Álgebra I. Hoja de ejercicios 8: Homomorfismos y anillos cociente Universidad de El Salvador, ciclo impar 2019

Por cualquier pregunta, no duden en escribir al grupo ues-algebra-2019@googlegroups.com.

Ejercicio 1. Demuestre que el conjunto

$$A := \left\{ \begin{pmatrix} x & -y \\ y & x \end{pmatrix} \middle| x, y \in \mathbb{R} \right\}$$

es un subanillo del anillo de matrices $M_2(\mathbb{R})$. Encuentre un isomorfismo $A \cong \mathbb{C}$.

Ejercicio 2. Para un anillo no conmutativo A definamos su centro como

$$Z(A) := \{x \in A \mid ax = xa \text{ para todo } a \in A\}.$$

- 1) Demuestre que Z(A) es un subanillo de A.
- 2) Demuestre que si $\phi: A \to B$ es un homomorfismo sobreyectivo, entonces $\phi(Z(A)) \subseteq Z(B)$.

Ejercicio 3. Demuestre que los anillos de polinomios $\mathbb{Z}[X]$ y $\mathbb{Q}[X]$ no son isomorfos. Sugerencia: demuestre que un isomorfismo de anillos $\phi \colon A \xrightarrow{\cong} B$ induce una biyección $A^{\times} \xrightarrow{\cong} B^{\times}$.

Ejercicio 4. Escriba la tabla de adición y multiplicación en el anillo cociente $\mathbb{F}_3[X]/(X^2+1)$.

Ejercicio 5. Demuestre que el anillo cociente $\mathbb{Z}[i]/(1+2i)$ es isomorfo al cuerpo de 5 elementos \mathbb{F}_5 . (Describa los elementos y encuentre un isomorfismo explícito con \mathbb{F}_5 .)

Ejercicio 6 (Segundo teorema de isomorfía). Sean A un anillo conmutativo, $B \subseteq A$ un subanillo y $\mathfrak{a} \subseteq A$ un ideal.

- 1) Demuestre que $B + \mathfrak{a} := \{x + y \mid x \in B, y \in \mathfrak{a}\}\$ es un subanillo de A y que \mathfrak{a} es un ideal en $B + \mathfrak{a}$.
- 2) Demuestre que la aplicación

$$\phi \colon B \to (B + \mathfrak{a})/\mathfrak{a}, \quad x \mapsto \overline{x}$$

es un homomorfismo sobreyectivo.

- 3) Demuestre que $\ker \phi = B \cap \mathfrak{a}$.
- 4) Deduzca que $B/(B \cap \mathfrak{a}) \cong (B + \mathfrak{a})/\mathfrak{a}$.

Ejercicio 7 (Tercer teorema de isomorfía). Sean A un anillo y $\mathfrak{a} \subseteq \mathfrak{b} \subseteq A$ ideales.

1) Demuestre que la aplicación

$$\phi: A/\mathfrak{a} \to A/\mathfrak{b}, \quad x + \mathfrak{a} \mapsto x + \mathfrak{b}$$

está bien definida y es un homomorfismo sobreyectivo.

- 2) Demuestre que $\ker \phi = \mathfrak{b}/\mathfrak{a} := \{x + \mathfrak{a} \mid x \in \mathfrak{b}\} \subseteq A/\mathfrak{a}$.
- 3) Demuestre que $(A/\mathfrak{a})/(\mathfrak{b}/\mathfrak{a}) \cong A/\mathfrak{b}$.

Ejercicio 8. Para $n \neq 1$ un entero libre de cuadrados encuentre un isomorfismo

$$\mathbb{Q}[X]/(X^2 - n) \cong \mathbb{Q}(\sqrt{n}) := \{x + y\sqrt{n} \mid x, y \in \mathbb{Q}\}.$$

Ejercicio 9. Encuentre un isomorfismo $\mathbb{Z}[X]/(X^2+1) \cong \mathbb{Z}[i]$.

Ejercicio 10. Para un número primo p encuentre un isomorfismo $\mathbb{F}_p[X]/(X^2+1) \cong \mathbb{Z}[i]/(p)$.