

Machine Learning for Predicting GDP Growth

ENRICO FIORI FERRAZ

IMPORTANCE OF PREDICTING GDP GROWTH

- In economic planning and policy-making, GDP growth is one of the most important aspects for a country development;
- Predicting GDP growth is challenging, considering its dependence on a lot of factors, which can be difficult to accurately define;
- The scope of this project is to investigate how government debt and others factors can be used to predict GDP growth.

ABOUT THE DATASET

Main Source: World Bank

Time Frame: From 1980 to 2020

Number of countries: 196

• Features: 17 (all numerical)

GDP Growth is the target!

Problems in Dataset:

Almost half of the columns have more than 20% null or NaN values

PREPROCESSING AND DATA CLEANING

Raw data

Processed data

Total investment	0		
Gross national savings	0		
General government revenue	0		
General government total expenditure	0		
General government net lending/borrowing	0		
General government primary net lending/borrowing	0		
General government net debt	0		
General government gross debt	0		
Current account balance	0		
GDP GROWTH	0		
Exports of goods and services (% of GDP)	0		
Inflation, consumer prices (annual %)	0		
Imports of goods and services (% of GDP)	0		
Expense (% of GDP)	0		
Domestic credit to private sector (% of GDP)			
Research and development expenditure (% of GDP)			
Tax revenue (% of GDP)	0		

MODELS TRAINED

Extra Trees Regressor

 Good for GDP growth forecasts as it balances between randomness and precision in economic predictions

Random Forest Regressor

 Suitable for GDP growth prediction as it handles complex relationships and interactions among the data.

K Neighbors Regressor

 Effective for GDP growth prediction due to its reliance on nearby observations for forecasting.

PERFORMANCE METRICS

MODEL	MAE	MSE	R-SQUARED	N. ESTIMATORS	N. NEIGHBORS
Extra Trees	2.5060	19.1982	0.1983	300	-
Random Forest	2.5740	20.4767	0.1449	300	-
K-Neighbors	2.7167	218187	0.0888	-	7

MAE is the best metric for this problem because the idea is to know how much the predictions on average deviate from real values of GDP Growth

CONCLUSION AND NEXT STEPS

- Find more data to accurately fulfill the gaps in the original dataset;
- •Even the best model (Extra Trees) trained could not properly predict the GDP growth with the features provided;
- •For the problem the model is tackling, ~2.5% of error is a lot;
- •Get more data of different indicators, not only government and trade data.