BC1

► Números complejos

- (1) Calcula x para que $(x-2i)^2$ sea imaginario puro.
- (2) Halla x e y de modo que $\frac{3+xi}{1+2i}=y+2i$
- (3) Calcula $(1+i)^4$, $(1-i)^4$, $(-1+i)^4$ y $(-1-i)^4$
- (4) Resuelve la ecuación $x^2 + x + 4 = 0$ y comprueba que las raíces obtenidas verifican dicha ecuación.
- (5) Halla el valor de x para que el producto (3-6i)(4+xi) sea
 - a) Un número real.
 - b) Un número imaginario puro.
- (6) La suma de dos números complejos conjugados es 8 y la suma de sus módulos es 10. Halla dichos números.
- (7) Calcula el valor de $\frac{i^5-i^{-5}}{2i}$ y encuentra sus raíces cúbicas.
- (8) Escribe en forma binómica $\left(2, \frac{\pi}{2}\right)$.
- (9) Simplifica la siguiente expresión $\frac{\left(3_{60^{\circ}}\,\cdot(2_{15^{\circ}}\right)}{6_{30^{\circ}}}$
- (10) Halla las raíces quintas de 3+3i
- (11) Resuelve la ecuación $z^4 27z = 0$

► <u>Ecuaciones</u>

- (12) Sea el sistema de ecuaciones $\begin{cases} 2x + y + z = 0 \\ x + y + z = -1 \\ 3x + 2z = 3 \end{cases}$
 - a) Triangularízalo.
 - b) Resuélvelo.
- (13) Resuelve gráficamente el siguiente sistema: $\begin{cases} 2x y = -1 \\ -x + 2y = -4 \end{cases}$
- (14) Clasifica el siguiente sistema: $\begin{cases} x + y + z = 2 \\ 2x + z = -1 \\ x + 3y + 3z = 5 \end{cases}$

- (15) Resuelve la inecuación $x^2 3x + 2 < 0$
- (16) Estudia el signo de:

a)
$$y = x^3 + 2x^2 - 5x - 10$$
 b) $y = \frac{2x+4}{(x-1)\cdot(x+3)^2}$

(17) En una fábrica de artículos deportivos se dispone de 10 cajas de diferentes tamaño: grandes, medianas y pequeñas para envasar las camisetas de atletismo producidas, con capacidad para 50, 30 y 25 camisetas respectivamente. Si una caja grande fuera mediana, entonces habría el mismo número de grandes y medianas. En total se envasan 390 camisetas. Determina el número de cajas que hay de cada clase.