ECEN452: ULTRA HIGH FREQUENCY TECHNIQUE

LAB02

SAMBONG JANG

DR. HUFF

Reference:

"Learn Stub Tuning with a Smith Chart" by Benjamin Crabtree, October 09, 2015

Microwave Engineering 4th Edition, David M. Pozar

Quarter Wave Transformer

 $arepsilon_r = 2.2 \ (Duroid \ 5880)$ $h = 1.5748mm \ (thickness \ of \ substrate)$ f = 2.45GHz

$Z_0 [\Omega]$	W [mm]	λ [mm]	λ/4 [mm]	$arepsilon_{eff}$
50	4.7725	89.068		1.8899
100	1.396		22.993	1.773
200	0.1654	94.268		1.6877

Figure. Microstrip line Calculation

CURRENT NETLIST ①								
Component	Real Impedance		Imag Impedance	Length		Physical Length		Capa
P1								
TL1	50	none 🔻		89.10	m •	7.95	m •	
TL2	100	none 🕶		23.00	m •	2.12	m •	
TL3	200	none 🕶		94.25	m +	8.90	m r	
Z1	200	none •	0 f ▼					
SC1								

Figure

Figure

DOUBLE STUB MATCHING

BACKGROUND:

From single stub matching technique, we can obtain impedance matching on that particular frequency that we started with and perhaps, quite a small range of bandwidth around that particular frequency due to an addition of a single stub to cancel out the reactive component of the load.

In double stub matching, we can end up with a fairly larger bandwidth. In addition, we can place the first stub at an arbitrary location from the load. However, there is forbidden zone when it comes to double stub matching which means not double stub tuning technique cannot match every load.

Figure

CURRENT NETLIST (1)						
Component	Real Impedance	Imag Impedance	Length	Physical Length		
P1						
TL1	50 none		33.59 m •	2.32 m		
TL2	50 none		8.40 m T	0.58 m T		
TL3	50 none		10.86 m T	0.75 m T		
TL4	50 none		13.47 m	0.93 m		
Z1	100 none	-50 none ▼				
OC1						
OC2						
SC1						
TL5	50 none		16.80 m •	1.16 m r		

Figure

CALCULATION:

Figure. Double Stub Matching on Smith Chart

$$jb_1 = Im(y_1) - Im(y_L) = j0.2 - j0.2 = 0$$

 $jb'_1 = Im(y_1') - Im(y_L) = j1.8 - j0.2 = j1.6$

Thus, we are using the following design parameters:

$$\begin{array}{c} d_1 = 0.5\lambda \text{ ; } d_2 = 0.125\lambda \\ l_1 = 0\lambda \text{ ; } l_2 = 0.375\lambda \\ l_1' = 0.162\lambda \text{ ; } l_2' = 0.199\lambda \end{array}$$

$$d_1 = 33.5968mm \; ; d_2 = 8.3992mm \\ l_1 = 0 \; ; l_2 = 25.1976mm$$

but we can't simulate hfss with these values because it won't let you enter 0 for l_1 so we are using the following values:

$$l_1' = 10.885mm$$
 ; $l_2' = 13.371mm$

where

$$\lambda = 67.1936mm$$

 $W = 1.4975mm$

I have noticed that the dielectric constant designed in hfss was 4.4