

Trigonometry Difficulty: Medium

Question Paper 1

Level	IGCSE
Subject	Maths (0580/0980)
Exam Board	CIE
Topic	Trigonometry
Paper	Paper 4
Difficulty	Medium
Booklet	Question Paper 1

Time allowed: 102 minutes

Score: /89

Percentage: /100

Grade Boundaries:

CIE IGCSE Maths (0580)

A*	Α	В	С	D
>83%	67%	51%	41%	31%

CIE IGCSE Maths (0980)

9	8	7	6	5	4
>95%	87%	80%	69%	58%	46%

The diagram shows a pyramid on a rectangular base ABCD. AC and BD intersect at M and P is vertically above M. AB = 8 cm, BC = 6 cm and PM = 9 cm.

(a) N is the midpoint of BC.

Calculate angle *PNM*. [2]

(b) Show that BM = 5 cm. [1]

(c)	Calculate the angle between the edge PB and the base $ABCD$.	[2]
(d)	A point X is on PC so that $PX = 7.5$ cm.	
	Calculate BX.	[6]

ABC is a triangular field on horizontal ground. There is a vertical pole BQ at B.

 $AB = 525 \text{ m}, BC = 872 \text{ m} \text{ and angle } ABC = 104^{\circ}.$

- (a) Use the cosine rule to calculate the distance AC.
- (b) The angle of elevation of Q from C is 1.0° .
 - Showing all your working, calculate the angle of elevation of Q from A.

[4]

(c)	(i)	Calculate the area of the field.	m ² [2]
	(ii)	The field is drawn on a map with the scale 1:20 000.	
		Calculate the area of the field on the map in cm ² .	cm ² [2]

(a) The diagram shows a regular hexagon *ABCDEF* of side 10cm.

(i) Show that angle $BAF = 120^{\circ}$.

[2]

(ii) The vertices of a rectangle *PQRS* touch the sides *FA*, *AB*, *CD* and *DE*.

PS is parallel to FE and AP = x cm.

Use trigonometry to find the length of PQ in terms of x.

[3]

(iii) PF = (10 - x) cm.

Show that PS = (20 - x)cm.

[3]

(b)

The diagram shows the vertices of a square KLMN touching the sides of the same hexagon ABCDEF, with KN parallel to FE.

Use your results from part (a)(ii) and part (a)(iii) to find the length of a side of the square.

The diagram shows the position of a port, A, and a lighthouse, L.

The circle, centre L and radius 40 km, shows the region where the light from the lighthouse can be seen.

The straight line, ABCD, represents the course taken by a ship after leaving the port.

When the ship reaches position B it is due west of the lighthouse.

$$AL = 92.1 \,\mathrm{km}$$
, $AB = 61.1 \,\mathrm{km}$ and $BL = 40 \,\mathrm{km}$.

(a) Use the cosine rule to show that angle $ABL = 130.1^{\circ}$, correct to 1 decimal place. [4]

(b) Calculate the bearing of the lighthouse, L, from the port, A.

(c)	The ship sails at a speed of 28 km/h.	
. /	Calculate the length of time for which the light from the lighthouse can be seen from the ship. Give your answer correct to the nearest minute.	[5]

(a)

A, B and C are points on horizontal ground.

BT is a vertical pole.

AT = 60 m, AB = 50 m, BC = 70 m and angle $ABC = 130^{\circ}$.

(i) Calculate the angle of elevation of *T* from *C*.

[5]

(ii) Calculate the length AC.

(iii) Calculate the area of triangle ABC.

[2]

A cuboid has length 45 cm, width 22 cm and height 12 cm.

Calculate the length of the straight line *XY*.

The diagram shows a tent ABCD.

The front of the tent is an isosceles triangle ABC, with AB = AC. The sides of the tent are congruent triangles ABD and ACD.

(a) BC = 1.2 m and angle $ABC = 68^{\circ}$.

Find
$$AC$$
.

(b)
$$CD = 2.3 \text{ m} \text{ and } AD = 1.9 \text{ m}.$$

(c)	The floor of the tent, triangle BCD , is also an isosceles triangle with $BD = CD$.	
	Calculate the area of the floor of the tent.	[4]
(4) 1	When the tent is an hanizantal around. A is a ventical distance 1.25 m shave the around	
(a) \	When the tent is on horizontal ground, A is a vertical distance 1.25 m above the ground.	
	Calculate the angle between AD and the ground.	[3]

Question 7

(a) Andrei stands on level horizontal ground, 294 m from the foot of a vertical tower which is 55m high.

(i)	Calculate the angle of elevation of the top of the tower.	[2]
(ii)	Andrei walks a distance <i>x</i> metres directly towards the tower. The angle of elevation of the top of the tower is now 24.8°.	
	Calculate the value of x .	[4]

(b) The diagram shows a pyramid with a horizontal rectangular base.

The rectangular base has length $4.8\,\mathrm{m}$ and width $3\,\mathrm{m}$ and the height of the pyramid is $4\,\mathrm{m}$.

Calculate

(i) y, the length of a sloping edge of the pyramid,

(ii) the angle between a sloping edge and the rectangular base of the pyramid. [2]

Trigonometry Difficulty: Medium

Question Paper 2

Level	IGCSE
Subject	Maths (0580/0980)
Exam Board	CIE
Topic	Trigonometry
Paper	Paper 4
Difficulty	Medium
Booklet	Question Paper 2

Time allowed: 93 minutes

Score: /81

Percentage: /100

Grade Boundaries:

CIE IGCSE Maths (0580)

A*	Α	В	С	D
>83%	67%	51%	41%	31%

CIE IGCSE Maths (0980)

9	8	7	6	5	4	
>95%	87%	80%	69%	58%	46%	

A ship sails from port P to port Q.

Q is 74 km from P on a bearing of 142°.

A lighthouse, L, is 58 km from P on a bearing of 110°.

(a) Show that the distance LQ is 39.5km correct to 1 decimal place.

(b) Use the sine rule to calculate angle *PQL*.

[3]

[5]

(c) Find the bearing of	
(i) $P \operatorname{from} Q$,	[2]
(ii) L from Q .	[1]
(d) The ship takes 2 hours and 15 minutes to sail the 74 km from <i>P</i> to <i>Q</i> . Calculate the average speed in knots. [1 knot = 1.85 km/h]	[3]
(e) Calculate the shortest distance from the lighthouse to the path of the ship.	[3]

The diagram shows the cross section, ABCD, of a ramp.

(a) Calculate angle *DBC*. [2]

(b) (i) Show that BD is exactly 3 m. [2]

(ii) Use the cosine rule to calculate angle *ABD*. [4]

(c) The ramp is a prism of width 4 m.

Calculate the volume of this prism.

A field, ABCD, is in the shape of a quadrilateral.

A footpath crosses the field from *A* to *C*.

(a) Use the sine rule to calculate the α bistance AC and show that it rounds to 119.9 m, to 1 decimal place.

(b) Calculate the length of *BC*.

[4]

[3]

[2]

(c) Calculate the area of triangle <i>ACD</i> .	[2]	
(d) The field is for sale at \$4.50 per square metre.		
Calculate the cost of the field.	[3]	

M

(a) $\begin{array}{c} L \\ 15\,\mathrm{cm} \\ \\ \end{array}$ NOT TO SCALE

The diagram shows triangle LMN with LM = 12 cm, LN = 15 cm and MN = 21 cm.

(i) Calculate angle *LMN*.

Show that this rounds to 44.4°, correct to 1 decimal place. [4]

(ii) Calculate the area of triangle *LMN*. [2]

The diagram shows triangle PQR with PQ = 6.4 cm, angle $PQR = 82^{\circ}$ and angle $QPR = 43^{\circ}$.

[4] Calculate the length of PR.

Head to <u>savemyexams.co.uk</u> for more awesome resources

The diagram represents a field in the shape of a quadrilateral *ABCD*. $AB = 32 \,\text{m}$, $BC = 43 \,\text{m}$ and $AC = 64 \,\text{m}$.

(a) (i) Show clearly that angle $CAB = 37.0^{\circ}$ correct to one decimal place.

(ii) Calculate the area of the triangle *ABC*. [2]

[4]

(b) CD = 70 m and angle $DAC = 55^{\circ}$.

Calculate the perimeter of the whole field *ABCD*. [6]

The diagram shows a triangular prism of length 12 cm.

The rectangle ABCD is horizontal and the rectangle DCPQ is vertical.

The cross-section is triangle *PBC* in which angle $BCP = 90^{\circ}$, BC = 4 cm and CP = 3 cm. [3]

(a) (i) Calculate the length of AP.

(ii) Calculate the angle of elevation of P from A.

[2]

(b) (i) Calculate angle PBC. [2] (ii) X is on BP so that angle $BXC = 120^{\circ}$. Calculate the length of XC. [3]

The diagram shows a box ABCDEFGH in the shape of a cuboid measuring 2 m by 1.5 m by 1.7 m.

[4]

(a) Calculate the length of the diagonal *EC*.

(b) Calculate the angle between EC and the base EFGH. [3]

(c) (i) A rod has length 2.9 m, correct to 1 decimal place.

What is the upper bound for the length of the rod? [1]

(ii) Will the rod fit completely in the box?

Give a reason for your answer. [1]

Trigonometry Difficulty: Medium

Question Paper 3

Level	IGCSE
Subject	Maths (0580/0980)
Exam Board	CIE
Topic	Trigonometry
Paper	Paper 4
Difficulty	Medium
Booklet	Question Paper 3

Time allowed: 91 minutes

Score: /79

Percentage: /100

Grade Boundaries:

CIE IGCSE Maths (0580)

A*	Α	В	С	D	
>83%	67%	51%	41%	31%	

CIE IGCSE Maths (0980)

9	8	7	6	5	4
>95%	87%	80%	69%	58%	46%

ABCD is a quadrilateral and BD is a diagonal.

AB = 26 cm, BD = 24 cm, angle $ABD = 40^{\circ}$, angle $CBD = 40^{\circ}$ and angle $CDB = 30^{\circ}$.

(a) Calculate the area of triangle ABD.

[2]

(b) Calculate the length of AD.

[4]

(c) Calculate the length of BC.

[4]

(d) Calculate the shortest distance from the point \mathcal{C} to the line \mathcal{BD} .

[2]

The diagram shows some straight line distances between Auckland (A), Hamilton (H), Tauranga (T) and Rotorua (R).

AT = 180 km, AH = 115 km and HT = 90 km.

(a) Calculate angle *HAT*.

Show that this rounds to 25.0°, correct to 3 significant figures.

[4]

(b) The bearing of H from A is 150°.

Find the bearing of

(i)
$$T \operatorname{from} A$$
, [1]

(ii)
$$A$$
 from T .

(c) Calculate how far T is east of A .	[3]
(d) Angle $THR = 30^{\circ}$ and angle $HRT = 70^{\circ}$.	
Calculate the distance TR.	[3]
(e) On a map the distance representing HT is 4.5cm.	
The scale of the map is $1:n$.	
Calculate the value of n .	[2]

The diagram above shows the net of a pyramid.

The base ABCD is a rectangle 8 cm by 6 cm.

All the sloping edges of the pyramid are of length 7 cm.

M is the mid-point of AB and N is the mid-point of BC.

(a) Calculate the length of

(i)
$$QM$$
,

(b) Calculate the surface area of the pyramid. [2]

(c) P T cm G NOT TO SCALE

The net is made into a pyramid, with P, Q, R and S meeting at P.

The mid-point of CD is G and the mid-point of DA is H.

The diagonals of the rectangle *ABCD* meet at *X*.

- (i) Show that the height, PX, of the pyramid is 4.90 cm, correct to 2 decimal places. [2]
- (ii) Calculate angle *PNX*. [2]
- (iii) Calculate angle *HPN*.
- (iv) Calculate the angle between the edge PA and the base ABCD. [3]
- (v) Write down the vertices of a triangle which is a plane of symmetry of the pyramid. [1]

NOT TO SCALE

The diagram shows a pyramid on a horizontal rectangular base ABCD.

The diagonals of *ABCD* meet at *E*.

P is vertically above E.

AB = 8 cm, BC = 6 cm and PC = 13 cm.

(a) Calculate *PE*, the height of the pyramid.

[3]

(b) Calculate the volume of the pyramid.

[The volume of a pyramid is given by $\frac{1}{3}$ × area of base × height.]

[2]

(c) Calculate angle *PCA*.

[2]

(d) M is the mid-point of AD and N is the mid-point of BC. Calculate angle MPN.

[3]

(e) (i) Calculate angle *PBC*.

[2]

(ii) K lies on PB so that BK = 4 cm. Calculate the length of KC.

[3]

The diagram shows a pyramid on a rectangular base ABCD, with AB = 6 cm and AD = 5 cm. The diagonals AC and BD intersect at F. The vertical height FP = 3 cm.

- (a) How many planes of symmetry does the pyramid have? [1]
- (b) Calculate the volume of the pyramid. [The volume of a pyramid is $\frac{1}{3} \times$ area of base \times height.] [2]
- (c) The mid-point of *BC* is *M*.

 Calculate the angle between *PM* and the base.

 [2]
- (d) Calculate the angle between *PB* and the base. [4]

(e) Calculate the length of *PB*. [2]

Felipe (F) stands 17 metres from a bridge (B) and 32 metres from a tree (T). The points F, B and T are on level ground and angle $BFT \# 40^{\circ}$.

- (a) Calculate
 - (i) the distance BT, [4]
 - [3]

(ii) the angle BTF.

- (b) The bearing of *B* from *F* is 085°. Find the bearing of
 - (i) $T \operatorname{from} F$, [1]
 - (ii) F from T, [1]
 - (iii) B from T. [1]

(c) The top of the tree is 30 metres vertically above T. Calculate the angle of elevation of the top of the tree from F.

Trigonometry Difficulty: Hard

Question Paper 1

Level	IGCSE
Subject	Maths (0580/0980)
Exam Board	CIE
Topic	Trigonometry
Paper	Paper 4
Difficulty	Hard
Booklet	Question Paper 1

Time allowed: 101 minutes

Score: /88

Percentage: /100

Grade Boundaries:

CIE IGCSE Maths (0580)

A*	Α	В	С	D	
>83%	67%	51%	41%	31%	

CIE IGCSE Maths (0980)

9	8	7	6	5	4
>95%	87%	80%	69%	58%	46%

The diagram shows a quadrilateral ABCD.

(a) The length of AC is x cm.

Use the cosine rule in triangle ABC to show that $2x^2 - 17x - 168 = 0$.

[4]

(b) Solve the equation $2x^2 - 17x - 168 = 0$. Show all your working and give your answers correct to 2 decimal places.

[4]

(c) Use the sine rule to calculate the length of CD.

[3]

(d) Calculate the area of the quadrilateral ABCD.

[3]

The diagram shows a field ABCD.

(a) Calculate the area of the field *ABCD*.

[3]

(b) Calculate the perimeter of the field ABCD.

[5]

(c)	Calculate the shortest distance from A to CD.	[2]
(d) <i>I</i>	B is due north of A .	
	Find the bearing of C from B .	[3]

The diagram shows five straight footpaths in a park. AB = 220 m, AC = 180 m and AD = 170 m. Angle $ACB = 90^{\circ}$ and angle $DAC = 33^{\circ}$.

(b) Calculate *CD*. [4]

(c) Calculate the shortest distance from D to AC .	[2]
(d) The bearing of D from A is 047°.	
Calculate the bearing of B from A .	[3]
(e) Calculate the area of the quadrilateral <i>ABCD</i> .	[3]

NOT TO SCALE

The diagram shows a field, ABCD. $AD = 180 \,\mathrm{m}$ and $AC = 240 \,\mathrm{m}$. Angle $ABC = 50^{\circ}$ and angle $ACB = 85^{\circ}$.

(a) Use the sine rule to calculate AB.

[3]

(b) The area of triangle $ACD = 12\ 000 \,\mathrm{m}^2$.

Show that angle $CAD = 33.75^{\circ}$, correct to 2 decimal places.

[3]

(c)	Calculate BD.	[5]
(d)	The bearing of D from A is 030° .	
	Find the bearing of	
	(i) $B \text{ from } A$,	[1]
	(ii) $A \text{ from } B$.	[2]

A plane flies from A to C and then from C to B. $AC = 510 \,\mathrm{km}$ and $CB = 720 \,\mathrm{km}$. The bearing of C from A is 135° and angle $ACB = 40^{\circ}$.

- (a) Find the bearing of
 - (i) B from C,
 - (ii) C from B.
- (b) Calculate AB and show that it rounds to 464.7 km, correct to 1 decimal place. [4]

(c) Calculate angle ABC. [3]

(a)

In the triangle PQR, QR = 7.6 cm and PR = 8.4 cm. Angle $QRP = 62^{\circ}$.

Calculate

$$[4]$$

(ii) the area of triangle PQR.

[2]

(b)

The diagram shows the positions of three small islands G, H and J.

The bearing of H from G is 045°.

The bearing of J from G is 126°.

The bearing of J from H is 164°.

The distance *HJ* is 63 km.

Calculate the distance GJ.

[5]

Head to savemyexams.co.uk for more awesome resources

The diagram shows the positions of two ships, A and B, and a coastguard station, C.

(a) Calculate the distance, *AB*, between the two ships. Show that it rounds to 138km, correct to the nearest kilometre.

[4]

(b) The bearing of the coastguard station C from ship A is 146°.

Calculate the bearing of ship B from ship A.

[4]

At noon, a lighthouse, L, is 46.2km from ship B on the bearing 021°. Ship B sails north west.

Calculate the distance ship B must sail from its position at noon to be at its closest distance to the lighthouse.

Trigonometry Difficulty: Hard

Question Paper 2

Level	IGCSE
Subject	Maths (0580/0980)
Exam Board	CIE
Topic	Trigonometry
Paper	Paper 4
Difficulty	Hard
Booklet	Question Paper 2

Time allowed: 99 minutes

Score: /86

Percentage: /100

Grade Boundaries:

CIE IGCSE Maths (0580)

A*	Α	В	С	D
>83%	67%	51%	41%	31%

CIE IGCSE Maths (0980)

9	8	7	6	5	4
>95%	87%	80%	69%	58%	46%

Show that the area of triangle XYZ is 38.1 cm², correct to 1 decimal place.

(b) NOT TO SCALE x° 8.4 cm

Calculate the value of x. [4]

[2]

(c)

Ship *A* is 180 kilometres from port *P* on a bearing of 063°. Ship *B* is 245 kilometres from *P* on a bearing of 146°.

Calculate AB, the distance between the two ships.

[5]

The diagram shows a quadrilateral ABCD. Angle $BAD = 49^{\circ}$ and angle $ABD = 55^{\circ}$. BD = 80 m, BC = 95 m and CD = 90 m.

(a) Use the sine rule to calculate the length of AD.

[3]

(b) Use the cosine rule to calculate angle BCD.

[4]

[3]

(c) Calculate the area of the quadrilateral ABCD.

(d) The quadrilateral represents a field. Corn seeds are sown across the whole field at a cost of \$3250 per hectare.	
Calculate the cost of the corn seeds used. 1 hectare = $10000 \mathrm{m}^2$	[3]

The diagram shows triangle PQR with PQ = 12 cm and PR = 17 cm. The area of triangle PQR is 97 cm² and angle QPR is acute.

(i) Calculate angle *QPR*. [3]

(ii) The midpoint of PQ is X.

Use the cosine rule to calculate the length of XR. [4]

Calculate the value of a. [4]

(c)
$$\sin x = \cos 40^\circ$$
, $0^\circ \le x \le 180^\circ$

Find the two values of x. [2]

The diagram shows a school playground *ABCD*.

ABCD is a trapezium.

 $AB = 55 \,\mathrm{m}$, $BD = 70 \,\mathrm{m}$, angle $ABD = 40^{\circ}$ and angle $BCD = 32^{\circ}$.

(b) Calculate BC. [4]

	(i) Calculate the area of the playground ABCD.	[3]
(::)	A	
(ii)	An accurate plan of the school playground is to be drawn to a scale of 1:200.	
	Calculate the area of the school playground on the plan. Give your answer in cm ² .	[2]
A fei	nce, BD , divides the playground into two areas.	

(d)

In the diagram, BCD is a straight line and ABDE is a quadrilateral. Angle $BAC = 90^{\circ}$, angle $ABC = 30^{\circ}$ and angle $CAE = 52^{\circ}$. AC = 15.7 cm, CE = 16.5 cm and CD = 23.4 cm.

(b) Use the sine rule to calculate angle AEC. Show that it rounds to 48.57°, correct to 2 decimal places.

[3]

(c)	(i) Show that angle $ECD = 40.6^{\circ}$, correct to 1 decimalplace.	[2]
-----	---	-----

[3]

[4]

[2]

The area of triangle ABC is 130 cm. 2 . AB = 16 cm and BC = 25 cm.

(a) Show clearly that angle $ABC = 40.5^{\circ}$, correct to one decimal place.

(b) Calculate the length of AC.

(c) Calculate the shortest distance from A to BC.

Head to savemyexams.co.uk for more awesome resources

Three buoys K, L and M show the course of a boat race.

MK = 4 km, KL = 9 km and angle $MKL = 108^{\circ}$.

(a) Calculate the distance ML.

[4]

- (b) The bearing of L from K is 125°.
 - (i) Calculate how far L is south of K.

[3]

(ii) Find the three figure bearing of K from M.

[2]

Trigonometry Difficulty: Hard

Question Paper 3

Level	IGCSE
Subject	Maths (0580/0980)
Exam Board	CIE
Topic	Trigonometry
Paper	Paper 4
Difficulty	Hard
Booklet	Question Paper 3

Time allowed: 99 minutes

Score: /86

Percentage: /100

Grade Boundaries:

CIE IGCSE Maths (0580)

A*	Α	В	С	D
>83%	67%	51%	41%	31%

CIE IGCSE Maths (0980)

9	8	7	6	5	4	
>95%	87%	80%	69%	58%	46%	

Head to <u>savemyexams.co.uk</u> for more awesome resources

The diagram shows straight roads connecting the towns A, B, C and D.

AB = 17 km, AC = 12 km and CD = 10 km.

Angle $BAC = 30^{\circ}$ and angle $ADC = 95^{\circ}$.

(a) Calculate angle CAD.

[3]

(b) Calculate the distance BC.

[4]

(c)	The bearing of D from A is 040° .	
	Find the bearing of	
	(i) $B \text{ from } A$,	[1]
	(ii) A from B.	[1]
	(II) A HOHIB.	[1]
(a)	Angle ACB is obtuse.	
(u)	Aligie ACB Isobiuse.	[4]
	Calculate angle BCD.	

The quadrilateral ABCD represents an area of land. There is a straight road from A to C. AB = 79 m, AD = 120 m and CD = 95 m. Angle $BCA = 26^{\circ}$ and angle $CDA = 77^{\circ}$.

(a) Show that the length of the road, AC, is 135 m correct to the nearest metre.

[4]

(b) Calculate the size of the obtuse angle *ABC*. [4]

(c) A straight path is to be built from B to the nearest point on the road AC .	
Calculate the length of this path.	[3]
(d) Houses are to be built on the land in triangle ACD. Each house needs at least 180 m ² of land.	
Calculate the maximum number of houses which can be built. Show all of your working.	[4]

Parvatti has a piece of canvas ABCD in the shape of an irregular quadrilateral.

AB = 3 m, AC = 5 m and angle $BAC = 45^{\circ}$.

(a) (i) Calculate the length of BC and show that it rounds to 3.58 m, correct to 2 decimalplaces.

You must show all your working.

[4]

(ii) Calculate angle BCA.

[3]

- (b) AC = CD and angle $CDA = 52^{\circ}$.
 - (i) Find angle DCA. [1]

(ii) Calculate the area of the canvas. [3]

(c) Parvatti uses the canvas to give some shade.

She attaches corners A and D to the top of vertical poles, AP and DQ, each of height 2 m.

Corners B and C are pegged to the horizontal ground.

AB is a straight line and angle $BPA = 90^{\circ}$.

Calculate angle *PAB*. [2]

(a)

The diagram shows triangle FGH, with FG = 14 cm, GH = 12 cm and FH = 6 cm.

(i) Calculate the size of angle *HFG*.

[4]

(ii) Calculate the area of triangle FGH.

[2]

The diagram shows triangle PQR, with RP = 12 cm, RQ = 18cm and angle $RPQ = 117^{\circ}$.

Calculate the size of angle RQP.

[3]

The scale drawing shows the positions of two towns A and C on a map. On the map, 1 centimetre represents 20 kilometres.

(i) l	Find the distance in kilometres from town A to town C .	[2]
(ii)	Measure and write down the bearing of town \mathcal{C} from town \mathcal{A} .	[1]
(iii)	Town B is 140 km from town C on a bearing of 150°.	
	Mark accurately the position of town B on the scale drawing.	[2]
(iv)	Find the bearing of town C from town B .	[1]
(1)	v) A lake on the map has an area of 0.15 cm.	
	Work out the actual area of the lake.	[2]

(b) A plane leaves town C at 11 57 and flies 1500 km to another town, landing at 14 12.

Calculate the average speed of the plane.

[3]

The diagram shows the distances between three towns P, Q and R.

Calculate angle *PQR*. [4]

R $A ext{km}$ QNOT TO SCALE $A ext{S} ext{km}$ $A ext{S} ext{km}$

The diagram shows five straight roads. PQ = 4.5 km, QR = 4 km and PR = 7 km. Angle $RPS = 40^{\circ}$ and angle $PSR = 85^{\circ}$.

(a) Calculate angle PQR and show that it rounds to 110.7° .

[4]

(b) Calculate the length of the road RS and show that it rounds to 4.52 km.

[3]

(c) Calculate the area of the quadrilateral PQRS. [Use the value of 110.7° for angle PQR and the value of 4.52 km for RS.]

[5]

In the quadrilateral ABCD, AB = 3 cm, AD = 11 cm and DC = 8 cm. The diagonal AC = 5 cm and angle $BAC = 90^{\circ}$.

Calculate

(a) the length of BC, [2]

(b) angle ACD, [4]

(c) the area of the quadrilateral *ABCD*. [3]

Trigonometry Difficulty: Hard

Question Paper 4

Level	IGCSE
Subject	Maths (0580/0980)
Exam Board	CIE
Topic	Trigonometry
Paper	Paper 4
Difficulty	Hard
Booklet	Question Paper 4

Time allowed: 83 minutes

Score: /72

Percentage: /100

Grade Boundaries:

CIE IGCSE Maths (0580)

A*	Α	В	С	D	
>83%	67%	51%	41%	31%	

CIE IGCSE Maths (0980)

9	8	7	6	5	4
>95%	87%	80%	69%	58%	46%

In triangle PQR, angle QPR is acute, PQ = 10 cm and PR = 14 cm.

(a) The area of triangle PQR is 48 cm².

Calculate angle *QPR* and show that it rounds to 43.3°, correct to 1 decimal place. You must show all your working. [3]

(b) Calculate the length of the side QR.

[4]

The diagram shows three straight horizontal roads in a town, connecting points P, A and B.

PB = 250 m, angle $APB = 23^{\circ}$ and angle $BAP = 126^{\circ}$.

(a) Calculate the length of the road AB.

[3]

(b) The bearing of A from P is 303° .

Find the bearing of

(i)
$$B \text{ from } P$$
, [1]

(ii) A from B.

To avoid an island, a ship travels 40 kilometres from A to B and then 60 kilometres from B to C. The bearing of B from A is 080° and angle ABC is 115° .

(a) The ship leaves A at 1155.

It travels at an average speed of 35 km/h.

Calculate, to the nearest minute, the time it arrives at C. [3]

(b) Find the bearing of

(i)
$$A$$
 from B ,

(ii) C from B. [1]

(c) Calculate the straight line distance AC. [4]

(d) Calculate angle BAC. [3]

(e) Calculate how far C is east of A. [3]

The diagram shows the plan of a garden.

(iii) the area of the garden.

The garden is a trapezium with AB = 26 metres, DC = 18 metres and angle $DAB = 80^{\circ}$.

A straight path from B to D has a length of 30 metres.

Use trigonometry, showing all your working, to calculate

(a)

NOT TO SCALE

A, B, C and D lie on a circle.

AC and BD intersect at X.

Angle $ABX = 55^{\circ}$ and angle $AXB = 92^{\circ}$.

BX = 26.8 cm, AX = 40.3 cm and XC = 20.1 cm.

(i) Calculate the area of triangle AXB.

You must show your working. [2]

(ii) Calculate the length of AB.

You must show your working.

[2]

[3]

(iii) Write down the size of angle ACD. Give a reason for your answer.

[1]

(iv) Find the size of angle BDC.

(v) Write down the geometrical word which completes the statement

"Triangle AXB is _____ to triangle DXC."

[1]

(vi) Calculate the length of XD.

You must show your working.

[2]

(b)

In the diagram PQ is parallel to RS.

PS and QR intersect at X.

PX = y cm, QX = (y + 2) cm, RX = (2y - 1) cm and SX = (y + 1) cm.

(i) Show that
$$y^2 - 4y - 2 = 0$$
. [3]

(ii) Solve the equation y - 4y - 2 = 0.

Show all your working and give your answers correct to two decimal places. [4]

(iii) Write down the length of RX. [1]

The diagram shows the positions of four cities in Africa, Windhoek (W), Johannesburg (J), Harari (H) and Lusaka (L).

WL = 1400 km and WH = 1600 km.

Angle $LWH = 13^{\circ}$, angle $HWJ = 36^{\circ}$ and angle $WJH = 95^{\circ}$.

[4]

[4]

[3]

- (d) The bearing of Lusaka from Windhoek is 060°. Calculate the bearing of
 - (i) Harari from Windhoek,

[1]

(ii) Windhoek from Johannesburg.

[1]

(e) On a map the distance between Windhoek and Harari is 8 cm. Calculate the scale of the map in the form 1:n.

[2]

Trigonometry Difficulty: Hard

Question Paper 5

Level	IGCSE
Subject	Maths (0580/0980)
Exam Board	CIE
Topic	Trigonometry
Paper	Paper 4
Difficulty	Hard
Booklet	Question Paper 5

Time allowed: 84 minutes

Score: /73

Percentage: /100

Grade Boundaries:

CIE IGCSE Maths (0580)

A*	Α	В	С	D	
>83%	67%	51%	41%	31%	

CIE IGCSE Maths (0980)

9	8	7	6	5	4	
>95%	87%	80%	69%	58%	46%	

The quadrilateral *PQRS* shows the boundary of a forest. A straight 15 kilometre road goes due East from *P* to *R*.

(a) The bearing of S from P is 030° and PS = 7 km.

(i) Write down the size of angle SPR. [1]

(ii) Calculate the length of RS. [4]

(b) Angle $RPQ = 55^{\circ}$ and QR = 14 km.

(i) Write down the bearing of Q from P. [1]

(ii) Calculate the acute angle *PQR*. [3]

(iii) Calculate the length of PQ. [3]

(c) Calculate the area of the forest, correct to the nearest square kilometre. [4]

(a) During a soccer match a player runs from A to B and then from B to C as shown in the diagram. $AB = 40 \,\text{m}$, $BC = 45 \,\text{m}$ and $AC = 70 \,\text{m}$.

(i) Show by calculation that angle
$$BAC = 37^{\circ}$$
, correct to the nearest degree. [3]

(ii) The bearing of C from A is
$$051^{\circ}$$
. Find the bearing of B from A. [1]

(b) x- and y-axes are shown in the diagram.

$$\overrightarrow{AC} = \begin{pmatrix} p \\ q \end{pmatrix}$$
, where p and q are measured in metres.

(i) Show that
$$p = 54.4$$
.

(ii) Find the value of
$$q$$
. [2]

(c) Another player is standing at D.

$$BC = 45 \text{ m}$$
, angle $BCD = 54^{\circ}$ and angle $DBC = 32^{\circ}$.
Calculate the length of BD .

ABCD is a cyclic quadrilateral. AB = 9.5 cm, BC = 11.1 cm, angle $ABC = 70^{\circ}$ and angle $CAD = 37^{\circ}$.

(a) Calculate the length of AC. [4]

- (b) Explain why angle $ADC = 110^{\circ}$. [1]
- (c) Calculate the length of AD. [4]

- (d) A point E lies on the circle such that triangle ACE is isosceles, with EA = EC. [1]
 - (i) Write down the size of angle AEC.
 - (ii) Calculate the area of triangle ACE. [3]

In quadrilateral ABCD, AB = 77 m, BC = 120 m, CD = 60 m and diagonal AC = 55 m. Angle $CAD = 45^{\circ}$, angle $BAC = x^{\circ}$ and angle $ADC = y^{\circ}$.

(a) Calculate the value of x.

(b) Calculate the value of y. [4]

[4]

- (c) The bearing of D from A is 090°. Find the bearing of
 - (i) A from C, [2]
 - (ii) B from A.

The diagram shows a sketch of the net of a solid tetrahedron (triangular prism). The right-angled triangle ABC is its base.

AC = 8 cm, BC = 6 cm and AB = 10 cm. FC = CE = 5 cm.

(a) (i) Show that
$$BE = \sqrt{61}$$
 cm. [1]

(ii) Write down the length of
$$DB$$
. [1]

(iii) Explain why
$$DA = \sqrt{89}$$
 cm. [2]

(b) Calculate the size of angle
$$DBA$$
. [4]

(e) Calculate the volume of the solid.
[The volume of a tetrahedron is
$$\frac{1}{3}$$
 (area of the base) × perpendicular height.] [3]