CZ4041/CE4041: Machine Learning

Lesson 7a: Perceptron

Kelly KE

School of Computer Science and Engineering, NTU, Singapore

Acknowledgements: Some figures are adopted from the lecture notes of the book "Introduction to Data Mining" (Chap. 5). Slides are modified from the version prepared by Dr. Sinno Pan.

Instructor's Information

- Name: Ke Yiping, Kelly
- Email: ypke@ntu.edu.sg
- **Phone:** 6790-5046
- Office: N4-02a-12

Lecture and Tutorial Information

- Lecture time/venue (2nd half)
 - Weeks 7 -12, Tuesdays 11:30am 1:30pm
 - Online via MS Teams
 - CZ/CE4041 in NTULearn → Information → Teams link (The <u>SAME</u> link will be reused for all lectures)
- ➤ Tutorial time/venue (2nd half)
 - Weeks 8, 9, 10,12, Thursdays 1:30 2:30pm
 - Online via MS Teams
 - CZ/CE4041 in NTULearn → Information → Teams link (The <u>SAME</u> link will be reused for all tutorials)

Lecture and Tutorial Information

- ightharpoonup Q&A (2nd half)
 - Send questions via email ypke@ntu.edu.sg
 - Send questions via Teams
 - Make an appointment
- ➤ My personal site
 - https://keyiping.wixsite.com/index
 - Check information when NTULearn is down

Outline

- Artificial Neural Networks
 - Perceptrons
 - Multi-layer Neural Networks

Artificial Neural Networks (ANN)

• The study of ANN was inspired by attempts to simulate biological neural systems

Artificial Neural Networks (cont.)

X_1	X_2	X_3	y
1	0	0	-1
1	0	1	1
1	1	0	1
1	1	1	1
0	0	1	-1
0	1	0	-1
0	1	1	1
0	0	0	-1

Output y is 1 if at least two of the three inputs are equal to 1

Artificial Neural Networks (cont.)

- Human brain is a densely interconnected network of neurons, connected to others via axons.
- Axons are used to transmit nerve impulses from one neuron to another
- The human brain learns by changing the strength of the synaptic connection between neurons
- An ANN is composed of an interconnected assembly of nodes and directed links.

Outline

- Artificial Neural Networks
 - Perceptrons
 - Multi-layer Neural Networks

ANN: Perceptron

X_{-1}	X_{2}	•••	X_{d}
1	0	•••	0
1	0	•••	1
1	1	•••	0
1	1	•••	1
0	0	•••	1
0	1	•••	0
0	1	•••	1
0	0	•••	0

Each input node is connected via a weighted link to the output node. Weights can be positive, negative or zero (no connection)

ANN: Perceptron (cont.)

$$y = a(z)$$
, where $a(z) = \text{sign}(z) = \begin{cases} 1, & z \ge 0 \\ -1, & \text{otherwise} \end{cases}$

- Model is an assembly of inter-connected nodes and weighted links
- Output node first sums up each of its input value according to the weights of its links
- Compare the weighted sum against some threshold θ
- Produce an output based on the sign of the result

ANN: Perceptron (cont.)

• Mathematically, the output of a perceptron model can be expressed in a more compact form

$$y = \operatorname{sign}\left(\sum_{i=1}^{d} w_{i}x_{i} - \theta\right)$$

$$\downarrow \qquad \qquad \text{Inner product}$$

$$y = \operatorname{sign}(\mathbf{w} \cdot \mathbf{x})$$

$$\text{where } \mathbf{x} = (x_{0}, x_{1}, x_{2}, \dots, x_{d})$$

$$\mathbf{w} = (w_{0}, w_{1}, w_{2}, \dots, w_{d})$$

$$w_{0} = -\theta, \text{ and } x_{0} = 1$$

Inner Product: Review

• Given two vectors \boldsymbol{x} and \boldsymbol{z} , which are both of d dimensions, the <u>inner product</u> between \boldsymbol{x} and \boldsymbol{z} is defined as

$$\mathbf{x} \cdot \mathbf{z} = \sum_{i=1}^{d} (x_i \times z_i)$$

$$\mathbf{x} = (x_1, x_2, ..., x_d)$$
 $\mathbf{z} = (z_1, z_2, ..., z_d)$

ANN: Perceptron (cont.)

$$y = \operatorname{sign}(\mathbf{w} \cdot \mathbf{x})$$

$$\mathbf{w} = (x_0, x_1, x_2, ..., x_d)$$

$$\mathbf{w} = (w_0, w_1, w_2, ..., w_d)$$

$$\mathbf{w} \cdot \mathbf{x} = \sum_{i=0}^{d} (w_i \times x_i) = \sum_{i=1}^{d} (w_i \times x_i) + w_0 \times x_0$$

$$w_0 = -\theta, \text{ and } x_0 = 1$$

$$y = \operatorname{sign}\left(\sum_{i=1}^{d} w_i x_i - \theta\right) \longleftrightarrow y = \operatorname{sign}(\mathbf{w} \cdot \mathbf{x})$$

Perceptron: Making Prediction

• Given a learned perceptron with $w_1 = 0.5$, $w_2 = -1$, and $\theta = 0$

Test data:

 $egin{array}{c|ccc} X_1 & X_2 \\ \hline X & 1 & 1 \\ \hline \end{array}$

$$y = sign(1 \times 0.5 + 1 \times (-1))$$

= $sign(-0.5) = -1$

Perceptron: Learning

- During training, the weight parameters **w** are adjusted until the outputs of the perceptron become consistent with the true outputs of training data
- The weight parameters **w** are updated iteratively or in an online learning manner

The 2nd Epoch starts

- Algorithm: $\int_{0}^{\infty} d \operatorname{dimensions}$
- 1. Let $D = \{(x_i, y_i) \mid i = 1, 2, ..., N\}$ be the set of training examples, t = 0
- 2. Initialize **w** with random values \mathbf{w}_0
- 3. Repeat
- 4. **for** each training example (x_i, y_i) **do**
- 5. Compute the predicted output \hat{y}_i
- 6. Update \mathbf{w}_t by $\mathbf{w}_{t+1} = \mathbf{w}_t + \lambda(y_i \hat{y}_i)\mathbf{x}_i$
- 7. t = t + 1
- 8. end for
- 9. Until stopping condition is met

• Why using the following weight update rule?

$$\mathbf{w}_{t+1} = \mathbf{w}_t + \lambda (y_i - \hat{y}_i) \mathbf{x}_i$$

Induced based on a gradient descent method

Learning rate $\lambda \in (0,1]$

Gradient Descent

$$x^* = \arg\min_{x} f(x)$$

 χ

• Weight update rule

$$\mathbf{w}_{t+1} = \mathbf{w}_t + \lambda (y_i - \hat{y}_i) \mathbf{x}_i$$

• Weight update rule
$$\mathbf{w}_{t+1} = \mathbf{w}_t + \lambda(y_i - \hat{y}_i)\mathbf{x}_i \qquad \mathbf{w}_{t+1} = \mathbf{w}_t - \lambda \frac{\partial E(\mathbf{w})}{\partial \mathbf{w}}$$

 Consider the loss function for each training example as $E_i \triangleq y_i - \hat{y}_i$ $\hat{y}_i = \text{sign}(\mathbf{w}_t \cdot \mathbf{x}_i)$

$$E = \frac{1}{2}E_i^2 = \frac{1}{2}(y_i - \hat{y}_i)^2 = \frac{1}{2}(y_i - \text{sign}(\mathbf{w}_t \cdot \mathbf{x}_i))^2$$

Update the weight using a gradient descent method

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \lambda \frac{\partial E(\mathbf{w})}{\partial \mathbf{w}} = \mathbf{w}_t - \lambda \underbrace{\frac{\partial E(\hat{y})}{\partial \hat{y}} \frac{\partial \hat{y}(\mathbf{z})}{\partial \mathbf{z}} \frac{\partial z(\mathbf{w})}{\partial \mathbf{w}}}_{\text{Chain rule}}$$

$$E = \frac{1}{2} (y - \hat{y})^2 \quad \hat{y} = \text{sign}(z) \quad z = \mathbf{w} \cdot \mathbf{x}$$

Chain Rule of Calculus (Review)

- Suppose that y = g(x) and z = f(y) = f(g(x))
- Chain rule of calculus:

$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial y} \frac{\partial y}{\partial x}$$

• Generalized to the vector case: suppose $\mathbf{x} \in \mathbb{R}^m$, $\mathbf{y} \in \mathbb{R}^n$

$$\frac{\partial z}{\partial x_i} = \sum_{j} \frac{\partial z}{\partial y_j} \frac{\partial y_j}{\partial x_i}$$

• The weight update formula for perceptron:

Perceptron Weights Update

$$\mathbf{w}_{t+1} = \mathbf{w}_t + \lambda (y_i - \hat{y}_i) \mathbf{x}_i$$

- If the prediction is correct, $(y \hat{y}) = 0$, then weight remains unchanged $\mathbf{w}_{t+1} = \mathbf{w}_t$
- If y = +1 and $\hat{y} = -1$, then $(y \hat{y}) = 2$
- The weights of all links with positive inputs need to be updated by increasing their values
- The weights of all links with negative inputs need to be updated by decreasing their weights

\boldsymbol{x}_i	x_{i1}	•••	x_{ik}	•••	x_{id}
	> 0		= 0		< 0
\mathbf{v}_{t+1}	$w_1 \uparrow$	•••	w_k	•••	$w_d \downarrow$

Perceptron Weights Update (cont.)

$$\mathbf{w}_{t+1} = \mathbf{w}_t + \lambda (y_i - \hat{y}_i) \mathbf{x}_i$$

- If y = -1 and $\hat{y} = +1$, then $(y \hat{y}) = -2$
- The weights of all links with positive inputs need to be updated by decreasing their values
- The weights of all links with negative inputs need to be updated by increasing their weights

Convergence

• The decision boundary of a perceptron is a linear hyperplane

• The perceptron learning algorithm is guaranteed to converge to an optimal solution for linear classification problems

Perceptron Limitation

• If the problem is not linearly separable, the algorithm fails to converge

Nonlinearly separable data given by the XOR function

