

TM1629A是一种带键盘扫描接口的LED(发光二极管显示器)驱动控制专用IC,内部集成有MCU 数字接口、数据锁存器、LED驱动、键盘扫描等电路。本产品质量可靠、稳定性好、抗干扰能力强。 主要适用于家电设备(智能热水器、微波炉、洗衣机、空调、电磁炉)、机顶盒、电子称、智能电 表等数码管或LED显示设备。

二、 特性说明

- · 采用CMOS工艺
- 显示模式16 段×8 位
- 辉度调节电路(占空比8级可调)
- 串行接口(CLK, STB, DIO)
- 振荡方式: 内置RC振荡
- 内置上电复位电路
- 内置数据锁存电路
- 抗干扰能力强
- 内置针对LED反偏漏电导致暗亮问题优化电路
- 封装形式: SOP32

三、 管脚定义:

GRID4	10	32 GRID5
GRID3 _	2	31 GRID6
VSS 🗆	3	30 VSS
GRID2 🗀	4	29 GRID7
GRID1	5	28 GR1D8
VSS	6	27 VDD
DIO [7 TM1629A	26 SEG16
CLK _	8 (TOP VIEW)	25 SEG15
STB	9	24 SEG14
VDD	10	23 SEG13
SEG1	11	22 SEG12
SEG2	12	21 SEG11
SEG3	13	20 SEG10
SEG4	14	19 SEG9
SEG5	15	18 SEG8
SEG6	16	17 SEG7

©Titan Micro Electronics

- 2 -

四、管脚说明

符号	管脚名称	管脚号	说明
DIO	数据输入	7	在时钟上升沿输入串行数据,从低位 开始。
CLK	时钟输入	8	在时钟上升沿输入串行数据
STB	片选	9	在下降沿初始化串行接口,随后等待接收指令。STB为低后的第一个字节作为指令,当处理指令时,当前其它处理被终止。当STB为高时,CLK被忽略
SEG1~SEG16	输出(段)	11~26	段输出,P管开漏输出,内置 3.6 K Ω 下 拉电阻
GRID1∼GRID2 GRID3∼GRID4 GRID5∼GRID6 GRID7∼GRID8	输出(位)	$4\sim5$ $1\sim2$ $31\sim32$ $28\sim29$	位输出,N管开漏输出,内置2.8K Ω 上 拉电阻
VDD	逻辑电源	10、27	接电源正
VSS	逻辑地	3, 6,	接系统地

1、DIO口输出数据时为N管开漏输出,在读键的时候需要外接1K-10K的上拉电阻。本公司 荐10K的上拉电阻。DIO在时钟的下降沿控制N管的动作,此时读数时不稳定,在上升沿读出数据 才稳定。

TM1629A

五、 指令说明:

指令用来设置显示模式和LED驱动器的状态。

在STB下降沿后由DIN输入的第一个字节作为指令。经过译码, 取最高B7、B6两位比特位以区别不同的指令。

В7	В6	指令				
0	1	数据命令设置				
1	0	显示控制命令设置				
1	1	地址命令设置				

如果在指令或数据传输时STB被置为高电平,串行通讯被初始化,并且正在传送的指令或数据无效(之前传送 的指令或数据保持有效)。

(1) 数据命令设置:

该指令用来设置数据写和读, B1和B0位不允许设置01或11。

MSB							LSB		
В7	В6	В5	B4	В3	B2	B1	В0	功能	说明
0	1					0	0	数据读写模式	写数据到显示寄存器
0	1	工子	· T石			1	0	设置	读键扫数据
0	1	无关	: 坝, [0		0			地址增加模式	自动地址增加
0	1	块	; 0		1			设置	固定地址
0	1			0				模式设置	普通模式

(2) 显示控制命令设置:

共有8级辉度可供选择进行调节。 该指令用来设置显示的开关以及显示亮度调节。

MSB LSB

В7	В6	B5 B4	В3	B2	B1	В0	功能	说明
1	0			0	0	0		设置脉冲宽度为 1/16
1	0			0	0	1		设置脉冲宽度为 2/16
1	0			0	1	0		设置脉冲宽度为 4/16
1	0			0	1	1	消光数量设置	设置脉冲宽度为 10/16
1	0	无关项,	4	1	0	0		设置脉冲宽度为 11/16
1	0	填 0		1	0	1		设置脉冲宽度为 12/16
1	0			1	1	0		设置脉冲宽度为 13/16
1	0			1	1	1		设置脉冲宽度为 14/16
1	0		0				显示开关设置	显示关
1	0		1				业小月大以且	显示开

TM1629A

- 4 -

地址命令设置:

该指令用来设置显示寄存器的地址。最多有效地址为16位(00H-0FH),如果地址设为10H或更高,数据被 忽略, 直到有效地址被设定。上电时, 地址默认设为00H。

MSB							LSB	
В7	В6	В5	B4	В3	B2	B1	В0	显示地址
1	1			0	0	0	0	00Н
1	1			0	0	0	1	01H
1	1			0	0	1	0	02H
1	1			0	0	1	1	03Н
1	1			0	1	0	0	04H
1	1			0	1	0	1	05Н
1	1			0	1	1	0	06H
1	1	无关	E项,	0	1	1	1	07H
1	1	填	0	1	0	0	0	08Н
1	1			1	0	0	1	09Н
1	1			1	0	1	0	OAH
1	1			1	0	1	1	0BH
1	1			1	1	0	0	OCH
1	1			1	1	0	1	ODH
1	1			1	1	1	0	0EH
1	1			1	1	1	1	0FH

六、 显示寄存器地址:

该寄存器存储通过串行接口接收从外部器件传送到TM1629A的数据,最多有效地址从00H-0FH共16字节单元, 分别与芯片SEG和GRID管脚对应,具体分配如图(2):

写LED显示数据的时候 按照从显示地址从低位到高位 从数据字节的低位到高位操作。

LED业小数据的时候,仅需从业小电址外低位到同业,外数据于中的低位到同位採旧。									Ī								
	SEG1	SEG2	SEG3	SEG4	SEG5	SEG6	SEG7	SEG8	SEG9	SEG10	SEG11	SEG12	SEG13	SEG14	SEG15	SEG16	
	XX	HL(1	氐四位	()	X	xHU(清	高四位)	2	xxHL (们	氏四位))	xxI	HU(高	5四位)	
	В0	B1	B2	В3	B4	В5	В6	В7	В0	B1	B2	В3	В4	В5	В6	В7	
		00	HL			00	HU			01	HL			01	HU		GRID1
		02	HL			02	HU			03	HL			03	HU		GRID2
		04	HL			04	HU			05	HL			05	HU		GRID3
		06	HL			06	HU			07	HL			07	HU		GRID4
		08	HL			08	HU			09	HL			09	HU		GRID5
		0A	HL			0A	HU			0B	HL			0B	HU		GRID6
		00	HL			0C	HU			0D	HL			0D	HU		GRID7
L		0E	HL			0E	HU			0F	HL			0F	HU		GRID8

图 (2)

▲注意:芯片显示寄存器在上电瞬间其内部保存的值可能是随机不确定的,此时客户直接发送开屏命令, 将有可能出现显示乱码。所以我司建议客户对显示寄存器进行一次上电清零操作,即上电后向16位显存地址 (00H-0FH) 中全部写入数据0x00。

七、 显示:

1、驱动共阴数码管:

图7给出共阴极数码管的连接示意图,如果让该数码管显示"0" ,只需要向00H(GRID1)地址中从低位开 始写入0x3F数据即可,此时00H对应每一个SEG1-SEG8的数据如下表格。

٠.	***	*H 1 */:-	• • • •	,		Z T T T T T T T			
	SEG8	SEG7	SEG6	SEG5	SEG4	SEG3	SEG2	SEG1	
	0	0	1	1	1	1	1	1	GRID1 (00H)
	В7	В6	B5	B4	В3	B2	B1	В0	

2、驱动共阳数码管:

图 (8)

图8给出共阳极数码管的连接示意图,如果让该数码管显示"0",需要向地址单元00H(GRID1)、02H(GRID2)、 04H(GRID3)、06H(GRID4)、08H(GRID5)、0AH(GRID6)里面分别写数据01H,其余的地址0CH(GRID7)、0EH(GRID8) 单元全部写数据00H。每一个SEG1-SEG8对应的数据如下表格。

SEG8	SEG7	SEG6	SEG5	SEG4	SEG3	SEG2	SEG1	
0	0	0	0	0	0	0	1	GRID1 (00H)
0	0	0	0	0	0	0	1	GRID2 (02H)
0	0	0	0	0	0	0	1	GRID3 (04H)
0	0	0	0	0	0	0	1	GRID4 (06H)
0	0	0	0	0	0	0	1	GRID5 (08H)
0	0	0	0	0	0	0	1	GRID6 (OAH)
0	0	0	0	0	0	0	0	GRID7 (OCH)
0	0	0	0	0	0	0	0	GRID8 (OEH)
В7	В6	В5	B4	В3	B2	B1	В0	

▲注意:无论是驱动共阴极数码管还是驱动共阳极数码管,SEG引脚只能接LED的阳极,GRID只能接LED的阴极,不 可反接。

八、串行数据传输格式:

读取和接收1个BIT都在时钟的上升沿操作

▲注意: 1、读取数据时,从串行时钟CLK 的第8个上升沿开始设置指令到CLK下降沿读数据之间需要一个等 待时间Twait(最小2µS)。具体参数见时序特性表。

TM1629A

九、 应用时串行数据的传输:

(1) 地址增加模式

使用地址自动加1模式,设置地址实际上是设置传送的数据流存放的起始地址。起始地址命令字发送完毕, "STB"不需要置高紧跟着传数据, 最多16BYTE, 数据传送完毕才将"STB"置高。

CLK								
DIO	Command1	Command2	Data1	Data2	******	Data n	Command3	
STB -		7					7	

Command1: 设置数据命令 Command2: 设置显示地址

Data1~n: 传输显示数据至Command3地址和后面的地址内(最多16bytes)

Command3:显示控制命令

(2) 固定地址模式

使用固定地址模式,设置地址其实际上是设置需要传送的1BYTE数据存放的地址。地址发送完毕,"STB"不 需要置高, 紧跟着传1BYTE数据, 数据传送完毕才将"STB"置高。然后重新设置第2个数据需要存放的地址, 最多 16BYTE数据传送完毕, "STB"置高。

Command1: 设置数据命令 Command2: 设置显示地址1

Data1: 传输显示数据1至Command3地址内

Command3: 设置显示地址2

Data2: 传输显示数据2至Command4地址内

Command4:显示控制命令

©Titan Micro Electronics

(4) 采用地址自动加一和固定地址方式的程序设计流程图:

采用自动地址加一的程序设计流程图:

采用固定地址的程序设计流程图:

- 10 -

十、应用电路:

TM1629A驱动共阴数码屏硬件电路图

LED 驱动控制专用电路

TM1629A驱动共阳数码屏接线电路图(19)

▲注意:

- 1、VDD、GND之间滤波电容在PCB板布线应尽量靠近TM1629A芯片放置,加强滤波效果。
- 2、连接在DIO、CLK、STB通讯口上三个101(100pF)电容可以降低对通讯口的干扰。
- 3、因蓝光数码管的导通压降压约为3V, 因此TM1629A供电应选用5V。

©Titan Micro Electronics www.titanmec.com

V2.0

极限参数 (Ta = 25℃, Vss = 0V)

参数	符号	范围	单位
逻辑电源电压	VDD	-0.5 ∼+7.0	V
逻辑输入电压	VI1	-0.5 ∼ VDD + 0.5	V
LED SEG 驱动输出电流	I01	-50	mA
LED GRID 驱动输出电流	102	+200	mA
功率损耗	PD	400	mW
工作温度	Topt	-40 ∼ +80	°C
储存温度	Tstg	−65 ~+150	$^{\circ}$

正常工作范围 (Ta = -20 ~ +80℃, Vss = 0V)

参数	符号	最小	典型	最大	单位	测试条件
逻辑电源电压	VDD	3	5	6	V	-
高电平输入电压	VIH	0. 7 VDD	_	VDD	V	_
低电平输入电压	VIL	0	_	0.3 VDD	V	-

电气特性 (Ta = -20 ~ +80℃, VDD = 5 V, Vss = 0V)

参数	符号	最小	典型	最大	单位	测试条件
高电平输出电流	Ioh	20	35	50	mA	SEG1∼SEG16, Vo = VDD - 3V
低电平输入电流	I_{0L1}	80	140	-	mA	GRID1∼GRID8 Vo=0. 3V
高电平输出电流容 许量	Itolsg	_	_	5	%	Vo = VDD - 3V, SEG1∼SEG16
高电平输入电压	VIH	0. 7 VDD	_	_	V	CLK, DIO, STB
低电平输入电压	VIL	_	_	0. 3 VDD	V	CLK, DIO, STB

开关特性 (Ta = -20 ~ +80℃, VDD = 5V)

参数	符号	最小	典型	最大	单位	测试条件	
传输延迟时间	$t_{\mathtt{PLZ}}$	-		300	ns	CLK → DIO	
	t _{PZL}		-	100	ns	CL = 15pF, RL = 10K Ω	
上升时间	t _{TZH} 1	1)	2	μs	CL = 300p F	SEG1~SEG16
下降时间	t _{тнz}		-	1. 5	μs	CL = 300pF, SEGn, GRIDn	
最大输入时钟频 率	Fmax	-	I	1	MHz	占空比50%	
输入电容	CI	_	_	15	pF	-	

©Titan Micro Electronics www.titanmec.com

V2.0

- 13 -

时序特性 (Ta = -20 ~ +80℃, VDD = 5V)

参数	符号	最小	典型	最大	单位	测试条件
时钟脉冲宽度	PW_{CLK}	500	-	-	ns	-
选通脉冲宽度	PW _{STB}	1	-	_	μs	-
数据建立时间	tsetup	100	_	_	ns	_
数据保持时间	$t_{\mathtt{HOLD}}$	100	_	-	ns	_
CLK →STB 时间	t _{CLK-STB}	1	_	_	µ s	CLK↑→STB↑

时序波形图:

©Titan Micro Electronics www.titanmec.com

V2.0

封装尺寸(SOP32 封装)

符号	单位((mm)	符号	单位(mm)		
	最小 (Min)	最大 (Max)	47.5	最小(Min)	最大(Max)	
A	2.24	2.59	Е	7.42	7.62	
A1	0.1	0.25	E1	10.2	10.6	
A2	2.14	2.34	e	1.27 (BSC)		
b	0.3	0.5	L	0.4	1.27	
c	0.17	0.25	θ	0°	7°	
D	20.88	21.08				

All specs and applications shown above subject to change without prior notice. (以上电路及规格仅供参考,如本公司进行修正,恕不另行通知。