國立臺灣大學生物產業機電工程學系 智慧型控制作業三

第 1/2 頁

Deadline: <u>10 月 26 日 14:15 之前</u>

1. 已知一XOR問題輸入輸出之關係如下:

數據	輸入X ₁	輸入 X ₂	輸出d
1.	-1	-1	0
2.	-1	+1	1
3.	+1	-1	1
4.	+1	+1	0

(1) 網路架構 (無隱藏層)、初始權重 W_{11} , W_{12} 、閥值 θ 與學習速率 η 如下:

初始權重 $W_{11}=+1$, $W_{12}=-1$, $\theta=0$, $\eta=0.1$

試以此架構看看是否能解XOR問題。並列出學習過程的相關數值, x_1 、 x_2 、d、加權乘積和net、T的推論值Y=1 當net>0, Y=0 當net \leq 0、d與Y的 差距量 δ 、 ΔW_{11} 、 ΔW_{12} 、 $\Delta \theta$ 、 W_{11} 、 W_{12} 、 θ 。

(2)下列兩種網路架構(均有隱藏層),用倒傳遞網路方法填入適當的加權值 與閥值以解XOR問題。

d為標準值,d的推論值為Y,差距量 δ 如下:

平方和誤差函數 $\delta_{j}=(d_{j}-Y_{j})$ •f'(net)

其中 $f(x)=1/(1+e^{-x})$

所以 f'(x)=f(x) •(1-f(x))

 $\Delta W_{ji} = \eta \delta_j x_{ji}$

 $\Delta \theta = - \eta \delta_i$

學習速率與初始加權值如下:

 $\eta = 0.1$

網路一: W_{31} =+0.2, W_{32} =-0.4, W_{41} =+0.2, W_{42} =-0.2, W_{53} =+0.1, W_{54} =-0.4, θ_3 = 0.8,

 $\theta_{4} = -0.1 \text{ and } \theta_{5} = 0.3$

網路二: W_{31} =+0.2, W_{32} =-0.4, W_{41} =+0.2, W_{42} =-0.2, W_{43} =-0.4, θ_3 = 0.8, and θ_4 = 0.3