ASK_01	Romaniak Hubert	Informatyka	Semestr zimowy
		niestacjonarna III rok	2024/25

Wstęp teoretyczny

Bramki logiczne

Bramki logiczne to podstawowe dyskretne elementy fizyczne systemów komputerowych. Operują one wyłącznie na logicznych stanach 1 (PRAWDA/WYSOKI) i 0 (FAŁSZ/NISKI). Stany te są reprezentowane przez wysokie i niskie napięcia na przewodnikach i pinach tych bramek. Realizują one proste funkcje logiczne za pomocą algebry Boole'a.

Budowa bramek logicznych

Każda bramka logiczna składa się z (najczęściej) kilku tranzystorów połączonych ze sobą w odpowiedni sposób w celu realizowania zadanej funkcji logicznej. Tranzystory są więc elementami składowymi bramek logicznych, jednak w przeciwieństwie do nich, są elementami analogowymi, zatem nie operują na wartościach dyskretnych.

Układy logiczne

Zespół odpowiednio połączonych ze sobą bramek logicznych tworzy układ logiczny. Jest to układ realizujący bardziej złożoną logikę. Układy takie mogą być kombinacyjne – działające czysto funkcyjnie, nie posiadające wewnętrznego stanu, lub sekwencyjne – mogą mieć wewnętrzny stan, a ich działanie zależy zarówno od ich obecnego, jak i poprzedniego stanu.

Wykorzystane aksjomaty i definicje

• funkcja logiczna **NOT** (negacja)

p	\overline{p} / NOT
0	1
1	0

Tabela 1 - tabela prawdy dla funkcji logicznej **NOT**

funkcja logiczna AND (koniunkcja)

<i>p</i>	q	$p\cdot q$ / AND
0	0	0
0	1	0
1	0	0
1	1	1

Tabela 2 - tabela prawdy dla funkcji logicznej **AND**

• funkcja logiczna **OR** (alternatywa)

p	q	p+q / OR
0	0	0
0	1	1
1	0	1
1	1	1

Tabela 3 - tabela prawdy dla funkcji logicznej **OR**

• funkcja logiczna XOR (alternatywa rozłączna)

<i>p</i>	q	p+q / XOR
0	0	0
0	1	1
1	0	1
1	1	0

Tabela 4 - tabela prawdy dla funkcji logicznej **XOR**

• funkcja logiczna NAND (dysjunkcja)

p	q	$\overline{p\cdot q}$ / NAND
0	0	1
0	1	1
1	0	1
1	1	0

Tabela 5 - tabela prawdy dla funkcji logicznej **NAND**

• funkcja logiczna **NOR** (binegacja)

p	q	$\overline{p+q}$ / NOR
0	0	1
0	1	0
1	0	0
1	1	0

Tabela 6 - tabela prawdy dla funkcji logicznej **NOR**

Definicja alternatywy rozłącznej: $(p \cdot \bar{q}) + (\bar{p} \cdot q) \Leftrightarrow p \oplus q$

Wykorzystane prawa i własności

7	orzyotanie prama i miasiroson	
•	$p + 0 \Leftrightarrow p$	własność stałej
•	$p \cdot 0 \Leftrightarrow 0$	własność stałej
•	$p \oplus 0 \Longleftrightarrow p$	własność stałej
•	$p+1 \Leftrightarrow 1$	własność stałej
•	$p \cdot 1 \Leftrightarrow p$	własność stałej
•	$p \oplus 1 \Longleftrightarrow \bar{p}$	własność stałej
•	$p + p \Leftrightarrow p$	prawo idempotentności
•	$p \cdot p \Longleftrightarrow p$	prawo idempotentności
•	$p \oplus p \Longleftrightarrow 0$	własność tożsamości
•	$p + \bar{p} \Leftrightarrow 1$	własność negacji
•	$p \cdot \bar{p} \Longleftrightarrow 0$	własność negacji
•	$p \oplus \bar{p} \Longleftrightarrow 1$	własność negacji
•	$\overline{p+q} \Leftrightarrow p+q$	prawo podwójnej negacji
•	$p + q \Leftrightarrow q + p$	prawo przemienności
•	$p \cdot q \Leftrightarrow q \cdot p$	prawo przemienności
•	$p \oplus q \Leftrightarrow q \oplus p$	prawo przemienności
•	$p + (q + r) \Leftrightarrow (p + q) + r$	prawo łączności
•	$p \cdot (q \cdot r) \Leftrightarrow (p \cdot q) \cdot r$	prawo łączności
•	$p \oplus (q \oplus r) \Leftrightarrow (p \oplus q) \oplus r$	prawo łączności
•	$p + (q \cdot r) \Leftrightarrow (p+q) \cdot (p+r)$	prawo rozdzielności

 $\begin{array}{ll} \bullet & p+(q\oplus r) \Leftrightarrow (p+q)\oplus (p+r) & \text{prawo rozdzielności} \\ \bullet & p\cdot (q+r) \Leftrightarrow (p\cdot q)+(p\cdot r) & \text{prawo rozdzielności} \\ \bullet & p\cdot (q\oplus r) \Leftrightarrow (p\cdot q)\oplus (p\cdot r) & \text{prawo rozdzielności} \\ \bullet & \overline{p+q} \Leftrightarrow \bar{p}\cdot \bar{q} & \text{prawo de Morgana} \\ \bullet & \overline{p\cdot q} \Leftrightarrow \bar{p}+\bar{q} & \text{prawo de Morgana} \\ \end{array}$

Zadania

Wykorzystywane prawa są zapisywane ponad znakami równoważności.

1. Budowa bramki **OR** za pomocą bramek **AND** i **NOT**

$$p + q \xleftarrow{prawo \ podwójnej \ negacji} \underbrace{\overline{p + q}}_{\overline{p} + \overline{q}} \xleftarrow{prawo \ de \ Morgana} \overline{\overline{p} \cdot \overline{q}}$$

Rysunek 1 - schemat logiczny bramki **OR** za pomocą bramek **AND** i **NOT**

p	q	\overline{p}	\overline{q}	$\overline{p}\cdot \overline{q}$	$\overline{m{p}\cdot m{q}}$	p+q / OR
0	0	1	1	1	0	0
0	1	1	0	0	1	1
1	0	0	1	0	1	1
1	1	0	0	0	1	1

Tabela 7 - sprawdzenie poprawności realizacji funkcji logicznej **OR** za pomocą funkcji logicznych **AND** i **NOT**

2. Budowa bramki AND za pomocą bramek OR i NOT

$$p \cdot q \xleftarrow{prawo \ podwójnej \ negacji} \overline{p \cdot \overline{q}} \xleftarrow{prawo \ de \ Morgana} \overline{\overline{p} + \overline{q}}$$

Rysunek 2 - schemat logiczny bramki AND za pomocą bramek OR i NOT

<i>p</i>	q	\overline{p}	\overline{q}	$\overline{p} + \overline{q}$	$\overline{\overline{p}+\overline{q}}$	$p\cdot q$ / AND
0	0	1	1	1	0	0
0	1	1	0	1	0	0
1	0	0	1	1	0	0
1	1	0	0	0	1	1

Tabela 8 - sprawdzenie poprawności realizacji funkcji logicznej AND za pomocą funkcji logicznych OR i NOT

3. Budowa bramki **NOT** za pomocą bramki **XOR**

Rysunek 3 - schemat logiczny bramki NOT za pomocą bramki XOR

<i>p</i>	1	$p\oplus 1$	$\overline{m p}$ / NOT
0	1	1	1
1	1	0	0

Tabela 9 - sprawdzenie poprawności realizacji funkcji logicznej NOT za pomocą funkcji logicznej XOR

4. Budowa bramki **OR** za pomocą bramek **XOR** i

Rysunek 4 - schemat logiczny bramki OR za pomocą bramek XOR i AND

p	q	$p \oplus q$	$p \cdot q$	$(p \oplus q) \oplus (p \cdot q)$	p+q / OR
0	0	0	0	0	0
0	1	1	0	1	1
1	0	1	0	1	1
1	1	0	1	1	1

Tabela 10 - sprawdzenie poprawności realizacji funkcji logicznej OR za pomocą funkcji logicznych XOR i AND

5. Budowa bramki AND za pomocą bramek XOR i OR

Rysunek 5 - schemat logiczny bramki AND za pomocą bramek XOR i OR

p	q	$p \oplus q$	p+q	$(p \oplus q) \oplus (p+q)$	$m{p}\cdotm{q}$ / AND
0	0	0	0	0	0
0	1	1	1	0	0
1	0	1	1	0	0
1	1	0	1	1	1

Tabela 11 - sprawdzenie poprawności realizacji funkcji logicznej AND za pomocą funkcji logicznych XOR i OR

6. Budowa bramki XOR za pomocą bramek AND, OR i NOT

 $p \oplus q \overset{\text{definicja alternatywy rozłącznej}}{\longleftrightarrow} (p \cdot \bar{q}) + (\bar{p} \cdot q)$

Rysunek 6 - schemat logiczny bramki AND za pomocą bramek XOR i OR

	p	q	\overline{p}	\overline{q}	$oldsymbol{p}\cdot\overline{oldsymbol{q}}$	$\overline{p} \cdot q$	$(\boldsymbol{p}\cdot\overline{\boldsymbol{q}})+(\overline{\boldsymbol{p}}\cdot\boldsymbol{q})$	$p\oplus q$ / XOR
	0	0	1	1	0	0	0	0
	0	1	1	0	0	1	1	1
•	1	0	0	1	1	0	1	1
	1	1	0	0	0	0	0	0

Tabela 12 - sprawdzenie poprawności realizacji funkcji logicznej XOR za pomocą funkcji logicznych AND, OR i NOT

7. Budowa bramki NAND za pomocą bramek AND i NOT

$\overline{p \cdot q}$ - z definicji funkcji logicznej **NAND**, żadne przekształcenia nie są wymagane

Rysunek 7 - schemat logiczny bramki **NAND** za pomocą bramek **AND** i **NOT**

<i>p</i>	q	$p \cdot q$	$\overline{p\cdot q}$ / NAND
0	0	0	1
0	1	0	1
1	0	0	1
1	1	1	0

Tabela 13 - sprawdzenie poprawności realizacji funkcji logicznej **NAND** za pomocą funkcji logicznych **AND** i **NOT**

8. Budowa bramki NOR za pomocą bramek OR i NOT

 $\overline{p+q}$ - z definicji funkcji logicznej **NOR**, żadne przekształcenia nie są wymagane

Rysunek 8 - schemat logiczny bramki **NOR** za pomocą bramek **OR** i **NOT**

<i>p</i>	q	p+q	$\overline{p+q}$ / NOR
0	0	0	1
0	1	1	0
1	0	1	0
1	1	1	0

Tabela 14 - sprawdzenie poprawności realizacji funkcji logicznej **NOR** za pomocą funkcji logicznych **OR** i **NOT**

9. Budowa bramki logicznej NOT za pomocą bramki NAND

 $p \xrightarrow{\text{prawo idempotentności}} p \cdot p$

Rysunek 9 - schemat logiczny bramki **NOT** za pomocą bramki **NAND**

<i>p</i>	<i>p</i> · p	$\overline{p \cdot p}$	$\overline{m p}$ / NOT
0	0	1	1
1	1	0	0

Tabela 15 - sprawdzenie poprawności realizacji funkcji logicznej NOT za pomocą funkcji logicznej NAND

10. Budowa bramki logicznej AND za pomocą bramek NAND

$$p \cdot q \xleftarrow{\text{prawo idempotentności}} (p \cdot q) + (p \cdot q) \xleftarrow{\text{prawo de Morgana}} \overline{\overline{(p \cdot q)} \cdot \overline{(p \cdot q)}}$$

Rysunek 10 - schemat logiczny bramki AND za pomocą bramek NAND

p	\boldsymbol{q}	$p \cdot q$	$\overline{p\cdot q}$	$\overline{(p\cdot q)}\cdot \overline{(p\cdot q)}$	$\overline{(p\cdot q)}\cdot \overline{(p\cdot q)}$	$p\cdot q$ / AND
0	0	0	1	1	0	0
0	1	0	1	1	0	0
1	0	0	1	1	0	0
1	1	1	0	0	1	1

Tabela 16 - sprawdzenie poprawności realizacji funkcji logicznej **AND** za pomocą funkcji logicznych **NAND**

11. Budowa bramki **OR** za pomocą bramek **NAND**

$$p + q \xleftarrow{prawo \ de \ Morgana} \overline{\overline{p} \cdot \overline{q}} \xleftarrow{prawo \ idempotentności} \overline{\overline{(p \cdot p)} \cdot \overline{q}} \xleftarrow{prawo \ idempotentności} \overline{\overline{(p \cdot p)} \cdot \overline{(q \cdot q)}}$$

Rysunek 11 - schemat logiczny bramki **OR** za pomocą bramek **NAND**

p	q	$p \cdot p$	$q \cdot q$	$\overline{p\cdot p}$	$\overline{q\cdot q}$	$\overline{(p\cdot p)}\cdot \overline{(q\cdot q)}$	$\overline{(p\cdot p)}\cdot \overline{(q\cdot q)}$	$oldsymbol{p} + oldsymbol{q}$ / OR
0	0	0	0	1	1	1	0	0
0	1	0	1	1	0	0	1	1
1	0	1	0	0	1	0	1	1
1	1	1	1	0	0	0	1	1

Tabela 17 - sprawdzenie poprawności realizacji funkcji logicznej **OR** za pomocą funkcji logicznych **NAND**

12. Budowa bramki **NOT** za pomocą bramki **NOR**

$$\bar{p} \xleftarrow{\text{prawo idempotentności}} \overline{p+p}$$

Rysunek 12 - schemat logiczny bramki **NOT** za pomocą bramki **NOR**

<i>p</i>	p + p	$\overline{p+p}$	\overline{p} / NOT
0	0	1	1
1	1	0	0

Tabela 18 - sprawdzenie poprawności realizacji funkcji logicznej **NOT** za pomocą funkcji logicznej **NOR**

13. Budowa bramki **OR** za pomocą bramek **NOR**

$$p + q \xleftarrow{\operatorname{prawo idempotentności}} (p + q) \cdot (p + q) \xleftarrow{\operatorname{prawo de Morgana}} \overline{\overline{(p + q)} + \overline{(p + q)}}$$

Rysunek 13 - schemat logiczny bramki **OR** za pomocą bramek **NOR**

p	q	p+q	$\overline{(p+q)}$	$\overline{(p+q)}+\overline{(p+q)}$	$\overline{(p+q)} + \overline{(p+q)}$	p+q / OR
0	0	0	1	1	0	0
0	1	1	0	0	1	1
1	0	1	0	0	1	1
1	1	1	0	n	1	1

Tabela 19 - sprawdzenie poprawności realizacji funkcji logicznej **OR** za pomocą funkcji logicznych **NOR**

14. Budowa bramki **AND** za pomocą bramek **NOR**

Rysunek 14 - schemat logiczny bramki AND za pomocą bramek NOR

p	q	p + p	q + q	$\overline{p+p}$	$\overline{q+q}$	$\overline{(p+p)}+\overline{(q+q)}$	$\overline{(p+p)} + \overline{(q+q)}$	$p\cdot q$ / AND
0	0	0	0	1	1	1	0	0
0	1	0	1	1	0	1	0	0
1	0	1	0	0	1	1	0	0
1	1	1	1	0	0	0	1	1

Tabela 20 - sprawdzenie poprawności realizacji funkcji logicznej AND za pomocą funkcji logicznych NOR

Rysunek 15 - schemat logiczny bramki NOR za pomocą bramek NAND

p	q	$p \cdot p$	$q \cdot q$	$\overline{p \cdot p}$	$\overline{q\cdot q}$	$\overline{(p\cdot p)}\cdot \overline{(q\cdot q)}$	$\overline{(p\cdot p)}\cdot \overline{(q\cdot q)}$
0	0	0	0	1	1	1	0
0	1	0	1	1	0	0	1
1	0	1	0	0	1	0	1
1	1	1	1	0	0	0	1

Tabela 21.1 - sprawdzenie poprawności realizacji funkcji logicznej NOR za pomocą funkcji logicznych NAND (część 1)

$\overline{(p\cdot p)}\cdot \overline{(q\cdot q)}\cdot \overline{(p\cdot p)}\cdot \overline{(q\cdot q)}$	$\overline{\overline{(p\cdot p)}\cdot \overline{(q\cdot q)}}\cdot \overline{\overline{(p\cdot p)}\cdot \overline{(q\cdot q)}}$	$\overline{p+q}$ / NOR
0	1	1
1	0	0
1	0	0
1	0	0

Tabela 221.2 - sprawdzenie poprawności realizacji funkcji logicznej NOR za pomocą funkcji logicznych NAND (część 2)

16. Budowa bramki NAND za pomocą bramek NOR

Rysunek 16 - schemat logiczny bramki NAND za pomocą bramek NOR

p	q	p + p	q + q	$\overline{p+p}$	$\overline{q+q}$	$\overline{(p+p)}+\overline{(q+q)}$	$\overline{(p+p)} + \overline{(q+q)}$
0	0	0	0	1	1	1	0
0	1	0	1	1	0	1	0
1	0	1	0	0	1	1	0
1	1	1	1	0	0	0	1

Tabela 232.1 - sprawdzenie poprawności realizacji funkcji logicznej NAND za pomocą funkcji logicznych NOR (część 1)

$\overline{(p+p)} + \overline{(q+q)} + \overline{(p+p)} + \overline{(q+q)}$	$\overline{\overline{(p+p)}} + \overline{(q+q)} + \overline{\overline{(p+p)}} + \overline{(q+q)}$	$\overline{p\cdot q}$ / NAND
0	1	1
0	1	1
0	1	1
1	0	0

Tabela 242.2 - sprawdzenie poprawności realizacji funkcji logicznej NAND za pomocą funkcji logicznych NOR (część 2)

17. Budowa bramki XOR za pomocą bramek NAND

Rysunek 17 - schemat logiczny bramki XOR za pomocą bramek NAND

p	q	$\mathbf{p} \cdot \mathbf{q}$	$\overline{p\cdot q}$	$\overline{(\mathbf{p}\cdot\mathbf{q})}\cdot\mathbf{p}$	$\overline{(\mathbf{p}\cdot\mathbf{q})}\cdot\mathbf{q}$	$\overline{(\mathbf{p}\cdot\mathbf{q})}\cdot\mathbf{p}$	$\overline{(\mathbf{p}\cdot\mathbf{q})}\cdot\mathbf{q}$	$\overline{(\mathbf{p} \cdot \mathbf{q})} \cdot \mathbf{p} \cdot \overline{(\mathbf{p} \cdot \mathbf{q})} \cdot \mathbf{q}$
0	0	0	1	0	0	1	1	1
0	1	0	1	0	1	1	0	0
1	0	0	1	1	0	0	1	0
1	1	1	0	0	0	1	1	1

Tabela 253.1 - sprawdzenie poprawności realizacji funkcji logicznej XOR za pomocą funkcji logicznych NAND (część 1)

$\overline{\overline{(p\cdot q)}\cdot p}\cdot \overline{\overline{(p\cdot q)}\cdot q}$	$p\oplus q$ / XOR
0	0
1	1
1	1
0	0

Tabela 263.2 - sprawdzenie poprawności realizacji funkcji logicznej **XOR** za pomocą funkcji logicznych **NAND** (część 2)

18. Budowa bramki XOR za pomocą bramek NOR

$$p \oplus q \overset{definicja\ alternatywy\ rozłącznej}{\longleftrightarrow} (p \cdot \overline{q}) + (\overline{p} \cdot q) \overset{prawo\ rozdzielności}{\longleftrightarrow} ((p + \overline{p}) \cdot (\overline{q} + \overline{p})) \cdot ((p + q) \cdot (\overline{q} + q)) \overset{własność\ negacji}{\longleftrightarrow} ((p + \overline{p}) \cdot (\overline{q} + \overline{p})) \cdot ((p + q) \cdot (\overline{q} + q)) \overset{własność\ negacji}{\longleftrightarrow} (1 \cdot (\overline{q} + \overline{p})) \cdot ((p + q) \cdot 1) \overset{własność\ stałej}{\longleftrightarrow} (\overline{q} + \overline{p}) \cdot ((p + q) \cdot 1) \overset{własność\ stałej}{\longleftrightarrow} (\overline{q} + \overline{p}) \cdot (p + q) \cdot (\overline{q} + \overline{p})) \cdot (p + q) \overset{własność\ stałej}{\longleftrightarrow} (\overline{q} + \overline{p}) \cdot (p + q) \overset{prawo\ przemienności}{\longleftrightarrow} (\overline{p} \cdot (p + q)) + (\overline{q} \cdot (p + q)) \overset{prawo\ prawo\ przemienności}{\longleftrightarrow} (\overline{p} \cdot (p + q)) + (\overline{q} \cdot (p + q)) \overset{prawo\ podwójnej\ negacji}{\longleftrightarrow} (\overline{p} \cdot (p + q)) + (\overline{q} \cdot (p + q)) \overset{prawo\ podwójnej\ negacji}{\longleftrightarrow} (\overline{p} \cdot (p + q)) + (\overline{q} \cdot (p + q)) \overset{prawo\ podwójnej\ negacji}{\longleftrightarrow} (p + (\overline{p} + \overline{q})) + (\overline{q} \cdot (p + \overline{q})) \overset{prawo\ podwójnej\ negacji}{\longleftrightarrow} (p + (\overline{p} + \overline{q})) + (\overline{q} \cdot (\overline{p} + \overline{q})) \overset{prawo\ podwójnej\ negacji}{\longleftrightarrow} (p + (\overline{p} + \overline{q})) + (\overline{q} \cdot (\overline{p} + \overline{q})) \overset{prawo\ podwójnej\ negacji}{\longleftrightarrow} (p + (\overline{p} + \overline{q})) + (\overline{q} \cdot (\overline{p} + \overline{q})) \overset{prawo\ podwójnej\ negacji}{\longleftrightarrow} (p + (\overline{p} + \overline{q})) + (\overline{q} \cdot (\overline{p} + \overline{q})) \overset{prawo\ podwójnej\ negacji}{\longleftrightarrow} (p + (\overline{p} + \overline{q})) + (\overline{q} \cdot (\overline{p} + \overline{q})) \overset{prawo\ podwójnej\ negacji}{\longleftrightarrow} (p + (\overline{p} + \overline{q})) + (\overline{q} \cdot (\overline{p} + \overline{q})) \overset{prawo\ podwójnej\ negacji}{\longleftrightarrow} (p + (\overline{p} + \overline{q})) + (\overline{q} \cdot (\overline{p} + \overline{q})) \overset{prawo\ podwójnej\ negacji}{\longleftrightarrow} (p + (\overline{p} + \overline{q})) \overset{prawo\ podwójnej\ negacji}{\longleftrightarrow} (p + (\overline{p} + \overline{q})) + (\overline{q} \cdot (\overline{p} + \overline{q})) \overset{prawo\ podwójnej\ negacji}{\longleftrightarrow} (p + (\overline{p} + \overline{q}$$

Rysunek 18 - schemat logiczny bramki **XOR** za pomocą bramek **NOR**

p	q	p+q	$\overline{p+q}$	$p + \overline{(p+q)}$	$q + \overline{(p+q)}$	$\overline{p+\overline{(p+q)}}$	$\overline{q+\overline{(p+q)}}$
0	0	0	1	1	1	0	0
0	1	1	0	0	1	1	0
1	0	1	0	1	0	0	1
1	1	1	0	1	1	0	0

Tabela 274.1 - sprawdzenie poprawności realizacji funkcji logicznej XOR za pomocą funkcji logicznych NOR (część 1)

$\overline{\left(p+\overline{(p+q)}\right)}+\overline{\left(q+\overline{(p+q)}\right)}$	$\overline{\left(p+\overline{(p+q)}\right)}+\overline{\left(q+\overline{(p+q)}\right)}$
0	1
1	0
1	0
0	1

Tabela 284.2 - sprawdzenie poprawności realizacji funkcji logicznej XOR za pomocą funkcji logicznych NOR (część 2)

$\overline{\left(p+\overline{(p+q)}\right)+\left(q+\overline{(p+q)}\right)}+\overline{\left(p+\overline{(p+q)}\right)}+\overline{\left(q+\overline{(p+q)}\right)}$
1
0
0
1

Tabela 24.3 - sprawdzenie poprawności realizacji funkcji logicznej XOR za pomocą funkcji logicznych NOR (część 3)

$\overline{\left(\overline{p+\overline{(p+q)}}\right)+\overline{\left(\overline{q+\overline{(p+q)}}\right)}}+\overline{\left(\overline{p+\overline{(p+q)}}\right)+\overline{\left(\overline{q+\overline{(p+q)}}\right)}}$	$p\oplus q$ / XOR
0	0
1	1
1	1
0	0

Tabela 24.4 - sprawdzenie poprawności realizacji funkcji logicznej XOR za pomocą funkcji logicznych NOR (część 4)

Wnioski

Para dowolnej bramki niebędącej bramką **NOT** z bramką **NOT** pozwala zbudować układ realizujący dowolną funkcję logiczną. Taka para bramek nazywana jest układem zupełnym.

Ponadto, za pomocą wyłącznie bramek **NAND** lub wyłącznie bramek **NOR** również jest możliwość zbudowania układu realizującego dowolną funkcję logiczną. Bramki te są nazywane funkcjonalnie pełnymi.

Używając praw i własności algebry Boole'a jest możliwość zbudowania za pomocą każdego układu zupełnego i każdej układu bramek funkcjonalnie pełnych układu realizującego funkcjonalność dowolnej bramki logicznej.