25X1

25 YEAR RE-REVIEW

from: Uspekhi Sovremennoi Biologii Vol. 33, pp.81-100, 1952

On the Symbiosis of Viruses and

Microbes

Hy

L. A. Zil ber (Noscow)

Soviet biological science has ascertained the decisive role of the outer medium in the development and variability of organisms. The great Soviet scholars, I. P. Pavlov and I. V. Michurin in different ways, while studying the various phenomena of nature, came to one and the same position on the unity of the organism and medium. Numerous scholars of our country with T. D. Lypenko at the head and successfully solving the questions of development heredity, variability, and formation of species in continuous harmony with conditions of life.

Productive use of this principle, which has enriched Soviet science with the greatest theoretical and practical achievements, requires a detailed study of organisms in close cooperation with the medium during various and changing conditions of this interaction. Offering special difficulties is a similar study of the different parasitizing organisms for which the inner medium of other organisms is, in certain periods of their existence, the outer medium and which do not breed in the outer natural medium. The viruses too belong to such parasitizing organisms. The viruses, being obligatory cellular parasites, in the opinion of the majority of investigators are deprived of the possibility to exist in an outer natural medium. It is quite natural that constants are deprived of the possibility to exist in an outer natural medium. It is quite natural that constants are deprived of the possibility to exist in an outer natural medium.

interaction of the viruses with the cells of macroorganisms. The question even of the interaction of viruses with the outer natural medium has been studied almost exclusively on the plane of the investigation of the effect on viruses of temperature, humidity, and other such factors. It is easy to see that such a study cannot give a proper idea of the interaction of viruses with the outer natural medium. This medium is never sterile; it is always in one or another degree populated with microbes, and the constant presence of microbes in this medium cannot be ignored during the study of the interaction of viruses with the natural medium.

In characterising the dialectic method, I. V. Stalin wrote:

"...any phenomenon in any sphere of nature can be converted into
an absurdity if it is examined out of connection with the surrounce.
ing conditions, in breaking away from them; and, vice versa, any
phenomenon can be understood and substantiated if it is considered
in its indissolvable content with surrounding phenomena and its dependency on the phenomena surrounding its ("History of VKP (b).
Short Course", p. 101; 1950.). This position of I. V. Stalin should
be a guiding one in a study of the relationships and connections
between the organism and the medium. Only in this case, if we
shall study the interaction of viruses with the cuter natural
medium in close connection with those conditions in which the sirus
is found in this medium, we shall be able to understand the basic
rules of this reciprocity and take into consideration its importance
for the existence and propagation of the viruses.

One of the constantly existing conditions of the outer natural medium is the presence in it of microbes. An overwhelming majority of the viruses is inevitably found with them, not only whom they are to be found in the outer medium but also during their direct passing over from one organism to another, since the tissues of the organism through which the viruses infiltrate are not sterile. Hence, it follows that during the study of the interaction of the viruses with the outer medium it is necessary that special attention be paid to their interaction with the microbes

The capacity of the viruses for intracellular parasitism arose as a result of their many centuries of evolution, in the course of which the outer medium was altered, and the macroorganisms and viruses were altered as well as the microbes that populated and were in contact with the outer medium of the tissue of the macro-organisms.

It is difficult to suppose that sany centuries of close contact between different living beings have proved insensible to them and have not led to any forms of their coexistence. It is natural, therefore, to suppose that among the viruses and microbes there may exist both the phenomena of symbiosis and the phenomena of antagonisa so prevalent in nature.

The probability of such a hypothesis is confirmed further by the following considerations. It has long been known that microbes can adsorb the most diverse substances: dyes, colloid metals, stc. On the other hand, the capacity of viruses to be adsorbed by different substrates is known and used for development of methods for their purification. Finally, the capacity has long been known at killed microbes to adsorb viruses. All these facts make valid the the hypothesis of the adsorption of viruses by live microbes. Similar adsorption, in which closest to make between them could in itself be the factor that has stipulated in the range of evolution the appearance of any forms of adaptation of viruses and microbes.

Thus, the study of the interaction of viruses from the outer natural medium requires a study of their interaction with the microbes.

Part of this great problem, the pienomenon of the symbiosis of microbes and viruses, was studied in our laboratory from 1932 to 1937 in collaboration with the late E. T. Vostsukhova, to the memory of whom this work is dedicated. Our investigations attracted the attention of other authors, and in subsequent years rather considerable literature has been compiled in this problem. Now when the position of the harmony of organism and medium has become a guiding principle of Soviet biology it is opportune to supply certain results of the study of this problem posed and studied by Soviet scientists.

We shall not set forth here in chronological order the data to be had in literature to the present time. It is more expedient for us to give an account of these materials in their logical described velopment. Since the question of adsorption of viruses by microbes is quite essential to the study of the symbiosis between them and, together with it, has separate theoretical and practical significance, we shall give an account of it before the others.

- 4 -

Adsorption of Viruses by Live Microbes

The adsorption of viruses by different substrates has repeatedly served as the subject of investigation of different authors, however, the question of the adsorption of viruses by living minutes has almost not peen studied at all.

In our investigations (Zil'ber and delicera, 1935) the edesorption was studied of the virus of various vaccine by the Tornia
kephir yeast. The choice of the yeast for experiments on the
study of the symbiosis of viruses and microbes was stipulated by
the fact that yeasts are widely distributed sicrobes often foursi
in the air and on the skin of man. Furthermore, they are large,
easy to culture, and well-studied microorganisms. The very same
strain, Tornia kephir, was the first strain with which experiments
en symbiosis were set up, and since these experiments gave positive
results we continued working with this strain further.

Experiments on the study of the adsorption were set up in the following way. To a suspension of yeart in physiological solution of sodium chloride or in Louillon the virus of variolatvaccine was added in the form of a centrifugate or filtrate of moist "soskoba" (scraping?) from oulf or rabbit or of testicular rabbit virus. The mixture was left standing in a thermostat at 37° for 2 hours, and in part of the experiments it was let stand for 24 hours in a refrigerator at 5-60. For central, the same amount of virus was added to bouillon and preserved with the same conditions. At the expiration of the time indicated the minture was centrifuged, the deposit was we shed twice with large amounts of physiological solution, and the content of visus was decorained then in the super-charged fluid, the wash waters, and the deposite To the super-charged fluid obtained fresh years was again added, and the experiment was repeated again. Determination of the virus was made by titration on the skin of rebbits or the corner of pigs (Translator's note: probably guine a pigs).

In the overwhelming majority of experiments the washed deposit of yeasts contained the virus of various vaccine, and positive results were obtained at 1: 10 and is 100 dilution of the deposit. The first wash waters contained the virus, sometimes in considerable amount (up to a 1: 100) dilution). The second wash waters did not disclose the virus in a single experiment. The

super-charged fluid after first contact with the yeast did not always give an apparent reduction of titer, especially if it was high, but after a second contact the titer was reduced from ten to a thousand times.

In experiments in which the yeasts were added to the virus, the filtrate of which had a low titer (1:100), the virus could not be detected in the super-charged fluid after first contact. These experiments revealed to us that living yeast can adsorb the virus from variolar vaccine.

Turevich and lamushevich (1937) studied this question in more detail in our laboratory. They took into account in their experiments the pH of the medium in which the accountion of the virus by the yeast was studied and the yeast was precipitated and washed (three to five times) during 3000 revelutions of the estatrifuge in the course of 5 minutes.

Contrifugation was carried out a short enough time to avoid even an insignificant deposit, together with the years, of the variolar virus too. Suitable experiments showed that with the use of moist scrapings containing a vast amount of elementary bodies the latter are deposited, even if in an insignificant amount, writing contrifugation for a period of 10 or more misutes. Experiments set up during the maintenance of all these presentations with filtraiss of moist scraping revealed that yeast after contact with the variolar virus in the refrigerator for a period of 24-40 hours and after mashing three times, contain this virus and provoke in animals typical variolar disease.

Adacrytion of the virus in the most considerable amount was noted in the acid some at pH = 5.4 = 6.2. At pH = 7.1 = 6.2 it was less sharply expressed and was not observed in all cases. Attempts to study the adsorption of the virus by microscopic examination of smears did not give Turevich convincing results. At the present time by means of electron optics (microscope?) this quant tion can be investigated in great detail.

The question of the adsorption of the viruses by live microbes was studied also by Zeitlank (1950) on types of virus at infectious ectromelia. Filtrates of this virus were blended through a Berkefeld V or N candle filter with suspensions of

· 6 -

various microbes, the absence of the pathogenicity of which fer mice was verified in preliminary experiments. The mixture was let stand in a thermostat 1.5 to 3 hours, then in the refrigerator for 20 hours, after which the fluid with microbes not yet precipitated was removed, and the migrobe deposit was washed with repeated dentrifugation. For control, the same amount of virus was added to the buffer mixture not containing microbes, and with this mixture the same handling was cerried out as is the main experiment. The content of virus was determined by inoculation of mice 1) by filtrate, 2) by a mixture of filtrate and buffer, 3) by the last wash fluid of microbes, 4) by the last wash fluid of the content, 5) by the deposit of microbes washed from the filtrate, and o) by the control precipitate. The following cultures of microiss were tested by the author: the yellow Serdine, the white and the yellow Staphylococcus, B. mycolies, and various species of your (kephir, koumiss, the rese-colered, the thermophilie, and others). Adsorption was studied in relation to the pil of the medium, the temperature, the consistency of the microbe suspension, the time of contact of the wirus with microbes, and so forth.

All these tests disclosed a definite capacity of the virus of sctromalia to be adsorbed by microbes and revealed, together with this, that the different microbes possess an entirely different capacity to adsorb the virus. Thus, for example, the stephylec seei and sercine in all 35 experiments disclosed this capacity, whereas the rose-colored yeast adsorbed the virus only in one out of the experiments, but in the koumiss yeast this capacity was not generally observed. In those experiments in which the phenoments of adsorption was observed the seabed microbes contained virus, but the last wash water and the controls did not contain virus, but the last wash water and the controls did not contain virus, but the last wash water and the controls did not contain virus, but the last wash water and the controls did not contain virus, but the last wash water and the controls did not contain virus, but the last wash water and the controls did not contain virus, but the last wash water and the controls did not contain virus, but the last wash water and the controls did not contain virus, but the last wash water and the controls did not contain virus, but the last wash water and the controls did not contain virus, but the deposit was titrated for content of virus.

In the experiments of Zeitienk, the same as in the experiments of Turevich and Ianushevich, the importance of the pH of the estimater for adsorption was noted. As a rule, the adsorption proceeded considerably more fully during a slightly soid reaction, with the tH equal to 6.0-6.8. In conditions of a slightly alkalian medical (pH = 7.4-8.4) the number of positive results was considerably reduced. The substitution of a buffer solution of horse serves

did not inhibit adsorption. The visus in the edsorted state proved more durable both to preservation in the conditions of the thermostat and refrigerator and to heating at 55° C.

It is interesting to note that the strain of <u>lumbir</u> yeast which adsorbed well the virus of variolar vaccine in our experiments and the experiments of Turevich adsorbed the virus of ectroselia poorly in the experiments of Zeitlenk. Thus, in the phenomenon of adsorption both the properties of the storobe and the properties of the virus play a role.

All these data have left no doubt of the fact that at least certain viruses are adsorbed by micropes in the conditions of the experiment. Does this process take place in natural conditions? Pal'kovich and Ismushevich (1937) have devoted special investigation to this question.

They seemed fresh variolar calf lymph is 1: 10 dilution on blood agar poured into a Petri dish. After th hours of standing in a thermostat all species of the opionies sultured were removed from the dish to bouillon. The bouillon cultures were introduced intra-cutaneously into rebbits, which were killed with a blos on the lith-5th day with the typical reactions present. The papulos on the skin that were separated off from these rabbits were readily cut into from the inner side, and a small amount of condate was collected, diluted with sterile physiological solution, and investigated for the presence of the virus of the vaccine after verification of the sterility. The presence of the virus was tealished by inoculation into the corner of rabbit or into the choric-allantoid membrane of chick embryo, with subsequent discolorure of the typical reaction and of the elementary bodies.

During the investigation of 90 strains of different sicrobes isolated from 30 series of calf lymph it was determined that out of 39 strains of white staphylococcus 34 were bearers of the virus of the variela vaccine, out of 14 strains of yellow sercina two strains were bearers of the virus, out of 15 strains of yellow staphylococcus six strains were bearers of the virus, and sut of 22 strains of diphtheroid bacillus not one centained virus.

Thus, these experiments showed that the wirus of various vaccine can be adsorbed by certain microbes and, in natural conditions, adsorption here too bearing a selective character.

2 4 68

- 8 -

All these investigations of Soviet mithers demonstrate with certainty the possibility of adsorption at least of certain visuses by microbes both in experimental and in natural conditions. Foreign authors until recently paid no attention to this question.

Dujaric de la Riviere (1930) observed that staphylococcus isolated from variolar calf lymph provokes at inoculation into the skin of rabbit variolar pustule, and at ineculation hersities on the correct of (guines?) pig. But the role of the staphylococcus in the remarkation provoked by variolar vaccine interested him mainly.

In connection with our works, Asies (1936) studied the adsorption of the virus of the vaccine by the Terula hapkir yeast and by white staphylosoccus and did not observe the accorption of the virus by these microbes. In the overshelping majority of same Asses used in his experiments a washed suspension of elementary bodies, in the preparation of which their scappedian especia; was possibly changed. Moreover, he did not take into account the pil of the medium in which the adsorption occurs. It is surprising that Amies did not observe the presipitation of the elementary bixii as during their centrifugation for a pariod of 30 minutes at 3500 max lutions per minute. In the above-sentioned experiments of Threwish the precipitation, as indicated, occurred at a far earlier period. and Amies should have been able to detect the virus in the yeast and staphylococcus precipitates if not in an adsorbed state, then as a result of the settling during contribugation. However, Amia: reports no such data. It is entirely likely that Amies' negative regults were stipulated by the use of weshed elimentary bodies and the unfavorable hydrogen figure of the medium in which the experiments of adsorption were conducted.

In connection with our data bited above, as also in connection with observations that established the frequent occurrence we the outer medium of the virus of policeyelitis, foreign investigness too have occupied themselves in report years with the question of the possibility of adsorption and the carrier ability in general of viruses by microbes.

In our works it has been pointed out that the survival of viruses in the outer medium is possibly stipulated by their symmeticals with microbes. This opinion too is placed at the base of the works of foreign investigators. Hing and his collaborators, Olin, Fahrasus and Norlin, (1962) studied the presence of the virt

* **

- 9 =

1 7 191 2

of policyelitis in sever waters of one of the Stackholm districts. The number of virus detected was so considerable that it was necessary to assume either the possibility of the carrying of the virus by all the residents of this district (about 100,000 persons) or its multiplication in the sever waters. The authors expressed the hypothesis that this multiplication occurs in symbiosis with protucos of the genus Bodo.

Evans and Osterud (1966) tried to assertain whether the virtal of policeyelitis propagates in cultures with protocoa (the Bodo genus, Monas, and several others) by adding to cultures grown in the most favorable conditions a suspension of spinal cord containing the virus. After incubation, for a period of Solk days, resultings were made. The fluid of different generations, treated with other and centrifuged for riddance of bacteria, was introduced that the brain of monkeys. The experiments disclosed no propagation of virus in the protocoa cultures. The authors did not study the piece nomeson of the adsorption of the virus by the microorganisms.

The experiments of other authors have disclosed, however, it certain possibility of adsorption and the chility of protesce and bacteria to carry the virus of policypelities.

Today and obsorbers, Takacs and Schmaffer, (1968) studied the possibility of the ability of amoeba photous to carry the virtue of policyclitis. The authors cultured the spaces in water to mide a basteria, killed by boiling, had been added. After contact with the virus of policyclitis the amabas were repeatedly meshed (up to littings) with water and were then introduced into the brain of mice. Experiments revealed that amabas can trap the virus of policyclitis or adsorb it securely on their surface. Washed with 50 cc. of sterile water from five to littings, they still infected mice. Data during the typical disease. The authors note that the virus was according to the fifth much water, but was detected in the little and they explain this by the fact that only prolonged washing destroyed the membrane of the amaba and admitted the virus to the surrounding fluid. Microscopic investigation actually disclaimed considerable demolition of the emahas after the lith washings. The virus was not discovered in the amabas after the lith washings. The virus was not discovered in the amabas after the lith washings. The virus was not discovered in the amabas 3, h, and 6 days after our tast.

Recently Young, Felsenfold, and Byrd (1949) (here printed

- 10 -

as Houng, in the bibliography as Young) disclosed the possibility of the virus of policyelitis (the Lansing Strain) to be adsorbed by E. hystolytica, as well as by the intestinal bacillus and by a variant of the hay bacillus. It is interesting to mote that the authors observed the great immunity of the virus adsorbed by the amabas and bacteria to the temperature of the theywastat. The amabas contained the adsorbed virus after his hours of incubation of the cultures in the thermostat. No propagation of the virus was observed by the authors.

The aggregate of all of the above-mentioned facts leave: mc doubt that the viruses are adsorbed by aderobes and protoses. The in experimental and in natural conditions.

This adsorption is not the usual physics-chemical processal though it proceeds during definite physics-chemical conditions. The adsorption of the viruses by the microbes bears a selection character stipulated by the biological and not the physics-chemical character stipulated by the biological and not the physics-chemical peculiarities that have a hand in the reaction of the microor, and one and the same virus is adsorbed to an entirely different to press, or is not adsorbed at all, by the various microbes in one and the same conditions. On the other hand, different viruses can be adsorbed by one and the same microorganism. All this persite this ing that the phenomenon of adsorption of viruses by microbes as a biological phenomenon connected with the adaptation of the viruse the outer medium.

Symbiotic (Eltures

The above-mentioned considerations have given occasion a suppose the possibility not only of the adsorption of viruses an aigraba but also their multiplication in the microbe cells. Suitable experiments were set up by an and later on by other white gators with viruses of variolar vaccine, foul variola, measing herpes, rabies, encephalomyelitis of horses, swine plague, and later and mouth disease. The circumstance that the richettsian arm and mouth disease. The circumstance that the richettsian arm and distinguished from the viruses by the conditions of their out that has given occasion to study in symbiotic cultures the virus of the v

- 11 -

The Virus of Variolar Vaccine

In 1932 we reported (Zil'ber and Vostrukhova - translator's note: the latter is spelled Vostroukhova in the bibliography - 1932, 1933) on the possibility of growing the virus of variolar vaccine for a prolonged period in a boudlon culture of yeast. The filtrate of damp "zoskoba" (?scraping) was added to a 2-3-hou culture of Torula kephir yeast, and this culture was let stand in the thermostat at 170 %. Resowings were made every three days in a test tube with ordinary meat-peptons bouillon. In control test tubes the virus was added to the bouillon without yeast, and some ings were made at the same time. The content of virus in the test tubes was studied by intracorneal inoculation of page, as well as tubes was studied by intracorneal inoculation of page, as well as tubes experiments we used the Torula kephir strain.

Symbiotic cultures of the variols virus, which can be trans ferred ten times with preservation of virulency, were obtained by the above-mentioned method. One of the cultures was transferred over more than one and a half years and still kept its activity after the 120th resowing. A study of these cultures had reveals. that they have a number of peculiarities that distinguish the vire in these cultures from the ordinary virus of the vaccine. One of these peculiarities consisted of the fact that the cultures did me take at cutaneous inoculation, but took hell at intracutameous introduction, as well as at intratesticular and intracerebral inoculation of rabbits and pigs, provoking typical alterations and the assumilation of elementary bodies (translator's note: same at inclusion bodies) in the tissues. The cultures took well also at inoculation into the corner of animals. The lack of the capacity in symbiotic cultures to take at outaneous inoculation was stipulated possibly by the close connection of the virus with the yeast cell. Experiments in which suga incoulstion was successful if the cultures were carefully pulverised beforehead in & mortar with sand served as proof of this sypothesis. The virules: of symbiotic cultures was in the first ten generations rather high. Thus, for example, strain 662 in the 39th generation took at dilution of 1: 100,000, strain 305 took in the 29th generation at dille tion of 1: 50,000, etc.

The greatest dilution at which inoculation was observed to take was that of 1: 500,000. However, far from all strains had

similar virulency, and it did not remain constant. After several "decades" (tens) of generations the virulency smally dropped rather considerably. A special investigation made together with V. D. Timakov showed that not every yeast cell is a virus bearer. A person is easily convinced of this at scwing a symbiotic culture on agar and at studying the virus content of each colony. At selecting colonies that contain virus and at rescwing them on bouillon it was possible to increase considerably the virulency of the symbiotic culture and to maintain it by this method at a high level.

In all cases at successful inoculation the sulture always succeeded in disclosing elementary (inalusion) bodies in the tissues. But all attempts to disclose elementary bodies in the cultures produced no results. A study of the antigenic properties of symbiotic cultures disclosed their especity to cause immunity and the formation of antibodies to the variolar virus a certain time after inoculation. However, the intensity of this process was not very sharply expressed. Thus, for example, the sere of rebbits immunised by symbiotic cultures completely neutralised 10 infectious doses of variolar calf lymph neutralisation of 20 100 doses was not constant. Pigs and rebbits immunised by cultures proved immune to subsequent inoculation by 10 infectious doses of variolar calf lymph, but this immunity was relatively brief and was not observed in all cases. Thus, the study of the entigenish properties of symbiotic cultures disclosed the presence in them all the variolar virus, but with somewhat altered properties.

A histological study of the skin of a rabbit inoculated with symbiotic cultures disclosed typical alterations and Guarnismi bodies (Khurgina, 1935).

It should be pointed out that the symbiotic cultures obtained by us of variolar virus were turned ever to three institutes to the L. A. Tarasevich Control (Institute), to the TaIM, and to the Kharkov Mechnikov (Metchnikeff) Institute. Investigation of these cultures, both in the generations obtained by us and in subsequent ones, disclosed the presence in when of the variolar virus (Giligut, 1935; Korolikova, 1936; Khasterich and Imr, 1935).

The aggragate of all these data have permitted us to make the conclusion that the virus of various vaccine can be propagated

in symbiotic cultures with certain yeasts and such cultures can be resown for a long time in the laboratory. It is entirely natural that adaptation to yeast cells causes an alteration of the properties of a virus. This alteration is not, however, stable, and the virus from a yeast culture passed through animal tissues quickly returns to its initial properties.

Our investigations on symbiotic cultures of the virus of various were varified and confirmed by a number of authors.

Oil gut (1935) studied the symbiotic cultures of 16 strains of variolar vaccine with kephir yeast. In experiments from six and these strains symbiotic cultures showed muick weakening in the first generations and in all the rest the virus was detected in oulture of the 8th, 9th, 17th, 19th, 20th, and 21d generations. Also successful were certain of the author's experiments at cultivation. of the virus in symbiotic cultures with staphyloocous and saroin ... Determination of the presence of the virus in the cultures was do to by inequiation into the corner, elementary bodies always being discocovered in positive cases. Cutameous inequistion of rabbits with symbiotic cultures produced no results, as was also the case in a 22 experiments. At intracutaneous inoculation of yeast cultures into rabbits the authors observed only slight reactions and not once observed generalization. One of our yeast cultures of the virus of variola, brought by us in the laboratory to the 74th generation was sent to Dr. Gil'gut, and she still detected the virus in this culture after 13 further generations (up to the 87th inclusively) The immunity test in seven rabbits inoxclated with symbiotic cultures by smearing on their skins undiluted calf lymph gave neg ... tive results. The author, however, indicates that these results were stipulated by negligible reaction or by its somes at inoculation of the cultures.

Morol'kova (1935) studied three strains of symblotic cultur is of the virus of the variolar vaccine, two of which were obtained from our laboratory (4th and 8th generations) and one was obtained by sowing in kephir yeast the virus of the neurovaccine. The file two proved still active in the 34th and 20th generations, the laboration in the 26th generation. The activity was controlled by inoculation into pig cornea and into the skin of reboit, and the specificity in a considerable portion of the experiences was confirmed by the

ு 🎎 🖚

discovery of elementary bodies. The author notes that the intracuticular inoculations of rabbits "were attended by the formation
of pockmarks over the whole surface of the integument, reaction
usually having been lacking at the place of the introduction of
the needle and the pockmarks having appeared at a distance of
2-3 cm. from the place of injection". Inoculations of cultures
into heifers were unsuccessful.

Positive results of cultivating the virus of variols in symbolics with the yeast were also obtained by Impolinskii, Levtsuy, and Cherniak (1935). The activity of the cultures was maintained in their experiments up to the 17th-20th generations. Attempts to cultivate the virus on sarcines produced no results. Yeast cultures of the virus kept their activity at resowing on agar, as well as at preservation for a prolonged period at room temperature.

Timakov (1936) cultivated the virus of variolar vaccine in symbiosis with kephir yeast, staphylogocci, and sarcina. Cultures with yeast kept the virus active to the 24th generation, the same as certain cultures with staphylococci. Cultures with sarcinas were non-virulent after the 13th to the 21st generations.

The author not only studied the presence of virus in the cultures, but also determined its titer in many resowings. The titer of the virus proved sufficiently high, and certain cultures of distant resowings (15 = 17) were active in a dilution up to 1: 25,000. The cultures took for the rabbit only at intracutaneous introduction, and the smearing of cultures onto the skin gave no positive results. In these experiments there was also noted the capacity of yeast cultures to produce in rabbits: a generalized process. By selection the author succeeded in considerably booking the virulency of the cultures obtained by him. The kephir yeast both in his works and in the works of Chiligut and Korolikova was entirely apathogenic.

Tul chinskaia (1936) studied in detail the question of the culture of the variola of fowls in symblosis with kephir yeast. The virus in the yeast cultures was detected up to the lith generation, whereas in control resowings in bouillon without the yeast it was possible to discover the virus no further than in \$ 30-444 resowing. In skin affections observed at introduction of cultures elementary bodies were found. In certain cases at introduction

duction into the skin of a yeast culture (10th generation) a generalized process and the appearance of pockmarks on the muchta of the mouth, eyelids, etc. were observed. The author observed. weakening of the virulency from the 16th to the 18th generations and the disappearance of it from the 35th to the buth generations. Yeast cultures of chicken pox in the 22th generation and of pigeon pox in the 16th generation provoked, moreover, distinct reaction and subsequent immunity to the natural virus. Immunity was verified in chickens by the smearing of natural chicken virus on the scarified skin of the comb and wattle and by implantation from sielchickens to immunised, and in pigeons by smearing pigeon virus onte the scarified follicles of the breast, and in both cases 45 day 3 and 5.6 months (? respectively) after the initial affection. Il of the chickens so tested and 19 of the pigeons did not fall sick from the variols, while there was sickness of one and all of the controls. An analogous experiment with yeast cultures of 20th to 21st generations gave negative results, and in the birds made ill again after infection with yeast cultures no immunity was discovered ... subsequent introduction of natural wiras. Tulichinskaia noted a further interesting circumstance. She added healthy fowl to fault that had been diseased by yeast cultures, provoking in them distinct disease. These healthy birds that had been in close contact with those that were inoculated did not fall ill, however, which permits supposing the modification of the virus in the symbiotic cultures and loss by it of contagiousness.

Bulanov and Riakhovskii (1936) tried to culture the virus of variola, the diphtheria of fowl, in symbiosis with brewers' yeart and sarcinas. The authors tested only the second generation of their cultures, inoculating it into two chickens by smearing on scarified comb and wattle. At obtaining negative results, the authors did not continue their experiments. Negative results were also obtained by Amies (1935), who in his main experiments used washed elementary bodies of variolar veccine, as well as Voet (1935) in some experiments with neurosciens, and Arbeit (1935) in experiments with vaccine and exanthematous typhus.

All the above-mentioned data leave no doubt of the fact that the virus of variolar vaccine can keep its activity for a long time in symbiotic cultures with yeast and dertain bacteria. All investigators who followed our method and did not abandon their works after unsuccessful experiments with the first cultures of

- 16 -

microbes and strains of virus that fell into their hands received positive results.

Other Viruses

Besides the symbiotic cultures of the virus of variols, there were studied symbiotic cultures of other viruses also. Smirnov and coworkers (1935) cultivated the virus of measles in symbiosis with kephir, bread, and brewers' yeast. The blood of measle patients, taken at onset, was diluted with Tyrode's solution in the proportion 1: 7 - 1: 10, and 3-5 drops of this blood were sown in a test tube with freshly sown yeast. Resowings were made every 6-7 days, and detection of the virus in the cultures was made by inoculation of rabbits and in other experiments. The control rabbits were inoculated with the blood of patients, taken at onset, as well as by the initial yeast cultur $v_{\rm c}$ Parallel with these experiments there were set up experiments of the inoculation of rabbits with measle wirus cultures on River's medium. Judgment was made of the specific reaction of the rabbi-s by the rise of temperature 5-14 days after infection, by the appearance of the catarrhal phenomena of the conjunctivae and of the micosa of the nose, by laukocytosis in the first 24-48 hours after infection, and subsequent laukemia and alteration of the hemogram. The specific pathogenicity was disclosed in other experiments too. A comparison of all the data obtained permitted the authors to conclude that the measles virus is preserved in yeast cultures for a pariod of 35 or more generations.

Unfortunately the authors did not learn of our instruction on the necessity to use for cutaneous is oculation pulverized cultures. It is entirely likely that had they so done their results would have been even more demonstrative. Afanas even and Shapiro (1936) also studied the possibility of cultivation of measles virus in symbiosis with kephir yeast. They came to the conclusion that such cultivation does not turn cut well in all cases and symbiotic cultures possess weak pathogenicity for rabbiase Degviz (1927) observed prolonged survival of measles virus in cultures with different cocci.

Izabolinskii, Levtsov, and Cherniak (1935) reported on their

obtaining symbiotic cultures of rabies virus with kephir yeast. The data cited by them, however, are unconvincing. The loss (or killing?) of rabbits on which testing of the cultures was carried out was observed on the second day when there were phenomena of paralysis. No bacteriological controls were set up. Insufficient passages were made. No histological investigations were made of the brain.

Rosengol'ts and Karnaukhova (1934) cultivated the virus of rabies on Micr. lysodeicticus. The cultures were tested after 5-12 days' growth by inoculation of rabbits and pigs subdurally and of mice into the muscles of the femir.

One of the cultures (the 10th generation) was inoculated into 27 mice, 13 rabbits, and 4 pigs. Dying from rabies with the confirmation of further passages were 12 mice, 3 rabbits, and two pigs. Incubation in the majority of cases was from 25-60 days, although the three-day was also observed. The authors reported likewise on certain successful experiments at cultivating the virus of rabies with kephir yeast. In cultures of micrococcus the authors also grew the virus of street rabies. A dog was inoculated with the 6th generation; it died with the phenomena of paralysis 7 days after inoculation. Its brain was passed through rabbits, in 18 out of the 26 animals paralysis having been observed. In two rabbits inoculated intramuscularly with the brain of the dog, inclusions were observed similar to Negri bodies, and in subsequent passages into animals these formations were not observed.

Akker and Florinskii (1935) obtained no results in attempts to cultivate in symbiotic cultures the virus of rabies. In their experiments with kephir and brewers yeast there were observed not only propagation but also survival of the virus. Moreover, the yeasts at intracerebral inoculation proved pathogenic. Experiments with sarcins were successful.

Palavandov, Serebriansia, and Pugach (1936) cultivated the virus of rabies in mixed culture with yeast and Micr. lysodeleticus. The culture contained the virus only up to the 3d generation, which the authors explain by the survival of the virus. Since in control sowings in bouillon the virus was not detected in these generations, the authors think that in conditions of mixed culture the virus

finds conditions better for its preservation than in bouillon.

Entirely negative results were likewise obtained in the carefully set up experiments of Vinogradova (1936), Waldhecker (1936), and Portniagina (1939).

All these materials permit our thinking that there were obtained no sympiotic cultures of the virus of rabies with the yeast. The positive results reported by certain authors are unconvincing and do not contain all the proofs needed of the specificity of the pathological processes mused by the cultures being investigated.

Offering far more interest are the works of Minervin's laboratory. Minervin studied the possibility of the carrying of the virus of rabies by microbes in natural conditions.

Minervin and Rapoport (1936) studied the microorganisms of the mouth cavity of rabid dogs in the character of bearers of the rabies virus.

The authors sowed the mucus of the oral cavity of dogs destroyed by rables on dishes of blood agar and then after 2 days: growth transferred the isolated colonies to bouillon. The bouillon generations (up to the 7th) that had developed in the course of 3-5 days were tested by inoculation of rabbits, with subsequent passages of their brain when disease was present. The cultures were introduced into rabbits subdurally in very small dosage, from five to ten million microbe bodies. With the use of this method there was observed in the rabbits after 9-60 days of incubation a disease with the clinic characteristic to experimental rebies. The disease proved to be possible to pass several times from one rabbit to another, the organs and blood of the rabbits having been bacteriologically sterile. The authors did not observe in the brain of rabbits inoculated with cultures the typical Negri bodies, but saw formations similar in certain respects to these bodies, The clearest results were obtained with one gram-positive bacillus and with streptococcus.

These observations indisputably have great interest. Uno fortunately they were not continued and set up sufficiently exten-

sively. Meanwhile, namely in this direction, it is expedient also to study the problem of the symbiosis of the rabies virus with the microbes. At escaping from the central nervous system into the mouth cavity the virus of rabies is encountered in the saliva with many microorganisms, and it is necessary to seek among them the objects of possible symbiosis. It is necessary to take into consideration that this symbiosis is certainly not attended also by complete preservation of all the biological properties of the virus — it may to expressed simply in the fact that the virus in the microbe culture is preserved in those conditions of the medium in which by itself it dies. Unfortunately this question, a principal one from our point of view, has remained cutside the field of vision of many investigators, namely from the need there would be to begin the study of the symbiosis of the rabies virus with the microbes.

As for other viruses that infect the central nervous system, then, instance, as the majority of them preservate into the nervous system, escaping into the nonsterile cavities and tissues of the animal organism, it is possible to judge their symbiosis with the microber only in respect to those microbes with which these viruses are encountered in the organism of the conveyor. From this point of view it would be interesting to study the virus of tick encephalitis, inasmuch as it is transmitted by ticks from generation to generation and circulates in their organism for a long time. Of course, it is first necessary to clarify mether the virus circulates in the organism of the tick in nonsterile tissues.

In order to complete the account of data obtained during the study of the symbiosis of viruses that affect the nervous system with microbes, it is necessary to dwell briefly on data obtained with the virus of policyelitis and herpes.

Brutsaert and coworkers (1946) tried to cultivate the virus of mouse policyelitis in cultures of tick bacillus, a mixture of intestinal flora, of Leptospira, and of various protozoa. In cultures of Trichomonas hominis the virus may be found in the 4th generation, however close results were obtained with a killed culture of the same Trichomonas. It should be noted that the authors used media most favorable to the growth of the protozoa being studied, departing from our instructions on this problem.

In natural conditions obviously such media are lacking. Moreover, in a number of experiments they introduced into the animals filtrates of symbiotic cultures, evidently assuming that the virus is propagated in the medium and not in the microorganisms. Certainly these experiments could not give positive results. It is possible that they would not be positive too with observance of the necessary conditions of the experiment. Insamuch as the herpes virus can be found with microbes of the integument, it would be possible to doubt in it the capacity to adapt itself to them.

Grundfest (193h - translator's note: spelled Gruntfest in the bibliography) cultivated the virus of herpes with kephir yeast. The virus was observed in six subsequent generations, provoking typical affection and creating specific immunity in reinfected animals. In further generations the virus was not detected. Histological alterations in the brain of rabbits that died after inoculation with symbiotic cultures into the cornes were fully typical to the herpetic. Symbiotic cultures kept their virulence for a period of 3 months when preserved at room temperature.

Interesting data were obtained during the study of symbiosis with microbes of the virus of hoof and south disease. As early as 1933, together with E. I. Vostrukhova, we tried to obtain symbiotic cultures of the hoof and mouth disease virus. Experiments of obtaining these cultures by means of our strain of Torula kephir gave no positive results. More successful were investigations in which we tried to detect the carrier of the virus of hoof and mouth disease in natural conditions. At isolating from guinea pigs infected with hoof and mouth disesse various cultures from their diseased paws, E. I. Vostrukhova separated out a sluggishly growing streptococcus, which indisputably was the carrier of the hoof and mouth disease virus and provoked in the pigs the typics. disease. This property was preserved in it in eight resowings, whereas in control resowings of the virus on the same, however with out a microbe medium, it was no longer istected in the third generation. These investigations were not continued and were not pub lished.

Frenkel (1934) obtained negative results at endeavoring to obtain symbiotic cultures of the virus of hoof and mouth disease

with Torula kephir yeast. Poppe and Busch (1936) likewise obtained negative results in experiments with this yeast. However, the latter authors received indisputably positive results at cultivation of the virus of hoof and mouth disease in symbiotic cultures with Torula rubra and with certain other species of yeast. Cultures of the hoof and mouth disease virus with Torula rubra in the 60th generation provoked in guinea pigs not only a local but also a generalized process. The breeding of the hoof and mouth disease virus initially sown in the yeast culture reached the generation figure of 1000. With yeast of certain other species, Torula Kiel and L. (sici), the experiments were also positive and the cultures contained virus in the 10th and 28th generations. With other species of yeast (Torula pulcherrime, the wine yeasts, and others) and with certain bacteria (stephylococcus, sarcina, and others) no symbiotic cultures were obtained.

The authors explained the importance of the presence of a neutral reaction of the medium (bouillen), in which the symbiotic culture is grown, as well as of the medium in which the virus is suspended at extraction of it from the tissue. For the latter purpose a phosphate buffer proved completely inadequate, whereas with Tyrode's solution good results were obtained. Thus, Poppa and Busch's experiments established with certainty the possibility of obtaining symbiotic cultures of the virus of hoof and mouth disease with certain species of yeast.

In symbiotic cultures the virus of the plague of swine was likewise studied. Likhachev (1937), proceeding from the fact that enterococcus and sarcinas are most often isolated from the blood of swine affected with plague, tried to cultures the virus of this disease in symbiotic cultures with these signobes. The 5th 10th, and 21st generations of these cultures produced at introduction into young pigs a pig plague typical is clinic and pathological-anatomical picture. The blood of the sick animal, testal in one case, produced the same disease it introduction into a healthy animal. For control there was an absence of virus in the installation in which the experiments were carried out, and there was a lack of contagiousness for the disease produced by the symbiotic cultures; in adjoining pens healthy young pigs were kept. These young pigs fell ill with plague on the 17th and 28th day after the start of the experiments and succumbed on the 21th

and 41st day, which indicates their infection from the experimental animals.

Cultures of enterococcus and sarcina without the virus produced no pathological phenomena in the young pigs. The animals that survived the introduction of the 21st generation of symbiotic culture were tested for immunity and did not discolose such. Farlier generations were not subjected to such testing. The experiments with two other strains of virus gave no positive results, but a total of three generations, the 20th, and 9th, were tested.

All the materials stated show that not only the virus of variolar vaccine can survive and multiply in conditions of symbiosis with certain microbes, but that this capacity is inherent to other viruses too.

Experiments with Exanthamatous Typhus

The provoker of exanthematous typhus is not, as known, and ultravirus (filtrable virus), but is a rickettsia. However, the rickettsias in the conditions of culture are quite similar to the viruses. They, as the latter, are obligatory cellular parasites and are incapable of multiplying on artificial mutritive media. These properties of theirs can make possible the adaptation of the rickettsias to other microbes, the more so that the provoker of exanthematous typhus is constantly found with microbes in the 23testines of lice. The possibility of the alteration of certain properties of microbes under the effect of the virus of exanthematous typhus was demonstrated by us as early as 1922 whom, at cultivation of Proteus vulgaris in the abdomen of a young pag with exanthematous typhus, a culture was obtained of the exanthematous typhus protous, distinct from any whatsoever isolated from the exanthematous typhus organism. Minervin (1935), at introducing his exanthematous typhus into pig testicle, observed an analogous alteration of the Proteus vulgaris. It should be noted that the virus of exanthematous typhus possess no pronounced cytotropicity to cells of a definite species and type. Thus, is infects man, guinea pig, rabbit, and mice, and it multiplies in not only their brain but also in the tissue of the lungs, splear and other tissues. All these data have also given us basis to

try to obtain symbiotic cultures of the exanthematous typhus whrus. Experiments set up by approximately the same method as with the virus of the variolar vaccine (Zil'ber and Dosser, 1934) disclosed the presence of the exanthematous typhus virus in cultures with kephir yeast and sarcinas, in which the blood of exanthematous typhus (victims) was sown in a dosage of 0.2-0.3 ml. or 1/200 of the brain of exanthematous typhus pigs. The presence of the virus in these cultures was demonstrated first of all by experiments of inoculating pigs with them, the pigs having disclosed a temperature reaction typical to exanthematous typhus, the disease having been passed bacteriologically into sterile brain up to five times. In the diseased pigs rickettains were discovered in the tunica vagia., as too the histopathological alterations characteristic to exanthematous typhus. In lice affected by symbiotic cultures by the rectal method ricketts iss were discovered, and they died 15-20 days after inoculation. Inoculation of mice by the nasal route was not carried out since this method was not known at that time. Rabbits inoculated with symbiotic cultures produced an accumulation of agglutining to Proteus X19 in a titer of 1: 80, however not in all cases.

This work of ours attracted the attention of many investigators. Gel'tser and Hemshilov (1934) cultured the virus exanthematicals typhus (the blood of patients) with Saccharomyces cerevisese. The 15th, 16th, and 24th generations of these cultures were introduced into pigs, in which on the 12th-17th day after inoculation there was observed a rise of temperature within the limits of 0.8-20 and a duration of from 4 to 6 days. When passages were made with the blood and brain of these diseased pigs, the rise in temperature occurred on the 11th-18th day and the iever lasted 7-15 days (most often 8 days). In all the affected pits there was noted a drop in weight. At introduction of cultures, as well as of brain of the passage pigs into rebbits there was observed in them the appearance of the Weil-Felix reaction with a titer of 1: 40 to 1: 60. In the brain of the affected pigs there were observed histopathologica. alterations characteristic to exanthemetous typhus. In a subsequent work Celitzer and Hemshilov (1935) tested a further series of generations of symbiotic cultures, using for this purpose also kephir yeast, and obtained by this principally the same results.

In later generations of certain strains (18th-36th) the value was not discovered, the weakening of the virus having proceeded with

different rapidity in different strains (strain I in the 34th generation, and strain III in the 18th generation). The experiments of the authors with the obtaining of immune sera by symbiotic cultures are quite substantial. These sera were obtained by immunization of horse, calf, and sheep and disclosed a considerable titer of the Weil-Felix reaction. Thus, the sera of horse and heifer raised the titer from 1: 100 to 1: 1200, and the sera of the sheep from 1: 50 to 1: 1200. These sera, tested after 42 days of preservation, in all experiments neutralized the passage virus of exanthematous typhus. Pigs into which a mixture of immune serum and virus was introduced gave no signs of exanthematous typhus and disclosed no immunity at their subsequent inoculation with passage virus. An attempt to vaccinate guinea pigs with symbiotic cultures killed in various ways produced no results, which is fully understandable in the light of contemporary data, since the number of virus in the symbiotic cultures was not sufficient for this purpose.

Takovlev (1934) observed in cultures of the exanthematous typhus virus with yeast and sarcinas formations of various structure, which he considered to be different stages of the metamorphosis of the rickettsias. There have been offered no direct proofs of this.

Kalina and Danishevskaia (1933) in a preliminary report stated the positive results obtained at inoculation of the 24th and 49th generations of a yeast culture of the exanthematous typhus virus that had been transferred daily or every other day. However, the material cited was little conclusive since the typical temperature curve was observed in a total of one of the three pigs.

Symbiotic cultures of the exantheratous typhus virus up to the 6th and 8th generations were studied in detail by Tokarevich and Kliachko (1935). The disease typical to exanthematous typhur was observed in 13 cut of 2h of the pigs inoculated with these cultures, the main indices characterizing the temperature curves having disclosed considerably greater diversity than is observed at inoculation of the pigs with passage virus. Histological alterations were discovered in four out of 12 of the pigs investigated, they having been discovered in three cut of five cases with typical fever and in one out of seven cases with atypical fever. The cultures in a number of cases provoked the appearance of the Weil-Felix reaction in rabbits in a titer of 1: h0 and 1: 160. The immunity

was tested in a total of five pigs, one of them not having had a general fever at introduction of 0.1 of brain of passage pig and the other having given a brief (2-) day) rise in temperature with major remissions. Levkovich (1934) also obtained principally the same results.

Afanas'eva and Sterkhova (1931a) cultivated the European virus of exanthematous typhus in symbiosis with kephir and browers! yeast. They came to the conclusion that such cultivation "succeeds in rare cases and in a limited number of generations". the exanthematous typhus virus proving slightly pathogenic and lessening its immunizing properties. Best results were obtained with yeast cultures of rat exanthematous typhus, which "disclose all the characteristic reactions natural to this virus and distinguish it from the epidemic, such as: the fever reaction in white mice, the fever and scrotal reaction in pigs, and the slight affection in them by granulomatosis of the cerebrum". However, all these indications in the cultures were expressed considerably more weally than these were observed at affection by passage virus. The disease in pigs, provoked by yeast cultures of the virus, communicated immunity to the rat passage virus, but did not transmit immunity to the European. One of the cultures lost pathogenicity only in the 3lith generation.

Elin, Frenkman (given as Freiman in the bibliography), and Urban (1935) tried to cultivate the virus of exanthematous typinus in symbiosis with yeast (with which of the yeasts is not indicated) At affection by some yeast cultures not containing the virus they observed in the pigs the temperature and histological alterations typical to exanthematous typhus. They also observed a positive Weil-Felix reaction in rabbits into which only the yeast was introduced.

The authors promised to report on further investigations of this paradoxical phenomenon, but this report did not follow.

Gnutenko and Frieuf (1935) cultured the virus of exanthemator typhus in symbiosis with yellow sarcinas on a solid nutritive media a Out of the 12 experiments positive results were obtained in four cases.

compansets and coworkers (1936) studied cultures of the virus of exanthematous typhus in symmiosis with yeasts (kephir, bread, and brewers!). The cultures were tested by inoculation of guines pigs and by observation for the Weil-Fekix reaction in rabbits and goats that had received these cultures.

The authors note the drop in virulency of the virus as bengining alread in the second generation. However, rabbits which were immunized by the cultures, beginning with the 4th generation, gwe in a considerable percentage of the cases a transition from the negative Weil-Felix reaction to the positive with a titer up to 1: 40, and in two the transition of the positive reaction was from a titer of 1: 60 to a titer of 1: 320. No virucidal properties are discovered in the goat serum.

Otta (1934) and Voet (1935) obtained negative results in a few attempts to cultivate the virus of exanthematous typhus in symbiotic cultures.

Minervin, Zil'berman, and Gerbil skii (according to the bibliography, Gebril'skii) (1936) isolated from the intestines of lice taken from exanthematous typhus petients bacterial cultures which proved capable of producing in pigs at subcutaneous introduction typical exanthematous typhus fever and histopathological alterations entirely characteristic to exanthematous typhus. In certain cases the disease with a typical picture was passed by the brain of affected pigs bacteriologically sterile.

In a subsequent work Zil berman and Gerbil'skii (1938) reported that the 4th and 6th generations of the virus cultures from bacteria isolated from lice did not disclose the presence of the virus at inoculation of pigs. Likewise, attempts to cultivate the exanthematous typhus virus in cultures of Proteus vulgaris, yeast, and sarcinas proved unsuccessful. Certain strains of Proteus vulgaris, formerly in contact with the blood of exanthematous typhus patients, acquired the ability to be aggluticated by the serum of rabbits immunized with X19. Cultures of proteus, yeast, and sarcina that were taken into the experiment by the authors, by themselves without the virus, provoked in the pigs a number of pathological phenomena in a series of cases.

In judging the above-mentioned data it is necessary to take into consideration that all authors who have studied the properties of symbiotic cultures have compared them with a passage virus well adapted to the guinea pig organism. Of course, symbiotic cultures could not disclose in full measure those properties which are observed in a passage virus, but the presence of the exanthematous typhus virus in these cultures in many experiments was sufficiently demonstrated in a persuasive way. This was recognized by all these authors who carefully noted the absence of a complete conformity of the properties of the cultures and of the passage virus (Tokarevich and Kliachko, Gel'tser and Memshilov, Leykovich and others).

In certain cases the cultures of yest that were taken for the experiments were insufficiently carefully selected and produced in the pigs certain pathological symptoms. However, in the majority of authors who studied this proflem the cultures of the microbesymbionts were completely apathogenic to guinea pigs and produced no reaction in them, whereas the same cultures after contact with the exanthematous typhus virus produced in the pigs a number of symptoms typical to exanthematous typhus. The virus certainly weakens and modifies in symbiotic cultures, but, together with this, it is preserved in them in those conditions in which it dies when it is without microbes (for instance, during multi-month keeping in a thermostat).

Both in our experiments and in the experiments of other investigators rickettsias were not discovered with certainty in the symbiotic cultures, as the elementary bodies of the variola virus were not discovered. Apparently the rickettsias of exanthematous typhus can be represented either as formations of considerably lesser dimensions or as formations with a different than usual capacity for staining. By this apparently is explained too the difficulty of discovering the ric actuals in the brain of affected pigs. The problem of the symbibsis of the virus of exanthematous typhus with the microbes could be productively studied at the present time owing to the reproduction of pulmonary exanthematous typhus pneumonia in mice and the possibility of studying symbiotic cultures by the electron microscope.

- 28 -

General Resuls

The data cited above indicate sufficiently conclusively the existence of symbiosis between the microbes and viruses. The form of symbiosis described above was in due course designated as an "allobiophoria" (i.e. as a bearer of another life). Most often the term "virophoria", i.e. a carrier of viruses, is used. This last term is more concrete and better expresses the nature of the phenomenon. Entirely likely too is the existence of other forms of symbiosis besides the virophoria. In literature there are reports (Iakovlev, 1949, and others) in which it is indicated that the viruses survive in a medium populated with microbes, not entering into any closer connection with them. Evidently certain microbes can produce substances that make possible the survival of the viruses in the outer medium. This question has been very little studied.

The great similarity of the phenomena of bacteriophagy and virophoria attracts attention. Regardless of whichever point of view is adhered to in respect to the nature of the bacteriophage. it is impossible not to recognize that it possesses the principal properties that characterize the ultra-viruses - the capacity to propagate only in living cells, the lack of a capacity for growth on artificial mutritive media, the filtratability, the stability to certain disinfection substances, etc. Recently the data of the electron optics (?microscope) have permitted referring with certainty the bacteriophages to the ultraviruses. The processes observed in the presence of bacteriophery are typically virophore phenomena. It is known that the phage is readily adsorbed by suitable bacteria and can in such an adsorbed form be preserved for a long time in bacterial cultures. If with this it was take: in comparatively small amount, then there occurs no dissolving in this culture, and it is a typically dirophore culture. Those cultures of bacteria from which by different manipulations a bacteriophage is successfully obtained are such virophore cultures. It is interesting to note that at sowing the bacteriophage culture on agar the same phenomenon is observed as was noted at selection of virophore cultures of variols: not every colony is affected by phage and virus.

However, the bacteriophage is transferred ad infinitum

- 29 -

together with the bacterial cells, attaining vast concentrations and causing the dissolution of the cells, in contrast with the virus in the virophore culture, which, although it undergoes certain alterations, yet sooner or later is freed of virus. especially if it multiplies in favorable conditions. It is possible to suppose that the phenomenon of bacteriophagy in the process of evolution arose from the phenomenon of virophoris. The virus that had an affinity also to the animal cells and to the microbe (cells), and is probably nonpathogenic to the animal, can in the process of evolution acquire a more pronounced affinity for microbe cells and become pathogenic for them. We would not have resolved to express this hypothesis if we hadn't seen certain possibilities of its experimental verification. If we assume that permissibility the bacteriophage to the provoker of typhoic fever rises from the virophore culture prior to the latter microbe that bears the virus that had an affinity to the cells of the intestines, then it would be possible to expect that certain strains of this phage still preserve remnants of the affinity to the intestinal cells. possible to clarify this experimentally by studying the capacity of these calls to adsorb the phage and preserve it. Obviously for control there should be studied also the analogous capacity of the other cells. Such an investigation might also produce material that would permit using the phage zore afficiently for purposes of prophylaxis and the treatment of infertious diseases.

In a further study of the phenomenon of virophoria it is impossible to break away from the theoretical foundation on which it is based. In virtue of this, first of all it is necessary:

- l. To study the symbiosis of the druses with those microbes with which a given virus is encountered in natural conditions. Hence, it is necessary to study the symbiosis of the virus of variola and of heof and mouth disease with the microbes of the skin and mucous membranes of the corresponding animals, the virus of rabies with the microbes of the saliva of dogs, the virus of inguinal lymph-ogranulomatosis with the derobes of the skin, the virus of grippe with the microbes of the oral cavity and nasopharyna, the virus of tick encephalitis with the microbes of the ticks, that of Japanese encephalitis with the microbes of mosquitoes, etc.
 - 2. To study all forms of this symiosis, and not only the

propagation of the virus in the symbiotic cultures. None the less, and more important in practice, is the phenomenon of the carrier proper, which is not obligatorily attended by multiplication of the virus in the microbe cell. Namely this virus carrier too should be studied in greatest detail.

- 3. To study virophoria necessarily first of all in natural conditions. By isolating the virophore bacterial cultures from diseased tissues it is easiest of all to obtain a clear idea both of the presence of symbiotic phenomena in a given infection and of their character. Of course, testing practices are an essential supplement to such experiments.
- it. With this study substantial attention should be directed to the length of the maintaining of the virus in the virophore cultures and to the conditions of this preservation.
- 5. The study of the capacity of microbe cultures to become virophoric likewise should approximate natural conditions. For this purpose it would be necessary to introduce the culture being investigated into affected tissue and then to isolate it for several days.

Serious attention during the study of the virophore phenomena should be paid to those alterations which occur is the virophore cultures both in the microbe-carrier and in the virus. Meisel: (1935) observed a number of cytological alterations in yeast in symbiotic cultures of the virus of variels.

It should be noted that during all these investigations it is never possible for the determination of the presence of the virus to be limited only to clinical observations. It is always necessary to supplement them with the mcrphological (for instance, by the discovery of Paschen and Guarnieri bodies during variola) and by immunological investigations. This is necessary not only to determine the presence of the virus, but also to differentiate the phenomena provoked by it from those provoked by the microbe carrier, which likewise may be to one or another degree pathogenia. The simplest method for such differentiation is the inoculation by virophoric cultures both of healthy animals and of animals that have been treated, on the one hand, with serum for the virus and, on the

other hand, with serum for a given microbe. For instance, in studying the virophoric culture of the staphylococcus that bears the virus of the group, it is necessary to inoculate not only normal mice but also those which had received (the following therapy) prior to this introduction: one group - the antigrippe serum, the other - the anti-staphylococcus serum. The results thus obtained permit making reliable conclusions even in a case in which the pathogenic mircobe is studied in the character of carrier.

A study of the phenomena of the symbiosis of the ultramicrobes with the microbes does not have just theoretical interest. It is indisputable that in conditions of the symbiosis viruses are preserved longer than in the absence of microbes. Consequently, thanks to the virophoria, not only are the donditions of the dispersion of the viruses eltered, but there is also formed a unique reservoir of viruses in nature. It is impossible to undervalue the importance of this supplementary reservoir for certain viruses. Earlier the impossibility of the existence in outer nature of ultraviruses pathogenic to man and snimals was considered firmly established. It was thought that they exist only in the organism of these animals and in the organism of the vectors - the mosquitoes, ticks, lice, etc. Now it is shown that this is not so and that viruses, like phages, can exist in the outer medium in symbiosis with microbes. This circumstance should be taken into consideration in the epidemiology of certain ultravirus disesses, for which much is still in the dark up to the present time. It is enough even to recall the epidemiology of policyelitis. The phenomenon of the adsorption of the viruses by the microbes has practical importance too. Sergiev and coworkers (1945) and others have revealed that microbes that adsorb the viruses can be used in certain cases for discovery of antibodies to these viruses, the reaction of the agglutination of the microbes loaded with the virus possibly having diagnostic significance.

A study of the phenomena of the symbiosis of viruses and microbes gives substantial materials for understanding the inaccuracies of those investigators whe, at isolating during virus diseases various microbes that are carriers of the viruses, have mistaken them for the provokers of those diseases. To the same category of phenomena belong also reports of the conversion of viruses into microbes.

It is sufficient to look at the microphotographs presented in Bosh lian's book (1950) to be convinced that, for instance, the forms described by him as the spherical form of the provoker of infectious anemia of horses are yeast. Inamuch as the yeast cannot be the provoker of this disease, it is possible to explain its specific infectiousness only by the fact that it is the carrier of the virus of infectious anemia.

As has been pointed out above, the phenomena of the symbiosis of viruses and microbes do not deplete by themselves those interrelations which exist in them in natural conditions. The presence in them of antagonistic relationships is definite too. The last question offers very great interest in connection with the discovery in recent years of the inhibiting effect of bacterial polysaccharides on the propagation of certain viruses. The further study of the problem of the interaction of the viruses and microbes, first posed and studied by Soviet scientists, will enrich science with facts of great theoretical and practical importance.

Literature

- M. Akker and V. Florinskii. 1936. ZhFI, 17 (3): 403. A. Afanas eva and N. Sterkhova. 1934. ZhwEI, 13 (3): 416, 424.
- A. Afanas eva and S. Shapiro. 1936. Tr. Mosk. gor. bakt. inota (1): 35.
 - G. Bosh'ian. 1950. On the Nature of Viruses and of Microbes.

A. Bulanov and V. Riakhovskii. 1936. ZhMEI, 16 (3): 394

A. Vinogradova. 1936. ZhMEI, 17: 565.

R. Gel'tser and S. Nemshilov. 1934. Kaz. med. shurn. 11-12: 1167. 1935 - ibid., 1: 86.

E. Gil'gut. 1934. ZhMEI, 14 (2). M. Gmutenko and V. Friauf. 1935. Vesta. mikr., epid. i paražit., 14 (4): 325.

M. Gruntfest. 1934. ZhMEI, 12 (1): 62.

- V. Elin, E. Frekman, and K. Urban. 1935. ZhMEI, 14 (3): 421.
- L. Zil'ber. 1937. Tr. Vsesoiusm. soveshch. po ul'tramikroban i virusam (Transactions of the All-Union Conference on Ultramicrober and Viruses), 219.

```
L. Zil'ber and A. Beliaeva. 1935. ZhMEI, 14 (3): 426.
       L. Zil'ber and E. Vostroukhova. 1933, ZhMEI, 11 (1): 66.
1932. Sov. wrach. gas., 15-16.
       L. Zil'ber and E. Dosser. 1933. Sov. vrach. gaz., 15-16. L. Zil'ber and V. Timakov. 1931. ZhMEI, 12 (3): 524.
      B. Zil'berman and V. Gebril'skii. 1938. ZhMEI, 20 (5): 58.
       M. Izabolinskii, I. Levtsov, and I. Charniak. 1935. Zhill.
15 (1): 29.
      G. Kalina and M. Danishevskaia. 1933. Sov. vrach. gas.
(12): 533.
      A. Kompaneets, E. Maiofis, and E. Bocharova. 1936. Zhieli,
17 (2): 282.
      M. Korol'kova. 1935. ZhMEI, 15 (1): 33.
      E. Levkovich. 1934. ZhMEI, 12 (1).
      N. Likhachev. 1937. ZhMEI, 19 (2 (8)): 275.
      M. Meisel'. 1937. Tr. Vsesoiusn. soveshch. po ul'tramikumbit
ž virusam, 237.
      S. Minervin, B. Zil'berman, and V. Gebril'skii. 1936. Zielli,
16 (3): 455.
      S. Minervin and E. Rapoport. 1936. ZhMEI, 17 (3): 399
      G. Palavandov, A. Serebrianaia, and E. Pugach. 1936. Ann.
Mechin. in-ta, h (2): 303.
      L. Portniagina. 1939. ZhMEI, 5-10: 44.
      P. Sergiev, N. Demina, and N. Riazantseva. 1945.
      P. Smirnov, Iu. Tutyshkina, N. Riasantseva, and Z. Stuping.
1935。 ZhMEI, 15 (6): 852.
      N. Solomin. 1942. Tr. Sverdl. in-ta mikr., 3(1): 80.
      V. Timakov. 1936. ZhMEI, 16: 145.
      K. Tokarevich and N. Kliachko. 1935. Sov. wrach. gaz., 123),
      V. Tul'chinskais. 1936. ZhMEI. 17 (3): 367 and 395. E. Turevich and N. Ismushavich. 1937. Tr. Vsesoiuzn.
soveshch, po ul'tramikrobam i virusam, 203.
      L. Fal'kovich and N. Ianushevich. 1937. Tr. Vsesoiuzn.
soveshch. po ul'tramikrobam i virusam, 257.
      R. Khastovich and R. Shur. 1935. Ann. Mechn. in-ta.
1 (2): 377.
      R. Khurgina. 1935. Giorn. Bather., 15: 946.
      A. Iakovlev. 1934. Sov. vrach. gaz., (5), 1949, ZhMEL,
12: 28.
      C. Amies. 1934. Brit. J. Exp. Path., 15: 185.
```

- 3h -

- A. Arbeit. 1936. Ztrbl. f. Bakt., 134: 463.
- P. Brutsaert, Cl. Jungeblut, and A. Knox. 1946. Proc. Soc. Exp. Biol. a. Med., 61: 265.
- R. Dujarric de la Rivere. 1930. C. R. Soc. Biol., 104:
 - C. Evans and K. Osterud. 1946. Science, 104: 51.
 - H. Frenkel, cited by Poppe and Busch.
- C. Kling, G. Olin, J. Fahraeus, and G. Norlin. 1942. Acta Med. Scandin., 112: 217.
 - R. Otto. 1934. Dtsch. med. Wschr., 1299.
- K. Poppe and G. Busch. 1936. Zurbl. f. Bakt., I Abt., 136: 385.
- J. Toomey, W. Takacs, and M. Schaeffer. 1948. Amer. J. Dis. Child., 75: 11.
 - J. Vost. 1935. C. R. Soc. Biol., 118: 951.
- V. Young, O. Felsenfeld, and Byrd. 1949. Amer. J. of Clin. Path., 19: 1135.
 - M. Waldhecker. 1936. Ztrbl. f. Bakt., I.Abt., 135: 259

Approved For Release 2009/08/21: CIA-RDP82-00308R000100210001-5

