Statistics 630 - Assignment 7

(partial solutions)

- 1. Exer. 4.2.12. In my simulation I got 0.17738 with n=20 and 0.27658 with n=50. Since the true mean is $\mu=0.20$, this suggests that \bar{X}_n is more likely to be close to μ when the sample size is larger, which is in line with the law of large numbers. [The exact chances (see, for example, Exer. 4.4.12 below) are 0.17634 and 0.27608, respectively.]
- 2. Exer. 4.4.4. $P(W_n \le w) = \frac{w(1+w/2n)}{1+1/2n} \to w$, as $n \to \infty$, for $0 \le w \le 1$. The limit is the uniform (0,1) cdf. Note: this is convergence *only* of the distributions, not of the random variables.
- 3. Exer. 4.4.12. First, $\mu = \sigma = 2$. Second, the central limit theorem says $P(\bar{X}_n \leq 2.5) \approx \Phi\left(\frac{2.5-2}{2/\sqrt{n}}\right)$. Thus we get (a) $\Phi(1.00) = 0.84134$ if n = 16, (b) $\Phi(1.50) = 0.93319$ if n = 36, (c) $\Phi(2.50) = 0.99379$ if n = 100. Since each $X_i \sim \text{exponential}(1/2)$ it can be shown that $\bar{X}_n \sim \text{gamma}(n, n/2)$. Using this distribution to compute $P(\bar{X}_n \leq 2.5)$ exactly, we get (d) 0.84349 if n = 16, (e) 0.92578 if n = 36, (f) 0.99062 if n = 100.
- 4. Exer. 4.4.16. My simulation (with $N=10^5$) got $P(\bar{X}_{30} \leq -5) \approx 0.50133$. Since $\mu=-5$ here, the CLT would give approximate probability 0.500. [In fact, 0.500 is the *actual* probability due to the symmetry of the uniform distribution.]
- 5. Exer. 4.6.2.
 - (a) Z has mean $\mu_Z = 4\mu_X \mu_Y/3 = \frac{43}{3}$ and variance $\sigma_Z^2 = 16\sigma_X^2 + \sigma_Y^2/9 = \frac{722}{9}$. Since (X,Y) is bivariate normal (due to the independence), Z has normal distribution.
 - (b) Cov(X, Z) = 4 Cov(X, X) Cov(X, Y)/3 = 4(5) 0/3. [This does not require knowing that X and Y have normal distributions.]

Exer. 4.6.7. $C = \sqrt{n}$. Note that n is the degrees of freedom parameter for the chi-square random variable inside the square root sign.

- 6. Exer. 4.6.10.
 - (a) chi-square(1), (b) chi-square(2), (c) t(3), (d) F(1,3), (e) F(70,30).
- 7. $f(x_1, \ldots, x_n) = \lambda^n \times \exp(-\lambda \sum_{i=1}^n x_i)$.
- 8. $p(t_1, ..., t_n) = (1 \theta)^n \prod_{i=1}^n {4 \choose t_i} \times \left(\frac{\theta}{1 \theta}\right)^{\sum_{i=1}^n t_i}$.
- 9. $f(x_1, \dots, x_n) = (2\beta)^{-n} \times \exp\left(-\frac{1}{\beta} \sum_{i=1}^n |x_i \mu|\right)$.

(continued next page)

10. Here are the histogram and box-plot from my simulations with n=20 and n=50, respectively.

Histogram for Maximum of 20 Normal(0,1) RVs

