H1CDR (26) GFNIKDSYMH (35)

H2CDR (50) WIDPENGDTEYAPKFQ (65)

H3CDR (99) GTPTGPYYFDY (109)

L1CDR (159) SASSSVSYMH (168)

L2CDR (184)STSNLAS(190)

L3CDR (223) QQRSSYPLT (231)

Fig. 1. Amino acid sequences of CAB1 CDRs

2/79

	1	QVKLQQSGAE	LVRSGTSVKL	SCTASGFNIK	DSYMHWLRQG	PEQGLEWIGW
	51	IDPENGDTEY	APKFQGKATF	.TTDTSSNTAY	LQLSSLTSED	TAVYYCNEGT
	101	PTGPYYFDYW	GQGTTVTVSS	GGGGSGGGS	GGGGSENVLT	QSPAIMSASP
	151	GEKVTITCSA	SSSVSYMHWF	QQKPGTSPKL	WIYSTSNLAS	GVPARFSGSG
	201.	SGTSYSLTIS	RMEAEDAATY	YCQQRSSYPL	TFGAGTKLEL	KRAATPVSEK
	251	QLAEVVANTI	TPLMKAQSVP	GMAVAVIYQG	KPHYYTFGKA	DIAANKPVTP
	301	QTLFELGSIS	KTFTGVLGGD	AIARGEISLD	DAVTRYWPQL	TGKQWQGIRM
	351	LDLATYTAGG	LPLQVPDEVT	DNASLLRFYQ	NWQPQWKPGT	TRLYANASIG
	401	LFGALAVKPS.	GMPYEQAMTT	RVLKPLKLDH	TWINVPKAEE	AHYAWGYRDG
	451	KAVRVSPGML	DAQAYGVKTN	VQDMANWVMA	NMAPENVADA	SLKQGIALAQ
	501	SRYWRIGSMY	QGLGWEMLNW	PVEANTVVET	SFGNVALAPL	PVAEVNPPAP
	5.51	PVKASWVHKT	GSTGGFGSYV	AFIPEKQIGI	VMLANTSYPN	PARVEAAYHI
	601	LEALQ		•	•	
		•				* * * * * * * * * * * * * * * * * * * *
F	ig. 2	A Amino aci	d sequence	of CAB1 pro	tein	
					,	
0	DO ID	NICO. 2	•			

	1	TPVSEKQLAE	VVANTITPLM	KAQSVPGMAV	AVIYQGKPHY	YTFGKADIAA
					GEISLDDAVT	
					LLRFYQNWQP	
					PLKLDHTWIN	
	201	WGYRDGKAVR	VSPGMLDAQA	YGVKTNVQDM	ANWVMANMAP	ENVADASLKQ
	251	GIALAQSRYW	RIGSMYQGLG	WEMLNWPVEA	NTVVETSFGN	VALAPLPVAE
	301	VNPPAPPVKA	SWVHKTGSTG	GFGSYVAFIP	EKQIGIVMLA	NTSYPNPARV
	351	EAAYHILEAL	Q			
				· .		
Fj	.g. 2	B Amino aci	d sequence	of BLA prote	ein	

H1CDR	(26) GFNIKDSYMH (35)
H2CDR	(50)WIDPENGDTEYAPKFQ(65)
H3CDR	(99) GLPTGPYYFDY (109)
L1CDR	(159) SASSSVSYMH (168)
L2CDR	(184) DTSNLAS (190)
L3CDR	(223) QQRDSYPLT (231)

Fig. 3A Amino acid sequences of CAB1.6 CDRs

H1CDR	(26) GFNIKDSYMH (35)
H2CDR	(50) WIDPENGDTEYAPKFQ(65)
H3CDR	(99) GLPLGAIYNDY (109)
L1CDR	(159) SASSAVYAMH (168)
L2CDR	(184) DTSNLAS (190)
L3CDR	(223) QQRDSYPLT (231)

Fig. 3B Amino acid sequences of CAB1.7 CDRs

1 QVQLQQSGAE LVKSGGSVKL SCTASGFNIK DSYMHWVRQG PEQGLEWIGW
51 IDPENGDTEY APKFQGKATF TTDTSSNTAY LQLSSLTSED TAVYYCNEGL
101 PTGPYYFDYW GQGTTVTVSS GGGGSGGGS GGGGSENVLT QSPAIVSASP
151 GEKVTITCSA SSSVSYMHWF QQKPGTSPKL VIYDTSNLAS GVPARFSGSG
201 SGTSYSLTIS RMEAEDAATY YCQQRDSYPL TFGAGTKLEL KRAATPVSEK
251 QLAEVVANTI TPLMKAQSVP GMAVAVIYQG KPHYYTFGKA DIAANKPVTP
301 QTLFELGSIS KTFTGVLGGD AIARGEISLD DAVTRYWPQL TGKQWQGIRM
351 LDLATYTAGG LPLQVPDEVT DNASLLRFYQ NWQPQWKPGT TRLYANASIG
401 LFGALAVKPS GMPYEQAMTT RVLKPLKLDH TWINVPKAEE AHYAWGYRDG
451 KAVRVSPGML DAQAYGVKTN VQDMANWVMA NMAPENVADA SLKQGIALAQ
501 SRYWRIGSMY QGLGWEMLNW PVEANTVVET SFGNVALAPL PVAEVNPPAP
551 PVKASWVHKT GSTGGFGSYV AFIPEKQIGI VMLANTSYPN PARVEAAYHI
601 LEALQ

Fig. 4A Amino acid sequence of CAB1.6 protein

SEQ ID NO. 7

1 QVQLQQSGAE LVKSGGSVKL SCTASGFNIK DSYMHWVRQG PEQGLEWIGW 51 IDPENGDTEY APKFQGKATF TTDTSSNTAY LQLSSLTSED TAVYYCNEGL 101 PTGPYYFDYW GQGTTVTVSS GGGGSGGGG GGGGSENVLT QSPAIVSASP 151 GEKVTITCSA SSSVSYMHWF QQKPGTSPKL VIYDTSNLAS GVPARFSGSG 201 . SGTSYSLTIS RMEAEDAATY YCQQRDSYPL TFGAGTKLEL KRAATPVSEK 251 QLAEVVANTI TPLMAAQSVP GMAVAVIYQG KPHYYTFGKA DIAANKPVTP 301 OTLFELGSIS KTFTGVLGGD AIARGEISLD DAVTRYWPOL TGKOWOGIRM 351 LDLATYTAGG LPLQVPDEVT DNASLLRFYQ NWQPQWKPGT TRLYANASİG 401 LFGALAVKPS GMPYEQAMTT RVLKPLKLDH TWINVPKAEE AHYAWGYRDG 451 KAVRVSPGML DAQAYGVKTN VQDMANWVMA NMAPENVADA SLKQGIALAQ

501 SRYWRIGSMY QGLGWEMLNW PVEANTVVET SFGNVALAPL PVAEVNPPAP 551 PVKASWVHKT GSTGGFGAYV AFIPEKQIGI VMLANTSYPN PARVEAAYHI

Fig. 4B Amino acid sequence of CAB1.6i protein SEQ ID NO:8

601 LEALQ

1 QVQLQQSGAE LVKSGSVKL SCTASGFNIK DSYMHWVRQG PEQGLEWIGW
51 IDPENGDTEY APKFQGKATF TTDTSSNTAY LQLSSLTSED TAVYYCNEGL
101 PLGAIYNDYW GQGTTVTVSS GGGGSGGGS GGGGSENVLT QSPAIVSASP
151 GEKVTITCSA SSAVYAMHWF QQKPGTSPKL VIYDTSNLAS GVPARFSGSG
201 SGTSYSLTIS RMEAEDAATY YCQQRDSYPL TFGAGTKLEL KRAATPVSEK
251 QLAEVVANTI TPLMKAQSVP GMAVAVIYQG KPHYYTFGKA DIAANKPVTP
301 QTLFELGSIS KTFTGVLGGD AIARGEISLD DAVTRYWPQL TGKQWQGIRM
351 LDLATYTAGG LPLQVPDEVT DNASLLRFYQ NWQPQWKPGT TRLYANASIG
401 LFGALAVKPS GMPYEQAMTT RVLKPLKLDH TWINVPKAEE AHYAWGYRDG
451 KAVRVSPGML DAQAYGVKTN VQDMANWVMA NMAPENVADA SLKQGIALAQ

501 SRYWRIGSMY QGLGWEMLNW PVEANTVVET SFGNVALAPL PVAEVNPPAP 551 PVKASWVHKT GSTGGFGSYV AFIPEKQIGI VMLANTSYPN PARVEAAYHI

Fig. 5A Amino acid sequence of CAB1.7 protein

SEQ ID NO: 9

601 LEALQ

1 QVQLQQSGAE LVKSGGSVKL SCTASGFNIK DSYMHWVRQG PEQGLEWIGW
51 IDPENGDTEY APKFQGKATF TTDTSSNTAY LQLSSLTSED TAVYYCNEGL
101 PLGAIYNDYW GQGTTVTVSS GGGGSGGGS GGGSENVLT QSPAIVSASP
151 GEKVTITCSA SSAVYAMHWF QQKPGTSPKL VIYDTSNLAS GVPARFSGSG
201 SGTSYSLTIS RMEAEDAATY YCQQRDSYPL TFGAGTKLEL KRAATPVSEK
251 QLAEVVANTI TPLMAAQSVP GMAVAVIYQG KPHYYTFGKA DIAANKPVTP
301 QTLFELGSIS KTFTGVLGGD AIARGEISLD DAVTRYWPQL TGKQWQGIRM
351 LDLATYTAGG LPLQVPDEVT DNASLLRFYQ NWQPQWKPGT TRLYANASIG
401 LFGALAVKPS GMPYEQAMTT RVLKPLKLDH TWINVPKAEE AHYAWGYRDG
451 KAVRVSPGML DAQAYGVKTN VQDMANWVMA NMAPENVADA SLKQGIALAQ
501 SRYWRIGSMY QGLGWEMLNW PVEANTVVET SFGNVALAPL PVAEVNPPAP
551 PVKASWVHKT GSTGGFGAYV AFIPEKQIGI VMLANTSYPN PARVEAAYHI
601 LEALQ

Fig. 5B Amino acid sequence of CAB1.7i protein

Figure 6A

Figure 6B

aggaattatcatatgaaat acctgctgccgaccgctgctgctgctgctgctcctcgctgcccagccggccatggcccaggtgaaactgcagcagt ctggggcagaacttgtga ggtcagggacctcagtcaagttgtcctgcacagcttctggcttcaacattaaagactcctatatgcactggtt gaggcagg ggcctgaacagggcctg gagtggattggatggattgatcctgagaatggtgatactgaatatgccccgaagttccagggcaaggccacttttactaca gacacatectecaacaca gectacetgeageteageageetgacatetgaggacaetgeegtetattattgtaatgagggacteegaetgggeegt actactttgactactggggCcaagggaccacggtcaccgtctcctcaggtggaggcggttcaggcggaggtggctctggcggtggcgatcagaa aatgtgctcacccagtctc.Cagcaatcatgtctgcatctccaggggagaaggtcaccataacctgcagtgccagctcaagtgtaagttacatgcactg gttccagcagaagccaggcacttctcccaaactctggatttatagcacatccaacctggcttctggagtccctgctcgcttcagtggcagtggatctgg gacetettacteteteacaateageegaatggaggetgaagatgetgecaettattactgecageaaagatetagttacecaetcaegtteggtgetgg caccaagetggagetgaaacgggeggccacaceggtgtcagaaaaacagetggeggaggtggtegegaatacgattacceggetgatgaaage ccagtctgttccaggcatggcggttggccgttatttatcagggaaaaccgcactattacacatttggcaaggccgatatcgcggggaataaacccgtta cgcctcagaccctgttcgagctgggttctataagtaaaaccttcaccggcgttttaggtggggatgccattgctcgcggtgaaatticgctggacgatg cggtgaccagatactggcacagctgacgggcaagcagtggcagggtattcgtatgctggatctcgccacctacaccgctggcggcctgccgcta caggiaccggatgaggtcacggataacgcctccctgctgcgcttttatcaaaactggcagccgcagtggaagcctggcacaacgcgtctttacgcca acgccagcatcggtcttttt ggtgcgctggcggtcaaaccttctggcatgccctatgagcaggccatgacgacgcgggtccttaagccgctcaagct ggaccatacctggattaacgtgccgaaagcggaagaggcgcattacgcctggggctalcgtgacggtaaagcggtgcgcgtttcgccgggtatgct ggatgcacaagcctatggcgtgaaaaccaacgtgcaggatatggcgaactgggtcatggcaaacatggcgccggagaacgttgctgatgcctcac ttaagcagggcatcgcgctgcgcagtcgcgctactggcgtatcgggtcaatgtatcagggtctgggctgggagatgctcaactggcccgtggagg ccaacacggtggtcgagacgagttttggtaatgtagcactggcgccgttgcccgtggcagaagtgaatccaccggctccccggtcaaagcgtcct gggtccataaaacgggctctactggcgggtttggcagctacgtggcctttattcctgaaaagcagatcggtattgtgatgctcgcgaatacaagctatc cgaacceggcacgcgttgaggcgcataccatatcetegaggcgctacagtaggaattcgagctccgtcgacaagcttgcggccgcactcgagat caaacgggctagccagccagaactcgcccggaagaccccgaggatgtcgagcaccaccaccaccaccaccactgagatccggctgctaacaaagc ccgaaaggaagcigagttggctgctgccaccgctgagcaataactagcataaccccttggggcctctaaacgggtcttgaggggttttttgctgaaag gaggaactatatccggattggcgaatgggacgcgccctgtagcggcgcattaagcgcggcggtgtggtggttacgcgcagcgtgaccgctacac tigccagegecetagegecegeteetttegetttetteetteetteetteeteegecaegttegeeggettteeegteaagetetaaategggggeteeetttag ggttccgattiagtgctttacggcacctcgaccccaaaaaacttgattagggtgatggttcacgtagtgggccatcgcctgatagacggtttttcgccc tttgacgttggagtccacgttctttaatagtggactcttgttccaaactggaacaacactcaaccctatctcggtctattcttttgatttataagggattttgcc gatticggcctatiggttaaaaaatgagctgatttaacaaaaatttaacgcgaattttaacaaaatattaacgcttacaatticctgatgcggtattttctcctt cgctgacgcgcctgacgggcttgtctgctcccggcatccgcttacagacaagctgtgaccgtctccgggagctgcatgtgtcagaggttttcaccgt catcaccgaaacgcgcgagacgaaagggcctcgtgatacgcctatttttataggttaatgtcatgataataatggtttcttagacgtcaggtggcactttt cggggaaatgtgcgcggaacccctatttgtttatttttctaaatacattcaaatatgtatccgctcatgagacaataaccctgtggcagcatcacccgacg ggcgaaaatgagacgttgatcggcacgtaagaggttccaactttcaccataatgaaataagatcactaccgggcgtatttttgagttatcgagattttca ggagctaaggaagctaaaatggagaaaaaaatcactggatataccaccgttgatatatcccaatggcatcgtaaagaacattttgaggcatttcagtca gttgctcaatgtacctataaccagaccgttcagctggatattacggcctttttaaagaccgtaaagaaaataagcacaagttttatccggcctttattcac attettgecegectgatgaatgeteateeggaatteegtatggeaatgaaagaeggtgagetggtgatatgggatagtgtteaceettgttaeacegtttt ccatgagcaaactgaaacgitticatcgctctggagtgaataccacgacgatttccggcagtttctacacatatattcgcaagatgtggcgtgttacggt gaaaacctggcctatttccctaaagggtttattgagaatatgttttcgtctcagccaatcctgggtgagtttcaccagtttgatttaaacgtggccaatat

qvklqqsgaelvrsgtsvklsctasgfnikdsymhwlrqgpeqglewigwidpengdteyapkfqgkatfttdtssntaylqlssltsedtavyycnegtptgpyyfdywgqgttvtvss heavy chain:

linker:

sagasagagagagag

light chain:

envltqspaimsaspgekvtitcsasssvsymhwfqqkpgtspklwiystsnlasgyparfsgsgsgtsysltisrmeaedaatyycqqrssypltfgagtklelkraat

II.A:

pvsekqlaevvantitplmkaqsvpgmavaviyqgkphyytfgkadiaankpvtpqtlfelgsisktftgvlggdaiargeislddavtrywpqltgkqwqgirmldlatytagglplqvpdevtd naslirfyqnwqpqwkpgttriyanasigifgalavkpsgmpyeqamttrvlkplkldhtwinvpkaeeahyawgyrdgkavrvspgmldaqaygvktnvqdmanwvmanmapenva daslkqgialaqsrywnigsmyqglgwemlnwpveantvvetsfgnvalaplpvaevnppappvkaswvhktgstggfgsyvafipekqigivmlantsypnparveaayhilealq

Figure7A

Figure 7B

Figure 7C

	ations													.		
y chain	number of observations		•											CAB1 sequence		mutated residues
pos. heavy chain	mber o	obs	erved fr	eque	ncies of s	5 mc	est abund	land	amio acid	ds in	alignmer	it of I	human	AB1 se	COR	utated
			0.616	Q	0.346	D	sequ 0.014	G	0.014	A	0.003	LI	0.003		<u>U</u>	E
1	291	E	0.887	M	0.027	L	0.024	s	0.020		0.017	Ā	0.007	V		<u> </u>
2	293 291	à	0.852		0.034	R	0.027	T	0.027	E	. 0.014	V	0.014		•	7
4	282	7	0.975		0.011	A	0.007	·D	0.004	M	0.004			Ŀ		<u> </u>
5	276	V	0.645		0.148	L	0.120	A	0.022	М	0.014	N	0.014			
6	267	Ē	0.693	Q	0.263	Α	0.022	D	0.011	G	0.007	R	0.004			
7	265	S	0.951	W	0.019	X	0.015	1	800.0	Α	0.004	N	0.004			
8	266	G	0.989		0.008	I	0.004						0.004	G		
9	274	G	0.624		0.193	P	0.164	S	0.011	E	0.004	V	0.004			
10	271	G	0.638	E	0.192	D	0.081	A	0.070	T	0.011	<u> </u>	0.007	-		-
11	270	L	0.681 0.757	K	0.270	F	0.030	N	0.022	Ţ	0.015	A	0.007	V		
12	267	V	0.757	â	0.134	A	0.028	E	0.034	G	0.004	H	0.004			1
13	247 251	KP	0.968	A	0.012	K	0.008	G	0.004	L	0.004	S	0.004			7
14	244	G	0.783	S	0.156	T	0.033	Р	0.016	K	0.008	E	.0.004	G		
16	243	G	0.488	E	0.131	Q	0.107	Α	0.094	R	0.082	S	0.066			1
17	234	S	0.766	T	0.204	Α	0.009	F	0.009	Р	0.004	R	0.004	S		
18	244	L	0.812	V	0.155	M	0.008	Ą	0.004	E	0.004	۳)	0.004		-	
19	242	R	0.545	K	0.240	S	0.161	T	0.037	A	0.012	c)	0.004		-	
20	246	L	0.736	¥	0.791	븡	0.061	E	0.004	R	0.004	X	0.004			
21	218	S	0.729	T	0.234	S	0.005		0.503		0.000		0.000	C	 	
22	217 231	CA	0.558	K	0.203	Ť	0.117	E	0.048	V	0.022	ī	0.013		 	├─┤
23 24	235	Â	0.638	V	0.174	G	0.064	•)	0.055	T	0.030	F	0.026	A		
25	226	S	0.951	Y	0.027	F	0.009	C	0.004	K	0.004	T	0.004			
26	225	G	0.956	E	0.013	Α	0.009	۵	0.009	S	0.009	V	0.004	G		
27	213	F	0.559	Υ	0.164	G	0.150	D	0.080	S	0.019	Ļ	0.014			
28	203	T	0.571	S	0.286	4	0.049	N	0.049	P	0.015	A	0.005			1
29	207	F	0.749	¥	0.111	N	0.068	G	0.053	R	0.020	Ā	0.010	NK ·		1
30	202	8	0.762 0.482	7	0.119	D	0.104	N	0.027	G	0.060	K	0.040		HT	1
31	199	< 0	0.535	s	0.144	N	0.083	A	0.069	D	0.031	G	0.030		Hi	
32	202 197	A	0.269	Ÿ	0.162	G	0.147	W	0.117	S	0.091	T	0.066		HT	
33		S	0.520	-	0.210	w	0.070	A	0.055	Y	0.050	V	0.040		Hī	\dashv
35	196	S	0.372	Н	0.235	N	0.077	Α	0.061	G	0.051		0.046		H1 .	
35a	33	-	0.824	W	0.096	V	0.043	G	0.016		0.016		0.009		H2	· .
35b	27	-	0.856	N	0.064	G	0.037	S	0.032	A	0.005	IR	0.009		НЗ	
36	192	W	0.990	M	0.005	Ţ	0.005			<u> </u>		 		W]]
37	193	V.	0.741	<u> </u>	0.228	片	0.021	G	0.005	Q	0.005	 	 	놈	+	1
38	190	R	0.989	P	0.005	X	0.005		0.005	-			 	R	┤	_
39	190	Q	0.979	<u></u>	0.011	<u>g</u>	0.005	R	0.005	G	0.010	V	0.01		+	
40	191	A	0.634		0.199	S	0.073	MA	0.052		0.005		0.00		+	_1
41	187	P	0.914	S	0.043	P	0.021	Â	0.005		1 3.000	1-	1 3.00	E	1-1	 -}
42	187	G	0.925	히		F	0.124	E	0.005		0.005	1	1	a	1-1	-1
43	186	K	0.882	X		S	0.043	R	0.027	<u> </u>		1	1	G	+	\dashv
44	186	G		19	0.022	~	0.040					Ť	1	L	1-1	\dashv
45	186	늗		a	0.039	V	0.005				1	1	1	E	1-1	\dashv
46	184	듄		ST	0.011	1					<u> </u>			W	1	\dashv
4/1	104												-			

Figure 8A — \

						<u> </u>										
48	185	٧	0.48			1	0.173	<u> </u>	0.124		0.005		0.000	<u> -</u>		
49	185	G	0.600		0.216		0.162	E	0.005	<u> </u>	0.005	$\overline{\mathbf{v}}$	0.005	_	1	
50	185	R	0.14	_			0.119		0.114	G	0.081	Y	0.081		H2	
51	185		0.822		0.081		0.027	V	0.022	ĸ	0.016	<u>.M</u>	0.011	_	H2	—
52	184	S	0.250	_	0.239		0.123	K	0,060		0.054	D	0.050		H2	
52a	141	-	0.230		0.180		0.153	G	0,126	N	0.066	V	0.055	P	H2	L.
52b	34	-	0.814	K	0.115	R	0.060		0.005	Y	0.005			<u>L</u> :	H2	
52c	22	-	.0.880	T	0.044	V	0.033	S	0.022	A	0.011	G	0.005		H2	
53	184	S	0.228		0.163	Y	0.125	G	0.109	Z	0.082	H	0.054		H2	
54	183	G	0.328	S	0.202	D	0.129	N	0.112	. K∙	0.082	F	0.055		H2	
55	182	G	0.544	S	0.181	D	0.085	W	0.066	Y	0.060	N	0.020	G	H2	
56	182	S	0.231	D	0.182	N	0.147	T	0.143	Y	. 0.077	G	0.060	D	H2	
57	184	T	0.582	K	0.120	N	0.065	Α	0.054	1	0.054	P	0.022	T	H2	
58	183	Ÿ	0.322		0.216	٥	0.139	R	0.060	Ι	0.055	T	0.038	E	H2	
59	184	Ÿ	0.908		0.043	Z	0.016	S	0.011	D	0.005	G	0.005	Y	H2	
60	183	A	0.579	N	0.153	S	0.104	T	0.055	R	0.044	G	0.027	A	H2.	
61	184	D	0.277	_	0.239	a	0.174	A	0.141	V	0.076	T	0.033	P	H2	
62	185	S	0.686	K	0.146	P	0.065	N	0.038	G	0.016	R	0.016	K	H2	
63	186	V	0.511		0.247	F	0.215	S	0.011	Α	0.005	K	0.005	F	H2	
64	186	ĸ	0.581	a	0.274	R	0.054	N	0.032	Ε	0.022	T	0.022	Q	H2	
65	186	G	0.688	S	0.237	T	0.032	Α	0.016	D	0.011	E	0.011	G	H2	
66	186	R	0.935	a	0.054	Η	0.005		0.005		٠.			K	<u> </u>	1
67	186	F	0.462	V	0.409	<u> </u>	0.065	L	0.054	A.	0.005	S	0.005			
68	186	T	0.914		. 0.038	Α	0.016	S	0.011	K	0.005	N.	0.005			
69	187	1	0.791	M	0.139	٧	0.032	D	0.005	F	0.005	<u>G</u>	0.005	F		1
. 70	187	S	0.684	.7	0.214	N	0.070		0.032					<u>T</u>		
71	187	R	0.529	V	0.160	A	0.107	<u>P.</u>	0.064	T	0.053	K	0.043	_	· ·	_1
72	186	Δ.	0.902	N	0.071	K	0.016	E	0.011		0.000	<u> </u>		₽_		
73	185	T	0.368	N	0.266	D	0.177	K	0.070	트	0.059	<u>A</u> .	0.011		 	\square
74	186	S	0.946	<u> </u>	0.04B	<u> </u>	0.005				0.004	·	77 000	S		<u> </u>
75	187	K	0.674	-	0.139		0.070	R	0.027	A.	0.021	F	0.021			1
76	187	N	0.701	S	0.251	K	0.027	R	0.011		0.005	P	0.005			\vdash
77	187	T	0.615	9	0.273	S F	0.048	M.	0.021	+	0.005	M				\vdash
78	186	<u>_L</u> _	0.364	A	0.273	F	0.059	V	0.048	H	0.005	M	0.005		 	
79	187	Y	0.638	M	0.207	N	0.005	-	0.005		0.000	***	0.000	•		
. 80	187		0.782	E	0.205	K	0.122	R	0.032	T	0,032	N	-0.027	<u> </u>	<u> </u>	
81	187	0	0.525			₩	0.051	Ϋ́	0.015	i	0.010	-	0.005			
82	194	M	0.442	5	0.291	Ä	0.077	T	0.066	6	0.053		0.020			
82a	195	N	0.795	N	0.082	Ä	0.051	Ġ	0.026	Ŧ	0.021	Ā	0.010			-
82b	194	S	0.701	V	0.234	йt	0.041	Ğ	0.010	À	0.005	D	0.005		 	-
82c	197	H	0.528	+	0.239	ĸ	0.122	D	0.041	Ê	0.020	a	0.015			
83	197		0.495		0.182	ŝ	0.177	누	0.051	ī	0.035		0.030			-
.84			0.591	A		5	0.126	s	0.051	V	0.045		0.015			
85	198	E		~ †		5 †	0.010		0.005	<u> </u>				D		
86		무		\$	0.035		0.010	M	0.010	A	0.005	Q	0.005			
87	198	<u></u>		Ğ		計		71	0.005	V	0.005		0.005			
88		.		러		м	0.056	+	0.045	1	0.040		0.010			
89	198	V.		F		A	0.005	; 	0.005			<u> </u>	1	Ÿ		\dashv
90	199	¥.		F		ਰੇ 🖯	0.005	R	0.005	T	0.005		 	Ÿ		
91	199	Y		A		М	0.005		0.000		3,500	 	 	Ċ		
92	198	Ç			0.005		0.061	H	0.005	K	0.005	N	0.005			
93	198	<u> </u>		-		++	0.051	급	0.045	P	0.045		0.005			1
.94	198	R		<u>K</u>					0.045	N	0.043		0.023			_1
95	161	G					0.099	A	0.062						ua l	
96	159	Р		R	0.130		0.112	느		¥	0.062		0.062		НЗ	
	156	G		P	0.094		0.094	E	0.088	T	0.069		0.063		нз	_
98	155	G	0.152	<u>Y </u>	0.101		0.095	<u>U 1</u>	0.087	<u> </u>	0.076	S	0.063		НЗ	
	لتنس															

										_						
$\overline{}$	21			4										: .		
	number of observations															
	اڇ													ည္		mulated residues
듩	8									•				19		.
pos. light chain	2		•											CAB1 sequence		9
禹	2						•				•			5		夏
=	흳	. ot	served	frequ	encies o	f 5 mo	st abund	and a	mio acids	in all	gnment o	ווטח	nan	8	뜡	멸
S S	- 5		·				sequ	enes			0.053	·	•		S	. E
1	95	Q	0.589		0.158	N-	0.095	H	0.074	뭐	0.014	F	0.021		<u> </u>	
2	139	S	0.446		0.388		0.101	V M	0.043	 	0.064	+	0.043			
. 3	140	V	0.307		0.243	A	0.207	IVI	0.093	-	0.004		0.040	1		
4	140	L	0.971		0.029	s.	0.021		0.014	K	0.007		0.007	-		
5	141	T	0.915		0.007	-3	0.02		0.0.1	-:-		_=_	<u> </u>	a		
6	140	Q	O.993 O.906		0.029	S	0.029	A	0.022	E	0.014			S		1
7	139	P	0.741	A	0.137	- H	0.072	R	0.029	L	0.007	S	0.007	P	 	
8	139	P S	0.964		0.014	V	0.014	R	0,007			5	1	A		1
9	139	-	7.000													1
11	138	v	0.790	A	0.138	L	0.058	M	0.014					M		7
12	139	S	0.978	F	0.007	۲	0.007	. E	0.004	Q	0.004			S ·		
13	138	V	0.406	G	0.348	<u>A</u>	0.138	E	0.087	<u> </u>	0.014	D	0.007	A		
14	135	S	0.630	A	0.230	T	0.111	D	0.007	F	0.007		0.007	0		
15	135	. P	0.881	<u>L</u>	0.089	Α.	0.022	<u> </u>	0.007				 	G		
16	134	G ·	0.978	E	0.013	A	0.045	E	0.024	G	0.015	·H	0.008	E		
17	133	Q	0.811	S	0.263	Â	0.135	ĸ	0.068	Ē	0.008	G	0.008	K	-	
18	133	TV	0.454	A	0.385	-	0.146	G	0.008	L	0.008			V		
19	130 128	+	0.531	R	0.188	S	0.148	K	0.047		0.031	M	0.016			
21	121		0.901	V	0.050	L	0.017	Α	0.008	F	0.008	M	0.008	1		
22	120	S	0.492	T	0.475	A	0.008	G	0.008		0.008	N	0.008			
23	117	C	1.000				0.000		0.045		0.033		0.018	C	-	
.24	112	S	0.536	T	0.259	G	0.089	A	0.045	<u>Q</u>	0.003	<u> </u>	0.009		<u>L1</u>	
25	.108	G·	0.870	S	0.056	R T	0.028	Ñ	0.013	E	0.037	G	0.037		L1	 -{
26	108	D	0.339	N	0.118	K	0.113	A	0.104	<u> </u>	0.066	Ğ	0.047		17	
27	104	S	0.346	S	0.346	÷	0.115	G	0.067	A	0.058	۵	0.019		[1]	
28	104	L G	0.243	N	0.239	D	0.159	S	0.078	Р	0.068	H	0.058	V	रन	
30	100		0.291	V	0.165	D	0.136	N	0.107	E	0.058	S	0.049		11	
31	101	G	0.356	K	0.168	Α	0.099	E	0.084	Q	0.084	<u>D</u>	0.069	*	LT	
31a	54		0.438	S	0.167	G	0.104	2	0.083	Y	0.063	D	0.052		LI	
31b	49	-	0.495	N	0.227	Y	0.155	S	0.041	G	0.021	H	0.021		17	
31c	23	•	0.760	N	0.134	S	0.031	K	0.021		0.012		0.010		11	
31d	0	-	1.000					~					+		[]	
31e	0	·	1.000						 				 		L1	
311	0	•	1.000		0.134	F	0.093	Α	0.072	T	0.052	Н	0.041	1	님	
32	94		0.515	S	0.186	-;	0.082		0.072	F	0.010	P	0.010		讲	
33	97	V	0.680	유	0.120	A.	0.109	Ý	0.098		0.076		0.076			\dashv
34	92		0.990	Y	0.010)	1	W	=-+	
35	98	W	0.844	F	0.073	H	0.073	W	0.010		1		1	F	-+	
36	96	Y	0.916	R	0.042	E	0.011	Н	0.011	K	0.011	Y	0.011		+	
37	95	Q	0.862	H	0.053		0.053	E	0.011	K	0.011	V	0.011		-	
38	94	<u> </u>	0.333		0.172	R	0.161	H	0.151		0.086		0.043	K		
39	93	K	0.946	s	0.022	A	0.011	L	0.011	R	0.011			P	_	\neg
40	93	P													<u>-</u> _	

			•								_	_				
			0.871	Н		D	0.022	R	0.022	P	Un		0.011			T
41	93	G	0.424	Ť	0.217	K	0.163	R	0.087	S	0.0	G	0.022			Ŀ
42	92	Q	0.7 17	s	0.174	G	0.065	T	0.022	L	0.011	V	0.011	S		
43	92	A	0.978	Ā	0.011	М	0.011							P		
44	93	P	0.391	V	0.315	R	0.109	L	0.065	T	0.065	A	0.033		•	
45	92	K	0.728	V	0.076	F	0.065	T	0.043	Α	0.022	M	0.022			
46	92	븏	0.484	1	0.374		0.077	М	0.055	N	0.011			W		1
47	91		0.791	V	0.110	M	0.077	L	0.011	S	0.011			ŀ		
48	91	- \	0.769	F	0.110	R	0.066	·H	0.022	D	0.011		0.011			
49	91	D	0.303	E	0.210	a	0.093	V	0.067	G	0.056	K	0.056		L2	
50	89	<u> </u>	0.364	N·	0.205	·V	0.159	Н	0.068	T	0.068	G	0.034		L2	
51	88	N	0.393	. 7	0.213	S	0.202	D	0.101	A	0.022	F	0.011		L2	
52	89	K	0.307	D	0.193	Q	0.182	N	0.080	E	0.057	S	0.057	N	12	
53	88	R.	0.875	X	0.068	ĸ	0.034	L	0.011	W	0.011		••	<u>L</u> .	L2	<u> </u>
54	88	P	0.851	G	0.080	S	0.023	A	0.011	H	0.011	R	0.011		12	
55 56	85	S	0.837	D	0.081	P	0.023	Α.	0.012	L	0.012	T:	0.012		L2	
57	86	G	0.920	·E	0.034	S	0.011	T	0.011	W	0.011		0.011		ļ	
58	84	7	0.600		0.353	A	. 0.012	G	0.012	T	0.012	•	0.012		1	
59	84	P	0.847	S.	. 0.106	Α	0.012	<u>L</u>	0.012	V	0.012		0.012		 	
60	85	b	0.488	E	0.325	· N	0.047	<u> </u>	0.035	<u>H</u>	0.023	<u> </u>	0.023		 	1
61	87	R	0.977	D	0.011	•	0.011	·	2 2 4 4					R	 	
62	88	F	0.943		0.034	<u> </u>	0.011	R	0.011				·	S	<u> </u>	
63	87	S	0.989	F	0.011				0.002	<u></u>	 			G.	 	<u> </u>
64	87	G	0.885	Α.	0.069	<u>s</u>	0.023	·V	0.023					S	 	
65	87	S	0.977	G	0.011	Y	0.011	. T	0.081	.X	0.070	R	0.035		 	1
66	86	K	0.430	N	0.186	S K	0.186	<u> </u>	0.012	· <u>·</u>			0.000	s	 	· · · · ·
67	85		0.953	<u> </u>	0.024	A	0.012	<u> </u>	0.024	Q	0.012			G		
68	85		0.859	S	0.071	-Â	0.129	-	0.036	G	0.024	K	0.024			
69	185		0.434	- - -	0.341	E	0.082	Ā	0.024	·K	0.024			S		·
70	85		0.847	R	0.082	V	0.059	S	0.012		·		•	Y		1
71	85		0.447	s	0.424	Y	0.082	. A	0.035		0.012			S		
72 73	85 85		0.988	S	0.012	• ;	.]		·		<u> </u>			L	1.	
74	85		0.706	A	0.165	G	0.106	T.	0.012	<u> </u>	0.012	<u>:</u>		T	<u> </u>	
75	85		0.929	V	0.047	Α	0.012	L	0.012		- 222			-		
76	85		0.718	·T	0.200	N	0.035	<u> </u>	0.024	<u>G</u> .	0.012	R	0.012			
77	85		0.765	R	0.129	S	0.094	E	0.012		0010			R M		
78	85		0.588	V	0.224	T	0.106	<u>A</u>	0.071	<u>G</u>	0.012	A	0.012			
79	85		0.659	E	0.153	R	0.071	K·	0.047	P	0.024	7	0.012		-	
80	85		0.459	S	0.235	<u></u>	0.200	<u> </u>	0.047		0.033	7	0.012		 . 	
81	85	E	0.541	G	0.235	M	0.071	<u>D</u>	0.047	-	0.024		0.024	D.		
82	85			N	0.024	<u> E</u> _	0.012		 		 				 	
83	85	E	0.976		0.012	T	0.012	s	0.012		 		T .	A.	 	 -
84			0.941	_Ţ_	0.035	E	0.012		0.012		0.012	М	0.012		1	
85			0.859	E	0.082	ㅂ	0.024		J.J.E	<u> </u>	+	· · · ·	1	Y	 	— <u> </u>
86	85		0.976	1 1	0.012	<u>H</u>	0.012			 	1	 	1	İΫ́	 	
87	85		0.894	F	0.106		 		 		1	 	1	Ċ	 	
88			0.988	H	0.012	. 6	0.141	G	0.094	С	0.059	N	0.035		L3	
89			0.482	_ <u>A</u> _	0.153		0.141	₹	0.118		0.012		1		L3	
90	85		0.388	Ţ	0.271	<u> </u>	0.059	F	0.035		0.035		0.012		L3	
91	85		0.576	<u>Y</u>	0.247	_ <u>A</u> _	0.039	N	0.061		0.048		0.024		L3	
92	84		0.606	<u> </u>	0.095	A	0.071	N	0.095		0.071		0.060		L3	
93	84		0.405		0.179	G	0.107	R	0.060		0.058		0.048		L3	
94			0.536		0.155	N G	0.108		0.096		0.084		0.036		L3	——
95	82	S	0.265	<u> </u>	0.253	9	0.1001			<u> </u>		•	•			
-	-														**	

Figure 8B - 2

1				•			•						·	_			
		_	0691	S	0.183	-D	0.1591	N I	0.110	T	0.073	Q	0.049		L3		_
95a	60	•	0.268		0.098	G	0.098	H	0.085	E	0.049	R	0.037	T	L3		
95b	40		0.512	P	0.037	A	0.012	G	0.012						L3	· · ·	7
95c	5	-	0.939				0.0								L3		
95d	7	.	0.988	G	0.012						•				L3		┪
95e	0	-	1.000		 		-								L3		7
951	0	•	1.000		0.000	P	0.098	W	0.098	A	0.073	N	0.073		L3	<u> </u>	┪
96	80	V.	0.305	_G_	0.098	-	0.035	M	0.035	G	0.012				L3		_
97	85	V	0.788		0.118	L	0.047	141	0.000				٠.	F	1		7
98	86	F	0.988	<u>_v</u>	0.012	<u></u>		 -				•		G	1		7
99	89	G	0.989	<u> </u>	0.011		0.022	S	0.022		· ·			A	 		1
100	89	G	0.831	<u>. T</u>	0.124	_A_	0.022		0.023	:			1	G	1.		Ħ
101	89	G	1.000		0.044		 		ļ					T	1-1		┪
102	89	T	0.989	<u>G</u>	0.011	R	0.068	a	0.034	T	0.034	E	0.011	K	1		٦
103	88	K	0.739	N	0.091	6	0.000		-				· · · · ·	L.	1		1
104		T	0.667	<u>, v</u>	0.322	-	0.011	-	0.011					E	1		ป
105	87	T	0.954	S	0.023		0.0		-)		L	1		il
106	85	V	0.988	<u>T</u>	0.012	P	0.012	Q.	0.012					K			ī
106a	84	L	0.952	<u>v</u>	0.103	R	0.090		0.013	L	0.013			R	1	· ·	ī
107	78	G	0.782	<u>s</u>	0.022	R	0.022		1				1	A		•	ī
108			0.957	P	0.022	ä	0.022		1				1	A	\Box		П
109	46	P	0.957	<u>K</u>	0.022			<u> </u>	 		·			1			1
				 -			 		1								1
			1		<u></u>		<u> </u>						:		-		-
						-						,					

Figure 8B ~ 3

Figure

CDRs in NA06.6

Figure 10

pH 6.5 pH 7.4

Kd ≈ 18362

2 2 2 2

PH 6.5

Kd = 9978 Q pH 6.5

Kd = 4690 @ pH 6.5

CEA bound activity (mAU/min)

CEA bound activity (mAU/min)

pH 6.5 pH 7.4

6 4 2 6

CEA bound activity (mAU/min)

2000

BLA activity added (units/mL)

BLA activity added (units/mL)

BLA activity added (units/mL)

Figure 1

cumulative changes

Figure 12: CAB1 engineering - summary

protein	changes	comments
CAB1	parent	9
CAB1.1(NA05.6)	CAB1.1(NA05.6) R13K, T16G, W181V	increase stability
CAB1.2(NA06.6)	CAB1.2(NA06.6) K3Q, L37V, M146V	increase stability
CAB1.4(NA08.15)	CAB1.4(NA08.15) S184D, S226D	pH-dependent binding
CAB1.6	T100L	increased affinity
SW149.5	T102L, P104A, Y105I, F107N	increased affinity
CAB1.7	S163T, S165Y, Y166S	increased affinity
CAB1.7i	in BLA: K265A, S568A	remove T-cell epitopes

Figure 13: Binding of various CAB1 variants to immobilized CEA

Figure 14: Binding of various CAB1 variants to LS174T cells

1 QVQLQQSGAE LVKSGGSVKL SCTASGFNIK DSYMHWVRQG PEQGLEWIGW
51 IDPENGDTEY APKFQGKATF TTDTSSNTAY LQLSSLTSED TAVYYCNEGL
101 PLGAIYNDYW GQGTTVTVSS GGGGSGGGS GGGGSENVLT QSPAIVSASP
151 GEKVTITCSA SSSVSYMHWF QQKPGTSPKL VIYDTSNLAS GVPARFSGSG
201 SGTSYSLTIS RMEAEDAATY YCQQRDSYPL TFGAGTKLEL KRAATPVSEK
251 QLAEVVANTI TPLMKAQSVP GMAVAVIYQG KPHYYTFGKA DIAANKPVTP
301 QTLFELGSIS KTFTGVLGGD AIARGEISLD DAVTRYWPQL TGKQWQGIRM
351 LDLATYTAGG LPLQVPDEVT DNASLLRFYQ NWQPQWKPGT TRLYANASIG
401 LFGALAVKPS GMPYEQAMTT RVLKPLKLDH TWINVPKAEE AHYAWGYRDG
451 KAVRVSPGML DAQAYGVKTN VQDMANWVMA NMAPENVADA SLKQGIALAQ
501 SRYWRIGSMY QGLGWEMLNW PVEANTVVET SFGNVALAPL PVAEVNPPAP
551 PVKASWVHKT GSTGGFGSYV AFIPEKQIGI VMLANTSYPN PARVEAAYHI
601 LEALQ

Fig. 15A Amino acid sequence of SW149.5 protein

1 QVKLQQSGAE LVKSGGSVKL SCTASGFNIK DSYMHWLRQG PEQGLEWIGW
51 IDPENGDTEY APKFQGKATF TTDTSSNTAY LQLSSLTSED TAVYYCNEGT
101 PTGPYYFDYW GQGTTVTVSS GGGGSGGGS GGGGSENVLT QSPAIMSASP
151 GEKVTITCSA SSSVSYMHWF QQKPGTSPKL VIYSTSNLAS GVPARFSGSG
201 SGTSYSLTIS RMEAEDAATY YCQQRSSYPL TFGAGTKLEL KRAATPVSEK
251 QLAEVVANTI TPLMKAQSVP GMAVAVIYQG KPHYYTFGKA DIAANKPVTP
301 QTLFELGSIS KTFTGVLGGD AIARGEISLD DAVTRYWPQL TGKQWQGIRM
351 LDLATYTAGG LPLQVPDEVT DNASLLRFYQ NWQPQWKPGT TRLYANASIG
401 LFGALAVKPS GMPYEQAMTT RVLKPLKLDH TWINVPKAEE AHYAWGYRDG
451 KAVRVSPGML DAQAYGVKTN VQDMANWVMA NMAPENVADA SLKQGIALAQ
501 SRYWRIGSMY QGLGWEMLNW PVEANTVVET SFGNVALAPL PVAEVNPPAP
551 PVKASWVHKT GSTGGFGSYV AFIPEKQIGI VMLANTSYPN PARVEAAYHI
601 LEALQ

Fig. 15B Amino acid sequence of CAB1.1 protein

```
1 CAGGTGCAGC TGCAGCAGTC TGGGGCAGAA CTTGTGAAAT CAGGGGGCTC
   51 AGTCAAGTTG TCCTGCACAG CTTCTGGCTT CAACATTAAA GACTCCTATA
  101 TGCACTGGGT GAGGCAGGGG CCTGAACAGG GCCTGGAGTG GATTGGATGG
  151 ATTGATCCTG AGAATGGTGA TACTGAATAT GCCCCGAAGT TCCAGGGCAA
  201 GGCCACTTTT ACTACAGACA CATCCTCCAA CACAGCCTAC CTGCAGCTCA
  251 GCAGCCTGAC ATCTGAGGAC ACTGCCGTCT ATTATTGTAA TGAGGGGACT
  301 CCGACTGGGC CGTACTACTT TGACTACTGG GGCCAAGGGA CCACGGTCAC
  351 CGTCTCCTCA GGTGGAGGCG GTTCAGGCGG AGGTGGCTCT GGCGGTGGCG
  401 GATCAGAAAA TGTGCTCACC CAGTCTCCAG CAATCGTGTC TGCATCTCCA
  451 GGGGAGAAGG TCACCATAAC CTGCAGTGCC AGCTCAAGTG TAAGTTACAT
  501 GCACTGGTTC CAGCAGAAGC CAGGCACTTC TCCCAAACTC GTGATTTATA
  551 GCACATCCAA CCTGGCTTCT GGAGTCCCTG CTCGCTTCAG TGGCAGTGGA
  601 TCTGGGACCT CTTACTCTCT CACAATCAGC CGAATGGAGG CTGAAGATGC
  651 TGCCACTTAT TACTGCCAGC AAAGATCTAG TTACCCACTC ACGTTCGGTG
  701 CTGGCACCAA GCTGGAGCTG AAACGGGCGG CCACACCGGT GTCAGAAAAA
  751 CAGCTGGCGG AGGTGGTCGC GAATACGATT ACCCCGCTGA TGAAAGCCCA
  801 GTCTGTTCCA GGCATGGCGG TGGCCGTTAT TTATCAGGGA AAACCGCACT
  851 ATTACACATT TGGCAAGGCC GATATCGCGG CGAATAAACC CGTTACGCCT
  901 CAGACCCTGT TCGAGCTGGG TTCTATAAGT AAAACCTTCA CCGGCGTTTT
 951 AGGTGGGGAT GCCATTGCTC GCGGTGAAAT TTCGCTGGAC GATGCGGTGA
 1001 CCAGATACTG GCCACAGCTG ACGGGCAAGC AGTGGCAGGG TATTCGTATG
 1051 CTGGATCTCG CCACCTACAC CGCTGGCGGC CTGCCGCTAC AGGTACCGGA
 1101 TGAGGTCACG GATAACGCCT CCCTGCTGCG CTTTTATCAA AACTGGCAGC
 1151 CGCAGTGGAA GCCTGGCACA ACGCGTCTTT ACGCCAACGC CAGCATCGGT
1201 CTTTTTGGTG CGCTGGCGGT CAAACCTTCT GGCATGCCCT ATGAGCAGGC
1251 CATGACGACG CGGGTCCTTA AGCCGCTCAA GCTGGACCAT ACCTGGATTA
 1301 ACGTGCCGAA AGCGGAAGAG GCGCATTACG CCTGGGGCTA TCGTGACGGT
 1351 AAAGCGGTGC GCGTTTCGCC GGGTATGCTG GATGCACAAG CCTATGGCGT
 1401 GAAAACCAAC GTGCAGGATA TGGCGAACTG GGTCATGGCA AACATGGCGC
 1451 CGGAGAACGT TGCTGATGCC TCACTTAAGC AGGGCATCGC GCTGGCGCAG
1501 TCGCGCTACT GGCGTATCGG GTCAATGTAT CAGGGTCTGG GCTGGGAGAT
 1551 GCTCAACTGG CCCGTGGAGG CCAACACGGT GGTCGAGACG AGTTTTGGTA
 1601 ATGTAGCACT GGCGCCGTTG CCCGTGGCAG AAGTGAATCC ACCGGCTCCC
1651 CCGGTCAAAG CGTCCTGGGT CCATAAAACG GGCTCTACTG GCGGGTTTGG
1701 CAGCTACGTG GCCTTTATTC CTGAAAAGCA GATCGGTATT GTGATGCTCG
1751 CGAATACAAG CTATCCGAAC CCGGCACGCG TTGAGGCGGC ATACCATATC
1801 CTCGAGGCGC TACAG
```

Fig. 15C Nucleotide sequence of CAB1.2 gene

1 QVQLQQSGAE LVKSGGSVKL SCTASGFNIK DSYMHWVRQG PEQGLEWIGW 51 IDPENGDTEY APKFQGKATF TTDTSSNTAY LQLSSLTSED TAVYYCNEGT 101 PTGPYYFDYW GQGTTVTVSS GGGGSGGGGS GGGGSENVLT QSPAIVSASP 151 GEKVTITCSA SSSVSYMHWF QQKPGTSPKL VIYSTSNLAS GVPARFSGSG 201 SGTSYSLTIS RMEAEDAATY YCQQRSSYPL TFGAGTKLEL KRAATPVSEK 251 QLAEVVANTI TPLMKAQSVP GMAVAVIYQG KPHYYTFGKA DIAANKPVTP 301 QTLFELGSIS KTFTGVLGGD AIARGEISLD DAVTRYWPQL TGKQWQGIRM 351 LDLATYTAGG LPLQVPDEVT DNASLLRFYQ NWQPQWKPGT TRLYANASIG 401 LFGALAVKPS GMPYEQAMTT RVLKPLKLDH TWINVPKAEE AHYAWGYRDG 451 KAVRVSPGML DAQAYGVKTN VQDMANWVMA NMAPENVADA SLKQGIALAQ 501 SRYWRIGSMY QGLGWEMLNW PVEANTVVET SFGNVALAPL PVAEVNPPAP 551 PVKASWVHKT GSTGGFGSYV AFIPEKQIGI VMLANTSYPN PARVEAAYHI 601 LEALQ

Fig. 15D Amino acid sequence of CAB1.2 protein

H1CDR	(26) GFNIKDSYMH (35)
H2CDR	(50) WIDPENGDTEYAPKFQ (65)
H3CDR	(99)GTPTGPYYFDY(109)
L1CDR	(159) SASSSVSYMH (168)
L2CDR	(184) DTSNLAS (190)
L3CDR	(223) QQRDSYPLT (231)

Fig. 15E Amino acid sequences of CAB1.4 CDRs

н	1CDR	(154) GGCTTCAACATTAAAGACTCCTATATGCAC (183)	,	
н	2CDR	(226) TGGATTGATCCTGAGAATGGTGATACTGAATATGCCCCGAAGTTCCA	AG (273))
H	3CDR	(373) GGGACTCCGACTGGGCCGTACTACTTTGACTAC (405)	,	
L	1CDR	(553) AGTGCCAGCTCAAGTGTAAGTTACATGCAC (582)		
L	2CDR	(628) GATACATCCAACCTGGCTTCT (648)		
L	3CDR	(745) CAGCAAAGAGATAGTTACCCACTCACG (771)		

Fig. 15F Nucleotide sequence of CAB1.4 CDRs

WO 2005/058236 PCT/US2004/041429

1	CAGGTGCAGC	TGCAGCAGTC	TGGGGCAGAA	CTTGTGAAAT	CAGGGGGCTC
51	AGTCAAGTTG	TCCTGCACAG	CTTCTGGCTT	CAACATTAAA	GACTCCTATA
101	TGCACTGGGT	GAGGCAGGGG	CCTGAACAGG	GCCTGGAGTG	GATTGGATGG
151	ATTGATCCTG	AGAATGGTGA	TACTGAATAT	GCCCCGAAGT	TCCAGGGCAA
201	GGCCACTTTT	ACTACAGACA	CATCCTCCAA	CACAGCCTAC	CTGCAGCTCA
251	GCAGCCTGAC	ATCTGAGGAC	ACTGCCGTCT	ATTATTGTAA	TGAGGGGACT
301	CCGACTGGGC	CGTACTACTT	TGACTACTGG	GGCCAAGGGA	CCACGGTCAC
351	CGTCTCCTCA	GGTGGAGGCG	GTTCAGGCGG	AGGTGGCTCT	GGCGGTGGCG
401	GATCAGAAAA.	TGTGCTCACC	CAGTCTCCAG	CAATCGTGTC	TGCATCTCCA
451	GGGGAGAAGG	TCACCATAAC	CTGCAGTGCC	AGCTCAAGTG	TAAGTTACAT
501	GCACTGGTTC	CAGCAGAAGC	CAGGCACTTC	TCCCAAACTC	GTGATTTATG
551	ATACATCCAA	CCTGGCTTCT	GGAGTCCCTG	CTCGCTTCAG	TGGCAGTGGA
601	TCTGGGACCT	CTTACTCTCT	CACAATCAGC	CGAATGGAGG	CTGAAGATGC
651	TGCCACTTAT	TACTGCCAGC	AAAGAGATAG	TTACCCACTC	ACGTTCGGTG
701	CTGGCACCAA	GCTGGAGCTG	AAACGGGCGG	CCACACCGGT	GTCAGAAAAA
751	CAGCTGGCGG	AGGTGGTCGC	GAATACGATT	ACCCCGCTGA	TGAAAGCCCA
801	GTCTGTTCCA	GGCATGGCGG	TGGCCGTTAT	TTATCAGGGA	AAACCGCACT
851	ATTACACATT	TGGCAAGGCC	GATATCGCGG	CGAATAAACC	CGTTACGCCT
901	CAGACCCTGT	TCGAGCTGGG	TTCTATAAGT	AAAACCTTCA	CCGGCGTTTT
. 951	AGGTGGGGAT	GCCATTGCTC	GCGGTGAAAT	TTCGCTGGAC	GATGCGGTGA
1001	CCAGATACTG	GCCACAGCTG	ACGGGCAAGC	AGTGGCAGGG	TATTCGTATG
1051	CTGGATCTCG	CCACCTACAC	•	CTGCCGCTAC	AGGTACCGGA
1101	TGAGGTCACG	GATAACGCCT	CCCTGCTGCG	CTTTTATCAA	AACTGGCAGC
1151	CGCAGTGGAA	GCCTGGCACA		ACGCCAACGC	CAGCATCGGT
1201	CTTTTTGGTG	CGCTGGCGGT	CAAACCTTCT	GGCATGCCCT	
1251	CATGACGACG	CGGGTCCTTA	AGCCGCTCAA	GCTGGACCAT	ACCTGGATTA
1301	ACGTGCCGAA	AGCGGAAGAG	GCGCATTACG	CCTGGGGCTA	TCGTGACGGT
1351	AAAGCGGTGC	GCGTTTCGCC	GGGTATGCTG	GATGCACAAG	CCTATGGCGT
1401	GAAAACCAAC	GTGCAGGATA	TGGCGAACTG	GGTCATGGCA	AACATGGCGC
1451	CGGAGAACGT	TGCTGATGCC	TCACTTAAGC	AGGGCATCGC	GCTGGCGCAG
1501	TCGCGCTACT	GGCGTATCGG	GTCAATGTAT	CAGGGTCTGG	GCTGGGAGAT
1551	GCTCAACTGG	CCCGTGGAGG	CCAACACGGT	GGTCGAGACG	AGTTTTGGTA
1601	ATGTAGCACT	GGCGCCGTTG	CCCGTGGCAG	AAGTGAATCC	ACCGGCTCCC
1651	CCGGTCAAAG	CGTCCTGGGT	CCATAAAACG	GGCTCTACTG	GCGGGTTTGG
1701	CAGCTACGTG	GCCTTTATTC	CTGAAAAGCA	GATCGGTATT	GTGATGCTCG
1751	CGAATACAAG	CTATCCGAAC	CCGGCACGCG	TTGAGGCGGC	ATACCATATC
1801	CTCGAGGCGC	TACAG,			. : •

Fig. 15G. Nucleotide sequence of CAB1.4 gene

36/79

1	QVQLQQSGAE	LVKSGGSVKL	SCTASGFNIK	DSYMHWVRQG	PEQGLEWIGW
51	IDPENGDTEY	APKFQGKATF	TTDTSSNTAY	LQLSSLTSED	TAVYYCNEGT
101	PTGPYYFDYW	GQGTTVTVSS	GGGGSGGGS	GGGGSENVLT	QSPAIVSASP
151	GEKVTITCSA	SSSVSYMHWF	QQKPGTSPKL	VIYDTSNLAS	GVPARFSGSG
201.	SGTSYSLTIS	RMEAEDAATY	YCQQRDSYPL	TFGAGTKLEL	KRAATPVSEK
251	QLAEVVANTI	TPLMKAQSVP	GMAVAVIYQG	KPHYYTFGKA	DIAANKPVTP
301	QTLFELGSIS	KTFTGVLGGD			
351	LDLATYTAGG	LPLQVPDEVT	DNASLLRFYQ	NWQPQWKPGT	TRLYANASİG
401	LFGALAVKPS.	GMPYEQAMTT	RVLKPLKLDH.	TWINVPKAEE	AHYAWGYRDG
451	KAVRVSPGML	DAQAYGVKTN	VQDMANWVMA	NMAPENVADA	SLKQGIALAQ
501	SRYWRIGSMY	QGLGWEMLNW	PVEANTVVET	SFGNVALAPL	PVAEVNPPAP
551	PVKASWVHKT	GSTGGFGSYV	AFIPEKQIGI	VMLANTSYPN	PARVEAAYHI
601	LEALQ		•	•	

Fig. 15H Amino acid sequence of CAB1.4 protein

PCT/US2004/041429

H2CDR (226) TGGATTGATCCTGAGAATGGTGATACTGAATATGCCCCGAAGTTCCAG (273)

H3CDR (373) GGGCTCCCGACTGGGCCGTACTACTTTGACTAC (405)

H1CDR (154) GGCTTCAACATTAAAGACTCCTATATGCAC(183)

L1CDR (553) AGTGCCAGCTCAAGTGTAAGTTACATGCAC (582)

L2CDR (628) GATACATCCAACCTGGCTTCT (648)

L3CDR (745) CAGCAAAGAGATAGTTACCCACTCACG(771)

Fig. 15I Nucleotide sequences of CAB1.6 CDRs

```
1 CAGGTGCAGC TGCAGCAGTC TGGGGCAGAA CTTGTGAAAT CAGGGGGCTC
     51 AGTCAAGTTG TCCTGCACAG CTTCTGGCTT CAACATTAAA GACTCCTATA
    101 TGCACTGGGT GAGGCAGGGG CCTGAACAGG GCCTGGAGTG GATTGGATGG
    151 ATTGATCCTG AGAATGGTGA TACTGAATAT GCCCCGAAGT TCCAGGGCAA
    201 GGCCACTTTT ACTACAGACA CATCCTCCAA CACAGCCTAC CTGCAGCTCA
    251 GCAGCCTGAC ATCTGAGGAC ACTGCCGTCT ATTATTGTAA TGAGGGGCTC
    301 CCGACTGGGC CGTACTACTT TGACTACTGG GGCCAAGGGA CCACGGTCAC
351 CGTCTCCTCA GGTGGAGGCG GTTCAGGCGG AGGTGGCTCT GGCGGTGGCG
    401 GATCAGAAAA TGTGCTCACC CAGTCTCCAG CAATCGTGTC TGCATCTCCA
    451 GGGGAGAAGG TCACCATAAC CTGCAGTGCC AGCTCAAGTG TAAGTTACAT
    501 GCACTGGTTC CAGCAGAAGC CAGGCACTTC TCCCAAACTC GTGATTTATG
551 ATACATCCAA CCTGGCTTCT GGAGTCCCTG CTCGCTTCAG TGGCAGTGGA
    601 TCTGGGACCT CTTACTCTCT CACAATCAGC CGAATGGAGG CTGAAGATGC
 651 TGCCACTTAT TACTGCCAGC AAAGAGATAG TTACCCACTC ACGTTCGGTG
701 CTGGCACCAA GCTGGAGCTG AAACGGGCGG CCACACCGGT GTCAGAAAAA 751 CAGCTGGCGG AGGTGGTCGC GAATACGATT ACCCCGCTGA TGAAAGCCCA
 801 GTCTGTTCCA GGCATGGCGG TGGCCGTTAT TTATCAGGGA AAACCGCACT
   851 ATTACACATT TGGCAAGGCC GATATCGCGG CGAATAAACC CGTTACGCCT
  901 CAGACCTGT TCGAGCTGGG TTCTATAAGT AAAACCTTCA CCGGCGTTTT
951 AGGTGGGAT GCCATTGCTC GCGGTGAAAT TTCGCTGGAC GATGCGGTGA
1001 CCAGATACTG GCCACAGCTG ACGGGCAAGC AGTGGCAGGG TATTCGTATG
  1051 CTGGATCTCG CCACCTACAC CGCTGGCGGC CTGCCGCTAC AGGTACCGGA
  1101 TGAGGTCACG GATAACGCCT CCCTGCTGCG CTTTTATCAA AACTGGCAGC
 1151 CGCAGTGGAA GCCTGGCACA ACGCGTCTTT ACGCCAACGC CAGCATCGGT
1201 CTTTTTGGTG CGCTGGCGGT CAAACCTTCT GGCATGCCCT ATGAGCAGGC
  1251 CATGACGACG CGGGTCCTTA AGCCGCTCAA GCTGGACCAT ACCTGGATTA
 1301 ACGTGCCGAA AGCGGAAGAG GCGCATTACG CCTGGGGCTA TCGTGACGGT
  1351 AAAGCGGTGC GCGTTTCGCC GGGTATGCTG GATGCACAAG CCTATGGCGT
1401 GAAAACCAAC GTGCAGGATA TGGCGAACTG GGTCATGGCA AACATGGCGC
1451 CGGAGAACGT TGCTGATGCC TCACTTAAGC AGGGCATCGC GCTGGCGCAG
  1501 TCGCGCTACT GGCGTATCGG GTCAATGTAT CAGGGTCTGG GCTGGGAGAT
  1551 GCTCAACTGG CCCGTGGAGG CCAACACGGT GGTCGAGACG AGTTTTGGTA
  1601 ATGTAGCACT GGCGCCGTTG CCCGTGGCAG AAGTGAATCC ACCGGCTCCC 1651 CCGGTCAAAG CGTCCTGGGT CCATAAAACG GGCTCTACTG GCGGGTTTGG
  1701 CAGCTACGTG GCCTTTATTC CTGAAAAGCA GATCGGTATT GTGATGCTCG
  1751 CGAATACAAG CTATCCGAAC CCGGCACGCG TTGAGGCGGC ATACCATATC
  1801 CTCGAGGCGC TACAG
```

Fig. 15J Nucleotide sequence of CAB1.6 gene

PCT/US2004/041429 WO 2005/058236 39/79

1	CAGGTGCAGC	TGCAGCAGTC	TGGGGCAGAA	CTTGTGAAAT	CAGGGGGCTC	
51	AGTCAAGTTG	TCCTGCACAG	CTTCTGGCTT	CAACATTAAA	GACTCCTATA	
101	TGCACTGGGT	GAGGCAGGGG	CCTGAACAGG	GCCTGGAGTG	GATTGGATGG	
151	ATTGATCCTG	AGAATGGTGA	TACTGAATAT	GCCCCGAAGT	TCCAGGGCAA	•
201	GGCCACTTTT	ACTACAGACA	CATCCTCCAA	CACAGCCTAC	CTGCAGCTCA	
251	GCAGCCTGAC	ATCTGAGGAC	ACTGCCGTCT	ATTATTGTAA	TGAGGGGCTC	
301	CCGACTGGGC	CGTACTACTT	TGACTACTGG	GGCCAAGGGA	CCACGGTCAC	
351	CGTCTCCTCA	GGTGGAGGCG	GTTCAGGCGG	AGGTGGCTCT	GGCGGTGGCG	
401	GATCAGAAAA	TGTGCTCACC	CAGTCTCCAG	CAATCGTGTC	TGCATCTCCA	
451	GGGGAGAAGG	TCACCATAAC	CTGCAGTGCC	AGCTCAAGTG	TAAGTTACAT	
501	GCACTGGTTC	CAGCAGAAGC	CAGGCACTTC	TCCCAAACTC	GTGATTTATG	
551	ATACATCCAA	CCTGGCTTCT	GGAGTCCCTG	CTCGCTTCAG	TGGCAGTGGA.	
601	TCTGGGACCT	CTTACTCTCT	CACAATCAGC	CGAATGGAGG	CTGAAGATGC	
651	TGCCACTTAT	TACTGCCAGC	AAAGAGATAG	TTACCCACTC	ACGTTCGGTG	
701	CTGGCACCAA	GCTGGAGCTG	AAACGGGCGG	CCACACCGGT	GTCAGAAAAA	
751	CAGCTGGCGG	AGGTGGTCGC	GAATACGATT	ACCCCGCTGA	TGGCGGCCCA	
801	GTCTGTTCCA	GGCATGGCGG	TGGCCGTTAT	TTATCAGGGA	AAACCGCACT.	
851	ATTACACATT	TGGCAAGGCC	GATATCGCGG	CGAATAAACC	CGTTACGCCT	
901	CAGACCCTGT	TCGAGCTGGG	TTCTATAAGT	AAAACCTTCA	CCGGCGTTTT	
. 951	AGGTGGGGAT	GCCATTGCTC	GCGGTGAAAT	TTCGCTGGAC	GATGCGGTGA	
1001	CCAGATACTG	GCCACAGCTG	ACGGGCAAGC	AGTGGCAGGG	TATTCGTATG	
1051	CTGGATCTCG	CCACCTACAC	CGCTGGCGGC	CTGCCGCTAC	AGGTACCGGA	
1101	TGAGGTCACG	GATAACGCCT	CCCTGCTGCG	CTTTTATCAA	AACTGGCAGC	
1151	CGCAGTGGAA		ACGCGTCTTT	ACGCCAACGC	CAGCATCGGT	
1201	CTTTTTGGTG	CGCTGGCGGT	CAAACCTTCT	GGCATGCCCT.	ATGAGCAGGC	
1251	CATGACGACG	CGGGTCCTTA	AGCCGCTCAA	GCTGGACCAT	ACCTGGATTA	
1301	ACGTGCCGAA	AGCGGAAGAG	GCGCATTACG	CCTGGGGCTA	TCGTGACGGT	
1351	AAAGCGGTGC	GEGTTTCGCC	GGGTATGCTG	GATGCACAAG	CCTATGGCGT	
1401	GAAAACCAAC	GTGCAGGATA	TGGCGAACTG	GGTCATGGCA	AACATGGCGC	
1451	CGGAGAACGT	TGCTGATGCC	TCACTTAAGC	AGGGCATCGC	GCTGGCGCAG	•
1501	TCGCGCTACT	GGCGTATCGG	GTCAATGTAT	CAGGGTCTGG	GCTGGGAGAT	
1551	GCTCAACTGG	CCCGTGGAGG	CCAACACGGT	GGTCGAGACG	AGTTTTGGTA	
1601	ATGTAGCACT	GGCGCCGTTG	CCCGTGGCAG	AAGTGAATCC	ACCGGCTCCC	
1651	CCGGTCAAAG	CGTCCTGGGT	CCATAAAACG	GGCTCTACTG	GCGGGTTTGG	
1701	CGCGTACGTG	GCCTTTATTC	CTGAAAAGCA	GATCGGTATT	GTGATGCTCG	
1751	CGAATACAAG	CTATCCGAAC	CCGGCACGCG	TTGAGGCGGC	ATACCATATC	
1801	CTCGAGGCGC	TACAG				

Fig. 15K Nucleotide sequence of CAB1.6i gene

H1CDR (154) GGCTTCAACATTAAAGACTCCTATATGCAC(183)

H2CDR (226) TGGATTGATCCTGAGAATGGTGATACTGAATATGCCCCGAAGTTCCAG (273)

H3CDR (373) GGGCTCCCGCTCGGGGCCATTTACAACGACTAC(405)

L1CDR (553) AGTGCCAGCTCAGCTGTATATGCCATGCAC (582)

L2CDR (628) GATACATCCAACCTGGCTTCT (648)

L3CDR (745) CAGCAAAGAGATAGTTACCCACTCACG(771)

Fig. 15L Nucleotide sequences of CAB1.7 CDRs

41/79

		maan aan ama	TGGGGCAGAA	CTTGTGAAAT	CAGGGGGCTC
1	CAGGTGCAGC	TGCAGCAGTC	CTTCTGGCTT	CAACATTAAA	GACTCCTATA
51	AGTCAAGTTG	TCCTGCACAG		GCCTGGAGTG	GATTGGATGG
101	TGCACTGGGT	GAGGCAGGG	CCTGAACAGG	GCCCGAAGT	TCCAGGGCAA
151	ATTGATCCTG	AGAATGGTGA	TACTGAATAT		CTGCAGGCTCA
201	GGCCACTTTT	ACTACAGACA	CATCCTCCAA	CACAGCCTAC	
251	GCAGCCTGAC	ATCTGAGGAC	ACTGCCGTCT	ATTATTGTAA	TGAGGGGCTC
301	CCGCTCGGGG	CCATTTACAA	CGACTACTGG	GGCCAAGGGA	CCACGGTCAC
351	CGTCTCCTCA	GGTGGAGGCG	GTTCAGGCGG	AGGTGGCTCT	GGCGGTGGCG
401	GATCAGAAAA	TGTGCTCACC	CAGTCTCCAG	CAATCGTGTC	TGCATCTCCA
451	GGGGAGAAGG	TCACCATAAC	CTGCAGTGCC	AGCTCAGCTG	TATATGCCAT
501	GCACTGGTTC	CAGCAGAAGC	CAGGCACTTC	TCCCAAACTC	GTGATTTATG
551	ATACATCCAA	CCTGGCTTCT	001101000	CTCGCTTCAG	TGGCAGTGGA
601	TCTGGGACCT	CTTACTCTCT	CACAATCAGC	CGAATGGAGG	CTGAAGATGC
651	TGCCACTTAT	TACTGCCAGC	AAAGAGATAG	TTACCCACTC	ACGTTCGGTG
701	CTGGCACCAA	GCTGGAGCTG	AAACGGGCGG	CCACACCGGT	GTCAGAAAA
751	CAGCTGGCGG	AGGTGGTCGC	GAATACGATT	ACCCCGCTGA	TGAAAGCCCA
801	GTCTGTTCCA	GGCATGGCGG	TGGCCGTTAT	TTATCAGGGA	AAACCGCACT
851	ATTACACATT	TGGCAAGGCC	GATATCGCGG	CGAATAAACC	CGTTACGCCT
901	CAGACCCTGT	TCGAGCTGGG	TTCTATAAGT	AAAACCTTCA	CCGGCGTTTT
951	AGGTGGGGAT	GCCATTGCTC	GCGGTGAAAT	TTCGCTGGAC	GATGCGGTGA
1001	CCAGATACTG	GCCACAGCTG	ACGGGCAAGC	AGTGGCAGGG	TATTCGTATG
1051	CTGGATCTCG	CCACCTACAC	CGCTGGCGGC	CTGCCGCTAC	AGGTACCGGA
1101	TGAGGTCACG	GATAACGCCT	CCCTGCTGCG	CTTTTATCAA	AACTGGCAGC
1151	CGCAGTGGAA	GCCTGGCACA	ACGCGTCTTT	ACGCCAACGC	CAGCATCGGT
1201	CTTTTTGGTG	CGCTGGCGGT	CAAACCTTCT	GGCATGCCCT	ATGAGCAGGC
1251	CATGACGACG	CGGGTCCTTA	AGCCGCTCAA	GCTGGACCAT	
1301	ACGTGCCGAA	AGCGGAAGAG	GCGCATTACG	CCTGGGGCTA	TCGTGACGGT
1351	AAAGCGGTGC	GCGTTTCGCC	GGGTATGCTG	GATGCACAAG	CCTATGGCGT
1401	GAAAACCAAC	GTGCAGGATA	TGGCGAACTG	GGTCATGGCA	AACATGGCGC
1451	CGGAGAACGT	TGCTGATGCC	TCACTTAAGC	AGGGCATCGC	GCTGGCGCAG
1501	TCGCGCTACT	GGCGTATCGG	GTCAATGTAT	CAGGGTCTGG	GCTGGGAGAT
1551	GCTCAACTGG	CCCGTGGAGG	CCAACACGGT	GGTCGAGACG	AGTTTTGGTA
1601	ATGTAGCACT	GGCGCCGTTG	CCCGTGGCAG	AAGTGAATCC	ACCGGCTCCC
1651	CCGGTCAAAG	CGTCCTGGGT	CCATAAAACG	GGCTCTACTG	GCGGGTTTGG
1701	CAGCTACGTG	GCCTTTATTC	CTGAAAAGCA	GATCGGTATT	GTGATGCTCG
1751	CGAATACAAG	CTATCCGAAC	CCGGCACGCG	TTGAGGCGGC	ATACCATATC
1801	CTCGAGGCGC	TACAG			•

Fig. 15M Nucleotide sequence of CAB1.7 gene

WO 2005/058236 PCT/US2004/041429 42/79

1	CAGGTGCAGC	TGCAGCAGTC	TGGGGCAGAA	CTTGTGAAAT	CAGGGGGCTC
51	AGTCAAGTTG	TCCTGCACAG	CTTCTGGCTT	CAACATTAAA	GACTCCTATA
101	TGCACTGGGT	GAGGCAGGGG	CCTGAACAGG	GCCTGGAGTG	GATTGGATGG
151	ATTGATCCTG	AGAATGGTGA	TACTGAATAT	GCCCCGAAGT	TCCAGGGCAA
201	GGCCACTTTT	ACTACAGACA	CATCCTCCAA	CACAGCCTAC	CTGCAGCTCA
251	GCAGCCTGAC	ATCTGAGGAC	ACTGCCGTCT	ATTATTGTAA	TGAGGGGCTC
301	CCGCTCGGGG	CCATTTACAA	CGACTACTGG	GGCCAAGGGA	CCACGGTCAC
351	CGTCTCCTCA	GGTGGAGGCG	GTTCAGGCGG	AGGTGGCTCT	GGCGGTGGCG
401	GATCAGAAAA	TGTGCTCACC	CAGTCTCCAG	CAATCGTGTC	TGCATCTCCA
451	GGGGAGAAGG	TCACCATAAC	CTGCAGTGCC	AGCTCAGCTG	TATATGCCAT
501	GCACTGGTTC	CAGCAGAAGC	CAGGCACTTC	TCCCAAACTC	GTGATTTATG
551	ATACATCCAA	CCTGGCTTCT	GGAGTCCCTG	CTCGCTTCAG	TGGCAGTGGA
601	TCTGGGACCT	CTTACTCTCT	CACAATCAGC	CGAATGGAGG	CTGAAGATGC
651	TGCCACTTAT	TACTGCCAGC	AAAGAGATAG	TTACCCACTC	ACGTTCGGTG
701	CTGGCACCAA	GCTGGAGCTG	AAACGGGCGG	CCACACCGGT	GTCAGAAAA
751	CAGCTGGCGG	AGGTGGTCGC	GAATACGATT	ACCCCGCTGA	TGGCGGCCCA
801	GTCTGTTCCA	GGCATGGCGG	TGGCCGTTAT	TTATCAGGGA	AAACCGCACT
851	ATTACACATT	TGGCAAGGCC	GATATCGCGG	CGAATAAACC	CGTTACGCCT
901	CAGACCCTGT	TCGAGCTGGG	TTCTATAAGT	AAAACCTTCA	CCGGCGTTTT
951	AGGTGGGGAT	GCCATTGCTC	GCGGTGAAAT	TTCGCTGGAC	GATGCGGTGA
1001	CCAGATACTG	GCCACAGCTG	ACGGGCAAGC	AGTGGCAGGG	TATTCGTATG
1051	CTGGATCTCG	CCACCTACAC	CGCTGGCGGC	CTGCCGCTAC	AGGTACCGGA
1101	TGAGGTCACG	GATAACGCCT	CCCTGCTGCG	CTTTTATCAA	AACTGGCAGC
1151	CGCAGTGGAA	GCCTGGCACA	ACGCGTCTTT	ACGCCAACGC	CAGCATCGGT
1201	CTTTTTGGTG	CGCTGGCGGT	CAAACCTTCT	GGCATGCCCT	ATGAGCAGGC
1251	CATGACGACG	CGGGTCCTTA	AGCCGCTCAA	GCTGGACCAT	ACCTGGATTA
1301	ACGTGCCGAA	AGCGGAAGAG	GCGCATTACG	CCTGGGGCTA	TCGTGACGGT
1351	AAAGCGGTGC	GCGTTTCGCC	GGGTATGCTG	GATGCACAAG	CCTATGGCGT
1401	GAAAACCAAC	GTGCAGGATA	TGGCGAACTG	GGTCATGGCA	AACATGGCGC
1451	CGGAGAACGT	TGCTGATGCC	TCACTTAAGC	AGGGCATCGC	GCTGGCGCAG
1501	TCGCGCTACT	GGCGTATCGG	GTCAATGTAT	CAGGGTCTGG	GCTGGGAGAT
1551	GCTCAACTGG	CCCGTGGAGG	CCAACACGGT	GGTCGAGACG	AGTTTTGGTA
1601	ATGTAGCACT	GGCGCCGTTG	CCCGTGGCAG	AAGTGAATCC	ACCGGCTCCC
1651	CCGGTCAAAG	CGTCCTGGGT	CCATAAAACG	GGCTCTACTG	GCGGGTTTGG
1701	CGCGTACGTG	GCCTTTATTC	CTGAAAAGCA	GATCGGTATT	GTGATGCTCG
1751	CGAATACAAG	CTATCCGAAC	CCGGCACGCG	TTGAGGCGGC	ATACCATATC
1801	CTCGAGGCGC	TACAG			

Fig. 15N Nucleotide sequence of CAB1.7i gene

H1CDR (154)GGCTTCAACATTAAAGACTCCTATATGCAC(183)

H2CDR (226) TGGATTGATCCTGAGAATGGTGATACTGAATATGCCCCGAAGTTCCAG (273)

H3CDR (373) GGGACTCCGACTGGGCCGTACTACTTTGACTAC (405)

L1CDR (553) AGTGCCAGCTCAAGTGTAAGTTACATGCAC (582)

L2CDR (628) AGCACATCCAACCTGGCTTCT (648)

L3CDR (745) CAGCAAAGATCTAGTTACCCACTCACG (771)

Fig. 150 Nucleotide sequences of CAB1 CDRs

44/79

				•	
1	CAGGTGAAAC	TGCAGCAGTC	TGGGGCAGAA	CTTGTGAGGT	CAGGGACCTC
-51	AGTCAAGTTG	TCCTGCACAG	CTTCTGGCTT	CAACATTAAA	GACTCCTATA
101	TGCACTGGTT	GAGGCAGGGG	CCTGAACAGG	GCCTGGAGTG	GATTGGATGG
151	ATTGATCCTG	AGAATGGTGA	TACTGAATAT	GCCCGAAGT	TCCAGGGCAA
201	GGCCACTTTT	ACTACAGACA	CATCCTCCAA	CACAGCCTAC	CTGCAGCTCA
251	GCAGCCTGAC	ATCTGAGGAC	ACTGCCGTCT	ATTATTGTAA	TGAGGGGACT
301	CCGACTGGGC	CGTACTACTT	TGACTACTGG	GGCCAAGGGA	CCACGGTCAC
351	CGTCTCCTCA	GGTGGAGGCG	GTTCAGGCGG	AGGTGGCTCT	GGCGGTGGCG
401	GATCAGAAAA	TGTGCTCACC	CAGTCTCCAG	CAATCATGTC	TGCATCTCCA
451	GGGGAGAAGG	TCACCATAAC	CTGCAGTGCC	AGCTCAAGTG	TAAGTTACAT
501	GCACTGGTTC	CAGCAGAAGC	CAGGCACTTC	TCCCAAACTC	TGGATTTATA
551	GCACATCCAA	CCTGGCTTCT	GGAGTCCCTG	CTCGCTTCAG	TGGCAGTGGA
601	TCTGGGACCT	CTTACTCTCT	CACAATCAGC	CGAATGGAGG	CTGAAGATGC
651	TGCCACTTAT	TACTGCCAGC	AAAGATCTAG	TTACCCACTC	ACGTTCGGTG
701	CTGGCACCAA	GCTGGAGCTG	AAACGGGCGG	CCACACCGGT	GTCAGAAAAA
751	CAGCTGGCGG	AGGTGGTCGC	GAATACGATT	ACCCCGCTGA	TGAAAGCCCA
801	GTCTGTTCCA	GGCATGGCGG	TGGCCGTTAT	TTATCAGGGA	AAACCGCACT
851	ATTACACATT	TGGCAAGGCC	GATATCGCGG	CGAATAAACC	CGTTACGCCT
901	CAGACCCTGT	TCGAGCTGGG	TTCTATAAGT	AAAACCTTCA	CCGGCGTTTT
951	AGGTGGGGAT	GCCATTGCTC	GCGGTGAAAT	TTCGCTGGAC	GATGCGGTGA
1001	CCAGATACTG	GCCACAGCTG	ACGGGCAAGC	AGTGGCAGGG	TATTCGTATG
1051	CTGGATCTCG	CCACCTACAC	CGCTGGCGGC	CTGCCGCTAC	AGGTACCGGA
1101	TGAGGTCACG	GATAACGCCT	CCCTGCTGCG	CTTTTATCAA	AACTGGCAGC
1151	CGCAGTGGAA	GCCTGGCACA	ACGCGTCTTT	ACGCCAACGC	CAGCATCGGT
1201	CTTTTTGGTG	CGCTGGCGGT	CAAACCTTCT	GGCATGCCCT	ATGAGCAGGC
1251	CATGACGACG	CGGGTCCTTA	AGCCGCTCAA	GCTGGACCAT	ACCTGGATTA
1301	ACGTGCCGAA	AGCGGAAGAG	GCGCATTACG	CCTGGGGCTA	TCGTGACGGT
1351	AAAGCGGTGC	GCGTTTCGCC	GGGTATGCTG	GATGCACAAG	CCTATGGCGT
1401	GAAAACCAAC	GTGCAGGATA	TGGCGAACTG	GGTCATGGCA	AACATGGCGC
1451	CGGAGAACGT	TGCTGATGCC	TCACTTAAGC	AGGGCATCGC	GCTGGCGCAG
1501	TCGCGCTACT	GGCGTATCGG	GTCAATGTAT	CAGGGTCTGG	GCTGGGAGAT
1551	GCTCAACTGG	CCCGTGGAGG	CCAACACGGT	GGTCGAGACG	AGTTTTGGTA
1601	ATGTAGCACT	GGCGCCGTTG	CCCGTGGCAG	AAGTGAATCC	ACCGGCTCCC
1651	CCGGTCAAAG	CGTCCTGGGT	CCATAAAACG	GGCTCTACTG	GCGGGTTTGG
1701	CAGCTACGTG	GCCTTTATTC	CTGAAAAGCA	GATCGGTATT	GTGATGCTCG
1751	CGAATACAAG	CTATCCGAAC	CCGGCACGCG	TTGAGGCGGC	ATACCATATC
1801	CTCGAGGCGC	TACAG			,

Fig. 15P Nucleotide sequence of CAB1 gene

H1CDR

(26) GFNIKDSYMH (35)

H2CDR (50) WIDPENGDTEYAPKFQ (65)

H3CDR (99) GLPLGAIYNDY (109)

L1CDR (159) SASSSVSYMH (168)

L2CDR (184) DTSNLAS (190)

L3CDR (223) QQRDSYPLT (231)

Fig. 15Q Amino acid sequences of SW149.5 CDRs

H1CDR (154) GGCTTCAACATTAAAGACTCCTATATGCAC(183)

H2CDR (226) TGGATTGATCCTGAGAATGGTGATACTGAATATGCCCCGAAGTTCCAG (273)

H3CDR (373) GGGCTCCCGCTCGGGGCCATTTACAACGACTAC (405)

L1CDR (553) AGTGCCAGCTCAAGTGTAAGTTACATGCAC (582)

L2CDR (628) GATACATCCAACCTGGCTTCT (648)

L3CDR (745) CAGCAAAGAGATAGTTACCCACTCACG(771)

Fig. 15R Nucleotide sequences of SW149.5 CDRs

WO 2005/058236 PCT/US2004/041429

1	CAGGTGCAGC	TGCAGCAGTC	TGGGGCAGAA	CTTGTGAAAT	CAGGGGGCTC
51	AGTCAAGTTG	TCCTGCACAG	CTTCTGGCTT	CAACATTAAA	GACTCCTATA
101	TGCACTGGGT	GAGGCAGGGG	CCTGAACAGG	GCCTGGAGTG	GATTGGATGG
151	ATTGATCCTG	AGAATGGTGA	TACTGAATAT	GCCCGAAGT	TCCAGGGCAA
201	GGCCACTTTT	ACTACAGACA	CATCCTCCAA	CACAGCCTAC	CTGCAGCTCA
251	GCAGCCTGAC	ATCTGAGGAC	ACTGCCGTCT	ATTATTGTAA	TGAGGGGCTC
301	CCGCTCGGGG	CCATTTACAA	CGACTACTGG	GGCCAAGGGA	CCACGGTCAC
351	CGTCTCCTCA	GGTGGAGGCG	GTTCAGGCGG	AGGTGGCTCT	GGCGGTGGCG
401	GATCAGAAAA	TGTGCTCACC	CAGTCTCCAG	CAATCGTGTC	TGCATCTCCA
451	GGGGAGAAGG	TCACCATAAC	CTGCAGTGCC	AGCTCAAGTG	TAAGTTACAT
501	GCACTGGTTC	CAGCAGAAGC	CAGGCACTTC	TCCCAAACTC	GTGATTTATG
551	ATACATCCAA	CCTGGCTTCT	GGAGTCCCTG	CTCGCTTCAG	TGGCAGTGGA
601	TCTGGGACCT	CTTACTCTCT	CACAATCAGC	CGAATGGAGG	CTGAAGATGC
651	TGCCACTTAT	TACTGCCAGC	AAAGAGATAG	TTACCCACTC	ACGTTCGGTG
701	CTGGCACCAA	GCTGGAGCTG	AAACGGGCGG	CCACACCGGT	GTCAGAAAAA
751	CAGCTGGCGG	AGGTGGTCGC	GAATACGATT	ACCCCGCTGA	TGAAAGCCCA
801	GTCTGTTCCA	GGCATGGCGG	TGGCCGTTAT	TTATCAGGGA	AAACCGCACT
851	ATTACACATT	TGGCAAGGCC	GATATCGCGG	CGAATAAACC	CGTTACGCCT
901	CAGACCCTGT	TCGAGCTGGG	TTCTATAAGT	AAAACCTTCA	CCGGCGTTTT
951	AGGTGGGGAT	GCCATTGCTC	GCGGTGAAAT	TTCGCTGGAC	GATGCGGTGA
1001	CCAGATACTG	GCCACAGCTG	ACGGGCAAGC	AGTGGCAGGG	TATTCGTATG
1051	CTGGATCTCG	CCACCTACAC	CGCTGGCGGC	CTGCCGCTAC	AGGTACCGGA
1101	TGAGGTCACG	GATAACGCCT	CCCTGCTGCG	CTTTTATCAA	AACTGGCAGC
1151	CGCAGTGGAA	GCCTGGCACA	ACGCGTCTTT	ACGCCAACGC	CAGCATCGGT
1201	CTTTTTGGTG	CGCTGGCGGT	CAAACCTTCT	GGCATGCCCT	ATGAGCAGGC
1251	CATGACGACG	CGGGTCCTTA	AGCCGCTCAA	GCTGGACCAT	ACCTGGATTA
1301	ACGTGCCGAA	AGCGGAAGAG	GCGCATTACG	CCTGGGGCTA	TCGTGACGGT
1351	AAAGCGGTGC	GCGTTTCGCC	GGGTATGCTG	GATGCACAAG	CCTATGGCGT
1401	GAAAACCAAC	GTGCAGGATA	TGGCGAACTG	GGTCATGGCA	AACATGGCGC
1451	CGGAGAACGT	TGCTGATGCC	TCACTTAAGC	AGGGCATCGC	GCTGGCGCAG
1501	TCGCGCTACT	GGCGTATCGG	GTCAATGTAT	CAGGGTCTGG	GCTGGGAGAT
1551	GCTCAACTGG	CCCGTGGAGG	CCAACACGGT	GGTCGAGACG	AGTTTTGGTA
1601	ATGTAGCACT	GGCGCCGTTG	CCCGTGGCAG	AAGTGAATCC	ACCGGCTCCC
1651	CCGGTCAAAG	CGTCCTGGGT	CCATAAAACG	GGCTCTACTG	GCGGGTTTGG
1701	CAGCTACGTG	GCCTTTATTC	CTGAAAAGCA	GATCGGTATT	GTGATGCTCG
1751	CGAATACAAG	CTATCCGAAC	CCGGCACGCG	TTGAGGCGGC	ATACCATATC
1801	CTCGAGGCGC	TACAG .		•	

Fig. 15S Nucleotide sequence of SW149.5 gene

						•
	1.	ACACCGGTGT	CAGAAAAACA	GCTGGCGGAG	GTGGTCGCGA	ATACGATTAC
	51	CCCGCTGATG	AAAGCCCAGT	CTGTTCCAGG	CATGGCGGTG	GCCGTTATTT
	101	ATCAGGGAAA	ACCGCACTAT	TACACATTTG	GCAAGGCCGA	TATCGCGGCG
	151	AATAAACCCG	TTACGCCTCA	GACCCTGTTC	GAGCTGGGTT	CTATAAGTAA
	201	AACCTTCACC	GGCGTTTTAG	GTGGGGATGC	CATTGCTCGC	GGTGAAATTT
	251	CGCTGGACGA	TGCGGTGACC	AGATACTGGC	CACAGCTGAC	GGGCAAGCAG
	301	TGGCAGGGTA	TTCGTATGCT	GGATCTCGCC	ACCTACACCG	CTGGCGGCCT
	351	GCCGCTACAG	GTACCGGATG	AGGTCACGGA	TAACGCCTCC	CTGCTGCGCT
	401	TTTATCAAAA	. CTGGCAGCCG	CAGTGGAAGC	CTGGCACAAC	GCGTCTTTAC
	451	GCCAACGCCÀ	GCATCGGTCT	TTTTGGTGCG	CTGGCGGTCA	AACCTTCTGG
	501	CATGCCCTAT	GAGCAGGCCA	TGACGACGCG	GGTCCTTAAG	CCGCTCAAGC
	551	TGGACCATAC	CTGGATTAAC	GTGCCGAAAG	CGGAAGAGGC	GCATTACGCC
	601	TGGGGCTATC	GTGACGGTAA	AGCGGTGCGC	GTTTCGCCGG	GTATGCTGGA
	651	TGCACAAGCC	TATGGCGTGA	AAACCAACGT	GCAGGATATG	GCGAACTGGG
	7.01	TCATGGCAAA	CATGGCGCCG	GAGAACGTTG	CTGATGCCTC	ACTTAAGCAG
	751	GGCATCGCGC	TGGCGCAGTC	GCGCTACTGG	CGTATCGGGT	CAATGTATCA
	801	GGGTCTGGGC	TGGGAGATGC	TCAACTGGCC	CGTGGAGGCC	AACACGGTGG
	851	TCGAGACGAG	TTTTGGTAAT	GTAGCACTGG	CGCCGTTGCC	CGTGGCAGAA
	901	GTGAATCCAC	CGGCTCCCCC	GGTCAAAGCG	TCCTGGGTCC	ATAAAACGGG
	. 951	CTCTACTGGC	GGGTTTGGCA	GCTACGTGGC	CTTTATTCCT	GAAAAGCAGA
	1001	TCGGTATTGT	GATGCTCGCG	AATACAAGCT	ATCCGAACCC	GGCACGCGTT
	1051	GAGGCGGCAT	ACCATATCCT	CGAGGCGCTA	CAG	•
F	ig. 1	5T Nucleot:	ide sequence	e of BLA ger	je Je	•
				•		

WO 2005/058236 PCT/US2004/041429

			•		
1	CAGGTGAAAC	TGCAGCAGTC	TGGGGCAGAA	CTTGTGAAAT	CAGGGGGCTC
51	AGTCAAGTTG	TCCTGCACAG	CTTCTGGCTT	CAACATTAAA	GACTCCTATA
101	TGCACTGGTT	GAGGCAGGGG	CCTGAACAGG	GCCTGGAGTG	GATTGGATGG
151	ATTGATCCTG	AGAATGGTGA	TACTGAATAT	GCCCCGAAGT	TCCAGGGCAA
201	GGCCACTTTT	ACTACAGACA	CATCCTCCAA	CACAGCCTAC	CTGCAGCTCA
251	GCAGCCTGAC	ATCTGAGGAC	ACTGCCGTCT	ATTATTGTAA	TGAGGGGACT
301	CCGACTGGGC	CGTACTACTT	TGACTACTGG	GGCCAAGGGA	CCACGGTCAC
351	CGTCTCCTCA	GGTGGAGGCG	GTTCAGGCGG	AGGTGGCTCT	GGCGGTGGĊG
401	GATCAGAAAA	TGTGCTCACC	CAGTCTCCAG	. CAATCATGTC	TGCATCTCCA
451	GGGGAGAAGG	TCACCATAAC	CTGCAGTGCC	AGCTCAAGTG	TAAGTTACAT
501	GCACTGGTTC	CAGCAGAAGC	CAGGCACTTC	TCCCAAACTC	GTGATTTATA
551	GCACATCCAA	CCTGGCTTCT	GGAGTCCCTG	CTCGCTTCAG	TGGCAGTGGA
601	TCTGGGACCT	CTTACTCTCT	CACAATCAGC	CGAATGGAGG	CTGAAGATGC
651	TGCCACTTAT	TACTGCCAGC	AAAGATCTAG	TTACCCACTC	ACGTTCGGTG
701	CTGGCACCAA	GCTGGAGCTG	AAACGGGCGG	CCACACCGGT	GTCAGAAAAA
751	CAGCTGGCĠG	AGGTGGTCGC	GAATACGATT	ACCCCGCTGA	TGAAAGCCCA
801.	GTCTGTTCCA	GGCATGGCGG	TGGCCGTTAT	TTATCAGGGA	AAACCGCACT
851	ATTACACATT	TGGCAAGGCC	GATATCGCGG	CGAATAAACC	CGTTACGCCT
901	CAGACCCTGT	TCGAGCTGGG	TTCTATAAGT	AAAACCTTCA	CCGGCGTTTT
. 951	AGGTGGGGAT	GCCATTGCTC	GCGGTGAAAT	TTCGCTGGAC	GATGCGGTGA
1001	CCAGATACTG	GCCACAGCTG	ACGGGCAAGC	AGTGGCAGGG	TATTCGTATG
1051	CTGGATCTCG	CCACCTACAC	CGCTGGCGGC	CTGCCGCTAC	AGGTACCGGA
1101	TGAGGTCACG	GATAACGCCT	CCCTGCTGCG	CTTTTATCAA	AACTGGCAGC
1151	CGCAGTGGAA	GCCTGGCACA		ACGCCAACGC	CAGCATCGGT
1201	CTTTTTGGTG	CGCTGGCGGT	CAAACCTTCT	GGCATGCCCT	ATGAGCAGGC
1251	CATGACGACG	CGGGTCCTTA	AGCCGCTCAA	GCTGGACCAT	ACCTGGATTA
1301	ACGTGCCGAA	AGCGGAAGAG	GCGCATTACG	CCTGGGGCTA	TCGTGACGGT
1351	AAAGCGGTGC	GCGTTTCGCC	GGGTATGCTG	GATGCACAAG	CCTATGGCGT
1401	GAAAACCAAC	GTGCAGGATA	TGGCGAACTG	GGTCATGGCA	AACATGGCGC
1451	CGGAGAACGT	TGCTGATGCC	TCACTTAAGC	AGGGCATCGC	GCTGGCGCAG
1501	TCGCGCTACT	GGCGTATCGG	GTCAATGTAT	CAGGGTCTGG	GCTGGGAGAT
1551	GCTCAACTGG	CCCGTGGAGG	CCAACACGGT	GGTCGAGACG	AGTTTTGGTA
1601	ATGTAGCACT	GGCGCCGTTG	CCCGTGGCAG	AAGTGAATCC	ACCGGCTCCC
1651	CCGGTCAAAG	CGTCCTGGGT	CCATAAAACG	GGCTCTACTG	GCGGGTTTGG
1701	CAGCTACGTG	GCCTTTATTC	CTGAAAAGCA	GATCGGTATT	GTGATGCTCG
1751	CGAATACAAG	CTATCCGAAC	CCGGCACGCG	TTGAGGCGGC	ATACCATATC
1801	CTCGAGGCGC	TACAG			

Fig. 15U Nucleotide sequence of CAB1.1 gene

Figure 16

Figure 17

Fegure 18

Figure 19

Animal weight effects

Figure 20

Jegure 21

CAB1 Proof of Principle - Efficacy#

*p<0.05 sgn17 vs CAB1.2(24h)

**p<0.05 untreated vs CAB1.2(18,24,36h)

*** GC observed in 2 animals: I Day 16; LaDay 44

Legure 55

Figure 23

58/79

					- '*
1	QVQLQQSGAE	LVKSGGSVKL	SCTASGFNIK	DSYMHWVRQG	PEQGLEWIGW
51	IDPENGDTEY	APKFQGKATF	TTDTSSNTAY	LQLSSLTSED	TAVYYCNEGT
101	PTGPYYFDYW	GQGTTVTVSS	GGGGSGGGS	GGGGSENVLT	QSPAIVSASP
151	GEKVTITCSA	SSSVSYMHWF	QQKPGTSPKL	VIYSTSNLAS	GVPARFSGSG
201	SGTSYSLTIS	RMEAEDAATY	YCQQRSSYPL	TFGAGTKLEL	KRAATPVSEK
2.51	QLAEVVANTI	TPLMAAQSVP	GMAVAVIYQG	KPHYYTFGKA	DIAANKPVTP
301	QTLFELGSIS	KTFTGVLGGD	AIARGEISLD	DAVTRYWPQL	TGKQWQGIRM
351	LDLATYTAGG	LPLQVPDEVT	DNASLLRFYQ	NWQPQWKPGT	TRLYANASIG
401	LFGALAVKPS	GMPYEQAMTT	RVLKPLKLDH	TWINVPKAEE	AHYAWGYRDG
451	KAVRVSPGML	DAQAYGVKTN	VQDMANWVMA	NMAPENVADA	SLKQGIALAQ
501	SRYWRIGSMY	QGLGWEMLNW	PVEANTVVET	SFGNVALAPL	PVAEVNPPAP
551	PVKASWVHKT	GSTGGFGAYV	AFIPEKQIGI	VMLANTSYPN	PARVEAAYHI
601	LEALQ				

Jegure 24A

1	CAGGTGCAGC	TGCAGCAGTC	TGGGGCAGAA	CTTGTGAAAT	CAGGGGGCTC
51	AGTCAAGTTG	TCCTGCACAG	CTTCTGGCTT	CAACATTAAA	GACTCCTATA
101	TGCACTGGGT	GAGGCAGGGG	CCTGAACAGG	GCCTGGAGTG	GATTGGATGG
151	ATTGATCCTG	AGAATGGTGA	TACTGAATAT	GCCCCGAAGT	TCCAGGGCAA
201	GGCCACTTTT	ACTACAGACA	CATCCTCCAA	CACAGCCTAC	CTGCAGCTCA
251	GCAGCCTGAC	ATCTGAGGAC	ACTGCCGTCT	ATTATTGTAA	TGAGGGGACT
301	CCGACTGGGC	CGTACTACTT	TGACTACTGG	GGCCAAGGGA	CCACGGTCAC
351	CGTCTCCTCA	GGTGGAGGCG	GTTCAGGCGG	AGGTGGCTCT	GGCGGTGGCG
401	GATCAGAAAA	TGTGCTCACC	CAGTCTCCAG	CAATCGTGTC	TGCATCTCCA
451	GGGGAGAAGG	TCACCATAAC	CTGCAGTGCC	AGCTCAAGTG	TAAGTTACAT
501	GCACTGGTTC	CAGCAGAAGC	CAGGCACTTC	TCCCAAACTC	GTGATTTATA
551	GCACATCCAA	CCTGGCTTCT	GGAGTCCCTG	CTCGCTTCAG	TGGCAGTGGA
601	TCTGGGACCT	CTTACTCTCT	CACAATCAGC	CGAATGGAGG	CTGAAGATGC
651	TGCCACTTAT	TACTGCCAGC	AAAGATCTAG	TTACCCACTC	ACGTTCGGTG
701	CTGGCACCAA	GCTGGAGCTG	AAACGGGCGG	CCACACCGGT	GTCAGAAAAA
751	CAGCTGGCGG	AGGTGGTCGC	GAATACGATT	ACCCCGCTGA	TGGCGGCCCA
801	GTCTGTTCCA	GGCATGGCGG	TGGCCGTTAT	TTATCAGGGA	AAACCGCACT
851	ATTACACATT	TGGCAAGGCC	GATATCGCGG	CGAATAAACC	CGTTACGCCT
901	CAGACCCTGT	TCGAGCTGGG	TTCTATAAGT	AAAACCTTCA	CCGGCGTTTT
951	AGGTGGGGAT	GCCATTGCTC	GCGGTGAAAT	TTCGCTGGAC	GATGCGGTGA
1001	CCAGATACTG	GCCACAGCTG	ACGGGCAAGC	AGTGGCAGGG	TATTCGTATG
1051	CTGGATCTCG		CGCTGGCGGC	CTGCCGCTAC	AGGTACCGGA
1101	TGAGGTCACG	GATAACGCCT	CCCTGCTGCG	CTTTTATCAA	AACTGGCAGC
1151	CGCAGTGGAA	GCCTGGCACA	ACGCGTCTTT	ACGCCAACGC	CAGCATCGGT
1201	CTTTTTGGTG	CGCTGGCGGT	CAAACCTTCT	GGCATGCCCT	ATGAGCAGGC
1251	CATGACGACG	CGGGTCCTTA	AGCCGCTCAA	GCTGGACCAT	ACCTGGATTA
1301	ACGTGCCGAA	AGCGGAAGAG	GCGCATTACG	CCTGGGGCTA	TCGTGACGGT
1351	AAAGCGGTGC	GCGTTTCGCC	GGGTATGCTG	GATGCACAAG	CCTATGGCGT
1401	GAAAACCAAC	GTGCAGGATA	TGGCGAACTG	GGTCATGGCA	AACATGGCGC
1451	CGGAGAACGT	TGCTGATGCC	TCACTTAAGC	AGGGCATCGC	GCTGGCGCAG
1501	TCGCGCTACT	GGCGTATCGG	GTCAATGTAT	CAGGGTCTGG	GCTGGGAGAT
1551	GCTCAACTGG	CCCGTGGAGG	CCAACACGGT	GGTCGAGACG	AGTTTTGGTA
601	ATGTAGCACT	GGCGCCGTTG	CCCGTGGCAG	AAGTGAATCC	ACCGGCTCCC
651	CCGGTCAAAG	CGTCCTGGGT	CCATAAAACG	GGCTCTACTG	GCGGGTTTGG
1701	CGCGTACGTG	GCCTTTATTC	CTGAAAAGCA	GATCGGTATT	GTGATGCTCG
1751	CGAATACAAG	CTATCCGAAC	CCGGCACGCG	TTGAGGCGGC	ATACCATATC
801	CTCGAGGCGC	TACAG	•	•	

Figure 24B

60/79

1	QVQLQQSGAE	LVKSGGSVKL	SCTASGFNIK	DSYMHWVRQG	PEQGLEWIGW
51	IDPENGDTEY	APKFQGKATF	TTDTSSNTAY	LQLSSLTSED	TAVYYCNEGL
101	PLGALYNDYW	GQGTTVTVSS	GGGGSGGGS	GGGGSENVLT	QSPAIVSASP
151	GEKVTITCSA		OOKPGTSPKL	VIYSTSNLAS	GVPARFSGSG
201	SGTSYSLTIS	RMEAEDAATY	YCQQRDSYPL	TFGAGTKLEL	KRAATPVSEK
	QLAEVVANTI	TPLMAAQSVP		KPHYYTFGKA	DIAANKPVTP
251 .	OTLFELGSIS	KTFTGVLGGD		DAVTRYWPQL	TGKQWQGIRM
301	LDLATYTAGG	LPLQVPDEVT			TRLYANASIG
351	LFGALAVKPS	GMPYEQAMTT		'	AHYAWGYRDG
401	KAVRVSPGML	DAQAYGVKTN	VQDMANWVMA		SLKQGIALAQ
451	SRYWRIGSMY	QGLGWEMLNW	PVEANTVVET	SFGNVALAPL	PVAEVNPPAP
501		GSTGGFGAYV	AFIPEKQIGI	VMLANTSYPN	PARVEAAYHI
551	PVKASWVHKT	GOIGGEGWIA	WI TI DIGITOT		
601	LEALO				

Figure 24C

61/79

1	CAGGTGCAGC	TGCAGCAGTC	TGGGGCAGAA	CTTGTGAAAT	CAGGGGGCTC
51	AGTCAAGTTG	TCCTGCACAG	CTTCTGGCTT	CAACATTAAA	GACTCCTATA
101	TGCACTGGGT	GAGGCAGGGG	CCTGAACAGG	GCCTGGAGTG	GATTGGATGG
151	ATTGATCCTG	AGAATGGTGA	TACTGAATAT	GCCCCGAAGT	TCCAGGGCAA
201	GGCCACTTTT	ACTACAGACA	CATCCTCCAA	CACAGCCTAC	CTGCAGCTCA
251	GCAGCCTGAC	ATCTGAGGAC	ACTGCCGTCT	ATTATTGTAA	TGAGGGGCTC
301	CCGCTCGGGG	CCATTTACAA	CGACTACTGG	GGCCAAGGGA	CCACGGTCAC
351	CGTCTCCTCA	GGTGGAGGCG	GTTCAGGCGG	AGGTGGCTCT	GGCGGTGGCG
401	GATCAGAAAA	TGTGCTCACC	CAGTCTCCAG	CAATCGTGTC	TGCATCTCCA
451	GGGGAGAAGG	TCACCATAAC	CTGCAGTGCC	AGCTCAGCTG	TATATGCCAT
501	GCACTGGTTC	CAGCAGAAGC	CAGGCACTTC	TCCCAAACTC	GTGATTTATA
551	GCACATCCAA	CCTGGCTTCT	GGAGTCCCTG	CTCGCTTCAG	TGGCAGTGGA
601	TCTGGGACCT	CTTACTCTCT	CACAATCAGC	CGAATGGAGG	CTGAAGATGC
651	TGCCACTTAT	TACTGCCAGC	AAAGAGATAG	TTACCCACTC	ACGTTCGGTG
701	CTGGCACCAA	GCTGGAGCTG	AAACGGGCGG	CCACACCGGT	GTCAGAAAAA
751	CAGCTGGCGG	AGGTGGTCGC	GAATACGATT	ACCCCGCTGA	TGGCGGCCCA
801	GTCTGTTCCA	GGCATGGCGG	TGGCCGTTAT	TTATCAGGGA	AAACCGCACT
851	ATTACACATT	TGGCAAGGCC	GATATCGCGG	CGAATAAACC	CGTTACGCCT
901	CAGACCCTGT	TCGAGCTGGG	TTCTATAAGT	AAAACCTTCA	CCGGCGTTTT
951	GGTGGGGAT	GCCATTGCTC	GCGGTGAAAT	TTCGCTGGAC	GATGCGGTGA
1001	CCAGATACTG	GCCACAGCTG	ACGGGCAAGC	AGTGGCAGGG	TATTCGTATG
1051	CTGGATCTCG	CCACCTACAC	CGCTGGCGGC	CTGCCGCTAC	AGGTACCGGA
1101	TGAGGTCACG	GATAACGCCT	CCCTGCTGCG	CTTTTATCAA	AACTGGCAGC
1151	CGCAGTGGAA	GCCTGGCACA	ACGCGTCTTT	ACGCCAACGC	CAGCATCGGT
1201	CTTTTTGGTG	CGCTGGCGGT	CAAACCTTCT	GGCATGCCCT	ATGAGCAGGC
1251	CATGACGACG	CGGGTCCTTA	AGCCGCTCAA	GCTGGACCAT	ACCTGGATTA
1301	ACGTGCCGAA	AGCGGAAGAG	GCGCATTACG	CCTGGGGCTA	TCGTGACGGT
1351	AAAGCGGTGC	GCGTTTCGCC	GGGTATGCTG	GATGCACAAG	CCTATGGCGT
1401	GAAAACCAAC	GTGCAGGATA	TGGCGAACTG	GGTCATGGCA	AACATGGCGC
1451	CGGAGAACGT	TGCTGATGCC	TCACTTAAGC	AGGGCATCGC	GCTGGCGCAG
1501	TCGCGCTACT	GGCGTATCGG	GTCAATGTAT	CAGGGTCTGG	GCTGGGAGAT
1551	GCTCAACTGG	CCCGTGGAGG	CCAACACGGT	GGTCGAGACG	AGTTTTGGTA
1601	ATGTAGCACT	GGCGCCGTTG	CCCGTGGCAG	AAGTGAATCC	ACCGGCTCCC
1651	CCGGTCAAAG	CGTCCTGGGT	CCATAAAACG	GGCTCTACTG	GCGGGTTTGG
1701	CGCGTACGTG	GCCTTTATTC	CTGAAAAGCA	GATCGGTATT	GTGATGCTCG
1751	CGAATACAAG	CTATCCGAAC	CCGGCACGCG	TTGAGGCGGC	ATACCATATC
1801	CTCGAGGCGC	TACAG	;*	•	•

Figure 24D

					•
1	DIVLTQSPAS	LSVSLGQRAT	MSCRAGESVD	IFGVGFLHWY	QQKPGQPPKL
51	LIYRASNLES	GIPVRFSGTG	SGTDFTLIID	PVEADDVATY	YCQQTNEDPY
101	TFGGGTKLEI	KGGGGSGGGG	SGGGSGGGG	SGGGGSGGG	SEVQLQQSGA
151	ELVEPGASVK	LSCTASGFNI	KDTYMHWVKQ	RPEQGLEWIG	RIDPANGNSK
201	YVPKFQGKAT	ITADTSSNTA	YLQLTSLTSE	DTAVYYCAPF	GYYVSDYAMA
251	YWGQGTSVTV	SSTPVSEKQL	AEVVANTITP	LMAAQSVPGM	AVAVIYQGKP
301	HYYTFGKADI	AANKPVTPQT	LFELGSISKT	FTGVLGGDAI	ARGEISLDDA
351	VTRYWPQLTG	KQWQGIRMLD	LATYTAGGLP	LQVPDEVTDN	ASLLRFYQNW
401	QPQWKPGTTR	LYANASIGLF	GALAVKPSGM	PYEQAMTTRV	LKPLKLDHTW
451	INVPKAEEAH	YAWGYRDGKA	VRVSPGMLDA	QAYGVKTNVQ	MNAMVWNAMD
501	APENVADASL	KQGIALAQSR	YWRIGSMYQG	LGWEMLNWPV	EANTVVETSF
551	GNVALAPLPV	AEVNPPAPPV	KASWVHKTGS	TGGFGAYVAF	IPEKQIGIVM
601	LANTSYPNPA	RVEAAYHILE	ALQ		

Jegine 25A

1 GACATCGTCC TGACCCAGAG CCCGGCAAGC CTGTCTGTTT CCCTGGGCCA 51 GCGTGCCACT ATGTCCTGCA GAGCGGGTGA GTCTGTTGAC ATTTTCGGTG 101 TCGGTTTTCT GCACTGGTAC CAACAGAAAC CGGGTCAGCC GCCAAAACTG 151 CTGATCTATC GTGCTTCTAA CCTGGAGTCC GGCATCCCGG TACGTTTCTC 201 CGGTACTGGC TCTGGTACTG ATTTTACCCT GATTATCGAC CCGGTGGAAG 251 CAGACGATGT TGCCACCTAC TATTGCCAGC AGACCAACGA GGATCCGTAC 301 ACCTTCGGTG GCGGTACTAA ACTGGAGATC AAAGGCGGTG GTGGTTCTGG 351 TGGTGGTGGT AGCGGTGGCG GTGGTAGCGG TGGCGGTGGC AGCGGTGGTG 401 GTGGCTCTGG TGGCGGTGGC TCTGAAGTGC AGCTGCAGCA GTCCGGTGCG 451 GAGCTCGTTG AACCGGGCGC TTCTGTGAAA CTGTCTTGCA CTGCATCTGG 501 TTTCAACATT AAGGACACCT ACATGCACTG GGTGAAACAA CGCCCGGAAC 551 AGGGTCTGGA GTGGATCGGT CGCATCGATC CGGCTAACGG TAACAGCAAA 601 TACGTGCCAA AATTCCAGGG TAAAGCAACC ATCACTGCTG ATACCTCCTC 651 TAACACTGCT TACCTGCAGC TGACTTCCCT GACTAGCGAA GACACCGCGG 701 TTTATTACTG CGCTCCGTTC GGCTACTATG TCAGCGATTA CGCAATGGCC 751 TACTGGGGTC AGGGCACCTC TGTTACCGTT TCTAGCACAC CGGTGTCAGA 801 AAAACAGCTG GCGGAGGTGG TCGCGAATAC GATTACCCCG CTGATGGCGG 851 CCCAGTCTGT TCCAGGCATG GCGGTGGCCG TTATTTATCA GGGAAAACCG 901 CACTATTACA CATTTGGCAA GGCCGATATC GCGGCGAATA AACCCGTTAC 951 GCCTCAGACC CTGTTCGAGC TGGGTTCTAT AAGTAAAACC TTCACCGGCG 1001 TTTTAGGTGG GGATGCCATT GCTCGCGGTG AAATTTCGCT GGACGATGCG 1051 GTGACCAGAT ACTGGCCACA GCTGACGGGC AAGCAGTGGC AGGGTATTCG 1101 TATGCTGGAT CTCGCCACCT ACACCGCTGG CGGCCTGCCG CTACAGGTAC 1151 CGGATGAGGT CACGGATAAC GCCTCCCTGC TGCGCTTTTA TCAAAACTGG 1201 CAGCCGCAGT GGAAGCCTGG CACAACGCGT CTTTACGCCA ACGCCAGCAT 1251 CGGTCTTTTT GGTGCGCTGG CGGTCAAACC TTCTGGCATG CCCTATGAGC 1301 AGGCCATGAC GACGCGGGTC CTTAAGCCGC TCAAGCTGGA CCATACCTGG 1351 ATTAACGTGC CGAAAGCGGA AGAGGCGCAT TACGCCTGGG GCTATCGTGA 1401 CGGTAAAGCG GTGCGCGTTT CGCCGGGTAT GCTGGATGCA CAAGCCTATG 1451 GCGTGAAAAC CAACGTGCAG GATATGGCGA ACTGGGTCAT GGCAAACATG 1501 GCGCCGGAGA ACGTTGCTGA TGCCTCACTT AAGCAGGGCA TCGCGCTGGC 1601 AGATGCTCAA CTGGCCCGTG GAGGCCAACA CGGTGGTCGA GACGAGTTTT 1651 GGTAATGTAG CACTGGCGCC GTTGCCCGTG GCAGAAGTGA ATCCACCGGC 1701 TCCCCCGGTC AAAGCGTCCT GGGTCCATAA AACGGGCTCT ACTGGCGGGT 1751 TTGGCGCGTA CGTGGCCTTT ATTCCTGAAA AGCAGATCGG TATTGTGATG 1801 CTCGCGAATA CAAGCTATCC GAACCCGGCA CGCGTTGAGG CGGCATACCA 1851 TATCCTCGAG GCGCTACAG

Jeguie 25B

Case ID	ASM	Sample ID	Sample Pathology
<u>C10000000255</u>	DF5	FR00005C7B	Adenocarcinoma of lung
<u>C10000005496</u>	FF5	FR5B337147	Adenocarcinoma of lung
<u>Cl0000011577</u>	FF1	FR5B34059F	Adenocarcinoma of lung
<u>C17000000241</u>	AF4	FR00033A78	Adenocarcinoma of lung
<u>CI0000007518</u>	AF5	FR0001FD15	Carcinoma of lung, squamous cell
<u>CI0000008475</u>	HF4	FR65EE0784	Adenocarcinoma of colon, metastatic
<u>C10000015252</u>	FF2	FR5B342166	Adenocarcinoma of colon

Figure 26

26_A 26_B 26_C 26_D 26_F 26_G 26_H 26_I

F15-0RE 3

FIG. 26 -A

Cașe Diagnosis	Tissue of Origin/Site of Finding	H	/ E///	Anti-H
Adenocarcinoma of lung Grade: AJCC G3: Poorly differentiated Stage: IIIA	Lung/Lung	4 <u>X</u>	<u>20X</u>	Immunoger <u>4x</u>
Adenocarcinoma of lung Grade: AJCC G3: Poorly differentiated Stage: IIIB	Lung/Lung	<u>4X</u> .	<u>20X</u>	
Adenocarcinoma of lung Grade: AJCC G2: Moderately differentiated Stage: IIIA	Lung/Lung	<u>4X</u>	<u>20X</u>	
Adenocarcinoma of lung Grade: AJCC G2: Moderately differentiated Stage: IIIA	Lung/Lung	<u>4X</u>	. <u>20X</u>	
Carcinoma of lung, squamous cell Grade: AJCC G3: Poorly differentiated Stage: IIIA	Lung/Lung	<u>4×</u>	<u>20X</u>	
Aderiocarcinoma of colon, metastatic Grade: Not Reported Stage: IV	Colon/Liver	<u>4×</u>	<u>20X</u>	Immunt Fibr No <u>4x</u>
Adenocarcinoma of colon Grade: AJCC G3: Poorly differentiated Stage: IIIB	Cecum/Cecum	<u>4X</u>	<u>20X</u>	

FIG. 26-3

	Land 1000000000000000000000000000000000000	
luman Cytokeratin AE1/AE3	CAB/GCR3708 (0.2ug/ml)	CAB/GCR55
ncity: Tumor(100%, Variable to 3+ Cyto) Necrosis(Variable to 3+ EC) Specificity: High 20x SF00029758	Immunogencity: Tumor(100%, Variable to 3+ Cyto) Mixed inflammatory cells(Variable to 1+ Cyto) Specificity: High 4x 20x SF00029756	Immunogencity: Tumor(1(Mixed inflammatory cel Necrosis(Varia Specifici <u>4x</u>
	Immunogencity: Tumor(15%, Variable to 3+ Cyto) Intra-alveolar macrophages(Variable to 2+ Cyto) Mixed Inflammatory cells(Variable to 2+ Cyto) Specificity: High 4x 20x SF0002975B	Immunogencity: Tumor(4 Intra-alyeolar macrophat Mixed inflammatory cel Specifici 4x SF000
	Immunogencity: Tumor(100%, 2+ Cyto) Cellular stroma(1+ Cyto) Chronic inflammatory cells(Variable to 1+ Cyto) Specificity: High 4x 20x SF0002977F	Immunogencity: Tur Cellular stroi Chronic inflammatory ce Specifici <u>4x</u> SF000
	Immunogencity: Tumor(75%, Variable to 3+ Cyto) Cellular Stroma(Variable to 2+ Cyto) Necrosis(Variable to 2+ EC) Intra-alveolar macrophages(Variable to 2+ Cyto) Specificity: High 4x 20x SF0002978B	Immunogencity: Tumor(8 Cellular Stroma(V: Necrosis(Varia Intra-alveolar macropha Specifici 4x
	Immunogencity: Tumor(100%, 3+ Cyto) Fibrotic stroma(1+ Cyto) Necrosis(Variable to 3+ EC) Specificity: High 4x 20x SF0002975F	Immunogencity: Tur Fibrotic stror Necrosis(Varia Specifici <u>4x</u> <u>SF000</u>
ogencity: Tumor(98%, Variable to 3+ Mem, Variable to 3+ Cyto) rolic stroma(Variable to 1+ Cyto) rmal liver parenchymia(2+ Cyto) Necrosis(Variable to 3+ EC) Specificity: High 20x SF0002976A*	Immunogencity: Tumor(95%, Variable to 3+ Mem, Variable to 3+ Cyto) Fibrotic stroma(Variable to 1+ Gyto) Normal liver parenchyma(1+ Cyto) Necrosis(Variable to 3+ EC) Specificity: High 4x 20x SF00029768 Normal liver parenchyma shows positive staining (1+)	Immunogencity: Tumc Mem Variable Fibrotic stroma(Va Normal liver pare Necrosis(Varia Specifica 4x
	Immunogencity: Tumor(85%, Variable to 3+ Mem, Variable to 3+ Cyto) Cellular stroma(1+ Cyto) Normal muscle(Variable to 2+ Cyto) Specificity: High 4x 20x	Immunogencity: Tumc Mem,Variablı Cellular stroi Normal muscle(Va Specifici
	<u>SF00029783</u>	<u>SF000</u>

FIG. 26-C

17 (0.2ug/ml)	CAB/GCR6798 (0.2ug/ml)	CAB/GCR8886 (0.196ug/i
00%, Variable to 3+ Cyto) lls(Variable to 3+ Cyto) able to 2+ EC) ity: High	Immunogencity: Tumor(100%, Variable to 3+ Cyto) Mixed inflammatory cells(Variable to 1+ Cyto) Specificity: High	Immunogencity: Tumor(100%, Variable Mixed inflammatory cells(Variable to Specificity: High
<u>20x</u> ' <u>29757</u>	<u>4x</u> <u>20x</u> <u>SF00029753</u>	<u>4x </u>
(0%, Variable to 3+ Cyto) ges(Variable to 2+ Cyto) lls(Variable to 2+ Cyto) lty: High 20x 2975C	Immunogencity: Tumor(10%, Variable to 2+ Cyto) Intra-alveolar macrophages(Variable to 2+ Cyto) Mixed inflammatory cells(Variable to 2+ Cyto) Specificity: High 4x 20x SF00029759	Immunogencity: Tumor(10%, Variable to Intra-alveolar macrophages(Variable to Mixed inflammatory, cells(Variable to Specificity: High 4x 20x SF0002975A
mor(100%, 2+ Cyto) ma(1+ Cyto)	Immunogencity: Tumor(100%, 2+ Cyto) Cellular stroma(1+ Cyto)	Immunogencity: Tumor(100%, 2+ Cellular stroma(1+ Cyto)
alls(Variable to 1+ Cyto) ity: High	Chronic inflammatory cells(Variable to 1+ Cyto) Specificity: High	Chronic inflammatory cells(Variable to Specificity: High
<u>20x</u> ' <u>29780</u>	<u>4x</u> <u>20x</u> <u>SF0002977D</u>	<u>4x</u> <u>20x</u> <u>SF0002977E</u>
I5%, Variable to 3+ Cyto) ariable to 2+ Cyto) able to 2+ EC) ges(Variable to 2+ Cyto) ity: High 20x 2978C	Immunogencity: Tumor(75%, Variable to 3+ Cyto) Cellular Stroma(Variable to 2+ Cyto) Necrosis(Variable to 2+ EC) Intra-alveolar macrophages(Variable to 2+ Cyto) Specificity: High 4x SF00029789	Immunogencity: Tumor(75%, Variable to Celtular Stroma(Variable to 2+ C Necrosis(Variable to 2+ EC) Intra-alveolar macrophages(Variable to Specificity: High 4x SF0002978A
mor(100%, 3+ Cyto) ma(1+ Cyto) able to 3+ EC)	Immunogencity: Tumor(100%, 3+ Cyto) Fibrotic stroma(1+ Cyto) Necrosis(Varlable to 3+ EC)	Immunogencity: Tumor(100%, 3+ Fibrotic stroma(1+ Cyto) Necrosis(Variable to 3+ EC)
ity: High 20x	Specificity: High <u>4x</u> <u>20x</u>	Specificity: High
29760	<u>SF0002975D</u>	<u>SF0002975E</u>
or(98%, Variable to 3+ e to 3+ Cyto) anable to 1+ Cyto) richyma(2+ Cyto) able to 3+ EC) ity: High 20x 129769	Immunogencity: Tumor(95%; Variable to 3+ Mem, Variable to 3+ Cyto) Fibrotic stroma(Variable to 1+ Cyto) Normal liver parenchyma(1+ Cyto) Necrosis(Variable to 3+ EC) Specificity; High 4x 20x SF00029765 Normal liver parenchyma shows positive staining (1+)	Immunogencity: Tumdr(95%, Variab Mem, Variable to 3+ Cyto) Fibrotic stroma(Variable to 1+ Cyto) Normal liver parenchyma(1+ Cyto) Necrosis(Variable to 3+ EC) Specificity: High 4x SF00029766 Normal liver parenchyma shows positive s
or(85%, Variable to 3+ e to 3+ Cyto) ma(1+ Cyto) ariable to 2+ Cyto)	Immunogencity: Tumor(95%, Variable to 3+ Mem,Variable to 3+ Cyto) Cellular stroma(1+ Cyto) Normal muscle(Variable to 2+ Cyto)	Immunogencity: Tumor(95%, Variab Mem,Variable to 3+ Cyto) Cellular stroma(1+ Cyto) Normal muscle(Variable to 2+ C
ity: High <u>20x</u> 1 <u>29784</u>	Specificity: High <u>4x</u>	Specificity: High <u>4x</u> <u>20x</u> <u>SF00029782</u>
	F16.26-D	

<u>ml)</u>	No Antibody control (Prediluted)
to 3+ Cyto) 1+ Cyto)	Immunogencity: N/A Specificity: Unknown
	<u>SF00029755</u>
(o 2+ Cyto) 2 2+ Cyto) 2+ Cyto)	
Cyto)	
) 1+ Cyto)	
io 3+ Cyto) yto) 2+ Cyto)	
Cyto)	
ile to 3+ yto) to) taining (1+)	immunogendiy: N/A Specificity: Unknown <u>SF00029767</u>
yto)	

FIG. 26-E

<u>CI0000017970</u> .	HF1	FR65EE7B3D	Adenocarcinoma of colon
CI0000010013	AF2	FR00028F2E	Adenocarcinoma of pancreas, metastatic
C10000009651	AF1	FR0002B111	Adenocarcinoma of pancreas, ductal
<u>C10000008690</u>	CF4	FR00027B0E	Adenocarcinoma of pancreas, ductal
<u>CI0000007678</u>	AF3	FR0002575B	Adenocarcinoma of pancreas, ductal
<u>C10000009736</u>	AF2	FR0002BAB4	Adenocarcinoma of pancreas, ductal

FIG. 26-F

Adenocarcinoma of colon Grade: AJCC G2: Moderately differentiated Stage: IIIC	Colon/Colon	<u>4x</u>	<u>20×</u>	
metastatic Grade: Not Reported				lmmu Fibros
Stage: IV	Pancreas/Omentum	<u>4X</u>	<u>20X</u>	<u>4x</u>
Adenocarcinoma of pancreas, ductal Grade: AJCC G2: Moderately differentiated Stage: IIB	Pancreas/Pancreas	<u>.</u>	<u>20X</u>	
Adenocarcinoma of pancreas, ductal Grade: AJCC G1: Well differentiated Stage: IIA	Pancreas/Pancreas	4 <u>X</u>	<u>20X</u>	SANTELLOPEARELL
Adenocarcinoma of pancreas, ductal Grade: AJCC G2: Moderately differentiated Stage: III	Pancreas/Pancreas	<u>4×</u>	<u>20X</u>	
Adenocarcinoma of pancreas, ductal Grade: AJCC G2: Moderately differentiated Stage: IIB	Pancreas/Pancreas	<u>4X</u>	<u>20X</u>	

FIG. 26-6

	Immunogencity: Tumor(100%; 3# Cyto) Cellular stroma(1+ Cyto) Necrosis(Variable to 3+ EC) Specificity: High 4x 20x SF00029787	Immunogencity: Tur Cellular stro Necrosis(Varia Specifici 4x <u>SF000</u>
Inogencity: Tumor(100%, 3+ Cyto) Idipose tissue(Variable to 1+ Cyto) Specificity: High 20x SF0002977C	Immunogencity: Tumor(100%, 3+ Cyto) Fibroadipose tissue(Variable to 2+ Cyto) Specificity: High 4x 20x SF0002977A	Immunogencity: Tur Fibroadipose tissue(Specifici <u>4x</u> <u>SF000.</u>
	Immunogencity: Tumor(100%, 8+ Cyto) Desmoplastic stroma(Variable to 2+ Cyto) Specificity: High 4x 20x SF00029771	Immunogencity: Tur Desmoplastic stroma Specifici <u>4×</u> <u>SF000</u>
	Immunogencity: Tumor(100%, 3+ Cyto) Myxoid stroma(Variable to 2+ Cyto) Specificity: High 4x 20x SF0002976D	Immunogencity: Tur Myxold stroma(Va Specifici <u>4x</u> <u>SF000.</u>
	Immunogencity: Tumor(85%; Variable to 3+ Cyto) Cellular stroma(Variable to 1+ Cyto) Chronic pancreatitis(Variable to 1+ Cyto) Specificity: High 4x SF00029763	Immunogencity: Tumor(8 Cellular stroma(Va Chronic pancreatitis) Specifici 4X
en dans a marinis. As selections	Immunogencity: Tumor(100%, 3+ Cyto) Chronic pancreatitis(Variable to 2+ Cyto) Fibrotic stroma(Variable to 2+ Cyto) Specificity: High 4x 20x SF00029775	Immunogencity: Tur Chronic pancreatitis(Fibrotic stroma(Va Specifici <u>4x</u> <u>SF000</u>

FIG. 26-H

nor(100%, 3+ Cyto) ma(1+ Cyto) able to 3+ EC) ity: High. 20x 29788	Immunogencity: Tumor(100%; 3+ Cyto) Cellular stroma(1+ Cyto) Necrosis(Variable to 3+ EC) Specificity: High 4x 20x SF00029785	Immunogencity: Tumor(100%; 3+ Cellular stroma(1+ Cyto) Necrosis(Variable to 3+ EC) Specificity: High 4x 20x SF00029786
nor(100%, 3+ Cyto) (Variable to 2+ Cyto) ity: High 20x 2977B	Immunogencity: Tumor(100%, 3+ Cyto) Fibroadipose tissue(Variable to 2+ Cyto) Specificity: High 4x 20x SF00029777	Immunogencity: Tumor(100%, 3+ Fibroadipose tissue(Variable to 2+ Specificity: High 4x 20x SF00029778
nor(100%; 3+ Cyto) (Variable to 2+ Cyto) By: High 20x (29772	Immunogencity: Tumor(100%, 3+ Cyto) Desmoplastic stroma(Variable to 2+ Cyto) Specificity: High 4x 20x SF00029770	Immunogenaty: Tumor(100%, 3+ Desmoplastic stroma(Variable to 2- Specificity: High 4½ 20½ SF0002976F
mor(100%, 3+ Cyto) riable to 2+ Cyto) ity: High 20x 2976E	Immunogencity: Tumor(100%, 3+ Cyto) Myxoid stroma(Variable to 2+ Cyto) Specificity: High 4x 20x SF0002976B	Immunogencity: Tumor(100%, 3+ Myxoid stroma(Variable to 2+ C) Specificity: High 4x 20x SF0002976C
I5%; Variable to 3+ Cyto) ariable to 1+ Cyto) (Variable to 1+ Cyto) Ity: High 20x 29764	Immunogencity: Tumor(85%; Variable to 3+ Cyto) Cellular stroma(Variable to 1+ Cyto) Chronic pancreatitis(Variable to 1+ Cyto) Specificity: High 全x 20x SF00029761	Immunogencity: Tumor(85%; Variable t Cellular stroma(Variable to 1+ Q Chronic pancrealitis(Variable to 1+ Specificity: High 4x 20x SF00029762
mor(100%, 3+ Cyto) (Variable to 2+ Cyto) ariable to 2+ Cyto) ity: High 20x	Immunogencity: Tumor(100%, 3+ Cyto) Chronic pancreatitis(Variable to 1+ Cyto) Fibrotic stroma(Variable to 1+ Cyto) Specificity: High 4x 20x SF00029773	Immunogencity: Tumor(100%, 3+ Chronic pancreatitis(Variable to 2+ Fibrotic stroma(Variable to 2+ C) Specificity: High 4x SF00029774

F16.26-I

7	
Cyto)	
Cyto) Cyto)	Immunogencity: N/A Specificity: N/A
	<u>SF00029779</u>
Cyto) + Cyto) Cyto) yto)	
io 3+ Cyto) yto) Cyto)	
Cyto) · Cyto) yto)	

F1G. 26-7

FIGORE 294

Data from study 04052, melphalan formulated in cyclodextrin

Data from study 04052, melphalan formulated in cyclodextrin

Data from study 04052, melphalan formulated in cyclodextrin