Оглавление

	иплексные числа и функции комплекснои переменнои
1.1	Комплексные числа и их свойства
	1.1.1 Арифметические операции
	1.1.2 Комплексное сопряжение
	1.1.3 Геометрическая интерпретация
	1.1.4 Алгебраическая форма комплексных чисел
	1.1.5 Тригонометрическая форма
	1.1.6 Показательная форма
	1.1.7 Извлечение корня n -й степени
1.2	Расширенная комплексная плоскость. Кривые. Множества на комплексной плоскости.
	1.2.1 Расширенная комплексная плоскость
	1.2.2 Кривые на плоскости
	1.2.3 Множества на комплексной плоскости
	1.2.4 Задание множеств на комплексной плоскости
1.3	Числовые последовательности и ряды
	1.3.1 Сходимость
	1.3.2 Ряды
1.4	Функции комплексной переменной. Предельное значение и неприменимость. Основные элементарные функ-
	ции
	1.4.1 Основные понятия
	1.4.2 Предельное значение функции
	1.4.3 Непрерывность
	1.4.4 Основные элементарные функции
1.5	Дифференцируемость ФКП
	1.5.1 Определение и свойства дифференцируемых функций
	1.5.2 Необходимое и достаточное условие дифференцируемости ФКП в точке
1.6	Аналитические функции и их свойства
	1.6.1 Основные определения и свойства аналитических функций
	1.6.2 Связь аналитичности с гармоничностью
	1.6.3 Задача определения аналитической функции по её части
Кон	нформные отображения
2.1	Геометрический смысл модуля и аргумента производной
	2.1.1 Основные понятия конформных отображений
	2.1.2 Геометрический смысл модуля и аргумента $f'(z)$
	2.1.3 Основные свойства конформных отображений
2.2	Дробно-линейные функции
	2.2.1 Определение, непрерывность
	2.2.2 Конформность отображения
	2.2.3 Групповое свойство
	2.2.4 Инвариантность двойного отношения
	2.2.5 Круговое свойство
	2.2.6 Сохранение симметрии
2.3	Степенная функция и обратная к ней
	2.3.1 Степенная функция
	2.3.2 Функция $w = \sqrt[n]{z}$
2.4	Показательная функция и обратная к ней
	2.4.1 Показательная функция
	2.4.2 Логарифмическая функция

3	Инт	сегрирование функций комплексных переменных	19
	3.1	Определение и свойства интегралов функций комплексных переменных	19
		3.1.1 Изначальное определение	
	3.2	Интегральная теорема Коши	
		3.2.1 Случай односвязной области	21
		3.2.2 Случай неодносвязной области	21
	3.3	Интегральная формула Коши	21
		3.3.1 И.Ф.К	21
		3.3.2 Принцип тах модуля аналитической функции	22
	3.4	Интеграл типа Коши. Бесконечная дифференцируемость аналитической функции	23
		3.4.1 Интеграл типа Коши	23
		3.4.2	23
		3.4.3 Теорема Лиувилля и её следствия	$\frac{1}{24}$
	3.5	Первообразная и неопределённые интегралы. Теорема Морера	
	0.0	3.5.1	24
			24
4		ды аналитических функций	25
	4.1	Равномерно сходящиеся функциональные ряды	
		4.1.1 Основные определения	
		4.1.2 Непрерывность и интегрируемость суммы ряда	
	4.2	Теоремы Вейерштрасса	25
	4.3	Степенные ряды	26
		4.3.1 Множество сходимости степенного ряда	26
		4.3.2 Равномерная сходимость степенного ряда	26
		4.3.3 Теорема Тейлора	27
		4.3.4 Методы разложения в степенной ряд	27
	4.4	Теорема единственности. Понятие аналитического продолжения	28
		4.4.1 Нули аналитической функции	28
		4.4.2 Основная теорема	
		4.4.3 Понятие об аналитическом продолжении	29
_	ъ		20
5		ды Лорана и особые точки ФКП	30
	5.1	Ряды Лорана	30
		5.1.1 Основные понятия	30
		5.1.2 Сумма ряда Лорана и её свойства	30
		5.1.3 Теорема Лорана	30
	5.2	Изолированные особые точки однозначной $\Phi K\Pi$ и их классификация	31
		5.2.1 Основное определение	31
		5.2.2 Поведение Φ КП в окрестности изолированной особой точки	31
6	Teo	рия вычетов	33
Ŭ	_	Понятие вычета. Вычисление вычета	33
	0.1	6.1.1 Определение и основное утверждение	33
		6.1.2 Вычисление вычетов	33
		6.1.3 Теорема о полной сумме вычетов	34
	6.0		
	6.2	Основная теорема теории вычетов. Вычисление контурных интервалов	34
		6.2.1 Основная теорема теории вычетов	34
		6.2.2 Вычисление интегралов вида $\int_0^{2\pi} R(\cos\phi,\sin\phi)d\phi$	35
	6.3	Вычисление несобственных интегралов	35
		6.3.1 Лемма	35
		6.3.1 Лемма	35
		6.3.3 Лемма Жордана	36
		6.3.4 Теорема 23.2	36

Глава 1

Комплексные числа и функции комплексной переменной

1.1 Комплексные числа и их свойства

```
Определение. Комплексное число z=(x;y), x,y\in\mathbb{R} x=\operatorname{Re} z — действительная часть z y=\operatorname{Im} z — мнимая часть z z_1=z_2\Leftrightarrow x_1=x_2,y_1=y_2
```

1.1.1 Арифметические операции

$$z_1+z_2=(x_1+x_2,y_1+y_2)$$
 $z_1z_2=(x_1x_2-y_1y_2,x_1y_2+x_2y_1)$ Вычитание — обратное к сложению Деление — обратное к умножению $z=\frac{z_1}{z_2}\Leftrightarrow z_1=z*z_2$ $0=(0;0)$ $1=(1;0)$ $a\in\mathbb{R}\Leftrightarrow a=(a;0)$ $\{z\}=\mathbb{C}$ — поле комплексных чисел \mathbb{R} — поле действ. чисел — подполе \mathbb{C}

1.1.2 Комплексное сопряжение

 $\overline{z}=(x;-y)$ – комплексное сопряжённое к z Свойства:

1. $\overline{(\overline{z})} = z$

2.
$$z\overline{z} = (x^2 + y^2; 0)$$

3.
$$z = \overline{z} \Leftrightarrow z \in \mathbb{R}$$

4.
$$\overline{z_1 \pm z_2} = \overline{z_1} \pm \overline{z_2}$$

5.
$$\overline{z1*z2} = \overline{z1}*\overline{z2}$$

$$6. \left(\frac{z1}{z2}\right) = \frac{\overline{z1}}{\overline{z2}}$$

1.1.3 Геометрическая интерпретация

$$z = (x, y) = (r, \phi)$$

$$r = \sqrt{x^2 + y^2}$$

$$\begin{cases}
\cos \phi = \frac{x}{\sqrt{x^2 + y^2}} \\
\sin \phi = \frac{y}{\sqrt{x^2 + y^2}}
\end{cases}, z \neq 0$$

$$z = 0 \Leftrightarrow r = 0$$

$$\begin{cases} x = r\cos\phi \\ y = r\cos\phi \end{cases}$$

$$\phi \in \Phi = \operatorname{Arg} z = \{\phi_0 + 2\pi k, \ k \in \mathbb{Z}\}\$$

$$\phi_0 = \arg z, \ \phi_0 \in [0; 2\pi]$$

Множество точек (векторов) с арифметическими операциями: сложение и умножение на действительное число $\lambda z =$ $(\lambda x, \lambda y)$ – линейное пространство.

Если $||z_1-z_2||=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$, то это евклидово пространство. Sample: доказать, что $|z_1+z_2|^2+|z_1-z_2|^2=2(|z_1|^2+|z_2|^2)$ (используя правило параллелограмма и тот факт, что сумма квадратов диагоналей параллелограмма равна двойной сумме квадратов сторон)

1.1.4 Алгебраическая форма комплексных чисел

В линейном пространстве $\forall z$

$$z = x\overline{e}_1 + y\overline{e}_2$$

 $\overline{e}_1, \overline{e}_2$ – векторы системы координат

$$\overline{e}_1 = (1,0) = 1$$

$$\overline{e}_2 = (0,1) = i$$

$$i^2 = (-1, 0) = -1$$

1.1.5 Тригонометрическая форма

$$r = \sqrt{x^2 + y^2} / = |z| /$$

$$\phi \in \operatorname{Arg} z$$

$$x = r\cos\phi, y = r\sin\phi$$

$$z = r(\cos\phi + i\sin\phi)$$

Утверждение (свойства модуля):

$$1. \ |z| \geq 0; |z| = 0 \Leftrightarrow z = 0$$

$$2. |\overline{z}| = |z|$$

3.
$$|-z| = |z|$$

4.
$$z\overline{z} = |z|^2$$

5.
$$|z_1z_2| = |z_1||z_2|$$

6.
$$\left| \frac{z_1}{z_2} \right| = \frac{|z_1|}{|z_2|}$$

7.
$$|z_1 + z_2| \le |z_1| + |z_2|$$
; $|z_1 - z_2| \le |z_1| + |z_2|$

8.
$$|Re\ z| \le |z|$$
; $|Im\ z| \le |z|$

9.
$$|z_1 - z_2| \ge ||z_1| - |z_2||$$

Доказательство. $|z_1| = |z_1 - z_2 + z_2| \le |z_1 - z_2| + |z_2|$

Показательная форма 1.1.6

$$e^{i\phi}=\cos\phi+i\sin\phi$$
 (Формула Эйлера)

$$e^{-i\phi} = \cos\phi - i\sin\phi$$

$$z = re^{i\phi}; r = |z|, \phi \in \operatorname{Arg} z(z \neq 0); \ \overline{z} = re^{-i\phi}$$

$$z = 0 \Leftrightarrow r = 0$$

Утверждение:

1.
$$e^{i\phi_1}e^{i\phi_2} = e^{i(\phi_1 + \phi_2)}$$

2.
$$\frac{e^{i\phi_1}}{e^{i\phi_2}} = e^{i(\phi_1 - \phi_2)}$$

3.
$$(e^{i\phi})^n = e^{in\phi}, n \in \mathbb{Z}$$

4.
$$|e^{i\phi}| = 1$$

5.
$$e^{i(\phi+2\pi k)} = e^{i\phi}, k \in \mathbb{Z}$$

1. $e^{i\phi_1}e^{i\phi_2} = (\cos\phi_1 + i\sin\phi_1)(\cos\phi_2 + i\sin\phi_2) = \cos\phi_1\cos\phi_2 - \sin\phi_1\sin\phi_2 + i(\sin\phi_1\cos\phi_2 + \sin\phi_2\cos\phi_1) = \cos(\phi_1 + \phi_2) + i\sin(\phi_1 + \phi_2) = e^{i(\phi_1 + \phi_2)}$

4. $|e^{i\phi}| = |\cos \phi + i\sin \phi| = \sqrt{\cos^2 \phi + \sin^2 \phi} = 1$

Извлечение корня *n*-й степени

Определение. $z = \sqrt[n]{c} \ (n \in \mathbb{N}, \ n > 1) \Leftrightarrow z^n = c$

- 1. $\sqrt[n]{0} = 0$
- 2. $c \neq 0$
 - $c = \rho e^{i\alpha}$

$$z^n = c \Leftrightarrow r^n e^{in\phi} = \rho e^{i\alpha} \ \Rightarrow \ \begin{cases} r^n = \rho \\ n\phi = \alpha + 2\pi k \end{cases}$$

$$\sqrt[n]{c} = \sqrt[n]{\rho}e^{i\frac{\alpha+2\pi k}{n}}, \ k = 0, 1, \dots, n-1$$

1.2 Расширенная комплексная плоскость. Кривые. Множества на комплексной плоскости.

Расширенная комплексная плоскость

Определение. Расширенная комплексная плоскость $\overline{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$

Модель расширенной комплексной плоскости – сфера Римана S.

Утверждение.

Пусть $N \leftrightarrow M$. Тогда

$$\xi = \frac{x}{1+|z|^2}, \eta = \frac{y}{1+|z|^2}, \zeta = \frac{|z|^2}{1+|z|^2}$$
(1)
$$x = \frac{\xi}{1-\zeta}, y = \frac{\eta}{1-\zeta}$$
(2)

Доказательство. N(x, y, 0)

$$\vec{PM} = (\xi, \eta, \zeta - 1)$$

$$\vec{PN} = (x, y, -1)$$

$$\vec{PM}||\vec{PN} \ \Rightarrow \ \exists k \neq 0, \ \text{что} \ \frac{\xi}{x} = \frac{\eta}{y} = \frac{\zeta-1}{-1} = k \ (3) \ \Rightarrow \ \zeta = 1-k, \\ \xi = kx, \\ \eta = ky$$

$$S: \xi^2 + \eta^2 + \left(\zeta - \frac{1}{2}\right)^2 = \left(\frac{1}{2}\right)^2$$

$$\xi^2 + \eta^2 + \zeta^2 = \zeta$$

$$k^2(x^2 + y^2) + (1 - k)^2 = 1 - k$$

$$\xi^2 + \eta^2 + \zeta^2 = \zeta$$

$$k^{2}(x^{2}+y^{2})+(1-k)^{2}=1-k$$

$$k = \frac{1}{1 + x^2 + y^2} = \frac{1}{1 + |z|^2}$$

$$\xi = \frac{x}{1+|z|^2}, \eta = \frac{y}{1+|z|^2}, \zeta = \frac{|z|^2}{1+|z|^2}$$

Замечания:

- $1. \, \infty$ одна на $\overline{\mathbb{C}}$
- 2. Множество окружностей на $S \leftrightarrow$ множество окружностей и прямых $\overline{\mathbb{C}}$
- 3. Любая окружность на S, не проходящая через точку P, соответствует окружности $\overline{\mathbb{C}}$; любая окружность на S, проходящая через точку P, соответствует прямой $\overline{\mathbb{C}}$

1.2.2 Кривые на плоскости

Пусть $x(t), y(t), t \in [\alpha, \beta]$ – вещественные непрерывные функции.

$$\gamma \colon \begin{cases} z(t) = x(t) + iy(t) \\ t \in [\alpha, \beta] \end{cases}$$
 (4)

Уравнение (4) задает непрерывную кривую на плоскости.

На γ в силу (4) индуцировано направление, соответствующее изменению параметра t.

Определение. $z(\alpha)$ – начальная точка γ , $z(\beta)$ – конечная точка γ .

Кривая, которая отличается от γ только направлением, обозначается γ^{-1} .

Определение. Если $\exists \ t_1 \neq t_2$, что $z(t_1) = z(t_2)$, то это точка самопересечения кривой γ (кроме $t_1 = \alpha, t_2 = \beta$ и наоборот).

Определение. Простая (жорданова) кривая – непрерывная кривая без точек самопересечения.

Определение. *Если* $z(\alpha) = z(\beta)$, то γ – замкнутая кривая.

Определение. Кривая γ — гладкая, если $x,y \in \mathbb{C}^1[\alpha,\beta]$, причём $(x'(t))^2 + (y'(t))^2 \neq 0$. Иначе говоря, $\exists z'(t), t \in [\alpha,\beta]$, причём $z'(t) \neq 0$.

Замечание:

Если кривая замкнута, то для гладкости необходимо дополнительное равенство $z'(\alpha + 0) = z'(\beta - 0)$.

Определение. Непрерывная кривая называется кусочно-гладкой, если она состоит из конечного числа гладких кусков.

Определение. Замкнутая простая кусочно-гладкая кривая называется замкнутым контуром.

1.2.3 Множества на комплексной плоскости

$$E
eq \varnothing$$
 $d = \operatorname{diam} E = \sup_{z_1, z_2 \in E} \lvert z_1 - z_2 \rvert$ Круговые окрестности:

$$z_0 \neq \infty$$

 $K_{\varepsilon}(z_0) = \{z \colon |z - z_0| < \varepsilon\}$

Проколотая окрестность: $\dot{K}_{\varepsilon}(z_0) = \{z \colon 0 < |z - z_0| < \varepsilon\}$

$$z_0 = \infty$$

$$K_B(\infty) = \{z \colon |z| > B\}$$

$$\dot{K}_B(\infty) = \{z \colon B < |z| < \infty\}$$

Определение. Внутренняя точка – точка, у которой есть окрестность, содержащая только точки, принадлежащие множеству.

Определение. Внешняя точка – точка, у которой есть окрестность, содержащая только точки, не принадлежащие множеству.

Определение. Граничная точка – точка, в любой ненулевой окрестности которой есть как внешние, так и внутренние точки.

Определение. Предельная точка – точка, в любой ненулевой окрестности которой бесконечно много внутренних точек.

Определение. Открытое множество – множество, все точки которого внутренние.

Определение. Замкнутое множество – множество, содержащее все свои предельные точки.

Определение. Связное множество – множество, для любых двух точек которого существует непрерывная кривая, принадлежащая данному множеству, соединяющая эти точки.

Определение. Область – непустое открытое связное множество.

Теорема (Жордан). Всякая непрерывная простая замкнутая кривая γ разбивает $\overline{\mathbb{C}}$ на две области: внутреннюю (int γ) c границей γ u внешнюю (ext γ) c границей γ , содержащую точку ∞ .

Определение. Односвязное множество – такое множество, с которым любой замкнутый контур непрерывной деформацией может быть стянут к точке, принадлежащей множеству.

Alternative one: односвязное множество – множество, в котором для любого замкнутого контура, принадлежащего множеству, его внутренняя область тоже принадлежит множеству.

Определение. Область п-связна, если у неё п границ.

1.2.4 Задание множеств на комплексной плоскости

Уравнение прямой:

$$\begin{array}{l} bx+cy+d=0,\; b^2+c^2>0\\ \begin{cases} z=x+iy\\ \overline{z}=x-iy \end{cases} \Leftrightarrow \begin{cases} x=\frac{z+\overline{z}}{2}\\ y=\frac{z-\overline{z}}{2} \end{cases}\\ y=\frac{z-\overline{z}}{2} \end{cases}\\ b(z+\overline{z})-i(z-\overline{z})c+2d=0\\ \overline{B}z+B\overline{z}+D=0\;\;(5)\\ B=b+ic,D=2d,B\overline{B}\neq0\;/B\neq0/\\ \text{Уравнение окружности:}\\ a(x^2+y^2)+2bx+2cy+d=0\;\;(a\neq0)\\ \left(x+\frac{b}{a}\right)^2+\left(y+\frac{c}{a}\right)^2=\frac{b^2+c^2-ad}{a^2}\;/b^2+c^2-ad>d/\\ Az\overline{z}+\overline{B}z+B\overline{z}+D=0\;\;(6) \end{array}$$

1.3 Числовые последовательности и ряды

1.3.1 Сходимость

A = a, D = d, B = b + ic

$$\{z_n\} \in \mathbb{C}, \ z_n = x_n + iy_n$$

Определение.
$$\{z_n\} \to z_0 \ (z_0 \neq \infty) \ / \lim_{n \to \infty} z_n = z_0 / \iff \forall \varepsilon > 0 \ \exists N \ \forall n > N \ |z_n - z_0| < \varepsilon \}$$

Определение. $\{z_n\}$ – бесконечно большая последовательность $\Leftrightarrow \ \forall B>0 \ \exists N \colon \forall n>N \ |z_n|>B$

Теорема.
$$z_n \to z_0 \Leftrightarrow \begin{cases} x_n \to x_0 \\ y_n \to y_0 \end{cases}, n \to \infty$$

Доказательство.

1.
$$|x| \le |z| |y| \le |z|$$

2.
$$\forall \varepsilon \exists N, \forall n > N$$
:
$$\begin{cases} |x_n - x_0| < \frac{\varepsilon}{\sqrt{2}} \\ |y_n - y_0| < \frac{\varepsilon}{\sqrt{2}} \end{cases}$$
$$|z_n - z_0| = \sqrt{(x_n - x_0)^2 + (y_n - y_0)^2} < \varepsilon$$

Замечание.

Для $z_0 = \infty$ теорема не выполняется.

Утверждение 1.

$$z_n=r_ne^{i\phi_n}$$
 Если $egin{cases} r_n o r_0 \ \phi_n o \phi_0 \end{cases},\ n o\infty \ \Rightarrow \ z_n o z_0=r_0e^{i\phi_0}$

Доказательство.
$$z_n = r_n e^{i\phi_n} = r_n (\cos \phi_n + i \sin \phi_n)$$
 $\begin{cases} x_n = r_n \cos \phi_n \to x_0 \\ y_n = r_n \sin \phi_n \to y_0 \end{cases} \Rightarrow z_n \to z_0$ по теореме.

Замечание.

Обратное утверждение неверно.

Утверждение 2.

$$|z_n \to z_0| \Rightarrow |r_n \to r_0|$$
 (доказательство следует из $||z_n| - |z_0|| \le |z_n - z_0|$)

Замечание

Из сходимости $z_n \to z_0$ не обязательно следует $\phi_n \to \phi_0$

Примеры:

1.
$$z_n = \frac{1}{n} \ \forall n \ \arg z_n = 0; \ \arg 0$$
 не определён.

2.
$$\arg z \in [0, 2\pi)$$

$$z_n = 1 + i \frac{(-1)^n}{n} \to z_0 = 1$$

$$n = 2k$$
: $z_{2k} = 1 + \frac{i}{2k}$, $\arg z_{2k} \to 0 +$

$$n = 2k - 1$$
: $z_{2k-1} = 1 - \frac{i}{2k-1}$, $\arg z_{2k-1} \to 2\pi$

1.3.2Ряды

$$\sum_{n=1}^{\infty} z_n$$
 (1) — числовой ряд

Определение. Числовой ряд (1) сходится, если сходится к конечному пределу последовательность $\{\rho_n\}$

Теорема. Ряд (1) сходится
$$\Leftrightarrow$$

$$\begin{cases} cxoдится \sum\limits_{n=1}^{\infty} x_n \\ cxoдится \sum\limits_{n=1}^{\infty} y_n \end{cases}$$

Определение. Ряд (1) сходится абсолютно, если сходится $\sum_{i=1}^{\infty} |z_n|$ (2)

Утверждение 3.

Ряд (1) сходится
$$\Leftrightarrow \ \forall \varepsilon > 0 \ \exists N \colon \forall n > N, \forall p \in \mathbb{N} \ \left| \sum_{k=n+1}^{n+p} z_k \right| < \varepsilon$$

Утверждение 4.

Сходимость ряда (1) означает $z_n \to 0$

Утверждение 5.

Из сходимости ряда (2) следует сходимость ряда (1).

Утверждение 6.

Сходимость ряда (2) можно исследовать, применяя любой из признаков сходимости вещественных рядов с неотрицательными членами.

1.4 Функции комплексной переменной. Предельное значение и неприменимость. Основные элементарные функции.

1.4.1 Основные понятия

Определение. Пусть
$$E, F \in \overline{\mathbb{C}}, E, F$$
 – непустые. $f: E \to F \ (w = f(z)), \ ecnu \ \forall z \in E \ \exists w \in F : w = f(z)$

Определение. $\Phi K\Pi w = f(z)$ однолистна на $G \subset E$, если $\forall z_1, z_2 \in G, z_1 \neq z_2$ $w_1 \neq w_2$

Замечание.

Далее рассматриваются однозначные ФКП, если специально не оговорено противное.

Задание однозначной функции w=f(z) на ${
m E}$ означает задание пары вещественных функций двух действительных переменных: $\begin{cases} u = u(x,y) \\ v = v(x,y) \end{cases} / w = u + iv, \ z = x + iy/, \ u,v,x,y \in \mathbb{R}$

1.4.2 Предельное значение функции

 $w=f(z),\ z_0$ – предельная точка множества $E,\ z_0\neq\infty$.

Определение. l – npeдельное значение f(z) в точке z_0 $/\lim_{z \to z_0} f(z) = l/\Leftrightarrow \ \forall \varepsilon > 0 \ \exists \delta(\varepsilon) > 0$:

$$\forall z \in E : 0 < |z - z_0| < \delta \implies |f(z) - l| < \varepsilon$$

Теорема. Пусть
$$l=a+ib \ (l\neq\infty)$$
.
$$\lim_{z\to z_0} f(z) = l \ \Leftrightarrow \ \begin{cases} u(x,y)\to a \\ v(x,y)\to b \end{cases} \ npu \ (x,y)\to (x_0,y_0)$$

Доказательство. $f = u_i v$

$$\begin{vmatrix} |u-a| \\ |v-b| \end{vmatrix} \le \sqrt{(u-a)^2 + (v-b)^2} = |f(z)-l| \le |u-a| + |v-b|$$

8

Следствие:

Из теоремы вытекают свойства пределов $\Phi K\Pi$ – те же, что и в вещественном случае.

Теорема (арифметические действия с пределами). Пусть $\exists \lim_{z \to z_0} f(z) = A, \lim_{z \to z_0} g(z) = B \Rightarrow \dots$

1.4.3 Непрерывность

Определение. f(z) \mathbb{C} -непрерывна в $m.\ z_0\ (z_0$ – предельная точка $E)\Leftrightarrow\ \exists\lim_{z\to z_0}f(z)=f(z_0)$

В частности, если $z_0 \neq \infty, \ f(z_0) \neq \infty, \ \text{то} \ \forall \varepsilon > 0 \ \exists \delta(\varepsilon) > 0 \colon \ \forall z \in E, \ |z - z_0| < \delta \ \Rightarrow \ |f(z) - f(z_0)| < \varepsilon$

Определение. f(z) непрерывна на E, если f(z) непрерывна $\forall z \in E$

Теорема. f(z) \mathbb{C} -непрерывна в m. $z_0 \Leftrightarrow \begin{cases} u(x,y) \\ v(x,y) \end{cases}$ – \mathbb{R}^2 -непрерывна в (x_0,y_0) (следует из m. 4.1))

Теорема. Если f,g \mathbb{C} -непрерывны в m. $z_0,$ то $f\pm g,f*g,rac{f}{g}(g(z_0))$ \mathbb{C} -непрерывны в z_0

Теорема. Если $\zeta = f(z)$ непрерывна в $z_0 \in E$, $w = g(\zeta)$ непрерывна в m. $\zeta_0 = f(z_0)$, то F(z) = g(f(z)) непрерывна в m. z_0

Определение. f(z) равномерно непрерывна на $E \Leftrightarrow \ \forall \varepsilon > 0 \ \exists \delta(\varepsilon) > 0 \colon \forall z_1, z_2 \in E \ |z_1 - z_2| < \delta \ \Rightarrow \ |f(z_1) - f(z_2)| < \varepsilon$

Теорема (Кантор). Пусть E – ограниченное замкнутое множество. Если f непрерывна на E \Rightarrow f равномерно непрерывна на E.

1.4.4 Основные элементарные функции

a) $w = z^n$, n > 1, $n \in \mathbb{N}$

Определена в \mathbb{C} , доопределим в $\overline{\mathbb{C}}$: $w(\infty) = \infty$

Неоднолистна (n-листна) в \mathbb{C} .

Непрерывна в $\overline{\mathbb{C}}$ (см. т. 4.4)

б) $w = \sqrt[n]{z}$

Определена в $\overline{\mathbb{C}}$

п-значная

Главная ветвь (k = 0):

$$w = \sqrt[n]{|z|}e^{\frac{i \arg z}{n}}$$

 $w = \arg z$

Определена при $z \neq 0, z \neq \infty$

Непрерывна в $\mathbb{C} \setminus \mathbb{R}^+$

 $w = e^z$

$$e^z = e^x(\cos y + i\sin y)$$

$$\exists \lim_{z \to \infty} e$$

Периодическая с основным периодом $T_0 = 2\pi i \;\;\Rightarrow\;\;$ бесконечнолистна в $\mathbb C$

Непрерывна в **С**

 $\Gamma) \ w = \operatorname{Ln} z \ (\Leftrightarrow e^w = z)$

Бесконечнозначная.

$$\operatorname{Ln} z = \ln|z| + i\operatorname{Arg} z = \ln|z| + i(\operatorname{arg} z + 2\pi k), \ k \in \mathbb{Z} \ \forall z \in \mathbb{C} \setminus \{0\}$$

Главная ветвь: $\ln z = \ln |z| + i \arg z$

Непрерывна в $\mathbb{C} \setminus \mathbb{R}^+$

д) Тригонометрические функции:

$$\cos z = \frac{1}{2}(e^{iz} + e^{-iz})$$

$$\sin z = \frac{1}{2i} (e^{iz} - e^{-iz})$$

$$\operatorname{tg} z = \frac{\sin z}{\cos z}$$

$$\operatorname{ctg} z = \frac{\cos z}{\sin z}$$

Непрерывны на множестве определения.

Имеют место все формулы элементарной тригонометрии.

е) Обратные тригонометрические функции

ж) Гиперболические функции:

$$ch z = \frac{1}{2} (e^z + e^{-z})$$
$$sh z = \frac{1}{2} (e^z - e^{-z})$$

th z, cth z

1.5 Дифференцируемость ФКП

1.5.1 Определение и свойства дифференцируемых функций

$$z_0, z \in E, \ z - z_0 = \Delta z$$

f(z) – однозначная

$$\Delta f(z_0) = f(z) - f(z_0) = f(z_0 + \Delta z) - f(z_0)$$

Определение. Производная f(z) в m. z_0 (по множеству E в m. z_0) $f'(z_0) = \lim_{\substack{z \to z_0 \ z \in E}} \frac{f(z) - f(z_0)}{z - z_0} = \lim_{\substack{\Delta z \to 0}} \frac{\Delta f(z_0)}{\Delta z}$ (предел

конечный)

Определение. f(z) дифференируема в т. $z_0 \Leftrightarrow \Delta f(z_0) = K\Delta z + \overline{o}(|\Delta z|)$, где $K \in \mathbb{C}$ и не зависит от Δz (но может зависеть от z_0)

$$|\Delta z| = \sqrt{\Delta x^2 + \Delta y^2} = \rho$$
, t.e. $\overline{o}(|\Delta z|) = \overline{o}(\rho)$

Утверждение 1.

f(z) дифференцируема в $z_0 \Leftrightarrow \exists f'(z_0)$, причём $K = f'(z_0)$

Определение. f(z) дифференцируема на $E \Leftrightarrow \exists f'(z) \ \forall z \in E$

Утверждение 2.

a)
$$f(z) = C \implies f'(z) = 0$$

б)
$$(cf(z))' = cf'(z)$$

B)
$$(f \pm g)' = f' \pm g'$$

$$\Gamma) (fg)' = f'g + fg'$$

д)
$$\left(\frac{f}{g}\right)' = \frac{f'(z)g(z) - f(z)g'(z)}{g^2(z)}$$

при условии, что существуют производные в правых частях.

Утверждение 3.

 $\zeta = f(z)$ – дифференцируема в т. $z_0 \in Z$

 $w = g(\zeta)$ определена на $G \supset f(E)$

 $g(\zeta)$ дифференцируема в $\zeta_0 = f(z_0) \Rightarrow F(z) = g(f(z))$ дифференцируема в т. z_0 , причём $F'(z_0) = g'(\zeta_0)f'(z_0)\big|_{\zeta_0 = f(z_0)}$

Утверждение 4.

Пусть w=f(z) — взаимно-однозначное отображение E на F, причём обратная функция $z=\phi(w)$ непрерывна. Тогда,

если $\exists f'(z_0) \neq 0$, то $\exists \phi'(w_0) = \frac{1}{f'(z_0)}$

Доказательство. 1

$$\frac{1}{\frac{w-w_0}{z-z_0}} = \frac{z-z_0}{w-w_0} = \frac{\phi(w)-\phi(w_0)}{w-w_0}$$

$$\lim_{\Delta w \to 0} \frac{z-z_0}{w-w_0} = \lim_{\Delta w \to 0} \frac{\phi(w)-\phi(w_0)}{w-w_0} = \phi'(w_0) = \lim_{\Delta w \to 0} \frac{1}{\frac{w-w_0}{z-z_0}} = \lim_{\Delta z \to 0} \frac{1}{\frac{w-w_0}{z-z_0}} = \frac{1}{\lim_{z \to z_0} \frac{\Delta w}{\Delta z}} = \frac{1}{f'(z_0)}$$

1.5.2 Необходимое и достаточное условие дифференцируемости ФКП в точке

Теорема (5.1).

f(z) = u + iv дифференцируема (\mathbb{C} -дифференцируема) в т. $z_0 = x_0 + iy_0$ тогда и только тогда, когда

1.
$$u(x,y),v(x,y)$$
 – \mathbb{R}^2 -дифференцируемы в (x_0,y_0)

Доказательство.

а) Необходимость

$$\Delta f(z_0) = f'(z_0)\Delta z + o(\rho), \rho \to 0, f'(z_0) = A + iB$$

$$\Delta f = \Delta u + i\Delta v$$

$$\Delta u(x_0, y_0) + i\Delta v(x_0, y_0) = (A + iB)(\Delta x + i\Delta y) + \overline{o}_1(\rho) + i\overline{o}_2(\rho)$$

$$\Delta u = u(x_0 + \Delta x, y_0 + \Delta y) - u(x_0, y_0)$$

Отделяем действительные и мнимые части:

$$\begin{cases} \Delta u = A\Delta x - B\Delta y + \overline{o}_1(\rho) \\ \Delta v = B\Delta x + A\Delta y + \overline{o}_2(\rho)_{\rho \to 0} \end{cases}$$

Заметим, что
$$\rho \to 0 \iff \begin{cases} \rho_1 \to 0 \\ \rho_2 \to 0 \end{cases} \Leftrightarrow \begin{cases} \Delta x \to 0 \\ \Delta y \to 0 \end{cases} \Rightarrow u(x,y), \ v(x,y) - \mathbb{R}^2$$
-дифференцируемы в т. (x_0,y_0)

Причём
$$A=rac{\partial u}{\partial x}(x_0,y_0),\ -B=rac{\partial u}{\partial y}(x_0,y_0)$$

$$B = \frac{\partial v}{\partial x}(x_0, y_0), \ A = \frac{\partial v}{\partial y}(x_0, y_0)$$

б) достаточность - ТООО

Следствие.

$$f'(z_0) = A + iB = \frac{\partial u}{\partial x} + i\frac{\partial v}{\partial x} = \frac{\partial u}{\partial x} - i\frac{\partial u}{\partial y} = \frac{\partial v}{\partial y} - i\frac{\partial u}{\partial y} = \frac{\partial v}{\partial y} + i\frac{\partial v}{\partial x}$$

Задачи.

1) Доказать, что условия Коши-Римана в полярной системе координат имеют вид:

$$\begin{cases} \frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \phi} \\ \frac{\partial v}{\partial r} = -\frac{1}{r} \frac{\partial u}{\partial \phi} \end{cases}$$

2) Условия Коши-Римана $\Leftrightarrow \frac{\partial f}{\partial \overline{z}} = 0$ (если рассматривать $f(z,\overline{z})$) (условие Даламбера-Эйлера)

1.6 Аналитические функции и их свойства

1.6.1 Основные определения и свойства аналитических функций

Определение. f(z) – аналитическая в обл. D $(f \in A(D)) \Leftrightarrow \forall z \in D \exists$ непрерывная f'(z)

Определение. $f \in A(z_0)$, если существует окрестность $U(z_0)$: $f \in A(U(z_0))$

Определение. $f \in A(\overline{D}) \Leftrightarrow \exists D_1 : \overline{D} \subset D_1, f \in A(D_1)$

Утверждение 1.

$$f \in A(D) \Rightarrow f \in \mathbb{C}(D)$$

Если $f, g \in A(D)$, то

a)
$$f \pm g \in A(D)$$

b)
$$fg \in A(D)$$

c)
$$\frac{f}{g} \in A(D \setminus \{z \colon g(z) = 0\})$$

Утверждение 2.

$$f \in A(D), G \supset f(E), g \in A(G) \Rightarrow g(f(z)) \in A(D)$$

Утверждение 3.

$$w = f(z) \in A(z_0), w_0 = f(z_0), f'(z_0) \neq 0 \implies z = \phi(w) \in A(w_0)$$

1.6.2 Связь аналитичности с гармоничностью

Определение. Функция u(x,y) – гармоническая в D $(u \in H(D))$, если a) $u \in \mathbb{C}^2[D]$ u б) $\Delta u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial u^2} = 0$ в D

Определение. и, v - сопряжённые, если они удовлетворяют условиям Коши-Римана

(1):
$$\begin{cases} \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \\ \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} \end{cases}$$

Утверждение 4.

- а) u, v сопряжённые $\Rightarrow u, v \in H(D)$
- б) $f = u + iv \in A(D) \Leftrightarrow u, v$ сопряжённые гармонические функции в D

а) Возьмём уравнение (1) и дифференцируем => $\begin{cases} \frac{\partial^2 u}{\partial x^2} = \frac{\partial^2 v}{\partial y \partial x} \\ \frac{\partial^2 u}{\partial u^2} = -\frac{\partial^2 v}{\partial x \partial u} \end{cases} => \Delta u = 0 => u \in H(D); \text{ анало-}$ Доказательство. гично для v

б)
$$=> f \in A \Leftrightarrow \begin{cases} u,v \in D(D) \text{(дифференцируемые)} \\ & \text{выполнено (1)} \end{cases}$$

1.6.3 Задача определения аналитической функции по её части

Утверждение 5.

Пусть $u \in H(D)$. Тогда \exists единственная с точностью до аддитивной константы v(x,y): $f = u + iv \in A(D)$. В частности, $v(x,y) = \int_{(x_0,y_0)}^{(x,y)} -u'_y dx + u'_x dy + C$ (2)

Доказательство. $dv = v'_x dx + v'_y dy = -u'_y dx + u'_x dy$

Убедимся, что имеется полный дифференциал.
$$= (u_y')_y' = -u_{yy}'', \ (u_x')_x' = u_{xx}'' \Leftrightarrow u_{xx}'' + u_{yy}'' = 0, \text{ т.к. } u \in H(D)$$

 $\int\limits_{-\infty}^{(x,y)} dv = v(x,y) - v(x_0,y_0)$ т.к. результат не зависит от выбора пути интегрирования.

В силу произвольности выбора $(x_0, y_0) \in D$ следует (2)

Замечания.

- 1. Аналогичное утверждение верно для v(x,y) = Im f. При этом вместо формулы (2) будет что-то другое
- 2. Парную функцию можно находить не из (2), а непосредственно из системы (1).
- 3. Если $f(z) \neq 0$, то $f(z) = |f(z)|e^{i\operatorname{Arg} f(z)}$ $f \in A \Leftrightarrow |f(z)|, \operatorname{Arg} f(z)$ – сопряжённые гармонические функции – неверно!

Глава 2

Конформные отображения

2.1Геометрический смысл модуля и аргумента производной

2.1.1Основные понятия конформных отображений

Определение. Угол между гладкими кривыми, пересекающимися в точке z_0 – это меньший угол между их касательными в этой точке. $(z_0 \neq \infty)$

Определение. Угол между пересекающимися в точке $z_0 = \infty$ кривыми – это угол в точке $\zeta_0 = 0$ между образами кривых при преобразовании $\zeta = \frac{1}{z}$

Определение. Непрерывное отображение f(z) называется конформным в точке z_0 , если оно сохраняет углы между пересекающимися в этой точке гладкими кривыми (по величине и направлению).

Определение. Отображение f(z) называется конформным в области, если оно конформно во всякой точке этой области и взаимно-однозначно.

```
z_0 \in \overline{\mathbb{C}}, \ \gamma – гладкая кривая: \gamma : z = \lambda t, t \in [a,b]
z_0 \in \gamma, r.e. \exists t_0 : z_0 = \lambda t_0
\lambda'(t_0) – вектор касательной к \gamma в точке z_0
\phi=\arg\lambda'(t_0) – угол наклона касательной к \gamma в z_0 (т.е. угол между касательной и положительным направлением)
\Gamma = f(\gamma), \ w_0 = f(z_0), \ w = f(z); \ w_0, w \in \Gamma; \ \Delta w = w - w_0

\Gamma \colon w = \Lambda(t) = f(\lambda(t)), \ t \in [a, b]
```

 $\lim_{\Delta z \to 0} \frac{|\Delta w|}{|\Delta z|} = k \neq 0$ – коэффициент линейного растяжения (сжатия) кривой γ в точке z_0 при отображении f(z)

2.1.2 Геометрический смысл модуля и аргумента f'(z)

Пусть $f \in A(z_0), f'(z_0) \neq 0$. Тогда можно показать, что f отображает некоторую окрестность точки z_0 взаимнооднозначно на окрестность w_0 .

Теорема (7.1).

Пусть $f \in A(z_0), f'(z_0) \neq 0, mor \partial a$

- $a) \mid f'(z_0) \mid$ коэффициент растяжения в точке z_0 при отображении f
- δ) $\arg f'(z_0)$ угол поворота гладкой кривой, проходящей через z_0 при отображении f
- в) отображение f конформно в точке z_0

Доказательство.

а) Т.к. $\exists f'(z_0)$, т.е. $\exists \lim_{\Delta z \to 0} \frac{\Delta w}{\Delta z} = f'(z)$. Тогда выполнено следующее равенство:

$$|f'(z_0)| = \lim_{\Delta z \to 0} \left| \frac{\Delta w}{\Delta z} \right| = \lim_{\Delta z \to 0} \frac{|\Delta w|}{|\Delta z|} = k \neq 0$$

Причём это равенство независимо от выбора γ .

6)
$$\phi = \arg \lambda'(z_1)$$

$$\Phi = \arg \Lambda'(t_0)$$

Тогда $\Lambda'(t_0) = f'(z_0)\lambda'(t_0) \Rightarrow \arg \Lambda'(t_0) = \arg f'(z_0) + \arg \lambda'(t_0)$ (при надлежащем выборе промежутка для arg)

$$\Phi - \phi = \arg f'(z_0)$$

в) Рассмотрим γ_1, γ_2 – две гладкие кривые, проходящие через $z_0, \, \Gamma_1, \Gamma_2$ – их образы, проходящие через w_0

$$\alpha = \arg f'(z_0)$$

$$\begin{cases} \Phi_1 - \phi_1 = \alpha \\ \Phi_2 - \phi_2 = \alpha \end{cases} \Rightarrow \Phi_1 - \Phi_2 = \phi_1 - \phi_2$$

Замечание.

Теперь ясно, что коэффициент сжатия не привязан к кривой.

2.1.3 Основные свойства конформных отображений

Утверждение 1.

Если $f \in A(z_0), f'(z_0) \neq 0$, то отображение f конформно в z_0 .

Утверждение 2.

Если f однолистна в D, $f \in A(D)$, $f'(z) \neq 0 \forall z \in D$, то f конформно отображает D.

Теорема (7.1).

Пусть $f \in A(D)$, f однолистна в D, D – область, тогда G = f(D) – область.

Замечание.

Требование $f'(z) \neq 0$ можно опустить.

Теорема (7.2).

Пусть D,G – области в (z),(w) соответственно с границами $\partial D,\partial G$ – замкнутыми контурами и $f\in A(D)\cap C(\overline{D})$. Если $f:\partial D\leftrightarrow \partial G$ взаимно-однозначна с сохранением ориентации, то f конформно отображает D на G

Теорема (7.3, Риман).

Пусть D – односвязная область в $\overline{\mathbb{C}}$, ∂D содержит больше одной точки. Тогда существует конформное отображение D на единичный круг (вообще говоря, не единственное).

2.2 Дробно-линейные функции

2.2.1 Определение, непрерывность

Определение. $w=L(z),\ L(z)=\dfrac{az+b}{cz+d},\ a,b,c,d\in\mathbb{C}$ — дробно-линейная функция. $\Delta=ad-bc\neq 0$

$$z \neq -\frac{d}{c} \Rightarrow \exists L^{-1} : z = \frac{dw - b}{-cw + a} \in \{L\}, \ \Delta^{-1} = \Delta \neq 0 \ (2)$$

 $L\colon \mathbb{C}\smallsetminus \left\{-rac{d}{c}
ight\} \leftrightarrow \mathbb{C}\smallsetminus \left\{rac{a}{c}
ight\}$ взаимно-однозначно и взаимно непрерывно.

$$\begin{cases} w\left(-\frac{d}{c}\right) = \infty \\ w(\infty) = \frac{a}{c} \end{cases} \Rightarrow L \colon \overline{\mathbb{C}} \leftrightarrow \overline{\mathbb{C}}$$

2.2.2 Конформность отображения

Теорема.

1.
$$w = L(z) \in A\left(\mathbb{C} \setminus \left\{-\frac{d}{c}\right\}\right)$$

2. $L: \overline{\mathbb{C}} \leftrightarrow \overline{\mathbb{C}}$ конформно

1.
$$w' = \frac{a(cz+d) - c(az+b)}{(cz+d)^2} = \frac{\Delta}{(cz+d)^2} \neq 0$$

2.
$$\exists w'(z) \neq 0, z \neq -\frac{d}{c} \\ w = L(z)$$
 — взаимно-однозначно
$$\Rightarrow \text{ отображение конформно в } \mathbb{C} \smallsetminus \left\{-\frac{d}{c}\right\}$$
 Рассмотрим $z_0 = -\frac{d}{c}$

Пусть гладкие кривые γ_1, γ_2 пересекаются в z_0 под углом ϕ .

$$L(z_0) = w_0 = \infty$$

$$L(\gamma_1) = \Gamma_1, L(\gamma_2) = \Gamma_2$$

 Γ_1, Γ_2 пересекаются в $w_0 = \infty$ под углом пересечения их образов C_1, C_2 в т. $\zeta_0 = 0$ при отображении $\zeta = \frac{1}{w}$.

$$\zeta=\dfrac{cz+d}{az+b}\in\{L\}$$
 даёт конформное отображение в $z_0=-\dfrac{d}{c}$, т.е. угол между C_1 и C_2 равен ϕ – углу между Γ_1 и Γ_2 .

Рассмотрение в ∞ сводится к аналогичному доказательству конформности $L^{-1}(w)$ в т. $w_0 = \frac{a}{2}$

2.2.3 Групповое свойство

Теорема (8.2).

{L} – алгебраическая группа относительно операций суперпозиции

Доказательство.

1.
$$\forall L \in \{L\} \Rightarrow L^{-1} \in \{L\}$$

2.
$$\forall L_1(\Delta_1), L_2(\Delta_2) \in \{L\} \Rightarrow L_2(L_1(z))(\Delta = \Delta_1 \Delta_2 \neq 0) \in \{L\}$$

Инвариантность двойного отношения

Теорема (8.3).

 $\forall (z_1, z_2, z_3), (w_1, w_2, w_3), \$ в каждой из которых нет совпадающих чисел, существует единственное дробно-линейное преобразование, что $w_k = L(z_k), \ k = 1, 2, 3, \ причём это <math>L$ можно получить из отношений

$$\frac{z-z_1}{z-z_2}:\frac{z_3-z_1}{z_3-z_2}=\frac{w-w_1}{w-w_2}:\frac{w_3-w_1}{w_3-w_2}\ (3)$$

Доказательство.

$$L_1(z) = \frac{z - z_1}{z} : \frac{z_3 - z_1}{z_3}$$

$$L_2(w) = \frac{w - w_1}{w - w_2} : \frac{w_3 - w_1}{w_2 - w_2}$$

$$L_1(z) = \frac{z-z_1}{z-z_2} : \frac{z_3-z_1}{z_3-z_2}$$

$$L_2(w) = \frac{w-w_1}{w-w_2} : \frac{w_3-w_1}{w_3-w_2}$$

$$(3) \Leftrightarrow L_1(z) = L_2(w) \Leftrightarrow w = L_2^{-1}(L_1(z)) \text{ по т. 8.2}$$

$$w = L(z), L \in \{L\}$$

Единственность: Пусть существует $F: F(z_k) = w_k, \ k = 1, 2, 3$

 L^{-1} – дробно-линейная

$$\frac{az_k + b}{cz_k + d} = z_k$$

 $cz_k^2 + (d-a)z_k - b = 0, \ k = 1, 2, 3 \ \Rightarrow$ квадратный многочлен с тремя корнями тождественно равен нулю, $\begin{cases} c = 0 \\ d = a, \text{ т.e.} \\ b = 0 \end{cases}$

$$L(z) = \frac{az+b}{cz+d} \equiv z \Leftrightarrow F = L$$

Замечание.

В (3) – равенство т.н. двойных отношений, т.е. инвариантность относительно дробно-линейного преобразования.

2.2.5 Круговое свойство

Теорема (8.4).

Дробно-линейное преобразование переводит множество прямых либо окружностей в (возможно, другое) множество прямых либо окружностей.

Доказательство.

- 1. Для линейного отображения w = l(z) очевидно.
- 2. Рассмотрим преобразование $w=\Lambda(z)\equiv \frac{1}{z}.$

Ранее было доказано, что уравнение

(4)
$$Az\overline{z} + \overline{B}z + B\overline{z} + D = 0 \ (B\overline{B} - AD > 0)$$

это уравнение окружности $(A \neq 0)$ или прямой (A = 0).

$$w = \frac{1}{z} \Leftrightarrow z = \frac{1}{w} \Leftrightarrow \overline{z} = \frac{1}{\overline{w}} \Rightarrow (4)$$

$$Dw\overline{w} + Bw + \overline{B}\overline{w} + A = 0 (5)$$

$$B\overline{B} - AD > 0$$

т.е. (5) описывает множество прямых либо окружностей.

3.
$$L(z) = \frac{az+b}{cz+d} = \frac{az+\frac{b}{a}+\frac{d}{c}-\frac{d}{c}}{z+\frac{d}{c}} = \frac{a}{c}\left(1+\frac{\frac{b}{a}-\frac{d}{c}}{z+\frac{d}{c}}\right) = \frac{a}{c}\left(1+\frac{bc-ad}{a(cz+d)}\right) \ (a \neq 0, \ c \neq 0)$$

$$w_1 = l_1 = cz+d$$

$$\begin{cases}
 w_1 = l_1 = cz + d \\
 \Lambda = \frac{1}{w_1} (= w_2) \\
 w = l_2(w_2)
 \end{cases}
 \Rightarrow L = l_2 \Lambda l_1(z)$$

2.2.6 Сохранение симметрии

Определение. z_1, z_2 – симметричное отношение прямой l, если l – срединный перпендикуляр κ отрезку c концами g_1, g_2

Определение. z_1, z_2 симметричны (сопряжены) относительно окружности γ , если

1. z_1, z_2 лежат на одном луче, исходящем из центра z_0 окружности γ

2.
$$|z_1 - z_0||z_2 - z_0| = R^2$$

Обозначение: $z_1 = z_2^*$

Утверждение 1 (свойства симметрии).

Пусть z_1, z_2 симметричны относительно прямой либо окружности.

- a) $(z^*)^* = z$
- б) $z=z^*\Leftrightarrow z\in l/\gamma,$ иначе они расположены по разные стороны l/γ
- в) γ : Если $z \to z_0$, то $z^* \to \infty$, т.е. z_0 и ∞ симметричны (сопряжены) относительно окружности любого радиуса.

Лемма.

 z_1, z_2 симметричны относительно прямой либо окружности тогда и только тогда, когда любая обобщённая окружность (т.е. окружность либо прямая), проходящая через z_1, z_2 , ортогональна к $l(\gamma)$

Доказательство.

- 1. В случае прямой доказательство очевидно.
- 2. Рассмотрим произвольную окружность, проходящую через две эти точки. Проведём из z_0 касательную к этой окружности, M точка касания. Из элементарной геометрии следует, что $OM^2 = |z-z_0||z^*-z_0| = R^2 \Rightarrow OM = R \Rightarrow \gamma \perp k$
 - ... доказательство геометрическое, см. учебник

Теорема (8.5).

Пусть z, z^* симметричны относительно обобщённой окружности γ $\Gamma = L(\gamma), w = L(z), w_1 = L(z^*) \Rightarrow w_1 = w^*$ (относительно Γ)

Доказательство.

$$\gamma, z, z^*$$

 $L \colon \Gamma, w, w_1$

Рассмотрим в плоскости (w) произвольную окружность $K \ni w, w_1$.

Пусть $k = L^{-1}(K)$, тогда по лемме k – прямая/окружность

 $z,z^*\in k \;\Rightarrow\; \gamma\perp k.$ Тогда, в силу конформности $L,\,\Gamma\perp K \;\Rightarrow\; w_1=w^*$

2.3 Степенная функция и обратная к ней

2.3.1 Степенная функция

Определение. Степенная функция: $w=z^n, n\in\mathbb{N}, n>1$ (1)

Утверждение 1.

Степенная функция:

- 1. Непрерывна в $\overline{\mathbb{C}}$
- 2. Аналитична в $\overline{\mathbb{C}}$
- 3. Конформна в любой точке $z \in \mathbb{C}, z \neq 0$
- 4. Конформно отображает $\{\alpha < \arg z < \beta\}$ $(0 < \beta \alpha < \frac{2\pi}{n})$, в частности, $D_k = \left\{\frac{2(k-1)\pi}{n} < \arg z < \frac{2\pi k}{n}\right\} \to G = \mathbb{C} \setminus \mathbb{R}^+$

Доказательство.

- 1. $w(\infty) = \infty$ доопределим до непрерывности. В т. $z \neq \infty$ непрерывность очевидна
- 2. $\forall z \in \mathbb{C} \ \exists w' = nz^{n-1}$ непрерывна в $\mathbb{C} \ \Rightarrow \ w \in A(\mathbb{C})$
- 3. $w' = 0 \Leftrightarrow z = 0$

 $\forall z \neq 0 \ w' \neq 0 \Rightarrow$ конформна в т. z

4. конф. в обл.

Область однолистна

$$z_1 \neq z_2 \Rightarrow w_1 \neq w_2$$

$$z_1^n = z_2^n \Leftrightarrow |z_1|^n e^{i(\arg z_1)n} = |z_2|^n e^{i(\arg z_2)n} \Leftrightarrow \begin{cases} |z_1| = |z_2| \\ \arg z_1 - \arg z_2 = \frac{2\pi k}{n} \end{cases} \Rightarrow \{\alpha < \arg z < \beta\}, \beta - \alpha \leq \frac{2\pi}{n} - \text{множество}\}$$

однолистности

$$\begin{cases} z = |z|e^{i\arg z} \\ w = z^n = |w|e^{i\arg w} = |z|^n e^{i(\arg z)n} \end{cases} \Rightarrow \begin{cases} |w| = |z|^n \\ \arg w = n\arg z \end{cases}$$

2.3.2 Функция $w = \sqrt[n]{z}$

Определение. $w = \sqrt[n]{z} \Leftrightarrow z = w^n, n \in \mathbb{N}, n > 1$

Определение. Однозначная аналитическая в D функция f(z) – регулярная однозначная ветвь многозначной функции F(z) в D, если $\forall z \in D$ значение f(z) совпадает c одним из значений F(z).

Утверждение 2

Функция $w=\sqrt[n]{z} \ \forall z\in \overline{\mathbb{C}}, z\neq 0; \infty$ имеет n значений. В области $G=\mathbb{C}\setminus\mathbb{R}^+$ допускает выделение n однозначных регулярных ветвей w_k , причём $w_k\in A(G)$

$$w_k' = \frac{1}{n(\sqrt[n]{z})_k^{n-1}}, w_k$$
 конформно отображает G на $D_k = \left\{ \frac{2\pi(k-1)}{n} < \arg w < \frac{2\pi}{n} k \right\}$

Доказательство.

$$w(0) = 0, w(\infty) = \infty$$

$$i \arg z + 2\pi k$$

$$w = \sqrt[n]{z} = \sqrt[n]{|z|}e^{-n}$$

Фиксируем k. Выделяем однозначную ветвь $w_k = (\sqrt[n]{z})_k$

По теореме о производной обратной функции

$$w_k' = \frac{1}{nw^{n-1}} = \frac{1}{n\left(\sqrt[n]{z}\right)_k^{n-1}} \neq 0 \ (4) \ \ \forall z \in \mathbb{C} \smallsetminus \mathbb{R}^+ \ \text{непрерывна в } G.$$

Из (4) следует конформность отображения $w_k(z)$ $\forall z \in G$. Т.к. отображение взаимно-однозначно, то w_k конформно в области G.

2.4 Показательная функция и обратная к ней

2.4.1 Показательная функция

Определение. $e^z = e^x(\cos y + i\sin y)$

Утверждение.

- 1. $e^z \in A(\mathbb{C})$
- 2. Осуществляет конформное отображение $\forall z \in \mathbb{C}$
- 3. Конформно отображает $\{y < \operatorname{Im} z < y + 2\pi\}$. В частности, $D_k = \{2\pi < \operatorname{Im} z < 2\pi(k+1) \text{ отображается конформно на } G = \mathbb{C} \setminus \mathbb{R}^+$

Доказательство.

1.
$$(e^z)' = e^z \neq 0 \quad \forall z \in \mathbb{C}$$

2.4.2 Логарифмическая функция

Определение. $w = \operatorname{Ln} z \Leftrightarrow z = e^W$

$$\operatorname{Ln} z = \ln|z| + i\operatorname{Arg} z = \ln|z| + i(\operatorname{arg} z + 2\pi k), k \in \mathbb{Z}$$
 (2)

Утверждение 2.

Логарифмическая функция, определённая (2), $\forall z \neq 0$ является бесконечнозначной.

На множестве $G = \mathbb{C} \setminus \mathbb{R}^+$ допускает выделение регулярных однозначных ветвей.

$$w_k = (\operatorname{Ln} z)_k, w_k \in A(G)$$
, конформно отображает $G \to D_k$

$$w_k' = \frac{1}{z} \ \forall z \in \mathbb{C}, z \neq 0$$

Глава 3

Интегрирование функций комплексных переменных

3.1 Определение и свойства интегралов функций комплексных переменных

3.1.1 Изначальное определение

Пусть γ – кусочно-гладкая простая кривая без особых точек.

$$\gamma: \begin{cases} z = z(t) \\ t \in [\alpha, \beta] \end{cases} (1)$$
 $A = z(\alpha), \ B = z(\beta)$
 $f(z)$ - однозначная ФКП $z \in \gamma$
 $T: z_0 = A, z_1, \dots, z_n = B$
 $z_k \in \gamma$
 $\gamma = \bigcup_{k=1}^{n} \gamma_k$
 $\Delta z_k = z_k - z_{k-1}$
 $|\Delta z_k| = |z_k - z_{k-1}| = s_k$
 $\lambda(T) = \max_k s_k$
 $\zeta_k \in \gamma_k$
 $\{\zeta_k\}$
Интегральные суммы:
 $S(f,T) = \sum_{k=1}^{n} f(\zeta_k) \Delta z_k \ (2)$

$$S(f,T) = \sum_{k=1}^{n} f(\zeta_k) \Delta z_k$$
 (2)

$$S_1(f,T) = \sum_{k=1}^{n} f(\zeta_k) |\Delta z_k|$$
 (3)

$$\lim_{\lambda(T) \to 0} S(f,T) = \int_{\gamma} f(z) dz$$
 (4)

$$\lim_{\lambda(T) \to 0} S_1(f,T) = \int_{\gamma} f(z) |dz| = \int_{\gamma} f(z) ds$$
 (5)

Если существуют конечные пределы (4), (5), не зависящие от способа разбиения и выбора $\{\zeta_k\}$ – это интеграл и интеграл первого рода f(z) по γ .

Теорема (11.1).

Пусть γ — гладкая кривая, f=u+iv — непрерывная на γ функция. Тогда существуют интегралы (4), (5), причём справедливы равенства:

Suparecentaria parentential:
$$\int_{\gamma} f(z)dz = \int_{\gamma} (udx - vdy) + i \int_{\gamma} (vdx + udy) (6)$$

$$\int_{\gamma} f(z)dz = \int_{\alpha}^{\beta} f(z(t))z'(t)dt (7)$$

$$\int_{\gamma} f(z)|dz| = \int_{\gamma} uds + i \int_{\gamma} vds (8)$$

$$\int_{\gamma} f(z)|dz| = \int_{\alpha} f(z(t))|z'(t)|dt (9)$$

Доказательство.

(6):
$$S(f,T) = \sum_{k=1}^{n} f(\zeta_k) \Delta z_k = \sum_{k=1}^{n} (u_k + iv_k) (\Delta x_k + i\Delta y_k) = \sum_{k=1}^{n} (u_k \Delta x_k - v_k \Delta y_k) + i \sum_{k=1}^{n} (v_k \Delta x_k + u_k \Delta y_k)$$

$$|\Delta z_k| \to 0 \Leftrightarrow \begin{cases} \Delta x_k \to 0 \\ \Delta y_k \to 0 \end{cases} \Rightarrow \lim_{\lambda(T) \to 0} S(f,T) = \int_{\gamma} (udx - vdy) + i \int_{\gamma} (vdx + udy)$$
 (7): используя параметризацию (1), получаем:

$$(7) = \int_{\alpha}^{\beta} (u(x(t), y(t))x'(t) - v(x(t), y(t))y'(t))dt + i\int_{\alpha}^{\beta} (u(x(t), y(t))y'(t) + v(x(t), y(t))x'(t))dt = \int_{\alpha}^{\beta} (u+iv)(x'+iy') = \int_{\alpha}^{\beta} f(z(t))z'(t)dt$$

$$(8): S_{1}(f,T) = \sum_{k=1}^{n} f(\zeta_{k})|\Delta z_{k}| = \sum_{k=1}^{n} (u_{k} + iv_{k})s_{k} = \sum_{k=1}^{n} u_{k}s_{k} + i\sum_{k=1}^{n} v_{k}s_{k}$$

П

(8):
$$S_1(f,T) = \sum_{k=1}^n f(\zeta_k)|\Delta z_k| = \sum_{k=1}^n (u_k + iv_k)s_k = \sum_{k=1}^n u_k s_k + i\sum_{k=1}^n v_k s_k$$

(9):
$$|z_k| = s_k = \sqrt{\Delta x_k^2 + \Delta y_k^2}$$

(9):
$$|z_k| = s_k = \sqrt{\Delta x_k^2 + \Delta y_k^2}$$

 $ds = \sqrt{dx^2 + dy^2} = \sqrt{(x'(t))^2 + (y'(t))^2} dt = |z'(t)| dt$

При
$$\lambda(T) \to 0$$
 получаем требуемое равенство.

Теорема (11.2).

a)
$$\int_{\gamma(A \to B)} f(z)dz = -\int_{\gamma^{-1}(B \to A)} f(z)dz$$

 $\int \! f(z) |dz|$ не зависит от направления интегрирования

- б) Если γ_1,γ_2 составляют γ без наложения, то $\int\limits_{\gamma} f(z)dz = \int\limits_{\gamma_1} f(z)dz + \int\limits_{\gamma_2} f(z)dz$, причём интегралы в левой и правой частях существуют одновременно.
- в) $\forall a,b \in \mathbb{C}, \ f,g$ интегрируемы по $\gamma \ \Rightarrow \ \int\limits_{\gamma} (af(z)+bg(z))dz = a\int\limits_{\gamma} f(z)dz + b\int\limits_{\gamma} g(z)dz$

$$z$$
) $f(z)$ интегрируема на $\gamma \;\Rightarrow\; |f(z)|$ интегрируема на $\gamma \;u\; \left|\int\limits_{\gamma}f(z)dz\right| \leq \int\limits_{\gamma}|f(z)||dz|$ (10)

Доказательство.

- а) Следует из теории вещественных криволинейных интегралов
- б) Следует из теории вещественных криволинейных интегралов
- в) Следует из теории вещественных криволинейных интегралов
- г) $f \in C(\gamma) \Rightarrow |f| \in C(\gamma)$, т.е. |f(z)| интегрируема на γ . (10) следует из неравенства: $|S(f,T)| = |\sum_{k=1}^{n} f(\zeta_k) \Delta z_k| \le |f(\zeta_k)| |\Delta z_k| = S_1(|f|,T)$ и предельного перехода.

Следствие 1.

$$|f(z)| \leq M \ \forall z \in \gamma$$
, длина $\gamma = L \ \Rightarrow \ |\int\limits_{\gamma} f(z) dz| \leq ML$

Доказательство.
$$\left|\int\limits_{\gamma}f(z)dz\right|\leq\int\limits_{\gamma}|f(z)||dz|\leq M\int\limits_{\gamma}ds=ML$$

Следствие 2.

Интеграл и интеграл первого рода от f(z) по γ существует и имеет те же свойства, если γ – кусочно-гладкая кривая и f(z) – кусочно-непрерывная

Замечание.

Формула среднего значения для интеграла ФКП, вообще говоря, не верна.

Контрпример:
$$\gamma \colon [0,2\pi] \subset \mathbb{R}, \ f(z) = e^{iz}$$

$$\iint_{\gamma} f(z)dz = \int_{0}^{2\pi} e^{ix}dx = \int_{0}^{2\pi} \cos x dx + i \int_{0}^{2\pi} \sin x dx = 0$$

Предположим, что $\exists \zeta \colon \int e^{iz} = e^{i\zeta} \int dz \neq 0$ – противоречие.

3.2 Интегральная теорема Коши

Случай односвязной области

Теорема. Пусть $f\in A(D),\ \gamma$ – замкнутый контур в D. Тогда $\oint f(z)dz=0$ (1)

Доказательство. Из теоремы 11.1: $\oint_{\gamma} f(z)dz = \oint_{\gamma} udx - vdy + i\oint_{\gamma} vfx + udy = I_1 + I_2$

 $G = \operatorname{int} \gamma$

$$f \in A(D) \Rightarrow \exists f'(z) \in C(D)$$

Используем формулу Грина:

$$I_1 = \oint_{\gamma} u dx - v dy = \iint_{\overline{G}} (-\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y}) dx dy = 0 \text{ (по усл. K/P)}$$

$$I_2 = \oint_{\gamma} v dx + u dy = \iint_{\overline{G}} \left(\frac{\partial u}{\partial x} - \frac{\partial v}{\partial y}\right) dx dy = 0 \text{ (по усл. K/P)}$$

Следствия.

1.
$$f \in A(D) \Rightarrow \oint_{\partial D} f(z)dz = 0$$

2.
$$f \in A(D) \Rightarrow \forall z_1, z_2 \in D \int_{z_1}^{z_2} f(z) dz$$
 не зависит от пути интегрирования (лежащего в D)

3.2.2Случай неодносвязной области

Теорема. Пусть D – n-связная область c границей $\partial G = \Gamma \cup \gamma_1 \cup \ldots \cup \gamma_{n-1}$, ориентированной положительно относительно $D, u f \in A(\overline{D}).$

Тогда
$$\oint_{\partial D} f(z)dz = 0$$
, т.е. $\oint_{\Gamma} f(z)dz + \sum_{k=1}^{n-1} \oint_{\gamma_k} f(z)dz = 0$

Доказательство. Проведём доказательство для двусвязной области, далее – по индукции.

 $A \in \Gamma$, $B \in \gamma_1$

Сделаем разрез по AB, тогда область односвязна. По теореме 12.1

$$\oint_{\Gamma} f(z)dz + \oint_{AB} f(z)dz + \oint_{\gamma_1} f(z)dz + \oint_{BA} f(z)dz = 0, \text{ Ho } \oint_{AB} f(z)dz = -\oint_{BA} f(z)dz \Rightarrow \int_{\partial D} f(z)dz = 0$$

$$\oint_{\Gamma} f(z)dz = \sum_{k=1}^{n-1} \oint_{\Gamma} f(z)dz, (4)$$

Следствие. В условиях т. 12.2 $\oint_{\Gamma} f(z)dz = \sum_{k=1}^{n-1} \oint_{k} f(z)dz, \ (4)$ где во всех интегралах интегрирование в одном и том же направлении.

3.3 Интегральная формула Коши

3.3.1 И.Ф.К.

Теорема. Пусть $f \in A(D), \ \gamma$ – замкнутый контур. Тогда $\ \forall z_0 \in \operatorname{int} \gamma \subset D$:

$$f(z_0) = \frac{1}{2\pi i} \oint_{\gamma} \frac{f(z)}{z - z_0} dz$$

Доказательство. Так как z_0 внутри D, то существует $\gamma_\rho\colon |z-z_0|=\rho,\ \gamma_\rho\subset \mathrm{int}\,\gamma,$ тогда

$$\oint_{\gamma} \frac{f(z)}{z - z_0} dz = \oint_{\gamma_{\rho}} \frac{f(z)}{z - z_0}$$

$$\oint_{\gamma_{\rho}} \frac{dz}{z - z_0} = 2\pi i$$

$$\oint_{\gamma_{\rho}} \frac{f(z)}{z - z_0} dz - 2\pi i f(z_0) = \oint_{\gamma_{\rho}} \frac{f(z)}{z - z_0} - \oint_{\gamma_{\rho}} \frac{z_0}{z - z_0} dz = \oint_{\gamma_{\rho}} \frac{f(z) - f(z_0)}{z - z_0} dz = \oint_{\gamma_{\rho}} \frac{f(z)}{z - z_0} dz = f(z) =$$

$$= \{ z \in \gamma_{\rho} \Leftrightarrow z = z_0 + \rho e^{i\phi} \} = \int_{0}^{2\pi} \frac{f(z_0 + \rho e^{i\phi}) - f(z_0)}{\rho e^{i\phi}} i\rho e^{i\phi} d\phi = i \int_{0}^{2\pi} (f(z) - f(z_0)) d\phi$$

$$\left|\oint\limits_{\gamma_{\rho}}\frac{f(z)}{z-z_{0}}dz-2\pi if(z_{0})\right|=\left|i\int\limits_{0}^{2\pi}(f(z)-f(z_{0}))d\phi\right|\leq\int\limits_{0}^{2\pi}\left|f(z)-f(z_{0})\right|d\phi<\int\limits_{0}^{2\pi}\frac{\varepsilon}{2\pi}d\phi=\frac{\varepsilon}{2\pi}2\pi=\varepsilon$$

Т.о. доказано, что существует
$$\lim_{\rho \to 0} \oint_{\gamma_{\rho}} \frac{f(z)}{z-z_0} dz = 2\pi i f(z_0)$$
 – не зависит от ρ

Следствие 1 (формула среднего значения).

Пусть $\gamma_R = \{z \colon |z - z_0| = R\}, \ \overline{\operatorname{int} \gamma_R} \subset D, \ f \in A(D).$ Тогда

$$f(z_0) = \frac{1}{2\pi} \int_{0}^{2\pi} f(z_0 + Re^{i\phi}) d\phi$$

$$f(z_0) = \frac{1}{2\pi R} \oint_{\gamma_R} f(z) ds$$

Доказательство. По (1)
$$f(z_0) = \frac{1}{2\pi i}\oint_{\gamma_R} \frac{f(z)}{z-z_0}dz = \{z=z_0+Re^{i\phi}\} = \frac{1}{2\pi i}\int_0^{2\pi} \frac{f(z_0+Re^{i\phi})}{Re^{i\phi}}iRe^{i\phi}d\phi = \frac{1}{2\pi}\int_0^{2\pi} f(z_0+Re^{i\phi})d\phi$$

Следствие 2.

$$\oint_{\gamma} \frac{f(z)}{z - z_0} dz = \begin{cases} 2\pi i f(z_0), \ z_0 \in \operatorname{int} \gamma \\ 0, z_0 \in \operatorname{ext} \gamma \end{cases}$$

Принцип тах модуля аналитической функции

Теорема. Пусть $f \in A(D)$, $f \not\equiv const.$ Тогда $\max_{z \in D} |f(z)|$ не может достигаться во внутренней точке D.

Доказательство. Пусть $\exists z_0 \in D \colon \max_{z \in D} |f(z)| = |f(z_0)| = M \Rightarrow \exists K_0 = \{|z - z_0| \le R\} \subset D$

$$\Pio (3) M = |f(z_0)| = \frac{1}{2\pi} \left| \int_0^{2\pi} f(z_0 + Re^{i\phi}) d\phi \right| \leq \frac{1}{2\pi} \int_0^{2\pi} |f(z_0 + Re^{i\phi}) d\phi \leq \frac{1}{2\pi} M 2\pi = M \Leftrightarrow \int_0^{2\pi} |f(z)| d\phi = 2\pi M \Leftrightarrow \int_0^{2\pi} (M - |f(z)|) d\phi = 0$$

 $g(\phi) = M - |f(z_0 + Re^{i\phi})| \ge 0$ – действительная непрерывная функция параметра ϕ на $[0, 2\pi]$

Покажем теперь, что $|f(z)| \equiv M \quad \forall z \in D$

Для любой $z^* \in D$ существует непрерывная кривая $l \subset D$, соединяющая $z_0 \in z^*$.

Рассмотрим т. $z_1 = \gamma_R \cap l \in D$

$$\exists K_{R_1} = \{|z - z_1| \le R_1\} \subset D$$

$$\exists K_{R_1} = \{ |z - z_1| \le R_1 \} \subset D |f(z_1)| = M \Rightarrow |f(z)| = M \ \forall z \in K_{R_1}$$

$$z_2 = \gamma_{R_1} \cap l, \quad \exists K_{R_2} \dots$$

 $z_2 = \gamma_{R_1} \cap l, \;\; \exists K_{R_2} \dots$ За конечное число шагов получаем $K_{R_n} = \{|z-z_n| \leq R_n\} \subset D \ |f(z_n)| = M, \; z^* \in K_{R_n} \; \Rightarrow \; |f(z^*)| = M$

$$|f(z_n)| = M, \ z^* \in K_{R_n} \ \Rightarrow \ |f(z^*)| = M$$

Если $\rho(l,\partial D)=\delta$, то можно взять все $R_k>\frac{\delta}{2}>0$

Теперь докажем, что $f(z) \equiv const$ в D. $|f(z)|^2 = u^2 + v^2 = M^2$

$$|f(z)|^2 = u^2 + v^2 = M^2$$

$$\int 2uu_x' + 2vv_x' = 0$$

$$\int 2uu'_{n} + 2vv'_{n} = 0$$

$$v'_{r} = -u'_{u}, \ v'_{u} = u'_{u}$$

$$\begin{cases} 2uu'_x + 2vv'_x = 0 \\ 2uu'_y + 2vv'_y = 0 \\ v'_x = -u'_y, \ v'_y = u'_x \end{cases}$$

$$\begin{cases} uu'_x - vu'_y = 0 \\ uu'_x + vu'_y = 0 \end{cases}$$
 - линейна относительно (u'_x, u'_y) .

$$\dot{\Delta} = u^2 + v^2 = M^2$$

$$M = 0 \Leftrightarrow |f(z)| \equiv 0 \Leftrightarrow f(z) \equiv 0$$

$$M>0 \Rightarrow \begin{cases} u_x'=0 \\ u_y'=0 \end{cases} \Rightarrow u=const \Rightarrow ($$
из условий K-P) $v=const \Rightarrow f=const$

Пусть D ограничено, ∂D – граница, $f \in A(D) \cap C(\overline{D})$. Тогда $\max_{\overline{D}} |f(z)| = \max_{\partial D} |f(z)|$

Доказательство. f непрерывна в \overline{D} , следовательно, |f| непрерывен в \overline{D} . D – ограниченная замкнутая область, следовательно, f достигает своё максимальное значение. Но это значение не может достигаться внутри области, следовательно, оно достигается на границе. П

Следствие 2.

Пусть D ограничено, $f_1, f_2 \in A(D) \cap C(\overline{D})$. Если $f_1(z) = f_2(z) \ \forall z \in \partial D$, то $f_1(z) \equiv f_2(z) \ \forall z \in D$

Доказательство. $f(z) = f_1(z) - f_2(z)$ и применяем следствие 1.

Следствие 3. Пусть $f \in A(D), f \neq const, f \neq 0 \ \forall z \in D$. Тогда $\min_{D} |f(z)|$ не может достигаться во внутренней точке D

Доказательство.
$$\frac{1}{f(z)} \in A(D); \ \max \left| \frac{1}{f(z)} \right| = \frac{1}{\min |f(z)|}$$

3.4 Интеграл типа Коши. Бесконечная дифференцируемость аналитической функции.

3.4.1 Интеграл типа Коши

Определение. $g(z)=rac{1}{2\pi i}\int\limits_{\gamma}rac{f(\zeta)}{\zeta-z}d\zeta,\ \gamma$ — кусочно-гладкая кривая, $f\in C(\gamma)$

Теорема. Пусть γ – кусочно-гладкая кривая, $f \in C(\gamma)$. Тогда

$$a) \ g(z) \in A(\mathbb{C} \setminus \gamma)$$

6)
$$\forall n \in N \ \exists g^{(n)}(z) = \frac{n!}{2\pi i} \int_{\gamma} \frac{f(\zeta)}{(\zeta - z)^{n+1}} d\zeta$$

Доказательство.

- а) следует из б) (n=1,2) (\Rightarrow непрерывна f'(z) $\forall z \in \mathbb{C} \smallsetminus \gamma$)
- 6) индукция по n

$$n=1$$
 Докажем, что $g'=rac{1}{2\pi i}\int\limits_{\gamma}rac{f(\zeta)}{(\zeta-z)^2}d\zeta$

$$\forall z \notin \gamma \ \exists U(z), \ \rho(\overline{U(z)}, \gamma) = d > 0$$

Возьмём $z + \Delta z \in U(z)$

$$\frac{1}{\Delta z}(g(z+\Delta z)-g(z))-\frac{1}{2\pi i}\int\limits_{\gamma}\frac{f(\zeta)}{(\zeta-z)^2}d\zeta=$$

(ИФК:
$$f(z_0) = \frac{1}{2\pi i} \oint_{\gamma} \frac{f(z)}{z - z_0} dz$$
)

$$=\frac{1}{2\pi i\Delta z}\int_{\gamma}\left(\frac{f(\zeta)}{\zeta-z-\Delta z}-\frac{f(\zeta)}{\zeta-z}\right)d\zeta-\frac{1}{2\pi i}\int_{\gamma}\frac{f(\zeta)}{(\zeta-z)^{2}}d\zeta=\frac{1}{2\pi i}\int_{\gamma}f(\zeta)\left(\underbrace{\frac{1}{\Delta z}\left(\frac{1}{\zeta-z-\Delta z}-\frac{1}{\zeta-z}\right)-\frac{1}{(\zeta-z)^{2}}}_{=B_{1}}\right)d\zeta$$

$$B_1 = \frac{1}{\Delta z(\zeta-z)} \left(\frac{1}{1-\frac{\Delta z}{\zeta-z}}-1\right) - \frac{1}{\zeta-z} \mathop{=}_{\Delta z \to 0} \frac{1}{\Delta z(\zeta-z)} \left(1+\frac{\Delta z}{\zeta-z}+O\left(\left(\frac{\Delta z}{\zeta-z}\right)^2\right)-1\right) - \frac{1}{(\zeta-z)^2} = O\left(\frac{\Delta z}{(\zeta-1)^3}\right)$$

{списать у Тани}

Переход $(n-1) \rightarrow n$

{тоже списать у Тани}

3.4.2

Теорема. $f \in A(D) \Rightarrow \forall z \in D \ \forall n \in \mathbb{N} \ \exists f^{(n)}(z) = \frac{n!}{2\pi i} \oint_{\gamma} \frac{f(\zeta)}{(\zeta-z)^{n+1}} d\zeta$, где γ – произвольный замкнутый контур.

Доказательство. $\forall z \in D, \ \forall \Gamma \ \Rightarrow \$ инт. Коши $f(z) = \frac{1}{2\pi i} \oint_{\gamma} \frac{f(\zeta)}{\zeta - z} d\zeta$

инт. Коши \Rightarrow интеграл типа Коши \Rightarrow 13.1

Следствие 1 (оценка Коши для производных)

$$K_R = \{ \zeta \colon |\zeta - z| \le R \}, \ \gamma_R = \{ \zeta \colon |\zeta - z| = R \}$$

 $f \in A(\overline{K_R}), \max_{\zeta \in \gamma_R} |f(\zeta)| = M_R$

Тогда $|f^{(n)}(z)| \leq \frac{n!M_R}{R^n}$

Доказательство. По (5)
$$|f^{(n)}(z)| = |\frac{n!}{2\pi i} \int_{\gamma_R} \frac{f(\zeta)}{(\zeta - z)^{n+1}} d\zeta| \le \frac{n!}{2\pi} \int_{\gamma_R} \frac{|f(\zeta)|}{|\zeta - z|^{n+1}} d\zeta \le \frac{n! M_r}{2\pi} \frac{1}{R^{n+1}} \int_{\gamma_R} d\zeta = \frac{M_R n!}{R^{n+1}}$$

3.4.3 Теорема Лиувилля и её следствия

Определение. Однозначная функция f(z) называется целой, если $f \in A(\mathbb{C})$

Теорема (Лиувилль). Если $f \in A(\mathbb{C}), |f(z)| \leq M \ \forall z \in \mathbb{C}, mo \ f = const$

Доказательство. $\forall z \in \mathbb{C}$, рассмотрим γ_R с центром в точке z. По (6) $|f'(z)| \leq \frac{M}{R} \underset{R \to \infty}{\to} 0 \Rightarrow |f'(z)| = 0 \Leftrightarrow f'(z) = 0$ $f'(z) = u'_x + iv'_x = 0 \Leftrightarrow \begin{cases} u'_x = 0 \\ v'_x = 0 \end{cases} \Rightarrow \begin{cases} v'_y = 0 \\ u'_y = 0 \end{cases}$

Следствие (основная теорема высшей алгебры).

Многочлен $P_n(z) = a_0 z^n + \ldots + a_n, \ a_k \in \mathbb{C}$ имеет хотя бы один корень в \mathbb{C} .

Доказательство. От противного. Пусть $P_n(z)\neq 0 \ \forall z\in\mathbb{C}$. Рассмотрим $f(z)=\frac{1}{P_n(z)}$. $f\in A(\mathbb{C}),\ f(z)$ ограничена в C. Из того, что $|P_n(z)|\underset{z\to\infty}{\to}\infty,$ следует $|f(z)|\underset{z\to\infty}{\to}0$ $|f|\leq M,$ тогда по т. Лиувилля f=const – противоречие.

3.5 Первообразная и неопределённые интегралы. Теорема Морера

3.5.1

Доказательство. Из условия (1) следует, что (2) не зависит от пути интегрирования, соединяющего z_0 и z, т.е. F(z) – однозначная функция z. Зафиксируем z_0 , для любого $z \in D$, возьмём $z + \Delta z \in U(z)$, причём z и $z + \Delta z$ соединяет отрезок.

$$\frac{1}{\Delta z}(F(z+\Delta z)-F(z))-f(z)=\frac{1}{\Delta z}\left(\int\limits_{z_0}^{z+\Delta z}f(\zeta)d\zeta-\int\limits_{z_0}^zf(\zeta)d\zeta\right)-f(z)=\left(\int\limits_{z}^{z+\Delta z}d\zeta=\Delta z\right)=0$$

Глава 4

Ряды аналитических функций

4.1 Равномерно сходящиеся функциональные ряды

4.1.1 Основные определения

Определение. $\Phi P - \sum\limits_{n=1}^{\infty} f_n(z)$ (1), $f_n(z)$ – однозначные функции.

Определение. $\Phi P (1)$ сходится в точке $z_0 \Leftrightarrow$ сходится числовой ряд $\sum_{n=1}^{\infty} f_n(z_0)$

Определение. Множество точек, где сходится (1) – множество сходимости ΦP – E

 $\forall z_0 \in E \ \exists \text{ cymma (2)}.$

На E определена однозначная функция f(z)

Определение.
$$\Phi P \ (1) \underset{E_0}{\Longrightarrow} f(z) \Leftrightarrow \ \forall \varepsilon > 0 \ \exists N \ \forall n > N \ \forall z \in E_0 \ \left| \sum_{k=1}^n \{f_k(z) - f(z)\} \right| < \varepsilon$$

4.1.2 Непрерывность и интегрируемость суммы ряда

Утверждение

Пусть
$$\sum_{n=1}^{\infty} f_n(z) \underset{E_0}{\Longrightarrow} f(z), |g(z)| \leq M \quad \forall z \in E_0.$$
 Тогда $\sum_{n=1}^{\infty} f_n(z)g(z) \underset{E_0}{\Longrightarrow} f(z)g(z)$

Доказательство.
$$|\sum_{n=1}^{\infty} f_n(z)g(z) - f(z)g(z)| = |\sum_{n=1}^{\infty} f_n(z) - f(z)||g(z)| < \varepsilon$$

Теорема (16.1). Пусть $f_n \in C(E_0)$, $\Phi P \underset{E_0}{\Longrightarrow} f(z)$. Тогда $f(z) \in C(E_0)$.

Доказательство. Аналогично вещественному случаю.

Теорема (16.2). Пусть
$$\gamma \subset D$$
 – кусочно-гладкая, $f_n(z) \in C(\gamma)$, $\Phi P \underset{\gamma}{\Longrightarrow} f(z)$. Тогда $\int\limits_{\gamma} \left(\sum\limits_{n=1}^{\infty} f_n(z)\right) dz = \sum\limits_{n=1}^{\infty} \int\limits_{\gamma} f_n(z) dz$

Доказательство. По т. 16.1 $f(z) \in C(\gamma)$, т.е. все интегралы существуют.

$$\left| \sum_{k=1}^{n} \int_{\gamma} f_{k}(z) dz - \int_{\gamma} f(z) dz \right| = \left| \int_{\gamma} \left(\sum_{k=1}^{n} f_{k}(z) - f(z) \right) \right| \leq \int_{\gamma} \left| \sum_{k=1}^{n} f_{k}(z) - f(z) \right| dz \leq \frac{\varepsilon}{L} \int_{\gamma} dz = \varepsilon$$

Определение. ΦP сходится равномерно внутри области D, если он равномерно сходится на любом компакте из D

Замечание.

В т. 16.1 при $E_0 = D$ (область) условие равномерной сходимости на D можно заменить на условие равномерной сходимости внутри D.

4.2 Теоремы Вейерштрасса

Теорема (Первая теорема Вейерштрасса). Пусть $\forall n \ f_n \in A(D), \ \sum_{n=1}^{\infty} f_n(z) \underset{D}{\Longrightarrow} f(z).$ Тогда

a)
$$f(z) \in A(D)$$

6)
$$\forall k \in \mathbb{N} \ f^{(k)}(z) = \sum_{n=1}^{\infty} f_n^{(k)}(z) \ \forall z \in D$$

Доказательство. a) $\forall z \in D$ $\exists \overline{U}(z) \subset D$. \forall замкнутой $\gamma \subset U(z), \ z \in int(\gamma) \oint_{\gamma} f(z) dz = \oint_{\gamma} \left(\sum_{n=1}^{\infty} f_n(z) \right) dz = \int_{\gamma} f(z) dz$

$$\sum_{n=1}^{\infty} \oint_{\gamma} f_n(z) dz = 0$$

 $f(z) \in C(\overline{U}(z)) \ \Rightarrow \ f \in A(U(z))$, т.к. z – произвольная, то $f \in A(D)$

6)
$$\sum_{n=1}^{\infty} \frac{k!}{2\pi i} \frac{f_n(\zeta)}{(\zeta - z)^{k+1}}$$
 (2)

$$\zeta \in \gamma_p = \{\zeta \colon |\zeta - z| = g\}$$

Из равномерной сходимости на γ_p исходного ряда следует равномерная сходимость на γ_p ряда (2).

T.K.
$$\left| \frac{k!}{2\pi i} \frac{1}{\zeta - z}^{k+1} \right| = \frac{k!}{2\pi} \frac{1}{|\zeta - z|^{k+1}} = \frac{k!}{2\pi \rho^{k+1}} = \frac{k!}{M}$$

По т. 16.2
$$\oint_{\gamma_p} \frac{k!}{2\pi} \frac{f(\zeta)}{(\zeta-z)^{k+1}} d\zeta = \sum_{n=1}^{\infty} \frac{k!}{2\pi i} \oint_{\gamma} \frac{f_n(\zeta)}{(\zeta-z)^{k+1}} d\zeta = \sum_{n=1}^{\infty} f_n^{(k)}(z)$$
, т.е. $f^{(k)}(z) = \sum_{n=1}^{\infty} f_n^{(k)}(z) \quad \forall z \in D$

Теорема (Вторая теорема Вейерштрасса). Пусть D – ограниченная область c границей ∂D , $f_n \in A(D) \cap C(\overline{D}) \ \forall n \ u \in \mathcal{D}$ $f_n(z) \underset{\partial D}{\Longrightarrow} f(z)$. Тогда

a)
$$\sum_{n=1}^{\infty} f_n(z) \underset{D}{\Longrightarrow} f(z)$$

6)
$$f \in A(D) \cap C(\overline{D})$$

Доказательство. a) $g_{n,p}(z) = \sum_{k=n+1}^{n+p} f_k(z) \Rightarrow g_{n,p}(z) \in A(D) \cap C(\overline{D})$

По следствию теоремы 13.2 $\max_{z\in \overline{D}} |g_{n,p}(z)| = \max_{z\in \partial D} |g_{n,p}(z)| < \varepsilon \quad \forall n>N \quad \forall p\in \mathbb{N} \quad \forall z\in \overline{D}$

Из р.сх. ряда (1) $\ \forall \varepsilon>0 \ \exists N\colon \ \forall n>N \ \ \forall p\in\mathbb{N}$ на $\partial D \ \gamma_{n,p}(z)|<\varepsilon$

б) Т.к. имеем равномерную сходимость на \overline{D} , то по т.16.1 $\forall n\ f_n() \in C(\overline{D})\ f(z) \in C(\overline{D})$. По т.16.3 $f \in A(D)$

4.3 Степенные ряды

4.3.1 Множество сходимости степенного ряда

Определение. $\sum_{n=0}^{\infty} C_n (z-z_0)^n$

Теорема (Коши-Адамар). Пусть $l = \overline{\lim_{n \to \infty}} \sqrt[n]{|C_n|}$. Тогда

- a) $l=0 \;\Rightarrow\; (1)$ cxoдumcя абсолютно на $\mathbb C$
- б) $l=+\infty \ \Rightarrow \ (1)$ сходится только в $z=z_0$
- в) $0 < l < +\infty \Rightarrow \forall z \colon |z-z_0| < \frac{1}{l} \ (1)$ сходится абсолютно, а $\forall z \colon |z-z_0| > \frac{1}{l} \ (2)$ расходится.

Замечание

Если
$$\exists \lim_{n \to \infty} \left| \frac{C_n}{C_{n+1}} \right| = R'$$
, то $R = R'$

$$\frac{1}{R} = \overline{\lim_{n \to \infty}} \sqrt[n]{|C_n|}$$

4.3.2 Равномерная сходимость степенного ряда

Теорема (Абель). Пусть в $z_1 \neq z_0$ (1) сходится. Тогда

- а) $\forall z \colon |z-z_0| < |z_1-z_0|$ (1) сходится абсолютно.
- б) $\forall z\colon |z-z_0|\le
 ho,\ \emph{rde}\ 0<
 ho<|z_1-z_0|,\ \emph{pnd}\ \emph{cxodumcs}\ \emph{paвномерно}\ \emph{нa}\ \overline{K}_{
 ho}$

Доказательство. а) Т.к. (1) сходится в z_0 , z_1 лежит в \overline{K}_R (по т. 17/1) $\Rightarrow z: |z-z_0| < |z_1-z_0|$ $z \in K_R \Rightarrow$ (по 17.1) сх. в z абсолютно.

6)
$$|z - z_0| = |(z_1 - z_0)| \left| \frac{z - z_0}{z_1 - z_0} \right| \le |z_1 - z_0| \frac{\rho}{|z_1 - z_0|} = |z_1 - z_0|q, \ 0 < q < 1$$

Т.к.
$$\frac{|z-z_0|}{|z_1-z_0|} \le \frac{\rho}{|z_1-z_0|} < 1$$

Тогда
$$|C_n(z-z_0)^n| = |C_n||z-z_0|^n \le |C_n||z_1-z_0|q^n$$

Т.к.
$$\sum_{n=0}^{\infty} C_n (z_1-z_0)^n$$
 сходится, то $|C_k (z_1-z_0)^n| < 1 \ \forall n \geq n_0 \ \Rightarrow \ |C_n (z-z_0)^n| < q^n$

$$\forall z \in K_{\rho} \sum_{n=0}^{\infty} q^n Cx \Rightarrow$$
 равномерная сходимость (1) в K_{ρ} по пр. Вейерштрасса.

Замечание.

Из т. 17.2 следует, что ряд (1) равномерно сходится внутри K_R .

Уледствия.

- 1. $f(z) \in A(K_R)$
- 2. $\forall \gamma \subset K_R$ возможно почленное интегрирование.
- 3. $\forall k \in \mathbb{N}$ можно почленно дифференцировать (1) в K_R k раз. При этом все полученные ряды имеют радиус сходимости R.

Доказательство. Возможно дифференцирование \Rightarrow достаточно доказать неизменяемость R для k=1.

$$f'(z) = \sum_{n=1}^{\infty} C_n n(z - z_0)^{n-1} = \sum_{n=0}^{\infty} C_{n+1} (n+1)(z - z_0)^n$$

$$R_1^{-1} = \overline{\lim_{n \to \infty}} \sqrt[n]{|C_{n+1}(n+1)|} = \overline{\lim_{n \to \infty}} \sqrt[n]{n+1} \sqrt[n]{|C_n + 1|} = \overline{\lim_{n \to \infty}} \sqrt$$

4.
$$C_0=f(z_0),\ C_n=rac{f^{(n)}(z_0)}{n!}$$
 (2), где $f(z)$ – сумма (1) $(R>0)$ $f(z)=\sum_{n=0}^{\infty}C_n(z-z_0)^n$

Доказательство. $c_0 = f(z_0)$

$$f'(z) = \sum_{n=1}^{\infty} nC_n(z - z_0)^{n-1}$$

$$z = z_0 \Rightarrow f'(z_0) = C_1$$

. . .

$$f^{(k)}(z) = \sum_{n=k}^{\infty} C_n n(n-1) \dots (n-k+1)(z-z_0)^{n-k}$$

$$z = z_0 \implies f^{(k)}(z_0) = k! C_k$$

Определение. Pяд (1) c коэффициентами вида (2) – pяд Tейлора функции f(z)

5. Пусть два ряда, сходящиеся в K_R , имеют одинаковые суммы в K_R . Тогда эти ряды совпадают.

4.3.3 Теорема Тейлора

4.3.4 Методы разложения в степенной ряд

Они те же, что и в вещественном случае.

1. Использование формул для коэффициентов ряда Тейлора.

$$C_n = \frac{f^{(n)}(z_0)}{n!} (n = 0, 1, \ldots)$$

- 2. Использование основных разложений
- 3. Использование почленного интегрирования и дифференцирования.

Теорема единственности. Понятие аналитического продолжения 4.4

Нули аналитической функции

Определение. z_0 – нуль функции f(z), если $f(z_0) = 0$. ВНЕЗАПНО, блджад.

Если
$$f \in A(z_0)$$
, то $\exists K_R = \{|z - z_0| < R\}$, где $f(z) = \sum_{n=0}^{\infty} c_n (z - z_0)^n$ (1)

Определение. z_0 – нуль порядка k аналитической функции f(z), если $c_0 = \ldots = c_{k-1} = 0, c_k \neq 0$ в разложении (1).

Нуль первого порядка называют простым нулём.

Утверждение.

 z_0 – нуль k-го порядка тогда и только тогда, когда $f(z_0) = \ldots = f^{(k-1)}(z_0) = 0$, $f^{(k)}(z_0) \neq 0$, что эквивалентно f(z) = $(z-z_0)^k \phi(z)$, где $\phi \in A(z_0), \ \phi(z_0) \neq 0$

Доказательство. Первое очевидно следует из разложения в ряд Тейлора.

доказательство. Первое очевидно следует из разложения в ряд Теилора.
$$f(z) = c_k(z-z_0)^k + c_{k+1}(z-z_0)^{k+1} + \ldots = (z-z_0)^k \underbrace{(c_k+c_{k+1}(z-z_0)+\ldots)}_{\phi(z)}$$

4.4.2 Основная теорема.

Теорема.

 $f \in A(D), D_0 \subset D$

 D_0 имеет хотя бы одну предельную точку в D.

$$Ecnu\ f(z) = 0 \ \forall z \in D_0, \ mo\ f(z) \underset{z \in D}{\equiv} 0$$

Доказательство.

Пусть a – предельная точка множества $D_0, a \in D$.

Рассмотрим разложение f(z) в степенной ряд: $f(z) = \sum_{n=0}^{\infty} c_n (z-a)^n, \ z \in K_0 = \{|z-a| < R_0\} \subset D$ (2)

$$\exists \{z_n\} \in D_0 \cap K_0, \ z_n \neq a, \ \lim_{n \to \infty} z_n = a$$

Из (2) следует, что $0=f(z_n)=\sum\limits_{n=0}^{\infty}c_n(z_n-a)^n$. Т.к. f(z) непрерывна, то из $z_n\to a \Rightarrow f(z_n)\to f(a) \Rightarrow f(a)=0 \Rightarrow c_0=0$ в (2), т.е. $f(z)=(z-a)\underbrace{(c_1+c_2(z-a)+\ldots)}_{n=0}$, где $\phi_1\in A(K_0)$.

Имеем $\forall n \ 0 = f(z_n) = (z_n - a)\phi_1(z_n) \Rightarrow \phi_1(z_n) = 0 \ \forall n$, по непрерывности $\phi_1(z_n) \to \phi_1(a) = 0 \Rightarrow c_1 = 0$, et cetera.

Итого $c_i = 0 \ \forall i \Rightarrow f(z) = 0 \ \forall z \in K_0.$

Покажем, что $\forall z^* \in D \ f(z^*) = 0.$

Т.к. D – связное множество, существует кривая $\gamma \subset D$, соединяющая a и z^* .

 $a_1 = \partial K_0 \cap \gamma$

$$\exists K_1 = \{|z - a_1| < R_1\} \subset D$$

$$\exists \{z_n'\} \in K_0, \ z_n' \to a_1$$

$$f(z_n') = 0 \implies f(z) = 0 \quad \forall z \in K_1$$

T.o. за конечное число шагов $\exists K_n = \{|z - a_n| < R_n\} \subset D, \ \forall z \in K_n \ f(z) = 0$

Следствие 1.

Существует не более одной аналитичной в D функции, принимающей заданные значения на $D_0 \subset D$, D_0 имеет предельную точку в D.

Доказательство. 1. Может не существовать такой функции.

2. Пусть
$$f_1(z), f_2(z) \in A(D), \ f_1(z) = f_2(z) \ \forall z \in D_0.$$
 Тогда применим т. 18.1 к функции $f(z) = f_1(z) - f_2(z) \Rightarrow f(z) \equiv 0$ в D .

Следствие 2.

 $f \in A(D), f \not\equiv 0, E \subset D$ – ограниченная, замкнутая.

Тогда на E f(z) имеет не более конечного числа нулей.

Следствие 3.

Целая функция имеет в C не более чем счётное множество нулей. Если их количество бесконечно, то $z=\infty$ – их предельная точка.

4.4.3 Понятие об аналитическом продолжении

Пусть
$$f_1 \in A(D_1), \ f_2 \in A(D_2), \ D_1 \cap D_2 = D_{12} \neq \emptyset.$$
 Если $f_1(z) = f_2(z) \ f(z) \in D_{12} \ \Rightarrow \ f = \begin{cases} f_1(z), & z \in D_1 \\ f_2(z), & z \in D_2 \smallsetminus D_1 \end{cases}$

Определение. f_2 – аналитическое продолжение $f_1(z)$ с D_1 на D_2 (а f_1 – аналитическое продолжение $f_2(z)$ с D_2 на D_1).

Глава 5

Ряды Лорана и особые точки ФКП

Ряды Лорана 5.1

Основные понятия

Определение. Ряд Лорана – $\sum_{n=-\infty}^{+\infty} c_n(z-z_0)^n, \ c_n \in \mathbb{C}$ (1)

$$\sum_{n=-\infty}^{+\infty} c_n (z-z_0)^n = \sum_{n=0}^{\infty} c_n (z-z_0)^n \ (правильная \ часть) + \sum_{n=1}^{\infty} c_{-n} (z-z_0)^{-n} \ (2) \ (главная \ часть)$$

Определение. Pяд (1) $cxoдится \Leftrightarrow cxoдятся оба ряда <math>(2)$

5.1.2Сумма ряда Лорана и её свойства

Пусть $R^{-1} = \overline{\lim_{n \to \infty}} \sqrt[n]{|c_n|}, \ r = \overline{\lim_{n \to \infty}} \sqrt[n]{|c_{-n}|}, \ 0 \le r < R \le +\infty.$ Тогда ряд (1) сходится абсолютно, равномерно в кольце $K_{r,R} = \{r < |z - z_0| < R\} \ \forall z \in K_{r,R},$ сумма (1) $f(z) \in A(K_{r,R})$

Доказательство.

$$f_1(z) = \sum_{n=0}^{\infty} c_n (z - z_0)^n$$
 (3)

из т. 17.1 следует абсолютная сходимость (3) в $\{|z-z_0| < R\}$ По теореме 17.2 (3) сходится равномерно внутри $\{|z-z_0| < R\} \Rightarrow f_1(z) \in A\{|z-z_0| < R\}$.

$$f_2(z) = \sum_{n=1}^{\infty} c_{-n} (z - z_0)^{-n}$$
 (4)

$$\zeta = \frac{1}{z - z_0} \implies f_2(z) = \sum_{n=1}^{\infty} c_{-n} \zeta^n$$
 (5)

(5) сходится абсолютно $\forall \zeta \colon |\zeta| < \frac{1}{r} \Leftrightarrow |z - z_0| > r$ сходится абсолютно (4).

(5) равномерно сходится внутри $\{|\zeta|<\frac{1}{r}\}$ $(z>0) \Rightarrow z\neq z_0 \Rightarrow$ (4) сходится равномерно внутри $\{|z-z_0|>r\}$

$$g(\zeta) \in A(\{|\zeta| < \frac{1}{r}\} - \text{сумма}(5) \implies f_2(z) = g(\frac{1}{z - z_0}) \in A\{|z - z_0| > r\}$$

Ряд (1) сходится \Leftrightarrow сходятся оба ряда (2)

Случай r = 0 рассмотреть самостоятельно.

f(z) можно почленно дифференцировать в $K_{r,R}$ и интегрировать $\forall \gamma \subset K_{r,R}$.

Теорема Лорана.

Теорема (17.2).

$$f\in A(K_{r,R}) \ \Rightarrow \ f(z)=\sum_{n=-\infty}^{+\infty}c_n(z-z_0)^n \ \ orall z\in K_{r,R},$$
 причём разложение единственно.

Доказательство.

Рассмотрим $f \in A(K_{r,R})$. Возьмём точку $z \in K_{r,R}$.

$$\exists r_1, R_1 \colon r < r_1 < R_1 < R, \ z \in K_{r_1, R_1}$$

$$\exists \rho \colon \gamma_{\rho} = \{\zeta \colon |\zeta - z| = \rho\} \subset K_{r_1, R_1}$$

ИТК для составного контура:

$$\oint_{\gamma_{R_{1}}(ccw)} \frac{f(\zeta)}{\zeta - z} d\zeta + \oint_{\gamma_{R_{2}}(cw)} \frac{f(\zeta)}{\zeta - z} d\zeta + \oint_{\gamma_{\rho}(cw)} \frac{f(\zeta)}{\zeta - z} d\zeta = 0$$

$$\frac{1}{2\pi i} \oint_{\gamma_{\rho}(ccw)} \frac{f(\zeta)}{\zeta - z} d\zeta = \frac{1}{2\pi i} \oint_{\gamma_{R_{1}}(ccw)} \frac{f(\zeta)}{\zeta - z} d\zeta - \frac{1}{2\pi i} \oint_{\gamma_{R_{2}}(ccw)} \frac{f(\zeta)}{\zeta - z} d\zeta = f(z)$$

$$\zeta \in \gamma_{R_{1}} : \frac{1}{\zeta - z} = \frac{1}{\zeta - z_{0} - (z - z_{0})} = \frac{1}{\zeta - z_{0}} \frac{1}{1 - \frac{z - z_{0}}{\zeta - z_{0}}} = \frac{1}{\zeta - z_{0}} \sum_{n=1}^{\infty} \frac{(z - z_{0})^{n}}{(\zeta - z_{0})^{n}}$$

$$|\zeta - z_{0}| > |z - z_{0}| \implies \frac{|z - z_{0}|}{|\zeta - z_{0}|} = \frac{|z - z_{0}|}{R_{1}} \equiv q_{1} < 1$$

$$\frac{1}{2\pi i} \oint_{\gamma_{R_1}} \frac{f(\zeta)}{\zeta - z} d\zeta = \frac{1}{2\pi i} \oint_{\gamma_{R_1}} f(\zeta) \sum_{n=1}^{\infty} \frac{(z - z_0)^n}{(\zeta - z_0)^{n+1}} d\zeta = \sum_{n=1}^{\infty} \left(\frac{1}{2\pi i} \oint_{\gamma_{R_1}} \frac{f(\zeta)}{(\zeta - z_0)^{n+1}} d\zeta \right) (z - z_0)^n = \sum_{n=1}^{\infty} c_n (z - z_0)^n \equiv f_1(z)$$

$$\frac{\zeta \in \gamma_{r_1} \colon |\zeta - z_0| < |z - z_0|}{\frac{1}{\zeta - z}} = \frac{1}{\frac{\zeta - z_0 - (z - z_0)}{\zeta - z_0}} = \frac{1}{\frac{1}{\zeta - z_0}} \frac{1}{1 - \frac{z - z_0}{\zeta - z_0}} = \frac{1}{\frac{\zeta - z_0}{\zeta - z_0}} \sum_{n=1}^{\infty} \frac{(z - z_0)^n}{(\zeta - z_0)^n}$$

$$rac{|\zeta-z_0|}{|z-z_0|} = rac{r_1}{|z-z_0|} \equiv q_2 < 1$$

Единственность:

Предположим, что f(z) соответствуют два ряда: $\sum_{n=-\infty}^{+\infty} c_n (z-z_0)^n = \sum_{n=-\infty}^{+\infty} c_n' (z-z_0)^n$

Домножим обе части на
$$(z-z_0)^{-k-1} \ \forall k \in \mathbb{Z}$$

$$\sum_{n=-\infty}^{+\infty} c_n (z-z_0)^{n-k-1} = \sum_{n=-\infty}^{+\infty} c' n (z-z_0)^{n-k-1}$$

$$\oint \sum_{\gamma=-\infty}^{+\infty} c_n (z-z_0)^{n-k-1} = \oint \sum_{\gamma=-\infty}^{+\infty} c' n (z-z_0)^{n-k-1}$$

$$\oint (z-z_0)^{n-k-1} dz = \begin{cases} 0, & \forall n-k-1 \neq -1 \\ 2\pi i, & n-k-1 = -1 \Leftrightarrow n=k \end{cases}$$

5.2Изолированные особые точки однозначной ФКП и их классификация

5.2.1Основное определение

Пусть f(z) – однозначная, $f \in A(K_R(z_0))$. $K_R(z_0) = K_{0,R} = \{z \colon 0 < |z - z_0| < R\}, \ z_0 \neq \infty; \ K_R(\infty) = \{z \colon B < |z| < \infty\}$

Определение. z_0 – правильная точка f(z), если $f \in A(z_0)$.

Определение. z_0 – изолированная особая точка f(z), если $f \notin A(z_0)$

$$f(z) = \sum_{n=-\infty}^{+\infty} c_n (z - z_0)^n = f_{\Pi p(z)} + f_{\Gamma \Pi}(z), \ z \in \dot{K}$$

Определение. z_0 – устранимая особая точка, если $f_{\mathcal{EA}}(0) \equiv 0$.

Определение. z_0 – полюс f(z), если $f_{\mathcal{E}\!\mathcal{A}}(z)$ содержит конечное число членов.

Определение. z_0 – полюс f(z) порядка k, если $c_k \neq 0$, $c_n = 0 \ \forall n > k$.

Определение. z_0 – существенная особая точка f(z), если $f_{\mathcal{E}\mathcal{A}}(z)$ содержит бесконечное число членов.

5.2.2Поведение ФКП в окрестности изолированной особой точки

 z_0 – изолированная точка f(z).

Теорема (20.1). z_0 – УОТ $\Leftrightarrow f(z)$ ограничена в $\dot{K}(z_0)$.

a)
$$z_0 - \text{YOT} \implies f(z) = \sum_{n=0}^{\infty} c_n (z - z_0)^n \implies S(z) \in A(z_0), \quad \exists \lim_{z \to z_0} f(z) = c_0 \neq \infty$$

S(z) = f(z) в $K \Rightarrow f(z)$ огр. в K. б) $|f(z)| \le M \ \forall z \in K(z_0)$

б)
$$|f(z)| \le M \quad \forall z \in \dot{K}(z_0)$$

$$c_n = \frac{1}{2\pi i} \oint_{\gamma} \frac{f(\zeta)}{(\zeta - z)^{n+1}} d\zeta$$

$$\gamma = \gamma_{\rho} = \{ \zeta \colon |\zeta - z_0| = \rho \} \in \dot{K}$$

$$\gamma = \gamma_{\rho} = \{\zeta \colon |\zeta - z_{0}| = \rho\} \in \dot{K}$$

$$|c_{n}| = \frac{1}{2\pi} \oint_{\gamma} \frac{|f(\zeta)|}{|\zeta - z|^{n+1}} |d\zeta| \le \frac{M}{2\pi\rho^{n+1}} \oint_{\gamma_{\rho}} ds = \frac{M}{\rho^{n}} \to 0 \ \forall 0 < \rho < \rho_{0}$$
The contraction of the formula $f(z) = 0$

T.e.
$$c_n = 0$$
, $n < 0 \Leftrightarrow f_{\Gamma JI} = 0$

Следствие.

 z_0 – УОТ \Leftrightarrow существует конечный $\lim_{z \to z_0} f(z)$.

Теорема (20.2). z_0 – nonnoc $f(z) \Leftrightarrow \lim_{z \to z_0} f(z) = \infty$

Доказательство. a) z_0 – полюс $\Rightarrow z \in K(z_0)$

$$f(z) = \frac{c_{-k}}{(z - z_0)^k} + \dots + c_0 + c_1(z - z_0) + \dots = \frac{1}{(z - z_0)^k} (c_{-k} + c_{-k+1}(z - z_0) + \dots) = \frac{1}{(z - z_0)^k} \phi(z), \ c_{-k} \neq 0$$

$$\phi(z) \in A(z_0), \ \phi(z_0) = c_{-k} \neq 0$$

б)
$$\lim_{z\to z_0} f(z) = \infty \ \Rightarrow \ \exists$$
 окрестность т. z_0 , в которой $f(z) \neq 0$.

В этой окрестности U рассмотрим $g(z)=\left\{ egin{align*} \frac{1}{f(z)}, & z \neq z_0 \\ 0, & z=z_0 \end{array}, \ \lim_{z \to z_0} g(z)=0 \right.$

$$g \in A(z_0) \Rightarrow B U$$

$$g(z) = b_k(z - z_0)^k + \dots = (z - z_0)^k (b_k + b_{k+1}(z - z_0) + \dots) = (z - z_0)^k \phi_1(z)$$

$$f_1(z) \in A(z_0)$$

$$f_1(z_0) = b_k \neq 0$$

$$f_1(z_0) = b_k \neq 0$$
 $f(z) = \frac{1}{g(z)} = \frac{1}{(z-z_0)^k} \frac{1}{\phi_1(z)} = \frac{1}{(z-z_0)^k} (a_0 + a_1(z-z_0) + \ldots)$ – ряд Лорана с конечным числом членов в главной части. \square

$$z_0 \neq \infty$$
 – полюс $\Leftrightarrow f(z) = \frac{\phi(z)}{(z-z_0)^k}, \ \overline{z} \in \dot{U}(z_0), \ \phi \in A(z_0), \ \phi(z_0) \neq 0$

Следствие.

$$z_0$$
 – полюс порядка k $f(z)\Leftrightarrow z_0$ – нуль порядка k $g(z)=egin{cases} \frac{1}{f(z)},&z
eq z_0\\ 0,&z=z_0 \end{cases}$

Теорема (20.3).
$$z_0$$
 – $COT f(z) \Leftrightarrow /\exists \lim_{z \to z_0} f(z)$

Доказательство. Доказательство следует из т. 20.1, 20.2 и определений.

Теорема (20.3, Сохоцкий-Вейерштрасс). Пусть z_0 – COT f(z). Тогда $\forall A \in \overline{\mathbb{C}}$ $\exists \{z_n\}, \ z_n \xrightarrow{n \to \infty} z \colon f(z_n) \xrightarrow{n \to \infty} A$

Доказательство. a) $A = \infty$

Утверждение теоремы следует из неограниченности f(z) в $K(z_0)$.

б)
$$A \neq \infty$$

$$\Pi$$
усть $\not\exists \{z_n\} \subset \dot{U}(z_0) \colon z_n \underset{n \to \infty}{\longrightarrow} z_0$

$$\Rightarrow \exists \varepsilon > 0 \colon \exists \dot{U} = \{0 < |z - z_0| < \delta\} \colon \forall z \in \dot{U} |f(z) - A| \ge \varepsilon$$

$$g(z) = \frac{1}{f(z) - A} \in A(\dot{U})$$

$$|g(z)| \le \frac{1}{|f(z)| - A|} \le \frac{1}{c}, \ z \in \dot{U}$$

$$\Rightarrow z_0$$
 – $VOT g(z) \Leftrightarrow \exists$ конечный $\lim g(z) = b_0$

$$|g(z)| \le \frac{1}{|f(z) - A|} \le \frac{1}{\varepsilon}, \ z \in \dot{U}$$
 $\Rightarrow z_0 - \text{УОТ } g(z) \Leftrightarrow \exists \text{ конечный } \lim_{z \to z_0} g(z) = b_0$ $1^{\circ}) \ b_0 = 0 \ \Rightarrow \ \exists \lim_{z \to z_0} f(z) = \infty \ \Rightarrow \ z_0 - \text{полюс } f(z) - \text{противоречие.}$

$$2^\circ)\ b_0 \neq 0\ \Rightarrow\ \exists$$
 конечный $\lim_{z \to z_0} f(z) = \frac{1}{b_0} + A \Leftrightarrow z_0$ – УОТ $f(z)$ – противоречие.

Глава 6

Теория вычетов

6.1 Понятие вычета. Вычисление вычета

Определение и основное утверждение

Определение. f(z) – однозначная, $f \in A(\dot{K}(z_0))$

$$\frac{1}{2\pi i} \oint_{\gamma} f(z) dz = \mathop{\mathrm{res}}_{z=z_0} f(z)$$
 – вычет $f(z)$ относительно т. z_0

 $(\gamma \subset \dot{K}, z_0 \in \text{int } \gamma, uнтегрирование в положительном направлении)$

Теорема (21.1).

$$\operatorname{res}_{z=z_0} f(z) = \begin{cases} c_{-1}, & z_0 \neq \infty \\ -c_{-1}, & z_0 = \infty \end{cases}$$

Доказательство.

a) $z_0 \neq \infty$

$$f \in A(\dot{K}) \Rightarrow f(z) = \sum_{n=-\infty}^{+\infty} c_n (z - z_0)^n$$

$$c_n = \frac{1}{2\pi i} \oint_{\gamma} \frac{f(\zeta)}{(\zeta - z_0)^{n+1}} d\zeta$$

$$n = -1 \Rightarrow c_{-1} = \frac{1}{2\pi i} \oint_{\gamma} f(\zeta) d\zeta$$

$$(5) z_0 = \infty$$

$$f(z) = \sum_{n=0}^{+\infty} c_n z^n$$

$$\oint_{\gamma} f(z)dz = \oint_{\gamma} \left(\sum_{n=-\infty}^{+\infty} c_n z^n \right) = \sum_{n=-\infty}^{+\infty} c_n \oint_{\gamma} z^n dz =$$

$$\oint_{\gamma} z^n dz = \begin{cases} 2\pi i, & n = -1 \\ 0, & n \neq -1 \end{cases}$$

$$\oint_{\gamma} z^n dz = \begin{cases} 2\pi i, & n = -1 \\ 0, & n \neq -1 \end{cases}$$

Следствие.
$$z_0 \neq \infty$$
 – правильная или УОТ $f(z) \Rightarrow \underset{z_0}{\operatorname{res}} f(z) = 0$

6.1.2 Вычисление вычетов

Утверждение 1.

$$z_0 \neq \infty$$
 – простой полюс $\Rightarrow \underset{z_0}{\text{res}} f(z) = \lim_{z \to z_0} f(z)(z - z_0)$ (3)

$$f(z) = \frac{c_{-1}}{z - z_0} + c_0 + c_1(z - z_0) + \dots$$

$$(z - z_0)f(z) = c_{-1} + c_0(z - z_0) + \dots$$

Утверждение 2

$$f(z) = \frac{\phi(z)}{\psi(z)}$$
, где $\phi, \psi \in A(z_0)$, $\psi(z_0) = 0$, $\psi'(z_0) \neq 0$, $\phi(z_0) \neq 0$

Тогда
$$\underset{z_0}{\operatorname{res}} f(z) = \frac{\phi(z_0)}{\psi'(z_0)}$$
 (4)

Доказательство. z_0 – простой полюс f(z). По (3)

$$\operatorname{res}_{z_0} = \lim_{z \to z_0} \frac{\phi(z)}{\psi(z)} (z - z_0) = \lim_{z \to z_0} \frac{\phi(z)}{\frac{\psi(z) - \psi(z_0)}{z - z_0}} = \frac{\lim_{z \to z_0} \phi(z)}{\lim_{z \to z_0} \frac{\psi(z) - \psi(z_0)}{z - z_0}} = \frac{\phi(z_0)}{\psi'(z_0)}$$

Утверждение 3.

$$z_0$$
 – полюс порядка k $f(z)$. Тогда $\underset{z_0}{\mathrm{res}} f(z) = \frac{1}{(k-1)!} \lim_{z \to z_0} \left(f(z) (z-z_0)^k \right)^{(k-1)}$

Доказательство.
$$f(z) = \frac{c_{-k}}{(z-z_0)^k} + \ldots + \frac{c_{-1}}{z-z_0} + c_0 + c_1(z-z_0) + \ldots$$
 $(z-z_0)^k f(z) = c_{-k} + c_{-(k-1)}(z-z_0) + \ldots + c_0(z-z_0)^k + \ldots$ $\frac{\partial^{k-1}}{\partial z^{k-1}} \left((z-z_0)^k f(z) \right) = (k-1)! c_{-k} + k(k-1) \ldots 2c_0(z-z_0) + \ldots$ $\lim_{z \to z_0} \left((z-z_0)^k f(z) \right)^{(k-1)} = (k-1)! c_{-1}$

Утверждение 4.

$$z_0 = \infty$$
 – нуль $f(z)$ порядка $k \ge 2 \ \Rightarrow \ \mathop{\mathrm{res}}_{z_0 = \infty} f(z) = 0$

Доказательство.
$$f(z) = \frac{\phi(z)}{z^k}, \ \phi \in A(K_\infty), \ \phi(\infty) = \lim_{z \to \infty} \phi(z) \neq 0$$

$$\phi(z) = c_0 + \frac{c_1}{z} + \dots, \ c_0 \neq \infty \ \Rightarrow \ f(z) = \frac{c_0}{z_k} + \dots \ \Rightarrow \ c_{-1} = 0$$

6.1.3 Теорема о полной сумме вычетов

Теорема (21.3).

Пусть
$$z_1,\ldots,z_n$$
 – особые точки $f(z)$ $(z_i<\infty)$. Тогда $\sum\limits_{k=1}^n\operatorname{res} f(z)+ \sum\limits_{z_0=\infty} f(z)=0$

$$\exists R > 0 : \max_{k} |z_k| < R, \ \gamma_R : \{|z| = R\}$$

$$\exists \gamma_k \subset \int \gamma_R \colon z_k \in \int \gamma_k$$

ИТК для составного контура:

$$\oint_{\gamma_R,CCW} f(z)dz = \sum_{k=1}^n \oint_{\gamma_k,CCW} f(z)dz$$

$$\underbrace{\frac{1}{2\pi i} \oint_{\gamma_R,CW} f(z)dz}_{\text{res} f(z)} + \sum_{k=1}^n \underbrace{\frac{1}{2\pi i} \oint_{\gamma_k,CCW} f(z)dz}_{\text{res} f(z)} = 0$$

6.2 Основная теорема теории вычетов. Вычисление контурных интервалов

6.2.1 Основная теорема теории вычетов

Теорема (22.1). Пусть f(z) – аналитическая в \overline{D} – ограниченной области за исключением особых точек $z_1, \ldots, \overline{z}_n$, не лежащих на границе ∂D . Тогда

(1)
$$\oint_{\partial D} f(z)dz = 2\pi i \sum_{k=1}^{n} \underset{z=z_{k}}{\text{res}} f(z)$$

Доказательство. Так как о.т. конечное число и они изолированны, то $\exists \{\gamma_k\}, \ \gamma_k \subset D, \ z_k \in \operatorname{int} \gamma_k$. По ИТК для составного контура

$$\oint_{\partial D} f(z)dz = \sum_{k=1}^{n} \oint_{z_k} f(z)dz = 2\pi i \sum_{k=1}^{n} \underset{z_k}{\text{res}} f(z)$$

Дальше – очевидно.

Замечание.

D может быть неодносвязной, тогда ∂D – полная граница.

Теорема (22.1*). Пусть $f \in A(D)$, за исключением конечного числа о.т., γ – замкнутый контур, $\gamma \subset D$, не проходящий через о.т. Тогда

$$\oint_{\gamma} f(z)dz = 2\pi i \sum_{z_k \in \text{int } \gamma} \underset{z_k}{\text{res}} f(z)$$
(2)

Вычисление интегралов вида $\int_0^{2\pi} R(\cos\phi,\sin\phi)d\phi$

$$\cos \phi = \frac{e^{i\phi} + e^{-i\phi}}{2}$$

$$\sin \phi = \frac{e^{i\phi} - e^{-i\phi}}{2i}$$

$$\gamma \colon \begin{cases} z = e^{i\phi} \\ \phi \in [0, 2\pi] \end{cases}$$
Пример.

$$\int_{0}^{\pi} \frac{d\phi}{1 + a\cos\phi}, -1 < a < 1$$

$$\int_{0}^{\pi} \frac{d\phi}{1 + a\cos\phi} = \begin{cases} z = e^{i\phi} \\ dz = ie^{i\phi}d\phi \\ d\phi = \frac{dz}{iz} \end{cases} = \frac{1}{2} \int_{-\pi}^{\pi} \frac{d\phi}{1 + a\cos\phi} = \frac{1}{2} \oint_{|z|=1} \frac{dz}{iz(1 + \frac{a}{2}(z + \frac{1}{z}))} = \frac{1}{i} \oint_{\gamma} \frac{dz}{az^{2} + 2z + a}$$

$$f(z) = \frac{1}{az^2 + 2z + a}$$

$$az^2 + 2z + a = 0$$

$$z_{1,2} = \frac{-1 \pm \sqrt{1 - a^2}}{a}$$

$$|z_1^-| > 1, \ |z_1^+| < 1$$

$$z_1 = \frac{-1 + \sqrt{1 - a^2}}{a} \in \operatorname{int} \gamma - \operatorname{полюс}$$

$$\operatorname{res}_{z_1} f(z) = \frac{1}{2az + 2} \bigg|_{z_1} = \frac{1}{2(az_1 + 1)} = \frac{1}{2\sqrt{1 - a^2}}$$

$$\frac{1}{i} \oint \frac{dz}{az^2 + 2z + a} = 2\pi i \frac{1}{i} \frac{1}{2\sqrt{1 - a^2}} = \frac{\pi}{\sqrt{1 - a^2}}$$

Утверждение.

$$\int\limits_{0}^{2\pi}R(\cos\phi,\sin\phi)d\phi=2\pi\sum_{|z_{k}|<1}\mathop{\mathrm{res}}_{z_{k}}R_{1}(z),\text{ где }R_{1}(z)=\frac{1}{z}R(\frac{1}{2}(z+\frac{1}{z}),\frac{1}{2i}(z-\frac{1}{z}))$$

6.3Вычисление несобственных интегралов

6.3.1 Лемма

Лемма (1). Пусть $\overline{D} = \{|z| \ge R_0 > 0, \text{ Im } z \ge 0\}.$ $C_R = \{ |z| = R, \ 0 \le \arg z \le \pi \}$

$$f \in A(\overline{D}), \ M_f(R) = \max_{z \in C_R} |f(z)| = \overline{\overline{o}}(\frac{1}{R})$$

 $Tor \partial a \int_{C_R} f(z) dz \xrightarrow[R \to \infty]{} 0.$

Доказательство.
$$\left| \int\limits_{C_R} f(z) dz \right| = \left\{ \begin{aligned} z &= Re^{i\phi} \\ 0 &\leq \phi \leq \pi \end{aligned} \right\} = \left| \int\limits_0^\pi f(Re^{i\phi}) Rie^{i\phi} d\phi \right| \leq \int\limits_0^\pi \overline{\overline{o}}(\frac{1}{R}) Rd\phi = \int\limits_0^\pi \overline{\overline{o}}(1) d\phi$$

Вычисление интегралов вида $\int_{-\infty}^{+\infty} \frac{P_m(z)}{Q_n(z)} dz$

Теорема (23.1). Пусть f – аналитическая в $\{\operatorname{Im} z \geq 0\}$ за исключением о.т. z_1, \ldots, z_n , не лежащих на вещественной прямой, $M_f(R) = \overline{\overline{o}}(\frac{1}{R})$. Тогда

$$\int_{-\infty}^{+\infty} f(x)dx = 2\pi i \sum_{k=1}^{n} \underset{z_k}{\text{res}} f(z)$$
(1)

(интеграл в (1) понимается в смысле v.p.)

Доказательство. Так как о.т. конечное число, то $\exists R_0 > 0 \colon f(z) \in A(\overline{D}).$

$$\gamma_R = C_R \cup [-\pi, \pi], \ R > R_0$$

Рассмотрим
$$\oint_{\gamma} f(z)dz = \int_{-R}^{R} f(z)dz + \int_{C_R} f(z)dz = 2\pi i \sum_{k=1}^{n} \operatorname{res}_{z_k} f(z) \quad \forall R > R_0$$

При
$$R \to \infty$$
 $v.p. \int\limits_{-\infty}^{+\infty} f(x) dx = 2\pi i \sum\limits_{k=1}^{n} \mathop{\mathrm{res}}\limits_{z_k} f(z)$

Следствия.

Пусть
$$f(z) = \frac{P_m(z)}{Q_n(z)}, \ n-m \ge 2, \ Q_n(x) \ne 0.$$

Тогда
$$\int_{-\infty}^{+\infty} \frac{P_m(z)}{Q_n(x)} dx = 2\pi i \sum_{k=1}^n \underset{z_k}{\operatorname{res}} R_{m,n}(z) \mid Q_n(z_k) = 0, \operatorname{Im} z_k > 0$$

6.3.3 Лемма Жордана

$$\overline{D} = \{|z| \ge R_0\} \cap \{\operatorname{Im} z \ge 0\}$$

$$C_R = \{|z| = R, 0 \le \operatorname{arg} z \le \pi\}$$

$$M_f(R) = \max_{z \in C_R} |f(z)|$$

Лемма (Жордан). Пусть
$$f(z) \in C(\overline{D}), \ M_f(R) = \overline{\overline{o}}(1)$$

Тогда
$$\int\limits_{C_R} f(z)e^{iaz}dz \underset{R \to \infty}{\longrightarrow} 0 \ (a > 0)$$

Доказательство.
$$z \in C_R \Leftrightarrow \begin{cases} z = Re^{i\phi} \\ \phi \in [0,\pi] \end{cases}$$

$$|e^{iaz}| = |e^{iaRe^{i\phi}}| = |e^{iaR(\cos\phi + i\sin\phi)}| = |e^{iaR\cos\phi}||e^{-aR\sin\phi}| = e^{-aR\sin\phi}$$

Доказательство.
$$z \in C_R \Leftrightarrow \begin{cases} z = Re^{i\phi} \\ \phi \in [0,\pi] \end{cases}$$
 $|e^{iaz}| = |e^{iaRe^{i\phi}}| = |e^{iaR(\cos\phi + i\sin\phi)}| = |e^{iaR\cos\phi}||e^{-aR\sin\phi}| = e^{-aR\sin\phi}$ $|\int\limits_{C_R} f(z)e^{iaz}dz| = |\int\limits_0^\pi f(Re^{i\phi})e^{iaRe^{i\phi}}Rie^{i\phi}d\phi| \leq \int\limits_0^\pi M_f(R)e^{-aR\sin\phi}df = RM_f(R)\int\limits_0^\pi e^{-aR\sin\phi}d\phi = \int\limits_0^\pi dt dt$

$$=2RM_{f}(R)\int_{0}^{\frac{\pi}{2}}e^{-aR\sin\phi}d\phi \leq \{\sin\phi \geq \frac{2}{\pi}\phi, \ \phi \in [0,\frac{\pi}{2}]\} \leq 2RM_{f}(R)\int_{0}^{\pi}e^{\frac{-2aR\phi}{\pi}}d\phi = 2RM_{f}(R)\frac{\pi}{2aR}e^{\frac{-2aR\phi}{\pi}}\bigg|_{\frac{\pi}{2}}^{0}$$

6.3.4 Теорема 23.2

Теорема. Пусть f(z) – аналитическая на $\{\operatorname{Im} z \geq 0\}$ за исключением точек z_1, \dots, z_n , не лежащих на вещественной ocu; $M_f(R) = \overline{\overline{o}}(1), R \to \infty.$

Тогда
$$\int_{-\infty}^{+\infty} f(z) \cos ax dx = \operatorname{Re} A$$

$$\int_{-\infty}^{+\infty} f(z) \sin ax dx = \operatorname{Im} A$$

$$A = 2\pi i \sum_{k=1}^{n} \operatorname{res}_{z_k} \left(f(z) e^{iaz} \right)$$

Доказательство. Рассмотрим $\gamma_R = C_R \cup [-R,R], \ R > R_0 > \max_{1 \le k \le n} |z_k|$

$$F(z) = f(z)e^{iaz} \in A(\overline{D})$$

По основной теореме о вычетах

$$\oint_{\gamma_R} F(z)dz = 2\pi i \sum_{k=1}^n \underset{z_k}{\text{res}} F(z) = A$$

$$\int_{-R}^R F(x)dx + \int_{C_R} F(z)dz = A \quad \forall R > R_0$$

$$R \to \infty$$

$$R \to \infty$$

$$R \to \infty$$

$$v.p. \int_{-\infty}^{+\infty} f(x)e^{iax} = A$$

$$v.p. \int_{-\infty}^{+\infty} f(x)(\cos ax + i\sin ax)dx = A$$

Следствие

Если
$$f(x)=rac{P_m(x)}{Q_n(x)},\ Q_n(x)
eq 0,\ n-m\geq 1,$$
 то

- $\int_{-\infty}^{+\infty} \frac{P_m(x)}{Q_n(x)} \cos ax dx = \operatorname{Re} A$ $\int_{-\infty}^{+\infty} \frac{P_m(x)}{Q_n(x)} \sin ax dx = \operatorname{Im} A$