Task 2.2

Угнивенко Виталий

1 Постановка задачи

Рассмотрим задачу предсказание числа заболевших некоторой болезнью от некоторых экологических анализов. Гарантируется, что предсказание описывается линейной моделью.

Так как проведение анализов не является бесплатным, то стоит вопрос о том какие из анализов являются лишними (на уровне значимости $\alpha=0.05$) для предсказания линейной модели.

Требуется:

- Записать задачу формально
- Провести отбор приизнаков линейной модели

Все выкладки должны быть сделаны аналитически, без использования компьютера.

2 Частный F-тест

Критерий призван оценить целесообразность ввода дополнительной независимой переменной в линейную модель множественной регрессии, уравнение которой, как известно, имеет вид:

$$y = w_0 + w_1 \cdot x_1 + \cdots + w_n \cdot x_n + \varepsilon$$

у - целевая переменная

 $x_1, \dots x_n$ - независимые переменные

 ε - случайный шум $w_0, \dots w_n$ - коффициенты модели

Введём такое понятие, как сумма квадратов регрессии

$$SSR = \sum_{i=1}^{n} (\hat{y_i} - \overline{y})^2$$

 $\hat{\mathbf{y_i}}$ - оценка, полученная на основе регрессионной модели

у - среднее по всем наблюдениям у

п - объем выборки

Данный показатель характеризует ту долю общей вариации результативного признака у, которую получилось объяснить при помощи регрессии.

Теперь предположим, что на основе переменных $x_1, \dots x_k$ была построена регрессионная модель, для которой доля изменчивости, объясненная линейной зависимостью, составила величину $SSR_{initial}$. Допустим, что мы хотим ввести в модель новый признак x_{extra} . Сумма квадратов регрессии SSR, построенной на независимых переменных $x_1, \dots x_k$ и x_{extra} , составляет SSR_{full} . Очевидно, что $SSR_{full} > SSR_{initial}$.

Рассчитаем, насколько увеличилась объясняющая способность модели в результате ввода новой переменной $x_{\rm extra}$: $S_{\rm extra} = SSR_{\rm full} - SSR_{\rm initial}$. Таким образом, $S_{\rm extra}$ можно назвать вкладом переменной $x_{\rm extra}$ в объяснение общей изменчивости результативного признака у. Очевидно, чем больше данное значение, тем весомей этот вклад.

Тогда возникает вопрос: Каким образом следует выбрать порог для $SSR_{\rm extra}$, чтобы признать эту величину достаточно большой и, соответственно, принять решение о значимости признака $x_{\rm extra}$? С ответом на этот вопрос может помочь так называемый частный F-тест.

По сути, данный критерий призван проверить следующую гипотезу:

 H_0 : вклад $SSR_{\rm extra}$, вносимый $x_{\rm extra}$, не достаточно велик, ввиду чего эту переменную не следует включать в модель против альтернативы

 H_1 : вклад SSR_{extra} , вносимый x_{extra} , значительный, и потому эту переменную следует включить в модель.

Для того чтобы проверить эти гипотезы, следует перейти от рассматриваемого показателя $SSR_{\rm extra}$ к статистике следующего вида:

$$\gamma = \frac{SSR_{extra}}{MSE_{full}}$$

 $MSE_{\rm full}$ представляет собой сумму квадратов ошибок SSE (модель построена по переменным $x_1, \dots x_k$ и $x_{\rm extra}$), приходящуюся на одну степень свободы $df_{\rm sse}$. Значение $MSE_{\rm full}$ может быть найдено по формуле:

$$MSE_{full} = \frac{SSE}{df_{sse}} = \frac{\sum_{i=1}^{n} (y_i - \hat{y_i})^2}{n - k - 2}$$

Доказано, что статистика γ при справедливости гипотезы H_0 распределена по закону Фишера.

Тогда проверка гипотезы H_0 будет сводиться к следующей последовательности действий:

- 1. Задаемся уровнем значимости α .
- 2. По специальным таблицам находим процентную точку K_{α} распределения Фишера со степенями свободы $d_1=1$ и $d_2=n-k-2$. Это значение будет являться граничным для статистики γ .
- 3. Сравниваем найденную процентную точку K_{α} со значением статистики γ . Если окажется, что $\gamma > K_{\alpha}$, то делается вывод о значимости признака x_{extra} и, соответственно, его следует включить в модель. Если же $\gamma \leq K_{\alpha}$, то принимается решение о неэффективности включения переменной x_{extra} в модель.

3 Метод прямого отбора

Данный алгоритм включает в себя следующие шаги:

- 1. Из списка всех возможных входных переменных выбирается та, которая имеет наибольшую корреляцию с у, после чего модель, содержащая лишь одну выбранную независимую переменную, проверяется на значимость при помощи частного F-критерия. Если значимость модели не подтверждается, то алгоритм на этом заканчивается за неимением существенных входных переменных. В противном случае эта переменная вводится в модель и осуществляется переход к следующему пункту алгоритма. Следует отметить, что в данном случае проверка на значимость всей модели в целом будет равносильна проверке на значимость выбранной независимой переменной, так как на данном этапе модель еще не содержит других входных переменных.
- 2. По всем оставшимся переменным рассчитывается значение статистики γ , которая представляет собой отношение прироста суммы квадратов регрессии, достигаемая за счет ввода в модель соответствующей дополнительной переменной (по сравнению с величиной $SSR_{initial}$, рассчитанной только лишь на основе ранее уже введенных переменных), к величине MSE_{full} .
- 3. Из всех переменных-претендентов на включение в модель выбирается та, которая имеет наибольшее значение критерия, рассчитанного в пункте 2.
- 4. Проводится проверка на значимость выбранной в пункте 3 независимой переменной. Если ее значимость подтверждается, то она включается в модель, и осуществляется переход к пункту 2 (но уже с новой независимой переменной в составе модели). В противном случае алгоритм останавливается.

4 Решение

Найдём корреляцию Пирсона каждого признака с целевой переменной по следующей формуле:

$$corr(x_{j}, y) = \frac{\sum_{i=1}^{30} (x_{ji} - \overline{x_{j}})(y_{i} - \overline{y})}{\sqrt{\sum_{i=1}^{30} (x_{ji} - \overline{x_{j}})^{2} \cdot \sum_{i=1}^{30} (y_{i} - \overline{y})^{2}}}$$

ј - номер признака, а і - номер экземпляра в выборке

feature	$corr(x_j, y)$
x ₁	-0.244527
\mathbf{x}_2	0.085782
\mathbf{x}_3	0.785655
x_4	0.185746
\mathbf{x}_5	0.010491
\mathbf{x}_6	-0.354543
\mathbf{x}_7	0.019549
x ₈	0.110317
Х9	-0.134460
x ₁₀	0.096125

Признак x_3 имеет наибольшую корреляцию, потому рассмотрим модель $\hat{y}=b+w\cdot x_3$. Коэффициенты найдём с помощью МНК: b=1.78 и w=3.16

Посчитаем всё необходимое:

x_{3i}	y_i	Ŷi	y	$(y_i - \hat{y_i})^2$	$(y_i - \overline{y})^2$
-1.2	0.0	-2.02	2.7	4.07	22.25
0.5	1.0	3.36	2.7	5.59	0.44
8.0	3.0	4.31	2.7	1.73	2.61
0.5	3.0	3.36	2.7	0.13	0.44
0.4	1.0	3.05	2.7	4.2	0.12
0.9	2.0	4.63	2.7	6.92	3.73
1.5	10.0	6.53	2.7	12.04	14.67
1.1	4.0	5.26	2.7	1.6	6.58
-0.1	1.0	1.47	2.7	0.22	1.52
2.0	5.0	8.11	2.7	9.69	29.31
-1.2	0.0	-2.02	2.7	4.07	22.25
1.8	14.0	7.48	2.7	42.5	22.85
-0.2	1.0	1.15	2.7	0.02	2.41
-0.7	1.0	-0.43	2.7	2.06	9.82
0.5	3.0	3.36	2.7	0.13	0.44
-0.6	0.0	-0.12	2.7	0.01	7.94
1.5	10.0	6.53	2.7	12.04	14.67
0.2	1.0	2.42	2.7	2.0	0.08
0.7	3.0	4.0	2.7	1.0	1.68
0.3	1.0	2.73	2.7	3.0	0.0
0.1	1.0	2.1	2.7	1.21	0.36
-0.3	1.0	0.83	2.7	0.03	3.49
-0.1	1.0	1.47	2.7	0.22	1.52
0.5	4.0	3.36	2.7	0.4	0.44
-0.4	1.0	0.52	2.7	0.23	4.77
-0.6	1.0	-0.12	2.7	1.25	7.94
0.1	1.0	2.1	2.7	1.21	0.36
0.1	2.0	2.1	2.7	0.01	0.36
0.9	4.0	4.63	2.7	0.4	3.73
-0.3	1.0	0.83	2.7	0.03	3.49

Таким образом

$$MSE_{full} = 4.21$$

$$SSE_{extra} = 190.27$$

$$\gamma = 45.14$$

Табличное же значение при $d_1=1$ и $d_2=28\to K_\alpha=4,20,$ что меньше, чем γ . Соответсвенно, взяв в модель x_3 мы ошибёмся с вероятностью не более 5%.

Теперь для всех остальных признаков считаем γ аналогичным образом:

feature	SSE _{extra}	MSE _{full}	γ
X ₁	3.55	22.19	6.25
\mathbf{x}_2	4.31	1.52	0.35
\mathbf{x}_4	4.23	3.75	0.89
\mathbf{x}_5	4.31	1.54	0.36
x_6	4.27	2.67	0.63
\mathbf{x}_7	4.34	0.95	0.22
x ₈	4.36	0.38	0.09
X9	4.37	0.09	0.02
x ₁₀	4.36	0.26	0.06

Самое большое значение γ у признака x_1 . Табличное же значение при $d_1=1$ и $d_2=27\to K_\alpha=4,21$, что меньше, чем $\gamma=6.25$ у x_1 . Соответсвенно, взяв в модель x_1 мы ошибёмся с вероятностью не более 5%.

Повторим итерацию вычислений:

feature	SSE _{extra}	MSE _{full}	γ
x2	3.49	1.48	0.42
x4	3.34	5.58	1.67
x 5	3.54	0.25	0.07
x6	3.43	3.09	0.9
x7	3.51	1.18	0.34
x8	3.52	0.77	0.22
x9	3.55	0.08	0.02
x10	3.55	-0.03	-0.01

При этом табличное значение при $d_1=1$ и $d_2=26 \to K_\alpha=4,23$, что больше, чем любая γ . Соответсвенно остальные признаки в модель включать не стоит.

Необходимо включить в модель признаки x_1 и x_3 .