Step-1

The objective is to determine the condition for b_1 and b_2 , for that Ax = b have a solution, also find two vector in the nullspace of A and the complete solution to Ax = b.

Provided matrix:

$$A = \begin{bmatrix} 1 & 2 & 0 & 3 \\ 2 & 4 & 0 & 7 \end{bmatrix},$$
$$b = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$$

Step-2

Consider the provided matrix,

$$A = \begin{bmatrix} 1 & 2 & 0 & 3 \\ 2 & 4 & 0 & 7 \end{bmatrix},$$
$$b = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$$

Add column in the matrix A at the end and perform the multiplication by 2 with 1st row and then subtract it from 2nd row as follows:

$$\begin{bmatrix} 1 & 2 & 0 & 3 & b_1 \\ 2 & 4 & 0 & 7 & b_2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 0 & 3 & b_1 \\ 0 & 0 & 0 & 1 & b_2 - 2b_1 \end{bmatrix}$$

Again perform the multiplication by 3 with 2^{nd} row and then subtract it from 1^{st} row as follows:

$$\begin{bmatrix} 1 & 2 & 0 & 3 & b_1 \\ 0 & 0 & 0 & 1 & b_2 - 2b_1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 0 & 0 & 7b_1 - 3b_2 \\ 0 & 0 & 0 & 1 & b_2 - 2b_1 \end{bmatrix}$$

No condition, there is a solution for any choice of b_1 and b_2 . Both the below matrices satisfy Ax = 0,

$$\begin{bmatrix} -2 \\ 1 \\ 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$

The general solution is,

<i>x</i> =	$\lceil 7b_1 - 3b_2 \rceil$	+	-2	+	[0]
	0		1		0
	0		0		1
	$b_2 - 2b_1$		0		[0]