Module: Calcul Stochastique

Série 1 Rappels de Théorie de la Mesure et Probabilités

Exercice 1 Soit

$$f_{X,Y}(x,y) = e^{-y}(1-e^{-x}) 1_{[0,y]}(x)1_{[0,\infty[}(y) + e^{-x}(1-e^{-y}) 1_{[0,x]}(y)1_{[0,\infty[}(x)$$

- 1) Montrer que $f_{X,Y}$ est une densité.
- 2) Trouver les marginales de X et Y.
- 3) Calculer $E[Y \mid X = x]; x > 0.$
- 4) Déduire $E[Y \mid X]$ et E[Y].

Exercice 2 Soit X une v.a. de loi normale $\mathcal{N}(m, \sigma^2)$.

- 1) Déterminer la loi de $Y = e^X$.
- 2) Calculer E(Y) et V(Y).

Exercice 3 Soit $X: \Omega \to [0, +\infty)$ une variable aléatoire de carré intégrable et F la fonction de répartition de X.

- 1) Montrer que $n^2 P(X > n) \to 0$ quand $n \to \infty$.
- 2) Pour a > 0, montrer que $\int_0^a t^2 dF(t) = -a^2 (1 F(a)) + 2 \int_0^a t (1 F(t)) dt$.
- 3) Déduire que $E(X^2) = 2 \int_0^\infty t P(X > t) dt$.

Exercice 4 On note $\mathcal{B}_{\mathbb{R}}$ la tribu de Borel sur \mathbb{R} et on considère une mesure positive μ définie sur $\mathcal{B}_{\mathbb{R}}$ et finie sur les compacts. Pour $a \in \mathbb{R}$, on définit

$$F_a(t) = \begin{cases} \mu([a,t]) & \text{si } t > a, \\ -\mu([t,a]) & \text{si } t \le a. \end{cases}$$

Montrer que F_a est croissante et continue à gauche.

Ind: Pour la continuité à gauche, prendre une suite croissante $(t_n)_{n\geq 1}$ vers t_0 et utiliser le fait que $[a,t_0]=\bigcup_{n\geq 1}[a,t_n]$.

Exercice 5 Soient $(\Omega, \mathcal{F}, \mu)$ un espace de mesure, g une fonction mesurable positive. On définit

$$\lambda(A) = \int_{A} g \ d\mu, \quad \forall A \in \mathcal{F}$$

Montrer que λ est une mesure positive sur (Ω, \mathcal{F}) et que pour toute fonction f mesurable:

$$\int_{A} f \ d\lambda = \int_{A} f g \ d\mu, \qquad \forall A \in \mathcal{F}$$

Exercice 6 Soient $(\Omega, \mathcal{F}, \mu)$ un espace de mesure, f une fonction intégrable et $\{A_n\}$ une suite d'ensembles mesurables tels que $\mu(A_n) \to 0$.

- 1) Montrer que la suite $f \cdot I_{A_n}$ converge en mesure vers 0.
- 2) Montrer que: $\lim_{n\to\infty} \int_{A_n} f \ d\mu = 0$.
- 3) En déduire que: $\lim_{n\to\infty} \int_{\{|f|>n\}} f \ d\mu = 0$.

Exercice 7 Déterminer la limite des suites: $I_n = \int_0^1 \frac{n}{1+x^2} \tanh\left(\frac{x}{n}\right) dx$, $J_n = \int_0^1 \frac{ne^{-x}}{nx+1} dx$, $K_n = \int_0^n \left(1 - \frac{x}{n}\right)^n dx$.

Ind: Utilser le DL de tanh au voisinage de 0 pour trouver la limite de $f_n(x) = \frac{n}{1+x^2} \tanh\left(\frac{x}{n}\right)$, puis utiliser le Théorème de Convergence Dominée. Pour J_n utiliser le Lemme de Fatou. Pour K_n notons que $\ln(1+t) \le t$ pour t > -1.