

Progress Report

TRAFFIC SPEED REPORT NO. 84 TRUCK WEIGHT-SPRED STUDY

TO: G. A. Leonards, Director

Joint Highway Research Project

May 11, 1967

File: 8-3-4

FROM: H. L. Michael, Associate Director

Joint Highway Research Project

Project: C-36-10D

Attached is a Progress Report entitled "Traffic Speed Report No. 84: Truck Weight-Speed Study." This is another in our continuing series of reports on our annual measurement of truck speeds in cooperation with the Indiana State Highway Commission. The Commission obtains truck weights and this study analyzes any correlation which exists between truck weight and truck speed.

The study and attached report were performed by Mr. Robert Maximan, Research Assistant on our staff in August and September 1966. Little correlation was found again this year between weight and speed of trucks. In addition the large number of trucks, especially of heavy weight, which exceeded the speed limit is reported and the trend in truck speeds is noted. The recent change in Indiana speed limits for trucks so as to provide for no differential between cars and trucks of any weight is shown to be reality.

The report is normally distributed to the Bureau of Public Roads. the Indiana State Police, the Indiana Office of Traffic Safety and the Indiana Traffic Safety Council, Inc. Approval of such distribution in addition to the normal distribution is requested. The report is presented for the record and for information.

Respectfully submitted.

Harold L. Michael Associate Director

HLM: ss

Attachment

Copy: F. L. Ashb W. L. Dolc W. H. Goet W. L. Gree G. K. Hall R. H. Harr	th J. tz F. tco R. Lock J.	. F. . B. . D. . C.	McLaughlin Mendenhall Miles Oppenlander	W. F. H.	T. Y. R. B.	Scott Spencer Stubbs J. Walsh Woods Yoder
--	----------------------------	------------------------------	--	----------------	----------------------	--

	Digitized by the Internet Archive in 2011 with funding from	
LYRASIS members and S	Sloan Foundation; Indiana Departmen	t of Transportation
http://www.a	rchive.org/details/trafficspeedrepo84n	naxm

TRAFFIC SPEED REPORT NO. 84
TRUCK WEIGHT-SPEED STUDY

by

Robert Maxman Research Assistant

Joint Highway Research Project

File No: 8-3-4

Project No: C-36-10D

Purdue University
Lafayette, Indiana

May 11, 1967

Acknowledgements

I wish to thank Mr. Edward Fleischman for supervising the computational aspects of the data analysis. Also, my thanks to Mr. Gordon Shunk for handling the computer programming needed for the multiple regression analysis and computation of 95% confidence limits. The cooperation of Indiana State Highway Commission personnel at the truck weight stations and in providing the truck weight data are also sincerely appreciated and acknowledged.

Traffic Speed Report 84 Truck Weight-Speed Study

Abstract

7

This report is of the annual continuing study of the relationship between truck weights and truck speeds on Indiana highways. The weight and speed data contained in this report were taken during August and September 1966.

Analysis of the data indicated a slight increase in truck speeds and a small decrease in truck weights. The correlation between the weight and speed was found to be low, indicating that other factors are more influential on truck speeds.

Traffic Speed Report No. 84

This report is an analysis of data taken in August and September of 1966 by personnel of the Joint Highway Research Project in cooperation with members of the Indiana State Highway Commission. This is another in the series of continuing studies on truck speed, truck weight and the correlation between truck speed and weight which has been conducted by the Joint Highway Research Project since 1949.

Each year during the months of August and September the Indiana State
Highway Commission conducts a study of truck weights on Indiana highways.
In this study, the type of truck, axle spacing, axle loadings, and material hauled are recorded at 23 stations throughout the state.

This report analyzes the gross weight figures, obtained by the Indiana State Highway Commission, in relation to free flowing speeds of the same trucks, obtained by personnel of the Project. The weights were obtained through the use of loadometers and pit scales; the speeds were recorded at a radar meter placed approximately two miles from the weight stations. Each truck used in the analysis was positively identified at both data collection points in order to assure that the speed and weight could be assigned to the same truck.

Eleven stations were used for the Speed-Weight analysis. The eleven stations are shown in Figure 1 and further described as follows:

			,	

FIG. I LOCATIONS OF TRUCK WEIGHT-SPEED STATIONS

			Ą

STATION	HICHWAY	LCCATION	Date of Observation	No. of Lanes
58B	u. s. 31	2000' S. of Southport Road	Aug. 23	4
75	u. s. 41	.25 mi. S. of U. S. 41 Business	Aug. 24	ц
83	U. S. 41	. 5 mi. N. of S. R. 37	Aug. 26	ł,
New	I-65	.25 mi. N. of U. S.	Aug. 29	4
61	U. S. 52	1.3 mi. S.E. of Jet. U. S. 52 & S. R. 3	Aug. 30	2
45B	s. R. 67	1.0 mi. S.W. of Munci	e Sept. 1	2
16	u . s. 6	3.0 mi. W. of S. R. 4	9 Sept. 12	2
15	U. S. 30	Between S. R. 55 & S. R. 53	Sept. 13	4
14	U. S. 41	. 5 ml. S. of N. Jet. of S. R. 2	Sept. 14	4
12	U. S. 52	2.25 ml. W. of U. S. 41	Sept. 15	2
42	V. S. 52	600' E. of N. Jct. of S. R. 28	Sept. 29	Ţ

		0,6

Equipment and Field Procedure

The speed data were taken on level tangent sections of highway approximately 2-4 miles from the weight stations. Since the speed of "free flowing" trucks was desired, each location for the speed check was chosen so that no railroad or intersection influences existed. As each truck approached the speed check it was noted whether or not there were any other vehicles influencing its speed (such as a slow moving vehicle ahead). Any truck that could not be considered "free flowing," i. e. no influences on speed other than those of the vehicle and its driver, was not considered in the sample.

The speeds were obtained by the use of an electronic radar meter.

The meters used were manufactured by Automatic Signal Division, Eastman

Industries, Inc., East Norwalk, Connecticut. Each of the two meters used

was tested using a "fifth wheel" prior to the study. Each meter was

found to have an error of less than one mile per hour, making calibration

curves unnecessary. The calibrated speedometer on the car used to transport

the equipment throughout the study and 30, 45 and 60 mph tuning forks were

used to assure the continued accuracy of radar meter readings.

The speed meter was placed approximately four feet from the edge of the pavement and simed so as to make an angle of less than 10 degrees with the center line of the road. The meter was placed in a green card board container that was similar in shape and size to those used as trash barrels along Indiana highways. Futhermore, no vehicle was parked in the vicinity of the radar meter at any time. These precautions along with a 50 ft. chord which enabled all personnel to observe from a position well off of the road-side, enabled the speed readings to reflect, as much as possible, true speeds.

Truck speed and weight data were collected from 8 A.M. to 4 P.M.

The speed and weight of trucks travelling in one direction was taken during the four A.M. hours; in the afternoons the data was taken of trucks travelling in the other direction. At the weight stations the recorder noted the weight of each truck, the time it left the station, the color of the cab, color of the trailer, any large name or number, number of axles and other important identifying data. At the speed station the recorder noted speed, time, no. of axles, color or any other important identifying characteristics. With an estimate of the approximate time interval between stations and the other identifying characteristics recorded the truck weights were matched with the appropriate truck speeds without difficulty.

Analysis

For the purpose of analysis the trucks were classified as single unit under 5,000 lbs., single unit above 5,000 lbs., or multi-unit. An analysis was made for each type of roadway: two-lane, four-lane and interstate. The Indiana speed limits for these weight classifications on the three types of roads are as follows:

70 MPE	for light trucks (less than 5,000 lb.) on interstate highways
65 MPH	for light trucks on other roadways
55 MPH	for heavy trucks (5,000 lbs. or more) on 4-lane highways with a median of 20 feet or more and on interstate highways
50 MPH	for heavy trucks on other roadways

							Inter	state	Two-	tal Lane,	
Station	,	5	1.	ł.	Tot Four-		N	ew	Four-Lane Interstate		
		No. of	Ave.	No. of	Ave.	No. of		No. of	Ave.	No. of	
Weight (kips)	ips Truck		Speed	Trucks			Speed	Trucks		Trucks	
0-4	L	1			54.3	9			54.4	16	
4-5	L	8			54.0	ևև	63.4	44	52.5	97	
Light Trucks	_	9		0	5	53		4		13	
Ave. wt.(lbs)	57	0			4,27	70	4,38	0	4,3	20	
Ave. Speed	5.	3			54.	.0	63.	4	52	.8	
Conf. Level	9)5				95	9			95	
Upper C.Limit	þ.	4			56.	.1	68.	7	54	.3	
Lower C.Limit	2.	2		-	52.	.9	58.	1	51	.3	
5-8		14	68.3	3	53.8	48	60.0	8	53-9	125	
8-12	_	6	58.0	3	52.7	60	57.6	11	52.9	100	
12-16		6			51.1	34	56.6	10	51.3	62	
16-20		1	58.3	4	52.6	31	59.6	13	52.3	62	
20-24		14	52.5	2	51.3	21	59.5	2	50.5	37	
24-28		1	53.0	1	50.3	9	58.0 1		51.8	15	
28-32		1			52.7	6			52.6	7	
32-36		1			52.5	<u>l</u>			50.6	5	
36-40		1			44.3	6			45.3	10	
40-44					42.0	2			39.3	3	
44-44									48.0	1	
48-52											
52-56											
56-60											
Heavy Trucks	2	25	1	3	22	21	L	15	L	27	
Ave. wt.(lbs)	30	00	13,52	0	14,6	40	13,32	20	13,6	70	
4		.0	59.		52		58.			2.3	
Conf. Level		95		95		95		95	95		
Upper C.Limit			63.		53		59.		54.2		
Lower C.Limit	\vdash		55.		51		57.).4	

L₁

TABLE 1. SINGLE UNIT TRUCK SPEEDS (MPH)

					Two-Lane	Highwa	ıys									F	our-Lane	Highway	rs						Inter	state		tal Lane.
Station		45	• .	61	1	6		12	Tot	ane		3	1	2	5	<u> </u>		75	1	5		14	Tot Four-		N	ew		-Lane
,		No. of		No. of Trucks	Ave. Speed	No. of		No. of Trucks		No. of		No. of Trucks		No. of	f Ave. Speed	No. of		No. of Trucks	Ave. Speed	No. of Trucks		No. of Trucks		No. of Trucks	Ave. Speed	No. of Trucks	Ave. Speed	No. Truc
0-4	55.0	2	50.0	1	56.7	_3	51.0	1	54.4	7_	50.0	14	50.0	ı	56.3	3			60.0	1			54.3	9			54.4	16
4-5	49.2	14	49.5	19	53.0	2_	52.2	14	50.3	49	54.4	11	60.0	2	54.7	10	51.0	13	55.8	8			54.0	44	63.4	14	52.5	9
ght Trucks		16		20		5		15	5	6	1	.5	-	3	1	3	:	13		9		0		53		4	1	13_
e. wt.(lbs)	4,2	90	4,4	80	3,74	0	4,4	.90	4,36	io	4,29	90	4,0	70	4,14	0	4,31	40	4,37	70			4,2	70	4,38	30	4,3	20
e. Speed	49	.9	49	.5	55.	2	52	.1	50.	8	53.	2	60.	.0	55.	1	51	.0	56.	3			54	.0	63.	4	52	2.8
onf. Level		95		95	9	5	1.	95	9	95)5			9			95	. 9					95	-	95		95
per C.Limit	54		53		60.		+	.4	52.	•	57.		64.		58.		56		60.				56		68.	<u> </u>		1.3
ower C.Limit		.2	45	T	49.			.8	ь8.		48.	T	55		51.	T	45	7	52.	.2			52	1	58.			1.3
5-8	52.3		52.5	31	54.0	7	56.4	10	53.2	69	52.8	10	60.0	5	49.1	13		13	51.3	4	68.3	. 3	53.8	48	60.0	8	53.9	12
-12	52.2	13	52.0	4	53.5	. 4	49.0		51.5	29	50.6	15	56.0	9	52.8		51.7	18	52.8	6	58.0	3	52.7	60	57.6	11	52.9	10
-16	50.2	5	49.2	5	43.3	3	50.0	5	48.7	18	53.8	. 10	53.5	4	51.2		49.8	9	47.0	6	-0 -		51.1	34	56.6	10	51.3	
-20	46.6	7	44.6	5	49.0	. 4	45.0	2	46.4	18	54.5		54.0	11	52.5	ž4	48.1	10	54.0	1 1	58.3	4	52.6	31	59.6	13	52.3	6
-24 -28	50.0	3	46.8	. 6	53.5	, 2	45.0	3	48.1.	14	48.8	8	50.0.	1	15.0		51.8	6	55.0 56.0	4	52.5	2	51.3	21	59.5 58.0	5	50.5	3
-20 -32	58.0	3	48.0	1	44.0	1			53.2	-	49.8	. 5			45.0		50.0	2		1	53.0	1	50.3 52.7	9	30.0	1	52.6	+-
- <u>52</u> -36					52.0	1	43.0	٠,	52.0	+ <u>1</u>	57.5 50.0	2		-	52.0	1	50.0	1	49.0	1		-	52.5	<u>µ</u>			50.6	+
-40	-		48.0	1			46.3	3	46.7	<u></u>	45.0	1			44.0	3	40.0	1	49.0	1			44.3	6		· · · · · ·	45.3	-
0-2:14			10.0		34.0	1	40.)		34.0	1		-			44.0		42.0	2	49.0	-			42.0	2			39.3	+
-1-8	48.0	1			74.0				48.0	1				-			42.0						42.0		1		48.0	+
-52		-							40.0						-						-	,					40.0	
-56												1					-		-		1							
E-60																												
evy Trucks	5	i3		53	2	3		12	16	51	1 6	53		20	3	7		63	2	25		13	22	21	L	ı5	14	+27
e. wt.(lbs)	12,00	00	10,6		14,99		14,2		12,44		15,50	-	10,2		13,87		14,8	-	17,30		13,5		14,6	40	13,32	20	13,6	570
e. Speed	51.	4	50	.6	50.	2	50.		50.		52		56		50.		51	.0	51		. 59	.2	52	.1	58.	5	52	2.3
nf. Level	9	5		95	9	5	9	95	9	95	9	95		95	9	5		95		95		95		95	9	95		95
mer C.Limit	53.	4	52	.6	53.	2	52		51.		53		58		52.		52	.7	52.		63	.4	53	.0	59.	.9	54	1.2
ower C.Limit	49.	4	48	.6	47.	2	48	.3	50.	.2	50		53	<u>. 4</u>	48.	1	49	.3	49.	1	55	.0	51	.2 '	57.	1	50	3.4

		,
		,
		6.4

Station	15			14	Tot Four-	Lane		state	Two- Four Inter	tal Lane, -Lane state
Weight (k	. 17	No. of Trucks		No. of Trucks	Ave. Speed	No. of Trucks	Ave. Speed	No. of Trucks	Ave. Speed	No. of Trucks
8-12					52.0	ı			51.5	2
12-16							56.0	2	57.3	3
16-20		7	53.0	1	52.9	21	55.6	7	53.1	33
20-24		10	58.0	4	53.6	47	57.4	30	54.1	93
24-28		22	54.8	17	55.2	77	59.6	51	56.5	153
28 - 32		9	57.4	12	55.2	61	58.1	15	54.3	103
32 - 36		11	57.4	7	53.1	38	60.9	14	54.6	65
36-40		8	58.3	9	54.6	45	59.1	7	54.5	65
40-44	+	7	55.5	8	52.1	29	58.1	9	52.9	45
44-48		9	58.1	3	50.6	27	56.7	10	51.4	48
48-52		5	56.2	6	51.9	25	53.3	6	51.8	39
52-56	- + -	8	55.7	6	52.9	27	58.6	8	53.1	50
56-60		8	57.3	6	52.1	48	57.9	9	53.1	60
60-64	+	8	56.0	3	52.1	33	57.8	5	51.8	44
64-68		11	59.1	4	53.1	37	58.0	7	52.6	62
68-72		10	56.8	12	54.1	56	57.1	13	53.2	88
72-76		7	58.6	5	52.0	39	57.4	20	53.3	66
76-80			56.8	14	51.3	26			51.0	36
80-84					51.7	9			51.7	9
84-88					55.0	1			53.5	2
88-92										
92-96					46.0	1			46.0	1
96-100		.,								
Total Tr	.40		1	07	64	9	2	13	106	8
Ave. wt.	900		48,8	80	47,33	0	40,1	30	45,51	.0
Ave. Spe	1.1		56	.7	53 •	4	58	.1	53.	7
Conf. Le	95			95	9	5		95	9	5
Upper C.	8.4		57	.4	53.	8	58	.7	54.	1
Lower C.	5.4		56	.0	53.	0	57	.5	53.	3

		,

TABLE 2. MULTI-UNIT TRUCK SPEEDS (MPH)

dami (ili ili				ī	wo-Lane	Highway	/8									Fo	ur-Lane	Highway	rs						Inter	state		tal Lane,
Station		45	. 6	1		1 6		.2	Two-	tal Lane		83		2		8		7 5		.5		14	Tot Four-	Lane			4	-Lane
Weight (kips)	Ave. Speed	No. of Trucks		No. of Trucks		No. of Trucks	Ave. Speed	No. of Trucks		No. of Trucks	Ave. Speed	No. o																
8-12							51.0	1	51.0	. 1					52.0	1							52.0	1			51.5	2
12-16			-				60.0	1	60.0	1															56.0	2	57.3	3
16-20					50.5	4,	52.0	1	50.8	5	53.6	8	50.0	1	53.0	3	51.0	1	52.6	7	53.0	1	52.9	21	55.6	7	53.1	33
20-24	51.3	3	59.0	1	47.2	9	50.3	3	49.3	16	54.8	10	50.3	6	50.9	11	55.2	6	54.5	10	58.0	4	53.6	47	57.4	30	54.1	93
24-28	54.6	5	54.7	3	54.4	10	52.3	7	53.9	25	55.2	12	54.3	8	51.7	6	52.0	12	58.5	22	54.8	17	55.2	77	59.6	51	56.5	153
28-32	50.4	11	53.5	2	49.3	6	50.0	8	50.3	27	56.9	13	52.5	11	53.6	8	55.3	8	54.5	9	57.4	12	55.2	61	58.1	15	54.3	103
32-36	47.0	4			50.4	5	60.3	_ 4	52.4	13	50.0	4	51.8	6	50.8	4	51.5	6	53.8	11	57.4	7	53.1	38	60.9	14	54.6	65
36-40	48.0	2	54.0	1	49.3	4	54.0	. 6	51.6	13	51.3	4	52.8	13	53.4	5	55.5	6	55.3	8	58.3	9	54.6	45	59.1	7	54.5	65
40-44	53.0	2			50.0	24	42.0	1	49.7	7	49.7	6	54.0	1	51.4	5	48.5	, 2	51.6	7	55.5	8	52.1	29	58.1	9	52.9	45
44-48	47.8	4		_	48.0	4	50.0	3	48.5	11	53.0	4	54.0	2	52.7	7_	50.5	2	57.7	9	58.1	3	50.6	27	56.7	10	51.4	48
48-52					50.4	, 8			50.4	. 8	54.0	1	49.3	8	48.5	4	50.0	1	53.6	5	56.2	6	51.9	25	53.3	6	51.8	39
52 -5 6	46.7	3	56.3	- 3	50.5	.8	43.0	1	50.4	15	54.8	14	50.7	3	50.0	4	52.0	2	52.5	8.	55.7	6	52.9	27	58.6	8	53.1	50
56-60					54.0	3			54.0	3	53.1	8	49.6	11	51.6	8	51.3	. 7	51.9	8.	57.3	6	52.1	48	57.9	9	53.1	60
60-64					43.8	5	49.0	1	44.7	- 6	57.7	7	45.1	7	50.5	4	52.5	4	52.6	8	56.0	3	52.1	33	57.8	5	51.8	44
64-68	52.7	3			48.1	11	51.5	24	49.6	18	53.3	10	51.3	3	49.6	7	54.0	2	53.2	11	59.1	14	53.1	. 37	58.0	7	52.6	62
68-72	53.0	3	50.0	1	46.3	10	48.4	5	48.1	19	56.7	14	49.6	7	50.6	5	54.1	8	52.5	10	56.8	12	54.1	56	57.1	13	53.2	88
72-76			59.0	. 2	43.3	3 .	46.5	2	48.7	7	54.4	10	57.5	4	51.8	9	50.0	14	47.5	7	58.6	5	52.0	39	57.4	20	53.3	- 66
76-80	48.5	14	55.0	1			50.8	5	50.3	10	45.0	1	56.0	2	49.2	10	50.7	9	1		56.8	4	51.3	26	-		51.0	36
80-84				-							66.0	1	52.0	2	50.0	3	48.3	3					51.7	. 9	'		51.7	9
84-88	52.0	1							52.0	1							55.0	1					55.0	1			53.5	2
88-92																				1								
92-96				•											46.0	1							46.0	1	,		46.0	1
96-100																												
Total Trucks	Ł	5	1	4	9)4	9	53	20	06	ſ	.17	9	96	1	.05		84	11	+0	1	L07	61	+9	2	2 1 3	106	8
Ave. wt.(1bs)	44,86	0	47,27	'O	46,12	20	43,91	10	45,36	50	47,0	010	46,24	10	50,2	230	49,1	.00	43,90	00	48,8	38o -	47,3	50	40,1	.30	45,51	.0
Ave. Speed	50.	3	55	14	49.	1	51	.4	50.		51	.5	50.	.3		.1	52	.5	54	.1	56	5.7	53	, 4	58	3.1	. 53.	7
Coaf. Level	9	95	9	95	9	95	9	95	9	95		95	9	95		95		95	9	95		95	9	95		95	9	95
Upper C.Limit	51.	6	57	9	50.		52		51			3.3	51.		+	9		.8	54		57	7.4	53	.8	58	3.7	54.	1
Lower C.Limit	49	.0	52.	9	47.	8	50.		49.		 	5.7	49.	.0	+	0.3	51	.2	53	. 4	56	5.0	53	.0	57	7.5	53.	3

		÷

Table 3 gives the percent of trucks exceeding the speed limit and 5 miles above the speed limit for each station. A summary of these results is as follows:

Single Unit

	light	heavy	Malti-Unit
2-lane Above Speed Limit 5 MPH Above Limit	3.6 0.0	իկ.7 23.0	45.1 18.9
4-lane Above Speed Limit 5 MPH Above Limit	0.0 9.4	28.5 6.8	32.5 6.8
Interstate Above Speed Limit 5 MPH Above Limit	0.0 0.0	68.9 17.8	69 .1 19.6

Table 4 lists the number of observations, average speed, and average weight for each truck classification for the past eighteen years.

Figures 2, 3, 4, and 5 show graphically the accumulative speed distribution for each classification of truck on two-lane, four-lane, and interstate highways and on all of these road types. Figures 6 and 7 show the trends in the 85th percentile truck speed for two-lane and four-lane roadways for the past thirteen years. This is the first year an interstate highway was included in the study.

Figures 8 and 9 show the relationship, as developed by the linear regression analysis, between truck weight and speed for single unit and multi-unit truck on each type of roadway.

÷ • * (∆			

PABLE 3

PERCENTAGE OF TRUCKS EXCEEDING SPEED LINETS

Tr	Trucks Weighing	Unde	7	Trucks Weighing	ighing Over 5,000		All Weight	All Weights	
	No.	รู้ เกษคลำ	Sceeding	Wo.	g p Fitceediing	€ C.	Mos	Fixe pool too	Receased
Sta. Or	Observed	65 WPH	TO MPH	Observed	50 MPH	55 MPH	Observed	50 MPH	55 MPH
45B	91	9	0.0	53	52,8	9.00	ζ., ?,	6.84	15.6
61	80	2,0	0,0	300	41.5	24.5	\^\?\	21,5	988 988
16	S	0.0	000	S	56.5	30°4	16	43.6	17.0
12	15	0.0	0.0	었	96.9	15.6	53	47.1	22°6
LT TWO	, 1	•							
Lane	56	3,6	0.0	161	1.44°.	23.0	206	45.1	18.9
					**	*		B	8
					Exceeding	Exceeding		Exceeding	Exceeding
					SS MPH	H-IM 09		55 MPR	60 MPH
83	15	13.3	0.0	63	19,1	1,6	11.7	0°Th	0°9
Š	· 67]	7.99	0.0	20	50.0	20.0	96	26.1	ಡ್ಕಿ
53	130	0.0	0.0	37	24.3	to cy	1.05	13,3	1,9
75	er H	0.0	0.0	63	27.0	9.5	†8	83 ,8	7,1
15	0	17.17	0.0	25	20.0	0.0	140	25.0	5.7
41	0	0.0	0000	13	76.9	23.1	107	64.5	17.8
All Four							1		4
Lane	53	4.6	0.0	221	28.5	6.8	649	32.5	6°8
		28	₽€.						
	:	Exceeding 70 MPH	Exceeding 75 MPH						
Interstate	č	C	o	វាភ	0 8%	17.8	3/10	60.1	10.6
77		000	000	7.	7.00	2		10/0	20/2

TABLE 4

TRUCK-WEIGHT SPEED DATA

		Single-Unit			Malti-Unit	
Year	Number	Average Speed	Average Weight	Number	Average Speed	Average Weight
1.949	578	ST.	004,6	581	d 61	32,500
1950	161	4.07.	8,700	879	150	36,700
1951	1,242	O	000	7,405	10 m	36,700
1952	234,482	ಕ್ಕ್ ೧ ಈ ಎ	8,760	1,354	44.5	35,900 88,800
1954	905	12	8,000	1,064	4.00	37,400
1955	762	25.9	8,900	1,120	143.5	38,400
1956	952	0.27	8,300	1,033		37,500
1957	1,028	£6.3	9,400	1,161	\$ 50 Y	37,100
1958	837	5.0%	9,900	1,130	797	39,200
1959	1847	だった。	9,200	†09	9,54	40,300
1960	प्टिंग	1,64	12,000	7	50.3	39,300
1961	938	0.8%	10,600	1,149	1,806	42,600
1962	610	1,8,7	11,800	1,079	2°64	142,700
1963	1483	6047	11,500	736	45.9	43,600
1964	<i>61.1</i>	50.6	11,200	7,716	51.1	14,100
1965	543	0°64	12,900	1,165	N. 0.	46,100
7700	· (52.7		870	, c	n i

			ā.	
	·			
				1.1

Figure 2, Accumulative Speed Curves,

Two-Lane Highways

Figure 3, Accumulative Speed Curves,
Four-Lane Highways

Figure 4, Accumulative Speed Curves,
Interstate Highways

Figure 5, Accumulative Speed Curves,

All Highways

(E) (I		

FIG. 6 - TRENDS IN THE 85TH PERCENTILE TRUCK SPEED ON TWO-LANE HIGHWAYS (1954-1966)

FIG. 7 - TRENDS IN THE 85TH PERCENTILE TRUCK SPEED ON FOUR-LANE HIGHWAYS (1954-1966)

BY ROADWAY TYPE FIG. 8 - REGRESSION ANALYSIS: SINGLE UNIT TRUCKS

ROADWAY TYPE FIG.9-REGRESSION ANALYSIS: MULTI-UNIT TRUCKS BY

			•

BY TRUCK TYPE FIG. 10 - REGRESSION ANALYSIS: ALL TRUCKS

			Uğ

Summary and Conclusions

The linear equations found by the multiple regression technique, giving the relationship between truck weight and speed, Figures 8, 9, 10, indicate that as truck weight increases the speed decreases. However each " r^2 " term which expresses the fraction of the variability explained by this relationship is very small. For example the equation for multipunit trucks has an r^2 of .019524 indicating that about 2 percent of the variation in speed is correlated to an increase in weight.

The "r2 term" for each classification of truck and roadway is as follows:

Equation	Gradientes relater to	ten 2010 in dentrolation is
Single Unit - 2 Lene	.236782	.056 06 6
Single Unit - 4 Lene	.224647	.050466
Single Unit Interstate	.091465	.008366
Multi-Unit - 2 Lame	~50/508	.041701
Multi-Unit - 4 Lane	.096492	.009311.
Multi-Unit Interstate	.049526	.002453
Single Unit (total)	.187314	.035087
Multi-Unit (total)	.139727	.01.9524

A value of 1.0 for r² would indicate that the increase in weight of a truck would always cause the same change in speed i. e. all of the variation in speed could be explained by the weight. A small value of r² such as those found in this study indicates a very small correlation between the two. Other factors must be the parameters which determine truck speed.

		4.0	

The trend in 35th percentile truck speeds on 4-lane highways is still increasing; moreover, the data for 1966, when compared with that of the previous 2 years seems to indicate a linear increase an speed. The data from 196 indicated a was billiby of a leveling trend but the 1966 data seems to indicate that this last not be tax case. The 85th percentile speeds in 2-lave highways also how in increasing trend.

The strong of the first of the limit of the unit trucks, Well's of the matter with the same constitution as the first strong of the first strong wars \$100. It is a strong of the first strong wars \$100. It is a strong of the first strong wars \$100. It is a strong of the first strong of the same speed on both year of madelines a strong change the squad limits are different. The architicant of the is the multi-valid class that theory is higher speed on 4 days far different gas of through the squad limits are different. The architicant of the instructional class that the same speed on 4 days far different gas of through the squad in the interstance should be said that higher unit 100%, he way shape unit 68.9%, multi-rule 59 %. Then he half in the acady a wake time unit of 8.9%, multi-rule 59 %. Then he half in the acady a wake time unit of 8.9%, multi-rule 59 %. Then he half in the acady a wake time unitarity between 55 and 60 ph.

The overall whate specials stand a sing, as the lean the thend for many years. Ging a main that he had an unitary sheet of the physical from 9.2 in 1965. The waterage 18:121 of a note white trucks, however decreased that it for 12,700 to 11.00 in the arms is unitarily unless and an average speed of 33.7mpl. up from 1.7mm 1.7mm is a same a maintain of relationals trucks ecreated and a first 1.7mm that, and include have been consequently the sampling procedure.

		Ý

Recommendations For Further Studies

- Station 61 has very low multi-unit volumes. Because of this
 the significance of the data at this station is doubtful.
 A higher volume 2-lane facility would provide better results.
- 2. At some of the weight stations enforcement was carried out by State Policemen on duty. This fact affected the results later in the day. The excellent communications between truck drivers is well known, and the fact that summons were being issued to over weight vehicles had a significant affect on the weights of the trucks that followed. This could be a significant cause for the decrease in average weights which was noted between 1965 and 1966. This enforcement should not be allowed if the sample is to have continuing statistical significance.
- 3. On high volume facilities when the waiting line got too long, all small trucks were allowed to pass. As volumes increase this practice will have an increasingly significant impact.

 A random sample must be obtained if the results of the studies are to be considered valid. When volumes get high a set procedure for sampling should be established such as every third or fourth truck rather than pass through all light trucks.

