DM 26: corrigé

1 Théorème de d'Alembert-Gauss

- 1°) Soit $z \in \mathbb{C}$. D'après le corollaire de l'inégalité triangulaire,
- $|S(z)| = |a_n z^n \sum_{k=0}^{n-1} (-a_k z^k)| \ge |a_n z^n| |\sum_{k=0}^{n-1} a_k z^k|$, or d'après l'inégalité triangulaire,

$$\left| \sum_{k=0}^{n-1} a_k z^k \right| \le \sum_{k=0}^{n-1} |a_k z^k|, \text{ donc } |S(z)| \ge |a_n z^n| - \sum_{k=0}^{n-1} |a_k z^k| = R(|z|).$$

- 2°) $\{|S(z)| \mid z \in \mathbb{C}\}$ est une partie non vide de \mathbb{R} , minorée par 0, donc d'après la propriété de la borne inférieure, on peut définir $m = \inf\{|S(z)| \mid z \in \mathbb{C}\}$.
- 3°) On suppose que S est de degré n, donc $|a_n| \neq 0$ et $R(t) \underset{t \to +\infty}{\sim} |a_n| t^n \underset{t \to +\infty}{\longrightarrow} +\infty$. Or $|S(t)| \geq R(|t|)$, donc d'après le principe des gendarmes, $|S(t)| \underset{t \to +\infty}{\longrightarrow} +\infty$. Ainsi, il existe A > 0 vérifiant : pour tout $z \in \mathbb{C}$ tel que $|z| \geq A$, $|S(z)| \geq m+1$.
- 4°) La boule fermée de centre 0 et de rayon A, notée B est fermée bornée dans \mathbb{C} , donc c'est un compact de \mathbb{C} . De plus, S est polynomiale, donc par composition, $z \longmapsto |S(z)|$ continue. D'après le cours, la restriction sur B de $z \longmapsto |S(z)|$ est bornée et elle atteint ses bornes. En particulier, il existe $\alpha \in B$ tel que, pour tout $\beta \in B$, $|S(\alpha)| \leq |S(\beta)|$.

Mais, si $\beta \in \mathbb{C} \setminus B$, alors $|\beta| \geq A$, donc $|S(\beta)| \geq m+1$.

On en déduit que pour tout $z \in \mathbb{C}$, $|S(z)| \ge \min(m+1, |S(\alpha)|)$, donc $\min(m+1, |S(\alpha)|)$ est un minorant de $\{|S(z)| \ / \ z \in \mathbb{C}\}$. Ainsi, par définition de la borne inférieure, $m \ge \min(m+1, |S(\alpha)|)$. Ceci implique que $|S(\alpha)| \le m+1$ puis que $m \ge |S(\alpha)|$. Mais $|S(\alpha)| \in \{|S(z)| \ / \ z \in \mathbb{C}\}$, donc $|S(\alpha)| = m$.

5°) Par définition, P est un polynôme de degré n tel que P(0) = 1, donc il s'écrit $P(X) = 1 + \sum_{k=1}^{n} b_k X^k$ avec $b_n \neq 0$.

L'ensemble $\{k \in \{1, \ldots, n\}/b_k \neq 0\}$ est une partie non vide de \mathbb{N} , donc elle possède un minimum que l'on notera q. Alors $b_q \neq 0$ et $P(X) = 1 + \sum_{k=q}^{n} b_k X^k$.

6°) Soit
$$r \in]0, (\frac{1}{q})^{\frac{1}{q}}[$$
. On pose $z = re^{i\frac{\pi-\theta}{q}}$. Par inégalité triangulaire,

$$|P(z)| \le |1 + b_q z^q| + \sum_{k=q+1}^n |b_k| |z|^k$$
. Or $b_q z^q = \rho e^{i\theta} r^q e^{i(\pi - \theta)} = -\rho r^q$, donc

$$|P(z)| \le |1 - \rho r^q| + \sum_{k=q+1}^n |b_k| r^k$$
. De plus, $0 < r < (\frac{1}{\rho})^{\frac{1}{q}}$, donc $\rho r^q < 1$, ce qui permet

d'écrire
$$|P(z)| \le 1 - \rho r^q + \sum_{k=q+1}^n |b_k| r^k$$
.

7°) Ainsi, pour tout
$$r \in]0, (\frac{1}{\rho})^{\frac{1}{q}}[$$
, $|P(z)| - 1 \le -\rho r^q + \sum_{k=q+1}^n |b_k| r^k \underset{r \to 0}{\sim} -\rho r^q < 0$, donc il existe $\varepsilon > 0$ tel que pour tout $r \in]0, \varepsilon[$, $|P(z)| - 1 < 0$, ce qui est faux car pour tout $z \in \mathbb{C}$, $|P(z)| = \frac{|S(z+\alpha)|}{m} \ge 1$. Ainsi, l'hypothèse sous laquelle on s'est placé est fausse : $S(\alpha) = 0$, donc le polynôme S possède au moins une racine complexe.

2 Disque de Gerschgorin

2.1 Un exemple

8°) Supposons que x est une racine réelle de P. Ainsi, $x^3+(-2+3i)x^2+(-3-5i)x+(6-2i)=0$, puis en séparant les parties réelle et imaginaire, $\begin{cases} x^3-2x^2-3x+6=0\\ 3x^2-5x-2=0 \end{cases}$ La deuxième équation admet pour discriminant $\Delta=25+24=7^2$, donc ses racines

La deuxième équation admet pour discriminant $\Delta = 25 + 24 = 7^2$, donc ses racines sont $\frac{5 \pm 7}{6}$, soit 2 et $-\frac{1}{3}$. On vérifie alors que P(2) = 0, donc 2 est une racine réelle de P.

9°) L'équation
$$z^2 + 3iz - 3 + i = 0$$
 admet pour discriminant $\Delta = -9 - 4(-3 + i) = 3 - 4i$. Il existe $a, b \in \mathbb{R}$ tel que $3 - 4i = (a + ib)^2$. Alors $a^2 - b^2 = 3$ et $2ab = -4$. De plus $a^2 + b^2 = |3 - 4i| = 5$, donc $a^2 = 4$ et $b^2 = 1$ avec a et b de signes contraires : on vérifie que $\Delta = (2 - i)^2$. Les racines de l'équation sont donc $z_1 = \frac{-3i - (2 - i)}{2} = -1 - i$ et $z_2 = \frac{-3i + (2 - i)}{2} = 1 - 2i$.

10°) D'après la question 10, $P(X) = (X-2)(X^2 + \alpha X - (3-i))$ avec $-2+3i = \alpha - 2$, donc $\alpha = 3i$. Ainsi, $P(X) = (X-2)(X^2 + 3iX - 3 + i)$, donc d'après la question précédente, les racines de P sont 2, -1 - i et 1 - 2i, dont les modules sont égaux à 2, $\sqrt{2}$ et $\sqrt{5}$, lesquels sont bien tous inférieurs à

$$A = \max\{|a_0|, 1 + |a_1|, 1 + |a_2|\} = \max\{2\sqrt{10}, 1 + \sqrt{34}, 1 + \sqrt{13}\} = 1 + \sqrt{34}.$$

2.2 Cas général

11°) Pour tout
$$x > 0$$
, notons $f(x) = \frac{R(x)}{x^n} = 1 - \sum_{k=0}^{n-1} |a_k| x^{k-n}$.

Pour tout $k \in \{0, ..., n-1\}$, $x \longmapsto x^{k-n}$ est strictement décroissante sur \mathbb{R}_+^* , car k-n < 0, or il existe $k \in \{0, ..., n-1\}$ tel que $a_k \neq 0$, donc f est strictement croissante sur \mathbb{R}_+^* .

De plus, pour tout $k \in \{0, \ldots, n-1\}$, $x^{k-n} \xrightarrow[x \to 0^+]{} +\infty$, et il existe $k \in \{0, \ldots, n-1\}$ tel que $a_k \neq 0$, donc $f(x) \xrightarrow[x \to 0^+]{} -\infty$. Enfin, $f(x) \xrightarrow[x \to +\infty]{} 1$, donc d'après le théorème de la bijection, f réalise une bijection de \mathbb{R}_+^* dans $]-\infty,1[$. En particulier, il existe un unique r > 0 tel que f(r) = 0. Or pour tout x > 0, $f(x) = 0 \iff R(x) = 0$, donc R possède une unique racine dans \mathbb{R}_+^* .

12°) Par définition, $A \ge 1 + |a_1|$, donc A > 0.

$$A^{n} = \sum_{k=1}^{n-1} (A^{k+1} - A^{k}) + A = \sum_{k=1}^{n-1} A^{k} (A - 1) + A, \text{ or pour tout } k \in \{1, \dots, n-1\},$$

$$A \ge 1 + |a_k|$$
, donc $A^n \ge \sum_{k=1}^{n-1} A^k |a_k| + A \ge \sum_{k=1}^{n-1} A^k |a_k| + |a_0|$. Ainsi, on a prouvé que

$$R(A) = A^n - \sum_{k=0}^{n-1} A^k |a_k| \ge 0.$$

Si r > A, l'application f de la question précédente étant strictement croissante, $0 = f(r) > f(A) \ge 0$, ce qui est faux, donc $r \le A$.

13°) Soit $z \in \mathbb{C}$ une racine de S. D'après la question $1, |S(z)| \geq R(|z|)$, donc $R(|z|) \leq 0$. Si z = 0, alors $0 = |z| \leq r$.

Si $z \neq 0$, alors |z| > 0 et $f(|z|) \leq 0$. Si |z| > r, alors f(|z|) > f(r) = 0 ce qui est faux, donc $|z| \leq r$.

Ainsi, toutes les racines de S sont dans le disque fermé de centre 0 et de rayon r. Or $r \leq A$, donc toutes les racines de S sont dans le disque fermé de centre 0 et de rayon A.

14°) \diamond Supposons que $a_{n-1} \neq 0$ et que S possède une racine complexe z de module r. r > 0, donc $z \neq 0$.

$$0 = S(z) = z^n + \sum_{k=0}^{n-1} a_k z^k, \text{ donc } |\sum_{k=0}^{n-1} a_k z^k| = |-z^n| = |z|^n.$$

Par ailleurs,
$$\sum_{k=0}^{n-1} |a_k z^k| = |z|^n - R(|z|) = |z|^n - R(r) = |z|^n$$
,

donc
$$\left| \sum_{k=0}^{n-1} a_k z^k \right| = \sum_{k=0}^{n-1} |a_k z^k|.$$

Soit
$$h \in \{0, \dots, n-2\}$$
. Alors
$$|\sum_{k=0}^{n-1} a_k z^k| \leq |a_{n-1} z^{n-1} + a_h z^h| + |\sum_{k=0}^{n-2} a_k z^k|$$

$$\leq |a_{n-1} z^{n-1}| + |a_h z^h| + |\sum_{k=0}^{n-2} a_k z^k|$$

$$\leq \sum_{k=0}^{n-1} |a_k z^k| = |\sum_{k=0}^{n-1} a_k z^k|, \text{ donc}$$

$$|a_{n-1} z^{n-1} + a_h z^h| + |\sum_{k=0}^{n-2} a_k z^k| = |a_{n-1} z^{n-1}| + |a_h z^h| + |\sum_{k=0}^{n-2} a_k z^k|,$$

puis $|a_{n-1}z^{n-1} + a_hz^h| = |a_{n-1}z^{n-1}| + |a_hz^h|$: nous sommes dans le cas d'égalité de l'inégalité triangulaire, et $a_{n-1}z^{n-1} \neq 0$, donc d'après le cours, il existe $\lambda_h \in \mathbb{R}_+$ tel que $a_hz^h = \lambda_h a_{n-1}z^{n-1}$, pour tout $h \in \{0, \dots, n-2\}$.

De plus, $\lambda_h = |\lambda_h| = \frac{|a_h|}{|a_{n-1}|} r^{h-n+1}$, donc λ_h ne dépend que de r et de S, et non de z.

Alors
$$z^n = -\sum_{k=0}^{n-1} a_k z^k = \mu z^{n-1}$$
, en posant $\mu = -a_{n-1} \sum_{k=0}^{n-2} \lambda_k - a_{n-1}$, or $z \neq 0$, donc

 $z = \mu$ et μ ne dépend que de r et de S. Ceci prouve l'unicité de z, tel que S(z) = 0 avec |z| = r, si l'on suppose l'existence.

 \diamond Si $S(X) = X^n - 1$, alors $R(X) = X^n - 1$, donc r = 1, or S possède n racines distinctes de module 1, donc le résultat précédent peut être faux lorsque $a_{n-1} = 0$.

3 Le théorème d'Eneström-Kakeya (1893 et 1913)

$$\mathbf{15}^{\circ}) \qquad \diamond S = \frac{1}{\alpha_n} (X - 1) P = \frac{1}{\alpha_n} \Big(\sum_{k=0}^n \alpha_k X^{k+1} - \sum_{k=0}^n \alpha_k X^k \Big),$$

$$\operatorname{donc} S = X^{n+1} + \sum_{k=1}^n \frac{\alpha_{k-1} - \alpha_k}{\alpha_n} X^k - \frac{\alpha_0}{\alpha_n}.$$

Ainsi, S est unitaire et $-\frac{\alpha_0}{\alpha_n} \neq 0$, donc on peut utiliser les résultats précédents.

Pour tout $k \in \{1, ..., n\}$, $\frac{\alpha_{k-1} - \alpha_k}{\alpha_n} \le 0$, donc le polynôme R associé à S vérifie

$$R = S. \text{ Or } S(1) = 1 + \sum_{k=1}^{n} \frac{\alpha_{k-1} - \alpha_k}{\alpha_n} - \frac{\alpha_0}{\alpha_n} = 1 + \frac{\alpha_0 - \alpha_n}{\alpha_n} - \frac{\alpha_0}{\alpha_n} = 0, \text{ donc } r = 1.$$

Ainsi, d'après notre solution de la question 13, toutes les racines de S, donc de P ont un module inférieur ou égal à 1.

 \diamond On suppose de plus que $\alpha_{n-1} < \alpha_n$. Alors le coefficient de S de degré n est non nul, donc on peut appliquer la question 14: S possède au plus une racine de module 1. Or 1

est racine de S, donc c'est l'unique racine de module égal à 1. De plus $P(1) \ge \alpha_0 > 0$, donc 1 n'est pas racine de P. Ainsi pour toute racine complexe z de P, |z| < 1.

16°) Soit z une racine de Q.

$$\Rightarrow$$
 Posons $P(X) = Q(\gamma X) : P(X) = \sum_{k=0}^{n} b_k \gamma^k X^k$. Ainsi, si l'on note $P = \sum_{k=0}^{n} \alpha_k X^k$, on a $\alpha_0 > 0$ et pour tout $k \in \{0, \dots, n-1\}$, $\alpha_{k+1} = b_{k+1} \gamma^{k+1} \ge b_{k+1} \gamma^k \times \frac{b_k}{b_{k+1}}$, par définition de γ , donc $\alpha_{k+1} \ge b_k \gamma^k = \alpha_k$. Ainsi P satisfait les conditions de la question précédente. Ses racines ont donc un module inférieur ou égal à 1. Or $0 = Q(z) = P(\frac{z}{\gamma})$, donc $|z| \le \gamma$.

 \Rightarrow Posons maintenant $P(X) = X^n Q(\frac{\beta}{X}) : P(X) = \sum_{k=0}^n b_k \beta^k X^{n-k}$. Ainsi, si l'on note à

nouveau $P = \sum_{k=0}^{n} \alpha_k X^k$, on a encore $\alpha_0 > 0$ et pour tout $k \in \{0, \dots, n-1\}$,

$$\alpha_{k+1} = b_{n-(k+1)}\beta^{n-k-1} \ge b_{n-k-1}\beta^{n-k} \times \frac{b_{n-k}}{b_{n-k-1}}, \text{ par definition de } \beta,$$

donc $\alpha_{k+1} \ge \beta_{n-k}\beta^{n-k} = \alpha_k$. Ainsi P satisfait les conditions de la question précédente. Ses racines sont ont donc un module inférieur ou égal à 1.

Or
$$Q(\frac{\beta}{X}) = \frac{1}{X^n} P(X)$$
, donc $Q(X) = Q(\frac{\beta}{\frac{\beta}{X}}) = \frac{X^n}{\beta^n} P(\frac{\beta}{X})$, donc $P(\frac{\beta}{z}) = 0$. Alors $|\frac{\beta}{z}| \le 1$, donc $|z| \ge \beta$.

4 Le théorème de Cohn (1922)

17°) Posons $P_1 = \frac{1}{\alpha_n} P$. P_1 est unitaire et l'un de ses coefficients non dominants est non nul, donc on peut appliquer à P_1 les résultats des questions 11 à 13 : en posant $R_1(X) = X^n - \sum_{k=0}^{n-1} \frac{|\alpha_k|}{|\alpha_n|} X^k$, R_1 possède une unique racine $\rho(P) \in \mathbb{R}_+^*$. C'est donc

l'unique solution dans \mathbb{R}_+^* de l'équation $\sum_{k=0}^{n-1} |\alpha_k| x^k = |\alpha_n| x^n$.

De plus, toute racine ζ de P est racine de P_1 , donc $|\zeta| \leq \rho(P)$.

18°) Soit $n \in \mathbb{N}^*$. Notons R(n) l'assertion : pour tout polynôme P de degré n, il existe $(\zeta_1, \ldots, \zeta_n) \in \mathbb{C}^n$ tel que $P = \alpha_n \prod_{i=1}^n (X - \zeta_i)$, où α_n est le coefficient dominant de P.

Pour n = 1, $P(X) = \alpha_1 X + \alpha_0 = \alpha_1 (X - (-\frac{a_0}{a_1}))$, d'où R(1).

Pour $n \geq 2$, soit P un polynôme de degré n et de coefficient dominant α_n . D'après le théorème de D'Alembert, il existe $\zeta_n \in \mathbb{C}$ tel que $P(\zeta_n) = 0$. D'après le cours, il existe

 $Q \in \mathbb{C}[X]$ tel que $P = \alpha_n(X - \zeta_n)Q$. Q est unitaire de degré n-1, donc d'après R(n-1), il existe $(\zeta_1, \ldots, \zeta_{n-1}) \in \mathbb{C}^{n-1}$ tel que $Q = \prod_{i=1}^{n-1} (X - \zeta_i)$. Ainsi, $P = \alpha_n \prod_{i=1}^n (X - \zeta_i)$ ce qui prouve R(n).

Le principe de récurrence permet de conclure, quitte ensuite à réordonner les racines de P en fonction de leurs modules.

$$\begin{aligned} &\mathbf{19}^{\circ}) & \text{Soit } k \in \{0, \dots, n\}. \text{ D'après les relations de Viète,} \\ & \left|\frac{\alpha_{k}}{\alpha_{n}}\right| = \left|\sum_{1 \leq i_{1} < i_{2} < \dots < i_{n-k} \leq n} \zeta_{i_{1}} \zeta_{i_{2}} \cdots \zeta_{i_{n-k}}\right| \leq \sum_{1 \leq i_{1} < i_{2} < \dots < i_{n-k} \leq n} |\zeta_{i_{1}} \zeta_{i_{2}} \cdots \zeta_{i_{n-k}}|, \text{ par inégalité triangulaire. Or pour tout } k \in \{1, \dots, n\}, \ |\zeta_{k}| \leq |\zeta_{n}|, \text{ donc} \\ & \left|\frac{\alpha_{k}}{\alpha_{n}}\right| \leq |\zeta_{n}|^{n-k} \sum_{1 \leq i_{1} < i_{2} < \dots < i_{n-k} \leq n} 1. \end{aligned}$$
De plus, pour construire un $(n-k)$ -uplet $(i_{1}, i_{2}, \dots, i_{n-k})$ d'entiers tel que

De plus, pour construire un (n-k)-uplet (i_1,i_2,\ldots,i_{n-k}) d'entiers tel que $1 \le i_1 < i_2 < \cdots < i_{n-k} \le n$, il suffit de choisir la partie $\{i_1,i_2,\ldots,i_{n-k}\}$ de n-k éléments parmi les n éléments $1,\ldots,n$, donc $\left|\frac{\alpha_k}{\alpha_n}\right| \le \binom{n}{k} |\zeta_n|^{n-k}$.

20°)
$$\rho(P)^n = \sum_{k=0}^{n-1} \frac{|\alpha_k|}{|\alpha_n|} \rho(P)^k \le \sum_{k=0}^{n-1} \binom{n}{k} |\zeta_n|^{n-k} \rho(P)^k.$$

- **21**°) Ainsi, d'après la formule du binôme de Newton, $\rho(P)^n \leq (\rho(P) + \zeta_n)^n \rho(P)^n$, donc $2\rho(P)^n \leq (\rho(P) + \zeta_n)^n$, puis $2^{\frac{1}{n}}\rho(P) \leq \rho(P) + \zeta_n$, ce qui permet de conclure.
- $\begin{aligned} \mathbf{22}^{\circ}) & \quad \text{0 n'est pas racine de P, donc $\alpha_0 \neq 0$ et on a toujours $\alpha_n \neq 0$,} \\ \text{donc $Q = \sum_{k=0}^n \alpha_k X^{n-k}$ satisfait les hypothèses portant sur P. Ainsi, d'après la question précédente, $(2^{\frac{1}{n}} 1)\rho(Q) \leq \zeta \leq \rho(Q)$, où ζ désigne une racine de Q de module maximal. Or $Q(X) = X^n P(\frac{1}{X}) = X^n \prod_{i=1}^n (\frac{1}{X} \zeta_i) = \prod_{i=1}^n (1 X\zeta_i) = \beta \prod_{i=1}^n (X \frac{1}{\zeta_i})$, où β est le coefficient dominant de Q. Ainsi, on peut choisir $\zeta = \frac{1}{\zeta_1}$, donc $(2^{\frac{1}{n}} 1)\rho(Q) \leq \frac{1}{\zeta_1} \leq \rho(Q)$ et on conclut en passant aux inverses, toutes ces quantités étant strictement positives. \end{aligned}$
- 23°) Lorsque $P(X) = X^3 + (-2+3i)X^2 + (-3-5i)X + (6-2i)$, $\rho(P)$ est l'unique solution strictement positive de l'équation $x^3 \sqrt{13}x^2 \sqrt{34}x 2\sqrt{10} = 0$. Par dichotomie, on obtient $\rho(P) = 5,019 \pm 10^{-3}$. De plus le plus grand module des trois racines de P est égal à $\sqrt{5} = 2,236 \pm 10^{-3}$: cela illustre le résultat de la question 17. On a aussi $(2^{\frac{1}{3}} 1)\rho(P) = 1,304 \pm 10^{-3}$: cela illustre la question 21.

5 Un dernier résultat

- $\mathbf{24}^{\circ}) \qquad \text{Posons } R_{1}(X) = X^{n} \sum_{k=0}^{n-2} \frac{|\alpha_{k}|}{|\alpha_{n}|} X^{k}. \text{ Il existe } i \in \{0, \dots, n-2\} \text{ tel que}$ $\alpha_{i} \neq 0, \text{ donc on peut appliquer les résultats des questions } 11 \text{ à } 13 \text{ à } \frac{1}{\alpha_{n}} P_{1} \text{ et à } R_{1}.$ $\text{Or } R_{1}(\rho(P)) = \left(\rho(P)^{n} \sum_{k=0}^{n-1} \frac{|\alpha_{k}|}{|\alpha_{n}|} \rho(P)^{k}\right) + \frac{|\alpha_{n-1}|}{|\alpha_{n}|} \rho(P)^{n-1} = \frac{|\alpha_{n-1}|}{|\alpha_{n}|} \rho(P)^{n-1} \geq 0, \text{ donc}$ d'après la question $12, \rho(P_{1}) \leq \rho(P).$
- $\begin{aligned} \mathbf{25}^{\circ}) & \text{Soit } \zeta \in \mathbb{C} \text{ une racine de } P \text{ telle que } |\zeta| > \rho(P_1). \text{ En particulier, } |\zeta| > 0. \\ \zeta \text{ \'etant racine de } P, \alpha_n \zeta^n + \alpha_{n-1} \zeta^{n-1} &= -\sum_{k=0}^{n-2} \alpha_k \zeta^k, \text{ donc } |\alpha_n \zeta^n + \alpha_{n-1} \zeta^{n-1}| \leq \sum_{k=0}^{n-2} |\alpha_k| |\zeta|^k, \\ \text{puis } |\alpha_n \zeta + \alpha_{n-1}| &\leq \sum_{k=0}^{n-2} |\alpha_k| \frac{1}{|\zeta|^{n-1-k}}, \text{ or } |\zeta| > \rho(P_1), \text{ donc} \\ |\alpha_{n-1} + \alpha_n \zeta| &\leq \sum_{k=0}^{n-2} |\alpha_k| \frac{1}{\rho(P_1)^{n-1-k}} \leq \frac{1}{\rho(P_1)^{n-1}} \sum_{k=0}^{n-2} |\alpha_k| \rho(P_1)|^k. \end{aligned}$
- 26°) Soit $\zeta \in \mathbb{C}$ une racine de P. Si z n'est pas dans le disque fermé de centre 0 et de rayon $\rho(P_1)$, $|z| > \rho(P_1)$, donc d'après la question précédente, $|\alpha_{n-1} + \alpha_n \zeta| \leq \frac{1}{\rho(P_1)^{n-1}} \sum_{k=0}^{n-2} |\alpha_k| \rho(P_1)|^k = |\alpha_n| \rho(P_1) \text{ par définition de } \rho(P_1), \text{ donc } |\zeta (-\frac{\alpha_{n-1}}{\alpha_n})| \leq \rho(P_1), \text{ si bien que } \zeta \text{ est dans le disque de centre } -\frac{\alpha_{n-1}}{\alpha_n} \text{ et de rayon } \rho(P_1).$
- 27°) Lorsque $P(X) = X^3 + (-2+3i)X^2 + (-3-5i)X + (6-2i)$, $\rho(P_1)$ est l'unique solution strictement positive de l'équation $x^3 \sqrt{34}x 2\sqrt{10} = 0$. Par dichotomie, on obtient $\rho(P_1) = 2,839 \pm 10^{-3}$. De plus, pour cet exemple, $\frac{\alpha_{n-1}}{\alpha_n} = -2 + 3i$. D'après la question 10, toutes les racines de P sont dans le disque de centre 0 et de rayon $\rho(P_1)$.