Scaling Geometric Monitoring Over Distributed Streams

Alexandros D. Keros

June 23, 2016

Supervised by: Prof. V.Samoladas

Table of contents

Introduction

Theoretical Background

The Geometric Monitoring Method Theoretical Tools

Related Work

Problem Statement & Implementation

Problem Statement Implementation

Experimental Results

Data & Setup

Experiments

Conclusions & Future Work

Conclusion

Future Work

Introduction

Theoretical Background

The Geometric Monitoring Method Theoretical Tools Related Work

Problem Statement & Implementation

Problem Statemen

Experimental Results

Data & Setul

Conclusions & Future Work

Conclusion Future Work

Data Stream Systems

- ▶ Data streams: Continuous, high volume, size unbound, violative, probably distributed
- Pull paradigm
- ▶ Centralizing and/or polling → prohibitive in terms of communication overhead
- Examples: telecommunication, sensor networks

The Geometric Monitoring Method

- Threshold monitoring
- Nodes communicate when needed
 - Local constraints
 - Violation resolution (false alarms)
- Arbitrary function monitoring
- Tight accuracy bounds
- A promising framework for distributed data stream monitoring

Motivation

Problems:

- increasing node population
- data volume
- data dimensionality
- arbitrary functions
- communication accuracy tradeof

Need for

- scalability warranties
- tight accuracy bounds
- incremental/real-time operation
- ▶ Minimize communication while retaining accuracy bounds

Introduction

Motivation

Problems:

- increasing node population
- data volume
- data dimensionality
- arbitrary functions
- communication accuracy tradeoff

Motivation

Problems:

- increasing node population
- data volume
- data dimensionality
- arbitrary functions
- communication accuracy tradeoff

Need for:

- scalability warranties
- tight accuracy bounds
- ▶ incremental/real-time operation
- ► Minimize communication while retaining accuracy bounds

Motivation

Problems:

- increasing node population
- data volume
- data dimensionality
- arbitrary functions
- communication accuracy tradeoff

Need for:

- scalability warranties
- tight accuracy bounds
- ► incremental/real-time operation
- ► Minimize communication while retaining accuracy bounds

Introduction

Contributions

Expand the geometric monitoring method:

- heuristic method for violation resolution
- distance-based hierarchical node clustering

Introduction

Contributions

Expand the geometric monitoring method:

- heuristic method for violation resolution
- distance-based hierarchical node clustering

Overview

Contributions

Expand the geometric monitoring method:

- heuristic method for violation resolution
- distance-based hierarchical node clustering
- throughout method evaluation on synthetic and real-world datasets

Theoretical Background

The Geometric Monitoring Method Theoretical Tools Related Work

The Geometric Monitoring Method

Geometric Threshold Monitoring

▶ **Threshold monitoring**: arbitrary function $f(\cdot)$, threshold T

$$f(\cdot) < T \text{ or } f(\cdot) > T$$

▶ Idea: decompose into local constraints at the nodes

System Architecture

000000000

Decentralized Scenario

Figure: Mesh-like network topology example of the decentralized scenario. Dashed lines represent data streams and half arrows represent message exchanges.

The Geometric Monitoring Method

System Architecture

Centralized Scenario

Figure: **Star-like network topology** example of the centralized scenario. The bold node represents the coordinator node. Dashed lines represent data streams and half arrows represent message exchanges.

Computational Model

Statistics vectors

- ▶ the monitoring function $f : \mathbb{R}^d \to \mathbb{R}$
- the threshold $T \in \mathbb{R}$
- ▶ the monitoring node set : $P = \{p_1, ..., p_n\}$ with weights w_1, \ldots, w_n
- ▶ the data streams : $S = \{s_1, \ldots, s_n\}$
- ▶ the d-dimensional local statistics vectors : $\vec{v_1}(t), \dots, \vec{v_n}(t)$ represent each node's data stream at time t

Global statistics vector

$$\vec{v}(t) = \frac{\sum_{i=1}^{n} w_i \vec{v}_i(t)}{\sum_{i=1}^{n} w_i}$$
(1)

Introduction Theoretical Background

Computational Model

Estimate vector

Infrequent communication between nodes/nodes-coordinator:

Estimate vector

$$\vec{e}(t) = \frac{\sum_{i=1}^{n} w_i \vec{v_i}'}{\sum_{i=1}^{n} w_i}$$
 (2)

- ▶ the last communicated *local statistics vector* of node p_i : $\vec{v_i}'$
- Local statistics divergence: $\Delta \vec{v_i}(t) = \vec{v_i}(t) \vec{v_i}', i = 1, \dots, n$

Decentralized drift vector

$$\vec{u_i}(t) = \vec{e}(t) + \Delta \vec{v_i}(t) \qquad (3)$$

Centralized drift vector

$$ec{u_i}(t) = ec{e}(t) + \Delta ec{v_i}(t) + rac{ec{\delta_i}}{w_i}$$
 (4)

Computational Model

000000000

Balancing Process

Centralized scenario

Purpose: resolve possible false alarms

Balancing vector

$$\vec{b} = \frac{\sum_{p_i \in P'} w_i \vec{u_i}(t)}{\sum_{p_i \in P'} w_i}$$
 (5)

- ▶ the balancing set P': a subset of nodes
- the slack vector at the nodes $\vec{\delta_i} = \vec{\delta_i}' + \Delta \vec{\delta_i}$, $\sum_{n \in P'} \Delta \vec{\delta_i} = \vec{0}$:

$$\Delta \vec{\delta_i} = w_i \vec{b} - w_i \vec{u_i}(t) \ \forall \ p_i \in P'$$
 (6)

, readjusts the *drift vectors* (4).

0000000000

Geometric Interpretation

Convexity Property

Convexity Property

$$\vec{v}(t) = \frac{\sum_{i=1}^{n} w_i \vec{u_i}(t)}{\sum_{i=1}^{n} w_i}$$
 (7)

Theorem (Sharfman et al. [3])

Let $\vec{x}, \vec{v_1}, \dots, \vec{v_n} \in \mathbb{R}^d$ be a set of vectors in \mathbb{R}^d . Let $Conv(\vec{x}, \vec{y_1}, \dots, \vec{y_n})$ be the convex hull of $\vec{x}, \vec{y_1}, \dots, \vec{y_n}$. Let $B(\vec{x}, \vec{y_i})$ be a ball centered at $\frac{\vec{x} + \vec{y_i}}{2}$ and with radius of $\|\frac{\vec{x} + \vec{y_i}}{2}\|_2$ i.e., $B(\vec{x}, \vec{y_i}) = \{\vec{z} \mid \|\vec{z} - \frac{\vec{x} + \vec{y_i}}{2}\|_2 \le \|\frac{\vec{x} + \vec{y_i}}{2}\|_2\}, \text{ then }$ $Conv(vecx, \vec{v_1}, \dots, \vec{v_n}) \subset B(\vec{x}, \vec{v_i}).$

The Geometric Monitoring Method

Geometric Interpretation

Convexity Property & Local Constraints

Figure: Example of a convex hull (light gray) defined by the drift vectors $\vec{u_i}$, i = 1, 2, 3, 4, 5. The hull is bounded by the spheres created from the estimate vector \vec{e} and the drift vectors $\vec{u_i}, i = 1, 2, 3, 4, 5$. The global statistics vector \vec{v} is guaranteed to be contained in the convex hull of the drift vectors.

Protocol

Decentralized Algorithm

Algorithm 1: Decentralized algorithm

```
1 begin
         foreach node p; do
                                                    /* Node initialization */
 2
              Broadcast \vec{v_i}(0):
 3
              \vec{v_i}' = \vec{v_i}(0):
 4
             Wait messages from all other nodes;
 5
              if messages from all vectors received then
 6
                  \vec{e}(t) = \frac{\sum_{i=1}^{n} w_i \vec{v_i}'}{\sum_{i=1}^{n} w_i};
 7
 8
             end
         end
9
         foreach node pi do
                                                  /* Main monitoring task */
10
              foreach new s_i stream update \vec{v_i}(t) do
11
                   Recalculate \vec{u_i}(t) = \vec{e}(t) + \Delta \vec{v_i}(t);
12
                   if B(\vec{e}, \vec{u_i}(t)) is not monochromatic then
13
                        Broadcast message < i, \vec{v_i}(t) >;
14
                       Set \vec{v_i}' = \vec{v_i}(t):
15
                   end
16
                   if new message < j, \vec{v_j}(t) > received then
17
                        Set \vec{v_i}' = \vec{v_i}(t);
18
                       Recalculate \vec{e}(t) = \frac{\sum_{i=1}^{n} w_i \vec{v_i}'}{\sum_{i=1}^{n} w_i};
19
                        if B(\vec{e}, \vec{u_i}(t)) is not monochromatic then
20
                             Broadcast message \langle i, \vec{v_i}(t) \rangle;
21
                            Set \vec{v_i}' = \vec{v_i}(t);
22
23
                        end
24
                   end
25
              end
26
         end
27 end
```

200

Protocol

return:

Centralized Algorithm

	1 begin
	2 foreach node p _i do /* Node initialization
	*/
	3 Send $< INIT, \vec{v_i}(0) > $ message to coordinato
Algorithm 2: Centralized algorithm's coordinator	$ \vec{v_i'} = \vec{v_i}(0);$
node operation	$\vec{\delta_i} = \vec{0};$
begin	6 Wait message from coordinator;
Wait for $< INIT$, $\cdot >$ messages from all	7 if $< NEW-EST, \vec{e} > message received then$
monitoring nodes; /* Initialization */	8 Set $\vec{e}(t) = \vec{e}$;
$\vec{e}(0) = \frac{\sum_{i=1}^{n} w_i \vec{v}_i(0)}{\sum_{i=1}^{n} w_i};$	9 end
if $new < REP$, $\vec{v_i}(t)$, $\vec{u_i}(t) > message$ received	10 end
then /* Monitoring operation */	11 foreach node p; do /* Main monitoring tas
$P' = P' \cup \{ \langle i, \vec{v_i}(t), \vec{u_i}(t) \rangle \};$	*/
Balance(P');	foreach new s_i stream update $\vec{v_i}(t)$ do
end	13 Recalculate $\vec{u_i}(t) = \vec{e}(t) + \Delta \vec{v_i}(t) + \frac{\vec{\delta_i}}{w_i}$;
end	if $B(\vec{e}, \vec{u_i}(t))$ is not monochromatic ther
Function Balance(P') /* Balancing Process */	Send $<$ REP , $\vec{v_i}(t)$, $\vec{u_i}(t)$ $>$ message
$\vec{b} = \frac{\sum_{g_i \in P'} w_i \vec{u_i}(t)}{\sum_{g_i \in P'} w_i};$	to coordinator;
if $B(\vec{e}, \vec{b})$ is not monochromatic then	16 Wait for $< NEW-EST, \cdot > $ or
if $P - P' \neq \emptyset$ then	$<$ ADJ-SLK, \cdot $>$ message from
Send < REQ > message to random node	coordinator;
in $P - P'$ set;	17 end
else	if new message < REQ > received then
$\vec{e}(t) = \frac{\sum_{i=1}^{n} w_i \vec{v}_i(t)}{\sum_{i=1}^{n} w_i};$	19 Send $<$ REP , $\vec{v_i}(t)$, $\vec{u_i}(t)$ $>$ message
Send $<$ NEW-EST, $\vec{e}(t) >$ message to all	to coordinator;
nodes;	20 Wait for < NEW-EST, · > or

Algorithm 3: Centralized algorithm's monitoring node

∧DJ-SL¥, →> message from Q (→)

operation

Multi-objective Optimization

000000000

000000

Non-linear Constraint Optimization Primal Descent

Feasible Directions

000000000

Theoretical Tools

SQF

The Savitzky-Golay Filter

0000000000

000000

Theoretical Tools

Maximum Weight Matching

The Primal-Dual Method

Related Work

Related Work

Problem Statement

Problem Formulation

The Geometric Monitoring Framework

The Distance-based Hierarchical Clustering The Idea

The Distance-based Hierarchical Clustering

The Weight Function

The Distance-based Hierarchical Clustering The Algorithm

The Heuristic Balancing The Idea

The Heuristic Balancing

The Optimizing Function

The Heuristic Balancing

The Function Formulation

The Heuristic Balancing

The Algorithm

0000000000

Implementation

An Nested Optimization Problem

Velocity and Acceleration Estimation via SG Filtering

Implementation Challenges

Data & Setup

Synthetic Data

Data & Setup

Real-world Data

Notation

RAND, DIST, DISTR Comparison

 ${\sf Experiments}$

GM, HM Comparison

GM, HDM Comparison Synthetic Data Monitoring

GM, HDM Comparison

Air Pollution Monitoring

Conclusion

Summary & Concluding Remarks

Future Work

Future Work

The end Questions?