Problem

Show that the collection of Turing-recognizable languages is closed under the operation of $\ensuremath{\mathsf{T}}$

Aa. union.b. concatenation.

c. star.d. intersection.

	Step-by-step solution
	Step 1 of 8
Suppose, X and Y be to	wo Turing recognizable languages that have Turing machines $M_{ m X}$ and $M_{ m Y}$ respectively.
Now the union of these	languages is denoted by $L_{\rm XY}$ and the Turing machine recognizing this language is $M_{\rm XY}$.
On input w:"	
. Run X and Y alternate	ly on w step by step. If either accepts, accept. If both halt and reject, reject.
Suppose s be a word fro	m L_{XY} . M_{XY} works for an input string s as shown:
It executes M_X and M_Y	on s individually.
If at least any one of M	$_{\rm X}$ or $M_{\rm Y}$ accepts s then $M_{\rm XY}$ also accepts after a finite number of steps and reach to its accepting state.
If both M_X and M_Y reject	and either of them do so by looping then $M_{ m XY}$ will loop.
Comment	
	Step 2 of 8
	Step 2 of 8
Hence, it can be said th	Step 2 of 8 nat collection of Turing recognizable languages is closed under union operation.
	nat collection of Turing recognizable languages is closed under union operation.
Comment Suppose, X and Y be to	nat collection of Turing recognizable languages is closed under union operation.
Comment Suppose, X and Y be to anguages is denoted by	Step 3 of 8 Wo Turing recognizable languages that have Turing machines M_X and M_Y respectively. • Now the concatenation of these L_{XY} and the Turing machine recognizing this language is M_{XY} .
Comment Suppose, X and Y be to anguages is denoted by .et s be a word from L_{XY}	Step 3 of 8 Wo Turing recognizable languages that have Turing machines M_X and M_Y respectively. • Now the concatenation of these L_{XY} and the Turing machine recognizing this language is M_{XY} . When M_{XY} works for an input string s as shown:
Suppose, X and Y be to anguages is denoted by .et s be a word from L _{XX} . It divides each string of	Step 3 of 8 We Turing recognizable languages that have Turing machines M_X and M_Y respectively. • Now the concatenation of these L_{XY} and the Turing machine recognizing this language is M_{XY} . We M_{XY} works for an input string s as shown: XY into s_1 and s_2 non-deterministically.
Comment Suppose, X and Y be to anguages is denoted by Let s be a word from L_{XY} . It divides each string of the litruns s_1 to M_X . If M_X in	Step 3 of 8 We Turing recognizable languages that have Turing machines M_X and M_Y respectively. • Now the concatenation of these L_{XY} and the Turing machine recognizing this language is M_{XY} . We M_{XY} works for an input string s as shown: M_{XY} into s_1 and s_2 non-deterministically. alts and rejects, $reject$.
Suppose, X and Y be to anguages is denoted by let s be a word from L_{XX} . It divides each string of lt runs s_1 to M_X . If M_X h	Step 3 of 8 We Turing recognizable languages that have Turing machines M_X and M_Y respectively. • Now the concatenation of these L_{XY} and the Turing machine recognizing this language is M_{XY} . We M_{XY} works for an input string s as shown: XY into s_1 and s_2 non-deterministically.
Comment Suppose, X and Y be to anguages is denoted by Let s be a word from L_{XY} . It divides each string of the litruns s_1 to M_X . If M_X in	Step 3 of 8 We Turing recognizable languages that have Turing machines M_X and M_Y respectively. • Now the concatenation of these L_{XY} and the Turing machine recognizing this language is M_{XY} . We M_{XY} works for an input string s as shown: M_{XY} into s_1 and s_2 non-deterministically. alts and rejects, $reject$.
Suppose, X and Y be to anguages is denoted by Let s be a word from L _{XY} . It divides each string of truns s ₁ to M _X . If M _X h. If runs s ₂ to M _Y . If M _Y a	Step 3 of 8 We Turing recognizable languages that have Turing machines M_X and M_Y respectively. • Now the concatenation of these L_{XY} and the Turing machine recognizing this language is M_{XY} . We May works for an input string s as shown: XY into s_1 and s_2 non-deterministically. alts and rejects, reject. Excepts, accepts. If M_Y halts and rejects, reject.
Suppose, X and Y be to anguages is denoted by let s be a word from L _{XY} . It divides each string of lt runs s ₁ to M _X . If M _X h If runs s ₂ to M _Y . If M _Y a	Step 3 of 8 We Turing recognizable languages that have Turing machines M_X and M_Y respectively. • Now the concatenation of these L_{XY} and the Turing machine recognizing this language is M_{XY} . We M_{XY} works for an input string s as shown: M_{XY} into s_1 and s_2 non-deterministically. alts and rejects, $reject$.
Suppose, X and Y be to anguages is denoted by let s be a word from L _{XY} . It divides each string of lt runs s ₁ to M _X . If M _X h If runs s ₂ to M _Y . If M _Y a	Step 3 of 8 We Turing recognizable languages that have Turing machines M_X and M_Y respectively. • Now the concatenation of these L_{XY} and the Turing machine recognizing this language is M_{XY} . We May works for an input string s as shown: XY into s_1 and s_2 non-deterministically. alts and rejects, reject. Excepts, accepts. If M_Y halts and rejects, reject.

	Step 5 of 8	
	• Suppose, X be a Turing recognizable language and the Turing machine is M_X .	
	• Now X^* is the language obtained from star operation on X .	
1	The Turing machine for this language be $M_{ extstyle X^*}$.	
1	M _{X*} works as follows:	
	• For an input string s of X , it non-deterministically divided the string into $s_1, s_2 s_n$.	
•	• For each of those divided parts M_{X^*} runs, Suppose, M_{X^*} all divided parts then s is accepted by M_{X^*} else s is rejected by M_{X^*} .	
(Comment	
Step 6 of 8		
ŀ	Hence, it can be said that collection of Turing recognizable languages is closed under star operation.	
(Comment	
	Step 7 of 8	
	• Suppose, X , Y be two Turing recognizable languages that have Turing machines M_X and M_Y respectively.	
•	Now the intersection of these languages is denoted by L_{XY} and the Turing machine recognizing this language is M_{XY} .	
F	For an input string s from L_{XY} , M_{XY} works for as shown:	
•	• Turing machine M_X runs on s. If it accepts s then M_Y runs on s. Else s is rejected.	
•	• Suppose, $M_{\rm Y}$ accepts s then it is accepted by the Turing machine otherwise s is rejected.	
ŀ	Hence, it can be said that collection of Turing recognizable languages is closed under intersection operation.	
(Comments (5)	
	Step 8 of 8	
	• Suppose, X a Turing recognizable language that have Turing machine M_X .	
	• To recognize $h(X)$ the other Turing machine M_Y is simulated in such a way that:	
(On input s , it will consider all strings w such that $h(w) = s$.	
•	• The TMM_X will execute on input w by going through all strings in w .	
ŀ	If $h(w) = s$ start executing M_X on input w , using merging to interleave with other executions on M_X . Accept if any executions accept.	
•	• $M_{\rm Y}$ will accept s it any of those executions of $M_{\rm X}$ accepts s . Else s will be rejected.	
ŀ	Hence, it can be said that collection of Turing recognizable languages is closed under homomorphism operation.	
(Comment	