

Abhängigkeitsanalyse ICA

Praktikum Adaptive Systeme

Einleitung

Lineare Mischung unabhängiger Quellen

Sprecher 1

Lineares ICA-Modell

Quellenmix Entmischung

Ziel:
$$W \rightarrow M^{-1}$$

mit $p(\mathbf{y}) = p(y_1,...,y_n) = p(y_1)...p(y_n)$ unabhängige Kanäle

Unabhängigkeit notwendig zur Quellentrennung.

Yelling, Weinstein (1994): auch hinreichend!

Lineare Koordinatentransformationen

Beispiel:

- PCA-Hauptkomponentenanalyse Richtung stärkster Varianz
- ICA- Unabhängigkeitsanalyse statistische Unabhängigkeit

$$c_1 := x-y, c_2 := y$$

also $c_1 = x_1$ unabh.
von $c_2 = x_2$

$$\mathbf{M}^{-1} = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$$

ICA-Einschränkungen

- Quellenzahl = Mischzahl
 - M muß regulär sein ⇔ nur dann ex. M⁻¹
- Ausgabereihenfolge unbestimmt

Reihenfolge in $p(y_1)...p(y_n)$ ist unwichtig => M^{-1} bis auf Permutation P bestimmbar: M^{-1} -> M^{-1} P

- 2 Gaußsche Quellen lassen sich nicht trennen
 - ⇒ max 1 Gaußsche Quelle
- Unbekannte Skalierung

$$\Rightarrow \sigma_i := 1$$

ICA-Algorithmen: Vorbearbeitungsfolge

Zentrieren

$$\langle \mathbf{x} \rangle = 0$$
 $(\mathbf{x} - \langle \mathbf{x} \rangle)^2 = 1$

• Mittelwertbildung, z.B. iterativ durch $w_0(t+1) = w_0(t) - \gamma (w_0-x)$, $\gamma = 1/t$

Weißen

- PCA durchführen: \mathbf{w}_i Eigenvektoren von $C = \langle \mathbf{x} \mathbf{x}^T \rangle$ mit $|\mathbf{w}_i| = 1$ und Eigenwerten λ_i
- Gewichtsvektoren \mathbf{w}_i normieren zu $\mathbf{w}_i/\lambda_i^{1/2}$. Dies führt zu <y²> = $\mathbf{w}_i^T < \mathbf{x}\mathbf{x}^T > \mathbf{w}_i = \mathbf{w}_i^T\lambda_i\mathbf{w}_i = 1$

Entmischen

- ICA Algorithmen, z.B. minimale Transinformation, maximale Kurtosis etc.
- Speziell: dekorrelierte x benötigen nur eine orthogonale Matrix W (Vereinfachung)

Statist. Momente und Kurtosis

Momente einer Zufallsvariablen x :

$$\alpha_i = \langle x \rangle_i$$

z.B.
$$\alpha_1 = \langle x \rangle$$
 Mittelwert

Zentrale Momente einer Zufallsvariablen x:

$$m_k = \langle (x - \alpha_1)^k \rangle,$$

$$m_k = \langle (x-\alpha_1)^k \rangle$$
, z.B. $m_2 = \langle (x-\alpha_1)^2 \rangle$ Varianz

Wölbungsmaß Kurtosis: $kurt(x) = [\langle (x-\alpha_1) \rangle^4 - 3m_2^2]/m_2^2$

ICA - Algorithmen

Ziel: extremale Kurtosis

(Delfosse, Loubaton 1995)

Extrema bei
$$s_j = \text{unabh}$$
. Komp, und $z_j = +/-1$
kurt $(y) = \text{kurt}(\mathbf{w}^T \mathbf{v}) = \text{kurt}(\mathbf{w}^T \mathbf{M} \mathbf{s}) = \text{kurt}(\mathbf{z}^T \mathbf{s}) = \sum_{j=1}^{n} z_j^4 \text{kurt}(s_j)$

ICA - Algorithmen

■ Ziel: maximale (minimale) Kurtosis bei y = w^Tv

$$K(\mathbf{w}) = \langle (\mathbf{w}^{\mathsf{T}}\mathbf{v})^4 \rangle - 3 \langle (\mathbf{w}^{\mathsf{T}}\mathbf{v})^2 \rangle^2 = \min$$

$$\mathbf{w}(t+1) = \mathbf{w}(t) + \gamma \operatorname{grad} \mathbf{K}(\mathbf{w})$$

$$= \mathbf{w}(t) + \gamma 4 \left(\langle (\mathbf{w}^{\mathsf{T}} \mathbf{v})^3 \mathbf{v} \rangle - 3 |\mathbf{w}|^2 \mathbf{w} \right)$$
Bei $|\mathbf{w}| = 1$ ist die Richtung gegeben durch
$$\mathbf{w}(t+1) = \alpha \left(\langle (\mathbf{w}^{\mathsf{T}} \mathbf{v})^3 \mathbf{v} \rangle - \beta \mathbf{w} \right)$$

Lernalgorithmus für einzelnes Neuron (Hyvarinen, Oja 1996)

$$\mathbf{W}(t+1) = \langle (\mathbf{W}^T \mathbf{V})^3 \mathbf{V} \rangle - 3 \mathbf{W}$$
mit $|\mathbf{W}| = 1$ Fixpunktalgorithmus

ICA - Algorithmen

Sequentielle Extraktion aller Komponenten

Gegeben: Trainingsmenge {**v**(0)}

$$\mathbf{W}_{1}(t+1) = \langle (\mathbf{W}_{1}^{T}\mathbf{V})^{3}\mathbf{V} \rangle - 3 \mathbf{W}_{1} \quad \text{mit } |\mathbf{W}_{1}| = 1$$

Konvergenz zum 1. ICA-Vektor.

Dann neue Trainingsmenge durch $\mathbf{v}(1) = \mathbf{v}(0) - \mathbf{w}_1 \mathbf{y}_1$

$$\mathbf{W}_2(t+1) = \langle (\mathbf{W}_2^T \mathbf{V})^3 \mathbf{V} \rangle - 3 \mathbf{W}_2 \quad \text{mit } |\mathbf{W}_2| = 1$$

Konvergenz zum 2. ICA-Vektor, usw.

Schnellere Konvergenz: Orthogonalisierung

$$\mathbf{w}_{i}(t+1) = \mathbf{w}_{i}(t) - \sum_{j=1}^{1-1} (\mathbf{w}_{i} \, \mathbf{w}_{j}) \, \mathbf{w}_{j} \quad j < i$$

ICA Anwendung: Bildentmischung

4 Bilder, sequentiell gerastert = 4 Quellen (Hyvarinen, Oja 1996)

Automatische Entmischung?

ICA Ergebnisse - Bildentmischung

4 Bilder, sequentiell gerastert = 4 Kanäle

(Hyvarinen, Oja 1996)

Mischbilder

ICA Ergebnisse -Audioanalyse

2 speakers

mixed sources / demixed sources

Fragen?