Матвеева Т.А., Светличная В.Б., Агишева Д.К., Зотова С.А.

Линейные векторные пространства. Конспект лекций

Волгоград 2011 г.

Министерство образования и науки РФ Волжский политехнический институт (филиал) федерального государственного бюджетного образовательного учреждения высшего профессионального образования «Волгоградский государственный технический университет»

Т.А. Матвеева, В.Б. Светличная, Д.К. Агишева, С.А. Зотова

Линейные векторные пространства. Конспект лекций

Учебное пособие

Волгоград 2011 г.

Рецензенты:

Издается по решению редакционно-издательского совета

Волгоградского государственного технического университета

Матвеева, Т.А. Линейные векторные пространства. Конспект лекций. [Электронный ресурс]: учебное пособие/ Т.А. Матвеева, В.Б. Светличная, Д.К. Агишева, С.А. Зотова //Сборник «Учебные пособия». Выпуск 3. – Электрон. текстовые дан.(1 файл:3,26 МБ) — Волжский: ВПИ (филиал) ВолгГТУ, 2011 г. — Систем. требования: Windows 95 и выше; ПК с процессором 486 +; CD-ROM.

Учебное пособие содержит конспект лекций «Линейные и векторные пространства». Данный курс является одним из базовых курсов линейной алгебры. Линейная алгебра занимает важное место в вузовском образовании инженеров. Цель данного пособия помочь студентам глубже усвоить идеи и методы предмета, показать их важность для решения прикладных задач, которые встречаются при анализе больших массивов информации.

Пособие рассчитано на студентов дневной и вечерней, заочной форм обучения направления бакалавриата 230100.62 «Информатика и вычислительная техника» (профиль подготовки «Автоматизированные системы обработки информации и управления»).

Табл. 3, библиограф. 7 назв.

- © Волгоградский государственный технический университет, 2011
- © Волжский политехнический институт, 2011

ОГЛАВЛЕНИЕ

ОГЛАВЛЕНИЕ						
Глава 1. ЛИНЕЙНЫЕ ПРОСТРАНСТВА						
1.1.	Определение линейного пространства					
1.2.	Линейная зависимость					
1.3.	Базис. Размерность	8				
1.4.	. Координаты вектора					
1.5.	1.5. Ранг системы векторов					
1.6.	. Изменение координат вектора при переходе к новому базису					
1.7.	7. Подпространство					
1.8.	Сумма и пересечение подпространств					
1.9.	. Прямая сумма подпространств					
Глава 2.	СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ					
2.1.	2.1. Критерий совместности системы линейных уравнений					
2.2.	2.2. Однородные системы линейных уравнений					
2.3.	Связь между решениями неоднородной и соответствующей	24				
	однородной систем линейных уравнений					
Глава 3.	ЛИНЕЙНЫЕ ОПЕРАТОРЫ	25				
3.1.	Определение и простейшие свойства линейных операторов	25				
3.2.	Матрица линейного оператора	27				
3.3.	Действия с линейными операторами	29				
3.4.	Изменение матрицы линейного оператора при замене базиса	31				
3.5.	Изоморфизмы линейных пространств	31				
3.6.	Ядро и образ линейного оператора. Ранг и дефект оператора	34				
3.7.	Инвариантное подпространство					
3.8.	Линейный оператор с клеточно-диагональной матрицей	37				
3.9.	Характеристический многочлен матрицы 3					
3.10.	Собственные векторы и собственные значения линейного оператора	41				
3.11.	Приведение матриц линейного оператора к диагональному виду					
0,11,	и его применение	43				
Глава 4.	МАТРИЦЫ НАД КОЛЬЦОМ МНОГОЧЛЕНОВ	49				
4.1.	Каноническая форма матрицы над кольцом многочленов	49				
4.2.	Элементарные делители матрицы	53				
4.3.	Матричные многочлены	56				
Глава 5.	НОРМАЛЬНЫЕ ФОРМЫ МАТРИЦЫ НАД ПОЛЕМ	57				
5.1.	Определение и построение жордановой нормальной формы	57				
5.2.	Минимальный многочлен матрицы	62				
5.3.	Интерполяционный многочлен Лагранжа-Сильвестра.					
	Функции от матриц	63				
5.4.	Спектральное разложение матрицы $f(A)$ и его применение	66				
СПИСОК	РЕКОМЕНДУЕМОЙ ЛИТЕРАТУРЫ	70.				

ГЛАВА 1. ЛИНЕЙНЫЕ ПРОСТРАНСТВА

Понятие линейного векторного пространства является основным в линейной алгебре и одним из важнейших в математике. В этой главе излагаются основы теории линейных пространств.

1.1. Определение линейного пространства

Пусть V — непустое множество (его элементы будем называть векторами и обозначать \overline{a} , \overline{b} , \overline{c} , ...) над числовым полем P, в котором установлены правила: для любых двух векторов \overline{a} , $\overline{b} \in V$ определен элемент $\overline{a} + \overline{b} \in V$ и для любого вектора $\overline{a} \in V$ и числа $\alpha \in P$ определен вектор $\alpha \cdot \overline{a} \in V$. Кратко эти условия записываются следующим образом:

- 1. $\forall \overline{a}, \overline{b} \in V \quad \exists \overline{c} \in V : \quad \overline{a} + \overline{b} = \overline{c}$;
- 2. $\forall \overline{a} \in V$; $\forall \alpha \in P \quad \exists \overline{b} \in V$: $\alpha \cdot \overline{a} = \overline{b}$.

И говорят, что данное множество замкнуто относительно введенных операций: $\overline{a}+\overline{b}$, $\alpha\cdot\overline{a}$.

Множество V называется линейным векторным пространством (ЛВП) над полем P, для элементов которого определены операции сложения, умножения на число и выполняются аксиомы (табл.1).

Таблица 1.

1	$\forall \overline{a}, \overline{b} \in V$ $\overline{a} + \overline{b} = \overline{b} + \overline{a}$ (коммутативность);
2	$\forall \overline{a}, \overline{b} \overline{c} \in V \qquad (\overline{a} + \overline{b}) + \overline{c} = \overline{a} + (\overline{b} + \overline{c}) \text{ (ассоциативность)};$
3	$\exists \ \overline{0}: \ \overline{a} + \overline{0} = \overline{a} \ \forall \overline{a} \in V$ (существование нулевого вектора);
4	$\forall \ \overline{a} \in V \ \exists (-\overline{a}) \in V \colon \ \overline{a} + (-\overline{a}) = \overline{0}$ (существование противоположного вектора);
5	$\forall \overline{a} \in V 1 \cdot \overline{a} = \overline{a} ;$
6	$\forall \overline{a} \in V \alpha(\beta \overline{a}) = (\alpha \beta) \overline{a}, \forall \alpha, \beta \in P;$
7	$\forall \overline{a}, \overline{b} \in V \qquad \alpha \cdot (\overline{a} + \overline{b}) = \alpha \overline{a} + \alpha \overline{b}, \alpha \in P;$
8	$\forall \overline{a} \in V (\alpha + \beta) \cdot \overline{a} = \alpha \overline{a} + \beta \overline{a}, \forall \alpha, \beta \in P.$

Условимся элементы пространства V называть *векторами*. Элементы поля P будем называть *числами*. Часто вместо слова «линейное» говорят «векторное» (пространство).

Пример 1.1. Образует ли линейное пространство заданное множество, в котором определены сумма любых двух элементов \overline{a} и \overline{b} произведение любого элемента \overline{a} на любое число α ? Множество всех сходящихся последовательностей $\overline{a} = \{u_n\}$, $\overline{b} = \{v_n\}$; сумма $\{u_n + v_n\}$, произведение $\{\alpha u_n\}$.

Решение.

Напомним, последовательность $\{u_n\}$ сходится, если существует конечный предел $s=\lim_{n\to +\infty}u_n$. Тогда по свойствам пределов для сходящихся последовательностей $\overline{a}=\{u_n\},\ \overline{b}=\{v_n\},$ последовательности $\overline{a}+\overline{b}=\{u_n+v_n\}$ и $\alpha\overline{a}=\{\alpha u_n\}$ тоже сходятся. Таким образом, данное множество замкнуто относительно введенных операций: $\overline{a}+\overline{b},\ \alpha\overline{a}$.

Проверим выполнение аксиом для линейного пространства:

- 1. $\overline{a} + \overline{b} = \overline{b} + \overline{a}$ выполняется, т.к. $\{u_n + v_n\} = \{v_n + u_n\}$;
- 2. $(\overline{a} + \overline{b}) + \overline{c} = \overline{a} + (\overline{b} + \overline{c})$ \square аналогично выполняется;
- 3. в качества нуля возьмём $\overline{0} = \{0,0,...,0\} = \{0\}$ (сходящаяся последовательность), для которого выполняется $\overline{a} + \overline{0} = \{u_n + 0\} = \{u_n\} = \overline{a}$;
- 4. в качестве противоположного элемента возьмём $(-\overline{a}) = \{-u_n\}$ (сходящаяся последовательность), $\overline{a} + (-\overline{a}) = \{u_n u_n\} = \{0\} = \overline{0}$;
 - 5. $\overline{a} \cdot 1 = \{u_n \cdot 1\} = \{u_n\} = \overline{a}$ выполняется;
 - 6. $\alpha(\beta \overline{a}) = \{\alpha(\beta u_n)\} = \{(\alpha\beta)u_n\} = (\alpha\beta)\overline{a}$ выполняется;
 - 7. $(\alpha + \beta)\overline{a} = \{\alpha u_n + \beta u_n\} = \{\alpha u_n\} + \{\beta u_n\} = \alpha \overline{a} + \beta \overline{a}$ выполняется;
 - 8. $\alpha(\overline{a} + \overline{b}) = \{\alpha u_n + \alpha v_n\} = \{\alpha u_n\} + \{\alpha v_n\} = \alpha \overline{a} + \alpha \overline{b}$ выполняется.
- Т.о. множество всех сходящихся последовательностей с введёнными операциями сложения и умножения на число является линейным пространством (ЛВП).

Примеры линейных пространств

1. Множество всех свободных векторов относительно обычных операций сложения векторов и умножения вектора на действительное число является действительным линейным пространством.

Аналогично линейными пространствами являются множество всех векторов плоскости и множество всех векторов прямой.

 $2.\ M_{n\times m}$ – множество матриц размерности $n\times m$ над полем R относительно операций сложения матриц и умножения на элемент поля P образуют линейное пространство.

Линейное пространство матриц-столбцов $M_{n\times 1}$ над полем действительных чисел R используется очень часто. Принятое обозначение $P_{1,n}$: $\bar{x}=(x_1,\,x_2,...,x_n)^T$.

- 3. $P_n(x)$ множество многочленов с действительными коэффициентами не выше степени n образуют линейное пространство относительно операций сложения многочленов и умножения многочлена на действительное число.
- 4. Множество всех функций вида $f: R \rightarrow R$ является действительным линейным пространством. Сложение векторов и умножение их на числа задаются формулами

$$(f+g)(x)=f(x)+g(x), (\alpha \cdot f)(x)=\alpha \cdot f(x),$$

где f(x), g(x) – функции; $\alpha, x \in \mathbb{R}$.

Из приведенных примеров видно, что элементы линейного пространства могут быть совершенно различной природы: геометрические векторы, матрицы, многочлены, последовательности и т.д.

Отметим простейшие свойства линейных пространств

- 1. $\forall \overline{a} \in V \quad 0 \cdot \overline{a} = \overline{0}$,
- 2. $\forall \overline{a} \in V \quad -1 \cdot \overline{a} = -\overline{a}$,
- 3. $\forall \overline{a} \in V$ элемент $(-\overline{a})$ определен однозначно.

В определении линейного пространства в качестве поля P может быть, например, $R \square$ поле действительных чисел, C – поле комплексных чисел, Z – поле целых чисел, N – поле натуральных чисел. Наиболее важны линейные пространства над полями действительных и комплексных чисел. Ниже эти пространства называются ∂ ействительным и комплексным линейными пространствами соответственно.

1.2. Линейная зависимость

Пусть задана конечная система векторов $\overline{a}_1, \overline{a}_2, ..., \overline{a}_m$ линейного пространства V над полем P.

Система векторов $\overline{a}_1, \overline{a}_2, ..., \overline{a}_m$ называется *линейно зависимой*, если в поле P существуют числа $\lambda_1, \lambda_2, ..., \lambda_m$, не равные одновременно нулю и такие, что $\lambda_1 \overline{a}_1 + \lambda_2 \overline{a}_2 + ... + \lambda_m \overline{a}_m = \overline{0}$.

Система $\overline{a}_1,\overline{a}_2,...,\overline{a}_m$ называется линейно независимой, если из равенства $\lambda_1\overline{a}_1+\lambda_2\overline{a}_2+..+\lambda_m\overline{a}_m=\overline{0}$ следует, что $\lambda_1=\lambda_2=...=\lambda_m=0$.

Например, в пространстве матриц-столбцов $P_{1,3}$ система векторов $\overline{a}_1=(1,4,6)^T$, $\overline{a}_2=(1,-1,1)^T$, $\overline{a}_3=(1,1,3)^T$ является линейно зависимой, т.к. $2\overline{a}_1+3\overline{a}_2-5\overline{a}_3=0$.

Если $\beta_1, \beta_2, ..., \beta_m$ являются элементами поля P, то вектор

$$\overline{b} = \beta_1 \overline{a}_1 + \beta_2 \overline{a}_2 + ... + \beta_m \overline{a}_m$$

называется линейной комбинацией векторов $\overline{a}_1, \overline{a}_2,.., \overline{a}_m$, а числа $m{\beta}_1, m{\beta}_2,.., m{\beta}_m$ – коэффициентами этой линейной комбинации.

Очевидно, что определения линейной зависимости и независимости можно сформулировать следующим образом: при m>1 система векторов $\overline{a}_1, \overline{a}_2, ..., \overline{a}_m$ линейно зависима, если какой-либо из векторов этой системы является линейной комбинацией остальных.

Утв.1.1.

Если система векторов $\overline{a}_1,\overline{a}_2,..,\overline{a}_m$ линейно независима, а система $\overline{a}_1,\overline{a}_2,..,\overline{a}_m,\overline{b}$ линейно зависима, то вектор \overline{b} является линейной комбинацией векторов $\overline{a}_1,\overline{a}_2,..,\overline{a}_m$.

Пример 1.2. Показать, что система столбцов

$$\overline{e}_1 = (1, 0, ..., 0)^T, \overline{e}_2 = (0, 1, 0, ..., 0)^T, ..., \overline{e}_n = (0, 0, ..., 0, 1)^T$$
 пространства $P_{1,n}$ линейно независима.

Решение. Предположим противное, т.е. что какой-то вектор \overline{e}_j из векторов (1.1) является линейной комбинацией остальных, но у вектора \overline{e}_j координата j равна 1. Составляя линейные комбинации остальных векторов, мы будем получать векторы, j-ая координата которых равна нулю. Следовательно, получить из таких векторов \overline{e}_j невозможно. Это и доказывает линейную независимость системы (1.1).

Свойства линейной зависимости и независимости векторов

- 1. Система, содержащая нулевой вектор, линейно зависима.
- 2. Система, содержащая равные векторы, линейно зависима.
- 3. Если какая-либо подсистема (часть) системы векторов линейно зависима, то и вся система линейно зависима.
- 4. Если система векторов линейно независима, то всякая её подсистема также линейно независима.

Можно говорить также о линейной зависимости и линейной независимости бесконечных систем векторов.

Свойство 3 подсказывает следующее определение: бесконечная система векторов называется *линейно независимой*, если линейно независима каждая ее конечная подсистема, и *линейно зависимой*, если какая-либо ее конечная подсистема линейно зависима.

1.3. Размерность и базис линейного пространства

Pазмерностью конечномерного линейного пространства V называют натуральное число n, которое численно равно максимальному числу линейно независимых векторов пространства V. Размерность пространства V обозначают $\dim V$.

Если V бесконечномерное пространство, то полагают $\dim V = \infty$.

Если $V = \{\overline{0}\}$, то полагают $\dim V = 0$.

Если $\dim V=n$, это означает, что существует хотя бы одна линейно независимая система векторов $\overline{a}_1,\overline{a}_2,...,\overline{a}_n$, а любая система из векторов $\overline{b}_1,\overline{b}_2,...,\overline{b}_{n+1}$ линейно зависима.

Пусть $\dim V = n < \infty$. *Базисом пространства V* называется упорядоченная линейно независимая система векторов $\overline{a}_1, \overline{a}_2, ..., \overline{a}_n$.

Очевидно, что если $0 < \dim V < \infty$, то в пространстве существует хотя бы один базис; все базисы линейного пространства V содержат одинаковое число элементов $n = \dim V$.

Примеры.

- 1. Прямая (R^1) одномерное пространство, базис любой ненулевой вектор.
- 2. Плоскость (R^2) двумерное пространство, базис $\{\overline{a}_1, \overline{a}_2\}$, где $\overline{a}_1, \overline{a}_2$ линейно независимые (неколлинеарные) векторы.
 - 3. Размерность пространства матриц $M_{n \times m}$ равна $\dim(M_{n \times m}) = n \cdot m$.
- 4. Размерность пространства $P_n(x)$ многочленов степени не выше n равна $\dim(P_n(x)) = n+1$, базис $-\{1, x, x^2, ..., x^n\}$.

Теорема 1.1. (о базисе линейного пространства).

Пусть V — линейное конечномерное пространство $(\dim V = n)$; $\{\overline{e}_1, \overline{e}_2, ..., \overline{e}_n\}$ — базис данного пространства, тогда $\forall \overline{a} \in V$ может быть единственным образом разложен по базису, т.е. представлен в виде линейной комбинации базисных векторов

$$\overline{a} = \lambda_1 \overline{e}_1 + \lambda_2 \overline{e}_2 + \dots + \lambda_n \overline{e}_n. \tag{1.2}$$

Доказательство.

Рассмотрим систему векторов $\{\overline{e}_1,\overline{e}_2,..,\overline{e}_n,\overline{a}\}$. Из определений размерности и базиса следует, что эта система векторов линейно зависима. Покажем, что вектор \overline{a} является линейной комбинацией векторов $\overline{e}_1,\overline{e}_2,..,\overline{e}_n$. Допустим, что это не так, но тогда среди векторов $\overline{e}_1,\overline{e}_2,..,\overline{e}_n$ должен быть вектор, являющейся линейной комбинацией остальных. Обозначим его \overline{e}_{i_0} , тогда

$$\overline{e}_{i_0} = \beta_1 \overline{e}_1 + \beta_2 \overline{e}_2 + ... + \beta_{i_0-1} \overline{e}_{i_0-1} + \beta_{i_0+1} \overline{e}_{i_0+1} + ... + \beta_n \overline{e}_n + \beta_{n+1} \overline{a}.$$

В данном равенстве $\beta_{n+1} \neq 0$, т.к. иначе мы имели бы, что вектор \overline{e}_{i_0} является в системе $\{\overline{e}_1, \overline{e}_2, ..., \overline{e}_n\}$ линейной комбинацией остальных, что противоречит ее линейной независимости.

Учитывая, что $\beta_{n+1} \neq 0$, получаем

$$\begin{split} \overline{a} = & \left(-\frac{\beta_1}{\beta_{n+1}} \right) \overline{e}_1 + \left(-\frac{\beta_2}{\beta_{n+1}} \right) \overline{e}_2 + \ldots + \left(-\frac{\beta_{i_0-1}}{\beta_{n+1}} \right) \overline{e}_{i_0-1} \\ & + \left(\frac{1}{\beta_{n+1}} \right) \overline{e}_{i_0} + \left(-\frac{\beta_{i_0+1}}{\beta_{n+1}} \right) \overline{e}_{i_0+1} + \ldots + \left(-\frac{\beta_n}{\beta_{n+1}} \right) \overline{e}_n. \end{split}$$

Последнее противоречит нашему предположению, что вектор \overline{a} не является линейной комбинацией базисных векторов.

Покажем теперь единственность представления (1.2). Допустим противное, т.е. что в пространстве V существует такой вектор \overline{a} , у которого по крайне мере два представления (1.2):

$$\overline{a} = \lambda_1 \overline{e}_1 + \lambda_2 \overline{e}_2 + \ldots + \lambda_n \overline{e}_n, \quad \overline{a} = \widetilde{\lambda}_1 \overline{e}_1 + \widetilde{\lambda}_2 \overline{e}_2 + \ldots + \widetilde{\lambda}_n \overline{e}_n,$$
 где $(\lambda_1, \lambda_2, \ldots, \lambda_n) \neq (\widetilde{\lambda}_1, \widetilde{\lambda}_2, \ldots, \widetilde{\lambda}_n).$

Вычитая полученные равенства, имеем

$$(\lambda_1 - \widetilde{\lambda}_1)\overline{e}_1 + (\lambda_2 - \widetilde{\lambda}_2)\overline{e}_2 + \dots + (\lambda_n - \widetilde{\lambda}_n)\overline{e}_n = \overline{0}.$$

Данное равенство противоречит определению линейной независимости векторов. **◄**

Пример 1.3. Показать, что система (1.1) в пространстве $P_{1,n}$ образует базис.

Решение. Система $\bar{e}_1 = (1,0,...,0)^T$, $\bar{e}_2 = (0,1,0,...,0)^T$, ..., $\bar{e}_n = (0,0,...,0,1)^T$ линейно независима (см. пример 1.2). Произвольный столбен $\bar{a} = (\lambda_1, \lambda_2, ..., \lambda_n)$ линейно выражается через систему (1.1):

$$\overline{a} = \lambda_1 \overline{e}_1 + \lambda_2 \overline{e}_2 + \dots + \lambda_n \overline{e}_n.$$

Поэтому система (1.1) является базисом пространства строк $P_{1,n}$ и, значит, $\dim P_{1,n}=n$.

Теорема 1.2.

Для произвольного п-мерного линейного пространства верны следующие три утверждения:

- 1) всякая система векторов, в которой число векторов больше п, линейно зависима;
 - 2) всякая линейно независимая система п векторов является базисом;
- 3) всякая линейно независимая система векторов, число векторов в которой меньше п, может быть дополнена до базиса.

Доказательство.

- 1. Первое утверждение непосредственно следует из определений размерности и базиса пространства.
- 2. Пусть $\{\overline{a}_1, \overline{a}_2, ..., \overline{a}_n\}$ является линейно независимой системой векторов n-мерного линейного пространства V, \overline{b} произвольный вектор этого пространства. Согласно первому утверждению теоремы, система векторов $\{\overline{a}_1, \overline{a}_2, ..., \overline{a}_n, \overline{b}\}$ линейно зависима, следовательно, по утв.1.1. вектор \overline{b} линейно выражается через систему $\{\overline{a}_1, \overline{a}_2, ..., \overline{a}_n\}$. Таким образом, данная система является базисом пространства V.
- 3. Пусть заданы линейно независимая система векторов $\{\overline{a}_1, \overline{a}_2, ..., \overline{a}_m\}$ и базис $\{\overline{b}_1, \overline{b}_2, ..., \overline{b}_n\}$ пространства V и пусть m < n.

Система $\overline{a}_1, \overline{a}_2,..., \overline{a}_m$, $\overline{b}_1, \overline{b}_2,..., \overline{b}_n$ линейно зависима. Последовательно исключим из этой системы все векторы, являющиеся линейными комбинациями предыдущих. Так как векторы $\overline{a}_1, \overline{a}_2,..., \overline{a}_m$ линейно независимы, то все они останутся в системе, и полученная система примет вид

$$\overline{a}_1, \overline{a}_2, ..., \overline{a}_m, \overline{b}_{i1}, \overline{b}_{i2}, ..., \overline{b}_{ik}, \quad m+k=n.$$

Т.к. это множество является системой n линейно независимых векторов, то из определения следует, что она является базисом линейного n-мерного пространства V.

1.4. Координаты вектора

Пусть V-n-мерное линейное пространство над полем P, система векторов $\{\overline{e}_1,\overline{e}_2,...,\overline{e}_n\}$ является базисом пространства $V,\ \overline{a}$ — произвольный вектор этого пространства. Тогда \overline{a} линейно выражается через базис, т. е.

$$\overline{a} = \lambda_1 \overline{e}_1 + \lambda_2 \overline{e}_2 + ... + \lambda_n \overline{e}_n.$$

Это представление вектора \overline{a} называется разложением по базисным векторам, а коэффициенты $\lambda_1, \lambda_2, ..., \lambda_n$ называют координатами вектора \overline{a} .

Координаты вектора \bar{a} в базисе $\{\bar{e}_1,\bar{e}_2,..,\bar{e}_n\}$ будем записывать в виде вектор-столбца и обозначать

$$(\overline{a})_{\{e_i\}} = (\lambda_1, \lambda_2, ..., \lambda_n)^T$$
.

Из теоремы 1.1 следует, что координаты вектора в заданном базисе определяются однозначно.

Если V-n-мерное линейное пространство над полем P, то

1.
$$\forall \overline{a}, \overline{b} \in V$$

$$(\overline{a} + \overline{b})_{\{e_i\}} = (\overline{a})_{\{e_i\}} + (\overline{b})_{\{e_i\}},$$

2.
$$\forall \overline{a} \in V$$
; $\forall \lambda \in P$ $(\lambda \overline{a})_{\{e_i\}} = \lambda \cdot (\overline{a})_{\{e_i\}}$,

т.е. линейным операциям над векторами соответствуют линейные операции над их координатами.

1.5. Ранг системы векторов

Число векторов, составляющих базис системы векторов, называется *рангом этой системы*. Если каждый вектор системы нулевой, то ее ранг по определению равен нулю.

Утв.1.2.

Вектор \overline{b} линейно выражается через систему векторов $\overline{a}_1, \overline{a}_2, ..., \overline{a}_m$, тогда и только тогда, когда ранги систем $\left\{\overline{a}_1, \overline{a}_2, ..., \overline{a}_m\right\}$ и $\left\{\overline{a}_1, \overline{a}_2, ..., \overline{a}_m, \overline{b}\right\}$ равны.

Пусть дана матрица
$$A=\begin{pmatrix} a_{11}&a_{12}&...&a_{1n}\\a_{21}&a_{22}&...&a_{2n}\\...&...&...\\a_{m1}&a_{m2}&...&a_{mn} \end{pmatrix}$$
 над произвольным полем

P. Будем рассматривать ее столбцы как векторы пространства $P_{1,m}$ столбцов, состоящих из m элементов.

Pанг системы столбцов матрицы A называется рангом матрицы A и обозначается символом rang A.

Т.к. ранг матрицы не меняется при ее транспонировании, то ранг матрицы равен рангу системы ее строк.

Теорема 1.3. (критерий равенства определителя нулю).

Определитель квадратной матрицы равен нулю тогда и только тогда, когда ее строки (столбцы) линейно зависимы.

Следствие. Пусть в n-мерном линейном пространстве V зафиксирован базис $\{\bar{e}_1, \bar{e}_2, ..., \bar{e}_n\}$ и векторы $\bar{a}_1, \bar{a}_2, ..., \bar{a}_k$ имеют в этом базисе координатные столбцы $A_i = (a_{1i}, a_{2i}, ..., a_{ni})^T$, i = 1, 2, ..., k. Тогда

1) ранг системы векторов $\overline{a}_1,\overline{a}_2,..,\overline{a}_k$ равен рангу матрицы

$$A = (A_1, A_2, \dots, A_k) = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1k} \\ a_{21} & a_{22} & \dots & a_{2k} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nk} \end{pmatrix},$$

столбцами которой служат координатные столбцы этих векторов;

- 2) система векторов $\overline{a}_1,\overline{a}_2,..,\overline{a}_k$ линейно независима, тогда и только тогда, когда $rang\ A=k\le n$;
- 3) система векторов $\overline{a}_1, \overline{a}_2, ..., \overline{a}_k$ является базисом пространства V тогда и только тогда, когда k=n и $\det A \neq 0$;
- 4) векторы $\overline{a}_{i_1}, \overline{a}_{i_2},..., \overline{a}_{i_r}$ составляют базис системы $\overline{a}_1, \overline{a}_2,..., \overline{a}_k$ тогда и только тогда, когда столбцы матрицы A с номерами $i_1, i_2,..., i_r$ содержат базисный минор порядка r этой матрицы.

1.6. Изменение координат вектора при переходе к новому базису

Пусть $P_n(x)$ – линейное пространство многочленов степени не выше n, одним из базисов этого пространства является система векторов $\left\{1,x,x^2,...,x^n\right\}$, т.е. $\dim(P_n(x))=n+1$. Координатами многочлена $f(x)=a_0+a_1x+a_2$ $x^2+...+a_nx^n$ в этом базисе являются его коэффициенты $(a_0,a_1,a_2,...,a_n)^T$.

Но тот же многочлен можно представить в виде многочлена Тейлора

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n,$$

т.е. в базисе $\left\{1,(x-x_0),(x-x_0)^2,...,(x-x_0)^n\right\}$ координатами того же многочлена будут $\left(f(x_0),\frac{f'(x_0)}{1!},\frac{f''(x_0)}{2!},...,\frac{f^{(n)}(x_0)}{n!}\right)^T$.

Покажем, как изменяются координаты вектора при переходе к новому базису.

Рассмотрим два базиса в n-мерном пространстве $V\left\{\bar{e}_1,\bar{e}_2,...,\bar{e}_n\right\}$ и $\left\{\tilde{e}_1,\tilde{e}_2,...,\tilde{e}_n\right\}$. Пусть известны разложения новых базисных векторов $\left\{\tilde{e}_1,\tilde{e}_2,...,\tilde{e}_n\right\}$ по базису $\left\{\bar{e}_1,\bar{e}_2,...,\bar{e}_n\right\}$:

$$\begin{cases} \widetilde{e}_1 = b_{11}\overline{e}_1 + b_{21}\overline{e}_2 + \ldots + b_{n1}\overline{e}_n, \\ \widetilde{e}_2 = b_{12}\overline{e}_1 + b_{22}\overline{e}_2 + \ldots + b_{n2}\overline{e}_n, \\ \vdots \\ \widetilde{e}_n = b_{1n}\overline{e}_1 + b_{2n}\overline{e}_2 + \ldots + b_{nn}\overline{e}_n. \end{cases}$$
 Матрица коэффициентов этой системы (B^T) .

 $\det(B^T) \neq 0$, т.к. $\{\overline{e}_1, \overline{e}_2, ..., \overline{e}_n\}$ – базис (векторы линейно независимы).

Пусть вектор \overline{a} в старом базисе $\{\overline{e}_1,\overline{e}_2,..,\overline{e}_n\}$ имеет координаты $\overline{a}=(x_1,x_2,..,x_n)^T$, т.е. $\overline{a}=x_1\overline{e}_1+x_2\overline{e}_2+...+x_n\overline{e}_n$; в новом базисе $\{\widetilde{e}_1,\widetilde{e}_2,...,\widetilde{e}_n\}$ вектор $\overline{a}=(\widetilde{x}_1,\widetilde{x}_2,...,\widetilde{x}_n)^T$, т.е. $\overline{a}=\widetilde{x}_1\widetilde{e}_1+\widetilde{x}_2\widetilde{e}_2+...+\widetilde{x}_n\widetilde{e}_n$.

Тогда
$$\overline{a} = \widetilde{x}_1 \widetilde{e}_1 + \widetilde{x}_2 \widetilde{e}_2 + ... + \widetilde{x}_n \widetilde{e}_n =$$

$$= \widetilde{x}_1 (b_{11} \overline{e}_1 + b_{21} \overline{e}_2 + ... + b_{n1} \overline{e}_n) +$$

$$+ \widetilde{x}_2 (b_{12} \overline{e}_1 + b_{22} \overline{e}_2 + ... + b_{n2} \overline{e}_n) +$$

$$+ +$$

$$+ \widetilde{x}_n (b_{1n} \overline{e}_1 + b_{2n} \overline{e}_2 + ... + b_{nn} \overline{e}_n) =$$

$$= \underbrace{\left(\widetilde{x}_1 b_{11} + \widetilde{x}_2 b_{12} + ... + \widetilde{x}_n b_{1n}\right)}_{x_1} \overline{e}_1 + \underbrace{\left(\widetilde{x}_1 b_{21} + \widetilde{x}_2 b_{22} + ... + \widetilde{x}_n b_{2n}\right)}_{x_2} \overline{e}_2 +$$

$$+ ... + \underbrace{\left(\widetilde{x}_1 b_{n1} + \widetilde{x}_2 b_{n2} + ... + \widetilde{x}_n b_{nn}\right)}_{x_n} \overline{e}_n,$$

т.е. получено разложение вектора \overline{a} в старом базисе $\{\overline{e}_1,\overline{e}_2,...,\overline{e}_n\}$.

Следовательно,

$$\begin{cases} x_1 = b_{11}\widetilde{x}_1 + b_{12}\widetilde{x}_2 + \dots + b_{1n}\widetilde{x}_n, \\ x_2 = b_{21}\widetilde{x}_1 + b_{22}\widetilde{x}_2 + \dots + b_{2n}\widetilde{x}_n, \\ & \dots \\ x_n = b_{n1}\widetilde{x}_1 + b_{n2}\widetilde{x}_2 + \dots + b_{nn}\widetilde{x}_n. \end{cases}$$
 Матрица коэффициентов этой системы (B) .

В матричном виде запишем

$$X = B\widetilde{X} \, , \tag{1.3}$$

 $\overline{X = B \, \widetilde{X}} \,, \tag{1.3}$ где $B = \left(b_{ij}\right)_{n \times n}$ — матрица перехода от старого базиса $\left\{\overline{e}_1, \overline{e}_2, ..., \overline{e}_n\right\}$ к новому базису $\{\widetilde{e}_1,\widetilde{e}_2,...,\widetilde{e}_n\}$; $X=(x_1,x_2,...,x_n)^T$ – столбец координат вектора \overline{a} в старом базисе, $\widetilde{X} = (\widetilde{x}_{_1}, \widetilde{x}_{_2}, ..., \widetilde{x}_{_n})^T -$ столбец новых координат вектора \overline{a} .

Т.к. $\det(B^T) \neq 0$, то существует обратная матрица B^{-1} . Следовательно, умножая обе части равенства (1.3) слева на B^{-1} , получим $\widetilde{X} = B^{-1} X$,

$$\widetilde{X} = B^{-1} X \,, \tag{1.4}$$

т.е. имеем выражение новых координат через старые координаты.

1.7. Подпространство

Пусть V – линейное пространство над полем P. Непустое подмножество U пространства V называется nodnpocmpa+cmeom пространства V, если оно удовлетворяет следующим двум условиям:

- 1. $\forall \ \overline{a}, \overline{b} \in U \implies \overline{a} + \overline{b} \in U$, (*U* замкнуто относительно сложения);
- 2. $\forall \ \overline{a} \in U; \ \forall \ \alpha \in P \implies \alpha \cdot \overline{a} \in U (U$ замкнуто относительно умножения векторов на числа).

Очевидно, что совокупность условий 1 и 2 равносильна следующему условию: $\alpha \overline{a} + \beta \overline{b} \in U$ для любых векторов $\forall \overline{a}, \overline{b} \in U$ и любых чисел $\forall \alpha, \beta \in P$.

Из определения подпространства следует, что всякое подпространство U линейного пространства V над полем P само является линейным пространством над этим полем, если выполнять операции сложения векторов из U и умножения их на числа из P по правилам, определенным для пространства V.

Множество $\{\overline{0}\}$, содержащее только нулевой вектор пространства V, удовлетворяет условиям 1 и 2 и, следовательно, является подпространством пространства V. Это подпространство называется *нулевым*. С другой стороны, все пространство V является своим подпространством. Такие пространства называются *несобственными подпространствами*.

Общий способ получения подпространств заключается в следующем. Возьмем в пространстве V произвольные векторы $\overline{a}_1, \overline{a}_2, ..., \overline{a}_k$.

Теорема 1.4.

Пусть V – линейное пространство над полем $P,\ \overline{a}_i \in V, i=1,2,...,k$. Линейная оболочка $L\langle \overline{a}_1,\overline{a}_2,...,\overline{a}_k \rangle$ является линейным подпространством пространства V .

Доказательство.

Т.к. сумма линейных комбинаций векторов $\overline{a}_1, \overline{a}_2,..., \overline{a}_k$ и произведение линейной комбинации этих векторов на число также являются линейными комбинациями данных векторов, то множество всех линейных комбинаций векторов $\overline{a}_1, \overline{a}_2,..., \overline{a}_k$ является замкнутым относительно сложения векторов и умножения векторов на число, т.е. линейная оболочка $L\langle \overline{a}_1, \overline{a}_2,..., \overline{a}_k \rangle$ является подпространством пространства V.

Очевидно, что базис системы векторов $\overline{a}_1, \overline{a}_2, ..., \overline{a}_k$ является базисом пространства L, и, следовательно, размерность пространства L равна рангу системы векторов $\overline{a}_1, \overline{a}_2, ..., \overline{a}_k$.

Если векторы $\overline{a}_1,\overline{a}_2,...,\overline{a}_k$ линейно независимы, то они образуют базис пространства $L\langle \overline{a}_1,\overline{a}_2,...,\overline{a}_k\rangle$, размерность пространства равна k. В этом случае пространство $L\langle \overline{a}_1,\overline{a}_2,...,\overline{a}_k\rangle$ называют натянутым на систему векторов $\overline{a}_1,\overline{a}_2,...,\overline{a}_k$.

Утв.1.3.

Каждое подпространство U п-мерного линейного пространства V конечномерно, причем $\dim U \leq n$. Если $\dim U = n$, то U = V.

Примеры подпространств

- 1. Пусть $P_n(x)$ пространство многочленов степени не выше n, тогда $P_k(x)$ является подпространством пространства $P_n(x)$, если $k \le n$.
 - 2. Множество матриц вида $\begin{pmatrix} a_{11} \ a_{12} \ a_{21} \ a_{22} \ 0 \ 0 \end{pmatrix}$, $a_{ij} \in R$ является линейным под-

пространством пространства матриц $M_{3\times 2}$ над полем R.

1.8. Сумма и пересечение подпространств

Пусть $U_1, U_2, ..., U_k$ являются подпространствами линейного пространства V.

Пересечением подпространств $U_1, U_2, ..., U_k$ называется множество всех векторов, принадлежащих каждому из этих подпространств.

Суммой подпространств $U_1, U_2, ..., U_k$ называется множество всех векторов \overline{a} пространства V, представимых в виде

$$\overline{a} = \overline{a}_1 + \overline{a}_2 + ... + \overline{a}_k$$
, $\overline{a}_i \in U_i$, $i = 1, 2, ..., k$.

Обозначим пересечение подпространств $U_1, U_2, ..., U_k$

$$U_1 \cap U_2 \cap ... \cap U_k$$
 или $\bigcap_{i=1}^k U_i$,
$$U_1 + U_2 + ... + U_k$$
 или $\sum_{i=1}^k U_i$.

а их сумму

Теорема 1.5.

Сумма и пересечение подпространств линейного пространства являются его подпространствами.

Доказательство.

Пусть $U_1,U_2,...,U_k$ — подпространства пространства V,U — их сумма. Заметим, что $U\neq\varnothing$, поскольку $\overline{0}\in U$. Пусть $\overline{a},\overline{b}\in U$, $\alpha,\beta\in P$.

Векторы \overline{a} и \overline{b} можно записать в виде

$$\overline{a} = \overline{a}_1 + \overline{a}_2 + \ldots + \overline{a}_k \,, \quad \overline{b} = \overline{b}_1 + \overline{b}_2 + \ldots + \overline{b}_k \,,$$

где $\overline{a}_i, \overline{b}_i \in \boldsymbol{U}_i, \ i = 1, 2, ..., k$, поэтому

$$\alpha \, \overline{a} + \beta \, \overline{b} = \alpha (\overline{a}_1 + \overline{a}_2 + \dots + \overline{a}_k) + \beta (\overline{b}_1 + \overline{b}_2 + \dots + \overline{b}_k) =$$

$$= (\alpha \, \overline{a}_1 + \beta \, \overline{b}_1) + (\alpha \, \overline{a}_2 + \beta \, \overline{b}_2) + \dots + (\alpha \, \overline{a}_k + \beta \, \overline{b}_k).$$

Поскольку U_i — подпространство, то $\alpha \, \overline{a}_i + \beta \, \overline{b}_i \in U_i$, следовательно, $\alpha \, \overline{a} + \beta \, \overline{b} \in U$, т.е. U — подпространство.

Аналогично доказывается, что пересечение подпространств линейного пространства является его подпространством. **◄**

Очевидны свойства подпространств

1. U_1 , U_2 – подпространства пространства V, то

$$U_1 + U_2 = U_2 + U_1$$
 и $U_1 \cap U_2 = U_2 \cap U_1$.

2. $U_1,\,U_2$ — подпространства пространства V и $U_1+U_2=U_2,\,$ то U_1 является подпространством $U_2.$

Теорема 1.6.

Размерность суммы двух конечномерных подпространств линейного пространства равна сумме их размерностей минус размерность пересечения, т.е.

$$\dim(U_1 + U_2) = \dim U_1 + \dim U_2 - \dim(U_1 \cap U_2).$$

Доказательство.

Если какое-либо из подпространств нулевое, теорема очевидна. Пусть U_1 и U_2 — ненулевые конечномерные подпространства линейного пространства V. Обозначим подпространство $A = U_1 + U_2$, $B = U_1 \cap U_2$.

Пространство B конечномерно, поскольку является подпространством конечномерного пространства U_1 . Пусть

$$\overline{b}_1, \overline{b}_2, \dots, \overline{b}_k \tag{1.5}$$

есть базис пространства B (в случае $B = \{\overline{0}\}$ система (1.5) — пустое множество).

Дополним систему (1.5) до базиса

$$\overline{b}_1, \overline{b}_2, \dots, \overline{b}_k, \overline{a}_1, \overline{a}_2, \dots, \overline{a}_l \tag{1.6}$$

пространства U_1 и до базиса

$$\overline{b}_1, \overline{b}_2, \dots, \overline{b}_k, \overline{c}_1, \overline{c}_2, \dots, \overline{c}_m \tag{1.7}$$

пространства U_2 (в случае $B = \{\overline{0}\}$ построенные системы (1.6), (1.7) — произвольные базисы пространств U_1 и U_2 соответственно).

Рассмотрим систему векторов

$$\bar{b}_1, \bar{b}_2, ..., \bar{b}_k, \bar{a}_1, \bar{a}_2, ..., \bar{a}_l, \bar{c}_1, \bar{c}_2, ..., \bar{c}_m.$$
 (1.8)

Теорема будет доказана, если мы покажем, что система (1.8) является базисом пространства A.

Пусть $\overline{a} \in A$, тогда $\overline{a} = \overline{a}_1 + \overline{a}_2$, где $\overline{a}_1 \in U_1$, $\overline{a}_2 \in U_2$. Т.к. (1.6) — базис пространства U_1 , то \overline{a}_1 линейно выражается через векторы (1.6). Аналогично \overline{a}_2 линейно выражается через систему (1.7). Следовательно, произвольный вектор $\overline{a} \in A$ линейно выражается через систему (1.8).

Остается доказать, что система (1.8) линейно независима. Пусть

$$\alpha_1 \, \overline{b}_1 + \dots + \alpha_k \overline{b}_k + \beta_1 \, \overline{a}_1 + \dots + \beta_l \overline{a}_l + \gamma_1 \, \overline{c}_1 + \dots + \gamma_m \overline{c}_m = \overline{0} \,. \tag{1.9}$$

Перепишем равенство в виде

$$\alpha_1 \overline{b_1} + \ldots + \alpha_k \overline{b_k} + \beta_1 \overline{a_1} + \ldots + \beta_l \overline{a_l} = -(\gamma_1 \overline{c_1} + \ldots + \gamma_m \overline{c_m}).$$

Обозначим вектор $\bar{c}=-(\gamma_1\,\bar{c}_1+...+\gamma_m\bar{c}_m)$. Т.к. вектор \bar{c} есть линейная комбинация векторов $\bar{c}_1,\bar{c}_2,...,\bar{c}_m$, входящих в базис пространства U_2 , то $\bar{c}\in U_2$. С другой стороны

$$\overline{c} = \alpha_1 \overline{b_1} + ... + \alpha_k \overline{b_k} + \beta_1 \overline{a_1} + ... + \beta_l \overline{a_l}$$

т.е. \overline{c} есть линейная комбинация базисных векторов (1.6). Следовательно, $\overline{c} \in U_1$. Получаем, что $\overline{c} \in U_1 \cap U_2 = B$.

Итак, вектор $\bar{c} = -(\gamma_1 \, \bar{c}_1 + ... + \gamma_m \bar{c}_m)$ линейно выражается через базис (1.5) пространства B: $\bar{c} = \lambda_1 \bar{b}_1 + \lambda_2 \bar{b}_2 + ... + \lambda_k \bar{b}_k$.

Сравнивая два разложения вектора \overline{c} , получаем $\gamma_1 = ... = \gamma_m = 0$, поскольку координаты вектора в заданном базисе определены однозначно. Т.к. $\overline{c} = \alpha_1 \, \overline{b_1} + ... + \alpha_k \overline{b_k} + \beta_1 \, \overline{a_1} + ... + \beta_l \overline{a_l} = \overline{0}$, то все координаты этого вектора в базисе (1.6) равны нулю, т.е. $\alpha_1 = ... = \alpha_k = \beta_1 = ... = \beta_l = 0$.

Итак, из равенства (1.9) следует равенство нулю всех коэффициентов, следовательно, система (1.8) линейно независима. **◄**

1.9. Прямая сумма подпространств

Пусть U_1, U_2 являются подпространствами n-мерного пространства V.

Если каждый вектор \overline{a} пространства V можно, и притом <u>единственным образом</u> представить как сумму двух векторов

$$\overline{a} = \overline{a}_1 + \overline{a}_2, \qquad \overline{a}_1 \in U_1, \ \overline{a}_2 \in U_2,$$

то говорят, что пространство V разложено в прямую сумму подпространств $U_1, U_2.$

Т.о., сумма $U_1 + U_2$ прямая, если из каждого равенства вида

$$\overline{a}_1 + \overline{a}_2 = \overline{b}_1 + \overline{b}_2$$

где $\overline{a}_1,\overline{b}_1\in U_1;\ \overline{a}_2,\overline{b}_2\in U_2$ следует равенство соответствующих слагаемых:

$$\overline{a}_1 = \overline{b}_1, \ \overline{a}_2 = \overline{b}_2.$$

Обозначим прямую сумму подпространств U_1, U_2

$$V = U_1 \oplus U_2.$$

Теорема 1.7.

Для того чтобы пространство V разлагалось в прямую сумму подпространств U_1, U_2 , необходимо и достаточно, чтобы подпространства U_1, U_2 имели только один общий нулевой вектор, т.е. $U_1 \cap U_2 = \{\overline{0}\}$.

Доказательство.

1) Heoбxoдимость. Пусть пространство $V=U_1\oplus U_2$. Возьмем произвольный вектор $\overline{a}\in U_1\cap U_2$. Т.к. $\overline{a}\in U_1$, то $\overline{a}=\overline{a}_1$, где $\overline{a}_1\in U_1$. С другой стороны, вектор $\overline{a}\in U_2$, то $\overline{a}=\overline{a}_2$, где $\overline{a}_2\in U_2$.

Тогда

$$\overline{a}_1 = \overline{a}_2 \qquad \Rightarrow \qquad \overline{a}_1 + (-\overline{a}_2) = \overline{0}.$$

В силу единственности разложения прямой суммы подпространств имеем $\overline{a}_1=\overline{0},\, (-\,\overline{a}_2)=\overline{0}$. Получили, что вектор $\overline{a}=\overline{0}$, т.е. $U_1\cap U_2=\left\{\overline{0}\right\}$.

2) Достаточность. Выберем некоторый базис $\overline{b}_1,\overline{b}_2,...,\overline{b}_k$ в подпространстве U_1 и базис $\overline{c}_1,\overline{c}_2,...,\overline{c}_m$ в подпространстве U_2 .

Т.к. $U_1 \cap U_2 = \{\overline{0}\}$, то по теореме 1.7 имеем $\dim U_1 + \dim U_2 = \dim V$ (k+m=n), и система векторов $\overline{b}_1, \overline{b}_2, ..., \overline{b}_k, \overline{c}_1, \overline{c}_2, ..., \overline{c}_m$ образует базис пространства V. Произвольный вектор $\overline{a} \in V$ можно разложить по векторам этого базиса

$$\overline{a} = \alpha_1 \overline{b_1} + \ldots + \alpha_k \overline{b_k} + \beta_1 \overline{c_1} + \ldots + \beta_m \overline{c_m}.$$

При этом

$$\overline{a}_1 = \alpha_1 \overline{b}_1 + \dots + \alpha_k \overline{b}_k \in U_1, \quad \overline{a}_2 = \beta_1 \overline{c}_1 + \dots + \beta_m \overline{c}_m \in U_2.$$

Таким образом, $\overline{a} = \overline{a}_1 + \overline{a}_2$, где $\overline{a}_1 \in U_1$, $\overline{a}_2 \in U_2$.

Покажем, что это разложение единственно. Предположим, что существует два разложения:

$$\begin{split} \overline{a} &= \overline{a}_1 + \overline{a}_2, & \overline{a}_1 \in U_1, \ \overline{a}_2 \in U_2; \\ \overline{a} &= \overline{a}_1' + \overline{a}_2', & \overline{a}_1' \in U_1, \ \overline{a}_2' \in U_2. \end{split}$$

Вычитая из первого равенства второе, получаем

$$\overline{a}_1 - \overline{a}_1' + \overline{a}_2 - \overline{a}_2' = \overline{0}$$
 \Rightarrow $\overline{a}_1 - \overline{a}_1' = \overline{a}_2' - \overline{a}_2.$

Т.к. вектор, стоящий в левой части принадлежит U_1 , а вектор, стоящий в правой части, принадлежит U_2 , то каждый из этих векторов равен нулю, т.е.

$$\overline{a}_1 = \overline{a}_1'; \quad \overline{a}_2 = \overline{a}_2'.$$

Единственность разложения доказана. Следовательно, $V = U_1 \oplus U_2$. \blacktriangleleft

ГЛАВА 2. СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ

В курсе линейной алгебре рассматривались системы линейных уравнений, матрицы и определители над полем действительных чисел. Введенные понятия и полученные результаты сохраняются и в случае произвольного поля. В частности, метод Гаусса решения систем линейных уравнений, теория определителей и правило Крамера дословно переносятся на случай произвольного основного поля.

2.1. Критерий совместности системы линейных уравнений

Пусть P — произвольное поле. Рассмотрим систему линейных уравнений (СЛУ) над полем P с n неизвестными, a_{ij} — коэффициентами системы, b_i — свободными членами

$$\begin{cases}
a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1, \\
\vdots & \vdots & \vdots \\
a_{k1}x_1 + a_{k2}x_2 + \dots + a_{kn}x_n = b_k,
\end{cases}$$
(2.1)

где a_{ij} , b_i – элементы поля $P;\ x_1, x_2, ..., x_n$ – неизвестные.

Последовательность $\{\lambda_1, \lambda_2, ..., \lambda_n\}$ элементов поля P называется pewe-нием cucmemb (1), если верны равенства

$$\begin{cases}
a_{11}\lambda_{1} + a_{12}\lambda_{2} + \dots + a_{1n}\lambda_{n} = b_{1}, \\
\vdots \\
a_{k1}\lambda_{1} + a_{k2}\lambda_{2} + \dots + a_{kn}\lambda_{n} = b_{k}.
\end{cases}$$
(2.2)

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{k1} & a_{k2} & \dots & a_{kn} \end{pmatrix}$$
 называется основной матрицей системы (2.1),

$$\widetilde{A} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} & b_1 \\ a_{21} & a_{22} & \dots & a_{2n} & b_2 \\ \dots & \dots & \dots & \dots & \dots \\ a_{k1} & a_{k2} & \dots & a_{kn} & b_k \end{pmatrix}$$
 \square расширенной матрицей системы (2.1).

Систему (2.1) можно записать в виде матричного уравнения A X = B,

где X и B — столбцы неизвестных и свободных членов соответственно:

$$X = (x_1, x_2, ..., x_n)^T, B = (b_1, b_2, ..., b_k)^T.$$

Решения системы уравнений (2.1) удобно интерпретировать как векторы пространства $P_{1,n}$ столбцов: столбец $\Lambda^T = (\lambda_1, \lambda_2, ..., \lambda_n)^T$ (или строка Λ) есть решение системы (2.1), если $A\Lambda^T = B$.

Все решения системы линейных уравнений можно найти методом Гаусса. Однако часто бывает важно не решить саму систему, а выяснить, есть ли у нее решения и сколько их.

Теорема 2.1. (критерий Кронекера – Капелли).

Система линейных уравнений совместна тогда и только тогда, когда ранг матрицы этой системы равен рангу ее расширенной матрицы.

Доказательство.

Система (2.1) совместна тогда и только тогда, когда в поле P существуют такие числа $\lambda_1, \lambda_2, ..., \lambda_n$, что верны равенства (2.2).

Обозначим столбцы матрицы A через $A_1, A_2, ..., A_n$, и заметим, что совокупность равенств (2.2) равносильна равенству

$$\lambda_1 A_1 + \lambda_2 A_2 + \ldots + \lambda_n A_n = B,$$

которое означает, что последний столбец матрицы \widetilde{A} линейно выражается через столбцы матрицы A.

Следовательно, система (2.1) совместна тогда и только тогда, когда последний столбец матрицы \widetilde{A} линейно выражается через столбцы матрицы A. Это имеет место тогда и лишь тогда, когда ранг системы столбцов матрицы \widetilde{A} равен рангу системы столбцов матрицы A, т. е. ранги этих матриц равны. \blacktriangleleft

2.2. Однородные системы линейных уравнений

Система линейных уравнений называется *однородной*, если все ее свободные члены равны нулю, т.е. $B = (0, 0, ..., 0)^T$. Такая система всегда совместна: она имеет нулевое решение.

Если истолковывать ее решения как векторы пространства $P_{1,n}$ столбцов над основным полем P (n — число неизвестных), то обнаруживается прямая связь между подпространствами этого пространства и системами линейных уравнений.

Теорема 2.2.

Пусть AX = 0 — однородная система линейных уравнений с n неизвестными u r = rang A. Множество решений однородной системы линейных уравнений образует линейное пространство, являющееся подпространством P_{1n} , u его размерность равна (n-r).

Доказательство.

1. Пусть \bar{x}, \bar{y} – решения однородной системы линейных уравнений

$$AX = 0. (2.3)$$

Покажем, что для любых $\alpha, \beta \in P$ вектор $\overline{a} = \alpha \overline{x} + \beta \overline{y}$ также является решением системы (2.3).

$$A(\alpha \,\overline{x} + \beta \,\overline{y}) = \alpha(A \,\overline{x}) + \beta(A \,\overline{y}) = \alpha \cdot 0 + \beta \cdot 0 = 0.$$

Следовательно, U – множество всех решений однородной системы (2.3) является подпространством в пространстве $P_{1,n}$.

Применяя метод Гаусса, систему (2.3) с помощью элементарных преобразований можно свести (возможно, после перенумерации неизвестных) к некоторой системе ступенчатого вида:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1r}x_r + a_{1r+1}x_{r+1} + \dots + a_{1n}x_n = 0, \\ a_{22}x_2 + \dots + a_{2r}x_r + a_{2r+1}x_{r+1} + \dots + a_{2n}x_n = 0, \\ \vdots \\ a_{rr}x_r + a_{rr+1}x_{r+1} + \dots + a_{rn}x_n = 0, \end{cases}$$

$$(2.4)$$

где r = rang A; $a_{ii} \neq 0 (i = 1,...,r)$.

Если r = n, то система (2.4) имеет единственное решение, следовательно, пространство решений $U = \{\overline{0}\}$.

Пусть r < n. Неизвестные $x_{r+1}, x_{r+2}, ..., x_n$ считаем свободными. Придавая свободным неизвестным произвольные значения из поля P и, вычисляя с помощью уравнений (2.4) значения остальных неизвестных, находим подпространство U всех решений системы (2.3).

Для того чтобы построить базис подпространства U, будем поочередно придавать свободным неизвестным следующие значения:

$$\overline{c}_i = \left(\lambda_{i_1}, \lambda_{i_2}, ..., \lambda_{i_r}, \underbrace{0, ..., 0}_{i-1}, 1, 0, ..., 0\right)^T$$

где i = 1, ..., n - r, — соответствующие этим значениям свободных неизвестных решения системы (2.4).

Покажем, что векторы $\bar{c}_1, \bar{c}_2,, \bar{c}_{n-r}$ составляют базис подпространства решений U.

Во-первых, полученные решения линейно независимы, т.к. ранг матрицы

образованной ими, равен (n-r)

Пусть, во-вторых, вектор $\bar{x} = (\alpha_1, \alpha_2, ..., \alpha_n)^T$ является решением системы (2.4). Положим $\bar{d} = \bar{x} - \alpha_{r+1} \bar{c}_1 - \alpha_{r+2} \bar{c}_2 - - \alpha_n \bar{c}_{n-r}$.

Так как векторы $\overline{c}_1, \overline{c}_2,, \overline{c}_{n-r}, \overline{x}$ принадлежат подпространству решений U, то и вектор $\overline{d} \in U$, т. е. \overline{d} является решением системы (2.4).

Все координаты вектора \overline{d} , начиная с (r+1)- \check{u} , равны нулю, т. е. \overline{d} получается при нулевых значениях свободных неизвестных $x_{r+1}, x_{r+2}, ..., x_n$. Но решение однородной системы, соответствующее нулевым значениям свободных неизвестных, является нулевым, т. е.

$$\overline{d} = \overline{0} \implies \overline{x} = \alpha_{r+1}\overline{c}_1 + \alpha_{r+2}\overline{c}_2 + \dots + \alpha_n\overline{c}_{n-r}.$$

Получили, что произвольное решение \bar{x} представимо в виде линейной комбинации векторов $\bar{c}_1, \bar{c}_2,, \bar{c}_{n-r}$.

Следовательно, векторы $\overline{c}_1, \overline{c}_2,, \overline{c}_{n-r}$ образуют базис подпространства U и его размерность $\dim U = n-r$.

Теорема 2.3.

Следствие.

Однородная система линейных уравнений имеет ненулевое решение тогда и лишь тогда, когда ранг ее матрицы меньше числа неизвестных. В частности, однородная система п линейных уравнений с п неизвестными имеет ненулевое решение, если и только если ее определитель равен нулю.

Базис пространства решений однородной системы линейных уравнений называют также ее *фундаментальной системой решений*.

Любое решение однородной системы является линейной комбинацией фундаментальной системы ее решений, т.е. любое решение однородной системы имеет вид: $\bar{x} = \alpha_{r+1}\bar{c}_1 + \alpha_{r+2}\bar{c}_2 + + \alpha_n\bar{c}_{n-r}$, где $\bar{c}_1, \bar{c}_2,, \bar{c}_{n-r}$ — фундаментальная система её решений.

Пример 2.1.

Найти фундаментальную систему решений однородной системы линейных уравнений:

$$\begin{cases} x_1 + 2x_2 + 4x_3 - 3x_4 = 0, \\ 3x_1 + 5x_2 + 6x_3 - 4x_4 = 0, \\ 4x_1 + 5x_2 - 2x_3 + 3x_4 = 0, \\ 3x_1 + 8x_2 + 24x_3 - 19x_4 = 0. \end{cases}$$

Решение. Выпишем матрицу системы и с помощью элементарных преобразований строк приведем ее к ступенчатому виду:

$$\begin{pmatrix}
1 & 2 & 4 & -3 \\
3 & 5 & 6 & -4 \\
4 & 5 & -2 & 3 \\
3 & 8 & 24 & 19
\end{pmatrix}
\sim
\begin{pmatrix}
1 & 2 & 4 & -3 \\
0 & -1 & -6 & 5 \\
0 & -3 & -18 & 15 \\
0 & 2 & 12 & -10
\end{pmatrix}
\sim
\begin{pmatrix}
1 & 2 & 4 & -3 \\
0 & -1 & -6 & 5
\end{pmatrix}$$

Заметим, что последняя матрица эквивалентна матрице

$$\begin{pmatrix} 1 & 0 & -8 & 7 \\ 0 & 1 & 6 & -5 \end{pmatrix}$$
 ~ $\begin{vmatrix} x_1, x_2 - \text{главн. неизв.} \\ x_3, x_4 - \text{своб. неизв.} \end{vmatrix}$ ~ $\begin{pmatrix} 1 & 0 & 8 & -7 \\ 0 & 1 & -6 & 5 \end{pmatrix}$.

Неизвестные x_3 , x_4 считаем свободными и записываем систему в виде

$$\begin{cases} x_1 = 8x_3 - 7x_4, \\ x_2 = -6x_3 + 5x_4. \end{cases}$$

Положим сначала $x_3 = 1$, $x_4 = 0$ и найдем из системы значения $x_1 = 8$, $x_2 = -6$. Получим первый базисный вектор $\overline{c}_1 = \left(8, -6, 1, 0\right)^T$.

Затем положим $x_3=0,\ x_4=1$ и снова найдем из системы значения $x_1=-7,\ x_2=5$. Получим второй базисный вектор $\overline{c}_2=\left(-7,5,0,1\right)^T$.

Заметим, что для нахождения базисных векторов удобно пользоваться следующей схемой:

все неизв.	x_1	x_2	x_3	x_4
x_3	8	-6	1	0
x_4	-7	5	0	1

Итак, решения $\overline{c}_1 = (8, -6, 1, 0)^T$, $\overline{c}_2 = (-7, 5, 0, 1)^T$ составляют искомую фундаментальную систему решений, т.е. образуют базис пространства решений однородной системы U, и размерность $\dim U = 2$.

Произвольное решение данной системы можно представить в виде

$$\overline{x} = \alpha_1 \, \overline{c}_1 + \alpha_2 \, \overline{c}_2 = \alpha_1 \begin{pmatrix} 8 \\ -6 \\ 1 \\ 0 \end{pmatrix} + \alpha_2 \begin{pmatrix} -7 \\ 5 \\ 0 \\ 1 \end{pmatrix}.$$

2.3. Связь между решениями неоднородной и соответствующей однородной систем линейных уравнений

Пусть задана произвольная система линейных уравнений

$$AX = B. (2.5)$$

Однородная система имеет вид

$$AX = 0 (2.6)$$

с той же матрицей A называется приведенной для системы (2.5).

Свойства систем линейных уравнений

- 1. Сумма любого решения неоднородной системы (2.5) и любого решения соответствующей однородной системы (2.6) является решением неоднородной системы (2.5).
- 2. Разность любых двух решений неоднородной системы (2.5) является решением соответствующей однородной системы (2.6).

Теорема 2.4.

Доказательство.

Пусть система (2.5) совместна, $\bar{x}_{_{\!\mathit{U\!H}}}$ – одно из ее решений, W - множество всех решений неоднородной системы (2.5).

Согласно свойству 1, $\bar{x}_{u_H} + U \subseteq W$.

С другой стороны, если $\overline{x} \in W$, то по свойству 2:

$$\overline{x} - \overline{x}_{qH} = \overline{u} \in U \quad \Rightarrow \quad \overline{x} = \overline{x}_{qH} + \overline{u} \in \overline{x}_{qH} + U$$

T.e. $W \subseteq \overline{x}_{uH} + U$.

Следовательно, $W = \overline{x}_{qH} + U$. \blacktriangleleft

Из теоремы следует, что общее решение неоднородной системы (2.5) представляет собой сумму общего решения соответствующей однородной системы (2.6) и частного решения неоднородной системы (2.5).

Следствие.

Система линейных уравнений имеет единственное решение, если и только если ранги ее основной и расширенной матриц равны числу неизвестных.

ГЛАВА 3. ЛИНЕЙНЫЕ ОПЕРАТОРЫ

В этой главе изучаются линейные операторы линейных пространств и раскрывается тесная связь теории линейных операторов с теорией матриц.

3.1. Определение и простейшие свойства линейных операторов

Пусть V_1 и V_2 — линейные пространства над одним и тем же полем P. Отображение $A\colon V_1\to V_2$ называется линейным оператором, если для него выполнено:

1.
$$\forall \overline{x}_1, \overline{x}_2 \in V_1$$
 $A(\overline{x}_1 + \overline{x}_2) = A \overline{x}_1 + A \overline{x}_2;$

2.
$$\forall \, \bar{x} \in V_1; \, \forall \, \alpha \in P \qquad A(\alpha \, \bar{x}) = \alpha \cdot A \, \bar{x}$$
.

Условия 1, 2 равносильны соотношению:

$$\forall \overline{x}_1, \overline{x}_2 \in V_1$$
 $A(\alpha \overline{x}_1 + \beta \overline{x}_2) = \alpha \cdot A \overline{x}_1 + \beta \cdot A \overline{x}_2.$

Линейный оператор пространства V, отображающийся в себя называется линейным оператором (линейным преобразованием) пространства V.

Примеры линейных операторов

1. Обозначим через $E: V \to V$ тождественный оператор в V, если $E(x) = x, \ \forall x \in V$.

Очевидно, что E – линейный оператор.

2. Пусть V_1 и V_2 — линейные пространства над полем P. Обозначим через O нуль-оператор $(O\colon V_1\to V_2)$, действующий по правилу

$$O(x) = \overline{0}, \ \forall x \in V_1.$$

Очевидно, что O является линейным оператором.

3. Пусть $V_1 = V_2 = P_n(x)$ — линейное пространство многочленов степени не выше n над полем P.

Рассмотрим оператор D: $P_{\scriptscriptstyle n} \to P_{\scriptscriptstyle n}$, действующий по правилу

$$(D f)(x) = f'(x), \forall f(x) \in P_n.$$

Этот оператор называется $\partial u \phi \phi$ еренцированием пространства $P_n(x)$. Из свойств производной многочленов следует линейность оператора D.

4. Рассмотрим пространство, в котором векторами являются непрерывные функции f(x), $x \in [0, 1]$. Положим $Af(x) = \int_{0}^{x} f(t) dt$.

Преобразование A – линейное, т.к.

$$A(\alpha f(x) + \beta g(x)) = \int_{0}^{x} (\alpha f(t) + \beta g(t)) dt =$$

$$= \alpha \int_{0}^{x} f(t) dt + \beta \int_{0}^{x} g(t) dt = \alpha Af(x) + \beta Ag(x).$$

Простейшие свойства линейных операторов

Пусть V_1 и V_2 — линейные пространства над одним и тем же полем P. $A:V_1\to V_2$ является линейным оператором.

- 1. A(0) = 0; $A(-x) = -A(x) \quad \forall x \in V_1$.
- ➤ Полагая в равенстве $A(\alpha \bar{x}) = \alpha \cdot A(x)$ $\alpha = 0$ и $\alpha = -1$, получаем требуемое. \blacktriangleleft
 - 2. Для $\forall \bar{x}_1, \bar{x}_2, ..., \bar{x}_k \in V_1$ и $\forall \alpha_1, \alpha_2, ..., \alpha_k \in P$ $A(\alpha_1 \bar{x}_1 + \alpha_2 \bar{x}_2 + ... + \alpha_k \bar{x}_k) = \alpha_1 \cdot A \bar{x}_1 + \alpha_2 \cdot A \bar{x}_2 + ... + \alpha_k \cdot A \bar{x}_k$
 - \blacktriangleright Достаточно применить метод математической индукции по k. \blacktriangleleft
- 3. Если система векторов $\bar{x}_1, \bar{x}_2, ..., \bar{x}_k \in V_1$ линейно зависима, то система векторов $A \bar{x}_1, A \bar{x}_2, ..., A \bar{x}_k \in V_2$ также линейно зависима.
- ➤ Если в пространстве V_1 : $\alpha_1 \, \overline{x}_1 + \alpha_2 \, \overline{x}_2 + ... + \alpha_k \, \overline{x}_k = \overline{0}$, то $\alpha_1 \cdot A \, \overline{x}_1 + \alpha_2 \cdot A \, \overline{x}_2 + ... + \alpha_k \cdot A \, \overline{x}_k = A \left(\alpha_1 \, \overline{x}_1 + \alpha_2 \, \overline{x}_2 + ... + \alpha_k \, \overline{x}_k \right) = A(\overline{0}) = \overline{0}$. <
- 4. Если U есть подпространство пространства V_1 , то A(U) подпространство пространства V_2 .
- ➤ Так как $U \neq \emptyset$, то и $A(U) \neq \emptyset$. Пусть векторы $\overline{b}_1, \overline{b}_2 \in A(U)$, тогда $\overline{b}_1 = A(\overline{a}_1), \overline{b}_2 = A(\overline{a}_2), \ \overline{a}_1, \overline{a}_2 \in U$.

Для любых $\alpha, \beta \in P$

$$\alpha \overline{b_1} + \beta \overline{b_2} = \alpha A(a_1) + \beta A(a_2) = A(\alpha \overline{a_1} + \beta \overline{a_2}).$$

Т.к. U – подпространство, то $\alpha \, \overline{a}_1 + \beta \, \overline{a}_2 \in U$ и, следовательно, $A(\alpha \, \overline{a}_1 + \beta \, \overline{a}_2) \in A(U)$. \blacktriangleleft

Теорема 3.1.

Пусть V_1 и V_2 — линейные пространства над полем $P, \{\bar{e}_1, \bar{e}_2, ..., \bar{e}_n\}$ есть базис пространства V_1 и $\{\bar{b}_1, \bar{b}_2, ..., \bar{b}_n\}$ произвольная система векторов пространства V_2 . Тогда существует единственный линейный оператор $A: V_1 \to V_2$, при котором $A\bar{e}_i = \bar{b}_i$, i = 1, 2, ..., n.

Доказательство. Сначала докажем существование этого линейного оператора. Определим отображение $A\colon V_1\to V_2$ так, что столбцы матрицы этого преобразования есть координаты векторов $\overline{b}_1,\overline{b}_2,...,\overline{b}_n$, т.е.

$$A = \begin{pmatrix} b_{11} & b_{21} \dots b_{1n} \\ b_{12} & b_{22} \dots b_{2n} \\ \vdots & \vdots & \vdots \\ b_{1n} & b_{2n} \dots b_{nn} \end{pmatrix}_{n \times n}.$$

Т.к. в базисе $\{\bar{e}_1,\bar{e}_2,...,\bar{e}_n\}$ пространства V_1 i-ая координата вектора \bar{e}_i равна 1, а все остальные -0, то

$$A \, \overline{e}_{i} = \begin{pmatrix} b_{11} & b_{21} & \dots & b_{1n} \\ b_{12} & b_{22} & \dots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{1n} & b_{2n} & \dots & b_{nn} \end{pmatrix} \cdot \begin{pmatrix} 0 \\ \dots \\ 1 \\ \dots \\ 0 \end{pmatrix} = \begin{pmatrix} b_{i1} \\ b_{i2} \\ \dots \\ b_{in} \end{pmatrix} = \overline{b}_{i},$$

т.е. выполнены равенства $A\overline{e}_i = \overline{b}_i$, i = 1, 2, ..., n.

Покажем, что $A:V_1\to V_2$ – линейный оператор. Пусть $\bar x, \bar y\!\in\! V_1$ и $lpha,eta\!\in\! P$, тогда

$$A(\alpha \,\overline{x} + \beta \,\overline{y}) = A \cdot (\alpha \,\overline{x} + \beta \,\overline{y}) = \alpha (A\overline{x}) + \beta (A\overline{y}),$$

т.е. выполняются условия 1, 2. Значит, A – линейный оператор.

Докажем единственность этого оператора. Пусть $C: V_1 \to V_2$ — линейный оператор такой, что $C \, \overline{e}_i = \overline{b}_i$, i = 1, 2, ..., n. Возьмем произвольный вектор $\overline{x} \in V_1$, тогда он может быть разложен по базисным векторам $\overline{x} = x_1 \overline{e}_1 + x_2 \overline{e}_2 + ... + x_n \overline{e}_n$.

$$C \overline{x} = C(x_1 \overline{e}_1 + x_2 \overline{e}_2 + \dots + x_n \overline{e}_n) =$$

$$= x_1 C \overline{e}_1 + x_2 C \overline{e}_2 + \dots + x_n C \overline{e}_n = x_1 \overline{b}_1 + x_2 \overline{b}_2 + \dots + x_n \overline{b}_n = A \overline{x}.$$

Следовательно, операторы A и C совпадают. \blacktriangleleft

3.2. Линейные операторы в конечномерных пространствах и их матрицы

Пусть V_1 и V_2 — конечномерные линейные пространства над R, $\dim V_1 = n$, $\dim V_2 = m$, $A: V_1 \to V_2$ — линейный оператор.

Зафиксируем в V_1 базис $\{\overline{e}_1,\overline{e}_2,...,\overline{e}_n\}$ и в V_2 базис $\{\overline{b}_1,\overline{b}_2,...,\overline{b}_m\}$. Тогда если вектор $\overline{x}\in V_1$, то

$$\overline{x} = (x_1, x_2, \dots, x_n)^T \in \mathbb{R}^n \quad \Rightarrow \quad \overline{x} = x_1 \overline{e}_1 + x_2 \overline{e}_2 + \dots + x_n \overline{e}_n.$$

Если вектор $\overline{y} \in V_2$, то

$$\overline{y} = (y_1, y_2, \dots, y_m)^T \in \mathbb{R}^m \quad \Rightarrow \quad \overline{y} = y_1 \overline{b}_1 + y_2 \overline{b}_2 + \dots + y_m \overline{b}_m.$$

Фиксирование базисов $\{\bar{e}_1,\bar{e}_2,...,\bar{e}_n\}$ и $\{\bar{b}_1,\bar{b}_2,...,\bar{b}_m\}$ устанавливает изоморфизм пространства V_1 пространству R^n и пространства V_2 пространству R^m .

Рассмотрим действие оператора A на вектор $\overline{x} \in V_1$:

$$\overline{x}' = A \overline{x} = A \left(x_1 \overline{e}_1 + x_2 \overline{e}_2 + \dots + x_n \overline{e}_n \right) = x_1 \cdot A \overline{e}_1 + x_2 \cdot A \overline{e}_2 + \dots + x_n \cdot A \overline{e}_n,$$

т.е. действие линейного оператора на произвольный вектор определяется его действием на базисные векторы.

Векторы $A\overline{e}_1,\ A\overline{e}_2,\ ...,\ A\overline{e}_n$ являются векторами пространства V_2 и их можно разложить по базису $\{\overline{b}_1, \overline{b}_2, ..., \overline{b}_m\}$:

Матрица
$$A_{m \times n} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$
 называется матрицей линейного

nреобразования, столбцы которой являются координатами $\bar{e}'_1, \bar{e}'_2, ..., \bar{e}'_n$ – образов базисных векторов при линейном преобразовании.

Возьмем произвольный вектор $\bar{x}=x_1\,\bar{e}_1+x_2\,\bar{e}_2+...+x_n\,\bar{e}_n\in V_1$, то его образ $A \overline{x} = \overline{x}' \in V_2$.

$$\overline{x}' = A \overline{x} = A \left(x_1 \overline{e}_1 + x_2 \overline{e}_2 + \dots + x_n \overline{e}_n \right) = x_1 \cdot A \overline{e}_1 + x_2 \cdot A \overline{e}_2 + \dots + x_n \cdot A \overline{e}_n =
= x_1 \cdot \left(a_{11} \overline{b}_1 + a_{21} \overline{b}_2 + \dots + a_{m1} \overline{b}_m \right) + x_2 \cdot \left(a_{12} \overline{b}_1 + a_{22} \overline{b}_2 + \dots + a_{m2} \overline{b}_m \right) + \dots +
+ x_n \cdot \left(a_{1n} \overline{b}_1 + a_{2n} \overline{b}_2 + \dots + a_{mn} \overline{b}_m \right) =
= \underbrace{\left(a_{11} x_1 + a_{12} x_2 + \dots + a_{1n} x_n \right)}_{x_1'} \cdot \overline{b}_1 + \dots + \underbrace{\left(a_{m1} x_1 + a_{m2} x_2 + \dots + a_{mn} x_n \right)}_{x_n'} \cdot \overline{b}_m .$$

T.e.

$$\begin{cases} x'_1 = a_{11} x_1 + a_{12} x_2 + \dots + a_{1n} x_n, \\ x'_2 = a_{21} x_1 + a_{22} x_2 + \dots + a_{2n} x_n, \\ \dots \\ x'_m = a_{m1} x_1 + a_{m2} x_2 + \dots + a_{mn} x_n, \end{cases}$$

или в матричном виде

$$\overline{x}' = A \cdot \overline{x}$$

 $\overline{\overline{x}' = A \cdot \overline{x}},$ где матрица $A = (a_{ij})_{m \times n}$, столбцы $\overline{x} = (x_1, x_2, ..., x_n)^T$, $\overline{x}' = (x_1', x_2', ..., x_m')^T$.

Таким образом, координаты образа вектора $\bar{x} = \{x_1, x_2, ..., x_n\}$ однозначно определяется матрицей A линейного преобразования.

Вывод: линейные преобразования описываются с помощью матриц и действия над линейными преобразованиями сводятся к действиям над их матрицами.

3.3. Действия с линейными операторами

Пусть V_1 и V_2 – линейные пространства над полем P.

Множество всех линейных операторов пространства V_1 в пространство V_2 обозначим символом $L(V_1,V_2)$.

Введем на этом множестве алгебраические операции — сложения и умножения элементов множества $L(V_1,V_2)$ на числа из поля P. Пусть $A,B\in L(V_1,V_2)$.

Суммой линейных операторов A и B называется такое отображение C, которое каждому вектору \bar{x} ставит в соответствие вектор $A\bar{x} + B\bar{x}$, т.е.

$$\forall \overline{x} \in V_1 \qquad C \, \overline{x} = A \overline{x} + B \overline{x} .$$

Обозначается C = A + B. Легко доказать, что матрица C равна сумме матриц преобразований A и B.

Умножением линейного оператора A на число λ поля P называется такое отображение, которое каждому вектору \bar{x} ставит в соответствие вектор $\lambda(A\bar{x})$, т.е.

$$\forall \overline{x} \in V_1 \qquad (\lambda A) \overline{x} = \lambda \cdot A \overline{x} .$$

Ясно, что данному преобразованию отвечает матрица λA .

Утв. 3.1.

Eсли $A,B\in L(V_1,V_2)$ и $\lambda\in P$, то преобразования A+B и $\lambda\,A$ являются линейными операторами из пространства V_1 в V_2 .

➤ Пусть
$$\overline{x}, \overline{y} \in V_1, \ \lambda, \mu \in P$$
. Тогда

$$(A+B)(\lambda \,\overline{x} + \mu \,\overline{y}) = A(\lambda \,\overline{x} + \mu \,\overline{y}) + B(\lambda \,\overline{x} + \mu \,\overline{y}) =$$

$$= \lambda \, A\overline{x} + \mu \, A\overline{y} + \lambda \, B \,\overline{x} + \mu \, B \,\overline{y} = \lambda (A\overline{x} + B\overline{x}) + \mu (A\overline{y} + B \,\overline{y}) =$$

$$= \lambda (A+B)\overline{x} + \mu (A+B)\overline{y} \qquad \Rightarrow \qquad (A+B) \in L(V_1, V_2).$$

Второе утверждение доказывается аналогично. <

Отметим некоторые другие свойства сложения линейных операторов и умножения линейного оператора на число.

 $\forall A, B, C \in L(V_1, V_2)$ и $\forall \lambda, \mu \in P$ верны следующие равенства:

- 1. A + B = B + A;
- 2. (A+B)+C = A+(B+C);
- 3. A + O = A;
- 4. A + (-1)A = 0;
- 5. $1 \cdot A = A$;
- 6. $\lambda(A+B)=\lambda A+\lambda B$;
- 7. $(\lambda + \mu)A = \lambda A + \mu A$;
- 8. $(\lambda \mu)A = \lambda (\mu A)$;

Следовательно, множество линейных операторов $L(V_1, V_2)$ является линейным пространством над полем P относительно сложения линейных операторов и умножения линейного оператора на число.

Доказательства равенств 1 - 8 следуют непосредственно из определения равенства отображений.

Произведением (композицией) линейных преобразований A и B называется преобразование C, состоящее в последовательном выполнении сначала преобразования A, а затем преобразования B, т.е.

если
$$\hat{A} \in L(V_1, V_2)$$
, $B \in L(V_2, V_3)$, то $\forall \bar{x} \in V$, $C \bar{x} = B(A \bar{x}) = (BA)\bar{x}$.

Оператор $C = BA \in L(V_1, V_3)$, т.к. $\forall \overline{x}, \overline{y} \in V_1$

$$C(\lambda \,\overline{x} + \mu \,\overline{y}) = B(A(\lambda \,\overline{x} + \mu \,\overline{y})) = B(\lambda (A \,\overline{x}) + \mu (A \,\overline{y})) =$$
$$= \lambda B(A \,\overline{x}) + \mu B(A \,\overline{y}) = \lambda C \overline{x} + \mu C \,\overline{y}.$$

Наиболее важны такие линейные операторы $A: V_1 \to V_2$, для которых первое и второе пространства совпадают $(V_1 = V_2 = V)$, т.е. линейные операторы пространства V.

Множество всех линейных операторов пространства V обозначается L(V). Очевидно, что если $A, B \in L(V)$ $\lambda \in P$, то (A + B), (λA) , $(BA) \in L(V)$.

Тождественный оператор E в любом базисе имеет единичную матрицу. Аналогично при любом выборе базиса матрица нулевого оператора нулевая.

Линейное преобразование $\bar{x}' = A \bar{x}$ в пространстве V называется *невырожденным*, если его матрица невырожденная, то есть $\det A \neq 0$.

Если задано невырожденное линейное преобразование $\overline{x}' = A \, \overline{x}$, $\det A \neq 0$. Тогда умножив обе части равенства на A^{-1} слева, получим $\overline{x} = A^{-1} \, \overline{x}'$ – формулу *обратного преобразования*.

Введем понятия многочлена от матрицы и многочлена от линейного оператора.

Пусть $P_m(t) = \alpha_0 + \alpha_1 t + ... + \alpha_m t^m$ – многочлен с коэффициентами из поля P, A – квадратная матрица над этим полем.

Mногочленом от матрицы называется матрица P(A):

$$P(A) = \alpha_0 E + \alpha_1 A + ... + \alpha_m A^m,$$

где E — единичная матрица того же порядка, что и квадратная матрица A.

Многочленом от линейного оператора $A \in L(V)$ называется линейное преобразование, определенное формулой

$$P(A) = \alpha_0 E + \alpha_1 A + ... + \alpha_m A^m.$$

Т.к. сумме и произведению линейных операторов удовлетворяют соответствующие операции над их матрицами, то матрица многочлена от линейного оператора P(A) равна матрице P(A).

3.4. Изменение матрицы линейного оператора при замене базиса

Пусть задано линейное преобразование $\overline{y} = A \overline{x}$ в n-мерном пространстве V над полем P в базисе $\{\overline{e}_1, \overline{e}_2, ..., \overline{e}_n\}$.

Покажем, как изменится матрица линейного оператора при переходе к новому базису $\{\bar{e}'_1, \bar{e}'_2, ..., \bar{e}'_n\}$.

Пусть B — матрица перехода от базиса $\{\bar{e}_1, \bar{e}_2, ..., \bar{e}_n\}$ к базису $\{\bar{e}_1', \bar{e}_2', ..., \bar{e}_n'\}$. Тогда координаты вектора \bar{x} (\bar{y}) в старом базисе выражаются через координаты в новом базисе по формуле $\bar{x} = B \, \bar{x}' \, (\bar{y} = B \, \bar{y}')$.

Имеем $\bar{y} = A\bar{x} = A(B\bar{x}') = (AB)\bar{x}'$. С другой стороны, $\bar{y} = B\bar{y}'$. Тогда, приравнивая полученные равенства, имеем

$$B \overline{y}' = (AB)\overline{x}'$$
.

Умножая равенство слева на B^{-1} (обратная матрица B^{-1} существует, т.к. $\det B \neq 0$), получаем

$$\overline{y}' = (B^{-1}AB)\overline{x}'.$$

Таким образом, получили, что матрица линейного преобразования $\bar{y}' = A' \bar{x}'$ в новом базисе имеет вид

$$A' = B^{-1}AB.$$

Утв. 3.2.

Определитель матрицы линейного оператора при переходе κ новому базису не изменяется, т.е. $\det A' = \det A$.

Используя свойства определителей и факт, что $\det B^{-1} = \frac{1}{\det B}$, имеем

$$\det A' = \det \left(B^{-1} A B \right) = \det B^{-1} \cdot \det A \cdot \det B = \frac{1}{\det B} \cdot \det A \cdot \det B = \det A . \blacktriangleleft$$

3.5. Изоморфизмы линейных пространств

Два линейных пространства V_1 и V_2 над одним числовым полем P называются uзомор ϕ ными (обозначают $V_1 \cong V_2$), если существует биективный (взаимно-однозначный) линейный оператор $\phi: V_1 \to V_2$, т.е.

1.
$$\forall \overline{a}, \overline{b} \in V_1$$
 $\varphi(\overline{a} + \overline{b}) = \varphi(\overline{a}) + \varphi(\overline{b});$

2.
$$\forall \overline{a} \in V_1$$
; $\forall \alpha \in P \quad \varphi(\alpha \overline{a}) = \alpha \varphi(\overline{a})$.

Свойства изоморфизмов линейных пространств

- **1.** Тождественное отображение $E:V\to V$ является изоморфизмом.
- **2.** Если $\varphi: V_1 \to V_2$ изоморфизм линейных пространств, то и обратный линейный оператор $\varphi^{-1}: V_2 \to V_1$ изоморфизм.

3. Если $\varphi: V_1 \to V_2$, $\psi: V_2 \to V_3$ — изоморфизмы линейных пространств, то и их произведение $(\psi \varphi): V_1 \to V_3$ есть изоморфизм, т.е.

$$V_1 \cong V_2, V_2 \cong V_3 \implies V_1 \cong V_3.$$

4. Пусть $\varphi:V_1 \to V_2$ — изоморфизм линейных пространств. Если система векторов

$$\overline{a}_1, \overline{a}_2, \dots, \overline{a}_k$$
 (3.1)

пространства V_1 линейно независима, то система

$$\varphi(\overline{a}_1), \varphi(\overline{a}_2), ..., \varphi(\overline{a}_k)$$
(3.2)

также линейно независима.

- ▶ Если бы векторы (3.2) были линейно зависимы, то их образы при изоморфизме φ^{-1} , т. е. векторы (3.1), также были бы линейно зависимы. \blacktriangleleft
- **5.** Пусть $\varphi: V_1 \to V_2$ изоморфизм линейных пространств. Если $\{\overline{a}_1, \overline{a}_2, ..., \overline{a}_k\}$ образуют базис пространства V_1 , то векторы $\{\varphi(\overline{a}_1), \varphi(\overline{a}_2), ..., \varphi(\overline{a}_k)\}$ базис пространства V_2 .
- ▶ Из предыдущего свойства следует, что $\varphi(\overline{a}_1), \varphi(\overline{a}_2), ..., \varphi(\overline{a}_k)$ линейно независимы. Покажем, что $\forall \overline{y} \in V_2$ можно разложить по этим векторам, причем единственным образом.

Пусть $\bar{y} \in V_2$, $\bar{x} = \varphi^{-1}(\bar{y})$. Т.к. $\bar{x} \in V_1$, то $\bar{x} = \alpha_1 \bar{a}_1 + \alpha_2 \bar{a}_2 + ... + \alpha_k \bar{a}_k$. Применим к вектору \bar{x} изоморфизм $\varphi: V_1 \to V_2$:

 $\overline{y} = \varphi(\overline{x}) = \varphi(\alpha_1 \overline{a}_1 + \alpha_2 \overline{a}_2 + ... + \alpha_k \overline{a}_k) = \alpha_1 \varphi(\overline{a}_1) + \alpha_2 \varphi(\overline{a}_2) + ... + \alpha_k \varphi(\overline{a}_k),$ т.е. вектор $\overline{y} \in V_2$ есть линейная комбинация векторов $\varphi(\overline{a}_1), \varphi(\overline{a}_2), ..., \varphi(\overline{a}_k).$

Пусть \bar{y} имеет два разложения по данным векторам:

$$\overline{y} = \alpha_1 \varphi(\overline{a}_1) + \alpha_2 \varphi(\overline{a}_2) + \dots + \alpha_k \varphi(\overline{a}_k),$$

$$\overline{y} = \beta_1 \varphi(\overline{a}_1) + \beta_2 \varphi(\overline{a}_2) + \dots + \beta_k \varphi(\overline{a}_k).$$

Вычитая из первого равенства второе, имеем

$$(\alpha_1 - \beta_1)\varphi(\overline{a_1}) + (\alpha_2 - \beta_2)\varphi(\overline{a_2}) + \dots + (\alpha_k - \beta_k)\varphi(\overline{a_k}) = \overline{0}.$$

Из линейной независимости векторов $\boldsymbol{\varphi}(\overline{a}_1), \boldsymbol{\varphi}(\overline{a}_2), ..., \boldsymbol{\varphi}(\overline{a}_k)$ следует

$$\alpha_1 = \beta_1, \quad \alpha_2 = \beta_2, \dots, \alpha_k = \beta_k. \blacktriangleleft$$

Cледствие. $Ec \pi u \ V_1 \cong V_2$, $mo \ \dim V_1 = \dim V_2$.

6. Пусть V_1 и V_2 – n-мерные линейные пространства над полем P, $\varphi:V_1\to V_2$ – линейный оператор, переводящий какой-либо базис $\{\overline{a}_1,\overline{a}_2,...,\overline{a}_n\}$ пространства V_1 в базис $\{\varphi(\overline{a}_1),\varphi(\overline{a}_2),...,\varphi(\overline{a}_n)\}$ пространства V_2 . Тогда φ – изоморфизм линейных пространств.

 \blacktriangleright Докажем, что отображение φ – биективное (взаимно-однозначное).

Введем матрицу $B = (b_{ij})_{n \times n}$, столбцы которой есть координаты векторов $\varphi(\overline{a}_1), \varphi(\overline{a}_2), ..., \varphi(\overline{a}_n)$, тогда по теореме 3.1 $\varphi(\overline{x}) = B \overline{x}$.

Пусть $\bar{x}, \bar{y} \in V_1$, тогда $\varphi(\bar{x}) = B \bar{x}, \ \varphi(\bar{y}) = B \bar{y}$.

1. Если $\varphi(\overline{x}) = \varphi(\overline{y})$, то $B\overline{x} = B\overline{y} \implies B(\overline{x} - \overline{y}) = \overline{0}$.

 $\det B \neq 0$, т.к. система векторов $\{\varphi(\overline{a}_1), \varphi(\overline{a}_2), ..., \varphi(\overline{a}_n)\}$ является базисом пространства V_2 .

Следовательно, $B(\bar{x} - \bar{y}) = \bar{0} \iff \bar{x} - \bar{y} = \bar{0} \iff \bar{x} = \bar{y}$.

Получили, что из равенства образов $\varphi(\overline{x}) = \varphi(\overline{y})$ следует равенство $\overline{x} = \overline{y}$.

2. Пусть $\bar{x} = \bar{y}$, тогда

$$\varphi(\overline{x}) - \varphi(\overline{y}) = B\overline{x} - B\overline{y} = B(\overline{x} - \overline{y}) = B\overline{0} = \overline{0}$$
.

Следовательно, $\varphi(\overline{x}) = \varphi(\overline{y})$. \blacktriangleleft

Теорема 3.2.

Конечномерные линейные пространства над одним и тем же полем изоморфны тогда и только тогда, когда равны их размерности, т.е.

$$V_1 \cong V_2 \quad \iff \quad \dim V_1 = \dim V_2 .$$

Доказательство. Для нулевых пространств теорема очевидна. Поэтому будем рассматривать ненулевые пространства. Выше уже доказывалось, что размерности изоморфных пространств равны.

Пусть теперь V_1 и V_2-n -мерные линейные пространства над полем P; система $\overline{a}_1,\overline{a}_2,...,\overline{a}_n$ есть базис пространства V_1 , а векторы $\overline{b}_1,\overline{b}_2,...,\overline{b}_n-$ базис пространства V_2 . По теореме 3.1 существует линейный оператор $f:V_1\to V_2$, при котором $f(\overline{a}_i)=\overline{b}_i$ i=1,2,...,n.

Так как системы векторов $\{\overline{a}_1,\overline{a}_2,...,\overline{a}_n\}$ и $\{\overline{b}_1,\overline{b}_2,...,\overline{b}_n\}$ — базисы пространств V_1 и V_2 , то f — изоморфизм. \blacktriangleleft

Следствие.

Все n-мерные линейные пространства над R изоморфны пространству n-членных столбцов $P_{1,n}$ (и изоморфны между собой).

Утв. 3.3.

Пусть V-n-мерное линейное пространство над полем P. Тогда линейное пространство L(V) (всех линейных операторов пространства V) изоморфно линейному пространству $P_{n,n}$ всех квадратных матриц размерности V0 полем V1.

ightharpoonup Зафиксировав в пространстве V базис и поставив в соответствие каждому линейному оператору его матрицу в этом базисе, получим нужный изоморфизм. ightharpoonup

Вывод: если V-n-мерное линейное пространство над полем P. Зафиксируем в V какой-либо базис и поставим в соответствие каждому вектору его координатный столбец, а каждому линейному оператору пространства V- его матрицу в этом базисе. Тем самым мы установим изоморфизм пространства V на пространство V-членных столбцов V-и пространства линейных операторов V-и пространство V-и пространство V-и пространство V-и пространство V-и пространства V-как соответствующие координатные столбцы, а линейные операторы — как матрицы.

3.6. Ядро и образ линейного оператора. Ранг и дефект линейного оператора

 $\it Ядром$ линейного оператора $\it A:V_1\to V_2$ называется множество, обозначаемое $\it KerA$ и определяемое следующим соотношением

$$\overline{x} \in KerA \subset V_1 \qquad \Rightarrow \qquad A\overline{x} = \overline{0}$$

Для любого линейного оператора множество $KerA \neq \emptyset$, т.к. $\overline{0} \in KerA$. Действительно, $A\overline{0} = A(0 \cdot \overline{x}) = 0 \cdot A\overline{x} = \overline{0}$.

Если $KerA = \{\overline{0}\}$, то говорят, что оператор A имеет *тривиальное ядро*, в противном случае говорят, что оператор A имеет *нетривиальное ядро*.

Очевидно, что тождественный оператор E имеет тривиальное ядро, т.е. $KerA = \{\overline{0}\}.$

Для нуль-оператора $O:V_1 \to V_2$ справедливо $\mathit{KerA} = V_1$.

Теорема 3.3.

Ядро линейного оператора $A:V_1\to V_2$ является линейным подпространством пространства $V_1.$

Доказательство. Пусть $\bar{x}_1, \bar{x}_2 \in KerA$; $\lambda, \mu \in P$. Покажем, что вектор $\lambda \bar{x}_1 + \mu \bar{x}_2 \in KerA$. Действительно,

$$A(\lambda \overline{x}_1 + \mu \overline{x}_2) = \lambda A \overline{x}_1 + \mu A \overline{x}_2 = \lambda \cdot \overline{0} + \mu \cdot \overline{0} = \overline{0}$$
.

По определению $\bar{x} \in KerA$ равносильно условию $A\bar{x} = \bar{0}$, т.е. что столбец \bar{x} является решением однородной системы линейных уравнений.

Поэтому, ядро оператора A — пространство решений однородной системы линейных уравнений, а базис ядра оператора A — фундаментальная система решений этой системы.

Если rang A = r, $\dim V_1 = n$, то

$$\dim Ker A = n - r = \dim V_1 - rang A.$$

Левая часть равенства не зависит от выбора базисов, следовательно, и ранг матрицы линейного оператора не зависит от выбора базисов.

Рангом линейного оператора $A: V_1 \to V_2$ называется величина, равная рангу матрицы этого линейного преобразования в некотором базисе.

Таким образом, доказана следующая теорема:

Теорема 3.4.

Eсли $A: V_1 \rightarrow V_2$ – линейный оператор, то dim Ker $A = \dim V_1 - rang A$.

Размерность пространства KerA называется дефектом линейного onepamopa $A: V_1 \to V_2$. Дефект оператора A обозначается def A.

Образом линейного оператора $A:V_1\to V_2$ называется множество пространства V_2 , обозначаемое ${\rm Im}\, A$ и определяемое следующим образом

$$\overline{y} \in \operatorname{Im} A \quad \Leftrightarrow \quad \exists \overline{x} \in V_1 : \quad \overline{y} = A \overline{x}.$$

Тождественный оператор $E:V\to V$ имеет образ $\operatorname{Im} A=V$.

Для нуль-оператора $O: V_1 \to V_2$ справедливо $\operatorname{Im} A = \{\overline{0}\}.$

Теорема 3.5.

Образ линейного оператора $A:V_1\to V_2$ является линейным подпространством пространства V_2 .

Доказательство. Пусть \bar{y}_1 , $\bar{y}_2 \in \operatorname{Im} A$; $\lambda, \mu \in P$. Покажем, что вектор $\lambda \, \bar{y}_1 + \mu \, \bar{y}_2 \in \operatorname{Im} A$. Действительно, $\bar{y}_i \in \operatorname{Im} A$ означает, что существует $\bar{x}_i \in V_1$: $\bar{y}_i = A \, \bar{x}_i \, (i = 1, 2)$.

Рассмотрим элемент $\lambda \, \overline{x}_1 + \mu \, \overline{x}_2 \in V_1$. Имеем

$$A(\lambda \,\overline{x}_1 + \mu \,\overline{x}_2) = \lambda \,A\overline{x}_1 + \mu \,A\overline{x}_2 = \lambda \,\overline{y}_1 + \mu \,\overline{y}_2.$$

Тем самым показали, что для элемента $\lambda \, \overline{y}_1 + \mu \, \overline{y}_2 \in V_2$ нашелся элемент $\lambda \, \overline{x}_1 + \mu \, \overline{x}_2 \in V_1$ такой, что $A(\lambda \, \overline{x}_1 + \mu \, \overline{x}_2) = \lambda \, \overline{y}_1 + \mu \, \overline{y}_2$. Равенство по определению означает, что $\lambda \, \overline{y}_1 + \mu \, \overline{y}_2 \in \operatorname{Im} A$. \blacktriangleleft

Теорема 3.6.

Ecnu $A:V_1 \rightarrow V_2$ – линейный оператор, то

$$\dim(KerA) + \dim(\operatorname{Im} A) = \dim V_1.$$

Доказательство. Пусть $\left\{ \overline{e}_1, \overline{e}_2, ..., \overline{e}_n \right\}$ базис пространства V_1 . Тогда

$$\overline{x} \in V_1 \implies \overline{x} = x_1 \overline{e}_1 + x_2 \overline{e}_2 + \dots + x_n \overline{e}_n.$$

Рассмотрим образ произвольного вектора \overline{x} при линейном преобразовании $A:V_1 \to V_2$

$$\overline{y} = A \overline{x} = A(x_1 \overline{e}_1 + x_2 \overline{e}_2 + \dots + x_n \overline{e}_n) = x_1 A \overline{e}_1 + x_2 A \overline{e}_2 + \dots + x_n A \overline{e}_n.$$

Получили, что $\overline{y} \in \operatorname{Im} A$ есть линейная оболочка образов базисных векторов $A\overline{e}_1, A\overline{e}_2, ..., A\overline{e}_n$, т.е. $\operatorname{Im} A = L \langle A\overline{e}_1, A\overline{e}_2, ..., A\overline{e}_n \rangle$.

Т.к. левая часть этого равенства не зависти от выбора базиса, значит, и правая не зависит от выбора базисов. Следовательно,

$$\dim(\operatorname{Im} A) = \dim L\langle A\overline{e}_1, A\overline{e}_2, ..., A\overline{e}_n \rangle = rang A$$

и базис $\operatorname{Im} A$ образуют базисные столбцы матрицы линейного оператора.

Из теоремы 3.4 получаем

$$\dim(KerA) = \dim V_1 - rang A$$
 или $\dim(KerA) = \dim V_1 - \dim(\operatorname{Im} A)$.

3.7. Инвариантное подпространство

Пусть A — линейный оператор линейного пространства V над полем P. Если U — подпространство пространства V, такое, что $A(U) \subset U$, то U называют инвариантным относительно A подпространством.

Ноль-подпространство инвариантно относительно любого линейного оператора. Всякое подпространство пространства V инвариантно относительно оператора (αE).

Утв. 3.4.

Для любого линейного оператора $A:V\to V$ подпространства A(V) и KerA — инвариантные относительно A.

➤ Очевидно, что $\forall \overline{x} \in V$ $A(A\overline{x}) \in V$, т.к. $A\overline{x} \in V$. Значит, $A(V) \subset V$, т.е. A(V) инвариантно относительно A подпространство.

Пусть $\overline{x} \in KerA$, тогда $A\overline{x} = \overline{0} \in KerA$. Значит, $A(KerA) \subset KerA$, т.е. KerA инвариантное относительно A подпространство. \blacktriangleleft

Утв. 3.5.

Если подпространства U_1, U_2 пространства V инвариантны относительно $A \in L(V)$, то сумма $U_1 + U_2$ и пересечение $U_1 \cap U_2$ также инвариантны относительно A.

ightharpoonup Пусть $\overline{x}\in (U_1+U_2)$, тогда $\overline{x}\in \overline{a}_1+\overline{a}_2$, где $\overline{a}_1\in U_1,\ \overline{a}_2\in U_2$. Т.к. U_1,U_2 инвариантны относительно $A\in L(V)$, то $A\,\overline{a}_1\in U_1,\ A\,\overline{a}_2\in U_2$.

Следовательно,

$$A\overline{x} = A(\overline{a}_1 + \overline{a}_2) = A\overline{a}_1 + A\overline{a}_2 \in (U_1 + U_2),$$

т.е. сумма $U_1 + U_2\,$ инвариантна относительно оператора A .

Инвариантность относительно A пересечения подпространств доказывается аналогично. \blacktriangleleft

Утв. 3.6.

Пусть $A, B \in L(V)$, U — инвариантное относительно каждого из них подпространство, α — число. Тогда подпространство U инвариантно относительно $(A + B), BA, \alpha A$.

➤ Для вектора $\bar{x} \in U$ образы $A \bar{x}$ и $B \bar{x}$ принадлежат подпространству U, поэтому $(A+B)\bar{x} = A\bar{x} + B\bar{x} \in U$. Тем самым доказана инвариантность подпространства U относительно линейного оператора (A+B). Доказательство инвариантности подпространства U относительно произведений BA, αA аналогично. \blacktriangleleft

Следствие.

Если подпространство U инвариантно относительно линейного оператора $A:V\to V$, а P(t) – многочлен, то U также является инвариантным относительно P(A).

3.8. Линейный оператор с клеточно-диагональной матрицей

Пусть подпространство $U \neq \{\overline{0}\}$ инвариантно относительно линейного оператора $A: V \to V$ и $\{\overline{u}_1, \overline{u}_2, ..., \overline{u}_k\}$ – базис подпространства U.

Выберем базис пространства V следующим образом

$$\{\overline{e}_1, \overline{e}_2, \dots, \overline{e}_m, \overline{u}_1, \overline{u}_2, \dots, \overline{u}_k\}. \tag{3.3}$$

Размерности $\dim U = k$, $\dim V = m + k = n$.

Т.к. подпространство U инвариантно относительно оператора A, то вектор $A\overline{u}_i \in U$ и является линейной комбинацией векторов $\overline{u}_1, \overline{u}_2, ..., \overline{u}_k$, поэтому при линейном преобразовании A образы базисных векторов определяются следующим образом

$$\begin{cases}
A\overline{e}_{i} = \alpha_{1i}\overline{e}_{1} + \dots + \alpha_{mi}\overline{e}_{m} + \beta_{1i}\overline{u}_{1} + \dots + \beta_{ki}\overline{u}_{k}, & i = 1, \dots, m; \\
A\overline{u}_{i} = \gamma_{1i}\overline{u}_{1} + \dots + \gamma_{ki}\overline{u}_{k}, & i = 1, \dots, k.
\end{cases} (3.4)$$

Следовательно, матрица линейного оператора A в базисе (3.3) имеет вид

$$A = \begin{pmatrix} \alpha_{11} & \dots & \alpha_{1m} & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ \alpha_{m1} & \dots & \alpha_{mm} & 0 & \dots & \dots \\ \beta_{11} & \dots & \beta_{1m} & \gamma_{11} & \dots & \gamma_{1k} \\ \dots & \dots & \dots & \dots & \dots \\ \beta_{k1} & \dots & \beta_{km} & \gamma_{k1} & \dots & \gamma_{kk} \end{pmatrix}$$
(3.5)

т. е. ее правый верхний угол – нулевой.

Матрица

$$\begin{pmatrix} \gamma_{11} & \cdots & \gamma_{1k} \\ \cdots & \cdots & \cdots \\ \gamma_{k1} & \cdots & \gamma_{kk} \end{pmatrix}, \tag{3.6}$$

расположенная в правом нижнем углу матрицы (3.5), является матрицей линейного оператора $A:U\to U$ в базисе $\{\overline{u}_1,\overline{u}_2,...,\overline{u}_k\}$.

Обратно, пусть система (3.3) — произвольный базис пространства V, а A — линейный оператор этого пространства, имеющий в базисе (3.3) матрицу (3.5) с нулевым углом.

Тогда очевидно, что верны формулы (3.4), а, следовательно, подпространство $U = L\langle \overline{u}_1, \overline{u}_2, ..., \overline{u}_k \rangle$ инвариантно относительно оператора A и матрица (3.6) есть матрица этого преобразования на подпространстве U в базисе $\{\overline{u}_1, \overline{u}_2, ..., \overline{u}_k\}$.

Теорема 3.7.

Пусть $A \in L(V)$. Пространство $V = U_1 \oplus U_2$, где U_1, U_2 есть инвариантные подпространства относительно оператора A, тогда и только тогда, когда в каком-либо базисе матрицей этого оператора является клеточно-диагональная матрица вида

$$A = \begin{pmatrix} \alpha_{11} & \dots & \alpha_{1m} & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ \alpha_{m1} & \dots & \alpha_{mm} & 0 & \dots & \dots \\ 0 & \dots & 0 & \beta_{11} & \dots & \beta_{1k} \\ \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & 0 & \beta_{k1} & \dots & \beta_{kk} \end{pmatrix}$$
(3.7)

Доказательство.

Пусть теперь пространство V есть прямая сумма инвариантных относительно оператора A подпространств U_1 , U_2 : $V = U_1 \oplus U_2$.

Пусть $\{\overline{a}_1,\overline{a}_2,...,\overline{a}_m\}$ является базисом подпространства U_1 , а система $\left\{\overline{b_1},\overline{b_2},...,\overline{b_k}\right\}$ – базисом подпространства U_2 .

Очевидно, что

$$\begin{cases} A\overline{a}_{i} = \alpha_{1i}\overline{a}_{1} + ... + \alpha_{mi}\overline{a}_{m}, & i = 1,...,m; \\ A\overline{b}_{i} = \beta_{1i}\overline{u}_{1} + ... + \beta_{ki}\overline{u}_{k}, & i = 1,...,k. \end{cases}$$
Запишем матрицу оператора A в базисе $\{\overline{a}_{1}, ..., \overline{a}_{m}, \overline{b}_{1}, ..., \overline{b}_{k}\}$ пространст-

ва V

$$A = \begin{pmatrix} \alpha_{11} & \dots & \alpha_{1m} & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ \alpha_{m1} & \dots & \alpha_{mm} & 0 & \dots & \dots \\ 0 & \dots & 0 & \beta_{11} & \dots & \beta_{1k} \\ \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & 0 & \beta_{k1} & \dots & \beta_{kk} \end{pmatrix},$$

которая является клеточно-диагональной матрицей $diag((\alpha_{ii}),(\beta_{ii}))$.

Причем матрицы $\left(\alpha_{ij}\right)_{m\times m}$ и $\left(oldsymbol{eta}_{ij}\right)_{k imes k}$ являются матрицами линейного преобразования A на подпространствах U_1, U_2 в базисах $\{\overline{a}_1, \overline{a}_2, ..., \overline{a}_m\}$, $\left\{\overline{b_1},\overline{b_2},...,\overline{b_k}\right\}$ соответственно.

Обратно, пусть оператор A в базисе $\left\{\overline{a}_1,...,\overline{a}_m,\overline{b}_1,...,\overline{b}_k\right\}$ имеет клеточно-диагональную матрицу (3.7). Тогда верны формулы (3.8) и, следовательно, подпространства $U_1=L\langle \overline{a}_1,\overline{a}_2,...,\overline{a}_m\rangle$ и $U_2=L\langle \overline{b}_1,\overline{b}_2,...,\overline{b}_k\rangle$ инвариантны относительно A. Причем матрицы оператора на подпространствах

 $U_1,\,U_2$ имеют вид соответственно $\left(\alpha_{ij}\right)_{m\! imes\!m}$ и $\left(eta_{ij}\right)_{k\! imes\!k}$. Очевидно, что $V=U_1\oplus U_2$. \blacktriangleleft

Аналогичное утверждение верно и в том случае, когда пространство V является прямой суммой трех и более инвариантных относительно оператора f подпространств.

В частности, если $\dim V = n$ и в этой сумме n слагаемых (прямых), то каждое из них одномерно, и верна

Теорема 3.8.

Линейное п-мерное пространство

$$V = U_1 \oplus U_2 \oplus ... \oplus U_n$$
,

где U_i — одномерные инвариантные подпространства относительно оператора $A:V\to V$ (i=1,2,...,n) \iff матрица линейного преобразования A диагональна.

3.9. Характеристический многочлен матрицы

Xарактеристической матрицей матрицы $A = \left(a_{ij}\right)_{n \times n}$ над полем P называется матрица

$$A-\lambda E = \begin{pmatrix} a_{11}-\lambda & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22}-\lambda & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn}-\lambda \end{pmatrix}, \ \lambda - \text{переменная}.$$

Определитель $\det(A - \lambda E)$ называется характеристическим многочленом матрицы A, а его корни $\lambda_1, \lambda_2, ..., \lambda_n$ – характеристическими корнями (характеристическими числами) матрицы A.

Очевидно, что характеристический многочлен есть многочлен n-ой степени от переменной λ , т.е.

$$\det(A - \lambda E) = (-1)^n (\lambda^n - p_1 \lambda^{n-1} + p_2 \lambda^{n-2} - \dots \pm p_n), \qquad p_i \in P.$$

Свободный член многочлена $\det(A-\lambda E)$ совпадает с его значением при $\lambda=0$ и поэтому

$$p_n = \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix} = \det A.$$

Т.к. произведение всех корней многочлена может отличаться от его свободного члена лишь знаком, то верно

Утв.3.7.

 $\det A \neq 0 \iff$ нуль не является корнем характеристического многочлена $\det(A - \lambda E)$.

Сумма всех элементов главной диагонали квадратной матрицы A называется ее $cne\partial om$ и обозначается

$$Sp A = \sum_{i=1}^{n} a_{ii} .$$

Очевидно, что $p_1 = Sp A$.

По формулам Виета коэффициенты p_i выражаются через корни $\lambda_1, \lambda_2, ..., \lambda_n$ следующим образом:

$$\begin{split} p_1 &= \ \lambda_1 + \lambda_2 + \ldots + \lambda_n \,, \\ p_2 &= \ \lambda_1 \lambda_2 + \lambda_1 \lambda_3 + \ldots + \lambda_{n-1} \lambda_n \,, \\ & \cdot \quad \cdot \quad \cdot \quad \cdot \quad \cdot \quad \cdot \\ p_n &= \ \lambda_1 \ \lambda_2 \cdot \ldots \cdot \lambda_n \,. \end{split}$$

Отсюда в частности, получаются часто применяемые соотношения $\lambda_1 + \lambda_2 + ... + \lambda_n = a_{11} + a_{22} + ... + a_{nn}$, $\lambda_1 \lambda_2 \cdot ... \cdot \lambda_n = \det A$.

Утв. 3.8.

Характеристический многочлен матрицы линейного оператора не зависит от выбора базиса пространства.

ightharpoonup Пусть линейный оператор $A:V\to V$ при переходе к новому базису имеет матрицу A' .

Тогда

$$A' = B^{-1}AB,$$

где B — матрица перехода от старого базиса к новому.

Характеристический многочлен матрицы A'

$$A' - \lambda E = B^{-1}AB - \lambda E = B^{-1}AB - B^{-1}(\lambda E)B = B^{-1}(A - \lambda E)B.$$

Поэтому
$$\det(A' - \lambda E) = \det B^{-1} \cdot \det(A - \lambda E) \cdot \det B = \det(A - \lambda E)$$
. \blacktriangleleft

Обратное утверждение: если характеристические многочлены матриц равны, то эти матрицы подобны, неверно.

Xарактеристическим многочленом линейного оператора $A:V \to V$ называют характеристический многочлен его матрицы.

Cледом $Sp\ A$ линейного оператора A называется след его матрицы, а onpedeлителем $\det A$ линейного оператора A — определитель его матрицы.

Как и характеристический многочлен, след и определитель линейного оператора не зависят от выбора базиса пространства.

3.10. Собственные векторы и собственные значения линейного оператора

Пусть A — линейный оператор линейного пространства V над полем P, \overline{x} — ненулевой вектор пространства V. Ecnu

$$A\,\overline{x} = \lambda \cdot \overline{x}, \quad \lambda \in P, \tag{3.9}$$

то число λ называется собственным значением или собственным числом оператора A, а вектор \bar{x} – собственным вектором, относящимся к собственному значению λ .

Примеры собственных векторов и собственных чисел

- 1. Все ненулевые векторы пространства KerA собственные векторы оператора A, соответствующие собственному значению $\lambda = 0$.
- 2. При тождественном преобразовании $E:V\to V$ все ненулевые векторы пространства собственные, с собственным значением $\lambda=1$.
- 3. Оператор поворота плоскости на угол $\alpha \neq \pi \, k$, $k \in Z$ не имеет собственных векторов.

Т.к. $\lambda \cdot \overline{x} = (\lambda E)\overline{x}$, то условие (3.9) можно записать

$$A \, \overline{x} - \lambda \cdot \overline{x} = \overline{0} \qquad \Leftrightarrow \qquad (A - \lambda E) \cdot \overline{x} = \overline{0} .$$

Таким образом, ненулевой $\overline{x} \in V$ является собственным вектором соответствующий собственному значению λ линейного оператора $A: V \to V$ когда $\overline{x} \in Ker(A - \lambda E)$. Выше было показано, что

$$Ker(A - \lambda E) \neq \{\overline{0}\} \iff \det(A - \lambda E) = 0.$$

Последнее равенство верно, если λ – корень характеристического многочлена матрицы A.

Теорема 3.9.

Собственными значениями линейного оператора являются все принадлежащие основному полю корни характеристического многочлена этого оператора, и только они.

Если λ — собственное значение оператора A, то все относящиеся κ нему собственные векторы и нулевой вектор составляют подпространство $Ker(A-\lambda E)$, инвариантное относительно A.

Из теоремы следует, что все собственные числа λ оператора $A \in L(V)$ – это характеристические числа линейного оператора, принадлежащие основному полю P.

Множество всех собственных чисел линейного оператора (каждое собственное число берется столько раз, какова его алгебраическая кратность в характеристическом многочлене) называют *спектром линейного оператора*.

Собственные векторы $\bar{x} = (x_1, x_2, ..., x_n)^T$, отвечающие собственному числу λ , можно найти как решения однородной системы линейных уравнений $(A - \lambda E) \cdot \bar{x} = \bar{0}$, т.е.

$$\begin{cases} (a_{11} - \lambda)x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0, \\ a_{21}x_1 + (a_{22} - \lambda)x_2 + \dots + a_{2n}x_n = 0, \\ \vdots & \vdots & \vdots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + (a_{nn} - \lambda)x_n = 0. \end{cases}$$

Подпространство $Ker(A-\lambda E)$ называется собственным подпространством оператора A по λ , размерность данного подпространства, равная $(n-r_{\lambda})$, где $n=\dim V$, $r_{\lambda}=rang(A-\lambda E)$, называется геометрической кратностью собственного значения λ .

Геометрическая кратность собственного числа λ определяется как максимальное число линейно независимых собственных векторов оператора A, соответствующие собственному числу λ .

Геометрическая кратность собственного числа не превосходит его алгебраической кратности λ , т.е. кратности с которой входит корнем в характеристический многочлен $\det(A - \lambda E)$.

Квадратная матрица называется *простой*, если для каждого собственного числа матрицы его геометрическая кратность совпадает с алгебраической. В противном случае матрица называется *дефектной*.

Свойства собственных векторов

- 1. Собственный вектор линейного преобразования имеет единственное собственное число.
- 2. Если \bar{x} собственный вектор преобразования, то $\forall \bar{y}: \bar{y} = \alpha \bar{x}$ тоже будет собственным вектором с тем же собственным числом.
- 3. Если \bar{x} , \bar{y} линейно независимые собственные векторы преобразования с собственным числом λ , то $(\alpha \bar{x} + \beta \bar{y})$ собственный вектор с собственным числом λ .
- 4. Если \overline{x} , \overline{y} собственные векторы преобразования с собственными числами λ_1 , λ_2 , причем $\lambda_1 \neq \lambda_2$, то \overline{x} , \overline{y} линейно независимы.

$y_{TB.3.9.}$

В пространстве V существует одномерное подпространство U инвариантное относительно $A \in L(V)$ тогда и только тогда, когда линейный оператор A имеет собственный вектор \overline{x} , соответствующий собственному числу λ , причем подпространство $U = L\langle \overline{x} \rangle$.

▶ Пусть U – одномерное подпространство пространства V над полем P. Если $\overline{x} \neq \overline{0}$ вектор из U, то очевидно, что U есть множество $L\langle \overline{x} \rangle$ всех векторов вида $\alpha \, \overline{x}, \, \alpha \in P$.

Если U – инвариантное относительно линейного оператора A подпространство, то $A\overline{x}=\lambda\,\overline{x},\ \lambda\in P$. Тогда для произвольного вектора $(\alpha\,\overline{x})\!\in U$ имеем $A(\alpha\,\overline{x})\!=\alpha\cdot A\overline{x}=\alpha\cdot\lambda\,\overline{x}=\lambda(\alpha\,\overline{x}),$ т.е. все ненулевые векторы подпространства U являются собственными векторами оператора A соответствующие собственному числу λ .

Обратно, если \bar{x} — собственный вектор оператора A, относящийся к собственному значению λ , а $\alpha \in P$, то $A(\alpha \bar{x}) = \lambda(\alpha \bar{x})$, и, значит, $L\langle \bar{x} \rangle$ — инвариантное относительно A подпространство. \blacktriangleleft

Очевидно, что

$$V = L\langle \overline{x}_1 \rangle \oplus L\langle \overline{x}_2 \rangle \oplus ... \oplus L\langle \overline{x}_n \rangle, \ \overline{x}_i \neq \overline{0} \quad \Longleftrightarrow \quad \left\{ \overline{x}_1, \overline{x}_2, ..., \overline{x}_n \right\} - \text{базис} \ \ V.$$

Теорема 3.10.

Линейное n-мерное пространство V является прямой суммой своих одномерных инвариантных относительно линейного оператора A подпространств тогда и только тогда, когда в V есть n линейно независимых собственных векторов оператора A.

Следствие. Если линейный оператор A n-мерного линейного пространства имеет n различных собственных значений, то это пространство есть прямая сумма одномерных инвариантных относительно A подпространств.

3.11. Приведение матриц линейного оператора к диагональному виду и его применения

Приведение матриц к диагональному виду значительно упрощает решение многих прикладных задач, находит широкое применение при моделировании линейных динамических систем, при решении систем линейных алгебраических уравнений; каноническое разложение применяется для возведения матрицы в степень и нахождения обратной матрицы.

Если в исходном базисе $\{\overline{e}_1,\overline{e}_2,...,\overline{e}_n\}$ линейный оператор имеет матрицу A, то в базисе из собственных векторов $\{\overline{e}_1',\overline{e}_2',...,\overline{e}_n'\}$ – матрицу Λ

$$\Lambda = B^{-1}AB = \begin{pmatrix} \lambda_1 & 0 \\ & \ddots & \\ 0 & \lambda_n \end{pmatrix}, \tag{3.10}$$

где B — матрица перехода от базиса $\{\bar{e}_k\}_{k=1}^n$ к базису $\{\bar{e}_k'\}_{k=1}^n$; $\lambda_1,\lambda_2,...,\lambda_n$ — собственные значения оператора.

На матричном языке соотношение (3.10) означает, что матрица A приводится матрицей B к диагональному виду.

Разрешив равенство (3.10) относительно матрицы A, прейдем к соотношению

$$A = B\Lambda B^{-1}$$

которое называется κ аноническим разложением матрицы A.

Таблица 2.

	Схема приведения матрицы к каноническому виду				
1.	и получения канонического Найти характеристические числа квадратной матрицы A .				
2.	Если каждое характеристическое число λ_i является собственным, то сравнить геометрическую кратность числа λ_i с его алгебраической кратностью.	k_i — алгебраическая кратность числа λ_i ; $l_i = (n - r_i)$ — геометрическая кратность, где $r_i = rang(A - \lambda_i E)$			
3.	Если для каждого собственного числа λ_i алгебраическая кратность совпадает с его геометрической кратностью, то в базисе из собственных векторов матрица линейного оператора принимает диагональный вид, где на главной диагонали стоят соответствующие собственные числа с учетом их кратности.	$\Lambda = \begin{pmatrix} \lambda_1 & & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{pmatrix}$			
4.	Найти соответствующие собственным числам λ_i собственные векторы, учитывая их кратность.	$(A - \lambda_i E) \cdot \overline{e}_i' = 0$			
5.	Из собственных векторов образовать базис.	$\left\{ \overline{e}_{k}^{\prime}\right\} _{k=1}^{n}$			
6.	Составить матрицу перехода B , столбцы которой есть координаты базисных векторов $\{\bar{e}'_k\}_{k=1}^n$.	$B = \left(b_{ij}\right)_{n \times n}$			
7.	Записать каноническое разложение матрицы A .	$A = B\Lambda B^{-1}$			

Если хотя бы одно условие не выполняется в п. 2;3, то матрица не приводима к диагональному виду.

Пример 3.1. Привести, если возможно, действительную матрицу

$$A = \begin{pmatrix} -1 & 3 & -1 \\ -3 & 5 & -1 \\ -3 & 3 & 1 \end{pmatrix}$$

к диагональному виду и построить её каноническое разложение.

Решение.

1. Найдем корни характеристического многочлена

$$|A - \lambda E| = \begin{vmatrix} -1 - \lambda & 3 & -1 \\ -3 & 5 - \lambda & -1 \\ -3 & 3 & 1 - \lambda \end{vmatrix} = \begin{vmatrix} -1 - \lambda & 3 & -1 \\ 0 & 2 - \lambda & -2 + \lambda \\ -3 & 3 & 1 - \lambda \end{vmatrix} =$$

$$= -(\lambda - 2) \begin{vmatrix} -1 - \lambda & 3 & -1 \\ 0 & 1 & -1 \\ -3 & 3 & 1 - \lambda \end{vmatrix} = -(\lambda - 2) \begin{vmatrix} -1 - \lambda & 3 & 2 \\ 0 & 1 & 0 \\ -3 & 3 & 4 - \lambda \end{vmatrix} =$$

$$= -(\lambda - 2)(\lambda^2 - 3\lambda + 2) = -(\lambda - 2)^2(\lambda - 1).$$

Получили характеристический многочлен: $|A - \lambda E| = -(\lambda - 2)^2(\lambda - 1)$.

Характеристическими числами матрицы A являются $\lambda_1 = 2$ и $\lambda_2 = 1$ соответственно кратности $k_1 = 2$, $k_2 = 1$.

2. Т.к. все характеристические числа действительны, поэтому они являются собственными значениями матрицы A.

При $\lambda_1 = 2$ матрица

$$A - \lambda_1 E = \begin{pmatrix} -3 & 3 & -1 \\ -3 & 3 & -1 \\ -3 & 3 & -1 \end{pmatrix}$$

имеет ранг $r_1 = 1$ и поэтому $l_1 = n - r_1 = 3 - 1 = 2 = k_1$

При $\lambda_2 = 1$ матрица

$$A - \lambda_2 E = \begin{pmatrix} -2 & 3 & -1 \\ -3 & 4 & -1 \\ -3 & 3 & 0 \end{pmatrix} \sim \begin{pmatrix} -2 & 3 & -1 \\ -3 & 3 & 0 \\ 0 & 1 & -1 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & -1 \\ -1 & 1 & 0 \\ 0 & 1 & -1 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 1 & -1 \end{pmatrix}$$

имеет ранг $r_2 = 2$ и поэтому $l_2 = n - r_2 = 3 - 2 = 1 = k_2$.

3. Таким образом, у матрицы A геометрическая кратность каждого собственного числа совпадает с его алгебраической кратностью, поэтому матрица A приводится к диагональному виду

$$\Lambda = \left(\begin{array}{ccc} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{array} \right).$$

4. При $\lambda = 2$ система $(A-2E) \cdot \overline{e}_i' = 0$ или

$$\begin{pmatrix} -3 & 3 & -1 & 0 \\ -3 & 3 & -1 & 0 \\ -3 & 3 & -1 & 0 \end{pmatrix} \sim \begin{pmatrix} -3 & 3 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

имеет общее решение $X = (x_1, x_2, -3x_1 + 3x_2)^T$, в котором два свободных неизвестных ($l_1 = k_1 = 2$). Полагая в общем решении сначала $x_1 = 1$, $x_2 = 0$, затем $x_1 = 0$, $x_2 = 1$, соответственно получим частные решения $\overline{e}_1' = (1, 0, -3)^T$, $\overline{e}_2' = (0, 1, 3)^T$, которые составляют фундаментальную систему решений системы уравнений.

При $\lambda = 1$ система $(A - E) \cdot \overline{e}'_i = 0$ или

$$\begin{pmatrix} -2 & 3 & -1 & 0 \\ -3 & 4 & -1 & 0 \\ -3 & 3 & 0 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

имеет общее решение $X = (x_3, x_3, x_3)^T$, в котором одно свободное неизвестное $(l_2 = k_2 = 1)$. Полагая в общем решении сначала $x_3 = 1$, получим частное решения $\overline{e}_3' = (1,1,1)^T$.

- 5. Таким образом, собственные векторы $\overline{e}_1' = (1,0,-3)^T$, $\overline{e}_2' = (0,1,3)^T$, $\overline{e}_3' = (1,1,1)^T$ образуют базис, в котором матрица A принимает диагональный вид.
- 6. Из собственных векторов $\{\overline{e}_i'\}_i$, как из столбцов, составляем матрицу

$$B = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ -3 & 3 & 1 \end{pmatrix},$$

которая является матрицей перехода к базису из собственных векторов.

7. Матрица А приводится к диагональному виду

$$\Lambda = B^{-1}AB = \left(\begin{array}{ccc} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{array} \right)$$

и имеет каноническое разложение

$$A = B\Lambda B^{-1} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ -3 & 3 & 1 \end{pmatrix} \cdot \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} -2 & -3 & -1 \\ -3 & 4 & -1 \\ 3 & -3 & 1 \end{pmatrix}.$$

Приведение матриц к диагональному виду и каноническое разложение матриц широко используется в теории и вычислительной практике.

1. Например, если известно каноническое разложение $A = B\Lambda B^{-1}$ матрицы A, то её m-я степень при натуральном числе m легко находится по формуле

$$A^{m} = B\Lambda^{m}B^{-1} = B \cdot \begin{pmatrix} \lambda_{1}^{m} & 0 \\ & \ddots & \\ 0 & \lambda_{n}^{m} \end{pmatrix} \cdot B^{-1},$$

т.к. $A^m = B\Lambda B^{-1} \cdot B\Lambda B^{-1} \cdot \dots \cdot B\Lambda B^{-1} = B\Lambda^m B^{-1}$

Формула сохраняется при m целом отрицательном для невырожденной матрицы. В частности,

$$A^{-1} = B\Lambda^m B^{-1} = B \cdot \begin{pmatrix} \lambda_1^{-1} & 0 \\ & \ddots & \\ 0 & \lambda_n^{-1} \end{pmatrix} \cdot B^{-1}.$$

Один из корней т-й степени из матрицы А определяется формулой

$$\sqrt[m]{A} = B \cdot \begin{pmatrix} \sqrt[m]{\lambda_1} & 0 \\ & \ddots & \\ 0 & \sqrt[m]{\lambda_n} \end{pmatrix} \cdot B^{-1}.$$

2. Решение системы AX = D линейных уравнений также значительно упрощается, если известно каноническое разложение матрицы $A = B\Lambda B^{-1}$. В этом случае от системы

$$B\Lambda B^{-1}X = D$$

переходят к системе

$$\Lambda B^{-1}X = B^{-1}D.$$

Затем вводят обозначение $Z = B^{-1}X$ и решают систему

$$\Lambda Z = B^{-1}D.$$

Причем, неизвестным $z_{r+1}, z_{r+2}, ..., z_n$ при которых множителями стоят $\lambda_{r+1}, \lambda_{r+2}, ..., \lambda_n$, придают произвольные значения $C_1, C_2, ..., C_{n-r}$.

В результате получают $Z = (z_1, z_2, ..., z_r, C_1, C_2, ..., C_{n-r})^T$.

По найденному Z находят

$$\begin{split} X &= BZ = \left(X_{1}, X_{2}, ..., X_{r}, X_{r+1}, ..., X_{n}\right) \cdot \left(z_{1}, z_{2}, ..., z_{r}, C_{1}, C_{2}, ..., C_{n-r}\right)^{T} = \\ &= \left(z_{1}X_{1} + z_{2}X_{2} + ... + z_{r}X_{r}\right) + \left(C_{1}X_{r+1} + C_{2}X_{r+2} + ... + C_{n-r}X_{n}\right) = \\ &= X_{_{\mathit{H}H}} + X_{_{\mathit{OOH}}} \,. \end{split}$$

Пример 3.2. Решить систему AX = D, если $D = (12,12,-8)^T$ и известно каноническое разложение матрицы A

$$A = B\Lambda B^{-1} = \begin{pmatrix} 3 & 2 & 1 \\ 0 & 1 & 1 \\ 2 & 0 & -1 \end{pmatrix} \cdot \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 1 & -2 & -1 \\ -2 & 5 & 3 \\ 2 & -4 & -3 \end{pmatrix}.$$

Решение.

От системы

$$AX = (12, 12, -8)^T$$

перейдем к системе

$$\Lambda B^{-1}X = B^{-1}(12,12,-8)^T$$

$$\begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 0 \end{pmatrix} B^{-1} X = \begin{pmatrix} 1 & -2 & -1 \\ -2 & 5 & 3 \\ 2 & -4 & -3 \end{pmatrix} \cdot \begin{pmatrix} 12 \\ 12 \\ -8 \end{pmatrix}$$

или

$$\begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 0 \end{pmatrix} B^{-1} X = \begin{pmatrix} -4 \\ 12 \\ 0 \end{pmatrix}.$$

Полагая $Z = B^{-1}X$, получим систему

$$\begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 0 \end{pmatrix} Z = \begin{pmatrix} -4 \\ 12 \\ 0 \end{pmatrix}$$
 или
$$\begin{cases} 2z_1 = -4, \\ 2z_2 = 12, \\ 0 \cdot z_3 = 0. \end{cases}$$

Отсюда находим $Z = (-2,6,C)^T$.

Поэтому решение системы

$$X = BZ = \begin{pmatrix} 3 & 2 & 1 \\ 0 & 1 & 1 \\ 2 & 0 & -1 \end{pmatrix} \cdot \begin{pmatrix} -2 \\ 6 \\ C \end{pmatrix} = \begin{pmatrix} 6+C \\ 6+C \\ -4-C \end{pmatrix} = \begin{pmatrix} 6 \\ 6 \\ -4 \end{pmatrix} + C \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}.$$

ГЛАВА 4. МАТРИЦЫ НАД КОЛЬЦОМ МНОГОЧЛЕНОВ

Вначале изучим некоторые свойства матриц над кольцом многочленов $P[\lambda]$ (т.е. матриц, элементами которых являются произвольные многочлены).

Мы будем рассматривать квадратные матрицы над $P[\lambda]$. В кольце многочленов операции сложения и умножения имеют те же формальные свойства (ассоциативность, коммутативность, дистрибутивность), что и соответствующие операции в поле. Это обстоятельство приводит к тому, что многие свойства матриц над полем сохраняются для матриц над кольцом многочленов $P[\lambda]$, где P \square поле, в частности теория определителей, алгебра матриц.

4.1. Каноническая форма матрицы над кольцом многочленов

Модифицируем определение элементарных преобразований применительно к рассматриваемой ситуации.

Элементарными преобразованиями строк, матрицы над $P[\lambda]$ называются следующие две операции:

- 1) умножение строки матрицы на произвольный отличный от нуля элемент поля P;
- 2) прибавление к одной строке матрицы другой ее строки, умноженной на произвольный многочлен $f(\lambda) \in P[\lambda]$;
 - 3) перестановка строк.

Элементарные преобразования столбцов определяются аналогично.

Если матрица $A(\lambda)$ получается из матрицы $B(\lambda)$ в результате применения элементарных преобразований, то будем называть матрицы $A(\lambda)$, $B(\lambda)$ эквивалентными и обозначать $A(\lambda) \sim B(\lambda)$.

Диагональная матрица

$$K(\lambda) = diag[f_1(\lambda), f_2(\lambda), ..., f_n(\lambda)]$$

над $P[\lambda]$ называется *канонической*, если она удовлетворяет следующим условиям:

- 1) каждый диагональный элемент $f_i(\lambda)$ (i < n), является делителем следующего диагонального элемента $f_{i+1}(\lambda)$;
- 2) старший коэффициент каждого из ненулевых многочленов $f_i(\lambda)$ равен 1.

Многочлены $f_1(\lambda), f_2(\lambda), ..., f_n(\lambda)$ называются инвариантными множителями канонической матрицы $K(\lambda)$.

Если среди ненулевых инвариантных множителей есть элементы поля P, то, согласно условию 2, они равны единице и по условию 1 расположены на диагонали матрицы первыми.

Нули, если они есть среди инвариантных множителей, стоят на диагонали последними.

Пусть $A(\lambda)$ произвольная матрица над $P[\lambda]$. Любая каноническая матрица, эквивалентная матрице $A(\lambda)$, называется *канонической формой матрицы* $A(\lambda)$. Инвариантными множителями матрицы A(x) называются инвариантные множители ее канонической формы.

Теорема 4.1.

Для любой квадратной матрицы над $P[\lambda]$ существует единственная каноническая форма.

Пусть $A(\lambda)$ – ненулевая квадратная матрица порядка n над $P[\lambda]$. Среди ее ненулевых элементов найдем многочлен минимальной степени m, пусть это будет $f(\lambda)$. Если не каждый элемент матрицы $A(\lambda)$ делится на $f(\lambda)$, то с помощью подходящих элементарных преобразований получим матрицу $B(\lambda)$, среди ненулевых элементов которой есть многочлен степени, меньшей m.

Аналогично поступим с матрицей $B(\lambda)$. Этот процесс будем повторять до тех пор, пока не получим матрицу, все элементы которой делятся на какой-либо один из них.

Умножив последний элемент (т.е. содержащую его строку) на подходящий элемент поля P, получим многочлен $f_1(\lambda)$ со старшим коэффициентом 1, делящий все элементы последней матрицы.

Упорядочив соответствующим образом строки и столбцы, поставим $f_1(\lambda)$ на позицию (1.1).

Теперь можно привести полученную матрицу к виду

$$\begin{pmatrix} f_1(\lambda) & 0 & \dots & 0 \\ 0 & g_{22}(\lambda) & \dots & g_{2n}(\lambda) \\ \dots & \dots & \dots & \dots \\ 0 & g_{n2}(\lambda) & \dots & g_{nn}(\lambda) \end{pmatrix}$$

и применить описанное построение к матрице

$$\begin{pmatrix} g_{22}(\lambda) & \dots & g_{2n}(\lambda) \\ \dots & \dots & \dots \\ g_{n2}(\lambda) & \dots & g_{nn}(\lambda) \end{pmatrix}.$$

Пример 4.1. Привести к канонической форме матрицу

$$A(\lambda) = \begin{pmatrix} \lambda & \lambda + 1 & 0 \\ \lambda + 2 & \lambda - 1 & \lambda \\ \lambda - 1 & \lambda - 1 & \lambda \end{pmatrix}.$$

Решение.

Вычитая из первого и второго столбцов третий, получаем матрицу

$$B(\lambda) = \begin{pmatrix} \lambda & \lambda + 1 & 0 \\ 2 & -1 & \lambda \\ -1 & -1 & \lambda \end{pmatrix}.$$

Переставим первую и третью строки и затем умножим новую первую строку на (\square 1):

$$\begin{pmatrix} 1 & 1 & -\lambda \\ 2 & -1 & \lambda \\ \lambda & \lambda + 1 & 0 \end{pmatrix}, f_1(\lambda) = 1.$$

Далее, очевидно, что

$$\begin{pmatrix} 1 & 1 & -\lambda \\ 0 & -3 & 3\lambda \\ 0 & 1 & \lambda^2 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 \\ 0 & -3 & 3\lambda \\ 0 & 1 & \lambda^2 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -\lambda \\ 0 & 1 & \lambda^2 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & \lambda^2 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & \lambda^2 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \lambda^2 + \lambda \end{pmatrix}.$$

Итак, $K(\lambda) = diag \left[1, 1, \lambda^2 + \lambda \right]$ – каноническая форма матрицы $A(\lambda)$. 1, 1, $\lambda(\lambda+1)$ – инвариантные множители матрицы.

Пусть $A(\lambda)$ — квадратная матрица порядка n над кольцом $P[\lambda]$ и r — максимальный порядок ее отличных от нуля миноров.

Тогда для любого k=1,2,...,r в матрице $A(\lambda)$ есть минор порядка k, не равный нулю.

Обозначим через $d_k(\lambda)$ наибольший общий делитель всех миноров k-го порядка матрицы $A(\lambda),\ k=1,2,...,r$, со старшим коэффициентом 1.

При r < n положим $d_{j}(\lambda) = 0$, j = r + 1,...,n.

Систему многочленов

$$d_1(\lambda), d_2(\lambda), \dots, d_n(\lambda) \tag{4.1}$$

называется системой наибольших общих делителей (НОД) миноров матрицы A(x).

Лемма 4.1.

Система наибольших общих делителей миноров матрицы над $P[\lambda]$ не изменяется при элементарных преобразованиях.

> Рассмотрим, например, элементарные преобразования строк. Пусть строка матрицы $A(\lambda)$ умножается на отличный от нуля элемент α поля P. Тогда те миноры, через которые проходит эта строка, умножаются на α , а остальные не меняются. Но наибольший общий делитель системы многочленов не изменится, если некоторые из них умножить на отличное от нуля число.

Пусть теперь к первой, например, строке матрицы $A(\lambda)$ прибавляется ее вторая строка, умноженная на многочлен $g(\lambda)$. В результате могут измениться лишь те миноры, через которые проходит первая строка матрицы $A(\lambda)$, но не проходит вторая. Именно: к каждому такому минору порядка k прибавится другой минор того же порядка (через который проходит вторая строка, но не проходит первая), умноженный на $g(\lambda)$. Но НОД системы многочленов не изменится, если к одному из этих многочленов прибавить другой, умноженный на произвольный многочлен. \blacktriangleleft

Лемма 4.2.

Инвариантные множители матрицы над $P[\lambda]$ однозначно определяются системой наибольших общих делителей миноров этой матрицы.

➤ Пусть $A(\lambda)$ – квадратная матрица над кольцом $P[\lambda]$, (4.1) – система наибольших общих делителей ее миноров и ее каноническая форма $K(\lambda) = diag[f_1(\lambda), f_2(\lambda), ..., f_n(\lambda)]$.

Тогда, согласно предыдущей лемме, система многочленов (4.1) является системой наибольших общих делителей миноров и для матрицы $K(\lambda)$. Но старший коэффициент многочлена $f_1(\lambda)$ равен 1, и этот многочлен делит каждый из многочленов $f_i(\lambda)$. Поэтому $d_1(\lambda) = f_1(\lambda)$.

Аналогично
$$d_2(\lambda) = f_1(\lambda)f_2(\lambda), \ldots, d_n(\lambda) = f_1(\lambda)f_2(\lambda) \cdot \ldots \cdot f_n(\lambda).$$

Итак, инвариантные множители матрицы $A(\lambda)$ однозначно определяются системой наибольших общих делителей ее миноров:

$$f_1(\lambda) = d_1(\lambda); \ f_1(x) = \frac{d_i(\lambda)}{d_{i-1}(\lambda)}, \ i = 2,...,r;$$

$$f_{r+1}(\lambda) = ... = f_n(\lambda) = 0. \quad \blacktriangleleft$$
(4.2)

Из лемм 4.1 и 4.2 следует единственность канонической формы матрицы.

Пример 4.2. Привести к канонической форме матрицу

$$A(\lambda) = \begin{pmatrix} \lambda & \lambda + 1 & 0 \\ \lambda + 2 & \lambda - 1 & \lambda \\ \lambda - 1 & \lambda - 1 & \lambda \end{pmatrix}.$$

Решение. Вначале вычислим систему наибольших общих делителей миноров матрицы $A(\lambda)$. Начнем с ее определителя:

$$\begin{vmatrix} \lambda & \lambda + 1 & 0 \\ \lambda + 2 & \lambda - 1 & \lambda \\ \lambda - 1 & \lambda - 1 & \lambda \end{vmatrix} = \begin{vmatrix} \lambda & \lambda + 1 & 0 \\ \lambda + 2 & \lambda - 1 & \lambda \\ -3 & 0 & 0 \end{vmatrix} = -3\lambda(\lambda + 1).$$

Следовательно, $d_3(\lambda) = \lambda(\lambda+1)$. Многочлен $d_2(\lambda)$ является делителем многочлена $d_3(\lambda)$, поэтому $d_2(\lambda) = 1$; λ ; $\lambda+1$; $\lambda(\lambda+1)$.

Рассмотрим минор 2-ого порядка
$$M(\lambda) = \begin{vmatrix} \lambda & \lambda+1 \\ \lambda+2 & \lambda-1 \end{vmatrix}$$
.

Многочлен $M(\lambda)$ не делится ни на λ , ни на $(\lambda+1)$, т.к. $M(0)=-2\neq 0$ и $M(-1)=2\neq 0$. Следовательно, $d_2(\lambda)=1$. Тогда и $d_1(\lambda)=1$.

По формулам (4.2) получаем

$$f_1(\lambda) = f_2(\lambda) = 1$$
, $f_3(\lambda) = \lambda(\lambda + 1)$.

Следовательно, матрица $K(\lambda) = diag [1,1,\lambda(\lambda+1)]$ является канонической формой матрицы $A(\lambda)$.

4.2. Элементарные делители матрицы

Пусть $f(\lambda)$ – многочлен ненулевой степени над полем P,

$$f(\lambda) = a p_1^{k_1}(\lambda) \cdot p_2^{k_2}(\lambda) \cdot \dots \cdot p_s^{k_s}(\lambda)$$

— каноническое разложение. Многочлены $p_i^{k_i}(\lambda)$, i = 1, 2, ..., s, называются элементарными делителями многочлена $f(\lambda)$.

Пусть $A(\lambda)$ — квадратная матрица над $P[\lambda]$. Системой элементарных делителей матрицы $A(\lambda)$ называется набор элементарных делителей всех инвариантных множителей этой матрицы. Каждый элементарный делитель включается в этот набор столько раз, во сколько инвариантных множителей он входит.

Напомним, что многочлены $p_i(\lambda)$ неприводимы над P, их старшие коэффициенты равны 1 и $p_i(\lambda) \neq p_j(\lambda)$ при $i \neq j$.

Только непостоянные инвариантные множители (т.е. отличные от 0 и 1) имеют элементарные делители.

Инвариантные множители матрицы не изменяются при расширении основного поля, а система ее элементарных делителей может при этом измениться.

Пример 4.3. Найти системы элементарных делителей над полем рациональных чисел \mathbf{Q} и над полем действительных чисел \mathbf{R} матрицы

$$A(\lambda) = \begin{pmatrix} \lambda^2 - 1 & \lambda + 1 \\ \lambda + 1 & \lambda^2 + 2\lambda + 1 \end{pmatrix}.$$

Решение. Вычислим наибольшие делители миноров матрицы $A(\lambda)$:

$$d_1(\lambda) = \lambda + 1, \quad d_2(\lambda) = \begin{vmatrix} \lambda^2 - 1 & \lambda + 1 \\ \lambda + 1 & \lambda^2 + 2\lambda + 1 \end{vmatrix} = (\lambda + 1)^2 (\lambda^2 - 2).$$

Теперь находим инвариантные множители:

$$f_1(\lambda) = d_1(\lambda) = \lambda + 1, \quad f_2(x) = \frac{d_2(\lambda)}{d_1(\lambda)} = (\lambda + 1)(\lambda^2 - 2).$$

Многочлен $\lambda^2 - 2$ неприводим над **Q**, следовательно, матрица A(x) имеет над полем **Q** три элементарных делителя: $\lambda + 1$, $\lambda + 1$, $\lambda^2 - 2$.

Над **R** многочлен $\lambda^2 - 2$ приводим: $\lambda^2 - 2 = (\lambda - \sqrt{2})(\lambda + \sqrt{2})$, значит, матрица $A(\lambda)$ над полем **R** имеет четыре элементарных делителя: $\lambda + 1$, $\lambda - \sqrt{2}$, $\lambda + \sqrt{2}$.

Эквивалентные матрицы имеют совпадающие системы элементарных делителей.

Утв. 4.1.

Пусть заданы порядок квадратной матрицы над $P[\lambda]$, максимальный порядок ее отличных от нуля миноров и система ее элементарных делителей. Тогда однозначно определяются инвариантные множители этой матрицы и, следовательно, сама она определяется с точностью до эквивалентности.

ightharpoonup Пусть известны n — порядок некоторой матрицы $A(\lambda)$ над $P[\lambda]$, r —максимальный порядок ее не равных нулю миноров и S — система элементарных делителей. Обозначим

$$f_1(\lambda), f_2(\lambda), ..., f_n(\lambda)$$
 (4.3)

инвариантные множители этой матрицы.

При r < n имеем

$$f_i(\lambda) = 0$$
 $j = r + 1,..., n$.

Нам известны элементарные делители матрицы $A(\lambda)$. Это степени неприводимых над P многочленов

$$p_1(\lambda), p_2(\lambda), \dots, p_m(\lambda) \tag{4.4}$$

Т.к. многочлен $f_r(\lambda)$ системы (4.3) делится на каждый из предыдущих многочленов $f_i(\lambda)$, то в каноническое разложение $f_r(\lambda)$ каждый из многочленов (4.4) входит в максимальной степени среди имеющихся в системе элементарных делителей S. Итак, $f_r(\lambda)$ определен.

Удалив из системы S (только по одному разу) элементарные делители, вошедшие в $f_r(\lambda)$, получим систему S_I .

Инвариантный множитель $f_{r-1}(\lambda)$ восстанавливается с помощью S_I так же, как $f_r(x)$, исходя из S, и т. д.

Т.к. произведение $f_1(\lambda), f_2(\lambda), ..., f_r(\lambda)$ совпадает с произведением всех элементарных делителей, входящих в систему S, то возможно одно из двух: либо мы определим $f_1(\lambda)$, одновременно исчерпав всю систему S, либо S исчерпывается ранее, при определении, скажем, многочлена $f_k(\lambda)$ с k > 1. Тогда $f_1(\lambda) = ... = f_{k-1}(\lambda) = 1$.

Утв. 4.2.

Система элементарных делителей диагональной матрицы над $P[\lambda]$ есть объединение систем элементарных делителей ее диагональных элементов. При этом каждый элементарный делитель учитывается столько раз, во сколько диагональных элементов он входит.

Следствие.

Система элементарных делителей клеточно-диагональной матрицы есть объединение систем элементарных делителей ее диагональных клеток.

Пример 4.4. Найти каноническую форму матрицы, если ранг матрицы равен 4, порядок равен 5, и известны её элементарные делители $\lambda + 1, \lambda + 1, (\lambda + 1)^2, \lambda - 1, (\lambda - 1)^2$.

Решение.

Т.к. ранг матрицы равен 4, а порядок равен 5, то последний инвариантный множитель $f_5(\lambda) = 0$.

Для нахождения инвариантных множителей удобно заполнить вспомогательную таблицу

$f_4(\lambda)$	$f_3(\lambda)$	$f_2(\lambda)$	$f_1(\lambda)$
$(\lambda+1)^2$	$\lambda + 1$	$\lambda + 1$	1
$(\lambda-1)^2$	$\lambda - 1$	1	1

$$A(\lambda) = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & \lambda + 1 & 0 & 0 & 0 \\ 0 & 0 & (\lambda + 1)(\lambda - 1) & 0 & 0 \\ 0 & 0 & 0 & (\lambda + 1)^2(\lambda - 1)^2 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}.$$

4.3. Матричные многочлены

Матрицу над $P[\lambda]$ можно представить в виде многочлена, от λ , коэффициенты которого – матрицы над P.

Пусть $A(\lambda)$ – ненулевая матрица порядка n над $P[\lambda]$, m – максимальная степень ее элементов. Тогда очевидно, что матрицу $A(\lambda)$ можно однозначно представить в виде суммы

$$A(\lambda) = B_m(\lambda) + B_{m-1}(\lambda) + \dots + B_1(\lambda) + B_0,$$

где каждый элемент матрицы $B_{k}(\lambda)$ имеет вид $\alpha_{k} \cdot \lambda^{k}$, $\alpha_{k} \in P$.

Представив каждую из матриц $B_k(\lambda) = \lambda^k A_k$, где A_k – постоянная матрица, имеем

$$A(\lambda) = A_m \lambda^m + A_{m-1} \lambda^{m-1} + ... + A_1 \lambda + A_0$$
.

Матрица $A(\lambda) = A_m \lambda^m + A_{m-1} \lambda^{m-1} + ... + A_1 \lambda + A_0$ называется матричным многочленом от λ порядка m.

Матрицы A_k , k=0,1,...,m, называются коэффициентами этого многочлена.

Если A_m — ненулевая матрица, то m называется степенью матричного многочлена.

Пример 4.5. Представить в виде матричного многочлена матрицу

$$A(\lambda) = \begin{pmatrix} \lambda^3 & 2\lambda^4 - 1 & \lambda \\ 0 & 2\lambda + 2 & \lambda^3 + \lambda \\ \lambda^2 & 2\lambda^3 - 2 & \lambda + 1 \end{pmatrix}.$$

Решение.

$$A(\lambda) = \begin{pmatrix} \lambda^3 & 2\lambda^4 - 1 & \lambda \\ 0 & 2\lambda + 2 & \lambda^3 + \lambda \\ \lambda^2 & 2\lambda^3 - 2 & \lambda + 1 \end{pmatrix} =$$

$$= \begin{pmatrix} 0 & 2 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \lambda^4 + \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 2 & 0 \end{pmatrix} \lambda^3 + \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} \lambda^2 + \begin{pmatrix} 0 & 0 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix} \lambda + \begin{pmatrix} 0 & -1 & 0 \\ 0 & 2 & 0 \\ 0 & -2 & 1 \end{pmatrix}.$$

Это матричный многочлен четвертой степени.

Из определения равенства матриц следует условие равенства матричных многочленов одинаковых порядков: *матричные многочлены равны*, если их степени одинаковы и коэффициенты при равных степенях х равны.

ГЛАВА 5. НОРМАЛЬНЫЕ ФОРМЫ МАТРИЦЫ НАД ПОЛЕМ

В этой части рассматривается следующая задача: в классе подобных матриц выбрать матрицу, имеющую по возможности более простой вид. Самым простым видом представляется диагональный, однако не каждая матрица приводима к диагональной.

Существует несколько вариантов решения этой задачи. Мы рассмотрим жорданову нормальную форму.

5.1. Определение и построение жордановой нормальной формы

Пусть P – произвольное поле, $\lambda \in P$.

Квадратная матрица

$$\begin{pmatrix} \lambda & 1 & 0 & \dots & 0 & 0 \\ 0 & \lambda & 1 & \dots & 0 & 0 \\ 0 & 0 & \lambda & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & \lambda & 1 \\ 0 & 0 & 0 & \dots & 0 & \lambda \end{pmatrix}_{n \times n}$$

порядка n называется клеткой Жордана $J_n(\lambda)$, соответствующей собственному значению λ .

Все диагональные элементы клетки $J_n(\lambda)$ равны λ , выше диагонали параллельно ей расположена полоса, состоящая из 1, все другие элементы клетки равны 0.

Например,

$$J_{1}(2) = 2, J_{2}(2) = \begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix},$$

$$J_{3}(2) = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}, J_{4}(2) = \begin{pmatrix} 2 & 1 & 0 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 2 \end{pmatrix}$$

Клеточно-диагональная матрица

$$J = diag[A_1, A_2, ..., A_m],$$

где A_i — произвольная клетка Жордана, называется матрицей Жордана.

Если A — произвольная квадратная матрица, приводима к матрице J , то J называется жордановой нормальной формой матрицы A.

Теорема 5.1.

Для существования жордановой нормальной формы квадратной матрицы порядка п над полем Р необходимо и достаточно, чтобы характеристический многочлен этой матрицы имел в поле Р п корней (с учетом их кратностей), т. е. был разложим над этим полем в произведение многочленов первой степени. Жорданова нормальная форма матрицы определена однозначно с точностью до порядка следование клеток Жордана на главной «диагонали».

Доказательство этой теоремы опирается на следующую, лемму.

Лемма 5.1.

Пусть

$$J = diag\left[J_{n_1}(\lambda_1), J_{n_2}(\lambda_2), \dots, J_{n_m}(\lambda_m)\right]$$
(5.1)

Тогда элементарными делителями характеристической матрицы являются многочлены

$$(\lambda - \lambda_i)^{n_i}, \quad i = 1, 2, \dots, m \tag{5.2}$$

и только они. При этом учитываются все повторения многочленов (5.2).

ightharpoonup Поскольку система элементарных делителей клеточно-диагональной матрицы является объединением систем элементарных делителей ее диагональных клеток и при этом учитываются все повторения элементарных делителей, то достаточно доказать лемму для случая m=1.

Пусть
$$J = J_n(\lambda_k)$$
, тогда

$$J - \lambda E = \begin{bmatrix} \lambda_k - \lambda & 1 & 0 & \dots & 0 & 0 \\ 0 & \lambda_k - \lambda & 1 & \dots & 0 & 0 \\ 0 & 0 & \lambda_k - \lambda & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & \lambda_k - \lambda & 1 \\ 0 & 0 & 0 & \dots & \lambda_k - \lambda & 1 \end{bmatrix}$$
(5.3)

Вначале найдем систему $d_i(\lambda)$, i=1,2,...,n наибольших общих делителей миноров. Очевидно, что $d_n(\lambda) = (\lambda - \lambda_k)^n$.

Далее рассмотрим минор M порядка (n-1) матрицы (5.3), остающийся после удаления первого столбца и последней строки: M=1.

Поэтому
$$d_{n-1}(\lambda)=1$$
, откуда $d_i(\lambda)=1$, $i=1,2,...,n-1$.

По формулам

$$f_1(\lambda) = d_1(\lambda), \ f_i(\lambda) = \frac{d_i(\lambda)}{d_{i-1}(\lambda)}, \quad i = 2,...,n,$$

находим инвариантные множители матрицы (3):

$$f_1(\lambda) = \dots = f_{n-1}(\lambda) = 1, \quad f_n(\lambda) = (\lambda - \lambda_k)^n,$$
 (5.4)

Из равенств (5.4) следует, что матрица (5.3) имеет единственный элементарный делитель $(\lambda - \lambda_k)^n$. \blacktriangleleft

Перейдем непосредственно к доказательству теоремы 5.1.

 \blacktriangleright Вначале рассмотрим условия существования жордановой нормальной формы. Пусть A – квадратная матрица порядка n, для которой существует жорданова нормальная форма J над полем P. На диагонали матрицы J расположены корни ее характеристического многочлена $P(\lambda)$, и только они. Следовательно, $P(\lambda)$ имеет n корней в поле n Матрица n будучи приводимой к матрице n имеет тот же характеристический многочлен.

Пусть, обратно, характеристический многочлен $P(\lambda)$ матрицы A имеет n корней в поле P и, следовательно, разложим над P на множители первой степени. Каждый элементарный делитель характеристической матрицы $(A - \lambda E)$ делит многочлен $P(\lambda)$ и является степенью неприводимого над P многочлена. Значит, этот делитель имеет вид $(\lambda - \lambda_k)^m$.

Пусть (5.2) — система элементарных делителей матрицы $(A - \lambda E)$, J — матрица Жордана (5.1), соответствующая системе (5.2). Порядок матрицы J равен сумме степеней элементарных делителей (5.2), т. е. степени их произведения. Но это произведение равно произведению всех инвариантных множителей матрицы $(A - \lambda E)$, т. е. многочлену $P(\lambda)$. Следовательно, J — матрица порядка n. Системы элементарных делителей матриц $(A - \lambda E)$ и $(J - \lambda E)$ совпадают. Значит, матрица A приводима к матрице J (матрицы A и J подобны), J — жорданова нормальная форма матрицы A.

Последовательность расположения клеток Жордана на диагонали матрицы (5.1) произвольная, так что жорданова нормальная форма матрицы, вообще говоря, определена неоднозначно. Дело только в расположении диагональных клеток.

Система элементарных делителей определяет матрицу Жордана с точностью до последовательности расположения «диагональных клеток»: число этих клеток равно числу элементарных делителей, каждому элементарному делителю вида $(\lambda - \lambda_k)^m$ соответствует клетка $J_m(\lambda_k)$.

Следствие.

Для любой квадратной матрицы над полем комплексных чисел существует жорданова нормальная форма.

▶ Доказательство вытекает из предыдущей теоремы и основной теоремы алгебры комплексных чисел.

В доказательстве теоремы 5.1 содержится алгоритм построения жордановой нормальной формы матрицы A (табл.3).

Схема приведения матрицы к жордановой нормальной форме

- 1. Составить характеристическую матрицу $(A \lambda E)$. Вычислить НОД (наибольший общий делитель) $d_k(\lambda)$ всех миноров k-ого порядка матрицы $(A - \lambda E)$.
- 2. Вычислить инвариантные множители $f_1(\lambda), f_1(\lambda), ..., f_n(\lambda)$ матрицы $(A \lambda E)$ по формулам

$$f_1(\lambda) = d_1(\lambda), \quad f_i(\lambda) = \frac{d_i(\lambda)}{d_{i-1}(\lambda)}, \quad i = 2,...,n.$$

3. Разложить каждый инвариантный множитель в произведение элементарных делителей

$$f_i(\lambda) = (\lambda - \lambda_1)^{n_{k_1}} (\lambda - \lambda_2)^{n_{k_2}} \cdot \dots \cdot (\lambda - \lambda_s)^{n_{k_s}}, \qquad i = 2, \dots, n.$$

- 4. Составить жорданову матрицу J матрицы A: по ее диагонали ставим в соответствии каждому элементарному делителю $(\lambda \lambda_j)^{n_{k_j}}$ из разложений элементарных делителей жорданову клетку по λ_j порядка n_{k_j} : $J_{n_{k_j}}(\lambda_j)$.
- 5. Клеточно-диагональная матрица, составленная из этих клеток (расположенных на «диагонали» в произвольной последовательности), является жордановой нормальной формой матрицы A.

Замечание.

- 1) Если не все корни характеристического многочлена $P(\lambda)$ матрицы A принадлежат основному полю, то жордановой нормальной формы матрицы A над этим полем не существует.
- 2) пп. 1; 2 табл.3 можно заменить следующим действием: инвариантные множители $f_1(\lambda), f_1(\lambda), ..., f_n(\lambda)$ матрицы $(A \lambda E)$ получить путем приведения её к каноническому виду с помощью элементарных преобразований над нею.

Пример 5.1. Найти жорданову нормальную форму матрицы

$$A = \begin{pmatrix} 3 & -1 & 0 \\ 6 & -3 & 2 \\ 8 & -6 & 5 \end{pmatrix}.$$

Решение.

1. Найдем систему наибольших общих делителей миноров характеристической матрицы

$$A - \lambda E = \begin{pmatrix} 3 - \lambda & -1 & 0 \\ 6 & -3 - \lambda & 2 \\ 8 & -6 & 5 - \lambda \end{pmatrix}$$

Очевидно, что $d_1(\lambda) = 1$. Выпишем минор 2-ого порядка, стоящий на пересечении 1, 2 строки и 2, 3 столбца

$$\begin{vmatrix} -1 & 0 \\ -3 - \lambda & 2 \end{vmatrix} = -2.$$

Откуда следует, что $d_2(\lambda) = 1$.

Вычислим минор 3-ого порядка:

$$\begin{vmatrix} 3-\lambda & -1 & 0 \\ 6 & -3-\lambda & 2 \\ 8 & -6 & 5-\lambda \end{vmatrix} = -\lambda^3 + 5\lambda^2 - 9\lambda + 5$$

Тогда $d_3(\lambda) = \lambda^3 - 5\lambda^2 + 9\lambda - 5 = (\lambda - 1)(\lambda^2 - 4\lambda + 5)$

2. Находим инвариантные множители

$$f_1(\lambda) = d_1(\lambda) = 1, \qquad f_2(\lambda) = \frac{d_2(\lambda)}{d_1(\lambda)} = 1,$$
$$f_3(\lambda) = \frac{d_3(\lambda)}{d_2(\lambda)} = (\lambda - 1)(\lambda^2 - 4\lambda + 5).$$

3. В поле ${\bf R}$ многочлен $\lambda^2-4\lambda+5$ корней не имеет. Следовательно, над ${\bf R}$ не существует жордановой нормальной формы матрицы A.

Если же основным полем служит поле ${\bf C}$ комплексных чисел, то жорданова нормальная форма существует. В этом случае

$$f_3(\lambda) = (\lambda - 1)(\lambda - 2 - i)(\lambda - 2 + i).$$

Получили, что матрица $(A - \lambda E)$ имеет три элементарных делителя: $\lambda - 1$, $\lambda - (2 + i)$, $\lambda - (2 - i)$, каждый 1-ого порядка.

4. Строим жорданову нормальную форму матрицы A

$$J = diag[1, 2+i, 2-i] = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2+i & 0 \\ 0 & 0 & 2-i \end{pmatrix}.$$

61

5.2. Минимальный многочлен матрицы

Если в произвольный многочлен

$$P(\lambda) = a_0 \lambda^n + a_1 \lambda^{n-1} + a_2 \lambda^{n-2} + \dots + a_{n-1} \lambda + a_n, \quad a_i \in P$$

вместо λ подставить квадратную матрицу A порядка n, то матрицу

$$P(A) = a_0 A^n + a_1 A^{n-1} + a_2 A^{n-2} + \dots + a_{n-1} A + a_n E, \quad a_i \in P$$

называют значением многочлена $P(\lambda)$ при $\lambda = A$.

Если P(A) = O (нуль-матрица), то A называют матричным корнем многочлена $P(\lambda)$, а $P(\lambda)$ \square многочленом, аннулируемым матрицей A.

Любая квадратная матрица служит корнем ненулевого многочлена.

Теорема Гамильтона-Кели.

Любая квадратная матрица является корнем своего характеристического многочлена.

Многочлен $\varphi(\lambda)$ наименьшей степени со старшим коэффициентом, равным единице, аннулируемый матрицей A, называют минимальным многочленом этой матрицы.

Всякий многочлен $P(\lambda)$, аннулируемый матрицей A, нацело делится на минимальный многочлен $\varphi(\lambda)$ этой матрицы.

Характеристический многочлен $\det(A - \lambda E)$ матрицы A и её минимальный многочлен $\varphi(\lambda)$ связаны соотношением

$$\varphi(\lambda) = \frac{d_n(\lambda)}{d_{n-1}(\lambda)} = f_n(\lambda), \tag{5.5}$$

где $d_k(\lambda)$ \square НОД всех миноров k -го порядка матрицы $(A - \lambda E)$,

 $f_n(\lambda) \square n$ -ый инвариантный множитель матрицы $(A - \lambda E)$.

Заметим, что формулу (5.5) можно записать в следующем виде

$$\varphi(\lambda) = \frac{d_n(\lambda)}{d_{n-1}(\lambda)} = \frac{(-1)^n \det(A - \lambda E)}{d_{n-1}(\lambda)}.$$

Поэтому, корнями минимального многочлена $\varphi(\lambda)$ являются все различные корни характеристического многочлена $\det(A - \lambda E)$, причем, если

$$\det(A - \lambda E) = (-1)^n (\lambda - \lambda_1)^{m_1} \cdot (\lambda - \lambda_2)^{m_2} \cdot \dots \cdot (\lambda - \lambda_s)^{m_s},$$

TO

$$\varphi(\lambda) = (\lambda - \lambda_1)^{n_1} \cdot (\lambda - \lambda_2)^{n_2} \cdot \dots \cdot (\lambda - \lambda_s)^{n_s},$$

$$1 \le n_k \le m_k, \qquad k = 1, 2, \dots, s.$$

5.3. Интерполяционный многочлен Лагранжа-Сильвестра. Функции от матриц

Пусть даны различные значения $\lambda_1, \lambda_2, ..., \lambda_s$ аргумента λ и значения

$$f(\lambda_k), f'(\lambda_k), f''(\lambda_k), ..., f^{(m_k-1)}(\lambda_k), \qquad k = 1, 2, ..., s,$$

функции $f(\lambda)$ и её производных до $(m_k - 1)$ -го порядка при этих значениях аргумента λ .

Будем искать многочлен $P(\lambda)$ степени (n-1) при $n=m_1+m_2+...+m_s$, удовлетворяющим условиям

$$\begin{cases}
P(\lambda_k) = f(\lambda_k), \\
P'(\lambda_k) = f'(\lambda_k), \\
P''(\lambda_k) = f''(\lambda_k), \\
\dots \\
P^{(m_k-1)}(\lambda_k) = f^{(m_k-1)}(\lambda_k),
\end{cases} k = 1, 2, \dots, s.$$
(5.6)

Такой многочлен называют *интерполяционным многочленом Лагран-жа-Сильвестра* для функции $f(\lambda)$ при интерполяционных условиях (5.6).

Для его построения составляют определяющий многочлен

$$\psi(\lambda) = (\lambda - \lambda_1)^{m_1} (\lambda - \lambda_2)^{m_2} \cdot \dots \cdot (\lambda - \lambda_s)^{m_s},$$

$$n = m_1 + m_2 + \dots + m_s,$$

и многочлены

$$\psi_k(\lambda) = \frac{\psi(\lambda)}{(\lambda - \lambda_k)^{m_k}}.$$
 (5.7)

Затем находим коэффициенты

$$\alpha_{kj} = \frac{1}{(j-1)!} \left(\frac{f(\lambda)}{\psi_k(\lambda)} \right)^{(j-1)} \bigg|_{\lambda = \lambda_k}, \quad j = 1, 2, ..., m_k, \quad k = 1, 2, ..., s$$
 (5.8)

и выписываем искомый многочлен

$$P(\lambda) = \sum_{k=1}^{s} \left(\alpha_{k1} + \alpha_{k2} (\lambda - \lambda_k) + \alpha_{k3} (\lambda - \lambda_k)^2 + \dots + \alpha_{km_k} (\lambda - \lambda_k)^{m_k - 1} \right) \cdot \psi_k(\lambda).$$

Пусть $\varphi(\lambda) = (\lambda - \lambda_1)^{n_1} (\lambda - \lambda_2)^{n_2} \cdot ... \cdot (\lambda - \lambda_s)^{n_s}$ — минимальный многочлен матрицы A.

Говорят, что функция $f(\lambda)$ определена на спектре матрицы A, если существуют значения

$$f(\lambda_k), f'(\lambda_k), f''(\lambda_k), \dots, f^{(m_k-1)}(\lambda_k), \qquad k = 1, 2, \dots, s$$
 (5.9)

при $m_k \ge n_k$ для всех характеристических чисел λ_k (k=1,2,...,s), матрицы A.

За значение функции $f(\lambda)$ при $\lambda = A$ принимают значение интерполяционного многочлена Лагранжа-Сильвестра $P(\lambda)$ при $\lambda = A$, построенного для функции $f(\lambda)$ при определяющем многочлене $\psi(\lambda) = \varphi(\lambda)$ и интерполяционных условиях (5.9) с $m_k = n_k$, т.е. полагают f(A) = P(A).

Пример 5.2. Вычислить значения функций $f(\lambda) = \cos\left(\frac{\pi\lambda}{8}\right)$; $f(\lambda) = \lambda^{-4}$

от матрицы
$$A = \begin{pmatrix} -6 & 1 & 1 \\ 2 & -5 & -1 \\ -6 & 3 & -1 \end{pmatrix}$$
.

Решение. Найдем инвариантные множители $f_k(\lambda)$ (k = 1,2,3) характеристической матрицы $(A - \lambda E)$.

С помощью элементарных преобразований приведем матрицу $(A - \lambda E)$ к каноническому виду:

$$A - \lambda E = \begin{pmatrix} -6 - \lambda & 1 & 1 \\ 2 & -5 - \lambda & -1 \\ -6 & 3 & -1 - \lambda \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & -6 - \lambda \\ -1 & -5 - \lambda & 2 \\ -1 - \lambda & 3 & -6 \end{pmatrix} \sim$$

$$\sim \begin{pmatrix} 1 & 1 & -6 - \lambda \\ 0 & -4 - \lambda & -4 - \lambda \\ 0 & 4 + \lambda & -\lambda^2 - 7\lambda - 12 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & -6 - \lambda \\ 0 & 4 + \lambda & 4 + \lambda \\ 0 & 4 + \lambda & -\lambda^2 - 7\lambda - 12 \end{pmatrix} \sim$$

$$\sim \begin{pmatrix} 1 & 0 & 0 \\ 0 & 4 + \lambda & 4 + \lambda \\ 0 & 4 + \lambda & -\lambda^2 - 7\lambda - 12 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 \\ 0 & 4 + \lambda & 4 + \lambda \\ 0 & 0 & -\lambda^2 - 8\lambda - 16 \end{pmatrix} \sim$$

$$\sim \begin{pmatrix} 1 & 0 & 0 \\ 0 & \lambda + 4 & 0 \\ 0 & 0 & -(\lambda + 4)^2 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 \\ 0 & \lambda + 4 & 0 \\ 0 & 0 & (\lambda + 4)^2 \end{pmatrix}.$$

Привели матрицу $(A - \lambda E)$ к каноническому виду, следовательно, на диагонали стоят инвариантные множители

$$f_1(\lambda) = 1$$
, $f_2(\lambda) = \lambda + 4$, $f_3(\lambda) = (\lambda + 4)^2$.

Тогда по формуле (5.5) находим минимальный многочлен матрицы A

$$\varphi(\lambda) = f_3(\lambda) = (\lambda + 4)^2$$
.

Получаем определяющий многочлен

$$\psi(\lambda) = \varphi(\lambda) = (\lambda + 4)^2$$
.

Тогда по формуле (5.7) находим многочлен $\psi_1(\lambda) = \frac{\psi(\lambda)}{(\lambda+4)^2} = 1$.

Выписываем интерполяционный многочлен Сильвестра-Лагранжа $P(\lambda) = (\alpha_{11} + \alpha_{12} \cdot (\lambda + 4)) \cdot \psi_1(\lambda) = \alpha_{11} + \alpha_{21}(\lambda + 4). \tag{5.10}$

1) Составим интерполяционный многочлен (5.10) для функции $f(\lambda) = \cos\left(\frac{\pi\lambda}{8}\right)$. Находим коэффициенты многочлена по формулам (5.8):

$$\alpha_{11} = \frac{f(\lambda)}{\psi_1(\lambda)} \bigg|_{\lambda = -4} = \frac{\cos\left(\frac{\pi\lambda}{8}\right)}{1} \bigg|_{\lambda = -4} = 0,$$

$$\alpha_{12} = \left(\frac{f(\lambda)}{\psi_1(\lambda)}\right) \bigg|_{\lambda = -4} = -\frac{\pi}{8} \cdot \sin\left(\frac{\pi\lambda}{8}\right) \bigg|_{\lambda = -4} = \frac{\pi}{8}.$$

Получаем интерполяционный многочлен Сильвестра-Лагранжа для функции $f(\lambda) = \cos(\pi \lambda/8)$

$$P(\lambda) = 0 + \frac{\pi}{8} \cdot (\lambda + 4) = \frac{\pi}{8} \cdot (\lambda + 4).$$

Следовательно,

$$\cos\left(\frac{\pi A}{8}\right) = \frac{\pi}{8} \cdot (A + 4E) = \frac{\pi}{8} \begin{pmatrix} -2 & 1 & 1\\ 2 & -1 & -1\\ -6 & 3 & 3 \end{pmatrix}.$$

2) Составим интерполяционный многочлен Сильвестра-Лагранжа для функции $f(\lambda) = \lambda^{-4}$.

Находим коэффициенты многочлена по формулам (5.8):

$$\alpha_{11} = \frac{f(\lambda)}{\psi_1(\lambda)}\Big|_{\lambda = -4} = \frac{\lambda^{-4}}{1}\Big|_{\lambda = -4} = \frac{1}{256}.$$

$$\alpha_{12} = \left(\frac{f(\lambda)}{\psi_1(\lambda)}\right) \bigg|_{\lambda = -4} = -\frac{4}{\lambda^5} \bigg|_{\lambda = -4} = \frac{1}{256}.$$

Получаем интерполяционный многочлен (5.10) для функции $f(\lambda) = \lambda^{-4}$

$$P(\lambda) = \frac{1}{256} + \frac{1}{256} \cdot (\lambda + 4) = \frac{1}{256} \cdot (\lambda + 5).$$

Тогда

$$A^{-4} = \frac{1}{256} \cdot (A + 5E) = \frac{1}{256} \cdot \begin{pmatrix} -1 & 1 & 1\\ 2 & 0 & -1\\ -6 & 3 & 4 \end{pmatrix}.$$

5.4. Спектральное разложение матрицы f(A) и его применение

Пусть для функции $f(\lambda)$ определенной на спектре матрицы A, построен интерполяционный многочлен Сильвестра-Лагранжа

$$P(\lambda) = \sum_{k=1}^{s} \left(\alpha_{k1} + \alpha_{k2}(\lambda - \lambda_k) + \alpha_{k3}(\lambda - \lambda_k)^2 + \dots + \alpha_{km_k}(\lambda - \lambda_k)^{m_k - 1}\right) \cdot \psi_k(\lambda)$$

наименьшей степени, т.е. при $\psi(\lambda) = \varphi(\lambda)$.

Если в формулу $f(\lambda) = P(\lambda)$ вместо коэффициентов α_{kj} подставить их выражения из формул (5.8) в развернутом форме, раскрыть скобки, объединить члены $f^{(i-1)}(\lambda_k)$, $i=1,2,...,n_k$; k=1,2,...,s, то её можно записать в виде

$$f(A) = P(A) = \sum_{k=1}^{s} \left[f(\lambda_k) Z_{k1} + f'(\lambda_k) Z_{k2} + \dots + f^{(n_k-1)}(\lambda_k) Z_{kn_k} \right], \quad (5.11)$$

где $Z_{kj} = \varphi_{kj}(A)$, $j = 1, 2, ..., n_k$; k = 1, 2, ..., s.

Данное разложение называют спектральным разложением матрицы f(A), а матрицы $Z_{kj} \ \square$ компонентами матрицы A.

Если при построении спектрального разложения берется интерполяционный многочлен не наименьшей степени (например, определяющий многочлен $\psi(\lambda) = (-1)^n \det(A - \lambda E)$), то в разложении (5.11) появятся дополнительные компоненты Z_{kj} , но все они окажутся нулевыми матрицами.

На практике компоненты Z_{kj} матрицы проще находить не из формул $Z_{kj} = \varphi_{kj}(A)$, а из системы, которая получится в результате последовательной подстановке в разложение (5.11) вместо $f(\lambda)$ простейших линейно независимых многочленов столько раз, сколько содержится в (5.11) компонент Z_{kj} .

Компонентные матрицы Z_{kj} обладают следующими свойствами:

1.
$$\sum_{k=1}^{s} Z_{k1} = E$$

2.
$$Z_{kj} \cdot Z_{ki} = 0$$
, при $k \neq i$

3.
$$Z_{kj}^2 = Z_{kj} \Leftrightarrow j = 1$$

$$4. Z_{k1} \cdot Z_{ki} = Z_{ki}.$$

Спектральное разложение очень удобно применять, если требуется вычислить функции от одной и той же матрицы, т.к. спектральное разложение одно для всех функций, в отличие от интерполяционного многочлена Сильвестра-Лагранжа.

Другим применением спектрального разложения является решение систем дифференциальных уравнений.

Система линейных однородных дифференциальных уравнений с постоянными коэффициентами в матричной форме записывается в виде

$$\frac{dY}{dt} = AY,$$

где
$$Y = (y_1, ..., y_n)^T$$
, $A = (a_{ij})_{n \times n}$.

Её решение удовлетворяющее начальным условиям

$$Y|_{t=0} = (y_{10},...,y_{n0})^T = Y_0,$$

находится по формуле $Y = e^{At}Y_0$.

Если матрицу e^{At} представить по формуле (5.11) в виде спектрального разложения

$$e^{At} = \sum_{k=1}^{s} \left[Z_{k1} + t Z_{k2} + ... + t^{n_k - 1} Z_{kn_k} \right] \cdot e^{\lambda_k t},$$

то решение задачи Коши примет вид

$$Y = \left\{ \sum_{k=1}^{s} \left[Z_{k1} + t Z_{k2} + ... + t^{n_k - 1} Z_{k n_k} \right] \cdot e^{\lambda_k t} \right\} \cdot Y_0.$$

Если в качестве Y_0 брать $Y_0 = (C_1,...,C_n)^T$, где $C_1,...,C_n$ – произвольные постоянные, то формула

$$Y = e^{At}Y_0$$

даст общее решение системы.

Пример 5.3. Дана матрица
$$A = \begin{pmatrix} 4 & 0 & 1 \\ 2 & 2 & 1 \\ -3 & 1 & 1 \end{pmatrix}$$
.

- 1) Построить спектральное разложение матрицы.
- 2) Вычислить значение функции от матрицы $\sin(\pi A)$.
- 3) Найти обратную матрицу A^{-1} .
- 4) Решить систему линейных дифференциальных уравнений Y' = AY.

Решение.

1) Найдем минимальный многочлен матрицы А. Для этого вычислим НОД миноров 2-ого и 3-ого порядка.

$$\det(A - \lambda E) = \begin{vmatrix} 4 - \lambda & 0 & 1 \\ 2 & 2 - \lambda & 1 \\ -3 & 1 & 1 - \lambda \end{vmatrix} = -(\lambda - 2)^{2}(\lambda - 3)$$

- характеристический многочлен.

Следовательно, НОД миноров 3-ого порядка: $d_3(\lambda) = (\lambda - 2)^2 (\lambda - 3)$.

Найдем делители всех миноров 2-го порядка матрицы A

$$\begin{vmatrix} 4-\lambda & 0 \\ 2 & 2-\lambda \end{vmatrix} = (4-\lambda)(2-\lambda); \begin{vmatrix} 2 & 2-\lambda \\ -3 & 1 \end{vmatrix} = 8-3\lambda.$$

Т.к. данные миноры 2-ого порядка взаимно простые, то $d_{\scriptscriptstyle 2}(\lambda) = 1$.

Следовательно, минимальный многочлен

$$\varphi(x) = f_3(\lambda) = \frac{d_3(\lambda)}{d_2(\lambda)} = (\lambda - 2)^2 (\lambda - 3).$$

По формуле спектрального разложения матрицы

$$f(A) = \sum_{k=1}^{s} \left[f(\lambda_k) Z_{k1} + f'(\lambda_k) Z_{k2} + \dots + f^{(n_k-1)}(\lambda_k) Z_{kn_k} \right]$$

для любой функции $f(\lambda)$, определенной на спектре матрицы A, имеем

$$f(A) = Z_{11} \cdot f(2) + Z_{12} \cdot f'(2) + Z_{21} \cdot f(3)$$

Полагая в этом разложении поочередно

$$\begin{split} f(\lambda) &= 1, & E = Z_{11} \cdot 1 + Z_{12} \cdot 0 + Z_{21} \cdot 1; \\ f(\lambda) &= (\lambda - 2), & A - 2E = Z_{11} \cdot 0 + Z_{12} \cdot 1 + Z_{21} \cdot 1; \\ f(\lambda) &= (\lambda - 2)^2, & (A - 2E)^2 = Z_{11} \cdot 0 + Z_{12} \cdot 0 + Z_{21} \cdot 1^2; \end{split}$$

приходим к системе матричных уравнений

$$\begin{cases} E = Z_{11} + Z_{21}, \\ A - 2E = Z_{12} + Z_{21}, \\ Z_{21} = (A - 2E)^2, \end{cases}$$

из которой находим компоненты Z_{11}, Z_{12}, Z_{21} .

Таким образом, спектральное разложение матрицы A примет вид:

$$f(A) = \begin{pmatrix} 0 & -1 & -1 \\ -1 & 0 & -1 \\ 1 & 1 & 2 \end{pmatrix} f(2) + \begin{pmatrix} 1 & -1 & 0 \\ 1 & -1 & 0 \\ -2 & 2 & 0 \end{pmatrix} f'(2) + \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ -1 & -1 & -1 \end{pmatrix} f(3). \quad (5.12)$$

2) Спектральное разложение очень удобно, если требуется вычислить несколько функций от одной и той же матрицы.

Вычислим значение функции от матрицы $\sin(\pi A)$.

При $f(\lambda) = \sin(\pi \lambda)$ имеем

$$f(2) = \sin(2\pi) = 0$$
, $f'(2) = \pi \cos(2\pi) = \pi$, $f(3) = \sin(3\pi) = 0$.

Следовательно,

$$\sin(\pi A) = \pi \cdot \begin{pmatrix} -1 & 1 & 0 \\ -1 & 1 & 0 \\ 2 & -2 & 0 \end{pmatrix}.$$

3) Найдем A^{-1} , как функцию $f(\lambda) = \lambda^{-1}$ от матрицы A.

Найдем значения данной функции на спектре матрицы A

$$f(2) = 2^{-1} = \frac{1}{2}, \quad f'(2) = -\frac{1}{2^{2}} = -\frac{1}{4}, \quad f(3) = 3^{-1} = \frac{1}{3}$$

$$A^{-1} = \frac{1}{2} \begin{pmatrix} 0 & -1 & -1 \\ -1 & 0 & -1 \\ 1 & 1 & 2 \end{pmatrix} - \frac{1}{4} \begin{pmatrix} 1 & -1 & 0 \\ 1 & -1 & 0 \\ -2 & 2 & 0 \end{pmatrix} + \frac{1}{3} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ -1 & -1 & -1 \end{pmatrix} = \frac{1}{12} \begin{pmatrix} 1 & 1 & -2 \\ -5 & 7 & -2 \\ 8 & -4 & 2 \end{pmatrix}.$$

Рассмотрим другое применение спектрального анализа — это решение систем ОДУ с постоянными коэффициентами

$$Y' = AY$$
.

где $A = (a_{ij})_{n \times n}$ \square матрица коэффициентов.

4) Решение системы $Y = (y_1, ..., y_n)^T$, удовлетворяющее начальным условиям $Y|_{t=0} = (y_{10}, ..., y_{n0})^T = Y_0$, находится по формуле $Y = e^{At}Y_0$.

Если в качестве y_{i0} брать произвольные постоянные C_i (i=1,2,...n), то $Y=e^{At}Y_0$ — общее решение системы.

Найдем общее решение системы ОДУ: Y' = AY, где A – исходная матрица.

Вычислим e^{At} с помощью спектрального разложения (5.12).

При $f(\lambda) = e^{\lambda t}$ имеем $f(2) = e^{2t}$; $f'(2) = te^{2t}$; $f(3) = e^{3t}$.

Получаем

$$e^{At} = \begin{pmatrix} 0 & -1 & -1 \\ -1 & 0 & -1 \\ 1 & 1 & 2 \end{pmatrix} e^{2t} + \begin{pmatrix} 1 & -1 & 0 \\ 1 & -1 & 0 \\ -2 & 2 & 0 \end{pmatrix} t e^{2t} + \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ -1 & -1 & -1 \end{pmatrix} e^{3t}.$$

Тогда по формуле

$$Y = e^{At} \cdot \begin{pmatrix} C_1 \\ C_2 \\ C_3 \end{pmatrix}.$$

находим общее решение однородной системы линейных дифференциальных уравнений

$$\begin{cases} y_1 &= e^{2t} \left(C_1(e+t) + C_2(e-1-t) + C_3(e-1) \right), \\ y_2 &= e^{2t} \left(C_1(e-1+t) + C_2(e-t) + C_3(e-1) \right), \\ y_3 &= e^{2t} \left(C_1(1-e-2t) + C_2(1-e+2t) + C_3(2-e) \right). \end{cases}$$

СПИСОК РЕКОМЕНДУЕМОЙ ЛИТЕРАТУРЫ

- **1.** Архангельский А.В. Конечномерные векторные пространства. М., 1982.
- 2. Кострикин А.И. Линейная алгебра (том 2). СПб, 2000.
- **3.** Милованов М.В., Толкачев М.М., Тышкевич Р.И., Феденко А.С. Алгебра и аналитическая геометрия. Ч.2. Мн.: Амалфея, 2001. 352 с.
- 4. Ильин В.А., Позняк Э.Г. Линейная алгебра. М., 1984.
- **5.** Шевцов Г.С. Линейная алгебра: Учебное пособие. М.: Гардарики, 1999. 360 с.
- **6.** Гельфанд И.М. Лекции по линейной алгебре. М.: Добросвет МЦНМО, 1998.-330 с.
- **7.** Владимирский Б.М., Горстко А.Б., Ерусалимский Я.М. Математика. Общий курс. СПб.: Лань, 2006. 960 с.

Учебное издание

Татьяна Александровна **Матвеева** Виктория Борисовна **Светличная** Джамиля Калимулловна **Агишева** Светлана Александровна **Зотова**

Линейные векторные пространства. Конспект лекций

Учебное пособие

Темплан выпуска электронных изданий 2011 г., поз. № 17В

На магнитоносителе. Уч.-изд. л. 5.0 Подписано на «Выпуск в свет» 16.10.2010 г. Заказ

Волгоградский государственный технический университет 400131, г. Волгоград, пр. им. В. И. Ленина, 28. корп. 1