

Studienbereich Physik
Methodisches Konstruieren
1. Semester B.Sc.
Dr. H. Hely

Konstruktionsbericht 2D-Pendel

Arbeitsgruppe: A

Dennis Hunter

Tim-Jonas Wechler

Inhalt

1 Aufgabenstellung	3
1.1 Anforderungsliste	3
2 Konzeption der Baugruppe	4
2.1 Geforderter Wirkzusammenhang	4
2.2 Funktionsgliederung / Funktionsstruktur	·4
2.3 Physikalischer Wirkzusammenhang	4
2.4 Konstruktionsmerkmale	5
2.5 Prinzipskizze	6
2.6 Begründung der Lösungsauswahl	7
3 Entwurf des Gerätes	8
3.1 Weitere Teilfunktionen und zu gestalten	de Teile 8
3.2 Konstruktionsmerkmale der ausgewählt	en Lösung9
3.3 Qualitative Begründung der Lösungsaus	wahl11
3.4 Entwurfskizze	13
4 Dimensionierung	20
4.1 Theoretische Grundlagen	20
4.1.1 Mathematisches Pendel	20
4.1.2 Physikalisches Pendel	21
4.1.3 Gedämpftes Pendel	22
4.1.4 Bestimmung von k	22
4.1.5 2D-Pendel	23
4.2 Dimensionierung	26
4.2.1 Berechnungen der Frequenzen des	realisierten Pendels26
4.3 Experimentelle Bestimmung der Freque	nzen31
4.3.1 Messtechnische Limitierungen	31
4.3.2 Messung der Frequenzen	32
4.4 Experimentelle Bestimmung der Dämpfo	ung34
4.5 Ermitteltes Bewegungsmuster	36
4.6 Bewertung der Ergebnisse	37
Kreisfrequenzen	37
5 Störgrößenanalyse	38
6 Liste der verwendeten Symbole	39
7 Abbildungsverzeichnis	40
8 Tabellenverzeichnis	41
Literatur und Quellenverzeichnis	42

1 Aufgabenstellung

Ein physikalisches Pendel besteht aus einer Pendelmasse mit räumlicher Ausdehnung, (mindestens) einem Pendelarm mit einer Masse > 0 und einer Aufhängung je Pendelarm, die die Schwenkung in nur eine Richtung beschränkt.

Das zu konstruierende 2D Pendel besteht aus einer Kombination zweier physikalischer Pendel, deren Bewegungsrichtungen orthogonal zueinander stehen und sich überlagern. Ihre Einzelfrequenzen sollen ein ganzzahliges Verhältnis bilden. Weiter soll die Bewegung des Pendelendes (der Pendelmasse) über die x-y-Ebene registriert und bildlich dargestellt werden können. Außerdem darf die höchste der Einzelfrequenzen nicht mehr als 1Hz betragen während der gesamte Pendelvorgang mindestens 5 Perioden bei einer Restamplitude von mindestens 10% betragen soll.

1.1 Anforderungsliste

Festforderungen:

- Die Registriervorrichtung muss die Bewegung sichtbar machen.
- Alle Teile müssen käuflich erwerbbar oder mit "Heimwerkermitteln" aus Halbzeug herstellbar sein.
- Alle außenliegenden Teile müssen eine glatte Oberfläche aufweisen.
- Teile aus Technikbaukästen (LEGO, etc.) sind nur als Funktionsteile zu verwenden, nicht aber für Gestellteile.

Mindestforderungen:

- Die vom Pendel überstrichene Fläche soll > 2dm² betragen.
- Die Pendelfrequenzen sollen ≤ 1Hz betragen.
- Es sollen mindestens 5 Perioden überstrichen werden.
- Nach der fünften Periode soll die Restamplitude noch mindestens 10% der Anfangsamplitude betragen.

Wünsche:

- Die Einzelfrequenzen sollen ein ganzzahliges Verhältnis bilden.
- Die Konstruktion soll leicht bedienbar sein.
- Die Konstruktion soll ansprechend aussehen.
- Die Konstruktion soll möglichst leicht sein.

2 Konzeption der Baugruppe

2.1 Geforderter Wirkzusammenhang

Abbildung 1 Black Box

2.2 Funktionsgliederung / Funktionsstruktur

- Schwenkbewegung führen.
- Bewegungsmuster aufzeichnen.
- Rückstellmoment erzeugen.
- Gelenk / träge Masse verbinden.

2.3 Physikalischer Wirkzusammenhang

Tabelle 1 Physikalischer Wirkzusammenhang

Teilfunktion	Physikalisches Geschehen	
Pendelbewegung	Superposition Schwingung-X;	
erzeugen	Schwingung-Y	
Dämpfung erzeugen	Lagerung reibungsarm machen	Gestell Schwingungsarm machen
Frequenzverhältnis ganzzahlig machen	Schwerpunkt Pendelarm-X nah an Gelenk 2; Schwerpunkt Pendelarm-Y nah an Pendelmasse	Massenträgheitsmomente ganzzahlig machen

2.4 Konstruktionsmerkmale

Tabelle 2 Morphologischer Kasten für den konstruktiven Wirkzusammenhang

2.5 Prinzipskizze

Abbildung 2 Prinzipskizze der gewählten Lösungen

2.6 Begründung der Lösungsauswahl

Schwenkbewegung führen:

• Gleitlager

- Robust
- o Bereits vorhanden
- o Einfach zu verarbeiten
- o Besonders reibungsarm

Bewegungsmuster aufzeichnen:

• Kamera + Laser + Medium

- o Keine Massenveränderung am Pendel
- o Kontaktlos keine Dämpfung durch die Registriervorrichtung
- o Erzeugtes Muster unmittelbar digitalisiert
- o Hohe räumliche Auflösung der Pendelbewegung
- o Leichte Skalierbarkeit

Rückstellmoment erzeugen:

• Hohlzylinder

- o war vorhanden
- o Symmetrische Geometrie

Gelenk / träge Masse verbinden:

• Schraube zum festklemmen

- o Umsetzung war gut zu realisieren
- Stabilität / Festigkeit
- Masse ist zentrisch zum Pendelarm

3 Entwurf des Gerätes

3.1 Weitere Teilfunktionen und zu gestaltende Teile

- Art des Gleitlagers
- Form des Gestells
- Verbindung Gestell / Pendelarm 1
- Verbindung Pendelarm 1 / Pendelarm 2
- Lichtpunkt erzeugen
- Kontrast registrieren
- Kontrastverlauf (zeitlich) aufzeichnen / wiedergeben

3.2 Konstruktionsmerkmale der ausgewählten Lösung

Tabelle 3 Morphologischer Kasten für den konstruktiven Wirkzusammenhang

Tabelle 4 Morphologischer Kasten für den konstruktiven Wirkzusammenhang								

3.3 Qualitative Begründung der Lösungsauswahl

Art des Gleitlagers

• Gleitlager mit Festkörperreibung

o Muss nicht zugekauft werden, da bereits vorhanden

Form des Gestells

• Vier-Bein mit Ausleger

- Stabiler Stand (reduziert Eigenschwingverhalten)
- Montage aus Stahl möglich (schweißen)
- o Ein Gestell aus Stahl würde geringe Schärkräfte aufweisen

Verbindung Gelenk 1 / Gestellausleger

• Gleitlager in T-Stück + Verbindungsstück

- o Wenig Bearbeitung am Ausleger notwendig
- o Robust

Verbindung Pendelarme / Gelenk 2

• Gleitlager in T-Verbinder + Verbindungsstück

- Wenig zusätzliche Kleinteile
- Robust

Lichtpunkt erzeugen

• Laser + halbtransparente Oberfläche

- o Fokussierter Lichtpunkt auf dem Medium
- o Fokus über relativ großen Bereich distanzunabhängig
- o Integrierte Spannungsversorgung
- o Fertig kaufbar

Kontrast registrieren

• Video/Bildkamera

- o Bereits vorhanden
- o Als Add-On für Einplatinenrechner verfügbar
- o Weitestgehend frei programmierbar

Kontrastverlauf (zeitlich) aufzeichnen / widergeben

- OpenCV + selbst programmierte Software
 - o Individualisierung der Ausgabe
 - o Beliebig erweiterbar / hinzufügen von features

3.4 Entwurfskizze

Abbildung 3 Pendelgestell & Pendelarm 1:2

Abbildung 4 Schnitt A-A 1:2

Abbildung 6 Detailzeichnung X 2:1

Abbildung 7 Detailzeichnung W 2:1

Abbildung 8 Detailzeichnung V 2:1

Tabelle 5 Stückliste

Pos. Nr.	Anz.	Einheit	Benennung	DIN-Kurzbezeichnung	Werkstoff	Bemerkung
1	4	St.	Rohrendkappen			Amazon (GLEITGUT) Ref.: B078RQ6N26
2	1	St.	Bodenblech		AlCuMg2	gefräst
3	1	St.	Kamera			Surface
4	5	St.	Fixierschraube Bodenblech / Gelenkbefestigung	DIN 84 M3x10	20MoCr4	
5	4	St.	Vierkantprofil Gestellbeine	DIN 2395 25x25x2 200mm	S275JOH	
6	4	St.	Vierkantprofil Gestellfläche	DIN 2395 25x25x2 450mm	S275JOH	beidseitige Gehrung 45°
7	1	St.	Vierkantprofil Gestellausleger	DIN 2395 25x25x2 950mm	S275JOH	einseitige Gehrung 45°
8	1	St.	Vierkantprofil Auslegerarm	DIN 2395 25x25x2 250mm	S275JOH	einseitige Gehrung 45°
9	1	St.	Medium	DIN A3	Papier	
10	2	St.	Klemmblech		AlCuMg2	gefräst
11	12	St.	Fixierschraube Pendelarm / Klemmblech	DIN 84 M3x8	20MoCr4	
12	2	St.	Klebeabnd			tesa kristall-klar
13	1	St.	Gelenkbefestigung Ausleger		PETG	3D-gedruckt
14	2	St.	Lagerbuchse		PTFE	4x3 40mm
15	2	St.	Lagerwelle		PTFE	3x2 40mm
16	2	St.	Lagerachse	DIN EN ISO 636-A	10MnSi5	Länge 80mm
17	2	St.	Lageraufnahme		PETG	3D-gedruckt
18	1	St.	Pendelarm kurz		Birke	24 cm
19	1	St.	Gabelgelenk		PETG	3D-gedruckt
20	1	St.	Pendelarm lang		Birke	45 cm
21	1	St.	Pendelmasse		S420mc	gedreht
22	3	St.	Fixierschrauben Pendelmasse	DIN 7991 M3x10	20MoCr4	
23	1	St.	Laser			Amazon (Laserfuchs) Ref.: 70112573

4 Dimensionierung

4.1 Theoretische Grundlagen

4.1.1 Mathematisches Pendel

Mit Hilfe des mathematischen Pendels wird ein Grenzwert des physikalischen Pendels, die Länge, berechnet. Bei dem mathematischen Modell nimmt man an, dass die Verbindung zwischen Masse und Drehpunkt masse- und reibungslos ist. Der an der Verbindung befestigte Körper wird als Punktmasse angesehen.

Dem Modell des mathematischen Pendels liegt die Annahme zugrunde, dass die Pendelmasse eine physikalische Masse besitzt, während ihre räumliche Ausdehnung 0 beträgt. Daneben wird der Pendelarm als infinitesimal dünn und vollkommen masselos betrachtet. Ferner existiert keinerlei Dämpfung.

Abbildung 9 Mathematisches Pendel

$$\varphi(t) = \varphi_0 \cdot \cos(\omega \cdot t)$$
 (Start: $\varphi(t=0) = \varphi_0$)
$$\omega = 2\pi \cdot f = \sqrt{\frac{g}{l}}$$

4.1.2 Physikalisches Pendel

Da das mathematische Pendel durch seine Annahmen nur ein genähertes Modell der in Realität existiernden Größen ist, müssen beim physikalischen Pendel die einzelnen Teile berücksichtigt werden.

Die physikalische Größen sind die Masse der Verbindung zwischen Drehpunkt und Pendelmasse, die Pendelmasse selbst und die Schwerpunktslage des Pendels.

Abbildung 10 Physikalisches Pendel

$$\varphi(t) = \varphi_0 \cdot \cos(\omega \cdot t)$$

$$\omega = 2\pi \cdot f = \sqrt{\frac{(M + m_{Stab}) \cdot l_s \cdot g}{J_A}}$$

Die Schwerpunktlage des gesamten Pendels wird mit der folgenden Formel berechnet.

$$l_{s} = \frac{1}{M + m_{Stab}} \left(m_{Stab} \frac{l}{2} + M \left(l_{Stab} + l_{M_{S}} \right) \right)$$

Für die Berechnung des Trägheitsmoments um Punkt A wird folgende Formel verwendet.

$$J_A = J_{Stab_A} + J_{M_A}$$

$$J_{A} = \frac{1}{12} \cdot m_{Stab} \cdot l_{Stab}^{2} + m \cdot \frac{l_{Stab}^{2}}{4} + J_{M} + M \cdot \left(l_{Stab} + l_{M_{S}}\right)^{2}$$

4.1.3 Gedämpftes Pendel

Da ein mechanisches System unter Normalbedingungen immer Reibung erfährt, wird das Pendel permanet gedämpft. Dies führt dazu, dass das Pendel in seiner Auslenkung stetig abnimmt (siehe Abbildung 11).

Abbildung 11 Gedämpfte Schwingung

Die Formel zur Berechnung des physikalischen Pendels muss somit um eine Exponentialfunktion wie folgt erweitert werden:

$$\varphi(\mathsf{t}_1) = \varphi_0 \cdot \mathrm{e}^{-\left(\frac{k}{2\mathsf{J}_A}\right)t_1} \cdot \cos(\omega \cdot t_1)$$

4.1.4 Bestimmung von k

Die hinzugekommene Exponentialfunktion erweitert die Gleichung um den Parameter k. Der Parameter k ist eine konstruktionsbedingte Konstante und ist ein Maß für die Dämpfung des schwingenden Systems. Mit der Gleichung zur Beschreibung des gedämpften Pendels zu einem

Zeitpunkt t, an dem die Auslenkung maximal, damit $\cos(\omega \cdot t) = 1$ ist und somit verschwindet, lässt sich eine Formel zur Berechnung von k wie folgt herleiten:

$$\varphi(t_{n}) = \varphi_{0} \cdot e^{-\left(\frac{k}{2J_{A}}t_{n}\right)}$$

$$\ln \frac{\varphi(t_{n})}{\varphi_{0}} = -\frac{k}{2J_{A}} \cdot t_{n}$$

$$\ln \frac{\varphi_{0}}{\varphi(t_{n})} = \frac{k}{2J_{A}} \cdot t_{n}$$

$$\ln \frac{\varphi_{0}}{\varphi(t_{n})} \cdot \frac{2J_{A}}{t_{n}} = k$$

4.1.5 2D-Pendel

Die Aufgabenstellung fordert ein Pendel, das in x- und in y-Richtung unterschiedliche Frequenzen aufweist. Wenn die beiden Frequenzen ein ganzzahliges Verhältnis bilden spricht man bei den entstehenden Bewegungsmustern von Lissajous-Figuren.

Abbildung 12 Lissajous-Figuren. Quelle: Skript "Schwingungen und Wellen – Teil1: Schwingungen" Dr. Eszter Geberth, SS19

Es lässt sich für ein angestrebtes Winkelverhältnis mit

$$x(t) = x_0 \cdot \cos((\omega_1 \cdot t) + \varphi_0)$$

und

$$y(t) = y_0 \cdot \cos((\omega_2 \cdot t) + \varphi_0)$$

für den ungedämpften Fall und mit

$$x(t) = x_0 \cdot e^{-\left(\frac{k}{2J_A}\right) \cdot t} \cdot \cos((\omega_1 \cdot t) + \varphi_0)$$

und

$$y(t) = y_0 \cdot e^{-\left(\frac{k}{2J_A}\right) \cdot t} \cdot \cos((\omega_2 \cdot t) + \varphi_0)$$

für den gedämpften Fall eine zu erwartetende Lissajous-Figur modellieren.

Abbildung 13 Lissajous-Figur für ein Verhältnis 3/2, ungedämpft.

Abbildung 14 Lissajous-Figur für ein Verhältnis 3/2, gedämpft.

Zur Modellierungen wurden für Trägheitsmomente $J_A=0.5$ und Amplitudenwerte $x_0,y_0=1$ gewählt. Die gemeinsame Anfangsauslenkung φ_0 wurde auf 135° bzw. $\frac{3}{4}\pi$ und der Dämpfungsfaktor k=0.01 gesetzt. Das Frequenzverhältnis soll hierbei

$$\frac{\omega_1}{\omega_2} = \frac{3}{2}$$

Betragen. Die zugrundeliegenden Gleichungen ergeben sich somit für den ungedämpften Fall zu

$$x(t) = \cos((3 \cdot t) + 135^\circ)$$

$$y(t) = \cos((2 \cdot t) + 135^\circ)$$

(siehe Abbildung 13) und für den gedämpften Fall zu

$$x(t) = e^{-0.01 \cdot t} \cdot \cos((3 \cdot t) + 135^{\circ})$$

$$y(t) = e^{-0.01 \cdot t} \cdot \cos((2 \cdot t) + 135^{\circ})$$

(siehe Abbildung 14).

4.2 Dimensionierung

Die Aufgabenstellung fordert, dass die Frequenzen in x- und y-Richtung jeweils kleiner 1Hz sein müssen. Mit Zuhilfenahme des Modells des mathematischen Pendels kann man zu einer ersten Einschätzung der mindestlänge des kürzeren Pendelarmes gelangen.

$$l_y = \frac{g}{4\pi^2 \cdot f^2} = \frac{9.81 \frac{m}{s^2}}{4\pi^2 \cdot 1 s^2} \approx 0.25 m$$

Um der Forderung zu entsprechen, muss für das zu realisierende Pendel der Massenschwerpunkt also mindestens 0,25m vom Aufhängepunkt A_y entfernt liegen. Hierzu muss die Länge des Stabes l_{StabY} etwas größer als 0,25m gewählt werden.

4.2.1 Berechnungen der Frequenzen des realisierten Pendels

Pendelarm Y

- Gewählte Länge: $l_{StabY} = 0.24 m$
- Form: Stab-Zylinder, $r_{StabY} = 6 mm$
- Werkstoff: Holz, Birke $\rho_{holz} = 650 \frac{kg}{m^3}$

$$V_{StabY} = \pi \cdot r_{StabY}^2 \cdot l_{StabY} = \pi \cdot 0,006^2 \ m^2 \cdot 0,24 \ m \approx 27,14 \cdot 10^{-6} \ m^3$$

$$m_{StabY} = V_{StabY} \cdot \rho_{holz} = 27,14 \cdot 10^{-6} \, m^3 \cdot 650 \, \frac{kg}{m^3} \approx 0,0176 \, kg$$

Pendelmasse

- Form: Hohlzylinder, $r_1 = 20 \text{ mm}$; $r_2 = 7.5 \text{ mm}$; h = 50 mm
- Werkstoff: S420mc, $\rho_{S420mc} = 7800 \frac{kg}{m^3}$

$$V_{zyl} = \pi \cdot (r_1^2 - r_2^2) \cdot h = \pi \cdot (0.02^2 \ m^2 - 0.0075^2 \ m^2) \cdot 0.05 \ m \approx 54 \cdot 10^{-6} \ m^3$$

$$m_{zyl} = V_{zyl} \cdot \rho_{S420mc} = 54 \cdot 10^{-6} \ m^3 \cdot 7800 \frac{kg}{m^3} = 0,4212 \ kg$$

Trägheitsmoment des Pendelarms um den Punkt B.

$$J_{StabY_B} = J_{StabY} + m_{StabY} \cdot d^2 = \frac{1}{12} \cdot m_{StabY} \cdot l_{StabY}^2 + m_{StabY} \cdot \left(\frac{l_{StabY}}{2}\right)^2$$

$$J_{StabY_B} = \frac{1}{12} \cdot 0.0176 \, kg \cdot 0.24^2 \, m^2 + 0.0176 \, kg \cdot \left(\frac{0.24 \, m}{2}\right)^2 = 337.9 \cdot 10^{-6} \, kg \, m^2$$

Trägheitsmoment der Pendelmasse um den Punkt B.

$$\begin{split} J_{zyl_B} &= J_{zyl} + m_{zyl} \cdot d_{zyl}^2 = \frac{1}{4} \cdot m_{zyl} \left(r_1^2 + r_2^2 + \frac{1}{3} h^2 \right) + m_{zyl} \cdot \left(\frac{h}{2} + l_{StabY} \right)^2 \\ J_{zyl_B} &= \frac{1}{4} \cdot 0,4212 \ kg \cdot \left(0,02^2 \ m^2 + 0,0075^2 \ m^2 + \frac{0,05^2 \ m^2}{3} \right) + 0,4212 \ kg \cdot (0,025 \ m + 0,24 \ m)^2 \\ J_{zyl_B} &\approx 29,7146 \cdot 10^{-3} \ kg \ m^2 \end{split}$$

Gemeinsamer Schwerpunkt $l_{s_{oldsymbol{
u}}}$

$$l_{sy} = \frac{1}{m_{zyl} + m_{StabY}} \cdot \left(m_{zyl} \cdot l_{StabY} + m_{StabY} \cdot \frac{l_{StabY}}{2} \right)$$

$$l_{sy} = \frac{1}{0,4212 \ kg + 0,0176 \ kg} \cdot \left(0,4212 \ kg \cdot 0,24 \ m + 0,0176 \ kg \cdot \frac{0,24 \ m}{2} \right) \approx 0,235 \ m$$

Pendelkreisfrequenz ω_{ν}

$$\omega_y = 2\pi f_y = \sqrt{\frac{\left(m_{zyl} + m_{StabY}\right) \cdot l_{s_Y} \cdot g}{J_{zyl_B} + J_{Stab_B}}}$$

$$\omega_y = \sqrt{\frac{(0.4212 \, kg + 0.0176 \, kg) \cdot 0.235 \, m \cdot 9.81 \frac{m}{s^2}}{29.7146 \cdot 10^{-3} \, kg \, m^2 + 326.4 \cdot 10^{-6} \, kg \, m^2}}$$

$$\omega_y \approx 5.802 \, s^{-1}$$

$$=> f_y = \frac{\omega_y}{2\pi} = \frac{5.8018 \, s^{-1}}{2\pi} \approx 0.9234 \, Hz$$

Abbildung 15 Pinzipskizze in x-Richtung

Pendelarm X

- Gewählte Länge: $l_{StabX} = 0.45 m$
- Form: Stab-Zylinder, $r_{StabX} = 6 mm$
- Werkstoff: Holz, Birke $ho_{holz}=650~rac{kg}{m^3}$

$$V_{StabX} = \pi \cdot r_{StabX}^2 \cdot l_{StabX} = \pi \cdot 0,006^2 \, m^2 \cdot 0,45 \, m \approx 50,89 \cdot 10^{-6} \, m^3$$

$$m_{StabX} = V_{StabX} \cdot \rho_{holz} = 50,89 \cdot 10^{-6} \, m^3 \cdot 650 \, \frac{kg}{m^3} \approx 0,033 \, kg$$

Trägheitsmoment des Stabs für X um den Punkt A

$$J_{StabX_A} = J_{StabX} + m_{StabX} \cdot d^2 = \frac{1}{12} \cdot m_{StabX} \cdot l_{StabX}^2 + m_{StabX} \cdot \left(\frac{l_{StabY}}{2}\right)^2$$

$$J_{StabX_A} = \frac{1}{12} \cdot 0,033 \ kg \cdot 0,45^2 \ m^2 + 0,033 \ kg \cdot \left(\frac{0,45 \ m}{2}\right)^2 = 2,2275 \cdot 10^{-3} \ kg \ m^2$$

Trägheitsmoment des Stabs für Y um den Punkt A

$$J_{StabY_A} = J_{StabY} + m_{StabY} \cdot d^2 = \frac{1}{12} \cdot m_{StabY} \cdot l_{StabY}^2 + m_{StabY} \cdot \left(\frac{l_{StabY}}{2} + l_{StabX}\right)^2$$

$$J_{StabY_A} = \frac{1}{12} \cdot 0.0176 \, kg \cdot 0.24^2 \, m^2 + 0.0176 \, kg \cdot \left(\frac{0.24 \, m}{2} + 0.45 \, m\right)^2 = 5.802 \cdot 10^{-3} \, kg \, m^2$$

Trägheitsmoment der Pendelmasse um den Punkt A

$$J_{zyl_A} = J_{zyl} + m_{zyl} \cdot d_{zyl}^2 = \frac{1}{4} \cdot m_{zyl} \left(r_1^2 + r_2^2 + \frac{1}{3} h^2 \right) + m_{zyl} \cdot \left(\frac{h}{2} + l_{StabY} + l_{StabX} \right)^2$$

$$J_{zyl_A} = \frac{1}{4} \cdot 0,4212 \, kg \cdot \left(0,02^2 \, m^2 + 0,0075^2 \, m^2 + \frac{0,05^2 \, m^2}{3} \right) + 0,4212 \, kg$$

$$\cdot (0,025 \, m + 0,24 \, m + 0,45 \, m)^2$$

$$J_{zyl_A} \approx 215,464 \cdot 10^{-3} \, kg \, m^2$$

Gemeinsamer Schwerpunkt l_{s_x}

$$\begin{split} m_{ges} &= m_{zyl} + m_{StabX} + m_{StabY} = 0,4212 \, kg + 0,033 \, kg + 0,0176 \, kg = 0,4718 \, kg \\ l_{sy} &= \frac{1}{m_{ges}} \cdot \left[\left(m_{zyl} + m_{StabY} \right) \cdot \left(l_{sy} + l_{StabX} \right) + m_{StabX} \cdot \frac{l_{StabX}}{2} \right] \\ l_{sy} &= \frac{1}{0,4718 \, kg} \cdot \left[\left(0,4212 \, kg + 0,0176 \, kg \right) \cdot \left(0,235 \, m + 0,45 \, m \right) + 0,033 \, kg \cdot \frac{0,45 \, m}{2} \right] \\ &\approx 0,653 \, m \end{split}$$

Pendelkreisfrequenz ω_{x}

$$\omega_{x} = 2\pi f_{x} = \sqrt{\frac{(m_{ges}) \cdot (l_{sy} + l_{Stabx}) \cdot g}{J_{zyl_{A}} + J_{StabX_{A}} + J_{StabY_{A}}}}$$

$$\omega_{x} = \sqrt{\frac{0,4718 \, kg \cdot (0,235 \, m + 0,45 \, m) \cdot 9,81 \frac{m}{s^{2}}}{(2,2275 \, kg \, m^{2} + 5,802 \, kg \, m^{2} + 215,464 \, kg \, m^{2}) \cdot 10^{-3}}}$$

$$\omega_{x} \approx 3,766 \, s^{-1}$$

$$=> f_{x} = \frac{\omega_{x}}{2\pi} = \frac{3,766 \, s^{-1}}{2\pi} \approx 0,599 \, Hz$$

4.3 Experimentelle Bestimmung der Frequenzen

4.3.1 Messtechnische Limitierungen

Die Registriereinrichtung lässt eine unmittelbare und berührungslose Messung der Auslenkungen in x- und y-Richtung zu. Technisch bedingt ist die räumliche Auflösung auf die Auflösung der verwendeten Kamera begrenzt. In unserem Fall lösen wir mit 1280 Pixel in x- und 720 Pixel in y-Richtung auf. Um aus der Pixeldichte des Bildes einen Rückschluss der Auslenkung des Pendels in Millimetern ziehen zu können, wurde ein Geodreieck von oben auf das Medium gelegt und unter Zuhilfenahme von Gegenlicht ein Bild der Szene in Originalauflösung aufgenommen (siehe Abbildung 16).

Abbildung 16 Aufbau Messung der Pixel / Millimeter

Anschließend wurden innerhalb eines einfachen Bildbearbeitungsprogrammes (MS Paint) die Anzahl der Pixel zwischen 10 Millimetern gezählt. Die räumliche Auflößung in Millimetern ergibt sich somit zu

$$Resolution = \frac{10 \ mm}{n_{pixel}} = \frac{10 \ mm}{52 \ Pixel} \approx 0.2 \frac{mm}{Pixel}$$

Das Ergebnis deckt sich mit einer analogen Gegenmessung der nutzbaren Fläche mittels eines handelsüblichen Lineals. Hier wurden 256 mm in x-Richtung gemessen.

$$1280 \ Pixel \cdot 0.2 \frac{mm}{Pixel} = 25.6 \ mm$$

Durch Messungenauigkeiten ist von einem Fehler von ±0,5 mm auszugehen. Weiter addiert sich zu den Rändern des Messbereichs hin ein Winkelfehler. Dieser wird jedoch im Sinne einer Kleinwinkelnäherung vernachlässigt.

Zeitlich wird maximal in der Größenordnung der durchschnittlichen "Frametime" der Kamera aufgelößt. In unserem Fall beträgt sie etwa 36 Millisekunden (siehe Abbildung 17).

Ungefaehre fps : 27.650900272956488 Ungefähre Frametime : 0.0361651877562205

Abbildung 17 Messergebnis der Frametime

4.3.2 Messung der Frequenzen

Die Software zur Registrierung nimmt ebenfalls Messungen vor, die später zur Auswertung weiterverarbeitet werden, und schreibt sie in eine Datei im CSV-Format (Comma Seperated Values).

Die Auslenkung des Pendels wird mittels eines Lasers, der zentrisch in der Pendelmasse befestigt und nach unten gerichtet ist, auf ein Medium projiziert. Auf die Unterseite des Mediums blickend befindet sich eine Kamera. Per Computer-Vision wird im ersten Schritt der Lichtpunkt erkannt und die Koordinaten seines optischen Schwerpunktes im Bildraum erfasst. Weiter werden zu jeder neuen Messung der Koordinaten, die zu diesem Zeitpunkt seit Beginn der Messung verstrichene Zeit erfasst und zusammen mit den Koordinaten gespeichert. Nach 20 Sekunden stoppt die Messung automatisch.

Zur Ermittlung der Frequenzen wurde das Pendel nah an die Grenzen der Registriereinrichtung ausgelenkt und losgelassen. Nach etwa zwei Perioden wurde die Software zur Registrierung gestartet und gewartet, bis die Messung beendet ist.

In den gewonnenen Daten lassen sich nun die positiven Amplitudenwerte und die zugehörigen Zeitwerte suchen und in einer Tabelle abtragen.

Tabelle 6 Zeitmessungen unter 45° Auslenkung

	i	1	2	3	4	5	6	7	8	9	10	Øt_10	Т	f	w=2*pi*f
t	in x	17,330	17,110	17,219	17,213	17,104	17,078	17,146	16,995	17,140	17,213	17,155	1,715	0,583	3,663
t	in y	11,940	11,727	10,677	11,804	11,711	11,711	11,784	11,677	11,767	11,787	11,659	1,166	0,858	5,389

Zur Berechnung der Tabellenwerte wurden nachfolgende Gleichungen verwendet.

$$\bar{t}_{10} = \frac{1}{i} \cdot \sum_{i} t_{i}$$

und

$$T = \frac{\bar{t}_{10}}{10} = \frac{1}{f} = \frac{2\pi}{\omega}$$

Die statistische Abweichung ergibt sich mit

$$\Delta t_{10} = \sqrt{\frac{1}{i \cdot (i-1)} \cdot \sum_{i=1}^{10} (t_i - \bar{t}_{10})^2}$$

Und beträgt jeweils für x- und y-Richtung

$$\Delta t_{10x} = 0.029 \, s$$
 $\Delta t_{10y} = 0.111 \, s$

Das ermittelte Kreisfrequenzverhältnis beträgt

$$z = \frac{\omega_2}{\omega_1} = \frac{5,389 \, s^{-1}}{3,663 \, s^{-1}} \approx 1,471$$

4.4 Experimentelle Bestimmung der Dämpfung

Zur Bestimmung der Dämpfung wurden die Amplitudenwerte zu den in Kapitel 4.3 beschriebenen Zeitpunkten abgetragen. Die Winkelauslenkung lässt sich trigonometrisch ermitteln zu

$$\varphi_n = \tan^{-1}\left(\frac{x_n}{l}\right) \cdot \frac{180^{\circ}}{\pi}$$

Hierbei ist l die Länge des jeweiligen Pendels von Drehpunkt bis zur Oberfläche des Mediums.

Tabelle 7 Messung der Amplitudenwerte zur Ermittlung des Dämpfungsfaktors k, Startauslenkung unter 45°

i	1	2	3	4	5	6	7	8	9	10	$\bar{x}_0, \overline{\phi}_{0_X}$	$\bar{y}_0, \bar{\varphi}_{0_y}$	$\bar{x}_{10}, \overline{\phi}_{10_x}$	$\overline{y}_{10}, \overline{\phi}_{10_y}$	nT	k
x_n	56,8	55,2	55,4	54,2	55,4	54,4	53,6	53,8	53,6	54,0	-	-	54,6	-	17,155	0.0004021
$\varphi_{\mathtt{10}_{X}}$	3,672	3,569	3,582	3,505	3,582	3,517	3,466	3,479	3,466	3,492	-	-	3,533	-	17,133	0,0004921
y_n	22,0	22,8	22,2	24,0	23,0	22,2	22,4	21,8	23,4	23,4	-	-	-	22,7	11.650	0.0207542
φ_{10_y}	3,109	3,222	3,138	3,391	3,250	3,138	3,166	3,081	3,307	3,307	-	-	-	3,211	11,659	0,0397542
<i>x</i> ₀	70,600	63,200	62,400	61,800	62,800	62,000	61,400	61,400	61,600	61,600	62,88	-	=	-		
$\varphi_{0,x}$	4,561	4,085	4,033	3,995	4,059	4,007	3,969	3,969	3,982	3,982	4,06405	-	-	-	-	-
<i>y</i> ₀	64,800	64,600	56,800	66,000	64,800	64,400	64,800	63,800	65,400	65,400	-	64,08	-	-		
$\varphi_{0,y}$	9,090	9,063	7,983	9,256	9,090	9,035	9,090	8,952	9,173	9,173	-	8,99062	-	-	-	-

Aus den gewonnenen Werten wird der Dämpfungsfaktor k errechnet mittels

$$k = \frac{2 \cdot J_{A,B}}{nT} \cdot \ln \left(\frac{\overline{\varphi}_{0_{x,y}}}{\overline{\varphi}_{10_{x,y}}} \right)$$

Mit den aus den theoretischen Vorüberlegungen gewonnenen Werten für die Trägheitsmomente der Pendel mit

$$J_A = J_{StabX_A} + J_{StabY_A} + J_{zyl_A} = (215,464 \ kg \ m^2 + 2,2275 \ kg \ m^2 + 5,802 \ kg \ m^2) \cdot 10^{-3}$$
$$= 0,2234935 \ kg \ m^2$$

$$J_B = J_{StabY_B} + J_{zyl_B} = 29,7146 \cdot 10^{-3} \ kg \ m^2 + 326,4 \cdot 10^{-6} \ kg \ m^2 = 0,030041 \ kg \ m^2$$

und den experimentell ermittelten Werten für die Amplituden nach n Perioden (siehe Tabelle 7) ergeben sich die Dämpfungskonstanten zu

$$k_x = \frac{2 \cdot J_A}{n T_x} \cdot \ln \left(\frac{\overline{\varphi}_{0_x}}{\overline{\varphi}_{10_x}} \right) = \frac{2 \cdot 0,2234935 \ kg \ m^2}{17,155 \ s} \cdot \ln \left(\frac{4,06405^\circ}{3,533^\circ} \right) = 0,0004921 \ \frac{kg \ m^2}{s}$$

$$k_y = \frac{2 \cdot J_B}{nT_y} \cdot \ln \left(\frac{\overline{\varphi}_{0y}}{\overline{\varphi}_{10y}} \right) = \frac{2 \cdot 0,030041 \ kg \ m^2}{11,659 \ s} \cdot \ln \left(\frac{8,99062^{\circ}}{3,211^{\circ}} \right) = 0,0397542 \ \frac{kg \ m^2}{s}$$

Die statistische Abweichung ergibt sich für die Winkelauslenkung mit

$$\Delta \varphi_{x_{10}} = \sqrt{\frac{1}{i \cdot (i-1)} \cdot \sum_{i=1}^{10} (\varphi_{x_i} - \bar{\varphi}_{x_{10}})^2}$$

und analog für $\Delta {\phi_y}_{10}$ zu

$$\Delta \varphi_{y_{10}} = 0.021^{\circ}$$
 $\Delta \varphi_{x_{10}} = 0.032^{\circ}$

4.5 Ermitteltes Bewegungsmuster

Das Pendel wird ausgelenkt und das Programm zur Aufzeichnung – etwa 2 Sekunden nachdem das Pendel losgelassen wurde – gestartet. Per Kamera wird der projizierte Laserpunkt auf dem Medium beobachtet und seine Momentanposition fortlaufend beobachtet und aufgezeichnet. Mit jedem neuen Datenpunkt wird eine Verbindungslinie zum vorherigen Datenpunkt gezeichnet. So zeichnet der Laser das virtuelle Abbild des Bewegungsmusters auf das Display des Computers (siehe Abbildung 18). Nach 20 Sekunden stoppt die Aufzeichnung automatisch.

Abbildung 18 Bewegungsmuster nach 20 Sekunden Pendeldauer, 45° Startauslenkung.

4.6 Bewertung der Ergebnisse

Kreisfrequenzen

Die theoretisch erwarteten Kreisfrequenzen betragen $\omega_1=3,766~s^{-1}$ und $\omega_2=5,802~s^1$ während die experimentell ermittelten Frequenzen für $\omega_1=3,663~s^{-1}$ und $\omega_2=5,398~s^{-1}$ betragen. Das gemessene Frequenzverhältnis von $z=\frac{\omega_2}{\omega_1}\approx 1,474$ deckt sich schlecht mit einem erwarteten Verhältnis von $z_{theo}=\frac{\omega_2}{\omega_2}\approx 1,541$. Es ist einerseits anzunehmen, dass in der Kalkulation für die theoretischen Werte zu stark vereinfacht wurde und die Trägheitsmomente der Gelenke selbst eine größere Rolle spielen als erwartet. Andererseits können die Werte der gemessenen Kreisfrequenzen durch Messungenauigkeiten verzerrt sein.

5 Störgrößenanalyse

- Verzerrung des Abbildes aufgrund von Winkelabweichungen durch die Art der Aufzeichnung. Abhilfe: Auslenkungswinkel rückrechnen und Abbild um den Winkelfehler korrigieren.
- Rauschen in der Erfassung des optischen Schwerpunktes des Lasers durch eingestreutes Fremdlicht von außen.

Abhilfe: Aufbau Lichtundurchlässig umwanden.

Lagerspiel

Abhilfe: Lager axial größer dimensionieren.

• Positionsabhängig veränderliches Rauschen in der Erfassung des optischen Schwerpunktes des Lasers durch Inhomogenität des Mediums.

Abhilfe: Papier durch satiniertes Acrylglas ersetzen.

• Krümmung der Pendelarme.

Abhilfe: Qualitativ bessere Rohmaterialien wählen.

Räumliche Bewegung des Gerätes hat Einfluss auf die Wiederholbarkeit der Aufzeichnungen.
 Abhilfe: Kalibrierung um die Montage einer Röhrenlibelle auf der horizontalen Ebene des Mediums ergänzen.

6 Liste der verwendeten Symbole

```
J = Trägheitsmoment
M = Masse der Pendelmasse des physikalischen Pendels
T = Periodendauer
V = Volumen
d = Distanz des Massenmittelpunkts zur Drehachse
f = Frequenz
g = Gravitationsbeschleunigung
h, l = Längen
k = Dämpfungskonstante
l_s = Schwerpunkt
m = Masse
n_{Pixel} = Anzahl der Pixel
\rho = Dichte
r = Radius
t = Zeit
x_0 = Auslenkung in x-Richtung zum Zeitpunkt t=0
x(t) = Auslenkung zum Zeitpunkt t
y_0 = Auslenkung in y-Richtung zum Zeitpunkt t=0
y(t) = Auslenkung zum Zeitpunkt t
z = Kreisfrequenzverhältnis
arphi_n = Winkelauslenkung an der Stelle x_n
\varphi_0 = Startwinkelauslenkung
\varphi(t) = Winkelauslenkung zum Zeitpunkt t
\omega = Kreisfrequenz
```

7 Abbildungsverzeichnis

Abbildung 1 Black Box	4
Abbildung 2 Prinzipskizze der gewählten Lösung	
Abbildung 3 Pendelgestell & Pendelarm 1:2	13
Abbildung 4 Schnitt A-A 1:2	14
Abbildung 5 Detailzeichnung Z &Y 1:2	15
Abbildung 6 Detailzeichnung X 2:1	16
Abbildung 7 Detailzeichnung W 2:1	17
Abbildung 8 Detailzeichnung V 2:1	18
Abbildung 9 Mathematisches Pendel	20
Abbildung 10 Physikalisches Pendel	21
Abbildung 11 Gedämpfte Schwingung	22
Abbildung 12 Lissajous-Figuren. Quelle: Skript "Schwingungen und Wellen – Teil1: Schwingung	en" Dr.
Eszter Geberth, SS19	23
Abbildung 13 Lissajous-Figur für ein Verhältnis 3/2, ungedämpft	24
Abbildung 14 Lissajous-Figur für ein Verhältnis 3/2, gedämpft	25
Abbildung 15 Pinzipskizze in x-Richtung	28
Abbildung 16 Aufbau Messung der Pixel / Millimeter	31
Abbildung 17 Messergebnis der Frametime	32
Abbildung 18 Bewegungsmuster nach 20 Sekunden Pendeldauer, 45° Startauslenkung	37

8 Tabellenverzeichnis

Tabelle 1 Physikalischer Wirkzusammenhang	4
Tabelle 2 Morphologischer Kasten für den konstruktiven Wirkzusammenhang	5
Tabelle 3 Morphologischer Kasten für den konstruktiven Wirkzusammenhang	9
Tabelle 4 Stückliste	. 19
Tabelle 5 Zeitmessungen unter 45° Auslenkung	. 33
Tabelle 6 Messung der Amplitudenwerte zur Ermittlung des Dämpfungsfaktors k, Startauslenkung	
unter 45°	. 35

Literatur und Quellenverzeichnis

- Dr. Geberth, Eszter "Schwingungen und Wellen Teil1: Schwingungen" In "Grundlagen der Physik 2", Vorlesungsskript Hochschule Rhein-Main, SS19.
- Dr. Hely, H. "Methodisches Konstruieren" In "Methodisches Konstruieren", Seminarskript Hochschule Rhein-Main, SS19.
- Dr. Hely, H. "Konstruktionsbericht: Drehbewegliche Kupplung" In "Methodisches Konstruieren", Musterbericht Hochschule Rhein-Main, SS19.
- Notizen zum Seminar "Methodisches Konstruieren", Hochschule Rhein-Main, SS19.