Nemlineáris egyenletrendszerek megoldása

Filep Illés Attila

2023. április 11.

Kivonat

Tartalomjegyzék

I.	Sta	acionárius folyamatok	2	
1.	Alapvető definíciók			
	1.1.	Valószínűségi változó	2	
	1.2.	Sztochasztikus folyamat	3	
		1.2.1. Sztochasztikus folyamatok kompatibilitási feltételei	3	
	1.3.	Várható érték	4	
		1.3.1. Várható érték létezésének a feltétele	4	
		1.3.2. Várható érték tulajdonságai	4	
	1.4.	Kovariancia függvény	4	
		1.4.1. Kovariancia függvény tulajdonságai	5	
	1.5.	Gauss folyamat	5	
	1.6.	Herglotz-tétel	6	
2.	Stacionárius folyamatok			
	2.1.	Tágabb értelemben stacionárius folyamat	7	
		2.1.1. Tesztelés tágabb értelemben vett stacionárius folya-		
		matra	7	
	2.2.	Szűkebb értelemben stacionárius folyamat	7	
3.	Stac	cionárius Gauss folyamatok	7	
4.	Spe	ktrál előállítás	8	
	4.1.	Spektrális sűrűségfüggvény előállítása speciális esetben	8	
	4.2.	Spektrális sűrűségfüggvény segítségével lévő stacionárius fo-		
		lyamat előállítása	8	
5 .	Disz	zkrét spektrum	9	
6.	Folytonos Spektrum		9	
7.	\mathbf{Bec}	slések	9	
	7.1.	Várható érték becslése	9	
	7.2.	Kovariancia függvény becslése	9	

8.	Fehérzaj folyamat	9
	8.1. Fehérzaj folyamat tulajdonságai	9
9.	Harmonikus folyamatok	9
	9.1. Harmonikus folyamatok tulajdonságai	_
II.	. Lineáris folyamatok	9
ΙIJ	I. Wiener folyamatok	9

Bevezetés

A dokumentum célja a sztochasztikus folyamatok alkalmazása nevű tárgyon tanult, kiemelt elemek demonstrációja. A demonstráció MATLAB könyvtár elkészítésével történik. A könyvtárnak a célja, hogy szimbolikus matematikai eszközökkel a folyamatokat bemutassa. A könyvtárnak nem célja a semmilyen informatikai optimalizáltságot megvalósítani.

I. rész

Stacionárius folyamatok

1. Alapvető definíciók

1.1. Valószínűségi változó

Legyen:

- \bullet Ω egy nem üres halmaz
- $\{\omega : X(\omega) < x\} \in \mathcal{A}$
- $x \in \mathbb{R}$
- $\mathcal A$ az Ω részhalmazaiból alkotott esemény σ -algebrája (tehát $(\Omega,\mathcal A)$ mérhető tér)

Akkor $X:\Omega\to\mathbb{R}$ függvényt valószínűségi változónak hívunk.

1.2. Sztochasztikus folyamat

A sztochasztikus folyamat (vagy véletlen folyamat) egy olyan matematikai modell, amely egy vagy több időfüggő véletlen változó által létrehozott folyamatot ír le. A sztochasztikus folyamatok olyan rendszerek leírására szolgálnak, amelyekben a jövő állapota részben véletlenszerűen határozza meg a múlt és a jelen állapotát.

A sztochasztikus folyamatok általában valószínűségi változók sorozataként jelennek meg, amelyeknek az idő függvényében változó értékei vannak. A folyamatot gyakran matematikailag leírt egyenletekkel vagy valószínűségi eloszlásokkal írják le.

A sztochasztikus folyamatok számos területen alkalmazhatók, például az anyag- és energiaátvitel, a kommunikációs rendszerek, a pénzügyek, az idősorok elemzése és a gépi tanulás területén.

1.2.1. Sztochasztikus folyamatok kompatibilitási feltételei

A sztochasztikus folyamatok kompatibilitási feltételei a következők:

- Az időpillanatok száma felsorolható, véges vagy végtelen, de számontartható.
- Az időpillanatok sorozata szigorúan növekvő, azaz $t_1 < t_2 < \cdots < t_n$ vagy $t_1 < t_2 < \cdots < t_\infty$.
- Az időpillanatok közötti időközök meghatározottak és végesek vagy végtelenek.
- A folyamat értékei véletlenszerűek, és általában valószínűségi változóként vannak definiálva.
- A folyamat értékei időfüggők, és az időbeli elmozdulásokkal szembeni szimmetriára vonatkozó korlátozásokat kell teljesítenie. Például a stacionárius folyamatok esetében az eloszlások nem változnak az idő múlásával, és az átlag és szórás időfüggetlen.

Ezen kívül a sztochasztikus folyamatoknál általában szükséges az ergodicitás feltétele, amely azt jelenti, hogy a folyamat minden pillanatban eléri minden lehetséges állapotát az idő végtelen futamán. Ez fontos feltétele a statisztikai tulajdonságok meghatározásának, mert lehetővé teszi a folyamat várható értékének becslését a mintavételezés révén.

1.3. Várható érték

Lényegében az első (centrális) momentum, egy funkciónál.

Diszkrét esetben

$$E(X) = \sum_{i=1}^{\infty} p_i x_i$$

Folytonos esetben

$$E(X) = \int_{-\infty}^{\infty} x f(x) dx$$

1.3.1. Várható érték létezésének a feltétele

Diszkrét esetben

$$E(X) = \sum_{i=1}^{\infty} p_i |x_i| < \infty$$

Folytonos esetben

$$E(X) = \int_{-\infty}^{\infty} |x| f(x) dx < \infty$$

1.3.2. Várható érték tulajdonságai

- Ha X az 1 valószínűséggel korlátos valószínűségi változó, akkor van olyan x_1 és x_2 konstans, hogy $P(x_1 \le X \le x_2) = 1$ akkor $x_1 \le E(X) \le x_2$
- E(cX) = cE(X)
- $P(X = c) = 1 \to E(X) = c$
- E(X + Y) = E(X) + E(Y)
- E(X * Y) = E(X) * E(Y)

1.4. Kovariancia függvény

$$R_X(u) = cov(X_t, X_{t-u})$$

= $E[(X_t - E(X_t))(X_{t-u} - E(X_{t-u}))]$

Ez itt nem a kovarianciamátrixot fogja vissza adni, hanem az eltérés közötti összefüggést.

1.4.1. Kovariancia függvény tulajdonságai

 Additivitás: Ha X és Y véletlen változók és a és b valós számok, akkor a kovarianciafüggvény additív, azaz:

$$cov(aX + bY, Z) = a_cov(X, Z) + b_cov(Y, Z)$$

• Szimmetria: A kovarianciafüggvény szimmetrikus, azaz

$$cov(X, Y) = cov(Y, X)$$

 Állandóság: Ha X és Y véletlen változók és a és b konstansok, akkor a kovarianciafüggvény állandó marad, ha mindkét változót a-val és b-vel eltoljuk. Azaz,

$$cov(X + a, Y + b) = cov(X, Y)$$

• Nemnegativitás: A kovarianciafüggvény mindig nemnegatív, azaz

$$cov(X, X) \ge 0$$

Ha a két változó független, akkor az egyenlőség akkor és csak akkor áll fenn, ha az X állandó.

- \bullet Normálás: HaXés Ynormális eloszlásúak, akkor a kovarianciafüggvény teljesen meghatározza a két változó közötti kapcsolatot.
- Két független változó kovarianciája nulla: HaX és Y független változók, akkor a kovarianciafüggvényük zérus:

$$cov(X, Y) = 0$$

1.5. Gauss folyamat

Egy folyamatot Gauss folyamatnak nevezünk, ha a következő tulajdonságokkal rendelkezik:

- Az összes véges dimenziós eloszlása Gauss-eloszlású kell legyen. Ez azt jelenti, hogy az összes véges dimenziós eloszlásfüggvény szimmetrikus, és a karakterisztikus függvénye exponenciális alakú kell legyen.
 - Korreláció mátrixokat mind meg kell nézni, hogy pozitívak-e.

- Az összes időpillanatra vonatkozó középérték és szórás azonos kell legyen. A folyamat homogénnek tekinthető.
 - Ezt homogenitás teszttel lehet ellenőrizni.
- Az összes időpillanatban értékeket vesz fel végtelen dimenziós vektorokban. A végtelen dimenziós eloszlás azonban nem kell Gausseloszlásúnak lennie.

1.6. Herglotz-tétel

Legyen $R_X(u)$ a folyamat kovarianciafüggvénye, és tegyük fel, hogy ez a függvény az időbeli eltolásra invariáns, azaz csak a két időpont közötti különbségtől függ. Ekkor $R_X(u)$ Herglotz-féle sűrűségfüggvényként is felírható, azaz teljesül rá a következő:

$$R_X(u) = \int_{-\infty}^{\infty} e^{i*\lambda * u} * g_X(\lambda) d\lambda$$

ahol $g_X(\lambda)$ egy valós, szigorúan monoton növekvő eloszlásfüggvény. Más szóval, a kovarianciafüggvény Fourier-transzformáltját egy valós eloszlásfüggvénnyel lehet leírni.

2. Stacionárius folyamatok

A stacionárius folyamatok olyan valószínűségi folyamatok, amelyeknek a statisztikai tulajdonságai nem változnak az idő múlásával. Az ilyen folyamatok esetében a várható érték és a kovariancia függvénye nem függ az időtől, vagyis az idősor jellege nem változik az idő múlásával.

A stacionárius folyamatok matematikailag jól definiáltak és számos fontos tulajdonsággal rendelkeznek, amelyek lehetővé teszik számunkra az idősorok modellezését és előrejelzését. Az ilyen folyamatokra vonatkozóan meghatározott várható érték és kovariancia függvény jellemzi a folyamatot teljes egészében.

A stacionárius folyamatok fontosak a való életben előforduló idősorok modellezésében is, például a gazdasági mutatók és a meteorológiai adatok előrejelzésében. Az ilyen folyamatok matematikai tulajdonságai lehetővé teszik az idősorok előrejelzését, a kockázatbecslést és az optimalizálást.

2.1. Tágabb értelemben stacionárius folyamat

Legyen $\{X_t, t \in \mathcal{T}\}$, ahol

 \bullet X a t időponthoz tartozó sztochasztikus folyamat

A tágabb értelemben vett stacionárius folyamatot szokás röviden stacionárius folyamatnak nevezni.

Ha egy sztochasztikus folyamat tágabb értelemben stacionárius, az azt jelenti, hogy a várható értéke és a kovariancia függvénye csak az időbeli különbségtől függ, és nem az abszolút időponttól.

2.1.1. Tesztelés tágabb értelemben vett stacionárius folyamatra

Amennyiben a következő feltételek megegyeznek az egy tágabb értelemben vett stacionárius folyamat:

- $\mu_X(t) = E(X_t)$
- $R_X(s,t) = cov(X_s, X_t) = E(X_t \mu_X(t))(X_s \mu_X(s))$

Ahol a következők a következőket jelenti:

- $t, s \in \mathcal{T}$, tehát időbéli változók
- $\mu_X(t)$ egy konstans, ami csak az időtől függ és megegyezik a várható értékkel
- R_X a kovariancia függvény
- $E(X_t^2) < \infty$

2.2. Szűkebb értelemben stacionárius folyamat

Ahhoz, hogy valamit szűkebb értelemben stacionáriusnak nevezzünk teljesülnie kell, hogy $(X_{t_1}, \ldots, X_{t_n})$ és $(X_{t_{1+t}}, \ldots, X_{t_n+t})$ valószínűségi változók együttes eloszlása megegyezik és tágabb értelemben stacionárius folyamat.

3. Stacionárius Gauss folyamatok

A stacionárius Gauss-folyamat olyan Gauss-folyamat, amelynek a statisztikai tulajdonságai (középérték, szórás, autokorrelációs függvény) időtől függetlenek, vagyis az időbeli változások nem befolyásolják ezeket a tulajdonságokat.

4. Spektrál előállítás

A Herglotz-tétel szerint, a kovarianciafüggvényt kitudjuk fejezni a következő képen:

 $R_X(u) = \int_{-\infty}^{\infty} e^{i*\lambda * u} * g_X(\lambda) d\lambda$

Ebben az összefüggésben a spektrális sűrűségfüggvény a $g_X(\lambda)$.

Analóg módon értelmezzük a diszkrét esetet is:

$$R_X(u) = \sum_{k=-\infty}^{\infty} \sigma_k^2 e^{i*u*\lambda_k}$$

4.1. Spektrális sűrűségfüggvény előállítása speciális esetben

Ha $\sum_{k=-\infty}^{\infty}|R_X(u)|<\infty$ feltétel teljesül, akkor a spektrális sűrűségfüggvény közvetlenül is előállítható:

$$g_X(\lambda) = \frac{1}{2\pi} \sum_{k=-\infty}^{\infty} R_X(k) e^{-i*k*\lambda}$$

Ez tovább írható:

$$g_X(\lambda) = \frac{1}{2\pi} \sum_{k=-\infty}^{\infty} R_X(k) cos(k\lambda) =$$
$$= \frac{1}{2\pi} \left(\sigma_X^2 + 2 \sum_{k=1}^{\infty} R_X(k) cos(k\lambda) \right)$$

4.2. Spektrális sűrűségfüggvény segítségével lévő stacionárius folyamat előállítása

$$X_t = \mu_X + \int_{-\pi}^{\pi} e^{it\lambda} dZ(\lambda)$$

$$X_t = \mu_X + \sum_{k=-\infty}^{\infty} Z_k e^{i*t*\lambda_k}$$

- μ_X a várható érték
- t az idő változó

- $Z(\lambda), -\pi \leq \lambda \leq \pi$ egy sztochasztikus folyamat, amely zérus várható értékű
- $E(Z(\lambda'' Z(\lambda'))^2 = G_X(\lambda'') G_X(\lambda')$, ha $-\pi \le \lambda' < \lambda'' \le \pi$
- 5. Diszkrét spektrum
- 6. Folytonos Spektrum
- 7. Becslések
- 7.1. Várható érték becslése
- 7.2. Kovariancia függvény becslése
- 8. Fehérzaj folyamat
- 8.1. Fehérzaj folyamat tulajdonságai
- 9. Harmonikus folyamatok
- 9.1. Harmonikus folyamatok tulajdonságai
- II. rész

Lineáris folyamatok

III. rész

Wiener folyamatok