

# Тема 13 STL бібліотека

Механізм шаблонів вбудований в компілятор С ++, щоб дати можливість програмістам робити свій код коротше за рахунок узагальненого програмування. Природно, існують і стандартні бібліотеки, реалізують цей механізм. STL є найефективнішою бібліотекою С ++ на сьогоднішній день.

#### Колекції

Для використання колекції в своєму коді використовуйте наступну директиву: #include <T>,

де Т - назва колекції

Найбільш часто використовуються:

- **vector** колекція елементів, збережених в масиві, що змінюється в міру необхідності розміру:
- list колекція, що зберігає елементи в вигляді двонаправленого пов'язаного списку;
- **map** колекція, яка зберігає пари виду <const Key, T>, тобто кожен елемент це пара виду <ключ, значення>, при цьому кожному ключу відповідає єдине значення, де ключ деяка характеризує значення величина, для якої може бути застосована операція порівняння; пари зберігаються в відсортованому вигляді, що дозволяє здійснювати швидкий пошук по ключу, але за це, природно, доведеться заплатити: доведеться так реалізовувати вставку, щоб умова відсортованості не порушувалась;
- **set** це відсортована колекція одних тільки ключів, тобто значень, для яких може бути застосована операція порівняння, при цьому унікальних кожен ключ може зустрітися тільки один раз;
- **multimap** map, в якому відсутня умова унікальності ключа, тобто якщо ви справите пошук по ключу, то отримаєте не єдине значення, а набір елементів з однаковим значенням ключа; для використання в коді використовується #include <map>;
- **multiset** колекція з тим же відмінністю від set'a, що і multimap від map'a, тобто з відсутністю умови унікальності ключа; для підключення: #include <set>.

## Строкові потоки

strstream - використовуються для організації STL-строкового збереження простих типів даних. Строковий потік - це буфер з нуль-термінатором в кінці, тому при першій роздруківці в кінці рядка виявляється сміття, тобто отримати реальний кінець можна не за допомогою нуль-термінатора, а отримавши лічильник: pcount (). Потім «реальна частина» потоку копіюється в новий рядок, і ми отримуємо роздруківку вже без сміття.

```
#include <iostream>
#include <strstream>
#include <string>
using namespace std;
int _tmain (int argc, _TCHAR* argv [])
{    strstream xstr;
```

### ітератори

Ітератор можна визначити як абстракцію, яка поводиться як покажчик, можливо, з якимись обмеженнями. Строго кажучи, итератор - більш загальне поняття, і є об'єктної обгорткою для покажчика, тому покажчик є ітератором.

Ітератори забезпечують доступ до елементів колекції

Для кожного конкретного класу STL ітератори визначаються окремо всередині класу цієї колекції. Існують три типи ітераторів:

- Forward iterator для обходу колекції від меншого індексу до більшого;
- reverse iterator для обходу колекції від більшого індекс до меншого;

random access iterator - для обходу колекції в будь-якому напрямку.

## Методи колекцій

Основними методами, які були присутні майже в усіх колекціях є такі:

empty - визначає, порожня чи колекція;

size - повертає розмір колекції;

begin - повертає прямий ітератор, який вказує на початок колекції;

end - повертає прямий ітератор, який вказує на кінець колекції, тобто на неіснуючий елемент, що йде після останнього;

rbegin - розраховує зворотній итератор на початок колекції;

rend - розраховує зворотній итератор на кінець колекції;

clear - очищає колекцію, тобто видаляє всі її елементи;

erase - видаляє певні елементи з колекції;

сарасіту - повертає місткість колекції, тобто кількість елементів, яке може вмістити ця колекція

#### Алгоритми

STL містить величезний набір оптимальних реалізацій популярних алгоритмів, що дозволяють працювати з STL-колекціями. Всі реалізовані функції можна поділити на три групи:

**Методи перебору** всіх елементів колекції і їх обробки: count, count\_if, find, find\_if, adjacent\_find, for\_each, mismatch, equal, search copy, copy\_backward, swap, iter\_swap, swap\_ranges, fill, fill\_n, generate, generate\_n, replace, replace\_if, transform, remove, remove\_if, remove\_copy, remove\_copy\_if, unique, unique\_copy, reverse, reverse\_copy, rotate, rotate\_copy, random\_shuffle, partition, stable\_partition

**Методи сортування колекції**: sort, stable\_sort, partial\_sort, partial\_sort\_copy, nth\_element, binary\_search, lower\_bound, upper\_bound, equal\_range, merge, inplace\_merge, includes, set\_union, set\_intersection, set\_difference, set\_symmetric\_difference, make\_heap, push\_heap, pop\_heap, sort\_heap, min, max, min\_element, max\_element, lexographical\_compare, next\_permutation, prev\_permutation

**Методи виконання арифметичних операцій над членами колекцій:** Accumulate, inner\_product, partial\_sum, adjacent\_difference