SE 380 Introduction to Feedback Control Fall 2022

Without control systems there could be no manufacturing, no vehicles, no computers, no regulated environment—in short, no technology.

> J. Doyle, B. Francis, A. Tannenbaum Feedback Control Theory (1990)

All modern control algorithms for engineering systems are implemented in software.

K. J. Åström, R. Murray Feedback Systems (2020)

Dr. Gennaro Notomista

Instructor

Email: gennaro.notomista@uwaterloo.ca

Office: E5 4006

Lab instructor

Carmen Caradima

Email: cmcaradima@uwaterloo.ca

Office: E2 3337

Teaching assistants

Alex Lovi alovi@uwaterloo.ca Karanjot Singh k259sing@uwaterloo.ca

Time and place

Lectures Monday, Wednesday, Friday 9:30-10:20, STC 0040

Tutorials Monday 16:30-17:20, RCH 103

E2 3341 Laboratory Office hours TBD

Website http://learn.uwaterloo.ca/, https://www.gnotomista.com/teaching/se380.html

Description

This course will introduce students to the mathematical modeling of physical systems and to the analysis and design of feedback control systems. The course will be divided into four modules, corresponding to the following topics:

- Mathematical models of systems
- Linear system theory: Stability and performance
- Analysis of feedback control systems
- Controller synthesis

Each topic will be presented during lectures and reinforced with assignments containing both theoretical and programming exercises (using MATLAB). The course will also include a project which will allow students to apply the concepts learned during the course to control a real robotic manipulator.

Prerequisites MATH 213

Reading

The course textbook is:

(DB) Richard C. Dorf, Robert H. Bishop, Modern Control Systems, 13th edition, Pearson, 2016

Other useful resources are:

- (N) Norman S. Nise, Control Systems Engineering, 8th edition, John Wiley & Sons, 2019
- (AM) K. J. Åström, R. Murray, Feedback Systems. An Introduction for Scientists and Engineers, 2nd edition, Princeton University Press, 2021 https://fbswiki.org/wiki/index.php/Main_Page

Grading

Assignments: 10% (5 assignments, each worth 2%)
Laboratory: 15% (Lab i = i%, i ∈ {1, 2, 3, 4, 5})

• Project: 20%

Midterm exam: 25%Final exam: 30%

Project details

The project consists of designing a controller for a robotic manipulator. The deliverable will be two:

- A controller block, designed using Simulink, which will be tested on a real robotic manipulator in the RoboHub (https://uwaterloo.ca/robohub/)
- A written report, in the form of a PDF document of maximum 4 pages using the IEEE conference template (https://www.ieee.org/conferences/publishing/templates.html), structured as follows:
 - Control design methodologies
 - Simulation results
 - Discussion

The work may be carried out individually or in a group of maximum 3 people. In the latter case, the report should be accompanied by the detailed description of the work carried out by each member of the group, including what sections of the report were written by whom.

A complete and detailed description of the project will be posted on LEARN.

Policy on Academic Integrity

Academic Integrity To maintain a culture of academic integrity, members of the University of Waterloo are expected to promote honesty, trust, fairness, respect and responsibility. A student is expected to know what constitutes academic integrity, to avoid committing academic offences, and to take responsibility for their actions. A student who is unsure whether an action constitutes an offence, or who needs help in learning how to avoid offences (e.g., plagiarism, cheating) or about "rules" for group work/collaboration should seek guidance from course instructor, academic advisor, or Graduate Associate Dean. When misconduct has been found to have occurred, disciplinary penalties will be imposed under Policy 71 - Student Discipline. For information on categories of offenses and types of penalties, students should refer to Policy 71 - Student Discipline, https://uwaterloo.ca/secretariat/policies-procedures-guidelines/policy-71.

Grievance A student who believes that a decision affecting some aspect of their University life has been unfair or unreasonable may have grounds for initiating a grievance. Read Policy 70 - Student Petitions and Grievances, Section 4, https://uwaterloo.ca/secretariat/policies-procedures-guidelines/policy-70.

Discipline A student is expected to know what constitutes academic integrity (https://uwaterloo.ca/academic-integrity) to avoid committing an academic offence, and to take responsibility for his/her actions. A student who is unsure whether an action constitutes an offence, or who needs help in learning how to avoid offences (e.g., plagiarism, cheating) or about "rules" for group work/collaboration should seek guidance from the course instructor, academic advisor, or the undergraduate Associate Dean.

Appeals A student may appeal the finding and/or penalty in a decision made under Policy 70 - Student Petitions and Grievances (other than regarding a petition) or Policy 71 - Student Discipline if a ground for an appeal can be established. Read Policy 72 - Student Appeals, https://uwaterloo.ca/secretariat/policies-procedures-guidelines/policy-72.

Note for students with disabilities The Office for persons with Disabilities (OPD), located in Needles Hall, Room 1132, collaborates with all academic departments to arrange appropriate accommodations for students with disabilities without compromising the academic integrity of the curriculum. If you require academic accommodations to lessen the impact of your disability, please register with the OPD at the beginning of each academic term.

Academic Integrity Office (UW) https://uwaterloo.ca/academic-integrity/.

Schedule

Week	Date	Subject	Reading	Deliverables	
	MATHEMATICAL MODELS OF SYSTEMS				
1	W, Sep 7	Introduction to control systems			
	F, Sep 9	Examples of control systems			
2	M, Sep 12	From differential equations to state space			
	W, Sep 14	Linearization			
	F, Sep 16	Laplace transform		Assignment 1	
3	M, Sep 19	Transfer function			
	W, Sep 21	Examples of transfer functions			
	LINEAR SYSTEM THEORY				
	F, Sep 23	System stability		Assignment 2	
4	M, Sep 26	Types of stability		G .	
	W, Sep 28	Performance			
	Th, Sep 29	-		Lab 1	
	F, Sep 30	First order systems			
5	M, Oct 3	Second order systems			
	W, Oct 5	Lower-order approximations		Assignment 3	
	F, Oct 6	System identification		_	
	Oct 10-14	Reading week — no class			
6	M, Oct 17	Midterm review			
	W, Oct 19	Midterm exam			

	ANALYSIS O	F FEEDBACK CONTROL SYSTEMS			
	F, Oct 21	Block diagrams			
7	M, Oct 24	Stability of interconnected systems			
	W, Oct 26	Closed-loop stability: Routh-Hurwitz criterion			
	Th, Oct 27	-	Lab 2		
	F, Oct 28	Frequency response			
8	M, Oct 31	Bode plots			
	W, Nov 2	Examples of bode plots and approximations			
	F, Nov 4	Closed-loop stability: Bode plot	Assignment 4		
9	M, Nov 7	Closed-loop stability: Nyquist plot			
	CONTROLLER SYNTHESIS				
	W, Nov 9	Loop shaping	Lab 3		
	F, Nov 11	Integral control			
10	M, Nov 14	Lead compensators			
	W, Nov 16	Lag compensators			
	F, Nov 18	PID controller	Assignment 5		
11	M, Nov 21	Root locus			
	W, Nov 23	Controller design with root locus	Lab 4		
	F, Nov 25	Back to state space			
12	M, Nov 28	Pole placement	Prelab 5		
	W, Nov 30	Writing software for control systems	Project		
	F, Dec 2	Robot control			
13	M, Dec 5	Final review	Lab 5		
	TBD Dec 9-23	Final exam			