Convergence of Allen-Cahn equations to multi-phase mean curvature flow

Pascal Maurice Steinke

Born 22.05.1999 in Gießen, Germany 09.09.2022

Master's Thesis Mathematics

Advisor: Prof. Dr. Tim Laux

Second Advisor: Prof. Dr. X Y

Institute for Applied Mathematics

MATHEMATISCH-NATURWISSENSCHAFTLICHE FAKULTÄT DER RHEINISCHEN FRIEDRICH-WILHELMS-UNIVERSITÄT BONN

Contents

1	The	Allen-Cahn equation	1
	1.1	Structure of the equation	1
	1.2	Existence of a solution	
2	Con	vergence of the Allen–Cahn equations	7

1 The Allen-Cahn equation

1.1 Structure of the equation

This chapter follows [LS16], but since the authors decided to only sketch some proofs. we want to go into more detail.

Let $\Lambda > 0$ and define the flat torus $\mathbb{T} = [0, \Lambda)^d \subset \mathbb{R}^d$, where we work with periodic boundary conditions and write $\int \mathrm{d}x$ instead of $\int_{\mathbb{T}} \mathrm{d}x$. Then for $u \colon [0, \infty) \times \mathbb{T} \to \mathbb{R}^N$ and some potential $W \colon \mathbb{R}^N \to [0, \infty)$, the Allen-Cahn equation with parameter $\varepsilon > 0$ is given by

$$\partial_t u = \Delta u - \frac{1}{\varepsilon^2} \nabla W(u). \tag{1.1}$$

To understand this equation better, we consider the $Cahn-Hilliard\ energy$ which assigns to u for a fixed time the real number

$$E_{\varepsilon}(u) := \int \frac{1}{\varepsilon} W(u) + \frac{\varepsilon}{2} |\nabla u|^2 dx.$$
 (1.2)

If everything is nice and smooth, we can compute that under the assumption that u satisfies equation (1.1), we have that

$$\frac{\mathrm{d}}{\mathrm{d}t} \,\mathrm{E}_{\varepsilon}(u) = \int \frac{1}{\varepsilon} \langle \nabla W(u) \,,\, \partial_t u \rangle + \varepsilon \langle \nabla u \,,\, \nabla \partial_t u \rangle \,\mathrm{d}x$$

$$= \int \left\langle \frac{1}{\varepsilon} \nabla W(u) - \varepsilon \Delta u \,,\, \partial_t u \right\rangle \,\mathrm{d}x$$

$$= \int -\varepsilon |\partial_t u|^2 \,\mathrm{d}x \,. \tag{1.1}$$

This calculation suggests that equation (1.1) is the L^2 gradient-flow (rescaled by $\sqrt{\varepsilon}$) of the Cahn–Hilliard energy. Thus we can try to construct a solution to the PDE (1.1) via De Giorgis minimizing movements scheme, which we will do in theorem Theorem 1.2.1.

But first we need to clarify what our potential W should look like. Classic examples in the scalar case are given by $W(u) = (u^2 - 1)^2$ or $W(u) = u^2(u - 1)^2$, and we call functions like these *doublewell potentials*, see also Figure 1.1.

In higher dimensions, we want to accept the following potentials: $W: \mathbb{R}^N \to [0, \infty)$ has to be a smooth multiwell potential with finitely many zeros at $u = \alpha_1, \dots, \alpha_P \in \mathbb{R}^N$. Furthermore we aks for polynomial growth in the sense that there exists some $p \geq 2$ such that

$$|u|^p \lesssim W(u) \lesssim |u|^p \tag{1.3}$$

1 The Allen–Cahn equation

Figure 1.1: The graph of a doublewell potential

and

$$|\nabla W(u)| \lesssim |u|^{p-1} \tag{1.4}$$

for all u sufficiently large. Lastly we want W to be convex up to a small perturbation in the sense that there exist smooth functions W_{conv} , $W_{\text{pert}} : \mathbb{R}^N \to [0, \infty)$ such that

$$W = W_{\text{conv}} + W_{\text{pert}} \,, \tag{1.5}$$

 $W_{\rm conv}$ is convex and

$$\sup_{x \in \mathbb{R}^N} \left| \nabla^2 W_{\text{pert}} \right| < \infty. \tag{1.6}$$

These assumptions are in particular satisfied by our two examples for doublewell potentials and therefore seem to be plausible.

As it is custom for parabolic PDEs, we view solutions of the Allen-Cahn equation (1.1)as maps from [0, T] into some suitable function space and thus use the following definition.

Definition 1.1.1. We say that a function $u_{\varepsilon} \in C([0,T]; L^2(\mathbb{T}; \mathbb{R}^N))$ which is also in $L^{\infty}([0,T]; W^{1,2}(\mathbb{T}; \mathbb{R}^N))$ is a weak solution of the Allen–Cahn equation (1.1) with parameter $\varepsilon > 0$ and initial condition $u_{\varepsilon}^0 \in L^2(\mathbb{T}; \mathbb{R}^N)$ if

1. the energy stays bounded, which means that

$$\operatorname{ess\,sup}_{0 \le t \le T} \mathcal{E}_{\varepsilon}(u_{\varepsilon}(t)) < \infty, \tag{1.7}$$

2. its weak time derivative satisfies

$$\partial_t u_{\varepsilon} \in L^2([0,T] \times \mathbb{T}; \mathbb{R}^N),$$
 (1.8)

3. for almost every $t \in [0,T]$ and every $\xi \in L^p([0,T] \times \mathbb{T}; \mathbb{R}^N) \cap W^{1,2}([0,T] \times \mathbb{T}; \mathbb{R}^N)$, we have

$$\int \langle \partial_t u_{\varepsilon}(t), \xi \rangle + \langle \nabla u_{\varepsilon}(t), \nabla \xi \rangle + \left\langle \frac{1}{\varepsilon^2} \nabla W(u_{\varepsilon}(t)), \xi \right\rangle dx = 0, \tag{1.9}$$

4. the initial conditions are achieved in the sense that $u_{\varepsilon}(0) = u_{\varepsilon}^{0}$.

Remark. Given our assumptions, we automatically have $\nabla W(u_{\varepsilon})(t) \in L^{p'}(\mathbb{T})$ since

$$|\nabla W(u_{\varepsilon})|^{p/(p-1)} \lesssim 1 + |u_{\varepsilon}|^p \lesssim 1 + W(u), \tag{1.10}$$

which is integrable for almost every time t since we assume that the energy stays bounded, thus the integral in equation (1.9) is well defined.

Moreover we already obtain 1/2 Hölder-continuity in time from the embedding

$$W^{1,2}([0,T]; L^2(\mathbb{T}; \mathbb{R}^N)) \hookrightarrow C^{1/2}([0,T]; L^2(\mathbb{T}; \mathbb{R}^N)),$$
 (1.11)

which follows from a generalized version of the fundamental theorem of calculus and Hölder's inequality.

1.2 Existence of a solution

With Definition 1.1.1, we are able to state our existence results for solutions of the Allen–Cahn equation. The proof uses De Giorgis minimizing movements scheme and arguments from the theory of gradient flows.

Theorem 1.2.1. Let $u_{\varepsilon}^0 \colon \mathbb{T} \to \mathbb{R}^N$ be such that $E_{\varepsilon}(u_{\varepsilon}^0) < \infty$. Then there exists a weak solution u_{ε} to the Allen–Cahn equation (1.1) in the sense of Definition 1.1.1 with initial data u_{ε}^0 . Furthermore the solution satisfies the energy dissipation identity

$$E_{\varepsilon}(u_{\varepsilon}(t)) + \int_{0}^{t} \int \varepsilon |\partial_{t} u_{\varepsilon}|^{2} dx ds = E_{\varepsilon}(u_{\varepsilon}^{0})$$
(1.12)

for almost every $t \in [0,T]$ and we additionally have $\partial_{i,j}^2 u_{\varepsilon}, \nabla W(u_{\varepsilon}) \in L^2([0,T] \times \mathbb{T}; \mathbb{R}^N)$ for all $1 \leq i,j \leq d$. In particular we can test the weak form (1.9) with $\partial_{i,j}^2 u_{\varepsilon}$.

Proof. **Step 1:** A minimization problem

Fix some h > 0, $u_{n-1} \in W^{1,2} \cap L^p(\mathbb{T}; \mathbb{R}^N)$ and consider the functional

$$\mathcal{F} \colon \operatorname{W}^{1,2} \cap \operatorname{L}^{p}(\mathbb{T}; \mathbb{R}^{N}) \to \mathbb{R}$$

$$u \mapsto \operatorname{E}_{\varepsilon}(u) + \frac{1}{2h} \int |u - u_{n-1}|^{2} \, \mathrm{d}x \,. \tag{1.13}$$

Then \mathcal{F} is coercive with respect to $\|\cdot\|_{\mathrm{W}^{1,2}}$ and bounded from below by zero, thus we may take a $\mathrm{W}^{1,2}$ -bounded sequence $(v_k)_{k\in\mathbb{N}}$ in $\mathrm{W}^{1,2}\cap\mathrm{L}^p(\mathbb{T};\mathbb{R}^N)$ such that $\mathcal{F}(v_k)\to\inf\mathcal{F}(v_k)$

as $k \to \infty$. These v_k have a non-relabelled subsequence which converges weakly in $W^{1,2}(\mathbb{T};\mathbb{R}^N)$ and strongly in $L^2(\mathbb{T},\mathbb{R}^N)$ to some $u \in W^{1,2}(\mathbb{T};\mathbb{R}^N)$. Moreover v_k is bounded in $L^p(\mathbb{T};\mathbb{R}^N)$ by the lower growth assumption (1.3) on W and thus obtain by a duality argument that $u \in W^{1,2} \cap L^p(\mathbb{T};\mathbb{R}^N)$.

Lastly we have

$$\frac{1}{2h} \int |u - u_{n-1}|^2 dx \le \liminf_{k \to \infty} \frac{1}{2h} \int |v_k - u_{n-1}|^2 dx, \qquad (1.14)$$

$$\int \frac{\varepsilon}{2} |\nabla u|^2 \, \mathrm{d}x \le \liminf_{k \to \infty} \int \frac{\varepsilon}{2} |\nabla v_k|^2 \, \mathrm{d}x \tag{1.15}$$

by the weak convergence in $W^{1,2}(\mathbb{T},\mathbb{R}^N)$. By passing to another non-relabelled subsequence which converges pointwise almost everywhere, we moreover achieve by continuity of W that

$$\int \frac{1}{\varepsilon} W(u) dx = \int \liminf_{k \to \infty} \frac{1}{\varepsilon} W(v_k) dx \le \liminf_{k \to \infty} \int \frac{1}{\varepsilon} W(v_k) dx,$$

which proves that u is a minimizer of \mathcal{F} .

Step 2: Minimizing movements scheme

By recursively choosing minimizers u_n^h from Step 1, we obtain a sequence of functions u_0, u_1^h, \ldots Thus we may define a function $u \in \mathbb{C}$ as the piecewise linear interpolation at the time-steps $0, h, 2h, \ldots$ of these functions.

Step 3: Sharp energy estimate for u_n^h

We claim that there exists some constant C > 0 such that for all h > 0 and $n \in \mathbb{N}$, we have

$$E_{\varepsilon}(u_n^h) + \left(\frac{1}{h} - \frac{C}{2\varepsilon}\right) \int |u_n - u_{n-1}|^2 dx \le E_{\varepsilon}(u_{n-1}^h).$$
 (1.16)

In order to prove this inequality, we notice that since $|\nabla^2 W_{\text{pert}}| \leq C$, the function $W_{\text{pert}} + C|u|^2/2$ is convex for C > 0 sufficiently large, thus the functional

$$\tilde{\mathbf{E}}_{\varepsilon}(u) := \int \frac{1}{\varepsilon} \left(W(u) + \frac{C}{2} |u|^2 \right) + \frac{\varepsilon}{2} |\nabla u|^2 \, \mathrm{d}x$$

is convex on $\mathrm{W}^{1,2}\cap\mathrm{L}^p(\mathbb{T};\mathbb{R}^N)$. For a given $\xi\in\mathrm{W}^{1,2}\cap\mathrm{L}^p(\mathbb{T};\mathbb{R}^N)$, we thus have that the function $t\mapsto\ \tilde{\mathrm{E}}_\varepsilon(u_n^h+t\xi)$ is convex and differentiable, which yields that

$$\tilde{\mathbf{E}}_{\varepsilon}(u_n^h + \xi) \ge \tilde{\mathbf{E}}_{\varepsilon}(u_n^h) + \frac{\mathrm{d}}{\mathrm{d}t}\Big|_{t=0} \tilde{\mathbf{E}}_{\varepsilon}(u_n^h + t\xi).$$
 (1.17)

But since u_n^h is a minimizer of the functional $\mathcal F$ defined by (1.13), we have

$$\frac{\mathrm{d}}{\mathrm{d}t}\Big|_{t=0} \tilde{\mathrm{E}}_{\varepsilon}(u_{n}^{h} + t\xi) = \frac{\mathrm{d}}{\mathrm{d}t}\Big|_{t=0} \mathcal{F}(u_{n}^{h} + t\xi)
+ \frac{C}{2\varepsilon} \int |u_{n}^{h} + t\xi|^{2} dx - \frac{1}{2h} \int |u_{n}^{h} + t\xi - u_{n-1}^{h}|^{2} dx
= \int \frac{C}{\varepsilon} \langle u_{n}^{h}, \xi \rangle - \frac{1}{h} \langle u_{n}^{h} - u_{n-1}^{h}, \xi \rangle dx.$$

Plugging $\xi = u_{n-1}^h - u_n^h$ into this equation and using inequality (1.17) thus yields

$$\tilde{\mathbf{E}}_{\varepsilon}(u_{n-1}^h) \geq \tilde{\mathbf{E}}_{\varepsilon}(u_n^h) + \int \frac{C}{\varepsilon} \left(\left\langle u_{n-1}^h, u_n^h \right\rangle - \left| u_n^h \right|^2 \right) + \frac{1}{h} \left| u_n^h - u_{n-1}^h \right|^2 \mathrm{d}x,$$

which is equivalent to

$$\begin{aligned} \mathbf{E}_{\varepsilon}(u_{n-1}^{h}) &\geq \mathbf{E}_{\varepsilon}(u_{n}^{h}) \\ &+ \int \left(\frac{C}{2\varepsilon} - \frac{C}{\varepsilon}\right) \left|u_{n}^{h}\right|^{2} - \frac{C}{2\varepsilon} \left|u_{n-1}^{h}\right|^{2} + \frac{C}{\varepsilon} \left\langle u_{n-1}^{h}, u_{n}^{h} \right\rangle + \frac{1}{h} \left|u_{n}^{h} - u_{n-1}^{h}\right|^{2} \mathrm{d}x \\ &= \mathbf{E}_{\varepsilon}(u_{n}^{h}) + \left(\frac{1}{h} - \frac{C}{2\varepsilon}\right) \int \left|u_{n}^{h} - u_{n-1}^{h}\right|^{2} \mathrm{d}x \,, \end{aligned}$$

which is the claimed estimate (1.16).

Step 4: Hölder bounds for u_h

From the energy estimate (1.16) we deduce via an induction that

$$E_{\varepsilon}(u_n^h) + \left(1 - \frac{Ch}{2\varepsilon}\right) \int_0^{nh} \int \left|\partial_t u^h\right|^2 dx dt$$

$$= E_{\varepsilon}(u_n^h) + \left(h - \frac{Ch^2}{2\varepsilon}\right) \sum_{k=1}^n \int \left|\frac{u_n^h - u_{n-1}^h}{h}\right|^2 dx$$

$$\leq E_{\varepsilon}(u_0).$$

This gives use with the use of Jensen's inequality for $0 \le s \le t \le T$ and h > 0 sufficiently small that

$$\|u^{h}(t) - u^{h}(s)\|_{L^{2}} = \left\| \int_{s}^{t} \partial_{t} u_{h}(\tau) d\tau \right\|_{L^{2}}$$

$$\leq \sqrt{t - s} \left(\int_{0}^{T} \int \left| \partial_{t} u^{h}(\tau, x) \right|^{2} dx dt \right)^{1/2}$$

$$\leq \sqrt{t - s} \left(1 - \frac{Ch}{2\varepsilon} \right)^{-1/2} (E_{\varepsilon}(u_{0}))^{1/2}, \qquad (1.18)$$

which gives us a uniform bound on the L^2 -Hölder continuity of u^h in time as h tends to zero.

Step 5: Compactness

In order to apply Arzelà-Ascoli for the sequence (u_h) as h tends to zero, we need to check pointwise precompactness of the image and equicontinuity of the sequence. The equicontinuity follows from the previous estimate (1.18). In order to check the pointwise precompactness, we need to verify that for all $t \in [0,T]$, the set $\{u^h(t)\}_{\delta > h > 0}$ is a precompact subset of $L^2(\mathbb{T};\mathbb{R}^N)$ (for $\delta > 0$ sufficiently small). But this follows from the energy bound $E_{\varepsilon}(u_n^h) \leq E_{\varepsilon}(u_0)$ (given by inequality (1.16)), which gives us a time-uniform bound on $\|\nabla u^h(t)\|_{L^2(\mathbb{T};\mathbb{R}^N)}$ and on $\|u^h(t)\|_{L^p(\mathbb{T};\mathbb{R}^N)}$ and thus on $\|u^h(t)\|_{W^{1,2}(\mathbb{T};\mathbb{R}^N)}$. The compact embedding $W^{1,2}(\mathbb{T};\mathbb{R}^N) \hookrightarrow L^2(\mathbb{T};\mathbb{R}^N)$ thus yields the desired pointwise precompactness.

Therefore we may apply Arzelà–Ascoli to obtain some $u \in C^{1,2}\left([0,T]; L^2(\mathbb{T}; \mathbb{R}^N\right)$ and some sequence $h_n \to 0$ such that u^{h_n} converges uniformly to u on [0,T] with respect to $\|\cdot\|_{L^2(\mathbb{T}; \mathbb{R}^N)}$.

Step 6: Additional regularity 1

We first want to argue that from our construction, one already obtains that $u \in L^{\infty}([0,T]; W^{1,2}(\mathbb{T}; \mathbb{R}^N))$ For this we first notice that for a fixed $t \in [0,T]$, the sequence $u^{h_n}(t)$ is by the energy bound (1.16) a bounded sequence in $W^{1,2}(\mathbb{T}; \mathbb{R}^N)$, thus we find some non-relabelled subsequence and $v \in W^{1,2}(\mathbb{T}; \mathbb{R}^N)$ such that $u^{n_h}(t)$ converges weakly to v in $W^{1,2}(\mathbb{T}; \mathbb{R}^N)$. By uniqueness of the limit, we already have u(t) = v almost everywhere, which yields $u(t) \in W^{1,2}(\mathbb{T}, \mathbb{R}^N)$, and by lower semicontinuity, we may also deduce that

$$\|u(t)\|_{\mathbf{W}^{1,2}} \leq \liminf_{n \to \infty} \|u^{h_n}(t)\|_{\mathbf{W}^{1,2}} \leq C \, \mathbf{E}_{\varepsilon},$$

from which we deduce that $u \in L^{\infty}([0,T]; W^{1,2}(\mathbb{T}; \mathbb{R}^N))$.

Secondly the boundedness of the energies

$$\sup_{0 \le t \le T} \mathcal{E}_{\varepsilon}(u(t)) < \infty$$

follows from the lower semicontinuity of the energy and the pointwise L^2 convergence and pointwise weak convergence in $W^{1,2}$ as described in step 1.

Lastly we want to argue that $\partial_t u \in L^2([0,T] \times \mathbb{T}; \mathbb{R}^N)$.

Remark. The inequality (1.16) with the factor 1/2h instead of $1/h - C/2\varepsilon$ follows immediately from the definition of our optimization problem, but is not optimal for fixed ε if we want to study the behaviour as h tends to zero. Moreover this so called sharp energy dissipation inequality is important for later.

6

Convergence of the Allen–Cahn equations

Baldo proved in his paper [Bal90] that the Cahn-Hilliard energies Γ -converge with respect to $\|\cdot\|_{L^1}$ to an optimal partition energy given by

$$E(\chi) := \frac{1}{2} \sum_{1 \le i, j \le P} \sigma_{i,j} \int \frac{1}{2} \left(|\nabla \chi_i| + |\nabla \chi_j| - |\nabla (\chi_i + \chi_j)| \right)$$
 (2.1)

for a partition $\chi_1, \dots, \chi_P \colon \mathbb{T} \to \{0,1\}$ satisfying $\chi_{1 \le i \le P} \chi_i = 1$ almost everywhere. We may also define measurable sets Ω_i through the relation $\chi_i = \mathbbm{1}_{\Omega_i}$. The link between a sequence u_{ε} and χ is given by $u_{\varepsilon} \to u \coloneqq \sum_{1 \le j \le P} \alpha_i \chi_i$ in L^1 . Moreover if we denote by $\partial_* \Omega_i$ the reduced boundary of Ω_i and by $\Sigma_{i,j} \coloneqq \partial_* \Omega_i \cap \Omega_j$

the interface between Ω_i and Ω_j , then we may rewrite equation (2.1) as

$$E(\chi) = \frac{1}{2} \sum_{1 \le i, j \le P} \sigma_{i,j} \mathcal{H}^{d-1}(\Sigma_{i,j}).$$

Here, the surface tensions $\sigma_{i,j}$ are the geodesic distances between the wells α_i of W with respect to the metric $2W(u)\langle \cdot, \cdot \rangle$, which can be written out as

$$\sigma_{i,j} = d_W(\alpha_i, \alpha_j)$$

for the geodesic distance defined as

$$d_W(u,v) := \inf \left\{ \int_0^1 \sqrt{2W(\gamma)} |\dot{\gamma}| dt : \gamma \in C^1([0,1], \mathbb{R}^N) \text{ with } \gamma(0) = u, \gamma(1) = v \right\}. \tag{2.2}$$

Geometrically speaking, the partition energy E measures the surface tensions between the sets and penalizes larges interfaces. Also observe that the factor 1/2 can be left out if we only count each interface once.

Bibliography

- [Bal90] Sisto Baldo. "Minimal interface criterion for phase transitions in mixtures of Cahn-Hilliard fluids". en. In: *Annales de l'I.H.P. Analyse non linéaire* 7.2 (1990), pp. 67-90. URL: http://www.numdam.org/item/AIHPC_1990__7_2_67_0/.
- [LS16] Tim Laux and Theresa Simon. "Convergence of the Allen-Cahn Equation to Multiphase Mean Curvature Flow". In: Communications on Pure and Applied Mathematics 71 (June 2016). DOI: 10.1002/cpa.21747.