a) Solve
$$2t + 14 = 8$$

$$5$$

$$2t = -60$$

$$5$$

$$2t = -30$$

$$[t = -15]0$$

b)
$$\left(\frac{34-7}{53+34+7}\right) \times 9.8$$

= 2.814893617

c)
$$3k - 2x - 1 = 23$$

 $3k + 2 = 23$ ①
 $3k = 21$

$$\frac{3x - 1}{4} = \frac{3x - 1}{3}$$

$$= \frac{3x + 4(3x - 1)}{12}$$

$$= 3x + 12x - 4$$

$$= 15x - 4$$
 (1)

$$= \frac{(3x + 9)(3x - 4)}{3}$$

$$= \frac{3(x+9)(3x-4)}{3}$$

=
$$(x+9)(3x-4)$$

f)
$$7-4x > 12$$

 $-4x > 5$ ①
 $x < -5/4$ ①

Question 2

a)
$$tan x^{\circ} = 1$$
 $o \leq x \leq 360^{\circ}$ $x = 46^{\circ}$, 225° $a = -2(x - 6)$ $y + 8 = -2(x + 12)$

$$2x + y - 4 = 0$$

$$3x + y - 4 = 0$$

$$4x = -4$$

$$3x = -1$$

$$4x = -1$$

$$5x = -1$$

$$5x = -1$$

$$5x = -1$$

$$6x = -1$$

iv)
$$d = |ax - by + c|$$
 $\sqrt{a^2 + b^2}$

line: $2x - y + 8 = 0$
 $\sqrt{a^2 + b^2}$
 $d = |2 \times 6 + (-1) \times (-8) + 8|$
 $\sqrt{2^2 + (-1)^2}$
 $= |12 + 8 + 8|$
 $\sqrt{5}$
 $= 28 \times 5$
 $\sqrt{5}$
 $= 28 \times 5$
 $\sqrt{5}$
 $= 42 \times 6 \times 7$
 $= 69$
 84
 $= 23 \times 6 \times 7$
 $= 69$
 $= 42 \times 77194403$
 $= 35 \times 7719403$
 $= 35 \times 7719$

3. MSG Treel Lunt mathe 2009 (a) (i) $\frac{d}{dx}(3-x^2)^3 = 3(3-x^2)x - 2x$ $= -6x(3-x^2)^2(2)$ (ii) $\frac{d}{dx}\left(\log\left(x^{2}+3\right)\right) = \frac{1/x}{\chi^{2}+3}$ (iii) $\frac{d}{d\alpha}(x\cos x) = \chi_{x} - \sin x + \cos x \times 1$ $= -\alpha \sin x + \cos x - (2)$ (b) f(x) = 3 - 2xf(x) = ((3-2x) dx)= 3x - x + C $\frac{data}{(3.5)} = 9 - 9 + C$ $f(x) = 3x - x^2 + 5$ (c) (i) ×A > = BAC common angle. AX = 8 = 4 Common angle,
AB 10 sides in same ratio AT 12 = 4 test (2) AC 15 5 111 (i) Because ABC MAXI

(ii) Because ABC angles in corresposition

XY/BC-(i)

3 (d)
$$\int (x-6)^{\frac{1}{2}} dx$$

$$= \frac{(x-6)}{\frac{1}{2} \times 1} + C$$

$$= \frac{2}{3} (x-6) \sqrt{x-6} + C \cdot (1)$$

3

4 (a)
$$(x-3)(x+k) = k(x+2)$$
.

 $x^2 + xk - 3x - 3k = kx + 2k$.

 $x^2 + xk - kx - 3x - 3k - 2k = 0$
 $x^2 - 3x - 5k = 0$

equal roots $\Rightarrow \triangle = b^2 - 4ac = 0$
 $a = 1$
 $b = -3$
 $c = -5k$
 $9 + 10k = 0$
 $10k = -9$
 $10k = -9$

4 (b) bottows \$130,000

9.75 p.a compounded monthly => $\frac{9.75}{12}$ g=
equal monthly instalments \$m. 0.008125 (i) \$A, = 130,000 + 130,000 × 0.008125 #MM) = 130,000 (1+0.00 8125) #MODY = 130,000 (1.008125) = \$131056.25() (ii) \$130000 (1.008125) -M. () (11) 13 years = 156 months; 2 \$A_2 = 130000 (1.008125) - m (1+0.008125) $$A_{156} = 130000 (1.008175) - m(1+0.008175+...008175)$ $M = \frac{130000(1,008125)}{14008125 + - + (1.008125)^{155}}$ denom: $S_n = \frac{rl-a}{r-1} = 1.008/25 \times 1.008/25 - 1$ 1.008125 -1 $\frac{1.008/25^{156}-1}{0.008/25^{156}-1} = 10008191454i_{26}$ $= 1.008/25^{156}-1$ = 0.008/25 0.008/25 = 1.008/25 0.008/25 $= 311.85434i_{26}$ = 1.008/25 $= 311.85434i_{26}$

\$An. (IV) 130000 (1.008125) - 1700 (1+1.008125+---+-- 1.008125 n-1) let \$An=0 1700 (1+1.008/25+-+1,008/25ⁿ⁻¹) = 130000(1.008/25) Sum 1+1,008125+--+ 1.008125 $S_{n} = \frac{a(r^{n}-1)}{r-1} = \frac{1,(1.008125-1)}{1.008125-1} = \frac{1.008125-1}{.008125}$ $\frac{1700\left(1.008125^{n}-1\right)}{0.008125} = 130000\left(1.008125\right)$ $1700 \left(1.008125^{n}\right) = 1056.25 \left(1.008125\right)^{n}$ $1700 \left(1.008125^{n}\right)^{n} - 1700 = 1056.25 \left(1.008125\right)^{n}$ 643.75 (1,008125) = 1700 1.008125 = 2.640776699 1.008125 = log 2.640776699n = 120 months 2

$$y = 41 - x^{2}$$
 $4x - x^{2} = x^{2}$
 $2x^{2} - 4x = 0$
 $2x(x - 2) = 0$
 $x = 0, 2$
 $y = 0, 4$

Point is $(2, 4)$ (2)

$$A = \int_{0}^{2} (4z - x^{2}) dx - \int_{0}^{2} x^{2} dx$$

$$= \int_{0}^{2} (4x - 2x^{2}) dx$$

$$= \int_{0}^{2} (2x^{2} - 2x^{2}) dx$$

=
$$\left[22^{2} - \frac{2}{3}a^{3}\right]_{0}^{2}$$

= $8 - \frac{16}{3}$
= 8_{3} agrae unts (2)

	7	ام	ira		3/1	2		,
	引	1	4/5	1/2.	4/3	1/2		(2)
ı	7	<u> </u>			, 9	<u>.</u>	<u> </u>	

$$= \frac{41}{60} + \frac{251}{780}$$

$$= 1\frac{41}{390}$$

$$= 1.1051 (4ch)$$

$$= 1.2 - 0 = 15$$

$$\frac{6A}{4} = \frac{1}{2} = \frac{1}{2}$$

ed USING DECIMALS

$$A = \frac{1}{6} \left[(1+3.2+0.5) + \frac{1}{6} \left[(5+1.23077+0.2) \right]$$

$$= \frac{1}{6} \left[(6.63077) \right]$$

AND
$$A \stackrel{?}{=} \frac{1}{6} \left[1 + .2 + 2 \times .5 + 4 \left(.8 + .30769 \right) \right]$$

$$= \frac{1}{6} \left[6.63076 \right]$$

$$= 1.1051 \qquad (3)$$

c)
$$a(1+r^2) = 13 - 0$$

 $ar(1+r^2) = 39 - 2$

From
$$O$$

$$a = \frac{13}{1+r^2}$$

$$\ln(2) \frac{13}{1+r^2} \cdot r(1+r^2) = \frac{39}{2}$$

$$13r = \frac{39}{2}$$

$$r = \frac{3}{2}$$

$$a = \frac{13}{1 + 9/4} = 4$$

Series is $4 + 6 + 9 + 13\frac{1}{2}$ (3)
 $T_1 + T_3 = 13$, $T_2 + T_4 = 19\frac{1}{2}$

$$(6) a) LHS = \frac{\sin \theta}{1 - (\cos \theta)} \times \frac{1 + (\cos \theta)}{1 + \cos \theta}$$

$$= \frac{\sin \theta}{1 - (\cos^2 \theta)}$$

$$= \frac{\sin \theta}{1 - (\cos^2 \theta)}$$

$$= \frac{\sin \theta}{1 - (\cos^2 \theta)}$$

$$= \frac{1 + \cos \theta}{\sin \theta}$$

$$= \frac{\sin^2 \theta}{1 - \cos^2 \theta} = \frac{1}{\sin^2 \theta}$$

$$= \frac{\sin^2 \theta}{1 - \cos^2 \theta} = \frac{1}{\sin^2 \theta}$$

$$= \frac{\sin^2 \theta}{1 - \cos^2 \theta} = \frac{1 + \cos \theta}{1 - \cos \theta}$$

$$= \frac{\sin^2 \theta}{1 - \cos^2 \theta} = \frac{1 + \cos \theta}{1 - \cos \theta}$$

$$= \frac{\sin^2 \theta}{1 - \cos^2 \theta} = \frac{1 + \cos \theta}{1 - \cos \theta}$$

$$= \frac{\sin^2 \theta}{1 - \cos^2 \theta} = \frac{1 + \cos \theta}{1 - \cos \theta}$$

$$= \frac{\sin^2 \theta}{1 - \cos^2 \theta} = \frac{1 + \cos^2 \theta}{1 - \cos^2 \theta}$$

$$= \frac{\sin^2 \theta}{1 - \cos^2 \theta} = \frac{1 + \cos^2 \theta}{1 - \cos^2 \theta}$$

$$= \frac{\sin^2 \theta}{1 - \cos^2 \theta} = \frac{1 + \cos^2 \theta}{1 - \cos^2 \theta}$$

$$= \frac{\sin^2 \theta}{1 - \cos^2 \theta} = \frac{1 + \cos^2 \theta}{1 - \cos^2 \theta}$$

$$= \frac{\sin^2 \theta}{1 - \cos^2 \theta} = \frac{1 + \cos^2 \theta}{1 - \cos^2 \theta}$$

$$= \frac{\sin^2 \theta}{1 - \cos^2 \theta} = \frac{1 + \cos^2 \theta}{1 - \cos^2 \theta}$$

$$= \frac{\sin^2 \theta}{1 - \cos^2 \theta} = \frac{1 + \cos^2 \theta}{1 - \cos^2 \theta}$$

$$= \frac{\sin^2 \theta}{1 - \cos^2 \theta} = \frac{1 + \cos^2 \theta}{1 - \cos^2 \theta}$$

$$= \frac{\sin^2 \theta}{1 - \cos^2 \theta} = \frac{1 + \cos^2 \theta}{1 - \cos^2 \theta}$$

$$= \frac{\sin^2 \theta}{1 - \cos^2 \theta} = \frac{1 + \cos^2 \theta}{1 - \cos^2 \theta}$$

$$= \frac{\sin^2 \theta}{1 - \cos^2 \theta} = \frac{1 + \cos^2 \theta}{1 - \cos^2 \theta}$$

$$= \frac{\sin^2 \theta}{1 - \cos^2 \theta} = \frac{1 + \cos^2 \theta}{1 - \cos^2 \theta}$$

$$= \frac{\sin^2 \theta}{1 - \cos^2 \theta} = \frac{1 + \cos^2 \theta}{1 - \cos^2 \theta}$$

$$= \frac{\sin^2 \theta}{1 - \cos^2 \theta} = \frac{1 + \cos^2 \theta}{1 - \cos^2 \theta}$$

$$= \frac{\sin^2 \theta}{1 - \cos^2 \theta} = \frac{1 + \cos^2 \theta}{1 - \cos^2 \theta}$$

$$= \frac{\sin^2 \theta}{1 - \cos^2 \theta} = \frac{\sin^2 \theta}{1 - \cos^2 \theta}$$

$$= \frac{\sin^2 \theta}{1 - \cos^2 \theta} = \frac{\sin^2 \theta}{1 - \cos^2 \theta}$$

$$= \frac{\sin^2 \theta}{1 - \cos^2 \theta} = \frac{\sin^2 \theta}{1 - \cos^2 \theta}$$

$$= \frac{\sin^2 \theta}{1 - \cos^2 \theta} = \frac{\sin^2 \theta}{1 - \cos^2 \theta}$$

$$= \frac{\sin^2 \theta}{1 - \cos^2 \theta} = \frac{\sin^2 \theta}{1 - \cos^2 \theta}$$

$$= \frac{\sin^2 \theta}{1 - \cos^2 \theta} = \frac{\sin^2 \theta}{1 - \cos^2 \theta}$$

$$= \frac{\sin^2 \theta}{1 - \cos^2 \theta} = \frac{\sin^2 \theta}{1 - \cos^2 \theta}$$

$$= \frac{\sin^2 \theta}{1 - \cos^2 \theta} = \frac{\sin^2 \theta}{1 - \cos^2 \theta}$$

$$= \frac{\sin^2 \theta}{1 - \cos^2 \theta} = \frac{\sin^2 \theta}{1 - \cos^2 \theta}$$

$$= \frac{\sin^2 \theta}{1 - \cos^2 \theta} = \frac{\sin^2 \theta}{1 - \cos^2 \theta}$$

$$= \frac{\sin^2 \theta}{1 - \cos^2 \theta} = \frac{\sin^2 \theta}{1 - \cos^2 \theta}$$

$$= \frac{\sin^2 \theta}{1 - \cos^2 \theta} = \frac{\sin^2 \theta}{1 - \cos^2 \theta}$$

$$= \frac{\sin^2 \theta}{1 - \cos^2 \theta} = \frac{\sin^2 \theta}{1 - \cos^2 \theta}$$

$$= \frac{\sin^2 \theta}{1 - \cos^2 \theta} = \frac{\sin^2 \theta}{1 - \cos^2 \theta}$$

$$= \frac{\sin^2 \theta}{1 - \cos^2 \theta} = \frac{\sin^2 \theta}{1 - \cos^2 \theta}$$

$$= \frac{\sin^2 \theta}{1 - \cos^2 \theta} = \frac{\sin^2 \theta}{1 - \cos^2 \theta}$$

$$= \frac{\sin^2 \theta}{1 - \cos^2 \theta} = \frac{\sin^2 \theta}{1 - \cos^2 \theta}$$

$$= \frac{\sin^2 \theta}{1 - \cos^2 \theta} = \frac{\sin^2 \theta}{1 - \cos^2 \theta}$$

$$=\frac{1}{2}(12)(12)\sin 60$$

$$= 72(\sqrt{3})$$

$$=\frac{1}{2}(6)^{2}\frac{\pi}{3}$$

$$f'(x) = 4x^3 - 16x$$

(iii)
$$f'(0) = 0$$

 $f'(2) = 4 \times 8 - 16 \times 2$
 $= 0$

$$f'(-2) = -4 \times 8 + 16 \times 2$$
.

(iv)
$$f(2) = 16 - 8 \times 4 + 10$$

= -6
 $f(-2) = -6$.

$$A(-2,-6)$$
 $C(2,-6)$ 2

(ii)
$$P(RW) + P(wn) = \frac{5}{7x5} + \frac{2x4}{7x5}$$

QUESTION 8

$$y-e=-e(\chi+1).$$

 $y = -e\chi - e$.

- 2a= -e

(iii) $y = -e \times \frac{e}{2}$ from benyent.

$$\frac{-2}{e^2} = -(\frac{2}{2})^2 - \alpha.$$

$$\frac{-2}{2} = \frac{2}{2} = \frac{2}{2}$$

-e' = -e -a

$$e^{-20k} = \frac{1}{2}$$
 $-20k = \ln \frac{1}{2}$

$$k = \frac{1}{20} l_1 2.$$

$$E = \frac{20 \ln 10}{\ln 2}$$

(a)
$$R = 15 + 10$$

(i)
$$R = 15 + \frac{10}{1} = 25$$

(ii)
$$R = 15 + \frac{10}{1+9} = 16$$

(iii)
$$As t \rightarrow \infty$$

$$R \rightarrow 15$$
Since $\frac{10}{1+t} \rightarrow 0$

(v)
$$\int_{0}^{q} (15 + \frac{10}{1+t}) dt$$
= $\left[15t + 10 \log_{e}(1+t) \right]_{0}^{q}$
= $\left[158 L \right]$

(b)
$$x = 3t + e^{-3t}$$

(i) When
$$t=1$$
, $2c=3+e^{-3}$
 $x=\frac{1}{2}$ $x=\frac{1}{2}$ 3.05

(ii)
$$V = \frac{dx}{dt} = 3 - 3e^{-3t}$$

When
$$t=0$$
, $V=3-3e^{\circ}$
= 3-3(1)
 $V=0$

. initially at rest.

(iii)
$$\ddot{x} = \frac{dv}{dt} = 9e^{-3t}$$

(iv)
$$\lim_{t\to\infty} \left(3-3e^{-3t}\right)$$

= $\lim_{t\to\infty} \left(3-\frac{3}{e^{3t}}\right)$

$$\left(\text{Since } \frac{3}{e^{3t}} \rightarrow 0\right)$$

Go. (a)
$$S = b(x A) = B0 \times A0$$

$$= \frac{a}{co0} \cdot \frac{a}{co0}$$

$$= \frac{2a^{2}}{2 \cos b}$$

$$= \frac{2a^{2}}{2$$

(d) $2a < \frac{a}{3} < 3a$ $3 < \frac{1}{4} < 3$ $3 < \frac{1}{4} < 3$ where $4a < \frac{3}{3} < 3a < 3a < \frac{3}{3} < 3a < \frac{3}{3} < 3a < \frac{3}{3} < 3a < \frac{3}{3} < 3a < 3a < \frac{3}{3} < 3a < \frac{3}{3} < 3a < \frac{3}{3} < 3a < \frac{3}{3} <$