Addressing the lack of pragmatic knowledge in multimodal models

Victor Callejas Fuentes¹, C.S.Bahushruth²

Contents

Problem statement

Feature extraction

Object detection

Adding Internet Knowledge

Architecture

Level-0 Models

Level-1 Meta-Classifier

Training

Cross Validation Scheme

SWA, FP16...

Results & Further work

Problem Statement as we understand

¹A direct or indirect attack on people based on characteristics, including ethnicity, race, nationality, immigration status, religion, caste, sex, gender identity, sexual orientation, and disability or disease

What we need to detect:

Hate sentiment + Protected Entities

(Multimodal and holistically)

Object detection

[1] Anderson et al Bottom-Up and Top-Down Attention for Image Captioning and Visual Question Answering - https://arxiv.org/abs/1707.07998

Adding Internet knowledge

Object representation

white woman, white table, blue wave...

¹Vision API Entities

Bethany Hamilton

²Duck Duck Go API Topic

American disabled sportspeople
Shark Attack Victims

With Post-Processing (cleaning, summarizing, translating)

[1] https://cloud.google.com/vision/docs/detecting-web [2] https://duckduckgo.com/api

Slur auxiliary tokens based on hate speech policy

Input Text (Meme caption + Additional text information)

Slur database

Auxiliary Tokens: [BLACKS], [INDIANS], [DISABLED] etc

Architecture

Level-0

Pure Multimodal

OUTPUT CLS + CLS + CLS MODEL CLS CLS CLS UNITER LXMERT VL-BERT INPUT [CLS] Love the way you smell today [SEP] Positional encoding + Feature vectors

Text Multimodal

Level-1 Meta-Classifier

Training

Cross Validation Scheme

Techniques

Stochastic Weight Averaging (SWA)¹

- Maintains an average of the model weights across multiple epochs
- Allow us to get a stable cross validation score

FP16²

- Twice faster training and bigger batches with same score

Optimizing AUC through loss function³

^[1] PyTorch 1.6 - https://pytorch.org/blog/pytorch-1.6-now-includes-stochastic-weight-averaging/

^[2] PyTorch 1.6 - https://pytorch.org/blog/accelerating-training-on-nvidia-gpus-with-pytorch-automatic-mixed-precision/

^[3] https://github.com/iridiumblue/roc-star

Results & Further work

Scores

Mean 10-Fold Cross Validation

Accuracy 0.813 AUC Roc 0.882

Test Unseen

Accuracy 0.745 2th position AUC Roc 0.788 7nd position

Findings

Using directly object labels

- Image and text tokens share the same representation at the cost of lost information and bias

Web entities

- Historic or internet knowledge improves score

Combining different models

- Different models have different tokenizers and pre-training methods, so each one of them can extract information that the others can not and vice versa, so the combination of them achieves best results

11

Further work

- ¹ERNIE-ViL, current state-of-the-art multimodal model. (adds relationships between objects reconstructing a scene graph)
- ²Conterfactual training may help avoid bias

[1] https://arxiv.org/abs/2006.16934 [2] https://arxiv.org/abs/2006.04315