Historic, Archive Document

Do not assume content reflects current scientific knowledge, policies, or practices.

WATER SUPPLY OUTLOOK FOR NEVADA

FEDERAL - STATE - PRIVATE COOPERATIVE SNOW SURVEYS

UNITED STATES DEPARTMENT of AGRICULTURE...SOIL CONSERVATION SERVICE,
and

NEVADA DEPARTMENT of CONSERVATION and NATURAL RESOURCES
DIVISION of WATER RESOURCES

Data included in this report were obtained by the agencies named above in cooperation with Federal, State and private organizations listed on the last page of this report.

TO RECIPIENTS OF WATER SUPPLY OUTLOOK REPORTS:

Most of the usable water in western states originates as mountain snowfall. This snowfall accumulates during the winter and spring, several months before the snow melts and appears as streamflow. Since the runoff from precipitation as snow is delayed, estimates of snowmelt runoff can be made well in advance of its occurrence. Streamflow forecasts published in this report are based principally on measurement of the water equivalent of the mountain snowpack.

Forecasts become more accurate as more of the data affecting runoff are measured. All forecasts assume that climatic factors during the remainder of the snow accumulation and melt season as they affect runoff will add to be an effective average. Early season forecasts are therefore subject to a greater change than those made on later dates.

The snow course measurement is obtained by sampling snow depth and water equivalent at surveyed and marked locations in mountain areas. A total of about ten samples are taken at each location. The average of these are reported as snow depth and water equivalent. These measurements are repeated in the same location near the same dates each year.

Snow surveys are made monthly or semi-monthly from January 1 through June 1 in most states. There are about 1400 snow courses in Western United States and in the Columbia Basin in British Columbia. In the near future, it is anticipated that automatic snow water equivalent sensing devices along with radio telemetry will provide a continuous record of snow water equivalent at key locations.

Detailed data on snow course and soil moisture measurements are presented in state and local reports. Other data or reservoir storage, summaries of precipitation, current streamflow, and soil moisture conditions at valley elevations are also included. The report for Western United States presents a broad picture of water supply outlook conditions, including selected streamflow forecasts, summary of snow accumulation to date, and storage in larger reservoirs.

Snow survey and soil moisture data for the period of record are published by the Soil Conservation Service by states about every five years. Data for the current year is summarized in a West-wide basic data summary and published about October 1 of each year.

PUBLISHED BY SOIL CONSERVATION SERVICE

D. A. WILLIAMS, Administrator

The Soil Conservation Service publishes reports following the principal snow survey dates from January 1 through June 1 in cooperation with state water administrators, agricultural experiment stations and others. Copies of the reports for Western United States and all state reports may be obtained from Soil Conservation Service, Western Regional Technical Service Center, Room 507, 701 N. W. Glisan, Portland, Oregon 97209.

Copies of state and local reports may also be obtained from state offices of the Soil Conservation Service in the following states:

STATE

Wyoming

ADDRESS

MENT of

SIAIL	AUDICE33
Alaska	P. O. Box "F", Palmer, Alaska 99645
Arizona	6029 Federal Building, Phoenix, Arizona 85205
Colorado (N. Mex.)	12417 Federal Building, Denver, Colorado 80202
Idaho	P. O. Box 38, Boise, Idaho 83707
Montana	P. O. Box 98, Bozeman, Montana 59715
Nevada	P. O. Box 4850, Reno Nevada 89505
Oregon	1218 S. W. Washington St., Portland, Oregon 97205
Utah	4012 Federal Building, Salt Lake City, Utah 84111
Washington	360 Federal Office Building, Spokane, Washington 99201

P. O. Box 340, Casper, Wyoming 82602

PUBLISHED BY OTHER AGENCIES

Water Supply Outlook reports prepared by other agencies include a report for California by the Water Supply Forecast and Snow Surveys Unit, California Department of Water Resources, P. O. Box 388, Sacramento, California 95802 --- and for British Columbia by the Department of Lands, Forests and Water Resources, Water Resources Service, Parliament Building, Victoria, British Columbia

WATER SUPPLY OUTLOOK FOR NEVADA

and
FEDERAL - STATE - PRIVATE COOPERATIVE SNOW SURVEYS

Issued by

D.A. WILLIAMS

ADMINISTRATOR
SOIL CONSERVATION SERVICE
WASHINGTON, D.C.

Released by

CHARLES W. CLEARY, JR.

STATE CONSERVATIONIST SOIL CONSERVATION SERVICE RENO, NEVADA

In Cooperation with

ELMO J. DE RICCO

DIRECTOR
DEPARTMENT OF CONSERVATION AND
NATURAL RESOURCES
CARSON CITY, NEVADA

Report prepared by

BOB L. WHALEY, Snow Survey Supervisor and

ROY E. MALSOR, JR., Assistant Snow Survey Supervisor

SOIL CONSERVATION SERVICE P. O. BOX 4850 RENO, NEVADA

INDEX TO NEVADA SNOW COURSES (By Basins)

NUMBER	NAME SNAKE RIVER B		тwp. N	RGE.	ELEV.
5 N A K	E RIVER				
15H1MA 15H2 15H13 15H15A 14H1 15H2Oa 15H14 15H18a 15H3A 15H3A	BEAR CREEK FOX CREEK GOAT CREEK HUMMINGBIRO SPRINGS JAKES CREEK MERRITT MOUNTAIN POLE CREEK RANGER STATION REO POINT 76 CREEK 5TAG MTN.	31 33 31 6 6 10 13 15 6 29	46 N 46 N 46 N 45 N 42 N 46 N 46 N 47 N 44 N 41 N	58E 58E 60E 60E 54E 59E 61E 58E	7800 6800 8800 8945 7000 7000 8330 7940 7100 7800
OWYH 15H4MP 16H6a 16H8a 15H5 16H1M 16H2A 16H4	EE RIVER 810 8ENO COLUMBIA BASIN FAWN CREEK GOLO CREEK JACK CREEK, LOWER JACK CREEK, UPPER JACK CREEK	3 0 3 1 2 32 1 8 9 2 8	45N 44N 45N 45N 42N 42N 42N	56E 53E 52E 56E 53E 53E 53E	6700 6650 7000 6600 6800 7250 8420
16H5 17G4a 15H9MP	LAUREL ORAW LOUSE CANYON (OREG.) TAYLOR CANYON	20 27 35	45N 405 39N	53E 44E 53E	6700 6440 6200
	INTERIOR				
	R HUMBOLOT RIVER				
15J17a 16H6a 15J12A 15J1MP 15J3 15H7 15J9MP 15J10 15J11 15J4 15J5 15J6M 15J5 15J18a 15	AMERICAN BEAUTY COLUMBIA BASIN CORRAL CANYON OORSEY BASIN ORY CREEK FRY CANYON GREEN MOUNTAIN HARRISON PASS #1 HARRISON PASS #2 LAMOILLE #1 LAMOILLE #2 LAMOILLE #3 LAMOILLE #4 LAMOILLE #5 POLE CANYON ROBINSON LAKE ROOEO FLAT RYAN RANCH TERMEWAN RANCH TROUT CREEK, LOWER TROUT CREEK, UPPER	32 31 27 28 5 31 23 9 16 15 14 24 19 31 23 31 23 31 23 31 23 31 24 25 26 26 27 27 27 27 27 27 27 27 27 27 27 27 27	31N 44NN 35NN 34NN 28NN 28NN 32NN 32NN 32NN 32NN 32NN 32	583EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE	7800 6650 8500 8100 6500 6700 8000 7400 7100 7300 7700 8700 914,0 9200 6800 5700 6900 8500
LOWE	R HUMBOLDT RIVER BIG CREEK CAMP GROUND	10			
17K1 17K2 17K3 17H2 17H1 17J2 17H4 17H5 17L1 17H3 16H3AP 18H7 17L2	BIG CREEK CAMP GROUND BIG CREEK MINE BIG CREEK, UPPER BUCKSKIN, LOWER BUCKSKIN, UPPER GOLCONDA M2 GRANITE PEAK LAMANCE CREEK LOWER CORRAL MARTIN CREEK MIOAS TOE JAM UPPER CORRAL	23 26 25 11 22 22 13 12 18 18 29 20	17N 17N 17N 45N 45N 45N 44N 42N 11N 44N 39N 40N 11N	43E 43E 43E 39E 39E 39E 40E 46E 46E 41E	6600 7600 8000 6700 8200 6000 7800 6000 7500 6700 7200 7700 8500
	ERN NEVAOA				
14L1 14L2 14K2 14K1 15J13 15J14 15J15 14K8 14K3 15K1 14K7 14K7	BAKER #1 BAKER #2 BAKER #2 BERRY CPEEK BIRO CREEK CAYE CREEK HAGER CANYON HOLE-IN-MIN KALAMAZOO CREEK MURRAY 5UMMIT ROBINSON 5UMMIT SILVER CREEK #2 WARO MOUNTAIN #2 WHITE RIVER #1	2 9 3 0 2 5 2 3 3 4 2 5 3 4 2 6 2 3 3 0 2 5 3 1	1 3N 1 3N 1 3N 1 7 N 2 7 N 2 7 N 2 6 N 1 6 N 1 6 N 1 5 N 1 5 N	6998EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE	7950 8950 9100 7500 7500 7500 7500 7400 7250 8000 7400 7400 7400
	RAL GREAT BASIN			552	, , , , ,
18M2 18M5 a 15N2 18M1 18M3 a 18M4 a 15N1	CAMPITO MTN (CAL.) CHICTOVICH FLAT CLARK CANYON MONTGOMERY PASS PINCHOT CREEK PIUTE PASS (CAL.) TROUGH 5PRINGS	1 9 3 2 8 4 2 8 3 3 2 3		35£ 34E 56E 33E 33E 35E 55E	10200 10500 9000 7100 9300 11700 8500
	THERN GREAT 8A51N		45	215	67.55
1 9 H 1 20 H 5 20 H 6 1 8 G 6 a 1 8 H 1 20 H 3 a 20 H 7 1 9 H 3 1 9 H 2 1 9 H 4 a 1 7 G 5 a 1 7 H 6 a 20 H 4	BALO MOUNTAIN BARBER CREEK (CAL.) CEOAR PASS (CAL.) OENIO CREEK (OREG.) OISMAL SWAMP (CAL.) EACLE PEAK (CAL.) 49-MTN HAYS CANYON LITTLE BALLY MTN OREGON CANYON (OREG.) OUINN RIOGE RESERVATIIN CREEK (CAL.)	17 23 12 14 8 31 35 7 1 8 9	45N 39N 43N 415 47N 48N 42N 39N 45N 47N 46N	21E 16E 14E 34E 22E 15E 19E 18E 40E 41E	6720 6500 7100 6000 6500 7200 6000 6400 6000 7240 6300 5900
18G5a	RESERVATION CREEK (CAL.) TROUT CREEK (OREG.)	10	415	38E	7800

NUMBER	NAME	SEC.	TWP.	RGE.	ELEV.
19L14 20L5 19L2 19K6 19L3M5Z 20L4 19K4M5TZ 20L3 20L1 20L2 20K16 19L1 20K17M	TAHOE OAGGETTS PASS ECHO 5 UMMIT (CAL.) FREEL BENCH (CAL.) GLENBROOK #2 HAGANS MEAOOW (CAL.) LAKE LUCILLE (CAL.) MARLETTE LAKE RICHAROSONS #2 (CAL.) RUBICON #1 (CAL.) RUBICON #2 (CAL.) TAHOE CITY (CAL.) UPPER TRUCKEE (CAL.) WARO CREEK (CAL.)	1 9 6 36 1 3 3 6 2 8 1 8 6 6 6 6 2 1 2 1	13N 11N 12N 12N 12N 12N 15N 13N 13N 15N 15N	19E 18E 18E 18E 17E 19E 17E 17E 17E 18E 1.6E	7350 7450 7300 8000 8200 8200 8500 8100 7500 6400 7000 6750
20K14 20K22 20K21 20K10*	KEE RIVER BOCA #2 (CAL.) BOOKWAY SUMMIT (CAL.) ONNER PARK #2 (CAL.) DONNER SUMMIT (CAL.) FOROYCE LAKE (CAL.) FURNACE ELAT (CAL.) INDEPENDENCE CAMP (CAL.) INDEPENDENCE CREEK (CAL.) INDEPENDENCE CREEK (CAL.) MITTLE VALLEY AT ROCKEE HEN (CAL.) TRUCKEE #2 (CAL.) WEBBER LAKE (CAL.) WEBBER LAKE (CAL.)	28 3 18 25 34 10 0 34 10 17 7 7 7 6 6 22 29 30	18 N 17 N 17 N 17 N 18 N 19 N 19 N 16 N 17 N 18 N 17 N 19 N 19 N	17 E 16 E 14 E 13 E 15 E 19 E 16 E 16 E 16 E 17 E 19 E 16 E E 16 E 14 E 14 E	5900 7100 6000 6900 6500 6700 6500 8450 9000 6500 7000 6400 7000 8000
CAR5 19L5 19L4 19K5 19L19a 19L6A 19L16a 19L16a 19L20a 19L18a	DN RIVER BUUE LAKES (CAL.) CARSON PASS, UPPER (CAL.) CLEAR CREEK EBBETS PASS (CAL.) POISON FLAT (CAL.) UPPER FISH VALLEY (CAL.) WET MEADOWS LAKE (CAL.)	6 17 25	9 N 1 O N 1 4 N 8 N 8 N 7 N 8 N 9 N	19E 18E 19E 20E 21E 22E 20E 19E	8000 8600 7300 8700 7900 8050 8000 8100
WALK	ER RIVER				
19L11 19L10 19L12A 18L1 19L8 19L17a 18L2 19L7M 19L23 stz 19M1* 19L13M 19L9	BUCKEYE FORKS (CAL.) BUCKEYE ROUGHS (CAL.) CENTER MOUNTAIN (CAL.) LAPON MEADOW LEAVITT MEADOWS (CAL.) LOBOELL LAKE (CAL.) MT. GRANT 50NORA PASS (CAL.) 50NORA PASS BRIOGE TIGGA PASS (CAL.) VIRGINIA LAKES (CAL.) VIRGINIA LAKES (CAL.)	20 15 4 36 4 20 23 1 6 30 5 21 32	4 N 4 N 3 N 8 N 5 N 7 N 8 N 5 N 5 N 1 N 2 N 2 N 3 N	23E 23E 23E 28E 22E 24E 22E 25E 25E 25E 25E 25E 25E 25E 25E 25	8500 7900 9400 9000 7200 9200 9000 8800 9800 9500 8250 9200
	COLORAD	0			
LOWE 15N5 15N4 15N3 15N8 14M1 14M2 15N7	R COLORAOO RIVER KYLE CANYON LEE CANYON #1 LEE CANYON #2 LEE CANYON #3 MATHEW CANYON PINE CANYON RAINBOW CANYON #2	27 10 9 10 10 23 6	195 195 195 195 65 65 205	56E 56E 56E 70E 57E	8 2 0 0 8 4 0 0 9 2 0 0 8 5 0 0 6 0 0 0 6 2 0 0 8 1 0 0

NUMBERING SYSTEM (EXAMPLE)

19K4	5 N O W	COURSE	ONL	Υ				
19K45	5 N O W	COURSE	ANO	5 N O	w PILI	. O W		
19K4M	5 N O W	COURSE	ANO	501	L Mois	TURE		
19K4A	5 N O W	COURSE	ANO	AER	EAL MA	RKER		
19K4P		COURSE					TATION	GAGE
19K4MA		COURSE						
19K4MP		COURSE						
	GAGE							
19K45TZ	5 N O W	COURSE	. 5 N	ow P	(LLOW	ANO TE	MPERATI	RE RADIO
		AETEREO						

LOWER CASE LETTERS M, a, p, s, 1, z, INDICATE NO SNOW COURSE, ONLY A SOIL MOISTURE STATION, AERIAL MARKER, STORAGE PRECIPITATION GAGE, SNOW PILLOW, TEMPERATURE, OR RADIO TELEMETERED.

*LOCATEO ON AOJACENT WATERSHEO

WATER SUPPLY OUTLOOK

FOR NEVADA

May 1, 1968

This summer's water supply outlook is "extremely poor" 2 on the Owyhee and Humboldt Rivers, "near average" for * de the Tahoe-Truckee Basin, and "above average" on the ş. Virgin River affecting southern Nevada. April was a ų, dry month over most of the state, and most streams had well below-average flows. Reservoir storage is still -3above average along the Sierras but well below average on the Owyhee and Humboldt Rivers. Streamflow fore-÷ casts now range from 24 percent on the Owyhee to 143 ÷ percent on the Virgin River.

SNOW COVER

Storms were few and far between during April, and only the highest snow courses in eastern and northeastern Nevada showed increases in water contents. Snow courses below 8000 feet are generally bare, and those measured along the Sierras showed substantial decreases in water content since April 1. This is a sharp contrast to last year's continuous storms in April, May, and on into early June.

SOIL MOISTURE

Watershed soils at lower elevations have started to dry out, due to below-average precipitation. Higher-elevation soils have been absorbing snow-melt water and are now near capacity.

RESERVOIR STORAGE

Nevada's seven principal reservoirs, exclusive of Mead and Mohave, now hold 1,074,000 acre-feet of water, or 129 percent of the 15-year average for May 1. Storage along the Sierras is well above average, while Humboldt and Owyhee storage is 78 and 26 percent of average respectively.

STREAMFLOW FORECASTS

Streamflow forecasts now vary from 24 percent on the Owyhee, for the May-July period, to 143 percent on the Virgin River affecting water users of southern Nevada.

Short water supplies are expected for Owyhee and Humboldt River water users and for other parts of the state without reservoir storage to supplement below-average natural streamflow expected this summer over much of the state.

Virgin River water users are expected to get flows 143 percent of average for the May-June period. The snow pack on headwaters of the Virgin in Utah did not melt as much as usual in April, and above-average flows are expected during the months of May and June.

Streamflow along the Sierras during April was below average on all streams except the West Walker, which was 107 percent of average. The West Walker is expected to flow 75,000 acre-feet, or 61 percent of average, for the May-July period. The East Walker is expected to flow 18,000 acre-feet, or 38 percent of average for the May-August period. These below-average flows are expected to cause late season water shortages in the Walker Basin.

The Carson River is expected to flow 55,000 acre-feet (44 percent) at Fort Churchill; 62,000 acre-feet (46 percent) at Carson City; 22,000 acre-feet (55 percent) for the West Carson and 83,000 acre-feet (58 percent) for the East Carson. The East Carson is expected to drop below 200 c.f.s. by about June 30, 1968.

The Truckee at Parad is expected to flow 120,000 acre-feet (63 percent) and the Little Truckee 35,000 acre feet (64 percent) during the May-July period. Lake Tahoe is expected to rise 0.7 of a foot during the May-July period.

The above forecasts assume average precipitation will occur during May, June and July. If the weather continues as dry as April over most of the state, these forecasts will be high and shorter water supplies will result over most of Nevada

NEVADA STREAMFLOW FORECASTS - MAY 1, 1968

The following summarized runoff forecasts are based principally on mountain snow cover and the assumption that precipitation and temperature will be near average from the present time to the end of the forecast period. Appreciable deviations from normal of temperature and/or precipitation will correspondingly modify these forecasts.

	May-July Streamflow, Thousands Acre-Feet								
BASTN and	Forecast	Average	1968 % of	Meas Rur	ured off				
Forecast Stream	1968	1948-62	15-Yr. Av.	1967	1966				
TRUCKEE RIVER									
Little Truckee River above Boca California	35	55	64	160	25				
Truckee River at Farad, Calif. 1	120	190	63	510	82				
Lake Tahoe 2	0.7	1.09	64	2.21	0.37				
CARSON RIVER									
East Carson near Gardnerville, Nev.	83	143	58	291	83				
West Carson at Woodfords, Calif.	22	40	55	72	22				
Carson River near Carson City, Nev.	62	134	46	326	58				
Carson River at Ft. Churchill, Nev.	55	124	44	298	49				
East Carson near Gardnerville, Nev. (Date of 200 c.f.s. flow	6/30	7/20		8/31	6/27				
WALKER RIVER									
East Walker near Bridgeport, Calif. 3	18	48	38	124	27				
West Walker below E. Fork near Coleville, California	75	123	61	229	77				
COLORADO RIVER									
Virgin River at Virgin, Utah 4	35	24	143	38	17				

(Continued)

NEVADA STREAMFLOW FORECASTS - MAY 1, 1968 (Continued)

	May-July Streamflow, Thousands Acre-Feet								
		15-Yr.	1968	Measu					
BASIN and	Forecast	Average	% of	Runo					
Forecast Stream	1968	1948-62	15-Yr. Av.	196/	1966				
HUMBOLDT RIVER									
Lamoille Creek near Lamoille, Nev.	16	24	67	25	12				
So. Fk. Humboldt near Elko, Nev.	28	49	57	67	14				
Marys River above Hot Springs, Nev.	10	23	43	23	5				
No. Fk. Humboldt at Devils Gate, Nev.	6	20	30	22	2				
Humboldt River at Palisade, Nev.	35	126	28	175	22				
Humboldt River at Comus, Nev.	24	94	25	114	15				
Martin Creek near Paradise, Nev.	3	10	30	19	3				
SNAKE RIVER									
Owyhee River near Owyhee, Nev. 5	10	42	24	40	6				
Owyhee River near Gold Creek, Nev. 5	3	10	30	7	1				
Salmon Falls Creek near San Jacinto, Nev. 6	26 24	49 46	53 53		16 13				
SURPRISE VALLEY									
Bidwell Creek near Ft. Bidwell, Calif	. 7 5.4	12.3 *	44	14.7	5.6				
Mill Creek near Cedarville, Calif. 7	2.5	5.5	45	5.6	2.3				
Deep Creek near Cedarville, Calif. 7	1.5	3.8	39	2.4	1.6				
Eagle Creek near Eagleville, Calif. 7	2.5	5.2	48	3.8	2.1				

^{1.} Exclusive of Tahoe and corrected for storage in Boca Reservoir.

^{2.} Maximum rise, in feet, from May 1 assuming gates closed.

^{3,} For period May through August corrected for storage in Bridgeport Reservoir.

^{4.} May-June forecast; issued by SCS, Salt Lake City, Utah.

^{5.} Corrected for storage in Wild Horse Reservoir.

^{6.} May-Sept. and May-July forecasts respectively; issued by SCS, Boise, Idaho.

^{7.} April-Sept. forecast; coordinated forecast of SCS and California Department of Water Resources, Snow Survey Units.

^{*} Adjusted average.

STATUS OF NEVADA RESERVOIR STORAGE

MAY 1, 1968

			USA	BLE STORAG	E - 1000 A	ACRE-FEET
BASIN and STREAM	RESERVOIR	USABLE CAPACITY (1000 AF)	1968	1967	1966	15-Yr. Av. 1948-62
Owyhee	Wild Horse	33	7	8	17	26
Lower Humboldt	Rye Patch	179	60	94	163	77
Colorado	Mohave	1,810	1,694	1,675	1,708	1,371 *
Colorado	Mead	27,217	14,780	14,530	15,492	16,696
Tahoe	Tahoe	732	638	559	570	437
Truckee	Boca	41	28	12	27	26
Truckee	Prosser **	29	14	12	13	Storage began 1/30/63
Carson	Lahontan	286	252	241	222	206
West Walker	Topaz	59	52	38	52	35
East Walker	Bridgeport	42	37	26	38	27

^{* 1950-62}

TOTAL RESERVOIR STORAGE

Developed from Wild Horse, Rye Patch, Tahoe, Boca, Lahontan, Topaz, and Bridgeport Reservoirs in 1000's Acre-Feet

MONTH	1962-63	1963-64	1964-65	1965-66	1966-67	1967-68	Average 1948-62
October 1	338	702	497	1135	559	965	572
January 1	408	748	789	1114	593	904	622
February 1	579	776	922	1051	736	939	670
March 1	690	774	949	1035	792	1025	725
April 1	765	774	1002	1054	943	1080	776
May 1	840	818	1103	1089	978	1074	834

TOTAL USABLE CAPACITY 1,372

^{**} Flood control use allocation of 20,000 acre-feet between November 1 and April 10.

SELECTED CURRENT STREAMFLOW STATIONS

May 1, 1968

Owyhee near Owyhee, Nev.

Truckee at Farad, Calif.

W. Walker near Coleville, Calif.

Humboldt at Palisade, Nev.

Carson near Carson City, Nev.

Virgin at Littlefield, Ariz.

SELECTED PRECIPITATION STATIONS°

V										
PRECIPITATION as PERCENT of the 1948-62 AVERAGE										
STATION	LAST MONTH	WATER YEAR ^b TO DATE	STATION	LAST MONTH	WATER YEAR ^b TO DATE					
Cedarville (Calif.)	50	77	Owyhee	111	84					
Tahoe City (Calif.)	16	73	Elko	87	104					
Meyers (Calif.)	30	89	Ely	210	105					
Bishop (Calif.)	22	39	Austin	72	58					
Reno	3	69	Tonopah	60	194					
Lovelock	T	58	Caliente	40	77					
Winnemucca	68	69	Las Vegas	71	72					

U.S.D.A. SOIL CONSERVATION SERVICE DAILY RADIO REPORTS BY AUTOMATIC SNOW MEASURING STATION JUNE Little Truckee Watershed DAILY 8:00 A.M. OBSERVATIONS AUTOMATIC SNOW PILLOW 7000 Feet Elevation INDEPENDENCE CAMP 0 30 APRIL 28 10 20 FEBRUARY 10 20 JANUARY 10 20 DECEMBER 08 20 0 2 9 20 40 30 INCHES OF WATER IN SNOWPACK

U.S.D.A. SOIL CONSERVATION SERVICE DAILY RADIO REPORTS BY AUTOMATIC SNOW MEASURING STATION DAILY 8:00 A.M. OBSERVATIONS West Walker Watershed AUTOMATIC SNOW PILLOW 8800 Feet Elevation SONORA PASS BRIDGE 30 0 20 MARCH 10 20 FEBRUARY 10 20 JANUARY 10 20 DECEMBER 80 20 09 30 20 0 20 64 INCHES OF WATER IN SNOWPACK

SNOW WATER ACCUMULATION IN NEVADA

Percent of average maximum accumulation

1968

SNOW WATER ACCUMULATION IN NEVADA

Percent of average maximum accumulation

1968

NOTE _____ 1968 ____ 1948-62 Average

Nevada Snow Surveys

May 1, 1968

	<u> </u>							
			lay 1, 19		Water Content (Ir			hes)
UATED CHED and		Date of	Snow	Water	May 1	Mary 1	May 1	App#1 1
WATERSHED and Snow Course	Elev.	Survey	Depth (In.)	Content (In.)	May 1 1967	May 1 1966	1948-62 Av.	April 1 1968
Silow Course	Liev.	Sur vey	(1110)	(1110)	1907	1900	AV.	1900
WALKER-CARSON								
Blue Lakes	8000	4/25	44	20.4	60.0	20.4	29.9	25.1
Carson Pass, Upper	8600	4/26	37	18.2	62.8	19.1	29.9	28.5
Sonora Pass	8800	4/25	23	10.2	42.6	6.4	16.6 *	17.8
Virginia Lakes	9500	4/25	Course	-	37.5	6.6	11.5 *	10.6
Virginia Lakes (Alt.)	9500	4/25	17	7.1				
TAHOE								
Echo Summit	7500	4/29	14	6.6	54.2	2.4	25.3	22.5
Freel Bench	7300	4/26	0	0.0	21.5			6.9
Hagans Meadow	8000	4/26	1	0.4	32.4			12.6
Marlette Lake	8000	4/30	20	8.9	40.6			19.7
Ward Creek #2	7000	5/1	42	20.2				32.4
Ward Creek #3	6750	5/1	36	17.2	64.5			29.9
TRUCKEE								
Donner Summit	6900	4/25	30	10.5	62.8	11.8	28.4	30.9
Fordyce Lake	6500	4/25	48	24.2	64.2	23.6	32.7	34.7
Furnace Flat	6700	4/25	58	30.9	71.3	30.5	40.3	43.0
Independence Camp	7000	4/29	7	3.3	41.3		16.5 *	20.2
Independence Creek	6500	4/29	4	1.6			6.6 *	10.9
Squaw Valley #2	7500	4/27	74	35.4	82.1			40.4
HUMBOLDT								
Fry Canyon	6700	5/3	0	0.0	6.0	0.0	1.1 *	0.0
Rodeo Flat	6800	5/3	Ö	0.0	4.6	0.0	1.4 *	0.0
Tremewan Ranch	5700	5/3	0	0.0	0.0	0.0	0.0 *	0.0
Green Mountain	8000	5/1	T	T				9.6
Lamoille #1	7100	4/29	T	T				2.1
Lamoille #2	7300	4/29	0	0.0				T
Lamoille #3	7700	4/29	13	5.5				7.4
Lamoille #4	8000	4/29	33	13.5				10.5
Lamoille #5	8700	4/29	57	23.6				20.8
SURPRISE VALLEY								
Cedar Pass	7100	4/29	14	6.0	22.3	5.0	9.5 *	12.2

(Continued)

NEVADA SNOW SURVEYS (Continued)

May 1, 1968

		Ma	y 1, 19	68	Wa	Water Content (Inches)			
		Date	Snow	Water			May 1		
WATERSHED and		of	Depth	Content	May 1	May 1	1948-62	April 1	
Snow Course	Elev.	Survey	(In.)	(In,)	1967	1966	Av.	1968	
WHITE PINE COUNTY									
Berry Creek	9100	4/29	45	15.5	21.8	4.9	14.7	14.1	
Bird Creek	7500	4/29	0	0.0		0.0		2 . 5	
SNAKE-OWYHEE									
Bear Creek	7800	4/29	37	15.2a	27.0a	10.2a	21.0 *	16.6	
Big Bend	6700	5/3	0	0 . 0	T	0.0	1.3 *	T	
Gold Creek	6600	5/3	0	0.0	0.0	0.0	0.0 *	0.0	
Jack Creek, Lower	6800	4/30	0	0.0	T	0.0	0.0 %	T	
Jack Creek, Upper	7250	4/30	0	0.0	11.6	0.0	3.5 *	4.3	
Jacks Peak	8420	4/30	55	21.7	31,4	20.1	28.5 *	19.4	
Taylor Canyon	6200	4/30	0	0.0	0.0	0.0	0.0 *	0 . 0	
Goat Creek	8800	4/29	40	16,4a	25.4a	6.4a	19.4 *	14.0	
Hummingbird Springs	8945	4/29	50	20.5a	32.6a	11.3a	25.1 *	17.3	
Pole Creek R. S.	8330	4/29	54	19.7	24.2	11.0	22.2 *	15.8	
Red Point	7940	4/29	0	0.0a	18,0a	0.0a		7.0a	

^{*} Adjusted average.

Ą.

SOIL MOISTURE

		Profile	e (Inches)	So	Soil Moisture (Inches)				
					This	Last	2 Years		
STATION	Elevation	Depth	Capacity	Date	Year	Year	Ago		
NORTHEAST NEVADA									
Big Bend	6700	48	16.7	5/3	16.4	15.9	16.5		
Jack Creek, Lower	6800	48	8.7	4/30	8.3	8.3	8.1		
Rodeo Flat	6800	42	11.0	5/3	10.9	9.2	11.0		
Taylor Canyon	6200	48	15.1	4/30	14.6	13,2	14.9		
SIERRAS									
Hagans Meadow	8000	36	3.65	4/26	3.2	3.3			
Independence Camp	7000	34	6.10	4/29	5.5	5.3	5,7		
Marlette Lake	8000	50	3.70	4/30	3,3	3,6			
Sonora Pass	8800	48	8.30	3/22	8.3	8.3			
Ward Creek	7000	49	5.80	5/1	5.2				

a Aerial snow depth gage; water content estimated.

DELAYED DATA

SNOW SURVEYS

Snow Course	Elevation	Date of Survey	Snow Depth (Inches)	Water Content (Inches)
Amoriaan Roomty	7800	4/9/68	9	3.1a
American Beauty Columbia Basin	6650	4/9/68	0	0,0
			_	
Fawn Creek	7000	4/9/68	0	0.0a
Hole-in-Mountain	7900	3/31/68	26	10.6
Merritt Mountain	7000	4/9/68	0	0.0a
Pole Canyon	9140	4/9/68	34	12.6a
Robinson Lake	9200	4/9/68	14	5.0a
Stag Mountain	7800	4/9/68	0	0.0a
Tent Mountain #1	8500	4/9/68	0	0.0a
Tent Mountain #2	7200	4/9/68	0	0,0a
Toe Jam	7700	4/9/68	6	2.0a

Agencies Cooperating in Collecting Data Contained in this Bulletin

FEDERAL

Agricultural Research Service
Army
Bureau of Reclamation
Fish and Wildlife Service
Forest Service
Geological Survey
Navy
Soil Conservation Service
U.S. District Court - Federal Water Master
Weather Bureau

STATE

California Cooperative Snow Surveys
California Department of Parks and Recreation
California Department of Water Resources
Colorado River Commission of Nevada
Idaho Cooperative Snow Surveys
Nevada Association of Soil Conservation Districts
Nevada Cooperative Snow Surveys
Nevada Department of Conservation & Natural Resources
Division of Water Resources
Nevada State Forester-Firewarden
Oregon Cooperative Snow Surveys
University of Nevada
Utah Cooperative Snow Surveys
White Mountain Research Station, Univ. of California

PRIVATE

Amalgamated Sugar Company
Kennecott Copper Corporation
Nevada Irrigation District
Owyhee Project North Board of Control
Owyhee Project South Board of Control
Pacific Gas & Electric Company
Pershing County Water Conservation District
Sierra Pacific Power Company
Squaw Valley Development Company
Truckee-Carson Irrigation District
Walker River Irrigation District
Washoe County Water Conservation District

Other organizations and individuals furnish valuable information for the snow survey reports. Their Cooperation is gratefully acknowledged.

UNITED STATES DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE P.O. Box 4850

RENO, NEVADA 89505

OFFICIAL BUSINESS

FEDERAL - STATE - PRIVATE

COOPERATIVE SNOW SURVEYS

Furnishes the basic data necessary for forecasting water supply for irrigation, domestic and municipal water supply, hydro-electric power generation, navigation, mining and industry

"The Conservation of Water begins with the Snow Survey"

POSTAGE AND FEES PAID U. S. DEPARTMENT OF AGRICULTURE

###