§ 17.

Normierte Räume, Banachräume, Fixpunktsatz

In diesem Paragraphen sei \mathbb{K} stets gleich \mathbb{R} oder \mathbb{C} und sei X ein Vektorraum (VR) über \mathbb{K} .

Definition

Eine Abbildung $\|\cdot\|: X \to \mathbb{R}$ heißt genau dann eine **Norm** auf X, wenn folgendes erfüllt ist:

- (1) $\forall x \in X : ||x|| \ge 0 \text{ und } ||x|| = 0 \iff x = 0$
- (2) $\forall x \in X, \alpha \in \mathbb{K} : \|\alpha x\| = |\alpha| \cdot \|x\|$
- (3) $\forall x, y \in X : ||x + y|| \le ||x|| + ||y||$

In diesem Fall heißt $(X, \|\cdot\|)$ ein **normierter Raum** (NR).

Beispiele:

(1) Sei $n \in \mathbb{N}, X = \mathbb{K}^n$ und für $x = (x_1, \dots, x_n) \in X$ die **euklidische Norm** gegeben:

$$||x||_2 \coloneqq \sqrt{\sum_{j=1}^n |x_j|^2}$$

Dann ist $(\mathbb{K}^n, \|\cdot\|_2)$ ein normierter Raum (vgl. §1).

(2) Sei X = C[a, b] und für $f \in X$ seien die folgenden Normen gegeben:

$$||f||_1 := \int_a^b |f(x)| \, \mathrm{d}x$$

$$||f||_2 := \sqrt{\int_a^b |f(x)|^2 \, \mathrm{d}x}$$

$$||f||_\infty := \max\{|f(x)| : x \in [a, b]\}$$

Leichte Übung: $(X, \|\cdot\|_1), (X, \|\cdot\|_2)$ und $(X, \|\cdot\|_{\infty})$ sind NRe.

(3) Sei $K \subseteq \mathbb{R}^n$ kompakt, $X \coloneqq C(K, \mathbb{R}^m)$ und sei für $f \in X$ die Norm

$$||f||_{\infty} := \max\{||f(x)|| : x \in K\}$$

Leichte Übung: $(X, \|\cdot\|_{\infty})$ ist ein NR.

Für den Rest dieses Paragraphen sei X stets ein NR mit Norm $\|\cdot\|$.

Bemerkung: Wie in §1 zeigt man die umgekehrte Dreiecksungleichung:

$$\forall x, y \in X : |||x|| - ||y||| \le ||x - y||$$

und

$$\forall x_1, \dots, x_k \in X : ||x_1 + \dots + x_k|| \le ||x_1|| + \dots + ||x_k||$$

Definition

(1) Sei (x_n) eine Folge in X. (x_n) heißt genau dann **konvergent**, wenn ein $x_0 \in X$ existiert für das gilt:

$$||x_n - x_0|| \stackrel{n \to \infty}{\to} 0$$

In diesem Fall ist x_0 eindeutig bestimmt und man schreibt $x_n \stackrel{n \to \infty}{\to} x_0$ oder $\lim_{n \to \infty} x_n = x_0$. x_0 heißt **Grenzwert** oder **Limes** von (x_n) .

- (2) (x_n) heißt genau dann **divergent**, wenn (x_n) nicht konvergent ist.
- (3) (x_n) heißt genau dann eine **Cauchyfolge** (CF), wenn gilt:

$$\forall \varepsilon > 0 \ \exists n_0 = n_0(\varepsilon) \in \mathbb{N} : ||x_n - x_m|| < \varepsilon \quad \forall n, m \ge n_0$$

(4) Sei $x_0 \in X$ und $\delta > 0$. Definiere:

$$U_{\delta}(x) := \{x \in X : ||x - x_0|| < \delta\}$$

(5) Sei $A \subseteq X$. A heißt **offen**, genau dann wenn gilt:

$$\forall x \in A \ \exists \delta = \delta(x) > 0 : U_{\delta}(x) \subseteq A$$

A heißt **abgeschlossen**, genau dann wenn $X \setminus A$ offen ist.

(6) Es sei $(Y, \|\cdot\|_Y)$ ein weiterer normierter Raum, $f: X \to Y$, $x_0 \in A$. f heißt **stetig in** $x_0 :\iff \forall$ Folge (a_n) in A mit $a_n \stackrel{\|\cdot\|}{\to} x_0$ gilt $f(a_n) \stackrel{\|\cdot\|_Y}{\to} f(x_0)$.

f heißt genau dann **stetig auf** A, wenn f in jedem $x \in A$ stetig ist.

Satz 17.1 (Eigenschaften von Folgen in normierten Räumen)

Seien $(x_n), (y_n)$ Folgen in $X, (\alpha_n)$ Folge in $\mathbb{K}, x, y \in X$ und $A \subseteq X$.

(1) Gilt $x_n \to x, y_n \to y$ und $\alpha_n \to \alpha \in \mathbb{K}$, so folgt:

$$x_n + y_n \to x + y$$
 $\alpha_n x_n \to \alpha x$ $\|x_n\| \to \|x\|$

D.h. die Addition und Skalarmultiplikation sind stetig.

(2) Ist (x_n) konvergent, so ist (x_n) beschränkt, d.h.:

$$\exists c \geq 0 : \forall n \in \mathbb{N} : ||x_n|| \leq c$$

und (x_n) ist eine CF.

(3) Genau dann wenn A abgeschlossen ist, gilt für jede konvergente Folge (x_n) in A:

$$\lim_{n \to \infty} x_n \in A$$

(4) Sei $(X, \|\cdot\|_{\infty})$ wie in obigem Beispiel (3). Dann gilt für (f_n) in X und $f \in X$, dass (f_n) genau dann auf K gleichmäßig gegen f konvergiert, wenn gilt:

$$||f_n - f||_{\infty} \stackrel{n \to \infty}{\to} 0$$

:\leftrightarrow \forall \varepsilon > 0 \exists ||f_n(x) - f(x)|| < \varepsilon \quad \text{\$\sigma n_0 \forall \$x \in K\$}

Beweis

- (1) Wie im \mathbb{R}^n .
- (2) Wie im \mathbb{R}^n .
- (3) Wie im \mathbb{R}^n .
- (4) In der großen Übung.

Beispiel

Sei X = C[-1, 1] mit $||f||_2 := \sqrt{\int_{-1}^1 |f(x)|^2 dx}$. Definiere die Folge (f_n) wie folgt:

$$\forall n \in \mathbb{N} : f_n(x) = \begin{cases} -1 & , -1 \le x \le -\frac{1}{n} \\ nx & , -\frac{1}{n} \le x \le \frac{1}{n} \\ 1 & , \frac{1}{n} \le x \le 1 \end{cases}$$

Dann ist klar, dass $f_n \in X$ für alle $n \in \mathbb{N}$. In den **großen Übungen** wird gezeigt:

- (1) (f_n) ist eine CF in X.
- (2) Es existiert **kein** $f \in X$ mit $||f_n f||_2 \to 0$

Definition

X heißt ein **Banachraum** oder **vollständig**, genau dann wenn jede CF in X einen Grenzwert in X hat.

Beispiele:

- (1) Sei $X = \mathbb{K}^n$, $||x||_2 = \sqrt{\sum_{j=1}^n |x_j|^2}$. Dann folgt aus §2, dass $(X, ||\cdot||_2)$ ein BR ist.
- (2) Sei $X = C[-1, 1], ||f||_2 = \sqrt{\int_{-1}^1 |f(x)|^2 dx}$. Dann ist $(X, ||\cdot||_2)$ kein BR.
- (3) Sei $(X, \|\cdot\|_{\infty})$ wie in 17.1(4). In den **großen Übungen** wird gezeigt, dass $(X, \|\cdot\|_{\infty})$ ein BR ist.

Satz 17.2 (Banachscher Fixpunktsatz)

Sei $(X, \|\cdot\|)$ ein BR, $\emptyset \neq A \subseteq X$ sei abgeschlossen und es sei $F: A \to X$ eine Abbildung mit:

- (i) $F(A) \subseteq A$
- (ii) F ist eine **Kontraktion**, d.h.:

$$\exists L \in [0,1) : \forall x, y \in A : ||F(x) - F(y)|| \le L \cdot ||x - y||$$

Dann existiert genau ein $x^* \in A$ mit $F(x^*) = x^*$.

Ist $x_0 \in A$ beliebig und (x_n) definiert durch $x_{n+1} := F(x_n)$ $(n \ge 0)$, so ist $x_n \in A$ für alle $n \in \mathbb{N}$ und es gilt:

$$x_n \stackrel{n \to \infty}{\to} x^*$$

Weiter gilt für alle $n \in \mathbb{N}$:

$$||x_n - x^*|| \le \frac{L^n}{1 - L} ||x_1 - x_0||$$

Diese Folge heißt Folge der sukzessiven Approximationen.

Beweis

Sei $x_0 \in A$ und (x_n) wie oben definiert. Es gilt:

$$||x_2 - x_1|| = ||F(x_1) - F(x_2)|| \le L \cdot ||x_1 - x_0||$$

Induktiv lässt sich zeigen:

$$\forall k \in \mathbb{N}_0 : ||x_{k+1} - x_k|| \le L^k \cdot ||x_1 - x_0||$$

Seien nun $m, n \in \mathbb{N}$ und m > n, dann gilt:

$$||x_{m} - x_{n}|| = ||(x_{m} - x_{m-1}) + \dots + (x_{n+1} - x_{n})||$$

$$\leq ||x_{m} - x_{m-1}|| + \dots + ||x_{n+1} - x_{n}||$$

$$\leq L^{m-1}||x_{1} - x_{0}|| + \dots + L^{n}||x_{1} - x_{0}||$$

$$= (L^{m-1} + \dots + L^{n}) \cdot ||x_{1} - x_{0}||$$

$$= L^{n}(1 + \dots + L^{m-n-1}) \cdot ||x_{1} - x_{0}||$$

$$\leq L^{n}(\sum_{j=0}^{\infty} L^{j}) \cdot ||x_{1} - x_{0}||$$

$$= \frac{L^{n}}{1 - L}||x_{1} - x_{0}||$$

Also ist (x_n) eine CF. Da X außerdem BR ist, existiert ein $x^* \in X$ mit $x_n \to x^*$. Wegen $(x_n) \subseteq A$ und A abgeschlossen ist außerdem $x^* \in A$.

Festes n und $m\to\infty$ liefert aus obiger Gleichung:

$$\forall n \in \mathbb{N} : ||x_n - x^*|| \le \frac{L^n}{1 - L} ||x_1 - x_0||$$

Für $F(x^*)$ gilt also:

$$||F(x^*) - x^*|| = ||F(x^*) - x_{n+1} + x_{n+1} - x^*||$$

$$\leq ||F(x^*) - x_{n+1}|| + ||x_{n+1} - x^*||$$

$$= ||F(x^*) - F(x_n)|| + ||x_{n+1} - x^*||$$

$$\leq L||x^* - x_n|| + ||x_{n+1} - x^*|| \xrightarrow{n \to \infty} 0$$

Daraus folgt:

$$||F(x^*) - x^*|| = 0 \iff F(x^*) = x^*$$

Sei nun $z \in A$ und F(z) = z. Es gilt:

$$||x^* - z|| = ||F(x^*) - F(z)|| \le L||x^* - z||$$

$$\implies (1 - L)||x^* - z|| \le 0$$

$$\implies x^* = z$$

Also ist x^* eindeutig.