Année universitaire 2015/2016 Filières : SMC

Examen Session printemps SMC4-M26 : probabilités

Durée: 1h30

Semestre: 4

La durée de vie d'une particule radioactive peut être modélisée par une variable aléatoire qui suit une loi exponentielle. Notans Y la durée de vie exprimée en millions d'années d'une particule de carbone 14

- exponentielle. Notons X la durée de vie exprimée en <u>milliers d'années</u> d'une particule de carbone 14, élément radioactif de demi-vie 5 700 ans (5,7 milliers d'années).
- a. Déterminer le paramètre λ de la loi exponentielle suivie par X. En déduire la durée de vie moyenne en année d'une particule de carbone 14. (On arrondira la valeur de λ à 10^{-4})
- b. Quelle est la probabilité qu'une particule de carbone 14 se désintègre au bout de 10 000 ans ?
- c. Sachant qu'une particule de carbone 14 ne s'est pas désintégrée au bout de 5 000 ans, quelle est la probabilité qu'elle ne se désintègre pas dans les 10 000 années suivantes.
- d. Au bout de combien d'années cette particule se désintègre-elle avec une probabilité de 0,95 ?
- II. (5 points)

Soit *X* une variable aléatoire admettant une densité sous la forme :

$$f(x) = \begin{cases} K2^{-x}, & \text{si } x \in [0, 1] \\ 0, & \text{sinon} \end{cases}$$

- a. Calculer la valeur de K.
- b. Déterminer la fonction de répartition de X.
- c. Calculer la valeur de m tel que $P(X \le m) = 0.5$.
- d. Calculer l'espérance de X.
- III. (Dans cet exercice toutes les valeurs doivent être calculées à 10⁻⁴ près)......(11 points)

 Une entreprise fabrique des billes en bois sphériques par deux machines de production A et B.

 L'entreprise considère qu'une bille est conforme lorsque son diamètre est compris entre 0,9 cm et 1,1 cm.

Une étude du fonctionnement des machines a permis d'établir les résultats suivants :

- 96 % de la production totale est conforme.
- La machine A produit 60 % de la production.
- 98% des billes produits par la machine A sont conformes.

On définit les événements suivants : A =« la bille est fabriquée par la machine A » ;

 $\mathbf{B} =$ « la bille est fabriquée par la machine B » ; $\mathbf{C} =$ « la bille est conforme ».

Partie A. (4pts)

- **a.** Calculer $P(C \cap B)$.
- **b.** En déduire la proportion de billes conformes parmi la production de la machine \boldsymbol{B} .
- **c.** Montrer que 70 % des billes non conforme proviennent de la machine **B**.

Partie B. (4pts)

On choisit au hasard un lot de **100** billes. On appelle **Y** la variable aléatoire dont la valeur correspond au nombre de billes non conformes dans cet échantillon.

- a. Quelle est la loi de probabilité Y? Quelles sont sa moyenne et sa variance?
- **b.** Calculer la probabilité d'avoir au plus une bille non conforme dans le lot.
- **c.** Par quelle loi peut-on approximer de la loi de **Y** ? Utiliser cette approximation pour calculer la probabilité d'avoir au moins 96% de billes conformes.

Partie C. (3pts)

Pour réduire le nombre de billes non conformes, l'entreprise modifie le réglage de la machine B. Sous ce nouveau réglage la machine B produit des billes dont le diamètre est une variable aléatoire X qui suit une loi normale d'espérance $\mu = 0$, 99 et d'écart-type $\sigma = 0$, 04.

- a. Quelle est la probabilité qu'une bille fabriquée par la machine B soit conforme ?
- **b.** Recalculer le pourcentage des billes conformes dans la production totale ?

Pr. Mostafa ELYASSA Juin 2016

Fonction de répartition de la loi normale centrée réduite (probabilité F(z) de trouver une valeur inférieure à z)

Z	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0,0	0,5000	0,5040	0,5080	0,5120	0,5160	0,5199	0,5239	0,5279	0,5319	0,5359
0,1	0,5398	0,5438	0,5478	0,5517	0,5557	$0,\!5596$	0,5636	$0,\!5675$	0,5714	0,5753
0,2	0,5793	0,5832	0,5871	0,5910	0,5948	$0,\!5987$	0,6026	0,6064	0,6103	0,6141
0,3	0,6179	$0,\!6217$	0,6255	0,6293	0,6331	0,6368	0,6406	0,6443	0,6480	0,6517
0,4	0,6554	$0,\!6591$	0,6628	0,6664	0,6700	0,6736	0,6772	0,6808	0,6844	0,6879
0,5	0,6915	0,6950	0,6985	0,7019	0,7054	0,7088	0,7123	0,7157	0,7190	0,7224
0,6	0,7257	0,7291	0,7324	0,7357	0,7389	0,7422	0,7454	0,7486	0,7517	0,7549
0,7	0,7580	0,7611	0,7642	0,7673	0,7704	0,7734	0,7764	0,7794	0,7823	0,7852
0,8	0,7881	0,7910	0,7939	0,7967	0,7995	0,8023	0,8051	0,8078	0,8106	0,8133
0,9	0,8159	0,8186	0,8212	0,8238	0,8264	0,8289	0,8315	0,8340	0,8365	0,8389
1,0	0,8413	0,8438	0,8461	0,8485	0,8508	0,8531	0,8554	0,8577	0,8599	0,8621
1,1	0,8643	$0,\!8665$	0,8686	0,8708	0,8729	0,8749	0,8770	0,8790	0,8810	0,8830
1,2	0,8849	0,8869	0,8888	0,8907	0,8925	0,8944	0,8962	0,8980	0,8997	0,9015
1,3	0,9032	0,9049	0,9066	0,9082	0,9099	0,9115	0,9131	0,9147	0,9162	0,9177
1,4	0,9192	0,9207	0,9222	0,9236	0,9251	0,9265	0,9279	0,9292	0,9306	0,9319
1,5	0,9332	0,9345	0,9357	0,9370	0,9382	0,9394	0,9406	0,9418	0,9429	0,9441
1,6	0,9452	0,9463	0,9474	0,9484	0,9495	0,9505	0,9515	0,9525	0,9535	0,9545
1,7	0,9554	0,9564	0,9573	0,9582	0,9591	0,9599	0,9608	0,9616	0,9625	0,9633
1,8	0,9641	0,9649	0,9656	0,9664	0,9671	0,9678	0,9686	0,9693	0,9699	0,9706
1,9	0,9713	0,9719	0,9726	0,9732	0,9738	0,9744	0,9750	0,9756	0,9761	0,9767
2,0	0,9772	0,9778	0,9783	0,9788	0,9793	0,9798	0,9803	0,9808	0,9812	0,9817
2,1	0,9821	0,9826	0,9830	0,9834	0,9838	0,9842	0,9846	0,9850	0,9854	0,9857
2,2	0,9861	0,9864	0,9868	0,9871	0,9875	0,9878	0,9881	0,9884	0,9887	0,9890
2,3	0,9893	0,9896	0,9898	0,9901	0,9904	0,9906	0,9909	0,9911	0,9913	0,9916
2,4	0,9918	0,9920	0,9922	0,9925	0,9927	0,9929	0,9931	0,9932	0,9934	0,9936
2,5	0,9938	0,9940	0,9941	0,9943	0,9945	0,9946	0,9948	0,9949	0,9951	0,9952
2,6	0,9953	0,9955	0,9956	0,9957	0,9959	0,9960	0,9961	0,9962	0,9963	0,9964
2,7	0,9965	0,9966	0,9967	0,9968	0,9969	0,9970	0,9971	0,9972	0,9973	0,9974
2,8	0,9974	0,9975	0,9976	0,9977	0,9977	0,9978	0,9979	0,9979	0,9980	0,9981
2,9	0,9981	0,9982	0,9982	0,9983	0,9984	0,9984	0,9985	0,9985	0,9986	0,9986

Table pour les grandes valeurs de z

\mathbf{z}	3,0	3,1	3,2	3,3	3,4	3,5	3,6	3,7	3,8	3,9
F(z)	0,998650	0,999032	0,999313	0,999517	0,999663	0,999767	0,999841	0,999892	0,999928	0,999952
Z	4,0	4,1	4,2	4,3	4,4	4,5	4,6	4,7	4,8	4,9
F(z)	0,999968	0,999979	0,999987	0,999991	0,999995	0,999997	0,999998	0,999999	0,999999	1,000000