

Substitution model averaging

with bModelTest

Big question when setting up a BEAST2 analysis:

Which nucleotide substitution model do I have to chose?

Let the data tell us: bModel Test

Recap: Nucleotide substitution models

I. Why do we need nucleotide models at all?

Problem of phylogenetics:

We observe sequences but not their evolutionary history. Thus we have to take all possible evolutionary trajectories into account (Markov chain model).

Transition probability matrix:

$$P(t) = \left(p_{XY}(t)\right)_{X,Y \in \{A,C,T,G\}} = e^{Qt}$$
 rates

matrix with

substitution

Bayes' formula for phylodynamics:

(presentation of Louis du Plessis)

nucleotide substitution rate matrix

Recap: Nucleotide substitution models

II. How are they parameterised?

Recap: Nucleotide substitution models

II. How are they parameterised?

In general:
$$Q = \begin{pmatrix} A & C & G & T \\ A & -(a+b+c) & a & b & c \\ C & d & -(d+e+f) & e & f \\ G & g & h & -(g+h+i) & i \\ T & j & k & l & -(j+k+l) \end{pmatrix}$$

bModelTest: only considers time reversible models:

$$Q = \begin{pmatrix} - & r_{ac}\pi_{C} & r_{ag}\pi_{G} & r_{at}\pi_{T} \\ r_{ac}\pi_{A} & - & r_{cg}\pi_{G} & r_{ct}\pi_{T} \\ r_{ag}\pi_{A} & r_{cg}\pi_{C} & - & r_{gt}\pi_{T} \\ r_{at}\pi_{A} & r_{ct}\pi_{C} & r_{gt}\pi_{G} & - \end{pmatrix} = \begin{pmatrix} - & r_{ac} & r_{ag} & r_{at} \\ r_{ac} & - & r_{cg} & r_{ct} \\ r_{ag} & r_{cg} & - & r_{gt} \\ r_{at} & r_{ct} & r_{gt} & - \end{pmatrix} \times \begin{pmatrix} \pi_{A} & 0 & 0 & 0 \\ 0 & \pi_{C} & 0 & 0 \\ 0 & 0 & \pi_{G} & 0 \\ 0 & 0 & 0 & \pi_{T} \end{pmatrix}$$

bModelTest: only considers time reversible models:

$$Q = \begin{pmatrix} - & r_{ac}\pi_{C} & r_{ag}\pi_{G} & r_{at}\pi_{T} \\ r_{ac}\pi_{A} & - & r_{cg}\pi_{G} & r_{ct}\pi_{T} \\ r_{ag}\pi_{A} & r_{cg}\pi_{C} & - & r_{gt}\pi_{T} \\ r_{at}\pi_{A} & r_{ct}\pi_{C} & r_{gt}\pi_{G} & - \end{pmatrix} = \begin{pmatrix} - & r_{ac} & r_{ag} & r_{at} \\ r_{ac} & - & r_{cg} & r_{ct} \\ r_{ag} & r_{cg} & - & r_{gt} \\ r_{at} & r_{ct} & r_{gt} & - \end{pmatrix} \times \begin{pmatrix} \pi_{A} & 0 & 0 & 0 \\ 0 & \pi_{C} & 0 & 0 \\ 0 & 0 & \pi_{G} & 0 \\ 0 & 0 & 0 & \pi_{T} \end{pmatrix}$$

bModelTest: Parameterisation rates are grouped into categories of same value: for example:

Named substitution models in BEAUti: Q=

JC69

$$egin{aligned} egin{aligned} iggl(& - & eta \pi_C & lpha \pi_G & eta \pi_T \ eta \pi_A & - & eta \pi_G & lpha \pi_T \ lpha \pi_A & eta \pi_C & - & eta \pi_T \ eta \pi_A & lpha \pi_C & eta \pi_G & - \end{aligned}$$

TN93

$$egin{pmatrix} - & eta \pi_C & lpha_1 \pi_G & eta \pi_T \ eta \pi_A & - & eta \pi_G & lpha_2 \pi_T \ lpha_1 \pi_A & eta \pi_C & - & eta \pi_T \ eta \pi_A & lpha_2 \pi_C & eta \pi_G & - \end{pmatrix}$$

GTR

$$\begin{pmatrix} - & r_{ac}\pi_{C} & r_{ag}\pi_{G} & r_{at}\pi_{T} \\ r_{ac}\pi_{A} & - & r_{cg}\pi_{G} & r_{ct}\pi_{T} \\ r_{ag}\pi_{A} & r_{cg}\pi_{C} & - & r_{gt}\pi_{T} \\ r_{at}\pi_{A} & r_{ct}\pi_{C} & r_{gt}\pi_{G} & - \end{pmatrix}$$

$$\begin{pmatrix} r_{ac} & r_{ag} & r_{at} & r_{cg} & r_{ct} & r_{gt} \\ 1 & 2 & 3 & 4 & 5 & 6 \end{pmatrix}$$

$$\begin{pmatrix} r_{ac} & r_{ag} & r_{at} & r_{cg} & r_{ct} & r_{gt} \\ 1 & 2 & 3 & 4 & 5 & 6 \end{pmatrix}$$

$$\begin{pmatrix} r_{ac} & r_{ag} & r_{at} & r_{cg} & r_{ct} & r_{gt} \\ 1 & 2 & 3 & 4 & 5 & 6 \end{pmatrix}$$

III. Accounting for site variation

+ Γ replace $r_{XY} \mapsto r_{XY}R$ where $R \sim \Gamma(\alpha)$

III. Accounting for site variation

+ Γ replace $r_{XY}\mapsto r_{XY}R$ where $R\sim\Gamma(\alpha)$

In BEAUti:

https://taming-the-beast.org/tutorials/Substitution-model-averaging/