CSC 225

Algorithms and Data Structures: I
Rich Little
rlittle@uvic.ca
ECS 516

Comparison-Based Sorting

- sorting algorithm that sorts based only on comparisons
- elements to be sorted must satisfy total order properties

https://www.youtube.com/watch?v=ZZuD6iUe3Pc

	Type of Sorting Algorithm	Worst Case Time	Best Case Performance	Average Case Performance	Properties
Insertion Sort	Comparison Based Sorting	O(n²)	O(n)	O(n²)	adaptive, in place stable, online
Bubblesort	Comparison Based Sorting	O(n²)	O(n)	O(n²)	in place
Selection Sort	Comparison Based Sorting	O(n²)	O(n²)	O(n²)	in place
Binary Insertion	Comparison Based Sorting	O(n²)	O(n)	O(n²)	adaptive, in place
Shakersort	Comparison Based Sorting	O(n²)	O(n)	O(n²)	stable, in place
Shellsort	Comparison Based Sorting	O(n²)	O(n log n)		in place
Quicksort	Comparison Based Sorting	O(n²)	O(n log n)	O(n log n)	in place
Heapsort	Comparison Based Sorting	O(n log n)	O(n log n)	O(n log n)	in place
Mergesort	Comparison Based Sorting	O(n log n)	O(n log n)	O(n log n)	not in place

How fast can we sort? A lower bound for comparison based sorting

Theorem: The running time of any comparison-based algorithm for sorting an n-element sequence is $\Omega(n \log(n))$ in the worst-case.

Proof:

- Consider a sequence S containing n distinct elements, say $[x_0, x_1, ..., x_{n-1}]$
- To decide the order of elements, a comparison-based algorithm compares elements pairwise—a sufficient number of times
- In particular, to decide which element of x_i and x_j is smaller, it answers "is $x_i < x_j$?"
- Depending on the outcome—i.e., "yes" or "no"—the algorithm performs either no further comparisons or it continues with more comparisons

Proof (continued)

- We want to know: how good is the best of all comparison-based sorting algorithms? (Let's call it the *optimal* algorithm)
- This optimal sorting algorithm requires a certain number of comparisons (at least) to sort *any* sequence (not just the easiest input)
- We ask: How many comparisons are required for an optimal sorting algorithm to sort *n* elements?
- This can be depicted in a decision tree.

Decision tree of an optimal sorting algorithm that is sorting a general sequence of elements

• The decision tree contains every possible path the optimum algorithm might take to sort sequence *S*.

Since we don't know what S looks like, any permutation of S could be the sorted one. Thus, every permutation of S has to be represented by a path from the root to a leaf in the decision tree.

Example: Let $S = [x_0, x_1, x_2]$, where each distinct $x_i \in \{1,2,3\}$, and draw the corresponding decision tree.

Decision tree of an optimal sorting algorithm sorting a general sequence of elements

Lemma: Each external node v in the decision tree T represents the sequence of comparisons for at most one permutation of S.

Decision tree of an optimal sorting algorithm sorting a general sequence of elements

- # leaves = $2^h \ge n!$
- Thus, $h \ge \log n!$

Proof (continued)

- Since the height of the tree is at least log(n!), we know that
 - at least log(n!) worst case comparisons are required by an optimal comparison based sorting algorithm
 - at least log(n!) worst case comparisons are required by any comparison based algorithm

Proof (continued)

What is $\Omega(\log(n!))$?

Stirling's Formula

• Another useful formula for ordering functions by growth rate is Stirling's Formula (1730)

$$n! \approx \sqrt{2\pi n} \left[\frac{n}{e} \right]^n$$

• Can also be expressed as the following:

$$\sqrt{2\pi}n^{n+\frac{1}{2}}e^{-n} \le n! \le en^{n+\frac{1}{2}}e^{-n}$$