Approximate Bayesian Computation

Becky Griffiths Supervised by Dr Richard Everitt and Ian Roberts

Motivation

• If we have some observed data, x_{obs} , the Bayesian approach to performing inference about a parameter, θ , is to use the posterior distribution of θ :

$$\pi(\theta|x_{obs}) = \frac{\pi(\theta)f(x_{obs}|\theta)}{m(x_{obs})}.$$

- The likelihood, $f(x|\theta)$, is the probability of observing data equal to x given a parameter $\theta \in \Theta$, where Θ is the set of all possible parameters.
- The prior distribution of θ , $\pi(\theta)$, expresses our initial knowledge about the parameter.
- If the normalising constant, $m(x_{obs}) = \int_{\Theta} f(x_{obs}|\theta)\pi(\theta) d\theta$, is intractable, MCMC methods can be used to sample from the posterior.
- MCMC methods alone cannot help us if we have a model for which we cannot write down the likelihood function, or it is extremely expensive to evaluate.
- But if we can simulate realisations of the model, $x \sim f(\cdot | \theta)$, we can use **approximate** Bayesian computation to sample from a distribution 'close' to the true posterior.
- Examples of models where ABC is useful include stochastic differential equations and agent-based models, which are both widely used in ecology and epidemiology.

Figure 1: An example of an ABC rejection algorithm

Rejection ABC

- The rejection ABC algorithm follows these steps:
- 1. Sample a set of proposal parameters θ_1^* , ... θ_N^* from the prior, $\pi(\theta)$
- 2. For each θ_i^* , simulate a set of data, $x_i^* \sim f(x|\theta_i^*)$
- 3. For i = 1, ..., N:

If x_i^* is within a certain tolerance level, ε , of the true data (according to some distance metric) keep θ_i^* , otherwise discard it.

- This procedure generates samples (θ, x) from the joint distribution $\pi(\theta, x | x_{obs}) \propto \pi(\theta) f(x | \theta) \mathbb{I}(|x x_{obs}| \leq \varepsilon)$.
- If we discard the simulated data values then we have samples from the marginal distribution $\pi_{\varepsilon}(\theta|x_{obs}) \propto \int_{\Theta} \pi(\theta) f(x|\theta) \mathbb{I}(|x-x_{obs}| \leq \varepsilon) \, \mathrm{d}x$.
- As $\varepsilon \to 0$, $\pi_{\varepsilon}(\theta|x_{obs})$ converges to the true posterior [1].
- The choice of $\varepsilon > 0$ is the first source of approximation in ABC. The second is the use of **summary statistics**, which is motivated by the 'curse of dimensionality'.

Figure 2: An illustration of the curse of dimensionality

Summary Statistics

- Simulating data close to the true data becomes increasingly unlikely as the dimension of the data grows, even using when using the true parameter value.
- Imagine that the data space is an n-dimensional hypercube with side length 1, and that the tolerance level is 0.5δ for some for some $\delta < 1$. When n = 1, the fraction of the data space that is acceptably close to the true data point is δ . For n-dimensions, the fraction is proportional to δ^n , which goes to zero as $n \to \infty$.
- To deal with this issue lower dimensional summaries, $s(x_{obs})$, are typically used in place of the full data.
- I performed rejection ABC on a Bayesian model with a Poisson likelihood and gamma prior. Figures 3a and 3b show histograms of the thousand best sample parameters out of a million based on the L^1 distance of the simulations they produced to the full true data, and the L^1 distance of the means of the simulations they produced to the mean of the true data, respectively. The analytical posterior is plotted in green.
- Selecting good summary statistics for more complex models can be difficult, and is an area of active research. Ideally we would want $s(x_{obs})$ to be both low dimensional and **sufficient** for the model we are considering, meaning that $\pi(\theta|x_{obs}) = \pi(\theta|s(x_{obs}))$ but this is often an impossible requirement [2].

Figure 3: The effect of summary statistics on ABC approximations

ABC MCMC

- Rejection ABC has the downside that unless the prior is close to the ABC posterior, many of the simulated parameter values will be rejected.
- We can run it until we find our first accepted proposal, θ^* , and then explore the parameter space more efficiently using MCMC, starting the chain at θ^* .
- The Metropolis-Hastings algorithm with proposal density $q(\theta'|\theta)$ and acceptance probability $\alpha = \frac{\pi(\theta')\mathbb{I}(|x'-x_{obs}|\leq \varepsilon)q(\theta|\theta')}{\pi(\theta)\mathbb{I}(|x-x_{obs}|\leq \varepsilon)q(\theta'|\theta)}$, where x' is data simulated using θ' , targets the joint ABC posterior proportional to $\pi(\theta)f(x|\theta)\mathbb{I}(|x-x_{obs}|\leq \varepsilon)$ [3].
- Since $\mathbb{I}(|x'-x_{obs}| \le \varepsilon)$ is equal to either zero or one, if the acceptance ratio without this term leads to a rejection, we can reject without needing to simulate x' [4].
- I ran Metropolis-Hastings ABC with a normal prior for 100,000 iterations on observations from a normal likelihood with known variance, and the results are displayed in Figure 4.

(a) The analytical posterior, and the one produced by MCMC ABC

Figure 4: Inferring the mean of a normal distribution with ABC MCMC

ABC SMC

• We want our tolerance level to be as small as possible, to produce the best approximation to the true posterior.

(b) Trace plot of the Markov chain produced by the algorithm

- But setting ε very low can mean few proposals are accepted, leading to poor mixing if we use ABC MCMC, or a high computational cost to getting a good number of samples from $\pi_{\varepsilon}(\theta|x_{obs})$ if we use rejection.
- Sequential Monte Carlo methods are a class of Monte Carlo methods used to sample from sequences of distributions via importance sampling and resampling [5].
- We can use SMC to iteratively sample from a sequence of ABC posteriors, $\pi_{\varepsilon_0}(\theta|x_{obs})$, ... $\pi_{\varepsilon_n}(\theta|x_{obs})$ with decreasing ε values starting with a high ε_0 , so that a good acceptance rate is maintained at each iteration.

Figure 5: Histograms of samples from iterations of SMC ABC starting with a uniform prior

References

- [1] Scott A. Sisson and Yanan Fan. "ABC Samplers". In: Handbook of Approximate Bayesian Computation. Chapman and Hall, 2019
- [2] Dennis Prangle. "Summary Statistics in Approximate Bayesian Computation". In: Handbook of Approximate Bayesian Computation. Chapman and Hall, 2019
- 3] Richard Wilkinson. "Approximate Bayesian computation (ABC) gives exact results under the assumption of model error". In: Statistical Applications in Genetics and Molecular Biology 12.2 (2013), pp. 129–141. DOI: 10.1515/sagmb-2013-0010.
- [4] Umberto Picchini and Julie Lyng Forman. "Accelerating inference for diffusions observed with measurement error and large sample sizes using approximate Bayesian computation". In: *Journal of Statistical Computation and Simulation* 86.1 (2016), pp. 195–213. DOI: 10.1080/00949655.2014.1002101.
- 5] Pierre del Moral, Arnaud Doucet, and Ajay Jasra. "An adaptive sequential Monte Carlo method for approximate Bayesian computation". In: *Statistics and Computing* 22 (2012), pp. 1009–1020 DOI: 10.1007/s11222-011-9271-y.