TCS IPA Networking Complete Study Guide

Quick Revision & MCQ Preparation

Topic 1: Introduction to Networking

What is Networking?

Definition: Process of connecting computers and devices so they can communicate and share data.

Think of it like: People using phones to talk — devices need cables, Wi-Fi, IP addresses, and rules (protocols) to communicate.

Key Terms (Must Remember!)

Term	Meaning	Example	
Network	Group of interconnected devices	Office computers connected	
Node	Any device in a network	Computer, printer, phone	
Protocol	Set of rules for communication	TCP/IP, HTTP	
Bandwidth	Data transfer rate (speed)	100 Mbps internet	
Latency	Delay in communication	Ping time	
IP Address	Unique ID for device	192.168.1.1	
4	•	•	

Common Scenarios & Solutions

- Two offices want to transfer files → Connect through a network
- **Device not reachable** → Check IP address or cables
- Internet is slow → Check bandwidth or switch load

Sample MCQ Pattern

Q: You are asked to set up file sharing between 5 computers. What is the most basic requirement?

- A) Install antivirus
- B) Give each device a unique name
- C) Connect them in a network ✓
- D) Set passwords for all systems

Topic 2: Transmission Media

What is Transmission Media?

Definition: The path through which data travels between devices. **Think of it like:** Roads for vehicles — data needs transmission media to travel.

Types of Media

Wired (Guided Media)

Туре	Description	Used In	Speed
Twisted Pair	2 copper wires twisted together	Offices, Homes	Medium
Coaxial	Copper core with shielding	Cable TV, CCTV	Medium
Fiber Optic	Sends data as light	ISPs, Long-distance	Fastest
4	•	'	•

Wireless (Unguided Media)

Type Description Example		Example
Radio Waves	Used in Wi-Fi	Wireless LAN
Microwaves	Point-to-point, line of sight	Satellite, telecom
Infrared	Short-range	TV remotes
4	•	

Quick Memory Tips

- Fiber = Fastest & Most Secure (but expensive)
- **Wireless = More Flexible** (but more interference)

Scenario Matching

Scenario	Best Medium
Data center connecting floors	Fiber Optic
Office Wi-Fi	Radio Waves
CCTV in store	Coaxial Cable
Network printing	Twisted Pair (Ethernet)
4	▶

Topic 3: Types of Networks

Network Types by Coverage Area

Туре	Full Form	Area Covered	Used In	
PAN	Personal Area Network	Very small, personal	Bluetooth devices	
LAN	Local Area Network	Building/Room	Office Wi-Fi	
MAN	Metropolitan Area Network	City-wide	College Campus	
WAN	Wide Area Network	Country/Global	Internet	
WLAN	Wireless LAN	LAN over Wi-Fi	Home/Office Routers	
•				

Easy Memory Trick

- **PAN** = Personal zone (phone ↔ smartwatch)
- **LAN** = Building/Room
- **MAN** = City
- **WAN** = Country/World

Scenario Practice

Scenario	Network Type
Devices in an office	LAN
Two offices in different cities	WAN
Bluetooth file sharing	PAN
Wi-Fi in college hostel	WLAN
Internet for whole city	MAN
◀	•

Topic 4: Network Topologies

What is Network Topology?

Definition: How computers/devices are connected in a network (physical or logical layout).

Major Topologies

Topology	Structure	Pros	Cons	Best For
Bus	Single cable backbone	Simple, cheap	One break = total failure	Small, cost-sensitive
Ring	Circular loop	Easy to install	One device down = breaks all	Rare today
Star	Central hub connects all	Easy to manage	Hub failure = network down	Most common in offices
Mesh	Fully interconnected	High reliability	Very costly	Military, critical systems
Tree	Mix of star and bus	Hierarchical	Complex setup	Campus networks
Hybrid	Mix of multiple types	Flexible, scalable	Costly, complex	Modern smart cities
4	•		•	▶

Real-Life Analogies

- **Star** = Train station with many tracks
- **Bus** = Single road with houses on each side
- **Mesh** = WhatsApp group (everyone talks to everyone)
- **Ring** = Circle of friends passing a message

Key Points for MCQs

- Star topology uses central hub/switch
- **Mesh** = best reliability, highest cost
- **Bus** = outdated, single point of failure
- **Hybrid** = real-world modern networks

Topic 5: Network Devices

Key Network Devices & Functions

Device	What It Does	Where Used	Key Feature
Hub	Broadcasts to all ports (dumb)	Small networks (rare)	No intelligence
Switch	Sends data to correct device only	LANs, offices	Smart, most common
Router	Connects different networks	Home Wi-Fi, gateways	Path finder
Modem	Converts ISP signal	With routers	Internet converter
Firewall	Blocks/permits traffic	Security	Network guard
Access Point	Extends wireless coverage	Big offices, malls	Wi-Fi extender
Bridge	Connects network segments	Segmentation	Network joiner
Repeater	Boosts weak signals	Large campuses	Signal amplifier
Gateway	Protocol converter	Cross-network comm	Protocol translator
4	•	•	•

Device Selection Guide

Situation	Use This Device
Multiple PCs in office	Switch
Need internet from ISP	Modem + Router
Block suspicious websites	Firewall
Weak Wi-Fi signal	Access Point/Repeater
Connect LAN to internet	Router
◀	•

Exam Focus Points

- **Switch** = Smart LAN communication
- **Router** = Best path finder for different networks
- **Hub** = Dumb device (broadcasts everywhere)
- **Firewall** = Security (allow/block traffic)

Topic 6: OSI Model (7 Layers)

OSI Model - Complete Breakdown

Layer	Name	Function	Protocols	Real Example
7	Application	User interface	HTTP, FTP, SMTP	Browser, Email
6	Presentation	Encryption, compression	SSL, JPEG, MPEG	Data formatting
5	Session	Start/manage sessions	NetBIOS, RPC	Login sessions
4	Transport	End-to-end delivery	TCP, UDP	Reliable delivery
3	Network	Routing, IP addressing	IP, ICMP	Router operations
2	Data Link	MAC address, switches	Ethernet, PPP	Switch operations
1	Physical	Cables, signals, bits	Hubs, NIC, Cables	Physical hardware
4	•	•	•	•

Memory Trick (Top to Bottom)

"All People Seem To Need Data Processing"

 $\bullet \quad \textbf{A} pplication \rightarrow \textbf{P} resentation \rightarrow \textbf{S} ession \rightarrow \textbf{T} ransport \rightarrow \textbf{N} etwork \rightarrow \textbf{D} ata \ Link \rightarrow \textbf{P} hysical$

WhatsApp Message Example (Data Flow)

1. **Application:** You type message

2. Presentation: Message encoded/encrypted

3. **Session:** Connection with WhatsApp server

4. **Transport:** Data broken into TCP segments

5. **Network:** IP address of server used

6. Data Link: MAC address added

7. **Physical:** Sent as electrical signals

Layer Responsibilities (MCQ Focus)

Task	Layer
IP Addressing	Network (3)
Port numbers	Transport (4)
Encryption (SSL)	Presentation (6)
HTTP/SMTP	Application (7)
MAC address	Data Link (2)
Cables, signals	Physical (1)
Switch operations	Data Link (2)
Router operations	Network (3)
4	•

Topic 7: TCP/IP Model vs OSI

TCP/IP Model (4 Layers - Real World)

TCP/IP Layer	OSI Layers Covered	Purpose	Protocols
Application	7, 6, 5	User interface	HTTP, FTP, DNS
Transport	4	End-to-end connection	TCP, UDP
Internet	3	Routing and addressing	IP, ICMP
Network Access	2 & 1	Hardware data delivery	Ethernet, Wi-Fi
4	1	ı	•

OSI vs TCP/IP Comparison

Feature	OSI Model	TCP/IP Model
Layers	7 layers	4 layers
Туре	Theoretical	Practical (used in real life)
Developer	ISO	DARPA (U.S. Defense)
Usage	Study/reference	Internet & networks
▲	·	•

Website Browsing Example

- 1. **Application Layer** → HTTP request sent
- 2. **Transport Layer** → TCP ensures delivery
- 3. **Internet Layer** → IP address for routing
- 4. **Network Access** → Ethernet/Wi-Fi transmission

Key MCQ Points

- TCP/IP = Real networks, Internet
- OSI = Theoretical study model
- TCP/IP has 4 layers, OSI has 7
- Routing happens in Internet layer (TCP/IP)

Topic 8: IP Addressing & Essential Protocols

IP Addressing Basics

• **IPv4:** 32 bits → Format: 192.168.1.1

IPv6: 128 bits → Format: fe80::1

Every device needs unique IP address

Subnetting Simplified

• **Subnet:** Portion of network with defined IP range

Network ID: 192.168.1.0 (identifies network)

• **Host ID:** 192.168.1.5 (identifies device)

• **Subnet Mask:** Defines division (e.g., 255.255.255.0)

CIDR Notation: 192.168.1.0/24 (24 bits for network, 8 for host)

PING Command

- Purpose: Test network connectivity
- How it works: Sends test packet, waits for reply
- Syntax:
 - (ping 8.8.8.8)
 - (ping google.com)

• **Success:** Device is reachable

• Failure: Network problem

DHCP (Dynamic Host Configuration Protocol)

What it does: Automatically assigns network settings Assigns:

- IP address
- Subnet mask
- Default gateway
- DNS servers

Think of it like: When your phone connects to Wi-Fi, DHCP gives it all internet settings automatically.

DNS (Domain Name System)

• **Purpose:** Converts domain names to IP addresses

• **Example:** google.com → 142.250.195.206

• Works like: Internet phonebook

• Process: Browser asks DNS: "What's the IP of youtube.com?"

Topic 9: Routing Types

What is Routing?

Definition: How data finds its way from one network to another. **Think of it like:** GPS navigation for network traffic.

Types of Routing

1. Static Routing

Method: Manually configured routes

Behavior: Does not change automatically

• **Best for:** Small networks

• **Analogy:** Always taking same route to college, even in traffic

• **Example Command:** (ip route 192.168.2.0 255.255.255.0 192.168.1.1)

2. Dynamic Routing

• **Method:** Routers auto-learn routes using protocols

Behavior: Adapts to network changes automatically

• **Best for:** Large networks

Analogy: Google Maps choosing best route based on traffic

• Protocols Used:

• **RIP** (Routing Information Protocol)

• **OSPF** (Open Shortest Path First)

• **EIGRP** (Cisco proprietary)

• **BGP** (Border Gateway Protocol - Internet)

3. Default Routing

Purpose: Used when destination is unknown

• Function: "If you don't know where to go, go this way"

• Analogy: "If you're lost, just come home"

• Example Command: (ip route 0.0.0.0 0.0.0.0 192.168.1.1)

Routing Comparison Table

Туре	Configuration	Adaptability	Best For	Example
Static	Manual	No changes	Small networks	Home router
Dynamic	Automatic	Adapts to changes	Large networks	ISP networks
Default	Fallback route	When destination unknown	Gateway setup	Internet access
4	•	'	•	•

Topic 10: IP Address Types

IP Address Categories

Based on Class (IPv4 Classes)

Class	Range	Purpose	Network Size
Class A	1.0.0.0 to 126.255.255.255	Large networks	16 million hosts
Class B	128.0.0.0 to 191.255.255.255	Medium networks	65,000 hosts
Class C	192.0.0.0 to 223.255.255.255	Small networks	254 hosts
Class D	224.0.0.0 to 239.255.255.255	Multicast	Group communication
Class E	240.0.0.0 to 255.255.255	Reserved	Research purposes
4	'	•	•

Based on Usage

Туре	Description	Example	When Used
Public IP	Used on the internet	8.8.8.8, 1.1.1.1	Internet communication
Private IP	Used inside LAN only	192.168.x.x, 10.x.x.x, 172.16.x.x	Home/office networks
Loopback IP	Refers to self (localhost)	127.0.0.1	Testing, self-reference
APIPA	Auto IP when DHCP fails	169.254.x.x	DHCP troubleshooting
Broadcast	Sends to all hosts in network	255.255.255.255	Network-wide messages
Multicast	Sends to specific group	224.0.0.1	Group communication
4	•	•	•

Private IP Ranges (Must Remember!)

• Class A Private: 10.0.0.0 to 10.255.255.255

• Class B Private: 172.16.0.0 to 172.31.255.255

• Class C Private: 192.168.0.0 to 192.168.255.255

Special IP Addresses

IP Address	Name	Purpose
127.0.0.1	Localhost/Loopback	Test local machine
0.0.0.0	Default route	"Any network"
255.255.255.255	Limited broadcast	All hosts on local network
169.254.x.x	APIPA	Automatic private IP
4	1	•

Quick Memory Tips

- **Static Route** = Manual (like taking same path daily)
- Dynamic Route = Smart (like GPS finding best route)
- **Default Route** = Fallback ("when lost, go home")
- **Private IP** = Inside home/office (not internet-routable)

- **Public IP** = For internet communication
- **Loopback** = Self-test (127.0.0.1 = "home")

Common MCQ Patterns

Q: Which routing type automatically adapts to network changes?

- A) Static routing
- B) Dynamic routing √
- C) Default routing
- D) Manual routing

Q: Which IP range is private and used in home networks?

- A) 8.8.8.0 to 8.8.8.255
- B) 192.168.0.0 to 192.168.255.255 √
- C) 127.0.0.0 to 127.255.255.255
- D) 224.0.0.0 to 239.255.255.255

Quick Revision Checklist

Must-Know Definitions

Network, Node, Protocol, IP Address
LAN, WAN, MAN, PAN
☐ Hub, Switch, Router, Firewall
OSI 7 layers, TCP/IP 4 layers
DHCP, DNS, Ping
Static vs Dynamic vs Default Routing
☐ Public vs Private IP addresses
_
Key Comparisons
Wired vs Wireless media
_
Wired vs Wireless media
■ Wired vs Wireless media■ Star vs Bus vs Mesh topology
Wired vs Wireless mediaStar vs Bus vs Mesh topologyHub vs Switch vs Router

Public vs Private IP addresses

Common MCQ Patterns
■ "Which device connects different networks?" → Router
■ "Which layer handles IP addressing?" → Network Layer (3)
■ "Best topology for reliability?" → Mesh
■ "Which model is used in real networks?" → TCP/IP
■ "What assigns IP automatically?" → DHCP
\square "Which routing adapts automatically?" \rightarrow Dynamic Routing
■ "What is 192.168.1.1?" → Private IP Address
■ "What is 127.0.0.1?" → Loopback/Localhost
Scenario-Based Questions
■ Small office setup → LAN with Switch
■ Internet connectivity → Router + Modem
☐ Security concerns → Firewall
■ Weak Wi-Fi signal → Access Point
Network troubleshooting → Ping command

Final Tips for TCS IPA Exam

Class A vs B vs C networks

Time Management

- Read question carefully Look for keywords
- Eliminate wrong options first
- Scenario questions Think practical solutions
- **Don't overthink** Go with first logical answer

Common Traps

- **Hub vs Switch** Hub is dumb, Switch is smart
- LAN vs WAN LAN = local, WAN = wide area
- OSI vs TCP/IP OSI = theory, TCP/IP = practical
- Router vs Switch Router connects networks, Switch connects devices

Last-Minute Review

- 1. **Memorize OSI layers** (All People Seem To Need Data Processing)
- 2. **Remember device functions** (Router = path finder, Switch = smart connector)

- 3. **Know network types** (PAN < LAN < MAN < WAN)
- 4. **Understand protocols** (TCP/IP = internet, HTTP = web)

Good Luck with your TCS IPA Exam! 💉

Remember: Practice MCQs, think scenarios, and trust your preparation!