Project Venona _ wikipedéa

14 Jan 2025

	Information theoretic security	
		Perfect
	Shannon Secenity	Perfect Indictinguishi bility
VI.		_ m, m2 bicked
+m,c:	Pr (P= m (C=c) = Pr (P= m)	by Adv.
	, i	- one of them
	Equivalent	randomly encrypted
	Equivaled	by the challegen
		- Adv 3 advantage in
		The two mersiper
	H-m.	distriguising oblished the two messings produced c = 0
		(P=m, C=c)=P. (P=nf=c)
	Shannon Security => Perfect in	distinguishability
	Pr (D= m, C=c) = Pr (3)= 10,) for any on, c
		·/ · · · · · · · · · · · · · · · · · ·
(,de	for of conditional ports	
צ	fr of conditional poorb Pr (D=m, (K, m)=c)	
	12 (3 - 11)	= Pr (D= 101)
	Pr (C= c)	
	Pr (3/m), Pr (Forc (k, m))	$\frac{1}{2}$
	Pr (C-c)	
	7. (2.5)	
	0 (6 6 7) 5	Por (Cec)
	R, c (Enc (K, m1) =) =	
	K, C	//
	= Po (Gr(k, m)=0)	
	03 (CVIC (K, "12)=1)	

	=) Pr (Enc (k, mi)=c) = Pr (Enc (k, mi)=c)
	Perfect indist > Shannon recently
	This is the strongert notion of encuption security - even against a exponential time attacker
	this security is enough
	Practical instantiation. OTP
	Enc (k, m) = k m
	Dec (k,c) = KBC
	k, m, c e \{0,13 ⁿ } k war cheren unifords at
	Practical problem_
	to encrypt a message of length on bits, we need a secret key of length on bits
	secret line B
	A) (B)
	under adv. Mofluence
	Que: Can we reduce randomnac regueirement!
	i.e message length = n bits
	but key length = k bit where
-	Claim: In this setting perfect security is
	impossible

Computational Recently (this is weaker than) perfect secently
(I) Now we will limit the power of the adversary.
- Adv can not sun for exponential time
- Security parameter = n
Affacker win have some non-zero poob. By winning the distinguishability gam
$P_{\delta}() - P_{\delta}() \neq 0$ Now
Pr(n) - Pr(n) = E negligible in n
Negligable function: Per of winny the game should be negligable
$poly(n) \times (Prob = min = negl(n)$
megl(n) = $\frac{poly(n)}{exp(n)}$ or somethis g exp(n) that cont
$n \rightarrow \infty$, $n \rightarrow 0$

	How to create a computationally receive enoughing _scheme !
	_cheme !
	Why did OTP kill any statistize in the input?
	Pro (b=0) = 0.9 Pro (b=1) = 0.1
	Pr(k=0) = Pr(k=1) = 0.5 uniformly random key but
	Que BOK=0 = ?
	$= P_{r} \left(b = k = 0 \right) + P_{r} \left(b = k = 1 \right)$ $= 1/2 \times 0.9 + 1/2 \times 0.1$
	= 1/2 x 0.9 + 1/2 x0.1
	= 1/2
	vandom key k bits = Preudo-Random String where k <n =="" preudo-random="" string<="" th=""></n>
	where (2 < n) = 1/2 ch " uniformly randon
	Vniformly key k bits random where k < n = Preudo-Random String where k < n = Preudo-Random String is almost uniformly random preudo-random expansion = is almost uniformly random
\-	n bit output
	roye m Cuphertext
n bots	
	Example: rand() function in C, Java,
	What is a "random" Story?
	Source is
	1. is 000 0 random?. sandom
	2 is 110011 randon 2 (Not the strings)
	3. is 011001 randon?

