15.097 - Homework 1

Colin Pawlowski

March 3, 2016

1 Compressed Sensing

Assume **A** is an $m \times n$ matrix, n > m. Consider the problem

$$\begin{aligned}
\min & \|\mathbf{x}\|_0 \\
\text{s.t.} & \mathbf{A}\mathbf{x} = \mathbf{b}.
\end{aligned} \tag{1}$$

Using MIO, we reformulate this problem as

min
$$\sum_{i=1}^{n} z_{i}$$
s.t. $\mathbf{A}\mathbf{x} = \mathbf{b}$, (2)
$$-Mz_{i} \leq x_{i} \leq Mz_{i} \qquad i = 1, \dots, n,$$

$$z_{i} \in \{0, 1\} \qquad i = 1, \dots, n.$$

Next, consider the problem

$$\min_{\mathbf{x} \in \mathbf{x}} \|\mathbf{x}\|_{1}
s.t. \quad \mathbf{A}\mathbf{x} = \mathbf{b}.$$
(3)

Using linear optimization, we can reformulate this problem as

min
$$\sum_{i=1}^{n} y_{i}$$
s.t. $\mathbf{A}\mathbf{x} = \mathbf{b}$,
$$-y_{i} \le x_{i} \le y_{i} \qquad i = 1, \dots, n.$$
 (4)

Figure 1: Phase diagram for MIO.

We implemented both optimization problems 2 and 4 in JuMP. For the simulated experiments, we generated a random 20×20 matrix \mathbf{M} with entries $a_{ij} \sim N(0,1)$ i.i.d.. For a fixed triplet (k, m, n), we solved problems 2 and 4, where \mathbf{A} is the upper $m \times n$ submatrix of \mathbf{M} , $\mathbf{x_0} \in \{0,1\}^n$ is the vector with the first k components 1 and the rest 0, and $\mathbf{b} = \mathbf{A}\mathbf{x_0}$. We repeated this experiment for all possible combinations $k \leq m \leq n = 20$, and tracked the number of successfully recovered components of $\mathbf{x_0}$ recovered by each method.

We found that the MIO formulation always found a solution with at most k nonzero components, and in some cases found solutions which were even more sparse than $\mathbf{x_0}$ due to numerical approximations. On the other hand, the LO formulation correctly recovered the $\mathbf{x_0}$ solution sometimes, but in many cases LO yielded solutions with greater than k nonzero components. We plot the results in phase diagrams with axes m/n and k/m, indicating whether or not the correct sparsity pattern was recovered at each data point.

Figure 2: Phase diagram for LO.

2 Algorithmic Framework for Regression using MIO

3 First Order Method

Here, we derive a first order method following the notes from Lecture 2 - Best Subset Selection. Consider the problem

$$\min_{\boldsymbol{\beta}} \quad g(\boldsymbol{\beta}) := \|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|_{2}^{2} + \Gamma \|\boldsymbol{\beta}\|_{1}$$
s.t.
$$\|\boldsymbol{\beta}\|_{0} \le k.$$
 (5)

Since $g(\boldsymbol{\beta})$ is convex and $\|\nabla g(\boldsymbol{\beta}) - \nabla g(\boldsymbol{\beta}_0)\| \le \ell \|\boldsymbol{\beta} - \boldsymbol{\beta}_0\|$, it follows that for all $L \ge \ell$

$$g(\boldsymbol{\beta}) \leq Q(\boldsymbol{\beta}) := g(\boldsymbol{\beta}_0) + \nabla g(\boldsymbol{\beta}_0)^T (\boldsymbol{\beta} - \boldsymbol{\beta}_0) + \frac{L}{2} \|\boldsymbol{\beta} - \boldsymbol{\beta}_0\|_2^2 + \Gamma \|\boldsymbol{\beta}\|_1.$$
 (6)

To find feasible solutions, we solve the following problem

$$\min_{\boldsymbol{\beta}} \quad Q(\boldsymbol{\beta}) \\
\text{s.t.} \quad \|\boldsymbol{\beta}\|_{0} \le k. \tag{7}$$

This is equivalent to

$$\min_{\boldsymbol{\beta}} \quad \frac{L}{2} \left\| \boldsymbol{\beta} - \left(\boldsymbol{\beta}_0 - \frac{1}{L} \nabla g(\boldsymbol{\beta}_0) \right) \right\|_2^2 - \frac{1}{2L} \| \nabla g(\boldsymbol{\beta}_0) \|_2^2 + \Gamma \| \boldsymbol{\beta} \|_1$$
s.t. $\| \boldsymbol{\beta} \|_0 \le k$, (8)

which reduces to the following plus a constant term:

$$\min_{\boldsymbol{\beta}} \quad \frac{L}{2} \|\boldsymbol{\beta} - \mathbf{u}\|_{2}^{2} + \Gamma \|\boldsymbol{\beta}\|_{1}$$
s.t. $\|\boldsymbol{\beta}\|_{0} \le k$. (9)

For the vector $\mathbf{u} \in \mathbb{R}^p$, let $(1), (2), \ldots (p)$ be the indices of the order statistics $|u_{(1)}| \geq |u_{(2)}| \geq \ldots \geq |u_{(p)}|$. At the optimal solution $\boldsymbol{\beta}^*$ to problem 9, we have $|\beta_{(1)}^*| \geq |\beta_{(2)}^*| \geq \ldots \geq |\beta_{(p)}^*|$, which implies that $|\beta_{(k+1)}^*| = |\beta_{(k+2)}^*| = \ldots = |\beta_{(p)}^*| = 0$. For $i \leq k$, $\beta_{(i)}^*$ is the optimal solution to the following unconstrained single variable problem:

$$\min_{\beta_{(i)}} \frac{L}{2} (\beta_{(i)} - u_{(i)})^2 + \Gamma |\beta_{(i)}|. \tag{10}$$

Problem 10 has closed form solution

$$\beta_{(i)}^* = \begin{cases} u_{(i)} - \frac{\Gamma}{L} \operatorname{sign}(u_{(i)}), & \text{if } |u_{(i)}| \ge \frac{\Gamma}{L}, \\ 0, & \text{otherwise.} \end{cases}$$
 (11)

Thus, the optimal solution to problem 9 is $\beta^* = \mathbf{H}_k(\mathbf{u})$, where

$$(\mathbf{H}_{k}(\mathbf{u}))_{i} = \begin{cases} u_{(i)} - \frac{\Gamma}{L} \operatorname{sign}(u_{(i)}), & \text{if } |u_{(i)}| \ge \frac{\Gamma}{L} \text{ and } i \le k, \\ 0, & \text{otherwise.} \end{cases}$$
(12)

Using this update iteratively to determine the β_i 's, we obtain the following first order method:

Algorithm 1

Input: $g(\boldsymbol{\beta}), L, \epsilon$.

Output: A first order stationary solution β^* .

1. Initialize with $\boldsymbol{\beta}_1 \in \mathbb{R}^p$ such that $\|\boldsymbol{\beta}_1\|_0 \leq k$.

2. For $m \ge 1$

$$\boldsymbol{\beta}_{m+1} \leftarrow \mathbf{H}_k(\boldsymbol{\beta}_0 - \frac{1}{L}\nabla g(\boldsymbol{\beta}_0))$$

3. Repeat Step 2, until $g(\boldsymbol{\beta}_m) - g(\boldsymbol{\beta}_{m+1}) \leq \epsilon.$