Devoir facultatif n° 02

On définit par récurrence les fonction $f_n:[0,1]\to[0,1]$ de la façon suivante.

- Si $x \in [0,1], f(x) = x$.
- Soit $n \in \mathbb{N}$, si f_n est définie alors $f_{n+1}(1) = 1$ et, pour tout $k \in \{0, 1, \dots, 3^{n+1} 1\}$:

-
$$f_{n+1}$$
 est affine sur $\left[\frac{k}{3^{n+1}}; \frac{k+1}{3^{n+1}}\right];$

$$- f_{n+1}\left(\frac{k}{3^n}\right) = f_n\left(\frac{k}{3^n}\right);$$

$$- f_{n+1}\left(\frac{k}{3^n} + \frac{1}{3^{n+1}}\right) = f_n\left(\frac{k}{3^n} + \frac{2}{3^{n+1}}\right);$$

$$- f_{n+1} \left(\frac{k}{3^n} + \frac{2}{3^{n+1}} \right) = f_n \left(\frac{k}{3^n} + \frac{1}{3^{n+1}} \right).$$

- I) Définition de f.
 - 1) Soit $n \in \mathbb{N}$ et $k \in \{0, 1, ..., 3^n 1\}$. Connaissant $x_{n,k} = \frac{k}{3^n}$ et $y_{n,k} = \frac{k+1}{3^n}$, ainsi que $x'_{n,k} = f_n(x_{n,k})$ et $y'_{n,k} = f_n(y_{n,k})$, tracer le graphe de f_{n+1} sur $[x_{n,k}, y_{n,k}]$.
 - 2) Avec les mêmes notations et en s'appuyant sur le tracé précédent, montrer les propriétés suivantes :
 - a) pour tout $n \in \mathbb{N}$, f_n est continue sur [0,1].
 - **b)** pour tout $n \in \mathbb{N}$, tout $k \in [0; 3^n 1]$ et tout $m \ge n$, $f_m([x_{n,k}, y_{n,k}]) = [\min(x'_{n,k}, y'_{n,k}); \max(x'_{n,k}, y'_{n,k})].$

On remarquera que l'on en déduit que

$$\forall n \in \mathbb{N}, \ \forall k \in [0; 3^n - 1], \ \forall x \in [x_{n,k}, y_{n,k}],$$
$$\forall m \geqslant n, \ f_m(x) \in \left[\min\left(x'_{n,k}, y'_{n,k}\right); \max\left(x'_{n,k}, y'_{n,k}\right)\right].$$

- c) $\forall n \in \mathbb{N}, \ \forall k \in [0; 3^n 1], \ \left| x'_{n,k} y'_{n,k} \right| \leqslant \left(\frac{2}{3}\right)^n$.
- 3) Dessiner sur une même figure les graphes de f_0 , f_1 , f_2 , f_3 .
- **4)** Soit $x \in [0, 1[$.
 - a) Montrer qu'il existe une unique suite d'entiers $(k_n)_{n\in\mathbb{N}}$ telle que :

$$\forall n \in \mathbb{N}, \ \frac{k_n}{3^n} \leqslant x < \frac{k_n + 1}{3^n}.$$

b) Si $n \in \mathbb{N}$, on pose $x_n = \frac{k_n}{3^n}$ et $y_n = \frac{k_n + 1}{3^n}$, ainsi que $x'_n = f_n(x_n)$ et $y'_n = f_n(y_n)$. Montrer que les suites de termes généraux respectifs $\min(x'_n, y'_n)$ et $\max(x'_n, y'_n)$ sont adjacentes.

Dorénavant, nous noterons f(x) leur limite commune et l'on pose f(1) = 1.

- II) Continuité de f.
 - 1) Montrer que $\forall n \in \mathbb{N}, \ \forall x \in [0,1], \ |f_n(x) f(x)| \leqslant \left(\frac{2}{3}\right)^n$.
 - 2) Montrer que la fonction f est continue sur [0,1]. Indication : on pourra utiliser, en la justifiant, l'inégalité $|f(x) - f(y)| \leq |f(x) - f_n(x)| + |f_n(x) - f_n(y)| + |f_n(y) - f(y)|$.
- III) Dérivabilité de f.
 - 1) Montrer que, pour toute fonction numérique g continue, définie au voisinage d'un réel x_0 , pour tout $\ell \in \mathbb{R}$, g est dérivable en x_0 et $g'(x_0) = \ell$ si et seulement si

$$\forall \varepsilon > 0, \ \exists \alpha > 0, \ \forall h, k > 0, \ 0 < h + k < \alpha \Rightarrow \left| \frac{g(x_0 + h) - g(x_0 - k)}{h + k} - \ell \right| < \varepsilon.$$

- 2) Soit $x \in]0,1[$. Avec les notations de **I4**), on note, pour tout $n \in \mathbb{N}$, $D_n = 3^n(y'_n x'_n)$. Montrer que, pour tout $n \in \mathbb{N}$, $D_{n+1} = 2D_n$ ou $D_{n+1} = -D_n$.
- 3) En déduire que (D_n) n'admet pas de limite finie puis que f n'est dérivable en aucun point de [0,1].
- IV) Montrer que f n'est monotone sur aucun sous intervalle de [0,1] non vide et non réduit à un point.
- V) Écrire une fonction f(n) en Python, prenant en entrée un entier naturel n, et renvoyant en sortie les deux listes contenant les $x_{n,k}$ et $y_{n,k}$. Par exemple, f(0) renverra le couple ([0,1],[0,1]). On joindra un tracé du graphe de f_7 .

— FIN —