(80445) מכנים אלגבריים - 07 מכנים פתרון מטלה

2024 ביוני 28

'סעיף א

נוכיח כי חבורה מסדר 45 היא לא פשוטה.

|G|=45 אמקיימת כלשהי עבור G עבור $Syl_5(G)$ את נבחן הוכחה.

. החבורה מטעמי גודל היחידות היחידות ואלה ואלה $n_5=1,6,26$ נסיק ולכן נסיק $n_5=1\pmod{5}$ ממשפט סילו השלישי נקבל כי

 \exists אנו גם יודעים כי $0 \mid n_5 \mid n_5$ ולכן $n_5 \mid n_5 \mid n_5$ בלבד וממשפט סילו השני נוכל להסיק כי קיימת תת־חבורה נורמלית מסדר $n_5 \mid n_5 \mid n_5$ לא פשוטה.

'סעיף ב

נוכיח כי אם חבורה מסדר 30 אז היא לא פשוטה.

 $|G| = 30 = 2 \cdot 3 \cdot 5$ יש חבורה היי תהי G חבורה תהי

 $n_3=10$ כי נניח ולכן אפשוטה לא G כי השני מילו ממשפט חילו אם $n_3=1$ אם הוא הואכן נניח כי אם הראשון האלישי ממשפטי מילו אם הואכן אם הואכן אם הואכן אם הואכן ממשפטי מילו הראשון והשלישי נסיק כי חי $n_3=1$ אם הואכן ממשפטי מילו הראשון והשלישי נסיק כי חי $n_3=1$ אם הואכן ממשפטי מילו הואכן הואכן הואכן מילו הואכן הואכן

 $P_i\cap P_j=\{e\}$ נגדיר i
eq [10] גם לכל ולכן $i\in [10]$ לכל לכל $P_i\simeq \mathbb{Z}_{/3}$ ונסיק כי לפקבל ונסיק איברים $\{P_1,\ldots,P_{10}\}=Syl_3(G)$ נסיק אם כן כי קיימים 20 איברים מסדר E_i

באופן מסדר 5 איברים מסדר 5 ולכן שנ סדר 5 ולקבל כי ישנן של בלבד, ונקבל כי מסדר $n_5=6$ ולכן נניח כי $n_5=1,6$ ולכן דומה נקבל כי $n_5=1,6$ איברים מסדר $n_5=1$ ובכל מקרה $n_5=1$ א פשוטה.

. תהיp חבורה מסדר סופי ויq ראשוני

'סעיף א

.Gשל של החבורת בחבורת מוכלת שנסמן שנסמן שנסמן שנסילו על כל כל תר-חבורת על שנסמן שנסמן

G של "סילו של "תת-חבורה P תאשר $gQg^{-1} \leq P$ כך "כך "סילו של "סילו של "סילו של "מלמה שהוכחה מלמה מלמה מלחה", ונקבל צמודות, ולכן גם " $g \in G$ חבורה G-סילו כלשהי, ונקבל אנו יודעים ממשפט סילו השני כי כל חבורות "סילו צמודות, ולכן גם " $g \in G$ מצמיד את G-סילו כלשהי, ונקבל

$$q^{-1}qQq^{-1}q = Q < q^{-1}Pq = P'$$

'סעיף ב

 $P_G \leq G$ מוכלת בתת־חבורת מיסילו על מהיסילו היסילו כי כל תת־חבורה כי כל תת־חבורה מוכלת מוכלת הת־חבורה לו

מוכלת P_H כי מובע מתקיימים מתקיימים ולכן וולכן איז אולכן פובע $P_H \leq H \leq G \implies P_H \leq G$ מוכלת על־פי הגדרה איז חבורת $P_G \leq G$ מוכלת באיזושהי חבורה $P_G \leq G$

'סעיף ג

תהיחבורה PN/N ויN של N ויP-סילו של $P\cap N$ היא תת-חבורה P-סילו היא תת-חבורה לכל חבורת ק-סילו של PN/N היא תת-חבורה P-סילו של P-סילו של

G אנו יודעים כי N היא איחוד של מחלקות צמידות של G, ואנו יודעים גם כי ל-G מחלקות צמידות של מחלקות צמידות של מידעה אילו R אילו R מורכבת ממחלקת הצמידות של R אז בהתאם R אז בהתאם R ולכן חיתוך זה הוא חבורת R וחבורת R סילו של R.

. באופן הטענה נכונה אם אוכמובן וכמובן $P\cap N=\{e\}$ כי להסיק נוכל להסיק של P לענה ממחלקת הצמידות של אוכמובן נוכל להסיק כי

 $R \cap P$ של סילו של תת-חבורה $P \cap P$ תת-חבורה של אל של תת-חבורה תחרה בי מצאנו כי

 $PN/N\simeq\{e\}$ או $PN/N\simeq P$ ולכן נקבל , $PN/N\simeq P/(P\cap N)$ או או ממשפט האיזומורפיזם השני נקבל

. במקרה האשון נקבל נבדוק את המקרה של G/N של היא תת־חבורה היא המקרה המקרה במקרה במקרה במקרה במקרה היא במקרה היא במקרה במקרה היא במקרה היא במקרה במקרה במקרה היא במקרה במקרה

'סעיף א

 $.D_6$ של סילו p־סילו את החבורות נמצא את לכל לכל

$$|D_6| = 12 = 2^2 \cdot 3$$
 נבחין כי

. עצמו D_6 איז דהינו מ־2 חבורת חבורת מ־3 מ־3 לכן לכל לכל לכל לכל מ־3 חבורת מ־3 מ־3 איז לכן לכל האשוני מ

נראה כי אם התנאי, ולכן אם קיימות שתי חבורה המקיימת היא הבורה מל $\langle \sigma^3, au \rangle$. נראה כי $n_2=1$, נסיק ולכן אם קיימות שתי חבורות כאלה מבראה כי $n_2=1$ ולכן נסיק הצמדות נגלה כי זוהי החבורה הכזו היחידה.

נעבור למצוא את 3, נקבל $n_3 = 1 \pmod 3$, ולכן $n_3 = 1 \pmod 3$ ולכן $n_3 = 1 \pmod 3$ חבורה המקיימת את הטענה, ומבדיקה היא צמודה $n_3 = 1 \pmod 3$.

'סעיף ב

 A_4 של "סילו החבורות כל החבורות נמצא על לכל לכל לכל את נמצא את לכל החבורות אוני ל

. אנו מה הערך לגלות מה מה לגלינו $n_2=1,3,n_3=1,4$ וכי וכי $|A_4|=12=2^2\cdot 3$ כשעלינו לגלות אנו כבר יודעים כי

נבחין כי $\langle (1\,2)(3\,4), (1\,3)(2\,4) \rangle$ מבדיקה ישירה היא חבורה מגודל 4 ולכן מהווה 2-סילו, ומבדיקה ישירה נגלה כי הוא היחיד. מבא 3-סילו, לדוגמה $\langle (1\,2\,4), (1\,2\,4) \rangle$, ולכן כמובן גם $\langle (1\,2\,4), (1\,2\,4) \rangle$, ואלו הם כל ה-3-סילו.

'סעיף ג

. נוכיח כי לא קיימת פעולה נאמנה של חבורת הקוורטרניונים Q על קבוצה עם 4 איברים

 $Q \circlearrowright X$, ונניח בשלילה כי קיימת פעולה נאמנה |X|=4, ונניח בשלילה כי קיימת פעולה נאמנה

. נראה כי |Q|=8=2 איבר לא נייטרלי בלשהו. לא טריוויאלי, ונגדיר |Q|=8=2 איבר לא נייטרלי כלשהו

. הפעולה סתירה ונקבל סתירה איזומורפית בבנייה. אוזומורפית עודעים פו וודעים אוזו $Q o \operatorname{Sym}(X)$ הוא איזומורפית הפעולה איזומורפית אוזומורפית וודעים פו

. תהי pראשוני מסדר מסדר חבורה G

'סעיף א

 $.p^k$ מסדר מחבורה תת־חבורה מכילה $p^k\mid |G|$ נוכיח נוכיח נוכיח אז $p^k\mid |G|$

הוכחה.