Artificial Neural Networks

Elena Baralis

Politecnico di Torino

Artificial Neural Networks

- Inspired to the structure of the human brain
 - Neurons as elaboration units
 - Synapses as connection network

Biological Neuron

Artificial Neural Networks

Different tasks, different architectures

image understanding: convolutional NN (CNN)

convolutional layers

time series analysis: recurrent NN (RNN)

numerical vectors classification: feed forward NN (FFNN)

denoising: auto-encoders

Feed Forward Neural Network

Structure of a neuron

Activation

- simulates biological activation to input stymula
- provides non-linearity to the computation
- may help to saturate neuron outputs in fixed ranges

- Sigmoid, tanh
 - saturate input value in a fixed range
 - non linear for all the input scale
 - typically used by FFNNs for both hidden and output layers
 - E.g. sigmoid in output layers allows generating values between 0 and 1 (useful when output must be interpreted as likelihood)

Binary Step

- outputs 1 when input is non-zero
- useful for binary outputs
- issues: not appropriate for gradient descent
 - derivative not defined in x=0
 - derivative equal to 0 in every other position

ReLU (Rectified Linear Unit)

- used in deep networks (e.g. CNNs)
 - avoids vanishing gradient
 - does not saturate
- neurons activate linearly only for positive input

Binary step

Softmax

- differently to other activation functions
 - it is applied only to the output layer
 - works by considering all the neurons in the layer
- after softmax, the output vector can be interpreted as a discrete distribution of probabilities
 - e.g. the probabilities for the input pattern of belonging to each class

$$softmax(z_j) = \frac{e^{z_j}}{\sum_{i=0}^{N-1} e^{z_i}}$$

Building a FFNN

- For each node, definition of
 - set of weights
 - offset value
 - providing the highest accuracy on the training data
- Iterative approach on training data instances

Building a FFNN

Base algorithm

- Initially assign random values to weights and offsets
- Process instances in the training set one at a time
 - For each neuron, compute the result when applying weights, offset and activation function for the instance
 - Forward propagation until the output is computed
 - Compare the computed output with the expected output, and evaluate error
 - Backpropagation of the error, by updating weights and offset for each neuron
- The process ends when
 - % of accuracy above a given threshold
 - % of parameter variation (error) below a given threshold
 - The maximum number of epochs is reached

Feed Forward Neural Networks

Strong points

- High accuracy
- Robust to noise and outliers
- Supports both discrete and continuous output
- Efficient during classification

Weak points

- Long training time
 - weakly scalable in training data size
 - complex configuration
- Not interpretable model
 - application domain knowledge cannot be exploited in the model

 Allow automatically extracting features from images and performing classification

convolutional layers

input image

Convolutional Neural Network (CNN) Architecture

convolutional layers

convolutional layers

Typical convolutional layer

- convolution stage: feature extraction by means of (hundreds to thousands) sliding filters
- sliding filters activation: apply activation functions to input tensor
- pooling: tensor downsampling

Tensors

- data flowing through CNN layers is represented in the form of tensors
- Tensor = N-dimensional vector
- Rank = number of dimensions
 - scalar: rank 0
 - 1-D vector: rank 1
 - 2-D matrix: rank 2
- Shape = number of elements for each dimension
 - e.g. a vector of length 5 has shape [5]
 - e.g. a matrix w x h, w=5, h=3 has shape [h, w] = [3, 5]

rank-3 tensor with shape [d,h,w] = [4,2,3]

Images

- rank-3 tensors with shape [d,h,w]
- where h=height, w=width, d=image depth (1 for grayscale, 3 for RGB colors)

Convolution

- processes data in form of tensors (multi-dimensional matrixes)
- input: input image or intermediate features (tensor)
- output: a tensor with the extracted features

Convolution

- a sliding filter produces the values of the output tensor
- sliding filters contain the trainable weights of the neural network
- each convolutional layer contains many (hundreds) filters

Convolution

- images are transformed into features by convolutional filters
- after convolving a tensor [d,h,w] with N filters we obtain
 - a rank-3 tensor with shape [N,h,w]
 - hence, each filter generates a layer in the depth of the output tensor

Activation

- symulates biological activation to input stymula
- provides non-linearity to the computation
- ReLU is typically used for CNNs
 - faster training (no vanishing gradients)
 - does not saturate
 - faster computation of derivatives for backpropagation

Pooling

- performs tensor downsampling
- sliding filter which replaces tensor values with a summary statistic of the nearby outputs
- maxpool is the most common: computes the maximum value as statistic

Convolutional layers training

- during training each sliding filter learns to recognize a particular pattern in the input tensor
- filters in shallow layers recognize textures and edges
- filters in deeper layers can recognize objects and parts (e.g. eye, ear or even faces)

shallow filters

deeper filters

Semantic segmentation CNNs

- allow assigning a class to each pixel of the input image
- composed of 2 parts
 - encoder network: convolutional layers to extract abstract features
 - decoder network: deconvolutional layers to obtain the output image from the extracted features

- Allow processing sequential data x(t)
- Differently from normal FFNN they are able to keep a state which evolves during time
- Applications
 - machine translation
 - time series prediction
 - speech recognition
 - part of speech (POS) tagging

RNN execution during time

RNN execution during time

RNN execution during time

RNN execution during time

- A RNN receives as input a vector x(t) and the state at previous time step s(t-1)
- A RNN typically contains many neurons organized in different layers

- Training is performed with Backpropagation Through Time
- Given a pair training sequence x(t) and expected output y(t)
 - error is propagated through time
 - weights are updated to minimize the error across all the time steps

unrolled RNN diagram: shows the **same** neural network at different time steps

- Issues
 - vanishing gradient: error gradient decreases rapidly over time, weights are not properly updated
 - this makes harder having RNN with *long-term* memories
- Solution: LSTM (Long Short Term Memories)
 - RNN with "gates" which encourage the state information to flow through long time intervals

Autoencoders

- Autoencoders allow compressing input data by means of compact representations and from them reconstruct the initial input
 - for feature extraction: the compressed representation can be used as significant set of features representing input data
 - for image (or signal) denoising: the image reconstructed from the abstract representation is denoised with respect to the original one

Word Embeddings (Word2Vec)

- Word embeddings associate words to n-dimensional vectors
 - trained on big text collections to model the word distributions in different sentences and contexts
 - able to capture the semantic information of each word
 - words with similar meaning share vectors with similar characteristics

Word Embeddings (Word2Vec)

 Since each word is represented with a vector, operations among words (e.g. difference, addition) are allowed

Word Embeddings (Word2Vec)

Semantic relationiships among words are captured by vector positions

king - man = queen - woman king - man + woman = queen

