Assignment-5 - Apply-Logistic _Regression -On-Amazon-Review-Dataset

April 19, 2019

1 Assignment-5: Apply Logistic Regression On Amazon Fine Food Reviews DataSet

1.1 Introduction

- (i).Logistic regression is used to describe data and to explain the relationship between one dependent binary variable and one or more nominal, ordinal, interval or ratio-level independent variables.
 - (ii).It's name is Regression but actually it is classification algorithm.

1.2 Objective

To Predict the Polarity of Amazon Fine Food Review Using Logistic Regression Algorithm.

1.3 Importing All Required Library

```
In [1]: %matplotlib inline
        import sqlite3
        import pandas as pd
        import numpy as np
        import nltk
        import string
        import matplotlib.pyplot as plt
        import seaborn as sns
        import math
        from sklearn.model_selection import GridSearchCV
        from sklearn.feature_extraction.text import CountVectorizer
        from sklearn.linear_model import LogisticRegression
        from sklearn.metrics import classification_report
        from sklearn.feature_extraction.text import TfidfTransformer
        from sklearn.feature_extraction.text import TfidfVectorizer
        from sklearn.model_selection import TimeSeriesSplit
```

```
from sklearn.metrics import confusion_matrix
        from sklearn import metrics
        from sklearn.metrics import roc_curve, auc
        from sklearn.model_selection import cross_val_score
        from sklearn import preprocessing
        from sklearn.metrics import accuracy_score
        from sklearn.metrics import f1_score
        from gensim.models import Word2Vec
        from gensim.models import KeyedVectors
        import pickle
        from tqdm import tqdm
        import os
        import warnings
        warnings.filterwarnings("ignore")
C:\Users\User\Anaconda3\lib\site-packages\gensim\utils.py:1197: UserWarning: detected Windows;
  warnings.warn("detected Windows; aliasing chunkize to chunkize_serial")
1.4 Importing Amazon Fine Food Review Dataset
In [2]: if os.path.isfile("final.sqlite"):
            conn=sqlite3.connect("final.sqlite")
            Data=pd.read_sql_query("select * from Logistic_Regression_Data where Score!=3",com
            conn.close()
        else :
            print("Error Importing the file")
In [3]: # Printing some data of DataFrame
       Data['Score'].value_counts()
Out[3]: 1
             126413
              23587
        Name: Score, dtype: int64
1.5 Information About DataSet
In [4]: print("\nNumber of Reviews: ",Data["Text"].count())
        print("\nNumber of Users: ",len(Data["UserId"].unique())) # Unique returns 1-D array o
       print("\nNumber of Products: ",len(Data["ProductId"].unique()))
        print("\nShape of Data: ", Data.shape)
        print("\nColumn Name of DataSet : ",Data.columns)
        print("\n\nNumber of Attributes/Columns in data: 12")
        print("\nNumber of Positive Reviews : ", Data['Score'].value_counts()[1])
        print("\nNumber of Negative Reviews : ", Data['Score'].value_counts()[0])
```

```
Number of Reviews: 150000
Number of Users: 115887
Number of Products: 42869
Shape of Data: (150000, 13)
Column Name of DataSet : Index(['level_0', 'index', 'Id', 'ProductId', 'UserId', 'ProfileName
       'HelpfulnessNumerator', 'HelpfulnessDenominator', 'Score', 'Time',
       'Summary', 'Text', 'CleanedText'],
      dtype='object')
Number of Attributes/Columns in data: 12
Number of Positive Reviews: 126413
Number of Negative Reviews: 23587
In [5]: print("\nNumber of Reviews: ",Data["Text"].count())
Number of Reviews: 150000
1.6 Attribute Information About DataSet
1.Id - A unique value starts from 1
   2.ProductId - A unique identifier for the product
   3.UserId - A unqiue identifier for the user
   4.ProfileName - Name of user profile
   5.HelpfulnessNumerator - Number of users who found the review helpful
   6.HelpfulnessDenominator - Number of users who indicated whether they found the review
helpful or not
   7.Score - Rating 0 or 1
   8.Time - Timestamp for the review
   9.Summary - Brief summary of the review
   10.Text - Text of the review
   11. Cleaned Text - Text that only alphabets
In [6]: # Sorting on the basis of Time Parameter
        Data.sort_values('Time',inplace=True)
In [7]: Y = Data['Score'].values
        X = Data['CleanedText'].values
```

1.7 Splitting DataSet into Train and Test Data

```
In [8]: from sklearn.model_selection import train_test_split
    # X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.33, shuffle=Fl
    X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.33, shuffle=False
    print("Shape of Train and Test Dataset for 50k points")
    print(X_train.shape, Y_train.shape)
    print(X_test.shape, Y_test.shape)

Shape of Train and Test Dataset for 50k points
(100500,) (100500,)
(49500,) (49500,)
```

1.8 Defining Some Function

1.8.1 Train Data Confusion Matrix Plot

1.8.2 Test Data Confusion Matrix Plot

1.8.3 ROC-AUC Curve Plot

```
plt.legend()
             plt.xlabel("Hyperameter (C)")
             plt.ylabel("AUC")
             plt.title("ROC CURVE PLOTS")
             plt.show()
1.8.4 Error Plot
In [12]: def plot(gsv):
             Res=gsv.cv_results_
             cv_auc=[(1-x) for x in Res['mean_test_score']]
             train_auc = [(1-x) for x in Res['mean_train_score']]
             x1 = [10000, 5000, 1000, 500, 100, 50, 10, 5, 1, 0.5, 0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001]
             log_c= [math.log10(x) for x in x1]
             plt.xlabel("Hyperparameter (Log(C))",fontsize=15)
             plt.ylabel("Missclassification Error",fontsize=15)
             plt.title('Misclassification Error v/s C',fontsize=15)
             plt.plot(log_c,cv_auc,label="Cross-Validation")
             plt.plot(log_c,train_auc,label="Train")
             plt.legend()
             plt.show()
1.8.5 GridSearchCV
In [13]: def Grid_SearchCV(X_train,Y_train,regularisation_parameter):
             param_grid = {'C':[10000,5000,1000,500,100,50,10,5,1,0.5,0.1,0.05,0.01,0.005,0.00
                       'penalty':[regularisation_parameter]}
             tscv = TimeSeriesSplit(n_splits=10)
             LR = LogisticRegression(class_weight='balanced')
             gsv=GridSearchCV(LR,param_grid,cv=tscv,verbose=1,scoring='roc_auc')
             gsv.fit(X_train,Y_train)
             return gsv
1.8.6 30 Informative Feature
```

plt.plot(train_fpr, train_tpr, label="train AUC ="+str(auc(train_fpr, train_tpr))
plt.plot(test_fpr, test_tpr, label="test AUC ="+str(auc(test_fpr, test_tpr)))

In [14]: def show_30_informative_feature(vectorizer,model,n=30):

```
Weights_Index = model.coef_[0].argsort()
length = len(Weights_Index)
# For Negative Class
neg_class=Weights_Index[:30]
neg_feat=[vectorizer.get_feature_names()[x] for x in neg_class]
neg prob=[model.coef [0][x] for x in neg class]
neg_zip=list(zip(neg_feat,neg_prob))
neg_zip.sort()
# For Positive Class
pos_class = Weights_Index[-30:]
pos_feat=[vectorizer.get_feature_names()[x] for x in pos_class]
pos_prob=[model.coef_[0][x] for x in pos_class]
pos_zip=list(zip(pos_feat,pos_prob))
pos_zip.sort()
top=zip(pos_zip,neg_zip)
print("{0:20}{1:55}{2:20}".format("S.N", "Positive", "Negative"))
print("_"*90)
i=1
for (fn_1,coef_1), (fn_2,coef_2) in top:
    print("%d.\t\t%.3f\t%-30s\t\t%.3f\t%s" % (i,coef_1, fn_1, coef_2, fn_2))
    i+=1
```

1.9 Bags of Words Vectorizer

```
In [15]: vectorizer = CountVectorizer()
    vectorizer.fit(X_train) # fit has to happen only on train data

# we use the fitted CountVectorizer to convert the text to vector
    X_train_bow = vectorizer.transform(X_train)
    X_train_bow=preprocessing.normalize(X_train_bow)

X_test_bow = vectorizer.transform(X_test)
    X_test_bow=preprocessing.normalize(X_test_bow)

print("Shape of Train and Test Data After vectorizations")
    print(X_train_bow.shape, Y_train.shape)
    print(X_test_bow.shape, Y_test.shape)
Shape of Train and Test Data After vectorizations
(100500, 37994) (100500,)
```

```
(49500, 37994) (49500,)
```

1.10 Part 1: Taking L1 as a Regularisation Parameter

1.10.1 Finding the best value Of hyperparameter (C or 1/Lambda)

1.10.2 Error-Plot

In [45]: plot(gsv)

1.10.3 Training the model

1.10.4 Evaluating the performance of model

In [26]: trainconfusionmatrix(Model_Bow,X_train_bow,Y_train)

Confusion Matrix for Train set

In [27]: testconfusionmatrix(Model_Bow, X_test_bow, Y_test)

Confusion Matrix for Test set

In [28]: plot_auc_roc(Model_Bow,X_train_bow,X_test_bow,Y_train,Y_test)

Classification Report:

		precision	recall	f1-score	support
	0	0.81	0.68 0.97	0.74 0.95	8692 40808
micro	avg	0.92	0.92	0.92	49500
macro	avg	0.87	0.82	0.85	49500
weighted	avg	0.91	0.92	0.91	49500

1.10.5 Displaying 30 most informative features

In [30]: show_30_informative_feature(vectorizer, Model_Bow)

S.N Posit			Negative
1.	10.751	addict	-15.221
2.	14.850	bravo	-13.469
3.	11.311	cujo	-12.922
4.	10.830	delici	-21.729
5.	16.410	downsid	-15.091
6.	12.746	fascin	-12.848
7.	14.110	filbert	-13.724
8.	12.056	finest	-16.663
9.	12.521	goshoptnt	-13.234
10.	14.539	gripe	-14.645
11.	12.249	heal	-19.385
12.	12.816	hook	-13.507
13.	11.312	morsel	-12.876
14.	13.046	narrow	-12.526
15.	14.304	nevertheless	-17.224
16.	11.407	penal	-12.653
17.	12.362	rater	-12.851
18.	10.762	reassur	-12.464
19.	11.579	refresh	-12.738
20.	14.879	skeptic	-12.960
21.	10.681	solv	-20.452
22.	11.757	sooth	-14.868

ar c d

f h

23.	14.262	spectacular	-12.400
24.	10.961	steal	-14.206
25.	11.518	stumbl	-13.515
26.	13.801	tastey	-13.100
27.	12.057	versatil	-19.808
28.	12.000	whim	-12.651
29.	11.250	yay	-17.415
30.	12.017	yum	-18.358

1.11 Part 2: Taking L2 as a Regularisation Parameter

1.11.1 Finding the best value Of hyperparameter (C or 1/Lambda)

1.11.2 Error Plot

```
In [47]: plot(gsv)
```


1.11.3 Training the model

1.11.4 Evaluating the performance of model

```
In [50]: trainconfusionmatrix(Model_Bow,X_train_bow,Y_train)
Confusion Matrix for Train set
```


In [51]: testconfusionmatrix(Model_Bow,X_test_bow,Y_test)

Confusion Matrix for Test set

In [52]: plot_auc_roc(Model_Bow,X_train_bow,X_test_bow,Y_train,Y_test)

print(classification_report(Y_test, y_pred))

Classification Report:

		precision	recall	f1-score	support
	0	0.61	0.87	0.72	8692
	1	0.97	0.88	0.92	40808
micro	ava	0.88	0.88	0.88	49500
macro	•	0.79	0.88	0.82	49500
weighted	avg	0.91	0.88	0.89	49500

In [54]: show_30_informative_feature(vectorizer, Model_Bow)

S.N	Positive		Negative	
1.	9.411	addict	-11.813	- aw
2.	9.014	amaz	-8.823	blaı
3.	7.990	awesom	-8.392	can
4.	8.843	beat	-8.716	con
5.	6.319	beauti	-10.212	di
6.	7.859	best	-9.389	dis
7.	7.196	complaint	-6.951	ear
8.	9.800	delici	-7.319	fai
9.	7.950	downsid	-7.624	fla
10.	5.720	drawback	-7.934	gro
11.	8.252	excel	-9.971	ho
12.	6.118	fabul	-7.615	ine
13.	7.002	fantast	-7.501	med
14.	6.565	glad	-6.946	poo
15.	6.892	great	-7.751	re
16.	5.885	habit	-8.956	re
17.	6.093	happier	-8.352	ru
18.	6.132	heaven	-7.053	sha
19.	9.308	hook	-7.148	sta
20.	8.343	perfect	-9.299	tas
21.	7.814	refresh	-11.563	te
22.	7.599	satisfi	-9.097	th
23.	8.586	skeptic	-7.799	una
24.	6.738	smooth	-7.521	uno

uni
unj
wea
woi
6 w
yu
5 1 3 7

1.12 TF-IDF Vectorizer

```
In [30]: vectorizer_tfidf=TfidfVectorizer()
        vectorizer_tfidf.fit(X_train)
Out[30]: TfidfVectorizer(analyzer='word', binary=False, decode_error='strict',
                 dtype=<class 'numpy.float64'>, encoding='utf-8', input='content',
                 lowercase=True, max_df=1.0, max_features=None, min_df=1,
                 ngram_range=(1, 1), norm='12', preprocessor=None, smooth_idf=True,
                 stop_words=None, strip_accents=None, sublinear_tf=False,
                 token_pattern='(?u)\\b\\w\\b', tokenizer=None, use_idf=True,
                 vocabulary=None)
In [31]: X_Train_Tfidf=vectorizer_tfidf.transform(X_train)
        X_Train_Tfidf=preprocessing.normalize(X_Train_Tfidf)
        X_Test_Tfidf=vectorizer_tfidf.transform(X_test)
        X_Test_Tfidf=preprocessing.normalize(X_Test_Tfidf)
In [32]: print("Shape of Train and Test Data After vectorizations")
        print(X_Train_Tfidf.shape, Y_train.shape)
        print(X_Test_Tfidf.shape, Y_test.shape)
Shape of Train and Test Data After vectorizations
(100500, 37994) (100500,)
(49500, 37994) (49500,)
```

1.13 Taking L1 as a Regularisation Parameter

1.13.1 Finding the best value Of hyperparameter (C or 1/Lambda)

```
Best HyperParameter: {'C': 1, 'penalty': 'l1'}
Best Accuracy: 93.30%
```

1.13.2 Error Plot

In [22]: plot(gsv)

1.13.3 Training the model

1.13.4 Evaluating the performance of model

In [24]: trainconfusionmatrix(Model_Tfidf,X_Train_Tfidf,Y_train)

Confusion Matrix for Train set

In [25]: testconfusionmatrix(Model_Tfidf,X_Test_Tfidf,Y_test)

Confusion Matrix for Test set

In [26]: plot_auc_roc(Model_Tfidf,X_Train_Tfidf,X_Test_Tfidf,Y_train,Y_test)

In [27]: print("Classification Report: \n") y_pred=Model_Tfidf.predict(X_Test_Tfidf) print(classification_report(Y_test, y_pred))

Classification Report:

		precision	recall	f1-score	support
	0 1	0.51 0.98	0.92 0.81	0.66 0.89	8692 40808
micro	avg	0.83	0.83	0.83	49500
macro	avg	0.75	0.87	0.77	49500
weighted	avg	0.90	0.83	0.85	49500

1.13.5 Displaying 30 most informative features

In [28]: show_30_informative_feature(vectorizer_tfidf,Model_Tfidf)

S.N	Positive		Negative	
1.	10.139	addict	-13.064	a
2.	9.406	amaz	-9.133 b	ola
3.	8.423	awesom	-10.132	ca
4.	10.021	beat	-10.651	С
5.	6.980	beauti	-7.857 d	dec
6.	7.909	best	-9.879 d	dec
7.	7.294	complaint	-10.159	di
8.	9.996	delici	-11.139	di
9.	11.857	downsid	-7.996	dr
10.	8.466	excel	-8.134	fa
11.	6.967	fabul	-10.004	f
12.	7.052	fantast	-8.553	gr
13.	6.808	glad	-10.879	h
14.	6.894	great	-10.254	i
15.	7.186	habit	-10.983	m
16.	7.372	happier	-8.612	op
17.	6.660	heaven		re
18.	11.047	hook	-9.221	r
19.	8.251	perfect	-9.101	ru
20.	8.721	refresh	-10.548	t
21.	7.890	satisfi	-12.189	t
22.	12.359	skeptic	-9.873	t

23.	6.920	smooth	-10.156
24.	8.476	sooth	-9.988 u
25.	7.458	uniqu	-12.696
26.	7.559	versatil	-9.074 u
27.	7.442	whim	-11.399
28.	7.932	worri	-9.091 w
29.	9.618	yum	-17.436
30.	8.364	yummi	-8.111 y

1.14 Taking L2 as a Regularisation Parameter

1.14.1 Finding the best value Of hyperparameter (C or 1/Lambda)

1.14.2 Error Plot

```
In [30]: plot(gsv)
```


1.14.3 Training the mode

1.14.4 Evaluating the performance of model

```
In [32]: trainconfusionmatrix(Model_Tfidf,X_Train_Tfidf,Y_train)
Confusion Matrix for Train set
```


In [33]: $testconfusionmatrix(Model_Tfidf,X_Test_Tfidf,Y_test)$

Confusion Matrix for Test set

In [34]: plot_auc_roc(Model_Tfidf,X_Train_Tfidf,X_Test_Tfidf,Y_train,Y_test)

print(classification_report(Y_test, y_pred))

Classification Report:

		precision	recall	f1-score	support
	0	0.51	0.93	0.66	8692
	1	0.98	0.81	0.89	40808
micro	avø	0.83	0.83	0.83	49500
macro	•	0.75	0.87	0.77	49500
weighted	avg	0.90	0.83	0.85	49500

In [36]: show_30_informative_feature(vectorizer_tfidf,Model_Tfidf)

S.N	Positive		Negative
1.	6.398	addict	-8.666 aw
2.	7.030	amaz	-4.353 bare
3.	5.944	awesom	-4.465 bewa
4.	5.792	beat	-6.507 bla
5.	4.120	beauti	-4.733 can
6.	7.024	best	-9.024 dis
7.	4.659	complaint	-6.022 dis
8.	8.489	delici	-4.433 ear
9.	4.560	easi	-5.182 gros
10.	7.182	excel	-7.371 ho
11.	5.105	fantast	-4.307 moi
12.	4.673	favorit	-5.133 poo
13.	5.131	glad	-5.292 re:
14.	6.400	great	-7.271 re
15.	4.215	happi	-5.036 ru:
16.	5.426	hook	-4.640 sad
17.	4.936	love	-4.423 sha
18.	4.570	nice	-4.696 so:
19.	7.153	perfect	-5.470 sta
20.	4.929	refresh	-4.798 sti
21.	5.876	satisfi	-5.644 tas
22.	5.373	smooth	-8.374 te:
23.	4.051	tasti	-5.834 th:
24.	4.327	thank	-7.005 un:

25. 26.	3.958 3.879	uniqu without		unj wa:
27.	4.456	wonder		we
28.	4.659	worri	-5.332 r	WOI
29.	4.800	yum	-10.212	W
30.	6.071	yummi	-4.410 g	yu

1.15 Word To Vector

```
In [15]: list_of_Train_sent=[]
         list_of_Test_sent=[]
         for sent in X_train:
             list_of_Train_sent.append(sent.split())
         for sent in X_test:
             list_of_Test_sent.append(sent.split())
In [16]: model=Word2Vec(list_of_Train_sent,min_count=5,size=50, workers=4)
1.16 Average Word To Vector
```

```
In [17]: import numpy as np
         Train_vectors = []
         for sent in list_of_Train_sent:
             sent_vec = np.zeros(50)
             cnt words = 0
             for word in sent:
                 try:
                     vec = model.wv[word]
                     sent_vec += vec
                     cnt_words += 1
                 except:
                     pass
             if cnt_words!=0:
                 sent_vec /= cnt_words
             Train_vectors.append(sent_vec)
         Train_vectors = np.nan_to_num(Train_vectors)
In [18]: import numpy as np
         Test_vectors=[]
         for sent in list_of_Test_sent:
             sent_vec=np.zeros(50)
             cnt_words=0
             for word in sent:
```

```
try:
                     vec=model.wv[word]
                     sent_vec+=vec
                     cnt_words+=1
                 except:
                     pass
             if cnt words!=0:
                 sent_vec/=cnt_words
             Test_vectors.append(sent_vec)
         Test_vectors=np.nan_to_num(Test_vectors)
In [19]: print("Shape of Test Vectors : ",Test_vectors.shape)
Shape of Test Vectors: (49500, 50)
In [20]: X_Train_Awv=Train_vectors
         X_Test_Awv=Test_vectors
In [21]: print(X_Train_Awv.shape, Y_train.shape)
         print(X_Test_Awv.shape, Y_test.shape)
(100500, 50) (100500,)
(49500, 50) (49500,)
1.17 Taking L1 as a Regularisation Parameter
1.17.1 Finding the best value Of hyperparameter (C or 1/Lambda)
In [23]: gsv=Grid_SearchCV(X_Train_Awv,Y_train,"11")
         print("Best HyperParameter: ",gsv.best_params_)
         print("Best Accuracy: %.2f%%"%(gsv.best_score_*100))
Fitting 10 folds for each of 17 candidates, totalling 170 fits
[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.
[Parallel(n_jobs=1)]: Done 170 out of 170 | elapsed: 52.6min finished
Best HyperParameter: {'C': 1, 'penalty': '11'}
Best Accuracy: 90.46%
1.17.2 Error Plot
In [24]: plot(gsv)
```


1.17.3 Training Model

1.17.4 Evaluating the performance of model

```
In [26]: trainconfusionmatrix(Model_Awv,X_Train_Awv,Y_train)
Confusion Matrix for Train set
```


In [27]: trainconfusionmatrix(Model_Awv,X_Test_Awv,Y_test)

Confusion Matrix for Train set

In [28]: plot_auc_roc(Model_Awv,X_Train_Awv,X_Test_Awv,Y_train,Y_test)

Classification Report:

		precision	recall	f1-score	support
	0	0.48	0.85	0.61	8692
	1	0.96	0.80	0.87	40808
micro a	•	0.81	0.81	0.81	49500
macro a		0.72	0.83	0.74	49500
weighted a	avg	0.88	0.81	0.83	49500

1.18 Taking L2 as a Regularisation Parameter

1.18.1 Finding the best value Of hyperparameter (C or 1/Lambda)

1.18.2 Error Plot

In [23]: plot(gsv)

1.18.3 Training the model

1.18.4 Evaluating the performance of model

```
In [25]: trainconfusionmatrix(Model_Awv,X_Train_Awv,Y_train)
Confusion Matrix for Train set
```


In [26]: trainconfusionmatrix(Model_Awv,X_Test_Awv,Y_test)

Confusion Matrix for Train set

In [27]: plot_auc_roc(Model_Awv,X_Train_Awv,X_Test_Awv,Y_train,Y_test)


```
In [28]: print("Classification Report: \n")
         y_pred=Model_Awv.predict(X_Test_Awv)
         print(classification_report(Y_test, y_pred))
Classification Report:
              precision
                         recall f1-score
                                              support
           0
                   0.48
                             0.85
                                       0.61
                                                  8692
           1
                   0.96
                             0.80
                                       0.88
                                                 40808
  micro avg
                   0.81
                             0.81
                                       0.81
                                                 49500
  macro avg
                   0.72
                             0.83
                                       0.74
                                                 49500
weighted avg
                                       0.83
                   0.88
                             0.81
                                                 49500
```

1.19 TF-IDF Word To Vector

```
In [33]: TFIDF_Feature=vectorizer_tfidf.get_feature_names()
       print(len(TFIDF_Feature))
       print(TFIDF_Feature[0:20])
37994
In [34]: from tqdm import tqdm
       Train_TFIDF_W2V_Vectors=[]
       row=0
       for sent in tqdm(list_of_Train_sent):
           sent_vec=np.zeros(50)
           weight=0
           for word in sent:
              try:
                 w2v_vec=model.wv[word]
                 tfidf_vec=X_Train_Tfidf[row,TFIDF_Feature.index(word)]
                 sent_vec+=(w2v_vec*tfidf_vec)
                 weight+=tfidf_vec
              except :
                 pass
           if weight!=0:
              sent_vec/=weight
           Train_TFIDF_W2V_Vectors.append(sent_vec)
           row+=1
```

```
100%|| 100500/100500 [1:04:56<00:00, 25.79it/s]
In [35]: Test_TFIDF_W2V_Vectors=[]
         row=0
         for sent in tqdm(list_of_Test_sent):
             sent_vec=np.zeros(50)
             weight=0
             for word in sent:
                 try:
                     w2v_vec=model.wv[word]
                     tfidf_vec=X_Test_Tfidf(row,TFIDF_Feature.index(word))
                     sent_vec+=(w2v_vec*tfidf_vec)
                     weight+=tfidf
                 except :
                     pass
             if weight!=0:
                 sent_vec/=weight
             Test_TFIDF_W2V_Vectors.append(sent_vec)
             row+=1
100%|| 49500/49500 [24:01<00:00, 34.33it/s]
In [36]: Train_TFIDF_W2V_Vectors = np.nan_to_num(Train_TFIDF_W2V_Vectors)
         Test_TFIDF_W2V_Vectors = np.nan_to_num(Test_TFIDF_W2V_Vectors)
In [37]: X_Train_TfidfW2v=Train_TFIDF_W2V_Vectors
         X_Test_TfidfW2v=Test_TFIDF_W2V_Vectors
In [38]: print(X_Train_TfidfW2v.shape, Y_train.shape)
         print(X_Test_TfidfW2v.shape, Y_test.shape)
(100500, 50) (100500,)
(49500, 50) (49500,)
    Taking L1 as a Regularisation Parameter
1.20.1 Finding the best value Of hyperparameter (C or 1/Lambda)
In [39]: gsv=Grid_SearchCV(X_Train_TfidfW2v,Y_train,"11")
         print("Best HyperParameter: ",gsv.best params )
         print("Best Accuracy: %.2f%%"%(gsv.best_score_*100))
Fitting 10 folds for each of 17 candidates, totalling 170 fits
```

```
[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.
[Parallel(n_jobs=1)]: Done 170 out of 170 | elapsed: 26.1min finished

Best HyperParameter: {'C': 0.1, 'penalty': 'l1'}
Best Accuracy: 87.85%
```

1.20.2 Error Plot

In [40]: plot(gsv)

1.20.3 Training Model

1.20.4 Evaluating the performance of model

In [42]: trainconfusionmatrix(Model_TfidfW2v,X_Train_TfidfW2v,Y_train)

Confusion Matrix for Train set

In [43]: testconfusionmatrix(Model_TfidfW2v,X_Train_TfidfW2v,Y_train)
Confusion Matrix for Test set

In [44]: plot_auc_roc(Model_TfidfW2v,X_Train_TfidfW2v,X_Test_TfidfW2v,Y_train,Y_test)

Classification Report:

		precision	recall	f1-score	support
	0 1	0.18 0.00	1.00	0.30	8692 40808
micro macro weighted	avg	0.18 0.09 0.03	0.18 0.50 0.18	0.18 0.15 0.05	49500 49500 49500

1.21 Taking L2 as a Regularisation Parameter

1.21.1 Finding the best value Of hyperparameter (C or 1/Lambda)

1.21.2 Error Plot

In [47]: plot(gsv)

1.21.3 Training the model

1.21.4 Evaluating the performance of model

```
In [49]: trainconfusionmatrix(Model_TfidfW2v,X_Train_TfidfW2v,Y_train)
Confusion Matrix for Train set
```


In [50]: testconfusionmatrix(Model_TfidfW2v,X_Train_TfidfW2v,Y_train)
Confusion Matrix for Test set

In [51]: plot_auc_roc(Model_TfidfW2v,X_Train_TfidfW2v,X_Test_TfidfW2v,Y_train,Y_test)

0.00

0.18

0.50

0.18

0.00

0.18

0.09

0.03

1

micro avg

macro avg

weighted avg

1.22 Pertubation Test On BOW Vectorizer and Regularisation Parameter L2

0.00

0.18

0.15

0.05

40808

49500

49500

49500

```
In [62]: from scipy.sparse import find
         #Weights before adding random noise
         weights1 = find(Model_Bow.coef_[0])[2]
         print(weights1[:50])
[ 1.13345591  0.02002588  0.00200432  0.03735237  0.00537296  0.00278505
-0.05079941 \quad 0.00931602 \quad 0.00537296 \quad 0.13805403 \quad 0.03798705 \quad 0.0069488
  0.03927589 0.01479231 0.02671619 0.0565606 -0.40902605 0.03473881
  0.00330004 0.07520482 -0.05522391 0.06312428 0.02666827
                                                              0.032443
  0.04260278 -0.03394333 0.04648075 0.00561827 0.28007135 0.18782385
 -0.34749559 0.05698905 0.00788936 -1.170488
                                                  0.52939662 0.20041705
 -0.07370247 -0.23254724 0.23001907 0.09660233 0.3921331
                                                              0.35992047
 -0.27294236 0.17301799 0.80156947 0.07930274 -0.76391136 0.07604107
  0.0629005
             0.02145765]
In [63]: X_train_t = X_train_bow
         #Random noise
         epsilon = np.random.uniform(low=-0.0001, high=0.0001, size=(find(X_train_t)[0].size,)
         #Getting the postions(row and column) and value of non-zero datapoints
         a,b,c = find(X_train_t)
```

#Introducing random noise to non-zero datapoints

X_train_t[a,b] = epsilon + X_train_t[a,b]

Model_Pert.fit(X_train_t,Y_train)

In [64]: Model_Pert= LogisticRegression(C=C, penalty= '12',class_weight='balanced')

```
y_pred = Model_Pert.predict(X_test_bow)
         print("Accuracy on test set: %0.3f%%"%(accuracy_score(Y_test, y_pred)*100))
         print("Non Zero weights:",np.count_nonzero(Model_Pert.coef_))
Accuracy on test set: 87.933%
Non Zero weights: 37994
In [65]: #Weights after adding random noise
         weights2 = find(Model_Pert.coef_[0])[2]
         print(weights2[:50])
[ 1.13328701  0.02007606  0.00200724  0.03734596  0.00538038  0.00278589
 -0.05092452 \quad 0.00931236 \quad 0.00538486 \quad 0.13790361 \quad 0.03810089 \quad 0.00694868
  0.03934439 0.0148218 0.02677143 0.0565591 -0.40895739 0.03471803
  0.00329922 \quad 0.07520774 \quad -0.05585209 \quad 0.06320037 \quad 0.02665189 \quad 0.03241966
  0.04256979 - 0.0338506 \quad 0.04647984 \quad 0.00561043 \quad 0.28022148 \quad 0.18792607
 -0.34781192 \quad 0.05681231 \quad 0.00787586 \quad -1.17053264 \quad 0.52951101 \quad 0.20055738
 -0.07368803 -0.23281588 0.22997003 0.09659027 0.39222921 0.35980129
 -0.27276686 0.1729645 0.80172465 0.07946077 -0.76348883 0.07607611
  0.06293845 0.02146781]
In [66]: weights_diff = (abs(weights1 - weights2)/weights1) * 100
In [67]: print(weights_diff[np.where(weights_diff > 30)].size)
3
1.22.1 Showing How Sparsity increases as we decrease C or increase Lambada(1/C) When L1
       Regularisation is used
In [55]: Model Sparse= LogisticRegression(C= 1000, penalty= '11',class_weight='balanced')
         Model_Sparse.fit(X_train_bow,Y_train)
         y_pred = Model_Sparse.predict(X_test_bow)
         print("Accuracy on test set: %0.3f%%"%(accuracy_score(Y_test, y_pred)*100))
         print("F1-Score on test set: %0.3f"%(f1_score(Y_test, y_pred)))
         print("Non Zero weights:",np.count_nonzero(Model_Sparse.coef_))
Accuracy on test set: 85.586%
F1-Score on test set: 0.910
Non Zero weights: 18732
In [56]: Model_Sparse= LogisticRegression(C= 100, penalty= 'l1',class_weight='balanced')
```

print("F1-Score on test set: %0.3f"%(f1_score(Y_test, y_pred)))
print("Non Zero weights:",np.count_nonzero(Model_Sparse.coef_))

print("Accuracy on test set: %0.3f%%"%(accuracy_score(Y_test, y_pred)*100))

Model_Sparse.fit(X_train_bow,Y_train)
y_pred = Model_Sparse.predict(X_test_bow)

```
Accuracy on test set: 86.901%
F1-Score on test set: 0.918
Non Zero weights: 14916
In [57]: Model_Sparse= LogisticRegression(C= 10, penalty= 'l1',class_weight='balanced')
         Model_Sparse.fit(X_train_bow,Y_train)
         y_pred = Model_Sparse.predict(X_test_bow)
         print("Accuracy on test set: %0.3f%%"%(accuracy_score(Y_test, y_pred)*100))
         print("F1-Score on test set: %0.3f"%(f1_score(Y_test, y_pred)))
         print("Non Zero weights:",np.count_nonzero(Model_Sparse.coef_))
Accuracy on test set: 88.222%
F1-Score on test set: 0.926
Non Zero weights: 7780
In [58]: Model_Sparse= LogisticRegression(C= 1, penalty= '11',class_weight='balanced')
         Model_Sparse.fit(X_train_bow,Y_train)
         y_pred = Model_Sparse.predict(X_test_bow)
         print("Accuracy on test set: %0.3f%%"%(accuracy_score(Y_test, y_pred)*100))
         print("F1-Score on test set: %0.3f"%(f1_score(Y_test, y_pred)))
         print("Non Zero weights:",np.count_nonzero(Model_Sparse.coef_))
Accuracy on test set: 87.299%
F1-Score on test set: 0.919
Non Zero weights: 1931
In [59]: Model_Sparse= LogisticRegression(C= 0.1, penalty= 'l1',class_weight='balanced')
         Model Sparse.fit(X train bow, Y train)
         y_pred = Model_Sparse.predict(X_test_bow)
         print("Accuracy on test set: %0.3f%%"%(accuracy_score(Y_test, y_pred)*100))
         print("F1-Score on test set: %0.3f"%(f1_score(Y_test, y_pred)))
         print("Non Zero weights:",np.count_nonzero(Model_Sparse.coef_))
Accuracy on test set: 83.978%
F1-Score on test set: 0.896
Non Zero weights: 409
In [60]: Model Sparse= LogisticRegression(C= 0.01, penalty= '11')
        Model_Sparse.fit(X_train_bow,Y_train)
         y_pred = Model_Sparse.predict(X_test_bow)
         print("Accuracy on test set: %0.3f%%"%(accuracy_score(Y_test, y_pred)*100))
         print("F1-Score on test set: %0.3f"%(f1_score(Y_test, y_pred)))
         print("Non Zero weights:",np.count_nonzero(Model_Sparse.coef_))
Accuracy on test set: 82.828%
F1-Score on test set: 0.906
```

```
Non Zero weights: 21
In [61]: Model_Sparse= LogisticRegression(C= 0.001, penalty= 'l1',class_weight='balanced')
         Model_Sparse.fit(X_train_bow,Y_train)
         y_pred = Model_Sparse.predict(X_test_bow)
         print("Accuracy on test set: %0.3f%%"%(accuracy_score(Y_test, y_pred)*100))
         print("F1-Score on test set: %0.3f"%(f1_score(Y_test, y_pred)))
         print("Non Zero weights:",np.count_nonzero(Model_Sparse.coef_))
Accuracy on test set: 38.505%
F1-Score on test set: 0.423
Non Zero weights: 1
  1. Decrease in value of C decrease the non of non zeros weight decrease, which means it is
    increasing the sparsity(No of Zeros)
1.22.2 Addition of another column length
In [18]: Train_len=[]
         Test_len=[]
         for i in X train:
             Train_len.append(len(i))
         for i in X_test:
             Test_len.append(len(i))
In [19]: Train_len=np.array(Train_len)
         Test_len=np.array(Test_len)
In [20]: Train_len=Train_len[:,np.newaxis]
         Test_len=Test_len[:,np.newaxis]
Bag Of Word Vectorizer
In [21]: X_Train_BOW=X_train_bow.todense()
In [22]: X_Train_New=np.append(X_Train_BOW,Train_len,axis=1)
In [23]: from scipy.sparse import csr_matrix
         X_Train_New= csr_matrix(X_Train_New)
In [24]: print("Shape of Train Data Before Adding length column ")
         print(X_train_bow.shape)
         print("\nShape of Train Data After Adding length column ")
```

print(X Train New.shape)

```
Shape of Train Data Before Adding length column (100500, 37994)

Shape of Train Data After Adding length column (100500, 37995)
```

Finding the best value Of hyperparameter (C or 1/lambda)

Error Plot

In [30]: plot(gsv)

Training the Model

Evaluating the performance of the model

In [33]: trainconfusionmatrix(Model_LBow,X_Train_New,Y_train)
Confusion Matrix for Train set

In [34]: testconfusionmatrix(Model_LBow,X_Test_New,Y_test)
Confusion Matrix for Test set

In [35]: plot_auc_roc(Model_LBow,X_Train_New,X_Test_New,Y_train,Y_test)

Classification Report:

		precision	recall	f1-score	support
	0	0.59 0.97	0.88 0.87	0.71 0.92	8692 40808
micro	avg	0.87	0.87	0.87	49500
macro	avg	0.78	0.88	0.81	49500
weighted	avg	0.90	0.87	0.88	49500

1.22.3 Displaying 30 most informative features

In [37]: show_30_informative_feature(vectorizer,Model_LBow)

S.N Positive Negative

1.	10.165	addict	-13.051	aı
2.	9.406	amaz	-9.123 t	olaı
3.	8.438	awesom	-10.127	caı
4.	10.038	beat	-10.607	C
5.	7.003	beauti	-7.860 d	dec
6.	7.925	best	-9.884 d	dece
7.	7.292	complaint	-10.151	di
8.	10.010	delici	-11.124	d:
9.	11.888	downsid	-7.976	dr:
10.	8.479	excel	-8.112	fa:
11.	6.976	fabul	-10.002	f:
12.	7.065	fantast	-8.534	gr
13.	6.811	glad	-10.867	h
14.	6.903	great	-10.231	iı
15.	7.235	habit	-10.951	me
16.	7.399	happier	-8.610	opj
17.	6.696	heaven	-8.455	re
18.	11.030	hook	-9.208	r
19.	8.266	perfect	-9.089	ru
20.	8.723	refresh	-10.560	ta
21.	7.902	satisfi	-12.177	t
22.	12.386	skeptic	-9.787	t]
23.	6.934	smooth	-10.159	t]
24.	8.470	sooth	-9.990	una
25.	7.506	uniqu	-12.711	uı
26.	7.592	versatil	-9.064	un
27.	7.450	whim	-11.392	uı
28.	7.948	worri	-9.066	WOI
29.	9.642	yum	-17.412	W
30.	8.376	yummi	-8.098	yu

1.Report On Different Vectorizer Method and Regularisation Parameter L1

+-----+
| Vectorizer | Hyperparameter(C or 1/Lambda) | Train AUC | Test AUC | F1-Score |

+		+-	+	 	 			-+
-	BOW		5	0.96	0.94		0.91	1
-	TF-IDF	1	1	0.95	0.94		0.85	
-	Avg W2V		1	0.9	0.9		0.83	
-	TF-IDF W2V	1	0.1	0.88	0.5		0.05	
_				 	 			

2.Report On Different Vectorizer Method and Regularisation Parameter L2

	Vectorizer	 -	Hyperparameter(C or 1/Lambda)		Train AUC					
İ	BOW		5	İ	0.96	İ	0.94	I	0.89	İ
	TF-IDF		1		0.96		0.94		0.85	
	Avg W2V		0.05		0.9		0.9		0.83	
	TF-IDF W2V	I	0.1	I	0.88	I	0.5	l	0.05	l
+-		+-		+-		+-		+-		.+

3. Report On Different Vectorizer Method After Addition Of Length as another Column

| Vectorizer | Hyperparameter(C or 1/Lambda) | Train AUC | Test AUC | F1-Score |

+		+		+			+		 	-+
-	В	BOW	1	1	C	.95		0.94	0.88	-
+		+		+					 	+

- 4. I have taken considerable amount of data but it did not take long time in execution .
- 5. Since data is unbalanced , i did time based splitting and used roc_auc metric as scoring parameter in GridsearchCV.
- 6. After adding Length as another column, there is no any improvement.
- 7. TF-IDF W2V is not performing well.