EDUC 640

Two-Way Factorial ANOVA

Chris Ives

Contents

- Plotting Means
- Recoding/Reordering Factors
- Contrasts using emmeans

Plot Marginal Means

Here I am creating a new summary data frame. After grouping by meth and inst, I just make vocab equal to the mean of those groups. This dataframe is another way of getting marginal mean values.

```
means <- lb5 %>%
  group_by(inst, meth) %>%
  summarise(vocab = mean(vocab))
```

`summarise()` has grouped output by 'inst'. You can override using the `

```
ggplot(means, aes(x = inst, y = vocab, group = meth)) +
  geom_point() +
  geom_line(aes(color = meth))
```


Contrasts using emmeans

To do two-factor contrasts we can use the **emmeans** package. You will probably find this easier than the previous approaches where I had you specify your coding in a matrix. Whether you prefer this for one-way contrasts will be up to you.

Two Factor Groupings

First we run our model specification using **lm**. Then we run **emmeans** on that object to calculate the marginal means. There are multiple ways to use **emmeans** if you plan to run follow—up pairwise comparisons. This first way will run comparisons within the **by** grouping.

```
model <- lm(vocab ~ meth + inst + meth:inst, lb5)
means_1 <- emmeans(model, "inst", by = "meth")
means_1</pre>
```

```
## meth = computer:
## inst
                 emmean SE df lower.CL upper.CL
   physical science 46 3.04 30 39.78
                                         52.2
   social science 40 3.04 30 33.78 46.2
##
                    38 3.04 30 31.78
##
   history
                                         44.2
##
## meth = standard:
##
   inst
                 emmean SE df lower.CL upper.CL
   physical science 34 3.04 30
                                 27.78 40.2
   social science 12 3.04 30 5.78
##
                                         18.2
                    31 3.04 30 24.78
##
   history
                                         37.2
##
```

pairs(means_1)

This way doesn't "nest" one factor in the other and will calculate all possible comparisons.

```
means_2 <- emmeans(model, ~inst*meth)
means_2</pre>
```

```
##
   inst
                   meth emmean SE df lower.CL upper.CL
   physical science computer 46 3.04 30
                                            39.78
                                                     52.2
##
   social science computer 40 3.04 30 33.78
                                                     46.2
## history computer 38 3.04 30 31.78 44.2 ## physical science standard 34 3.04 30 27.78 40.2
##
   social science standard 12 3.04 30 5.78 18.2
                                                     37.2
##
   history standard 31 3.04 30 24.78
##
## Confidence level used: 0.95
```

pairs(means_2)

contrast <chr> physical science computer - social science computer physical science computer - history computer physical science computer - physical science standard physical science computer - social science standard physical science computer - history standard social science computer - history computer social science computer - physical science standard social science computer - social science standard social science computer - history standard history computer - physical science standard Previous 1 2 Next 1-10 of 15 rows | 1-1 of 6 columns

Specifying contrasts

We'll be using the listing structure from the second method. We just have to specify our contrasts into a list.

means_2

```
## inst
                meth
                        emmean SE df lower.CL upper.CL
   physical science computer 46 3.04 30
                                       39.78
                                               52.2
##
   social science computer 40 3.04 30 33.78
                                               46.2
##
  history
          computer 38 3.04 30 31.78
                                               44.2
   physical science standard 34 3.04 30 27.78
                                               40.2
   social science standard 12 3.04 30 5.78
##
                                              18.2
##
  history
           standard 31 3.04 30 24.78
                                               37.2
##
## Confidence level used: 0.95
```

```
contrasts <- list(
  hyp1 = c(1, -.5, -.5, -1, .5, .5),
  hyp2 = c(1, -1, 0, -1, 1, 0)
)</pre>
```

Much easier!!

```
contrast(means_2, contrasts, adjust = "holm")
```

Effect Sizes

If you want partial eta effect sizes (like SPSS output), you'll need to calculate them from the contrast output using the function below.

```
effectsize::t_to_eta2(
    t = c(-1.043, -2.628),
    df_error = 30
)
```

```
## Eta2 (partial) | 90% CI
## -----
## 0.03 | [0.00, 0.19]
## 0.19 | [0.02, 0.39]
```

How would you do this for a One-way ANOVA? I'll demonstrate the process from the beginning.

```
m1 <- lm(vocab ~ inst, lb5)
means <- emmeans(m1, ~inst)
means</pre>
```

Specify contrast

```
contrasts <- list(
  hyp1 = c(1, -.5, -.5),
  hyp2 = c(1, 0, -1)
  )

contrast(means, contrasts)</pre>
```

```
## contrast estimate SE df t.ratio p.value
## hyp1 9.75 4.17 33 2.336 0.0257
## hyp2 5.50 4.82 33 1.141 0.2620
```

Calculate partial eta effect size using previous **t-value** from previous output.

```
effectsize::t_to_eta2(
    t = c(2.336),
    df_error = 33
)
```

```
## Eta2 (partial) | 90% CI
## -----
## 0.14 | [0.01, 0.33]
```

Appendix

All of the following slides reflect less efficient ways of doing contrasts. I am just leaving them in if you want to see some examples of renaming levels and uniting variables.

Recoding Data

We have to start by combining our two factors into one factor with six levels. The level names are a little long for my taste so here I am shortening them. First check the orders of the levels so your names are assigned appropriately.

```
levels(lb5$meth)

## [1] "computer" "standard"

levels(lb5$meth) <- c("comp", "stan")

levels(lb5$inst)

## [1] "physical science" "social science" "history"

levels(lb5$inst) <- c("phys", "soc", "hist")</pre>
```

Next I join the two factors into one with unite. col = specifies the name of the new column, followed by the columns I am joining. I chose to separate them with "_" and set remove = FALSE so I don't delete the old variables.

```
lb5 <- lb5 %>%
  unite(col = ivs, meth, inst, sep = "_", remove = FALSE)
head(lb5)
```

Last bit of data prep is order them in a way that will make sense for me when I code out contrasts later. This order reflects what's in Gina's slides.

```
lb5$ivs <- ordered(lb5$ivs, c("comp_phys", "comp_soc", "comp_his*
levels(lb5$ivs)</pre>
```

```
## [1] "comp_phys" "comp_soc" "comp_hist" "stan_phys" "stan_soc" "stan_hi
```

Emmeans

Start by specifying your model and then running emmeans on that model. Note that I am using ivs, which is our combined two factor variable.

```
m1 <- lm(vocab ~ ivs, data = lb5)
emm <- emmeans(m1, ~ ivs)
```

Then we will check the level order and assign a vectors to each. We have 6 levels so the vector is 6 numbers long. A 1 in the vector means I am saving the mean of that level to my object. So, the mean of "comp_phys" is saved to A1B1.

```
levels(lb5$ivs)

## [1] "comp_phys" "comp_soc" "comp_hist" "stan_phys" "stan_soc" "stan_hi

A1B1 <- c(1, 0, 0, 0, 0, 0)
A1B2 <- c(0, 1, 0, 0, 0, 0)
A1B3 <- c(0, 0, 1, 0, 0, 0)
A2B1 <- c(0, 0, 0, 1, 0, 0)
A2B2 <- c(0, 0, 0, 0, 1, 0)
A2B3 <- c(0, 0, 0, 0, 0, 1)</pre>
```

Hypothesis 1

Now we can specify our contrasts (reference slides 445-446 in Lab 5). This runs the contrasts so it prints the coding scheme.

Here I name the contrast.

```
contrast(emm, method = list(
  "Hyp1" = (A1B1 - (A1B2 + A1B3)/2) -
  (A2B1 - (A2B2 + A2B3)/2)
))
```

Hypothesis 2

Same process for our second contrast.

Combining Contrasts

If I was planning to put them into a markdown document, I'd probably want to write it all out with one command and output.

```
contrast(emm, method = list(
  "Hyp1" = (A1B1 - (A1B2 + A1B3)/2) -
  (A2B1 - (A2B2 + A2B3)/2),
  "Hyp2" = (A1B1 - A1B2) - (A2B1 - A2B2)
))
```

Here's the process using the method I described in the Appendix of Wk1-3 slides.

Remember I only specified one contrast so we only pay attention to the first coefficient (that's not the intercept).

```
m_contrasts <- lm(vocab ~ ivs, data=lb5, contrasts = list(ivs = r
summary(m_contrasts)
```

```
##
## Call:
## lm(formula = vocab ~ ivs, data = lb5, contrasts = list(ivs = mat))
##
## Residuals:
##
     Min
            10 Median 30
                              Max
## -16.00 -3.25 -0.50 4.00 15.00
##
## Coefficients:
##
             Estimate Std. Error t value Pr(>|t|)
## (Intercept) 33.500
                         1.243 26.956 <2e-16 ***
## ivs1
       -5.500 5.273 -1.043 0.3052
            -1.019 3.044 -0.335 0.7401
## ivs2
             -6.219 3.044 -2.043 0.0499 *
## ivs3
             -24.620 3.044 -8.088 5e-09 ***
## ivs4
## ivs5
             -5.620
                         3.044 - 1.846 0.0748
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 7.457 on 30 degrees of freedom
## Multiple R-squared: 0.7121, Adjusted R-squared: 0.6641
## F-statistic: 14.84 on 5 and 30 DF, p-value: 2.382e-07
```