Introduction to Statistics

Carson James

1

Contents

Notati	on	vii
Prefac	e	1
0.1	Introduction	1
0.2	Sampling	2
	0.2.1 Inverse CDF Sampling	2
	0.2.2 Importance Sampling	
	0.2.3 Rejection Sampling	
0.3	Decision Theory	6
	0.3.1 Introduction	6
	0.3.2 Bayes Risk	6
	0.3.3 Minimax Estimation	7
0.4	Posterior Consistency	8
	0.4.1 Introduction	8
0.5	Frechet Mean	9
	0.5.1 Introduction	9

vi *CONTENTS*

 $\begin{array}{ll} \mathcal{M}_+(X,\mathcal{A}) & \text{ finite measures on } (X,\mathcal{A}) \\ v & \text{ velocity} \end{array}$

viii Notation

Preface

cc-by-nc-sa

0.1 Introduction

Definition 0.1.0.1. Let $A \in \mathcal{B}(\mathbb{R}^d)$ and $\Theta \neq \emptyset$. Suppose that m(A) > 0. We define

$$\mathcal{D}(A) = \{ f \in L^1(A) : f \ge 0 \text{ and } ||f||_1 = 1 \}$$

and for $\theta \in \Theta$, we define

$$\mathcal{D}(A|\theta) = \{ f : A \times \Theta \to \mathbb{R} : f(\cdot|\theta) \in \mathcal{D}(A) \}$$

Notation Notation

0.2 Sampling

0.2.1 Inverse CDF Sampling

0.2. SAMPLING 3

0.2.2 Importance Sampling

0.2.3 Rejection Sampling

Exercise 0.2.3.1. Let $f, g \in \mathcal{D}(\mathbb{R}^d)$ and $A \in \mathcal{B}(\mathbb{R}^d)$. Suppose that $m^d(A) > 0$. If $X \sim f$, then $X \mid X \in A \sim \|fI_A\|_1^{-1} fI_A$.

Proof. Let $C \in \mathcal{B}(\mathbb{R}^d)$. Then

$$P(X \in C | X \in A) = P(X \in C \cap A)P(X \in A)^{-1}$$

= $||fI_A||_1^{-1} \int_C fI_A dm^d$

So $f_{X|X\in A} = ||fI_A||_1^{-1} fI_A$.

Exercise 0.2.3.2. Let $A, B \in \mathcal{B}(\mathbb{R}^d)$. Suppose that $A \subset B$ and $0 < m^d(A)$ and $m^d(B) < \infty$. If $X \sim \mathrm{Uni}(B)$, then $X|X \in A \sim \mathrm{Uni}(A)$.

Proof. Clear using the previous exercise with $f = I_B$.

Exercise 0.2.3.3. (Fundamental Theorem of Simulation):

Let $f \in \mathcal{D}(\mathbb{R}^d)$ and c > 0. Define

$$G_c = \{(x, v) \in \mathbb{R}^{d+1} : 0 < v < cf(x)\}$$

- 1. If $X \sim f$ and $U \sim \text{Uni}(0,1)$ are independent, then $(X, cUf(X)) \sim \text{Uni}(G_c)$.
- 2. If $(X, V) \sim \text{Uni}(G_c)$, then $X \sim f$.

Proof. First we note that $m^{d+1}(G_c) = c$.

1. Suppose that $X \sim f$ and $U \sim \mathrm{Uni}(0,1)$ are independent and put Y = cUf(X). Then $Y|X = x \sim cUf(x) \sim \mathrm{Uni}(0,cf(x))$ and we have that for each $x \in \mathrm{supp}\, X$ and $y \in (0,cf(x))$,

$$f_{X,Y}(x,y) = f_{Y|X}(y|x)f(x)$$
$$= \frac{1}{cf(x)}f(x)$$
$$= \frac{1}{c}$$

So $(X,Y) \sim \text{Uni}(G_c)$

2. Suppose that $(X, V) \sim \text{Uni}(G_c)$. Then $f_{X,V}(x, v) = \frac{1}{c} I_{G_c}(x, v)$. So

$$f_X(x) = \int_{\mathbb{R}} \frac{1}{c} I_{G_c}(x, v) dm(v)$$
$$= \int_0^{cf(x)} \frac{1}{c} dv$$
$$= f(x)$$

So $X \sim f$.

Exercise 0.2.3.4. Let $f, g \in \mathcal{D}(\mathbb{R}^d)$, $c_f, c_g > 0$ and M > 0. Put $\tilde{f} = c_f f$ and $\tilde{g} = c_g g$. Suppose that $\tilde{f} \leq M\tilde{g}$. If $Y \sim g$ and $U \sim \text{Uni}(0,1)$ are independent, then $Y|U \leq \frac{\tilde{f}(Y)}{M\tilde{g}(Y)} \sim f$ and $P(U \leq \frac{\tilde{f}(Y)}{M\tilde{g}(Y)}) = \frac{c_f}{c_g M}$

0.2. SAMPLING 5

Proof. Put

$$G_g = \{ (y, v) \in \mathbb{R}^{d+1} : 0 < v < M\tilde{g}(y) \}$$

and

$$G_f = \{(y, v) \in \mathbb{R}^{d+1} : 0 < v < \tilde{f}(y)\}$$

Then $G_f \subset G_g$, $m^d(G_g) = c_g M$ and $m^d(G_f) = c_f$. By the first part of the fundamental theorem of simulation, we know that

$$(Y, MUc_qg(Y)) \sim \text{Uni}(G_q)$$

Since $\{(Y, MUc_gg(Y)) \in G_f\} = \{U \leq \frac{c_ff(Y)}{Mc_gg(Y)}\}$, a previous exercise tells us that

$$(Y, MUc_gg(Y))|U \le \frac{c_ff(Y)}{Mc_gg(Y)} \sim \text{Uni}(G_f)$$

Then the second part of the fundamental theorem of simulation tells us that

$$Y|U \le \frac{c_f f(Y)}{M c_g g(Y)} \sim f$$

Finally we have that

$$\begin{split} P\bigg(U &\leq \frac{c_f f(Y)}{M c_g g(Y)}\bigg) = P[(Y, M U c_g g(Y)) \in G_f] \\ &= \frac{c_f}{c_g M} \end{split}$$

Definition 0.2.3.5. (Rejection Sampling Algorithm):

Let $f, g \in \mathcal{D}(\mathbb{R}^d)$, $c_f, c_g > 0$ and M > 0. Put $\tilde{f} = c_f f$ and $\tilde{g} = c_g g$. Suppose that $\tilde{f} \leq M\tilde{g}$. We define the **rejection** sampling algorithm as follows:

- 1. sample $Y \sim g$ and $U \sim \mathrm{Uni}(0,1)$ independently
- 2. if $U \leq \frac{\tilde{f}(Y)}{M\tilde{g}(Y)}$, accept Y, else return to (1).

If we sample $(X_n)_{n\in\mathbb{N}}$ independently using the rejection sampler, then the previous exercises imply that $(X_n)_{n\in\mathbb{N}}\stackrel{iid}{\sim} f$ and the acceptance rate is $\frac{c_f}{c_g M}$.

Note 0.2.3.6. Phrasing the rejection sampler in terms of \tilde{f} and \tilde{g} instead of f and g is usefule because we may not always be able to solve for the normalizing constants.

0.3 Decision Theory

0.3.1 Introduction

Note 0.3.1.1. We employ the following notation and conventions:

- data space: a measurable space $(\mathcal{X}, \mathcal{F}_{\mathcal{X}})$
- parameter space: a measurable space $(\Theta, \mathcal{F}_{\Theta})$
- distribution familiy: $(P_{\theta})_{\theta \in \Theta} \subset \mathcal{P}(\mathcal{X}, \mathcal{F}_{\mathcal{X}})$
- estimation space: a measurable space $(\mathcal{E}, \mathcal{F}_{\mathcal{E}})$

Definition 0.3.1.2. Let $\eta:\Theta\to\mathcal{E}$. Then η is said to be an **estimand** if η is $(\mathcal{F}_{\Theta},\mathcal{F}_{\mathcal{E}})$ -measurable.

Definition 0.3.1.3. Let $\eta: \Theta \to \mathcal{E}$ be an estimand and $\delta: \mathcal{X} \to \mathcal{E}$. Then δ is said to be an **estimator of** η if δ is $(\mathcal{F}_{\mathcal{X}}, \mathcal{F}_{\mathcal{E}})$ -measurable. We denote the set of estimators for η by Δ_{η} .

Definition 0.3.1.4. Let $\eta:\Theta\to\mathcal{E}$ be an estimand and $L:\Theta\times\mathcal{E}\to[0,\infty)$. Then L is said to be a loss function for η if

- 1. $L(\theta,\cdot)$ is $(\mathcal{F}_{\mathcal{E}},\mathcal{B}(\mathbb{R}))$ -measurable
- 2. for each $\theta \in \Theta$, $L(\theta, \eta(\theta)) = 0$

Definition 0.3.1.5. Let $\eta: \Theta \to \mathcal{E}$ be an estimand and $L: \Theta \times \mathcal{E} \to [0, \infty)$ be a loss function for η . We define the **risk** function associated to L, denoted $R_L: \Theta \times \Delta_{\eta} \to [0, \infty)$, by

$$R_L(\theta, \delta) = \int_{\mathcal{X}} L(\theta, \delta(x)) dP_{\theta}(x)$$

Definition 0.3.1.6. Let $\eta:\Theta\to\mathcal{E}$ be an estimand, $L:\Theta\times\mathcal{E}\to[0,\infty)$ be a loss function for η and $\Pi\in\mathcal{P}(\Theta,\mathcal{F}_{\Theta})$.

0.3.2 Bayes Risk

Definition 0.3.2.1. Let $\eta: \Theta \to \mathcal{E}$ be an estimand, $L: \Theta \times \mathcal{E} \to [0, \infty)$ be a loss function for η and $\Pi \in \mathcal{P}(\Theta, \mathcal{F}_{\Theta})$. We define the **Bayes risk for** L and Π , denoted $r_{L,\Pi}: \Delta_{\eta} \to [0, \infty)$, by

$$r_{L,\Pi}(\delta) = \int_{\Theta} R_L(\theta, \delta) d\Pi(\theta)$$

Definition 0.3.2.2. Let $\eta: \Theta \to \mathcal{E}$ be an estimand, $L: \Theta \times \mathcal{E} \to [0, \infty)$ be a loss function for η , $\Pi \in \mathcal{P}(\Theta, \mathcal{F}_{\Theta})$ and $\delta^* \in \Delta_{\eta}$. Then δ^* is said to be a **Bayes estimator for** L **and** Π if

$$r_{L,\Pi}(\delta^*) = \inf_{\delta \in \Delta_n} r_{L,\Pi}(\delta)$$

0.3. DECISION THEORY 7

0.3.3 Minimax Estimation

Definition 0.3.3.1. Let $\eta:\Theta\to\mathcal{E}$ be an estimand, $L:\Theta\times\mathcal{E}\to[0,\infty)$ be a loss function for η and $\delta^*\in\Delta_\eta$. Then δ^* is said to be a **minimax estimator for** η **and** L if

$$\sup_{\theta \in \Theta} R(\theta, \delta^*) = \inf_{\delta \in \Delta_{\eta}} \sup_{\theta \in \Theta} R(\theta, \delta)$$

0.4 Posterior Consistency

0.4.1 Introduction

Definition 0.4.1.1. Let $(\mathcal{X}, \mathcal{F})$ and Θ be

0.5. FRECHET MEAN 9

0.5 Frechet Mean

0.5.1 Introduction

Definition 0.5.1.1. Let (\mathcal{M}, d) be a metric space and $\mu \in M_+(\mathcal{M})$. Suppose that $d \in L^2(\mu)$.

• We define the **Frechet function of** μ , denoted $F^d_{\mu}: \mathcal{M} \to \mathbb{R}$ by

$$F_{\mu}^{d}(x) := \int_{\mathcal{M}} d(x, y)^{2} d\mu(y).$$

- We define the **Fechet mean set of** μ **with respect to** d, denoted $\mathcal{F}(\mu, d) \subset \mathcal{M}$, by $\mathcal{F}(\mu, d) := \underset{x \in \mathcal{M}}{\arg \min} F_{\mu}^{d}(x)$.
- Let $x_0 \in \mathcal{M}$. Then x_0 is said to be a Frechet mean of μ with respect to d if $x_0 \in \mathcal{F}(\mu, d)$.

Definition 0.5.1.2. Let (\mathcal{M}, d) be a metric space and $\mu \in M_1(\mathcal{M})$. Suppose that $d \in L^2(\mu)$. Let $(x_n)_{n \in \mathbb{N}} \subset \mathcal{M}$. Let $n \in \mathbb{N}$. Define $\mu_n \in M_1(\mathcal{M})$ by $\mu_n := \frac{1}{n} \sum_{j=1}^n \delta_{x_j}$.

• We define the *n*-th sample Frechet function of μ_n , denoted $F_{\mu_n}^d: \mathcal{M} \to \mathbb{R}$ by

$$F_{\mu_n}^d(x) := \int_{\mathcal{M}} d(x, y)^2 d\mu_n(y).$$

• Let $x_0 \in \mathcal{M}$. Then x_0 is said to be an *n*-th sample Frechet mean of $(x_j)_{j \in \mathbb{N}}$ with respect to d if $x_0 \in \mathcal{F}(\mu_n, d)$.

Note 0.5.1.3. We recall the projection map $\pi: U(n,k) \to U(n,k)/U(k)$ that make and cite exercise in section about steifel and grassmann manifolds implies that $f: U(n,k) \to G(n,k)$ defined by and $f(U) := UU^*$ is a quotient map and $\operatorname{Im} f \cong U(n,k)/U(k)$.

Exercise 0.5.1.4. Let $(\Sigma_{j})_{j \in \mathbb{N}} \subset G(n,k)$. Let $N \in \mathbb{N}$. Define $\mu^{(N)} \in M_{1}(G(n,k))$ by $\mu^{(N)} := \frac{1}{N} \sum_{j=1}^{N} \delta_{\Sigma_{j}}$. Define $\bar{\Sigma}^{(N)} \in G(n,k)$ by $\bar{\Sigma}^{(N)} := \frac{1}{N} \sum_{j=1}^{N} \Sigma_{j}$. There exists $\bar{V}^{(N)} \in U(n)$ and $\bar{\Lambda}^{(N)} \in S(n)$ such that $\bar{\Lambda}^{(N)}$ is diagonal and $\bar{\Sigma}^{(N)} = \bar{V}^{(N)} \bar{\Lambda}^{(N)} (\bar{V}^{(N)})^{*}$. Suppose that $\bar{\Lambda}^{(N)} = \text{diag}(\bar{\lambda}_{1}^{(N)}, \dots, \bar{\lambda}_{n}^{(N)})$ and $\bar{\lambda}_{1}^{(N)} \geq \dots \geq \bar{\lambda}_{1}^{(N)} \geq 0$. Define $U^{(N)} \in U(n,k)$ and $\bar{\Sigma}^{(N)} \in G(n,k)$ by $U^{(N)} := \bar{V}^{(N)} I_{n,k}$ and $\bar{\Sigma}^{(N)} := U^{(N)} (U^{(N)})^{*}$. Then $\bar{\Sigma}^{(N)} \in \mathcal{F}(\mu^{(N)}, d_{G(n,k)})$.

Proof. We note that for each $\Sigma \in G(n,k)$,

$$\begin{split} F_{\mu^{(N)}}^{d_{G(n,k)}}(\Sigma) &= \int_{\mathcal{M}} d_{G(n,k)}(\Sigma,\Pi)^2 \, d\mu^{(N)}(\Pi) \\ &= \frac{1}{N} \sum_{j=1}^N d_{G(n,k)}(\Sigma,\Sigma_j)^2 \\ &= \frac{1}{N} \sum_{j=1}^N \|\Sigma - \Sigma_j\|_F^2 \\ &= \frac{1}{N} \sum_{j=1}^N \|(\Sigma - \bar{\Sigma}^{(N)}) + (\bar{\Sigma}^{(N)} - \Sigma_j)\|_F^2 \\ &= \frac{1}{N} \sum_{j=1}^N \left[\|\Sigma - \bar{\Sigma}^{(N)}\|_F^2 + \|\bar{\Sigma}^{(N)} - \Sigma_j\|_F^2 + 2 \operatorname{tr}[(\Sigma - \bar{\Sigma}^{(N)})^*(\bar{\Sigma}^{(N)} - \Sigma_j)] \right] \\ &= \frac{1}{N} \sum_{j=1}^N \left[\|\Sigma - \bar{\Sigma}^{(N)}\|_F^2 + \|\bar{\Sigma}^{(N)} - \Sigma_j\|_F^2 + 2 \operatorname{tr}[\Sigma^* \bar{\Sigma}^{(N)} - \Sigma^* \Sigma_j + (\bar{\Sigma}^{(N)})^* \bar{\Sigma}^{(N)} - (\bar{\Sigma}^{(N)})^* \Sigma_j] \right] \\ &= \frac{1}{N} \sum_{j=1}^N \left[\|\Sigma - \bar{\Sigma}^{(N)}\|_F^2 + \|\bar{\Sigma}^{(N)} - \Sigma_j\|_F^2 \right] + 2 \operatorname{tr}[\Sigma^* \bar{\Sigma}^{(N)} - \Sigma^* \bar{\Sigma}^{(N)} + (\bar{\Sigma}^{(N)})^* \bar{\Sigma}^{(N)} - (\bar{\Sigma}^{(N)})^* \bar{\Sigma}^{(N)}] \right] \\ &= \frac{1}{N} \sum_{j=1}^N \left[\|\Sigma - \bar{\Sigma}^{(N)}\|_F^2 + \|\bar{\Sigma}^{(N)} - \Sigma_j\|_F^2 \right] \\ &= \frac{1}{N} \sum_{j=1}^N \|\Sigma - \bar{\Sigma}^{(N)}\|_F^2 + \frac{1}{N} \sum_{j=1}^N \|\bar{\Sigma}^{(N)} - \Sigma_j\|_F^2 \\ &= \|\Sigma - \bar{\Sigma}^{(N)}\|_F^2 + \frac{1}{N} \sum_{j=1}^N \|\bar{\Sigma}^{(N)} - \Sigma_j\|_F^2 \\ &= \left[\|\Sigma\|_F^2 + \|\bar{\Sigma}^{(N)}\|_F^2 + 2 \operatorname{tr}(\Sigma^* \bar{\Sigma}^{(N)}) + \frac{1}{N} \sum_{j=1}^N \|\bar{\Sigma}^{(N)} - \Sigma_j\|_F^2 \right] \\ &= k + \|\bar{\Sigma}^{(N)}\|_F^2 + 2 \operatorname{tr}(\Sigma^* \bar{\Sigma}^{(N)}) + \frac{1}{N} \sum_{j=1}^N \|\bar{\Sigma}^{(N)} - \Sigma_j\|_F^2. \end{split}$$

Then

$$\begin{split} \arg\max_{\Sigma \in G(n,k)} F_{\mu^{(N)}}^{d_{G(n,k)}}(\Sigma) &= \argmax_{\Sigma \in G(n,k)} \left[k + \|\bar{\Sigma}^{(N)}\|_F^2 + 2\operatorname{tr}(\Sigma^*\bar{\Sigma}^{(N)}) + \frac{1}{N} \sum_{j=1}^N \|\bar{\Sigma}^{(N)} - \Sigma_j\|_F^2 \right] \\ &= \arg\max_{\Sigma \in G(n,k)} \operatorname{tr}(\Sigma^*\bar{\Sigma}^{(N)}). \end{split}$$

Since

$$\max_{\Sigma \in G(n,k)} \operatorname{tr}(\Sigma^* \bar{\Sigma}^{(N)}) = \max_{U \in U(n,k)} \operatorname{tr}(U U^* \bar{\Sigma}^{(N)}),$$

an exercise in the analysis notes section on optimizing over compact groups implies that

$$\Sigma^{(N)} \in \underset{\Sigma \in G(n,k)}{\operatorname{arg max}} \operatorname{tr}(\Sigma^* \bar{\Sigma}^{(N)})$$

$$= \underset{\Sigma \in G(n,k)}{\operatorname{arg max}} F_{\mu^{(N)}}^{d_{G(n,k)}}(\Sigma)$$

$$= \mathcal{F}(\mu^{(N)}, d_{G(n,k)}).$$

0.5. FRECHET MEAN 11