ESTRUTURA DA ÁLGEBRA DE GRUPO

Igor Martins Silva

Terceiro trabalho de Grupos e Representações

O conteúdo deste trabalho se encontra na seção 8.2 do livro "A course in the theory of groups", de Derek J. S. Robinson.

Lema 1. Se V é FG-módulo simples, então existe M, ideal a direita maximal de FG, tal que V é FG-isomorfo a $FG/_M$.

Definição. Sejam R e S anéis. Dizemos que $\varphi: R \to S$ é um **anti-homomorfismo** se φ for um homomorfismo de grupo e $\varphi(r_1r_2) = \varphi(r_2)\varphi(r_1)$, para todo $r_1, r_2 \in R$. Um anti-homomorfismo que é bijetivo é dito um **anti-isomorfismo**.

Lema 2. Seja R uma anel com identidade. Denote R_R o anel R considerado como um R-módulo a direita. Para cada $r \in R$, defina $r' : R_R \to R_R$, $x \mapsto rx$. Então $\varphi : R \to \operatorname{End}_R(R_R)$, $r \mapsto r'$ é um anti-isomorfismo.

Observação. Sejam R um anel e $M = M_1 \oplus \cdots \oplus M_k$ um R-módulo. Considere $f \in \operatorname{End}_R(M)$, isto é, $f: M \to M$ é um homomorfismo de grupo tal que f(rm) = rf(m), para todo $r \in R$ e $m \in M$. Para cada $a \in M_i$, denote \overline{a}_i a k-úpla $(0, \ldots, a, \ldots, 0)$, onde a ocorre na i-ésima componente. Defina a função $f_{ij}: M_i \to M_j$, levando $a \in M_i$ na j-ésima componente de $f(\overline{a}_i) \in M_j$. Assim, por exemplo, $f(\overline{m}_1) = (f_{11}(m_1), f_{12}(m_1), \ldots, f_{1k}(m_1))$. Note que $f_{ij} \in \operatorname{Hom}_R(M_i, M_j)$. Seja f^* a matriz cuja entrada (i, j) é f_{ij} . Então podemos verificar que $f \mapsto f^*$ é um isomorfismo entre $\operatorname{End}_R(M)$ e o anel das matrizes $k \times k$ com entrada (i, j) em $\operatorname{Hom}_R(M_i, M_j)$.

Proposição. Sejam G um grupo finito e F um corpo algebricamente fechado cuja característica não divide a ordem de G. Então

- 1. $FG = I_1 \oplus \cdots \oplus I_h$, onde I_i é um ideal de FG isomorfo a $Mat(n_i, F)$ anel das matrizes $n_i \times n_i$ com entradas em F.
- 2. $|G| = n_1^2 + n_2^2 + \dots + n_h^2$.
- 3. Cada FG-módulo simples é isomorfo a um ideal a direita minimal de algum I_i cuja dimensão é n_i .
- 4. O número h de componentes na decomposição de FG é igual ao número de classes de conjugação de G.

Demonstração.

1) Seja R = FG. Pelo teorema de Maschke, $R_R = \bigoplus_{i=1}^{\ell} T_i$, onde T_i é ideal a direita minimal de R, para cada $1 \leq i \leq \ell$. Sejam S_1, \ldots, S_h os tipos de isomorfismos de R-submódulos simples de R_R . Defina, para cada $1 \leq j \leq h$, $I_j = \bigoplus_{T_i \cong S_j} T_i$, ou seja, agrupamos os T_i , segundo o tipo de isomorfismo. Assim, temos que $R_R = I_1 \oplus \cdots \oplus I_h$. Vamos mostrar que I_j é um ideal de R, com $1 \leq j \leq h$. Para isso, fixe $r \in R$ e considere $f_i : S_i \to rS_i$, $s \mapsto rs$, para $1 \leq i \leq \ell$. Note que f_i é um R-homomorfismo, logo,

pelo lema de Schur, $rS_i = 0$ ou $rS_i \cong S_i$. Disso, segue que $rI_j = \bigoplus_{T_i \cong S_j} rT_i \leq I_j$, ou seja, I_j é um ideal de R. Agora, considere $E = \operatorname{End}_R(R_R)$. De acordo com a observação acima, uma vez que $R_R = I_1 \oplus \cdots \oplus I_h$, podemos representar $\xi \in E$ como a matriz $\xi^* = (\xi_{ij})$, onde $\xi_{ij} \in \operatorname{Hom}_R(I_i, I_j)$. Sabemos, pelo lema de Schur, que se $i \neq j$, então $\operatorname{Hom}_R(S_i, S_j) = 0$, logo $\operatorname{Hom}_R(I_i, I_j) = \operatorname{Hom}_R(\bigoplus_{T_k \cong S_i} T_k, \bigoplus_{T_r \cong S_j} T_r) = \bigoplus_{T_k \cong S_i} \bigoplus_{T_r \cong S_j} \operatorname{Hom}_R(T_k, T_r) = 0$. Daí, a matriz ξ^* é uma matriz diagonal. Assim, o anel das matrizes $h \times h$ com entrada (i, j) em $\operatorname{Hom}_R(I_i, I_j)$ é decomposta como $\operatorname{End}_R(I_1) \oplus \cdots \oplus \operatorname{End}_R(I_h)$. Também pela observação acima, concluímos que $E \cong \operatorname{End}_R(I_1) \oplus \cdots \oplus \operatorname{End}_R(I_h)$. Novamente, pelo lema de Schur, $\operatorname{End}_R(S_i) \cong F$, logo $\operatorname{End}_R(I_i) = \operatorname{End}_R(\bigoplus_{T_j \cong S_i} \bigoplus_{T_j \cong S_i} \bigoplus_{T_j \cong S_i} \operatorname{End}_R(T_j) \cong \bigoplus_{j=1}^{n_i^2} F \cong \operatorname{Mat}(n_i, F)$, onde n_i é o número de vezes em que $\operatorname{End}_R(T_j) \cong F$. Denote $M = \operatorname{Mat}(n_1, F) \oplus \cdots \oplus \operatorname{Mat}(n_h, F)$. Então, mostramos que $E \cong M$. Note que, pelo lema 2, existe um anti-isomorfismo de R para R. Acabamos de ver que R0. Finalmente, R1 é levado em R2 por um anti-isomorfismo, enviando cada matriz em sua transposta. Portanto, compondo essas funções produzimos um isomorfismo entre R2 e R3, isto é, R4 R5 R5 R5 R6 R6 R7.

- 2) A F-dimensão de R é |G|, enquanto que de $Mat(n_1, F)$ é n_i^2 . Como $R \cong Mat(n_1, F) \oplus \cdots \oplus Mat(n_h, F)$, então, analisando a dimensão nesse isomorfismo, obtemos $|G| = n_1^2 + \cdots + n_h^2$.
- 3) Seja V um R-módulo simples. Pelo lema 1, existe M, ideal maximal a direita de R, tal que V é R-isomorfo a R/M. Como $R = I_1 \oplus \cdots \oplus I_h$, então V é R-isomorfo a um ideal minimal a direita de R contido em algum I_i . Afirmação: se X é ideal a direita de I_i , então X é ideal a direita de R. De fato, se $i \neq j$, então $XI_j \leq I_i \cap I_j = 0$, logo $XR \leq R$. Portanto, $X \subseteq I_i$ é ideal a direita minimal de R, se, e somente se, X é ideal a direita minimal de I_i . Assim, por 1) basta mostrarmos que algum ideal a direita minimal de Mat(n,F) tem dimensão n sobre F. Seja $E_{ij} = (e_{rs})_{n \times n}$, onde $e_{rs} = \begin{cases} 1, & \text{se } r = i \text{ e } s = j \\ 0, & \text{caso contrário} \end{cases}$. Defina $J_i = FE_{i1} + \cdots + FE_{in}$. Afirmação: J_i é ideal a direita minimal de Mat(n,F). Vejamos. Suponha $0 \leq U \leq J_i$, onde U é ideal a direita de Mat(n,F). Seja $0 \neq t = \sum_{j=1}^n f_j E_{ij} \in U$. Como $t \neq 0$, ao menos um $f_j \neq 0$, digamos que seja f_k . Assim, já que U é ideal a direita de J_i , então, para todo $1 \leq m \leq n$, temos que $t(f_k^{-1}E_{im}) \in U$. Por outro lado, $t(f_k^{-1}E_{im}) = f_m f_k^{-1}E_{im}$. Daí, $E_{im} \in U$, para todo $1 \leq m \leq n$, ou seja, $U = J_i$. Uma vez que J_i tem F-dimensão igual a n, mostramos o que queríamos.
- 4) Seja $C = \{x \in R \mid rx = xr, \forall r \in R\}$, isto é, C é o centro de R. Note que C é um subanel de R e também é a soma dos centros de I_i . Sabemos que o centro de $\mathrm{Mat}(n,F)$ é formado pelas matrizes da forma fI, onde $f \in F$ e I é a matriz identidade, logo tal centro tem dimensão igual a 1. Portanto, C tem dimensão igual a h sobre F. Sejam K_1, \ldots, K_v as classes de conjugação de G e defina $k_i = \sum_{x \in K_i} x$. Observe que $g^{-1}k_ig = k_i$, logo $k_ig = gk_i$, para todo $g \in G$, ou seja, $k_i \in C$. Assim, como k_1, \ldots, k_v são linearmente independentes sobre F, então $v \leq h$. Vamos mostrar que $C = Fk_1 + \cdots + Fk_v$, provando, portanto, que v = h. Seja $c = \sum_{x \in G} f_x x \in C$. Então, para todo $g \in G$, temos que $c = g^{-1}(\sum_{g \in G} f_x x)g = \sum_{g \in G} f_x g^{-1}xg = \sum_{g \in G} f_{gyg^{-1}}y$. Daí, $f_{gyg^{-1}} = f_y$, ou seja, f é constante em K_i . Denotando seu valor por f_i , concluímos que $c = \sum_{i=1}^v f_i k_i$, o que encerra a demonstração.