

Cybersecurity

IPSEC

Security architecture and protocol stack

IPsec

 Secure applications: PGP, HTTPS, S-HTTP, SFTP, ...

or

- Security down in the protocol stack
- SSL between TCP and application layer
- · IPSEC between TCP and IP

Why not security on datagrams?

Protect IP packets at each hop (there is a shared key among two routers that are connected by a link)

Good: all traffic is encrypted (including IP headers)

Cooperation among router is required

Significant computational effort (when a router receives a packet decodes it, then encodes it for next hop)

IP Security

- there exist several application specific security mechanisms
 - e.g., S/MIME, PGP, Kerberos, SSL/HTTPS
- however, there are security concerns that cut across protocol layers
- it is important to have a security protocol that can be used by all applications
- IP security: security between IP and TCP

4

a.y. 2022-23

IPSec

- IP Security mechanism provides
 - authentication
 - confidentiality
 - key management
- applicable to use over LANs, across public & private WANs & for the Internet
- Very complicated & articulated specification (many docs...)
- was formerly mandatory, then (2011) optional, in IPv6
 - optional in IPv4

5

a.y. 2022-23

RFC 6434 (2011) "IPv6 Node Requirements" Previously, IPv6 mandated implementation of IPsec and recommended the key management approach of IKE. This document updates that recommendation by making support of the IPsec Architecture [RFC4301] a SHOULD for all IPv6 nodes.

Benefits of IPSec

a firewall/router provides strong security to all traffic crossing the perimeter

is resistant to bypass (in a firewall is resistant to bypass if all traffic from the outside must use IP, and the firewalls the only means of entrance from the Internet into the organization)

is below transport layer, hence transparent to applications

can be transparent to end users (allows to realize Virtual Private Networks)

can provide security for individual users if desired

Practical applications of IPSec

- Secure branch office connectivity over the Internet
 - A company can build a secure virtual private network over the Internet or over a public WAN
- Secure remote access over the Internet
 - An end user whose system is equipped with IP security protocols can make a local call to an Internet service provider (ISP) and gain secure access to a company network

Practical applications of IPSec

Establishing extranet and intranet connectivity with partners

Enhancing electronic commerce security

Practical applications of IPSec

- The principal feature of IPSec that enables it to support these varied applications is that it can encrypt and/or authenticate all traffic at the IP level
- All distributed applications, including remote logon, client/server, e-mail, file transfer, Web access, and so on, can be secured
 - also routing protocols could benefit

11

security features

- implemented as extension headers that follow the main IP header
 - Authentication Header (AH) is the extension header for authentication
 - Encapsulating Security Payload (ESP) is the extension header for encryption
- in addition, there is another protocol that is IKE (Internet Key Exchange)

12

IPSec Documents

The most important (1998):

- RFC 2401: An overview of a security architecture
- RFC 2402: Description of a packet authentication extension to IPv4 and IPv6
- RFC 2406: Description of a packet encryption extension to IPv4 and IPv6
- RFC 2408: Specification of key management capabilities

13

IPsec Document Roadmap

IPsec 14

IPSec Services

15

Access control

- prevents unauthorized use of a resource (computing cycles, data, network, bandwidth etc.)
- Connectionless integrity
 - detects modification of an individual IP datagram
- Data origin authentication
 - verifies the identity of the claimed source of data
- Rejection of replayed packets
 - a form of partial sequence integrity
- Confidentiality (encryption)
- Limited traffic flow confidentiality
 - traffic flow confidentiality = concealing source and destination addresses, message length, or frequency of communication

16

services provided by AH and ESP protocols

Access control
Connectionless integrity
Data origin authentication
Rejection of replayed packets
Confidentiality
Limited traffic flow confidentiality

AH	only)	authentication)
V	V	V
V		V
~		V
V	V	V
	V	V
	V	V

- For ESP, two cases: with and without the authentication option
- Per Both AH and ESP are vehicles for access control, based on the distribution of cryptographic keys and the management of traffic flows relative to these security protocols

IPsec a.y. 2022-23

ECD (an amount on allow

Security Associations

17

- A security association (SA) is a one-way relationship between sender & receiver that affords security for traffic flow
 - logical group of security parameters, that ease the sharing of information to another entity
- There is a database of Security Associations (SADB)
 - according to RFC 2401, each interface for which IPsec is enabled requires nominally separate inbound vs. outbound databases, because of the directionality
- SA identified by 3 main parameters:
 - Security Parameters Index (SPI)
 - IP Destination Address
 - Security Protocol Identifier (AH or ESP)

SA, continued 1

18

- bi-directional traffic [] flows secured by 2 SAs
- choice of encryption and authentication algorithms (from a defined list) left for IPsec administrator
- protection for outgoing packet determined by
 - Security Parameter Index (SPI)
 - conceptually like TCP port number
 - it enables the receiving system to select the SA under which a received packet will be processed
 - destination address in packet header
- similar procedure for incoming packets, where IPsec gathers decryption and verification keys from SADB

SA, continued 2

19

- For multicast, SA is provided for the group, and is duplicated across all authorized receivers of the group.
- There may be more than one SA for a group, using different SPIs, thereby allowing multiple levels and sets of security within a group.
- Note that the relevant standard does not describe how the association is chosen and duplicated across the group; it is assumed that a responsible party will have made the choice.

SA's parameters

20

- Sequence Number Counter
 - 32-bit value used to generate the Sequence Number field in AH or ESP headers
- Sequence Counter Overflow
 - flag indicating whether overflow of the Sequence Number Counter should generate an auditable event and prevent further transmission of packets on this SA
- Anti-Replay Window
 - used to determine whether an inbound AH or ESP packet is a replay

SA's parameters

21

- AH Information
 - Authentication algorithm, keys, key lifetimes, and related parameters being used with AH
- ESP Information
 - Encryption and authentication algorithm, keys, initialization values, key lifetimes, and related parameters being used with ESP

SA's parameters

22

- · Lifetime of This Security Association
 - A time interval or byte count after which an SA must be replaced with a new SA (and new SPI) or terminated, plus an indication of which of these actions should occur
- IPSec Protocol Mode
 - Tunnel, transport, or wildcard
- Path MTU
 - Any observed path maximum transmission unit (maximum size of a packet that can be transmitted without fragmentation) and aging variables

Security Policy Database and SA selectors

23

- Entries in the Security Policy Database (SPDB) discriminate traffic: either IPSec protection, or bypass IPSec
 - each entry is defined by a set of IP and upper-layer protocol field values, called selectors
 - each entry points to an SA for that traffic (in general, it is possible a many-to-many relationship)
- Selectors are used to filter traffic in order to map it into a particular SA. Outbound processing obeys the following general sequence for each IP packet:
 - 1. Compare the values of the appropriate fields in the packet (the selector fields) against the SPDB to find a matching SPDB entry, which will point to zero or more SAs.
 - 2. Determine the SA (if any) for this packet and its associated SPI
 - 3. Do the required IPSec processing (i.e., AH or ESP processing)

SA selectors

24

Destination IP Address

 a single IP address, an enumerated list or range of addresses, or a wildcard (mask) address

Source IP Address

 a single IP address, an enumerated list or range of addresses, or a wildcard (mask) address

UserID

- a user identifier from the operating system
- not a field in the IP or upper-layer headers but is available if IPSec is running on the same operating system as the user

Data Sensitivity Level

 used for systems providing information flow security (e.g., secret or unclassified)

Transport Layer Protocol

 from IPv4 or IPv6, may be an individual protocol number, a list of protocol numbers, or a range of protocol numbers

Source and Destination Ports

 may be individual TCP/UDP port values, an enumerated list of ports, or a wildcard port

SADB vs SPDB

- SPDB specifies the policies that determine the disposition of all IP traffic inbound or outbound from/to a host or a security gateway
- SADB is a security association table, containing parameters of the security associations

Transport & Tunnel Modes

Transport mode summary

- Transport mode: original IP header not touched; IPsec information added between IP header and packet body
 - IP header | IPsec | [packet]

- Most logical when IPsec used end-to-end

Transport mode

28

- Used for host-to-host communications
- Only payload (the data you transfer) of IP packet is encrypted and/or authenticated
- Routing is intact, since the IP header is neither modified nor encrypted
 - however, when the authentication header is used, the IP addresses cannot be translated (NAT), as this will invalidate the hash value

Transport mode, continued

- Transport and application layers are always secured by hash, so they cannot be modified in any way (for example by translating the port numbers)
- A means to encapsulate IPsec messages for NAT traversal has been defined (see RFCs 3715, 3947, 3948), describing the NAT-T mechanism

Tunnel mode summary

- <u>Tunnel mode</u>: keep original IP packet intact but protect it; add new header information outside
 - New IP header | IPsec | [old IP header | packet]

- Can be used when IPSec is applied at intermediate point along path (e.g., for firewall-to-firewall traffic)
 - · Treat the link as a secure tunnel
- Results in slightly longer packet

Tunnel mode

31

- The entire IP packet (data and IP header) is encrypted and/or authenticated. It is then encapsulated into a new IP packet with a new IP header.
- Tunnel mode is used to create Virtual Private Networks (VPN) for network-to-network communications (e.g., between routers to link sites), host-to-network communications (e.g., remote user access), and host-to-host communications (e.g., private chat)

a.y. 2022-23

Transport & tunnel modes

Tunnel & Transport Mode Functionality

	Transport Mode SA	Tunnel Mode SA
АН	Authenticates IP payload and selected portions of IP header and IPv6 extension headers.	Authenticates entire inner IP packet (inner header plus IP payload) plus selected portions of outer IP header and outer IPv6 extension headers.
ESP	Encrypts IP payload and any IPv6 extension headers following the ESP header.	Encrypts entire inner IP packet.
ESP with Authentication	Encrypts IP payload and any IPv6 extension headers following the ESP header. Authenticates IP payload but not IP header.	Encrypts entire inner IP packet. Authenticates inner IP packet.

Authentication Header (AH)

34

- provides support for data integrity & authentication of IP packets
 - end system/router can authenticate user/app
 - prevents address spoofing attacks by tracking sequence numbers
- does not provide support for confidentiality
- based on use of a MAC
 - once, HMAC-MD5-96 or HMAC-SHA-1-96
- · users must share a secret key

Authentication Header higher level protocol,

e.g., TCP Bit: 16 31 Payload Length RESERVED Next Header Security Parameters Index (SPI) Sequence Number Authentication Data (variable)

IPsec

not restarting

AH protocol

36

- AH protects the IP payload and all header fields of an IP datagram except for mutable fields
 - In IPv4, mutable (and therefore unauthenticated) IP header fields include TOS, Flags, Fragment Offset, TTL and Header Checksum.
- AH operates directly on top of IP, using IP protocol number 51

a.v. 2022-23

Authentication Header (AH): transport mode

only part of the header is authenticated

Authentication Header (AH): tunnel mode

only part of the header is authenticated

Encapsulating Security Payload (ESP)

39

- provides message content confidentiality & limited traffic flow confidentiality
- · can optionally provide the same authentication services as AH
- supports range of ciphers, modes, padding
 - AES, DES, Triple-DES, Blowfish etc
 - CBC most common
 - padding to meet blocksize of the packet
 - HMAC (same as AH)

IPsec a.y. 2022-23

Encapsulating Security Payload

40

ESP - encoding and authentication: Transport mode

41

(a) Transport Mode

ESP encrypting and
authentication:
Tunnel mode

IPv6

new IP

ext

headers

(b) Tunnel Mode

Transport vs Tunnel Mode ESP

- transport mode is used to encrypt & optionally authenticate IP data
 - data protected but header left in clear
 - adversary can try traffic analysis
 - good for host-to-host traffic
- tunnel mode encrypts entire IP packet
 - add new header for next hop
 - slow
 - good for VPNs (Virtual Private Networks, gateway to gateway security)

IPsec 43

Transport vs Tunnel Mode ESP

(a) Transport-level security

(b) A virtual private network via tunnel mode

IPsec 44

Combining Security Associations

- SAs can implement either AH or ESP
- to implement both, need to combine SAs and form a security bundle; two ways:
 - transport adjacency
 - applying more than one protocol to same IP packet, without tunneling
 - · only one level of combination, further nesting yields no added benefit
 - iterated tunneling
 - application of multiple layers of security effected through IP tunneling
 - allows for multiple levels of nesting, since each tunnel can originate or terminate at a different IPsec site along the path
- the two approaches can be combined, for example, by having a transport SA between hosts travel part of the way through a tunnel SA between security gateways

Authentication plus confidentiality

Encryption and authentication can be combined in order to transmit a packet that has both confidentiality and authentication. Several approaches:

- ESP with authentication option
- Transport adjacency
- Transport-tunnel bundle

a.y. 2022-23 IPsec 46

ESP with authentication option

- user first applies ESP to data to be protected, then appends the authentication data field. Two subcases:
 - Transport mode ESP
 Authentication and encryption apply
 to IP payload delivered to the
 host, but IP header not protected
 - Tunnel mode ESP Authentication applies to entire IP packet delivered to outer IP destination address and authentication is performed at that destination. Entire inner IP packet is protected by the privacy mechanism, for delivery to the inner IP destination
- For both cases, authentication applies to the ciphertext rather than the plaintext (authentication after encryption)

IPsec 47 a.y. 2022-23

Transport adjacency

48

- still authentication after encryption
- two bundled transport SAs
 - inner = ESP (no authentication)
 - outer = AH
- encryption is applied to IP payload and resulting packet is IP header + ESP
- AH is then applied in transport mode, so that authentication covers the ESP + original IP header (except for mutable fields)
- advantage over ESP + authentication: authentication covers more fields, including source and destination IP addresses
- disadvantage: overhead (two SAs versus one SA)

IPsec a.y. 2022-23

Transport adjacency

49

What about authentication first?

authentication prior to encryption might be preferable for two reasons

- since authentication data are protected by encryption, it is impossible to alter authentication data without decryption
- if message is stored as plaintext, then verifying authentication data requires re-encryption

50

IPsec a.y. 2022-23

Transport-tunnel bundle

authentication before encryption between two hosts

- use a bundle consisting of an inner AH transport SA and an outer ESP tunnel SA
- authentication is applied to IP payload plus the IP header except for mutable fields
- resulting packet is then processed in tunnel mode by ESP
- the result is that the entire, authenticated inner packet is encrypted and a new outer IP header is added

51

IPsec a.y. 2022-23

Transport-tunnel bundle

Combining
Security
Associations

The IPSec Architecture document lists four examples of combinations of SAs that must be supported by compliant IPSec hosts (e.g., workstation, server) or security gateways (e.q., firewall, router)

Combining Security Associations

- All security is provided between end systems that implement IPSec.
- For any two end systems to communicate via an SA, they must share the appropriate secret keys.
- Among the possible combinations:
 - AH in transport mode
 - ESP in transport mode
 - ESP followed by AH in transport mode (an ESP SA inside an AH SA)
 - Any one of the preceding, inside an AH or ESP in tunnel mode
- Support for
 - authentication
 - encryption
 - authentication before encryption
 - authentication after encryption

- Security is provided only between gateways (routers, firewalls, etc.) and no hosts implement IPSec (simple virtual private network support)
- The security architecture document specifies that only a single tunnel SA is needed for this case. The tunnel could support AH, ESP, or ESP with the authentication option. Nested tunnels are not required because the IPSec services apply to the entire inner packet.

- Builds on Case 2 by adding end-to-end security. Same combinations discussed for cases 1 and 2 are allowed
- Gateway-to-gateway tunnel provides either authentication or confidentiality or both for all traffic between end systems
- When the gateway-to-gateway tunnel is ESP, it also provides a limited form of traffic confidentiality.
- Individual hosts can implement any additional IPSec services required for given applications or given users by means of end-to-end SAs

- Provides support for a remote host that uses the Internet to reach an organization's firewall and then to gain access to some server or workstation behind the firewall
- Only tunnel mode is required between the remote host and the firewall. As in Case 1, one or two SAs may be used between the remote host and the local host

Key Management

- IPSEC handles key generation & distribution
- typically needs 2 pairs of keys
 - transmit and receive pair for both AH & ESP
- manual key management (mandatory)
 - system administrator manually configures every system
- automated key management (mandatory)
 - automated system enables the on-demand creation of keys for SAs and facilitates the use of keys in a large distributed system with an evolving configuration
- has Oakley & ISAKMP elements
 - see next

Oakley

- a key exchange protocol
- based on Diffie-Hellman key exchange
- adds features to address weaknesses
 - cookies, groups (global params), nonces, DH key exchange with authentication
- can use arithmetic in prime fields or elliptic curve fields

ISAKMP

- Internet Security Association and Key Management Protocol
- provides framework for key management
- defines procedures and packet formats to establish, negotiate, modify & delete SAs
- independent of key exchange protocol, encryption alg & authentication method

Group Domain of Interpretation (GDOI)

- it is a protocol for group key management
- it is run between a group member and a "group controller" (key server) and establishes a security association among two or more group members

- IPSec security framework
- AH
- ESP
- key management & Oakley/ISAKMP