

Universidade de Aveiro Departamento de Física

Exame Prático

Física Computacional — 2015/2016

15 de junho de 2016 — Salas 11.2.7 e 11.2.8

Duração: 2 horas

Justifique as suas respostas às perguntas.

Note que os símbolos a **negrito** representam vetores.

Deve ser criada uma pasta no desktop contendo os ficheiros .m e eventuais figuras.

1. (4.6+0.8+0.8+0.8 val) Considere a equação de movimento de um pêndulo amortecido e forçado

$$\frac{\mathrm{d}^2 \theta}{\mathrm{d}t^2} = -\omega_0 \sin(\theta) - q \frac{\mathrm{d}\theta}{\mathrm{d}t} + F_D \sin(\omega_D t).$$

Os parâmetros são $\omega_0 = 1$, $q = \frac{1}{2}$, $\omega_D = \frac{2}{3}$ e as condições iniciais $\theta_i = 0.2$ e $\theta_i' = 0$.

- a) Use o método de Rung–Kutta de 4^a ordem para integrar a equação até t=100 quando $F_D=0,\,F_D=0.1$ e $F_D=1.2$. Faça gráficos de $\theta(t)$ e da trajetória no espaço de fases em cada um dos casos.
- b) No caso $F_D = 0$, encontre os máximo relativos de $\theta(\theta_m)$ e os tempos para os quais acontecem (t_m) . Faça um ajuste linear a $\log(\theta_m) = b at_m$ e compare $a \cos q/2$.
- c) No caso $F_D = 0.1$, calcule a frequência de oscilação após t = 50 e compare com ω_D .
- d) Que tipo de trajetória obteve no caso $F_D = 1.2$? Justifique.
- **2.** (2+4+1 val) A distribuição de temperatura num tubo unidimensional sujeito a perdas com o exterior é dada por

$$\frac{\partial^2 T}{\partial x^2} - \frac{ac\rho}{k} (T - T_{\rm amb}) = 0,$$

Considere L=50 cm e a temperatura ambiente igual a 20°C. Os restantes parâmetros são k=0.93 cal/(s cm °C), c=0.094 cal/(g °C), $\rho=8.9$ g/cm³ e a=0.02 s⁻¹.

- a) Considere $T(0) = 10^{\circ}C$ e T'(0) = 2 e encontre a solução usando a rotina ode45. Faça o gráfico.
- b) Use um método de shooting para encontrar a solução quando as temperaturas das extremidades são 10°C e 50°C.
- c) Cada uma das extremidades está em contacto com um reservatório de calor. A troca de energia com cada um deles, por unidade de tempo e por unidade de área da secção da barra, é dada por

 $k\frac{\mathrm{d}T}{\mathrm{d}x}$

e a troca de energia com o exterior nos restantes pontos (também por unidade de tempo e

por unidade de área da secção da barra) é dada por

$$c\rho a\Delta x(T-T_{\rm amb})$$
.

Use a solução da alínea anterior para calcular ambas as taxas de variação de energia e verificar que são aproximadamente simétricas.

- **3.** (3+3 val) Considere um domínio quadrado de lado L=1 com uma densidade de carga a variar com a coordenada x na forma $\rho(x)=10x/L$. Dois dos vértices do domínio são (0,0) e (L,L) e o potencial na fronteira exterior é V=1. Considere $\epsilon_0=1$.
 - a) Determine o potencial em todo o domínio usando o método de sobre-relaxação sucessiva com α igual ao valor ótimo indicado nos slides. Faça um gráfico.
 - b) Varie o *h* (abaixo de 0.05) e registe o número de iterações em cada caso. Verifique que o número de iterações é proporcional a *M*, o número de valores numa das dimensões (valores de *x* ou de *y*).