Q1. Consider the multi-stage amplifier given below.

 $\begin{array}{c} \underline{NMOS:} \ V_{TN} \!\!=\!\! 0.5 \ V \\ \mu_n C_{ox} \!\!=\!\! 2 \ mA/V^2 \\ \lambda \!\!=\!\! 0.01 \ V^{-1} \\ \underline{PMOS:} \ V_{TP} \!\!=\!\! -0.5 \ V \\ \mu_p C_{ox} \!\!=\!\! 1 \ mA/V^2 \\ \lambda \!\!=\!\! 0.01 \ V^{-1} \\ \end{array}$ $\begin{array}{c} VDD \!\!=\!\! 5 \ V \\ RL \!\!=\!\! 100 \ \Omega \\ C1 \ is \ very \ large \\ \underline{W/L \ Ratios:} \\ M_1 \!\!=\!\! 1/1 \\ M_2 \!\!=\!\! 10/1 \\ M_4 \!\!=\!\! 500/1 \\ M_5 \!\!=\!\! 100/1 \end{array}$

- **a.** Calculate the value of R_{bias} to generate $10\mu A$ I_{bias} current. You can ignore the effect of the channel length modulation when solving this part (i.e. $\lambda=0$).
- **b.** If a total gain of more than 2500 V/V is required (i.e. $|v_{out}/v_{in}| \ge 2500$ V/V), calculate the W/L ratio of M_3 while keeping the DC power dissipation of the circuit at the minimum (Hint: P=IV). If you make any approximations, quantitatively validate your approximations after your solution.
- c. Calculate the DC power dissipation of the circuit with the values you calculated in part b.

Q2. For the differential amplifier given in the figure, the output resistances (r_{I1}, r_{I2}) of current sources I_1 and I_2 are given as 50 k Ω . You can neglect the DC base currents in your calculations.

$\beta = 250$ $V_A = \infty$ $V_T = 25 \text{ mV}$ $V_{BE(on)} = 0.7 \text{ V}$ $V_{CE(sat)} = 0.2 \text{ V}$ For M_1 - M_2 matched pair $K_P = 2 \text{ mA/V}^2$ $V_{TP} = -1 V$ $\lambda = 0 \text{ V}^{-1}$ **Current sources** $I_1 = 8 \text{ mA}, r_{I1} = 50 \text{ k}\Omega$ $I_2 = 2 \text{ mA}, r_{I2} = 50 \text{ k}\Omega$ $r_{I1} \& r_{I2}$ are internal resistances of the current sources. $R_1 = 4 k\Omega$ $R_2 = 3 k\Omega$ $V_{DD} = V_{SS} = 10 \text{ V}$

For Q₁-Q₂ matched pair

- **a.** Draw the half-circuit for the differential mode. Determine the differential mode gain $A_{dm}=v_{out}/(v_{in1}-v_{in2})$
- **b.** Find the common mode gain $A_{cm}=v_{out}/v_{cm}$, $v_{cm}=v_{in1}=v_{in2}$.
- c. Find the differential mode input resistance R_{idm} and the common mode input resistance R_{icm}.
- **d.** Find the common mode input signal range, assuming that a minimum voltage drop of 0.2 V across the current sources is required.
- **e.** If $v_{in1} = A \cos(\omega_A t) + B \sin(\omega_B t)$ and $v_{in2} = A \cos(\omega_A t) B \sin(\omega_B t)$, find v_{out} .

Q3.

Consider the above given CC-CE amplifier circuit.

- **a.** Apply Miller theorem to the second transistor and estimate the upper 3-dB frequency f_H of the complete amplifier using the open-circuit time-constant (OCTC) method.
- **b.** Calculate the upper 3-dB frequency f_H without the first stage and compare it with the one calculated in part a). Which one is better? Why?
- **Q4.** For the series-shunt feedback amplifier given below.

- **a.** Show the feedback network and determine the parameters of the feedback circuitry.
- **b.** Draw the modified A-circuit, including the loading effect of the feedback network.
- **c.** Determine A, R_{IN}^{A} , and R_{OUT}^{A} of the modified A-circuit.

- **d.** Determine the closed-loop voltage gain $A_v = v_o/v_i$.
- e. Determine the closed-loop input and output resistances (i.e., R_{IN}, R_{OUT}).
- Q5. Consider an amplifier with the following open loop transfer function.

$$A = \frac{10^5}{\left(1 + \frac{jf}{10^5}\right)\left(1 + \frac{jf}{10^6}\right)\left(1 + \frac{jf}{10^7}\right)}$$

- a. Construct the Bode plots for magnitude and phase using the empty plots provided on the next page.
- **b.** Assuming feedback factor (β) is independent of frequency, check if the closed loop amplifier is stable with the following values. Calculate phase and gain margin if applicable.
 - $\beta = 3.16 \times 10^{-5}$
 - $\beta = 1 \times 10^{-2}$
- c. Assuming internal structure of this amplifier is as below, calculate R_3 and A_2 . What would be the C_c (connected between nodes B and C) value that makes the closed loop amplifier stable for β <0.1.

C ₁ =0.5nF
C_2 =20nF
C ₃ =0.01nF
$R_1=20k\Omega$
$R_2=50\Omega$
R _{in} =∞
R _{out} =0
A ₁ =5
$A_3 = -2$
A ₄ =1

