CSCI 567-Homework 3

Chengliang Dong (Meng Liu, Kan Wang, Ye Feng and Peehoo Dewan) Wednesday 15th October, 2014

1 Kernelized perceptron

1.1 Linear combination

We will use induction to show this.

Base case: When k = 0, we have, for weight vector w_0 ,

$$w_0 := 0$$
$$= \sum_{i=1}^{m} \alpha_i \phi(x_i)$$

where $\alpha_i = 0, \forall i$

Inductive step: If there exists n s.t. for k = n > 0, we have,

$$w_n = \sum_{i=1}^m \alpha_i \phi(x_i)$$

Then, for k = n + 1, i.e. $(n + 1)^{th}$ iteration, we have, for weight vector w_{n+1} ,

$$w_{n+1} = w_n + sign(w^T \phi(x_i))\phi(x_j)$$

$$= \sum_{i=1}^m \alpha_i \phi(x_i) \pm \phi(x_j)$$

$$= \sum_{i=1, i \neq j}^m \alpha_i \phi(x_i) + (\alpha_j \pm 1)\phi(x_j)$$

$$= \sum_{i=1}^m \alpha'_i \phi(x_i)$$

Therefore, $\forall k \geq 0$, we have,

$$w_k = \sum_{i=1}^m \alpha_i \phi(x_i)$$

1.2 Inner product

Prediction can be written as,

$$y_{i} = sign(w^{T}\phi(x_{i}))$$

$$= sign((\sum_{j=1}^{m} \alpha_{j}\phi(x_{j}))^{T}\phi(x_{i}))$$

$$= sign(\sum_{j=1}^{m} \alpha_{j}\phi(x_{j})^{T}\phi(x_{i}))$$

$$= sign(\sum_{j=1}^{m} \alpha_{j} < \phi(x_{j}), \phi(x_{i}) >)$$

Assignment № 3 Page 1 / 6

1.3 Algorithm

From above two questions, we propose algorithm as follows.

Initialization: initialized all α_i to 0. Iteration: For each training instance i, we calculate,

$$\hat{y}_i = sign(\sum_{j=1}^m \alpha_i < \phi(x_j), \phi(x_i) >)$$

If $\hat{y}_i > y_i$, then update α_i by incrementing it by 1.

$$\alpha_i' = \alpha_i + 1$$

If $\hat{y}_i < y_i$, then update α_i by decrementing it by 1.

$$\alpha_i' = \alpha_i - 1$$

Repeat above process till all $\hat{y}_i = y_i$ or number of iterations reached certain limit.

2 SVM without bias term

2.1 Introduce slack variable

For i^{th} instance, we have,

$$\xi_i = max(0, 1 - y^{(i)}(w^T \phi(x)^{(i)}))$$

2.2 Lagrangian primal form

$$L(w,\xi_i,\alpha,\beta) = \frac{1}{2} \|w\|_2^2 + C \sum_{i=1}^m \xi_i + \sum_{i=1}^m \alpha_i (1 - y^{(i)}(w^T \phi(x)^{(i)}) - \xi_i) + \sum_{i=1}^m \beta_i (-\xi_i)$$

2.3 Link to dual form, primal variable

$$\frac{\partial L(w, \xi_i, \alpha, \beta)}{w_j} = w_j - \sum_{i=1}^m \alpha_i y^{(i)} \phi(x)_j^{(i)} := 0, \forall i$$

$$\frac{\partial L(w, \xi_i, \alpha, \beta)}{\xi_i} = C - (\alpha_i + \beta_i) := 0, \forall i$$
(1)

2.4 Link to dual form, dual variable

$$g(\alpha, \beta) = \frac{1}{2} \|w\|_{2}^{2} + C \sum_{i=1}^{m} \xi_{i} + \sum_{i=1}^{m} \alpha_{i} (1 - y^{(i)} (w^{T} \phi(x)^{(i)}) - \xi_{i}) - \sum_{i=1}^{m} \beta_{i} \xi_{i}$$

$$= \frac{1}{2} \|w\|_{2}^{2} + C \sum_{i=1}^{m} \xi_{i} - \sum_{i=1}^{m} (\alpha_{i} + \beta_{i}) \xi_{i} + \sum_{i=1}^{m} \alpha_{i} (1 - y^{(i)} (w^{T} \phi(x)^{(i)}))$$

$$= \frac{1}{2} \|w\|_{2}^{2} + \sum_{i=1}^{m} \alpha_{i} - \|w\|_{2}^{2}$$

$$= \sum_{i=1}^{m} \alpha_{i} - \frac{1}{2} \|w\|_{2}^{2}$$

$$= \sum_{i=1}^{m} \alpha_{i} - \frac{1}{2} \sum_{k=1}^{n} \sum_{i=1}^{m} \alpha_{i} y^{(i)} \phi(x)_{k}^{(i)} \sum_{j=1}^{m} \alpha_{j} y^{(j)} \phi(x)_{k}^{(j)}$$

Assignment № 3 Page 2 / 6

2.5 Dual form

Therefore, we can write dual form as,

$$\max_{\alpha} \sum_{i=1}^{m} \alpha_{i} - \frac{1}{2} \sum_{k=1}^{n} \sum_{i=1}^{m} \alpha_{i} y^{(i)} \phi(x)_{k}^{(i)} \sum_{j=1}^{m} \alpha_{j} y^{(j)} \phi(x)_{k}^{(j)}$$
s.t. $0 < \alpha_{i} <= C$

2.6 Difference with/without bias term

Due to the absence of bias term, current dual form lacks $\sum_{i=1}^{m} \alpha_i y_i = 0$ in the constraint term.

2.7 Show dual form is a convex optimization problem (concave maximization/convex minimization)

Since the dual form is the summation of a linear function $\sum_{i=1}^{m} \alpha_i$, which is obviously convex and concave functions and a negative L_2 norm $\frac{1}{2} \sum_{k=1}^{n} \sum_{i=1}^{m} \alpha_i y^{(i)} \phi(x)_k^{(i)} \sum_{j=1}^{m} \alpha_j y^{(j)} \phi(x)_k^{(j)} = \frac{1}{2} \|w\|_2^2$, which is also a strictly concave function (if not all x and y are 0 proved in homework 1 and 2 many times). By the properties of function, sum of concave function with a strictly concave function is still strictly concave function, we have the dual problem as a convex optimization problem, with unique solution.

3 Sample questions

3.1 Regularization

First, define weight vector and feature vector (for each instance) as follows,

$$\theta = \begin{pmatrix} \theta_0 \\ \theta_1 \\ \vdots \\ \theta_n \end{pmatrix} \in \mathbb{R}^{n+1}$$

$$x = \begin{pmatrix} 1 \\ x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{R}^{n+1}$$

Second, we minimize objective function as follows,

$$min_w - L + \lambda \|\theta\|_2^2$$
$$= min_w log P(D) + \lambda \|\theta\|_2^2$$

Where $\lambda > 0$.

Assignment № 3 Page 3 / 6

3.2 Logistic regression

3.2.1 Posterior probability

First, define weight vector and feature vector (for each instance) as follows,

$$(w)_{0} = \begin{pmatrix} w_{0}^{(0)} \\ w_{1}^{(0)} \\ \vdots \\ w_{n}^{(0)} \end{pmatrix} \in \mathbb{R}^{n+1}$$

$$(w)_{1} = \begin{pmatrix} w_{0}^{(1)} \\ w_{1}^{(1)} \\ \vdots \\ w_{n}^{(1)} \end{pmatrix} \in \mathbb{R}^{n+1}$$

$$x = \begin{pmatrix} 1 \\ x_{1} \\ \vdots \\ x_{n} \end{pmatrix} \in \mathbb{R}^{n+1}$$

Second, using softmax function, we have,

$$P(y = 0|x) = \frac{exp(\mathbf{w}_0^T x)}{exp(\mathbf{w}_0^T x) + exp(\mathbf{w}_1^T x)}$$
$$P(y = 1|x) = \frac{exp(\mathbf{w}_1^T x)}{exp(\mathbf{w}_0^T x) + exp(\mathbf{w}_1^T x)}$$

3.2.2 Invariance by adding constant

$$P(y = 0|x) = \frac{exp((\mathbf{w}_0 + \mathbf{b})^T x)}{exp((\mathbf{w}_0 + \mathbf{b})^T x) + exp((\mathbf{w}_1 + \mathbf{b})^T x)}$$

$$= \frac{exp(\mathbf{w}_0^T x) exp(\mathbf{b}^T x)}{exp(\mathbf{w}_0^T x) exp(\mathbf{b}^T x) + exp(\mathbf{w}_1^T x) exp(\mathbf{b}^T x)}$$

$$= \frac{exp(\mathbf{w}_0^T x)}{exp(\mathbf{w}_0^T x) + exp(\mathbf{w}_1^T x)}$$

$$P(y = 1|x) = \frac{exp((\mathbf{w}_1 + \mathbf{b})^T x)}{exp((\mathbf{w}_0 + \mathbf{b})^T x) + exp((\mathbf{w}_1 + \mathbf{b})^T x)}$$

$$= \frac{exp(\mathbf{w}_1^T x) exp(\mathbf{b}^T x)}{exp(\mathbf{w}_0^T x) exp(\mathbf{b}^T x) + exp(\mathbf{w}_1^T x) exp(\mathbf{b}^T x)}$$

$$= \frac{exp(\mathbf{w}_1^T x)}{exp(\mathbf{w}_0^T x) + exp(\mathbf{w}_1^T x)}$$

3.2.3 Regularization

We minimize objective function defined as follows, with respective to w_0, w_1 ,

$$-L + \lambda_0 \|w_0\|_2^2 + \lambda_1 \|w_1\|_2^2$$

$$= -\log P(D) + \lambda_0 \|w_0\|_2^2 + \lambda_1 \|w_1\|_2^2$$

$$= \sum_{i=1}^m (y_i \log P(y_i = 0|x) + (1 - y_i) \log P(y_i = 1|x)) + \lambda_0 \|w_0\|_2^2 + \lambda_1 \|w_1\|_2^2$$

Assignment № 3 Page 4 / 6

Where $P(y_i = 0|x)$, $P(y_i = 0|x)$ are defined above in 3.2.1 and $\lambda_0, \lambda_1 > 0$. Now we show that this objective function is strictly convex. As shown in class, -L (i.e. cross entropy) is a convex function (i.e. Hessian matrix is positive semidefinite). Moreover, from previous two homework, we have already proved that the regularization terms $\lambda_0 ||w_0||_2^2$, $\lambda_1 ||w_1||_2^2$ are strictly convex (i.e. Hessian matrix is positive definite). Therefore, by the properties of convex function, adding strictly convex functions with convex functions results in a strictly convex function. Therefore, the objective function is a strictly convex function, with unique global minimum. In other words, adding a constant vector b to the optimal w_0, w_1 can only results in increase of objective function and thus can never be the other plausible optimal solution.

4 Programming

4.1 Implementation of SVM

Done.

4.2 Cross validation of SVM

С	4^{-6}	4^{-5}	4^{-4}	4^{-3}	4^{-2}
Accuracy	0.7940	0.8030	0.8080	0.8090	0.8170
Speed (second)	183.0481	153.6179	127.0685	120.7289	115.3971

С	4^{-1}	1	4^1	4^2
Accuracy	0.8100	0.8130	0.8079	0.8069
Speed (second)	117.2368	120.6426	121.4721	114.7466

Increase of C is associated with decrease of time cost, by decreasing the scale of w_i and thus more speeding up quadratic operations of w_i . Increase of C results in increase of accuracy and when it reaches certain plateau, it decreases its accuracy. Indeed, putting more weight on slack variables results in over-fitting and thus lower accuracy, whereas, putting more weight on $\|w\|_2^2$ term results in over-regularization and thus also lower accuracy.

4.3 Linear SVM in libsym

4.3.1 Accuracy

Accuracy = 0.791 for all parameter settings.

4.3.2 Speed

Average speed = 5.1576 seconds.

4.4 Kernel SVMs in libsym

4.4.1 Accuracy for polynomial SVM

Accuracy = 0.793 for all costs settings with d=1.

Accuracy = 0.714 for all costs settings with d=2.

Assignment № 3 Page 5 / 6

Accuracy = 0.806 for all costs settings with d=3.

4.4.2 Speed for polynomial SVM

Average speed = 0.511 seconds for all costs settings with d=1.

Average speed = 0.6224 seconds for all costs settings with d=2.

Average speed = 0.5955 seconds for all costs settings with d=3.

4.4.3 Accuracy for polynomial SVM

Accuracy = 0.551 for all parameter settings.

4.4.4 Speed for polynomial SVM

Average speed = 1.0521 seconds for all costs settings with $gamma = 4^{-7}$.

Average speed = 0.9069 seconds for all costs settings with $gamma = 4^{-6}$.

Average speed = 0.9181 seconds for all costs settings with $gamma = 4^{-5}$.

Average speed = 0.9172 seconds for all costs settings with $gamma = 4^{-4}$.

Average speed = 0.9444 seconds for all costs settings with $gamma = 4^{-3}$.

Average speed = 0.9378 seconds for all costs settings with $gamma = 4^{-2}$.

Average speed = 0.9268 seconds for all costs settings with $gamma = 4^{-1}$.

4.4.5 Chose one kernel

I would chose polynomial kernel, with d=3 parameter setting, based only on current observation.

Assignment № 3 Page 6 / 6