4 Indépendance

Définition 2. Soit une expérience aléatoire d'univers Ω . On considère A, B deux événements de Ω . On dit que A et B sont **indépendants** si et seulement si

$$P(A \cap B) = P(A) \times P(B)$$

Proposition 4. Soit une expérience aléatoire d'univers Ω . On considère A, B deux événements de Ω . On suppose de plus que $P(A) \neq 0$ et $P(B) \neq 0$. Alors, A et B sont indépendants si et seulement si

$$P_A(B) = P(B)$$
 ou $P_B(A) = P(A)$

Remarque. Deux événements sont indépendants si le fait de savoir la réalisation de l'un n'a pas d'influence sur la réalisation de l'autre

Exemple. On lance deux fois une pièce équilibrée, les événements A « le premier lancer a donné face » et B « le deuxième lancer a donné pile » sont-ils indépendants?

_

On lance un dé rouge et un dé bleu, et on regarde le résultat des deux dés. On pose les événements suivants :

- A « le dé rouge renvoie 2 »
- B « la somme des deux dés vaut 5 »
- C « la somme des deux dés vaut 7 »
- a) Les événements A et B sont-ils indépendants?
- b) Les événements A et C sont-ils indépendants?

5 Résumé des formules en probabilités

Soient A et B deux événements d'une expérience aléatoire d'univer Ω .

- $\bullet \ P(\overline{A}) = 1 P(A)$
- $P(A \cap B) = P(A)P_A(B)$ (quand $P(A) \neq 0$)
- $P(A \cap B) = P(A)P(B)$ (quand A et B sont indépendants)
- $\bullet \ P(A \cup B) = P(A) + P(B) P(A \cap B)$
- $P(A \cup B) = P(A) + P(B)$ (quand A et B sont disjoints).