Patch/Gamma Analysis for EQ08 chameleon patches

Andy Pickering

March 30, 2017

Contents

1	Overview	2
2	Data	2
3	Methods 3.1 dTdz 3.2 N2 3.3 Mixing Efficiency	2
4	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	8
5	Summary	10

1 Overview

The goal of this analysis is to compute mixing 'coefficident' $\gamma_{\chi\epsilon} = \frac{N^2 \chi}{2\epsilon T_z^2}$ for patches in EQ08 chameleon profiles, and see if we obtain values close to $\gamma_{\chi\epsilon} = 0.2$. A similar analysis was done for TIWE and EQ14 data. The motivation for this analysis came from working on CTD- χ pod data; the method assumes $\gamma = 0.2$, but it was found for some (1m binned) data this was not true. Therefore the method might need to be applied to patches instead.

2 Data

Data are made by the 'Chameleon' microstructure profiler near the equator during the 'EQ08' experiment. The data was shared with me by Sally/Jim. My copy is located at:

Chameleon data already processed by Sally is in:

This analysis is in the main folder:

/Users/Andy/Cruises_Research/Analysis/Andy_Pickering/eq08_patch_gamma/. This is also a github repository.

3 Methods

3.1 dTdz

Temperature gradient is computed for each patch using the following methods:

- 1. $dtdz_{line}$: Fit a straight line to sorted T using polyfit
- 2. $dtdz_{bulk}$: Use the 'bulk gradient' from Smyth et al 2001, which is the rms fluctuation from the background (sorted) temperature, divided by the thorpe scale (the rms re-ordering distances).

3.2 N2

 N^2 is computed for each patch using the following methods:

- 1. N_{line}^2 : Fit a straight line to sorted potential density using polyfit to get $d\rho/dz$, then compute N2.
- 2. N_{bulk}^2 : Use 'bulk gradient'. This is calculated from the bulk T_z , using a linear fit between density and temperature.

3. N_4^2 : Compute N^2 from the sorted profile (sorted by potential density) using sw_bfreq , then take average over the patch. I believe this method is used by some commonly-used overturn codes.

3.3 Mixing Efficiency

Mixing Efficiency $\gamma_{\chi\epsilon}$ is computed from the following equation using different N^2 and dT/dz values.

$$\gamma_{\chi\epsilon} = \frac{N^2 \chi}{2\epsilon T_z^2} \tag{1}$$

 χ and ϵ are computed over each patch from the Chameleon data. Gamma is computed for the following 4 combinations:

- 1. γ_{bin} : 1m binned data interpolated to patch depths.
- 2. γ_{line} : N_{line}^2 , $dtdz_{line}$
- 3. γ_{bulk} : N_{bulk}^2 , $dtdz_{bulk}$

Values where ϵ is below the noise floor of $log_{10}[\epsilon] = -8.5$ are discarded.

4 Results

- $\gamma_{\chi\epsilon}$ computed for 1m avg ('binned') data is about an order of magnitude less than 0.2 (Figure 2). It has a median value of $\gamma=0.015$ for data between 60-200m. The data was processed by Sally w/ 2 different c-star values, this doesn't seem to make any difference in the estimated $\gamma_{\chi\epsilon}$.
- $\gamma_{\chi\epsilon}$ computed for just patches (Figure 3) varies depending on which method is used. The 'line' and 'bulk' methods have median values around $\gamma = 0.1$. The bin and line-fit estimates are much smaller than 0.2

Figure 1: Patch locations (mean depth) plotted on top of epsilon.

Table 1: Statistics for patches using various parameters. γ values are medians for each distribution. Only patches between 60-200m are considered.

minOT	usetemp	minR2	γbin	$\gamma line$	γfit	$\gamma bulk$	Npatches
0.4	1	0	0.06	0.19	0.08	0.18	20108
0.4	1	0.5	0.07	0.15	0.12	0.15	924
0.75	1	0	0.07	0.17	0.09	0.17	9863
0.75	1	0.5	0.09	0.14	0.11	0.14	614
1	1	0	0.08	0.16	0.09	0.17	6963
1	1	0.5	0.1	0.15	0.12	0.16	517

Figure 2: Histogram of $\gamma_{\chi\epsilon}$ for 1m avg chameleon profiles between 60-200m depth. Vertical dashed line shows $\gamma=0.2$.

Figure 3: Histogram of $\gamma_{\chi\epsilon}$ for patches, using different estimates of N^2 and T_z . Vertical dashed line shows $\gamma=0.2$. For all profiles, all depths.

4.1 Variation of $\gamma_{\chi\epsilon}$ with epsilon

See Figure 4:

- For 'bin' and 'linefit' methods, γ does not show much dependence on ϵ . But magnitude is less than 0.2 .
- For 'line' and 'bulk' methods, magnitude of γ is closer to 0.2, but shows an inverse dependence on ϵ .

Figure 4: Plot of ϵ versus $\gamma_{\chi\epsilon}$ for patches, depths 60-200m. Vertical line is $\gamma=0.2$.

4.2 Variation of $\gamma_{\chi\epsilon}$ over time

To investigate whether $\gamma_{\chi\epsilon}$ varies over time, I plotted $\gamma_{\chi\epsilon}$ vs cast number (Figure 5).

Figure 5: Plot of $\gamma_{\chi\epsilon}$ for patches vs cast number. Vertical line is $\gamma=0.2$. Black points are the median value for each cast.

4.3 Variation of $\gamma_{\chi\epsilon}$ over depth

Figure 6: Plot of $\gamma_{\chi\epsilon}$ for patches vs depth. Vertical line is $\gamma=0.2$.

5 Summary

- $\gamma_{\chi\epsilon}$ computed from 1m binned data (the standard Chameleon processing) is about 10 times smaller than the typical assumed value of 0.2.
- $\gamma_{\chi\epsilon}$ computed for just patches varies depending on what method of choosing T_z and N^2 is used. The 'line' and 'bulk' methods give γ estimates of about 0.15-0.2.