www.vishay.com

Vishay Semiconductors

AUTOMOTIVE

RoHS

COMPLIANT

HALOGEN FREE

GREEN

(5-2008)

Low Current Mini SMD LED

DESCRIPTION

The new low current MiniLED Series have been designed in a small white SMT package. The feature of the device is the very small package 2.3 mm x 1.3 mm x 1.4 mm and the low forward current. The MiniLED is an obvious solution for small-scale, high-power products that are expected to work reliability in an arduous environment. This is often the case in automotive and industrial application.

PRODUCT GROUP AND PACKAGE DATA

Product group: LED
Package: SMD MiniLED
Product series: low current
Angle of half intensity: ± 60°

FEATURES

- SMD LED with exceptional brightness
- · Luminous intensity categorized
- Compatible with automatic placement equipment
- Available in 8 mm tape
- Low profile package
- Non-diffused lens: excellent for coupling to light pipes and backlighting
- Low power consumption
- IR reflow soldering according to J-STD-020
- Luminous intensity ratio in one packaging unit $I_{Vmax.}/I_{Vmin.} \le 1.6$
- Preconditioning according to JEDEC® level 2a
- ESD-withstand voltage: up to 2 kV according to JESD22-A114-B
- AEC-Q101 qualified
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

APPLICATIONS

- Automotive: backlighting in dashboards and switches
- Telecommunication: indicator and backlighting in telephone and fax
- Indicator and backlight for audio and video equipment
- Indicator and backlight in office equipment
- · Flat backlight for LCDs, switches, and symbols

PARTS TABLE																								
PART	COLOR		JMINO TENSI (mcd)	TY	at I _F (nm)		l _F (nm)		(nm)		(nm)								(nm) at		VOLTAGE		at I _F (mA)	TECHNOLOGY
		MIN.	TYP.	MAX.		MIN.	TYP.	MAX.		MIN.	TYP.	MAX.												
VLMS2000-GS08	Super red	2.24	4.5	-	2	-	630	-	2	-	1.8	2.2	2	AllnGaP on GaAs										
VLMS20H2K1-GS08	Super red	3.55	-	9	2	-	630	-	2	-	1.8	2.2	2	AllnGaP on GaAs										
VLMS20H2L1-GS08	Super red	3.55	-	14	2	-	630	-	2	-	1.8	2.2	2	AllnGaP on GaAs										
VLMS20J2L1-GS08	Super red	5.6	-	14	2	-	630	-	2	-	1.8	2.2	2	AllnGaP on GaAs										
VLMK20K1L2-GS08	Amber	7.1	-	18	2	612	622	624	2	-	1.8	2.2	2	AllnGaP on GaAs										
VLMO20J2M1-GS08	Soft orange	5.6	-	22.4	2	598	605	611	2	-	1.8	2.2	2	AllnGaP on GaAs										
VLMY2000-GS08	Yellow	3.55	7.1	-	2	581	588	594	2	-	1.8	2.2	2	AllnGaP on GaAs										
VLMY20K1L2-GS08	Yellow	7.1	-	18	2	581	588	594	2	-	1.8	2.2	2	AllnGaP on GaAs										
VLMP20D2G1-GS08	Pure green	0.56	-	2.24	2	555	-	565	2	-	1.8	2.2	2	AllnGaP on GaAs										

www.vishay.com

Vishay Semiconductors

	FINGS (T _{amb} = 25 °C, unless otherwi O20, VLMY20, VLMP20	se specifie	ed)	
PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT
Reverse voltage (1)		V_R	5	V
DC forward current	T _{amb} ≤ 100 °C	I _F	15	mA
Surge forward current	t _p ≤ 10 μs	I _{FSM}	0.1	Α
Power dissipation		P_V	40	mW
Junction temperature		Tj	+125	°C
Operating temperature range		T _{amb}	-40 to +100	°C
Storage temperature range		T _{stg}	-40 to +100	°C
Thermal resistance junction/ambient	Mounted on PC board (pad size > 5 mm ²)	R _{thJA}	580	K/W

Note

⁽¹⁾ Driving the LED in reverse direction is suitable for a short term application

OPTICAL AND ELECTION OF SUPER F	CTRICAL CHARACTE	RISTICS (T _{amb}	= 25 °C, un	less othe	rwise spe	cified)	
PARAMETER	TEST CONDITION	PART	SYMBOL	MIN.	TYP.	MAX.	UNIT
		VLMS2000	Ι _V	2.24	4.5	-	mcd
Luminous intensity (1)	I 0 m 1	VLMS20H2K1	l _V	3.55	-	9	mcd
Luminous intensity (*)	$I_F = 2 \text{ mA}$	VLMS20H2L1	Ι _V	3.55	-	14	mcd
		VLMS20J2L1	l _V	5.6	-	14	mcd
Dominant wavelength	I _F = 2 mA		λ_{d}	-	630	-	nm
Peak wavelength	I _F = 2 mA		λ_{p}	=	643	-	nm
Angle of half intensity	I _F = 2 mA		φ	-	± 60	-	0
Forward voltage	I _F = 2 mA		V_{F}	-	1.8	2.2	V
Reverse voltage	I _R = 10 μA		V_R	5	-	-	V
Junction capacitance	V _R = 0 V, f = 1 MHz		C _i	-	15	-	pF

Note

 $^{^{(1)}~}$ In one packing unit $I_{Vmax.}/I_{Vmin.} \leq 1.6$

OPTICAL AND ELECT VLMK20K1L2, AMBE		RISTICS (T _{amb} =	= 25 °C, un	less othe	rwise spe	cified)	
PARAMETER	TEST CONDITION	PART	SYMBOL	MIN.	TYP.	MAX.	UNIT
Luminous intensity (1)	I _F = 2 mA	VLMK20K1L2	l _V	7.1	-	18	mcd
Dominant wavelength	I _F = 2 mA		λ_{d}	612	622	624	nm
Peak wavelength	I _F = 2 mA		λ_{p}	-	615	-	nm
Angle of half intensity	I _F = 2 mA		φ	-	± 60	-	0
Forward voltage	I _F = 2 mA		V_{F}	-	1.8	2.2	V
Reverse voltage	I _R = 10 μA		V_R	5	-	=	V
Junction capacitance	$V_R = 0 V, f = 1 MHz$		C _j	-	15	=	pF

Note

 $^{^{(1)}\,}$ In one packing unit $I_{Vmax.}/I_{Vmin.} \leq 1.6\,$

www.vishay.com

Vishay Semiconductors

OPTICAL AND ELECTRICAL SOF	CTRICAL CHARACTE T ORANGE	ERISTICS (T _{amb}	= 25 °C, un	less othe	rwise spe	cified)	
PARAMETER	TEST CONDITION	PART	SYMBOL	MIN.	TYP.	MAX.	UNIT
Luminous intensity (1)	I _F = 2 mA	VLMO20J2M1	l _V	5.6	-	22.4	mcd
Dominant wavelength	I _F = 2 mA		λ_{d}	598	605	611	nm
Peak wavelength	I _F = 2 mA		λ_{p}	-	610	-	nm
Angle of half intensity	I _F = 2 mA		φ	-	± 60	-	0
Forward voltage	I _F = 2 mA		V_{F}	=	1.8	2.2	V
Reverse voltage	I _R = 10 μA		V_{R}	5	-	-	V
Junction capacitance	V _R = 0 V, f = 1 MHz		Cj	-	15	-	pF

Note

 $^{^{(1)}~}$ In one packing unit $I_{Vmax.}/I_{Vmin.} \leq 1.6$

OPTICAL AND ELEC VLMY20, YELLOW	TRICAL CHARACTE	RISTICS (T _{amb}	= 25 °C, un	less othe	rwise spe	cified)	
PARAMETER	TEST CONDITION	PART	SYMBOL	MIN.	TYP.	MAX.	UNIT
Luminous intensity (1)	I _E = 2 mA	VLMY2000	l _V	3.55	7.1	-	mcd
Luminous intensity (1)	IF = 2 IIIA	VLMY20K1L2	Ι _V	7.1	-	18	mcd
Dominant wavelength	I _F = 2 mA		λ_{d}	581	588	594	nm
Peak wavelength	I _F = 2 mA		λ_{p}	-	590	-	nm
Angle of half intensity	I _F = 2 mA		φ	-	± 60	-	0
Forward voltage	I _F = 2 mA		V _F	-	1.8	2.2	V
Reverse voltage	I _R = 10 μA		V_{R}	5	-	-	V
Junction capacitance	V _R = 0 V, f = 1 MHz		C _j	-	15	-	pF

Note

 $^{^{(1)}~}$ In one packing unit $I_{Vmax.}/I_{Vmin.} \leq 1.6$

OPTICAL AND ELECTION OF THE CONTROL OF T		RISTICS (T _{amb}	= 25 °C, un	less othe	rwise spe	cified)	
PARAMETER	TEST CONDITION	PART	SYMBOL	MIN.	TYP.	MAX.	UNIT
Luminous intensity (1)	I _F = 2 mA	VLMP20D2G1	l _V	0.56	-	2.24	mcd
Dominant wavelength	$I_F = 2 \text{ mA}$		λ_{d}	555	-	565	nm
Peak wavelength	I _F = 2 mA		λ_{p}	-	565	-	nm
Angle of half intensity	I _F = 2 mA		φ	-	± 60	-	0
Forward voltage	$I_F = 2 \text{ mA}$		V_{F}	-	1.8	2.2	V
Reverse voltage	I _R = 10 μA		V_{R}	5	-	-	V
Junction capacitance	V _R = 0 V, f = 1 MHz		C _j	-	15	-	pF

Note

 $^{^{(1)}\,}$ In one packing unit $I_{Vmax.}/I_{Vmin.} \leq 1.6\,$

www.vishay.com

Vishay Semiconductors

COLOR C	LASSIFICA	TION						
				DOM. WAVE	LENGTH (nm)			
GROUP	SOFT C	RANGE	YEL	YELLOW		AMBER		GREEN
	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.
0	=	-	-	-	=	=	555	559
1	598	601	581	584	-	-	558	561
2	600	603	583	586	-	-	560	563
3	602	605	585	588	-	-	562	565
4	604	607	587	590	-	-	-	-
5	606	609	589	592	-	-	-	-
6	608	611	591	594	=	=	-	-
7	-	-	-	-	610	613	-	-
8	=	-	-	-	612	616	-	-
9	=	-	-	-	615	620	-	-
10	-	-	-	-	619	624	-	-

Note

· Wavelengths are tested at a current pulse duration of 25 ms

LUMINOUS	SINTENSIT	Y CLASSIFIC	ATION
GROUP	LUMING	OUS INTENSITY	I _V (mcd)
STANDARD	OPTIONAL	MIN.	MAX.
D	2	0.56	0.71
Е	1	0.71	0.9
	2	0.9	1.12
F	1	1.12	1.4
Г	2	1.4	1.8
G	1	1.8	2.24
G	2	2.24	2.8
Н	1	2.8	3.55
- 11	2	3.55	4.5
J	1	4.5	5.6
J	2	5.6	7.1
К	1	7.1	9
K	2	9	11.2
L	1	11.2	14
	2	14	18
М	1	18	22.4
IVI	2	22.4	35.5
N	1	35.5	45
IN	2	45	56

CROSSING TABLE	
VISHAY	OSRAM
VLMS20H2K1	LSM67K-H2K1
VLMS20J2L1	LSM67K-J2L1
VLMS20H2L1	LSM67K-H2L1
VLMO20J2L1	LOM67K-J2L1
VLMO20J2M1	LOM67K-J2M1
VLMY20J1K2	LYM67K-J1K2
VLMY20K1L2	LYM67K-K1L2
VLMP20D2G1	LPM67K-D2G1

Note

 Luminous intensity is tested at a current pulse duration of 25 ms and an accuracy of ± 11 %.

The above type numbers represent the order groups which include only a few brightness groups. Only one group will be shipped on each reel (there will be no mixing of two groups on each reel).

In order to ensure availability, single brightness groups will not be orderable.

In a similar manner for colors where wavelength groups are measured and binned, single wavelength groups will be shipped in any one reel.

In order to ensure availability, single wavelength groups will not be orderable

Vishay Semiconductors

TYPICAL CHARACTERISTICS (T_{amb} = 25 °C, unless otherwise specified)

Fig. 1 - Forward Current vs. Ambient Temperature

Fig. 2 - Forward Current vs. Pulse Length

Fig. 3 - Relative Luminous Intensity vs. Angular Displacement

Fig. 4 - Relative Intensity vs. Wavelength

Fig. 5 - Relative Intensity vs. Wavelength

Fig. 6 - Relative Intensity vs. Wavelength

Vishay Semiconductors

Fig. 7 - Forward Current vs. Forward Voltage

Fig. 8 - Relative Luminous Intensity vs. Ambient Temperature

Fig. 9 - Relative Luminous Intensity vs. Ambient Temperature

Fig. 10 - Forward Voltage vs. Ambient Temperature

Fig. 11 - Change of Forward Voltage vs. Ambient Temperature

Vishay Semiconductors

PACKAGE DIMENSIONS in millimeters

Vishay Semiconductors

REEL DIMENSIONS in millimeters

TAPE DIMENSIONS in millimeters

LEADER AND TRAILER DIMENSIONS in millimeters

GS08 = 3000 pcs

Vishay Semiconductors

COVER TAPE PEEL STRENGTH

According to DIN EN 60286-3 0.1 N to 1.3 N 300 mm/min ± 10 mm/min 165° to 180° peel angle

LABEL

Standard bar code labels for finished goods

The standard bar code labels are product labels and used for identification of goods. The finished goods are packed in final packing area. The standard packing units are labeled with standard bar code labels before transported as finished goods to warehouses. The labels are on each packing unit and contain Vishay Semiconductor GmbH specific data.

PLAIN WRITING	ABBREVIATION	LENGTH
Item-description	-	18
Item-number	INO	8
Selection-code	SEL	3
LOT-/serial-number	BATCH	10
Data-code	COD	3 (YWW)
Plant-code	PTC	2
Quantity	QTY	8
Accepted by:	ACC	-
Packed by:	PCK	-
Mixed code indicator	MIXED CODE	-
Origin	xxxxxxx+	Company Logo
LONG BAR CODE TOP	TYPE	LENGTH
Item-number	N	8
Plant-code	N	2
Sequence-number	X	3
Quantity	N	8
Total length	-	21
SHORT BAR CODE BOTTOM	TYPE	LENGTH
Selection-code	X	3
Data-code	N	3
Batch-number	X	10
Filter	-	1
Total length	-	17

SOLDERING PROFILE

Fig. 12 - Vishay Lead (Pb)-free Reflow Soldering Profile (according to J-STD-020)

www.vishay.com

Vishay Semiconductors

BAR CODE PRODUCT LABEL (example)

A. 2D barcode

B. Part No: Vishay part number

C. QTY: quantity

D. SelCode: selection bin code

E. Country of origin

F. PTC: production plant code

G. Termination finish

H. Region code

I. Serial#: serial number

K. Batch number: year, week, country code, plant code

L. SL: storage location

M. Environmental symbols: RoHS, lead (Pb)-free, halogen-free

N. Lot numbers

DRY PACKING

The reel is packed in an anti-humidity bag to protect the devices from absorbing moisture during transportation and storage.

FINAL PACKING

The sealed reel is packed into a cardboard box. A secondary cardboard box is used for shipping purposes.

RECOMMENDED METHOF OF STORAGE

Dry box storage is recommended as soon as the aluminum bag has been opened to prevent moisture absorption. The following conditions should be observed, if dry boxes are not available:

- Storage temperature 10 °C to 30 °C
- Storage humidity ≤ 60 % RH max.

After more than 672 h under these conditions moisture content will be too high for reflow soldering.

In case of moisture absorption, the devices will recover to the former condition by drying under the following condition:

192 h at 40 °C + 5 °C / - 0 °C and < 5 % RH (dry air / nitrogen) or

96 h at 60 °C + 5 °C and < 5 % RH for all device containers or

24 h at 100 °C + 5 °C not suitable for reel or tubes.

An EIA JEDEC standard JESD22-A112 level 2a label is included on all dry bags.

Example of JESD22-A112 level 2a label

ESD PRECAUTION

Proper storage and handling procedures should be followed to prevent ESD damage to the devices especially when they are removed from the antistatic shielding bag. Electrostatic sensitive devices warning labels are on the packaging.

VISHAY SEMICONDUCTORS STANDARD BAR CODE LABELS

The Vishay Semiconductors standard bar code labels are printed at final packing areas. The labels are on each packing unit and contain Vishay Semiconductors specific data.

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.