Frog Jump

There are N stones, numbered $1, 2, \dots, N$. For each i ($1 \le i \le N$), the height of Stone i is h_i .

There is a frog who is initially on Stone 11. He will repeat the following action some number of times to reach Stone N:

• If the frog is currently on Stone i, jump to Stone i+1 or Stone i+2. Here, a cost of h_i-h_j is incurred, where j is the stone to land on.

Find the minimum possible total cost incurred before the frog reaches Stone N.

Constraints

- All values in input are integers.
- 2≤N≤105
- 1≤hi≤10^4

Input

Input is given from Standard Input in the following format:

```
N
h1 h2 ..... hN
```

Output

Print the minimum possible total cost incurred.

Sample Input 1

```
4
10 30 40 20
```

Sample Output 1

30

If we follow the path $11 \rightarrow 22 \rightarrow 44$, the total cost incurred would be /10-30/+/30-20/=30/10-30/+/30-20/=30.

Sample Input 2 Copy

2 10 10

Sample Output 2 Copy

If we follow the path $11 \rightarrow 22$, the total cost incurred would be /10-10/=0/10-10/=0.

Sample Input 3

30 10 60 10 60 50

Sample Output 3

40

If we follow the path $11 \rightarrow 33 \rightarrow 55 \rightarrow 66$, the total cost incurred would be 30-60+160-60+160-50=40