Timer 1 Module block diagram

အထက်ပါပုံမှာပြထားတာကတော့ Timer 1 module ရဲ့ block diagram လေးဘဲဖြစ်ပါတယ်။ အဲဒီ diagram ကို PIC16F887 ရဲ့ datasheet ကနေရယူထားတာဖြစ်ပါတယ်။

Timer 1 မှာ TMR1H နဲ့ TMR1L ဆိုပြီးတော့ 8 bit register နှစ်ခုပါလင်ပါတယ်။ ဒါကြောင့်မို့လို့ Timer 1 ဟာ 16 bit timer အမျိုးအစားဖြစ်ပါတယ်။ Timer 0 လိုမျိုး 8 bit timer မဟုတ်တဲ့အတွက် ကြောင့် Timer 1 ဟာ 16 bit data ကိုမှတ်ထားနိုင်ပါတယ်။ TMR1H နဲ့ TMR1L ဆိုတဲ့ 8 bit register နှစ်လုံး (16 bits) ဟာ overflow ဖြစ်တယ်ဆိုရင် Timer Flag bit ဖြစ်တဲ့ TMR1IF ဟာ 1 ဖြစ်ပါတယ်။

အဲဒီ TMR1H နဲ့ TMR1L ထဲကို count တွေတိုးတိုးသွားဖို့ရန်အတွက် Enable (EN) လေးကို enable လုပ်ထားခဲ့ဖို့ရန်အတွက်လိုအပ်ပါတယ်။ အဲဒီလိုမျိုး enable လုပ်ထားလိုက်မှသာ clock pin က clock

တွေပင်လာတဲ့အခါမှာ timer က ရေတွက်နိုင်မှာဖြစ်ပါတယ်။ Enable(EN) ကိုသာ enable လုပ်မထားခဲ့ဘူးဆိုလို့ရှိရင် အောက်က clock ကဘယ်လောက်လာလာ timer က အလုပ်လုပ်မှာမဟုတ် ပါဘူး။

TMR1H နဲ့ TMR1L ထဲကိုဂင်တဲ့ clock လေးဟာ ဘယ်ကနေလာနေတာလဲဆိုတာကို trace လိုက်ကြည့်ပါမယ်။ အဲဒီ clock အတွက် clock source သုံးခုကိုရွေးချယ်ပြီးအသုံးပြုနိုင်ပါတယ်။

အပေါ် က block diagram လေးရဲ့ တစ်စိတ်တစ်ပိုင်းမှာကြည့်လိုက်မယ်ဆိုရင် - အစိမ်းရောင် ပိုင်းပြထားတဲ့နေရာမှာ 0 ထားခဲ့ပါက TMR1CS ဆိုတဲ့ PIC မှာတပ်ထားတဲ့ Crystal oscillator ကနေ clock ကိုယူမှာဖြစ်ပါတယ်။ TMR1CS ဆိုတာ Clock Select ဖြစ်ပါတယ်။ အကယ်၍ 1 ထားလိုက်မယ် ပါက အပေါ် လိုင်းအတိုင်း သွားမည်ဖြစ်ကာ - အပြာရောင် အပိုင်းလေးပြထားတဲ့နေရာကိုရောက်သွားမှာ ဖြစ်ပါတယ်။ အဲဒီမှာ 0 ထားရင် T1CK1 ဆိုတဲ့ Clock input pin ကနေ ပြင်ပ clock ကိုယူသုံးမှာဖြစ်ပါ တယ်။ 1 ထားလိုက်မယ်ဆိုရင်တော့ T10SI နဲ့ T10SO ဆိုတဲ့ pin နှစ်ခုကနေ clock ကိုယူသုံးနိုင်မှာ ဖြစ်ပါတယ်။ အဲဒီ pin နှစ်ခုမှာ Crystal Oscillator တပ်ပြီးတော့ clock source ထုတ်လုပ်နိုင်ပါတယ်။ အဲဒီ pin နှစ်ခုမှာ 32.768 KHz Crystal (Low Power Oscillator) ကို T10SI နဲ့ T10SO ကို မှာတပ် ပြီးတော့လည်း clock source

အဲဒီ Clock source သုံးခုဖြစ်တဲ့ T1CK1, TMR1CS , (T1OSI, T1OSO) မှာ T1CK1 ကိုရွေးထားတယ်ဆိုရင် Timer 1 ကို **Counter** အနေနဲ့ သုံးတာဖြစ်ပြီးတော့ ကျန်တဲ့ clock source နှစ်ခု ကို ရွေးထားတယ်ဆိုရင်တော့ Timer 1 ကို **Timer** အနေနဲ့ သုံးတာဖြစ်ပါတယ်။ PIC မှာတပ်ထားတဲ့ Crystal Oscillator ကနေ Clock ကိုလိုချင်တယ်ဆိုရင် **TMR1CS** ဆိုတာကို **0** ထားခဲ့ရပါမယ်။

T1CKI pin ကနေ clock ကိုပြင်ပ pin ကနေယူပြီးတော့သုံးချင်တယ်ဆိုရင် TMR1CS ကို 1 ထားခဲ့လိုက်ပြီး T1OSCEN (Oscillator Enable) ကို 0 ထားခဲ့ရမှာဖြစ်ပါတယ်။ T1CKI ကနေ clock ယူတယ်ဆိုတာ Timer 1 ကို counter အနေနဲ့ သုံးမယ်လို့ပြောလိုက်တာဖြစ်ပါတယ်။

T1OSI နဲ့ T1OSO နှစ် pin မှာ crystal တပ်ပြီး clock ကိုယူချင်တယ်ဆိုရင်တော့ T1OSCEN မှာ 1 ထားခဲ့လိုက်ပြီးတော့ ယူနိုင်ပါတယ်။

အဲဒီလိုမျိုး clock source သုံးခုထဲက တစ်ခုခုကိုရွေးချယ်ပြီးသွားရင် prescaler ဆိုတဲ့နေရာကို ရောက်လာပါတယ်။ အဲဒီ prescaler နေရာမှာ ကိုယ်သတ်မှတ်ခဲ့တဲ့ prescale အပေါ် မူတည်ပြီးတော့ clock တွေထုတ်ပေးမှာဖြစ်ပါတယ်။

Prescaler မှာရွေးချယ်စရာ လေးခုရှိပါတယ်။ 1, 2, 4, 8 ဆိုပြီးတော့ လေးခုရှိပါတယ်။ 1:1 ကို ရွေးလိုက်မယ်ဆိုရင် အပင် clock တစ်ချက်လာတဲ့အခါ clock တစ်ချက်ပြန်ထုတ်ပေးမှာဖြစ်ပါတယ်။ 1:2 ကိုရွေးလိုက်မယ်ဆိုရင် အပင် clock နှစ်ချက်လာမှ clock တစ်ချက်ပြန်ထုတ်ပေးမှာဖြစ်ပါတယ်။ 1:4 ကိုရွေးလိုက်မယ်ဆိုရင် အပင် clock လေးချက်လာမှ clock တစ်ချက်ပြန်ထုတ်ပေးမှာဖြစ်ပါတယ်။ 1:8 ကိုရွေးလိုက်မယ်ဆိုရင် အပင် clock ရှစ်ချက်လာမှ clock တစ်ချက်ပြန်ထုတ်ပေးမှာဖြစ်ပါတယ်။

Prescale တန်ဖိုးသတ်မှတ်ပြီးလို့ clock တစ်ချက်ထွက်လာတဲ့အချိန်မှာ Synchronize ဆိုတာ ကိုဖြတ်ပြီးမှသွားမလား ဒီအတိုင်းတိုက်ရိုက်သွားမလားဆိုတဲ့ လမ်းကြောင်းနှစ်ခုရှိပါတယ်။ Synchronize ဆိုတာကို ဖြတ်ပြီးမှ သွားလိုတဲ့အခါမှာ T1SYNC ဆိုတဲ့ **Timer 1 Synchronize** ဆိုတဲ့ bit ကို 0 ထားခဲ့လိုက်ရမှာဖြစ်ပါတယ်။ 0 ထားခဲ့မှ Synchronize လုပ်မှာဖြစ်ပါတယ်။ Synchronize လုပ် တယ်ဆိုတာ Prescaler ကနေထွက်တဲ့ clock ရဲ့ raising edge နဲ့ Crystal ကနေထွက်လာတဲ့ raising edge နဲ့ထပ်တူညီရဲ့လားဆိုတာစစ်တဲ့ လုပ်ငန်းစဉ်ဖြစ်ပါတယ်။ ဒီမှတ်စုရဲ့ Timer 1 ပရိုဂရမ်တွေမှာ တော့ Synchronize မလုပ်ဘဲနဲ့ ရေးသွားမှာဖြစ်ပါတယ်။

TMR1H နဲ့ TMR1L တို့ကို အလုပ်လုပ်စေဖို့ရန်အတွက် EN(Enable) က 1 ဖြစ်နေဖို့ရန်အတွက် လိုအပ်ပါတယ်။ အဲဒီ EN(Enable) ကို **T1G** လို့ခေါ်တဲ့ Timer 1 Gate ကိုသုံးနိုင်ပါတယ်။ **TMR1ON နဲ့ TMR1GE(Gate Enable)** ဆိုတဲ့ bit နှစ်ခုကိုလည်း 1 ထားခဲ့ဖို့ရန်အတွက်အရေးကြီးပါတယ်။ **T1G** ဆိုတဲ့ Timer 1 Gate pin က 0 ဖြစ်ရင် Enable လုပ်မလား 1 ဖြစ်ရင် Enable လုပ်မလားဆိုတာကို **T1GINV (Timer 1 Gate Inverse)** ကနေ ဆုံးဖြတ်တာဖြစ်ပါတယ်။ သူ့ကို T1G ကနေလာတဲ့ data နဲ့ XOR ထဲထည့်ထားပါတယ်။

6.12 Timer1 Control Register

The Timer1 Control register (T1CON), shown in Register 6-1, is used to control Timer1 and select the various features of the Timer1 module.

REGISTER 6-1: T1CON: TIMER1 CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
T1GINV ⁽¹⁾	TMR1GE ⁽²⁾	T1CKPS1	T1CKPS0	T10SCEN	TISYNC	TMR1CS	TMR10N
oit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

အပေါ် မှာပြောခဲ့တဲ့ Block diagram ကြီးကိုနားလည်မယ်ဆိုရင် Timer1 Control Register ကိုဆက်ကြည့်လိုက်ရအောင်။ သူကလည်း 8 bit register တစ်လုံးဖြစ်ပါတယ်။

- T1GINV ဆိုတဲ့ Gate invert bit က 1 ထားမယ်ဆိုရင် Timer 1 gate က active high ဖြစ်ပြီးတော့ 0 ထားမယ်ဆို ရင် active low ဖြစ်ပါတယ်။ စောနကပြောခဲ့တဲ့ T1G ဆိုတဲ့ Timer 1 Gate ကိုထိန်းချုပ်ပါ တယ်။
- TMR1GE ကို 1 ပေးထားမယ်ဆိုရင် တော့ T1G ဆိုတဲ့ PIC16F887 ရဲ့ gate pin ကိုသုံးပြီးတော့ Timer 1 ကို ဖွင့်တာ ပိတ်တာလုပ်နိုင်မှာဖြစ်ပါတယ်။ TMR1GE ကို 1 ပေးထားသော်ငြားလည်း TMR1ON ကို 0 ပေးထားခဲ့မယ်ဆိုရင် Timer 1 ကို PIC ရဲ့ gate pin ကနေထိန်းလို့ရမှာမဟုတ် ပါဘူး။ ဒါကြောင့် Timer 1 ကို PIC16887 ရဲ့ Gate pin ကနေ ထိန်းချင်တယ်ဆိုရင် TMR1GE ကော TMR1ON ကော နှစ်ခုစလုံး 1 ဖြစ်နေဖို့ရန်အတွက်လိုအပ်ပါတယ်။
- Bit 5 နဲ့ 4 ကတော့ စောနက block diagram မှာပါတဲ့အတိုင်းကိုယ်ကြိုက်တဲ့ prescaler ထားဖို့ ကျန်တဲ့ bit တွေကလည်း block diagram ကိုရှင်းပြပြီးသားဖြစ်တဲ့အတွက် datasheet ကိုကြည့်လိုက် ရင်နားလည်နိုင်ပါတယ်။

TABLE 6-1: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER1

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
CM2CON1	MC10UT	MC2OUT	CIRSEL	C2RSEL	-		TIGSS	C2SYNC	000010	000010
INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTE	RBIF	0000 000x	0000 000x
PIE1	-	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	-000 0000	-000 0000
PIR1	200	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	-000 0000	-000 0000
TMR1H	Holding Re	Holding Register for the Most Significant Byte of the 16-bit TMR1 Register							XXXX XXXX	uuuu uuuu
TMR1L	Holding Register for the Least Significant Byte of the 16-bit TMR1 Register						xxxx xxxx	uuuu uuuu		
T1CON	T1GINV	TMR1GE	T1CKPS1	T1CKPS0	TIOSCEN	TISYNC	TMR1CS	TMR10N	0000 0000	บนบบ บบบบ

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by the Timer1 module.

Timer 1 ရဲ့ bit တွေကိုကျွန်တော်တို့နားလည်ခဲ့ပါပြီ။ ဒါ့အပြင် Timer 1 ကိုသုံးမယ်ဆိုရင် သူနဲ့ ဆက်စပ်နေတဲ့ register တွေကိုလည်းသိဖို့ရန်အတွက်လိုအပ်ပါတယ်။ Interrupt တွေပါသုံးမယ် ဆိုရင် အဲဒီအထဲက GIE နဲ့ PEIE တို့ကိုပါ enable လုပ်ပေးဖို့ရန်အတွက်လိုအပ်လာပါတယ်။ PIE1 နဲ့ PIR1 ဆိုတဲ့ register နှစ်လုံးနဲ့လည်းဆိုင်ပါသေးတယ်။ PIE1 ဆိုတာ Peripheral Interrupt Enable register 1 ကိုခေါ် တာဖြစ်ပါတယ်။ အဲဒီထဲကမှ Timer 1 Overflow Interrupt ကိုသုံးချင်တယ်ဆိုရင် အဲဒီ PIE1 register ရဲ့ bit နံပါတ် 0 ကို 1 လုပ်ပေးထားရပါမယ်။ PIE1 ရဲ့ bit နံပါတ် 0 ဟာ Timer 1 Overflow Interrupt ရဲ့ enable bit ဖြစ်ပါတယ်။ Interrupt Overflow ဖြစ်ရင် flag bit က 1 ထဖြစ်ပါ တယ်။ အဲဒီ flag bit ဟာဘယ်မှာရှိနေသလဲဆိုရင် PIR1 Register ရဲ့ bit 0 မှာရှိနေပါတယ်။ PIR1 ရဲ့ bit 0 ဟာ TMR1IF(Timer 1 Interrupt Flag) bit ဖြစ်ပါတယ်။ ISR အလုပ်လုပ်တာပြီးတဲ့အခါမှာ ပြန် ပြီးတော့ clear လုပ်ပေးရတဲ့ bit ဖြစ်ပါတယ်။

ဘယ်တော့မဆိုမှတ်ထားပါ။ Datasheet ရဲ့ register summary ဇယားမှာ မီးခိုးရောင်နဲ့ မှုန်းခြယ်ထားတွေက "ASSOCIATED WITH" နဲ့ နောက်က module နဲ့မဆိုင်တဲ့ register တွေဖြစ်ပါ တယ်။ ဒီဇယားမှာဆိုရင်လည်း မီးခိုးရောင်နဲ့ ပြထားတာတွေက Timer 1 နဲ့မဆိုင်တဲ့ register တွေဖြစ် ကြပါတယ်။

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
200	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	
bit 7							bi	
Legend:								
R = Readable bit		W = Writable	bit	U = Unimplemented bit, read as '0'				

'0' = Bit is cleared

x = Bit is unknown

'1' = Bit is set

-n = Value at POR

Timer 1 Overflow Interrupt ကို enable လုပ်ဖို့ရန်အတွက် PIE1 ရဲ့ TMR1E (bit 0) ကိုလည်း 1 ထားခဲ့ဖို့လိုအပ်ပါတယ်။

Timer 1 ရဲ့ overflow interrupt flag bit ဟာ PIR1 ရဲ့ bit0 မှာရှိပါတယ်။

Join our PIC Microcontroller Online Class for more detail :)