МІНІСТЕРСТВО ОСВІТИ І НАУКИ, МОЛОДІ ТА СПОРТУ УКРАЇНИ ІНСТИТУТ ПРИКЛАДНОГО СИСТЕМНОГО АНАЛІЗУ НАЦІОНАЛЬНОГО ТЕХНІЧНОГО УНІВЕРСИТЕТУ УКРАЇНИ "КИЇВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ ІМ. ІГОРЯ СІКОРСЬКОГО" КАФЕДРА МАТЕМАТИЧНИХ МЕТОДІВ СИСТЕМНОГО АНАЛІЗУ

Практична робота №1 з курсу "Системний аналіз"

Виконав:

студент 4-го курсу групи КА-43 Куриленко О. М. варіант 7

Перевірила: Панкратова Н.Д.

Завдання 1

При заданих цільових функціях $f_1(x), f_2(x)$ та порогових обмеженнях f_1^*, f_2^* визначити область Парето на заданому інтервалі $[x_1, x_2]$ при виконанні умов $f_1(x) \leqslant f_1^*, f_2(x) \geqslant f_2^*$.Звузити область Парето, використовуючи прийоми технічних обмежень.

При виконанні обчислень всі розрахунки провести з точністю до 0.0001, при звуженні інтервалів значення границь округлити до 0.001 і крок сітки брати рівним не більше 0.001.

$$f_1(x) = 9 - 6 \cdot x + x^2$$

$$f_2(x) = 18 - 9 \cdot x - 0.1 \cdot x^2$$

$$f_1^* = 45$$

$$f_2^* = 10$$

$$x_{min} = -5$$

$$x_{max} = 4$$

Розв'яжемо нерівність $f_1 \leqslant f_1^*$:

$$\begin{bmatrix} \left[-3\sqrt{5} + 3, 3 + 3\sqrt{5} \right] \right].$$
 Розв'яжемо нерівність $f_2 \geqslant f_2^*$:
$$\left[\left[-\sqrt{2105} - 45, -45 + \sqrt{2105} \right] \right].$$

Будуємо графіки і зображуємо область Парето:

Ліва границя області Парето дорівнює -3.708, права границя дорівнює 0.88.

Застосовуємо метод технічних обмежень. Для цього зображуємо графіки $\frac{f_1}{f_1^*}$ та $\frac{f_2}{f_2^*}$.

Точки перетину $\frac{f_1}{f_1^*}$ та $\frac{f_2}{f_2^*}$: [-25.7234499785868, 1.93034653031098].

Жодна з них не входить до області Парето.

Скористаємося табличним методом:

-3.708 -3.707 -3.706 -3.705 -3.704	f1/f1* 0.999939 0.999641 0.999343 0.999045 0.998747	f2/f2* 4.999707 4.998882 4.998056 4.997230 4.996404	max(f_i/f_i*) 4.999707 4.998882 4.998056 4.997230 4.996404	<pre>min(max(f_i/f_i*))</pre>	min(f_i/f_i*) 0.999939 0.999641 0.999343 0.999045 0.998747
-3.708 -3.707	max(min	(f_i/f_i*)) 0.999939			3.330747

-3.706

-3.705

-3.704

•••

	f1/f1*	f2/f2*	<pre>max(f_i/f_i*)</pre>	<pre>min(max(f_i/f_i*))</pre>	<pre>min(f_i/f_i*)</pre>
0.876	0.100253	1.003926	1.003926		0.100253
0.877	0.100158	1.003009	1.003009		0.100158
0.878	0.100064	1.002091	1.002091		0.100064
0.879	0.099970	1.001174	1.001174		0.099970
0.880	0.099876	1.000256	1.000256	1.00026	0.099876

max(min(f_i/f_i*))

0.876 0.877 0.878 0.879 0.880 Згідно з теорією, область Парето має лежати між двома точками, в яких досягаються $\max\min\frac{f_i}{f_i^*}$ та $\min\max\frac{f_i}{f_i^*}$.

Можемо бачити, що метод технічних обмежень не звужує множину Парето внаслідок використання принципів максиміна/мінімакса.

Отже, множина Парето після звуження не змінилася: $[-3\sqrt{5}+3, \quad \sqrt{2105}-45].$

Завдання 2

Розглядається задача розкриття невизначеності протидії двої суб'єктів. Кожна сторона має свою цільову функцію: суб'єкт 1 - $f_1(x_1,x_2)$, суб'єкт 2 - $f_2(x_1,x_2)$. Суб'єкти діють незалежно — кожен не знає ані цільової функції, ані параметрів протилежної сторони. Необхідно:

- 1. Визначити гарантований результат f_{12}^* , f_{21}^* кожного суб'єкта табличним, графічним та класичним методами.
- 2. Знайти область Парето з умови: $f_{12}(x_1, x_2) \geqslant f_{12}^*$, $f_{21}(x_1, x_2) \geqslant f_{21}^*$.
- 3. Визначити оптимальні значення $x_1^*, x_2^*,$ при яких $\Delta_i = |f_i(x_1^*, x_2^*) f_i^*|,$ i = 1, 2 набуває мінімального значення $\Delta \longrightarrow 0$.

$$f_1(x_1,x_2)=\frac{6}{5}\cdot(3\cdot x_1^2+5\cdot x_1\cdot x_2+4\cdot x_1);$$

$$f_2(x_1,x_2)=-4\cdot x_1^2+2\cdot x_1\cdot x_2+0.25\cdot x_2^3+3.$$

$$x_{1\min}=1$$

$$x_{1\max}=5$$

$$x_{2\min}=1$$

$$x_{2\max}=5$$
 Крок сітки: 0.02.

Табличний метод

	x1	x2	f1(x1,x2)	f2(x1,x	2) min_x2(f1()	(1,x2))
0	1.0	1.00	14.40	1.25000	90	14.4
1	1.0	1.02	14.52	1.30530	92	14.4
2	1.0	1.04	14.64	1.3612	L6	14.4
3	1.0	1.06	14.76	1.4177	54	14.4
4	1.0	1.08	14.88	1.47492	28	14.4
	max	x_x1_mi	n_x2(f1(x1,	x2)) mi	.n_x1(f2(x1,x2))	$\max_{x2}\min_{x1}(f2(x1,x2))$
0			144	1.0	-86.750000	-15.75
1			144	1.0	-86.534698	-15.75
2			144	1.0	-86.318784	-15.75
3			144	1.0	-86.102246	-15.75
4			144	1.0	-85.885072	-15.75

•••

```
f1(x1,x2) f2(x1,x2)
                                           min_x2(f1(x1,x2))
       x1
              x2
40396
       5.0
            4.92
                       261.6 -18.026128
                                                       144.0
40397
       5.0
            4.94
                       262.2 -17.461554
                                                       144.0
                       262.8 -16.894016
                                                      144.0
40398
       5.0
            4.96
       5.0
40399
            4.98
                       263.4 -16.323502
                                                      144.0
40400
       5.0
            5.00
                       264.0 -15.750000
                                                      144.0
       max x1 min x2(f1(x1,x2))
                                  min x1(f2(x1,x2))
                                                      max x2 min x1(f2(x1,x2))
40396
                           144.0
                                          -18.026128
                                                                          -15.75
40397
                           144.0
                                          -17.461554
                                                                          -15.75
40398
                           144.0
                                          -16.894016
                                                                          -15.75
                           144.0
                                                                          -15.75
40399
                                          -16.323502
                                                                          -15.75
40400
                           144.0
                                          -15.750000
```

3 таблиці визначили, що $\max_{x_1} \min_{x_2} (f_1(x_1, x_2)) = 144$, $\max_{x_2} \min_{x_1} (f_2(x_1, x_2)) = -15.75$.

Виведемо відповідні рядки, де $f_1(x_1, x_2) = 144$ і $f_2(x_1, x_2) = -15.75$:

1) для f_1

 $x_2=2.8$ не ϵ точкою мінімуму при $x_1=4$, тож ϵ диним розв'язком ϵ $x_1=5$, $x_2=1$.

2) для f_2

$$x_1 = 5, x_2 = 5.$$

Тобто:

$$f_{12}^* = f_1(5,1) = 144, f_{21}^* = f_2(5,5) = -15.75.$$

Графічний метод

1) для f_1

Як бачимо, максимальний мінімум функції f_1 досягається при $x_1=5$ і $x_2=1$, і дорівнює 144.

2) для f_2

Як бачимо, максимальний мінімум функції f_2 досягається при $x_1=5$ і $x_2=5$, і дорівнює -15.75.

Тобто:

$$f_{12}^* = f_1(5,1) = 144, f_{21}^* = f_2(5,5) = -15.75.$$

Класичний метод

1) Знайдемо х, при яких f_1 досягає $\max_1 min_2 f_1(x_1, x_2)$.

$$\frac{\partial f_1}{\partial x_2} = 1.2 \cdot 5 \cdot x_1 = 0. => x_1 = 0 \notin [1, 5].$$

Отже, $\max_1 \min_2 f_1(x_1,x_2)$ досягається в граничних точках [1,5]. $f_1(1,x_2)=1.2\cdot(7+5\cdot x_2)$.

$$f_1(1, x_2) = 1.2 \cdot (7 + 5 \cdot x_2).$$

 $f_1(5, x_2) = 1.2 \cdot (95 + 25 \cdot x_2).$

Оскільки в даному випадку $x_2 \in [1, 5]$, то max по x_1 досягається в точці $x_1 = 5$.

$$\frac{\partial f_1}{\partial x_1} = 6 \cdot x_2 + 1.2 \cdot (4 + 6 \cdot x_1) = 0.$$

При $x_1 = 5$:

$$x_2 \le 0 = > \notin [1, 5].$$

Шукаємо в граничних точках:

$$\overline{f_1}(5,1) = 144.$$

$$f_1(5,5) = 264.$$

Мінімум по x_2 досягається в точці $x_2 = 1$.

$$max_1min_2f_1(x_1,x_2) = f_1(5,1) = 144.$$

2) Знайдемо х, при яких f_2 досягає $\max_2 min_1 f_2(x_1, x_2)$.

$$\begin{array}{l} \frac{\partial f_2}{\partial x_1} = -8 \cdot x_1 + 2 \cdot x_2 = 0. \\ x_2 = 2 \cdot x_1 \\ \frac{\partial f_2}{\partial x_2} = 2 \cdot x_1 + 0.75 \cdot x_2^2 = 0. \end{array}$$

Отримуємо:
$$3 \cdot x_1^2 + x_1 = 0$$
.

Корені даного рівняння не належать проміжку [1,5]. Тож шукаємо в граничних точках.

$$f_2(1, x_2) = -4 + 2 \cdot x_2 + 0.25 \cdot x_2^3 + 3.$$

$$f_2(5, x_2) = -100 + 10 \cdot x_2 + 0.25 \cdot x_2^3 + 3.$$

На відрізку [1,5] мінімум по x_1 досягається в точці $x_1 = 5$.

Тоді
$$x_2 = 2 \cdot x_1 = 2 \cdot 5 = 10 \notin [1, 5].$$

Отже, шукаємо в граничних точках.

$$f_2(5,1) = -86.75.$$

$$f_2(5,5) = -15.75.$$

Максимум по x_2 досягається при $x_2 = 5$. $max_2min_1f_2(x_1,x_2) = f_2(5,5) = -15.75.$

Тобто:

$$f_{12}^* = f_1(5,1) = 144, f_{21}^* = f_2(5,5) = -15.75.$$

Знаходження області Парето

Множину Парето знаходимо виходячи з нерівностей $f_1(x_1,x_2)\geqslant f_1^*$ та $f_2(x_1,x_2)\geqslant f_2^*$.

$$\frac{18x_1^2}{5} + 6x_1x_2 + \frac{24x_1}{5} \ge 144,$$

$$-4x_1^2 + 2x_1x_2 + \frac{x_2^3}{4} + 3 \ge -\frac{63}{4},$$

$$x_1 \le 5, x_1 \ge 1, x_2 \le 5, x_2 \ge 1.$$

1) Для 1-го суб'єкта з умови $\frac{18x_1^2}{5}+6x_1x_2+\frac{24x_1}{5}\geq 144$:

2) Для 2-го суб'єкта з умови $-4x_1^2+2x_1x_2+\frac{x_2^3}{4}+3\geq -\frac{63}{4}$:

Зображуємо множину Парето, де лежать раціональні розв'язки для протидіючих суб'єктів, у вигляді перетину областей для 1-го і 2-го суб'єктів з врахуванням обмежень на x_1 та x_2 :

Знаходження мінімального Δ

$$\Delta = \min_{x_1 x_2} \max_i \Delta_i$$
 , де $\Delta_i = \mid f_i(x_1, x_2) - f_i^* \mid$, $i = 1, 2$.

Знаходимо максимум з-поміж Δ_i для кожної пари (\mathbf{x}_1, x_2) :

	x1	x2	f1-f1*	f2-f2*	<pre>max(delta_i)</pre>
0	1.0	1.00	129.60	17.000000	129.60
1	1.0	1.02	129.48	17.055302	129.48
2	1.0	1.04	129.36	17.111216	129.36
3	1.0	1.06	129.24	17.167754	129.24

4	1.0	1.0	8 1	.29.12 17.2	224928	129.12
•••						
		x1	x2	f1-f1*	f2-f2*	<pre>max(delta_i)</pre>
40	396	5.0	4.92	117.6	2.276128	117.6
40	397	5.0	4.94	118.2	1.711554	118.2
40	398	5.0	4.96	118.8	1.144016	118.8
40	399	5.0	4.98	119.4	0.573502	119.4
40	400	5.0	5.00	120.0	0.000000	120.0

 $\Delta = \min_{x_1 x_2} \max_i \Delta_i = 0.144$, що відповідає рядку з таблиці:

Тобто оптимальні значення $(x_1^*, x_2^*) \approx (3.7, 3.46)$.

Зобразимо (x_1^*, x_2^*) :

Лістинг програми

```
# coding: utf-8
# ### Завдання 1
# In[307]:
import numpy as np
import pandas as pd
import sympy as sp
from sympy.abc import x
from sympy import init printing;
init printing()
import matplotlib.patches as mpatches
import matplotlib.pyplot as plt
get ipython().magic(u'matplotlib inline')
# In[308]:
f1 = lambda x: 9-6*x+x**2
f2 = lambda x: 18 - 9*x - 0.1*x**2
f1 star = 45
f2 star = 10
x min = -5
x max = 4
x = 0 = \text{np.linspace}(x = \text{min}, x = \text{max}, 901)
# Розв'яжемо нерівність f1 \le f1\*:
# In[309]:
#f1<=f1 star
sp.solve_poly_inequality(sp.Poly(9-6*x+x**2 - 45, x, domain='RR'), '<=')
#take left here
# Розв'яжемо нерівність f2<=f2\*:
# In[310]:
```

```
\#f2 > = f2 \text{ star}
sp.solve poly inequality(sp.Poly(18 - 9*x - 0.1*x**2 - 10, x, domain='RR'), '>=')
#take right here
# Будуємо графіки і зображуємо область Парето:
# In[311]:
plt.figure(1)
fig1, ax1 = plt.subplots()
plt.plot(x 0 01,f1(x 0_01), 'b', x_0_01, f2(x_0_01), 'r')
plt.xticks(np.arange(-5,4,0.5))
plt.plot((-5, 4), (45, 45), 'b--')
plt.plot((-5, 4), (10, 10), 'r--')
plt.grid(True)
plt.plot()
ax1.fill between(np.linspace(float(sp.solve(9-6*x+x**2 - 45, x)[1]),float(sp.solve(18
-9*x - 0.1*x**2 - 10, x)[1], 100, -20,70, facecolor='#F9966B')
plt.title('f1, f2 & Pareto area')
blue patch = mpatches.Patch(color='blue', label="f1(x)")
red patch = mpatches.Patch(color='red', label='f2(x)')
plt.legend(handles=[blue patch, red patch])
# Застосовуємо метод технічних обмежень.
# In[312]:
print"Pareto left = %f. \nPareto right = %f.\nPareto right - Pareto left = %f."%
(round(float(-3*np.sqrt(5)+3),3), round(float(np.sqrt(2105)-45),3),
round(round(float(np.sqrt(2105)-45),3)-round(float(-3*np.sqrt(5)+3),3),3))
num intervals 1 = int(round(round(float(np.sqrt(2105)-45),3)-round(float(-
3*np.sqrt(5)+3),3),3)/0.001)+1
print"Number of intervals (by 0.001): %i."%(num intervals 1)
x Pareto 0 001=np.linspace(round(float(-
3*np.sqrt(5)+3),3),round(float(np.sqrt(2105)-45),3), num intervals 1)
# In[313]:
def max df 1(x, y):
  returnvec=np.zeros(x.shape)
```

```
for i in range(0, x.shape[0]):
     if x.iloc[i]<y.iloc[i]:
       returnvec[i]=y.iloc[i]
     else:
        returnvec[i]=x.iloc[i]
  return returnvec
def min df 1(x, y):
  returnvec=np.zeros(x.shape)
  for i in range(0, x.shape[0]):
     if x.iloc[i]>y.iloc[i]:
       returnvec[i]=v.iloc[i]
     else:
        returnvec[i]=x.iloc[i]
  return returnvec
# In[315]:
df 1 = pd.DataFrame(index=x Pareto 0 001)
df 1['f1/f1*'] = f1(x Pareto 0 001)/f1 star
df 1['f2/f2*'] = f2(x Pareto 0 001)/f2 star
df \ 1['max(f \ i/f \ i^*)'] = max \ df \ 1(df \ 1['f1/f1^*], df \ 1['f2/f2^*])
df 1[\min(\max(f i/f i^*))']="
for i in range(0,df 1.shape[0]):
  if df 1['max(f i/f i*)'].iloc[i]==min(df 1['max(f i/f i*)']):
     df 1[\min(\max(f i/f i^*))'].iloc[i] = \min(df 1[\max(f i/f i^*)'])
df \ 1['min(f \ i/f \ i^*)'] = min \ df \ 1(df \ 1['f1/f1^*'], df \ 1['f2/f2^*'])
df 1['max(min(f i/f i*))']="
for i in range(0,df_1.shape[0]):
  if df 1['min(f i/f i*)'].iloc[i]==max(df 1['min(f i/f i*)']):
     df 1[\max(\min(f i/f i^*))].iloc[i] = \max(df 1[\min(f i/f i^*)])
df 1
# In[11]:
plt.figure(2)
fig2, ax2 = plt.subplots()
plt.plot(x 0 01,f1(x 0 01)/45, '#810541', x 0 01, f2(x 0 01)/10, 'r')
plt.xticks(np.arange(-5,4,0.5))
plt.grid(True)
plt.title('f1/f1*, f2/f2* & Pareto area')
ax2.fill between(np.linspace(float(sp.solve(9-6*x+x**2 - 45, x)[1]),float(sp.solve(18
-9*x - 0.1*x**2 - 10, x)[1], 100, -20,70, facecolor='#FDD7E4')
maroon patch = mpatches.Patch(color='#810541', label="f1(x)/f1*")
```

```
red patch = mpatches.Patch(color='r', label='f2(x)/f2*')
plt.legend(handles=[maroon patch, red patch])
print("Точки перетину f1/f1* та f2/f2*:")
sp.solve((18 - 9*x - 0.1*x**2)/10 - (9-6*x+x**2)/45, x)
# Отже, множина Парето: $[-3\sqrt{5}+3, \sqrt{2105}-45]$.
# ### Завдання 2
# In[320]:
f1 = lambda x, y: 6*(3*x**2 + 5*x*y + 4*x)/5
f2 = lambda x, y: -4*x**2 + 2*x*y + 0.25*y**3 + 3
x min = 1
x max = 5
num 0 02 = int((x max - x min)/0.02)+1
x = 0 = 0.02 = \text{np.linspace}(x = 0.02)
# #### Табличний метод
# In[321]:
df 2 = pd.DataFrame(index=range(len(x 0 02)*len(x 0 02)))
# In[322]:
def fill table with x(df):
  for i in range(len(x 0 02)):
    df.iloc[i*len(x 0 02):(i+1)*len(x_0_02), 0] = x_0_02[i]
    df.iloc[i*len(x 0 02):(i+1)*len(x 0 02), 1] = x 0 02[0:len(x 0 02)]
  return 0
# In[323]:
df 2['x1']=0
df 2['x2']=0
fill table with x(df 2)
# In[324]:
```

```
df 2['f1(x1,x2)'] = f1(df 2['x1'], df 2['x2'])
df 2['f2(x1,x2)'] = f2(df 2['x1'], df 2['x2'])
df 2.head(10)
# In[325]:
df 2['min x2(f1(x1,x2))'] = 0
for i in range(len(x \ 0 \ 02)):
  min x^2 = min(df 2.iloc[np.where(df 2['x1']==x 0 02[i])[0], 2])
  df 2.iloc[np.where(df 2['x1']==x 0 02[i])[0], 4]= min x2
# In[326]:
max x1 min x2 = max(pd.to numeric(df 2['min x2(f1(x1,x2))'], errors='coerce'))
df 2['max x1 min x2(f1(x1,x2))']=max x1 min x2
# In[327]:
df 2['min x1(f2(x1,x2))'] = 0
for i in range(len(x 0 02)):
  min x1 = min(df 2.iloc[np.where(df 2['x2']==x 0 02[i])[0], 3])
  df 2.iloc[np.where(df 2['x2']==x 0 02[i])[0], 6]= min x1
# In[328]:
max x2 min x1 = max(pd.to numeric(df 2['min x1(f2(x1,x2))'], errors='coerce'))
df 2['max x2 min x1(f2(x1,x2))']=max x2 min x1
# In[329]:
df 2.iloc[np.where(df 2['max x1 min x2(f1(x1,x2))']==df 2['f1(x1,x2)'])]
# In[330]:
df 2.iloc[np.where(df 2['max x2 min x1(f2(x1,x2))']==df 2['f2(x1,x2)'])]
# In[335]:
print df 2.iloc[np.where(df 2['max x2 min x1(f2(x1,x2))']==df 2['f2(x1,x2)'])]
```

```
# #### Графічний метод
# In[180]:
x2 12345 = df 2.iloc[np.where(df 2['x1']==1.)[0], 1]
v1 1 = df 2.iloc[np.where(df 2['x1']==1.)[0], 2]
y1 = 2 = df = 2.iloc[np.where(df = 2['x1']==2.)[0], 2]
v1 = 3 = df = 2.iloc[np.where(df = 2['x1'] = 3.)[0], 2]
v1 = df = 2.iloc[np.where(df = 2['x1'] = 4.)[0], 2]
y1 5 = df 2.iloc[np.where(df 2['x1']==5.)[0], 2]
# In[181]:
plt.figure(1)
fig1, ax1 = plt.subplots()
plt.plot(x2 12345,y1 1,'b', x2 12345,y1 2,'r', x2 12345,y1_3,'k', x2_12345,y1_4,'g',
x2 12345,y1 5,'y')
blue patch = mpatches.Patch(color='blue', label="f1(1, x2)")
yellow patch = mpatches.Patch(color='yellow', label='f1(5, x2)')
plt.legend(handles=[blue patch, yellow patch])
# In[182]:
x1 12345 = df 2.iloc[np.where(df 2['x1']==1.)[0], 1]
y2 1 = df 2.iloc[np.where(df 2['x2']==1.)[0], 3]
y2 = df \ 2.iloc[np.where(df \ 2['x2']==2.)[0], 3]
v^2 = df = 2.iloc[np.where(df = 2['x2'] = 3.)[0], 3]
v_2 = df = 2.iloc[np.where(df 2['x2']==4.)[0], 3]
y2 = 5 = df = 2.iloc[np.where(df = 2['x2']==5.)[0], 3]
# In[183]:
plt.figure(2)
fig1, ax1 = plt.subplots()
plt.plot(x2 12345,y2 1,'b', x2 12345,y2 2,'r', x2 12345,y2_3,'k', x2_12345,y2_4,'g',
x2 12345,y2 5,'y')
blue patch = mpatches. Patch (color='blue', label="f2(x1, 1)")
vellow patch = mpatches. Patch(color='vellow', label='f2(x1, 5)')
plt.legend(handles=[blue patch, yellow patch])
```

```
# Знайдемо x, при яких $f 1$ досягає $max 1 min 2 f 1(x 1, x 2)$.
# \frac{1}{\operatorname{partial } x} = 1.2 \cdot 5 \cdot 1 = 0.
# $$=>x 1=0 \not\in [1, 5]. $$
# Отже, $max 1 min 2 f 1(x 1, x 2)$ досягається в граничних точках [1,5].
# $$f 1(1, x 2) = 1.2 \cdot (7 + 5 \cdot x 2).$$
# $$f 1(5, x 2) = 1.2 \cdot (95 + 25 \cdot x 2).$$
# Оскільки в даному випадку x_2 \in [1,5], то max по x = 1 досягається в
точці $х 1=5.$
# \frac{1}{\text{partial } x \ 1} = 6 \cdot x \ 2 + 1.2 \cdot (4 + 6 \cdot x \ 1) = 0.$
# При x 1 = 5:
# $x 2 \leq 0 =   (1,5].
# Шукаємо в граничних точках:
# $$f 1(5,1) = 144.$$
# $$f 1(5, 5) = 264. $$
# min по $x 2$ досягається в точці $x 2=1.$
#$$max 1 min 2 f 1(x 1, x 2) = f 1(5, 1) = 144.$$
# Знайдемо x, при яких $f 2$ досягає $max 2 min 1 f 2(x 1, x 2)$.
# \frac{1}{2} {\operatorname{x } 1} = -8 \cdot x \cdot 1 + 2 \cdot x \cdot 2 = 0.
\# \$x \ 2 = 2 \cdot \text{cdot } x \ 1\$
# \frac{1}{2}  \partial f 2} {\partial x 2} = 2 \cdot x 1 + 0.75 \cdot x 2^2 = 0.$$
# Отримуємо: $3 \cdot x 1^2 + x 1 = 0.$
# Корені даного рівняння не належать проміжку [1,5]. Тож шукаємо в граничних
точках.
#$$f 2(1, x 2) = -4 + 2 \cdot x 2 + 0.25 \cdot x 2^3 + 3.$$
#$$f 2(5, x 2) = -100 + 10 \cdot x 2 + 0.25 \cdot x 2^3 + 3.$$
# На відрізку [1,5] мінімум по x 1$ досягається в точці x 1=5.$
# Тоді x 2 = 2 \cdot 1 = 2 \cdot 1 = 10 \cdot 1 
# Отже, шукаємо в граничних точках.
# $$f 2(5, 1) = -86.75.$$
# $$f 2(5, 5) = -15.75.$$
# Максимум по x 2 досягається при x 2 = 5.
#$$max 2 min 1 f 2(x 1, x 2) = f 2(5, 5) = -15.75.$$
# #### Знаходження області Парето
# In[187]:
f1 star = \max x1 \min x2
f2 star = max x2 min x1
```

Класичний метод

```
print f1 star
print f2 star
# In[204]:
from mpl toolkits.mplot3d import Axes3D
fig = plt.figure()
ax = fig.add subplot(111, projection='3d')
ax.plot(df 2['x1'], df 2['x2'], df 2['f1(x1,x2)']-f1 star, 'k', label='f1(x1,x2)-f1*')
ax.plot(df 2['x1'], df 2['x2'], df 2['f2(x1,x2)']-f2 star, 'r', label='f2(x1,x2)-f2*')
ax.legend()
# #### Знаходження мінімального delta
# In[298]:
df delta = pd.DataFrame()
# In[299]:
df \ delta['x1'] = df \ 2['x1']
df \ delta['x2'] = df \ 2['x2']
df \ delta['|f1-f1*|'] = abs(df \ 2['f1(x1,x2)'] - f1 \ star)
df delta['|f2-f2*|'] = abs(df_2['f2(x1,x2)'] - f2_star)
# In[303]:
def max df delta(x, y):
  returnvec=np.zeros(x.shape)
  for i in range(0, x.shape[0]):
     if x.iloc[i]<y.iloc[i]:
       returnvec[i]=y.iloc[i]
     else:
        returnvec[i]=x.iloc[i]
  return returnvec
# Знаходимо максимум з-поміж $\Delta і$ для кожної пари $(x 1,x 2)$.
# In[304]:
df delta['max(delta i)'] = max df delta(df delta['|f1-f1*|'], df delta['|f2-f2*|'])
```

```
# In[339]:

print df_delta.iloc[np.where(df_delta['max(delta_i)']==min(df_delta['max(delta_i)']))]

# In[306]:

df_delta.iloc[np.where(df_delta['max(delta_i)']==min(df_delta['max(delta_i)']))]
```