অধ্যায় - ৯

বিস্তার পরিমাপ - Class 9 Math BD 2024 – নবম অধ্যায় (অনুশীলনীঃ ১-৫ পর্যন্ত)

বিস্তার পরিমাপ

এই অধ্যায়ের নাম বিস্তার পরিমাপ যেখানে আমরা নানান বিষয়ে ধারণা পাব। যেমনঃ অবিন্যস্ত ও বিন্যস্ত উপাত্তের পরিসর নির্ণয়; গাণিতিক গড় ও মধ্যক থেকে গড় ব্যবধান নির্ণয়; পরিমিত ব্যবধান নির্ণয়, ভেদঙ্ক নির্ণয় ও পরিমিত ব্যবধান নির্ণয়। এই অংশে আমরা বিস্তার পরিমাপ এর অনুশীলনীর ১-৫ পর্যন্ত সমাধান দিয়েছি। বাকী অংশ পরের পোস্টে দেয়া হয়েছে।

অনুশীলনী-১০ (১ম অংশ)

- ১. নিচের তথ্যরাশির পরিসর নির্ণয় করো।
- **(本)** 14, 3, 19, 17, 4, 9, 16, 19, 22, 15, 18, 17, 12, 8, 16, 11, 3, 11, 0, 15

সমাধানঃ

তথ্যরাশির সর্বোচ্চ মান = 22 এবং সর্বনিন্ম মান = 0

· পরিসর

= (সর্বোচ্চ মান - সর্বনিন্ম মান)

= (22-0)

= 22

খ) 48, 70, 58, 40, 43, 55, 63, 46, 56, 44

সমাধানঃ

তথ্যরাশির সর্বোচ্চ মান = 70 এবং সর্বনিম্ম মান = 40

· পরিসর

= (সর্বোচ্চ মান - সর্বনিন্ম মান)

= (70-40)

= 30

গ)

উচ্চতা (সেমি)	গণসংখ্যা
95-105	8
105-115	12
115-125	28
125-135	30
135-145	15
145-155	7

সমাধানঃ

এখানে, সর্বশের্বষ শ্রেণির উচ্চসীম = 155 ও প্রথম শ্রেণির নিম্নসীমা = 95

· পরিসর

= 155 - 95

= 60

২। নিচের তথ্যরাশির গাণিতিক গড় ও মধ্যক থেকে গড় ব্যবধান নির্ণয় করো।

क) 8, 15, 53, 49, 19, 62, 7, 15, 95, 77

সমাধানঃ

গাণিতিক গড় থেকে গড় ব্যবধান নির্ণয়:

গাণিতিক গড় থেকে গড় ব্যবধান নির্ণয়ের জন্য সারণি তৈরি করিঃ

X _i (তথ্যরাশির মান)	$ar{ exttt{X}}$ (গাণিতিক গড়)	$ x_i - \bar{X} $
8	$= \sum_{i=1}^{N} i / i$	32
15	= 400/10	25
53	= 40	13
49	্রখানে,	9
19	n = তথ্যরাশির মানের সংখ্যা Σx _i = তথ্যরাশির মানগুলোর যোগফল	21
62		22
7		33
15		25
95		55
77		37
$n=10; \Sigma x_i = 400$		$\sum x_i - \bar{X} = 272$

এখন, অবিন্যস্ত উপাত্তের ক্ষেত্রে,

গড় ব্যবধান, $M.D(\overline{X})$

$$\sum |x_i - \overline{X}|$$

$$= -----$$

$$n$$

$$= \frac{272}{10}$$

= 27.2

মধ্যক থেকে গড় ব্যবধান নির্ণয়:

প্রদত্ত তথ্যরাশিকে মানের উর্ধ্বক্রমে সাজিয়ে পাই,

7, 8, 15, 15, 19, 49, 53, 62, 77, 95

∵ মধ্যক M_e = (19+49) ÷ 2 = 34

মধ্যক থেকে গড় ব্যবধান নির্ণয়ের জন্য সারণি তৈরি করিঃ

X _i (তথ্যরাশির মান)	M _e (মধ্যক)	x _i - M _e
8	34	26
15		19
53		19
49		15
19		15
62		28
7		27
15		19
95		61
77		43
n=10		$\Sigma x_i - M_e = 272$

এখন, অবিন্যস্ত উপাত্তের ক্ষেত্রে,

গড় ব্যবধান, M.D(M_e)

$$\Sigma |x_i - M_e|$$
= -----

n
= $\frac{272}{10}$

খ) 10, 15, 54, 59, 19, 62, 98, 8, 25, 95, 77, 46, 36

সমাধানঃ

= 27.2

গাণিতিক গড় থেকে গড় ব্যবধান নির্ণয়:

গাণিতিক গড় থেকে গড় ব্যবধান নির্ণয়ের জন্য সারণি তৈরি করিঃ

X _i (তথ্যরাশির মান)	$ar{ ext{X}}$ (গাণিতিক গড়)	$ x_i - \overline{X} $
10	$= \sum_{i=1}^{\infty} i / n$	36.46
15	$= \frac{604}{13}$	31.46
54	= 46.46 (প্রায়)	7.54
59	এখানে,	12.54
19	n = তথ্যরাশির মানের সংখ্যা	27.46
62	11 - 0 () 411 14 (41) (41)	15.54
98		51.54
8	Σx _i = তথ্যরাশির মানগুলোর	38.46
25	যোগফল	21.46

95	48.54
77	30.54
46	0.46
36	10.46
$n=13$; $\sum x_i = 604$	$\Sigma x_i - \bar{X} = 332.46$

এখন, অবিন্যস্ত উপাত্তের ক্ষেত্রে,

গড় ব্যবধান, $M.D(\bar{X})$

$$\Sigma |x_i - \bar{X}|$$
= -----

n
= $\frac{332.46}{13}$

= 25.57 (প্রায়)

মধ্যক থেকে গড় ব্যবধান নির্ণয়:

প্রদত্ত তথ্যরাশিকে মানের উর্ধ্বক্রমে সাজিয়ে পাই,

8, 10, 15, 19, 25, 36, 46, 54, 59, 62, 77, 95, 98

∵ মধ্যক M_e = 46

মধ্যক থেকে গড় ব্যবধান নির্ণয়ের জন্য সারণি তৈরি করিঃ

X _i (তথ্যরাশির মান)	M _e (মধ্যক)	x _i - M _e
10	46	36
15		31
54		8
59		13
19		27
62		16
98		52
8		38
25		21
95		49
77		31
46		0
36		10
n=13		$\sum x_i - M_e = 332$

এখন, অবিন্যস্ত উপাত্তের ক্ষেত্রে,

 $= \frac{332}{13}$

= 25.5384615

৩। প্রদত্ত উপাত্তের গাণিতিক গড় ও মধ্যক থেকে গড় ব্যবধান নির্ণয় করো।

X	f
60	2
61	0
62	15
63	30
64	25
65	12
66	11
67	5

সমাধানঃ

গাণিতিক গড় থেকে গড় ব্যবধান নির্ণয়ের জন্য সারণি তৈরি করি।

Χ	f	fx	$ x-\overline{X} $	$f x-\overline{X} $
60	2	120	3.81	7.62
61	0	0	2.81	0
62	15	930	1.81	27.15
63	30	1890	0.81	24.3
64	25	1600	0.19	4.75
65	12	780	1.19	14.28
66	11	726	2.19	24.09
67	5	335	3.19	15.95
	n=100	$\Sigma fx = 6381;$ $\bar{X} = \frac{\Sigma fx}{n}$ $= \frac{6381}{100}$ $= 63.81$		$\sum f x-\bar{X} $ = 118.14

 $\cdot\cdot$ গড় ব্যবধান, $\mathrm{M.D}(\overline{\mathrm{X}})$

$$\Sigma f|x_i$$
- $\overline{X}|$

= -----

n

 $= \frac{118.14}{100}$

= 1.1814

আবার,

মধ্যক থেকে গড় ব্যবধান নির্ণয়ের জন্য সারণি তৈরি করি।

Х	f	f এর ক্রমযোজিত মান	x-M _e	f x- M _e
60	2	2	4	8
61	0	2	3	0
62	15	17	2	30
63	30	47	1	30
64	25	72	0	0
65	12	84	1	12
66	11	95	2	22
67	5	100	3	15
	n=100; ⁿ / ₂ = 50; ⁿ / ₂ + 1= 51			Σf x- M _e = 117

$$\sum f|x_i - M_e|$$
= -----
n
= $\frac{117}{100}$

= 1.17

৪। প্রতিদিন রিক্সায় স্কুলে আসা যাওয়া বাবদ সবুজ ও মৌলির যথাক্রমে 50 ও 80 টাকা খরচ হয়।

ক) সবুজ ও মৌলির খরচের পরিমিত ব্যবধান নির্ণয় করো।

সমাধানঃ

সবুজ ও মৌলির খরচ যথাকরমে 50 ও 80 টাকা।

এই তথ্য থেকে নিচের সারণিটি তৈরি করিঃ

Х	x ²
50	2500
80	6400

এখন,

ভেদাঙ্ক, σ²

$$= (\sum x^2/n) - (\sum x/n)^2$$

$$= (8900/2) - (130/2)^2$$

$$= 4450 - 4225$$

= 225

 $\cdot\cdot$ পরিমিত ব্যবধান, $\sigma=\sqrt{(\sigma^2)}=\sqrt{225}=15$

খ) দেখাও যে, উপাত্ত দুটির গড় ব্যবধান পরিসরের অর্ধেক।

সমাধানঃ

গাণিতিক গড় থেকে গড় ব্যবধান নির্ণয়ের জন্য সারণি তৈরি করিঃ

Xi	$\bar{\mathrm{X}}$	$ x_i - \bar{X} $
50	$= \frac{\sum x_i}{n}$	15
80	$= {}^{130}/_2$ = 65	15
$n=2$; $\sum x_i = 130$		$\Sigma x_i - \bar{X} = 30$

এখন, অবিন্যস্ত উপাত্তের ক্ষেত্রে,

গড় ব্যবধান, $M.D(\bar{X})$

$$\Sigma |x_i - \bar{X}|$$

= 30/2

এবং,

= 15

If it is helpful for you, donate us please

Bkash Personal

01916973743

- পরিসর = 80 50 = 30
- · উপাত্ত দুটির গড় ব্যবধান পরিসরের অর্ধেক [দেখানো হলো]

৫। থানা স্বাস্থ্য কেন্দ্রের বহির্বিভাগ চিকিৎসাসেবা নিতে আসা কোনো এক দিনের রোগীর সংখ্যার তথ্য নিম্নরূপ:

বয়স	রোগীর সংখ্যা
0-15	15
15-30	4
30-45	5
45-60	9
60-75	7
75-90	10

ক) ভেদাঙ্কের মান কখন সর্বনিম্ন হয়? ব্যাখ্যা করো।

সমাধানঃ

 x_i এর মানগুলো যখন তাদের গাণিতিক গড় \bar{x} এর অধিক নিকটবর্তী হয় তখন ভেদাঙ্কের মান সর্বনিম্ম হয়। ব্যখ্যাঃ

ভেদাঙ্ক নির্ণয়ে $\Sigma(x_i-\bar{X})^2$ কে আমরা তুলনা করে উপরোক্ত তথ্যের সত্যতা ব্যাখ্যা করতে পারি। কারণ এখানে x_i ও \bar{X} এর মান যত কাছাকাছি হবে x_i - \bar{X} বা $\Sigma(x_i-\bar{X})^2$ এর মানও ততো ছোট হবে।

খ) উপাত্তের গড় ব্যবধান ও পরিমিত ব্যবধান নির্ণয় করে তুলনা করো।

সমাধানঃ

গড় ব্যবধান নির্ণয়ের জন্য সারণি তৈরি করিঃ

শ্রেণি	f	শ্রেণি মধ্যমান	fx	x- \bar{X}	f x- \bar{X}
		X			
0-15	15	7.5	112.5	35.7	535.5
15-30	4	22.5	90	20.7	82.8
30-45	5	37.5	187.5	5.7	28.5
45-60	9	52.5	472.5	9.3	83.7
60-75	7	67.5	472.5	24.3	170.1
75-90	10	82.5	825	39.3	393
	n = 50		$\Sigma fx = 2160$		$\Sigma f x-\overline{X} =$
			$\cdot\cdot \bar{X}$		1293.6
			= 2160/50		
			= 43.2		

 \cdot গড় ব্যবধান, $M.D(ar{X})$

$$\Sigma f|x_i - \overline{X}|$$

n

$$= \frac{1293.6}{50}$$

$$= 25.872$$

পরিমিত ব্যবধান নির্ণয়ের জন্য সারণি তৈরি করিঃ

শ্রেণি	f	শ্রেণি মধ্যমান	d = (x-a)/h	fd	fd ²
		X			
0-15	15	7.5	-2	-30	45
15-30	4	22.5	-1	-4	4
30-45	5	37.5 = a	0	0	0
45-60	9	52.5	1	9	9
60-75	7	67.5	2	14	28
75-90	10	82.5	3	30	90
	n = 50			∑fd = 19	$\Sigma fd^2 = 176$

∴ ভেদাঙ্ক, σ²

$$= \{(\Sigma f d^2/n) - (\Sigma f dx/n)^2\} \times h^2$$

$$= \{(176/50) - (19/50)^2\} \times 15^2$$

$$= (3.52 - 0.1444) \times 15^2$$

$$= 759.51$$

$$\cdot$$
 পরিমিত ব্যবধান, $\sigma = \sqrt{(\sigma^2)} = \sqrt{759.51} = 27.559$ (প্রায়)

If it is helpful for you, donate us please

Bkash Personal

01916973743