

CHAPTER TWENTY FOUR

CMOS Combinational Logic Circuits

Introduction

This chapter presents the structure of multi-input CMOS gates such as NANDs, NORs, AND-OR-Inverts (AOIs)

CMOS Inverter

CMOS Inverter

When V_{IN} is low, i.e. $V_{IN}=V_{GS} < V_{TN}$:

→ N is “off”, P is active “on”

When V_{IN} is high, i.e. $V_{IN}=V_{DD}-V_{SG} > V_{TP}$:

→ P is “off”, N is active “on”

Thus, for input high and low states, both devices never conduct simultaneously

CMOS NAND Gate

V_A	V_B	N_A	N_B	P_A	P_B	V_{OUT}
low	low	off	off	on	on	high
low	high	off	on	on	off	high
high	low	on	off	off	on	high
high	high	on	on	off	off	low

CMOS NOR Gate

V_A	V_B	N_A	N_B	P_A	P_B	V_{OUT}
low	low	off	off	on	on	high
low	high	off	on	on	off	low
high	low	on	off	off	on	low
high	high	on	on	off	off	low

NOR

CMOS AND Gate

AND

CMOS OR Gate

CMOS AND-OR-Inverter Gate

CMOS XOR Gate

$$F = \overline{A} \bullet A + \overline{A} \bullet B + \overline{B} \bullet A + \overline{B} \bullet B = \overline{A} \bullet B + \overline{B} \bullet A$$

-
- HW #13: Solve Problems: 24.1-6, 24.25