Отчет по лабораторной работе «Исследование отражательного клистрона»

Выполнили
Студенты радиофизического факультета,
гр. 438(б),
Алексеев Иван Иванович
Геранкин Евгений Андреевич
Катаев Иван Михайлович

Кострица Кирилл Андреевич

Содержание

Теоретическая часть	3
Практическая часть	5
Вывод.	10

Теоретическая часть

Отражательный клистрон предназначен для генерации электромагнитных колебаний СВЧ-диапазона. Генерация в клистронах осуществляется за счёт преобразования кинетической энергии электронного пучка, который ускоряется электрическим полем, в энергию высокочастотных колебаний. Рассмотрим подробнее принципы работы как отдельных элементов установки, так и всего устройства в целом.

Рис. 1. Идеализированная принципиальная схема клистрона: 1 – катод, 2 – резонатор, 3 – отражатель, 4 – вывод энергии, 5 – электронный поток, 6 – управляющий электрод

Вылетающие с катода электроны влетают в зазор резонатора, где под действием переменного электрического поля они модулируются по скорости и далее попадают на отражатель, после чего возвращаются обратно к резонатору. После воздействия резонатора электроны приобретают разную скорость, поэтому при приближении к резонатору со стороны отражателя «быстрые» электроны догоняют «медленные», тем самым образуя пучок электронов.

Этот пучок, попадая в резонатор, встречает на своём пути то же самое переменное электрическое поле. Оно может как ускорять, так и замедлять пучок, но для наиболее эффективного перехода кинетической энергии в энергию колебаний, выгодно, чтобы поле тормозило пучок. Это происходит, когда время от момента выхода электрона из резонатора до его возвращения обратно, но уже в составе «собранного» пучка электронов, составляет 3/4 и $1\frac{3}{4}$ (и т.д.) периода колебаний электрического поля в резонаторе.

Рис. 3. Пространственно-временные диаграммы движения электронов при двух значениях оптимального времени пролета τ в пространстве группировки (z=0 координата, соответствующая середине зазора)

Практическая часть

Задание 1.

Выставлено напряжение на резонаторе, ускоряющем электроде и отражающем электроде.

Задание 2.

а) Наблюдение зон генерации на осциллографе.

б) Определение частотной перестройки клистрона вдоль зоны генерации. Показания волномера в крайней левой точке зоны 1-10.58 Показания волномера в крайней правой точке зоны 1-10.50

Задание 3. Снятие зависимости тока в цепи детектора в зависимости от:

а) напряжения на отражателе.

При $U_{\text{рез}} = 144 \text{ B}$:

U_рез = 144, В. Зона 2

U_рез = 144, В. Зона 3

При $U_{\text{рез}} = 84 \text{ B}$:

U_рез = 84, В. Зона 2

U_рез = 84, В. Зона 3

б) напряжения на резонаторе.

При $U_{\text{отр}} = 144 \text{ B}$:

U_отр = 144, В. Зона 3

При $U_{\text{отр}} = 84 \text{ B}$:

U_отр = 84, В. Зона 3

Задание 4. Снятие зависимости длины волны, генерируемой клистроном, в зависимости от:

а) напряжения на отражателе.

При $U_{\text{рез}} = 144 \text{ B}$:

U_рез = 144, В. Зона 2

U_рез = 144, В. Зона 3

При $U_{\text{рез}} = 84 \text{ B}$:

U_рез = 84, В. Зона 2

U_рез = 84, В. Зона 3

б) напряжения на резонаторе.

При
$$U_{\text{отр}} = 144 \text{ B}$$
:

U_отр = 144, В. Зона 3

При
$$U_{\text{отр}} = 84 \text{ B}$$
:

U_отр = 84, В. Зона 3

Задание 5. Снятие зависимости тока в цепи детектора от тока пучка для различных хон генерации клистрона

U_отр = 18В, U_рез = 144В. Зона 2

$$I_{\text{пуск}} =$$

U_отр = 48В, U_рез = 144В. Зона 3

 $I_{\text{пуск}} = 10 \text{ MA}$

Вывод.

Было изучено устройство отражательного клистрона, его основные принципы работы, а также были найдены зависимости:

- 1) силы тока в цепи детектора от напряжения на отражателе;
- 2) силы тока в цепи детектора от напряжения на резонаторе;
- 3) длины волны колебаний, генерируемых клистроном, от напряжения на отражателе;
- 4) длины волны колебаний, генерируемых клистроном, от напряжения на резонаторе;
- 5) тока в цепи детектора от тока пучка для различных зон генерации клистрона.