LIBRO ADOTTATO

G.M. PIACENTINI CATTANEO: **MATEMATICA DISCRETA**, ed. ZANICHELLI

LIBRI CONSIGLIATI

A. FACCHINI: **ALGEBRA E MATEMATICA DISCRETA**, ed. ZANICHELLI

M.G. BIANCHI, A. GILLIO: **INTRODUZIONE ALLA MA- TEMATICA DISCRETA**, ed. McGRAW-HILL

L. DI MARTINO, M.C. TAMBURINI: **APPUNTI DI ALGE-BRA**, ed. CLUED

INSIEMI NUMERICI

$$\mathbb{N} = \{0, 1, 2, 3, 4, \dots, \}$$

insieme dei <u>numeri naturali</u>

$$\mathbb{Z} = \{\ldots, -4, -3, -2, -1, 0, 1, 2, 3, 4, \ldots\}$$

insieme dei <u>numeri relativi</u>

 $\mathbb Q$ è l'insieme dei numeri della forma $rac{p}{q},$

dove p e q sono numeri relativi e \underline{q} è diverso da $\underline{0}$; $\mathbb Q$ si dice insieme dei <u>numeri razionali</u>

con il simbolo $\mathbb R$ indicheremo l'insieme dei <u>numeri reali</u> e definiremo anche l'insieme $\mathbb C$ dei numeri complessi.

SIMBOLI FONDAMENTALI

Il simbolo di appartenenza di un oggetto ad un insieme è:

si legge: "appartiene" oppure "è elemento di". Ad esempio:

$$3 \in \mathbb{N}, -1 \in \mathbb{Z}, \frac{5}{3} \in \mathbb{Q}, -\sqrt{5} \in \mathbb{R}$$

I simboli di inclusione sono:
$$\begin{cases} \subseteq \\ \subseteq \end{cases}$$

il primo indica l'inclusione stretta o propria (che può essere anche scritta come \subsetneq) tra insiemi e si legge: "è incluso (oppure è contenuto) propriamente o strettamente" o anche "è sottoinsieme proprio", il secondo si legge "è incluso (o uguale)" oppure "è contenuto (o uguale)". Esempi: $\mathbb{N} \subset \mathbb{Z}, \ \mathbb{Z} \subset \mathbb{Q}$.

Definizione 1 Si dice che due insiemi A e B sono uguali, e si scrive A = B, se essi hanno gli stessi elementi.

È chiaro, quindi, che A=B se e soltanto se $A\subseteq B$ e $B\subseteq A$.

osservazione 2 Quali che siano gli insiemi A, B, C si ha:

1.
$$A \subseteq A$$

2. se
$$A \subseteq B$$
 e $B \subseteq A$ allora $A = B$

3. se $A \subseteq B$ e $B \subseteq C$ allora $A \subseteq C$

Naturalmente abbiamo le negazioni:

esempi:
$$-3 \notin \mathbb{N}, \quad \frac{1}{3} \notin \mathbb{Z}, \quad \pi \notin \mathbb{Q}$$

"non è contenuto": ⊈

esempi:
$$\mathbb{Z} \nsubseteq \mathbb{N}, \mathbb{R} \nsubseteq \mathbb{Q}.$$

<u>Insieme vuoto</u>: ∅

è l'insieme che non ha elementi. Si osservi che esso è sottoinsieme di qualunque insieme. Si può assegnare un insieme enumerando i suoi elementi (nel caso questo sia possibile), oppure tramite una <u>proprietà caratteristica</u>, ovvero una proprietà che verificano tutti e soli gli elementi dell'insieme che si vuole definire. Si scrive:

$$A = \{x \in U \mid \mathcal{P}(x)\}$$
 oppure $A = \{x \in U : \mathcal{P}(x)\}$

Esempi: $\{x \in \mathbb{Z} \mid x > -3\}$, $\{3n \mid n \in \mathbb{N}\}$.

 $\frac{\text{quantificatori:}}{\exists \qquad \text{quantificatore universale}}$

il primo si legge "per ogni", il secondo si legge "esiste".

Si usa anche il simbolo

 \exists

che vuol dire "esiste ed è unico".

Esempi:

$$(\forall n \in \mathbb{N}) \ (3n \in \mathbb{N})$$

Sia P l'insieme dei numeri pari. Allora si può scrivere

$$\mathbf{P} = \{ n \in \mathbb{Z} \mid \exists m \in \mathbb{Z} \text{ tale che } n = 2m \}.$$

L'insieme D dei numeri dispari può essere scritto come

$$D = \{ n \in \mathbb{Z} \mid \exists h \in \mathbb{Z} \text{ tale che } n = 2h + 1 \}.$$

$$(\forall x)(x \notin \emptyset)$$

 $(\forall A \text{ insieme})(\emptyset \subseteq A)$

Connettivi logici

congiunzione: \(\tau \) che si legge "e"

disgiunzione: V che si legge "o".

Esempi: $(8 \in P) \land (8 \text{ è divisibile per 4})$

sia $n \in \mathbb{Z}$ allora: $(n \in \mathbf{P}) \vee (n \in \mathbf{D})$.

Definizione 3 Dati due insiemi A e B si definiscono l'<u>unione</u> $A \cup B$ e l'<u>intersezione</u> $A \cap B$ come segue:

$$A \cup B = \{x \mid x \in A \lor x \in B\}$$

$$A \cap B = \{x \mid x \in A \land x \in B\}$$

Si osserva subito che per ogni insieme A

$$A \cup \emptyset = A$$
 $A \cap \emptyset = \emptyset$

e che se $A \subseteq B$ allora si ha

$$A \cup B = B$$
 $A \cap B = A$.

- 1. $(A \cup B) \cup C = A \cup (B \cup C)$ proprietà associativa dell'unione
- 2. $(A \cap B) \cap C = A \cap (B \cap C)$ proprietà associativa dell'intersezione
- 3. $A \cup B = B \cup A$ proprietà commutativa dell'unione
- 4. $A \cap B = B \cap A$ proprietà commutativa dell'intersezione
- 5. $(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$, $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
- 6. $(A \cap B) \cup C = (A \cup C) \cap (B \cup C), A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
- 5. proprietà distributive dell'intersezione rispetto all'unione,
- 6. proprietà distributive dell'unione rispetto all'intersezione.

Definizione 4 Sia A insieme e $B \subseteq A$ si definisce il <u>complementare</u> <u>di</u> B rispetto ad A:

$$C_A(B) = \{ x \in A \mid x \notin B \}.$$

Si ha ovviamente:

$$\mathbb{C}_A(A) = \emptyset; \quad \mathbb{C}_A(\emptyset) = A; \quad B \cup \mathbb{C}_A(B) = A; \quad B \cap \mathbb{C}_A(B) = \emptyset$$

Si dimostrano le LEGGI DI DE MORGAN:

$$\mathbb{C}_A(B \cup C) = \mathbb{C}_A(B) \cap \mathbb{C}_A(C); \quad \mathbb{C}_A(B \cap C) = \mathbb{C}_A(B) \cup \mathbb{C}_A(C)$$

Definizione 5 L'insieme:

$$A \setminus B = \{x \in A \mid x \notin B\}$$

si dice insieme differenza tra l'insieme A e l'insieme B

Definizione 6 Sia A un insieme. Si dice <u>insieme delle parti di</u> A e si indica con $\mathcal{P}(A)$ l'insieme formato da tutti i sottoinsiemi di A. In simboli:

$$\mathcal{P}(A) = \{X \mid X \subseteq A\}$$

È ovvio che $A \in \mathcal{P}(A)$, $\emptyset \in \mathcal{P}(A)$, se $X \in \mathcal{P}(A)$, $Y \in \mathcal{P}(A)$, allora $X \cup Y \in \mathcal{P}(A)$ e $X \cap Y \in \mathcal{P}(A)$.

Definizione 7 Siano $A \in B$ insiemi. Si definisce il <u>prodotto carte</u>-<u>siano</u>:

$$A \times B = \{(a,b) \mid a \in A, b \in B\}.$$

Naturalmente si ha: $A \times \emptyset = \emptyset \times A = \emptyset$.

Definizione 8 Siano A e B insiemi. Si dice <u>relazione tra</u> A <u>e</u> B un qualunque sottoinsieme del prodotto cartesiano.

Sia A un insieme ed \mathcal{R} una relazione tra gli elementi di A, cioè $\mathcal{R} \subseteq A \times A$.

Definizione 9 Si dice che \mathcal{R} è <u>riflessiva</u> se è verificata la sequente condizione:

$$(\forall a \in A) \ ((a, a) \in \mathcal{R}).$$

osservazione 10 Ovviamente, perchè \mathcal{R} non sia riflessiva basta che esista un solo elemento $x \in A$ tale che $(x, x) \notin A$.

Definizione 11 Si dice che \mathcal{R} è <u>antiriflessiva</u> se è verificata la sequente condizione:

$$(\forall a \in A) \ ((a, a) \notin \mathcal{R}).$$

Esempi Delle relazioni sull'insieme $A = \{\alpha, \beta, \gamma\}$

$$\mathcal{R}_{1} = \{(\alpha, \alpha), (\beta, \beta), (\gamma, \gamma), (\alpha, \beta), (\alpha, \gamma)\}$$

$$\mathcal{R}_{2} = \{(\alpha, \alpha), (\beta, \beta), (\alpha, \beta), (\beta, \gamma)\}$$

$$\mathcal{R}_{3} = \{(\alpha, \beta), (\beta, \alpha), (\gamma, \beta), (\beta, \gamma), (\gamma, \gamma)\}$$

$$\mathcal{R}_{4} = \{(\alpha, \beta), (\beta, \alpha), (\alpha, \gamma)\}$$

$$\mathcal{R}_{5} = \{(\alpha, \alpha), (\beta, \beta), (\gamma, \gamma), (\alpha, \beta), (\beta, \alpha)\}$$

sono riflessive \mathcal{R}_1 e \mathcal{R}_5 , è antiriflessiva \mathcal{R}_4 mentre \mathcal{R}_2 e \mathcal{R}_3 non sono riflessive (ne' antiriflessive).

Definizione 12 Si dice che \mathcal{R} è <u>simmetrica</u> se è verificata la sequente condizione:

$$(\forall a, b \in A)$$
 (se $(a, b) \in \mathcal{R}$ allora $(b, a) \in \mathcal{R}$).

osservazione 13 Naturalmente è sufficiente che esista una sola coppia $(x,y) \in \mathcal{R}$, $x \neq y$, tale che $(y,x) \notin \mathcal{R}$ perchè \mathcal{R} non sia simmetrica.

Definizione 14 Si dice che \mathcal{R} è <u>antisimmetrica</u> se è verificata la sequente condizione:

$$(\forall a, b \in A)$$
 (se $((a, b) \in \mathcal{R} \land (b, a) \in \mathcal{R})$ allora $a = b$).

Esempi Si ha: \mathcal{R}_1 e \mathcal{R}_2 sono antisimmetriche, \mathcal{R}_3 e \mathcal{R}_5 sono simmetriche, \mathcal{R}_4 non è simmetrica ne' antisimmetrica.

Definizione 15 Si dice che \mathcal{R} è <u>transitiva</u> se è verificata la sequente condizione:

$$(\forall a, b, c \in A)$$
 (se $((a, b) \in \mathcal{R} \land (b, c) \in \mathcal{R})$ allora $(a, c) \in \mathcal{R}$).

osservazione 16 Anche in questo caso è sufficiente che esistano $(x,y), (y,z) \in \mathcal{R}$ tali che $(x,z) \notin \mathcal{R}$ perchè \mathcal{R} non sia transitiva.

Esempi Si ha: \mathcal{R}_1 e \mathcal{R}_5 sono transitive, \mathcal{R}_2 , \mathcal{R}_3 e \mathcal{R}_4 non lo sono.

osservazione 17 Si osservi che spesso si usa la notazione $a\mathcal{R}b$ in luogo di $(a,b)\in\mathcal{R}$.

Definizione 18 Si dice che \mathcal{R} è <u>una relazione d'ordine</u> se è **ri-flessiva, antisimmetrica e transitiva**. La coppia ordinata (A, \mathcal{R}) (ovvero l'insieme A munito della relazione d'ordine) si chiama insieme ordinato.

Esempio 19 \mathcal{R}_1 è d'ordine.

Esempio 20 Sia X un insieme. Allora la relazione " \subseteq " è una relazione d'ordine su $\mathcal{P}(X)$. Infatti dall'osservazione 2 si ha che per ogni A,B,C sottoinsiemi di X

1.
$$A \subseteq A$$

2. se
$$A \subseteq B$$
 e $B \subseteq A$ allora $A = B$

3. se $A \subseteq B$ e $B \subseteq C$ allora $A \subseteq C$

Esempio 21 L'ordinamento naturale " \leq " sull'insieme \mathbb{Z} dei numeri relativi è la relazione definita come segue:

 $\forall m, n \in \mathbb{Z}$, si dice che $m \leq n$ se e solo se $\exists h \in \mathbb{N}$ tale che n = m + h.

Si verifica che " \leq " è una relazione d'ordine su \mathbb{Z} .

Definizione 22 Siano $m, n \in \mathbb{Z}$, $m \neq 0$. Si dice che m <u>divide</u> oppure <u>è un divisore di</u> n (ovvero che n <u>è un multiplo</u> di m) e si scrive

$$m \mid n$$

se esiste $h \in \mathbb{Z}$ tale che n = mh.

Si osserva subito che un qualunque numero intero divide 0.

Esempio 23 La relazione " \mid " sull'insieme $\mathbb{N}^* := \mathbb{N} \setminus \{0\}$ dei numeri naturali non nulli è una relazione d'ordine.

Esempio 24 Per ogni $n \in \mathbb{N}^*$ si indica con \mathcal{D}_n l'insieme dei divisori di n. Di particolare interesse è la relazione d'ordine " \mid " indotta sull'insieme \mathcal{D}_n .

Definizione 25 Sia (A, \leq) un insieme ordinato, X un sottoinsieme di A, $x_0 \in X$. Si dice che x_0 è minimo di X se:

$$\forall x \in X \ x_0 \leq x.$$

Si dice che x_0 è massimo di X se

$$\forall x \in X \ x \leq x_0.$$

Proposizione 26 Sia (A, \leq) un insieme ordinato, X un sottoinsieme di A. Se esiste un massimo (o un minimo) di X, esso è unico.

Dimostrazione Siano, infatti, x_0 e x_1 due massimi di X. Allora, poichè x_0 è massimo e $x_1 \in X$, si ha $x_1 \le x_0$ e, scambiando i ruoli di x_0 e x_1 , si ha $x_0 \le x_1$. Per la proprietà antisimmetrica delle relazioni d'ordine deve essere $x_0 = x_1$. (Analoga la dimostrazione dell'unicità del minimo.)

È quindi lecito scrivere $x_0 = min(X)$ se x_0 è il minimo (che si dice anche <u>il più piccolo elemento</u>) di X, oppure $x_0 = max(X)$ se x_0 è il massimo (che si dice anche <u>il più grande elemento</u>) di X.

Esempi

1. considerato l'insieme ordinato (A, \mathcal{R}_1) , dove $A = \{\alpha, \beta, \gamma\}$ e

$$\mathcal{R}_1 = \{(\alpha, \alpha), (\beta, \beta), (\gamma, \gamma), (\alpha, \beta), (\alpha, \gamma)\}.$$

Si ha $\alpha = min(A)$ ma non esiste il massimo di A

- 2. $0=min(\mathbb{N})$, ma non esiste il massimo considerando su \mathbb{N} la relazione d'ordine " \leq " naturale
- 3. $1 = min(\mathbb{N}^*)$ ma non esiste il massimo considerando su \mathbb{N}^* la relazione d'ordine "|"

4. considerando il sottoinsieme $X=\{2,3,9,18\}$ come sottoinsieme dell'insieme ordinato $(\mathbb{N}^*,|)$, esiste max(X)=18 ma non esiste il minimo di X

5. considerando l'insieme ordinato $(D_n, |)$ si ha $min(D_n) = 1$, $max(D_n) = n$

Definizione 27 Sia (A, \leq) un insieme ordinato, $A \subseteq X$. Un elemento $y \in A$ si dice <u>minorante</u> di X se

$$(\forall x \in X)(y \le x).$$

Se X è dotato di minoranti si dice minorato o limitato inferiormente.

Definizione 28 Sia (A, \leq) un insieme ordinato, X un sottoinsieme di A, minorato, $\alpha \in A$. Si dice che α è <u>estremo inferiore di</u> X se è il più grande dei minoranti.

In altri termini α è estremo inferiore di se verifica le seguenti condizioni:

1.
$$(\forall x \in X) \ (\alpha \le x)$$

2. $\forall \beta \in A$ tale che $(\forall x \in X)$ $(\beta \leq x)$ si ha $\beta \leq \alpha$.

Si vede che se esiste un estremo inferiore, esso è unico, per cui è lecito scrivere $\alpha = inf(X)$. Inoltre, se $inf(X) \in X$, allora inf(X) = min(X).

Definizione 29 Sia (A, \leq) un insieme ordinato, $A \subseteq X$. Un elemento $y \in A$ si dice maggiorante di X se

$$(\forall x \in X)(x \leq y).$$

Se X è dotato di maggioranti si dice maggiorato o limitato superiormente.

Definizione 30 Sia (A, \leq) un insieme ordinato, X un sottoinsieme di A, maggiorato, $\alpha \in A$. Si dice che α è <u>estremo superiore</u> di X se è il più piccolo dei maggioranti.

In altre parole α è estremo superiore verifica le seguenti condizioni:

1.
$$(\forall x \in X) \ (x \le \alpha)$$

2. $\forall \beta \in A$ tale che $(\forall x \in X)$ $(x \leq \beta)$ si ha $\alpha \leq \beta$.

Si vede che se esiste un estremo superiore di X, esso è unico, per cui è lecito scrivere $\alpha = sup(X)$. Inoltre, se $sup(X) \in X$, allora sup(X) = max(X).

osservazione 31 Nel caso $X = \{x, y\}$, $\alpha = sup(x, y)$ vuol dire

1.
$$x \le \alpha, y \le \alpha$$

2. $\forall \beta \in A$ tale che $x \leq \beta$, $y \leq \beta$ si ha $\alpha \leq \beta$.

Analogamente $\alpha = inf(x, y)$ si scrive

1.
$$\alpha \leq x, \ \alpha \leq y$$

2. $\forall \beta \in A$ tale che $\beta \leq x$, $\beta \leq y$ si ha $\beta \leq \alpha$.

Definizione 32 Sia (A, \leq) un insieme ordinato. Si dice che" \leq " è una <u>relazione di ordine totale</u> ovvero che (A, \leq) è <u>totalmente</u> ordinato se e soltanto se

$$(\forall x, y \in A) \ (x \le y \lor y \le x).$$

Nel caso contrario, cioè se $\exists x, y$ tali che $x \nleq y \land y \nleq x$, si dice che " \leq " è una <u>relazione di ordine parziale</u> oppure che (A, \leq) è parzialmente ordinato.

Esempi Sono totalmente ordinati (\mathbb{N}, \leq) , (\mathbb{Z}, \leq) ; sono parzialmente ordinati $(\mathbb{N}^*, |)$, $(D_n, |)$, $(\mathcal{P}(X), \subseteq)$, (A, \mathcal{R}_1) .

Definizione 33 Siano A, B insiemi non vuoti, \mathcal{R} una relazione tra elementi di A ed elementi di B. Si dice che \mathcal{R} è una <u>relazione</u> funzionale se e soltanto se

$$\forall a \in A \ \exists | b \in B \ \text{tale che} \ (a,b) \in \mathcal{R}$$

Se \mathcal{R} è una relazione funzionale tra A e B, la terna ordinata $f = (A, B, \mathcal{R})$ si dice <u>applicazione</u> o <u>funzione</u> tra A e B. A si dice <u>dominio</u> o <u>insieme di partenza</u> di f, B si dice <u>insieme di arrivo</u> di f. La relazione \mathcal{R} si chiama <u>grafico</u> di f.

Quando ci si riferirà ad applicazioni, si supporrà implicitamente che l'insieme di partenza e l'insieme di arrivo siano non vuoti. **Esempi**: Siano $A = \{1, 2, 3, 4\}$, $B = \{a, b, c, d, e\}$ allora

$$\mathcal{R} = \{(1, a), (2, b), (2, c), (3, d), (4, e)\}$$

non è funzionale,

$$\mathcal{R}' = \{(1, a), (2, a), (3, b), (4, c)\}$$

è funzionale

$$\mathcal{R}'' = \{(1, a), (2, b)(4, c)\}$$

non è funzionale.

D'ora in avanti si userà la notazione

$$f:A\to B$$

per indicare un'applicazione dall'insieme A all'insieme B. Se, inoltre, \mathcal{R}_f è la relazione funzionale tale che $f=(A,B,\mathcal{R}_f)$, si porrà b=f(a) se e solamente se $(a,b)\in\mathcal{R}_f$. In questo caso si dice che b è l'immagine di a mediante f o il valore assunto da f in a. Pertanto il grafico dell'applicazione f è:

$$\mathcal{R}_f = \{(a, f(a)) \mid a \in A\}.$$

Quindi l'applicazione $f' = (A, B, \mathcal{R}')$ precedentemente introdotta si scriverà nel modo seguente:

$$f': A \to B$$
 tale che $f'(1) = a$, $f'(2) = a$, $f'(3) = b$, $f'(4) = c$.

Chiaramente due applicazioni $f:A\to B,\ g:C\to D$ sono uguali se e soltanto se $A=C,\ B=D$ e $\forall a\in A\ f(a)=g(a).$

Si osservi che un'applicazione è una particolare relazione, mentre non è vero che una qualsiasi relazione è un'applicazione.

Esempi

1. Siano X e Y insiemi, $c \in Y$. Allora l'applicazione

$$f_c: X \to Y$$
 tale che $\forall x \in X \ f_c(x) = c$

si dice applicazione costante di costante valore \emph{c}

2. sia X un insieme. Allora l'applicazione

$$\operatorname{id}_X:X\to X$$
 tale che $\forall x\in X$ $\operatorname{id}_X(x)=x$

si dice applicazione identica di ${\cal X}$

3. $f_1: \mathbb{Z} \to \mathbb{Z}$ tale che $\forall n \in \mathbb{Z}$ $f_1(n) = 2n$

4. $f_2: \mathbb{Z} \to \mathbb{Z}$ tale che $\forall x \in \mathbb{Z}$ $f_2(x) = \frac{x}{2}$ non è un'applicazione

5. $f_3: \mathbf{P} \to \mathbb{Z}$ tale che $\forall x \in \mathbf{P}$ $f_3(x) = \frac{x}{2}$

6. $f_4: \mathbb{Q}^* \to \mathbb{Q}$ tale che $\forall x \in \mathbb{Q}$ $f_4(x) = \frac{1}{x}$

7. $f_5: \mathbb{Z} \to \mathbb{Z}$ tale che $\forall a \in \mathbb{Z}$ $f_5(a) = a^2$.