Chapter ML:VI

VI. Decision Trees

- □ Decision Trees Basics
- □ Impurity Functions
- □ Decision Tree Algorithms
- Decision Tree Pruning

ML:VI-1 Decision Trees © STEIN/LETTMANN 2022

Classification Problems with Nominal Features

Setting:

- \Box X is a multiset of feature vectors.
- \Box *C* is a set of classes.
- $D = \{(\mathbf{x}_1, c_1), \dots, (\mathbf{x}_n, c_n)\} \subseteq X \times C$ is a multiset of examples.

Learning task:

 \Box Fit *D* using a decision tree *T*.

Decision Tree for the Concept "EnjoySurfing" [concept learning]

Example	Sky	Temperature	Humidity	Wind	Water	Forecast	EnjoySurfing
1	sunny	warm	normal	strong	warm	same	yes
2	sunny	warm	high	strong	warm	same	yes
3	rainy	cold	high	strong	warm	change	no
:							

ML:VI-3 Decision Trees © STEIN/LETTMANN 2022

Decision Tree for the Concept "EnjoySurfing" [concept learning] (continued)

Example	Sky	Temperature	Humidity	Wind	Water	Forecast	EnjoySurfing
1	sunny	warm	normal	strong	warm	same	yes
2	sunny	warm	high	strong	warm	same	yes
3	rainy	cold	high	strong	warm	change	no
:							

Splitting of *X* at the root node:

$$X = \{\mathbf{x} \in X : \mathbf{x}|_{\mathsf{Sky}} = \mathsf{sunny}\} \ \cup \ \{\mathbf{x} \in X : \mathbf{x}|_{\mathsf{Sky}} = \mathsf{cloudy}\} \ \cup \ \{\mathbf{x} \in X : \mathbf{x}|_{\mathsf{Sky}} = \mathsf{rainy}\}$$

ML:VI-4 Decision Trees © STEIN/LETTMANN 2022

Definition 1 (Splitting, Induced Splitting)

Let X be a set of feature vectors and D a set of examples. A splitting of X is a decomposition of X into mutually exclusive subsets X_1, \ldots, X_m . I.e., $X = X_1 \cup \ldots \cup X_m$ with $X_l \neq \emptyset$ and $X_l \cap X_{l'} = \emptyset$, where $l, l' \in \{1, \ldots, m\}, l \neq l'$.

A splitting X_1, \ldots, X_m of X induces a splitting D_1, \ldots, D_m of a set of examples D, where D_l , $l = 1, \ldots, m$, is defined as $\{(\mathbf{x}, c) \in D \mid \mathbf{x} \in X_l\}$.

ML:VI-5 Decision Trees ©STEIN/LETTMANN 2022

Definition 1 (Splitting, Induced Splitting)

Let X be a set of feature vectors and D a set of examples. A splitting of X is a decomposition of X into mutually exclusive subsets X_1, \ldots, X_m . I.e., $X = X_1 \cup \ldots \cup X_m$ with $X_l \neq \emptyset$ and $X_l \cap X_{l'} = \emptyset$, where $l, l' \in \{1, \ldots, m\}, l \neq l'$.

A splitting X_1, \ldots, X_m of X induces a splitting D_1, \ldots, D_m of a set of examples D, where D_l , $l = 1, \ldots, m$, is defined as $\{(\mathbf{x}, c) \in D \mid \mathbf{x} \in X_l\}$.

ML:VI-6 Decision Trees © STEIN/LETTMANN 2022

Definition 1 (Splitting, Induced Splitting)

Let X be a set of feature vectors and D a set of examples. A splitting of X is a decomposition of X into mutually exclusive subsets X_1, \ldots, X_m . I.e., $X = X_1 \cup \ldots \cup X_m$ with $X_l \neq \emptyset$ and $X_l \cap X_{l'} = \emptyset$, where $l, l' \in \{1, \ldots, m\}, l \neq l'$.

A splitting X_1, \ldots, X_m of X induces a splitting D_1, \ldots, D_m of a set of examples D, where D_l , $l = 1, \ldots, m$, is defined as $\{(\mathbf{x}, c) \in D \mid \mathbf{x} \in X_l\}$.

ML:VI-7 Decision Trees © STEIN/LETTMANN 2022

Definition 1 (Splitting, Induced Splitting)

Let X be a set of feature vectors and D a set of examples. A splitting of X is a decomposition of X into mutually exclusive subsets X_1, \ldots, X_m . I.e., $X = X_1 \cup \ldots \cup X_m$ with $X_l \neq \emptyset$ and $X_l \cap X_{l'} = \emptyset$, where $l, l' \in \{1, \ldots, m\}, l \neq l'$.

A splitting X_1, \ldots, X_m of X induces a splitting D_1, \ldots, D_m of a set of examples D, where D_l , $l = 1, \ldots, m$, is defined as $\{(\mathbf{x}, c) \in D \mid \mathbf{x} \in X_l\}$.

A splitting of *X* depends on the measurement scale of a feature:

ML:VI-8 Decision Trees © STEIN/LETTMANN 2022

Definition 1 (Splitting, Induced Splitting)

Let X be a set of feature vectors and D a set of examples. A splitting of X is a decomposition of X into mutually exclusive subsets X_1, \ldots, X_m . I.e., $X = X_1 \cup \ldots \cup X_m$ with $X_l \neq \emptyset$ and $X_l \cap X_{l'} = \emptyset$, where $l, l' \in \{1, \ldots, m\}, l \neq l'$.

A splitting X_1, \ldots, X_m of X induces a splitting D_1, \ldots, D_m of a set of examples D, where D_l , $l = 1, \ldots, m$, is defined as $\{(\mathbf{x}, c) \in D \mid \mathbf{x} \in X_l\}$.

A splitting of *X* depends on the measurement scale of a feature:

1. m-ary splitting induced by a (nominal) feature A with finite domain:

$$dom(A) = \{a_1, \dots, a_m\}: X = \{\mathbf{x} \in X : \mathbf{x}|_A = a_1\} \cup \dots \cup \{\mathbf{x} \in X : \mathbf{x}|_A = a_m\}$$

ML:VI-9 Decision Trees © STEIN/LETTMANN 2022

Definition 1 (Splitting, Induced Splitting)

Let X be a set of feature vectors and D a set of examples. A splitting of X is a decomposition of X into mutually exclusive subsets X_1, \ldots, X_m . I.e., $X = X_1 \cup \ldots \cup X_m$ with $X_l \neq \emptyset$ and $X_l \cap X_{l'} = \emptyset$, where $l, l' \in \{1, \ldots, m\}, l \neq l'$.

A splitting X_1, \ldots, X_m of X induces a splitting D_1, \ldots, D_m of a set of examples D, where D_l , $l = 1, \ldots, m$, is defined as $\{(\mathbf{x}, c) \in D \mid \mathbf{x} \in X_l\}$.

A splitting of *X* depends on the measurement scale of a feature:

1. m-ary splitting induced by a (nominal) feature A with finite domain:

$$dom(A) = \{a_1, \dots, a_m\}: X = \{\mathbf{x} \in X : \mathbf{x}|_A = a_1\} \cup \dots \cup \{\mathbf{x} \in X : \mathbf{x}|_A = a_m\}$$

2. Binary splitting induced by a (nominal) feature *A*:

$$B \subset dom(A):$$
 $X = \{\mathbf{x} \in X : \mathbf{x}|_A \in B\} \cup \{\mathbf{x} \in X : \mathbf{x}|_A \notin B\}$

3. Binary splitting induced by an ordinal feature *A*:

$$v \in dom(A):$$
 $X = \{\mathbf{x} \in X : \mathbf{x}|_A \succeq v\} \cup \{\mathbf{x} \in X : \mathbf{x}|_A \prec v\}$

Remarks:

- $\mathbf{x}|_A$ denotes the projection operator, which returns that vector component (dimension) of \mathbf{x} , $\mathbf{x} = (x_1, \dots, x_p)$, that is associated with the feature A. Without loss of generality this projection can be presumed being unique.
- \Box A splitting of X into two disjoint, non-empty subsets is called a binary splitting.
- ullet We consider only splittings of X that are induced by a splitting of a *single* feature A of X. Such kinds of splittings are called "monothetic splittings".

By contrast, a polythetic splitting considers several features at the same time.

ML:VI-11 Decision Trees © STEIN/LETTMANN 2022

Definition 2 (Decision Tree)

Let X be a set of features and C a set of classes. A <u>decision tree</u> T for X and C is a finite tree with a distinguished root node. A non-leaf node t of T has assigned (1) a set $X(t) \subseteq X$, (2) a splitting of X(t), and (3) a one-to-one mapping of the subsets of the splitting to its successors.

Recap. X(t) = X iff t is root node. A leaf node of T has assigned a class from C.

ML:VI-12 Decision Trees © STEIN/LETTMANN 2022

Definition 2 (Decision Tree)

Let X be a set of features and C a set of classes. A <u>decision tree</u> T for X and C is a finite tree with a distinguished root node. A non-leaf node t of T has assigned (1) a set $X(t) \subseteq X$, (2) a splitting of X(t), and (3) a one-to-one mapping of the subsets of the splitting to its successors.

Recap. X(t) = X iff t is root node. A leaf node of T has assigned a class from C.

Classification of some $x \in X$ given a decision tree T:

- 1. Find the root node t of T.
- 2. If t is a non-leaf node, find among its successors that node t' whose subset of the splitting of X(t) contains \mathbf{x} . Repeat Step 2 with t = t'.
- 3. If t is a leaf node, label x with the associated class.

ML:VI-13 Decision Trees © STEIN/LETTMANN 2022

Definition 2 (Decision Tree)

Let X be a set of features and C a set of classes. A <u>decision tree</u> T for X and C is a finite tree with a distinguished root node. A non-leaf node t of T has assigned (1) a set $X(t) \subseteq X$, (2) a splitting of X(t), and (3) a one-to-one mapping of the subsets of the splitting to its successors.

Recap. X(t) = X iff t is root node. A leaf node of T has assigned a class from C.

Classification of some $x \in X$ given a decision tree T:

- 1. Find the root node t of T.
- 2. If t is a non-leaf node, find among its successors that node t' whose subset of the splitting of X(t) contains \mathbf{x} . Repeat Step 2 with t = t'.
- 3. If t is a leaf node, label x with the associated class.

The set of possible decision trees over D forms the hypothesis space H.

ML:VI-14 Decision Trees © STEIN/LETTMANN 2022

Remarks:

- The classification of an $x \in X$ determines a unique path from the root node of T to some leaf node of T.
- \Box At each non-leaf node a particular feature of x is evaluated in order to find the next node along with a possible next feature to be analyzed.
- □ Each path from the root node to some leaf node corresponds to a conjunction of feature values, which are successively tested. This test can be formulated as a decision rule. Example:

IF Sky=rainy AND Wind=light THEN EnjoySurfing=yes

If all tests in T are of the kind shown in the example, namely, an equality test regarding a feature value, all feature domains must be finite.

- \Box Since at all non-leaf nodes of T one feature is evaluated at a time, T is called a monothetic decision tree. Examples for polythetic decision trees are the so-called oblique decision trees.
- □ Decision trees became popular in 1986, with the introduction of the ID3 Algorithm by Ross Quinlan.

ML:VI-15 Decision Trees © STEIN/LETTMANN 2022

Notation

Let T be a decision tree for X and C, let D be a set of examples [setting], and let t be a node of T. Then we agree on the following notation:

- \Box X(t) denotes the subset of X that is represented by t. [decision tree definition]
- \square D(t) denotes the subset of the example set D that is represented by t, where $D(t) = \{(\mathbf{x}, c) \in D \mid \mathbf{x} \in X(t)\}$. [splitting definition]

Illustration:

ML:VI-16 Decision Trees © STEIN/LETTMANN 2022

Remarks:

- \Box The set X(t) is composed of those members \mathbf{x} of X that are filtered by a path from the root node of T to the node t.
- \Box leaves(T) denotes the set of all leaf nodes of T.
- Each node t of a decision tree T, and hence T itself, encode a piecewise constant function. This way, t as well as T can form complex, non-linear classifiers. The functions encoded by t and T differ in the number of evaluated features of \mathbf{x} , which is one for t and the tree height for T.
- \Box In the following we will use the symbols "t" and "T" to denote also the classifiers that are encoded by a node t and a tree T respectively:

 $t, T: X \to C$ (instead of $y_t, y_T: X \to C$)

ML:VI-17 Decision Trees © STEIN/LETTMANN 2022

Algorithm Template: Construction

Algorithm: DT-construct Decision Tree Construction

Input: D Multiset of examples.

Output: t Root node of a decision tree.

DT-construct(D)

```
1. t = createNode()
 label(t) = representativeClass(D)
```

2. IF impure(D)THEN criterion = splitCriterion(D)ELSE return(t)

3. $\{D_1,\ldots,D_m\} = decompose(D, criterion)$

4. FOREACH D' IN $\{D_1,\ldots,D_m\}$ DO $addSuccessor(t, {\color{red}DT-construct}(D'))$

ENDDO

5. return(t)

[illustration]

Algorithm Template: Classification

Algorithm: DT-classify Decision Tree Classification

Input: x Feature vector.

t Root node of a decision tree.

Output: $y(\mathbf{x})$ Class of feature vector \mathbf{x} in the decision tree below t.

DT-classify (\mathbf{x}, t)

```
1. IF isLeafNode(t)
THEN return(label(t))
ELSE return(DT-classify(\mathbf{x}, splitSuccessor(t, \mathbf{x}))
```

ML:VI-19 Decision Trees © STEIN/LETTMANN 2022

Remarks:

- \Box Since *DT-construct* assigns to each node of a decision tree T a class, each subtree of T (as well as each pruned version of a subtree of T) represents a valid decision tree on its own.
- □ Functions of *DT-construct*:
 - representativeClass(D)
 Returns a representative class for the example set D. Note that, due to pruning, each node may become a leaf node.
 - impure(D)Assesses the (im)purity of a set D of examples.
 - splitCriterion(D)Returns a split criterion for X(t) based on the examples in D(t).
 - decompose(D, criterion)
 Returns a splitting of D according to criterion.
 - addSuccessor(t, t')
 Inserts the successor t' for node t.
- □ Functions of *DT-classify*:
 - isLeafNode(t)Tests whether t is a leaf node.
 - $splitSuccessor(t, \mathbf{x})$ Returns the (unique) successor t' of t for which $\mathbf{x} \in X(t')$ holds.

When to Use Decision Trees

Problem characteristics that may suggest a decision tree classifier:

- □ the objects can be described by feature-value combinations
- the domain and range of the target function are discrete
- hypotheses can be represented in disjunctive normal form
- the training set contains noise

Typical application areas:

- medical diagnosis
- fault detection in technical systems
- risk analysis for credit approval
- basic scheduling tasks such as calendar management
- classification of design flaws in software engineering

ML:VI-21 Decision Trees © STEIN/LETTMANN 2022

On the Construction of Decision Trees

- How to exploit an example set both efficiently and effectively?
- According to what rationale should a node become a leaf node?
- How to assign a class for nodes of impure example sets?
- How to assess decision tree performance?

ML:VI-22 Decision Trees © STEIN/LETTMANN 2022

Assessment of Decision Trees

1. Size

Among those theories that can explain an observation, the most simple one is to be preferred (Ockham's Razor):

Entia non sunt multiplicanda sine necessitate.

[Johannes Clauberg 1622-1665

Here: among all decision trees of minimum classification error we choose the one of smallest size.

2. Classification error

Quantifies the rigor according to which a class label is assigned to x in a leaf node of T, based on the examples in D. [illustration]

If all leaf nodes of a decision tree T represent a single example of D, the classification error of T with respect to D is zero.

ML:VI-23 Decision Trees © STEIN/LETTMANN 2022

Assessment of Decision Trees (continued)

1. Size

Among those theories that can explain an observation, the most simple one is to be preferred (Ockham's Razor):

Entia non sunt multiplicanda sine necessitate.

[Johannes Clauberg 1622-1665]

Here: among all decision trees of minimum classification error we choose the one of smallest size.

2. Classification error

Quantifies the rigor according to which a class label is assigned to x in a leaf node of T, based on the examples in D. [illustration]

If all leaf nodes of a decision tree T represent a single example of D, the classification error of T with respect to D is zero.

ML:VI-24 Decision Trees © STEIN/LETTMANN 2022

Assessment of Decision Trees: Size

Leaf node number

The leaf node number corresponds to number of rules that are encoded in a decision tree.

Tree height

The tree height corresponds to the maximum rule length and bounds the number of premises to be evaluated to reach a class decision.

External path length

The external path length totals the lengths of all paths from the root of a tree to its leaf nodes. It corresponds to the space to store all rules that are encoded in a decision tree.

Weighted external path length

The weighted external path length is defined as the external path length with each length value weighted by the number of examples in D that are classified by this path.

ML:VI-25 Decision Trees © STEIN/LETTMANN 2022

Assessment of Decision Trees: Size (continued)

Leaf node number

The leaf node number corresponds to number of rules that are encoded in a decision tree.

Tree height

The tree height corresponds to the maximum rule length and bounds the number of premises to be evaluated to reach a class decision.

External path length

The external path length totals the lengths of all paths from the root of a tree to its leaf nodes. It corresponds to the space to store all rules that are encoded in a decision tree.

Weighted external path length

The weighted external path length is defined as the external path length with each length value weighted by the number of examples in D that are classified by this path.

ML:VI-26 Decision Trees © STEIN/LETTMANN 2022

Assessment of Decision Trees: Size (continued)

Example set D for mushrooms, implicitly defining a feature space ${\bf X}$ over the three dimensions color, size, and points:

	Color	Size	Points	Edibility
1	red	small	yes	toxic
2	brown	small	no	edible
3	brown	large	yes	edible
4	green	small	no	edible
5	red	large	no	edible

ML:VI-27 Decision Trees © STEIN/LETTMANN 2022

Assessment of Decision Trees: Size (continued)

The following trees correctly classify all examples in D:

Criterion	(a)	(b)
Leaf node number	4	3
Tree height	2	2
External path length	6	5

ML:VI-28 Decision Trees © STEIN/LETTMANN 2022

Assessment of Decision Trees: Size (continued)

The following trees correctly classify all examples in ${\cal D}$:

(b)		feature: Size			
	sn	nall	large		
	feature:	/ Points	label: edible 2x		
	yes	no			
lab	el: toxic 1x	label: ed	dible <mark>2x</mark>		

Criterion	(a)	(b)
Leaf node number	4	3
Tree height	2	2
External path length	6	5
Weighted external path length	7	8

ML:VI-29 Decision Trees © STEIN/LETTMANN 2022

Assessment of Decision Trees: Size (continued)

Theorem 3 (External Path Length Bound)

The problem to decide for a set of examples D whether or not a decision tree exists whose external path length is bounded by b, is NP-complete.

ML:VI-30 Decision Trees © STEIN/LETTMANN 2022

Assessment of Decision Trees: Classification Error

Given a decision tree T, a set of examples D, and a node t of T that represents the example subset $D(t) \subseteq D$. Then, the class that is assigned to t, label(t), is defined as follows:

$$\textit{label}(t) = \operatorname*{argmax}_{c \in C} \ |\{(\mathbf{x}, c) \in D(t)\}|$$

[illustration]

ML:VI-31 Decision Trees © STEIN/LETTMANN 2022

Assessment of Decision Trees: Classification Error (continued)

Given a decision tree T, a set of examples D, and a node t of T that represents the example subset $D(t) \subseteq D$. Then, the class that is assigned to t, label(t), is defined as follows:

$$\underset{c \in C}{\textit{label}(t)} = \underset{c \in C}{\operatorname{argmax}} \ |\{(\mathbf{x}, c) \in D(t)\}|$$

[illustration]

Misclassification rate of node classifier t wrt. D(t):

$$\textit{Err}(t,D(t)) \ = \frac{|\{(\mathbf{x},c) \in D(t) : c \neq \textit{label}(t)\}|}{|D(t)|} \ = \ 1 - \max_{c \in C} \ \frac{|\{(\mathbf{x},c) \in D(t)\}|}{|D(t)|}$$

ML:VI-32 Decision Trees © STEIN/LETTMANN 2022

Assessment of Decision Trees: Classification Error (continued)

Given a decision tree T, a set of examples D, and a node t of T that represents the example subset $D(t) \subseteq D$. Then, the class that is assigned to t, label(t), is defined as follows:

$$\underset{c \in C}{\textit{label}(t)} = \underset{c \in C}{\operatorname{argmax}} \ |\{(\mathbf{x}, c) \in D(t)\}|$$

[illustration]

Misclassification rate of node classifier t wrt. D(t):

$$\frac{\textit{Err}(t, D(t))}{|D(t)|} = \frac{|\{(\mathbf{x}, c) \in D(t) : c \neq \textit{label}(t)\}|}{|D(t)|} \ = \ 1 - \max_{c \in C} \ \frac{|\{(\mathbf{x}, c) \in D(t)\}|}{|D(t)|}$$

Misclassification rate of decision tree classifier T wrt. D:

$$\textit{Err}(T, D) = \sum_{t \in \textit{leaves}(T)} \frac{|D(t)|}{|D|} \cdot \textit{Err}(t, D(t))$$

ML:VI-33 Decision Trees © STEIN/LETTMANN 2022

Remarks:

- The classifiers t and T may not have been constructed using D(t) as training data. I.e., the example set D(t) is in the role of a test set and Err(T, D) denotes the holdout error.
- □ If D has been used as training set, a reliable interpretation of the (training) error Err(T, D) in terms of $Err^*(T)$ requires the Inductive Learning Hypothesis to hold.
- The true misclassification rate $Err^*(T)$ is based on a probability measure P (and not on relative frequencies). For a node t of T this probability becomes minimum iff:

$$\textit{label}(t) = \underset{c \in C}{\operatorname{argmax}} \ P(\textit{\textbf{C}}{=}c \mid \textit{\textbf{D}}{=}X(t)),$$

where C denotes a random variable with range C. $\mathbf{D}=X(t)$ is a data event where \mathbf{D} denotes a set of random vectors with realization X(t).

Observe the difference between max(f) and argmax(f). Both expressions maximize f, but the former returns the maximum f-value (the image) while the latter returns the argument (the preimage) for which f becomes maximum:

$$\max_{c \in C} \ f(c) \ = \ \max \left\{ f(c) \mid c \in C \right\}$$

$$\operatorname*{argmax}_{c \in C} \ f(c) \ = \ c^* \quad \Rightarrow \ f(c^*) = \max_{c \in C} \ f(c)$$

Remarks (misclassification costs):

☐ The assessment of decision trees can also be based on misclassification costs:

$$\begin{aligned} \textit{label}(t) &= \underset{c' \in C}{\operatorname{argmin}} \ \sum_{c \in C} \left| \left\{ (\mathbf{x}, c) \in D(t) \right\} \right| \cdot \textit{cost}(c', c) \\ &= \textit{Err}_{\textit{cost}}(t, D(t)) \ = \ \frac{1}{|D(t)|} \cdot \sum_{(\mathbf{x}, c) \in D(t)} \textit{cost}(\textit{label}(t), c) \ = \ \min_{c' \in C} \ \sum_{c \in C} \frac{\left| \left\{ (\mathbf{x}, c) \in D(t) \right\} \right|}{|D(t)|} \cdot \textit{cost}(c', c) \\ &= \textit{Err}_{\textit{cost}}(T, D) \ = \ \sum_{t \in \textit{leaves}(T)} \frac{|D(t)|}{|D|} \cdot \textit{Err}_{\textit{cost}}(t, D(t)) \end{aligned}$$

As before, observe the difference between min(f) and argmin(f). Both expressions minimize f, but the former returns the minimum f-value (the image) while the latter returns the argument (the preimage) for which f becomes minimum.

ML:VI-35 Decision Trees © STEIN/LETTMANN 2022