

TOPOLOGICAL PROPERTIES OF SPACES OF IDEALS OF THE MINIMAL TENSOR PRODUCT

ALDO J. LAZAR

ABSTRACT. One shows that for two C^* -algebras A_1 and A_2 any continuous function on $\text{Prim}(A_1) \times \text{Prim}(A_2)$ can be continuously extended to $\text{Prim}(A_1 \otimes_{\min} A_2)$ provided it takes its values in a T_1 topological space. This generalizes [5, Corollary 3.4]. A new proof is given for a result of Archbold [2] about the space of minimal primal ideals of $A_1 \otimes_{\min} A_2$. To obtain these two results one makes use of the topological properties of the space of prime ideals of the tensor product.

1. INTRODUCTION AND PRELIMINARIES

The prime ideal space of $A_1 \otimes A_2$, the minimal tensor product of two C^* -algebras A_1 and A_2 , has some interesting topological properties in relation with the prime ideal spaces of the factors: there is a homeomorphism of $\text{Prime}(A_1) \times \text{Prime}(A_2)$ onto a dense subset of $\text{Prime}(A_1 \otimes A_2)$ and a continuous map of the latter space onto the first which, with the obvious identification, is a retract onto $\text{Prime}(A_1) \times \text{Prime}(A_2)$. It turns out that these maps can be useful in getting information on the structure of $A_1 \otimes A_2$. Usually one employs the primitive ideal space to this end but since we do not know if a retraction as above exists in the case of $\text{Prim}(A_1 \otimes A_2)$, the primitive ideal space of $A_1 \otimes A_2$, we have to use the prime ideal space instead.

By identifying the commutant of $A_1 \otimes \mathbf{1}$ in the multiplier algebra of $A_1 \otimes A_2$ Brown showed in [5, Corollary 3.4] that any bounded complex-valued continuous function on $\text{Prim}(A_1) \times \text{Prim}(A_2)$ has a continuous extension to $\text{Prim}(A_1 \otimes A_2)$. The above mentioned retraction together with a device created by Kirchberg in [8] which completes a topological space with all its closed prime subsets allow us to find such an extension for every continuous function whose range is a T_1 topological space.

Date: June 16, 2009.

1991 *Mathematics Subject Classification.* 46L06.

Key words and phrases. closed two sided ideal, prime ideal, minimal primal ideal, minimal tensor product.

Kaniuth proved in [7] that if $A_1 \otimes A_2$ has the property (F) of Tomiyama then the minimal primal space (see below for the definition) of $A_1 \otimes A_2$ is canonically homeomorphic to $\text{Min-Primal}(A_1) \times \text{Min-Primal}(A_2)$. Following that, Archbold proved in [2] that the same conclusion is valid in a more general situation than the presence of the property (F). We give here a proof of this result of Archbold by using topological methods.

For a topological space X we denote by $\mathcal{F}(X)$ the collection of all its closed subsets. We endow $\mathcal{F}(X)$ with the topology generated by all the families $\{F \in \mathcal{F}(X) \mid F \cap U \neq \emptyset\}$ where U is an open subset of X . If X is a T_0 space then the map $x \rightarrow \overline{\{x\}}$ is a homeomorphism of X into $\mathcal{F}(X)$. A subset L of X is a limit set if there exists a net in X that converges to all the points of L ; by [6, Lemme 9] this is the same as saying that each finite collection of open subsets that intersect L has a non void intersection. By Zorn's lemma every limit set is contained in a maximal (closed) limit set. The family of all maximal limit sets of X is denoted $\mathcal{ML}(X)$ and will be considered with its relative topology inherited from $\mathcal{F}(X)$. A non void closed subset F of X is called prime if it is not the union of two closed subsets each different from F . Obviously, for each $x \in X$, $\overline{\{x\}}$ is prime. A space is called point-complete if each closed prime subset of it is the closure of a singleton. Following [8] we shall denote by X^c the family of all closed prime subsets of a T_0 topological space X endowed with the relative topology as a subfamily of $\mathcal{F}(X)$ and we shall call it the point-complete envelope of X . It is indeed a point-complete T_0 space. The base space X will be identified with a subset of X^c .

Given a C^* -algebra A , an ideal of A will always be a closed two sided ideal. We denote by $\text{Id}(A)$ and $\text{Id}'(A) := \text{Id}(A) \setminus \{A\}$. The topology of the space of primitive ideals, $\text{Prim}(A)$, is the usual hull-kernel topology and that of $\text{Id}(A)$ is that one acquires by pulling the topology of $\mathcal{F}(\text{Prim}(A))$ when one associates to each closed subset of $\text{Prim}(A)$ its kernel. The relative topology of $\text{Prime}(A)$ is also the hull-kernel topology and from here on by the hull of the ideal I , denoted $\text{hull } I$, we shall always mean the hull of I in $\text{Prime}(A)$. Clearly $\text{Prime}(A)$ is $\text{Prim}(A)^c$. An ideal I of A is called primal, cf. [3, Definition 3.1], if for every finite family of $\text{Id}(A)$ with at least two members and zero product, I contains one ideal of the family. An ideal is primal if and only if its hull is a closed limit set, see [1, Proposition 3.2]. There

the hull is taken in the primitive ideal space but the same proof works for prime ideals as well. Any primal ideal contains a minimal primal ideal (Zorn's lemma) and there is a one to one correspondence between the family of all minimal primal ideals, $\text{Min-Primal}(A)$, and $\mathcal{ML}(\text{Prime}(A))$.

Let now A_1 and A_2 be C^* -algebras. For I_j an ideal of A_j we denote by q_{I_j} the quotient map of A_j onto A_j/I_j . One defines the maps $\Phi, \Delta : \text{Id}(A_1) \times \text{Id}(A_2) \rightarrow \text{Id}(A_1 \otimes A_2)$ by

$$\Phi(I_1, I_2) := \ker(q_{I_1} \otimes q_{I_2}), \quad \Delta(I_1, I_2) := I_1 \otimes A_2 + A_1 \otimes I_2.$$

Then Φ is a homeomorphism of $\text{Id}'(A_1) \times \text{Id}'(A_2)$ onto a dense subset of $\text{Id}'(A_1 \otimes A_2)$, see [9, Theorem 6]. Its restriction to $\text{Prime}(A_1) \times \text{Prime}(A_2)$ maps it homeomorphically onto a dense subset of $\text{Prime}(A_1 \otimes A_2)$, see [4, Lemma 2.13(v)] and [9, Corollary 8]. For I an ideal of $A_1 \otimes A_2$ one defines

$$I_{A_1} := \{a_1 \in A_1 \mid a_1 \otimes A_2 \subset I\}, \quad I_{A_2} := \{a_2 \in A_2 \mid A_1 \otimes a_2 \subset I\}$$

and $\Psi(I) := (I_{A_1}, I_{A_2})$. Then $\Psi : \text{Id}(A_1 \otimes A_2) \rightarrow \text{Id}(A_1) \times \text{Id}(A_2)$ is continuous and $\Psi \circ \Phi$ restricted to $\text{Id}'(A_1) \times \text{Id}'(A_2)$ is the identity map, see [9, proof of Theorem 6]. By this and [4, Lemma 2.13] Ψ maps $\text{Prime}(A_1 \otimes A_2)$ onto $\text{Prime}(A_1) \times \text{Prime}(A_2)$.

2. EXTENSIONS OF CONTINUOUS FUNCTIONS

We begin with a simple lemma on extensions of continuous functions from a topological space to its point-complete envelope.

Lemma 1. *Let X be a T_0 topological space and f a continuous function from X into a T_1 space Y . Then f has a (unique) continuous extension from X^c to Y .*

Proof. The function f is constant on any prime closed subset of X . Indeed, if S is such a subset and f assumes two different values $y_1 \neq y_2$ on S then we choose open neighbourhoods V_1, V_2 of y_1, y_2 respectively such that $y_1 \notin V_2$ and $y_2 \notin V_1$. Set now $S_1 := S \cap f^{-1}(Y \setminus V_1)$ and $S_2 := S \cap f^{-1}(Y \setminus V_2)$ and $\{S_1, S_2\}$ is a non-trivial decomposition of S .

We define now $\tilde{f} : X^c \rightarrow Y$ by $\tilde{f}(S) := f(x)$ for $x \in S$. Then \tilde{f} is well defined and it is an extension of f . For U an open subset of Y we have

$$\{S \in X^c \mid \tilde{f}(S) \in U\} = \{S \in X^c \mid S \cap f^{-1}(U) \neq \emptyset\}$$

and the continuity of \tilde{f} is established. \square

We come now to the generalization of [5, Corollary 3.4]. There the functions were considered on the spectra of the algebras; we prefer to work with the spaces of primitive ideals but, of course, there is no difficulty in obtaining a version of the following result in terms of spectra.

Theorem 2. *Let A_1 and A_2 be C^* -algebras and $\Phi : \text{Id}'(A_1) \times \text{Id}'(A_2) \rightarrow \text{Id}'(A_1 \otimes A_2)$ be the canonical homeomorphism. Then for every T_1 topological space Y and any continuous function $f : (\text{Prim}(A_1) \times \text{Prim}(A_2)) \rightarrow Y$, the function $f \circ \Phi^{-1} : \Phi(\text{Prim}(A_1) \times \text{Prim}(A_2)) \rightarrow Y$ has a (unique) continuous extension from $\text{Prim}(A_1 \otimes A_2)$ to Y .*

Proof. Lemma 1 yields a continuous extension $\tilde{f} : (\text{Prim}(A_1) \times \text{Prim}(A_2))^c \rightarrow Y$ of f . By [8, Proposition 7.9] there is a homeomorphism ν from $\text{Prim}(A_1)^c \times \text{Prim}(A_2)^c = \text{Prime}(A_1) \times \text{Prime}(A_2)$ onto $(\text{Prim}(A_1) \times \text{Prim}(A_2))^c$ which is the identity on the copies of $\text{Prim}(A_1) \times \text{Prim}(A_2)$ contained in these two spaces. Now, with $\Psi : \text{Id}'(A_1 \otimes A_2) \rightarrow \text{Id}'(A_1) \times \text{Id}'(A_2)$ defined as in Section 1, the function $\tilde{f} \circ \nu \circ \Psi : \text{Prime}(A_1 \otimes A_2) \rightarrow Y$ is continuous. The extension \hat{f} which we need is the restriction of $\tilde{f} \circ \nu \circ \Psi$ to $\text{Prim}(A_1 \otimes A_2)$. Indeed, if $(P_1, P_2) \in \text{Prim}(A_1) \times \text{Prim}(A_2)$ then $\hat{f}(\Phi(P_1, P_2)) = f(\nu(P_1, P_2)) = f(P_1, P_2)$ since $\Psi(\Phi(P_1, P_2)) = (P_1, P_2)$.

□

3. MINIMAL PRIMAL IDEALS

In this section we present our proof for Archbold's result [2] on minimal primal ideals for tensor products. The first step is a topological lemma.

Lemma 3. *Let X_1 , X_2 , and Y be topological spaces and ϕ a homeomorphism of $X_1 \times X_2$ onto a dense subset Z of Y . Suppose there is a continuous map $\psi : Y \rightarrow X_1 \times X_2$ such that $\psi \circ \phi$ is the identity map of $X_1 \times X_2$ and for each $(M_1, M_2) \in \mathcal{ML}(X_1) \times \mathcal{ML}(X_2)$, $\psi^{-1}(M_1 \times M_2)$ is the closure of $\phi(M_1 \times M_2)$. Then $(M_1, M_2) \rightarrow \psi^{-1}(M_1 \times M_2)$ is a homeomorphism, Θ say, of $\mathcal{ML}(X_1) \times \mathcal{ML}(X_2)$ onto $\mathcal{ML}(Y)$.*

Proof. Obviously Θ is a one to one map.

Let $(M_1, M_2) \in \mathcal{ML}(X_1) \times \mathcal{ML}(X_2)$. It is easily seen that $M_1 \times M_2$ is a closed limit set of $X_1 \times X_2$. Thus there exists a net in Z that converges to all the points

of $M := \overline{\phi(M_1 \times M_2)} = \psi^{-1}(M_1 \times M_2)$. Suppose now that $\{y\} \cup M$ is a limit set of Y . Z is dense in Y hence there exists a net $\{s_\alpha\}$ in $X_1 \times X_2$ such that $\{\phi(s_\alpha)\}$ converges to all the points of $\{y\} \cup M$. Then $\{s_\alpha\}$ converges to all the points of $\psi(y) \cup \psi(M) = \psi(y) \cup (M_1 \times M_2)$. By using the canonical projections of $X_1 \times X_2$ onto the factors we infer from the maximality of the limit sets M_1 and M_2 that $\psi(y) \in M_1 \times M_2$ hence $y \in \psi^{-1}(M_1 \times M_2)$. We have shown that the map Θ takes its values in $\mathcal{ML}(Y)$.

Let now L be a limit set in Y . As above, there is a net in Z that converges to all the points of L hence $\psi(L)$ is a limit set in $X_1 \times X_2$. Another use of the canonical projections of the cartesian product shows that there exist maximal limit sets M_1 , M_2 in X_1 , X_2 , respectively, such that $\psi(L) \subset M_1 \times M_2$. Thus $L \subset \psi^{-1}(M_1 \times M_2)$. We have shown that each maximal limit set of Y is in the image of Θ .

If U is an open subset of Y then

$$\begin{aligned} & \{(M_1, M_2) \in \mathcal{ML}(X_1) \times \mathcal{ML}(X_2) \mid \Theta(M_1, M_2) \cap U \neq \emptyset\} \\ &= \{(M_1, M_2) \in \mathcal{ML}(X_1) \times \mathcal{ML}(X_2) \mid \overline{\phi(M_1 \times M_2)} \cap U \neq \emptyset\} \\ &= \{(M_1, M_2) \in \mathcal{ML}(X_1) \times \mathcal{ML}(X_2) \mid \phi(M_1 \times M_2) \cap (U \cap Z) \neq \emptyset\} \\ &= \{(M_1, M_2) \in \mathcal{ML}(X_1) \times \mathcal{ML}(X_2) \mid (M_1 \times M_2) \cap \phi^{-1}(U \cap Z) \neq \emptyset\}. \end{aligned}$$

There exist open sets $\{V_\alpha^k\}$, $k = 1, 2$, such that $\phi^{-1}(U \cap Z) = \cup_\alpha (V_\alpha^1 \times V_\alpha^2)$. Thus

$$\begin{aligned} & \{(M_1, M_2) \in \mathcal{ML}(X_1) \times \mathcal{ML}(X_2) \mid \Theta(M_1, M_2) \cap U \neq \emptyset\} \\ &= \{(M_1, M_2) \in \mathcal{ML}(X_1) \times \mathcal{ML}(X_2) \mid (M_1 \times M_2) \cap (\cup_\alpha (V_\alpha^1 \times V_\alpha^2)) \neq \emptyset\} \\ &= \{(M_1, M_2) \in \mathcal{ML}(X_1) \times \mathcal{ML}(X_2) \mid \cup_\alpha [(M_1 \times M_2) \cap (V_\alpha^1 \times V_\alpha^2)] \neq \emptyset\} \\ &= \cup_\alpha [\{M_1 \in \mathcal{ML}(X_1) \mid M_1 \cap V_\alpha^1 \neq \emptyset\} \times \{M_2 \in \mathcal{ML}(X_2) \mid M_2 \cap V_\alpha^2 \neq \emptyset\}] \end{aligned}$$

and the latter is an open set in $\mathcal{ML}(X_1) \times \mathcal{ML}(X_2)$. We conclude that Θ is continuous.

Let now V_k be open in X_k , $k = 1, 2$; there exists an open set W of Y such that $\phi(V_1 \times V_2) = Z \cap W$. We have

$$\begin{aligned} & \Theta(\{(M_1, M_2) \in \mathcal{ML}(X_1) \times \mathcal{ML}(X_2) \mid M_1 \cap V_1 \neq \emptyset, M_2 \cap V_2 \neq \emptyset\}) \\ &= \{\Theta(M_1, M_2) \in \mathcal{ML}(X_1 \times X_2) \mid \phi(M_1 \times M_2) \cap \phi(V_1 \times V_2) \neq \emptyset\} \\ &= \{\Theta(M_1, M_2) \in \mathcal{ML}(X_1 \times X_2) \mid \overline{\phi(M_1 \times M_2)} \cap W \neq \emptyset\} \end{aligned}$$

and this is an open subset of $\mathcal{ML}(X_1 \times X_2)$. Thus we obtained that Θ is open and this concludes the proof.

□

Lemma 4. *Let A_1 and A_2 be C^* -algebras and I_1, I_2 ideals in A_1, A_2 , respectively. Then $\text{hull}\Delta(I_1, I_2) = \Psi^{-1}(\text{hull}I_1 \times \text{hull}I_2)$ and $\text{hull}\Phi(I_1, I_2) = \overline{\Phi(\text{hull}I_1 \times \text{hull}I_2)}$.*

Proof. Suppose $P \in \text{hull}\Delta(I_1, I_2)$; then $\Psi(P) = (P_{A_1}, P_{A_2}) \in \text{Prime}(A_1) \times \text{Prime}(A_2)$ and $P_{A_1} \supseteq I_1, P_{A_2} \supseteq I_2$. Thus $P \in \Psi^{-1}(\text{hull}I_1 \times \text{hull}I_2)$. Conversely, if $P \in \text{Prime}(A_1 \otimes A_2)$ and $\psi(P) \in \text{hull}I_1 \times \text{hull}I_2$ then $P \supseteq \Delta(P_{A_1}, P_{A_2}) \supseteq \Delta(I_1, I_2)$ and we got the reverse inclusion.

The second equality is [9, Corollary 3].

□

The following result is an improvement obtained by Archbold of [7, Theorem 1.1].

Theorem 5 (Theorem 4.1 of [2]). *Let A_1 and A_2 be C^* -algebras. If $\Phi(I_1, I_2) = \Delta(I_1, I_2)$ for all $(I_1, I_2) \in \text{Min-Primal}(A_1) \times \text{Min-Primal}(A_2)$ then Φ is a homeomorphism of $\text{Min-Primal}(A_1) \times \text{Min-Primal}(A_2)$ onto $\text{Min-Primal}(A_1 \otimes A_2)$.*

Proof. We shall exploit the fact that for a C^* -algebra A , the map $\text{hull}(I) \rightarrow I$ is a homeomorphism of $\mathcal{F}(\text{Prime}(A))$ onto $\text{Id}(A)$ that maps $\mathcal{ML}(\text{Prime}(A))$ onto $\text{Min-Primal}(A)$. Thus the conclusion will be obtained once we show that $(M_1, M_2) \rightarrow \text{hull}\Phi(\ker M_1, \ker M_2)$ is a homeomorphism of $\mathcal{ML}(\text{Prime}(A_1)) \times \mathcal{ML}(\text{Prime}(A_2))$ onto $\mathcal{ML}(\text{Prime}(A_1 \otimes A_2))$.

By Lemma 4, the hypothesis on $A_1 \otimes A_2$ is $\overline{\Phi(M_1 \times M_2)} = \Psi^{-1}(M_1 \times M_2)$. Thus the maps $\Phi : \text{Prime}(A_1) \times \text{Prime}(A_2) \rightarrow \text{Prime}(A_1 \otimes A_2)$ and $\Psi : \text{Prime}(A_1 \otimes A_2) \rightarrow \text{Prime}(A_1) \times \text{Prime}(A_2)$ satisfy the conditions of Lemma 3 which yields the desired homeomorphism.

□

It is remarked in [2, p. 142] that there is no known example of C^* -algebras A_1, A_2 and minimal primal ideals I_1, I_2 of these algebras such that $\Phi(I_1, I_2) \neq \Delta(I_1, I_2)$. By contrast, one constructs easily an example of topological spaces X_1, X_2 , and Y , a homeomorphism ϕ of $X_1 \times X_2$ onto a dense subset of Y , a continuous map

$\psi : Y \rightarrow X_1 \times X_2$ such that $\psi \circ \phi$ is the identity map of $X_1 \times X_2$ and maximal limit sets $M_1 \subset X_1$, $M_2 \subset X_2$ such that $\psi^{-1}(M_1 \times M_2) \neq \overline{\phi(M_1 \times M_2)}$.

Example 6. Let $X_1 = X_2 := [0, 1]$ with the usual topology and

$$Y := ([0, 1] \times [0, 1]) \cup \{y\}$$

where y is a point not in the square. A base for the topology of Y consists of the topology of the square together with the family of all the sets $(U \setminus \{v\}) \cup \{y\}$ where $v := (1, 1)$ and U runs through all the open neighbourhoods of v . Let ϕ be the identity map of the square and ψ the map that is the identity on the square and takes y to v . For $M_1 = M_2 := \{1\}$ we have $\overline{M_1 \times M_2} = \{v\}$ but $\psi^{-1}(M_1 \times M_2) = \{v, y\}$.

REFERENCES

1. R. J. Archbold, *Topologies for primal ideals*, J. London Math. Soc. (2) **36** (1987), 524–542.
2. R. J. Archbold, *Continuous bundles of C^* -algebras and tensor products*, Quart. J. Math. Oxford **50** (1999), 131–146.
3. R. J. Archbold and C. J. K. Batty, *On factorial states of operator algebras, III*, J. Operator Theory **15** (1986), 53–81.
4. E. Blanchard and E. Kirchberg, *Non-simple purely infinite C^* -algebras: the Hausdorff case*, J. Funct. Anal. **207** (2004), 461–513.
5. L. G. Brown, *Stable isomorphism of hereditary subalgebras of C^* -algebras*, Pacific J. Math. **71** (1977), 335–348.
6. J. Dixmier, *Sur les espaces localement quasi-compacts*, Canadian J. Math. **20** (1968), 1093–1100.
7. E. Kaniuth, *Minimal primal ideal spaces and norms of inner derivations of tensor products of C^* -algebras*, Math. Proc. Camb. Phil. Soc. **119** (1996), 297–308.
8. E. Kirchberg, *Dini functions on spectral spaces*, SGFB487 preprint, nr. 321, University of Münster, Münster 2004.
9. A. J. Lazar, *The space of ideals in the minimal tensor product of C^* -algebras*, to appear.

SCHOOL OF MATHEMATICAL SCIENCES, TEL AVIV UNIVERSITY, TEL AVIV 69778, ISRAEL
E-mail address: aldo@post.tau.ac.il