# Intensity Transformations and Spatial Filtering

Digital Image Processing

#### **Contents**

- Basics of Intensity Transformations and Spatial Filtering
- Basic Intensity Transformation Functions
- Histogram Processing
- Spatial Filtering Fundamentals
- Smoothing Spatial Filters
- Sharpening Spatial Filters
- Combining Spatial Enhancement
- Fuzzy Techniques

# Basics of Intensity Transformations and Spatial Filtering

#### **Intensity Transformations & Spatial Domain**

- Basic intensity transform
  - g(x,y) = T[f(x,y)]
  - f(x,y) is input image, and g(x,y) is output
- Spatial domain operator
  - T is defined over neighborhood of point (x, y)



#### **Spatial Domain Operator Example**

- Averaging neighbor pixels
  - g(x,y) = T[f(x,y)]
- 4 neighbor
  - $g(x,y) = \frac{1}{5} (f(x,y) + f(x-1,y) + f(x+1,y) + f(x,y-1) + f(x,y+1))$
- 8-neighbor
  - $g(x,y) = \frac{1}{9} \sum_{i=-1}^{1} \sum_{j=-1}^{1} f(x+i,y+j)$
- To compute a pixel, g(x, y)
  - Locate the 3x3 window at f(x, y)
  - Collect the values in the window and compute the result

# Filtering?

- Spatial filter
  - A set of coefficients (1/4's and 1/9's in the previous example)
  - Multiplied to the image window
  - Aka spatial mask, kernel, template, or window

# **Basic Intensity Transformation Functions**

#### **Intensity Transformation Functions**

- Smallest neighborhood size: 1x1
  - s = T(r)
  - Many choices of  $T(\cdot)$
  - Aka gray-le



# **Image Negatives**

- Initial range
  - [0, L-1]
- Negatives

• 
$$s = L - 1 - r$$





## **Log Transformation**

- Log transform
  - $s = c \log(1+r)$





#### Power-Law (Gamma) Transformations

- General than Log transformation
- Power function
  - Aka Gamma correction
  - $s = cr^{\gamma}$
  - Usually  $r \in [0,1], c = 1$
- Demo



#### Power-Law (Gamma) Transformations

- Monitor response
  - Approximately  $L = c^{2.2}$
  - Usually image file is stored transformed inversely:  $f(x,y) = i(x,y)^{\frac{1}{2.2}}$
  - Linearization: Making  $f'(x, y) = f(x, y)^{2.2}$



Power-Law (Gamma) Transformations











Response curve is defined as line segments



- Simple linear transform
  - s = ar + b
  - *a*: gain, *b*: bias
- a means
  - a > 1: Fast changing response than input
    - Small change in the input is exaggerated
  - a < 1: slower changing response
    - Big change in the input is suppressed
  - => Contrast
- b means
  - b > 0: s become larger than r = making image brighter
  - *b* > 0: the output gets darker
  - => Brightness

- Contrast stretching
  - Enhancing the midrange contrast







- Intensity slicing
  - Making an intensity range to a value
  - Leaving or suppressing others





- Bit-plane slicing
  - Leaving only some bit-planes
  - Making the other zero
  - Usually most significant bits are left



One 8-bit byte

Bit plane 8

Bit plane 1 (least significant)

(most significant)

- Bit-plane slicing
  - Demo







# Histogram Processing













#### **Histogram Equalization**

- An intensity transformation
  - $s = T(r) \ 0 \le r \le L 1$
- Assumptions
  - T(r) is strictly monotonically increasing function
  - $0 \le T(r) \le L 1$



### Histogram as PDF

- Probability distribution function
  - $p_r(r) = \frac{H(r)}{\sum_j H(j)}$
  - $cdf_r(r) = \sum_{i=0}^r p_r(r)$
- Better contrasted image
  - Even histogram
  - =>  $p_s(s) = c$  (c is a constant)

  - =>  $p_S(s) = \frac{1}{L-1}$  =>  $cdf_S(s) = \frac{s}{L-1}$

#### **Histogram Equalization**

#### Implementation

• 
$$cdf_r(r) = cdf_r(T(s)) = cdf_s(s)$$

• 
$$cdf_{S}(s) = \frac{s}{L-1} = \sum_{j=0}^{r} p_{r}(r)$$

• 
$$s = T(r) = (L-1)\sum_{j=0}^{r} p_r(r) = (L-1)\sum_{j=0}^{r} \frac{H(r)}{\sum_j H(j)} = \frac{(L-1)}{NM}\sum_{j=0}^{r} H(r)$$

## **Histogram Equalization Results**



#### Other Histogram Transformation

- Histogram matching
  - Making the histogram of an image as the given profile
- Local (adaptive) histogram equalization (AHE)
  - Global histogram equalization cannot improve local contrast
  - Histogram equalization on a window
  - Blending results at overlapping window







# Spatial Filtering Fundamentals

### **Spatial Filtering**

- Main components
  - Neighborhood
  - Predefined operation (kernel, mask, ...)
- Definition

• 
$$g(x,y) = \sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s,t) f(x+s,y+t)$$

Operation

Neighborhood

# **Spatial Filtering**



| (-1,-1) | w(0,−1) | w(1,-1) |
|---------|---------|---------|
| w(-1,0) | w(0,0)  | w(1,0)  |
| w(-1,1) | w(0,+1) | w(1,1)  |

| f(x-1, y-1) | f(x, y-1) | f(x+1, y-1) |
|-------------|-----------|-------------|
| f(x-1, y)   | f(x,y)    | f(x+1, y)   |
| f(x-1, y+1) | f(x, y+1) | f(x+1, y+1) |



#### **Similar Concepts**

- Correlation
  - Exactly same as Spatial filtering
- Convolution
  - $g(x,y) = \sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s,t) f(x-s,y-t) = w(x,y) \otimes f(x,y)$

#### **Padding**

No sufficient neighbors at the corner

- Adding (virtual) pixels at the four edges
  - Constant padding (zero padding)
  - Replicate padding
  - Mirror (reflection) padding



# **Smoothing Spatial Filters**

## **Smoothing**

- Purpose
  - Making image smooth
  - Suppress noise
  - Removing high frequency

## **Averaging Filter**

- Averaging neighborhood to produce the result
- 3x3 case

• 
$$r(x,y) = \frac{1}{9} \sum_{s=-1}^{1} \sum_{t=-1}^{1} f(x+s,y+t)$$

- Operation:  $\frac{1}{9}$
- Also known as box filter



#### **Box Filter**





#### **Box Filter**





#### **Box Filter**



# Weighted Averaging Filter

|                  | 1 | 2 | 1 |
|------------------|---|---|---|
| $\frac{1}{16}$ × | 2 | 4 | 2 |
|                  | 1 | 2 | 1 |

### Weighted Averaging Filter

• More sophisticated kernel: Gaussian

• 
$$w(s,t) = \frac{1}{2\pi\sigma^2}e^{-\frac{s^2+t^2}{\sigma^2}}$$

| <u>1</u><br>273 | 1 | 4  | 7  | 4  | 1 |
|-----------------|---|----|----|----|---|
|                 | 4 | 16 | 26 | 16 | 4 |
|                 | 7 | 26 | 41 | 26 | 7 |
|                 | 4 | 16 | 26 | 16 | 4 |
|                 | 1 | 4  | 7  | 4  | 1 |



## Weighted Averaging Filter



Noisy input: PSNR = 39.1 dB



Gaussian filtered: PSNR = 67.9 dB

## Separable Filter

- Operation on large kernel takes a lot of time  $(m \times n)$
- Some operator is "separable"
  - Filtering x-direction (1D) first and then filtering y-direction yield the same result as 2D filtering
  - Making operation complexity to m + n
- Example

$$\cdot \frac{1}{4} \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} * \frac{1}{4} \begin{bmatrix} 1 & 2 & 1 \end{bmatrix} = \frac{1}{16} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$$

#### Order-Statistic (Non-linear) Filters

- Based on ordering (ranking) pixels in a window
- Median filter
  - Finding median in a window (neighborhood)
  - Removing impulse (slat and pepper) noise



# **Sharpening Spatial Filters**

- Definition
  - $\frac{\partial f}{\partial x} = \lim_{h \to 0} \frac{f(x+h) f(x)}{h}$
- Discretized version
  - Finite difference
  - $\frac{\partial f}{\partial x} = f(x+1) f(x)$  (right difference)  $\approx f(x) f(x-1)$  (left difference)
- Second derivative
  - $\frac{\partial f}{\partial x}(x+1) = f(x+1) f(x)$
  - $\frac{\partial f}{\partial x}(x) = f(x) f(x-1)$
  - $\frac{\partial^2 f}{\partial x^2}(x) = \frac{\partial f}{\partial x}(x+1) \frac{\partial f}{\partial x}(x) = f(x+1) f(x) (f(x) f(x-1))$ = f(x+1) + f(x-1) - 2f(x)





- Properties of a first derivative
  - Zero in area of constant intensity
  - Nonzero at the onset of an intensity step (aka ramp)
  - Nonzero along ramps
- Properties of a second derivative
  - Zero in constant areas
  - Nonzero at the the onset
  - Zero along ramps of constant slope
- Zero crossing
  - The second derivative cross x axis (sign changing)

- Isotropic
  - Independent to the image orientation (direction)
  - Aka rotation invariant
- Laplacian

• 
$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

• 
$$\frac{\partial^2 f}{\partial x^2} = f(x+1,y) + f(x-1,y) - 2f(x,y)$$

• 
$$\frac{\partial^2 f}{\partial y^2} = f(x, y+1) + f(x, y-1) - 2f(x, y)$$

• 
$$\nabla^2 f = f(x+1,y) + f(x-1,y) + f(x,y+1) + f(x,y-1) - 4(x,y)$$

Kernel and its variation

| 0 | 1  | 0 |  |
|---|----|---|--|
| 1 | -4 | 1 |  |
| 0 | 1  | 0 |  |

| 1 | 1  | 1 |
|---|----|---|
| 1 | -8 | 1 |
| 1 | 1  | 1 |

- Properties of a second derivative
  - Zero in constant areas
  - Nonzero at the the onset
  - Zero along ramps of constant slope
- Properties of the Laplacian
  - Highlighting intensity discontinuities
  - Deemphasizing regions with slowly varying intensity







• Note: The Laplacian can be "negative"

#### Image Sharpening with Laplacian

- Simple addition
  - $g(x,y) = f(x,y) + c[\nabla^2 f(x,y)]$







# **Unsharp Masking and Highboost Filtering**

- Steps
  - Blur the original image
    - Leaving only global information
  - Subtract the blurred image from the original image
    - Taking fine details
    - Mask
    - $g_{mask}(x,y) = f(x,y) \overline{f}(x,y)$
  - Add the mask to the original image
    - Exaggerating fine details
    - $g(x,y) = f(x,y) + k * g_{mask}(x,y)$



### Unsharp Masking and Highboost Filtering

- k = 1
  - Unsharp masking
- k > 1
  - Highboost filtering
- k < 1
  - De-emphasizing the contribution of the unsharp mask







DIP-XE

DIP-XE

#### Gradient

#### Gradient

• 
$$\nabla f = grad(f) = \begin{bmatrix} g_x \\ g_y \end{bmatrix} = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{bmatrix}$$

- The direction of the greatest rate of change of f at location (x, y)
- Magnitude

• 
$$M(x,y) = mag(\nabla f) = \sqrt{g_x^2 + g_y^2}$$

Note: magnitude of gradient is not linear

### **Gradient & Sobel Operator**

#### Basic gradient

• 
$$g_x = z_8 - z_5$$
,  $g_y = z_6 - z_5$ 

- Not center symmetric
- Symmetric gradient

• 
$$g_x = z_8 - z_2$$
,  $g_y = z_6 - z_4$ 

#### 3x3 version

• 
$$g_x = \frac{\partial f}{\partial x} = (z_7 + 2z_8 + z_9) - (z_1 + 2z_2 + z_3)$$

• 
$$g_y = \frac{\partial x}{\partial y} = (z_3 + 2z_6 + z_9) - (z_1 + 2z_4 + z_7)$$

Called "Sobel" operator

| $z_1$ | $z_2$ | $z_3$                 |
|-------|-------|-----------------------|
| $z_4$ | $z_5$ | <i>z</i> <sub>6</sub> |
| $z_7$ | $z_8$ | <i>Z</i> 9            |

| -1 | -2 | -1 | -1 | 0 | 1 |
|----|----|----|----|---|---|
| 0  | 0  | 0  | -2 | 0 | 2 |
| 1  | 2  | 1  | -1 | 0 | 1 |

# **Sobel Operator**



# Combining Spatial Enhancement





# **Fuzzy Techniques**

### **Fuzzy Set Theory**

- Introduced by L. A. Zadeh (1965)
- Ordinary set theory
  - $z \in Z$
- Fuzzy set A in Z
  - $A = \{z, \mu_A(z) | z \in Z\}$
  - where  $0 \le \mu_A(z) \le 1$  (membership function)
  - $\mu_A(z) = 0$  means z is not a member of Z
  - $\mu_A(z) = 1$  means -





#### **Definitions in Fuzzy Set Theory**

- Empty set & Equality
  - $\mu_A(z) = 0$  for  $\forall z \in Z$
  - A = B iff  $\mu_A(z) = \mu_B(z)$
- Complement
  - $\mu_{\bar{A}}(z) = 1 \mu_{A}(z)$
- Subset
  - A is subset of B iff  $\mu_{A(z)} \leq \mu_{B(z)}$
- Union & Intersection (and, or)
  - $\mu_U(z) = \max[\mu_A(z), \mu_B(z)] (U = A \cup B)$
  - $\mu_I(z) = \min[\mu_A(z), \mu_B(z)] (I = A \cap B)$



#### **Common Membership Function**

#### Triangular:

$$\mu(z) = \begin{cases} 1 - (a-z)/b & a-b \le z < a \\ 1 - (z-a)/c & a \le z \le a+c \\ 0 & \text{otherwise} \end{cases}$$

#### Trapezoidal:

$$\mu(z) = \begin{cases} 1 - (a - z)/c & a - c \le z < a \\ 1 & a \le z < b \end{cases}$$

$$1 - (z - b)/d & b \le z \le b + d$$
otherwise

#### Sigma:

$$\mu(z) = \begin{cases} 1 - (a - z)/b & a - b \le z \le a \\ 1 & z > a \\ 0 & \text{otherwise} \end{cases}$$



#### **Common Membership Function**

S-shape:

$$S(z; a, b, c) = \begin{cases} 0 & z < a \\ 2\left(\frac{z - a}{c - a}\right)^{2} & a \le z \le b \\ 1 - 2\left(\frac{z - c}{c - a}\right)^{2} & b < z \le c \\ 1 & z > c \end{cases}$$
Sigma

Bell-shape:

$$\mu(z) = \begin{cases} S(z; c - b, c - b/2, c) & z \le c \\ 1 - S(z; c, c + b/2, c + b) & z > c \end{cases}$$

Truncated Gaussian:

$$\mu(z) = \begin{cases} e^{-\frac{(z-a)^2}{2b^2}} & a-c \le z \le a+c \\ 0 & \text{otherwise} \end{cases}$$



## Using Fuzzy Sets: Rule Design



#### **Using Fuzzy Sets: General Steps**

- Rule-based fuzzy logics
  - IF an input value is A and (or) another input value is B, THEN it is C
  - •
  - Ex) IF the color of a fruit is red AND it is soft, THEN it is mature.
- Fuzzify the inputs
  - Mapping each scalar input to the interval [0,1] using an applicable member function for each rule
  - Ex) Color (spectrum value) -> How much it is the member of "red" set
- Perform any required fuzzy logical operations
  - Ex) Color is red AND it is soft

#### **Using Fuzzy Sets: General Steps**

- Apply an implication method for each rule
  - Output is also mapped to [0,1]
  - Ex) How maturity 80% is mature?
  - Use "AND" rule for implication
  - Ex) How given color is "red" and how given maturity is "mature".
- Aggregate all rules
  - Merging all rules with "OR" operation
- Defuzzification
  - Computing the center of gravity

Fuzzifying fruit color



• Membership of  $z_o$ 



- Problem-specific knowledge
  - R1: IF the color is green, THEN the fruit is verdant
  - R2: IF the color is yellow, THEN the fruit is half-mature
  - R3: IF the color is red, THEN the fruit is mature

• Output is also fuzzy



- Implication
  - Logical AND
  - $\mu_3(z, v) = \min\{\mu_{red}(z), \mu_{mat}(v)\}$  (for Rule 3)



- Fuzzy output of a value  $(z_0)$  due to rule R3:
  - $Q_3(v) = \min\{\mu_{red}(z_0), \mu_3(z_0, v)\}$
- Similarly
  - $Q_1(v) = \min\{\mu_{green}(z_0), \mu_1(z_0, v)\}$
  - $Q_2(v) = \min\{\mu_{yellow}(z_0), \mu_2(z_0, v)\}$
- Aggregation
  - $Q = Q_1 OR Q_2 OR Q_3$
  - $Q(v) = \max_{r} \{ \min_{s} \{ \mu_{s}(z_{0}), \mu_{r}(z_{0}, v) \} \}$



## **Using Fuzzy Sets**

- Final "Fuzzy" result of Z0
- Defuzzyfication

• 
$$v_0 = \frac{\sum_{v=1}^{K} vQ(v)}{\sum_{v=1}^{K} Q(v)}$$



### **Contrast Enhancement with Fuzzy Sets**

- Example Rule for Contrast Enhancement
  - IF a pixel is dark, THEN make it darker
  - IF a pixel is gray, THEN make it gray
  - IF a pixel is bright, THEN make it brighter
- Fuzziness
  - How input pixel intensity is a member of "Dark" set?
  - How output intensity is a member of "Darker" set?

### **Designing Membership Function**



### **Implication**

#### Rule

• 
$$\mu_{darker}(v) = \begin{cases} 1 \text{ where } v = v_d \\ 0 \text{ where } v \neq v_d \end{cases} \dots$$

#### Implication

- $\mu_1(z, v) = \min\{\mu_{dark}(z), \mu_{darker}(v)\} \Rightarrow Q_1(v) = \min\{\mu_{dark}(z_0), \mu_1(z_0, v)\}$
- $\mu_2(z, v) = \min\{\mu_{gray}(z), \mu_{gray}(v)\}$   $\Rightarrow Q_2(v) = \min\{\mu_{gray}(z_0), \mu_2(z_0, v)\}$
- $\mu_3(z, v) = \min\{\mu_{bright}(z), \mu_{brighter}(v)\} \Rightarrow Q_3(v) = \min\{\mu_{bright}(z_0), \mu_3(z_0, v)\}$
- Note:
  - $\mu_1(z, v) = \mu_{dark}(z)$ , when  $v = v_d$  and 0, otherwise
  - Therefore,  $Q_1(v) = \mu_{dark}(z_0)$  only when  $v = v_d$

#### Aggregation and Defuzzyfication

- Aggregation
  - $Q(v) = \max\{Q_i(v)\}\$
- Defuzzyfication

• 
$$v_0 = \frac{\sum_{v=1}^{K} vQ(v)}{\sum_{v=1}^{K} Q(v)}$$

$$\bullet \ v_0 = \frac{\sum_{v=1}^K vQ(v)}{\sum_{v=1}^K Q(v)}$$
 
$$\bullet \ \text{Note that} \ Q(v) = \begin{cases} \mu_{dark}(z_0) & \text{if } v = v_d \\ \mu_{gray}(z_0) & \text{if } v = v_g \\ \mu_{bright}(z_0) & \text{if } v = v_b \\ 0 & \text{otherwise} \end{cases}$$

• Therefore, 
$$v_0 = \frac{v_d \mu_{dark}(z_0) + v_g \mu_{gray}(z_0) + v_b \mu_{bright}(z_0)}{\mu_{dark}(z_0) + \mu_{gray}(z_0) + \mu_{bright}(z_0)}$$

#### Result

• Setting output membership function







#### **Boundary Extraction with Fuzzy Sets**

- Spatial filtering with fuzzy sets
  - Use neighborhood pixels in the rules
- Boundary extraction
  - Making uniform region white and making their boundary black
- Rules
  - IF d2 is 0 and d6 is 0 THEN z5 is white
  - IF d6 is 0 and d8 is 0 THEN z5 is white
  - IF d8 is 0 and d4 is 0 THEN z5 is white
  - IF d4 is 0 and d2 is 0 THEN z5 is white

| $z_1$          | $z_2$          | <i>z</i> <sub>3</sub> | $d_1$ | $d_2$ | $d_3$ |
|----------------|----------------|-----------------------|-------|-------|-------|
| $z_4$          | Z <sub>5</sub> | <i>z</i> <sub>6</sub> | $d_4$ | 0     | $d_6$ |
| z <sub>7</sub> | $z_8$          | Z9                    | $d_7$ | $d_8$ | $d_9$ |

Pixel neighborhood

Intensity differences

#### **Membership Functions**



# Result







#### **Bottomline**

- Use case
  - There are many problems that need to be solved based on simple rules
  - However, some logical decision can be not "crisp" (fuzzy.)
  - The output of the logical rules can be also fuzzy.
- Fuzzy Sets
  - By defining membership functions, we can deduce the output from simple steps.