Digitale Regelung?

Thierry Prud'homme

Hochschule Luzern Technik & Architektur

Outline

Prinzipen

- Prinzipen
- 2 AD-Umsetzer

- Prinzipen
- 2 AD-Umsetzer
- Shannon Abtasttheorem

- Prinzipen
- 2 AD-Umsetzer
- 3 Shannon Abtasttheorem
- Anti-Aliasing Filter

- Prinzipen
- 2 AD-Umsetzer
- 3 Shannon Abtasttheorem
- Anti-Aliasing Filter
- 6 DA-Umsetzer

Lernziele (1/2)

- Die Studierende k\u00f6nnen die verschiedenen Implementierungsm\u00f6glichkeiten eines digitalen Reglers erl\u00e4utern.
- Die Studierende können die Vorteilen der digitalen Regelung erklären.
- Die Studierende k\u00f6nnen die verschiedenen Komponenten eines digitalen Regelkreises auflisten und Ihre Role erkl\u00e4ren.
- Die Studierende k\u00f6nnen die verschiedenen Merkmale von AD und DA-Umsetzer erkl\u00e4ren.

Lernziele (2/2)

- Die Studierende können das Shannon Theorem erklären.
- Die Studierende können eine richtige Abastzeit für ein bestimmtes Signal wählen.
- Die Studierende können das Problem des Anti-aliasing erklären und eine Lösung zu diesem Problem finden.

- Prinzipen
 Vorteile Nachteile
 Schematische Darstellung
 Implementierungsmöglichkeiten
- AD-Umsetzer
- Shannon Abtasttheorem
- 4 Anti-Aliasing Filter
- DA-Umsetzer

Vorteile - Nachteile

Vorteile

- Anpassungen der Reglerparameter durch Softwareänderung
- platzsparende und kostengünstige Implementierung (Mikrorechner, FPGA)
- nicht limitiert an PID, komplexere Regler denkbar (RST, MPC)
- Der Rechner kann anderen Aufgaben übernehmen.

Vorteile - Nachteile

Nachteile

- Diskretisierung nicht vernachlässigbar im Design des Reglers
- Minderung der dynamischen Leistungen
- Konzepten weniger intuitiv als in der analogen Welt

Schematische Darstellung

System mit analogen Regelung

Schematische Darstellung

System mit digitalen Regelung

System mit digitalen Regelung

Mögliche hardware für die Implementierung der Regelung

(Industrial) PC mit Echtzeitbetriebssystem

▶ Beckhoff Industrial PC

System mit digitalen Regelung

Mögliche hardware für die Implementierung der Regelung

(Industrial) PC mit Echtzeitbetriebssystem

Mikrokontroller - Eingebettete Systeme → TI Microcontrollers

System mit digitalen Regelung

Mögliche hardware für die Implementierung der Regelung

- (Industrial) PC mit Echtzeitbetriebssystem
 - ▶ Beckhoff Industrial PC
- Mikrokontroller Eingebettete Systeme TI Microcontrollers
- Speicherprogrammierbare Steuerung Siemens Simatic

System mit digitalen Regelung

Mögliche hardware für die Implementierung der Regelung

- (Industrial) PC mit Echtzeitbetriebssystem
 - ▶ Beckhoff Industrial PC
- Mikrokontroller Eingebettete Systeme TI Microcontrollers
- Speicherprogrammierbare Steuerung Siemens Simatic

Zentralisiert - Feldbus

 Zentralisiert: ADU und DAU im Mikrokontroller, AD/DA Karte für PC, I/O Modulen für SPS

System mit digitalen Regelung

Mögliche hardware für die Implementierung der Regelung

- (Industrial) PC mit Echtzeitbetriebssystem
 - ▶ Beckhoff Industrial PC
- Mikrokontroller Eingebettete Systeme TI Microcontrollers
- Speicherprogrammierbare Steuerung Siemens Simatic

- Zentralisiert: ADU und DAU im Mikrokontroller, AD/DA Karte für PC, I/O Modulen für SPS
- Feldbus: Profibus, CAN/CANOpen, EtherCat, usw.

- Prinzipen
- 2 AD-Umsetzer Prinzip Umsetzzeit Beispiele
- 3 Shannon Abtasttheorem
- 4 Anti-Aliasing Filter
- 6 DA-Umsetzer

Schematische Darstellung

System mit digitalen Regelung

AD-Umsetzer

Prinzip

AD-Umsetzer

Umsetzzeit

AD-Umsetzer

Beispiele

Kritische Komponente

- Auflösung (8 bit)
- Umsetzzeit

Beispiele

- Low-Cost USB Karte mit ADU → USB DAQ Karte
- ADU direkt auf dem Mikrokontroller > TI Microcontrollers
- Siemens Module für SPS Siemens
- Feldbus Modulen Beckhoff EtherCat

- Prinzipen
- AD-Umsetzer
- Shannon Abtasttheorem Wichtigkeit einer richtigen Taktzeit für ein geregeltes System Theorem Wahl der Taktzeit in der Praxis
- 4 Anti-Aliasing Filter
- **6** DA-Umsetzer

Analogien System mit digitalen Regelung

- Wagen fahren mit geschlossenen Augen und nur regelmässige Öffnung
- Raumtemperatur Regeln / Drehzahl eines Motors regeln
- Musik CD (Abtastfrequenz)

Theorem

System mit digitalen Regelung

Theorem (Shannon)

Ein kontinuierliches, bandbegrenztes Signal y(t), mit einer Minimalfrequenz von 0 [rad/s] und einer Maximalfrequenz w_{max} [rad/s], muss mit einer Frequenz ω_e größer als $2\omega_{max}$ abgetastet werden , damit man aus dem so erhaltenen zeitdiskreten Signal y_k das Ursprungssignal ohne Informationsverlust (aber mit unendlich großem Aufwand) exakt rekonstruieren und (mit endlichem Aufwand) beliebig genau approximieren kann.

$$y(t) o y(k)$$

 $\omega_e > 2\omega_{max}$

Wahl der Taktzeit in der Praxis

System mit digitalen Regelung

Perfekte theoretische Rekonstruierung unmöglich

$$y(t) = \sum_{k=-\infty}^{\infty} y(kh) \frac{\sin \frac{\omega_e(t-kh)}{2}}{\frac{\omega_e(t-kh)}{2}}$$

Praxis

$$\omega_{e} > [10 - 20]\omega_{max} \tag{1}$$

- Prinzipen
- AD-Umsetzer
- 3 Shannon Abtasttheorem
- Anti-Aliasing Filter
 Motivation
 Prinzip
 Typische Anti-Aliasing Filter
- DA-Umsetzer

Motivation

Bandbegrenzte Signale existieren nicht!!

Theorem (Shannon)

Ein kontinuierliches, bandbegrenztes Signal y(t), mit einer Minimalfrequenz von 0 [rad/s] und einer Maximalfrequenz w_{max} [rad/s], muss mit einer Frequenz ω_e größer als $2\omega_{max}$ abgetastet werden , damit man aus dem so erhaltenen zeitdiskreten Signal y_k das Ursprungssignal ohne Informationsverlust (aber mit unendlich großem Aufwand) exakt rekonstruieren und (mit endlichem Aufwand) beliebig genau approximieren kann.

$$y(t)
ightarrow y(k)$$
 $\omega_e > 2\omega_{max}$

Prinzip

Analoges Tiefpassfilter

- a: Ideal Filter
- b: Butterworth, n=1
- c: Butterworth, n=2

Typische Anti-Aliasing Filter

Butterworth Filter

Übertragungsfunktion

$$egin{array}{lll} G_{b,1} &=& rac{1}{rac{1}{w_b}s+1} \ G_{b,2} &=& rac{1}{rac{1}{w_b^2}s^2+rac{\sqrt{2}}{w_b}s+1} \ G_{b,4} &=& rac{1}{rac{1}{w_b^4}s^4+rac{2.6131}{w_b^3}s^3+rac{3.4142}{w_b^2}s^2+rac{2.6131}{w_b}s+1} \end{array}$$

- Prinzipen
- AD-Umsetzer
- 3 Shannon Abtasttheorem
- 4 Anti-Aliasing Filter
- DA-Umsetzer
 Problematik
 Halte-Glied Prinzip

Schematische Darstellung

System mit digitalen Regelung

Rekonstruierung

Rekonstruierung

Perfekte theoretische Rekonstruierung unmöglich

$$y(t) = \sum_{k=-\infty}^{\infty} y(kh) \frac{\sin \frac{\omega_e(t-kh)}{2}}{\frac{\omega_e(t-kh)}{2}}$$

Alternative

Halte-Glied, Sample and Hold (in den meisten Fällen)

DA-Umsetzer

Halte-Glied Prinzip

DA-Umsetzer

Rechenzeit

DA-Umsetzer

Beispiele

Kritische Komponente

- Auflösung (8 bit)
- Rechenzeit

Beispiele

- Low-Cost USB Karte mit DAU → USB DAQ Karte
- DAU direkt auf dem Mikrokontroller? Sehr oft PWM.

```
→ TI Microcontrollers
```

- Siemens Module für SPS Siemens
- Feldbus Modulen Beckhoff EtherCat