

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

Licenciatura en Ciencias de la Computación Facultad de Ciencias

Programa de la asignatura

Denominación de la asignatura:

Visualización

Clave:	Semestre:	Eje tema	Eje temático:			No. Créditos:	
0809	7-8	Imágene	Imágenes y Ambientes Virtuales				
Carácter	: Optativa		Но	oras	Horas por semana	Total de Horas	
Tipo: Teórico-Práctica			Teoría:	Práctica:			
Tipo: Te	orico-Practica		3	4	7 112		
Modalidad: Curso			Duración del programa: Semestral				

Asignatura con seriación indicativa antecedente: Graficación por computadora

Asignatura con seriación indicativa subsecuente: Ninguna

Objetivos generales:

Conocer y Comprender la importancia de la visualización como herramienta para entender fenómenos complejos. Desarrollar soluciones visuales eficientes y efectivas para problemas en múltiples áreas, incluyendo los videojuegos. Conocer los algoritmos y técnicas más útiles para la visualización de datos e información.

Unidad	Towns	Horas		
	Temas	Teóricas	Prácticas	
I	Introducción	3	4	
II	Percepción visual	3	4	
III	Modelado con mallas a partir de datos	9	12	
IV	Visualización de campos escalares	9	12	
V	Visualización de volumen	9	12	
VI	Visualización de campos vectoriales	9	12	
VII	Visualización de información	6	8	
	Total de horas:	48	64	
	Suma total de horas:	1.	12	

Contenido temático							
Unidad	Tema						
I Introduce	Introducción						
I.1	Aplicaciones en medicina, ciencias e información.						
1.2	Antecedentes. Estado del arte en la década actual.						
1.3	Tufte: Visualización eficiente y efectiva.						
II Percepc	ión visual						
II.1	Sistema visual humano.						
II.2	Ilusiones visuales.						
II.3	Teoría del color.						
11.4	Evaluación de habilidades espaciales y visuales.						
III Modelad	do con mallas a partir de datos						
III.1	Generación de mallas a partir de datos ordenados.						
III.2	Generación de mallas a partir de datos dispersos.						
III.3	Técnicas de reducción de polígonos.						
III.4	Simplificación de mallas.						
III.5	Optimización geométrica.						
III.6	Medida del error.						
IV Visualiz	ación de campos escalares						
IV.1	Modelado de datos como campos escalares en 2D.						
IV.2	Técnicas de visualización de campos escalares en 2D.						
IV.3	Campos escalares en 3D.						
IV.4	Generación de isosuperficies.						
V Visualiza	ación de volumen						
V.1	Modelos ópticos.						
V.2	Ordenamiento de imágenes.						
V.3	Ordenamiento de objetos.						
V.4	Geometría y volumen.						
VI Visualiz	ación de campos vectoriales						
VI.1	Modelado de datos como campos vectoriales en 2D.						
VI.2	Técnicas clásicas de visualización de campos vectoriales en 2D.						
VI.3	Uso de partículas y texturas.						
VI.4	Campos vectoriales en 3D.						
VI.5	Interacción entre campos vectoriales y texturas en 3D.						
VI.6	Simulación de fluidos para efectos especiales y videojuegos.						
VII Visuali:	zación de información						

Bibliografía básica:

- 1. Alexandru Telea, Data Visualization: Principles and Practice, AK Peters, 2008.
- 2. Klaus Engel et al, Real-Time Volume Graphics, AK Peters, 2006.

Bibliografía complementaria:

- 1. Shreiner et al, *OpenGL Programming Guide*, Addison-Wesley, 2005.
- 2. Mike Bailey and Steve Cunningham, *Graphics Shaders: Theory and Practice*, AK Peters, 2009.
- 3. Elmar Langetepe and Gabriel Zachmann, *Geometry Data Structures for Computer Graphics*, AK Peters, 2005.
- 4. Randi J. Rost et al, *OpenGL shading language*, 3ª ed., Addison-Wesley, 2009.

Sugerencias didácticas:		Métodos de evaluación:	
Exposición oral	(X)	Exámenes parciales	(X)
Exposición audiovisual	(X)	Examen final escrito	(X)
Ejercicios dentro de clase	(X)	Trabajos y tareas fuera del aula	(X)
Ejercicios fuera del aula	(X)	Prácticas de laboratorio	()
Seminarios	(X)	Exposición de seminarios por los alumnos	(X)
Lecturas obligatorias	(X)	Participación en clase	(X)
Trabajo de investigación	(X)	Asistencia	(X)
Prácticas de taller o laboratorio	(X)	Proyectos de programación	(X)
Prácticas de campo	(X)	Proyecto final	()
·		Seminario	()
Otras:			. ,
		Otras:	

Perfil profesiográfico:

Egresado preferentemente de la Licenciatura en Ciencias de la Computación o matemático con especialidad en computación con amplia experiencia de programación. Es conveniente que posea un posgrado en la disciplina. Con experiencia docente.