

UNITED STATES PATENT APPLICATION

FOR

TERTIARY STRUCTURE OF PEANUT ALLERGEN ARA H 1

EXPRESS MAIL-Mailing Label No. EL212162108 US

Date of Deposit: 3-11-99

I hereby certify that this paper and fee is being
deposited with the United States Postal Service
"EXPRESS MAIL POST OFFICE TO ADDRESSEE" service
under 37 C.F.R. 1.10 on the date indicated above
and is addressed to the Assistant Commissioner
for Patents; Washington, D.C. 20231

TERTIARY STRUCTURE OF PEANUT ALLERGEN ARA H 1

CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation-in-part of U.S. provisional application Serial No. 60/077,763, filed on March 12, 1998.

Allergy to peanut is a significant health problem because of the prevalence and potential severity of the reaction. Ara h 1, a major peanut allergen, has been isolated and characterized and was shown to consist of 626 amino acids and contain 23 linear IgE-binding epitopes, 6-10 residues in length. The amino acids important for peanut-specific IgE binding were determined by synthesizing wild type and mutant peptides with single alanine, glycine or methionine substitutions at each position followed by incubation in pooled serum from patients with peanut hypersensitivity. From this analysis it was determined that amino acids which reside in the midele of the epitope were generally more critical for IgE binding. Furthermore, though polar charged residues occur most frequently within the epitopes, apolar residues were found to be more important for IgE binding. In addition, it was found that each epitope could be mutated resulting in loss of ability to bind IgE with only a single amino acid substitution. To further characterize the epitopes a homology-based molecular model of the Ara h 1 protein was made. The model represents residues 171-586 allowing visualization of epitopes 10-22. The majority of these epitopes appear to be clustered to certain areas of the molecule. Many of the critical amino acids involved in binding are evenly distributed on the surface and not buried in the hydrophobic core. The information from the mutational analysis along with the molecular model aids in the design of immunotherapies.

Biochemical And Structural Analysis Of The IgE Binding Sites On Ara h 1, An Abundant and Highly Allergenic Peanut Protein

Allergy to peanut is a significant IgE¹-mediated health problem because of the high prevalence, potential severity, and chronicity of the reaction. Ara h 1, an abundant peanut protein, is recognized by serum IgE from >90% of peanut sensitive individuals. It has been shown to belong to the vicilin family of seed storage proteins and contain 23 linear IgE-binding epitopes. In this communication we have determined the critical amino acids within each of the IgE binding epitopes of Ara h 1 that are important for immunoglobulin binding. Surprisingly, substitution of a single amino acid within each of the epitopes led to loss of IgE binding. In addition, hydrophobic residues appeared to be most critical for IgE binding. The position of each of the IgE binding epitopes on a homology-based molecular model of Ara h 1 showed that they were clustered into two main regions, despite their more even distribution in the primary sequence. Finally, we have shown that Ara h 1 forms a stable trimer by the use of a reproducible fluorescence assay. This information is important in studies designed to reduce the risk of peanut-induced anaphylaxis by lowering the IgE binding capacity of the allergen.

INTRODUCTION

It is estimated that up to 8% of children and 2% of adults have allergic reactions to foods (1-3). Peanut allergy is one of the most common and serious of the immediate hypersensitivity reactions to foods in terms of persistence and severity of reaction. Unlike the clinical symptoms of other food allergies, the reactions to peanuts are rarely outgrown, therefore, most diagnosed children will have the disease for a lifetime (4,5). In a sensitized individual, ingestion of peanuts results in mast cell bound IgE binding to a specific allergen.

The IgE-allergen complex causes mast cell receptors to cross-link, inducing a signal transduction cascade that ends in degranulation, and release of a variety of mediators that give rise to the clinical symptoms of peanut hypersensitivity (6,7). The majority of cases of fatal food-induced anaphylaxis involve ingestion of peanuts (8,9). Currently, the only effective treatment for food allergy is avoidance of the food. For peanut allergic individuals total avoidance is difficult as peanuts are increasingly being used in the diet as an economical protein source in processed foods.

Because of the significance of the allergic reaction and the widening use of peanuts as protein extenders in processed foods, there is increasing interest in defining the allergenic proteins and exploring ways to decrease the risk to the peanut-sensitive individual. Various studies over the last several years have identified the major allergens in peanuts as belonging to different families of seed storage proteins (10,11). For example, two of the major peanut allergens Ara h 1 and Ara h 2 belong to the vicilin and conglutin families of seed storage proteins, respectively. The vicilins represent one of the most abundant proteins found in legumes used for human consumption. This class of proteins does not have any known enzymatic activity but are thought to interact with each other to form unique higher order oligomeric structures which may help in packaging these proteins into seeds (12). Because the vicilins represent such a large percentage of the total protein in a seed, any approach designed to alter the IgE binding capacity of this protein would require that the genetically engineered gene product retain its native function, properties and three-dimensional structure.

Genetically modified plants are being used more frequently as food sources for

human consumption. The major emphasis has been on the introduction of genes whose products would enhance the nutritional value or disease resistance of the transgenic plant. One of the major concerns of this approach is that a gene will be introduced that encodes an unwanted or unknown allergen that would put allergic individuals at risk. Indeed, the introduction of a gene encoding a major Brazil nut allergen into soybeans, ostensibly to increase the nutritional value of soybeans, is a prime example (13). In cases where allergens are transferred into plants, consumers must be informed of the existence of the allergen by labeling as suggested by the United States Food and Drug Administration. In addition, a range of tests that compare the physicochemical properties of known allergens with expressed transgenic products has been proposed for those gene products of unknown allergenicity (14-16). Currently, there is little known about the physicochemical properties of many of the plant allergens and there have been few investigations aimed at modifying allergenic proteins.

Previous work on the allergenic aspects of the Ara h 1 protein has shown that it is recognized by serum IgE from >90% of peanut sensitive individuals, indicating that it is a major allergen involved in the clinical etiology of this disease (17). Recently, using pooled serum IgE from a population of peanut hypersensitive individuals, 23 linear IgE binding epitopes of this allergen have been mapped (10). There was no obvious sequence motif shared by the epitopes. In this communication we have determined the critical amino acids within each of the IgE binding epitopes of Ara h 1 that are important to immunoglobulin binding. Surprisingly, substitution of a single amino acid within each of the epitopes led to loss of IgE binding. In addition, the hydrophobic residues located in the center of the

epitope appeared to be most critical to IgE binding. The position of each of the IgE binding epitopes on a homology-based tertiary structure model of Ara h 1 showed that they were clustered into two main regions. This was in contrast to previous observations that showed the IgE binding epitopes distributed along the linear sequence of the molecule. Finally, we have shown that, like other vicilins, Ara h 1 forms a stable trimer by the use of a reproducible fluorescence assay. This assay will allow for the rapid assessment of the effect that amino acid changes in Ara h 1 primary sequence have on tertiary structure. This information will be important in studies designed to reduce the risk of peanut-induced anaphylaxis by lowering the IgE binding capacity of the allergen.

METHODS

Serum IgE. Serum from 15 patients with documented peanut hypersensitivity reactions (mean age, 25 yrs) was used to determine relative binding affinities between wild type and mutant Ara h 1 synthesized epitopes. The patients had either a positive double-blind, placebo-controlled, food challenge (DBPCFC) or a convincing history of peanut anaphylaxis (laryngeal edema, severe wheezing, and/or hypotension; 18). At least 5 ml of venous blood was drawn from each patient, allowed to clot, and serum was collected. A serum pool from 12 to 15 patients was made by mixing equal aliquots of serum IgE for our experiments. The pools were then used in immunoblot analysis. All studies were approved by the Human Use Advisory Committee at the University of Arkansas for Medical Sciences.

Peptide synthesis. Individual peptides were synthesized on a derivatized cellulose membrane using 9-fluorenylmethoxycarbonyl (Fmoc) amino acid active esters according to the manufacturer=s instructions (Genosys Biotechnologies, Woodlands, Texas; 19). Peptide

synthesis reactions were monitored by bromophenol blue color reactions during certain steps of synthesis. Cellulose derivitised membranes and Fmoc-amino acids were supplied by Genosys Biotechnologies. All other chemicals were purchased from Aldrich Chemical Company, Inc. (Milwaukee, WI) or Fluka (Buchs, Switzerland). Membranes were either probed immediately or stored at -20°C until needed.

IgE binding assays. Cellulose membranes containing synthesized peptides were washed 3 times in Tris-buffered saline (TBS; 136 mM NaCl, 2.7 mM KCl, and 50 mM trizma base pH 8.0) for 10 min at room temperature and then incubated overnight in blocking buffer: [TBS, 0.05% tween 20; concentrated membrane blocking buffer supplied by Genosys; and sucrose (9.0:1.0:0.5)]. The membrane was then incubated in pooled sera diluted 1:5 in 20mM Tris-Cl pH7.5, 150mM NaCl, and 1% bovine serum albumin overnight at 4° C. Primary antibody was detected with ¹²⁵I-labeled equine anti-human IgE (Kallestad. Chaska, MN), followed by autoradiography.

Quantitation of IgE binding. Relative amounts of IgE binding to individual peptides were determined by scanning autoradiographs using a Bio-Rad (Hercules, CA) model GS-700 imaging laser densitometer and quantitated with Bio-Rad molecular analyst software. A background area was scanned and subtracted from the obtained values. Following quantitation, wild type intensities were normalized to a value of one and the mutants were calculated as percentages relative to the wild type.

Homology based model of Ara h 1. Molecular modeling and computations were performed on Silicon Graphics workstations running IRIX 6.2. The Wisconsin Genetic Computer Group (GCG) software package (20) was also used on a digital ALPHA

workstation using OpenVMS v6.1. The X-ray crystal structure of the phaseolin A chain² (PDB #2PHL A, 2.2 D resolution) from *Phaseolus vulgaris* was used as the template for homology-based modeling (12,21,22). Ara h 1 was modeled as a monomer using the COMPOSER module of SYBYL version 6.3 from Tripos Inc. (St. Louis, MO). Phaseolin is a smaller protein than Ara h 1 and it only allowed for the modeling of the region between residues 172-586. Residues Ser211 - Asp219 and Asn281 - Lys282 on the structure of phaseolin were not solved because of low electron density (12). Before attempting to use the structure for modeling, the regions were constructed using the protein loop search option in SYBYL and minimized using local annealing and the Powell algorithm.

Alignment between Ara h 1 and phaseolin was determined using COMPOSER and was optimized with information from alignment of Ara h 1 to other vicilin homologs using the GCG pileup program. Following alignment, structurally conserved regions were constructed. Loops were then added using orientations to fragments from x-ray crystal structures in the SYBYL database following homology searches and fitting screens. The model was minimized with the CHARMM force field using the Adopted Basis Newton-Raphson method using QUANTA version 96 from Molecular Simulations Inc./BIOSYM (Burlington, MA). The protein backbone was given a harmonic force constraint constant of 500 to hold it rigid during the first 400 iterations of minimization, followed by relaxation with 100 steps each at constraints of 400, 300, 200, 100 and a final 400 steps with a constraint of 10 (23,24).

Fluorescence anisotropy of Ara h 1 higher order structure. Ara h 1 was purified to >95% homogeneity from crude peanut extract and labeled with fluorescein³. A constant amount

of the labeled protein, 10 nM, in binding buffer (50 mM Tris, 1mM EDTA, 100mM NaCl, 2mM DTT, 5% glycerol, pH 7.5) was mixed with serial dilutions (by 0.5 or 0.8 increments) of unlabeled Ara h 1 to analyze oligomer formation. Fluorescence measurements were made using a Beacon fluorescence polarization spectrometer (Pan Vera, Madison, WI) with fixed excitation (490 nm) and emission (530 nm) wavelengths at room temperature (24 °C) in a final volume of 1.1 ml (25,26). Each data point is an average of three independent measurements. The intensity of fluorescence remained constant throughout the anisotropy measurements.

Cross linking experiments: Cross linking experiments were done exactly as described in Maleki et al. (27). Briefly, proteins were desalted into PBS, pH 8.0 using disposable PD-10 gel filtration columns. The protein cross-linking reagent utilized was dithiobis(succinimidyl propionate) (DSP). Limited cross-linking was performed so the monomer disappearance could be observed and to minimize the formation of nonspecific complexes.

RESULTS

IgE-binding characteristics of the Ara h 1 epitopes. The amino acids essential to IgE binding in the Ara h 1 epitopes were determined by synthesizing duplicate peptides with single amino acid changes at each position. These peptides were then probed with pooled serum IgE from 15 patients with peanut hypersensitivity to determine if the changes affected peanut-specific IgE binding. An immunoblot strip containing the wild-type and mutated peptides of epitope 9 is shown in Fig. 1. Binding of pooled serum IgE to these individual peptides was dramatically reduced when either alanine or methionine was substituted for

each of the amino acids at positions 144, 145, and 147-150. Changes at positions 144, 145, 147, and 148 had the most dramatic effect when methionine was substituted for the wild type amino acid, resulting in less than 1% of peanut specific IgE binding to these peptides. In contrast, the substitution of an alanine for arginine at position 152 resulted in increased IgE binding. The remaining Ara h 1 epitopes were tested in the same manner and the intensity of IgE binding to each spot was determined as a percentage of IgE binding to the wild-type peptide (Table 1). Each epitope could be mutated to a non-IgE binding peptide by the substitution of a single alanine or methionine residue.

The amino acids within each epitope were classified according to whether they were hydrophobic (apolar), polar, or charged residues (Fig. 2). There were a total of 196 amino acids present in the 21 epitopes of Ara h 1 that were studied. Charged residues occurred most frequently (89/196), with hydrophobic residues (71/196) being the next frequent type of amino acid in the epitopes, and polar residues representing the least frequent amino acid group (36/196). Thirty-five percent of the mutated hydrophobic residues resulted in loss of IgE binding (<1% IgE binding), while only 25% and 17% of mutated polar and charged residues, respectively, had a similar effect. These results indicated that the hydrophobic amino acid residues within these IgE binding epitopes were the most sensitive to changes. In addition results from this analysis indicated that the amino acids located near the center of the epitope were more critical for IgE binding.

Location of the IgE binding epitopes on the 3-D structure of Ara h 1. A homology-based model of Ara h 1 tertiary structure was generated to determine the location of the epitopes on this relatively large allergenic molecule. To construct this model, the primary amino acid

sequence of Ara h 1 was aligned to the highly homologous protein phaseolin, for which x-ray crystal structure data was available (Fig. 3). The quality of the Ara h 1 model was assessed using the protein health module of QUANTA and PROCHECK version 2.1.4 (28) from Oxford Molecular Inc. (Palo Alto, CA) and compared to the quality of the structures of phaseolin and canavalin⁴ (21,22,29). Most of the backbone torsion angles for non-glycine residues lie within the allowed regions of the Ramachandran plot (Fig.4). Only 1.4% of the amino acids in the Ara h 1 model have torsion angles that are disallowed as compared to 0.3% and 0.6% of amino acids in phaseolin and canavalin, respectively (Table 2). In addition, the number of buried polar atoms, buried hydrophilic residues, and exposed hydrophobic residues in the Ara h 1 model are comparable to those found in the structures of phaseolin and canavalin (Table 2). Taken together these data indicate that the homology-based model of Ara h 1 tertiary structure is reasonable and similar to the structures of other homologous proteins that have been solved. The global fold of the Ara h 1 molecule and the position of epitopes 10-22 are shown in Fig. 5A. The tertiary structure of the molecule consists of two sets of opposing anti-parallel β -sheets in swiss roll topology joined by an inter-domain linker. The terminal regions of the molecule consist of α -helical bundles containing three helices each. Epitope 12 resides on an N-terminal α -helix while epitopes 20 and 21 are located on C-terminal α -helices. Epitopes 14, 15, and 18 are primarily β -strands on the inner faces of the domain and epitopes 16, 17, 19, and 22 are β -strands on the outer surface of the domain. The remainder of the epitopes are without a predominant type of higher secondary structure. A space filled model depicting the surface accessibility of the epitopes and critical amino acids is shown in Fig. 5B. Of the 35 residues

that affected IgE binding, 10 were buried beneath the surface of the molecule, and 25 were exposed on the surface.

Ara h 1 interacts with itself to form a stable trimeric structure. A rapid, reproducible fluorescence assay was developed in order to determine if the peanut allergen formed higher order structures similar to those observed for soybean vicilins. Purified, fluorescein labeled Ara h 1, 10 nM, was mixed with various concentrations of unlabeled Ara h 1. The anisotropy of fluorescence observed at each concentration was then determined and plotted as milli-anisotropy units (mP in arbitrary units) versus the concentration of Ara h 1 (Fig. 6). Measurement of fluorescence anisotropy reveals the average angular displacement of the fluorophor, which is dependent on the rate and extent of rotational diffusion. An increase in the size of the macromolecule through complex formation results in decreased rotational diffusion of the labeled species, which in turn results in an increase in anisotropy. The plateaus observed at protein concentrations between 0 and 20 nM and between 200 nM and 2 μ M indicate the presence of a homogeneous species at these concentrations. The sharp increase in anisotropy observed at concentrations of Ara h 1 above 50 nM indicates that a highly cooperative interaction between Ara h 1 monomers had occurred that results in the formation of a stable homo-oligomeric structure. In order to determine the stoichiometry of this interaction, cross-linking experiments were performed, followed by SDS-PAGE analysis of the cross-linked products (Fig. 6, inset). Ara h 1 oligomers representing samples taken at the 200 nM concentration were subjected to limited chemical cross-linking with DSP. Cross-linked and non-cross-linked samples were resolved by SDS-PAGE and visualized by Coomassie staining of the gel. We found that limited cross-linking at 1 μ M

DSP results in the formation of an electrophoretically stable complex with an apparent molecular mass of approximately 180 kDa, appropriate for an Ara h 1 trimer.

DISCUSSION

Food allergies are mediated through the interaction of IgE to specific proteins contained within the food. While the IgE binding epitopes from the major allergens of cow milk (30), codfish (31), hazel (32), soy (33) and shrimp (34) have all been elucidated there have been few, if any, characteristics found in common with these binding sites. Our work on the IgE binding epitopes of Ara h 1 also indicates that there is no common amino acid sequence motif found in all epitopes (10). However, we have determined that once an IgE binding site has been identified it is the hydrophobic amino acid residues that appear to play a critical role in immunoglobulin binding. The observation that alteration of a single amino acid leads to the loss of IgE binding in a population of peanut-sensitive individuals is significant because it suggests that while each patient may display a polyclonal IgE reaction to a particular allergen (10,11), IgE from different patients that recognize the same epitope must interact with that epitope in a similar fashion. Besides finding that many epitopes contained more than one residue critical for IgE binding, it was also determined that more than one residue type (ala or met) could be substituted at certain positions in an epitope with similar results. This allows for the design of a hypoallergenic protein that would be effective at blunting allergic reactions for a population of peanut sensitive individuals. Furthermore, a peanut where the IgE binding epitopes of the major allergens have been removed prevents the development of peanut hypersensitivity in individuals genetically predisposed to this food allergy.

The characteristics that have been attributed to allergenic proteins include their abundance in the food source, their resistance to food processing, and their stability to digestion by the gastrointestinal tract (14,15). The major peanut allergen, Ara h 1, has been shown to be an abundant protein (35) that survives intact most food processing methods (36), and is stable to digestion in *in vitro* systems designed to mimic the gastrointestinal tract (37). However, the physical characteristics that allow this protein to exhibit these properties have not previously been examined. Our observations on the tertiary structure of the Ara h 1 monomer and the determination that this protein readily forms a trimeric complex may help to determine why this protein is allergenic. For example, we have described the tertiary structure of the Ara h 1 protein as consisting of two sets of opposing anti-parallel β -sheets in swiss roll topology with the terminal regions of the molecule consisting of α -helical bundles containing three helices apiece. While there are numerous protease digestion sites throughout the length of this protein, the structure may be so compact that potential cleavage sites are inaccessible until the protein is denatured. In addition, the formation of a trimeric complex and further higher order aggregation may also afford the molecule some protection from protease digestion and denaturation and allow passage of Ara h 1 across the small intestine. It has been shown that some atopic individuals transfer more antigen across the small intestine in both the intact and partially degraded state (38). These physical attributes of the Ara h 1 molecule may help to explain the extreme allergenicity exhibited by this protein.

The only therapeutic option currently available for the prevention of a peanut hypersensitivity reaction is food avoidance. Unfortunately, for a ubiquitous food such as

peanut, the possibility of an inadvertent ingestion is great. This is complicated by the fact that all of the peanut allergens identified to date have sequence homology with proteins in other plants. This may explain the cross-reacting IgE antibodies to other legumes that are found in the sera of patients that manifest clinical symptoms to only one member of the legume family (39). The elucidation of the position of the Ara h 1 IgE binding epitopes clustered on the surface of the molecule enables us to better understand why these regions elicit the clinical symptoms associated with peanut hypersensitivity. Perhaps the presentation of multiple, clustered epitopes to mast cells results in a more efficient and dramatic release of mediators that result in the more severe clinical symptoms observed in patients with peanut hypersensitivity. We are currently exploring this possibility by comparing the IgE binding epitopes and tertiary structures of other legume allergens.

Finally, it has been suggested that an altered Ara h 1 gene could be developed to replace its allergenic homologue in the peanut genome, thus blunting allergic reactions in sensitive individuals who inadvertently ingest this food (10). Since the Ara h 1 gene product is such an abundant and integral seed storage protein, it would be necessary for the altered vicilin to retain as much of its native function, properties, and three-dimensional structure as possible. The data presented here indicate that development of a hypoallergenic vicilin is feasible. However, the effect of altering critical amino acids within each of the IgE binding epitopes has on the properties of this seed storage protein is currently unknown. Given the widespread use of peanuts in consumer foods and the potential risk this poses to individuals genetically pre-disposed to developing peanut allergy and to the health of individuals already peanut sensitive, this approach is currently being explored in our

laboratories.

ACKNOWLEDGEMENTS

This work was supported by grants from the National Institute of Health RO1-AI33596 and the Clarissa Sosin Allergy Research Foundation. RAK was supported by a sabbatical leave grant from the Department of Chemistry, Hendrix College, Conway AR.

REFERENCES

1. Jansen, J. J., Kardinaal, A. F. M., Huijber, G., Vleig-Boestra, B. J., Martens, B. P., and Ockhuizen, T. (1994) *J. Allergy Clin. Immunol.* **93**, 446-456.
2. Burks, A. W., and Sampson, H. A. (1993) *Curr. Prob. Pediatr.* **23**, 230-252.
3. Bock, S. A. (1987) *Pediatrics* **79**, 683-8.
4. Sampson, H. A., and Burks, A. W. (1996) *Annu. Rev. Nutr.* **16**, 161-77.
5. Bock, S. A. (1985) *J. Pediatr.* **107**, 676-680.
6. Bock, S. A., and Atkins, F. M. (1989) *J. Allergy Clin. Immunol.* **83**, 900-904.
7. Kaminogawa, S. (1996) *Biosci. Biotech. Biochem.* **60**, 1749-1756.
8. Sutton, B. J. and Gould, H. J. (1993) *Nature* **366**, 421-428.
9. Sampson, H. A., Mendelson, L., Rosen, J. P. (1992) *N. Engl. J. Med.* **327**, 380-384.
10. Burks, A. W., Shin, D., Cockrell, G., Stanley, J. S., Helm, R. M., and Bannon, G. A. (1997) *Eur. J. Biochem.* **245**, 334-339.
11. Stanley, J. S., King, N., Burks, A. W., Huang, S. K., Sampson, H., Cockrell, G., Helm, R. M., West, C. M., and Bannon, G. A. (1997) *Arch. Biochem. Biophys.* **342**, 244-253.
12. Lawrence, M. C., Izard, T., Beuchat, M., Blagrove, R. J., Colman, P. M. (1994) *J. Mol. Biol.* **238**, 748-776.
13. Nordlee, J.A., Taylor, S.L., Townsend, J.A., Thomas, L.A., and Bush, R.K. (1996) *N. Engl. J. Med.* **334**, 726-728.
14. Astwood, J.D., Leach, J.N., and Fuchs, R.L. (1996) *Nature Biotechnology* **14**, 1269-1273.

15. Veiths, S., Aulepp, H., Becker, W-M., and Buschmann, L. (1996) In *Food Allergies and Intolerances*, pp130-149.
16. Hefle, S.L., Nordlee, J.A., and Taylor, S.L. (1996) *Critical Reviews in Food Science & Nutrition* **36**, 69-89.
17. Burks, A.W., Cockrell, G., Stanley, J.S., Helm, R.M., and Bannon, G.A. (1995) *J. Clinical Invest.* **96**, 1715-1721.
18. Burks, A. W., Mallory, S. B., Williams, L. W. and Shirrell M. A. (1988) *J. Pediatr.* **113**, 447-451.
19. Fields, G. B. and Noble, R. L. (1990) *Int. J. Peptide Protein Res.* **35**, 161-214.
20. Devereux, J., Haeberli, P., and Smithies, O. (1984) *Nucleic Acids Res.* **12**, 387-395.
21. Abola E. E., Bernstein, F. C., Bryant, S. H., Koetzle, T. F., and Weng, J. (1987) In *Data Commission of the International Union of Crystallography*, pp. 107-132.
22. Bernstein, F. C., Koetzle, T. F., Williams, G. J. B., Meyer, E. F. Jr., Brice, M. D., Rodgers, J. R., Kennard, O., Shimanouchi, T., and Tasumi, M. (1977) *J. Mol. Biol.* **112**, 535-542.
23. Brooks, B. R., Bruccoleri, R. E., Olafson, B. D., States, D. J., Swaminathan, S., and Karplus, M. (1983) *J. Comput. Chem.* **4**, 187-217.
24. Carlson, W., Karplus, M., and Haber, E. (1985) *Hypertension* **7**, 13-26.
25. Royer, C. A., and Beechem, J. M. (1992) *Methods Enzymol.* **210**, 481-505.
26. Lundblad, J. R., Laurance, M., and Goodman R. H. (1996) *Mol. Endocrinol.* **10**, 607-612
27. Maleki, S. J., Royer, C. A., and Hurlburt, B. K. (1997) *Biochemistry* **36**, 6762-6767.
28. Laskowski, R. A., MacArthur, M. W., Moss, D. S., and Thornton, J. M. (1993) *J. Appl. Cryst.* **26**, 283-291.
29. Ko, T. P., Ng, J. D., and McPherson, A. (1993) *Plant Physiol.* **101**, 729-744.
30. Ball, G., Shelton, M.J., Walsh, B.J., Hill, D.J. Hoskins, C.S., and Howden, M.E. (1994) *Clin. Exp. Allergy* **24**, 758-764.
31. Aas, K., and Elsayed, S. (1975) *Dev. Biol. Stand.* **29**, 90-98.

32. Elsayed S., Holen E., and Dybenal, T. (1989) *Int. Arch. Allergy Appl. Immunol.* **89**, 410-415.
33. Herian, A. M., Taylor, S. L., and Bush, R. K. (1990) *Int. Arch. Allergy Appl. Immunol.* **92**, 193-198.
34. Shanti, K. N., Martin, B. M., Nagpal, S., Metcalfe, D. D., and Rao, P. V. (1993) *J. Immunol.* **151**, 5354-5363.
35. Burks, A. W., Williams, L. W., Helm, R. M., Connaughton, C., Cockrell, G., and O'Brien, T. (1991) *J. Allergy Clin. Immunol.* **88**, 172-179.
36. Lehrer S. B., Horner W. E., and Reese, G. (1996) *Critical Reviews in Food Science & Nutrition* **36**, 553-564.
37. Becker, W.M. (1996) *Monogr. Allergy* **32**, 92-98.
38. Majamaa, H, and Isolauri, E. (1996) *J. Allergy Clin. Immunol.* **97**, 985-990.
39. Bernhisel-Broadbent, J., Taylor, S., and Sampson, H. A. (1989) *J. Allergy Clin. Immunol.* **84**, 701-709.

FOOTNOTES

1. The abbreviations used are: IgE, immunoglobulin E; DBPCFC, double-blind, placebo-controlled, food challenge; Fmoc, 9-fluorenylmethoxycarbonyl; TBS, tris-buffered saline; PBS, phosphate-buffered saline; DSP, dithiobis(succinimidyl propionate); PAGE, polyacrylamide gel electrophoresis.
2. The atomic coordinates for the crystal structure for this protein can be accessed through the Brookhaven Protein Data Bank under PDB #2PHL (12).
3. Maleki et al., manuscript in preparation.
4. The atomic coordinates for the crystal structure for this protein can be accessed through the Brookhaven Protein Data Bank under PDB #1CAU (29).
5. The amino acid sequence of this protein can be accessed through the GenBank database

under GenBank Accession Number L34402 (17).

FIGURE LEGENDS

Fig. 1. Single amino acid changes to epitope 9 result in loss of IgE binding to this epitope.

Epitope 9 was synthesized with an alanine (*Panel A*) or methionine (*Panel B*) residue substituted for one of the amino acids and probed with a pool of serum IgE from 15 patients with documented peanut hypersensitivity. The letters across the top of each panel indicate the one-letter amino acid code for the residue normally at the position and the amino acid that was substituted for this residue. The numbers indicate the position of each residue in the Ara h 1 protein. WT, indicates the wild-type peptide (no amino acid substitutions).

Fig. 2. Hydrophobic amino acids are more critical to IgE binding. The type of each amino acid within the Ara h 1 epitopes was assessed relative to its importance to IgE binding. The closed boxes represent the total number of a particular type of amino acid residue found in all of the Ara h 1 epitopes, while the open boxes represent the number of that type of residue which, when replaced, was found to result in the loss of IgE binding.

Fig. 3. Alignment of the primary amino acid sequences and the α -carbon structural alignment of Ara h 1 and the phaseolin A chain. The upper panel represents the single letter amino acid code for Ara h 1 residues 172-586 (top line) and all of the phaseolin A chain (bottom line). The structurally conserved regions, shown in bold type, were used to develop the initial backbone of the Ara h 1 model. The other regions were used in protein loop searches to complete the tertiary structure of Ara h 1. Panel B represents the α -carbon alignment of the final model of Ara h 1 (white) vs the phaseolin A chain (yellow). Labeled

residues Asn1 and Arg415 represent the N- and C- terminus of the Ara h 1 model, respectively. Areas between labeled amino acids Asn169-Val193, Val212-Gly221, Phe240-Pro226, and Arg300-Asn323 represent areas of structural uncertainty due to insertions in Ara h 1 or unsolved sequences in phaseolin. Note that the residue numbers are shifted due to the N-terminal deletion from the Ara h 1 coding sequence found in the GenBank database⁵.

Fig. 4. Most of the Phi/Psi torsion angles of the amino acid residues in the Ara h 1 tertiary structure model are allowed. A plot of the phi and psi angles for the amino acids in the Ara h 1 tertiary structure model is shown. Each dot within one of the boxes represents an amino acid that has acceptable torsion angles. Major outliers are indicated by their three letter amino acid code and position using the N-terminal as residue 1 as in figure 3.

Fig. 5. The majority of the Ara h 1 IgE binding epitopes are clustered in two regions of the allergen. The upper panel represents a ribbon diagram of Ara h 1 tertiary structure. The numbered red areas are IgE binding epitopes 10-22. Epitopes 13, and portions of 14, and 15 lie in an area of structural uncertainty. The lower panel is a space filling model of Ara h 1 tertiary structure. The red areas represent the IgE binding epitopes and the yellow atoms are the residues that were determined to be critical for IgE binding to occur.

Fig. 6. The Ara h 1 allergen forms a stable trimeric structure. Trace fluorescein labeled Ara h 1 was mixed with unlabeled Ara h 1 and fluorescence anisotropy measurements (mP) were made at each concentration. Each point represents the average of three different experiments. Samples from the 200 nM concentration were then subjected to cross-linking with varying concentrations of DSP and the products electrophoresed on SDS

polyacrylamide gels. Protein bands were visualized by Coomassie staining. Lower arrow indicates the Ara h 1 monomer (~60 kDa) and the upper band represents the Ara h 1 trimer (~180 kDa).

TABLE 1
Amino Acids Critical to IgE Binding

PEPTIDE	AA SEQUENCE	POSITION
B 1 (nucleotides 25-34 of SEQ ID NO:1)	<u>AKSSPYQKKT</u>	25-34
B 2 (nucleotides 48-57 of SEQ ID NO:1)	<u>QEPDDLKQKA</u>	48-57
B 3 (nucleotides 65-74 of SEQ ID NO:1)	<u>LEYDPRLVYD</u>	65-74
B 4 (nucleotides 89-98 of SEQ ID NO:1)	<u>GERTRGRQPG</u>	89-98
(nucleotides 97-106 of SEQ ID NO:1)	<u>PGDYDDDERRQ</u>	97-106
B 5 (nucleotides 107-116 of SEQ ID NO:1)	<u>PRREEGGRWVG</u>	107-116
(nucleotide 123-132 of SEQ ID NO:1)	<u>REREEDWRQP</u>	123-132
B 6 (nucleotide 134-143 of SEQ ID NO:1)	<u>EDWRRPSHQQ</u>	134-143
B 7 (nucleotide 294-303 of SEQ ID NO:1)	<u>QPRKIRPEGR</u>	143-152
B 8 (nucleotides 311-320 of SEQ ID NO:1)	<u>TPGQFEDFFP</u>	294-303
B 9 (nucleotides 325-334 of SEQ ID NO:1)	<u>SYLQEFSRNT</u>	311-320
B 10 (nucleotides 344-353 of SEQ ID NO:1)	<u>FNAEFNEIRR</u>	325-334
B 11 (nucleotides 393-402 of SEQ ID NO:1)	<u>EQEERGQRRW</u>	344-353
B 12 (nucleotides 498-507 of SEQ ID NO:1)	<u>DITNPINLRE</u>	393-402
B 13 (nucleotides 525-534 of SEQ ID NO:1)	<u>NNFGKLFEVK</u>	409-418
B 14 (nucleotides 539-548 of SEQ ID NO:1)	<u>RRYTARLKEG</u>	498-507
B 15 (nucleotides 551-560 of SEQ ID NO:1)	<u>ELHLLGFGIN</u>	525-534
B 16 (nucleotides 559-568 of SEQ ID NO:1)	<u>HRIFLAGDKD</u>	539-548
B 17 (nucleotides 578-587 of SEQ ID NO:1)	<u>IDQIEKQAKD</u>	551-560
B 18 (nucleotides 578-587 of SEQ ID NO:1)	<u>KDLAFPGSGE</u>	559-568
B 19 (nucleotides 578-587 of SEQ ID NO:1)	<u>KESHFVSARP</u>	578-587

Note. The Ara h 1 IgE binding epitopes are indicated as the single letter amino

acid code. The position of each peptide with respect to the Ara h 1 protein coding sequence is indicated in the right hand column. The amino acids that, when altered, lead to loss of IgE binding are shown as the bold, underlined residues. Epitopes 16 and 23 were not included in this study because they were recognized by a single patient who was no longer available to the study.

TABLE 2
 Comparison of Amino Acid Torsion Angles and Buried and Exposed
 Residues from the Tertiary Structures of Ara h 1, Phaseolin, and Canavalin

	Ara h1	Phaseolin	Canavulin
Buried Polar Atoms	52	42	67
Buried Hydrophilic	16	7	10
Exposed Hydrophobic	2	2	3
Ramachandran Highly Favored*	309	280	250
Ramachandran Allowed*	56	40	71
Ramachandran Disallowed*	5	1	2

*Terminal amino acid residues, glycines, or prolines are not included in these categories.

TABLE 3
 Alignment Of The Primary Amino Acid Sequences Of Ara h 1
 And Phaseolin A Chain

NNPFYFPSRR FSTRYGNQNGRIRVLQRFDQRSRQFQNLQNHRIVQIEAKPNTLVLP DNPFYFNSDNSWNTLFKNQYGHIRVLQRFDQQSKRLQNLLEDYRLVEFRSKPETLLP	227
KHADADNILVIQQGQATVTVANGN NRKSFNLDEGH ALRIPSGFISYILNRH QQADAELLVVVRSGSAILVLVKPDDRREYFFLTSNDNPIFSDHQKIPAGTIFYLVNPD	278
DNQNLRVAKISMVPNTPGQFEDFFPASSRDQSSYLGFSRNTLEAAFNAEFNEIRRV PKEDLRIIQLAMPVNNPQIH EFLSSTEAQQSYLEFSKHILEASFNSKFEEINRV	335
LLEENAGGEQEERGQRRWSTRSSENNEGIVKVSKEHVEELTKHAKSVSKKGSEEE LFEEEGQQEGV IVNIDSEQIKELSKHAKSSSRKSLSKQD	391
GDITNPINLREGEPDLSNNFGKLFEVKPDKNPQLQDLDMMMLTCVEIKEGALMLPHF NTIGNEF GNLTERTDNSLN VLISSIEMEEGALFVPHY	448
NSKAMIVVVNKGTGNLELVAVRKEQQQRGRREEEDEDEEEEESNREVRRYTARLK YSKAIVILVVNEGEAHVELVGPKGKNETLEYE SYRAELS	505
EGDVFIMPAAHPVAINASSELHLLFGGINAENNHRIFLAGDKDNVIDQIE KQ KDDVFVIPAAYPVAIKATSNVNFTGFGINANNNNRNLLAGKTDNVISSIGRALDGKD (amino acids 172-586 of SEQ ID NO:1) AKDLAFPGSGEQVERLIKKNQKESHFVSAR 586 VLGLTFSGSGDEVMKLINKQSGSYFVDAH (SEQ ID NO:2)	557

The Ara h 1 trimer is unstable at pH2.

In order to assess the stability of the Ara h 1 trimer at pHs that would be encountered in the human stomach, cross-linking experiments were performed using purified Ara h 1 protein suspended in a pH 2.1 buffer. Purified Ara h 1 (2 mM) was suspended in 500 µl of either a pH 2.1 buffer or a pH 7.6 buffer and allowed to incubate for one hour at room temperature. Cross-linking was performed using 5% DSP in DMF for varying lengths of time (10, 20, or 50 seconds). Results indicate that the Ara h 1 trimer is unstable at acidic pHs that would be encountered in the human stomach but that the monomer is stable at this pH. Further experiments indicate that the monomer is stable at pH 2.1 for greater than 8 hours at 37°C.

Figure 7. Portions of the Ara h 1 protein are resistant to chymotrypsin digestion.

Purified Ara h 1 (8.5 μ M) was subjected to digestion with chymotrypsin (0.2 μ M), at 37°C for varying lengths of time. Samples were withdrawn at various times and prepared for analysis. Panel A shows a coomassie stained protein gel. Panel B shows an immunoblot analysis using a pool of serum IgE from peanut sensitive patients. Panel C shows an immunoblot analysis using an antibody that recognizes a unique carbohydrate structure that includes a beta-1,2-linked xylose attached to the beta-linked mannose of the core oligosaccharide chain. Protease resistant Ara h 1 fragments were detected in all samples for up to 3 hrs after the addition of the enzyme. Many of the protease resistant fragments also bound serum IgE from peanut sensitive patients and were glycosylated.

Figure 8. Portions of the Ara h 1 protein are resistant to trypsin digestion.

Purified Ara h 1 (8.5 μ M) was subjected to digestion with trypsin (0.01 μ M) at 37°C for varying lengths of time. Samples were withdrawn at various times and prepared for analysis. Panel A shows a coomassie stained protein gel. Panel B shows an immunoblot analysis using a pool of serum IgE from peanut sensitive patients. Panel C shows an immunoblot analysis using an antibody that recognizes a unique carbohydrate structure that includes a beta-1,2-linked xylose attached to the beta-linked mannose of the core oligosaccharide chain. Protease resistant Ara h 1 fragments were detected in all samples for up to 3 hrs after the addition of the enzyme. Many of the protease resistant fragments also bound serum IgE from peanut sensitive patients and were glycosylated.

Figure 7. Portions of the Ara h 1 protein are resistant to pepsin digestion.

Purified Ara h 1 (8.5 μ M) was subjected to digestion with pepsin (2 μ g/ml) at 37°C for varying lengths of time. Samples were withdrawn at various times and prepared for analysis. Panel A shows a coomassie stained protein gel. Panel B shows an immunoblot analysis using a pool of serum IgE from peanut sensitive patients. Protease resistant Ara h 1 fragments were detected in all samples for up to 3 hrs after the addition of the enzyme. Many of the protease resistant fragments also bound serum IgE from peanut sensitive patients and were glycosylated (not shown).

Figure 10. Non-allergenic proteins are sensitive to protease digestion.

Several non-allergenic proteins were subjected to digestion with trypsin and chymotrypsin under the same conditions as described in Figs. 4 and 5. The results from a representative protein (myo D, a mammalian transcription factor) are shown. In contrast to Ara h 1, myo D did not produce long-lived protease resistant fragments.

Summary

The Ara h 1 trimer, which is stable at high salt concentrations, is unstable at an acidic pH (2.1) that is found in the human stomach.

The Ara h 1 monomer is stable at pH 2 and portions of this allergen are resistant to digestion with pepsin, trypsin, and chymotrypsin.

Although the Ara h 1 protein contains numerous protease cleavage sites, located in almost all of the IgE binding epitopes, proteolytic digestion results in several large resistant fragments.

Ara h 1 peptides that are resistant to protease digestion contain IgE binding epitopes.

Most of the protease-resistant Ara h 1 peptides contain a β 1,2-linked xylose attached to the β -linked mannose of the core oligosaccharide chain.

Conclusions

As reported by other labs, allergens are resistant to digestive enzymes whereas non-allergenic proteins are quickly degraded. However, in contrast to other reports, our results indicate that peptide fragments, not the entire protein, survive for significant periods of time in the presence of proteases. In addition, these protease resistant fragments contain IgE binding sites and carbohydrate. These studies indicate that long-lived protease-resistant protein fragments may play a role in the etiology of food allergic disease because of their ability to survive the human gastrointestinal tract long enough to gain access to the immune system.

Glycinin, A Third Major Peanut Allergen Identified By Soy-Adsorbed Serum IgE from Peanut Sensitive Individuals. P Rabjohn, CM West, E Helm, R Helm, JS Stanley, SK Huang, H Sampson, AW Burks, and GA Bannon. University of Arkansas Medical School, Little Rock, AR, Johns Hopkins University, Baltimore, MD, Mt. Sinai Hospital, New York, NY.

Two major allergens involved in peanut hypersensitivity, Ara h 1 and Ara h 2, have been isolated and extensively characterized. These allergens were identified on the basis of their ability to bind serum IgE from >90% of peanut hypersensitive patients. A third peanut allergen, Ara h 3 (~14 kD), was identified by using soy adsorbed serum IgE antibodies from peanut sensitive individuals. Amino terminal sequencing revealed that the first 23 amino acids of this protein had significant sequence homology with the glycinin family of seed storage proteins. A full length cDNA clone was isolated from a peanut cDNA library using oligonucleotides derived from this amino acid sequence. This clone encoded a 510 amino acid long protein with high homology to the glycinins. Further analysis of the immunoblot data and the Ara h 3 clone indicated that the 14 kD protein identified by soy adsorbed serum IgE represented the amino terminal end of a proteolytically cleaved 60 kD glycinin protein. The major linear IgE binding epitopes of this entire allergen were mapped by probing overlapping peptides with pooled serum IgE from 11 peanut sensitive patients. Ten IgE binding regions were identified, distributed throughout the length of the Ara h 3 protein. In an effort to determine the 6-10 amino acid long epitopes, overlapping 10mers will be made through each region with pooled positive serum. Once these are identified a set of all epitopes will be made and probed with individual serum IgE. In this manner the major IgE binding epitopes and prevalence of recognition by serum IgE within the peanut sensitive population will be determined.

INTRODUCTION

Approximately 1-3% of the USA population suffers from some form of food allergy. Peanuts, tree nuts, and shellfish are responsible for the majority of food hypersensitivity reactions in adults, while peanuts, milk, and eggs account for the majority of reactions in children. The reaction to peanut is more severe than the reaction to other foods, often resulting in fatal anaphylaxis. While most children outgrow allergies to milk and eggs, peanut allergies persist into adulthood, lasting the entire lifetime of the individual. Currently, avoidance is the only treatment for patients with peanut allergies; however, the inclusion of peanut as a protein extender in processed foods makes accidental consumption almost inevitable. Despite the prevalence of peanut hypersensitivity in children, coupled with an increasing number of deaths each year from peanut-induced anaphylaxis, the identification of unique, clinically-relevant allergens from peanut is incomplete, limiting our understanding of their role in the immunobiology of hypersensitivity reactions.

Devising better methods for managing peanut hypersensitivity requires a thorough understanding of how allergens and the immune system interact. The first step is understanding this interaction is to identify and characterize regions of the allergen that are initially recognized by the immune system. Ara h 3 is one of the three major allergens from peanut being characterized by our laboratory at the protein level. The cDNA encoding Ara h 3 has been cloned, sequenced, and expressed in a bacterial system. The derived amino acid sequence has been used to construct synthetic peptides so that the linear, IgE-binding regions within the primary sequence can be identified.

The goal of this research is to identify the linear, IgE-binding epitopes of Ara h 3. By identifying critical residues required for IgE-binding within each epitope, it will be possible to mutagenize the Ara h 3 cDNA to encode a protein that escapes IgG recognition.

FIGURE 11

Ara h 3 Amino Acid Sequence

A third peanut allergen, Ara h 3, was originally identified as a 14 kD protein by soy-adsorbed IgE sera from peanut hypersensitive individuals. Amino-terminal sequencing revealed that the first twenty-three amino acids (indicated in boldface) showed sequence similarity to the glycinin family of seed-storage proteins. A cDNA clone encoding 510 amino acids was isolated from a mature peanut expression library using oligonucleotides derived from the amino-terminus of the protein. Further sequence analysis revealed that the 14 kD protein originally identified by soy-adsorbed sera represents the amino-terminal portion of a 60 kD preproglobulin.

FIGURE 12

Sequence Comparison of Ara h 3 with Related Legume Glycinins

Ara h 3 showed 62-72% sequence identity with other legume glycinins. Sequences were aligned using the Wisconsin GCG analysis program. G1 Soy is the glycinin G1 precursor containing the A1a-Bx chains (*Glycine max*, GenBank P04776), G2 Soy is the glycinin G2 precursor containing the A2-B1a chains (*Glycine max*, GenBank A91341), and A2 Pea is the legumin A2 precursor (*Pisum sativum*, GenBank X17193). (A) Conserved region near the amino-terminus of the acidic chain. Shaded residues represent glycinin signature sequence. (B) Conserved region near the amino-terminus of the basic chain. Shaded residues represent glycinin signature sequence. The *Ara h 3* primary sequence contains 24 or the 26 invariable residues corresponding to glycinin signature sequence.

FIGURE 13

Serum IgE From a Pool of Peanut Hypersensitive Patients Recognizes Recombinant Ara h 3

(A) The cDNA encoding Ara h 3 was cloned into the pET 24(b)+ plasmid. This plasmid allows bacterial expression of the recombinant protein with a 14-amino acid polypeptide tail containing a polyhistidine tag at the carboxy-terminus. The molecular weight standards, MW, are expressed in kilodaltons (kD). Lane A, 4h induction of pET 24 harboring no insert; lane B, uninduced Ara h 3; lane C, 1h induction of Ara h 3; lane D, 2h induction; lane E, 3h induction; lane F, 4h induction; lane G is blank; lane H, native Ara h 1 (63.5 kD). (B) Immunological detection was performed using a pool of serum IgE from peanut hypersensitive patients.

FIGURE 14

Identification of a Core IgE-Binding Epitope on the Ara h 3 Allergen.

(A) Detailed epitope mapping was performed on IgE-binding regions listed in Table 1 by synthesizing overlapping peptides ten amino acids in length offset from the previous peptide by two residues. These peptides were probed with a pool of serum IgE from 11 patients with peanut hypersensitivity. The data shown represents amino acids 372-395. (B) The amino acid sequence (residues 372-395) of Ara h 3 that was tested in A is shown. Residues in boldface correspond to common IgE-binding amino acids of the spots shown in A.

FIGURE 15

Identification of the Immunodominant Epitopes of Ara h 3

(A) IgE-binding peptides (1-4) were synthesized and probed individually with serum IgE from 20 peanut-hypersensitive patients. Numbers across the top represent individual patients, nine of which are shown here. **(B)** The percentage of individual peanut-hypersensitive patients recognizing epitopes (1-4) ranges from 5% to 100%. The IgE-binding sequence and its corresponding position in the primary sequence of Ara h 3 is also shown.

FIGURE 16

Single Amino Acid Changes to Peptide 2 Result in Loss of IgE Binding to This Epitope

Peptide 2 was synthesized with an alanine residue (except position 254 which was substituted with leucine) substituted for one of the amino acids at each position in the peptide. The synthesized peptides were probed with a pool of serum IgE from peanut hypersensitive patients whose IgE has previously been shown to recognize this peptide. The letters across the top of each panel indicate the one-letter amino acid code for the residue normally at that position and the amino acid substituted for that residue. The numbers indicate the position of each residue in the Ara h 3 protein. *WT* indicates the wild-type peptide with no amino acid substitutions.

TABLE 4

Multiple IgE-binding Regions Identified on the Ara h 3 Allergen

Epitope mapping was performed on the Ara h 3 allergen by synthesizing the entire protein in 15 amino acid-long overlapping peptides offset from the previous peptide by seven residues. 71 overlapping peptides were synthesized to determine which regions in the primary sequence were recognized by serum IgE from peanut hypersensitive patients. In this manner, the entire length of the Ara h 3 allergen could be studied in short, overlapping fragments.

<u>Region</u>	<u>Peptide</u>	<u>Sequence</u>
A A A	1	26 FNLAGNTEQEFLRYQ (amino acids 176-190 of SEQ ID NO:1)
	27	EQEFLRYQQQSRQSR (amino acids 183-197 of SEQ ID NO:3)
	28	QQQSRQSRRLSPYsv (amino acids 190-204 of SEQ ID NO:3)
A A A	2	34 GQEEENEGLGNIFSGF (amino acids 232-2416 of SEQ ID NO:3)
	35	35 GGNIFSGFTPEFLEQ (amino acids 239-353 of SEQ ID NO:3)
	36	36 FTPEFLEQAFQVDDRv (amino acids 2416-2600 of SEQ ID NO:3)
A A A	3	43 RADEEEYDEDEYEV (amino acids 290-309 of SEQ ID NO:3)
	44	44 YDEDEYEVDEEDRRR (amino acids 302-316 of SEQ ID NO:3)
	45	45 YDEEDRRRGGRGSRGRv (amino acids 309-323 of SEQ ID NO:3)
A A A	4	54 LSAEYGNLYRNALFV (amino acids 372-386 of SEQ ID NO:3)
	55	55 LYRNALFVAHYNTNA (amino acids 379-393 of SEQ ID NO:3)
	56	56 VAHYNTNAHSIIYRLv (amino acids 386-400 of SEQ ID NO:3)

SEARCHED

SEARCHED

SEARCHED

SUMMARY

- The cDNA clone encoding Ara h 3, a third major peanut allergen was cloned from a peanut expression library
- Ara h 3 is a member of the glycinin family of seed-storage proteins
- Recombinant Ara h 3 has been expressed in a bacterial system and is recognized by IgE from peanut-hypersensitive patients
- Linear, B-cell epitopes have been identified within the primary sequence of Ara h 3
- The percentage of patients recognizing each epitope on Ara h 3 has been determined
- Mutation of critical residues within the Ara h 3 epitopes reduces and eliminates IgE-binding

Rapid Isolation Of Peanut Allergens And Their Physical Chemical And Biological Characterization. R Kopper, S Maleki, R Helm, H Sampson, SK Huang, G Cockrell, AW Burks, and GA Bannon. University of Arkansas Medical School, Little Rock, AR, Johns Hopkins University, Baltimore, MD, and Mt. Sinai Hospital, New York, NY.

The investigation of IgE-mediated peanut hypersensitivity requires the identification and characterization of the allergens involved in this immunologic disorder. A rapid, procedure has been developed for the extraction of large quantities (95% pure) of the major peanut allergens, Ara h 1 and Ara h 2. The purified allergens were analyzed by circular dichroism spectroscopy and found to have alpha helix and beta sheet domains that could be unfolded under increasingly denaturing conditions. Ara h 1 was shown to be very stable and showed minor changes in its secondary structure up to 5 M urea, whereas Ara h 2 was denatured at much lower concentrations. Using fluorescence polarization spectroscopy and cross-linking, fluorescein-labeled Ara h 1 was shown to self-associate in a highly cooperative manner into distinct homo- trimers in the presence of high salt concentrations. These results indicate that the interface is stabilized primarily by hydrophobic interactions. This higher order structure bound IgE from peanut sensitive individuals indicating that the epitopes are exposed on the molecule's surface. A decrease in the slope of the Ara h 1 titration curves in the presence of increasing concentrations of salt demonstrates the involvement of ionic interactions in the cooperative association of the trimers. Current experiments are underway to determine if this multimeric Ara h 1 molecule forms at pH ranges that would be encountered in the digestive tract and whether this molecule is resistant to digestion by proteases.

INTRODUCTION

Every year twenty million Americans suffer from one or more types of allergies. Food allergies occur in 6-8% of children and 1-2% of adults. Peanut, egg and milk are responsible for 80% of food allergies that occur in children. Peanut allergy is a life-threatening, lifelong disorder. The only current method for prevention of food allergy is avoidance. Children become tolerant to most food allergies with age (e.g. eggs, milk, shellfish, soy, etc.), however peanut allergy is rarely outgrown. Thus, it is increasingly difficult for an allergic individual to avoid an abundantly utilized and most often disguised food source such as peanuts, leading to accidental ingestion, anaphylaxis and possibly death. To understand IgE-mediated food hypersensitivity reactions it is important to identify and characterize the allergens that are responsible for the immunologic disorder. It is also necessary to understand the basic molecular interactions involved in allergen recognition by the immune system.

In the current work we have carried out rapid, large scale purification and biophysical characterization of two major peanut allergens Ara h1 and Ara h 2. The purification of these native peanut proteins has not only enabled us to study the response of peanut specific T-cell lines and mast cells to treatment with Ara h 1 and Ara h 2 independent of other peanut proteins but, also allowed the establishment of Ara h 1 and 2 specific T-cell clones. Detailed biochemical and biophysical characterization of these proteins have also been carried out utilizing fluorescence polarization, western blot analysis and cross-linking.

Table 5. Summary of K_{app} and ρ -values for Ara h 1 oligomer formation.

Ara h 1 Oligomer	Salt concentration (mM)	K_{app} (μM)	ρ -value (coop.)
monomer to trimer	0	*	*
monomer to trimer	100	0.065	2.4
monomer to trimer	300	0.07	2.25
monomer to trimer	500	0.095	2.1
monomer to trimer	900	0.12	2.1
monomer to trimer	1400	0.17	2.2
monomer to trimer	1800	0.17	2.1
trimer to hexamer	100	32.6	1.1
trimer to hexamer	400	36	1.03
trimer to hexamer	600	41	1.13
trimer to hexamer	800	45	1.0
trimer to hexamer	1100	48	0.9
trimer to hexamer	1300	54	0.9
trimer to hexamer	1800	65	0.8

* These values cannot be determined by the fitting program used.

CONCLUSIONS

1. Large milligram quantities of highly purified protein allergens can be obtained in one days time and utilized for various applications such as:
 - a- preparation of highly pure, standardized allergens for use as diagnostic tools such as skin prick tests.
 - b- highly quantitative biochemical and biophysical characterizations of the allergens.
 - c- to establish allergen specific T-cell lines, study the effect of allergens on mast cells and other cell types and for comparison to other allergens and their effects on the immune system.
2. Purified proteins were recognized by the components of the immune system that are found to play important roles in allergy and demonstrate biological activity associated with their allergenicity, i.e.:
 - a- native Ara h 1 and Ara h 2 were both recognized by serum IgE of allergic individuals.
 - b- Ara h 1 and Ara h 2 were able to stimulate T-cell proliferation and mast cell degranulation independently of other peanut proteins.
3. The biophysical characteristics of Ara h 1 and Ara h 2 may have strong implications for their allergenicity:
 - a- Ara h 1 forms highly stable trimeric and hexameric oligomers primarily shown to be stabilized through hydrophobic interactions. Formation of these highly stable oligomers may be important in it's protection against digestion.
 - b- Ara h 2 does not form homo-oligomeric structures, but has been shown to have a low affinity interaction with trypsin. Trypsin binding ability of Ara h 2 may be involved in it's role as a potent allergen.

Fig. 23. SDS-PAGE analysis at various stages of allergen purification and immunoblot using serum IgE from allergic individuals. **Panels A** is the protein profiles resulting from the purification of Ara h 2. **Panel B** is the protein profiles resulting from the purification of Ara h 2 that was blotted to nitrocellulose and detected by western blot analysis using serum IgE from allergic individuals as the primary antibody. Lanes are as follows: *lanes A1 and B1*, crude peanut extract; *lane A2 and B2*, 25% ammonium sulfate pellet; *A3 and B3*, Ara h 2 fraction following anion exchange chromatography; *lane A4 and B4*, Ara h 2 fraction following hydrophobic chromatography.

Fig. 24 Molecular mechanisms involved in peanut-stimulated T-cell activation. T cells lines derived from peanut sensitive individuals were stimulated with CPE and then at various times after stimulation (0, 5, and 10 minutes) the cells were suspended in lysis buffer (1% NP-40, 0.5 % Na-deoxycholate, 0.1% SDS, 1 mM EDTA, 1 mM MgCl₂, 50 mM NaF, 20 mM -glycero-phosphate, 1 mM Na-ortho-vanadate, 1 mM PMSF, 10 µg/ml Aprotinin, 10 µg/ ml Leupeptin, 10 µM Pepstatin in PBS, pH 7.5) and homogenized until they were lysed. Immunoprecipitations were performed by using polyclonal rabbit anti-ZAP-70 antibody directly conjugated to agarose beads (Zap-70-LR, Santa Cruz Biotechnology, Inc., Santa Cruz, CA). The immunoprecipitated pellet was then resuspended in SDS-sample buffer and electrophoresed on 12% polyacrylamide gels. SDS-PAGE resolved proteins were then transferred to nitrocellulose electrophoretically. The membranes were washed, blocked, and probed for co-immunoprecipitated and phosphoryoated proteins using standard western blot techniques with the appropriate primary antibodies: (A) mouse anti-T-cell receptor-ζ chain (Zymed Laboratories Inc., San Francisco, Ca), (B) anti-phospho-tyrosine, (C) anti-ERK I antibody or (D) PY-20 (from Santa Cruz Biotechnology, Inc., Santa Cruz, CA). The membrane was then incubated in the presence of appropriate secondary antibody (either anti-rabbit or anti-mouse IgG) conjugated to Horse Radish peroxidase enzyme (HRP) and the signal detected using ECL western blotting reagents (Amersham International plc, Buckinghamshire, England).

Fig. 55 Proliferation of T cells isolated from peanut allergic individuals. The peripheral blood lymphocytes (PBLs) of 12 peanut sensitive individuals and 5 non-allergic individuals (data not shown) were isolated from whole blood using ficoll hypaque. Cells were washed and suspended in media at the concentration of 4×10^6 cells/ml. Three aliquots (1 ml each) were placed in 24 well tissue culture plates and stimulated with 50 µg/ml crude peanut extract (CPE) every 10-14 days in order to establish peanut specific T-cell lines. For the T-cell proliferation assay, 12 wells of a 96 well plate at 2×10^5 PBLs/well were stimulated with media (control), crude peanut extracts (CPE, 50 µg/ml), wild type Ara h 2 (10 µg/ml), or crude rice extracts (Rice, 50 µg/ml, as negative control) at 37°C. T-cell proliferation was estimated by quantitating the amount of ^{3}H -thymidine incorporation into the DNA of proliferating cells. ^{3}H -thymidine incorporation is reported as stimulation (SI) above media treated control cells. The graph represents the proliferation of T cells (y-axis, SI) from each individual plotted versus stimulant (x-axis).

Fig. 56 The CD4⁺ and CD8⁺ profiles of the T-cell lines of peanut allergic individuals. T cells were stained with FITC-labeled anti-CD4 and PE-labeled anti-CD8 antibodies in order to determine the phenotype of the peanut specific T-cell lines established. FACS analysis was used to determine the percent of CD4⁺ and CD8⁺ cells in the peanut specific T-cell lines utilized in Ara h 2 signal transduction and epitope mapping studies. The percentages determined (**y-axis**) were plotted versus the initials of the individual patients (**x-axis**) used to establish these cell lines. This panel represents the CD4/CD8 profiles of T-cell lines established from allergic individuals.

Fig. 25 Synthetic overlapping peptides of Ara h 2. In order to determine the T-cell epitopes of peanut allergen Ara h 2, 29 different peptides representing the entire protein were synthesized. Each peptide was 20 amino acids long and was offset from the previous peptide by 5 amino acids. In this manner we were able to cover the entire protein sequence by overlapping peptides. The primary amino acid sequence of the Ara h 2 protein represented as the one letter amino acid code and individual peptides of Ara h 2 that were used to map T-cell epitopes are shown.

Fig. 26 Proliferation of T cells isolated from peanut allergic and non-peanut allergic individuals in response to Ara h 2 derived peptides. T cells were isolated from 17 peanut allergic individuals and 5 non-peanut allergic individuals (not shown) and placed into 96 well plates at 4×10^4 cells/well and treated in triplicates with media or Ara h 2 peptides (10mg/ml). The cells were allowed to proliferate for 6 days and then incubated with ^{3}H -thymidine (1mCi/well) at 37 °C for 6-8 hrs and then harvested onto glass fiber filters. T-cell proliferation was estimated by quantitating the amount of ^{3}H -thymidine incorporation into the DNA of proliferating cells. ^{3}H -thymidine incorporation is reported as stimulation (SI) above media treated control cells. Each graph represents the proliferation of T cells (x-axis) from each individual plotted versus the 29 overlapping peptides (y-axis) spanning the entire Ara h 2 protein from the amino-(peptide 904) to carboxyl terminus (peptide 932).

Fig. 27 Identification of the Ara h 2 peptides that caused T-cell proliferation in the majority of patients tested. All of the data in Figure 2 was compiled and plotted as a stimulation index versus the Ara h 2 peptides. The mean proliferation and standard error of 17 peanut allergic individuals and 5 non-allergic individuals (data not shown) were calculated and plotted as mean stimulation index of atopic individuals versus the 29 overlapping peptides spanning the entire Ara h 2 protein from the amino-(peptide 904) to carboxyl terminus (peptide 932).

T-Cell Responses In Food Allergy: Identification Of T-Cell Epitopes On A Major Peanut Allergen. S Maleki, QF Wang, C Connaughton, G Cockrell, R Helm, SK Huang, H Sampson, GA Bannon, and AW Burks. University of Arkansas Medical School, Little Rock, AR, Johns Hopkins University, Baltimore, MD, Mt. Sinai Hospital, New York, NY.

The development of an IgE response to an allergen involves a series of interactions between antigen-presenting cells (APCs), T cells, and B cells. The critical role T-cells play in the production of allergen-specific IgE has been studied in a variety of aeroallergens. However, the role of T lymphocytes and antigen specificity in the induction and regulation of the food allergic response is less well defined. Ara h 2 is one of the major allergens in peanut shown to stimulate IgE mediated disease in humans. We have used overlapping synthetic peptides spanning the entire protein to determine the T cell epitopes of Ara h 2. Peanut specific T cell lines were established from the peripheral blood of 12 atopic patients and 4 nonatopic controls. All of the cell lines were shown to consist of predominantly CD4+ T cells. The proliferation of the T cells in response to the 29 individual peptides was measured. Four immunodominant T cell epitopes were identified for Ara h 2, epitope 1 (AA 18-28), epitope 2 (AA 45-55), epitope 3 (AA 95-108), and epitope 4 (AA 134-144). Epitope 1, 2, and 4 have overlapping sequences with Ara h 2 B cell epitopes whereas, epitope 3 does not overlap IgE binding epitopes therefore providing a possibility for the development of a non-anaphylactic, T cell directed, immunotherapeutic peptide.

INTRODUCTION

Approximately 8% of children and 1-2% of adults have some type of food allergy. Peanuts, fish, tree nuts, and shellfish account for the majority of food hypersensitivity reactions in adults, while peanuts, milk, and eggs cause over 80% of food hypersensitivity reactions in children. Unlike the food hypersensitivity reactions to milk and eggs, peanut hypersensitivity reactions usually persist into adulthood and last for a lifetime. In addition, hypersensitivity reactions to peanuts tend to be more severe than those to other food allergens. Several reports have detailed fatal and near-fatal anaphylactic reactions occurring in adolescents and adults following the ingestion of peanuts or peanut products.

Currently, the only effective treatment for patients with peanut hypersensitivity is avoidance of any food products which contain the allergen. This is becoming more difficult due to the inclusion of peanuts and peanut products as protein extenders in many different foods. Potential immunotherapeutic approaches to food hypersensitivity might include the competitive inhibition of allergen presentation with antibodies specific to the TCR V region or with soluble TCRs that would bind epitopes preventing them from binding to cell associated receptors. Another avenue of approach might be the modulation of Th cell development to favor Th₁ cytokine responses by alteration of T-cell epitope structure. All of these approaches require in-depth knowledge of the T-cell epitope structure and T-cell signaling pathways that are activated by allergen-specific interaction with receptors. We report complete T-cell epitope mapping of Ara h 2, a major peanut allergen. Peanut specific T-cell lines were established and used to map the immunodominant epitopes of Ara h 2, determine the surface receptor and cytokine expression profiles. T-cell epitopes have been compared to previously mapped B-cell epitopes of Ara h 2.

Fig. 25 . Peanut allergen Ara h 2.

In order to determine the T-cell epitopes of peanut allergen Ara h 2, 29 different peptides representing the entire protein were synthesized. Each peptide was 20 amino acids long and was offset from the previous peptide by 5 amino acids. In this manner we were able to cover the entire protein sequence by overlapping peptides. The primary amino acid sequence of the Ara h 2 protein represented as the one letter amino acid code and individual peptides of Ara h 2 that were used to map T-cell epitopes are shown.

Fig. 26 . Proliferation of T cells isolated from peanut allergic and non-peanut allergic individuals in response to Ara h 2 derived peptides.

T cells were isolated from 17 peanut allergic individuals and 5 non-peanut allergic individuals (not shown) and placed into 96 well plates at 4×10^4 cells/well and treated in triplicates with media or Ara h 2 peptides ($10\mu\text{g}/\text{ml}$). The cells were allowed to proliferate for 6 days and then incubated with ^3H -thymidine ($1\mu\text{Ci}/\text{well}$) at 37°C for 6-8 hrs and then harvested onto glass fiber filters. T-cell proliferation was estimated by quantitating the amount of ^3H -thymidine incorporation into the DNA of proliferating cells. ^3H -thymidine incorporation is reported as stimulation (SI) above media treated control cells. Each graph represents the proliferation of T cells (x-axis) from each individual plotted versus the 29 overlapping peptides (y-axis) spanning the entire Ara h 2 protein from the amino-(peptide 904) to carboxyl terminus (peptide 932).

Fig. 27 . Identification of the Ara h 2 peptides that caused T-cell proliferation in the majority of patients tested.

All of the data in Figure 2 was compiled and plotted as a stimulation index versus the Ara h 2 peptides. The mean proliferation and standard error of (panel A) 17 peanut allergic individuals and (panel B) 5 non-allergic individuals were calculated and plotted as mean stimulation index of atopic individuals versus the 29 overlapping peptides spanning the entire Ara h 2 protein from the amino-(peptide 904) to carboxyl terminus (peptide 932).

Fig. 28 The CD4⁺ and CD8⁺ profiles of the T-cell lines of peanut allergic individuals.

T cells were stained with FITC-labeled anti-CD4 and FITC-labeled anti-CD8 antibodies in order to determine the phenotype of the peanut specific T-cell lines established. FACS analysis was used to determine the percent of CD4⁺ and CD8⁺ cells in the peanut specific T-cell lines utilized in Ara h 2 epitope mapping and plotted versus the initials of the individual patients used to establish these cell lines. Panel A represents the CD4/CD8 profiles of T-cell lines established from allergic individuals while panel B represents the CD4/CD8 profiles of T-cell lines established from non-allergic individuals.

Fig. 29 The IL-4 secretion profiles of a representative sample of T cells.

The supernatant was collected from T-cells stimulated with immunodominant peptides and an ELISA assay was utilized to measure IL-4 concentrations in the media. IL-4 concentration is plotted versus the 29 overlapping peptides spanning the entire Ara h 2 protein from amino- (peptide 904) to carboxyl terminus (peptide 932).

Fig. 30. Comparison of the T-cell and B-cell epitopes of Ara h 2.

The primary amino acid sequence of the Ara h 2 protein is represented as the one letter amino acid code. The T-cell epitopes of Ara h 2 that have been identified in this study are depicted as bold, italicized letters and the immunodominant B-cell epitopes determined in previous work are underlined. In general, the IgE binding epitopes do not overlap with the T-cell epitopes.

CONCLUSIONS

1. Four immunodominant T-cell epitopes have been identified for Ara h 2 using T cells isolated from 17 atopic individuals: peptides 907-908 (epitope 1), 911-914 (epitope 2), 923-926 (epitope 3) and 930-932 (epitope 4).
2. Similar T-cell epitopes were identified for Ara h 2 using T cells isolated from 5 non-atopic individuals.
3. T-cell lines established from both atopic and non-atopic individuals were primarily CD4⁺.
4. T-cells from both atopic and non-atopic individuals seemed to secrete IL4 in response to treatment with immunodominant peptides. However, T-cells of non-atopic individuals seemed to secrete more IL4 in response to epitope 2 than epitope 1.
5. On average T-cells of the non-atopic individuals secreted lower levels of IL4 than the T-cells of atopic individuals.
6. When comparing the B-cell (previously described) and T-cell epitopes it is evident that the immunodominant epitopes do not overlap to any significant extent. This is very important in the development of peptide mediated immunotherapies towards modulating Th cell development to favor Th₁ type cytokine responses.

Tertiary Structure Of The Major Peanut Allergen Ara h 1: Implications For The Bioengineering Of A Hypoallergenic Protein. D Shin, H Sampson, R Helm, SK Huang, AW Burks, and GA Bannon. University of Arkansas Medical School, Little Rock, AR, Johns Hopkins University, Baltimore, MD, and Mt. Sinai Hospital, New York, NY.

Allergy to peanut is a significant health problem because of the prevalence and potential severity of the reaction. Ara h 1, a major peanut allergen, has been isolated and characterized and was shown to consist of 626 amino acids and contain 23 linear IgE-binding epitopes, 6-10 residues in length. The amino acids important for peanut-specific IgE binding were determined by synthesizing wild type and mutant peptides with single alanine, glycine or methionine substitutions at each position followed by incubation in pooled serum from patients with peanut hypersensitivity. From this analysis it was determined that amino acids which reside in the middle of the epitope were generally more critical for IgE binding. Furthermore, though polar charged residues occur most frequently within the epitopes, apolar residues were found to be more important for IgE binding. In addition, it was found that each epitope could be mutated resulting in loss of ability to bind IgE with only a single amino acid substitution. To further characterize the epitopes a homology-based molecular model of the Ara H 1 protein was made. The model represents residues 171-586 allowing visualization of epitopes 10-22. The majority of these epitopes appear to be clustered to certain areas of the molecule. Many of the critical amino acids involved in binding are evenly distributed on the surface and not buried in the hydrophobic core. The information from the mutational analysis along with the molecular model will aid in the design of immunotherapies and enhance the ability to design functional hypoallergenic proteins.

INTRODUCTION

Peanut allergy is a significant health problem because of its high prevalence and the potential severity of the reaction (fatal anaphylaxis). The reaction involves the binding of allergenic proteins to IgE bound to mast cells. This induces a signal transduction cascade that ultimately leads to the release of the mediators that give rise to the clinical symptoms. Currently, the only effective treatment for food allergy is avoidance of the food.

The Ara h 1 protein from peanut has been shown to be recognized by serum IgE from >90% of peanut sensitive individuals, indicating that it is a major allergen involved in the clinical etiology of this disease. One of the current options being explored to decrease the risk of allergic reaction is the production of hypoallergenic proteins by alteration of the IgE epitopes. However, this strategy is difficult in the case of Ara h 1 because this particular protein is one of the most abundant in the seed and has been shown to contain 23 epitopes. To assess the ability to produce a hypoallergenic Ara h 1 protein, a molecular model of this 63 kDa allergen and the amino acids important for peanut-specific IgE-binding were determined in an effort to more clearly define the epitope regions and target amino acids for mutation.

The model of Ara h 1 represents the conserved region between the vicilin family of proteins allowing visualization of epitopes 10-22. The epitopes are located primarily in two areas of the molecule, despite even distribution in the primary amino acid sequence. The epitopes also share no tertiary structure motifs and some lie within the interior of the molecule. To determine the amino acids critical for IgE binding within each epitope, wild type and single point mutation epitope peptides were constructed and tested for binding using pooled polyclonal IgE from sera obtained from 15 peanut-allergic patients. From this analysis it was determined that hydrophobic residues were found to be most important for IgE binding, even though polar charged residues occur more frequently. More importantly, there was at least one amino acid in each epitope that when changed resulted in a significant loss of IgE binding. Critical amino acids were mutated within the molecular model and analyzed to establish the potential of changing these residues in terms of stability of the tertiary structure. The results indicate that it may be possible to produce a hypoallergenic Ara h 1 protein through the replacement of single amino acids in the IgE binding epitopes.

SUMMARY

1. Twenty one epitopes of Ara h 1 can be altered to a non-IgE binding peptide by a single amino acid substitution with either alanine or methionine.
2. Hydrophobic residues located in the middle of the epitopes are more critical for IgE binding.
3. The epitopes are clustered in two regions of the Ara h 1 monomer.
4. These studies will aid in the development of a hypoallergenic clone that is stable and retains its functional properties.

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
70100
70101
70102
70103
70104
70105
70106
70107
70108
70109
70110
70111
70112
70113
70114
70115
70116
70117
70118
70119
70120
70121
70122
70123
70124
70125
70126
70127
70128
70129
70130
70131
70132
70133
70134
70135
70136
70137
70138
70139
70140
70141
70142
70143
70144
70145
70146
70147
70148
70149
70150
70151
70152
70153
70154
70155
70156
70157
70158
70159
70160
70161
70162
70163
70164
70165
70166
70167
70168
70169
70170
70171
70172
70173
70174
70175
70176
70177
70178
70179
70180
70181
70182
70183
70184
70185
70186
70187
70188
70189
70190
70191
70192
70193
70194
70195
70196
70197
70198
70199
70200
70201
70202
70203
70204
70205
70206
70207
70208
70209
70210
70211
70212
70213
70214
70215
70216
70217
70218
70219
70220
70221
70222
70223
70224
70225
70226
70227
70228
70229
70230
70231
70232
70233
70234
70235
70236
70237
70238
70239
70240
70241
70242
70243
70244
70245
70246
70247
70248
70249
70250
70251
70252
70253
70254
70255
70256
70257
70258
70259
70260
70261
70262
70263
70264
70265
70266
70267
70268
70269
70270
70271
70272
70273
70274
70275
70276
70277
70278
70279
70280
70281
70282
70283
70284
70285
70286
70287
70288
70289
70290
70291
70292
70293
70294
70295
70296
70297
70298
70299
70300
70301
70302
70303
70304
70305
70306
70307
70308
70309
70310
70311
70312
70313
70314
70315
70316
70317
70318
70319
70320
70321
70322
70323
70324
70325
70326
70327
70328
70329
70330
70331
70332
70333
70334
70335
70336
70337
70338
70339
70340
70341
70342
70343
70344
70345
70346
70347
70348
70349
70350
70351
70352
70353
70354
70355
70356
70357
70358
70359
70360
70361
70362
70363
70364
70365
70366
70367
70368
70369
70370
70371
70372
70373
70374
70375
70376
70377
70378
70379
70380
70381
70382
70383
70384
70385
70386
70387
70388
70389
70390
70391
70392
70393
70394
70395
70396
70397
70398
70399
70400
70401
70402
70403
70404
70405
70406
70407
70408
70409
70410
70411
70412
70413
70414
70415
70416
70417
70418
70419
70420
70421
70422
70423
70424
70425
70426
70427
70428
70429
70430
70431
70432
70433
70434
70435
70436
70437
70438
70439
70440
70441
70442
70443
70444
70445
70446
70447
70448
70449
70450
70451
70452
70453
70454
70455
70456
70457
70458
70459
70460
70461
70462
70463
70464
70465
70466
70467
70468
70469
70470
70471
70472
70473
70474
70475
70476
70477
70478
70479
70480
70481
70482
70483
70484
70485
70486
70487
70488
70489
70490
70491
70492
70493
70494
70495
70496
70497
70498
70499
70500
70501
70502
70503
70504
70505
70506
70507
70508
70509
70510
70511
70512
70513
70514
70515
70516
70517
70518
70519
70520
70521
70522
70523
70524
70525
70526
70527
70528
70529
70530
70531
70532
70533
70534
70535
70536
70537
70538
70539
70540
70541
70542
70543
70544
70545
70546
70547
70548
70549
70550
70551
70552
70553
70554
70555
70556
70557
70558
70559
70560
70561
70562
70563
70564
70565
70566
70567
70568
70569
70570
70571
70572
70573
70574
70575
70576
70577
70578
70579
70580
70581
70582
70583
70584
70585
70586
70587
70588
70589
70590
70591
70592
70593
70594
70595
70596
70597
70598
70599
70600
70601
70602
70603
70604
70605
70606
70607
70608
70609
70610
70611
70612
70613
70614
70615
70616
70617
70618
70619
70620
70621
70622
70623
70624
70625
70626
70627
70628
70629
70630
70631
70632
70633
70634
70635
70636
70637
70638
70639
70640
70641
70642
70643
70644
70645
70646
70647
70648
70649
70650
70651
70652
70653
70654
70655
70656
70657
70658
70659
70660
70661
70662
70663
70664
70665
70666
70667
70668
70669
70670
70671
70672
70673
70674
70675
70676
70677
70678
70679
70680
70681
70682
70683
70684
70685
70686
70687
70688
70689
70690
70691
70692
70693
70694
70695
70696
70697
70698
70699
70700
70701
70702
70703
70704
70705
70706
70707
70708
70709
70710
70711
70712
70713
70714
70715
70716
70717
70718
70719
70720
70721
70722
70723
70724
70725
70726
70727
70728
70729
70730
70731
70732
70733
70734
70735
70736
70737
70738
70739
70740
70741
70742
70743
70744
70745
70746
70747
70748
70749
70750
70751
70752
70753
70754
70755
70756
70757
70758
70759
70760
70761
70762
70763
70764
70765
70766
70767
70768
70769
70770
70771
70772
70773
70774
70775
70776
70777
70778
70779
70780
70781
70782
70783
70784
70785
70786
70787
70788
70789
70790
70791
70792
70793
70794
70795
70796
70797
70798
70799
70800
70801
70802
70803
70804
70805
70806
70807
70808
70809
70810
70811
70812
70813
70814
70815
70816
70817
70818
70819
70820
70821
70822
70823
70824
70825
70826
70827
70828
70829
70830
70831
70832
70833
70834
70835
70836
70837
70838
70839
70840
70841
70842
70843
70844
70845
70846
70847
70848
70849
70850
70851
70852
70853
70854
70855
70856
70857
70858
70859
70860
70861
70862
70863
70864
70865
70866
70867
70868
70869
70870
70871
70872
70873
70874
70875
70876
70877
70878
70879
70880
70881
70882
70883
70884
70885
70886
70887
70888
70889
70890
70891
70892
70893
70894
70895
70896
70897
70898
70899
70900
70901
70902
70903
70904
70905
70906
70907
70908
70909
70910
70911
70912
70913
70914
70915
70916
70917
70918
70919
70920
70921
70922
70923
70924
70925
70926
70927
70928
70929
70930
70931
70932
70933
70934
70935
70936
70937
70938
70939
70940
70941
70942
70943
70944
70945
70946
70947
70948
70949
70950
70951
70952
70953
70954
70955
70956
70957
70958
70959
70960
70961
70962
70963
70964
70965
70966
70967
70968
70969
70970
70971
70972
70973
70974
70975
70976
70977
70978
70979
70980
70981
70982
70983
70984
70985
70986
70987
70988
70989
70990
70991
70992
70993
70994
70995
70996
70997
70998
70999
70100
70101
70102
70103
70104
70105
70106
70107
70108
70109
70110
70111
70112
70113
70114
70115
70116
70117
70118
70119
70120
70121
70122
70123
70124
70125
70126
70127
70128
70129
70130
70131
70132
70133
70134
70135
70136
70137
70138
70139
70140
70141
70142
70143
70144
70145
70146
70147
70148
70149
70150
70151
70152
70153
70154
70155
70156
70157
70158
70159
70160
70161
70162
70163
70164
70165
70166
70167
70168
70169
70170
70171
70172
70173
70174
70175
70176
70177
70178
70179
70180
70181
70182
70183
70184
70185
70186
70187
70188
70189
70190
70191
70192
70193
70194
70195
70196
70197
70198
70199
70200
70201
70202
70203
70204
70205
70206
70207
70208
70209
70210
70211
70212
70213
70214
70215
70216
70217
70218
70219
70220
70221
70222
70223
70224
70225
70226
70227
70228
70229<br

IgE-Binding of Homologous Legume Vicilins and Glycinins of Soybean and Peanut Allergens. RM Helm, G Cockrell, SJ Stanley, HA Sampson, GA Bannon, AW Burks. University Arkansas for Medical Sciences, Little Rock, AR; Mt. Sinai Hospital, New York, NY.

Allergic reactions to soybeans, compared to fish and peanuts, are unique in that the clinical reaction is typically outgrown in the first 3-5 years of life. We are using amino acid homology-based data searches, peanut-specific, and soy-specific serum to screen allergens from soybeans to identify and characterize differences in peanut and soybean vicilin and glycinin seed storage proteins. A GenBank search for amino acid homology to Ara h 1 identified a 47% amino acid sequence homology to soybean β -conglycinin. To determine the specific amino acid regions that bind peanut-and soy-specific IgE to soybean β -conglycinin, we used the SPOTS method to prepare 15-mer peptides overlapped by 8 amino acids for the entire amino acid sequence. Our results identified 4 common IgE-binding regions; however, there were 2 unique soybean positive IgE-binding regions (amino acid sequences 265-279 and 245-269) and 5 unique peanut positive IgE binding regions (amino acid sequences 50-63, 65-78, 376-399, 4110425, and 586-600). Using prep cell and 2-D SDS-PAGE, and serum from soy-sensitive individuals, a 20-22 kD allergen was identified using Western IgE, immunoblot analysis. N-terminal sequencing revealed this protein to be the soybean glycinin subunit, A2B1a. The B1a region of this subunit showed approximately 60% homology to a portion to a recently identified peanut allergen, Ara h 3. We are using these combined methods to investigate the epitope specificity; that may account for the different clinical spectra evident in these two legume-induced immediate type hypersensitivities.

INTRODUCTION

Legume grains such as peanuts and soybeans are being increasingly used as sources of protein for humans, a phenomenon that may be responsible for an increased rise in reported food allergies and fatal anaphylaxis. Although children usually become tolerant to most food allergens including soybean proteins, peanut allergy is rarely outgrown. The factors determining the allergenicity of molecules and therefore the wide variability among individuals are still unknown.

Numerous proteins from soybeans and peanuts have been shown to be allergenic to humans. Members of seed storage proteins identified as vicilins (7S) and glycinins (11S) in soybeans share considerable amino acid sequence homology to proteins in peanuts. For example, Ara h 1, a major peanut allergen, has been sequenced and shown to have considerable sequence homology to the 7S conglycinin family of soybean seed storage proteins. Ara h 3 has recently been shown to have sequence homology to the glycinins, members of the 11S nonglycosylated soybean family. As discussed below, we have also identified a glycinin subunit, A2B1a, using serum from soybean sensitive individuals for analysis of 2-D SDS-PAGE immunoblots.

The comparison and analytical analysis of allergens from soybean and peanut should provide information on the allergens with respect to allergenicity differences between these two legumes causing hypersensitivity responses. A comparison IgE-binding regions of proteins identified in peanut extracts as soybean homologs using soybean- and peanut-specific serum from sensitive individuals revealed significant differences in the amino acid sequences bound by the respective sera.

We have identified a seed maturation protein using soybean serum from sensitive individuals for screening a soybean seed cotyledon cDNA expression library. Five clones representing two 1500 and three 1400 bp fragments were isolated using this technology. Nucleotide sequence homology of clone 3a (1500 bp) and 4a (1400 bp) revealed them to have shared identity to a 51 kD maturation protein functioning as a desiccant protection protein in maturing soybean seeds. This, to our knowledge, is the first identification of this molecule as an IgE-binding protein. Hybridization experiments with oligonucleotides derived from peanut allergens used to detect allergens sequences in our cDNA library have been less promising.

Using 2-D SDS-PAGE/immunoblot analysis of enriched fractions from an SDS-PAGE prep gel procedure, we isolated several IgE-binding bands. A 20-22 kD band has been identified as the B1a fraction of the soybean glycinin subunit, A2B1a. This glycinin and several other IgE-binding proteins from this analytical procedure are being compared to homologous peanut allergens to determine the IgE-binding regions shared or unique to the respective legume hypersensitivity.

HOMOLOGOUS PROTEIN IDENTIFICATION

In the course of amino acid analysis of peanut allergens, several proteins were identified with sequence homology to glycinins and vicilins. One of the major peanut allergen, Ara h 1, was identified with an amino acid sequence homology (47% identity) to a soybean vicilin family of proteins, β -conglycinin. The α -chain was selected for linear epitope analysis using soybean and peanut-specific serum from sensitive individuals. A set of 15-mers offset by 8 amino acids were prepared using the SPOTS method for peptide synthesis. The membrane was blocked and incubated with a serum pool made up of soybean-sensitive individuals, washed, and incubated with radiolabeled anti-IgE, washed and exposed to X-ray film. Developed films were then assessed for IgE-positive binding regions. Following identification of soybean IgE positive binding regions, the SPOTS membrane was stripped according to manufacturer's instructions and re-probed with a serum pool made up of peanut-sensitive individuals. The respective IgE-binding regions were then identified as: Soybean with Peanut-IgE binding regions, Peanut with Soybean-IgE binding regions, Soybean, and Peanut-specific regions. For each region identified, 10-mers offset by 2 were synthesized and analyzed for specific IgE-binding amino acid sequences. See Figures 33 and 34.

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100

cDNA CLONING

Soybean seeds, *Glycinus max*, Hutchinson variety, were obtained from a local health food store, frozen in liquid nitrogen, ground to a fine powder, and the RNA extracted using the method of Nedergaard et al (Mol Immunol 29:703,1992). Briefly, 2 g frozen seed powder was added to 10 mls buffer (250 mM sucrose, 200 mM Tris-HCl, pH 8.0, 200 mM KCl, 30 mM MgCl₂, 2% polyvinylpyrrolidone-40 and 5 mM 2-mercaptoethanol) and equilibrated with 10 ml fresh phenol (4°C). The suspension was homogenized and 10 ml of chloroform added with shaking for 5 min at RT. Phases were separated by centrifugation, 10k g for 20 min at 4°C and the aqueous phase transferred to a clean test tube and extracted 2x with equal volumes of chloroform/phenol. Nucleic acids were precipitated with sodium acetate/ethanol at -20°C overnight. The precipitates were collected by centrifugation at 13k g for 20 min at 4°C, washed with 70% ethanol and dried. Samples run in parallel were pooled in water and made 3M in LiCl, and the RNA precipitated for 4 hr at -20°C. The precipitate was collected by centrifugation outlined above and resuspended in distilled water. Fifty microliters of the RNA suspension was withdrawn for OD260/280 measurements and the RNA analyzed by agarose gel electrophoresis. Three aliquots representing a total of approximately 3.0 mgs total RNA was sent to STRATAGENE for purification of mRNA and the preparation of a Uni-Zap XR custom library.

The expression custom library was screened with serum from soybean-sensitive individuals and positive clones subcloned to homogeneity with respect to IgE-binding. Five clones were isolated from an initial screen and the plasmids purified from LB/ampicillin broth cultures using an Ameresco kit. The plasmid DNA from each clone was PCR amplified and analyzed in agarose gels. Two plasmid preparations had relative bp of approximately 1400 and the remaining three 1500 bp.

PCR AMPLIFIED PLASMIDS ISOLATED FROM SOYBEAN cDNA EXPRESSION LIBRARY

CDNA IgE + clones from sea cotyledons
Glycinus max, Hutchinson variety
In House RNA/STRATAGENE Library

Clone 4a:

Glycinus max Shi-Shi 51 kDa seed maturation protein:
96.5% identity in 114 bp overlap; begin at 423 end at 535.

Clone 3a:

Glycinus max Shi-Shi kDa seed maturation protein:
88.2% identify in 76 bp overlap; begin at 187 end at 262.

Glycinus max Shi-Shi amino acid sequence (SEQ ID NO: 4)

MASKVVSVLV IAMMLFAMNC NCTSVGHMPS TKEEGHDFQE SKAKTTQTAN
KAMETGKEGQ EAAESWTEWA KEKLSEGLGF KHDQESKEST TNKVSDYATD
TAQKSVDYAT DTAQSKDYA GDAAQSKDY AGDAAQKTD YASDTAQTSK
DYAGDAAQKS KGYVGDAAQK TKEYVGDAAQ KTKDYATDAA QTKDYATQK
TKDYASDATD AAKTKDYAA QTKDYASEA SDVAQNTKDY AAQTKDYAS
GGAQTKDYA SGGAQTKDY ASDAAQKTD YASDGAAQSK EYAGDVALNA
KDYAQSKDY AGDAAQNVKD YASDAVQKRK EYSGDASHKS KEASDYASET
AKTKDYVGD AAQRSGAAE YASDAAQRKE YAGDATKRSK EASNDHANDM
AQTKDYASD TAQRTKEKLQ DIASEAGQYS AEKAREMDAA AEKASDIAKA
AKQKSQEVKE KLGGQHRDAE L

Note: the same gene family with pGmPM8; a group III LEA protein with a putative signal peptide; 32 repeats of 11-mer with the consensus sequence KYDAGDAAQKT.

Function: desiccation protectant

Product: 51 kDa seed maturation protein.

ALLERGEN IDENTIFICATION BY SDS-PAGE

A crude soybean extract was applied to a 12.5% preparative SDS-PAGE gel and electrophoresed using a BIO-RAD prep cell. Five ml fractions were collected and aliquots were electrophoresed into a Pharmacia 24-well 10% horizontal gel, electrophoretically transferred to a nitrocellulose membrane, the remaining sites blocked using PBS/0.05% Tween 20, and analyzed for IgE-binding using serum from soybean-sensitive individuals. Fractions that bound IgE were dialyzed against 100mM ammonium bicarbonate ($x 4 \times 4$ liters) for 24 hours, lyophilized, reconstituted in distilled water and analyzed by 2-D (isoelectric focusing in the first dimension, pH 3-7, followed by a 4-20% SDS-PAGE gel molecular weight separation in the second) in duplicate. The proteins in the duplicate gels were transferred to nitrocellulose membranes, one was stained with Coomassie blue for protein identification and the other was prepared for IgE immunoblot analysis. IgE-binding proteins were identified by radiolabeled anti-IgE and X-ray autoradiography. Positive IgE-binding proteins by autoradiography were compared to the Coomassie stained gel protein profile. The stained blot was submitted to the Yale Biotechnology Center for amino acid sequencing. The results of this analysis revealed a 20-22kD protein with significant homology to the A2B1a glycinin protein family. Additional samples are being assessed for activity and identification.

A: Coomassie blue stained 2-D SDS-PAGE gel

B: IgE immunoblot of 2-D SDS-PAGE blot

SDS-PAGE identification of E + bands
Yale amino acid sequences

Sample 1: Mixed; primary (bottom) sequence matched various soybean glycinins^(SEQ 10 Nov 75)

(Gly)								(Pro)
(His)			Leu					(Ser)
(Lys)	(Gly)		Asp					(Ala)
(Ser)	Ile	(Asp)	Glu	(Thr)	Ile	X	Thr	(Asn)
1	2	3	4	5	6	7	8	Met

			(His)					
			(Ile)					
			(Pro)					
			(Arg)					
			(Ser)					
			(Leu)					
			(Ala)					
(Lys)	(Arg)		(Asn)					
(Arg)	Leu	X	(Gln)	Asn	Ile	X	(Gln)	Thr
10	11	12	13	14	15	16	17	18

Sample 2: Primary (bottom) sequence matched soybean glycinin A2B1a and G2 precursors^(SEQ 10 Nov 75)

Gly	(Val)	(Glu)		(Asn)				(Leu)
1	2	3	4	5	6	(Ala)	Thr	Met

			(Ala)					
Arg	(Arg)	(Asn)	Ala			(Ala)		
10	11	12	13	14	15	Gly	Gln	(Asn)

(Thr)								
(Pro)								
(Leu)			(Val)					
(Ala)			(Ala)					
(Asn)			(Gly)					
(Ser)	X		(Pro)					
19	20		21					

Sample 3: Primary (bottom) sequence matched glycinin A2B1a subunit precursor and G2 precursor from soybean^(SEQ 10 Nov 75)

								(Pro)
								(Asn)
(Phe)								
(Leu)								
(Val)	(Glu)	(Leu)	(Asn)					
Gly	Ile	Asp	Glu	Thr	Ile	(Ala)	(Gln)	(Leu)

GLYCININ PROTEIN A2B1A
REGION IN **BOLD** IDENTIFIED BY AMINO ACID SEQUENCE FROM 2-D SDS-PAGE

(SEQ ID NO: 8)

A2B1a AMINO ACID SEQUENCE:

MAKLVLSLCF LLFSGCFALR EQAQQNECQI QKLNALKPDN RIESEGGFIE TWNPNNKPFQ CAGVALSRCT LNRNALRRPS
YTNGPQEYIYI QQGNGIFGMI FPGCPSTYQE PQESQQQRGRS QRPQDRHQKV HRFREGDLIA VPGVAWWMYN NEDTPVVAWS
IIDTNSLENQ LDQMPRRFYI AGNQEQQEFLK YQQQQQQGGSQ SQKGKQQEEE ENEGSNILSG FAPEFLKEAF GVNMQIVRNL
QGENEEEDSG AIVTVKGGLR VTAPAMRKPO QEEDDDDEEE QPQCVERDKG CQRQSKRSRN **GIDETICTMR LRQNIGQNS**
PDIYNPQAGS ITTATSLDFP ALWLLKLSAQ YGSLRKNAME VPHYTLNANS IIYALNGRAL VQVVNCNGER VFDGELQEGG
VLIVPQNFAV AAKSQSDNFE YVSFKTNDRP SIGNLAGANS LLNALPPEVI QHTFNLKSQQ ARQVKNNNPF SFLVPPQESQ
RAVA

22 kd soybean SPOT/Ara h 3 amino acid sequence comparison:

GIDETICTMR LRQNIGQNS PDIYNPQAGS ITTATSLDFP ALWLLKLSAQ YGSLRKNAME
GIEETICTAS ALLNIGRNRS PDIYNPQAGS LKTANDLNLL ILRWLGLSAE YGNLYRNALF
***** * * ***** *

VPHYTLNANS IIYALNGRAL VQVVNCNGER VFDGELQEGG VLIVPQNFAV AAKSQSDNFE
VAHYNTNAHS IIYRLGRAH VQVVDSNGR VYDEELQEFJ VLVVPQNFAV AGKSQSENFE
* *

YVSFKTNDRP SIGNLAGANS LLNALPPEVI QHTFNLKSQQ ARQVKNNNPF SFLVPPQESQ
YVAFKTDSRP SIANLAGENS VIDNLPEEVV ANSYGLQREQ ARQLKNNNPF KFFVPPSQS
* *

RRAVA (amino acids 301-4185 of SEQ ID NO:9)

PRAVA (SEQ ID NO:10)

PROTEIN A2B1A
IDENTIFIED BY AMINO ACID SEQUENCE FROM 2-D SDS-PAGE
15-MER X 8 IgE POSITIVE REGIONS

Region 1

MAKLVLISLCF LLFSGCFALR EQAQQNNECQI QKLNALKPDN RIESEGGFIE TWNPNNKPFQ
██████████
██████████

2

CAGVALSRCT LNRNALRRPS YTNGPQEYI QQGNGIFGMI FPGCPSTYQE PQESQQRGRS
██████████
██████████

3

QRPQDRHQKV HRFREGDLIA VPGVAWMYN NEDTPVVAVS IIDTNSLENQ LDQMPRRFYL
██████████

AGNQEQQEFLK YQQQQQQGSQ SQKGKQQEEE ENEGSNILSG FAPEFLKEAF GVNMQIVRNL
██████████

4

QGENEEEDSG AIVTVKGGLR VTAPAMRKPO QEEDDDDEEE QPQCVERDKG CQRQSKRSRN
██████████

5

GIDETICTMR LRQNIGQNSS PDIYNPQAGS ITTATSLDFP ALWLLKLSAQ YGSLRKNAFM
██████████

VPHYTLNANS IIYALNGRAL VQVVNCNGER VFDGELQEGG VLIVPQNFAV AAKSQSDNFE
██████████

6

XVSFKTNDRP SIGNLAGANS LLNALPEEVQ QHTFNLKSQQ ARQVKNNNPF SFLVPPQESQ
██████████

RRAVA

██████████ Soybean IgE positive binding regions

██████████ N-terminal amino acid sequence from 2-D SDS-PAGE

A2B1A REGIONS
10-MERS X 2 IgE-POSITIVE

- Region 1:
MAKLVLSLCF LLFSGCFALR EQA (amino acids 1-23 of SEQ ID NO:4)
- Region 2:
KPFQ CAGVALSRCT LNRNALRRPS YTNGPQEIYI QQGNGIFGMI FPGCPSTYQE P (amino acids 57-111 of SEQ ID NO:4)
- Region 3:
NQ LDQMPRRFYL AGNQEQQEFLK YQQQQQQGGSQ SQKGKQQEEE ENEGS (SEQ ID NO:11)
- Region 4:
SG AIVTVKGGLR VTAPAMRKPO Q (amino acids 249-371 of SEQ ID NO:4)
- Region 5:
GS ITTATSLDFP ALWLLKLSAQ YGSLRKNAME VPHYTLNANS IIYALNGRAL VQV (amino acids 272-328 of SEQ ID NO:4)
- Region 6:
VI QHTFNLKSQQ ARQVKNNNPF S (amino acids 384-471 of SEQ ID NO:4)

CONCLUSIONS

PEANUT AND SOYBEAN ALLERGENS HAVE UNIQUE AS WELL AS SHARED AMINO ACID SEQUENCES IN THE VICILIN AND GLYCININ SOYBEAN FAMILY OF SEED STORAGE PROTEINS

THE EXPRESSION cDNA SOYBEAN SEED COTYLEDON LIBRARY CAN BE USED TO IDENTIFY IgE-BINDING PROTEINS

2000 99 99 99 99 99 99

Figure 37

IgE BINDING OF rAra h 2 PROTEINS IN WESTERN BLOTTING ANALYSIS

Equal amounts of purified wild type and mutated Ara h 2 proteins were separated by gradient (4-20%) PAGE and electrophoretically transferred onto nitrocellulose paper. The blots were incubated with antibody directed against N-terminal T7-tag or serum from peanut sensitive patients.

Panel A, Western blots of WT (10 wild type epitopes), MUT4 (6 wild type epitopes), and MUT10 (0 wild type epitopes) incubated with T7 tag antibody or patient serum

Panel B, IgE binding of mutated rAra h 2 proteins compared to the WT in Western blot analysis by individual patient sera. Laser densitometer was used to quantitate relative IgE binding. Each line represents IgE binding for the individual patient.

The Effect of Digestion on the Allergenicity of the Major Peanut Allergen Ara h 1.

R.A. Kopper, S. Maleki, HA Sampson, AW. Burks, and GA. Bannon. Dept. of Pediatrics and Biochemistry & Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205; Dept. of Pediatrics, Mt. Sinai Medical School, New York, NY.

Peanut allergy is a chronic, potentially severe reaction for which there is currently no treatment other than strict avoidance of peanut and all peanut products. Hypersensitivity to peanuts is an IgE-mediated response to one or more of three major and several minor peanut protein allergens. These proteins appear to be especially resistant to hydrolysis by digestive enzymes. Among these allergenic proteins, Ara h 1 is a major contributor to this immunologic disorder because of its relative abundance and allergenicity. This laboratory has previously identified the Ara h 1 protein and characterized its occurrence as a stable homotrimer. The stability of Ara h 1, the role of its glycosylation, and the effect on its IgE-binding capacity as a result of proteolytic digestion have now been investigated. Ara h 1 is stable at pH ranges that would be encountered in the digestive tract (pH 2-9). Yet, even in its native trimeric form, it is hydrolyzed by proteolytic digestive enzymes. However, many of the potential specific cleavage sites in the Ara h 1 molecule are protected from these proteases. Several of the peptide fragments produced upon treatment of Ara h 1 with pepsin, trypsin, and chymotrypsin are very resistant to further proteolytic digestion. Many of these stable peptide fragments bind significant amounts of IgE. These results were confirmed using actual human gastric fluid. Those fragments that survive digestion and carry important IgE-binding epitopes may play a major role in the allergic response to peanuts. Experiments are currently underway to determine the sequence of the surviving peptides and how the known IgE-binding epitopes map within these fragments.

Introduction

© 2003 Lippincott Williams & Wilkins

Legume seed storage proteins constitute the third largest source of dietary protein on earth. They are of particular importance as a nutritional source in developing countries that lack ample supplies of animal proteins. Peanuts are widely used for the preparation of a variety of foods in the United States and are also relied on as a protein extender in developing countries. There has been an increase in the observed incidence of peanut allergies in children over the last 10 years, possibly due to the increased use of peanut products in infant diets. While children become tolerant to most other food allergies with age, peanut allergy is rarely outgrown. Thus, it is increasingly common for the public to be exposed to an abundantly utilized and often disguised food such as peanuts. This has led to increasing rates of sensitization, accidental ingestion, anaphylaxis and even death in peanut allergic patients.

The general biochemical characteristics of most food allergens indicate that they are low molecular weight glycoproteins (<70kDa) with acidic isoelectric points that are highly abundant in the food. These proteins are usually resistant to proteases, heat, and denaturants allowing them to resist degradation during food preparation and digestion. There are a number of characteristics that increases a food allergen's capacity to provoke a dangerous systemic allergic reaction. These include its ability to stimulate high titers of IgE and to resist degradation sufficiently to produce fragments containing multiple IgE binding epitopes. A high titer of IgE ensures that mast cells will accumulate enough allergen specific IgE to trigger degranulation when cross-linked. Likewise, allergen fragments containing multiple IgE binding epitopes are able to cross-link and activate multiple Fc ϵ R1 receptors. An allergen fragment must have at least two IgE binding epitopes in order to cross-link and activate multiple Fc ϵ R1 receptors. The more degraded an allergen becomes

the more fragments are produced that contain single IgE binding epitopes. Thus, the biochemical and structural aspects of allergens play a critical role in the disease process.

The peanut allergen Ara h 1 is a vicilin-like seed storage protein found in the cotyledon. This protein is one of the main storage proteins of the seed which is utilized as a nitrogen and amino acid source during development of a new peanut plant. In addition to its importance to the developing plant, Ara h 1 is recognized by serum IgE from >90% of peanut-sensitive patients, thus establishing it as an important allergen in the etiology of this disease. The linear IgE-binding epitopes of this allergen have been mapped and shown to consist of 23 binding sites. These sites are evenly distributed along the linear sequence of the molecule. However, a molecular model of the tertiary structure of the middle and C-terminal domains of the Ara h 1 protein shows that the IgE-binding sites were clustered into two main regions. In addition, Ara h 1 forms homo-trimers, a physical characteristic that may be important in establishing it as an allergen.

Figure 3B Model of Ara h 1 Tertiary Structure

Upper Panel: A space filled model of the middle and C-terminal domains of the Ara h 1 allergen is shown. The red areas represent the IgE binding epitopes. The yellow atoms represent residues that were determined to be critical for IgE binding to occur. The numbers correspond to some of the epitopes for ease of orientation.

Lower Panel: A space-filled model of the Ara h 1 trimer is shown. The red areas represent the IgE binding epitopes. Oligomerization brings the two-clustered epitope regions seen in the monomeric model together. Formation of the trimer buries some of the epitopes that were exposed in the monomer suggesting that dissolution of the trimer is required for recognition of some of the epitopes by the immune system.

Figure 39 Ara h 1 Amino Acid Sequence Showing IgE Binding Epitopes and Protease Digestion Sites

Upper Panel: The primary amino acid sequence of the Ara h 1 protein is shown as the one letter amino acid code. The red amino acids indicate the recognition sites for pepsin and chymotrypsin cleavage. The boxed sequences are the IgE binding epitopes.

Lower Panel: The primary amino acid sequence of the Ara h 1 protein is shown as the one letter amino acid code. The red amino acids indicate the recognition sites for trypsin cleavage. The boxed sequences are the IgE binding epitopes.

M 0 10 20 50 0 10 20 50

Figure 10 The Ara h 1 trimer is unstable at pH2.

In order to assess the stability of the Ara h 1 trimer at pHs that would be encountered in the human stomach, cross-linking experiments were performed using purified Ara h 1 protein suspended in a pH 2.1 buffer. Purified Ara h 1 (2 mM) was suspended in 500 μ l of either a pH 2.1 buffer or a pH 7.6 buffer and allowed to incubate for one hour at room temperature. Cross-linking was performed using 5% DSP in DMF for varying lengths of time (10, 20, or 50 seconds). Results indicate that the Ara h 1 trimer is unstable at acidic pHs that would be encountered in the human stomach but that the monomer is stable at this pH. Further experiments indicate that the monomer is stable at pH 2.1 for greater than 8 hours at 37°C.

Peanut allergy (hypersensitivity) is an adverse immunological reaction following the ingestion of peanut-containing foods. It is a serious health problem because of the severity of the reaction, lack of immunotherapy, and difficulties in avoiding peanut containing products. Sensitized individuals produce IgE, which can bind to antigenic determinants (epitopes) on peanut-specific allergens. A major peanut allergen Ara h 2 is recognized by serum IgE from more than 90% of peanut-sensitive patients. To study the relationship between Ara h 2 primary structure and its allergenicity we produced a recombinant Ara h 2 protein (rAra h 2) in *E. Coli*. The recombinant protein was recognized by serum IgE from all peanut allergic patients tested in Western blot analysis. Linear IgE binding epitopes of Ara h 2 as well as amino acids in these epitopes, which were critical for IgE binding, were identified using solid-phase peptide synthesis. To modulate IgE reactivity of the allergen we constructed rAra h 2 protein with mutations in the immunodominant IgE binding epitopes. The abilities of the wild type and mutant rAra h 2 proteins to react with IgE have been tested in Western blot analysis with sera from 20 peanut sensitive individuals. IgE reactivity of mutant rAra h 2 was significantly decreased compared to the wild type. The allergens also were used in T-cell proliferation assays. Both wild type and mutant proteins retained the ability to stimulate T-cell proliferation at comparable levels. We hypothesize that modified allergens, which have decreased allergenicity, but retain their ability to stimulate an immune response, can be used as a safe immunotherapeutic for the treatment of peanut allergic individuals.

INTRODUCTION

Adverse reactions to foods may affect up to 8% of children less than 3 years of age and 1% to 2% of the general population. The major sources of food allergens are eggs, milk, peanuts, and soy, which are responsible for about 80% of the hypersensitivity reactions caused by foods. The severity of reactions to peanuts and difficulties in avoidance of peanut-containing products necessitates development of new methods of prevention, diagnosis and treatment of peanut hypersensitivity. The mechanism of food hypersensitivity involves IgE mediated reactions. IgE production is affected by genetic predisposition, by the history of exposure to the allergen, and by the nature the allergen itself. It is not known at the present time why some antigens elicit strong allergenic response, whereas others are not allergenic. Identification and characterization of allergens is important for understanding their role in development of food hypersensitivity.

Ara h 2, a major peanut allergen, is recognized by serum IgE from more than 95% of peanut-sensitive patients. In previous work we identified 10 linear IgE binding epitopes on this protein, and determined amino acids critical for IgE binding in each of these epitopes. This report is focused on modulation of the allergenicity of the Ara h 2 protein by site-directed mutagenesis of its IgE binding epitopes.

Table 6

Ara h 2 IgE BINDING EPITOPES AND AMINO
ACIDS CRITICAL FOR IgE BINDING

PEPTIDE	AA SEQUENCE	<i>Ara h 2 POSITION</i>
1	<u>HASARQQWEL</u>	15-24
2	<u>QWELQGDRRC</u>	21-30
3	<u>DRRCQSQLER</u>	27-36
4	<u>LRPCEQHLMQ</u>	39-48
5	<u>KIQRDEDSYE</u>	49-58
6	<u>YERDPYSPSQ</u>	57-66
7	<u>SQDPYSPSPY</u>	65-74
8	<u>DRLQGRQQEQ</u>	115-124
9	<u>KRELRNLLPQQ</u>	127-136
10	<u>QRCDLDDVESS</u>	143-152

The Ara h 2 IgE binding core epitopes (1-10) are underlined. The positions of each peptide with respect to the *Ara h 2* protein are indicated in the right hand column.

Amino acids important for IgE binding are shown in bold letters (**SEQ 11 NO.13**)

Table 7

RECOMBINANT Ara h 2 PROTEINS

T7 tag

MASMTGGQMG RDPPNSARQQ**W** EIQGDRRCQS
QERANL**R**PC EQHLMQKIQR **D**EDSYER**D**PY
SPSQDPPSSPS PYDRRGAGSS QHQERCNEL
NEEENNQRCM CEALQQIMEN QSDRILQGRQQ
EQQQFKRELRN LPQQQCGLRAP QRCD**I**DVESG
GRDRYAAALE HHHHHH

His tag

Amino acids important for IgE binding were mutated to alanine by single-stranded mutagenesis (epitopes 3, 4, and 6) or by PCR (epitopes 1,2,5,7,8,9,10). Mutations were confirmed by sequence analyses of Ara h 2 cDNA clones.

Amino acids replaced by alanine in MUT4 are shown in bold and underlined letters.

Amino acids replaced by alanine in MUT10 are shown in bold letters.^(See Table 3)

Figure 4

EXPRESSION AND PURIFICATION OF RECOMBINANT Ara h 2 PROTEINS

The cloned wild type or mutated Ara h 2 genes were used to produce recombinant Ara h 2 proteins. The portion of Ara h 2 sequence excluding the first 54 nucleotides, which encode the signal peptide, was amplified by PCR. The PCR product was ligated to the EcoRI-NotI sites of pET 24 (a). This vector encodes a T7-tag at the N-terminus and His-tag at the C-terminus of expressed fusion proteins. *E.coli* BL21(DE3) cells were transformed with the Ara h 2 constructs and exponentially growing cells were induced with 1 mM IPTG. Cells were pelleted and the recombinant Ara h 2 proteins were purified by affinity chromatography on a nickel-resin column.

Panel A, Schematic representation of recombinant Ara h 2 protein expression in *E.coli*

Panel B, SDS-PAGE of fractions, obtained during purification of recombinant Ara h 2 proteins on the Ni-column: lane 1-cell lysate, lane 2-unbound fraction, lane 3-20mM imidazole wash fraction, lanes 4-6- 100mM imidazole elution fractions.

Figure 37

IgE BINDING OF rAra h 2 PROTEINS IN WESTERN BLOT ANALYSIS

Equal amounts of purified wild type and mutated Ara h 2 proteins were separated by gradient (4-20%) PAGE and electrophoretically transferred onto nitrocellulose paper. The blots were incubated with antibody directed against N-terminal T7-tag or serum from peanut sensitive patients.

Panel A, Western blots of WT (10 wild type epitopes), MUT4 (6 wild type epitopes), and MUT10 (0 wild type epitopes) incubated with T7 tag antibody or patient serum

Panel B, IgE binding of mutated rAra h 2 proteins compared to the WT in Western blot analysis by individual patient sera. Laser densitometer was used to quantitate relative IgE binding. Each line represents IgE binding for the individual patient.

CONCLUSIONS

- Allergenicity of a recombinant Ara h 2 protein, expressed and purified from *E. coli* is comparable to that of the native protein, as shown by IgE binding in Western blot and inhibition analyses and T-cell proliferation assays
 - Linear epitopes play a major role in IgE binding of a peanut allergen, Ara h 2, and single amino acid mutations in each epitope may result in loss of IgE binding.
 - T-cell epitopes may be affected by mutagenesis of overlapping IgE binding epitopes

PERSPECTIVES

- **Improved diagnostics using recombinant allergens**
- **Immunotherapy with modified, “hypoallergenic” forms of allergens**
- **Development of transgenic crops with decreased allergenicity**

CD-ROM CD-ROM CD-ROM CD-ROM

#

Modulation of the reactivity of the major peanut allergen Ara h 1 through epitope characterization, structural analysis, and mutation. DS. Shin, CM compadre, HA. Sampson, AW. Burks, and GA. Bannon. Department of Biochemistry & Molecular Biology, The Biomedical Visualization Center, Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, 72205; Department of Pediatrics, Mt. Sinai School of Medicine, New York, NY 10069.

Allergy to peanuts is a significant health problem because of high prevalence, lack of treatment and potentially fatal reactions. Twenty-three B-cell epitopes and the critical amino acids involved in IgE binding to the major peanut allergen Ara h 1 have been identified. Molecular modeling studies of the conserved middle and C-terminal domains of the Ara h 1 monomer revealed that the majority of the linear epitopes within these domains (epitopes 10-22) were clustered near the regions of the two terminal alpha-helical bundles and therefore may represent two conformational epitopes. It was determined that Ara h 1, like other vicilin proteins, forms a trimeric structure. Further modeling studies showed that the two clustered regions overlap and thus some of the IgE-binding regions are buried suggesting that the protein is recognized by the immune system in both native and denatured forms. We are currently attempting to construct a non-IgE reactive recombinant Ara h 1 clone. Therefore, computational modeling studies were performed to determine which critical amino acids are less important for stability of the protein and less likely to interrupt trimer formation. It was found that less conserved residues were optimal candidates for mutagenesis. We constructed a mutant recombinant protein with single alanine point mutations in epitopes 1,2,3,4,5,6, and 17. Epitopes 1-6 were chosen because they lie within the variable N-terminal domain and are not conserved between the vicilins and therefore may be responsible for the peanut's extreme allergenicity. Assays utilizing serum from patients with peanut hypersensitivity and the wild-type and mutant recombinant proteins revealed a significant decrease in IgE binding to the mutant protein in 50% of the patients tested. Future studies involve further mutagenesis of candidate residues to develop a hypoallergenic vicilin protein that may be utilized in immunotherapeutic regimens for peanut allergic individuals.

88

Introduction

It is estimated that 5 to 8% of children below the age of three have food allergies. Roughly, 90% of serious allergic reactions occur in response to peanuts, soybeans, crustacea, fish, cow's milk, eggs, tree nuts and wheat. Unlike most food allergies that spontaneously resolve, those to peanut usually persists for a lifetime and account for the majority of near-fatal and fatal reactions. The current therapeutic method to desensitize hypersensitive individuals to inhaled allergens is through weekly or biweekly subcutaneous injection of extracts derived from the allergen source. It is believed that the allergens within the extracts tolerize T-cells and thus lead T-cells to switch their secreted cytokine profile. In the case of food allergies, the use of extract injection is generally avoided as a treatment because of the increased risk of severe anaphylaxis. Therefore, the only recommended therapy for food allergy is avoidance (*T*). Because recognition of allergen polypeptide sequences by both T-cells and B-cells plays such a crucial role in the mechanisms of the disease, polypeptides bearing T-cell epitopes or recombinant allergens with modified B-cell epitopes have been targeted as immunotherapy candidates.

Ara h 1, a vicilin family seed storage protein, represents a major peanut allergen. Twenty-three B-cell epitopes within Ara h 1 have been mapped through synthetic peptide-IgE binding assays. Each individual patient recognizes a different number and combination of epitopes with varying degrees of binding affinity. Four epitopes, designated 1, 3, 4 and 17, are immunodominant in terms of recognition where >80% of tested individuals have IgE which recognizes these epitopes. The amino acids which are critical for IgE recognition within 21 of these epitopes have been identified. These residues when substituted individually with another amino acid either nearly or completely abolish IgE binding to synthetic peptides representing the epitopes. There is an average of almost 3 residues per epitope that have this property.

We are attempting to create a recombinant Ara h 1 protein that has point mutations within the B-cell epitopes which would lead to loss of IgE binding. Such a protein could be used safely in standard immunotherapy or, alternatively, can be reintroduced into the plant to decrease the reactivity of the peanut itself. In order to accomplish our goal, this study focused on producing a pilot mutagenized recombinant protein, with several substitutions including residues within the immunodominant epitopes, and testing the reactivity of the clone in both *in vitro* assays.

Peptide Amino Acid Sequence Position

B 1 (nudeotide 25-34) 8	AKSS <u>PYQKKT</u>	25-34
B 2 (nudeotide 48-57)	QE <u>PD</u> DLKQKA	48-57
B 3 (nudeotide 65-74) 9	LEYD <u>PRLYYD</u>	65-74
B 4 (nudeotide 89-98) 9	GERTRGRQPG	89-98
B 5 (nudeotide 97-106)	PGDYDD <u>DRRQ</u>	97-106
B 6 (nudeotide 107-116) 8	PRE <u>E</u> GGGRWG	107-116
B 7 (nudeotide 123-132) 8	REREED <u>W</u> RQP	123-132
B 8 (nudeotide 134-143) 8	EDWBRP <u>SHQQ</u>	134-143
B 9 (nudeotide 143-152)	Q <u>PRKR</u> IRPEGR	143-152
B 10 (nudeotide 194-203)	T <u>PGQEEDE</u> FP	294-303
B 11 (nudeotide 311-320) 9	S <u>YLQGF</u> SRNT	311-320
B 12 (nudeotide 355-364)	ENAE <u>FE</u> NEIRR	325-334
B 13 (nudeotide 394-403)	EQ <u>EERGQR</u> RW	344-353
B 14 (nudeotide 403-402)	DITNP <u>INIRE</u>	393-402
B 15 (nudeotide 409-418)	NNFGK <u>LFEV</u> K	409-418
B 17 (nudeotide 498-507)	RRYTARL <u>KEG</u>	498-507
B 18 (nudeotide 525-534)	EL <u>HLL</u> GFGIN	525-534
B 19 (nudeotide 539-548)	HRIFLAG <u>DKD</u>	539-548
B 20 (nudeotide 551-560)	ID <u>QIEKQAKD</u>	551-560
B 21 (nudeotide 579-588)	KDI <u>AEPGS</u> GE	559-568
B 22 (nudeotide 598-607)	KESHFV <u>SARP</u>	578-587

Table 8 Amino acids critical to IgE binding.

(SEQ 1 AND 1)
A The Ara h 1 IgE binding epitopes are indicated as the single letter amino acid code. The position of each peptide with respect to the Ara h 1 protein coding sequence is indicated in the right hand column. The amino acids that, when altered, lead to loss of IgE binding are shown as bold, underlined residues. Epitopes 16 and 23 were not included in this study because they were no longer available to the study.

Patient	Mutated Epitopes	Wild type epitopes	Relative Binding
1	1,4,5,17	8,13	DECREASED
2	2,3,4,17	14,18	EQUAL
3	4,5,17	11,14,18,19,20,22	INCREASED
4	2,4,5,17	9,23	DECREASED
5	1,4,17	9,10,12,13,14,15, 18,21,22	EQUAL
6	4,17	8,9,20,23	DECREASED
7	1,2,4,17	13	EQUAL
8	1,3,4,17	13,22	EQUAL
9	1,2,4,17	10	DECREASED
10	3,17	8,9,10,11	DECREASED

Table 7 Mutation of the Ara h 1 protein leads to decreased IgE binding in 50% of cases tested.

Western blots of wild type and mutant recombinant proteins probed with individual peanut-sensitive patient sera were performed. Data for each patient is numbered 1-10 in the first column. The second column lists the epitopes that each patient recognized that were changed in the mutant protein. The third column lists the epitopes that each patient recognized that were not changed in the mutant protein. The fourth column shows the relative IgE binding affinity of the mutant protein vs. the wild type protein. In 50% of the cases IgE binding to the mutant protein was significantly decreased.

Conclusions

Amino acids critical to IgE binding have been identified in each of the linear epitopes of the major peanut allergen Ara h 1.

Serum IgE binding to Ara h 1 can be substantially reduced when 7/23 linear epitopes have been modified by single amino acid alterations.

Through the use of molecular models of tertiary structure amino acid alterations to Ara h 1 can be chosen so as to minimize disruption of tertiary structure.

Perspectives

The work presented in this poster indicate that it is possible to produce a recombinant Ara h 1 protein that will bind substantially lower amounts of serum IgE from peanut sensitive patients. This may represent a safe alternative therapeutic reagent that could be used to desensitize peanut allergic patients. Furthermore, this work shows that tertiary structure of the Ara h 1 protein will be an important consideration if a modified Ara h 1 gene is reintroduced to the peanut plant.

Mutational Analysis of the IgE-Binding Epitopes of the Peanut Allergen, Ara h 3: a Member of the Glycinin Family of Seed-Storage Proteins. ¹P. Rabjohn, ²AW. Burks, ³HA. Sampson, and ¹GA. Bannon.
¹Dept. of Biochemistry and Molecular Biology and ²Pediatrics, University of Arkansas for Biomedical Sciences, Little Rock, AR 72205; ³Dept. of Pediatrics, Mt.Sinai Medical School, New York, NY 10029

Peanut allergy is a significant IgE-mediated disease affecting both children and adults. We have previously reported the cloning of the cDNA encoding a third peanut allergen, Ara h 3, with significant homology (70-80%) to the glycinin family of seed-storage proteins. The recombinant form of this protein was expressed in a bacterial system and was recognized by serum IgE from ~ 45% (8/18) of our peanut-allergic patient population. Serum IgE from these patients and overlapping, synthetic peptides were used to map the linear, IgE-binding epitopes of Ara h 3. Four epitopes, between 10-15 amino acids in length, were found within the primary sequence, with no obvious sequence motif shared by the peptides. One epitope appears to be immunodominant within the Ara h 3 population, in that it is recognized by all Ara h 3 – allergic patients. Mutational analysis of the epitopes revealed that single amino acid changes within these peptides could lead to a reduction or complete loss of IgE-binding. The location of the epitopes within the primary sequence of the protein is favorable for mutagenesis. None of the epitopes reside within the basic subunit, shown previously in soybean to be important for oligomer assembly, a requisite step in the ability of glycinins to function as seed-storage proteins. Also, all 26 invariant amino acids, thought to be important for the structural conservation of glycinins, lie outside of the IgE-binding epitopes. The elucidation of the major IgE-binding epitopes on Ara h 3 and the determination of which amino acids within these epitopes are critical for IgE-binding provides the information necessary to alter the Ara h 3 cDNA to encode a non-allergenic glycinin that retains its ability to function as a seed-storage protein.

INTRODUCTION

Peanut allergy is a major health concern due to the severity of the allergic reaction, the persistence of the allergic response throughout the lifetime of the individual, and the ubiquitous use of peanut as a protein supplement in processed foods. Approximately 1-3% of the USA population suffers from some form of food allergy. Peanuts, tree nuts, and shellfish are responsible for the majority of food hypersensitivity reactions in adults, while peanuts, milk, and eggs account for the majority of reactions in children. The reaction to peanut is generally more severe than the reaction to other foods, often resulting in fatal anaphylaxis. While most children outgrow allergies to milk and eggs, peanut allergies persist into adulthood, lasting the entire lifetime of the individual. Currently, avoidance is the only treatment for patients with peanut allergies. Unfortunately, the inclusion of peanut as a protein supplement in processed foods makes accidental consumption almost inevitable. Despite the prevalence of peanut hypersensitivity in children and an increasing number of deaths each year from peanut-induced anaphylaxis, the identification and characterization of unique, clinically-relevant allergens from peanut is incomplete, limiting our understanding of their role in the immunobiology of hypersensitivity reactions.

We have previously reported the cloning of the cDNA encoding a third peanut allergen, Ara h 3. The recombinant form of this protein has been expressed in a bacterial system and is recognized by serum IgE from 44% (8/18) of our peanut hypersensitive patient population. The linear, IgE-binding epitopes and the critical residues for IgE binding were identified by probing synthetic peptides representing the primary sequence of the allergen with serum from Ara h 3 - allergic individuals.

The goal of this research is to create a gene that can be used for both plant transformation and immunotherapeutic purposes. The elucidation of the major IgE-binding epitopes on Ara h 3 and the determination of which amino acids within these epitopes are critical for IgE-binding provides the information necessary to alter the Ara h 3 gene by site-directed mutagenesis to encode a protein that escapes IgE recognition.

Figure 50 Immunoblot of purified recombinant Ara h 3 with serum IgE from individual patients. The cDNA encoding Ara h 3 was expressed under control of the T7 *lac* promoter in a bacterial system. Lanes A-R represent purified recombinant Ara h 3 (~ 60 kD) probed with serum IgE from individual patients with documented peanut hypersensitivity. Approximately 45% (8/18) of the patients recognized the recombinant form of the Ara h 3 allergen. Lane S represents recombinant protein probed with a pool of serum IgE from peanut-allergic patients, while lane T represents recombinant protein probed with serum from a non-peanut-allergic individual with elevated IgE levels.

Figure 51 **Multiple IgE-binding regions identified on the Ara h 3 allergen.** *A)* The Ara h 3 primary sequence was synthesized as 15 amino acid-long peptides offset from each other by eight residues. These peptides were probed with a pool of serum IgE from peanut-hypersensitive patients. The position of the peptides within the Ara h 3 protein are indicated on the left-hand side of *A*. (+) indicates an immunodominant peptide from Ara h 2 that served as a positive control, while (-) indicates a peptide synthesized to serve as a negative control. *B)* The amino acid sequence of the Ara h 3 protein is shown. The shaded areas (R1-R4) correspond to the IgE-binding regions shown in the upper panel.

Figure 52 Identification of a core IgE-binding epitope on the Ara h 3 allergen.
Detailed epitope mapping was performed on IgE-binding regions identified in Figure 51 by synthesizing overlapping peptides fifteen amino acids in length offset from the previous peptide by two residues. These peptides were probed with a pool of serum IgE from 8 patients previously shown to recognize recombinant Ara h 3. The data shown represents amino acids 299-321. (B) The amino acid sequence (residues 299-321) of Ara h 3 that was tested in A is shown. Residues in ~~boldface~~ correspond to common IgE-binding amino acids of the spots shown in A.

shaded areas

TABLE 10
Ara h 3 IgE-Binding Epitopes^a

Epitope	AA Sequence	Ara h 3 Position	% recognition
B (nucleotides 33-47 of SEQ ID NO:3)	IETWNPNQEFECAG	33-47	25%
B (nucleotides 240-254 of SEQ ID NO:3)	GNIQESGFTPEFLEQA	240-254	38%
B (nucleotides 279-293 of SEQ ID NO:3)	DNVTVRGGLRILSPDRK	279-293	100%
B (nucleotides 303-317 of SEQ ID NO:3)	DEDEYEYDEEDRRRG	303-317	38%

^aThe Ara h 3 IgE-binding epitopes are indicated as the single letter amino acid code. The position of each peptide with respect to the Ara h 3 protein coding sequence is indicated. The percent recognition is the percentage of patients previously shown to recognize recombinant Ara h 3 whose serum IgE recognized that particular synthetic epitope.

Figure 53 Ara h 3 epitopes can be mutated to non-IgE-binding peptides. Epitope 4 was synthesized with an alanine residue substituted for one of the amino acids at each position in the peptide. The synthesized peptides were probed with a pool of serum IgE from peanut hypersensitive patients whose IgE has previously been shown to recognize this peptide. The letters across the top of each panel indicate the one-letter amino acid code for the residue normally at that position and the amino acid substituted for that residue. The numbers indicate the position of each residue in the Ara h 3 protein. *WT* indicates the wild-type peptide with no amino acid substitutions.

Table II
Amino Acids Critical to IgE-Binding^a

Epitope	AA Sequence	Ara h 3 Position
B ₁ (nucleotides 33-47) (DNO:3)	IETWN <u>P</u> NNQE FECAG	33-47
B ₂ (nucleotides 240-254) (DNO:3)	GNIFSGFTPE <u>F</u> LLEQA	240-254
B ₃ (nucleotides 279-293) (DNO:3)	TVRGGL <u>R</u> ILSPDRK	279-293
B ₄ (nucleotides 303-317) (DNO:3)	DE <u>D</u> EY <u>D</u> EEDRRRG	303-317

^aThe Ara h 3 IgE-binding epitopes are indicated as the single letter amino acid code. The position of each peptide with respect to the Ara h 3 primary sequence is indicated in the right-hand column. The amino acids that, when altered, led to a decrease in IgE-binding are shown as the bold, underlined residues.

Figure 54 Recombinant expression and Western blot analysis of the Ara h 3 mutant

A) The Ara h 3 cDNA was mutated by PCR to encode alanine for one critical residue within each epitope. The cDNA encoding the 40 kD acidic chain of the 11S legumin-like storage protein was placed under the control of the T7 lac promoter and expressed in a bacterial system. The WT recombinant Ara h 3 protein refers to the 60 kD preproglobulin consisting of covalently attached 40 kD (acidic) and 20 kD (basic) proteins. Both the mutated and wild-type recombinant proteins were purified by Ni^{2+} column chromatography. B) The proteins represented in (A) were blotted to nitrocellulose and probed with serum IgE from three patients previously shown to recognize recombinant Ara h 3. As seen from the blot, the mutated Ara h 3 40 kD protein was not recognized by serum IgE from the Ara h 3 - allergic patients.

*Present address: Food Processing & Sensory Quality Research, USDA- ARS- Southern Regional Research Center, New Orleans, Louisiana

Various minor allergens and three major peanut allergens have been identified among which Ara h 2 is one of the most important. We describe a method for rapid purification of Ara h 2, which is recognized by a pool of serum IgE from peanut allergic patients, can cause T-cell proliferation and induce histamine release from the blood of these individuals. The peanut specific T-cell lines were all shown to be primarily CD4+ and secrete IL-4. Once Ara h 2 was shown to induce the proliferation of T-cells from allergic individuals, synthetic overlapping peptides of 20 amino acids long offset by 5 amino acids were made and used in epitope mapping studies. Five immunodominant T-cell epitopes were identified of which only one has a significant overlap with a previously identified major B-cell epitope. T cells from non-allergic individuals were also shown to recognize a subset of these epitopes but secreted lower levels of IL-4. We have also determined that crude peanut extract is able to activate a signal transduction cascade through the T cell receptor (TCR) activated ZAP-70, Ras, Raf, Erk and Elk (TCF) pathway. Development of a rapid purification method for large quantities of Ara h 2, identification of both the B and T cell epitopes of this allergen, as well as establishment of the signal transduction pathway will be useful in the evolution of diagnostic tools and in the design of novel peptide-mediated immunotherapies for treatment of peanut allergies.

Introduction

Peanuts have historically attracted interest as a potential source of proteins for humans as well as animal consumption because of the projected shortage of food proteins throughout the world. In the past decade there has been an increase in allergic reactions to peanut proteins. Various minor allergen and three major peanut allergens and have been identified among which Ara h 2 is one of the most important. Unlike the food hypersensitivity reactions to milk and eggs, peanut hypersensitivity reactions usually persist into adulthood and last for a lifetime. In addition, hypersensitivity reactions to peanuts tend to be more severe than those to other food allergens. Several reports have detailed fatal and near-fatal anaphylactic reactions occurring in adolescents and adults following the ingestion of peanuts or peanut products.

The development of an IgE response to an allergen involves a series of interactions between antigen-presenting cells (APCs), T cells, and B cells. Initially APCs present small peptide fragments (T cell epitopes) in conjunction with MHC class molecules to T cells. T cells bearing the appropriate complementary T cell receptor (TCR) will bind to the peptide MHC complex leading to further cognate interactions that result in the generation of a "second" signal, T-cell proliferation and cytokine generation (Th_2 -like lymphocyte activation). The orderly sequence of events necessary to produce allergen-specific IgE, and the critical role T-cells play in this process, has been studied in a variety of aeroallergens However, the role of T lymphocytes and antigen specificity in the induction and regulation of the food allergic response is less well defined. Here, we characterize some of the immune responses to a major food allergen.

Fig. 1A.

1 2 3 4

Fig 1.B.

1 2 3 4

Table 12 Ara h 2 purification from crude peanut extracts.

	Total protein (mg)	Ara h 2 (Mg)	Fold Enrichment	% Yield
Crude lysate	20,000	500	-----	-----
$(\text{NH}_4)_2\text{SO}_4$	500	200	16	40
High prep DEAE	150	115	31	23
Phenyl Sepharose	77	75	39	15

NH3-LTILVALALFLAAHASARQQW ELQ GDRRCQSQRERANLRCMCEALQQIM

EDSYERDPYSPSQQDPYSPSPYDPRRGAGSSQHQ ERCCNELNEFENNQRCMCEALQQIM
ENQSDRRLQGRQQEQQQFKRELRNLPLQQCQGLRAPQRCQLDVESGGRDY-COOH (55E0 10 μg: 12)

Table 13. Ara h 2 B-cell and T-cell Epitopes

B-cell Epitope Number	AA Sequence	Ara h 2 Position
3	D R R C Q S Q L E R (underlined 27-36) D R R C Q S Q L E R (underlined 27-36)	27-36
6	Y E R D P Y S P S Q (underlined 57-66) Y E R D P Y S P S Q (underlined 57-66)	57-66
7	S Q D P Y S P S P Y (underlined 65-74) S Q D P Y S P S P Y (underlined 65-74)	65-74
T-cell epitope number	AA Sequence	Ara h 2 Position
1	R Q Q W E L Q G D R R C Q S Q (underlined 19-33) R Q Q W E L Q G D R R C Q S Q (underlined 19-33)	19-33
2	L R P C E Q H L M Q K I Q R D E D S Y E (underlined 39-58) L R P C E Q H L M Q K I Q R D E D S Y E (underlined 39-58)	39-58
3	H Q E R C C N E L N (underlined 84-93) H Q E R C C N E L N (underlined 84-93)	84-93
4	Q R C M C E A L Q Q (underlined 99-108) Q R C M C E A L Q Q (underlined 99-108)	99-108
5	P Q Q C G G L R A P Q (underlined 143-152) P Q Q C G G L R A P Q (underlined 143-152)	143-152

T-cell epitopes

B-cell epitopes

Summary & Conclusions

1. Peanut specific T-cell lines are primarily CD4⁺
2. Peanut specific T-cell lines are stimulated through the T-cell receptor and the activation of the Ras, Raf, Zap-70, ERK, ELK-1 signal transduction pathway.
3. There are at least five T-cell epitopes on the major peanut allergen Ara h 2.
4. Most of the T-cell epitopes do not overlap with known IgE binding epitopes.