

(A Constituent College of Somaiya Vidyavihar University) **Department of Computer Engineering**

Course Name:	Digital Design Laboratory	Semester:	III
Date of Performance:	2/ 9 /2024	Batch No:	A2
Faculty Name:	Shivani Deosthale	Roll No:	16010123032
Faculty Sign & Date:		Grade/Marks:	/25

Experiment No: 5 Title: Flip Flops

Aim and Objective of the Experiment:

To Verify truth table of JK Flip flop using IC 7476 and study conversion of JK FF to D FF and T FF

COs to be achieved:

CO3: Design synchronous and asynchronous sequential circuits.

Tools used:	
Trainer kits	

Theory:

Flip-flop is the common name given to two-state devices which offer basic memory for sequential logic operations. Flip-flops are heavily used for digital data storage and transfer and are commonly used in banks called "registers" for the storage of binary numerical data.

JK-flip flop: has two inputs, traditionally labeled J and K. IC 7476 is a dual JK master slave flip flop with preset and clear inputs. If J and K are different then the output Q takes the value of J at the next clock edge. If J and K are both low then no change occurs. If J and K are both high at the clock edge, then the output will toggle from one state to the other. It can perform the functions of the set/reset flip-flop and has the advantage that there are no ambiguous states.

D Flip Flop: tracks the input, making transitions with match those of the input D. The D stands for "data"; this flip-flop stores the value that is on the data line. It can be thought of as a basic memory cell. D flip-flop can be made from J-K flip-flop by connecting both inputs through a not gate.

Digital Design Laboratory	Semester: III	Academic Year: 2024-25
---------------------------	---------------	------------------------

(A Constituent College of Somaiya Vidyavihar University)

T Flip Flop: T or "toggle" flip-flop changes its output on each clock edge, giving an output which is half the frequency of the signal to the T input. It is useful for constructing binary counters, frequency dividers, and general binary addition devices. It can be made from a J-K flip-flop by tying both of its inputs high.

Implementation Details:

Procedure

- 1) Locate IC 7476 on Digital trainer kit
- 2) Apply various inputs to J & K pins by means of the output on logic output indicator.
- 3) Connect a pulsar switch to the clock input.
- 4) Connect the J&K as D and T flip flop as shown in diagrams and verify the respective truth tables.

Logic Symbol

Semester: III Academic Year: 2024-25 Digital Design Laboratory

(A Constituent College of Somaiya Vidyavihar University) **Department of Computer Engineering**

Semester: III

Truth Table of JK FF

CLK	J	K	Pr	Clr	Q	$\overline{\mathcal{Q}}$
0	X	X	X	X	X	X
0	X	X	X	X	X	X
0	X	X	X	X	X	X
0	X	X	X	X	X	X
1	0	0	1	1	Qn	\overline{Q}_{n}
1	0	1	1	1	0	1
1	1	0	1	1	1	0
1	1	1	1	1	\overline{Q}_{n}	Qn

Digital Design Laboratory

Academic Year: 2024-25

Roll No:____

K. J. Somaiya College of Engineering, Mumbai-77 (A Constituent College of Somaiya Vidyavihar University) **Department of Computer Engineering**

Digital Design Laboratory

Semester: III Academic Year: 2024-25

Roll No:_____

(A Constituent College of Somaiya Vidyavihar University) **Department of Computer Engineering**

Conversion of FFs

1) JK to DFF

Conversion Diagram

Truth Table of D FF

CLK	D	Q	\overline{Q}
0	X	X	X
1	0	0	1
1	1	1	0

Digital Design Laboratory

Semester: III Academic Year: 2024-25

Roll No:_____

Semester: III

(A Constituent College of Somaiya Vidyavihar University) **Department of Computer Engineering**

1) JK to T FF

Conversion Diagram

Truth Table of T FF

CLK	T	Q	\overline{Q}
0	X	X	X
1	0	0	Q'
1	1	Q	0

Digital Design Laboratory

Academic Year: 2024-25

Roll No:____

(A Constituent College of Somaiya Vidyavihar University) **Department of Computer Engineering**

Implementation Details

Procedure:

- 1) Locate the IC 7476 and place the IC on trainer kit.
- 2) Connect VCC and ground to respective pins of IC trainer kit.
- 3) Implement the circuit as shown in the circuit diagram.
- 4) Connect the inputs to the input switches provided in the trainer kit.
- 5) Connect the outputs to the switches of O/P LEDs
- 6) Apply various combinations of inputs according to the truth table and observe the condition of LEDs.
- 7) Note down the corresponding output readings for various combinations of inputs.

Post Lab Subjective/Objective type Questions:

1. How does a JK flip-flop differ from an SR flip-flop in its basic operation? **Ans:**

Key Differences Between JK and SR Flip-Flops

- 1. **Undefined Input Combination:** The JK flip-flop has a defined behavior when both inputs are high (toggle), while the SR flip-flop's behavior is undefined in this state.
- 2. **Input Functionality:** In a JK flip-flop, both inputs can be used to set or reset the output, while in an SR flip-flop, the S input is used to set and the R input is used to reset.
- 3. **Versatility:** The JK flip-flop's ability to toggle the output state makes it more versatile and widely used in digital circuits.
- 4. **Applications:** Both flip-flops are used in various digital circuits, but the JK flip-flop is often preferred due to its flexibility and ease of use.
- 5. **Design and Analysis:** Characteristic and excitation tables are essential tools for understanding the behavior and designing circuits using both JK and SR flip-flops.

Digital Design Laboratory	Semester: III	Academic Year: 2024-25
Digital Design Laboratory	Semester. III	Academic Teal. 2024-23

(A Constituent College of Somaiya Vidyavihar University) **Department of Computer Engineering**

2.	What is the use of characteristic and excitation tables?
	Ans:

Uses of Characteristic and Excitation Tables

- **Flip-Flop Design:** These tables help in designing sequential circuits by providing a clear understanding of the flip-flop's behavior and the required input conditions.
- **Circuit Analysis:** When analyzing existing circuits, these tables can be used to determine the functionality and operation of flip-flops within the circuit.
- State Machine Design: In designing state machines, characteristic and excitation tables are crucial for defining the state transitions and the corresponding input requirements.
- Fault Diagnosis: If a circuit is not functioning as expected, these tables can be used to identify potential faults or errors in the flip-flop's operation.
- **Educational Tool:** They serve as a valuable educational aid for understanding the principles and operation of sequential logic circuits.
- 3. How many flip flops do you require storing the data 1101? **Ans:**

To store the 4-bit data "1101", you would need 4 flip-flops. Each flip-flop can store a single bit of data. Since "1101" has 4 bits, you need 4 flip-flops to store the entire value.

Digital Design Laboratory Semester: III Academic Year: 2024-25

(A Constituent College of Somaiya Vidyavihar University) **Department of Computer Engineering**

4. Virtual Lab for Flipflop. Perform Simulation give feedback. https://de-iitr.vlabs.ac.in/exp/truth-tables-flip-flops/simulation.html

SR flip flop

JK flip flop

Digital Design Laboratory

Semester: III Academic Year: 2024-25

(A Constituent College of Somaiya Vidyavihar University) **Department of Computer Engineering**

T flip flop

Conclusion:

We successfully verified the truth table of JK Flip flop using IC 7476 and study conversion of JK FF to D FF and T FF

Semester: III

Digital Design Laboratory

Academic Year: 2024-25

K. J. Somaiya College of Engineering, Mumbai-77 (A Constituent College of Somaiya Vidyavihar University) **Department of Computer Engineering**

Signature o	f faculty	in-charge	with	Date:
-------------	-----------	-----------	------	-------

Digital Design Laboratory Semester: III Academic Year: 2024-25

Roll No:__