Sum of currents entering a node is zero (also Sum of voltages around a closed path is zero, holds for closed boundary)

or the sum of voltage drops is equal to the sum of voltage rises

$$\sum_{n=1}^{N} i_n = 0 \quad \text{(KCL)}$$

$$\sum_{n=1}^{N} v_n = 0 \quad \text{(KVL)}$$

Figure 1: OpAmp Shortcuts

$$i^1 = i$$
 $i^2 = -1$ $i^3 = -i$ $i^4 = 1$

Euler's Formula:

$$e^{j\theta} = \cos(\theta) + j\sin(\theta)$$

 $\tan(\theta) = \frac{b}{a}$

Amplitude: $c = \sqrt{a^2 + b^2}$, where:

Rectangular Form:

$$\begin{cases} a = c\cos(\theta) \\ b = c\sin(\theta) \end{cases}$$

n = a + jb

Important properties:

Polar Form:

$$a + jb = ce^{j\theta}$$

$$n = ce^{j\theta}$$

Property	R	L	C
i-v relation	$i = \frac{v}{R}$	$i = \frac{1}{L} \int_{t_0}^t v dt + i(t_0)$	$i = C\frac{dv}{dt}$
v-i relation	v = iR	$v = L \frac{di}{dt}$	$v = \frac{1}{C} \int_{t_0}^t i dt + v(t_0)$
p (power transfer in)	$p = i^2 R$	$p = Li\frac{di}{dt}$	$p = Cv\frac{dv}{dt}$
w (stored energy)	0	$w = \frac{1}{2}Li^2$	$w = \frac{1}{2}Cv^2$
Series Combination	$R_{eq} = R_1 + R_2$	$L_{eq} = L_1 + L_2$	$\frac{1}{C_{eq}} = \frac{1}{C_1} + \frac{1}{C_2}$
Parallel Combination	$\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2}$	$\frac{1}{L_{eq}} = \frac{1}{L_1} + \frac{1}{L_2}$	$C_{eq} = C_1 + C_2$
DC Behavior	No change	Short circuit	Open circuit
Instantaneous v change?	Yes	Yes	No
Instantaneous i change?	Yes	No	Yes

$$v(t) = I_{\infty} + (I_o - I_{\infty})e^{-\frac{t}{\tau}}$$

$$RC \quad RL$$

$$\tau \quad RC \quad L/R$$

$$p = P + P\cos(2\omega t) - Q\sin(2\omega t)$$

Where:

Average Power:

Reactive Power:

$$P = \frac{V_m I_m}{2}$$

$$P = \frac{V_m I_m}{2}$$

Power Factor

$$=\cos(90+\theta_v-\theta_i)$$

IF positive, power factor is leading IF negative, power factor is lagging

Maximum power transfer occurs when the Thevnin impedance is equal to the conjugate of the load impedance

Fourier Series:

$$f(t) = a_0 + \sum_{n=1}^{\infty} \left(a_n \cos(n\omega_0 t) + b_n \sin(n\omega_0 t) \right)$$

The coefficients of a Fourier series are:

$$\mathcal{F} \left\{ \begin{array}{l} a_0 = \frac{1}{T} \int_0^T f(t) dt \\ a_k = \frac{2}{T} \int_0^T f(t) \cos(k\omega_0 t) dt \\ b_k = \frac{2}{T} \int_0^T f(t) \sin(k\omega_0 t) dt \end{array} \right.$$

For an even function (f(t) = f(-t)):

$$\mathcal{F} \begin{cases} a_0 = \frac{2}{T} \int_0^{\frac{T}{2}} f(t) dt \\ a_k = \frac{4}{T} \int_0^{\frac{T}{2}} f(t) \cos(k\omega_0 t) dt \\ b_k = 0 \end{cases}$$

For an odd function (f(t) = -f(-t)):

$$\mathcal{F} \left\{ \begin{array}{c} a_0 = 0 \\ a_k = 0 \\ b_k = \frac{4}{T} \int_0^{\frac{T}{2}} f(t) \sin(k\omega_0 t) dt \end{array} \right.$$

Figure 2: Common Fourier Series Table

The Fourier transform is written as:

$$F(\omega) = \mathcal{F}\{f(t)\} = \int_{-\infty}^{\infty} f(t)e^{-j\omega t} dt$$

The transforms below are with respect to $-\infty \le t \le \infty$, other boundaries must be recalculated

	f(t)	$F(\omega)$	
1	$e^{-at}u(t)$	$\frac{1}{a+j\omega}$	a > 0
2	$e^{at}u(-t)$	$\frac{1}{a-j\omega}$	a > 0
3	$e^{-a t }$	$\frac{2a}{a^2 + \omega^2}$	a > 0
4	$te^{-at}u(t)$	$\frac{1}{(a+j\omega)^2}$	a > 0
5	$t^n e^{-\alpha t} u(t)$	$\frac{n!}{(a+j\omega)^{n+1}}$	a > 0
6	$\delta(t)$	1	
7	1	$2\pi\delta(\omega)$	
8	e ^{jw} ot	$2\pi\delta(\omega-\omega_0)$	
9	$\cos \omega_0 t$	$\pi[\delta(\omega-\omega_0)+\delta(\omega+\omega_0)]$	
10	$\sin \omega_0 t$	$j\pi[\delta(\omega + \omega_0) - \delta(\omega - \omega_0)]$	
11	u(t)	$\pi\delta(\omega) + \frac{1}{j\omega}$	
12	$\operatorname{sgn} t$	$\frac{2}{j\omega}$	
13	$\cos \omega_0 t u(t)$	$\frac{\pi}{2} [\delta(\omega - \omega_0) + \delta(\omega + \omega_0)] + \frac{j\omega}{\omega_0^2 - \omega^2}$	
14	$\sin \omega_0 t u(t)$	$\frac{\pi}{2j}[\delta(\omega-\omega_0)-\delta(\omega+\omega_0)]+\frac{\omega_0}{\omega_0^2-\omega^2}$	
15	$e^{-at}\sin\omega_0 tu(t)$	$\frac{\omega_0}{(a+j\omega)^2+\omega_0^2}$	a > 0
16	$e^{-at}\cos\omega_0 tu(t)$	$\frac{a+j\omega}{(a+j\omega)^2+\omega_0^2}$	a > 0
17	rect $(\frac{t}{\tau})$	$\tau \operatorname{sinc}\left(\frac{\omega \tau}{2}\right)$	
18	$\frac{W}{\pi}\operatorname{sinc}(Wt)$	$\operatorname{rect}\left(rac{\omega}{2W} ight)$	
19	$\Delta\left(\frac{t}{\tau}\right)$	$\frac{\tau}{2}\operatorname{sinc}^2\left(\frac{\omega\tau}{4}\right)$	
20	$\frac{W}{2\pi} \operatorname{sinc}^2\left(\frac{Wt}{2}\right)$	$\Delta\left(rac{\omega}{2W} ight)$	
21	$\sum_{n=-\infty}^{\infty} \delta(t - nT)$	$\omega_0 \sum_{n=-\infty}^{\infty} \delta(\omega - n\omega_0)$	$\omega_0 = \frac{2\pi}{T}$
22	$e^{-t^2/2\sigma^2}$	$\sigma\sqrt{2\pi}e^{-\sigma^2\omega^2/2}$	

Figure 3: Table of Common Fourier Transforms

Figure 4: Passive Low Pass Filter $(f_c = \frac{1}{2\pi RC})$

Figure 5: First Order Active Low Pass Filter

Figure 6: Passive High Pass Filter $\left(f_c = \frac{1}{2\pi RC}\right)$

Figure 7: First Order Active High Pass Filter