II Università di Roma, Tor Vergata Dipartimento d'Ingegneria Civile e Ingegneria Informatica LM in Ingegneria dell'Informazione e dell'Automazione Complementi di Probabilità e Statistica - Advanced Statistics Instructors: Roberto Monte & Massimo Regoli Intermediate Test 2022-12-14

Problem 1 The scrutiny of group of 100,000 randomly chosen male people in the age 40-79 in UK during 2013-2015 reveals the following table of average lung cancer incidence

	smoker	not smoker	total
lung cancer	10, 395	7,407	17,802
not lung cancer	50,078	32, 120	82, 198
total	60, 473	39, 527	100,000

Write Ω for the sample space consisting of these 100,000 people and write S [resp. C] for the events of Ω "the people are smokers" [the people are affected by lung cancer]. Let $1_S: \Omega \to \mathbb{R}$ and $1_C: \Omega \to \mathbb{R}$ the indicator functions of the events S and C respectively.

- 1. Determine the joint distribution and the joint distribution function of the random vector $(1_S, 1_C)$
- 2. Determine the distributions and the distributions functions of the random variables 1_S and 1_C .
- 3. Are the random variables 1_S and 1_C independent? Compute their correlation.
- 4. What is the probability that a randomly chosen person in Ω is affected by lung cancer, given that he is a smoker [resp. ** a smoker]?
- 5. What is the probability that a randomly chosen person in Ω is a smoker [resp. not a smoker], given that he is affected by lung cancer?
- 6. Check the validity of the total probability formula for P(S) and the Bayes Formula for $P(C \mid S)$.

Solution.

Problem 2 Let $(\Omega, \mathcal{E}, \mathbf{P}) \equiv \Omega$ a probability space and let $X : \Omega \to \mathbb{R}$ be a real \mathcal{E} -random variable uniformly distributed in the interval [a,b]. On symbol $X^*Unif(a,b)$. Consider n independent random variables X_1, \ldots, X_n with the same distribution of X (a simple random sample of size n drawn from X). Compute the distribution function of the sample minimum of size n drawn from X, that is the random variable $\min(X_1, \ldots, X_n) : \Omega \to \mathbb{R}$ given by

$$\min (X_1, \dots, X_n) (\omega) \stackrel{def}{=} \min (X_1 (\omega), \dots, X_n (\omega)), \quad \forall \omega \in \Omega.$$

Is min (X_1, \ldots, X_n) an absolutely continuous random variable? Can you compute the density function of min (X_1, \ldots, X_n) ?

Hint: focus on the representation of the events $\{\min(X_1,\ldots,X_n) \leq x\}$ and $\{\min(X_1,\ldots,X_n) > x\}$. Hence, focus on the representation of $1 - F_X(x)$ and $(1 - F_X(x))^n$, where $F_X : \mathbb{R} \to \mathbb{R}$ is the distribution function of the random variable X.

Solution.

Problem 3 Let $(\Omega, \mathcal{E}, \mathbf{P}) \equiv \Omega$ be a probability space and let $X : \Omega \to \mathbb{R}$ be a uniformly distributed random variable with states in the interval [-1,1]. In symbols, $X \sim Unif(-1,1)$. Consider the function $g : \mathbb{R} \to \mathbb{R}$ given by

$$g(x) \stackrel{def}{=} \left\{ \begin{array}{ll} 0, & \text{if } x \leq 0. \\ \sqrt{x}, & \text{if } x > 0. \end{array} \right.$$

1. Can you show that the function $Y:\Omega \to \mathbb{R}$ given by

$$Y\left(\omega\right)\overset{def}{=}g\left(X\left(\omega\right)\right),\quad\forall\omega\in\Omega,$$

is a random variable?

- 2. Can you compute the distribution function $F_Y : \mathbb{R} \to \mathbb{R}_+$ of the random variable Y?
- 3. Is Y absolutely continuous?
- 4. Are the first and second order moments of Y finite?
- 5. If the first and second order moments are finite, can you compute $\mathbf{E}[Y]$ and $\mathbf{D}^{2}[Y]$?

Solution. .

Problem 4 Let $F: \mathbb{R}^2 \to \mathbb{R}_+$, briefly F, given by

$$F\left(x_{1},x_{2}\right)\overset{def}{=}\left(1-e^{-x_{1}}-e^{-x_{2}}+e^{-(x_{1}+x_{2})}\right)1_{\mathbb{R}_{+}}\left(x_{1}\right)1_{\mathbb{R}_{+}}\left(x_{2}\right),\quad\forall\left(x_{1},x_{2}\right)\in\mathbb{R}^{2}.$$

Show that F is the distribution function of a real random vector (X_1, X_2) and compute the marginal distribution functions of (X_1, X_2) .

- 1. Is the function F absolutely continuous?
- 2. Are the entries X_1 and X_2 of the random vector (X_1, X_2) independent random variables?
- 3. Are the entries X_1 and X_2 of the random vector (X_1, X_2) absolutely continuous random variables?
- 4. What is the distribution $F_Z: \mathbb{R}^2 \to \mathbb{R}_+$, briefly F_Z , of the real random variable $Z = \max\{X_1, X_2\}$.
- 5. Is the function F_Z absolutely continuous?

Hint: it might be useful to rewrite $F(x_1, x_2)$ in a more convenient form.

Solution.

Problem 5 Let $(\Omega, \mathcal{E}, \mathbf{P}) \equiv \Omega$ a probability space, let X and Y be independent standard Bernoulli random variables on Ω . Define $Z \stackrel{def}{=} X + Y$.

- 1. Compute $\mathbf{E}[X \mid Z]$ and $\mathbf{E}[Y \mid Z]$.
- 2. Are the random variables $\mathbf{E}[X \mid Z]$ and $\mathbf{E}[Y \mid Z]$ uncorrelated?
- 3. Are the random variables $\mathbf{E}[X \mid Z]$ and $\mathbf{E}[Y \mid Z]$ independent?
- 4. By using the properties of the conditional expectation, on account that you are dealing with Bernoulli random variables, can you compute $\mathbf{E}\left[(X+Y)^2\mid Z\right]$ and $\mathbf{E}\left[XY\mid Z\right]$?

Solution.

P3)

3.1

1) Si Y = g(X) i v.A pulle g(x) antimor loreliena

2) Fy(y)=P(xxy)=P/Q 12 X00 /0 12

 $P(y \in y) = \int_{0}^{\infty} Ae \times x = \int_{0}^{\infty} Abrimenti$ $P(x \in y) = \int_{0}^{\infty} P(x \in y) = \int_{0}^{$

-> $\int f_{x}(x) d\mu_{L}(x) = \int \frac{1}{2} f_{0,1}(x) d\mu_{L}(x) = \frac{1}{2} \int d\mu_{L}(x) = \frac{1}{$

= \frac{1}{2} \langle \langle

-> \$ 0 < y2 < 1 -> y < ±1 -> Il coso y <-1 e y>-1

y2>1-> y>±1

y2>1-> y>±1

joronlito do

-> Fy(y) = \frac{1}{2} (y) + \frac{1}{2} \frac{1}{2} (0,1)

KE

T'y = y 1 (01) che i contino avage dela de in particlea Fy à devidile avage -> Si è ess. contino

(-v. 5) (v) dy = \$ (-v. 5) (v) dy (y) =

 $\int_{1}^{2} \int_{1}^{2} \int_{1$

mitals () }

4)/5) $E[Y^{2}] = \int_{1R} y^{2} f_{y}(y) = \int_{1R} y^{3} f_{(0,1)}(y) d\mu_{1}(y) = \int_{1R} y^{3} dy = \frac{1}{4}$ $\lim_{n \to \infty} f_{(n,n)}(y) d\mu_{1}(y) = \int_{1R} y^{3} dy = \frac{1}{4}$

-, Amelle momento finito di ordine 2 e gindi anche 1

 $E[y] = \int y f_{y}(y) = \int y^{2} f_{(0,1)}(y) d\mu_{1}(y) = \int y^{2} dy = \frac{1}{3}$

$$F_{x_1, x_2} = \left(\frac{1 - e^{-x_1}}{1 - e^{-x_2}} - \frac{e^{-(x_1 + x_2)}}{1 - e^{-(x_1 + x_2)}} \right) I_{R_4}(x_1) I_{R_4}(x_2)$$

$$\begin{cases}
\frac{1}{4x_1x_2} + \frac{1}{2x_1x_2} = \frac{1}{2x_1x_2} = \frac{1}{2x_2} \left(e^{-x_1} - e^{-(x_1+x_2)} \right) = 0
\end{cases}$$

=
$$e^{-(x_1+x_2)}\int_{|R_+}^{(x_1)}\int_{|R_+}^{(x_2)}(x_2)$$

$$=\int_{\mathbb{R}} dx_1 \int_{\mathbb{R}} dx_2 e^{-(x_1+x_2)} = \int_{\mathbb{R}} dx_1 \int_{\mathbb{R}} dx_2 e^{-(x_1+x_2)} = \int_{\mathbb{R}} dx_1 \int_{\mathbb{R}} dx_2 e^{-(x_1+x_2)}$$

+ LERESGIC
$$\times 1$$
 $\times 2$ $\times 2$ $\times 2$ $\times 3$ $\times 2$ $\times 3$ $\times 2$ $\times 3$ $\times 4$ $\times 2$ $\times 3$ $\times 4$ $\times 4$

$$= -\int_{0}^{\infty} bu e^{-u} \left(e^{-xe} - 1\right) = -\int_{0}^{\infty} du - e^{-(u+xe)} + e^{-u} =$$

$$= e^{-x_{2}} \int_{-e^{-4}}^{x_{1}} - e^{-4} du_{1} - \int_{0}^{-e^{-4}} - e^{-4} du_{1} =$$

$$= e^{-x_2} - u_1 | x_1 - u_1 | x_1 - x_2 (e^{-x_1} - 1) - (e^{-x_1} - 1) =$$

$$= \left(e^{-\left(x_{2}+x_{1}\right)}-e^{-x_{2}}-e^{-x_{1}}\right)\int_{\mathbb{R}^{+}}\left(x_{1}\right)\int_{\mathbb{R}^{+}}\left(x_{2}\right)-s\,\,\mathrm{Si}\,\,\bar{e}\,\,\mathrm{or}\,\,\mathrm{conf}$$

$$= e^{-x_1} \int_{|R_+|}^{+x_1} \int_{0}^{+x_2} e^{-u_2} du_2 = e^{-x_1} \int_{|R_+|}^{+x_1} (x_1) (1) = e^{-x_1} \int_{|R_+|}^{+x_2} (x_1)$$

$$\int_{\mathbb{R}^{2}} e^{-(u_{1}+x_{2})} \int_{\mathbb{R}^{2}} e^{-(u_{1}+x_{2})} \int_{\mathbb{R}^{2}} e^{-(u_{1}+x_{2})} \int_{\mathbb{R}^{2}} e^{-(u_{1})} \int_{\mathbb{R}^{2}} e^{-(u_{1})$$

->
$$\int_{X_1} \int_{X_2} = e^{-(x_1+x_2)} \int_{IR_+} (x_1) \int_{IR_+} (x_2) = \int_{X_1,X_2} - \int_{indipendenthing} \int_{IR_+} \int_{IR_+} (x_1) \int_{IR_+} (x_2) = \int_{IR_+} \int_{IR_+} \int_{IR_+} (x_2) \int_{IR_+} \int_{IR$$

4.3

4) Z = mox (x1, x2)

X1, X2 ind

P(Z=z)=P(x15z, x25z) = P(x15z)P(x25z)

(Z = 2) = (X, 52, X252)

 $P(X_1 \leq z) = \int f_{X_1}(x_1) d\mu_{L}(X_1) = \int e^{-x_1} \int (x_1) d\mu_{L}(x_1) = \int e^{-x_1} \int (x_1) d\mu_{L}(x_1) = \int e^{-x_1} \int e^{-x_1}$

 $= \int_{0}^{2\pi} e^{-x_{1}} dx_{1} = -e^{-x_{1}} \Big|_{0}^{2\pi} = 1 - e^{-2\pi} \int_{|R_{+}|}^{2\pi} dx_{1}$

P(X252)=P(X152)

-> P(Z \(\frac{2}{2}\) = 1 + \(\frac{1}{2}\) - 2 \(\frac{2}{2}\) \(\frac{1}{1R_4}\)

F'z = -2 é²² + 2 é ² I_{P_+} (2) = che é derivdile overque quintini

(- M, X,) (- M, X) (- X) (- X) (- X) (- M, X) ₽ | 2 e - t - 2t | t = -2t | t = -2 = -2 (e-7) + (e-27) = 18-12-22 fp (2)= - Le-22 /- /2/2 = -2e-2+ 2+e-22 /- sower SI

PG) X, y n Ber(P) indipendenti

X = 1 0 con 9=1-P

 $Z = x + y = \begin{cases} 2 & 4e & x = 1, y = 1 & con p^{2} \\ 1 & 1e & x = 0, y = 1 & or & x = 1, y = 0 & con 2pq \\ 0 & 4e & x = 0, y = 0 & con q^{2} \end{cases}$ ciae ZNBim (2, p) dolo Xe Y independenti

1) E[X12] = E[X12=R] = E[X12=0] + E[X12=1] + E[X12=2]

REP. 12]

E[X17=0]= -1 XdP= .0 (Z=0)=(x=0, y=0)

E[X12=1] = 1 P(Z=1) | X dP = 10. pq + 1.pq = = = = = (Z=1) = | x=0, y=1 | v | x=1, y=0)

 $\left[-\left(X \mid \overline{Z} = 2 \right) \right] = \frac{1}{P(Z=2)} \left[X \mid Z = 2 \right] = \left[X = 1, V = 1 \right]$

-> E [x12] = 1 / [z=1] + 1 [z=2] = 1 2 2 4

omble [[12] = 1 2

$$= \frac{P}{4} + \frac{P}{4} + \frac{P^2}{2} = \frac{P}{2} + \frac{P^2}{2}$$

->
$$E_1 - E_2 = \frac{\rho}{2} + \frac{\rho^2}{2} - \rho^2 = \frac{\rho}{2} \cdot \frac{\rho^2}{2} = \frac{\rho}{2} \left(1 - \rho\right) \neq 0$$
 nono correlate

L> $E[X|Z] = \frac{1}{2}Z$ con $Z \sim Bin(2, p)$

NON SONO
INDIPENDENTI

5.3

E(x+y)²|z] = E[x²+y²+2xy|z] = = E[x²|z] + E[y²]z + 2E[xy|z] = ey;x² \ Ber(P) -> xy \ Ber(P) = ey;x² \ \ Ber(P) = ey;x² \ Ber(P)

= $E[X|Z] + E[Y|Z] + 2E[X|Z] = 4 E[X|Z] = 4 \cdot \frac{1}{2} = 22$ Con $Z \sim Bin(2,p)$

e E[XY17] = E[X217] = E[X17] ~ 27 con 2 ~ Bin (1)