Supplementary Document

for

The k-RF Measures for Labeled Trees

by E. Khayatian, G. Valiente, L. Zhang

Contents

1	Proof of Propositions 1–3 in Section 4	2
2	Supplementary figures for the frequency distribution of pairwise $k\text{-RF}$ scores	7
3	Proof of Propositions 4 and 5	9

1 Proof of Propositions 1–3 in Section 4

Proposition 1. Let T and S be two 1-labeled trees over L(T) and L(S), respectively.

- (a) Let $|L(S) \cap L(T)| \le 2$, $k \ge 1$, and $|E(T)| \ge 2$. Then, $d_{k,RE}(S,T) = |E(S)| + |E(T)|.$
- (b) Suppose that $L(S) \neq L(T)$ and $k < \min\{\operatorname{diam}(T), \operatorname{diam}(S)\}$. Then, $k+1 \leq d_{k,\mathrm{RF}}(S,T) \leq |E(S)| + |E(T)|$.

In addition, if the trees have the same size, then we have

$$2(k+1) \leqslant d_{k-RF}(S,T) \leqslant |E(S)| + |E(T)|.$$

- (c) For k = 0, $d_{k-RF}(S, T) = |E(S)\triangle E(T)|$.
- (d) If $k \ge \max\{\operatorname{diam}(T), \operatorname{diam}(S)\} 1$, then $d_{k-RF}(S, T) = d_{RF}(S, T)$.

Proof. Note that if $k \ge 1$ and $|E(T)| \ge 2$, then each $P_T(e, k)$ involves at least three labels. Thus, it is obvious that if $|L(S) \cap L(T)| \le 2$, then for every $e \in E(T), \acute{e} \in E(S)$, we have $P_T(e, k) \ne P_S(\acute{e}, k)$. Thus, we have $\mathcal{P}_k(S) \cap \mathcal{P}_k(T) = \emptyset$, which implies that

$$d_{k\text{-RF}}(S,T) = |(\mathcal{P}_k(S) \cup \mathcal{P}_k(T)) \setminus (\mathcal{P}_k(S) \cap \mathcal{P}_k(T))| = |E(S)| + |E(T)|.$$

Thus, (a) is true.

For part (b), without loss of generality, we can assume that $e = (u, v) \in E(T)$ such that $\ell(v) \not\subseteq L(S)$. Obviously, $P_T(e, k)$ does not belong to $\mathcal{P}_k(S)$. Thus, $d_{k\text{-RF}}(S,T) \geqslant 1$. Now, if $\operatorname{diam}(T) > k \geqslant 1$, we have either $\deg(u) \geqslant 2$ or $\deg(v) \geqslant 2$. Thus, we can find another edge, namely $e_1 = \{u_1, u\}$ such that $P_T(e_1, k)$ does not belong to $P_k(S)$. If k = 1, we have $k + 1 \leqslant d_{k\text{-RF}}(S,T)$. Otherwise, since $\operatorname{diam}(T) > k \geqslant 2$, we have either $\deg(v) \geqslant 2$ or $\deg(u_1) \geqslant 2$ or $\deg(u) \geqslant 3$ and degree of the third node adjacent to u is at least 2. Hence, we can find another edge, namely e_2 such that $P_T(e_2, k)$ does not belong to $\mathcal{P}_k(S)$. Continuing this process, we can find e_1, \ldots, e_k such that $P_T(e_1, k), \ldots, P_T(e_k, k)$ do not belong to $\mathcal{P}_k(S)$. Thus, we have $k + 1 \leqslant d_{k\text{-RF}}(S,T)$. In addition, if the trees have the same size, we can find k distinct edge-induced partitions in $\mathcal{P}_k(S) \setminus \mathcal{P}_k(T)$, which implies that $2(k+1) \leqslant d_{k\text{-RF}}(S,T)$. Finally, since $d_{k\text{-RF}}(S,T) \leqslant |E(S)| + |E(T)|$, the statement holds.

For part (c), note that we may represent each node of a 1-labeled tree with its unique label. As a result, $P_T(e,0) = e$ and $P_S(\bar{e},0) = e$ for $e \in E(T)$ and $\bar{e} \in E(S)$. Thus, (c) follows. Finally, Part (d) follows from the definition of the k-RF measure.

Figure 1: Two 1-labeled trees with the same size. The pairs induced by red edges in S are the only pairs different from all edge-induced pairs in T. Thus, the 1-RF score of S and T is 6.

Proposition 2. Let $k \ge 0$ be an integer. The k-RF dissimilarity measure is a pseudometric on the space of all 1-labeled trees. In other words, it satisfies the non-negativity, symmetry and triangle inequality conditions.

Proof. Let T_1 , T_2 , and T_3 be three 1-labeled trees. Then, we show that the following inequalities hold.

$$d_{k-RF}(T_1, T_2) \leq d_{k-RF}(T_1, T_3) + d_{k-RF}(T_3, T_2),$$

$$d_{k-RF}(T_1, T_2) \geq 0,$$

$$d_{k-RF}(T_1, T_2) = d_{k-RF}(T_2, T_1).$$

Let $\mathcal{P}_k(T_1)$, $\mathcal{P}_k(T_2)$ and $\mathcal{P}_k(T_3)$ be the three sets corresponding to T_1, T_2, T_3 , respectively. The first inequality follows from the following relation:

$$\mathcal{P}_k(T_1) \triangle \mathcal{P}_k(T_2) \subseteq (\mathcal{P}_k(T_1) \triangle \mathcal{P}_k(T_3)) \cup (\mathcal{P}_k(T_3) \triangle \mathcal{P}_k(T_2)).$$

Also, the second and third inequalities follow from the definition of the k-RF measure.

Remark 1. Propositions 1 and 2, by the same proof, also hold for 1-labeled rooted trees.

Lemma 1. Let $k \ge 0$ and let T be a 1-labeled rooted tree with n nodes. For all w and all $i \le k$, $D_i(w) = \{w\} \cup \{x \in D_T(w) | d(w, x) \le i\}$ and $L(D_i(w))$ can be computed in O(kn) set operations, where $D_T(w)$ consists of all the descendants of w.

Proof. There are n labels in T. By ordering the n labels, we represent each label subset as a n-bit string, in which the i-th bit is 1 if and only if the i-th label is in the subset.

We prove the statement by induction. In the case k = 0, $D_0(w) = \{w\}$ and $L(D_0(w)) = \{\ell(w)\}$. Clearly, all the $D_0(w)$ $(w \in V(T))$ can be computed in O(n) set operations.

Assume that all the $D_{k-1}(w)$ $(w \in V(T))$ can be computed in at most 2kn set operations. Assume w has d_w children $u_1, u_2, \ldots, u_{d(w)}$. Then,

$$D_k(w) = \{w\} \cup \left(\bigcup_{i=1}^{d_w} D_{k-1}(u_i)\right)$$

and so

$$L(D_k(w)) = \{\ell(w)\} \cup \left(\bigcup_{i=1}^{d_w} L(D_{k-1}(u_i))\right).$$

This implies that all $L(D_k(w))$ can be computed from all $\ell(w)$ and $L(D_{k-1}(w))$ $(w \in V(T))$ using $\sum_{v \in V(T)} (1 + d_w) = 2n - 1$ set operations. In total, we can compute all $L(D_k(w))$ in at most 2n - 1 + 2kn = 2(k+1)n set operations. Note that this proof implies a dynamic programming algorithm for computing the label subsets in 2(k+1)n = O(kn) set operations. \square

Lemma 2. Let $k \ge 0$ and T be a 1-labeled rooted tree with n nodes. Using $L(D_i(w))$ ($w \in V(T), 0 \le i \le k$), we can compute $L(B_k(w))$ for all w in O(kn) set operations, where

$$B_k(w) = \{ x \in V(T) \mid \exists y \in A_T(w) \cup \{w\} : d(y, w) + d(y, x) \le k \}.$$

Proof. Let T be a 1-labeled tree and r be its root. For any node $w \in V(T)$, we assume the unique path from r to w be:

$$w_0 = r, w_1, \dots, w_t = w.$$

Then, we have that

$$B_k(w_t) = \bigcup_{i=0}^{\min(k,t)} D_{k-i}(w_{t-i}).$$

Given all $L(D_i(w))$, $L(B_k(w))$ is a union of at most k known label subsets and so can be computed in at most k set operations for each node w. In total, we can compute all $L(B_k(w))$ in O(kn) set operations.

Proposition 3. Let S and T be two 1-labeled trees each with n nodes and $k \ge 0$. Then, $d_{k-BF}(S,T)$ can be computed in O(kn) time.

Proof. We first consider the rooted tree case. Let T and S be two 1-labeled rooted trees with n nodes. Without loss of generality, we may assume that

S and T are labeled with the same set L, |L| = n. By Lemma 1 and Lemma 2, We can compute all $P_X(e,k)$ ($e \in E(X)$) in O(kn) set operations for X = S, T. Since each edge-induced is an ordered pair of label subsets and we represent each label subset using a n-bit string, we consider $P_X(e,k)$ as a 2n-bit string. In this way, we sort all the edge-induced partitions for each tree in O(n) time by radix sort (that is, indexing) and then compute the symmetric difference of the two set of edge-induced partitions in O(n). This concludes the proof.

In the unrooted case, we first root the trees at a leaf. In this way, we can compute all the edge-induced partitions in the derived rooted trees in O(kn) time. Since the edge-induced partitions are unordered pairs of label subsets in the original trees, we rearrange the two label subsets of each obtained partition in such a way that the smallest label in the first subset is smaller than every label in the second one. After the rearrangement, we can use radix-sort the partitions and compute the k-RF score in linear time.

Remark 2. Let $k \ge 0$ be an integer. If T is a 1-labeled rooted tree over L(T), then we have $P_T(e,k) = P_T(\acute{e},k)$ if and only if $e = \acute{e}$. Moreover, each $P_T(e,k)$ consists of two disjoint sets.

Theorem 1. The 0-RF dissimilarity measure is a metric on the space of all 1-labeled rooted trees. In other words, besides satisfying non-negativity, symmetry and triangle inequality conditions, it is zero for two trees if and only if the trees are isomorphic.

Proof. Let S and T be two 1-labeled rooted trees. By the proof of Proposition 2, it is enough to show that if $d_{0\text{-RF}}(S,T)=0$ (equivalently, $\mathcal{O}P_0(T)=\mathcal{O}P_0(S)$), then $S\cong T$. Clearly, the equality $\mathcal{O}P_0(T)=\mathcal{O}P_0(S)$ implies that for each $e=(u,v)\in E(T)$, there is one and only one edge $\bar{e}=(\bar{u},\bar{v})\in E(S)$ such that $\ell(u)=\ell(\bar{u})$ and $\ell(v)=\ell(\bar{v})$ (note that $P_T(e,0)=(\ell(v),\ell(u))$ and $P_S(\bar{e},0)=(\ell(\bar{v}),\ell(\bar{u}))$). Now, we define $f:V(T)\to V(S)$, which maps v and u to \bar{v} and \bar{u} , respectively. Obviously, f defines an isomorphism between S and T.

Theorem 2. Let $k \ge 1$ be an integer. The k-RF dissimilarity measure is a metric on the space of all 1-labeled rooted trees. In other words, besides satisfying non-negativity, symmetry and triangle inequality conditions, it is zero for two trees if and only if the trees are isomorphic.

Proof. Let S and T be two 1-labeled rooted trees. By the proof of Proposition 2, it is enough to show that if $d_{k\text{-RF}}(S,T)=0$ (equivalently, $\mathcal{O}P_k(T)=\mathcal{O}P_k(S)$), then $S\cong T$. We have $V(T)=\bigcup_{l=depth(T)-1}^0 V_l(T)\cup Leaf(T)$ and

$$V(S) = \bigcup_{l=depth(T)-1}^{0} V_l(S) \cup Leaf(S)$$
, where

$$V_l(T) = \{ v \in V(T) \mid v \text{ is in level } l \}.$$

 $(V_l(S))$ is defined similarly.) Now, we define $f:V(T)\to V(S)$ as follows.

Clearly, $v \in Leaf(T)$ (respectively, $w \in Leaf(S)$) if and only if $P_T(e, k) = (\ell(v), A)$ (respectively, $P_S(\bar{e}, k) = (\ell(w), B)$), where e (resp. \bar{e}) is the edge incident to v (respectively, w), $A \subseteq L(T)$ (resp. $B \subseteq L(S)$), and $\ell(v)$ (respectively, $\ell(w)$) is a set with only one element. Now, we define f(v) = u where $u \in Leaf(S)$ and $\ell(v) = \ell(u)$. Thus, f is a one-to-one correspondence between Leaf(T) and Leaf(S), where corresponding nodes have the same labels.

Suppose we have defined

$$f: \bigcup_{l=denth(T)-1}^{n} V_l(T) \cup Leaf(T) \rightarrow \bigcup_{l=denth(S)-1}^{n} V_l(S) \cup Leaf(S)$$

such that for each $n \leq l \leq depth(T)-1$, $f|_{V_l(T)}: V_l(T) \to V_l(S)$ and $f|_{Leaf(T)}:$ $Leaf(T) \to Leaf(S)$ is a one-to-one correspondence and corresponding nodes have the same labels. In addition, suppose that $(v_1, v_2) \in E(T)$ if and only if $(f(v_1), f(v_2)) \in E(S)$ for $v_1, v_2 \in \bigcup_{l=depth(T)-1}^n V_l(T) \cup Leaf(T)$. Now, let $v \in V_{n-1}(T) \setminus Leaf(T)$, and consider the edge connecting v to its parent. The pair induced by this edge is in the form $(\ell(v) \cup (L(D_k(v)) \cap L(V_n(T))) \cup \cdots \cup$ $(L(D_k(v)) \cap L(Leaf(T))), A)$, where $A \subseteq L(T)$. By our assumption, there is $(u_1, u) \in E(S)$ inducing the same pair. On the other side, by properties of f, there are $B_l \subseteq V_l(S), B \subseteq Leaf(S)$ with $L(B_l) = L(D_k(v)) \cap L(V_l(T))$ and $L(B) = L(D_k(v)) \cap L(Leaf(T))$ such that the first term in the pair is in the form $\ell(u) \cup L(B_n) \cup \cdots \cup L(B_{depth(T)-1}) \cup L(B)$. Thus, $\ell(u) = \ell(v)$, and by definition of pairs assigned to a rooted tree, each node in B_n must be adjacent to u and $u \in V_{n-1}(S)$. Now, we define f(v) = u. Clearly, $f: \bigcup_{l=depth(T)-1}^{n-1} V_l(T) \cup Leaf(T) \rightarrow \bigcup_{l=depth(S)-1}^{n-1} V_l(S) \cup Leaf(S)$ such that $f|_{V_{n-1}(T)}:V_{n-1}(T)\to V_{n-1}(S)$ is a one-to-one correspondence and corresponding nodes have the same labels. Moreover, we have $(v_1, v_2) \in E(T)$ if and only if $(f(v_1), f(v_2)) \in E(S)$ for $v_1, v_2 \in \bigcup_{l=depth(T)-1}^{n-1} V_l(T) \cup Leaf(T)$.

Continuing the process, we infer that $f: \bigcup_{depth(T)-1}^{0} V_l(T) \cup Leaf(T) \rightarrow \bigcup_{l=depth(S)-1}^{0} V_l(S) \cup Leaf(S)$ is an isomorphism which implies that $S \cong T$. (Note that $root(T) \in V_0(T)$ is mapped to $root(S) \in V_0(S)$ by f.)

Corollary 1. Let $k \ge 0$ be an integer. The k-RF dissimilarity measure is a metric on the space of all 1-labeled trees.

Proof. If k = 0, the statement follows from the same proof as for Proposition 1. Now, let S and T be two 1-labeled trees and $k \ge 1$. By Proposition 2,

it is enough to show that if $d_{k\text{-RF}}(S,T) = 0$ (equivalently, $\mathcal{P}_k(T) = \mathcal{P}_k(S)$), then $S \cong T$. Using the same strategy stated in the proof of Proposition 2, we can infer that there is a one-to-one correspondence between Leaf(T) and Leaf(S), where corresponding nodes have the same labels. Let $u \in Leaf(T)$ and $v \in Leaf(S)$ be such that $\ell(u) = \ell(v)$. Then, we root T and S at u and v respectively. We call the induced rooted trees T and S.

Now, we show that $\mathcal{O}P_k(\acute{T}) = \mathcal{O}P_k(\acute{S})$. Let $e_u \in E(T)$ and $e_v \in E(S)$ are the edges leaving u and v, respectively. Since $\ell(u) = \ell(v)$ and $\mathcal{P}_k(T) = \mathcal{P}_k(S)$, we have $P_{\acute{T}}(e_u, k) = P_{\acute{S}}(e_v, k)$. Now, suppose that the end points of e_u and e_v are u_1 and v_1 , respectively. Let e_{u_1} leave u_1 . Then, we can find one and only one edge, namely e_{v_1} which leaves v_1 such that $P_{\acute{T}}(e_{u_1}, k) = P_{\acute{S}}(e_{v_1}, k)$ and $l(u_1) = l(v_1)$. Continuing this process, we have $\mathcal{O}P_k(\acute{T}) = \mathcal{O}P_k(\acute{S})$. Finally, the statement follows from Proposition 2.

2 Supplementary figures for the frequency distribution of pairwise k-RF scores

Figure 2: The frequency distribution of k-RF scores for the 1-labeled 3-node unrooted (top row) and rooted (bottom row) trees.

Figure 3: The frequency distribution of k-RF scores for the 1-labeled 4-node unrooted (top row) and rooted (bottom row) trees.

Figure 4: The frequency distribution of k-RF scores for the 1-labeled 5-node unrooted (top row) and rooted (bottom row) trees.

Figure 5: The frequency distribution of k-RF scores for the 1-labeled 7-node unrooted (top row) and rooted (bottom row) trees.

3 Proof of Propositions 4 and 5

Proposition 4. Let $k \ge 1$ be an integer. The k-RF dissimilarity measure is a pseudometric on the space of all trees whose nodes are labeled by multisubsets of their corresponding label sets. In other words, it satisfies the nonnegativity, symmetry and triangle inequality conditions.

Proof. Let T_1 , T_2 , and T_3 be three labeled trees. Then, we have

$$d_{k-RF}(T_1, T_2) \leqslant d_{k-RF}(T_1, T_3) + d_{k-RF}(T_3, T_2),$$

$$d_{k-RF}(T_1, T_2) \geqslant 0,$$

$$d_{k-RF}(T_1, T_2) = d_{k-RF}(T_2, T_1).$$

Let $\mathcal{P}_k(T_1)$, $\mathcal{P}_k(T_2)$ and $\mathcal{P}_k(T_3)$ be the three multisets corresponding to T_1, T_2, T_3 , respectively. We show that the first inequality holds.

If $x^{m(x)} \in \mathcal{P}_k(T_1) \triangle_m \mathcal{P}_k(T_2)$, we have either $x^{m(x)} \in \mathcal{P}_k(T_1) \setminus_m \mathcal{P}_k(T_2)$ or $x^{m(x)} \in \mathcal{P}_k(T_2) \setminus_m \mathcal{P}_k(T_1)$. Assume $x^{m(x)} \in \mathcal{P}_k(T_1) \setminus_m \mathcal{P}_k(T_2)$. Then, we have $m_{\mathcal{P}_k(T_1)}(x) > m_{\mathcal{P}_k(T_2)}(x)$. Now, if $x \notin \operatorname{Supp}(\mathcal{P}_k(T_3) \setminus_m \mathcal{P}_k(T_2))$, we have $m_{\mathcal{P}_k(T_1)}(x) > m_{\mathcal{P}_k(T_2)}(x) \geqslant m_{\mathcal{P}_k(T_3)}(x)$, which implies that $x \in$

$$\operatorname{Supp}(\mathcal{P}_k(T_1) \setminus_m \mathcal{P}_k(T_3))$$
 and

$$m_{\mathcal{P}_k(T_1) \setminus_m \mathcal{P}_k(T_3)}(x) = m_{\mathcal{P}_k(T_1)}(x) - m_{\mathcal{P}_k(T_3)}(x) \geqslant m_{\mathcal{P}_k(T_1)}(x) - m_{\mathcal{P}_k(T_2)}(x) = m(x).$$

Thus, we have

$$m(x) \leqslant m_{\mathcal{P}_k(T_1) \triangle_m \mathcal{P}_k(T_3)}(x) + m_{\mathcal{P}_k(T_3) \triangle_m \mathcal{P}_k(T_2)}(x).$$

On the other hand, if $x \in \text{Supp}(\mathcal{P}_k(T_3) \setminus_m \mathcal{P}_k(T_2))$ and $m_{\mathcal{P}_k(T_3)}(x) \geqslant m_{\mathcal{P}_k(T_1)}(x)$, then

$$m_{\mathcal{P}_k(T_3)\setminus_m \mathcal{P}_k(T_2)}(x) = m_{\mathcal{P}_k(T_3)}(x) - m_{\mathcal{P}_k(T_2)}(x) \geqslant m_{\mathcal{P}_k(T_1)}(x) - m_{\mathcal{P}_k(T_2)}(x) = m(x).$$

If $x \in \operatorname{Supp}(\mathcal{P}_k(T_3) \setminus_m \mathcal{P}_k(T_2))$ and $m_{\mathcal{P}_k(T_3)}(x) < m_{\mathcal{P}_k(T_1)}(x)$, we have $m_{\mathcal{P}_k(T_1)}(x) > m_{\mathcal{P}_k(T_3)}(x) > m_{\mathcal{P}_k(T_2)}(x)$, which implies that $x \in \operatorname{Supp}(\mathcal{P}_k(T_1) \setminus_m \mathcal{P}_k(T_3))$. Thus, we have

$$m(x) = m_{\mathcal{P}_k(T_1) \setminus_m \mathcal{P}_k(T_3)}(x) + m_{\mathcal{P}_k(T_3) \setminus_m \mathcal{P}_k(T_2)}(x) \leqslant m_{\mathcal{P}_k(T_1) \triangle_m \mathcal{P}_k(T_3)}(x) + m_{\mathcal{P}_k(T_3) \triangle_m \mathcal{P}_k(T_2)}(x).$$

Similarly, if $x^{m(x)} \in \mathcal{P}_k(T_2) \setminus_m \mathcal{P}_k(T_1)$, then we obtain the same result. To summarize, we have

$$\operatorname{Supp}(\mathcal{P}_k(T_1) \triangle_m \mathcal{P}_k(T_2)) \subseteq \operatorname{Supp}(\mathcal{P}_k(T_1) \triangle_m \mathcal{P}_k(T_3)) \cup \operatorname{Supp}(\mathcal{P}_k(T_3) \triangle_m \mathcal{P}_k(T_2)).$$

In addition, for each $x \in \text{Supp}(\mathcal{P}_k(T_1) \triangle_m \mathcal{P}_k(T_2))$, we have

$$m_{\mathcal{P}_k(T_1)\triangle_m \mathcal{P}_k(T_2)}(x) \leqslant m_{\mathcal{P}_k(T_1)\triangle_m \mathcal{P}_k(T_3)}(x) + m_{\mathcal{P}_k(T_3)\triangle_m \mathcal{P}_k(T_2)}(x).$$

Therefore, we have

$$|\mathcal{P}_k(T_1)\triangle_m\mathcal{P}_k(T_2)| \leq |\mathcal{P}_k(T_1)\triangle_m\mathcal{P}_k(T_3)| + |\mathcal{P}_k(T_3)\triangle_m\mathcal{P}_k(T_2)|.$$

Thus, the first inequality holds. Also, the second inequality and the third equality follow from the definition of the k-RF measures.

Proposition 5. Let $k \ge 0$ and S,T be two (rooted) trees whose nodes are labeled by L(S) and L(T), respectively. Then, $d_{k-RF}(S,T)$ can be computed in O(n(k+|L(S)|+|L(T)|)) if the total multiplicity of each label is upper bounded by a constant.

Proof. An algorithm in the 1-labeled case can be modified as follows for computing k-RF multiset-labeled unrooted and rooted trees:

• Represent each label multiset as a (|L(S)| + |L(T)|)-digit number, in which the digit at position j is the multiplicity of the j-th label. Compute all edge-induced partitions in O(kn) set operations.

- Radix-sort all the edge-induced partitions in each tree in O(n(|L(S)| + |L(T)|)) time, where we use the assumption that the total multiplicity of each label is bounded by a constant B.
- Compute the symmetric difference of the set of the edge-induced partitions in the two input trees in O(n) time.

Theorem 3. Let $k \ge 1$ be an integer. The k-RF dissimilarity measure is a pseudometric on the space of all multiset-labeled rooted trees. In other words, it satisfies the non-negativity, symmetry and triangle inequality conditions.

Proof. It is exactly the same as proof of Proposition 4. \Box