Merkle Tree 13/04/2022

Gianluca Dini
Dept. of Ingegneria dell'Informazione
University of Pisa

Email: gianluca.dini@unipi.it

Version: 2022-04-12

1

Brief history

- Ralph Merkle patented Merkle Trees in 1979
- Merkle published the paper in 1987
 - R.Merkle. A digital signature based on a conventional encryption function. CRYPTO 1987.
- Patent expired in 2002

apr. '22 Merkle Tree

3

Properties

- MT (or hash tree) allows efficient and secure verification of the contents of large data structures
- · The root must be trusted
 - Digitally signed
 - Maintained on a trusted source/storage
- Verifying whether a leaf node is part of the MT requires computing a #hashes proportional to the logarithm of the #leaves
 - O(log B), with B the number of leaves (blocks)

apr. '22 Merkle Tree

5

Merkle Tree - applications

- File systems
 - IPFS, Btrfs, ZFS
- Content distribution protocols
 - Dat, Apache Wave
- Distributed revision control system
 - Git, Mercurial
- Blockchain
 - Bitcoin, Ethereum

- Backup Systems
 - Zeronet
- P2P networks
 - Torrent
- NoSQL systems
 - Apache Cassandra, Riak,
 Dynamo
- Certificate Transparency framework

apr. '22 Merkle Tree 6

7

Distributed scenario

 How does the user know that the information that (s)he is getting from some peer is genuine and hasn't been tampered with (or corrupted)?

apr. '22 Merkle Tree

Distributed scenario

- Solution no. 1 (shown in the slide)
 - Trusted Server stores h_f
- Verification
 - Upon receiving all blocks {blk_i, 1≤ i ≤ B}, compute $h_f' = H(blk_1!blk_2!...|blk_n)$.
 - Return $(h_f' == h_f)$
- Drawback
 - Check upon completion (possibly long delay)
 - Not possible to determine corrupted/compromised blocks

apr. '22 Merkle Tree

9

Distributed scenario

- Solution n.2
 - Trusted Server stores $\langle h_f, h_1, h_2, ..., h_B \rangle$ with h_i = H(blk_i), 1≤i≤B
 - Number of hashes B = sizeof(file)/sizeof(block)
 - Torrent: block size is 16 kbytes
- User Verification
 - The user can verify each block
- Drawback
 - Increase storage/bandwidth overhead

apr. '22 Merkle Tree 10

Merkle Tree 13/04/2022

Distributed scenario

- Solution n.3: Merkle Tree
 - Trusted Server stores the root of the Merkle Tree
 - Each peer stores
 - A subset of the blocks {blk_i};
 - For each block blk_i, ⟨blk_i, proof_i⟩
 - User Verification
 - Upon downloading a block blk_i, the user verifies it using proof_i and the tree root

apr. '22 Merkle Tree

11

File comparison

- File F gets modified in a block blki
- Comparing files takes is O(B)
- Comparing MTs is O(log B)

apr. '22 Merkle Tree 12

Merkle Tree 13/04/2022

13

Replication

- How can the primary replica determine whether a disconnected secondary replica has to be updated?
- Upon reconnection, the primary replica compares its MT with the secondary replica's MT in order to determine the modified blocks

apr. '22 Merkle Tree 14