Problem 1

Consider the following vector field in \mathbb{R}^2 :

$$\mathbf{F}(x,y) = (\frac{\pi x}{(1+x^2)^2} - \frac{12}{5}y^5)\mathbf{i} + (4x^3y^2 + e^{\cos(y)+y^3})\mathbf{j}$$

Let C be the simple closed curve starting in (1,0) and obtained by the union of the following curves: the semicircle C_1 with equation $y = \sqrt{1-x^2}$, the segment C_2 from (-1,0) to $(-\frac{\sqrt{2}}{2},0)$, the semicircle C_3 with equation $y = \sqrt{\frac{1}{2}-x^2}$ in the clockwise direction and the segment C_4 from $(\frac{\sqrt{2}}{2},0)$ to (1,0).

- 1. Evaluate $\int_C \mathbf{F} \cdot d\gamma$.
- 2. Let C' be the curve obtained by the union of C_1 , C_2 and C_3 . Using your previous computation evaluate $\int_{C'} \mathbf{F} \cdot d\gamma$.

Problem 2

Let $\mathbf{F}(x, y, z) = (x^2 - y, x + y^2, 0)$.

- 1. Evaluate the divergence and the curl.
- 2. Compute the line integral $\int_C \mathbf{F} \cdot d\gamma$ for C the oriented segment from (0, -1, 0) to (0, 1, 0).
- 3. What is the value of the integral if C is changed to the semicircle $x^2 + y^2 = 1$ with $x \ge 0$ on the plane z = 0, taken with the same orientation?

Problem 3

Let $D = \{(x, y, z) | x^2 + y^2 \le (z - 3)^2, 0 \le z \le 2\}.$

- 1. Calculate the volume of D.
- 2. Let $\mathbf{F}(x,y,z) = (z^4 2y, x 6y^3, z)$ and consider S_1 to be the part of the boundary of D lying on the surface of the cone. Evaluate $\iint_{S_1} \operatorname{curl} \mathbf{F} \cdot dS$ (Hint: apply Stokes' theorem twice).

Problem 4

Consider the vector field $\mathbf{F}(x,y,z)=(z\sin(x),-yz\cos(x),x^2+y^2)$. Calculate $\iint_S \mathbf{F}\cdot dS$ where $S=\{(x,y,z):z=-3(x^2+y^2)+3,x^2+y^2\leq 1\}$ oriented with the normal vector in the positive z-direction.

Problem 5

- 1. Evaluate the integral $\int_S (x^2 + y^2) dS$ where S is the unit sphere in \mathbb{R}^3 .
- 2. Bonus Question: Evaluate the previous integral with the divergence theorem.