1. Simule estas situaciones y concluya:

- a) Se tira una moneda equilibrada 10 veces y se observa qué proporción de veces salió cara en las sucesivas tiradas, se repite el experimento en condiciones similares pero aumentando sucesivamente el número de tiradas hasta llegar a 1000000. Se realiza un gráfico de puntos en el plano XY donde el eje X representa el número de lanzamientos y el eje Y la frecuencia relativa de caras en cada uno de los ensayos.
- b) Repita el procedimiento llevado a cabo en el ítem anterior, pero en este caso la experiencia consiste en tirar un dado equilibrado y registrar la frecuencia relativa de la aparición de cada una de las caras. Graficar sólo el caso para una de las caras.
- c) En cierto país existe un control de natalidad, con lo cual a las parejas que deciden tener hijos se les impone el siguiente plan familiar: Se pueden tener hijos hasta que ocurra una de estas dos situaciones: tener 3 hijos o que nazca un varón (lo que ocurra primero). ¿Cuál es la probabilidad de tener un hijo varón bajo esta regla?

Numero de lanzamiento de monedas

2

c)

- \mathcal{E} = Se tienen hijos hasta que la regla lo permita.
- $S = \{(V), (M, V), (M, M, V), (M, M, M)\}$
- $A = \{(V), (M, V), (M, M, V)\}$
- $P(A) = \frac{3}{4}$

2.

- a) Simule la distribución de la suma de los números que salen al tirar 4 dados para una muestra de tamaño 10000.
- b) Tabule los resultados.
- c) Represente los resultados gráficamente.

- a) dado1 = sample(1:6, 10000, replace = T)
 dado2 = sample(1:6, 10000, replace = T)
 dado3 = sample(1:6, 10000, replace = T)
 - dado4 = sample(1:6, 10000, replace = T)
 - boxplot(dado1 + dado2 + dado3 + dado4)

- 3. Dada una urna con 3 bolas blancas y 5 bolas negras, realice las siguientes simulaciones y sus correspondientes diagramas de barras:
 - a) Se observa la extracción de una bola
 - b) Se observan 8 extracciones con reposición
 - c) Se observa la cantidad de bolas negras que salen al extraer 30 bolas (con reposición). Este procedimiento se repite 10000 veces.

```
a) sample(c(0,0,0,1,1,1,1,1), 1)
```


d) x = vector()

```
for (i in 1:10000) {
   x = c(x, sum(sample(c(0,0,0,1,1,1,1,1), 30, replace = T)))
}
```

boxplot(x)

- 4. En cada uno de los siguientes casos, determinar un espacio muestral asociado a la experiencia y el cardinal del mismo:
 - a) Extraemos una carta de una baraja española y anotamos el número.
 - b) Extraemos una carta de una baraja española y anotamos el palo.
 - c) Extraemos sendas cartas de dos barajas españolas distintas y anotamos el palo de cada una.
 - d) Extraemos sendas cartas de dos barajas españolas distintas y anotamos el palo de la primera y el número de la segunda.
 - e) Lanzamos una moneda y anotamos el resultado.
 - f) Lanzamos dos monedas distintas y anotamos el resultado.
 - g) Lanzamos tres monedas distintas y anotamos el resultado.
 - h) Lanzamos tres monedas distintas y anotamos el número de caras.
 - i) Lanzamos una moneda sucesivas veces hasta que salga cara. y anotamos el número de lanzamientos que fueron necesarios.
 - j) Lanzamos dos dados y observamos la suma de los números que se obtienen.
 - k) Anotamos el número de llamadas a un teléfono en un intervalo de tiempo [0,t].
 - l) Anotamos el tiempo que media entre dos llamadas a un teléfono.

- a) $A = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}, \#A = 12.$
- $b)\ B=\{Oro,Copa,Espada,Basto\},\,\#B=4.$
- c) $C = \{(x, y) / x, y \in B\}, \#C = 4 \cdot 4 = 16.$
- d) $D = \{(x, y) / x \in B \land y \in A\}, \#D = 4 \cdot 12 = 48.$
- e) $E = \{Cara, Cruz\}, \#E = 2.$
- $f) \ F = \{ \left(Cara, Cara\right), \left(Cara, Cruz\right), \left(Cruz, Cara\right), \left(Cruz, Cruz\right) \}, \\ \#F = 2.$
- g) $G = \{(x, y, z) / x, y, z \in E\}, \#G = 2^3 = 8.$

- h) $H = \{0, 1, 2, 3\}, \#H = 4.$
- i) $I = \mathbb{N}, \#I = \aleph_0.$
- j) $J = \{2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}, \#J = 11.$
- k) $K = \mathbb{N}_0, \#K = \aleph_0.$
- $l) L = \mathbb{R}^{>0}, \#L = \aleph_1.$
- 5. A, B y C son sucesos de un mismo espacio muestral. Expresar, en función de operaciones entre ellos, los siguientes sucesos:
 - a) Ocurre alguno de los tres.
 - b) No ocurre ninguno de los tres.
 - c) Ocurren los tres.
 - d) Ocurren dos de los tres.
 - e) Ocurren al menos dos de los tres.

- a) $A \cup B \cup C$.
- b) $\overline{A \cup B \cup C}$.
- c) $A \cap B \cap C$.
- $(A \cap B) \cup (A \cap C) \cup (B \cap C).$
- e) $(A \cap B) \cup (A \cap C) \cup (B \cap C) \cup (A \cap B \cap C).$
- 6. En familias de tres hijos se estudia la distribución de sexos de los hijos. Por ejemplo (V, M, M) representa que el mayor de los hijos es varón y las otras dos, mujeres. ¿Cuántos elementos tiene el espacio muestral asociado a esta experiencia? Describir los siguientes sucesos:
 - a) A: la menor es mujer.
 - b) B: el mayor es varón.
 - $c) A \cup B$.

$$\#S = 8.$$

a)
$$A = \{(V, V, M), (V, M, M), (M, V, M), (M, M, M)\}.$$

b)
$$B = \{(V, V, V), (V, V, M), (V, M, V), (V, M, M)\}.$$

c)
$$A \cup B = \{(V, V, M), (V, M, M), (M, V, M), (M, M, M), (V, V, V)\}.$$

- 7. Se arroja un dado equilibrado dos veces y se observa el par ordenado de números que se obtiene.
 - a) Describa el espacio muestral asociado a la experiencia.
 - b) Describa los siguientes sucesos:
 - 1) En el primer lanzamiento se obtiene un número par.
 - 2) En el segundo lanzamiento se obtiene un número impar.
 - 3) Se obtienen par y par o impar e impar.

Soluciones

a)
$$S = \{(x,y)/x, y \in \{1,2,3,4,5,6\}\}.$$

b)

1)
$$A = \{(x,y) / x \in \{2,4,6\} \land y \in \{1,2,3,4,5,6\}\}.$$

2)
$$B = \{(x, y) / x \in \{1, 2, 3, 4, 5, 6\} \land y \in \{1, 3, 5\}\}.$$

3)
$$C = \{(x, y) / x, y \in \{2, 4, 6\} \lor x, y \in \{1, 3, 5\}\}.$$

8. Sean A y B dos sucesos de un espacio muestral S. Determinar si A y B son o no excluyentes cuando se cuenta con la siguiente información:

$$P(A \cup B) = \frac{2}{3}; P(A) = \frac{1}{4}; P(B) = \frac{1}{2}$$

Solución Supongamos que A y B son excluyentes, luego $P(A \cup B) = P(A) + P(B) \iff \frac{2}{3} = \frac{3}{4}$. Absurdo.

9. Sean $A ext{ y } B$ dos sucesos de un espacio muestral S. Sabiendo que $P(A \cup B) = \frac{3}{4}$, $P(\overline{B}) = \frac{2}{3}$ y $P(A \cap B) = \frac{1}{4}$; calcular P(B); P(A) y $P(\overline{A} \cap B)$.

Solución

- $P(B) = 1 P(\overline{B}) = \frac{1}{3}$.
- $P(A \cup B) = P(A) + P(B) P(A \cap B) \iff \frac{3}{4} = P(A) + \frac{1}{3} \frac{1}{4} \iff P(A) = \frac{2}{3}$.
- Recordemos que $\overline{A} \cap B = B A$. Ademas observemos que $B = (B A) \cup (A \cap B)$ y como B A y $A \cap B$ son disjuntos, resulta:

$$P(B) = P(B-A) + P(A \cap B) \iff \frac{1}{3} = P(B-A) + \frac{1}{4} \iff P(B-A) = \frac{1}{12}$$

En general: $P(X - Y) = P(X) - P(X \cap Y)$.

10. Analizar la validez de la siguiente afirmación: Si la probabilidad de que ocurran dos sucesos a la vez es menor que $\frac{1}{2}$, la suma de las probabilidades de ambos por separado no puede ser mayor que $\frac{3}{2}$.

Solución

$$P\left(A\cap B\right)<\frac{1}{2}$$

$$0 < \frac{1}{2} - P\left(A \cap B\right)$$

$$P(A) + P(B) < \frac{1}{2} - P(A \cap B) + P(A) + P(B) = \frac{1}{2} + P(A \cup B) < \frac{1}{2} + 1 = \frac{3}{2}$$

11. Calcule las probabilidades de los sucesos definidos en a), b) y c) del ejercicio 6 y b) del ejercicio 7. Especifique los supuestos que ha realizado.

Solución

- Ejercicio 6:

 - $P(A) = \frac{4}{8}$. $P(B) = \frac{4}{8}$. $P(A \cup B) = \frac{5}{8}$.

Suponemos que es tan probable tener un varón como una mujer y que el sexo de un hijo no condiciona el del siguiente.

- Ejercicio 7:
 - $P(A) = \frac{18}{36}$
 - $P(B) = \frac{18}{36}$
 - $P(C) = \frac{9}{36}$.

Suponemos que el resultado de una tirada no influye en la siguiente.

12. Se debe formar una comisión de cuatro personas, elegidas al azar entre las siguientes:

Nombre	Profesión	Edad
Ana	Ingeniera	28
Miguel	Ingeniero	39
Beatriz	Lic. en Letras	42
Carlos	Arquitecto	30
Diana	Arquitecta	33
Pedro	Historiador	53
Juan	Abogado	25
Mónica	Abogada	55

- a) ¿Cuál es la probabilidad de que los integrantes de la comisión sean todos mayores de 31 años?
- b) ¿Cuál es la probabilidad de que la comisión no incluya arquitectos?

- a) $\#S = \binom{8}{4} = 70.$
 - $A = \{ \text{Los integrantes son todos mayores de 31 años} \}.$

 - $\#A = {5 \choose 4} = 5$. $P(A) = \frac{\#A}{\#S} = \frac{5}{70}$.

b)

- $B = \{\text{La comisión no incluye arquitectos}\}. \#B = \binom{6}{4} = 15.$
- $C = \{\text{La comisión tiene exactamente un arquitecto}\}. \#C = 2 \cdot {6 \choose 3} = 40.$
- $D = \{\text{La comisión tiene exactamente dos arquitecto}\}. \#D = \binom{6}{2} = 15.$
- $\bullet \ \overline{B} = C \cup D; C \cap D = \emptyset.$

■
$$P(B) = \frac{\#B}{\#S} = \boxed{\frac{15}{70}} = 1 - P(\overline{B}) = 1 - [P(C) + P(D)] = 1 - [\frac{55}{70}].$$

- 13. Se forma una comisión constituida por un presidente, un vicepresidente, un secretario y un tesorero, quienes son elegidos al azar entre las personas de la tabla del ejercicio anterior.
 - a) ¿Cuál es la probabilidad de que la presidente sea mujer?
 - b) ¿Cuál es la probabilidad de que el tesorero sea mayor de 50 años?
 - c) ¿Cuál es la probabilidad de que el secretario sea abogado y el vicepresidente licenciado en letras?

Soluciones

a)
$$\#S = 8 \cdot 7 \cdot 6 \cdot 5 = 1680$$

- $A = \{\text{La presidente es mujer}\}. \#A = 4 \cdot 7 \cdot 6 \cdot 5 = 840.$
- $P(A) = \frac{\#A}{\#S} = \frac{840}{1680}.$

b)

- $B = \{\text{El tesorero es mayor de 50 años}\}. \#B = 2 \cdot 7 \cdot 6 \cdot 5 = 420.$
- $P(B) = \frac{\#B}{\#S} = \frac{420}{1680}.$

c)

- $C = \{ \text{El secretario es abogado y el vice es Lic. en letras} \}.$
- $\#C = 2 \cdot 1 \cdot 6 \cdot 5 = 60.$
- $P(C) = \frac{\#C}{\#S} = \frac{60}{1680}.$

- 14. Ana, Pedro, Manuel, Margarita y Alicia se sacarán una foto sentados en línea y orden acomodándose al azar.
 - a) ¿Cuál es la probabilidad de que los hombres queden en los extremos?
 - b) ¿Cuál es la probabilidad de que se alternen los sexos?
 - c) ¿Cuál es la probabilidad de que Margarita quede en el centro de la foto?
 - d) ¿Cuál es la probabilidad de que Manuel quede en el extremo derecho y Margarita, en el centro de la foto?

- a) #S = 5! = 120
 - $A = \{\text{Los hombres estan en los extremos}\}. \#A = 2 \cdot 3! = 12.$
 - $P(A) = \frac{\#A}{\#S} = \frac{12}{120}.$

b)

- $B = \{ \text{Los sexos estan alternados} \}. \#B = 2 \cdot 3! = 12.$
- $P = \frac{\#B}{\#S} = \frac{12}{120}.$
- c) $P(C) = \frac{1\cdot 4!}{\#S} = \frac{24}{120}$.
- $d) P(D) = \frac{1 \cdot 1 \cdot 3!}{\# S} = \frac{6}{120}.$
- 15. Las letras de la palabra CLASE se colocan al azar y en línea. ¿Cuál es la probabilidad de que las vocales queden juntas?

Solución

- #S = 5! = 120.
- $A = \{\text{Las letras A y E estan juntas}\}. \#A = 2 \cdot 4 \cdot 3! = 48.$
- $P = \frac{\#A}{\#S} = \frac{48}{120}.$

- 16. Se lanzan sucesivamente cuatro monedas al aire. ¿Cuál es la probabilidad de obtener:
 - a) al menos una cara?
 - b) a lo sumo tres cruces?
 - c) exactamente dos caras?

- a) $\#S = 2^4 = 16$.
 - $A_1 = \{ \text{Sale exactamente una cara} \}. \# A_1 = 4.$
 - $A_2 = \{ \text{Salen exactamente dos caras} \}. \# A_2 = 6.$
 - $A_3 = \{ \text{Salen exactamente tres caras} \}. \#A_3 = 4$
 - $A_4 = \{ \text{Salen exactamente cuatro caras} \}. \# A_4 = 1.$
 - $A = A_1 \cup A_2 \cup A_3 \cup A_4$. $\#A = \#A_1 + \#A_2 + \#A_3 + \#A_4 = 15$.
 - $P(A) = \frac{\#A}{\#S} = \frac{15}{16}.$
- b) $P(B) = \frac{1+4+6+4}{\#S} = \frac{15}{16}$.
- c) $P(A_2) = \frac{6}{16}$.
- 17. En el juego de generala mediante un tiro, calcule la probabilidad de obtener:
 - a) Generala servida.
 - b) Póker servido.

Soluciones

- $\#S = 6^5.$
- a) $P(A) = \frac{1}{6^5}$.
- b) $P(B) = \frac{6.6}{6^5} = \frac{36}{6^5}$.
- 18. Una caja contiene bolas blancas y negras de tal manera que, al extraer dos, la probabilidad de que sean ambas blancas es $\frac{1}{2}$. Determine el número mínimo de bolas que hay en la caja.

Solución COMPLETAR.

19. En un centro hay 1000 alumnos repartidos del siguiente modo:

	Chicos	Chicas
Usan anteojos	187	113
No usan anteojos	413	287

Se elige al azar uno de ellos.

- a) ¿Cuál es la probabilidad de que
 - 1) sea chico?
 - 2) sea chica?
 - 3) use anteojos?
 - 4) no use anteojos?
 - 5) sea chica y use anteojos?
- b) Nos dicen que el alumno elegido resultó una chica, ¿cuál es la probabilidad de que use anteojos?

Soluciones

a)

1)
$$P(A_1) = \frac{600}{1000}$$
.

2)
$$P(A_2) = \frac{400}{1000}$$
.

3)
$$P(A_3) = \frac{300}{1000}$$
.

1)
$$P(A_1) = \frac{600}{1000}$$
.
2) $P(A_2) = \frac{400}{1000}$.
3) $P(A_3) = \frac{300}{1000}$.
4) $P(A_4) = \frac{700}{1000}$.
5) $P(A_5) = \frac{113}{1000}$.

5)
$$P(A_5) = \frac{113}{1000}$$
.

b)
$$P = \frac{113}{400}$$
.

- 20. En una ciudad se publican los diarios A, B y C. Una encuesta indica que el 20 % de la población lee A, el 16 % lee B, el 14 % lee C, el 8 % lee A y B, el 5% lee A y C, el 4% lee B y C, y el 2% lee A, B y C. Se elige una persona al azar. Calcule la probabilidad de que:
 - a) no lea ninguno de los diarios,
 - b) lea alguno de los diarios,
 - c) lea solamente uno de los diarios,
 - d) lea los diarios A y B sabiendo que al menos lee uno de los diarios.

•
$$A = \{ \text{Personas que leen el diario } A \}. P(A) = \frac{20}{100}.$$

■
$$B = \{\text{Personas que leen el diario } B\}.$$
 $P(B) = \frac{16}{100}.$

•
$$C = \{ \text{Personas que leen el diario } C \}. P(C) = \frac{14}{100}.$$

$$P(A \cap B) = \frac{8}{100}.$$

$$P(A \cap C) = \frac{5}{100}.$$

$$P(B \cap C) = \frac{4}{100}.$$

$$P(A \cap B \cap C) = \frac{2}{100}.$$

$$a$$
) AB

$$\begin{split} P\left(\overline{A} \cap \overline{B} \cap \overline{C}\right) &= P\left(\overline{A \cup B \cup C}\right) = 1 - \left[P\left(A \cup B \cup C\right)\right] = \\ &= 1 - \left[P\left(A\right) + P\left(B\right) - P\left(A \cap B\right) + P\left(C\right) - P\left(A \cap C\right)\right. \\ &\left. - P\left(B \cap C\right) + P\left(A \cap B \cap C\right)\right] \\ &= 1 - \left[\frac{20 + 16 - 8 + 14 - 5 - 4 + 2}{100}\right] = 1 - \left[\frac{35}{100}\right] = \frac{65}{100} \end{split}$$

$$P(A \cup B \cup C) = 1 - P(\overline{A} \cap \overline{B} \cap \overline{C}) = \frac{35}{100}$$

$$P(X = A \cap \overline{B} \cap \overline{C}) = \frac{20 - 8 - 5 + 2}{100} = \frac{9}{100}$$

$$P(Y = \overline{A} \cap B \cap \overline{C}) = \frac{16 - 8 - 4 + 2}{100} = \frac{6}{100}$$

$$P(Z = \overline{A} \cap \overline{B} \cap C) = \frac{14 - 5 - 4 + 2}{100} = \frac{7}{100}$$

$$P(X \cup Y \cup Z) = \frac{9 + 6 + 7}{100} = \frac{22}{10}$$

d)

$$P(A \cup B) = P(A) + P(B) - P(A \cap B) = \frac{20}{100} + \frac{16}{100} + \frac{14}{100} = \frac{50}{100}.$$

■
$$P(A \cup B) = P(A) + P(B) - P(A \cap B) = \frac{20}{100} + \frac{16}{100} + \frac{14}{100} = \frac{50}{100}$$

■ $P(A \cap B | A \cup B) = \frac{P[(A \cap B) \cap (A \cup B)]}{P(A \cup B)} = \frac{P(A \cap B)}{P(A \cup B)} = \frac{8/100}{50/100} = \frac{8}{50}$.

21. Un estudiante afirma que si se arroja un dado equilibrado tres veces y se suman los números obtenidos, la probabilidad de que la suma sea 9 es igual a la probabilidad de que la suma sea 10. Basa su afirmación en que, en ambos casos, hay 6 posibilidades de lograr esas sumas:

Suma 9	126	135	144	225	234	333
Suma 10	136	145	244	226	235	334

Analice la afirmación del estudiante.

Solución No es correcto pues los resultados no son igualmente probables:

- $P(126) = \frac{6}{6^3} = P(135) = P(234).$
- $P(144) = \frac{3}{63} = P(225).$
- $P(333) = \frac{1}{6^3}$.
- $P(136) = \frac{6}{6^3} = P(145) = P(235).$
- $P(244) = \frac{3}{6^3} = P(226) = P(334).$
- $P(9) = \frac{25}{6^3}$; $P(10) = \frac{27}{6^3}$.
- 22. En un mazo de cartas se han retirado varias de ellas. Entre las que quedan, se sabe que el 15 % son reyes, el 30 % son bastos, el 60 % ni reyes ni bastos.
 - a) ¿Está entre ellas el rey de bastos? ¿Qué probabilidad hay de extraerla?
 - b) ¿Cuántas cartas quedan en el mazo?

Solución

- a) $S = {Cartas que quedan}.$
 - $R = \{\text{Reyes que quedan}\}. P(R) = \frac{15}{100}.$
 - $B = \{ \text{Bastos que quedan} \}. P(B) = \frac{30}{100}.$
 - $P\left(\overline{R} \cap \overline{B}\right) = \frac{60}{100} = P\left(\overline{R \cup B}\right) = 1 P\left(R \cup B\right) \iff P\left(R \cup B\right) = \frac{40}{100}$
 - $P(R \cup B) = P(R) + P(B) P(R \cap B) \iff P(R \cap B) = \frac{5}{100}.$

Como la probabilidad de sacar el rey de bastos de entre las cartas que quedan es mayor a 0, entonces efectivamente el rey de bastos esta allí.

b)
$$P(R \cap B) = \frac{1}{\#S} = \frac{5}{100} \iff \#S = 20.$$

23. En un centro hay 1000 alumnos repartidos del siguiente modo:

	Chicos	Chicas
Usan anteojos	187	113
No usan anteojos	413	287

Se elige al azar uno de ellos.

- a) Se sabe que el alumno elegido resultó una chica, ¿cuál es la probabilidad de que use anteojos?
- b) ¿Cuál es la probabilidad de que el alumno elegido resulte una chica, dado que usa anteojos?
- c) ¿Cuál es la probabilidad de que el alumno elegido resulte un chico, dado que usa anteojos?
- d) Se sabe que el alumno elegido no usa anteojos, ¿cuál es la probabilidad de que resulte un chico?

- $M = \{\text{El alumno elegido es mujer}\}. \#M = 400.$
- $V = \{$ El alumno elegido es varón $\}$. #V = 600.
- $A = \{\text{El alumno elegido usa lentes}\}. \#A = 300. \#\overline{A} = 700.$

a)
$$P(A|M) = \boxed{\frac{113}{400}} = \frac{P(A \cap B)}{P(M)} = \frac{113/1000}{400/1000}.$$

b)
$$P(M|A) = \frac{113}{300}$$
.

c)
$$P(V|A) = \boxed{\frac{187}{300}} = P(\overline{M}|A) = 1 - P(M|A) = 1 - \frac{113}{300}.$$

$$d) \ P\left(V|\overline{A}\right) = \frac{413}{700}.$$

- 24. En un lote de 100 artículos se sabe que hay 75 buenos y 25 defectuosos. Se extraen de ese lote 2 artículos al azar en forma sucesiva y sin reposición.
 - a) Sabiendo que el primer artículo resultó defectuoso, ¿cuál es la probabilidad de que el segundo sea bueno?
 - b) Sabiendo que el primer artículo resultó defectuoso, ¿cuál es la probabilidad de que el segundo también lo sea?
 - c) ¿Cuál es la probabilidad de que ambos artículos resulten defectuosos?

- a) $\#S = 100 \cdot 99 = 9900$.
 - $A = \{E \mid \text{primer arit}(c \mid extraido fue defectuoso}\}.$
 - $\#A = 25 \cdot 99$.
 - $P(A) = \frac{25.99}{9900} = \frac{25}{100}$.
 - $B = \{ \text{El segundo aritíclo extraido fue bueno} \}.$
 - $\#B = 75 \cdot 99$.

 - $P(B) = \frac{75 \cdot 99}{9900} = \frac{75}{100}$. $P(A \cap B) = \frac{25 \cdot 75}{9900}$. $P(B|A) = \frac{P(A \cap B)}{P(A)} = \frac{25 \cdot 75/9900}{25/100} = \frac{75}{99}$.

b)
$$P(\overline{B}|A) = \boxed{\frac{24}{99}} = 1 - P(B|A).$$

- $P\left(\overline{A} \cap B\right) = \frac{75 \cdot 74}{9900}.$
- $P\left(A \cap \overline{B}\right) = P\left(\overline{\overline{A} \cup B}\right) = 1 P\left(\overline{A} \cup B\right) = 1 \left[\frac{75}{100} + \frac{75}{100} \frac{75 \cdot 74}{9900}\right] = 1 \left[\frac{75}{100} + \frac{75}{100} \frac{75}{100} \frac{75 \cdot 74}{9900}\right] = 1 \left[\frac{75}{100} + \frac{75}{100} \frac{75}{100} \frac{75}{100}\right] = 1 \left[\frac{75}{100} + \frac{$
- 25. Un conjunto electrónico consta de dos sistemas A y B. A partir de una serie de pruebas previas se han asignado las siguientes probabilidades:
 - la probabilidad de que sólo B falle es 0.15,
 - la probabilidad de que A falle es 0.2,
 - la probabilidad de que A y B fallen es 0.15.

Calcule:

- a) La probabilidad de que A falle dado que B ha fallado.
- b) La probabilidad de que falle sólo A.

Solución

•
$$P(B \cap \overline{A}) = \frac{15}{100}$$
. $P(A) = \frac{20}{100}$. $P(A \cap B) = \frac{15}{100}$.

a)

■
$$P(B \cap \overline{A}) = \frac{15}{100} = P(B - A) = P(B) - P(A \cap B) \iff P(B) = \frac{30}{100}$$

■ $P(A|B) = \frac{15/100}{30/100} = \frac{15}{30}$.

$$P(A|B) = \frac{15/100}{30/100} = \frac{15}{30}.$$

b)
$$P(A \cap \overline{B}) = P(A - B) = P(A) - P(A \cap B) = \frac{5}{100}$$
.

26. El sistema de líneas que une dos centrales telefónicas A y B está representado en el siguiente diagrama, donde C es una central intermedia:

En ciertos horarios las líneas pueden saturarse por exceso de llamadas. Sean los sucesos siguientes:

- $E_1 = \{ \text{la linea AB se encuentra libre} \},$
- $E_2 = \{ \text{la linea AC se encuentra libre} \}$ y
- $E_3 = \{ \text{la linea BC se encuentra libre} \}.$

Se conoce que $P(E_1)=\frac{2}{5}$, $P(E_2)=\frac{3}{4}$, $P(E_3)=\frac{2}{3}$, $P(E_3|E_2)=\frac{4}{5}$ y $P(E_1|E_2\cap E_3)=\frac{1}{2}$. ¿Cuál es la probabilidad de que:

- a) la línea ACB se encuentre libre?
- b) las tres líneas estén libres?
- c) una llamada que llega a A pueda ser transmitida a B?

Soluciones

a)
$$P(E_3|E_2) = \frac{4}{5} = \frac{P(E_2 \cap E_3)}{P(E_2)} = \frac{P(E_2 \cap E_3)}{3/4} \iff P(E_2 \cap E_3) = \frac{12}{20}$$
.

b)
$$P(E_1|E_2 \cap E_3) = \frac{1}{2} = \frac{P(E_1 \cap E_2 \cap E_3)}{12/20} \iff P(E_1 \cap E_2 \cap E_3) = \frac{12}{40}.$$

c)
$$P(E_1 \cup (E_2 \cap E_3)) = P(E_1) + P(E_2 \cap E_2) - P(E_1 \cap E_2 \cap E_3) = \frac{7}{10}$$
.

- 27. Una central recibe mensajes de dos fuentes A y B. Se conoce que:
 - La probabilidad de recibir un mensaje proveniente de A es 0.2.
 - La probabilidad de que un mensaje posea una longitud superior a k caracteres si proviene de A es 0.1.
 - La probabilidad de que un mensaje posea una longitud superior a k caracteres si proviene de B es 0.15.

¿Cuál es la probabilidad de recibir un mensaje de más de k caracteres?

Solución Asumimos que no se puede recibir UN mensaje desde dos fuentes, es decir, que A y B son mutuamente excluyentes.

■
$$P(K|A) = \frac{10}{100} = \frac{P(A \cap K)}{20/100} \iff P(A \cap K) = \frac{2}{100}.$$

■
$$P(K|B) = \frac{15}{100} = \frac{P(B \cap K)}{1 - P(A)} \iff P(B \cap K) = \frac{12}{100}.$$

$$P(K) = P((A \cap K) \cup (B \cap K)) = \frac{2}{100} + \frac{12}{100} - 0 = \frac{14}{100}.$$

28. Tres empresas A, B, C licitan un contrato para la construcción de un puente. Las probabilidades de que A, B y C obtengan el contrato son respectivamente 0.5, 0.3 y 0.2. Si el contrato es obtenido por A, ésta contratará a su vez a la empresa E con probabilidad 0.8. Si el contrato es obtenido por B, ésta contratará a E con probabilidad 0.4. Si el contrato es obtenido por E, E será contratada con probabilidad 0.1. ¿Cuál es la probabilidad de que la empresa E obtenga un subcontrato en la construcción del puente?

Solución

- $A = \{ \text{Gana el contraro la empresa } A \}. P(A) = 0.5.$
- $B = \{ \text{Gana el contraro la empresa } B \}. P(B) = 0.3.$
- $C = \{ \text{Gana el contraro la empresa } C \}. P(C) = 0.2.$
- $E = \{ \text{Fue contratada la empresa } E \}.$
 - P(E|A) = 0.8.
 - P(E|B) = 0.4.
 - P(E|C) = 0.1.
- $P(E) = P(E \cap A) + P(E \cap B) + P(E \cap C) =$ = $P(E|A) \cdot P(A) + P(E|B) \cdot P(B) + P(E|C) \cdot P(C) = 0.54.$
- 29. Se tienen dos bolsas idénticas por fuera. La bolsa A contiene 12 caramelos de menta, 4 de frutilla y 6 de limón. La bolsa B contiene 3 caramelos de menta y 6 de limón. Se extrae un caramelo al azar de una de las bolsas, sin saber de cuál de ellas.
 - a) El caramelo resulta ser de menta. ¿Cuál es la probabilidad de que provenga de la bolsa A?
 - b) El caramelo resulta ser de limón. ¿Cuál es la probabilidad de que provenga de la bolsa A?
 - c) El caramelo resulta ser de frutilla. ¿Cuál es la probabilidad de que provenga de la bolsa A?

	A	В	Total
Menta	12	3	15
Limón	6	6	12
Frutilla	4	0	4
Total	22	9	31

a)
$$P(A|M) = \frac{12}{15}$$
.

b)
$$P(A|L) = \frac{6}{12}$$
.

c)
$$P(A|F) = 1$$
.

30. En una fábrica de pernos, las máquinas A, B y C fabrican el 40 %, 35 %, $25\,\%$ de la producción total, respectivamente. De lo que producen, $4\,\%$, 5 % y 2 % es defectuoso. Se elige un perno al azar y se encuentra que es defectuoso, ¿cuál es la probabilidad de que provenga de B?

Solución

- $A = \{\text{El perno fue fabricado por la máquina } A\}. P(A) = \frac{40}{100}.$
- $B = \{\text{El perno fue fabricado por la máquina } B\}.$ $P(B) = \frac{35}{100}$
- $C = \{\text{El perno fue fabricado por la máquina } C\}. P(C) = \frac{25}{100}$
- $D = \{\text{El perno es defectuoso}\}.$

 - $P(D|A) = \frac{4}{100}$. $P(D|B) = \frac{5}{100}$. $P(D|C) = \frac{2}{100}$.

■
$$P(B|D) = \frac{P(B\cap D)}{P(D)} = \frac{P(D|B)\cdot P(B)}{P(D)} = \frac{P(D|B)\cdot P(B)}{P(D\cap A) + P(D\cap B) + P(D\cap C)} = \frac{P(D|B)\cdot P(B)}{P(D|A)\cdot P(A) + P(D|B)\cdot P(B) + P(D|C)\cdot P(C)} = \frac{45}{100}.$$

31. En cierto país donde una enfermedad es endémica, se sabe que un 12 %de la población padece dicha enfermedad. Se dispone de una prueba para detectar la enfermedad. Dicha prueba no es totalmente fiable puesto que resulta positiva en el 90 % de personas realmente enfermas y también resulta positiva en el 5 % de personas sanas. ¿Cuál es la probabilidad de que una persona a la que la prueba le ha dado positiva, esté sana?

Solución

$$S \begin{cases} E & \frac{12}{100} \begin{cases} \overline{N} & \frac{90}{100} = P\left(\overline{N}|E\right) \\ N & \frac{10}{100} \end{cases} \\ \overline{E} & \frac{88}{100} \begin{cases} \overline{N} & \frac{5}{100} = P\left(\overline{N}|\overline{E}\right) \\ N & \frac{95}{100} \end{cases}$$

$$P\left(\overline{E}|\overline{N}\right) = \frac{P\left(\overline{N}|\overline{E}\right)P\left(\overline{E}\right)}{P\left(\overline{N}|E\right)P\left(E\right) + P\left(\overline{N}|\overline{E}\right)P\left(\overline{E}\right)} = \frac{\frac{5}{100} \cdot \frac{88}{100}}{\frac{90}{100} \cdot \frac{12}{100} + \frac{5}{100} \cdot \frac{88}{100}} \approx \frac{29}{100}$$

- 32. Sean A y B dos sucesos de un espacio muestral S. Si $P(A) = \frac{1}{4}$, $P(B) = \frac{1}{2}$ y $P(A|B) = \frac{1}{4}$, analice la veracidad de las siguientes proposiciones:
 - a) A y B son excluyentes,
 - b) $A \subseteq B$,
 - c) $P(\overline{A}|\overline{B}) = \frac{1}{4}$,
 - d) $P(A|B) + P(A|\overline{B}) = 1$.

- a) Falso: $P(A \cap B) = P(A|B) \cdot P(B) = \frac{1}{8} \neq 0 \Rightarrow A \cap B \neq \emptyset$.
- b) Falso: Si $A\subseteq B$ entonces $P\left(B|A\right)=1\neq\frac{1/8}{1/4}.$
- c) Falso:
 - $P(A|B) = \frac{1}{4} = \frac{P(A \cap B)}{1/2} \iff P(A \cap B) = \frac{1}{8}.$
 - $P(\overline{A}|\overline{B}) = \frac{P(\overline{A} \cap \overline{B})}{7/8} = \frac{P(\overline{A} \cup \overline{B})}{7/8} = \frac{1 P(A \cup B)}{7/8} = \frac{1 \left[\frac{1}{4} + \frac{1}{2} \frac{1}{4}\right]}{7/8} = \frac{8}{14} \neq \frac{1}{4}.$
- d) Verdadero:
 - $P(A|B) + P(A|\overline{B}) = \frac{1}{4} + \frac{P(A-B)}{1/2} = \frac{1}{4} + \frac{1/4 1/8}{1/2} = \frac{1}{4} + \frac{1}{4} = 1.$

33. Pruebe que si A y B son sucesos mutuamente excluyentes, con $P(B) \neq 0$, entonces P(A|B) = 0.

Solución
$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{0}{P(B)} = 0.$$

- 34. Pruebe que si A y B son sucesos independientes de un mismo espacio muestral S, entonces:
 - a) $A y \overline{B}$ son independientes.
 - b) \overline{A} y B son independientes.
 - c) \overline{A} y \overline{B} son independientes.

Soluciones

a)
$$P(A) P(\overline{B}) = P(A) [1 - P(B)] = P(A) - P(A) P(B) = P(A - B) = P(A \cap \overline{B}).$$

- b) COMPLETAR.
- c) COMPLETAR.
- 35. Si A, B y C son sucesos independientes, demostrar que:
 - a) $A y B \cup C$ son independientes.
 - b) $A y B \cap C$ son independientes.
 - c) A y B C son independientes.

a)
$$P(A \cap (B \cup C)) = P((A \cap B) \cup (A \cap C)) =$$

= $P(A \cap B) + P(A \cap C) - P(A \cap B \cap C) =$
= $P(A) P(B) + P(A) P(C) - P(A) P(B) P(C) =$
= $P(A) [P(B) + P(C) - P(B) P(C)].$

- b) COMPLETAR.
- c) COMPLETAR.

36. Pruebe que si A y B son sucesos de un mismo espacio muestral y P(A) > P(B), entonces P(A|B) > P(B|A).

Solución COMPLETAR.

37. Un número binario está formado por n dígitos. La probabilidad de que aparezca un dígito incorrecto es p. Si los errores en dígitos diferentes son independientes uno de otro, ¿cuál es la probabilidad de formar un número incorrecto?

Solución La probabilidad de que el numero sea correcto será $(1-p)^n$, luego la probabilidad de que sea incorrecto es: $1-(1-p)^n$.

- 38. Se arroja un dado equilibrado dos veces y se observa el par ordenado de números que se obtiene. Se definen los sucesos:
 - $A = \{$ en el primer lanzamiento se obtiene un número par $\}$,
 - $B = \{$ en el segundo lanzamiento se obtiene un número impar $\}$ y
 - $C = \{ \text{se obtienen par y par o impar e impar} \}.$

Probar que:

- a) los sucesos A y B son independientes;
- b) los sucesos A y C son independientes;
- c) los sucesos B y C son independientes;
- $d)\ P\left(A\cap B\cap C\right)\neq P\left(A\right)\cdot P\left(B\right)\cdot P\left(C\right).$
- e) ¿Son A, B y C independientes?

- #S = 36.
- #A = 18 = #B = #C. $P(A) = \frac{18}{36} = P(B) = P(C)$.
- $\#A \cap B = 9 = \#A \cap C = \#B \cap C$. $P(A \cap B) = \frac{9}{36} = P(A \cap C) = P(B \cap C)$.

- a) $P(A \cap B) = \frac{9}{36} = \frac{18}{36} \cdot \frac{18}{36} = P(A) \cdot P(B)$.
- b) $P(A \cap C) = \frac{9}{36} = \frac{18}{36} \cdot \frac{18}{36} = P(A) \cdot P(C)$.
- c) $P(B \cap C) = \frac{9}{36} = \frac{18}{36} \cdot \frac{18}{36} = P(B) \cdot P(C)$.
- $d) \ P(A \cap B \cap C) = 0 \neq \left(\frac{18}{36}\right)^3.$
- e) No lo son pues: $P(A \cap B \cap C) = P((A \cap B) \cap C) = 0 \neq P(A \cap B) \cdot P(C)$.