Kaggle Competition:

# Allstate Claims Severity

Team KGW: Wen Li. Lei Zhang. Chuan Hong. Lydia Kan

## Content

- Workflow
- EDA
- Initial Features Selection
- Feature Engineering

- Supervised Learning
- Results and Finding
- Future Works



#### Density Plot of Loss



#### **Density Plot of Loss Transformation**



# Numeric Graphic: Dataset



# Numeric Graphic: The Categorical Variables

| Variable | Train | Test | Variable | Train                                                                                                                    | Test                                                                     |
|----------|-------|------|----------|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| cat89    | I     | F    | cat105   | R S                                                                                                                      |                                                                          |
| cat90    | G     |      | cat106   |                                                                                                                          | Q                                                                        |
| cat92    | F     | G E  | cat109   | BM CJ BV BY BT B<br>BF BP J AG AK                                                                                        | AD                                                                       |
| cat96    |       | Н    | cat110   | BK H BN DV EI BD BI<br>AN AF CB EH                                                                                       | BH CA EN                                                                 |
| cat99    |       | U    | cat111   | D                                                                                                                        | L                                                                        |
| cat101   | NU    |      | cat113   | BE T AC                                                                                                                  | AA R                                                                     |
| cat102   | НЈ    |      | cat114   | X                                                                                                                        |                                                                          |
| cat103   |       | М    | cat116   | BI V BL X FS P GQ AY MF JD<br>AH EV CC AB W AM IK AT<br>JO AS JN BF DY IB EQ JT AP<br>MB C IO DQ HO MT FO JI FN<br>HU IX | AQ EM FY AI N ET KO BJ IW<br>DB LP MX BR BH JS ER A BN<br>BE IS LS HS EX |

# Graphic EDA: Input Variable

#### **Correlations of all continuous variables**



## Initial Features Selection: Unsupervised



- **➢** Goal: Check if the models are able to simplify the dimensions
- > Result: There is no significant classification

# Features Engineering



## Features Engineering



Loss(mean) Counts cat112 51 levels  $\rightarrow$  11 new groups

## Multiple Linear Regression

Features Engineering: Drop NZV

RMSE: 0.57659



## Multiple Linear Regression

Features Engineering: Drop Correlated V. + New Group

RMSE: 0.56557



### Ridge Regression

Features Engineering: New Group

Parameter: Lambda 1e-05

RMSE: 0.56414

#### Lasso Regression

Features Engineering: New Group

Parameter: Lambda 1.592283e-05

RMSE: 0.56415



## Random Forest

Features Engineering: NZV

Parameter: Number of trees = 500, No. of Variables tried at each split = 51

RMSE: 2014.217

## XGBoost - xgbTree

Features Engineering: New Group

RMSE: 0.5436

Parameter:

nrounds = 300 max\_depth = 4 eta = 0.3 gamma = 0 colsample\_bytree = 0.8 min\_child\_weight = 1 subsample = 0.75





#### Scatter plot of loss.test vs. predicted loss



#### **Gradient Boost**

Features Engineering: NZV

Parameter: ntree=2640

n.minobsev = 20

interation.depth = 5

shinkage = 0.1

RMSE: 0.51

#### **Increase Kaggle score by tuning parameters**

ntree n.minobsev

2600: 1163.89861 50: 2251.57822 **2640: 1162.56392** 5: 1165.24778

10: 1162.56392

20: 1162.22589







#### **Importance of Variables**

- cat99R, cat99T, cat108F: 0.000000000000
- 83 out of 153 variables influence more than 0.05





# Results and Finding

| Model         | Features Engineering         | Parameters                                                                                                                       | RMSE     | Kaggle Score |
|---------------|------------------------------|----------------------------------------------------------------------------------------------------------------------------------|----------|--------------|
| MLR           | Drop NZV                     |                                                                                                                                  | 0.57659  |              |
| MLR           | Drop High Cor +<br>New Group |                                                                                                                                  | 0.56557  |              |
| Ridge         | New Group                    | Lambda: 1e-05                                                                                                                    | 0.56414  |              |
| Lasso         | New Group                    | Lmabda: 1.592283e-05                                                                                                             | 0.56415  |              |
| RandomForest  | Drop NZV                     | Ntree: 500 mtry = 51                                                                                                             | 2014.217 |              |
| GBM           | Drop NZV                     | Ntree: 2640<br>n.Minobsev: 20                                                                                                    | 0.51     | 1162.22589   |
| XGB (xgbTree) | New Group                    | nrounds = 300<br>max_depth = 4<br>eta = 0.3<br>gamma = 0.2<br>colsample_bytree = 0.6<br>min_child_weight = 1<br>subsample = 0.85 | 0.5436   |              |

## Future Works

- 1. Gradient Boosting with "zv"
  - "nzv" cut off the variables with 5% less variance
  - The kaggle score of our best boosting model is 5.6% higher than rank 1
  - With all variables, tune the parameter again
- 2. Improve the neural network and Stack different models to get higher accuracy
- 3. Another approach of feature engineering

## Parallel Calculation

❖ Split the data to 2 sub-data



## Boosting with only category

Good model only with category



#### Linear Stack

Coefficients: Estimate Std. Error t value Pr(>|t|)

 $(Intercept) - 3180.060884493 \ 87.679805716 \qquad -36.26902 < 0.0000000000000000222 \ ***$ 

con 1.501115426 0.040627824 36.94797 < 0.0000000000000000222 \*\*\*

cat 1.137519885 0.002996952 379.55892 < 0.0000000000000000222 \*\*\*

Residual standard error: 1975.458 on 131819 degrees of freedom Multiple R-squared: 0.5332921, Adjusted R-squared: 0.533285

F-statistic: 75312.67 on 2 and 131819 DF, p-value: <

0.0000000000000022204

# Linear Stack—not perfect: need non-linear term





