High-Dimensional Polynomial Chaos Basis Selection via Bayesian Compressive Sensing

K. Sargsyan¹, C. Safta¹, D. Ricciuto², B.Debusschere¹,H. Najm¹,P. Thornton²

¹Sandia National Laboratories Livermore, CA

²Oak Ridge National Laboratory Oak Ridge, TN

Sponsored by DOE, Biological and Environmental Research, under Climate Science for Sustainable Energy Future (CSSEF).

Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL8500.

Application of Interest: Community Land Model

http://www.cesm.ucar.edu/models/clm/

- Nested computational grid hierarchy
- ullet A single-site, 1000-yr simulation takes ~ 10 hrs on 1 CPU
- ullet Involves ~ 70 input parameters; some dependent
- Non-smooth input-output relationship

- Computationally expensive model simulations, data sparsity
 - Need to build accurate surrogates with as few training runs as possible
- High-dimensional input space
 - Too many samples needed to cover the space
 - Too many terms in the polynomial expansion
- Input parameter correlations/dependences
- Strongly non-smooth forward function

- Computationally expensive model simulations, data sparsity
 - Need to build accurate surrogates with as few training runs as possible
- High-dimensional input space
 - Too many samples needed to cover the space
 - Too many terms in the polynomial expansion
- Input parameter correlations/dependences
- Strongly non-smooth forward function

- Computationally expensive model simulations, data sparsity
 - Need to build accurate surrogates with as few training runs as possible
- High-dimensional input space
 - Too many samples needed to cover the space
 - Too many terms in the polynomial expansion
- Input parameter correlations/dependences
- Strongly non-smooth forward function

- Computationally expensive model simulations, data sparsity
 - Need to build accurate surrogates with as few training runs as possible
- High-dimensional input space
 - Too many samples needed to cover the space
 - Too many terms in the polynomial expansion
- Input parameter correlations/dependences
- Strongly non-smooth forward function

- Computationally expensive model simulations, data sparsity
 - Need to build accurate surrogates with as few training runs as possible
- High-dimensional input space
 - Too many samples needed to cover the space
 - Too many terms in the polynomial expansion
- Input parameter correlations/dependences
- Strongly non-smooth forward function

- Computationally expensive model simulations, data sparsity
 - Need to build accurate surrogates with as few training runs as possible
- · High-dimensional input space
 - Too many samples needed to cover the space
 - Too many terms in the polynomial expansion
- Input parameter correlations/dependences
- Strongly non-smooth forward function
 - Global sensitivity analysis
 - Optimization
 - Forward uncertainty propagation
 - Input parameter calibration

$$X \simeq \sum_{k=0}^{K-1} c_k \Psi_k(oldsymbol{\eta})$$

• $\eta = (\eta_1, \dots, \eta_d)$ standard i.i.d. r.v. Ψ_k standard polynomials, orthogonal w.r.t. $\pi(\eta)$.

$$\Psi_k(\eta_1, \eta_2, \dots, \eta_d) = \psi_{k_1}(\eta_1)\psi_{k_2}(\eta_2)\cdots\psi_{k_d}(\eta_d)$$

- Typical truncation rule: total-order $p, k_1 + k_2 + \dots k_d \le p$. Number of terms is $K = \frac{(d+p)!}{d!p!}$.
- Essentially, a parameterization of a r.v. by deterministic spectral modes c_k .
- Most common standard Polynomial-Variable pairs: (continuous) Gauss-Hermite, Legendre-Uniform, (discrete) Poisson-Charlier.

$$X \simeq \sum_{k=0}^{K-1} c_k \Psi_k(\boldsymbol{\eta})$$

• $\eta = (\eta_1, \dots, \eta_d)$ standard i.i.d. r.v. Ψ_k standard polynomials, orthogonal w.r.t. $\pi(\eta)$.

$$\Psi_k(\eta_1, \eta_2, \dots, \eta_d) = \psi_{k_1}(\eta_1)\psi_{k_2}(\eta_2)\cdots\psi_{k_d}(\eta_d)$$

- Typical truncation rule: total-order $p, k_1 + k_2 + \dots k_d \le p$. Number of terms is $K = \frac{(d+p)!}{d!p!}$.
- Essentially, a parameterization of a r.v. by deterministic spectral modes c_k .
- Most common standard Polynomial-Variable pairs: (continuous) Gauss-Hermite, <u>Legendre-Uniform</u>, (discrete) Poisson-Charlier.

$$X \simeq \sum_{k=0}^{K-1} c_k \Psi_k(\boldsymbol{\eta})$$

• $\eta = (\eta_1, \dots, \eta_d)$ standard i.i.d. r.v. Ψ_k standard polynomials, orthogonal w.r.t. $\pi(\eta)$.

$$\Psi_k(\eta_1, \eta_2, \dots, \eta_d) = \psi_{k_1}(\eta_1)\psi_{k_2}(\eta_2)\cdots\psi_{k_d}(\eta_d)$$

- Typical truncation rule: total-order $p, k_1 + k_2 + \dots k_d \le p$. Number of terms is $K = \frac{(d+p)!}{d!p!}$.
- Essentially, a parameterization of a r.v. by deterministic spectral modes c_k .
- Most common standard Polynomial-Variable pairs: (continuous) Gauss-Hermite, Legendre-Uniform, (discrete) Poisson-Charlier.

$$X \simeq \sum_{k=0}^{K-1} c_k \Psi_k(\boldsymbol{\eta})$$

• $\eta = (\eta_1, \dots, \eta_d)$ standard i.i.d. r.v. Ψ_k standard polynomials, orthogonal w.r.t. $\pi(\eta)$.

$$\Psi_k(\eta_1, \eta_2, \dots, \eta_d) = \psi_{k_1}(\eta_1)\psi_{k_2}(\eta_2)\cdots\psi_{k_d}(\eta_d)$$

- Typical truncation rule: total-order $p, k_1 + k_2 + \dots k_d \le p$. Number of terms is $K = \frac{(d+p)!}{d!p!}$.
- Essentially, a parameterization of a r.v. by deterministic spectral modes c_k .
- Most common standard Polynomial-Variable pairs: (continuous) Gauss-Hermite, <u>Legendre-Uniform</u>, (discrete) Poisson-Charlier.

• Build/presume PC for input parameter λ

$$\lambda(\boldsymbol{\eta}) = \sum_{k=0}^{K-1} \boldsymbol{a}_k \Psi_k(\boldsymbol{\eta})$$

with respect to multivariate Legendre polynomials.

Build/presume PC for input parameter λ

$$\lambda(\boldsymbol{\eta}) = \sum_{k=0}^{K-1} \boldsymbol{a}_k \Psi_k(\boldsymbol{\eta})$$

with respect to multivariate Legendre polynomials.

• E.g., uniform on an interval, or gaussian with known moments,

$$\lambda = \lambda_0 + \lambda_1 \eta$$

• Build/presume PC for input parameter λ

$$\lambda(\boldsymbol{\eta}) = \sum_{k=0}^{K-1} \boldsymbol{a}_k \Psi_k(\boldsymbol{\eta})$$

with respect to multivariate Legendre polynomials.

• If input parameters are uniform $\lambda_i \sim \mathsf{Uniform}[a_i,b_i]$, then

$$\lambda_i = \frac{a_i + b_i}{2} + \frac{b_i - a_i}{2} \, \eta_i.$$

Build/presume PC for input parameter λ

$$\boldsymbol{\lambda}(\boldsymbol{\eta}) = \sum_{k=0}^{K-1} \boldsymbol{a}_k \Psi_k(\boldsymbol{\eta})$$

with respect to multivariate Legendre polynomials.

• Input parameters are represented via their cumulative distribution function (CDF) $F(\cdot)$, such that, with $\eta_i \sim \text{Uniform}[-1,1]$

$$\lambda_i = F_{\lambda_i}^{-1} \left(\frac{\eta_i + 1}{2} \right), \quad \text{for } i = 1, 2, \dots, d.$$

• Build/presume PC for input parameter λ

$$\lambda(\boldsymbol{\eta}) = \sum_{k=0}^{K-1} \boldsymbol{a}_k \Psi_k(\boldsymbol{\eta})$$

with respect to multivariate Legendre polynomials.

• Input parameters are represented via their cumulative distribution function (CDF) $F(\cdot)$, such that, with $\eta_i \sim \text{Uniform}[-1,1]$

$$\lambda_i = F_{\lambda_i}^{-1} \left(\frac{\eta_i + 1}{2} \right), \quad \text{for } i = 1, 2, \dots, d.$$

• Forward function $f(\cdot)$, output u

$$u = f(\lambda(\eta))$$

$$u = \sum_{k=0}^{K-1} c_k \Psi_k(\eta) \equiv g(\eta)$$

- · Global sensitivity information for free
 - Sobol indices, variance-based decomposition.

Input correlations: Rosenblatt transformation

• Rosenblatt transformation maps any (not necessarily independent) set of random variables $\lambda = (\lambda_1, \dots, \lambda_d)$ to uniform i.i.d.'s $\{\eta_i\}_{i=1}^d$ [Rosenblatt, 1952].

$$\eta_{1} = F_{1}(\lambda_{1})
\eta_{2} = F_{2|1}(\lambda_{2}|\lambda_{1})
\eta_{3} = F_{3|2,1}(\lambda_{3}|\lambda_{2},\lambda_{1})
\vdots
\eta_{d} = F_{d|d-1,...,1}(\lambda_{d}|\lambda_{d-1},...,\lambda_{1})$$

• Inverse Rosenblatt transformation $\lambda = R^{-1}(\eta)$ ensures a well-defined input PC construction

$$\lambda_i = \sum_{k=0}^{K-1} \lambda_{ik} \Psi_k(oldsymbol{\eta})$$

• Caveat: the conditional distributions are often hard to evaluate accurately.

Alternative methods to obtain PC coefficients

$$u \simeq \sum_{k=0}^{K-1} c_k \Psi_k(\boldsymbol{\eta})$$
 $c_k = \frac{\langle u(\boldsymbol{\eta}) \Psi_k(\boldsymbol{\eta}) \rangle}{\langle \Psi_k^2(\boldsymbol{\eta}) \rangle}$

The integral $\langle u(\eta)\Psi_k(\eta)\rangle=\int u(\eta)\Psi_k(\eta)\pi(\eta)d\eta$ can be estimated by

Monte-Carlo

$$\frac{1}{N}\sum_{j=1}^{N}u(\boldsymbol{\eta}_{j})\Psi_{k}(\boldsymbol{\eta}_{j})$$

many samples from $\pi(\eta)$

Quadrature

$$\sum_{j=1}^{Q} u(\boldsymbol{\eta}_j) \Psi_k(\boldsymbol{\eta}_j) w_j$$

samples at quadrature

Alternative methods to obtain PC coefficients

$$u \simeq \sum_{k=0}^{K-1} c_k \Psi_k(\boldsymbol{\eta})$$
 $c_k = \frac{\langle u(\boldsymbol{\eta}) \Psi_k(\boldsymbol{\eta}) \rangle}{\langle \Psi_k^2(\boldsymbol{\eta}) \rangle}$

The integral $\langle u(\eta)\Psi_k(\eta)\rangle = \int u(\eta)\Psi_k(\eta)\pi(\eta)d\eta$ can be estimated by

Monte-Carlo

$$\frac{1}{N}\sum_{j=1}^{N}u(\boldsymbol{\eta}_{j})\Psi_{k}(\boldsymbol{\eta}_{j})$$

many samples from $\pi(\eta)$

Quadrature

$$\sum_{j=1}^{Q} u(\boldsymbol{\eta}_j) \Psi_k(\boldsymbol{\eta}_j) w_j$$

samples at quadrature

Alternative methods to obtain PC coefficients

$$u \simeq \sum_{k=0}^{K-1} c_k \Psi_k(\boldsymbol{\eta})$$
 $c_k = \frac{\langle u(\boldsymbol{\eta}) \Psi_k(\boldsymbol{\eta}) \rangle}{\langle \Psi_k^2(\boldsymbol{\eta}) \rangle}$

The integral $\langle u(\eta)\Psi_k(\eta)\rangle=\int u(\eta)\Psi_k(\eta)\pi(\eta)d\eta$ can be estimated by

Monte-Carlo

$$\frac{1}{N}\sum_{i=1}^{N}u(\boldsymbol{\eta}_{j})\Psi_{k}(\boldsymbol{\eta}_{j})$$

many samples from $\pi(\eta)$

Quadrature

$$\sum_{j=1}^{Q} u(\boldsymbol{\eta}_j) \Psi_k(\boldsymbol{\eta}_j) w_j$$

samples at quadrature

Bayesian inference

$$P(c_k|u(\boldsymbol{\eta}_i)) \propto P(u(\boldsymbol{\eta}_i)|c_k)P(c_k)$$

any (number of) samples

$$u \simeq \sum_{k=0}^{K-1} c_k \Psi_k(\boldsymbol{\eta}) \equiv g_{\boldsymbol{c}}(\boldsymbol{\eta})$$

 $\overbrace{P(\boldsymbol{c}|\mathcal{D})}^{\text{Posterior}} \propto \overbrace{P(\mathcal{D}|\boldsymbol{c})}^{\text{Likelihood Prior}} \overbrace{P(\boldsymbol{c})}^{\text{Prior}}$

<u>Data</u> consists of training runs

$$\mathcal{D} \equiv \{(\boldsymbol{\eta}_i, u_i)\}_{i=1}^N$$

$$u \simeq \sum_{k=0}^{K-1} c_k \Psi_k(\boldsymbol{\eta}) \equiv g_{\boldsymbol{c}}(\boldsymbol{\eta})$$
 Posterior Likelihood Prior $P(\boldsymbol{c}|\mathcal{D}) \propto P(\mathcal{D}|\boldsymbol{c})$

<u>Data</u> consists of training runs

$$\mathcal{D} \equiv \{(\boldsymbol{\eta}_i, u_i)\}_{i=1}^N$$

• <u>Likelihood</u> with a gaussian noise model with σ^2 fixed or inferred,

$$L(\boldsymbol{c}) = P(\mathcal{D}|\boldsymbol{c}) = \left(\frac{1}{\sigma\sqrt{2\pi}}\right)^N \prod_{i=1}^N \exp\left(-\frac{(u_i - g_{\boldsymbol{c}}(\boldsymbol{\eta}))^2}{2\sigma^2}\right)$$

$$u \simeq \sum_{k=0}^{K-1} c_k \Psi_k(\boldsymbol{\eta}) \equiv g_{\boldsymbol{c}}(\boldsymbol{\eta})$$
 Posterior Likelihood Prior $P(\boldsymbol{c}|\mathcal{D}) \propto P(\mathcal{D}|\boldsymbol{c})$

<u>Data</u> consists of training runs

$$\mathcal{D} \equiv \{(\boldsymbol{\eta}_i, u_i)\}_{i=1}^N$$

• <u>Likelihood</u> with a gaussian noise model with σ^2 fixed or inferred,

$$L(\boldsymbol{c}) = P(\mathcal{D}|\boldsymbol{c}) = \left(\frac{1}{\sigma\sqrt{2\pi}}\right)^N \prod_{i=1}^N \exp\left(-\frac{(u_i - g_{\boldsymbol{c}}(\boldsymbol{\eta}))^2}{2\sigma^2}\right)$$

• Prior on c is chosen to be conjugate, uniform or gaussian.

$$u \simeq \sum_{k=0}^{K-1} c_k \Psi_k(\boldsymbol{\eta}) \equiv g_{\boldsymbol{c}}(\boldsymbol{\eta})$$
 Posterior Likelihood Prior $P(\boldsymbol{c}|\mathcal{D}) \propto P(\mathcal{D}|\boldsymbol{c})$ Provided Prior $P(\boldsymbol{c}|\mathcal{D}) \propto P(\mathcal{D}|\boldsymbol{c})$ Provided Prior $P(\boldsymbol{c}|\mathcal{D}) \propto P(\mathcal{D}|\boldsymbol{c})$ Prior $P(\mathcal{D}|\boldsymbol{c}) \sim P(\mathcal{D}|\boldsymbol{c})$

<u>Data</u> consists of training runs

$$\mathcal{D} \equiv \{(\boldsymbol{\eta}_i, u_i)\}_{i=1}^N$$

• <u>Likelihood</u> with a gaussian noise model with σ^2 fixed or inferred,

$$L(\boldsymbol{c}) = P(\mathcal{D}|\boldsymbol{c}) = \left(\frac{1}{\sigma\sqrt{2\pi}}\right)^N \prod_{i=1}^N \exp\left(-\frac{(u_i - g_{\boldsymbol{c}}(\boldsymbol{\eta}))^2}{2\sigma^2}\right)$$

- Prior on c is chosen to be conjugate, uniform or gaussian.
- Posterior is a multivariate normal

$$oldsymbol{c} \in \mathcal{MVN}(oldsymbol{\mu},oldsymbol{\Sigma})$$

$$u \simeq \sum_{k=0}^{K-1} c_k \Psi_k(\boldsymbol{\eta}) \equiv g_{\boldsymbol{c}}(\boldsymbol{\eta})$$
 Posterior Likelihood Prior $P(\boldsymbol{c}|\mathcal{D}) \propto P(\mathcal{D}|\boldsymbol{c})$

• Data consists of training runs

$$\mathcal{D} \equiv \{(\boldsymbol{\eta}_i, u_i)\}_{i=1}^N$$

• <u>Likelihood</u> with a gaussian noise model with σ^2 fixed or inferred,

$$L(\boldsymbol{c}) = P(\mathcal{D}|\boldsymbol{c}) = \left(\frac{1}{\sigma\sqrt{2\pi}}\right)^{N} \prod_{i=1}^{N} \exp\left(-\frac{(u_{i} - g_{\boldsymbol{c}}(\boldsymbol{\eta}))^{2}}{2\sigma^{2}}\right)$$

- Prior on c is chosen to be conjugate, uniform or gaussian.
- Posterior is a multivariate normal

$$oldsymbol{c} \in \mathcal{MVN}(oldsymbol{\mu},oldsymbol{\Sigma})$$

The (uncertain) surrogate is a gaussian process

$$\sum_{k=0}^{K-1} c_k \Psi_k(oldsymbol{\eta}) = oldsymbol{\Psi}(oldsymbol{\eta})^T oldsymbol{c} \quad \in \quad \mathcal{GP}(oldsymbol{\Psi}(oldsymbol{\eta})^T oldsymbol{\mu}, oldsymbol{\Psi}(oldsymbol{\eta})^T)$$

In a different language....

- N training data points (η_n, u_n) and K basis terms $\Psi_k(\cdot)$
- Projection matrix ${m P}^{N imes K}$ with ${m P}_{nk}=\Psi_k({m \eta}_n)$
- Find regression weights $c = (c_0, \dots, c_{K-1})$ so that

$$u \approx Pc$$

- The number of polynomial basis terms grows fast; a p-th order, d-dimensional basis has a total of K = (p+d)!/(p!d!) terms.
- For limited data and large basis set (N < K) this is a sparse signal recovery problem ⇒ need some regularization/constraints.
- Tikhonov regularization

$$argmin_{\boldsymbol{c}} \left\{ ||\boldsymbol{u} - \boldsymbol{P}\boldsymbol{c}||_2 + \alpha ||\boldsymbol{c}||_2 \right\}$$

Lasso regression

$$\mathit{argmin}_{\boldsymbol{c}} \left\{ ||\boldsymbol{u} - \boldsymbol{P}\boldsymbol{c}||_2 \right\}$$
 subject to $||\boldsymbol{c}||_1 \leq \alpha$

Compressive sensing

$$argmin_{c} \{ ||u - Pc||_{2} + \alpha ||c||_{1} \}$$

In a different language....

- N training data points (η_n, u_n) and K basis terms $\Psi_k(\cdot)$
- Projection matrix ${m P}^{N imes K}$ with ${m P}_{nk}=\Psi_k({m \eta}_n)$
- Find regression weights $c = (c_0, \dots, c_{K-1})$ so that

$$u \approx Pc$$

- The number of polynomial basis terms grows fast; a p-th order, d-dimensional basis has a total of K = (p+d)!/(p!d!) terms.
- For limited data and large basis set (N < K) this is a sparse signal recovery problem ⇒ need some regularization/constraints.
- Tikhonov regularization

$$argmin_{\boldsymbol{c}} \left\{ ||\boldsymbol{u} - \boldsymbol{P}\boldsymbol{c}||_2 + \alpha ||\boldsymbol{c}||_2 \right\}$$

Lasso regression

$$argmin_{\boldsymbol{c}} \left\{ ||\boldsymbol{u} - \boldsymbol{P}\boldsymbol{c}||_2 \right\}$$
 subject to $||\boldsymbol{c}||_1 \leq \alpha$

 Compressive sensing Bayesian

$$argmin_{c} \{ ||u - Pc||_{2} + \alpha ||c||_{1} \}$$
Likelihood Prior

Dimensionality reduction by using hierarchical priors

$$p(c_k|\sigma_k^2) = \frac{1}{\sqrt{2\pi}\sigma_k} e^{-\frac{c_k^2}{2\sigma_k^2}} \qquad p(\sigma_k^2|\alpha) = \frac{\alpha}{2} e^{-\frac{\alpha\sigma_k^2}{2}}$$

Effectively, one obtains Laplace sparsity prior

$$p(c|\alpha) = \int \prod_{k=0}^{K-1} p(c_k|\sigma_k^2) p(\sigma_k^2|\alpha) d\sigma_k^2 = \prod_{k=0}^{K-1} \frac{\sqrt{\alpha}}{2} e^{-\sqrt{\alpha}|c_k|}$$

- The parameter α can be further modeled hierarchically, or fixed.
- Evidence maximization dictates values for σ_k^2 , α , σ^2 and allows exact Bayesian solution

$$c \sim \mathcal{MVN}(\mu, \Sigma)$$

with

$$\mu = \sigma^{-2} \Sigma P^T u$$
 $\Sigma = \sigma^2 (P^T P + \operatorname{diag}(\sigma^2 / \sigma_k^2))^{-1}$

Dimensionality reduction by using hierarchical priors

$$p(c_k|\sigma_k^2) = \frac{1}{\sqrt{2\pi}\sigma_k} e^{-\frac{c_k^2}{2\sigma_k^2}} \qquad \qquad p(\sigma_k^2|\alpha) = \frac{\alpha}{2} e^{-\frac{\alpha\sigma_k^2}{2}}$$

· Effectively, one obtains Laplace sparsity prior

$$p(\boldsymbol{c}|\alpha) = \int \prod_{k=0}^{K-1} p(c_k|\sigma_k^2) p(\sigma_k^2|\alpha) d\sigma_k^2 = \prod_{k=0}^{K-1} \frac{\sqrt{\alpha}}{2} e^{-\sqrt{\alpha}|c_k|}$$

- The parameter α can be further modeled hierarchically, or fixed.
- Evidence maximization dictates values for $\sigma_k^2, \alpha, \sigma^2$ and allows exact Bayesian solution

$$c \sim \mathcal{MVN}(\mu, \Sigma)$$

with

$$\mu = \sigma^{-2} \Sigma P^{T} u$$
 $\Sigma = \sigma^{2} (P^{T} P + \operatorname{diag}(\sigma^{2} / \sigma_{k}^{2}))^{-1}$

Dimensionality reduction by using hierarchical priors

$$p(c_k|\sigma_k^2) = rac{1}{\sqrt{2\pi}\sigma_k}e^{-rac{c_k^2}{2\sigma_k^2}} \qquad \qquad p(\sigma_k^2|lpha) = rac{lpha}{2}e^{-rac{lpha\sigma_k^2}{2}}$$

· Effectively, one obtains Laplace sparsity prior

$$p(\boldsymbol{c}|\alpha) = \int \prod_{k=0}^{K-1} p(c_k|\sigma_k^2) p(\sigma_k^2|\alpha) d\sigma_k^2 = \prod_{k=0}^{K-1} \frac{\sqrt{\alpha}}{2} e^{-\sqrt{\alpha}|c_k|}$$

- The parameter α can be further modeled hierarchically, or fixed.
- Evidence maximization dictates values for $\sigma_k^2, \alpha, \sigma^2$ and allows exact Bayesian solution

$$c \sim \mathcal{MVN}(oldsymbol{\mu}, oldsymbol{\Sigma})$$

with

$$\mu = \sigma^{-2} \Sigma P^T u$$
 $\Sigma = \sigma^2 (P^T P + \text{diag}(\sigma^2 / \sigma_k^2))^{-1}$

Dimensionality reduction by using hierarchical priors

$$p(c_k|\sigma_k^2) = \frac{1}{\sqrt{2\pi}\sigma_k} e^{-\frac{c_k^2}{2\sigma_k^2}} \qquad p(\sigma_k^2|\alpha) = \frac{\alpha}{2} e^{-\frac{\alpha\sigma_k^2}{2}}$$

· Effectively, one obtains Laplace sparsity prior

$$p(\boldsymbol{c}|\alpha) = \int \prod_{k=0}^{K-1} p(c_k|\sigma_k^2) p(\sigma_k^2|\alpha) d\sigma_k^2 = \prod_{k=0}^{K-1} \frac{\sqrt{\alpha}}{2} e^{-\sqrt{\alpha}|c_k|}$$

- The parameter α can be further modeled hierarchically, or fixed.
- Evidence maximization dictates values for $\sigma_k^2, \alpha, \sigma^2$ and allows exact Bayesian solution

$$c \sim \mathcal{MVN}(oldsymbol{\mu}, oldsymbol{\Sigma})$$

with

$$\mu = \sigma^{-2} \Sigma P^T u$$
 $\Sigma = \sigma^2 (P^T P + \text{diag}(\sigma^2 / \sigma_k^2))^{-1}$

• KEY: Some $\sigma_k^2 \to 0$, hence the corresponding basis terms are dropped.

BCS removes unnecessary basis terms

The square (i,j) represents the (log) spectral coefficient for the basis term $\psi_i(x)\psi_i(y)$.

Success rate grows with more data and 'sparser' model

Consider test function

$$f(\mathbf{x}) = \sum_{k=0}^{K-1} c_k \Psi_k(\mathbf{x})$$

where only S coefficients c_k are non-zero. Typical setting is

BCS recovers true coefficients with increased number of measurements

Iterative Bayesian Compressive Sensing (iBCS)

 Iterative BCS: We implement an iterative procedure that allows increasing the order for the relevant basis terms while maintaining the dimensionality reduction [Sargsyan et al. 2013].

Basis set growth

The fewer dimensions matter, the better

$$f(\mathbf{x}) = \exp\left(\sum_{i=1}^{d} a_i x_i\right)$$

Dimensionality importance coefficients are chosen so that 90% of energy is in a small subset of dimensions

Validation error increase indicates overfitting. $N_t = 1000$ training runs are sufficient if ~ 10 dimensions matter.

Strong discontinuities/nonlinearities challenge global polynomial expansions

- Basis enrichment [Ghosh & Ghanem, 2005]
- Stochastic domain decomposition
 - Wiener-Haar expansions,
 Multiblock expansions,
 Multiwavelets, [Le Maître et al, 2004,2007]
 - also known as Multielement PC [Wan & Karniadakis, 2009]
- Smart splitting, discontinuity detection
 [Archibald et al, 2009; Chantrasmi, 2011; Sargsyan et al, 2011; Jakeman et al, 2012]
- Data domain decomposition,
 - Mixture PC expansions [Sargsyan et al, 2010]
- Data clustering, classification,
 - Piecewise PC expansions

Piecewise PC expansion with classification

- Cluster the training dataset into non-overlapping subsets \mathcal{D}_1 and \mathcal{D}_2 , where the behavior of function is smoother
- Construct global PC expansions $g_i(\mathbf{x}) = \sum_k c_{ik} \Psi_k(\mathbf{x})$ using each dataset individually (i = 1, 2)
- Declare a surrogate

$$g_s(\mathbf{x}) = \begin{cases} g_1(\mathbf{x}) & \text{if } \mathbf{x} \in^* \mathcal{D}_1 \\ g_2(\mathbf{x}) & \text{if } \mathbf{x} \in^* \mathcal{D}_2 \end{cases}$$

* Requires a classification step to find out which cluster *x* belongs to. We applied Random Decision Forests (RDF).

Caveat: the sensitivity information is harder to obtain.

Global 5-th order surrogate fails

Piecewise 2-nd order surrogate

Piecewise 5-th order surrogate

Piecewise 5-th order surrogate

Piecewise 5-th order surrogate

Sensitivity information comes free with PC surrogate,

$$g(x_1,\ldots,x_d)=\sum_{k=0}^{K-1}c_k\Psi_k(\mathbf{x})$$

• Main effect sensitivity indices

$$S_{i} = \frac{Var[\mathbb{E}(g(\mathbf{x}|x_{i}))]}{Var[g(\mathbf{x})]} = \frac{\sum_{k \in \mathbb{I}_{i}} c_{k}^{2} ||\Psi_{k}||^{2}}{\sum_{k > 0} c_{k}^{2} ||\Psi_{k}||^{2}}$$

 \mathbb{I}_i is the set of bases with only x_i involved

Sensitivity information comes free with PC surrogate,

$$g(x_1,\ldots,x_d)=\sum_{k=0}^{K-1}c_k\Psi_k(\mathbf{x})$$

· Main effect sensitivity indices

$$S_{i} = \frac{Var[\mathbb{E}(g(\mathbf{x}|x_{i}))]}{Var[g(\mathbf{x})]} = \frac{\sum_{k \in \mathbb{I}_{i}} c_{k}^{2} ||\Psi_{k}||^{2}}{\sum_{k > 0} c_{k}^{2} ||\Psi_{k}||^{2}}$$

Joint sensitivity indices

$$S_{ij} = \frac{Var[\mathbb{E}(g(\mathbf{x}|x_i, x_j))]}{Var[g(\mathbf{x})]} - S_i - S_j = \frac{\sum_{k \in \mathbb{I}_{ij}} c_k^2 ||\Psi_k||^2}{\sum_{k > 0} c_k^2 ||\Psi_k||^2}$$

 \mathbb{I}_{ij} is the set of bases with only x_i and x_j involved

Sensitivity information comes free with PC surrogate,

but not with piecewise PC

$$g(x_1,\ldots,x_d)=\sum_{k=0}^{K-1}c_k\Psi_k(x)$$

Main effect sensitivity indices

$$S_i = \frac{Var[\mathbb{E}(g(\boldsymbol{x}|x_i))]}{Var[g(\boldsymbol{x})]} = \frac{\sum_{k \in \mathbb{I}_i} c_k^2 ||\Psi_k||^2}{\sum_{k > 0} c_k^2 ||\Psi_k||^2}$$

Joint sensitivity indices

$$S_{ij} = \frac{Var[\mathbb{E}(g(\mathbf{x}|x_i, x_j))]}{Var[g(\mathbf{x})]} - S_i - S_j = \frac{\sum_{k \in \mathbb{I}_{ij}} c_k^2 ||\Psi_k||^2}{\sum_{k > 0} c_k^2 ||\Psi_k||^2}$$

• For piecewise PC, need to resort to Monte-Carlo estimation [Saltelli, 2002].

Application of Interest: Community Land Model

http://www.cesm.ucar.edu/models/clm/

- Nested computational grid hierarchy
- ullet A single-site, 1000-yr simulation takes ~ 10 hrs on 1 CPU
- Involves ~ 70 input parameters; some dependent
- Non-smooth input-output relationship

Sparse PC surrogate for the Community Land Model

- Main effect sensitivities : rank input parameters
- Joint sensitivities : most influential input couplings
- About 200 polynomial basis terms in the 70-dimensional space
- Sparse PC will further be used for
 - sampling in a reduced space
 - parameter calibration against experimental data

Sparse PC surrogate for the Community Land Model

- Main effect sensitivities : rank input parameters
- Joint sensitivities : most influential input couplings
- About 200 polynomial basis terms in the 70-dimensional space
- Sparse PC will further be used for
 - sampling in a reduced space
 - parameter calibration against experimental data

Sparse PC surrogate for the Community Land Model

- Main effect sensitivities : rank input parameters
- Joint sensitivities : most influential input couplings
- About 200 polynomial basis terms in the 70-dimensional space
- Sparse PC will further be used for
 - sampling in a reduced space
 - parameter calibration against experimental data

Summary

- Surrogate models are necessary for complex models
 - Replace the full model for both forward and inverse UQ
- Uncertain inputs
 - Polynomial Chaos surrogates well-suited
- Limited training dataset
 - Bayesian methods handle limited information well
- Curse of dimensionality
 - The hope is that not too many dimensions matter
 - Compressive sensing (CS) ideas ported from machine learning
 - We implemented iterative Bayesian CS algorithm that reduces dimensionality and increases order on-the-fly.
- Dependent inputs
 - Rosenblatt transformation
- Nonlinear behavior
 - Data clustering and classification-driven piecewise PC
- Applied to CLM
 - Dimensionality reduction, Sensitivity analysis
 - Coming up: lower-dim surrogate and calibration

Literature

- M. Rosenblatt, "Remarks on a multivariate transformation", Ann. Math. Statist., 23:3, pp. 470-472, 1952.
- S. Ji, Y. Xue and L. Carin, "Bayesian compressive sensing", IEEE Trans. Signal Proc., 56:6, 2008.
- S. Babacan, R. Molina and A. Katsaggelos, "Bayesian compressive sensing using Laplace priors", IEEE Trans. Image Proc., 19:1, 2010.
- A. Saltelli, "Making best use of model evaluations to compute sensitivity indices", Comp Phys Comm, 145, 2002.
- K. Sargsyan, C. Safta, H. Najm, B. Debusschere, D. Ricciuto and P. Thornton, "Dimensionality reduction for complex models via Bayesian compressive sensing", submitted to *Int J for Uncertainty Quantification*, 2013.
- K. Sargsyan, C. Safta, R. Berry, J. Ray, B. Debusschere and H. Najm, "Efficient uncertainty quantification methodologies for high-dimensional climate land models", Sandia Report, SAND2011-8757, Nov. 2011.

Thank You