FACULTAD DE CIENCIAS EXACTAS, INGENIERÍA Y AGRIMENSURA ESCUELA DE CIENCIAS EXACTAS Y NATURALES DEPARTAMENTO DE CIENCIAS DE LA COMPUTACIÓN LÓGICA

Práctica 1: Semántica de la Lógica Proposicional

1. Dé secuencias de formación para las siguientes fórmulas:

a)
$$\neg (p_1 \rightarrow p_2)$$

d)
$$(\neg p_1 \rightarrow (p_3 \lor (p_5 \land p_4))) \lor \neg p_2$$

b)
$$p_1 \vee (\neg p_2 \to p_3)$$

e)
$$(p_1 \land ((p_3 \to p_5) \to p_4)) \to (\neg p_2 \land p_6)$$

c)
$$((p_1 \to p_2) \to p_3) \to p_4$$

f)
$$(p_1 \lor (\neg p_2 \to p_3)) \land ((p_3 \to p_5) \to p_4)$$

2. Enunciar el principio de inducción sobre PROP.

3. En clase de práctica veremos la definición de árbol sintáctico para una fórmula.

a) Determine los árboles sintácticos correspondientes a las fórmulas del ejercicio 1.

b) Determine las proposiciones correspondientes a los siguientes árboles:

4. Definir por recursión la función subs : PROP $\to \mathcal{P}(PROP)$ tal que subs (ϕ) es el conjunto de todas las subfórmulas de ϕ .

5. Sea n el número de conectivos que aparecen en una fórmula ϕ . Demuestre que ϕ tiene a lo sumo 2n+1 subfórmulas.

6. Sea F el conjunto de todas las fórmulas proposicionales para las cuales existe una secuencia de formación. Demuestre que F = PROP.

7. Sea ϕ una fórmula y v,v' dos valuaciones. Demuestre que si para toda variable proposicional p_i que ocurre en ϕ se cumple $v(p_i) = v'(p_i)$, entonces $[\![\phi]\!]_v = [\![\phi]\!]_{v'}$.

8. Determinar $\phi[\neg p_0 \to p_3/p_0]$ para:

a)
$$\phi = p_1 \land p_0 \to (p_0 \to p_3)$$

b)
$$\phi = (p_3 \leftrightarrow p_0) \lor (p_2 \rightarrow \neg p_0)$$

9. Demuestre el Teorema de Sustitución enunciado en clase.

Práctica 1 2021 Página 1/2

10. Muestre que:

a)
$$p \models p \lor q$$

b) si
$$p \models q$$
 y $q \models r$ entonces $p \models r$

c) si
$$\models p \rightarrow q$$
 entonces $p \models q$

d)
$$\neg (p \land q) \models \neg p \lor \neg q$$

e)
$$\neg p \lor \neg q \models \neg (p \land q)$$

f)
$$p \lor (q \lor r) \models (p \lor q) \lor r$$

g)
$$(p \to q) \to r \models p \to (q \to r)$$

h)
$$(p \land q) \rightarrow r \models (p \rightarrow r) \lor (q \rightarrow r)$$

- 11. Sean $\phi, \psi \in \text{Prop y } v$ una valuación. Demuestre que $[\![\phi \leftrightarrow \psi]\!]_v = T$ sii $[\![\phi]\!]_v = [\![\psi]\!]_v$.
- 12. Sean $\phi, \psi \in PROP$ tales que $\models \phi \to \psi$. Demuestre:

$$\mathbf{a}) \models (\phi \land \psi) \leftrightarrow \phi$$

b)
$$\models (\phi \lor \psi) \leftrightarrow \psi$$

13. El operador binario NOR (\downarrow) tiene la siguiente tabla de verdad:

p	q	$p \downarrow q$
F	F	Τ
\mathbf{F}	${\rm T}$	\mathbf{F}
Τ	\mathbf{F}	\mathbf{F}
\mathbf{T}	${\rm T}$	\mathbf{F}

- a) Extender la definición de semántica para incluir al operador \downarrow
- b) Demostrar:

$$\neg (p \downarrow q), \ p \downarrow p \models q$$

- 14. Sea ϕ una fórmula proposicional. Decimos que ϕ es:
 - válida (o una tautología) sii para toda valuación v, $\llbracket \phi \rrbracket_v = T$
 - \blacksquare contradictoria sii para toda valuación $v,\, [\![\phi]\!]_v = F$
 - satisfactible sii existe una valuación v tal que $[\![\phi]\!]_v = T$

Demuestre que:

- a) ϕ es satisfactible sii $\neg \phi$ no es válida
- b) $\phi \to \bot$ es válida si
i ϕ es contradictoria
- **15.** Sea $\Gamma \subseteq PROP$. Mostrar que $\Gamma \models \phi$ sii $\Gamma \cup \{\neg \phi\}$ es insatisfactible.

16.

- a) Demuestre que $\{\lor, \neg\}$ es un conjunto completo de conectivos.
- b) Defina un operador binario \oplus de modo que $\{\oplus\}$ sea un conjunto completo de conectivos, y demuéstrelo.
- 17. Demuestre que si $C\subseteq\{\neg,\wedge,\vee,\to,\bot\}$ es un conjunto completo de conectivos, entonces $\neg\in C$ o $\bot\in C$.