TEK 5040/9040 Reinforcement Learning (basics)

Narada Warakagoda

backgrnd Basic concepts RL_prb value functions

MC method

What is Reinforcement Learning (RL)

- How the agents learn by trial and error
- Reward/punish a certain types of behavior

Applications of Reinforcement Learning (Shastha et al., 2019)

backgrnd Basic concepts RL_prb value functions

MC method 2 / 22

Why RL

- Less detailed instructions/supervision/annotations
- Learning optimal behavior rather than imitation

 backgrnd
 Basic concepts
 RL_prb
 value functions

MC method 3 / 22

Basic concepts of RL

Agent-Environment interaction

 $\mathbf{s}_t = \text{state at time } t$ $\mathbf{a}_t = \text{action at time } t$

 $\mathbf{r}_t = \text{reward at time } t$

backgrnd Basic concepts

RL_prb

value functions

MC method 4 / 22

Example 1 (manipulation robot)

backgrnd Basic concepts RL_prb value functions MC method 5 / 22

Example 2 (mobile robot)

backgrnd Basic concepts RL_prb value functions MC method 6/22

Environment

- Let the current state of the environment is s_t
- When the agent performs an action \mathbf{a}_t , the environment
 - changes its state to \mathbf{S}_{t+1}
 - Deterministic state transition rule

$$\mathbf{s}_{t+1} = f(\mathbf{s}_t, \mathbf{a}_t)$$

Stochastic state transition rule

$$\mathbf{s}_{t+1} \sim P(\cdot|\mathbf{s}_t, \mathbf{a}_t)$$

– generates a reward $\,{
m r}_t$

$$\mathbf{r}_t = R(\mathbf{s}_t, \mathbf{a}_t)$$

backgrnd Basic concepts

RL_prb

value functions

MC method 7 / 22

State space

- Discrete state spaces
 - Set of possible states is finite
 - Eg: Board state of game Go
- Continuous state spaces
 - Set of possible states is infinite
 - Eg: Angle of robotic arm

backgrnd Basic concepts RL_prb value functions

MC method

Agent/Policy

- When the current state of the environment is \mathbf{s}_t , the agent generates an action \mathbf{a}_t
 - Deterministic policy

$$\mathbf{a}_t = \mu(\mathbf{s}_t)$$

Stochastic *policy*

$$\mathbf{a}_t \sim \pi(\cdot|\mathbf{s}_t)$$

MC method 9 / 22

backgrnd Basic concepts RL_prb value functions

Action spaces

- Action space = set of all possible actions
- Discrete action space
 - Set of actions is finite
 - Discrete valued vectors
 - Stochastic policy is a categorical distribution
 - Eg: possible moves in game playing such as Go, Atari

- Set of actions is infinite
- Continuous valued vectors
- Stochastic policy is a continuous distribution such as Gaussian
- Eg: Steering angle of self-driving car

backgrnd Basic concepts RL_prb value functions

MC method 10 / 22

Trajectories

 A trajectory (also called *rollout* or *episode*) is a sequence of state-action pairs

$$au=(\mathbf{s}_0,\mathbf{a}_0,\mathbf{s}_1,\mathbf{a}_1,\mathbf{s}_2,\mathbf{a}_2,\cdots)$$

where development of this sequence is governed by statetransition function of the environment and agent's policy.

backgrnd Basic concepts

Reward and Return

• At a given state s_t , when the action is a_t , the environment generates a reward r_t using a reward function $R(\cdot, \cdot)$

$$\mathbf{r}_t = R(\mathbf{s}_t, \mathbf{a}_t)$$

 Total reward of a finite length trajectory, finite horizon undiscounted return

$$R(\tau) = \sum_{t=0}^{T} \mathbf{r}_t$$

 Total reward of an infinite length trajectory, infinite-horizon discounted return

$$R(\tau) = \sum_{t=0}^{\infty} \gamma^t \mathbf{r}_t$$

where $\gamma \in (0,1)$ is called a **discount factor**

backgrnd Basic concepts RL_prb value functions

The RL Problem

• Given an environment and agent, find a policy π which **maximizes the expected return** $J(\pi)$ when the agent acts according to it.

$$P_{\tau}(\tau|\pi) = \rho_0(\mathbf{s}_0 \prod_{t=0}^T P(\mathbf{s}_{t+1}|\mathbf{s}_t, \mathbf{a}_t) \pi(\mathbf{a}_t|\mathbf{s}_t)$$

$$R(\tau) = \sum_t \gamma^t \mathbf{r}_t$$

$$J(\pi) = \sum_\tau P_{\tau}(\tau|\pi) R(\tau)$$

$$\pi^* = \arg\max_{\pi} J(\pi)$$

backgrnd Basic concepts

RL_prb

value functions

MC method 13 / 22

Value Functions (I)

- RL problem optimizes the expected(average) return over all trajectories.
- However, sometimes we are interested in the expected return over
 - All trajectories start at a given state (state value function or \emph{value} $\emph{function}$ V(s))
 - All trajectories start at a given state and taking a given action (state-action value function or *action value function* Q(s, a))

backgrnd Basic concepts

RL prb

value functions

MC method 14 / 22

Value functions (II)

- On-policy value function
 - Expected return when acting according to the policy π starting at state s

$$V^{\pi}(\mathbf{s}) = \underset{\tau \sim \pi}{E} [R(\tau)|\mathbf{s_0} = \mathbf{s}]$$

- On-policy action value function
 - Expected return, when starting at $\, {
 m s} \,$ and taking an action $\, {
 m a} \,$ and thereafter acting according to the policy π

$$Q^{\pi}(\mathbf{s}, \mathbf{a}) = \mathop{E}_{\tau \sim \pi} [R(\tau) | \mathbf{s_0} = \mathbf{s}, \mathbf{a_0} = \mathbf{a}]$$

- Optimal value function
 - Expected return when acting according to the optimal policy starting at state $\ensuremath{\mathbf{s}}$

$$V^{\star}(\mathbf{s}) = \max_{\pi} \mathop{E}_{\tau \sim \pi} [R(\tau) | \mathbf{s_0} = \mathbf{s}]$$

- Optimal action value function
 - Optimal policy version of $Q^{\pi}(\mathbf{s}, \mathbf{a})$

$$Q^{\star}(\mathbf{s}, \mathbf{a}) = \max_{\pi} E_{\tau \sim \pi}[R(\tau) | \mathbf{s_0} = \mathbf{s}, \mathbf{a_0} = \mathbf{a}]$$

backgrnd

Basic concepts

RL prb

value functions

Relationship between value functions

On-policy versions

$$V^{\pi}(\mathbf{s}) = \underset{a \sim \pi}{E} [Q^{\pi}(s, \mathbf{a})]$$

Optimal versions

$$V^{\star}(\mathbf{s}) = \max_{\mathbf{a}} Q^{\star}(s, \mathbf{a})$$

backgrnd

Basic concepts

RL prb

value functions

MC method 16 / 22

Value function estimation

- How to calculate the value function?
 - We can apply the definition

$$V^{\pi}(\mathbf{s}) = \sum_{\tau \sim \pi} [R(\tau)|\mathbf{s_0} = \mathbf{s}]$$

$$= \sum_{\tau \sim \pi} P_{\tau}(\tau)R(\tau|\mathbf{s_0} = \mathbf{s})$$

$$= \sum_{\mathbf{a_0}} \sum_{\mathbf{s_1}} \sum_{\mathbf{a_1}} \cdots \sum_{\mathbf{s_T}} \rho(\mathbf{s_0})\pi(\mathbf{a_0}|\mathbf{s_0})P(\mathbf{s_1}|\mathbf{s_0},\mathbf{a_0}) \cdots P(\mathbf{s_T}|\mathbf{s_{T-1}},\mathbf{a_{T-1}})[r_0 + \gamma r_1 + \gamma^2 r_2 + \cdots + \gamma^T r_T]$$

- We may encounter two problems
 - Summation becomes intractable
 - We do not know the environment model $\mathbf{s}_{t+1} \sim P(\cdot|\mathbf{s}_t, \mathbf{a}_t)$
- Then we can use an approximate method
 - Monte Carlo method
 - Temporal difference method

backgrnd Basic concepts RL prb

Monte Carlo (MC) method

- Value function is an expectation $V^{\pi}(\mathbf{s}) = \underset{\tau \sim \pi}{E}[R(\tau)|\mathbf{s_0} = \mathbf{s}]$
- Sampling and calculate the sample average
 - Generate sample trajectories $\mathcal{D} = \{ au_i, \ i = 1, 2, \cdots, N \}$
 - Find trajectory segments starting at the desired state s
 - Calculate the return for each trajectory segment
 - Find the average of all such returns.
- Different strategies
 - First visit
 - All visit
 - Incremental update

backgrnd

Basic concepts

RL prb

value functions

Monte Carlo example

- Consider a state space consisting of four states A,B,C,D
- Let us assume that we have generated two trajectories (Actions have been omitted and numbers over the arrows are rewards)

$$(1): A \xrightarrow{-4} D \xrightarrow{5} B \xrightarrow{2} C \xrightarrow{0} D \xrightarrow{1} D \xrightarrow{-1} B \xrightarrow{0} A \xrightarrow{3} B \xrightarrow{8} END$$

$$(2): C \xrightarrow{2} A \xrightarrow{-3} B \xrightarrow{0} D \xrightarrow{-1} A \xrightarrow{2} C \xrightarrow{1} B \xrightarrow{0} END$$

backgrnd

Basic concepts

RL_prb

value functions

First Visit

- For each trajectory
 - Accumulate the return R_t for the first visit of the concerned state
- Take the average $\frac{1}{N}\sum R_t$

$$(1): A \xrightarrow{-4} D \xrightarrow{5} B \xrightarrow{2} C \xrightarrow{0} D \xrightarrow{1} D \xrightarrow{-1} B \xrightarrow{0} A \xrightarrow{3} B \xrightarrow{8} END$$

$$(2): C \xrightarrow{2} A \xrightarrow{-3} B \xrightarrow{0} D \xrightarrow{-1} A \xrightarrow{2} C \xrightarrow{1} B \xrightarrow{0} END$$

N_t				Tr	ajec	tory	/ 1						Tr	ajec	tory	/ 2			Total
Time	0	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	
Α	0	1											2						2
В	0			1										2					2
С	0				1							2							2
D	0		1												2				2

R_t				Tra	jecto	ry 1	1							Total	V					
Time	0	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7		
Α	0	14											-1+14						13	13/2
В	0			13									2+13						15	15/2
С	0				11							1+11							12	12/2
D	0		18												2+18				20	20/2

backgrnd Basic concepts RL_prb value functions

Every Visit

- For each trajectory
 - Accumulate the return R_t for <u>every</u> visit of the concerned state
- Take the average $\frac{1}{N}\sum R_t$

$$(1): A \xrightarrow{-4} D \xrightarrow{5} B \xrightarrow{2} C \xrightarrow{0} D \xrightarrow{1} D \xrightarrow{-1} B \xrightarrow{0} A \xrightarrow{3} B \xrightarrow{8} END$$

$$(2): C \xrightarrow{2} A \xrightarrow{-3} B \xrightarrow{0} D \xrightarrow{-1} A \xrightarrow{2} C \xrightarrow{1} B \xrightarrow{0} END$$

N_t				Tr	ajec	tory	/ 1						Total						
Time	0	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	
Α	0	1							2				3			4			4
В	0			1				2		3				4				5	5
С	0				1							2					3		3
D	0		1			2	3								4				4

-D																						
$\lfloor R_t \rfloor$	Trajectory 1												Trajectory 2									
Time	0	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7				
Α	0	14							11+14				-1+25			3+24			27	27/4		
В	0			13				11+13		8+24			2+32					0+34	34	34/5		
С	0				11							1+11					1+12		13	13/3		
D	0		18			11+18	10+29								2+39				41	41/4		

backgrnd Basic concepts

RL prb

value functions

MC method 21 / 22

Incremental Update

- Instead of taking average at the end, calculate a running average
- For each trajectory
 - Update the value V(s) every time the concerned state s is visited.

$$V_t(\mathbf{s}) \leftarrow V_{t-1}(\mathbf{s}) + \frac{1}{t}(R_t - V_{t-1}(\mathbf{s}))$$

 $V_t(\mathbf{s}) = \text{Value at the } t^{\text{th}} \text{ visit}, \quad V_{t-1}(\mathbf{s}) = \text{Value at the previous visit}, \quad R_t(\mathbf{s}) = \text{Return after the } t^{\text{th}} \text{ visit}$

$$(1): A \xrightarrow{-4} D \xrightarrow{5} B \xrightarrow{2} C \xrightarrow{0} D \xrightarrow{1} D \xrightarrow{-1} B \xrightarrow{0} A \xrightarrow{3} B \xrightarrow{8} END$$

$$(2): C \xrightarrow{2} A \xrightarrow{-3} B \xrightarrow{0} D \xrightarrow{-1} A \xrightarrow{2} C \xrightarrow{1} B \xrightarrow{0} END$$

						Trajectory 1		Trajectory 2											
Time	0	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	
Α	0	(14-							14+				12.5+			8+			6,75
		0)/1							(11-				(-1-12.5)/3			(3-			
									14)/2							8)/4			
В	0			(13-				13+		12+			10.66+					8,495+	6.8
				0)/1				(11-		(8-			(2-					(0-	
								13)/2		12)/3			10.66)/4					8.495)/5	
С	0				(11-							11+					6+		4.3
					0)/1							(1-					(1-		
												11)/2					6)/3		
D	0		(18-			18+	14.5+								13+				10.25
			0)/1			(11-	(10-								(2-				
			,,,			18)/2	14.5)/3								13)/4				

backgrnd Basic concepts

RL prb

value functions

MC method 22 / 22