Résumé

Signaux périodiques

Théorème de Fourier

décomposition en série de Fourier du signal s(t):

$$s(t) = a_0 + \sum_{k=1}^{\infty} a_k \cos(k\omega t) + b_k \sin(k\omega t)$$

$$s_{RMS}^2 = \langle s^2 \rangle = a_0^2 + \frac{1}{2} \sum_{1}^{\infty} a_k^2 + b_k^2$$

Analyse spectrale

Représentation temporelle

II <u>Filtrage linéaire</u>

Filtre du 1er ordre

Avec dans le tableau suivant H_0 le gain statique, $x=\frac{\omega}{\omega_0}$ et $\omega_0=\frac{1}{RC}$.

Passe-bas du 1er ordre	Passe-haut du 1er ordre
$\underline{\mathcal{H}}(x) = \frac{H_0}{1+jx}$ $G(x) = \frac{H_0}{\sqrt{1+x^2}}$ $G_{dB}(x) = 20\log(H_0) - 10\log(1+x^2)$ $\phi(x) = -\arctan(x)$	$\underline{\mathcal{H}}(x) = \frac{H_0 j x}{1 + j x}$ $G(x) = \frac{H_0 x}{\sqrt{1 + x^2}}$ $G_{dB}(x) = 20 \log(H_0) + 20 \log(x) - 10 \log(1 + x^2)$ $\phi(x) = \frac{\pi}{2} - \arctan(x)$
Pulsation de coupure $\omega_c = \omega_0$	Pulsation de coupure $\omega_c = \omega_0$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
0	80 60 60 10 ¹ 10 ² 10 ¹ 10 ⁰ 10 ¹ 10 ² log(x)

Filtre du 2ème ordre

Avec dans le tableau suivant H_0 le gain statique, $x=\frac{\omega}{\omega_0}$ et $\omega_0=\frac{1}{\sqrt{LC}}$ et $Q=\frac{1}{R}\sqrt{\frac{L}{C}}$

Passe–haut du 2ème ordre
$\mathcal{H}(x) = \frac{-H_0 x^2}{1 + jx/Q - x^2}$ $G(x) = \frac{H_0 x^2}{\sqrt{(1 - x^2)^2 + (x/Q)^2}}$ $G_{dB}(x) = 20 \log(H_0) + 40 \log(x) - 10 \log((1 - x^2)^2 + (x/Q)^2)$ $\phi(x) = \frac{\pi}{2} - \arctan\left(\frac{x^2 - 1}{x/Q}\right)$
Résonance si $Q > 1/\sqrt{2}$ en $x_r = \frac{1}{\sqrt{1 - 1/2Q^2}}$ alors $G_{dB,max} = 20 \log(H_0) + 10 \log\left(\frac{4Q^4}{4Q^2 - 1}\right)$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

$$\frac{\mathcal{H}(x) = \frac{H_0 j x/Q}{1 + j x/Q - x^2} = \frac{H_0}{1 + j Q(x - 1/x)}}{G(x) = \frac{H_0 x/Q}{\sqrt{(1 - x^2)^2 + (x/Q)^2}} = \frac{H_0}{\sqrt{1 + Q^2(x - 1/x)^2}}}$$

$$G_{dB}(x) = 20 \log(H_0/Q) + 20 \log(x) - 10 \log((1 - x^2)^2 + (x/Q)^2) = 20 \log(H_0) - 10 \log(1 + Q^2(x - 1/x)^2)$$

$$\phi(x) = -\arctan\left(\frac{1 - x^2}{x/Q}\right) = -\arctan(Q(x - 1/x))$$

Pulsation de coupure
$$x_c=\pm\frac{1}{2Q}+\sqrt{\frac{1}{4Q^2}+1}$$
 Bande passante $\Delta\omega=\Delta_c\omega_0=\frac{\omega_0}{Q}$
$$G_{dB,max}=G_{dB}(1)=H_0$$

