Introduzione alle Distribuzioni

Definizione di distribuzione, Distribuzioni regolari

Richiami di teoria. Definiamo l'insieme delle funzioni test \mathcal{D} formato dalle funzioni $\phi \in \mathcal{C}^{\infty}(\mathbb{R})$ a supporto compatto. Una distribuzione è un funzionale $T: \mathcal{D} \to \mathbb{R}$ lineare e continuo. In altre parole, una distribuzione è un oggetto che prende in input una funzione test e restituisce un numero reale. Ci interessa quindi capire come una distribuzione agisce su una generica funzione test $\phi \in \mathcal{D}$; l'azione della distribuzione T su ϕ si indica con la notazione $\langle T, \phi \rangle$.

Le proprietà di linearità e continuità possono essere allora formalizzate come segue:

Linearità e continuità di distribuzioni

- 1. $\langle T, \lambda \phi_1 + \mu \phi_2 \rangle = \lambda \langle T, \phi_1 \rangle + \mu \langle T, \phi_2 \rangle, \forall \phi_1, \phi_2 \in \mathcal{D} \in \lambda, \mu \in \mathbb{R}.$
- 2. Se data una successione di funzioni $\phi_n \to \phi$ in \mathcal{D} , allora $\langle T, \phi_n \rangle \to \langle T, \phi \rangle$ in \mathbb{R} . In virtù della linearità, questo è equivalente a chiedere che $\phi_n \to 0 \Longrightarrow \langle T, \phi_n \rangle \to 0$.

L'insieme delle distribuzioni definite sulle funzioni test è denotato con \mathcal{D}' (detto anche spazio duale di \mathcal{D}) ed è uno spazio vettoriale. In particolare, la somma di distribuzioni è ancora una distribuzione

E' di particolare interesse una certa famiglia di distribuzioni dette distribuzioni regolari. Tali distribuzioni sono costruite a partire da una funzione $f \in \mathcal{R}^1_{loc}$ (cioè localmente integrabile) che induce una distribuzione definita come segue:

Distribuzioni regolari

$$\langle T_f, \phi \rangle := \int_{\mathbb{R}} f(x)\phi(x) \, \mathrm{d}x, \quad \forall \phi \in \mathcal{D}.$$

E' possibile verificare che questa definizione è ben posta e che $\langle T_f, \phi \rangle$ è effettivamente una distribuzione.

Una delle distribuzioni più importanti, anche nelle applicazioni, è la delta di Dirac centrata in un punto $x_0 \in \mathbb{R}$, che si denota con δ_{x_0} ; la sua azione sulla generica funzione test è data da:

$$\langle \delta_{x_0}, \phi \rangle = \phi(x_0)$$

In altre parole, la delta di Dirac centrata in un punto x_0 prende in input una funzione test e resitutisce la funzione test valutata in x_0 . La delta di Dirac non è una distribuzione regolare, cioè $\nexists f \in \mathcal{R}^1_{loc}$ tale per cui $\int_{\mathbb{R}} f(x)\phi(x) \, \mathrm{d}x = \phi(x_0)$.

Esercizio 1. Data una funzione test $\phi \in \mathcal{D}$, dimostrare che $\phi' \in \mathcal{D}$ e che

$$\int_{-\infty}^{\infty} \phi'(x) \, \mathrm{d}x = 0.$$

Soluzione. Innanzitutto osserviamo che essendo $\phi \in \mathcal{C}^{\infty}(\mathbb{R})$, allora ϕ' è ben definita e $\phi' \in \mathcal{C}^{\infty}(\mathbb{R})$. Inoltre osserviamo che, essendo supp $_{\phi}$ compatto, allora $\exists \ a < \in \mathbb{R} : \phi(x) = 0, \ \forall \ x < a \ o \ x > b$. Di conseguenza, ϕ è costante all'esterno di [a,b] e supp $_{\phi'} \in [a,b]$. Per concludere, per il teorema fondamentale del calcolo integrale,

$$\int_{-\infty}^{\infty} \phi'(x) \, \mathrm{d}x = \lim_{y \to \infty} \int_{-y}^{y} \phi'(x) \, \mathrm{d}x = \lim_{y \to \infty} \phi(y) - \lim_{y \to -\infty} \phi(y) = 0.$$

Esercizio 2. Data una funzione test $\phi \in \mathcal{D}$, dimostrare che se

$$\int_{-\infty}^{\infty} \phi(x) \, \mathrm{d}x = 0,$$

allora $\exists \psi \in \mathcal{D} : \phi = \psi'$. Mentre se

$$\int_{-\infty}^{\infty} \phi(x) \, \mathrm{d}x \neq 0,$$

allora $\nexists \psi \in \mathcal{D} : \phi = \psi'$.

Soluzione. Definiamo

$$\psi(x) = \int_{-\infty}^{x} \phi(t) \, \mathrm{d}t.$$

Essendo $\phi \in \mathcal{C}^{\infty}(\mathbb{R})$, anche $\psi \in \mathcal{C}^{\infty}(\mathbb{R})$, siccome l'integrazione non può diminuire la regolarità di una funzione. Inoltre osserviamo che, siccome $\exists a < b \in \mathbb{R} : \phi(x) = 0, \ \forall x < a \ o \ x < b$, allora $\psi(x) = \int_{-\infty}^{x} 0 \ \mathrm{d}t = 0, \ \forall x < a \ e \ \psi(x) = \int_{-\infty}^{a} 0 \ \mathrm{d}t + \int_{a}^{b} \phi(t) \ \mathrm{d}t + \int_{b}^{x} 0 \ \mathrm{d}t = 0, \ \forall x > b$. Quindi $\psi \in \mathcal{D}$. Osserviamo che invece, come conseguenza dell'Esercizio 1, se esistesse $\psi \in \mathcal{D} : \phi = \psi' \in \mathcal{D}$, allora necessariamente $\int_{\mathbb{R}} \phi(x) \ \mathrm{d}x = 0$.

Esercizio 3. Verificare se $f(x) = e^x$ induce una distribuzione.

Soluzione. Innanzitutto osserviamo che $f(x) \in \mathcal{R}^1_{loc}$. Verifichiamo quindi la linearità

$$\langle T_f, \lambda \phi_1 + \mu \phi_2 \rangle = \int_{\mathbb{R}} (\lambda \phi_1 + \mu \phi_2) e^x \, \mathrm{d}x = \lambda \int_{\mathbb{R}} \phi_1 e^x \, \mathrm{d}x + \mu \int_{\mathbb{R}} \phi_2 e^x \, \mathrm{d}x = \lambda \langle T_f, \phi_1 \rangle + \mu \langle T_f, \phi_2 \rangle.$$

Verifichiamo la continuità. Sia $\phi_n \in \mathcal{D}$, tale che $\phi_n \to 0$ allora abbiamo che

$$\lim_{n \to \infty} |\langle T_f, \phi_n \rangle| = \lim_{n \to \infty} \left| \int_{\mathbb{R}} e^x \phi_n(x) \, \mathrm{d}x \right| = \lim_{n \to \infty} \left| \int_{\mathrm{supp}_{\phi_n}} e^x \phi_n(x) \, \mathrm{d}x \right|$$

$$\leq \lim_{n \to \infty} ||\phi_n||_{\infty} \left| \int_{\mathrm{supp}_{\phi_n}} e^x \, \mathrm{d}x \right| = \lim_{n \to \infty} ||\phi_n||_{\infty} K = 0,$$

dove $K = \left| \int_{\sup \phi_n} e^x \, \mathrm{d}x \right| < \infty$ è una diretta conseguenza di $\sup \phi_n$ compatto e $e^x \in \mathcal{R}^1_{loc}$. Osserviamo che questa dimostrazione può essere facilmente riadattata a qualsiasi $f \in \mathcal{R}^1_{loc}$. Da fare a casa. Verificare che $f(x) = x^2 + x$ e $g(x) = \sinh(3x) + 1$ inducono una distribuzione.

Esercizio 4. Verificare se

$$\langle T, \phi \rangle = \int_0^2 \ln(x+1)\phi(x) \, \mathrm{d}x$$

è una distribuzione.

Soluzione. Risulta immediato riconoscere T come distribuzione regolare indotta dalla funzione $f(x) = \ln(x+1)\mathbb{1}_{[0,2]}(x) \in \mathcal{R}^1_{loc}$ dove $\mathbb{1}_{[0,2]}(x)$ denota la funzione indicatrice dell'intervallo [0,2].

Esercizio 5. Verificare se

$$\langle T, \phi \rangle = \int_0^1 \phi(x)^3 \, \mathrm{d}x$$

è una distribuzione.

Soluzione. T non è una distribuzione, per dimostrarlo verifichiamo che T non è lineare considerando come controesempio il caso $\mu=0$ e $\lambda\neq 1$:

$$\langle T, \lambda \phi_1 \rangle = \int_0^1 (\lambda \phi_1(x))^3 dx = \lambda^3 \int_0^1 \phi_1(x)^3 dx = \lambda^3 \langle T, \phi_1 \rangle \neq \lambda \langle T, \phi_1 \rangle.$$

Da fare a casa. Ripetere con $\langle T, \phi \rangle = \int_0^1 x^2 \phi(x) dx - \int_{-2}^4 e^x \phi(x) dx$

Esercizio 6. Verificare se

$$\langle T, \phi \rangle = \int_0^1 x^2 \phi(x) dx - \int_{-2}^4 e^x \phi(x) dx$$

è una distribuzione.

Soluzione. E' immediato riconoscere T come somma algebrica di due distribuzioni regolari, la prima indotta da $f_1(x) = x^2 \mathbb{1}_{[0,1]}(x) \in \mathcal{R}^1_{loc}(\mathbb{R})$ e la seconda da $f_2(x) = e^x \mathbb{1}_{[-2,4]}(x) \in \mathcal{R}^1_{loc}(\mathbb{R})$.

Esercizio 7. Verificare se

$$\langle T, \phi \rangle = \phi(4) - \phi(5)$$

è una distribuzione.

Soluzione. Verifichiamo la linearità.

$$\langle T, \lambda \phi_1 + \mu \phi_2 \rangle = \lambda \phi_1(4) + \mu \phi_2(4) - (\lambda \phi_1(5) + \mu \phi_2(5)) = \lambda \langle T, \phi_1 \rangle + \mu \langle T, \phi_2 \rangle,$$

e la continuità. Sia $\phi_n \in \mathcal{D}$, tale che $\phi_n \to 0$ allora abbiamo che

$$\lim_{n \to \infty} \langle T, \phi_n \rangle = \phi_n(4) - \phi_n(5) \to 0.$$

Osserviamo che T può essere convenientemente scritta come combinazione lineare di delta di Dirac, ovvero

$$T = \delta_4 - \delta_5$$
.

Esercizio 8. Verificare se

$$\langle T, \phi \rangle = |\phi(2)|$$

è una distribuzione.

Soluzione. T non è una distribuzione, per dimostrarlo verifichiamo che T non è lineare considerando come controesempio il caso $\mu = 0$ e $\lambda = -1$:

$$\langle T, -\phi_1 \rangle = |-\phi(2)| = |\phi(2)| = \langle T, \phi_1 \rangle \neq -\langle T, \phi_1 \rangle.$$

Esercizio 9. Verificare se

$$\langle T, \phi \rangle = \phi(4)\phi(5)$$

è una distribuzione.

Soluzione. T non è una distribuzione, per dimostrarlo verifichiamo che T non è lineare considerando come controesempio il caso $\lambda = \mu = 1$:

$$\langle T, \phi_1 + \phi_2 \rangle = (\phi_1(4) + \phi_2(4))(\phi_1(5) + \phi_2(5)) = \langle T, \phi_1 \rangle + \langle T, \phi_2 \rangle + \phi_1(4)\phi_2(5) + \phi_2(4)\phi_1(5)$$

Esercizio 10. Verificare se

$$\langle T, \phi \rangle = \int_0^1 \phi'(x) \, \mathrm{d}x$$

è una distribuzione.

Soluzione. Utilizzando il teorema fondamentale del calcolo integrale scriviamo

$$\langle T, \phi \rangle = \int_0^1 \phi'(x) \, \mathrm{d}x = \phi(1) - \phi(0) \implies T = \delta_1 - \delta_0.$$

Di conseguenza T è una distribuzione, in quanto somma algebrica di funzioni delta di Dirac.

Da fare a casa. Ripetere con
$$\langle T, \phi \rangle = \int_0^1 \phi''(x) dx e \langle T, \phi \rangle = \phi(-2) + 4 \int_1^2 x \phi(x) dx$$