Course Name	:	Machine Learning
Corse Code	:	CS603C
Regulation	:	R21

Group-A (Multiple Choice Questions)

(Multiple Choice Questions)						
Quo	estion No.	Questions	Marks	Module No.	CO No.	BT Level
1.		Application of machine learning methods to large databases is called A. data mining. B. artificial intelligence C. big data computing D. internet of things	1	M1	CO4	BT5
2.		If machine learning model output involves target variable then that model is called as A. descriptive model B. predictive model C. reinforcement learning D. all of the above	1	M1	CO2	BT4
3.		In what type of learning labelled training data is used A. unsupervised learning B. supervised learning C. reinforcement learning D. active learning	1	M1	CO1	B2
4.		In following type of feature selection method we start with empty feature set A. forward feature selection B. backward feature selection C. both A and B D. none of the above	1	M3	CO2	BT2
5.		SVM can be used to solve problems A. Classification B. Regression C. Clustering D. Both Classification and Regression	1	M1	CO3	BT3

6.	Which of the following is a disadvantage of decision tree? A. Factor Analysis B. Decision Trees are robust to outliners C. Decision Trees are prone to overfit D. None of the above	1	M3	CO3	BT4
7.	Which of the following is the best machine learning method? A. scalable B. accuracy C. fast D. all of the above	1	M2	CO3	ВТ3
8.	What characterize unlabeled examples in machine learning? A. there is no prior knowledge B. there is no confusing knowledge C. there is prior knowledge D. there is plenty of confusing knowledge	1	M1	CO1	BT2
9.	What does dimensionality reduction reduce? A. stochastics B. collinerity C. performance D. entropyne	1	M2	CO2	BT1
10.	Data used to build a data mining model. A. training data B. validation data C. test data D. hidden data	1	M2	CO3	BT3
11.	The problem of finding hidden structure in unlabeled data is called A. supervised learning B. unsupervised learning C. reinforcement learning D. none of the above	1	M1	CO1	ВТ3
12.	Of the Following Examples, Which would you address using an supervised learning Algorithm? A. given email labeled as spam or not spam, learn a spam filter. B. given a set of news articles found on	1	M1	CO3	BT5

	the web, group them into set of articles about the same story. C. given a database of customer data, automatically discover market segments and group customers into different market segments. D. find the patterns in market basket analysis.				
13.	You are given reviews of few netflix series marked as positive, negative and neutral. Classifying reviews of a new netflix series is an example of A. supervised learning B. unsupervised learning C. semisupervised learning D. reinforcement learning	1	M1	CO4	BT5
14.	Which of the following is a good test dataset characteristic? A. large enough to yield meaningful results B. is representative of the dataset as a whole C. both A and B D. None of the above	1	M2	CO3	BT3
15.	Following are the types of supervised learning A. classification B. regression C. subgroup discovery D. all of the above	1	M1	CO3	BT2
16.	Type of matrix decomposition model is A. descriptive model B. predictive model C. logical model D. none of the above	1	M2	CO2	BT2
17.	The output of training process in machine learning is A. machine learning model B. machine learning algorithm C. null D. accuracy A feature F1 can take certain value: A, B, C,	1	M1	CO4	BT4
10.	A reature 11 can take certain value. A, B, C,	1	1713	COS	14

	D, E, & F and represents grade of students from a college. Here feature type is A. nominal B. ordinal C. categorical D. Boolean	1			
19.	Supervised learning and unsupervised clustering both require which is correct according to the statement. A. output attribute. B. hidden attribute. C. input attribute. D. categorical attribute	1	M1	CO3	BT3
20.	What characterize is hyper plane in geometrical model of machine learning? A. a plane with 1 dimensional fewer than number of input attributes. B. a plane with 2 dimensional fewer than number of input attributes. C. a plane with 1 dimensional more than number of input attributes. D. a plane with 2 dimensional more than number of input attributes.	1	M6	CO3	BT4
21.	K-Nearest Neighbors (KNN) is classified as what type of machine learning algorithm? a) Instance-based learning b) Parametric learning c) Non-parametric learning d) Model-based learning	1	M3	CO1	BT2
22.	Which of the following is not a supervised machine learning algorithm? a) K-means b) Naïve Bayes c) SVM for classification problems d) Decision tree	1	M3	CO1	BT2
23.	What's the key benefit of using deep learning for tasks like recognizing images? a) They need less training data than other methods. b) They're easier to explain and understand than other models.	1	M6	CO4	BT5

	c) They can learn complex details from the data on their own.d) They work faster and are more efficient				
	computationally.				
24.	Which algorithm is best suited for a binary classification problem?	1	M3	CO2	ВТ3
	a) K-nearest Neighbors				
	b) Decision Trees				
	c) Random Forest				
25	d) Linear Regression	1	3.56	GO1	DES
25.	Which of the following statements is true about AdaBoost?	1	M6	CO1	BT2
	a) It is particularly prone to overfitting on noisy datasets				
	b) Complexity of the weak learner is important in AdaBoost				
	c) It is generally more prone to overfitting				
	d) It improves classification accuracy				
26.	Which one of the following models is a generative model used in machine learning?	1	M5	CO2	BT3
	a) Support vector machines				
	b) Naïve Bayes				
	c) Logistic Regression				
	d) Linear Regression				
27.	An artificially intelligent car decreases its speed based on its distance from the car in front of it. Which algorithm is used?	1	M6	CO3	BT4
	a) Naïve-Bayes				
	b) Decision Tree				
	c) Linear Regression				
	d) Logistic Regression				
28.	Which of the following statements is false about Ensemble learning?	1	M3	CO2	BT2
	a) It is a supervised learning algorithm				
	b) It is an unsupervised learning algorithm				
	c) More random algorithms can be used to produce a stronger ensemble				
	d) Ensembles can be shown to have more				
	flexibility in the functions they can represent				
29.	Decision tree uses the inductive learning machine learning approach.	1	M1	CO3	ВТ3

	a) False				
	b) True				
30.	Which of the following statements is not true about boosting?	1	M3	CO2	BT2
	a) It mainly increases the bias and the variance				
	b) It tries to generate complementary base- learners by training the next learner on the mistakes of the previous learners				
	c) It is a technique for solving two-class classification problems				
	d) It uses the mechanism of increasing the weights of misclassified data in preceding classifiers				
31.	In which category does linear regression belong to?	1	M1	CO1	BT1
	a) Neither supervised nor unsupervised learning				
	b) Both supervised and unsupervised learning c) Unsupervised learning				
	d) Supervised learning				
32.	The learner is trying to predict housing prices based on the size of each house. What type of regression is this?	1	M1	CO4	BT3
	a) Multivariate Logistic Regressionb) Logistic Regression				
	c) Linear Regression d) Multivariate Linear Regression				
33.	The learner is trying to predict housing prices based on the size of each house. The variable "size" is	1	M1	CO3	BT4
	a) dependent variableb) label set variable				
	c) independent variable				
34.	d) target variable The learner is trying to predict the cost of	1	M1	CO2	BT3
	papaya based on its size. The variable "cost" is				210
	a) independent variable				
	b) target Variable				
	c) ranked variable				

	d) categorical variable				
35.	The independent variable is represented along	1	M2	CO3	BT3
	a) Either X-axis or Y-axis, it doesn't matter				
	b) Y axis				
	c) X axis				
	d) Depends on the dataset				
36.	The learner is trying to predict the price of a house based on the length and width of the house.	1	M1	CO2	BT3
	x1 = length and $x2 = width$. What is a better hypothesis?				
	$a) h(X) = t_0 + t_1 x_1$				
	b) $h(X) = t_0 + t_1x_1 + t_2x_2$				
	c) $h(X) = t_0 + t_2 x_2$				
	d) $h(X) = t_0 + t_1X$, where area of the house: $X = x_1 * x_2$				
37.	A drawback of Polynomial Regression is handling of features with a different priority. a) True	1	M6	CO2	BT3
	b) False				
38.	h(x) = y. What is the cost $(h(x), y)$? a) -infinite	1	M2	CO3	BT3
	b) infinite				
	c) 0				
	d) always h(x)				
39.	Let m be the number of training instances. What is the summation of cost function multiplied by to get the gradient descent?	1	M6	CO3	BT2
	a) 1/m				
	b) m c) 1 + m				
	d) 1 – m				
40.	The cost function is minimized by	1	M6	CO4	BT4
10.			1410		DIT
	a) Linear regression				
	b) Polynomial regression				
	c) PAC learning				
	d) Gradient descent				
41.	What is the minimum number of parameters	1	M2	CO1	BT1

	of the gradient descent algorithm?				
	a) 1				
	b) 2				
	c) 3				
12	d) 4	1	3.50	G02	ъта
42.	What happens when the learning rate is low?	1	M3	CO2	BT3
	a) It always reaches the minima quicklyb) It reaches the minima very slowly				
	c) It overshoots the minima				
	d) Nothing happens				
43.	Gradient descent tries to	1	M2	CO1	BT2
	a) maximize the cost function		1,12		212
	b) minimize the cost function				
	c) minimize the learning rate				
	d) maximize the learning rate.				
44.	Feature scaling can be used to simplify	1	M2	CO3	BT3
	gradient descent for multivariate linear regression.				
	a) True				
	b) False				
45.	On which factor is the updating of each	1	M3	CO2	BT2
	parameter dependent on?				
	a) The number of training examples				
	b) Target variable				
	c) The learning rate and the target variable				
1.5	d) The learning rate	1	3.50	G0.2	D.TT.0
46.	What is updated by gradient descent after each iteration?	1	M2	CO3	BT3
	a) The learning rate				
	b) Independent variables				
	c) Target variable				
	d) The number of training examples				
47.	Mean normalization can be used to simplify	1	M2	CO2	BT2
	gradient descent for multivariate linear regression.				
	a) True				
	b) False				
48.	What is the objective of backpropagation	1	M6	CO3	BT2
	algorithm?		_		_
	a) to develop learning algorithm for multilayer				

	feed forward neural network				
	b) to develop learning algorithm for single layer feed forward neural network				
	c) to develop learning algorithm for multilayer feed forward neural network, so that network can be trained to capture the mapping implicitly d) none of the mentioned				
49.	What are general limitations of back propagation rule? a) local minima problem b) slow convergence c) scaling d) all of the mentioned	1	M6	CO4	BT3
50.	There is feedback in final stage of back propagation algorithm? a) yes b) no	1	M6	CO1	BT2

^{*} Please don't add any column in the above table. However, you may add rows as per requirement.

Group-B (Short Answer Type Questions)

Qu	estion No.		Questions Marks Module No.			CO No.	BT Level		
1.		Compare Tra	ditional F	Programmin	ng Model and	5	M1	CO1	BT1
		Machine L	earning	Model w	ith suitable				
		diagram.							
2.		Consider the	confusion	n matrix:		5	M2	CO1	BT3
			Actual Values						
				Yes	No				
		Predicted Values	Yes	12	3				
		values	No	1	9				
		Compute alg	orithm tra	racy.					
3.		Define machi different type		•		1 + 4	M1	CO2	BT1

			suitable ex	ample.							
4.			Compare blearning.	etween ma	chine lea	arning a	nd deep	5	M1	CO1	BT2
5.			-	nte betw sed learnin Give suitable	g. What			3 + 2	M1	CO1	BT2
6.				entropy of a	_			5	M1	CO3	BT3
				Play	ing Golf						
				Yes	No						
				9	5						
7.	Calculate the Gini Index when the following data is given:						ollowing	5	M2	CO4	BT3
			ID	Loan A	mount	Loan	Status				
			1	100		Bad					
			2	200		Good					
			3	250		Bad					
			4	150		Good					
			5	300		Bad					
8.			Explain K	NN Algorit	hm.	1		5	M2	CO3	BT3
9.		a)	Why do w	e perform n	ormaliza	ation?		2	M2	CO2	BT3
		b)	What is the recall?	e difference	between	n precis	ion and	3	M1	CO2	BT2
10.			_	ou conclud				5	M1	CO3	BT4
11.				e difference ion? What				2 + 3	M2	CO2	BT2
12.		a)		ccuracy sco	=	_		3	M2	CO4	BT4

		model?				
	b)	What is the purpose of splitting a given dataset into training and validation data?	2	M2	CO2	ВТ3
13.	a)	What is the difference between k-means and the KNN algorithm?	3	M2	CO2	BT2
	b)	What is Linear Discriminant Analysis?	2	M6	CO1	BT1
14.	a)	What is the null hypothesis in linear regression problem?	3	M6	CO1	BT2
	b)	Can SVMs be used for both classification and regression tasks?	2	M1	CO4	BT4
15.		What are the assumptions behind the K-means algorithm? How do these assumptions affect the results?	2 + 3	M2	CO4	BT5
16.		How does Random Forest ensure diversity among the trees in the model?	5	M3	CO3	BT4
17.		What is the concept of information gain in decision trees? How does it guide the creation of the tree structure?	2+3	M1	CO2	BT3
18.		How does the independence assumption affect the accuracy of a Naive Bayes classifier?	5	M5	CO4	BT5
19.		Why does PCA maximize the variance in the data?	5	M2	CO2	BT2
20.		How do you evaluate the effectiveness of a machine learning model in an imbalanced dataset scenario? What metrics would you use instead of accuracy?	3 + 2	M6	CO4	BT5

^{*} Please don't add any column in the above table. However, you may add rows as per requirement.

Group-C (Long Answer Type Questions)

_	iestio No.	Questions	Mar ks	Modu le No.	C O No.	BT Lev el
1.	(Explain Decision Tree Algorithm.	5	M1	CO 3	ВТ3

	b)		_	orithm for co Tennins.csv d	_	ecision tree	e for the	10	M2	CO 4	BT5
		Day	Outlook	Тетр	Humidity	Windy	Play				
		Day 1	Sunny	Hot	High	False	No				
		Day 2	Sunny	Hot	High	True	No				
		Day 3	Overcast	t Hot	High	False	Yes				
		Day 4	Rainy	Mild	High	False	Yes				
		Day 5	Rainy	Cool	Normal	False	Yes				
		Day 6	Rainy	Cool	Normal	True	No				
		Day 7	Overcast	t Cool	Normal	True	Yes				
		Day 8	Sunny	Mild	High	False	No				
		Day 9	Sunny	Cool	Normal	False	Yes				
		Day 10	Rainy	Mild	Normal	False	Yes				
		Day 11	Sunny	Mild	Normal	True	Yes				
		Day 12	Overcast	t Mild	High	True	Yes				
		Day 13	Overcast	t Hot	Normal	False	Yes				
		Day 14	Rainy	Mild	High	True	No				
2.	a)			ort Vector Ma e in detail.	achine and N	Von-Linear	Support	7	M1	CO 1	BT1
	b)		is Ense	mble model tacking.	ing? Discus	s about 1	Bagging,	8	M2	CO 2	BT2
3.	a)	Compa examp		opy and Info	rmation Gai	in in ID3	with an	5	M2	CO 3	BT4
	b)		K-means ing datas	algorithm to et.	o create tw	o clusters	of the	10	M2	CO 4	BT5
		Data	point	Coordinate(x	к,у)						
		A		2,2							
		В		3,2							
		С		1,1							
		D		3,1							

		E 1.5,0.5				
4.	a)	What is overfitting and underfiting?	5	M3	CO 2	BT1
	b)	Discuss cross validation.	5	M3	CO 1	BT2
	c)	Define Sparse Modeling.	5	M4	CO 2	ВТ3
5.	a)	Explain Support Vector Machine (SVM).	5	M1	CO 2	BT2
	b)	Explain non linear SVM and kernel function.	5	M1	CO 2	BT3
	c)	Explain polynomial regression.	5	M6	CO 2	BT2
6.		Write Short Note. (any three)	3 x 5			
	a)	Naïve Bayes Classification	5	M6	CO 2	BT1
	b)	Reinforcement Learning	5	M5	CO 1	BT2
	c)	Sparse Modeling	5	M4	CO 1	ВТ3
	d)	Performance metrics to evaluate an ML model	5	M1	CO 4	BT5
	e)	Clustering	5	M2	CO 3	BT4
7.	a)	Explain the various issues in Decision tree Learning	5	M1	CO 2	BT2
	b)	What do you mean by Gradient Descent? What are the conditions in which Gradient Descent is applied?	2+3	M3	CO 4	BT5
	c)	Differentiate between Gradient Descent and Stochastic Gradient Descent.	5	M3	CO 2	BT2
8.	a)	Explain the concept of Bayes theorem with an example.	5	M5	CO 4	BT4

	b)	Explain Naïve Bayes Classifier with an Example.	5	M6	CO 2	ВТ3
	c)	Discuss the major drawbacks of K-nearest Neighbour learning Algorithm and how it can be corrected.	5	M2	CO 4	BT5
9.	a)	Define the following terms with respect to K - Nearest Neighbour Learning:	3+3+3	M2	CO 1	BT1
		i) Regression ii) Residual iii) Kernel Function.				
	b	Define the following terms:	6	M4	CO 1	BT1
)	a. Sample error b. True error c. Random Variable				
		d. Expected value e. Variance f. standard Deviation				
10	a)	How is KNN different from k-means clustering?	5	M2	CO 4	BT5
	b)	What is the difference between a generative and discriminative model?	5	M6	CO 2	BT2
	c)	When should you use classification over regression?	5	M3	CO 4	BT5
11	a)	Explain Logistic Regression. Also, explain its types	8	M2	CO 3	BT2
	b)	Write the assumptions made in simple linear regression. Explain the properties of least-square estimators.	7	M2	CO 3	BT2
12	a)	Explain the DBSCAN algorithm for density based clustering. List out its advantages compared to K-means	8	М3	CO 3	BT2
	b)	Define clustering. Explain K-means clustering with algorithm and flowchart.	7	M3	CO 3	BT2
13	a)	What is Data pre-processing? Why is Data Preprocessing important?	5	M1	CO 3	BT2
	b)	What is over fitting? How can you avoid it?	5	M3	CO 3	BT2
	c)	Difference between Bias and Variance?	5	M1	CO 3	BT3
14	a)	Explain Regression and Classification with an example.	8	M2	CO 3	BT2
	b	What are Linear Regression and Logistic Regression?	7	M2	СО	BT2

)	Explain with an example.			4	
15	a)	What is under fitting in Machine Learning?	2	M1	CO 3	BT2
	b)	What is Cross-Validation?	3	M2	CO 3	BT2
	c)	Define Confusion Matrix.	4	M1	CO 3	ВТ3
	d)	What is Regularization in Machine Learning?	3	M3	CO 2	BT3
	e)	What is Feature Scaling?	3	M3	CO 3	BT2

^{*} Please don't add any column in the above table. However, you may add rows as per requirement.