

25 sep CT chemistry

Chemistry (SRM Institute of Science and Technology)

Scan to open on Studocu

DEPARTMENT OF CHEMISTRY College of Engineering and Technology

SRM Institute of Science and Technology
Kattankulathur – 603203

INTERNAL ASSESSMENT - I (FJI)

Program: B.Tech Course Code & Title: 21CYB101J & Chemistry Year & Sem: 1 Year & I Sem

Course Articulation Matrix

Date: 25-09-2024 Duration: 8.00-8.50am Max, Marks: 25 marks

At the end of this course, learners will be able to:			POs				
Course Outcomes (CO)	1	2	3	4	5		
CO1 Rationalize bulk properties using periodic properties of elements, evaluate water quality parameters like hardness and alkalinity	3		3	2			
CO2 Utilize the concepts of thermodynamics in understanding thermodynamically driven chemical reactions, determine acidic strength and redox potentials of aqueous solution	3	3	3				
CO3 Perceive the importance of stereochemistry in synthesizing organic molecules applied in pharmaceutical industries, determine acidic strength and conductance of aqueous solution		3	3	2			
CO4 Utilize the concepts of polymer processing for various technological applications, determine average molecular weight of the polymer	3		3	3			
CO5 Analyze the importance of advanced processing techniques towards engineering applications and measure the acidic strength of aqueous solution	3		3		3		

$Part - A (5 \times 1 = 5 Marks)$

Answer ALL The Questions

1	When the valence d orbitals of the central metal ion in octahedral complex are split in
	energy levels in CFT, which orbitals are raised to higher energy? (a) d_{xy} and $d_{x^2-y^2}$ (b) d_{xy} , d_{xz} and d_{yz} (c) d_{xz} and d_{yz} (d) $d_{x^2-y^2}$ and d_{z^2}
2	The crystal field splitting energy (Δ o) is inversely proportional to
	(a) geometry (b) number of d-electrons (c) coordination number (d) oxidation state
3	Which of the following complex is most stable?
	(a) $[AlBr_6]^{3-}$ (b) $[AlI_6]^{3-}$ (c) $[AlF_6]^{3-}$ (d) $[AlCl_6]^{3-}$
4	How many geometrical isomers are possible for [Co(NH ₃) ₃ (NO ₂) ₃] complex?
	(a) 2 (b) 3 (c) 4 (d) 0
5	The number of unidentate ligands in the complex ion is called
	(a) EAN (b) Coordination number (c) Primary valency (d) Oxidation number

$Part - B (2 \times 10 = 20 Marks)$

- a. i. Calculate the CFSE of d⁴ and d⁷ in high spin tetrahedral complexes in terms of Δσ
 (6 Marks)
 - ii. Write short note on linkage and hydrate isomerism in coordination compounds.

 (4 Marks)

(OR)

- b. i. Calculate the energy of the [Ti(H₂O)₆]³⁺complex with a wave number of 20,000 cm⁻¹. (5 Marks)
 - ii. Which among the following complexes have large crystal field splitting in each pair with appropriate justification?

 (1) [Co(H₂O)₆]²⁺ and [Co(H₂O)₆]³⁺
 (2) [Co(CN)₆]³⁺and [Co(NH₃)₆]³⁺
- 7 a. Give the steps for Slater's rule and using it, calculate Z_{eff} for an electron residing in 2p level of F ion (Z for Fluorine atom is 9). (10 Marks)

(OR

- b. i. What are the characteristics of hard acids? Give few examples. (5 Marks)
 - ii. Calculate the magnetic moment of high spin complexes of Fe²⁺ and Co³⁺ [Z for Fe and Co are 26 & 27 respectively]. (5 Marks)

Q.No	BL	CO	PO
1	2		4
2	1		1
3	3	1	3
4	3		3
5	1		1

O.No	BL	СО	PO
Q.No 6 a.	3		4
	1		1
6b.	3		4
	4	1	3
7a.	3		3
*		- III-II	
7b.	2		1
	3		3

DEPARTMENT OF CHEMISTRY College of Engineering and Technology

SRM Institute of Science and Technology Kattankulathur - 603203

INTERNAL ASSESSMENT - I (FJ1)

Program: B.Tech Course Code & Title:21CYB101J & Chemistry Year &Sem: 1 Year &I Sem

Date: 25-09-2024 Duration: 8.00-8.50am Max. Marks: 25 marks Set-2

Course Articulation Matrix

At the end of this course, learners will be able to:		POs				
Course Outcomes (CO)	1	2	3	4	5	
CO1 Rationalize bulk properties using periodic properties of elements, evaluate water quality parameters like hardness and alkalinity	3		3	2		
CO2 Utilize the concepts of thermodynamics in understanding thermodynamically driven chemical reactions, determine acidic strength and redox potentials of aqueous solution	3	3	3			
Perceive the importance of stereochemistry in synthesizing organic molecules applied in pharmaceutical industries, determine acidic strength and conductance of aqueous solution		3	3	2		
CO4 Utilize the concepts of polymer processing for various technological applications, determine average molecular weight of the polymer	3		3	3		
CO5 Analyze the importance of advanced processing techniques towards engineering applications and measure the acidic strength of aqueous solution	3		3		3	

$Part - A (5 \times 1 = 5 Marks)$

Answer ALL The Questions

1	Among the following base, v (a) NH ₃ (b) I ⁻ (c) H ₂ (which one is soft? O (d) OH
2	An aqueous solution of Ni ² BM. When ammonia is adde	the contains [Ni(H ₂ O) ₆] ²⁺ and its magnetic moment is 2.83 d in it the magnetic moment of solution
	(a) will remain the same	(b) will increase from 2.83 BM
	(c) will decrease from 2.83 B	
3	How many geometrical isom	ers are possible in $[Al(C_2O_4)_3]^{3-}$?
	(a) 0 (b) 2 (c) 3	(d) 4

[Fe(H₂O)₆]²⁺ and [Fe(CN)₆]⁴⁻ differ in:

- (a) Geometry and magnetic moment
- (b) Geometry and hybridization
- (c) Magnetic moment and color
- (d) Hybridization and number of d electrons
- 5 The electronic configuration of metal atom/ionic octahedral complex with d4 configuration, if ∆₀< pairing energy is:

 - (a) $t_{2g}^4 e_g^0$ (b) $e_g^4 t_{2g}^0$ (c) $t_{2g}^3 e_g^1$ (d) $e_g^2 t_{2g}^2$

$Part - B (2 \times 10 = 20 Marks)$

What are different types of isomerism in coordination compounds? Describe 6. a. i. geometrical and optical isomerism with suitable examples.

(10 Marks)

- (OR)
- Explain, why the transition metal coordination compounds with strong field ligands b. i. are yellow, orange or red in color, whereas with weak field ligands they are often blue-green, blue or indigo in color. (5 Marks)
 - ii. Draw structures for linkage isomers of [Co(NH₃)₅NO₂]Cl₂and optical isomers of [CoCl2(en)2]+ (5 Marks)
- What are the features of crystal field splitting theory? Calculate CFSE values in 7 a. terms of Δ_o for high spin and low spin octahedral complexes having d⁵ and d⁷ configuration. (10 Marks)

(OR)

Explain the factors affecting crystal field splitting with suitable examples. b. i.

(6 Marks)

With examples, define hard base and soft base.

(4 Marks)

Q.No	BL	CO	PO
1	1		1
2	3		3
3	2	1	4
4	3		3
5	2		4

Q.No 6 a.	BL	CO	PO
6 a.	1	N JAMES	1
6b.	3	-	3
	2	Y WAR	4
7a.	3		3
7b.	2		4
	1		1