Dashboard ► My courses ► CS 173 AL1 SP17 ► 24-28 April: State Diagrams/Countability ► Homework 13, due 25 April

Started on	Monday, April 24, 2017, 1:33 AM
State	Finished
Completed on	Wednesday, April 26, 2017, 12:00 AM
Time taken	1 day 22 hours
Points	11.00/11.00
Grade	10.00 out of 10.00 (100 %)

Question 1

Correct

1.00 points out of 1.00

Which of these is logically equivalent to the negation of "If wishes were fishes, the sea would be full."

Select one:

- a. Wishes are fishes, and the sea is not full.
- b. If the sea were full, then wishes would be fishes.
- c. If wishes were not fishes, the sea would not be full.
- d. If the sea were not full, then wishes would not be fishes.

The correct answer is: Wishes are fishes, and the sea is not full.

Correct

1.00 points out of 1.00

Claim: $\sqrt{2} + \sqrt{6} < \sqrt{15}$.

How might our proof by contradiction start?

Select one:

- a. Suppose not. That is, suppose $\sqrt{2} + \sqrt{6} \ge \sqrt{15}$.
- b. Suppose not. Since $\sqrt{2} + \sqrt{6} \ge \sqrt{15}$, $\sqrt{2} \ge \sqrt{15} \sqrt{6}$
- C. Suppose not. That is, suppose $\sqrt{2} + \sqrt{6} > \sqrt{15}$.

The correct answer is: Suppose not. That is, suppose $\sqrt{2} + \sqrt{6} \ge \sqrt{15}$.

Correct

1.00 points out of 1.00

In a lottery, 5 balls are selected from a bin of twenty balls numbered 1 through 20. (The order doesn't matter.) Professor Luckless always guesses a 5-ball combination that includes her lucky number 7, and does not include her unlucky number 13. How many different days can she play the lottery without repeating a 5-ball guess?

Select one:

- \bigcirc a. $\binom{20}{4}$
- O b. $\binom{19}{3}$
- c. $\binom{18}{4}$
- \bigcirc d. $\binom{19}{4}$
- O e. $\binom{20}{5}$
- O g. $\binom{18}{5}$

The correct answer is: $\binom{18}{4}$

Correct

1.00 points out of 1.00

$$\sum_{k=1}^{n} k \cdot \binom{n}{k} = ?$$

[Hint: You may use the fact that $\sum_{i=0}^{N} {N \choose i} = 2^N$.]

Select one:

- \circ a. $2^n 1$
- \bigcirc b. 2^n
- c. $n \cdot 2^{n-1}$

- O d. 2^{n-1}
- O e. $k \cdot 2^n$

Your answer is correct.

The correct answer is: $n \cdot 2^{n-1}$

Correct

1.00 points out of 1.00

How many ways are there to select 5 scoops of ice cream to put into a bowl, chosen from Baskin Robbins 31 flavors? A flavor may be selected multiple times.

Select one:

- a. $\binom{35}{5}$
- O b. $\binom{34}{5}$
- $\bigcirc \quad \text{c.} \, \binom{32}{5}$
- O d. $\binom{36}{5}$
- O e. $\binom{31}{5}$

The correct answer is: $\binom{35}{5}$

Correct

1.00 points out of 1.00

Suppose that k is a fixed positive integer. Let's define a function $f:\mathbb{Z}\to\mathbb{P}(\mathbb{Z})$ by

$$f(x) = \{ y \in \mathbb{Z} : \exists n \in \mathbb{Z}, x = y + kn \}$$

Now suppose that a and b are both integers, where a < b and $a \equiv b \pmod{k}$. Which of these correctly describes the relationship between f(a) and f(b)?

Select one:

- a. f(a) is a proper subset of f(b)
- b. f(a) and f(b) are disjoint
- c. f(a) = f(b)

The correct answer is: f(a) = f(b)

Correct

1.00 points out of 1.00

Let $A = \{a, b, c, d, e, f, g, h\}$.

Suppose that P is a partition of A, which already contains the following elements

 $\begin{cases}
 b, d, f \\
 c, h \\
 e
\end{cases}$

Then the other element(s) of P could be

Select one or more:

- \Box b. $\{a,d,g\}$
- \Box c. a and g
- \square e. $\{g\}$ (i.e. as the only other element of the partition)
- \Box f. $\{a,g\}$ and \emptyset

The correct answers are: $\{a,g\}$, $\{a\}$ and $\{g\}$

Correct

1.00 points out of 1.00

For any integer n, define

$$F(n) = \{ p \in \mathbb{Z} \mid n^4 + 1 = p^4 + 1 \}$$

Then let P be the partition of the integers that contains all the sets F(n). That is:

$$P = \{ F(n) \mid n \in \mathbb{Z} \}$$

Then the cardinality of P (i.e. the number of elements in P) is

Select one:

- a. not defined
- o b. 4
- O c. 0
- O d. 1
- e. infinite 🗸

The correct answer is: infinite

Correct

1.00 points out of 1.00

Let $A=\mathcal{P}(X)$ denote the power set of the set X, and let $X=\{1,2,3,4,5\}$. Consider the relation R on A such that pRq if and only if $p\cap q\neq\emptyset$. Select those statements that are true for the relation R.

Select one or more:

- \square a. R is reflexive

- \Box d. R is transitive
- lacksquare e. R is symmetric

Your answer is correct.

The correct answers are: R is symmetric

, R is finite