

Disciplina:

Controle Clássico I

Prof. Contato José Roberto Colombo Junior colombojrcj@ita.br

Nome:

Pedro Augusto Burbosa Cardoso

Nome:

Pedro Augusto Ferreiro Melo Reis

Nome:

Julio Cisar Coelho de Amoria

Data:

Nando Kernera Farins

Dala 1 31/08/2003

Cuidado 1

Os dispositivos usados podem causar acidentes!

1 Objetivos

Nesse experimento serão estudados os seguintes tópicos:

• Obtenção do modelo do aeropêndulo (em torno de um ponto de operação)

Formulário

- Máximo sobre-sinal $M_p=100e^{\frac{-\pi\xi}{\sqrt{1-\xi^2}}}$ e $\xi=\frac{-\ln(M_p)}{\sqrt{\pi^2+\ln^2(M_p)}}$
- Tempo de estabelecimento $t_s=\frac{4}{\xi\omega_n}$ (critério de 2%) e tempo de pico é $t_p=\frac{\pi}{\omega_n\sqrt{1-\xi^2}}$
- FT característica de sistema de segunda ordem: $G(s) = \frac{K\omega_n^2}{s^2 + 2\xi\omega_n s + \omega_n^2}$
- Erro em regime permanente para sistema de primeira ordem com controlador proporcional e realimentação unitária: $e_{ss} = \frac{1}{1+KK_n}$

2 Procedimento de partida

Figura 1: Solução do sinal de partida.

Figura 2: Sugestão de como deixar o diagrama de blocos (alto nível).

A partida do ESC+motor consiste em aplicar os passos descritos a seguir. Uma possível solução é apresentada na Figura [1]

- 1. Habilitar a chave eletrônica: escreva 1 no pino PC15
- 2. Esperar 0,5 segundos para a eletrônica do ESC inicializar
- 3. Aplicar PWM com t_{on} de 2000 μ s
- 4. Esperar 2 segundos
- 5. Aplicar PWM com t_{on} de 0 μ s
- 6. Esperar 4 segundos
- 7. Aplicar PWM com t_{on} de 1040 μ s
- 8. Esperar 3,5 segundos
- 9. Aplicar $t_{on} = 0 \mu s$ até o final do experimento

Utilize o bloco $Signal\ Builder$ para construir o sinal de partida. Crie dois sinais nesse bloco. Um deles é o partida(t), aplicado diretamente na planta durante a fase de inicialização. Essa fase tem duração de 10 segundos. Depois, o outro sinal u(t) é o sinal de controle.

Vale lembrar que não aplicamos u(t) no hardware. Ele aceita apenas duty cycle d(t). Para isso selecionaremos uma função que mapeia nosso sinal de controle $0 \le u(t) \le 100$ para $1040 \le t_{on}(t) \le 2000$ e então convertemos $t_{on}(t)$ para d(t):

$$t_{on}(t) = 1040 + \frac{960}{100}u(t) \tag{1}$$

$$d(t) = \frac{400}{10^6} t_{on}(t) \tag{2}$$

Uma possível solução que combina os sinais de controle e partida é apresentada na Figura 3

Figura 3: Solução do sinal de controle.

3 Leitura do sinal de posição angular

Conforme conversamos no primeiro encontro de laboratório, o encoder é o sensor utilizado para medir a posição angular da haste do aeropêndulo. Quando configurado na resolução máxima, o encoder produz 8000 bordas a cada 360 graus. Logo, o ganho é 360/8000 para converter para graus ou $2\pi/8000$ para produzir radianos.

Figura 4: Solução para leitura do sinal do encoder.

Depois do procedimento de partida, provavelmente o encoder não marca zero. Porém, utilizaremos essa posição angular como zero. Para isso, deve-se amostrar o sinal do encoder, guardá-lo e subtrair da sua respetiva leitura. Uma possível solução é mostrada na figura acima.

4 Modelo do aeropêndulo

Figura 5: Representação esquemática do aeropêndulo.

Após o processo de modelagem, verifica-se que a EDO que representa o comportamento deste sistema é não-linear:

$$\ddot{\theta}(t) = -\alpha \sin(\theta(t)) - \beta \dot{\theta}(t) + \gamma \omega^{2}(t)$$
 (3)

sendo α , β e γ os parâmetros do modelo que precisam ser determinados e $\theta(t)$ e $\omega(t)$ a posição angular da haste e a velocidade do motor. Precisamos validar o modelo (3). Iniciaremos levantando a curva estática do sistema.

Com base na equação (3), se fizermos $\dot{\theta}(t) = \ddot{\theta}(t) = 0$, então

$$\sin(\theta(t)) = \frac{\gamma}{\alpha}\omega^2(t) \tag{4}$$

Note que essa relação só vale para valores estacionários.

4.1 Curva estática

Qual o tipo de gráfico que você espera obter para a curva estática? Quadrático? Cúbico? Linear?

Aproximando sin (Att) por A(t) p/ & pequino, wyera-se una cura

pudratica e moo regule-se m(t)

Controlo, moo a minarel de controle seja a energia non que opera o motor (proporcioral a m²(t)), espera-se una mina linear!

O procedimento para levantar a curva estática é o seguinte:

- 1. Aplicar um sinal de controle constante (u_{ss})
- 2. Aguardar o transitório acabar
- 3. Medir a saída (y_{ss})
- 4. Repetir os itens 1, 2 e 3 (com diferentes u_{ss}) para formar um gráfico

Cuidado 2

A curva estática só vale para pontos de equilíbrio estáveis!

υ.	u_{ss}	y_{ss}	y_{se}	y_{ss}
	5%	6,97°	6,840	. 7,06°
	10%	14,76°	14, 44 °	15,03
	15%	05,42°	24,39°	23,18°
	20%	3L, 27°	3L, 05°	32 / 89°
	25%	37,71°	°GJ, FE	38,07°
•	30%	46,75°	47,97°	47,07°
	35%	56,79°	56,68°	56,56°
	40%	64, 97°	64,75°	65,11°

Plote o gráfico referente aos valores obtidos. Em seguida responda:

- 1. O resultado experimental bate com o esperado com o modelo teórico?
- 2. O ESC é apenas um ganho? Em caso negativo, qual a função matemática que o ESC implementa?
- 3. Apresente o polinômio de primeira ordem que mapeia u_{ss} para y_{ss}

Aplicando a linearização de Taylor à EDO (3), chega-se na seguinte função de transferência:

$$\frac{\Delta\theta(s)}{\Delta U(s)} = \frac{\gamma}{s^2 + \beta s + \alpha \cos(\bar{\theta})}$$
 (5)

que vale apenas em torno do ponto de operação $(\bar{u}, \bar{\theta})$.

Realize ensaios experimentais para determinar os parâmetros α , β e γ da função de transferência (que deveriam bater com os do modelo não-linear) para os pontos de operação:

	$ar{y}$	$ar{u}$
(sa	20 % °	11,337
U	40 % °	23,513

Cuidado 3

Implemente uma rampa suave para levar o sistema até o ponto de operação.

Descreva o procedimento que a sua dupla/trio utilizou para obter os parâmetro e em seguida, apresente os parâmetros.

Inicial mente, quia cada ponto de operação, aplicor-se o controle en 3 o man
Keri-se ele aplicado alí que o solema se estabilizasse..

Los seguidas aplicor-se um degras em cirra do controle o em vigor de cerca

de 10% de o (adolor-se tal valor baixo y evitar fogra da região de alidade

da linearização). Do observar tal respecta ao degras (en particular o tim
po de pico e o múximo sobri-sind) extrav-se k, E e un em cada ponto

de operação e, a partir deles e de to, os garametros e, 3 e 8 d

40° > 2 = 30,41, 3 = 1,419; 8 = 0,4718

20° > 2 = 30,457; 3 = 4,182; 8 = 0,9067

(em retrospector o degrav aficado sobre o f., baixo domais!)

Engenharia Eletrônica

Página 6 de 6

Atrito meránico tenha interférido neu modidas.