Performance Analysis: Asymptotic Complexity

Data Structures
Spring 2017

Insertion Sort

```
for (int i = 1; i < a.length; i++)
{// insert a[i] into a[0:i-1]
  int t = a[i];
  int j;
  for (j = i - 1; j >= 0 \&\& t < a[j]; j--)
    a[j + 1] = a[j];
 a[j + 1] = t;
```

Worst-Case Comparison Count

```
for (int i = 1; i < n; i++)

for (j = i - 1; j >= 0 && t < a[j]; j--)

a[j + 1] = a[j];

#comparisons = 1 + 2 + 3 + ... + (n-1)

= (n-1)n/2
```

A step is an amount of computation that does not depend on the instance characteristic n

For example, 100 adds, 10 subtractions, 100 multiplications can all be counted as a single step

n adds cannot be counted as 1 step

```
s/e
for (int i = 1; i < a.length; i++)
{// insert a[i] into a[0:i-1]
  int t = a[i];
  int j;
  for (j = i - 1; j >= 0 \&\& t < a[j]; j--)
     a[i + 1] = a[i];
  a[i + 1] = t;
```

```
s/e isn't always 0 or 1
```

```
x = MyMath.sum(a, n);
// returns the sum of all the elements in a[0,n-1]
```

where n is the instance characteristic has a s/e count of n

```
s/e
                                                         steps
for (int i = 1; i < a.length; i++)
{// insert a[i] into a[0:i-1]
  int t = a[i];
  int j;
  for (j = i - 1; j >= 0 \&\& t < a[j]; j--)
     a[j + 1] = a[j];
  a[j + 1] = t;
```

Total: 2i+3

```
for (int i = 1; i < a.length; i++) { 2i + 3 }
```

Suppose a.length = n

Step count for body of for loop is 2(1+2+3+...+n-1) + 3(n-1) = (n-1)n + 3(n-1)= (n-1)(n+3)

Exercise: Prefix sums

 Given an array a[0,n-1], write an efficient procedure that constructs a new array b[0,n-1] such that

$$b[i] = a[0]+a[1]+...+a[i].$$

What is the step count of the procedure?

Asymptotic Complexity

[Finding the exact step count or operation count is cumbersome and time consuming.]

• Describes the behavior of the time (or space) complexity for *large* instance characteristics.

 Useful to compare the growth of different functions (i.e., time/space complexities of different procedures).

Big Oh Notation

 f(n) = O(g(n)) (read as "f(n) is big oh of g(n)") iff positive constants c and k exist such that f(n) ≤ c.g(n) for all n ≥ k.

• f(n) is O(g(n)) means f(n) grows asymptotically slower than or at the same rate as g(n).

That is, g(n) is an upper bound for f(n).

[Note: "O(g(n)) = f(n)" is meaningless]

Asymptotic Complexity of Insertion Sort

• Step count = $(n-1)(n+3) = n^2 + 2n - 3$

Asymptotic complexity is O(n²)

What does this mean?

Complexity of Insertion Sort

 Time or number of operations does not exceed c.n² on any input of size n (n suitably large).

• $[n^2+2n-3 \le 2 n^2 \text{ for all positive integers n}]$ (i.e., c = 2 and k = 1)]

 So, the worst-case time at most quadruples each time n is doubled

Complexity of Insertion Sort

• Is O(n²) too much time?

Is the algorithm practical?

Practical Complexities

109 instructions/second

n	n	nlogn	n ²	n ³
1000	1mic	10mic	1milli	1sec
10000	10mic	130mic	100milli	17min
10 ⁶	1milli	20milli	17min	32years

Impractical Complexities

10⁹ instructions/second

n	n ⁴	n ¹⁰	2 ⁿ
1000	17min	3.2 x 10 ¹³ years	3.2 x 10 ²⁸³ years
10000	116 days	???	???
10 ⁶	3 x 10 ⁷ years	??????	??????

Faster Computer Vs Better Algorithm

Algorithmic improvement more useful than hardware improvement.

E.g. 2^n to n^3

Fibonacci numbers

- F(0) = F(1) = 1; F(n) = F(n-1) + F(n-2)
- Write a program to compute the n-th Fibonacci number.

Alg 1: int fib(n) { if ((n==0)||(n==1)) return 1;
 else return fib(n-1)+fib(n-2);}

Complexity: O(F(n))

Fibonacci numbers

```
    Alg 2: int fib2(n) { int [] F = new int [n];
    F[0] = 1; F[1] = 1;
    for(i=2; i<=n; i++)</li>
    F[i] = F[i-1]+F[i-2];
    return F[n];
    }
```

Complexity: O(n)

More asymptotic notation

- f(n) = Ω(g(n)) means f(n) is asymptotically bigger than or equal to g(n)
 i.e., g(n) is a lower bound for f(n)
- f(n) = Θ(g(n)) means f(n) is asymptotically equal to g(n), i.e., g(n) is both an upper and a lower bound for f(n)
- Also o() (little-oh) and ω () (little omega) for describing *strict* upper and lower bounds.

Binary search

- Input: A sorted array of n distinct numbers and another number x
- Output: The index i such that a[i] ≤ x < a[i+1]

- Algorithm: Repeatedly bisect the range [0,n-1] till the index i is found.
- What is the complexity of binary search?

O(log n)

Exercise

 What is the complexity of the number of comparisons (between the elements of the input array) performed by "binary insertion sort"?

Binary insertion sort

```
for (int i = 1; i < a.length; i++)
{// insert a[i] into a[0:i-1]
  int x = a[i];
  j = BinSearch(x,a[0:i-1]);
  // insert x into a[0:i-1] at position j
}</pre>
```

Binary insertion sort

#comparisons

Binary insertion sort

Total number of comparisons =
 O(log 2 + log 3 + ... + log n+1) =
 O(log (2*3*...*n+1) =
 O(log ((n+1)!)) ≈ O(n log n).

Exercise: Show that $\log (n!) = \Theta(n \log n)$.