e-Exponential regression Calculator

Home / Mathematics / Regression

Analyzes the data table by e-exponential regression and draws the chart.

e-Exponential regression: $y=Ae^{Bx}$

(input by clicking each cell in the table below)

data	No.	x	y
	1	302.20398553634334	0.43460552002626957
	2	401.9088595421428	0.36869450645195767
	3	505.31795273644065	0.3232390409347363
	4	598.0471976105778	0.2944744498230481
	5	701.7038286703822	0.2697443649870472
	6	809.2217409292141	0.25118864315095807
	7	905.4157189380937	0.2377882968026018
	8	999.99999999999	0.22758459260747893
	9	1987.519712084896	0.1665054953069651
	10	3009.0126602227697	0.1412537544622755
	11	4001.763393264597	0.12451970847350334
	12	4966.609758663147	0.11343887340720292
	13	5954.691781536963	0.1033441063880557
	14	6986.789735577608	0.09729605646212959
	15	7953.583627213136	0.0911011395688753
	16	8937.571151054222	0.0862410996895277
	17	9956.892709017235	0.08208914159638261
	V	a of the row)	×

(Inc/Dec of the row)

function

Execute Clear Store/Read Print 10dgt •

value

mean of x	3,469.309048
mean of y	0.1738025013
correlation coefficient r	-0.9299736976
Α	0.297558777
В	-1.54985377E-4
0.5 0.4 0.3 0.2 0.1 0.0 0.2 0.1 0.0 0.2 0.1 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0	0700 8070 9070 11070
— AeBx	х

Guidelines for interpreting correlation coefficient r:

 $0.7 < |r| \le 1$ strong correlation 0.4 < |r| < 0.7 moderate correlation 0.2 < |r| < 0.4 weak correlation $0 \le |r| < 0.2$ no correlation

e-Exponential regression

(1) mean:
$$\bar{x} = \frac{\sum x_i}{n}$$
, $\bar{l}_{ny} = \frac{\sum lny_i}{n}$

(2) trend line:
$$y = Ae^{Bx}$$
, $B = \frac{Sxy}{Sxx}$, $A = e^{\sqrt{ny} - B\bar{x}}$

(3) correlation coefficient:
$$r = \frac{Sxy}{\sqrt{S_{xx}}\sqrt{Syy}}$$

(3) correlation coefficient:
$$r = \frac{Sxy}{\sqrt{S_{xx}}\sqrt{S_{yy}}}$$

$$S_{xx} = \frac{\sum (x_i - \overline{x})^2}{n} = \frac{\sum x_i^2}{n} - \overline{x}^2$$

$$S_{yy} = \frac{\sum (\ln y_i - \overline{\ln y})^2}{n} = \frac{\sum \ln y_i^2}{n} - \overline{\ln y}^2$$

$$S_{xy} = \frac{\sum (x_i - \overline{x})(\ln y_i - \overline{\ln y})}{n} = \frac{\sum x_i \ln y_i}{n} - \overline{x}\overline{\ln y}$$