# Problem Set 3: Molar Mass, Mass Percent, Empirical Formulas

HCHE 111L: Introduction to Elementary Inorganic Chemistry

Due Date: Friday September 8<sup>th</sup>, 2017

### Problem 1

Consider the following isotopic abundance data for argon (Ar) and silicon (Si):

|                    | Argon               |           |                    | Silicon             |           |
|--------------------|---------------------|-----------|--------------------|---------------------|-----------|
| Isotope            | Isotopic Molar Mass | Abundance | Isotope            | Isotopic Molar Mass | Abundance |
| $^{36}\mathrm{Ar}$ | 35.96755  g/mol     | 0.337%    | <sup>28</sup> Si   | 27.97693 g/mol      | 92.23%    |
| $^{38}\mathrm{Ar}$ | 37.96272  g/mol     | 0.063%    | $^{29}\mathrm{Si}$ | 28.97649  g/mol     | 4.67%     |
| $^{40}{ m Ar}$     | 39.96240  g/mol     | 99.600%   | $^{30}\mathrm{Si}$ | 29.97376  g/mol     | 3.10%     |

- a) Use the data to calculate the atomic masses of naturally occurring argon and silicon.
- b) Calculate the number of atoms in 78.2 g of naturally occuring Si.
- c) <sup>42</sup>Ar is one of the longest lived radioactive isotopes of Argon. Mass spectroscopy data yields the following ratio of the mass of <sup>42</sup>Ar to <sup>40</sup>Ar:

$$\frac{\text{Mass of }^{42}\text{Ar}}{\text{Mass of }^{40}\text{Ar}} = 1.05006$$

use this ratio to find the atomic mass of <sup>42</sup>Ar.

## Problem 2

Calculate the mass percent of oxygen in each of the following compounds: (a)  $SO_2$ ; (b)  $Na_2SO_4$ ; (c)  $C_2H_5COOH$ ; (d)  $Al(NO_3)_3$ ; (e)  $NH_4NO_3$ 

### Problem 3

Very small crystals composed of 1000 to 100,000 atoms, called quantum dots, are often investigated for use in electronic devices.

- a) Calculate the mass in grams of a quantum dot consisting of 10,000 atoms of silicon.
- b) Assuming that the silicon dot has a density of 2.3 g/cm<sup>3</sup>, calculate its volume.
- c) Assuming that the dot has the shape of a cube, calculate the length of each edge of the cube.

### Problem 4

What is the molecular formula for each of the following compounds:

a) empirical forumla: NH<sub>2</sub>Cl, molar mass = 51.5 g/mol

b) empirical forumla:  $CH_2$ , molar mass = 84.0 g/mol

c) empirical forumla: HCO<sub>2</sub>, molar mass = 90.0 g/mol

d) empirical forumla:  $C_2H_4O$ , molar mass = 88.0 g/mol

### Problem 5

The koala dines exclusively on eucalyptus leaves. Its digestive system detoxifies the eucalyptus oil, a poison to other animals. The chief constituent in eucalyptus oil is a substance called eucalyptol, which contains 77.87% C, 11.76% H, and the remainder O.

a) What is the empirical formula for this substance?

b) A mass spectrum of eucalyptol reveals its molar mass to be 154 amu. What is the molecular formula for this substance?

#### Problem 6

Coronene is a compound that contains **ONLY** carbon and hydrogen. The space-filling model for this compound is shown below. Combustion analysis of a 1.3g sample of coronene produces 4.58 g of  $CO_2$  and 0.45 g of  $H_2O$ . The molar mass of coronene is 300.35 g/mol.



- a) Using this information, determine the empirical and molecular formulas of coronene.
- b) Another compound with yields the exact same combustion data as coronene, however, has a mass of 100.12 g/mol. Propose a molecular formula for this compound.