Laboratorio di Fisica I

Relazione finale Ottica

Bernardo Tomelleri (587829) b.tomelleri@studenti.unipi.it

Marco Romagnoli (578061) m.romagnoli@studenti.unipi.it

Maurizio L. E. Camplese (579117) m.camplese@studenti.unipi.it

19/04/2019

Indice

1	Dop	Doppio Arcobaleno e Indice di rifrazione dell'Acqua									
	1.1	Scopo dell'esperienza									
	1.2	Apparato sperimentale e strumenti									
	1.3	Cenni Teorici									
		1.3.1 Deflessione nel caso di Luce incidente su una goccia d'acqua									
		1.3.2 Dispersione ottica all'interno delle gocce									
	1.4	Descrizione delle Misure									
	1.5	Analisi dei Dati									
	1.6	Conclusioni									
2	Alo	Alone Lunare e Indice di rifrazione del Ghiaccio									
	2.1	Scopo dell'esperienza									
	2.2	Apparato sperimentale e strumenti									
	2.3	Cenni Teorici									
		2.3.1 Legge di Gladstone-Dale									
	2.4	Descrizione delle Misure									
	2.5	Analisi dei Dati									
		2.5.1 Gladstone Dale									
	2.6	Conclusioni									

Capitolo 1

Doppio Arcobaleno e Indice di rifrazione dell'Acqua

1.1 Scopo dell'esperienza

Studiare il fenomeno dell'arcobaleno dal punto di vista dell'ottica geometrica, dunque ottenere una misura dell'indice di rifrazione dell'acqua da quanto trovato.

1.2 Apparato sperimentale e strumenti

La strumentazione utilizzata si limita a una fotografia digitale ad alta risoluzione del fenomeno trattato e di un software di elaborazione immagini¹ dotato di uno strumento per campionare punti e distanze tra questi, in base alle proprie coordinate in pixel.

1.3 Cenni Teorici

Sappiamo di poter osservare l'arcobaleno guardando un banco di pioggia quando il sole alle nostre spalle non è alla sua massima altezza, la spiegazione del fenomeno è da ricercarsi in ciò che succede al livello microscopico nelle singole gocce d'acqua:

1.3.1 Deflessione nel caso di Luce incidente su una goccia d'acqua

Si consideri un fascio di luce che illumina una goccia d'acqua -perfettamente- sferica di raggio R e con indice di rifrazione n: i raggi luminosi che incidono sulla sua superficie ad un angolo i vengono rifratti in entrata e possono subire molteplici riflessioni all'interno di questa prima di uscirne nuovamente rifratti. Dunque chiamiamo angolo di $diffusione \ \delta$ quello tra il raggio luminoso in entrata e il raggio in uscita. Se il raggio di luce subisce k riflessioni interne prima di uscire dalla sfera, la deflessione totale risulta pari a

$$\theta_k = 2(i-r) + k(\pi - 2r)$$
 (1.1)

Per la legge di *Snell-Cartesio* si ha sempre:

$$b = \sin i = n \sin r \tag{1.2}$$

Dal sistema formato dalle equazioni (1.2) e (1.1) si ottiene un'espressione in i per l'angolo di diffusione $\delta_k = \pi - \theta_k$

$$\delta_k(i) = 2\left((k+1)\arcsin\left(\frac{\sin i}{n}\right) - i\right)$$
 (1.3)

¹Nel nostro caso GIMP [1]

Figura 1.1: La fotografia campionata di un doppio arcobaleno

Quando il raggio subisce almeno una riflessione interna $(k \ge 1)$ esistono punti critici in cui $\frac{d\delta_k}{db}$ si annulla, d'altro canto n è costante, dunque la derivata dipende dal solo i

$$\frac{d\delta_k(i)}{di} = 2\left(\frac{(k+1)\cos i}{n\sqrt{1-\left(\frac{\sin i}{n}\right)^2}} - 1\right)$$
(1.4)

Dunque un angolo d'incidenza critico è dato da \hat{i}_k :

$$\delta_k'(\hat{i}_k) = 2\left(\frac{(k+1)\cos\hat{i}_k}{\sqrt{n^2 - \sin^2\hat{i}_k}} - 1\right) = 0 \tag{1.5}$$

$$\sin \hat{i}_k = \sqrt{\frac{(k+1)^2 - n^2}{k(k+2)}} \Rightarrow \hat{i}_k = \arcsin \sqrt{\frac{(k+1)^2 - n^2}{k(k+2)}}$$
 (1.6)

grazie all'identità fondamentale della trigonometria si arriva alla formula [2] per gli angoli d'incidenza critici in funzione dei valori di k e n:

$$i_k = \arccos\sqrt{\frac{n^2 - 1}{k(k+2)}}\tag{1.7}$$

Da cui, assumendo $n \approx \frac{4}{3}$:

$$i_1 \approx 60^{\circ}$$

 $i_2 \approx 72^{\circ}$

Ossia i raggi luminosi che incidono sulla goccia ad angoli prossimi a i_1 e i_2 vengono concentrati nei rispettivi angoli di diffusione determinati da (1.3)

$$\delta_1 = 4 \arcsin \sqrt{\frac{4 - n^2}{3n^2}} - 2 \arcsin \sqrt{\frac{4 - n^2}{3}} \approx 42^{\circ}$$
 (1.8)

$$\delta_2 = \pi - 6 \arcsin \sqrt{\frac{9 - n^2}{8n^2}} + 2 \arcsin \sqrt{\frac{9 - n^2}{8}} \approx 51^\circ$$
 (1.9)

1.3.2 Dispersione ottica all'interno delle gocce

La separazione nei 7 colori nell'arcobaleno è dovuta alla debole dipendenza dell'indice di rifrazione n dalla lunghezza d'onda λ della luce, per questo ogni componente del raggio viene rifratto in maniera leggermente diversa, come mostrato nella figura 1.2

Figura 1.2: Illustrazione della singola riflessione all'interno di una goccia d'acqua: la differenza tra gli indici di rifrazione per i colori è lievemente esagerata per chiarezza $(\pm 1\%)$

Un modello empirico di questa dipendenza è data dalla legge di Cauchy

$$n(\lambda) = n_0 + \frac{A}{\lambda^2} + \dots {1.10}$$

dove A prende il nome di Coefficiente di Cauchy, è possibile darne una stima a partire dai valori di n trovati distinguendo gli archi in base al colore delle bande.

1.4 Descrizione delle Misure

Abbiamo effettuato 3 coppie di campionamenti per ottenere 6 fit circolari indipendenti e, di conseguenza, tre stime sia per il raggio primario r che per il raggio secondario R, così da ottenere una stima sull'incertezza dalla deviazione dal valore medio.

1.5 Analisi dei Dati

Si sono effettuati 6 fit circolari indipendenti, uno per ognuna delle 3 bande di colore distinguibili all'interno dei due archi concentrici, di cui si riportano i risultati:

Da questi, prendendo come valore di riferimento la media e come incertezza associata lo scarto

Arcobaleno Primario							Arcobaleno Secondario				
$x_{(1)}$	$y_{(1)}$	$x_{(2)}$	$y_{(2)}$	$x_{(3)}$	$y_{(3)}$	$x_{(1)}$	$y_{(1)}$	$x_{(2)}$	$y_{(2)}$	$x_{(3)}$	$y_{(3)}$
230	620	240	720	240	700	144	700	141	687	138	662
235	561	230	622	232	590	146	520	145	518	140	555
274	437	243	515	301	589	181	405	186	393	212	341
351	331	316	370	424	271	286	249	295	239	408	159
489	236	453	254	580	210	476	129	489	121	611	97
828	237	863	253	739	209	850	130	839	123	754	100
968	331	1001	368	892	270	1033	248	1025	238	917	161
1043	437	1073	512	1016	390	1139	404	1135	392	1108	342
1083	561	1085	621	1085	589	1173	519	1170	512	1179	553
1086	622	1075	703	1076	701	1170	702	1173	690	1177	663

Tabella 1.1: Coordinate in pixel dei punti campionati sull'immagine

1	Arcobale	eno Prim	ario	Arcobaleno Secondario				
	$r_{(rosso)}$	$r_{(giallo)}$	$r_{(blu)}$	$R_{(blu)}$	$R_{(giallo)}$	$R_{(rosso)}$		
	430.1	429.1	427.5	521.7	520.6	518.8		

Tabella 1.2: Miglior stime dei raggi dell'arcobaleno ottenute dai fit

quadratico medio, si ottengono le misure dei raggi e del loro rapporto:

$$R = 520 \pm 1 \text{ [px]} \tag{1.11}$$

$$r = 429 \pm 1 \text{ [px]}$$
 (1.12)

$$\frac{R}{r} = 1.213 \pm 0.005 \tag{1.13}$$

Dal momento che fra gli angoli di diffusione associati all'arcobaleno secondario e primario ed i rispettivi raggi sussiste la relazione:

$$\frac{\delta_2}{\delta_1} = \frac{R}{r} \tag{1.14}$$

L'indice di rifrazione n dell'acqua è vincolato a rispettare la seguente espressione:

$$\frac{\pi + 2\arcsin\left(\frac{\sqrt{9-x^2}}{2\sqrt{2}}\right) - 6\arcsin\left(\frac{\sqrt{9-x^2}}{2\sqrt{2}x}\right)}{4\arcsin\left(\frac{\sqrt{4-x^2}}{x\sqrt{3}}\right) - 2\arcsin\left(\frac{\sqrt{4-x^2}}{\sqrt{3}}\right)} - 1.213 = 0$$
(1.15)

Figura 1.3: Grafico e soluzione dell'espressione (1.15) per l'indice di rifrazione

Da cui n risulta pari a 1.333 ± 0.001 come ci aspettavamo dalla teoria.

1.6 Conclusioni

Si è data una misura dell'indice di rifrazione dell'acqua con incertezza relativa minore dello 0.1%, notevolmente più preciso del risultato trovato durante l'esperienza del diottro (> 2%), questo si deve alla precisione del fit circolare e alla possibilità di abbassare l'errore sul valor medio ripetendo campionamenti e fit.

Capitolo 2

Alone Lunare e Indice di rifrazione del Ghiaccio

2.1 Scopo dell'esperienza

Spiegare e misurare l'ampiezza angolare dell'alone Lunare e da questa ricavare una stima dell'indice di rifrazione del ghiaccio.

2.2 Apparato sperimentale e strumenti

La strumentazione utilizzata si limita a una fotografia digitale del fenomeno trattato e di un software di elaborazione immagini [1] dotato di uno strumento per campionare diversi punti e distanze tra questi, in base alle proprie coordinate in pixel.

2.3 Cenni Teorici

Talvolta intorno alla Luna e al Sole è possibile osservare aloni circolari. Si osservi l'alone che circonda la Luna, l'allineamento lungo l'eclittica di Venere, Luna, Marte e Giove, e le tre stelle del triangolo primaverile che fanno da sfondo al fenomeno: Spica, Arcturus e Regulus.

L'alone è dovuto alla deflessione della Luce da parte di piccoli prismi esagonali (vapore acqueo ghiacciato presente nell'atmosfera) L'angolo di deflessione δ di un raggio di luce per un prisma (con angolo al vertice $\phi=60^\circ$ costituito di materiale con indice di rifrazione n) dipende dall'angolo d'incidenza i secondo la relazione:

$$\delta = i - \phi + \arcsin\left(\sin\phi\sqrt{n^2 - \sin i^2} - \sin i\cos\phi\right) \tag{2.1}$$

Si ha angolo minimo di deflessione δ_m quando il raggio rifratto si propaga parallelo alla base del prisma, dalla (2.1) si trova minimo per un angolo d'incidenza:

$$i_m \approx 41$$
 ° (2.2)

$$\delta_m \approx 22^{\circ}$$
 (2.3)

come si può vedere dal grafico 2.2. L'angolo di deflessione minimo soddisfa l'identità

$$n = \frac{\sin\left(\frac{\delta_m + \phi}{2}\right)}{\sin(\phi/2)} \tag{2.4}$$

Da cui è possibile ricavare una stima dell'indice di rifrazione del ghiaccio.

Figura 2.1: La fotografia del fenomeno usata per i campionamenti

Figura 2.2: Angolo di deflessione per un prisma esagonale di ghiaccio in funzione dell'angolo d'incidenza

2.3.1 Legge di Gladstone-Dale

Sappiamo che gli indici di rifrazione di un mezzo in due diverse fasi di stato sono legati dalle loro densità ρ secondo la Legge di Gladstone-Dale:

$$(n-1) = k\rho \tag{2.5}$$

Visto che le misure di indici proposte sono proprio dello stesso materiale nella sua fase solida e liquida può essere interessante verificare l'accordo di quest'ultima legge con i risultati sperimentali.

2.4 Descrizione delle Misure

La seguente tabella riporta i valori, in pixel, rilevati dai 4 campionamenti effettuati, anche stavolta per ottenere 4 fit circolari indipendenti e 4 diverse misure del raggio da cui stimare la deviazione dal valore medio.

$x_{(1)}$	$y_{(1)}$	$x_{(2)}$	$y_{(2)}$	$x_{(3)}$	$y_{(3)}$	$x_{(4)}$	$y_{(4)}$
562	191	487	235	506	222	612	185
684	192	752	234	741	223	584	188
445	298	437	316	432	327	559	197
801	299	809	314	810	325	531	210
427	372	429	380	427	388	497	232
821	374	818	381	817	389	474	255
453	479	487	518	488	470	442	307
793	480	774	520	800	469	430	361
518	551	553	571	511	542	437	429
744	553	687	570	759	541	463	486

Tabella 2.1: Coordinate in pixel dei punti campionati sull'immagine dell'alone.

2.5 Analisi dei Dati

Si sono effettuati 4 fit circolari, due per ciascuna banda di colore distinguibile all'interno dell'alone, così da poterne determinare il raggio R_{px} in pixel, se ne riportano i risultati nella tabella 2.2:

Alone	R_{px}	x_{centro}	y_{centro}
Verde(1)	198.9	624.3	383.5
Verde(2)	197.7	624.1	383.2
Rosso(1)	196.4	623.8	383.9
Rosso(2)	192.4	622.6	382.4

Tabella 2.2: Misure dell'alone lunare ottenute dai fit in pixel

Per esprimere la misura del raggio in gradi è necessaria una stima del fattore di conversione γ da pixel a gradi: fortunatamente la fotografia analizzata è stata scattata con un obiettivo che conserva le distanze angolari¹, quindi le distanze note tra le stelle del triangolo primaverile sono direttamente proporzionali a quelle osservate sullo sfondo dell'immagine. Si è consultato un catalogo stellare [3] per le coordinate delle tre stelle: indicando con θ l'angolo polare e ϕ quello azimutale, se ne è

 $^{^{1}}$ fish-eye diagonale da 15 mm

calcolata la distanza angolare sapendo che, per una coppia di punti di coordinate sferiche (θ_1, ϕ_1) e (θ_2, ϕ_2) , è data da:

$$\cos \alpha = \sin \theta_1 \sin \theta_2 + \cos \theta_1 \cos \theta_2 (\cos \phi_1 - \cos \phi_2) \tag{2.6}$$

Per la calibrazione si è misurata la distanza d tra Arcturus e Spica, pari a 295 ± 1 pixel, quindi per (2.6) si ottiene una distanza angolare $\alpha=32.8^\circ$, da cui abbiamo ricavato il fattore di conversione γ

$$\gamma = \frac{\alpha}{d} = 0.1112 \pm 0.0004 \tag{2.7}$$

Finalmente si riporta la misura del raggio R dell'alone lunare

$$R_{\rm px} = 196 \pm 3 \text{ pixel} \tag{2.8}$$

$$R = \gamma R_{\rm px} = 21.8 \pm 0.3$$
 ° (2.9)

Il che risulta compatibile con la nota ampiezza angolare di circa 22° che ci aspettavamo. Analogamente a quanto visto nel caso dell'arcobaleno, l'ampiezza angolare dell'alone coincide con l'angolo δ_m di deflessione dovuto ai prismi di ghiaccio presenti nell'atmosfera, da (2.4) si ricava la nostra misura dell'indice di rifrazione del ghiaccio:

$$n = 2\sin\left(\frac{R + \frac{\pi}{3}}{2}\right) = 1.310 \pm 0.004\tag{2.10}$$

2.5.1 Gladstone Dale

Si è assunto come valore di riferimento per la densità dell'acqua $\rho=0.997\pm0.001~{\rm g/cm^3}$. Per cui la nostra stima per la costante di Gladstone-Dale

$$k = \frac{n-1}{\rho} = 0.335 \pm 0.001 \tag{2.11}$$

risulta compatibile con quanto osservato [4] per luce d'ampiezza $\lambda = 546 \mu m$ a 25° Celsius, ovverosia $\bar{k} = 0.335$. Dunque si può dare una stima della densità del ghiaccio invertendo la legge (2.5):

$$\rho = \frac{n-1}{k} = 0.92 \pm 0.01 \text{ g/cm}^3$$
 (2.12)

compatibile entro l'errore sperimentale con il valore osservato [5] $\rho_{ice}=0.9168 \mathrm{g/cm^3}$ per il ghiaccio.

2.6 Conclusioni

L'ipotesi di cristalli esagonali come causa del fenomeno dell'alone lunare risulta plausibile, inoltre si sono misurati l'indice di rifrazione e la densità del ghiaccio con incertezze relative dell'1% circa.

Bibliografia

- [1] S. Kimball, P. Mattis *et al.* (2019, May) Gnu image manipulation program. [Online]. Available: https://www.gimp.org/
- [2] J. Walker, "Multiple rainbows from single drops of water and other liquids," *American Journal of Physics*, vol. 44, no. 5, Jan. 1976.
- [3] N. Krina. (2019, Apr.) Sky map online. [Online]. Available: http://kosmoved.ru/nebo_segodnya_geo.php?lang=eng&m=sky-map-online
- [4] J. S. Rosen, "The refractive indices of alcohol, water, and their mixtures at high pressures," Journal of the Optical Society of America, vol. 37, no. 11, pp. 932 – 938, Jun. 1947.
- [5] K. F. Voitkovskii, "The mechanical properties of ice (mekhanicheskie svoistva l'da)," Gidrokhimicheskie Materialy, 1960.