

Detección de Fraude por medio de transacciones financieras

Carolina Salas Moreno , Deykel Bernard Salazar, Esteban Ramírez Montero y Kristhel Porras Mata

Introducción

Sistema para detectar fraudes en transacciones financieras usando un dataset sintético que simula comportamientos reales.

El análisis permite aplicar técnicas de aprendizaje automático para identificar fraudes con precisión y rapidez.

Dataset

- Tamaño: 5,000,000 registros
- Atributos: 18 columnas por registro
- Formato: CSV (~800 MB)
- Datos de transacción: ID, fecha, cuentas, monto y tipo.
- Información de comportamiento y metadatos (ubicación, dispositivo, IP).
- Etiquetas de fraude (binarias y tipos), is_fraud como target.
- Disponible en <u>Kaggle</u>

Desarrollo del proyecto

Tecnologías Utilizadas

- Apache Spark → Procesamiento rápido y distribuido de grandes volúmenes de datos.
- Lenguaje principal: Python
- Bibliotecas clave: Pandas, Scikit-learn, Matplotlib, PySpark
- Delta Lake → Almacenamiento estructurado, confiable y optimizado para consultas eficientes.

Plataforma de Desarrollo

• Databricks (en la nube) - Free edition

```
from pyspark.sql import SparkSession
from pyspark.sql.functions import col
spark = SparkSession.builder.getOrCreate()

# Leer datos desde et volumen en Databricks
path = "/Volumes/fraud_project/fraud_detection/fraud_data/"
df_spark = spark.read.option("header", True).csv(path)
df_spark.printSchema()

# Convertir a Pandas solo si es necesario para visualización
for field in df_spark.schema.fields:
    if field.dataType.simpleString() == 'string':
        df_spark = df_spark.withColumn(field.name, col(field.name).cast("string"))

df = df_spark.toPandas()
```

```
20
21
21
21
21
21
21
21
21
21
31
31
31
```

```
print(" Dimensiones del dataset:", df.shape)
   print("\n = Primeros registros:")
   display(df.head())
   print(df.dtypes)
   display(df.describe())
   print(df.select dtypes(include='object').describe())
   print("\n? Valores nulos por columna:")
   null counts = df.isnull().sum()
   null percentages = (null counts / len(df)) * 100
   null_summary = pd.DataFrame({
       "Nulos": null counts,
      "% del total": null percentages.round(2)
   })
   null summary = null summary.sort values(by="Nulos", ascending=False)
   print(null_summary)
   print("\n ? Filas duplicadas:", df.duplicated().sum())
   msno.matrix(df, figsize=(15, 4))
   plt.title("Mapa de valores nulos")
   plt.show()
```

```
df['timestamp'] = pd.to datetime(df['timestamp'], errors='coerce')
    df['date'] = df['timestamp'].dt.date
    df['hour'] = df['timestamp'].dt.hour
    df['day of week'] = df['timestamp'].dt.day name()
    df['month'] = df['timestamp'].dt.month
    df['month_name'] = df['timestamp'].dt.month_name()
    def categorize time(hour):
        if 0 <= hour < 6:
            return 'Noche'
        elif 6 <= hour < 12:
            return 'Mañana'
        elif 12 <= hour < 18:
            return 'Tarde'
        else:
            return 'Noche'
    df['time_period'] = df['hour'].apply(categorize_time)
    month order = ['January', 'February', 'March', 'April', 'May', 'June',
                   'July', 'August', 'September', 'October', 'November', 'December']
    time order = ['Mañana', 'Tarde', 'Noche']
    fraudes = df[df['is fraud'] == True]
    fig, axes = plt.subplots(1, 2, figsize=(16, 5))
    df.drop(["fraud_type","time_since_last_transaction"], axis=1, inplace=True)
```


Pre procesamiento

- Conversión y limpieza básica de datos (fechas y tipos numéricos).
- Creación de flags temporales: fin de semana y feriados.
- Codificación cíclica para hora y mes.
- Indicadores clave.
- Cálculo de tiempos entre transacciones por cuenta remitente.

- Estadísticas agregadas por cuenta (promedio, desviación, conteo).
- One-hot encoding (OHE) en variables categóricas.
- Escalado de variables numéricas.
- Eliminación de columnas irrelevantes.
- División y balanceo del dataset.


```
def preprocesamiento_fraude_big_data(
        df: pd.DataFrame,
        target_col: str = "fraud_type",
        max_low_card: int = 20, # Reducido para eficiencia
       large_tx_percentile: float = 0.95,
        test_size: float = 0.20,
        random state: int = 42,
       balance_strategy: str = "undersample", # Mejor para datasets grandes
        sample size: int = None, # Para sampling inicial si es necesario
        optimize_memory: bool = True,
        verbose: bool = True
        if verbose:
            print(f" Procesando dataset con {len(df):,} registros")
            start_time = time.time()
        if sample_size and len(df) > sample_size:
            if verbose:
                print(f" Tomando muestra estratificada de {sample_size:,} registros para desarrollo...")
            y_full = df[target_col].astype(int)
            df = df.groupby(target_col, group_keys=False).apply(
                lambda x: x.sample(min(len(x), sample_size//2), random_state=random_state)
            ).reset_index(drop=True)
            if verbose:
                print(f"√ Muestra tomada: {len(df):,} registros")
        if optimize memory:
            for col in df.select dtypes(include=['object']).columns:
                if col != target_col and df[col].nunique() / len(df) < 0.5:</pre>
                    df[col] = df[col].astype('category')
        def canon(s: str) -> str:
            s = unicodedata.normalize("NFKC", str(s)).strip().lower()
            return re.sub(r"\s+", " ", s)
        label_rx = re.compile(r"(fraud|label|target|outcome|chargeback)", re.I)
```

```
def to_float_vectorized(series):
        """Versión vectorizada más eficiente"""
        if series.dtype in ['int64', 'float64']:
            return series
        str_series = series.astype(str).str.replace(',', '').str.replace('$', '')
        return pd.to_numeric(str_series, errors='coerce')
    numeric_cols = ["amount", "time_since_last_transaction",
                   "spending deviation score", "velocity score", "geo anomaly score"]
    for c in numeric cols:
        if c in df.columns:
            if verbose and len(df) > 100000:
                print(f" Procesando {c}...")
            df[c] = to_float_vectorized(df[c])
    if target col not in df.columns:
        raise ValueError(f"target_col '{target_col}' no está en df.columns")
    if df[target_col].dtype in ("object", "category"):
        s = df[target_col].astype(str).str.strip().str.lower()
        negatives = {"", "nan", "none", "null", "0", "false", "no", "normal"}
        df[target_col] = (~s.isin(negatives)).astype(int)
        df[target_col] = pd.to_numeric(df[target_col], errors="coerce").fillna(0).astype(int)
```

```
# === CARACTERÍSTICAS TEMPORALES EFICIENTES ===

if "timestamp" in df.columns:
    if verbose:
        print(" Creando características temporales...")

df["timestamp"] = pd.to_datetime(df["timestamp"], errors="coerce")

# Solo las características más importantes para eficiencia
    df["hour"] = df["timestamp"].dt.hour
    df["day_of_week"] = df["timestamp"].dt.dayofweek

# Características binarias eficientes
    df["is_business_hour"] = ((df["hour"] >= 9) & (df["hour"] <= 17)).astype(np.int8)
    df["is_weekend"] = (df["day_of_week"] >= 5).astype(np.int8)

df["is_late_night"] = ((df["hour"] >= 22) | (df["hour"] <= 6)).astype(np.int8)

# Solo encoding cíctico esenciat
    df["hour_sin"] = np.sin(2 * np.pi * df["hour"] / 24)
    df["hour_cos"] = np.cos(2 * np.pi * df["hour"] / 24)

# Off ["hour_cos"] = np.cos(2 * np.pi * df["hour"] / 24)</pre>
```

```
# === SPLIT ESTRATIFICADO TEMPRANO ===

if verbose:
    print(" Realizando split estratificado...")

y_full = df[target_col].astype(int)
idx_train, idx_test = train_test_split(
    df.index, stratify=y_full, test_size=test_size, random_state=random_state
)

df_train = df.loc[idx_train].copy()
df_test = df.loc[idx_test].copy()

if verbose:
    fraud_rate = y_full.mean()
    print(f" \ Train: {len(df_train):,} | Test: {len(df_test):,}")
    print(f" \ Tasa de fraude: {fraud_rate:.1%}")
```

```
if {"sender_account", "amount"}.issubset(df.columns):
    if verbose:
        print(" Creando estadísticas por cuenta...")
    stats = df_train.groupby("sender_account")["amount"].agg([
        "mean", "count", "std"
    stats.columns = ["sender_avg_amount", "sender_tx_count", "sender_std_amount"]
    stats["sender amount cv"] = stats["sender std amount"] / (stats["sender avg amount"] + 1e-6)
    df_train = df_train.join(stats, on="sender_account")
    df test = df test.join(stats, on="sender account")
    df_train["amount_zscore"] = (df_train["amount"] - df_train["sender_avg_amount"]) / (df_train["sender_std_amount"] + 1e-6)
    df_test["amount_zscore"] = (df_test["amount"] - df_test["sender_avg_amount"]) / (df_test["sender_std_amount"] + 1e-6)
if "device used" in df.columns and "sender account" in df.columns:
    dev_counts = df_train.groupby("sender_account")["device_used"].nunique()
    df_train["device_diversity"] = df_train["sender_account"].map(dev_counts).fillna(1)
    df_test["device_diversity"] = df_test["sender_account"].map(dev_counts).fillna(1)
    df_train["multiple_devices"] = (df_train["device_diversity"] > 1).astype(np.int8)
    df_test["multiple_devices"] = (df_test["device_diversity"] > 1).astype(np.int8)
```

```
# === PREPARACIÓN DE CARACTERÍSTICAS ===
base_exclude = {
    target_col, "is_fraud", "transaction_id", "sender_account", "receiver_account",
    "ip_address", "device_hash", "timestamp", "device_used", "location"
}

label_like = {c for c in df.columns if label_rx.search(canon(c))}

label_like.discard(target_col)
no_modelar = (base_exclude | label_like) & set(df.columns)

drop_cols = [c for c in no_modelar if c in df.columns]
X_train = df_train.drop(columns=drop_cols, errors="ignore")
X_test = df_test.drop(columns=drop_cols, errors="ignore")
y_train = df_train[target_col].astype(int)
y_test = df_test[target_col].astype(int)
```

```
if verbose:
       print(" Procesando variables categóricas...")
    all_cats = [c for c in X_train.columns if X_train[c].dtype in ("object", "category")]
   cat_low = [c for c in all_cats if X_train[c].nunique(dropna=True) <= max_low_card]</pre>
   cat_high = [c for c in all_cats if c not in cat_low]
   cat_low = [c for c in cat_low if not label_rx.search(canon(c))]
   cat_high = [c for c in cat_high if not label_rx.search(canon(c))]
   base_num_cols = [c for c in X_train.columns if c not in all_cats]
   for c in (cat_low + cat_high):
       X_train[c] = X_train[c].fillna("Unknown")
       X_test[c] = X_test[c].fillna("Unknown")
   for c in base num cols:
       if X_train[c].dtype in ['object', 'category']:
       median_val = X_train[c].median()
       X_train[c] = X_train[c].fillna(median_val)
       X_test[c] = X_test[c].fillna(median_val)
    large_tx_threshold = None
    if "amount" in X_train.columns:
        large_tx_threshold = X_train["amount"].quantile(large_tx_percentile)
       X_train["is_large_transaction"] = (X_train["amount"] > large_tx_threshold).astype(np.int8)
       X_test["is_large_transaction"] = (X_test["amount"] > large_tx_threshold).astype(np.int8)
       base_num_cols.append("is_large_transaction")
```

```
artefactos = {}
    ohe = None
    trn_oh = tst_oh = None
    if cat_low:
        if verbose:
           print(f" One-hot encoding para {len(cat_low)} columnas...")
           ohe = OneHotEncoder(handle_unknown="ignore", drop="first", sparse_output=True, dtype=np.int8)
           ohe = OneHotEncoder(handle_unknown="ignore", drop="first", sparse=True, dtype=np.int8)
        ohe.fit(X_train[cat_low])
        trn_oh = ohe.transform(X train[cat low])
       tst_oh = ohe.transform(X_test[cat_low])
        artefactos["ohe"] = ohe
        artefactos["ohe_cols"] = list(cat_low)
    fe_maps = {}
    if cat high:
        if verbose:
           print(f" Frequency encoding para {len(cat_high)} columnas...")
        for c in cat high:
           freq = X_train[c].value_counts(normalize=True)
           fe_maps[c] = freq.to_dict()
           X_train[c + "_freq"] = X_train[c].map(fe_maps[c]).fillna(0.0)
           X_test[c + "_freq"] = X_test[c].map(fe_maps[c]).fillna(0.0)
    artefactos["freq_encoding_maps"] = fe_maps
   X_train_drop = X_train.drop(columns=cat_low + cat_high, errors="ignore")
   X_test_drop = X_test.drop(columns=cat_low + cat_high, errors="ignore")
```

```
if verbose:
       print(" Escalando características numéricas...")
   scaler = RobustScaler()
   scale_cols = [c for c in base_num_cols if c in X_train_drop.columns]
   if scale cols:
        numeric_mask = X_train_drop[scale_cols].select_dtypes(include=[np.number]).columns
        scale_cols = [c for c in scale_cols if c in numeric_mask]
       if scale_cols:
           scaler.fit(X_train_drop[scale_cols])
           X_train_drop.loc[:, scale_cols] = scaler.transform(X_train_drop[scale_cols])
           X_test_drop.loc[:, scale_cols] = scaler.transform(X_test_drop[scale_cols])
   artefactos["scaler"] = scaler
   artefactos["scale_cols"] = scale_cols
   X train drop = X train drop.fillna(0)
   X_test_drop = X_test_drop.fillna(0)
   X_train_dense = X_train_drop.copy()
   X_test_dense = X_test_drop.copy()
   X_train_num = sp.csr_matrix(X_train_drop.values, dtype=np.float32) # float32 para memoria
   X_test_num = sp.csr_matrix(X_test_drop.values, dtype=np.float32)
   if trn_oh is not None:
       X_train_sparse = sp.hstack([X_train_num, trn_oh], format="csr")
       X_test_sparse = sp.hstack([X_test_num, tst_oh], format="csr")
   else:
       X_train_sparse, X_test_sparse = X_train_num, X_test_num
```

```
print(f" Aplicando estrategia de balanceo: {balance_strategy}")
    y_train_res = y_train.copy()
    X_train_sparse_res = X_train_sparse
    X_train_dense_res = X_train_dense
    sample_weight = None
    if balance strategy == "undersample":
        rus = RandomUnderSampler(
            random_state=random_state,
            sampling_strategy=0.3 # Ratio más conservador para preservar información
        idx = np.arange(len(y_train_res)).reshape(-1, 1)
        idx_res, y_train_res = rus.fit_resample(idx, y_train_res)
        sel = idx_res.ravel()
        X train sparse res = X train sparse[sel]
        X_train_dense_res = X_train_dense.iloc[sel]
        if verbose:
            print(f" Undersample: {len(y_train_res):,} registros finales")
    elif balance_strategy == "weights":
        sample_weight = compute_sample_weight(class_weight="balanced", y=y_train_res)
        if verbose:
            print(" Class weights aplicados")
    else:
        if verbose:
            print(" Sin balanceo aplicado")
```

```
artefactos.update({
    "large_tx_threshold": large_tx_threshold,
    "base_num_cols": base_num_cols,
    "cat_low": list(cat_low),
    "cat_high": list(cat_high),
    "drop_cols": drop_cols,
    "sample_weight": sample_weight,
    "balance_strategy": balance_strategy,
    "X_train_dense": X_train_dense,
    "X_test_dense": X_test_dense,
    "X_train_dense_res": X_train_dense_res,
})
if verbose:
    elapsed = time.time() - start_time
    print(f" Preprocesamiento completado en {elapsed:.1f} segundos")
    print(f" Shape final train: {X_train_sparse_res.shape}")
    print(f" Shape final test: {X_test_sparse.shape}")
return X_train_sparse_res, X_test_sparse, y_train_res, y_test, artefactos
```

Optimización

- Se identificó que usar el umbral por defecto (0.5) en detección de fraude genera demasiados falsos positivos, baja precisión (3–5%) y sobrecarga operativa.
- Se diseñaron estrategias de optimización de umbrales con distintos enfoques: precision target, recall target, max F1, conservative y balanced.
- Se estableció un proceso de selección jerárquico, priorizando la precisión (precision target → conservative → max F1 → balanced) debido al alto costo de los falsos positivos frente al ahorro de los verdaderos positivos.
- Se definieron métricas de negocio clave: número total de alertas, porcentaje de precisión y estatus de cumplimiento de objetivos.
- Se modeló el impacto esperado al aplicar umbrales optimizados:
 Precisión: aumento de 3-5% → 15-30%

 - Reducción de alertas: 70-90% menos
 - Mejora en F1-score
 - Cambio en ROI: de negativo a positivo


```
def optimizar_precision_fraude(modelos, X_test_sparse, y_test, X_test_dense=None,
                                 target_precision=0.20, target_recall=0.60):
        print(" OPTIMIZACIÓN DE PRECISIÓN Y UMBRAL")
        print("=" * 60)
        print(f" Target Precision: {target_precision:.1%}")
        print(f" Target Recall: {target_recall:.1%}")
        resultados optimizados = []
        mejores umbrales = {}
        for nombre, modelo in modelos.items():
            print(f" Optimizando {nombre}...")
            if "Gradient Boosting" in nombre and X test dense is not None:
                X_test_model = X_test_dense
            else:
                X_test_model = X_test_sparse
            if hasattr(modelo, 'predict proba'):
                y_probs = modelo.predict_proba(X_test_model)[:, 1]
            else:
                print(f" {nombre} no tiene predict proba, usando decisión por defecto")
                y pred default = modelo.predict(X test model)
                precision default = precision score(y test, y pred default, zero division=0)
                recall default = recall score(y test, y pred default, zero division=0)
                f1_default = f1_score(y_test, y_pred_default, zero_division=0)
                resultados_optimizados.append({
                    'Modelo': nombre,
                    'Umbral': 'default',
                    'Precision': f"{precision_default:.4f}",
                    'Recall': f"{recall_default:.4f}",
                    'F1-Score': f"{f1_default:.4f}",
                    'Status': 'No optimizable'
                })
                continue
            precisions, recalls, thresholds = precision recall curve(y test, y probs)
            umbrales_candidatos = {}
```

```
mask_precision = precisions >= target_precision
    if mask precision.any():
        idx_precision = np.where(mask_precision)[0]
        best idx = idx precision[np.argmax(recalls[idx precision])]
        umbrales_candidatos['precision_target'] = {
            'threshold': thresholds[best idx] if best idx < len(thresholds) else 0.5,
            'precision': precisions[best idx],
            'recall': recalls[best idx],
            'f1': 2 * precisions[best idx] * recalls[best idx] / (precisions[best idx] + recalls[best idx])
    mask recall = recalls >= target recall
    if mask recall.any():
        idx recall = np.where(mask recall)[0]
        best_idx = idx_recall[np.argmax(precisions[idx_recall])]
        umbrales candidatos['recall target'] = {
            'threshold': thresholds[best_idx] if best_idx < len(thresholds) else 0.5,
            'precision': precisions[best_idx],
            'recall': recalls[best idx],
            'f1': 2 * precisions[best_idx] * recalls[best_idx] / (precisions[best_idx] + recalls[best_idx])
    f1_scores = 2 * precisions * recalls / (precisions + recalls + 1e-8)
    best_f1_idx = np.argmax(f1_scores)
    umbrales_candidatos['max_f1'] = {
        'threshold': thresholds[best_f1_idx] if best_f1_idx < len(thresholds) else 0.5,
        'precision': precisions[best_f1_idx],
        'recall': recalls[best_f1_idx],
        'f1': f1 scores[best f1 idx]
    balance diff = np.abs(precisions - recalls)
    balanced idx = np.argmin(balance diff)
    umbrales candidatos['balanced'] = {
        'threshold': thresholds[balanced_idx] if balanced_idx < len(thresholds) else 0.5,
        'precision': precisions[balanced idx],
        'recall': recalls[balanced idx],
        'f1': f1_scores[balanced_idx]
```

```
conservative mask = precisions >= 0.15 # Al menos 15% precision
          if conservative_mask.any():
               conservative idx = np.where(conservative mask)[0]
               best_idx = conservative_idx[np.argmax(recalls[conservative_idx])]
               umbrales candidatos['conservative'] = {
                   'threshold': thresholds[best idx] if best idx < len(thresholds) else 0.7,
                   'precision': precisions[best_idx],
                   'recall': recalls[best idx],
                   'f1': f1_scores[best_idx]
          if 'precision target' in umbrales candidatos:
               mejor_umbral = umbrales_candidatos['precision_target']
               criterio = 'precision_target'
          elif 'conservative' in umbrales_candidatos:
               mejor_umbral = umbrales_candidatos['conservative']
               criterio = 'conservative'
           elif 'max f1' in umbrales candidatos:
               mejor_umbral = umbrales_candidatos['max_f1']
               criterio = 'max f1'
          else:
               mejor_umbral = umbrales_candidatos['balanced']
               criterio = 'balanced'
           mejores_umbrales[nombre] = mejor_umbral['threshold']
          y_pred_opt = (y_probs >= mejor_umbral['threshold']).astype(int)
          precision final = precision score(y test, y pred opt, zero division=0)
          recall_final = recall_score(y_test, y_pred_opt, zero_division=0)
           f1_final = f1_score(y_test, y_pred_opt, zero_division=0)
          roc_auc = roc_auc_score(y_test, y_probs)
          tp = ((y_pred_opt == 1) & (y_test == 1)).sum()
           fp = ((y_pred_opt == 1) & (y_test == 0)).sum()
          fn = ((y_pred_opt == 0) & (y_test == 1)).sum()
          tn = ((y_pred_opt == 0) & (y_test == 0)).sum()
```

```
precision_pct = precision_final * 100
        total_alerts = tp + fp
        fraud_detection_rate = tp / (tp + fn) if (tp + fn) > 0 else 0
        status = " Cumple targets" if precision final >= target precision and recall final >= target recall else \
                 " Precision baja" if precision_final < target_precision else \</pre>
                 " Recall bajo" if recall final < target recall else " No cumple"
        resultados_optimizados.append({
             'Modelo': nombre,
            'Umbral': f"{mejor_umbral['threshold']:.3f}",
            'Criterio': criterio,
            'Precision': f"{precision_final:.4f}",
            'Recall': f"{recall_final:.4f}",
            'F1-Score': f"{f1_final:.4f}",
            'ROC-AUC': f"{roc auc:.4f}",
            'TP': tp,
            'FP': fp,
            'FN': fn,
            'Total Alerts': total alerts,
            'Precision_%': f"{precision_pct:.1f}%",
            'Status': status
        })
        print(f"
                    Mejor umbral: {mejor_umbral['threshold']:.3f} ({criterio})")
        print(f"
                    Precision: {precision_final:.1%} | Recall: {recall_final:.1%} | F1: {f1_final:.3f}")
                    Alertas totales: {total_alerts:,} (TP: {tp:,}, FP: {fp:,})")
        print(f"
        print()
    return pd.DataFrame(resultados optimizados), mejores umbrales
```

Modelos y métricas

Modelos utilizados

- Logistic Regression
- Random Forest
- Gradient Boosting

Métricas utilizadas

- Precisión
- Sensibilidad
- F1-Score


```
def entrenar_con_class_weights(X_train_sparse, y_train, X_train_dense, sample_weight=None):
       print(" RE-ENTRENANDO CON CLASS WEIGHTS (sin undersample)...")
       print("=" * 60)
       from sklearn.linear_model import LogisticRegression
       from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier
       modelos_weights = {}
       print(" Logistic Regression con class_weight='balanced'...")
       lr_balanced = LogisticRegression(
           solver="saga",
           penalty="12",
           C=0.01, # Más regularización para reducir overfitting
           max_iter=500,
           tol=1e-4,
           class_weight='balanced', # + Clave para reducir FP
           random_state=42,
           n_jobs=-1
        modelos_weights["Logistic Regression Balanced"] = lr_balanced.fit(X_train_sparse, y_train)
       print(" Random Forest con class_weight='balanced_subsample'...")
       rf balanced = RandomForestClassifier(
           n_estimators=300,
           max_depth=12, # Más conservador
           min_samples_split=50, # Más restrictivo
           min_samples_leaf=20, # Más restrictivo
           max_features="sqrt",
           bootstrap=True,
           max_samples=0.6, # Menos muestras por árbol
           class_weight='balanced_subsample',
           n jobs=-1,
           random_state=42
       modelos_weights["Random Forest Balanced"] = rf_balanced.fit(X_train_sparse, y_train)
       if X train_dense is not None:
           print(" Gradient Boosting conservador...")
           gbt conservative = GradientBoostingClassifier(
               n_estimators=200,
               learning_rate=0.05, # Menor Learning rate
               max_depth=4,
               subsample=0.7,
               max_features="sqrt",
               min_samples_split=100, # Más restrictivo
               min_samples_leaf=50, # Más restrictivo
               random_state=42
           modelos_weights["Gradient Boosting Conservative"] = gbt_conservative.fit(X_train_dense, y_train)
        print(f" {len(modelos_weights)} modelos re-entrenados con class weights")
       return modelos_weights
```

```
Optimizando Logistic Regression Balanced...

Mejor umbral: 0.500 (precision_target)

Precision: 3.6% | Recall: 33.9% | F1: 0.066

Alertas totales: 33,401 (TP: 1,218, FP: 32,183)

Optimizando Random Forest Balanced...

Mejor umbral: 0.500 (precision_target)

Precision: 4.4% | Recall: 51.9% | F1: 0.080

Alertas totales: 42,896 (TP: 1,866, FP: 41,030)

Optimizando Gradient Boosting Conservative...

Mejor umbral: 0.204 (precision_target)

Precision: 15.4% | Recall: 0.1% | F1: 0.001

Alertas totales: 13 (TP: 2, FP: 11)
```

Análisis ROI

Conceptos clave

Verdadero Positivo (TP): Fraude detectado correctamente

• Beneficio: Evitamos pérdida por fraude + costos de investigación

Falso Positivo (FP): Transacción legítima marcada como fraude

Costo: Fricción al cliente + tiempo de revisión + posible pérdida de cliente

Falso Negativo (FN): Fraude no detectado

• Costo implícito: Pérdida total del fraude (no calculado aquí directamente)

Verdadero Negativo (TN): Transacción legítima correctamente clasificada

• Sin costo ni beneficio directo


```
def analisis_costo_beneficio(resultados_df, costo_fp=100, beneficio_tp=1000):
        Análisis de costo-beneficio para seleccionar el mejor modelo
        print(f"\n ANÁLISIS COSTO-BENEFICIO")
        print("=" * 40)
        print(f"Costo por Falso Positivo: ${costo_fp}")
        print(f"Beneficio por Verdadero Positivo: ${beneficio_tp}")
        print()
        analisis = []
        for _, row in resultados_df.iterrows():
            if row['Status'] == 'No optimizable':
                continue
            tp = int(row['TP'])
            fp = int(row['FP'])
            costo_total = fp * costo_fp
            beneficio_total = tp * beneficio_tp
            beneficio_neto = beneficio_total - costo_total
            roi = (beneficio_neto / costo_total * 100) if costo_total > 0 else 0
            analisis.append({
                'Modelo': row['Modelo'],
                'Beneficio_Total': f"${beneficio_total:,}",
                'Costo_Total': f"${costo_total:,}",
                'Beneficio_Neto': f"${beneficio_neto:,}",
                'ROI_%': f"{roi:.1f}%",
                'Precision_%': row['Precision_%']
            })
        df_analisis = pd.DataFrame(analisis)
        print(df_analisis.to_string(index=False))
        if len(df_analisis) > 0:
            mejor_roi_idx = df_analisis['ROI_%'].str.rstrip('%').astype(float).idxmax()
            mejor_modelo_negocio = df_analisis.iloc[mejor_roi_idx]
            print(f"\n MEJOR MODELO POR ROI: {mejor_modelo_negocio['Modelo']}")
            print(f" ROI: {mejor_modelo_negocio['ROI_%']}")
            print(f" Beneficio Neto: {mejor_modelo_negocio['Beneficio_Neto']}")
        return df_analisis
```

```
Costo por Falso Positivo: $100
Beneficio por Verdadero Positivo: $1000
                       Modelo Beneficio_Total Costo_Total Beneficio_Neto ROI_% Precision_%
  Logistic Regression Balanced
                                   $1,218,000 $3,218,300
                                                          $-2,000,300 -62.2%
                                                                                     3.6%
       Random Forest Balanced
                                   $1,866,000 $4,103,000
                                                          $-2,237,000 -54.5%
                                                                                     4.4%
Gradient Boosting Conservative
                                      $2,000
                                                  $1,100
                                                                   $900 81.8%
                                                                                    15.4%
MEJOR MODELO POR ROI: Gradient Boosting Conservative
 ROI: 81.8%
Beneficio Neto: $900
```

Fluio completoy resultados

- Pipeline con optimizaciónResultados por fases

```
def pipeline_optimizacion_completa(df, target_col="fraud_type"):
       Pipeline completo: re-entrenamiento + optimización de umbral
       print(" PIPELINE COMPLETO DE OPTIMIZACIÓN")
       print("=" * 70)
       print("\n=== FASE 1: RE-PREPROCESAMIENTO CON CLASS WEIGHTS ===")
       X_train_res, X_test_tr, y_train_res, y_test, artefactos = preprocesamiento_fraude_big_data(
           df,
           target_col=target_col,
           max_low_card=15,
            optimize_memory=True,
            verbose=True
        print("\n=== FASE 2: RE-ENTRENAMIENTO CONSERVADOR ==="")
        modelos_optimizados = entrenar_con_class_weights(
           X_train_sparse=X_train_res,
           y_train=y_train_res,
           X_train_dense=artefactos["X_train_dense_res"]
       print("\n=== FASE 3: OPTIMIZACIÓN DE UMBRALES ===")
       resultados_opt, umbrales = optimizar_precision_fraude(
           modelos_optimizados,
           X_test_sparse=X_test_tr,
           y_test=y_test,
           X_test_dense=artefactos["X_test_dense"],
           target_precision=0.15, # 15% precision minima
            target_recall=0.50 # 50% recall minimo
       print("\n=== FASE 4: ANÁLISIS DE NEGOCIO ===")
        analisis_negocio = analisis_costo_beneficio(resultados_opt)
       print("\n=== COMPARACIÓN CON RESULTADOS ANTERIORES ===")
       print(" ANTES (con undersample):")
       print(" Precision: 0.035-0.044 (3.5-4.4%)")
       print(" Recall: 0.63-0.69")
       print(" F1: 0.066-0.089")
       print(" Falsos Positivos: 46K+")
       print()
        print(" AHORA (con class weights + umbral optimizado):")
       print(resultados_opt[['Modelo', 'Precision_%', 'Recall', 'F1-Score', 'Total_Alerts', 'Status']].to_string(index=False))
        return resultados_opt, umbrales, analisis_negocio
```

```
=== COMPARACIÓN CON RESULTADOS ANTERIORES ===
 ANTES (con undersample):
   Precision: 0.035-0.044 (3.5-4.4%)
   Recall: 0.63-0.69
   F1: 0.066-0.089
   Falsos Positivos: 46K+
 AHORA (con class weights + umbral optimizado):
                       Modelo Precision_% Recall F1-Score Total_Alerts
                                                                                 Status
                                     3.6% 0.3385 0.0658
  Logistic Regression Balanced
                                                                  33401 Precision baja
        Random Forest Balanced
                                     4.4% 0.5186 0.0803
                                                                  42896 Precision baja
Gradient Boosting Conservative
                                    15.4% 0.0006 0.0011
                                                                            Recall bajo
 RECOMENDACIÓN FINAL:

    Usar el modelo con mejor ROI del análisis de negocio

2. Aplicar el umbral optimizado correspondiente

    Monitorear precision en producción y ajustar si es necesario
```


Desafíos y presentación del código

- Manejo de desbalance de los datos
- Decision entre Series de Panda vs Dataframes de Spark
- Limitaciones de recursos para manejar gran cantidad de datos con la version Free Edition

Código completo... Ingrese aquí