

INTERCAMBIO ENERGÉTICO RELATIVISTA ENTRE UN POLITROPO Y UN FLUIDO TIPO WYMAN IIA

Jorge Gallegos¹, Domenica Quizhpe¹, Julio Andrade¹, Marlon Moscoso-Martínez¹

¹ Facultad de Ciencias; Escuela Superior Politécnica de Chimborazo; Panamericana Sur km 1 1/2; Riobamba-Ecuador

Introducción

Desde que Einstein propuso la relatividad general, sus predicciones han sido confirmadas una tras otra: desde la curvatura de la luz hasta las ondas gravitacionales. Hoy, seguimos explorando sus límites... dentro de un objeto compacto.

Metodología

Las Ecuaciones de Campo de Einstein (EFE) están dadas por [2, 3]:

$$G_{\mu\nu} = R_{\mu\nu} - \frac{1}{2} R g_{\mu\nu} = \kappa T_{\mu\nu}.$$
 (1)

El interior de un cuerpo estelar compacto se lo modela a través de la siguiente métrica:

$$ds^{2} = e^{\nu(r)}dt^{2} - e^{\lambda(r)}dr^{2} - r^{2}d\Omega^{2},$$
(2)

El sector material:

$$\kappa \rho = \frac{1}{r^2} - e^{-\lambda} \left(\frac{1}{r^2} - \frac{\lambda'}{r} \right), \tag{3}$$

$$\kappa p_r = \frac{1}{r^2} - e^{-\lambda} \left(\frac{1}{r^2} + \frac{\nu'}{r} \right), \tag{4}$$

$$\kappa p_t = -\frac{e^{-\lambda}}{4} \left(2\nu'' + \nu'^2 - \lambda'\nu' + 2\frac{\nu' - \lambda'}{r} \right). \tag{5}$$

El Desacople Gravitacional (GD) [8, 9] modifica el $T_{\mu\nu}$:

$$T_{\mu\nu} = T_{\mu\nu}^{(s)} + \alpha\theta_{\mu\nu},\tag{6}$$

Deformación Geométrica Mínima Extendida (MGDe)

$$\xi \to v = \xi + g,\tag{7}$$

$$e^{-\mu} \to e^{-\lambda} = e^{-\mu} + f,$$
 (8)

Por otro lado, usamos la restricción mímica para la densidad, es decir,

$$\varepsilon \sim \rho^{(s)},$$
 (9)

siendo esta la expresión más simple para $\varepsilon(r)$ que satisface la restricción (9) dada por:

$$\varepsilon(r) = \alpha(K, \Gamma)\rho(r)^{(s)}.$$
 (10)

Intercambio Energético

$$\Delta E = \frac{g'}{2\kappa} \frac{e^{-\mu}}{r} (\xi' + \mu'),\tag{11}$$

- si g'>0 $\rightarrow \Delta E>0$
- $\operatorname{si} g' < 0 \rightarrow \Delta E < 0$
- **Politropo:** Es un modelo matemático que usamos para describir cómo se comporta la materia dentro de una estrella. [7, 1, 4, 5].

$$p = K\rho_0^{\Gamma} = K\rho_0^{\frac{n+1}{n}},\tag{12}$$

• Fluido Tipo Wyman IIa: Es una solución exacta de las ecuaciones de Einstein. [10].

$$e^{\xi} = (A - Br^{2})^{2}$$

$$e^{-\mu} = 1 + cr^{2}(A - 3Br^{2})^{-\frac{2}{3}}$$
(13)

Resultados

Las condiciones para este caso son: B=0,45, $\kappa=8\pi$, R=1 junto con

$$A = c_2 \left(c_3 B R^2 - \frac{c_4 \sqrt{R - 2M}}{\sqrt{R}} \right), \tag{14}$$

$$c = -\frac{2M\left(A - 3BR^2\right)^{2/3}}{R^3\left(\mathbf{K}^{\frac{1}{n}+1} + 1\right)}.$$
 (15)

Se maneja un n=0.5 que modela estrellas de neutrones y en las ilustraciones observamos que K=0.43 es la línea azul, K=0.44 es la línea negra y K=0.47 es la línea roja. Para la verificación del modelo este debe cumplir con las condiciones de aceptabilidad física [6]

Figura 1. Presión radial para diferentes valores de ${\cal K}$

Figura 2. Presión tangencial para diferentes valores de K

Figura 3. Densidad de energía para diferentes valores de K

Figura 4. Métrica temporal para diferentes valores de K

Figura 5. Métrica radial para diferentes valores de K

Figura 6. Energía dominante (I)

Figura 7. Energía dominante (II)

Figura 8. Condición de energía fuerte (II)

Figura 9. Velocidad tangencial

Figura 10. Velocidad radial

Figura 11. Anisotropía

Figura 12. Factor de redshift Z(r)

Figura 13. Intercambio Energético para K=0.44

Figura 14. Intercambio Energético para K=0.43

Figura 15. Intercambio Energético para K=0.47

Conclusiones

- Se generaron tres configuraciones de estrellas de neutrones en el rango de [-1.638; -3.121] para g consistentes con los criterios de aceptabilidad física.
- El intercambio energético son nulos en el centro del cuerpo estelar $(\Delta E=0)$. Sin embargo, en zonas más externas $r\to R$, las interacciones aumentan generando anisotropía y consecuentemente un intercambio energético.

