Data Mining Assignment 1

Ali Gholami

Department of Computer Engineering & Information Technology Amirkabir University of Technology

 $http://ceit.aut.ac.ir/\sim aligholamee$ aligholamee@aut.ac.ir

Abstract

In this assignment, several paramount concepts of *Data Analysis* will be explained. we'll discuss the importance of metrics in the first theoretical problem. A quick review on the *Apriori* algorithm for the *Association Rule Mining* will be explained also. We'll also show how *Weka* can be used for *Association Rule Mining*. Furthermore, The effectiveness of *Normalization* concept is proposed. Finally, an *Statistical* point of view will help us to demonstrate and rationalize the relationship between the *Performance* of the *Learning Algorithm* and the amount of *Data* available. A chief section of this assignment is dedicated to solve the *Titanic* problem, which is a great practice of data mining concepts in production. We'll use *Python* programming language and three main libraries; *Scikit-Learn*, *Pandas* and *Numpy* to tackle this problem.

Keywords. Apriori, Association Rule Mining, Normalization, Generalization, Preprocessing, Feature Engineering, Scikit-Learn, Pandas, Numpy, Python 3.5.

1 Performance Metrics Analysis

Given the following *Confusion Matrix* for a prediction about cancer.

Predicted Class Cancer = YesCancer = NoTotal Cancer = Yes60 290 350 Actual Class Cancer = No150 9500 9650 Total 210 9790 10000

Table 1.1: Confusion matrix of cancer prediction.

Compute each of these performance metrics.

- (a) Accuracy
- (b) Sensitivity

- (c) Precision
- (d) Specificity
- (e) F-measure

Solution

Before getting into the computations, we'll review the *nicknames* and *formulas* to calculate each of these metrics. We have computed each of these metrics in front of them.

$$Accuracy = \frac{TP + TN}{TP + TN + FN + FP} = \frac{60 + 9500}{60 + 9500 + 290 + 150} = 0.956$$
 (1.1)

$$TPR = Recall = Sensitivity = \frac{TP}{P} = \frac{TP}{TP + FN} = \frac{60}{60 + 290} = 0.171$$
 (1.2)

$$PPV = Precision = \frac{TP}{TP + FP} = \frac{60}{60 + 150} = 0.285$$
 (1.3)

$$TNR = Specificity = \frac{TN}{N} = \frac{TN}{TN + FP} = \frac{9500}{9500 + 150} = 0.984$$
 (1.4)

$$F - measure = \frac{2*TP}{2*TP + FP + FN} = \frac{2*60}{2*60 + 150 + 290} = 0.214$$
 (1.5)

Our mission is done! Nevertheless, we continue the explanation for almost each of these metrics. We'll discuss why *Accuracy* itself would be a bad metric in most of the challenging cases.

Why Performance Metrics Are Important

Metrics are important because they allow us to judge about models ability in prediction task. Without metrics we won't be able to compare models; Thus we won't be able to improve each.

What Kind of Performance Metrics Are Useful

Not all of metrics describe this ability correctly in different conditions. Generally speaking, we need and *Objective* metric. A metric could exhibit a great number for a classifier that classifies data as *True* always. This can happen is *Imbalanced Datasets*. The important thing is that, we need to establish a *Baseline* before getting into these numbers. We need

to measure the performance for a simple system before start tuning these numbers up. The absolute maximum performance that a machine learning system can achieve, is called *Ceiling*. The performance we get with respect to the numbers (*like numbers calculated above*), is bound between *Baseline* and *Ceiling* values.

$$Baseline < Performance < Ceiling$$
 (1.6)

Possibility of Getting Complete Performance

No, its not possible! Even using 2 humans to classify some data, they might not agree 100% of the times.

Accuracy Paradox

Accuracy is the proportion of the correct results that a classifier achieved. Assume a classifier who classifies its inputs as true always. The denominator for the Accuracy formula is the size of the dataset, which is a constant. The numerator while, contains TP + TN. This classifier predicts a great number of TP and a small number of TN. If the assumption changes to be that classification always turns out to be false, we'll get a huge value for TN and a small value for TP. The addition is the same by the way. Thus the accuracy of a dummy model can be amazing in both criteria. Thus, Accuracy is not a reliable metric in machine learning problems. We call this Accuracy Paradox.

Recall

This metric describes that, out of all the positive examples there were, what fraction did the classifier pick up?

Precision

This metric states that, out of all the examples the classifier labeled as positive, what fraction were correct?

Combination of Recall & Precision

Combination of these metrics, causes the results to be balanced.

F_{β} Score

 F_{β} combines *Precision* and *Recall*. We'll talk about its advantages later in this assignment.

2 The Concept of Harmonic Mean and F_{β} Score

What is F_{β} score? Describe how the term β affects the final score.

Solution

We saw how the F_1 score is computed. Before getting into the details, let's recall something interesting; **Average**. The simplest form of average is what we describe as *sum of all values divided by their count*. There is another average(mean), which is called $Harmonic\ mean$. Harmonic mean is represented as:

$$\frac{1}{H} = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{x_i} \tag{2.1}$$

Lets find the harmonic mean for two scores; Precision and Recall. The equation (2.1) turns out to be:

$$\frac{1}{H} = \frac{1}{2} \sum_{i=1}^{2} \frac{1}{x_i}$$

Replacing the terms, Recall and Precision:

$$H = \frac{1}{\frac{1}{2}(\frac{1}{Recall} + \frac{1}{Precision})} = \frac{2 * Recall * Precision}{Recall + Precision}$$
(2.2)

Generalizing this idea, we can multiply H by both sides of (2.1):

$$\frac{1}{n} \sum_{i=1}^{n} \frac{H}{x_i} = 1$$

In other words, the average of ratios between the harmonic mean and the data points is unity. We call H the F_1 score. The important thing is that the effect of each score on the H is considered the same here $(\frac{1}{2})$. We call this effectiveness as the weight of each score in forming the F_1 score. The summation of weights has to remain 1. Considering the the weight of $\frac{1}{\beta+1}$ as the weight for the Precision, we'll have $\frac{\beta}{\beta+1}$ as the weight for the Recall. Because we can get

$$\frac{\beta}{\beta+1} + \frac{1}{\beta+1} = \frac{\beta+1}{\beta+1} = 1$$

Rewriting the equation (2.2) by changing the weights of its parameters:

$$F_{\beta} = \frac{1}{\frac{\beta}{\beta+1} \frac{1}{Recall} + \frac{1}{\beta+1} \frac{1}{Precision}} = \frac{(\beta+1) * Recall * Precision}{Recall + \beta * Precision}$$
(2.3)

The Effect of β

3 The Concept of Normalization

Describe the term *Normalization* in data engineering. What do we mean by *Normalizing* the data?

Solution

As the word implies, *Normalization* is the process of adjusting values into alignment. The *transformation* of values in order to represent them in a uniform range, is also called *Normalization*. This topic can have different meaning in different applications.

Normalization of Inputs in Neural Networks

The inputs must have same range of values, otherwise we'll be left with an *ill-conditioned* model after the training.

Convergence of Weights & Biases in Distance Based Classifiers

While using *Distance Based* classifiers, it is important not to get conditioned by features with wider range of possible values. *Normalization* is used to guarantee the *Convergence* of *Weights and Biases* in such conditions. We often call this, the *Convergence of Gradient Descent*, since the gradient descent is used most of the times to optimize the loss.