## 19Z601- MACHINE LEARNING

## **UNIT-1 INTRODUCTION**

INTRODUCTION: Types of Learning - Designing a learning system - concept learning - Find-s Algorithm - Candidate Elimination - Data Preprocessing - Cleaning - Data Scales - Transformation - Dimensionality Reduction. (9)

Presented by
Ms.Anisha.C.D
Assistant Professor
CSE

## TYPES OF LEARNING

- Learning = Improving with experience at some task
  - Improve over Task T
  - With respect to performance measure P
  - Based on Experience E
- Examples of Learning Problems:

| Checkers Learning Problem                | Task T: Playing Checkers Performance Measure P: Percent of games won against opponents Training Experience E: Playing practice games against itself                                                                  |
|------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Handwriting Recognition Learning Problem | Task T: Recognizing and classifying handwritten words within images  Performance Measure P: Percent of words classified correctly  Training Experience E: A database of handwritten words with given classification. |

## DESIGNING A LEARNING SYSTEM

- 1. Choosing a Training Experience
- 2. Choosing the Target Function
- 3. Choosing the Representation of the Target Function
- 4. Choosing a Function Approximation Algorithm
  - 4.1 Estimating Training Values
  - 4.2 Adjusting weights
- 5. The Final Design

## CONCEPT LEARNING

 Concept Learning is the learning process carried out by inferring a Boolean valued function from training examples of its input and output.

## FIND S ALGORITHM

- 1. Initialize h to the most specific hypothesis in H
- 2. For each positive training instance x
  - For each attribute constraint  $a_i$  in hIf the constraint  $a_i$  in h is satisfied by xThen do nothing

    Else replace  $a_i$  in h by the next more general constraint that is satisfied by x
- 3. Output hypothesis h

#### CANDIDATE ELIMINATION ALGORITHM

- Input: Set of instances in the training dataset
- Output: Hypothesis G and S
- Step 1: Initialize G, to the maximally general hypotheses.
- Step 2: Initialize S, to the maximally specific hypotheses.
  - Generalize the initial hypothesis for the first positive instance
- Step 3: For each subsequent new training instance
- If the instance is positive
  - Generalize S to include the positive instance
  - > Check the attribute value of the positive instance and S
    - If the attribute value of positive instance and S are difference, fill that field value with '?'
    - If the attribute value of positive instance and S are same, then do no change
- If the instance is negative
  - Specialize G to exclude the negative instance,
  - Add to G all minimal specialization to exclude the negative example and be consistent with S
    - If the attribute value of S and the negative instance are different, then fill that attribute value with S value
    - If the attribute value of S and negative instance are same, no need to update 'G' and fill that attribute value with '?
  - Remove from S all inconsistent hypotheses with the negative instance.

### CANDIDATE ELIMINATION METHOD - PROBLEM

PROBLEM (QUESTION):

| Example | Sky   | AirTemp | Humidity | Wind   | Water | Forecast | EnjoySport |
|---------|-------|---------|----------|--------|-------|----------|------------|
| 1       | Sunny | Warm    | Normal   | Strong | Warm  | Same     | Yes        |
| 2       | Sunny | Warm    | High     | Strong | Warm  | Same     | Yes        |
| 3       | Rainy | Cold    | High     | Strong | Warm  | Change   | No         |
| 4       | Sunny | Warm    | High     | Strong | Cool  | Change   | Yes        |

#### **STEP 1 (CANDIDATE ELIMINATION TRACE 1):**

Define the initial boundary sets  $S_o$  and  $G_o$  corresponding to the most specific and most general hypotheses.

Training examples 1 and 2 are positive and force the S boundary to be more general and has no effect on G boundary.



# CANDIDATE ELIMINATION METHOD – PROBLEM (CONTD..)

#### **STEP 2 (CANDIDATE ELIMINATION TRACE 2):**

- Training example 3 is a negative example that forces G<sub>2</sub> boundary to be more specialized.
- Maximally general hypothesis are included in G<sub>3</sub>.



## CANDIDATE ELIMINATION METHOD – PROBLEM (CONTD..)

#### **STEP 3 (CANDIDATE ELIMINATION TRACE 3):**

- Training example 4 is a positive example, positive training example generalize the S boundary from  $S_3$  to  $S_4$
- One member of G<sub>3</sub> must also be deleted, because it is no longer more general than the S<sub>4</sub> boundary.



# CANDIDATE ELIMINATION METHOD – PROBLEM (CONTD..)

#### **FINAL STEP (FINAL VERSION SPACE)**

The final version space for the EnjoySport concept learning problem.



## DATA PREPROCESSING

- Data cleaning :
  - Handling Missing data Data imputation
  - Handling Noisy data Data filtration
- Data Transformation :
  - One Hot Encoding
  - Binning
  - Normalization
  - Standardization
- Data Reduction
  - Feature Selection
  - Feature Extraction

## **CLEANING**

- Handling Missing Values Data Imputation
  - Replacing the missing values with mean or median.
  - Replacing the missing values with constants.
  - Replacing the missing values with information from other columns.
- Handling Noisy Data Denoising or filtering (Removes outliers)
  - Smoothing
  - Binning

## DATA SCALES

- Nominal Scale: Named Variables
- Ordinal Scale: Named + Ordered Variables
- Interval Scale: Named + Ordered + Proportionate Intervals between variables
- Ratio Scale: Named + Ordered + Proportionate Interval between Intervals + accommodate absolute zero

## **TRANSFORMATION**

• The problem of transforming raw data into dataset is called feature engineering.

| One Hot Encoding | Transformation of categorical feature into several binary codes is called One Hot Encoding.  Example: Categorical Feature "Colors" with three possible values: Red, Yellow and Green, Transform this feature into a vector of three numerical values. Red = [1,0,0] Yellow = [0,1,0] Green = [0,0,1] |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Binning          | Transformation of numerical feature into categorical one. Binning is also called bucketing is the process of converting a continuous feature into multiple binary features called bines or buckets.                                                                                                  |
| Normalization    | Process of converting an actual range of values which a numerical feature can take into a standard range of values, typically in the interval [-1,1] or [0,1]                                                                                                                                        |
| Standardization  | Z-score Normalization is the procedure during which the feature values are rescaled so that they have the properties of a standard normal distribution with mean = 0 and standard deviation =1.                                                                                                      |

## DIMENSIONALITY REDUCTION

• There are two methods for dimensionality reduction :

| METHODS            | DESCRIPTION                                                                                                               |
|--------------------|---------------------------------------------------------------------------------------------------------------------------|
| Feature Selection  | Finding K of the d dimension which gives more information and discard (d-k) dimension.  Example: Subset Feature Selection |
| Feature Extraction | Finding new set of k dimensions which is a combination of original d dimensions.  Examples:                               |
|                    | Linear Projection Methods:                                                                                                |
|                    | <ul> <li>Principal Component Analysis (PCA) –</li> <li>Unsupervised Learning</li> </ul>                                   |
|                    | <ul> <li>Linear Discriminant Analysis – Supervised<br/>Learning</li> </ul>                                                |