

vertical inheritance: one cell to its offspring; cellular reproduction dependent

mutational innovations restricted to a lineage

horizontal gene transfer: one cell to another existing cell - reproduction independent

mutational innovations can move between lineages / organisms

sexual inheritance: cellular fusion

mutational innovations shared among offspring

selfish / useful genetic elements (F-plasmid)

Ouestions to answer and ponder: How might the regulation of plasmid ORI regions be different in low and high copy number plasmids?	
 Questions to answer and ponder: What is an asexual clone? How would you recognize it. What is the effect of a amorphic allele / mutation on the behavior of a prokaryotic clone. What are some possible (evolutionary) advantages to the ability to take up and integrate, as opposed to simply eat foreign DNA? Why might the "source" of foreign DNA matter? Present a plausible model that would identify host from foreign DNA 	
Questions to answer and ponder:	
 What is an asexual clone? How would you recognize it. What is the effect of a amorphic allele / mutation on the behavior of a prokaryotic clone. What are some possible (evolutionary) advantages to the ability to take up and integrate, as opposed to simply eat foreign DNA? Why might the "source" of foreign DNA matter? Present a plausible model that would identify host from foreign DNA. 	

Aidan considers your questions	
next:	
Chapter 13: Asexual and sexual reproduction in eukaryotes	
In which we consider the processes of asexual and sexual reproduction in eukaryotes. We note the molecular processes, mitosis & cytokinesis, involved in somatic cell reproduction and how they are modified in meiosis and gamete formation within the germ line. We consider the implications of chromosome pairing, recombination & independent segregation as well as dimorphism of gametes leading to maternal and paternal effects, including mitochondria inheritance and sex determination.	