1 Úkol

- 1. Změřte střední velikost zrna připraveného vvýbrusu polykrystalického vzorku. K vyhodnocení snímku ze skenovacího elektronového mikroskopu použijte kruhovou metodu.
- 2. Určete frakční objem dendritických částic v eutektické slitině Mg-Al-Ce. Použijte specializované programové vybavení pro obrazovou analýzu.

2 Úvod

Elektronový mikroskop má řadu požných použití napříč vědnímy obory. Jeho rozlišovací schopnost je pohybuje v řádu nanometrů, což je hojně používáno ke zkoumání povrchů. Transmisní elektronové miskroskopy se následně užívají ke zkoumání vnitřích struktur materiálu. Jak bylo naznačeno ve fyzivce se používá především k analýze materiálů, pozorování jejich struktur a určování vad.

3 Měření

$3.1 \quad \text{Fe}_3\text{Al}$

Nejprve jsme se zabývali chování Fe_3Al v závislosti na teplotě. Tento materiál se totiž za pokojových teplo jeví pevný a křehký. Pokud ho však zahřejeme na teplotu okolo 700 °C, materiál se stane tvárným.

Na obrázku (1) můžeme vidět snímek z elektronového mikroskopu za pokojevé teploty. Materiál je zjevně tvořen zrny, jjichž hranice jsou slabinou ve struktuře, po které může postupovat porucha. Tak dochází ke křehkému interkristalickému lomu a proto materiál není tvárný.

Naproti tomu při pohledu na obrázek (2), který je pořízen za teploty okolo 700 °C vidíme, že zrnovitá stuktura byla nahrazena zcela jinou, která již plastckou deformaci umožňuje.

3.2 Velikost zrna

Dále jsme zkoumali velikost zrna materiálu na obrázku (3), na kterém jsou zjevné důsledky koroze. Předpokládámě, že materiál je homogení a izotropní. Díky tomu můžeme zrna aproximovat koulemi a použít vzorec

$$d = \frac{3\pi}{2} \frac{D}{n},\tag{1}$$

kde D je průměr kružnice a n počet protnutých zr
n kružnicí. Na obrázku můžeme vidět 5 kružnic o poloměrech

$$r_1 = 0.0462 \text{ mm}$$
 (2)

$$r_2 = 0.0423 \text{ mm}$$
 (3)

$$r_3 = 0.0407 \text{ mm}$$
 (4)

$$r_4 = 0.0435 \text{ mm}$$
 (5)

$$r_5 = 0.0468 \text{ mm}$$
 (6)

Velikosti zrn určená z jednotlivých kružnic jsou

$$d_1 = (0.009 \pm 0.001) \text{ mm} \tag{7}$$

$$d_2 = (0.009 \pm 0.001) \text{ mm} \tag{8}$$

$$d_3 = (0.008 \pm 0.001) \text{ mm} \tag{9}$$

$$d_4 = (0.008 \pm 0.001) \text{ mm} \tag{10}$$

$$d_5 = (0.009 \pm 0.001) \text{ mm} \tag{11}$$

což nám dá po statistickém vyhodnocení

$$d = (0.0086 \pm 0.0004) \text{ mm} \tag{12}$$

V chybě je zahrnuta nejistota způsobená nejednoznačností zrn mající společnou hranici s kružniví a neurčitost chybějících zrn vniklých korozí.

3.3 MgAlCe

Pro dobré určení frakčního objemu dendrických částí ve sloučeníně bychom potřebovali aspoň pět snímků. K dispozici však máme pouze jeden, proto je celé měření zatíženo velkou chybou. Dále jse binarizace obrazu značně subjektivní metoda. Jako poslední jemná chyba se projevila nepřesnost v určení rozměru "čtvercového" obrazu, kde došlo k chybě 0.0005 mm. O vzorku jsme dále předpokládali, že je homogení a izotropní. Výsledná chyba je odhadnuta na 20 procent. Dle použitého programu byl obsha dendricých částic

$$S = 998.9082 \ \mu \text{m}^2 \tag{13}$$

Po započtení chyb tedy dostáváme poměr dendrických částic ku celku

$$P = 0.16 \pm 0.03 \tag{14}$$

Nakonec jsem pomocí programu vytvořil hystogram zastoupení shluků podle velikosti. Výsledky jsou v tabulce 1

počet č.	$S/\mu m^2$	P	průměrná vel. $/\mu\mathrm{m}^2$
153	822.46	0.823	5.37
2	70.98	0.071	35.5
1	105.5	0.106	105.5

Tabulka 1: Histogram zastoupení dendrických částic dle velikosti shluků.

4 Diskuze

Užité metody a zařízení jsou dobré ke kvalitativní analýze problému a seznámení s použitím elektronového mikroskopu. Pokud bychom však chtěli data s použitelnou chybou, muselo by proběhnou výrazně více měření na více vzorcích, předevěím pro to, abychom ověřili homogenitu a izotropii zkoumaných materiálů. Subjektivní faktor by však omezila pouze změna metody.

5 Závěr

l jsem velikost zrna vzorku, která byla

$$d = (0.0086 \pm 0.0004) \text{mm} \tag{15}$$

Určil jsem frakční objem dendrických částic ve slitině MgAlCe

$$P = 0.16 \pm 0.03 \tag{16}$$

Reference

[1] Studijní text na praktikum IV

http://physics.mff.cuni.cz/vyuka/zfp/txt_418.pdf (17. 12. 2012)

Obrázek 1: Snímek $\mathrm{Fe_3Al}$ za pokojové teploty

Obrázek 2: Snímek Fe $_3 Al$ za teploty 700 °C

Obrázek 3: Snímek výbrusu.

Obrázek 4: Snímek slitiny MgAlCe

Obrázek 5: Binarizovaný snímek slitiny MgAlCe