

Report No.: EED32J00028402 Page 1 of 35

Product : Beyond Tablet
Trade mark : Beyond Screen

Model/Type reference : BYM001

Serial Number : N/A

 Report Number
 : EED32J00028402

 FCC ID
 : 2AK5X-BM2897

 Date of Issue
 : Mar. 30, 2017

Test Standards : 47 CFR Part 15Subpart C (2015)

Test result : PASS

Prepared for:

Beyond Screen Limited
Suite 307, Building 6, Fulltech Plaza, No. 33 North Guangshun Street,
Beijing, 100102, China

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Tested By:

Tom - chen
Tom chen (Test Project)

Compiled by:

Ware xin (Project Engineer)

Reviewed by:

Kevin yang (Reviewer)

Sheek Luo (Lab supervisor)

Date:

Mar. 30, 2017

Check No.: 1022560588

2 Version

Version No.	Date	Description
00	Mar. 30, 2017	Original
((35)	

Report No.: EED32J00028402 Page 3 of 35

3 Test Summary

Test Item	Test Requirement	Test method	Result	
Antenna Requirement	47 CFR Part 15Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS	
AC Power Line Conducted Emission	47 CFR Part 15Subpart C Section 15.207	ANSI C63.10-2013	PASS	
Conducted Peak Output Power	47 CFR Part 15Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013/ KDB 558074 D01v03r05	PASS	
6dB Occupied Bandwidth	47 CFR Part 15Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013/ KDB 558074 D01v03r05	PASS	
Power Spectral Density	47 CFR Part 15Subpart C Section 15.247 (e)	ANSI C63.10-2013/ KDB 558074 D01v03r05	PASS	
Band-edge for RF Conducted Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013/ KDB 558074 D01v03r05		
RF Conducted Spurious Emissions			PASS	
Radiated Spurious Emissions	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS	
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS	

Test according to ANSI C63.4-2014 & ANSI C63.10-2013. The tested sample and the sample information are provided by the client.

Report No.: EED32J00028402 Page 4 of 35

4 Content

	E						1
2 VERSION		•••••		•••••	•••••		2
3 TEST SUMM	ARY	•••••	•••••	•••••	•••••	•••••	3
4 CONTENT						•••••	4
5 TEST REQUI	REMENT	•••••			(637)	•••••	5
5.1 TEST SET	JP						5
5.1.1 For (Conducted test	setup					5
	Radiated Emiss		•				
	Conducted Emi		•				
	IRONMENT						
6 GENERAL IN	IDITION						
	FORMATION DESCRIPTION O						
	SPECIFICATION O						
	ION OF SUPPOR						
	ATION						
6.6 TEST FAC	ILITY						8
	N FROM STANDA						
	LITIES FROM ST.						
	FORMATION REC						
	EMENT UNCERT	`		,			
7 EQUIPMENT	LIST	•••••	•••••	•••••	•••••		11
8 RADIO TECH	NICAL REQUI	REMENTS S	PECIFICATIO	N			13
	A): 6dB Occupi						
Appendix							
	R): Conducted	Peak ∩utnut	Power				
Appendix			Power				16
Appendix Appendix	C): Band-edge	for RF Condu	cted Emission	 1S			16 18
Appendix Appendix Appendix		for RF Condu ted Spurious	cted Emissior Emissions	ns			16 18 19
Appendix Appendix Appendix Appendix Appendix	C): Band-edge D): RF Conduct E): Power Spec F): Antenna Re	for RF Condu ted Spurious l ctral Density quirement	icted Emissior Emissions	18			16 18 19 22
Appendix Appendix Appendix Appendix Appendix Appendix	C): Band-edge D): RF Conduct E): Power Spec F): Antenna Re G): AC Power L	for RF Condu ted Spurious l ctral Density quirement Line Conducte	ed Emission	15			16 19 22 24
Appendix Appendix Appendix Appendix Appendix Appendix Appendix	C): Band-edge D): RF Conduct E): Power Spec F): Antenna Re G): AC Power L H): Restricted b	for RF Condu ted Spurious b ctral Density quirement Line Conducte pands around	ed Emissioned Emission	requency (Ra	diated)		
Appendix Appendix Appendix Appendix Appendix Appendix Appendix	C): Band-edge D): RF Conduct E): Power Spec F): Antenna Re G): AC Power L	for RF Condu ted Spurious b ctral Density quirement Line Conducte pands around	ed Emissioned Emission	requency (Ra	diated)		16 19 22 24
Appendix Appendix Appendix Appendix Appendix Appendix Appendix	C): Band-edge D): RF Conduct E): Power Spec F): Antenna Re G): AC Power L H): Restricted b	for RF Condu ted Spurious b ctral Density quirement Line Conducte pands around	ed Emissioned Emission	requency (Ra	diated)		
Appendix Appendix Appendix Appendix Appendix Appendix Appendix	C): Band-edge D): RF Conduct E): Power Spec F): Antenna Re G): AC Power L H): Restricted b	for RF Condu ted Spurious b ctral Density quirement Line Conducte pands around	ed Emissioned Emission	requency (Ra	diated)		
Appendix Appendix Appendix Appendix Appendix Appendix Appendix	C): Band-edge D): RF Conduct E): Power Spec F): Antenna Re G): AC Power L H): Restricted b	for RF Condu ted Spurious b ctral Density quirement Line Conducte pands around	ed Emissioned Emission	requency (Ra	diated)		
Appendix Appendix Appendix Appendix Appendix Appendix Appendix	C): Band-edge D): RF Conduct E): Power Spec F): Antenna Re G): AC Power L H): Restricted b	for RF Condu ted Spurious b ctral Density quirement Line Conducte pands around	ed Emissioned Emission	requency (Ra	diated)		
Appendix Appendix Appendix Appendix Appendix Appendix Appendix	C): Band-edge D): RF Conduct E): Power Spec F): Antenna Re G): AC Power L H): Restricted b	for RF Condu ted Spurious b ctral Density quirement Line Conducte pands around	ed Emissioned Emission	requency (Ra	diated)		
Appendix Appendix Appendix Appendix Appendix Appendix Appendix	C): Band-edge D): RF Conduct E): Power Spec F): Antenna Re G): AC Power L H): Restricted b	for RF Condu ted Spurious b ctral Density quirement Line Conducte pands around	ed Emissioned Emission	requency (Ra	diated)		
Appendix Appendix Appendix Appendix Appendix Appendix Appendix	C): Band-edge D): RF Conduct E): Power Spec F): Antenna Re G): AC Power L H): Restricted b	for RF Condu ted Spurious b ctral Density quirement Line Conducte pands around	ed Emissioned Emission	requency (Ra	diated)		
Appendix Appendix Appendix Appendix Appendix Appendix Appendix	C): Band-edge D): RF Conduct E): Power Spec F): Antenna Re G): AC Power L H): Restricted b	for RF Condu ted Spurious b ctral Density quirement Line Conducte pands around	ed Emissioned Emission	requency (Ra	diated)		
Appendix Appendix Appendix Appendix Appendix Appendix Appendix	C): Band-edge D): RF Conduct E): Power Spec F): Antenna Re G): AC Power L H): Restricted b	for RF Condu ted Spurious b ctral Density quirement Line Conducte pands around	ed Emissioned Emission	requency (Ra	diated)		
Appendix Appendix Appendix Appendix Appendix Appendix Appendix	C): Band-edge D): RF Conduct E): Power Spec F): Antenna Re G): AC Power L H): Restricted b	for RF Condu ted Spurious b ctral Density quirement Line Conducte pands around	ed Emissioned Emission	requency (Ra	diated)		
Appendix Appendix Appendix Appendix Appendix Appendix Appendix	C): Band-edge D): RF Conduct E): Power Spec F): Antenna Re G): AC Power L H): Restricted b	for RF Condu ted Spurious b ctral Density quirement Line Conducte pands around	ed Emissioned Emission	requency (Ra	diated)		
Appendix Appendix Appendix Appendix Appendix Appendix Appendix	C): Band-edge D): RF Conduct E): Power Spec F): Antenna Re G): AC Power L H): Restricted b	for RF Condu ted Spurious b ctral Density quirement Line Conducte pands around	ed Emissioned Emission	requency (Ra	diated)		
Appendix Appendix Appendix Appendix Appendix Appendix Appendix	C): Band-edge D): RF Conduct E): Power Spec F): Antenna Re G): AC Power L H): Restricted b	for RF Condu ted Spurious b ctral Density quirement Line Conducte pands around	ed Emissioned Emission	requency (Ra	diated)		

Report No.: EED32J00028402 Page 5 of 35

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

Figure 3. Above 1GHz

5.1.3 For Conducted Emissions test setup Conducted Emissions setup

5.2 Test Environment

Operating Environment:			(6)
Temperature:	24°C		
Humidity:	54% RH	2 AND	
Atmospheric Pressure:	1010mbar		

5.3 Test Condition

Test channel:

Test Mode	Tx	RF Channel				
rest wode) IX	Low(L)	Middle(M)	High(H)		
GFSK	04000411- 0400 0411-	Channel 1	Channel 20	Channel 40		
	2402MHz ~2480 MHz	2402MHz	2440MHz	2480MHz		
Transmitting mode:	The EUT transmitted the continuous modulation test signal at the specific channel(s).					

6 General Information

6.1 Client Information

Applicant:	Beyond Screen Limited
Address of Applicant:	Suite 307, Building 6, Fulltech Plaza, No. 33 North Guangshun Street, Beijing, 100102, China
Manufacturer:	Beyond Screen Limited
Address of Manufacturer:	Suite 307, Building 6, Fulltech Plaza, No. 33 North Guangshun Street, Beijing, 100102, China
Factory:	Shenzhen Han-Shine Electronic Co., Ltd.
Address of Factory:	No. 2, Lane 3, 2nd Industrial Park, Yulv Village, Gongming Town, Guangming New District, Shenzhen City, Guangdong Province, 518132, China

6.2 General Description of EUT

Product Name:	Beyond Ta	ablet			
Model No.(EUT):	BYM001		(3)		
Trade mark:	Beyond So	creen	(6)		
EUT Supports Radios	Wlan 2.4G	Hz 802.11b/g/n(HT20&HT40), Bluetooth V3	.0+EDR, BT 4.0		
application:	NFC(13.56	SMHz)			
Power Supply:	Adapter:	MODEL: RS-200/120-S336 INPUT: 100-240VAC 50/60Hz 1.5A Max OUTPUT: DC 12V-2A			
AC Adapter line:	137cm(Un	shielded)			
Sample Received Date:	Mar. 02, 2017				
Sample tested Date:	Mar. 02, 20	017 to Mar. 30, 2017			

6.3 Product Specification subjective to this standard

Operation Frequency:	2402MHz~2480MHz
Bluetooth Version:	4.0
Modulation Technique:	DSSS
Modulation Type:	GFSK
Number of Channel:	40
Hardware Version:	BY2.MB_V0.3 BY2.TB_V0.3 BY2.LRB V0.35 BY2.KB_V0.3 (manufacturer declare)
Software Version:	V1.0(manufacturer declare)
Test Power Grade:	3(manufacturer declare)
Test Software of EUT:	SoFia RFTestTool V1.1 (manufacturer declare)
EUT Function:	Portable production
Antenna Type:	PIFA Antenna
Antenna Gain:	3.74dBi
Test Voltage:	AC 120V/60Hz

Report No. : EED32J00028402 Page 8 of 35

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz
3	2406MHz	13	2426MHz	23	2446MHz	33	2466MHz
4	2408MHz	14	2428MHz	24	2448MHz	34	2468MHz
5	2410MHz	15	2430MHz	25	2450MHz	35	2470MHz
6	2412MHz	16	2432MHz	26	2452MHz	36	2472MHz
7	2414MHz	17	2434MHz	27	2454MHz	37	2474MHz
8	2416MHz	18	2436MHz	28	2456MHz	38	2476MHz
9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz

6.4 Description of Support Units

The EUT has been tested independently.

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd.

Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China 518101

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted.

6.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L1910

Centre Testing International Group Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories..

A2LA-Lab Cert. No. 3061.01

Centre Testing International Group Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 886427

Centre Testing International Group Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Registration 886427.

IC-Registration No.: 7408A-2

Page 9 of 35

The 3m Alternate Test Site of Centre Testing International Group Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408A-2.

IC-Registration No.: 7408B-1

Report No.: EED32J00028402

The 10m Alternate Test Site of Centre Testing International Group Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408B-1.

NEMKO-Aut. No.: ELA503

Centre Testing International Group Co., Ltd. has been assessed the quality assurance system, the testing facilities, qualifications and testing practices of the relevant parts of the organization. The quality assurance system of the Laboratory has been validated against ISO/IEC 17025 or equivalent. The laboratory also fulfils the conditions described in Nemko Document NLA-10.

VCCI

The Radiation 3 &10 meters site of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-4096. Main Ports Conducted Interference Measurement of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: C-4563.

Telecommunication Ports Conducted Disturbance Measurement of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: T-2146.

The Radiation 3 meters site of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-758

6.7 Deviation from Standards

None.

6.8 Abnormalities from Standard Conditions None.

6.9 Other Information Requested by the Customer

None.

6.10 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	DE nouver conducted	0.31dB (30MHz-1GHz)
2	RF power, conducted	0.57dB (1GHz-18GHz)
2	Dedicated Courses and action to the	4.5dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.8dB (1GHz-12.75GHz)
4	Conduction aminaian	3.6dB (9kHz to 150kHz)
4	Conduction emission	3.2dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	2.8%
7	DC power voltages	0.025%

7 Equipment List

		RF test	system		
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Signal Generator	Keysight	E8257D	MY53401106	04-01-2016	03-31-2017
Spectrum Analyzer	Keysight	N9010A	MY54510339	04-01-2016	03-31-2017
Signal Generator	Keysight	N5182B	MY53051549	04-01-2016	03-31-2017
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002	TTF20120439	01-11-2017	01-10-2018
High-pass filter	MICRO- TRONICS	SPA-F-63029-4	003	01-11-2017	01-10-2018
DC Power	Keysight	E3642A	MY54436035	04-01-2016	03-31-2017
BT&WI-FI Automatic control	R&S	OSP120	101374	04-01-2016	03-31-2017
RF control unit	JS Tonscend	JS0806-2	158060006	04-01-2016	03-31-2017

Conducted disturbance Test								
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)			
Receiver	R&S	ESCI	100009	06-16-2016	06-15-2017			
Temperature/ Humidity Indicator	TAYLOR	1451	1905	04-27-2016	04-26-2017			
LISN	R&S	ENV216	100098	06-16-2016	06-15-2017			
LISN	schwarzbeck	NNLK8121	8121-529	06-16-2016	06-15-2017			
Current Probe	R&S	EZ17	100106	06-16-2016	06-15-2017			
ISN	TESEQ GmbH	ISN T800	30297	02-23-2017	02-22-2018			

 $Hot line: 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint Call: 0755-33681700 \\ Call: 0$

Report No. : EED32J00028402 Page 12 of 35

	/ 1		/ 07	/12	
	3M	Semi/full-anech	oic Chamber		
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
3M Chamber & Accessory Equipment	TDK	SAC-3	TTE20130797	06-05-2016	06-05-2019
TRILOG Broadband Antenna	SCHWARZBEC K	VULB9163	9163-484	05-23-2016	05-22-2017
Microwave Preamplifier	Agilent	8449B	3008A02425	02-16-2017	02-15-2018
Horn Antenna	ETS-LINDGREN	3117	00057407	07-20-2015	07-18-2018
Loop Antenna	ETS	6502	00071730	07-30-2015	07-28-2017
Microwave Preamplifier	A.H.SYSTEMS	PAP-1840-60	6041.6042	06-30-2015	06-28-2018
Horn Antenna	A.H.SYSTEMS	SAS-574 374	374	06-30-2015	06-28-2018
Spectrum Analyzer	R&S	FSP40	100416	06-16-2016	06-15-2017
Receiver	R&S	ESCI	100435	06-16-2016	06-15-2017
LISN	schwarzbeck	NNBM8125	81251547	06-16-2016	06-15-2017
LISN	schwarzbeck	NNBM8125	81251548	06-16-2016	06-15-2017
Signal Generator	Agilent	E4438C	MY45095744	04-01-2016	03-31-2017
Signal Generator	Keysight	E8257D	MY53401106	04-01-2016	03-31-2017
Temperature/ Humidity Indicator	TAYLOR	1451	1905	04-27-2016	04-26-2017
Cable line	Fulai(7M)	SF106	5219/6A	01-11-2017	01-10-2018
Cable line	Fulai(6M)	SF106	5220/6A	01-11-2017	01-10-2018
Cable line	Fulai(3M)	SF106	5216/6A	01-11-2017	01-10-2018
Cable line	Fulai(3M)	SF106	5217/6A	01-11-2017	01-10-2018
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002	TTF20120439	01-11-2017	01-10-2018
High-pass filter	MICRO- TRONICS	SPA-F-63029-4	003	01-11-2017	01-10-2018
band rejection filter	Sinoscite	FL5CX01CA09 CL12-0395-001	TTF20120434	01-11-2017	01-10-2018
band rejection filter	Sinoscite	FL5CX01CA08 CL12-0393-001	TTF20120435	01-11-2017	01-10-2018
band rejection filter	Sinoscite	FL5CX02CA04 CL12-0396-002	TTF20120436	01-11-2017	01-10-2018
band rejection filter	Sinoscite	FL5CX02CA03 CL12-0394-001	TTF20120437	01-11-2017	01-10-2018

8 Radio Technical Requirements Specification

Reference documents for testing:

No.	Identity	Document Title
1	FCC Part15C (2015)	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:

Test Requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (a)(2)	ANSI C63.10	6dB Occupied Bandwidth	PASS	Appendix A)
Part15C Section 15.247 (b)(3)	ANSI C63.10	Conducted Peak Output Power	PASS	Appendix B)
Part15C Section 15.247(d)	ANSI C63.10	Band-edge for RF Conducted Emissions	PASS	Appendix C)
Part15C Section 15.247(d)	ANSI C63.10	RF Conducted Spurious Emissions	PASS	Appendix D)
Part15C Section 15.247 (e)	ANSI C63.10	Power Spectral Density	PASS	Appendix E)
Part15C Section 15.203/15.247 (c)	ANSI C63.10	Antenna Requirement	PASS	Appendix F)
Part15C Section 15.207	ANSI C63.10	AC Power Line Conducted Emission	PASS	Appendix G)
Part15C Section 15.205/15.209	ANSI C63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix H)
Part15C Section 15.205/15.209	ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix I)

 $Hot line: 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint Call: 0755-33681700 \\ Call: 0755-33681700 \\$

Appendix A): 6dB Occupied Bandwidth

Test Result

	Mode	Channel	6dB Bandwidth [MHz]	99% OBW[MHz]	Verdict	Remark
•	BLE	LCH	0.5300	1.0911	PASS	
S	BLE	MCH	0.5315	1.0917	PASS	Peak
4	BLE	НСН	0.5258	1.0908	PASS	detector

Test Graphs

Page 15 of 35

Appendix B): Conducted Peak Output Power

Test Result

Mode	Channel	Conduct Peak Power[dBm]	Verdict
BLE	LCH	7.934	PASS
BLE	MCH	7.736	PASS
BLE	HCH	7.574	PASS

Test Graphs

Appendix C): Band-edge for RF Conducted Emissions

Result Table

	Mode	Channel	Carrier Power[dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdict
5	BLE	LCH	7.615	-52.432	-12.39	PASS
-	BLE	НСН	7.119	-51.247	-12.88	PASS

Test Graphs

Report No. : EED32J00028402 Page 19 of 35

Appendix D): RF Conducted Spurious Emissions

Result Table

Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
BLE	LCH	7.596	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	MCH	7.292	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	НСН	7.072	<limit< td=""><td>PASS</td></limit<>	PASS

Test Graphs

Report No. : EED32J00028402 Page 20 of 35

Appendix E): Power Spectral Density

Result Table

Mode	Channel	Power Spectral Density [dBm/3kHz]	Limit [dBm/3kHz]	Verdict
BLE	LCH	-9.511	8	PASS
BLE	MCH	-9.802	8	PASS
BLE	HCH	-10.007	8	PASS

Report No. : EED32J00028402 Page 24 of 35

Appendix F): Antenna Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is PIFA Antenna and no consideration of replacement. The best case gain of the antenna is 3.74dBi.

Page 25 of 35 Report No.: EED32J00028402

Test Procedure:	Test frequency range :150KHz	-30MHz						
	1)The mains terminal disturbance voltage test was conducted in a shielded room.							
	 The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 50Ω/50μH + 5Ω linear impedance. The 							
	power cables of all other which was bonded to the g the unit being measured. A power cables to a single LI	units of the EUT we round reference plan multiple socket outle	ere connected to a se e in the same way as et strip was used to co	cond LISN 2, the LISN 1 for				
	exceeded.							
(cri)	3)The tabletop EUT was place reference plane. And for flace horizontal ground reference	loor-standing arrange						
	The test was performed with shall be 0.4 m from the reference plane was bonder.	vertical ground refe ed to the horizontal g	erence plane. The veground reference plane	ertical ground e. The LISN 1				
	was placed 0.8 m from the reference plane for LISNs distance was between the of the EUT and associated	mounted on top of closest points of the	f the ground reference LISN 1 and the EUT.	e plane. This All other units				
	 In order to find the maximur the interface cables must measurement. 							
Limit:	(6,2)	(C)	(6,0)					
		Limit ((dBµV)					
	Frequency range (MHz)	Quasi-peak	Average					
			2.4					

0.15-0.5 66 to 56* 56 to 46* 0.5-5 56 46 5-30 60 50 The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz

NOTE: The lower limit is applicable at the transition frequency

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

to 0.50 MHz.

Page 26 of 35

No.	Freq.		ding_Le dBuV)	vel	Correct Factor	N	(dBuV)		Lin (dB	(3.00)		rgin dB)		
)	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.1580	37.41	32.03	13.51	9.76	47.17	41.79	23.27	65.56	55.56	-23.77	-32.29	Р	
2	0.5380	31.39	26.34	21.63	9.73	41.12	36.07	31.36	56.00	46.00	-19.93	-14.64	P	0
3	0.9340	19.11	14.72	8.59	9.71	28.82	24.43	18.30	56.00	46.00	-31.57	-27.70	P	
4	3.1260	18.23	13.38	5.97	9.68	27.91	23.06	15.65	56.00	46.00	-32.94	-30.35	P	
5	12.7140	16.85	9.87	3.11	9.96	26.81	19.83	13.07	60.00	50.00	-40.17	-36.93	Р	ii
6	29.6140	10.33	5.31	0.47	10.20	20.53	15.51	10.67	60.00	50.00	-44.49	-39.33	Р	

Report No.: EED32J00028402 Page 27 of 35

Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Appendix H): Restricted bands around fundamental frequency (Radiated)

(Radiated)						
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	30MHz-1GHz	Quasi-peak 2	120kHz	300kHz	Quasi-peak	
	About 4011-	Peak	1MHz	3MHz	Peak	100
	Above 1GHz	Peak	1MHz	10Hz	Average	
Test Procedure:	a. The EUT was placed of at a 3 meter semi-ane determine the position b. The EUT was set 3 me was mounted on the total c. The antenna height is determine the maximular polarizations of the and d. For each suspected end the antenna was tuned was turned from 0 deg e. The test-receiver systems and below the antenna was turned from 1 deg e. The test-receiver systems and width with Maximular f. Place a marker at the	on the top of a rotal choic camber. The of the highest radieters away from the op of a variable-hei varied from one my value of the field tenna are set to manission, the EUT was to heights from 1 rees to 360 degreem was set to Peakum Hold Mode.	table wa ation. e interfere ght anter eter to fo d strength ake the m vas arrang meter to es to find c Detect I	s rotated 3 ence-recei nna tower. ur meters n. Both hor neasureme ged to its 4 meters the maxin Function a	rs above the gas of the growing antenna above the growing and vertice and the rotate and the rotate and Specified	to, which
	bands. Save the spect for lowest and highest					
	bands. Save the spect for lowest and highest Above 1GHz test proced g. Different between above to fully Anechoic Channal 18GHz the distance is h. Test the EUT in the let. The radiation measure Transmitting mode, and	rum analyzer plot. channel ure as below: ve is the test site, conber change form to a meter and table is the test channel, the ements are performed found the X axis	Repeat f change fr able 0.8 is 1.5 met e Highest and in X, Y positioni	or each portion of Semi- meter to 1 ter). channel Y, Z axis p	Anechoic Ch. 5 meter (Abo	ambe ove
imit:	bands. Save the spect for lowest and highest Above 1GHz test proced g. Different between about of fully Anechoic Chan 18GHz the distance is h. Test the EUT in the lei. The radiation measure	rum analyzer plot. channel ure as below: ve is the test site, conber change form to a meter and table is the test channel, the ements are performed found the X axis	Repeat f change fr table 0.8 is 1.5 met e Highest ned in X, opositionincies me	or each portion Semi- meter to 1 der). channel Y, Z axis p ng which i	Anechoic Ch. 5 meter (Abo	ambe ove
imit:	bands. Save the spect for lowest and highest Above 1GHz test proced g. Different between above to fully Anechoic Channal 18GHz the distance is h. Test the EUT in the leteral in the radiation measure Transmitting mode, and j. Repeat above procedures.	rum analyzer plot. channel ure as below: ve is the test site, conber change form to a meter and table is swest channel, the ements are performed found the X axis ares until all freque	Repeat f change fr table 0.8 is 1.5 met e Highest ned in X, opositionincies me	or each portion of semi- meter to 1 ter). It channel Y, Z axis programming which is easured ware Rei	Anechoic Ch. 5 meter(Aboositioning for tis worse cases complete.	ambe ove
imit:	bands. Save the spect for lowest and highest Above 1GHz test proced g. Different between above to fully Anechoic Channal 18GHz the distance is h. Test the EUT in the leteration in the leteration of the radiation measured than Transmitting mode, and j. Repeat above procedure. Frequency	rum analyzer plot. channel ure as below: we is the test site, on the change form to the change form to the channel, the channel are performed found the X axis tres until all freque Limit (dBµV/m	Repeat f change fr table 0.8 is 1.5 met e Highest ned in X, opositionincies me	or each portion of series of the control of the con	Anechoic Ch. 5 meter(About 15 meter) About 15 meter as as complete.	ambe ove
imit:	bands. Save the spect for lowest and highest Above 1GHz test proced g. Different between above to fully Anechoic Channal 18GHz the distance is h. Test the EUT in the let. The radiation measure Transmitting mode, and j. Repeat above procedure Frequency 30MHz-88MHz	rum analyzer plot. channel ure as below: we is the test site, on the change form to the powest channel, the ements are performed found the X axis area until all freque Limit (dBµV/m 40.0	Repeat f change fr table 0.8 is 1.5 met e Highest ned in X, opositionincies me	or each portion of series of the control of the con	Anechoic Ch. 5 meter (Above Cositioning for t is worse cases complete. mark eak Value	ambe ove
Limit:	bands. Save the spect for lowest and highest Above 1GHz test proced g. Different between above to fully Anechoic Channal 18GHz the distance is how the function of the functi	rum analyzer plot. channel ure as below: ve is the test site, change form to the second to the second to the second to the dependent of the second to the	Repeat f change fr table 0.8 is 1.5 met e Highest ned in X, opositionincies me	or each portion of serion	Anechoic Ch. 5 meter(Abo cositioning for t is worse cas as complete. mark eak Value	ambe ove
Limit:	bands. Save the spect for lowest and highest Above 1GHz test proced g. Different between above 18GHz the distance is h. Test the EUT in the let. i. The radiation measure Transmitting mode, and j. Repeat above procedu Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz	rum analyzer plot. channel ure as below: we is the test site, conber change form to 1 meter and table is 1 meets are performed found the X axis 1 meets until all freques Limit (dBµV/m 40.0 43.5 46.0	Repeat f change fr table 0.8 is 1.5 met e Highest ned in X, opositionincies me	or each portion of series of the control of the con	Anechoic Ch. 5 meter (Abo	ambe ove

Report No. : EED32J00028402 Page 29 of 35

Test plot as follows:

Worse case mode:	GFSK		(67)
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Horizontal	Remark: Peak

Worse case mode:	GFSK		
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Vertical	Remark: Peak

Report No. : EED32J00028402 Page 30 of 35

Worse case mode:	GFSK	(85)	(67)	
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Horizontal	Remark: Peak	

Worse case mode:	GFSK		
Frequency: 2483 5MHz	Test channel: Highest	Polarization: Vertical	Remark: Peak

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor – Antenna Factor – Cable Factor

Appendix I): Radiated Spurious Emissions

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak	
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average	
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak	
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average	
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
(6)	Ab ave 4011-	Peak	1MHz	3MHz	Peak	
	Above 1GHz	Peak	1MHz	10Hz	Average	

Test Procedure:

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter (Above 18GHz the distance is 1 meter and table is 1.5 meter).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- . Repeat above procedures until all frequencies measured was complete.

Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	-		300
0.490MHz-1.705MHz	24000/F(kHz)	-		30
1.705MHz-30MHz	30	-		30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Report No. : EED32J00028402 Page 32 of 35

Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

30MHz~1GHz (QP)		
Test mode:	Transmitting	Horizontal

Vertical Test mode: **Transmitting** 100 Level (dBuV/m) 90 70 FCC CLASS-B 50 30 10 30 50 100 200 500 1000 Frequency (MHz) Ant Cable Read Limit 0ver Freq Factor Loss Level Line Limit Pol/Phase Level dBuV dBuV/m dBuV/m MHz dB/m dB dB 1.44 1 65.573 11.84 18.12 31.40 40.00 -8.60 Vertical QP 85.298 10.02 1.58 19.89 31.49 40.00 -8.51 Vertical 3 10.52 1.58 32.10 43.50 -11.40 Vertical 136.460 20.00 239.987 4 2.32 12.25 17.54 32.11 46.00 -13.89 Vertical

478.846

962.162

17.87

22.40

5

3.07

4.40

11.37

7.34

32.31

34.14

QΡ

QP

46.00 -13.69 Vertical

54.00 -19.86 Vertical

Transmitter Emission above 1GHz

Report No.: EED32J00028402

Worse case	mode:	GFSK		Test char	nnel:	Lowest	Remark: P	eak	
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1273.572	30.40	2.46	44.28	47.69	36.27	74.00	-37.73	Pass	Н
1577.198	31.01	2.65	43.91	47.39	37.14	74.00	-36.86	Pass	Н
1823.477	31.43	2.78	43.66	48.30	38.85	74.00	-35.15	Pass	Н
4804.000	34.69	6.72	44.60	44.69	41.50	74.00	-32.50	Pass	Н
7206.000	36.42	8.35	44.77	46.44	46.44	74.00	-27.56	Pass	Н
9608.000	37.88	7.67	45.58	45.48	45.45	74.00	-28.55	Pass	Н
1260.670	30.37	2.45	44.30	48.17	36.69	74.00	-37.31	Pass	V
1642.761	31.13	2.68	43.84	48.26	38.23	74.00	-35.77	Pass	V
4804.000	34.69	6.72	44.60	45.05	41.86	74.00	-32.14	Pass	V
5850.919	35.79	6.08	44.51	48.60	45.96	74.00	-28.04	Pass	V
7206.000	36.42	8.35	44.77	45.96	45.96	74.00	-28.04	Pass	V
9608.000	37.88	7.67	45.58	45.77	45.74	74.00	-28.26	Pass	V

Worse case	mode:	GFSK		Test char	nnel:	Middle	Remark: P	eak	
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1167.982	30.15	2.38	44.43	47.74	35.84	74.00	-38.16	Pass	/° ∄
1495.101	30.86	2.60	44.00	47.27	36.73	74.00	-37.27	Pass	(NH)
1659.574	31.16	2.69	43.82	48.00	38.03	74.00	-35.97	Pass	H
4880.000	34.85	6.74	44.60	46.50	43.49	74.00	-30.51	Pass	Н
7320.000	36.43	8.45	44.87	46.76	46.77	74.00	-27.23	Pass	Н
9760.000	38.05	7.54	45.55	45.90	45.94	74.00	-28.06	Pass	Н
1173.943	30.16	2.38	44.42	47.27	35.39	74.00	-38.61	Pass	V
1529.749	30.93	2.62	43.96	47.82	37.41	74.00	-36.59	Pass	V
1928.509	31.59	2.83	43.56	46.55	37.41	74.00	-36.59	Pass	V
4880.000	34.85	6.74	44.60	45.93	42.92	74.00	-31.08	Pass	V
7320.000	36.43	8.45	44.87	46.34	46.35	74.00	-27.65	Pass	V
9760.000	38.05	7.54	45.55	46.95	46.99	74.00	-27.01	Pass	V

Report No.: EED32J00028402 Page 35 of 35

- 0.0			100		21000		- 2/85		
Worse case	mode:	GFSK		Test chann	nel:	Highest	Remark: P	eak	
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1068.423	29.89	2.30	44.59	48.50	36.10	74.00	-37.90	Pass	/° #
1367.659	30.60	2.52	44.16	48.55	37.51	74.00	-36.49	Pass	(H)
1724.166	31.27	2.73	43.76	48.24	38.48	74.00	-35.52	Pass	H
4960.000	35.02	6.75	44.60	45.22	42.39	74.00	-31.61	Pass	Н
7440.000	36.45	8.55	44.97	46.78	46.81	74.00	-27.19	Pass	Н
9920.000	38.22	7.41	45.52	45.43	45.54	74.00	-28.46	Pass	Н
1289.885	30.43	2.47	44.26	46.97	35.61	74.00	-38.39	Pass	V
1577.198	31.01	2.65	43.91	48.12	37.87	74.00	-36.13	Pass	V
1918.716	31.58	2.82	43.57	47.15	37.98	74.00	-36.02	Pass	V
4960.000	35.02	6.75	44.60	43.79	40.96	74.00	-33.04	Pass	V
7440.000	36.45	8.55	44.97	46.33	46.36	74.00	-27.64	Pass	V
9920.000	38.22	7.41	45.52	46.64	46.75	74.00	-27.25	Pass	V

Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor – Antenna Factor – Cable Factor

2) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

*** End of Report ***

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

