Department of Electrical Engineering Indian Institute of Technology, Kanpur

EE 210 Assignment #9 Assigned: 10/3/21

- 1. Show that for a CS(D) stage, the expressions for the voltage gain A_v and the output resistance R_0 are given by $A_v = -g_m R_D/[1 + (g_m + g_{mb})R_S + (R_S + R_D)/r_0]$, and $R_0 = R_S + r_0[1 + (g_m + g_{mb})R_S]$ respectively. Note that the expression for the output resistance is identical to that of a CG stage biased by a non-ideal current source, having a source resistance R_S . Also, if $R_S \rightarrow \infty$ (i.e., the current source tends to become ideal), then $R_0 \rightarrow \infty$, as expected.
- 2. In a CB circuit, assume $I_C = 260 \mu A$, $\beta = 100$, and $R_C = 10 k\Omega$. Determine the input resistance, voltage gain, and output resistance. Neglect r_0 . Now, assume that the transistor has a base resistance r_b of 101 Ω . How will it affect the input resistance and voltage gain?
- 3. Show that if a CB circuit is excited by an ideal current source, then the output resistance R'_0 , looking into the collector of the transistor, is given by $R'_0 = \beta r_0$.
- 4. Show that for a CG stage, if the output resistance r_0 cannot be neglected, but the body effect can be neglected, then the input resistance (R_i) is given by $(r_0 + R_D)/(1 + g_m r_0)$, where R_D is the drain (i.e., load) resistance, and g_m is the transconductance of the MOSFET. Hence, show that the expression for the ac small-signal midband voltage gain (A_v) can be given by $(1 + g_m r_0)R_D/(r_0 + R_D)$. Note that in the limit of very large r_0 , R_i and A_v simplify to $1/g_m$ and $g_m R_D$ respectively, as expected.
- 5. The transistor (Q) used in the circuit shown in Fig.1 has $\beta = 200$. Assume the capacitors C_1 - C_3 to have very large values, so that they can be treated as short circuits in midband. Neglect r_0 of the transistor.
 - a) Choose R_B to give $I_C = 1$ mA, and choose R_C to give maximum undistorted peak-to-peak output voltage swing.
 - b) Compute the ac small-signal midband transresistance (v_0/i_s) of the circuit.
- 6. The BJT (Q) in the circuit shown in Fig.2 has $\beta = 100$. Assume the capacitors C_1 and C_2 to have very large values, so that they can be treated as short circuits in midband. Neglect r_0 of the transistor.
 - a) Determine the dc collector current and the collector-to-emitter voltage.
 - b) Calculate the input resistance R_i , the output resistance R_0 , and the voltage gain v_0/v_i .
- 7. In the circuit shown in Fig.3, called a **boot-strapped follower**, assume the capacitors C_1 and C_2 to have very large values, so that they can be treated as short circuits in midband. Neglect r_0 of the transistor.
 - a) Calculate the dc collector current, assuming $\beta = 100$.
 - b) Calculate the input resistance R_i and the voltage gain v_0/v_s .

- c) Repeat b) for the case when capacitor C_2 is open-circuited. Compare the results with those obtained in b) to find the advantages of bootstrapping.
- 8. The amplifier shown in Fig.4 consists of two identical CE amplifiers connected in cascade. Assume the capacitors C_1 - C_5 to have very large values, so that they can be treated as short circuits in midband. Neglect r_0 of the transistors.
 - a) For $V_{CC} = 15$ V, $R_1 = R_3 = 100$ k Ω , $R_2 = R_4 = 47$ k Ω , $R_{E1} = R_{E2} = 3.9$ k Ω , $R_{C1} = R_{C2} = 6.8$ k Ω , and $\beta = 100$, determine the dc collector current and the collector-to-emitter voltage of each transistor. Neglect base currents for dc analysis.
 - b) Now, perform an ac small-signal midband analysis of the stage, and determine the following:
 - i) R_{i1} and v_{b1}/v_s for $R_S = 5 \text{ k}\Omega$.
 - ii) R_{i2} and v_{b2}/v_{b1} .
 - iii) v_0/v_{b2} for $R_L = 2 k\Omega$.
 - iv) the overall voltage gain v_0/v_s .

