	16MA101 Make up – January 2017			
a)	With usual notation prove that $\tan \phi = r \frac{d\theta}{dr}$.	6	L2	
b)	Find the radius of curvature ρ at any point of the cycloid $x = a(\cos t + t \sin t)$; $y = a(\sin t - t \cos t)$, a>0. State and prove Lagrange's mean value theorem.	7 7	L4 L4	
a) b)	Obtain the reduction formula $\int \cos^n dx$. Hence evaluate $\int_0^{\pi/2} \cos^n x dx$ where n is a positive integer. Trace the curve $xy^2=a^2(a-x)$, $a>0$ with explanation.	7 7	L2 L1	
c)	Evaluate (i) $\int_{0}^{\pi} x \sin^{8} x dx$ (ii) $\int_{0}^{\infty} x^{2} (1+x^{6})^{-7/2} dx$	6	L3	
a)	Find the length of an arch of the cycloid $x=a(\theta-\sin\theta)$, $y=a(1-\cos\theta)$, $a>0$.	6 7	L2 L5	
p)	Obtain the volume of the solid obtained by rotating the cissoids y ² (2a-x)=x ² , a ³ 0			
	Obtain the volume of the solid obtained by retaining about its asymptote. om's Taxonomy, L* Level	6		

16MA101

Test for convergence of the series:

(ii)
$$\sum_{n=1}^{\infty} \left(\frac{1}{\sqrt{n} + \sqrt{n+1}} \right)$$

State Cauchy's integral test and use it to show that $\sum \frac{1}{n^p}$ converges for and diverges for $p \le 1$.

Make up - January 2017

Obtain the Taylor's series of Sinx in powers of $\left(x-\frac{\pi}{2}\right)$ upto terms containing

$$\left(x-\frac{\pi}{2}\right)^4$$
.

L4

6

Unit - III

a) If
$$u = f(7x - 3y, 3y - 4z, 4z - 7x)$$
, show that $\frac{1}{7} \frac{\partial u}{\partial x} + \frac{1}{3} \frac{\partial u}{\partial y} + \frac{1}{4} \frac{\partial u}{\partial z} = 0$.

- The temperature T at any point (x,y,z) in space is $T=400xyz^2$. Find the highest temperature on the surface of the unit sphere $x^2 + y^2 + z^2 = 1$. L4 7
- c) If u is a homogeneous function of degree n in x and y, then prove that

$$\int_{0}^{\infty} x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = nu$$

$$x^{2} \frac{\partial^{2} u}{\partial x^{2}} + y^{2} \frac{\partial^{2} u}{\partial y^{2}} + 2xy \frac{\partial^{2} u}{\partial x \partial y} = n(n-1)u$$
7 L3

- The diameter and altitude of a can in the shape of a right circular cylinder are measured to be 4 cms and 6 cms respectively. The error in each measurement is 0.1 cm. Find the errors in the values computed for volume and lateral surface
- If $x = r\cos\theta$, $y = r\sin\theta$, us L3
- Expand the function $f(x, y) = e^x \log x$ third degree terms. L3

Unit - IV

Find the angle of intersection between the curves
$$r = \frac{a}{1+\theta}$$
 and $r = \frac{a}{1+\theta}$

If y = f(x) is any cartesian curve, then prove that its radius of curv

If
$$y = f(x)$$
 is any cartesian curve, then prove that its radius of curve
$$\rho = \frac{\left[1 + y_1^2\right]^{3/2}}{y_2} \text{ where } y_1 = y', \ y_2 = y''. \text{ Hence find } \rho \text{ for the curve}$$

$$7 \quad \text{L4}$$

$$r^2 + y^2 = 4r$$

State Cauchy's mean Value Theorem. Verify Cauchy's mean value theorem for 12 the functions $f(x) = x^2 + 3$, $g(x) = x^3 + 1$ in [1, 3].

NMAM INSTITUTE OF TECHNOLOGY, NITTE

(An Autonomous Institution affiliated to VTU, Belagavi)

First Semester B.E (Credit System) Degree Examinations Make up Examinations - January 2017

16MA101 - ENGINEERING MATHEMATICS - I

tion: 3 Hours

Max. Marks: 100

Note: Answer Five full questions choosing One full question from each Unit.

Unit-					Marks	DI
	1	-2	3	-1]		
Determine the rank of the following matrix	2	-2	4	0		
	3	-8	10	-5		
	_1	1	0	2	 6	L•3

Using the Gauss-Seidel iteration method, solve the following system of linear equations.

$$20x + y - 2z = 17$$

$$3x + 20y - z = -18$$

$$2x - 3y + 20z = 25$$

Start with
$$x^{(0)} = y^{(0)} = z^{(0)} = 0$$
. Carry out three iterations.

c) Reduce the quadratic form $x^2 + 3y^2 + 3z^2 - 2zy$ to canonical form. Also specify the matrix of the transformation.

a) Find
$$a, b$$
 and c if $A = \frac{1}{3} \begin{bmatrix} a & -2 & 2 \\ 2 & b & 1 \\ -2 & 1 & c \end{bmatrix}$ is an orthogonal matrix.

b) Using the Gauss elimination method solve

$$x+2y+3z=2$$
$$2x+y-2z=-1$$

$$3x - y - 3z = 1$$

Using the Rayleigh's power method, find the dominant eigen value and the

corresponding eigen vector of the matrix
$$\begin{bmatrix} 4 & 1 & -1 \\ 2 & 3 & -1 \\ -2 & 1 & 5 \end{bmatrix}$$
. Take the initial

approximation to the eigen vector as
$$\begin{bmatrix} 1 & 0.8 & -0.8 \end{bmatrix}^T$$

Unit - II

Find the n^{th} derivative of the following:

(i)
$$(ax+b)^m, (m>n)$$

(ii)
$$\log(ax+b)$$

Obtain the Maclaurin's expansion of log(1+x) up to three non-vanishing terms.

State D'Alemberts ratio test. Examine the following series for convergence :

$$\frac{1}{2\sqrt{1}} + \frac{x^2}{3\sqrt{2}} + \frac{x^4}{4\sqrt{3}} + \frac{x^6}{5\sqrt{4}} + \dots \infty$$

L4