AD-A113 068 ERTEC WESTERN INC LONG BEACH CA
AGGREGATE RESOURCES STUDY, CAVE AND STEPTOE VALLEYS, NEVADA.(U)
SEP 81
UNCLASSIFIED ETR-37-J F/G 8/7 F04704-80-C-0006 ...

AD A113068

	PHOTOGRAPH THIS SHEET
3068	LEVEL
)-M113068	LEVEL INVENTORY E-7R-37-J DOCUMENT IDENTIFICATION
JM	This document has been approved for public relocuse and sale; its distribution is unlimited.
	DISTRIBUTION STATEMENT
ACCESSION FOR NTIS GRAI DTIC TAB UNANNOUNCED JUSTIFICATION	DTIC APRO 7 1982
BY DISTRIBUTION / AVAILABILITY C DIST AV	AIL AND/OR SPECIAL COPY DATE ACCESSIONED
DISTRI	"Original contains color plates: All DTIC reproductsions will be in black and white"
	82 03 18 119 .
	DATE RECEIVED IN DTIC
	PHOTOGRAPH THIS SHEET AND RETURN TO DTIC-DDA-2
FORM	DOCUMENT PROCESSING SHE

DTIC FORM 70A

AGGREGATE RESOURCES STUDY CAVE AND STEPTOE VALLEYS NEVADA

Prepared for:

U.S. Department of the Air Force Ballistic Missile Office (BMO) Norton Air Force Base, California 92409

Prepared by:

Ertec Western, Inc. 3777 Long Beach Boulevard Long Beach, California 90807

25 September 1981

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

. A 1/2

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER E-TR-37-1 AD-A11306	3. RECIPIENT'S CATALOG NUMBER
1. TITLE (and Substitle) ACGC regate le sources Study Cave + Steptue valleys Nevada	5. TYPE OF REPORT & PERIOD COVERED FINAL 6. PERFORMING ORG. REPORT NUMBER E-TE-37-;
Erter Western, Inc	6. CONTRACT OR GRANT NUMBER(3) FO4704-85-C-CCOC
9. PERFORMING ORGANIZATION NAME AND ADDRESS Entre Western Inc. Germenty Functional PC. 150X 7765 Long Bronth Ca 90507	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
11. CONTROLLING OFFICE NAME AND ADDRESS C.D. Deporture of delle for Force Space and Missile Systems are spiceshie	12. REPORT DATE 25 Sep 81 13. NUMBER OF PAGES
14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office)	15. SECURITY CLASS. (of this report)
	15. DECLASSIFICATION/DOWNGRADING SCHEDULE
DISTRIBUTION STATEMENT (of this Report)	
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different fro	m Report)
Distribution Unlimited	
18. SUPPLEMENTARY NOTES	
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Geology Setting, Potential Ry grain size, trench logs, sieve and basin fill 20. ABSTRACT (Continue on reverse side if necessary and identify by block number)	gregate sources
This report contains the Valley-Specific Aggrega	te Resources Study (VSARS)

This report contains the Valley-Specific Aggregate Resources Study (VSARS) evaluation for Cave and Steptoe valleys and surrounding areas in Nevada. It is the tenth in a series of reports that contain valley-specific aggregate information on the location and suitability of basin-fill and rock sources for concrete and road-base construction materials. The findings presented are based on field reconnaissance and limited laboratory testing, existing data from the Nevada Department of Highways, previous regional aggregate investigations, and ongoing Verification studies.

DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

FOREWORD

This report was prepared for the Department of the Air Force, Ballistic Missile Office (BMO), in compliance with Contract No. F04704-80-C-0006, CDRL Item No. 004A2. It presents the results of Valley-Specific Aggregate Resources Studies within and adjacent to selected lands in Utah and Nevada that are under consideration for siting the MX system.

This volume contains the results of the Aggregate Resources study in Cave and Steptoe valleys. It is the tenth of several Valley Specific Aggregate Resources investigations which will be prepared as separate volumes. Results of this report are presented as text, appendices, and two drawings.

TABLE OF CONTENTS

																			Page
FORE	NORD .	• • • • • •	• • • • •	• • • •	• • •	• • • •	•••	••	• •	• • •	• •	• •	• • •	• •		• •	• •	•	i
EXEC	JTIVE	SUMMARY		••••	• • •	• • • •	• • •	••	••	• • •	• •	••	• • •	• • •	• •	••	• •	•	v
1.0	INTRO	DUCTION	<u> </u>	••••	• • •	• • •		••	••	• • •	• •	••	• • •	• • •	• •	• •	• •	•	1
	1.1	Study A	Area .							• • •			• • •	• • •			• •		1
	1.2	Backgro	ound .				• • •			• • •			• • •						1
	1.3	Object	ives .		• • • •				•	• • •			• •			• •		•	4
	1.4	Scope .	• • • • •	• • • •	•••	• • •	• • •	••	• •	• • •		• •	• • •	• • •	• •	• •	• •	•	4
2.0	STUD	APPROP	ACH		• • •	• • •		• •	• •	• • •	• • •	• •	• •	• • •		••	• •	•	6
	2.1	Existin	ng Dat	a															6
	2.2	Supplem																	6
	2.3	Data Ar																	8
	2.4	Present																	8
•	2.5	Prelim													-				
			egate												• •	• •		•	11
3.0	GEOL	OGIC SET	TING	• • • •	•••	•••	• • •	••	• •	• • •	• • •	• •	• • •	• • •	• •	• •	• •	•	14
	3.1	Physio	raphy	,														_	14
	3.2	Location																	14
	J	3.2.1	Rock																16
		3.2.2	Basir																19
4.0	POTE	TIAL AC	GREGA	TE S	OUR	CES		••		• • •		••	• • •	• •	• •	• •	• •	•	22
	4.1	Basin-	2411 C																22
	4.1																		22
		4.1.1																	26
	4.2	4.1.2	Fine																28
	4.2	Crushed															• •	•	20
		4.2.1																	
				e or															20
		4 2 2		ss I															28
		4.2.2	Possi												eg	a t	e/		
				enti															
				eria											• •	• •	• •	•	33
		4.2.3	Unsui																
				ıd-Ba ıss I															33
5.0	CONC	LUSIONS	• • • • •	• • • •	• • •	• • •	•••	• •	• •	• • •	• • •	• •	• •	• •	• •	• •	• •	•	34
	5.1	Potent:																	34
		5.1.1	Coars																34
		5.1.2	Fine	Aggr	ega	te	• • •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	•	35

TABLE OF CONTENTS (Cont.) Page 5.2 Potential Crushed Rock Aggregate Sources 37 6.0 BIBLIOGRAPHY LIST OF APPENDICES **APPENDIX** A Ertec Western Field Station and Supplementary Test Data and Existing Test Data Summary Tables-Cave and Steptoe Valleys, Nevada В Summary of Caliche Development C Unified Soil Classification System D Cave and Steptoe Valleys, Study Area Photographs E Ertec Western Geologic Unit Cross Reference LIST OF FIGURES Figure Number Valley-Specific Aggregate Resources Study Areas, Nevada - Utah 2 Utah-Nevada Regional Aggregate Studies LIST OF TABLES Table Number 1 Aggregate Resources Study, Aggregate Tests, Cave and Steptoe Valleys, Nevada 2 Preliminary Aggregate Classification System,

Valley-Specific Aggregate Resources

12

TABLE OF CONTENTS (Cont.)

LIST OF DRAWINGS

Ertec Western Field Station and Existing Data Site Locations, Cave and Steptoe Valleys, Nevada	In Pocket at
Aggregate Resources Map, Cave and Steptoe Valleys, Nevada	End of Report
	Data Site Locations, Cave and Steptoe Valleys, Nevada Aggregate Resources Map, Cave and Steptoe

EXECUTIVE SUMMARY

This report contains the Valley-Specific Aggregate Resources Study (VSARS) evaluation for Cave and Steptoe valleys and surrounding areas in Nevada. It is the tenth in a series of reports that contain valley-specific aggregate information on the location and suitability of basin-fill and rock sources for concrete and road-base construction materials. The findings presented are based on field reconnaissance and limited laboratory testing, existing data from the Nevada Department of Highways, previous regional aggregate investigations, and ongoing Verification studies.

A classification system based on aggregate type and potential use was developed to rank the suitability of all basin-fill and rock aggregate sources. Four aggregate types have been designated; coarse, fine, coarse and fine (multiple) aggregates derived from basin-fill sources, and crushed rock aggregates derived from rock sources. Each aggregate type was then classified using the following definitions:

- Class I Potentially suitable concrete aggregate or road-base material source;
- Class II Possibly unsuitable concrete aggregate/potentially suitable road-base material source; and
- Class III Unsuitable concrete aggregate or road-base material source.

Decisions on assigning a particular aggregate source to one of the three classes were determined from existing test data and laboratory tests performed as part of this study (abrasion resistance, soundness, and alkali reactivity) and, to a lesser degree, field visual observations.

Emphasis in this study is on the identification of Class I basin-fill coarse aggregate. These deposits are considered to be the primary sources of concrete and road-base materials for MX construction. Results of the study are presented in a 1:125,000 scale aggregate resources map (Drawing 2) and are summarized as follows:

- Coarse Aggregate Extensive Class I coarse aggregate deposits are located in Cave and Steptoe valleys in:
 - a. Alluvial fan deposits (Aafs, Aaf) along the east and west sides of the central and northern Steptoe Valley study area;
 - b. Alluvial fan deposits (Aafs) in southwestern Cave Valley; and
 - c. Older lacustrine deposits (Aols) in southern Cave Valley.

Potentially suitable Class II coarse aggregate sources are widespread in the study area. They are typically located within alluvial fan (Aafs, Aaf, Aafg), older lacustrine (Aols), and undifferentiated alluvial (Au) deposits flanking Class I and/or Class II rock sources.

2. <u>Fine Aggregate</u> - Many coarse aggregate basin-fill sources are also potential multiple sources (coarse and fine) that will supply varying quantities of fine aggregate either from the natural deposit or during processing. Class I fine aggregate (multiple-type) sources were specifically delineated in alluvial fan (Aaf, Aafs) and undifferentiated alluvial (Au) deposits in the northeastern Steptoe Valley study area.

- 3. Crushed Rock Abundant Class I crushed rock sources are present throughout the study area. The most suitable units are:
 - a. Undifferentiated carbonate rocks (Cau) from the Guilmette Formation;
 - b. Limestone (Ls) from the Pogonip Group, the Joana and Ely limestones, and undifferentiated upper Cambrian, Pennsylvanian, and Permian rocks;
 - c. Dolomite (Do) from the Laketown, Sevy, and Simonson dolomites;
 - d. Quartzite (Qtz) from the Prospect Mountain, Eureka, and Scotty Wash quartzites; and
 - e. Granitic rock (Gr) in southern Cave Valley.

The usability of any of these rock units as sources of crushedrock aggregates depends on their accessibility and minability within the study area.

Additional aggregate testing and field investigations will be required to further refine the lateral and vertical extents of classification boundaries and define exact physical and chemical characteristics of a particular deposit or rock source within the study area.

1.0 INTRODUCTION

1.1 STUDY AREA

This report presents the results of the Valley-Specific Aggregate Resources Study (VSARS) completed for Cave and Steptoe valleys (Figure 1). The study area is located in portions of Lincoln and White Pine counties, Nevada. Cave and Steptoe valleys are north-south trending alluvial basins bounded by mountain ranges of sedimentary and/or igneous rocks. The Egan Range lies to the west and the Schell Creek and Duck Creek ranges to the east. Adjoining basins are Spring, Lake, Muleshoe, and White River valleys. Paved road access into Steptoe Valley is via U.S. and State Highway 6/50/93. Graded roads and four-wheel-drive trails are present throughout the study area.

The study area is comprised mainly of desert rangeland managed by the Bureau of Land Management (BLM). Portions of the northern site area are part of the Humboldt National Forest. Isolated private land and localized mining claims are also present.

1.2 BACKGROUND

The MX aggregate program began in 1977 with the investigation of Department of Defense (DoD) and BLM lands in California, Nevada, Arizona, New Mexico, and Texas (FN-TR-20D). Refinement of the MX siting area added portions of Utah and Nevada that were not studied in the initial Aggregate Resources Evaluation Investigation (AREI). This additional area (Figure 2), defined as the Utah Aggregate Resources Study Area (UARSA), was evaluated in

the fall 1979, and a second general aggregate resources report (FN-TR-34) was submitted on 3 March 1980. Both general aggregate investigations were designed to provide regional information on the location, quality, and quantity of aggregates that could be used in the construction of the MX system.

Subsequent to the general studies, VSARS were developed in FY 79 to provide more-detailed information on potential aggregate sources in specified valley areas.

1.3 OBJECTIVES

The primary objective of the VSARS program is to classify, on a valley basis, basin-fill deposits and rock units for suitability as concrete and road-base construction materials. The format is designed to select and present the locations of the most acceptable aggregate sources for preliminary construction planning and follow-on detailed aggregate investigations.

1.4 SCOPE

The scope of this investigation required office and field studies and included the following:

- Collection and analyses of available existing data on the quality and quantity of potential concrete aggregate and road-base material sources. American Society of Testing and Materials (ASTM) standards and Standard Specifications for Public Works Construction (SSPWC) were used to evaluate quality.
- 2. Aerial and ground reconnaissance of all identified potential aggregate sources in the valley area, with more-detailed investigation and sample collection of likely basin-fill (coarse and fine aggregates) and rock (crushed-rock aggregates) construction material sources.
- 3. Laboratory testing to supplement available existing data and to provide detailed information to assist in determining the

Ettec

- suitability of specific basin-fill or rock as construction material sources within the study area.
- 4. Development and application of an aggregate classification system (Section 2.5) that emphasizes aggregate type (coarse, fine, or crushed rock) and potential construction use (concrete and/or road base).

2.0 STUDY APPROACH

2.1 EXISTING DATA

Collection of existing test data from available sources was an important factor in the VSARS program. The principal source of existing data pertaining to aggregate construction materials was the Nevada Department of Highways (Appendix A). The majority of this information is related to the use of aggregate material for asphaltic concrete, base course in road construction, or ballast material; however, many of the suitability tests for these types of construction materials are similar to those for concrete and are applicable to this investigation.

2.2 SUPPLEMENTAL ERTEC DATA

Supplemental Ertec data were obtained from 1) field data and supplementary test data collected during the general aggregate resources studies (FN-TR-20D), 2) Cave and Steptoe valleys Verification studies (E-TR-27), and 3) previous Valley Specific Aggregate Resources Studies (FN-TR-37; E-TR-37). These data were used to supplement the data obtained from this investigation presented in Appendix A.

The primary objective of the general aggregate study was a regional evaluation and ranking of all potential aggregate sources. Eight data points from the general aggregate studies were located within the Cave and Steptoe Valley VSARS area (Drawing 1). These data supplied specific aggregate information which included one 150-pound sample collected for limited laboratory testing (Appendix A).

Geologic maps produced as part of Ertec's MX Verification program were an initial source of information on the type and extent of basin-fill units within specific valley areas. While the Verification studies were not specifically designed to generate aggregate information, much of the data collected is applicable to the evaluation of aggregates in the valley. Data from five trenches, excavated during Verification studies, were used in the evaluation of grain-size gradations in the study area (Appendix A). Depths of the selected trenches ranged from 9 to 12 feet (2.7 to 3.7 m).

The VSARS program required aerial and ground reconnaissance of the study area for purposes of collecting additional information and to verify conditions determined during the data review. Included in the 50 field station data stops that were established as part of the Cave and Steptoe VSAR studies was the collection of 28 bulk samples for additional laboratory testing. Coarse- and fine-aggregate basin-fill samples were collected by sampling stream cuts or existing man-made exposures. rock aggregate samples were obtained from exposures of fresh or slightly weathered in-place rock material whenever possible. The weight of the samples collected ranged between 100 and 150 pounds. Hand samples were collected from rock units for office In addition, field observations were made regarding the general accessibility and minability of the potential basin-fill and crushed-rock aggregate sources examined at the field station data stops.

Identification of basin-fill materials in all field studies followed ASTM D 2488-69, Description of Soils (Visual-Manual Procedure), and the Unified Soil Classification System (Appendix C). Rock identification followed procedures described in the Quarterly of the Colorado School of Mines (Travis, 1955) and Standard Investigative Nomenclature of Constituents of Natural Mineral Aggregates (ASTM C 294-69).

2.3 DATA ANALYSIS

Geologic and engineering criteria were used in the evaluation of potential aggregate sources within the study area. These were supplemented by laboratory analysis of selected samples during the valley-specific aggregate testing program (Table 1). Coarse aggregate is defined as predominantly plus 0.185 inch (4.75 mm) fine gravel to boulder basin-fill material. Fine aggregate is defined as less than 0.375 inch (9.5 mm) and predominantly less than 0.185 inch (4.75 mm), but greater than 0.0029 inch (0.074 mm), coarse to fine sand basin-fill material. The abrasion, soundness, and alkali reactivity results were considered the most critical laboratory tests for determining the use and acceptablity of a potential aggregate source.

2.4 PRESENTATION OF RESULTS

Results of the study are presented in text, tables, appendices, and two 1:125,000 scale maps. Drawing 1 presents the location of all data sites within the study area. Drawing 2 presents the location of all VSARS laboratory sample collection sites; all potential basin-fill and rock aggregate sources within the

ACTM TECT	SAMPLE TYPE AND NUMBER OF TESTS							
ASTM TEST	COARSE	FINE	ROCK					
ASTM C-88; SOUNDNESS BY USE OF MAGNESIUM SULFATE	8	17	20					
ASTM C-131; RESISTANCE TO ABRASION BY USE OF THE LOS ANGELES MACHINE	17	NA	11					
ASTM C-136; SIEVE ANALYSIS	17	17	NA					
ASTM C-289; POTENTIAL REACTIVITY OF AGGREGATE (CHEMICAL METHOD)	7	4	4					
ASTM C-127 AND C-128; SPECIFIC GRAVITY AND ABSORPTION	4	4	2					

MX SITING INVESTIGATION
DEPARTMENT OF THE AIR FORCE
BMO/AFRCE-MX

AGGREGATE RESOURCES STUDY
AGGREGATE TESTS
CAVE AND STEPTOE VALLEYS, NEVADA

25 SEPT 81

TABLE

study area; and the classification of all potential aggregate sources according to proposed aggregate use and type (Section 2.5).

Geologic unit symbols utilized in Drawing 2 relate to standard geological nomenclature whenever possible. Undifferentiated basin-fill deposits and rock units were established primarily to accommodate accuracy of data and map scale and may contain deposits which could supply significant quantities of high-quality materials. A conversion table to relate these geologic symbols to the geologic whith nomenclature used in Ertec Verification studies is conversion appendix E.

All contacts which represent distinct boundaries between geologic units are shown as solid lines in Drawing 2. The contacts are dashed where the data were extrapolated beyond the limits of the source data or where accuracy of the data may be questionable. Local small deposits of one geologic unit may be found in close association with a larger deposit of a different geologic unit. Due to the reconnaissance level of the field investigation or map-scale limitations, these smaller deposits could not be depicted on the aggregate resources map and have been combined with the more prevalent material. Similarly, potential aggregate source classifications are preliminary and may contain lesser amounts of material of another use or type. Therefore, all classification lines are dashed and delimit the best aggregate evaluations possible at this level of investigation. In cases of highly variable rock or basin-fill units and limited

aggregate tests, boundaries could not be drawn and individual sample information is presented in Drawing 2.

Appendix A contains tables summarizing the basic data collected during Ertec's supplemental field investigations, the results of Ertec's supplemental testing programs, and existing test data gathered from various outside sources. Also included in the appendices are an explanation of caliche development (Appendix B), the Unified Soil Classification System (Appendix C), photographs of typical aggregate sources within the Cave and Steptoe valleys study area (Appendix D), and a geologic unit cross-reference table (Appendix E).

2.5 PRELIMINARY CLASSIFICATION OF POTENTIAL AGGREGATE SOURCES

A system was developed to preliminarily classify all potential aggregate sources in the study area. This classification is designed to present potential sources of coarse, fine, coarse and fine (multiple source), and crushed-rock aggregate types within a valley-specific area (Drawing 2) based on potential aggregate use (Table 2). Concrete aggregate parameters, as stated in ASTM C33-78, are the principal consideration since materials suitable for use as concrete aggregates are generally acceptable for use as road-base material. Therefore, the three classifications described below are based primarily on results of the abrasion, soundness, and alkali reactivity tests.

Class I Potentially suitable concrete aggregate or road-base material sources. Coarse and crushed-rock aggregates which either passed abrasion, soundness, and alkali reactivity tests or passed abrasion and soundness

		AGGREGATE USE CLASSIFICATION					
AGGREGA	ATE CHARACTERIST	CLASS I	CLASS II	II CLASS III			
ABRASION RI	ESISTANCE, PERCENT W	< 50	< 50 < 50				
SOUNDNESS, PERCENT LOSS ³	COARCE ACCRECATE	Na SO ₄	<12 >12		>12		
	COARSE AGGREGATE	Mg SO ₄	< 18	>18	>18		
	FINE AGGREGATE	Na SO4	< 10	>10	> 10		
	TIME Addited Are	Mg SO4	< 15	> 15	>15		
POTENTIAL ALKAL	I REACTIVITY 4	INNOCUOUS TO POTENTIALLY DELETERIOUS	DELETERIOUS	DELETERIOUS			

- 1. AGGREGATE CHARACTERISTIC BASED ON STANDARD TEST RESULTS
- 2. ASTM C131 (500 REVOLUTIONS)
- 3. ASTM C88 (5 CYCLES)
- 4. ASTM C289

MX SITING INVESTIGATION DEPARTMENT OF THE AIR FORCE BMO/AFRCE-MX

PRELIMINARY AGGREGATE CLASSIFICATION SYSTEM VALLEY-SPECIFIC AGGREGATE RESOURCES STUDY

25 SEPT 81

TABLE :

tests and were not tested for alkali reactivity; fine aggregates which either passed soundness and alkali reactivity tests or passed soundness tests and were not tested for alkali reactivity.

- Class II Possibly unsuitable concrete aggregate/ potentially suitable road-base material source. Coarse, fine, and crushed-rock aggregates which either failed the soundness and/or alkali reactivity tests or were classified only by field visual observations or other test data.
- Class III Unsuitable concrete aggregate or road-base material sources. Coarse and crushed-rock aggregates which failed the abrasion test and were excluded from further testing. Fine and occasionally coarse aggregates composed of significant amounts of clay- and silt-sized particles.

Sources not specifically identified as Class I, II, or III from the three critical test results or clay- and silt-sized particle content are designated as Class II sources. All classifications are preliminary as additional field reconnaissance, testing, and case history studies needed to confirm adequacy, delimit areal boundaries, and define exact physical and chemical characteristics.

The following publications/sources were used in defining the three use classifications:

- 1. ASTM C33-78A Standard Specifications for Concrete Aggregate;
- 2. SSPWC Part II Construction Sections 200-1.1, 1.4, 1.5, and 1.7;
- 3. Literature applicable to concrete aggregates;
- 4. Industrial producers of concrete aggregates; and
- 5. Consultants in the field of concrete aggregates.

3.0 GEOLOGIC SETTING

3.1 PHYSIOGRAPHY

The study area lies entirely within the Great Basin physiographic subprovince (Fenneman, 1946). Primary physiographic features are controlled by block faulting which has produced uplifted north-south trending mountain ranges and intervening down-dropped alluvial basins.

Cave and southern Steptoe valleys are the basins within the study area. They are bounded on the west by the Egan Range and on the east by the Schell Creek and Duck Creek ranges. Elevations of the basins range from approximately 6000 feet (1829 m) in both valleys to 7000 feet (2134 m) in Cave Valley and approximately 7400 feet (2256 m) in Steptoe Valley.

Drainage in Cave Valley is internal into the Cave Valley playa. Shoreline features in Cave Valley indicate that the maximum Pleistocene lake level elevation was approximately 6140 feet (1871 m). Steptoe Valley drainage is open to the north.

3.2 LOCATION AND DESCRIPTION OF GEOLOGIC UNITS

Geologic units representing all eras of geologic time are present within the study area. In general, the sedimentary rock units shown in Drawing 2 are Paleozoic, the volcanics are late Mesozoic and Cenozoic, while the basin-fill material is Cenozoic.

Paleozoic rocks are present throughout a large portion of the area and consist of limestone and dolomite with lesser amounts

Ettec

of quartzite, sandstone, siltstone, and shale. Major exposures are located along both sides of the study area in the Egan, Schell Creek, and Duck Creek ranges.

Mesozoic and Cenozoic volcanic rocks crop out within the mapped area. They consist predominantly of ash-flow and airfall tuffs and lava flows of dacitic to rhyolitic composition. These rocks are exposed in the Egan and Schell Creek ranges. Intrusive igneous rocks of dioritic composition are present in the southern part of the study site in the southern Schell Creek Range.

Cenozoic alluvial deposits unconformably overlie older units and consist of late Tertiary fanglomerate and Quaternary alluvial fan, older lacustrine, and stream-channel and terrace deposits. The late Tertiary fanglomerates and Quaternary older lacustrine deposits are exposed in Cave Valley. Alluvial fan deposits are extensive and widespread throughout the study area.

These geologic units have been grouped into seven rock units and four basin-fill units for use in discussing potential aggregate sources. Grouping of these units is based on similarities in physical and chemical properties and map-scale limitations. The resulting units allow for simplicity of discussion and presentation without altering the conclusions of this study. Due to differences in the geologic data base used in compiling Drawing 2 (Lincoln County geologic map in the south and White Pine County geologic map in the north), slight differences exist in

the grouped geologic units. These will be mentioned in the following text where appropriate.

3.2.1 Rock Units

Geologic rock units were grouped into the following seven categories (Drawing 2): quartzite (Qtz), limestone (Ls), dolomite (Dc), carbonate rocks undifferentiated (Cau), sedimentary rocks undifferentiated (Su), granitic rocks (Gr), and volcanic rocks undifferentiated (Vu).

3.2.1.1 Quartzite - Qtz

Four quartzite units are present in the study area. They are the Precambrian McCoy Creek Group, the Cambrian Prospect Mountain Quartzite, the Ordovician Eureka Quartzite, and the Mississippian Scotty Wash Quartzite. The McCoy Creek Group is exposed only within the Egan Range in the northern part of the mapped area. The unit consists of thick-bedded, medium-grained, gray to olive quartzite with lesser amounts of dolomite and mica-schist. The Prospect Mountain crops out in the Egan Range, near the northern boundary of the study area, in the Duck Creek Range, and in the Schell Creek Range near the center of the study area. It is predominantly medium- to thick-bedded, fineto medium-grained, pinkish-gray quartzite with locally inter-The Eureka Quartzite is located throughout the bedded shale. area and consists of thin- to thick-bedded, fine- to mediumgrained, white to reddish-brown vitreous orthoguartzite with some interbedded sandstone and shale near the base and top of the formation. With the exception of a sampled outcrop in in northern Cave Valley, the Eureka Quartzite was mapped with the underlying Pogonip Group (Ls) in White Pine County. The Scotty Wash Quartzite is mapped in the Egan Range only within Lincoln County. It consists of thin- to medium-bedded, reddish-brown quartzitic sandstone with local shale beds.

3.2.1.2 Limestone - Ls

Limestone is a carbonate rock that comprises much of the Paleozoic section. Mapped units in the study area consist of Cambrian Pole Canyon Limestone, undifferentiated middle and upper
Cambrian rocks, Ordovician Pogonip Group (includes Eureka
Quartzite in White Pine County), Mississippian Joana (mapped
with Devonian and Mississippian clastic [Su] units in White Pine
County), Pennsylvanian Ely, and Permian undifferentiated limestones (Pennsylvania and Permian limestone units are undifferentiated and mapped together in White Pine County). These units
are exposed throughout the area and are typically hard, thin- to
very thick-bedded, fine- to coarse-grained, light- to dark-gray
limestone with interbedded sandstone, siltstone, shale, chert,
and dolomite.

3.2.1.3 Dolomite - Do

Dolomite is a carbonate rock with high magnesium content that is found extensively within the Paleozoic section. Units mapped as dolomite include the Ordovician Ely Springs, Silurian Laketown, and Devonian Sevy and Simonson dolomites. Dolomite is exposed throughout the area and is typically medium to thick bedded, fine to coarse grained, medium to dark gray with interbedded sandstone, siltstone, shale, chert, and limestone.

3.2.1.4 Carbonate Rocks Undifferentiated - Cau

Undifferentiated carbonate rock units were mapped where complex, interbedded sequences of limestone and dolomite were present or where map scale prevented delineation of individual carbonate rock units. The Devonian Guilmette Formation is mapped as an undifferentiated carbonate rock unit within the study area. It is exposed in all mountain ranges and consists of medium— to thick-bedded, fine— to medium—grained, medium— to dark—gray limestone and dolomite with interbedded chert and sandstone.

3.2.1.5 Sedimentary Rocks Undifferentiated - Su

Undifferentiated sedimentary rocks were mapped where interbedded sandstone, siltstone, shale, limestone, and dolomite are exposed. The highly interbedded nature of these units prevents separation into individual rock types. These units are exposed throughout the study area and consist of Cambrian Pioche and Patterson Pass shales (in Lincoln County only), Mississippian Chainman Shale (in Lincoln County), undifferentiated Devonian and Mississippian rocks (in White Pine County), the upper sandstone member of the Pennsylvanian Ely Limestone, and the Permian Rib Hill Sandstone, Arcturus Formation, and Park City Group. These units are typically variegated, thin-bedded shale and siltstone or fine- to medium-grained, yellow to brown calcareous sandstone with interbedded limestone.

In addition, late Tertiary fanglomerates in northern Cave Valley are also mapped as undifferentiated sedimentary units. These

units are typically moderately well-indurated, silica-cemented, poorly bedded conglomerate and sandstone.

3.2.1.6 Granitic Rocks - Gr

Granitic rocks are exposed only in the southern Schell Creek Range near the southern boundary of the study area. This unit is a medium- to coarse-grained, brownish-gray dioritic intrusive composed predominantly of feldspar and lesser amounts of quartz and mafic minerals.

3.2.1.7 Volcanic Rocks Undifferentiated - Vu

Tertiary and locally Cretaceous undifferentiated volcanic rocks occur extensively throughout the study area. These rocks consist of a variety of interlayered volcanic ash-flow and air-fall tuffs and lava flows. Composition ranges from dacitic to rhyolitic. Individual rock units have not been delineated separately because of complex lithology and map-scale limitations.

3.2.2 Basin-fill Units

Four basin-fill units were mapped within the study area. These consist of older lacustrine (Aol), alluvial fan (Aaf), stream-channel and terrace (Aal), and undifferentiated alluvial (Au) deposits. Grain-size designations have been assigned to basin-fill units in the Verification mapped areas. Basin-fill units which have high silt and/or clay content are considered unsuitable aggregate sources (Class III) and will not be discussed. These unsuitable materials are present in active playa, and some alluvial fan and older lacustrine deposits generally located near the valley center.

3.2.2.1 Older Lacustrine Deposits - Aol

Older lacustrine deposits are mapped only in Cave Valley (locally small playa deposits may be present throughout the study area within other mapped units). The deposits ... Cave Valley are exposed over a large area in the southern part of the valley. Older lacustrine deposits at an elevation of approximately 6140 feet (1871 m) are typically shoreline features composed of poorly graded, moderately well-stratified, loose to medium-dense sand with gravel and silt. Deposits within the valley center are generally poorly graded, moderately well-stratified, stiff, sandy silt and clay.

3.2.2.2 Alluvial Fan Deposits - Aaf

Alluvial fans are present in both Cave and Steptoe valleys and form the most extensive basin-fill deposit in the study area. They are moderately well- to poorly graded, poorly stratified sandy gravel and gravelly sand composed of subangular to angular clasts. Alluvial fans are generally coarse-grained near the mountain front and fine-grained near the basin center. Composition of surrounding source rock strongly controls the textural properties of alluvial fan deposits. Fans derived from quartzite and carbonate rocks show a greater range of gradation (boulders to clay), whereas, fans derived from volcanic and granitic sources are predominantly sand. Caliche development (Appendix B) ranges from none to Stage III, depending on fan age, composition, and gradation.

3.2.2.3 Stream-Channel and Terrace Deposits - Aal

Stream-channel and terrace deposits are widespread throughout the study area although most are too small to depict at the 1:125,000 map scale of Drawing 2. Mapped deposits are present along significantly large ephemeral drainages and are typically poorly graded, moderately well-stratified silt and sand with some gravel, cobbles, and boulders. Locally these units may be predominantly gravel.

3.2.2.4 Alluvial Deposits Undifferentiated - Au

Undifferentiated alluvial deposits consist of combinations of basin-fill units that were not delineated and/or mapped in the northern Steptoe Valley study area during Verification studies. Undifferentiated alluvial deposits in this area are unstratified to stratified mixtures of boulders, cobbles, gravel, sand, silt, and clay derived from a variety of rock sources.

4.0 POTENTIAL AGGREGATE SOURCES

Based on the results of field visual observations and laboratory testing, basin-fill material was first subdivided into categories based on gradation (i.e., coarse, fine, and multiple sources [coarse and fine]). The material was then classified as belonging to one of the three use catagories (Section 2.5). Coarse aggregate (gravel to boulders) included material predominantly retained on the No. 4 sieve (0.185 inch [4.75 mm]). Fine aggregate (predominantly sand) includes material entirely passing the 3/8-inch sieve (0.375 inch [9.5 mm]), almost entirely passing the No. 4 sieve (0.187 inch [4.75 mm]), and retained on the No. 200 sieve (0.0029 inch [0.074 mm]). Rock units were classified only into the three use catagories.

Classification boundaries (Drawing 2) of basin-fill aggregate sources were generalized and will require additional studies to accurately define their location. Boundaries of identified crushed-rock sources are based on the areal extent of the geologic formations tested (i.e., Eureka Quartzite, Laketown Dolomite) and not on the aggregate geologic unit (i.e., Qtz, Do) described in Section 3.2.1.

4.1 BASIN-FILL SOURCES

4.1.1 Coarse Aggregate

4.1.1.1 Potentially Suitable Concrete Aggregate or Road-Base Material Sources - Class I

Class I coarse aggregate sources are located predominantly in alluvial fan deposits in Steptoe Valley and alluvial fan and older lacustrine deposits in Cave Valley.

E Ertec

Major Class I coarse aggregate sources are located in alluvial fan deposits (Aafs, Aaf) along the east and west sides of the central and northern Steptoe Valley study area (Drawing 2). These deposits in Steptoe Valley are typically moderately graded, poorly to moderately well-stratified, loose to mediumdense sandy gravel with some local silty gravel. subangular to subrounded limestone with lesser amounts of dolomite and quartzite. Percentage of sand-sized material in tested samples ranges from 23 to 50 percent. Laboratory test results indicate acceptable abrasion and soundness losses and potential alkali reactivity results (where tested) were innocuous. Overburden is generally less than 3 feet (0.9 m) thick and consists of slightly cemented soils (Stage I and II caliche). Access and minability are good to very good at the tested sites. ries of these source areas are tentative and will require additional studies for accurate delineation.

Alluvial fan deposits (Aafs) along the eastern flank of the Egan Range in southern Cave Valley are a Class I coarse aggregate source. These deposits are moderately graded, poorly to moderately well-stratified, medium-dense sandy gravel with 30 to 42 percent sand in tested samples. Subangular to subrounded clasts of limestone predominate. Laboratory tests show acceptable abrasion and soundness test results. Potential alkali reactivity test results were innocuous. Overburden consists of 3 to 6 feet (0.9 to 1.8 m) of soil with Stage I caliche development. Access and minability are good to very good.

Older lacustrine deposits (Aols) in southern Cave Valley are also a Class I coarse aggregate source. Tested samples indicate these deposits are poorly to moderately graded, moderately well-stratified, loose to medium-dense sandy gravel with subrounded clasts of limestone and dolomite. Acceptable abrasion and soundness test results were obtained, but potential alkali reactivity was not tested. Overburden generally consists of 3 feet (0.9 m) of soil with Stage I caliche development. Access and minability are considered good.

A stream channel and terrace deposit (Aalf) in southern Steptoe Valley was also found to be a Class I coarse aggregate source. The area sampled, a coarse-grained deposit which was localized within generally a finer-grained stream-channel deposit, was moderately to well-graded, moderately well stratified, medium-dense sandy gravel. The clasts were subrounded and the deposit consisted of 34 percent sand-sized particles. Acceptable abrasion and soundness losses were reported but potential alkali reactivity was not tested. Overburden consists of 3 feet (0.9 m) of soil with Stage I caliche development. Access and minability are very good. Boundaries for this unit could not be drawn from the field reconnaissance and limited laboratory testing and will require additional field studies for accurate delimitation.

Although additional investigations will be necessary, deposits bordering Class I and possibly Class II rock may qualify as Class I coarse aggregate sources.

4.1.1.2 Possibly Unsuitable Concrete Aggregate/Potentially Suitable Road-Base Material Sources - Class II

Two Class II coarse aggregate sources were identified by test They are located in alluvial fan deposits (Aafs) and undifferentiated alluvial deposits (Au) in the northern portion of the Steptoe Valley study area. These deposits are typically moderately to well-graded, moderately well- to well-stratified, loose to medium-dense sandy gravel with subangular to subrounded clasts of limestone and/or sandstone. Sand-sized material ranges from 25 to 35 percent in tested samples. The alluvial fan sample showed acceptable abrasion test results but unacceptable soundness losses. The undifferentiated alluvial deposit sample had acceptable abrasion and soundness values but had deleterious potential alkali reactivity results. Overburden is generally less than 3 feet (0.9 m) and consists of poorly developed soil with Stage II to III caliche development. Access and minability are very good.

Additional Class II coarse aggregate sources mapped in Drawing 2 will require further investigation for accurate delineation. Class II coarse aggregate sources should also be available in alluvial fan (Aaf), older lacustrine (Aol) and undifferentiated alluvial (Au) deposits near Class I and Class II carbonate or quartzitic rocks.

4.1.1.3 Unsuitable Concrete Aggregate or Road-Base Material Sources - Class III

No unsuitable coarse aggregate sources were identified by laboratory testing in the study area during the valley-specific investigation.

4.1.2 Fine Aggregate

4.1.2.1 Potentially Suitable Concrete Aggregate or Road-Base Material Sources - Class I

Class I fine aggregate sources are located in alluvial fan (Aaf, Aafs) and undifferentiated alluvial (Au) deposits along the western margin of the Duck Creek Range in Steptoe Valley. alluvial fan deposits are also mapped as a Class I coarse aggregate source (Section 4.1.1.1) and are therefore multiple sources (Drawing 2). These deposits are poorly to moderately graded, moderately well-stratified, loose to medium-dense sandy gravel with predominantly subangular clasts of limestone, dolomite, and Gravel proportions range from 45 to 74 percent of the tested deposits. Laboratory results for fine aggregates indicate acceptable standards for soundness and alkali reactivity (two samples were found to be potentially deleterious). Over-burden consists of less than 3 feet (0.9 m) of soil with Stage I and II caliche development. Access and minability are very good. Boundaries of this source area are tentative, and further investigations will be necessary for more accurate definition.

The Class I fine aggregate source located in the undifferentiated alluvial deposit (Au) in the northern portion of the Steptoe Valley study area consists of moderately graded, well-stratified, loose to medium-dense sandy gravel with subangular to subrounded clasts of limestone. Where sampled, gravel comprises 63 percent of the deposits. Acceptable soundness losses were obtained but the sample had potentially deleterious

alkali reactivity results. Overburden consists of 2 feet (0.6 m) of soil with Stage II and III caliche development. Access and minability are very good. Limits of this source could not be defined without further investigations.

Although no other Class I fine aggregate sources were identified from laboratory tests within the study area, field observations indicate that additional Class I fine aggregate sources may exist adjacent to Class I and/or Class II crushed-rock sources.

4.1.2.2 Possible Unsuitable Concrete Aggregate/Potentially Suitable Road-Base Material Sources - Class II

Widespread Class II fine aggregate sources were identified from test results in most types of basin-fill deposits (Aaf, Aol, Aal) within the study area. Tested samples failed to meet acceptable Class I standards for soundness and/or alkali reactivity. The physical properties, composition, and source of these samples vary widely. They are typically poorly to moderately graded, moderately well-stratified, medium-dense sandy gravel composed of subangular to subrounded clasts of carbonate and/or volcanic rocks. Most Class II fine aggregate sources are associated with Class I coarse aggregate sources (Section 4.1.1.1). Field observations and laboratory test data for the sources are presented in Appendix A.

Class II fine aggregate sources are typically located in alluvial fan (Aaf) and older lacustrine (Aol) deposits basinward of Class I and Class II rock sources and should be available from most Class I and Class II basin-fill areas depicted in Drawing 2.

4.1.2.3 Unsuitable Concrete Aggregate or Road-Base Material Sources - Class III

Class III fine aggregate sources are located in the central valley basins and are comprised predominantly of older lacustrine, recent playa, and to a lesser degree, alluvial fan and stream-channel and terrace deposits (Drawing 2). These sediments are typically interbeeded medium-dense fine sand and soft to stiff silt and clay. Locally, this mapped unit may contain appreciable sand and/or gravel or may covery coarser-grained deposts in the subsurface.

4.2 CRUSHED-ROCK SOURCES

4.2.1 Potentially Suitable Concrete Aggregate or Road-Base Material Sources - Class I

Class I crushed-rock aggregate sources are widespread throughout the area. Major exposures are located in the Egan, Schell Creek, and Duck Creek ranges. These sources consist predominantly of Paleozoic carbonate and clastic rocks. Mapped units consist of undifferentiated carbonate rocks (Cau) from the Guilmette Formation; limestone (Ls) from the Pogonip Grounp, the Joana, Ely, and undifferentiated Pennsylvania and Permian limestones, and undifferentiated upper Cambrian rocks; Laketown, Sevy, and Simonson dolomites (Do); and Prospect Mountain, Eureka, and Scotty Wash quartzites (Qtz). Granitic rock (Gr) is an additional, but limited Class I crushed-rock source.

The Devonian Guilmette Formation (Cau) is exposed within mountain ranges throughout the mapped area. The Guilmette consits of hard, think- to thick-bedded, fine- to medium-grained, medium-gray, interbedded limestone and dolomite. Laboratory tests

indicate acceptable standards for abrasion and soundness, but samples were not tested for potential alkali reactivity. Similar results were obtained in Dry Lake (FN-TR-37-a), White River (FN-TR-37-c), Hamlin (FN-TR-37-d), and Garden and Coal (E-TR-37-i) valleys. Splitting characteristics are favorable for crushing, and accessibility and minability are good to very good.

The Ordovician Pogonip Group (Ls) is also exposed throughout the area. It is typically moderately hard to hard, thin- to medium-bedded, fine-grained, medium-gray limestone. Acceptable test results were obtained for abrasion, soundness, and alkali reactivity. Splitting characteristics are poor due to the thin-bedded nature of much of the formation. Accessability and minability are generally good.

The Pennsylvanian Ely Limestone (Ls) is mapped as a separate Class I source in Lincoln County but is combined with the Class I undifferentiated Pennsylvanian and Permian limestone (Ls) in White Pine County. The Ely is a hard, thin- to medium-bedded, fine-grained, medium-gray limestone with favorable splitting characteristics. Tested samples exceed Class I standards for abrasion and soundness. However, this unit was not tested for alkali reactivity. Similar test results were reported from Ely Limestone samples collected in Dry Lake (FN-TR-37-a), Hamlin (FN-TR-37-d), Lake (FN-TR-37-f), and Garden and Coal (E-TR-37-i) valleys. Access and minability are generally good.

Undifferentiated upper Cambrian rocks (Ls) and the Mississippian Joana Limestone (Ls) are also mapped as Class I crushed-rock sources. These units were not tested in this study but were tested in nearby VSARS study area (Dry Lake, FN-TR-37-a; Lake, FN-TR-37-f; and Garden and Coal, E-TR-37-i) and found to meet Class I standards. Only limited and scattered exposures of the upper Cambrian rocks exist within the area. The Joana is mapped separately only in Lincoln County and is combined with Devonian and Mississippian clastic units (Su) in White Pine County.

The Silurian Laketown Dolomite (Do) is exposed throughout the area but is most abundant in Cave Valley. The unit consists of hard, thin- to medium-bedded, fine-grained, dark-gray to gray-brown dolomite. Laboratory tests show acceptable Class I abrasion and soundness results. The sample was not tested for potential alkali reactivity. The Laketown also exceeded Class I laboratory standards in Lake (FN-TR-37-f) and Garden and Coal (E-TR-37-i) valleys. Splitting characteristics, accessability, and minability are good.

The Devonian Sevy and Simonson dolomites (Do) were not tested within the study area but are mapped as Class I crushed-rock aggregate sources on the basis of test results from other nearby VSARS areas (Dry Lake, FN-TR-37-a; Hamlin, FN-TR-37-d; and Garden and Coal, E-TR-37-i). These units are typically hard, thin- to thick-bedded, fine-grained, light- to dark-gray dolomite with favorable splitting characteristics. Accessability and minability are good throughout most of the area.

1

The Cambrian Prospect Mountain Quartzite (Qtz) is exposed in the central part of the study area within the Schell Creek Range and in the northern part within the Duck Creek and Egan ranges. The Prospect Mountain is hard to very hard, thick-bedded, medium-grained, purplish-red to light-brown quartzite with only moderately favorable splitting characteristics. Abrasion and soundness tests indicate acceptable losses. The sample was not tested for alkali reactivity. Similar test results were obtained in Lake Valley (FN-TR-37-f). Access and minability are generally good.

The Ordovician Eureka Quartzite (Qtz) is exposed in isolated outcrops throughout the area. In Lincoln County, the Eureka is mapped separately as a Class I quartzite (Qtz). However, in White Pine County, the Eureka is combined with the Pogonip Group (Ls), a Class I limestone. (In northern Cave Valley, a Eureka Quartzite outcrop was tested and mapped separately based on field investigations). The Eureka is a hard- to very hard, thin- to thick-bedded, fine- to medium-grained, white to reddish-brown, vitreous quartzite with favorable splitting characteristics. Abrasion and soundness losses met Class I standards. No alkali reactivity tests were performed. I laboratory test results were also obtained from White River (FN-TR-37-c) and Garden and Coal (E-TR-37-i), however, excessive abrasion losses were obtained from a sample in Dry Lake (FN-TR-37-a). Accessability and minability vary from poor to good depending on location and exposure.

The Mississippian Scotty Wash Quartzite (Qtz) is exposed only within the Egan Range in west-central Cave Valley. This unit thins to the north and is not present in the northern part of the study area. The Scotty Wash consists of moderately hard to hard, thin- to medium-bedded, medium-grained, reddish-brown quartzitic sandstone. Abrasion and soundness losses were high (Appendix A) but within Class I limits. Potential alkali reactivity tests were not performed. Splitting characteristics, accessibility, and minability are considered good.

Granitic rock (Gr) in the Schell Creek Range in the extreme southern part of Cave Valley was sampled and found to be a Class I crushed-rock source. The unit is hard, moderately well-jointed, medium- to coarse-grained, brownish-gray diorite. Abrasion, soundness, and alkali reactivity test results meet Class I requirements. Splitting characteristics are favorable and access and minability are very good.

The Permian Arcturus Formation (Su) is exposed throughout the Steptoe Valley area. It is a moderately hard to hard, thin-bedded, light-gray, sandy limestone and yellow calcareous sandstone. A sample from a limestone bed in the Egan Range met acceptable Class I results for abrasion, soundness, and alkali reactivity. The lithologic variability of the Arcturus and the undifferentiated mapping of the arcturous and the Rib Hill Sandstone in much of Steptoe Valley prevents the delineation of this unit as a Class I source. Further investigations will be necessary to accurately define Class I boundaries of this

formation. Splitting characteristics are good but access and minability vary from poor to good depending on location.

4.2.2 Possible Unsuitable Concrete Aggregate/Potentially Suitable Road-Base Material Sources - Class II

A Class II crushed-rock source was identified in the Permian Park City Group (Su) in the Schell Creek Range near southern Steptoe Valley. The sampled unit consists of hard, thin- to thick-bedded, fine-grained limestone with moderate splitting characteristics. Acceptable abrasion and soundness results were obtained but the sample had deleterious alkali reactivity test results. Access and minability are poor to good.

The remainder of rock units mapped as Class II in Drawing 2 were classified only by field visual observations. The predominant units are the Precambrian McCoy Creek Group (Qtz), the Cambrian Pole Canyon Limestone (Ls) and Patterson Pass Shale (Su), the Mississippian Chainman Shale (Su), undivided Devonian and Mississippian rocks (Su), the sandstone member (Su) of the Pennsylvanian Ely Limestone, the Permian unnamed limestone (Ls), the Rib Hill and Arcturus formations (Su), the undifferentiated volcanic rocks (Vu), and the Tertiary fanglomerate (Su).

4.2.3 Unsuitable Concrete Aggregate or Road-Base Material Sources - Class III

No Class III crushed-rock sources were identified by laboratory testing within the study area during this investigation.

5.0 CONCLUSIONS

Results of the valley-specific aggregate investigation indicate that sufficient supplies of potentially good- to high-quality (Class I and II) basin-fill and crushed-rock aggregate materials are available within the Cave and Steptoe valleys study area to meet construction requirements of the MX system (Drawing 2).

5.1 POTENTIAL BASIN-FILL AGGREGATE SOURCES

5.1.1 Coarse Aggregate

Extensive Class I coarse aggregate deposits, listed in order of potential suitability, have been identified within the following areas:

- Alluvial fan deposits (Aafs, Aaf) along the east and west sides of the central and northern Steptoe Valley study area;
- b. Alluvial fan deposits (Aafs) in southern Cave Valley; and
- c. Older lacustrine deposits (Aols) in southern Cave Valley.

Field observations indicate additional sources of Class I coarse aggregates may be available in alluvial fan (Aaf) or older lacustrine (Aol) deposits adjacent to the rock/alluvium contact of Class I and/or Class II crushed-rock sources.

Potentially suitable Class II coarse aggregate sources are widespread in the study area. They are typically located within alluvial fan (Aaf), older lacustrine (Aol), and undifferentiated alluvial (Au) deposits flanking Class I and/or Class II rock sources.

5.1.2 Fine Aggregate

While most coarse aggregate sources will supply quantities of fine aggregate either from the natural deposits or during processing, Class I fine aggregate (multiple) sources were identified in alluvial fan (Aaf, Aafs) and undifferentiated alluvial (Au) deposits in the northeastern Steptoe Valley study area.

Further field reconnaissance would be required to identify and delineate additional Class I fine aggregate sources. However, based on field observations, potential sources may exist in alluvial fan (Aaf) and older lacustrine (Aol) deposits derived from Class I and/or Class II rock sources.

Extensive Class II fine aggregate sources are generally found basinward of most Class I and Class II rock units.

5.2 POTENTIAL CRUSHED-ROCK AGGREGATE SOURCES

Class I crushed-rock sources are generally exposed throughout the study area. The most suitable units are:

- Undifferentiated carbonate rocks (Cau) from the Guilmette Formation;
- b. Limestone (Ls) from the Pogonip Group, the Joana and Ely limestones, and undifferentiated upper Cambrian, Pennsylvanian, and Permian rocks;
- c. Dolomite (Do) from the Laketown, Sevy, and Simonson dolomites;
- Quartzite (Qtz) from the Prospect Mountain, Eureka, and Scotty Wash quartzites; and
- e. Granitic rock (Gr) in southern Cave Valley.

Other rock units (i.e., quartzite, limestone, dolomite, and undifferentiated carbonate or sedimentary units) within the

study area may provide significant quantities of Class I crushed rock. Undifferentiated volcanic units exhibit greater variability but may produce localized Class I crushed-rock aggregates sources. The majority of the rock units within the study area can be expected to meet Class II requirements.

6.0 BIBLIOGRAPHY

- American Concrete Association, 1975, Durability of concrete, American Concrete Institute Publication, SP-47, p. 385
- American Concrete Institute, 1977, Recommended practice for selecting proportions for normal and heavyweight concrete, American Concrete Institute, 20 p.
- , 1978, Cement and concrete terminology, American Concrete Institute Publication, SP. 19 (78), p. 50
- American Public Works Association, 1970, Standard specifications for public works construction: Part 2, Construction Materials, Sec. 200 Rock Materials, p. 62-70.
- American Society for Testing and Materials, 1975, Significance of tests and properties of concrete and concrete-making materials, American Society for Testing and Materials, Special Technical Publication No. 169-A, p. 571.
- , 1978, Annual book of ASTM standards, Part 14, Concrete and Mineral Aggregates, p. 814.
- Bates, R. L., 1969, Geology of the industrial rocks and minerals, New York Dover Publications, Inc., p. 459.
- Blanks, R., and Kennedy, H., 1955, The technology of cement and concrete, John Wiley & Sons, Inc., v. 1, p. 422.
- Brokaw, A., and Heidrick, T., 1960, Geologic map and section of the Girou Wash quadrange, White Pine County, Nevada, U.S. Geological Survey Map, GQ-476.
- Brokaw, A. L., and Barosh, P. J., 1968, Geologic map of the Rieptown quadrangle, White Pine County, Nevada, U.S. Geological Survey Map, GQ-750.
- Brokaw, A. L., Bauer, H. L., and Breitrick, R. A., 1973, Geologic map of the Ruth quadrangle, White Pine County, Nevada, U.S. Geological Survey Map, GQ-1085.
- Brokaw, A. L., and Shawe, D. R., 1965, Geologic map and sections of the Ely SW quadrangle, White Pine County, Nevada, U.S. Geological Survey Map, I-449.
- Brown, L., 1959, Petrography of cement and concrete, Portland Cement Research Department, Bulletin 111.
- Eakin, Thomas E., 1962, Ground-water appraisal of Cave Valley in Lincoln and White Pine Counties, Nevada, Nevada Department of Conservation and Natural Resources, Ground-water Resources Reconnaissance Series Report, 13, p. 18.

- Eakin, T. E., Hughes, J. L., and Moore, D. O., 1967, Water-resources appraisal of Steptoe Valley, White Pine and Elko Counties, Nevada, Nevada Department of Conservation and Natural Resources, Ground-water Resources Reconnaissance Series Report, 42, p. 47.
- Erlin, B., 1966, Methods used in petrographic studies of concrete, Portland Cement Association, Research Department Bulletin 193, p. 17.
- Ertec Western, Inc., 1981, Aggregate resources study, Garden and Coal valleys, Nevada, Ertec Western Report, E-TR-37-i, p. 43.
- , (in progress), Verification Studies, Cave Valley, Nevada, Ertec Western Report, E-TR-27-CV.
- , (in progress), Verification studies, Steptoe Valley, Nevada, Ertec Western Report, E-TR-27-SO.
- Fenneman, N. M., and Johnson, D. W., 1946, Physical divisions of the United States, U.S. Geological Survey map, scale 1:7,000,000.
- Freedman, S., 1971, High strength concrete, Portland Cement Association, concrete Information Reprint, p. 17.
- Fugro National, Inc., 1978, Aggregate resources report, Department of Defense and Bureau of Land Management lands, southwestern United States, FN-TR-20D, p. 85.
- , 1980, Aggregate Resources Report, Utah-Nevada study area, Fugro National Report FN-TR-34, p. 36.
- , 1980 Aggregate resources study, Dry Lake, Muleshoe, Delamar, and Pahroc valleys, Nevada, Fugro National Report FN-TR-37-a, p. 45.
- , 1980, Aggregate resources study, White River Valley, Nevada, Fugro National Report, FN-TR-37-c, p. 44.
- , 1980, Aggregate resources study, Hamlin Valley, Nevada-Utah, Fugro National Report, FN-TR-37-d, p. 44.
- Nevada, Fugro National Report, FN-TR-37-f, p. 40.
- Gile, L. H., 1961, A classification of Ca horizons in soils in a desert region, Dona Ana County, New Mexico, Soil Science Society America Procedures, v. 25, No. 1, p. 52-61.
- Hadley, D. W., 1961, Alkali reactivity of carbonate rocksexpansion and dedolomitization, Research and Development Laboratories of the Portland Cement Association, Bulletin 139, p. 462-474.

- Hadley, D. W., 1964, Alkali reactivity of dolomitic carbonate rocks, Research and Development Laboratories of the Portland Cement Association, Bulletin 176, p. 19.
- vity of sand-gravel aggregates, Research and Development Laboratories of the Portland Cement Association, Bulletin 221, p. 17-33.
- Hose, R. K., Blake, M. C., Jr., and Smith, R., 1976, Geology and mineral resources of White Pine County, Nevada: Nevada Bureau of Mines and Geology, Bulletin 85, p. 105.
- Howard, E. L., compiler, 1978, Geologic map of the eastern Great Basin, Nevada and Utah, Terra Scan Group LTD., 3 sheets.
- Kellogg, Harold E., 1964, Cenozoic stratigraphy and structure of the southern Egan Range, Nevada, Geological Society America Bulletin 75:949-968.
- Ketner, K. B., 1976, Map showing high-purity quartzite in California, Nevada, Utah, Idaho and Montana, U.S. Geological Survey Map, MF-821.
- Kleinhampl, Frank J., and Ziony, J. I., 1967, Preliminary geologic map of northern Nye County, Nevada, U. S. Geological Survey Open File Map.
- Lerch, W., 1959, A cement-aggregate reaction that occurs with certain sand-gravel aggregates, Research and Development Laboratories of the Portland Cement Association, Bulletin 122, p. 42-50.
- McKee, E. D., and Weir, G. W., 1953, Terminology for stratification and cross-stratification in sedimentary rocks, Geological Society American Bulletin, v. 64, p. 381-389.
- Murphy, J. B., Nichols, S. L., and Schilling, J. H., No date, Rockhound map of Nevada, Nevada Bureau of Mines and Geology, special publication 1.
- National Ready Mixed Concrete Association, 1961, Selection and use of aggregate for concrete, National Ready Mixed Concrete Association, Publication No. 101, p. 513-542.
- National Sand & Gravel Association, 1977, Compilation of ASTM standards relating to sand, gravel and concrete, NSGA Circular No. 113, NRMCA Publication No. 137.
- Nevada Department of Highways, No date, Materials and research laboratory, aggregate test data, unpublished.
- Office of State Inspector of Mines, 1977, Directory of Nevada mine operations active during calander year 1976, Nevada Industrial Commission, p. 59.

*

- Papke, G. K., 1973, Industrial mineral deposits of Nevada, Nevada Bureau of Mines and Geology, map 46.
- Pickett, G., 1956, Effect of aggregate on shrinkage of concrete and hypothesis concerning shrinkage, Portland Cement Association, Research Department, Bulletin 66, p. 5.
- Powers, T. C., and Steinour, H. H., 1955, An interpretation of published researches on the alkali-aggregate reaction, Research and Development Laboratories of the Portland Cement Association, Bulletin 55, Part I and II, p. 497, 785.
- Reid, J. A.. 1904, Preliminary report on the building stones of Nevada, including a brief chapter on road metal, University of Nevada Department of Geology and Mining, v. 1, no. 1, p.57.
- Roper, H., 1960, Volume changes of concrete affected by aggregate type: Portland Cement Association, Research Department Bulletin 123, p. 4.
- Synder, C. T., Hardman, George, and Zdenek, F. F., 1964, Pleistocene lakes in the Great Basin, U.S. Geological Survey Map, I-416.
- Steinour, H. H., 1960, Concrete mix water-how impure can it be? Research and Development Laboratories of the Portland Cement Association, Bulletin 119, p. 33-50.
- Stewart, H., and Carlson, J. E., 1978, Geologic map of Nevada, U.S. Geological Survey Map, scale 1:500,000.
- Travis, R. B., 1955, Classification of rocks, Quarterly of the Colorado School of Mines, v. 50, No. 1, p. 98.
- Tschanz, C. M., and Pamepyan, E. H., 1970, Geology and mineral deposits of Lincoln County, Nevada, Nevada Bureau of Mines Bulletin 73, p. 188.
- U. S. Army Corps of Engineers, 1953, Test data, concrete aggregate in continental U.S.. U. S. Army Corps of Engineers v. 1, areas 2 and 3.
- U. S. Bureau of Land Management, 1974, Nevada BLM Statistics (1974), U. S. Department of Interior, p. 20.
- U. S. Department of the Interior, 1975, Concrete Manual, Water Resources Technical Publication, p. 627.
- , 1974, The mineral industry of Nevada, Bureau of Mines.

- U.S. Department of the Interior, 1966, Concrete Manual: A manual for the control of concrete construction, Bureau of Reclamation, p. 642.
- ______, Lower Colorado Regional Office, Nevada Aggregate Data, unpublished.
- rior, Bureau of Reclamation, p. 810.
- , 1975, Concrete Manual: U. S. Department of the Interior, Bureau of Reclamation, p. 627.
- U. S. Geological Survey, 1964, Mineral and water resources of Nevada: U. S. Government Printing Office, Washington, p. 314.
- Voskuil, W. H., 1966, Selected readings in mineral economics, Nevada Bureau of Mines, Report 12, p. 18.
- Waddell, J., 1976, Concrete inspection manual, International Conference of Building Officials, p. 332.
- Womack, J. C., and others, 1963, Materials manual, California Highway Transporation Agency, v. I and II.

APPENDIX A

ERTEC WESTERN FIELD STATION AND SUPPLEMENTARY
TEST DATA AND EXISTING TEST DATA SUMMARY TABLES
CAVE AND STEPTOE VALLEYS, NEVADA

EXPLANATION OF ERTEC WESTERN FIELD STATION AND SUPPLEMENTARY TEST DATA

Ertec Western field stations were established at locations throughout the valley-specific study area where detailed descriptions of potential basin-fill or rock aggregate sources were recorded (Drawing 1). All field observations and laboratory test data on samples collected at selected stations are presented in Table A-1. Data entries record conditions at specific field station locations that have been generalized in the text and Drawing 2. Detailed explanations for the column headings in Table A-1 are as follows:

Column Heading

Explanation

Map Number

This sequentially arranged numbering system was established to facilitate the labelling of Ertec Western field station locations and existing data sites on Drawing 1 and to list the correlating information on Tables A-1 and A-2 in an orderly arrangement.

Field Station

Ertec Western field station data are comprised of information collected during:

- o The Valley-Specific Aggregate Resources Study; sequentially numbered field stations were completed by two investigative teams (A and B).
- o The general aggregate investigation in Utah (UGS).
- o The Verification study in Cave and Steptoe valleys; trench data (CV-T or SO-T) were restricted to information below the soil horizon 3 to 6 feet (1 to 2 m).

Location

1

1

Lists major physiographic or cultural features in/or near field stations or existing data in which sites are situated.

Column Heading

Explanation

Geologic Unit

Generalized basin-fill or rock geologic units at field station or existing data locations. Thirteen classifications, emphasizing age and lithologic distinctions, were developed from existing geologic maps to accommodate map scale of Drawing 2.

Material Description

Except in cases where soil or rock samples were classified on laboratory results, the descriptions are based on field visual observations utilizing the Unified Soil Classification System (see Appendix C for detailed USCS information).

Field Observations

Boulders
and/or
Cobbles,
Percent

The estimated percentage of boulders and cobbles is based on an appraisal of the entire deposit. Cobbles have an average diameter between 3 and 12 inches (8 and 30 cm); boulders have an average diameter of 12 inches (30 cm) or more.

Gravel

Particles that will pass a 3-inch (76-mm) and are retained on No. 4 (4.75 mm) sieve.

Sand

Particles passing No. 4 sieve and retained on No. 200 (0.075 mm) sieve.

Fines

Silt or clay soil particles passing No. 200.

Plasticity (Index)

Plasticity index is the range of water content, expressed as percentage of the weight of the oven-dried soil, through which the soil is plastic. It is defined as the liquid limit minus the plastic limit. Field classification followed standard descriptions and their ranges are as follows:

None - Nonplastic (NP) (PI, 0 - 4)
Low - Slightly plastic (PI, 4 - 15)
Medium - Medium plastic (PI, 15 - 30)
High - Highly plastic (PI, > 31)

Hardness

A field test to identify materials that are soft or poorly bonded by estimating their resistance to impact with a rock hammer; classified as either soft, moderately hard, hard, or very hard.

The state of the s

Column Heading

Explanation

Weathering

Changes in color, texture, strength, chemical composition or other properties of rock outcrops or rock particles due to the action of weather; field classified as either fresh or slight(ly), moderate(ly), or very weath-

Deleterious Materials

Substances potentially detrimental to concrete performance that may be present in aggregate; includes organic impurities, low-density material, (ash, vesicules, pumice, cinders), amorphous silica (opal, chert, chalcedony), volcanic glass, caliche coatings, clay coatings, mica, gypsum, pyrite, chlorite, and friable materials, also, aggregate that may react chemically or be affected chemically by other external influences.

Laboratory Test Data

Sieve Analysis (ASTM C 136)

The determination of the proportions of particles lying within certain size ranges in granular material by separation on sieves of different size openings; 3-inches, 1 1/2inches, 3/4-inch, 3/8-inch, No. 4, No. 8, No. 16, No. 30, No. 50, No. 100 and No. 200.

No. 8, No. 16, No. 30, No. 50

Asterisked entries used No. 10, No. 20, No. 40, and No. 60 sieves, respectively.

(ASTM C 131)

Abrasion Test A method for testing abrasion resistance of an aggregate by placing a specified amount in a steel drum (the Los Angeles testing machine), rotating it 500 times, and determing the material worn away.

Soundness Test (ASTM C 88) CA, FA

CA = Coarse Aggregate FA = Fine Agregate

The testing of aggregates to determine their resistance to disintegration by saturated solutions of magnesium sulfate. It furnishes information helpful in judging the soundness of aggregates subject to weathering action, particularly when adequate information is not available from service records of the material exposed to actual weathering conditions.

Column Heading

Explanation

Specific Gravity and Absorption (ASTM C 127 and 128)

Methods to determine the Bulk Specific Gravity, Bulk SSD Specific Gravity (Saturated - Surface Dry Basis), and Apparent Specific Gravity and Absorption as defined in ASTM E12-70 and ASTM C 125, respectively.

Alkali Reactivity (ASTM C 289) This method covers chemical determination of the potential reactivity of an aggregate with alkalies in portland cement concrete as indicated by the amount of reaction during 24 hours at 80°C between 1 N sodium hydroxide solution and aggregate that has been crushed and sieved to pass a No. 50 (300 m) sieve and be retained on a No. 100 (150 m) sieve.

· Aggregate Use

- I = Class I; potentially suitable concrete
 aggregate and road-base material
 source
- II = Class II; possibly unsuitable concrete
 aggregate/potentially suitable road base material source
- III = Class III; unsuitable concrete aggregate or road base material source
 - c = coarse aggregate
 - f = fine aggregate
- f/c = fine and coarse aggregate
- cr = crushed rock

All sources not specifically identified as Class I, II, or III from the abrasion, soundness, or alkali reactivity tests or the content of clay— and silt-sized particles, are designated as Class II sources.

1									┥
	MAP NUMBER	FIELD STATION	LOCATION	GEOLOGIC UNIT	MATERIAL Description	USCS Symbol	BOULDERS AND/OR COBBLES. PERCENT	DISTRI MATER THAN PI	4
	1	CV-A1	Cave Valley	Gr	Diorite Intrusive	i			
	2	CV-A2	Cave Valley	Aols	Sandy Gravel	GW-GM			-
	3	CV-A3	Schell Creek Range	Do	Dolomite				
	4	CV-A4	Schell Creek Range	Cau	Dolomite	:			
	5	CV-A5	Schell Creek Range	Do	Dolomite				
	6	CV-A6	Schell Creek Range	Do	Dolomite				
:	7	CV-A7	Schell Creek Range	Qtz	Quartzite				
	8	CV-A8	Egan Range	Do	Dolomite				
i	9	CV-A9	Cave Valley	Ls	Limestone				
	10	CV-A10	Egan Range	Qtz	Quartzite				
	11	CV-A11	Egan Range	Ls	Limestone	İ			
	12	CV-A12	Cave Valley	Aafs	Sandy Gravel	GW-GM			
	13	CV-A13	Egan Range	V u	Quartz Latite				
	14	CV-A14	Cave Valley	Ls	Limestone				

,

لمح

·,

1

		FIE	LD OBSERV	ATIONS										
IBUTIO BIAL FI COBBL PERCENT	NER LES.	PLASTICITY	HARDNESS	WEATHERING	DELETERIOUS MATERIALS		s	IEVE A	NALYS I	S, PER	CENT P	ASSING	(ASTN	C 13
SAND	FINES	PLAS	HAH.	WEAT	MAIERIALS	3"	15"	% "	36"	NO.	NO. 8	NO. 16	NO. 30	NO. 50
			Hard	Slight	10% Biotite] 								
	;	None]		Minor Caliche	100	98.1	85.4	63.1	34.2	18.0	11.7	10.0	9.
	1		Hard	Slight	None									
			Hard	Slight to Mod.	Calcite Veins									l
			Hard	Slight	None									
			Hard	Slight	None							:		i I :
			Very Hard	Slight	Locally Brecciated									
			Hard	Slight	None									
			Hard to Very Hard	Slight	<5% Chert, <5% Low Density Sandstone									
			Hard to Mod.	Slight	Some Interbedded Shale									
			Hard	Slight	5 - 10% Chert									
		None			10% Chert, 5% Low Density Volcanics	100	94.9	76.9	50.6	35.8	27.5	20.8	15.3	10
			Mod.	Mod.	Low Density Volcanics									
			Mod. to Hard	Slight	5 - 10% Chert	1							Ì	

a man minima likelingan isa.

				LABOR	ATORY T	EST DAT	Γ A									
والمساديد والمسادية	C 136)		ABRASION TEST (ASTM C 131)	S DUNDNE (ASTM	SS TEST C 88)		ARSE A	CIFIC ((ASTM GGREGA RAVITY	TE		ABSORP1 128) INE AG FIC GF	GREGAT	100	ALK REACT (ASTM	IVITY
Charles and April	NO. 50	NO. 100	NO. 200	PERCENT WEAR	PERCEN CA	T LOSS	BULK		APPAR- ENT	PERCENT ABSORPTION	BULK	BULK	APPAR- ENT	PERCENT IBSORPTION	CA	FA
	9.1	8.2	6.8	31.8	7.8	20.3	2.51	2.57	2.68	2.50				•	Innocuous	
	:			30.6	2.1											
	10.7	7.8	5.5	46. 0 25. 8	15.7	20.0	2.39	2.48	2.62	3.70	2.32	2.43	2.61	4.87	Innocuous	
				32.4	1.3		,								Innocuous	

ATORY T	EST DAT	A]
			SPEC	IFIC G	RAVITY	AND A	BSORPT	ION		Alv		<u>س</u>
SOUNDNE	SS TEST	- 55	LEAP L	MICA)	C 127	ANU C	INE AG	HOTHITE		ALK. REACT	ALI IVITY	5
(ASTM	C 88)			GGRE GA						REACT (ASTM	C 289)	AGGREGATE USE
		SPECI	FIC GR	AVIIT	E .	SPECI	FIC GR					99
PERCEN		BULK	BULK	APPAR- ENT	PERCENT ABSORPTION	BULK	BULK	APPAR- ENT	PERCENT ABSORPTION	CA	FA	
CA	FA		330	ENI	- 8		330	-	- 3			
7.8 6.9	20.3	2.51	2.57	2.68	2.50					Innocuous		Icr Ic IIf
												Hcr
	i											IIcr
												IIcr
2.1												Icr
				 								IIcr
		 		}								Hcr
					 							Her
15.7												Icr
				} }	i							IIcr
8.8	20.0	2.39	2.48	2.62	3.70	2.32	2.43	2.61	4.87	Innocuous		Ic IIf
	:											Her
1.3										Innocuous		Icr

MX SITING INVESTIGATION
DEPARTMENT OF THE AIR FORCE
BMO/AFRCE-MX

ERTEC WESTERN FIELD STATION
AND SUPPLEMENTARY TEST DATA
CAVE AND STEPTOE VALLEYS, NEVADA

25 SEPT 61

PAGE 1 OF 5

TABLE A-

							RIET	IBUTIO	N OF	
NUMBER	FIELD Station	LOCATION	GEOLOGIC Unit	MATERIAL Description	USCS Symbol	BOULDERS AND/OR COBBLES, PERCENT	MATE	RIAL F N COBBI PERCENT	INER LES,	100000000000000000000000000000000000000
MAP						BOULDE And/or Percen	GRAVEL	SAND	FINES	
15	CV-A15	Cave Valley	Su	Conglomerate			i			Market Salar
16	CV-A16	Egan Range	Cau	Limestone & Dolomite						A CONTRACTOR OF THE PERSON NAMED IN
17	CV-A17	Cave Valley	Aafs	Sandy Gravel	GW-GM		ı			A Shakeman Co.
18	CV-A18	Schell Creek Range	Qtz	Quartzite			1			And the Party of t
19	CV-A19	Cave Valley	Aalf	Silt with Sand & Gravel	ML			i		The second second second
20	CV-A20	Cave Valley	Su	Conglomerate						100.00
21	CV-A21	Schell Creek Range	Qtz	Quartzite						The Charles are not
22	DL-B2	Schell Creek Range	Cau	Limestone						
23	SO-A1	Egan Range	Su	Limestone						
24	SO-A2	Egan Range	V u	Dacitic Ash-flow Tuff						
25	SO-A3	Steptoe Valley	`Aalf	Sandy Gravel	GP-GM					
26	SO-A4	Steptoe Valley	Aafs	Sandy Gravel	GW-GM					
27	SO-A 5	Steptoe Valley	Aafs	Gravelly Sand	SP-SM		•			
1		L						——		

and the second s

FIE	LD OBSERVA	TIONS										<u> </u>	
PLASTICITY	HARDNESS	WEATHERING	DELETERIOUS Materials		S	IEVE AI	NALYSIS	S, PER	CENT P	ASSING	(ASTM	C 136)
PLA	H	WEA		3"	15"	¾ "	3/6"	NO.	NO. 8	NO. 16	NO. 30	NO. 50	NO. 100
	Mod.	Mod.	5% Volcanics, Chert										
	Hard	Slight	Calcite veins										
None	Hard to Very Hard	Slight	5 - 10% Chert None	100	97.4	85.6	68.9	49.2	32.9	21.6	15.7	11.6	9.3
Low			70% Silt	i F									
	Mod.	Mod.	70% Low Density Volcanic Clasts										
	Hard to Very Hard	Slight	None										
	Very Hard	Slight	None	 						!			
	Mod.	Slight	Marly, Shaley			:							
	Hard	Slight to Mod.	25% Biotite			:							
None			Minor Caliche	93.2	84.7	73.0	58.8	43.5	33.5	24.8	19.2	15.0	12.3
None			5% Chert, 5% Low Density Sandstone	92.5	85.9	74.9	57.1	42.1	32.3	22.1	15.5	11.0	8.2
None			Minor Caliche		100	97.2	84.6	58.3	35.9	21.1	14.2	11.0	9.6

<u>. </u>															
			ATORY T	EST DAT	ГА										
		ABRASION TEST (ASTM C 131)				SPEC	CIFIC	GRAVITY C 127	AND	ABSORP	TION		Alk	(A1.1	۳ ا
	ı	AS! EST	SOUNDNE	T23T 22 C 88)		ARSE A	GGREGA		AND	THE AG	GREGAT		REACT	(AL1 TIVITY C 289)	8
	!	ABR T ASTM	(ASIM	C 88)		FIC GR				FIC GF		12.0	(ASTM	C 289)	AGGREGATE USE
NO. 100	NO. 200	PERCENT WEAR	PERCEN	T LOSS	BULK	BULK	APPAR- ENT	PERCENT ABSORP TION	BULK	BULK	APPAR- ENT	PERCENT IBSORPTION	CA	FA	V
		WEAR.	GM	- ra	<u> </u>		-	-	 		-				
					1								,	Ì	IIcr
					1				İ	ĺ					
		25.6	1.0		1										Icr
									1	1			•	t.	
9.3	7.5	26.1	7.2	17.7	•				İ	ļ			Innocuous	Ì	IC IIf
		26.8	0.5		ĺ		İ		}					1	Icr
					1		Ì		ŧ					:	
					Ì		Ì	Ì	į		-				II f
		į			ĺ				Í						111
					1		ļ	İ	Í						IIc
		l												Ì	
		33.7	2.0				[•	<u> </u>		İ	!		1	Icr
							1	ł I	}				<u> </u>		
				!							}				
			1		ļ		ŀ	ĺ			Ì			}	IId
			ł 		ļ						}				
j			<u> </u>								ĺ				IId
		1					1				Í			1	IId
								1							
12.3	9.8	27.2	5.3	22.5				(}		IC II
													_		1 1
8.2	5.0	31.0	8.6	20.6	2.53	2.59	2.68	2.22	2.52	2.57	2.64	1.83	Innocuous		IC
		25.5		24.0]							11
9.6	8.1	35.5	9.0	24.8	İ		ļ					<u> </u>	ł	}	Ic
			<u> </u>		<u> </u>	L	<u></u> _	<u> </u>		L	<u></u>	<u> </u>	<u> </u>	<u></u>	

ERTEC WESTERN FI AND SUPPLEMENTAL CAVE AND STEPTOE VA

25 SEPT 81

PAGE 2 OF

SOUNDNE (ASTM	SS TEST	CO		OFFIC G (ASTM GGREGA	C 127	AND C	IBSORPT 128) INE AG			ALK/ REACT	IVITY	AGGREGATE USE
(851	0 00,	SPECI	FIC GR	AVITY	NT FION	SPECI	FIC GR	AVITY	FE	(ASTM (289)	668 U
PERCEN CA	T LOSS	BULK	BULK	APPAR- ENT	PERCENT Absorption	BULK	BULK	APPAR- ENT	PERCENT 1850APT10N	CA	FA	4
								-				Hcr
1.0												Icr
7.2	17.7									Innocuous		Ic IIf
0.5										'		Icr
												IIf
												Her
2.0												Icr
												IIcı
							:					IIci
								!				IIcı
5.3	22.5		:					'	}			Ic IIf
8.6	20.6	2.53	2.59	2.68	2.22	2.52	2.57	2.64	1.83	Innocuous		Ic IIf
9.0	24.8								1			IIf

MX SITING INVESTIGATION
DEPARTMENT OF THE AIR FORCE
BMO/AFRCE-MX

ERTEC WESTERN FIELD STATION
AND SUPPLEMENTARY TEST DATA
CAVE AND STEPTOE VALLEYS, NEVADA

26 SEPT 81

PAGE 2 OF B

TABLE A:1

NUMBER	FIELD STATION	LOCATION	GEOLOGIC Unit	MATERIAL Description	USCS Symbol	BOULDERS AND/OR COBBLES, PERCENT	MATE THA	RIBUTIO RIAL F N COBB PERCENT	INER Les,
MAP						BOULDER And/or Percent	GRAVEL	SAND	FINES
28	SO-A6	Steptoe Valley	Aafs	Silty Gravel with Sand	GM				
29	SO-A7	Steptoe Valley	Aafs	Silty Gravel with Sand	GM				
30	SO-B1	Steptoe Valley	Aaf	Sandy Gravel	GP-GM				j
31	SO-B2	Steptoe Valley	Aaf	Gravelly Sand	SP-SM		l'		
32	SO-B3	Heusser Mountain	Qtz	Quartzite			l		
33	SO-B4	Steptoe Valley	Au	Sandy Gravel	GW		!		
34	SO-B5	Steptoe Valley	Aaf	Sandy Gravel	GW-GM				
35	SO-B6	Duck Creek Range	Ls	Limestone					
36	SO-B7	Steptoe Valley	Aaf	Silty Gravel with Sand	GM		i		
37	SOB8	Duck Creek Range	Do	Limestone & Dolomite					
38	SO-B9	Duck Creek Range	Cau	Limestone			i	 	
39	SO-B10	Schell Creek Range	Su	Limestone					
40	SO-B11	Schell Creek Range	Ls	Limestone					

	FIE	LD OBSERV	ATIONS		T				.					
3	PLASTICITY	HARDNESS	WEATHERING	DELETERTOUS MATERIALS		S	IEVE AI	NALYSI	S, PER	CENT P	ASSING	(ASTM	C 136)
FTINES	PLA	¥	WEA		3"	1½"	34"	3/8"	NO.	NO. 8	NO. 16	NO. 30	NO. 50	NO. 100
	Low			5% Chert	100	95.9	88.8	74.3	55.1	43.8	34.8	29.0	24.4	20.9
	None			5% Chert, 5% Low Density Material		100	97.4	84.4	55.4	41.2	31.0	24.9	20.8	16.7
	None			Caliche	100	90.4	77.6	61.8	47.9	37.0	26.5	18.8	11.9	8.3
And the state of t	Low	}		Chert										A TOTAL TOTAL
	,	Hard	Slight	None									!	
	None			<5% Shale	100	91.4	75.1	55.1	37.3	27.9	19.8	14.4	6.4	3.4
	None		}	Caliche	100	93.7	80.0	62.3	48.7	34.0	23.5	18.3	14.3	11.2
		Hard	Mod.	Calcite Veins		!								
	None			Caliche		100	91.5	73.2	54.9	43.4	35.1	29.4	23.6	19.5
		Hard to Very Hard	Slight	Chert							· ·			
		Hard	Slight	Calcite Veins, Mineralization								}		
		Hard	Slight	None									ĺ	
		Hard	Slight	Chert										

		LABOR	ATORY	EST DA	TA									 	
		ABRASION TEST (ASTM C 131)	S DUNDNI (ASTM	ESS TEST C 88)			GGREGA	C 127	AND (128)	GGRE GAT	100	REAC	KAL1 TIVITY C 289)	AGGREGATE USE
0.0	NO. 200	PERCENT WEAR	PERCEN CA	T LOSS	BULK	BULK	APPAR- EN)	PERCENT ABSORPTION	BULK	BULK	APPAR- ENT	PERCENT ABSORPTION	CA	FA	AG
0. 9	16.3	25.3	7.2	24.2											Ic IIf
6.7	12.3	36.3	11.4	31.5] 										Ic II f
8.3	5.7	27.2	6.7	20.2											Ic II f
								}		<u> </u> 					IIf/c
															Her
3.4	2.5	25.6	3.5	9.8									Deleterious	Potentially Deleterious	IIc If
1.2	8.0	30.7	1.7	10.9	2.73	2.75	2.78	0.77	2.64	2.69	2.78	1.94	Innocuous	Innocuous	Ic/f
						ı									Her
9.5	15.4	23.2	0.9	5.6	2.60	2.62	2.65	0.75	2.57	2.65	2.77	2.80	Innocuous	Innocuous	Ic/ f
										 - -					Hcr
		28.9	2.7			:									Icr
		24.8	1.4										Deleterious		IIct
		23.2	1.2												Icr

MX SITM DEPARTMEN

ERTEC WESTERN FIEL
AND SUPPLEMENTARY
CAVE AND STEPTOE VALI

25 SEPT 81

PAGE 3 OF

			SPECIFIC GRAVITY AND ABSORPTION										
SOUNDNESS TEST (ASTM C 88) PERCENT LOSS		(ASTM C 127 AND C 128) COARSE AGGREGATE FINE AGGREGATE							ALKAL1		YA T		
						SPECIFIC GRAVITY				REACTIVITY (ASTM C 289)		AGGREGATE USE	
		T	200		4 9 5	3120	·		1 E E			A G.G	
CA		BULK	BULK	APPAR	PERCENT ABSORPTION	BULK	BULK	APPAR- ENT	PERCENT IBSORPTION	CA	FA		
7.2	24.2				×	1		-				Ic	
11.4	31.5											IIf	
****	31.5											Ic II f	
6.7	20.2											Ic II f	
									}			IIf/c	
												Hcr	
3.5	9.8									Deleterious	Potentially Deleterious	IIc If	
1.7	10.9	2.73	2.75	2.78	0.77	2.64	2.69	2.78	1.94	Innocuous	Innocuous	Ic/f	
												Hcr	
0.9	5.6	2.60	2.62	2.65	0.75	2.57	2.65	2.77	2.80	Innocuous	Innocuous	Ic/f	
												Ilcr	
2.7												Icr	
1.4										Deleterious		IIcr	
1.2												Icr	

MX SITING INVESTIGATION DEPARTMENT OF THE AIR FORCE BMO/AFRCE-MX

ERTEC WESTERN FIELD STATION
AND SUPPLEMENT/RY TEST DATA
CAVE AND STEPTOE '/ALLEYS, NEVADA

25 SEPT 81

PAGE 3 OF 8

TABLE A-1

4

O

NUMBER	FIELD STATION	LOCATION	GEOLOGIC UNIT	MATERIAL Description	USCS	BOULDERS AND/OR COBBLES, PERCENT	DISTRIBUTION O MATERIAL FINEN THAN COBBLES, PERCENT		
MAP			-		V	BOULDER AND/OR PERCENT	GRAVEL	SAND	
41	SO-B12	Steptoe Valley	Aalg	Sandy Gravel	GP-GM	:			
42	SO-B13	Steptoe Valley	Aafs	Sandy Gravel	GP-GM				
43	SO-B14	Egan Range	Su	Limestone					
44	SO-B15	Steptoe Valley	Aafs	Sandy Gravel	GP-GM				
45	SO-B16	Egan Range	₩	Rhyolitic Ash- flow Tuff		:			
46	SO-B17	Steptoe Valley	Aafs	Sandy Gravel	GP-GM				
47	SO-B18	Egan Range	Su	Limestone					
48	SO-B19	Egan Range	Vu	Rhyolitic Ash- flow Tuff					
49	SO-B20	Egan Range	Ls	Limestone					
50	SO-B21	Egan Range	Aaf	Sandy Gravel	GW				
51	NV-R-39	Schell Creek Range	Ls	Limestone with Interbedded Dolomite					
52	NV-R-40	Steptoe Valley	Au	Sandy Gravel	GP				
53	NV-R-41	Steptoe Valley	Au	Sandy Gravel/ Gravelly Sand	SP-SM/ GP-GM		45	45	1

	FIFI	D OBSERVA	ZNOITA		T						. -			
P R	PLASTICITY	HARDNESS	WEATHERING	DELETERIOUS Materials		S	IEVE A	NALYSIS	S, PER	CENT P	ASSING	(ASTM	C 136)
FINES	PLAS	HAR	WEAT	MAJERIALS	3"	15"	¾"	34"	NO.	NO.	NO. 16	NO. 30	NO. 50	NO. 100
Manager Control	None			Friable Sandstone & Siltstone	100	98.0	87.9	64.3	39.1	25.6	18.8	14.9	11.5	9.0
	None			Friable Sand- stone, Caliche	95.2	86.1	65.2	43.5	30.6	26.1	22.2	18.9	14.3	9.8
	,	Mod. to Hard	Slight to Mod.	Chert										
	None			Volcanic Glass, Friable Sandstone	96.2	84.8	68.9	49.1	34.1	24.9	19.1	15.9	13.5	11.7
		Mod.	Mod.	Low Density Volcanics, Mica					i i					
	Low			Caliche	100	97.8	91.3	69.6	45.4	29.8	21.8	18.1	14.6	11.5
		Hard	Slight	None										
	 	Mod. to Hard	Slight to Mod.	Low Density Volcanics, Mica		! !								
		Hard	Slight	Chert (Locally Abundant)										
	None			Caliche	94.0	75.9	57.8	39.0	26.3	18.4	11.2	7.0	4.9	4.2
		Hard				i i								
	None			10% Volcanic Glass		96.6	81.7	57.9	37.1	24.9	17.3	8.7		
10	None			15% Volcanic Glass								<u>.</u>		

			ATORY T	EST DAT	TA .								· · · · · · · · · · · · · · · · · · ·		
		ABRASION TEST (ASTM C 131)	S DUNDNE (ASTM	SS TEST C 88)			GGREGA	C 127	AND C	ABSORP 128) INE AG IFIC GF	GREGAT		ALP REACT (ASTM	(AL! TIVITY C 289)	AGGREGATE USE
10. 00	NO. 200	PERCENT WEAR	PERCEN CA	T LOSS FA	BULK	BULK SSD	APPAR- ENT	PERCENT ABSORPTION	BULK	BULK SSD	APPAR- ENT	PERCENT ABSORPTION	CA	FA	~
9.0	7.2	33.9	8.3	26.6											Ic IIf
9.8	5.5	25.4	15.3	28.6											IIc/
		23.8	0.4		2.68	2.70	2.72	0.55					Innocuous		Icr
11.7	9.2	28.6	6.8	24.5							<u>;</u>				Ic IIf
] 					Her
11.5	8.8	32.1	7.5	28.2						:					Ic II f
													i		licr
			! 												IIC E
												(lici
4.2	3.5	25.1	2.4	13.7									Innocuous	Potentially Deleterious	Ic/i
															IIc
															IIc
			ļ									! (;			He

MX SIT

ERTEC WESTERN FIL AND SUPPLEMENTAN CAVE AND STEPTOE VA

25 SEPT 81

PAGE 4 OF

j	ATORY T	EST DAT	TA										
	SOUNDNE (ASTM	SS TEST		ARSE A	CIFIC ((ASTM GGREGA	TE		TINE AG	GREET		ALK REACT (ASTM	AL1 IVITY	AGGREGATE USE
	L		SPECI	FIC GR	AVITY	50	SPEC	IFIC G	RAVITY	높은	(AS1M	C 289)	899
	PERCEN CA	T LOSS FA	BULK	SSD	APPAR- ENT	PERCENT ABSORPTION	BULK	BULK SSD	AP PAR - ENT	Percent Absorption	CA	FA	₹
The same of the sa	8.3	26.6								•			Ic IIf
	15.3	28.6		{ 									IIc/f
	0.4		2.68	2.70	2.72	0.55					Innocuous		Icr
	6.8	24.5											Ic IIf
													Her
	7.5	28.2					:						Ic IIf
							1						Her
													IIcr
													Her
	2.4	13.7						:			Innocuous	Potentially Deleterious	Ic/f
								,					IIcr
													IIc/f
													IIc/f

MX SITING INVESTIGATION
DEPARTMENT OF THE AIR FORCE
BMO/AFRCE-MX

ERTEC WESTERN FIELD STATION
AND SUPPLEMENTARY TEST DATA
CAVE AND STEPTOE VALLEYS, NEVADA

26 SEPT 81

PAGE 4 OF 5

TABLE A.

					1		 -	- -	 – _ _	FIEL	D OBSI
P NUMBER	FIELD STATION	LOCATION	GEOLOGIC Unit	MATERIAL Description	USCS	BOULDERS AND/OR COBBLES, PERCENT	DISTI MATE THA	RIBUTI RIAL F N COBB PERCEN	INER LES,	PLASTICITY	HARDNESS
MAP				 		BOULDE AND/OR Percen	GRAVEL	SAND	FINES	PLAS	HAR
54	NV-R-42	Egan Range	Cau	Limestone				 			Hard
55	NV-R-43	Egan Range	Ls	Limestone			1				Hard
56	NV-H-31	Duck Creek Range	Qtz	Quartzite			9	! !		,	Hard
57	NV-H-32	Duck Creek Range	Ls	Limestone							Mođ. Har
58	NV-H-33	Heusser Mountain	Ls	Limestone						} }	Hard
59	CV-T-1	Cave Valley	Aafs	Sandy Gravel	GP					•	
60	CV-T-5	Cave Valley	Aols	Silty Sand	SM						
61	CV-T-6	Cave Valley	Aolf	Silty Sand	SM					i i	
62	SO-T-1	Steptoe Valley	Aafs	Silty Gravel with Sand	GM.				; ;		
63	SO-T-3	Steptoe Valley	Aafs	Gravelly Sand	SP			} } 			
		,						}			
						,	i				

and the second s

BSERV	ATIONS													L/
HARDNESS	REATHERING	DELETERIOUS Materials		S	IEVE A	NALYSI	S, PER	CENT P	ASSING	(ASTM	C 136)		ABRAS I ON Test
¥	WEAT	MATERIALS	3"	15"	* "	36"	NO.	NO.	NO. 16	NO. 30	NO. 50	NO. 100	NO. 200	PERC WEA
iard	}	Chert												
la rd		Minor Chert								1				
Bard							a*		<u> </u>	ļ			!	
Mod. Mard		Calcite) }			,	
Sard		Calcite					<u> </u> 			}				
			100	74.2	62.7	50.4	43.8	*37.8	*33.2	*28.8	*18.5	7.8	3.8	}
			}				100	*99.9	*99.0	*98.1	*92.4	66.5	39.7	
				100	92.9	91.1	89.4	*85.5	*77.1	*64.3	*55.3	47.5	37.0	
				100	87.0	67.9	49.0	*36.0	*27.7	*23.4	*20.3	18.2	14.1	
				100	95.5	83.4	74.7	*59.1	*35.0	*19.6	*11.1	7.2	4.9	
										<u> </u> 				
						!		!						<u> </u>
	1			}		i							,]

Ĭ.							_						
LABOR	ATORY 1	TEST DAT	ΓA									······································	
31.)]		<u> </u>	SPE	CIFIC	RAVITY	AND	BSORP	TION				μ
EST C 1	SOUNDNI	ESS TEST	l co	ADCE A	GGREGA	C 127		THE AG	GRE GAT	,—	ALK REACT	ALT IVITY	EGA
ABRIA TE ASTU	(ASTM	C 88)		FIC GR				FIC GF			(ASTM	C 289)	AGGREGATE USE
ERCENT	PERCEN	IT LOSS	BULK	BULK	APPAR-	PERCENT IBSORPTION	BULK	BULK	APPAR	PERCENT IBSORPTION	CA	FA) ¥
WEAR	CA	FA	- DOLK	SSD	ENT	ABS P	BUCK	SSD	ENT	88	UA	ra	
	}									-		l	IIcr
													IIcr
	<u> </u> 		,	ļ									
	1			1									Her
													Iler
													}
ı	<u> </u>					ı							Her
	}					ı							IIc/f
													IIf
													IIf
													IIc/f
											i I		
													IIf
											:		,
]				!							
1													
			į			ŀ							
		}											
ŀ			ļ					1					
- 1		1	1		J	J			l	ı		1	1

MX SITING INVESTIGATE
DEPARTMENT OF THE AIR (
BMO/AFRCEMX

ERTEC WESTERN FIELD STATION
AND SUPPLEMENTARY TEST DATA
CAVE AND STEPTOE VALLEYS, NEVADO

25 SEPT 81

PAGES OF S

EXPLANATION OF EXISTING DATA

Existing data pertaining to aggregates were extracted from the State of Nevada Department of Highways. These reports are compilations of available site data from existing files and records and are intended to accurately locate, investigate, and catalog materials needed for highway construction. Explanations for column headings which appear in Table A-2, that have not been previously discussed in Table A-1, are given below:

Column Heading

Explanation

Site Number

State of Nevada Department of Highways pit or site number. Locations correspond to map numbers listed on this table and placed in Drawing 1.

Soundness Test

The testing of aggregates to determine their resistance to disintegration by saturated solutions of sodium sulfate. It furnishes information helpful in judging the soundness of aggregates subject to weathering action particularly when adequate information is not available from service records of the material exposed to actual weathering conditions.

NUMBER	NUMBER			C UNIT	MATERIAL	USCS SYMBOL				
MAP NU	SITE N	DATA SOURCE	LOCATION	GEOLOGIC	DESCRIPTION	s sosn	> 6"	3"	1½''	
64	WP10-1	Nevada Highway Department	Steptoe Valley	Aaf	Sandy Gravel	GP		97		
65	W-4	Nevada Highway Department	Steptoe Valley	Aaf	Sandy Gravel	GP			86.1	69
ļ										
1										
				:						
_										

-	" -			SIEVE		rsis	٤.,						131)	SS	88)		SPE	
_		•		PERCE	NT PAS	SING						ABRASION (ASTM C	SOUNDNESS	(ASTM C	CO	ARSE A	GC	
		L.,	1,11	1,,,	3/8"	NO.	NO.	NO.	ND.	NO.	NO.	NO.				SPECI	FIC GR	AV
	1	ኣ ''	ኝ ''	ሄ"	78	4	10	16	40	50	100	200	PERCENT WEAR	PERCEN CA	T LOSS	BULK	SSD	A
		71		l l	30													
٠		}																
,	69.9	61.4	51.8		47.1	37.8							20.8	5.2		1	2.51	
		j			1								i					
ļ					}		<u>.</u>	!			1				li			
ļ					1	:	ş						i					
				} }	:													
				}														
				ļ														
																	<u>.</u>	
		i.			 								j					
				;														
										! !					<u> </u>			
		!																
		L		L	L	1	i	L	1	L	L	L	<u></u>	l	L	ı	<u> </u>	1

<u> </u>														
N TEST 131)	ESS	(ASTM C 88)		SPE	CIFIC (ASTM	GRAVIT			TION		INDEX 23 1)	ALKALI RE	ANTIVITY	
S 10)	NON		CO	ARSE A	GGREGA		FI	NE AGI	GREGATE		TY 1 424 424)	ALKALI KE (ASTM		
ABRASION (ASTM C	20	(ASI	SPECI	FIC GR	AVITY	PERCENT ABSORPTION	SPECI	FIC GR	RAVITY	PERCENT ABSORPTION	0 H			
PERCENT	PERCE	IT LOSS	BULK	BULK	APPAR- ENT	PERC	BULK	BULK	APPAR-	PERC	PLASTIC (ASTM AND D	CA	FA	
WEAR	<u>UA</u>	FA		330		-	<u> </u>	330	LIVI	=				}
WEAR 20.8	5.2	FA	BUCK	2.51	ENT	d W	BULN	SSO	ENT		NIP		ra	

MX SITING INVESTIGATION
DEPARTMENT OF THE AIR FORCE
BMO/AFRCE-MX

EXISTING TEST DATA

CAVE AND STEPTOE VALLEYS, NEVADA

S SEPT BY

PAGE 1 OF 1

TABLE A

APPENDIX B
SUMMARY OF CALICHE DEVELOPMENT

DIAGNOSTIC CARBONATE MORPHOLOGY

STAGE	GRAVE	LLY SOILS		NO	NGRAVELLY SOILS
1	Thin, discont	inuous pebble	coatings	Few filam	ents or faint coatings
п	Continuous po interpebble f	ebble coatings, illings	some	Few to ab filaments	undant nodules, flakes,
ш	Many interpel	oble fillings		Many nodu fillings	les and internodular
11	Laminar horiz horizon	on overlying p	lugged	Laminar h horizón	orizon overlying plugged
	STAGE GRAVELLY SOILS	I Weak Ca	II Strong Ca		IV Indurated K K21m K22m K3
	MONGRAVELLY SOILS			1	K21m K22m K3

MX SITING INVESTIGATION
DEPARTMENT OF THE AIR FORCE
BMO/AFRCE-MX

SUMMARY OF CALICHE DEVELOPMENT

25 SEPT 81

APPENDIX B

APPENDIX C UNIFIED SOIL CLASSIFICATION SYSTEM

3	Mit ni		sand fr. Alterberg limits below toon smit. Alterberg limits below the same of Pless Alterberg limits below the same of the s	niificetic	and 120%	beteen	ns as ar	Atterberg limits below "A" line with Pl		Company and a see the see of the	ni svius x sb ní v	Sale files	10 a	00 10 20		wn; slightly for laborators clarest-control of fine grained exite	
Information Required for Describing Souls	Give typical name; Indicate ap- proximate percentages of aand	and gravel; maximum size; angularity, surface condition, and hardness of the coarse	grains, total or godings, farms and other pertinent descriptive information; and symbols in parentheses	For undisturbed soils add informa- tion on stratification, degree of compactness, cementation,	mosture conditions and dhunage characteristics Example: Sity sand, gravelly: about 20%	nato, anguar gravel paricks i-in maximum size; rounded and subengular sand grains coarte to fine about 14 % soon	plastic fines with low dry strength; well compacted and most in place; alluval sand;	(W S)			Cive typical name; indicate degree and character of plasticity, amount and maximum size of	condition, odour if any, local or geologic name, and other pertinent descriptive information and symbol is perentheses	For undisturbed soits add infor-	mation of structure, strainten- tion, consistency in undisturbed and remoulded states, moisture and designed conditions	Example:	Clayey silt, brown; Mightly plastic; small percentage of	nne sano: numerous vertical
Typical Names	Well graded gravels, gravel- sand mixtures, little or no fines	Poorly graded gravels, gravel- sand mixtures, little or no fine	Sity gravels, poorly graded gravel-sand-silt mixtures	Clayey gravels, poochy graded gravel-sand-clay mixiures	Well graded sands, gravelly sands, bitte or no fines	Poorly graded sands, gravelly sands, little or no fines	Sily sends, poorly graded send- silt mixtures	Clayey sands, poorly graded sand-clay mixtures			Inorganic silts and very fine sands, rock flour, silty or clayey fine sands with slight plasticity	Inorganic clays of low to medium plasticity, gravelly clays, andy clays, sily clays, lean clays	Organic silts and organic silt-	Inorganic selts, micaceous or distomaceous fine sandy or silty soils, classic silts	Inorganic clays of high plas- ticity, fat clays	Organic clays of medium to high plasticity	
Symbols	ŝ	ક	3	ပွ	ÀS	\$	N.	દ્વ	Ī		N.	ช	70	HM	C.W	ИО	
	grain size and substantial	range of alzes tizes exissing	Scation pro-	n procedures,	d substantial liate particle	range of sizes tites missing	Scation pro-	a procedures,	40 Sieve Size	Toughness (consistency near plastic limit)	None	Medium	Slight	Slight to medium	High	Slight to medium	our, odour,
lures basing fraction.	in grain size and substantial of all intermediate particle	unity one size of a range of sizes me intermediate sizes missing	fines (for identification pro- see ML below)	es (for identification procedures, below)	in grain sizes and substantial of all intermediate particle	Predominantly one size or a range of sizes with some intermediate sizes missing	: fines (for identification pro-	s (for identification procedures, below)	Smaller than No. 40 Sieve Siac	Dilatancy (reaction to shaking)	Quick to slow	None to very slow	Sion	Slow to none	None	None to very slow	lentified by colour, odour,
Califor Proced (hea) in and led weights)	Wide range is amounts o	Predominant with some	Nomphastic B. cedures see	Plastic fines (5	Wide range in amounts or since	Predominant with some	Nonplastic Br cedures, 1	Plastic fines (for i	os Fraction Sm	Dry Strength (Crushing character- istics)	None to	Medium to high	Slight to medium	Slight to medium	High to very high	Medium to high	Readily iden
Field Identification Procedures (Excheding particle, larger than 3 in. and basing fractions on estimated weights)	and:	(1141) (1141)	ne t ni f se No 4 s OM Se S	madi 1	sansilentes sus class equivalents class equivalents (Cless equivalents)	Ction is No. 4 No. 4 Sec visu seciable of visu (es)	ibne? signa? signa; signa signa ag	Identification Procedures on		yalo bna ilmit bit 98 asdi	ipil isəl		17MH	bra 2 brup 19163 02	118 118		
			el lai-	300 PEAC	Coerns-sra then half then No. then No.	190M 1981M 9131/160		us sųs s		1986 24 2512 9V	arije suse Stips	e baniary issam to vaie 005.	Hed i	ME IPPO	PM		

All serve sizes on this chart are U.S. standard.

These pockdures are to be performed on the minus No. 40 sieve size particles, special and the received the performed on the minus No. 40 sieve size more than the construction of the minus No. 40 sieve size more than the construction of the construction of shaking:

These pockdures are to be performed on the minus No. 40 sieve size model and performed on the minus No. 40 sieve size model and performed on the minus No. 40 sieve size model and performed on the minus No. 40 sieve size model and so size of the performed on the model and the performed on the construction to the construction of size of the performed on the construction of the construction of size of the performed on the minus No. 40 size of the performed on the construction to the construction of size of the performed on the minus No. 40 size of the performed on the construction to the construction of size of the performed on the construction of size of the performed of special size of the performed on the construction of size of the performed on the construction of size of the performed on the construction of special size of the performed on the construction of size of the performed on the construction of size of the performed on the special size of the performed on the construction of size of the special size of the performed on the special size of the performed on the special size of the performed on the special size of the special size of the performed on the special size of the performed on the special size of the special size of the special size of the performed on the special size of the speci Distancy (Reaction to Babling):

After removing particles larger than No. 40 sere size, prepare a partners, After removing particles larger than No. 40 sere size, prepare a part of mosts soil with a volume of about one-half cube inch. Add enough mosts soil with a volume of about one-half cube inch. Add enough mosts to it meets are to soil that not start. A posture traction vincensis of the appearance of valer on the surface of the pat which changes to a livery consistency and becomes alony. When the ismopie is squeezed between the fine-size it passes the fineers, the valer and sloss disappear from the surface, the pass stiffing and fastilly it cracks or cumble; The rapidity of appearance of valer during shakant and oils disappearance during valer fact that the control of the first in a soil.

Very fine clean stands are the description of the first in a soil.

Very fine clean stands are the description of the first in a soil.

For a plaint clay has no resultion. Integene sitts, such as a typical rock.

Tourishous Constituents man plastic limit):

After removing particle larger than the No. 40 serv size, a specimen of party. If too dry, water man is the added and i study, the specimen of party. If too dry, water man is be added and i study, the specimen of party is too dry, water man be added and i study, the specimen of the object of the programment of the plastic party and allowed to lose some monsture by responsion. Then the speciment is critical out by hand on a smooth surface or between the pains into a thread about one-call inch in dismetter. The threat a time folded and re-critical responsion. The surface of the month of the plastic limit is reached.

After the thread crimbbe, the paese should be lumped together and a plastic limit and the sings when the plastic thin threat man that the man public that there man the plastic limit and the sings when it is faulty crimbbes, the more potent is the colocidal city fraction in the soil. Welchers of the thread to the plastic limit and speck loss of coherence of the lump below the plastic limit indicate cither mortgalic city of posteriory or metertals that he is abolicatlype citys and organic citys which occur below the A-time.

MX SITING INVESTIGATION DEPARTMENT OF THE AIR FORCE **BMO/AFRCE-MX**

UNIFIED SOIL CLASSIFICATION SYSTEM

APPENDIX C

25 SEPT 81

APPENDIX D

CAVE AND STEPTOE VALLEYS, STUDY AREA PHOTOGRAPHS

Alluvial Fan Deposit (Aafs) in southwestern Cave Valley; Class I coarse/Class II fine aggregate source (Station 17).

MX SITING INVESTIGATION
DEPARTMENT OF THE AIR FORCE
BMO/AFRCE-MX

CAVE AND STEPTOE VALLEYS STUDY AREA PHOTOGRAPH

Undifferentiated Alluvial Deposit (Au) in northern Steptoe Valley; Class II coarse/Class I fine aggregate source (Station 33).

MX SITING INVESTIGATION
DEPARTMENT OF THE AIR FORCE
BMO/AFRCE-MX

CAVE AND STEPTOE VALLEYS STUDY AREA PHOTOGRAPH

Simonson Dolomite (Do) in southern Schell Creek Range; Class I crushed rock aggregate source (Station 3).

MX SITING INVESTIGATION
DEPARTMENT OF THE AIR FORCE
BMO/AFRCE-MX

CAVE AND STEPTOE VALLEYS STUDY AREA PHOTOGRAPH

Arcturus Formation (Su) in central Egan Range; depicted limestone bed is a Class I crushed rock aggregate source (Station 43).

MX SITING INVESTIGATION
DEPARTMENT OF THE AIR FORCE
BMO/AFRCE-MX

CAVE AND STEPTOE VALLEYS STUDY AREA PHOTOGRAPH

APPENDIX E

*

1

ERTEC WESTERN, INC., GEOLOGIC UNIT CROSS REFERENCE

1

5.

AGGREGATE RESOURCES

GEOLOGIC ERTEC WESTERN GENERAL GEOLOGIC UNIT SYMBOLS UNIT EXPLANATION Same in legions where rock is exposed, the areally produment spreads than 10 percent rock type is indicated. In those areas where two rock types occur the prodominant rock type is setting in Same fattoned by the superinante rock type in g. $\sum_{i=1}^{n} I_{n,j}$ in Saccing to Laberradon risk opening $\left\{\frac{1}{n}\right\}_{n=1}^{n}$ ignicion: - publiffEntatiatib - Acces formed by sorigification of a motten or postially matter mass of a motion of particley various mass. [] Introduce of motion rects formed by solidrication of motion waterial mendath loss surface or a grantic grandwards defects games. [] Extrusive intermediate and costs: Engages rects at intermediate and accidic composition formed by serviciation of mental moderate and mages the sortace of a imposite, lattic decise andescine. [] Extrusive intermediate and accidic composition of the solid composition Gr -Ta Estrusive opiniciation decha farmed by accumulation of variance ejecta in g. ash. tuff weight duff, agglements. S SEGMENTARY (MMIFFERENTIATES - Backs termed by accumulation of classic solids angenic solids and or chemically pro-cipitated minerals S. Arenaceous and Dr. Striceous Rocks - Composer of Sand Size particles to g sandstone acthogostrictet or of cryptocrystafine strice to g opps cheft. Su, Qtz S: Canomate Bocs - Congeses predominantly of calcium canomate settings at chemical precipitates in g immissione dailosity chair. Ls, Do, Cau -S. Cannel Court of the Court of Su Mu -METANORPHIC UNDEFFERENTIATED Reces formed through re-crystactization in The social state of pressisting rocks by host and pressure By Reas and pressure By Consequence (rect formed by higher-grade) registed metamorphism of their bandes or granulax registed metamorphism of their bandes or granulax registed metamorphism registed by index grade registed metamorphism of school title phylline bonteliated recht formes chiefly by contact metamor-phism e.g. hornfels merale Mu -But sewartate reces formed by metaborganism of highly striceous reces Qtz . 005 IB-FILL A BASIB-FILL BEPOSITS Fine- to conse-grained materials peopsited principally by mind mater or gravity Aal -A Tounger Flustal Deposits - Major modern stream channel and Flood-plain deposits A: Bleer Fluxish Beposits. Bleer incised stream commers and flood-glaim deposits in elevated terraces beforing major appear disinages. Au. Aal Au -A) Editan Beassits. Wind-bloom deposits of sand decerting as extract thin shouls: (\$\hat{R}_{20}\$) or dunes (\$\hat{R}_{20}\$). As Plays no Lacustrine Deposits Deposits occurring in matter active proper (As or in either inscribe playes or elder table bods and sandands shoretimes associated with extinct table (As.) Aol · In allowant for bosons: Allowant deposits consisting of operat the adjustment of operation and operation of operations and operation of the operation of operations are operated in a continuous continuous operations of operations operated on a continuous operations operated on a continuous operations operated on a continuous operations operated by service some operations operated by service some operations operated operated operations operated operations operated operations operated oper Aaf -Αu - As As Bused non-rock whits - Book problem extensive wort is listed first Aaf -Ase (As.) Parenthetic unit underties this concer of evertying

MX SITING INVESTIGATION
DEPARTMENT OF THE AIR FORCE
BMO/AFRCE-MX

ERTEC WESTERN GEOLOGIC UNIT CROSS REFERENCE

26 SEPT 81

APPENDIX E

20F3 AD A113068

EXIST

EXPLANATION

ERTEC VESTERN FIELD STATIONS

BAN-FILL UNITS

(Potential Coarse and/or Fine Aggregates)

Data Stop, Sampled and Tested

C

Data Stop

NOCK UNITS

(Potential Crushed Rock Aggregates)

lack

Data Stop, Sampled and Tested

Δ

Data Stop

EXISTING TEST DATA SITES

Test Data Available

"Note: See Corresponding Map Number in Appendix Afor Detailed Information

MX SITING INVESTIGATION
DEPARTMENT OF THE AIR FORCE
BMO/AFRCE-MX

ERTEC WESTERN FIELD STATION
AND EXISTING DATA SITE LOCATIONS
CAVE AND STEPTOE VALLEYS, NEVADA

25 SEPT 81

DRAWING 1

Class II -- Positiv Unsuitable Coarse, Fine and/or Quehed Rock Concrete

pro/Potentially Suitable Road-Base Metarial Source

ible Coarse, Fine and/or Crushed Rock Constete

BASIN-FILL AND ROCK SOURCES

		yang mangapan dan di di di di di di di di di di di di di	
	Otz Quartzite	()	M4 and/or S1)
	Ls Limeston	(5	52)
	Do Dolomito	(\$	52)
	Cau Carbona	te Rocks Undifferentiated (S	32)
	Su Sedimen	tary Rocks Undifferentiated (S	5)
	* Reference Appr	ndix E for Symbol Explanation a	nd Comparison
	Aafg Grain sin	type (Act) and Grain Size Designs to designificate are grain (1), sand incline clay (1).	tion (a).
	Geologia	Contact Deshed Where Approxim	nate
		mate Concrete Aggregate and/or ne Materials Source Boundary	
Source	Vertificat	jon Study Area	
ple Type Source)	SAMPLI	ED AND TESTED FIELD STATK	ONS
	BASIN-FILL AGGREGAT COARSE (c) AND FI	E SAMPLE CRUSHED ROCK NE (3) SAMPLE	CLASSIFICATION
	•	•	CLASS I
Source	•	Δ	CLASS II
	0	Δ	CLASS III
shed Rock Concrete Intended Source		Sponding map number in a Information	PPENDIX A FOR
the Constants	The Earth Rechnolo	TEC DEPARTMENT	G INVESTIGATION T OF THE AIR FORCE D/AFRCE-MX
	2 · 1	GREGATE RESOUR AND STEPTOE VALL	
	# 25 SEPT 81		DRAWING 2