Virtual Memory

Review: Virtual Addressing

- Each process has its own virtual address space
- Page tables map virtual to physical addresses
- Physical memory can be shared among processes

Review: Memory Accesses without VM

Review: Memory Accesses with VM

Review: Memory Accesses with VM

Review: Memory Accesses with VM

We have a problem

2²⁰ Entries of 4 bytes each

32 bit addresses, 4KB pages, 4-byte PTEs

Multi-Level Page Tables

Suppose:

4KB (2¹²) page size, 48-bit address space, 8-byte PTE

Problem:

- Would need a 512 GB page table!
 - $-2^{48} * 2^{-12} * 2^3 = 2^{39}$ bytes
- Common solution: Multi-level page table
- Example: 2-level page table
 - Level 1 table: each PTE points to a page table (always memory resident)
 - Level 2 table: each PTE points to a page (paged in and out like any other data)

Level 2

A Two-Level Page Table Hierarchy

Translating with a two-level page table

Translating with a k-level Page Table

Quick Question

Suppose we have a 64-bit virtual address space having a page size of 8KB and every page table entry is 4 bytes in size. How many levels of page table (paging) would be required such that every level of the page table fits in at most one page?

Quick Question

Suppose we have a system with 32-bit virtual address having the structure:

Page Directory	<u> Virtual Page Number</u>	<u>Offset</u>

10 bits 10 bits 12 bits

The page table entry is 4 bytes in size with 20 bits for the physical frame number.

- a. What is the size of a page in this system?
- b. What is the maximum amount of physical memory?
- c. How many pages are required to represent the page table?
- d. If we have an address space with two pages at the top of the address space and one page at the bottom of the address space, how much physical memory would be required for this mapping (in bytes)?

The problem (with k-level page tables)

Speeding up Translation with a TLB

- Page table entries (PTEs) are cached like any other memory word
 - PTEs may be evicted by other data references
 - PTE hit still costs cache delay
- Solution: Translation Lookaside Buffer (TLB)
 - Dedicated cache for page table entries
 - TLB hit = page table not consulted
 - Can be fairly small: one TLB entry covers 4k or more

Translating with a TLB

Accessing the TLB

MMU uses the VPN portion of the virtual address to access the TLB:

TLB Hit

A TLB hit eliminates memory accesses to the page table

TLB Miss

A TLB miss incurs additional memory accesses (PTE lookup)

Fortunately, TLB misses are rare. Why?

Simple Memory System Example

Addressing

- 14-bit virtual addresses
- 12-bit physical address
- Page size = 64 bytes

Simple Memory System TLB

- 16 entries
- 4-way associative

VPN = 0b1101 = 0x0D

Translation Lookaside Buffer (TLB)

Set	Tag	PPN	Valid									
0	03	-	0	09	0D	1	00	-	0	07	02	1
1	03	2D	1	02	-	0	04	-	0	0A	-	0
2	02	-	0	08	-	0	06	-	0	03	-	0
3	07	-	0	03	0D	1	0A	34	1	02	-	0

Simple Memory System Page Table

Only showing the first 16 entries (out of 256)

VPN	PPN	Valid
00	28	1
01	_	0
02	33	1
03	02	1
04	-	0
05	16	1
06	_	0
07	-	0

VPN	PPN	Valid
08	13	1
09	17	1
0A	09	1
0B	_	0
0C	1	0
0D	2D	1
0E	11	1
OF	0D	1

Simple Memory System Cache

- 16 lines, 4-byte cache line size
- Physically addressed

Direct mapped

V[0b00001101101001] = V[0x369] P[0b101101101001] = P[0xB69] = 0x15

ldx	Tag	Valid	В0	B1	B2	В3
0	19	1	99	11	23	11
1	15	0	ı	-	_	_
2	1B	1	00	02	04	08
3	36	0	-	-	-	_
4	32	1	43	6D	8F	09
5	0D	1	36	72	F0	1D
6	31	0	-	_	_	_
7	16	1	11	C2	DF	03

ldx	Tag	Valid	В0	B1	B2	В3
8	24	1	3A	00	51	89
9	2D	0	ı	ı	ı	_
Α	2D	1	93	15	DA	3B
В	0B	0	ı	ı	ı	-
C	12	0	_	_	-	-
D	16	1	04	96	34	15
E	13	1	83	77	1B	D3
F	14	0	-	_	_	-

Address Translation Example

Virtual Address: 0x03D4

TLB

Set	Tag	PPN	Valid									
0	03	_	0	09	0D	1	00	-	0	07	02	1
1	03	2D	1	02	-	0	04	-	0	0A	-	0
2	02	-	0	08	-	0	06	-	0	03	-	0
3	07	_	0	03	0D	1	0A	34	1	02	_	0

Physical Address

Paging (aka Swapping)

- Use (part of) disk as additional working memory
- Adds another layer to the memory hierarchy, but...
 - "Main memory" is 10–1000x slower than the caches
 - Disk is 10,000x slower than main memory
 - Enormous miss penalty drives design

Consequences

- Large page (block) size: 4KB and bigger
- Always write-back and fully associative
- Managed entirely in software
 - Plenty of time to execute complex replacement algorithms

Locality to the Rescue Again!

- Paging is terribly inefficient
- Only works because of locality
- At any point in time, programs tend to access a set of active virtual pages called the working set
 - Programs with good temporal locality will have small working sets
- If working set size < main memory size</p>
 - Good performance after compulsory misses
- If working set size > main memory size
 - Thrashing: Performance meltdown, computer spends most of its time copying pages in and out of RAM
 - In the worst case, no forward progress at all (livelock)

Memory-Mapped Files

- Paging = every page of a program's physical RAM is backed by some page of disk*
- Normally, those pages belong to swap space
- But what if some pages were backed by ... files?

^{*} This is how it used to work 20 years ago. Nowadays, not always true.

Memory-Mapped Files

Memory-Mapped Files

Copy-on-write sharing

- fork creates a new process by copying the entire address space of the parent process
 - That sounds slow
 - It is slow

Clever trick:

- Just duplicate the page tables
- Mark everything read only
- Copy only on write faults

Copy-on-write sharing

Clever trick:

- Just duplicate the page tables
- Mark everything read only
- Copy only on write faults

Copy-on-write sharing

Clever trick:

- Just duplicate the page tables
- Mark everything read only
- Copy only on write faults

Summary

- Multi-level page tables reduce total memory consumption of page tables
- Translation lookaside buffers reduce time cost of translation
- Real systems have 3 to 5 levels of page table
- Virtual memory makes nifty things possible
 - Memory protection and process isolation
 - Paging/swapping (disk as extra RAM)
 - Memory-mapped files (RAM as cache for disk)
 - Copy-on-write sharing

Control Flow

Processors do only one thing:

- From startup to shutdown, each CPU core simply reads and executes (interprets) a sequence of instructions, one at a time *
- This sequence is the CPU's control flow (or flow of control)

* Externally, from an architectural viewpoint (internally, the CPU may use parallel out-of-order execution)

Altering the Control Flow

- Up to now: two mechanisms for changing control flow:
 - Jumps and branches
 - Call and return

React to changes in *program state*

- Insufficient for a useful system:Difficult to react to changes in system state
 - Data arrives from a disk or a network adapter
 - Instruction divides by zero
 - User hits Ctrl-C at the keyboard
 - System timer expires
- System needs mechanisms for "exceptional control flow"

Exceptional Control Flow

- Exists at all levels of a computer system
- Low level mechanisms
 - 1. Exceptions
 - Change in control flow in response to a system event (i.e., change in system state)
 - Implemented using combination of hardware and OS software
- Higher level mechanisms
 - 2. Process context switch
 - Implemented by OS software and hardware timer
 - 3. Signals
 - Implemented by OS software
 - 4. Nonlocal jumps: setjmp() and longjmp()
 - Implemented by C runtime library

Exceptions

- An exception is a transfer of control to the OS kernel in response to some event (i.e., change in processor state)
 - Kernel is the memory-resident part of the OS
 - Examples of events: Divide by 0, arithmetic overflow, page fault, I/O request completes, typing Ctrl-C

Exception Tables

(partial) Taxonomy

Asynchronous Exceptions (Interrupts)

Caused by events external to the processor

- Indicated by setting the processor's interrupt pin
- Handler returns to "next" instruction

Examples:

- Timer interrupt
 - Every few ms, an external timer chip triggers an interrupt
 - Used by the kernel to take back control from user programs
- I/O interrupt from external device
 - Hitting Ctrl-C at the keyboard
 - Arrival of a packet from a network
 - Arrival of data from a disk

Synchronous Exceptions

Caused by events that occur as a result of executing an instruction:

Traps

- Intentional, set program up to "trip the trap" and do something
- Examples: system calls, gdb breakpoints
- Returns control to "next" instruction

Faults

- Unintentional but possibly recoverable
- Examples: page faults (recoverable), protection faults (unrecoverable), floating point exceptions
- Either re-executes faulting ("current") instruction or aborts

Aborts

- Unintentional and unrecoverable
- Examples: illegal instruction, parity error, machine check
- Aborts current program

System Calls

- Each x86-64 system call has a unique ID number
- Examples:

Number	Name	Description
0	read	Read file
1	write	Write file
2	open	Open file
3	close	Close file
4	stat	Get info about file
57	fork	Create process
59	execve	Execute a program
60	_exit	Terminate process
62	kill	Send signal to process

System Call Example: Opening File

- User calls: open (filename, options)
- Calls __open function, which invokes system call instruction syscall

```
000000000000e5d70 <__open>:
...
e5d79: b8 02 00 00 00 mov $0x2,%eax # open is syscall #2
e5d7e: 0f 05 syscall # Return value in %rax
e5d80: 48 3d 01 f0 ff ff cmp $0xfffffffffff001,%rax
...
e5dfa: c3 retq
```


- %rax contains syscall number
- Other arguments in %rdi, %rsi, %rdx, %r10, %r8, %r9
- Return value in %rax
- Negative value is an error corresponding to negative errno

System Call Almost like a function call

- User calls: open (1
- Calls __open funct

Transfer of control

- On return, executes next instruction
- Passes arguments using calling convention
- Gets result in %rax

000000000000e5d70 <___ ... e5d79: b8 02 00 00 00 e5d7e: 0f 05 s e5d80: 48 3d 01 f0 ff ff ...

e5dfa: c3

One Important exception!

- Executed by Kernel
- Different set of privileges
- And other differences:
 - E.g., "address" of "function" is in %rax

- Return value in %rax
- Negative value is an error corresponding to negative errno

Fault Example: Page Fault

- User writes to memory location
- That portion (page) of user's memory is currently on disk

```
int a[1000];
main ()
{
    a[500] = 13;
}
```

```
80483b7: c7 05 10 9d 04 08 0d movl $0xd,0x8049d10
```


Fault Example: Invalid Memory Reference

```
int a[1000];
main ()
{
    a[5000] = 13;
}
```

```
80483b7: c7 05 60 e3 04 08 0d movl $0xd,0x804e360
```


- Sends SIGSEGV signal to user process
- User process exits with "segmentation fault"

Concurrent Processes

- Each process is a logical control flow.
- Two processes run concurrently (are concurrent) if their flows overlap in time
- Otherwise, they are sequential
- Examples (running on single core):
 - Concurrent: A & B, A & C
 - Sequential: B & C

User View of Concurrent Processes

- Control flows for concurrent processes are physically disjoint in time
- However, we can think of concurrent processes as running in parallel with each other

Context Switching

- Processes are managed by a shared chunk of memory-resident OS code called the kernel
 - Important: the kernel is not a separate process, but rather runs as part of some existing process.
- Control flow passes from one process to another via a context switch

System Call Error Handling

- On error, Linux system-level functions typically return -1 and set global variable errno to indicate cause.
- Hard and fast rule:
 - You must check the return status of every system-level function
 - Only exception is the handful of functions that return void

Example:

```
if ((pid = fork()) < 0) {
    fprintf(stderr, "fork error: %s\n", strerror(errno));
    exit(-1);
}</pre>
```

Error-reporting functions

Can simplify somewhat using an error-reporting function:

```
void unix_error(char *msg) /* Unix-style error */
{
    fprintf(stderr, "%s: %s\n", msg, strerror(errno));
    exit(-1);
}

if ((pid = fork()) < 0)
    unix_error("fork error");</pre>
Note: csapp.c exits with 0.
```

 But, must think about application. Not alway appropriate to exit when something goes wrong.

Error-handling Wrappers

We simplify the code we present to you even further by using Stevens¹-style error-handling wrappers:

```
pid_t Fork(void)
{
    pid_t pid;

    if ((pid = fork()) < 0)
        unix_error("Fork error");
    return pid;
}</pre>
```

```
pid = Fork();
```

NOT what you generally want to do in a real application

¹e.g., in "UNIX Network Programming: The sockets networking API" W. Richard Stevens

Obtaining Process IDs

- pid_t getpid(void)
 - Returns PID of current process
- pid_t getppid(void)
 - Returns PID of parent process

Creating and Terminating Processes

From a programmer's perspective, we can think of a process as being in one of three states

Running

 Process is either executing, or waiting to be executed and will eventually be scheduled (i.e., chosen to execute) by the kernel

Stopped

 Process execution is suspended and will not be scheduled until further notice (next lecture when we study signals)

Terminated

Process is stopped permanently

Terminating Processes

- Process becomes terminated for one of three reasons:
 - Receiving a signal whose default action is to terminate (next lecture)
 - Returning from the main routine
 - Calling the exit function
- void exit(int status)
 - Terminates with an exit status of status
 - Convention: normal return status is 0, nonzero on error
 - Another way to explicitly set the exit status is to return an integer value from the main routine
- exit is called once but never returns.

Creating Processes

Parent process creates a new running child process by calling fork

- int fork(void)
 - Returns 0 to the child process, child's PID to parent process
 - Child is almost identical to parent:
 - Child get an identical (but separate) copy of the parent's virtual address space.
 - Child gets identical copies of the parent's open file descriptors
 - Child has a different PID than the parent
- fork is interesting (and often confusing) because it is called *once* but returns *twice*

Conceptual View of fork

Make complete copy of execution state

- Designate one as parent and one as child
- Resume execution of parent or child

The fork Function Revisited

- VM and memory mapping explain how fork provides private address space for each process.
- To create virtual address for new process:
 - Create exact copies of current mm_struct, vm_area_struct, and page tables.
 - Flag each page in both processes as read-only
 - Flag each vm_area_struct in both processes as private COW
- On return, each process has exact copy of virtual memory.
- Subsequent writes create new pages using COW mechanism.

fork Example

```
int main(int argc, char** argv)
   pid t pid;
    int x = 1;
   pid = Fork();
    if (pid == 0) { /* Child */
       printf("child: x=%d\n", ++x);
   return 0:
    /* Parent */
    printf("parent: x=%d\n", --x);
    return 0:
                                fork.c
```

- Call once, return twice
- Concurrent execution
 - Can't predict execution order of parent and child

```
linux> ./fork
parent: x=0
child : x=2
```

```
linux> ./fork
child : x=2
parent: x=0
```

```
linux> ./fork
parent: x=0
child : x=2
```

```
linux> ./fork
parent: x=0
child : x=2
```

fork Example

```
int main(int argc, char** argv)
   pid t pid;
    int x = 1;
   pid = Fork();
    if (pid == 0) { /* Child */
        printf("child : x=%d\n", ++x);
        return 0;
    }
    /* Parent */
   printf("parent: x=%d\n", --x);
    return 0;
```

linux> ./fork
parent: x=0
child : x=2

- Call once, return twice
- Concurrent execution
 - Can't predict execution order of parent and child
- Duplicate but separate address space
 - x has a value of 1 when fork returns in parent and child
 - Subsequent changes to x are independent
- Shared open files
 - stdout is the same in both parent and child

fork Example: Two consecutive forks

```
void fork2()
{
    printf("L0\n");
    fork();
    printf("L1\n");
    fork();
    printf("Bye\n");
}
```


Feasible output:	Infeasible output:
LO	L0
L1	Bye
Bye	L1
Bye	Bye
L1	L1
Bye	Bye
Bye	Bye

fork Example: Nested forks in parent

```
void fork4()
{
    printf("L0\n");
    if (fork() != 0) {
        printf("L1\n");
        if (fork() != 0) {
            printf("L2\n");
        }
        printf("Bye\n");
}
```


Feasible or Infeasible?	Feasible or Infeasible?
LO	L0
Bye	L1
L1	Bye
Bye	Bye
Bye	L2
L2	Bye
Infeasible	Feasible

fork Example: Nested forks in children

```
void fork5()
{
    printf("L0\n");
    if (fork() == 0) {
        printf("L1\n");
        if (fork() == 0) {
            printf("L2\n");
        }
        printf("Bye\n");
}
```


Feasible or Infeasible?	Feasible or Infeasible?
ro	LO
Bye	Bye
L1	L1
Bye	L2
Bye	Bye
L2	Bye

Reaping Child Processes

Idea

- When process terminates, it still consumes system resources
 - Examples: Exit status, various OS tables
- Called a "zombie"
 - Living corpse, half alive and half dead

Reaping

- Performed by parent on terminated child (using wait or waitpid)
- Parent is given exit status information
- Kernel then deletes zombie child process

What if parent doesn't reap?

- If any parent terminates without reaping a child, then the orphaned child should be reaped by init process (pid == 1)
 - Unless ppid == 1! Then need to reboot…
- So, only need explicit reaping in long-running processes
 - e.g., shells and servers

Zombie Example

```
linux> ./forks 7 &
[1] 6639
Running Parent, PID = 6639
Terminating Child, PID = 6640
linux> ps
 PID TTY
                  TIME CMD
 6585 ttyp9 00:00:00 tcsh
 6639 ttyp9 00:00:03 forks
 6640 ttyp9 00:00:00 forks <defunct>
 6641 ttyp9 00:00:00 ps
linux> kill 6639
[1] Terminated
linux> ps
 PID TTY
                  TIME CMD
              00:00:00 tcsh
 6585 ttyp9
 6642 ttyp9
              00:00:00 ps
```

ps shows child process as "defunct" (i.e., a zombie)

Killing parent allows child to be reaped by init

Nonterminating Child Example

```
linux> ./forks 8
Terminating Parent, PID = 6675
Running Child, PID = 6676
linux> ps
                   TIME CMD
  PID TTY
 6585 ttyp9 00:00:00 tcsh
 6676 ttyp9
              00:00:06 forks
              00:00:00 pe
 6677 ttyp9
linux> kill 6676 	
linux> ps
  PID TTY
                   TIME CMD
 6585 ttyp9
              00:00:00 tcsh
 6678 ttyp9
               00:00:00 ps
```

Child process still active even though parent has terminated

Must kill child explicitly, or else will keep running indefinitely

wait: Synchronizing with Children

- Parent reaps a child by calling the wait function
- int wait(int *child_status)
 - Suspends current process until one of its children terminates
 - Implemented as syscall

wait: Synchronizing with Children

- Parent reaps a child by calling the wait function
- int wait(int *child status)
 - Suspends current process until one of its children terminates
 - Return value is the pid of the child process that terminated
 - If child_status != NULL, then the integer it points to will be set to a value that indicates reason the child terminated and the exit status:
 - Checked using macros defined in wait.h
 - WIFEXITED, WEXITSTATUS, WIFSIGNALED, WTERMSIG, WIFSTOPPED, WSTOPSIG, WIFCONTINUED
 - See textbook for details

wait: Synchronizing with Children

```
void fork9() {
   int child_status;

if (fork() == 0) {
     printf("HC: hello from child\n");
   exit(0);
} else {
     printf("HP: hello from parent\n");
     wait(&child_status);
     printf("CT: child has terminated\n");
}
printf("Bye\n");
}
```


Feasible output(s):

HC HP
HP HC
CT CT
Bye Bye

Infeasible output:

HP CT Bye HC

Another wait Example

- If multiple children completed, will take in arbitrary order
- Can use macros WIFEXITED and WEXITSTATUS to get information about exit status

```
void fork10() {
   pid t pid[N];
    int i, child status;
    for (i = 0; i < N; i++)
        if ((pid[i] = fork()) == 0) {
            exit(100+i); /* Child */
    for (i = 0; i < N; i++) { /* Parent */</pre>
        pid t wpid = wait(&child status);
        if (WIFEXITED(child status))
            printf("Child %d terminated with exit status %d\n",
                   wpid, WEXITSTATUS(child status));
        else
            printf("Child %d terminate abnormally\n", wpid);
                                                         forks.c
```

waitpid: Waiting for a Specific Process

- pid_t waitpid(pid_t pid, int *status, int options)
 - Suspends current process until specific process terminates
 - Various options (see textbook)

```
void fork11() {
    pid t pid[N];
    int i:
    int child status;
    for (i = 0; i < N; i++)
        if ((pid[i] = fork()) == 0)
            exit(100+i); /* Child */
    for (i = N-1; i >= 0; i--) {
        pid t wpid = waitpid(pid[i], &child status, 0);
        if (WIFEXITED(child status))
            printf("Child %d terminated with exit status %d\n",
                   wpid, WEXITSTATUS(child status));
        else
            printf("Child %d terminate abnormally\n", wpid);
                                                         forks.c
```

execve: Loading and Running Programs

- int execve(char *filename, char *argv[], char *envp[])
- Loads and runs in the current process:
 - Executable file filename
 - Can be object file or script file beginning with #!interpreter
 (e.g., #!/bin/bash)
 - ...with argument list argv
 - By convention argv[0]==filename
 - ...and environment variable list envp
 - "name=value" strings (e.g., USER=droh)
 - getenv, putenv, printenv
- Overwrites code, data, and stack
 - Retains PID, open files and signal context
- Called once and never returns
 - ...except if there is an error

execve Example

■ Execute "/bin/ls -lt /usr/include" in child process using current environment:


```
if ((pid = Fork()) == 0) { /* Child runs program */
   if (execve(myargv[0], myargv, environ) < 0) {
      printf("%s: Command not found.\n", myargv[0]);
      exit(1);
   }
}</pre>
```


The execve Function Revisited

- To load and run a new program a . out in the current process using execve:
- Free vm_area_struct's and page tables for old areas
- Create vm_area_struct's and page tables for new areas
 - Programs and initialized data backed by object files.
 - .bss and stack backed by anonymous files.
- Set PC to entry point in . text
 - Linux will fault in code and data pages as needed.