WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:
C07D 213/50, A01N 43/40, 43/56, 43/78, 43/80, C07D 213/53, 231/12, 231/20, 277/24, 401/12

(11) International Publication Number:

WO 97/46530

(43) International Publication Date: 11 December 1997 (11.12.97)

(21) International Application Number:

PCT/US97/09569

A1

(22) International Filing Date:

2 June 1997 (02.06.97)

(30) Priority Data:

60/019,352 60/033,633 6 June 1996 (06.06.96)

US 20 December 1996 (20.12.96) US

(71) Applicant (for all designated States except US): E.I. DU PONT DE NEMOURS AND COMPANY [US/US]; 1007 Market Street, Wilmington, DE 19898 (US).

(72) Inventors: and

- (75) Inventors/Applicants (for US only): PATEL, Kanu, Maganbhai [US/US]; 149 Fairhill Drive, Wilmington, DE 19808 (US). RORER, Morris, Padgett [US/US]; 64 Lower Valley Lane, Newark, DE 19711 (US). TSENG, Chi-Ping [US/US]; 1103 Artwin Road, Wilmington, DE 19803 (US).
- (74) Agent: KATZ, Elliott, A.; E.I. du Pont de Nemours and Company, Legal Patent Records Center, 1007 Market Street, Wilmington, DE 19898 (US).

(81) Designated States: AL, AM, AU, AZ, BA, BB, BG, BR, BY, CA, CN, CU, CZ, EE, GE, HU, IL, IS, JP, KG, KP, KR, KZ, LC, LK, LR, LT, LV, MD, MG, MK, MN, MX, NO, NZ, PL, RO, RU, SG, SI, SK, TJ, TM, TR, TT, UA, US, UZ, VN, YU, ARIPO patent (GH, KE, LS, MW, SD, SZ, UG), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments

(54) Title: HERBICIDAL PYRIDINYL AND PYRAZOLYLPHENYL KETONES

(57) Abstract

Compounds of Formula (I), and their N-oxides and agriculturally suitable salts, are disclosed which are useful for controlling undesired vegetation wherein Q is Q-1, Q-2, Q-3 or Q-4; and A, W, R1, R3-R11, and m are as defined in the disclosure. Also disclosed are compositions containing the compounds of Formula (I) and a method for controlling undesired vegetation which involves contacting the vegetation or its environment with an effective amount of a compound of Formula (I).

$$\mathbb{R}^{4})_{p} \longrightarrow \mathbb{R}^{3} \qquad \mathbb{Q}-1 \qquad \mathbb{R}^{7} \qquad \mathbb{R}^{5} \qquad \mathbb{Q}-2$$

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Be sium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	a Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG		HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ		ſB	Ireland	MN	Mongolia	UA	Ukraine
BR		IL	Israel	MR	Mauritania	UG	Uganda
BY	i · 45	TS	Iceland	MW	Malawi	US	United States of America
CA	Canada	(T	Italy	MX	Mexico	UZ.	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
СН	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
СМ	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugai		
Cυ	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	l,R	Liberia	SG	Singapore		
-							
!							

ı

TITLE

HERBICIDAL PYRIDINYL AND PYRAZOLYLPHENYL KETONES BACKGROUND OF THE INVENTION

This invention relates to certain phenyl ketones, their N-oxides, agriculturally suitable salts and compositions, and methods of their use for controlling undesirable vegetation.

The control of undesired vegetation is extremely important in achieving high crop efficiency. Achievement of selective control of the growth of weeds especially in such useful crops as rice, soybean, sugar beet, corn (maize), potato, wheat, barley, tomato and plantation crops, among others, is very desirable. Unchecked weed growth in such useful crops can cause significant reduction in productivity and thereby result in increased costs to the consumer. The control of undesired vegetation in noncrop areas is also important. Many products are commercially available for these purposes, but the need continues for new compounds which are more effective, less costly, less toxic, environmentally safer or have different modes of action.

WO 96/26200 discloses pyrazoles of Formula i as herbicides:

$$Q \xrightarrow{0} M$$

20 wherein, inter alia

O represents a cyclohexane-1,3-dione ring;

L and M are hydrogen, C₁-C₆ alkyl, C₁-C₄ alkoxy, halogen or nitro; and

Z represents a five to six-membered heterocyclic saturated or unsaturated group.

The phenyl ketones of the present invention are not disclosed in this publication.

25

5

10

15

SUMMARY OF THE INVENTION

This invention is directed to compounds of Formula I including all geometric and stereoisomers, N-oxides, and agriculturally suitable salts thereof, agricultural compositions containing them and their use for controlling undesirable vegetation:

30

wherein

Q is

$$(\mathbb{R}^4)_p$$
 \mathbb{R}^3
 \mathbb{Q}
 \mathbb{R}^5
 \mathbb{Q}
 \mathbb{Q}
 \mathbb{R}^9
 \mathbb{Q}
 \mathbb{R}^8
 \mathbb{R}^9
 \mathbb{R}^{10}
 \mathbb{R}^{11}

5

10

15

20

A is a five- to ten-membered monocyclic or fused bicyclic ring system, which may be fully aromatic or partially saturated, containing 1 to 4 heteroatoms independently selected from the group nitrogen, oxygen, and sulfur, provided that each heterocyclic ring system contains no more than 2 oxygens and no more than 2 sulfurs, and each ring system is optionally substituted with one to three R², provided that when a nitrogen atom of a heterocyclic ring is substituted with R², then R² is other than halogen;

Q-4

each R¹ is independently H, C₁-C₆ alkyl, C₁-C₆ haloalkyl, C₁-C₆ alkoxy, C₁-C₆ haloalkoxy, halogen, cyano, nitro, -(Y)_t-S(O)_nR¹⁵ or -(Y)_t-C(O)R¹⁵;

W is N or CH;

Y is O or NR¹²;

Q-3

R² is C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_3 - C_6 alkenyl, C_3 - C_6 haloalkenyl, C_3 - C_6 alkynyl, C_3 - C_6 haloalkynyl, C_1 - C_6 alkoxy, C_1 - C_6 haloalkoxy, C_3 - C_6 alkenyloxy, C_3 - C_6 alkynyloxy, mercapto, C_1 - C_6 alkylthio, C_1 - C_3

or C₁-C₆ haloalkylsulfonyl; or R¹⁴ is phenyl, benzyl, benzoyl,

4

-CH₂C(O)phenyl or phenylsulfonyl, each optionally substituted on the phenyl ring with C_1 - C_3 alkyl, halogen, cyano or nitro;

R¹⁵ is NR¹²R¹³, C₁-C₆ alkoxy, C₁-C₆ haloalkoxy, C₁-C₆ alkyl, C₁-C₆ haloalkyl, C₃-C₆ alkenyl, C₃-C₆ haloalkenyl, C₃-C₆ alkynyl, C₃-C₆ haloalkynyl or C₃-C₆ cycloalkyl; or R¹⁵ is phenyl optionally substituted with C₁-C₃ alkyl, C₁-C₃ haloalkyl, C₁-C₃ alkoxy, C₁-C₃ haloalkoxy, 1-2 halogen, cyano or nitro:

 R^{16} is C_1 - C_3 alkoxy, C_2 - C_4 alkoxycarbonyl, C_1 - C_3 alkylthio, C_1 - C_3 alkylsulfinyl or C_1 - C_3 alkylsulfonyl; or R^{16} is phenyl optionally substituted with C_1 - C_3 alkyl, C_1 - C_3 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 haloalkoxy, 1-2 halogen, cyano or nitro;

m is 0, 1, 2 or 3;

n is 0, 1 or 2;

5

10

15

20

25

30

p is 0, 1, 2, 3 or 4;

r is 1, 2 or 3; and

t is 0 or 1;

provided that when W is CH and A is in the *meta* position with respect to the group Q-C(O)- of Formula I, then m is 3 and R¹ is other than H.

In the above recitations, the term "alkyl", used either alone or in compound words such as "alkylthio" or "haloalkyl" includes straight-chain or branched alkyl, such as, methyl, ethyl, n-propyl, i-propyl, or the different butyl, pentyl or hexyl isomers. The term "1-2 alkyl" indicates that one or two of the available positions for that substituent may be alkyl. "Alkenyl" includes straight-chain or branched alkenes such as 1-propenyl, 2-propenyl, and the different butenyl, pentenyl and hexenyl isomers.

"Alkenyl" also includes polyenes such as 1,2-propadienyl and 2,4-hexadienyl.

"Alkynyl" includes straight-chain or branched alkynes such as 1-propynyl, 2-propynyl and the different butynyl, pentynyl and hexynyl isomers. "Alkynyl" can also include moieties comprised of multiple triple bonds such as 2,5-hexadiynyl. "Alkoxy" includes, for example, methoxy, ethoxy, n-propyloxy, isopropyloxy and the different butoxy, pentoxy and hexyloxy isomers. "Alkoxyalkyl" denotes alkoxy substitution on alkyl. Examples of "alkoxyalkyl" include CH₃OCH₂, CH₃OCH₂CH₂, CH₃CH₂OCH₂, CH₃CH₂OCH₂, and CH₃CH₂OCH₂CH₂. "Alkylthio" includes branched or straight-chain alkylthio moieties such as methylthio, ethylthio, and the different propylthio, butylthio, pentylthio and hexylthio isomers. "Alkylsulfinyl" includes both enantiomers of an alkylsulfinyl group. Examples of "alkylsulfinyl" include CH₃S(O), CH₃CH₂S(O), CH₃CH₂CH₂S(O), (CH₃)₂CHS(O) and the different butylsulfinyl.

enantiomers of an alkylsulfinyl group. Examples of "alkylsulfinyl" include CH₃S(O), CH₃CH₂S(O), CH₃CH₂CH₂S(O), (CH₃)₂CHS(O) and the different butylsulfinyl, pentylsulfinyl and hexylsulfinyl isomers. Examples of "alkylsulfonyl" include CH₃S(O)₂, CH₃CH₂S(O)₂, CH₃CH₂CO)₂, (CH₃CH₂CO)₂ and the different

5

butylsulfonyl, pentylsulfonyl and hexylsulfonyl isomers. "Alkylamino", "dialkylamino", and the like, are defined analogously to the above examples. "Cycloalkyl" includes, for example, cyclopropyl, cyclobutyl, cyclopentyl, and cyclohexyl.

5

10

15

20

25

30

35

The term "halogen", either alone or in compound words such as "haloalkyl", includes fluorine, chlorine, bromine or iodine. Further, when used in compound words such as "haloalkyl", said alkyl may be partially or fully substituted with halogen atoms which may be the same or different. Examples of "haloalkyl" include F_3C , $ClCH_2$, CF_3CH_2 and CF_3CCl_2 . The terms "haloalkenyl", "haloalkynyl", "haloalkoxy", and the like, are defined analogously to the term "haloalkyl". Examples of "haloalkenyl" include $(Cl)_2C=CHCH_2$ and $CF_3CH_2CH=CHCH_2$. Examples of "haloalkynyl" include HC=CCHCl, $CF_3C=C$, $CCl_3C=C$ and $FCH_2C=CCH_2$. Examples of "haloalkoxy" include CF_3C , CCl_3CH_2C , $HCF_2CH_2CH_2C$ and CF_3CH_2C . Examples of "haloalkylthio" include CCl_3S , CF_3S , CCl_3CH_2S and $ClCH_2CH_2CH_2S$. Examples of "haloalkylsulfonyl" include $CF_3S(O)_2$, $CCl_3S(O)_2$, $CF_3CH_2S(O)_2$ and $CF_3CF_2S(O)_2$.

The total number of carbon atoms in a substituent group is indicated by the "C₁-C_j" prefix where i and j are numbers from 1 to 6. For example, C₁-C₃ alkylsulfonyl designates methylsulfonyl through propylsulfonyl; C₂ alkoxyalkyl designates CH₃OCH₂; C₃ alkoxyalkyl designates, for example, CH₃CH(OCH₃), CH₃OCH₂CH₂ or CH₃CH₂OCH₂; and C₄ alkoxyalkyl designates the various isomers of an alkyl group substituted with an alkoxy group containing a total of four carbon atoms, examples including CH₃CH₂CH₂OCH₂ and CH₃CH₂OCH₂CH₂. Examples of "alkylcarbonyl" include C(O)CH₃, C(O)CH₂CH₂CH₃ and C(O)CH(CH₃)₂. Examples of "alkoxycarbonyl" include CH₃OC(=O), CH₃CH₂OC(=O), CH₃CH₂CH₂OC(=O), (CH₃)₂CHOC(=O) and the different butoxy- or pentoxycarbonyl isomers. In the above recitations, when a compound of Formula I is comprised of one or more heterocyclic rings, all substituents are attached to these rings through any available carbon or nitrogen by replacement of a hydrogen on said carbon or nitrogen.

When a group contains a substituent which can be hydrogen, for example R^1 or R^{14} , then, when this substituent is taken as hydrogen, it is recognized that this is equivalent to said group being unsubstituted.

Compounds of this invention can exist as one or more stereoisomers. The various stereoisomers include enantiomers, diastereomers, atropisomers and geometric isomers. One skilled in the art will appreciate that one stereoisomer may be more active and/or may exhibit beneficial effects when enriched relative to the other stereoisomer(s) or when separated from the other stereoisomer(s). Additionally, the skilled artisan knows how to separate, enrich, and/or to selectively prepare said stereoisomers. Accordingly, the present invention comprises compounds selected from Formula I, N-oxides and

Ib

WO 97/46530

5

10

15

20

6

agriculturally suitable salts thereof. The compounds of the invention may be present as a mixture of stereoisomers, individual stereoisomers, or as an optically active form.

PCT/US97/09569

Ic

Some compounds of this invention can exist as one or more tautomers. One skilled in the art will recognize, for example, that compounds of Formula Ia (Formula I where Q is Q-1, R³ is OR¹⁴, and R¹⁴ is H) can also exist as the tautomers of Formulae Ib and Ic as shown below. One skilled in the art will recognize that said tautomers often exist in equilibrium with each other. As these tautomers interconvert under environmental and physiological conditions, they provide the same useful biological effects. The present invention includes mixtures of such tautomers as well as the individual tautomers of compounds of Formula I.

$$(\mathbb{R}^4)_p \longrightarrow (\mathbb{R}^1)_m$$

$$(\mathbb{R}^4)_p \longrightarrow (\mathbb{R}^4)_p \longrightarrow (\mathbb{R}^4)_p$$

The salts of the compounds of the invention include acid-addition salts with inorganic or organic acids such as hydrobromic, hydrochloric, nitric, phosphoric, sulfuric, acetic, butyric, fumaric, lactic, maleic, malonic, oxalic, propionic, salicylic, tartaric, 4-toluenesulfonic or valeric acids. The salts of the compounds of the invention also include those formed with organic bases (e.g., pyridine, ammonia, or triethylamine) or inorganic bases (e.g., hydrides, hydroxides, or carbonates of sodium, potassium, lithium, calcium, magnesium or barium) when the compound contains an acidic group such as a carboxylic acid or enol. Preferred salts include the lithium, sodium, potassium, triethylammonium, and quaternary ammonium salts of the compounds of the invention.

Preferred compounds for reasons of better activity and/or ease of synthesis are:

7 Preferred 1. Compounds of Formula I, and N-oxides and agriculturally-suitable salts thereof, wherein: A is selected from the group 1H-pyrrolyl; furanyl; thienyl; 1H-pyrazolyl; 1*H*-imidazolyl; isoxazolyl; oxazolyl; isothiazolyl; thiazolyl; 1*H*-1,2,3-triazolyl; 2*H*-1,2,3-triazolyl; 1*H*-1,2,4-triazolyl; 4*H*-1,2,4-triazolyl; 5 1,2,3-oxadiazolyl; 1,2,4-oxadiazolyl; 1,2,5-oxadiazolyl; 1,3,4-oxadiazolyl; 1,2,3-thiadiazolyl; 1,2,4-thiadiazolyl; 1,2,5-thiadiazolyl; 1,3,4-thiadiazolyl; 1H-tetrazolyl; 2H-tetrazolyl; pyridinyl; pyridazinyl; pyrimidinyl; pyrazinyl; 1,3,5-triazinyl; 1,2,4-triazinyl; and A may optionally be substituted by one to 10 three R², provided that when a nitrogen atom of a heterocyclic ring is substituted with R², then R² is other than halogen: Preferred 2. Compounds of Preferred 1 wherein: Q is Q-1. Preferred 3. Compounds of Preferred 2 wherein: 15 each R1 is independently C1-C3 alkyl, C1-C3 alkoxy, halogen or nitro; R3 is OR14; and R^{14} is H or C_1 - C_4 alkylsulfonyl; or R^{14} is benzoyl or phenylsulfonyl, each optionally substituted with C1-C3 alkyl, halogen, cyano or nitro. 20 Preferred 4. Compounds of Preferred 3 wherein: A is pyridinyl, pyridazinyl, pyrimidinyl or 1*H*-pyrazolyl; R^2 is $-(Y)_t$ -S(O)_nR¹⁵, CF₃, OCF₃, OCF₂H or cyano; R15 is C1-C6 alkyl; t is 0; and 25 n is 2. Preferred 5. Compounds of Preferred 1 wherein: Q is Q-2; Preferred 6. Compounds of Preferred 5 wherein: each R1 is independently C1-C3 alkyl, C1-C3 alkoxy, halogen or nitro; R5 is OR14: 30 R¹⁴ is H or C₁-C₄ alkylsulfonyl; or R¹⁴ is benzoyl or phenylsulfonyl, each optionally substituted with C₁-C₃ alkyl, halogen, cyano or nitro. R⁶ is H, C₁-C₆ alkyl, or C₃-C₆ alkenyl; and 35 R7 is H: Preferred 7. Compounds of Preferred 6 wherein: A is pyridinyl, pyridazinyl, pyrimidinyl or 1*H*-pyrazolyl: R^2 is $-(Y)_t$ - $S(O)_n R^{15}$, CF_3 , OCF_3 , OCF_2H or cyano;

R¹⁵ is C₁-C₆ alkyl; t is 0; and n is 2. Preferred 8. Compounds of Preferred 1 wherein: 5 Q is Q-3. Preferred 9. Compounds of Preferred 8 wherein: each R^1 is independently C_1 - C_3 alkyl, C_1 - C_3 alkoxy, halogen or nitro; R⁸ is H, C₁-C₃ alkyl, or cyclopropyl; and R⁹ is H or C₂-C₃ alkoxycarbonyl. 10 Preferred 10. Compounds of Preferred 9 wherein: A is pyridinyl, pyridazinyl, pyrimidinyl or 1H-pyrazolyl; R² is -(Y)_t-S(O)_nR¹⁵, CF₃, OCF₃, OCF₂H or cyano; R15 is C1-C6 alkyl; t is 0; and 15 n is 2. Preferred 11. Compounds of Preferred 1 wherein: Q is Q-4. Preferred 12. Compounds of Preferred 11 wherein: each R^1 is independently C_1 - C_3 alkyl, C_1 - C_3 alkoxy, halogen or nitro; 20 R^{10} is C_3 - C_6 cycloalkyl or C_3 - C_6 halocycloalkyl, each optionally substituted with 1-4 C1-C3 alkyl; and R¹¹ is cyano or C₂-C₆ alkoxycarbonyl. Preferred 13. Compounds of Preferred 12 wherein: A is pyridinyl, pyridazinyl, pyrimidinyl or 1H-pyrazolyl; R² is -(Y)_t-S(O)_nR¹⁵, CF₃, OCF₃, OCF₂H or cyano; 25 R^{15} is C_1 - C_6 alkyl; t is 0: and n is 2. Most preferred are compounds of Formula Ia above, and sodium, potassium, 30

and quaternary ammonium salts thereof, selected from the group:

- a) 3-hydroxy-2-[[6-(trifluoromethyl)[2,4'-bipyridin]-3-yl]carbonyl]-2cyclohexen-1-one:
- b) 2-[2-chloro-4-(4-pyridinyl)benzoyl]-3-hydroxy-2-cyclohexen-1-one; and
- c) 2-[2,5-dimethyl-3-(1-methyl-1H-pyrazol-3-yl)-4-(methylsulfonyl)benzoyl]-3-hydroxy-2-cyclohexen-1-one.

This invention also relates to herbicidal compositions comprising herbicidally effective amounts of the compounds of the invention and at least one of a surfactant, a

10

15

20

25

PCT/US97/09569

solid diluent or a liquid diluent. The preferred compositions of the present invention are those which comprise the above preferred compounds.

This invention also relates to a method for controlling undesired vegetation comprising applying to the locus of the vegetation herbicidally effective amounts of the compounds of the invention (e.g., as a composition described herein). The preferred methods of use are those involving the above preferred compounds.

DETAILS OF THE INVENTION

The compounds of Formula I can be prepared by one or more of the following methods and variations as described in Schemes 1-22. The definitions of W, Y, A, R¹-R¹⁶, m, n, p, r, and t in the compounds of Formulae 1-22 below are as defined above in the Summary of the Invention. Compounds of Formulae Ia-Ig are various subsets of the compounds of Formula I, and all substituents for Formulae Ia-Ig are as defined above for Formula I.

Compounds of General Formula Id can be readily prepared by one skilled in the art by using the reactions and techniques described in Schemes 1-14 of this section as well as by following the specific procedures given in Example 1.

$$(\mathbb{R}^4)_p \xrightarrow{Q} \mathbb{R}^3$$

Id

Scheme 1 illustrates the preparation of compounds of Formula Id (R³ is OR¹⁷ and R¹⁷ is the same as R¹⁴ as described in the Summary of the Invention excluding H) whereby a compound of Formula Id (R³ is OH) is reacted with a reagent of Formula 1 in the presence of a base wherein X¹ is chlorine, bromine, fluorine, trifluorosulfonyloxy (OTf) or acetyloxy (OAc) and R¹⁷ is as previously defined. The coupling is carried out by methods known in the art (or by slight modification of these methods): for example, see K. Nakamura, et al., WO 95/04054.

10 Scheme 1

wherein R¹⁷ is the same as R¹⁴ as described in the Summary of the Invention excluding H; X¹ is chlorine, bromine, fluorine, trifluorosulfonyloxy (OTf) or acetyloxy (OAc)

5

10

15

20

25

Scheme 2 illustrates the preparation of compounds of Formula Id (R³ is SO_nR¹8; n is 1 or 2; and R¹8 is C₁-C6 alkyl or C₁-C6 haloalkyl) whereby a compound of Formula Id (R³ is SR¹8) is reacted with an oxidizing reagent such as peroxyacetic acid, m-chloroperoxybenzoic acid, potassium peroxymonosulfate (e.g., Oxone®, available from Aldrich Chemical Company), or hydrogen peroxide (the reaction may be buffered with a base such as sodium acetate or sodium carbonate). The oxidation is carried out by methods known in the art (or by slight modification of these methods): for example, see B. M. Trost, et al., J. Org. Chem. (1988), 53, 532; B. M. Trost, et al., Tetrahedron Lett. (1981), 21, 1287; S. Patai, et al., The Chemistry of Sulphones and Sulphoxides, John Wiley & Sons, Protecting and deprotecting functional groups not compatible with the reaction condition may be necessary for compounds with such a functional group (for procedures, see T. W. Greene, et al., Protective Groups in Organic Synthesis, Second Edition, John Wiley & Sons, Inc.).

Scheme 2

wherein R 18 is C1-C6 alkyl or C1-C6 haloalkyl

Compounds of Formula Id (R³ is Nu; Nu is SR¹⁸or OR¹⁹; R¹⁸ is as defined previously; R¹⁹ is C₁-C₆ alkyl, C₁-C₆ haloalkyl or C₂-C₆ alkoxyalkyl) can be prepared by one skilled in the art from a compound of Formula Id (R³ is halogen) by treatment with a nucleophile of Formula 2 (Nu is SR¹⁸or OR¹⁹; M is Na, K or Li) as shown in Scheme 3 using methods well documented in the literature (or slight modification of these methods): for example, see S. Miyano, et al., J. Chem. Soc., Perkin Trans. 1 (1976), 1146.

Id (
$$R^3$$
 is halogen) + MNu Id (R^3 is SR^{18} or OR^{19})

wherein Nu is SR^{18} or OR^{19} ; M is Na, K or Li; and R^{19} is C_1 - C_6 alkyl, C_1 - C_6 haloalkyl or C_2 - C_6 alkoxyalkyl

Compounds of Formula Id (R³ is halogen) can be prepared by reacting a compound of Formula Id (R³ is OH) with a halogenating reagent such as oxalyl bromide or oxalyl chloride (Scheme 4). This conversion is carried out by methods known in the art (or by slight modification of these methods): for example see S. Muller, et al., WO 94/13619; S. Muller, et al., DE 4,241,999.

Scheme 4

10

15

20

5

Scheme 5 illustrates the preparation of compounds of Formula Id (R³ is OH). whereby an enol ester of Formula 3 is reacted with a base such as triethylamine in the presence of a catalytic amount of cyanide source (e.g., acetone cyanohydrin or potassium cyanide). This rearrangement is carried out by methods known in the art (or by slight modification of these methods): for example see W. J. Michaely, EP 369,803.

Scheme 5

3

Enol esters of Formula 3 can be prepared by reacting a dione of Formula 4 with an acid chloride of Formula 5 in the presence of a slight mole excess of a base such as triethylamine in an inert organic solvent such as acetonitrile, methylene chloride or

12

toluene at temperatures between 0 °C and 110 °C (Scheme 6). This type of coupling is known in the art: for example, see W. J. Michaely, EP 369,803.

Scheme 6

The acid chlorides of Formula 5 can be prepared by one skilled in the art by reacting an acid of Formula 6 with oxalyl chloride (or thionyl chloride) and a catalytic amount of dimethylformamide (Scheme 7). This chlorination is well known in the art: for example, see W. J. Michaely, EP 369,803.

10

5

Scheme 7

6

Enol esters of Formula 3a can also be prepared by directly reacting the acid of Formula 6a with N-methyl-2-chloropyridinium iodide, followed by treatment of the formed intermediate with the dione of Formula 4 in the presence of a base such as triethylamine (Scheme 8). This coupling is carried out be methods known in the art (or by slight modification of these methods): for example, see E. Haslam *Tetrahedron* (1980), 36, 2409-2433.

20

15

Scheme 8

HO

$$R^1$$
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4

Scheme 9 illustrates the preparation of acids of Formula 6 $(R^1 \text{ is } S(O)_n R^{15} \text{ and }$ n is 1 or 2) whereby an acid of Formula 6 (R1 is SR15) is reacted with an oxidizing 5 reagent such as peroxyacetic acid, m-chloroperoxybenzoic acid, Oxone®, or hydrogen peroxide (the reaction may be buffered with a base such as sodium acetate or sodium carbonate). The oxidation is carried out by methods known in the art (or by slight modification of these methods): for example, see B. M. Trost, et al., J. Org. Chem. (1988), 53, 532; B. M. Trost, et al., Tetrahedron Lett. (1981), 21, 1287; S. Patai, et al., The Chemistry of Sulphones and Sulphoxides, John Wiley & Sons. For some acids of 10 Formula 6 (R¹ is SR¹⁵) with a functional group not compatible with the reaction conditions, the functional group may be protected before the oxidation and then be deprotected after the oxidation. The protecting and deprotecting procedures are well known in the literature: for example see T. W. Greene, et al., Protective Groups in 15 Organic Synthesis (Second Edition), John Wiley & Sons, Inc.

Scheme 9

wherein R^1 is $S(O)_n R^{15}$ and n is 0

wherein R1 is S(O)_nR15 and n is 1 or 2

10

Scheme 10 illustrates the preparation of acids of Formula 6 (n is 0 if R¹ is S(O)_nR¹⁵) whereby a phenyl bromide of Formula 7 (n is 0 if R¹ is S(O)_n R¹⁵) is treated with *n*-butyllithium (or magnesium) and the lithium salt (or the Grignard reagent) generated in situ is then reacted with carbon dioxide followed by acidification with an acid such as hydrochloric acid. This conversion is carried out by methods known in the art (or by slight modification of these methods): for example, see M. A. Ogliaruso, et al., Synthesis of Carboxylic Acids, Esters and Their Derivatives, pp 27-28, John Wiley & Sons; A. J. Bridges, et al., J. Org. Chem. (1990), 55, 773; C. Franke, et al., Angew. Chem. Int. Ed. (1969), 8, 68. Protecting and deprotecting functional groups not compatible with the reaction conditions may be necessary for compounds with such a functional group.

Scheme 10

wherein W is CH, and if R^1 is $S(O)_n R^{15}$, then n is 0

Many acids of Formula 6 can also be prepared, as shown in Scheme 11, whereby an ester of Formula 8 is saponified (for example, potassium hydroxide in methanol, then acidification with an acid such as hydrochloric acid), or, alternatively, hydrolyzed in acid (for example, 5N hydrochloric acid in acetic acid) by methods known in the art (or slight modification of these methods); see for example, M. A. Ogliaruso, et al.,
 Synthesis of Carboxylic Acids, Esters and Their Derivatives, John Wiley & Sons, (1991), pages 5-7.

Scheme 11

Esters of Formula 8 can be prepared using methods known in the art (or by slight modification of these methods): for example, see A. R. Katritzky, et al., *Comprehensive Heterocyclic Chemistry*, volumes 2-6, Pergamon Press.

Esters of Formula 8a or 8b can also be prepared as shown in Scheme 12, whereby an ester of Formula 9a or 9b is contacted with an appropriate nucleophilic heterocycle Nu¹ and a suitable base in an inert solvent. This reaction can be carried out by a variety of well-known methods, preferably with potassium carbonate or potassium *tert*-butoxide as the base with N,N-dimethylformamide as the solvent and at a reaction temperature range of from approximately 0 to 100 °C.

10

15

20

5

Scheme 12

wherein X³ is Cl, F or CF₃SO₂O; Nu¹ is an imidazole, pyrazole or triazole wherein A¹ is 1*H*-imidazole, 1*H*-pyrazole, 1*H*-1,2,4-triazole or 4*H*-1,2,4-triazole

Esters of Formula 9a and 9b are commercially available or can be prepared using methods known in the art (or by slight modification of these methods).

Scheme 13 illustrates the preparation of acids of Formula 6a whereby an aryl bromide of Formula 9c is treated with an aryl tin reagent in the presence of a palladium catalyst. This conversion is carried out by methods known in the art (or by slight modification of these methods): for example, see M. Fujta, et al., *Tetrahedron Letters*, (1995), 29, 5247-5250; Y. Yamamoto, et al., *Heterocycles*, (1996), 42, 189-194. Saponification of the ester with a base such as sodium hydroxide provides the acids of Formula 6a.

16 Scheme 13

Bromides of Formula 9c are either commercially available or can easily be prepared by methods known in the art (or by slight modification of these methods): for example, see T. Bryson, et al., *J. Org. Chem.*, (1976), 41, 2066; Andrea, T. A. and Liang, P. H., U.S. 5,393,734. Aryl and heteroaryl organotin compounds can be prepared by methods known in the art (or by slight modification of these methods): for example, see D. Peters, et al., *J. Heterocyclic Chem.*, (1990), 27, 2165.

5

10

15

20

25

Bromides of Formula 7 (n is 0 if R¹ is S(O)_n R¹⁵) can be prepared by one skilled in the art by using methods known in the art (or by slight modification of these methods): for example, see A. R. Katritzky, et al., Comprehensive Heterocyclic Chemistry, Volume 2-6, Pergamon Press; B. M. Lynch, et al., Tet. Lett. (1964), p. 617; M. A. Kahn, et al., Rev. Latinoam. Quim. (1972), 3, p. 119; M. Kosugi, et al., Bull. Chem. Soc. Jpn. (1986), 59 (2), p. 677.

Alternatively some of the bromides of Formula 7 (n is 0 if R^1 is $S(O)_nR^{15}$) can also be prepared by bromination of the corresponding substituted benzenes of Formula 8 (n is 0 if R^1 is $S(O)_nR^{15}$) with the bromine or other equivalent reagent in an inert organic solvent as shown in Scheme 14. This bromination is carried out by general methods known in the art; see, for example, E. Campaigne, et al., J. Heterocycl. Chem. (1969), 6, p. 517; H. Gilman, J. Am. Chem. Soc. (1955), 77, p. 6059;

Scheme 14

The compounds of Formula 8 (n is 0 if R^1 is $S(O)_nR^{15}$) can be prepared by one skilled in the art by using methods known in the art (or by slight modification of these methods): for example, see A. R. Katritzky, et. al., Comprehensive Heterocyclic Chemistry, Volume 2-6, Pergamon Press; B. M. Lynch, et al., Tet. Lett. (1964), p. 617;

10

15

20

17

M. A. Kahn, et al., Rev. Latinoam. Quim. (1972), 3, p. 119; M. Kosugi, et al., Bull. Chem. Soc. Jpn. (1986), 59, (2), p. 677.

Compounds of General Formula le can be readily prepared by one skilled in the art by using the reactions and techniques described in Schemes 15-17 of this section.

Scheme 15 illustrates the preparation of compounds of Formula Ie (R^{14} is R^{14a} and R^{14a} is the same as R^{14} as described in the Summary of the Invention excluding H) whereby a compound of Formula Ie (R^{14} is H) is reacted with a reagent of Formula 9 in the presence of a base wherein X^2 is chlorine, bromine, fluorine, OTf or OAc and R^{14a} is as previously defined. This coupling is carried out by methods known in the art (or by slight modification of these methods): for example, see K. Nakamura, et al., WO 95/04054.

Ie

Scheme 15

le (R¹⁴ is H) + R^{14a}
$$X^2$$
 le (R¹⁴ is R^{14a})

Scheme 16 illustrates the preparation of compounds of Formula Ie (R¹⁴ is H). whereby an ester of Formula 10 is reacted with a base such as triethylamine in the presence of a catalytic amount of cyanide source (e.g., acetone cyanohydrin or potassium cyanide). This rearrangement is carried out by methods known in the art (or by slight modification of these methods): for example, see W. J. Michaely, EP 369,803.

Scheme 16

5

15

20

18

Esters of Formula 10 can be prepared by reacting a hydroxypyrazole of Formula 11 with an acid chloride of Formula 5 in the presence of a slight mole excess of a base such as triethylamine in an inert organic solvent such as acetonitrile, methylene chloride or toluene at temperatures between 0 °C and 110 °C (Scheme 17). This type of coupling is carried out by methods known in the art (or by slight modification of these methods): for example, see W. J. Michaely, EP 369,803.

Scheme 17

10 Compounds of General Formula If can be readily prepared by one skilled in the art by using the reactions and techniques described in Schemes 18-21 of this section.

$$\begin{array}{c|c} R^9 & O & (R^1)_m \\ N & W & A \end{array}$$

If

Scheme 18 illustrates the preparation of compounds of Formula If whereby a compound of Formula 12 is reacted with a salt of hydroxylamine such as hydroxylamine hydrochloride in the presence of a base or acid acceptor such as triethylamine or sodium acetate. The substituents of the immediate products may be further modified if appropriate. This cyclization is carried out by methods known in the art (or by slight modification of these methods): for example, see P. A. Cain, et al., EP 560,483; C. J. Pearson, et al., EP 636,622.

wherein

L is a leaving group such as C₁-C₄alkoxy (e.g. OC₂H₅) or N,N-dialkylamino (e.g. dimethyl amino)

R^{9a} is R⁹ or CONH₂

Scheme 19 illustrates the preparation of compounds of Formula 12 whereby a compound of Formula 13 is reacted with a reagent of Formula 14 or Formula 15. This conversion is carried out by methods known in the art (or by slight modification of these methods): for example, see P. A. Cain, et al., EP 560,483; C. J. Pearson, et al., EP 636.622.

Scheme 19

$$R^{8}$$
 W
 A
 R^{9a}
 $C(OR^{21})_{3}$
 R^{9a}
 R^{9a}

Scheme 20 illustrates the preparation of compounds of Formula 13 whereby a ester of Formula 16 is decarboxylated in the presence of a catalyst, such as p-toluenesulfonic acid, in an inert solvent such as toluene. This conversion is carried out by methods known in the art (or by slight modification of these methods): for example, see P. A. Cain, et al., EP 560,483; C. J. Pearson, et al., EP 636,622.

Scheme 20

15

10

5

20

Esters of Formula 16 can be prepared by reacting the metal salt of a compound of Formula 17 with an acid chloride of Formula 5 (Scheme 21). This type of coupling is known in the art: for example see P. A. Cain, et al., EP 560,483; C. J. Pearson, et al., EP 636,622.

5

10

Scheme 21

Scheme 22 illustrates the preparation of compounds of Formula Ig whereby a compound of Formula 5 is reacted with a compound of Formula 18 in the presence of a base such as triethylamine, potassium carbonate, sodium hydride or Mg(OEt)₂ in an inert organic solvent such as diethyl ether, tetrahydrofuran, N,N-dimethylformamide, dichloromethane or acetonitrile.

$$R^{10}$$
 R^{11}
 R^{10}
 R^{11}

This conversion is carried out by methods known in the art (or slight modification of these methods); for example, see J. W. Ashmore, EP 213,892 and P. A. Caln, EP 496,631 A1.

Scheme 22

20

It is recognized that some reagents and reaction conditions described above for preparing compounds of Formula I may not be compatible with certain functionalities present in the intermediates. In these instances, the incorporation of protection/deprotection sequences or functional group interconversions into the

10

15

20

35

synthesis will aid in obtaining the desired products. The use and choice of the protecting groups will be apparent to one skilled in chemical synthesis (see, for example, Greene, T. W.; Wuts, P. G. M. Protective Groups in Organic Synthesis, 2nd ed.; Wiley: New York, 1991). One skilled in the art will recognize that, in some cases. after the introduction of a given reagent as it is depicted in any individual scheme, it may be necessary to perform additional routine synthetic steps not described in detail to complete the synthesis of compounds of Formula I. One skilled in the art will also recognize that it may be necessary to perform a combination of the steps illustrated in the above schemes in an order other than that implied by the particular sequence presented to prepare the compounds of Formula I.

One skilled in the art will also recognize that compounds of Formula I and the intermediates described herein can be subjected to various electrophilic, nucleophilic, radical, organometallic, oxidation, and reduction reactions to add substituents or modify existing substituents.

Without further elaboration, it is believed that one skilled in the art using the preceding description can utilize the present invention to its fullest extent. The following Examples are, therefore, to be construed as merely illustrative, and not limiting of the disclosure in any way whatsoever. Percentages are by weight except for chromatographic solvent mixtures or where otherwise indicated. Parts and percentages for chromatographic solvent mixtures are by volume unless otherwise indicated. ¹H NMR spectra are reported in ppm downfield from tetramethylsilane; s = singlet. d = doublet, t = triplet, q = quartet, m = multiplet, dd = doublet of doublets, dt = doublet of triplets, br s = broad singlet.

EXAMPLE 1

Preparation of 3-[(2,5-dimethylphenyl)thio]propanoic acid 25 Step A: 43.4 g (1.086 mol) of sodium hydroxide was added to 230 mL of water, 75.0 g (0.543 mol) of 2,5-dimethylthiophenol (purchased from Aldrich Chemical Company) was then added and the mixture was cooled to about 10 °C. 91.30 g (0.597 mol) of 3bromopropionic acid (purchased from Aldrich Chemical Company) was added in portions keeping the temperature below 25 °C. The mixture was warmed to room 30 temperature, stirred for 2 hr under nitrogen, and was then washed with diethyl ether (3 x 500 mL). The aqueous layer was acidified with 1N HCl and filtered to yield 112.79 g of the title compound of step A as a solid, m.p. 97-98 °C.

¹H NMR (CDCl₃): δ 2.3 (s, 3H), 2.34 (s, 3H), 2.68 (t, 2H), 3.1 (t, 2H), 6.9 (d, 1H), 7.06-7.14 (2H).

Step B: Preparation of 2,3-dihydro-5,8-dimethyl-4H-1-benzopyran-4-one 530 mL of concentrated sulfuric acid was added to 24.91 g (0.119 mol) of the title compound of step A while being cooled with an acetone/ice bath. The ice bath was

35

PCT/US97/09569

removed, the mixture was stirred for 1 hr and was then poured over crushed ice. The aqueous phase was extracted with a mixture of diethyl ether: hexane (1:9, 6 x 500 mL), dried (MgSO₄), filtered, and evaporated to dryness to yield 11.75 g of the title compound of step B as an oil.

22

¹H NMR (CDCl₃): δ 2.3 (s, 3H), 2.6 (s, 3H), 2.97 (m, 2H), 3.2 (m, 2H), 6.9-7.1 (2H).

Step C: Preparation of 6-bromo-2,3-dihydro-5,8-dimethyl-4*H*-1-benzothiopyran-4-one

A solution of 4.07 g (0.021 mol) of the title compound of step B in 25 mL of
methylene chloride was added dropwise to a mixture of 7.07 g (0.053 mol) of aluminum
chloride (purchased from Aldrich Chemical Company) in 25 mL of methylene chloride.
The suspension was stirred for approximately 15 minutes, 1.14 mL (0.022 mol) of
bromine (purchased from Janssen) was added dropwise, and the mixture was then
refluxed for 10 minutes. The warm mixture was poured into 10 mL of concentrated
hydrochloric acid containing 75 g of ice, stirred for 10 minutes, diluted with 50 mL of
water, and extracted with diethyl ether (2 x 200 mL). The combined organic layers were
washed with water (2 x 200 mL), dried (Na2SO4), filtered, and evaporated to dryness.
The crude product was chromatographed over silica gel eluting with a mixture of ethyl
acetate: hexane (5:95) to yield 2.62 g of the title compound of step C as a solid, m.p.

87-88 °C.

 ^{1}H NMR (CDCl3): δ 2.3 (s, 3H), 2.6 (s, 3H), 3.0 (m, 2H), 3.2 (m, 2H), 7.45 (s, 1H).

Step D: Preparation of 6-bromo-5,8-dimethyl-4H-1-benzothiopyran-4-one
30 g (0.11 mol) of the title compound of step C and 8.95 mL (0.11 mol) of
pyridine were added to 250 mL of methylene chloride. The solution was cooled to
about 0 °C and 14.76 g (0.11 mol) of N-chlorosuccinimide was added. The mixture was
stirred overnight under nitrogen while warming to room temperature and then refluxed
for 12 h. The reaction was evaporated to dryness, the residue was stirred in diethyl
ether, and filtered. The filtrate was dried (MgSO4), filtered, and evaporated to dryness
to yield 13.25 g of the title compound of step D as a solid, m.p. 123-124 °C.

¹H NMR (CDCl₃): δ 2.5 (s, 3H), 2.9 (s, 3H), 7.0 (d, 1H), 7.7 (m, 2H).

Step E: Preparation of 3-[3-bromo-2,5-dimethyl-6-(methylthio)phenyl]-1-methyl-1H-pyrazole

13.25 g (0.049 mol) of the title compound of step D and 2.88 mL (0.054 mol) of methylhydrazine (purchased from Aldrich Chemical Company) was added to 150 mL of absolute ethanol. After stirring at reflux under nitrogen for 5 hr the mixture was allowed to warm to room temperature and stir for 2.5 days. The mixture was refluxed for 3 hr after which time 0.5 mL of acetic acid was added and the reaction was refluxed

10

15

20

25

30

35

overnight. After cooling to room temperature, 12.35 mL (0.054 mol) of sodium methoxide (25% in methanol) and 3.66 mL (0.059 mol) of iodomethane were added and the reaction stirred for 2 hr. The mixture was evaporated to dryness. The residue was stirred in water, extracted with methylene chloride (250 mL), dried (MgSO₄), filtered, and evaporated to dryness. The crude product was chromatographed over silica gel eluting with methylene chloride to yield 5.97 g of the title compound of step E as an oil.

¹H NMR (CDCl₃): δ 2.0 (s, 3H), 2.1 (s, 3H), 2.5 (s, 3H), 3.6 (s, 3H), 6.2 (s, 1H), 7.6 (m, 2H).

Step F: Preparation of 2,5-dimethyl-3-(1-methyl-1*H*-pyrazol-3-yl)-4(methylthio)benzoic acid

5.9 g (0.019 mol) of the title compound of step E was added to 100 mL of tetrahydrofuran and cooled to -70 °C. 9.1 mL (0.023 mol) of 2.5M n-butyllithium (purchased from Aldrich Chemical Company) was added dropwise keeping the temperature below -65 °C. Solid carbon dioxide was added in one portion and the mixture warmed to room temperature. 200 mL of hexane was added and the mixture was filtered. The solid collected was added to water and acidified to about pH 1 with concentrated hydrochloric acid. The aqueous was extracted with methylene chloride (3 x 100 mL), dried (MgSO4), filtered, and evaporated to dryness to yield 3.13 g of the title compound of step F as a semi-solid.

¹H NMR (CDCl₃): δ 2.1 (s, 3H), 2.3 (s, 3H), 2.6 (s, 3H), 3.6 (s, 3H), 6.2 (m, 1H), 7.6 (d, 1H), 7.97 (s, 1H).

Step G: Preparation of 2,5-dimethyl-3-(1-methyl-1*H*-pyrazol-3-yl)-4(methylsulfonyl)benzoic acid

4.5 mL (0.046 mol) of hydrogen peroxide (35%) was added to 25 mL of trifluoroacetic acid. The mixture was allowed to stir for 30 min under nitrogen and was then cooled to 0 °C. A solution of 3.1 g (0.011 mol) of the title compound of step F in 25 mL of trifluoroacetic acid was added dropwise keeping the temperature below 10 °C. The mixture was warmed to room temperature and stirred for 3 days. 2 mL of dimethylsulfide was added and the reaction stirred for 30 min. The mixture was then evaporated to dryness, and the residue was triturated with water and filtered. The collected solid was dissolved in methylene chloride, dried (MgSO₄), filtered, and evaporated to dryness to yield 1.41 g of the title compound of step G as a solid, m.p. 60^{\dagger} °C (dec.).

¹H NMR (CDCl₃): δ 2.2 (s, 3H), 2.8 (s, 3H), 3.0 (s, 3H), 3.7 (s, 3H), 6.2 (m, 1H), 7.7 (m, 1H), 8.0 (s, 1H).

Step H: Preparation of 3-oxo-1-cylcohexen-1-yl 2,5-dimethyl-3-(1-methyl-1*H*-pyrazol-3-yl)-4-(methylsulfonyl)benzoate

1.39 g (0.0045 mol) of the title compound of step G, 1.18 mL (0.0135 mol) of oxalyl chloride (purchased from Janssen), and 2 drops of N,N-dimethylformamide were added to 50 mL of methylene chloride. The mixture was refluxed under nitrogen for 2.5 hr and was then evaporated to dryness. 50 mL of methylene chloride was added to the residue and the solution was again evaporated to dryness. Another 50 mL of methylene chloride was added to the residue, and the solution was cooled to about 0 °C. 0.56 g (0.0049 mol) of 1,3-cyclohexanedione (purchased from Aldrich Chemical Company) was added followed by 1.94 mL (0.0139 mol) of triethylamine, and the mixture was stirred overnight while warming to room temperature. The mixture was evaporated to dryness and the crude product was chromatographed over silica gel eluting with a mixture of ethyl acetate:hexane (6:4, then 7:3) to yield 0.47 g of the title compound of step H as a solid, m.p. 165 - 167 °C.

10

15

20

25

¹H NMR (CDCl₃): δ 2.1 - 2.2 (m, 5H), 2.5 (m, 2H), 2.7 (m, 2H), 2.8 (s, 3H), 2.98 (s, 3H), 3.6 (s, 3H), 6.0 (s, 1H), 6.1 (m, 1H), 7.6 (m, 1H), 7.9 (s, 1H).

Step I: Preparation of 2-[2,5-dimethyl-3-(1-methyl-1*H*-pyrazol-3-yl)-4-(methylsulfonyl)benzoyl]-1,3-cyclohexanedione

0.47 g (0.0012 mol) of the title compound of step H, 1 drop of acetone cyanohydrin (purchased from Aldrich Chemical Company), and 0.29 mL (0.0020 mol) of triethylamine were added to 25 mL of acetonitrile and allowed to stir overnight at room temperature under nitrogen. The mixture was evaporated to dryness, water was added to the residue, and the solution was acidified to pH 1 with concentrated hydrochloric acid. The aqueous was extracted with methylene chloride, dried (MgSO4), filtered, and evaporated to dryness to yield 0.27 g of the title compound of example 1, a compound of the invention, as a solid, m.p. 93 °C (decomposed).

¹H NMR (CDCl₃): δ 1.8 (s, 3H), 2.1 (m, 2H), 2.4 (m, 2H), 2.7 (s, 3H), 2.8 (m, 2H), 2.98 (s, 3H), 3.7 (s, 3H), 6.2 (s, 1H), 7.1 (s, 1H), 7.6 (s, 1H).

EXAMPLE 2

30 Step A: Preparation of 2-[3-(trifluoromethyl)-1H-pyrazol-1-yl]benzoic acid

To 100 mL of dimethylformamide was added sequentially 19.3 g (0.125 mol) of methyl 2-fluorobenzoate, 18.7 g (0.138 mol) of 3-(trifluoromethyl)pyrazole (purchased from Maybridge Chemical Company), and 19.0 g (0.138 mol) of potassium carbonate.

The suspension was stirred and heated at about 100 °C for 16 hours, then cooled to 25 °C and poured into excess water. The aqueous suspension was extracted three times with 75 mL of diethyl ether and the combined ether layers were dried over magnesium sulfate and concentrated under reduced pressure. The residual oil was chromatographed over silica gel eluting with hexane:ethyl acetate (9.6:0.4, then 100% ethyl acetate) to

yield 15.3 g of crude methyl 2-[3-(trifluoromethyl)-1*H*-pyrazol-1-yl]benzoate as an oil. 14 g (0.052 mol) of this oil was added to a solution of 3.8 g (0.057 mol) of potassium hydroxide (85%) dissolved in 60 mL of methanol. The solution was stirred at 25 °C for one hour, refluxed for 5 hours, stirred at 25 °C for 48 hours, and finally concentrated under reduced pressure. 100 mL of water was added to the residue and the cloudy solution was extracted twice with 40 mL of diethyl ether. The clear aqueous layer was acidified with concentrated HCl and filtered. The collected solid was dissolved in dichloromethane, dried over magnesium sulfate, and the solvent was removed under reduced pressure to yield 5.0 g of the title compound of Step A as a solid melting at 138-144 °C.

¹H NMR (CDCl₃): δ 6.95 (d, 1H), 7.65 (m, 2H), 7.7 (m, 1H), 7.85 (m, 1H), 8.35 (d, 1H), 13.15 (s, 1H).

Step B: Preparation of 3-oxo-1-cyclohexen-1-yl 2-[3-(trifluoromethyl)-1H-pyrazol-1-yl]benzoate

10

15

20

25

30

35

To 20 mL of oxalyl chloride was added portionwise 4.0 g of the title compound of Step A. The suspension was refluxed for about 3 hours and then concentrated under reduced pressure. The residue was azeotroped with dichloromethane (two times with 20 mL at 60 °C) to yield an oil which solidified upon cooling and melted at 64-68 °C. 2.0 g (0.0073 mol) of this acid chloride was added to 20 mL of dichloromethane, followed by the addition of 0.99 g (0.0088 mol) of 1,3-cyclohexanedione, and 2.2 g (0.022 mol) of triethylamine. The suspension was stirred overnight and then concentrated under reduced pressure. The residue was dissolved in diethyl ether and the solution was then extracted with water, dried over magnesium sulfate, and concentrated under reduced pressure to yield 2.0 g of the title compound of Step B as an oil.

¹H NMR (CDCl₃): δ 2.0 (m, 2H), 2.35 (m, 2H), 2.5 (m, 2H), 5.85 (s, 1H), 6.75 (d, 1H), 7.5 (m, 1H), 7.6 (m, 1H), 7.7 (m, 1H), 7.8 (d, 1H), 8.0 (m, 1H).

Step C: Preparation of 3-hydroxy-2-[2-[3-(trifluoromethyl)-1H-pyrazol-1-yl]benzoyl]-2-cyclohexen-1-one

To 20 mL of acetonitrile was added sequentially 1.8 g (0.005 mol) of the title compound of Step B, 1.0 g (0.01 mol) of triethylamine, and 8 drops of acetone cyanohydrin. The solution was stirred under a nitrogen atmosphere at 25 °C overnight, and then diluted with 40 mL of water and acidified by the addition of concentrated hydrochloric acid (red to litmus paper). The suspension was filtered, and the collected solid was washed three times with 20 mL of water, suction dried, and then recrystallized from 2-propanol to yield 0.97 g of the title compound of Step C, a compound of this invention, as a solid melting at 141-143 °C.

¹H NMR (CDCl₃): δ 1.8 (m, 2H), 2.1 (m, 2H), 2.6 (m, 2H), 6.6 (d, 1H), 7.4-7.6 (m, 4H), 7.75 (d, 1H), 16.6 (s, 1H).

EXAMPLE 3

Step A: Preparation of methyl 6-(trifluoromethyl)[2,4'-bipyridine]-3-carboxylate

To a stirred solution of 8.49 g (0.03 mol) of methyl 2-bromo-6-(trifluoromethyl)3-pyridine carboxylate (prepared as described by Andrea T. A. and Liang P. H., U.S.

Patent 5,393,734) in 25 mL of N,N-dimethylformamide under a nitrogen atmosphere was added 0.5 g of tetrakis(triphenylphosphine)palladium(0) and the mixture was heated at 100 °C for 30 minutes. 11 g (0.03 mol) of 4-tributylstannylpyridine (prepared by a modification of the procedure described by A. Lee and W. Dai, Tetrahedron Letters (1996), 37, 495-498) was added and heating was continued at 100 °C for 24 hours. The reaction mixture was cooled to room temperature and N,N-dimethylformamide was removed by distillation under high vacuum. The residue was purified by flash chromatography over silica gel utilizing dichloromethane:ethyl acetate (8:2) to provide 4.0 g of the title compound of Step A as a red oil.

¹H NMR (CDCl₃): δ 8.76 (d, 2H), 8.4 (d, 1H), 7.8 (d, 1H), 7.47 (m, 2H), 3.76 (s, 3H).

Step B: Preparation of 6-(trifluoromethyl)[2,4'-bipyridine]-3-carboxylic acid

15

20

25

30

To a solution of 1.7 g of the title compound of Step A in 20 mL of methanol was added 2 mL of 50% aqueous sodium hydroxide and the reaction was stirred at room temperature for 24 hours. The mixture was concentrated and acidified with 6N aqueous hydrochloric acid to pH 3 and extracted three times with 20 mL of ethyl acetate. The combined organic layers were dried over magnesium sulfate and concentrated under reduced pressure to provide 1.6 g of title compound of Step B as a crude solid.

¹H NMR (CD₃)₂SO): δ 9.02 (d, 2H), 8.26 (d, 1H), 8.22 (m, 1H), 8.14 (d, 2H).

Step C: Preparation of 3-oxo-1-cyclohexen-1-yl 6-(trifluoromethyl)[2,4'-bipyridine]-3-carboxylate

To a suspension of 1.6 g (6 mmol) of the title compound of Step B in 100 mL of dichloromethane was added 0.78 g (7 mmol) of 1,3-cyclohexanedione followed by 2.4 mL (16 mmol) of triethylamine and 1.8 g (7 mmol) of 2-chloro-1-methylpyridinium iodide. The mixture was stirred at room temperature under nitrogen for 24 hours and then applied directly to a silica gel column and purified by flash chromatography using ethyl acetate/dichloromethane (2:8) to afford 1.34 g of the title compound of Step C as a tan solid melting at 49-56 °C.

¹H NMR (CDCl₃): δ 8.78 (d, 2H), 8.6 (d, 1H), 7.51 (d, 2H), 5.93 (s, 1H), 2.2 (m, 2H), 2.1 (m, 2H), 2.0 (m, 2H).

35 Step D: Preparation of 3-hydroxy-2-[[6-(trifluoromethyl)]2,4'-bipyridin]-3-yllcarbonyl]-2-cyclohexen-1-one

To a solution of 1.22 g (3.5 mmol) of the title compound of Step C in 25 mL of acetonitrile was added 1.16 mL (8.36 mmol) of triethylamine, followed by 2 drops of

acetonecyanohydrin. The mixture was stirred under nitrogen for 18 hours. The mixture was then concentrated under reduced pressure, and the residual oil was acidified with aqueous 1N hydrochloric acid and extracted three times with 20 mL of dichloromethane. The combined organic layers were dried over magnesium sulfate and concentrated under reduced pressure to afford 0.4 g of the title compound of Step D, a compound of this invention, as a white solid melting at 137-145 °C.

 1 H NMR (CDCl₃): δ 8.66 (m, 2H), 7.79 (m, 2H), 7.45 (m, 2H), 2.8 (m, 2H), 2.0 (m, 2H), 1.8 (m, 2H).

By the procedures described herein together with methods known in the art, the following compounds of Tables 1 to 20 can be prepared. The following abbreviations are used in the Tables which follow: NO₂ = nitro and Ph = phenyl.

The following notations have been used in Tables 1-20:

		•	1
A-1	=	(1-methyl-1H-pyrazol-3-yl)-	A-26 = (1-methyl-1H-imidazol-4-yl)
A-2	=	(1-ethyl-1H-pyrazol-3-yl)-	A-27 = (1-methyl-1H-imidazol-5-yl)
A-3	=	(1-propyl-1 <i>H</i> -pyrazol-3-yl)-	A-28 = (4-methyl-2-oxazolyl)-
A-4	=	(1 <i>H</i> -pyrazol-3-yl)-	A-29 = (5-methyl-2-oxazolyl)-
A-5	=	(1,5-dimethyl-1 <i>H</i> -pyrazol-3-yl)-	A-30 = (2-oxazolyl)-
A-6	=	(4-chloro-1-methyl-1H-pyrazol-3-yl)-	A-31 = (2-methyl-5-oxazolyl)-
A-7	=	(1 <i>H</i> -pyrazol-1-yl)-	A-32 = (2-methyl-4-oxazolyl)-
A -8	=	(3-methyl-1 <i>H</i> -pyrazol-1-yl)-	A-33 = (4-methyl-2-thiazolyl)-
A-9	=	(3,5-dimethyl-1 <i>H</i> -pyrazol-1-yl)-	A-34 = (5-methyl-2-thiazolyl)-
A-10	=	(3-isoxazolyl)-	A-35 = (2-thiazolyl)-
A-11	=	(5-methyl-3-isoxazolyl)-	A-36 = (2-methyl-5-thiazolyl)-
A-12	=	(3-methyl-5-isoxazolyl)-	A-37 = (2-methyl-4-thiazolyl)-
A-13	=	(5-isoxazolyl)-	A-38 = (3-methyl-4-isothiazolyl)-
A-14	=	(1H-pyrrol-2-yl)-	A-39 = (3-methyl-5-isothiazolyl)-
A-15	=	(1-methyl-1H-pyrrol-2-yl)-	A-40 = (5-methyl-3-isothiazolyl)-
A-16	=	(1 <i>H</i> -pyrrol-1-yl)-	A-41 = (1-methyl-1H-1,2,3-triazol-4-yl)-
A-17	=	(1-methyl-1 <i>H</i> -pyrrol-3-yl)-	A-42 = (2-methyl-2H-1,2,3-triazol-4-yl)
A-18	==	(2-furanyl)-	A-43 = (4-methyl-2H-1,2,3-triazol-2-yl)-
A-19	=	(5-methyl-2-furanyl)-	A-44 = (1-methyl-1 <i>H</i> -1,2,4-triazol-3-yl)-
A-20	=	(3-furanyl)-	A-45 = $(1.5-\text{dimethyl-1}H-1,2,4-\text{triazol-3-yl})$
A-21	=	(5-methyl-2-thienyl)-	A-46 = $(3-methyl-1H-1,2,4-triazol-1-yl)$ -
A-22	=	(2-thienyl)-	A-47 = $(5-\text{methyl}-1H-1,2,4-\text{triazol}-1-\text{yl})$ -
A-23	=	(3-thienyl)-	A-48 = (4.5-dimethyl-4H-1.2.4-triazol-3-yl)-
A-24	=	(1-methyl-1H-imidazol-2-yl)-	A-49 = $(4-\text{methyl}-4H-1,2,4-\text{triazol}-3-\text{yl})$ -
A-25	=	(1 <i>H</i> -imidazol-2-yl)-	A-50 = (4H-1,2,4-triazol-4-yl)-

A-51 = (5-methyl-1,2,3-oxadiazol-4-yl)-	A-77 = (3-pyridazinyl)-
A-52 = (1,2,3-oxadiazol-4-yl)-	A-78 = (4,6-dimethyl-2-pyrimidinyl)-
A-53 = (3-methyl-1,2,4-oxadiazol-5-yl)	A-79 = (4-methyl-2-pyrimidinyl)-
A-54 = $(5-\text{methyl-1},2,4-\text{oxadiazol-3-yl})$	A-80 = (2-pyrimidinyl)-
A-55 = (4-methyl-3-furazanyl)-	A-81 = (2-methyl-4-pyrimidinyl)-
A-56 = (3-furazanyi)-	A-82 = (2-chloro-4-pyrimidinyl)-
A-57 = (5-methyl-1,3,4-oxadiazol-2-yl)	A-83 = (2,6-dimethyl-4-pyrimidinyl)-
A-58 = (5-methyl-1,2,3-thiadiazol-4-yl)-	A-84 = (4-pyrimidinyl)-
A-59 = (1,2,3-thiadiazol-4-yl)-	A-85 = (2-methyl-5-pyrimidinyl)-
A-60 = (3-methyl-1,2,4-thiadiazol-5-yl)-	A-86 = (6-methyl-2-pyrazinyl)-
A-61 = (5-methyl-1,2,4-thiadiazol-3-yl)	A-87 = (2-pyrazinyI)
A-62 = (4-methyl-1,2,5-thiadiazol-3-yl)	A-88 = $(4,6-dimethyl-1,3,5-triazin-2-yl)$
A-63 = (5-methyl-1,3,4-thiadiazol-2-yl)-	A-89 = (4,6-dichloro-1,3,5-triazin-2-yl)-
A-64 = $(1-\text{methyl}-1H-\text{tetrazol}-5-yI)$	A-90 = $(1,3,5-triazin-2-yl)$ -
A-65 = (1H-tetrazol-5-yl)	A-91 = (4-methyl-1,3,5-triazin-2-yl)-
A-66 = $(5-\text{methyl-1}H-\text{tetrazol-1-yl})$	A-92 = $(3-\text{methyl-1,2,4-triazin-5-yl})$
A-67 = $(2-methyl-2H-tetrazol-5-yl)$	A-93 = (3-methyl-1,2,4-triazin-6-yl)-
A-68 = (2-ethyl-2H-tetrazol-5-yl)-	
A-69 = (5-methyl-2H-tetrazol-2-yl)-	
A-70 = (2H-tetrazol-2-yl)-	
A-71 = (2-pyridinyl)-	
A-72 = (6-methyl-2-pyridinyl)-	
A-73 = (4-pyridinyl)-	
A-74 = (3-pyridinyl)-	
A-75 = (6-methyl-3-pyridazinyl)-	

A-76 = (5-methyl -3-pyridazinyl)-

TABLE 1

R¹⁵ is CH₃

Δ	A	A	<u>A</u>	A	<u>A</u>	A	Δ	Δ	A	Α	Α
A-I	A-2	A- 3	A-4	A-5	A-6	A-7	A-8	A-9	A-10	A-11	A-12
A-13	A-14	A-15	A-16	A-17	A-18	A-19	A-20	A-21	A-22	A-23	A-24
A-25	A-26	A-27	A-28	A-29	A-30	A-31	A-32	A-33	A-34	A-35	A-36
A-37	A-38	A-39	A-40	A-41	A-42	A-43	A-44	A-45	A-46	A-47	A-48
A-49	A-50	A-51	A-52	A-53	A-54	A-55	A-56	A-57	A-58	A-59	A-60
A-61	A-62	A-63	A-64	A-65	A-66	A-67	A-68	A-69	A-70	A-71	A-72
Λ-73	A-74	A-75	A-76	A-77	A-78	A-79	A-80	A-81	A-82	A-83	A-84
A-85	A-86	A-87	A-88	A-89	A-90	A-91	A-92	A-93			

R15 is CH2CH3

A	Α	Α	Α	A	<u>A</u>	<u>A</u>	A	<u>A</u>	A	A	Α
A-1	A-2	A-3	A-4	A-5	A-6	A-7	A-8	A-9	A-10	A-11	A-12
A-13	A-14	A-15	A-16	A-17	A-18	A-19	A-20	A-21	A-22	A-23	A-24
A-25	A-26	A-27	A-28	A-29	A-30	A-31	A-32	A-33	A-34	A-35	A-36
A-37	A-38	A-39	A-40	A-41	A-42	A-43	A-44	A-45	A-46	A-47	A-48
A-49	A-50	A-51	A-52	A-53	A-54	A-55	A-56	A-57	A-58	A-59	A-60
A-61	A-62	A-63	A-64	A-65	A-66	A-67	A-68	A-69	A-70	A-71	A-72
A-73	A-74	A-75	A-76	A-77	A-78	A-79	A-80	A-81	A-82	A-83	A-84
A-85	A-86	A-87	A-88	A-89	A-90	A-91	A-92	A-93			

R15 is CH2CH2CH3

Δ_	Δ	A	Α	A	Δ	A	<u>A</u>	<u>A</u>	<u>A</u>	Δ	A
A-1		A-3									
A-13	A-14	A-15	A-16	A-17	A-18	A-19	A-20	A-21	A-22	A-23	A-24
A-25	A-26	A-27	A-28	A-29	A-30	A-31	A-32	A-33	A-34	A-35	A-36
		A-39									
A-49	A-50	A-51	A-52	A-53	A-54	A-55	A-56	A-57	A-58	A-59	A-60

31

1	A-61	A-62	A-63	A-64	A-65	A-66	A-67	A-68	A-69	A-70	A-71	A-72
	A-73	A-74	A-75	A-76	A-77	A-78	A-79	A-80	A-81	A-82	A-83	A-84
	A-85	A-86	A-87	A-88	A-89	A-90	A-91	A-92	A-93			

TABLE 2

R¹⁵ is CH₃

		_	_								
Α	Α	A	A	A	A	<u>A</u>	A	A	A	A	Δ
A-1	A-2	A-3	A-4	A-5	A-6	A-7	A-8	A-9	A-10	A-11	A-12
A-13	A-14	A-15	A-16	A-17	A-18	A-19	A-20	A-21	A-22	A-23	A-24
A-25	A-26	A-27	A-28	A-29	A-30	A-31	A-32	A-33	A-34	A-35	A-36
A-37	A-38	A-39	A-40	A-41	A-42	A-43	A-44	A-45	A-46	A-47	A-48
A-49	A-50	A-51	A-52	A-53	A-54	A-55	A-56	A-57	A-58	A-59	A-60
A-61	A-62	A-63	A-64	A-65	A-66	A-67	A-68	A-69	A-70	A-71	A-72
A-73	A-74	A-75	A-76	A-77	A-78	A-79	A-80	A-81	A-82	A-83	A-84
A-85	A-86	A-87	A-88_	A-89	A-90	A-91	A-92	A-93			

R15 is CH2CH3

Α	Α	Δ	Δ	Δ	Α	<u>A</u>	A	<u>A</u>	A	A	Α
A-1	A-2	A-3	A-4	A-5	A-6	A-7	A-8	A-9	A-10	A-11	A-12
A-13	A-14	A-15	A-16	A-17	A-18	A-19	A-20	A-21	A-22	A-23	A-24
A-25	A-26	A-27	A-28	A-29	A-30	A-31	A-32	A-33	A-34	A-35	A-36
A-37	A-38	A-39	A-40	A-41	A-42	A-43	A-44	A-45	A-46	A-47	A-48
A-49	A-50	A-51	A-52	A-53	A-54	A-55	A-56	A-57	A-58	A-59	A-60
A-61	A-62	A-63	A-64	A-65	A-66	A-67	A-68	A-69	A-70	A-71	A-72
A-73	A-74	A-75	A-76	A-77	A-78	A-79	A-80	A-81	A-82	A-83	A-84
A-85	A-86	A-87	A-88	A-89	A-90	A-91	A-92	A-93			

R15 is CH2CH2CH3

A	Α	Α	A	A	Α	A	A	Α	Α	A	A
A-1	A-2	A-3	A-4	A-5	A-6	A-7	A-8	A-9	A-10	A-11	A-12
A-13	A-14	A-15	A-16	A-17	A-18	A-19	A-20	A-21	A-22	A-23	A-24
A-25	A-26	A-27	A-28	A-29	A-30	A-31	A-32	A-33	A-34	A-35	A-36
A-37	A-38	A-39	A-40	A-41	A-42	A-43	A-44	A-45	A-46	A-47	A-48
A-49	A-50	A-51	A-52	A-53	A-54	A-55	A-56	A-57	A-58	A-59	A-60
A-61	A-62	A-63	A-64	A-65	A-66	A-67	A-68	A-69	A-70	A-71	A-72
A-73	A-74	A-75	A-76	A-77	A-78	A-79	A-80	A-81	A-82	A-83	A-84
A-85	A-86	A-87	A-88	A-89	A-90	A-91	A-92	A-93			

TABLE 3

R15 is CH3 and R6 is CH3

Α	A	A	A	A	A	A	Α	<u>A</u>	Α	A	Δ
A-1	A-2	A-3	A-4	A-5	A-6	A-7	A-8	A-9	A-10	A-11	A-12
A-13	A-14	A-15	A-16	A-17	A-18	A-19	A-20	A-21	A-22	A-23	A-24
A-25	A-26	A-27	A-28	A-29	A-30	A-31	A-32	A-33	A-34	A-35	A-36
A-37	A-38	A-39	A-40	A-41	A-42	A-43	A-44	A-45	A-46	A-47	A-48
A-49	A-50	A-51	A-52	A-53	A-54	A-55	A-56	A-57	A-58	A-59	A-60
A-61	A-62	A-63	A-64	A-65	A-66	A-67	A-68	A-69	A-70	A-71	A-72
A-73	A-74	A-75	A-76	A-77	A-78	A-79	A-80	A-81	A-82	A-83	A-84
A-85	A-86	A-87	A-88	A-89	A-90	A-91	A-92	A-93			

R15 is CH2CH3 and R6 is CH3

Α	Δ	Α	<u>A</u>	Δ	<u>A</u>	<u>A</u>	A	A	Α	A	Δ
A-1	A-2										
A-13	A-14	A-15	A-16	A-17	A-18	A-19	A-20	A-21	A-22	A-23	A-24
A-25	A-26	A-27	A-28	A-29	A-30	A-31	A-32	A-33	A-34	A-35	A-36
A-37	A-38	A-39	A-40	A-41	A-42	A-43	A-44	A-45	A-46	A-47	A-48

A-49	A-50	A-51	A-52	A-53	A-54	A-55	A-56	A-57	A-58	A-59	A-60
A-61	A-62	A-63	A-64	A-65	A-66	A-67	A-68	A-69	A-70	A-71	A-72
A-73	A-74	A-75	A-76	A-77	A-78	A-79	A-80	A-81	A-82	A-83	A-84
A-85	A-86	A-87	A-88	A-89	A-90	A-91	A-92	A-93			

R15 is CH2CH2CH3 and R6 is CH3

A	Α	Δ	A	Α	A	<u>A</u>	A	A	A	<u>A</u>	A
A-1	A-2	A-3	A-4	A-5	A-6	A-7	A-8	A-9	A-10	A-11	A-12
A-13	A-14	A-15	A-16	A-17	A-18	A-19	A-20	A-21	A-22	A-23	A-24
A-25	A-26	A-27	A-28	A-29	A-30	A-31	A-32	A-33	A-34	A-35	A-36
A-37	A-38	A-39	A-40	A-41	A-42	A-43	A-44	A-45	A-46	A-47	A-48
A-49	A-50	A-51	A-52	A-53	A-54	A-55	A-56	A-57	A-58	A-59	A-60
A-61	A-62	A-63	A-64	A-65	A-66	A-67	A-68	A-69	A-70	A-71	A-72
A-73	A-74	A-75	A-76	A-77	A-78	A-79	A-80	A-81	A-82	A-83	A-84
A-85	A-86	A-87	A-88	A-89	A-90	A-91	A-92	A-93			

R15 is CH3 and R6 is CH2CH3

<u>A</u>	A	A	Α	A	Α	<u>A</u>	<u>A</u>	<u>A</u>	A	<u>A</u>	A
A-1	A-2	A-3	A-4	A-5	A-6	A-7	A-8	A-9	A-10	A-11	A-12
A-13	A-14	A-15	A-16	A-17	A-18	A-19	A-20	A-21	A-22	A-23	A-24
A-25	A-26	A-27	A-28	A-29	A-30	A-31	A-32	A-33	A-34	A-35	A-36
A-37	A-38	A-39	A-40	A-41	A-42	A-43	A-44	A-45	A-46	A-47	A-48
A-49	A-50	A-51	A-52	A-53	A-54	A-55	A-56	A-57	A-58	A-59	A-60
A-61	A-62	A-63	A-64	A-65	A-66	A-67	A-68	A-69	A-70	A-71	A-72
A-73	A-74	A-75	A-76	A-77	A-78	A-79	A-80	A-81	A-82	A-83	A-84
A-85	A-86	A-87	A-88	A-89	A-90	A-91	A-92	A-93			

R15 is CH2CH3 and R6 is CH2CH3

A	Δ	<u>A</u>	<u>A</u>	Α	<u>A</u>	A	<u>A</u>	A	Α	<u>A</u>	Α
A-1	A-2	A-3	A-4	A-5	A-6	A-7	A-8	A-9	A-10	A-11	A-12
A-13	A-14	A-15	A-16	A-17	A-18	A-19	A-20	A-21	A-22	A-23	A-24
A-25	A-26	A-27	A-28	A-29	A-30	A-31	A-32	A-33	A-34	A-35	A-36
A-37	A-38	A-39	A-40	A-41	A-42	A-43	A-44	A-45	A-46	A-47	A-48
A-49	A-50	A-51	A-52	A-53	A-54	A-55	A-56	A-57	A-58	A-59	A-60
A-61	A-62	A-63	A-64	A-65	A-66	A-67	A-68	A-69	A-70	A-71	A-72
A-73	A-74	A-75	A-76	A-77	A-78	A-79	A-80	A-81	A-82	A-83	A-84
A-85	A-86	A-87	A-88	A-89	A-90	A-91	A-92	A-93			

R15 is CH2CH2CH3 and R6 is CH2CH3

A	Δ	Δ	A	Α	Α	A	A	Α	A	A	Α
A-1	A-2	A-3	A-4	A-5	A -6	A-7	A-8	A-9	A-10	A-11	A-12
A-13	A-14	A-15	A-16	A-17	A-18	A-19	A-20	A-21	A-22	A-23	A-24
A-25	A-26	A-27	A-28	A-29	A-30	A-31	A-32	A-33	A-34	A-35	A-36
A-37	A-38	A-39	A-40	A-41	A-42	A-43	A-44	A-45	A-46	A-47	A-48
A-49	A-50	A-51	A-52	A-53	A-54	A-55	A-56	A-57	A-58	A-59	A-60
A-61	A-62	A-63	A-64	A-65	A-66	A-67	A-68	A-69	A-70	A-71	A-72
A-73	A-74	A-75	A-76	A-77	A-78	A-79	A-80	A-81	A-82	A-83	A-84
A-85	A-86	A-87	A-88	A-89	A-90	A-91	A-92	A-93			

TABLE 4

R15 is CH3 and R6 is CH3

Α	<u>A</u>	Δ	Α	<u>A</u>	A	A	A	A	Δ	A	A
A-1	A-2	A-3	A-4	A-5	A-6	A-7	A-8	A-9	A-10	A-11	A-12
A-13	A-14	A-15	A-16	A-17	A-18	A-19	A-20	A-21	A-22	A-23	A-24
A-25	A-26	A-27	A-28	A-29	A-30	A-31	A-32	A-33	A-34	A-35	A-36
A-37	A-38	A-39	A-40	A-41	A-42	A-43	A-44	A-45	A-46	A-47	A-48
A-49	A-50	A-51	A-52	A-53	A-54	A-55	A-56	A-57	A-58	A-59	A-60
A-61	A-62	A-63	A-64	A-65	A-66	A-67	A-68	A-69	A-70	A-71	A-72
A-73	A-74	A-75	A-76	A-77	A-78	A-79	A-80	A-81	A-82	A-83	A-84
A-85	A-86	A-87	A-88	A-89	A-90	A-91	A-92	A-93			

R15 is CH2CH3 and R6 is CH3

ļ	<u>A</u>	Α	_A	Δ	_ A_	Α	Α	Α	A	A	<u>A</u>	A
	A-1	A-2	A-3	A-4	A-5	A-6	A-7	A-8	A-9	A-10	A-11	A-12
	A-13	A-14	A-15	A-16	A-17	A-18	A-19	A-20	A-21	A-22	A-23	A-24
١	A-25	A-26	A-27	A-28	A-29	A-30	A-31	A-32	A-33	A-34	A-35	A-36
	A-37	A-38	A-39	A-40	A-41	A-42	A-43	A-44	A-45	A-46	A-47	A-48

A-49	A-50	A-51	A-52	A-53	A-54	A-55	A-56	A-57	A-58	A-59	A-60
A-61	A-62	A-63	A-64	A-65	A-66	A-67	A-68	A-69	A-70	A-71	A-72
A-73	A-74	A-75	A-76	A-77	A-78	A-79	A-80	A-81	A-82	A-83	A-84
A-85	A-86	A-87	A-88	A-89	A-90	A-91	A-92	A-93			

R15 is CH2CH2CH3 and R6 is CH3

Δ	A	Α	Α	Α	Α	Δ	<u>A</u>	A	A	Α	A
A- 1	A-2	A-3	A-4	A-5	A-6	A-7	A-8	A-9	A-10	A- 11	A-12
A-13	A-14	A-15	A-16	A-17	A-18	A-19	A-20	A-21	A-22	A-23	A-24
A-25	A-26	A-27	A-28	A-29	A-30	A-31	A-32	A-33	A-34	A-35	A-36
A-37	A-38	A-39	A-40	A-41	A-42	A-43	A-44	A-45	A-46	A-47	A-48
A-49	A-50	A-51	A-52	A-53	A-54	A-55	A-56	A-57	A-58	A-59	A-60
A-61	A-62	A-63	A-64	A-65	A-66	A-67	A-68	A-69	A-70	A-71	A-72
A-73	A-74	A-75	A-76	A-77	A-78	A-79	A-80	A-81	A-82	A-83	A-84
A-85	A-86	A-87	A-88	A-89	A-90	A-91	A-92	A-93			

R15 is CH3 and R6 is CH2CH3

Δ	Α	Δ	Α	Α	Α	Α	<u>A</u>	<u>A</u>	A	A	Δ
A-I	Λ-2	A-3	A-4	A-5	A-6	A-7	A-8	A-9	A-10	A-11	A-12
A-13	A-14	A-15	A-16	A-17	A-18	A-19	A-20	A-21	A-22	A-23	A-24
A-25	A-26	A-27	A-28	A-29	A-30	A-31	A-32	A-33	A-34	A-35	A-36
A-37	A-38	A-39	A-40	A-41	A-42	A-43	A-44	A-45	A-46	A-47	A-48
A-49	A-50	A-51	A-52	A-53	A-54	A-55	A-56	A-57	A-58	A-59	A-60
A-61	A-62	A-63	A-64	A-65	A-66	A-67	A-68	A-69	A-70	A-71	A-72
A-73	A-74	A-75	A-76	A-77	A-78	A-79	A-80	A-81	A-82	A-83	A-84
A-85	A-86	A-87	A-88	A-89	A-90	A-91	A-92	A-93			

R15 is CH2CH2 and R6 is CH2CH2

77.4 13	<u>s C112C</u>	<u> 113 anc</u>	114.13	<u> </u>	<u>43</u>						
A	A	A	Α	A	A	Δ	<u>A</u>	A	Δ	Δ	Α
A-I	A-2	A-3	A-4	A-5	A-6	A-7	A-8	A-9	A-10	A-11	A-12
A-13	A-14	A-15	A-16	A-17	A-18	A-19	A-20	A-21	A-22	A-23	A-24
A-25	A-26	A-27	A-28	A-29	A-30	A-31	A-32	A-33	A-34	A-35	A-36
A-37	A-38	A-39	A-40	A-41	A-42	A-43	A-44	A-45	A-46	A-47	A-48
A-49	A-50	A-51	A-52	A-53	A-54	A-55	A-56	A-57	A-58	A-59	A-60
A-61	A-62	A-63	A-64	A-65	A-66	A-67	A-68	A-69	A-70	A-71	A-72
A-73	A-74	A-75	A-76	A-77	A-78	A-79	A-80	A-81	A-82	A-83	A-84
A-85	A-86	A-87	A-88	A-89	A-90	A-91	A-92	A-93			

R15 is CH2CH2CH3 and R6 is CH2CH3

A	A	<u>A</u>	Α	<u>A</u>	A	Δ	Δ	Α	A	A	Α
A-1	A-2	A-3	A-4	A-5	A-6	A-7	A-8	A-9	A-10	A-11	A-12
A-13	A-14	A-15	A-16	A-17	A-18	A-19	A-20	A-21	A-22	A-23	A-24
A-25	A-26	A-27	A-28	A-29	A-30	A-31	A-32	A-33	A-34	A-35	A-36
A-37	A-38	A-39	A-40	A-41	A-42	A-43	A-44	A-45	A-46	A-47	A-48
A-49	A-50	A-51	A-52	A-53	A-54	A-55	A-56	A-57	A-58	A-59	A-60
A-61	A-62	A-63	A-64	A-65	A-66	A-67	A-68	A-69	A-70	A-71	A-72
A-73	A-74	A-75	A-76	A-77	A-78	A-79	A-80	A-81	A-82	A-83	A-84
A-85	A-86	A-87	A-88	A-89	A-90	A-91	A-92	A-93			

TABLE 5

R15 is CH3

Δ	A	Δ	Δ	Δ	Α	A	A	A	Δ	Α	A
A-1	A-2	A-3	A-4	A-5	A-6	A-7	A-8	A-9	A-10	A-11	A-12
A-13	A-14	A-15	A-16	A-17	A-18	A-19	A-20	A-21	A-22	A-23	A-24
A-25	A-26	A-27	A-28	A-29	A-30	A-31	A-32	A-33	A-34	A-35	A-36
A-37	A-38	A-39	A-40	A-41	A-42	A-43	A-44	A-45	A-46	A-47	A-48
A-49	A-50	A-51	A-52	A-53	A-54	A-55	A-56	A-57	A-58	A-59	A-60
A-61	A-62	A-63	A-64	A-65	A-66	A-67	A-68	A-69	A-70	A-71	A-72
A-73	A-74	A-75	A-76	A-77	A-78	A-79	A-80	A-81	A-82	A-83	A-84
A-85	A-86	A-87	A-88	A-89	A-90	A-91	A-92	A-93			

R15 is CH2CH3

A	A	Δ	Δ	A	A	A	A	Α	Δ	Α	Α
A-1	A-2	A-3	A-4	A-5	A-6	A-7	A-8	A-9	A-10	A-11	A-12
A-13	A-14	A-15	A-16	A-17	A-18	A -19	A-20	A-21	A-22	A-23	A-24
A-25	A-26	A-27	A-28	A-29	A-30	A-31	A-32	A-33	A-34	A-35	A-36
A-37	A-38	A-39	A-40	A-41	A-42	A-43	A-44	A-45	A-46	A-47	A-48

A-49	A-50	A-51	A-52	A-53	A-54	A-55	A-56	A-57	A-58	A-59	A-60
A-61	A-62	A-63	A-64	A-65	A-66	A-67	A-68	A-69	A-70	A-71	A-72
A-73	A-74	A-75	A-76	A-77	A-78	A-79	A-80	A-81	A-82	A-83	A-84
A-85	A-86	A-87	A-88	A-89	A-90	A-91	A-92	A-93			

R15 is CH2CH2CH3

											
<u>A</u>	Α	A	A	Α	Α	A	A	A	A	A	<u>A</u>
A-1	A-2	A-3	A-4	A-5	A-6	A-7	A-8	A-9	A-10	A-11	A-12
A-13	A-14	A-15	A-16	A-17	A-18	A-19	A-20	A-21	A-22	A-23	A-24
A-25	A-26	A-27	A-28	A-29	A-30	A-31	A-32	A-33	A-34	A-35	A-36
A-37	A-38	A-39	A-40	A-41	A-42	A-43	A-44	A-45	A-46	A-47	A-48
A-49	A-50	A-51	A-52	A-53	A-54	A-55	A-56	A-57	A-58	A-59	A-60
A-61	A-62	A-63	A-64	A-65	A-66	A-67	A-68	A-69	A-70	A-71	A-72
A-73	A-74	A-75	A-76	A-77	A-78	A-79	A-80	A-81	A-82	A-83	A-84
A-85	A-86	A-87	A-88	A-89	A-90	A-91	A-92	A-93			

TABLE 6

$$\begin{array}{c} H \\ N \\ O \end{array} \begin{array}{c} CH_3 \\ SO_2R^{15} \\ CH_3 \end{array}$$

R15 is CH3

A	A	A	A	A	<u>A</u>	A	A	A	A_	<u>A</u>	A
A-1	A-2	A-3	A-4	A-5	A-6	A-7	A-8	A-9	A-10	A-11	A-12
A-13	A-14	A-15	A-16	A-17	A-18	A-19	A-20	A-21	A-22	A-23	A-24
A-25	A-26	A-27	A-28	A-29	A-30	A-31	A-32	A-33	A-34	A-35	A-36
A-37	A-38	A-39	A-40	A-41	A-42	A-43	A-44	A-45	A-46	A-47	A-48
A-49	A-50	A-51	A-52	A-53	A-54	A-55	A-56	A-57	A-58	A-59	A-60
A-61	A-62	A-63	A-64	A-65	A-66	A-67	A-68	A-69	A-70	A-71	A-72
A-73	A-74	A-75	A-76	A-77	A-78	A-79	A-80	A-81	A-82	A-83	A-84
A-85	A-86	A-87	A-88	A-89	A-90	A-91	A-92	A-93			

\mathbf{R}^1	15	is	CH ₂	CH ₃

Δ	<u>A</u>	Α	Α	A	A	A	Δ	Α	A	Δ	Α
A-1	A-2	A-3	A-4	A-5	A-6	A-7	A-8	A-9	A-10	A-11	A-12
A-13	A-14	A-15	A-16	A-17	A-18	A-19	A-20	A-21	A-22	A-23	A-24
A-25	A-26	A-27	A-28	A-29	A-30	A-31	A-32	A-33	A-34	A-35	A-36
A-37	A-38	A-39	A-40	A-41	A-42	A-43	A-44	A-45	A-46	A-47	A-48
A-49	A-50	A-51	A-52	A-53	A-54	A-55	A-56	A-57	A-58	A-59	A-60
A-61	A-62	A-63	A-64	A-65	A-66	A-67	A-68	A-69	A-70	A-71	A-72
A-73	A-74	A-75	A-76	A-77	A-78	A-79	A-80	A-81	A-82	A-83	A-84
A-85	A-86	A-87	A-88	A-89	A-90	A-91	A-92	A-93			

R¹⁵ is CH₂CH₂CH₃

Δ	A	Α	Α	Α	Δ	A	Α	A	A	<u>A</u>	A
A-1	A-2	A-3	A-4	A-5	A-6	A-7	A-8	A-9	A-10	A-11	A-12
A-13	A-14	A-15	A-16	A-17	A-18	A-19	A-20	A-21	A-22	A-23	A-24
A-25	A-26	A-27	A-28	A-29	A-30	A-31	A-32	A-33	A-34	A-35	A-36
A-37	A-38	A-39	A-40	A-41	A-42	A-43	A-44	A-45	A-46	A-47	A-48
A-49	A-50	A-51	A-52	A-53	A-54	A-55	A-56	A-57	A-58	A-59	A-60
A-61	A-62	A-63	A-64	A-65	A-66	A-67	A-68	A-69	A-70	A-71	A-72
A-73	A-74	A-75	A-76	A-77	A-78	A-79	A-80	A-81	A-82	A-83	A-84
A-85	A-86	A-87	A-88	A-89	A-90	A-91	A-92	A-93			

<u>A</u>	<u>R1c</u>	Rla	<u>R1b</u>	<u>A</u>	RIc	Rla	R _{1b}
A-1	SO ₂ CH ₃	NO ₂	CH ₃	A-2	SO ₂ CH ₃	NO ₂	CH ₃
A-1	SO ₂ CH ₃	Cl	CH ₃	A-2	SO ₂ CH ₃	Cl	CH ₃
A-1	SO ₂ CH ₃	CI	Cl	A-2	SO ₂ CH ₃	Cl	Cl
A-1	SO ₂ CH ₂ CH ₃	Cl	CH ₃	A-2	SO ₂ CH ₂ CH ₃ SO ₂ CH ₂ CH ₃	CI	CH ₃
A-1	SO ₂ CH ₂ CH ₃	Cl	CI	A-2	SO ₂ CH ₂ CH ₃	Cl	Cl

39

A-1	SO ₂ CH ₂ CH ₂ CH ₃	Cl	CH_3	A-2	SO ₂ CH ₂ CH ₂ CH ₃	CI	CH ₃
A- 1	SO ₂ CH ₂ CH ₂ CH ₃	Cl	Cl	A-2	SO ₂ CH ₂ CH ₂ CH ₃	Cl	C1
A -1	SO ₂ N(CH ₃) ₂	CH ₃	CH ₃	A-2	$SO_2N(CH_3)_2$	CH ₃	CH ₃
A-1	$SO_2N(CH_3)_2$	Cl	CH ₃	A-2	$SO_2N(CH_3)_2$	CI	CH ₃
A- 1	$SO_2N(CH_3)_2$	Cl	Cl	A-2	$SO_2N(CH_3)_2$	CI	Cl
A-1	SO ₂ CF ₃	CH ₃	CH ₃	A-2	SO ₂ CF ₃	CH_3	CH ₃
A-1	SO ₂ CF ₃	Cl	CH_3	A-2	SO ₂ CF ₃	Cl	CH_3
A-1	SO ₂ CF ₃	Cl	Cl	A-2	SO ₂ CF ₃	Cl	Cl
A-1	SO ₂ OCH ₂ CF ₃	CH_3	CH ₃	A-2	SO ₂ OCH ₂ CF ₃	CH ₃	CH ₃
A-1	SO ₂ OCH ₂ CF ₃	Cl	CH ₃	A-2	SO ₂ OCH ₂ CF ₃	Cl	CH_3
A- 1	SO ₂ OCH ₂ CF ₃	Cl	CI	A-2	SO ₂ OCH ₂ CF ₃	Cl	Cl
A-1	CF ₃	CH_3	CH ₃	A-2	CF ₃	CH ₃	CH_3
A-1	CF ₃	CI	CH ₃	A-2	CF ₃	Cl	CH ₃
A-1	CF ₃	Cl	Cl	A-2	CF ₃	Cl	CI
A-1	OCH ₃	CH_3	CH ₃	A-2	OCH ₃	CH_3	CH_3
A-1	OCH ₃	Cl	CH ₃	A-2	OCH ₃	Cl	CH ₃
A-1	OCH ₃	Cl	Cl	A-2	OCH ₃	Cl	Cl
A-1	NO ₂	CH ₃	CH ₃	A-2	NO ₂	CH_3	CH_3
A-l	NO ₂	Cl	CH ₃	A-2	NO ₂	Cl	CH ₃
A-I	NO ₂	Cl	Cl	A-2	NO ₂	Cl	CI
A-5	SO ₂ CH ₃	NO_2	CH ₃	A-7	SO ₂ CH ₃	NO_2	CH ₃
A-5	SO ₂ CH ₃	Cl	CH ₃	A-7	SO ₂ CH ₃	Cl	CH ₃
A-5	SO ₂ CH ₃	Cl	Cl	A -7	SO ₂ CH ₃	Cl	CI
A-5	SO ₂ CH ₂ CH ₃	Cl	CH ₃	A-7	SO ₂ CH ₂ CH ₃	Cl	CH_3
A-5	SO ₂ CH ₂ CH ₃	CI	Cl	A-7	SO ₂ CH ₂ CH ₃	Cl	Cl
A-5	SO ₂ CH ₂ CH ₂ CH ₃	Cl	CH ₃	A-7	SO ₂ CH ₂ CH ₂ CH ₃	Cl	CH ₃
A-5	SO ₂ CH ₂ CH ₂ CH ₃	Cl	Cl	A-7	SO ₂ CH ₂ CH ₂ CH ₃	Cl	Cl
A-5	SO ₂ N(CH ₃) ₂	CH ₃	CH ₃	A-7	$SO_2N(CH_3)_2$	CH_3	CH_3
A-5	SO ₂ N(CH ₃) ₂	Cl	CH ₃	A-7	$SO_2N(CH_3)_2$	CI	CH ₃
A-5	$SO_2N(CH_3)_2$	CI	CI	A-7	$SO_2N(CH_3)_2$	Cl	CI
A-5	SO ₂ CF ₃	CH_3	CH ₃	A-7	SO ₂ CF ₃	CH_3	CH ₃
A-5	SO ₂ CF ₃	Cl	CH ₃	A-7	SO ₂ CF ₃	Cl	CH ₃
A-5	SO ₂ CF ₃	Cl	Cl	A-7	SO ₂ CF ₃	CI	Cl
A-5	SO ₂ OCH ₂ CF ₃	CH ₃	CH ₃	A-7	SO ₂ OCH ₂ CF ₃	CH ₃	CH ₃
A-5	SO ₂ OCH ₂ CF ₃	C1	CH ₃	A-7	SO ₂ OCH ₂ CF ₃	CI	CH_3
A-5	SO ₂ OCH ₂ CF ₃	Cl	Cl	A-7	SO ₂ OCH ₂ CF ₃	Cl	Cl
A- 5	CF ₃	CH ₃	CH ₃	A-7	CF ₃	CH_3	CH ₃
A-5	CF ₃	Cl	CH ₃	A-7	CF ₃	Cl	CH_3

A-5	CF ₃	Cl	Cl	A-7	CF ₃	Cl	Cl
A-5	OCH ₃	CH ₃	CH ₃	A-7	ОСН ₃	CH ₃	CH ₃
A-5	OCH ₃	Cl	CH ₃	A-7	OCH ₃	Cl	CH ₃
A-5	OCH ₃	CI	CI	A-7	OCH ₃	CI	CI
A-5	NO ₂	CH ₃	CH ₃	A-7	NO ₂	CH ₃	CH ₃
A-5	NO ₂	Cl	CH ₃	A-7	NO ₂	Cl	CH ₃
A-5	NO ₂	Cl	CI	A-7	NO ₂	CI	Cl
A-8	SO ₂ CH ₃	NO ₂	CH ₃	A-9	SO ₂ CH ₃	NO ₂	CH ₃
A-8	SO ₂ CH ₃	CI	CH_3	A-9	SO ₂ CH ₃	CI	CH ₃
A-8	SO ₂ CH ₃	Cl	Cl	A-9	SO ₂ CH ₃	Cl	Cl
A-8	SO ₂ CH ₂ CH ₃	Cl	CH ₃	A-9	SO ₂ CH ₂ CH ₃	Cl	CH ₃
A-8	SO ₂ CH ₂ CH ₃	C!	Cl	A-9	SO ₂ CH ₂ CH ₃	Cl	Cl
A-8	SO ₂ CH ₂ CH ₂ CH ₃	Cl	CH_3	A-9	SO ₂ CH ₂ CH ₂ CH ₃	Cl	CH ₃
A-8	SO ₂ CH ₂ CH ₂ CH ₃	Cl	Cl	A-9	SO ₂ CH ₂ CH ₂ CH ₃	Cl	Cl
A-8	SO ₂ N(CH ₃) ₂	CH_3	CH ₃	A-9	$SO_2N(CH_3)_2$	CH ₃	CH ₃
A-8	$SO_2N(CH_3)_2$	Cl	CH ₃	A-9	$SO_2N(CH_3)_2$	Cl	CH ₃
A-8	SO ₂ N(CH ₃) ₂	CI	Cl	A-9	$SO_2N(CH_3)_2$	Cl	Cl
A-8	SO ₂ CF ₃	CH ₃	CH ₃	A-9	SO ₂ CF ₃	CH_3	CH ₃
A-8	SO ₂ CF ₃	Cl	CH ₃	A-9	SO ₂ CF ₃	CI	CH_3
A-8	SO ₂ CF ₃	Cl	CI	A-9	SO ₂ CF ₃	CI	Cl
A-8	SO ₂ OCH ₂ CF ₃	CH ₃	CH ₃	A-9	SO ₂ OCH ₂ CF ₃	CH ₃	CH_3
A-8	SO ₂ OCH ₂ CF ₃	Cl	CH ₃	A-9	SO ₂ OCH ₂ CF ₃	Cl	CH_3
A-8	SO ₂ OCH ₂ CF ₃	Cl	Cl	A-9	SO ₂ OCH ₂ CF ₃	Cl	Cl
A-8	CF ₃	CH ₃	CH ₃	A-9	CF ₃	CH_3	CH_3
A-8	CF ₃	Cl	CH ₃	A-9	CF ₃	Cl	CH_3
A-8	CF ₃	CI	Cl	A-9	CF ₃	Cl	CI
A-8	OCH ₃	CH ₃	CH ₃	A-9	OCH ₃	CH_3	CH_3
A-8	OCH ₃	Cl	CH ₃	A-9	OCH ₃	Cl	CH ₃
A-8	OCH ₃	Cl	Cl	A-9	OCH ₃	Cl	Cl
A-8	NO ₂	CH ₃	CH ₃	A-9	NO ₂	CH ₃	CH_3
A-8	NO ₂	Cl	CH ₃	A-9	NO ₂	Cl	CH ₃
A-8	NO ₂	Cl	Cl	A-9	NO ₂	Cl	CI
A-24	SO ₂ CH ₃	NO ₂	CH ₃	A-33	SO ₂ CH ₃	NO ₂	CH_3
A-24	SO ₂ CH ₃	Cl	CH ₃	A-33	SO ₂ CH ₃	Cl	CH_3
A-24	SO ₂ CH ₃	Cl	CI	A-33	SO ₂ CH ₃	CI	Cl
A-24	SO ₂ CH ₂ CH ₃	Cl	CH ₃	A-33	SO ₂ CH ₂ CH ₃	Cl	CH ₃
A-24	SO ₂ CH ₂ CH ₃	Cl	CI	A-33	SO ₂ CH ₂ CH ₃	C!	CI
A-24	SO ₂ CH ₂ CH ₂ CH ₃	CI	CH ₃	A-33	SO ₂ CH ₂ CH ₂ CH ₃	CI	CH ₃

A-24	SO ₂ CH ₂ CH ₂ CH ₃	Cl	Cl	A-33	SO ₂ CH ₂ CH ₂ CH ₃	Cl	Cì
A-24	SO ₂ N(CH ₃) ₂	CH_3	CH ₃	A-33	$SO_2N(CH_3)_2$	CH_3	CH ₃
A-24	$SO_2N(CH_3)_2$	CI	CH ₃	A-33	SO ₂ N(CH ₃) ₂	CI	CH ₃
A-24	$SO_2N(CH_3)_2$	Cl	CI	A-33	$SO_2N(CH_3)_2$	Cl	CI
A-24	SO ₂ CF ₃	CH ₃	CH ₃	A-33	SO ₂ CF ₃	CH ₃	CH ₃
A-24	SO ₂ CF ₃	Cl	CH_3	A-33	SO ₂ CF ₃	Cl	CH ₃
A-24	SO ₂ CF ₃	Cl	Cl	A-33	SO ₂ CF ₃	Cl	Cl
A-24	SO ₂ OCH ₂ CF ₃	CH_3	CH_3	A-33	SO ₂ OCH ₂ CF ₃	CH ₃	CH ₃
A-24	SO ₂ OCH ₂ CF ₃	Cl	CH_3	A-33	SO ₂ OCH ₂ CF ₃	Cl	CH ₃
A-24	SO ₂ OCH ₂ CF ₃	Cl	Cl	A-33	SO ₂ OCH ₂ CF ₃	Cl	Cl
A-24	CF ₃	CH_3	CH ₃	A-33	CF ₃	CH ₃	CH ₃
A-24	CF ₃	C!	CH ₃	A-33	CF ₃	CI	CH ₃
A-24	CF ₃	Cl	Cl	A-33	CF ₃	CI	Cl
A-24	OCH ₃	CH_3	CH ₃	A-33	OCH ₃	CH_3	CH ₃
A-24	OCH ₃	Cl	CH ₃	A-33	OCH ₃	Cl	CH ₃
A-24	OCH ₃	CI	Cl	A-33	OCH ₃	Cl	Cl
A-24	NO ₂	CH ₃	CH ₃	A-33	NO ₂	CH_3	CH ₃
A-24	NO ₂	Cl	CH ₃	A-33	NO ₂	Cl	CH_3
A-24	NO ₂	Cl	Cl	A-33	NO ₂	CI	Cl
A-42	SO ₂ CH ₃	NO_2	CH_3	A-44	SO ₂ CH ₃	NO_2	CH ₃
A-42	SO ₂ CH ₃	Cl	CH_3	A-44	SO ₂ CH ₃	Cl	CH ₃
A-42	SO ₂ CH ₃	CI	Cl	A-44	SO ₂ CH ₃	Cl	Cl
A-42	SO ₂ CH ₂ CH ₃	CI	CH_3	A-44	SO ₂ CH ₂ CH ₃	Cl	CH_3
A-42	SO ₂ CH ₂ CH ₃	Cl	CI	A-44	SO ₂ CH ₂ CH ₃	CI	Cl
A-42	SO ₂ CH ₂ CH ₂ CH ₃	Cl	CH ₃	A-44	SO ₂ CH ₂ CH ₂ CH ₃	Cl	CH ₃
A-42	SO ₂ CH ₂ CH ₂ CH ₃	Cl	Cl	A-44	SO ₂ CH ₂ CH ₂ CH ₃	Ci	Cl
A-42	$SO_2N(CH_3)_2$	CH ₃	CH ₃	A-44	SO ₂ N(CH ₃) ₂	CH ₃	CH ₃
A-42	$SO_2N(CH_3)_2$	Cl	CH ₃	A-44	$SO_2N(CH_3)_2$	Cl	CH ₃
A-42	$SO_2N(CH_3)_2$	Cl	Cl	A-44	$SO_2N(CH_3)_2$	Cl	Cl
A-42	2 2	CH ₃	CH ₃	A-44	SO ₂ CF ₃	CH_3	CH ₃
A-42	SO ₂ CF ₃	CI	CH ₃	A-44	SO ₂ CF ₃	CI	CH_3
A-42	SO ₂ CF ₃	Cl	CI	A-44	2 3	Cł	Cl
A-42		CH_3	CH ₃	A-44	SO ₂ OCH ₂ CF ₃	CH ₃	CH ₃
A-42		Cl	CH ₃	A-44	"	Cl	CH_3
A-42	SO ₂ OCH ₂ CF ₃	Cl	Cl	A-44	2 2 3	Cl	Cl
A-42	CF ₃	CH ₃	CH ₃	A-44	3	CH ₃	CH ₃
A-42	CF ₃	Cl	CH ₃	A-44	3	Cl	CH ₃
A-42	CF ₃	Cl	Cl	A-44	CF ₃	Cl	CI

WO 97/46530

PCT/US97/09569

42

A-42	OCH ₃	CH ₃	CH ₃	A-44	OCH ₃	CH ₃	СН3
A-42	OCH ₃	Cì	CH ₃	A-44	OCH ₃	Cl	CH ₃
A-42	OCH ₃	Cì	CI	A-44	OCH ₃	Cl	CI
A-42	NO ₂	CH ₃	CH_3	A-44	NO ₂	CH ₃	CH ₃
A-42	NO ₂	Cl	CH ₃	A-44	NO ₂	CI	CH ₃
A-42	NO ₂	CI	CI	A-44	NO ₂	Ci	CI
A-45	SO ₂ CH ₃	NO ₂	CH ₃	A-67	SO ₂ CH ₃	NO ₂	CH ₃
A-45	SO ₂ CH ₃	Cl	CH ₃	A-67	SO ₂ CH ₃	CI	CH ₃
A-45	SO ₂ CH ₃	C1	Cl	A-67	SO ₂ CH ₃	Ci	CI
A-45	SO ₂ CH ₂ CH ₃	Cl	CH ₃	A-67	SO ₂ CH ₂ CH ₃	Cl	CH ₃
A-45	SO ₂ CH ₂ CH ₃	Cl	CI	A-67	SO ₂ CH ₂ CH ₃	Cl	Cl
A-45	SO ₂ CH ₂ CH ₂ CH ₃	Cl	CH ₃	A-67	SO ₂ CH ₂ CH ₂ CH ₃	Cl	CH ₃
A-45	SO ₂ CH ₂ CH ₂ CH ₃	CI	Cl	A-67	SO ₂ CH ₂ CH ₂ CH ₃	Cl	Cl
A-45	$SO_2N(CH_3)_2$	CH ₃	CH ₃	A-67	SO ₂ N(CH ₃) ₂	CH_3	CH ₃
A-45	$SO_2N(CH_3)_2$	Cl	CH_3	A-67	$SO_2N(CH_3)_2$	Cl	CH ₃
A-45	$SO_2N(CH_3)_2$	Cl	Cl	A-67	$SO_2N(CH_3)_2$	CI	Cl
A-45	SO ₂ CF ₃	CH_3	CH ₃	A-67	SO ₂ CF ₃	CH_3	CH ₃
A-45	SO ₂ CF ₃	CI	CH_3	A-67	SO ₂ CF ₃	Cl	CH ₃
A-45	SO ₂ CF ₃	CI	CI	A-67	SO ₂ CF ₃	CI	Cl
A-45	SO ₂ OCH ₂ CF ₃	CH ₃	CH_3	A-67	SO ₂ OCH ₂ CF ₃	CH_3	CH ₃
A-45	SO ₂ OCH ₂ CF ₃	Cl	CH ₃	A-67	SO ₂ OCH ₂ CF ₃	CI	CH ₃
A-45	SO ₂ OCH ₂ CF ₃	Cl	Cl	A-67	SO ₂ OCH ₂ CF ₃	Cl	CI
A-45	CF ₃	CH ₃	CH ₃	A-67	CF ₃	CH ₃	CH_3
A-45	CF ₃	Cl	CH ₃	A-67	CF ₃	Cl	CH_3
A-45	CF ₃	Cl	Cl	A-67	CF ₃	Cl	Cl
A-45	OCH ₃	CH ₃	CH ₃	A-67	OCH ₃	CH ₃	CH ₃
A-45	OCH ₃	Cl	CH ₃	A-67	OCH ₃	Cl	CH ₃
A-45	OCH ₃	Cl	Cl	A-67	OCH ₃	Cl	Cl
A-45	NO ₂	CH ₃	CH ₃	A-67	NO ₂	CH ₃	CH_3
A-45	NO ₂	Cl	CH ₃	A-67	NO ₂	Cl	CH ₃
A-45	NO ₂	Cl	Cl	A-67	NO ₂	CI	Ci
A-68	SO ₂ CH ₃	NO ₂	CH ₃	A-71	SO ₂ CH ₃	NO_2	CH ₃
A-68	SO ₂ CH ₃	Cl	CH ₃	A-71	SO ₂ CH ₃	CI	CH ₃
A-68	SO ₂ CH ₃	Cl	CI	A-71	SO ₂ CH ₃	CI	CI
A-68	SO ₂ CH ₂ CH ₃	CI	CH ₃	A-71	SO ₂ CH ₂ CH ₃	Cl	CH_3
A-68	SO ₂ CH ₂ CH ₃	Cl	CI	A-71	SO ₂ CH ₂ CH ₃	Ct	Cl
A-68	SO ₂ CH ₂ CH ₂ CH ₃	CI	CH ₃	A-71	SO ₂ CH ₂ CH ₂ CH ₃	Cl	CH ₃
A-68	SO ₂ CH ₂ CH ₂ CH ₃	Cl	CI	A-71	SO ₂ CH ₂ CH ₂ CH ₃	Cl	Cl

A-68	$SO_2N(CH_3)_2$	CH_3	CH ₃	A-71	SO ₂ N(CH ₃) ₂	CH ₃	CH ₃
A-68	$SO_2N(CH_3)_2$	Cl	CH_3	A-71	$SO_2N(CH_3)_2$	Cl	CH ₃
A-68	$SO_2N(CH_3)_2$	Cl	CI	A-71	$SO_2N(CH_3)_2$	Cl	Cl
A-68	SO ₂ CF ₃	CH ₃	CH ₃	A-71	SO ₂ CF ₃	CH ₃	CH_3
A-68	SO ₂ CF ₃	Cl	CH ₃	A-71	SO ₂ CF ₃	Cl	CH_3
A-68	SO ₂ CF ₃	Cl	Cl	A-71	SO ₂ CF ₃	Cl	Cl
A-68	SO ₂ OCH ₂ CF ₃	CH_3	CH ₃	A-71	SO ₂ OCH ₂ CF ₃	CH_3	CH ₃
A-68	SO ₂ OCH ₂ CF ₃	Cl	CH ₃	A-71	SO ₂ OCH ₂ CF ₃	Cl	CH ₃
A-68	SO ₂ OCH ₂ CF ₃	C1	Cl	A-71	SO ₂ OCH ₂ CF ₃	Cl	Cl
A-68	CF ₃	CH_3	CH_3	A-71	CF ₃	CH_3	CH_3
A-68	CF ₃	Cl	CH ₃	A-71	CF ₃	Cl	CH ₃
A-68	CF ₃	Cl	Cl	A-71	CF ₃	Cl	Cl
A-68	OCH ₃	CH_3	CH ₃	A-71	OCH ₃	CH ₃	CH_3
A-68	OCH ₃	Cl	CH ₃	A-71	OCH ₃	Cl	CH ₃
A-68	OCH ₃	Cl	Cl	A-71	OCH ₃	Cl	Cl
A-68	NO ₂	CH_3	CH ₃	A-71	NO ₂	CH ₃	CH ₃
A-68	NO ₂	C l	CH ₃	A-71	NO ₂	Cl	CH_3
A-68	NO ₂	Cl	Cl	A-71	NO ₂	Cl	CI
A-78	SO ₂ CH ₃	NO_2	CH_3	A-91	SO ₂ CH ₃	NO_2	CH ₃
A-78	SO ₂ CH ₃	Cl	CH ₃	A-91	SO ₂ CH ₃	Cl	CH ₃
A-78	SO ₂ CH ₃	Cl	Cl	A-91	SO ₂ CH ₃	Cl	CI
A-78	SO ₂ CH ₂ CH ₃	Cl	CH ₃	A-91	SO ₂ CH ₂ CH ₃	CI	CH ₃
A-78	SO ₂ CH ₂ CH ₃	Cl	CI	A-91	SO ₂ CH ₂ CH ₃	Cl	Cl
A-78	SO ₂ CH ₂ CH ₂ CH ₃	Cl	CH ₃	A-91	SO ₂ CH ₂ CH ₂ CH ₃	Cl	CH ₃
A-78	SO ₂ CH ₂ CH ₂ CH ₃	CI	Cl	A-91	SO ₂ CH ₂ CH ₂ CH ₃	Cl	Cl
A-78	$SO_2N(CH_3)_2$	CH ₃	CH ₃	A-91	$SO_2N(CH_3)_2$	CH ₃	CH ₃
A-78	$SO_2N(CH_3)_2$	Cl	CH ₃	A-91	$SO_2N(CH_3)_2$	Cl	CH_3
A-78	$SO_2N(CH_3)_2$	Cl	Cl	A-91	$SO_2N(CH_3)_2$	CI	Cl
A-78	SO ₂ CF ₃	CH ₃	CH ₃	A-91	SO ₂ CF ₃	CH_3	CH_3
A-78	SO ₂ CF ₃	Cl	CH ₃	A-91	SO ₂ CF ₃	Ci	CH_3
A-78	SO ₂ CF ₃	Cl	Cl	A-91	SO ₂ CF ₃	CI	Cl
A-78	SO ₂ OCH ₂ CF ₃	CH ₃	CH ₃	A-91	SO ₂ OCH ₂ CF ₃	CH ₃	CH ₃
A-78	SO ₂ OCH ₂ CF ₃	Cl	CH_3	A-91	SO ₂ OCH ₂ CF ₃	CI	CH_3
A-78	SO ₂ OCH ₂ CF ₃	Cl	Ci	A-91	SO ₂ OCH ₂ CF ₃	CI	Cl
A-78	CF ₃	CH ₃	CH ₃	A-91	CF ₃	CH_3	CH_3
A-78	CF ₃	CI	CH ₃	A-91	CF ₃	Cl	CH_3
A-78	CF ₃	Cl	Cl	A-91	CF ₃	CI	Cl
A-78	OCH ₃	CH_3	CH ₃	A-91	OCH ₃	CH ₃	CH ₃

44

A-78	осн ₃	Cl	CH ₃	A-91	OCH ₃ OCH ₃ NO ₂ NO ₂ NO ₂	Cl	СН3
A-78	OCH ₃	Cl	Cl	A-91	OCH ₃	Cl	CI
A-78	NO ₂	CH ₃	CH ₃	A-91	NO ₂	CH ₃	CH ₃
A-78	NO ₂	Cl	CH ₃	A-91	NO ₂	CI	CH ₃
A-78	NO ₂	Cl	Cl	A-91	NO ₂	CI	CI

<u>A</u>	Ric	<u>R^{1a}</u>	<u>R1b</u>	A	R1c	<u>R^{1a}</u>	Rlb
A-I	SO ₂ CH ₃	NO ₂	CH_3	A-2	SO ₂ CH ₃	NO_2	CH ₃
A-1	SO ₂ CH ₃	CI	CH_3	A-2	SO ₂ CH ₃	CI	CH ₃
A-1	SO ₂ CH ₃	Cl	CI	A-2	SO ₂ CH ₃	Cl	CI
A-1	SO ₂ CH ₂ CH ₃	Cl	CH_3	A-2	SO ₂ CH ₂ CH ₃	Cl	CH ₃
A-1	SO ₂ CH ₂ CH ₃	Cl	CI	A-2	SO ₂ CH ₂ CH ₃	Cì	Cl
A-1	SO ₂ CH ₂ CH ₂ CH ₃	Cl	CH_3	A-2	SO ₂ CH ₂ CH ₂ CH ₃	Cl	CH_3
A-1	SO ₂ CH ₂ CH ₂ CH ₃	Cl	CI	A-2	SO ₂ CH ₂ CH ₂ CH ₃	CI	CI
A-1	$SO_2N(CH_3)_2$	CH_3	CH ₃	A-2	$SO_2N(CH_3)_2$	CH_3	CH ₃
A-1	SO ₂ N(CH ₃) ₂	Cl	CH ₃	A-2	$SO_2N(CH_3)_2$	Cl	CH ₃
A-1	$SO_2N(CH_3)_2$	CI	Cl	A-2	SO ₂ N(CH ₃) ₂	Cl	CI
A-1	SO ₂ CF ₃	CH_3	CH ₃	A-2	SO ₂ CF ₃	CH ₃	CH ₃
A-1	SO ₂ CF ₃	Cl	CH ₃	A-2	SO ₂ CF ₃	C!	CH ₃
A-1	SO ₂ CF ₃	Cl	Cl	A-2	SO ₂ CF ₃	Cl	CI
A-1	SO ₂ OCH ₂ CF ₃	CH ₃	CH ₃	A-2	SO ₂ OCH ₂ CF ₃	CH ₃	CH ₃
A-1	SO ₂ OCH ₂ CF ₃	Cl	CH_3	A-2	SO ₂ OCH ₂ CF ₃	CI	CH ₃
A-1	SO ₂ OCH ₂ CF ₃	Cl	Cl	A-2	SO ₂ OCH ₂ CF ₃	CI	Cl
A-1	CF ₃	CH ₃	CH_3	A-2	CF ₃	CH ₃	CH ₃
A-1	CF ₃	Cl	CH_3	A-2	CF ₃	CI	CH ₃
A-1	CF ₃	Cl	Cl	A-2	CF ₃	Cl	Cl
A-1	OCH ₃	CH ₃	CH ₃	A-2	OCH ₃	CH_3	CH_3
A-1	OCH ₃	CI	CH ₃	A-2	OCH ₃	Cl	CH ₃
A-I	OCH ₃	Cl	CI	A-2	OCH ₃	Cl	Cl

A-1	NO ₂	CH_3	CH ₃	A-2	NO ₂	CH ₃	CH ₃
A-1	NO ₂	Cl	CH ₃	A-2	NO ₂	CI	CH ₃
A-1	NO ₂	Cl	Cl	A-2	NO ₂	Cl	CI
A-5	SO ₂ CH ₃	NO_2	CH ₃	A-7	SO ₂ CH ₃	NO_2	CH ₃
A-5	SO ₂ CH ₃	CI	CH ₃	A-7	SO ₂ CH ₃	Cl	CH_3
A-5	SO ₂ CH ₃	CI	Cl	A-7	SO ₂ CH ₃	Cl	Cl
A-5	SO ₂ CH ₂ CH ₃	CI	CH ₃	A-7	SO ₂ CH ₂ CH ₃	Cl	CH ₃
A-5	SO ₂ CH ₂ CH ₃	CI	Cl	A-7	SO ₂ CH ₂ CH ₃	CI	Cl
A-5	SO ₂ CH ₂ CH ₂ CH ₃	C!	CH_3	A-7	SO ₂ CH ₂ CH ₂ CH ₃	Cl	CH_3
A-5	SO ₂ CH ₂ CH ₂ CH ₃	Cl	Cl	A-7	SO ₂ CH ₂ CH ₂ CH ₃	Cl	Cl
A-5	$SO_2N(CH_3)_2$	CH_3	CH ₃	A-7	$SO_2N(CH_3)_2$	CH_3	CH ₃
A-5	$SO_2N(CH_3)_2$	Cl	CH ₃	A-7	$SO_2N(CH_3)_2$	CI	CH_3
A-5	$SO_2N(CH_3)_2$	CI	C!	A-7	$SO_2N(CH_3)_2$	Cl	CI
A-5	SO ₂ CF ₃	CH_3	CH_3	A-7	SO ₂ CF ₃	CH_3	CH ₃
A-5	SO ₂ CF ₃	Cl	CH ₃	A-7	SO ₂ CF ₃	Cl	CH ₃
A-5	SO ₂ CF ₃	Cl	Cl	A-7	SO ₂ CF ₃	Cl	Cl
A-5	SO ₂ OCH ₂ CF ₃	CH_3	CH ₃	A-7	SO ₂ OCH ₂ CF ₃	CH_3	CH ₃
A-5	SO ₂ OCH ₂ CF ₃	Cl	CH ₃	A-7	SO ₂ OCH ₂ CF ₃	Cl	CH ₃
A-5	SO ₂ OCH ₂ CF ₃	Cl	Cl	A-7	SO ₂ OCH ₂ CF ₃	Cl	Cl
A-5	CF ₃	CH ₃	CH ₃	A-7	CF ₃	CH_3	CH ₃
A-5	CF ₃	Cl	CH_3	A-7	CF ₃	Cl	CH ₃
A-5	CF ₃	CI	CI	A-7	CF ₃	Cl	Cl
A-5	OCH ₃	CH_3	CH ₃	A-7	OCH ₃	CH ₃	CH_3
A-5	OCH ₃	CI	CH ₃	A-7	OCH ₃	Cl	CH_3
A-5	OCH ₃	Cl	Cl	A-7	осн ₃	Cl	CI
A-5	NO ₂	CH_3	CH ₃	A-7	NO ₂	CH ₃	CH_3
A-5	NO ₂	Cl	CH_3	A-7	NO ₂	Cl	CH ₃
A-5	NO ₂	Cl	Cl	A-7	NO ₂	CI	Cl
A-8	SO ₂ CH ₃	NO_2	CH ₃	A-9	SO ₂ CH ₃	NO_2	CH_3
A-8	SO ₂ CH ₃	Cl	CH_3	A-9	SO ₂ CH ₃	CI	CH ₃
A-8	SO ₂ CH ₃	CI	Cl	A-9	SO ₂ CH ₃	Cl	CI
A-8	SO ₂ CH ₂ CH ₃	Cl	CH ₃	A-9	SO ₂ CH ₂ CH ₃	Ci	CH ₃
A-8	SO ₂ CH ₂ CH ₃	Cl	Cl	A-9	SO ₂ CH ₂ CH ₃	Cl	Cl
A-8	SO ₂ CH ₂ CH ₂ CH ₃	Cl	CH ₃	A-9	SO ₂ CH ₂ CH ₂ CH ₃	Cl	CH ₃
A-8	SO ₂ CH ₂ CH ₂ CH ₃	Cl	Cl	A-9	SO ₂ CH ₂ CH ₂ CH ₃	Cl	Cl
A-8	$SO_2N(CH_3)_2$	CH_3	CH ₃	A-9	$SO_2N(CH_3)_2$	CH_3	CH ₃
A-8	$SO_2N(CH_3)_2$	Cl	CH ₃	A-9	$SO_2N(CH_3)_2$	CI	CH_3
A-8	$SO_2N(CH_3)_2$	Cl	Cl	A-9	$SO_2N(CH_3)_2$	Cl	Cl

A-8	SO ₂ CF ₃	CH ₃	CH ₃	A-9	SO ₂ CF ₃	CH ₃	CH ₃
A-8	SO ₂ CF ₃	Cl	CH ₃	A-9	SO ₂ CF ₃	Cl	CH ₃
A-8	SO ₂ CF ₃	Ci	Cl	A-9	SO ₂ CF ₃	Cl	Cl
A-8	SO ₂ OCH ₂ CF ₃	CH ₃	CH ₃	A-9	SO ₂ OCH ₂ CF ₃	CH_3	CH ₃
A-8	SO ₂ OCH ₂ CF ₃	Cl	CH ₃	A-9	SO ₂ OCH ₂ CF ₃	Cl	СН3
A-8	SO ₂ OCH ₂ CF ₃	C1	Cl	A-9	SO ₂ OCH ₂ CF ₃	Cl	Cl
A-8	CF ₃	CH_3	CH ₃	A-9	CF ₃	CH ₃	CH ₃
A-8	CF ₃	Cl	CH ₃	A-9	CF ₃	Cl	CH ₃
A-8	CF ₃	Cl	Cl	A-9	CF ₃	Cl	CI
A-8	OCH ₃	CH ₃	CH ₃	A-9	OCH ₃	CH_3	CH ₃
A- 8	OCH ₃	Ci	СН3	A-9	OCH ₃	Ci	CH ₃
A-8	OCH ₃	CI	CI	A-9	OCH ₃	Cl	CI
A-8	NO ₂	CH ₃	CH ₃	A-9	NO ₂	CH ₃	CH ₃
A-8	NO ₂	Cl	CH_3	A-9	NO ₂	CI	CH ₃
A-8	NO ₂	Cl	Cl	A-9	NO ₂	CI	Cl
A-24	SO ₂ CH ₃	NO_2	CH ₃	A-33	SO ₂ CH ₃	NO ₂	CH ₃
A-24	SO ₂ CH ₃	Cl	CH ₃	A-33	SO ₂ CH ₃	Cl	CH ₃
A-24	SO ₂ CH ₃	Cl	Cl	A-33	SO ₂ CH ₃	Cl	Cl
A-24	SO ₂ CH ₂ CH ₃	Cl	CH_3	A-33	SO ₂ CH ₂ CH ₃	CI	CH ₃
A-24	SO ₂ CH ₂ CH ₃	Cl	Cl	A-33	SO ₂ CH ₂ CH ₃	Cl	CI
A-24	SO ₂ CH ₂ CH ₂ CH ₃	CI	CH ₃	A-33	SO ₂ CH ₂ CH ₂ CH ₃	Cl	CH ₃
A-24	SO ₂ CH ₂ CH ₂ CH ₃	Cl	CI	A-33	SO ₂ CH ₂ CH ₂ CH ₃	Cl	Ci
A-24	$SO_2N(CH_3)_2$	CH_3	CH ₃	A-33	$SO_2N(CH_3)_2$	CH_3	CH_3
A-24	SO ₂ N(CH ₃) ₂	Cl	CH ₃	A-33	$SO_2N(CH_3)_2$	Cl	CH_3
A-24	$SO_2N(CH_3)_2$	Cl	Cl	A-33	$SO_2N(CH_3)_2$	Cl	CI
A-24	SO ₂ CF ₃	CH ₃	CH_3	A-33	SO ₂ CF ₃	CH_3	CH ₃
A-24	SO ₂ CF ₃	C l	CH ₃	A-33	SO ₂ CF ₃	Cl	CH ₃
A-24	SO ₂ CF ₃	Cl	CI	A-33	SO ₂ CF ₃	CI	Cl
A-24	SO ₂ OCH ₂ CF ₃	CH ₃	CH ₃	A-33	SO ₂ OCH ₂ CF ₃	CH_3	CH ₃
A-24	SO ₂ OCH ₂ CF ₃	Cl	CH_3	A-33	SO ₂ OCH ₂ CF ₃	CI	CH ₃
A-24	SO ₂ OCH ₂ CF ₃	Cl	Cl	A-33	SO ₂ OCH ₂ CF ₃	CI	Cl
A-24	CF ₃	CH ₃	CH ₃	A-33	CF ₃	CH ₃	CH ₃
A-24	CF ₃	Ci	CH ₃	A-33	CF ₃	Cl	CH_3
A-24	CF ₃	Cl	Cl	A-33	CF ₃	Cl	Cl
A-24	OCH ₃	CH ₃	CH ₃	A-33	OCH ₃	CH_3	CH_3
A-24	OCH ₃	Cl	CH ₃	A-33	OCH ₃	Cl	CH ₃
A-24	OCH ₃	Cl	Cl	A-33	OCH ₃	Cl	Cl
A-24	NO ₂	CH ₃	CH ₃	A-33	NO ₂	CH ₃	CH ₃

NO ₂ NO ₂ SO ₂ CH ₃ SO ₂ CH ₃	CI CI NO ₂	CH ₃	A-33 A-33	NO ₂ NO ₂	CI CI	CH ₃
SO ₂ CH ₃		CI	A-33	NO.	C	~1
	NO.		11111	1102	Ci	Cl
SO ₂ CH ₃	1102	CH ₃	A-44	SO ₂ CH ₃	NO_2	CH ₃
	Cl	CH ₃	A-44	SO ₂ CH ₃	Cl	CH ₃
SO ₂ CH ₃	C1	Cl	A-44	SO ₂ CH ₃	Cl	Cl
SO ₂ CH ₂ CH ₃	C1	CH ₃	A-44	SO ₂ CH ₂ CH ₃	CI	CH ₃
SO ₂ CH ₂ CH ₃	Cl	Cl	A-44	SO ₂ CH ₂ CH ₃	Cl	Cl
SO ₂ CH ₂ CH ₂ CH ₃	CI	CH ₃	A-44	SO ₂ CH ₂ CH ₂ CH ₃	Cl	CH_3
SO ₂ CH ₂ CH ₂ CH ₃	Cl	Cl	A-44	SO ₂ CH ₂ CH ₂ CH ₃	C1	Cl
$SO_2N(CH_3)_2$	CH_3	CH ₃	A-44	$SO_2N(CH_3)_2$	CH ₃	CH_3
$SO_2N(CH_3)_2$	CI	CH_3	A-44	$SO_2N(CH_3)_2$	Cl	CH ₃
$SO_2N(CH_3)_2$	Cl	Cì	A-44	SO ₂ N(CH ₃) ₂	CI	Cl
SO ₂ CF ₃	CH_3	CH ₃	A-44	SO ₂ CF ₃	CH_3	CH ₃
SO ₂ CF ₃	CI	CH ₃	A-44	SO ₂ CF ₃	CI	CH ₃
SO ₂ CF ₃	CI	C1	A-44	SO ₂ CF ₃	CI	Cl
SO ₂ OCH ₂ CF ₃	CH_3	CH_3	A-44	SO ₂ OCH ₂ CF ₃	CH ₃	CH ₃
SO ₂ OCH ₂ CF ₃	Cl	CH ₃	A-44	SO ₂ OCH ₂ CF ₃	Cl	CH ₃
SO ₂ OCH ₂ CF ₃	Cl	Cl	A-44	SO ₂ OCH ₂ CF ₃	Cl	Cl
CF ₃	CH_3	CH ₃	A-44	CF ₃	CH_3	CH_3
CF ₃	Cl	CH ₃	A-44	CF ₃	Cl	CH_3
CF ₃	Cl	Cl	A-44	CF ₃	Cl	Cl
OCH ₃	CH_3	CH ₃	A-44	OCH ₃	CH_3	CH ₃
OCH ₃	Cl	CH ₃	A-44	OCH ₃	Cl	CH_3
OCH ₃	Cl	Cl	A-44	OCH ₃	CI	CI
NO ₂	CH_3	CH ₃	A-44	NO ₂	CH_3	CH ₃
NO ₂	Cl	CH ₃	A-44	NO ₂	Cl	CH ₃
NO ₂	Cl	Cl	A-44	NO ₂	Cl	Cl
SO ₂ CH ₃	NO_2		A-67	SO ₂ CH ₃	NO_2	CH ₃
SO ₂ CH ₃	Cl	CH ₃	A-67	SO ₂ CH ₃	Cl	CH ₃
SO ₂ CH ₃	Cl	Cl	A-67	SO ₂ CH ₃	Cl	Cl
SO ₂ CH ₂ CH ₃	Cl	CH ₃	A-67	SO ₂ CH ₂ CH ₃	Cl	CH ₃
SO ₂ CH ₂ CH ₃	Cl	C1	A-67	SO ₂ CH ₂ CH ₃	CI	CI
SO ₂ CH ₂ CH ₂ CH ₃	CI	CH ₃	A-67	SO ₂ CH ₂ CH ₂ CH ₃	Cl	CH ₃
SO ₂ CH ₂ CH ₂ CH ₃	Cl	Cl	A-67	SO ₂ CH ₂ CH ₂ CH ₃	Cl	Cl
$SO_2N(CH_3)_2$	CH ₃	CH ₃	A-67	SO ₂ N(CH ₃) ₂	CH_3	CH ₃
$SO_2N(CH_3)_2$	Cl	CH ₃	A-67	$SO_2N(CH_3)_2$	Cl	СН3
$SO_2N(CH_3)_2$	Cl	CI	A-67	SO ₂ N(CH ₃) ₂	Cl	Cl
SO ₂ CF ₃	CH ₃	CH ₃	A-67	SO ₂ CF ₃	CH ₃	CH ₃
	SO ₂ CH ₃ SO ₂ CH ₂ CH ₃ SO ₂ CH ₂ CH ₃ SO ₂ CH ₂ CH ₂ CH ₃ SO ₂ CH ₂ CH ₂ CH ₃ SO ₂ CH ₂ CH ₂ CH ₃ SO ₂ N(CH ₃) ₂ SO ₂ N(CH ₃) ₂ SO ₂ N(CH ₃) ₂ SO ₂ CF ₃ SO ₂ CF ₃ SO ₂ CF ₃ SO ₂ CCF ₃ SO ₂ CCH ₂ CF ₃ CCH ₃ CCH ₃ CCH ₃ CCH ₃ CCH ₃ SO ₂ CCH ₂ CCH ₃ SO ₂ CCH ₂ CCH ₃ SO ₂ CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	SO2CH3 CI SO2CH2CH3 CI SO2CH2CH3 CI SO2CH2CH2CH3 CI SO2CH2CH2CH3 CI SO2N(CH3)2 CH3 SO2N(CH3)2 CI SO2N(CH3)2 CI SO2CF3 CH3 SO2CF3 CI SO2OCH2CF3 CI SO2OCH2CF3 CI CF3 CI CP3 CI OCH3 CI NO2 CH3 NO2 CI SO2CH3 CI SO2CH2CH3 CI SO2CH2CH3 CI SO2CH2CH2CH3 CI SO2CH2CH2CH3 CI	SO2CH3 CI CI SO2CH2CH3 CI CH3 SO2CH2CH3 CI CH3 SO2CH2CH2CH3 CI CH3 SO2CH2CH2CH3 CI CH3 SO2N(CH3)2 CH3 CH3 SO2N(CH3)2 CI CH3 SO2N(CH3)2 CI CH3 SO2CF3 CH3 CH3 SO2CF3 CI CH3 SO2OCH2CF3 CI CH3 SO2OCH2CF3 CI CH3 SO2OCH2CF3 CI CH3 CF3 CI CH3 OCH3 CH3 CH3 OCH3 CI CH3 NO2 CH3 CH3 NO2 CH3 CH3 SO2CH3 CI CH3 SO2CH2CH3 CI CH3	SO2CH3 CI CI A-44 SO2CH2CH3 CI CH3 A-44 SO2CH2CH3 CI CI A-44 SO2CH2CH2CH3 CI CH3 A-44 SO2CH2CH2CH3 CI CI A-44 SO2N(CH3)2 CI CH3 A-44 SO2N(CH3)2 CI CH3 A-44 SO2CF3 CI CH3 A-44 SO2CF3 CI CH3 A-44 SO2CF3 CI CH3 A-44 SO2OCH2CF3 CI CH3 A-44 SO2OCH2CF3 CI CH3 A-44 SO2OCH2CF3 CI CH3 A-44 CF3 CH3 CH3 A-44 CF3 CI CH3 A-44 CF3 CI CH3 A-44 CF3 CI CH3 A-44 OCH3 CH3 CH43 A-44 OCH3 CH3 A-44 NO2 <td>SO2CH3 CI CI CH3 A-44 SO2CH2CH3 SO2CH2CH3 CI CH3 A-44 SO2CH2CH3 SO2CH2CH3 CI CI A-44 SO2CH2CH3 SO2CH2CH2CH3 CI CH3 A-44 SO2CH2CH2CH3 SO2N(CH3)2 CH3 CH3 A-44 SO2N(CH3)2 SO2N(CH3)2 CI CH3 A-44 SO2N(CH3)2 SO2CF3 CI CH3 A-44 SO2CF3 SO2CF3 CI CH3 A-44 SO2CCH2CF3 SO2CH2CF3 CI CH3 A-44 SO2CCH2CF3 SO2CH2CF3 CI CH3 A-44 <td< td=""><td>SO2CH3 CI CI A-44 SO2CH3 CI SO2CH2CH3 CI CH3 A-44 SO2CH2CH3 CI SO2CH2CH3 CI CI A-44 SO2CH2CH3 CI SO2CH2CH2CH3 CI CH3 A-44 SO2CH2CH2CH3 CI SO2N(CH3)2 CH3 CH3 A-44 SO2N(CH3)2 CH3 SO2N(CH3)2 CI CH3 A-44 SO2N(CH3)2 CI SO2N(CH3)2 CI CH3 A-44 SO2CF3 CI SO2CF3 CI CH3 A-44 SO2CF3 CI SO2CH2CF3 CI CH3 A-44 SO2CH2CF3 CI SO2CH2CF3 CI CH3 A-44 SO2CH2CF3 CI</td></td<></td>	SO2CH3 CI CI CH3 A-44 SO2CH2CH3 SO2CH2CH3 CI CH3 A-44 SO2CH2CH3 SO2CH2CH3 CI CI A-44 SO2CH2CH3 SO2CH2CH2CH3 CI CH3 A-44 SO2CH2CH2CH3 SO2N(CH3)2 CH3 CH3 A-44 SO2N(CH3)2 SO2N(CH3)2 CI CH3 A-44 SO2N(CH3)2 SO2CF3 CI CH3 A-44 SO2CF3 SO2CF3 CI CH3 A-44 SO2CCH2CF3 SO2CH2CF3 CI CH3 A-44 SO2CCH2CF3 SO2CH2CF3 CI CH3 A-44 <td< td=""><td>SO2CH3 CI CI A-44 SO2CH3 CI SO2CH2CH3 CI CH3 A-44 SO2CH2CH3 CI SO2CH2CH3 CI CI A-44 SO2CH2CH3 CI SO2CH2CH2CH3 CI CH3 A-44 SO2CH2CH2CH3 CI SO2N(CH3)2 CH3 CH3 A-44 SO2N(CH3)2 CH3 SO2N(CH3)2 CI CH3 A-44 SO2N(CH3)2 CI SO2N(CH3)2 CI CH3 A-44 SO2CF3 CI SO2CF3 CI CH3 A-44 SO2CF3 CI SO2CH2CF3 CI CH3 A-44 SO2CH2CF3 CI SO2CH2CF3 CI CH3 A-44 SO2CH2CF3 CI</td></td<>	SO2CH3 CI CI A-44 SO2CH3 CI SO2CH2CH3 CI CH3 A-44 SO2CH2CH3 CI SO2CH2CH3 CI CI A-44 SO2CH2CH3 CI SO2CH2CH2CH3 CI CH3 A-44 SO2CH2CH2CH3 CI SO2N(CH3)2 CH3 CH3 A-44 SO2N(CH3)2 CH3 SO2N(CH3)2 CI CH3 A-44 SO2N(CH3)2 CI SO2N(CH3)2 CI CH3 A-44 SO2CF3 CI SO2CF3 CI CH3 A-44 SO2CF3 CI SO2CH2CF3 CI CH3 A-44 SO2CH2CF3 CI SO2CH2CF3 CI CH3 A-44 SO2CH2CF3 CI

A-45	SO ₂ CF ₃	CI	CH ₃	A-67	SO ₂ CF ₃	Cl	CH ₃
A-45	SO ₂ CF ₃	Cl	Cl	A-67	SO ₂ CF ₃	CI	CI ₁₃
A-45	SO ₂ OCH ₂ CF ₃	CH ₃	CH ₃	A-67	SO ₂ OCH ₂ CF ₃	CH ₃	CH ₃
A-45	SO ₂ OCH ₂ CF ₃	Cl	CH ₃	A-67	SO ₂ OCH ₂ CF ₃	CI	CH ₃
A-45	SO ₂ OCH ₂ CF ₃	Cl	Cl	A-67	SO ₂ OCH ₂ CF ₃	Cl	Cl
A-45	CF ₃	CH ₃	CH ₃	A-67	CF ₃	CH ₃	CH ₃
A-45	CF ₃	CI	CH ₃	A-67	CF ₃	CI	CH ₃
A-45	CF ₃	Cl	CI	A-67	CF ₃	CI	CI
A-45	осн ₃	CH ₃	CH ₃	A-67	OCH ₃	CH ₃	CH ₃
A-45	OCH ₃	CI	CH ₃	A-67	OCH ₃	CI	CH ₃
A-45	OCH ₃	CI	CI	A-67	осн ₃	Cl	Cl
A-45	NO ₂	CH_3	CH ₃	A-67	NO ₂	CH ₃	CH ₃
A-45	NO ₂	CI	CH ₃	A-67	NO ₂	CI	CH ₃
A-45	NO ₂	CI	Cl	A-67	NO ₂	Cl	CI
A-68	SO ₂ CH ₃	NO ₂	CH_3	A-71	SO ₂ CH ₃	NO ₂	CH ₃
A-68	SO ₂ CH ₃	CI	CH_3	A-71	SO ₂ CH ₃	CI	CH ₃
A-68	SO ₂ CH ₃	Cl	Cl	A-71	SO ₂ CH ₃	CI	CI
A-68	SO ₂ CH ₂ CH ₃	Cl	CH ₃	A-71	SO ₂ CH ₂ CH ₃	Cl	CH ₃
A-68	SO ₂ CH ₂ CH ₃	Cl	C1	A-71	SO ₂ CH ₂ CH ₃	Cl	Cl
A-68	SO ₂ CH ₂ CH ₂ CH ₃	Cl	CH ₃	A-71	SO ₂ CH ₂ CH ₂ CH ₃	Cl	CH ₃
A-68	SO ₂ CH ₂ CH ₂ CH ₃	Cl	Cl	A-71	SO ₂ CH ₂ CH ₂ CH ₃	Cl	Cl
A-68	$SO_2N(CH_3)_2$	CH ₃	CH ₃	A-71	$SO_2N(CH_3)_2$	CH ₃	CH_3
A-68	$SO_2N(CH_3)_2$	Cl	CH ₃	A-71	$SO_2N(CH_3)_2$	Cl	CH ₃
A-68	$SO_2N(CH_3)_2$	Cl	Cl	A-71	$SO_2N(CH_3)_2$	Cl	CI
A-68	SO ₂ CF ₃	CH ₃	CH ₃	A-71	SO ₂ CF ₃	CH_3	CH_3
A-68	SO ₂ CF ₃	Ct	CH ₃	A-71	SO ₂ CF ₃	CI	CH ₃
A-68	SO ₂ CF ₃	Cl	Cl	A-71	SO ₂ CF ₃	CI	Cl
A-68	SO ₂ OCH ₂ CF ₃	CH ₃	CH ₃	A-71	SO ₂ OCH ₂ CF ₃	CH_3	CH ₃
A-68	SO ₂ OCH ₂ CF ₃	CI	CH ₃	A-71	SO ₂ OCH ₂ CF ₃	CI	CH ₃
A-68	SO ₂ OCH ₂ CF ₃	Cl	Cl	A-71	SO ₂ OCH ₂ CF ₃	Cl	C!
A-68	CF ₃	CH ₃	CH ₃	A-71	CF ₃	CH_3	CH ₃
A-68	CF ₃	Cl	CH ₃	A-71	CF ₃	Cl	CH ₃
A-68	CF ₃	Cl	CI	A-71	CF ₃	Cl	Cl
A-68	OCH ₃	CH ₃	CH ₃	A-71	OCH ₃	CH ₃	CH ₃
A-68	OCH ₃	Cl	CH ₃	A-71	OCH ₃	Cl	CH ₃
A-68	OCH ₃	Cl	Cl	A-71	OCH ₃	Cl	Ci
A-68	NO ₂	CH ₃	CH ₃	A-71	NO ₂	CH ₃	CH ₃
A-68	NO ₂	CI	CH ₃	A-71	NO ₂	CI	CH ₃

48

49

A-68	NO ₂	CI	Cl	A-71	NO ₂	Cl	Cl
A-78	SO ₂ CH ₃	NO_2	CH ₃	A-91	SO ₂ CH ₃	NO_2	CH ₃
A-78	SO ₂ CH ₃	Cl	CH_3	A-91	SO ₂ CH ₃	CI	CH ₃
A-78	SO ₂ CH ₃	Cl	C1	A-91	SO ₂ CH ₃	C!	Cl
A-78	SO ₂ CH ₂ CH ₃	Cl	CH ₃	A-91	SO ₂ CH ₂ CH ₃	Cl	CH ₃
A-78	SO ₂ CH ₂ CH ₃	C l	Cl	A-91	SO ₂ CH ₂ CH ₃	Cl	Ci
A-78	SO ₂ CH ₂ CH ₂ CH ₃	Cl	CH ₃	A-91	SO ₂ CH ₂ CH ₂ CH ₃	Cl	CH ₃
A-78	SO ₂ CH ₂ CH ₂ CH ₃	Cl	Cl	A-91	SO ₂ CH ₂ CH ₂ CH ₃	Ci	Cl
A-7 8	SO ₂ N(CH ₃) ₂	CH ₃	CH_3	A-91	SO ₂ N(CH ₃) ₂	CH ₃	CH_3
A-78	SO ₂ N(CH ₃) ₂	Cl	CH ₃	A-91	$SO_2N(CH_3)_2$	Cl	CH_3
A-78	SO ₂ N(CH ₃) ₂	Cl	Cl	A-91	SO ₂ N(CH ₃) ₂	Cl	Cl
A-78	SO ₂ CF ₃	CH_3	CH_3	A-91	SO ₂ CF ₃	CH_3	CH ₃
A-78	SO ₂ CF ₃	Cl	CH_3	A-91	SO ₂ CF ₃	CI	CH ₃
A-78	SO ₂ CF ₃	Cl	C!	A-91	SO ₂ CF ₃	Cl	Cl
A-78	SO ₂ OCH ₂ CF ₃	CH_3	CH ₃	A-91	SO ₂ OCH ₂ CF ₃	CH ₃	CH ₃
A-78	SO ₂ OCH ₂ CF ₃	CI	CH_3	A-91	SO ₂ OCH ₂ CF ₃	Cl	CH ₃
A-78	SO ₂ OCH ₂ CF ₃	Cl	Cl	A-91	SO ₂ OCH ₂ CF ₃	Cì	Cl
A-78	CF ₃	CH_3	CH ₃	A-91	CF ₃	CH ₃	CH ₃
A-78	CF ₃	Cl	CH ₃	A-91	CF ₃	Cl	CH ₃
A-78	CF ₃	CI	CI	A-91	CF ₃	Cl	Cl
A-78	OCH ₃	CH ₃	CH ₃	A-91	OCH ₃	CH ₃	CH ₃
A-78	OCH ₃	Cl	CH ₃	A-91	OCH ₃	Cl	CH ₃
A-78	OCH ₃	CI	CI	A-91	OCH ₃	Cl	Cl
A-78	NO ₂	CH_3	CH ₃	A-91	NO ₂	CH_3	CH ₃
A-78	NO ₂	Cl	CH_3	A-91	NO ₂	Cl	CH ₃
A-78	NO ₂	Cl	Cl	A-91	NO ₂	Cl	Cl

		C)	cu l	A-2	SO ₂ CH ₃	Cl	CH ₃
A-I	SO ₂ CH ₃	Cl	CH ₃	A-2 A-2	SO ₂ CH ₃	Cl	CI
A-1	SO ₂ CH ₃	CI			SO ₂ CH ₂ CH ₃	CI	CH ₃
A-1	SO ₂ CH ₂ CH ₃	Cl	CH ₃	A-2		Cl	CI CI
A-1	SO ₂ CH ₂ CH ₃	Cl	Cl	A-2	SO ₂ CH ₂ CH ₃		
A-1	SO ₂ CH ₂ CH ₂ CH ₃	CI	CH ₃	A-2	SO ₂ CH ₂ CH ₂ CH ₃	Cl	CH ₃
A-1	SO ₂ CH ₂ CH ₂ CH ₃	CI	CI	A-2	SO ₂ CH ₂ CH ₂ CH ₃	CI	CI CII
A- 1	$SO_2N(CH_3)_2$	CH ₃	CH ₃	A-2	SO ₂ N(CH ₃) ₂	CH ₃	CH ₃
A-1	SO ₂ N(CH ₃) ₂	Cl	CH ₃	A-2	SO ₂ N(CH ₃) ₂	CI	CH ₃
A-1	SO ₂ N(CH ₃) ₂	Cl	CI	A-2	SO ₂ N(CH ₃) ₂	CI	CI
A-1	SO ₂ CF ₃	CH ₃	CH ₃	A-2	SO ₂ CF ₃	CH ₃	CH ₃
A-1	SO ₂ CF ₃	Cl	CH ₃	A-2	SO ₂ CF ₃	Cl	CH ₃
A-1	SO ₂ CF ₃	Cl	Cl	A-2	SO ₂ CF ₃	CI	CI
A-I	SO ₂ OCH ₂ CF ₃	CH ₃	CH ₃	A-2	SO ₂ OCH ₂ CF ₃	CH ₃	CH ₃
A-1	SO ₂ OCH ₂ CF ₃	Cl	CH ₃	A-2	SO ₂ OCH ₂ CF ₃	Cl	CH ₃
A-1	SO ₂ OCH ₂ CF ₃	Cl	Cl	A-2	SO ₂ OCH ₂ CF ₃	CI	CI
A-1	CF ₃	CH ₃	CH ₃	A-2	CF ₃	CH ₃	CH ₃
A-I	CF ₃	Cl	CH ₃	A-2	CF ₃	Cl	CH ₃
A-1	CF ₃	Cl	CI	A-2	CF ₃	Cl	Cl
A-l	OCH ₃	CH ₃	CH ₃	A-2	OCH ₃	CH ₃	CH ₃
A-1	OCH ₃	Cl	CH ₃	A-2	OCH ₃	Cl	CH ₃
A-1	OCH ₃	CI	CI	A-2	OCH ₃	Cl	Cl
A-1	NO ₂	CH ₃	CH ₃	A-2	NO ₂	CH ₃	CH ₃
A-1	NO ₂	Cl	CH ₃	A-2	NO ₂	Cl	CH ₃
A-1	NO ₂	Cl	Cl	A-2	NO ₂	Cl	Cl
A-5	SO ₂ CH ₃	NO ₂	CH ₃	A-7	SO ₂ CH ₃	NO ₂	CH ₃
A-5	SO ₂ CH ₃	Cl	CH ₃	A-7	SO ₂ CH ₃	Cl	CH ₃
A-5	SO ₂ CH ₃	Cl	Cl	A-7	SO ₂ CH ₃	Cl	Cl
A-5	SO ₂ CH ₂ CH ₃	Cl	CH ₃	A-7	SO ₂ CH ₂ CH ₃	Cl	CH ₃
A-5	SO ₂ CH ₂ CH ₃	CI	CI	A-7	SO ₂ CH ₂ CH ₃	Cl	Cl
A-5	SO ₂ CH ₂ CH ₂ CH ₃	Cl	CH_3	A-7	SO ₂ CH ₂ CH ₂ CH ₃	Cl	CH ₃
A-5	SO ₂ CH ₂ CH ₂ CH ₃	Cl	Cl	A-7	SO ₂ CH ₂ CH ₂ CH ₃	Cl	Cl
A-5	$SO_2N(CH_3)_2$	CH ₃	CH ₃	A-7	$SO_2N(CH_3)_2$	CH ₃	CH ₃
A-5	$SO_2N(CH_3)_2$	Cl	CH ₃	A-7	$SO_2N(CH_3)_2$	Cl	CH ₃
A-5	$SO_2N(CH_3)_2$	Cl	Cl	A-7	$SO_2N(CH_3)_2$	Cl	Cl
A-5	SO ₂ CF ₃	CH ₃	CH ₃	A-7	SO ₂ CF ₃	CH ₃	CH ₃
A-5	SO ₂ CF ₃	CI	CH ₃	A-7	SO ₂ CF ₃	CI	CH ₃
A-5	SO ₂ CF ₃	CI	CI	A-7	SO ₂ CF ₃	Cl	Cl
A-5	SO ₂ OCH ₂ CF ₃	CH ₃	CH ₃	A- 7	SO ₂ OCH ₂ CF ₃	CH ₃	CH ₃

	**	Cl	CH ₃	A-7	SO ₂ OCH ₂ CF ₃	Cl	CH ₃
A-5	SO ₂ OGH ₂ CF ₃	Cl	٠,١	A-7	SO ₂ OCH ₂ CF ₃	Cl	Cl
A-5	SO ₂ OCH ₂ CF ₃	CH ₃	- 1	A-7	CF ₃	CH ₃	CH ₃
A-5	CF ₃	CI ₃	CH ₃	A-7	CF ₃	Cl	CH ₃
A-5	CF ₃	Cl	CI	A-7	CF ₃	Cl	CI
A-5	CF ₃		CH ₃	A-7	OCH ₃	CH ₃	CH ₃
A-5	OCH ₃	CH ₃	CH ₃	A-7	OCH ₃	Cl	CH ₃
A-5	OCH ₃	Cl	, i	A-7	OCH ₃	Cl	CI
A-5	OCH ₃	Cl	CI CH ₃	A-7	NO ₂	CH ₃	СН3
A-5	NO ₂	CH ₃	_	A-7	NO ₂	Ci	CH ₃
A-5	NO ₂	Cl	CH ₃	A-7	NO ₂	Cl	Cl
A-5	NO ₂	Cl	CH ₃	A-7 A-9	SO ₂ CH ₃	NO ₂	CH ₃
A-8	SO ₂ CH ₃	NO ₂	CH ₃	A-9	SO ₂ CH ₃	CI	CH ₃
A-8	SO ₂ CH ₃	Cl	-	A-9	SO ₂ CH ₃	Cl	CI
A-8	SO ₂ CH ₃	C!	Cl CH ₃	A-9	SO ₂ CH ₂ CH ₃	CI	CH ₃
A-8	SO ₂ CH ₂ CH ₃	C1	Ch ₃	A-9	SO ₂ CH ₂ CH ₃	CI	Cl
A-8	SO ₂ CH ₂ CH ₃	Cl		A-9	SO ₂ CH ₂ CH ₂ CH ₃	Cl	CH ₃
A-8	SO ₂ CH ₂ CH ₂ CH ₃	Cl	CH ₃	A-9	SO ₂ CH ₂ CH ₂ CH ₃	Cl	CI
A-8	SO ₂ CH ₂ CH ₂ CH ₃	Cl	CI	1	SO ₂ CH ₂ CH ₂ CH ₃ SO ₂ N(CH ₃) ₂	CH ₃	CH ₃
A-8	$SO_2N(CH_3)_2$	CH ₃	CH ₃	A-9	$SO_2N(CH_3)_2$ $SO_2N(CH_3)_2$	Cl	CH ₃
A-8	$SO_2N(CH_3)_2$	Cl	CH ₃	A-9	$SO_2N(CH_3)_2$ $SO_2N(CH_3)_2$	Cl	Cl
A-8	$SO_2N(CH_3)_2$	Cl	CI	A-9	SO ₂ CF ₃	CH ₃	СН3
A-8	SO ₂ CF ₃	CH ₃	CH ₃	A-9	SO ₂ CF ₃	Cl	CH ₃
A-8	SO ₂ CF ₃	Cl	CH ₃	A-9 A-9	SO ₂ CF ₃	Cl	Cl
A-8	SO ₂ CF ₃	Cl	Cl	1	SO ₂ OCH ₂ CF ₃	CH ₃	CH ₃
A-8	SO ₂ OCH ₂ CF ₃	CH ₃		A-9 A-9	• -	Cl	CH ₃
A-8	_	Cl	CH ₃	A-9	-	Cl	Cl
A-8	-	CI	Cl CH	A-9	-	CH ₃	CH ₃
A-8	-	CH ₃		A-9	•	Cl	CH ₃
A-8		Cl	CH ₃ CI	A-9		CI	CI
A-8	· · · · · · · · · · · · · · · · · · ·	CI CI		•	-	СН3	
A-8		CH ₃	CH ₃			Cl	CH ₃
A-8		Cl	CI ₃	A-9	Ī	Cl	Cl
A-8		CI		l l		CH ₃	
A-1		CH ₂			-	Cl	CH ₃
A -3		C!	CH ₃ Cl	A-9	\ <u>-</u>	Cl	CI
A-		Cl		l	_	NO.	
A-		NO	CH ₂ CH ₂	' I		Cl	CH ₃
A-	24 SO ₂ CH ₃	Cl	Cn	3 V.	JJ 180 <u>7</u> 0113		,

A-24	SO ₂ CH ₃	Cl	Ci	A-33	SO ₂ CH ₃	Cl	CI
A-24	SO ₂ CH ₂ CH ₃	Cl	CH ₃	A-33	SO ₂ CH ₂ CH ₃	CI	CH ₃
A-24	SO ₂ CH ₂ CH ₃	CI	Cl	A-33	SO ₂ CH ₂ CH ₃	Cl	Cl
A-24	SO ₂ CH ₂ CH ₂ CH ₃	Cl	CH ₃	A-33	SO ₂ CH ₂ CH ₂ CH ₃	Cl	CH ₃
A-24	SO ₂ CH ₂ CH ₂ CH ₃	Cl	CI	A-33	SO ₂ CH ₂ CH ₂ CH ₃	Cl	Cì
A-24	SO ₂ N(CH ₃) ₂	CH ₃	CH ₃	A-33	$SO_2N(CH_3)_2$	CH ₃	CH_3
A-24	SO ₂ N(CH ₃) ₂	Cl	CH ₃	A-33	$SO_2N(CH_3)_2$	Cl	CH ₃
A-24	SO ₂ N(CH ₃) ₂	Cl	CI	A-33	$SO_2N(CH_3)_2$	Cl	Cl
A-24	SO ₂ CF ₃	CH_3	CH ₃	A-33	SO ₂ CF ₃	CH_3	CH ₃
A-24	SO ₂ CF ₃	Cl	CH ₃	A-33	SO ₂ CF ₃	CI	CH_3
A-24	SO ₂ CF ₃	Cl	Cl	A-33	SO ₂ CF ₃	CI	Cl
A-24	SO2OCH2CF3	CH ₃	CH_3	A-33	SO ₂ OCH ₂ CF ₃	CH ₃	CH ₃
A-24	SO ₂ OCH ₂ CF ₃	Cl	CH ₃	A-33	SO ₂ OCH ₂ CF ₃	Cl	CH ₃
A-24	SO ₂ OCH ₂ CF ₃	Cl	Cl	A-33	SO ₂ OCH ₂ CF ₃	Cl	Cl
A-24	CF ₃	CH ₃	CH ₃	A-33	CF ₃	CH_3	CH ₃
A-24	CF ₃	Cl	CH ₃	A-33	CF ₃	Cl	CH ₃
A-24	CF ₃	Cl	Cl	A-33	CF ₃	Cl	Cl
A-24	OCH ₃	CH ₃	CH ₃	A-33	OCH ₃	CH ₃	CH ₃
A-24	OCH ₃	Cl	CH ₃	A-33	OCH ₃	Cl	CH ₃
A-24	OCH ₃	Cl	CI	A-33	OCH ₃	Cl	CI
A-24	NO ₂	CH ₃	CH ₃	A-33	NO ₂	CH ₃	CH ₃
A-24	NO ₂	Cl	CH ₃	A-33	NO ₂	Cl	CH ₃
A-24	NO ₂	Cl	Cl	A-33	NO ₂	Cl	Cl
A-42	SO ₂ CH ₃	NO ₂	CH ₃	A-44	SO ₂ CH ₃	NO ₂	CH ₃
A-42	SO ₂ CH ₃	Cl	CH ₃	A-44	SO ₂ CH ₃	CI	CH ₃
A-42	SO ₂ CH ₃	Cl	Cl	A-44	SO ₂ CH ₃	Cì	Cl
A-42	SO ₂ CH ₂ CH ₃	Cl	CH_3	A-44	SO ₂ CH ₂ CH ₃	Cl	CH ₃
A-42	SO ₂ CH ₂ CH ₃	Cl	CI	A-44	SO ₂ CH ₂ CH ₃	Cl	Cl
A-42	SO ₂ CH ₂ CH ₂ CH ₃	Cl	CH ₃	A-44	SO ₂ CH ₂ CH ₂ CH ₃	Cl	CH ₃
A-42	SO ₂ CH ₂ CH ₂ CH ₃	Cl	Cl	A-44	2 2 2	Cl	Cl
A-42	$SO_2N(CH_3)_2$	CH ₃	CH ₃	A-44		CH ₃	CH ₃
A-42	$SO_2N(CH_3)_2$	CI	CH ₃	A-44		Cl	CH ₃
A-42	• •	CI	Cl	A-44	2 . 5.2	Cl	Cl
A-42	SO ₂ CF ₃	CH ₃	CH ₃	A-44	• •	CH ₃	CH ₃
A-42	• •	CI	CH ₃	A-44		Cl	CH ₃
A-42		Cl	Cl	A-44		CI	Cl
A-42		CH ₃		A-44	"	CH ₃	CH ₃
A-42	SO ₂ OCH ₂ CF ₃	CI	CH ₃	A-44	SO ₂ OCH ₂ CF ₃	Cl	CH ₃

			ŀ				C!
A-42	SO ₂ OCH ₂ CF ₃	Cl	Cl	A-44	SO ₂ OCH ₂ CF ₃	CI	CI
A-42	CF ₃	CH ₃	CH ₃	A-44	CF ₃	CH ₃	CH ₃
A-42	CF ₃	Cl	CH ₃	A-44	CF ₃	Cl	CH ₃
A-42	CF ₃	Cl	Cl	A-44	CF ₃	CI	Cl
A-42	OCH ₃	CH ₃	CH ₃	A-44	OCH ₃	CH ₃	CH ₃
A-42	OCH ₃	Cl	CH ₃	A-44	OCH ₃	CI	CH ₃
A-42	OCH ₃	Cl	Cl	A-44	OCH ₃	Cl	C)
A-42	NO ₂	CH ₃	CH ₃	A-44	NO ₂	CH ₃	CH ₃
A-42	NO ₂	Cl	CH ₃	A-44	NO ₂	Cl	CH ₃
A-42	NO ₂	Cl	Cl	A-44	NO ₂	Cl	CI
A-45	SO ₂ CH ₃	NO ₂	CH ₃	A-67	SO ₂ CH ₃	NO ₂	CH ₃
A-45	SO ₂ CH ₃	Cl	CH ₃	A-67	SO ₂ CH ₃	CI	CH ₃
A-45	SO ₂ CH ₃	Cl	CI	A-67	SO ₂ CH ₃	CI	CI
A-45	SO ₂ CH ₂ CH ₃	Cl	CH ₃	A-67	SO ₂ CH ₂ CH ₃	CI	CH ₃
A-45	SO ₂ CH ₂ CH ₃	Cl	Cl	A-67	SO ₂ CH ₂ CH ₃	Cl	Cl
A-45	SO ₂ CH ₂ CH ₂ CH ₃	Cl	CH ₃	A-67	SO ₂ CH ₂ CH ₂ CH ₃	Cl	CH ₃
A-45	SO ₂ CH ₂ CH ₂ CH ₃	Cl	Cl	A-67	SO ₂ CH ₂ CH ₂ CH ₃	Cl	CI
A-45	$SO_2N(CH_3)_2$	CH ₃	CH ₃	A-67	SO ₂ N(CH ₃) ₂	CH ₃	CH ₃
A-45	$SO_2N(CH_3)_2$	Cl	CH ₃	A-67	SO ₂ N(CH ₃) ₂	Cl	CH ₃
A-45	$SO_2N(CH_3)_2$	Cl	Cl	A-67	SO ₂ N(CH ₃) ₂	Cl	Cl
A-45	SO ₂ CF ₃	CH ₃	CH ₃	A-67	SO ₂ CF ₃	CH ₃	CH ₃
A-45	SO ₂ CF ₃	Cl	CH ₃	A-67	SO ₂ CF ₃	CI	CH ₃
A-45	SO ₂ CF ₃	Cl	Cl	A-67	SO ₂ CF ₃	Cl	Cl
A-45	SO ₂ OCH ₂ CF ₃	CH ₃	CH ₃	A-67	2 2 3	CH ₃	CH ₃
A-45	SO ₂ OCH ₂ CF ₃	Cl	CH ₃	A-67	SO ₂ OCH ₂ CF ₃	CI	CH ₃
A-45	SO ₂ OCH ₂ CF ₃	Cl	CI	A-67	SO ₂ OCH ₂ CF ₃	Cl	Cl
A-45	CF ₃	CH ₃	CH ₃	A-67	CF ₃	CH ₃	CH ₃
A-45	CF ₃	CI	CH ₃	A-67	,	Cl	CH ₃
A-45	-	Cl	Cl	A-67	•	CI	CI
A-45		CH ₃	CH ₃	A-67	,-	CH ₃	CH ₃
A-45	•	Cl	CH ₃	A-67	· ·	CI	CH ₃
A-45	•	Cl	Cl	A-67	-	CI	CI
A-45	-	CH ₃	CH ₃	A-67		CH ₃	CH ₃
A-45	-	CI	CH ₃	A-67	-	Cl	CH ₃
A-45	_	CI	Cl	A-67	•	Cl	CI
A-68		NO ₂	CH ₃	A-71		NO ₂	CH ₃
	SO ₂ CH ₃	Cl	CH ₃	A-71		Cl	CH ₃
A-68	SO ₂ CH ₃	Cl	Cl	A-71	SO ₂ CH ₃	Cl	Cl

A-68	SO ₂ CH ₂ CH ₃	Cl	СН3	A-71	SO ₂ CH ₂ CH ₃	Cl	CH
A-68	SO ₂ CH ₂ CH ₃	CI	CI	A-71	SO ₂ CH ₂ CH ₃	CI	CH₃ Ci
A-68	SO ₂ CH ₂ CH ₂ CH ₃	Cl	CH ₃	A-71	SO ₂ CH ₂ CH ₂ CH ₃	CI	CH ₃
A-68	SO ₂ CH ₂ CH ₂ CH ₃	Cl	CI	A-71	SO ₂ CH ₂ CH ₂ CH ₃	Ci	CI CI
A-68	SO ₂ N(CH ₃) ₂	CH ₃	CH ₃	A-71	$SO_2N(CH_3)_2$	CH ₃	CH ₃
A-68	SO ₂ N(CH ₃) ₂	Cl	CH ₃	A-71	$SO_2N(CH_3)_2$	CI13	CH ₃
A-68	SO ₂ N(CH ₃) ₂	Cl	Cl	A-71	$SO_2N(CH_3)_2$	Cl	CI
A-68	SO ₂ CF ₃	СН3	CH ₃	A-71	SO ₂ CF ₃	CH ₃	CH ₃
A-68	SO ₂ CF ₃	C)	CH ₃	A-71	SO ₂ CF ₃	Cl	CH ₃
A-68	SO ₂ CF ₃	C1	CI	A-71	SO ₂ CF ₃	Cl	Cl
A-68	SO ₂ OCH ₂ CF ₃	СН3	СН3	A-71	SO ₂ OCH ₂ CF ₃	СН3	CH ₃
A-68	SO ₂ OCH ₂ CF ₃	Cl	CH ₃	A-71	SO ₂ OCH ₂ CF ₃	Cl	CH ₃
A-68	SO ₂ OCH ₂ CF ₃	CI	Cl	A-71	SO ₂ OCH ₂ CF ₃	Cl	CI
A-68	CF ₃	CH ₃	CH ₃	A-71	CF ₃	CH ₃	CH ₃
A-68	CF ₃	Cl	CH ₃	A-71	CF ₃	CI	CH ₃
A-68	CF ₃	Cl	Cl	A-71	CF ₃	Cl	Cl
A-68	OCH ₃	CH ₃	CH ₃	A-71	OCH ₃	CH_3	CH ₃
A-68	OCH ₃	Cl	CH ₃	A-71	OCH ₃	CI	CH ₃
A-68	OCH ₃	Cl	Cl	A-71	OCH ₃	Cl	CI
A-68	NO ₂	CH ₃	CH ₃	A-71	NO ₂	CH ₃	CH ₃
A-68	NO ₂	Cl	CH ₃	A-71	NO ₂	CI	CH ₃
A-68	NO ₂	CI	Cl	A-71	NO ₂	Cl	CI
A-78	SO ₂ CH ₃	NO ₂	CH ₃	A-91	SO ₂ CH ₃	NO_2	CH ₃
A-78	SO ₂ CH ₃	Cl	CH ₃	A-91	SO ₂ CH ₃	Cl	CH ₃
Λ-78	SO ₂ CH ₃	Cl	Cl	A-91	SO ₂ CH ₃	Cl	Cl
A-78	SO ₂ CH ₂ CH ₃	Cl	CH ₃	A-91	SO ₂ CH ₂ CH ₃	Cl	CH ₃
A-78	SO ₂ CH ₂ CH ₃	Cl	CI	A-91	SO ₂ CH ₂ CH ₃	Cì	Cl
A-78	SO ₂ CH ₂ CH ₂ CH ₃	Cl	CH ₃	A-91	SO ₂ CH ₂ CH ₂ CH ₃	Cl	CH ₃
A-78	SO ₂ CH ₂ CH ₂ CH ₃	Cl	Cl	A-91	SO ₂ CH ₂ CH ₂ CH ₃	CI	Cl
A-78	SO ₂ N(CH ₃) ₂	CH ₃	CH ₃	A-91	$SO_2N(CH_3)_2$	CH_3	CH ₃
A-78	SO ₂ N(CH ₃) ₂	Cl	CH ₃	A-91	$SO_2N(CH_3)_2$	CI	CH_3
A-78	$SO_2N(CH_3)_2$	Cl	Cl	A-91	$SO_2N(CH_3)_2$	Cl	Cl
A-78	SO ₂ CF ₃	CH ₃	CH ₃	A-91	SO ₂ CF ₃	CH ₃	CH ₃
A-78	SO ₂ CF ₃	Cl	CH ₃	A-91	SO ₂ CF ₃	Cl	CH ₃
A-78	SO ₂ CF ₃	Cl	CI	A-91	SO ₂ CF ₃	Ci	Cl
Λ-78	SO ₂ OCH ₂ CF ₃	CH ₃	CH ₃	A-91	SO ₂ OCH ₂ CF ₃	CH ₃	CH ₃
A-78	SO ₂ OCH ₂ CF ₃	Cl	CH ₃	A-91	SO ₂ OCH ₂ CF ₃	Cl	CH ₃
A-78	SO ₂ OCH ₂ CF ₃	CI	CI	A-91	SO ₂ OCH ₂ CF ₃	Cl	Cl

55

A-78	CF ₃		CH ₃			CH ₃	CH ₃
A-78	CF ₃	Cl	CH ₃	A-91	CF ₃	Cl	CH ₃
A-78	CF ₃	Cl	Cl	A-91	CF ₃	CI	Cl
A-78	OCH ₃	CH ₃	CH ₃	A-91	OCH ₃	CH ₃	CH ₃
A-78	OCH ₃	Cl	CH ₃	A-91	OCH ₃	Cl	CH ₃
A-78	OCH ₃	Cl	Cl	A-91	OCH ₃	Cl	CI
A-78	NO ₂	CH ₃	CH ₃	A-91	NO ₂	CH ₃	CH ₃
A-78	NO ₂	Cl	CH ₃	A-91	NO ₂	Cl	CH ₃
A-78	NO ₂	Cl	Cl	A-91	NO ₂	Cl	Cl

<u>A</u>	Rlc	$\underline{R^{1a}}$	<u>R1b</u>	A	Rlc	Rla	RIb
A-1	SO ₂ CH ₃	NO_2	CH_3	A-2	SO ₂ CH ₃	NO_2	CH ₃
A-l	SO ₂ CH ₃	Cl	CH ₃	A-2	SO ₂ CH ₃	Cl	CH ₃
A-l	SO ₂ CH ₃	Cl	Cl	A-2	SO ₂ CH ₃	Cl	Cl
A-1	SO ₂ CH ₂ CH ₃	Cl	CH_3	A-2	SO ₂ CH ₂ CH ₃	CI	CH ₃
A-1	SO ₂ CH ₂ CH ₃	Cl	Cl	A-2	SO ₂ CH ₂ CH ₃	Cl	Cl
A-1	SO ₂ CH ₂ CH ₂ CH ₃	CI	CH ₃	A-2	SO ₂ CH ₂ CH ₂ CH ₃	Ci	CH ₃
A-1	SO ₂ CH ₂ CH ₂ CH ₃	Ci	Cl	A-2	SO ₂ CH ₂ CH ₂ CH ₃	Cl	Cl
A-1	$SO_2N(CH_3)_2$	CH_3	CH_3	A-2	$SO_2N(CH_3)_2$	CH_3	CH_3
A-l	$SO_2N(CH_3)_2$	Cl	CH_3	A-2	$SO_2N(CH_3)_2$	Cl	CH ₃
A-l	$SO_2N(CH_3)_2$	Cl	Cl	A-2	$SO_2N(CH_3)_2$	Cl	Cl
A-1	SO ₂ CF ₃	CH ₃	CH ₃	A-2	SO ₂ CF ₃	CH ₃	CH ₃
A -1	SO ₂ CF ₃	Cl	CH ₃	A-2	SO ₂ CF ₃	Cl	CH ₃
A-1	SO ₂ CF ₃	Cl	C1	A-2	SO ₂ CF ₃	Cl	Ci
A-1	SO ₂ OCH ₂ CF ₃	CH_3	CH ₃	A-2	SO ₂ OCH ₂ CF ₃	CH ₃	CH ₃
A-1	SO ₂ OCH ₂ CF ₃	Cl	CH ₃	A-2	SO ₂ OCH ₂ CF ₃	Cl	CH ₃
A-1	SO ₂ OCH ₂ CF ₃	C1	Cl	A-2	SO ₂ OCH ₂ CF ₃	Cl	Cl
A٠l	CF ₃	CH_3	CH ₃	A-2	CF ₃	CH ₃	CH ₃
A-l	CF ₃	Cl	CH ₃	A-2	CF ₃	Cl	CH ₃

A-i	CF ₃	CI	CI	A-2	CF ₃	Cl	Cl
A-1	OCH ₃	CH ₃	CH ₃	A-2	OCH ₃	CH_3	СН3
A-I	OCH ₃	CI	CH_3	A-2	OCH ₃	Cl	CH ₃
A-I	OCH ₃	Cl	Cl	A-2	OCH ₃	Cl	Cl
A-1	NO ₂	CH ₃	CH ₃	A-2	NO ₂	CH ₃	CH ₃
A-1	NO ₂	Cl	CH ₃	A-2	NO ₂	Cl	CH ₃
A-1	NO ₂	C!	Cl	A-2	NO ₂	Cl	CI
A-5	SO ₂ CH ₃	NO ₂	CH ₃	A-7	SO ₂ CH ₃	NO ₂	CH ₃
A-5	SO ₂ CH ₃	Cl	CH ₃	A-7	SO ₂ CH ₃	Cl	CH ₃
A-5	SO ₂ CH ₃	Cl	CI	A-7	SO ₂ CH ₃	CI	Cl
A-5	SO ₂ CH ₂ CH ₃	C1	CH ₃	A-7	SO ₂ CH ₂ CH ₃	Cl	CH ₃
A-5	$SO_2CH_2CH_3$	CI	Cl	A-7	SO ₂ CH ₂ CH ₃	Cl	Cl
A-5	SO ₂ CH ₂ CH ₂ CH ₃	Cl	CH ₃	A-7	SO ₂ CH ₂ CH ₂ CH ₃	Cl	CH ₃
A-5	SO ₂ CH ₂ CH ₂ CH ₃	Cl	Cl	A-7	SO ₂ CH ₂ CH ₂ CH ₃	CI	Cl
A-5	$SO_2N(CH_3)_2$	CH ₃	CH_3	A-7	$SO_2N(CH_3)_2$	CH_3	CH_3
A-5	$SO_2N(CH_3)_2$	Cl	CH ₃	A-7	$SO_2N(CH_3)_2$	Cl	CH ₃
A-5	$SO_2N(CH_3)_2$	Cl	Cl	A-7	$SO_2N(CH_3)_2$	Cl	CI
A-5	SO ₂ CF ₃	CH ₃	CH ₃	A-7	SO ₂ CF ₃	CH_3	CH ₃
A-5	SO ₂ CF ₃	Cl	CH ₃	A-7	SO ₂ CF ₃	Cl	CH ₃
A-5	SO ₂ CF ₃	Cl	Cl	A-7	SO ₂ CF ₃	CI	CI
A-5	SO ₂ OCH ₂ CF ₃	CH ₃	CH ₃	A-7	SO ₂ OCH ₂ CF ₃	CH_3	CH ₃
A-5	SO ₂ OCH ₂ CF ₃	Cl	CH_3	A-7	SO ₂ OCH ₂ CF ₃	Cl	CH_3
A-5	SO ₂ OCH ₂ CF ₃	Cl	Cl	A-7	SO ₂ OCH ₂ CF ₃	Cl	Cl
A-5	CF ₃	CH_3	CH ₃	A-7	CF ₃	CH_3	CH ₃
A-5	CF ₃	Cl	CH ₃	A-7	CF ₃	Cl	CH_3
A-5	CF ₃	Cl	CI	A-7	CF ₃	Cl	Cl
A-5	OCH ₃	CH_3	CH ₃	A-7	OCH ₃	CH ₃	CH_3
A-5	OCH ₃	CI	CH ₃	A-7	OCH ₃	Cl	CH ₃
A-5	OCH ₃	Cl	Cl	A-7	OCH ₃	Cl	Cl
A-5	NO ₂	CH ₃	CH ₃	A-7	NO ₂	CH ₃	CH_3
A-5	NO ₂	CI	CH ₃	A-7	NO ₂	Cl	CH_3
A-5	NO ₂	Cl	Cl	A-7	NO ₂	Cl	CI
A-8	SO ₂ CH ₃	NO ₂	CH_3	A-9	SO ₂ CH ₃	NO ₂	CH ₃
A-8	SO ₂ CH ₃	Cl	CH ₃	A-9	SO ₂ CH ₃	Cl	CH ₃
A-8	SO ₂ CH ₃	Cl	Cl	A- 9	SO ₂ CH ₃	Cl	Cl
A-8	SO ₂ CH ₂ CH ₃	Cl	CH ₃	A-9	SO ₂ CH ₂ CH ₃	Cl	CH ₃
A-8	SO ₂ CH ₂ CH ₃	Cl	CI	A-9	SO ₂ CH ₂ CH ₃	Cl	CI
A-8	SO ₂ CH ₂ CH ₂ CH ₃	Cl	CH ₃	A-9	SO ₂ CH ₂ CH ₂ CH ₃	Cl	CH_3

A-8	SO ₂ CH ₂ CH ₂ CH ₃	Ci	Cl	A-9	SO ₂ CH ₂ CH ₂ CH ₃	Cl	CI
A-8	$SO_2N(CH_3)_2$	CH_3	CH ₃	A-9	$SO_2N(CH_3)_2$	CH_3	CH_3
A-8	$SO_2N(CH_3)_2$	Cl	CH ₃	A-9	SO ₂ N(CH ₃) ₂	CI	CH ₃
A-8	SO ₂ N(CH ₃) ₂	Cl	Cl	A-9	$SO_2N(CH_3)_2$	Cl	CI
A-8	SO ₂ CF ₃	CH ₃	CH_3	A-9	SO ₂ CF ₃	CH_3	CH ₃
A-8	SO ₂ CF ₃	Cl	CH ₃	A-9	SO ₂ CF ₃	Cl	CH ₃
A-8	SO ₂ CF ₃	Cl	Cl	A-9	SO ₂ CF ₃	Cl	Cl
A-8	SO ₂ OCH ₂ CF ₃	CH ₃	CH ₃	A-9	SO ₂ OCH ₂ CF ₃	CH ₃	CH ₃
A-8	SO ₂ OCH ₂ CF ₃	Cl	CH_3	A-9	SO ₂ OCH ₂ CF ₃	Cl	CH ₃
A-8	SO ₂ OCH ₂ CF ₃	CI	Cl	A-9	SO ₂ OCH ₂ CF ₃	CI	Cl
A-8	CF ₃	CH_3	CH ₃	A-9	CF ₃	CH_3	CH ₃
A-8	CF ₃	Cl	CH ₃	A-9	CF ₃	Cl	CH ₃
A-8	CF ₃	Cl	Cl	A-9	CF ₃	Cl	Cl
A-8	OCH ₃	CH_3	CH ₃	A-9	OCH ₃	CH_3	CH ₃
A-8	осн ₃	Cl	CH ₃	A -9	OCH ₃	Cl	CH ₃
A-8	OCH ₃	Cl	Cl	A-9	OCH ₃	CI	Cl
A-8	NO ₂	CH_3	CH_3	A-9	NO ₂	CH_3	CH ₃
A-8	NO ₂	Cl	CH ₃	A-9	NO ₂	Cl	CH ₃
A-8	NO ₂	Cl	Cl	A-9	NO ₂	Cl	Cl
A-24	SO ₂ CH ₃	NO_2	CH ₃	A-33	SO ₂ CH ₃	NO_2	CH_3
A-24	SO ₂ CH ₃	C!	CH ₃	A-33	SO ₂ CH ₃	Cl	CH ₃
A-24	SO ₂ CH ₃	Cl	Cl	A-33	SO ₂ CH ₃	Cl	CI
A-24	SO ₂ CH ₂ CH ₃	Cl	CH ₃	A-33	SO ₂ CH ₂ CH ₃	Cl	CH ₃
A-24	SO ₂ CH ₂ CH ₃	Cl	Cl	A-33	SO ₂ CH ₂ CH ₃	Cl	Cl
A-24	SO ₂ CH ₂ CH ₂ CH ₃	Cl	CH ₃	A-33	SO ₂ CH ₂ CH ₂ CH ₃	Cl	CH_3
A-24	SO ₂ CH ₂ CH ₂ CH ₃	CI	Cl	A-33	SO ₂ CH ₂ CH ₂ CH ₃	Cl	Cl
A-24	$SO_2N(CH_3)_2$	CH ₃	CH ₃	A-33	$SO_2N(CH_3)_2$	CH ₃	CH ₃
A-24	SO ₂ N(CH ₃) ₂	CI	CH ₃	A-33	$SO_2N(CH_3)_2$	CI	CH_3
A-24	SO ₂ N(CH ₃) ₂	Cl	CI	A-33	SO ₂ N(CH ₃) ₂	Cl	Cl
A-24	SO ₂ CF ₃	CH ₃	CH ₃	A-33	SO ₂ CF ₃	CH ₃	CH ₃
A-24	SO ₂ CF ₃	C!	CH ₃	A-33	SO ₂ CF ₃	Cl	CH ₃
A-24	SO ₂ CF ₃	Cl	Cl	A-33	2 3	CI	Cl
A-24	SO ₂ OCH ₂ CF ₃	CH ₃	CH ₃	A-33	SO ₂ OCH ₂ CF ₃	CH_3	CH_3
A-24		Cl	CH ₃	A-3 3		Cl	CH_3
A-24	SO ₂ OCH ₂ CF ₃	Cl	CI	A-33	SO ₂ OCH ₂ CF ₃	Cl	Cl
A-24	CF ₃	CH ₃	CH ₃	A-33	CF ₃	CH ₃	CH ₃
A-24	CF ₃	Cl	CH ₃	A-33	CF ₃	Cl	CH ₃
A-24	CF ₃	Cl	Cl	A-33	CF ₃	CI	CI

				_			
A-24	OCH ₃	CH ₃	CH ₃	A-33	OCH ₃	СН3	CH ₃
A-24	OCH ₃	C!	CH ₃	A-33	OCH ₃	CI	CH₃
A-24	OCH ₃	CI	CI	A-33	OCH ₃	CI	Cl
A-24	NO ₂	CH ₃	CH ₃	A-33	NO ₂	CH ₃	CH ₃
A-24	NO ₂	Cl	CH ₃	A-33	NO ₂	CI	CH ₃
A-24	NO ₂	CI	CI	A-33	NO ₂	Cl	CI
A-42	SO ₂ CH ₃	NO_2	CH ₃	A-44	SO ₂ CH ₃	NO ₂	CH ₃
A-42	SO ₂ CH ₃	Cl	CH ₃	A-44	SO ₂ CH ₃	Cl	CH ₃
A-42	SO ₂ CH ₃	Cl	Cl	A-44	SO ₂ CH ₃	CI	CI
A-42	SO ₂ CH ₂ CH ₃	Cl	CH ₃	A-44	SO ₂ CH ₂ CH ₃	Cl	CH ₃
A-42	SO ₂ CH ₂ CH ₃	CI	Cl	A-44	SO ₂ CH ₂ CH ₃	Cl	Cl
A-42	SO ₂ CH ₂ CH ₂ CH ₃	Cl	CH ₃	A-44	SO ₂ CH ₂ CH ₂ CH ₃	Cl	CH ₃
A-42	SO ₂ CH ₂ CH ₂ CH ₃	CI	CI	A-44	SO ₂ CH ₂ CH ₂ CH ₃	Cl	CI
A-42	$SO_2N(CH_3)_2$	CH_3	CH_3	A-44	SO ₂ N(CH ₃) ₂	CH ₃	CH ₃
A-42	$SO_2N(CH_3)_2$	CI	CH_3	A-44	$SO_2N(CH_3)_2$	CI	CH ₃
A-42	$SO_2N(CH_3)_2$	Cl	Cl	A-44	$SO_2N(CH_3)_2$	CI	CI
A-42	SO ₂ CF ₃	CH ₃	CH ₃	A-44	SO ₂ CF ₃	CH_3	CH ₃
A-42	SO ₂ CF ₃	Cl	CH ₃	A-44	SO ₂ CF ₃	CI	CH_3
A-42	SO ₂ CF ₃	CI	Cl	A-44	SO ₂ CF ₃	Cl	CI
A-42	SO ₂ OCH ₂ CF ₃	CH_3	CH ₃	A-44	SO ₂ OCH ₂ CF ₃	CH_3	CH ₃
A-42	SO ₂ OCH ₂ CF ₃	Cl	CH ₃	A-44	SO ₂ OCH ₂ CF ₃	Cl	CH ₃
A-42	SO ₂ OCH ₂ CF ₃	Cl	CI	A-44	SO ₂ OCH ₂ CF ₃	Cì	CI
A-42	CF ₃	CH ₃	CH ₃	A-44	CF ₃	CH_3	CH ₃
A-42	CF ₃	CI	CH ₃	A-44	CF ₃	Cl	CH ₃
A-42	CF ₃	Cl	Cl	A-44	CF ₃	Cl	Ci
A-42	OCH ₃	CH_3	CH ₃	A-44	OCH ₃	CH ₃	CH ₃
A-42	OCH ₃	Cl	CH ₃	A-44	OCH ₃	Cl	CH ₃
A-42	OCH ₃	Cl	Cl	A-44	OCH ₃	Cl	Cl
A-42	NO ₂	CH ₃	CH ₃	A-44	NO ₂	CH_3	CH ₃
A-42	NO ₂	Cl	CH ₃	A-44	NO ₂	Cl	CH ₃
A-42	NO ₂	Cl	Cl	A-44	NO ₂	CI	Cl
A-45	SO ₂ CH ₃	NO ₂	CH ₃	A-67	SO ₂ CH ₃	NO_2	CH ₃
A-45	SO ₂ CH ₃	Cl	CH ₃	A-67	SO ₂ CH ₃	Cl	CH ₃
A-45	SO ₂ CH ₃	CI	Cl	A-67	SO ₂ CH ₃	Cl	Cl
A-45	SO ₂ CH ₂ CH ₃	CI	CH ₃	A-67	SO ₂ CH ₂ CH ₃	Cl	CH ₃
A-45	SO ₂ CH ₂ CH ₃	Cl	CI	A-67	SO ₂ CH ₂ CH ₃	Cl	Cl
A-45	SO ₂ CH ₂ CH ₂ CH ₃	Cl	CH ₃	A-67	SO ₂ CH ₂ CH ₂ CH ₃	Cl	CH_3
A-45	SO ₂ CH ₂ CH ₂ CH ₃	Cl	CI	A-67	SO ₂ CH ₂ CH ₂ CH ₃	Cl	C1

A-45	SO ₂ N(CH ₃) ₂	CH_3	CH ₃	A-67	$SO_2N(CH_3)_2$	CH_3	CH ₃
A-45	SO ₂ N(CH ₃) ₂	Cl	CH ₃	A-67	$SO_2N(CH_3)_2$	Cl	CH ₃
A-45	SO ₂ N(CH ₃) ₂	CI	Ci	A-67	$SO_2N(CH_3)_2$	Cl	Cl
A-45	SO ₂ CF ₃	CH_3	CH ₃	A-67	SO ₂ CF ₃	CH ₃	CH ₃
A-45	SO ₂ CF ₃	Cl	CH_3	A-67	SO ₂ CF ₃	Cl	CH ₃
A-45	SO ₂ CF ₃	Cl	Cl	A-67	SO ₂ CF ₃	Cl	Cl
A-45	SO ₂ OCH ₂ CF ₃	CH ₃	CH ₃	A-67	SO ₂ OCH ₂ CF ₃	CH_3	CH ₃
A-45	SO ₂ OCH ₂ CF ₃	Cl	CH_3	A-67	SO ₂ OCH ₂ CF ₃	C1	CH ₃
A-45	SO ₂ OCH ₂ CF ₃	CI	Cl	A-67	SO ₂ OCH ₂ CF ₃	Cl	CI
A-45	CF ₃	CH_3	CH ₃	A-67	CF ₃	CH_3	CH ₃
A-45	CF ₃	Cl	CH ₃	A-67	CF ₃	Cl	CH ₃
A-45	CF ₃	Cl	Cl	A-67	CF ₃	Cl	Cl
A-45	OCH ₃	CH_3	CH ₃	A-67	OCH ₃	CH ₃	CH ₃
A-45	OCH ₃	Cì	CH ₃	A-67	OCH ₃	Cl	CH ₃
A-45	OCH ₃	Cl	Cl	A-67	OCH ₃	CI	Cl
A-45	NO ₂	CH ₃	CH ₃	A-67	NO ₂	CH ₃	CH ₃
A-45	NO ₂	Cl	CH_3	A-67	NO ₂	CI	CH_3
A-45	NO ₂	CI	Cl	A-67	NO ₂	Cl	CI
A-68	SO ₂ CH ₃	NO_2	CH ₃	A-71	SO ₂ CH ₃	NO_2	CH ₃
A-68	SO ₂ CH ₃	Cl	CH ₃	A-71	SO ₂ CH ₃	Cl	CH_3
A-68	SO ₂ CH ₃	Cl	CI	A-71	SO ₂ CH ₃	Cl	Cl
A-68	SO ₂ CH ₂ CH ₃	Cl	CH ₃	A-71	SO ₂ CH ₂ CH ₃	CI	CH_3
A-68	SO ₂ CH ₂ CH ₃	Cl	Cl	A-71	SO ₂ CH ₂ CH ₃	CI	Cl
A-68	SO ₂ CH ₂ CH ₂ CH ₃	Cl	CH_3	A-71	SO ₂ CH ₂ CH ₂ CH ₃	CI	CH_3
A-68	SO ₂ CH ₂ CH ₂ CH ₃	CI	CI	A-71	SO ₂ CH ₂ CH ₂ CH ₃	Cl	Cl
A-68	SO ₂ N(CH ₃) ₂	CH ₃	CH ₃	A-71	SO ₂ N(CH ₃) ₂	CH_3	CH ₃
A-68	$SO_2N(CH_3)_2$	Cl	CH ₃	A-71	$SO_2N(CH_3)_2$	Cl	CH ₃
A-6 8	$SO_2N(CH_3)_2$	Cl	Cl	A-71	$SO_2N(CH_3)_2$	Cl	Cì
A-6 8	SO ₂ CF ₃	CH ₃	CH ₃	A-71	SO ₂ CF ₃	CH_3	CH ₃
A-68	SO ₂ CF ₃	Cl	CH ₃	A-71	SO ₂ CF ₃	C!	CH ₃
A-68	SO ₂ CF ₃	Cl	Cl	A-71	SO ₂ CF ₃	Ci	CI
A-68	SO ₂ OCH ₂ CF ₃	CH ₃	CH ₃	A-71	SO ₂ OCH ₂ CF ₃	CH ₃	CH_3
A-68	SO ₂ OCH ₂ CF ₃	Cl	CH ₃	A-71	SO ₂ OCH ₂ CF ₃	Cl	CH_3
A-68	SO ₂ OCH ₂ CF ₃	Cl	CI	A-71	SO ₂ OCH ₂ CF ₃	Cl	Cl
A-68	CF ₃	CH ₃	CH ₃	A-71	CF ₃	CH_3	CH_3
A-68	CF ₃	Cl	CH ₃	A-71	CF ₃	Cl	CH_3
A-68	CF ₃	Cl	CI	A-71	CF ₃	Cl	Cl
A-68	OCH ₃	CH_3	CH ₃	A-71	OCH ₃	CH ₃	CH_3

A-68	OCH ₃	ÇI	CH ₃	A-71	OCH ₃	Cl	CH ₃
A-68	OCH ₃	Cl	Cl	A-71	OCH ₃	Cl	CI
A-68	NO ₂	CH ₃	CH ₃	A-71	NO ₂	CH ₃	СН3
A-68	NO ₂	Cl	CH_3	A-71	NO ₂	CI	CH ₃
A-68	NO ₂	CI	Cl	A-71	NO ₂	CI	Cl
A-78	SO ₂ CH ₃	NO ₂	CH ₃	A-91	SO ₂ CH ₃	NO ₂	CH ₃
A-78	SO ₂ CH ₃	CI	CH ₃	A-91	SO ₂ CH ₃	Cl	CH ₃
A-78	SO ₂ CH ₃	Cl	Cl	A-91	SO ₂ CH ₃	Cl	C!
A-78	SO ₂ CH ₂ CH ₃	Cl	CH_3	A-91	SO ₂ CH ₂ CH ₃	Cl	CH ₃
A-78	SO ₂ CH ₂ CH ₃	Cl	Cl	A-91	SO ₂ CH ₂ CH ₃	Cl	CI
A-78	SO ₂ CH ₂ CH ₂ CH ₃	Cl	CH ₃	A-91	SO ₂ CH ₂ CH ₂ CH ₃	Cl	CH ₃
A-78	SO ₂ CH ₂ CH ₂ CH ₃	Cl	Cl	A-91	SO ₂ CH ₂ CH ₂ CH ₃	Cl	CI
A-78	$SO_2N(CH_3)_2$	CH ₃	CH ₃	A-91	$SO_2N(CH_3)_2$	CH ₃	CH ₃
A-78	$SO_2N(CH_3)_2$	Cl	CH ₃	A-91	SO ₂ N(CH ₃) ₂	Cì	CH ₃
A-78	SO ₂ N(CH ₃) ₂	Cl	CI	A-91	$SO_2N(CH_3)_2$	CI	CI
A-78	SO ₂ CF ₃	CH_3	CH ₃	A-91	SO ₂ CF ₃	CH ₃	CH ₃
A-78	SO ₂ CF ₃	Cl	CH ₃	A-91	SO ₂ CF ₃	Cl	CH ₃
A-78	SO ₂ CF ₃	Cl	Cl	A-91	SO ₂ CF ₃	Cl	Cl
A-78	SO ₂ OCH ₂ CF ₃	CH_3	CH_3	A-91	SO ₂ OCH ₂ CF ₃	CH_3	CH ₃
A-78	SO ₂ OCH ₂ CF ₃	Cl	CH ₃	A-91	SO ₂ OCH ₂ CF ₃	Cl	CH_3
A-78	SO ₂ OCH ₂ CF ₃	Cl	Cl	A-91	SO ₂ OCH ₂ CF ₃	Cl	CI
A-78	CF ₃	CH ₃	CH ₃	A-91	CF ₃	CH_3	CH_3
A-78	CF ₃	Cl	CH_3	A-91	CF ₃	Cl	CH_3
A-78	CF ₃	Cl	Cl	A -91	CF ₃	Cl	Cl
A-78	OCH ₃	CH ₃	CH ₃	A-91	OCH ₃	CH_3	CH_3
A-78	OCH ₃	Cl	CH ₃	A-91	OCH ₃	Cl	CH_3
A-78	OCH ₃	CI	Cl	A-91	OCH ₃	Cl	CI
A-78	NO ₂	CH ₃	CH ₃	A-91	NO ₂	CH_3	CH ₃
A-78	NO ₂	CI	CH ₃	A-91	NO ₂	Cl	CH ₃
A-78	NO ₂	Cl	Cl	A-91	NO ₂	Cl	Cl

PCT/US97/09569

61

			ı		
<u>A</u>	R15	<u>R¹⁴</u>	A	<u>R¹⁵</u>	<u>R¹⁴</u>
A-1	CH ₃	PhC(=O)	A-2	CH ₃	PhC(=O)
A-1	CH ₃	4-CH ₃ PhC(=O)	A-2	CH ₃	4-CH ₃ PhC(=O)
A-1	CH ₃	CH ₃ S(O) ₂	A-2	CH ₃	CH ₃ S(O) ₂
A-1	CH ₃	CH ₃ CH ₂ S(O) ₂	A-2	CH ₃	CH ₃ CH ₂ S(O) ₂
A-l	CH ₃	$CH_3CH_2CH_2S(O)_2$	A-2	·CH ₃	$CH_3CH_2CH_2S(O)_2$
A-1	CH ₃	PhS(O) ₂	A-2	CH ₃	PhS(O) ₂
A-1	CH ₃	4-CH ₃ PhS(O) ₂	A-2	CH ₃	4-CH ₃ PhS(O) ₂
A-1	CH ₃	Na	A-2	CH ₃	Na
A-I	CH ₃	K	A-2	CH ₃	K
A-3	CH ₃	PhC(=O)	A-33	CH ₃	PhC(=O)
A-3	CH ₃	4-CH ₃ PhC(=O)	A-33	CH ₃	4-CH ₃ PhC(=O)
A-3	CH ₃	$CH_3S(O)_2$	A-33	CH ₃	CH ₃ S(O) ₂
A-3	CH ₃	$CH_3CH_2S(O)_2$	A-33	CH ₃	$CH_3CH_2S(O)_2$
A-3	CH ₃	$CH_3CH_2CH_2S(O)_2$	A-33	CH ₃	$CH_3CH_2CH_2S(O)_2$
A-3	CH ₃	PhS(O) ₂	A-33	CH ₃	PhS(O) ₂
A-3	CH ₃	4-CH ₃ PhS(O) ₂	A-33	CH ₃	4-CH ₃ PhS(O) ₂
A-3	CH ₃	Na	A-33	CH ₃	Na
A-3	CH ₃	K	A-33	CH ₃	K
A-67	CH ₃	PhC(=O)	A-71	CH ₃	PhC(=O)
A-67	CH ₃	4-CH ₃ PhC(=O)	A-71	CH ₃	4-CH ₃ PhC(=O)
A-67	CH ₃	CH ₃ S(O) ₂	A-71	CH ₃	$CH_3S(O)_2$
A-67	CH ₃	$CH_3CH_2S(O)_2$	A-71	CH ₃	CH ₃ CH ₂ S(O) ₂
A-67	CH ₃	$CH_3CH_2CH_2S(O)_2$	A-71	CH ₃	$CH_3CH_2CH_2S(O)_2$
A-67	CH ₃	PhS(O) ₂	A-71	CH ₃	PhS(O) ₂
A-67	CH ₃	4-CH ₃ PhS(O) ₂	A-71	CH ₃	4-CH ₃ PhS(O) ₂
A-67	CH ₃	Na	A-71	CH ₃	Na
A-67	CH ₃	K	A-71	CH ₃	K
A-1	CH ₂ CH ₃	PhC(=O)	A-2	CH ₂ CH ₃	PhC(=O)

A-1	CH ₂ CH ₃	4-CH ₃ PhC(=O)	A-2	CH ₂ CH ₃	4-CH ₃ PhC(=O)
A-1	CH ₂ CH ₃	CH ₃ S(O) ₂	A-2	CH ₂ CH ₃	CH ₃ S(O) ₂
A-1	CH ₂ CH ₃	$CH_3CH_2S(O)_2$	A-2	CH ₂ CH ₃	CH ₃ CH ₂ S(O) ₂
A-1	CH ₂ CH ₃	CH ₃ CH ₂ CH ₂ S(O) ₂	A-2	CH ₂ CH ₃	CH ₃ CH ₂ CH ₂ S(O) ₂
A-1	CH ₂ CH ₃	PhS(O) ₂	A-2	CH ₂ CH ₃	PhS(O) ₂
A-I	CH ₂ CH ₃	4-CH ₃ PhS(O) ₂	A-2	CH ₂ CH ₃	4-CH ₃ PhS(O) ₂
A-1	CH ₂ CH ₃	Na	A-2	CH ₂ CH ₃	Na
A-I	CH ₂ CH ₃	K	A-2	CH ₂ CH ₃	К
A-3	CH ₂ CH ₃	PhC(=O)	A-33	CH ₂ CH ₃	PhC(=O)
A-3	CH ₂ CH ₃	4-CH ₃ PhC(=O)	A-33	CH ₂ CH ₃	4-CH ₃ PhC(=O)
A-3	CH ₂ CH ₃	CH ₃ S(O) ₂	A-33	CH₂CH₃	$CH_3S(O)_2$
A-3	CH ₂ CH ₃	$CH_3CH_2S(O)_2$	A-33	CH ₂ CH ₃	$CH_3CH_2S(O)_2$
A-3	CH ₂ CH ₃	$CH_3CH_2CH_2S(O)_2$	A-33	CH ₂ CH ₃	CH ₃ CH ₂ CH ₂ S(O) ₂
A-3	CH ₂ CH ₃	PhS(O) ₂	A-33	CH ₂ CH ₃	PhS(O) ₂
A-3	CH ₂ CH ₃	4-CH ₃ PhS(O) ₂	A-33	CH ₂ CH ₃	4-CH ₃ PhS(O) ₂
A-3	CH ₂ CH ₃	Na	A-33	CH ₂ CH ₃	Na
A-3	CH ₂ CH ₃	K	A-33	CH ₂ CH ₃	K
A-67	CH ₂ CH ₃	PhC(=O)	A-71	CH ₂ CH ₃	PhC(=O)
A-67	CH ₂ CH ₃	4-CH ₃ PhC(=O)	A-71	CH ₂ CH ₃	4-CH ₃ PhC(=O)
A-67	CH ₂ CH ₃	CH ₃ S(O) ₂	A-71	CH ₂ CH ₃	CH ₃ S(O) ₂
A-67	CH ₂ CH ₃	$CH_3CH_2S(O)_2$	A -71	CH ₂ CH ₃	CH ₃ CH ₂ S(O) ₂
A-67	CH ₂ CH ₃	$CH_3CH_2CH_2S(O)_2$	A-71	CH ₂ CH ₃	CH ₃ CH ₂ CH ₂ S(O) ₂
A-67	CH ₂ CH ₃	PhS(O) ₂	A-71	CH ₂ CH ₃	PhS(O) ₂
A-67	CH ₂ CH ₃	4-CH ₃ PhS(O) ₂	A-71	CH ₂ CH ₃	4-CH ₃ PhS(O) ₂
A-67	CH ₂ CH ₃	Na	A-71	CH ₂ CH ₃	Na
A-67	CH ₂ CH ₃	K	A-71	CH ₂ CH ₃	K
A-1	CH ₂ CH ₂ CH ₃	PhC(≃O)	A-2	CH ₂ CH ₂ CH ₃	PhC(=O)
A-1	CH ₂ CH ₂ CH ₃	4-CH ₃ PhC(=O)	A-2	$CH_2CH_2CH_3$	4-CH ₃ PhC(=O)
A-1	CH ₂ CH ₂ CH ₃	$CH_3S(O)_2$	A-2	CH ₂ CH ₂ CH ₃	$CH_3S(O)_2$
A-l	$\mathrm{CH_{2}CH_{2}CH_{3}}$	CH ₃ CH ₂ S(O) ₂	A-2	CH ₂ CH ₂ CH ₃	$CH_3CH_2S(O)_2$
A-1	CH ₂ CH ₂ CH ₃	$CH_3CH_2CH_2S(O)_2$	A-2	CH ₂ CH ₂ CH ₃	$CH_3CH_2CH_2S(O)_2$
A-1	CH ₂ CH ₂ CH ₃	PhS(O) ₂	A-2	CH ₂ CH ₂ CH ₃	PhS(O) ₂
A-1	$CH_2CH_2CH_3$	4-CH ₃ PhS(O) ₂	A-2	CH ₂ CH ₂ CH ₃	4-CH ₃ PhS(O) ₂
A-1	CH ₂ CH ₂ CH ₃	Na	A-2	$CH_2CH_2CH_3$	Na
A-1	CH ₂ CH ₂ CH ₃	K	A-2	CH ₂ CH ₂ CH ₃	K
A-3	CH ₂ CH ₂ CH ₃	PhC(=O)	A-33	CH ₂ CH ₂ CH ₃	PhC(=O)
A-3	CH ₂ CH ₂ CH ₃	4-CH ₃ PhC(=O)	A-33	$CH_2CH_2CH_3$	4-CH ₃ PhC(=O)
A-3	CH ₂ CH ₂ CH ₃	CH ₃ S(O) ₂	A-33	CH ₂ CH ₂ CH ₃	CH ₃ S(O) ₂

A-3	CH ₂ CH ₂ CH ₃	CH ₃ CH ₂ S(O) ₂	A-33	CH ₂ CH ₂ CH ₃	CH ₃ CH ₂ S(O) ₂
A-3	CH ₂ CH ₂ CH ₃	$CH_3CH_2CH_2S(O)_2$	A-33	CH ₂ CH ₂ CH ₃	$CH_3CH_2CH_2S(O)_2$
A-3	CH ₂ CH ₂ CH ₃	PhS(O) ₂	A-33	CH ₂ CH ₂ CH ₃	PhS(O) ₂
A-3	CH ₂ CH ₂ CH ₃	4-CH ₃ PhS(O) ₂	A-33	CH ₂ CH ₂ CH ₃	4-CH ₃ PhS(O) ₂
A-3	CH ₂ CH ₂ CH ₃	Na	A-33	CH ₂ CH ₂ CH ₃	Na
A-3	CH ₂ CH ₂ CH ₃	K	A-33	CH ₂ CH ₂ CH ₃	K
A-67	CH ₂ CH ₂ CH ₃	PhC(=O)	A-71	CH ₂ CH ₂ CH ₃	PhC(=O)
A-67	CH ₂ CH ₂ CH ₃	4-CH ₃ PhC(=O)	A-71	CH ₂ CH ₂ CH ₃	4-CH ₃ PhC(=O)
A-67	CH ₂ CH ₂ CH ₃	CH ₃ S(O) ₂	A-71	CH ₂ CH ₂ CH ₃	CH ₃ S(O) ₂
A-67	CH ₂ CH ₂ CH ₃	$CH_3CH_2S(O)_2$	A-71	CH ₂ CH ₂ CH ₃	$CH_3CH_2S(O)_2$
A-67	CH ₂ CH ₂ CH ₃	$CH_3CH_2CH_2S(O)_2$	A-71	CH ₂ CH ₂ CH ₃	CH ₃ CH ₂ CH ₂ S(O) ₂
A-67	CH ₂ CH ₂ CH ₃	PhS(O) ₂	A-71	CH ₂ CH ₂ CH ₃	PhS(O) ₂
A-67	CH ₂ CH ₂ CH ₃	4-CH ₃ PhS(O) ₂	A-71	CH ₂ CH ₂ CH ₃	4-CH ₃ PhS(O) ₂
A-67	CH ₂ CH ₂ CH ₃	Na	A-71	CH ₂ CH ₂ CH ₃	Na
A-67	CH ₂ CH ₂ CH ₃	K	A-71	CH ₂ CH ₂ CH ₃	K

<u>A</u>	<u>R¹⁵</u>	<u>R14</u>	A	<u>R15</u>	<u>R14</u>
A-1	CH ₃	PhC(=O)	A-2	CH ₃	PhC(=O)
A-1	CH ₃	4-CH ₃ PhC(=O)	A-2	CH ₃	4-CH ₃ PhC(=O)
A-1	CH ₃	CH ₃ S(O) ₂	A-2	CH ₃	CH ₃ S(O) ₂
A-1	CH ₃	$CH_3CH_2S(O)_2$	A-2	СН3	CH ₃ CH ₂ S(O) ₂
A-1	CH ₃	$CH_3CH_2CH_2S(O)_2$	A-2	CH ₃	CH ₃ CH ₂ CH ₂ S(O) ₂
A-1	CH ₃	PhS(O) ₂	A-2	CH ₃	PhS(O) ₂
A-1	CH ₃	4-CH ₃ PhS(O) ₂	A-2	CH ₃	$4-CH_3PhS(O)_2$
A-1	CH ₃	Na	A-2	CH ₃	Na
A-1	CH ₃	K	A-2	CH ₃	K
A-3	CH ₃	PhC(=O)	A-33	CH ₃	PhC(=O)
A-3	CH ₃	4-CH ₃ PhC(=O)	A-33	CH ₃	4-CH ₃ PhC(=O)
A-3	CH ₃	CH ₃ S(O) ₂	A-33	CH ₃	CH ₃ S(O) ₂

WO 97/46530

A-3	СН3	CH ₃ CH ₂ S(O) ₂	A-33	CH ₃	CH ₃ CH ₂ S(O) ₂
A-3	CH ₃	CH ₃ CH ₂ CH ₂ S(O) ₂	A-33	CH ₃	CH ₃ CH ₂ S(O) ₂ CH ₃ CH ₂ CH ₂ S(O) ₂
A-3	CH ₃	PhS(O) ₂	A-33	CH ₃	PhS(O) ₂
A-3	CH ₃	4-CH ₃ PhS(O) ₂	A-33	CH ₃	4-CH ₃ PhS(O) ₂
A-3	CH ₃	Na	A-33	CH ₃	Na
A-3	CH ₃	K	A-33	CH ₃	K
A-67	CH ₃	PhC(=O)	A-71	CH ₃	
	\ \		ŀ	_	PhC(=O)
A-67	CH ₃	4-CH ₃ PhC(=O)	A-71	CH ₃	4-CH ₃ PhC(=O)
A-67	CH ₃	CH ₃ S(O) ₂	A-71	CH ₃	CH ₃ S(O) ₂
A-67	CH ₃	CH ₃ CH ₂ S(O) ₂	A-71	CH ₃	CH ₃ CH ₂ S(O) ₂
A-67	CH ₃	CH ₃ CH ₂ CH ₂ S(O) ₂	A-71	CH ₃	CH ₃ CH ₂ CH ₂ S(O) ₂
A-67	CH ₃	PhS(O) ₂	A-71	CH ₃	PhS(O) ₂
A-67	CH ₃	4-CH ₃ PhS(O) ₂	A-71	CH ₃	4-CH ₃ PhS(O) ₂
A-67	CH ₃	Na	A-71	CH ₃	Na
A-67	CH ₃	K	A-71	CH ₃	K
A-I	CH ₂ CH ₃	PhC(=O)	A-2	CH ₂ CH ₃	PhC(=O)
A-1	CH ₂ CH ₃	4-CH ₃ PhC(=O)	A-2	CH ₂ CH ₃	4-CH ₃ PhC(=O)
A-1	CH ₂ CH ₃	CH ₃ S(O) ₂	A-2	CH ₂ CH ₃	CH ₃ S(O) ₂
A-1	CH ₂ CH ₃	CH ₃ CH ₂ S(O) ₂	A-2	CH ₂ CH ₃	CH ₃ CH ₂ S(O) ₂
A-1	CH ₂ CH ₃	$CH_3CH_2CH_2S(O)_2$	A-2	CH ₂ CH ₃	$CH_3CH_2CH_2S(O)_2$
A-I	CH ₂ CH ₃	PhS(O) ₂	A-2	CH ₂ CH ₃	PhS(O) ₂
A-I	CH₂CH₃	4-CH ₃ PhS(O) ₂	A-2	CH ₂ CH ₃	4-CH ₃ PhS(O) ₂
A-1	CH₂CH₃	Na	A-2	CH₂CH₃	Na
A-1	CH ₂ CH ₃	K	A-2	CH ₂ CH ₃	K
A-3	CH ₂ CH ₃	PhC(=O)	A-33	CH ₂ CH ₃	PhC(=O)
A-3	CH₂CH₃	4-CH ₃ PhC(=O)	A-33	CH₂CH₃	4-CH ₃ PhC(=O)
A-3	CH ₂ CH ₃	CH ₃ S(O) ₂	A-33	CH₂CH₃	CH ₃ S(O) ₂
A-3	CH₂CH₃	CH ₃ CH ₂ S(O) ₂	A-33	CH ₂ CH ₃	CH ₃ CH ₂ S(O) ₂
A-3	CH ₂ CH ₃	$CH_3CH_2CH_2S(O)_2$	A-33	CH ₂ CH ₃	$CH_3CH_2CH_2S(O)_2$
A-3	CH₂CH₃	PhS(O) ₂	A-33	CH ₂ CH ₃	PhS(O) ₂
A-3	CH ₂ CH ₃	4-CH ₃ PhS(O) ₂	A-33	CH ₂ CH ₃	4-CH ₃ PhS(O) ₂
A-3	CH ₂ CH ₃	Na	A-33	CH ₂ CH ₃	Na
A-3	CH ₂ CH ₃	K	A-33	CH ₂ CH ₃	K
A-67	CH ₂ CH ₃	PhC(=O)	A-71	CH ₂ CH ₃	PhC(=O)
A-67	CH ₂ CH ₃	4-CH ₃ PhC(=O)	A-71	CH ₂ CH ₃	4-CH ₃ PhC(=O)
A-67	CH ₂ CH ₃	CH ₃ S(O) ₂	A-71	CH ₂ CH ₃	CH ₃ S(O) ₂
A-67	CH ₂ CH ₃	CH ₃ CH ₂ S(O) ₂	A-71	CH ₂ CH ₃	$CH_3CH_2S(O)_2$
A-67	CH ₂ CH ₃	CH ₃ CH ₂ CH ₂ S(O) ₂	A-71	CH ₂ CH ₃	$CH_3CH_2CH_2S(O)_2$

			1		
A-67	CH ₂ CH ₃	PhS(O) ₂	A-71	CH ₂ CH ₃	PhS(O) ₂
A-67	CH ₂ CH ₃	4-CH ₃ PhS(O) ₂	A-71	CH ₂ CH ₃	4-CH ₃ PhS(O) ₂
A-67	CH ₂ CH ₃	Na	A-71	CH ₂ CH ₃	Na
A-67	CH ₂ CH ₃	K	A-71	CH ₂ CH ₃	K
A-1	CH ₂ CH ₂ CH ₃	PhC(=O)	A-2	CH ₂ CH ₂ CH ₃	PhC(=O)
A-1	CH ₂ CH ₂ CH ₃	4-CH ₃ PhC(=O)	A-2	CH ₂ CH ₂ CH ₃	4-CH ₃ PhC(=O)
A-1	CH ₂ CH ₂ CH ₃	CH ₃ S(O) ₂	A-2	CH ₂ CH ₂ CH ₃	$CH_3S(O)_2$
A-1	$CH_2CH_2CH_3$	$CH_3CH_2S(O)_2$	A-2	CH ₂ CH ₂ CH ₃	$CH_3CH_2S(O)_2$
A-1	CH ₂ CH ₂ CH ₃	$CH_3CH_2CH_2S(O)_2$	A-2	CH ₂ CH ₂ CH ₃	$CH_3CH_2CH_2S(O)_2$
A-1	CH ₂ CH ₂ CH ₃	PhS(O) ₂	A-2	CH ₂ CH ₂ CH ₃	PhS(O) ₂
A-1	CH ₂ CH ₂ CH ₃	4-CH ₃ PhS(O) ₂	A-2	CH ₂ CH ₂ CH ₃	4-CH ₃ PhS(O) ₂
A-1	CH ₂ CH ₂ CH ₃	Na	A-2	CH ₂ CH ₂ CH ₃	Na
A-1	CH ₂ CH ₂ CH ₃	K	A-2	$CH_2CH_2CH_3$	К
A-3	CH ₂ CH ₂ CH ₃	PhC(=O)	A-33	CH2CH2CH3	PhC(=O)
A-3	CH ₂ CH ₂ CH ₃	4-CH ₃ PhC(=O)	A-33	$\mathrm{CH_2CH_2CH_3}$	4-CH ₃ PhC(=O)
A-3	CH ₂ CH ₂ CH ₃	CH ₃ S(O) ₂	A-33	CH ₂ CH ₂ CH ₃	$CH_3S(O)_2$
A-3	CH ₂ CH ₂ CH ₃	$CH_3CH_2S(O)_2$	A-33	$CH_2CH_2CH_3$	$CH_3CH_2S(O)_2$
A-3	CH ₂ CH ₂ CH ₃	$CH_3CH_2CH_2S(O)_2$	A-33	CH ₂ CH ₂ CH ₃	$CH_3CH_2CH_2S(O)_2$
A-3	CH ₂ CH ₂ CH ₃	PhS(O) ₂	A-33	CH ₂ CH ₂ CH ₃	PhS(O) ₂
A-3	CH ₂ CH ₂ CH ₃	4-CH ₃ PhS(O) ₂	A-33	$CH_2CH_2CH_3$	4-CH ₃ PhS(O) ₂
A-3	CH ₂ CH ₂ CH ₃	Na	A-33	CH ₂ CH ₂ CH ₃	Na
A-3	CH ₂ CH ₂ CH ₃	К	A-33	CH ₂ CH ₂ CH ₃	K
A-67	CH ₂ CH ₂ CH ₃	PhC(=O)	A-71	$CH_2CH_2CH_3$	PhC(=O)
A-67	CH ₂ CH ₂ CH ₃	$4-CH_3PhC(=O)$	A-71	CH ₂ CH ₂ CH ₃	$4-CH_3PhC(=O)$
A-67	CH ₂ CH ₂ CH ₃	CH ₃ S(O) ₂	A-71	CH ₂ CH ₂ CH ₃	CH ₃ S(O) ₂
A-67	CH ₂ CH ₂ CH ₃	$CH_3CH_2S(O)_2$	A-71	CH ₂ CH ₂ CH ₃	CH ₃ CH ₂ S(O) ₂
A-67	CH ₂ CH ₂ CH ₃	$CH_3CH_2CH_2S(O)_2$	A-71	CH ₂ CH ₂ CH ₃	CH ₃ CH ₂ CH ₂ S(O) ₂
A-67	CH ₂ CH ₂ CH ₃	PhS(O) ₂	A-71	CH ₂ CH ₂ CH ₃	PhS(O) ₂
A-67	CH ₂ CH ₂ CH ₃	4-CH ₃ PhS(O) ₂	A-71	CH ₂ CH ₂ CH ₃	$4-CH_3PhS(O)_2$
A-67	CH ₂ CH ₂ CH ₃	Na	A-71	CH ₂ CH ₂ CH ₃	Na
A-67	CH₂CH₂CH₃	K	A-71	CH ₂ CH ₂ CH ₃	K

TABLE 13

Rla is CF3, Rlb is H, and W is N

Δ	Δ	Α	A	Δ	A	Δ	<u>A</u>	A	Α	A	Δ
A-1	A-2	A-3	A-4	A-5	A-6	A-7	A-8	A-9	A-10	A-11	A-12
A-13	A-14	A-15	A-16	A-17	A-18	A-19	A-20	A-21	A-22	A-23	A-24
A-25	A-26	A-27	A-28	A-29	A-30	A-31	A-32	A-33	A-34	A-35	A-36
A-37	A-38	A-39	A-40	A-41	Λ-42	A-43	A-44	A-45	A-46	A-47	A-48
A-49	A-50	A-51	A-52	A-53	A-54	A-55	A-56	A-57	A-58	A-59	A-60
A-61	A-62	A-63	A-64	A-65	A-66	A-67	A-68	A-69	A-70	A-71	A-72
Λ-73	A-74	A-75	A-76	A-77	A-78	A-79	A-80	A-81	A-82	A-83	A-84
A-85	A-86	A-87	A-88	A-89	A-90	A-91	A-92	A-93			

Rla is CF₃, Rlb is H, and W is CH

Α	Δ	A	Α	A	Α	Δ	Δ	A	A	A	Δ
A-1	A-2	A-3	A-4	A-5	A-6	A-7	A-8	A-9	A-10	A-11	A-12
A-13	A-14	A-15	A-16	A-17	A-18	A-19	A-20	A-21	A-22	A-23	A-24
A-25	A-26	A-27	A-28	A-29	A-3 0	A-31	A-32	A-33	A-34	A-35	A-36
A-37	A-38	A-39	A-40	A-41	A-42	A-43	A-44	A-45	A-46	A-47	Λ-48
A-49	A-50	A-51	A-52	A-53	A-54	A-55	A-56	A-57	A-58	A-59	A-60
A-61	A-62	A-63	A-64	A-65	A-66	A-67	A-68	A-69	A-70	A-71	A-72
A-73	A-74	A-75	A-76	A-77	A-78	A-79	A-80	A-81	A-82	A-83	A-84
A-85	A-86	A-87	A-88	A-89	A-90	A-91	A-92	A-93			

R1a is Cl, R1b is H, and W is N

A	A	A	<u>A</u>	A	<u>A</u>	A	Δ	<u>A</u>	A	A	Δ
A-1	A-2	A-3	A-4	A-5	A-6	A-7	A-8	A-9	A-10	A-11	A-12
A-13	A-14	A-15	A-16	A-17	A-18	A-19	A-20	A-21	A-22	A-23	A-24
A-25	A-26	A-27	A-28	A-29	A-30	A-31	A-32	A-33	A-34	A-35	A-36
A-37	A-38	A-39	A-40	A-41	A-42	A-43	A-44	A-45	A-46	A-47	A-48
A-49	A-50	A-51	A-52	A-53	A-54	A-55	A-56	A-57	A-58	A-59	A-60

A-61	A-62	A-63	A-64	A-65	A-66	A-67	A-68	A-69	A-70	A-71	A-72
A-73	A-74	A-75	A-76	A-77	A-78	A-79	A-80	A-81	A-82	A-83	A-84
A-85	A-86	A-87	A-88	A-89	A-90	A-91	A-92	A-93			

Rla is Cl, Rlb is H, and W is CH

A	A	Δ	A	<u>A</u>	A	A	<u>A</u>	Δ	Δ	A	Α
A-1	A-2	A-3	A-4	A-5	A-6	A-7	A-8	A-9	A-10	A-11	A-12
A-13	A-14	A-15	A-16	A-17	A-18	A-19	A-20	A-21	A-22	A-23	A-24
A-25	A-26	A-27	A-28	A-29	A-30	A-31	A-32	A-33	A-34	A-35	A-36
A-37	A-38	A-39	A-40	A-41	A-42	A-43	A-44	A-45	A-46	A-47	A-48
A-49	A-50	A-5 1	A-52	A-53	A-54	A-55	A-56	A-57	A-58	A-59	A-60
A-61	A-62	A-63	A-64	A-65	A-66	A-67	A-68	A-69	A-70	A-71	A-72
A-73	A-74	A-75	A-76	A-77	A-78	A-79	A-80	A-81	A-82	A-83	A-84
A-85	A-86	A-87	A-88	A-89	A-90	A-91	A-92	A-93			

Rla is CH₃, Rlb is H, and W is N

	<u> </u>										
A	Α	<u>A</u>	<u>A</u>	<u>A</u>	Δ	Α	Α	A	Α	A	<u>A</u>
A-1	A-2	A -3	A-4	A-5	A-6	A-7	A-8	A-9	A-10	A-11	A-12
A-13	A-14	A-15	A-16	A-17	A-18	A-19	A-20	A-21	A-22	A-23	A-24
A-25	A-26	A-27	A-28	A-29	A-30	A-31	A-32	A-33	A-34	A-35	A-36
A-37	A-38	A-39	A-40	A-41	A-42	A-43	A-44	A-45	A-46	A-47	A-48
A-49	A-50	A-51	A-52	A-53	A-54	A-55	A-56	A-57	A-58	A-59	A-60
A-61	A-62	A-63	A-64	A-65	A-66	A-67	A-68	A-69	A-70	A-71	A-72
A-73	A-74	A-75	A-76	A-77	A-78	A-79	A-80	A-81	A-82	A-83	A-84
A-85	A-86	A-87	A-88	A-89	A-90	A-91	A-92	A-93			

Rla is CH3, Rlb is H, and W is CH

A	<u>A</u> _	A	A	A	<u>A</u>	A	Α	Α	A	Δ	<u>A</u>
A-I	A-2	A-3	A-4	A-5	A-6	A-7	A-8	A-9	A-10	A-11	A-12
A-13	A-14	A-15	A-16	A-17	A-18	A-19	A-20	A-21	A-22	A-23	A-24
A-25	A-26	A-27	A-28	A-29	A-30	A-31	A-32	A-33	A-34	A-35	A-36
A-37	A-38	A-39	A-40	A-41	A-42	A-43	A-44	A-45	A-46	A-47	A-48
A-49	A-50	A-51	A-52	A-53	A-54	A-55	A-56	A-57	A-58	A-59	A-60
A-61	A-62	A-63	A-64	A-65	A-66	A-67	A-68	A-69	A-70	A-71	A-72
A-73	A-74	A-75	A-76	A-77	A-78	A-79	A-80	A-81	A-82	A-83	A-84
A-85	A-86	A-87	A-88	A-89	A-90	A-91	A-92	A-93			

Rla is SO₂CH₃, Rlb is H, and W is N

A	A	Α	A	A	A	A	<u>A</u>	A	Δ	Α	Δ
A-1	A-2	A-3	A-4	A-5	A-6	A-7	A-8	A-9	A-10	A-11	A-12
A-13	A-14	A-15	A-16	A-17	A-18	A-19	A-20	A-21	A-22	A-23	A-24
A-25	A-26	A-27	A-28	A-29	A-30	A-31	A-32	A-33	A-34	A-35	A-36
A-37	A-38	A-39	A-40	A-41	A-42	A-43	A-44	A-45	A-46	A-47	A-48
A-49	A-50	A-51	A-52	A-53	A-54	A-55	A-56	A-57	A-58	A-59	A-60
A-61	A-62	A-63	A-64	A-65	A-66	A-67	A-68	A-69	A-70	A-71	A-72
A-73	A-74	A-75	A-76	A-77	A-78	A-79	A-80	A-81	A-82	A-83	A-84
A-85	A-86	A-87	A-88	A-89	A-90	A-91	A-92	A-93			

Rla is SO₂CH₃, Rlb is H, and W is CH

A	<u>A</u>	A	A	Α	<u>A</u>	Δ	<u>A</u>	_ A	A	Δ	A
A-1	A-2	A-3	A-4	A-5	A-6	A-7	A-8	A-9	A-10	Λ-11	A-12
A-13	A-14	A-15	A-16	A-17	A-18	A-19	A-20	A-21	A-22	A-23	A-24
A-25	A-26	A-27	A-28	A-29	A-30	A-31	A-32	A-33	A-34	A-35	A-36
A-37	A-38	A-39	A-40	A-41	A-42	A-43	A-44	A-45	A-46	A-47	A-48
A-49	A-50	A-51	A-52	A-53	A-54	A-55	A-56	A-57	A-58	A-59	A-60
A-61	A-62	A-63	A-64	A-65	A-66	A-67	A-68	A-69	A-70	A-71	A-72
A-73	A-74	A-75	A-76	A-77	A-78	A-79	A-80	A-81	A-82	A-83	A-84
A-85	A-86	A-87	A-88	A-89	A-90	A-91	A-92	A-93			

R1a is SO₂CH₂CH₃, R1b is H, and W is N

<u>A</u>	Δ	A	A	A	Δ	<u>A</u>	Δ	A	Α	A	Δ
A-1	A-2	A-3	A-4	A-5	A-6	A-7	A-8	A-9	A-10	A-11	A-12
A-13	A-14	A-15	A-16	A-17	A-18	A-19	A-20	A-21	A-22	A-23	A-24
A-25	A-26	A-27	A-28	A-29	A-30	A-31	A-32	A-33	A-34	A-35	A-36
A-37	A-38	A-39	A-40	A-41	A-42	A-43	A-44	A-45	A-46	A-47	A-48
A-49	A-50	A-51	A-52	A-53	A-54	A-55	A-56	A-57	A-58	A-59	A-60
A-61	A-62	A-63	A-64	A-65	A-66	A-67	A-68	A-69	A-70	A-71	A-72
A-73	A-74	A-75	A-76	A-77	A-78	A-79	A-80	A-81	A-82	A-83	A-84
A-85	A-86	A-87	A-88	A-89	A-90	A-91	A-92	A-93			

Rla is SO₂CH₂CH₃, Rlb is H, and W is CH

Δ	<u>A</u>	<u>A</u>	Δ	<u>A</u>	A	<u>A</u>	A	A	A	Δ	<u>A</u>
											A-12
A-13	A-14	A-15	A-16	A-17	A-18	A-19	A-20	A-21	A-22	A-23	A-24

69

1	A-25	A-26	A-27	A-28	A-29	A-30	A-31	A-32	A-33	A-34	A-35	A-36
	A-37	A-38	A-39	A-40	A-41	A-42	A-43	A-44	A-45	A-46	A-47	A-48
	A-49	A-50	A-51	A-52	A-53	A-54	A-55	A-56	A-57	A-58	A-59	A-60
	A-61	A-62	A-63	A-64	A-65	A-66	A-67	A-68	A-69	A-70	A-71	A-72
	A-73	A-74	A-75	A-76	A-77	A-78	A-79	A-80	A-81	A-82	A-83	A-84
1	A-85	A-86	A-87	A-88	A-89	A-90	A-91	A-92	A-93			

Rla is CF₃, Rlb is CN, and W is N

A	Α	A	A	A	<u>A</u> _	A	A	Α	Δ	A	A
A-1	A-2	A-3	A-4	A-5	A-6	A-7	A-8	A-9	A-10	A-11	A-12
A-13	A-14	A-15	A-16	A-17	A-18	A-19	A-20	A-21	A-22	A-23	A-24
A-25	Λ-26	A-27	A-28	A-29	A-30	A-31	A-32	A-33	A-34	A-35	A-36
A-37	A-38	A-39	A-40	A-41	A-42	A-43	A-44	A-45	A-46	A-47	A-48
A-49	A-50	A-51	A-52	A-53	A-54	A-55	A-56	A-57	A-58	A-59	A-60
A-61	A-62	A-63	A-64	A-65	A-66	A-67	A-68	A-69	A-70	A-71	A-72
A-73	A-74	A-75	A-76	A-77	A-78	A-79	A-80	A-81	A-82	A-83	A-84
A-85	A-86	A-87	A-88	A-89	A-90	A-91	A-92	A-93			

Rla is CF3, Rlb is CN, and W is CH

A	A	A	<u>A</u>	A	A	Δ	A	Δ	<u>A</u>	A	A
A-1	A-2	A-3	A-4	A-5	A-6	A-7	A-8	A-9	A-10	A-11	A-12
A-13	A-14	A-15	A-16	A-17	A-18	A-19	A-20	A-21	A-22	A-23	A-24
A-25	A-26	A-27	A-28	A-29	A-30	A -31	A-32	A-33	A-34	A-35	A-36
A-37	A-38	A-39	A-40	A-41	A-42	A-43	A-44	A-45	A-46	A-47	A-48
A-49	A-50	A-51	A-52	A-53	A-54	A-55	A-56	A-57	A-58	A-59	A-60
A-61	A-62	A-63	A-64	A-65	A-66	A-67	A-68	A-69	A-70	A-71	A-72
A-73	A-74	A-75	A-76	A-77	A-78	A-79	A-80	A-81	A-82	A-83	A-84
A-85	A-86	A-87	A-88	A-89	A-90	A-91	A-92	A-93			

Rla is Cl, Rlb is CN, and W is N

	Δ	A	Α	Δ	A	A	<u>A</u>	Α	Α	Α	A	<u>A</u>
	A-1	A-2	A-3	A-4	A-5	A-6	A-7	A-8	A-9	A-10	A-11	A-12
	A-13	A-14	A-15	A-16	A-17	A-18	A-19	A-20	A-21	A-22	A-23	A-24
Ì	A-25	A-26	A-27	A-28	A-29	A-30	A-31	A-32	A-33	A-34	A-35	A-36
	A-37	A-38	A-39	A-40	A-41	A-42	A-43	A-44	A-45	A-46	A-47	A-48
	A-49	A-50	A-51	A-52	A-53	A-54	A-55	A-56	A-57	A-58	A-59	A-60
	A-61	A-62	A-63	A-64	A-65	A-66	A-67	A-68	A-69	A-70	A-71	A-72

70

- 1		A-74								A-83	A-84
1	A-85	A-86	A-87	A-88	A-89	A-90	A-91	A-92	A-93		

Rla is Cl, Rlb is CN, and W is CH

A	A	<u>A</u>	A	A	<u>A</u>	A	<u>A</u>	<u>A</u>	<u>A</u>	<u>A</u>	<u>A</u>
A-1	A-2	A-3	A-4	A-5	A-6	A-7	A-8	A-9	A-10	A-11	A-12
A-13	A-14	A-15	A-16	A-17	A-18	A-19	A-20	A-21	A-22	A-23	A-24
A-25	A-26	A-27	A-28	A-29	A-30	A-31	A-32	A-33	A-34	A-35	A-36
A-37	A-38	A-39	A-40	A-41	A-42	A-43	A-44	A-45	A-46	A-47	A-48
A-49	A-50	A-51	A-52	A-53	A-54	A-55	A-56	A-57	A-58	A-59	A-60
A-61	A-62	A-63	A-64	A-65	A-66	A-67	A-68	A-69	A-70	A-71	A-72
A-73	A-74	A-75	A-76	A-77	A-78	A-79	A-80	A-81	A-82	A-83	A-84
A-85	A-86	A-87	A-88	A-89	A-90	A-91	A-92	A-93			

Rla is CH3, Rlb is CN, and W is N

<u>A</u>	<u>A</u>	A	Ą	A	Α	A	<u>A</u>	A	<u>A</u>	<u>A</u>	<u>A</u>
A-1	A-2	A-3	A-4	A-5	A-6	A-7	A-8	A-9	A-10	A-11	A-12
A-13	A-14	A-15	A-16	A-17	A-18	A-19	A-20	A-21	A-22	A-23	A-24
A-25	A-26	A-27	A-28	A-29	A-30	A-31	A-32	A-33	A-34	A-35	A-36
A-37	A-38	A-39	A-40	A-41	A-42	A-43	A-44	A-45	A-46	A-47	A-48
A-49	A-50	A-51	A-52	A-53	A-54	A-55	A-56	A-57	A-58	A-59	A-60
A-61	A-62	A-63	A-64	A-65	A-66	A-67	A-68	A-69	A-70	A-71	A-72
A-73	A-74	A-75	A-76	A-77	A-78	A-79	A-80	A-81	A-82	A-83	A-84
A-85	A-86	A-87	A-88	A-89	A-90	A-91	A-92	A-93		L	

Rla is CH3, Rlb is CN, and W is CH

Α	A	A	<u>A</u>	A	<u>A</u>	<u>A</u>	<u>A</u>	A	<u>A</u>	Δ	Α
A-1	A-2	A-3	A-4	A-5	A-6	A-7	A-8	A-9	A-10	A-11	A-12
A-13	A-14	A-15	A-16	A-17	A-18	A-19	A-20	A-21	A-22	A-23	A-24
A-25	A-26	A-27	A-28	A-29	A-30	A-31	A-32	A-33	A-34	A-35	A-36
A-37	A-38	A-39	A-40	A-41	A-42	A-43	A-44	A-45	A-46	A-47	A-48
A-49	A-50	A-51	A-52	A-53	A-54	A-55	A-56	A-57	A-58	A-59	A-60
A-61	A-62	A-63	A-64	A-65	A-66	A-67	A-68	A-69	A-70	A-71	A-72
A-73	A-74	A-75	A-76	A-77	A-78	A-79	A-80	A-81	A-82	A-83	A-84
A-85	A-86	A-87	A-88	A-89	A-90	A-91	A-92	A-93			

71

Rla is SO2CH3, Rlb is CN, and W is N

A	A	Δ	A	Δ	A	<u>A</u>	Δ	A	<u>A</u>	A	Δ
A-1	A-2	A-3	A-4	A-5	A-6	A-7	A-8	A-9	A-10	A- 11	A-12
A-13	A-14	A-15	A-16	A-17	A-18	A-19	A-20	A-21	A-22	A-23	A-24
A-25	A-26	A-27	A-28	A-29	A-30	A-31	A-32	A-33	A-34	A-35	A-36
A-37	A-38	A-39	A-40	A-41	A-42	A-43	A-44	A-45	A-46	A-47	A-48
A-49	A-50	A-51	A-52	A-53	A-54	A-55	A-56	A-57	A-58	A-59	A-60
A-61	A-62	A-63	A-64	A-65	A-66	A-67	A-68	A-69	A-70	A-71	A-72
A-73	A-74	A-75	A-76	A-77	A-78	A-79	A-80	A-81	A-82	A-83	A-84
A-85	A-86	A-87	A-88	A-89	A-90	A-91	A-92	A-93			

Rla is SO₂CH₃, Rlb is CN, and W is CH

											$\overline{}$
A	<u>A</u>	A	Α	Δ	Δ	Δ	<u>A</u>	A	Α	<u>A</u>	Α
A-1	A-2	A-3	A-4	A-5	A-6	A-7	A-8	A-9	A-10	A-11	A-12
A-13	A-14	A-15	A-16	A-17	A-18	A-19	A-20	A-21	A-22	A-23	A-24
A-25	A-26	A-27	A-28	A-29	A-30	A-31	A-32	A-33	A-34	A-35	A-36
A-37	A-38	A-39	A-40	A-41	A-42	A-43	A-44	A-45	A-46	A-47	A-48
A-49	A-50	A-51	A-52	A-53	A-54	A-55	A-56	A-57	A-58	A-59	A-60
A-61	A-62	A-63	A-64	A-65	A-66	A-67	A-68	A-69	A-70	A-71	A-72
A-73	A-74	A-75	A-76	A-77	A-78	A-79	A-80	A-81	A-82	A-83	A-84
A-85	A-86	A-87	A-88	A-89	A-90	A-91	A-92	A-93			

R^{1a} is SO₂CH₂CH₃, R^{1b} is CN, and W is N

10	<u> </u>										$\overline{}$
Α	A	A	A	A	<u>A</u>	<u>A</u>	<u>A</u>	A	Δ	<u>A</u>	<u>A</u>
A-1	A-2	A-3	A-4	A-5	A-6	A-7	A-8	A-9	A-10	A-li	A-12
A-13	A-14	A-15	A-16	A-17	A-18	A-19	A-20	A-21	A-22	A-23	A-24
A-25	A-26	A-27	A-28	A-29	A-30	A-31	A-32	A-33	A-34	A-35	A-36
A-37	A-38	A-39	A-40	A-41	A-42	A-43	A-44	A-45	A-46	A-47	A-48
A-49	A-50	A-51	A-52	A-53	A-54	A-55	A-56	A-57	A-58	A-59	A-60
A-61	A-62	A-63	A-64	A-65	A-66	A-67	A-68	A-69	A -70	A-71	A-72
A-73	A-74	A-75	A-76	A-77	A-78	A-79	A-80	A-81	A-82	A-83	A-84
A-85	A-86	A-87	A-88	A-89	A-90	A-91	A-92	A-93			

R^{1a} is SO₂CH₂CH₃, R^{1b} is CN, and W is CH

	Α	A	A	<u>A</u>	A	A	Δ	Α	<u>A</u>	<u>A</u>	<u>A</u>	Δ
Г	A-1	A-2	A-3	A-4	A-5	A-6	A-7	A-8	A-9	A-10	A-11	A-12
١,	A-13	A-14	A-15	A-16	A-17	A-18	A-19	A-20	A-21	A-22	A-23	A-24

72

1		1			1						
A-25	A-26	A-27	A-28	A-29	A-30	A-31	A-32	A-33	A-34	A-35	A-36
A-37	A-38	A-39	A-40	A-41	A-42	A-43	A-44	A-45	A-46	A-47	A-48
A-49	A-50	A-51	A-52	A-53	A-54	A-55	A-56	A-57	A-58	A-59	A-60
A-61	A-62	A-63	A-64	A-65	A-66	A-67	A-68	A-69	A-70	A-71	A-72
A-73	A-74	A-75	A-76	A-77	A-78	A-79	A-80	A-81	A-82	A-83	A-84
A-85	A-86	A-87	A-88	A-89	A-90	A-91	A-92	A-93			

Rla is CF₃, Rlb is Cl, and W is N

A	Δ	A	A	Δ	A	Α	Δ	A	Δ	Δ	Δ
A-1	A-2	A-3	A-4	A-5	A -6	A-7	A-8	A-9	A-10	A-11	A-12
A-13	A-14	A-15	A-16	A-17	A-18	A-19	A-20	A-21	A-22	A-23	A-24
A-25	A-26	A-27	A-28	A-29	A-30	A-31	A-32	A-33	A-34	A-35	A-36
A-37	A-38	A-39	A-40	A-41	A-42	A-43	A-44	A-45	A-46	A-47	A-48
A-49	A-50	A-51	A-52	A-53	A-54	A-55.	A-56	A-57	A-58	A-59	A-60
A-61	A-62	A-63	A-64	A-65	A-66	A-67	A-68	A-69	A-70	A-71	A-72
A-73	A-74	A-75	A-76	A-77	A-78	A-79	A-80	A-81	A-82	A-83	A-84
A-85	A-86	A-87	A-88	A-89	A-90	A-91	A-92	A-93			

Rla is CF3, Rlb is Cl, and W is CH

A	A	A	A	A	A	A	A	A	A	Δ	A
A-1	A-2	A-3	A-4	A-5	A-6	A-7	A-8	A-9	A-10	A-11	A-12
A-13	A-14	A-15	A-16	A-17	A-18	A-19	A-20	A-21	A-22	A-23	A-24
A-25	A-26	A-27	A-28	A-29	A-30	A-31	A-32	A-33	A-34	A-35	A-36
A-37	A-38	A-39	A-40	A-41	A-42	A-43	A-44	A-45	A-46	A-47	A-48
A-49	A-50	A-51	A-52	A-53	A-54	A-55	A-56	A-57	A-58	A-59	A-60
A-61	A-62	A-63	A-64	A-65	A-66	A-67	A-68	A-69	A-70	A-71	A-72
A-73	A-74	A-75	A-76	A-77	A-78	A-79	A-80	A-81	A-82	A-83	A-84
A-85	A-86	A-87	A-88	A-89	A-90	A-91	A-92	A-93			

Rla is Cl, Rlb is Cl, and W is N

								_			
<u>A</u>	Α	A	A	A	A	A	A	Δ	Δ	_ A	A
A-1	A-2	A-3	A-4	A-5	A-6	A-7	A-8	A-9	A-10	A-11	A-12
A-13	A-14	A-15	A-16	A-17	A-18	A-19	A-20	A-21	A-22	A-23	A-24
A-25	A-26	A-27	A-28	A-29	A-30	A-31	A-32	A-33	A-34	A-35	A-36
A-37	A-38	A-39	A-40	A-41	A-42	A-43	A-44	A-45	A-46	A-47	A-48
A-49	A-50	A-51	A-52	A-53	A-54	A-55	A-56	A-57	A-58	A-59	A-60
A-61	A-62	A-63	A-64	A-65	A-66	A-67	A-68	A-69	A-70	A-71	A-72

A-73									A-83	A-84
A-85	A-86	A-87	A-88	A-89	A-90	A-91	A-92	A-93		

Rla is Cl, Rlb is Cl, and W is CH

A	A	A	A	Α	Δ	A	A	A	A	Δ	A
A-1	A-2	A-3	A-4	A-5	A-6	A-7	A-8	A-9	A-10	A- 11	A-12
A-13	A-14	A-15	A-16	A-17	A-18	A-19	A-20	A-21	A-22	A-23	A-24
A-25	A-26	A-27	A-28	A-29	A-30	A-31	A-32	A-33	A-34	A-35	A-36
A-37	A-38	A-39	A-40	A-41	A-42	A-43	A-44	A-45	A-46	A-47	A-48
A-49	A-50	A-51	A-52	A-53	A-54	A-55	A-56	A-57	A-58	A-59	A-60
A-61	A-62	A-63	A-64	A-65	A-66	A-67	A-68	A-69	A-70	A-71	A-72
A-73	A-74	A-75	A-76	A-77	A-78	A-79	A-80	A-81	A-82	A-83	A-84
A-85	A-86	A-87	A-88	A-89	A-90	A-91	A-92	A-93			

R^{1a} is CH₃, R^{1b} is SO₂CH₃, and W is N

Α	Δ	A	<u>A</u>	Δ	Α	A	<u>A</u>	Δ	Δ	<u>A</u>	<u>A</u>
A-1	A-2	A-3	A-4	A-5	A-6	A-7	A-8	A-9	A-10	A-11	A-12
A-13	A-14	A-15	A-16	A-17	A-18	A-19	A-20	A-21	A-22	A-23	A-24
A-25	A-26	A-27	A-28	A-29	A-30	A-31	A-32	Λ-33	A-34	A-35	A-36
A-37	A-38	A-39	A-40	A-41	A-42	A-43	A-44	A-45	A-46	A-47	A-48
A-49	A-50	A-51	A-52	A-53	A-54	A-55	A-56	A-57	A-58	A-59	A-60
A-61	A-62	A-63	A-64	A-65	A-66	A-67	A-68	A-69	A-70	A-71	A-72
A-73	A-74	A-75	A-76	A-77	A-78	A-79	A-80	A-81	A-82	A-83	A-84
A-85	A-86	A-87	A-88	A-89	A-90	A-91	A-92	A-93			

Rla is CH₃, Rlb is SO₂CH₃, and W is CH

Α	Δ	Α	<u>A</u>	A	<u>A</u>	<u>A</u>	Δ	<u>A</u>	<u>A</u>	A	A
A-1	A-2	A-3	A-4	A-5	A-6	A-7	A-8	A-9	A-10	A-11	A-12
A-13	A-14	A-15	A-16	A-17	A-18	A-19	A-20	A-21	A-22	A-23	A-24
A-25	A-26	A-27	A-28	A-29	A-30	A-31	A-32	A-33	A-34	A-35	A-36
A-37	A-38	A-39	A-40	A-41	A-42	A-43	A-44	A-45	A-46	A-47	A-48
A-49	A-50	A-51	A-52	A-53	A-54	A-55	A-56	A-57	A-58	A-59	A-60
A-61	A-62	A-63	A-64	A-65	A-66	A-67	A-68	A-69	A-70	A-71	A-72
A-73	A-74	A-75	A-76	A-77	A-78	A-79	A-80	A-81	A-82	A-83	A-84
A-85	A-86	A-87	A-88	A-89	A-90	A-91	A-92	A-93			

74

TABLE 14

Rla is CF3, Rlb is H, and W is N

A	A	Δ	Δ	A	Α	A	_ A	A	Α	Α	A
A-1	A-2	A-3	A-4	A-5	A-6	A-7	A-8	A-9	A-10	A-11	A-12
A-13	A-14	A-15	A-16	A-17	A-18	A-19	A-20	A-21	A-22	A-23	A-24
A-25	A-26	A-27	A-28	A-29	A-30	A-31	A-32	A-33	A-34	A-35	A-36
A-37	A-38	A-39	A-40	A-41	A-42	A-43	A-44	A-45	A-46	A-47	A-48
A-49	A-50	A-51	A-52	A-53	A-54	A-55	A-56	A-57	A-58	A-59	A-60
A-61	A-62	A-63	A-64	A-65	A-66	A-67	A-68	A-69	A-70	A-71	A-72
A-73	A-74	A-75	A-76	A-77	A-78	A-79	A-80	A-81	A-82	A-83	A-84
A-85	A-86	A-87	A-88	A-89	A-90	A-91	A-92	A-93			

Ria is CF3, Rib is H, and W is CH

Δ	Δ	Δ	Α	A	Δ	Δ	<u>A</u>	A	A	A	Δ
A-1	A-2	A-3	A-4	A-5	A-6	A-7	A-8	A-9	A-10	A-11	A-12
A-13	A-14	A-15	A-16	A-17	A-18	A-19	A-20	A-21	A-22	A-23	A-24
A-25	A-26	A-27	A-28	A-29	A-30	A-31	A-32	A-33	A-34	A-35	A-36
A-37	A-38	A-39	A-40	A-41	A-42	A-43	A-44	A-45	A-46	A-47	A-48
A-49	A-50	A-51	A-52	A-53	A-54	A-55	A-56	A-57	A-58	A-59	A-60
A-61	A-62	A-63	A-64	A-65	A-66	A-67	A-68	A-69	A-70	A-71	A-72
A-73	A-74	A-75	A-76	A-77	A-78	A-79	A-80	A-81	A-82	A-83	A-84
A-85	A-86	A-87	A-88	A-89	A-90	A-91	A-92	A-93			

Rla is Cl, Rlb is H, and W is N

Α	Α	<u>A</u>	A	A	A	A	<u>A</u>	Δ	A	Δ	Δ
A-1	A-2	A-3	A-4	A-5	A-6	A-7	A-8	A-9	A-10	A-11	A-12
A-13	A-14	A-15	A-16	A-17	A-18	A-19	A-20	A-21	A-22	A-23	A-24
A-25	A-26	A-27	A-28	A-29	A-30	A-31	A-32	A-33	A-34	A-35	A-36
A-37	A-38	A-39	A-40	A-41	A-42	A-43	A-44	A-45	A-46	A-47	A-48
A-49	A-50	A-51	A-52	A-53	A-54	A-55	A-56	A-57	A-58	A-59	A-60

1	A-61	A-62	A-63	A-64	A-65	A-66	A-67	A-68	A-69	A-70	A-71	A-72
1	A-73	A-74	A-75	A-76	A-77	A-78	A-79	A-80	A-81	A-82	A-83	A-84
	A-85	A-86	A-87	A-88	A-89	A-90	A-91	A-92	A-93			

Rla is Cl, Rlb is H, and W is CH

10 10		20 2 - 1						,			
A	A	A	<u>A</u>	A	Α	Α	A	A	<u>A</u>	Α	<u>A</u>
A-1	A-2	A-3	A-4	A-5	A-6	A-7	A-8	A-9	A-10	A-11	A-12
A-13	A-14	A-15	A-16	A-17	A-18	A-19	A-20	A-21	A-22	A-23	A-24
A-25	A-26	A-27	A-28	A-29	A-30	A-31	A-32	A-33	A-34	A-35	A-36
A-37	A-38	A-39	A-4 0	A-41	A-42	A-43	A-44	A-45	A-46	A-47	A-48
A-49	A-50	A-51	A-52	A-53	A-54	A-55	A-56	A-57	A-58	A-59	A-60
A-61	A-62	A-63	A-64	A-65	A-66	A-67	A-68	A-69	A-70	A-71	A-72
A-73	A-74	A-75	A-76	A-77	A-78	A-79	A-80	A-81	A-82	A-83	A-84
A-85	A-86	A-87	A-88	A-89	A-90	A-91	A-92	A-93			

Ria is CH3, Rib is H, and W is N

Α	A	A	A	<u>A</u>	<u>A</u>	A	Α	<u>A</u>	<u>A</u>	A	A
A-1	A-2	A-3	A-4	A-5	A-6	A-7	A-8	A-9	A-10	A-11	A-12
A-13	A-14	A-15	A-16	A-17	A-18	A-19	A-20	A-21	A-22	A-23	A-24
A-25	A-26	A-27	A-28	A-29	A-30	A-31	A-32	A-33	A-34	A-35	A-36
A-37	A-38	A-39	A-40	A-41	A-42	A-43	A-44	A-45	A-46	A-47	A-48
A-49	A-50	A-51	A-52	A-53	A-54	A-55	A-56	A-57	A-58	A-59	A-60
A-61	A-62	A-63	A-64	A-65	A-66	A-67	A-68	A-69	A-70	A-71	A-72
A-73	A-74	A-75	A-76	A-77	A-78	A-79	A-80	A-81	A-82	A-83	A-84
A-85	A-86	A-87	A-88	A-89	A-9 0	A-91	A-92	A-93			

Rla is CH3, Rlb is H, and W is CH

Δ	Α	Α	Α	A	A	<u>A</u>	Δ	Δ	<u>A</u>	<u>A</u>	A
A-1	A-2	A-3	A-4	A-5	A-6	A-7	A-8	A-9	A-10	A-11	A-12
A-13	A-14	A-15	A-16	A-17	A-18	A-19	A-20	A-21	A-22	A-23	A-24
A-25	A-26	A-27	A-28	A-29	A-30	A-31	A-32	A-33	A-34	A-35	A-36
A-37	A-38	A-39	A-40	A-4 1	A-42	A-43	A-44	A-45	A-46	A-47	A-48
A-49	A-50	A-51	A-52	A-53	A-54	A-55	A-56	A-57	A-58	A-59	A-60
A-61	A-62	A-63	A-64	A-65	A-66	A-67	A-68	A-69	A-70	A-71	A-72
A-73	A-74	A-75	A-76	A-77	A-78	A-79	A-80	A-81	A-82	A-83	A-84
A-85	A-86	A-87	A-88	A-89	A-90	A-91	A-92	A-93			

Rla is SO2CH2	RIb is	H, and	W is	N
---------------	--------	--------	------	---

WO 97/46530

Α	A	A	<u>A</u>	Α	A	Α	A	A	Δ	Α	A
A-1	A-2	A-3	A-4	A-5	A-6	A-7	A-8	A-9	A-10	A-11	A-12
A-13	A-14	A-15	A-16	A-17	A-18	A-19	A-20	A-21	A-22	A-23	A-24
A-25	A-26	A-27	A-28	A-29	A-30	A-31	A-32	A-33	A-34	A-35	A-36
A-37	A-38	A-39	A-40	A-41	A-42	A-43	A-44	A-45	A-46	A-47	A-48
A-49	A-50	A-51	A-52	A-53	A-54	A-55	A -56	A-57	A-58	A-59	A-60
A-61	A-62	A-63	A-64	A-65	A-66	A-67	A-68	A-69	A-70	A-71	A-72
A-73	A-74	A-75	A-76	A-77	A-78	A-79	A-80	A-81	A-82	A-83	A-84
A-85	A-86	A-87	A-88	A-89	A-90	A-91	A-92	A-93			

Rla is SO₂CH₃, Rlb is H, and W is CH

A	Δ_	A	A	Δ	A	A	A	A	Α	Δ	A
A-1	A-2	A-3	A-4	A-5	A-6	A-7	A-8	A -9	A-10	A-11	A-12
A-13	A-14	A-15	A-16	A-17	A-18	A-19	A-20	A-21	A-22	A-23	A-24
A-25	A-26	A-27	A-28	A-29	A-30	A-31	A-32	A-33	A-34	A-35	A-36
A-37	A-38	A-39	A-40	A-41	A-42	A-43	A-44	A-45	A-46	A-47	A-48
A-49	A-50	A-51	A-52	A-53	A-54	A-55	A-56	A-57	A-58	A-59	A-60
A-61	A-62	A-63	A-64	A-65	A-66	A-67	A-68	A-69	A -70	A-71	A-72
A-73	A-74	A-75	A-76	A-77	A-78	A-79	A-80	A-81	A-82	A-83	A-84
A-85	A-86	A-87	A-88	A-89	A-90	A-91	A-92	A-93			

Rla is SO₂CH₂CH₃, Rlb is H, and W is N

Α	Α	Α	A	A	A	<u>A</u>	Δ	A	Α	Α	Δ
A-1	A-2	A-3	A-4	A-5	A-6	A-7	A-8	A-9	A-10	A-11	A-12
A-13	A-14	A-15	A-16	A-17	A-18	A-19	A-20	A-21	A-22	A-23	A-24
A-25	A-26	A-27	A-28	A-29	A-30	A-31	A-32	A-33	A-34	A-35	A-36
A-37	A-38	A-39	A-40	A-41	A-42	A-43	A-44	A-45	A-46	A-47	A-48
A-49	A-50	A-51	A-52	A-53	A-54	A-55	A-56	A-57	A-58	A-59	A-60
A-61	A-62	A-63	A-64	A-65	A-66	A-67	A-68	A-69	A- 70	A-71	A-72
A-73	A-74	A-75	A-76	A-77	A-78	A-79	A-80	A-81	A-82	A-83	A-84
A-85	A-86	A-87	A-88	A-89	A-90	A-91	A-92	A-93			

Rla is SO₂CH₂CH₃, Rlb is H, and W is CH

Δ	Δ	Δ	A	A	<u>A</u>	Α	Δ	A	<u>A</u>	A	A
A-1	A-2	A-3									
A-13	A-14	A-15	A-16	A-17	A-18	A-19	A-20	A-21	A-22	A-23	A-24

77

-	A-25	A-26	A-27	A-28	A-29	A-30	A-31	A-32	A-33	A-34	A-35	A-36
	A-37	A-38	A-39	A-40	A-41	A-42	A-43	A-44	A-45	A-46	A-47	A-48
	A-49	A-50	A-51	A-52	A-53	A-54	A-55	A-56	A-57	A-58	A-59	A-60
١	A-61	A-62	A-63	A-64	A-65	A-66	A-67	A-68	A-69	A-70	A-71	A-72
1	A-73	A-74	A-75	A-76	A-77	A-78	A-79	A-80	A-81	A-82	A-83	A-84
1	A-85	A-86	A-87	A-88	A-89	A-90	A-91	A-92	A-93			

Rla is CF₃, Rlb is CN, and W is N

	32.										
A	Α	Α	<u>A</u>	A	Δ	A	A	A	A	A	A
A-1	A-2	A-3	A-4	A-5	A-6	A-7	A-8	A-9	A-10	A-11	A-12
A-13	A-14	A-15	A-16	A-17	A-18	A-19	A-20	A-21	A-22	A-23	A-24
A-25	A-26	A-27	A-28	A-29	A-30	A-31	A-32	A-33	A-34	A-35	A-36
A-37	A-38	A-39	A-40	A-41	A-42	A-43	A-44	A-45	A-46	A-47	A-48
Λ-49	A-50	A-51	A-52	A-53	A-54	A-55	A-56	A-57	A-58	A-59	A-60
A-61	A-62	A-63	A-64	A-65	A-66	A-67	A-68	A-69	A-70	A-71	A-72
A-73	A-74	A-75	A-76	A-77	A-78	A-79	A-80	A-81	A-82	A-83	A-84
A-85	A-86	A-87	A-88	A-89	A-90	A-91	A-92	A-93			

Rla is CF3, Rlb is CN, and W is CH

A	Α	A	A	Δ	Δ	A	A	<u>A</u>	<u>A</u>	<u>A</u>	<u>A</u>
A-1	A-2	A-3	A-4	A-5	A-6	A- 7	A-8	A-9	A-10	A-11	A-12
A-13	A-14	A-15	A-16	A-17	A-18	A-19	A-20	A-21	A-22	A-23	A-24
A-25	A-26	A-27	A-28	A-29	A-30	A-31	A-32	A-33	A-34	A-35	A-36
A-37	A-38	A-39	A-40	A-41	A-42	A-43	A-44	A-45	A-46	A-47	A-48
A-49	A-50	A-51	A-52	A-53	A-54	A-55	A-56	A-57	A-58	A-59	A-60
A-61	A-62	A-63	A-64	A-65	A-66	A-67	A-68	A-69	A-70	A-71	A-72
A-73	A-74	A-75	A-76	A-77	A-78	A-79	A-80	A-81	A-82	A-83	A-84
A-85	A-86	A-87	A-88	A-89	A-90	A-91	A-92	A-93			

Rla is Cl, Rlb is CN, and W is N

Α	A	Α	<u>A</u>	A	A	A	A	<u>A</u>	A	<u>A</u>	A
A-1	A-2	A-3	A-4	A-5	A-6	A-7	A-8	A-9	A-10	A-11	A-12
A-13	A-14	A-15	A-16	A-17	A-18	A-19	A-20	A-21	A-22	A-23	A-24
A-25	A-26	A-27	A-28	A-29	A-30	A-31	A-32	A-33	A-34	A-35	A-36
A-37	A-38	A-39	A-40	A-41	A-42	A-43	A-44	A-45	A-46	A-47	A-48
A-49	A-50	A-51	A-52	A-53	A-54	A-55	A-56	A-57	A-58	A-59	A-60
A-61	A-62	A-63	A-64	A-65	A-66	A-67	A-68	A-69	A-70	A-71	A-72

	A-73	A-74	A-75	A-76	A-77	A-78	A-79	A-80	A-81	A-82	A-83	A-84
1	A-85	A-86	A-87	A-88	A-89	A-90	A-91	A-92	A-93			

Rla is Cl, Rlb is CN, and W is CH

42 19	<u> </u>			· 15 C1							
A	A	A	A	A	A	<u>A</u>	<u>A</u>	A	A	A	Δ
A-1	A-2	A-3	A-4	A-5	A-6	A- 7	A-8	A-9	A-10	A-11	A-12
A-13	A-14	A-15	A-16	A-17	A-18	A-19	A-20	A-21	A-22	A-23	A-24
A-25	A-26	A-27	A-28	A-29	A-30	A-31	A-32	A-33	A-34	A-35	A-36
A-37	A-38	A-39	A-40	A-41	A-42	A-43	A-44	A-45	A-46	A-47	A-48
A-49	A-50	A-51	A-52	A-53	A-54	A-55	A-56	A-57	A-58	A-59	A-60
A-61	A-62	A-63	A-64	A-65	A-66	A-67	A-68	A-69	A-70	A-71	A-72
A-73	A-74	A-75	A-76	A-77	A-78	A-79	A-80	A-81	A-82	A-83	A-84
A-85	A-86	A-87	A-88	A-89	A-90	A-91	A-92	A-93			

Rla is CH3, Rlb is CN, and W is N

<u>A</u>	Α	Δ	A	Δ	A	Α	Α	A	<u>A</u>	<u>A</u>	A
A -1	A-2	A-3	A-4	A-5	A-6	A-7	A-8	A-9	A-10	A-11	A-12
A-13	A-14	A-15	A-16	A-17	A-18	A-19	A-20	A-21	A-22	A-23	A-24
A-25	A-26	A-27	A-28	A-29	A-30	A-31	A-32	A-33	A-34	A-35	A-36
A-37	A-38	A-39	A-40	A-41	A-42	A-43	A-44	A-45	A-46	A-47	A-48
A-49	A-50	A-51	A-52	A-53	A-54	A-55	A-56	A-57	A-58	A-59	A-60
A-61	A-62	A-63	A-64	A-65	A-66	A-67	A-68	A-69	A-70	A-71	A-72
A-73	A-74	A-75	A-76	A-77	A-78	A-79	A-80	A-81	A-82	A-83	A-84
A-85	A-86	A-87	A-88	A-89	A-90	A-91	A-92	A-93			

Rla is CH₃, Rlb is CN, and W is CH

											$\overline{}$
A	Α	A	A	<u>A</u>	<u>A</u>	A	Α	Α	Α	Α	A
A -1	A-2	A-3	A-4	A-5	A-6	A-7	A-8	A-9	A-1 0	A-11	A-12
A-13	A-14	A-15	A-16	A-17	A-18	A-19	A-20	A-21	A-22	A-23	A-24
A-25	A-26	A-27	A-28	A-29	A-30	A-31	A-32	A-33	A-34	A-35	A-36
A-37	A-38	A-39	A-40	A-41	A-42	A-43	A-44	A-45	A-46	A-47	A-48
A-49	A-50	A-51	A-52	A-53	A-54	A-55	A-56	A-57	A-58	A-59	A-60
A-61	A-62	A-63	A-64	A-65	A-66	A-67	A-68	A-69	A-70	A-71	A-72
A-73	A-74	A-75	A-76	A-77	A-78	A-79	A-80	A-81	A-82	A-83	A-84
A-85	A-86	A-87	A-88	A-89	A-90	A-91	A-92	A-93			

Rla is SO2CH3, Rlb is CN, and W is N

Α	A	Δ	A	Α	A	A	A	A	<u>A</u>	A	Δ
A-1	A-2	A-3	A-4	A-5	A-6	A-7	A-8	A-9	A-10	A-11	A-12
A-13	A-14	A-15	A-16	A-17	A-18	A-19	A-20	A-21	A-22	A-23	A-24
A-25	A-26	A-27	A-28	A-29	A-30	A-31	A-32	A-33	A-34	A-35	A-36
A-37	A-38	A-39	A-40	A-41	A-42	A-43	A-44	A-45	A-46	A-47	A-48
A-49	A-50	A-51	A-52	A-53	A-54	A-55	A-56	A-57	A-58	A-59	A-60
A-61	A-62	A-63	A-64	A-65	A-66	A-67	A-68	A-69	A-70	A-71	A-72
A-73	A-74	A-75	A-76	A-77	A-78	A-79	A-80	A-81	A-82	A-83	A-84
A-85	A-86	A-87	A-88	A-89	A-90	A-91	A-92	A-93			

R^{1a} is SO₂CH₃, R^{1b} is CN, and W is CH

	<u> </u>										
Α	Α	A	<u>A</u>	<u>A</u>	A	A	Δ	<u>A</u>	<u>A</u>	A	A
A-1	A-2	A-3	A-4	A-5	A-6	A-7	A-8	A-9	A-10	A-11	A-12
A-13	A-14	A-15	A-16	A-17	A-18	A-19	A-20	A-21	A-22	A-23	A-24
A-25	A-26	A-27	A-28	A-29	A-30	A-31	A-32	A-33	A-34	A-35	A-36
A-37	A-38	A-39	A-40	A-41	A-42	A-43	A-44	A-45	A-46	A-47	A-48
A-49	A-50	A-51	A-52	A-53	A-54	A-55	A-56	A-57	A-58	A-59	A-60
A-61	A-62	A-63	A-64	A-65	A-66	A-67	A-68	A-69	A-70	A-71	A-72
A-73	A-74	A-75	A-76	A-77	A-78	A-79	A-80	A-81	A-82	A-83	A-84
A-85	A-86	A-87	A-88	A-89	A-90	A-91	A-92	A-93			

R^{1a} is SO₂CH₂CH₃, R^{1b} is CN, and W is N

A	A	Δ	A	Δ	<u>A</u>	A	Α	A	<u>A</u>	<u>A</u>	<u>A</u>
A-1	A-2	A-3	A-4	A-5	A-6	A-7	A -8	A-9	A-10	A-11	A-12
A-13	A-14	A-15	A-16	A-17	A-18	A-19	A-20	A-21	A-22	A-23	A-24
A-25	A-26	A-27	A-28	A-29	A-30	A-31	A-32	A-33	A-34	A-35	A-36
A-37	A-38	A-39	A-40	A-41	A-42	A-43	A-44	A-45	A-46	A-47	A-48
A-49	A-50	A-51	A-52	A-53	A-54	A-55	A-56	A-57	A-58	A-59	A-60
A-61	A-62	A-63	A-64	A-65	A-66	A-67	A-68	A-69	A-70	A-71	A-72
A-73	A-74	A-75	A-76	A-77	A-78	A -79	A-80	A-81	A-82	A-83	A-84
A-85	A-86	A-87	A-88	A-89	A-90	A-91	A-92	A-93	<u> </u>		

Rla is SO₂CH₂CH₃, Rlb is CN, and W is CH

A	Α	A	A	<u>A</u>	A	<u>A</u>	Α	A	<u>A</u>	A	A
A-1											
A-13	A-14	A-15	A-16	A-17	A-18	A-19	A-20	A-21	A-22	A-23	A-24

80

- 1		1	1	ı	ı	l	ı	1	1	ı	ŧ	1 1
												A-36
- 1			ì	ŀ	1						1	A-48
•												A-60
1	A-61	A-62	A-63	A-64	A-65	A-66	A-67	A-68	A-69	A-70	A-71	A-72
	A-73	A-74	A-75	A-76	A-77	A-78	A-79	A-80	A-81	A-82	A-83	A-84
l	A-85	A-86	A-87	A-88	A-89	A-90	A-91	A-92	A-93			

Rla is CF₃, Rlb is Cl, and W is N

A	<u>A</u>	Δ	A	A	_A	A	Δ	A	A	Α	A
A-1	A-2	A-3	A-4	A-5	A-6	A-7	A-8	A-9	A-10	A-11	A-12
A-13	A-14	A-15	A-16	A-17	A-18	A-19	A-20	A-21	A-22	A-23	A-24
A-25	A-26	A-27	A-28	A-29	A-30	A-31	A-32	A-33	A-34	A-35	A-36
A-37	A-38	A-39	A-40	A-41	A-42	A-43	A-44	A-45	A-46	A-47	A-48
A-49	A-50	A-51	A-52	A-53	A-54	A-55	A-56	A-57	A-58	A-59	A-60
A-61	A-62	A-63	A-64	A-65	A-66	A-67	A-68	A-69	A-70	A-71	A-72
A-73	A-74	A-75	A-76	A-77	A-78	A-79	A-80	A-81	A-82	A-83	A-84
A-85	A-86	A-87	A-88	A-89	A-90	A-91	A-92	A-93			

R^{1a} is CF₃, R^{1b} is Cl, and W is CH

Α	<u>A</u>	Α	A	A	Δ	A	Δ	Δ	<u>A</u>	Α	A
A-1	A-2	A -3	A-4	A-5	A-6	A-7	A-8	A-9	A-10	A -11	A-12
A-13	A-14	A-15	A-16	A-17	A-18	A-19	A-20	A-21	A-22	A-23	A-24
A-25	A-26	A-27	A-28	A-29	A-30	A-31	A-32	A-33	A-34	A-35	A-36
A-37	A-38	A-39	A-40	A-41	A-42	A-43	A-44	A-45	A-46	A-47	A-48
A-49	A-50	A-51	A-52	A-53	A-54	A-55	A-56	A-57	A-58	A-59	A-60
A-61	A-62	A-63	A-64	A-65	A-66	A-67	A-68	A-69	A-70	A-71	A-72
A-73	A-74	A-75	A-76	A-77	A-78	A-79	A-80	A-81	A-82	A-83	A-84
A-85	A-86	A-87	A-88	A-89	A-90	A-91	A-92	A-93			

Rla is Cl, Rlb is Cl, and W is N

<u>A</u>	Δ	Δ	A	Α	A	Δ	A	A	A	Α	Α
A-I	A-2	A-3	A-4	A-5	A-6	A-7	A-8	A-9	A-10	A-11	A-12
A-13	A-14	A-15	A-16	A-17	A-18	A-19	A-20	A-21	A-22	A-23	A-24
A-25	A-26	A-27	A-28	A-29	A-30	A-31	A-32	A-33	A-34	A-35	A-36
A-37	A-38	A-39	A-40	A-41	A-42	A-43	A-44	A-45	A-46	A-47	A-48
A-49	A-50	A-51	A-52	A-53	A-54	A-55	A-56	A-57	A-58	A-59	A-60
A-61	A-62	A-63	A-64	A-65	A-66	A-67	A-68	A-69	A-70	A-71	A-72

81

	A-74								A-83	A-84
A-85	A-86	A-87	A-88	A-89	A-90	A-91	A-92	A-93		

Rla is Cl, Rlb is Cl, and W is CH

Α	Α	Δ	A	<u>A</u>	Δ	A	Α	A	Δ	Α	A
A-1	A-2	A-3	A-4	A-5	A-6	A-7	A-8	A-9	A-10	A-11	A-12
A-13	A-14	A-15	A-16	A-17	A-18	A-19	A-20	A-21	A-22	A-23	A-24
A-25	A-26	A-27	A-28	A-29	A-30	A-31	A-32	A-33	A-34	A-35	A-36
A-37	A-38	A-39	A-40	A-41	A-42	A-43	A-44	A-45	A-46	A-47	A-48
A-49	A-50	A-51	A-52	A-53	A-54	A-55	A-56	A-57	A-58	A-59	A-60
A-61	A-62	A-63	A-64	A-65	A-66	A-67	A-68	A-69	A-70	A-71	A-72
A-73	A-74	A-75	A-76	A-77	A-78	A-79	A-80	A-81	A-82	A-83	A-84
A-85	A-86	A-87	A-88	A-89	A-90	A-91	A-92	A-93			

R1a is CH3, R1b is SO2CH3, and W is N

A	A	A	A	<u>A</u>	Α	Δ	A	Δ	<u>A</u>	<u>A</u>	A
A-1	A-2	A-3	A-4	A-5	A-6	A-7	A-8	A- 9	A-10	A-11	A-12
A-13	A-14	A-15	A-16	A-17	A-18	A-19	A-20	A-21	A-22	A-23	A-24
A-25	A-26	A-27	A-28	A-29	A-30	A-31	A-32	A-33	A-34	A-35	A-36
A-37	A-38	A-39	A-40	A-41	A-42	A-43	A-44	A-45	A- 46	A-47	A-48
A-49	A-50	A-51	A-52	A-53	A-54	A-55	A-56	A-57	A-58	A-59	A-60
A-61	A-62	A-63	A-64	A-65	A-66	A-67	A-68	A-69	A-70	A-71	A-72
A-73	A-74	A-75	A-76	A-77	A-78	A-79	A-80	A-81	A-82	A-83	A-84
A-85	A-86	A-87	A-88	A-89	A-90	A-91	A-92	A-93			

Rla is CH3, Rlb is SO2CH3, and W is CH

Α	A	Δ	A	A	A	A	A	A	A	A	A
A-1	A-2	A-3	A-4	A-5	A-6	A-7	A-8	A-9	A-10	A-11	A-12
A-13	A-14	A-15	A-16	A-17	A-18	A-19	A-20	A-21	A-22	A-23	A-24
A-25	A-26	A-27	A-28	A-29	A-30	A-31	A-32	A-33	A-34	A-35	A-36
A-37	A-38	A-39	A-40	A-41	A-42	A-43	A-44	A-45	A-46	A-47	A-48
A-49	A-50	A-51	A-52	A-53	A-54	A-55	A-56	A-57	A-58	A-59	A-60
A-61	A-62	A-63	A-64	A-65	A-66	A-67	A-68	A-69	A-70	A-71	A-72
A-73	A-74	A-75	A-76	A-77	A-78	A-79	A-80	A-81	A-82	A-83	A-84
A-85	A-86	A-87	A-88	A-89	A-90	A-91	A-92	A-93			

TABLE 15

Rla is CF₂, Rlb is H, and W is N

L 12	<u> </u>	13 1	i, and i								
Δ	Δ	Δ	Α	Α	A	<u>A</u>	Α	<u>A</u>	<u>A</u>	Δ_	Δ
A-1	A-2	A-3	A-4	A-5	A-6	A-7	A-8	A-9	A-10	A-11	A-12
A-13	A-14	A-15	A-16	A-17	A-18	A-19	A-20	A-21	A-22	A-23	A-24
A-25	A-26	A-27	A-28	A-29	A-30	A-31	A-32	A-33	A-34	A-35	A-36
A-37	A-38	A-39	A-40	A-41	A-42	A-43	A-44	A-45	A-46	A-47	A-48
	A-50	A-51	A-52	A-53	A-54	A-55	A-56	A-57	A-58	A-59	A-60
A-49	A-62	A-63	A-64	A-65	A-66	A-67	A-68	A-69	A-70	A-71	A-72
A-61			A-76	A-77	A-78	A-79	A-80	A-81	A-82	A-83	A-84
A-73	A-74	A-75	ł				A-92	A-93			
A-85	A-86	A-87	A-88	A-89	A-90	A-91	A-92	A-93	L	<u> </u>	L

R1a is CF₃, R1b is H, and W is CH

1/ 1,	<u> </u>		1 441.4								
A	A	A	A	Δ	Δ	A	Δ	<u>A</u>	Δ	A	<u>A</u>
A-1	A-2	A-3	A-4	A-5	A-6	A-7	A-8	A-9	A-10	A-11	A-12
A-13	A-14	A-15	A-16	A-17	A-18	A-19	A-20	A-21	A-22	A-23	A-24
A-25	A-26	A-27	A-28	A-29	A-30	A-31	A-32	A-33	A-34	A-35	A-36
A-37	A-38	A-39	A-40	A-41	A-42	A-43	A-44	A-45	A-46	A-47	A-48
A-49	A-50	A-51	A-52	A-53	A-54	A-55	A-56	A-57	A-58	A-59	A-60
A-61	A-62	A-63	A-64	A-65	A-66	A-67	A-68	A-69	A-70	A-71	A-72
A-73	A-74	A-75	A-76	A-77	A-78	A-79	A-80	A-81	A-82	A-83	A-84
A-85	A-86	A-87	A-88	A-89	A-90	A-91	A-92	A-93		<u> </u>	

Rla is Cl, Rlb is H, and W is N

17 10	~.,										
A	Α	Δ	Α	Α	A	A	<u>A</u>	A	A	Α	<u>A</u>
A-1		A-3		A-5	A-6	A-7	A-8	Λ-9	A-10	A-11	A-12
A-13		A-15									
A-25	A-26	A-27	A-28	A-29	A-30	A-31	A-32	A-33	A-34	A-35	A-36
A-37	A-38	A-39	A-40	A-41	A-42	A-43	A-44	A-45	A-46	A-47	A-48
A-49	A-50	A-51	A-52	A-53	A-54	A-55	A-56	A-57	A-58	A-59	A-60

A-61	A-62	A-63	A-64	A-65	A-66	A-67	A-68	A-69	A-70	A-71	A-72
A-73	A-74	A-75	A-76	A-77	A-78	A-79	A-80	A-81	A-82	A-83	A-84
A-85	A-86	A-87	A-88	A-89	A-90	A-91	A-92	A-93			

Rla is Cl, Rlb is H, and W is CH

17 10	<u> </u>										
A	A	A	<u>A</u>	Α	A	Α	A	Α	Α	Α	Α
A-1	A-2	A-3	A-4	A-5	A-6	A-7	A-8	A-9	A-10	A-11	A-12
A-13	A-14	A-15	A-16	A-17	A-18	A-19	A-20	A-21	A-22	A-23	A-24
A-25	A-26	A-27	A-28	A-29	A-30	A-31	A-32	A-33	A-34	A-35	A-36
A-37	A-38	A-39	A-40	A-41	A-42	A-43	A-44	A-45	A-46	A-47	A-48
A-49	A-50	A-51	A-52	A-53	A-54	A-55	A-56	A-57	A-58	A-59	A-60
A-61	A-62	A-63	A-64	A-65	A-66	A-67	A-68	A-69	A-70	A-71	A-72
A-73	A-74	A-75	A-76	A-77	A-78	A-79	A-80	A-81	A-82	A-83	A-84
A-85	A-86	A-87	A-88	A-89	A-90	A-91	. A-92	A-93			

Rla is CH₃, Rlb is H, and W is N

17 19	<u> </u>	10 1	<u> </u>								
A	Δ	Α	<u>A</u>	<u>A</u>	Α	<u>. A</u>	A	A	A	Α	Α
A-1	A-2	A-3	A-4	A-5	A-6	A-7	A-8	A-9	A-10	A-11	A-12
A-13	A-14	A-15	A-16	A-17	A-18	A-19	A-20	A-21	A-22	A-23	A-24
A-25	A-26	A-27	A-28	A-29	A-30	A-31	A-32	A-33	A-34	A-35	A-36
A-37	A-38	A-39	A-40	A-41	A-42	A-43	A-44	A-45	A-46	A-47	A-48
A-49	A-50	A-51	A-52	A-53	A-54	A-55	A-56	A-57	A-58	A-59	A-60
A-61	A-62	A-63	A-64	A-65	A-66	A-67	A-68	A-69	A-70	A-71	A-72
A-73	A-74	A-75	A -76	A-77	A-78	A-79	A-80	A-81	A-82	A-83	A-84
A-85	A-86	A-87	A-88	A-89	A-90	A-91	A-92	A-93			

Rla is CH3, Rlb is H, and W is CH

Α	Α	Δ	Δ	A	Δ	A	A	Α	A	Δ	<u>A</u>
A-1	A-2	A-3	A-4	A-5	A-6	A-7	A-8	A-9	A-10	A-11	A-12
A-13	A-14	A-15	A-16	A-17	A-18	A-19	A-20	A-21	A-22	A-23	A-24
A-25	A-26	A-27	A-28	A-29	A-30	A-31	A-32	A-33	A-34	A-35	A-36
A-37	A-38	A-39	A-40	A-41	A-42	A-43	A-44	A-45	A-46	A-47	A-48
A-49	A-50	A-51	A-52	A-53	A-54	A-55	A-56	A-57	A-58	A-59	A-60
A-61	A-62	A-63	A-64	A-65	A-66	A-67	A-68	A-69	A-70	A-71	A-72
A-73	A-74	A-75	A-76	A-77	A-78	A-79	A-80	A-81	A-82	A-83	A-84
A-85	A-86	A-87	A-88	A-89	A-90	A-91	A-92	A-93			

Rla is SO2CH2.	Rlbi	s H. ar	ıd W i	s N
----------------	------	---------	--------	-----

Α	<u>A</u>	_A	Α	Α	Δ	A	A	A	A	Δ	Δ
A-1	A-2	A-3	A-4	A-5	A-6	A-7	A-8	A-9	A-10	A-11	A-12
A-13	A-14	A-15	A-16	A-17	A-18	A-19	A-20	A-21	A-22	A-23	A-24
A-25	A-26	A-27	A-28	A-29	A-30	A-31	A-32	A-33	A-34	A-35	A-36
A-37	A-38	A-39	A-40	A-41	A-42	A-43	A-44	A-45	A-46	A-47	A-48
A-49	A-50	A-51	A-52	A-53	A-54	A-55	A-56	A-57	A-58	A-59	A-60
A-61	A-62	A-63	A-64	A-65	A-66	A-67	A-68	A-69	A-70	A-71	A-72
A-73	A-74	A-75	A-76	A-77	A-78	A-79	A-80	A-81	A-82	A-83	A-84
A-85	A-86	A-87	A-88	A-89	A-90	A-91	A-92	A-93			

Rla is SO₂CH₃, Rlb is H, and W is CH

A	<u>A</u>	<u>A</u>	A	A	А	A	A	Δ	Α	Α	Α
A-1	A-2	A-3	A-4	A-5	A-6	A-7	A-8	A-9	A-10	A-11	A-12
A-13	A-14	A-15	A-16	A-17	A-18	A-19	A-20	A-21	A-22	A-23	A-24
A-25	A-26	A-27	A-28	A-29	A-30	A-3 1	A-32	A-33	A-34	A-35	A-36
A-37	A-38	A-39	A-40	A-41	A-42	A-43	A-44	A-45	A-46	A-47	A-48
A-49	A-50	A-51	A-52	A-53	A-54	A-55	A-56	A-57	A-58	A-59	A-60
A-61	A-62	A -63	A-64	A-65	A-66	A-67	A-68	A-69	A-70	A-71	A-72
A-73	A-74	A-75	A-76	A-77	A-78	A-79	A-80	A-81	A-82	A-83	A-84
A-85	A-86	A-87	A-88	A-89	A-90	A-91	A-92	A-93			

Rla is SO2CH2CH3, Rlb is H, and W is N

Δ	Δ	A	Α	<u>A</u>	Δ	<u>A</u>	A	A	A	A	Α
A-1	A-2	A-3	A-4	A-5	A-6	A-7	A-8	A-9	A-10	A-11	A-12
A-13	A-14	A-15	A-16	A-17	A-18	A-19	A-20	A-21	A-22	A-23	A-24
A-25	A-26	A-27	A-28	A-29	A-30	A-31	A-32	A-33	A-34	A-35	A-36
A-37	A-38	A-39	A-40	A-41	A-42	A-43	A-44	A-45	A-46	A-47	A-48
A-49	A-50	A-51	A-52	A-53	A-54	A-55	A-56	A-57	A-58	A-59	A-60
A-61	A-62	A-63	A-64	A-65	A-66	A-67	A-68	A-69	A-70	A-71	A-72
A-73	A-74	A-75	A-76	A-77	A-78	A-79	A-80	A-81	A-82	A-83	A-84
A-85	A-86	A-87	A-88	A-89	A-90	A-91	A-92	A-93			

Rla is SO₂CH₂CH₃, Rlb is H, and W is CH

A	A	A	Α	A	A	A	A	Δ	<u>A</u>	A	Α
A-1											
A-13	A-14	A-15	A-16	A-17	A-18	A-19	A-20	A-21	A-22	A-23	A-24

	A-25	A-26	A-27	A-28	A-29	A-30	A-31	A-32	A-33	A-34	A-35	A-36
1	A-37	A-38	A-39	A-40	A-41	A-42	A-43	A-44	A-45	A-46	A-47	A-48
	A-49	A-50	A-51	A-52	A-53	A-54	A-55	A-56	A-57	A-58	A-59	A-60
1	A-61	A-62	A-63	A-64	A-65	A-66	A-67	A-68	A-69	A-70	A-71	A-72
١	A-73	A-74	A-75	A-76	A-77	A-78	A-79	A-80	A-81	A-82	A-83	A-84
١	A-85	A-86	A-87	A-88	A-89	A-90	A-91	A-92	A-93			ļ

Rla is CF₃, Rlb is CN, and W is N

1	<u> </u>								,,	· · · · · · · · · · · · · · · · · · ·	
A	A	A	Α	Α	Α	Δ	<u>A</u>	Δ	<u>A</u>	A	A
A-1	A-2	A-3	A-4	A-5	A-6	A-7	A-8	A-9	A-10	A-11	A-12
A-13	A-14	A-15	A-16	A-17	A-18	A-19	A-20	A-21	A-22	A-23	A-24
A-25	A-26	A-27	A-28	A-29	A-30	A-31	A-32	A-33	A-34	A-35	A-36
A-37	A-38	A-39	A-40	A-41	A-42	A-43	A-44	A-45	A-46	A-47	A-48
A-49	A-50	A-51	A-52	A-53	A-54	A-55	A-56	A-57	A-58	A-59	A-60
A-61	A-62	A-63	A-64	A-65	A-66	A-67	A-68	A-69	A-70	A-71	A-72
A-73	A-74	A-75	A-76	A-77	A-78	A-79	A-80	A-81	A-82	A-83	A-84
A-85	A-86	A-87	A-88	A-89	A-90	A-91	A-92	A-93			

Rla is CF₃, Rlb is CN, and W is CH

A	A	Α	<u>A</u> _	<u>A</u>	<u>A</u>	Δ	A	A	<u>A</u>	<u>.A</u>	<u>A</u>
A-1	A-2	A-3	A-4	A-5	A-6	A-7	A-8	A-9	A-10	A-11	A-12
A-13	A-14	A-15	A-16	A-17	A-18	A-19	A-20	A-21	A-22	A-23	A-24
A-25	A-26	A-27	A-28	A-29	A-30	A-31	A-32	A-33	A-34	A-35	A-36
A-37	A-38	A-39	A-40	A-41	A-42	A-43	A-44	A-45	A-46	A-47	A-48
A-49	A-50	A-51	A-52	A-53	A-54	A-55	A-56	A-57	A-58	A-59	A-60
A-61	A-62	A-63	A-64	A-65	A-66	A-67	A-68	A-69	A-70	A-71	A-72
A-73	A-74	A-75	A-76	A-77	A-78	A-79	A-80	A-81	A-82	A-83	A-84
A-85	A-86	A-87	A-88	A-89	A-90	A-91	A-92	A-93	<u></u>		

Rla is Cl, Rlb is CN, and W is N

		10 0-									
<u>A</u>	A	<u>A</u>	Α	Α	<u>A</u>	A	A	Α	A	<u>A</u>	Δ
A-1	A-2	A-3	A-4	A-5	A-6	A-7	A-8	A- 9	A-10	A-11	A-12
A-13	A-14	A-15	A-16	A-17	A-18	A-19	A-20	A-21	A-22	A-23	A-24
A-25	A-26	A-27	A-28	A-29	A-30	A-31	A-32	A-33	A-34	A-35	A-36
A-37	A-38	A-39	A-40	A-41	A-42	A-43	A-44	A-45	A-46	A-47	A-48
A-49	A-50	A-51	A-52	A-53	A-54	A-55	A-56	A-57	A-58	A-59	A-60
A-61	A-62	A-63	A-64	A-65	A-66	A-67	A-68	A-69	A-70	A-71	A-72

86

A-73	A-74	A-75	A-76	A-77	A-78	A-79	A-80	A-81	A-82	A-83	A-84
A-85	A-86	A-87	A-88	A-89	A-90	A-91	A-92	A-93			

Rla is Cl, Rlb is CN, and W is CH

Δ	A	A	A	A	Δ_	Α	Α	Α	Δ	A	<u>A</u>
A-1	A-2	A-3	A-4	A-5	A-6	A -7	A-8	A-9	A-10	A-11	A-12
A-13	A-14	A-15	A-16	A-17	A-18	A-19	A-20	A-21	A-22	A-23	A-24
A-25	A-26	A-27	A-28	A-29	A-30	A-31	A-32	A-33	A-34	A-35	A-36
A-37	A-38	A-39	A-40	A-41	A-42	A-43	A-44	A-45	A-46	A-47	A-48
A-49	A-50	A-51	A-52	A-53	A-54	A-55	A-56	A-57	A-58	A-59	A-60
A-61	A-62	A-63	A-64	A-65	A-66	A-67	A-68	A-69	A-70	A-71	A-72
A-73	A-74	A-75	A-76	A-77	A-78	A-79	A-80	A-81	A-82	A-83	A-84
A-85	A-86	A-87	A-88	A-89	A-90	A-91	A-92	A-93			

R^{1a} is CH₃, R^{1b} is CN, and W is N

A	Α	A	A	Α	A	Α	A	A	_ <u> </u>	Δ	Α
A-1	A-2	A-3	A-4	A-5	A-6	A-7	A-8	A-9	A-10	A-11	A-12
A-13	A-14	A-15	A-16	A-17	A-18	A-19	A-20	A-21	A-22	A-23	A-24
A-25	A-26	A-27	A-28	A-29	A-30	A-31	A-32	A-33	A-34	A-35	A-36
A-37	A-38	A-39	A-40	A-41	A-42	A-43	A-44	A-45	A-46	A-47	A-48
A-49	A-50	A-51	A-52	A-53	A-54	A-55	A-56	A-57	A-58	A-59	A-60
A-61	A-62	A-63	A-64	A-65	A-66	A-67	A-68	A-69	A-70	A-71	A-72
A-73	A-74	A-75	A-76	A-77	A-78	A-79	A-80	A-81	A-82	A-83	A-84
A-85	A-86	A-87	A-88	A-89	A-90	A-91	A-92	A-93			

Rla is CH3, Rlb is CN, and W is CH

A	A	Δ	A	Α	A	A	A	Δ	A	Δ	A
A-1	A-2	A-3	A-4	A-5	A-6	A-7	A-8	A-9	A-10	A-11	A-12
A-13	A-14	A-15	A-16	A-17	A-18	A-19	A-20	A-21	A-22	A-23	A-24
A-25	A-26	A-27	A-28	A-29	A-30	A-31	A-32	A-33	A-34	A-35	A-36
A-37	A-38	A-39	A-40	A-41	A-42	A-43	A-44	A-45	A-46	A-47	A-48
A-49	A-50	A-51	A-52	A-53	A-54	A-55	A-56	A-57	A-58	A-59	A-60
A-61	A-62	A-63	A-64	A-65	A-66	A-67	A-68	A-69	A-70	A-71	A-72
A-73	A-74	A-75	A-76	A-77	A-78	A-79	A-80	A-81	A-82	A-83	A-84
A-85	A-86	A-87	A-88	A-89	A-90	A-91	A-92	A-93			

R1a is SO₂CH₃, R1b is CN, and W is N

Δ	Δ	A	Δ	A	A	A	A	A	A	Α	<u>A</u>
A-1	A-2	A-3	A-4	A-5	A-6	A-7	A-8	A-9	A-10	A-11	A-12
A-13	A-14	A-15	A-16	A-17	A-18	A-19	A-20	A-21	A-22	A-23	A-24
A-25	A-26	A-27	A-28	A-29	A-30	A-31	A-32	A-3 3	A-34	A-35	A-36
A-37	A-38	A-39	A-40	A-41	A-42	A-43	A-44	A-45	A-46	A-47	A-48
A-49	A-50	A-51	A-52	A-53	A-54	A-55	A-56	A-57	A-58	A-59	A-60
A-61	A-62	A-63	A-64	A-65	A-66	A-67	A-68	A-69	A-70	A-71	A-72
A-73	A-74	A-75	A-76	A-77	A-78	A-79	A-80	A-81	A-82	A-83	A-84
A-85	A-86	A-87	A-88	A-89	A-90	A-91	A-92	A-93			

Rla is SO₂CH₃, Rlb is CN, and W is CH

Δ	A	<u>A</u>	A	A	A	Α	<u>A</u>	A	<u>A</u>	A	<u>A</u>
A-1	A-2	A-3	A-4	A-5	A-6	A-7	A-8	A-9	A-10	A-11	A-12
A-13	A-14	A-15	A-16	A-17	A-18	A-19	A-20	A-21	A-22	A-23	A-24
A-25	A-26	A-27	A-28	A-29	A-30	A-31	A-32	A-33	A-34	A-35	A-36
A-37	A-38	A-39	A-40	A-41	A-42	A-43	A-44	A-45	A-46	A-47	A-48
A-49	A-50	A-51	A-52	A-53	A-54	A-55	A-56	A-57	A-58	A-59	A-60
A-61	A-62	A-63	A-64	A-65	A-66	A-67	A-68	A-69	A-70	A-71	A-72
A-73	A-74	A-75	A-76	A-77	A-78	A-79	A-80	A-81	A-82	A-83	A-84
A-85	A-86	A-87	A-88	A-89	A-90	A-91	A-92	A-93			

R^{1a} is SO₂CH₂CH₃, R^{1b} is CN, and W is N

		7									
<u>A</u>	A	A	A	Α	<u>A</u>	A	A	A	A	<u>A</u>	Α
A-1	A-2	· A-3	A-4	A-5	A-6	A-7	A-8	A-9	A-10	A-11	A-12
A-13	A-14	A-15	A-16	A-17	A-18	A-19	A-20	A-21	A-22	A-23	A-24
A-25	A-26	A-27	A-28	A-29	A-30	A-31	A-32	A-33	A-34	A-35	A-36
A-37	A-38	A-39	A-40	A-41	A-42	A-43	A-44	A-45	A-46	A-47	A-48
A-49	A-50	A-51	A-52	A-53	A-54	A-55	A-56	A-57	A-58	A-59	A-60
A-61	A-62	A-63	A-64	A-65	A-66	A-67	A-68	A-69	A-70	A-71	A-72
A-73	A-74	A-75	A-76	A-77	A-78	A-79	A-80	A-81	A-82	A-83	A-84
A-85	A-86	A-87	A-88	A-89	A-90	A-91	A-92	A-93			

R1a is SO₂CH₂CH₃, R1b is CN, and W is CH

<u>A</u>	<u>A</u>	A	<u>A</u>	A	A	Δ	Α	Δ	A	Δ	_ <u>A</u>
A-1	A-2	A-3	A-4	A-5	A-6	A-7	A-8	A-9	A-10	A-11	A-12
A-13	A-14	A-15	A-16	A-17	A-18	A-19	A-20	A-21	A-22	A-23	A-24

1		1	l			۱		l	1	!	l	1	ı
ĺ	A-25	A-26	A-27	A-28	A-29	A-30	A-31	A-32	A-33	A-34	A-35	A-36	l
	A-37	A-38	A-39	A-40	A-41	A-42	A-43	A-44	A-45	A-46	A-47	A-48	ĺ
	A-49	A-50	A-51	A-52	A-53	A-54	A-55	A-56	A-57	A-58	A-59	A-60	
	A-61	A-62	A-63	A-64	A-65	A-66	A-67	A-68	A-69	A-70	A- 71	A-72	
ļ	A-73	A-74	A-75	A-76	A-77	A-78	A-79	A-80	A-81	A-82	A-83	A-84	ı
	A-85	A-86	A-87	A-88	A-89	A-90	A-91	A-92	A-93		'		ì

Rla is CF₃, Rlb is Cl, and W is N

A	A	Α	<u>A</u>	Α	A	A	A	<u>A</u>	<u>A</u>	A	A
A-I	A-2	A-3	A-4	A-5	A-6	A-7	A-8	A-9	A-10	A-11	A-12
A-13	A-14	A-15	A-16	A-17	A-18	A-19	A-20	A-21	A-22	A-23	A-24
A-25	A-26	A-27	A-28	A-29	A-30	A-31	A-32	A-33	A-34	A-35	A-36
A-37	A-38	A-39	A-40	A-41	A-42	A-43	A-44	A-45	A-46	A-47	A-48
A-49	A-50	A-51	A-52	A-53	A-54	A-55	A-56	A-57	A-58	A-59	A-60
A-61	A-62	A-63	A-64	A-65	A-66	A-67	A-68	A-69	A-70	A-71	A-72
A-73	A-74	A-75	A-76	A-77	A-78	A-79	A-80	A-81	A-82	A-83	A-84
A-85	A-86	A-87	A-88	A-89	A-90	A-9 1	A-92	A-93			

Rla is CF3, Rlb is Cl, and W is CH

A	A	<u>A</u>	Α	A	A	<u>A</u>	A	A	A	A	A
A -1	A-2	A-3	A-4	A-5	A -6	A-7	A-8	A-9	A-10	A-11	A-12
A-13	A-14	A-15	A-16	A-17	A-18	A-19	A-20	A-21	A-22	A-23	A-24
A-25	A-26	A-27	A-28	A-29	A-30	A-31	A-32	A-33	A-34	A-35	A-36
A-37	A-38	A-39	A-40	A-41	A-42	A-43	A-44	A-45	A-46	A-47	A-48
A-49	A-50	A-51	A-52	A-53	A-54	A-55	A-56	A-57	A-58	A-59	A-60
A-61	A-62	A-63	A-64	A-65	A-66	A-67	A-68	A-69	A-70	A-71	A-72
A-73	A-74	A-75	A-76	A-77	A-78	A-79	A-80	A-81	A-82	A-83	A-84
A-85	A-86	A-87	A-88	A-89	A-90	A-91	A-92	A-93			

Rla is Cl, Rlb is Cl, and W is N

		<u> </u>	10 01	****								
ĺ	A	<u>A</u>	<u>A</u>	<u>A</u>	A	<u>A</u>	A	Δ	<u>A</u>	<u>A</u>	Δ	A
	A-1	A-2	A-3	A-4	A-5	A-6	A-7	A-8	A-9	A-10	A-11	A-12
	A-13	A-14	A-15	A-16	A-17	A-18	A-19	A-20	A-21	A-22	A-23	A-24
	A-25	A-26	A-27	A-28	A-29	A-30	A-31	A-32	A-33	A-34	A-35	A-36
	A-37	A-38	A-39	A-40	A-41	A-42	A-43	A-44	A-45	A-46	A-47	A-48
	A-49	A-50	A-51	A-52	A-53	A-54	A-55	A-56	A-57	A-58	A-59	A-60
	A-61	A-62	A-63	A-64	A-65	A-66	A-67	A-68	A-69	A-70	A-71	A-72

-	A-73	A-74	A-75	A-76	A-77	A-78	A-79	A-80	A-81	A-82	A-83	A-84	
	A-85	A-86	A-87	A-88	A-89	A-90	A-91	A-92	A-93				

Rla is Cl, Rlb is Cl, and W is CH

Α	Δ	Δ	A	<u>A</u>	A	A	A	Δ	<u>A</u>	A	<u>A</u>
A-I	A-2	A-3	A-4	A-5	A-6	A-7	A-8	A-9	A-10	A-11	A-12
A-13	A-14	A-15	A-16	A-17	A-18	A-19	A-20	A-21	A-22	A-23	A-24
A-25	A-26	A-27	A-28	A-29	A-30	A-31	A-32	A-33	A-34	A-35	A-36
A-37	A-38	A-39	A-40	A-41	A-42	A-43	A-44	A-45	A-46	A-47	A-48
A-49	A-50	A-51	A-52	A-53	A-54	A-55	A-56	A-57	A-58	A-59	A-60
A-61	A-62	A-63	A-64	A-65	A-66	A-67	A-68	A-69	A-70	A-71	A-72
A-73	A-74	A-75	A-7 6	A-77	A-78	A-79	A-80	A-81	A-82	A-83	A-84
A-85	A-86	A-87	A-88	A-89	A-90	A-91	A-92	A-93			

R1a is CH3, R1b is SO2CH3, and W is N

$\overline{}$											
Α	<u>A</u>	A	A	A	A	A	A	<u>A</u>	<u>A</u>	A	Α
A-I	A-2	A-3	A-4	A-5	A-6	A-7	A-8	A-9	A-10	A-11	A-12
A-13	A-14	A-15	A-16	A-17	A-18	A-19	A-20	A-21	A-22	A-23	A-24
A-25	A-26	A-27	A-28	A-29	A-30	A-31	A-32	A-33	A-34	A-35	A-36
A-37	A-38	A-39	A-40	A-41	A-42	A-43	A-44	A-45	A-46	A-47	A-48
A-49	A-50	A-51	A-52	A-53	A-54	A-55	A-56	A-57	A-58	A-59	A-60
A-61	A-62	A-63	A-64	A-65	A-66	A-67	A-68	A-69	A-70	A-71	A-72
A-73	A-74	A-75	A-76	A-77	A-78	A-79	A-80	A-81	A-82	A-83	A-84
A-85	A-86	A-87	A-88	A-89	A-90	A-91	A-92	A-93			

R^{1a} is CH₃, R^{1b} is SO₂CH₃, and W is CH

Δ	Α	Δ	A	A	Α	A	A	A	A	Δ	<u>A</u>
A-1	A-2	A-3	A-4	A-5	A-6	A-7	A-8	A-9	A-10	A-11	A-12
A-13	A-14	A-15	A-16	A-17	A-18	A-19	A-20	A-21	A-22	A-23	A-24
A-25	A-26	A-27	A-28	A-29	A-30	A-31	A-32	A-33	A-34	A-35	A-36
A-37	A-38	A-39	A-40	A-41	A-42	A-43	A-44	A-45	A-46	A-47	A-48
A-49	A-50	A-51	A-52	A-53	A-54	A-55	A-56	A-57	A-58	A-59	A-60
A-61	A-62	A-63	A-64	A-65	A-66	A-67	A-68	A-69	A-70	A-71	A-72
A-73	A-74	A-75	A-76	A-77	A-78	A-79	A-80	A-81	A-82	A-83	A-84
A-85	A-86	A-87	A-88	A-89	A-90	A-91	A-92	A-93			

90

TABLE 16

Rla is CF3, Rlb is H, and W is N

A	A	Α	A	<u>A</u>	A	A	<u>A</u>	<u>A</u>	Α	Δ	Δ
A-I	A-2	A-3	A-4	A-5	A-6	A-7	A-8	A-9	A-10	A-11	A-12
A-13	A-14	A-15	A-16	A-17	A-18	A-19	A-20	A-21	A-22	A-23	A-24
A-25	A-26	A-27	A-28	A-29	A-30	A-31	A-32	A-33	A-34	A-35	A-36
A-37	A-38	A-39	A-40	A-41	A-42	A-43	A-44	A-45	A-46	A-47	A-48
A-49	A-50	A-51	A-52	A-53	A-54	A-55	A-56	A-57	A-58	A-59	A-60
A-61	A-62	A-63	A-64	A-65	A-66	A-67	A-68	A-69	A-70	A-71	A-72
A-73	A-74	A-75	A-76	A-77	A-78	A-79	A-80	A-81	A-82	A-83	A-84
A-85	A-86	A-87	A-88	A-89	A-90	A-91	A-92	A-93			

Rla is CF₃, Rlb is H, and W is CH

A	A	Δ	<u>A</u>	<u>A</u>	Δ	A	<u>A</u>	A	A	<u>A</u>	Δ
A-I	A-2	A-3	A-4	A-5	A-6	A-7	A-8	A-9	A-10	A-11	A-12
A-13	A-14	A-15	A-16	A-17	A-18	A-19	A-20	A-21	A-22	A-23	A-24
A-25	A-26	A-27	A-28	A-29	A-30	A-31	A-32	A-33	A-34	A-35	A-36
A-37	A-38	A-39	A-40	A-41	A-42	A-43	A-44	A-45	A-46	A-47	A-48
A-49	A-50	A-51	A-52	A-53	A-54	A-55	A-56	A-57	A-58	A-59	A-60
A-61	A-62	A-63	A-64	A-65	A-66	A-67	A-68	A-69	A-70	A-71	A-72
A-73	A-74	A-75	A-76	A-77	A-78	A-79	A-80	A-81	A-82	A-83	A-84
A-85	A-86	A-87	A-88	A-89	A-90	A-91	A-92	A-93			

Rla is Cl, Rlb is H, and W is N

<u>A</u>	A	Δ	A	A	Δ	Α	A	A	<u>A</u>	A	A
A-I	A-2	A-3	A-4	A-5	A-6	A-7	A-8	A-9	A-10	A-11	A-12
A-13	A-14	A-15	A-16	A-17	A-18	A-19	A-20	A-21	A-22	A-23	A-24
A-25	A-26	A-27	A-28	A-29	A-30	A-31	A-32	A-33	A-34	A-35	A-36
A-37	A-38	A-39	A-40	A-41	A-42	A-43	A-44	A-45	A-46	A-47	A-48
A-49	A-50	A-51	A-52	A-53	A-54	A-55	A-56	A-57	A-58	A-59	A-60

91

												A-72
	A-73	A-74	A-75	A-76	A-77	A-78	A-79	A-80	A-81	A-82	A-83	A-84
1	A-85	A-86	A-87	A-88	A-89	A-90	A-91	A-92	A-93			

Rla is Cl. Rlb is H, and W is CH

<u></u>	13 C1, 14 10 11, 1412 11 12 12 12												
Α	Δ	A	A	<u>A</u>	A	A	Α	<u>A</u>	A	A	<u>A</u>		
A-1	A-2	A-3	A-4	A-5	A-6	A-7	A-8	A -9	A-10	A-11	A-12		
A-13	A-14	A-15	A-16	A-17	A-18	A-19	A-20	A-21	A-22	A-23	A-24		
A-25	A-26	A-27	A-28	A-29	A-30	A-31	A-32	A-33	A-34	A-35	A-36		
A-37	A-38	A-39	A-40	A-41	A-42	A-43	A-44	A-45	A-46	A-47	A-48		
A-49	Λ-50	A-51	A-52	A-53	A-54	A-55	A-56	A-57	A-58	A-59	A-60		
A-61	A-62	A-63	A-64	A-65	A-66	A-67	A-68	A-69	A-70	A-71	A-72		
A-73	A-74	A-75	A-76	A-77	A-78	A-79	A-80	A-81	A-82	A-83	A-84		
A-85	A-86	A-87	A-88	A-89	A-90	A-91	A-92	A-93					

Rla is CH₃, Rlb is H, and W is N

10 10	<u> </u>		z, and								
A	Δ	A	<u>A</u>	A	<u>A</u>	<u>A</u>	A	<u>A</u>	<u>A</u>	<u>A</u>	<u>A</u>
A-1	A-2	A-3	A-4	A-5	A-6	A-7	A-8	A- 9	A-10	A-II	A-12
A-13	A-14	A-15	A-16	A-17	A-18	A-19	A-20	A-21	A-22	A-23	A-24
A-25	A-26	A-27	A-28	A-29	A-30	A-31	A-32	A-33	A-34	A-35	A-36
A-37	A-38	A-39	A-40	A-41	A-42	A-43	A-44	A-45	A-46	A-47	A-48
A-49	A-50	A-51	A-52	A-53	A-54	A-55	A-56	A-57	A-58	A-59	A-60
A-61	A-62	A-63	A-64	A-65	A-66	A-67	A-68	A-69	A-70	A-71	A-72
A-73	A-74	A-75	A-76	A-77	A-78	A-79	A-80	A-81	A-82	A-83	A-84
A-85	A-86	A-87	A-88	A-89	A-9 0	A-91	A-92	A-93			

Rla is CH3, Rlb is H, and W is CH

Α	A	Α	Δ	A	<u>A</u>	A	<u>A</u>	<u>A</u>	A	<u>A</u>	<u>A</u>
A-I	A-2	A-3	A-4	A-5	A-6	A-7	A-8	A-9	A-10	A-II	A-12
A-13	A-14	A-15	A-16	A-17	A-18	A-19	A-20	A-21	A-22	A-23	A-24
A-25	A-26	A-27	A-28	A-29	A-30	A-31	A-32	A-33	A-34	A-35	A-36
A-37	A-38	A-39	A-40	A-41	A-42	A-43	A-44	A-45	A-46	A-47	A-48
A-49	A-50	A-51	A-52	A-53	A-54	A-55	A-56	A-57	A-58	A-59	A-60
A-61	A-62	A-63	A-64	A-65	A-66	A-67	A-68	A-69	A-70	A-71	A-72
A-73	A-74	A-75	A-76	A-77	A-78	A-79	A-80	A-81	A-82	A-83	A-84
A-85	A-86	A-87	A-88	A-89	A-90	A-91	A-92	A-93			

Rla is SO₂CH₃, Rlb is H, and W is N

A	Α	A	A	A	Δ	Δ	Α	A	A	Δ	Δ
A-1	A-2	A-3	A-4	A-5	A-6	A-7	A-8	A-9	A-10	A-11	A-12
A-13	A-14	A-15	A-16	A-17	A-18	A-19	A-20	A-21	A-22	A-23	A-24
A-25	A-26	A-27	A-28	A-29	A-30	A-31	A-32	A-33	A-34	A-35	A-36
A-37	A-38	A-39	A-40	A-41	A-42	A-43	A-44	A-45	A-46	A-47	A-48
A-49	A-50	A-51	A-52	A-53	A-54	A-55	A-56	A-57	A-58	A-59	A-60
A-61	A-62	A-63	A-64	A-65	A-66	A-67	A-68	A-69	A-70	A-71	A-72
A-73	A-74	A-75	A-76	A-77	A-78	A-79	A-80	A-81	A-82	A-83	A-84
A-85	A-86	A-87	A-88	A-89	A-90	A-91	A-92	A-93			·

Ria is SO₂CH₃, Rib is H, and W is CH

<u>A</u>	<u>A</u>	A	A	Α	Δ	Δ	<u>A</u>	A	A	A	A
A-1	A-2	A-3	A-4	A-5	A-6	A-7	A-8	A-9	A-10	A-11	A-12
A-13	A-14	A-15	A-16	A-17	A-18	A-19	A-20	A-21	A-22	A-23	A-24
A-25	A-26	A-27	A-28	A-29	A-30	A-3 1	A-32	A-33	A-34	A-35	A-36
A-37	A-38	A-39	A-40	A-41	A-42	A-43	A-44	A-45	A-46	A-47	A-48
A-49	A-50	A-51	A-52	A-53	A-54	A-55	A-56	A-57	A-58	A-59	A-60
A-61	A-62	A-63	A-64	A-65	A-66	A-67	A-68	A-69	A-70	A-71	A-72
A-73	A-74	A-75	A-76	A-77	A-78	A-79	A-80	A-81	A-82	A-83	A-84
A-85	A-86	A-87	A-88	A-89	A-9 0	A-91	A-92	A-93			

R1a is SO₂CH₂CH₃, R1b is H, and W is N

A	A	Α	Α	A	A	A	A	A	A	A	A
A-1	A-2	A-3	A-4	A-5	A-6	A-7	A-8	A-9	A-10	A-11	A-12
A-13	A-14	A-15	A-16	A-17	A-18	A-19	A-20	A-21	A-22	A-23	A-24
A-25	A-26	A-27	A-28	A-29	A-30	A-31	A-32	A-33	A-34	A-35	A-36
A-37	A-38	A-39	A-40	A-41	A-42	A-43	A-44	A-45	A-46	A-47	A-48
A-49	A-50	A-51	A-52	A-53	A-54	A-55	A-56	A-57	A-58	A-59	A-60
A-61	A-62	A-63	A-64	A-65	A-66	A-67	A-68	A-69	A-70	A-71	A-72
A-73	A-74	A-75	A-76	A-77	A-78	A-79	A-80	A-81	A-82	A-83	A-84
A-85	A-86	A-87	A-88	A-89	A-90	A-91	A-92	A-93	ĺ	į	

Rla is SO₂CH₂CH₃, Rlb is H, and W is CH

Α	Α	Α	A	Δ	A	A	<u>A</u>	A	A	A	Α
A-1	A-2	A-3	A-4	A-5	A-6	A-7	A-8	A-9	A-10	A-11	A-12
A-13	A-14	A-15	A-16	A-17	A-18	A-19	A-20	A-21	A-22	A-23	A-24

	A-25	A-26	A-27	A-28	A-29	A-30	A-31	A-32	A-33	A-34	A-35	A-36
	A-37	A-38	A-39	A-40	A-41	A-42	A-43	A-44	A-45	A-46	A-47	A-48
	A-49	A-50	A-51	A-52	A-53	A-54	A-55	A-56	A-57	A-58	A-59	A-60
	A-61	A-62	A-63	A-64	A-65	A-66	A-67	A-68	A-69	A-70	A-71	A-72
	A-73	A-74	A-75	A-76	A-77	A-78	A-79	A-80	A-81	A-82	A-83	A-84
١	A-85	A-86	A-87	A-88	A-89	A-90	A-91	A-92	A-93			

Rla is CF₃, Rlb is CN, and W is N

Δ	A	<u>A</u>	Δ	Α	A	A	A	Δ	<u>A</u>	Δ	Δ
A-1	A-2	A-3	A-4	A-5	A-6	A-7	A-8	A-9	A-10	A-11	A-12
A-13	Λ-14	A-15	A-16	A-17	A-18	A-19	A-20	A-21	A-22	A-23	A-24
A-25	A-26	A-27	A-28	A-29	A-30	A-31	A-32	A-33	A-34	A-35	A-36
A-37	A-38	A-39	A-40	A-41	A-42	A-43	A-44	A-45	A-46	A-47	A-48
A-49	A-50	A-51	A-52	A-53	A-54	A-55	A-56	A-57	A-58	A-59	A-60
A-61	A-62	A-63	A-64	A-65	A-66	A-67	A-68	A-69	A-70	A-71	A-72
A-73	A-74	A-75	A-76	A-77	A-78	A-79	A-80	A-81	A-82	A-83	A-84
A-85	A-86	A-87	A-88	A-89	A-90	A-91	A-92	A-93			

R1a is CF3, R1b is CN, and W is CH

A	<u>A</u>	A	Δ	Δ	<u>A</u>	<u>A</u>	A	Δ	<u>A</u>	<u>A</u>	A
A-1	A-2	A-3	A-4	A-5	A-6	A-7	A-8	A-9	A-10	A-11	A-12
A-13	A-14	A-15	A-16	A-17	A-18	A-19	A-20	A-21	A-22	A-23	A-24
A-25	A-26	A-27	A-28	A-29	A-30	A-31	A-32	A-33	A-34	A-35	A-36
A-37	A-38	A-39	A-40	A-41	A-42	A-43	A-44	A-45	A-46	A-47	A-48
A-49	A-50	A-51	A-52	A-53	A-54	A-55	A-56	A-57	A-58	A-59	A-60
A-61	A-62	A-63	A-64	A-65	A-66	A-67	A-68	A-69	A-70	A-71	A-72
A-73	A-74	A-75	A-76	A-77	A-78	A-79	A-80	A-81	A-82	A-83	A-84
A-85	A-86	A-87	A-88	A-89	A-90	A-91	A-92	A-93			

Rla is Cl, Rlb is CN, and W is N

A	A	A	A	Α	_A	<u>A</u>	A	Α	A	Δ	A
A-1	A-2	A-3	A-4	A-5	A-6	A-7	A-8	A-9	A-10	A-11	A-12
A-13	A-14	A-15	A-16	A-17	A-18	A-19	A-20	A-21	A-22	A-23	A-24
A-25	A-26	A-27	A-28	A-29	A-30	A-31	A-32	A-33	A-34	A-35	A-36
A-37	A-38	A-39	A-40	A-41	A-42	A-43	A-44	A-45	A-46	A-47	A-48
A-49	A-50	A-51	A-52	A-53	A-54	A-55	A-56	A-57	A-58	A-59	A-60
A-61	A-62	A-63	A-64	A-65	A-66	A-67	A-68	A-69	A-70	A-71	A-72

94

A-73	A-74	A-75	A-76	A-77	A-78	A-79	A-80	A-81	A-82	A-83	A-84	
A-85	A-86	A-87	A-88	A-89	A-90	A-91	A-92	A-93				

Rla is Cl, Rlb is CN, and W is CH

Δ	Α	Α	Α	Δ	Δ	A	Δ	<u>A</u>	Δ	Δ	Α
A-1	A-2	A-3	A-4	A-5	A-6	A-7	A-8	A-9	A-10	A-11	A-12
A-13	A-14	A-15	A-16	A-17	A-18	A-19	A-20	A-21	A-22	A-23	A-24
A-25	A-26	A-27	A-28	A-29	A-30	A-31	A-32	A-33	A-34	A-35	A-36
A-37	A-38	A-39	A-40	A-41	A-42	A-43	A-44	A-45	A-46	A-47	A-48
A-49	A-50	A-51	A-52	A-53	A-54	A-55	A-56	A-57	A-58	A-59	A-60
A-61	A-62	A-63	A-64	A-65	A-66	A-67	A-68	A-69	A-70	A-71	A-72
A-73	A-74	A-75	A-76	A-77	A-78	A-79	A-80	A-81	A-82	A-83	A-84
A-85	A-86	A-87	A-88	A-89	A-90	A-91	A-92	A-93			

Rla is CH₃, Rlb is CN, and W is N

A	A	<u>A</u>	A	A	<u>A</u>	Δ	<u>A</u>	<u>A</u>	A	A	Α
A-1	A-2	A-3	A-4	A-5	A-6	A-7	A-8	A-9	A-10	A-11	A-12
A-13	A-14	A-15	A-16	A-17	A-18	A-19	A-20	Λ-21	A-22	A-23	A-24
A-25	A-26	A-27	A-28	A-29	A-30	A-31	A-32	A-33	A-34	A-35	A-36
A-37	A-38	A-39	A-40	A-41	A-42	A-43	A-44	A-45	A-46	A-47	A-48
A-49	A-50	A-51	A-52	A-53	A-54	A-55	A-56	A-57	A-58	A-59	A-60
A-61	A-62	A-63	A-64	A-65	A-66	A-67	A-68	A-69	A-70	A-71	A-72
A-73	A-74	A-75	A-76	A-77	A-78	A-79	A-80	A-81	A-82	A-83	A-84
A-85	A-86	A-87	A-88	A-89	A-90	A-91	A-92	A-93			

Rla is CH3, Rlb is CN, and W is CH

A	<u>A</u>	A	<u>A</u>	<u>A</u>	A	Δ	A	A	A	A	A
A-1	A-2	A-3	A-4	A-5	A-6	A-7	A-8	A-9	A-10	A-11	A-12
A-13	A-14	A -15	A-16	A-17	A-18	A-19	A-20	A-21	A-22	A-23	A-24
A-25	A-26	A-27	A-28	A-29	A-30	A-31	A-32	A-33	A-34	A-35	A-36
A-37	A-38	A-39	A-40	A-41	A-42	A-43	A-44	A-45	A-46	A-47	A-48
A-49	A-50	A-51	A-52	A-53	A-54	A-55	A-56	A-57	A-58	A-59	A-60
A-61	A-62	A-63	A-64	A-65	A-66	A-67	A-68	A-69	A-70	A-71	A-72
A-73	A-74	A-75	A-76	A-77	A-78	A-79	A-80	A-81	A-82	A-83	A-84
A-85	A-86	A-87	A-88	A-89	A-90	A-91	A-92	A-93			

R^{1a} is SO₂CH₃, R^{1b} is CN, and W is N

1/ 13	<u> </u>		10 01								
Α	A	A	A	A	A	Α	<u>A</u>	A	Α	Α	Α
A-I	A-2	A-3	A-4	A-5	A -6	A-7	A-8	A-9	A-10	A-11	A-12
A-13	A-14	A-15	A-16	A-17	A-18	A-19	A-20	A-21	A-22	A-23	A-24
A-25	A-26	A-27	A-28	A-29	A-30	A-31	A-32	A-33	A-34	A-35	A-36
A-37	A-38	A-39	A-40	A-41	A-42	A-43	A-44	A-45	A-46	A-47	A-48
A-49	A-50	A-51	A-52	A-53	A-54	A-55	A-56	A-57	A-58	A-59	A-60
A-61	A-62	A-63	A-64	A-65	A-66	A-67	A-68	A-69	A-70	A-71	A-72
A-73	A-74	A-75	A-76	A-77	A-78	A-79	A-80	A-81	A-82	A-83	A-84
A-85	A-86	A-87	A-88	A-89	A-90	A-91	A-92	A-93			

Rla is SO₂CH₃, Rlb is CN, and W is CH

A	<u>A</u>	A	A	<u>A</u>	A	Δ	Δ	A	<u>A</u>	A	<u>A</u>
A-1	A-2	A-3	A-4	A-5	A-6	A-7	A-8	A-9	A-10	A-11	A-12
A-13	A-14	A-15	A-16	A-17	A-18	A-19	A-20	A-21	A-22	A-23	A-24
A-25	A-26	A-27	A-28	A-29	A-30	A-31	A-32	A-33	A-34	A-35	A-36
A-37	A-38	A-39	A-40	A-41	A-42	A-43	A-44	A-45	A-46	A-47	A-48
A-49	A-50	A-51	A-52	A-53	A-54	A-55	A-56	A-57	A-58	A-59	A-60
A-61	A-62	A-63	A-64	A-65	A-66	A-67	A-68	A-69	A-70	A-71	A-72
A-73	A-74	A-75	A-76	A-77	A-78	A-79	A-80	A-81	A-82	A-83	A-84
A-85	A-86	A-87	A-88	A-89	A-90	A-91	A-92	A-93			

Rla is SO₂CH₂CH₂, Rlb is CN, and W is N

17 10	<u> </u>	<u> </u>	<u> </u>	, 0, 1, 4							
A	A	A	A	A	Δ	Α	A	Α	A	Δ	Α
A-1	A-2	A-3	A-4	A-5	A-6	A-7	A-8	A-9	A-10	A-11	A-12
A-13	A-14	A-15	A-16	A-17	A-18	A-19	A-20	A-21	A-22	A-23	A-24
A-25	A-26	A-27	A-28	A-29	A-30	A-31	A-32	A-33	A-34	A-35	A-36
A-37	A-38	A-39	A-40	A-41	A-42	A-43	A-44	A-45	A-46	A-47	A-48
A-49	A-50	A-51	A-52	A-53	A-54	A-55	A-56	A-57	A-58	A-59	A-60
A-61	A-62	A-63	A-64	A-65	A-66	A-67	A-68	A-69	A-70	A-71	A-72
A-73	A-74	A-75	A-76	A-77	A-78	A-79	A-80	A-81	A-82	A-83	A-84
A-85	A-86	A-87	A-88	A-89	A-90	A-91	A-92	A-93			

R^{1a} is SO₂CH₂CH₃, R^{1b} is CN, and W is CH

Δ	A	<u>A</u>	A	A	A	<u>A</u>	A	A	<u>A</u>	<u>A</u>	<u>A</u>
A-1	A-2	A-3	A-4	A-5	A-6	A-7	A-8	A-9	A-10	A-11	A-12
A-13	A-14	A-15	A-16	A-17	A-18	A-19	A-20	A-21	A-22	A-23	A-24

96

		•					•		1	1	1		٠
	A-25	A-26	A-27	A-28	A-29	A-30	A-31	A-32	A-33	A-34	A-35	A-36	ı
	A-37	A-38	A-39	A-40	A-41	A-42	A-43	A-44	A-45	A-46	A-47	A-48	ı
	A-49	A-50	A-51	A-52	A-53	A-54	A-55	A-56	A-57	A-58	A-59	A-60	
	A-61	A-62	A-63	A-64	A-65	A-66	A-67	A-68	A-69	A-70	A-71	A-72	
	A-73	A-74	A-75	A-76	A-77	A-78	A-79	A-80	A-81	A-82	A-83	A-84	l
I	A-85	A-86	A-87	A-88	A-89	A-90	A-91	A-92	A-93				

Rla is CF3, Rlb is Cl, and W is N

Α	Δ	A	Δ	A	A	<u>A</u>	A	<u>A</u>	A	Δ	Δ
A-1	A-2	A-3	A-4	A-5	A-6	A-7	A-8	A- 9	A-10	A-11	A-12
A-13	A-14	A-15	A-16	A-17	A-18	A-19	A-20	A-21	A-22	A-23	A-24
A-25	A-26	A-27	A-28	A-29	A-30	A-31	A-32	A-33	A-34	A-35	A-36
A-37	A-38	A-39	A-40	A-41	A-42	A-43	A-44	A-45	A-46	A-47	A-48
A-49	A-50	A-51	A-52	A-53	A-54	A-55	A-56	A-57	A-58	A-59	A-60
A-61	A-62	A-63	A-64	A-65	A-66	A-67	A-68	A-69	A-70	A-71	A-72
A-73	A-74	A-75	A-76	A-77	A-78	A-79	A-80	A-81	A-82	A-83	A-84
A-85	A-86	A-87	A-88	A-89	A-90	A-91	A-92	A-93			

Rla is CF₃, Rlb is Cl, and W is CH

Δ	<u>A</u>	Α	A	A	Α	A	Δ	A	A	<u>A</u>	<u>A</u>
A-I	A-2	A-3	A-4	A -5	A-6	A-7	A-8	A-9	A-10	A-11	A-12
A-13	A-14	A-15	A-16	A-17	A-18	A-19	A-20	A-21	A-22	A-23	A-24
A-25	A-26	A-27	A-28	A-29	A-30	A-31	A-32	A-33	A-34	A-35	A-36
A-37	A-38	A-39	A-40	A-41	A-42	A-43	A-44	A-45	A-46	A-47	A-48
A-49	A-50	A-51	A-52	A-53	A-54	A-55	A-56	A-57	A-58	A-59	A-60
A-61	A-62	A-63	A-64	A-65	A-66	A-67	A-68	A-69	A-70	A-71	A-72
A-73	A-74	A-75	A-76	A-77	A-78	A-79	A-8 0	A-81	A-82	A-83	A-84
A-85	A-86	A-87	A-88	A-89	A-90	A-91	A-92	A-93			

Rla is Cl, Rlb is Cl, and W is N

<u>A</u>	<u>A</u>	A	Α	A	A	A	A	A	<u>A</u>	A	A
A-1	A-2	A-3	A-4	A-5	A-6	A-7	A-8	A-9	A-10	A-11	A-12
A-13	A-14	A-15	A-16	A-17	A-18	A-19	A-20	A-21	A-22	A-23	A-24
A-25	A-26	A-27	A-28	A-29	A-30	A-31	A-32	A-33	A-34	A-35	A-36
A-37	A-38	A-39	A-40	A-41	A-42	A-43	A-44	A-45	A-46	A-47	A-48
A-49	A-50	A-51	A-52	A-53	A-54	A-55	A-56	A-57	A-58	A-59	A-60
A-61	A-62	A-63	A-64	A-65	A-66	A-67	A-68	A-69	A-70	A-71	A-72

97

A-73	A-74	A-75	A-76	A-77	A-78	A-79	A-80	A-81	A-82	A-83	A-84
A-85	A-86	A-87	A-88	A-89	A-90	A-91	A-92	A-93			

R^{1a} is Cl, R^{1b} is Cl, and W is CH

Α	A	A	A	A	Δ	Α	Δ	Α	Α	<u>A</u>	Α
A-1	A-2	A-3	A-4	A-5	A-6	A-7	A-8	A-9	A-10	A-11	A-12
A-13	A-14	A-15	A-16	A-17	A-18	A-19	A-20	A-21	A-22	A-23	A-24
A-25	A-26	A-27	A-28	A-29	A-30	A-31	A-32	A-33	A-34	A-35	A-36
A-37	A-38	A-39	A-40	A-41	A-42	A-43	A-44	A-45	A-46	A-47	A-48
A-49	A-50	A-51	A-52	A-53	A-54	A-55	A-56	A-57	A-58	A-59	A-60
A-61	A-62	A-63	A-64	A-65	A-66	A-67	A-68	A-69	A-70	A-71	A-72
A-73	A-74	A-75	A-76	A-77	A-78	A-79	A-80	A-81	A-82	A-83	A-84
A-85	A-86	A-87	A-88	A-89	A-90	A-91	A-92	A-93			

R^{1a} is CH₃, R^{1b} is SO₂CH₃, and W is N

Δ	A	Δ	<u>A</u>	A	A	A	A	<u>A</u> _	A	Α	Α
A-1	A-2	A-3	A-4	A-5	A-6	A-7	A-8	A-9	A-10	A-11	A-12
A-13	A-14	A-15	A-16	A-17	A-18	A-19	A-20	A-21	A-22	A-23	A-24
A-25	A-26	A-27	A-28	A-29	A-30	A-31	A-32	A-33	A-34	A-35	A-36
A-37	A-38	A-39	A-40	A-41	A-42	A-43	A-44	A-45	A-46	A-47	A-48
A-49	A-50	A-51	A-52	A-53	A-54	A-55	A-56	A-57	A-58	A-59	A-60
A-61	A-62	A-63	A-64	A-65	A-66	A-67	A-68	A-69	A-70	A-71	A-72
A-73	A-74	A-75	A-76	A-77	A-78	A-79	A-80	A-81	A-82	A-83	A-84
A-85	A-86	A-87	A-88	A-89	A-90	A-91	A-92	A-93			

R1a is CH3, R1b is SO2CH3, and W is CH

A	A	Α	Α	Δ	A	<u>A</u>	A	A	A	A	_ <u>A</u>
A-1	A-2	A-3	A-4	A-5	A-6	A-7	A-8	A-9	A-10	A-11	A-12
A-13	A-14	A-15	A-16	A-17	A-18	A-19	A-20	A-21	A-22	A-23	A-24
A-25	A-26	A-27	A-28	A-29	A-30	A-31	A-32	A-33	A-34	A-35	A-36
A-37	A-38	A-39	A-40	A-41	A-42	A-43	A-44	A-45	A-46	A-47	A-48
A-49	A-50	A-51	A-52	A-53	A-54	A-55	A-56	A-57	A-58	A-59	A-60
A-61	A-62	A-63	A-64	A-65	A-66	A-67	A-68	A-69	A-70	A-71	A-72
A-73	A-74	A-75	A-76	A-77	A-78	A-79	A-80	A-81	A-82	A-83	A-84
A-85	A-86	A-87	A-88	A-89	A-90	A-91	A-92	A-93			

98

TABLE 17

W is CH

Δ	A	Α	Α	Δ	Α	Α	A	<u>A</u>	<u>A</u>	Δ	A
A-1	A-2	A-3	A-4	A-5	A-6	A-7	A-8	A-9	A-10	A-11	A-12
A-13	A-14	A-15	A-16	A-17	A-18	A-19	A-20	A-21	A-22	A-23	A-24
A-25	A-26	A-27	A-28	A-29	A-30	A-31	A-32	A-33	A-34	A-35	A-36
A-37	A-38	A-39	A-40	A-41	A-42	A-43	A-44	A-45	A-46	A-47	A-48
A-49	A-50	A-51	A-52	A-53	A-54	A-55 -	A-56	A-57	A-58	A-59	A-60
A-61	A-62	A-63	A-64	A-65	A-66	A-67	A-68	A-69	A-70	A-71	A-72
A-73	A-74	A-75	A-76	A-77	A-78	A-79	A-80	A-81	A-82	A-83	A-84
A-85	A-86	A-87	A-88	A-89	A-90	A-91	A-92	A-93			

W is N

Δ	<u>A</u>	A	A	Α	A	Α	Δ	Α	A	Δ	Δ
A-1	A-2	A-3	A-4	A-5	A-6	A-7	A-8	A-9	A-10	A-11	A-12
A-13	A-14	A-15	A-16	A-17	A-18	A-19	A-20	A-21	A-22	A-23	A-24
A-25	A-26	A-27	A-28	A-29	A-30	A-31	A-32	A-33	A-34	A-35	A-36
A-37	A-38	A-39	A-40	A-41	A-42	A-43	A-44	A-45	A-46	A-47	A-48
A-49	A-50	A-51	A-52	A-53	A-54	Λ-55	A-56	A-57	A-58	A-59	A-60
A-61	A-62	A-63	A-64	A-65	A-66	A-67	A-68	A-69	A-70	A-71	A-72
A-73	A-74	A-75	A-76	A-77	A-78	A-79	A-80	A-81	A-82	A-83	A-84
A-85	A-86	A-87	A-88	A-89	A-90	A-91	A-92	A-93			

99

TABLE 18

W is CH

44 12	<u> </u>										
Α	Δ	<u>A</u>	A	Α	A	A	Δ	Α	<u>A</u>	Α	Α
A-1	A-2	A-3	A-4	A-5	A-6	A-7	A-8	A -9	A-10	A-11	A-12
A-13	A-14	A-15	A-16	A-17	A-18	A-19	A-20	A-21	A-22	A-23	A-24
A-25	A-26	A-27	A-28	A-29	A-30	A-31	A-32	A-33	A-34	A-35	A-36
A-37	A-38	A-39	A-40	A-41	A-42	A-43	A-44	A-45	A-46	A-47	A-48
A-49	A-50	A-51	A-52	A-53	A-54	A-55	A-56	A-57	A-58	A-59	A-60
A-61	A-62	A-63	A-64	A-65	A-66	A-67	A-68	A-69	A-70	A-71	A-72
A-73	A-74	A-75	A-76	A-77	A-78	A-79	A-80	A-81	A-82	A-83	A-84
A-85	A-86	A-87	A-88	A-89	A-90	A-91	A-92	A-93			

W is N

Δ	A	Δ	A	<u>A</u>	<u>A</u>	Δ	<u>A</u>	Α	Δ	Α	A
A-i	A-2	A-3	A-4	A -5	A- 6	A- 7	A-8	A-9	A-10	A-11	A-12
A-13	A-14	A-15	A-16	A-17	A-18	A-19	A-20	A-21	A-22	A-23	A-24
A-25	A-26	A-27	A-28	A-29	A-30	A-31	A-32	A-33	A-34	A-35	A-36
A-37	A-38	A-39	A-40	A-41	A-42	A-43	A-44	A-45	A-46	A-47	A-48
A-49	A-50	A-51	A-52	A-53	A-54	A-55	A-56	A-57	A-58	A-59	A-60
A-61	A-62	A-63	A-64	A-65	A-66	A-67	A-68	A-69	A-70	A-71	A-72
A-73	A-74	A-75	A-76	A-77	A-78	A-79	A-80	A-81	A-82	A-83	A-84
A-85	A-86	A-87	A-88	A-89	A-90	A-91	A-92	A-93			

WO 97/46530

100

TABLE 19

W is CH

A	A	A	A	Α	<u>A</u>	A	A	A	A	A	Α
A-1	A-2	A-3	A-4	A-5	A-6	A-7	A-8	A-9	A-10	A-11	A-12
A-13	A-14	A-15	A-16	A-17	A-18	A-19	A-20	A-21	A-22	A-23	A-24
A-25	A-26	A-27	A-28	A-29	A-30	A-31	A-32	A-33	A-34	A-35	A-36
A-37	A-38	A-39	A-40	A-41	A-42	A-43	A-44	A-45	A-46	A-47	A-48
A-49	A-50	A-51	A-52	A-53	A-54	A-55	A-56	A-57	A-58	A-59	A-60
A-61	A-62	A-63	A-64	A-65	A-66	A-67	A-68	A-69	A-70	A-71	A-72
A-73	A-74	A-75	A-76	A-77	A-78	A-79	A-80	A-81	A-82	A-83	A-84
A-85	A-86	A-87	A-88	A-89	A-90	A-91	A-92	A-93			

W is N

A	A	A	Α	A	Α	A	A	A	A	Α	Α
A-1	A-2	A-3	A-4	A-5	A-6	A-7	A-8	A-9	A-10	A-11	A-12
A-13	A-14	A-15	A-16	A-17	A-18	A-19	A-20	A-21	A-22	A-23	A-24
A-25	A-26	A-27	A-28	A-29	A-30	A-31	A-32	A-33	A-34	A-35	A-36
A-37	A-38	A-39	A-40	A-41	A-42	A-43	A-44	A-45	A-46	A-47	A-48
A-49	A-50	A-51	A-52	A-53	A-54	A-55	A-56	A-57	A-58	A-59	A-60
A-61	A-62	A-63	A-64	A-65	A-66	A-67	A-68	A-69	A-70	A-71	A-72
A-73	A-74	A-75	A-76	A-77	A-78	A-79	A-80	A-81	A-82	A-83	A-84
A-85	A-86	A-87	A-88	A-89	A-90	A-91	A-92	A-93			

101

TABLE 20

W is CH

77 10 1											
<u>A</u>	<u>A</u>	<u>A</u>	Δ	A	Α	Α	A	Α	<u>A</u>	<u>A</u>	Δ_
A-1	A-2	A-3	A-4	A-5	A-6	A-7	A-8	A-9	A-10	A-11	A-12
A-13	A-14	A-15	A-16	A-17	A-18	A-19	A-20	A-21	A-22	A-23	A-24
A-25	A-26	A-27	A-28	A-29	A-30	A-31	A-32	A-33	A-34	A-35	A-36
A-37	A-38	A-39	A-40	A-41	A-42	A-43	A-44	A-45	A-46	A-47	A-48
A-49	A-50	A-51	A-52	A-53	A-54	A-55	A-56	A-57	A-58	A-59	A-60
A-61	A-62	A-63	A-64	A-65	A-66	A-67	A-68	A-69	A-70	A-71	A-72
A-73	A-74	A-75	A-76	A-77	A-78	A-79	A-80	A-81	A-82	A-83	A-84
A-85	A-86	A-87	A-88	A-89	A-90	A-91	A-92	A-93			

W is N

Δ	A	<u>A</u>	A	<u>A</u>	A	A	<u>A</u>	<u>A</u>	<u>A</u>	Δ	<u>A</u>
A-I	A-2	A-3	A-4	A-5	A-6	A-7	A-8	A-9	A-10	A-11	A-12
A-13	A-14	A-15	A-16	A-17	A-18	A-19	A-20	A-21	A-22	A-23	A-24
A-25	A-26	A-27	A-28	A-29	A-30	A-31	A-32	A-33	A-34	A-35	A-36
A-37	A-38	A-39	A-40	A-41	A-42	A-43	A-44	A-45	A-46	A-47	A-48
A-49	A-50	A-51	A-52	A-53	A-54	A-55	A-56	A-57	A-58	A-59	A-60
A-61	A-62	A-63	A-64	A-65	A-66	A-67	A-68	A-69	A-70	A-71	A-72
A-73	A-74	A-75	A-76	A-77	A-78	A-79	A-80	A-81	A-82	A-83	A-84
A-85	A-86	A-87	A-88	A-89	A-90	A-91	A-92	A-93			

Formulation/Utility

5

Compounds of this invention will generally be used as a formulation or composition with an agriculturally suitable carrier comprising at least one of a liquid diluent, a solid diluent or a surfactant. The formulation or composition ingredients are selected to be consistent with the physical properties of the active ingredient, mode of application and environmental factors such as soil type, moisture and temperature. Useful formulations include liquids such as solutions (including emulsifiable concentrates), suspensions,

102

emulsions (including microemulsions and/or suspoemulsions) and the like which optionally can be thickened into gels. Useful formulations further include solids such as dusts, powders, granules, pellets, tablets, films, and the like which can be water-dispersible ("wettable") or water-soluble. Active ingredient can be (micro)encapsulated and further formed into a suspension or solid formulation; alternatively the entire formulation of active ingredient can be encapsulated (or "overcoated"). Encapsulation can control or delay release of the active ingredient. Sprayable formulations can be extended in suitable media and used at spray volumes from about one to several hundred liters per hectare. High-strength compositions are primarily used as intermediates for further formulation.

The formulations will typically contain effective amounts of active ingredient, diluent and surfactant within the following approximate ranges which add up to 100 percent by weight.

		Weight Percent	
	Active Ingredient	Diluent	Surfactant
Water-Dispersible and Water-soluble Granules, Tablets and Powders.	5-90	0–94	1–15
Suspensions, Emulsions, Solutions (including Emulsifiable Concentrates)	5–50	40–95	0–15
Dusts Granules and Pellets	1–25 0.01–99	70–99 5–99.99	0-5 0-15
High Strength Compositions	90–99	0-10	0–2

10

15

20

25

Typical solid diluents are described in Watkins, et al., Handbook of Insecticide Dust Diluents and Carriers, 2nd Ed., Dorland Books, Caldwell, New Jersey. Typical liquid diluents are described in Marsden, Solvents Guide, 2nd Ed., Interscience, New York, 1950. McCutcheon's Detergents and Emulsifiers Annual, Allured Publ. Corp., Ridgewood, New Jersey, as well as Sisely and Wood, Encyclopedia of Surface Active Agents, Chemical Publ. Co., Inc., New York, 1964, list surfactants and recommended uses. All formulations can contain minor amounts of additives to reduce foam, caking, corrosion, microbiological growth and the like, or thickeners to increase viscosity.

Surfactants include, for example, polyethoxylated alcohols, polyethoxylated alkylphenols, polyethoxylated sorbitan fatty acid esters, dialkyl sulfosuccinates, alkyl sulfates, alkylbenzene sulfonates, organosilicones, N,N-dialkyltaurates, lignin sulfonates, naphthalene sulfonate formaldehyde condensates, polycarboxylates, and polyoxyethylene/polyoxypropylene block copolymers. Solid diluents include, for example, clays such as bentonite, montmorillonite, attapulgite and kaolin, starch, sugar, silica, talc, diatomaceous earth, urea, calcium carbonate, sodium carbonate and bicarbonate, and sodium sulfate. Liquid diluents include, for example, water, N,N-dimethylformamide, dimethyl

103

sulfoxide, N-alkylpyrrolidone, ethylene glycol, polypropylene glycol, paraffins, alkylbenzenes, alkylnaphthalenes, oils of olive, castor, linseed, tung, sesame, corn, peanut, cotton-seed, soybean, rape-seed and coconut, fatty acid esters, ketones such as cyclohexanone, 2-heptanone, isophorone and 4-hydroxy-4-methyl-2-pentanone, and alcohols such as methanol, cyclohexanol, decanol and tetrahydrofurfuryl alcohol.

Solutions, including emulsifiable concentrates, can be prepared by simply mixing the ingredients. Dusts and powders can be prepared by blending and, usually, grinding as in a hammer mill or fluid-energy mill. Suspensions are usually prepared by wet-milling; sec, for example, U.S. 3,060,084. Granules and pellets can be prepared by spraying the active material upon preformed granular carriers or by agglomeration techniques. See Browning, "Agglomeration", Chemical Engineering, December 4, 1967, pp 147-48, Perry's Chemical Engineer's Handbook, 4th Ed., McGraw-Hill, New York, 1963, pages 8-57 and following, and WO 91/13546. Pellets can be prepared as described in U.S. 4,172,714. Water-dispersible and water-soluble granules can be prepared as taught in U.S. 4,144,050, U.S. 3,920,442 and DE 3,246,493. Tablets can be prepared as taught in U.S. 5,180,587, U.S. 5,232,701 and U.S. 5,208,030. Films can be prepared as taught in GB 2,095,558 and U.S. 3,299,566.

For further information regarding the art of formulation, see U.S. 3,235,361, Col. 6, line 16 through Col. 7, line 19 and Examples 10-41; U.S. 3,309,192, Col. 5, line 43 through Col. 7, line 62 and Examples 8, 12, 15, 39, 41, 52, 53, 58, 132, 138-140, 162-164, 166, 167 and 169-182; U.S. 2,891,855, Col. 3, line 66 through Col. 5, line 17 and Examples 1-4; Klingman, Weed Control as a Science, John Wiley and Sons, Inc., New York, 1961, pp 81-96; and Hance et al., Weed Control Handbook, 8th Ed., Blackwell Scientific Publications, Oxford, 1989.

In the following Examples, all percentages are by weight and all formulations are prepared in conventional ways. Compound numbers refer to compounds in Index Tables A-C.

Example A

High Strength Concentrate

5

10

15

20

25

30	Compound 1	98.5%
	silica aerogel	0.5%
	synthetic amorphous fine silica	1.0%.

104

Example B

	Example B	
	Wettable Powder	
	Compound 15	65.0%
	dodecylphenol polyethylene glycol ether	2.0%
5	sodium ligninsulfonate	4.0%
	sodium silicoaluminate	6.0%
	montmorillonite (calcined)	23.0%.
	Example C	
	Granule	
10	Compound 25	10.0%
	attapulgite granules (low volatile matter,	
	0.71/0.30 mm; U.S.S. No. 25-50 sieves)	90.0%.
	Example D	
	Extruded Pellet	
15	Compound 26	25.0%
	anhydrous sodium sulfate	10.0%
	crude calcium ligninsulfonate	5.0%
	sodium alkylnaphthalenesulfonate	1.0%
	calcium/magnesium bentonite	59.0%.

20

25

30

35

Test results indicate that the compounds of the present invention are highly active preemergent and postemergent herbicides or plant growth regulants. Many of them have utility for broad-spectrum pre- and/or postemergence weed control in areas where complete control of all vegetation is desired such as around fuel storage tanks, industrial storage areas, parking lots, drive-in theaters, air fields, river banks, irrigation and other waterways, around billboards and highway and railroad structures. Some of the compounds are useful for the control of selected grass and broadleaf weeds with tolerance to important agronomic crops which include but are not limited to alfalfa, barley, cotton, wheat, rape, sugar beets, corn (maize), sorghum, soybeans, rice, oats, peanuts, vegetables, tomato, potato, perennial plantation crops including coffee, cocoa, oil palm, rubber, sugarcane, citrus, grapes, fruit trees, nut trees, banana, plantain, pineapple, hops, tea and forests such as eucalyptus and conifers (e.g., loblolly pine), and turf species (e.g., Kentucky bluegrass, St. Augustine grass, Kentucky fescue and Bermuda grass). Those skilled in the art will appreciate that not all compounds are equally effective against all weeds. Alternatively, the subject compounds are useful to modify plant growth.

A herbicidally effective amount of the compounds of this invention is determined by a number of factors. These factors include: formulation selected, method of application, amount and type of vegetation present, growing conditions, etc. In general, a herbicidally effective amount of compounds of this invention is 0.001 to 20 kg/ha with a preferred range

10

15

20

25

30

35

of 0.004 to 1.0 kg/ha. One skilled in the art can easily determine the herbicidally effective amount necessary for the desired level of weed control.

Compounds of this invention can be used alone or in combination with other commercial herbicides, insecticides or fungicides. Compounds of this invention can also be used in combination with commercial herbicide safeners such as benoxacor, dichlormid and furilazole to increase safety to certain crops. A mixture of one or more of the following herbicides with a compound of this invention may be particularly useful for weed control: acetochlor, acifluorfen and its sodium salt, aclonifen, acrolein (2-propenal), alachlor, ametryn, amidosulfuron, amitrole, ammonium sulfamate, anilofos, asulam, atrazine. azafenidin, azimsulfuron, benazolin, benazolin-ethyl, benfluralin, benfuresate, bensulfuron-methyl, bensulide, bentazone, bifenox, bispyribac and its sodium salt, bromacil. bromoxynil, bromoxynil octanoate, butachlor, butralin, butroxydim (ICIA0500), butylate. caloxydim (BAS 620H), carfentrazone-ethyl, chlomethoxyfen, chloramben, chlorbromuron. chloridazon, chlorimuron-ethyl, chlornitrofen, chlorotoluron, chlorpropham, chlorsulfuron, chlorthal-dimethyl, cinmethylin, cinosulfuron, clethodim, clomazone, clopyralid, clopyralid-olamine, cyanazine, cycloate, cyclosulfamuron, 2,4-D and its butotyl, butyl, isoctyl and isopropyl esters and its dimethylammonium, diolamine and trolamine salts, daimuron, dalapon, dalapon-sodium, dazomet, 2,4-DB and its dimethylammonium, potassium and sodium salts, desmedipham, desmetryn, dicamba and its diglycolammonium. dimethylammonium, potassium and sodium salts, dichlobenil, dichlorprop, diclofop-methyl. 2-[4.5-dihydro-4-methyl-4-(1-methylethyl)-5-oxo-1H-imidazol-2-yl]-5-methyl-3pyridinecarboxylic acid (AC 263,222), difenzoquat metilsulfate, diflufenican, dimepiperate, dimethenamid, dimethylarsinic acid and its sodium salt, dinitramine, diphenamid, diquat dibromide, dithiopyr, diuron, DNOC, endothal, EPTC, esprocarb, ethalfluralin, ethametsulfuron-methyl, ethofumesate, ethoxysulfuron, fenoxaprop-ethyl. fenoxaprop-P-ethyl, fenuron, fenuron-TCA, flamprop-methyl, flamprop-M-isopropyl, flamprop-M-methyl, flazasulfuron, fluazifop-butyl, fluazifop-P-butyl, fluchloralin. flumetsulam, flumiclorac-pentyl, flumioxazin, fluometuron, fluoroglycofen-ethyl, flupoxam, flupyrsulfuron-methyl and its sodium salt, fluridone, flurochloridone, fluroxypyr, fluthiacet-methyl, formesafen, fosamine-ammonium, glufosinate, glufosinate-ammonium, glyphosate, glyphosate-isopropylammonium, glyphosate-sesquisodium, glyphosate-trimesium, halosulfuron-methyl, haloxyfop-etotyl, haloxyfop-methyl, hexazinone, imazamethabenz-methyl, imazamox, imazapyr, imazaquin. imazaquin-ammonium, imazethapyr, imazethapyr-ammonium, imazosulfuron, ioxynil, ioxynil octanoate, ioxynil-sodium, isoproturon, isoxaben, isoxaflutole, lactofen, lenacil, linuron, maleic hydrazide, MCPA and its dimethylammonium, potassium and sodium salts, MCPA-isoctyl, mecoprop, mecoprop-P, mefenacet, mefluidide, metam-sodium, methabenzthiazuron, methylarsonic acid and its calcium, monoammonium, monosodium and

106

disodium salts, methyl [[[1-[5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-nitrophenyl]-2methoxyethylidene]amino]oxy]acetate (AKH-7088), methyl 5-[[[[(4.6-dimethyl-2pyrimidinyl)amino]carbonyl]amino]sulfonyl]-1-(2-pyridinyl)-1H-pyrazole-4-carboxylate (NC-330), metobenzuron, metolachlor, metosulam, metoxuron, metribuzin. metsulfuron-methyl, molinate, monolinuron, napropamide, naptalam, neburon, nicosulfuron, 5 norflurazon, oryzalin, oxadiazon, oxasulfuron, oxyfluorfen, paraquat dichloride, pebulate. pendimethalin, pentoxazone (KPP-314), perfluidone, phenmedipham, picloram. picloram-potassium, pretilachlor, primisulfuron-methyl, prometon, prometryn, propachlor, propanil, propaguizafop, propazine, propham, propyzamide, prosulfuron, pyrazolynate. pyrazosulfuron-ethyl, pyridate, pyriminobac-methyl, pyrithiobac, pyrithiobac-sodium. 10 quinclorac, quizalofop-ethyl, quizalofop-P-ethyl, quizalofop-P-tefuryl, rimsulfuron. sethoxydim, siduron, simazine, sulcotrione (ICIA0051), sulfentrazone, sulfometuron-methyl. TCA, TCA-sodium, tebuthiuron, terbacil, terbuthylazine, terbutryn, thenylchlor, thiafluamide (BAY 11390), thifensulfuron-methyl, thiobencarb, tralkoxydim, tri-allate, triasulfuron. 15 triaziflam, tribenuron-methyl, triclopyr, triclopyr-butotyl, triclopyr-triethylammonium. tridiphane, trifluralin, triflusulfuron-methyl, and vernolate.

In certain instances, combinations with other herbicides having a similar spectrum of control but a different mode of action will be particularly advantageous for preventing the development of resistant weeds.

20

25

30

Preferred for better control of undesired vegetation (e.g., lower use rate, broader spectrum of weeds controlled, or enhanced crop safety) or for preventing the development of resistant weeds are mixtures of a compound of this invention with a herbicide selected from the group nicosulfuron, rimsulfuron, nicosulfuron in combination with rimsulfuron, imazethapyr, sethoxydim, glyphosate, and glufosinate.

The following Tests demonstrate the control efficacy of the compounds of this invention against specific weeds. The weed control afforded by the compounds is not limited, however, to these species. See Index Tables A-D for compound descriptions. The abbreviation "dec." indicates that the compound appeared to decompose on melting. The abbreviation "Ex." stands for "Example" and is followed by a number indicating in which example the compound is prepared.

107 INDEX TABLE A

$$\mathbb{R}^{4a}$$
 \mathbb{R}^{3} \mathbb{R}^{1} \mathbb{R}^{1}

Cmpd	R ^{4a}	R4b	<u>R</u> 3	<u>R</u> 1	$\underline{\mathbf{w}}$	<u>A</u>	m.p. (°C)
1	Н	Н	ОН	Cl	CH	4-pyridyl	oil*
2	CH ₃	CH ₃	O-Et3NH+	Cl	CH	4-pyridyl	oil*
3	CH ₃	CH ₃	ОН	Cl	CH	4-pyridyl	oil*
4	CH ₃	Н	O-Et3NH+	Cl	CH	4-pyridyl	oil*
5	CH ₃	Н	OH	Cl	CH	4-pyridyl	oil*
6	H	Н	O-E13NH+	Cl ·	CH	3-CF ₃ -1 <i>H</i> -pyrazol-1-yl	oil*
7	Н	Н	OH	Cl	CH	3-CF ₃ -1 <i>H</i> -pyrazol-1-yl	97-108
8	H	Н	O-Et3NH+	CI	CH	4-pyridyl	oil*
9	Н	Н	O-Et3NH+	Cl	CH	2-pyridyl	oil*
10	Н	Н	O-Et3NH+	CH ₃	CH	2-thiazolyl	oil*
11	Н	Н	ОН	CH ₃	СН	2-thiazolyl	oil*
12	н	Н	O-Et3NH+	Cl	СН	3-pyridyl	oil*
13	н	н	ОН	Cl	СН	3-pyridyl	110-115

^{*}See Index Table D for ¹H NMR data.

108

INDEX TABLE B

$$\mathbb{R}^{4a} \xrightarrow{\mathbb{R}^{4b}} \mathbb{R}^{3} \xrightarrow{\mathbb{R}^{1}} \mathbb{R}^{1}$$

Cmpd	<u>R^{4a}</u>	<u>R^{4b}</u>	<u>R³</u>	<u>R¹</u>	<u>w</u>	A	m.p. (°C)
14	H	Н	O-Et3NH+	CF ₃	N	4-pyridyl	oil*
15 (Ex. 3)	H	Н	ОН	CF ₃	N	4-pyridyl	137-145
19	H	Н	O-Et3NH+	(CH ₃) ₂ CHCH ₂ CH ₂	N	4-pyridyl	oil*
20	Н	Н	ОН	CF ₃	N	2-pyridyl	126-131
21	CH ₃	CH ₃	ОН	CF ₃	N	2-pyridyl	oil*
22	H	H	OH	CF ₃	N	3-pyridyl	oil*
23 (Ex. 2)	H	H	ОН	н	СН	3-CF ₃ -1 <i>H</i> -	141-143
						pyrazol-1-yl	
24	H	Н	OH	CF ₃	CH	3-CF ₃ -1H-	123-126
						pyrazol-1-yl	

^{*}See Index Table D for ¹H NMR data.

INDEX TABLE C

Cmpd No.	<u>Structure</u>	<u>m.p. (°C)</u>
25 (Ex. 1)	CH ₃	93 (dec.)
	CH ₃	
	OH CH ₃ O O	

109

26 CH₃ N-N oil*

27 CH₃ oil*

28 CH₃ CH₂CH₃ 90-91

29 O C O OII*

30 CF₃ 218-220

^{*}See Index Table D for ¹H NMR data.

110

INDEX TABLE D

Cmpd No.	¹ H NMR Data (CDCl ₃ solution unless indicated otherwise) ^a
1	δ 9.7 (m, 2H), 7.63 (m, 2H), 7.62 (m, 1H), 7.6 (s, 1H), 7.37 (m, 1H), 2.8 (m,
	2H), 2.5 (m, 2H), 2.08 (m, 2H).
2	δ 8.65 (d, 2H), 7.6 (d, 1H), 7.5 (m, 3H), 7.27 (m, 1H), 3.13 (m, 6H), 2.32 (s,
	4H), 1.3 (m, 9H), 1.04 (s, 6H).
3	δ 8.8 (m, 2H), 7.84 (m, 2H), 7.69 (m, 2H), 7.38 (d, 1H), 2.4 (m, 2H), 1.2 (m,
	2H), 1.04 (d, 6H).
4	δ 8.62 (d, 2H), 7.6 (s, 1H), 7.5 (m, 3H), 7.28 (d, 1H), 3.17 (m, 6H), 2.5 (d,
	2H), 2.2 (d, 1H), 1.7 (m, 1H), 1.31 (m, 9H), 1.03 (d, 3H).
5	δ 8.72 (m, 2H), 7.65 (m, 3H), 7.5 (d, 1H), 7.3 (d, 1H), 2.6-2.0 (m, 4H), 1.6
	(m, 1H), 1.13 (d, 6H).
6	δ 7.9 (s, 1H), 7.7 (s, 1H), 7.5 (d, 1H), 7.28 (d, 1H), 6.8 (s, 1H), 3.18 (m,
	6H), 2.42 (m, 4H), 1.98 (m, 2H), 1.29 (m, 9H).
8	δ 8.63 (d, 2H), 7.48 (s, 1H), 7.46 (m, 3H), 7.2 (d, 1H), 3.15 (m, 6H), 2.43
	(m, 4H), 1.98 (m, 2H), 1.29 (m, 9H).
9	δ 8.7 (m, 1H), 8.0 (s, 1H), 7.8 (d, 1H), 7.72 (m, 1H), 7.70 (m, 1H), 7.26 (m,
	1H), 3.14 (m, 6H), 2.45 (m, 4H), 1.99 (m, 2H), 1.26 (m, 9H).
10	δ 7.8 (d, 1H), 7.77 (s, 1H), 7.6 (d, 1H), 7.3 (m, 1H), 7.18 (d, 1H), 3.09 (m,
	6H), 2.45 (m, 4H), 2.34 (s, 3H), 1.99 (m, 2H), 1.26 (m, 9H).
11	δ 7.88 (m, 2H), 7.85 (m, 1H), 7.33 (s, 1H), 7.16 (d, 1H), 2.71 (m, 2H), 2.4
	(m, 2H), 2.33 (s, 3H), 2.0 (m, 2H).
12	δ 8.8 (s, 1H), 8.6 (d, 1H), 7.8 (dd, 1H), 7.5 (s, 1H), 7.4 (d, 1H), 7.35 (m,
	1H), 7.24 (d, 1H), 3.21 (m, 6H), 2.45 (m, 4H), 1.99 (m, 2H), 1.28 (m, 9H).
14	δ 8.6 (d, 1H), 8.55 (d, 1H), 7.8 (d, 1H), 7.5 (m, 3H), 3.0 (m, 6H), 2.33 (m,
	4H), 1.8 (m, 2H), 1.16 (m, 9H).
19	δ 8.6 (m, 2H), 7.7 (m, 1H), 7.65 (m, 1H), 7.5 (m, 1H), 7.2 (m, 1H), 2.95 (m,
	6H), 2.9 (m, 1H), 2.3 (m, 2H), 1.6 (m, 2H), 1.13 (m, 9H), 0.95 (m, 6H).
21	δ 8.47 (m, 1H), 8.44 (m, 1H), 7.8 (m, 1H), 7.73 (m, 1H), 7.7 (m, 1H), 7.25
	(m, 1H), 2.6 (m, 1H), 2.02 (m, 2H), 0.92 (m, 6H).
22	δ 8.6 (m, 2H), 8.0 (m, 1H), 7.77 (m, 1H), 7.6 (m, 1H), 7.4 (m, 1H), 3.2-1.8
	(m, 6H).
26	δ 7.57 (d, 1H), 7.1 (s, 1H), 6.1 (d, 1H), 3.67 (s, 3H), 3.2-2.1 (m, 10H), 1.73
27	(s, 3H), 1.29 (t, 3H), 1.13 (d, 3H).
27	δ 7.56 (d, 1H), 7.1 (s, 1H), 6.11 (d, 1H), 3.67 (s, 3H), 3.2-3.0 (m, 2H), 2.82
	(t, 2H), 2.74 (s, 3H), 2.42 (t, 2H), 2.14-2.0 (m, 2H), 1.74 (s, 3H), 1.29 (t, 2H)
	3H).

111

29 δ 8.7 (m, 2H), 7.7-7.4 (m, 5H), 7.09 (s, 1H), 3.9 (q, 2H), 3.24 (m, 6H), 1.35 (m, 12H).

a ¹H NMR data are in ppm downfield from tetramethylsilane. Couplings are designated by (s)-singlet, (d)-doublet, (dd)-doublet of doublets, (t)-triplet, (q)-quartet, (m)-multiplet.

BIOLOGICAL EXAMPLES OF THE INVENTION

TEST A

5

10

15

20

Seeds of barley (Hordeum vulgare), barnyardgrass (Echinochloa crus-galli), bedstraw (Galium aparine), blackgrass (Alopecurus myosuroides), chickweed (Stellaria media), cocklebur (Xanthium strumarium), corn (Zea mays), cotton (Gossypium hirsutum), crabgrass (Digitaria sanguinalis), downy brome (Bromus tectorum), giant foxtail (Setaria faberii), lambsquarters (Chenopodium album), morningglory (Ipomoea hederacea), rape (Brassica napus), rice (Oryza sativa), sorghum (Sorghum bicolor), soybean (Glycine max), sugar beet (Beta vulgaris), velvetleaf (Abutilon theophrasti), wheat (Triticum aestivum), wild buckwheat (Polygonum convolvulus), wild oat (Avena fatua) and purple nutsedge (Cyperus rotundus) tubers were planted and treated preemergence with test chemicals formulated in a non-phytotoxic solvent mixture which includes a surfactant.

At the same time, these crop and weed species were also treated with postemergence applications of test chemicals formulated in the same manner. Plants ranged in height from two to eighteen cm (one to four leaf stage) for postemergence treatments. Treated plants and controls were maintained in a greenhouse for twelve to sixteen days, after which all species were compared to controls and visually evaluated. Plant response ratings, summarized in Table A, are based on a scale of 0 to 10 where 0 is no effect and 10 is complete control. A dash (-) response means no test result.

Table A	COMPOUND	Table A	COMPOUND
Rate 2000 g/ha	27	Rate 1000 g/ha	20 21
Preemergence		Postemergence	
Barley	0	Barley	0 2
Barnyardgrass	0	Barnyardgrass	4 5
Bedstraw	0	Bedstraw	9 3
Blackgrass	0	Blackgrass	3 1
Chickweed	0	Chickweed	7 7
Cocklebur	0	Cocklebur	8 7
Corn	0	Corn	1 1
Cotton	0	Cotton	9 3
Crabgrass	0	Crabgrass	2 3
Downy brome	0	Downy brome	1 0
Giant foxtail	0	Giant foxtail	2 1
Lambsquarter	4	Lambsquarter	8 9
Morningglory	0	Morningglory	9 9
Nutsedge	0	Nutsedge	- 0
Rape	0	Rape	9 9
Rice	0	Rice	0 2
Sorghum	0	Sorghum	3 0
Soybean	0	Soybean	8 5
Sugar beet	0	Sugar beet	7 10
Velvetleaf	0	Velvetleaf	9 10
Wheat	0	Wheat	0 1
Wild buckwheat	0	Wild buckwheat	2 5
Wild oat	0	Wild oat	0 0

Table A	COMPOUND
Rate 1000 g/ha	20 21
Preemergence	
Barley	0 0
Barnyardgrass	0 0
Bedstraw	3 0
Blackgrass	1 0
Chickweed	3 5
Cocklebur	3 0
Corn	0 0
Cotton	2 0
Crabgrass	0 0
Downy brome	0 0
Giant foxtail	0 0
Lambsquarter	9 10
Morningglory	6 2
Nutsedge	0 0
Rape	3 5
Rice	0 0
Sorghum	0 0
Soybean	0 0
Sugar beet	8 10
Velvetleaf	8 7
Wheat	0 0
Wild buckwheat	0 0
Wild oat	0 0

Table A			COM	POU	ND															
Rate 400 g/ha	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	19	22	26	27	
Postemergence																				
Barley	2	8	8	5	5	0	0	3	1	0	0	5	8	0	1	0	10	0	0	
Barnyardgrass	9	10	10	10	10	10	10	9	6	8	9	9	9	9	10	6	10	9	1	
Bedstraw	6	8	8	9	6	7	6	8	9	9	9	8	7	9	8	6	10	-	0	
Blackgrass	3	6	6	2	3	1	2	1	2	2	4	3	5	0	3	0	10	2	0	
Chickweed	7	8	9	7	8	4	5	7	8	7	8	8	9	9	9	9	10	2	0	
Cocklebur	9	9	9	9	8	7	7	9	6	8	8	8	9	10	9	8	10	3	0	
Corn	4	6	5	3	3	0	3	3	1	2	1	3	2	0	0	0	10	1	1	
Cotton	10	6	4	7	8	4	5	10	9	8	9	10	9	9	10	8	9	3	1	
Crabgrass	9	10	9	9	10	5	5	9	3	5	8	9	9	3	5	3	10	5	0	
Downy brome	0	6	6	3	4	0	0	2	1	1	2	7	7	0	1	0	10	1	0	
Giant foxtail	9	7	7	8	8	3	0	8	2	4	6	9	9	3	3	2	9	4	0	
Lambsquarter	9	9	9	9	9	7	8	9	9	9	9	9	9	9	9	8	10	8	1	
Morningglory	9	9	9	7	7	5	7	9	9	9	9	9	9	9	10	9	10	3	1	
Nutsedge	3	-	-	-	-	-	-	2	0	-	3	2	5	7	8	-	8	0	0	
Rape	9	9	8	7	7	8	10	9	8	7	8	6	6	9	9	8	10	0	1	
Rice	9	9	9	9	9	2	0	8	2	5	9	8	10	4	4	0	9	4	0	
Sorghum	7	8	8	6	4	4	3	8	4	3	3	7	9	1	2	0	10	2	1	
Soybean	5	6	7	7	4	2	3	7	3	6	8	5	7	7	-	6	7	2	2	
Sugar beet	9	10	10	10	10	6	9	9	9	10	9	10	10	10	10	9	10	10	1	
Velvetleaf	10	8	9	9	9	8	9	10	10	10	10	10	10	10	10	16	0 10) 3	O)
Wheat	3	7	8	4	4	0	0	3	0	0	2	6	8	0	0	0	10	3	0	
Wild buckwheat	2	6	8	7	6	5	В	9	6	7	7	10	9	9	9	7	10	7	0	
Wild oat	3	8	9	4	6	7	0	4	3	4	5	4	5	0	0	0	10	3	0	

WO 97/46530

115

Table A		-	COM	POU	ND														
Rate 400 g/ha	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	19	22	26	27
Preemergence																			
Barley	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	5	0	0
Barnyardgrass	1	0	0	0	0	0	3	0	0	0	2	0	2	1	8	2	8	0	0
Bedstraw	-	0	5	0	0	0	0	0	0	0	4	0	1	6	7	0	9	-	0
Blackgrass	0	0	0	0	0	0	0	0	0	0	0	0	3	0	0	0	9	0	0
Chickweed	0	0	4	0	0	0	0	2	0	1	0	2	0	8	9	4	9	0	0
Cocklebur	0	0	0	0	0	-	6	0	6	0	0	0	0	6	В	0	10	0	0
Corn	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	5	0	0
Cotton	0	0	0	0	0	0	0	-	0	0	0	0	0	0	5	0	9	0	0
Crabgrass	7	9	3	3	4	6	4	6	0	1	0	5	4	3	3	0	10	0	0
Downy brome	0	0	0	0	0	0	0	3	0	0	0	0	3	0	3	0	9	0	0
Giant foxtail	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	2	2	0	0
Lambsquarter	7	9	9	9	9	6	5	9	8	7	8	9	9	10	10	В	10	6	0
Morningglory	0	0	0	0	0	0	0	2	0	0	0	0	2	7	8	0	10	0	0
Nutsedge	0	3	0	2	0	2	0	0	0	0	0	-	0	-	2	0	8	0	-
Rape	0	0	0	0	0	0	0	0	0	0	0	0	0	9	9	1	8	0	0
Rice	1	0	0	0	0	0	0	0	0	0	0	2	0	0	4	0	10	0	0
Sorghum	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	9	0	0
Soybean	0	0	0	0	0	0	0	3	0	0	0	0	0	0	3	0	9	0	0
Sugar beet	0	0	3	0	0	0	0	0	0	0	5	3	5	10	10	3	10	0	0
Velvetleaf	6	0	0	0	0	0	6	7	6	2	2	7	8	10	10	4	10	0	0
Wheat	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	8	0	0
Wild buckwheat	0	0	0	3	0	0	0	2	0	0	0	0	0	7	8	0	7	0	0
Wild oat	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	9	0	0

PCT/US97/09569

Table A		СОМЕ	POUI	ND	Table A		(COM	POU	ND
Rate 200 g/ha	20 2	L 23	24	25	Rate 200 g/ha	20	21	23	24	25
Postemergence					Preemergence					
Barley	0	9	9	10	Barley	0	0	1	2	0
Barnyardgrass	2	. 9	9	10	Barnyardgrass	0	0	9	10	9
Bedstraw	6	2 -	-	9	Bedstraw	0	0	8	5	8
Blackgrass	0	7	10	10	Blackgrass	0	0	2	4	2
Chickweed	4	7 9	9	9	Chickweed	0	0	9	9	9
Cocklebur	8 (10	10	9	Cocklebur	-	0	4	5	5
Corn	1 (4	8	9	Corn	0	0	0	2	0
Cotton	7 :	10	10	9	Cotton	0	0	0	7	4
Crabgrass	2 (9	9	10	Crabgrass	0	0	10	10	10
Downy brome	0 (9	9	9	Downy brome	0	0	7	10	6
Giant foxtail	1 () 9	9	10	Giant foxtail	0	0	3	6	8
Lambsquarter	8 (9	10	9	Lambsquarter	8	9	10	10	9
Morningglory	8 ′	9	10	9	Morningglory	1	0	3	6	3
Nutsedge	- (4	9	4	Nutsedge	-	-	0	0	7
Rape	4	10	10	10	Rape	0	0	5	7	8
Rice	0 (9	9	10	Rice	0	0	6	9	6
Sorghum	1 (9	9	10	Sorghum	0	0	7	9	3
Soybean	4 :	10	10	9	Soybean	0	0	5	9	4
Sugar beet	2 10	10	10	10	Sugar beet	0	0	10	10	10
Velvetleaf	9 8	10	7	9	Velvetleaf	1	2	9	10	10
Wheat	0 (9	9	10	Wheat	0	0	3	5	1
Wild buckwheat	2 4	9	8	9	Wild buckwheat	0	0	0	2	0
Wild oat	0 (10	10	10	Wild oat	0	0	8	7	8

WO 97/46530

117

PCT/US97/09569

Table A		(COMP	OUN	ĮD													
Rate 100 g/ha	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	19	22	26
Postemergence																		
Barley	1	5	4	0	0	0	0	2	0	0	0	2	1	0	0	0	9	0
Barnyardgrass	8	8	8	9	10	9	8	8	4	4	8	9	9	8	9	1	9	9
Bedstraw	4	7	6	8	4	2	3	6	8	8	7	6	7	8	7	2	9	0
Blackgrass	2	3	1	2	1	0	0	1	0	1	1	2	2	0	1	0	9	2
Chickweed	5	6	7	6	5	0	4	4	7	4	5	7	7	8	9	6	10	2
Cocklebur	5	9	7	3	7	5	6	5	5	6	4	6	7	9	9	7	10	2
Corn	3	4	3	0	1	0	0	1	1	1	1	1	0	0	0	0	5	0
Cotton	9	5	4	5	5	3	3	6	9	2	6	9	9	9	9	3	10	2
Crabgrass	7	9	8	9	6	3	5	7	2	2	6	9	9	2	2	0	9	1
Downy brome	0	3	3	1	2	0	0	1	0	0	1	4	4	0	1	0	9	0
Giant foxtail	3	4	4	4	6	1	0	6	1	2	4	8	7	1	1	2	5	2
Lambsquarter	6	9	9	9	7	7	5	9	8	8	8	9	8	9	9	6	10	7
Morningglory	8	8	8	6	5	2	3	9	9	9	9	8	9	9	10	7	10	2
Nutsedge	0	2	1	0	0	0	_	1	0	-	0	0	0	б	5	0	7	0
Rape	2	8	8	5	6	7	7	2	3	4	7	1	5	В	9	7	8	0
Rice	6	8	8	5	8	0	0	4	2	1	3	2	2	2	3	0	10	2
Sorghum	4	5	6	3	2	0	0	5	1	1	2	2	3	0	0	0	-	1
Soybean	3	5	5	5	4	2	2	3	2	2	6	3	5	5	4	3	9	2
Sugar beet	3	10	10	8	9	5	6	5	9	8	8	3	9	10	10	9	10	9
Velvetleaf	10	8	8	5	6	7	7	9	9	9	10	10	10	9	10	9	10	1
Wheat	2	5	1	0	2	0	0	2	0	0	0	4	5	0	0	0	9	0
Wild buckwheat	2	4	4	1	5	4	4	7	1	1	5	8	6	8	9	3	9	5
Wild oat	2	4	6	1	1	0	0	2	2	3	2	2	2	0	1	0	9	1

.

Table A		c	OME	POU	1D													
Rate 100 g/ha	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	19	22	26
Preemergence																		
Barley	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Barnyardgrass	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	2	9	0
Bedstraw	-	0	0	0	0	0	0	0	0	0	0	0	0	2	2	0	9	0
Blackgrass	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	8	0
Chickweed	0	0	2	0	0	0	0	0	0	1	0	0	0	7	9	0	9	0
Cocklebur	0	0	0	0	0	0	3	0	4	0	0	0	0	1	7	0	7	0
Corn	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Cotton	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	0
Crabgrass	2	0	0	0	0	0	1	2	0	0	0	0	2	0	1	0	10	0
Downy brome	0	0	0	0	0	Q	0	0	0	0	0	0	2	0	0	0	9	0
Giant foxtail	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Lambsquarter	6	8	8	7	7	0	0	9	0	4	6	0	8	10	10	8	10	4
Morningglory	0	0	0	0	0	-	0	0	0	0	0	0	0	6	2	0	8	0
Nutsedge	-	0	0	0	0	0	-	0	0	0	0	-	0	-	0	0	1	0
Rape	0	0	0	0	0	0	0	0	0	0	0	0	0	6	8	0	2	0
Rice	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	7	0
Sorghum	0	0	0	0	0	0	0	ø	0	0	0	0	0	0	0	0	6	0
Soybean	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	7	0
Sugar beet	0	0	0	0	0	0	0	0	0	0	0	0	2	10	10	0	10	0
Velvetleaf	0	0	0	0	0	0	0	6	3	0	0	0	3	9	10	4	10	0
Wheat	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Wild buckwheat	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	6	0
Wild oat	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	o

WO 97/46530

PCT/US97/09569

				1			
Table A	CON	POU	IND	Table A	COL	MPOU	JND
Rate 50 g/ha	23	24	25	Rate 50 g/ha	23	24	25
Postemergence				Preemergence			
Barley	7	8	8	Barley	0	0	0
Barnyardgrass	9	9	10	Barnyardgrass	3	3	2
Bedstraw	8	7	9	Bedstraw	6	-	1
Blackgrass	5	8	8	Blackgrass	1	1	0
Chickweed	8	9	8	Chickweed	7	9	7
Cocklebur	9	10	9	Cocklebur	0	-	0
Corn	2	7	8	Corn	0	0	C
Cotton	9	10	10	Cotton	0	0	C
Crabgrass	4	9	9	Crabgrass	10	10	6
Downy brome	5	7	8	Downy brome	2	7	C
Giant foxtail	7	8	9	Giant foxtail	1	1	2
Lambsquarter	9	9	9	Lambsquarter	9	9	9
Morningglory	9	9	9	Morningglory	1	4	1
Nutsedge	2	8	1	Nutsedge	-	0	-
Rape	9	7	10	Rape	3	4	7
Rice	9	9	9	Rice	0	3	2
Sorghum	9	9	10	Sorghum	0	2	(
Soybean	9	9	8	Soybean	0	7	(
Sugar beet	10	10	10	Sugar beet	10	10	=
Velvetleaf	9	9	9	Velvetleaf	8	8	1
Wheat	7	9	9	Wheat	0	2	(
Wild buckwheat	2	3	2	Wild buckwheat	0	1	(
Wild oat	8	4	10	Wild oat	2	3	(

PCT/US97/09569

TEST B

5

10

15

20

25

30

WO 97/46530

The compounds evaluated in this test were formulated in a non-phytotoxic solvent mixture which includes a surfactant and applied to the soil surface before plant seedlings emerged (preemergence application), to water that covered the soil surface (flood application), and to plants that were in the one-to-four leaf stage (postemergence application). A sandy loam soil was used for the preemergence and postemergence tests, while a silt loam soil was used in the flood test. Water depth was approximately 2.5 cm for the flood test and was maintained at this level for the duration of the test.

Plant species in the preemergence and postemergence tests consisted of barnyardgrass (Echinochloa crus-galli), barley (Hordeum vulgare), bedstraw (Galium aparine), blackgrass (Alopecurus myosuroides), chickweed (Stellaria media), cocklebur (Xanthium strumarium), corn (Zea mays v.Pioneer 3394), cotton (Gossypium hirsutum), crabgrass (Digitaria sanguinalis), downy brome (Bromus tectorum), giant foxtail (Setaria faberii), johnsongrass (Sorghum halpense), lambsquarters (Chenopodium album), morningglory (Ipomoea hederacea), pigweed (Amaranthus retroflexus), rape (Brassica napus), ryegrass (Lolium multiflorum), soybean (Glycine max), speedwell (Veronica persica), sugar beet (Beta vulgaris), velvetleaf (Abutilon theophrasti), wheat (Triticum aestivum), wild buckwheat (Polygonum convolvulus), and wild oat (Avena fatua). Additionally, two 10.3 cm pots each containing two plant of corn (Zea mays) of the varieties M17 and B73 were treated in addition to the normal compliment of crop species.

All plant species were planted one day before application of the compound for the preemergence portion of this test. Plantings of these species were adjusted to produce plants of appropriate size for the postemergence portion of the test. Plant species in the flood test consisted of rice (Oryza sativa), umbrella sedge (Cyperus difformis), duck salad (Heteranthera limosa), barnyardgrass2 (Echinochloa crus-galli) and Late watergrass (Echinochloa oryzicola grown to the 2 leaf stage for testing.

All plant species were grown using normal greenhouse practices. Visual evaluations of injury expressed on treated plants, when compared to untreated controls, were recorded approximately fourteen to twenty one days after application of the test compound. Plant response ratings, summarized in Table B, were recorded on a 0 to 100 scale where 0 is no effect and 100 is complete control. A dash (-) response means no test result.

		1	
Table B	COMPOUND	Table B	COMPOUND
Rate 500 g/ha	1	Rate 500 g/ha	1
POSTEMERGENCE		PREEMERGENCE	
Barley Igri	0	Barley Igri	0
Barnyard 2	65	Barnyardgrass	60
Barnyardgrass	90	Bedstraw	50
Bedstraw	80	Blackgrass	0
Blackgrass	20	Chickweed	30
Chickweed	90	Cocklebur	0
Cocklebur	70	Corn	0
Corn	0	Cotton	0
Corn (B73)	-	Crabgrass	80
Corn (M17)	-	Downy Brome	0
Cotton	50	Giant foxtail	50
Crabgrass	90	Italn. Rygrass	0
Downy Brome	10	Johnsongrass	0
Duck salad	60	Lambsquarter	90
Giant foxtail	90	Morningglory	0
Italn. Rygrass	10	Rape	20
Johnsongrass	60	Redroot Pigweed	1 O
Lambsquarter	90	Soybean	0
Morningglory	90	Speedwell	60
Rape	70	Sugar beet	30
Redroot Pigweed	70	Velvetleaf	90
Rice Japonica	25	Wheat	0
Soybean	40	Wild buckwheat	0
Speedwell	70	Wild oat	0
Sugar beet	70		
Umbrella sedge	80		
Velvetleaf	90		
Wheat	30		
Wild buckwheat	50		
Wild oat	50		

Table B		COME	OUND	,	Table B		COMPOUND
Rate 250 g/ha	1	5	6	26	Rate 250 g/ha	1	5
POSTEMERGENCE					PREEMERGENCE		
Barley Igri	0	15	-	-	Barley Igri	0	0
Barnyard 2	45	20	10	0	Barnyardgrass	20	0
Barnyardgrass	80	95	_	-	Bedstraw	0	0
Bedstraw	70	90	-	-	Blackgrass	0	0
Blackgrass	20	15	-	-	Chickweed	0	10
Chickweed	80	90	-	-	Cocklebur	0	20
Cocklebur	70	70	-	-	Corn	0	0
Corn	0	15	-	-	Cotton	0	0
Corn (B73)	-	65	-	-	Crabgrass	60	35
Corn (M17)	-	60	-		Downy Brome	0	0
Cotton	50	50	-	_	Giant foxtail	20	10
Crabgrass	90	90	-	-	Italn. Rygrass	0	0
Downy Brome	0	15	-	-	Johnsongrass	0	0
Duck salad	50	20	0	0	Lambsquarter	70	80
Giant foxtail	80	80	-	-	Morningglory	0	0
Italn. Rygrass	0	0	-	-	Rape	0	0
Johnsongrass	60	50	-	-	Redroot Pigweed	0	40
Lambsquarter	90	90	-	-	Soybean	0	0
Morningglory	80	40	-	-	Speedwell	50	10
Rape	60	50	-	-	Sugar beet	0	60
Redroot Pigweed	70	90	~	-	Velvetleaf	70	20
Rice Japonica	10	0	0	0	Wheat	0	0
Soybean	40	40	-	-	Wild buckwheat	0	0
Speedwell	-	10		-	Wild oat	0	0
Sugar beet	70	90	-	-			
Umbrella sedge	70	30	30	0			
Velvetleaf	90	80	-	-	li.		
Wheat	20	10	-	-			
Wild buckwheat	50	70	-	-			
Wild oat	30	20	-	-			

PCT/US97/09569

123

Table B		COMP	OUNE)						
Rate 125 g/ha	1	5	6	12	13	14	15	22	23	26
POSTEMERGENCE	-	_	Ĭ							
Barley Igri	0	0	_	0	0	0	0	100	70	-
Barnyard 2	20	10	0	0	10	0	0	95	20	0
Barnyardgrass	70	90	-	90	90	80	90	100	90	-
Bedstraw	30	80	-	20	98	50	70	95	85	_
Blackgrass	10	10	_	0	10	10	0	95	60	-
Chickweed	70	80	-	10	40	60	95	100	100	-
Cocklebur	50	60	-	70	70	80	90	100	100	_
Corn	0	10	-	0	0	0	0	30	0	-
Corn (B73)	-	40	-	60	60	10	5	-	-	-
Corn (M17)	-	30	-	0	25	0	5	-	-	-
Cotton	40	40	-	70	90	30	90	100	90	-
Crabgrass	70	80	-	90	90	35	50	90	100	-
Downy Brome	0	10	-	0	98	0	0	-	50	-
Duck salad	40	0	0	50	40	50	70	80	90	0
Giant foxtail	70	50	~	75	70	40	50	90	100	-
Italn. Rygrass	0	0	-	0	0	0	30	85	70	-
Johnsongrass	30	30	-	50	50	0	70	100	100	-
Lambsquarter	70	90	-	90	90	90	100	100	100	-
Morningglory	80	40	-	70	80	90	90	100	90	-
Rape	30	20	-	30	0	90	100	-	100	-
Redroot Pigweed	70	90	-	70	70	90	95	100	100	
Rice Japonica	0	0	0	10	0	0	10	95	30	0
Soybean	20	30	-	50	50	40	50	90	90	-
Speedwell	50	0	-	0	20	80	90	100	-	-
Sugar beet	30	80	-	20	-	90	90	100	-	-
Umbrella sedge	60	10	20	60	70	50	60	50	85	0
Velvetleaf	90	60	-	100	90	90	100	100	95	-
Wheat	0	0	-	0	0	0	0	100	80	-
Wild buckwheat	20	40	-	60	98	90	90	70	50	-
Wild oat	30	0	-	0	0	0	0	100	80	-

,

Table B		COME	POUN	D				
Rate 125 g/ha	1	5	12	13	14	15	22	23
PREEMERGENCE								
Barley Igri	0	0	0	0	10	10	0	0
Barnyardgrass	0	0	0	0	0	20	100	50
Bedstraw	0	0	~	20	30	35	100	50
Blackgrass	0	0	0	0	0	0	30	20
Chickweed	0	0	0	70	70	90	100	80
Cocklebur	0	0	0	0	0	30	90	30
Corn	0	0	0	0	0	0	0	0
Cotton	0	0	10	0	0	100	90	50
Crabgrass	35	0	70	60	0	30	100	100
Downy Brome	0	0	0	0	10	20	100	0
Giant foxtail	10	0	35	20	0	10	35	75
Italn. Rygrass	0	0	0	0	0	0	80	10
Johnsongrass	0	0	30	0	0	40	100	60
Lambsquarter	40	40	30	95	100	95	100	100
Morningglory	0	0	10	0	10	20	100	60
Rape	0	0	0	0	30	80	0	35
Redroot Pigweed	0	30	30	10	60	70	-	95
Soybean	0	0	0	0	0	10	80	30
Speedwell	50	0	70	70	90	100	100	100
Sugar beet	0	60	30	10	100	100	100	100
Velvetleaf	40	0	30	100	100	100	100	100
Wheat	0	0	0	0	15	0	0	0
Wild buckwheat	0	0	0	0	0	60	40	0
Wild oat	0	0	0	10	0	10	0	10

Table B		СОМРО	OUNE)							
Rate 62 g/ha	1	5	6	12	13	14	15	22	23	24	26
POSTEMERGENCE											
Barley Igri	0	0	-	0	0	0	0	85	60	50	-
Barnyard 2	10	0	0	0	0	0	0	35	10	10	0
Barnyardgrass	60	80	-	70	90	50	70	100	90	100	-
Bedstraw	30	70	-	٥	98	30	70	85	-	75	-
Blackgrass	10	10	-	0	0	0	0	95	50	70	-
Chickweed	60	70	-	0	30	60	90	100	100	90	-
Cocklebur	20	60	-	20	70	80	90	100	95	90	-
Corn	0	0	-	0	0	0	0	20	0	55	-
Corn (B73)	-	15	-	40	50	5	5	-	-	-	-
Corn (M17)	-	20	-	0	5	0	0	-	-	-	-
Cotton	0	30	-	30	30	20	80	100	90	95	-
Crabgrass	50	80	-	90	80	15	30	90	100	95	-
Downy Brome	0	0	-	0	0	0	0	95	40	60	-
Duck salad	10	0	-	20	0	30	40	70	80	90	0
Giant foxtail	40	40	-	50	50	0	30	65	100	90	-
Italn. Rygrass	0	0	-	0	0	0	0	60	50	60	-
Johnsongrass	10	20	-	-	30	0	50	1 0 0	100	90	-
Lambsquarter	30	80	-	80	90	90	95	100	90	95	-
Morningglory	40	30	-	30	40	90	90	100	90	90	-
Rape	20	0	-	0	0	70	90	-	100	100	-
Redroot Pigweed	50	80	-	50	30	90	90	100	90	90	-
Rice Japonica	0	0	0	0	0	0	0	95	20	30	0
Soybean	0	30	-	40	35	40	40	90	90	90	-
Speedwell	50	0	-	0	20	50	80	100	80	100	-
Sugar beet	0	70	-	0	-	90	90	100	-	90	-
Umbrella sedge	20	0	0	30	20	30	50	50	70	80	0
Velvetleaf	80	50	-	100	80	90	90	100	95	95	-
Wheat	0	0	-	0	0	0	0	90	70	70	-
Wild buckwheat	10	0	-	10	98	70	80	70	40	70	-
Wild oat	20	0	-	0	0	0	0	100	60	60	-

Table B		COM	POUNI	D					
Rate 62 g/ha	1	5	12	13	14	15	22	23	24
PREEMERGENCE									
Barley Igri	0	0	0	0	10	0	0	0	0
Barnyardgrass	0	0	0	0	0	0	70	20	50
Bedstraw	0	0	0	0	0	20	100	40	85
Blackgrass	0	0	0	0	0	0	30	0	20
Chickweed	0	0	0	-	20	70	100	80	100
Cocklebur	0	0	0	0	0	-	50	30	30
Corn	0	0	0	0	0	0	0	0	0
Cotton	0	0	0	0	0	50	90	30	30
Crabgrass	20	0	50	40	0	20	100	100	100
Downy Brome	0	0	0	0	0	0	100	0	25
Giant foxtail	0	0	25	0	0	Ö	15	60	70
Italn. Rygrass	0	0	0	0	0	0	70	10	10
Johnsongrass	0	0	20	0	0	10	50	60	60
Lambsquarter	40	20	30	10	100	95	100	100	100
Morningglory	0	0	0	0	0	10	80	50	70
Rape	0	0	0	0	0	30	0	0	10
Redroot Pigweed	0	20	20	0	30	40	-	90	100
Soybean	0	0	0	0	0	0	70	0	30
Speedwell	-	0	50	-	80	90	100	60	100
Sugar beet	0	20	20	0	100	100	100	100	100
Velvetleaf	20	0	20	30	40	100	100	100	100
Wheat	0	0	0	0	10	0	0	0	20
Wild buckwheat	0	0	0	0	0	30	30	0	10
Wild oat	0	0	0	0	0	0	0	0	10

Table B		COMP	OUND	•								
Rate 31 g/ha	1	5	6	12	13	14	15	22	23	24	25	26
POSTEMERGENCE												
Barley Igri	-	0	-	0	0	0	0	75	50	40	0	-
Barnyard 2	0	0	0	0	0	0	0	0	0	10	30	0
Barnyardgrass	-	70	-	60	70	20	50	100	90	95	90	-
Bedstraw	-	30	-	0	-	10	50	80	60	75	60	-
Blackgrass	-	0	-	0	0	0	0	75	30	70	30	-
Chickweed	-	50	-	0	20	60	80	100	-	90	90	-
Cocklebur	-	40	-	-	20	80	85	100	95	90	90	-
Corn	-	0	-	0	0	0	0	0	0	40	30	-
Corn (B73)	-	10	-	10	5	5	5	-	-	-	30	-
Corn (M17)	-	10	-	0	0	0	0	-	-	-	30	_
Cotton	-	20	-	10	20	0	50	95	90	90	100	-
Crabgrass	-	60		80	70	10	30	90	90	90	90	-
Downy Brome	-	0	-	0	0	0	0	75	30	60	0	-
Duck salad	0	0	0	0	0	0	10	45	60	70	20	0
Giant foxtail	-	40	-	35	30	0	20	50	90	80	90	-
Italn. Rygrass	-	0	-	0	0	0	0	60	40	50	0	-
Johnsongrass	-	15	-	-	20	0	30	80	100	90	80	-
Lambsquarter	-	70	-	80	80	90	90	100	90	95	90	-
Morningglory	-	30	-	20	40	70	90	90	90	90	90	-
Rape	-	0	-	0	0	70	80	-	80	90	90	-
Redroot Pigweed	-	80	-	30	20	80	90	95	90	90	100	-
Rice Japonica	0	0	0	0	0	0	0	15	10	20	0	0
Soybean	-	15	-	20	30	35	35	90	80	90	70	-
Speedwell	-	0	-	0	0	50	80	100	80	90	100	-
Sugar beet	-	70	-	0	98	80	80	100	-	90	90	-
Umbrella sedge	0	0	0	10	0	0	30	50	50	70	20	0
Velvetleaf	-	30	-	90	80	80	90	100	90	90	80	-
Wheat	-	0	-	0	0	0	0	85	50	60	20	
Wild buckwheat	-	0	-	0	98	70	50	60	30	70	10	-
Wild oat	-	0	-	0	0	0	0	70	40	40	90	-

mahila D		COM	20121	_					
Table B	_		POUN						
Rate 31 g/ha	5	12	13	14	15	22	23	24	25
PREEMERGENCE									
Barley Igri	0	0	0	0	0	0	0	0	0
Barnyardgrass	0	0	0	0	0	15	0	10	0
Bedstraw	0	0	0	0	0	60	30	70	30
Blackgrass	0	0	0	0	0	20	0	10	0
Chickweed	0	0	10	20	70	100	40	95	50
Cocklebur	0	0	0	0	-	10	10	0	-
Corn	0	0	0	0	0	0	0	0	0
Cotton	0	-	0	0	30	60	30	20	0
Crabgrass	0	30	10	0	10	100	-	100	40
Downy Brome	0	0	0	0	0	0	0	0	20
Giant foxtail	0	10	0	0	0	Ō	0	30	10
Italn. Rygrass	0	0	0	0	0	40	0	0	0
Johnsongrass	0	10	0	0	0	20	30	40	0
Lambsquarter	0	20	0	100	95	100	100	100	100
Morningglory	0	0	0	0	0	30	50	60	0
Rape	0	0	0	0	20	-	0	0	0
Redroot Pigweed	10	10	0	0	20	-	70	85	0
Soybean	0	0	0	0	0	60	0	30	0
Speedwell	0	-	60	-	90	100	60	100	20
Sugar beet	20	10	0	70	100	100	70	90	70
Velvetleaf	0	10	10	0	40	100	70	90	0
Wheat	0	0	0	10	0	0	0	0	0
Wild buckwheat	0	0	0	0	0	0	0	0	0
Wild oat	0	0	0	0	0	0	0	0	0

Table B		COMP	OUND	•				
Rate 16 g/ha	12	13	14	15	22	23	24	25
POSTEMERGENCE								
Barley Igri	0	0	0	0	45	30	30	0
Barnyard 2	0	0	0	0	0	0	0	20
Barnyardgrass	40	20	0	30	90	90	95	90
Bedstraw	0	-	10	40	75	60	40	60
Blackgrass	0	0	0	0	70	30	35	20
Chickweed	0	0	50	60	100	80	80	80
Cocklebur	10	0	70	80	95	90	90	80
Corn	0	0	0	0	0	0	25	10
Corn (B73)	0	0	5	5	-	-	-	20
Corn (M17)	0	0	0	0	-	-	-	10
Cotton	10	0	0	30	95	80	85	50
Crabgrass	60	70	0	20	80	80	85	90
Downy Brome	0	0	0	0	70	30	30	0
Duck salad	0	0	0	0	25	10	50	0
Giant foxtail	30	20	0	0	40	80	60	85
Italn. Rygrass	0	0	0	0	40	30	50	0
Johnsongrass	-	20	0	30	70	80	80	60
Lambsquarter	50	60	80	80	100	85	90	70
Morningglory	10	20	50	80	90	90	90	90
Rape	0	0	40	70	-	60	50	90
Redroot Pigweed	0	20	70	80	90	90	80	80
Rice Japonica	0	0	0	0	0	0	10	0
Soybean	20	20	30	20	90	80	90	60
Speedwell	0	0	-	50	95	50	70	70
Sugar beet	0	98	80	80	100	-	90	80
Umbrella sedge	0	0	0	10	15	35	60	0
Velvetleaf	80	80	80	90	100	90	90	70
Wheat	0	0	0	0	70	35	50	10
Wild buckwheat	0	98	40	50	45	20	20	0
Wild oat	0	0	0	0	60	20	30	60

Table B		COMP	OUNE	•				
Rate 16 g/ha	12	13	14	15	22	23	24	25
PREEMERGENCE								
Barley Igri	0	0	0	0	0	0	0	0
Barnyardgrass	0	0	0	0	0	0	0	0
Bedstraw	0	0	0	0	20	20	50	0
Blackgrass	0	0	0	0	20	0	0	0
Chickweed	0	10	0	60	100	20	90	40
Cocklebur	0	0	0	-	0	0	0	0
Corn	0	0	0	0	0	0	0	0
Cotton	0	0	0	20	30	10	-	0
Crabgrass	20	0	0	10	100	80	70	40
Downy Brome	0	0	0	0	0	0	0	0
Giant foxtail	0	0	0	0	0	0	0	-
Italn. Rygrass	0	0	0	0	0	0	0	0
Johnsongrass	10	0	0	0	10	0	10	0
Lambsquarter	0	0	80	95	100	30	95	60
Morningglory	0	0	0	0	30	-	50	0
Rape	0	0	0	0	-	0	0	0
Redroot Pigweed	0	0	0	10	-	50	70	0
Soybean	0	0	0	0	40	0	0	0
Speedwell	30	60	80	90	100	0	90	20
Sugar beet	0	0	30	90	100	50	0	40
Velvetleaf	0	0	0	30	100	60	70	0
Wheat	0	0	0	0	0	0	0	0
Wild buckwheat	0	0	0	0	0	0	0	0
Wild oat	0	0	0	0	0	0	0	0

Table B	COM	POUND	Table B	COM	POUND
Rate 8 g/ha	24	25	Rate 8 g/ha	24	25
POSTEMERGENCE			PREEMERGENCE		
Barley Igri	30	0	Barley Igri	0	0
Barnyard 2	0	0	Barnyardgrass	0	0
Barnyardgrass	90	85	Bedstraw	0	0
Bedstraw	-	40	Blackgrass	0	0
Blackgrass	35	20	Chickweed	80	0
Chickweed	70	80	Cocklebur	0	0
Cocklebur	90	80	Corn	0	0
Corn	15	0	Cotton	20	0
Corn (B73)	-	10	Crabgrass	50	20
Corn (M17)	-	0	Downy Brome	0	0
Cotton	70	40	Giant foxtail	0	0
Crabgrass	75	80	Italn. Rygrass	٥	0
Downy Brome	30	0	Johnsongrass	0	0
Duck salad	20	0	Lambsquarter	95	40
Giant foxtail	40	75	Morningglory	10	0
Italn. Rygrass	40	0	Rape	0	0
Johnsongrass	70	60	Redroot Pigweed	70	0
Lambsquarter	60	70	Soybean	0	0
Morningglory	85	90	Speedwell	90	0
Rape	40	80	Sugar beet	0	0
Redroot Pigweed	60	60	Velvetleaf	40	0
Rice Japonica	10	0	Wheat	0	0
Soybean	90	60	Wild buckwheat	0	0
Speedwell	70	70	Wild oat	0	0
Sugar beet	90	70			
Umbrella sedge	40	0			
Velvetleaf	75	40			
Wheat	35	0			
Wild buckwheat	10	0			
Wild oat	20	40			

Table B	COMPOUND	Table B COMPOUND
Rate 4 g/ha	25	Rate 4 g/ha 25
POSTEMERGENCE		PREEMERGENCE
Barley Igri	0	Barley Igri 0
Barnyard 2	0	Barnyardgrass 0
Barnyardgrass	80	Bedstraw 0
Bedstraw	30	Blackgrass 0
Blackgrass	10	Chickweed 0
Chickweed	70	Cocklebur 0
Cocklebur	75	Corn 0
Corn	0	Cotton 0
Corn (B73)	10	Crabgrass 0
Corn (M17)	0	Downy Brome 0
Cotton	30	Giant foxtail 0
Crabgrass	70	Italn. Rygrass 0
Downy Brome	0	Johnsongrass 0
Duck salad	0	Lambsquarter 30
Giant foxtail	60	Morningglory 0
Italn. Rygrass	0	Rape 0
Johnsongrass	30	Redroot Pigweed 0
Lambsquarter	65	Soybean 0
Morningglory	70	Speedwell 0
Rape	80	Sugar beet 0
Redroot Pigweed	1 60	Velvetleaf 0
Rice Japonica	0	Wheat 0
Soybean	40	Wild buckwheat 0
Speedwell	60	Wild oat 0
Sugar beet	60	
Umbrella sedge	0	
Velvetleaf	30	
Wheat	0	
Wild buckwheat	0	
Wild oat	10	

TEST C

5

10

15

Plastic pots were partially filled with silt loam soil. The soil was then saturated with water. Indica Rice (Oryza sativa) seed or seedlings at the 2.0 to 3.5 leaf stage; seeds, tubers or plant parts selected from arrowhead (Sagittaria rigida), barnyardgrass (Echinochloa crusgalli), ducksalad (Heteranthera limosa), early watergrass (Echinochloa oryzoides), junglerice (Echinochloa colonum), late watergrass (Echinochloa oryzicola), redstem (Ammania species), rice flatsedge (Cyperus iria), smallflower flatsedge (Cyperus difformis) and tighthead sprangletop (Leptochloa fasicularis), were planted into this soil. Plantings and waterings of these crops and weed species were adjusted to produce plants of appropriate size for the test. At the two leaf stage, water levels were raised to 3 cm above the soil surface and maintained at this level throughout the test. Chemical treatments were formulated in a non-phytotoxic solvent mixture which includes a surfactant and applied directly to the paddy water, by pipette, or to the plant foliage, by an air-pressure assisted, calibrated belt-conveyer spray system.

133

Treated plants and controls were maintained in a greenhouse for approximately 21 days, after which all species were compared to controls and visually evaluated. Plant response ratings, summarized in Table C, are reported on a 0 to 100 scale where 0 is no effect and 100 is complete control. A dash (-) response means no test result.

Table C	COMP	POUND	Table C	СОМ	POUND
Rate 375 g/ha	13	15	Rate 250 g/ha	13	15
PD/TA			PD/TA		
ducksalad	85	98	ducksalad	70	95
early watergras	-	20	early watergras	20	20
junglerice	15	20	junglerice	10	25
late watergrass	0	0	late watergrass	0	-
redstem	100	100	redstem	95	100
rice flatsedge	80	80	rice flatsedge	75	45
smallflower fla	80	95	smallflower fla	75	95
tighthead spran	95	20	tighthead spran	95	30
2 LF barnyard g	30	15	2 LF barnyard g	15	15
2 LF direct see	10	15	2 LF direct see	0	15
2 LF transp. in	15	15	2 LF transp. in	0	15

Table C		CO	MPOUN	ID	Table C COMPOUND	
Rate 125 g/ha	13	15	23	25	Rate 64 g/ha 13 15 23 25	,
PD/TA					PD/TA	
ducksalad	65	85	100	85	ducksalad 75 75 98 85	
early watergras	0	15	-	25	early watergras 0 15 - 15	,
junglerice	0	40	75	10	junglerice 0 10 30 0	ł
late watergrass	0	20	0	10	late watergrass 0 - 0 10	
redstem	95	98	98	98	redstem 85 85 60 90	
rice flatsedge	70	35	60	65	rice flatsedge 75 35 20 40	
smallflower fla	70	85	100	95	smallflower fla 75 75 100 85	
tighthead spran	90	25	98	75	tighthead spran 80 40 95 65	
2 LF barnyard g	0	15	0	10	2 LF barnyard g 0 15 0 0	
2 LF direct see	0	15	100	25	2 LF direct see 0 .15 10 10	
2 LF transp. in	10	10	60	30	2 LF transp. in 0 0 10 25	
					t .	
Table C		COI	MPOUN	ID	Table C COMPOUND	
Table C Rate 32 g/ha	13	COI	MPOUN 23	1D 25	Table C COMPOUND Rate 16 g/ha 23 25	
•	13					
Rate 32 g/ha	13 65				Rate 16 g/ha 23 25	
Rate 32 g/ha PD/TA		15	23	25	Rate 16 g/ha 23 25 PD/TA	
Rate 32 g/ha PD/TA ducksalad	65	15	23 80	25	Rate 16 g/ha 23 25 PD/TA ducksalad 95 10	
Rate 32 g/ha PD/TA ducksalad early watergras	65	15 0 0	23 80 -	25 20 0	Rate 16 g/ha 23 25 PD/TA ducksalad 95 10 early watergras - 0	
Rate 32 g/ha PD/TA ducksalad early watergras junglerice	65 0 0	15 0 0	23 80 - 15	25 20 0 0	Rate 16 g/ha 23 25 PD/TA ducksalad 95 10 early watergras - 0 junglerice 25 0	
Rate 32 g/ha PD/TA ducksalad early watergras junglerice late watergrass	65 0 0	15 0 0 0	23 80 - 15 0	25 20 0 0	Rate 16 g/ha 23 25 PD/TA ducksalad 95 10 early watergras - 0 junglerice 25 0 late watergrass 0 0	
Rate 32 g/ha PD/TA ducksalad early watergras junglerice late watergrass redstem	65 0 0 0	15 0 0 0 0 0 35	23 80 - 15 0 30	25 20 0 0 0 20	Rate 16 g/ha 23 25 PD/TA ducksalad 95 10 early watergras - 0 junglerice 25 0 late watergrass 0 0 redstem 30 20	
Rate 32 g/ha PD/TA ducksalad early watergras junglerice late watergrass redstem rice flatsedge	65 0 0 0 20	15 0 0 0 0 0 35	23 80 - 15 0 30	25 20 0 0 0 20 40	Rate 16 g/ha 23 25 PD/TA ducksalad 95 10 early watergras - 0 junglerice 25 0 late watergrass 0 0 redstem 30 20 rice flatsedge 5 40	
Rate 32 g/ha PD/TA ducksalad early watergras junglerice late watergrass redstem rice flatsedge smallflower fla	65 0 0 0 20 60	15 0 0 0 0 0 35 0	23 80 - 15 0 30 10	25 20 0 0 0 20 40	Rate 16 g/ha 23 25 PD/TA ducksalad 95 10 early watergras - 0 junglerice 25 0 late watergrass 0 0 redstem 30 20 rice flatsedge 5 40 smallflower fla 95 10	
Rate 32 g/ha PD/TA ducksalad early watergras junglerice late watergrass redstem rice flatsedge smallflower fla tighthead spran	65 0 0 0 20 60 60	15 0 0 0 0 0 0 35 0 40	23 80 - 15 0 30 10 100 95	25 20 0 0 0 20 40 10 75	Rate 16 g/ha 23 25 PD/TA ducksalad 95 10 early watergras - 0 junglerice 25 0 late watergrass 0 0 redstem 30 20 rice flatsedge 5 40 smallflower fla 95 10 tighthead spran 95 60	
Rate 32 g/ha PD/TA ducksalad early watergras junglerice late watergrass redstem rice flatsedge smallflower fla tighthead spran 2 LF barnyard g	65 0 0 20 60 60 80	15 0 0 0 0 0 0 35 0 40	23 80 - 15 0 30 10 100 95	25 20 0 0 0 20 40 10 75 0	Rate 16 g/ha 23 25 PD/TA ducksalad 95 10 early watergras - 0 junglerice 25 0 late watergrass 0 0 redstem 30 20 rice flatsedge 5 40 smallflower fla 95 10 tighthead spran 95 60 2 LF barnyard g 0 0	

Table C		COMPOUND
Rate 8 g/ha	23	25
PD/TA		
ducksalad	0	0
early watergra	ıs -	0
junglerice	0	0
late watergras	ss 0	0
redstem	0	20
rice flatsedge	9 0	0
smallflower fl	la 10	0
tighthead spra	n 40	0
2 LF barnyard	g 0	0
2 LF direct se	ee 0	10
2 LF transp. i	.n 0	0

TEST D

5

10

15

20

Seeds, tubers, or plant parts of alexandergrass (Brachiaria plantaginea),

bermudagrass (Cynodon dactylon), broadleaf signalgrass (Brachiaria platyphylla), common purslane (Portulaca oleracea), common ragweed (Ambrosia elatior), cotton (Gossypium hirsutum), dallisgrass (Paspalum dilatatum), goosegrass (Eleusine indica), guineagrass (Panicum maximum), itchgrass (Rottboellia exaltata), johnson grass (Sorghum halepense), large crabgrass (Digitaria sanguinalis), peanuts (Arachis hypogaea), pitted morningglory (Ipomoea lacunosa), purple nutsedge (Cyperus rotundus), sandbur (Cenchrus echinatus), sourgrass (Trichachne insularis), and surinam grass (Brachiaria decumbens) were planted into greenhouse pots of flats containing greenhouse planting medium. Plant species were grown in separate pots or individual compartments. Preemergence applications were made within one day of planting the seed or plant part. Postemergence applications were applied when the plants were in the two to four leaf stage (three to twenty cm).

Test chemicals were formulated in a non-phytotoxic solvent mixture which included a surfactant and applied preemergence and postemergence to the plants. Untreated control plants and treated plants were placed in the greenhouse and visually evaluated for injury 13 to 21 days after herbicide application. Plant response ratings, summarized in Table D, are based on a 0 to 100 scale where 0 is no injury and 100 is complete control. A dash (-) response means no test result.

Table D	COM	IPOUND	Table D		COM	POUND
Rate 250 g/ha	22 23	25	Rate 250 g/ha	22	23	25
POSTEMERGENCE			PREEMERGENCE			
Alexandergrass	80 75	95	Alexandergrass	100	100	100
Bermudagrass	80 60	80	Bermudagrass	100	100	100
Brdlf Sgnlgrass	90 95	100	Brdlf Sgnlgrass	100	100	10
Cmn Purslane	80 60	75	Cmn Purslane	100	100	100
Cmn Ragweed	50 -	60	Cmn Ragweed	-	-	100
Cotton	90 40	_	Cotton	100	40	10
Dallisgrass	85 75	35	Dallisgrass	100	98	70
Goosegrass	80 50	95	Goosegrass	100	-	100
Guineagrass	80 90	75	Guineagrass	100	100	50
Itchgrass	10 -	35	Itchgrass	40	-	5
Johnson grass	90 95	100	Johnson grass	98	100	75
Large Crabgrass	65 100	25	Large Crabgrass	100	100	100
Peanuts	65 -	90	Peanuts	50	20	55
Pit Morninglory	80 90	30	Pit Morninglory	95	100	10
Purple Nutsedge	75 50	20	Purple Nutsedge	75	0	0
Sandbur	60 75	20	Sandbur	98	80	45
Sourgrass	BO 50	75	Sourgrass	100	100	100
Surinam grass	80 75	90	Surinam grass	100	100	98

m 11- D	СОМРО	min	Table D	CC	OMPOL	רואו
Table D						
Rate 125 g/ha	22 23	25	Rate 125 g/ha	22	23	25
POSTEMERGENCE			PREEMERGENCE			
Alexandergrass	80 75	95	Alexandergrass	100	90	35
Bermudagrass	85 60	85	Bermudagrass	9 8	100	100
Brdlf Sgnlgrass	80 98	100	Brdlf Sgnlgrass	98	95	0
Cmn Purslane	70 30	75	Cmn Purslane	60	100	100
Cmn Ragweed	50 -		Cmn Ragweed	-	-	100
Cotton	95 35	0	Cotton	65	10	10
Dallisgrass	85 75	0	Dallisgrass	100	98	0
Goosegrass	85 35	-	Goosegrass	100	-	100
Guineagrass	80 95	75	Guineagrass	98	98	40
Itchgrass	5 35	0	Itchgrass	35	-	5
Johnson grass	80 90	100	Johnson grass	65	100	10
Large Crabgrass	70 100	-	Large Crabgrass	100	100	100
Peanuts	65 50	90	Peanuts	-	-	10
Pit Morninglory	80 90	30	Pit Morninglory	80	90	10
Purple Nutsedge	75 3 0	10	Purple Nutsedge	-	0	0
Sandbur	40 75	20	Sandbur	98	95	0
Sourgrass	80 60	20	Sourgrass	100	100	100
Surinam grass	90 75	90	Surinam grass	100	90	45

WO 97/46530

PCT/US97/09569

Table D	co	MPO	JND	Table D	C	OMPO	UND
Rate 64 g/ha	22	23	25	Rate 64 g/ha	22	23	2
POSTEMERGENCE				PREEMERGENCE			
Alexandergrass	80	65	100	Alexandergrass	40	0	
Bermudagrass	75	50	75	Bermudagrass	100	100	7
Brdlf Sgnlgrass	95	95	80	Brdlf Sgnlgrass	95	0	
Cmn Purslane	65	30	75	Cmn Purslane	40	65	10
Cmn Ragweed	-	-	-	Cmn Ragweed	-	-	9
Cotton	90	35	0	Cotton	25	0	
Dallisgrass	85	75	0	Dallisgrass	98	50	
Goosegrass	70	35	90	Goosegrass	-	-	10
Guineagrass	7 5	80	35	Guineagrass	65	35	
Itchgrass	0	0	0	Itchgrass	0	0	
Johnson grass	80	80	100	Johnson grass	-	10	
Large Crabgrass	60	50	0	Large Crabgrass	100	80	10
Peanuts	35	65	75	Peanuts	100	0	
Pit Morninglory	75	90	30	Pit Morninglory	65	75	
Purple Nutsedge	75	20	10	Purple Nutsedge	20	0	
Sandbur	20	0	20	Sandbur	30	0	
Sourgrass	70	40	20	Sourgrass	100	98	9
Surinam grass	80	65	-	Surinam grass	98	35	

WO 97/46530

PCT/US97/09569

Table D	COME	OUND	Table D	COM	POUND
Rate 32 g/ha	22	25	Rate 32 g/ha	a 22	25
POSTEMERGENCE			PREEMERGENCE		
Alexandergrass	40	90	Alexandergrass	s 0	0
Bermudagrass	65	50	Bermudagrass	50	0
Brdlf Sgnlgrass	80	35	Brdlf Sgnlgras	ss 0	0
Cmn Purslane	30	75	Cmn Purslane	20	70
Cmn Ragweed	-	-	Cmn Ragweed	-	10
Cotton	75	0	Cotton	25	0
Dallisgrass	70	0	Dallisgrass	60	0
Goosegrass	40	90	Goosegrass	-	40
Guineagrass	65	20	Guineagrass	10	5
Itchgrass	0	-	Itchgrass	0	0
Johnson grass	75	100	Johnson grass	90	0
Large Crabgrass	65	0	Large Crabgras	ss 65	40
Peanuts	35	50	Peanuts	100	5
Pit Morninglory	75	20	Pit Morninglo	ry 65	100
Purple Nutsedge	65	0	Purple Nutsedo	ge -	0
Sandbur	20	10	Sandbur	0	0
Sourgrass	60	-	Sourgrass	98	85
Surinam grass	65	75	Surinam grass	0	0

Table D C	COMPOUND	Table D	COMPOUNT
			COMPOUND
Rate 16 g/ha	22	Rate 16 g/ha	22
POSTEMERGENCE		PREEMERGENCE	
Alexandergrass	35	Alexandergrass	0
Bermudagrass	50	Bermudagrass	50
Brdlf Sgnlgrass	40	Brdlf Sgnlgras:	s 0
Cmn Purslane	30	Cmn Purslane	0
Cmn Ragweed	-	Cmn Ragweed	-
Cotton	70	Cotton	0
Dallisgrass	35	Dallisgrass	50
Goosegrass	30	Goosegrass	-
Guineagrass	35	Guineagrass	0
Itchgrass	20	Itchgrass	0
Johnson grass	35	Johnson grass	30
Large Crabgrass	50	Large Crabgrass	20
Peanuts	0	Peanuts	0
Pit Morninglory	65	Pit Morninglory	, 0
Purple Nutsedge	5	Purple Nutsedge	e 0
Sandbur	0	Sandbur	0
Sourgrass	35	Sourgrass	90
Surinam grass	35	Surinam grass	0

WO 97/46530

PCT/US97/09569

		1	
Table D	COMPOUND	Table D C	COMPOUND
Rate 8 g/ha	22	Rate 8 g/ha	22
POSTEMERGENCE		PREEMERGENCE	
Alexandergrass	35	Alexandergrass	0
Bermudagrass	40	Bermudagrass	0
Brdlf Sgnlgrass	70	Brdlf Sgnlgrass	0
Cmn Purslane	35	Cmn Purslane	0
Cmn Ragweed	-	Cmn Ragweed	-
Cotton	0	Cotton	0
Dallisgrass	20	Dallisgrass	50
Goosegrass	30	Goosegrass	-
Guineagrass	35	Guineagrass	0
Itchgrass	0	Itchgrass	0
Johnson grass	35	Johnson grass	-
Large Crabgrass	35	Large Crabgrass	0
Peanuts	0	Peanuts	0
Pit Morninglory	35	Pit Morninglory	0
Purple Nutsedge	e 0	Purple Nutsedge	0
Sandbur	0	Sandbur	0
Sourgrass	35	Sourgrass	90
Surinam grass	35	Surinam grass	0

PCT/US97/09569

142

TEST E

5

10

15

20

Seeds of barnyardgrass (Echinochloa crus-galli), bindweed (Concolculus arvensis), black nightshade (Solanum ptycanthum dunal), cassia (Cassia obtusifolia), cocklebur (Xanthium strumarium), common ragweed (Ambrosia artemisiifolia), corn (Zea mays v. Pioneer 3394), corn2 (Zea mays v. IMR Ciba 4393), cotton (Gossypium hirsutam), crabgrass (Digitaria spp.), fall panicum (Panicum dichotomiflorum), giant foxtail (Setaria faberii), green foxtail (Setaria viridis), jimsonweed (Datura stramonium), johnsongrass (Sorghum halepense), lambsquarter (Chenopodium album), morningglory (Ipomoea spp.), pigweed (Amaranthus retroflexus), prickly sida (Sida spinosa), shattercane (Sorghum vulgare), signalgrass (Brachiaria platyphylla), smartweed (Polygonum pensylvanicum), soybean (Glycine max v. Williams 95) and soybean (Glycine max v. Asgrow 3304), sunflower (Helianthus annuus), velvetleaf (Abutilon theophrasti), wild proso (Pancium miliaceum), woolly cupgrass (Eriochloa villosa), yellow foxtail (Setaria lutescens) and purple nutsedge (Cyperus rotundus) tubers were planted into a sandy loam or clay loam soil. These crops and weeds were grown in the greenhouse until the plants ranged in height from two to eighteen cm (one to four leaf stage), then treated postemergence with the test chemicals formulated in a non-phytotoxic solvent mixture which included a surfactant. Pots treated in this fashion were placed in the greenhouse and maintained according to routine greenhouse procedures.

Treated plants and untreated controls were maintained in the greenhouse approximately 14-21 days after application of the test compound. Visual evaluations of plant injury responses were then recorded. Plant response ratings, summarized in Table E, are reported on a 0 to 100 scale where 0 is no effect and 100 is complete control.

PCT/US97/09569

	•		
Table E	COMPOUND	Table E	COMPOUND
Rate 140 g/ha	23	Rate 70 g/ha	23
POSTEMERGENCE		POSTEMERGENCE	
Barnyardgrass	80	Barnyardgrass	100
Bindweed	70	Bindweed	60
Blk Nightshade	100	Blk Nightshade	100
Cassia	55	Cassia	50
Cocklebur	100	Cocklebur	100
Corn	15	Corn	10
Corn2	20	Corn2	15
Cotton	70	Cotton	60
Crabgrass	70	Crabgrass	60
Fall Panicum	90	Fall Panicum	80
Giant Foxtail	65	Giant Foxtail	60
Green Foxtail	55	Green Foxtail	55
Jimsonweed	100	Jimsonweed	85
Johnson Grass	85	Johnson Grass	85
Lambsquarter	90	Lambsquarter	85
Morningglory	90	Morningglory	85
Nutsedge	25	Nutsedge	0
Pigweed	75	Pigweed	70
Prickly Sida	50	Prickly Sida	30
Ragweed	100	Ragweed	100
Shattercane	80	Shattercane	70
Signalgrass	85	Signalgrass	80
Smartweed	100	Smartweed	100
Soybean	85	Soybean	85
Soybean2	80	Soybean2	80
Sunflower	100	Sunflower	100
Velvetleaf	85	Velvetleaf	75
Wild Proso	85	Wild Proso	85
Woolly cupgrass	65	Woolly cupgrass	60
Yellow Foxtail	65	Yellow Foxtail	55

m 11. m		maki a n		1	
Table E		Table E		Table E	
COMPOUND		COMPOUND		COMPOUND	
Rate 35 g/ha	23	Rate 17 g/ha	23	Rate 8 g/ha	23
POSTEMERGENCE		POSTEMERGENCE		POSTEMERGENCE	
Barnyardgrass	75	Barnyardgrass	35	Barnyardgrass	20
Bindweed	50	Bindweed	50	Bindweed	50
Blk Nightshade	100	Blk Nightshade	100	Blk Nightshade	65
Cassia	45	Cassia	15	Cassia	10
Cocklebur	100	Cocklebur	75	Cocklebur	45
Corn	0	Corn	0	Corn	0
Corn2	15	Corn2	15	Corn2	0
Cotton	60	Cotton	55	Cotton	55
Crabgrass	60	Crabgrass	55	Crabgrass	55
Fall Panicum	70	Fall Panicum	65	Fall Panicum	55
Giant Foxtail	55	Giant Foxtail	30	Giant Foxtail	25
Green Foxtail	40	Green Foxtail	20	Green Foxtail	0
Jimsonweed	80	Jimsonweed	70	Jimsonweed	45
Johnson Grass	80	Johnson Grass	80	Johnson Grass	55
Lambsquarter	85	Lambsquarter	80	Lambsquarter	75
Morningglory	85	Morningglory	75	Morningglory	60
Nutsedge	0	Nutsedge	0	Nutsedge	0
Pigweed	60	Pigweed	60	Pigweed	15
Prickly Sida	20	Prickly Sida	15	Prickly Sida	15
Ragweed	85	Ragweed	80	Ragweed	65
Shattercane	50	Shattercane	30	Shattercane	0
Signalgrass	80	Signalgrass	75	Signalgrass	65
Smartweed	100	Smartweed	75	Smartweed	60
Soybean	80	Soybean	75	Soybean	65
Soybean2	80	Soybean2	80	Soybean2	75
Sunflower	85	Sunflower	70	Sunflower	55
Velvetleaf	70	Velvetleaf	60	Velvetleaf	55
Wild Proso	75	Wild Proso	65	Wild Proso	60
Woolly cupgrass	55	Woolly cupgrass	45	Woolly cupgrass	40
Yellow Foxtail	50	Yellow Foxtail	0	Yellow Foxtail	0
		5.00			

TEST F

5

10

15

20

Compounds evaluated in this test were formulated in a non-phytotoxic solvent mixture which included a surfactant and applied to plants that were grown for various periods of time before treatment (postemergence application). A mixture of sandy loam soil and greenhouse potting mix in a 60:40 ratio was used for the postemergence test.

145

Plantings of these crops and weed species were adjusted to produce plants of appropriate size for the postemergence test. All plant species were grown using normal greenhouse practices. Crop and weed species include arrowleaf sida (Sida rhombifolia), barnyardgrass (Echinochloa crus-galli), cocklebur (Xanthium strumarium), common lambsquarters (Chenopodium album), corn (Zea mays), cotton (Gossypium hirsutum), eastern black nightshade (Solanum ptycanthum), fall panicum (Panicum dichotomiflorum), field bindweed (Convolvulus arvensis), Florida beggarweed (Desmodium purpureum), giant foxtail (Setaria faberii), hairy beggarticks (Bidens pilosa), ivyleaf morningglory (Ipomoea hederacea), johnsongrass (Sorghum halepense), ladysthumb (Polygonum persicaria), large crabgrass (Digitaria sanguinalis), purple nutsedge (Cyperus rotundus), redroot pigweed (Amaranthus retroflexus), soybean (Glycine max), surinam grass (Brachiaria decumbens), velvetleaf (Abutilon theophrasti) and wild poinsettia (Euphorbia heterophylla).

Treated plants and untreated controls were maintained in a greenhouse for approximately 14 to 21 days, after which all treated plants were compared to untreated controls and visually evaluated. Plant response ratings, summarized in Table F, were based upon a 0 to 100 scale where 0 was no effect and 100 was complete control. A dash response (-) means no test result.

WO 97/46530

Table F		CO	MPOUND	Table F		CO	MPOUND
Rate 140 g/ha	15	22	23	Rate 70 g/ha	15		23
POSTEMERGENCE				POSTEMERGENCE			23
Arrowleaf Sida	90	100	90	Arrowleaf Sida	80	90	90
Barnyardgrass	70	100	95	Barnyardgrass		100	95
Cocklebur	90	85	95	Cocklebur	85	85	95
Common Ragweed	100	100	95	Common Ragweed		100	
Corn	0	40	5	Corn	0	20	5
Cotton	100	100	85	Cotton	100	90	80
Estrn Blknight	100	100	100	Estrn Blknight	100	100	100
Fall Panicum	80	90	95	Fall Panicum	70	85	95
Field Bindweed	80	85	90	Field Bindweed	80	65	90
Fl Beggarweed	-	100	95	Fl Beggarweed	-	100	95
Giant Foxtail	0	95	95	Giant Foxtail	0	80	95
Hairy Beggartic	80	60	85	Hairy Beggartic	60	60	80
Ivyleaw Mrnglry	95	100	90	Ivyleaw Mrnglry	90	90	80
Johnsongrass	0	100	95	Johnsongrass	0	85	90
Ladysthumb	100	100	100	Ladysthumb	80	100	100
Lambsquarters	100	85	90	Lambsquarters	100	80	90
Large Crabgrass	30	100	95	Large Crabgrass	0	100	90
Purple Nutsedge	90	80	80	Purple Nutsedge	5	75	20
Redroot Pigweed	100	100	95	Redroot Pigweed	90	100	95
Soybean	50	100	90	Soybean	50	100	90
Surinam Grass	20	90	90	Surinam Grass	0	85	90
Velvetleaf	100	100	90	Velvetleaf	100	100	80
Wild Poinsettia	100	100	85	Wild Poinsettia	90	90	85

				1			
Table F		COI	IPOUND	Table F		CON	IPOUND
Rate 35 g/ha	15	22	23	Rate 17 g/ha	15	22	23
POSTEMERGENCE				POSTEMERGENCE			
Arrowleaw Sida	80	60	70	Arrowleaw Sida	10	55	0
Barnyardgrass	30	90	90	Barnyardgrass	0	85	80
Cocklebur	80	85	95	Cocklebur	80	80	90
Common Ragweed	80	100	90	Common Ragweed	70	85	90
Corn	0	15	0	Corn	0	15	0
Cotton	85	85	80	Cotton	60	80	70
Estrn Blknight	100	100	100	Estrn Blknight	100	90	90
Fall Panicum	50	80	90	Fall Panicum	40	75	80
Field Bindweed	80	60	85	Field Bindweed	80	50	85
Fl Beggarweed	-	100	80	Fl Beggarweed	-	100	60
Giant Foxtail	0	75	85	Giant Foxtail	0	65	50
Hairy Beggartic	40	50	70	Hairy Beggartic	40	45	60
Ivyleaw Mrnglry	90	80	70	Ivyleaw Mrnglry	85	75	60
Johnsongrass	0	80	85	Johnsongrass	0	70	50
Ladysthumb	60	100	90	Ladysthumb	-	100	90
Lambsquarters	95	80	90	Lambsquarters	95	75	85
Large Crabgrass	0	90	90	Large Crabgrass	0	85	70
Purple Nutsedge	0	60	0	Purple Nutsedge	0	45	0
Redroot Pigweed	90	100	90	Redroot Pigweed	80	90	85
Soybean	40	95	85	Soybean	40	85	85
Surinam Grass	0	80	80	Surinam Grass	0	75	60
Velvetleaf	100	100	80	Velvetleaf	100	100	70
Wild Poinsettia	80	75	80	Wild Poinsettia	80	70	80

WO 97/46530 PCT/US97/09569

Table F		COM	POUND
Rate 8 g/ha	15	22	23
POSTEMERGENCE			
Arrowleaw Sida	0	10	0
Barnyardgrass	0	75	40
Cocklebur	80	80	80
Common Ragweed	70	70	90
Corn	0	10	0
Cotton	60	70	55
Estrn Blknight	100	90	90
Fall Panicum	40	70	60
Field Bindweed	50	30	70
Fl Beggarweed	-	80	50
Giant Foxtail	0	50	40
Hairy Beggartic	20	40	50
Ivyleaw Mrnglry	85	65	60
Johnsongrass	0	60	10
Ladysthumb	30	90	80
Lambsquarters	90	65	80
Large Crabgrass	0	65	60
Purple Nutsedge	0	35	0
Redroot Pigweed	80	85	85
Soybean	20	80	80
Surinam Grass	0	70	30
Velvetleaf	100	75	50
Wild Poinsettia	80	65	80

TEST G

5

10

15

20

Compounds evaluated in this test were formulated in a non-phytotoxic solvent mixture which includes a surfactant and applied to plants that were grown for various periods of time before treatment (postemergence application). A mixture of sandy loam soil and greenhouse potting mix in a 60:40 ratio was used for the postemergence test. Test compounds were applied 13 days after the last postemergence planting.

149

Plantings of these crops and weed species were adjusted to produce plants of appropriate size for the postemergence test. All plant species were grown using normal greenhouse practices. Crop and weed species include bristly starbur (Acanthospermun hispidum) alexandergrass (Brachiaria plantaginea), american black nightshade (Solanum americanum), apple-of-Peru (Nicandra physaloides), arrowleaf sida (Sida rhombifolia), Brazilian sicklepod (Cassia tora Brazilian), Surinam grass (Brachiaria decumbens), capim-colchao (Digitaria horizontalis), Crist. soybean (Glycine max v. Cristalina), florida beggarweed (Desmodium purpureum), hairy beggarticks (Bidens pilosa), slender amaranth (Amaranthus viridis), southern sandbur (Cenchrus echinatus), tall morningglory (Ipomoea purpurea), tropical spiderwort (Commelina benghalensis), W20 Soybean (Glycine max v. W20), W4-4 Soybean (Glycine max v. W4-4), corn (Zea mays v. Pioneer 3394) and wild pointsettia (Eupohorbia heterophylla).

Treated plants and untreated controls were maintained in a greenhouse for approximately 13 days, after which all treated plants were compared to untreated controls and visually evaluated. Plant response ratings, summarized in Table G, are based upon a 0 to 100 scale where 0 is no effect and 100 is complete control.

WO 97/46530 PCT/US97/09569

		l	
Table G	COMPOUND	Table G	COMPOUND
Rate 140 g/ha	23	Rate 70 g/ha	23
POSTEMERGENCE		POSTEMERGENCE	
Acanthospermum	100	Acanthospermum	100
Alexandergrass	100	Alexandergrass	100
Apple-of-Peru	100	Apple-of-Peru	80
Arrowleaf Sida	80	Arrowleaf Sida	70
Surinam grass	100	Surinam grass	100
Bl. Nightshade	100	Bl. Nightshade	100
Braz Sicklepod	80	Braz Sicklepod	65
Capim-Colch	100	Capim-Colch	100
Corn	20	Corn	15
Crist. Soybean	100	Crist. Soybean	100
Fl. Beggarweed	100	Fl. Beggarweed	85
H. Beggarticks	85	H. Beggarticks	75
Morningglory	90	Morningglory	80
Sl. Amaranth	100	Sl. Amaranth	90
Southern Sandur	85	Southern Sandur	80
Tr. Spiderwort	100	Tr. Spiderwort	90
Wld Pointsettia	100	Wld Pointsettia	85
W20 Soybean	100	W20 Soybean	100
W4-4 Soybean	100	W4-4 Soybean	100

Table G C	OMPOUND	Table G CC	MPOUND	Table G COMPOUND
Rate 35 g/ha	23	Rate 17 g/ha	23	Rate 8 g/ha 23
POSTEMERGENCE		POSTEMERGENCE		POSTEMERGENCE
Acanthospermum	100	Acanthospermum	100	Acanthospermum 55
Alexandergrass	100	Alexandergrass	100	Alexandergrass 85
Apple-of-Peru	80	Apple-of-Peru	75	Apple-of-Peru 65
Arrowleaf Sida	65	Arrowleaf Sida	60	Arrowleaf Sida 40
Surinam grass	100	Surinam grass	90	Surinam grass 80
Bl. Nightshade	100	Bl. Nightshade	100	Bl. Nightshade 85
Braz Sicklepod	60	Braz Sicklepod	35	Braz Sicklepod 10
Capim-Colch	100	Capim-Colch	65	Capim-Colch 60
Corn	0	Corn	0	Corn 0
Crist. Soybean	100	Crist. Soybean	90	Crist. Soybean 85
Fl. Beggarweed	85	Fl. Beggarweed	85	Fl. Beggarweed 100
H. Beggarticks	70	H. Beggarticks	80	H. Beggarticks 75
Morningglory	70	Morningglory	65	Morningglory 60
Sl. Amaranth	80	Sl. Amaranth	80	S1. Amaranth 75
Southern Sandur	50	Southern Sandur	45	Southern Sandur 45
Tr. Spiderwort	80	Tr. Spiderwort	70	Tr. Spiderwort 65
Wld Pointsettia	85	Wld Pointsettia	70	Wld Pointsettia 70
W20 Soybean	90	W20 Soybean	80	W20 Soybean 75
W4-4 Soybean	100	W4-4 Soybean	100	W4-4 Soybean 90

TEST H

5

10

15

20

25

WO 97/46530

Compounds evaluated in this test were formulated in a non-phytotoxic solvent mixture which includes a surfactant and applied to plants that were in the one-to four leaf stage (postemergence application). A mixture of sandy loam soil and greenhouse potting mix in a 60:40 ratio was used for the postemergence test.

Plantings of these crops and weed species were adjusted to produce plants of appropriate size for the postemergence test. All plant species were grown using normal greenhouse practices. Crop and weed species include annual bluegrass (Poa annua), blackgrass (Alopecurus myosuroides), black nightshade (Solanum nigra), chickweed (Stellaria media), common poppy (Papaver rhoeas), deadnettle (Lamium amplexicaule), downy brome (Bromus tectorum), field violet (Viola arvensis), galium (Galium aparine), green foxtail (Setaria viridis), jointed goatgrass (Aegilops cylindrica), kochia (Kochia scoparia), lambsquarters (Chenopodium album), littleseed canarygrass (Phalaris minor), rape (Brassica napus), redroot pigweed (Amaranthus retroflexus), Russian thistle (Salsola kali), ryegrass (Lolium multiflorum), scentless chamomile (Matricaria inodora), spring barley (Hordeum vulgare), sugar beet (Beta vulgaris), sunflower (Helianthus annuus), ivyleaf speedwell (Veronica hederaefolia), spring wheat (Triticum aestivum), winter wheat (Triticum aestivum), wild buckwheat (Polygonum convolvulus), wild mustard (Sinapis arvensis), wild oat (Avena fatua), windgrass (Apera spica-venti) and winter barley (Hordeum vulgare).

Treated plants and untreated controls were maintained in a greenhouse for approximately 21 to 28 days, after which all treated plants were compared to untreated controls and visually evaluated. Plant response ratings, summarized in Table H, are based upon a 0 to 100 scale where 0 is no effect and 100 is complete control. A dash response (-) means no test result.

PCT/US97/09569

WO 97/46530

m.h.)	MPOUND	Table H		COMI	POUNI	,
	15	Rate 62 g/ha	13	15		25
Rate 125 g/ha	15	POSTEMERGENCE	1.7	13	22	23
POSTEMERGENCE	•		10	۸	100	65
Annual Bluegras	0	Annual Bluegras		•		
Blackgrass	0	Blackgrass	5	0	30	55
Blk Nightshade	75	Blk Nightshade			100	
Chickweed	85	Chickweed	45		100	
Common poppy	55	Common poppy	10	50		100
Deadnettle	75	Deadnettle	90	70	100	
Downy brome	0	Downy brome	20	10	60	60
Field violet	75	Field violet	100	75	70	100
Galium	30	Galium	40	50	40	60
Green foxtail	30	Green foxtail	65	30	60	100
Jointed Goatgra	0	Jointed Goatgra	5	0	30	50
Kochia	85	Kochia	80	60	100	60
Lambsquarters	75	Lambsquarters	85	80	100	100
LS Canarygrass	0	LS Canarygrass	15	0	100	100
Rape	85	Rape	30	70	-	100
Redroot Pigweed	75	Redroot Pigweed	30	70	100	75
Russian Thistle	10	Russian Thistle	50	0	100	50
Ryegrass	0	Ryegrass	5	0	35	10
Scentless Chamo	60	Scentless Chamo	0	60	100	70
Spring Barley	0	Spring Barley	10	0	40	5
Sugar beet	100	Sugar beet	85	100	-	100
Sunflower	55	Sunflower	5	50	-	95
Veronica hedera	40	Veronica hedera	55	30	-	60
Wheat (Spring)	0	Wheat (Spring)	10	0	90	65
Wheat (Winter)	0	Wheat (Winter)	10	0	100	50
Wild buckwheat	7 5	Wild buckwheat	60	65	70	30
Wild mustard	95	Wild mustard	65	100	100	100
Wild oat	0	Wild oat	5	0	20	95
Windgrass	0	Windgrass	20	0	70	30
Winter Barley	0	Winter Barley	10	0	40	10

WO 97/46530

		l	
Table H	COMPOUND	Table H	COMPOUNT
Rate 31 g/ha	15 22 25	Rate 16 g/ha	13 22 25
POSTEMERGENCE		POSTEMERGENCE	
Annual Bluegras	- 50 60	Annual Bluegras	5 40 50
Blackgrass	0 20 30	Blackgrass	0 20 20
Blk Nightshade	- 100 85	Blk Nightshade	35 100 100
Chickweed	~ 100 85	Chickweed	15 100 75
Common poppy	100	Common poppy	5 - 60
Deadnettle	- 100 100	Deadnettle	60 100 100
Downy brome	- 40 45	Downy brome	0 50 10
Field violet	- 65 75	Field violet	60 50 -
Galium	- 20 55	Galium	10 20 50
Green foxtail	0 30 100	Green foxtail	30 20 85
Jointed Goatgra	- 40 45	Jointed Goatgra	0 20 0
Kochia	- 85 45	Kochia	60 70 35
Lambsquarters	- 100 100	Lambsquarters	50 100 100
LS Canarygrass	- 65 65	LS Canarygrass	10 60 60
Rape	85	Rape	30 - 70
Redroot Pigweed	- 100 75	Redroot Pigweed	20 100 70
Russian Thistle	- 90 30	Russian Thistle	40 80 30
Ryegrass	0 20 10	Ryegrass	2 20 5
Scentless Chamo	- 100 70	Scentless Chamo	0 100 60
Spring Barley	0 20 65	Spring Barley	5 30 2
Sugar beet	100	Sugar beet	20 - 75
Sunflower	70	Sunflower	0 - 65
Veronica hedera	40	Veronica hedera	30 - 55
Wheat (Spring)	0 30 55	Wheat (Spring)	5 30 25
Wheat (Winter)	0 60 30	Wheat (Winter)	5 30 20
Wild buckwheat	- 35 30	Wild buckwheat	30 50 5
Wild mustard	- 100 100	Wild mustard	45 100 100
Wild oat	0 10 40	Wild oat	0 0 50
Windgrass	- 40 40	Windgrass	10 30 30
Winter Barley	0 20 5	Winter Barley	0 20 5
Durrey		<u> </u>	

WO 97/46530

Table H	COMPOUND
Rate 8 g/ha	25
POSTEMERGENCE	
Annual Bluegras	30
Blackgrass	10
Blk Nightshade	75
Chickweed	60
Common poppy	50
Deadnettle	60
Downy brome	15
Field violet	50
Galium	50
Green foxtail	50
Jointed Goatgra	a 0
Kochia	45
Lambsquarters	100
LS Canarygrass	50
Rape	60
Redroot Pigweed	1 70
Russian Thistle	e 10
Ryegrass	2
Scentless Chamo	50
Spring Barley	0
Sugar beet	50
Sunflower	60
Veronica hedera	a 50
Wheat (Spring)	10
Wheat (Winter)	20
Wild buckwheat	0
Wild mustard	70
Wild oat	10
Windgrass	30
Winter Barley	2

PCT/US97/09569

156

CLAIMS

What is claimed is:

1. A compound selected from the formula

5

and N-oxides and agriculturally suitable salts thereof, wherein

Q is

WO 97/46530

$$(R^4)_p$$
 R^7
 R^6
 R^6
 R^6
 R^7
 R^6
 R^6

10

15

20

A is a five- to ten-membered monocyclic or fused bicyclic ring system, which may be fully aromatic or partially saturated, containing 1 to 4 heteroatoms independently selected from the group nitrogen, oxygen, and sulfur, provided that each heterocyclic ring system contains no more than 2 oxygens and no more than 2 sulfurs, and each ring system is optionally substituted with one to three R², provided that when a nitrogen atom of a heterocyclic ring is substituted with R², then R² is other than halogen;

Q-4

each R^1 is independently H, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_1 - C_6 alkoxy, C_1 - C_6 haloalkoxy, halogen, cyano, nitro, - $(Y)_t$ - $S(O)_nR^{15}$ or - $(Y)_t$ - $C(O)R^{15}$;

W is N or CH;

Y is O or NR¹²;

5

10

15

20

- R² is C₁-C₆ alkyl, C₁-C₆ haloalkyl, C₃-C₆ alkenyl, C₃-C₆ haloalkenyl, C₃-C₆ alkynyl, C₃-C₆ haloalkynyl, C₁-C₆ alkoxy, C₁-C₆ haloalkoxy, C₃-C₆ alkenyloxy, C₃-C₆ alkynyloxy, mercapto, C₁-C₆ alkylthio, C₁-C₃ haloalkylthio, C₃-C₆ alkenylthio, C₃-C₆ alkynylthio, C₃-C₆ alkynylthio, C₂-C₅ alkoxyalkylthio, C₃-C₅ acetylalkylthio, C₃-C₆ alkoxycarbonylalkylthio, C₂-C₄ cyanoalkylthio, C₁-C₆ alkylsulfinyl, C₁-C₆ haloalkylsulfinyl, C₁-C₆ alkylsulfonyl, C₁-C₆ haloalkylsulfonyl, aminosulfonyl, C₁-C₂ alkylaminosulfonyl, C₂-C₄ dialkylaminosulfonyl, (CH₂)_rR¹⁶, NR¹²R¹³, halogen, cyano or nitro; or R² is phenyl or benzylthio, each optionally substituted on the phenyl ring with C₁-C₃ alkyl, C₁-C₃ haloalkyl, C₁-C₃ alkoxy, C₁-C₃ haloalkoxy, 1-2 halogen, cyano or nitro;
 - R³ is OR¹⁴, SH, C₁-C₆ alkylthio, C₁-C₆ haloalkylthio, C₁-C₆ alkylsulfinyl, C₁-C₆ haloalkylsulfinyl, C₁-C₆ haloalkylsulfonyl, halogen or NR¹²R¹³; or R³ is phenylthio, phenylsulfonyl or -SCH₂C(O)Ph, each optionally substituted with C₁-C₃ alkyl, halogen, cyano or nitro;
 - each R⁴ is independently C₁-C₃ alkyl, C₁-C₃ alkoxy, C₁-C₃ alkylthio or halogen; or when two R⁴ are attached to the same carbon atom, then said R⁴ pair can be taken together to form -OCH₂CH₂O-, -OCH₂CH₂CH₂O-, -SCH₂CH₂S- or -SCH₂CH₂S-, each group optionally substituted with 1-4 CH₃;
 - R⁵ is OR¹⁴, SH, C₁-C₆ alkylthio, C₁-C₆ haloalkylthio, C₁-C₆ alkylsulfinyl, C₁-C₆ haloalkylsulfinyl, C₁-C₆ haloalkylsulfonyl, halogen or NR¹²R¹³; or R⁵ is phenylthio, phenylsulfonyl or -SCH₂C(O)Ph, each optionally substituted with C₁-C₃ alkyl, halogen, cyano or nitro;
- 25 R⁶ is H, C₁-C₆ alkyl, C₁-C₆ haloalkyl, C₃-C₆ alkenyl, C₃-C₆ alkynyl or
 -CH₂CH₂OR¹²; or R⁶ is phenyl or benzyl, each optionally substituted on the
 phenyl ring with C₁-C₃ alkyl, halogen, cyano or nitro;
 - R⁷ is H, C₁-C₆ alkyl, C₁-C₆ haloalkyl, C₁-C₆ alkoxy, C₁-C₆ haloalkoxy, halogen, cyano or nitro;
- 30 R⁸ is H, C₁-C₆ alkyl, C₁-C₆ haloalkyl, C₃-C₆ cycloalkyl or C₃-C₆ halocycloalkyl; R⁹ is H, C₂-C₆ alkoxycarbonyl, C₂-C₆ haloalkoxycarbonyl, CO₂H or cyano; R¹⁰ is C₁-C₆ alkyl, C₁-C₆ haloalkyl, C₃-C₆ cycloalkyl optionally substituted with 1-4 C₁-C₃ alkyl or C₃-C₆ halocycloalkyl;
 - R^{11} is cyano, C_2 - C_6 alkoxycarbonyl, C_2 - C_6 alkylcarbonyl, $S(O)_nR^{13}$ or $C(O)NR^{12}R^{13}$; each R^{12} is independently H or C_1 - C_6 alkyl;
 - R¹³ is C₁-C₆ alkyl or C₁-C₆ alkoxy; or
 - R^{12} and R^{13} can be taken together as -CH2CH2-, -CH2CH2CH2-, -CH2CH2CH2-, -CH2CH2CH2-, -CH2CH2CH2- or -CH2CH2OCH2-;

WO 97/46530

158

R¹⁴ is H, C₁-C₆ alkyl, C₁-C₆ haloalkyl, C₂-C₆ alkoxyalkyl, formyl, C₂-C₆ alkylcarbonyl, C₂-C₆ alkoxycarbonyl, C(O)NR¹²R¹³, C₁-C₆ alkylsulfonyl or C₁-C₆ haloalkylsulfonyl; or R¹⁴ is phenyl, benzyl, benzoyl, -CH₂C(O)phenyl or phenylsulfonyl, each optionally substituted on the phenyl ring with C₁-C₃ alkyl, halogen, cyano or nitro;

R¹⁵ is NR¹²R¹³, C₁-C₆ alkoxy, C₁-C₆ haloalkoxy, C₁-C₆ alkyl, C₁-C₆ haloalkyl, C₃-C₆ alkenyl, C₃-C₆ haloalkenyl, C₃-C₆ alkynyl, C₃-C₆ haloalkynyl or C₃-C₆ cycloalkyl; or R¹⁵ is phenyl optionally substituted with C₁-C₃ alkyl, C₁-C₃ haloalkyl, C₁-C₃ haloalkoxy, C₁-C₃ haloalkoxy, 1-2 halogen, cyano or nitro;

10 R¹⁶ is C₁-C₃ alkoxy, C₂-C₄ alkoxycarbonyl, C₁-C₃ alkylthio, C₁-C₃ alkylsulfinyl or C₁-C₃ alkylsulfonyl; or R¹⁶ is phenyl optionally substituted with C₁-C₃ alkyl, C₁-C₃ haloalkyl, C₁-C₃ alkoxy, C₁-C₃ haloalkoxy, 1-2 halogen, cyano or nitro; m is 0, 1, 2 or 3;

n is 0, 1 or 2;

p is 0, 1, 2, 3 or 4; r is 1, 2 or 3; and

t is 0 or 1;

provided that when W is CH and A is in the *meta* position with respect to the group Q-C(O)- of Formula I, then m is 3 and R¹ is other than H.

20

25

30

5

2. A compound of Claim 1 wherein

A is selected from the group 1*H*-pyrrolyl; furanyl; thienyl; 1*H*-pyrazolyl; 1*H*-imidazolyl; isoxazolyl; oxazolyl; isothiazolyl; thiazolyl; 1*H*-1,2,3-triazolyl; 2*H*-1,2,3-triazolyl; 1*H*-1,2,4-triazolyl; 4*H*-1,2,4-triazolyl; 1,2,3-oxadiazolyl; 1,2,4-oxadiazolyl; 1,2,5-oxadiazolyl; 1,3,4-oxadiazolyl; 1,2,3-thiadiazolyl; 1,2,4-thiadiazolyl; 1,2,5-thiadiazolyl; 1,3,4-thiadiazolyl; 1*H*-tetrazolyl; 2*H*-tetrazolyl; pyridinyl; pyridazinyl; pyrimidinyl; pyrazinyl; 1,3,5-triazinyl; 1,2,4-triazinyl; and A may optionally be substituted by one to three R², provided that when a nitrogen atom of a heterocyclic ring is substituted with R², then R² is other than halogen.

- 3. A compound of Claim 2 wherein O is Q-1.
- A compound of Claim 3 wherein
 each R¹ is independently C₁-C₃ alkyl, C₁-C₃ alkoxy, halogen or nitro;
 R³ is OR¹⁴; and

PCT/US97/09569

159

 R^{14} is H or C_1 - C_4 alkylsulfonyl; or R^{14} is benzoyl or phenylsulfonyl, each optionally substituted with C_1 - C_3 alkyl, halogen, cyano or nitro.

- 5. A compound of Claim 4 wherein
- 5 A is pyridinyl, pyridazinyl, pyrimidinyl or 1*H*-pyrazolyl;

 R^2 is $-(Y)_t$ -S(O)_n R^{15} , CF₃, OCF₃, OCF₂H or cyano;

 R^{15} is C_1 - C_6 alkyl;

t is 0; and

n is 2.

10

6. A compound of Claim 2 wherein:

Q is Q-2.

- A compound of Claim 6 wherein:
- each R¹ is independently C₁-C₃ alkyl, C₁-C₃ alkoxy, halogen or nitro;

R⁵ is OR 14;

 R^{14} is H or C_1 - C_4 alkylsulfonyl; or R^{14} is benzoyl or phenylsulfonyl, each optionally substituted with C_1 - C_3 alkyl, halogen, cyano or nitro.

R6 is H, C1-C6 alkyl, or C3-C6 alkenyl; and

20 R⁷ is H.

8. A compound of Claim 7 wherein

A is pyridinyl, pyridazinyl, pyrimidinyl or 1H-pyrazolyl;

 R^2 is $-(Y)_t$ - $S(O)_nR^{15}$, CF_3 , OCF_3 , OCF_2H or cyano;

25 R^{15} is C_1 - C_6 alkyl;

t is 0; and

n is 2.

- 9. A compound of Claim 2 wherein
- 30 Q is Q-3.
 - 10. A compound of Claim 9 wherein

each R¹ is independently C₁-C₃ alkyl, C₁-C₃ alkoxy, halogen or nitro;

R8 is H, C1-C3 alkyl, or cyclopropyl; and

- 35 R⁹ is H or C₂-C₃ alkoxycarbonyl.
 - 11. A compound of Claim 10 wherein

A is pyridinyl, pyridazinyl, pyrimidinyl or 1H-pyrazolyl;

PCT/US97/09569

160

 R^2 is -(Y)_t-S(O)_n R^{15} , CF₃, OCF₃, OCF₂H or cyano; R^{15} is C₁-C₆ alkyl; t is 0; and n is 2.

5

WO 97/46530

- 12. A compound of Claim 2 wherein O is O-4.
- 13. A compound of Claim 12 wherein
- each R¹ is independently C₁-C₃ alkyl, C₁-C₃ alkoxy, halogen or nitro;

 R¹⁰ is C₃-C₆ cycloalkyl or C₃-C₆ halocycloalkyl, each optionally substituted with 1-4

 C₁-C₃ alkyl; and

 R¹¹ is cyano or C₂-C₆ alkoxycarbonyl.
- 14. A compound of Claim 13 wherein

 A is pyridinyl, pyridazinyl, pyrimidinyl or 1*H*-pyrazolyl;

 R² is -(Y)_t-S(O)_nR¹⁵, CF₃, OCF₃, OCF₂H or cyano;

 R¹⁵ is C₁-C₆ alkyl;

 t is 0; and
- 20 n is 2.
 - 15. The compound of Claim 5 which is selected from the group
 - a) 3-hydroxy-2-[[6-(trifluoromethyl)[2,4'-bipyridin]-3-yl]carbonyl]-2-cyclohexen-1-one;
 - b) 2-[2-chloro-4-(4-pyridinyl)benzoyl]-3-hydroxy-2-cyclohexen-1-one; and
 - c) 2-[2,5-dimethyl-3-(1-methyl-1*H*-pyrazol-3-yl)-4-(methylsulfonyl)benzoyl]-3-hydroxy-2-cyclohexen-1-one.
- 16. A herbicidal composition comprising a herbicidally effective amount of a
 30 compound of Claim 1 and at least one of a surfactant, a solid diluent or a liquid diluent.
 - 17. A method for controlling the growth of undesired vegetation comprising contacting the vegetation or its environment with a herbicidally effective amount of a compound of Claim 1.

35

nal Application No PCT/US 97/09569

A. CLASSIFICATION OF SUBJECT MATTER IPC 6 C07D213/50 A01N43/40 A01N43/80 A01N43/78 A01N43/56 C07D277/24 C07D401/12 CO7D213/53 CO7D231/12 CO7D231/20

According to international Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols) IPC 6 C07D

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	DE 39 02 818 A (SANDOZ AG) 10 August 1989 see page 35 - page 36, paragraph 1 see page 38; claims 33,34	1-5,16, 17
A	GB 2 122 188 A (NISSAN CHEMICAL IND LTD) 11 January 1984 see the whole document; in particular page 25; table 5, compound no. 3.9	1,2,6-8, 16,17
Ρ,Υ	WO 96 26200 A (BASF AG ;DEYN WOLFGANG VON (DE); HILL REGINA LUISE (DE); KARDORFF) 29 August 1996 cited in the application see the whole document	1-5, 15-17

X Further documents are listed in the continuation of box C.	X Patent family members are listed in annex.		
* Special categories of oited documents: "A" document defining the general state of the art which is not considered to be of particular relevance. "E" earlier document but published on or after the international filling date. "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified). "O" document referring to an oral disclosure, use, exhibition or other means. "P" document published prior to the international filing date but later than the priority date claimed.	"T' later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention." "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone. "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "A" document member of the same patent family		
Date of the actual completion of the international search	Date of mailing of the international search report		
30 September 1997	0 8. 10. 97		
Name and mailing address of the ISA European Patent Office, P.B. 5816 Patentiaan 2 NL - 2260 HV Rijswijk Tal. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Authorized officer Fink, D		

inters. .nai Application No PCT/US 97/09569

		PC1/05 9//09569	
(Continuategory *	ation) DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.	
Υ	EP 0 319 075 A (NIPPON SODA CO) 7 June 1989 see the whole document; in particular page	1-5, 15-17	
Ρ,Υ	3, line 30 WO 96 26206 A (BASF AG ;DEYN WOLFGANG VON (DE); HILL REGINA LUISE (DE); KARDORFF) 29 August 1996 see the whole document	1,2,6-8, 16,17	
Y	GB 1 463 473 A (SANKYO CO) 2 February 1977 see the whole document; in particular page 1, line 17	1,2,6-8, 16,17	
P,X	WO 96 26192 A (BASF AG ;DEYN WOLFGANG VON (DE); HILL REGINA LUISE (DE); KARDORFF) 29 August 1996 see the whole document	1,2, 9-11,16, 17	
P,X	WO 96 26193 A (BASF AG ; DEYN WOLFGANG VON (DE); HILL REGINA LUISE (DE); KARDORFF) 29 August 1996 see the whole document	1,2, 12-14, 16,17	

Inter Lai Application No

Intermation on patent family members

PCT/US 97/09569

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
DE 3902818 A	10-08-89	AU 2895589 A CN 1036202 A DK 40989 A FR 2626573 A GB 2215333 A JP 2001422 A NL 8900243 A PT 89570 B	03-08-89 11-10-89 02-08-89 04-08-89 20-09-89 05-01-90 01-09-89 31-05-94
GB 2122188 A	11-01-84	JP 1762410 C JP 4035462 B JP 58185568 A AU 1387383 A BR 8302112 A US 4557753 A	28-05-93 11-06-92 29-10-83 27-10-83 27-12-83 10-12-85
WO 9626200 A	29-08-96	AU 4875396 A	11-09-96
EP 0319075 A	07-06-89	AT 108764 T CA 1337818 A DE 3850749 D JP 2000726 A US 5110343 A	15-08-94 26-12-95 25-08-94 05-01-90 05-05-92
WO 9626206 A	29-08-96	AU 4665596 A	11-09-96
GB 1463473 A	02-02-77	JP 1001829 C JP 50126830 A JP 54036648 B AU 7934175 A CA 1077944 A CA 1069329 A CA 1075030 A DE 2513750 A FR 2274219 A US 4414392 A US 4508910 A US 4687858 A	19-06-80 06-10-75 10-11-79 23-09-76 20-05-80 08-01-80 08-04-80 09-10-75 09-01-76 08-11-83 17-11-81 02-04-85 20-12-77 18-08-87

PCT/US 97/09569

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
GB 1463473 A		US 4146726 A US 4261729 A	27-03-79 14-04-81
WO 9626192 A	29-08-96	AU 4875296 A	11-09-96
WO 9626193 A	29-08-96	NONE	