Marc T. Henry de Frahan

US citizen, Applied Mathematics/Mechanical engineer

2525 Wewatta Way Apt 306 Denver, CO, 80216 marchdf@gmail.com (734)747-0156

Experience ———————————————————————————————————	
Post-doctoral Researcher, National Renewable Energy Laboratory Next-generation simulations of wind farms and combustion processes	2016-present
Education ————————————————————————————————————	
Ph.D. in Mechanical Engineering University of Michigan, Ann Arbor, MI Thesis: Numerical simulations of shock and rarefaction waves interacting with interfaces in compressible multiphase flows Advisor: E. Johnsen, Assistant Professor of Mechanical Engineering	2011-2016
M.S. in Applied Mathematics Engineering Université Catholique de Louvain, Belgium Thesis: Implementation of a Discontinuous Galerkin Method for hyperbolic PDEs on GP Advisors: Prof. J-F Remacle, Prof. P. Chatelain, Prof. V. Legat.	2009-2011 Us
B.S. in Applied Mathematics Engineering Université Catholique de Louvain, Belgium	2007-2009
Research Interests Fluid mechanics - multiphase flows, hydrodynamic instabilities, turbulence Energy - turbomachinery, combustion, wind farms High order numerical methods for computational fluid dynamics High performance computing with graphics processing units	
Fellowships and Awards AIAA CFD Best Student Paper Award (3 ^d place) American Institute of Aeronautics and Astronautics	2015
Rackham Predoctoral Fellowship University of Michigan	2015
Rackham Centennial Fellowship University of Michigan	2013
NIF Poster Winner Lawrence Livermore National Laboratory 2012 Summer Poster Session	2012
High Distinction M.S. in Applied Mathematics Engineering at the Université Catholique de Louvain	2011
Publications ————————————————————————————————————	

M. T. Henry de Frahan, J. L. Belof, R. M. Cavallo, V. A. Raevsky, O. N. Ignatova, A. Lebedev, D. S.

- Ancheta, B. S. El-dasher, J. N. Florando, G. F. Gallegos, E. Johnsen and M. M. LeBlanc, **Experimental and Numerical Investigations of Beryllium Strength Models Using the Rayleigh-Taylor Instability**, featured article in J. Appl. Phys., 117(22):225901, 2015
- M. T. Henry de Frahan, S. Varadan, and E. Johnsen, A new limiting procedure for discontinuous Galerkin methods applied to compressible multiphase flows with shocks and interfaces, J. Comput. Phys., 280(0):489-509,2015
- M. T. Henry de Frahan, P. Movahed, and E. Johnsen, Numerical simulations of a shock interacting with successive interfaces using the Discontinuous Galerkin method: the multilayered Richtmyer-Meshkov and Rayleigh-Taylor instabilities, *Shock Waves*, 25(4):329–345, 2015
- C. A. Di Stefano, G. Malamud, M. T. Henry de Frahan, C. C. Kuranz, A. Shimony, S. R. Klein, R. P. Drake, E. Johnsen, D. Shvarts, V. A. Smalyuk, and D. Martinez, **Observation and modeling of mixing-layer development in high-energy-density, blast-wave-driven shear flow**, *Phys. Plasmas*, 21(5):056306, 2014
- M. T. Henry de Frahan and E. Johnsen, Mixing in blast-driven hydrodynamic instabilities, In preparation for J. Fluid Mech., 2016

Conference Proceedings

- M. T. Henry de Frahan, L. Khieu, and E. Johnsen, **High-order Discontinuous Galerkin Methods Applied to Multiphase Flows**, 22^d AIAA Computational Fluid Dynamics Conference. American Institute of Aeronautics and Astronautics, doi: 10.2514/6.2015-3045, 2015, AIAA CFD Best Student Paper Award (3^d place)
- M. T. Henry de Frahan and E. Johnsen, **Discontinuous Galerkin method for multifluid Euler equations**, In 21st AIAA Computational Fluid Dynamics Conference. American Institute of Aeronautics and Astronautics, doi: 10.2514/6.2013-2595, 2013
- M. T. Henry de Frahan, P. Movahed, and E. Johnsen, **Investigating the multilayered Richtmyer-Meshkov instability with high-order accurate numerical methods**, *In 29th International Symposium on Shock Waves 2, Springer International Publishing*, 2015

Skills

Scientific programming

C/C++, Python, Git, Bash, R, C for CUDA, MPI, OpenMP, LATEX, VisIt, Gmsh, Matlab, Hydra, Ares, Yorick, ITS Monte-Carlo Codes

Operating systems

GNU/Linux, Windows

Languages

English, French