L1S2 Théorie de l'Information

Université de Toulouse

Départements de Mathématique et d'Informatique

Année 2018/2019

Plan

- Codage
- La notion d'information selon Shannon et codage optimal
- Complexité de Kolmogorov et compression de données
- Codes correcteurs et détecteurs d'erreurs

Plan

- Codage
 - Motivation
 - Codage de caractères
 - Codes

Modèle de communication (1)

Modèle naïf:

Émetteur Récepteur

Question: Comment transmettre l'information?

Modèle de communication (2)

Modèle avec canal:

Questions:

- Quels types de données sont transmissibles?
 Ex. : comment transmettre une image?
- Capacité du canal?
- Canal bruité?
- Confidentialité du canal?

Modèle de communication (3)

Modèle avec codage :

Solutions ... et nouvelles questions :

- Codage de données (*Ex* : nombres ; caractères ; images ; son) *Réversibilité : peut-on reconstruire le message original*?
- Compression de données. Optimalité?
- Détection et correction d'erreurs. Pour quelle perturbation?
- Cryptage. Quelle sécurité pour quel type d'adversaire?

Stockage de données

comme cas particulier de communication :

Modèle client-serveur

page HTML:

```
Une <b>liste</b> 
et une <i>balise</i>
```

affichage navigateur :

- Une liste
- et une balise

Plan

- Codage
 - Motivation
 - Codage de caractères
 - Codes

Codage de caractères : Précurseurs

Code Morse

- Développé par Samuel Morse et collaborateurs (1837)
- Transmission de signaux par télégraphe
- Codage de caractères par séquences signal court / long

Code morse international

- Un tiret est égal à trois points.
- L'expacement entre deux éléments d'une même lettre est égal à un po
- L'espacement entre deux lettres est égal à trois points.
 L'espacement entre deux mots est égal à sept points.

Codage de caractères : Précurseurs

Téléscripteurs

- Machines à écrire à distance
- Premiers développements \approx 1930
- Caractéristiques :
 - Alphabet restreint (caractères non accentués, majuscules)
 - Affichage sans écran!
 - Codage du mouvement du chariot de la machine (saut de ligne, retour chariot)
 - Stockage de données sur ruban perforé

Codage de caractères : Précurseurs

Code Baudot

- Inventé en 1870 par Émile Baudot
- Système à 5 bits transmis simultanément
- Deux modes :
 - 26 lettres ex.: 01010 lettre R
 - 2 10 chiffres, quelques symboles ex.: 01010 chiffre 4
- Séquences de contrôle : 01000 retour chariot 11111 changement mode "lettres" 11011 changement mode "chiffres"

Codage de caractères : ASCII (1)

American Standard Code for Information Interchange

- Standardisé en 1963 : norme ASA des États-Unis
- Depuis 1972 : norme ISO 646

Codage binaire de 128 caractères en 7 bits :

- caractères de l'alphabet anglais (minuscules et majuscules)
- chiffres
- quelques symboles
- des caractères de contrôle (en partie pour téléscripteurs)

Encore perceptible dans certaines limitations :

- adresses email
- langages de programmation

Codage de caractères : ASCII (2)

Caractères de contrôle

Bin	Déc	Car	Signif.
000 0000	0	NUL	End of string
000 0010	2	STX	Start of text
000 0011	3	ETX	End of text
000 1000	8	BS	Backspace
000 1001	9	HT	Horizontal Tab
000 1010	10	LF	Line feed
000 1101	13	CR	Carriage return
001 1011	27	ESC	Escape
111 1111	127	DEL	Delete

Caracteres affichables					
Bin	Déc	Car			
010 0000	32	1			
010 0001	33	!			
010 1111	47	/			
011 0000	48	0			
011 1001	57	9			
100 0001	65	Α			
101 1010	90	Z			
110 0000	96	6			
110 0001	97	а			
111 1010	122	Z			
111 1110	126	~			

Table complète: http://fr.wikipedia.org/wiki/American_ Standard_Code_for_Information_Interchange

Transmission de données

Anciens systèmes :

- Transmission de données "directe" :
 - terminal → imprimante
 - teletype → teletype via connextion téléphonique
- ...encadré par des caractères de contrôle :

```
This is a text \leadsto STX T h ... t ETX \leadsto 0000010 1010100 1101000 ... 1110100 0000011
```

Systèmes modernes : Transmission en paquets contenant des méta-données :

- Longueur du texte
- Destinataire, routage
- Qualité de service (priorité, prix); redondance (→ correction d'erreurs)
- → perte d'importance des caractères de contrôle

Stockage de données dans des fichiers

Fin de fichier (end of file, EOF)

- (Quelques) anciens systèmes :
 - Exemple: Système CP/M (par Intergalactic Digital Research):
 Fichiers sont des multiples de blocs de 128 octets
 Fin de fichier indiqué par Ctrl-Z
- Systèmes modernes :
 - Taille d'un fichier stocké par le système d'exploitation (OS)
 - Il n'existe pas de caractère EOF

Retour à la ligne Différents codages, selon le OS :

- CR + LF dans d'anciens téléscripteurs hérité par des successeurs : DEC ; CP/M, MS-DOS, Windows
- LF dans la famille Multics, Unix, Linux
- CR dans l'ancien MacOS

Voir programmes dos2unix et unix2dos

Codage de caractères : famille ISO/IEC 8859 (1)

Motivation:

- Codage de caractères d'autres alphabets
- Utilisation du 8ième bit d'un octet

Représentants:

- ISO 8859-1 : Codage de la plupart des alphabets occidentaux ("Latin-1")
 - imparfaitement : il manque œ, Œ, €, inclus dans ISO 8859-15
- ISO 8859-5 : Cyrillque
- ISO 8859-7 : Grecque
- ...

Codage de caractères : famille ISO/IEC 8859 (2)

ISO 8859-1 ("Latin-1"), voir:

http://std.dkuug.dk/jtc1/sc2/wg3/docs/n411.pdf

Codage de caractères : famille ISO/IEC 8859 (3)

Interprétation d'un fichier

- Un éditeur ne voit que le code binaire
- ...et l'interprète selon le codage choisi

Un fichier sous trois vues

- Ici : éditeur Kate
- Changement de codage : Tools / Encoding / ...

Codage de caractères : Unicode (1)

Intention : Pouvoir coder tous les alphabets actuels et passés

- Europe : Latin, grecque, cyrillique, arménien, géorgien, . . .
- Moyen orient : hébreu, arabe, syriaque, . . .
- Inde : Devanagari, bengali, gujarati, . . .
- Asie: Han (Chine), Hiragana et Katakana, . . .
- Afrique : Éthiopien, N'Ko (Afrique orientale), Bamum (Cameroun)
- Amérique : Cherokee (indien)
- Ancien: runique, gothique, Linear B (ancien grecque), phoenicien, hiéroglyphes égyptiens, . . .
- Symboles : mathématiques ; monnaies ;

Pour des détails, voir http://www.unicode.org/

Codage de caractères : Unicode (2)

Distinction entre:

- Caractère abstrait ("code point")
- son codage, en trois variantes : UTF-8, UTF-16, UTF-32

Quelques chiffres:

- Unicode définit actuellement plus de 136.000 caractères
- potentiellement : 1.114.112 "code points" (nombres 0 . . . 10FFFF₁₆)

Développement historique :

- 1987 : Première tentative de remplacer ASCII par un codage "universel"
- 1991 : Création du Unicode Consortium (Xerox, Apple, Sun, Next, Microsoft)
- 1993 : norme ISO/IEC 10646
- juin 2017 : version 10.0

Codage de caractères : Unicode (3)

Caractères abstraits, décrits par

- un code point (numéro d'identification)
- un glyphe (représentation graphique)
- un nom textuel

Exemple: Latin-1 Supplement

	800	009	00A	00B	00C	00D	00E	00F
0	XXX	DCS 0090	NB SP	0080	À	Đ	à	ð
1	XXX 0081	PU1 0091	00A1	<u>+</u>	Á	$\tilde{N}_{_{00D1}}$	á	ñ
2	BPH 0082	PU2 0092	¢	2	Â	Ò	â	Ò 00F2
3	NBH 0083	STS 0093	£	3 0083	Ã	Ó	ã	Ó 00F3

- 00E0 à LATIN SMALL LETTER A WITH GRAVE ≡ 0061 a 0300 ò
- 00E1 á LATIN SMALL LETTER A WITH ACUTE ≡ 0061 a 0301 Ó
- 00E2 â LATIN SMALL LETTER A WITH CIRCUMFLEX ≡ 0061 a 0302 ô
- - Portuguese
 - = 0061 a 0303 °

Codage de caractères : Unicode (4)

Autres alphabets:

Devanagari

090F	ए	DEVANAGARI LETTER E
0910	ऐ	DEVANAGARI LETTER AI
0911	ऑ	DEVANAGARI LETTER CANDRA O
0912	ऒ	DEVANAGARI LETTER SHORT O
		· for transcribing Dravidian short o
0913	ओ	DEVANAGARI LETTER O
0914	औ	DEVANAGARIJETTER ALI

Entrer un caractère dans Kate :

Exemple: F7, ensuite char 0x90f

Egyptian Hieroglyphs

Codage de caractères : Unicode (5)

Trois codages pour chaque caractère Unicode :

Codage de caractères : Unicode (6)

UTF-32 Chaque caractère représenté par un mot de 32 bits

Code point	Code (hex)	Caractère	Nom
U+41	00000041	Α	Latin capital letter a
U+E1	000000E1	á	Latin small letter a with acute
U+910	00000910		Devanagari letter ai
U+130E0	000130E0		Egyptian hieroglyph E013

Avantages:

Codage uniforme et simple

Désavantages :

• Utilisation d'une petite fraction de l'espace des codes

Codage de caractères : Unicode (7)

UTF-16 Un ou deux mots de 16 bits selon le cas.

U+0000 ... U+D7FF et U+E000 ... U+FFFF : représentés par *un* mot de 16 bits (2 octets) avec la même valeur

Code point	Code (hex)	Caractère	Nom
U+41	0041	Α	Latin capital letter a
U+910	0910		Devanagari letter ai

- U+D800 ... U+DFFF : ne sont pas des code points valides
- U+10000 ... U+10FFFF : deux mots (4 octets). Algorithme pour conversion de U+x₁₆ :
 - **1** Calculer $(x')_{16} = (x)_{16} (10000)_{16}$
 - 2 Représenter $(x')_{16}$ en binaire $(b')_2$ avec 20 chiffres : $(x')_{16} = (b')_2$
 - 3 Scinder $(b')_2$ en deux mots v et w de 10 bits
 - Aésultat du codage :
 - Premier mot : (110110v)₂
 - Deuxième mot : (110111w)₂

Codage de caractères : Unicode (8)

```
Exemple : Codage de U+10384 en UTF-16 lci : (x)_{16} = (10384)_{16}
```

- Calculer $(x')_{16} = (10384)_{16} (10000)_{16} = (384)_{16}$
- Représenter en binaire avec 20 chiffres : $(b')_2 = 0000.0000.0011.1000.0100$
- **3** Scinder en v = 0000.0000.00 et w = 11.1000.0100
- Résultat :
 - Premier mot : $(1101.1000.0000.0000)_2 = (D800)_{16}$
 - Deuxième mot : $(1101.1111.1000.0100)_2 = (DF84)_{16}$

Avantages / désavantages de UTF-16 :

- Codage assez complexe
- Longueur du code : compromis entre UTF-32 et UTF-8

Codage de caractères : Unicode (9)

UTF-8 Codage entre 1 et 4 octets, selon la table :

Intervalle	Octet 1	Octet 2	Octet 3	Octet 4
U+0 U+7F	0xxxxxxx			
U+80 U+7FF	110xxxxx	10xxxxxx		
U+800 U+FFFF	1110xxxx	10xxxxxx	10xxxxxx	
U+10000 U+10FFFF	11110xxx	10xxxxxx	10xxxxxx	10xxxxxx

Les xxx sont les chiffres d'une écriture (souvent impropre) du code point en base 2 avec 7, 11, 16 et 21 chiffres, selon le cas.

Notes: U+0... U+7F et ASCII coincident

Codage de caractères : Unicode (10)

Exemples de codage en UTF-8

- U+41 \in U+0 ... U+7F, donc codage avec 1 octet $(41)_{16} = (100.0001)_2$ $\rightsquigarrow (0100.0001)_2 = (41)_{16}$
- U+3A9 \in U+80 ... U+7FF, donc codage avec 2 octets $(3A9)_{16} = (011.1010.1001)_2$ $\leftrightarrow (1100.1110.1010.1001)_2 = (CEA9)_{16}$

Codage de caractères : Unicode (11)

Comment reconnaître le codage d'un fichier stocké sur disque?

- Impossible : deux sources différentes peuvent avoir le même codage
- Il existe des heuristiques . . .

...transmis par internet?

- Pareil . . .
- Mais : voir les méta-données de certains protocoles.
 Exemple : HTML (visualiser source avec Ctrl-u)

Résumé : Codage de caractères

Histoire du codage de caractères :

- Développement successif au lieu de rupture technologique
- Intégration de caractères de plus en plus complexes : maj./minuscules ; accents ; internationalisation

Unicode

- Distinction entre "caractère" et "codage"
- Principe de UTF-16 et UTF-8 : code "plus court" pour caractères "plus utilisés"

Question:

Existe-t-il un codage optimal pour une quantité d'information?

Annexe : Codage de nombres (1)

```
Base 2 : Chiffres 0, 1
Base 10: Chiffres 0..9
Base 16: Chiffres 0...9. A...F
Codage en base b d'un nombre n :
Séquence de chiffres c_k \dots c_0 tels que n = c_k * b^k + \dots c_0 * b^0
Exemple: (13)_{10} = 1 * 2^3 + 1 * 2^2 + 0 * 2^1 + 1 * 2^0 = (1101)_2
Exemple: (42)_{10} = 2 * 16^1 + 10 * 16^0 = (2A)_{16}
Conversion rapide base 16 \leftrightarrow base 2 :
Regroupement en paquets de 4 chiffres :
Exemple: (F2A)<sub>16</sub>
= 15 * 16^2 + 2 * 16^1 + 10 * 16^0
= 15 * (2^4)^2 + 2 * (2^4)^1 + 10 * (2^4)^0
=((1111)(0010)(1010))_{2}
```

Annexe: Codage de nombres (2)

Pour b > 0, tout nombre n peut s'écrire $n = (n/b) * b + (n \mod b)$, où / est la division entière et \mod le reste de la division.

Exemple: 7/3 = 2 et 7 mod 3 = 1.

Ceci motive la fonction de codage coder(nombre, base) définie par :

- si n < b: coder(n, b) = n
- si $n \ge b$: $coder(n, b) = coder(n/b, b) * b + (n \mod b)$

Exemple:

```
coder(380, 16) = coder(380/16, 16) * 16 + (380 \mod 16) = coder(23, 16) * 16 + 12 = (coder(23/16, 16) * 16 + (23 \mod 16)) * 16 + 12 = (coder(1, 16) * 16 + 7) * 16 + 12 = (1*16+7)*16+12 = 1*16^2+7*16^1+12*16^0
Donc, (380)_{10} = (17C)_{16}
```

Annexe: Commandes Linux

11 list directory contents

```
> 11 test.txt
-rw-r--r- 1 strecker users 29 Jan 23 01:54 test.txt
```

wc print newline, word, and byte counts for each file

```
> wc main.tex
119  252 3251 main.tex
```

xxd make a hexdump

```
> xxd -c 10 test.txt
0000000: 5465 7874 6520 6176 6563 Texte avec
000000a: 0ac3 a020 c3a9 20c3 af20 ......
0000014: c3b1 20c3 b620 c3b8 20c3 ......
000001e: 9f20 c3b9 0a
```

Plan

- Codage
 - Motivation
 - Codage de caractères
 - Codes

Alphabets, séquences et messages

Un alphabet A est un ensemble de caractères.

Exemples: Alphabet

- des caractères ASCII
- des caractères de Unicode
- des chiffres 0 et 1 (alphabet binaire)
- des chiffres 0 ... 9, A ... F (hexadécimal)
- des nombres naturels (infini!)

Fonction de codage

Une fonction de codage $c: A_1 \to A_2$ traduit les caractères d'un alphabet A_1 vers un alphabet A_2 .

 A_1 et A_2 peuvent être les mêmes alphabets.

Exemples:

- Chiffre de César (cryptographie basique) $c: ASCII \rightarrow ASCII$ famille de fonctions de codage, $par\ ex$. : décalage de deux caractères : $c(A) = C, c(B) = D, \dots c(X) = Z, c(Y) = A, c(Z) = B$
- Cryptage avec méthode RSA (voir cours OMD du S1), $c: \mathbf{Z}/n\mathbf{Z} \to \mathbf{Z}/n\mathbf{Z}$ avec $c(m) = m^e \mod n$ (pour clé publique e)
- Codage UTF8 : $c : UTF8 \rightarrow HEX$ avec c(x) = 78, c(y) = 79, c(z) = 7A, ...
- Codage UTF8 : $c : UTF8 \rightarrow BIN$ avec c(x) = 1111000, c(y) = 1111001, c(z) = 1111010,...

Rappel: propriétés de fonctions (1)

Une fonction $c: A_1 \rightarrow A_2$ est dite

- *injective* si pour to $a, a' \in A_1$, si $a \neq a'$, alors $c(a) \neq c(a')$
- surjective si pour tout $a_2 \in A_2$, il existe un $a_1 \in A_1$ tq. $a_2 = c(a_1)$
- bijective si elle est injective et surjective

Proposition (voir UE "Maths Discrètes"):

Si $c: A_1 \to A_2$ est bijective, alors il existe $d: A_2 \to A_1$ tq. pour tout $a_1 \in A_1$, $d(c(a_1)) = a_1$ et pour tout $a_2 \in A_2$, $c(d(a_2)) = a_2$ d est appelée *l'inverse* de c. C'est la fonction de décodage.

Lesquelles des fonctions de l'exemple précédent sont inj. / surj./ bij.?

Rappel: propriétés de fonctions (2)

Remarques:

- L'existence de l'inverse d d'une fonction c ne signifie pas que d est effectivement donnée ou facile à trouver.
 - Ex. : Fonction de décodage d pour cryptage RSA c effectivement connue uniquement pour détenteur de la clé privée.
- Quelques codages sont intentionnellement non surjectfs.
 Codages redondants (codes correcteurs)

Notation:

- Un codage injectif est aussi appelé unique ou sans perte Fortement souhaitable pour tout codage de textes, nombres, ...
- avec perte sinon
 Acceptable pour du son, des images ...

Séquences

Soit A un alphabet.

Une séquence sur A est inductivement construite comme suit :

- [] est une séquence (vide)
- si a ∈ A est un caractère et s est une séquence, alors a · s est une séquence. (On omet souvent le constructeur ·)

On parle aussi d'un mot sur A.

Notation : A* est l'ensemble de séquences sur A

Exemple: xyz: UTF8*,

plus précisément : $(x \cdot (y \cdot (z \cdot []))) : UTF8*$

Fonctions sur des séquences (1)

Une fonction $c^*: A_1^* \to A_2^*$ est l'extension homomorphe de la fonction $c: A_1 \to A_2$ si elle est définie par

- $c^*([]) = []$
- $c^*(a \cdot s) = c(a) \cdot c^*(s)$

Informellement :

$$c^*(x_1x_2...x_n) = c(x_1)c(x_2)...c(x_n)$$

Exemple:
$$c^*(xyz) = c(x)c(y)c(z) = 78797A$$

Note : Nous omettons désormais l'opérateur de concaténation . La concaténation se fait par enchaînement des séquences.

Fonctions sur des séquences (2)

(Non-)Préservation de propriétés par l'extension homomorphe :

- L'injectivité n'est pas préservée :
 Ex. : c(a) = 0, c(b) = 1, c(c) = 10, donc c*(ba) = 10 = c*(c)
- Pour cette raison : si la fonction de codage c a une fonction de décodage d, alors c* n'a pas forcément une fonction de décodage.
- Soit c bijective avec décodage d. Même si c* est injective, la fonction de décodage n'est pas forcément la d* naïve.
 Ex.: d*(78797A) ≠ d(7)d(8)... mais

$$d^*(78797A) = d(78)d(79)d(7A)$$

Codages préfixes

Définition : m est un préfixe de m' s'il existe r avec m' = m r

Notation : $m \leq m'$

Exemples : $01 \leq 011$, $011 \leq 011$, $010 \not\leq 011$

c est un code préfixe si pour tout $a, a' \in A$ avec $a \neq a' : c(a) \not \preceq c(a')$

Proposition : Si c est un code préfixe, alors c^* est un code unique.

Preuve : Par un algorithme de décodage . . .

Codages préfixes

Désormais : codages homomorphes et préfixes

Comment coder un message?
Facile (comme pour tout codage homomorphe)

Ex.: Codez acdc selon la table:

X	c(x)
а	0
b	10
С	110
d	111

Comment décoder un message?

Ex.: Décodez 100110

Interlude: Définitions d'arbres

Plusieurs définitions possibles :

- Graphe avec un chemin unique entre deux noeuds
- Graphe connecté qui devient déconnecté si on supprime un arc
- .
- ici : Définition inductive. Avantages :
 - Traitement facile par récursion
 - Prototype de beaucoup de structures informatiques : expressions, programmes, . . .

Interlude: Construction inductive d'un arbre

Conventions:

- Arbres binaires : chaque noeud intérieur a exactement 2 successeurs
- On peut associer une information au noeuds ou feuilles

Construction inductive:

- Une feuille est un arbre Écriture : L(info) : arbre
- Un noeud intérieur avec deux sous-arbres est un arbre Écriture : N(info, arbre, arbre) : arbre
- ...et c'est la seule manière de construire un arbre.

Exemple:

```
N(1, L(2),
N(3, L(4),
L(5)))
```


Interlude : Fonctions récursives sur les arbres

Principe de la définition d'une fonction f par récursion :

- ① Définir le résultat de f sur une feuille : f(L(i)) = lres(i)
- Définir le résultat de f sur un noeud, si on connaît les résultats sur les sous-arbres :

$$f(N(i, a_1, a_2)) = nres(i, f(a_1), f(a_2))$$

Exemple: Somme des valeurs:

```
somme(L(i)) = i

somme(N(i, a1, a2)) = i + somme(a1) + somme(a2)
```

Exercice: Calculez somme (N(1, L(2), N(3, L(4), L(5)))

Construction d'un arbre de décodage

...à partir d'une table de codage, *pour un code préfixe*.

Représentation de la table de codage comme ensemble de couples (caractère, code associé)

```
Exemple : {(a,0); (b,10); (c,110); (d,111)}
```

arbre_dec prend : table non vide ; construit : arbre de décodage.

```
arbre_dec ({}) = erreur
arbre_dec ({(c, []) }) = L(c)
arbre_dec (tab) =
    N ((),
         arbre_dec { (c, m) | (c, 0·m) ∈ tab },
         arbre_dec { (c, m) | (c, 1·m) ∈ tab })
```

- Au lieu d'erreur : Construire un arbre partiel / binaire incomplet
- [] est le mot vide, $m_1 \cdot m_2$ concatène deux mots
- Lire les équations séquentiellement

Construction d'une table de codage

...à partir d'un arbre de décodage.

 tab_cod prend : mot m (initialement vide) et un arbre ; construit : table de codage.

⇒ "Arbre de décodage" et "Table de codage" sont des notions équivalentes.

Exercices:

- Représentez l'arbre arb de l'exemple
- Calculez tab_cod [] arb

Inégalité de Kraft (1)

Théorème : Il existe un code préfixe binaire avec k codes $u_1 \dots u_k$ si et seulement si

$$\sum_{i=1}^k 2^{-|u_i|} \leq 1$$

où $|u_i|$ est la longueur du code u_i . *Preuve :* devoir maison (voir TD).

Exemple 1: Construisez un code préfixe pour 5 codes avec des longueurs $|u_1|=1, |u_2|=2, |u_3|=2, |u_4|=3, |u_5|=4$. On constate qu'un tel code n'existe pas parce que

$$\sum_{i=1}^{5} 2^{-|u_i|} = \frac{19}{16} > 1$$

Inégalité de Kraft (2)

Exemple 2 : Construisez un code préfixe avec $|u_1| = 2$, $|u_2| = 2$, $|u_3| = 2$, $|u_4| = 3$, $|u_5| = 4$. Un tel code existe parce que

$$\sum_{i=1}^{5} 2^{-|u_i|} = \frac{15}{16} \le 1$$

Idee de construction de l'arbre : "Remplir" l'arbre à profondeur 2, ensuite 3, ensuite 4

Résumé: Codes et codage

Ce que nous avons vu :

- Hiérarchie de classes de codes : injectif, unique, préfixe
- Codes préfixes (aussi appelés instantanés): Décodage possible "en temps réel", sans attendre la fin du message.
- Considéré ici : Alphabet cible est {0,1}. Extension vers alphabets de taille n > 2 avec arbres n-aires possible.
- Inégalité de Kraft : (Im)possibilité de construire des codes avec certaines longueurs.

Notation:

- Codage: une fonction qui traduit d'un alphabet vers un autre
- Code : peut désigner à la fois :
 - un alphabet (Ex. : UTF8)
 - l'ensemble de mots sur cet alphabet (Ex. : UTF8*)
 - une fonction de codage ($Ex.: UTF8^* \rightarrow HEX^*$)

Plan

- Codage
- 2 La notion d'information selon Shannon et codage optimal
- 3 Complexité de Kolmogorov et compression de données
- Codes correcteurs et détecteurs d'erreurs

Plan

- La notion d'information selon Shannon et codage optimal
 - Information
 - Codage optimal

Motivation: Qu'est-ce que vous trouvez informatif?

Voici les ondes émises par 4 stations de radio :

Quelle station vous semble la plus intéressante / informative?

Types de signaux et sources

Émetteur : *source d'information* qui émet des *signaux aléatoires*. Types de signaux :

- continu
- \Rightarrow ici : discret : s_0, s_1, \dots

Types de source :

- Dépendance de valeurs antérieures :
 - ⇒ ici : sans mémoire
 - markovienne (signal s_{n+1} dépend de s_n)
- Évolution au cours du temps :
 - ⇒ ici : stationnaire (pas d'évolution)
 - non-stationnaire

Information (motivation): mesure de Hartley

Première approximation :

Quelle est la capacité informationnelle d'émetteur X qui émet un

- $s \in E_{16} = \{0000, \dots, 1111\}$

Observation: rapport logarithmique entre

- taille |E| de l'ensemble des événements E
- taille des mots pour décrire les éléments de E

Proposition (informelle) : $Info(X) := log_2(|E|)$ bits Voir :

R.V.L. Hartley: Transmission of Information, Bell Syst. Tech. J., 1928

Information (motivation) : mesure de Shannon

Soit *X* une source qui émet des signaux $E_8 = \{000, 001, 010, 011, 100, 101, 110, 111\}$

Quelle est la complexité pour décrire

- un élément vert : "commence avec 0" → complexité 1
- un élément rouge : "commence avec 10" → complexité 2
- un élément bleu / noir : "est 110" / "est 111" → complexité 3

Observations:

- la fréquence d'occurence d'éléments n'est pas uniforme
- élément plus fréquent → description plus compacte

Proposition (informelle) : pondérer complexité avec fréquence lci : "la complexité moyenne" pour décrire un $s \in E_8$ relatif aux événements désignés :

$$Info(X) = 0.5 * 1 + 0.25 * 2 + 0.125 * 3 + 0.125 * 3 = 1.75$$
bits

Quelques notions de la théorie de probabilité (1)

Espace de probabilité (Ω, \mathcal{A}, P) , où

- Ω est l'ensemble des résultats d'une expérience aléatoire Ex. jeu de dés : $\Omega = \{1, \dots, 6\}$
- $\mathcal{A} \subseteq 2^{\Omega}$ est l'ensemble des événements (*Notation* : 2^{Ω} ensemble des parties de Ω) $Ex.: A \in \mathcal{A}$ pour $A = \{2, 4, 6\}$ est l'événement "nombre pair".
- $P: \mathcal{A} \to [0...1]$ est une mesure de probabilité $Ex. : P(\{1\}) = \cdots = P(\{6\}) = \frac{1}{6}$

Règles de bonne formation :

- $\Omega \in \mathcal{A}$, \mathcal{A} est stable sous complément, union (dénombrable), intersection (dénombrable), *donc* : si $A \in \mathcal{A}$, alors $\overline{A} \in \mathcal{A}$ etc.
- $P(\Omega) = 1$ et $\forall A \in \mathcal{A}.P(A) \geq 0$
- $P(\bigcup_{i \in I} A_i) = \sum_{i \in I} P(A_i)$ pour des A_i mutuellement disjoints et I dénombrable

Ex. :
$$P({2,4,6}) = P({2}) + P({4}) + P({6}) = \frac{1}{2}$$

Quelques notions de la théorie de probabilité (2)

Variable aléatoire X pour "mesurer" les résultats d'une expérience.

 $X:\Omega\to S$, où

- S est un ensemble
- très souvent : $S = \mathbb{R}$
- souvent : X est l'identité

Notation:

• pour var. aléatoire X et valeur $x \in S$:

$$P_X(x) =_{def} P(X = x) =_{def} P(\{\omega \mid X(\omega) = x\})$$

Dépts Maths et Info

• similaire : $P(a < X < b) =_{def} P(\{\omega \mid a < X(\omega) < b\})$ etc.

Exemple:

- Ω : ensemble de cercles $\{(c_i, r_i)\}$ caractérisés par coordonnée du centre c_i et rayon r_i
- $X: \Omega \to \mathbb{R}$ avec $X(c, r) = \pi r^2$
- $P(4.9 \le X \le 5.1)$ Proba que surface de cercle est entre 4.9 et 5.1

Quelques notions de la théorie de probabilité (3)

Espérance E(X) d'une variable aléatoire X relative à fonction g:

$$E(g,X) =_{def} \sum_{i \in I} g(x_i) * P_X(x_i)$$

[déf. habituelle pour g(x) = x est : $E(X) = \sum_{i \in I} x_i * P_X(x_i)$] Exemple :

Nombre de points (0...5) obtenus dans un test fait par 12 personnes. Approximation : $P_X(x_i) = \frac{\#pers.(x_i)}{12}$

Points x _i	0	1	2	3	4	5
# personnes (x_i)	1	2	4	3	1	1
$P_X(x_i)$	0.083	0.166	0.333	0.25	0.083	0.083

$$E(X) =$$

0*0.083+1*0.166+2*0.333+3*0.25+4*0.083+5*0.083=2.333

Définition d'entropie (1)

Entropie (selon Shannon):

$$H(X) =_{def} \sum_{i \in I} (-\log_2(P_X(x_i))) * P_X(x_i)$$

- *Problème* de calcul de log si $P_X(x_i) = 0$ \rightsquigarrow restriction à ensemble d'indices I avec $P_X(x_i) \neq 0$
- Entropie et espérance : $H(X) = E((\lambda x. \log_2(P_X(x))), X)$
- Unité de l'entropie : bit ("binary digit")

Exemple : Lampe à 4 "couleurs" et probabilté que couleur soit visible :

Couleur x _i	vert	rouge	bleu	noir
$P_X(x_i)$	0.5	0.25	0.125	0.125

$$H(X) = (-\log_2(2^{-1})) * 0.5 + (-\log_2(2^{-2})) * 0.25 + (-\log_2(2^{-3})) * 0.125 + (-\log_2(2^{-3})) * 0.125 = 1.75$$
bits

Définition d'entropie (2)

Illustration : Soit X une var. aléatoire avec deux valeurs possibles x_1, x_2 et

•
$$P_X(x_1) = p$$

• donc :
$$P_X(x_2) = 1 - p$$

Alors,
$$H(X) = -p \log_2(p) - (1-p) \log_2(1-p) =_{def} h(p)$$

Plan

- La notion d'information selon Shannon et codage optimal
 - Information
 - Codage optimal

Feuille de route

Vu jusqu'à maintenant :

- Définition d'entropie d'une source d'information
- Codage homomorphe d'un alphabet avec un code préfixe
- ...(im)possibilité sous contraintes (théorème de Kraft)

Dans cette section:

- Rapport entre entropie et longueur des mots d'un code : théorème de Shannon
- Construction effectif d'un codage optimal : algorithme de Huffman

Cadre de travail:

- Source d'information stationnaire et sans mémoire
- Codage homomorphe : un caractère à la fois

Arbres avec probabilités

[Discussion d'après : J. Massey : Applied Digital Information Theory]

- Dans un arbre avec probabilités, l'annotation d'un noeud est la somme des annotations de ses enfants.
- L'arbre est complet si la racine est annotée avec 1

Exercice: Pour un arbre a, donnez les fonctions calculant l'ensemble

- de tous les mots de code avec leur probabilité:
 cp(a) = {([], 1), (0, 0.3), (1, 0.7), (10, 0.2), (11, 0.5)}
- des mots aboutissant à des feuilles,
 et proba :
 cpf(a) = {(0,0.3),(10,0.2),(11,0.5)}
- des noeuds intérieurs, et proba :
 cpi(a) = {([], 1), (1, 0.7)}

66 L1S2 Théorie de l'Information

Dépts Maths et Info

Lemme des longueurs des chemins

Définitions :

- Longueur moyenne d'un ensemble (mot \times probabilté) : $Inm(E) = \sum_{(m,p) \in E} |m| * p$ Exemple : Inm(cpf(a)) = 1 * 0.3 + 2 * 0.2 + 2 * 0.5 = 1.7
- Somme des probabilités d'un ensemble (mot \times probabilité) : $sp(E) = \sum_{(m,p) \in E} p$ Exemple : sp(cpi(a)) = 1 + 0.7 = 1.7

Lemme : Dans un arbre avec probabilités, la longueur moyenne des mots aboutissant à des feuilles est égale à la somme des probabilités des noeuds intérieurs :

$$Inm(cpf(a)) = sp(cpi(a))$$

Entropie d'un code

Définition : L'entropie d'un arbre est l'entropie de ses feuilles.

$$H(a) = -\sum_{(m,p)\in cpf(a)} (\log_2 p) * p$$

Note : Dépend uniquement de la distribution de probabilité ; indépendant des mots dans l'arbre

Exemple:

$$\textit{H(a)} = -(\log_2(0.3)*0.3 + \log_2(0.2)*0.2 + \log_2(0.5)*0.5) = 1.485$$

Astuce si log₂ n'est pas disponible sur calculette :

$$\log_2(x) = \frac{\ln(x)}{\ln(2)}$$

Théorème de Shannon, 1ère partie

Théorème : L'entropie d'un arbre complet de codage *a* est une *borne inférieure* de la longueur moyenne de son code :

$$H(a) \leq Inm(cpf(a))$$

Preuve: Voir TD.

Exemple 1:

$$H(a) = 1.485 < 1.7 = Inm(cpf(a))$$

Exemple 2:

$$H(a) = 1.5 = Inm(cpf(a))$$

Théorème de Shannon, 2ème partie

Théorème : La borne supérieure de la longueur moyenne d'un code préfixe minimal pour une source d'information aléatoire U avec entropie H(U) est H(U)+1 :

$$Inm(cpf(a)) < H(U) + 1$$

Preuve: On cherche code $m_1 ldots m_k$ pour les caractères $u_1 ldots u_k$ de U. Choisissons $|m_i| = \lceil -log_2 P_{U}(u_i) \rceil$, alors

$$-log_2 P_U(u_i) \le |m_i| < -log_2 P_U(u_i) + 1$$

On vérifie
$$\sum_{i=1}^{k} 2^{-|m_i|} \le \sum_{i=1}^{k} 2^{\log_2 P_U(u_i)} = \sum_{i=1}^{k} P_U(u_i) = 1$$

Selon l'inégalité de Kraft, un tel code préfixe existe.

En plus:

$$Inm(cpf(a)) = \sum_{i=1}^{k} |m_i| * P_U(u_i)$$

$$< \sum_{i=1}^{k} ((-log_2 P_U(u_i)) + 1) * P_U(u_i)$$

$$= \sum_{i=1}^{k} (-log_2 P_U(u_i)) * P_U(u_i) + \sum_{i=1}^{k} P_U(u_i) = H(U) + 1$$

Algorithme de Huffman (1)

Comment construire *effectivement* un code optimal pour une source d'information aléatoire U avec alphabet $\{u_1 \dots u_k\}$?

Démarche globale :

- ① Déterminer la distribution de probabilité $P_U(u_i)$ des caractères
 - par estimation (distribution des caractères en français, anglais, ...)
 - par calcul de la fréquence dans un texte donné Exemple : un petit texte

Ui		е	i	n	р	t	u	Х
# occ	2	3	1	1	1	4	1	1
$P_U(u_i)$	$\frac{2}{14}$	$\frac{3}{14}$						

- Construire l'arbre de codage
- 3 L'utiliser pour le codage du texte

Algorithme de Huffman (2)

Structure de données : Ensemble E d'arbres dont

- les feuilles contiennent : probabilité, caractère codé
- les noeuds intérieurs contiennent : probabilité cumulée

Algorithme pour construire un arbre de codage optimal a à partir de caractères $u_1 \dots u_k$ et leurs probabilités associés $p_1 \dots p_k$

- **1** Initialisation : $E := \{L(p_i, u_i) | 1 \le i \le k\}$
- 2 Tant que E contient plus d'un élément :
 - **1** Sélectionner deux arbres $a_0, a_1 \in E$ dont la probabilité est minimale
 - 2 Les remplacer par $N(p, a_0, a_1)$, où p est la somme des probas de a_0 et a_1

$$p_0$$
 p_1 \Rightarrow p_0 p_1

3 Fin de boucle : $E = \{a\}$. Renvoyer a.

Algorithme de Huffman (3)

Exemple : Distribution de fréquence :

0.2, a 0.15, b 0.4, c

0.2, a

 \Rightarrow^* 0.4, c 0.6 0.25 0.25 0.15, d 0.15, d

0.1, e

Algorithme de Huffman (4)

Définition : Code *optimal* pour une source d'information aléatoire U = Code minimal parmi tous les codes pour UProposition : L'algorithme de Huffman construit un code optimal pour UEsquisse de preuve : [Détails : Cover / Thomas : Information Theory]
Soit a_0 un arbre de code optimal. Alors, il ne peut pas être meilleur que a_b construit par Huffman.

- a_o n'a pas de noeud n avec un seul enfant e sinon: fusion de n et e donne meilleur code
- a_0 code $c_1 \mapsto m_1, c_2 \mapsto m_2$ permuter pour obtenir code de a_h avec $c_1 \mapsto m_2, c_2 \mapsto m_1$ et même longueur moyenne du code

Mise en garde

Codage "optimal"

- pour l'hypothèse de travail :
 - source sans mémoire; codage de caractères individuels
- ...mais non dans l'absolu

Exemple:

- Ocdage de caractères $a(P(a) = \frac{1}{4})$ et $b(P(b) = \frac{3}{4})$ Code Huffman : c(a) = 0, c(b) = 1. Longueur moyenne de codage par caractère : 1
- ② Codage de deux caractères consécutifs : Code Huffman : c(aa) = 010, c(ab) = 011, c(ba) = 00, c(bb) = 1. Longueur moyenne de mot de code : $3*\frac{1}{16}+3*\frac{3}{16}+2*\frac{3}{16}+1*\frac{9}{16}=1.6875$ Longueur moyenne de codage par caractère : 1.6875/2
- ⇒ Meilleurs résultats pour regroupements de caractères . . .

Plan

- Codage
- La notion d'information selon Shannon et codage optimal
- Complexité de Kolmogorov et compression de données
- Codes correcteurs et détecteurs d'erreurs

Plan

- Complexité de Kolmogorov et compression de données
 - Motivation et délimitation
 - Complexité de Kolmogorov
 - Algorithmes de Compression

Critique: Information selon Shannon (1)

Rappel: Entropie:

- Notion probabiliste : dépend de la probabilité des caractères
- ... laquelle est typiquement estimée à partir d'un corpus large (exemple : tous les textes en français de la bibliothèque nationale)

Codage optimal:

- Sur la base d'un connaissance a priori de la distribution de probabilité donc : de l'ensemble de tous les messages
- Indépendant d'un message individuel

Critique: Information selon Shannon (2)

Défauts et insuffissances de la notion de Shannon :

- On s'intéresse souvent à la compression d'un seul message / fichier donné (et non à tous les messages concevables)
- On ne connaît pas la distribution de probabilité
- Il y a d'autres types de redondance
- Exemple : Compression d'un fichier écrit en Python
 - Distribution de caractères représentative pour un texte en fraçais / en anglais?
 - Peu de variations syntaxiques (langage artificiel)
 - Répétition de mots-clés (while, if) et noms de variables
- Exemple : Compression d'une image
 - Des régions de l'image ont la même couleur "le rectangle entre les coordonnées (15, 42) et (37, 98) est bleu"

Exemples:

Exemples:

Exemples :

```
for i in [0..36]
  print("1");
  for j in [1 .. i]
    print("0")
```

Exemples :

```
for i in [0..36]
  print("1");
  for j in [1 .. i]
    print("0")
```

Survol de ce chapitre

- La notion de complexité de Kolmogorov :
 "La plus courte description pour une chaîne de caractères donnée"
 - But : Une autre vue sur la notion de contenu informationnel que l'entropie
 - Chemin faisant, une découverte : un problème insoluble!
 Impossibilité de calculer la plus courte description
- Une application pratique: l'algorithme LZW compression d'un texte à l'aide d'un dictionnaire But: Les rouages des algorithmes de la famille zip

Plan

- Complexité de Kolmogorov et compression de données
 - Motivation et délimitation
 - Complexité de Kolmogorov
 - Algorithmes de Compression

Complexité de Kolmogorov : Définition préliminaire

Première approximation :

Complexité de Kolmogorov K(s) d'une chaîne de caractères s: K(s) est la taille de la description la plus courte de s Notation : |d| est la taille de la chaîne / description d Par exemple :

- |s| = 40
- d = 20 fois 01
- |d| = 8

Problèmes:

- Est-ce vraiment la plus courte description? à voir . . .
- Qu'est-ce qu'une description?
 - Notion pas très précise . . .
 - avec un problème fondamental . . .

Le paradoxe de Berry (1)

Définissons le nombre n par :

le plus petit nombre non descriptible en moins de douze mots

(NB: la description comporte onze mots)

Trouvez le nombre n

Il est descriptible avec combien de mots?

Le paradoxe de Berry (2)

Le langage mathématique n'est pas exempt de ces problèmes et permet d'énoncer des descriptions insensées.

Quelles définitions acceptez vous?

- Ensembles : $E_1 = \{E | E \notin E\}$ (est-ce que $E_1 \in E_1$ ou $E_1 \notin E_1$?)
- Ensembles : $E_2 = \{n \in \mathbf{N} | n \mod 3 = 0\}$
- Récursion : La fonction f telle que pour tout x, f(x) = f(x) + 1
- Récursion : La fonction $f : \mathbf{N} \to \mathbf{N}$ telle que :
 - f(0) = 0
 - f(n) = n + f(n-1) pour n > 0

Conclusion:

- il faut préciser la notion de "description"
- et préférer une notion constructive

Descriptions constructives

La description verbale "*n* fois 01" remplacé par un programme (avec paramètre *n*) dans un langage de programmation fixe :

```
for i in [1 .. n]
  print("01");
```

Avantage:

- un langage de programmation a une sémantique précise
- évite les ambiguïtés du langage naturel

Quel langage précisément?

- Imaginez-vous Python . . .
- mais ça pourrait être C, Java sans impact essentiel sur le résultat (voir TD)
- Important : le langage est fixe

Programmes et leur code binaire (1)

Nous considérons désormais les programmes dans un format binaire Exemple :

```
    Format textuel:
    Programme p = for i in [1 .. n] print("01");
    Argument n = 20
    Format binaire:
```

```
p = 10011011010101111 (phantaisiste - en ASCII, UTF-8, . . . .) Important : format fixe n = 10100
```

NB : Quelques programmes produisent des séquences infinies (sans importance pour la discussion suivante) :

```
while true
    print("1");
```

Programmes et leur code binaire (2)

Application d'un programme p à un argument n:

- Format textuel : p(n)Exemple : p(20)
- Format binaire : $\langle p, n \rangle$ Exemple : $\langle 100110110101111, 10100 \rangle$ Essentiellement la concaténation de p et n

Pourquoi la représentation binaire?

Premier avantage: Notation uniforme pour

- Décodage : $\{0,1\}^* \rightarrow \{0,1\}^*$ $\langle p,n \rangle \mapsto s$

Programmes et leur code binaire (3)

Deuxième avantage : On peut trier les fonctions selon leur code

Programme (binaire)	Progr. indexé (décimal)
10001	<i>p</i> ₁₇
10101	p_{21}
1001101101010111	P 39767
	10001

Beaucoup d'indices correspondent à des programmes mal formés.

Ex.: while print (); On ne les liste pas.

Fonctions calculables

Nous avons vu:

- Des programmes représentés comme séquences {0, 1}*
- qui prénnent des entrées {0, 1}*
- et produisent des sorties {0, 1}*

Donc : un programme est une fonction $\{0,1\}^* \to \{0,1\}^*$

	$\langle p_i, 0 \rangle$	$\langle p_i, 1 \rangle$	$\langle p_i, 10 \rangle$	$\langle p_i, 11 \rangle$	
<i>p</i> ₁₇	0	0	0	0	
p_{21}	1	1	1	1	
<i>p</i> ₃₉₇₆₇	[]	01	0101	010101	

Une fonction est dite calculable s'il y a un programme qui la représente.

Fonctions non calculables (1)

Question : est-ce que toute fonction $\{0,1\}^* \to \{0,1\}^*$ est calculable ? Supposons que oui.

Soit p@0, p@1, p@2... l'énumération des programmes et $s_0, s_1, s_2 \in \{0, 1\}^*$ l'énumération des séquences

Dérivons une contradiction par diagonalisation :

	$\langle p_i, s_0 \rangle$	$\langle p_i, s_1 angle$	$\langle p_i, s_2 angle$	$\langle p_i, s_3 angle$	
p@0	1 0	0	0	0	
<i>p</i> @1	1	0 +	1	1	
p@2	[]	01	1101 0101	010101	

La fonction qui diffère sur la diagonale n'est pas dans la liste des programmes

Fonctions non calculables (2)

De manière plus formelle :

Définissons, pour une séquence s, la fonction "rendre différent", \overline{s} , par $\overline{|} = 0$ et $\overline{0s'} = 1s'$ et $\overline{1s'} = 0s'$

Constat : Pour tout $s : \overline{s} \neq s$

Définissons la fonction nc ("non calculable") par :

$$nc(s_i) = \overline{\langle p@i, s_i \rangle}$$

Supposons que nc est représenté par le programme à la position k : nc = p@k.

Alors,
$$nc(s_k) = \overline{\langle p@k, s_k \rangle} \neq \langle p@k, s_k \rangle = p@k(s_k)$$

Contradiction.

Une fonction moins artificielle que nc? Dans quelques instants . . .

Complexité de Kolmogorov : Définition précise

Définissons

- le décodeur de Kolmogorov d_K par $d_K(\langle p, n \rangle) =$ le résultat de p(n) (indéfini si p n'est pas un programme valide)
- le code de Kolmogorov c_K par
 c_K(x) = le plus court et plus petit (comme nombre binaire) y tq.
 d_K(y) = x
- la complexité de Kolmogorov $K(x) = |c_K(x)|$

Lemme: Pour tout n, il existe x avec |x| = n tq. $K(x) \ge n$ Preuve: voir TD

Complexité de Kolmogorov non calculable (1)

Supposons que K est calculable. Nous pouvons définir le programme (bien défini à cause du lemme) :

```
sequenceComplexe(n) =
  for s with |s| = n
   if K(s) \ge n:
      print(s); return;
```

Soit p le programme sequenceComplexe avec sous-programme K Choisissons m avec $m > |\langle p, m \rangle|$ (voir TD).

Argument informel:

- Exécutons sequenceComplexe(m), nous obtenons s avec $K(s) \ge m$
- s ne peut donc pas être produit par un programme plus court que m
- Mais la configuration $\langle p, m \rangle$ est plus courte que m
- Contradiction!

Complexité de Kolmogorov non calculable (2)

Plus formellement:

- $d_K(\langle p, m \rangle) = \text{sequenceComplexe}(m) = s \text{ avec}$ $K(s) \geq m > |\langle p, m \rangle|.$
- Par contre : $|\langle p, m \rangle| \ge |c_K(s)| = K(s)$
- Contradiction, donc : K(x) n'est pas calculable

(Vous avez un effet de déjà-vu? Comparez avec le paradoxe de Berry)

Résumé

But:

- Développer un autre concept d'"information" que l'entropie
- Notion de compression optimale pour message individuel (concept non probabiliste)

Difficultés:

- Notion informelle trop imprécise → paradoxes
- Définition formelle : complexité de Kolmogorov

Résultat : Complexité de Kolmogorov non calculable :

- Impossibilité d'une solution algorithmique
 - Impossibilité forte (mathématique) . . .
 - et non au sens conventionnel (pas de temps, manque d'envie, trop stupide . . .)
 - [Publicité : cours "Calculabilité" du L3]

Pourtant : regardons des algorithmes sans garantie d'optimalité!

Plan

- Complexité de Kolmogorov et compression de données
 - Motivation et délimitation
 - Complexité de Kolmogorov
 - Algorithmes de Compression

Pour situer le contexte

Entropie: Notion d'information d'une source

- qui émet des signaux / caractères avec une certaine probabilité
- où les signaux se produisent de manière indépendante ("sans mémoire")

Codage de Huffman : Optimal pour une telle source d'information

Une hypothèse réaliste?

- Oui, si vous n'avez aucune connaissance supplémentaire
- Non pour une source d'informations plus structurées Exemples :
 - textes en langage naturel
 - programmes
 - images avec beaucoup de répétitions

lci : Algorithmes de compression à base de dictionnaires

Compression à base de dictionnaires – Idée

Un texte à transmettre, par exemple :

Une compression à base d'un dictionnaire peut être plus efficace qu'une compression à base d'entropie.

Un dictionnaire partagé entre l'émetteur et le récepteur, p. ex. le Littré :

Posit. du mot	mot	définition
1 a		Voyelle et première lettre de l'alphabet.
2	а	3e pers. sing. du verbe avoir.
3	à	(préposition)
5.233	compression	L'état qui résulte de la compression.
60.582/3	un, une	Adjectif numéral

Le texte codé:

 $[60.583, 5.233, 3, 1.220, 7.588, 60.582, 8.122, \ldots]$

Méthodes statiques et adaptatives

Méthodes statiques : (exemple précédent)

- Dictionnaire partagé entre émetteur et récepteur.
- Dans le texte codé, chaque mot du texte source est remplacé par sa position dans le dictionnaire.
- Fréquence de mise à jour et transmission du dictionnaire est négligeable.
- → moyennement adapté au langage naturel (voir TD).
- \leadsto inadapté aux applications informatiques.

Méthodes adaptatives :

- Sans dictionnaire partagé, ou dictionnaire partagé minimaliste.
- Lors du codage, on construit un dictionnaire et le texte compressé.
- Seulement le texte compressé est transmis.
- ~ la base des algorithmes actuels de codage.

Compression à base de dictionnaires – Histoire (1)

LZ77: Jacob Ziv et Abraham Lempel: A Universal Algorithm for Sequential Data Compression (1977)

Algorithme à base d'une "fenêtre" qui glisse sur un texte. Dictionnaire : parties de texte de la fenêtre

Exemple d'un texte de programme à coder :

- Texte déjà lu et codé jusqu'au dernier caractère de la fenêtre :
 begin for (i=0; i<MAX-1; i++) for (j=i+1; j<MAX; j++)
- Dans le texte à coder, on reconnaît un sous-texte de la fenêtre :
 begin for (i=0; i<MAX-1; i++) for (j=i+1; j<MAX; j++)
- On code <MAX par le triplet (11, 4, ';'): sa position relative au début de la fenêtre; sa longueur; le caractère suivant
- On avance la fenêtre et continue à coder: begin for(|i=0; i<MAX-1; i++) for(j=i+1; j<MAX); j++)</p>

Compression à base de dictionnaires – Histoire (2)

LZ78 : Jacob Ziv et Abraham Lempel : *Compression of Individual Sequences via Variable-Rate Coding* (1978)

- Plus de fenêtre glissante, mais . . .
- un dictionnaire de chaînes de caractères rencontrées avant.

LZW: Terry Welch: A Technique for High-Performance Data Compression (1984)

- Extension de l'algorithme LZ78
- Différence essentielle : dictionnaire initialisé avec tous les caractères de l'alphabet.

Compression à base de dictionnaires – Histoire (3)

Compression de textes :

- compress: utilitaire du OS Unix qui utilisait LZW
- Problème : LZW était breveté par Sperry / Unisys corporation
- gzip: programme de compression alternatif (et libre), combinaison de LZ77 et codage de Huffman.

Compression d'images :

- GIF (Graphics Interchange Format) basé sur LZW souffre du problème du brevet de LZW
- Alternative : PNG / PING ("PING is not GIF") compression : LZ77 et autres

Une multitude de programmes combinant différentes approches :

- 7-Zip: basé sur algorithme Lempel-Ziv-Markov, combinaison de LZ77 et chaînes de Markov (codage d'entropie)
- bzip: transformation de Burrows-Wheeler; transformation Move-to-Front; codage de Huffman

LZW en détail

Structure de données : le dictionnaire

- en principe : un tableau de chaînes de caractères
 'a' 'b' 'c' 'ab' 'ba'
- ici, vue plus convenable : association (chaîne → position) donc : dictionnaire au sens de Python :

Initialisation du dictionnaire :

- Initialisation avec l'ensemble des caractères de l'alphabet
- ... dans un ordre convenu par l'émetteur et le récepteur
- Ex. : Alphabet $\{a, b, c\}$, dict. : $\{'a': 0, 'b': 1, 'c': 2\}$
- Ex. : Alphabet ASCII, dict. : caractère → code ASCII

LZW: compression (1)

Entrée : Une chaîne de caractères str Sortie : Une liste compr de positions dans le dictionnaire

Algorithme : construit en même temps

- la sortie compr
- le dictionnaire dict
- Initialis. de dict, compr = [], mot partiel m = " (chaîne vide)
- Boucle: Pour tout caractère c de str: (*)
 - sim + c est dans dict, étendre m avec c
 - sim + c n'est pas dans dict:
 - Ajouter dict[m] à compr
 - Ajouter m + c à la dernière position de dict
 - Mettre m=c
- Pour finir, rajouter dict[m] à compr

Exemple pour l'alphabet $\{a, b, c\}$

- Entrée: 'abacababac'
- Dictionnaire initial: {'a': 0, 'b': 1, 'c': 2}
- Dictionnaire final :

```
{'a': 0, 'b': 1, 'c': 2, 'ab': 3, 'ba': 4, 'ac': 5, 'ca': 6, 'aba': 7, 'abac': 8}
```

• Résultat compr: [0, 1, 0, 2, 3, 7, 2]

Reconstruction:

```
• dict= {'a': 0, 'b': 1, 'c': 2 }
```

- compr = []
- str = abacababac, m=", c=a=str[0]

```
• dict= {'a': 0, 'b': 1, 'c': 2 }
```

- compr = []
- str = abacababac, m=a, c=b=str[1]

```
• dict= {'a': 0, 'b': 1, 'c': 2, 'ab': 3 }
```

- str = abacababac, m=b, c=a=str[2]

```
• dict= {'a': 0, 'b': 1, 'c': 2, 'ab': 3, 'ba': 4 }
```

- \bullet compr = [0, 1]
- str = abacababac, m=a, c=c=str[3]

```
• dict= {'a': 0, 'b': 1, 'c': 2, 'ab': 3, 'ba': 4,
  'ac': 5}
```

- str = abacababac, m=c, c=a=str[4]

```
• dict= {'a': 0, 'b': 1, 'c': 2, 'ab': 3, 'ba': 4,
  'ac': 5, 'ca': 6 }
```

- str = abacababac, m=a, c=b=str[5]

```
• dict= {'a': 0, 'b': 1, 'c': 2, 'ab': 3, 'ba': 4,
  'ac': 5, 'ca': 6 }
```

- str = abacababac, m=ab, c=a=str[6]

```
• dict= {'a': 0, 'b': 1, 'c': 2, 'ab': 3, 'ba': 4,
  'ac': 5, 'ca': 6, 'aba': 7 }
```

- str = abacababac, m=a, c=b=str[7]

```
• dict= {'a': 0, 'b': 1, 'c': 2, 'ab': 3, 'ba': 4,
  'ac': 5, 'ca': 6, 'aba': 7 }
```

- str = abacababac, m=ab, c=a=str[8]

```
• dict= {'a': 0, 'b': 1, 'c': 2, 'ab': 3, 'ba': 4,
  'ac': 5, 'ca': 6, 'aba': 7 }
```

- str = abacababac, m=aba, c=c=str[9]

Fin de l'algorithme :

```
• dict= {'a': 0, 'b': 1, 'c': 2, 'ab': 3, 'ba': 4,
  'ac': 5, 'ca': 6, 'aba': 7, 'abac': 8 }
```

- str = abacababac, m=c

Fin de l'algorithme :

```
• dict= {'a': 0, 'b': 1, 'c': 2, 'ab': 3, 'ba': 4, 'ac': 5, 'ca': 6, 'aba': 7, 'abac': 8 }
```

- str = abacababac

LZW : Correction de la compression (1)

Notion de correction : Le dictionnaire et le code comprimé permettent de reconstruire la chaîne originale.

Notation : Le "dictionnaire inversé" dict de dict est le dictionnaire qui échange clés contre valeurs, par ex. :

```
dict = {'a': 0, 'b': 1, 'c': 2, 'ab': 3, 'ba': 4},
dict = {0: 'a', 1: 'b', 2: 'c', 3: 'ab', 4: 'ba'}
```

Soit lc = len (compr) la longueur du code comprimé.

Un invariant : En parcourant la chaîne d'entrée str, pour toute position $i \in \{0 \dots len(str)\}$:

```
\frac{\overline{dict}[compr[0]] + \overline{dict}[compr[1]] + \cdots + \overline{dict}[compr[lc - 1]] + m}{= str[0: i - 1]}
```

LZW : Correction de la compression (2)

Exemple (et ce n'est pas une preuve!) :

```
• dict= {'a': 0, 'b': 1, 'c': 2, 'ab': 3, 'ba': 4,
  'ac': 5, 'ca': 6, 'aba': 7 }
```

- str = abacababac, m=a, c=b=str[8]
- Donc:str[0 : 7] = abacaba =
 a + b + a + c + ab + a =
 dict[0] + dict[1] + dict[0] + dict[2] + dict[3] + m

LZW : Correction de la compression (3)

Preuve:

- Montrer que l'invariant est vrai après la phase d'initialisation
- Montrer que chaque exécution de la boucle maintient l'invariant; distinguez entre :
 - 1 le cas où m + c est dans dict (modification de m)
 - ② le cas où m + c n'est pas dans dict (extension de dict)
- Considérez la phase finale de la compression (rajout du dernier m à dict)

Complétez les détails!

Conclusion : Étant donnée la chaîne d'entrée str, l'algorithme de compression construit un dictionaire dict et une séquence de codes compr tels que :

```
\overline{dict}[compr[0]] + \overline{dict}[compr[1]] + \cdots + \overline{dict}[compr[lc - 1]] = str
où lc = len(compr)
```

Première idée : Selon le théorème de correction de compression, on reconstruit str à l'aide de dict et compr.

Problème:

- Le décodeur connaît uniquement le code comprimé compr,
- mais le dictionnaire n'est pas transmis

Deuxième idée:

- On reconstruit le dictionnaire inversé $dinv = \overline{dict}$ lors de la décompression
- ... et on l'utilise pour décoder.

```
Lors de la décompression de compr = [0, 1, 0, 2, 3, 7, 2]
 • dinv= {0: 'a', 1: 'b', 2: 'c', 3: 'ab', 4: 'ba',
   5: 'ac'}
 \bullet str = abac
Code antérieur : 2 : 'c'
Code actuel: 3: 'ab'
 • dinv= {0: 'a', 1: 'b', 2: 'c', 3: 'ab', 4: 'ba',
   5: 'ac', 6: 'ca'}
 • str = abacab
```

```
Entrée : Une liste compr de codes
Sortie : Une chaîne de caractères str
```

Algorithme (première version) : construit en même temps :

- la sortie str
- le dictionnaire dinv

Utilise variables m_ant (mot antérieur) et m_act (mot actuel)

- Initialiser dinv, m_act = dinv[compr[0]], str= m_act
- Pour tout code k in compr[1:]:

```
m_ant = m_act
m_act = dinv[k]
Rajouter m_ant + m_act[0] à dinv
Concaténer m_act à str
```

Question : Est-ce que dinv[k] est toujours bien défini? *Réponse :* Malheureusement non!

Lors de la décompression de compr = [0, 1, 0, 2, 3, 7, 2]

```
• dinv= {0: 'a', 1: 'b', 2: 'c', 3: 'ab', 4: 'ba',
5: 'ac', 6: 'ca'}
```

• str = abacab

Code antérieur : 3: 'ab'
Code actuel : 7: ???

Analyse: Dans le code original: str = abacababac la fonction de compression a rajouté aba: 7 à dict et émis 7 dans le parcours de boucle directement après.

Ceci peut arriver pour des motifs asasa, où s est une séquence.

Algorithme (deuxième version):

- Initialisations : comme avant
- Pour tout code k in compr[1:]:

```
m_ant = m_act
```

- Si k in dinv:
 m_act = dinv[k]
 Rajouter m_ant + m_act[0] à dinv
 (comme avant)
- sinon :
 m_act = m_ant + m_ant[0]
 Rajouter m_act à dinv

Concaténer m_act à str

L'exemple continué :

```
• dinv= {0: 'a', 1: 'b', 2: 'c', 3: 'ab', 4: 'ba',
5: 'ac', 6: 'ca'}
• str = abacab

Code antérieur: 3: 'ab'
Code actuel: 7: ???
Calculer: m_act = 'ab' + 'ab'[0] = 'aba'
• dinv= {0: 'a', 1: 'b', 2: 'c', 3: 'ab', 4: 'ba',
5: 'ac', 6: 'ca', 7: 'aba' }
• str = abacababa
```

Résumé

La famille des algorithmes LZ est

- basée sur des dictionnaires : références vers des séquences de texte vues précédemment
- compatible / peut être combinée avec des méthodes probabilistes : codage de Huffman / chaînes de Markov
- implantée dans la plupart des programmes de compressions actuels

Plan

- Codage
- La notion d'information selon Shannon et codage optimal
- 3 Complexité de Kolmogorov et compression de données
- Codes correcteurs et détecteurs d'erreurs

Plan

- Codes correcteurs et détecteurs d'erreurs
 - Motivation
 - Détection d'erreurs : Notions et exemples de base

Erreurs de transmission et de stockage (1)

Erreurs de transmission sur un canal bruité à cause de :

- influence d'ondes électromagnétiques
- signal trop faible

Erreurs de stockage à cause de :

- vieilissement du matériel
- contact avec des substances magnetiques (disques durs)
- dégradation physiques (CD/DVD)
- trop grand nombre de cycles d'écriture (mémoire flash, USB)

Erreurs de transmission et de stockage (2)

Exemple : la sonde Cassini

Rayonnement cosmique causant des erreurs de mémoire de Cassini : The level is nearly constant at about 280 errors per day.

Mais:

On November 1997, the number of errors increased by about a factor of four . . .due to the coincidence in time of a small solar proton event.

Redondance (1)

Redondance par multiplication des ressources : Mémoire, par exemple l'architecture RAID (redundant array of independent disks)

SOURCE:http://searchstorage.techtarget.com/definition/RAID

Est-il utile de se limiter à deux disques?

Redondance (2)

Redondance par multiplication des ressources : Réseau de communication, par exemple dans un A380

 $\textbf{SOURCe:} \texttt{http://www.artist-embedded.org/docs/Events/2007/IMA/Slides/ARTIST2_IMA_Itier.pdf}$

Détection et correction d'erreurs

Détection d'erreurs

- But : détecter l'occurrence d'une erreur, sans vouloir la corriger en même temps
- Correction : en utilisant un autre mécanisme de redondance :
 - accès à un serveur backup
 - retransmission des données (sur le même canal ou un autre)
- Ici : Contrôle de Redondance Cyclique

Correction d'erreurs

- But : détecter et corriger des erreurs en même temps
- ... permet de se passer d'autres mécanismes de redondance
- Ici : Codes de Hamming

Nécessité d'une redondance "intelligente"

Principes:

- Plus de redondance permet de détecter / corriger plus d'erreurs
- ... une redondance "brute" est souvent inutile
- Il n'y a pas de détection / correction parfaite

Illustration: Explorez les scénarios suivants (pour n = 1, 2, 3):

- Envoi d'un message sur *n* canaux parallèles et indépendants.
- La probabilité d'erreur de chaque canal est 0.1.
- Pour n > 1, en cas de désaccord des messages reçus : arbitrage majoritaire

Discutez:

- Possibilité de détection / correction des erreurs ?
- Probabilité de transmission correcte / de correction correcte / de correction erronée / de situation irrésoluble?

Plan

- Codes correcteurs et détecteurs d'erreurs
 - Motivation
 - Détection d'erreurs : Notions et exemples de base
 - Détection d'erreurs : CRC

Exemple: clé RIB (1)

Un numéro de RIB (Relevé d'Identité Bancaire) R est composé de :

- B: banque (5 chiffres)
- G: guichet (5 chiffres)
- N : numéro de compte (11 lettres alphanumériques)
- C: clé (2 chiffres)

La clé C est déterminée par B, G, N :

- Calculer S(N) par une traduction, caractère par caractère : $A \rightarrow 1, B \rightarrow 2, \dots I \rightarrow 9, J \rightarrow 1, \dots S \rightarrow 2(!!!) \dots Z \rightarrow 9$ (voir tableau sur feuille de TD), $1 \rightarrow 1 \dots 9 \rightarrow 9$ Exemple : $S(TINF17 \dots) = 395617 \dots$
- Critère de correction de C: la concaténation des nombres B, G, S(N), C forme un nombre à 23 chiffres divisible par 97

Exemple : clé RIB (2)

Exemple : Vérification d'un RIB

Soit $B = \frac{36187}{6}$, G = 04329, $N = \frac{A35ACDC94IR}{6}$, C = 25

Calculons S(N) = 13513439499

Concaténation : $R = \frac{36187043291351343949925}{136187043291351343949925}$

Vérification : $R \mod 97 = 0$

Note:

- Méthode très similaire pour la clé d'un IBAN (International Bank Account Number)
- Pareil : Clés pour le numéro de sécurité sociale, ISBN (identifiant unique de livres), code-barres (identification de produits etc.)

Exemple : Bit de parité (1)

Principe:

- Pour représentation binaire des données.
- On rajoute 1 bit redondant (le bit de parité) pour transmettre un message de n bits.

Variantes:

- Parité paire : La somme des bits (incl. bit de parité) modulo 2 est 0
- Parité impaire : La somme des bits (incl. bit de parité) modulo 2 est 1

Typiquement / historiquement :

- n = 7 (longueur du code ASCII)
- Avec le bit de parité, on code un caractère ASCII en un octet (8 bits)

Exemple : Bit de parité (2)

Exemples (ici : parité paire ; bit de parité rajouté à la fin)

Codage d'un message

Message	Somme des bits	Bit de parité	Message codé
0110110	4	0	0110110 0
1101011	5	1	1101011 1

Décodage et vérification d'un message

Message reçu	Somme des bits	Message décodé	l
11101101	6	1110110	l
10110110	5	Erreur de transmission	ĺ

Questions:

- Combien / quels types d'erreurs peuvent être détectés?
- Est-ce que l'une des variantes (paire / impaire) est supérieure à l'autre?

Caractéristique d'un code

Un codage par blocs découpe un message en blocs de taille fixe. Il est caractérisé par :

- le nombre de caractères k du message effectif
- le nombre de caractères r de redondance
- le nombre de caractères n = k + r du message codé

On parle de (n, k)-codes

Rendement : $R = \frac{k}{n}$

Un code est *t*-détecteur / correcteur s'il permet de détecter / corriger toute erreur affectant *t* caractères ou moins.

Exemple : Bit de parité :

- k = 7, r = 1, donc n = 8, rendement : $R = \frac{7}{8}$
- Le code est 1-détecteur et 0-correcteur
 (détecte aussi 3 erreurs, mais pas 2 → pas 3-détecteur)

Détection / correction d'erreurs

En général : les messages sont des mots $m \in A^*$ sur un alphabet A Nous distinguons un ensemble $C \subseteq A^*$ de codes valides Exemples :

- RIB: codes "divisibles par 97"
- Bit de parité : Octet avec parité (im)paire

Détection d'erreurs : Capacité de dire, pour un m' reçu, si $m' \in C$

Correction d'erreurs : Capacité de trouver, pour un m' reçu, un $m \in C$ approprié

Plan

- Codes correcteurs et détecteurs d'erreurs
 - Motivation
 - Détection d'erreurs : Notions et exemples de base
 - Détection d'erreurs : CRC

Contrôle de Redondance Cyclique (CRC)

Principes:

- A plusieurs égards : une généralisation du bit de parité.
- Principalement pour la détection d'erreurs; certaines variantes aussi pour la correction

Deux vues : Représentation des opérations courantes (codage / décodage . . .) comme

- opérations sur des polynômes à coefficients dans Z/2Z.
- manipulation de séquences de bits

De nombreuses applications :

- Protocoles de communication : USB, Bluetooth, Ethernet, CAN, FlexRay
- Compression : Gzip, Bzip2, PNG
- Systèmes de stockage de masse et de fichiers : ext4, Btrfs

Rappel: Polynômes

Voir aussi le Chapitre 2 du module Mathématiques du L1 :

http://moodle.univ-tlse3.fr/course/view.php?id=1278

Un polynôme à coefficients dans un corps \mathbb{K} (noté $\mathbb{K}[X]$) est une expression de la forme

$$P(X) = a_n X^n + a_{n-1} X^{n-1} + \dots + a_2 X^2 + a_1 X + a_0$$

avec $n \in \mathbf{N}$ et $a_n \dots a_0 \in \mathbb{K}$

Vous connaissez surtout les corps $\mathbb R$ (nombres réels) et $\mathbb C$ (nombres complexes).

Pour deux polynômes $A, B \in \mathbb{K}[X]$, vous maîtrisez :

- l'addition, soustraction et multiplication de A et B
- la division avec reste avec l'algorithme d'Euclide, qui fournit deux polynomes $Q, R \in \mathbb{K}[X]$ tq. A = QB + R et deg(R) < deg(B)

Rappel: Z/2Z

Nous utiliserons un corps \mathbb{K} spécifique, ($\mathbb{Z}/2\mathbb{Z}$, +, *), avec

- le support **Z**/2**Z** = {0, 1}
- des opérations d'addition + et multiplication *
- l'inverse de l'addition "-" tq. pour tout x : x + (-x) = 0
- l'inverse de la multiplication "-1" tq. pour tout $x \neq 0$: $x * x^{-1} = 1$

+	0	1
0	0	1
1	1	0

*	0	1
0	0	0
1	0	1

Questions

- Calculez −0, −1, 1⁻¹
- Si vous interprétez 0 et 1 comme des valeurs de vérité "faux" et "vrai", à quelle opération sur les Booléens correspondent + et *?

Polynômes sur **Z**/2**Z** et séquences de bits

Les polynômes sur **Z**/2**Z** ont uniquement des coefficients 0 ou 1. Exemple :

$$P(X) = 1X^7 + 1X^6 + 0X^5 + 0X^4 + 0X^3 + 1X^2 + 0X^1 + X^0 = X^7 + X^6 + X^2 + X^0$$

Représentation comme séquence de bits :

- Un polynôme sur Z/2Z peut être représenté comme mot de ses coefficients a_na_{n-1} ... a₀, avec a_i ∈ {0, 1}
 Convention : ordre décroissant des indices des coefficients
- Pour avoir une représentation, il faut fixer la longueur du mot Exemple : P(X) peut être représenté comme
 - 11000101 (pour n = 7)
 - 00011000101 (pour n = 10)
- La représentation comme séquence de bits permet de déterminer le polynôme. Exemple : 01001100 correspond à X⁶ + X³ + X²

Opérations sur les polynômes sur **Z**/2**Z** (1)

Addition:

- Polynômes : position par position
- Mots de bits : position par position sur des mots de même longueur (si nécessaire, remplir avec des 0 à gauche).

Attention: pas de retenue, ce n'est pas une addition binaire!

- Addition des nombres 5 et 3 en binaire : $(101)_2 + (11)_2 = (1000)_2$
- Addition des polynômes $X^2 + 1$ et X + 1 en $\mathbb{Z}/2\mathbb{Z}$: [101] + [11] = [110] correspond à $X^2 + X$

Soustraction:

Montrez: pour deux polynomes P(X) et Q(X) (sur $\mathbb{Z}/2\mathbb{Z}!!$)

$$P(X) - Q(X) = P(X) + Q(X)$$

Calculez
$$A(X) + B(X)$$
 et $A(X) - B(X)$
pour : $A(X) = X^3 + X^2 + 1$, $B(X) = X^4 + X^2 + X^1$

Opérations sur les polynômes sur **Z**/2**Z** (2)

Multiplication d'un polynôme $P(X) = a_n X^n + \cdots + a_1 X + a_0$ et d'un monome X^k (avec $k \ge 0$):

- Polynômes : $P(X) * X^k = a_n X^{n+k} + \cdots + a_1 X^{1+k} + a_0 X^k$
- Mots de bits : décaler de k bits à gauche, remplir avec des 0 à droite

Calculez :
$$A(X) * X^2$$
 et $B(X) * X^0$

Multiplication de deux polynômes
$$P(X) = a_n X^n + \cdots + a_1 X + a_0$$
 et $Q(X) = b_m X^m + \cdots + b_1 X + b_0$: $P(X) * Q(X) = P(X) * b_m X^m + \cdots + P(X) * b_1 X + P(X) * b_0$ Calculez $A(X) * B(X)$

Opérations sur les polynômes sur **Z**/2**Z** (3)

Division : Ici : algorithme pour n'importe quel $A, B \in \mathbb{K}[X]$

```
Entrée : Polynomes A, B \in \mathbb{K}[X] où B \neq 0
Sortie: Polynomes Q, R \in \mathbb{K}[X] tq. A = QB + R et deg(R) < deg(B)
Notation : Q = A \div B et R = A \mod B
begin
  Q := 0; R := A;
  d := deg(B); c := coeff(B);
  while R != 0 and deg(R) >= d do
    S := (coeff(R)/c) * (X ** (deg(R)-d))
    Q := Q + S;
    R := R - S * B;
  end while
  return (O, R)
end
```

Fonctions auxilaires: deg degré; coeff coefficient dominant

Opérations sur les polynômes sur **Z**/2**Z** (4)

Exemple: Division de
$$A = X^4 + X^2 + X^1$$
 par $B = X + 1$

							S	Q
R		X^4		$+X^2$	$+X^1$			
- S * B	-	(X^4)	$+X^{3})$				<i>X</i> ³	X ³
R			X^3	$+X^2$	$+X^1$			
- S * B	-		(X^3)	$+X^{2})$			X^2	$X^3 + X^2$
R					X^1			
- S * B	-				(X^1)	+1)	1	$X^3 + X^2 + 1$
R						1		

Résultat :
$$Q = (X^3 + X^2 + 1)$$
 et $R = 1$
Vérifiez que $A = (X^3 + X^2 + 1) * B + 1$

Opérations sur les polynômes sur **Z**/2**Z** (4)

Exemple: Division de $A = X^4 + X^2 + X^1$ par B = X + 1 avec des séquences de bit : division de [10110] par [11] Algorithme programmé en TP

							S	Q
R		1	0	1	1	0		
- S * B	-	1	1				$1 * X^3$	1
R			1	1	1	0		
- S * B	-		1	1			$1 * X^2$	11
R				0	1	0		
- S * B				1	1		$0 * X^1$	110
R					1	0		
- S * B	-				1	1	$1 * X^0$	1101
R						1		

Résultat : Q = [1101], R = [1]

Exercice: calculez la division de [1011000] par [101]

CRC: Principe (1)

Désormais :

- nous considérons uniquement des polynômes sur Z/2Z
- nous faisons l'amalgame entre un polynôme et sa représentation (séquence de bits)

Paramètre:

 G(X): polynôme générateur de degré n, partagé entre émetteur et récepteur.
 Différents G(X) ont des capacités de détection d'erreur différentes

Question : Est-ce que le message codé Env(X) envoyé par l'émetteur est le même que le message Rec(X) reçu par le récepteur?

CRC: Principe (2)

Codage pour envoyer un message M(X):

- Calculer : $R(X) = (M(X) * X^n) \mod G(X)$
- Le message envoyé : $Env(X) = M(X) * X^n + R(X)$

Observations:

- il existe Q(X) tel que $M(X) * X^n = Q(X) * G(X) + R(X)$
- $Env(X) = M(X) * X^n + R(X) = Q(X) * G(X)$
- donc : $Env(X) \mod G(X) = 0$
- En plus, deg(R(X)) < n, donc $Env(X) \div X^n = M(X)$

Décodage pour détecter une erreur de transmission

- Soit Rec(X) le message reçu.
- Si $Rec(X) \mod G(X) = 0$, probablement Rec(X) = Env(X)Récupérer $M(X) = Rec(X) \div X^n$
- Si $Rec(X) \mod G(X) \neq 0$, il y a certainement une erreur

CRC: Exemple de codage

- Générateur : $G(X) = X^2 + 1$ [101] polynôme de degré n = 2
- Message à coder : $M(X) = X^4 + X^2 + X$ [10110]
- Calculer $R(X) = (M(X) * X^2) \mod G(X) = X$ [1011000] \mod [101] = [10]
- Message envoyé : $Env(X) = M(X) * X^2 + R(X) = X^6 + X^4 + X^3 + X$ [1011000] + [10] = [1011010]

CRC: Exemple de décodage

Rappel:

$$G(X) = X^2 + 1$$
 [101] et $Env(X) = X^6 + X^4 + X^3 + X$ [1011010]

Soit
$$Rec_1(X) = X^6 + X^4 + X^3 + X$$
 [1011010] le message reçu.

• $Rec_1(X) = (X^4 + X) * G(X)$, donc $Rec_1(X) \mod G(X) = 0$ \rightsquigarrow pas d'erreur de transmission

Soit
$$Rec_2(X) = X^6 + X^5 + X^3 + X$$
 [1101010] le message reçu.

- $Rec_2(X) \mod G(X) = X + 1$ \rightsquigarrow erreur de transmission
- Soit $Rec_3(X) = X^6 + X^4 + X^2 + 1$ [1010101] le message reçu.
 - $Rec_3(X) = (X^4 + 1) * G(X)$, donc $Rec_3(X) \mod G(X) = 0$ \rightsquigarrow erreur de transmission non détectée

CRC: Limites

Polynôme d'erreur Err(X) = Rec(X) - Env(X)Observation : $Err(X) \mod G(X) = Rec(X) \mod G(X)$ Vérifiez!

Si Rec(X) mod G(X) ≠ 0, CRC diagnostique une erreur.
 Puis, Err(X) mod G(X) ≠ 0, donc Err(X) ≠ 0
 ∴ toute erreur diagnostiquée l'est effectivement, pas de fausses alarmes

$$Ex. : Err_2(X) = Rec_2(X) - Env(X) =$$
[1101010] - [1011010] = [0110000]

- Si $Rec(X) \mod G(X) = Err(X) \mod G(X) = 0$, alors
 - Err(X) = 0 → absence d'erreur
 - ou $Err(X) \neq 0$ est multiple de $G(X) \leadsto$ erreur non détectée $Ex. : Err_3(X) = Rec_3(X) Env(X) = [1010101] [1011010] = [0001111] = <math>G(X) * (X + 1)$

