

Minicurso 5

Identificação de Parâmetros Elétricos em Módulos Fotovoltaicos

Valence band

Doping of Silicon

Free holes

Valence band

Diode

Obtenção de uma Diferença de Potencial

Diodo

30/10/2020

Equação do Diodo

$$i = I_d \left[\exp \left(\frac{v \cdot q}{n \cdot k \cdot T} \right) - 1 \right]$$

```
k = 1.38e-23; % Constante de Boltzman [J/K]
q = 1.6e-19; % Carga do elétron [Coulombs]
T1 = 273 + 0; % Convertendo para Kelvin
T2 = 273 + 100;
I s1 = 1.0e-12; % Corrente de Saturação
k s = 0.072; % Constante para correção da corrente de saturação
I s2 = I s1*exp(k s*(T2-T1)); % Corrente de Saturação em T2
V d = 0.45:0.01:0.7; % Tensões amostradas no Diodo
I T1 = I s1*exp(q*V d/(k*T1)); % Corrente no Diodo a T1
I T2 = I s2*exp(q*V d/(k*T2)); % Corrente no Diodo a T2
plot(V d,l T1,'r',V d,l T2,'g')
axis([0.45,0.75,0,10])
title('Curva I-V do Diodo a duas temperaturas')
xlabel('Tensao (V)')
ylabel('Corrente (A)')
```


Plataformas de Simulação e gestão de versões

https://github.com/dbr-ufs/solar fotovoltaica

https://mybinder.org/v2/gh/dbr-ufs/solar fotovoltaica/master

Schematic Operation Principle

Schematic Drawing of a Solar Cell

Eficiência

$$\eta_{\text{Abs}} = \frac{\text{Number of absorbed photons}}{\text{Number of incident photons}} = \frac{N_{\text{Ph_Abs}}}{N_{\text{Ph}}} = \frac{E_{\text{Abs}}}{E_0} = \frac{E_1 - E_2}{E_0}$$

Curva Característica

Source: K. Mertens: textbook-pv.org

Short Circuit

$$I_{sc} = I_{cell} = I_{ph}$$

Open Circuit

Solar Cell Curve

Maximum Power Point

Modelo Elétrico de um diodo

Circuito equivalente modelo de um diodo

Resistência em série (R_s) ;

Resistência em paralelo (R_{sh}) ;

Fator de idealidade do díodo (n);

Corrente fotogerada (I_{ph});

Corrente de saturação do díodo (I_d) .

Circuito equivalente modelo de um diodo e cinco parâmetros Fonte: Mertens (2014).

Serial Resistance

Real Solar Cell

Parallel Resistance

IV-Curves depending of the Radiation

IV-Curves depending of temperature

alcantaraneto@academico.ufs.br

Eletroluminescência

para analisar as resistências série e paralelo

METODOLOGIA: ELMO

- O método de Kropp et al. em [10], chamado "Predição de Potência de Módulos por EL" (ELMO) é referência para este trabalho. Trata-se da predição da curva I-V a partir de um mapeamento de resistências por EL e dados da folha de dados;
- O ELMO obtém um mapa de resistências relacionando duas imagens de EL, uma de baixa luminescência (<=10% de I_{sc}) e outra de alta luminescência(I_{sc});

METODOLOGIA: ELMO

 A resistência série local no ponto de maior luminescência na imagem de alta luminescência é determinada para cada célula;

• A partir desta resistência de referência é feito o mapeamento de todas as resistências

série locais da célula.

METODOLOGIA: ELMO

 Já a resistência paralelo é mapeada a partir da célula com maior luminescência média na imagem de baixa luminescência.

METODOLOGIA

- Sistema de aquisição de imagens para realização de ensaios de EL:
 - Câmara escura; Fonte DC e cabos de energia; Dispositivos fotovoltaicos;
 - Microcomputador Raspiberry PI 3, modelo B plus;
 - o Câmera CMOS modelo Pi NoIR V2;

ELETROLUMINESCÊNCIA: Câmeras

 Espectros Relativos de Emissão (c-Si) e Sensibilidade (CCD):

K. Mertens, Photovoltaic Metrology, in *Photovoltaics: Fundamentals, Technology, and Practice*, Chichester: John Wiley & Sons, 2014, pp.219.

EL 10% de Isc [HSV em escala]

Subsistemas

Subsistema elétrico/eletrônico

Motor de passo

Conceito

Aplicações

Figura 12: Easy Servo motor (esquerda) e motor de passo comum (direita). Fonte: (KALATEC, 2019)

Vantagens e desvantagens

Subsistema elétrico/eletrônico

Sensores

Magnetômetro

Acelerômetro/ giroscópio

Figura 13: Acelerômetro MPU6080 (esquerda) e magnetômetro gy-27 (direita). Fonte: (NEW FROG, 2019)

Sensores

Figura 14: Display TFT 2.4'. Fonte: (FLOP, 2015)

Solarimetria e instrumentos de medição.

Pireliômetro

DN5-E Middleton; campo de visão de aproximadamente 4°; 10s de tempo de resposta pra mensuração de 95% do valor real.

Piranômetro

ER08-SE da Middleton Solar; 0,3s de tempo de resposta para 95% do valor real; 1ª Classe

Controlador

Figura 18: Arduino Mega 2560. Fonte: (EMBARCADOS, 2014)

Projeto Mecânico

Figura 21: Cad 3D do seguidor. Fonte: Santos, 2019.

Rastreador Montado

Figura 21: Rastreador solar e sistema de controle de temperatura.

Rastreador Montado

Figura 22: Rastreador solar e sistema de controle de temperatura.

UNIVERSIDADE FEDERAL DE SERGIPE CENTRO DE CIÊNCIAS EXATAS E TECNOLOGIA

LAB CONVERSÃO DE ENERGIA – DMEC/PROEE

Vídeo

Traçador de Curvas IV

UNIVERSIDADE FEDERAL DE SERGIPE CENTRO DE CIÊNCIAS EXATAS E TECNOLOGIA LAB CONVERSÃO DE ENERGIA — DMEC/PROEE

Algoritmo

Função Objetivo

3.1 Algoritmo meta-heurístico genético baseado em estratégia JAYA (YU et al., 2017):

O algoritmo JAYA é um método de otimização estocástico baseado em evolução de população proposto por Venkata Rao (2016).

$$\begin{cases} f_{K}(V_{L}, I_{L}, X) = I_{ph} - I_{d} \left[\exp\left(\frac{q(V_{L} + R_{s}I_{L})}{nkT}\right) - 1 \right] - \frac{V_{L} + R_{s}I_{L}}{R_{sh}} - I_{L} \\ \\ x = \{I_{ph}, I_{d}, R_{s}, R_{sh}, n\} \end{cases}$$

$$RMSE(x) = \sqrt{\frac{1}{N} \sum_{K=1}^{N} f_{K}(V_{L}, I_{L}, x)^{2}}$$

$$x_{new} = xi, j + rand_1 * (x_{melhor}, j - |xi, j|) - rand_2 * (x_{pior}, j - |xi, j|)$$

Função Objetivo Potência

Fonte: Adaptada de Silva et al. (2016).

6. Resultados e Discussões

6.1.6 Etapa 6

Parâmetros no STC a partir da norma IEC-60891 (2009). Curvas na faixa de 800W/m² a 1200W/m² (± 20% da condição de STC).

Figura 13 – Curvas de entrada para serem transladas a condição de STC.

Figura 14 – Resultado da transladação por meio da norma IEC-6089 (2009)das curvas selecionadas para a condição de referência, STC.

6. Resultados e Discussões

6.1.6 Etapa 6

Parâmetros no STC obtidos a partir da norma IEC-60891 (2009), transladando a curva que mais se aproxima do STC.

Tabela 6.2 - Parâmetros elétricos e valores dos principais pontos de operação do módulo.

Parâmetros obtidos no STC (Tc = 25°C, G =				
$1000 \text{W/m}^2 \text{ e A.M} = 1.5$				
V_{oc0}	21,2535 (V)			
I_{sc0}	7,7407 (A)			
V_{mpp0}	16,9021 (V)			
I_{mpp0}	7,0667 (A)			
P_{mpp0}	119,4421 (W)			
I_{ph0}	7,7633 (A)			
I_{d0}	0,00869 (µA)			
R_{s0}	$0,1977(\Omega)$			
R_{sh0}	$67,3372 (\Omega)$			
n_0	1,1172 (Adimensional)			
FF_0	0,7260 (Adimensional)			

Figura 15 - Corrente (I_L) medida e estimada, e RMSE total para modelo.

Método de Newton-Raphson

• Interpretação geométrica

$$tg\alpha = \frac{f(x_i)}{(x_i - x_{i+1})}$$

$$f'(x_i) = \frac{f(x_i)}{(x_i - x_{i+1})}$$

$$x_i - x_{i+1} = \frac{f(x_i)}{f'(x_i)}$$

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$

Método de Newton-Raphson

- Exercício para sala:
- Dada a equação $f(x)=x^3-9x+3$, encontre a raíz dentro do intervalo [0,1]. Execute o método até que $|x_{i+1}-x_i|<10^{-2}$

$$- f'(x) = 3x^2 - 9$$

$$- x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)} = x_k - \frac{(x_k^3 - 9x_k + 3)}{(3x_k^2 - 9)}$$

- Assim:

-
$$x_1 = 0.5 - \frac{(0.5^3 - 9.0.5 + 3)}{3.0.5^2 - 9} = 0.3333$$

$$- x_2 = x_1 - \frac{(x_1^3 - 9x_1 + 3)}{(3x_1^2 - 9)} = 0.3376$$

- $-f(x_2)\cong 1,834.10^{-5}$ e já pode ser considerada uma precisão aceitável.
- Solução: $x' = x_2 = 0.3376$

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$

Tabela 5.3 - Modelo(s) para cada um dos parâmetros (I_{ph} , I_d , Eg, n, R_s , R_{sh} , α e β) a serem executadas integrada com a equação do modelo de um diodo.

Parâmetros	Nº do modelo	Equação	Autor (es)
(I_{ph})	1	$I_{ph} = I_{ph}(G, T_c) = \frac{G}{G_0} [I_{ph_0} + \alpha_{Isc} (T_C - T_0)]$	Hansen (2015b)
(I_d)	1	$I_d = I_d(T_C) = I_{d_0} \left[\frac{T_C}{T_0} \right]^3 e^{\left[\frac{1}{k} \left(\frac{E_g(T_0)}{T_0} - \frac{E_g(T_C)}{T_C} \right) \right]}$	Hansen (2015b)
	2	$I_d = I_d(T_C) = I_{d_0} \left[\frac{T_C}{T_0} \right]^{\frac{3}{n}} e^{\left[\frac{q}{n k} \left(\frac{E_g(T_0)}{T_0} - \frac{E_g(T_C)}{T_C} \right) \right]}$	Junior (2018)
		$I_d = I_d(T_C) = I_{d_0} \left[\frac{T_C}{T_0} \right]^{\frac{3}{n}} e^{\left[\frac{-q E_g}{n k} \left(\frac{1}{T_C} - \frac{1}{T_0} \right) \right]}$	Ramos (2017)
	4	$I_d = I_d(T_C) = I_{d_0} \left[\frac{T_C}{T_0} \right]^3 e^{\left[\frac{q E_g}{n k} \left(\frac{1}{T_0} - \frac{1}{T_C} \right) \right]}$	Ramos (2017)
	5	$I_d = I_d(T_C) = I_{d_0} \left[\frac{T_0}{T_c} \right]^3 e^{\left[\frac{q E_g}{n k} \left(\frac{1}{T_0} - \frac{1}{T_c} \right) \right]}$	Ramos (2017)
	6	$I_d = I_d(T_C) = I_{d_0} \left[\frac{T_c}{T_0} \right]^3 e^{\left[\frac{N_s E_g}{n_0} \left(1 - \frac{T_0}{T_C} \right) \right]}$	Ramos (2017)

Continuação da Tabela 5.3 – Modelo(s) para cada um dos parâmetros (I_{ph} , I_{d} , E_{g} , n, R_{s} , R_{sh} , α e β) a serem executadas integrada com a equação do modelo de um diodo.

Parâmetros	Nº do modelo	Equação	Autor (es)
(E_g)	1	1,12eV	Mertens (2014)
	2	$(E_g) = (E_{g0})$ Fixo calculado pelo algoritmo proposto	Próprio autor
	3	$E_g(T_C) = E_{g0} (1 - 0.0002677(T_C - T_0))$	Hansen (2015b)
	4	$E_g(T_C) = E_g(0) - \frac{aT^2}{T+b}$, com (E _{g(0)}) fixo	Junior (2018)
	5	$E_g(T_C) = E_g(0) - \frac{aT^2}{T+b}$, com (E _{g(0)}) calculado pelo algoritmo proposto	Próprio autor

Continuação da Tabela 5.3 – Modelo(s) para cada um dos parâmetros (I_{ph} , I_d , Eg, n, R_s , R_{sh} , α e β) a serem executadas integrada com a equação do modelo de um diodo.

Parâmetros	Nº do modelo	Equação	Autor (es)
(n)	1	$n = n_0$	Hansen (2015b)
	2	$n(T_C) = n_0 + nT (T_C - T_0)$	Hansen (2015c)
	3	$n(T_C) = n_0 \left(\frac{T_c}{T_0}\right)$	Bai <i>et al</i> . (2014)
	4	(n) Fixo calculado pelo algoritmo proposto	Próprio autor
(R_s)	1	$R_s = R_{s0}$	Hansen (2015b)
	2	$R_s(T_C) = R_{s0} + (T_c * R_s T)$	Sabry <i>et al.</i> (2007)
	3	$R_s(G, T_C) = R_{s0} \left(\frac{T_c}{T_0}\right) \left[1 - \beta \ln \left(\frac{G}{G_0}\right)\right]$	Tossa <i>et al.</i> (2014)
	4	$R_s(T_C) = R_{s0} \left(\frac{T_c}{T_0}\right)$	Et-Torabi et al.(2018)

Continuação da Tabela 5.3 – Modelo(s) para cada um dos parâmetros (I_{ph} , I_d , Eg, n, R_s , R_{sh} , α e β) a serem executadas integrada com a equação do modelo de um diodo.

Parâmetros	Nº do modelo	Equação	Autor (es)
(R_{sh})	1	$R_{sh}(T_C) = R_{sh0} + (T_c * R_{sh}T)$	Sabry <i>et al.</i> (2007)
	2	$R_{sh}(G) = R_{sh0} \left(\frac{G_0}{G}\right)$	Hansen (2015b)
	3	(Rsh) Fixo calculado pelo algoritmo proposto	Próprio autor
(a)	1	Calculado através da regressão robusta	Hansen (2015b)
	2	(α) Fixo calculado pelo algoritmo proposto	Próprio autor
	3	(α) Obtido do <i>Datasheet</i>	(Mitsubishi, 2020)
(β)	1	Calculado através da regressão robusta	Hansen (2015b)
	2	(eta) Obtido do $Datasheet$	(Mitsubishi, 2020)

5.2.2 Método proposto de algoritmo dinâmico meta heurístico baseado em estratégia JAYA para extração dos parâmetros elétricos do modelo de um diodo.

Função objetivo $f_k(V_L, I_L, x)$, Equação do RMSE para minimizar (f_k)

$$RMSE(x) = \sqrt{\frac{1}{N} \sum_{K=1}^{N} f_K(V_L, I_L, x)^2}$$

UNIVERSIDADE FEDERAL DE SERGIPE CENTRO DE CIÊNCIAS EXATAS E TECNOLOGIA

LAB CONVERSÃO DE ENERGIA - DMEC/PROEE

Agradecimentos:

Obrigado pela Atenção!

Dr. Eng. Douglas Bressan Riffel <dougbr@academico.ufs.br>
Grupo de Pesquisa em Conversão de Energia e Termodinâmica Aplicada
Universidade Federal de Sergipe

Tel: +55 (79) 3194-6310

http://energia.ufs.br/

