Sunghyun Kim

Postdoctoral Research Associate Materials Design Group Department of Materials, Imperial College London, Royal School of Mines, Exhibition Road, London, SW7 2AZ, UK ☑ sunghyun.kim@imperial.ac.uk

☑ Google scholar

https://frssp.github.io

frssp frssp

0000-0001-5072-6801

Research Interest

- · Non-radiative carrier recombination via Shockley-Read-Hall process
- · Finite-size correction for the formation energy of charged defect
- First-principles calculation and tight-binding modeling of nanostructures and defects in semiconductors
- · Material design thorough computational search
- · Band-unfolding for first-principles electronic structures

Technical Skill

- · First-principles calculations within the Density Functional Theory (DFT) framework and tight-binding modeling
- · Experience in molecular dynamics simulations and finite-difference modeling
- Experience in VASP, QE, Wannier90, LAMMPS, GULP, Phonopy, etc.
- · Programing: Python, Julia, C/C++, FORTRAN

Education

- Ph.D. in Physics: KAIST, Republic of Korea, 2016
 (Dissertation: Theoretical study on doping efficiency in silicon nanowires supervised by Prof. K. J. Chang)
- B.S. in Physics: KAIST, Republic of Korea, 2010

Academic Research Experience

- Postdoctoral Research Associate, Department of Materials, Imperial College London, 2017 Present (PI Prof. Aron Walsh)
- Postdoctoral Research Associate, Department of Physics, KAIST, 2016 2017 (PI Prof. K. J. Chang)
- Undergraduate internship, Department of Physics, University of Cambridge, 2006 (Advised by Dr. Pietro Cicuta)

Extracurricular Activities

- · United Nations peacekeeping mission (UNIFIL)
- Swimming

Publication

- MinJoong Kim, Sunghyun Kim, Dong Hoon Song, Se Kwon Oh, Kee Joo Chang, and Eun Ae Cho, "Promotion of electrochemical oxygen evolution reaction by chemical coupling of cobalt to molybdenum carbide" Appl. Catal. B 227, 340 (2018)
- Ji-Sang Park, Sunghyun Kim, Zijuan Xie, and Aron Walsh, "Point defect engineering in thin-film solar cells", Nat. Rev. Mat. 3, 194 (2018)
- Bartomeu Monserrat, Ji-Sang Park, Sunghyun Kim and Aron Walsh, "Role of electron-phonon coupling and thermal expansion on band gaps, carrier mobility, and interfacial offsets in kesterite thin-film solar cells", Appl. Phys. Lett. 112, 193903 (2018)
- Sunghyun Kim, Ji-Sang Park, and Aron Walsh, "Identification of Killer Defects in Kesterite Thin-Film Solar Cells", ACS Energy Lett. 3, 496 (2018)
- 5. Ji-Sang Park, Sunghyun Kim, and Aron Walsh, "Opposing effects of stacking faults and antisite domain boundaries on the conduction band edge in kesterite quaternary semiconductors" Phys. Rev. Mat. 2, 014602 (2018)
- 6. Woo Hyun Han, Sunghyun Kim, In-Ho Lee, and K. J. Chang, "Prediction of Green Phosphorus with Tunable Direct Band Gap and High Mobility", J. Phys. Chem. Lett. 8, 4627(2017)
- 7. Sunghyun Kim, Woo Hyun Han, In-Ho Lee, and K. J. Chang, "Discovery of Half-Metallic Two-Dimensional Boron Kagome Lattice through Material Design", Scientific Reports 7, 7279 (2017)
- 8. Ha-Jun Sung, Sunghyun Kim, In-Ho Lee, and K. J. Chang, "Semimetallic carbon allotrope with topological nodal line in mixed sp³ -sp² bonding networks" NPG Asia Materials 9, e361 (2017)
- 9. Woo Hyun Han, Young Jun Oh, Duk-Hyun Choe, Sunghyun Kim, In-Ho Lee and Kee Joo Chang, "Three-dimensional buckled honeycomb boron lattice with vacancies as an intermediate phase on the transition pathway from α -B to γ -B" NPG Asia Materials 9, e400 (2017)
- 10. Elisabeth Pratidhina, Sunghyun Kim, and K. J. Chang, "Design of Dipole-Allowed Direct Band Gaps in Ge/Sn Core-Shell Nanowires", J. Phys. Chem. C 120, 28169 (2016)
- 11. In-Ho Lee, Young Jun Oh, **Sunghyun Kim**, Jooyoung Lee, and K. J. Chang, "**Ab initio materials design using conformational space annealing and its application to searching for direct band gap silicon crystals**", Comp. Phys. Comm. 203, 110 (2016).
- 12. Young Jun Oh, **Sunghyun Kim**, In-Ho Lee, Jooyoung Lee, and K. J. Chang, **"Direct band gap carbon superlattices with efficient optical transition"**, Phys. Rev. B 93, 085201 (2016).
- 13. Young Jun Oh, In-Ho Lee, **Sunghyun Kim**, Jooyoung Lee, and K. J. Chang, "**Dipole-allowed direct band gap silicon superlattices**", Sci. Rep. 8, 18086 (2015).
- 14. In-Ho Lee, Jooyoung Lee, Young Jun Oh, Sunghyun Kim, and K. J. Chang, "Computational search for direct band gap silicon crystals", Phys. Rev. B 90, 115209 (2014).
- 15. Sunghyun Kim, Ji-Sang Park, and K. J. Chang, "Finite-size supercell correction scheme for charged defects in one-dimensional systems", Phys. Rev. B 90, 085435 (2014).
- 16. Sunghyun Kim, Ji-Sang Park, K. J. Chang, "Stability and Segregation of B and P Dopants in Si/SiO₂ Core—Shell Nanowires", Nano lett. 12, 5068 (2012).