Discussion Points for the Report

1. Summary of Findings

- **Objective Accomplished:** Successfully developed and trained a Transformer-based model for music generation in the style of Bach's Cello Suites.
- **Dataset Preparation:** The dataset was preprocessed to extract musical notes and durations from the provided MIDI files. These were tokenized to create a structured input for the Transformer model.

Model Training:

- The Transformer model effectively learned relationships between notes and durations, enabling sequential generation.
- Metrics such as loss and accuracy indicate a steady improvement during training.

Music Generation:

- The model generates sequences that adhere to tonal harmony and melodic structure reminiscent of Bach's compositions.
- Outputs include stylistically consistent patterns, although occasional anomalies (e.g., unusual note transitions) highlight areas for improvement.

2. Reflection on the Model's Ability to Generate Music in the Style of Bach

Strengths:

- The model captures key stylistic elements of Bach's Cello Suites, such as harmonic progressions and phrasing.
- o It mimics Bach's counterpoint to a reasonable extent, demonstrating the potential of Transformer architectures for musical imitation.
- The generated music exhibits coherence in terms of rhythm and note sequencing.

• Limitations:

- Long-term structure (e.g., overarching musical themes) is sometimes inconsistent, reflecting challenges in modeling global dependencies.
- The model occasionally introduces redundant or dissonant notes that deviate from Bach's strict harmonic style.

Extra Credit Research Problems

3. Quantitative Metrics

- Evaluating the training and performance of a music generation model can include:
 - Perplexity: Measures the uncertainty of the model's predictions. Lower perplexity indicates better learning of musical patterns.
 - Pitch Class Entropy: Assesses the diversity of pitch classes in the generated music. Too low or too high values may indicate issues.
 - Rhythmic Consistency: Measures how well the generated durations align with common rhythmic patterns in the training data.
 - Chord Progression Similarity: Compares the harmonic sequences in generated pieces with those in Bach's compositions.

4. Musical Quality

Subjective Evaluation:

- Listening tests can be conducted where musicians or listeners rate the resemblance to Bach's style.
- o Metrics include perceived complexity, harmony, and emotional impact.

Objective Analysis:

- Use statistical comparisons with Bach's compositions for note distributions, interval transitions, and rhythmic patterns.
- Evaluate adherence to common compositional rules (e.g., voice leading, counterpoint).

5. Beyond Bach

Adapting to Other Composers:

- o A similar pipeline can be applied to other datasets, such as:
 - Beethoven's string quartets for intricate harmonic progressions.
 - Mozart's piano sonatas for classical elegance.
 - Jazz improvisations for more complex rhythms and harmonies.
- This would require:
 - Preprocessing MIDI files for the chosen composer.
 - Adapting tokenization to account for stylistic differences (e.g., syncopation in Jazz).

• Example Use Case:

 Train a model on Beethoven's works to generate piano sonatas that feature his dramatic and dynamic range.