Math 344 Homework 5.6

Chris Rytting

November 20, 2015

5.36

Let (x, d) be a metric space, suppose

$$f:[0,\infty)\to[0,\infty)$$
 $f(0)=0, f'(x)>0, f(a+b)< f(a)+f(b)$

We know that this is positive semidefinite, and that $\delta(x,y) = \delta(y,x)$, therefore $f(\delta(x,y)) = f(\delta(y,x))$, and the triangle inequality holds by definition.

Now let $\varepsilon > 0$. Consider the open ball $B_{\delta}(x, \varepsilon)$. Note, the open ball $B_{\rho}(x, f(\varepsilon/2)) \subset B_{\delta}(x, \varepsilon)$. Consider that for B_{ρ} , $\exists \gamma \in [0, \infty)$ such that $f(\gamma) < \delta$, and the open ball $B_{\delta}(x, \gamma) \subset B_{\rho}(x, \varepsilon)$.

Thus, they are topologically equivalent.

5.37

We know that this is positive as $||f^{-1}(\mathbf{y})|| \ge 0$. Thus it fulfills positivity.

Note that $||a\mathbf{y}||_f = |a|||\mathbf{y}||_f$ and since $\exists x \in Y$ such that $f(x) = \mathbf{y}$. Since isomorphisms are linear,

$$||a\mathbf{y}||_f = ||af^{-1}(\mathbf{y})||_X = |a|||f^{-1}(\mathbf{y})||_X = |a|||\mathbf{y}||_F$$

and thus it fulfills scalar preservation.

Note that

$$\|\mathbf{x} + \mathbf{y}\|_f = \|f^{-1}(\mathbf{x}) + f^{-1}(\mathbf{y})\| \le \|f^{-1}(\mathbf{x})\| + \|f^{-1}(\mathbf{y})\| = \|\mathbf{x}\|_f + \|\mathbf{y}\|_f$$

And thus it fulfills the triangle inequality.

5.38

 (\rightarrow) Suppose that two matrices, δ and ρ are topologically equivalent.

The identity mapping $I:(x,\delta)\to(x,\rho)$ is clearly bijective.

As for continuity, since these are topologically equivalent, we have

$$B_{\delta}(x,\epsilon) \subset B_{\rho}(x,\gamma) \quad \epsilon, \gamma > 0$$

$$\implies I(B_{\delta}(x,\epsilon)) \subset I(B_{\rho}(x,\gamma))$$

This holds for I^{-1} , therefore I is a homeomorphism.

 (\leftarrow) Now suppose I is a homeomorphism. Then it is bijective, continous, and its inverse is continuous. Thanks to continuity,

$$i(B_{\delta}(x,\epsilon)) = B + \rho(x,\gamma)$$

for some γ .

$$\implies B_{\rho}(x, \gamma/2) \subset B_{\delta}(x, \epsilon)$$

$$\implies I(B_{\rho}(x, \epsilon)) = B_{\delta}(x, r)$$

$$\implies B_{\delta}(x, \gamma/2) \subset B_{\rho}(x, \epsilon)$$

implying topological equivalence.

5.39

Let

$$f:S^1\to\mathbb{R}$$

Now, S^1 can be uniquely expressed as $[0, 2\pi]$, so let $f: [0, 2\pi] \to \mathbb{R}$ where $f(0) = f(2\pi)$, where f is continuous.

Splitting f into two distinct functions by splitting the domain, letting

$$f_1(x) = f(x) \quad x \in [0, \pi]$$

$$f_2(x) = f(x + \pi, \quad x \in [0, \pi]$$

Note each is continuous and has the same beginning and end points.

Now let $g(x) = f_1(x) - f_2(x)$. g maps from $(f(0) - f(\pi), -(f(0) - f(\pi)))$. Therefore, by the IVT,

$$\exists c$$
 such that $q(c) = 0 \implies f_1(x) = f_2(x)$

and there exists two equivalent anti-podal points.

5.40

Suppose $f: \mathbb{R} \to \mathbb{R}$ is a homeomorphism. Then there exists a homeomorphism

$$\mathbb{R} \setminus 0 \to \mathbb{R}^2 \setminus f(0)$$

but this would suggest that \mathbb{R}^2 f(0) is connected. However, this is a contradiction of Theorem 5.6.25, and we have that it is not.

5.41

No. Consider the sets of invertible matrices which are continuous and open such that

$$S_1 = \{ A \in M_2(\mathbb{R}) | \det(A) > 0 \}$$

$$S_2 = \{ A \in M_2(\mathbb{R}) | \det(A) < 0 \}$$

Note that $S_1 \bigcup S_2 = M_2(\mathbb{R})$ and they are disjoint.