

PDS0101 Introduction to Digital Systems

Tutorial 4 SAMPLE SOLUTIONS

Tutorial outcomes

By the end of today's tutorial, you should be able to

- apple the basic laws and rules of boolean algebra
- apply DeMorgan's theorems to boolean expressions
- simplify boolean expressions using boolean algebra

Theory based questions

1. Write the boolean expressions for the outputs from the following logic circuits

- 2. Draw the logic circuit represented by the following boolean expressions
 - a) $Y = A\bar{B} + \bar{A}B$

b) $Y = A + B[C + D(B + \bar{C})]$

3. Define and describe De Morgan's first and second theorem

See notes

- 4. Apply DeMorgan's theorems to the following expressions
 - a) $\overline{(A+\overline{B})} = A\overline{B} = \overline{A}B$
 - b) $\overline{AB} = \overline{A} + \overline{B} = A + \overline{B}$
 - c) $\overline{(A + \overline{B} + C + \overline{D})} + \overline{(ABC\overline{D})} = \overline{A}B\overline{C}D + \overline{A} + \overline{B} + \overline{C} + \overline{\overline{D}} = \overline{A}B\overline{C}D + \overline{A} + \overline{B} + \overline{C} + D$
 - d) $\overline{(A\overline{B}(C+\overline{D}))} = \overline{A\overline{B}} + \overline{(C+\overline{D})} = \overline{A} + B + \overline{C}D$

$$(\overline{ABC})(\overline{EFG}) + (\overline{HIJ})(\overline{KLM}) = \overline{ABC} + \overline{EFG} + \overline{HIJ} + \overline{KLM}$$

$$= \overline{ABC} + \overline{EFG} + \overline{HIJ} + \overline{KLM} = (\overline{ABC})(\overline{EFG})(\overline{HIJ})(\overline{KLM})$$

$$= (\overline{A} + \overline{B} + \overline{C})(\overline{E} + \overline{F} + \overline{G})(\overline{H} + \overline{I} + \overline{J})(\overline{K} + \overline{L} + \overline{M})$$

$$(\overline{A} + \overline{B})(\overline{C} + \overline{D})(\overline{E} + \overline{F})(\overline{G} + \overline{H})$$

$$= (\overline{A} + B)(\overline{C} + D)(\overline{E} + F)(\overline{G} + \overline{H}) = \overline{ABCDEFGH}$$

Applied knowledge questions

6. Using boolean algebra rules, simplify the following expressions as much as possible

Using boolean algebra rules, simplify the following expressions as much as poss a)
$$A(\bar{A} + AB)$$

$$A' + AB = A'(B + B') + AB$$

$$= A'B + A'B' + AB$$

$$= (A' + A)B + A'B'$$

$$= B + A'B'$$

$$= A' + B$$
b) $(A + \bar{B})(A + C)$

$$(A+B')(A+C) = AA + AC + AB' + B'C$$

$$= A + AC + AB' + B'C$$

$$= A(1 + C + B') + B'C$$

$$= A + B'C$$
c) $AB + (\bar{A} + \bar{B})C + AB$

$$= AB + (A' + B')C$$

$$= AB + (AB)'C$$

$$= AB + (AB)'C$$

$$= AB + (AB)'C$$

$$= AB + (AB)'C$$

$$= A'B(1 + C' + CD + C'D'E)$$

$$= A'B(1 + C' + CD' +$$

7. Using boolean algebra rules, simplify the following functions and draw the resulting logic circuit of \boldsymbol{f}

(a)
$$f(w,x,y,z) = x + xyz + \overline{x}yz + wx + \overline{w}x + \overline{x}y + \overline{x}yw$$

 $= x(1 + yz + w + \overline{w}) + \overline{x}y(z + 1 + w)$
 $= x + \overline{x}y$
 $= x + y$

(b)
$$f(x, y, z) = y\overline{z}(\overline{z} + \overline{z}x) + (\overline{x} + \overline{z})(\overline{x}y + \overline{x}z)$$

 $= y\overline{z} + \overline{x}y + \overline{x}z + \overline{x}y\overline{z} + \overline{x}z\overline{z}$
 $= y\overline{z} + \overline{x}y + \overline{x}z$
 $= y\overline{z} + \overline{x}y\overline{z} + \overline{x}yz + \overline{x}z$
 $= y\overline{z} + \overline{x}y\overline{z} + \overline{x}z$
 $= y\overline{z} + \overline{x}z$

(c)
$$f(w,x,y,z) = (w+x)(w+y)(x+y+z)$$

 $= (wy+wx+xy)(x+y+z)$
 $= wxy+wy+wyz+wx+wxy+wxz+xy+xyz$
 $= wy(x+1+z)+wx(1+y+z)+xy(1+z)$
 $= wy+wx+xy$
 $= wy+wx+xy+xy$
 $= wy+wx+wxy+wxy$
 $= wy+wx$

8. Derive the truth table for the circuits shown below

)			
,	INP	UTS	OUTPUT
	Α	В	Y
	0	0	1
	0	1	1
	1	0	0
	1	1	1

VCR	CAMI	RDY	RECORD
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1
	RTS	\dashv	

	`
r	١
·	
	,

	INPUTS	OUTPUT	
RTS	ENABLE	\overline{BUSY}	SEND
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

9. The Boolean expression of a logic circuit is given as:

$$Y = A\overline{B}C + \overline{A}B(C + \overline{D}) + (A \oplus C) + \overline{A + \overline{B} + D}$$

- (a) Draw the implementation of the logic circuit given above
- (b) If the inputs A, B, C and D are varying according to the timing diagram below, what should be waveform at Y?

D 0 1 0 0 1 1 0

