y, B-Y nepřispívají k celkovému jasu Y

$$Y_{TOT} = Y + 0.30(R - Y) + 0.59(G - Y) + 0.11(B - Y) =$$

= 0.30 · R + 0.59 · G + 0.11 · B

- Přenosové signály barevné televize
 - Využití vektoru chrominance pro kompatibilní barevnou TV
 - Rozdílové barevné signály R-Y, B-Y značí se také U, V nebo Cr, Cb

Vektorskop (typ osciloskopu) - zobrazení vztahu R-Y a B-Y

$$\begin{bmatrix} Y \\ R - Y \\ B - Y \end{bmatrix} = \begin{bmatrix} 0.299 & 0.587 & 0.114 \\ 0.701 & -0.587 & -0.114 \\ -0.299 & -0.587 & 0.886 \end{bmatrix} \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$

Přenosové signály barevné televize

- * Kodér barevné analogové TV v systému PAL (1963)
 - PAL (Phase Alternating Line) přepínání signálu (R-Y) o 180°
 - Vznik úplného kompozitního analogového barevného signálu
 - Používán i v současnosti (starší bezpečnostní kamery, "žlutý RCA cinch", ...)

Přenosové signály barevné televize

- Kodér barevné analogové TV v systému PAL
 - Využití kvadraturní amplitudové modulace (QAM) pro přenos chrominance
 - Chrominanční signály **modulují pomocnou nosnou** $f_c \approx 4,43 \text{ MHz}$
 - Přenos synchronizačního impulsu barvy (SIB, "burst")

- Proložení spektra jasového signálu a barvonosné
 - Použito v systémech PAL a NTSC
 - Frekvenční multiplex
 - Menší šířka pásma chrominance
 - **Okolo** 1,3 MHz (PAL)

Proložení spektra jasové a chrominanční složky

- Doporučení mezinárodní telekomunikační unie
 - International Telecommunication Union (ITU)
 - Vybraná doporučení ITU pro digitální televizní standardy
 - ITU-R Rec. BT.601-7 (03/2011) standardní rozlišení (SD)
 Studio encoding parameters of digital television for standard 4:3 and wide screen 16:9 aspect ratios (první verze 1982)
 - ITU-R Rec. BT.709-6 (06/2015) vysoké rozlišení (HDTV)
 Parameter values for the HDTV standards for production and international programme exchange (první verze 1993)
 - ITU-R Rec. BT.2020-2 (10/2015) ultra vysoké rozlišení (UHDTV)
 Parameter values for ultra-high definition television systems for production and international programme exchange (první verze 2014)
 - ITU-R Rec. BT.2100-2 (07/2018) vysoký dynamický rozsah (HDR)
 Image parameter values for high dynamic range television for use in production and international programme exchange (první verze 2016)

- Digitalizace složkového videosignálu
 - Digitalizované složky jas Y a rozdílové barevné R-Y (U), B-Y (V)
 - Doporučení ITU-R Rec. BT.601 (1982)
 - Parametry digitalizace pro videosignál ve standardním rozlišení SD
 - Vzorkovací kmitočty: Jas (Y) 13,5 MHz, Chrominance (C_B a C_R) 6,75 MHz
 - Digitalizace provedena po gamma korekci
 - Lineární kvantizace PCM 8bit (10 bit) bitový tok 216 Mb/s (270 Mb/s)

- Digitalizace složkového videosignálu
 - Vzorkovací formáty podvzorkování barevných složek
 - J:a:b značení podvzorkování barevných složek
 - J šířka bloku jasových vzorků (základ 4)
 - a počet chroma vzorků v horním řádku
 - b počet chroma vzorků ve spodním řádku
 - Typické formáty 4:4:4 bez podvzorkování, 4:2:2 horizontálně na polovinu, 4:1:1 horizontálně na čtvrtinu, 4:2:0 horizontálně i vertikálně na polovinu

N	\otimes	X	\otimes	X	\otimes	X	\otimes	X
N+1	\otimes	X	\otimes	X	\otimes	X	\otimes	X
N+2	\otimes	X	\otimes	X	\otimes	X	\otimes	X
N+3	\otimes	X	\otimes	X	\otimes	X	\otimes	X
	4:2:2 Rec 601							

- X Jasové vzorky Y
- Chrominanční vzorky (R-Y, B-Y)

- Rec. BT.601 digitalizace prokládaného SD signálu
 - Původní verze CCIR z roku 1982 (Comité consultatif international pour la radio)
 - Kódování televizních signálů v SD rozlišení 525/60Hz a 625/50Hz
 - 720 jasových a 360 barevných vzorků na řádku v YCbCr 4:2:2
 - Počet aktivních řádků na snímek 576 ("Evropská" PAL varianta)
 - Vzorkování jasového signálu 13,5 MHz
 - Kvantizace 8 nebo 10 bitů PCM v YCbCr prostoru
 - Definice nelineární převodní charakteristiky

$$E = \begin{cases} 4,5L & 0 \le L < 0,018 \\ 1,099L^{0,45} - 0,099 & 0,018 \le L \le 1 \end{cases}$$

- -L- jas v obraze, E- odpovídající obrazový signál
- Lineární v blízkosti nuly, gamma charakteristika pro vyšší jasy
- Odvození luma signálu

$$E'_{\rm Y} = 0.299E'_{\rm R} + 0.587E'_{\rm G} + 0.114E'_{\rm B}$$

- □ Rec. BT.709 specifikace HDTV 16:9 formátu
 - Pracovní verze ITU-T od roku 1990
 - Part 2 specifikuje **1080***i* a **1080***p* se čtvercovým vzorkováním
 - Snímání v progresivním a prokládaném módu
 - Definice CIF (Common Interchange Format)
 - Snímkové kmitočty 60, 50, 30, 25 and 24 Hz
 - **❖** Kódování R'G'B' a Y'C_BC_R v 8 nebo 10 bitové kvantizaci
 - Definice nelineární převodní charakteristiky jako u BT.601
 - Odvození luma signálu (i chroma odlišné od ITU-R BT.601)

$$E'_{\rm Y} = 0.2126E'_{\rm R} + 0.7152E'_{\rm G} + 0.0722E'_{\rm B}$$

Parametr	Hodnoty				
Poměr stran	16:9				
Aktivních vzorků na řádku	1 920				
Vzorkovací mřížka	Pravoúhlá				
Aktivních řádek	1 080				
Poměr stran pixelů	1:1 (čtvercové obrazové body)				

- Rec. BT.2020 specifikace UHDTV formátu
 - Pracovní verze ITU-T od roku 2012
 - Specifikuje zejména...
 - Rozlišení 3840 x 2160 (UHD I) a 7680 x 4320 (UHD II, \sim 24 Gb/s!)
 - Snímkový kmitočet 120, 100, 60, 50, 30, 25, 24 Hz
 - Vzorkování barev 4:4:4, 4:2:2 a 4:2:0
 - Bitovou hloubku 10 nebo 12 bitové kvantizace
 - Barevný prostor mnohem širší gamut než z BT.709
 - Základní charakteristiky

Parametr	Hodnoty					
Poměr stran	16:9					
Počet obrazových bodů (horizontálně × vertikálně)	7 680 × 4 320	3 840 × 2 160				
Vzorkovací mřížka	Pravoúhlá					
Poměr stran pixelů	1:1 (čtvercové obrazové body)					
Adresování pixelů	Pořadí pixelů v řádku zleva doprava a řádky uspořádány shora dolů					

MIG

Videosignál

Rec. BT.601, 709, 2020

Porovnání barevných gamutů

- ITU-R Rec. 601 a 709 mají velmi podobné pokrytí
- ITU-R Rec. 2020 má rozšířený barevný gamut WCG (Wide Color Gamut)

Parametr	ITU-R Rec. BT.601		ITU-R Rec. BT.709		ITU-R Rec. BT.2020		
CIE 1931	Х	у	Х	у	X	у	
R	0,640	0,330	0,640	0,330	0,708	0,292	
G	0,290	0,600	0,300	0,600	0,170	0,797	
В	0,150	0,060	0,150	0,060	0,131	0,046	
Pokrytí CIE 1931	~35,9 %		35,9 %		75,8 %		
Poforonční bílá /D	Х			у			
Referenční bílá (D ₆₅)	0,3127			0,3290			

- Systémy s ultra vysokým rozlišením (UHDTV)
 - Požadavek na vyšší snímkový kmitočet
 - Zmenšení pozorovací vzdálenosti
 - -1,5 H pro 4K a 0,75 H pro 8K
 - Vzrůstá nebezpečí vjemu trhaného pohybu
 - Možnost rozšíření barevného gamutu
 - Rozšířený gamut pro UHDTV (ITU-R BT.2020)
 - Větší rozsah reprodukovaných barev oproti HDTV

- □ DCI-P3
 - Navržen DCI (Digital Cinema Initiatives) pro digitální kino
 - Pokrývá 45,5 % CIE 1931
 - Sytější zelená a červená proti Rec. 709
- ACES (Academy Color Encoding System)
 - Navržen AMPAS (Academy of Motion Picture Arts and Sciences)
 - Pokrývá 100 % CIE 1931
 - Nereálné základní barvy

Parametr	Rec. BT.709		Rec. BT.2020		ACES		DCI-P3	
CIE 1931	Х	у	Х	у	Х	у	Х	у
R	0,640	0,330	0,708	0,292	0,7347	0,2653	0,680	0,320
G	0,300	0,600	0,170	0,797	0,0000	1,0000	0,265	0,690
В	0,150	0,060	0,131	0,046	0,0001	-0,0770	0,150	0,060
Bílý bod	0,3127	0,3290	0,3127	0,3290	0,32168	0,3290	0,314	0,351
Pokrytí CIE 1931	35,9 %		75,8 %		100 %		45,5 %	

MTG

Použitá a doporučená literatura

- Gonzalez, R. C., Woods, R. E. Digital image processing, Prentice-Hall, 2007.
- Gonzalez, R. C., Woods, R. E., Eddins, S. L. Digital image processing using MATLAB, Gatesmark, 2009.
- Poynton, C. Digital Video and HDTV Algorithms and Interfaces, Morgan Kaufmann Publishers Inc., 2003.
- □ ITU-R Rec. **BT.601-7** (03/2011) **Studio encoding parameters of digital television for standard 4:3 and wide screen 16:9 aspect ratios**
- □ ITU-R Rec. BT.709-6 (06/2015) Parameter values for the HDTV standards for production and international programme exchange
- □ ITU-R Rec. **BT.2020-2** (10/2015) **Parameter values for ultra-high** definition television systems for production and international programme exchange

Audiovizuální technika

Děkuji za pozornost!

České vysoké učení technické v Praze Fakulta elektrotechnická Katedra radioelektroniky

Technická 2 166 27 Praha 6 Česká republika

28/4/2025