Section 5.4—The Derivatives of $y = \sin x$ and $y = \cos x$

In this section, we will investigate to determine the derivatives of $y = \sin x$ and $y = \cos x$.

INVESTIGATION 1 A. Using a graphing calculator, graph $y = \sin x$, where x is measured in radians. Use the following WINDOW settings:

- Xmin = 0, Xmax = 9.4, $Xscl = \pi \div 2$
- Ymin = -3.1, Ymax = 3.1, Yscl = 1 Enter $y = \sin x$ into Y1, and graph the function.

B. Use the CALC function (with value or $\frac{dy}{dx}$ selected) to compute y and $\frac{dy}{dx}$, respectively, for $y = \sin x$. Record these values in a table like the following (correct to four decimal places):

x	sin x	$\frac{d}{dx}(\sin x)$		
0				
0.5				
1.0				
:				
:				
:				
6.5				

- C. Create another column, to the right of the $\frac{d}{dx}(\sin x)$ column, with $\cos x$ as the heading. Using your graphing calculator, graph $y = \cos x$ with the same window settings as above.
- D. Compute the values of $\cos x$ for $x = 0, 0.5, 1.0, \dots, 6.5$, correct to four decimal places. Record the values in the $\cos x$ column.
- E. Compare the values in the $\frac{d}{dx}(\sin x)$ column with those in the cos x column, and write a concluding equation.

Tech **Support**

To calculate $\frac{dy}{dx}$ at a point, press ND TRACE 6 and enter the desired x-coordinate of your point. Then press NTER.

Tech **Support**

For help calculating a value of a function using a graphing calculator, see Technical Appendix p. 598.

- **INVESTIGATION 2** A. Using your graphing calculator, graph $y = \cos x$, where x is measured in radians. Use the following WINDOW settings:
 - $Xmin = 0, Xmax = 9.4, Xscl = \pi \div 2$
 - Ymin = -3.1, Ymax = 3.1, Yscl = 1

Enter $y = \cos x$ into Y1, and graph the function.

B. Use the CALC function (with value or $\frac{dy}{dx}$ selected) to compute y and $\frac{dy}{dx}$, respectively, for $y = \cos x$. Record these values, correct to four decimal places, in a table like the following:

х	cos x	$\frac{d}{dx}(\cos x)$		
0				
0.5				
1.0				
:				
:				
:				
6.5				

- C. Create another column to the right of the $\frac{d}{dx}(\cos x)$ column with $-\sin x$ as the heading. Using your graphing calculator, graph $y = -\sin x$ with the same window settings as above.
- D. Compute the values of $-\sin x$ for $x = 0, 0.5, 1.0, \dots, 6.5$, correct to four decimal places. Record the values in the $-\sin x$ column.
- E. Compare the values in the $\frac{d}{dx}(\cos x)$ column with those in the $-\sin x$ column, and write a concluding equation.

Investigations 1 and 2 lead to the following conclusions:

Derivatives of Sinusoidal Functions

$$\frac{d}{dx}(\sin x) = \cos x \qquad \qquad \frac{d}{dx}(\cos x) = -\sin x$$

EXAMPLE 1 Selecting a strategy to determine the derivative of a sinusoidal function

Determine $\frac{dy}{dx}$ for each function.

a.
$$y = \cos 3x$$

b.
$$y = x \sin x$$

Solution

a. To differentiate this function, use the chain rule.

$$y = \cos 3x$$

$$\frac{dy}{dx} = \frac{d(\cos 3x)}{d(3x)} \times \frac{d(3x)}{dx}$$

$$= -\sin 3x \times (3)$$

$$= -3\sin 3x$$
(Chain rule)

b. To find the derivative, use the product rule.

$$y = x \sin x$$

$$\frac{dy}{dx} = \frac{dx}{dx} \times \sin x + x \frac{d(\sin x)}{dx}$$

$$= (1) \times \sin x + x \cos x$$

$$= \sin x + x \cos x$$
(Product rule)

EXAMPLE 2 Reasoning about the derivatives of sinusoidal functions

Determine $\frac{dy}{dx}$ for each function.

a.
$$y = \sin x^2$$

$$b. y = \sin^2 x$$

Solution

a. To differentiate this composite function, use the chain rule and change of variable.

Here, the inner function is $u = x^2$, and the outer function is $y = \sin u$.

Then,
$$\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$$
 (Chain rule)

$$= (\cos u)(2x)$$
 (Substitute)

$$= 2x \cos x^2$$

b. Since $y = \sin^2 x = (\sin x)^2$, we use the chain rule with $y = u^2$, where $u = \sin x$.

Then,
$$\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$$
 (Chain rule)

$$= (2u)(\cos x)$$
 (Substitute)

$$= 2 \sin x \cos x$$

With practice, you will learn how to apply the chain rule without the intermediate step of introducing the variable u. For $y = \sin x^2$, for example, you can skip this step and immediately write $\frac{dy}{dx} = (\cos x^2)(2x)$.

Derivatives of Composite Sinusoidal Functions

If
$$y = \sin f(x)$$
, then $\frac{dy}{dx} = \cos f(x) \times f'(x)$.

In Leibniz notation, $\frac{d}{dx}(\sin f(x)) = \frac{d(\sin f(x))}{d(f(x))} \times \frac{d(f(x))}{dx} = \cos f(x) \times \frac{d(f(x))}{dx}$.

If $y = \cos f(x)$, then $\frac{dy}{dx} = -\sin f(x) \times f'(x)$.

In Leibniz notation, $\frac{d}{dx}(\cos f(x)) = \frac{d(\cos f(x))}{d(f(x))} \times \frac{d(f(x))}{dx} = -\sin f(x) \times \frac{d(f(x))}{dx}$.

EXAMPLE 3 Differentiating a composite cosine function

Determine $\frac{dy}{dx}$ for $y = \cos(1 + x^3)$.

Solution

$$y = \cos(1 + x^{3})$$

$$\frac{dy}{dx} = \frac{d[\cos(1 + x^{3})]}{d(1 + x^{3})} \times \frac{d(1 + x^{3})}{dx}$$

$$= -\sin(1 + x^{3})(3x^{2})$$

$$= -3x^{2}\sin(1 + x^{3})$$
(Chain rule)

EXAMPLE 4 Differentiating a combination of functions

Determine y' for $y = e^{\sin x + \cos x}$.

Solution

$$y = e^{\sin x + \cos x}$$

$$y' = \frac{d(e^{\sin x + \cos x})}{d(\sin x + \cos x)} \times \frac{d(\sin x + \cos x)}{dx}$$

$$= e^{\sin x + \cos x}(\cos x - \sin x)$$
(Chain rule)

EXAMPLE 5 Connecting the derivative of a sinusoidal function to the slope of a tangent

Determine the equation of the tangent to the graph of $y = x \cos 2x$ at $x = \frac{\pi}{2}$.

Solution

When
$$x = \frac{\pi}{2}$$
, $y = \frac{\pi}{2} \cos \pi = -\frac{\pi}{2}$.

The point of tangency is $\left(\frac{\pi}{2}, -\frac{\pi}{2}\right)$.

The slope of the tangent at any point on the graph is given by

$$\frac{dy}{dx} = \frac{dx}{dx} \times \cos 2x + x \times \frac{d(\cos 2x)}{dx}$$
 (Product and chain rules)

$$= (1)(\cos 2x) + x(-\sin 2x)(2)$$
 (Simplify)

$$= \cos 2x - 2x \sin 2x$$

At $x = \frac{\pi}{2}, \frac{dy}{dx} = \cos \pi - \pi(\sin \pi)$ (Evaluate)

$$= -1$$

The equation of the tangent is

$$y + \frac{\pi}{2} = -\left(x - \frac{\pi}{2}\right) \text{ or } y = -x.$$

EXAMPLE 6 Connecting the derivative of a sinusoidal function to its extreme values

Determine the maximum and minimum values of the function $f(x) = \cos^2 x$ on the interval $x \in [0, 2\pi]$.

Solution

By the algorithm for finding extreme values, the maximum and minimum values occur at points on the graph where f'(x) = 0 or at endpoints of the interval. The derivative of f(x) is

$$f'(x) = 2 (\cos x)(-\sin x)$$
 (Chain rule)

$$= -2 \sin x \cos x$$

$$= -\sin 2x$$
 (Using the double angle identity)
Solving $f'(x) = 0$,

$$-\sin 2x = 0$$

$$\sin 2x = 0$$

$$2x = 0, \pi, 2\pi, 3\pi, \text{ or } 4\pi$$

so $x = 0, \frac{\pi}{2}, \pi, \frac{3\pi}{2}, \text{ or } 2\pi$

We evaluate f(x) at the critical numbers. (In this example, the endpoints of the interval are included.)

х	0	$\frac{\pi}{2}$	π	$\frac{3\pi}{2}$	2π
$f(x)=\cos^2 x$	1	0	1	0	1

The maximum value is 1 when x = 0, π , or 2π . The minimum value is 0 when $x = \frac{\pi}{2}$ or $\frac{3\pi}{2}$.

The above solution is verified by our knowledge of the cosine function. For the function $y = \cos x$,

- the domain is $x \in \mathbf{R}$
- the range is $-1 \le \cos x \le 1$

For the given function $y = \cos^2 x$,

- the domain is $x \in \mathbf{R}$
- the range is $0 \le \cos^2 x \le 1$

Therefore, the maximum value is 1 and the minimum value is 0.

IN SUMMARY

Key Idea

• The derivatives of sinusoidal functions are found as follows:

•
$$\frac{d(\sin x)}{dx} = \cos x$$
 and $\frac{d(\cos x)}{dx} = -\sin x$

• If
$$y = \sin f(x)$$
, then $\frac{dy}{dx} = \cos f(x) \times f'(x)$.

• If
$$y = \cos f(x)$$
, then $\frac{dy}{dx} = -\sin f(x) \times f'(x)$.

Need to Know

When you are differentiating a function that involves sinusoidal functions, use
the rules given above, along with the sum, difference, product, quotient, and
chain rules as required.

Exercise 5.4

PART A

1. Determine
$$\frac{dy}{dx}$$
 for each of the following:

a.
$$y = \sin 2x$$

f.
$$y = 2^x + 2\sin x - 2\cos x$$

b.
$$y = 2 \cos 3x$$

g.
$$y = \sin(e^x)$$

c.
$$y = \sin(x^3 - 2x + 4)$$

h.
$$y = 3 \sin(3x + 2\pi)$$

d.
$$y = 2 \cos(-4x)$$

i.
$$y = x^2 + \cos x + \sin \frac{\pi}{4}$$

$$e. y = \sin 3x - \cos 4x$$

j.
$$y = \sin \frac{1}{x}$$

2. Differentiate the following functions:

a.
$$y = 2 \sin x \cos x$$

d.
$$y = \frac{\sin x}{1 + \cos x}$$

$$b. \ \ y = \frac{\cos 2x}{x}$$

e.
$$y = e^x(\cos x + \sin x)$$

c.
$$y = \cos(\sin 2x)$$

$$f. \quad y = 2x^3 \sin x - 3x \cos x$$

PART B

3. Determine an equation for the tangent at the point with the given x-coordinate for each of the following functions:

a.
$$f(x) = \sin x, x = \frac{\pi}{3}$$

d.
$$f(x) = \sin 2x + \cos x, x = \frac{\pi}{2}$$

b.
$$f(x) = x + \sin x, x = 0$$

e.
$$f(x) = \cos\left(2x + \frac{\pi}{3}\right), x = \frac{\pi}{4}$$

c.
$$f(x) = \cos(4x), x = \frac{\pi}{4}$$

c.
$$f(x) = \cos(4x), x = \frac{\pi}{4}$$
 f. $f(x) = 2\sin x \cos x, x = \frac{\pi}{2}$

4. a. If
$$f(x) = \sin^2 x$$
 and $g(x) = 1 - \cos^2 x$, explain why $f'(x) = g'(x)$.
b. If $f(x) = \sin^2 x$ and $g(x) = 1 + \cos^2 x$, how are $f'(x)$ and $g'(x)$ related?

5. Differentiate each function.

a.
$$v(t) = \sin^2(\sqrt{t})$$

c.
$$h(x) = \sin x \sin 2x \sin 3x$$

b.
$$v(t) = \sqrt{1 + \cos t + \sin^2 t}$$
 d. $m(x) = (x^2 + \cos^2 x)^3$

d.
$$m(x) = (x^2 + \cos^2 x)^3$$

- 6. Determine the absolute extreme values of each function on the given interval. (Verify your results with graphing technology.)
 - a. $y = \cos x + \sin x$, $0 \le x \le 2\pi$
 - b. $y = x + 2\cos x, -\pi \le x \le \pi$
 - c. $y = \sin x \cos x, x \in [0, 2\pi]$
 - d. $y = 3 \sin x + 4 \cos x, x \in [0, 2\pi]$
- 7. A particle moves along a line so that, at time t, its position is $s(t) = 8 \sin 2t$.
 - a. For what values of t does the particle change direction?
 - b. What is the particle's maximum velocity?
 - 8. a. Graph the function $f(x) = \cos x + \sin x$.
 - b. Determine the coordinates of the point where the tangent to the curve of f(x) is horizontal, on the interval $0 \le x \le \pi$.
 - 9. Determine expressions for the derivatives of $\csc x$ and $\sec x$.
 - 10. Determine the slope of the tangent to the curve $y = \cos 2x$ at point $\left(\frac{\pi}{6}, \frac{1}{2}\right)$.
 - 11. A particle moves along a line so that at time t, its position is $s = 4 \sin 4t$.
 - a. When does the particle change direction?
 - b. What is the particle's maximum velocity?
 - c. What is the particle's minimum distance from the origin? What is its maximum distance from the origin?
- 12. An irrigation channel is constructed by bending a sheet of metal that is 3 m wide, as shown in the diagram. What angle θ will maximize the cross-sectional area (and thus the capacity) of the channel?

13. An isosceles triangle is inscribed in a circle of radius **R**. Find the value of θ that maximizes the area of the triangle.

PART C

14. If $y = A \cos kt + B \sin kt$, where A, B, and k are constants, show that $y'' + k^2y = 0$.