DATA FLOW DIAGRAM

Elec 4309 Senior Design

Wendell H Chun Oct. 31, 2017

Remaining Class Schedule

Analysis Modeling

- Two primary methods today:
 - Structured Analysis
 - Object-oriented analysis
- Some important considerations:
 - Analysis products must be maintainable
 - Effective partitioning is essential
 - Graphics should be used whenever possible
 - Distinguish between logical and implementation

Structured Analysis

- Elements of Analysis:
 - Describe what customer requires
 - Establish basis for creating (software) design
 - Define requirements that can be validated

Graphical View of Model

Data Modeling

- The model consists of:
 - Data object [types]
 - Attributes
 - Relationships
- Data objects:
 - A representation of almost any composite information that must be understood by software.

Data Modeling

Attributes

- Attributes define the properties of a data object and take on one of three different characteristics:
 - Name an instance of the data object
 - Describe the instance

Data Modeling

- Relationships
 - Defined pairwise -- many varieties

Cardinality and Modality

Cardinality

- How many occurrences of object X are related to how many occurrences of object Y
 - One-to-one (1:1)
 - One-to-many (1:N)
 - Many-to-many (M:N)
- Modality
 - $= 0 \rightarrow$ optional relationship
 - $= 1 \rightarrow$ relationship must appear

Example

Mandatory: in order to have a repair action, we must have a customer

Optional: there may be a situation in which a repair action is not necessary

Entity Relation Diagrams (ERD)

- Cornerstone of the data model includes:
 - data objects,
 - attributes,
 - relationships, and
 - various type indicators

ERD Example

FIGURE . An expanded ERD

Data Object Hierarchies

Associating Data Objects

Functional Modeling

Data Flow Diagrams (DFD)

- A graphical technique that depicts information flow and the transforms applied as data move from input to output
- Not the same as flow charts. Does not show the logic of the transformations
- Can be used at any level of abstraction

General Information Flow Model

FIGURE Information flow model

Basic Notation

A producer or consumer of information that resides outside the bounds of the system to be modeled

A transformer of information (a function) that resides within the bounds of the system to be modeled

A data object; the arrowhead indicates the direction of data flow

A repository of data that is to be stored for use by one or more processes; may be as simple as a buffer or queue or as sophisticated as a relational database

External Entity

A producer or consumer of data

Examples: a person, a device, a sensor

Another example: computer-based system

Data must always originate somewhere and must always be sent to something

Process

A data transformer (changes input to output)

Examples: compute taxes, determine area, format report, display graph

Data must always be processed in some way to achieve system function

Data Flow

Data flows through a system, beginning as input and be transformed into output.

Data Stores

Data is often stored for later use.

Data Flow Diagramming: Guidelines

- All icons must be labeled with meaningful names
- The DFD evolves through a number of levels of detail
- Always begin with a context level diagram (also called level 0)
- Always show external entities at level 0
- Always label data flow arrows
- Do not represent procedural logic

Constructing a DFD - I

- Review the data model to isolate data objects and use a grammatical parse to determine "operations"
- Determine external entities (producers and consumers of data)
- Create a level 0 DFD

Level 0 DFD Example

Constructing a DFD - II

- Write a narrative describing the transform
- Parse to determine next level transforms
- "balance" the flow to maintain data flow continuity
- Develop a level 1 DFD
- Use a 1:5 (approx.) expansion ratio

The Data Flow Hierarchy

Flow Modeling Notes

- Each bubble is refined until it does just one thing
- The expansion ratio decreases as the number of levels increase
- Most systems require between 3 and 7 levels for an adequate flow model
- A single data flow item (arrow) may be expanded as levels increase (data dictionary provides information)

Process Specification (PSPEC)

DFDs: A Look Ahead

Real Time Extensions

- Fundamental issue The time at which results are produced is a part of the correctness of the computation.
- Hatley/Pirbhai notation:

A control item or event; takes on a boolean or discrete value; the arrowhead indicates the direction of data flow.

FIGURE

Extended structured analysis notation for real-time systems developed by Hatley and Pirbhai [HAT87]

The vertical bar is a reference to a control specification (CSPEC) that describes the behavior of a system and defines how processes are activated as a consequence of events.

Ward/Mellor Notation

A data object that is input or output from a process on a "continuous" basis

A transformer of control or "events"; accepts control and input and produces control as output

A control item or event; takes on a boolean or discrete value; the arrowhead indicates the direction of data flow

A repository of control items that are to be stored for use by one or more processes

FIGURE

Extended structured analysis notation for real-time systems developed by Ward and Mellor [WAR85]

Multiple equivalent instances of the same process; used when multiple processes are created in multitasking system

Example

FIGURE

Time-continuous data flow

Example

FIGURE 1

Data and control flows using Ward and Mellor [WAR85] notation

Hatley and Pirbhai Extensions

- Use separate data flow diagram (DFD) and control flow diagram (CFD)
- Data flow diagrams:
 - Used to represent data and the processes that manipulate it
- Control flow diagrams:
 - Show how events flow among processes and show those external events that cause various processes to be activated

Control Flow Diagrams

- Represents "events" and the processes that manage events
- An "event" is a Boolean condition that can be ascertained by:
 - Listing all sensors that are "read" by the software.
 - Listing all interrupt conditions.
 - Listing all "switches" that are actuated by an operator.
 - Listing all data conditions.
 - Recalling the noun/verb parse that was applied to the processing narrative, review all "control items" as possible CSPEC inputs/outputs.

The Control Model

- The control flow diagram is "superimposed" on the DFD and shows events that control the processes noted in the DFD
- Control flows—events and control items—are noted by dashed arrows
- A vertical bar implies an input to or output from a control spec (CSPEC) — a separate specification that describes how control is handled
- A dashed arrow entering a vertical bar is an input to the CSPEC
- A dashed arrow leaving a process implies a data condition
- A dashed arrow entering a process implies a control input read directly by the process

Relationship Between Models

FIGURE

The relationship between data and control models [HAT87]

Example

DENVER | ANSCHUTZ MEDICAL CAMPUS

CFD for Photocopier

Control Specification (CSPEC)

The CSPEC can be:

combinatorial spec

Process Activation Tables (PAT)

 Finite State Machines (FSMs) can be used only when a finite number of inputs having a finite set of values can lead to a finite number of outputs (or set of actions) having a finite set of values.

Guidelines for Building a CSPEC

list all sensors that are "read" by the software
list all interrupt conditions
list all "switches" that are actuated by the operator
list all data conditions
recalling the noun-verb parse that was applied to the software statement of scope, review all "control items" as possible CSPEC inputs/outputs
describe the behavior of a system by identifying its states; identify how each state is reach and defines the transitions between states
focus on possible omissions a very common error in specifying control, e.g., ask: "Is there any other way I can get to this state or exit from it?"

Behavioral Modeling

State Transition Diagrams

- A State is any observable mode of behavior
 - e.g., reading commands, computing control,
 waiting for next time event
- States represented as rectangles
- Arrows represent transitions
- Value above arrow identifies event causing transition
- Value below arrow indicates ensuring action

State Transition Diagram idle full and start invoke read-op-input invoke manage-coping reading commands copies done full invoke read-op-input invoke read-op-input reloading making copies paper <u>empty</u> invoke reload paper jammed not jammed invoke perform problem-diagnosis invoke read-op-input diagnosing problem

Creating an ERD

- List entities that customer addresses
- For each, determine the connections
- For each connection, create one or more object-relationship pairs
- For each relationship, determine cardinality and modality
- Define the attributes of each entity
- Formalize and review ERD
- Iterate

Home Security System Example

- Initial entities
 - Homeowner, control panel, sensors, security system and monitoring service

Home Security System Example

- Relationships between sensor and security systems:
 - Security system monitors sensor
 - Security system enables/disables sensor
 - Security system tests sensor
 - Security system programs sensor

FIGURE

Developing relationships and cardinality/modality

Creating a Data Flow Model

- First create level 0 diagram:
 - Depict software system as single bubble
 - Show primary inputs and outputs
- Identify processes, data objects, and data stores to be expanded at next level
- Label all arrows with meaningful names
- Information flow continuity must be maintained
- Refine only one bubble at a time

Home Security System Example

Refinement

- Analyze textual description of bubble:
 - Verbs are often processes
 - Nouns are often external entities, data or control objects or data stores
- Examples:
 - Control panel is used to program and configure the system
 - Upon a sensor event, the software invokes an alarm

Home Security System Example

Home Security System Example

Creating Control Flow Models

- Strip arrows from DFD
- Add event and control items. E.g., try:
 - List all sensors read by the software
 - List all interrupt conditions
 - List all operator actuated switches
 - List all data conditions
 - Check noun-verb parse for possible CSPEC I/O
 - Identify states, how each is reached and transitions
 - Focus on possible omissions

Level 1 CFD for Safe-Home

Control Specification

FIGURE State-transition

State-transition diagram for SafeHome

DENVER | ANSCHUTZ MEDICAL CAMPUS

Process Activation Table

						_
input events						
sensor event	0	0	0	0	1	0
blink flag	0	0	1	1	0	0
start stop switch	0	1	0	0	0	0
display action status						•
complete	0	0	0	1	0	0
in-progress	0	0	1	0	0	0
time out	0	0	0	0	0	1
output alarm signal	0	0	0	0	1	0
process activation			· ·····	· · · · · · · · · · · · · · · · · · ·		
monitor and control system	0	1	0	0	1	1
moment and control system						_
-	0	1	0	0	0	0
activate/deactivate system display messages and status	$0 \\ 1$	1 0	$0 \\ 1$	$egin{array}{c} 0 \ 1 \end{array}$	0 1	0 1

FIGURE

Process activation table for SafeHome

Process Specifications

- Describes all flow model processes at final level of refinement:
 - Narrative text
 - Program design language description
 - Mathematical equations
 - Tables
 - Diagrams
 - Charts

Data Dictionary

- Why a data dictionary? Need an organized way to represent data & control characteristics
- Usual contents:
 - Name
 - Alias
 - Where and how used
 - Content description (of composite items)
 - Supplementary information, e.g., restrictions, limitations, preset values

Example

Name: Shuttle pose

Aliases: Position-orientation

vector

Where used: Display of Shuttle on map

Content: x, y, z position wrt to

Earth's Center, roll, pitch,

yaw

Supplementary Info: Elevation must be above

140 nautical miles

Data Dictionary

- Common tools supporting DD:
 - Preventing creation of duplicate names
 - Enforce naming conventions
 - Printing dictionary
 - Determine the range of impact of changes, i.e.,
 which processes are affected
 - Assist configuration management

Summary

- Key elements
 - Data modeling:
 - Data objects, attributes and relationships
 - Cardinality and modality
 - Entity-relationship diagrams
 - Functional modeling:
 - Data and control flow diagrams
 - Behavioral modeling:
 - State transition diagrams
 - Data Dictionary