Lista de Exercícios de Introdução à Estatistica

- 1. Se para três eventos A,B e C, ou $A \cup B \cup C = A$ ou $A \cap B \cap C = A$, que conclussões podemos extrair?
- 2. Se P(A) = 0.6, P(B) = 0.3, $P(A \cap B^c) = 0.4$ e $B \subset C$, calcule $P(A \cup B^c \cup C^c)$.
- 3. Para três eventos A, B, C, suponha que $P(A \cap B) = P(A \cap C)$ e $P(B \cap C) = 0$. Mostre que $P(A \cup B \cup C) = P(A) + P(B) + P(C) - 2P(A \cap B)$
- 4. Considere um grupo de 52 cartas bem distribuidas (well-shuffled), e suponha que estraimos aleatoriamente 3 cartas. Qual a probabilidade que pelo menos um é um Ace?
- 5. Se os eventos $A, B \in C$ estão relacionados como $A \subset B \subset C$ e P(A) = 1/4, P(B) = 5/12 e P(C) = 7/12, calcule as probabilidades dos seguintes eventos: a) $P(A^c \cap B)$, b) $P(A^c \cap C)$, c) $P(B^c \cap C)$ e d) $P(A^c \cap B^c \cap C^c)$
- \bullet 6. O número de interruptores de luz em que a primeira falha ocorre é uma v.a X cuja f.d.p. é

$$f(x) = \begin{cases} c(\frac{9}{10})^{x-1}, & x = 1, 2, \dots \\ 0 & \text{outros casos} \end{cases}$$

- a) Determine c
- b) calcule a probabilidade que a primeira falha não ocorrerá até após o décimo encendido
- c) calcula a F.D.A (F).
- 7. A v.a $X \sim F$ dado por

$$F(x) = \begin{cases} 0, & x \le 0\\ 2c(x^2 - \frac{1}{3}x^3), & 0 < x \le 2\\ 1, & x > 2 \end{cases}$$

- a) Determine a f.d.p f
- b) determine c.
- 8. $X \sim F$ dado por

$$F(x) = \begin{cases} 0, & x \le 0 \\ x^3 - x^2 + x, & 0 < x \le 1 \\ 1, & x > 1 \end{cases}$$

- a) determine a f.d.p f
- b) calcule a $P(X > \frac{1}{2})$

• 9. $X \sim F$ dado por

$$F(x) = \begin{cases} 0, & x < 4 \\ 0, 1 & 4 \le x < 5 \\ 0, 4 & 5 \le x < 6 \\ 0, 7 & 6 \le x < 8 \\ 0, 9 & 8 \le x < 9 \\ 1 & x \ge 9 \end{cases}$$

- a) Desenhe a função F.
- b) calcule i) $P(X \le 6.5)$, ii) P(X > 8.1)
- c) P(5 < x < 8)
- 10. Seja X Uma v.a. com f.d.p $f(x) = cx^{-(c+1)}$ para $x \ge 1$, sendo c positiva.
 - 1. Determine a constante c tal que f seja de fato uma f.d.p.
 - 2. Determine a F.D.A F.
- \bullet 11. Suponha que a v.a. X toma valores $0, 1, 2, \dots$ com probabilidades

$$P(X = j) = \frac{c}{3^j}, \quad j = 0, 1, \dots$$

determine

- a) a constante c,
- b) $P(X \ge 3)$
- c) P(X = 2k + 1, k = 0, 1, ...)
- 12. Para que valores de c a função $f(x) = c\alpha^x$, com $x = 0, 1, \dots$ é uma f.d.p? $(0 < \alpha < 1)$
- 13. A v.a. X denota o tempo de vida de um equipamento eletrônico, e suponha que $X \sim f(x)$ dado por

$$f(x) = ce^{-cx}, \quad x > 0$$

- a) determine c
- b) calcule a probabilidade que o tempo de vida é pelo menos igual a 10 unidades de tempo.
- c) Se a probabilidade em b) é 0.5, qual o valor de c?
- 14. A v.a. X chamada de Pareto, tem f.d.p dada por

$$f(x) = \frac{1+\alpha}{x^{2+\alpha}}$$
, para $x > 1$, com α constante positiva

- a) Verifique que f é de fato um f.d.p
- b) calcula a probabilidade P(X > c) para algum c > 1.
- ullet 15. Suponha uma v.a X com f.d.p dada por

$$f(x) = \lambda e^{-\lambda x}, \ x > 0, (\lambda > 0)$$

você é convidado a adivinhar se o valor observado x de X seria $\geq c$ ou > c, para alguma constante positiva c.

- a) para quais valores de c seria melhor adivinhar em favor de x > c?
- b) Qual seria a resposta em a) se $\lambda = 4ln2$?
- 16. A temperatura medida em uma máquina é uma v.a. X cuja f.d.p é

$$f(x) = n(1-x)^{n-1}$$
, $0 < x < 1$, $(n \ge 1$, inteiro conhecido

A máquina tem um termostato que é ativado quando a temperatura supera um nivel especificado x_0 . Se a probabilidade do termostado ser ativado é $\frac{1}{10^{2n}}$, calcule x_0 .

- 17. Se P(A|B) > P(A), mostre que P(B|A) > P(B) (suponha P(A) e P(B) positivos).
- 18. Se $A \cap B = \emptyset$ e $P(A \cup B) > 0$, expresse as probabilidades $P(A|A \cup B)$ e $P(B|A \cup B)$ em termos de P(A) e P(B).
- 19. Um carregamento de 20 Televisores contém 16 bons e 4 defeituosos. Três TVs são escolhidos sucessivamente de forma aleatória e são testados também sucessivamente. Qual a probabilidade que:
 - a) A terceira TV é boa se as duas primeiras foram testadas boas?
 - b) A terceira TV é defeituosa se a primeira foi boa e a segunda defeituosa?
 - c) A terceira TV é defeituosa se a primeira foi defeituosa e a segunda boa?
 - d) A terceira TV é defeituosa se uma das outras duas foi encontrada boa e a outra defeituosa?
- 20. Para A, B, C com probabilidades positivas, mostre que
 - a) $P(A^c|B) = 1 P(A|B)$
 - b) $P(A \cup B|C) = P(A|C) + P(B|C) P(A \cap B|C)$
- 21. Uma caixa contém 15 bolas idênticas com 10 vermelhas e 5 pretas. 4 bolas são extraídas sucessivamente e sem substituição, calcule a probabilidade de que a primeira e a quarta bola são vermelhas.
- 22. MOstre que o evento A é independente de sim mesmo se e somente se P(A) = 0 ou P(A) = 1.
- 23. Um aluno faz testes para obter a licença de conduzir de forma repetida até aprovar o teste. Sabe-se que a probabilidade dele passe a prova escrita é 0,9 e que passe a prova de direção é 0,6 e que os testes são independentes. Assume-se que a teste de direção não pode ser feito antes dele passar a prova escrita e que uma vez aprovado esse teste, não precisará ser refeito mesmo que ele não aprove o teste de direção. Assume-se também que as provas escritas e de direção não são simultâneas.
 - a) Qual a probabilidae que o aluno passe o teste de direção na n-ésimaa tentativa?
 - b) Qual é o valor numérico em a) para n = 5?

dica: Denote por W_i e R_j os eventos que o Aluno passa a prova escrita e a prova de direção na i-ésima e j-ésima tentativa respectivamente. Então:

$$(W_1 \cap R_1^c \cap ... \cap R_{n-2}^c \cap R_{n-1}) \cup (W_1^c \cap W_2 \cap R_1^c \cap ... \cap R_{n-3}^c \cap R_{n-2}) \cup ... \cup (W_1^c \cap ... \cap W_{n-2}^c \cap W_{n-1} \cap R_n)$$

• 24. A porcentagem de álcool (100X) em certo composto pode se considerar como uma variáve aleatória, onde X, 0 < X < 1 tem a seguinte função densidade de probabilidade:

$$f_X(x) = 20x^3(1-x), \qquad 0 < X < 1$$

- a) obtenha a FDA F
- b) Calcule $P(X \leq \frac{2}{2})$
- c) Suponha que o preço de venda do composto dependa do conteúdo de álcool. Se $\frac{1}{3} < X < \frac{2}{3}$, o composto vende-se por C_1 reais, de outro modo, vende-se por C_2 reais. Se o custo é C_3 reais, encontre a distribuição de probabilidades da utilidade neta.
- \bullet 25. Seja X uma variável aleatória contínua com f.d.p. f, dada por

$$f_X(x) = \begin{cases} ax & 0 \le x \le 1\\ a & 1 \le x \le 2\\ -a + 3x & 2 \le x \le 3\\ 0 & \text{caso contrário} \end{cases}$$

- a) determine a constante a
- b) determine a F (função de distribuição acumulada)
- 26. Suponha que X está distribuida uniformemente en $[-\alpha, \alpha]$, onde $\alpha > 0$. Determine, se possível, o valor de α de modo que satisfaça:
 - a) $P(X > 1) = \frac{1}{3}$
 - b) $P(X > 1) = \frac{1}{2}$
 - c) $P(X < \frac{1}{2}) = 0,7$
- 27. A proporção de componentes eletrônicos defeituosos em certos lotes, é uma variável aleatória discreta X cuja distribuição acumulada tenha a seguinte forma: $F(0.01) F(0.01^{(-)}) = 0.5, F(0.1) F(0.1^{(-)}) = 0.25, e F(0.15) F(0.15^{(-)}) = 0.25$. Tem-se uma grande quantidade de lotes deste tipo.
 - a) Determine a função de probabilidade de X
 - b) Qual é a média(valor esperado) do número de componentes defeituosos por lote?
 - c) Construa o gráfico da FDA.
- 28. Uma variável aleatória X tem a seguinte função de distribuição:

$$F(x) = \begin{cases} 0, & \text{se } x < 10\\ 0.2, & \text{se } 10 \le x < 12\\ 0.5, & \text{se } 12 \le x < 13\\ 0.9, & \text{se } 13 \le x < 25\\ 1, & \text{se } x \ge 25 \end{cases}$$

a) Determine a função de probabilidade de X,

- b) P(X = 12)
- c) $P(12 \le X \le 20)$
- d) Calcule E[X]
- 29. Se E[X] = 1 e Var(X) = 5, encontre:
 - a) $E[(2+X)^2]$
 - b) Var(4 + 3X)
- 30. A duração (em anos) de um componente eletrônico pode ser considerada como uma variável aleatória X com função de densidade $f(x) = 0.1 \exp^{-0.1x}, x > 0$.
 - a) Se a garantia for de um ano para qualquer componente, que porcentagem dos componentes serão trocadas?
 - b) Calcule a média de duração dos componentes.
 - c) Calcule a Função de Distribuição acumulada da variável aleatória X.
 - d) Considere a seguinte função de utilidade para os componentes:

$$g(x) = \begin{cases} -100, & \text{se } X \le 1, \\ 200, & \text{se } X > 1; \end{cases}$$

qual seria a utilidade esperada do fabricante?

- e) Mostre que $P(X > t + h/X > t) = P(X > h), \forall h > 0, \forall t > 0$ (falta de memória)
- 31. A voltagem suministrada por uma fonte geradora no instante t é dado por $X_t = a\cos(wt + \Theta)$, com a e w constantes e Θ uma variável aleatória com distribuição uniforme no intervalo $[-\pi, \pi]$. Calcule o valor esperado desta voltagem.
- 32. A distribuição da resistência de resistores de um tipo específico é normal, 10% dos equipamentos apresentam resistência maior que 10.256 ohms e 5% menor que 9.671 ohms. Quais são os valores da média e do desvio padrão das resistências?
- $\bullet\,$ 33. Suponha que a função de distribuição de X seja dada por:

$$F(b) = \begin{cases} 0 & \text{se } b < 0\\ \frac{b}{4} & \text{se } 0 \le b < 1\\ \frac{1}{2} + \frac{b-1}{4} & \text{se } 1 \le b < 2\\ \frac{11}{12} & \text{se } 2 \le b < 3\\ 1 & \text{se } b \ge 3 \end{cases}$$

- a) Determine a função de probabilidade de X (P(X=i) para i=1,2,3)
- b) Determine $P(\frac{1}{2} < X < \frac{3}{2})$

TABELA DA DISTRIBUIÇÃO NORMAL

Tabela A6.2 Distribuição pormal — valores de P(0 \leq Z \leq z₀)

					•					
z_0	0	1	2	3	4	5	6	7	8	9
0,0	0,0000	0,0040	0,0080	0,0120	0,0160	0,0199	0,0239	0,0279	0,0319	0,0359
0,1	0,0398	0,0438	0,0478	0,0517	0,0557	0,0596	0,0636	0,0675	0,0714	0,0753
0,2	0,0793	0,0832	0,0871	0,0910	0,0948	0,0987	0,1026	0,1064	0,1103	0,1141
0,3	0,1179	0,1217	0,1255	0,1293	0,1331	0,1368	0,1406	0,1443	0,1480	0,1517
0,4	0,1554	0,1591	0,1628	0,1664	0,1700	0,1736	0,1772	0,1808	0,1844	0,1879
0,5	0,1915	0,1950	0,1985	0,2019	0,2054	0,2088	0,2123	0,2157	0,2190	0,2224
0,6	0,2257	0,2291	0,2324	0,2357	0,2389	0,2422	0,2454	0,2486	0,2517	0,2549
0,7	0,2580	0,2611	0,2642	0,2673	0,2703	0,2734	0,2764	0,2794	0,2823	0,2852
0,8	0,2881	0,2910	0,2939	0,2967	0,2995	0,3023	0,3051	0,3078	0,3106	0,3133
0,9	0,3159	0,3186	0,3212	0,3238	0,3264	0,3289	0,3315	0,3340	0,3365	0,3389
	,	•	•							I
1,0	0,3413	0,3438	0,3461	0,3485	0,3508	0,3531	0,3554	0,3577	0,3599	0,3621
1,1	0,3643	0,3665	0,3686	0,3708	0,3729	0,3749	0,3770	0,3790	0,3810	0,3830
1,2	0,3849	0,3869	0,3888	0,3907	0,3925	0,3944	0,3962	0,3980	0,3997	0,4015
1,3	0,4032	0,4049	0,4066	0,4082	0,4099	0,4115	0,4131	0,4147	0,4162	0,4177
1,4	0,4192	0,4207	0,4222	0,4236	0,4251	0,4265	0,4279	0,4292	0,4306	0,4319
			•							
1,5	0,4332	0,4345	0,4357	0,4370	0,4382	0,4394	0,4406	0,4418	0,4429	0,4441
1,6	0,4452	0,4463	0,4474	0,4484	0,4495	0,4505	0,4515	0,4525	0,4535	0,4545
1,7	0,4554	0,4564	0,4573	0,4582	0,4591	0,4599	0,4608	0,4616	0,4625	0,4633
1,8	0,4641	0,4649	0,4656	0,4664	0,4671	0,4678	0,4686	0,4693	0,4699	0,4706
1,9	0,4713	0,4719	0,4726	0,4732	0,4738	0,4744	0,4750	0,4756	0,4761	0,4767
2,0	0,4772	0,4778	0,4783	0,4788	0,4793	0,4798	0,4803	0,4808	0,4812	0,4817
2,1	0,4821	0,4826	0,4830	0,4834	0,4838	0,4842	0,4846	0,4850	0,4854	0,4857
2,2	0,4861	0,4864	0,4868	0,4871	0,4875	0,4878	0,4881	0,4884	0,4887	0,4890
2,3	0,4893	0,4896	0,4898	0,4901	0,4904	0,4906	0,4909	0,4911	0,4913	0,4916
2,4	0,4918	0,4920	0,4922	0,4925	0,4927	0,4929	0,4931	0,4932	0,4934	0,4936
2,5	0,4938	0,4940	0,4941	0,4943	0,4945	0,4946	0,4948	0,4949	0,4951	0,4952
2,6	0,4953	0,4955	0,4956	0,4957	0,4959	0,4960	0,4961	0,4962	0,4963	0,4964
2,7	0,4965	0,4966	0,4967	0,4968	0,4969	0,4970	0,4971	0,4972	0,4973	0,4974
2,8	0,4974	0,4975	0,4967	0,4977	0,4977	0,4978	0,4979	0,4979	0,4980	0,4981
2,9	0,4981	0,4982	0,4982	0,4983	0,4984	0,4984	0,4985	0,4985	0,4986	0,4986
							0.4000	0.4000	0.4000	0.4000
3,0	0,4987	0,4987	0,4987	0,4988	0;4988	0,4989	0,4989	0,4989	0,4990	0,4990
3,1	0,4990	0,4991	0,4991	0,4991	0,4992	0,4992	0,4992	0,4992	0,4993	0,4993
3,2	0,4993	0,4993	0,4994	0,4994	0,4994	0,4994	0,4994	0,4995	0,4995	0,4995 0,4997
3,3	0,4995	0,4995	0,4995	0,4996	0,4996	0,4996	0,4996	0,4996	0,4996	0,4997
3,4	0,4997	0,4997	0,4997	0,4997	0,4997	0,4997	0,4997	0,4997	0,4997	0,4990
١		0.4000	0.4000	0.4000	0.4009	0,4998	0,4998	0,4998	0,4998	0,4998
3,5	0,4998	0,4998	0,4998	0,4998	0,4998 0,4999	0,4999	0,4999	0,4999	0,4999	0,4999
3,6	0,4998	0,4998	0,4999	0,4999 0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999
3,7	0,4999	0,4999	0,4999	•	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999
3,8	0,4999	0,4999	0,4999	0,4999 0,5000	0,5000	0,5000	0,5000	0,5000	0,5000	0,5000
3,9	0,5000	0,5000	0,5000	0,5000	0,5000	0 ,5000			0,000	3,5500