User Interface Design

UI Design: Monday Aug 29 (Day 4)

Dr. Jillian Aurisano

- Plan for today:
 - Reminders, course logistics
 - Review last week
 - Let's think about the user's goals, tasks, and concept of the system
 - Activity about the first project

Course logistics

- Homework:
 - Still open- turn it in!
- Syllabus:
 - Questions?
- This week:
 - Building our 1st project requirements together
 - Bring a sketchbook or sketching device
- Next week:
 - Let's get technical- html, css, javascript

https://www.youtube.com/watch?v=yY96hTb8WgI

Most users learn by doing

- Users don't start using a system to learn it
- User's typically try to do what they want to do, they have a goal in mind
- They explore the interface to see if they can figure out how to do it.
- Users are more interested in achieving their goal than in learning your interface
- As a UI designer your job is to clearly communicate how to use the UI, through the design, and help the user achieve their first goal
- User expectation: getting things done, not learning the interface.

Lessons for UI Designers

We want to match the design to the user's goals

So, we need to:

- Know who the users are
- Know the users' goals when you design

Process for collecting this information -> user centered design process

But before we understand our users' goals....

But before we understand our users' goals....

- Fundamental concepts about how people interact with things and discover what they do (Don Norman)
 - Affordances
 - Signifiers
 - Constraints
 - Mappings
 - Feedback
 - User's conceptual model

Affordance

- Affordances are perceivable action possibilities
- Affordance refers to the perceived and actual properties of a thing that determine how it is operated
- Affordances are how an interface communicates non-verbally, telling you how to operate it

Handles have the affordance of being pullable

Scrollbars have the affordance of continuous scrolling

Signifiers: sometimes you need help to learn an affordance

Where do I push?

4.3 Doors in Two Commercial Buildings. Pushing the bar opens the door, but on which side do you push? Bar A (above) hides the signal, making it impossible to know on which side to push. A frustrating door. Bar B (below) has a flat plate mounted on the side that is to be pushed; this is a naturally interpreted signal. A nice design, no frustration for the user.

What are constraints

Constraints are about limiting the range of interaction possibilities for

the user, to

Simplify the interface

Guide the user to the appropriate next action

Mappings

- How to communicate what an action will do
- Considering the mapping or relationship- from the controls and the impact real world

Bad mappings

Feedback

- Response- often visual, sometimes auditory- we get from performing an action
- Serves as a confirmation that the action was performed
- Anyone have examples of interfaces or controls with insufficient feedback
 - Did this work?
 - Did I press it?
 - Should I press it again?

Now' lets get to the user's conceptual model

- Fundamental concepts about how people interact with things and discover what they do (Don Norman)
 - Affordances
 - Signifiers
 - Constraints
 - Mappings
 - Feedback
 - User's conceptual model of the system (to cover today)

What is a conceptual model?

- A conceptual model is an explanation (...simplified...) of how something works
 - Doesn't need to be complete
 - Doesn't need to be accurate
 - But- USEFUL!
- Could also call this a mental model- it is held in our minds, and it is a simplification

Conceptual model example

- The files and folders and icons of little documents on our desktops
- Are there literal folders in the computer?

Conceptual model example

- The files and folders and icons of little documents on our desktops
- Are there literal folders in the computer?
- No!
- This interface design is there to help people create a conceptual model of documents and folders that they can open
- This is there to make it easier for people use the operating system

Does this ever lead to problems?

- Sometimes conceptual models that differ from how the system works introduces confusion
- Example: When on your phone online and you are reading an email, it looks like it is 'on' your phone
 - Conceptual model: this email is on my phone
 - System model: this email is in the cloud and retrieved for the user only when they ask for it, and when they are online
- Conceptual models are helpful, but the assumptions that support them need to hold true

Example: Thermostat

- 2 conceptual models of the user:
 - Valve theory- thermostat controls how much heat comes out of the device
 - Turn it up, more heat is coming out
 - Turn it down, it'll pump out less heat
 - Switch theory: the heat can be on, the heat can be off
- System model: might use an internal temperature sensor to decide when to turn the heat on and off, but no variation in how much heat when it is on
- What communicates this?

Interface model!

- Interface model sits between the user's model and the system model
- Which should it conform to?
 - It depends.... It is complicated....
- Look at the old thermostat
 - It does convey that you set a temperature
 - But not much else

Interface model example

- Nest interface
 - I set a desired temperature
 - It shows me how far I am from that range
 - When it is blue it is cooling. When red it is heating.
 - It turns gray when it isn't heating or cooling, and shows me it is at that temperature
- It informs me about the system enough so I can operate it, but in other ways fits my mental model

3 models

- System model: how the system works
- User model: their conceptual model of the system
- Interface model: sits in between
 - It shouldn't be 'the system model', because this may not make sense to me
 - It should reflect the user model somewhat, so I can find it intuitive to use
 - BUT- should bridge the gap, where it matters

Example: solar power

- Solar power: My conceptual model
 - Sun shines on the panels, and makes electricity.
 - When I turn on the lightbulb, it draws from this power- think of flowing water.
 - If I generate more power than I am using right now, it goes into 'the grid' (flowing water image) and powers someone else's light bulb.
 - They'll monitor this flow and will then allow me to draw that same amount of flow at night. I have to pay for the rest.
- Problem with my conceptual model:
 - In a blackout, why isn't my power working?
- Interface should help bridge this gap

Learning (or discovering) how to use an interface

How we discover the operation of something:

- Affordances
- Signifiers
- Constraints
- Mappings
- Feedback
- User's conceptual model

And

• Users learn by doing, trying to accomplish a task

Next class...

- Gulf of execution and evaluation
- Seven stages of action
- Human-centered design

• And now.... Let's do some brainstorming for the first project