

CSCI 4621/5621 Intro to CyberSecurity

10: ESSENTIAL CRYPTOGRAPHIC TOOLS

Vassil Roussev

vassil@cs.uno.edu

READING: Oorschot [ch2]

THE WORLD OF ALICE & BOB

- Alice & Bob want to communicate securely over an insecure channel, where:
- Trudy (intruder) may interfere *arbitrarily* with the communication.

SECURITY REQUIREMENTS

Confidentiality:

- » only sender, intended receiver should be able to understand message contents
 - sender encrypts message
 - receiver decrypts message

• Authentication:

- » sender, receiver want to confirm identity of each other
- Message integrity:
 - » sender, receiver want to ensure message not altered (in transit, or afterwards)
 without detection

WHO MIGHT ALICE & BOB BE?

- Real-life people
- Web browser/server for electronic transactions
- Online banking client/server
- DNS servers
- Routers exchanging routing table updates

• Generally, any two processes communicating over the network

ADVERSARIAL MODEL

- Q: What can Trudy do?
- A: Arbitrarily manipulate the message exchange
 - » eavesdrop
 - → intercept all messages
 - » fake/replay
 - → send spoofed messages into connection, or replay old messages
 - » impersonate
 - → can fake (spoof) source address in packet (or any field in packet)
 - » hijack
 - → take over ongoing connection by removing sender or receiver, inserting himself in place
 - » deny service
 - → prevent service from being used by others (e.g., by overloading resources)

CRYPTO BUILDING BLOCKS

BASIC CRYPTO TERMS

SIMPLE ENCRYPTION SCHEME

Substitution cipher: substituting one thing for another

» monoalphabetic cipher: substitute one letter for another

```
plaintext: abcdefghijklmnopqrstuvwxyz
```

ciphertext: mnbvcxzasdfghjklpoiuytrewq

```
E.g.: plaintext: bob. i love you. alice
```

ciphertext: nkn. s gktc wky. mgsbc

Key → the mapping from the set of 26 letters to the set of 26 letters

CRYPTANALYSIS

- Ciphertext-only attack:
 - » Trudy has ciphertext that she can analyze
- Two approaches
 - » Brute force
 - Search through all keys:
 - Must be able to differentiate resulting plaintext from gibberish
 - » Statistical analysis

- Known-plaintext attack
 - » Trudy has some plaintext corresponding to some ciphertext
 - » e.g., in monoalphabetic cipher, Trudy determines pairings for

alicebo

- Chosen-plaintext attack:
 - » Trudy can get the ciphertext for some chosen plaintext

VIGINERE CIPHER

- Invented by Bellaso in 1553,
 - » misattributed to Viginere in the 19th century
- Idea:
 - » string together multiple substitution ciphers
 - » first broken in 1863 by Kasiski
- A version used in the Enigma machines
 - » rotor-based implementation
 - » + plugboard → letter swaps

Modern approach to cryptography

- Security based solely on key secrecy
 - » Algorithm is known to everyone (standard)
 - » Only keys are secret
- Symmetric/private key cryptography
 - » Uses one (shared) private key
- Asymmetric/public key cryptography
 - » Uses of a pair of <public, private> keys
- Cryptographic hash functions
 - » Generate message digests
 - » Used to verify integrity of transmission

SYMMETRIC KEY CRYPTOGRAPHY

- Confidentiality is based on having a secret shared key
 - » Secure key exchange is critical!

SYMMETRIC CIPHERS

- Stream ciphers
 - » Encrypt one bit at time
- Block ciphers
 - » Break plaintext message in equal-size blocks
 - » Encrypt each block as a unit

STREAM CIPHERS

$$m(i) = i^{th}$$
 bit of message
 $ks(i) = i^{th}$ bit of keystream
 $c(i) = i^{th}$ bit of ciphertext

Combine each bit of keystream with bit of plaintext to get bit of ciphertext:

$$c(i) = ks(i) \oplus m(i)$$
 \rightarrow encryption

Combine each bit of keystream with bit of ciphertext to get bit of plaintext

$$m(i) = ks(i) \oplus c(i)$$
 \rightarrow decryption

RC4/ARC4 STREAM CIPHER

- RC4 is a popular stream cipher
 - » Extensively analyzed and considered insecure
 - Has known biases
 - » Key can be from 1 to 256 bytes
 - » Used in WEP for 802.11
 - » Can be used in SSL → now deprecated

BLOCK CIPHERS

- Message to be encrypted is processed in blocks of k bits (e.g., 64-bit blocks).
- 1-to-1 mapping is used to map k-bit block of plaintext to k-bit block of ciphertext

Example for k=3:

<u>input</u> <u>output</u>		<u>input</u>	<u>output</u>	
000	110	100	011	
001	111	101	010	
010	101	110	000	
011	100	111	001	

Q: What is the ciphertext for 010110001111?

BLOCK CIPHERS

- How many possible mappings are there for k=3?
 - » How many 3-bit inputs?
 - » How many permutations of the 3-bit inputs?
 - » Answer: 40,320 → not very many!
- In general, 2^k! mappings
 - **» Huge** for *k*=64
- Problem:
 - » Table approach requires table with 2⁶⁴ entries, each entry with 64 bits
- Solution:
 - » Use a function that simulates a randomly permuted table

GENERIC 64-BIT BLOCK CIPHER

WHY ROUNDS IN PROTOTYPE?

- If only a single round, then one bit of input affects at most 8 bits of output.
- In 2nd round, the 8 affected bits get scattered and inputted into multiple substitution boxes.
- How many rounds?
 - » How many times do you need to shuffle cards?
 - » Eventually, each additional round becomes less efficient as **n** increases

ENCRYPTING A LARGE MESSAGE: ECB

- ECB: electronic code-book
 - » split each message into (64-bit) blocks
 - » encrypt each one with the key
 - » transmit resulting stream
- Problems?
 - » same plaintext → same ciphertext
- Solution?
 - » add random bits to each block
- Drawbacks?
 - » inefficient

[CREDIT: Wikipedia]

CIPHER BLOCK CHAINING (CBC) MODE

- CBC generates its own random numbers
 - » Have encryption of current block depend on result of previous block

```
c(i) = K_S(m(i) \oplus c(i-1))
m(i) = K_S(c(i)) \oplus c(i-1)
```

- How do we encrypt first block?
 - » Initialization vector (IV): random block = c(0)
 - » IV does not have to be secret
- Change IV for each message (or session)
 - » Guarantees that even if the same message is sent repeatedly, the ciphertext will be completely different each time

CIPHER BLOCK CHAINING

 Each ciphertext block is dependent on all plaintext blocks processed up to that point

COUNTER MODE (CTR)

[CREDIT: Wikipedia]

Recommended over CBC

SYMMETRIC (OR PRIVATE) KEY CRYPTO: DES

- DES: Data Encryption Standard
 - » US encryption standard 56-bit symmetric key, 64-bit plaintext input
 - » Block cipher with cipher block chaining
- How secure is DES?
 - » DES Challenge: 56-bit-key-encrypted phrase decrypted (brute force) in less than a day
 - » No known good analytic attack
- Making DES more secure:
 - » 3DES: encrypt 3 times with 3 different keys
 - (encrypt, decrypt, encrypt)
- No good reason to use DES today → use AES

DES OPERATION

- Initial permutation
- 16 identical "rounds" of function application, each using different 48 bits of key
- Final permutation

AES: ADVANCED ENCRYPTION STANDARD

- Current (Nov 2001) symmetric-key NIST standard, replacing DES
- Processes data in 128 bit blocks
 - » 128, 192, or 256 bit keys
- Brute force decryption (try each key) taking 1 sec on DES, takes 149 trillion years for AES

ASYMMETRIC (PUBLIC-KEY) CRYPTOGRAPHY

Motivation:

- » private-key cryptography relies in a shared secret key
- » Q: How do Alice & Bob agree on key in first place?

Public-key cryptography

- » relies on a pair of keys $\langle K_{public}, K_{private} \rangle$
- » essential property
 - ciphertext produced with one of the keys can only be decrypted with the other

PUBLIC-KEY CRYPTOGRAPHY (RSA/DSA/ECC)

NIST-RECOMMENDED KEY LENGTHS

Symmetric-key	RSA	DH		ECC
security strength	modulus	modulus	private key	
112 (triple-DES)	2048	2048	224	224-255
128 (AES)	3072	3072	256	256-383

[CREDIT: Oorschot]

CONFIDENTIALITY & AUTHENTICATION

- Private-key crypto
 - » both confidentiality and authentication rely on the secrecy of the shared key
- Public-key crypto
 - » these are accomplished in two steps and are (usually) combined to achieve both
- Signed message
 - » encrypted with the sender's private key
 - *→* authenticates the sender (non-repudiation)
- Secret message
 - » encrypted with the receiver's public key
 - → ensures the only the receiver can decrypt it (w/ private key)
- Signed + secret
 - » first sign then encrypt

SESSION KEY EXCHANGE

- Exponentiation is computationally intensive
 - » symmetric ciphers are much faster than RSA
- Idea:
 - » combine public/private key systems
 - » use public key crypto to exchange session key $K_{\mathcal{S}}$ (shared secret)
 - » switch to private key encryption using K_S
- Q: How do we learn public keys in a trustworthy way?
 - » certificates
 - » issues by trusted third parties certification authorities

PKI & X.509 BY EXAMPLE

Message integrity verification

- Allows communicating parties to verify that received messages are authentic. I.e.:
 - » content of message has not been altered
 - » source of message is who/what you think it is
 - » message has not been replayed
 - » sequence of messages is maintained

Message digest function

- Function H() that takes as input an arbitrary length message and outputs a fixed-length string → message signature
 - » it is a many-to-1 function
 - » often called a **cryptographic hash function**
- Desirable properties:
 - » easy to calculate
 - irreversibility: cannot determine **m** from **H**(**m**)
 - » collision resistance:
 - computationally difficult to produce m and m' such that H(m) = H(m')
 - » seemingly random output

STANDARD CRYPTOGRAPHIC HASH FUNCTIONS

- MD5 hash function widely used (RFC 1321)
 - » computes 128-bit message digest in a 4-step process
 - » broken → avoid for security applications
- SHA-1 is also used
 - » US standard [NIST, FIPS PUB 180-1]
 - » 160-bit/256/ message digest
 - » considered broken
- SHA-2
 - » 224/256/384/512-bit output
- SHA-3 (wiki)
 - » the result of a <u>NIST competition</u>

HMAC

- Hash-based message authentication code
 aka keyed-hash message authentication code
- Idea:
 - » add a shared secret to the message

