XCS229i Problem Set 2

Due Sunday, January 10 at 11:59pm PT.

Guidelines

1. If you have a question about this homework, we encourage you to post your question on our Slack channel, at http://xcs224n-scpd.slack.com/

- 2. Familiarize yourself with the collaboration and honor code policy before starting work.
- 3. For the coding problems, you must use the packages specified in the provided environment description. Since the autograder uses this environment, we will not be able to grade any submissions which import unexpected libraries.

Submission Instructions

Written Submission: Some questions in this assignment require a written response. For these questions, you should submit a PDF with your solutions online in the online student portal. As long as the PDF is legible and organized, the course staff has no preference between a handwritten and a typeset LaTeX submission. If you wish to typeset your submission and are new to LaTeX, you can get started with the following:

- Type responses only in submission.tex.
- Submit the compiled PDF, not submission.tex.
- Use the commented instructions within the Makefile and README.md to get started.

Coding Submission: Some questions in this assignment require a coding response. For these questions, you should submit only the src/submission.py file in the online student portal. For further details, see Writing Code and Running the Autograder below.

Honor code

We strongly encourage students to form study groups. Students may discuss and work on homework problems in groups. However, each student must write down the solutions independently, and without referring to written notes from the joint session. In other words, each student must understand the solution well enough in order to reconstruct it by him/herself. In addition, each student should write on the problem set the set of people with whom s/he collaborated. Further, because we occasionally reuse problem set questions from previous years, we expect students not to copy, refer to, or look at the solutions in preparing their answers. It is an honor code violation to intentionally refer to a previous year's solutions. More information regarding the Stanford honor code can be found at https://communitystandards.stanford.edu/policies-and-guidance/honor-code.

Writing Code and Running the Autograder

All your code should be entered into src/submission.py. When editing src/submission.py, please only make changes between the lines containing ### START_CODE_HERE ### and ### END_CODE_HERE ###. Do not make changes to files other than src/submission.py.

The unit tests in src/grader.py (the autograder) will be used to verify a correct submission. Run the autograder locally using the following terminal command within the src/ subdirectory:

\$ python grader.py

There are two types of unit tests used by the autograder:

- basic: These tests are provided to make sure that your inputs and outputs are on the right track, and that the hidden evaluation tests will be able to execute.
- hidden: These unit tests are the evaluated elements of the assignment, and run your code with more complex inputs and corner cases. Just because your code passed the basic local tests does not necessarily mean that they will pass all of the hidden tests. These evaluative hidden tests will be run when you submit your code to the Gradescope autograder via the online student portal, and will provide feedback on how many points you have earned.

For debugging purposes, you can run a single unit test locally. For example, you can run the test case 3a-0-basic using the following terminal command within the src/ subdirectory:

\$ python grader.py 3a-0-basic

Before beginning this course, please walk through the Anaconda Setup for XCS Courses to familiarize yourself with the coding environment. Use the env defined in src/environment.yml to run your code. This is the same environment used by the online autograder.

1. Linear Classifiers (logistic regression and GDA)

In this problem, we cover two probabilistic linear classifiers we have covered in class so far. First, a discriminative linear classifier: logistic regression. Second, a generative linear classifier: Gaussian discriminant analysis (GDA). Both the algorithms find a linear decision boundary that separates the data into two classes, but make different assumptions. Our goal in this problem is to get a deeper understanding of the similarities and differences (and, strengths and weaknesses) of these two algorithms.

For this problem, we will consider two datasets, along with starter codes provided in the following files:

- src-linearclass/ds1_train,valid.csv
- src-linearclass/ds2_train,valid.csv
- src-linearclass/submission.py

Each file contains n examples, one example $(x^{(i)}, y^{(i)})$ per row. In particular, the i-th row contains columns $x_0^{(i)} \in \mathbb{R}$, $x_1^{(i)} \in \mathbb{R}$, and $y^{(i)} \in \{0,1\}$. In the subproblems that follow, we will investigate using logistic regression and Gaussian discriminant analysis (GDA) to perform binary classification on these two datasets.

(a) [6 points (Written)]

In lecture we saw the average empirical loss for logistic regression:

$$J(\theta) = -\frac{1}{n} \sum_{i=1}^{n} \left(y^{(i)} \log(h_{\theta}(x^{(i)})) + (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)})) \right),$$

where $y^{(i)} \in \{0, 1\}, h_{\theta}(x) = g(\theta^T x) \text{ and } g(z) = 1/(1 + e^{-z}).$

Find the Hessian H of this function, and show that for any vector z, it holds true that

$$z^T H z > 0$$
.

Hint: You may want to start by showing that $\sum_i \sum_j z_i x_i x_j z_j = (x^T z)^2 \ge 0$. Recall also that g'(z) = g(z)(1 - g(z)).

Remark: This is one of the standard ways of showing that the matrix H is positive semi-definite, written " $H \succeq 0$." This implies that J is convex, and has no local minima other than the global one. If you have some other way of showing $H \succeq 0$, you're also welcome to use your method instead of the one above.

(b) [2.50 points (Coding)] Follow the instructions in src-linearclass/submission.py to train a logistic regression classifier using Newton's Method. Starting with $\theta = \vec{0}$, run Newton's Method until the updates to θ are small: Specifically, train until the first iteration k such that $|\theta_k - \theta_{k-1}|_1 < \epsilon$, where $\epsilon = 1 \times 10^{-5}$. Make sure to write your model's predicted probabilities on the validation set to the file specified in the code.

To verify a correct implementation, run the autograder test case 1b-4-basic to create a plot of the **validation** data with x_1 on the horizontal axis and x_2 on the vertical axis. This plot uses a different symbol for examples $x^{(i)}$ with $y^{(i)} = 0$ than for those with $y^{(i)} = 1$. On the same figure, it will also plot the decision boundary found by logistic regression (i.e, line corresponding to p(y|x) = 0.5).

The output plot should look similar to the following (no plot submission is required):

Figure 1: Separating hyperplane for logistic regression on validation set of Dataset 1 (Note: This is for reference only. You are not required to submit a plot.)

(c) [4 points (Written)] Recall that in GDA we model the joint distribution of (x, y) by the following equations:

$$p(y) = \begin{cases} \phi & \text{if } y = 1\\ 1 - \phi & \text{if } y = 0 \end{cases}$$

$$p(x|y=0) = \frac{1}{(2\pi)^{d/2}|\Sigma|^{1/2}} \exp\left(-\frac{1}{2}(x - \mu_0)^T \Sigma^{-1}(x - \mu_0)\right)$$

$$p(x|y=1) = \frac{1}{(2\pi)^{d/2}|\Sigma|^{1/2}} \exp\left(-\frac{1}{2}(x - \mu_1)^T \Sigma^{-1}(x - \mu_1)\right),$$

where ϕ , μ_0 , μ_1 , and Σ are the parameters of our model.

Suppose we have already fit ϕ , μ_0 , μ_1 , and Σ , and now want to predict y given a new point x. To show that GDA results in a classifier that has a linear decision boundary, show the posterior distribution can be written as

$$p(y = 1 \mid x; \phi, \mu_0, \mu_1, \Sigma) = \frac{1}{1 + \exp(-(\theta^T x + \theta_0))},$$

where $\theta \in \mathbb{R}^d$ and $\theta_0 \in \mathbb{R}$ are appropriate functions of ϕ , Σ , μ_0 , and μ_1 .

(d) [5 points (Written)] Given the dataset, we claim that the maximum likelihood estimates of the parameters are given by

$$\begin{split} \phi &= \frac{1}{n} \sum_{i=1}^{n} 1\{y^{(i)} = 1\} \\ \mu_0 &= \frac{\sum_{i=1}^{n} 1\{y^{(i)} = 0\}x^{(i)}}{\sum_{i=1}^{n} 1\{y^{(i)} = 0\}} \\ \mu_1 &= \frac{\sum_{i=1}^{n} 1\{y^{(i)} = 1\}x^{(i)}}{\sum_{i=1}^{n} 1\{y^{(i)} = 1\}} \\ \Sigma &= \frac{1}{n} \sum_{i=1}^{n} (x^{(i)} - \mu_{y^{(i)}})(x^{(i)} - \mu_{y^{(i)}})^T \end{split}$$

The log-likelihood of the data is

$$\ell(\phi, \mu_0, \mu_1, \Sigma) = \log \prod_{i=1}^n p(x^{(i)}, y^{(i)}; \phi, \mu_0, \mu_1, \Sigma)$$
$$= \log \prod_{i=1}^n p(x^{(i)}|y^{(i)}; \mu_0, \mu_1, \Sigma) p(y^{(i)}; \phi).$$

By maximizing ℓ with respect to the four parameters, prove that the maximum likelihood estimates of ϕ , μ_0 , μ_1 , and Σ are indeed as given in the formulas above. (You may assume that there is at least one positive and one negative example, so that the denominators in the definitions of μ_0 and μ_1 above are non-zero.)

(e) [2.50 points (Coding)] In src-linearclass/submission.py, fill in the code to calculate ϕ , μ_0 , μ_1 , and Σ , use these parameters to derive θ , and use the resulting GDA model to make predictions on the validation set. Make sure to write your model's predictions on the validation set to the file specified in the code.

To verify a correct implementation, run the autograder test case 1e-4-basic to create a plot of the **validation** data with x_1 on the horizontal axis and x_2 on the vertical axis. To visualize the two classes, use a different symbol for examples $x^{(i)}$ with $y^{(i)} = 0$ than for those with $y^{(i)} = 1$. On the same figure, plot the decision boundary found by GDA (i.e, line corresponding to p(y|x) = 0.5).

The output plot should look similar to the following (no plot submission is required):

Figure 2: Separating hyperplane for GDA on the validation set for Dataset 1 (Note: This is for reference only. You are not required to submit a plot.)

- (f) [1 point (Written)] For Dataset 1, compare the validation set plots obtained in part (b) and part (e) from logistic regression and GDA respectively, and briefly comment on your observation in a couple of lines. No plot submission is required.
- (g) [4 points (Written)] Use autograder test case 1g-0-basic to create GDA and logistic regression plots for Dataset 2. Compare the plots for Dataset 1 (from parts (b) and (e)) with the plots for Dataset 2. On which dataset does GDA seem to perform worse than logistic regression? Why might this be the case?
- (h) [1 point (Written)] For the dataset where GDA performed worse in parts (f) and (g), can you find a transformation of the $x^{(i)}$'s such that GDA performs significantly better? What might this transformation be?

2. Poisson Regression

In this question we will construct another kind of a commonly used GLM, which is called Poisson Regression. In a GLM, the choice of the exponential family distribution is based on the kind of problem at hand. If we are solving a classification problem, then we use an exponential family distribution with support over discrete classes (such as Bernoulli, or Categorical). Similarly, if the output is real valued, we can use Gaussian or Laplace (both are in the exponential family). Sometimes the desired output is to predict counts. E.g., predicting the number of emails expected in a day, the number of customers expected to enter a store in the next hour, etc. based on input features (also called covariates). You may recall that a probability distribution with support over integers (i.e. counts) is the Poisson distribution, and it also happens to be in the exponential family.

In the following sub-problems, we will start by showing that the Poisson distribution is in the exponential family, derive the functional form of the hypothesis, derive the update rules for training models, and finally using the provided dataset to train a real model and make predictions on the test set.

(a) [2 points (Written)] Consider the Poisson distribution parameterized by λ :

$$p(y;\lambda) = \frac{e^{-\lambda}\lambda^y}{y!}.$$

(Here y has positive integer values and y! is the factorial of y.) Show that the Poisson distribution is in the exponential family, and clearly state the values for b(y), η , T(y), and $a(\eta)$.

- (b) [1 point (Written)] Consider performing regression using a GLM model with a Poisson response variable. What is the canonical response function for the family? (You may use the fact that a Poisson random variable with parameter λ has mean λ .)
- (c) [5 points (Written)] For a training set $\{(x^{(i)}, y^{(i)}); i = 1, ..., n\}$, let the log-likelihood of an example be $\log p(y^{(i)}|x^{(i)};\theta)$. By taking the derivative of the log-likelihood with respect to θ_j , derive the stochastic gradient ascent update rule for learning using a GLM model with Poisson responses y and the canonical response function.

(d) [6 points (Coding)]

Consider a website that wants to predict its daily traffic. The website owners have collected a dataset of past traffic to their website, along with some features which they think are useful in predicting the number of visitors per day. The dataset is split into train/valid sets and the starter code is provided in the following files:

- src-poisson/train, valid.csv
- src-poisson/submission.py

We will apply Poisson regression to model the number of visitors per day. Note that applying Poisson regression in particular assumes that the data follows a Poisson distribution whose natural parameter is a linear combination of the input features (i.e., $\eta = \theta^T x$). In src-poisson/submission.py, implement Poisson regression for this dataset and use full batch gradient ascent to maximize the log-likelihood of θ . For the stopping criterion, check if the change in parameters has a norm smaller than a small value such as 10^{-5} .

Using the trained model, predict the expected counts for the **validation set**. To verify a correct implementation, use autograder test case 2d-2-basic to create a scatter plot between the true counts vs predicted counts (on the validation set). In the scatter plot, the x-axis is the true count and the y-axis are the corresponding predicted expected count. Note that the true counts are integers while the expected counts are generally real numbers.

Your plot should look similar to the following:

Figure 3: Ground Truth vs Prediction plot on the validation set (Note: This is for reference only. You are not required to submit a plot.)

This handout includes space for every question that requires a written response. Please feel free to use it to handwrite your solutions (legibly, please). If you choose to typeset your solutions, the README.md for this assignment includes instructions to regenerate this handout with your typeset LATEX solutions.

1.a

Since g'(z) = g(z)(1 - g(z)) and $h(x) = g(\theta^T x)$, it follows that $\partial h(x)/\partial \theta_k = h(x)(1 - h(x))x_k$. Letting $h_{\theta}(x^{(i)}) = g(\theta^T x^{(i)}) = 1/(1 + \exp(-\theta^T x^{(i)}))$, we have

$$\frac{\partial \log h_{\theta}(x^{(i)})}{\partial \theta_k} = \frac{\partial \log(1 - h_{\theta}(x^{(i)}))}{\partial \theta_k} =$$

Substituting into our equation for $J(\theta)$, we have

$$\frac{\partial J(\theta)}{\partial \theta_k} =$$

Consequently, the (k, l) entry of the Hessian is given by

$$H_{kl} = \frac{\partial^2 J(\theta)}{\partial \theta_k \partial \theta_l} =$$

Using the fact that $X_{ij} = x_i x_j$ if and only if $X = x x^T$, we have

$$H =$$

To prove that H is positive semi-definite, show $z^T H z \geq 0$ for all $z \in \mathbb{R}^d$.

$$z^T H z =$$

1.c

For shorthand, we let $\mathcal{H} = \{\phi, \Sigma, \mu_0, \mu_1\}$ denote the parameters for the problem. Since the given formulae are conditioned on y, use Bayes rule to get:

$$p(y=1|x;\mathcal{H}) = \frac{p(x|y=1;\mathcal{H})p(y=1;\mathcal{H})}{p(x;\mathcal{H})}$$

$$= \frac{p(x|y=1;\mathcal{H})p(y=1;\mathcal{H})}{p(x|y=1;\mathcal{H})p(y=1;\mathcal{H}) + p(x|y=0;\mathcal{H})p(y=0;\mathcal{H})}$$

$$= \frac{p(x|y=1;\mathcal{H})p(y=1;\mathcal{H}) + p(x|y=0;\mathcal{H})p(y=0;\mathcal{H})}{p(x|y=1;\mathcal{H})p(y=1;\mathcal{H}) + p(x|y=0;\mathcal{H})p(y=0;\mathcal{H})}$$

1.d

First, derive the expression for the log-likelihood of the training data:

$$\ell(\phi, \mu_0, \mu_1, \Sigma) = \log \prod_{i=1}^n p(x^{(i)}|y^{(i)}; \mu_0, \mu_1, \Sigma) p(y^{(i)}; \phi)$$

$$= \sum_{i=1}^n \log p(x^{(i)}|y^{(i)}; \mu_0, \mu_1, \Sigma) + \sum_{i=1}^n \log p(y^{(i)}; \phi)$$

$$=$$

Now, the likelihood is maximized by setting the derivative (or gradient) with respect to each of the parameters to zero.

For ϕ :

$$\frac{\partial \ell}{\partial \phi} =$$

Setting this equal to zero and solving for ϕ gives the maximum likelihood estimate.

For μ_0 :

Hint: Remember that Σ (and thus Σ^{-1}) is symmetric.

$$\nabla_{\mu_0} \ell =$$

Setting this gradient to zero gives the maximum likelihood estimate for μ_0 .

For μ_1 :

Hint: Remember that Σ (and thus Σ^{-1}) is symmetric.

$$\nabla_{\mu_1} \ell =$$

Setting this gradient to zero gives the maximum likelihood estimate for μ_1 .

For Σ , we find the gradient with respect to $S=\Sigma^{-1}$ rather than Σ just to simplify the derivation (note that $|S|=\frac{1}{|\Sigma|}$). You should convince yourself that the maximum likelihood estimate S_n found in this way would correspond to the actual maximum likelihood estimate Σ_n as $S_n^{-1}=\Sigma_n$.

Hint: You may need the following identities:

$$\nabla_{S}|S| = |S|(S^{-1})^{T}$$

$$\nabla_{S}b_{i}^{T}Sb_{i} = \nabla_{S}tr\left(b_{i}^{T}Sb_{i}\right) = \nabla_{S}tr\left(Sb_{i}b_{i}^{T}\right) = b_{i}b_{i}^{T}$$

$$\nabla_{S}\ell =$$

Next, substitute $\Sigma = S^{-1}$. Setting this gradient to zero gives the required maximum likelihood estimate for Σ .

1.f

1.g

1.h

2.a

2.b

2.c

The log-likelihood of an example $(x^{(i)},y^{(i)})$ is defined as $\ell(\theta)=\log p(y^{(i)}|x^{(i)};\theta)$. To derive the stochastic gradient ascent rule, use the results in part (a) and the standard GLM assumption that $\eta=\theta^Tx$.

$$\frac{\partial \ell(\theta)}{\partial \theta_j} = \frac{\partial \log p(y^{(i)}|x^{(i)}; \theta)}{\partial \theta_j}$$

$$= \frac{\partial \log \left(\frac{1}{y^{(i)!}} \exp(\eta^T y^{(i)} - e^{\eta})\right)}{\partial \theta_j}$$

$$= \frac{\partial \theta_j}{\partial \theta_j}$$

Thus the stochastic gradient ascent update rule should be:

$$\theta_j := \theta_j + \alpha \frac{\partial \ell(\theta)}{\partial \theta_j},$$

which reduces here to: