Algoritmos e Fundamentos da Teoria de Computação

Lista de Exercícios 01

1 Seja M a máquina de Turing definida pela função δ abaixo.

δ	B	a	b	c
q_0	q_1, B, R			
q_1	q_1, B, R q_2, B, L	q_1, a, R	q_1, c, R	q_1, c, R
q_2				q_2, b, L

- a. Construa o trace da computação de M para a string de entrada aabca.
- b. Construa o *trace* da computação de M para a *string* de entrada *bcbc*.
- c. Apresente o diagrama de estados de M.
- d. Descreva o resultado de uma computação de M.

a. $q_0BaabcaB$ $\vdash Bq_1aabcaB$ $\vdash Baq_1abcaB$ $\vdash Baaq_1bcaB$ $\vdash Baacq_1caB$ $\vdash Baaccq_1aB$ $\vdash Baaccaq_1B$ $\vdash Baaccq_2aB$ $\vdash Baacq_2ccB$ $\vdash Baaq_2cbcB$ $\vdash Baq_2abbcB$ $\vdash Bq_2acbbcB$ $\vdash q_2BccbbcB$ b. $q_0BbcbcB$ $\vdash Bq_1bcbcB$ $\vdash Bcq_1cbcB$ $\vdash Bccq_1bcB$ $\vdash Bcccq_1cB$ $\vdash Bccccq_1B$ $\vdash Bcccq_2cB$ $\vdash Bccq_2cbB$ $\vdash Bcq_2cbbB$ $\vdash Bq_2cbbbB$ $\vdash q_2BbbbbB$

c. O diagrama de estados de M é

- d. O resultado de uma computação de M é substituir os a's da string de entrada por c's e os c's por b's.
- 2 Construa uma máquina de Turing que realiza as computações pedidas nos itens abaixo. (Faça uma máquina para cada item.) Todas as máquinas têm alfabeto de entrada $\Sigma = \{a, b\}$. Note que a cabeça da máquina deve sempre estar na posição 0 da fita quanto a computação termina no estado q_f .
 - a. Mover a entrada uma posição para a direita: $q_0BuB \models q_fBBuB$, aonde $u \in \Sigma^*$.
 - b. Concatenar uma cópia invertida à *string* de entrada: $q_0BuB \not\models q_fBuu^RB$, aonde u^R é o reverso da *string* u.
 - c. Inserir um branco entre cada um dos símbolos da entrada, por exemplo: $q_0BabaB
 vert^* q_fBaBbBaB$.
 - d. Apagar os b's da entrada, por exemplo: $q_0Bbabaabab \stackrel{*}{=} q_fBaaaaB$.
- a. A máquina abaixo trabalha da direita para a esquerda, movendo um símbolo de cada vez.

b. A máquina abaixo utiliza os símbolos X e Y para marcar, respectivamente, os símbolos a e b que já foram copiados para a string inversa.

c. A máquina abaixo utiliza a máquina do item a) iterativamente para inserir brancos entre os símbolos.

O algoritmo da máquina é o seguinte:

- 1. Marcar a posição 0 da fita com #.
- 2. Se a entrada não é vazia, trocar o primeiro símbolo por X ou Y para registrar se era um a ou b, respectivamente.
- 3. Caminhar até o final da *string* e usar a estratégia da máquina do item a) para mover a entrada não modificada uma posição para a direita.
- 4. Se não há mais a's ou b's na fita, reverter os símbolos X e Y para a e b, respectivamente, e parar na posição 0.
- 5. Caso contrário, avançar até o próximo símbolo original da entrada e voltar ao passo 2.

- d. A solução é similar à do item c). Da mesma forma que foi construída uma máquina para inserir um branco entre os símbolos, podemos fazer uma máquina que *remove* um branco entre os símbolos. Assim, o funcionamento geral da máquina pode ser descrito brevemente como a seguir:
 - 1. Procurar o primeiro b na fita a partir da esquerda. Trocar b por B.
 - 2. Mover todo o conteúdo da fita uma posição para a esquerda, eliminando o branco entre os símbolos.
 - 3. Rebobinar até a posição 0 da fita e repetir o passo 2.
 - 4. Parar quando chegar no final da entrada (ler B na busca do passo 1) e rebobinar para o início da fita uma última vez.
- 3 Construa uma máquina de Turing que computa as funções especificadas nos itens abaixo. (Faça uma máquina para cada item.) Todas as máquinas têm alfabeto de entrada $\Sigma = \{a,b\}$. Os símbolos u e v representam strings arbitrárias sobre Σ^* .

a.
$$f(u) = aaa$$

b. $f(u) = \begin{cases} a & \text{se } length(u) \text{ \'e par} \\ b & \text{caso contr\'ario} \end{cases}$
c. $f(u) = u^R$
d. $f(u, v) = \begin{cases} u & \text{se } length(u) > length(v) \\ v & \text{caso contr\'ario} \end{cases}$

a. A máquina abaixo apaga a entrada e deixa aaa na fita.

b. A máquina abaixo usa os estados q_2 e q_3 para determinar o tamanho da *string* de entrada. Se a máquina está em q_2 , a *string* vista até agora tem tamanho par (assume-se, como qualquer pessoa sana, que 0 é par), e se a máquina está em q_3 , o tamanho é impar.

- c. A solução é muito similar à máquina da questão 2(b), com uma modificação necessária no estado q_7 , aonde ao invés de reverter X e Y para a e b, basta escrever branco. Assim, para uma entrada q_0BuB , a máquina "para" com a configuração $q_7\#B\ldots BBu^RB$. Neste ponto, basta mover u^R para a esquerda até obtermos q_fBu^RB . (Note que o branco da posição 0 foi marcado com # para podermos diferenciar a posição 0 dos demais brancos.)
- d. A função possui dois argumentos, logo eles são separados por um único espaço na configuração inicial da máquina: q_0BuBvB . A máquina faz um zig-zag entre os dois argumentos, marcando um símbolo de u e um símbolo de v de cada vez. (Essa marcação é feita da forma usual, trocando a por X e b por Y.) Se o zig-zag falhar com a máquina caminhando para direita, isso significa que length(u) > length(v) e entramos no estado q_6 , que apaga v, parando finalmente em q_7 quando u tiver sido revertida. No caso contrário, o zig-zag falha com a máquina caminhando para a esquerda (isto é, buscando um novo símbolo de u para marcar) e temos que $length(u) \le length(v)$. Nesse caso, quando detectamos o branco que separa u e v em q_1 , a máquina entra em q_8 , onde a saída v deve ser preparada. Nesse ponto, a partir de q_8 , a máquina realiza as seguintes ações (não desenhadas no diagrama):
 - (a) Caminha para a direita revertendo X e Y de v.
 - (b) Rebobina a cabeça até o branco separador de u e v.
 - (c) Caminha para a esquerda apagando os X's e Y's de u.
 - (d) Ao encontrar o branco da posição zero, executa a máquina que move a entrada para a esquerda, realizando a computação $q_iBB\dots BBvB \models q_fBvB$.

4 Construa uma máquina de Turing que computa as funções numéricas especificadas nos itens abaixo. (Faça uma máquina para cada item.) Não utilize macros nas construções. Utilize a base de representação que preferir.

a.
$$f(n)=2n+3$$
 b.
$$eq(n,m)=\left\{ \begin{array}{ll} 1 & \text{se } n=m\\ 0 & \text{caso contrário} \end{array} \right.$$

a. Vamos usar a notação unária para representar os números naturais, logo, $\Sigma = \{1\}$. Relembrando que um natural $n \in \mathbb{N}$ é escrito em notação unária como $\overline{n} = 1^{n+1}$. Assim, o resultado que deve ficar na fita ao final da computação é $\overline{2n+3} = 1^{2n+4}$. A máquina abaixo copia \overline{n} , deixando 2(n+1) = 2n+2 símbolos 1's na fita. Para obtermos a quantidade necessária de 1's, basta adicionar mais dois 1's para chegar a 2n+4. Os passos da computação podem ser descritos como abaixo.

$$B\overline{n}B \vdash B\overline{n}B\overline{n}B \vdash B\overline{n}1\overline{n}1B = B\overline{2n+3}B$$

b. Como em vários dos exercícios anteriores, para determinar se n=m, a máquina faz um zig-zag sobre os 1's de n e m, marcando os símbolos correspondentes com X até que seja possível determinar se n=m ou não. Vale notar que a máquina marca n da direita para a esquerda, e m da esquerda para a direita. Assim, uma possível computação da TM fica como abaixo.

$$B11B11B \models B1XB11B \models B1XBX1B \models BXXBX1B \models B\overline{1}B$$

Após encontrar o branco do meio (separador de n e m) no estado q_1 , a máquina busca em q_2 o símbolo 1 mais à direita de n. Após marcar essa posição com X, a máquina inicia uma busca por um 1 correspondente em m, caminhando para a direita nos estados q_3 e q_4 . Caso a máquina encontre um branco, significa que n>m e a máquina entra em q_5 . A partir deste estado, a máquina apaga toda a fita e escreve 0, parando com a configuração $B\bar{0}B$. (Essa parte da máquina não é mostrada na figura.) Caso a máquina consiga marcar um 1 correspondente em m, a máquina caminha para a esquerda procurando o próximo dígito de n e o ciclo se repete. O loop termina quando a máquina lê o branco da posição 0 em q_2 , entrando em q_7 . Nesse estado, sabemos que $n \le m$ mas ainda é necessário distinguir os casos n = m e n < m. Para tal, a máquina caminha até o final da entrada, buscando algum 1 que tenha "sobrado" de m. Se for possível achar um 1, temos que n < m e a máquina vai para q_5 para produzir a saída $B\bar{0}B$. Caso contrário, a máquina entra em q_9 , a partir do qual toda a fita é apagada e a computação termina com $B\bar{1}B$ na fita. (Essa parte da máquina também não é mostrada na figura.)

Para garantir o seu entendimento do funcionamento da máquina, realize a computação para as entradas B11B1B e B1B11B. Em ambos os casos, a configuração final deve ser $B\overline{0}B$.

5 Use as macros e máquinas definidas entre as seções 9.2 e 9.4 do livro do Sudkamp para projetar uma máquina que computa a função f(n) = 2n + 3.

A máquina M que computa a função f(n)=2n+3 pode ser obtida pela combinação das macros de cópia, soma e funções constantes, como ilustrado abaixo.

A macro $C_3^{(1)}$ computa a função c(n)=3, isto é, a função que sempre retorna a constante 3 para qualquer argumento $n\in \mathbb{N}$. Realizando o *trace* da computação de M para a entrada n, podemos ilustrar o comportamento e a interação das macros que compõem a máquina.

Machine	Configuration
	$\underline{B}\overline{n}B$
CPY_1	$\underline{B}\overline{n}B\overline{n}B$
MR_1	$B\overline{n}\underline{B}\overline{n}B$
CPY_1	$B\overline{n}\underline{B}\overline{n}B\overline{n}B$
MR_1	$B\overline{n}B\overline{n}\underline{B}\overline{n}B$
$C_{3}^{(1)}$	$B\overline{n}B\overline{n}\underline{B}\overline{3}B$
ML_1	$B\overline{n}\underline{B}\overline{n}B\overline{3}B$
A	$B\overline{n}\underline{B}\overline{n}+3B$
ML_1	$\underline{B}nB\overline{n} + 3B$
A	$\underline{B}\overline{2n} + \overline{3}B$

- 6 Seja F uma máquina de Turing que computa uma função numérica unária e total f. Projete uma máquina M que retorna o primeiro número natural n tal que f(n)=0. A computação de M deve continuar indefinidamente se tal n não existe. Responda os itens abaixo.
 - a. Apresente M e explique o seu funcionamento.
 - b. O que aconteceria com a execução de M se a função computada por F não fosse total?

Obs.: Para construir M você pode utilizar qualquer máquina ou macro vista até aqui.

a. A computação de M consiste de um ciclo que produz $B\overline{n}B\overline{f(n)}B$, para $n=0,1,\ldots$, até que seja encontrado um valor de n para o qual f(n)=0.

A computação começa com o contador $\overline{0}$ na fita. Uma cópia de $\overline{0}$ é feita e F é executada na cópia. A macro BRN é usada para determinar se o valor computado de f é 0. Se não for, o valor computado é apagado, o contador é incrementado e o valor subsequente de f é computado. O ciclo de geração de números naturais e computação do valor de f termina quando for encontrado um f para o qual f (f) = 0.

- b. Se f nunca assume o valor 0, a computação continua indefinidamente. Se f não é total, a computação vai retornar o primeiro valor n para o qual f(n)=0, mas somente se f for definida para todo m< n. Caso contrário, M entra em loop ao encontrar o primeiro valor onde $f(m) \uparrow$.
- 7 Seja F uma máquina de Turing que computa a função numérica unária e total f. Projete uma máquina G que computa a função

$$g(n) = \sum_{i=1}^{n} f(i) \quad .$$

Obs.: Para construir G você pode utilizar qualquer máquina ou macro vista até aqui.

Vamos usar várias macros vistas ao longo do curso. Um ponto fundamental para projetar essa máquina é definir como a fita fica dividida para guardar as informações necessárias para a computação. Como precisamos fazer um somatório, é claro que o projeto da máquina precisa incluir um loop. Assim, precisamos armazenar o valor atual da variável \underline{i} , além do valor s do somatório calculado até o momento. Vamos então usar a fita da seguinte forma: $B\overline{i}B\overline{s}B\overline{f(i)}B$. Em alguns passos da computação, o terceiro campo não estará presente. Além disso, como toda a notação é unária, não vamos mais denotar as variáveis por \overline{i} no diagrama abaixo, escrevendo somente i

Um ponto que não é essencial mas facilita a construção da máquina é perceber que a soma é uma operação associativa. Assim, não faz diferença calcular o somatório começando com i=1 e indo até i=n, podemos usar o contador no sentido inverso. Assim, começando com i=n, decrementamos i até zero para usarmos a macro BRN.

A máquina completa é mostrada na figura abaixo. Destacamos o formato da entrada e saída de cada macro para garantir consistência da composição das macros.

8 Sejam F e G máquinas de Turing que computam, respectivamente, as funções numéricas unárias e totais *f* e *g*. Projete uma máquina H que computa a função

$$h(n) = \sum_{i=1}^{n} eq(f(i), g(i)) .$$

Isto é, h(n) é a quantidade de valores entre 1 e n para os quais as funções f e g assumem o mesmo valor. Obs.: Para construir H você pode utilizar qualquer máquina ou macro vista até aqui.

A solução é muito parecida com a do exercício anterior. Não vamos apresentar a máquina completa mas destacar os passos principais do seu funcionamento. O ponto fundamental de divisão da fita continua o mesmo. Vamos usar a divisão a seguir: BiBsBf(i)Bg(i)B. Inicialmente a fita começa com BnB. Como no exercício anterior, esse valor é copiado e entregue para a máquina Z, deixando BnB0B na fita. A seguir entramos no seguinte loop:

- 1. Partindo de BiBsB, copiar i depois de s, gerando BiBsBiB.
- 2. Executar F sobre o i recém copiado, obtendo BiBsBf(i)B.
- 3. Voltar ao início da fita e copiar i depois s e f(i), chegando a BiBsBf(i)BiB.
- 4. Executar G sobre o i recém copiado, obtendo BiBsBf(i)Bg(i)B.
- 5. Executar EQ sobre f(i) e g(i), gerando BiBsBeq(f(i),g(i))B.
- 6. Acumular em s o seu valor atual com o resultado de EQ.
- 7. Decrementar i e testar o seu valor. Se i > 0, retorne ao passo 1. Caso contrário, ajuste o conteúdo da fita para deixar como resultado final BsB.