Теория групп. Лекция 9

Штепин Вадим Владимирович

31 октября 2019 г.

1 Критерий разрешимости группы

Теорема (критерий разрешимости в терминах нормальной подгруппы)

Пусть $K \triangleleft G$. Тогда G — разрешима $\Leftrightarrow K$ и G/K разрешимы.

Доказательство

- 1. Необходимость. Пусть $G^{(n)}=\{e\}$. $K \triangleleft G \Rightarrow K' \triangleleft G' \Rightarrow K^{(n)} \triangleleft G^{(n)}=\{e\} \Rightarrow K$ разрешима. Обозначим $\overline{G}=G/K$. Пусть $p:G \to \overline{G}$ канонический гомоморфизм. $p \upharpoonright_{G'}: G' \to \overline{G}'$, т.е. $p(G') \subset \overline{G}'$, так как гомоморфизм сохраняет коммутаторы.
 - Всякий коммутатор элементов из \overline{G} образ коммутатора элементов из G. В силу сюръективности получаем $p(G^{(n)})=\overline{G}^{(n)}$, но $G^{(n)}=\{e\}\Rightarrow \overline{G}^{(n)}=\{e\}$ и \overline{G} разрешима.
- 2. Достаточность.

Пусть K и \overline{G} разрешимы. Пусть $K^{(n)}=\{e\}$ и $\overline{G}^{(l)}=\{e\}$. $p:G\to \overline{G}$ —канонический гомоморфизм. $p(G^{(l)})=\overline{G}^{(l)}=\{e\}\Rightarrow G^{(l)}\subset Ker(p)=K\Rightarrow G^{(l+n)}\subset K^{(n)}=\{e\}\Rightarrow G$ — разрешима.

Следствие

Пусть |G:H|=2. Тогда G разрешима $\Leftrightarrow H$ — разрешима.

Доказательство

 $H \triangleleft G$ как группа индекса 2. $G/H \simeq C_2$ — разрешима (абелева)

Пример

 $H=\langle R\rangle \leq D_n,\ H\simeq C_n$ — разрешима и $|D_n:H|=2$. Значит, D_n разрешима.

Следствие

Пусть G — конечна, $K_1, K_2 \triangleleft G$ и разрешимы. Тогда K_1K_2 нормальная и разрешимая.

Доказательство

 $K_1K_2 \triangleleft G$ — было доказано. $K_1K_2/K_2 \simeq K_1/(K_1 \cap K_2)$ по первой теореме об изоморфизме. $K_1/(K_1 \cap K_2)$ разрешима, так как K_1 разрешима. По критерию, K_1K_2 так же разрешима.

Теорема

Пусть G— конечная группа. Тогда в G найдется наибольшая нормальная разрешимая подгруппа S. Более того, G/S не содержит нетривиальных разрешимых подгрупп.

Доказательство

Пусть $K_1, ..., K_s$ — все нормальные разрешимые подгруппы G. Положим $S = \langle K_1 \cup K_2 ... \cup K_s \rangle$. По следствию, S нормальная и разрешимая, причем S — максимальная такая подгруппа.

Пусть в G/S есть нетривиальные ($\neq \{e\}$) разрешимые нормальные подгруппы: $L/S \lhd G/S \Rightarrow L \lhd G$ по второй теореме об изоморфизме. Так как S, L/S нормальные и разрешимые группы, то и L нормальная и разрешимая по критерию в терминах нормальной подгруппы. Значит, $S \lhd L \lhd G$, причем, в силу нетривиальности, $L \neq S$ —противоречие с максимальностью S.

<u>Опр.</u> Построенная наибольшая нормальная разрешимая подгруппа — **разрешимый ра**дикал S(G)

Теорема (критерий разрешимости)

Следующие условия эквивалентны:

- 1. G разрешима
- 2. В G \exists цепочка подгрупп $G = G_0 \geq G_1 \geq ... \geq G_n = \{e\}$ со свойствами $G_k \triangleleft G$ и G_k/G_{k+1} абелева.
- 3. В G \exists цепочка подгрупп $G=G_0 \geq G_1 \geq ... \geq G_n = \{e\}$ со свойствами $G_{k+1} \triangleleft G_k$ и G_k/G_{k+1} абелева.

Доказательство

1. 1 \Rightarrow 2 Положим $G_k = G^{(k)}$ — производный ряд. Если $K \triangleleft G$, то $K' \triangleleft G$ по свойству производной. Значит $G_k \triangleleft G$.

По свойствам коммутанта G/G' абелева, значит G_k/G_{k+1} абелева.

- 2. $2 \Rightarrow 3$ Очевидно, $G_{k+1} \triangleleft G_k$
- 3. $3 \Rightarrow 1$ Покажем, что $\forall k \ G^{(k)} \leq G_k$ индукцией по k.

База:
$$G_0 = G \subset G$$

Переход: Пусть $G^{(k)} \subset G_k$. Тогда $G^{(k+1)} = [G^{(k)}, G^{(k)}] \subset [G_k, G_k]$. G_k/G_{k+1} абелева $\Leftrightarrow \forall x, y \in G_k[xG_{k+1}, yG_{k+1}] = \{G_{k+1}\}$. $[x, y]G_{k+1} = [xG_{k+1}, yG_{k+1}] = G_{k+1} \Leftrightarrow [x, y] \in G_{k+1} \Rightarrow [G_k, G_k] \subset G_{k+1}$

Напоминание

Конечная группа G — это p-группа, если $|G| = p^n$, p — простое.

Теорема

Всякая p-группа G разрешима

Доказательство

Было доказано, что всякая p-группа имеет нетривиальный центр $Z = Z(G) \neq \{e\}$

- 1. Если Z = G, то G абелева и разрешима.
- 2. Докажем индукцией по n:

База: Пусть $|G| = p \Rightarrow G$ — циклична по теореме Лагранжа и разрешима.

Переход: Пусть $\forall G: |G| < p^n$ доказано. Пусть $\{e\} < Z < G \Leftrightarrow |G/Z| < p^n \Leftrightarrow G/Z$ разрешима $(|G/Z| = p^m, m < n)$. Z разрешима, так как абелева. $Z \triangleleft G$, так как $\forall x \in G \ xZ = Zx$. Значит, G разрешима.

Следствие

Если G-p-группа, то $G' \neq G$

Доказательство

Если G' = G, то $\forall n \ G^{(n)} = G$ —противоречие с разрешимостью.

Теорема (о подгруппах в конечной р-группе)

Пусть G-p-группа и $|G|=p^n$.

Тогда $\forall k, 1 \leq k \leq n$ в G есть подгруппа H мощности p^k .

Доказательство

Индукция по k.

База: $k = 0, H = \{e\}$

Переход: Пусть \exists подгруппа H_k , $|H_k|=p^k$, $k\leq n$. Покажем, что в G есть подгрупаа порядка p^{k+1} $(k+1\leq n)$. Пусть Z=Z(G).

 $\exists a \in Z, \ a \neq e \Rightarrow \langle a \rangle \subset Z \Rightarrow ord(a) = p^l \Rightarrow$ в $\langle a \rangle$ есть элемент порядка p. Пусть ord(z) = p. $L = \langle z \rangle \triangleleft G$ (так как $z \in Z$). Рассмотрим G/L: $|G/L| \geq p^k$. По предположению индукции, в G/L есть подгруппа порядка p^k . Пусть H/L— подгруппа порядка p^k . Тогда $|H| = p^{k+1}$

2 Простые группы

Опр. Группа G — **простая**, если она не имеет нетривиальных нормальных подгрупп.

Теорема (об описании простых абелевых групп)

Среди абелевых групп простые только C_p при простом p.

Доказательство

- 1. C_p простая по теореме Лагранжа
- 2. Если группа G абелева и |G|=n- составное число, то G не простая. Возьмем $a\neq e$ и рассмотрим $|\langle a\rangle|=k$: p- простое. Тогда $(a^{\frac{k}{p}})^p=e\Rightarrow ord(a^{\frac{k}{p}})=p\Rightarrow \langle a^{\frac{k}{p}}\rangle\neq G$ и $\langle a^{\frac{k}{p}}\rangle \triangleleft G$, так как G абелева.

Если $|G|=\infty$, и $\exists a:\ ord(a)=k$, то $\langle a \rangle \neq G$.

Если $\forall a \ ord(a) = \infty$, то $\exists H \simeq Z, \ H = \langle a \rangle$. Тогда $\langle a^2 \rangle \leq H$ и $\langle a^2 \rangle \neq G$.

Лемма

Пусть |G:H|=2, G— конечная группа. Тогда

- 1. Если $C_G(h) \neq C_H(h)$, то $h^G = h^H$
- 2. Если $C_G(h) = C_H(h)$, то $|h^H| = \frac{|h^G|}{2}$, где $h^G = \{g^{-1}hg \mid g \in G\}$

Доказательство

- 1. Пусть $a \in C_G(h) \setminus C_H(h) \Rightarrow ah = ha \Leftrightarrow a \in G \setminus H \Rightarrow G = H \cup aH$ $h^G = h^{(H \cup aH)} = h^H \cup h^{aH} = h^H \cup (h^a)^H = h^H \cup h^H = h^H$
- 2. Пусть $C_G(h) = C_H(h)$. Тогда $|h^G| = \frac{|G|}{|C_G(h)|} = \frac{2|H|}{|C_H(h)|} = 2|h^H|$

Замечание

Если $G=H\cup aH,\ a\notin H$ во втором случае, то $h^G=h^H\cup (h^a)^H$ и $(h^a)^H\neq h^H,$ но $|(h^a)^H|=|h^H|$