Recall: the dual vector space of V is V= Hom (V, k)

Def: | Given a linear map $\varphi: V \to W$, the transpose of φ , $\varphi^*: W^* \to V^*$ defined as follows: given a linear functional $l: W \to k$, compaining with $\varphi: V \to W$ gives a linear map $l \circ \varphi: V \to k$. Thus, $\varphi^*: W^* \longrightarrow V^*$ (check: φ^* is linear)

Applying a linear huckional lEV to a vector VEV as YX E k.

if $M(\psi, (e), (f)) = A$, then $M(\psi^*, (f)^*), (ei^*) = A^T$ transpose matrix.

This is because; given $l \in W^*$ and $v \in V$, $l(\psi(v)) = (\psi^*(l))(v) = \forall A \times V$.

So ψ^* , viewed as operation on row vectors, is $y \mapsto yA$.

Nearwhile the dual bases give a destription of elements of V^*, U^* by the column vectors, which are the transposes of the row vectors. The claim then follows since ψ^*l as column vector is $(\forall A)^{\dagger} = A^T y^T$.

Prop: (I the finite dim. case) (p is injective iff (p" is sujective (p is sujective iff (p" is injective

follows from: $\frac{\text{Prop}}{\text{(1)}}$ ker $(\varphi^{\alpha}) = \text{Ann}(\text{In }\varphi) = \{l \in W^{\alpha} / l_{|\text{In }\varphi} = 0\}$.

(2) $\text{In}(\varphi^{\alpha}) = \text{Ann}(\text{ker }\varphi) \leftarrow \text{assuming finite lim.}$

Proof: (1) $l \in Ann(In.\psi) \iff l(\psi(v)) = 0 \ \forall v \in V \iff \psi'(l) = lo \psi = 0 \iff l \in Ker.\psi''$.

(2) If $l' = \psi'(l) \in In.(\psi'')$ then $l' = lo \varphi$ so $l'_{lker.\psi} = 0$. So $In.(\psi') \subset Ann. ker.\psi$.

Din. formula and (1) imply $rank(\psi'') = rank(\psi)$, hence the inclusion is an equality.

Linear operators: A linear operator on V (aka endomorphism of V) is a linear map $V:V\to V$.

Notation: End(V)=Hom(V,V).

- when using a basis to express $\varphi \in Hom(V,V)$ yb a (square) maker, we want to use the same basis on each side: $A = \mathcal{M}(\varphi,(e_i),(e_i))$, transforms by P'AP.
- * New thing: we can compose linear operators with each other cpy = \po \cdot \psi \vert \sigma \vert \sigma \vert \psi \vert \sigma \vert \quad \text{ply solynomials}:

=> Hom(V,V) is a (noncommutative) ring. $P=\Sigma a_n x^n \rightarrow p(\varphi)=\Sigma a_n \varphi^n V \rightarrow V$.

* Given vector space V_1V_2 and liner operators $\psi_i:V_i \rightarrow V_i$, we can define $\psi = \psi_1 \oplus \psi_2: V_1 \oplus V_2 \rightarrow V_1 \oplus V_2$ operator on $V = V_1 \oplus V_2$.

The operator φ leaves the subspaces $V_1, V_2 \subset V$ invariant: $\varphi(V_i) \subset V_i$; and working in a basis of V st. $e_1 \dots e_m \in V_1$, $e_{m+1} \dots e_n \in V_2$, the makes of φ is block diagonal: $\left(\frac{\varphi_1}{O}\right) = 0$ Conversely, if $V = V_1 \oplus V_2$ and $\varphi(V_i) = V_i$ then φ is of this form.

More generally, if we only assume $\varphi: V \rightarrow V$ and $V_1 \subset V$ is invariant $(\varphi(V_1) \subset V_1)$ but not necess. V_2 , then the matrix of φ would be block hiangular: $(\frac{\varphi_1 V_1}{O} \times \frac{\star}{V})$

So; a hypical way to study $\varphi: V - V$ is to look for invavor subspaces. A If $U \subset V$ is invariant and $\dim U = 1$ (so: $U = k \cdot V$ for some $V \in V$),

then necessarily $\varphi(v) = \lambda v$ for some $\lambda \in k$.

Defi An eigenvector of $\varphi: V \rightarrow V$ is a vector $v \in V, v \neq 0$, st. $\varphi(v) = \lambda V$ for some $\lambda \in k$. λ is called the eigenvalue corresponding to V.

4 If we can find a basis of V consisting of eigenvectors of φ , then we have diagonalized φ , i.e. found a basis where its matrix is diagonal $\begin{pmatrix} v_1 & \cdots & v_n \\ \lambda_1 & 0 \\ 0 & \ddots & \lambda_n \end{pmatrix}$

This is the best outcome, but not always possible!

Ex: $V=R^2$, $\begin{pmatrix} \lambda & 0 \\ 0 & \mu \end{pmatrix}$ has eigenvectors (1,0) (or any multiples) with eigenvalues λ .

However $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ has only one eigenvector (1,0) with eigenvalue 1, (up to scaling!)

NOT diagnosticable. $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ doesn't even have any eigenvectors (see H44 Roblem 1).

Prop: | Eigenvectors of φ : $V \rightarrow V$ with district eigenvalues are linearly independent. Pf: Assume $v_1...v_\ell$ are eigenvectors with $\varphi(v_i) = \lambda_i v_i$, λ_i all district. Assume there is a linear relation $q_1v_1 + q_2v_\ell = 0$ with q_i not all zero.

```
and this has the fewest (>2) possible nanzer as of any such relation (3) Then \varphi(\Sigma a_i v_i) = \Sigma a_i \varphi(v_i) = \Sigma a_i \lambda_i v_i = 0 another linear relation!

q_i \lambda_i v_i + ... + a_\ell \lambda_\ell v_\ell = 0.
```

Tix i st. $a_i \neq 0$, and subtract: $a_1(\lambda_1 - \lambda_i) v_1 + ... + a_l(\lambda_l - \lambda_i) v_l = 0$

-> linear relation where coefficient of v; is now zero, but all other nonzero coefficients (at least one) remain nonzero (since 2;-2; +0)-contraderts minimality assumption.

Conslay: | The number of distinct eigenvalues of $\varphi \in Hom(V,V)$ is at most $n=\dim V$, and if equality holds then φ is diagonalizable.

Digession: Def. | A field k is algebraically closed if every noncombat polynomial $p \in k[x]$ has a root in k, i.e. $\exists \alpha \in k$ st. $p(\alpha) = 0$.

If so, hen by drivion algorithm for polynomials, can write $p=(x-\alpha)q$, and repeating, we get $p=c(x-\alpha_1)...(x-\alpha_d)$. $(d=\text{deg }p, \alpha_i \in k)$.

- * Findamental theorem of algebra: C is algebraically closed.

 (prof is not pure algebra; we'll downs it in Makh 556).
- * If k is not algebraically closed then there exists an algebraically closed then there exists an algebraical field $\overline{k} \supset k$, constructed from k by adjoining roots of polynomials $\in k[si]$.

Eg. $\mathbb{R} = \mathbb{C}$, whereas $\mathbb{Q} = \{ \text{all nots of polynomial egis with } \mathbb{Q} \text{-coeffs} \} \subset \mathbb{C}$ (fact polynomials in $\mathbb{Q}[x]$ have roots in $\mathbb{Q}[x]$

Prop: If k is algebraically closed, V a finite dimensional vector space over k, then any linear operator $\varphi: V \to V$ has an eigenvector, i.e. $\exists v \in V - \{o\}$, $\exists \lambda \in k$ st. $\varphi(v) = \lambda V$.

Proof: Let $n=\dim V$, and take any nonzero vector $v \in V$. Then v, $\varphi(v)$, ..., $\varphi'(v)$ must be liverly dependent.

note that $v \in V$. Then v, $\varphi(v)$, ..., $\varphi'(v)$ and v $\varphi(v)$ φ

So $\exists a_0,..., a_n \in k$ (not all zero) sh. $a_0v + a_1\varphi(v) + ... + a_n\varphi^n(v) = 0$. Since k is algebraically closed, we can factor the polynomial $\sum a_i x^i$,

hence $a_0 + a_1 \varphi + ... + a_n \varphi^n = c(\varphi - \lambda_i) ... (\varphi - \lambda_k)$, $c \neq 0$, $\lambda_i \in k$.

(!! The probable here is composition of operators, but this is legit!!).

```
Now, (\varphi - \lambda_1) \dots (\varphi - \lambda_d) : V \rightarrow V has a nontrivial kernel (\ni V), which implies that at least one of \varphi - \lambda_1 is not an isomorphism,
                            here ] i ∈ {1...d} and w∈ V-{0} d. w∈ Ker(φ-λ;), i.e. φ(w)= λ; ω.
Conllay: Given \varphi: V \to V on an algebraically cloud field k, there exists a basis (v_1, ..., v_n) of V in which the matrix of \varphi is upen-triangular. (v_1, ..., v_n) (i.e. each subspace V_k = \text{span}(v_1...v_k) \subset V is invavant)
        Proof: Induction on dim V: If d'in V= 1, then any nouvres vector 4
                                           gets rapped to a multiple of itself V. (any 1x1 makine is himmyular)
                              · Assume rout true for din. ≤n-1, and conider \varphi: V \rightarrow V with din V = n.
                                          By leaning, \varphi has it least one eigenvalue \lambda \in k. Let U = Im(\varphi - \lambda).
                                         Since \varphi - \lambda has nonhinial kernel (= eigenvectors for \lambda), dim V < \dim V.
                                      Morrow, Le claim U is an invariant subspace for y.
                                              Indeed: if u=(\varphi-\lambda)V \in Im(\varphi-\lambda)=U, then
                                                                                        \varphi(u) = \varphi(\varphi - \lambda) v = (\varphi - \lambda) \varphi(v) \in \text{Im}(\varphi - \lambda) = U.
                                             Now, by induction, \varphi_{|U} \in Hom(U,U) \rightarrow F basis u_1, -, u_m of U
                                                  in which \varphi_{IU} is uper-hiangular. (\varphi(u_i) \in span(u_1...u_i))
                                         Complete to a basis (u_um, v,... vk) of V. Then:
                                        • \varphi(u_i) \in \text{span}(u_1...u_i) \vee
• \varphi(v_i) = (\varphi - \lambda) v_i + \lambda v_i \in \text{span}(u_1...u_m, v_i) \vee

= M(\psi) = M(\psi_{in}) \times M(\psi_{in
     * Rmk: thee's ancher prof that is easier to discover but harder to
                                          follow: again by induction, but now start from Vo = k. vo where
                              vo is an eigenvector of φ, and let U=V/vo, q:V-, U quities.
                      Using \varphi(V_0) \subset V_0, \exists \overline{\varphi} : U \to U st. V \xrightarrow{\varphi} V committee
                                                                                                                                                                                                                                                                       \mathcal{M}(\varphi) = \begin{pmatrix} \frac{|x|^{2}}{2} \\ \frac{|x|}{2} \\ \frac{|x|}{2} \end{pmatrix}
                                (because: (904)10=0 so 904: V-1U factors though V/V0=U).
           By induction hypothesis, \exists Lasis u_1...u_{n-1} of \cup st. \overline{\psi}(u_i) \in span(u_1...u_i) 
 Let v_i \in V such that q(v_i) = u_i. Then q(\psi(v_i)) \in span(u_1...u_i)
                     (Note: (v_0...v_{n-1}) basis of V). = \varphi(v_i) \in \text{span}(v_0, v_1...v_i).
```

Now suppose we have $\varphi: V \rightarrow V$ and a basis $(v_1, ..., v_n)$ of V is $(\varphi) = A$ is $(\varphi) = A$ upper-mangular, ie. each V:= span(v,,,vi) is an invariant subspace of q. Denote by $\lambda_i = a_{ii}$ the diagonal entries of A. Lemma: | 4 is invertible iff all the diagnal entires of A are nouseo. PF: if all is are nouses then q is sujective (have isom.) since $\varphi(v_1) = \lambda_1 v_1$, $\lambda_1 \neq 0$ so $v_1 \in Im \varphi$ $\dot{\varphi}(v_2) = \lambda_2 v_2 + a_{12} v_1, \quad \lambda_2 \neq 0 \quad \text{so} \quad \dot{v_2} = \frac{1}{\lambda_2} (\varphi(v_2) - a_{12} v_1) \in \text{Im } \varphi$ et. = Vi & Im 4 Vi. · if $\lambda_i = 0$ then $\varphi(V_i) \subset V_{i-1}$ so $\varphi_{|V_i|}$ has normal kernel (since $rk \varphi_{|V_i|} \leq dim V_{i-1} \leq dim V_i$); hence $ker \varphi_{|V_i|} = 0$, not invertible. Conllay: | The following are equivalent: (1) λ is an eigenvalue of φ (2) $\varphi - \lambda$ is not invertible
(3) $\lambda = \lambda$; for some diagonal entry of any uper-triangular matrix A representing φ .

((1) \Leftrightarrow (2) since eigenvectors = $\ker(\varphi-\lambda)$, and (2) \Leftrightarrow (3) by applying the lemma to $\varphi-\lambda$ and matrix $A-\lambda I$)