Problema. Demostrar que para todo entero r no negativo y para r primos p_1, \ldots, p_r , se tiene que $[\mathbb{Q}(\sqrt{p_1}, \ldots, \sqrt{p_r}) : \mathbb{Q}] = 2^r$.

Demostración. Demostraremos por inducción que de hecho para r números enteros q_1, \ldots, q_r mayores que 1 coprimos dos a dos y que no tengan ningún factor primo con multiplicidad mayor que 1, la condición del problema se cumple.

Para r=0 es trivial y para r=1 se tiene que $[\mathbb{Q}(\sqrt{q_1}):\mathbb{Q}]=2$ porque el polinomio $t^2-q_1\in\mathbb{Q}[t]$ tiene a $\sqrt{q_1}$ por raíz y es irreducible por el criterio de Eisenstein.

Demostraremos ahora que el enunciado es cierto para $r \geq 2$ suponiéndolo cierto para los enteros no negativos menores que r. Llamemos $K_r := \mathbb{Q}(\sqrt{q_1}, \dots, \sqrt{q_r}), K_{r-1} := \mathbb{Q}(\sqrt{q_1}, \dots, \sqrt{q_{r-1}})$ y $K_{r-2} := \mathbb{Q}(\sqrt{q_1}, \dots, \sqrt{q_{r-2}})$. Tenemos que

$$[K_r : \mathbb{Q}] = [K_r : K_{r-1}] \cdot [K_{r-1} : \mathbb{Q}] \le 2^{r-1} \cdot [\mathbb{Q}(\sqrt{q_r}) : \mathbb{Q}] = 2^r$$
 (1)

donde en la última desigualdad hemos aplicado la hipótesis de inducción y usado que

$$[K_r: K_{r-1}] = [K_{r-1}(\sqrt{q_r}): K_{r-1}] \le [\mathbb{Q}(\sqrt{q_r}): \mathbb{Q}]$$

La igualdad en 1 se da si y solo si $[K_r:K_{r-1}]=2$ o equivalentemente, si $\sqrt{q_r} \notin K_{r-1}$. Veamos que es así. En caso contrario existen $a,b \in K_{r-2}$ tales que

$$\sqrt{q_r} = a + b\sqrt{q_{r-1}} \tag{2}$$

Vemos que b no puede ser cero porque si lo fuera se tendría que $\sqrt{q_r} = a \in K_{r-2}$ y por tanto $K_{r-2}(\sqrt{q_r})$ sería igual a K_{r-2} , pero esto es imposible pues obtendríamos

$$2^{r-2} = [K_{r-2} : \mathbb{Q}] = [K_{r-2}(\sqrt{q_r}) : \mathbb{Q}] = [\mathbb{Q}(\sqrt{q_1}, \dots, \sqrt{q_{r-2}}, \sqrt{q_r}) : \mathbb{Q}] = 2^{r-1}$$

La primera y la última igualdad por la hipótesis de inducción.

De la ecuación 2 obtenemos $(\sqrt{q_r} - b\sqrt{q_{r-1}})^2 = a^2$ y desarrollando obtenemos

$$2b\sqrt{q_rq_{r-1}} = q_r + b^2q_{r-1} - a^2 \in K_{r-2}$$

Pero esto de nuevo es un absurdo pues dado que no estamos trabajando en característica 2 y que b no es cero, lo último implica que $\sqrt{q_rq_{r-1}} \in K_{r-2}$, pero como q_rq_{r-1} es coprimo con q_i , $i=1,\ldots,r-2$ y es libre de cuadrados se tendría que

$$2^{r-2} = [K_{r-2} : \mathbb{Q}] = [K_{r-2}(\sqrt{q_r q_{r-1}}) : \mathbb{Q}] = [\mathbb{Q}(\sqrt{q_1}, \dots, \sqrt{q_{r-2}}, \sqrt{q_r q_{r-1}}) : \mathbb{Q}] = 2^{r-1}$$

La primera y la última igualdad por la hipótesis de inducción. Con lo que el problema queda probado.