MAII14 15/2/22

Isomorphisms.

Recall, a function $f: \times \rightarrow y$ between sets ès <u>bijective</u> ef it is enjective and surjective (1-1 map)

Definition

A linear map $T:V\to w$ is a linear isomorphism if T is bijective If there exists a linear isomorphism between v and w write v=w and say isomorphic to w

Examples

a)
$$T_A: \mathbb{R}^n \to \mathbb{R}^n$$
, $A \in M_n(\mathbb{R})$
 $V \mapsto AV$
is an isomorphic \iff A is envertible

b) id:
$$e^n \rightarrow e^n$$
 is an isomorphism $v \mapsto v$

More generally

$$T: \mathbb{C}^{n} \to \mathbb{C}^{n}$$
 $v \mapsto rv \quad o \neq r \in \mathbb{C}$
is an isomorphism

$$T: \mathbb{R}^{M} \to \mathbb{R}^{n}$$

$$\begin{pmatrix} x_{i} \\ \vdots \\ x_{n} \end{pmatrix} \longmapsto \begin{pmatrix} x_{i} \\ \vdots \\ x_{n} \end{pmatrix} \text{ is an isomorphism } \iff n = M$$

Proposition "Theck one get one free for exomorphisms" $X \to V \to V$ is times then the following are equivalent.

(i) Tis injective (ii) Tis surjective (iii) Tis isomorphic

Power

notice (i) + (ii) = (iii)

80 suffices to show(i) (ie)

Tis injective \Leftrightarrow ker $(\tau) = \{0\}$ \Leftrightarrow nullity $(\tau) = 0$ \Leftrightarrow nullity $(\tau) = \dim(v)$ (by rank-nullity theorem rank $(\tau) + \text{nullity}(\tau) = \dim(v)$ \Leftrightarrow dim(im(τ)) = dim(v)

since im(T) is spanned by dim(v) lineary independent veders

→ Tis surjective

Fact

Any linear ésonsorphisme T: V -> W has unique enverse T': W -> V, which is also linear isomorphism

Definitions Suppose T: K > V is linear.

A may 8: V -> U is an inverse of T if 807 = idn and Tes = idx

Exercise let A & M, CC) TA: C" > C" has an invesse € À ès envertible Suppose À is invertible, want s: c° > c° with TAS id varied so TA = id set &= TA- (80 TA)(V) = &(TA(V)) = &(AV) = A- (AV) => SoTA = id similarly for TAOS . col. Exercise Suppose T: L-> V are linear maps between V ST U.V 6: V-Ju then so T = id = > Tis injective sis surjective Example $T: \mathbb{C}^n \to \mathbb{C}^n$ v → v o≠ve € is injective (yesterday) Suppose VE ker (7)

= (A A) V

= I v

=) (v=0 三(ルレ)ハニルの =) V 00