#Importing libraries import numpy as np import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

#1.Loading the dataset
train_df=pd.read_csv('train.csv')
#2.Print first 5 rows of data
train_df.head(5)

→		battery_power	blue	clock_speed	dual_sim	fc	four_g	int_memory	m_dep	mobile_wt	n_cores	 px_height	px_width	ram	sc_
	0	842	0	2.2	0	1	0	7	0.6	188	2	 20	756	2549	
	1	1021	1	0.5	1	0	1	53	0.7	136	3	 905	1988	2631	1
	2	563	1	0.5	1	2	1	41	0.9	145	5	 1263	1716	2603	1
	3	615	1	2.5	0	0	0	10	0.8	131	6	 1216	1786	2769	1
	4	1821	1	1.2	0	13	1	44	0.6	141	2	 1208	1212	1411	

5 rows × 21 columns

#3.Print last 5 rows of data
train_df.tail(5)

₹		battery_power	blue	clock_speed	dual_sim	fc	four_g	int_memory	m_dep	mobile_wt	n_cores	•••	px_height	px_width	ram
	1995	794	1	0.5	1	0	1	2	0.8	106	6		1222	1890	668
	1996	1965	1	2.6	1	0	0	39	0.2	187	4		915	1965	2032
	1997	1911	0	0.9	1	1	1	36	0.7	108	8		868	1632	3057
	1998	1512	0	0.9	0	4	1	46	0.1	145	5		336	670	869
	1999	510	1	2.0	1	5	1	45	0.9	168	6		483	754	3919

5 rows × 21 columns

#4.Shape of the dataset
train_df.shape

→ (2000, 21)

#5.Description of the Dataset
train_df.describe()

⋺ •		battery_power	blue	clock_speed	dual_sim	fc	four_g	int_memory	m_dep	mobile_wt	n_cores
	count	2000.000000	2000.0000	2000.000000	2000.000000	2000.000000	2000.000000	2000.000000	2000.000000	2000.000000	2000.000000
	mean	1238.518500	0.4950	1.522250	0.509500	4.309500	0.521500	32.046500	0.501750	140.249000	4.520500
	std	439.418206	0.5001	0.816004	0.500035	4.341444	0.499662	18.145715	0.288416	35.399655	2.287837
	min	501.000000	0.0000	0.500000	0.000000	0.000000	0.000000	2.000000	0.100000	80.000000	1.000000
	25%	851.750000	0.0000	0.700000	0.000000	1.000000	0.000000	16.000000	0.200000	109.000000	3.000000
	50%	1226.000000	0.0000	1.500000	1.000000	3.000000	1.000000	32.000000	0.500000	141.000000	4.000000
	75%	1615.250000	1.0000	2.200000	1.000000	7.000000	1.000000	48.000000	0.800000	170.000000	7.000000
	max	1998.000000	1.0000	3.000000	1.000000	19.000000	1.000000	64.000000	1.000000	200.000000	8.000000

8 rows × 21 columns

#6. Cleaning the data for missing values, null values
train_df.isnull().sum()
train_df=train_df.dropna()

#7. Info on the dataset train_df.info() <class 'pandas.core.frame.DataFrame'> RangeIndex: 2000 entries, 0 to 1999 Data columns (total 21 columns): # Column Non-Null Count 0 2000 non-null battery_power 2000 non-null int64 clock speed 2000 non-null float64 dual_sim 2000 non-null int64 2000 non-null int64 fc four_g 5 2000 non-null int64 6 2000 non-null int64 int_memory m_dep 2000 non-null float64 8 mobile_wt 2000 non-null int64 q n_cores 2000 non-null int64 10 pc 2000 non-null int64 11 px_height 2000 non-null int64 px_width 2000 non-null 13 ram 2000 non-null 14 2000 non-null sc h int64 15 2000 non-null int64 SC W talk_time 2000 non-null 16 int64 2000 non-null 17 three_g int64 18 touch_screen 2000 non-null int64 19 wifi 2000 non-null int64 20 price_range 2000 non-null int64 dtypes: float64(2), int64(19) memory usage: 328.2 KB #8. Change Column Names and Data train_df.columns 'touch_screen', 'wifi', 'price_range'], dtype='object') #9.In the following columns : bluetooth, dual_sim, four_g, three_g, touch_screen, wifi #change (0-No, 1-Yes) columns_to_change = ['blue', 'dual_sim', 'four_g', 'three_g', 'touch_screen', 'wifi'] for column in columns_to_change: train_df[column] = train_df[column].replace({0: 'No', 1: 'Yes'}) train df.head() _ battery_power blue clock_speed dual_sim fc four_g int_memory m_dep mobile_wt n_cores ... px_height px_width ram 0 842 Nο 22 No 1 Nο 7 0.6 188 2 20 756 2549 0.5 53 0.7 905 1 1021 0 136 3 1988 2631 Yes Yes Yes 2 563 Yes 0.5 Yes 2 Yes 41 0.9 145 5 1263 1716 2603 3 2.5 1216 615 Yes No 0 No 10 0.8 131 6 ... 1786 2769 4 1821 1.2 No 13 44 2 1208 1212 1411 Yes Yes 0.6 141 5 rows × 21 columns #10.In price range column change Low Cost-1, Medium Cost-2, High Cost-3 and check #the data changed or not train_df['price_range'] = train_df['price_range'].replace({'Low Cost': 1, 'Medium Cost': 2, 'High Cost': 3})

VISUALIZATION

 \rightarrow array([1, 2, 3, 0])

train_df['price_range'].unique()

#1.Get the highest correlated columns to PRICE RANGE
corr_matrix = train_df.corr()
corr matrix['price range'].sort values(ascending=False)

```
plt.figure(figsize=(16,8))
sns.heatmap(corr_matrix,annot=True)
plt.show()
```

 $\overline{2}$

- 1.0

- 0.8

- 0.6

0.4

0.2

n n

```
#2. Show the 3G or Not 3G Mobile VS Sale Price using bar plot
avg_3g = train_df.groupby('three_g')['price_range'].mean().reset_index()
plt.figure(figsize=(8, 6))
plt.bar(avg_3g['three_g'], avg_3g['price_range'], color=['blue', 'green'])
plt.xlabel('three_g')
plt.ylabel('Average Sale Price')
plt.title('Average Sale Price by 3G Availability')
plt.show()
```


#3. Show the Count Plot FOR Supporting Bluetooth or NOT vs price
plt.figure(figsize=(8,6),dpi=80)
sns.countplot(data=train_df,x='blue',hue='price_range').set(title='Count Plot FOR Supporting Bluetooth or NOT vs price
plt.show()

#Use scatterplot to show the relation of pixel resolution height and pixel resolution
#width with price range.
plt.figure(figsize=(14,6))
plt.title("the relation of pixel resolution height and pixel resolution width with price range")
sns.scatterplot(x=train_df['px_height'],y=train_df['px_width'],hue=train_df['price_range'],s=50)

the relation of pixel resolution height and pixel resolution width with price range

#5.Use scatterplot to show the relation of Screen Height and Screen Width with Price #Ranges.

plt.figure(figsize=(14,6))

plt.title("how the relation of Screen Height and Screen Width with Price Ranges")
sns.scatterplot(x=train_df['sc_h'],y=train_df['sc_w'],hue=train_df['price_range'],s=50)

