

Oliver Thomaschewski

Lisa-Marlen Wiegandt

21.11.2022

Agenda

- 1 Definition Data Augmentation
- **2** Gründe für Data Augmentation
- **3** Challenges
- 4 Einfache Transformationen
- 5 Normalisierung von Bilddateien
- **6** Fortgeschrittenere Transformationen
- **7** Online vs Offline Augmentierung
- 8 Bewertung von Daten Augmentierung

1. Definition von Data Augmentation

Was ist Data Augmentation?

- Zu deutsch: Erweitern des Datensatzes
- Generieren neuer Daten basierend auf einem bestehenden Datensatz
 - Größere Datenmenge zum Trainieren
 - Erhöhen der Diversität im Datensatz

2. Warum sollte man Daten augmentieren?

Vereinfachtes Beispeil: Katze oder Hund?

Klassifizierung: Katze

Klassifizierung: Hund

Vereinfachtes Beispeil: Katze oder Hund?

Klassifizierung: Katze

Wie würde ohne Augmentierung die Katze eingeordnet werden?

Klassifizierung: Hund

Warum braucht man Data Augmentation?

- Verbeserung der Genauigkeit
- Bessere Generalisierung
- Verringerung der Kosten für Datensammlung und Daten Labeling
- Vermeidung Datenschutzproblemen
- Vermeidung Overfitting

https://snapstack.cz/data-augmentation-advantages-challenges-and-instances/ (14.11.22)

3. Challenges

Challenges

- Brauchbare Augmentation
- Untersuchen des Output auf Tauglichkeit
- Vervielfältigung von Biases

https://snapstack.cz/data-augmentation-advantages-challenges-and-instances/ (14.11.22)

Challenges - brauchbare Augmentierung

4. Einfache Transformationen

Einfache Transformationen

torchvision.transform

 Auswahl der Transformationswerte aus einem Bereich

import torchvision.transforms as T

torchvision.transforms.functional

Nutzen von festen Werten für Transformation

import torchvision.transforms.functional as TF

Einfache Transformationen - Beispiele

- Graustufen
- Spiegeln
- Rotation
- Ausschnitte/Zuschnitte
- Unschärfe

https://towardsdatascience.com/a-comprehensive-guide-to-image-augmentation-using-pytorch-fb162f2444be (14.11.2022)

5. Normalisierung von Bilddateien

Normalisierung - Bilddateien

- Skalierung der Pixel-Werte in einem festen Bereich
- Verbesserter und schnellerer Lernprozess
- Senkung der Gefahr von verschwindenden oder explodierenden Gradienten

Normalisierung – nach Mittelwert und Standardabweichung

- Berechnung Mittelwertes und Standardabweichung des Datensatzes
- Umwandlung des Bilds in einem Tensor
- Aufrufen der normalize Funktion mit berechneten Mittelwert und Standardabweichung
- Normalisierung der Daten immer empfehlenswert

6. Fortgeschrittene Transformationen

Fortgeschrittene Transformationen

Neural Style Transfer

Fortgeschrittene Transformationen

Generative Adversarial Networks

7. Online vs Offline Augmentierung

Online vs Offline Augmentation

Online Augmentation

- Verarbeitet in real-time
- Training mit verschiedenen Bildern/Daten je Epoche
- Speicherplatz nicht betroffen

Offline Augmentation

- Vor der Verarbeitung/dem Training des Models
- Häufige Verwendung bei kleinem Datensatz
- Speicherplatz beachten

https://www.analyticsvidhya.com/blog/2021/06/offline-data-augmentation-for-multiple-images/ (14.11.2022)

8. Bewertung von Augmentierungen

Bewertung - Baseline Model

Trainingsdaten ohne Augmentierung

https://static.thenounprojec t.com/png/911654-200.png (20.11.22)

Vergleich der Genauigkeit mittels Baseline Models

Trainingsdaten mit Augmentierung

Bewertung - Baseline Model

Case 1

Ohne Augmentierung – geringste Varianz

Case 2

 Anwendung einfacher Transformationen (Skalierung, horizontale und vertikale Spiegelungen)

Case 3

 Weitere Transformationen, wie in Case 2 und zufällige Rotationen

Case 4

Horizontale und vertikale Verschiebungen

Training Loss		Training Accuracy	Validation Loss	Validation Accuracy
Case 1	0.049562	0.888494	0.124044	0.824143
Case 2	0.074993	0.883136	0.092861	0.856584
Case 3	0.129040	0.794090	0.124205	0.835077
Case 4	0.124481	0.777112	0.112502	0.828328
Case 5	0.129030	0.809063	0.194106	0.789983

https://towardsdatascience.com/balancing-the-regularization-effect-of-data-augmentation-eb551be48374#:~:text=The%20Effect%20of%20Data%20Augmentation&text=But%20another%20important%20effect%20is,version%20of%20the%20original%20data. (20.11.22)

Case 5

 Zufällige Vergrößerungen und Veränderungen zB des Kontrastes

Vielen Dank.

