Lineáris algebra, vektorok

Középiskolában: a sík (\mathbb{R}^2) vektorai

$$X = \begin{pmatrix} X_1 \\ X_2 \end{pmatrix}$$
 (orslopve Star)

Két vektor összege:

$$\left(\begin{array}{c} x_1 \\ x_2 \end{array}\right) + \left(\begin{array}{c} y_1 \\ y_2 \end{array}\right) = \left(\begin{array}{c} x_1 + y_1 \\ x_2 + y_2 \end{array}\right)$$

Vektor szorzása skalárral:

$$\lambda \left(\begin{array}{c} x_1 \\ x_2 \end{array} \right) = \left(\begin{array}{c} \lambda x_1 \\ \lambda x_2 \end{array} \right) \quad (\lambda \in \mathbb{R})$$

A nullvektor: $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$

Lineáris algebra, vektorok

A tér (\mathbb{R}^3) vektorai

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} + \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = \begin{pmatrix} x_1 + y_1 \\ x_2 + y_2 \\ x_3 + y_3 \end{pmatrix}$$

Vektor szorzása skalárral:

$$\lambda \left(\begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array} \right) = \left(\begin{array}{c} \lambda x_1 \\ \lambda x_2 \\ \lambda x_3 \end{array} \right) \quad (\lambda \in \mathbb{R})$$

$$X = \begin{pmatrix} x_4 \\ x_2 \\ x_3 \end{pmatrix} = X_4 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + X_2 \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + X_3 \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$
 A nullvektor: $\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$

Vektorok

Az n dimenziós valós vektorok (\mathbb{R}^n vektorai)

$$x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix},$$

ahol $x_i \in \mathbb{R}$

A nullvektor:
$$\begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

Két vektor összege:

$$\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} + \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} x_1 + y_1 \\ x_2 + y_2 \\ \vdots \\ x_n + y_n \end{pmatrix}$$

Vektor szorzása skalárral:

$$\lambda \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} \lambda x_1 \\ \lambda x_2 \\ \vdots \\ \lambda x_n \end{pmatrix} \quad (\lambda \in \mathbb{R})$$

Vektorok

A vektorok koordinátái akár komplex számok is lehetnek:

$$x \in \mathbb{C}^n$$
, ha $x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$, ahol $x_i \in \mathbb{C}$

Az összeadás és a skalárral való szorzás ugyanúgy definiálható, mint valós vektorok esetén (a skalárt most a komplex számok halmazából választhatjuk), a nullvektor ugyanúgy a csupa 0 koordinátából álló vektor.

Példa:

$$x = \left(\begin{array}{c} 1 - 2i \\ 2 + 3i \end{array}\right) \in \mathbb{C}^2$$

Lineáris algebra, vektorterek

IK jetolje IR-et VC8) I-t IK: a Malchar

Definíció

Egy V nemüres halmazt M feletti vektortérnek és V elemeit vektoroknak hívjuk, ha értelmezve van két művelet:

- (vektor)összeadás: $V \times V \rightarrow V$, $(v, w) \mapsto v + w$,
- skalárral való szorzás: $\mathbb{K} \times V \to V$, $(\lambda, v) \mapsto \lambda v$,

amelyek az alábbi tulajdonságokkal rendelkeznek: Vektorösszeadás:

- sommutatív, azaz $\forall v, w \in V$: v + w = w + v;
- asszociatív, azaz $\forall u, v, w \in V$: (u + v) + w = u + (v + w);
- létezik nullvektor, azaz egy $0 \in V$ vektor, amelyre v + 0 = v $(\forall v \in V)$;
- $\forall v \in V$ esetén létezik ún. ellentett vektor, azaz egy -v-vel jelölt vektor, hogy v + (-v) = 0.

Skalárral való szorzás:

Példák vektorterekre

- ullet \mathbb{R}^n vektortér \mathbb{R} felett
- \mathbb{C}^n vektortér \mathbb{C} felett

Vektortér nem csak középiskolai értelemben vett vektorokból állhat, pl:

ullet A legfeljebb \emph{n} -edfokú valós együtthatós polinomok halmaza vektortér $\mathbb R$ felett

Definíció

A V vektortér egy nemüres W részhalmazát V alterének nevezzük, ha W maga is vektortér, azaz zárt a vektorösszeadásra és a skalárral való szorzásra.

Megjegyzés: $\{0\}$ és V mindig altér. Ezeket triviális altereknek nevezzük.

Példa:

$$W = \{x \in \mathbb{R}^3 : x_3 = 0\}$$

altere \mathbb{R}^3 -nak.

 $W = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ 0 \end{pmatrix} \mid x_1 \mid x_2 \in \mathbb{N} \right\}$ X, y ∈ W ⇒ nx ∈ W/ XEW, nell $\begin{pmatrix} x_1 \\ x_2 \\ 0 \end{pmatrix} + \begin{pmatrix} y_1 \\ y_2 \\ 0 \end{pmatrix} = \begin{pmatrix} x_1 + y_1 \\ x_2 + y_2 \\ 0 \end{pmatrix} \in \mathbb{X}$ $\begin{cases} x_1 + y_1 \\ x_2 + y_2 \\ 0 \end{cases} \text{ or a max-}$ Zént a Alalén-vel való samesne → Waltere R3-ud

$$\begin{pmatrix} x_1 \\ 0 \\ x_2 \end{pmatrix} \qquad \text{alfere } IR^3 - \text{mar}$$

$$B) W = \{ x \in IR^3 \quad x_1 = x_2 = x_3 \}$$

altere IR3 - nal

$$\binom{2}{2}$$

$$\begin{pmatrix} 2 \\ 2 \\ 2 \end{pmatrix} + \begin{pmatrix} 3 \\ 4 \\ 2 \end{pmatrix}$$

$$\begin{pmatrix}
x_1 \\
x_2 \\
x_3
\end{pmatrix} + \begin{pmatrix}
y_1 \\
y_2 \\
y_3
\end{pmatrix} = \begin{pmatrix}
x_1 + y_1 \\
x_2 + y_2 \\
x_3 + y_3
\end{pmatrix}$$

$$x_1 + x_2 = 0 \qquad y_1 + y_2 = 0 \qquad x_1 + x_2 + y_2 = 0$$

$$x_1 + x_2 + y_1 + y_2 = 0$$

$$x_1 + x_2 + y_1 + y_2 = 0$$

$$x_1 + x_2 + y_1 + y_2 = 0$$

$$x_1 + x_2 + y_1 + y_2 = 0$$

$$x_1 + x_2 + y_1 + y_2 = 0$$

$$x_1 + x_2 + y_1 + y_2 = 0$$

$$x_1 + x_2 + y_1 + y_2 = 0$$

$$x_1 + x_2 + y_1 + y_2 = 0$$

$$x_1 + x_2 + y_1 + y_2 = 0$$

$$x_1 + x_2 + y_1 + y_2 = 0$$

$$x_1 + x_2 + y_1 + y_2 = 0$$

$$x_1 + x_2 + y_1 + y_2 = 0$$

$$x_1 + x_2 + y_1 + y_2 = 0$$

$$x_1 + x_2 + y_1 + y_2 = 0$$

$$x_1 + x_2 + y_1 + y_2 = 0$$

$$x_1 + x_2 + y_1 + y_2 = 0$$

$$x_1 + x_2 + y_1 + y_2 = 0$$

$$x_1 + x_2 + y_1 + y_2 = 0$$

$$x_1 + x_2 + y_1 + y_2 = 0$$

$$x_1 + x_2 + y_1 + y_2 = 0$$

$$x_1 + x_2 + y_1 + y_2 = 0$$

$$x_1 + x_2 + y_1 + y_2 = 0$$

$$x_1 + x_2 + y_1 + y_2 = 0$$

$$x_1 + x_2 + y_1 + y_2 = 0$$

$$x_1 + x_2 + y_1 + y_2 = 0$$

$$x_1 + x_2 + y_1 + y_2 = 0$$

$$x_1 + x_2 + y_1 + y_2 = 0$$

$$x_1 + x_2 + y_1 + y_2 = 0$$

$$x_1 + x_2 + y_1 + y_2 = 0$$

$$x_1 + x_2 + y_1 + y_2 = 0$$

$$x_1 + x_2 + y_1 + y_2 = 0$$

$$x_1 + x_2 + y_1 + y_2 = 0$$

$$x_1 + x_2 + y_1 + y_2 = 0$$

$$x_1 + x_2 + y_1 + y_2 = 0$$

$$x_1 + x_2 + y_1 + y_2 = 0$$

$$x_1 + x_2 + y_1 + y_2 = 0$$

$$x_1 + x_2 + y_1 + y_2 = 0$$

$$x_1 + x_2 + y_1 + y_2 = 0$$

$$x_1 + x_2 + y_1 + y_2 = 0$$

$$x_1 + x_2 + y_1 + y_2 = 0$$

$$x_1 + x_2 + y_1 + y_2 = 0$$

$$x_1 + x_2 + y_1 + y_2 = 0$$

$$x_1 + x_2 + y_1 + y_2 = 0$$

$$x_1 + x_2 + y_1 + y_2 = 0$$

$$x_1 + x_2 + y_1 + y_2 = 0$$

$$x_1 + x_2 + y_1 + y_2 = 0$$

$$x_1 + x_2 + y_1 + y_2 = 0$$

$$x_1 + x_2 + y_1 + y_2 = 0$$

$$x_1 + x_2 + y_1 + y_2 = 0$$

$$x_1 + x_2 + y_1 + y_2 = 0$$

$$x_1 + x_2 + y_1 + y_2 = 0$$

$$x_1 + x_2 + y_1 + y_2 = 0$$

$$x_1 + x_2 + y_1 + y_2 = 0$$

$$x_1 + x_2 + y_1 + y_2 = 0$$

$$x_1 + x_2 + y_1 + y_2 = 0$$

$$x_1 + x_2 + y_1 + y_2 = 0$$

$$x_1 + x_2 + y_1 + y_2 = 0$$

$$x_1 + x_2 + y_1 + y_2 = 0$$

$$x_2 + x_3 + y_3 +$$

7x1+7x2 = 7(x1+x2)=0

→) alse'n

(4) W= {X \in 182 = 0 }

X1+X2 = 0

$$X_{1}y \in W$$

$$\begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix} + \begin{pmatrix} y_{1} \\ y_{2} \\ y_{3} \end{pmatrix} = \begin{pmatrix} x_{1} + y_{1} \\ x_{2} + y_{2} \\ x_{3} + y_{3} \end{pmatrix}$$

$$X_{1} + X_{2} = 1 \qquad Y_{1} + Y_{2} = 1$$

$$X_{1} + y_{1} + X_{2} + y_{2} = 2$$

 $\times_1 + \times_2 = 1$

6 $W = \{x \in \mathbb{R}^3 : x_3 = 1\}$ $X + y = \begin{pmatrix} X_1 + y_1 \\ X_2 + y_2 \end{pmatrix}$ nem alsér Megjegpes: a unliverton mindig eleme as altérner

Definíció

Egy V vektortér v_1, v_2, \ldots, v_n vektorainak lineáris kombinációi a

$$\lambda_1 v_1 + \lambda_2 v_2 + \cdots + \lambda_n v_n, \qquad (\lambda_1, \lambda_2, \dots, \lambda_n \in \mathbb{K}),$$

alakú (V-beli) vektorok.

Megj.: A nullvektor mindig előáll ú.n. triviális lineáris kombinációként:

$$0=0\cdot v_1+\cdots+0\cdot v_n$$

Példák

1. \mathbb{R}^2 -ben a $v_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ és $v_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ vektorok egy lineáris kombinációja:

$$2\begin{pmatrix} 1\\0 \end{pmatrix} + 3\begin{pmatrix} 0\\1 \end{pmatrix} = \begin{pmatrix} 2\\3 \end{pmatrix}$$

Mutassuk meg, hogy minden \mathbb{R}^2 -beli vektor előállítható ezen két vektor lineáris kombinációjaként! $X = \begin{pmatrix} x_1 \\ y_2 \end{pmatrix} = x_1 \begin{pmatrix} 1 \\ 0 \end{pmatrix} + x_2 \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

Példák

2. \mathbb{R}^2 -ben a $v_1 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$ és $v_2 = \begin{pmatrix} 0 \\ 3 \end{pmatrix}$ vektorok egy lineáris kombinációja:

$$2\left(\begin{array}{c}2\\1\end{array}\right)-\left(\begin{array}{c}0\\3\end{array}\right)=\left(\begin{array}{c}4\\-1\end{array}\right)$$

Mely \mathbb{R}^2 -beli vektorok állíthatóak elő ezen két vektor lineáris kombinációjaként?

3. \mathbb{R}^3 -ban mely vektorok állnak elő a

$$v_1 = \left(egin{array}{c} 1 \\ 0 \\ 0 \end{array}
ight), v_2 = \left(egin{array}{c} 0 \\ 1 \\ 0 \end{array}
ight)$$

vektorok lineáris kombinációjaként?

IR2- ten $V_1 = \begin{pmatrix} 3 \\ -1 \end{pmatrix} \qquad V_2 = \begin{pmatrix} -6 \\ 2 \end{pmatrix}$ Pl leger $X = \begin{pmatrix} 2 \\ 4 \end{pmatrix}$ $X = \eta_{\Lambda} V_{\Lambda} + \eta_{Z} V_{Z}$ $\begin{pmatrix} z \\ 4 \end{pmatrix} = \begin{pmatrix} 3\eta_{\Lambda} \\ -\eta_{\Lambda} \end{pmatrix} + \begin{pmatrix} 6\eta_{Z} \\ 2\eta_{Z} \end{pmatrix} = \begin{pmatrix} 3\eta_{\Lambda} - 6\eta_{Z} \\ -\eta_{\Lambda} + 2\eta_{Z} \end{pmatrix} = 4$

 $-\eta_1 + 2\eta_2 = 4 / \cdot (-3)$

Tétel és definíció

Legyenek v_1, v_2, \ldots, v_n vektorok V-ben. Ekkor a $\{v_1, v_2, \ldots, v_n\}$ vektorrendszer összes lineáris kombinációi alteret alkotnak V-ben, amelyet a vektorrendszer által generált altérnek, vagy a vektorok által kifeszített altérnek nevezünk. Jele: $\mathcal{L}(v_1, \ldots, v_n)$.

Példa. Adjuk meg, hogy milyen alteret generálnak \mathbb{R}^3 -ban az alábbi vektorrendszerek.

$$\begin{pmatrix}
(a) \\
X_1 \\
X_2 \\
O
\end{pmatrix} = \frac{X_1}{2} \quad V_1 - X_2 V_2 \qquad v_1 = \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix}, v_2 = \begin{pmatrix} 0 \\ -1 \\ 0 \end{pmatrix}$$
(b)
$$v_1 = \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix}, v_2 = \begin{pmatrix} 0 \\ -1 \\ 0 \end{pmatrix}, v_3 = \begin{pmatrix} 0 \\ 0 \\ 3 \end{pmatrix}$$

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \frac{x_1}{2} v_1 - x_2 v_2 + \frac{x_3}{3} v_3 \qquad \text{a filties}$$

$$|R^3|$$

$$\begin{pmatrix} x_{1} \\ x_{2} \\ 0 \end{pmatrix} = x_{1} \begin{pmatrix} x_{1} \\ y_{2} \\ y_{3} \end{pmatrix} + \begin{pmatrix} x_{1} \\ x_{2} \\ y_{4} \end{pmatrix} + \begin{pmatrix} x_{2} \\ y_{3} \\ y_{4} \end{pmatrix} \\
\begin{pmatrix} x_{1} \\ y_{3} \\ y_{4} \\ y_{5} \end{pmatrix} = x_{1} \begin{pmatrix} x_{1} \\ y_{3} \\ y_{5} \\ y_{5} \end{pmatrix} - \begin{pmatrix} x_{1} \\ y_{3} \\ y_{5} \\ y_{5} \end{pmatrix} - \begin{pmatrix} x_{1} \\ y_{3} \\ y_{5} \\ y_{5} \end{pmatrix} - \begin{pmatrix} x_{1} \\ y_{3} \\ y_{5} \\ y_{5} \end{pmatrix} - \begin{pmatrix} x_{1} \\ y_{3} \\ y_{5} \\ y_{5} \end{pmatrix} - \begin{pmatrix} x_{1} \\ y_{5} \\ y_{5} \\ y_{5} \end{pmatrix} - \begin{pmatrix} x_{1} \\ y_{5} \\ y_{5} \\ y_{5} \\ y_{5} \end{pmatrix} - \begin{pmatrix} x_{1} \\ y_{5} \\ y_{5} \\ y_{5} \\ y_{5} \end{pmatrix} - \begin{pmatrix} x_{1} \\ y_{5} \\ y_{5} \\ y_{5} \\ y_{5} \end{pmatrix} - \begin{pmatrix} x_{1} \\ y_{5} \\ y_{5} \\ y_{5} \\ y_{5} \\ y_{5} \end{pmatrix} - \begin{pmatrix} x_{1} \\ y_{5} \\ y_{5}$$

(d)

$$v_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, v_2 = \begin{pmatrix} 0 \\ -1 \\ 0 \end{pmatrix}, v_3 = \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix}$$

(e)

$$X = \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix} = \chi_{1} \cdot V_{1}$$

$$v_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} 3 \\ 4 \\ 0 \end{pmatrix} = 3 \cdot V_1 - V_2 = -4V_2 + \frac{3}{2}V_3$$

$$\begin{pmatrix} \zeta_1 \\ \zeta_2 \\ \zeta_2 \end{pmatrix} = -\zeta_1 \cdot \nabla_1 - \nabla_2 = -\zeta_1 \cdot \nabla_2 \cdot \nabla_2 + \frac{\zeta_1}{2} \cdot \nabla_3 \cdot \nabla_2 \cdot \nabla_2 + \frac{\zeta_1}{2} \cdot \nabla_3 \cdot \nabla_3$$

Definíció

A V vektortér egy $\{v_1, v_2, \dots, v_n\}$ vektorrendszerét lineárisan függőnek nevezzük, ha léteznek olyan $\lambda_1, \lambda_2, \dots, \lambda_n \in \mathbb{K}$ nem mind **0** skalárok, hogy

 $\lambda_1 v_1 + \lambda_2 v_2 + \cdots + \lambda_n v_n = 0.$

(Azaz a nullvektor nemtriviálisan kikombinálható a vektorokból.) Ellenkező esetben a vektorrendszer lineárisan független.

Megjegyzés

A lineárisan független esetben tehát

$$\lambda_1 v_1 + \lambda_2 v_2 + \dots + \lambda_n v_n = 0$$

azt vonja maga után, hogy $\lambda_i = 0, \forall i \in \{1, \ldots, n\}$.

Példa: Döntsük el, hogy \mathbb{R}^2 -ben lineárisan függetlenek-e az alábbi vektorrendszerek.

(a) ha
$$\eta_{1}v_{1}+\eta_{2}v_{2}=0$$
 about $\eta_{1}=\eta_{2}=0$

$$v_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, v_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$V_{1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \qquad V_{2} = \begin{pmatrix} 0 \\ -1 \end{pmatrix} \qquad V_{3} = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$$
$$3V_{1} - 4V_{2} - V_{3} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\lim_{N \to \infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}$$

$$V_3 = 3V_1 - 4V_2$$

$$v_1=\left(egin{array}{c}2\\1\end{array}
ight),v_2=\left(egin{array}{c}0\\-1\end{array}
ight)$$

lin. frssdlenel

(c)
$$v_1 = \begin{pmatrix} 2 \\ -1 \end{pmatrix}, v_2 = \begin{pmatrix} -4 \\ 2 \end{pmatrix} \quad 2 \vee_1 + \vee_2 = 0$$
Lin. hosping

(d)

$$v_1=\left(egin{array}{c}2\\-1\end{array}
ight), v_2=\left(egin{array}{c}-4\\1\end{array}
ight)$$
 KiV. oldel

(e)

$$v_{1} = \begin{pmatrix} 2 \\ -1 \end{pmatrix}, v_{2} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, v_{3} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

$$V_{1} - V_{2} + 2V_{3} = 0$$

$$\begin{cases} -1 \\ -1 \\ -1 \end{cases}$$

$$\begin{array}{ll}
\left(\begin{array}{ccc}
\left(\begin{array}{c}
\gamma_{1} & \gamma_{2} & \gamma_{2} & \gamma_{3} \\
\gamma_{1} & \gamma_{2} & \gamma_{3} & \gamma_{4} \\
\end{array}\right) & \gamma_{1} & \gamma_{2} & \gamma_{2} & \gamma_{3} \\
\left(\begin{array}{c}
\gamma_{1} & \gamma_{1} & \gamma_{2} \\
\gamma_{1} & \gamma_{2} & \gamma_{3}
\end{array}\right) & = \begin{pmatrix}
\gamma_{1} & \gamma_{2} & \gamma_{3} \\
\gamma_{2} & \gamma_{3} & \gamma_{4} & \gamma_{5}
\end{array}\right) & = \begin{pmatrix}
\gamma_{1} & \gamma_{2} & \gamma_{3} \\
\gamma_{2} & \gamma_{3} & \gamma_{4} & \gamma_{5}
\end{array}\right)$$

 $-2\eta_{2}=0$ $-2\eta_{2}=0 \Rightarrow \eta_{2}=0$ $\eta_{3}=0$ $=) lin. frssellend
<math display="block">\frac{1}{\sqrt{2}}$

 $2\eta_{1} - 4\eta_{2} = 0$

Tétel

Egy V vektortér egy legalább kételemű vektorrendszere pontosan akkor lineárisan függő, ha a vektorrendszer valamely tagja előáll a többi tag lineáris kombinációjaként.

Következmények

- Ha egy vektorrendszerben két vektor egyenlő, akkor a vektrorrendszer lineárisan függő.
- 4 Ha egy vektorrendszerben egy vektor egy másiknak skalárszorosa, akkor a vektrorrendszer lineárisan függő.
- Ha a nullvektor benne van egy vektorrendszerben, akkor az függő, tehát lineárisan független vektorrendszer nem tartalmazhatja a nullvektort.
- Ha egy vektorrendszer valamely részrendszere lineárisan függő, akkor maga a vektorrendszer is az. Lineárisan független vektorrendszer bármely részrendszere is lineárisan független.

Generátorrendszer, bázis

Definíció

Legyen $\mathcal G$ a V vektortér egy vektorrendszere. $\mathcal G$ -t a V generátorrendszerének nevezzük, ha a $\mathcal G$ által generált altér a teljes vektortér. Ekkor tehát V minden vektora előáll $\mathcal G$ -beli vektorok lineáris kombinációjaként.

Példa: $V=\mathbb{R}^2$, $v=\binom{2}{1}$, $w=\binom{0}{3}$. Ekkor $\{v,w\}$ generátorrendszer. Legyen $u=\binom{1}{0}$. Ekkor $\{u,v,w\}$ is generátorrendszer, viszont lineárisan függő, hiszen 6u-3v+w=0. \Rightarrow Egy vektor többféleképpen is kikombinálható az u,v,w vektorokból, pl.

$$\binom{2}{4} = v + w = 2u + \frac{4}{3}w.$$

Definíció

A V vektortér egy lineárisan független generátorrendszerét a V egy bázisának nevezzük.

Bázis: lineárisan független generátorrendszer.

- Ha a \mathcal{B} vektorrendszer bázis, akkor V minden eleme **pontosan egyféleképpen** kombinálható ki lineárisan \mathcal{B} elemeiből.
- V-nek több (végtelen sok) bázisa van.

Tétel és definíció

A V vektortér bármely két bázisa azonos számosságú. Ha ez a számosság véges, akkor ezt a közös számosságot a vektortér dimenziójának nevezzük. Jele: $\dim(V)$. Megjegyzés: ha $V=\{0\}$, akkor $\dim(V)=0$.

Példa. Néhány bázis \mathbb{R}^2 -ben:

$$\mathcal{B}_1 = \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}, \quad \mathcal{B}_2 = \left\{ \begin{pmatrix} 2 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 5 \end{pmatrix} \right\}, \quad \mathcal{B}_3 = \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 \\ 1 \end{pmatrix} \right\}$$

Megjegyzés. A \mathcal{B}_1 bázist \mathbb{R}^2 természetes bázisának nevezzük. Hasonlóan definiálható \mathbb{R}^n -ben a természetes bázis: a bázis *i*-edik vektorának *i*-edik koordinátája 1, a többi 0 ($i=1,\ldots,n$).

Bázisra vonatkozó koordináták

Tétel

Ha egy n-dimenziós V vektortérben adott egy n elemű lineárisan független vektorrendszer, akkor az bázis.

Definíció

Legyen V vektortér, $\mathcal{B}=\{b_1,\ldots,b_n\}$ egy bázisa V-nek. Ekkor a fentiek szerint $\forall v \in V$ egyértelműen kombinálható lineárisan \mathcal{B} vektoraiból, azaz egyértelműen léteznek $\lambda_1,\lambda_2,\ldots,\lambda_n$ skalárok, hogy

$$v = \lambda_1 b_1 + \cdots + \lambda_n b_n.$$

Ezeket a skalárokat a v vektor $\mathcal B$ bázisra vonatkozó koordinátáinak nevezzük. Ekkor v alakja a $\mathcal B$ bázisban:

$$v = \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_n \end{pmatrix}.$$

Definíció

Legyen ${\mathcal A}$ a vektortér egy vektorrendszere. Az ${\mathcal A}$ vektorrendszer rangja az általa generált altér dimenziója:

$$rang(A) = dim(\mathcal{L}(A)).$$

Példa. Mennyi a

$$v_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \quad v_2 = \begin{pmatrix} 0 \\ -1 \\ 0 \end{pmatrix}, \quad v_3 = \begin{pmatrix} 2 \\ 0 \\ 2 \end{pmatrix}.$$

vektorrendszer rangja?

Tétel

Egy vektorrendszer rangja nem változik, ha bármely eleméhez hozzáadjuk a többi elem tetszőleges lineáris kombinációját.