Gestão de Chaves Assimétricas

Problemas a resolver

Garantir a utilização apropriada dos pares de chaves

Privacidade das Chaves Privadas

- Para garantir autenticidade
- Para prevenir a repudiação das assinaturas

Distribuição correta das chaves públicas

- Para garantir confidencialidade
- Para garantir a validação correta das assinaturas digitais

Problemas a resolver

Evolução temporal do mapeamento entre entidade<->par de chaves

- Lidar com ocorrências catastróficas
 - Perda de chave privada

- Lidar com requisitos básicos da sua exploração
 - Atualizar pares para reduzir riscos de impersonificação

Problemas a resolver

Garantir a geração correta dos pares de chaves

- Garantir uma qualidade dos pares de chave
 - Aleatoriedade do gerador dos valores secretos
 - Evitar que possam ser adivinhados

- Melhorias da eficiência sem comprometer a segurança
 - Tornar os mecanismos mais úteis
 - Aumentar a performance

Objetivos

1. Geração de pares de chaves

Quando e como devem ser gerados

2. Manuseamento de chaves privadas

Como as manter privadas

3. Distribuição de chaves públicas

Como devem ser distribuídas para todo o mundo

4. Ciclo de vida dos pares de chaves

- Qual a sua expiração
- Como podem ser utilizadas
- Como verificar a sua obsolescência

Geração de Chaves: Princípios

Utilizar geradores bons na produção de segredos

Resultado é indistinguível de ruído

- Todos os valores possuem probabilidade igual
- Não existem padrões derivados no número da iteração ou valores anteriores

Exemplo: Gerador de Bernoulli

- Gerador sem memória
- P(b=1) = P(b=0) = 1/2
- Igual a atirar ao ar uma moeda perfeita

Geração de Chaves: Princípios

Facilitar os processos sem comprometer a segurança

- Chaves públicas eficientes
 - Dimensão reduzida, tipicamente valores 2^k+1
 - ex 3, 17, 65537
 - Acelera operações com chaves públicas
 - Não adiciona questões de segurança

Geração de Chaves: Princípios

A chave privada deve ser gerada pelo próprio

- Para assegurar ao máximo a sua privacidade
 - Apenas o seu dono possui a chave
 - Melhor: O dono também não ter a chave, apenas acesso aos processos com ela
- Este princípio pode ser relaxado se não se pretender assinaturas digitais
 - Onde não existem questões relacionadas com não repudiação

Geração de Chaves: Cuidados

Correção

A chave privada representa um sujeito

- ex: um cidadão
- O risco do seu comprometimento deve ser minimizado
- Considerar igualmente cópias de salvaguarda

O caminho de acesso à chave deve ser controlado

- Correção das aplicações que a usam
- Utilização de autenticação nas aplicações
- Cifra da chave privada

Geração de Chaves: Cuidados

Confinamento

- Armazenamento da chave numa entidade autónoma segura
 - Módulo seguro de hardware interno
 - Partição lógica segura a nível do CPU
 - Smartcard ou chave externa

- Utilização protegida da chave
 - Aplicações não utilizam a chave
 - Invoca-se ao dispositivo a realização de operações

Distribuição de Chaves Públicas

Problema: Como distribuir uma chave pública ao mundo?

- Distribuição a quem pretenda enviar informação confidencial
 - manual
 - protegida por um segredo partilhado
 - de forma Ad-hoc usando certificados digitais

- Distribuição a quem pretenda validar informação autenticada
 - manual
 - de forma Ad-hoc usando certificados digitais

Distribuição de Chaves Públicas

Problema: Como garantir a correção de uma chave pública?

- Disseminação confiável de chaves públicas
 - Usar caminhos ou grafos de relações de confiança

Se A confia em K_x+, e B confia em A,

então B confia em K_x+

- Hierarquias e grafos de certificação
 - Expressão clara das relações de confiança entre entidades
 - Certificação é unidirecional

Certificados Digitais de Chaves Públicas

Documentos digitais emitidos por uma Entidade Certificadora (EC)/Certification Authority (CA)

- Ligam uma chave pública a uma entidade
 - Pessoa, sistema ou serviço
- São documentos públicos
 - Contém apenas informação pública
 - Podem contém informação adicional associada à entidade
- São seguros por meios criptográficos
 - Possuem uma impressão digital para identificação
 - São assinados com uma assinatura digital criada pelo emissor (CA)

Certificados Digitais de Chaves Públicas

Usados para distribuir chaves públicas de forma confiável

Os verificadores podem validar os documentos

- Validar identificação com o contexto atual
- Validar instantes temporais
- Validar a utilização da chave pública
- Validam a assinatura digital do documento usando a chave pública da CA

Os verificadores confiam no comportamento das CA

- Portanto confiam nos documentos que emitem
- Uma CA associou uma chave pública a A. Se o verificador confiar na CA, irá confiar que a associação de A é correta.

Certificados Digitais de Chaves Públicas

Norma X.509v3

- Campos obrigatórios
 - Versão
 - Sujeito (subject)
 - Chave pública
 - Datas (início e expiração)
 - Emissor (issuer)
 - Assinatura
 - ...
- Extensões: definem utilização
 - Críticas ou não Críticas

PKCS #6

 Extended-Certificate Syntax Standard

Formatos binários

- ASN.1 (Abstract Syntax Notation
 - DER, CER, BER, etc.

PKCS #7

 Cryptographic Message Syntax Standard

PKCS #12

 Personal Information Exchange Syntax Standard

Outros formatos

- PEM (Privacy Enhanced Email)
 - Base64

Utilizações de um par de chaves

- O certificado associa um par de chaves a um perfil de utilização restrito
 - Uma entidade terá vários certificados, um para cada utilização
 - Definido no certificado, extensão crítica: Key Usage

Perfis típicos

- Autenticação/Distribuição de chaves
 - Assinaturas digitais, Cifra de Chaves, Cifra de Dados, Negociação de chaves
- Assinatura de documentos
 - Assinaturas digitais, Não-repudiação
- Emissão de certificados
 - Assinaturas de certificados e objetos relacionados

Entidades Certificadoras (CA)

- Organizações que gerem certificados de chave pública
 - Empresas, entidades sem fins lucrativos ou governamentais
 - Normalmente possuem a tarefa de validar associações chaveentidade

Importante que operem corretamente para serem confiáveis

- Definem políticas e mecanismos para
- Emissão de certificados
- Revogação de certificados
- Distribuição de certificados
- Emitir e distribuir as chaves privadas correspondentes

• Gerem processos de revogação de certificados

- Listas de identificadores de certificados revogados
- Interfaces para verificação do estado do certificado

Entidades Certificadoras Confiáveis

- Entidades certificadoras raíz.
 - Podem ser confiáveis por um grupo restrito, ou uma maioria
 - Possuem processos de gestão confiáveis
- Entidades certificadoras intermédias: Certificadas por outra CA
 - Usando um certificado
 - Formam hierarquias de certificação
- Raízes de confiança ou raízes de certificação
 - Alguém possui e confia numa chave pública
 - Certificados das CAs são auto assinadas
 - Podem também ser assinados por outras CAs
 - Distribuição Manual
 - nos browsers, no SO

This certificate has been verified for the following uses:

SSL Client Certificate

SSL Server Certificate

Issued To

Common Name (CN) www.ua.pt

Organization (O) Universidade de Aveiro

Organizational Unit (OU) sTIC

Serial Number 06:B4:17:0C:D7:EF:AC:9F:A3:79:9A:78:0E:7E:5A:8C

Issued By

Common Name (CN) TERENA SSL CA 3

Organization (O) TERENA

Organizational Unit (OU) < Not Part Of Certificate>

Period of Validity

Begins On May 27, 2019 Expires On June 3, 2021

Fingerprints

SHA-256 Fingerprint 6C:BA:BD:A1:7E:A9:8D:EA:7B:18:22:44:EC:71:D5:41:4D:08:D

4:A6:FC:48:1B:3C:9B:05:EB:DA:69:A6:A5:EE

SHA1 Fingerprint 17:79:15:B5:0E:E0:34:51:2D:FA:DE:DF:77:1E:E1:0A:B3:4B:2F:2B

Close

Certificate Viewer: "TERENA SSL CA 3"

General Details

This certificate has been verified for the following uses:

SSL Certificate Authority

Issued To

Common Name (CN) TERENA SSL CA 3

Organization (O)

TERENA

Organizational Unit

<Not Part Of Certificate>

Serial Number

08:70:BC:C5:AF:3F:DB:95:9A:91:CB:6A:EE:EF:E4:65

Issued By

(OU)

(OU)

Common Name (CN) DigiCert Assured ID Root CA

Organization (O)

DigiCert Inc

Organizational Unit

www.digicert.com

Period of Validity

Begins On November 18, 2014 Expires On November 18, 2024

Fingerprints

SHA-256 Fingerprint BE:B8:EF:E9:B1:A7:3C:84:1B:37:5A:90:E5:FF:F8:04:88:48:E3:

A2:AF:66:F6:C4:DD:7B:93:8D:6F:E8:C5:D8

SHA1 Fingerprint 77:B9:9B:B2:BD:75:22:E1:7E:C0:99:EA:71:77:51:6F:27:78:7C:AD

Close

Hierarquias de Certificação: Modelo PEM

 Distribuição de certificados para o Privacy-enhanced Electronic Mail

- PEM: Privacy-enhanced Electronic Email
 - Proposto pelo IETF em 1993 (ERF1421-1423)

- Modelo de Monopólio
 - Uma raiz única: IPRA (Internet Policy Registration Authority)
 - Várias PCA (Policy Creation Authorities) abaixo da raiz
 - Várias CAs abaixo de cada PCA
 - Possivelmente pertencentes a organizações e empresas
 - Forma uma cadeira de certificação
 - Árvore de raiz única

Hierarquias de Certificação: Modelo PEM

- Modelo nunca foi implementado globalmente
 - Exceto pequenas implementações (90s)
- Preferido: Floresta de hierarquias em cada CA, sem uma IPRA
 - Hierarquias independentes sem uma raiz única
 - Oligarquia
- Cada CA raiz negocia a distribuição da sua chave pública em cada entidade
 - Entidade: Browsers, Distribuições, Sistemas, Sistema
 Operativos

- Segue um modelo baseado numa rede de confiança
 - E não numa árvore
- Sem qualquer autoridade central de confiança
 - Qualquer pessoa/entidade é um potencial certificador
 - Qualquer pessoa/entidade pode certificar uma chave pública e publicar a assinatura para os outros
- Pessoas usam dois tipos de confiança
 - Confiança nas chaves que conhecem
 - Validadas diretamente por qualquer meio (presença, telefone,..)
 - Confiança no comportamento de outros certificadores
 - Assumindo que verificam as chaves que certificam

Confiança Transitiva

- 1. SE Mike confia que o John é um certificador correto,
- 2. E John certificou a chave pública de Eve,
- 3. ENTÃO Mike confia na chave pública de Eve

- Confiança: Quando uma pessoa confia noutra pessoa
 - Confiança é unidirecional, pessoal e subjetiva
 - Níveis:
 - Ultimate: chaves próprias das quais se tem a chave privada
 - Complete
 - Marginal
 - NoTrust (ou Untrusted)
- Validade: Quanta verificação a chave possui (ex, de E perante A)
 - Válida:
 - A confia completamente em B, ou A confia marginalmente em C e D
 - e D ou B em conjunto com C assinaram a chave de E
 - Marginalmente Válida:
 - A confia marginalmente em B e B assinou a chave de E
 - Inválida: sem um caminho

Refrescamento de chaves assimétricas

Pares de chaves devem ter uma validade limitada

- Porque as chaves privadas podem ser perdidas ou descobertas
- Para implementar mecanismos de atualização periódicos

Problemas:

- Os certificados podem ser copiados e distribuídos livremente
- O universo de possuidores de certificados é desconhecido
 - Não é viável contactar todos os possuidores de certificados para eliminar certificados específicos

Soluções:

- Certificados com uma validade temporal definida (não antes, não depois)
- Listas de Revogação de Certificados (CRL)
 - Para permitir revogar certificados antes que expirem

Listas de Revogação de Certificados (CRL)

- Listas assinadas com identificadores de certificados revogados prematuramente
 - Devem ser consultadas periodicamente pelos verificadores
 - Entradas podem conter a razão

Publicação e distribuição de CRLs

- Cada CA possui a sua CRL
- De acesso público
- CAs trocam CRLs para facilitar distribuição

Vários formatos disponíveis

- Base CRL: Lista completa com todos os certificados revogados
- Delta CRL: Lista com as diferenças desde a última Base CRL
- OCSP: API para verificação individual de cada certificado

RFC 3280

unspecified (0)
keyCompromise (1)
CACompromise (2)
affiliationChanged (3)
superseded (4)
cessationOfOperation (5)
certificateHold (6)
removeFromCRL (8)
privilegeWithdrawn (9)
AACompromise (10)

Base CRL, Delta CRL e Revogação

Online Certificate Status Protocol

Protocolo baseado em HTTP para verificar a revogação de certificados

- Pedido inclui o número de série do certificado
- Resposta assinada pela CA afirma qual o estado
- Uma verificação por certificado

Reduz a largura de banda usada pelos clientes

• Um pedido por certificado, em vez de toda a lista (Base CRL)

Pode envolver maior largura de banda para as CAs

- Se clientes validarem sempre os certificados
- Pode comprometer a privacidade. CA sabe quando um sistema acede a um serviço

OCSP Stapling

- Inclui um instante temporal assinado na resposta
- Clientes podem guardar respostas durante a sua validade

Distribuição de certificados de chave pública

Transparente e integrado nos sistemas e aplicações

- Sistemas de Diretórios
 - Grandes escala: usando X.500 através de LDAP
 - Organizações: Windows Active Directory, Manualmente
- Online: incluído nos protocolos
 - comunicações seguras usando TLS
 - Assinaturas digitais de correio com MIME ou em documentos
- Pré-distribuição
 - Incluído nas aplicações, Sistemas Operativos

Explicitamente pelos utilizadores

- Utilizador pede um certificado específico
- Por email, acesso a uma página HTTP

PKI: Public Key Infrastructure

Infraestrutura de apoio ao uso de pares de chaves e certificados

- Criação segura de pares de chaves assimétricas
 - Políticas de subscrição
 - Políticas de geração de pares de chaves

- Criação e distribuição de certificados de chaves públicas
 - Políticas de subscrição
 - Definição de atributos do certificado

PKI: Public Key Infrastructure

- Definição e uso de cadeias de certificação
 - Inserção numa hierarquia de certificação
 - Certificação de outras Cas

- Atualização, publicação e consulta de listas de certificados revogados
 - Políticas para revogar certificados
 - Distribuição permanente de CRLs
 - Serviço OCSP

 Uso de estruturas de dados e protocolos que permitem a interoperação entre componentes

PKI: Relações de Confiança

Um PKI estabelece relações de confiança de duas formas

- Emitindo certificados de chaves públicas de outras CAs
 - Abaixo na hierarquia; ou
 - Não relacionadas hierarquicamente
- Requerendo a certificação da sua chave pública a outras CAs
 - Acima na hierarquia; ou
 - Não relacionadas hierarquicamente

Relações de confiança características

- Hierárquicas
- Cruzadas (A certifica B e vice-versa)
- Ad-hoc (meshed)
 - Grafos mais ou menos complexos de certificação

PKI: Certificação Hierárquica e Cruzada

PKI: Fixação dos Certificados (Pinning)

- Se um atacante possui acesso a uma raiz de confiança, ele pode emitir qualquer certificado para qualquer entidade
 - Manipular a CA para que ela emita um certificado (difícil)
 - Injetar raízes adicionais nos sistemas da vítima (mais fácil)
- Certificate Pinning: Adicionar uma impressão digital da chave pública ao código
 - Impressão Digital usa uma síntese (e.x, SHA256)
 - Associada a um pedido HTTP específico
- Processo de validação normal + verificação de impressão digital
 - Certificado tem de ser assinado por uma raiz de confiança
 - Certificado tem de ter uma chave pública com a impressão digital especificada

Transparência de Certificação (RFC 6962)

Problemas

- CAs podem ser comprometidas (Ex, DigiNotar)
 - Por atacantes maliciosos
 - Por governos, etc...
- Comprometimento é difícil de detetar
 - Resulta na alteração das regras de funcionamento da PKI
 - · Dono legítimo dificilmente saberá

Definição: Sistema que regista todos os certificados públicos emitidos

- Garante que só são publicados certificados que levam a raízes legítimas
- Armazena toda a cadeia de certificação de cada certificado
- Apresenta esta informação para auditoria
 - Organizações ou ad-hoc pelos utilizadores