Guía 1

- 1. Reescribir en notación indicial las siguientes expresiones:
 - (a) $a_1x_1x_3 + a_2x_2x_3 + a_3x_3x_3$.
 - (b) $x_1x_1 + x_2x_2$.
 - (c) $a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1$ $a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2$ $a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = b_1$.
- 2. Demostrar por sumación que $\delta_{3p}v_p=v_3$.
- 3. Evalúe $\delta_{ij}\epsilon_{ijk}$ por sumación.
- 4. Obtener el resultado de $\delta_{i2}\delta_{j3}A_{ij}$.
- 5. Escriba matricialmente la representación de la delta Kronecker.
- 6. Evalúe
 - (a) $\delta_{ii}\delta_{jj}$.
 - (b) $\delta_{\alpha 1} \delta_{\alpha \gamma} \delta_{\gamma 1}$.
- 7. Evalúe $\epsilon_{ijk}\delta_{2j}\delta_{3k}\delta_{1i}$.
- 8. Prueba que $\epsilon_{ijk}a_ia_jb_k=0$.
- 9. Simplifique $A_{ij}x_ix_j$, si:
 - (a) $A_{ij} = A_{ji}$.
 - (b) $A_{ij} = -A_{ji}$.
- 10. Si $r = (x^2 + y^2 + z^2)^{\frac{1}{2}}$, evalúe $\nabla \mathbf{r}^n$.
- 11. Si $\psi = (\mathbf{r} \times \mathbf{a}) \cdot (\mathbf{r} \times \mathbf{b})$, muestre que $\nabla \psi = \mathbf{b} \times (\mathbf{r} \times \mathbf{a}) + \mathbf{a} \times (\mathbf{r} \times \mathbf{b})$. Donde \mathbf{a} y \mathbf{b} son vectores constantes.
- 12. Si $\nabla \psi$ es siempre paralelo al vector posición ${\bf r},$ Muestre que $\psi=\psi(r),$ $r^2=x^2+y^2+z^2.$
- 13. Muestre que $\nabla^2(1/r) = 0$ donde $r = (x^2 + y^2 + z^2)^{\frac{1}{2}}$.
- 14. Calcule $\nabla^2 r$, $\nabla^2 r^2$, $\nabla^2 (1/r^2)$ donde $r^2 = x^2 + y^2 + z^2$.
- 15. Si $\mathbf{a} = \alpha x \mathbf{i} + \beta y \mathbf{j} + \gamma z \mathbf{k}$, muestre que $\nabla (\mathbf{a} \cdot \mathbf{r}) = 2\mathbf{a}$.
- 16. Si $\rho \mathbf{f} = \nabla \mathbf{p}$, pruebe que $\mathbf{f} \cdot \nabla \times \mathbf{f} = 0$.
- 17. Pruebe que $(\mathbf{v} \cdot \nabla)\mathbf{v} = \frac{1}{2}\nabla \mathbf{v}^2 \mathbf{v} \times (\nabla \times \mathbf{v}).$

- 18. Si **A** es un campo vectorial constante y unitario, muestre que $\mathbf{A} \cdot [\nabla (\mathbf{v} \cdot \mathbf{A}) \nabla \times (\mathbf{v} \times \mathbf{A})] = \nabla \cdot \mathbf{v}$.
- 19. El producto de dos Levi-Civita se puede escribir de forma compacta tal como sigue:

$$\epsilon_{ijk}\epsilon_{lmk} = \left| \begin{array}{ccc} \delta_{il} & \delta_{im} & \delta_{ik} \\ \delta_{jl} & \delta_{jm} & \delta_{jk} \\ \delta_{kl} & \delta_{km} & \delta_{kk} \end{array} \right|$$

Halle $\epsilon_{ijk}\epsilon_{ilm}$, $\epsilon_{ijk}\epsilon_{ijm}$ y $\epsilon_{ijk}\epsilon_{ijk}$.

20. Determine la divergencia del campo eléctrico debido a un dipolo situado en el origen.