Progressive Generation of Canonical Sums of Products Using a SAT Solver

Ana Petkovska, Alan Mishchenko, David Novo, Muhsen Owaida, and Paolo Ienne

June 10, 2016 Austin, Texas

- **Sum of products (SOP)** is a two-level representation that can represent a Boolean function as a sum (OR, +) of cubes, $S = c_1 + \cdots + c_m$
- ▶ Cube c is a Boolean product (AND, ·) of literals, $c_i = l_1 \cdot ... \cdot l_k$
- **Literal** l is a variable v or its negation \bar{v}

Tr	uth	tal	ble	On-set SOP
x_1	x_2	x_3	F	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
0	0	0	0	- 1 1 1
0	0	1	0	/ 1 1 - 1
0	1	0	0	
0	1	1	1	
1	0	0	0	
1	0	1	0	
1	1	0	1	
1	1	1	1	· ·

cubes

minterms

- Sum of products (SOP) is a two-level representation that can represent a Boolean function as a sum (OR, +) of cubes, $S = c_1 + \cdots + c_m$
- ▶ Cube c is a Boolean product (AND, ·) of literals, $c_i = l_1 \cdot ... \cdot l_k$
- **Literal** l is a variable v or its negation \bar{v}

Truth table					
x_1	x_2	x_3	F		
0	0	0	0		
0	0	1	0		
0	1	0	0		
0	1	1	1		
1	0	0	0		
1	0	1	0	/	
1	1	0	1		
1	1	1	1		

minterms

On-set SOP

x_1	x_2	x_3	f
-	1	1	1
1	1	-	1

cubes

 $f = x_2 x_3 + x_1 x_2$

- **Sum of products (SOP)** is a two-level representation that can represent a Boolean function as a sum (OR, +) of cubes, $S = c_1 + \cdots + c_m$
- ▶ Cube c is a Boolean product (AND, ·) of literals, $c_i = l_1 \cdot ... \cdot l_k$
- **Literal** l is a variable v or its negation \bar{v}

Tr	uth	tal	ble	
x_1	x_2	x_3	F	
0	0	0	0	
0	0	1	0	
0	1	0	0	
0	1	1	1	
1	0	0	0	
1	0	1	0	
1	1	0	1	
1	1	1	1	
mir	iter	ms		

On-set SOP

x_1	x_2	x_3	f
-	1	1	1
1	1	-	1

$$f = x_2 x_3 + x_1 x_2$$

Off-set SOP

x_1	x_2	x_3	f
0	0	1	0
0	-	0	0
1	0	-	0

cubes

$$\bar{f} = \bar{x}_1 \, \bar{x}_2$$

- **Sum of products (SOP)** is a two-level representation that can represent a Boolean function as a sum (OR, +) of cubes, $S = c_1 + \cdots + c_m$
- ▶ Cube c is a Boolean product (AND, ·) of literals, $c_i = l_1 \cdot ... \cdot l_k$
- **Literal** l is a variable v or its negation \bar{v}

Truth table $x_1 \ x_2 \ x_3 \ F$ 0 0 0 0 0 0 1 1 0 0 minterms

On-set SOP

x_1	x_2	x_3	f
-	1	1	1
1	1	-	1

$$f = x_2 x_3 + x_1 x_2$$

Off-set SOP

cubes

$$\bar{f} = \bar{x}_1 \, \bar{x}_2 + \bar{x}_1 \, \bar{x}_3$$

- **Sum of products (SOP)** is a two-level representation that can represent a Boolean function as a sum (OR, +) of cubes, $S = c_1 + \cdots + c_m$
- ▶ Cube c is a Boolean product (AND, ·) of literals, $c_i = l_1 \cdot ... \cdot l_k$
- **Literal** l is a variable v or its negation \bar{v}

Truth table					
x_1	x_2	x_3	F		
0	0	0	0		
0	0	1	0		
0	1	0	0		
0	1	1	1		
1	0	0	0		
1	0	1	0	•	
1	1	0	1		
1	1	1	1		

minterms

On-set SOP

x_1	x_2	x_3	f
-	1	1	1
1	1	-	1

$$f = x_2 x_3 + x_1 x_2$$

Off-set SOP

$$\begin{array}{c|cccc}
x_1 & x_2 & x_3 & f \\
0 & 0 & - & 0 \\
0 & - & 0 & 0 \\
1 & 0 & - & 0
\end{array}$$

cubes

$$\bar{f} = \bar{x}_1 \, \bar{x}_2 + \bar{x}_1 \, \bar{x}_3 + x_1 \bar{x}_2$$

- Sum of products (SOP) is a two-level representation that can represent a Boolean function as a sum (OR, +) of cubes, $S = c_1 + \cdots + c_m$
- ▶ Cube c is a Boolean product (AND, ·) of literals, $c_i = l_1 \cdot ... \cdot l_k$
- **Literal** l is a variable v or its negation \bar{v}

Truth table

x_1	x_2	x_3	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

minterms

On-set SOP

x_1	x_2	x_3	f
-	1	1	1
1	1	-	1

$$f = x_2 x_3 + x_1 x_2$$

$$\begin{array}{c|ccccc}
x_1 & x_2 & x_3 & f \\
0 & 0 & - & 0 \\
0 & - & 0 & 0 \\
1 & 0 & - & 0
\end{array}$$

$$\bar{f} = \bar{x}_1 \, \bar{x}_2 + \bar{x}_1 \, \bar{x}_3 + x_1 \bar{x}_2$$

$$\bar{f} = \bar{x}_1 \, \bar{x}_2 + \bar{x}_1 \, \bar{x}_3 + x_1 \bar{x}_2$$
 SOP size: 3 cubes, 6 literals

Use of SOPs

► Mapping into Programmable Logic Arrays (PLAs)

Supported in many tools for logic optimization (in academia and industry)

- Delay optimization in technology independent synthesis and technology mapping
- ► Test generation
- Multi-level logic synthesis for global circuit restructuring (case-study)

Existing SOP Generation and Minimization

- From Binary Decision Diagrams (BDDs)
 - Problem 1: BDD generation is not scalable for some functions
 - The BDD size is exponential in the number of input variables \rightarrow BDD memory explosion problem
 - Problem 2: Incompatible with incremental applications
 - The complete BDD should be build before converting it to SOP
- ESPRESSO style minimizers: version enhanced by SAT solving
 - Problem 1: Requires as input a computed SOP: do not generate a new SOP from a multi-level representation
 - > Problem 2: The existing SOP generation is based on enumeration on satisfying assignments

Existing SOP Generation and Minimization

- From Binary Decision Diagrams (BDDs)
 - > Problem 1: BDD generation is not scalable for some functions
 - The BDD size is exponential in the number of input variables \rightarrow BDD memory explosion problem
 - Problem 2: Incompatible with incremental applications
 - The complete BDD should be build before converting it to SOP
- ESPRESSO style minimizers: version enhanced by SAT solving
 - Problem 1: Requires as input a computed SOP: do not generate a new SOP from a multi-level representation
 - > Problem 2: The existing SOP generation is based on enumeration on satisfying assignments

Solution?

SAT-based | SOP Generation and Minimization

From Binary Decision Diagrams (BDDs)

Feasibility of computation BDD generation is not scalable for some functions

size is exponential in the number of input variables \rightarrow BDD memory explosion problem

Progressive generation

Incompatible with incremental applications

Partial SOPs

plete BDD should be build before converting it to SOP

ESPRESSO style minimizers: version enhanced by SAT solving

Completely based on SAT solving

Requires as input a computed SOP: do not generate a new SOP from a multi-level tion

The existing SOP generation is based on enumeration on satisfying assignments

Solution?

SAT-based SOP Generation and Minimization

- Completely based on SAT solvers
- **Progressive generation:** cube by cube (generated and minimized)
 - Generation of a partial SOP
 - Prediction of feasibility of computation
- SAT-based generation of canonical SOPs
 - Unique SOP for a given function and variable order, independent of
 - The initial structure of the circuit
 The used SAT solver
 - CNF generation algorithm
- Operating system
- The generated SOPs are **irredundant**
 - > No literal and no cube can be removed without changing the function

Outline

- ► SAT-based SOP Generation
- ► Methods for Runtime Improvement
- ► Experimental Results
- ► Conclusion

► Initialize SAT solvers

- Initialize SAT solvers
- Generate a minterm

χ	y	Z	t	f
0	1	0	1	1

11

10

- Initialize SAT solvers
- Generate a minterm
- Expand the minterm to a cube

Expand to

a cube

χ	y	Z	t	f
0	1	-	1	1

11

10

- Initialize SAT solvers
- Generate a minterm
- Expand the minterm to a cube
- Add the cube as a blocking clause

Expand to

a cube

x	y	Z	t	f
0	1	-	1	1

 $\overline{x}y\overline{t} = (x + \overline{y} + \overline{t})$

0

0

11

10

(Redundant?) On-set SOP

x	y	Z	t	f
0		-		1
1	-	1	1	1
4	4	4	<u> </u>	— 1—
1	0	-	1	1

Outline

- ► SAT-based SOP Generation
 - > Generation of Minterms
 - Expansion of Minterms to Cubes
 - Removing Redundant Cubes
- ► Methods for Runtime Improvement
- ► Experimental Results
- ► Conclusion

Generation of Minterms

- ► Non-canonical SOPs: A SAT assignment
- Canonical SOPs: The lexicographically smallest SAT assignment
 - under the variable order
 - Use the LEXSAT algorithm
 - > Deterministic algorithm: generate the same minterms in the same order

Outline

- ► SAT-based SOP Generation
 - Generation of Minterms
 - > Expansion of Minterms to Cubes
 - Removing Redundant Cubes
- ► Methods for Runtime Improvement
- Experimental Results
- ► Conclusion

c5: $\bar{x}y$ --

11

10

changing the value of the function

 Ensure that more than one uncovered minterm is covered

SAT-based expansion (final SAT check)

Canonical

SAT: satisfying xyzt
assignment On-set minterm

UNSAT return on-set SOP
SAT: expand
UNSAT: do not expand

Greedy canonical
SAT-based expansion

Add it as blocking clause

SAT-based expansion

(final SAT check)

Cube w/o one literal UNSAT: expand

all sion

SAT: do not expand

UNSAT: expand

x-zt

Off-set SAT

solver

Canonical

blocked: $\bar{x}y-t$

xyzt

 $\bar{x}yzt$

 $x\bar{y}zt \rightarrow x-zt$

- Ensure that more than one uncovered minterm is covered
- Canonical expansion: literals are always removed in the same order
- At the end: iterate the final SAT check on all literals

Assume the values of the minterm

10

Extend the literals that are not returned in the set

Outline

- ► SAT-based SOP Generation
 - Generation of Minterms
 - > Expansion of Minterms to Cubes
 - Removing Redundant Cubes
- ► Methods for Runtime Improvement
- Experimental Results
- ► Conclusion

Removing Redundant Cubes

- ► Initialize a SAT solver with all cubes
- Find an assignment for which ci = 1 and the other irredundant cubes evaluate to 0
 - > SAT: *ci* is irredundant
 - ▶ UNSAT: *ci* is redundant, remove it from the SOP
- Canonical: cubes are removed always in the same order

Removing Redundant Cubes

$$c1 = \bar{x}yt$$

$$c2 = xzt$$

$$c3 = xyz$$

$$c4 = x\bar{y}t$$

$$c2 = 1$$

$$c2 = 1$$

$$c2 = 1$$

$$c3 = y$$

$$c1 = 0$$

$$c3 = y$$

$$c4 = \bar{y}$$

$$c3 = 0$$

$$c4 = 0$$

$$c4 = 0$$
SAT solver with cubes
$$c1 = 0$$

$$c3 = y$$

$$c4 = \bar{y}$$

- ► Initialize a SAT solver with all cubes
- Find an assignment for which ci = 1 and the other irredundant cubes evaluate to 0
 - > SAT: *ci* is irredundant
 - ▶ UNSAT: *ci* is redundant, remove it from the SOP
- Canonical: cubes are removed always in the same order

Outline

- ► SAT-based SOP Generation
 - Generation of Minterms
 - > Expansion of Minterms to Cubes
 - Removing Redundant Cubes
- ► Methods for Runtime Improvement
- ► Experimental Results
- ► Conclusion

Methods for Runtime Improvement

Generate simultaneously on-set and off-set SOPs

On-set SOP $x_1 \ x_2 \ x_3 \ f$ - 1 1 1
1 1 - 1 $f = x_2x_3 + x_1x_2$

Off-set SOP

$$x_1 \ x_2 \ x_3 \ f$$

0 0 - 0

0 - 0

1 0 - 0

 $\bar{f} = \bar{x}_1 \; \bar{x}_2 + \bar{x}_1 \; \bar{x}_3 + x_1 \bar{x}_2$

Avoid generating first the larger SOP

Future work: generate each set in parallel

- Prioritize outputs with large SOP
 - > Sort outputs by size of their input support
 - Generate SOPs in decreasing order

Early termination when the large SOP exceed resource limits

Future work: generate SOP of each output in parallel

S₃: 9 inputs

S₂: 7 inputs

S₁: 5 inputs

So: 3 inputs

Methods for Runtime Improvement

Detect isomorphic outputs

Benefit from structure sharing

Isomorphic functions: implement an identical function using different inputs

Isomorphic class 1

Func: *f* , *g*

Repr: $f = x_1 x_2 x_3$

- Generate SOP only for one output per class (the representative)
- > Duplicate the generated SOP for the other outputs from the class
- ► Share one CNF among all outputs

Benefit from logic sharing

- > Generate one CNF for the complete circuit
- > For each output, initialize the SAT solver with the CNF part of the output

Outline

- SAT-based SOP Generation
 - Generation of Minterms
 - > Expansion of Minterms to Cubes
 - Removing Redundant Cubes
- ► Methods for Runtime Improvement
- ► Experimental Results
- ► Conclusion

Experimental Setup

- ► Implemented the SAT-based SOP generation in ABC
- Compared flows for SOP generation

- For the BDD-based SOPs, generate 5 SOPs using different variable orders
- ► For the SAT-based SOPs, generate 12 SOPs using different options
 - Non-canonical or canonical SOPs
 - Order variables by fanout number
 - Reverse variable order
 - Shared CNF by primary outputs

Experimental Setup

- Benchmarks
 - Set of 20 large MCNC benchmarks
 - Set of 32 ISCAS'89 benchmarks
 - > Set of 9 logic tables from instruction decoder unit (LT-DEC)

Comparison of SOP Size

Comparison of Area-Delay Product

Comparison of Runtime

- Public benchmarks
 - > On average, 8x slower than the BDD-based method
 - > Faster for circuits with many isomorphic outputs
 - S35932 10 isomorphic classes for 2048 combinatorial outputs -> SAT-based: 0.06 sec BDD-based: 1.83 sec
 - based. 1.05 sec
- Industrial benchmarks
 - > Faster due to isomorphism: generated SOPs for only ~30% of the outputs
 - > Hundreds of PIs/POs -> constructing the global BDD in one manager is problematic

Comparison of Runtime

Runtime profile (for the LT-DEC benchmarks)

Generating	minterms	8%
ocherating	111111111111111111111111111111111111111	0/0

- Expanding minterms to cubes 84%
- Removing redundant cubes 2%
- Other operations

Partial SOPs

Outline

- SAT-based SOP Generation
 - Generation of Minterms
 - > Expansion of Minterms to Cubes
 - Removing Redundant Cubes
- ► Methods for Runtime Improvement
- Experimental Results
- **▶** Conclusion

Conclusion

- We presented a complete SAT-based algorithm for progressive generation of irredundant (non-)canonical SOPs
- Quality of results
 - Decreased SOP size up to 10% compared to the BDD-based method
 - > Area-delay product post factoring can be improved up to 36%
- ▶ Runtime: 8x slower on average, but faster for isomorphic circuits
- ► Future work
 - > Improving the runtime: using parallelism, faster cube expansion
 - Dedicated SAT-based multi-output SOP computation