

LIQUID SOLUTIONS

by

PANKAJ SIR

LECTURE -I

CONCENTRATION TERMS

Type of Solution	Solute	Solvent	Common Examples
Gaseous Solutions	Gas	Gas	Mixture of oxygen and nitrogen gases
	Liquid	Gas	Chloroform mixed with nitrogen gas
	Solid	Gas	Camphor in nitrogen gas
Liquid Solutions	Gas	Liquid	Oxygen dissolved in water
	Liquid	Liquid	Ethanol dissolved in water
	Solid	Liquid	Glucose dissolved in water
Solid Solutions	Gas	Solid	Solution of hydrogen in palladium Pd(S)
	Liquid	Solid	Amalgam of mercury with sodium NQ(Hg)
	Solid	Solid	Copper dissolved in gold CU In Au

There are several ways by which we can calculate the concentration

30 %. <u>w</u> queose 30gm Glucose is present in 100gm 501 $\omega_A + \omega_B = 100 gm$ $\omega_{B} = 309m$ WA= 100-WB = 100 - 30= 70 gm

7 Solute formula

$$\times 1.0 \ \text{H}_{2}\text{SO}_{4}$$
 # Temp dependent $\times 9 \ \text{H}_{2}\text{SO}_{4}$ is present in $100 \ \text{mL} \ \text{SO}_{1}^{1}$ $\times 9 \ \text{H}_{2}\text{SO}_{4}$ is present in $100 \ \text{mL} \ \text{SO}_{1}^{1}$ $\times 9 \ \text{gm} \ \text{H}_{2}\text{SO}_{4}$ is present in $100 \ \text{mL} \ \text{SO}_{1}^{1} = 100 \ \text{mL}$ $\times 100 \ \text{M}_{2} = 49 \ \text{gm}$

7 Solute formula WB X100 Vsoi (mL)

Volume by Volume Percentage (v/v):

7.1. Y Ethanol (Cathorn) # Temp depen XML Ethanol is present in loom L soin 42.8% Ethanol 42.8 ml Ethanol is present in 100ml soin

Strength of Solution

PPM (Parts per Million)

$$PPM = \frac{\omega_{501}}{\omega_{501}} \times 10^{6}$$

Temp Indepen.

x gm solute is present in 10 gm sol

Molarity (M)

no. of moles of solute is present per Ltr

08 501

$$M = \frac{NB}{V_{SOI}(L)}$$

#Temp depend.

Molality (m)

The no. of moles of solute is present in per kg
of the solvent

H Tomb Tudobe

$$m = \frac{m_B}{W_A(Kg)}$$

Normality (N)

The no. of gm equivalent is present per Ltr

$$N = \frac{\text{No. of qm equi}}{V_{Sol}^{N}(L)} = \frac{N \times (N \cdot f)}{V_{Sol}^{N}(L)}$$

no of gm equi=
$$\frac{\omega}{E \cdot W} = \frac{\omega}{\frac{M \cdot W}{N \cdot f}} = \frac{\omega}{M \cdot W} \times N \cdot f$$
= $n \times N \cdot f$

M.f (M-factor or x-factor or Valency factor Case O for Acids: No. of ionisable H+ H-P-0-4 $H_{a}so_{4} \rightarrow n \cdot f = a$ H3PQ -- nf=1 $H_3 PO_Y \rightarrow N \cdot f = 3$ *H3BQ-Nf=1 \rightarrow η \pm 2 tzBg+tz0 H-0-P-0-H HO-B-0H [B(0H)]+H

Case @ for Bases
$$\longrightarrow$$
 No. of Θ_H ions furnished

MOH \longrightarrow Nf=1

M(OH)₂ \longrightarrow Nf=2

Al(OH)₂ \longrightarrow Nf=3

Case 3 for Salts Nof= Total +ve charge or Total -ve charge

Naci Nf= 1 Alcis -> Nof= 3 $\begin{array}{ccc}
2 + & & \\
C & Q & & \\
N & & \\
\end{array}$

Thank You Lakshyians