Maths Exercices 09 11 2023

31 Octobre, 2023

Lucas Duchet-Annez

Exercice 48

- 1. Soit $u_n = 5n^2 2(-1)^n$. On sait que $-1 \le (-1)^n \le 1$ pour tout n. Cela signifie que $-2(-1)^n \ge -2$ pour tout n. Par conséquent, $5n^2 2(-1)^n \ge 5n^2 2$ pour tout n. On sait également que $\lim_{n \to +\infty} (5n^2 2) = +\infty$. En appliquant le théorème de comparaison, on obtient que $\lim_{n \to +\infty} (5n^2 2(-1)^n) = +\infty$.
- 2. Soit $u_n=n^2-2n+(-1)^{n+1}$. On sait que $-1\leq (-1)^n\leq 1$ pour tout n. Cela signifie que pour n=n+1 $-1\leq (-1)^{n+1}\leq 1$ par conséquent $n^2-2n-1\leq (-1)^{n+1}\leq n^2-2n+1$ pour tout n On sait que $\lim_{n\to+\infty}\left(n^2-2n-1\right)=\lim_{n\to+\infty}\left(n^2\left(1-\frac{2}{n}-\frac{1}{n^2}\right)\right)=+\infty$ car $\lim_{n\to+\infty}\frac{1}{n^k}=0$ pour $k\in\mathbb{N}^*$. En appliquant le théorème de comparaison, on obtient que $\lim_{n\to+\infty}\left(n^2-2n+(-1)^{n+1}\right)=+\infty$
- 3. Soit $(-1)^n \times \frac{\sqrt{n}}{n}$. On sait que $-1 \le (-1)^n \le 1$ pour tout $n \in \mathbb{N}$. Donc $-\frac{\sqrt{n}}{n} \le (-1)^n \times \frac{\sqrt{n}}{n} \le \frac{\sqrt{n}}{n}$. On sait également que $\lim_{n \to +\infty} -\frac{\sqrt{n}}{n} = -\frac{n^{1/2}}{n} = -\frac{1}{\sqrt{n}} = 0$ et de manière analogue $\lim_{n \to +\infty} \frac{\sqrt{n}}{n} = 0$ En appliquant le théorème dit des gendarmes, on obtient que $\lim_{n \to +\infty} (-1)^n \times \frac{\sqrt{n}}{n} = 0$