Sequências e Somatórios QXD0008 – Matemática Discreta

Prof. Lucas Ismaily ismailybf@ufc.br

Universidade Federal do Ceará

 2° semestre/2022

Tópicos desta aula

Nesta apresentação:

• Sequências: PA, PG, Relações de Recorrência

• Somatórios: Propriedades, Mudança de Índice

Referências para esta aula

Esta aula foi baseada na seguinte seção:

• **Seção 2.4** do livro: Discrete Mathematics and Its Applications. Author: Kenneth H. Rosen. Seventh Edition. (English version)

Uma versão mais resumida do conteúdo pode ser encontrada também nesta seção:

• **Seção 2.4** do livro: <u>Matemática Discreta e suas Aplicações</u>. Autor: Kenneth H. Rosen. Sexta Edição.

Introdução

• **Definição:** Uma sequência é uma função de um subconjunto dos inteiros para um conjunto *S* qualquer.

• **Definição:** Uma sequência é uma função de um subconjunto dos inteiros para um conjunto *S* qualquer.

Dada uma sequência...

- Seu domínio é um subconjunto dos inteiros
 - Comumente usa-se $D = \{0, 1, 2, ...\}$ ou $D = \{1, 2, 3, ...\}$
 - o O domínio de uma sequência também é chamado de índice

• **Definição:** Uma sequência é uma função de um subconjunto dos inteiros para um conjunto *S* qualquer.

Dada uma sequência...

- Seu domínio é um subconjunto dos inteiros
 - Comumente usa-se $D = \{0, 1, 2, ...\}$ ou $D = \{1, 2, 3, ...\}$
 - o O domínio de uma sequência também é chamado de índice
- Seu contradomínio pode ser qualquer conjunto

• **Definição:** Uma sequência é uma função de um subconjunto dos inteiros para um conjunto *S* qualquer.

Dada uma sequência...

- Seu domínio é um subconjunto dos inteiros
 - Comumente usa-se $D = \{0, 1, 2, ...\}$ ou $D = \{1, 2, 3, ...\}$
 - o O domínio de uma sequência também é chamado de índice
- Seu contradomínio pode ser qualquer conjunto

Constatação: Toda função $f: D \to S$ tal que $D \subseteq \mathbb{Z}$ é uma sequência.

Sequência — Exemplo

• **Definição:** Uma sequência é uma função de um subconjunto dos inteiros para um conjunto *S* qualquer.

Exemplo:

A função $f(n) = 2^n$ com domínio restrito aos naturais.

Sequência — Exemplo

• **Definição:** Uma sequência é uma função de um subconjunto dos inteiros para um conjunto *S* qualquer.

Exemplo:

A função $f(n) = 2^n$ com domínio restrito aos naturais.

Neste caso, temos $f: \mathbb{N} \to \mathbb{N}$, com $f(n) = 2^n$.

$$f(0) = 1$$
, $f(1) = 2$, $f(2) = 4$, $f(3) = 8$, $f(4) = 16$, $f(5) = 32$, $f(6) = 64$, $f(7) = 128$, $f(8) = 256$, ...

Sequência — Exemplo

 Definição: Uma sequência é uma função de um subconjunto dos inteiros para um conjunto S qualquer.

Exemplo:

A função $f(n) = 2^n$ com domínio restrito aos naturais.

Neste caso, temos $f: \mathbb{N} \to \mathbb{N}$, com $f(n) = 2^n$.

$$f(0) = 1$$
, $f(1) = 2$, $f(2) = 4$, $f(3) = 8$, $f(4) = 16$, $f(5) = 32$, $f(6) = 64$, $f(7) = 128$, $f(8) = 256$, ...

Em algumas situações, falaremos simplesmente da sequência

$$1, 2, 4, 8, 16, 32, 64, 128, 256, \dots$$

Notação (Opções)

- "a função $f(n) = 2^n$ com domínio restrito aos naturais."
- "a sequência 1, 2, 4, 8, 16, 32, 64, 128, 256, ..."
- "a sequência $\{a_n\}$, com $a_n = 2^n$ "

Notação (Opções)

- "a função $f(n) = 2^n$ com domínio restrito aos naturais."
- "a sequência 1, 2, 4, 8, 16, 32, 64, 128, 256, ..."
- "a sequência $\{a_n\}$, com $a_n = 2^n$ "

Exemplo

Considere a sequência $\{a_n\}$, com $a_n = \frac{1}{n}$

Quem são os termos de $\{a_n\}$?

Notação (Opções)

- "a função $f(n) = 2^n$ com domínio restrito aos naturais."
- "a sequência 1, 2, 4, 8, 16, 32, 64, 128, 256, ..."
- "a sequência $\{a_n\}$, com $a_n = 2^n$ "

Exemplo

Considere a sequência $\{a_n\}$, com $a_n = \frac{1}{n}$

Quem são os termos de $\{a_n\}$?

• Ou seja, quem são $a_1, a_2, a_3, a_4, \dots$?

Notação (Opções)

- "a função $f(n) = 2^n$ com domínio restrito aos naturais."
- "a sequência 1, 2, 4, 8, 16, 32, 64, 128, 256, ..."
- "a sequência $\{a_n\}$, com $a_n = 2^n$ "

Exemplo

Considere a sequência $\{a_n\}$, com $a_n = \frac{1}{n}$

Quem são os termos de $\{a_n\}$?

• Ou seja, quem são $a_1, a_2, a_3, a_4, \dots$? Resposta: $a_1 = 1$, $a_2 = \frac{1}{2}$, $a_3 = \frac{1}{3}$, $a_4 = \frac{1}{4}$, ...

Notação (Opções)

- "a função $f(n) = 2^n$ com domínio restrito aos naturais."
- "a sequência 1, 2, 4, 8, 16, 32, 64, 128, 256, ..."
- "a sequência $\{a_n\}$, com $a_n = 2^n$ "

Exemplo

Considere a sequência $\{a_n\}$, com $a_n = \frac{1}{n}$

Quem são os termos de $\{a_n\}$?

• Ou seja, quem são $a_1, a_2, a_3, a_4, \dots$? Resposta: $a_1 = 1, a_2 = \frac{1}{2}, a_3 = \frac{1}{3}, a_4 = \frac{1}{4}, \dots$

Alternativamente, a sequência é $1,\frac{1}{2},\frac{1}{3},\frac{1}{4},\ldots$

Progressão Aritmética — Definição

• Definição: Uma progressão aritmética (PA) é uma sequência da forma

$$a_0$$
, $a_0 + d$, $a_0 + 2d$, $a_0 + 3d$, ..., $a_0 + nd$, ...

onde a_0 e d são números reais.

Dada uma PA...

- a₀ é o seu termo inicial
- d é sua razão aritmética ou diferença comum

REPARE

- Os termos de uma sequência comum seriam $a_0, a_1, a_2, a_3, \dots$
- Os termos descritos na PA são a_0 , $a_0 + d$, $a_0 + 2d$, $a_0 + 3d$, . . .

$$a_0 + \mathbf{0}d$$
, $a_0 + \mathbf{1}d$, $a_0 + \mathbf{2}d$, $a_0 + \mathbf{3}d$, ..., $a_0 + \mathbf{n}d$, ...
 \vdots \vdots \vdots \vdots \vdots ... \vdots ...
 a_0 , a_1 , a_2 , a_3 , ..., a_n , ...

REPARE

- Os termos de uma sequência comum seriam $a_0, a_1, a_2, a_3, \dots$
- Os termos descritos na PA são a_0 , $a_0 + d$, $a_0 + 2d$, $a_0 + 3d$, ...

$$a_0 + \mathbf{0}d$$
, $a_0 + \mathbf{1}d$, $a_0 + \mathbf{2}d$, $a_0 + \mathbf{3}d$, ..., $a_0 + \mathbf{n}d$, ...
 \vdots \vdots \vdots \vdots \vdots ... \vdots ...
 a_0 , a_1 , a_2 , a_3 , ..., a_n , ...

Constatação:

Cada PA é caracterizada por uma função da forma $f(x) = a_0 + dx$, onde a_0 e d são números reais, mas com domínio restrito a um subconjunto dos inteiros.

RFPARF

- Os termos de uma sequência comum seriam $a_0, a_1, a_2, a_3, \dots$
- Os termos descritos na PA são a_0 , $a_0 + d$, $a_0 + 2d$, $a_0 + 3d$, ...

$$a_0 + \mathbf{0}d$$
, $a_0 + \mathbf{1}d$, $a_0 + \mathbf{2}d$, $a_0 + \mathbf{3}d$, ..., $a_0 + \mathbf{n}d$, ...
 \vdots \vdots \vdots \vdots \vdots ... \vdots ...
 a_0 , a_1 , a_2 , a_3 , ..., a_n , ...

Constatação:

Cada PA é caracterizada por uma função da forma $f(x) = a_0 + dx$, onde a_0 e d são números reais, mas com domínio restrito a um subconjunto dos inteiros.

Dizemos ainda que a PA $a_0, a_0 + d, a_0 + 2d, a_0 + 3d, \ldots, a_0 + nd, \ldots$ é a análoga discreta da função linear $f(x) = a_0 + dx$.

Exemplo

A sequência $\{s_n\}$ com $s_n=-1+4n$ é uma progressão aritmética.

Perguntas

- 1. Qual o primeiro termo da lista?
- 2. Qual a razão aritmética da PA?
- 3. Quem são os primeiros cinco termos?

Exemplo

A sequência $\{s_n\}$ com $s_n = -1 + 4n$ é uma progressão aritmética.

Perguntas

- 1. Qual o primeiro termo da lista? $s_0 = -1 + 4 \cdot 0 = -1$
- 2. Qual a razão aritmética da PA? d = 4
- 3. Quem são os primeiros cinco termos? $-1, 3, 7, 11, 15, \ldots$

$$s_0 = -1 + 4 \cdot 0 = -1$$

$$d = 4$$

$$-1, 3, 7, 11, 15, \dots$$

Exemplo

A sequência $\{s_n\}$ com $s_n = -1 + 4n$ é uma progressão aritmética.

Perguntas

- 1. Qual o primeiro termo da lista? $s_0 = -1 + 4 \cdot 0 = -1$
- 2. Qual a razão aritmética da PA? d = 4
- 3. Quem são os primeiros cinco termos? $-1, 3, 7, 11, 15, \dots$

Observação: Dizemos que esta sequência é infinita e crescente.

Exercício para casa: Prove o seguinte teorema.

Teorema. Para todo $n \in \mathbb{N}$ e $a, d \in \mathbb{R}$,

$$a + (a + d) + (a + 2d) + \ldots + (a + (n - 1)d) = \frac{n(2a + (n - 1)d)}{2}$$

Progressão Geométrica — Definição

• Definição: Uma progressão geométrica (PG) é uma sequência da forma

$$a_0, a_0r, a_0r^2, a_0r^3, \ldots, a_0r^n, \ldots$$

onde a_0 e r são números reais.

Dada uma PG...

- a₀ é o seu termo inicial
- r é sua razão geométrica ou razão comum

REPARE

- Os termos de uma sequência comum seriam $a_0, a_1, a_2, a_3, \dots$
- Os termos descritos na PA são $a_0, a_0r, a_0r^2, a_0r^3, \dots$

$$a_0r^0$$
, a_0r^1 , a_0r^2 , a_0r^3 , ..., a_0r^n , ...
 \vdots \vdots \vdots ... \vdots ...
 a_0 , a_1 , a_2 , a_3 , ..., a_n , ...

REPARE

- Os termos de uma sequência comum seriam $a_0, a_1, a_2, a_3, \dots$
- Os termos descritos na PA são a_0 , a_0r , a_0r^2 , a_0r^3 , ...

$$a_0r^0$$
, a_0r^1 , a_0r^2 , a_0r^3 , ..., a_0r^n , ...
 \vdots \vdots \vdots ... \vdots ...
 a_0 , a_1 , a_2 , a_3 , ..., a_n , ...

Constatação:

Cada PG é caracterizada por uma função da forma $f(x) = a_0 r^x$, onde a_0 e r são números reais, mas com domínio restrito a um subconjunto dos inteiros.

RFPARF

- Os termos de uma sequência comum seriam $a_0, a_1, a_2, a_3, \dots$
- Os termos descritos na PA são $a_0, a_0r, a_0r^2, a_0r^3, \dots$

$$a_0r^0$$
, a_0r^1 , a_0r^2 , a_0r^3 , ..., a_0r^n , ...
 \vdots \vdots \vdots \vdots ... \vdots ...
 a_0 , a_1 , a_2 , a_3 , ..., a_n , ...

Constatação:

Cada PG é caracterizada por uma função da forma $f(x) = a_0 r^x$, onde a_0 e r são números reais, mas com domínio restrito a um subconjunto dos inteiros.

Dizemos ainda que a PG $a_0, a_0r, a_0r^2, a_0r^3, \ldots, a_0r^n, \ldots$ é a análoga discreta da função exponencial $f(x) = a_0r^x$.

Exemplo

A sequência $\{c_n\}$ com $c_n=2\cdot 5^n$ é uma progressão geométrica.

Perguntas

- 1. Qual o primeiro termo da lista?
- 2. Qual a razão geométrica da PG?
- 3. Quem são os primeiros cinco termos?

Exemplo

A sequência $\{c_n\}$ com $c_n = 2 \cdot 5^n$ é uma progressão geométrica.

Perguntas

- 1. Qual o primeiro termo da lista?
- 2. Qual a razão geométrica da PG? r = 5
- 3. Quem são os primeiros cinco termos? 2, 10, 50, 250, 1250, . . .
- $c_0 = 2 \cdot 5^0 = 2 \cdot 1 = 2$

Exemplo

A sequência $\{c_n\}$ com $c_n = 2 \cdot 5^n$ é uma progressão geométrica.

Perguntas

- 1. Qual o primeiro termo da lista? $c_0 = 2 \cdot 5^0 = 2 \cdot 1 = 2$
- 2. Qual a razão geométrica da PG? r = 5
- 3. Quem são os primeiros cinco termos? 2, 10, 50, 250, 1250, . . .

Observação: Dizemos que esta sequência é infinita e crescente.

Exemplo

A sequência $\{d_n\}$ com $d_n=6\cdot\left(\frac{1}{3}\right)^n$ é uma progressão geométrica.

Perguntas

- 1. Qual o primeiro termo da lista?
- 2. Qual a razão geométrica da PG?
- 3. Quem são os primeiros cinco termos?

Exemplo

A sequência $\{d_n\}$ com $d_n=6\cdot\left(\frac{1}{2}\right)^n$ é uma progressão geométrica.

Perguntas

- 1. Qual o primeiro termo da lista?
- 2. Qual a razão geométrica da PG?
- 3. Quem são os primeiros cinco termos? $6, 2, \frac{2}{3}, \frac{2}{0}, \frac{2}{27}, \dots$

$$d_0 = 6 \cdot (\frac{1}{3})^0 = 6 \cdot 1 = 6$$

 $r = \frac{1}{2}$

$$6, 2, \frac{2}{3}, \frac{2}{9}, \frac{2}{27}, \dots$$

Exemplo

A sequência $\{d_n\}$ com $d_n = 6 \cdot \left(\frac{1}{3}\right)^n$ é uma progressão geométrica.

Perguntas

- 1. Qual o primeiro termo da lista?
- 2. Qual a razão geométrica da PG?
- $d_0 = 6 \cdot (\frac{1}{3})^0 = 6 \cdot 1 = 6$
- $r=\frac{1}{2}$
- 3. Quem são os primeiros cinco termos? $6, 2, \frac{2}{3}, \frac{2}{0}, \frac{2}{27}, \dots$

Observação: Dizemos que esta sequência é infinita e decrescente.

Progressão Geométrica

Exemplo

A sequência $\{e_n\}$ com $e_n=(-1)^n$ é uma progressão geométrica.

Perguntas

- 1. Qual o primeiro termo da lista?
- 2. Qual a razão geométrica da PG?
- 3. Quem são os primeiros cinco termos?

Progressão Geométrica

Exemplo

A sequência $\{e_n\}$ com $e_n=(-1)^n$ é uma progressão geométrica.

Perguntas

1. Qual o primeiro termo da lista?

$$e_0 = (-1)^0 = 1$$

2. Qual a razão geométrica da PG?

$$r = -1$$

3. Quem são os primeiros cinco termos? $1, -1, 1, -1, 1, \dots$

$$1, -1, 1, -1, 1, \dots$$

Progressão Geométrica

Exemplo

A sequência $\{e_n\}$ com $e_n=(-1)^n$ é uma progressão geométrica.

Perguntas

- 1. Qual o primeiro termo da lista? $e_0 = (-1)^0 = 1$
- 2. Qual a razão geométrica da PG? r = -1
- 3. Quem são os primeiros cinco termos? $1, -1, 1, -1, 1, \dots$

Se uma sequência é sempre crescente ou sempre decrescente, ela é chamada de monótona.

Observação: Dizemos que esta sequência é infinita e não monótona.

Teorema. Para todo $n \in \mathbb{N}$ e $a, r \in \mathbb{R}$ com $r \neq 1$, tem-se que

$$a+ar+ar^2+\ldots+ar^n = \frac{ar^{n+1}-a}{r-1}.$$

Demonstração:

Teorema. Para todo $n \in \mathbb{N}$ e $a, r \in \mathbb{R}$ com $r \neq 1$, tem-se que

$$a + ar + ar^2 + ... + ar^n = \frac{ar^{n+1} - a}{r - 1}.$$

Demonstração:

Seja P(n) a afirmação de que a soma dos n+1 primeiros termos de uma progressão geométrica é $\frac{ar^{n+1}-a}{r-1}$.

Teorema. Para todo $n \in \mathbb{N}$ e $a, r \in \mathbb{R}$ com $r \neq 1$, tem-se que

$$a + ar + ar^2 + ... + ar^n = \frac{ar^{n+1} - a}{r - 1}.$$

Demonstração:

Seja P(n) a afirmação de que a soma dos n+1 primeiros termos de uma progressão geométrica é $\frac{ar^{n+1}-a}{r-1}$.

Vamos provar por indução em n.

Teorema. Para todo $n \in \mathbb{N}$ e $a, r \in \mathbb{R}$ com $r \neq 1$, tem-se que

$$a + ar + ar^{2} + ... + ar^{n} = \frac{ar^{n+1} - a}{r - 1}.$$

Demonstração:

Seja P(n) a afirmação de que a soma dos n+1 primeiros termos de uma progressão geométrica é $\frac{ar^{n+1}-a}{r-1}$.

Vamos provar por indução em n.

Base: P(0) é verdadeiro, pois

$$\frac{ar^{0+1}-a}{r-1} = \frac{ar-a}{r-1} = \frac{a(r-1)}{r-1} = a.$$

Teorema. Para todo $n \in \mathbb{N}$ e $r \in \mathbb{R}$ com $r \neq 1$, tem-se que

$$a + ar + ar^2 + \ldots + ar^n = \frac{ar^{n+1} - a}{r-1}.$$

Continuação da Demonstração:

Passo Indutivo: A Hipótese de Indução é a afirmação de que P(k) é verdadeiro para um natural k arbitrário.

Teorema. Para todo $n \in \mathbb{N}$ e $r \in \mathbb{R}$ com $r \neq 1$, tem-se que

$$a + ar + ar^2 + ... + ar^n = \frac{ar^{n+1} - a}{r-1}.$$

Continuação da Demonstração:

Passo Indutivo: A Hipótese de Indução é a afirmação de que P(k) é verdadeiro para um natural k arbitrário. Ou seja, P(k) é a afirmação

$$a + ar + ar^2 + ... + ar^k = \frac{ar^{k+1} - a}{r - 1}.$$

Teorema. Para todo $n \in \mathbb{N}$ e $r \in \mathbb{R}$ com $r \neq 1$, tem-se que

$$a + ar + ar^2 + \ldots + ar^n = \frac{ar^{n+1} - a}{r-1}.$$

Continuação da Demonstração:

Passo Indutivo: A Hipótese de Indução é a afirmação de que P(k) é verdadeiro para um natural k arbitrário. Ou seja, P(k) é a afirmação

$$a + ar + ar^2 + ... + ar^k = \frac{ar^{k+1} - a}{r - 1}.$$

Devemos mostrar que, se P(k) é verdadeiro, então P(k+1) é verdadeiro.

Teorema. Para todo $n \in \mathbb{N}$ e $r \in \mathbb{R}$ com $r \neq 1$, tem-se que

$$a + ar + ar^2 + \ldots + ar^n = \frac{ar^{n+1} - a}{r-1}.$$

Continuação da Demonstração:

Passo Indutivo: A Hipótese de Indução é a afirmação de que P(k) é verdadeiro para um natural k arbitrário. Ou seja, P(k) é a afirmação

$$a + ar + ar^2 + \ldots + ar^k = \frac{ar^{k+1} - a}{r-1}.$$

Devemos mostrar que, se P(k) é verdadeiro, então P(k+1) é verdadeiro. Ou seja, devemos mostrar que:

$$a + ar + ar^{2} + ... + ar^{k} + ar^{k+1} = \frac{ar^{k+2} - a}{r - 1}.$$

Teorema. Para todo $n \in \mathbb{N}$ e $r \in \mathbb{R}$ com $r \neq 1$, tem-se que

$$a + ar + ar^2 + \ldots + ar^n = \frac{ar^{n+1} - a}{r-1}.$$

Continuação da Demonstração:

$$\underbrace{a + ar + ar^2 + \ldots + ar^k}_{\text{Oportunidade de aplicar a HI}} + ar^{k+1}$$

Teorema. Para todo $n \in \mathbb{N}$ e $r \in \mathbb{R}$ com $r \neq 1$, tem-se que

$$a+ar+ar^2+\ldots+ar^n = rac{ar^{n+1}-a}{r-1}.$$

Continuação da Demonstração:

$$\underbrace{a + ar + ar^2 + \ldots + ar^k}_{\text{Oportunidade de aplicar a HI}} + ar^{k+1} \stackrel{\text{\textit{HI}}}{=} \frac{ar^{k+1} - a}{r - 1} + ar^{k+1}$$

Teorema. Para todo $n \in \mathbb{N}$ e $r \in \mathbb{R}$ com $r \neq 1$, tem-se que

$$a + ar + ar^2 + \ldots + ar^n = \frac{ar^{n+1} - a}{r-1}.$$

Continuação da Demonstração:

$$\underbrace{a+ar+ar^2+\ldots+ar^k}_{\text{Oportunidade de aplicar a HI}} + ar^{k+1} \stackrel{\textit{HI}}{=} \frac{ar^{k+1}-a}{r-1} + ar^{k+1}$$

$$= \frac{ar^{k+1}-a}{r-1} + \frac{ar^{k+2}-ar^{k+1}}{r-1}$$

Ш

Teorema. Para todo $n \in \mathbb{N}$ e $r \in \mathbb{R}$ com $r \neq 1$, tem-se que

$$a + ar + ar^2 + ... + ar^n = \frac{ar^{n+1} - a}{r - 1}.$$

Continuação da Demonstração:

$$\underbrace{a+ar+ar^2+\ldots+ar^k}_{\textbf{Oportunidade de aplicar a HI}} + ar^{k+1} \stackrel{\textit{HI}}{=} \frac{ar^{k+1}-a}{r-1} + ar^{k+1}$$

$$= \frac{ar^{k+1}-a}{r-1} + \frac{ar^{k+2}-ar^{k+1}}{r-1}$$

$$= \frac{ar^{k+2}-a}{r-1}.$$

Isso mostra que se a hipótese de indução P(k) for verdadeira, então P(k+1) também é verdadeira. Isso completa a prova do passo indutivo. Como provamos a base e o passo indutivo, a prova por indução está completa. \Box

Outras formas de especificar sequências

- Vimos que PAs e PGs podem ser especificadas fornecendo fórmulas explícitas para seus termos:
 - \circ PA: $a_n = a_0 + n \cdot d$
 - PG: $c_n = c_0 \cdot r^n$

Outras formas de especificar sequências

 Vimos que PAs e PGs podem ser especificadas fornecendo fórmulas explícitas para seus termos:

$$\circ$$
 PA: $a_n = a_0 + n \cdot d$

○ PG:
$$c_n = c_0 \cdot r^n$$

- Porém existem outros modos de especificar uma sequência.
- Uma outra forma consiste em fornecer um ou mais termos iniciais juntamente com uma regra de formação dos termos subsequentes.

• **Definição:** Uma relação de recorrência para a sequência $\{a_n\}$ é uma equação que expressa cada termo a_n em função de um ou mais termos que o antecedem.

• **Definição:** Uma relação de recorrência para a sequência $\{a_n\}$ é uma equação que expressa cada termo a_n em função de um ou mais termos que o antecedem.

Dizemos que uma sequência resolve uma relação de recorrência se seus termos satisfazem a relação de recorrência.

• **Definição:** Uma relação de recorrência para a sequência $\{a_n\}$ é uma equação que expressa cada termo a_n em função de um ou mais termos que o antecedem.

Dizemos que uma sequência resolve uma relação de recorrência se seus termos satisfazem a relação de recorrência.

Exemplo:

Seja $\{a_n\}$ a sequência que satisfaz a relação de recorrência $a_n=a_{n-1}+3$ para todo $n\geq 1$, em que $a_0=2$. Também é comum especificar uma relação de recorrência utilizando a letra T, nesse caso, tem-se que T(n)=T(n-1)+3, sendo T(0)=2.

• **Definição:** Uma relação de recorrência para a sequência $\{a_n\}$ é uma equação que expressa cada termo a_n em função de um ou mais termos que o antecedem.

Dizemos que uma sequência resolve uma relação de recorrência se seus termos satisfazem a relação de recorrência.

Exemplo:

Seja $\{a_n\}$ a sequência que satisfaz a relação de recorrência $a_n=a_{n-1}+3$ para todo $n\geq 1$, em que $a_0=2$. Também é comum especificar uma relação de recorrência utilizando a letra T, nesse caso, tem-se que T(n)=T(n-1)+3, sendo T(0)=2.

Pergunta: Quais são os termos T(1), T(2) e T(3)?

• **Definição:** Uma relação de recorrência para a sequência $\{a_n\}$ é uma equação que expressa cada termo a_n em função de um ou mais termos que o antecedem.

Dizemos que uma sequência resolve uma relação de recorrência se seus termos satisfazem a relação de recorrência.

Exemplo:

Seja $\{a_n\}$ a sequência que satisfaz a relação de recorrência $a_n=a_{n-1}+3$ para todo $n\geq 1$, em que $a_0=2$. Também é comum especificar uma relação de recorrência utilizando a letra T, nesse caso, tem-se que T(n)=T(n-1)+3, sendo T(0)=2.

Pergunta: Quais são os termos T(1), T(2) e T(3)?

- T(1) = T(0) + 3 = 2 + 3 = 5
- T(2) = T(1) + 3 = 5 + 3 = 8
- T(3) = T(2) + 3 = 8 + 3 = 11

• **Definição:** Uma relação de recorrência para a sequência $\{a_n\}$ é uma equação que expressa cada termo a_n em função de um ou mais termos que o antecedem.

Dizemos que uma sequência resolve uma relação de recorrência se seus termos satisfazem a relação de recorrência.

Exemplo:

Seja $\{a_n\}$ a sequência que satisfaz a relação de recorrência $a_n=a_{n-1}+3$ para todo $n\geq 1$, em que $a_0=2$. Também é comum especificar uma relação de recorrência utilizando a letra T, nesse caso, tem-se que T(n)=T(n-1)+3, sendo T(0)=2.

Pergunta: Quais são os termos T(1), T(2) e T(3)?

- T(1) = T(0) + 3 = 2 + 3 = 5
- T(2) = T(1) + 3 = 5 + 3 = 8
- T(3) = T(2) + 3 = 8 + 3 = 11

Veja que foi necessário calcular algum termo novo antes de cada T(n).

Exemplo:

Seja $\{a_n\}$ a sequência que satisfaz a relação de recorrência

$$a_n = \begin{cases} 3 & \text{se } n = 0; \\ 5 & \text{se } n = 1; \\ a_{n-1} - a_{n-2} & \text{se } n \ge 2. \end{cases}$$

Exemplo:

Seja $\{a_n\}$ a sequência que satisfaz a relação de recorrência

$$a_n = \begin{cases} 3 & \text{se } n = 0; \\ 5 & \text{se } n = 1; \\ a_{n-1} - a_{n-2} & \text{se } n \ge 2. \end{cases}$$

Pergunta: Quais são os termos a_2 , a_3 , a_4 ?

Exemplo:

Seja $\{a_n\}$ a sequência que satisfaz a relação de recorrência

$$a_n = \begin{cases} 3 & \text{se } n = 0; \\ 5 & \text{se } n = 1; \\ a_{n-1} - a_{n-2} & \text{se } n \ge 2. \end{cases}$$

Pergunta: Quais são os termos a_2 , a_3 , a_4 ?

•
$$a_2 = a_1 - a_0 = 5 - 3 = 2$$

•
$$a_3 = a_2 - a_1 = 2 - 5 = -3$$

•
$$a_4 = a_3 - a_2 = -3 - 2 = -5$$

Exemplo:

Seja $\{a_n\}$ a sequência que satisfaz a relação de recorrência

$$a_n = \begin{cases} 3 & \text{se } n = 0; \\ 5 & \text{se } n = 1; \\ a_{n-1} - a_{n-2} & \text{se } n \ge 2. \end{cases}$$

Pergunta: Quais são os termos a_2 , a_3 , a_4 ?

•
$$a_2 = a_1 - a_0 = 5 - 3 = 2$$

•
$$a_3 = a_2 - a_1 = 2 - 5 = -3$$

•
$$a_4 = a_3 - a_2 = -3 - 2 = -5$$

 $\{a_n\}$ é a sequência $3, 5, 2, -3, -5, -2, 3, 5, \dots$

Definição: A sequência de Fibonacci é definida pela relação de recorrência

$$f_n = \begin{cases} 0 & \text{se } n = 0; \\ 1 & \text{se } n = 1; \\ f_{n-1} + f_{n-2} & \text{se } n \ge 2. \end{cases}$$

Leonardo Fibonacci

Definição: A sequência de Fibonacci é definida pela relação de recorrência

$$f_n = \begin{cases} 0 & \text{se } n = 0; \\ 1 & \text{se } n = 1; \\ f_{n-1} + f_{n-2} & \text{se } n \ge 2. \end{cases}$$

Leonardo Fibonacci

Pergunta: Quais são os números f_2 , f_3 , f_4 , f_5 , f_6 ?

Definição: A sequência de Fibonacci é definida pela relação de recorrência

$$f_n = \begin{cases} 0 & \text{se } n = 0; \\ 1 & \text{se } n = 1; \\ f_{n-1} + f_{n-2} & \text{se } n \ge 2. \end{cases}$$

Leonardo Fibonacci

Pergunta: Quais são os números f_2 , f_3 , f_4 , f_5 , f_6 ?

•
$$f_2 = f_1 + f_0 = 1 + 0 = 1$$

•
$$f_3 = f_2 + f_1 = 1 + 1 = 2$$

•
$$f_4 = f_3 + f_2 = 2 + 1 = 3$$

•
$$f_5 = f_4 + f_3 = 3 + 2 = 5$$

•
$$f_6 = f_5 + f_4 = 5 + 3 = 8$$

Definição: A sequência de Fibonacci é definida pela relação de recorrência

$$f_n = \begin{cases} 0 & \text{se } n = 0; \\ 1 & \text{se } n = 1; \\ f_{n-1} + f_{n-2} & \text{se } n \ge 2. \end{cases}$$

Leonardo Fibonacci

Pergunta: Quais são os números f_2 , f_3 , f_4 , f_5 , f_6 ?

- $f_2 = f_1 + f_0 = 1 + 0 = 1$
- $f_3 = f_2 + f_1 = 1 + 1 = 2$
- $f_4 = f_3 + f_2 = 2 + 1 = 3$
- $f_5 = f_4 + f_3 = 3 + 2 = 5$
- $f_6 = f_5 + f_4 = 5 + 3 = 8$

Resolvendo relações de recorrência

Resolvendo Relações de Recorrência

 Definição: Dizemos que resolvemos uma relação de recorrência quando encontramos uma fórmula explícita para os termos da sequência.

Essa fórmula explícita é chamada fórmula fechada.

Resolvendo Relações de Recorrência

• **Definição:** Dizemos que resolvemos uma relação de recorrência quando encontramos uma fórmula explícita para os termos da sequência.

Essa fórmula explícita é chamada fórmula fechada.

Exemplo:

Anteriormente, vimos a sequência de fibonacci $\{f_n\}$, definida recursivamente por $f_0=0, f_1=1$ e, para $n\geq 2, f_n=f_{n-1}+f_{n-2}$.

Resolvendo Relações de Recorrência

 Definição: Dizemos que resolvemos uma relação de recorrência quando encontramos uma fórmula explícita para os termos da sequência.
 Essa fórmula explícita é chamada fórmula fechada.

Exemplo:

Anteriormente, vimos a sequência de fibonacci $\{f_n\}$, definida recursivamente por $f_0 = 0, f_1 = 1$ e, para $n \ge 2$, $f_n = f_{n-1} + f_{n-2}$.

Problema: Para n grande, o cálculo de f_n pode ser muito tedioso. Seria bom se existisse uma fórmula fechada para os termos dessa sequência.

Resolvendo Relações de Recorrência

 Definição: Dizemos que resolvemos uma relação de recorrência quando encontramos uma fórmula explícita para os termos da sequência.
 Essa fórmula explícita é chamada fórmula fechada.

Exemplo:

Anteriormente, vimos a sequência de fibonacci $\{f_n\}$, definida recursivamente por $f_0 = 0, f_1 = 1$ e, para $n \ge 2$, $f_n = f_{n-1} + f_{n-2}$.

Problema: Para n grande, o cálculo de f_n pode ser muito tedioso. Seria bom se existisse uma fórmula fechada para os termos dessa sequência.

Felizmente, existe uma fórmula fechada para esta sequência! Para n > 1, temos que

$$f_n = \frac{1}{\sqrt{5}} \left(\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right)$$

- Existem diversos métodos para resolver relações de recorrência.
- Um método simples é o método da substituição iterativo.
 - Nesta técnica, usamos repetidamente a relação de recorrência para expandir a expressão para o n-ésimo termo até poder ter uma "ideia" da forma geral (uma conjectura).
 - o Logo após, esta conjectura é verificada por indução matemática.

Problema

Resolva a relação de recorrência $a_n = a_{n-1} + 3$ para n = 1, 2, 3, ..., onde $a_0 = 2$.

Problema

Resolva a relação de recorrência $a_n = a_{n-1} + 3$ para n = 1, 2, 3, ..., onde $a_0 = 2$.

Solução

Começamos com a condição inicial $a_0=2$ e vamos aplicando sucessivamente a relação de recorrência até que seja possível deduzir uma fórmula fechada para o termo geral a_n .

Problema

Resolva a relação de recorrência $a_n = a_{n-1} + 3$ para n = 1, 2, 3, ..., onde $a_0 = 2$.

Solução

Começamos com a condição inicial $a_0=2$ e vamos aplicando sucessivamente a relação de recorrência até que seja possível deduzir uma fórmula fechada para o termo geral a_n .

$$a_{1} = a_{0} + 3 = 2 + 3 = 2 + 3 \cdot 1$$

$$a_{2} = a_{1} + 3 = (2 + 3 \cdot 1) + 3 = 2 + 3 \cdot 2$$

$$a_{3} = a_{2} + 3 = (2 + 3 \cdot 2) + 3 = 2 + 3 \cdot 3$$

$$a_{4} = a_{3} + 3 = (2 + 3 \cdot 3) + 3 = 2 + 3 \cdot 4$$

$$\vdots$$

$$a_{n} = a_{n-1} + 3 = (2 + 3 \cdot (n-1)) + 3 = 2 + 3n.$$

Problema

Resolva a relação de recorrência $a_n = a_{n-1} + 3$ para n = 1, 2, 3, ..., onde $a_0 = 2$.

Solução

Começamos com a condição inicial $a_0=2$ e vamos aplicando sucessivamente a relação de recorrência até que seja possível deduzir uma fórmula fechada para o termo geral a_n .

$$a_{1} = a_{0} + 3 = 2 + 3 = 2 + 3 \cdot 1$$

$$a_{2} = a_{1} + 3 = (2 + 3 \cdot 1) + 3 = 2 + 3 \cdot 2$$

$$a_{3} = a_{2} + 3 = (2 + 3 \cdot 2) + 3 = 2 + 3 \cdot 3$$

$$a_{4} = a_{3} + 3 = (2 + 3 \cdot 3) + 3 = 2 + 3 \cdot 4$$

$$\vdots$$

$$a_{n} = a_{n-1} + 3 = (2 + 3 \cdot (n-1)) + 3 = 2 + 3n.$$

Portanto, conjecturamos que $a_n = 2 + 3n$ é uma fórmula fechada para a recorrência acima. Temos que provar essa conjectura.

Continuação da Solução

Vamos agora provar que $a_n=2+3n$ é uma solução para a relação de recorrência $a_n=a_{n-1}+3$ para $n=1,2,3,\ldots$, onde $a_0=2$.

Vamos provar por indução em n que $a_n = 2 + 3n$.

Continuação da Solução

Vamos agora provar que $a_n = 2 + 3n$ é uma solução para a relação de recorrência $a_n = a_{n-1} + 3$ para n = 1, 2, 3, ..., onde $a_0 = 2$.

Vamos provar por indução em n que $a_n = 2 + 3n$.

Base: Suponha n = 0. Neste caso, temos que $a_0 = 2 + 3 \cdot 0 = 2 + 0 = 2$, o que é verdade pela condição inicial $(a_0 = 2)$.

Continuação da Solução

Vamos agora provar que $a_n = 2 + 3n$ é uma solução para a relação de recorrência $a_n = a_{n-1} + 3$ para n = 1, 2, 3, ..., onde $a_0 = 2$.

Vamos provar por indução em n que $a_n = 2 + 3n$.

Base: Suponha n = 0. Neste caso, temos que $a_0 = 2 + 3 \cdot 0 = 2 + 0 = 2$, o que é verdade pela condição inicial $(a_0 = 2)$.

Hipótese de Indução: Suponha que $a_k = 2 + 3k$ seja verdade para um k arbitrário, onde $k \ge 0$.

Continuação da Solução

Vamos agora provar que $a_n = 2 + 3n$ é uma solução para a relação de recorrência $a_n = a_{n-1} + 3$ para n = 1, 2, 3, ..., onde $a_0 = 2$.

Vamos provar por indução em n que $a_n = 2 + 3n$.

Base: Suponha n = 0. Neste caso, temos que $a_0 = 2 + 3 \cdot 0 = 2 + 0 = 2$, o que é verdade pela condição inicial $(a_0 = 2)$.

Hipótese de Indução: Suponha que $a_k = 2 + 3k$ seja verdade para um k arbitrário, onde $k \ge 0$.

Passo Indutivo: Prova-se, a seguir, que $a_{k+1} = 2 + 3(k+1)$.

Continuação da Solução

Vamos agora provar que $a_n = 2 + 3n$ é uma solução para a relação de recorrência $a_n = a_{n-1} + 3$ para n = 1, 2, 3, ..., onde $a_0 = 2$.

Vamos provar por indução em n que $a_n = 2 + 3n$.

Base: Suponha n = 0. Neste caso, temos que $a_0 = 2 + 3 \cdot 0 = 2 + 0 = 2$, o que é verdade pela condição inicial $(a_0 = 2)$.

Hipótese de Indução: Suponha que $a_k = 2 + 3k$ seja verdade para um k arbitrário, onde $k \ge 0$.

Passo Indutivo: Prova-se, a seguir, que $a_{k+1} = 2 + 3(k+1)$.

Pela definição da relação de recorrência para a sequência $\{a_n\}$, temos que

$$a_{k+1} = a_k + 3$$

Continuação da Solução

Vamos agora provar que $a_n = 2 + 3n$ é uma solução para a relação de recorrência $a_n = a_{n-1} + 3$ para n = 1, 2, 3, ..., onde $a_0 = 2$.

Vamos provar por indução em n que $a_n = 2 + 3n$.

Base: Suponha n = 0. Neste caso, temos que $a_0 = 2 + 3 \cdot 0 = 2 + 0 = 2$, o que é verdade pela condição inicial $(a_0 = 2)$.

Hipótese de Indução: Suponha que $a_k = 2 + 3k$ seja verdade para um k arbitrário, onde $k \ge 0$.

Passo Indutivo: Prova-se, a seguir, que $a_{k+1} = 2 + 3(k+1)$.

Pela definição da relação de recorrência para a sequência $\{a_n\}$, temos que

$$a_{k+1} = a_k + 3 \stackrel{HI}{=}$$

Continuação da Solução

Vamos agora provar que $a_n = 2 + 3n$ é uma solução para a relação de recorrência $a_n = a_{n-1} + 3$ para n = 1, 2, 3, ..., onde $a_0 = 2$.

Vamos provar por indução em n que $a_n = 2 + 3n$.

Base: Suponha n = 0. Neste caso, temos que $a_0 = 2 + 3 \cdot 0 = 2 + 0 = 2$, o que é verdade pela condição inicial $(a_0 = 2)$.

Hipótese de Indução: Suponha que $a_k = 2 + 3k$ seja verdade para um k arbitrário, onde $k \ge 0$.

Passo Indutivo: Prova-se, a seguir, que $a_{k+1} = 2 + 3(k+1)$.

Pela definição da relação de recorrência para a sequência $\{a_n\}$, temos que

$$a_{k+1} = a_k + 3 \stackrel{HI}{=} (2 + 3k) + 3 =$$

Continuação da Solução

Vamos agora provar que $a_n = 2 + 3n$ é uma solução para a relação de recorrência $a_n = a_{n-1} + 3$ para n = 1, 2, 3, ..., onde $a_0 = 2$.

Vamos provar por indução em n que $a_n = 2 + 3n$.

Base: Suponha n = 0. Neste caso, temos que $a_0 = 2 + 3 \cdot 0 = 2 + 0 = 2$, o que é verdade pela condição inicial $(a_0 = 2)$.

Hipótese de Indução: Suponha que $a_k = 2 + 3k$ seja verdade para um k arbitrário, onde $k \ge 0$.

Passo Indutivo: Prova-se, a seguir, que $a_{k+1} = 2 + 3(k+1)$.

Pela definição da relação de recorrência para a sequência $\{a_n\}$, temos que

$$a_{k+1} = a_k + 3 \stackrel{HI}{=} (2+3k) + 3 = 2+3(k+1).$$

Isso conclui o passo indutivo.

Portanto, como a base e o passo indutivo foram provados, concluímos que $a_n = 2 + 3n$.

Resolvendo Relações de Recorrência

Exercício para Casa: Resolva a relação de recorrência $a_n = 2 \cdot a_{n-1}$ para $n = 2, 3, 4, \ldots$, onde $a_1 = 2$.

Somatórios

Somatórios

Intuitivamente, são somas dos termos de alguma sequência $\{a_n\}$

- A estrutura das sequências (domínio nos inteiros) favorece a resolução de somas longas dos seus termos em menos passos
- Nosso objetivo é utilizar as propriedades de somatórios para simplificar somas longas

A soma dos termos $a_m, a_{m+1}, \ldots, a_n$ pode ser expressa como

$$\sum_{i=m}^{n} a_{j}, \qquad \sum_{j=m}^{n} a_{j}, \qquad \text{ou} \qquad \sum_{m \leq j \leq n} a_{j}$$

A soma dos termos $a_m, a_{m+1}, \ldots, a_n$ pode ser expressa como

$$\sum_{i=m}^{n} a_{j}, \qquad \sum_{j=m}^{n} a_{j}, \qquad \text{ou} \qquad \sum_{m \leq j \leq n} a_{j}$$

Cada notação envolve quatro elementos: j, m, n, a_j

- j é a variável de índice
 - o a escolha da variável j como índice é arbitrária.

A soma dos termos $a_m, a_{m+1}, \ldots, a_n$ pode ser expressa como

$$\sum_{i=m}^{n} a_{j}, \qquad \sum_{j=m}^{n} a_{j}, \qquad \text{ou} \qquad \sum_{m \leq j \leq n} a_{j}$$

Cada notação envolve quatro elementos: j, m, n, a_i

- j é a variável de índice
 a escolha da variável j como índice é arbitrária.
- m é o valor inicial (limite inferior) que j assume

A soma dos termos $a_m, a_{m+1}, \ldots, a_n$ pode ser expressa como

$$\sum_{i=m}^{n} a_{j}, \qquad \sum_{j=m}^{n} a_{j}, \qquad \text{ou} \qquad \sum_{m \leq j \leq n} a_{j}$$

Cada notação envolve quatro elementos: j, m, n, a_j

- j é a variável de índice
 a escolha da variável j como índice é arbitrária.
- m é o valor inicial (limite inferior) que j assume
- n é o valor final (limite superior) que j assume

A soma dos termos $a_m, a_{m+1}, \ldots, a_n$ pode ser expressa como

$$\sum_{i=m}^{n} a_{j}, \qquad \sum_{j=m}^{n} a_{j}, \qquad \text{ou} \qquad \sum_{m \leq j \leq n} a_{j}$$

Cada notação envolve quatro elementos: j, m, n, a_j

- j é a variável de índice
 a escolha da variável j como índice é arbitrária.
- m é o valor inicial (limite inferior) que j assume
- n é o valor final (limite superior) que j assume
- a_i é a <mark>sequência</mark> utilizada

A expressão $\sum_{j=1}^{20} a_j$ codifica a soma dos termos de a_j indo de a_1 até a_{10}

Ou seja,

$$\sum_{j=1}^{10} a_j = a_1 + a_2 + a_3 + a_4 + a_5 + a_6 + a_7 + a_8 + a_9 + a_{10}$$

A expressão $\sum_{j=1}^{10} a_j$ codifica a soma dos termos de a_j indo de a_1 até a_{10}

Ou seja,

$$\sum_{j=1}^{10} a_j = a_1 + a_2 + a_3 + a_4 + a_5 + a_6 + a_7 + a_8 + a_9 + a_{10}$$

Se fizermos $a_j = 2j$, então a expressão $\sum_{j=1}^{10} a_j$ codifica:

$$\sum_{j=1}^{10} a_j = a_1 + a_2 + a_3 + a_4 + a_5 + a_6 + a_7 + a_8 + a_9 + a_{10}$$

$$= 2 \cdot 1 + 2 \cdot 2 + 2 \cdot 3 + 2 \cdot 4 + 2 \cdot 5 + 2 \cdot 6 + 2 \cdot 7 + 2 \cdot 8 + 2 \cdot 9 + 2 \cdot 10$$

$$= 2 + 4 + 6 + 8 + 10 + 12 + 14 + 16 + 18 + 20$$

$$= 110$$

Exemplo

O que significa:

$$\sum_{j=1}^{100} \frac{1}{j}$$

Exemplo

O que significa:

$$\sum_{j=1}^{100} \frac{1}{j}$$

É a soma dos termos $a_1, a_2, a_3, \ldots, a_{100}$ da sequência $\{a_j\}$ com $a_j = \frac{1}{j}$

Exemplo

O que significa:

$$\sum_{j=1}^{100} \frac{1}{j}$$

É a soma dos termos $a_1, a_2, a_3, \ldots, a_{100}$ da sequência $\{a_j\}$ com $a_j = rac{1}{j}$

Constatação:

Teremos
$$\sum_{j=1}^{100} \frac{1}{j} = \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{100}$$
.

Exemplo

O que significa:

$$\sum_{k=4}^{8} \left(-1\right)^k$$

Exemplo

O que significa:

$$\sum_{k=4}^{8} (-1)^k$$

É a soma dos termos a_4, a_5, \ldots, a_8 da sequência $\{a_k\}$ com $a_k = (-1)^k$

Constatação:

Teremos

$$(-1)^4 + (-1)^5 + (-1)^6 + (-1)^7 + (-1)^8 = 1 + -1 + 1 + -1 + 1 = 1.$$

Propriedades do Somatório

Propriedades do Somatório

Nosso objetivo

- Somar números de uma sequência dois a dois é ineficiente.
- Podemos economizar trabalho e tempo usando propriedades das operações aritméticas adaptadas aos somatórios.

Da aritmética, para x, y, z números quaisquer, temos

• Comutatividade: x + y = y + x

• Associatividade: (x + y) + z = x + (y + z)

• Distributividade: x(y+z) = xy + xz

Propriedades do Somatório

Em somatórios, temos:

• Comutatividade:
$$\sum_{j=m}^{n} (a_j + b_j) = \sum_{j=m}^{n} a_j + \sum_{j=m}^{n} b_j$$

• Associatividade:
$$\sum_{j=m}^{n} a_j = \sum_{j=m}^{\ell} a_j + \sum_{j=\ell+1}^{n} a_j$$

• Distributividade:
$$\sum_{j=m}^{n} k \cdot a_j = k \cdot \sum_{j=m}^{n} a_j$$

Comutatividade

Vamos analisar a igualdade:

• Comutatividade:
$$\sum_{j=m}^{n} (a_j + b_j) = \sum_{j=m}^{n} a_j + \sum_{j=m}^{n} b_j$$

Comutatividade

Vamos analisar a igualdade:

• Comutatividade:
$$\sum_{j=m}^{n} (a_j + b_j) = \sum_{j=m}^{n} a_j + \sum_{j=m}^{n} b_j$$

Começando do lado esquerdo, temos:

$$\sum_{j=m}^{n} (a_j + b_j) = (a_m + b_m) + (a_{m+1} + b_{m+1}) + \dots + (a_n + b_n)$$

$$= (a_m + a_{m+1} + \dots + a_n) + (b_m + b_{m+1} + \dots + b_n)$$

$$= \sum_{j=m}^{n} a_j + \sum_{j=m}^{n} b_j$$

Associatividade

Vamos analisar a igualdade:

• Associatividade:
$$\sum_{j=m}^{n} a_j = \sum_{j=m}^{\ell} a_j + \sum_{j=\ell+1}^{n} a_j$$

Associatividade

Vamos analisar a igualdade:

• Associatividade:
$$\sum_{j=m}^{n} a_j = \sum_{j=m}^{\ell} a_j + \sum_{j=\ell+1}^{n} a_j$$

Começando do lado esquerdo, temos:

$$\sum_{j=m}^{n} a_{j} = a_{m} + a_{m+1} + \dots + a_{n}$$

$$= a_{m} + a_{m+1} + \dots + a_{\ell} + a_{\ell+1} + \dots + a_{n}$$

$$= (a_{m} + a_{m+1} + \dots + a_{\ell}) + (a_{\ell+1} + \dots + a_{n})$$

$$= \sum_{j=m}^{\ell} a_{j} + \sum_{j=\ell+1}^{n} a_{j}$$

Distributividade

Vamos analisar a igualdade:

• Distributividade:
$$\sum_{j=m}^{n} k \cdot a_j = k \cdot \sum_{j=m}^{n} a_j$$

Distributividade

Vamos analisar a igualdade:

• Distributividade:
$$\sum_{j=m}^{n} k \cdot a_j = k \cdot \sum_{j=m}^{n} a_j$$

Começando do lado esquerdo, temos:

$$\sum_{j=m}^{n} k \cdot a_j = ka_m + ka_{m+1} + \ldots + ka_n$$
$$= k \cdot (a_m + a_{m+1} + \ldots + a_n)$$
$$= k \cdot \sum_{j=m}^{n} a_j$$

Ao encontrar somatórios complicados, nosso **primeiro** interesse é simplificar essas expressões.

Exemplo 1

Considere que desejamos calcular
$$\sum_{j=1}^{10} 2j$$
.

Ao encontrar somatórios complicados, nosso **primeiro** interesse é simplificar essas expressões.

Exemplo 1

Considere que desejamos calcular $\sum_{i=1}^{10} 2j$.

Pela distributividade, podemos simplificar a expressão para obter

$$\sum_{j=1}^{10} 2j = 2 \cdot \sum_{j=1}^{10} j$$

Ao encontrar somatórios complicados, nosso **primeiro** interesse é simplificar essas expressões.

Exemplo 1

Considere que desejamos calcular $\sum_{i=1}^{10} 2j$.

Pela distributividade, podemos simplificar a expressão para obter

$$\sum_{j=1}^{10} 2j = 2 \cdot \sum_{j=1}^{10} j$$

Observação: Note que houve uma troca. Ao invés de calcularmos $\sum_{j=1}^{10} 2j$,

basta calcular $\sum_{i=1}^{10} j$ para multiplicar o resultado por dois.

Exemplo 2

Considere que desejamos calcular
$$\sum_{j=1}^{10} (2j+3)$$
.

Exemplo 2

Considere que desejamos calcular $\sum_{j=1}^{10} (2j+3)$.

Pela comutatividade, podemos simplificar a expressão para obter

$$\sum_{j=1}^{10} (2j+3) = 2 \cdot \sum_{j=1}^{10} j + \sum_{j=1}^{10} 3$$

Exemplo 2

Considere que desejamos calcular $\sum_{i=1}^{10} (2j+3)$.

Pela comutatividade, podemos simplificar a expressão para obter

$$\sum_{j=1}^{10} (2j+3) = 2 \cdot \sum_{j=1}^{10} j + \sum_{j=1}^{10} 3$$

Observação: Houve uma troca. Ao invés de calcularmos $\sum_{j=1}^{10} \left(2j+3j\right)$,

basta calcular $\sum_{j=1}^{10} 2j$ e $\sum_{j=1}^{10} 3$ para então somá-las. Note que $\sum_{j=1}^{10} 2j$ é a expressão do exemplo anterior.

Nosso segundo interesse é encontrar somas conhecidas no processo.

Por exemplo, é muito útil saber que, para todo $n \in \mathbb{N}$,

$$\sum_{j=1}^{n} j = \frac{n(n+1)}{2}$$

Nosso segundo interesse é encontrar somas conhecidas no processo.

Por exemplo, é muito útil saber que, para todo $n \in \mathbb{N}$,

$$\sum_{j=1}^{n} j = \frac{n(n+1)}{2}$$

Nosso segundo interesse é encontrar somas conhecidas no processo.

Por exemplo, é muito útil saber que, para todo $n \in \mathbb{N}$,

$$\sum_{j=1}^{n} j = \frac{n(n+1)}{2}$$

Exemplo 1 (Continuação)

Pela fórmula,
$$\sum_{j=1}^{10} j = \frac{10(10+1)}{2} = 110/2 = 55.$$

Agora, podemos completar o primeiro exemplo, obtendo

$$\sum_{j=1}^{10} 2j = 2 \cdot \sum_{j=1}^{10} j = 2 \cdot 55 = 110.$$

Também é muito útil saber que, para todo $n \in \mathbb{N}$,

$$\sum_{j=1}^{n} 1 = n$$

Também é muito útil saber que, para todo $n \in \mathbb{N}$,

$$\sum_{i=1}^{n} 1 = n$$

Exemplo 2 (Continuação)

Temos
$$\sum_{j=1}^{10} 2j + 3$$
.

$$\sum_{j=1}^{10} 2j + 3 = \sum_{j=1}^{10} 2j + \sum_{j=1}^{10} 3 = 2 \cdot \sum_{j=1}^{10} j + 3 \cdot \sum_{j=1}^{10} 1$$
$$= 2 \cdot \frac{10(10+1)}{2} + 3 \cdot 10 = 2 \cdot 55 + 30 = 140.$$

Exercício: Usando indução matemática, prove as seguintes fórmulas:

Soma	Fórmula Fechada
$\sum_{k=0}^{n} ar^k (r \neq 1)$	$\frac{ar^{n+1}-a}{r-1}$, $r \neq 1$
$\sum_{k=1}^{n} k$	$\frac{n(n+1)}{2}$
$\sum_{k=1}^{n} k^2$	$\frac{n(n+1)(2n+1)}{6}$
$\sum_{k=1}^{n} k^3$	$\frac{n^2(n+1)^2}{4}$
$\sum_{k=0}^{n} k + dj$	$\frac{(2k+dn)(n+1)}{2}$

Tabela: Algumas somas importantes

A partir destas somas conhecidas, podemos resolver muitos problemas.

Podemos também generalizar estas somas usando associatividade.

Exemplo

Considere que desejamos calcular
$$\sum_{i=30}^{60} i$$

A partir destas somas conhecidas, podemos resolver muitos problemas.

Podemos também generalizar estas somas usando associatividade.

Exemplo

Considere que desejamos calcular $\sum_{i=30}^{60} i$

Observe que
$$\sum_{i=30}^{60} i = \sum_{i=1}^{60} i - \sum_{i=1}^{29} i$$
 e utilize a fórmula geral $\sum_{j=1}^{n} j = \frac{n(n+1)}{2}$ para calcular os termos da subtração.

A partir destas somas conhecidas, podemos resolver muitos problemas.

Podemos também generalizar estas somas usando associatividade.

Exemplo

Considere que desejamos calcular $\sum_{i=30}^{60} i$

Observe que
$$\sum_{i=30}^{60} i = \sum_{i=1}^{60} i - \sum_{i=1}^{29} i$$
 e utilize a fórmula geral $\sum_{j=1}^{n} j = \frac{n(n+1)}{2}$ para calcular os termos da subtração.

Temos
$$\sum_{i=1}^{60} i = \frac{60(60+1)}{2} = 30 \cdot 61 = 1830 \text{ e}$$

$$\sum_{i=1}^{29} i = \frac{29(29+1)}{2} = 29 \cdot 15 = 435.$$

A partir destas somas conhecidas, podemos resolver muitos problemas.

Podemos também generalizar estas somas usando associatividade.

Exemplo

Considere que desejamos calcular $\sum_{i=30}^{60} i$

Observe que
$$\sum_{i=30}^{60} i = \sum_{i=1}^{60} i - \sum_{i=1}^{29} i$$
 e utilize a fórmula geral $\sum_{j=1}^{n} j = \frac{n(n+1)}{2}$ para calcular os termos da subtração.

Temos
$$\sum_{i=1}^{60} i = \frac{60(60+1)}{2} = 30 \cdot 61 = 1830 \text{ e}$$

$$\sum_{i=1}^{29} i = \frac{29(29+1)}{2} = 29 \cdot 15 = 435.$$

Daí,
$$\sum_{i=30}^{60} i = \sum_{i=1}^{60} i - \sum_{i=1}^{29} i = 1830 - 435 = 1395.$$

A partir destas somas conhecidas, podemos resolver muitos problemas.

No caso geral, para
$$\sum_{i=m}^{\ell} i$$
,

A partir destas somas conhecidas, podemos resolver muitos problemas.

No caso geral, para
$$\sum_{i=m}^{\ell} i$$
,

Observe que
$$\sum_{i=m}^{\ell} i = \sum_{i=1}^{\ell} i - \sum_{i=1}^{m-1} i$$
 e utilize a fórmula geral $\sum_{j=1}^{n} j = \frac{n(n+1)}{2}$ para calcular os termos da subtração.

A partir destas somas conhecidas, podemos resolver muitos problemas.

No caso geral, para
$$\sum_{i=m}^{\ell} i$$
,

Observe que
$$\sum_{i=m}^{\ell} i = \sum_{i=1}^{\ell} i - \sum_{i=1}^{m-1} i$$
 e utilize a fórmula geral $\sum_{j=1}^{n} j = \frac{n(n+1)}{2}$ para calcular os termos da subtração.

Temos
$$\sum_{i=1}^{\ell} i = \frac{\ell(\ell+1)}{2} e \sum_{i=1}^{m-1} i = \frac{(m-1)(m-1+1)}{2} = \frac{m(m-1)}{2}$$
.

A partir destas somas conhecidas, podemos resolver muitos problemas.

No caso geral, para
$$\sum_{i=m}^{\ell} i$$
,

Observe que
$$\sum_{i=m}^{\ell} i = \sum_{i=1}^{\ell} i - \sum_{i=1}^{m-1} i$$
 e utilize a fórmula geral $\sum_{j=1}^{n} j = \frac{n(n+1)}{2}$ para calcular os termos da subtração.

Temos
$$\sum_{i=1}^{\ell} i = \frac{\ell(\ell+1)}{2} e \sum_{i=1}^{m-1} i = \frac{(m-1)(m-1+1)}{2} = \frac{m(m-1)}{2}$$
.

Daí,
$$\sum_{i=m}^{\ell} i = \sum_{i=1}^{\ell} i - \sum_{i=1}^{m-1} i = \frac{\ell(\ell+1)}{2} - \frac{m(m-1)}{2} = \ldots = \frac{(m+\ell)(\ell-m+1)}{2}.$$

Às vezes pode ser importante mudarmos o índice de um somatório.

Às vezes pode ser importante mudarmos o índice de um somatório. **Exemplo**

Considere a soma
$$\sum_{j=1}^{10} j + \sum_{k=3}^{12} (1-k)$$

Às vezes pode ser importante mudarmos o índice de um somatório.

Exemplo

Considere a soma
$$\sum_{j=1}^{10} j + \sum_{k=3}^{12} (1-k)$$

Podemos reescrever a soma mudando o índice de uma delas:

Às vezes pode ser importante mudarmos o índice de um somatório.

Exemplo

Considere a soma
$$\sum_{i=1}^{10} j + \sum_{k=3}^{12} (1-k)$$

Podemos reescrever a soma mudando o índice de uma delas:

$$\sum_{j=1}^{10} j + \sum_{k=3}^{12} (1-k) = \sum_{j=1}^{10} j + \sum_{j=1}^{10} (1-j-2) = \sum_{j=1}^{10} j + (1-j-2)$$
$$= \sum_{j=1}^{10} -1 = (-1) \sum_{j=1}^{10} 1 = -10.$$

Às vezes pode ser importante mudarmos o índice de um somatório.

Exemplo

Considere a soma
$$\sum_{i=1}^{10} j + \sum_{k=3}^{12} (1-k)$$

Podemos reescrever a soma mudando o índice de uma delas:

$$\sum_{j=1}^{10} j + \sum_{k=3}^{12} (1-k) = \sum_{j=1}^{10} j + \sum_{j=1}^{10} (1-j-2) = \sum_{j=1}^{10} j + (1-j-2)$$
$$= \sum_{j=1}^{10} -1 = (-1) \sum_{j=1}^{10} 1 = -10.$$

A chave deste passo é o cálculo de que $\sum_{k=3}^{12} (1-k) = \sum_{j=1}^{10} (1-j-2).$

- Para realizar uma mudança do índice k para um novo índice j:
- 1. Encontramos uma função f(k) = j
- 2. Isolamos k na equação acima e obtemos uma função sobre j
- 3. Substituímos k pela expressão obtida na soma original

Para realizar uma mudança do índice k para um novo índice j:

- 1. Encontramos uma função f(k) = j
- 2. Isolamos k na equação acima e obtemos uma função sobre j
- 3. Substituímos k pela expressão obtida na soma original

Exemplo 1

Seja a soma $\sum_{k=1}^{5} k^2$. Desejamos indexá-la com inteiros de 0 a 4.

Que expressão usaremos?

Para realizar uma mudança do índice k para um novo índice j:

- 1. Encontramos uma função f(k) = j
- 2. Isolamos k na equação acima e obtemos uma função sobre j
- 3. Substituímos k pela expressão obtida na soma original

Exemplo 1

Seja a soma $\sum_{k=1}^{3} k^2$. Desejamos indexá-la com inteiros de 0 a 4.

Que expressão usaremos?

- 1. Encontramos uma função para mapear k (de 1 até 5) para j (de 0 até 4) $\circ f(k) = k 1$
- 2. Agora, fazemos k-1=j e isolamos k: $(k-1=j \implies k=j+1)$
- 3. Para completar, substituimos k por j+1 na soma, obtendo

$$\sum_{k=1}^{5} k^2 = \sum_{j=0}^{4} (j+1)^2.$$

Exemplo 2

Seja a soma $\sum_{k=3}^{12} (1-k)$. Desejamos indexá-la com inteiros de 1 a 10.

1. Encontramos uma função para mapear k (de 3 até 12) para j (de 1 até 10):

$$\circ$$
 $f(k) = k - 2$

- 2. Agora, fazemos k-2=j e isolamos k: $(k-2=j \implies k=j+2)$
- 3. Para completar, substituimos k por j+2 na soma, obtendo

$$\sum_{k=3}^{12} (1-k) = \sum_{j=1}^{10} (1-(j+2)) = \sum_{j=1}^{10} (1-j-2).$$

FIM