PROBLEM SET IV "BY EDWARD NASHTON"

DUE FRIDAY, 7 OCTOBER

Prove or give counterexamples to justify your claims.

Exercise 29. Is there a continuous function $f: \mathbf{R} \longrightarrow \mathbf{R}$ such that the image of some closed interval is not also a closed interval? Is there a continuous function $f: \mathbf{R} \longrightarrow \mathbf{R}$ such that the image of some *open* interval is not also an open interval?

Exercise 30. Define the function $u: \mathbb{R} \longrightarrow \mathbb{R}$ by the formula

$$u(s) := \left| 2\left(s - \left\lfloor \frac{1}{2} + s \right\rfloor \right) \right|.$$

Is *u* continuous? Consider the function $v: \mathbf{R} \longrightarrow \mathbf{R}$ defined by the formula

$$v(t) := \begin{cases} u(1/t) & \text{if } t \neq 0; \\ 0 & \text{if } t = 0, \end{cases}$$

and the function $w: \mathbf{R} \longrightarrow \mathbf{R}$ defined by the formula

$$w(t) := \begin{cases} t u(1/t) & \text{if } t \neq 0; \\ 0 & \text{if } t = 0, \end{cases}$$

Is v continuous? Is w?

Definition. A subset $E \subset \mathbf{R}$ is said to be *closed* if its complement $\mathbf{R} - E$ is open.

Exercise 31. Suppose $E \subset \mathbf{R}$ a closed set, and suppose $f : E \longrightarrow \mathbf{R}$ a continuous function. Must there be a function $F : \mathbf{R} \longrightarrow \mathbf{R}$ such that for any $x \in E$ one has F(x) = f(x)? What if E were only assumed open?

Exercise 32. Suppose $E \subset \mathbf{R}$. Is the function $d_E : \mathbf{R} \longrightarrow \mathbf{R}$ defined by the formula

$$d_E(x) := \inf\{|x - y| \mid y \in E\}$$

continuous?

Exercise 33. Suppose $E, E' \subset \mathbf{R}$ two disjoint closed subsets. Must there be a continuous function $f : \mathbf{R} \longrightarrow \mathbf{R}$ such that both $f^{-1}(0) = E$ and $f^{-1}(1) = E'$?

Exercise* 34. Let a < b be two real numbers. Is there a discontinuous function $f:(a,b) \longrightarrow \mathbb{R}$ that is *convex*, in the sense that for any $x,y \in (a,b)$ and any $t \in [0,1]$, one has

$$f((1-t)x + ty) \le (1-t)f(x) + tf(y)$$
?

Exercise 35. Are there positive numbers $r, s, t \in \mathbb{R}$ with $r \geq t$ such that the limit

$$\lim_{x\to 0} \left(\frac{s^x + t}{r}\right)^{1/x}$$

does not exist? Are there positive numbers $r, s, t \in \mathbb{R}$ with $r \ge t$ such that this limit exists and is greater than 1?