1 Doint	Suppose you are training a logistic regression classifier using stochastic gradient descent. You find that the cost (say, $cost(\theta, (x^{(i)}, y^{(i)}))$, averaged over the last 500 examples), plotted as a function of the number of iterations, is slowly increasing over time. Which of the following changes are likely to help? Try averaging the cost over a larger number of examples (say 1000 examples instead of 500) in the plot. Try using a smaller learning rate α .
	Try using a larger learning rate $lpha$.
	This is not an issue, as we expect this to occur with stochastic gradient descent.
1 point	Suppose you are training a logistic regression classifier using stochastic gradient descent. You find that the cost (say, $cost(\theta,(x^{(i)},y^{(i)}))$), averaged over the last 500 examples), plotted as a function of the number of iterations, is slowly increasing over time. Which of the following changes are likely to help?
	Try halving (decreasing) the learning rate α , and see if that causes the cost to now consistently go down; and if not, keep halving it until it does.
	This is not possible with stochastic gradient descent, as it is guaranteed to converge to the optimal parameters $m{ heta}$.
	Try averaging the cost over a smaller number of examples (say 250 examples instead of 500) in the plot.
	Use fewer examples from your training set.
1 point	3. Which of the following statements about online learning are true? Check all that apply. In the approach to online learning discussed in the lecture video, we repeatedly get a single training example, take one step of stochastic gradient descent using that example, and then move on to the next example.
	When using online learning, in each step we get a new example (x,y) , perform one step of (essentially stochastic gradient descent) learning on that example, and then discard that example and move on to the next.
	One of the disadvantages of online learning is that it requires a large amount of computer memory/disk space to store all the training examples we have seen.
	One of the advantages of online learning is that there is no need to pick a learning rate $lpha$.

1	
point	

- 4. Assuming that you have a very large training set, which of the following algorithms do you think can be parallelized using map-reduce and splitting the training set across different machines? Check all that apply.
 - An online learning setting, where you repeatedly get a single example (x,y), and want to learn from that single example before moving on.
 - A neural network trained using batch gradient descent.
 - Linear regression trained using batch gradient descent.
 - Logistic regression trained using stochastic gradient descent.

1 point

- 4. Assuming that you have a very large training set, which of the following algorithms do you think can be parallelized using map-reduce and splitting the training set across different machines? Check all that apply.
 - Computing the average of all the features in your training set $\mu=\frac{1}{m}\sum_{i=1}^m x^{(i)}$ (say in order to perform mean normalization).
 - Logistic regression trained using stochastic gradient descent.
 - Logistic regression trained using batch gradient descent.
 - Linear regression trained using stochastic gradient descent.

point

4. Assuming that you have a very large training set, which of the following algorithms do you think can be parallelized using map-reduce and splitting the training set across different machines? Check all that apply.

Logistic regression trained using stochastic gradient descent.

In order to parallelize a learning algorithm using map-reduce, the first step is to figure out how to express the main work done by the algorithm as computing sums

Running map-reduce over ${\it N}$ computers requires that we split the training set into

If you have just 1 computer, but your computer has multiple CPUs or multiple cores, then map-reduce might be a viable way to parallelize your learning algorithm.

of functions of training examples.

 N^2 pieces.

