Searching for Universal TruthsAlgebra

Sunghee Yun

sunghee.yun@gmail.com

Navigating Mathematical and Statistical Territories

- Notations & definitions & conventions
 - notations 2
 - some definitions 6
 - some conventions 7
- Algebra 8
 - inequalities 9
 - number theory 34
- Proof & references & indices
 - references 42
 - index 44

Notations

- sets of numbers
 - N set of natural numbers
 - Z set of integers
 - Z₊ set of nonnegative integers
 - **Q** set of rational numbers
 - R set of real numbers
 - R_+ set of nonnegative real numbers
 - R_{++} set of positive real numbers
 - C set of complex numbers
- sequences $\langle x_i \rangle$ and the like
 - finite $\langle x_i \rangle_{i=1}^n$, infinite $\langle x_i \rangle_{i=1}^\infty$ use $\langle x_i \rangle$ whenever unambiguously understood
 - similarly for other operations, e.g., $\sum x_i$, $\prod x_i$, $\cup A_i$, $\cap A_i$, $\times A_i$
 - similarly for integrals, e.g., $\int f$ for $\int_{-\infty}^{\infty} f$
- sets
 - $ilde{A}$ complement of A

- $A \sim B$ $A \cap \tilde{B}$
- $-A\Delta B (A\cap \tilde{B}) \cup (\tilde{A}\cap B)$
- $\mathcal{P}(A)$ set of all subsets of A
- sets in metric vector spaces
 - $-\overline{A}$ closure of set A
 - $-A^{\circ}$ interior of set A
 - relint A relative interior of set A
 - $\operatorname{bd} A$ boundary of set A
- set algebra
 - $-\sigma(\mathcal{A})$ σ -algebra generated by \mathcal{A} , *i.e.*, smallest σ -algebra containing \mathcal{A}
- norms in \mathbb{R}^n
 - $||x||_p \ (p \ge 1)$ p-norm of $x \in \mathbf{R}^n$, i.e., $(|x_1|^p + \cdots + |x_n|^p)^{1/p}$
 - e.g., $||x||_2$ Euclidean norm
- matrices and vectors
 - a_i i-th entry of vector a
 - A_{ij} entry of matrix A at position (i,j), i.e., entry in i-th row and j-th column
 - $\mathbf{Tr}(A)$ trace of $A \in \mathbf{R}^{n \times n}$, i.e., $A_{1,1} + \cdots + A_{n,n}$

symmetric, positive definite, and positive semi-definite matrices

- $\mathbf{S}^n \subset \mathbf{R}^{n \times n}$ set of symmetric matrices
- $\mathbf{S}^n_+ \subset \mathbf{S}^n$ set of positive semi-definite matrices; $A \succeq 0 \Leftrightarrow A \in \mathbf{S}^n_+$
- $-\mathbf{S}_{++}^n\subset\mathbf{S}^n$ set of positive definite matrices; $A\succ 0\Leftrightarrow A\in\mathbf{S}_{++}^n$
- sometimes, use Python script-like notations (with serious abuse of mathematical notations)
 - use $f: \mathbf{R} \to \mathbf{R}$ as if it were $f: \mathbf{R}^n \to \mathbf{R}^n$, e.g.,

$$\exp(x) = (\exp(x_1), \dots, \exp(x_n))$$
 for $x \in \mathbf{R}^n$

and

$$\log(x) = (\log(x_1), \dots, \log(x_n)) \quad \text{for } x \in \mathbf{R}_{++}^n$$

which corresponds to Python code numpy.exp(x) or numpy.log(x) where x is instance of numpy.ndarray, i.e., numpy array

- use $\sum x$ to mean $\mathbf{1}^T x$ for $x \in \mathbf{R}^n$, *i.e.*

$$\sum x = x_1 + \dots + x_n$$

which corresponds to Python code x.sum() where x is numpy array

- use x/y for $x, y \in \mathbf{R}^n$ to mean

$$\begin{bmatrix} x_1/y_1 & \cdots & x_n/y_n \end{bmatrix}^T$$

which corresponds to Python code x / y where x and y are 1-d numpy arrays – use X/Y for $X,Y\in \mathbf{R}^{m\times n}$ to mean

$$\begin{bmatrix} X_{1,1}/Y_{1,1} & X_{1,2}/Y_{1,2} & \cdots & X_{1,n}/Y_{1,n} \\ X_{2,1}/Y_{2,1} & X_{2,2}/Y_{2,2} & \cdots & X_{2,n}/Y_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ X_{m,1}/Y_{m,1} & X_{m,2}/Y_{m,2} & \cdots & X_{m,n}/Y_{m,n} \end{bmatrix}$$

which corresponds to Python code $X \ / \ Y$ where X and Y are 2-d numpy arrays

Some definitions

Definition 1. [infinitely often - i.o.] statement P_n , said to happen infinitely often or i.o. if

$$(\forall N \in \mathbf{N}) (\exists n > N) (P_n)$$

Definition 2. [almost everywhere - a.e.] statement P(x), said to happen almost everywhere or a.e. or almost surely or a.s. (depending on context) associated with measure space (X, \mathcal{B}, μ) if

$$\mu\{x|P(x)\} = 1$$

or equivalently

$$\mu\{x| \sim P(x)\} = 0$$

Some conventions

• (for some subjects) use following conventions

$$-0\cdot\infty=\infty\cdot0=0$$

$$- (\forall x \in \mathbf{R}_{++})(x \cdot \infty = \infty \cdot x = \infty)$$

$$-\infty\cdot\infty=\infty$$

Algebra

Jensen's inequality

• strictly convex function: for any $x \neq y$ and $0 < \alpha < 1$ (Definition ??)

$$\alpha f(x) + (1 - \alpha)f(y) > f(\alpha x + (1 - \alpha)y)$$

• convex function: for any x, y and $0 < \alpha < 1$ (Definition ??)

$$\alpha f(x) + (1 - \alpha)f(y) \ge f(\alpha x + (1 - \alpha)y)$$

Inequality 1. [Jensen's inequality - for finite sequences] for convex function f and distinct x_i and $0 < \alpha_i < 1$ with $\alpha_1 + \cdots = \alpha_n = 1$

$$\alpha_1 f(x_1) + \dots + \alpha_n f(x_n) \ge f(\alpha_1 x_1 + \dots + \alpha_n x_n)$$

ullet if f is strictly convex, equality holds if and only if $x_1=\cdots=x_n$

Jensen's inequality - for random variables

• discrete random variable interpretation of Jensen's inequality in summation form - assume $\mathbf{Prob}(X=x_i)=\alpha_i$, then

$$\mathbf{E} f(X) = \alpha_1 f(x_1) + \dots + \alpha_n f(x_n) \ge f(\alpha_1 x_1 + \dots + \alpha_n x_n) = f(\mathbf{E} X)$$

true for any random variables X

Inequality 2. [Jensen's inequality - for random variables] for random vector X (page \ref{page} for definition)

$$\mathbf{E} f(X) \ge f(\mathbf{E} X)$$

if probability density function (PDF) p_X given,

$$\int f(x)p_X(x)dx \ge f\left(\int xp_X(x)dx\right)$$

Proof for n=3

• for any x, y, z and $\alpha, \beta, \gamma > 0$ with $\alpha + \beta + \gamma = 1$

$$\alpha f(x) + \beta f(y) + \gamma f(z) = (\alpha + \beta) \left(\frac{\alpha}{\alpha + \beta} f(x) + \frac{\beta}{\alpha + \beta} f(y) \right) + \gamma f(z)$$

$$\geq (\alpha + \beta) f\left(\frac{\alpha}{\alpha + \beta} x + \frac{\beta}{\alpha + \beta} y \right) + \gamma f(z)$$

$$\geq f\left((\alpha + \beta) \left(\frac{\alpha}{\alpha + \beta} x + \frac{\beta}{\alpha + \beta} y \right) + \gamma z \right)$$

$$= f(\alpha x + \beta y + \gamma z)$$

Proof for all n

- use mathematical induction
 - assume that Jensen's inequality holds for $1 \leq n \leq m$
 - for distinct x_i and $\alpha_i > 0$ $(1 \le i \le m+1)$ with $\alpha_1 + \cdots + \alpha_{m+1} = 1$

$$\sum_{i=1}^{m+1} \alpha_{i} f(x_{i}) = \left(\sum_{j=1}^{m} \alpha_{j}\right) \sum_{i=1}^{m} \left(\frac{\alpha_{i}}{\sum_{j=1}^{m} \alpha_{j}} f(x_{i})\right) + \alpha_{m+1} f(x_{m+1})$$

$$\geq \left(\sum_{j=1}^{m} \alpha_{j}\right) f\left(\sum_{i=1}^{m} \left(\frac{\alpha_{i}}{\sum_{j=1}^{m} \alpha_{j}} x_{i}\right)\right) + \alpha_{m+1} f(x_{m+1})$$

$$= \left(\sum_{j=1}^{m} \alpha_{j}\right) f\left(\frac{1}{\sum_{j=1}^{m} \alpha_{j}} \sum_{i=1}^{m} \alpha_{i} x_{i}\right) + \alpha_{m+1} f(x_{m+1})$$

$$\geq f\left(\sum_{i=1}^{m} \alpha_{i} x_{i} + \alpha_{m+1} x_{m+1}\right) = f\left(\sum_{i=1}^{m+1} \alpha_{i} x_{i}\right)$$

1st and 2nd order conditions for convexity

• 1st order condition (assuming differentiable $f: \mathbf{R} \to \mathbf{R}$) - f is strictly convex if and only if for any $x \neq y$

$$f(y) > f(x) + f'(x)(y - x)$$

- ullet 2nd order condition (assuming twice-differentiable $f: \mathbf{R} \to \mathbf{R}$)
 - if f''(x) > 0, f is strictly convex
 - $-\ f$ is convex if and only if for any x

$$f''(x) \ge 0$$

Jensen's inequality examples

• $f(x) = x^2$ is strictly convex

$$\frac{a^2 + b^2}{2} \ge \left(\frac{a+b}{2}\right)^2$$

• $f(x) = x^4$ is strictly convex

$$\frac{a^4 + b^4}{2} \ge \left(\frac{a+b}{2}\right)^4$$

• $f(x) = \exp(x)$ is strictly convex

$$\frac{\exp(a) + \exp(b)}{2} \ge \exp\left(\frac{a+b}{2}\right)$$

ullet equality holds if and only if a=b for all inequalities

1st and 2nd order conditions for convexity - vector version

• 1st order condition (assuming differentiable $f: \mathbf{R}^n \to \mathbf{R}$) - f is strict convex if and only if for any x,y

$$f(y) > f(x) + \nabla f(x)^{T} (y - x)$$

where $\nabla f(x) \in \mathbf{R}^n$ with $\nabla f(x)_i = \partial f(x)/\partial x_i$

- 2nd order condition (assuming twice-differentiable $f: \mathbf{R}^n \to \mathbf{R}$)
 - if $\nabla^2 f(x) > 0$, f is strictly convex
 - f is convex if and only if for any x

$$\nabla^2 f(x) \succeq 0$$

where $\nabla^2 f(x) \in \mathbf{R}^{n \times n}$ is Hessian matrix of f evaluated at x, i.e., $\nabla^2 f(x)_{i,j} = \partial^2 f(x)/\partial x_i \partial x_j$

Jensen's inequality examples - vector version

- ullet assume $f: \mathbf{R}^n o \mathbf{R}$
- $f(x) = ||x||_2 = \sqrt{\sum x_i^2}$ is strictly convex

$$(\|a\|_2 + 2\|b\|_2)/3 \ge \|(a+2b)/3\|_2$$

- equality holds if and only if $a = b \in \mathbf{R}^n$
- $f(x) = ||x||_p = (\sum |x_i|^p)^{1/p} (p > 1)$ is strictly convex

$$\frac{1}{k} \left(\sum_{i=1}^{k} \|x^{(i)}\|_{p} \right) \ge \left\| \frac{1}{k} \sum_{i=1}^{k} x^{(i)} \right\|_{p}$$

- equality holds if and only if $x^{(1)} = \cdots = x^{(k)} \in \mathbf{R}^n$

 $AM \ge GM$

• for all a, b > 0

$$\frac{a+b}{2} \ge \sqrt{ab}$$

- equality holds if and only if a = b
- below most general form holds

Inequality 3. [AM-GM inequality] for any n $a_i > 0$ and $\alpha_i > 0$ with $\alpha_1 + \cdots + \alpha_n = 1$

$$\alpha_1 a_1 + \dots + \alpha_n a_n \ge a_1^{\alpha_1} \dots a_n^{\alpha_n}$$

where equality holds if and only if $a_1 = \cdots = a_n$

• let's prove these incrementally (for rational α_i)

Proof of AM \geq **GM** - simplest case

 $\bullet \ \ \text{use fact that} \ x^2 \geq 0 \ \text{for any} \ x \in \mathbf{R}$

• for any a, b > 0

$$(\sqrt{a} - \sqrt{b})^2 \ge 0$$

$$\Leftrightarrow a^2 - 2\sqrt{ab} + b^2 \ge 0$$

$$\Leftrightarrow a + b \ge 2\sqrt{ab}$$

$$\Leftrightarrow \frac{a+b}{2} \ge \sqrt{ab}$$

- equality holds if and only if a=b

Proof of AM \geq **GM** - when n=4 and n=8

• for any a, b, c, d > 0

$$\frac{a+b+c+d}{4} \geq \frac{2\sqrt{ab}+2\sqrt{cd}}{4} = \frac{\sqrt{ab}+\sqrt{cd}}{2} \geq \sqrt{\sqrt{ab}\sqrt{cd}} = \sqrt[4]{abcd}$$

- equality holds if and only if a=b and c=d and ab=cd if and only if a=b=c=d
- likewise, for $a_1, \ldots, a_8 > 0$

$$\frac{a_1 + \dots + a_8}{8} \geq \frac{\sqrt{a_1 a_2} + \sqrt{a_3 a_4} + \sqrt{a_5 a_6} + \sqrt{a_7 a_8}}{4}$$

$$\geq \sqrt[4]{\sqrt{a_1 a_2} \sqrt{a_3 a_4} \sqrt{a_5 a_6} \sqrt{a_7 a_8}}$$

$$= \sqrt[8]{a_1 \cdot \dots \cdot a_8}$$

- equality holds if and only if $a_1 = \cdots = a_8$

Proof of AM \geq **GM** - when $n=2^m$

ullet generalized to cases $n=2^m$

$$\left(\sum_{a=1}^{2^m} a_i\right)/2^m \ge \left(\prod_{a=1}^{2^m} a_i\right)^{1/2^m}$$

- equality holds if and only if $a_1 = \cdots = a_{2^m}$

• can be proved by *mathematical induction*

Proof of AM \geq GM - when n=3

• proof for n=3

$$\frac{a+b+c}{3} = \frac{a+b+c+(a+b+c)/3}{4} \ge \sqrt[4]{abc(a+b+c)/3}$$

$$\Rightarrow \left(\frac{a+b+c}{3}\right)^4 \ge abc(a+b+c)/3$$

$$\Leftrightarrow \left(\frac{a+b+c}{3}\right)^3 \ge abc$$

$$\Leftrightarrow \frac{a+b+c}{3} \ge \sqrt[3]{abc}$$

- equality holds if and only if a=b=c=(a+b+c)/3 if and only if a=b=c

Proof of AM \geq **GM** - for all integers

- for any integer $n \neq 2^m$
- for m such that $2^m > n$

$$\frac{a_1 + \dots + a_n}{n} = \frac{a_1 + \dots + a_n + (2^m - n)(a_1 + \dots + a_n)/n}{2^m}$$

$$\geq \sqrt[2^m]{a_1 \cdots a_n \cdot ((a_1 + \dots + a_n)/n)^{2^m - n}}$$

$$\Leftrightarrow \left(\frac{a_1 + \dots + a_n}{n}\right)^{2^m} \geq a_1 \cdots a_n \cdot \left(\frac{a_1 + \dots + a_n}{n}\right)^{2^m - n}$$

$$\Leftrightarrow \left(\frac{a_1 + \dots + a_n}{n}\right)^n \geq a_1 \cdots a_n$$

$$\Leftrightarrow \frac{a_1 + \dots + a_n}{n} \geq \sqrt[n]{a_1 \cdots a_n}$$

- equality holds if and only if $a_1 = \cdots = a_n$

Proof of AM \geq **GM** - rational α_i

ullet given n positive rational α_i , we can find n natural numbers q_i such that

$$lpha_i = rac{q_i}{N}$$
 where $q_1 + \dots + q_n = N$

• for any n positive $a_i \in \mathbf{R}$ and positive n $\alpha_i \in \mathbf{Q}$ with $\alpha_1 + \cdots + \alpha_n = 1$

$$\alpha_1 a_1 + \dots + \alpha_n a_n = \frac{q_1 a_1 + \dots + q_n a_n}{N} \ge \sqrt[N]{a_1^{q_1} \dots a_n^{q_n}} = a_1^{\alpha_1} \dots a_n^{\alpha_n}$$

- equality holds if and only if $a_1 = \cdots = a_n$

Proof of AM \geq **GM** - real α_i

ullet exist n rational sequences $\{eta_{i,1},eta_{i,2},\ldots\}$ $(1\leq i\leq n)$ such that

$$\beta_{1,j} + \dots + \beta_{n,j} = 1 \ \forall \ j \ge 1$$
$$\lim_{j \to \infty} \beta_{i,j} = \alpha_i \ \forall \ 1 \le i \le n$$

 \bullet for all j

$$\beta_{1,j}a_1 + \dots + \beta_{n,j}a_n \ge a_1^{\beta_{1,j}} \cdots a_n^{\beta_{n,j}}$$

hence

$$\lim_{j \to \infty} (\beta_{1,j} a_1 + \dots + \beta_{n,j} a_n) \ge \lim_{j \to \infty} a_1^{\beta_{1,j}} \dots a_n^{\beta_{n,j}}$$

$$\Leftrightarrow \alpha_1 a_1 + \dots + \alpha_n a_n \ge a_1^{\alpha_1} \dots a_n^{\alpha_n}$$

• cannot prove equality condition from above proof method

Proof of $AM \ge GM$ using Jensen's inequality

• $(-\log)$ is strictly convex function because

$$\frac{d^2}{dx^2}(-\log(x)) = \frac{d}{dx}\left(-\frac{1}{x}\right) = \frac{1}{x^2} > 0$$

ullet Jensen's inequality implies for $a_i>0$, $\alpha_i>0$ with $\sum \alpha_i=1$

$$-\log\left(\prod a_i^{\alpha_i}\right) = -\sum \log\left(a_i^{\alpha_i}\right) = \sum \alpha_i(-\log(a_i)) \ge -\log\left(\sum \alpha_i a_i\right)$$

ullet $(-\log)$ strictly monotonically decreases, hence $\prod a_i^{\alpha_i} \leq \sum \alpha_i a_i$, having just proved

$$\alpha_1 a_1 + \dots + \alpha_n a_n \ge a_1^{\alpha_1} \cdots a_n^{\alpha_n}$$

where equality if and only if a_i are equal (by Jensen's inequality's equality condition)

Cauchy-Schwarz inequality

Inequality 4. [Cauchy-Schwarz inequality] for any $a_i, b_i \in R$

$$(a_1^2 + \dots + a_n^2)(b_1^2 + \dots + b_n^2) \ge (a_1b_1 + \dots + a_nb_n)^2$$

middle school proof

$$\sum (ta_i + b_i)^2 \ge 0 \ \forall \ t \in \mathbf{R}$$

$$\Leftrightarrow \quad t^2 \sum a_i^2 + 2t \sum a_i b_i + \sum b_i^2 \ge 0 \ \forall \ t \in \mathbf{R}$$

$$\Leftrightarrow \quad \Delta = \left(\sum a_i b_i\right)^2 - \sum a_i^2 \sum b_i^2 \le 0$$

- equality holds if and only if $\exists t \in \mathbf{R}$, $ta_i + b_i = 0$ for all $1 \leq i \leq n$

Cauchy-Schwarz inequality - another proof

• $x \ge 0$ for any $x \in \mathbf{R}$, hence

$$\sum_{i} \sum_{j} (a_i b_j - a_j b_i)^2 \ge 0$$

$$\Leftrightarrow \sum_{i} \sum_{j} (a_i^2 b_j^2 - 2a_i a_j b_i b_j + a_j^2 b_i^2) \ge 0$$

$$\Leftrightarrow \sum_{i} \sum_{j} a_i^2 b_j^2 + \sum_{i} \sum_{j} a_j^2 b_i^2 - 2 \sum_{i} \sum_{j} a_i a_j b_i b_j \ge 0$$

$$\Leftrightarrow 2 \sum_{i} a_i^2 \sum_{j} b_j^2 - 2 \sum_{i} a_i b_i \sum_{j} a_j b_j \ge 0$$

$$\Leftrightarrow \sum_{i} a_i^2 \sum_{j} b_j^2 - \left(\sum_{i} a_i b_i\right)^2 \ge 0$$

- equality holds if and only if $a_ib_j=a_jb_i$ for all $1\leq i,j\leq n$

Cauchy-Schwarz inequality - still another proof

 $\bullet \ \ \text{for any} \ x,y \in \mathbf{R} \ \text{and} \ \alpha,\beta>0 \ \text{with} \ \alpha+\beta=1$

$$(\alpha x - \beta y)^{2} = \alpha^{2} x^{2} + \beta^{2} y^{2} - 2\alpha \beta xy$$

$$= \alpha (1 - \beta) x^{2} + (1 - \alpha) \beta y^{2} - 2\alpha \beta xy \ge 0$$

$$\Leftrightarrow \alpha x^{2} + \beta y^{2} \ge \alpha \beta x^{2} + \alpha \beta y^{2} + 2\alpha \beta xy = \alpha \beta (x + y)^{2}$$

$$\Leftrightarrow x^{2} / \alpha + y^{2} / \beta \ge (x + y)^{2}$$

• plug in $x=a_i$, $y=b_i$, $\alpha=A/(A+B)$, $\beta=B/(A+B)$ where $A=\sqrt{\sum a_i^2}$, $B=\sqrt{\sum b_i^2}$

$$\sum (a_i^2/\alpha + b_i^2/\beta) \ge \sum (a_i + b_i)^2 \Leftrightarrow (A + B)^2 \ge A^2 + B^2 + 2\sum a_i b_i$$

$$\Leftrightarrow AB \ge \sum a_i b_i \Leftrightarrow A^2 B^2 \ge \left(\sum a_i b_i\right)^2 \Leftrightarrow \sum a_i^2 \sum b_i^2 \ge \left(\sum a_i b_i\right)^2$$

Cauchy-Schwarz inequality - proof using determinant

• almost the same proof as first one - but using 2-by-2 matrix determinant

$$\sum (xa_i + yb_i)^2 \ge 0 \ \forall \ x, y \in \mathbf{R}$$

$$\Leftrightarrow \quad x^2 \sum a_i^2 + 2xy \sum a_i b_i + y^2 \sum b_i^2 \ge 0 \ \forall \ x, y \in \mathbf{R}$$

$$\Leftrightarrow \quad \left[\begin{array}{cc} x & y \end{array} \right] \left[\begin{array}{cc} \sum a_i^2 & \sum a_i b_i \\ \sum a_i b_i & \sum b_i^2 \end{array} \right] \left[\begin{array}{c} x \\ y \end{array} \right] \ge 0 \ \forall \ x, y \in \mathbf{R}$$

$$\Leftrightarrow \quad \left[\begin{array}{cc} \sum a_i^2 & \sum a_i b_i \\ \sum a_i b_i & \sum b_i^2 \end{array} \right] \ge 0 \Leftrightarrow \sum a_i^2 \sum b_i^2 - \left(\sum a_i b_i \right)^2 \ge 0$$

equality holds if and only if

$$(\exists x, y \in \mathbf{R} \text{ with } xy \neq 0) (xa_i + yb_i = 0 \ \forall 1 \leq i \leq n)$$

allows beautiful generalization of Cauchy-Schwarz inequality

Cauchy-Schwarz inequality - generalization

- want to say something like $\sum_{i=1}^{n} (xa_i + yb_i + zc_i + wd_i + \cdots)^2$
- run out of alphabets . . . use double subscripts

$$\sum_{i=1}^{n} (x_1 A_{1,i} + x_2 A_{2,i} + \dots + x_m A_{m,i})^2 \ge 0 \ \forall \ x_i \in \mathbf{R}$$

$$\Leftrightarrow \sum_{i=1}^{n} (x^{T} a_{i})^{2} = \sum_{i=1}^{n} x^{T} a_{i} a_{i}^{T} x = x^{T} \left(\sum_{i=1}^{n} a_{i} a_{i}^{T} \right) x \ge 0 \ \forall \ x \in \mathbf{R}^{m}$$

$$\Leftrightarrow \left| \begin{array}{cccc} \sum_{i=1}^{n} A_{1,i}^{2} & \sum_{i=1}^{n} A_{1,i} A_{2,i} & \cdots & \sum_{i=1}^{n} A_{1,i} A_{m,i} \\ \sum_{i=1}^{n} A_{1,i} A_{2,i} & \sum_{i=1}^{n} A_{2,i}^{2} & \cdots & \sum_{i=1}^{n} A_{2,i} A_{m,i} \\ \vdots & \vdots & \ddots & \vdots \\ \sum_{i=1}^{n} A_{1,i} A_{m,i} & \sum_{i=1}^{n} A_{2,i} A_{m,i} & \cdots & \sum_{i=1}^{n} A_{m,i}^{2} \end{array} \right| \geq 0$$

where
$$a_i = \left[\begin{array}{ccc} A_{1,i} & \cdots & A_{m,i} \end{array} \right]^T \in \mathbf{R}^m$$

- equality holds if and only if $\exists x \neq 0 \in \mathbf{R}^m$, $x^T a_i = 0$ for all $1 \leq i \leq n$

Cauchy-Schwarz inequality - three series of variables

 \bullet let m=3

$$\begin{bmatrix}
\sum a_i^2 & \sum a_i b_i & \sum a_i c_i \\
\sum a_i b_i & \sum b_i^2 & \sum b_i c_i \\
\sum a_i c_i & \sum b_i c_i & \sum c_i^2
\end{bmatrix} \succeq 0$$

$$\Rightarrow \sum a_i^2 \sum b_i^2 \sum c_i^2 + 2 \sum a_i b_i \sum b_i c_i \sum c_i a_i$$

$$\geq \sum a_i^2 \left(\sum b_i c_i\right)^2 + \sum b_i^2 \left(\sum a_i c_i\right)^2 + \sum c_i^2 \left(\sum a_i b_i\right)^2$$

- equality holds if and only if $\exists x, y, z \in \mathbf{R}$, $xa_i + yb_i + zc_i = 0$ for all $1 \leq i \leq n$
- questions for you
 - what does this mean?
 - any real-world applications?

Cauchy-Schwarz inequality - extensions

Inequality 5. [Cauchy-Schwarz inequality - for complex numbers] for $a_i, b_i \in C$

$$\sum |a_i|^2 \sum |b_i|^2 \ge \left| \sum a_i b_i \right|^2$$

Inequality 6. [Cauchy-Schwarz inequality - for infinite sequences] for two complex infinite sequences $\langle a_i \rangle_{i=1}^{\infty}$ and $\langle b_i \rangle_{i=1}^{\infty}$

$$\sum_{i=1}^{\infty} |a_i|^2 \sum_{i=1}^{\infty} |b_i|^2 \ge \left| \sum_{i=1}^{\infty} a_i b_i \right|^2$$

Inequality 7. [Cauchy-Schwarz inequality - for complex functions] for two complex functions $f,g:[0,1]\to \mathbf{C}$

$$\int |f|^2 \int |g|^2 \ge \left| \int fg \right|^2$$

• note that all these can be further generalized as in page 31

Number Theory - Queen of Mathematics

Integers

• integers (**Z**) - . . . -2, -1, 0, 1, 2, . . .

- first defined by Bertrand Russell
- algebraic structure commutative ring
 - addition, multiplication defined, but divison not defined
 - addition, multiplication are associative
 - multiplication distributive over addition
 - addition, multiplication are commutative
- natural numbers (N)
 - $-1, 2, \dots$

Division and prime numbers

ullet divisors for $n \in \mathbf{N}$

 $\{d \in \mathbf{N} | d \text{ divides } n\}$

- prime numbers
 - p is primes if 1 and p are only divisors

Fundamental theorem of arithmetic

Theorem 1. [fundamental theorem of arithmetic] integer $n \geq 2$ can be factored uniquely into products of primes, i.e., exist distinct primes, p_1, \ldots, p_k , and $e_1, \ldots, e_k \in \mathbb{N}$ such that

$$n = p_1^{e_1} p_2^{e_2} \cdots p_k^{e_k}$$

hence, integers are factorial ring (Definition ??)

Elementary quantities

greatest common divisor (gcd) (of a and b)

$$gcd(a, b) = max\{d|d \text{ divides both } a \text{ and } b\}$$

- for definition of gcd for general entire rings, refer to Definition ??
- least common multiple (lcm) (of a and b)

$$lcm(a, b) = min\{m|both \ a \ and \ b \ divides \ m\}$$

ullet a and b coprime, relatively prime, mutually prime $\Leftrightarrow \gcd(a,b)=1$

Are there infinite number of prime numbers?

- yes!
- proof
 - assume there only exist finite number of prime numbers, e.g., $p_1 < p_2 < \cdots < p_n$
 - but then, $p_1 \cdot p_2 \cdot \cdot \cdot p_n + 1$ is prime, but which is greater than p_n , hence contradiction

Integers modulo n

Definition 3. [modulo] when n divides a-b, a, said to be equivalent to b modulo n, denoted by

$$a \equiv b \pmod{n}$$

read as "a congruent to $b \mod n$ "

- $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$ imply
 - $-a+c \equiv b+d \pmod{n}$
 - $-ac \equiv bd \pmod{n}$

Definition 4. [congruence class] classes determined by modulo relation, called congruence or residue class under modulo

Definition 5. [integers modulo n] set of equivalence classes under modulo, denoted by $\mathbb{Z}/n\mathbb{Z}$, called integers modulo n or integers mod n

Euler's theorem

Definition 6. [Euler's totient function] for $n \in \mathbb{N}$,

$$\varphi(n) = (p_1 - 1)p_1^{e_1 - 1} \cdots (p_k - 1)p_k^{e_k - 1} = n \prod_{\text{prime } p \text{ dividing } n} (1 - 1/p)$$

called Euler's totient function, also called Euler φ -function

•
$$e.g.$$
, $\varphi(12) = \varphi(2^2 \cdot 3^1) = 1 \cdot 2^1 \cdot 2 \cdot 3^0 = 4$, $\varphi(10) = \varphi(2^1 \cdot 5^1) = 1 \cdot 2^0 \cdot 4 \cdot 5^0 = 4$

Theorem 2. [Euler's theorem - number theory] for coprime n and a

$$a^{\varphi(n)} \equiv 1 \pmod{n}$$

- e.g., $5^4 \equiv 1 \pmod{12}$ whereas $4^4 \equiv 4 \neq 1 \pmod{12}$
- Euler's theorem underlies RSA cryptosystem, which is pervasively used in internet communication

References

References

[HLP52] G. Hardy, J.E. Littlewood, and G. Polya. *Inequalities*. Cambridge Mathematical Library, 2nd edition, 1952.

Index

Sunghee Yun	August 4, 2025
a.e.	for complex functions, 33
almost everywhere, 6	for complex numbers, 33
	for infinite sequences, 33
a.s. almost surely, 6	generalization, 31
almost everywhere, 6	Cauchy-Schwarz inequality, 27
	extension, 33
almost everywhere - a.e., 6	for complex functions, 33
·	for complex numbers, 33
almost surely, 6	for infinite sequences, 33
AM-GM inequality, 18	generalization, 31
boundary	Cauchy-Schwarz inequality - for complex functions, 33
set, 3	
Cauchy, Augustin-Louis	Cauchy-Schwarz inequality - for complex numbers, 33
Cauchy-Schwarz inequality, 27	Cauchy-Schwarz inequality - for infinite sequences, 33
extension, 33	

Sunghee Yun	August 4, 2025
Euler's theorem, 41	Cauchy-Schwarz inequality - for complex functions, 33
Euler's totient function, 41	
phi-function, 41	Cauchy-Schwarz inequality - for complex numbers, 33
finite sequence, 2	Cauchy-Schwarz inequality - for infinite sequences, 33
fundamental theorem	Jensen's inequality, 10
of arithmetic, 37	Jensen's inequality - for finite sequences, 10
fundamental theorem of arithmetic, 37	Jensen's inequality - for random variables, 11
greatest common divisor, 38 integers, 38	infinite sequence, 2
	infinitely often, 6
i.o.	infinitely often - i.o., 6
infinitely often, 6	
inequalities	integer, 2
AM-GM inequality, 18	integers
Cauchy-Schwarz inequality, 27	congruence class, 40

```
Sunghee Yun
   interior, 3
   relative interior, 3
smallest \sigma-algebra containing subsets, 3
symmetric matrix, 4
theorems
   Euler's theorem - number theory, 41
   fundamental theorem of arithmetic, 37
trace
   matrix, 3
vector
   norm, 3
ZZ-todo
   0 - apply new comma conventions, 0
```

- 1 convert bullet points to proper theorem, definition, lemma, corollary, proposition, etc.,0
- CANCELED < 2024 0421 python script extracting important list, 0
- DONE 2024 0324 change tocpageref and funpageref to hyperlink, 0
- DONE 2024 0324 python script extracting figure list \rightarrow using "list of figures" functionality on doc, 0
- DONE 2024 0324 python script extracting theorem-like list \rightarrow using "list of theorem" functionality on doc, 0
- DONE 2024 0324 python script for converting slides to doc, 0
- DONE 2025 0414 1 change mathematicians' names, 0