X24 — Проводники в магнитном поле

А1^{0.60} Пусть момент времени $t_0 = 0$ груз находится в начале координат, а проекция его скорости на ось x равна v_0 . Определите зависимости координаты x(t) и скорости $v_x(t)$ груза от времени t. Ответ выразите через v_0 , y, ω_0 и t.

0.20 Решение для x(t) ищется в следующем виде:

$$x(t) = Ce^{-\gamma t} \sin\left(\sqrt{\omega_0^2 - \gamma^2}t + \varphi_0\right).$$

0.10 Записана система начальных условий:

$$\begin{cases} x(0) = 0 \\ v_x(0) = v_0 \end{cases}$$

0.10 Записана выражения для x(0) и $v_x(0)$:

$$\begin{cases} x(0) = C \sin \varphi_0 \\ v_x(0) = C \left(\sqrt{\omega_0^2 - \gamma^2} \cos \varphi_0 - \gamma \sin \varphi_0 \right) \end{cases}$$

0.10 Получен правильная зависимость x(t):

$$x(t) = \frac{v_0}{\sqrt{\omega_0^2 - \gamma^2}} e^{-\gamma t} \sin\left(\sqrt{\omega_0^2 - \gamma^2} t\right).$$

0.10 Получен правильная зависимость $v_x(t)$:

$$v_x(t) = \frac{v_0 \omega_0}{\sqrt{\omega_0^2 - \gamma^2}} e^{-\gamma t} \cos\left(\sqrt{\omega_0^2 - \gamma^2} t + \arcsin\frac{\gamma}{\omega_0}\right).$$

A2^{0.40} Получите точное выражение для Q. Ответ выразите через ω_0 и γ .

0.10 Для добротности записано:

$$Q = \frac{2\pi}{1 - \left(\frac{v_1}{v_0}\right)^2}$$

0.10 Определено время T, за которое величина скорости изменяется от значения v_0 до значения v_1 :

$$T = \frac{2\pi}{\sqrt{\omega_0^2 - \gamma^2}}.$$

0.10 Записано выражение для v_1/v_0 :

$$\frac{v_1}{v_0} = e^{-\gamma T}.$$

0.10 Получено выражение для добротности *Q*:

$$Q = \frac{2\pi}{1 - e^{-4\pi y/\sqrt{\omega_0^2 - y^2}}}.$$

A3^{0.20} Получите приближённое выражение для добротности Q при слабом затухании ($\gamma \ll \omega_0$). Ответ выразите через m,k и β .

0.10 Получено приближённое выражение для добротности *Q*:

$$Q \approx \frac{\omega_0}{2\gamma}.$$

0.10 Добротность *Q* выражена через требуемое величины:

$$Q\approx \frac{\sqrt{mk}}{\beta}.$$

B1 $^{0.60}$ Отклонение *х* груза от положения зависит от времени *t* следующим образом:

$$x(t) = A \sin \left(\Omega t + \varphi_0\right)$$

Найдите A и φ_0 . Ответы выразите через A_0 , Ω , ω_0 и γ .

0.10 Записано уравнение движения груза:

$$\ddot{x} + 2\gamma \dot{x} + \omega_0^2 \Delta x = \omega_0^2 A_0 \sin \Omega t.$$

0.20 Получена комплексная амплитуда \hat{A} :

$$\hat{A} = \frac{\omega_0^2 A_0 \left((\omega_0^2 - \Omega^2) - 2i\Omega \gamma \right) e^{-i\pi/2}}{\left((\omega_0^2 - \Omega^2)^2 + 4\gamma^2 \Omega^2 \right)}.$$

0.10 Получено выражение для *A*:

$$A = \frac{A_0 \omega_0^2}{\sqrt{(\omega_0^2 - \Omega^2)^2 + 4\gamma^2 \Omega^2}}.$$

0.20 Получено выражение для φ_0 :

$$\varphi_0 = \begin{cases} -\arctan\frac{2\gamma\Omega}{\omega_0^2 - \Omega^2} & \text{при} \quad \Omega < \omega_0 \\ \\ -\frac{\pi}{2} & \text{при} \quad \Omega = \omega_0 \\ \\ -\pi -\arctan\frac{2\gamma\Omega}{\omega_0^2 - \Omega^2} & \text{при} \quad \Omega > \omega_0 \end{cases}$$

0.10 Пункт оценивается, если рассмотрен только случай, соответствующий $\Omega < \omega_0$.

B2^{0.30} Получите точные выражения для резонансной циклической частоты $\Omega_{\rm pes}$ и соответствующей ей амплитуды колебаний $A_{\rm pes}$. Ответы выразите через ω_0 , γ и A_0 . Считайте, что $\gamma\sqrt{2}<\omega_0$.

0.20 Получено выражение для $\Omega_{
m pes}$:

$$\Omega_{\rm pes} = \sqrt{\omega_0^2 - 2\gamma^2}.$$

с Страница 2 из 7 ≈

0.10 Получено выражение для A_{pes} :

$$A_{\text{pes}} = \frac{A_0 \omega_0^2}{2\gamma \sqrt{\omega_0^2 - \gamma^2}}.$$

B3^{0.30} Получите приближённые выражения для $\Omega_{\rm pes}$, $A_{\rm pes}$ и Δω при слабом затухании ($\gamma \ll \omega_0$). Ответы выразите через A_0 , ω_0 и γ .

0.05 Получено приближённое выражение для A_{pes} :

$$A_{
m pe3}pprox rac{A_0\omega_0}{2\gamma}.$$

0.05 Получено приближённое выражение для Ω_{рез}:

$$\Omega_{\text{pe}_3} pprox \omega_0$$
.

0.10 Подкоренное выражение приведено к виду:

$$\left(\omega_0^2 - \Omega^2\right)^2 + 4\gamma^2 \Omega^2 \approx 4\omega_0^2 \Delta \Omega^2 + 4\gamma^2 \omega_0^2.$$

0.10 Получено выражение для ширины резонансной кривой $\Delta \omega$:

$$\Delta\omega=2\gamma$$
.

С1^{0.30} Найдите индукцию B_x магнитного поля кольца на его оси в точке с координатой x. Ответ выразите через x, R, I и магнитную постоянную μ_0 .

0.10 Записан закон Био-Савара-Лапласа:

$$d\vec{B} = \frac{\mu_0}{4\pi} \frac{\left[\vec{r} \times d\vec{r}\right]}{r^3},$$

где \vec{r} - радиус-вектор элемента кольца относительно точки с координатой x.

0.20 Получено выражение для B_x :

$$B_X = \frac{\mu_0 I R^2}{2(R^2 + x^2)^{3/2}}.$$

 ${f C2^{1.00}}$ Определите магнитный момент $ec{m}$ диска. Ответ выразите через $ec{e}_{\scriptscriptstyle X}, r_0, h,
ho$ и \dot{B} .

0.10 Записан закон электромагнитной индукции Фарадея:

$$\int_{S} \frac{\partial \vec{B}}{\partial t} \cdot d\vec{S} = -\oint_{L} \vec{E} \cdot d\vec{l}.$$

0.30 Определена величина вихревого электрического поля E(r) в направлении против часовой стрелки:

$$E=-\frac{r\dot{B}}{2}.$$

Пункт оценивается, даже если знак неверный.

0.10 Записан закон Ома в дифференциальной форме:

$$\vec{j} = \frac{\vec{E}}{\rho}$$
.

с Страница 3 из 7 ∞

0.10 Для элементарного магнитного момента записано:

$$d\vec{m} = \vec{S}dI$$
.

0.20 Для магнитного момента диска, обусловленного течением тока в кольце с внутренним и внешним радиусом r и r+dr соответственно записано:

$$dm_x = -\frac{\pi \dot{B}h}{2\rho}r^3 dr,$$

Пункт оценивается, даже если знак неверный.

2 ×

0.10 Получен правильный ответ (по 0.1 балла за величину и знак, полученный без чётного числа ошибок):

$$\vec{m} = -\vec{e}_x \cdot \frac{\pi h r_0^4 \dot{B}}{8 \rho}.$$

 ${f C3^{0.50}}$ Определите магнитный момент $ec{m}$ шара. Ответ выразите через $ec{e}_{ ext{x}}, R_0,
ho$ и \dot{B} .

0.20 После перехода к сферическим координатам для магнитного момента шара получено:

$$m_{x} = -\frac{\pi R_{0}^{5} \dot{B}}{8\rho} \int_{0}^{\pi} \sin^{5}\theta d\theta.$$

0.20 Вычислен интеграл от $\sin^5 \theta$:

$$\int_{0}^{\pi} \sin^{5} \theta d\theta = \frac{16}{15}.$$

0.10 Получен правильный ответ:

$$\vec{m} = -\vec{e}_x \cdot \frac{2\pi R_0^5 \dot{B}}{15\rho}.$$

 ${f C4^{0.40}}$ Получите производную по времени индукции магнитного поля кольца в центре шара dB_x/dt , эквивалентную величине \dot{B} . Ответ выразите через v,I,R,x и магнитную постоянную μ_0 .

0.20 Величина dB_x/dt представлена в виде производной сложной функции и получено:

$$\frac{dB_X}{dt} = v \frac{dB_X}{dx}.$$

2 ×

0.10 Определена производная dB_x/dx и получен правильный ответ (по 0.1 балла за величину и знак, полученный без чётного числа ошибок):

$$\dot{B} = -\frac{3\mu_0 I R^2 x v}{2(R^2 + x^2)^{\frac{5}{2}}}.$$

С5^{0.50} Найдите коэффициент пропорциональности $\beta(x)$. Ответ выразите через I, R, x, R_0, ρ и магнитную постоянную μ_0 .

0.30 Для силы, действующей на шар, записано:

$$\vec{F} = \vec{e}_X \cdot m_X \frac{dB_X}{dX}.$$

с Страница 4 из 7 ∞

0.10 Для магнитного момента шара записано:

$$m_x = -\frac{2\pi R_0^5 v}{15\rho} \cdot \frac{dB_x}{dx},$$

0.10 Получена правильная зависимость $\beta(x)$:

$$\beta(x) = \frac{3\pi\mu_0^2 I^2 R^4 R_0^5 x^2}{10\rho(R^2 + x^2)^5}.$$

Сб^{0.80} Определите удельное сопротивление ρ шара, используемого в первом эксперименте. Ответ выразите через m, k, R_0, R, H, I и магнитную постоянную μ_0 .

0.30 Для отношения амплитуд A_{i+N}/A_i , где N - число прошедших колебаний, записано:

$$\frac{A_{i+N}}{A_i} = e^{-2\pi\gamma/\omega}.$$

0.30 Получено отношение γ/ω_0 :

$$\frac{\gamma}{\omega_0} \approx 0.03.$$

2 ×

0.10 Получено правильный ответ для ho (по 0.1 балла за попадание в узкие и широкие ворота):

$$\rho = (15.7 \pm 0.5) \cdot \frac{\mu_0^2 I^2 R_0^5 R^4 H^2}{\sqrt{mk} (R^2 + H^2)^5}$$

$$\rho = (15.7 \pm 0.7) \cdot \frac{\mu_0^2 I^2 R_0^5 R^4 H^2}{\sqrt{mk} (R^2 + H^2)^5}$$

С7 $^{0.70}$ Определите удельное сопротивление ho шара, используемого во втором эксперименте. Ответ выразите через m, k, R_0, R, H, I и магнитную постоянную μ_0 .

0.40 M1 Записано соотношение:

$$A_{\rm pes} = \frac{A_0 \omega_0}{2 \gamma}.$$

0.10 М1 Определено соотношение между ω_0 и *у*:

$$\frac{\omega_0}{\gamma} = 50.$$

0.20 М1 Получен правильный ответ для ρ :

$$\rho = 23.6 \frac{\mu_0^2 I^2 R_0^5 R^4 H^2}{\sqrt{mk} (R^2 + H^2)^5}$$

0.10 M2 Записано выражение для ширины резонансной кривой:

$$\Delta\omega=2\gamma$$
.

 $footnote{2} imes \colone{0.05} ext{ M2}$ Получено соотношение между ω_0 и γ по 0.1 балла за попадание в узкие и широкие ворота)::

$$\frac{\omega_0}{2\gamma}\approx 27.5\pm 2.5$$

с Страница 5 из 7 ≈

$$\frac{\omega_0}{2\gamma} = 30 \pm 5$$

0.10 М2 Получен правильный ответ для ρ :

$$\rho = (28.5 \pm 4.5) \frac{\mu_0^2 I^2 R_0^5 R^4 H^2}{\sqrt{mk} (R^2 + H^2)^5}$$

- **D1**^{0.60} Определите индукцию B_z магнитного поля соленоида, а также её производную dB_z/dz в точке с координатой z. Ответ выразите через μ_0 , n, I, R и z.
- 0.20 Использована теорема о телесном угле для магнитного поля:

$$B_z = \frac{\mu_0 i \Omega_{\text{for}}}{4\pi}.$$

0.20 Определён телесный угол $\Omega_{\text{бок}}$:

$$\Omega_{\text{for}} = 2\pi \left(1 - \frac{z}{\sqrt{z^2 + R^2}} \right).$$

0.10 Получена правильная зависимость $B_z(z)$:

$$B_z(z) = \frac{\mu_0 nI}{2} \left(1 - \frac{z}{\sqrt{z^2 + R^2}} \right).$$

0.10 Получена правильная зависимость $dB_{z}(z)/dz$:

$$\frac{dB_z(z)}{dz} = -\frac{\mu_0 n I R^2}{2(R^2 + z^2)^{3/2}}.$$

- **D2**^{1.00} Определите линейную плотность тока i на поверхности цилиндра в точке с координатой z. Ответ выразите через μ_0 , x и $dB_z(z)/dz$.
- **0.20** Записаны выражения для индукции магнитного поля внутри и снаружи стержня

$$B_{z(in)} = B_z(z - x)$$
 $B_{z(out)} = B(z)$.

- **0.50** Предложен метод, позволяющий определить линейную плотность тока i, например, теорема о циркуляции.
 - **0.10** Записана теорема о циркуляции:

$$(B_{z(in)} - B_{z(out)}) = \mu_0 ix.$$

0.10 Получено выражение для i (по 0.1 балла за величину и знак, полученный без чётного числа ошибок):

$$i(z) = -\frac{x}{\mu_0} \frac{dB_z}{dz}.$$

D3^{1.50} Определите силу F_x , действующую на цилиндр со стороны магнитного поля соленоида. Ответ выразите через μ_0 , r, R, n, I и x.

0.10 Для магнитного момента элемента цилиндра высотой dz записано:

$$dm_z = i(z)\pi r^2 dz.$$

 $\fbox{0.20}$ Записано выражение для силы dF_z , действующей на рассмотренный магнитный момент:

$$dF_x = dm_z \frac{dB_z}{dz}.$$

0.40 Получено выражение для F_x :

$$F_X pprox -rac{\mu_0\pi r^2n^2I^2R^4x}{4}\int\limits_{-\infty}^{\infty}rac{dz}{(R^2+z^2)^3}.$$

0.20 Интеграл преобразован следующим образом:

$$\int_{-\infty}^{\infty} \frac{dz}{(R^2 + z^2)^3} = \frac{1}{R^5} \int_{-\pi/2}^{\pi/2} \cos^4 \varphi d\varphi$$

0.40 Для интеграла от $\cos^4 \varphi$ получено:

$$\int_{-\pi/2}^{\pi/2} \cos^4 \varphi d\varphi = \frac{3\pi}{8}.$$

0.10 Получен правильный ответ (по 0.1 балла за величину и знак, полученный без чётного числа ошибок):

$$F_X = -\frac{3\pi^2 \mu_0 \pi r^2 n^2 I^2}{32R} X.$$

- $\mathbf{D4^{0.30}}$ Получите зависимость перемещения стержня x от времени t. Ответ выразите через μ_0, r, R, n, I и m.
 - **0.10** Определена циклическая частота гармонических колебаний ω_0 :

$$\omega_0=\sqrt{\frac{3\mu_0\pi^2r^2n^2I^2}{32mR}}.$$

0.10 Получена зависимость x(t):

$$x(t) = \frac{v_0 \sin \omega_0 t}{\omega_0}.$$

0.10 Получена правильная зависимость x(t):

$$x(t) = v_0 \sqrt{\frac{32mR}{3\mu_0 \pi^2 r^2 n^2 I^2}} \sin \sqrt{\frac{3\mu_0 \pi^2 r^2 n^2 I^2}{32mR}} t.$$