§ 8.2 回归分析

一、回归分析的基本思想

十九世纪, 英国生物学家兼统计学家高尔顿研究发现, $\hat{y} = 33.73 + 0.516x$

其中x表示父亲身高,y表示成年儿子的身高 (单位:英寸,1英寸=2.54厘米)。这表明子代 的平均高度有向中心回归的意思,使得一段时间 内人的身高相对稳定。之后回归分析的思想渗透 到了数理统计的其它分支中。

- 回归分析处理的是变量与变量间的关系。变量间常见的关系有两类:确定性关系与相关关系。
- > 变量间的相关关系不能用完全确切的函数形式表示,但在平均意义下有一定的定量关系表达式,寻找这种定量关系表达式就是回归分析的主要任务。
- 》回归分析便是研究变量间相关关系的一门学科。它通过对客观事物中变量的大量观察或试验获得的数据,去寻找隐藏在数据背后的相关关系,给出它们的表达形式——回归函数的估计。

回归分析——处理变量之间的相关关系的一种最常用的数理统计方法.

1.建立变量之间的相关关系式——回归模型

因变量 $Y = f(X_1, X_2, \dots, X_p) + \varepsilon$ $\varepsilon \sim N(0, \sigma^2)$

回归函数

2.对建立的回归函数作显著性检验.

3.利用建立的回归函数进行预测和控制.

研究两个变量之间相关关系称为一元回归分析;研究多个变量间的相关关系称为多元回归分析.

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p + \varepsilon$$

回归分析

线 性回归分析

非线性回归分析

一元线性回归分析

多元线性回归分析

进行回归分析首先是回归函数形式的选择。当只有一个自变量时,通常可采用画散点图的方法进行选择。

例1 合金的强度y (×10 7 Pa)与合金中碳的含量x (%)有关。为研究两个变量间的关系,首先是收集数据,我们把收集到的数据记为 (x_i,y_i) ,i=1,2,...,n。本例中,我们收集到12组数据,列于表1中

表1 合金钢强度y与碳含量x的数据

序号	<i>x</i> (%)	$y (\times 10^7 \text{Pa})$	序号	<i>x</i> (%)	$y (\times 10^7 \text{Pa})$
1	0.10	42.0	7	0.16	49.0
2	0.11	43.0	8	0.17	53.0
3	0.12	45.0	9	0.18	50.0
4	0.13	45.0	10	0.20	55.0
5	0.14	45.0	11	0.21	55.0
6	0.15	47.5	12	0.23	60.0

为找出两个量 间存在的回归 函数的形式, 可以画一张图: 把每一对数 (x_i,y_i) 看成直角 坐标系中的一 个点,在图上 画出n个点,称 这张图为散点 图, 见图8.4.1

本节重点讨论一元线性回归,其内容为

(1) 建立一元线性回归模型:

$$Y = a + bX + \varepsilon$$

主要任务估计回归系数a,b;

(2) 对所建立的一元线性回归方程进行显著性检验,

检验
$$H_0:b=0$$
;

(3) 利用一元线性回归方程进行预测和控制.

例1 由北京市城市居民家庭生活抽样调查,得1978至1989年人均收入与人均食品消费的12年数据。

以年份作为X,人均收入(或食品消费)为Y

最小二乘法

- > 1805 勒让德
- > 1809 高斯

二、最小二乘法

观测值 y_i 与 x_i 之间的关系式: $y_i = a + bx_i + \varepsilon_i$, $i = 1, 2, \dots, n$.

总的误差平方和

$$Q(a,b) = \sum_{i=1}^{n} \left[y_i - (a+bx_i) \right]^2$$

求使得Q(a,b)达到最小值的 (\hat{a},\hat{b}) 作为回归系数a,b的估计值.

$$\begin{cases} \frac{\partial Q}{\partial a} = 2\sum_{i=1}^{n} [y_i - (a + bx_i)] = 0 \\ \frac{\partial Q}{\partial b} = -2\sum_{i=1}^{n} [y_i - (a + bx_i)]x_i = 0 \end{cases}$$

 $\mathbb{EP} \begin{cases}
 na + nb\overline{x} = n\overline{y} \\
 -nxa + b\sum_{i=1}^{n} x_i^2 = \sum_{i=1}^{n} x_i y_i
\end{cases}$

正规方程组

$$\begin{cases}
 na + nb \overline{x} = n \overline{y} \\
 n\overline{x}a + b \sum_{i=1}^{n} x_{i}^{2} = \sum_{i=1}^{n} x_{i} y_{i} \\
 \hat{b} = \sum_{i=1}^{n} x_{i} y_{i} - n \overline{x}^{2} = \sum_{i=1}^{n} (x_{i} - \overline{x}) y_{i} - \overline{y} \\
 \sum_{i=1}^{n} x_{i}^{2} - n \overline{x}^{2} = \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}$$

$$\hat{a} \neq \overline{y} - \hat{b} \overline{x}$$

最小二乘估计 (ISE)

$$ill \ l_{xx} = \sum_{i=1}^{n} (x_i - x_i)^2 = \sum_{i=1}^{n} x_i^2 - nx^2$$

$$l_{yy} = \sum_{i=1}^{n} (y_i - y_i)^2 = \sum_{i=1}^{n} y_i^2 - ny^2$$

$$l_{xy} = \sum_{i=1}^{n} (x_i - x_i)(y_i - y_i) = \sum_{i=1}^{n} x_i y_i - nx_i y_i$$

$$ill \ \hat{b} = \frac{l_{xy}}{l_{xx}}, \quad \hat{a} = y - \hat{b}x$$

$$y = \frac{l_{xy}}{l_{xx}}$$

由此知回归方程一定过点(x,y).

例2 合成纤维的强度 y 与其拉伸倍数 x 有关,测得

 x_i 2.0 2.5 2.7 3.5 4.0 4.5 5.2 6.3 7.1 8.0 9.0 10.0

 y_i 1.3 2.5 2.5 2.7 3.5 4.2 5.0 6.4 6.3 7.0 8.0 8.1

求 y 对 x 的一元线性回归方程.

解:
$$n = 12$$
, $\sum_{i=1}^{n} x_i = 64.8$ $\sum_{i=1}^{n} y_i = 57.5$ $\bar{x} = 5.4, \bar{y} \approx 4.79$

$$\sum_{i=1}^{n} x_i^2 = 428.18 \sum_{i=1}^{n} y_i^2 = 335.63 \sum_{i=1}^{n} x_i y_i = 378$$

$$l_{xx} = \sum_{i=1}^{n} x_i^2 - n\bar{x}^2 = 428.18 - 12 \times 5.4 \times 5.4 = 78.26$$

$$l_{xy} = \sum_{i=1}^{n} x_i y_i - n \overline{x} \overline{y} = 378 - 5.4 \times 57.5 = 67.5$$

$$\hat{b} = \frac{l_{xy}}{l_{xx}} = \frac{67.5}{78.26} \approx 0.8625$$

$$\hat{a} = y - \hat{b}x \approx 4.79 - 0.8625 \times 5.4 = 0.1325$$

所以,
$$\hat{y} = 0.1325 + 0.8625x$$

例1续 找出例1人均生活费收入 y 对时间 x 的回归方程.

为简便计算,令:

$$x'_{i} = x_{i} - \overline{x} \qquad y'_{i} = y_{i} - \overline{y}$$

$$\| u_{xx} - \overline{x} \|_{xx} = \sum_{i=1}^{n} (x_{i} - \overline{x})^{2} = \sum_{i=1}^{n} x'_{i}^{2}$$

$$l_{xy} = \sum_{i=1}^{n} x'_{i} y'_{i}$$

时间 α_i	收入yi	$\int x_i'$	y_i'	$x_i^{\prime 2}$	$y_i^{\prime 2}$	$x_i'y_i'$	概率论与数理统计
1978	3.65	-5.5	-4.54	30.25	20.61	24.37	
1979	4.15	-4.5	-4.04	20.25	16.32	18.18	n=12,
1980	5.01	-3.5	-3.18	12.25	10.11	11.13	$\bar{x} = 1983.5,$
1981	5.14	-2.5	-3.05	6.25	9.30	7.625	y = 8.194
1982	5.61	-1.5	-2.58	2.25	6.66	3.87	<i>y</i> = 0.174,
1983	5.91	-0.5	-2.28	0.25	5.20	1.14	12
1984	6.94	0.5	-1.25	0.25	1.56	-0.625	$\hat{h} - \frac{l_{xy}}{1 - \frac{1}{x^2}} - \frac{\sum_{i=1}^{x'} x'_i y'_i}{1 - \frac{1}{x^2}}$
1985	9.08	1.5	0.89	2.25	0.79	1.395	$v1{12}$
1986	10.68	2.5	2.49	6.25	6.20	6.225	$l_{xx} \qquad \sum_{i=1}^{12} x_i^{\prime 2}$
1987	11.82	3.5	3.63	12.25	13.18	12.705	i=1
1988	14.37	4.5	6.18	20.25	38.19	27.81	157.145
1989	15.97	5.5	7.78	30.25	60.53	42.79	$=\frac{167116}{143}=1.099$
∑≠23802	98.33) /	1	143	188.65	157.145	

$$\hat{a} = y - \hat{b}x = -2171.67.$$

$$\hat{a} = y - \hat{b}x = -2171.67.$$
 $\hat{y} = -2171.67 + 1.099 x.$

(x_i)	y_i	x_i^2	y_i^2	$x_i y_i$	x = 8.194, y = 4.373
3.65	2.11	13.32	4.45	7.70	12.
4.15	2.37	17.22	5.62	9.84	$l_{xx} = \sum_{i=1}^{12} x_i^2 - 12\overline{x}^2 = 188.648$
5.01	2.72	25.10	7.34	13.58	i=1
5.14	2.95	26.42	8.70	15.16	$l_{yy} = \sum_{i=1}^{n} y_i^2 - 12\overline{y}^2 = 46.31$
5.61	3.18	31.47	10.11	17.84	$t_{yy} - \sum_{i=1}^{n} y_i - 12y - 40.31$
5.91	3.38	34.93	11.42	19.98	$\frac{1}{1} - \sum_{n=1}^{n} \frac{1}{n} = 03.35$
6.94	3.79	48.16	14.36	26.30	$l_{xy} = \sum_{i=1}^{\infty} x_i y_i - 12\overline{x} \ \overline{y} = 93.35$
9.08	4.67	82.45	21.81	42.40	
10.68	5.43	114.06	29.48	57.93	$\hat{b} = l_{xy} / l_{xx} = 0.495$
11.82	6.05	139.71	36.60	71.51	$\hat{a} = y - \hat{b}x = 0.317$
14.37	7.43	206.50	55.20	106.77	
15.97	8.41	225.04	70.73	134.31	$\hat{y} = 0.317 + 0.495x$
> 98.33	52.48	994.38	275.82	523.38	

回归方程的显著性检验

在使用回归方程作进一步的分析以前,首先应对回归方程是否有意义进行判断。

如果b=0,那么不管x如何变化,y不随x的变化作线性变化,那么这时求得的一元线性回归方程就没有意义,称回归方程不显著。如果 $b\neq0$,y随x的变化作线性变化,称回归方程是显著的。

综上,对回归方程是否有意义作判断就是要作如下的

显著性检验: H_0 : b=0 vs H_1 : $b\neq 0$

拒绝H₀表示回归方程是显著的。

几种检验方法:

▶T检验

▶F检验(平方和分解)

▶相关系数的显著性检验

方和分解公式及回归的效果检验 概率於与整理後4

回归估计方程 $\hat{y} = \hat{a} + \hat{b}x$

实际值 $y_i = a + bx_i + \varepsilon_i, i = 1, \dots, n$.

$$y_i = \hat{y}_i + (y_i - \hat{y}_i)$$

$$\mathbf{y}_i - \mathbf{y} = (\mathbf{y}_i - \hat{\mathbf{y}}_i) + (\hat{\mathbf{y}}_i - \mathbf{y})$$

$$l_{yy} = \sum_{i=1}^{n} (y_i - \overline{y})^2 = \sum_{i=1}^{n} [(y_i - \hat{y}_i) + (\hat{y}_i - \overline{y})]^2$$

$$= \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 + \sum_{i=1}^{n} (\hat{y}_i - \overline{y})^2 + \sum_{i=1}^{n} (y_i - \hat{y}_i)(\hat{y}_i - \overline{y}) = 0$$

而
$$\sum_{i=1}^{n} (y_i - \hat{y}_i)(\hat{y}_i - \bar{y}) = \sum_{i=1}^{n} (y_i - \hat{a} - \hat{b}x_i)(\hat{a} - \hat{b}x_i - \bar{y})$$

$$= (\hat{a} - \bar{y})\sum_{i=1}^{n} (y_i - \hat{a} - \hat{b}x_i) - \hat{b}\sum_{i=1}^{n} (y_i - \hat{a} - \hat{b}x_i)x_i$$
(由正规方程组) = 0

$$\frac{\partial Q}{\partial a} = -2\sum_{i=1}^{n} [y_i - (a + bx_i)] = 0$$

$$\frac{\partial Q}{\partial b} = -2\sum_{i=1}^{n} [y_i - (a + bx_i)]x_i \neq 0$$

$$l_{yy} = \sum_{i=1}^{n} (\hat{y}_i - y)^2 + \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = S_R + S_e = S_T.$$

回归平方和(regression sum of squares)

残差平方和(residual sum of squares)

$$S_e = l_{yy} - S_R = l_{yy} - \hat{b}l_{xy}$$

一元线性回归模型: Y= Q+bX+E, E~ / (0, QZ)

 $y_i = a + bx_i + \varepsilon_i, i = 1, \dots, n.$ $\varepsilon_i \rightarrow N(0, \sigma^2)$ 且相互独立

判明X与Y之间是否有线性相关关系 线性回归显著性检验的 F 检验法

检验 $H_0: b = 0, H_1: b \neq 0$

检验统计量
$$F = \frac{S_R}{S_e/(n-2)} \sim F(1,n-2)(H_0)$$
 为真)

若 H_0 为真,则F应该不大,否则就拒绝 H_0 .

拒绝域为: $\{F > F_{1-\alpha}(1,n-2)\}$ 右侧检验

进一步,有关 S_R 和 S_e 的分布,有如下定理。

定理8.4.3 设 $y_1, y_2, ..., y_n$ 相互独立,且

$$y_i \sim N(a + bx_i, \sigma^2), i=1, ..., n,$$

则在上述记号下,有

(1)
$$S_e/\sigma^2 \sim \chi^2(n-2)$$
,

- (2) 若 H_0 成立,则有 $S_R/\sigma^2 \sim \chi^2(1)$
- (3) $S_R = S_e$, \overline{y} 独立 (或 $\hat{\beta}_1 = S_e$, \overline{y} 独立)。

例4 对例2所做的回归方程做F检验, $\alpha = 0.05$.

例2合成纤维的强度与其拉伸倍数有关试验.

$$n = 12, l_{xx} = 78.26, l_{xy} = 67.5.$$
 $\hat{y} = 0.1325 + 0.8625x.$

解: $(1) H_0: b=0$

(2)
$$H_0$$
为真时, $F = \frac{S_R}{S_e / (n-2)} \sim F(1, n-2)$

(3) 查表得 $F_{1-0.05}(1,10) = 4.96$,故拒绝域为[4.96,∞).

(4) 计算
$$l_{yy} = \sum_{i=1}^{n} y_i^2 - n\overline{y}^2 = 335.63 - \frac{57.5^2}{12} \approx 60.1092$$

则
$$S_R = l_{xy}^2 / l_{xx} = 67.5^2 / 78.26 = 58.2194$$

$$S_e = l_{yy} - S_R = 60.1092 - 58.2194 = 1.8898$$

$$f = \frac{S_R}{S_e/(n-2)} = \frac{58.2194}{1.8898/10} = 308.072 > 4.96$$

拒绝 H₀,回归方程是显著的.

例5 对例3所作的回归方程做F检验, $\alpha = 0.05$.

(1)
$$H_0: b = 0$$

$$(2)H_0$$
为真时, $F = \frac{S_R}{S_e/(n-2)} \sim F(1,n-2)$

(3) 给定 $\alpha = 0.05$, 查表得 $F_{0.95}(1,10) = 4.96$

$$\alpha = 0.01 \, \text{Fr}, F_{0.99}(1,10) = 10.04$$

$$(4)S_R = \hat{b}l_{xy} = 0.495 \times 93.35 = 46.21$$

$$S_e = l_{yy} - S_R = 46.31 - 46.21 = 0.10$$

$$f = \frac{(n-2)S_R}{S_e} = 4621 > F_{0.99}(1,10)$$

拒绝H₀,即回归效果是显著的.

练习 在合金钢强度的例1中,求回归方程,并作关于回归方程的显著性检验。

$$\hat{y} = 28.12 + 132.66x$$
.

$$S_T = l_{yy} = 345.06$$
 $f_T = 11$
 $S_R = \hat{b}^2 l_{xx} = 132.66^2 \times 0.0186 = 327.34,$ $f_R = 1$
 $S_e = S_T - S_R = 345.06 - 327.34 = 17.72$ $f_e = 10$

来源	平方和	自由度	均方	F比
回归	$S_R = 327.34$	$f_A=1$	$MS_A = 327.34$	184.94
残差	$S_e = 17.72$	f_e =10	$MS_e = 1.77$	
总和	$S_T = 345.06$	f_T =11		

若取 α =0.01,则 $F_{0.99}(1,10)$ =10<F,因此在显著性水平 0.01下回归方程是显著的。

残差平方和 $S_e = l_{yy} - S_R = l_{yy} - \hat{b}l_{xy}$

可以证明
$$\frac{S_e}{\sigma^2} \sim \chi^2 (n-2)$$
(定理8.5)

从而
$$E(\frac{S_e}{\sigma^2}) = n - 2, E(\frac{S_e}{n-2}) = \sigma^2.$$

 σ^2 的无偏估计量为

$$\hat{\sigma}^2 = \left(\frac{S_e}{n-2}\right) = \frac{1}{n-2} \left(l_{yy} - \hat{b}l_{xy}\right).$$

***系数b的置信区间(补充)

$$Y = a + bx + \varepsilon$$
, $\varepsilon \sim N(0, \sigma^2)$.

$$\hat{b} \sim N(b, \sigma^2/l_{xx}), \qquad \frac{(n-2)\hat{\sigma}^2}{\sigma^2} = \frac{S_e}{\sigma^2} \sim \chi^2(n-2).$$

并且 \hat{b} , S_e 相互独立,因此 $\left(\frac{\hat{b}-b}{\hat{\sigma}}\sqrt{l_{xx}}\right)$ t(n-2).

当回归效果显著时,对系数6作区间估计。

系数b的置信水平为 $1-\alpha$ 的置信区间为

$$\left[\hat{b} \pm t_{\alpha/2}(n-2) \times \frac{\hat{\sigma}}{\sqrt{l_{xx}}}\right].$$

作业: p.430-431 8.12, 8.17

