MTH302: INTEGERS, POLYNOMIALS AND MATRICES LECTURE 2

VARADHARAJ R. SRINIVASAN

Keywords: Matrix rings, polynomial rings, power series rings, ring of Gaussian integers, ring of integers modulo n.

1. MATRIX RINGS.

Let R be a ring. For any matrix $A=(a_{ij})\in M_n(R)$ and $r\in R$, we denote the matrix $(r\cdot a_{ij})$ by rA. Let $r\in R$. The matrix $A=(a_{st})\in M_n(R)$ such that $a_{ij}=r$ for a fixed i,j and $a_{st}=0$ when $s\neq i$ or $t\neq j$ will be denoted by rE_{ij} . When R has 1, the matrix $1E_{ij}$ will be simply denoted by E_{ij} . Note that

$$aE_{ij} \cdot bE_{st} = \begin{cases} (a \cdot b)E_{it} & \text{if } j = s \\ 0 & \text{otherwise.} \end{cases}$$

Notation for the identity matrix: If R is a ring with 1 then the identity matrix of $M_n(R)$ will be denoted by I_n .

Remark 1.1. Given a ring R, every element of $A = (a_{ij}) \in M_n(R)$ can be uniquely written as

$$A = \sum_{i=1, j=1}^{n} a_{ij} E_{ij}.$$

Transpose of a matrix: Given a matrix $A = (a_{ij}) \in M_n(R)$, the transpose of A, sometimes denoted by A^T , is the matrix (a_{ii}) .

Adjoint of a matrix: Let $A = (a_{ij}) \in M_n(R)$. The ij-th cofactor of A, denoted by c_{ij} , is the product of $(-1)^{i+j}$ and the determinant of the submatrix of A obtained by deleting the i-th row and j-th column. The transpose of the cofactor matrix (c_{ij}) is called the *adjoint* of A, denoted by Adj(A).

Proposition 1.2. *If* R *is a commutative ring with* 1 *then* $A \in M_n(R)$ *is a unit if and only if* det(A) *is a unit in* R.

Proof. Let $A \in M_n(R)$ be a unit. Then there is a matrix $B \in M_n(R)$ such that $A \cdot B = I_n = B \cdot A$. Applying determinant, we obtain $det(A) \cdot det(B) = 1 = det(B) \cdot det(A)$. Thus $det(A) \in R$ is a unit. Conversely, we know that $A \cdot Adj(A) = Adj(A) \cdot A = det(A)I_n$ (why?). Since det(A) is a unit in R, we have an element $det(A)^{-1} \in R$ such that $det(A) \cdot det(A)^{-1} = det(A)^{-1} \cdot det(A) = 1$. Thus

$$A \cdot (det(A)^{-1}Adj(A)) = (det(A)^{-1}Adj(A)) \cdot A = I_n. \quad (why?)$$

Hence *A* is a unit in $M_n(R)$. (Where did we use that *R* is commutative?)

2. POLYNOMIAL AND POWER SERIES RINGS

Let $\mathbb{W} := \{0, 1, 2, \dots\}$ and R be a ring. Let $R^{\mathbb{W}}$ be the set of all functions from \mathbb{W} to R. Define addition and multiplication on $R^{\mathbb{W}}$ as follows:

Addition: (f+g)(n) = f(n) + g(n) for all $n \in \mathbb{W}$ **Multiplication:** $(f \cdot g)(n) = \sum_{i=0}^{n} f(i) \cdot g(n-i)$ for all $n \in \mathbb{W}$.

Under these operation $R^{\mathbb{W}}$ forms a ring. If $f \in R^{\mathbb{W}}$ then f defines a sequence of images $f(0), f(1), \cdots$ in R. Conversely, if a_0, a_1, \cdots is a sequence in R then f defined by $f(n) := a_n$ defines a function from \mathbb{W} to R. In this sense, f is often denoted by its image and written as a formal expression in a variable X as

$$a_0 + a_1 X + a_2 X^2 + \cdots$$

Henceforth, we identify $R^{\mathbb{W}}$ with $R[[X]] := \{a_0 + a_1X + \cdots \mid a_n \in R\}; f \mapsto f(0) + f(1)X + \cdots$ and call R[[X]], the formal power series ring in one variable X over R. The elements of R[[X]] are called formal power series. Under this identification, we have

$$\sum_{n=1}^{\infty} a_n X^n + \sum_{n=1}^{\infty} b_n X^n := \sum_{n=1}^{\infty} (a_n + b_n) X^n$$

$$\left(\sum_{n=1}^{\infty} a_n X^n\right) \cdot \left(\sum_{n=1}^{\infty} b_n X^n\right) := \sum_{n=1}^{\infty} c_n X^n, \text{ where }$$

$$c_n = a_0 \cdot b_n + a_1 \cdot b_{n-1} + \dots + a_{n-1} \cdot b_1 + a_n \cdot b_0.$$

Note that two power series $f = a_0 + a_1X + \cdots$ and $g = b_0 + b_1X + \cdots$ are equal in R[[X]] if and only if $f(n) = a_n = b_n = g(n)$ for all $n \in \mathbb{W}$.

Let $R_0^{\mathbb{W}} := \{ f \in R^{\mathbb{W}} \mid f(n) = 0 \text{ for all but finitely many } n \}$. Then $R_0^{\mathbb{W}}$ can be easily seen to be a subring of $R^{\mathbb{W}}$. The restriction of the identification $f \mapsto f(0) + f(1)X + \cdots$ to the ring $R_0^{\mathbb{W}}$ has its image as the set

$$R[X] := \{a_0 + a_1X + \cdots \mid a_n \in R, a_n = 0 \text{ for all but finitely many } n.\}$$

The ring R[X] will be called the *ring of polynomials* in one variable X over R. The elements of R[X] are called polynomials.

If $f = a_0 + a_1 X + \cdots$ is a polynomial such that $a_m = 0$ for all m > n and $a_n \neq 0$ then we shall write $f = a_0 + a_1 X + \cdots + a_n X^n \in R[X]$. In this case, n is called the *degree* of f and a_n is called the *leading* coefficient of f.

Proposition 2.1. Let R be an integral domain with 1.

- (1) A polynomial $f = a_0 + a_1 X + \cdots + a_n X^n$ of degree n is a unit in R[X] if and only if a_0 is a unit in R and n = 0.
- (2) A power series $f = a_0 + a_1 X + \cdots$ is a unit in R[[X]] if and only if a_0 is a unit in R.

Proof. Let $f = a_0 + a_1 X + \cdots + a_n X^n$, a polynomial of degree n, be a unit in R[X] and $g = b_0 + b_1 X + \cdots + b_m X^m \in R[X]$, a polynomial of degree m, be the inverse of f. Then we have

$$f \cdot g = a_0 \cdot b_0 + (a_1 \cdot b_0 + a_0 \cdot b_1)X + \dots + a_n \cdot b_m X^{n+m} = 1 + 0X + \dots + 0X^{n+m}$$
$$g \cdot f = b_0 \cdot a_0 + (b_1 \cdot a_0 + b_0 \cdot a_1)X + \dots + b_m \cdot a_n X^{n+m} = 1 + 0X + \dots + 0X^{n+m}$$

Then, $a_0 \cdot b_0 = 1 = b_0 \cdot a_0$. If $n \ge 1$ then since $a_n \cdot b_m = 0$, $a_n \ne 0$ and $b_m \ne 0$, we obtain that R is not an integral domain. Thus n = 1. Converse is obvious!

If $g=b_0+b_1X+\cdots$ is an inverse of a power series $f=a_0+a_1X+\cdots$ then it is obvious that $a_0\cdot b_0=b_0\cdot a_0=1$. Now let $f=a_0+a_1X+\cdots$ be a power series and a_0 be a unit. One can easily find a power series $g=b_0+b_1X+\cdots\in R[[X]]$, whose coefficients are determined in a recursive fashion using the relations $f\cdot g=g\cdot f=1+0X+\cdots$ and the fact that $a_0b_0=b_0a_0=1$.

3. Integers modulo n

Let $\mathbb{Z}_n = \{\overline{0}, \overline{1}, \cdots, \overline{n-1}\}$ be the collection of all equivalence classes \overline{m} of integers under the equivalence relation

$$a \sim_n b$$
 if $a - b$ is divisible by n .

Then \mathbb{Z}_n forms a commutative ring under the following operations¹

Addition: $\overline{i} + \overline{j} = \overline{i+j}$, Multiplication: $\overline{i} \cdot \overline{j} = \overline{ij}$.

For $n \geq 2$, \mathbb{Z}_n is a commutative ring with identity $\overline{1}$. It can be easily seen that $\mathbb{Z}_n = {\overline{0}}$ if and only if n = 1. Therefore, in the foregoing, we shall assume $n \geq 2$.

Proposition 3.1. $\overline{x} \in \mathbb{Z}_n$ is a unit if and only if \overline{x} is not a zero-divisor if and only if x is coprime to n

Proof. If \overline{x} is a unit then it is clear that \overline{x} is not a zero divisor (why?). Conversely, if \overline{x} is not a zero divisor then $\overline{y} \mapsto \overline{xy}$ is an injective map on the finite set \mathbb{Z}_n . Therefore it is surjective. Thus we obtain an element $y \in \mathbb{Z}$ such that $\overline{x} \cdot \overline{y} = \overline{1}$. Similarly, the map $\overline{x} \mapsto \overline{yx}$ is also bijective and we obtain an element $z \in \mathbb{Z}$ such that $\overline{z} \cdot \overline{x} = \overline{1}$. It follows that $\overline{y} = \overline{z}$ and thus \overline{x} is a unit.

If \overline{x} is a unit then there is a $y \in \mathbb{Z}$ such that xy - 1 is divisibe by n. That is xy + zn = 1 for some $z \in \mathbb{Z}$. This implies that x and y are coprime. A similar argument proves the converse.

Proposition 3.2. \mathbb{Z}_n is an integral domain if and only if n is prime if and only if \mathbb{Z}_n is a field.

Proof. From the previous proposition, it is evident that \mathbb{Z}_n is an integral domain if and only if \mathbb{Z}_n is a field. Observe that n = lm for $2 \le l \le n-1$ and $2 \le m \le n-1$ if and only if $\overline{lm} = \overline{n} = \overline{0}$. This completes the proof of the propostion.

¹I expect you to check that the operations are indeed well-defined and that \mathbb{Z}_n forms a ring.