ENGR 057 Statics and Dynamics

Problems pre-exam 2

Summer 2022

Determine the force in each member of the truss and state if the members are in tension or compression. Set $P_1 = 8$ kN, $P_2 = 12$ kN.

Ans:

$$F_{DE}$$
 = 13.4 kN (T)

$$F_{DC}$$
 = 6.00 kN (C)

$$F_{CB} = 6.00 \text{ kN (C)}$$

$$F_{CE}$$
= 0

$$F_{EB} = 17.0 \text{ kN (C)}$$

$$F_{EF}$$
= 18.0 kN (T)

$$F_{BA}$$
 = 18.0 kN (C)

$$F_{BF} = 20.0 \text{ kN (T)}$$

$$F_{FA}$$
 = 22.4 kN (C)

$$F_{FG}$$
 = 28.0 kN (T)

Suggestions to solve:

Method of joints

Support Reactions. Not required.

Method of Joints. Perform the joint equilibrium according to the sequence of joints D, C, E, B and F.

Determine the force in members CD, HI, and CH of the truss, and state if the members are in tension or compression.

Ans:

 F_{CD} = 3375 lb (C)

 F_{HI} = 6750 lb (T)

 F_{CH} = 5625 lb (C)

- Draw the shear and moment diagrams for the beam.
- Determine the maximum bending moment M_{max} .
- If the couple moment of 20 kN.m is not applied, determine the maximum bending moment $M_{\rm max}$.

Ans:

$$M_{\text{max}} = 35 \text{ kN.m at } (x = 5)$$

Without the applied moment of 20 kN.m, the bending moment is maximum when V=0, then $\mathbf{M}_{\text{max}} = 20 \text{ kN.m}$ at (x = 2)

