Семинар 15

- 1. Присоединим к полю рациональных чисел \mathbb{Q} вещественный корень $5^{1/3}$. Опишите все мономорфизмы (над \mathbb{Q}) полученного поля в поле комплексных чисел.
- 2. Та же задача для поля разложения F над \mathbb{Q} многочлена X^3-5 . Доказать, что $\mathrm{Hom}_{\mathbb{Q}}(F,\mathbb{C})$ является группой, изоморфной группе S_3 .
 - 3. Найдите группу Галуа $\mathrm{Aut}_{\mathbb{Q}}(\mathbb{Q}(\sqrt{3}),\mathbb{Q}(\sqrt{3})).$
 - 4. Докажите, что $\operatorname{Hom}_{\mathbb{Q}}(\bar{\mathbb{Q}},\bar{\mathbb{Q}}) = \operatorname{Aut}_{\mathbb{Q}}(\bar{\mathbb{Q}},\bar{\mathbb{Q}}).$

Следующие задачи – это стандартное доказательство теоремы о примитивном элементе для (сепарабельных) конечных расширений бесконечного поля.

- 5. Пусть K бесконечное поле, $F = K(\alpha, \beta)$ его конечное расширение, σ_i , i = 1, 2 ..., m, элементы множества $\text{Hom}_K(F, \bar{F})$. Доказать, что в поле K существуют элементы A и B, удовлетворяющие конечному множеству неравенств $A(\sigma_i \alpha \sigma_j \alpha) + B(\sigma_i \beta \sigma_j \beta) \neq 0$, $i \neq j$.
- 6^* . Положим $\gamma = A\alpha + B\beta$. Доказать, что $F = K(\gamma)$. (С: элементы $\sigma_i \gamma$, $i = 1, \ldots, m$, являются различными корнями минимального многочлена элемента γ над K (Почему?). Следовательно, степень расширения $K(\gamma)$ не меньше, чем m. С другой стороны, прямое следствие теоремы о продолжении гомоморфизмов (будет доказано на лекциях) говорит о том, что m равно степени поля F над K.
- 7. Доказать теорему о примитивном элементе для произвольного конечного (сепарабельного) расширения бесконечного поля.