GENERAL REGULARITY

Russell Impagliazzo

The energy boosting algorithm was "reverse engineered" from proofs of the Szemeredi Regularity Lemma. Here, we will show how the algorithm gives a very general version of this lemma, and then show how to improve it for sparse and pseudo-random structures using the reduction to the dense model theorem.

Regularity expresses the intuition that a biased function is otherwise randomlooking. We say that f on U is ρ -regular with respect to a class of Boolean functions H if for every $b_1, b_2, h \in H$, $|Pr_{x \in U}[f(x) = b_1 \land h(x) = b_2] - Prob[f(x) = b_1] * Prob[h(x) = b_2]| \leq \rho$.

The following lemma gives a variety of characterizations of regularity up to universal multiplicative constants. For a class of functions H on universe U, let $U^{+bit} = U \times \{-1,1\}$, where we think of the last bit as being chosen uniformly, and H^{+bit} be the class of functions of the form $h(x,b) = h_b(x)$ for some $h_1, h_{-1} \in H$. Let b_U be the majority bit of f on U, let $\delta = Prob_x[f(x) = -b_U]$, and as in the energy boosting algorithm at the start, let $\mu(x) = \delta/(1-\delta)$ if $f(x) = b_U$, and 1 otherwise. Let D_{mu} be the corresponding distribution, e.g., pick b at random, then pick a random element of $f^{-1}(b)$.

Lemma 0.1. Let $\rho > 0$, $\rho_1 = 2\rho$, $\rho_2 = 2\rho_1$, $\rho_3 = \rho_2$, $\rho_4 = 1/2\rho_3$, $\rho_5 = \rho_4 = 2\rho$ Then each of the following implies the next:

- 1. f is ρ -regular on U for H
- 2. (x, f(x)) is ρ_1 -indistinguishable from (x, b) for b an independent coin with probability 1δ of being b_U , with respect to H^{+bit} .
- 3. $f^{-1}(b_U)$ is ρ_2 -indistinguishable from U for H.
- 4. $f^{-1}(b_U)$ is ρ_3/δ -indistinguishable from $f^{-1}(-b_U)$ for H
- 5. f is ρ_4/δ -hard-core on D_{μ} for H.
- 6. f is ρ_5 -regular.
- Proof. 1 ⇒ 2 Assume f is ρ regular on U for H. Let $h_{-1}, h_1 ∈ H$, and $h(x,b) = h_b(x)$. Let b have probability 1δ of being b_U and otherwise $-b_U$. Then $|Prob[h((x,f(x)) = 1] Prob[h(x,b) = 1]| = |Prob[f(x) = 1]Prob[h_1(x) = 1|f(x) = 1] + Prob[f(x) = -1]Prob[h_{-1}(x) = 1|f(x) = -1] Prob[f(x) = 1]Prob[h_1(x) = 1] Prob[f(x) = -1]Prob[h_{-1}(x) = 1]| ≤ |Prob[f(x) = 1 ∧ h_1(x) = 1] Prob[f(x) = 1]Prob[h_1(x) = 1]| + |Prob[f(x) = -1 ∧ h_{-1}(x) = 1] Prob[f(x) = -1]Prob[h_{-1}(x) = 1]| ≤ 2ρ = ρ_1.$
- 2 \Longrightarrow 3 For $h_1 \in H$, consider the function $h((x,b)) = (b=b_U) \land h(x) = 1$. Then $|Prob[h_1(x) = 1|f(x) = b_U] - Prob[h_1(x) = 1]| = |Prob[h((x,f(x)) = b_U)] - Prob[h_1(x) = b_U]|$

- $1]/Prob[f(x) = b_U]-Prob[h_1(x) = 1]| = 1/Prob[f(x) = b_U]|Prob[h(x, f(x)) = 1] Prob[h(x, b) = 1] \le 2rho_1 = \rho_2$, since $Prob[f(x) = b_U] \ge 1/2$.
- $3 \implies 4 \ \delta * |Prob[h(x) = 1|f(x) = b_U] Prob[h(x) = 1|f(x) = -b_U]| = \\ |\delta Prob[h(x) = 1|f(x) = b_U] \delta Prob[h(x) = 1|f(x) = -b_U] + Prob[h(x) = \\ 1] Prob[h(x) = 1]| = |\delta Prob[h(x) = 1|f(x) = b_U] \delta Prob[h(x) = \\ 1|f(x) = -b_U] + (1 \delta) Prob[h(x) = 1|f(x) = b_U] + \delta Prob[h(x) = 1|f(x) = \\ -b_U]] Prob[h(x) = 1]| = |Prob[h(x) = 1|f(x) = b_U] Prob[h(x) = 1] \leq \\ rho_2; \text{ the claim then follows by dividing through by } \delta.$
- $4 \implies 5 |Prob_{x \in_{D_{\mu}} U}[h(x) = f(x)] 1/2| = |1/2Prob[h(x) = b_{U}|f(x) = b_{U}] + 1/2[Prob[h(x) = -b_{U}|f(x) = -b_{U}] 1/2 = |1/2Prob[h(x) = b_{U}|f(x) = b_{U}] + 1/2(1 Prob[h(x) = b_{U}|f(x) = -b_{U}]) 1/2| = 1/2(Prob[h(x) = b_{U}|f(x) = b_{U}] Prob[h(x) = b_{U}|f(x) = -b_{U}]) \le 1/2\rho_{3}/\delta.$
- $5 \implies 6 |Prob[h(x) = b_1 \land f(x) = b_2] Prob[h(x) = b_1]Prob[f(x) = b_2]| = |Prob[h(x) = b_1|f(x) = b_2]Prob[f(x) = b_2] Prob[h(x) = b_1]Prob[f(x) = b_2]| = |Prob[f(x) = b_2]|Prob[h(x) = b_1|f(x) = b_2] |Prob[h(x) = b_1]| = |Prob[f(x) = b_2]|Prob[h(x) = b_1|f(x) = b_2] |Prob[f(x) = b_2]|Prob[h(x) = b_1|f(x) = b_2] + (1 Prob[f(x) = b_2])Prob[h(x) = b_1|f(x) = -b_2]| = |Prob[f(x) = b_2](1 Prob[f(x) = b_2)|Prob[h(x) = b_1|f(x) = b_2] |Prob[h(x) = b_1|f(x) = -b_2] \le \delta(1 \delta)(\rho_4/\delta) < \rho_4.$

2