Integrating RAG Pipelines, LLMs, GenAI, and ML in Finance and Cybersecurity: an overview of use cases by Atsu Vovorⁱ

Introduction

The convergence of Retrieval-Augmented Generation (RAG) pipelines, Large Language Models (LLMs), Generative AI (GenAI), and Machine Learning (ML) is transforming finance and cybersecurity. These technologies work in synergy to enhance decision-making, automate complex tasks, and improve security. From fraud detection and financial advisory to real-time threat response, this integration provides deeper insights, faster risk assessments, and more effective compliance management. This article explores key use cases across finance, cybersecurity, and their combined applications in financial cybersecurity.

Finance Use Cases

Use Case	RAG Pipeline	LLMs	GenAI	ML	Example Workflow
	Retrieves transaction	Explains flagged	Generates Suspicious	Predicts fraud likelihood	ML flags a transaction →
Fraud Detection	patterns, historical	transactions in	Activity Reports	using supervised models.	RAG fetches similar cases →
& Prevention	fraud cases, and risk	human-readable	(SARs).		LLM explains the alert →
	indicators.	language.			GenAI generates an SAR.
Financial	Retrieves market	Explains	Summarizes earnings	Predicts portfolio	Client requests portfolio
Advisory &	data, company	investment	reports and generates	performance using	advice → RAG retrieves data
Portfolio	financials, and	strategies in simple	market sentiment.	historical data and	\rightarrow LLM explains strategy \rightarrow
Optimization	research reports.	terms.		macroeconomic factors.	ML assesses risk and
					simulates performance.
Anti-Money	Retrieves customer	Identifies patterns	Generates	Detects unusual	RAG retrieves flagged
Laundering	information,	in unstructured	compliance	transaction patterns using	transactions → ML scores
(AML)	transactions, and	data (emails,	documentation and	anomaly detection.	AML risk \rightarrow LLM explains
Compliance	high-risk	contracts).	alerts.		risks → GenAI creates
	jurisdictions.				compliance reports.

Cybersecurity Use Cases

Use Case	RAG Pipeline	LLMs	GenAI	ML	Example Workflow
Threat	Fetches threat	Correlates	Generates incident	Identifies anomalies in	ML detects unusual login
Detection &	intelligence from	incidents and	reports and	user behavior, network	behavior → RAG fetches similar
Response	databases and logs.	explains threats in	remediation plans.	traffic, or system	attack patterns → LLM explains
		natural language.		activity.	attack → GenAI produces a
				·	remediation report.
Vulnerability	Retrieves known	Assesses impact	Writes patch	Prioritizes	RAG fetches CVEs → ML
Management	vulnerabilities, patches,	and suggests	management	vulnerabilities based on	prioritizes risks → LLM explains
	and system	mitigation steps.	policies and	risk and likelihood of	vulnerability impact → GenAI
	configurations.		security advisories.	exploitation.	drafts security advisories.
Real-Time	Retrieves phishing	Analyzes email	Generates alerts and	Classifies emails as	Employee reports a phishing
Phishing	database logs and	content for	response templates.	phishing or legitimate	email → ML flags it → RAG
Detection	recent email activity.	malicious intent.		using NLP models.	fetches similar cases → LLM
					explains indicators → GenAI
					creates an alert.

Combined Use Case: Financial Cybersecurity

Use Case	RAG Pipeline	LLMs	GenAI	ML	Example Workflow
Real-Time	Retrieves transaction	Analyzes	Generates fraud	Flags unusual activity	ML detects fraud and a data
Fraud &	histories, cybersecurity	transactions for	summaries, incident	in transactions and	breach → RAG retrieves related
Threat	alerts, and threat	fraud and system	reports, and	system behavior using	fraud and cyber threats \rightarrow LLM
Mitigation	intelligence.	logs for breaches.	notifications.	anomaly detection.	explains both → GenAI generates
					a coordinated response plan.

Fraud Detection & Prevention Flowchart - Integrating ML, RAG Pipeline, LLMs, GenAI

Financial Advisory & Portfolio Optimization Flowchart - Integrating ML, RAG Pipeline, LLMs, GenAI

Conclusion

By combining RAG pipelines, LLMs, GenAI, and ML, organizations can streamline fraud detection, optimize financial strategies, and strengthen cybersecurity defenses. These AI-driven solutions not only improve operational efficiency but also enhance accuracy in risk management and compliance. As financial threats and cyber risks continue to evolve, leveraging these advanced technologies will be essential for maintaining security, trust, and competitive advantage in the digital economy.

ⁱ Atsu Vovor: Consultant, Data & Analytics Specialist | Machine Learning | Data science | Quantitative Analysis | French & English Bilingual | atsu.vovor@bell.net | https://github.com/atsuvovor/Pub_Data_Analytics_Project | https://github.com/at