Handin3 EITN45, Anthony Smith

1 Hand-in 3

1.1 a)

```
G(r, m) = \begin{pmatrix} G(r, m-1) & G(r, m-1) \\ O & G(r-1, m-1) \end{pmatrix}
\frac{definitions:}{G(0, m) \Rightarrow vectos} \ 2^m \text{ ones}
G(m, m) \Rightarrow unit \ metrix \ 2^m
2) \ RM(1,3) \Rightarrow \begin{pmatrix} G(1,2) & G(1,2) \\ O & G(0,2) \end{pmatrix} \Rightarrow \begin{pmatrix} G(1,1) & G(1,1) & G(1,1) \\ O & G(0,1) & O & G(0,1) \\ O & O & O & O & O \end{pmatrix} \Rightarrow \begin{pmatrix} G(0,1) & G(0,1) & G(0,1) \\ O & G(0,2) & O & G(0,2) \end{pmatrix}
\Rightarrow \begin{pmatrix} 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 \\ O & 0 & 0 & 1 & 1 & 1 \end{pmatrix} \Rightarrow \begin{pmatrix} G(1,1) & G(1,1) & G(1,1) & G(1,1) \\ O & G(0,2) & O & G(0,2) \end{pmatrix}
\Rightarrow \begin{pmatrix} 1 & 0 & 1 & 0 & 1 & 0 \\ O & 0 & 1 & 1 & 0 & 1 \\ O & 0 & 0 & 1 & 1 & 1 \\ O & 0 & 0 & 1 & 1 & 1 \\ O & 0 & 0 & 1 & 1 & 1 \\ O & 0 & 0 & 1 & 1 & 1 \\ O & 0 & 0 & 1 & 1 & 1 \\ O & 0 & 0 & 1 & 1 & 1 \\ O & 0 & 0 & 1 & 1 & 1 \\ O & 0 & 0 & 1 & 1 & 1 \\ O & 0 & 0 & 0 & 1 & 1 \\ O & 0 & 0 & 0 & 1 & 1 \\ O & 0 & 0 & 0 & 1 & 1 \\ O & 0 & 0 & 0 & 1 & 1 \\ O & 0 & 0 & 0 & 1 & 1 \\ O & 0 & 0 & 0 & 1 & 1 \\ O & 0 & 0 & 0 & 1 & 1 \\ O & 0 & 0 & 0 & 1 & 1 \\ O & 0 & 0 & 0 & 1 & 1 \\ O & 0 & 0 & 0 & 1 & 1 \\ O & 0 & 0 & 0 & 1 & 1 \\ O & 0 & 0 & 0 & 1 & 1 \\ O & 0 & 0 & 0 & 1 & 1 \\ O & 0 & 0 & 0 & 1 \\ O & 0 & 0 & 0 & 1 & 1 \\ O & 0 & 0 & 0 & 1 \\ O & 0 & 0 & 0 & 1 \\ O & 0 & 0 & 0 & 1 \\ O & 0 & 0 & 0 & 1 \\ O & 0 & 0 & 0 \\ O
```

Figure 1: Generator matrix

1.2 b) c)

Figure 2: Code words

Table 1: Code words for matrix G, generated by multiplying matrix G with information

Information	Code word
0000	0000 0000
0001	0000 1111
0010	0011 0011
0011	0011 1100
0100	0101 0101
0101	0101 1010
0110	0110 0110
0111	0110 1001
1000	1010 1010
1001	1010 0101
1010	1001 1001
1011	1001 0111
1100	1111 1111
1101	1111 0111
1110	1100 1100
1111	1100 0011

1.3 d)

See the attached file handin3.m for calculations of the syndrome table. The derived single-errors are:

syndrome	error
0111	$0000\ 0001$
1011	$0000\ 0010$
0101	$0000\ 0100$
1001	$0000\ 1000$
0110	$0001\ 0000$
1010	0010 0000
0100	0100 0000
1000	1000 0000

1.4 e)

Chosen information 1100 is encoded as 1111 1111. Introducing an error at bit number five, gives 1111 0111, which corresponds to 1101 according to table 1. Calculate $codeword * G^T$, where code word is 1111 0111, results in 1001. According to table 2, 1001 corresponds with 0000 1000, showing that is in fact bit number five causing the error. By calculating 1111 0111 XOR 0000 1000 the original message can be recovered.

1.5 f)

The result from the attached file handin3.m, states that zero rows are remaining after finding all single-error and 2-error patterns. Thus indicating all double errors are detected. The code words consist of eight bits, and the syndrome table consists eight patterns, all single-errors can be corrected.

The syndromes will differ for zero-errors/single-errors and double-errors.