CALCOLO NUMERICO E MATLAB

Docenti: C. Canuto, S. Falletta, S. Pieraccini

Esercitazione 5

Argomento: Minimi quadrati e calcolo di autovalori

1. Si consideri il polinomio trigonometrico

$$P(x) = 2 + \frac{1}{3}\cos x - \frac{2}{5}\sin x - \frac{7}{100}\cos 2x + \frac{3}{200}\sin 2x - \frac{9}{1000}\cos 3x + \frac{11}{3000}\sin 3x.$$

- (a) Calcolare i suoi valori nei 128 punti equispaziati $x_j=\frac{\pi}{128},\ 0\leq j\leq 127$ contenuti nell'intervallo $[0,\pi].$
- (b) Usare questi valori per costruire un polinomio trigonometrico della forma

$$Q(x) = \alpha_0 + \alpha_1 \cos x + \alpha_2 \sin x + \alpha_3 \cos 2x + \alpha_4 \sin 2x.$$

che approssima i dati sopra calcolati nel senso dei minimi quadrati.

- (c) Stimare l'errore tra i polinomi P(x) e Q(x) sull'intervallo $[0, \pi]$.
- 2. Si consideri la matrice **A** di ordine 10 i cui elementi sono $a_{ij} = \max(i^2, j^2)$.
 - (a) Ridurre la matrice a forma di Hessemberg;
 - (b) eseguire le iterazioni del metodo QR per il calcolo degli autovalori di tale matrice, generando la successione di matrici A_k ;
 - (c) arrestare le iterazioni quando la norma euclidea della prima sottodiagonale di A_k diventa $< 10^{-6}$:
 - (d) calcolare l'errore massimo tra gli autovalori approssimati così calcolati e quelli "esatti" di A.
- 3. Si consideri la matrice tridiagonale A di ordine 10 i cui elementi sono $a_{ii} = 4$ e $a_{i,i\pm 1} = 1$.
 - (a) Partendo da un vettore z di ordine 10 pseudo-casuale, applicare a tale matrice il metodo della potenza inversa con shift per calcolare l'autovalore più vicino al numero $\sigma = 3$.
 - (b) Ripetere l'esperimento numerico con diversi vettori iniziali pseudo-casuali, e stimare quante iterazioni in media sono necessarie per stabilizzare le prime 8 cifre decimali dell'approssimazione.
 - (c) Ripetere l'esperimento numerico partendo dal vettore iniziale z i cui elementi sono $z_i = (-1)^i$.

Quante iterazioni sono ora necessarie per stabilizzare le prime 8 cifre decimali dell'approssimazione?

RISPOSTE

1. Il vettore $\boldsymbol{\alpha}$ contenente i coefficienti α_i è dato da

$$\alpha = (1.9884 \ 0.3194 \ -0.3805 \ -0.0588 \ 0.0314)^T.$$

L'errore tra i valori di P(x) e Q(x) nei nodi, valutato rispettivamente in norma euclidea o in norma del massimo, è dato da

$$err_2 = 0.0198, \qquad err_{\infty} = 0.0053.$$

[Vedasi script Es5_1.m]

2. Il numero di iterazioni del metodo QR necessarie è iter=66. Il massimo errore tra gli autovalori così calcolati e quelli forniti dal comando eig è $err_{\infty}=3.7659e-13$.

[Vedasi script Es5_2.m]

3. Mediamente, partendo da un vettore iniziale pseudocasuale, ci vogliono circa 15 iterazioni per ottenere l'autovalore approssimato $\lambda_4 = 3.1691699...$

Invece, partendo dal vettore iniziale z del punto c), apparentemente l'algoritmo sembra convergere dopo 12 iterazioni verso $\lambda_3=2.6902785...$, ma se si eseguono circa 80 iterazioni si converge verso λ_4 .

Il motivo è che il vettore z è ortogonale all'autovettore w_4 relativo all'autovalore λ_4 , e dunque in aritmetica esatta il metodo iterativo convergerebbe verso l'autovalore più vicino a 3, ma diverso da λ_4 , e dunque λ_3 . Ma gli errori di arrotondamento introducono a poco a poco in z una componente secondo l'autovettore w_4 , che si amplifica e porta alla convergenza verso λ_4 .

[Vedasi script Es5_3.m]