

MUTUAL APPROXIMATIONS BETWEEN THE GALILEAN MOONS

Bruno Eduardo Morgado

R. Vieira-Martins, M. Assafin, J.I.B. Camargo, A. Dias-Oliveira, A. R. Gomes-Júnior

SUMMARY

- Motivation
- Our goal
- The Mutual Approximation Technique
 - Observations and Results
- Comparison between Phemus and Approximations
 - Future Work

Astrometric observations of the Galilean Moons can give us hints about their formations process and evolution.

- The study of tidal forces can provide informations about the interiors of these moons:
 - (i) Volcanoes in Io (J1) () Lainey et al., 2009
 - (ii) Oceans in Europa (J2) (?) Hussmann et al., 2002
 - (iii) Oceans in Ganymede(J3) (?) NASA release 2015

However this CCD astrometry is not an easy task.

- Images with exposition of 1 second,
- (i) I filter (Johnson)
- (ii) Narrow-band Methane filter (Karkoschka, 1998)

Narrow-band Methane filter
Centred at 889 nm with an width of 15 nm.

Karkoschka (1994, 1998)

Narrow-band Methane filter
Centred at 889 nm with an width of 15 nm.

However even taking out the scattered light of Jupiter, there is no catalogued stars in the FoV.

UCAC 4 - (Mean Mag. V between 15 and 16).

Classical CCD astrometry

Stone et al., 2001 - 107 mas

Kiseleva et al., 2008 - 125 mas

Always when Jupiter is in the night sky

Not precise enough

Relative Position (+ Precision Premium)

Peng et al., 2012 - 30 mas

Always when two satellites are close to each other (sky plane)

Need the ephemeris to compute the plate scale and CCD orientation

> Mutual Phenomena

Dias-Oliveira et al., 2013 - 03 mas

Arlot et al., 2014 - 05 mas

Very precise observations

We can only observe for a few months every 6 years

Classical CCD astrometry

Stone et al., 2001 - 107 mas

Kiseleva et al., 2008 - 125 mas

Always when Jupiter is in the night sky

Not precise enough

Relative Position (+ Precision Premium)

Peng et al., 2012

- 30 mas

Always when two satellites are close to each other (sky plane)

Need the ephemeris to compute the plate scale and CCD orientation

Mutual Phenomena

Dias-Oliveira et al., 2013 - 03 mas

Arlot et al., 2014 - **05 mas**

Very precise observations

We can only observe for a few months every 6 years

OUR GOAL

Determine the **central instant** in the close approach between two satellites.

For that we need:

- (i) Precise time insertion in the images (GPS)
- (ii) Means to reduce Jupiter brightness (Methane Filter)
- (iii) A model to fit the distances curves and obtain the central instant

The main idea is that: during the equinox of the host planet the satellites cross each other in the sky plane, causing an occultation. But for any other epoch they only will approach each other.

So, we can use these approximations to determine the same parameters of an occultation: the central instant and the impact parameter (but in pixel units).

In fact, this was already done before:

- (i) Arlot et al., 1982 was the first to try a similar technique, during the mutual phenomena campaign in 1979.
- (ii) Mason et al., 1999 also observe this kind of events in the Naval Observatory (USNO).

But no further publications were made....

How we can determine the central instant?

The simplest model is a polynomial, is easier to fit and to determine the minimal (The fit is made for d^2).

How we can determine the central instant?

Is the mutual approximation method feasible? How many approximations there are?

Is the mutual approximation method feasible? How these approximations changes during one orbit of Jupiter?

Io and Europa - 03/02/2014

Io and Europa - 03/02/2014

Io and Europa - 03/02/2014

Date	Event	t_0	E_{t0}	Δ	Δt_0
(d-m-y)		(hh:mm:ss)	(mas)	(s)	(mas)
19-02-14	IaG	23:46:35.40 (0.76)	5.78	+2.31	+17.59

Date	Event	t_0	E_{t0}	Δt_0
(d-m-y)		(hh:mm:ss)	(mas)	(s) (mas)
07-02-14	IaE	23:00:17.29 (4.94)	40.97	-1.38 -11.46

Date	Event	t_0	E_{t0}	$\Delta \tau$	t_0
(d-m-y)		(hh:mm:ss)	(mas)	(s)	(mas)
27-02-15	GaC	01:24:10.29 (1.42)	8.14	+0.71	+4.07

Date	Event	t_0	E_{t0}	Δ	$\overline{t_0}$
(d-m-y)		(hh:mm:ss)	(mas)	(s)	(mas)
03-02-14	IaE	$03:18:47.42\ (0.20)$	1.55	+4.37	+33.92
05 - 02 - 14	EaG	$23:27:50.65 \ (0.66)$	4.04	+2.86	+17.53
19-02-14	IaG	$23:46:35.40 \ (0.76)$	5.78	+2.31	+17.59
27 - 02 - 14	IaE	$22:34:27.89 \ (0.10)$	0.79	-1.16	-9.16
07-04-14	IaE	$22:35:27.89 \ (0.19)$	1.46	-0.35	-2.68
20-04-14	EaG	$21:47:40.57 \ (0.52)$	1.85	-9.70	-34.47
21-04-14	GaC	21:41:53.56 (1.01)	4.74	+1.71	+8.04
21-04-14	IaG	23:13:56.69 (1.01)	5.45	-2.73	-14.74
07-02-14	IaE	23:00:17.29 (4.94)	40.97	-1.38	-11.46
18-03-14	IaE	$22:43:23.26 \ (2.52)$	16.06	-7.93	-50.54
27 - 02 - 15	GaC	$01:24:10.29\ (1.42)$	8.14	+0.71	+4.07
11-04-15	EaG	$22:07:13.35 \ (1.13)$	5.76	-2.60	-13.25
13-04-15	IaE	23:44:40.98 (1.12)	8.60	-1.78	-13.67
19-04-15	EaG	01:17:48.89 (1.00)	5.15	-4.10	-21.12

> Classical CCD astrometry

Stone et al., 2001 - **107 mas**Kiseleva et al., 2008 - **125 mas**

> Relative Position (+ Precision Premium)

Peng et al., 2012 - 30 mas

Mutual Approximation

Morgado et al., 2016 - 08 mas

> Mutual Phenomena

Dias-Oliveira et al., 2013 - 03 mas

Arlot et al., 2014 - 05 mas

PHEMUS VS APPROX

PHEMUS VS APPROX

Date	Event	[1]	[2]
09-05-2009	201	07 21 56,00	07 21 55,48 (3,23)
28-05-2009	102	$07\ 44\ 18,25$	$07\ 44\ 20,55\ (3,62)$
22-06-2009	102	$03\ 27\ 55,43$	$03\ 27\ 53,19\ (4,72)$
06-07-2009	1o2	07 48 34,94	$07\ 48\ 31,95\ (3,02)$
07-08-2009	102	05 37 47,84	$05\ 37\ 49,80\ (3,59)$
22-02-2015	201	02 07 52,67	02 07 53,58 (1,32)
03-03-2015	301	04 08 16,84	04 08 13,42 (3,85)

- > [1] Mutual phenomena: using Emelyanov (2003) method
- > [2] Mutual approximation: Morgado et al., 2016

[1] and [2] agrees in 1σ

*Note that the precision of the approximations is affected by the absence of positions near the central instant.

Observe more approximations between the Galilean moons.

(39 more observation in early 2016, in a huge collaboration effort.)

> Test if this method also works for other satellites' systems.

(already tested for the Uranian satellites, it works!)

New orbit fitting using these (and more) observations.

(collaboration with the IMCCE in the near future).

> Mutual approximation campaign in 2016:

Mutual approximation campaign in 2016:

22 mutual approximations observed between February and May of 2016 (39 distances curves).

> 50% of the observations with precisions bellow 10 mas. (73% bellow 20 mas).

FUTURE WORK

> Test with the Uranian satellites

Approximation between Miranda (705) and Umbriel (702)

Assafin et al., 2008

FUTURE WORK

> Test with the Uranian satellites

Approximation between Miranda (705) and Umbriel (702)

Precision for the central instant was 54.280 s (4.88 mas)

Mon. Not. R. Astron. Soc. 000, 1–13 (2015)

Printed 20 May 2016

(MN IATEX style file v2.2)

10.1093/mnras/stw1244

arXiv:1605.06573

Astrometry of mutual approximations between natural satellites. Application to the Galilean moons.*

B. Morgado^{1,2}†, M. Assafin², R. Vieira-Martins^{1,2}, J.I.B. Camargo¹,

A. Dias-Oliveira¹, A. R. Gomes-Júnior²

Accepted 2016 May 19. Received 2016 May 18; in original form 2016 April 08

THANKS!!

Bruno Eduardo Morgado

Morgado.fis@gmail.com brunomorgado@on.br

¹Observatório Nacional/MCTI, R. General José Cristino 77, Rio de Janeiro RJ 20.921-400, Brazil

²Observatório do Valongo/UFRJ, Ladeira Pedro Antonio 43, Rio de Janeiro RJ 20080-090, Brazil

"Bad" observations examples:

Mutual approximation campaign in 2016:

> Mutual approximation campaign in 2016:

Date	Event	Observer	t_0 UTC	σt_0	σt_0	Δt_0	Δt_0
(dd-mm-yy)			(hh:mm:ss.ss)	(s)	(mas)	(s)	(mas)
03-2-2016	502A503	OPD	04:48:01.073	4.201	30.10	-0.151	-01.08
08-2-2016	501A502	FOZ	06:29:43.430	0.574	02.54	+5.529	+24.45
10-2-2016	502A503	OPD	07:34:30.330	2.659	20.73	-21.323	-166.19
15-2-2016	501A502	FOZ	08:39:33.477	1.148	04.80	+3.320	+13.88
24-2-2016	501A503	OPD	01:53:25.510	0.136	00.83	-1.256	-07.68
		FEG	01:53:28.292	3.964	24.68	+1.530	+09.52
		GOA	01:53:28.786	1.357	04.99	+2.046	+07.52
25-2-2016	501A502	GOA	23:55:58.161	2.395	05.31	-2.658	-05.89
18-3-2016	501A502	OPD	06:53:17.034	2.554	06.08	+8.554	+20.36
02-4-2016	501A502	OPD	05:46:03.202	0.460	01.30	-4.184	-11.90
		FOZ	05:46:02.117	1.246	03.56	-5.293	-15.14
		FEG	05:46:00.064	3.777	10.80	-7.320	-20.94
02-4-2016	501A504	OPD	23:24:20.377	0.205	01.11	-9.165	-49.83
		FOZ	23:24:27.450	1.369	07.52	-2.173	-11.94
		FEG	23:24:28.263	3.483	19.14	-1.271	-06.98

> Mutual approximation campaign in 2016:

Date	Event	Observer	t_0 UTC	σt_0	σt_0	Δt_0	Δt_0
(dd-mm-yy)			(hh:mm:ss.ss)	(s)	(mas)	(s)	(mas)
12-4-2016	501A504	OPD	04:35:29.676	8.862	50.83	+4.337	+24.87
		FOZ	04:35:36.105	1.099	06.40	+10.696	+62.27
		FEG	04:35:34.117	2.491	14.50	+8.782	+51.12
12-4-2016	501A502	FOZ	04:45:54.017	10.109	10.50	+23.121	+24.02
12-4-2016	502A504	FOZ	05:01:34.581	1.876	11.17	-0.915	-05.45
		FEG	05:01:41.134	4.232	25.73	+5.711	+34.01
12-4-2016	501A502	OPD	21:17:16.176	0.840	02.87	-8.253	-28.20
19-4-2016	501A502	OPD	23:35:15.347	1.013	03.84	-1.088	-04.13
		FOZ	23:35:24.192	2.154	08.18	+7.715	+29.30
		GOA	23:35:13.320	2.167	08.23	-3.092	-11.74
		FBR	23:35:13.581	3.156	11.99	-2.854	-10.84
24-4-2016	501A503	OPD	22:35:12.028	0.489	03.72	-2.573	-19.57
		FBR	22:35:13.121	2.574	19.57	-1.478	-11.24
29-4-2016	501A503	OPD	00:32:28.141	2.442	16.21	-2.411	-16.01
		FBR	00:32:28.652	4.220	28.05	-1.903	-12.65

> Mutual approximation campaign in 2016:

Date	Event	Observer	t ₀ UTC	σt_0	σt_0	Δt_0	Δt_0
(dd-mm-yy)			(hh:mm:ss.ss)	(s)	(mas)	(s)	(mas)
02-5-2016	501A503	OPD	01:08:50.287	1.460	10.39	-0.578	-04.14
		FOZ	01:08:55.718	2.331	16.70	+4.797	+34.37
		FEG	01:08:52.150	1.777	12.73	+1.283	+09.19
		FBR	01:08:52.778	4.485	32.13	+1.904	+13.64
03-5-2016	502A503	OPD	01:04:55.430	1.256	04.25	+4.485	+15.16
		FBR	01:04:55.505	1.890	06.39	+4.555	+15.40
06-5-2016	502A504	OPD	00:59:06.787	6.531	31.57	+2.304	+11.14
06-5-2016	501A503	OPD	03:10:52.883	1.097	07.58	+6.695	+46.25
19-5-2016	502A503	FOZ	22:52:36.911	1.030	06.62	+2.642	+16.98

22 mutual approximations observed between February and May of 2016 (39 distances curves).

> 50% of the observations with precisions bellow 10 mas. (73% bellow 20 mas).