Stochastic process

1 Progressive process

Definition 1.1. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and $\{\mathcal{F}_t\}_{t \in [0,\infty)}$ be a filtration. A stochastic process $X : [0,\infty) \times \Omega \to \mathbb{R}$ is said to be \mathcal{F} -progressively measurable if, for any T, the restriction $X|_{[0,T]}$ is $\mathcal{B}([0,T]) \otimes \mathcal{F}_T$ -measurable.

1.1 Relation with integration

Let us define

$$I_t(\omega) := \int_0^t X_u(\omega) du,$$

assuming for simplicity that X is bounded, so the integral is well-defined.

If $s \in [0, t]$, then I_s is \mathcal{F}_s -measurable by Fubini's theorem, because the mapping $(u, \omega) \mapsto X_u(\omega)$ is $\mathcal{B}([0, s]) \otimes \mathcal{F}_s$ -measurable. That is, the process $(I_s)_{s \geq 0}$ is adapted to the filtration (\mathcal{F}_s) . Moreover, the map $s \mapsto I_s(\omega)$ is continuous (for fixed ω) by standard analysis.

It follows that the process (I_s) is even *predictable*, and in particular, *progressively measurable*.

2 Predictable process

Definition 2.1 (Discrete-Time Process). Given a filtered probability space

$$(\Omega, \mathcal{F}, (\mathcal{F}_n)_{n \in \mathbb{N}}, \mathbb{P}),$$

a stochastic process $(X_n)_{n\in\mathbb{N}}$ is said to be *predictable* if, for each $n\in\mathbb{N}$, the random variable X_{n+1} is \mathcal{F}_n -measurable.

Definition 2.2 (Continuous-Time Process). Given a filtered probability space

$$(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t>0}, \mathbb{P}),$$

a continuous-time stochastic process $(X_t)_{t\geq 0}$ is said to be predictable if the mapping

$$X: \Omega \times \mathbb{R}_+ \to \mathbb{R}$$

is measurable with respect to the *predictable* σ -algebra, which is the σ -algebra generated by all left-continuous, adapted processes.

2.1 How to understand the predictable process?

Fact 1. The predictable sigma-algebra is generated by continuous and adapted processes.

Fact 2. The predictable sigma-algebra is generated by the sets of the form

$$\{(s,t] \times A : 0 \le s < t, A \in \mathcal{F}_s\} \cup \{\{0\} \times A : A \in \mathcal{F}_0\}$$
 (2.1)

3 Stopping time

Manager: 야, 알바 오면 제빙기 멈춰.

Staff: 지금 11시인데, 알바 왔음?

CCTV: 11시까지 돌린 CCTV로는 알바 왔는지 판단 못함. 12시 CCTV 봐야 알 수 있음.

Manager: WTF????

그래서 Stopping time은 $\{\tau \leq t\} \in \mathcal{F}_t$ 조건을 요구한다.

3.1 Stopping sigma field

Let $(\Omega, \Sigma, \langle \mathcal{F}_n \rangle_{n \geq 0}, \mathbb{P})$ be a filtered probability space.

Let T be a stopping time with respect to $\langle \mathcal{F}_n \rangle_{n \geq 0}$.

Define the stopped σ -algebra associated with T as follows:

$$\mathcal{F}_T := \{ A \in \Sigma : A \cap \{ \omega \in \Omega : T(\omega) \le t \} \in \mathcal{F}_t \text{ for all } t \in \mathbb{Z}_{>0} \}.$$

Intuition:

The stopped σ -algebra \mathcal{F}_T represents the information available up to the (random) time T, without looking into the future.

For an event A to be in \mathcal{F}_T , we require that on the part of the sample space where $T \leq t$, the intersection $A \cap \{T \leq t\}$ must be observable using the information available at time t (i.e., be in \mathcal{F}_t), for all t. This ensures that A is determined at the time the process is stopped, based only on the information up to that time.

 \Rightarrow 즉, 알바가 언제 왔는지 알고 나서, 그 시점까지만 보고 판단 가능한 정보만 \mathcal{F}_T 에 들어감.

Properties

- 1. Difference of stopping times is not a stopping time in general. (Link)
- 2. Regulairty and measurability are well preserved in the stoppped process X^{τ} . (Link)
- 3. 조금 미래 정보가 섞여 있는 시스템에서도, 지금 정보만 보고 '그 일이 이미 일어 났는지'를 판단할 수 있으면, 그건 여전히 정직한 stopping time이다. (Link)

3.2 Debut Theorem

Theorem 3.1 (Debut Theorem). Let X be an adapted, right-continuous stochastic process defined on a complete filtered probability space $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t>0}, \mathbb{P})$.

Let K be any real number, and define the random time $\tau:\Omega\to\mathbb{R}_+\cup\{\infty\}$ by

$$\tau(\omega) := \inf \{ t \in \mathbb{R}_+ : X_t(\omega) \ge K \}.$$

Then τ is a stopping time with respect to the filtration $(\mathcal{F}_t)_{t\geq 0}$.

4 Local martingale

4.1 Quadratic variation

Fact. If X is a continuous local martingale, then $[X]_t < \infty$ a.s. for every $t \ge 0$, where [X] denote the quadratic variation of the process X.

4.2 Stochastic integral

Proposition 4.1. For any continuous L^2 -martingale M where $M_0=0$, and any predictable step process V where $|V|\leq 1$, the process $(V\cdot M)$ is an L^2 -martingale with $\mathbb{E}(V\cdot M)_t^2\leq \mathbb{E}\,M_t^2$.

5 Doob's h transform

Set

$$h(x) = \mathbb{P}(\tau_A < \tau_B) \tag{5.1}$$

Then, h(x) is the probability, starting from x to hit A before hitting B. Then h is positive on $\mathcal{X} \setminus (A \cup B)$. Furthermore, for $x \notin A \cup B$

$$\hat{P}(x,y) = \mathbb{P}[X_1 = y | \tau_A < \tau_B]$$
(5.2)

Finally, $h(x) = \mathbb{P}_x(\tau_A < \tau_B)$ satisfies both

- 1. h(x) = 1 for $x \in A$ and h(z) = 0 for $z \in B$
- 2. h is harmonic at x for every $x \notin A \cup B$

and $h(\cdot)$ is the unique solution of linear system given by 1 and 2 above. (Good source)

6 Girsanov Theorem

Girsanov 정리는 확률 공간 위에서 drift를 바꾸는 과정을 정당화해주는 "확률 세계의 물리 법칙 바꾸기"이다.

Setting: 기본 확률 공간 $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t\geq 0}, \mathbb{P})$ 위에서, W_t 는 \mathbb{P} 하의 표준 Brownian motion 이라고 하자.

We can think of following stochastic differential equation (SDE):

$$dX_t = \mu dt + \sigma dW_t.$$

Now, we want to change μ to $\tilde{\mu}$ (i.e., new drift). Now, we need **risk-neutral measure** \mathbb{Q} for the adjustment.

Theorem 6.1.

$$heta:=rac{ ilde{\mu}-\mu}{\sigma}$$
 에 대해, $Z_t:=\exp\left(- heta W_t-rac{1}{2} heta^2 t
ight)$

를 ℙ에 대한 Radon-Nikodym 도함수로 하면, 다음이 성립한다:

$$\tilde{W}_t := W_t + \theta t$$

는 $\mathbb Q$ 하에서 표준 Brownian motion이 된다. 즉, 새로운 drift $\tilde{\mu}$ 하의 dynamics는 $\mathbb Q$ 에서 해석 가능하다:

$$dX_t = \tilde{\mu}dt + \sigma d\tilde{W}_t.$$

직관: 기존 확률 세계 \mathbb{P} 에서 샘플링한 Brownian path W_t 를 그대로 두고, 그 위에 새로운 drift를 덧붙인 W_t 를 만들어 \mathbb{Q} 에서 해석하는 것이다.

즉, simulation은 한 번만 하고, 해석을 다르게 가져가는 마법같은 정리이다.

실전 용도:

• Option pricing: risk-neutral measure Q 하에서 기대값 계산

- Importance sampling: 희귀 사건을 더 자주 발생시키고 Girsanov weight로 보정
- Stochastic control: 실제 환경은 ℙ지만, 정책에 따른 drift를 ℚ로 바꿔 실험 정리 요약:

$$\mathbb{E}^{\mathbb{P}}[f(X)] = \mathbb{E}^{\mathbb{Q}}[f(X) \cdot Z_T]$$
 where $\frac{d\mathbb{Q}}{d\mathbb{P}} = Z_T$

한 줄 요약: "확률 measure는 바뀌었지만, path는 그대로 둔 채로 drift를 바꿔 해석하는 수학적 마법."

7 Brownian Motion

Proposition 7.1. Let B be a pre-Brownian motion. Then,

- 1. -B is also a pre-Brownian motion (symmetry property).
- 2. for every $\lambda > 0$, the process $B_t^{\lambda} = \frac{1}{\lambda} B_{\lambda^2 t}$ is also a pre-Brownian motion (invaraince under scaling).
- 3. for every $s \geq 0$, the process $B_t^{(s)} = B_{t+s} B_s$ is a pre-Brownian motion and is independent of $\sigma(B_r, r \leq s)$ (simple markov property).