Mappel

Generated by Doxygen 1.8.11

ii CONTENTS

Contents

1	MAP	PPEL	2
2	Insta	all	4
3	Nam	nespace Index	7
	3.1	Namespace List	7
4	Hier	rarchical Index	8
	4.1	Class Hierarchy	8
5	Clas	es Index	11
	5.1	Class List	11
6	File	Index	14
	6.1	File List	14
7	Nam	nespace Documentation	17
	7.1	mappel Namespace Reference	17
		7.1.1 Detailed Description	25
		7.1.2 Typedef Documentation	25
		7.1.3 Function Documentation	28
		7.1.4 Variable Documentation	47
	7.2	mappel::mcmc Namespace Reference	49
		7.2.1 Function Documentation	49
	7.3	mappel::methods Namespace Reference	50
		7.3.1 Detailed Description	53
		7.3.2 Function Documentation	53
	7.4	mappel::methods::debug Namespace Reference	61
		7.4.1 Function Documentation	62
	7.5	mappel::methods::likelihood Namespace Reference	62

		7.5.1	Function Documentation	63
	7.6	mappe	:::methods::likelihood::debug Namespace Reference	65
		7.6.1	Function Documentation	66
	7.7	mappe	::methods::objective Namespace Reference	67
		7.7.1	Function Documentation	68
	7.8	mappe	::methods::objective::debug Namespace Reference	72
		7.8.1	Function Documentation	73
	7.9	mappe	::methods::objective::openmp Namespace Reference	75
		7.9.1	Function Documentation	75
	7.10	mappe	::methods::openmp Namespace Reference	79
		7.10.1	Function Documentation	80
	7.11	omp_e	xception_catcher Namespace Reference	85
		7.11.1	Typedef Documentation	85
			xception_catcher::impl_ Namespace Reference	85
	7.12	omp_e	Replied Catcher Names pace neighbors	00
Ω				
8	Clas	s Docu	mentation	85
8		s Docu		85
8	Clas	s Docu	mentation	85
8	Clas	s Docui	mentation I::ArrayShapeError Struct Reference	85
8	Clas	mappe 8.1.1 8.1.2	mentation I::ArrayShapeError Struct Reference	85 85 86
8	Clas 8.1	mappe 8.1.1 8.1.2	mentation I::ArrayShapeError Struct Reference	85 86 86
8	Clas 8.1	mappe 8.1.1 8.1.2 mappe	mentation I::ArrayShapeError Struct Reference	85 86 86 86
8	Clas 8.1	mappe 8.1.1 8.1.2 mappe 8.2.1 8.2.2	mentation I::ArrayShapeError Struct Reference	85 86 86 86 86 87
8	Clas 8.1	mappe 8.1.1 8.1.2 mappe 8.2.1 8.2.2	mentation I::ArrayShapeError Struct Reference	85 85 86 86 86 87 87
8	Clas 8.1	mappe 8.1.1 8.1.2 mappe 8.2.1 8.2.2 mappe	mentation I::ArrayShapeError Struct Reference	85 86 86 86 87 87 88
8	Clas 8.1	mappe 8.1.1 8.1.2 mappe 8.2.1 8.2.2 mappe 8.3.1	mentation I::ArrayShapeError Struct Reference	85 86 86 86 87 87 88 89
8	Clas 8.1	mappe 8.1.1 8.1.2 mappe 8.2.1 8.2.2 mappe 8.3.1 8.3.2	mentation :::ArrayShapeError Struct Reference	85 86 86 86 87 87 88 89

iv CONTENTS

8.4	mappe	sl::CGaussMLE< Model > Class Template Reference
	8.4.1	Detailed Description
	8.4.2	Member Enumeration Documentation
	8.4.3	Constructor & Destructor Documentation
	8.4.4	Member Function Documentation
	8.4.5	Member Data Documentation
8.5	mappe	el::Estimator< Model > Class Template Reference
	8.5.1	Detailed Description
	8.5.2	Member Enumeration Documentation
	8.5.3	Constructor & Destructor Documentation
	8.5.4	Member Function Documentation
	8.5.5	Friends And Related Function Documentation
	8.5.6	Member Data Documentation
8.6	mappe	el::Gauss1DMAP Class Reference
	8.6.1	Detailed Description
	8.6.2	Member Typedef Documentation
	8.6.3	Constructor & Destructor Documentation
	8.6.4	Member Function Documentation
	8.6.5	Member Data Documentation
8.7	mappe	el::Gauss1DMLE Class Reference
	8.7.1	Detailed Description
	8.7.2	Member Typedef Documentation
	8.7.3	Constructor & Destructor Documentation
	8.7.4	Member Function Documentation
	8.7.5	Member Data Documentation
8.8	mappe	el::Gauss1DModel Class Reference
	8.8.1	Detailed Description
	8.8.2	Member Typedef Documentation

	8.8.3	Constructor & Destructor Documentation
	8.8.4	Member Function Documentation
	8.8.5	Member Data Documentation
8.9	mappe	l::Gauss1DsMAP Class Reference
	8.9.1	Detailed Description
	8.9.2	Member Typedef Documentation
	8.9.3	Constructor & Destructor Documentation
	8.9.4	Member Function Documentation
	8.9.5	Member Data Documentation
8.10	mappe	l::Gauss1DsMLE Class Reference
	8.10.1	Detailed Description
	8.10.2	Member Typedef Documentation
	8.10.3	Constructor & Destructor Documentation
	8.10.4	Member Function Documentation
	8.10.5	Member Data Documentation
8.11	mappe	l::Gauss1DsModel Class Reference
	8.11.1	Detailed Description
	8.11.2	Member Typedef Documentation
	8.11.3	Constructor & Destructor Documentation
	8.11.4	Member Function Documentation
	8.11.5	Member Data Documentation
8.12	mappe	l::Gauss2DMAP Class Reference
	8.12.1	Detailed Description
	8.12.2	Member Typedef Documentation
	8.12.3	Constructor & Destructor Documentation
	8.12.4	Member Function Documentation
	8.12.5	Member Data Documentation
8.13	mappe	::Gauss2DMLE Class Reference

vi CONTENTS

	8.13.1	Detailed Description
	8.13.2	Member Typedef Documentation
	8.13.3	Constructor & Destructor Documentation
	8.13.4	Member Function Documentation
	8.13.5	Member Data Documentation
8.14	mappe	l::Gauss2DModel Class Reference
	8.14.1	Detailed Description
	8.14.2	Member Typedef Documentation
	8.14.3	Constructor & Destructor Documentation
	8.14.4	Member Function Documentation
	8.14.5	Member Data Documentation
8.15	mappe	l::Gauss2DsMAP Class Reference
	8.15.1	Detailed Description
	8.15.2	Member Typedef Documentation
	8.15.3	Constructor & Destructor Documentation
	8.15.4	Member Function Documentation
	8.15.5	Member Data Documentation
8.16	mappe	::Gauss2DsMLE Class Reference
	8.16.1	Detailed Description
	8.16.2	Member Typedef Documentation
	8.16.3	Constructor & Destructor Documentation
	8.16.4	Member Function Documentation
	8.16.5	Member Data Documentation
8.17	mappe	l::Gauss2DsModel Class Reference
	8.17.1	Detailed Description
	8.17.2	Member Typedef Documentation
	8.17.3	Constructor & Destructor Documentation
	8.17.4	Member Function Documentation

CONTENTS vii

	8.17.5	Member Data Documentation
8.18	mappel	::Gauss2DsxyMAP Class Reference
	8.18.1	Detailed Description
	8.18.2	Member Typedef Documentation
	8.18.3	Constructor & Destructor Documentation
	8.18.4	Member Function Documentation
	8.18.5	Member Data Documentation
8.19	mappel	::Gauss2DsxyModel Class Reference
	8.19.1	Detailed Description
	8.19.2	Member Typedef Documentation
	8.19.3	Constructor & Destructor Documentation
	8.19.4	Member Function Documentation
	8.19.5	Member Data Documentation
8.20	mappel	::HeuristicEstimator< Model > Class Template Reference
	8.20.1	Detailed Description
	8.20.2	Member Enumeration Documentation
	8.20.3	Constructor & Destructor Documentation
	8.20.4	Member Function Documentation
	8.20.5	Member Data Documentation
8.21	mappel	::ImageFormat1DBase Class Reference
	8.21.1	Detailed Description
	8.21.2	Member Typedef Documentation
	8.21.3	Constructor & Destructor Documentation
	8.21.4	Member Function Documentation
	8.21.5	Member Data Documentation
8.22	mappel	::ImageFormat2DBase Class Reference
	8.22.1	Detailed Description
	8.22.2	Member Typedef Documentation

viii CONTENTS

	8.22.3	Constructor & Destructor Documentation
	8.22.4	Member Function Documentation
	8.22.5	Member Data Documentation
8.23	mappe	l::IterativeMaximizer< Model > Class Template Reference
	8.23.1	Detailed Description
	8.23.2	Member Enumeration Documentation
	8.23.3	Constructor & Destructor Documentation
	8.23.4	Member Function Documentation
	8.23.5	Member Data Documentation
8.24	mappe	l::LogicalError Struct Reference
	8.24.1	Detailed Description
	8.24.2	Constructor & Destructor Documentation
8.25	mappe	I::MAPEstimator Class Reference
	8.25.1	Detailed Description
	8.25.2	Member Typedef Documentation
	8.25.3	Constructor & Destructor Documentation
	8.25.4	Member Function Documentation
	8.25.5	Member Data Documentation
8.26	mappe	I::IterativeMaximizer Model >::MaximizerData Class Reference
	8.26.1	Detailed Description
	8.26.2	Constructor & Destructor Documentation
	8.26.3	Member Function Documentation
	8.26.4	Member Data Documentation
8.27	mappe	I::MCMCAdaptor1D Class Reference
	8.27.1	Detailed Description
	8.27.2	Member Typedef Documentation
	8.27.3	Constructor & Destructor Documentation
	8.27.4	Member Function Documentation

CONTENTS ix

	8.27.5	Member Data Documentation	81
8.28	mappel	::MCMCAdaptor1Ds Class Reference	86
	8.28.1	Detailed Description	88
	8.28.2	Member Typedef Documentation	89
	8.28.3	Constructor & Destructor Documentation	89
	8.28.4	Member Function Documentation	89
	8.28.5	Member Data Documentation	99
8.29	mappel	::MCMCAdaptor2D Class Reference	04
	8.29.1	Detailed Description	06
	8.29.2	Member Typedef Documentation	07
	8.29.3	Constructor & Destructor Documentation	07
	8.29.4	Member Function Documentation	07
	8.29.5	Member Data Documentation	17
8.30	mappel	::MCMCAdaptor2Ds Class Reference	22
	8.30.1	Detailed Description	25
	8.30.2	Member Typedef Documentation	25
	8.30.3	Constructor & Destructor Documentation	25
	8.30.4	Member Function Documentation	26
	8.30.5	Member Data Documentation	36
8.31	mappel	I::MCMCAdaptorBase Class Reference	41
	8.31.1	Detailed Description	41
	8.31.2	Constructor & Destructor Documentation	41
	8.31.3	Member Function Documentation	42
	8.31.4	Member Data Documentation	43
8.32	mappel	::MLEstimator Class Reference	43
	8.32.1	Detailed Description	46
	8.32.2	Member Typedef Documentation	46
	8.32.3	Constructor & Destructor Documentation	46

	8.32.4	Member Function Documentation	46
	8.32.5	Member Data Documentation	55
8.33	mappe	::ModelBoundsError Struct Reference	58
	8.33.1	Detailed Description	58
	8.33.2	Constructor & Destructor Documentation	58
8.34	mappe	::NewtonDiagonalMaximizer< Model > Class Template Reference	59
	8.34.1	Detailed Description	61
	8.34.2	Member Typedef Documentation	61
	8.34.3	Member Enumeration Documentation	61
	8.34.4	Constructor & Destructor Documentation	61
	8.34.5	Member Function Documentation	62
	8.34.6	Member Data Documentation	68
8.35	mappe	::NewtonMaximizer< Model > Class Template Reference	72
	8.35.1	Detailed Description	74
	8.35.2	Member Typedef Documentation	74
	8.35.3	Member Enumeration Documentation	74
	8.35.4	Constructor & Destructor Documentation	74
	8.35.5	Member Function Documentation	75
	8.35.6	Member Data Documentation	81
8.36	mappe	::NotImplementedError Struct Reference	85
	8.36.1	Detailed Description	85
	8.36.2	Constructor & Destructor Documentation	85
8.37	mappe	::NumericalError Struct Reference	85
	8.37.1	Detailed Description	86
	8.37.2	Constructor & Destructor Documentation	86
8.38	omp_e	xception_catcher::impl_::OMPExceptionCatcher< IntType > Class Template Reference 6	86
	8.38.1	Detailed Description	87
	8.38.2	Member Enumeration Documentation	87

CONTENTS xi

	8.38.3	Constructor & Destructor Documentation
	8.38.4	Member Function Documentation
8.39	mappe	::ParameterValueError Struct Reference
	8.39.1	Detailed Description
	8.39.2	Constructor & Destructor Documentation
8.40	mappe	::PointEmitterModel Class Reference
	8.40.1	Detailed Description
	8.40.2	Member Typedef Documentation
	8.40.3	Constructor & Destructor Documentation
	8.40.4	Member Function Documentation
	8.40.5	Member Data Documentation
8.41	Poissor	nGaussianNoise2DObjective < ModelBase > Class Template Reference
	8.41.1	Detailed Description
	8.41.2	Member Typedef Documentation
	8.41.3	Constructor & Destructor Documentation
	8.41.4	Member Data Documentation
8.42	mappe	l::PoissonNoise1DObjective Class Reference
	8.42.1	Detailed Description
	8.42.2	Member Typedef Documentation
	8.42.3	Constructor & Destructor Documentation
	8.42.4	Member Function Documentation
	8.42.5	Member Data Documentation
8.43	mappe	l::PoissonNoise2DObjective Class Reference
	8.43.1	Detailed Description
	8.43.2	Member Typedef Documentation
	8.43.3	Constructor & Destructor Documentation
	8.43.4	Member Function Documentation
	8.43.5	Member Data Documentation

xii CONTENTS

8.44	mappe	I::PriorMAP1DObjective Class Reference
	8.44.1	Detailed Description
	8.44.2	Member Typedef Documentation
	8.44.3	Member Function Documentation
	8.44.4	Member Data Documentation
8.45	mappe	I::QuasiNewtonMaximizer < Model > Class Template Reference
	8.45.1	Detailed Description
	8.45.2	Member Typedef Documentation
	8.45.3	Member Enumeration Documentation
	8.45.4	Constructor & Destructor Documentation
	8.45.5	Member Function Documentation
	8.45.6	Member Data Documentation
8.46	mappe	I::SimulatedAnnealingMaximizer< Model > Class Template Reference
	8.46.1	Detailed Description
	8.46.2	Member Enumeration Documentation
	8.46.3	Constructor & Destructor Documentation
	8.46.4	Member Function Documentation
	8.46.5	Member Data Documentation
8.47	mappe	l::Gauss1DModel::Stencil Class Reference
	8.47.1	Detailed Description
	8.47.2	Member Typedef Documentation
	8.47.3	Constructor & Destructor Documentation
	8.47.4	Member Function Documentation
	8.47.5	Friends And Related Function Documentation
	8.47.6	Member Data Documentation
8.48	mappe	l::Gauss1DsModel::Stencil Class Reference
	8.48.1	Detailed Description
	8.48.2	Member Typedef Documentation

CONTENTS xiii

8.48.3	Constructor & Destructor Documentation
8.48.4	Member Function Documentation
8.48.5	Friends And Related Function Documentation
8.48.6	Member Data Documentation
mappel	::Gauss2DsxyModel::Stencil Class Reference
8.49.1	Detailed Description
8.49.2	Member Typedef Documentation
8.49.3	Constructor & Destructor Documentation
8.49.4	Member Function Documentation
8.49.5	Friends And Related Function Documentation
8.49.6	Member Data Documentation
mappel	::Gauss2DsModel::Stencil Class Reference
8.50.1	Detailed Description
8.50.2	Member Typedef Documentation
8.50.3	Constructor & Destructor Documentation
8.50.4	Member Function Documentation
8.50.5	Friends And Related Function Documentation
8.50.6	Member Data Documentation
mappel	::Gauss2DModel::Stencil Class Reference
8.51.1	Detailed Description
8.51.2	Member Typedef Documentation
8.51.3	Constructor & Destructor Documentation
8.51.4	Member Function Documentation
8.51.5	Friends And Related Function Documentation
8.51.6	Member Data Documentation
mappel	::ThreadedEstimator< Model > Class Template Reference
8.52.1	Detailed Description
8.52.2	Member Enumeration Documentation
8.52.3	Constructor & Destructor Documentation
8.52.4	Member Function Documentation
8.52.5	Member Data Documentation
mappel	::TrustRegionMaximizer < Model > Class Template Reference
8.53.1	Detailed Description
8.53.2	Member Typedef Documentation
8.53.3	Member Enumeration Documentation
8.53.4	Constructor & Destructor Documentation
8.53.5	Member Function Documentation
8.53.6	Member Data Documentation
	8.48.4 8.48.5 8.48.6 mappel 8.49.1 8.49.2 8.49.3 8.49.4 8.49.5 8.49.6 mappel 8.50.1 8.50.2 8.50.3 8.50.4 8.50.5 8.50.6 mappel 8.51.1 8.51.2 8.51.3 8.51.4 8.51.5 8.51.6 mappel 8.52.1 8.52.2 8.52.3 8.52.4 8.52.5 mappel 8.53.1 8.53.2 8.53.3 8.53.4

xiv CONTENTS

9	File	Documentation	793
	9.1	display.cpp File Reference	793
		9.1.1 Detailed Description	794
	9.2	display.h File Reference	794
		9.2.1 Detailed Description	794
	9.3	estimator.h File Reference	795
		9.3.1 Detailed Description	795
		9.3.2 Typedef Documentation	796
	9.4	estimator_impl.h File Reference	796
		9.4.1 Detailed Description	796
	9.5	estimator_statics.cpp File Reference	796
		9.5.1 Detailed Description	797
	9.6	Gauss1DMAP.cpp File Reference	797
		9.6.1 Detailed Description	797
	9.7	Gauss1DMAP.h File Reference	797
		9.7.1 Detailed Description	798
	9.8	Gauss1DMLE.cpp File Reference	798
		9.8.1 Detailed Description	798
	9.9	Gauss1DMLE.h File Reference	799
		9.9.1 Detailed Description	799
	9.10	Gauss1DModel.cpp File Reference	799
		9.10.1 Detailed Description	800
	9.11	Gauss1DModel.h File Reference	800
		9.11.1 Detailed Description	800
	9.12	Gauss1DsMAP.cpp File Reference	801
		9.12.1 Detailed Description	801
	9.13	Gauss1DsMAP.h File Reference	801
		9.13.1 Detailed Description	802

CONTENTS xv

9.14	Gauss1DsMLE.cpp File Reference	302
	9.14.1 Detailed Description	302
9.15	Gauss1DsMLE.h File Reference	302
	9.15.1 Detailed Description	303
9.16	Gauss1DsModel.cpp File Reference	303
	9.16.1 Detailed Description	303
9.17	Gauss1DsModel.h File Reference	304
	9.17.1 Detailed Description	304
9.18	Gauss2DMAP.cpp File Reference	304
	9.18.1 Detailed Description	305
9.19	Gauss2DMAP.h File Reference	305
	9.19.1 Detailed Description	305
9.20	Gauss2DMLE.cpp File Reference	306
	9.20.1 Detailed Description	306
9.21	Gauss2DMLE.h File Reference	306
	9.21.1 Detailed Description	307
9.22	Gauss2DModel.cpp File Reference	307
	9.22.1 Detailed Description	307
9.23	Gauss2DModel.h File Reference	308
	9.23.1 Detailed Description	308
9.24	Gauss2DsMAP.cpp File Reference	309
	9.24.1 Detailed Description	309
9.25	Gauss2DsMAP.h File Reference	309
	9.25.1 Detailed Description	310
9.26	Gauss2DsMLE.cpp File Reference	310
	9.26.1 Detailed Description	310
9.27	Gauss2DsMLE.h File Reference	310
	9.27.1 Detailed Description	311

xvi CONTENTS

9.28	Gauss2DsModel.cpp File Reference
	9.28.1 Detailed Description
9.29	Gauss2DsModel.h File Reference
	9.29.1 Detailed Description
9.30	Gauss2DsxyMAP.h File Reference
	9.30.1 Detailed Description
9.31	Gauss2DsxyModel.h File Reference
	9.31.1 Detailed Description
9.32	ImageFormat1DBase.cpp File Reference
	9.32.1 Detailed Description
9.33	ImageFormat1DBase.h File Reference
	9.33.1 Detailed Description
9.34	ImageFormat2DBase.cpp File Reference
	9.34.1 Detailed Description
9.35	ImageFormat2DBase.h File Reference
	9.35.1 Detailed Description
9.36	Install.md File Reference
9.37	MAPEstimator.h File Reference
	9.37.1 Detailed Description
9.38	mcmc.cpp File Reference
9.39	mcmc.h File Reference
	9.39.1 Detailed Description
9.40	MCMCAdaptor1D.cpp File Reference
	9.40.1 Detailed Description
9.41	MCMCAdaptor1D.h File Reference
	9.41.1 Detailed Description
9.42	MCMCAdaptor1Ds.cpp File Reference
	9.42.1 Detailed Description

CONTENTS xvii

9.43	MCMCAdaptor1Ds.h File Reference	322
	9.43.1 Detailed Description	322
9.44	MCMCAdaptor2D.cpp File Reference	322
	9.44.1 Detailed Description	322
9.45	MCMCAdaptor2D.h File Reference	323
	9.45.1 Detailed Description	323
9.46	MCMCAdaptor2Ds.cpp File Reference	323
	9.46.1 Detailed Description	323
9.47	MCMCAdaptor2Ds.h File Reference	324
	9.47.1 Detailed Description	324
9.48	MCMCAdaptorBase.cpp File Reference	324
	9.48.1 Detailed Description	324
9.49	MCMCAdaptorBase.h File Reference	325
	9.49.1 Detailed Description	325
9.50	MLEstimator.h File Reference	325
	9.50.1 Detailed Description	326
9.51	model_methods.h File Reference	327
9.52	model_methods_impl.h File Reference	330
9.53	numerical.cpp File Reference	333
	9.53.1 Detailed Description	334
9.54	numerical.h File Reference	334
	9.54.1 Detailed Description	335
9.55	OMPExceptionCatcher.h File Reference	335
	9.55.1 Detailed Description	336
9.56	openmp_methods.h File Reference	336
	9.56.1 Detailed Description	339
9.57	PointEmitterModel.cpp File Reference	339
	9.57.1 Detailed Description	339

9.58	PointEmitterModel.h File Reference	340
	9.58.1 Detailed Description	340
9.59	PoissonGaussianNoise2DObjective.cpp File Reference	341
9.60	PoissonGaussianNoise2DObjective.h File Reference	341
	9.60.1 Detailed Description	342
	9.60.2 Function Documentation	342
9.61	PoissonNoise1DObjective.cpp File Reference	344
	9.61.1 Detailed Description	344
9.62	PoissonNoise1DObjective.h File Reference	345
	9.62.1 Detailed Description	346
9.63	PoissonNoise2DObjective.cpp File Reference	346
	9.63.1 Detailed Description	347
9.64	PoissonNoise2DObjective.h File Reference	347
	9.64.1 Detailed Description	348
9.65	PriorMAP1DObjective.h File Reference	349
	9.65.1 Detailed Description	349
9.66	README.md File Reference	349
9.67	rng.cpp File Reference	349
9.68	rng.h File Reference	350
	9.68.1 Detailed Description	350
9.69	stackcomp.h File Reference	351
	9.69.1 Detailed Description	352
9.70	stencil.cpp File Reference	352
	9.70.1 Detailed Description	353
9.71	stencil.h File Reference	353
	9.71.1 Detailed Description	354
9.72	util.cpp File Reference	355
9.73	util.h File Reference	355

Index 859

1 MAPPEL

Mappel is an object-oriented image processing library for high-performance super-resolution localization of Gaussian point emitters in fluorescence microscopy applications.

- Mappel uses CMake and builds cross-platform for Linux and Windows 64-bit.
- Mappel provides object-oriented interfaces for C++, Python, and Matlab.
- Mappel uses OpenMP to parallelize operations over vectors of images or parameters
- Mappel is free-as-in-beer and free-as-in-speech! ([Apache-2.0](LICENSE))

Documentation

The Mappel Doxygen documentation can be build with the OPT_DOC CMake option and is also available on online:

- Mappel HTML Manual
- Mappel PDF Manual
- Mappel github repository

Background

Point emitter localization is a process of precisely estimating the sub-pixel location of a single point source emitters (molecules/proteins) at effective resolutions 10-50 times smaller than the fundamental diffraction limit for optical microscopes. Operationally, this is the process of going from blurry, noisy, pixelated images to a sub-pixel estimate of true emitter position as well as the uncertainty in that estimate. Figure 1 shows the point emitter localization process with realistic physical values for a typical super-resolution fluorescence microscope configuration.

Figure 1: Effective fitting resolution in typical applications

Applications

- Stochastic super-resolution reconstruction with PALM and dSTORM florescence microscopy techniques.
- Single particle tracking (SPT)
 - The Robust Particle Tracking (RPT) library uses Mappel for the localization phase of tracking.
- Nano-structure optical measurements and alignment.
- Accurate estimation of fluorophore emitter intensity over time.

1 MAPPEL 3

Performance

Emitter localization applications, especially SPT and super-resolution imaging, can require millions of emitter estimations per dataset. This demand is only increasing with the drive towards larger EMCCD and SCMOS sensors and longer experiments at higher frame-rates. Speed becomes even more crucial for these applications when batch processing dozens of large data files.

- Mappel runs all image oriented computations in parallel using OpenMP making full use the system hardware concurrency.
- Mappel is fast. It can easily localize 10⁴ emitters/sec/core on modern consumer hardware
- Small and medium-sized datasets using Mappel can work well on laptops allowing interactive Matlab applications like RPT to be used from nearly any machine.

Installation

Mappel uses the CMake build system, and is designed to be cross-compiled from linux to other platforms, primarily Win64, although future OSX support is planned.

Dependencies

Several standard numerical packages are required to build Mappel. Most distributions should have development versions of these packages which provide the include files and other necessary development files for the packages.

- Armadillo A high-performance array library for C++.
- Boost
- BLAS
 - Requires support for 64-bit integers.
 - Netlib BLAS Reference
- LAPACK
 - Requires support for 64-bit integers.
 - Netlib LAPACK Reference

Note the OPT_BLAS_INT64 CMake option controls whether Armadillo uses BLAS and LAPACK libraries that use 64-bit integer indexing. Matlab uses 64-bit by default, so linking Mappel to Matlab MEX libraries requires this option enabled. Many linux systems only provide 32-bit integer versions of BLAS and Lapack, and the option can be disabled if Matlab support is not a concern and 64-bit support is difficult to provide.

External Projects

These packages are specialized CMake projects. If they are not currently installed on the development machines we use the AddExternalDependency.cmake which will automatically download, configure, build and install to the CMAKE_INSTALL_PREFIX, enabling their use through the normal CMake find_package() system.

- BacktraceException A library to provide debugging output on exception calls. Important for Matlab debugging.
- ParallelRngManager A simple manager for easily deploying a set of RNG parallelized over a set number
 of threads, using the TRNG parallel RNG library.
- PriorHessian The PriorHessian library allows fast computation of log-likelihood and derivatives for composite priors.

Model classes

Mappel provides model objects that correspond to different fitting-modes (psf-models). Mappel's core is a C++ library libmappel.so that uses OpenMP to automatically parallelize localizations over multiple images. Mappel also provides detailed object-oriented interfaces for Python and Matlab, using the same concept of a Model class to represent each class of psf fitting models.

Computations available

- 11h log-likelihood (log of pdf)
- rllh relative log-likelihood (log of pdf without constant terms)
- grad derivative of log-likelihood (or equivalently of relative-IIh)
- grad2 2nd-derivative of log-likelihood
- hessian hessian of log-likelihood

Design Notes

Static Polymorphism

The Mappel library is designed using static polymorphism (templates), and as such avoids virtual functions for small-grained tasks, and instead uses templates, which allow many small functions to be inlined. This aggressive inlining by the compiler produces log-likelihood, gradient, and hessian functions that are nearly as fast as hand-coded functions.

2 Install

Currently building has only been tested on linux hosts.

Mappel has been tested with modern GCC-7.2.0 as well as earlier GCC's to 4.9.4 (which is still required for Matlab integration). In order to maintain compatibility with gcc-4.9.4 and still use modern C++14 features we use the -std=c++1y GCC standard when compiling.

2 Install 5

Dependencies

Several standard numerical packages are required to build Mappel. Most distributions should have development versions of these packages which provide the include files and other necessary development files for the packages.

- Armadillo
- Boost
- TRNG
- BLAS
 - Requires support for 64-bit integers.
 - Netlib BLAS Reference
- LAPACK
 - Requires support for 64-bit integers.
 - Netlib LAPACK Reference

Gentoo

Add to your package.keywords

```
1 sci-libs/lapack-reference int64
2 sci-libs/blas-reference int64
1 emerge -av armadillo boost lapack-reference blas-reference
```

For TRNG there is not a gentoo ebuild in the tree, we provide one at the OlahGentooScienceOverlay.

```
1 layman -o https://github.com/markjolah/OlahScienceGentooOverlay/blob/master/layman.xml -f -a olah-science 2 emerge -av trng
```

External Projects

Mappel also depends on several small Github projects which for now are maintained in separate repositories.

- BacktraceException A library to provide debugging output on exception calls. Important for Matlab debugging.
- ParallelRngManager A simple manager for easily deploying a set of RNG parallelized over a set number of threads, using the TRNG parallel RNG library.
- PriorHessian The PriorHessian library allows fast computation of log-likelihood and derivatives for composite priors.

If these libraries do not exist on the build system or at $\texttt{CMAKE_INSTALL_PREFIX}$, they are automatically downloaded, configured and installed as external dependencies during the CMake configure phase.

Normally the Github current versions of the external dependencies are used. To use the HEAD revision of a local git repository, the following Environment variables can be set:

- BacktraceExceptionURL Local directory or git URL for the BacktraceException library [optional] Default to use the HEAD version from Github
- ParallelRngManagerURL Local directory or git URL for the ParallelRngManager library
- PriorHessianURL Local directory or git URL for the PriorHessian library

Build process

Linux

```
1 git clone https://github.com/markjolah/Mappel.git
2 cd Mappel
3 ./build.sh
```

On successful build the Mappel libraries, binaries, includes, and CMake modules are all installed to the _install dir.

Debugging

CMake variable CMAKE_BUILD_TYPE=Debug will configure the debug build and all libraries and executables will have a .debug suffix.

A convenience script exists to only build the debug versions of the libraries in the local _build and _install directories

```
1 ./build.debug.sh
```

Tips:

• Try running VERBOSE=1 make inside the _build/Debug directory to debug the build/link command lines generated by CMAKE.

Python support

Matlab support is enabled by setting the CMake option <code>-DOPT_PYTHON=1</code>. At the moment only python 3 is supported. Several CMake variable can control for which python version modules are built.

- MAPPEL_PYTHON_VERSIONS List of python X.Y versions seperated by ";" to build modules for (e.g., "3. ← 4;3.5;3.6")
- MAPPEL_PYTHON_EXECUTABLE Name or full path to python executable on the system for which to build (e.g., python3).

Mappel uses pybind11 to compile modules for each Mappel Model class.

Python development workflow

The Mappel python package environment is created in the build tree at build_dir/python, as part of the CMake build process. There is a standard setuptools setup.py that can be used to build binary distributions and also to install to the local system.

The CMake install process will automatically install the python .egg using setup.py under the CMAKE_INSTALL ← _PREFIX directory.

In order to be able to develop the code at the root mappel/python/ git repository while running and testing the mappel package without having to make install on every small change to python code, we use the developer mode install option provided by setuptoools. In fact, we have made it even easier to use, by making an alias localdevelop

```
1 $ cd _build/Debug/python
2 $ python setup.py localdevelop
3 $ python -m mappel
```

3 Namespace Index 7

Matlab support

Matlab support is enabled by setting the CMake option MATLAB=on. This brings in an additional external dependency,

• MexIFace - A cross-platform Matlab/C++ class-based interface wrapper for generating .mex files.

The following environment variables control the Matlab build process

- MexIFaceURL: Local directory or git URL for the MexIface library (Matlab Support). [optional] Default to use the HEAD version from Github
- MATLAB_LIBS_ROOT: [Optional] Local path to find Matlab core shared libraries to link against (overrides default search paths). Must contain subdirectory structure (\$MATLAB_ARCH) // {bin,extern}. MATLAB_ARCH is [glnxa64, maci64, win64].
- MATLAB_ROOT_GLNXA64: Necessary for Matlab. Location of the Matlab glnxa64 version to link against.

Cross-building to Win64

The following Environment variables control the Win64 cross-build environment necessary to compile win64 binaries

- MXE_ROOT Local directory root of the MXE Win64 cross environment. Necessary For Win64 cross-compiling only.
- MATLAB_ROOT_WIN64 Necessary for Matlab on Win64 cross build. Location of the Matlab win64 version to link against.

Cross-building to OSX

- OSXCROSS_ROOT: Local directory root of the OSXCross OSX 64-bit cross environment. Necessary for OSX cross-compiling only.
- MATLAB_ROOT_MACI64: Necessary for Matlab on OSX cross build. Location of the Matlab maci64 version to link against.

3 Namespace Index

3.1 Namespace List

Here is a list of all namespaces with brief descriptions:

mappel	17
mappel::mcmc	49
mappel::methods Templated functions for operating on a PointEmitterModel	50

	mappel::methods::debug	61
	mappel::methods::likelihood	62
	mappel::methods::likelihood::debug	65
	mappel::methods::objective	67
	mappel::methods::objective::debug	72
	mappel::methods::objective::openmp	75
	mappel::methods::openmp	79
	omp_exception_catcher	85
	omp_exception_catcher::impl_	85
4	Hierarchical Index	
4.1	Class Hierarchy	
Thi	is inheritance list is sorted roughly, but not completely, alphabetically:	
	mappel::Estimator < Model >	104
	mappel::ThreadedEstimator< Model >	769
	mappel::CGaussHeuristicEstimator< Model >	87
	mappel::CGaussMLE < Model >	95
	mappel::HeuristicEstimator< Model >	511
	mappel::IterativeMaximizer < Model >	532
	mappel::NewtonDiagonalMaximizer< Model >	659
	mappel::NewtonMaximizer< Model >	672
	mappel::QuasiNewtonMaximizer< Model >	724
	${\it mappel::} {\it TrustRegionMaximizer} {\it < Model} >$	777
	mappel::SimulatedAnnealingMaximizer< Model >	737
	mappel::ImageFormat1DBase	519
	mappel::Gauss1DModel	167
	mappel::Gauss1DMAP	111
	mappel::Gauss1DMLE	139
	mappel::Gauss2DsxyMAP	461

4.1 Class Hierarchy 9

mappel::Gauss1DsModel	250
mappel::Gauss1DsMAP	19 4
mappel::Gauss1DsMLE	222
mappel::PoissonNoise1DObjective	706
mappel::Gauss1DMAP	111
mappel::Gauss1DMLE	139
mappel::Gauss1DsMAP	194
mappel::Gauss1DsMLE	222
mappel::Gauss2DsxyMAP ImageFormat1DBase	461
${\bf Poisson Gaussian Noise 2DO bjective < Model Base >}$	704
mappel::ImageFormat2DBase	526
mappel::Gauss2DModel	337
mappel::Gauss2DMAP	277
mappel::Gauss2DMLE	307
mappel::Gauss2DsModel	430
mappel::Gauss2DsMAP	366
mappel::Gauss2DsMLE	398
mappel::Gauss2DsxyModel	488
mappel::PoissonNoise2DObjective	714
mappel::Gauss2DMAP	277
mappel::Gauss2DMLE	307
mappel::Gauss2DsMAP	366
mappel::Gauss2DsMLE MappelError	398
mappel::ArrayShapeError	85
mappel::ArraySizeError	86
mappel::LogicalError	544
mappel::ModelBoundsError	658
mappel::NotImplementedError	685

mappel::NumericalError	685
mappel::ParameterValueError	688
mappel::IterativeMaximizer < Model >::Maximizer Data	560
mappel::MCMCAdaptorBase	641
mappel::MCMCAdaptor1D	568
mappel::Gauss1DModel	167
mappel::MCMCAdaptor1Ds	586
mappel::Gauss1DsModel	250
mappel::MCMCAdaptor2D	604
mappel::Gauss2DModel	337
mappel::MCMCAdaptor2Ds	622
mappel::Gauss2DsModel	430
$omp_exception_catcher::impl_::OMPExceptionCatcher < IntType >$	686
mappel::PointEmitterModel	689
mappel::Gauss1DModel	167
mappel::Gauss1DsModel	250
mappel::Gauss2DModel	337
mappel::Gauss2DsModel	430
mappel::Gauss2DsxyModel	488
mappel::MAPEstimator	545
mappel::Gauss1DMAP	111
mappel::Gauss1DsMAP	194
mappel::Gauss2DMAP	277
mappel::Gauss2DsMAP	366
mappel::Gauss2DsxyMAP	461
mappel::MCMCAdaptor1D	568
mappel::MLEstimator	643
mappel::Gauss1DMLE	139
mappel::Gauss1DsMLE	222
mappel::Gauss2DMLE	307

5 Class Index 11

	mappel::Gauss2DsMLE	398
	mappel::PriorMAP1DObjective	721
	mappel::Gauss1DModel::Stencil	746
	mappel::Gauss1DsModel::Stencil	749
	mappel::Gauss2DsxyModel::Stencil	753
	mappel::Gauss2DsModel::Stencil	758
	mappel::Gauss2DModel::Stencil	764
5	Class Index	
5.1	Class List	
He	ere are the classes, structs, unions and interfaces with brief descriptions:	
	mappel::ArrayShapeError Array is not of the right dimensionality	85
	mappel::ArraySizeError Array is not of the right size	86
	mappel::CGaussHeuristicEstimator< Model >	87
	mappel::CGaussMLE< Model >	95
	mappel::Estimator < Model >	104
	mappel::Gauss1DMAP A 1D Gaussian with fixed PSF under an Poisson Read Noise assumption and MAP Objective	111
	mappel::Gauss1DMLE A 1D Gaussian with fixed PSF under an Poisson noise assumption and maximum-likelihood objective	139
	mappel::Gauss1DModel A base class for 1D Gaussian PSF with a fixed sigma (standard dev.)	167
	mappel::Gauss1DsMAP A 1D Gaussian with variable PSF sigma under an Poisson read noise assumption and MAP Objective	194
	mappel::Gauss1DsMLE A 1D Gaussian with variable PSF under an Poisson noise assumption and maximum-likelihood estimator	222
	mappel::Gauss1DsModel Base class for 1D Gaussian PSF with variable Gaussian sigma (standard deviation) measured in units of pixels	250

mappel::Gauss2DMAP A 2D Gaussian with fixed PSF under an Poisson Read Noise assumption and MAP Objective	277
mappel::Gauss2DMLE A 2D Gaussian with fixed PSF under an Poisson noise assumption and maximum-likelihood objective	307
mappel::Gauss2DModel A base class for 2D Gaussian PSF with fixed but possibly asymmetric sigma	337
mappel::Gauss2DsMAP A 2D Gaussian with a variable scalar PSF sigma under a Poisson noise assumption using a maximum a-posteriori objective	366
mappel::Gauss2DsMLE A 2D Gaussian with a variable scalar PSF sigma under a Poisson noise assumption using a maximum-likelihood objective	398
mappel::Gauss2DsModel A base class for 2D Gaussian PSF where the gaussian sigma is controlled by a single scalar parameter which is called sigma_ratio. The size of the gaussian psf is sigma_ratio*psf_sigma, where psf_sigma is considered as a vector [psf_sigmaX, psf_sigmaY]	430
mappel::Gauss2DsxyMAP A 1D Gaussian with fixed PSF under an Poisson Read Noise assumption and MAP Objective	461
mappel::Gauss2DsxyModel A base class for 2D Gaussian PSF with axis-aligned gaussian with free parameters for both sigma — _x and sigma_y. Gaussian sigma parameters sigma_x and sigma_y are measured in units of pixels. The model has 6 parameters, [x,y,I,bg,sigma_x,sigma_y]	488
mappel::HeuristicEstimator< Model >	511
mappel::ImageFormat1DBase A virtual base class for 2D image localization objectives	519
mappel::ImageFormat2DBase A virtual base class for 2D image localization objectives	526
mappel::IterativeMaximizer< Model >	532
mappel::LogicalError Failure of code or algorithm logic	544
mappel::MAPEstimator A Mixin class to configure a for MLE estimation (null prior)	545
mappel::IterativeMaximizer< Model >::MaximizerData	560
mappel::MCMCAdaptor1D	568
mappel::MCMCAdaptor1Ds	586
mappel::MCMCAdaptor2D	604
mappel::MCMCAdaptor2Ds	622

5.1 Class List 13

mappel::MCMCAdaptorBase	641
mappel::MLEstimator A Mixin class to configure a for MLE estimation (null prior)	643
mappel::ModelBoundsError Access outside the model bounds is attempted	658
mappel::NewtonDiagonalMaximizer < Model >	659
mappel::NewtonMaximizer < Model >	672
mappel::NotImplementedError Feature not yet implemented	685
mappel::NumericalError Expected numerical condition does not hold	685
omp_exception_catcher::impl_::OMPExceptionCatcher< IntType >	686
mappel::ParameterValueError Parameter value is not valid	688
mappel::PointEmitterModel A virtual Base type for point emitter localization models	689
PoissonGaussianNoise2DObjective < ModelBase > A Base type for point emitter localization models that use 2d images	704
mappel::PoissonNoise1DObjective A base class for 1D objectives with Poisson read noise. This objective function and its subclasses are for models where the only source of noise is the "shot" or "counting" or Poisson noise inherent to a discrete capture of phontons given a certain mean rate of incidence on each pixel	706
mappel::PoissonNoise2DObjective A base class for 2D objectives with Poisson read noise. This objective function and its subclasses are for models where the only source of noise is the "shot" or "counting" or Poisson noise inherent to a discrete capture of phontons given a certain mean rate of incidence on each pixel	714
mappel::PriorMAP1DObjective A Mixin class to configure a Gauss1DModel for MAP estimation (default 1D prior)	72 1
mappel::QuasiNewtonMaximizer < Model >	724
mappel::SimulatedAnnealingMaximizer < Model >	737
mappel::Gauss1DModel::Stencil Stencil for 1D fixed-sigma models	746
mappel::Gauss1DsModel::Stencil Stencil for 1D variable-sigma models	749
mappel::Gauss2DsxyModel::Stencil Stencil for 2D free-sigma (astigmatic) models	753
mappel::Gauss2DsModel::Stencil Stencil for 2D scalar-sigma models	758

mappel::Gauss2DModel::Stencil Stencil for 2D fixed-sigma models	764
mappel::ThreadedEstimator < Model >	769
mappel::TrustRegionMaximizer< Model >	777
6 File Index	
6.1 File List	
Here is a list of all files with brief descriptions:	
display.cpp	793
display.h	794
estimator.h The class declaration and inline and templated functions for the Estimator class hierarchy	795
estimator_impl.h	796
estimator_statics.cpp	796
Gauss1DMAP.cpp The class definition and template Specializations for Gauss1DMAP	797
Gauss1DMAP.h The class declaration and inline and templated functions for Gauss1DMAP	797
Gauss1DMLE.cpp The class definition and template Specializations for Gauss1DMLE	798
Gauss1DMLE.h The class declaration and inline and templated functions for Gauss1DMLE	799
Gauss1DModel.cpp The class definition and template Specializations for Gauss1DModel	799
Gauss1DModel.h The class declaration and inline and templated functions for Gauss1DModel	800
Gauss1DsMAP.cpp The class definition and template Specializations for Gauss1DsMAP	801
Gauss1DsMAP.h The class declaration and inline and templated functions for Gauss1DsMAP	801
Gauss1DsMLE.cpp The class definition and template Specializations for Gauss1DsMLE	802
Gauss1DsMLE.h The class declaration and inline and templated functions for Gauss1DsMLE	802

6.1 File List

Gauss1DsModel.cpp The class definition and template Specializations for Gauss1DsModel	803
Gauss1DsModel.h The class declaration and inline and templated functions for Gauss1DsModel	804
Gauss2DMAP.cpp The class definition and template Specializations for Gauss2DMAP	804
Gauss2DMAP.h The class declaration and inline and templated functions for Gauss2DMAP	805
Gauss2DMLE.cpp The class definition and template Specializations for Gauss2DMLE	806
Gauss2DMLE.h The class declaration and inline and templated functions for Gauss2DMLE	806
Gauss2DModel.cpp The class definition and template Specializations for Gauss2DModel	807
Gauss2DModel.h The class declaration and inline and templated functions for Gauss2DModel	808
Gauss2DsMAP.cpp The class definition and template Specializations for Gauss2DsMAP	809
Gauss2DsMAP.h The class declaration and inline and templated functions for Gauss2DsMAP	809
Gauss2DsMLE.cpp The class definition and template Specializations for Gauss2DsMLE	810
Gauss2DsMLE.h The class declaration and inline and templated functions for Gauss2DsMLE	810
Gauss2DsModel.cpp The class definition and template Specializations for Gauss2DsModel	811
Gauss2DsModel.h The class declaration and inline and templated functions for Gauss2DsModel	812
Gauss2DsxyMAP.h The class declaration and inline and templated functions for Gauss2DsxyMAP	813
Gauss2DsxyModel.h The class declaration and inline and templated functions for Gauss2DsxyModel	813
ImageFormat1DBase.cpp The class definition and template Specializations for ImageFormat1DBase	814
ImageFormat1DBase.h The class declaration and inline and templated functions for ImageFormat1DBase	815
ImageFormat2DBase.cpp The class definition and template Specializations for ImageFormat2DBase	816

ImageFormat2DBase.h The class declaration and inline and templated functions for ImageFormat2DBase	816
MAPEstimator.h	
Class declaration and inline and templated functions for MAPEstimator	817
тетс.срр	818
mcmc.h	
Templated MCMC methods for posterior estimation	819
MCMCAdaptor1D.cpp The class definition and template Specializations for MCMCAdaptor1D	820
MCMCAdaptor1D.h	
The class declaration and inline and templated functions for MCMCAdaptor1D	820
MCMCAdaptor1Ds.cpp	
The class definition and template Specializations for MCMCAdaptor1Ds	821
MCMCAdaptor1Ds.h	
The class declaration and inline and templated functions for MCMCAdaptor1Ds	822
MCMCAdaptor2D.cpp	
The class definition and template Specializations for MCMCAdaptor2D	822
MCMCAdaptor2D.h The class declaration and inline and templated functions for MCMCAdaptor2D	823
MCMCAdaptor2Ds.cpp	
The class definition and template Specializations for MCMCAdaptor2Ds	823
MCMCAdaptor2Ds.h	
The class declaration and inline and templated functions for MCMCAdaptor2Ds	824
MCMCAdaptorBase.cpp	
The class definition and template Specializations for MCMCAdaptorBase	824
MCMCAdaptorBase.h	
The class declaration and inline and templated functions for MCMCAdaptorBase	825
MLEstimator.h	
Class declaration and inline and templated functions for MLEstimator	825
model_methods.h	827
model_methods_impl.h	830
numerical.cpp	
Numerical matrix operations	833
numerical.h	
Numerical matrix operations	834
OMPExceptionCatcher.h	
A lightweight class for managing C++ exception handling strategies for openMP methods	835

<pre>openmp_methods.h Namespaces for OpenMP parallelized versions of the mappel::model namespace functions (external methods)</pre>	836
nai methods)	030
PointEmitterModel.cpp The class definition and template Specializations for PointEmitterModel	839
PointEmitterModel.h The class declaration and inline and templated functions for PointEmitterModel	840
PoissonGaussianNoise2DObjective.cpp	841
PoissonGaussianNoise2DObjective.h The class declaration and inline and templated functions for PoissonGaussianNoise2DObjective	841
PoissonNoise1DObjective.cpp The class definition and template Specializations for PoissonNoise1DObjective	844
PoissonNoise1DObjective.h The class declaration and inline and templated functions for PoissonNoise1DObjective	845
PoissonNoise2DObjective.cpp The class definition and template Specializations for PoissonNoise2DObjective	846
PoissonNoise2DObjective.h The class declaration and inline and templated functions for PoissonNoise2DObjective	847
PriorMAP1DObjective.h The class declaration and inline and templated functions for PriorMAP1DObjective	849
rng.cpp	849
rng.h Random number generation usign sfmt	850
stackcomp.h Data-parallel versions of core computational functions using OpenMP	851
stencil.cpp The stencils for pixel based computations	852
stencil.h The stencils for pixel based computations	853
util.cpp	855
util.h	855

7 Namespace Documentation

7.1 mappel Namespace Reference

Namespaces

• mcmc

· methods

Templated functions for operating on a PointEmitterModel.

Classes

struct ArrayShapeError

Array is not of the right dimensionality.

struct ArraySizeError

Array is not of the right size.

- · class CGaussHeuristicEstimator
- class CGaussMLE
- class Estimator
- class Gauss1DMAP

A 1D Gaussian with fixed PSF under an Poisson Read Noise assumption and MAP Objective.

class Gauss1DMLE

A 1D Gaussian with fixed PSF under an Poisson noise assumption and maximum-likelihood objective.

class Gauss1DModel

A base class for 1D Gaussian PSF with a fixed sigma (standard dev.)

class Gauss1DsMAP

A 1D Gaussian with variable PSF sigma under an Poisson read noise assumption and MAP Objective.

class Gauss1DsMLE

A 1D Gaussian with variable PSF under an Poisson noise assumption and maximum-likelihood estimator.

class Gauss1DsModel

Base class for 1D Gaussian PSF with variable Gaussian sigma (standard deviation) measured in units of pixels.

class Gauss2DMAP

A 2D Gaussian with fixed PSF under an Poisson Read Noise assumption and MAP Objective.

class Gauss2DMLE

A 2D Gaussian with fixed PSF under an Poisson noise assumption and maximum-likelihood objective.

· class Gauss2DModel

A base class for 2D Gaussian PSF with fixed but possibly asymmetric sigma.

class Gauss2DsMAP

A 2D Gaussian with a variable scalar PSF sigma under a Poisson noise assumption using a maximum a-posteriori objective.

class Gauss2DsMLE

A 2D Gaussian with a variable scalar PSF sigma under a Poisson noise assumption using a maximum-likelihood objective.

class Gauss2DsModel

A base class for 2D Gaussian PSF where the gaussian sigma is controlled by a single scalar parameter which is called sigma_ratio. The size of the gaussian psf is sigma_ratio*psf_sigma, where psf_sigma is considered as a vector [psf_\circ sigmaX, psf_sigmaY].

class Gauss2DsxyMAP

A 1D Gaussian with fixed PSF under an Poisson Read Noise assumption and MAP Objective.

class Gauss2DsxyModel

A base class for 2D Gaussian PSF with axis-aligned gaussian with free parameters for both sigma_x and sigma_ \leftarrow y. Gaussian sigma parameters sigma_x and sigma_y are measured in units of pixels. The model has 6 parameters, [x,y,l,bg,sigma_x,sigma_y].

- · class HeuristicEstimator
- class ImageFormat1DBase

A virtual base class for 2D image localization objectives.

· class ImageFormat2DBase

A virtual base class for 2D image localization objectives.

- · class IterativeMaximizer
- struct LogicalError

Failure of code or algorithm logic.

· class MAPEstimator

A Mixin class to configure a for MLE estimation (null prior).

- class MCMCAdaptor1D
- class MCMCAdaptor1Ds
- class MCMCAdaptor2D
- class MCMCAdaptor2Ds
- · class MCMCAdaptorBase
- class MLEstimator

A Mixin class to configure a for MLE estimation (null prior).

struct ModelBoundsError

Access outside the model bounds is attempted.

- · class NewtonDiagonalMaximizer
- · class NewtonMaximizer
- struct NotImplementedError

Feature not yet implemented.

struct NumericalError

Expected numerical condition does not hold.

struct ParameterValueError

Parameter value is not valid.

· class PointEmitterModel

A virtual Base type for point emitter localization models.

· class PoissonNoise1DObjective

A base class for 1D objectives with Poisson read noise. This objective function and its subclasses are for models where the only source of noise is the "shot" or "counting" or Poisson noise inherent to a discrete capture of phontons given a certain mean rate of incidence on each pixel.

· class PoissonNoise2DObjective

A base class for 2D objectives with Poisson read noise. This objective function and its subclasses are for models where the only source of noise is the "shot" or "counting" or Poisson noise inherent to a discrete capture of phontons given a certain mean rate of incidence on each pixel.

• class PriorMAP1DObjective

A Mixin class to configure a Gauss1DModel for MAP estimation (default 1D prior).

- · class QuasiNewtonMaximizer
- · class SimulatedAnnealingMaximizer
- class ThreadedEstimator
- · class TrustRegionMaximizer

Typedefs

- using ParallelRngGeneratorT = trng::lcg64_shift
- using ParallelRngManagerT = parallel_rng::ParallelRngManager< ParallelRngGeneratorT >
- using RngSeedT = parallel_rng::SeedT
- using UniformDistT = std::uniform_real_distribution< double >
- using BoolT = uint16 t

```
using BoolVecT = arma::Col< uint16_t >
   • using ldxT = arma::uword
   using IdxVecT = arma::Col< IdxT >
   using IdxMatT = arma::Mat< IdxT >
    using VecT = arma::vec
    using MatT = arma::mat
   • using CubeT = arma::cube

    using VecFieldT = arma::field < VecT >

   using StatsT = std::map< std::string, double >
    using StringVecT = std::vector< std::string >
   • template<class ModelT , class ModelBaseT >
      using EnableIfSubclassT = typename std::enable if < std::is base of < ModelBaseT, ModelT >::value, void >←
      ::type

    template<class ReturnT , class ModelT , class ModelBaseT >

      using ReturnlfSubclassT = typename std::enable if < std::is base of < ModelBaseT, ModelT >::value, ReturnT
      >::type

    template<class Model >

      using ImageCoordT = typename Model::ImageCoordT

    template<class Model >

      using ImagePixeIT = typename Model::ImagePixeIT

    template<class Model >

      using ParamT = typename Model::ParamT

    template < class Model >

      using ParamVecT = typename Model::ParamVecT

    template < class Model >

      using ImageT = typename Model::ImageT

    template < class Model >

      using ModelDataT = typename Model::ModelDataT
   template<class Model >
      using StencilT = typename Model::Stencil

    template < class Model >

      using ImageStackT = typename Model::ImageStackT

    template < class Model >

      using ModelDataStackT = typename Model::ModelDataStackT

    template<class Model >

      using StencilVecT = typename Model::StencilVecT

    using MappelError = backtrace_exception::BacktraceException

Functions

    const char * lambda term color (int size, int Lidx)

   • ostream & print_centered_title (ostream &out, char fill, int width, const char *title=nullptr)

    ostream & print_labeled_image (ostream &out, const arma::mat &im, const char *title, const char *color)

    template<>
      std::ostream & print_image (std::ostream &out, const arma::vec &im)
   template<>
      std::ostream & print image (std::ostream &out, const arma::mat &im)
    template<>
      std::ostream & print_image (std::ostream &out, const arma::cube &im)
```

std::ostream & operator<< (std::ostream &out, const Gauss1DModel::Stencil &s)
 std::ostream & operator<< (std::ostream &out, const Gauss1DsModel::Stencil &s)

- std::ostream & operator<< (std::ostream &out, const Gauss2DModel::Stencil &s)
- std::ostream & operator<< (std::ostream &out, const Gauss2DsModel::Stencil &s)
- void copy_Usym_mat (arma::mat &usym)
- void copy Usym mat stack (arma::cube &usym stack)
- void copy_Lsym_mat (arma::mat &lsym)
- void cholesky make negative definite (arma::mat &m)
- void cholesky make positive definite (arma::mat &m)
- bool is negative definite (const arma::mat &usym)
- bool is positive definite (const arma::mat &usym)
- bool is symmetric (const arma::mat &A)
- void cholesky convert lower triangular (arma::mat &chol)
- void cholesky_convert_full_matrix (arma::mat &chol)
- bool cholesky (arma::mat &A)
- bool modified_cholesky (arma::mat &A)
- arma::vec cholesky solve (const arma::mat &C, const arma::vec &b)
- double normal quantile twosided (double confidence)
- double normal quantile onesided (double confidence)
- void fill_gaussian_stencil (int size, double stencil[], double sigma)
- double gaussian_convolution (int x, int y, const MatT &data, const VecT &Xstencil, const VecT &Ystencil)
- void estimate_gaussian_2Dmax (const MatT &data, const VecT &Xstencil, const VecT &Ystencil, int max_pos[], double &min_val)
- void refine_gaussian_2Dmax (const MatT &data, const VecT &Xstencil, const VecT &Ystencil, int max_pos[])
- double gaussian 3D convolution (int x, int y, int z, const CubeT &data, const VecFieldT &stencils)
- void estimate gaussian 3Dmax (const CubeT &data, const VecFieldT &stencils, int max pos[], double &min val)
- void refine_gaussian_3Dmax (const CubeT &data, const VecFieldT &stencils, int max_pos[])
- double estimate_background (const MatT &im, const MatT &unit_model_im, double min_bg)
- double estimate_intensity (const MatT &im, const MatT &unit_model_im, double bg)
- double estimate_background (const CubeT &im, const CubeT &unit_model_im)
- double estimate_intensity (const CubeT &im, const CubeT &unit_model_im, double bg)
- · void enable all cpus ()
- bool istarts with (const char *s, const char *pattern)
- bool istarts_with (const std::string &str, const char *pattern)
- const char * icontains (const char *s, const char *pattern)
- int maxidx (const VecT &v)
- std::ostream & operator<< (std::ostream &out, const StatsT &stats)
- template<class ImageT >
 - std::ostream & print_image (std::ostream &out, const ImageT &im)
- template<class Vec >
 - std::ostream & print_vec_row (std::ostream &out, const Vec &vec, const char *header, int header_width, const char *color=nullptr)
- $\bullet \ \ \mathsf{template}{<}\mathsf{class} \ \mathsf{Model}>$
- std::ostream & operator<< (std::ostream &out, Estimator< Model > &estimator)
- template < class Model >
 - std::enable_if< std::is_base_of< Gauss2DModel, Model >::value, ParamT< Model > >::type cgauss_
 heuristic_compute_estimate (const Model &model, const ModelDataT< Model > &im, const ParamT< Model
 > &theta_init)
- template<class Model >
 - std::enable_if< std::is_base_of< Gauss2DModel, Model >::value, ParamT< Model > >::type cgauss_ compute_estimate (Model &model, const ModelDataT< Model > &im, const ParamT< Model > &theta_init, int max iterations)

template<class Model >
 std::enable_if< std::is_base_of< Gauss2DModel, Model >::value, ParamT< Model > >::type cgauss_
 compute_estimate_debug (const Model &model, const ModelDataT< Model > &im, const ParamT< Model >
 &theta init, int max iterations, ParamVecT< Model > &sequence)

template < class Model >
 std::enable_if < std::is_base_of < Gauss2DsModel, Model >::value, ParamT < Model > >::type cgauss_←
 heuristic_compute_estimate (const Model & model, const ModelDataT < Model > &im, const ParamT < Model
 > &theta init)

template<class Model >
 std::enable_if< std::is_base_of< Gauss2DsModel, Model >::value, ParamT< Model > >::type cgauss_
 compute_estimate (Model &model, const ModelDataT< Model > &im, const ParamT< Model > &theta_init, int max iterations)

template < class Model >
 std::enable_if < std::is_base_of < Gauss2DsModel, Model >::value, ParamT < Model > >::type cgauss_
 compute_estimate_debug (const Model &model, const ModelDataT < Model > &im, const ParamT < Model >
 &theta init, int max iterations, ParamVecT < Model > &sequence)

template<class Model >
 std::enable_if< std::is_base_of< Gauss2DsxyModel, Model >::value, ParamT< Model > >::type cgauss_
 heuristic_compute_estimate (const Model &model, const ModelDataT< Model > &im, const ParamT< Model >
 &theta_init)

template < class Model >
 std::enable_if < std::is_base_of < Gauss2DsxyModel, Model >::value, ParamT < Model > >::type cgauss_←
 compute_estimate (Model &model, const ModelDataT < Model > &im, const ParamT < Model > &theta_init, int
 max_iterations)

template<class Model >
 std::enable_if< std::is_base_of< Gauss2DsxyModel, Model >::value, ParamT< Model > >::type cgauss_
 compute_estimate_debug (const Model &model, const ModelDataT< Model > &im, const ParamT< Model >
 &theta_init, int max_iterations, ParamVecT< Model > &sequence)

template < class Model , typename = EnablelfSubclassT < Model, PointEmitterModel >> std::ostream & operator << (std::ostream & out, const Model & model)

• template<class RngT >

IdxT generate_poisson_small (RngT &rng, double mu)

Genrates a single poisson disributed int from distribution with mean mu.

• template < class RngT >

ldxT generate_poisson_large (RngT &rng, double mu)

• template<class RngT >

double generate_poisson (RngT &rng, double mu)

• template<class Model >

void sample_prior_stack (Model &model, typename Model::ParamVecT &theta_stack)

Parallel sampling of the model prior.

template < class Model >

void model_image_stack (const Model &model, const typename Model::ParamVecT &theta_stack, typename Model::ImageStackT &image_stack)

Parallel computation of the model image.

template < class Model >

void simulate_image_stack (const Model &model, const typename Model::ParamVecT &theta_stack, typename Model::ImageStackT &image_stack)

Parallel simulation of images from one or more theta.

template<class Model >

void log_likelihood_stack (const Model &model, const typename Model::ImageT &image, const typename Model::ParamVecT &theta_stack, VecT &llh_stack)

Parallel log_likelihood calculations for a single image.

template < class Model >

void log_likelihood_stack (const Model &model, const typename Model::ImageStackT &image_stack, const typename Model::ParamVecT &theta stack, VecT &llh stack)

Parallel log_likelihood calculations for a stack of images.

template < class Model >

void model_grad_stack (const Model &model, const typename Model::ImageStackT &image_stack, const typename Model::ParamVecT &theta_stack, typename Model::ParamVecT &grad_stack)

Parallel model gradient calculations for a stack of images.

template<class Model >

void model_hessian_stack (const Model &model, const typename Model::ImageStackT &image_stack, const typename Model::ParamVecT &theta_stack, CubeT &hessian_stack)

Parallel model Hessian calculations for a stack of images.

template<class Model >

void model_positive_hessian_stack (const Model &model, const typename Model::ImageStackT &image_stack, const typename Model::ParamVecT &theta_stack, CubeT &hessian_stack)

Parallel model positive-definite Hessian approximation calculations for a stack of images.

template<class Model >

void cr_lower_bound_stack (const Model &model, const typename Model::ParamVecT &theta_stack, typename Model::ParamVecT &crlb_stack)

template<class Model >

void fisher_information_stack (const Model &model, const typename Model::ParamVecT &theta_stack, CubeT &fisherl_stack)

- double gauss_norm (double sigma)
- void fill_d_stencil (int size, double stencil[], double theta_x)
- void fill G stencil (int size, double stencil[], const double dx[], double theta sigma)
- void fill X stencil (int size, double stencil[], const double dx[], double theta sigma)
- void fill_DX_stencil (int size, double stencil[], const double Gx[], double theta_sigma)
- void fill_DXS_stencil (int size, double stencil[], const double dx[], const double Gx[], double theta_sigma)
- void fill_DXS2_stencil (int size, double stencil[], const double dx[], const double Gx[], const double DXS[], double theta_sigma)
- void fill_DXSX_stencil (int size, double stencil[], const double dx[], const double Gx[], const double DX[], double theta_sigma)
- VecT make d stencil (int size, double theta x)
- VecT make G stencil (int size, const VecT &dx, double theta sigma)
- VecT make_X_stencil (int size, const VecT &dx, double theta_sigma)
- VecT make DX stencil (int size, const VecT &Gx, double theta sigma)
- VecT make_DXS_stencil (int size, const VecT &dx, const VecT &Gx, double theta_sigma)
- VecT make_DXS2_stencil (int size, const VecT &dx, const VecT &Gx, const VecT &DXS, double theta_sigma)
- VecT make DXSX stencil (int size, const VecT &dx, const VecT &Gx, const VecT &DX, double theta sigma)
- VecT make_gaussian_stencil (int size, double sigma)
- double poisson log likelihood (double model val, double data val)
- double relative_poisson_log_likelihood (double model_val, double data_val)
- double check_lower_bound_hyperparameter (const char *name, double value, double lower_bound)
- double check_positive_hyperparameter (const char *name, double value, double hyperprior_epsilon=1E-6)
- double check unit hyperparameter (const char *name, double value, double hyperprior epsilon=1E-6)
- double log prior beta const (double beta)
- double log prior beta2 const (double beta0, double beta1)
- double log_prior_gamma_const (double kappa, double mean)
- double log_prior_pareto_const (double alpha, double min)
- double log prior normal const (double sigma)
- double rllh beta prior (double beta, double v, double max=1., double min=0.)

```
• double rllh_beta2_prior (double beta0, double beta1, double v, double max=1., double min=0.)

    double rllh gamma prior (double kappa, double mean, double v)

• double rllh pareto prior (double alpha, double v)
• double rllh normal prior (double mu, double sigma)

    double beta prior grad (double beta, double v, double max=1.. double min=0.)

• double beta2_prior_grad (double beta0, double beta1, double v, double max=1., double min=0.)

    double gamma prior grad (double kappa, double mean, double v)

• double pareto_prior_grad (double alpha, double v)
• double normal_prior_grad (double mu, double sigma)
• double beta prior grad2 (double beta, double v, double max=1., double min=0.)
• double beta2 prior grad2 (double beta0, double beta1, double v, double max=1., double min=0.)
• double gamma prior grad2 (double kappa, double v)

    double pareto prior grad2 (double alpha, double v)

    double normal prior grad (double sigma)

• double rllh_normal_prior (double mu, double sigma, double v)
• double normal prior grad (double mu, double sigma, double v)

    double normal prior grad2 (double sigma)

• template<typename T >
  int sgn (T val)
     sign (signum) function: -1/0/1

    template<typename T >

  T square (T x)

    double restrict value range (double val, double minval, double maxval)

• template<typename T , typename... Args>
  std::unique_ptr< T > make_unique (Args &&...args)
```

Variables

```
const char * TERM BLACK ="1:30"
• const char * TERM_RED ="1;31"
const char * TERM GREEN ="1;32"
const char * TERM_YELLOW ="1;33"
const char * TERM BLUE ="1;34"

    const char * TERM MAGENTA ="1;35"

• const char * TERM_CYAN ="1;36"
const char * TERM WHITE ="1;37"

    const char * TERM DIM BLACK ="0;30"

const char * TERM DIM RED ="0;31"
const char * TERM_DIM_GREEN ="0;32"

    const char * TERM DIM YELLOW ="0;33"

    const char * TERM DIM BLUE ="0;34"

    const char * TERM DIM MAGENTA ="0;35"

    const char * TERM DIM CYAN ="0;36"

const char * TERM_DIM_WHITE ="0;37"

    ParallelRngManagerT rng manager
```

7.1.1 Detailed Description

All models will call for maximization through this virtual function. All non-GPU based maximizers will use this version which spawns threads using a non-virual entry point member function Maximizer::thread_entry. GPU-based maximizers will want to do something custom, so they will declare their own virtual maximize_stack.

It is also because of the GPU-based mamixmizers that we are putting initilization, and CRLB/LLH calculations in here even though the Model knows how to do them.

We expect that those methods will need to also be paralellized and the GPU will need custom code, and the threaded CPU versions will want to also compute those in parallel, so in order to have a consitent call interface to the Maximizer classes, we put the CRLB/LLH and initialization work within the the maximize_stack method.

7.1.2 Typedef Documentation

7.1.2.1 using mappel::BoolT = typedef uint16_t

Definition at line 19 of file util.h.

7.1.2.2 using mappel::BoolVecT = typedef arma::Col<uint16_t>

Definition at line 20 of file util.h.

7.1.2.3 using mappel::CubeT = typedef arma::cube

A type to represent floating-point data cubes

Definition at line 26 of file util.h.

7.1.2.4 template < class ModelT , class ModelBaseT > using mappel::EnableIfSubclassT = typedef typename std::enable if < std::is base of < ModelBaseT.ModelT > ::value,void > ::type

Definition at line 33 of file util.h.

7.1.2.5 using mappel::ldxMatT = typedef arma::Mat<ldxT>

A type to represent integer data arrays

Definition at line 23 of file util.h.

7.1.2.6 using mappel::ldxT = typedef arma::uword

Definition at line 21 of file util.h.

7.1.2.7 using mappel::ldxVecT = typedef arma::Col<ldxT>

A type to represent integer data arrays

Definition at line 22 of file util.h.

7.1.2.8 template < class Model > using mappel::ImageCoordT = typedef typename Model::ImageCoordT

Definition at line 38 of file util.h.

7.1.2.9 template < class Model > using mappel::ImagePixeIT = typedef typename Model::ImagePixeIT

Definition at line 39 of file util.h.

7.1.2.10 template < class Model > using mappel::ImageStackT = typedef typename Model::ImageStackT

Definition at line 47 of file util.h.

7.1.2.11 template < class Model > using mappel::ImageT = typedef typename Model::ImageT

Definition at line 43 of file util.h.

7.1.2.12 using mappel::MappelError = typedef backtrace_exception::BacktraceException

Definition at line 60 of file util.h.

7.1.2.13 using mappel::MatT = typedef arma::mat

A type to represent floating-point data matricies

Definition at line 25 of file util.h.

7.1.2.14 template < class Model > using mappel::ModelDataStackT = typedef typename Model::ModelDataStackT

Definition at line 48 of file util.h.

7.1.2.15 template < class Model > using mappel::ModelDataT = typedef typename Model::ModelDataT

Definition at line 44 of file util.h.

7.1.2.16 using mappel::ParallelRngGeneratorT = typedef trng::lcg64_shift

Definition at line 21 of file rng.h.

7.1.2.17 using mappel::ParallelRngManagerT = typedef parallel_rng::ParallelRngManager < ParallelRngGeneratorT >

Definition at line 22 of file rng.h.

7.1.2.18 template < class Model > using mappel::ParamT = typedef typename Model::ParamT

Definition at line 41 of file util.h.

7.1.2.19 template < class Model > using mappel::ParamVecT = typedef typename Model::ParamVecT

Definition at line 42 of file util.h.

7.1.2.20 template < class ReturnT , class ModelT , class ModelBaseT > using mappel::ReturnIfSubclassT = typedef typename std::enable if < std::is base of < ModelBaseT.ModelT > ::value.ReturnT > ::type

Definition at line 36 of file util.h.

7.1.2.21 using mappel::RngSeedT = typedef parallel_rng::SeedT

Definition at line 23 of file rng.h.

7.1.2.22 using mappel::StatsT = typedef std::map<std::string,double>

A convenient form for reporting dictionaries of named FP data to matlab

Definition at line 28 of file util.h.

7.1.2.23 template < class Model > using mappel::StencilT = typedef typename Model::Stencil

Definition at line 45 of file util.h.

 $7.1.2.24 \quad template < class \ Model > using \ mappel:: Stencil Vec T = type def \ typename \ Model:: Stencil Vec T = typename \ Model:: Stencil Vec T = typename \ Model:: Stencil Vec T = typename \ Model:$

Definition at line 49 of file util.h.

7.1.2.25 using mappel::StringVecT = typedef std::vector<std::string>

Definition at line 29 of file util.h.

7.1.2.26 using mappel::UniformDistT = typedef std::uniform_real_distribution<double>

Definition at line 24 of file rng.h.

7.1.2.27 using mappel::VecFieldT = typedef arma::field < VecT >

Definition at line 27 of file util.h.

7.1.2.28 using mappel::VecT = typedef arma::vec

A type to represent floating-point data arrays

Definition at line 24 of file util.h.

```
7.1.3 Function Documentation
```

7.1.3.1 double mappel::beta2_prior_grad (double beta0, double beta1, double v, double max = 1., double min = 0.)
[inline]

Definition at line 314 of file stencil.h.

7.1.3.2 double mappel::beta2_prior_grad2 (double beta0, double beta1, double v, double max = 1., double min = 0.)
[inline]

Definition at line 347 of file stencil.h.

7.1.3.3 double mappel::beta prior grad (double beta, double v, double max = 1., double min = 0.) [inline]

Definition at line 307 of file stencil.h.

Referenced by mappel::PriorMAP1DObjective::prior_grad_update().

7.1.3.4 double mappel::beta_prior_grad2 (double beta, double v, double max = 1 ., double min = 0 .) [inline]

Definition at line 339 of file stencil.h.

Referenced by mappel::PriorMAP1DObjective::prior_grad2_update(), and mappel::PriorMAP1DObjective::prior_hess update().

7.1.3.5 template < class Model > std::enable_if < std::is_base_of < Gauss2DModel, Model > ::value, ParamT < Model > > ::type mappel::cgauss_compute_estimate (Model & model, const ModelDataT < Model > & im, const ParamT < Model > & theta_init, int max_iterations)

Definition at line 223 of file Gauss2DModel.h.

References mappel::Gauss2DModel::psf_sigma, and mappel::ImageFormat2DBase::size.

 $Referenced \ by \ mappel:: CGaussMLE < Model > :: compute_estimate().$

7.1.3.6 template < class Model > std::enable_if < std::is_base_of < Gauss2DsxyModel, Model > ::value, ParamT < Model > ::type mappel::cgauss_compute_estimate (Model & model, const ModelDataT < Model > & im, const ParamT < Model > & theta_init, int max_iterations)

Definition at line 251 of file Gauss2DsxyModel.h.

References mappel::ImageFormat2DBase::size.

7.1.3.7 template < class Model > std::enable_if < std::is_base_of < Gauss2DsModel, Model > ::value, ParamT < Model > > ::type mappel::cgauss_compute_estimate (Model & model, const ModelDataT < Model > & im, const ParamT < Model > & theta_init, int max_iterations)

Definition at line 253 of file Gauss2DsModel.h.

References mappel::ImageFormat2DBase::size.

7.1.3.8 template < class Model > std::enable_if < std::is_base_of < Gauss2DModel, Model > ::value, ParamT < Model > >::type mappel::cgauss_compute_estimate_debug (const Model & model, const ModelDataT < Model > & im, const ParamT < Model > & theta_init, int max_iterations, ParamVecT < Model > & sequence)

Definition at line 238 of file Gauss2DModel.h.

References mappel::Gauss2DModel::psf_sigma, and mappel::ImageFormat2DBase::size.

Referenced by mappel::CGaussMLE< Model >::compute estimate debug().

7.1.3.9 template < class Model > std::enable_if < std::is_base_of < Gauss2DsxyModel, Model > ::value, ParamT < Model > >::type mappel::cgauss_compute_estimate_debug (const Model & model, const ModelDataT < Model > & im, const ParamT < Model > & theta_init, int max_iterations, ParamVecT < Model > & sequence)

Definition at line 266 of file Gauss2DsxyModel.h.

References mappel::ImageFormat2DBase::size.

7.1.3.10 template < class Model > std::enable_if < std::is_base_of < Gauss2DsModel, Model > ::value, ParamT < Model > ::type mappel::cgauss_compute_estimate_debug (const Model & model, const ModelDataT < Model > & im, const ParamT < Model > & theta_init, int max_iterations, ParamVecT < Model > & sequence)

Definition at line 268 of file Gauss2DsModel.h.

References mappel::ImageFormat2DBase::size.

7.1.3.11 template < class Model > std::enable_if < std::is_base_of < Gauss2DModel, Model > ::value, ParamT < Model > >::type mappel::cgauss_heuristic_compute_estimate (const Model & model, const ModelDataT < Model > & im, const ParamT < Model > & theta_init)

Definition at line 209 of file Gauss2DModel.h.

References mappel::Gauss2DModel::psf sigma, and mappel::ImageFormat2DBase::size.

Referenced by mappel::CGaussMLE< Model >::compute_estimate(), mappel::CGaussMLE< Model >::compute_c
estimate_debug(), and mappel::HeuristicEstimator< Model >::get_debug_stats().

7.1.3.12 template < class Model > std::enable_if < std::is_base_of < Gauss2DsxyModel, Model > ::value, ParamT < Model > ::type mappel::cgauss_heuristic_compute_estimate (const Model & model, const ModelDataT < Model > & im, const ParamT < Model > & theta_init)

Definition at line 237 of file Gauss2DsxyModel.h.

References mappel::ImageFormat2DBase::size.

7.1.3.13 template < class Model > std::enable_if < std::is_base_of < Gauss2DsModel, Model > ::value, ParamT < Model > ::type mappel::cgauss_heuristic_compute_estimate (const Model & model, const ModelDataT < Model > & im, const ParamT < Model > & theta_init)

Definition at line 239 of file Gauss2DsModel.h.

References mappel::ImageFormat2DBase::size.

- 7.1.3.14 double mappel::check_lower_bound_hyperparameter (const char * name, double value, double lower_bound)
- 7.1.3.15 double mappel::check_positive_hyperparameter (const char * name, double value, double hyperprior_epsilon = 1E-6)
- 7.1.3.16 double mappel::check unit hyperparameter (const char * name, double value, double hyperprior epsilon = 1E-6)
- 7.1.3.17 bool mappel::cholesky (arma::mat & usym)

Parameters

usym

An upper triangular symmetric matrix stored in a full matrix format. This matrix will be overwritten with the upper triangle and diagonal elements of the modified cholesky decomposition.

Returns

true if usym was positive semi-definite. If false then Usym is left in arbitrary corrupted state.

Definition at line 97 of file numerical.cpp.

Referenced by is_positive_definite(), mappel::TrustRegionMaximizer< Model >::solve_restricted_step_length_ newton(), and mappel::TrustRegionMaximizer< Model >::solve_TR_subproblem().

7.1.3.18 void mappel::cholesky_convert_full_matrix (arma::mat & chol)

Convert matrix in internal cholesky format into a full matrix M = L*L'

Definition at line 82 of file numerical.cpp.

References copy_Usym_mat().

Referenced by cholesky_make_negative_definite(), cholesky_make_positive_definite(), and mappel::Newton← Maximizer < Model >::maximize().

7.1.3.19 void mappel::cholesky_convert_lower_triangular (arma::mat & chol)

Convert matrix in internal cholesky format into a lower triangular matrix L where M = L*L'

Definition at line 71 of file numerical.cpp.

Referenced by mappel::TrustRegionMaximizer < Model >::solve restricted step length newton().

7.1.3.20 void mappel::cholesky_make_negative_definite (arma::mat & m)

Modify m inplace using modfied choslesky decomposition to ensure m is negative definite

Definition at line 38 of file numerical.cpp.

References cholesky_convert_full_matrix(), and modified_cholesky().

Referenced by mappel::methods::objective::negative_definite_hessian().

7.1.3.21 void mappel::cholesky_make_positive_definite (arma::mat & m)

Modify m inplace using modfied choslesky decomposition to ensure m is positive definite

Definition at line 46 of file numerical.cpp.

References cholesky_convert_full_matrix(), and modified_cholesky().

7.1.3.22 arma::vec mappel::cholesky_solve (const arma::mat & C, const arma::vec & b)

Given a matrix in modified cholesky format and a vector solve the linear system C x = b.

Parameters

	С	A matrix in lower modified cholesky format	
ĺ	b	A vector representing the right hand side of the linear system.	

Returns

x - the solution to the linear system

Definition at line 184 of file numerical.cpp.

Referenced by mappel::NewtonMaximizer< Model >::maximize(), mappel::TrustRegionMaximizer< Model >::solve - _ restricted_step_length_newton(), and mappel::TrustRegionMaximizer< Model >::solve_TR_subproblem().

7.1.3.23 void mappel::copy_Lsym_mat (arma::mat & lsym)

Convert symmetric matrix stored as lower triangular to full Matrix Assuming lsym is the main diagonal and lower triangle of a symmetric matrix, fill in the upper triangle by copying the lowerr triangle. This operation modifies the matrix.

Definition at line 30 of file numerical.cpp.

7.1.3.24 void mappel::copy_Usym_mat (arma::mat & usym)

Convert symmetric matrix stored as upper triangular to full Matrix Assuming usym is the main diagonal and upper triangle of a symmetric matrix, fill in the lower triangle by copying the upper triangle. This operation modifies the matrix.

Definition at line 13 of file numerical.cpp.

Referenced by cholesky_convert_full_matrix(), and mappel::NewtonMaximizer< Model >::maximize().

7.1.3.25 void mappel::copy_Usym_mat_stack (arma::cube & usym_stack)

Definition at line 20 of file numerical.cpp.

7.1.3.26 template < class Model > void mappel::cr_lower_bound_stack (const Model & model, const typename Model::ParamVecT & theta_stack, typename Model::ParamVecT & crlb_stack)

Definition at line 304 of file stackcomp.h.

References mappel::methods::cr_lower_bound().

7.1.3.27 void mappel::enable_all_cpus ()

Definition at line 10 of file util.cpp.

7.1.3.28 double mappel::estimate_background (const MatT & im, const MatT & unit_model_im, double min_bg)

Definition at line 263 of file stencil.cpp.

```
7.1.3.29 double mappel::estimate_background ( const CubeT & im, const CubeT & unit_model_im )
Definition at line 282 of file stencil.cpp.
7.1.3.30 void mappel::estimate_gaussian_2Dmax ( const MatT & data, const VecT & Xstencil, const VecT & Ystencil, int
         max_pos[], double & min_val)
Definition at line 141 of file stencil.cpp.
References gaussian convolution().
7.1.3.31 void mappel::estimate_gaussian_3Dmax ( const CubeT & data, const VecFieldT & stencils, int max_pos[], double &
         min_val )
Definition at line 205 of file stencil.cpp.
References gaussian_3D_convolution().
7.1.3.32 double mappel::estimate_intensity ( const MatT & im, const MatT & unit_model_im, double bg )
Definition at line 277 of file stencil.cpp.
7.1.3.33 double mappel::estimate_intensity ( const CubeT & im, const CubeT & unit_model_im, double bg )
Definition at line 292 of file stencil.cpp.
7.1.3.34 void mappel::fill_d_stencil(int size, double stencil[], double theta_x) [inline]
Definition at line 151 of file stencil.h.
Referenced by make_d_stencil().
7.1.3.35 void mappel::fill_DX_stencil( int size, double stencil[], const double Gx[], double theta_sigma ) [inline]
Definition at line 176 of file stencil.h.
Referenced by make_DX_stencil().
7.1.3.36 void mappel::fill_DXS2_stencil (int size, double stencil[], const double dx[], const double Gx[], const double DXS[],
         double theta_sigma ) [inline]
Definition at line 190 of file stencil.h.
```

Referenced by make DXS2 stencil().

```
7.1.3.37 void mappel::fill_DXS_stencil (int size, double stencil[], const double dx[], const double Gx[], double theta_sigma)
          [inline]
Definition at line 183 of file stencil.h.
References square().
Referenced by make_DXS_stencil().
7.1.3.38 void mappel::fill_DXSX_stencil ( int size, double stencil[], const double dx[], const double Gx[], const double DX[],
         double theta_sigma ) [inline]
Definition at line 203 of file stencil.h.
Referenced by make_DXSX_stencil().
7.1.3.39 void mappel::fill_G_stencil ( int size, double stencil[], const double dx[], double theta_sigma ) [inline]
Definition at line 157 of file stencil.h.
References square().
Referenced by make_G_stencil().
7.1.3.40 void mappel::fill_gaussian_stencil (int size, double stencil[], double sigma)
Definition at line 40 of file stencil.cpp.
References gauss_norm().
Referenced by make_gaussian_stencil().
7.1.3.41 void mappel::fill_X_stencil(int size, double stencil[], const double dx[], double theta_sigma) [inline]
Definition at line 164 of file stencil.h.
Referenced by make X stencil().
7.1.3.42 template < class Model > void mappel::fisher_information_stack ( const Model & model, const typename
         Model::ParamVecT & theta_stack, CubeT & fisherl_stack )
Definition at line 315 of file stackcomp.h.
References fisher_information().
7.1.3.43 double mappel::gamma_prior_grad ( double kappa, double mean, double v ) [inline]
Definition at line 320 of file stencil.h.
Referenced by mappel::PriorMAP1DObjective::prior grad update().
```

7.1.3.44 double mappel::gamma_prior_grad2 (double *kappa*, double *v*) [inline]

Definition at line 356 of file stencil.h.

Referenced by mappel::PriorMAP1DObjective::prior_grad2_update(), and mappel::PriorMAP1DObjective::prior_hess-_update().

7.1.3.45 double mappel::gauss_norm (double sigma) [inline]

Definition at line 92 of file stencil.h.

Referenced by fill_gaussian_stencil().

7.1.3.46 double mappel::gaussian_3D_convolution (int x, int y, int z, const CubeT & data, const VecFieldT & stencils)

Definition at line 184 of file stencil.cpp.

Referenced by estimate_gaussian_3Dmax(), and refine_gaussian_3Dmax().

7.1.3.47 double mappel::gaussian_convolution (int x, int y, const MatT & data, const VecT & Xstencil, const VecT & Ystencil)

Definition at line 127 of file stencil.cpp.

Referenced by estimate_gaussian_2Dmax(), and refine_gaussian_2Dmax().

7.1.3.48 template < class RngT > double mappel::generate_poisson (RngT & rng, double mu)

Definition at line 81 of file rng.h.

References generate_poisson_large(), and generate_poisson_small().

Referenced by mappel::methods::simulate_image(), simulate_image(), and mappel::methods::simulate_image_from __model().

7.1.3.49 template < class RngT > IdxT mappel::generate_poisson_large (RngT & rng, double mu)

Definition at line 57 of file rng.h.

Referenced by generate_poisson().

7.1.3.50 template < class RngT > IdxT mappel::generate_poisson_small (RngT & rng, double mu)

Genrates a single poisson disributed int from distribution with mean mu.

Parameters

mu	- mean of poisson distribution
sfmt	- A pointer to the SFMT rng state.

Knuth method circa 1969. Trasformed to work ing log space. This is linear in mu. Works ok for small counts.

Definition at line 43 of file rng.h.

Referenced by generate_poisson().

7.1.3.51 const char * mappel::icontains (const char * s, const char * pattern)

Definition at line 39 of file util.cpp.

7.1.3.52 bool mappel::is_negative_definite (const arma::mat & usym)

Determine if C is negative definite (i.e., -C is positive definite)

Parameters

usym	A symmetric matrix in upper triangular format.
------	--

Returns

True if C is negative definite

Definition at line 52 of file numerical.cpp.

References is_positive_definite().

7.1.3.53 bool mappel::is_positive_definite (const arma::mat & usym)

Determine if C is positive definite

Parameters

ſ		
١	usym	A symmetric matrix in upper triangular format.

Returns

True if C is positive definite

Definition at line 57 of file numerical.cpp.

References cholesky().

Referenced by is_negative_definite(), and mappel::QuasiNewtonMaximizer< Model >::maximize().

7.1.3.54 bool mappel::is_symmetric (const arma::mat & A)

Check that full 2D matrix A is symmetric and can thus be treated as either upper or lower triangular symmetric representation. This will obviously not work with matricies that are already implicitly stored as symmetric triangular format since those matricies won't have the other triangle of elements filled in correctly.

Definition at line 63 of file numerical.cpp.

7.1.3.55 bool mappel::istarts_with (const char * s, const char * pattern)

Definition at line 21 of file util.cpp.

Referenced by mappel::Gauss1DsModel::make_default_prior(), mappel::Gauss2DModel::make_default_prior(), mappel::Gauss1DModel::make_default_prior(), mappel::Gauss2DsModel::make_default_prior(), mappel::make_default_prior(), mappel::make_default_pr

7.1.3.56 bool mappel::istarts_with (const std::string & str, const char * pattern)

Definition at line 29 of file util.cpp.

7.1.3.57 const char* mappel::lambda_term_color (int size, int Lidx)

Definition at line 33 of file display.cpp.

References TERM_BLUE, TERM_CYAN, TERM_DIM_BLUE, TERM_DIM_CYAN, TERM_DIM_GREEN, TERM_DIM
__MAGENTA, TERM_DIM_RED, TERM_DIM_WHITE, TERM_DIM_YELLOW, TERM_GREEN, TERM_MAGENTA, T
__ERM_RED, TERM_WHITE, and TERM_YELLOW.

Referenced by print_image().

7.1.3.58 template < class Model > void mappel::log_likelihood_stack (const Model & model, const typename Model::lmageT & image, const typename Model::ParamVecT & theta_stack, VecT & Ilh_stack)

Parallel log_likelihood calculations for a single image.

Compute log-likelihood for multiple thetas using the same image

Use: model.make param stack() to make a parameter stack of appropriate dimensions for the model

Template Parameters

Model	A concrete subclass of PointEmitterModel
-------	--

Parameters

in	model	A PointEmitterModel object.
in	image	An image.
in	theta_stack	Sequence of thetas. Size: [model.num_params, nThetas]
out	llh_stack	Sequence of Ilh values computed.

Definition at line 128 of file stackcomp.h.

References mappel::methods::objective::openmp::llh stack(), and log likelihood().

7.1.3.59 template < class Model > void mappel::log_likelihood_stack (const Model & model, const typename Model::lmageStackT & image_stack, const typename Model::ParamVecT & theta_stack, VecT & Ilh_stack)

Parallel log_likelihood calculations for a stack of images.

Compute log-likelihood for multiple image, theta pairs.

Use: model.make_param_stack() to make a parameter stack of appropriate dimensions for the model

Template Parameters

Model	A concrete subclass of PointEmitterModel
-------	--

Parameters

in	model	A PointEmitterModel object.
in	image_stack	Sequence of images.
in	theta_stack	Sequence of thetas. Size: [model.num_params, nThetas]
out	Ilh_stack	Sequence of Ilh values computed. Size: [n]

Definition at line 151 of file stackcomp.h.

References mappel::methods::objective::openmp::llh_stack(), and log_likelihood().

7.1.3.60 double mappel::log_prior_beta2_const (double beta0, double beta1) [inline]

Definition at line 248 of file stencil.h.

7.1.3.61 double mappel::log_prior_beta_const (double beta) [inline]

Definition at line 242 of file stencil.h.

7.1.3.62 double mappel::log_prior_gamma_const (double kappa, double mean) [inline]

Definition at line 255 of file stencil.h.

7.1.3.63 double mappel::log_prior_normal_const (double sigma) [inline]

Definition at line 267 of file stencil.h.

7.1.3.64 double mappel::log_prior_pareto_const (double alpha, double min) [inline]

Definition at line 261 of file stencil.h.

7.1.3.65 **VecT** mappel::make_d_stencil(int size, double theta_x) [inline]

Definition at line 97 of file stencil.h.

References fill_d_stencil().

Referenced by mappel::Gauss1DsModel::Stencil(), mappel::Gauss2DModel::Stencil(), mappel::Gauss2DModel::Stencil(), mappel::Gauss2DsModel::Stencil(), and mappel::Gauss2DsModel::Stencil().

7.1.3.66 VecT mappel::make_DX_stencil (int size, const VecT & Gx, double theta_sigma) [inline]

Definition at line 118 of file stencil.h.

References fill_DX_stencil().

Referenced by mappel::Gauss1DsModel::Stencil::compute_derivatives(), mappel::Gauss2DModel::Stencil::compute \leftarrow _derivatives(), mappel::Gauss1DModel::Stencil::compute_derivatives(), and mappel::Gauss2DsModel::Stencil \leftarrow ::compute_derivatives().

7.1.3.67 VecT mappel::make_DXS2_stencil (int size, const VecT & dx, const VecT & Gx, const VecT & DXS, double theta_sigma) [inline]

Definition at line 133 of file stencil.h.

References fill_DXS2_stencil().

7.1.3.68 VecT mappel::make_DXS_stencil (int size, const VecT & dx, const VecT & Gx, double theta_sigma) [inline]

Definition at line 125 of file stencil.h.

References fill_DXS_stencil().

Referenced by mappel::Gauss1DsModel::Stencil::compute_derivatives(), mappel::Gauss2DModel::Stencil::compute \leftarrow _derivatives(), mappel::Gauss1DModel::Stencil::compute_derivatives(), and mappel::Gauss2DsModel::Stencil \leftarrow ::compute_derivatives().

7.1.3.69 VecT mappel::make_DXSX_stencil(int size, const VecT & dx, const VecT & Gx, const VecT & DX, double theta_sigma
) [inline]

Definition at line 141 of file stencil.h.

References fill_DXSX_stencil().

7.1.3.70 VecT mappel::make_G_stencil(int size, const VecT & dx, double theta_sigma) [inline]

Definition at line 104 of file stencil.h.

References fill_G_stencil().

Referenced by mappel::Gauss1DsModel::Stencil::compute_derivatives(), mappel::Gauss2DModel::Stencil::compute _derivatives(), mappel::Gauss1DModel::Stencil::compute_derivatives(), and mappel::Gauss2DsModel::Stencil ::compute_derivatives().

7.1.3.71 VecT mappel::make_gaussian_stencil (int size, double sigma) [inline]

Definition at line 216 of file stencil.h.

References fill_gaussian_stencil().

7.1.3.72 template<typename T , typename... Args > std::unique_ptr<T> mappel::make_unique (Args &&... args)

Definition at line 130 of file util.h.

References operator << ().

7.1.3.73 VecT mappel::make_X_stencil(int size, const VecT & dx, double theta_sigma) [inline]

Definition at line 111 of file stencil.h.

References fill X stencil().

 $Referenced \ by \ mappel::Gauss1DsModel::Stencil(), \ mappel::Gauss2DModel::Stencil(), \ mappel::Gauss2Dmodel::Gauss2Dmodel::Gauss2Dmodel::Gauss2Dmodel::Gauss2Dmodel::Gauss2Dmodel::Gauss2Dmodel::Gauss2Dmodel::Gauss2Dmodel::Gauss2Dmodel::Gauss2Dmodel::Gauss2Dmodel::Gauss2Dmodel::Gauss2Dmodel::G$

7.1.3.74 int mappel::maxidx (const VecT & v)

Definition at line 55 of file util.cpp.

7.1.3.75 template < class Model > void mappel::model_grad_stack (const Model & model, const typename Model::lmageStackT & image_stack, const typename Model::ParamVecT & theta_stack, typename Model::ParamVecT & grad_stack)

Parallel model gradient calculations for a stack of images.

Compute gradient of log-likelihood for multiple image, theta pairs.

Use: model.make_param_stack() to make a parameter stack of appropriate dimensions for the model gradients.

Template Parameters

Model A concrete subclass of PointEmitterModel

Parameters

in	model	A PointEmitterModel object.
in	image_stack	Sequence of images.
in	theta_stack	Sequence of thetas.
out	grad_stack	Sequence of grad vectors values computed. Size: [model.num_params, n]

Definition at line 188 of file stackcomp.h.

References mappel::methods::objective::grad(), and model_grad().

7.1.3.76 template < class Model > void mappel::model_hessian_stack (const Model & model, const typename Model::lmageStackT & image_stack, const typename Model::ParamVecT & theta_stack, CubeT & hessian_stack)

Parallel model Hessian calculations for a stack of images.

Compute Hessian of log-likelihood for multiple image, theta pairs.

Use: model.make_param_mat_stack() to make a parameter matrix stack of appropriate dimensions for the model Hessian.

Template Parameters

Model	A concrete subclass of PointEmitterModel
-------	--

Parameters

in	model	A PointEmitterModel object.
in	image_stack	Sequence of images.
in	theta_stack	Sequence of thetas. Size: [model.num_params, nThetas]
out	hess_stack	Sequence of Hessian matrices computed. Size: [model.num_params, model.num_params, n]

Definition at line 231 of file stackcomp.h.

References mappel::methods::objective::grad(), and model_hessian().

7.1.3.77 template < class Model > void mappel::model_image_stack (const Model & model, const typename Model::ParamVecT & theta_stack, typename Model::ImageStackT & image_stack)

Parallel computation of the model image.

The model image is the expected photon count at each pixel under parameter theta.

Use: model.make_param_stack() to make a parameter stack of appropriate dimensions for the model Use: model. ← make_image_stack() to make an image stack of appropriate dimensions for the model

Template Parameters

Model	A concrete subclass of PointEmitterModel
-------	--

Parameters

in	model	A PointEmitterModel object.
in	theta_stack	Sequence of thetas for which to generate images. Size: [model.num_params, nThetas]
out image_stack Sequence of model images gene		Sequence of model images generated.

Definition at line 62 of file stackcomp.h.

References model_image().

7.1.3.78 template < class Model > void mappel::model_positive_hessian_stack (const Model & model, const typename Model::lmageStackT & image_stack, const typename Model::ParamVecT & theta_stack, CubeT & hessian_stack)

Parallel model positive-definite Hessian approximation calculations for a stack of images.

Compute Hessian a positive-definite Hessian using a modified cholesky decompositions. Computes for multiple image, theta pairs.

Use: model.make_param_mat_stack() to make a parameter matrix stack of appropriate dimensions for the model Hessian.

Template Parameters

Model	A concrete subclass of PointEmitterModel

Parameters

in	model	A PointEmitterModel object.	
in image_stack Sequence of images.		Sequence of images.	
in	theta_stack	Sequence of thetas. Size: [model.num_params, nThetas]	
out	hess_stack	sequence of approximate Hessian matrices computed. Size: [model.num_params, model.num_params, n]	

Definition at line 276 of file stackcomp.h.

7.1.3.79 bool mappel::modified_cholesky (arma::mat & usym)

Parameters

usym	An upper triangular symmetric matrix stored in a full matrix format. This matrix will be overwritten with the
	upper triangle and diagonal elements of the modified cholesky decomposition.

Returns

true if usym was positive semi-definite (no cholesky modification required). If false we made a modification

Definition at line 127 of file numerical.cpp.

Referenced by cholesky_make_negative_definite(), cholesky_make_positive_definite(), and mappel::Newton← Maximizer < Model >::maximize().

7.1.3.80 double mappel::normal_prior_grad (double *mu*, double *sigma*)

7.1.3.81 double mappel::normal_prior_grad (double sigma)

7.1.3.82 double mappel::normal_prior_grad (double *mu*, double *sigma*, double *v*) [inline]

Definition at line 332 of file stencil.h.

7.1.3.83 double mappel::normal_prior_grad2 (double sigma) [inline]

Definition at line 368 of file stencil.h.

7.1.3.84 double mappel::normal_quantile_onesided (double confidence)

Definition at line 29 of file stencil.cpp.

7.1.3.85 double mappel::normal_quantile_twosided (double confidence)

Definition at line 18 of file stencil.cpp.

Referenced by mappel::methods::error_bounds_expected(), mappel::methods::openmp::error_bounds_expected $_{\leftarrow}$ stack(), and mappel::methods::error_bounds_observed().

7.1.3.86 std::ostream & mappel::operator<< (std::ostream & out, const StatsT & stats)

Definition at line 68 of file util.cpp.

7.1.3.87 template < class Model , typename = EnablelfSubclassT < Model,PointEmitterModel >> std::ostream & mappel::operator << (std::ostream & out, const Model & model)

Definition at line 276 of file PointEmitterModel.h.

7.1.3.88 std::ostream& mappel::operator<< (std::ostream & out, const Gauss1DModel::Stencil & s)

Definition at line 164 of file Gauss1DModel.cpp.

References mappel::Gauss1DModel::Stencil::derivatives_computed, mappel::Gauss1DModel::Stencil::dx, mappel:: \leftarrow Gauss1DModel::Stencil::DX, mappel::Gauss1DModel::Stencil::DXS, mappel::Gauss1DModel::Stencil::Gx, print_vec \leftarrow _row(), TERM_BLUE, TERM_CYAN, TERM_WHITE, mappel::Gauss1DModel::Stencil::theta, and mappel::Gauss1D \leftarrow Model::Stencil::X.

Referenced by make unique().

7.1.3.89 std::ostream& mappel::operator<< (std::ostream & out, const Gauss1DsModel::Stencil & s)

Definition at line 182 of file Gauss1DsModel.cpp.

References mappel::Gauss1DsModel::Stencil::derivatives_computed, mappel::Gauss1DsModel::Stencil::dx, mappel ::Gauss1DsModel::Stencil::DXS, mappel::Gauss1DsModel::Stencil::DXS2, mappel::Gauss1DsModel::Stencil::DXSX, mappel::Gauss1DsModel::Stencil::DXSX, mappel::Gauss1DsModel::Stencil::CXSX, mappel

7.1.3.90 template < class Model > std::ostream & mappel::operator << (std::ostream & out, Estimator < Model > & estimator)

Definition at line 226 of file estimator impl.h.

7.1.3.91 std::ostream& mappel::operator<< (std::ostream & out, const Gauss2DModel::Stencil & s)

Definition at line 249 of file Gauss2DModel.cpp.

References mappel::Gauss2DModel::Stencil::derivatives_computed, mappel::Gauss2DModel::Stencil::dx, mappel:: \leftarrow Gauss2DModel::Stencil::DX, mappel::Gauss2DModel::Stencil::DX, mappel:: \leftarrow Gauss2DModel::Stencil::DY, mappel::Gauss2DModel::Stencil::DY, mappel:: \leftarrow Gauss2DModel::Stencil::Gx, mappel:: \leftarrow Gauss2DModel::Stencil::Gy, print_vec_row(), TERM_BLUE, TERM_CYAN, TERM_WHITE, mappel::Gauss2DModel::Stencil::X, and mappel::Gauss2DModel::Stencil::Y.

7.1.3.92 std::ostream& mappel::operator<< (std::ostream & out, const Gauss2DsModel::Stencil & s)

Definition at line 318 of file Gauss2DsModel.cpp.

References mappel::Gauss2DsModel::Stencil::derivatives_computed, mappel::Gauss2DsModel::Stencil::dx, mappel.:Gauss2DsModel::Stencil::DXS, mappel::Gauss2DsModel::Stencil::DXS2, mappel::Gauss2DsModel::Stencil::DXS2, mappel::Gauss2DsModel::Stencil::DXSX, mappel::Gauss2DsModel::Stencil::DYS, mappel::Gauss2DsModel::Stencil::DYS, mappel::Gauss2DsModel::Stencil::DYS2, mappel::Gauss2DsModel::Stencil::DYS2, mappel::Gauss2DsModel::Stencil::Gx, mappel::Gauss2DsModel::Stencil::Gx, mappel::Gauss2DsModel::Stencil::Gx, mappel::Gauss2DsModel::Stencil::Gx, mappel::Gauss2DsModel::Stencil::Gx, and mappel::Gauss2DsModel::Stencil::Y.

7.1.3.93 double mappel::pareto_prior_grad (double alpha, double v) [inline]

Definition at line 326 of file stencil.h.

7.1.3.94 double mappel::pareto_prior_grad2 (double alpha, double ν) [inline]

Definition at line 362 of file stencil.h.

7.1.3.95 double mappel::poisson_log_likelihood (double model_val, double data_val) [inline]

Definition at line 224 of file stencil.h.

Referenced by mappel::methods::likelihood::llh(), mappel::methods::likelihood::debug::llh_components(), and log_ likelihood().

7.1.3.96 ostream& mappel::print_centered_title (ostream & out, char fill, int width, const char * title = nullptr) Definition at line 83 of file display.cpp. Referenced by print image(), and print labeled image(). template < class ImageT > std::ostream& mappel::print_image (std::ostream & out, const ImageT & im) 7.1.3.97 7.1.3.98 template <> std::ostream & out, const arma::vec & im) Definition at line 139 of file display.cpp. References print_labeled_image(). Referenced by mappel::Estimator< Model >::compute_estimate_debug(), mappel::IterativeMaximizer< Model >← ::compute estimate debug(), mappel::Estimator< Model >::estimate max(), mappel::ThreadedEstimator< Model >↔ ::estimate_max_stack(), and mappel::ThreadedEstimator< Model >::estimate_profile_stack(). 7.1.3.99 template <> std::ostream & mappel::print_image (std::ostream & out, const arma::mat & im) Definition at line 147 of file display.cpp. References print labeled image(). 7.1.3.100 template <> std::ostream & mappel::print_image (std::ostream & out, const arma::cube & im) Definition at line 154 of file display.cpp. References lambda term color(), print centered title(), and print labeled image(). 7.1.3.101 ostream& mappel::print labeled image (ostream & out, const arma::mat & im, const char * title, const char * color) Definition at line 95 of file display.cpp. References print_centered_title(). Referenced by print image(). 7.1.3.102 template < class Vec > std::ostream & mappel::print_vec_row (std::ostream & out, const Vec & vec, const char * header, int header_width, const char * color = nullptr) Definition at line 42 of file display.h. Referenced by operator<<(). 7.1.3.103 void mappel::refine_gaussian_2Dmax (const MatT & data, const VecT & Xstencil, const VecT & Ystencil, int max_pos[]) Definition at line 157 of file stencil.cpp. References gaussian convolution().

```
7.1.3.104 void mappel::refine_gaussian_3Dmax ( const CubeT & data, const VecFieldT & stencils, int max_pos[])
Definition at line 225 of file stencil.cpp.
References gaussian_3D_convolution().
7.1.3.105 double mappel::relative_poisson_log_likelihood ( double model_val, double data_val ) [inline]
Definition at line 233 of file stencil.h.
Referenced by relative log likelihood(), mappel::methods::likelihood::rllh(), and mappel::methods::likelihood::debug←
::rllh components().
7.1.3.106 double mappel::restrict_value_range ( double val, double minval, double maxval ) [inline]
Definition at line 123 of file util.h.
7.1.3.107 double mappel::rllh beta2 prior (double beta0, double beta1, double max = 1., double min = 0.)
           [inline]
Definition at line 280 of file stencil.h.
7.1.3.108 double mappel::rllh beta prior ( double beta, double v, double max = 1., double min = 0.) [inline]
Definition at line 273 of file stencil.h.
Referenced by mappel::PriorMAP1DObjective::prior relative log likelihood().
7.1.3.109 double mappel::rllh_gamma_prior ( double kappa, double mean, double v ) [inline]
Definition at line 287 of file stencil.h.
Referenced by mappel::PriorMAP1DObjective::prior_relative_log_likelihood().
7.1.3.110 double mappel::rllh_normal_prior ( double mu, double sigma )
7.1.3.111 double mappel::rllh_normal_prior( double mu, double sigma, double v ) [inline]
Definition at line 299 of file stencil.h.
7.1.3.112 double mappel::rllh_pareto_prior ( double alpha, double v ) [inline]
Definition at line 293 of file stencil.h.
7.1.3.113 template < class Model > void mappel::sample_prior_stack ( Model & model, typename Model::ParamVecT & theta_stack )
Parallel sampling of the model prior.
```

Use: model.make param stack() to make a parameter stack of appropriate dimensions for the model

Template Parameters

Model F	A concrete subclass of PointEmitterModel
---------	--

Parameters

in	model,A	PointEmitterModel object.
out	theta_stack,A	sequence of sampled thetas. Size: [model.num_params, nSamples]

Definition at line 36 of file stackcomp.h.

References rng_manager.

7.1.3.114 template<typename T > int mappel::sgn (T val)

sign (signum) function: -1/0/1

Definition at line 116 of file util.h.

Referenced by mappel::TrustRegionMaximizer< Model >::compute bound scaling vec().

7.1.3.115 template < class Model > void mappel::simulate_image_stack (const Model & model, const typename Model::ParamVecT & theta_stack, typename Model::ImageStackT & image_stack)

Parallel simulation of images from one or more theta.

This accepts either a single theta and a stack of images, or a stack of thetas and a stack of images.

Use: model.make_param_stack() to make a parameter stack of appropriate dimensions for the model Use: model.← make image stack() to make an image stack of appropriate dimensions for the model

Template Parameters

Model	A concrete subclass of PointEmitterModel

Parameters

in	model	A PointEmitterModel object.
in	theta_stack	Single theta or a sequence of thetas. Size: [model.num_params, nThetas]
out	image_stack	Sequence of model images generated.

Definition at line 87 of file stackcomp.h.

References model_image(), rng_manager, mappel::methods::simulate_image(), and mappel::methods::simulate_ \leftarrow image from model().

7.1.3.116 template<typename T > T mappel::square (Tx)

Definition at line 121 of file util.h.

Referenced by fill DXS stencil(), and fill G stencil().

7.1.4 Variable Documentation

7.1.4.1 ParallelRngManagerT mappel::rng_manager

Definition at line 6 of file rng.cpp.

Referenced by mappel::PointEmitterModel::get_rng_generator(), mappel::PointEmitterModel::get_rng_manager(), mappel::PointEmitterModel::get_stats(), mappel::MCMCAdaptor2Ds::sample_mcmc_candidate(), mappel::MCMCAdaptor1Ds::sample_mcmc_candidate(), mappel::MCMCAdaptor1Ds::sample_mcmc_candidate(), mappel::MCMCAdaptor1Ds::sample_prior(), sample_prior_stack(), mappel:: \leftarrow PointEmitterModel::set_rng_seed(), and simulate_image_stack().

7.1.4.2 const char * mappel::TERM_BLACK ="1;30"

Definition at line 13 of file display.cpp.

7.1.4.3 const char * mappel::TERM_BLUE ="1;34"

Definition at line 17 of file display.cpp.

Referenced by lambda_term_color(), and operator<<().

7.1.4.4 const char * mappel::TERM_CYAN ="1;36"

Definition at line 19 of file display.cpp.

Referenced by lambda_term_color(), and operator<<().

7.1.4.5 const char * mappel::TERM_DIM_BLACK ="0;30"

Definition at line 21 of file display.cpp.

7.1.4.6 const char * mappel::TERM_DIM_BLUE ="0;34"

Definition at line 25 of file display.cpp.

Referenced by lambda_term_color().

7.1.4.7 const char * mappel::TERM_DIM_CYAN ="0;36"

Definition at line 27 of file display.cpp.

Referenced by lambda term color().

```
7.1.4.8 const char * mappel::TERM_DIM_GREEN ="0;32"
Definition at line 23 of file display.cpp.
Referenced by lambda_term_color().
7.1.4.9 const char * mappel::TERM_DIM_MAGENTA ="0;35"
Definition at line 26 of file display.cpp.
Referenced by lambda term color().
7.1.4.10 const char * mappel::TERM_DIM_RED ="0;31"
Definition at line 22 of file display.cpp.
Referenced by lambda_term_color().
7.1.4.11 const char * mappel::TERM_DIM_WHITE ="0;37"
Definition at line 28 of file display.cpp.
Referenced by lambda_term_color().
7.1.4.12 const char * mappel::TERM_DIM_YELLOW ="0;33"
Definition at line 24 of file display.cpp.
Referenced by lambda_term_color().
7.1.4.13 const char * mappel::TERM_GREEN ="1;32"
Definition at line 15 of file display.cpp.
Referenced by lambda term color().
7.1.4.14 const char * mappel::TERM_MAGENTA ="1;35"
Definition at line 18 of file display.cpp.
Referenced by lambda_term_color().
7.1.4.15 const char * mappel::TERM_RED ="1;31"
Definition at line 14 of file display.cpp.
Referenced by lambda term color().
```

```
7.1.4.16 const char * mappel::TERM_WHITE ="1;37"
```

Definition at line 20 of file display.cpp.

Referenced by lambda_term_color(), and operator<<().

7.1.4.17 const char * mappel::TERM_YELLOW ="1;33"

Definition at line 16 of file display.cpp.

Referenced by lambda_term_color().

7.2 mappel::mcmc Namespace Reference

Functions

- IdxT num oversample (IdxT Nsample, IdxT Nburnin, IdxT thin)
- MatT thin sample (MatT &sample, IdxT Nburnin, IdxT thin)
- void thin_sample (const MatT &sample, const VecT &sample_rllh, ldxT Nburnin, ldxT thin, MatT &subsample, VecT &subsample rllh)
- void estimate_sample_posterior (const MatT &sample, VecT &theta_posterior_mean, MatT &theta_posterior_
 cov)
- template < class Model >
 void sample_posterior (Model & model, const ModelDataT < Model > & im, const StencilT < Model > & theta_init,
 MatT & sample, VecT & sample_rllh)
- template<class Model >
 void sample_posterior_debug (Model &model, const ModelDataT< Model > &im, const StencilT< Model >
 &theta_init, MatT &sample, VecT &sample_rllh, MatT &candidate, VecT &candidate_rllh)

7.2.1 Function Documentation

7.2.1.1 void mappel::mcmc::estimate_sample_posterior (const MatT & sample, VecT & theta_posterior_mean, MatT & theta_posterior_cov) [inline]

Definition at line 25 of file mcmc.h.

Referenced by mappel::methods::estimate_mcmc_posterior().

7.2.1.2 IdxT mappel::mcmc::num_oversample (IdxT Nsample, IdxT Nburnin, IdxT thin)

Definition at line 7 of file mcmc.cpp.

Referenced by mappel::methods::estimate mcmc sample().

7.2.1.3 template < class Model > void mappel::mcmc::sample_posterior (Model & model, const ModelDataT < Model > & im, const StencilT < Model > & theta init, MatT & sample, VecT & sample rllh) Definition at line 32 of file mcmc.h. References mappel::methods::objective::rllh(). Referenced by mappel::methods::estimate_mcmc_sample(). 7.2.1.4 template < class Model > void mappel::mcmc::sample_posterior_debug (Model & model, const ModelDataT < Model > & im, const StencilT < Model > & theta_init, MatT & sample, VecT & sample_rllh, MatT & candidate, VecT & candidate_rllh) Definition at line 64 of file mcmc.h. References mappel::methods::objective::rllh(). Referenced by mappel::methods::debug::estimate_mcmc_sample_debug(). MatT mappel::mcmc::thin_sample (MatT & sample, IdxT Nburnin, IdxT thin) Definition at line 13 of file mcmc.cpp. Referenced by mappel::methods::estimate mcmc sample(). 7.2.1.6 void mappel::mcmc::thin_sample (const MatT & sample, const VecT & sample_rllh, IdxT Nburnin, IdxT thin, MatT & subsample, VecT & subsample_rllh) Definition at line 24 of file mcmc.cpp. mappel::methods Namespace Reference Templated functions for operating on a PointEmitterModel. **Namespaces** debug likelihood

objectiveopenmp

Functions

template<class Model >
 ReturnIfSubclassT< ImageT< Model >, Model, ImageFormat1DBase > model_image (const Model &model, const StencilT< Model > &s)

template<class Model >

ReturnIfSubclassT< ImageT< Model >, Model, ImageFormat2DBase > model_image (const Model &model, const typename Model::Stencil &s)

template < class Model >

ImageT < Model > model image (const Model &model, const ParamT < Model > &theta)

• template<class Model , class rng_t >

ModelDataT < Model > simulate_image (Model &model, const ParamT < Model > &theta)

template < class Model , class rng_t >

ModelDataT < Model > simulate_image (Model &model, const ParamT < Model > &theta, rng_t &rng)

template < class Model >

ModelDataT< Model > simulate_image (Model &model, const StencilT< Model > &s)

template < class Model >

ModelDataT < Model > simulate_image_from_model (Model &model, const ImageT < Model > &model_im)

template<class Model >

void aposteriori_objective (const Model &model, const ModelDataT< Model > &data_im, const StencilT< Model > &s, double &rllh, ParamT< Model > &grad, MatT &hess)

template < class Model >

void aposteriori_objective (const Model &model, const ModelDataT< Model > &data_im, const ParamT< Model > &theta, double &rllh, ParamT< Model > &grad, MatT &hess)

template < class Model >

void prior_objective (const Model &model, const ParamT< Model > &theta, double &rllh, ParamT< Model > &grad, MatT &hess)

template < class Model >

void likelihood_objective (const Model &model, const ModelDataT< Model > &data_im, const StencilT< Model > &s, double &rllh, ParamT< Model > &grad, MatT &hess)

template < class Model >

void likelihood_objective (const Model &model, const ModelDataT< Model > &data_im, const ParamT< Model > &theta, double &rllh, ParamT< Model > &grad, MatT &hess)

template < class Model >

ParamT < Model > cr_lower_bound (const Model &model, const typename Model::Stencil &s)

Calculate the Cramer-Rao lower bound at the given parameters.

template<class Model >

ParamT < Model > cr_lower_bound (const Model &model, const ParamT < Model > &theta)

template<class Model >

MatT expected information (const Model &model, const ParamT < Model > &theta)

• template<class Model >

MatT observed_information (const Model &model, const ModelDataT< Model > &data, const ParamT< Model > &theta mode)

template<class Model >

MatT observed_information (const Model &model, const ModelDataT< Model > &data, const StencilT< Model > &theta_mode)

template<class Model >

StencilT< Model > estimate_max (Model &model, const ModelDataT< Model > &data, const std::string &method)

template<class Model >

StencilT< Model > estimate_max (Model &model, const ModelDataT< Model > &data, const std::string &method, const ParamT< Model > &theta_init, double &rllh)

template < class Model >
 void estimate_max (Model & model, const ModelDataT < Model > & data, const std::string & method, ParamT <
 Model > & theta max, double & theta max Ilh, MatT & obsl)

template<class Model >
 void estimate_max (Model &model, const ModelDataT< Model > &data, const std::string &method, ParamT
 Model > &theta max, double &theta max Ilh, MatT &obsl, StatsT &stats)

template<class Model >
 void estimate_max (Model &model, const ModelDataT< Model > &data, const std::string &method, const ParamT< Model > &theta_init, ParamT< Model > &theta_max, double &theta_max_llh, MatT &obsl)

template<class Model >
 void estimate_max (Model &model, const ModelDataT< Model > &data, const std::string &method, const
 ParamT< Model > &theta_init, ParamT< Model > &theta_max_llh, MatT &obsl, StatsT
 &stats)

template < class Model >
 MatT estimate_mcmc_sample (Model &model, const ModelDataT < Model > &data, IdxT Nsample=1000, IdxT Nburnin=100, IdxT thin=0)

template<class Model >
 MatT estimate_mcmc_sample (Model &model, const ModelDataT< Model > &data, const ParamT< Model >
 &theta init, IdxT Nsample=1000, IdxT Nburnin=100, IdxT thin=0)

template<class Model >
 void estimate_mcmc_sample (Model &model, const ModelDataT< Model > &data, const ParamT< Model >
 &theta_init, IdxT Nsample, IdxT Nburnin, IdxT thin, MatT &sample, VecT &sample_rllh)

template < class Model >
 void estimate_mcmc_posterior (Model & model, const ModelDataT < Model > & data, ldxT Nsample, ldxT Nburnin,
 ldxT thin, ParamT < Model > & posterior_mean, MatT & posterior_cov)

template < class Model >
 void estimate_mcmc_posterior (Model &model, const ModelDataT < Model > &data, const ParamT < Model >
 &theta_init, ldxT Nsample, ldxT Nburnin, ldxT thin, ParamT < Model > &posterior_mean, MatT &posterior_cov)

template<class Model >
 void error_bounds_expected (const Model &model, const ParamT< Model > &theta_est, double confidence,
 ParamT< Model > &theta_lb, ParamT< Model > &theta_ub)

template<class Model >
 void error_bounds_observed (const Model &model, const ParamT< Model > &theta_est, MatT &obsl, double
 confidence, ParamT< Model > &theta_lb, ParamT< Model > &theta_ub)

template < class Model >
 void error_bounds_posterior_credible (const Model & model, const MatT & sample, double confidence, ParamT <
 Model > & theta_mean, ParamT < Model > & theta_lb, ParamT < Model > & theta_ub)

template < class Model >
 Model::ImageT model_image (const Model & model, const ParamT < Model > & theta)

 $\begin{tabular}{ll} \bullet & template < class Model > \\ \hline & Model DataT < Model > simulate_image (Model \& model, const ParamT < Model > \& theta) \\ \end{tabular}$

template < class Model , class RngT >
 ModelDataT < Model > simulate_image (Model & model, const ParamT < Model > & theta, RngT & rng)

template < class Model , class rng_t >
 ReturnIfSubclassT < Model DataT < Model >, Model, PoissonNoise1DObjective > simulate_image (const Model & model, const StencilT < Model > &s, rng t &rng)

Simulate an image at a given theta stencil, by generating Poisson noise Enabled for PoissonNoise1DObjective.

template < class Model , class rng_t >
 ReturnIfSubclassT < Model DataT < Model >, Model, PoissonNoise1DObjective > simulate_image_from_model
 (const Model &model, const ImageT < Model > &model_im, rng_t &rng)

Simulate an image at a given theta stencil, by generating Poisson noise Enabled for PoissonNoise1DObjective.

template < class Model >

ReturnIfSubclassT< MatT, Model, PoissonNoise1DObjective > expected_information (const Model &model, const StencilT< Model > &s)

Compute the expected information (Fisher information at theta). Note: Expected information is an average quantity and is independent of the data. Enabled for PoissonNoise1DObjective.

template < class Model >

ReturnIfSubclassT< std::unique_ptr< Estimator< Model > >, Model, PoissonNoise1DObjective > make_ estimator (Model &model, std::string ename)

template < class Model , class rng_t >

ReturnIfSubclassT< ImageT< Model >, Model, PoissonNoise2DObjective > simulate_image (const Model &model, const StencilT< Model > &s, rng t &rng)

Simulate an image at a given theta stencil, by generating Poisson noise Enabled for PoissonNoise2DObjective.

template < class Model , class rng_t >

ReturnIfSubclassT< ImageT< Model >, Model, PoissonNoise2DObjective > simulate_image_from_model (const Model &model, const ImageT< Model > &model_im, rng_t &rng)

Simulate an image at a given theta stencil, by generating Poisson noise Enabled for PoissonNoise2DObjective.

template < class Model >

ReturnIfSubclassT< MatT, Model, PoissonNoise2DObjective > expected_information (const Model &model, const StencilT< Model > &s)

Compute the expected information (Fisher information at theta). Note: Expected information is an average quantity and is independent of the data. Enabled for PoissonNoise2DObjective.

template<class Model >

ReturnIfSubclassT< std::unique_ptr< Estimator< Model > >, Model, PoissonNoise2DObjective > make_ estimator (Model &model, std::string ename)

7.3.1 Detailed Description

Templated functions for operating on a PointEmitterModel.

Most methods are overloaded to take a ParamT or a StencilT. The precomputed stencil for a theta value contains the common computational values needed by all methods that compute the likelihood function or its derivatives. Note that methods in model::prior:: namespace do not take a stencil (or data) a they are independent of the data and the likelihood function.

Methods with xxx_comonents return a sequence of values representing the results from each pixel in turn. The sum of these components is the overall model value. (e.g. sum(Ilh_components(...))==Ilh(...)). These methods are usefully for detailed inspection of the contributions of each pixel or prior component to the overall result. External template based methods for PointEmitterModel's. These are general or convenience functions that are included in this file. Those methods specific to other sub-types of Models should be included within that sub-type's .h file, using the enable_if mechanism to restrict their instantiation to the correct sub-types.

7.3.2 Function Documentation

7.3.2.1 template < class Model > void mappel::methods::aposteriori_objective (const Model & model, const ModelDataT < Model > & data_im, const StencilT < Model > & s, double & rllh, ParamT < Model > & grad, MatT & hess)

Definition at line 219 of file model_methods_impl.h.

References mappel::methods::likelihood::hessian(), and mappel::methods::likelihood::rllh().

Referenced by aposteriori objective().

7.3.2.2 template < class Model > void mappel::methods::aposteriori_objective (const Model & model, const ModelDataT < Model > & data_im, const ParamT < Model > & theta, double & rllh, ParamT < Model > & grad, MatT & hess)

Definition at line 257 of file model_methods_impl.h.

References aposteriori_objective(), mappel::methods::objective::grad(), and mappel::methods::objective::rllh().

7.3.2.3 template < class Model > ParamT < Model > mappel::methods::cr_lower_bound (const Model & *model*, const typename Model::Stencil & s)

Calculate the Cramer-Rao lower bound at the given parameters.

Parameters

in	theta	The parameters to evaluate the CRLB at
out	crlb	The calculated parameters

Definition at line 284 of file model_methods_impl.h.

References expected_information().

Referenced by cr_lower_bound(), mappel::cr_lower_bound_stack(), and error_bounds_expected().

 $\textbf{7.3.2.4} \quad \textbf{template} < \textbf{class Model} > \textbf{ParamT} < \textbf{Model} > \textbf{mappel} :: \textbf{methods} :: \textbf{cr_lower_bound} \ (\ \textbf{const Model} \ \& \ \textbf{model}, \ \textbf{const ParamT} < \\ \textbf{Model} > \& \ \textbf{\textit{theta}} \)$

Definition at line 296 of file model methods impl.h.

References cr_lower_bound().

7.3.2.5 template < class Model > void mappel::methods::error_bounds_expected (const Model & model, const ParamT < Model > & theta_est, double confidence, ParamT < Model > & theta_lb, ParamT < Model > & theta_ub)

Definition at line 440 of file model methods impl.h.

References cr_lower_bound(), and mappel::normal_quantile_twosided().

7.3.2.6 template < class Model > void mappel::methods::error_bounds_observed (const Model & model, const ParamT < Model > & theta_est, MatT & obsl, double confidence, ParamT < Model > & theta_lb, ParamT < Model > & theta_ub)

Definition at line 451 of file model_methods_impl.h.

 $References\ mappel::normal_quantile_twosided().$

7.3.2.7 template < class Model > void mappel::methods::error_bounds_posterior_credible (const Model & model, const MatT & sample, double confidence, ParamT < Model > & theta_mean, ParamT < Model > & theta_lb, ParamT < Model > & theta_ub)

Definition at line 467 of file model methods impl.h.

7.3.2.8 template < class Model > StencilT < Model > mappel::methods::estimate_max (Model & model, const ModelDataT < Model > & data, const std::string & method)

Definition at line 323 of file model methods impl.h.

References make_estimator().

Referenced by mappel::Gauss2DModel::initial_theta_estimate(), and mappel::Gauss2DsModel::initial_theta_estimate().

7.3.2.9 template < class Model > StencilT < Model > mappel::methods::estimate_max (Model & model, const ModelDataT < Model > & data, const std::string & method, const ParamT < Model > & theta_init, double & rllh)

Definition at line 330 of file model methods impl.h.

References make estimator().

7.3.2.10 template < class Model > void mappel::methods::estimate_max (Model & model, const ModelDataT < Model > & data, const std::string & method, ParamT < Model > & theta_max, double & theta_max_Ilh, MatT & obsl)

Definition at line 338 of file model methods impl.h.

References make_estimator().

7.3.2.11 template < class Model > void mappel::methods::estimate_max (Model & model, const ModelDataT < Model > & data, const std::string & method, ParamT < Model > & theta_max, double & theta_max_Ilh, MatT & obsl, StatsT & stats)

Definition at line 346 of file model_methods_impl.h.

References make estimator().

7.3.2.12 template < class Model > void mappel::methods::estimate_max (Model & model, const ModelDataT < Model > & data, const std::string & method, const ParamT < Model > & theta_init, ParamT < Model > & theta_max, double & theta_max_llh, MatT & obsl)

Definition at line 355 of file model_methods_impl.h.

References make_estimator().

7.3.2.13 template < class Model > void mappel::methods::estimate_max (Model & model, const ModelDataT < Model > & data, const std::string & method, const ParamT < Model > & theta_init, ParamT < Model > & theta_max, double & theta_max_llh, MatT & obsl, StatsT & stats)

Definition at line 363 of file model methods impl.h.

References make estimator().

7.3.2.14 template < class Model > void mappel::methods::estimate_mcmc_posterior (Model & model, const ModelDataT < Model > & data, IdxT Nsample, IdxT Nburnin, IdxT thin, ParamT < Model > & posterior_mean, MatT & posterior_cov)

Definition at line 423 of file model_methods_impl.h.

Referenced by estimate mcmc posterior().

7.3.2.15 template < class Model > void mappel::methods::estimate_mcmc_posterior (Model & model, const ModelDataT < Model > & data, const ParamT < Model > & theta_init, IdxT Nsample, IdxT Nburnin, IdxT thin, ParamT < Model > & posterior_mean, MatT & posterior_cov)

Definition at line 431 of file model_methods_impl.h.

References estimate mcmc posterior(), and mappel::mcmc::estimate sample posterior().

7.3.2.16 template < class Model > MatT mappel::methods::estimate_mcmc_sample (Model & model, const ModelDataT < Model > & data, IdxT Nsample = 1000, IdxT Nburnin = 100, IdxT thin = 0)

Definition at line 386 of file model methods impl.h.

7.3.2.17 template < class Model > MatT mappel::methods::estimate_mcmc_sample (Model & model, const ModelDataT < Model > & data, const ParamT < Model > & theta_init, IdxT Nsample = 1000, IdxT Nburnin = 100, IdxT thin = 0)

Definition at line 393 of file model methods impl.h.

References mappel::mcmc::num_oversample(), mappel::mcmc::sample_posterior(), and mappel::mcmc::thin_sample().

7.3.2.18 template < class Model > void mappel::methods::estimate_mcmc_sample (Model & model, const ModelDataT < Model > & data, const ParamT < Model > & theta_init, IdxT Nsample, IdxT Nburnin, IdxT thin, MatT & sample, VecT & sample_rllh)

Definition at line 406 of file model methods impl.h.

References mappel::mcmc::num oversample(), mappel::mcmc::sample posterior(), and mappel::mcmc::thin sample().

7.3.2.19 template < class Model > ReturnIfSubclassT < MatT, Model, PoissonNoise1DObjective > mappel::methods::expected_information (const Model & model, const StencilT < Model > & s)

Compute the expected information (Fisher information at theta). Note: Expected information is an average quantity and is independent of the data. Enabled for PoissonNoise1DObjective.

Parameters

model	PointEmitterModel
s	Stencil at desired theta

Returns

The fisher information matrix as an symmetric matrix in upper-triangular format

Definition at line 77 of file PoissonNoise1DObjective.h.

7.3.2.20 template < class Model > ReturnIfSubclassT < MatT, Model, PoissonNoise2DObjective > mappel::methods::expected_information (const Model & model, const StencilT < Model > & s)

Compute the expected information (Fisher information at theta). Note: Expected information is an average quantity and is independent of the data. Enabled for PoissonNoise2DObjective.

Parameters

model	PolmageCoordTEmitterModel
s	Stencil at desired theta

Returns

The fisher information matrix as an symmetric matrix in upper-triangular format

Definition at line 83 of file PoissonNoise2DObjective.h.

References mappel::ImageFormat2DBase::size.

7.3.2.21 template < class Model > MatT mappel::methods::expected_information (const Model & model, const ParamT < Model > & theta)

Definition at line 302 of file model methods impl.h.

Referenced by cr lower bound().

7.3.2.22 template < class Model > void mappel::methods::likelihood_objective (const Model & model, const ModelDataT < Model > & data_im, const StencilT < Model > & s, double & rllh, ParamT < Model > & grad, MatT & hess)

Definition at line 248 of file model_methods_impl.h.

 $References\ mappel::methods::likelihood::hessian(),\ and\ mappel::methods::likelihood::rllh().$

Referenced by likelihood objective().

7.3.2.23 template < class Model > void mappel::methods::likelihood_objective (const Model & model, const ModelDataT < Model > & data_im, const ParamT < Model > & theta, double & rllh, ParamT < Model > & grad, MatT & hess)

Definition at line 271 of file model methods impl.h.

References mappel::methods::objective::grad(), likelihood_objective(), and mappel::methods::objective::rllh().

7.3.2.24 template < class Model > ReturnIfSubclassT < std::unique_ptr < Estimator < Model > >, Model, PoissonNoise1DObjective > mappel::methods::make_estimator (Model & model, std::string ename)

Definition at line 95 of file PoissonNoise1DObjective.h.

References mappel::istarts_with().

Referenced by estimate_max(), mappel::methods::debug::estimate_max_debug(), mappel::methods::openmp ::estimate max stack(), and mappel::methods::openmp::estimate profile likelihood().

7.3.2.25 template < class Model > ReturnIfSubclassT < std::unique_ptr < Estimator < Model > >, Model, PoissonNoise2DObjective > mappel::methods::make estimator (Model & model, std::string ename)

Definition at line 100 of file PoissonNoise2DObjective.h.

References mappel::istarts_with().

7.3.2.26 template < class Model > Model::ImageT mappel::methods::model_image (const Model & model, const ParamT < Model > & theta)

Expected number of photons at each pixel in image given the emitter model

Definition at line 17 of file model methods impl.h.

References model_image().

7.3.2.27 template < class Model > ImageT < Model > mappel::methods::model_image (const Model & model, const ParamT < Model > & theta)

Expected number of photons at each pixel in image given the emitter model

Definition at line 17 of file model methods impl.h.

References model image().

7.3.2.28 template < class Model > ReturnIfSubclassT < ImageT < Model > , Model, ImageFormat2DBase > mappel::methods::model_image (const Model & model, const typename Model::Stencil & s)

Definition at line 122 of file ImageFormat2DBase.h.

References mappel::ImageFormat2DBase::size.

7.3.2.29 template < class Model > ReturnIfSubclassT < ImageT < Model > , Model, ImageFormat1DBase > mappel::methods::model_image (const Model & model, const StenciIT < Model > & s)

Definition at line 125 of file ImageFormat1DBase.h.

Referenced by model_image(), and mappel::methods::openmp::simulate_image_stack().

7.3.2.30 template < class Model > MatT mappel::methods::observed_information (const Model & model, const ModelDataT < Model > & data, const ParamT < Model > & theta_mode)

Definition at line 316 of file model methods impl.h.

Referenced by mappel::Estimator< Model >::compute_estimate(), and mappel::Estimator< Model >::estimate_max - _ _ debug().

7.3.2.31 template < class Model > MatT mappel::methods::observed_information (const Model & model, const ModelDataT < Model > & data, const StencilT < Model > & theta_mode)

Definition at line 308 of file model methods impl.h.

References mappel::methods::objective::hessian().

7.3.2.32 template < class Model > void mappel::methods::prior_objective (const Model & model, const ParamT < Model > & theta, double & rllh, ParamT < Model > & grad, MatT & hess)

Definition at line 230 of file model_methods_impl.h.

7.3.2.33 template < class Model > ModelDataT < Model > mappel::methods::simulate_image (Model & model, const ParamT < Model > & theta)

Definition at line 23 of file model_methods_impl.h.

References simulate image().

Referenced by simulate_image(), mappel::simulate_image_stack(), and mappel::methods::openmp::simulate_image = _stack().

7.3.2.34 template < class Model , class RngT > ModelDataT < Model > mappel::methods::simulate_image (Model & model, const ParamT < Model > & theta, RngT & rng)

Definition at line 30 of file model_methods_impl.h.

References simulate image().

7.3.2.35 template < class Model , class rng_t > ModelDataT < Model > mappel::methods::simulate_image (Model & model, const ParamT < Model > & theta)

Definition at line 23 of file model methods impl.h.

References simulate_image().

Referenced by simulate_image(), mappel::simulate_image_stack(), and mappel::methods::openmp::simulate_image contact stack().

7.3.2.36 template < class Model , class rng_t > ReturnIfSubclassT < ModelDataT < Model > , Model , PoissonNoise1DObjective > mappel::methods::simulate_image (const Model & model, const StencilT < Model > & s, rng_t & rng)

Simulate an image at a given theta stencil, by generating Poisson noise Enabled for PoissonNoise1DObjective.

Parameters

in	model	Model object
in	s	The stencil computed at theta.
in,out	rng	A random number generator

Returns

A simulated image at theta under the noise model.

Definition at line 45 of file PoissonNoise1DObjective.h.

References mappel::generate poisson().

7.3.2.37 template < class Model , class rng_t > ReturnIfSubclassT < ImageT < Model > , Model, PoissonNoise2D ← Objective > mappel::methods::simulate_image (const Model & model, const StencilT < Model > & s, rng_t & rng)

Simulate an image at a given theta stencil, by generating Poisson noise Enabled for PoissonNoise2DObjective.

Parameters

in	model	Model object
in	s	The stencil computed at theta.
in,out	rng	A random number generator

Returns

A simulated image at theta under the noise model.

Definition at line 45 of file PoissonNoise2DObjective.h.

References mappel::generate_poisson(), and mappel::lmageFormat2DBase::size.

- 7.3.2.38 template < class Model , class rng_t > ModelDataT < Model> mappel::methods::simulate_image (Model & model, const ParamT < Model > & theta, rng_t & rng_)
- 7.3.2.39 template < class Model > ModelDataT < Model > mappel::methods::simulate_image (Model & model, const StencilT < Model > & s)

Definition at line 36 of file model_methods_impl.h.

References simulate_image().

7.3.2.40 template < class Model > ModelDataT < Model > mappel::methods::simulate_image_from_model (Model & model, const ImageT < Model > & model_im)

Definition at line 42 of file model methods impl.h.

Referenced by mappel::simulate image stack().

7.3.2.41 template < class Model , class rng_t > ReturnIfSubclassT < ModelDataT < Model>, Model, PoissonNoise1DObjective > mappel::methods::simulate_image_from_model (const Model & model, const ImageT < Model > & model_im, rng_t & rng)

Simulate an image at a given theta stencil, by generating Poisson noise Enabled for PoissonNoise1DObjective.

Parameters

in	model	Model object
in	model_im	An image representing the expected (mean) at each pixel under the PSF model.
in,out	rng	A random number generator

Returns

A simulated image corresponding to model im under the noise model.

Definition at line 61 of file PoissonNoise1DObjective.h.

References mappel::generate poisson().

7.3.2.42 template < class Model , class rng_t > ReturnIfSubclassT < ImageT < Model > , Model, PoissonNoise2D ← Objective > mappel::methods::simulate_image_from_model (const Model & model, const ImageT < Model > & model_im, rng_t & rng)

Simulate an image at a given theta stencil, by generating Poisson noise Enabled for PoissonNoise2DObjective.

Parameters

in	model	Model object
in	model_im	An image representing the expected (mean) at each pixel under the PSF model.
in,out	rng	A random number generator

Returns

A simulated image corresponding to model_im under the noise model.

Definition at line 64 of file PoissonNoise2DObjective.h.

References mappel::generate_poisson(), and mappel::lmageFormat2DBase::size.

7.4 mappel::methods::debug Namespace Reference

Functions

- template<class Model >
 void estimate_max_debug (Model &model, const ModelDataT< Model > &data, const std::string &method,
 ParamT< Model > &theta_est, double &rllh, MatT &obsl, MatT &sequence, VecT &sequence_rllh, StatsT &stats)
- template<class Model >
 void estimate_max_debug (Model &model, const ModelDataT< Model > &data, const std::string &method, const
 ParamT< Model > &theta_init, ParamT< Model > &theta_est, double &rllh, MatT &obsl, MatT &sequence, VecT
 &sequence rllh, StatsT &stats)
- template < class Model >
 void estimate_mcmc_sample_debug (Model &model, const ModelDataT < Model > &data, ldxT Nsample, MatT &sample, VecT &sample_rllh, MatT &candidates, VecT &candidates_rllh)
- template<class Model >
 void estimate_mcmc_sample_debug (Model &model, const ModelDataT< Model > &data, const ParamT< Model
 > &theta init, IdxT Nsample, MatT &sample, VecT &sample rllh, MatT &candidates, VecT &candidates rllh)

62	CONTENTS
7.4.1	Function Documentation
7.4.1.1	$template < class\ Model > void\ mappel::methods::debug::estimate_max_debug\ (\ Model\ \&\ model,\ const\ Model\ DataT < Model > \&\ data,\ const\ std::string\ \&\ method,\ ParamT < Model > \&\ theta_est,\ double\ \&\ rllh,\ MatT\ \&\ obsl,\ MatT\ \&\ sequence,\ VecT\ \&\ sequence_rllh,\ StatsT\ \&\ stats\)$
Definit	ion at line 483 of file model_methods_impl.h.
7.4.1.2	$template < class\ Model > void\ mappel::methods::debug::estimate_max_debug\ (\ Model\ \&\ model,\ const\ ModelDataT < Model > \&\ data,\ const\ std::string\ \&\ method,\ const\ ParamT < Model > \&\ theta_init,\ ParamT < Model > \&\ theta_est,\ double\ \&\ rllh,\ MatT\ \&\ obsl,\ MatT\ \&\ sequence,\ VecT\ \&\ sequence_rllh,\ StatsT\ \&\ stats\)$
Definit	ion at line 491 of file model_methods_impl.h.
Refere	ences mappel::methods::make_estimator().
7.4.1.3	template <class model=""> void mappel::methods::debug::estimate_mcmc_sample_debug (Model & model, const ModelDataT< Model > & data, IdxT Nsample, MatT & sample, VecT & sample_rllh, MatT & candidates, VecT & candidates_rllh)</class>
Definit	ion at line 504 of file model_methods_impl.h.
7.4.1.4	template < class Model > void mappel::methods::debug::estimate_mcmc_sample_debug (Model & model, const ModelDataT < Model > & data, const ParamT < Model > & theta_init, IdxT Nsample, MatT & sample, VecT & sample_rllh, MatT & candidates, VecT & candidates_rllh)
Definit	ion at line 513 of file model_methods_impl.h.
Refere	ences mappel::mcmc::sample_posterior_debug().

Namespaces

• debug

7.5 mappel::methods::likelihood Namespace Reference

Functions

- template < class Model >
 ReturnIfSubclassT < double, Model, PoissonNoise1DObjective > IIh (const Model & model, const ModelDataT <
 Model > & data im, const StencilT < Model > & s)
- template<class Model >
 ReturnIfSubclassT< double, Model, PoissonNoise1DObjective > rllh (const Model &model, const ModelDataT
 Model > &data im, const StencilT< Model > &s)
- template < class Model >
 ReturnIfSubclassT < ParamT < Model >, Model, PoissonNoise1DObjective > grad (const Model & model, const ModelDataT < Model > & im, const StencilT < Model > & s)
- template<class Model >
 ReturnIfSubclassT< void, Model, PoissonNoise1DObjective > grad2 (const Model &model, const ModelDataT
 Model > &im, const StencilT< Model > &s, ParamT< Model > &grad_val, ParamT< Model > &grad2_val)
- template < class Model >
 ReturnIfSubclassT < void, Model, PoissonNoise1DObjective > hessian (const Model &model, const Model ←
 DataT < Model > &im, const StencilT < Model > &s, ParamT < Model > &grad_val, MatT &hess_val)
- template < class Model >
 ReturnIfSubclassT < double, Model, PoissonNoise2DObjective > IIh (const Model & model, const ModelDataT <
 Model > & data im, const StencilT < Model > & s)
- template < class Model >
 ReturnIfSubclassT < double, Model, PoissonNoise2DObjective > rllh (const Model & model, const ModelDataT <
 Model > & data im, const StencilT < Model > & s)
- template<class Model >
 ReturnIfSubclassT< ParamT< Model >, Model, PoissonNoise2DObjective > grad (const Model &model, const ModelDataT< Model > &data im, const StencilT< Model > &s)
- template < class Model >
 ReturnIfSubclassT < void, Model, PoissonNoise2DObjective > grad2 (const Model &model, const ModelDataT <
 Model > &data_im, const StencilT < Model > &s, ParamT < Model > &grad_val, ParamT < Model > &grad2_val)
- template < class Model >
 ReturnIfSubclassT < void, Model, PoissonNoise2DObjective > hessian (const Model & model, const Model ←
 DataT < Model > & data im, const StencilT < Model > & paramT < Model > & grad val, MatT & hess val)

7.5.1 Function Documentation

7.5.1.1 template < class Model > ReturnIfSubclassT < ParamT < Model > ,Model, PoissonNoise1DObjective > mappel::methods::likelihood::grad (const Model & model, const ModelDataT < Model > & im, const StencilT < Model > & s)

Definition at line 146 of file PoissonNoise1DObjective.h.

7.5.1.2 template < class Model > ReturnIfSubclassT < ParamT < Model > ,Model, PoissonNoise2DObjective > mappel::methods::likelihood::grad (const Model & model, const ModelDataT < Model > & $data_im$, const StenciIT < Model > & s)

Definition at line 159 of file PoissonNoise2DObjective.h.

References mappel::ImageFormat2DBase::size.

7.5.1.3 template < class Model > ReturnIfSubclassT < void, Model, PoissonNoise1DObjective > mappel::methods::likelihood::grad2 (const Model & model, const ModelDataT < Model > & im, const StencilT < Model > & s, ParamT < Model > & grad_val, ParamT < Model > & grad2_val)

Definition at line 163 of file PoissonNoise1DObjective.h.

7.5.1.4 template < class Model > ReturnIfSubclassT < void, Model, PoissonNoise2DObjective > mappel::methods::likelihood::grad2 (const Model & model, const ModelDataT < Model > & data_im, const StencilT < Model > & s, ParamT < Model > & grad_val, ParamT < Model > & grad2_val)

Definition at line 177 of file PoissonNoise2DObjective.h.

References mappel::ImageFormat2DBase::size.

7.5.1.5 template < class Model > ReturnIfSubclassT < void, Model, PoissonNoise1DObjective > mappel::methods::likelihood::hessian (const Model & model, const ModelDataT < Model > & im, const StencilT < Model > & s, ParamT < Model > & grad_val, MatT & hess_val)

Definition at line 186 of file PoissonNoise1DObjective.h.

Referenced by mappel::methods::aposteriori_objective(), and mappel::methods::likelihood_objective().

7.5.1.6 template < class Model > ReturnIfSubclassT < void, Model, PoissonNoise2DObjective > mappel::methods::likelihood::hessian (const Model & model, const ModelDataT < Model > & data_im, const StencilT < Model > & s, ParamT < Model > & grad_val, MatT & hess_val)

Definition at line 202 of file PoissonNoise2DObjective.h.

References mappel::ImageFormat2DBase::size.

7.5.1.7 template < class Model > ReturnIfSubclassT < double, Model, PoissonNoise1DObjective > mappel::methods::likelihood::llh (const Model & model, const ModelDataT < Model > & data_im, const StenciIT < Model > & s)

Definition at line 122 of file PoissonNoise1DObjective.h.

References mappel::poisson log likelihood().

7.5.1.8 template < class Model > ReturnIfSubclassT < double, Model, PoissonNoise2DObjective > mappel::methods::likelihood::llh (const Model & model, const ModelDataT < Model > & data_im, const StenciIT < Model > & s)

Definition at line 131 of file PoissonNoise2DObjective.h.

References mappel::poisson log likelihood(), and mappel::ImageFormat2DBase::size.

7.5.1.9 template < class Model > ReturnIfSubclassT < double, Model, PoissonNoise1DObjective > mappel::methods::likelihood::rllh (const Model & model, const ModelDataT < Model > & data_im, const StencilT < Model > & s)

Definition at line 134 of file PoissonNoise1DObjective.h.

References mappel::relative_poisson_log_likelihood().

Referenced by mappel::methods::aposteriori objective(), and mappel::methods::likelihood objective().

7.5.1.10 template < class Model > ReturnIfSubclassT < double,Model,PoissonNoise2DObjective > mappel::methods::likelihood::rllh (const Model & model, const ModelDataT < Model > & data_im, const StencilT < Model > & s)

Definition at line 145 of file PoissonNoise2DObjective.h.

References mappel::relative poisson log likelihood(), and mappel::ImageFormat2DBase::size.

7.6 mappel::methods::likelihood::debug Namespace Reference

Functions

- template<class Model >
 ReturnIfSubclassT< VecT, Model, PoissonNoise1DObjective > Ilh_components (const Model &model, const ModelDataT< Model > &data im, const StencilT< Model > &s)
- template < class Model >
 ReturnIfSubclassT < VecT, Model, PoissonNoise1DObjective > rllh_components (const Model &model, const ModelDataT < Model > &data im, const StencilT < Model > &s)
- template<class Model >
 ReturnIfSubclassT< MatT, Model, PoissonNoise1DObjective > grad_components (const Model &model, const ModelDataT< Model > &data_im, const StencilT< Model > &s)
- template<class Model >
 ReturnIfSubclassT< CubeT, Model, PoissonNoise1DObjective > hessian_components (const Model &model, const ModelDataT< Model > &data_im, const StencilT< Model > &s)
- template < class Model >
 ReturnIfSubclassT < VecT, Model, PoissonNoise2DObjective > Ilh_components (const Model &model, const ModelDataT < Model > &data im, const StencilT < Model > &s)
- template < class Model >
 ReturnIfSubclassT < VecT, Model, PoissonNoise2DObjective > rllh_components (const Model &model, const ModelDataT < Model > &data_im, const StencilT < Model > &s)
- template < class Model >
 ReturnIfSubclassT < MatT, Model, PoissonNoise2DObjective > grad_components (const Model & model, const ModelDataT < Model > & data_im, const StencilT < Model > & s)
- template < class Model >
 ReturnIfSubclassT < CubeT, Model, PoissonNoise2DObjective > hessian_components (const Model & model, const ModelDataT < Model > & data_im, const StencilT < Model > & s)

```
7.6.1 Function Documentation
```

7.6.1.1 template < class Model > ReturnIfSubclassT < MatT,Model,PoissonNoise1DObjective > mappel::methods::likelihood::debug::grad_components (const Model & model, const ModelDataT < Model > & data_im, const StencilT < Model > & s)

Definition at line 230 of file PoissonNoise1DObjective.h.

7.6.1.2 template < class Model > ReturnIfSubclassT < MatT, Model, PoissonNoise2DObjective > mappel::methods::likelihood::debug::grad_components (const Model & model, const ModelDataT < Model > & data_im, const StenciIT < Model > & s)

Definition at line 255 of file PoissonNoise2DObjective.h.

References mappel::ImageFormat2DBase::size.

7.6.1.3 template < class Model > ReturnIfSubclassT < CubeT, Model, PoissonNoise1DObjective > mappel::methods::likelihood::debug::hessian_components (const Model & model, const ModelDataT < Model > & data_im, const StencilT < Model > & s)

Definition at line 246 of file PoissonNoise1DObjective.h.

7.6.1.4 template < class Model > ReturnIfSubclassT < CubeT, Model, PoissonNoise2DObjective > mappel::methods::likelihood::debug::hessian_components (const Model & model, const ModelDataT < Model > & data_im, const StencilT < Model > & s)

Definition at line 274 of file PoissonNoise2DObjective.h.

References mappel::ImageFormat2DBase::size.

7.6.1.5 template < class Model > ReturnIfSubclassT < VecT,Model,PoissonNoise1DObjective > mappel::methods::likelihood::debug::llh_components (const Model & model, const ModelDataT < Model > & data_im, const StencilT < Model > & s)

Definition at line 206 of file PoissonNoise1DObjective.h.

References mappel::poisson_log_likelihood().

7.6.1.6 template < class Model > ReturnIfSubclassT < VecT,Model,PoissonNoise2DObjective > mappel::methods::likelihood::debug::llh_components (const Model & model, const ModelDataT < Model > & data_im, const StencilT < Model > & s)

Definition at line 225 of file PoissonNoise2DObjective.h.

References mappel::poisson log likelihood(), and mappel::ImageFormat2DBase::size.

7.6.1.7 template < class Model > ReturnIfSubclassT < VecT, Model, PoissonNoise1DObjective > mappel::methods::likelihood::debug::rllh_components (const Model & model, const ModelDataT < Model > & data_im, const StenciIT < Model > & s)

Definition at line 218 of file PoissonNoise1DObjective.h.

References mappel::relative poisson log likelihood().

7.6.1.8 template < class Model > ReturnIfSubclassT < VecT, Model, PoissonNoise2DObjective > mappel::methods::likelihood::debug::rllh_components (const Model & model, const ModelDataT < Model > & data_im, const StencilT < Model > & s)

Definition at line 240 of file PoissonNoise2DObjective.h.

References mappel::relative poisson log likelihood(), and mappel::ImageFormat2DBase::size.

7.7 mappel::methods::objective Namespace Reference

Namespaces

- debug
- · openmp

Functions

- template < class Model >
 ReturnIfSubclassT < double, Model, MAPEstimator > IIh (const Model & model, const ModelDataT < Model >
 &data_im, const StencilT < Model > &s)
- template < class Model >
 ReturnIfSubclassT < double, Model, MAPEstimator > rllh (const Model & model, const ModelDataT < Model >
 &data im, const StencilT < Model > &s)
- template<class Model >
 ReturnIfSubclassT< ParamT< Model >, Model, MAPEstimator > grad (const Model &model, const Model ←
 DataT< Model > &data_im, const StencilT< Model > &s)
- template < class Model >
 ReturnIfSubclassT < void, Model, MAPEstimator > grad2 (const Model &model, const ModelDataT < Model >
 &data_im, const StencilT < Model > &s, ParamT < Model > &grad, ParamT < Model > &grad2)
- template < class Model >
 ReturnIfSubclassT < void, Model, MAPEstimator > hessian (const Model & model, const ModelDataT < Model >
 &data_im, const StencilT < Model > &s, ParamT < Model > &grad, MatT &hess)
- template < class Model >
 ReturnIfSubclassT < double, Model, MLEstimator > IIh (const Model &model, const ModelDataT < Model >
 &data im, const StencilT < Model > &s)
- template<class Model >
 ReturnIfSubclassT< double, Model, MLEstimator > rllh (const Model &model, const ModelDataT< Model >
 &data_im, const StencilT< Model > &s)
- template < class Model >
 ReturnIfSubclassT < ParamT < Model >, Model, MLEstimator > grad (const Model & model, const ModelDataT <
 Model > & data im, const StencilT < Model > &s)

- template<class Model >
 ReturnIfSubclassT< void, Model, MLEstimator > grad2 (const Model &model, const ModelDataT< Model >
 &data im, const StencilT< Model > &s, ParamT< Model > &grad2)
- template < class Model >
 ReturnIfSubclassT < void, Model, MLEstimator > hessian (const Model & model, const ModelDataT < Model >
 & data im, const StencilT < Model > &s, ParamT < Model > &grad, MatT &hess)
- template < class Model >
 double IIh (const Model & model, const ModelDataT < Model > & data_im, const ParamT < Model > & theta)
- template < class Model >
 double rllh (const Model & model, const ModelDataT < Model > & data_im, const ParamT < Model > & theta)
- template < class Model >
 ParamT < Model > grad (const Model & model, const ModelDataT < Model > & data_im, const ParamT < Model > & theta)
- template < class Model >
 ParamT < Model > grad2 (const Model & model, const ModelDataT < Model > &data_im, const ParamT < Model > &theta)
- template < class Model >
 void grad2 (const Model & model, const ModelDataT < Model > & data_im, const ParamT < Model > & theta,
 ParamT < Model > & grad_val, ParamT < Model > & grad2_val)
- template < class Model >
 MatT hessian (const Model & model, const ModelDataT < Model > & data_im, const ParamT < Model > & theta)
- template < class Model >
 MatT hessian (const Model & model, const ModelDataT < Model > & data_im, const StencilT < Model > &s)
- template<class Model >
 void hessian (const Model &model, const ModelDataT< Model > &data_im, const ParamT< Model > &theta,
 ParamT< Model > &grad, MatT &hess)
- template < class Model >
 void hessian (const Model & model, const ModelDataT < Model > & data_im, const ParamT < Model > & theta,
 MatT & hess)
- template < class Model >
 MatT negative_definite_hessian (const Model & model, const ModelDataT < Model > & data_im, const ParamT <
 Model > & theta)
- template < class Model >
 MatT negative_definite_hessian (const Model & model, const ModelDataT < Model > & data_im, const StencilT <
 Model > &s)
- template < class Model >
 void negative_definite_hessian (const Model & model, const ModelDataT < Model > & data_im, const ParamT <
 Model > & theta, ParamT < Model > & grad, MatT & hess)
- template < class Model >
 void negative_definite_hessian (const Model & model, const ModelDataT < Model > & data_im, const StencilT <
 Model > &s, ParamT < Model > &grad, MatT & hess)

7.7.1 Function Documentation

7.7.1.1 template < class Model > ReturnIfSubclassT < ParamT < Model >, Model, MLEstimator > mappel::methods::objective::grad (const Model & model, const Model DataT < Model > & data_im, const StencilT < Model > & s)

Definition at line 51 of file MLEstimator.h.

7.7.1.2 template < class Model > ReturnIfSubclassT < ParamT < Model > ,Model, MAPEstimator > mappel::methods::objective::grad (const Model & model, const ModelDataT < Model > & data_im, const StencilT < Model > & s)

Definition at line 55 of file MAPEstimator.h.

Referenced by mappel::methods::aposteriori_objective(), grad(), mappel::methods::objective::openmp::grad_stack(), hessian(), mappel::methods::likelihood_objective(), mappel::QuasiNewtonMaximizer< Model >::maximize(), mappel::model_grad_stack(), mappel::TrustRegionMaximizer< Model >::name(), negative definite_hessian(), mappel::PriorMAP1DObjective::prior_grad_update(), and mappel::PriorMAP1DObjective::set_definite_hessian().

7.7.1.3 template < class Model > ParamT < Model > mappel::methods::objective::grad (const Model & model, const ModelDataT < Model > & data_im, const ParamT < Model > & theta)

Definition at line 66 of file model methods impl.h.

References grad().

7.7.1.4 template < class Model > ReturnIfSubclassT < void, Model, MLEstimator > mappel::methods::objective::grad2 (const Model & model, const Model DataT < Model > & data_im, const StencilT < Model > & s, ParamT < Model > & grad, ParamT < Model > & grad2)

Definition at line 58 of file MLEstimator.h.

Definition at line 64 of file MAPEstimator.h.

Referenced by grad2(), mappel::NewtonDiagonalMaximizer < Model >::maximize(), mappel::PriorMAP1DObjective::prior_grad2_update(), and mappel::PriorMAP1DObjective::set_ \leftarrow hyperparameters().

7.7.1.6 template < class Model > ParamT < Model > mappel::methods::objective::grad2 (const Model & model, const ModelDataT < Model > & data_im, const ParamT < Model > & theta)

Definition at line 78 of file model methods impl.h.

References grad2().

7.7.1.7 template < class Model > void mappel::methods::objective::grad2 (const Model & model, const ModelDataT < Model > & data_im, const ParamT < Model > & theta, ParamT < Model > & grad_val, ParamT < Model > & grad2_val)

Definition at line 93 of file model_methods_impl.h.

References grad2().

7.7.1.8 template < class Model > ReturnIfSubclassT < void, Model, MLEstimator > mappel::methods::objective::hessian (const Model & model, const ModelDataT < Model > & data_im, const StencilT < Model > & s, ParamT < Model > & qrad. MatT & hess)

Definition at line 65 of file MLEstimator.h.

7.7.1.9 template < class Model > ReturnIfSubclassT < void, Model, MAPEstimator > mappel::methods::objective::hessian (const Model & model, const ModelDataT < Model > & data_im, const StencilT < Model > & s, ParamT < Model > & grad, MatT & hess)

Definition at line 72 of file MAPEstimator.h.

Referenced by hessian(), mappel::methods::objective::openmp::hessian_stack(), mappel::NewtonMaximizer< Model >::maximize(), mappel::QuasiNewtonMaximizer< Model >::maximize(), mappel::TrustRegionMaximizer< Model >::maximize(), negative_definite_hessian(), and mappel::methods::observed_information().

7.7.1.10 template < class Model > MatT mappel::methods::objective::hessian (const Model & model, const ModelDataT < Model > & data_im, const ParamT < Model > & theta)

Definition at line 101 of file model methods impl.h.

References hessian().

7.7.1.11 template < class Model > MatT mappel::methods::objective::hessian (const Model & model, const ModelDataT < Model > & $data_im$, const StencilT < Model > & s)

Definition at line 113 of file model_methods_impl.h.

References grad(), and hessian().

7.7.1.12 template < class Model > void mappel::methods::objective::hessian (const Model & model, const ModelDataT < Model > & data_im, const ParamT < Model > & theta, ParamT < Model > & grad, MatT & hess)

Definition at line 123 of file model methods impl.h.

References grad(), and hessian().

7.7.1.13 template < class Model > void mappel::methods::objective::hessian (const Model & model, const ModelDataT < Model > & data_im, const ParamT < Model > & theta, MatT & hess)

Definition at line 135 of file model_methods_impl.h.

References grad(), and hessian().

7.7.1.14 template < class Model > ReturnIfSubclassT< double,Model,MAPEstimator> mappel::methods::objective::llh (const Model & model, const ModelDataT< Model > & data_im, const StencilT< Model > & s)

Definition at line 36 of file MAPEstimator.h.

Referenced by IIh(), mappel::methods::objective::openmp::Ilh stack(), and log likelihood().

7.7.1.15 template < class Model > ReturnIfSubclassT < double,Model,MLEstimator > mappel::methods::objective::llh (const Model & model, const ModelDataT < Model > & data im, const StencilT < Model > & s)

Definition at line 37 of file MLEstimator.h.

7.7.1.16 template < class Model > double mappel::methods::objective::llh (const Model & model, const ModelDataT < Model > & data_im, const ParamT < Model > & theta)

Definition at line 50 of file model_methods_impl.h.

References IIh().

7.7.1.17 template < class Model > MatT mappel::methods::objective::negative_definite_hessian (const Model & model, const ModelDataT < Model > & data_im, const ParamT < Model > & theta)

Definition at line 143 of file model methods impl.h.

Referenced by negative_definite_hessian(), and mappel::methods::objective::openmp::negative_definite_hessian_← stack().

7.7.1.18 template < class Model > MatT mappel::methods::objective::negative_definite_hessian (const Model & model, const ModelDataT < Model > & $data_im$, const StencilT < Model > & s)

Definition at line 155 of file model methods impl.h.

References grad(), and negative_definite_hessian().

7.7.1.19 template < class Model > void mappel::methods::objective::negative_definite_hessian (const Model & model, const ModelDataT < Model > & data_im, const ParamT < Model > & theta, ParamT < Model > & grad, MatT & hess)

Definition at line 165 of file model methods impl.h.

References grad(), and negative_definite_hessian().

7.7.1.20 template < class Model > void mappel::methods::objective::negative_definite_hessian (const Model & model, const ModelDataT < Model > & data_im, const StencilT < Model > & s, ParamT < Model > & grad, MatT & hess)

Definition at line 178 of file model_methods_impl.h.

References mappel::cholesky_make_negative_definite(), and hessian().

7.7.1.21 template < class Model > ReturnIfSubclassT < double,Model,MLEstimator > mappel::methods::objective::rllh (const Model & model, const ModelDataT < Model > & data_im, const StencilT < Model > & s)

Definition at line 44 of file MLEstimator.h.

7.7.1.22 template < class Model > ReturnIfSubclassT < double,Model,MAPEstimator > mappel::methods::objective::rllh (const Model & model, const ModelDataT < Model > & data im, const StencilT < Model > & s)

Definition at line 48 of file MAPEstimator.h.

Referenced by mappel::SimulatedAnnealingMaximizer< Model >::anneal(), mappel::methods::aposteriori_objective(), mappel::IterativeMaximizer< Model >::backtrack(), mappel::CGaussMLE< Model >::compute_estimate(), mappel ::Estimator< Model >::estimator< Model >::estimate_max(), mappel::Estimator< Model >::estimate_max_debug(), mappel::Heuristicctimator< Model >::maximize(), mappel::HeuristicEstimator< Model >::name(), mappel::CGaussHeuristicEstimator< Model >::name(), mappel::CGaussHeuristicEstimator< Model >::name(), mappel::CGaussMLE< Model >::name(), mappel::ThreadedEstimator< Model >::record_exit_code(), relative_log_likelihood(), rllh(), mappel::methods::objective::openmp::rllh_stack(), mappel::mcmc::sample_posterior(), mappel::mcmc::sample_posterior debug(), and mappel::Estimator< Model >::~Estimator().

7.7.1.23 template < class Model > double mappel::methods::objective::rllh (const Model & model, const ModelDataT < Model > & data_im, const ParamT < Model > & theta)

Definition at line 58 of file model_methods_impl.h.

References rllh().

7.8 mappel::methods::objective::debug Namespace Reference

Functions

- template < class Model >
 ReturnIfSubclassT < VecT, Model, MAPEstimator > Ilh_components (const Model & model, const ModelDataT <
 Model > & data im, const StencilT < Model > &s)
- template < class Model >
 ReturnIfSubclassT < VecT, Model, MAPEstimator > rllh_components (const Model & model, const ModelDataT <
 Model > & data im, const StencilT < Model > &s)
- template < class Model >
 ReturnIfSubclassT < MatT, Model, MAPEstimator > grad_components (const Model & model, const Model ←
 DataT < Model > & data im, const StencilT < Model > &s)
- template < class Model >
 ReturnIfSubclassT < CubeT, Model, MAPEstimator > hessian_components (const Model & model, const Model ←
 DataT < Model > &data im, const StencilT < Model > &s)
- template < class Model >
 ReturnIfSubclassT < VecT, Model, MLEstimator > Ilh_components (const Model & model, const ModelDataT <
 Model > & data_im, const StencilT < Model > &s)
- template < class Model >
 ReturnIfSubclassT < VecT, Model, MLEstimator > rllh_components (const Model & model, const ModelDataT <
 Model > & data_im, const StencilT < Model > &s)
- template<class Model >
 ReturnIfSubclassT< MatT, Model, MLEstimator > grad_components (const Model &model, const ModelDataT
 Model > &data im, const StencilT< Model > &s)
- template < class Model >
 ReturnIfSubclassT < CubeT, Model, MLEstimator > hessian_components (const Model & model, const Model ←
 DataT < Model > &data_im, const StencilT < Model > &s)

- template < class Model >
 VecT Ilh_components (const Model & model, const ModelDataT < Model > & data_im, const ParamT < Model >
 & theta)
- template < class Model >
 VecT rllh_components (const Model & model, const ModelDataT < Model > & data_im, const ParamT < Model >
 & theta)
- template < class Model >
 MatT grad_components (const Model & model, const ModelDataT < Model > & data_im, const ParamT < Model > & theta)
- template<class Model >
 CubeT hessian_components (const Model &model, const ModelDataT< Model > &data_im, const ParamT<
 Model > &theta)
- 7.8.1 Function Documentation
- 7.8.1.1 template < class Model > ReturnIfSubclassT < MatT,Model,MLEstimator > mappel::methods::objective::debug ← ::grad_components (const Model & model, const ModelDataT < Model > & data_im, const StencilT < Model > & s)

Definition at line 88 of file MLEstimator.h.

7.8.1.2 template < class Model > ReturnIfSubclassT < MatT,Model,MAPEstimator > mappel::methods::objective::debug ← ::grad_components (const Model & model, const ModelDataT < Model > & data_im, const StencilT < Model > & s)

Definition at line 96 of file MAPEstimator.h.

Referenced by grad_components().

7.8.1.3 template < class Model > MatT mappel::methods::objective::debug::grad_components (const Model & model, const ModelDataT < Model > & data_im, const ParamT < Model > & theta)

Definition at line 202 of file model methods impl.h.

References grad components().

7.8.1.4 template < class Model > ReturnIfSubclassT < CubeT, Model, MLEstimator > mappel::methods::objective::debug ← ::hessian_components (const Model & model, const ModelDataT < Model > & data_im, const StenciIT < Model > & s)

Definition at line 95 of file MLEstimator.h.

7.8.1.5 template < class Model > ReturnIfSubclassT < CubeT,Model,MAPEstimator > mappel::methods::objective::debug ← ::hessian_components (const Model & model, const ModelDataT < Model > & data_im, const StenciIT < Model > & s)

Definition at line 103 of file MAPEstimator.h.

Referenced by hessian components().

7.8.1.6 template < class Model > CubeT mappel::methods::objective::debug::hessian_components (const Model & model, const ModelDataT < Model > & data im, const ParamT < Model > & theta)

Definition at line 209 of file model methods impl.h.

References hessian_components().

7.8.1.7 template < class Model > ReturnIfSubclassT < VecT, Model, MLEstimator > mappel::methods::objective::debug \leftarrow ::Ilh_components (const Model & model, const ModelDataT < Model > & data_im, const StencilT < Model > & s)

Definition at line 74 of file MLEstimator.h.

7.8.1.8 template < class Model > ReturnIfSubclassT < VecT,Model,MAPEstimator > mappel::methods::objective::debug ← ::llh_components (const Model & model, const ModelDataT < Model > & data_im, const StencilT < Model > & s)

Definition at line 82 of file MAPEstimator.h.

Referenced by IIh components().

7.8.1.9 template < class Model > VecT mappel::methods::objective::debug::llh_components (const Model & model, const ModelDataT < Model > & data_im, const ParamT < Model > & theta)

Definition at line 188 of file model methods impl.h.

References IIh_components().

7.8.1.10 template < class Model > ReturnIfSubclassT < VecT,Model,MLEstimator > mappel::methods::objective::debug \leftarrow ::rllh_components (const Model & model, const ModelDataT < Model > & data_im, const StencilT < Model > & s)

Definition at line 81 of file MLEstimator.h.

7.8.1.11 template < class Model > ReturnIfSubclassT < VecT,Model,MAPEstimator > mappel::methods::objective::debug \leftarrow ::rllh_components (const Model & model, const ModelDataT < Model > & data_im, const StencilT < Model > & s)

Definition at line 89 of file MAPEstimator.h.

Referenced by rllh_components().

7.8.1.12 template < class Model > VecT mappel::methods::objective::debug::rllh_components (const Model & model, const ModelDataT < Model > & data_im, const ParamT < Model > & theta)

Definition at line 195 of file model_methods_impl.h.

References rllh components().

7.9 mappel::methods::objective::openmp Namespace Reference

Functions

template < class Model >
 void Ilh_stack (const Model & model, const ImageT < Model > & image, const ParamVecT < Model > & theta_ ←
 stack, VecT & Ilh stack)

Parallel log_likelihood calculations for a single image.

template<class Model >

void llh_stack (const Model &model, const ImageStackT< Model > &image_stack, const ParamVecT< Model > &theta_stack, VecT &llh_stack)

Parallel log_likelihood calculations for a stack of images.

template<class Model >

void rllh_stack (const Model &model, const ImageStackT< Model > &image_stack, const ParamVecT< Model > &theta_stack, VecT &rllh_stack)

Parallel relative log likelihood calculations for a stack of images.

template < class Model >

void rllh_stack (const Model &model, const ImageT< Model > &image, const ParamVecT< Model > &theta_← stack, VecT &rllh stack)

template < class Model >

void grad_stack (const Model &model, const ImageStackT < Model > &image_stack, const ParamVecT < Model > &theta_stack, ParamVecT < Model > &grad_stack)

Parallel model gradient calculations for a stack of images.

template < class Model >

void hessian_stack (const Model &model, const ImageStackT< Model > &image_stack, const ParamVecT< Model > &theta stack, CubeT &hessian stack)

Parallel model Hessian calculations for a stack of images.

template<class Model >

void negative_definite_hessian_stack (const Model &model, const ImageStackT< Model > &image_stack, const ParamVecT< Model > &theta_stack, CubeT &hessian_stack)

Parallel model negative_definite Hessian approximation calculations for a stack of images.

7.9.1 Function Documentation

7.9.1.1 template < class Model > void mappel::methods::objective::openmp::grad_stack (const Model & model, const ImageStackT < Model > & image_stack, const ParamVecT < Model > & theta_stack, ParamVecT < Model > & grad_stack)

Parallel model gradient calculations for a stack of images.

Compute gradient of log-likelihood for multiple image, theta pairs.

Use: model.make_param_stack() to make a parameter stack of appropriate dimensions for the model gradients.

Template Parameters

Model A concrete subclass of PointEmitterModel

Parameters

in	model	A PointEmitterModel object.
in	image_stack	Sequence of images.
in	theta_stack	Sequence of thetas.
out	grad_stack	Sequence of grad vectors values computed. Size: [model.num_params, n]

Definition at line 542 of file openmp_methods.h.

References mappel::methods::objective::grad(), omp_exception_catcher::impl_::OMPExceptionCatcher< IntType $>\leftarrow$::rethrow(), and omp_exception_catcher::impl_::OMPExceptionCatcher< IntType >::run().

7.9.1.2 template < class Model > void mappel::methods::objective::openmp::hessian_stack (const Model & model, const ImageStackT < Model > & image_stack, const ParamVecT < Model > & theta_stack, CubeT & hessian_stack)

Parallel model Hessian calculations for a stack of images.

Compute Hessian of log-likelihood for multiple image, theta pairs.

Use: model.make_param_mat_stack() to make a parameter matrix stack of appropriate dimensions for the model Hessian.

Template Parameters

Model	A concrete subclass of PointEmitterModel
-------	--

Parameters

in	model	A PointEmitterModel object.
in	image_stack	Sequence of images.
in	theta_stack	Sequence of thetas. Size: [model.num_params, nThetas]
out	hess_stack	Sequence of Hessian matrices computed. Size: [model.num_params, model.num_params, n]

Definition at line 590 of file openmp methods.h.

References mappel::methods::objective::hessian(), omp_exception_catcher::impl_::OMPExceptionCatcher< IntType >::rethrow(), and omp_exception_catcher::impl_::OMPExceptionCatcher< IntType >::run().

7.9.1.3 template < class Model > void mappel::methods::objective::openmp::llh_stack (const Model & model, const ImageT < Model > & image, const ParamVecT < Model > & theta_stack, VecT & Ilh_stack)

Parallel log_likelihood calculations for a single image.

Compute log-likelihood for multiple thetas using the same image

Use: model.make_param_stack() to make a parameter stack of appropriate dimensions for the model

Template Parameters

Model A	A concrete subclass of PointEmitterModel
---------	--

Parameters

in	model	A PointEmitterModel object.
in	image	An image.
in	theta_stack	Sequence of thetas. Size: [model.num_params, nThetas]
out	llh_stack	Sequence of Ilh values computed.

Definition at line 406 of file openmp methods.h.

References omp_exception_catcher::impl_::OMPExceptionCatcher< IntType >::rethrow(), and omp_exception_catcher::impl ::OMPExceptionCatcher< IntType >::run().

Referenced by mappel::log_likelihood_stack().

7.9.1.4 template < class Model > void mappel::methods::objective::openmp::llh_stack (const Model & model, const ImageStackT < Model > & image_stack, const ParamVecT < Model > & theta_stack, VecT & Ilh_stack)

Parallel log likelihood calculations for a stack of images.

Compute log-likelihood for multiple image, theta pairs.

Use: model.make param stack() to make a parameter stack of appropriate dimensions for the model

Template Parameters

N	lodel	A concrete subclass of PointEmitterModel	
---	-------	--	--

Parameters

in	model	A PointEmitterModel object.
in	image_stack	Sequence of images.
in	theta_stack	Sequence of thetas. Size: [model.num_params, nThetas]
out	llh_stack	Sequence of Ilh values computed. Size: [n]

Definition at line 431 of file openmp methods.h.

References mappel::methods::objective::llh(), omp_exception_catcher::impl_::OMPExceptionCatcher< IntType $>\leftarrow$::rethrow(), and omp_exception_catcher::impl_::OMPExceptionCatcher< IntType >::run().

7.9.1.5 template < class Model > void mappel::methods::objective::openmp::negative_definite_hessian_stack (const Model & model, const ImageStackT < Model > & image_stack, const ParamVecT < Model > & theta_stack, CubeT & hessian_stack)

Parallel model negative definite Hessian approximation calculations for a stack of images.

Compute Hessian a negative_definite Hessian using a modified cholesky decompositions. Computes for multiple image, theta pairs.

Use: model.make_param_mat_stack() to make a parameter matrix stack of appropriate dimensions for the model Hessian.

Template Parameters

Model	A concrete subclass of PointEmitterModel
-------	--

Parameters

in	model	A PointEmitterModel object.
in	image_stack	Sequence of images.
in	theta_stack	Sequence of thetas. Size: [model.num_params, nThetas]
out	hess_stack	Sequence of approximate Hessian negative definite matrices computed. Size: [model.num_params, model.num_params, n]

Definition at line 639 of file openmp_methods.h.

References mappel::methods::objective::negative_definite_hessian(), omp_exception_catcher::impl_::OMPException Catcher Catcher Catcher Catcher Catcher::impl_::OMPException Catcher Ca

7.9.1.6 template < class Model > void mappel::methods::objective::openmp::rllh_stack (const Model & model, const ImageStackT < Model > & image_stack, const ParamVecT < Model > & theta_stack, VecT & rllh_stack)

Parallel relative log_likelihood calculations for a stack of images.

Compute relative log-likelihood for multiple image, theta pairs.

Use: model.make_param_stack() to make a parameter stack of appropriate dimensions for the model

Template Parameters

Model A concrete subclass of PointEmitterModel
--

Parameters

in	model	A PointEmitterModel object.
in	image_stack	Sequence of images.
in	theta_stack	Sequence of thetas. Size: [model.num_params, nThetas]
out	rllh_stack	Sequence of rllh values computed. Size: [n]

Definition at line 478 of file openmp_methods.h.

References omp_exception_catcher::impl_::OMPExceptionCatcher< IntType >::rethrow(), mappel::methods ::objective::rllh(), rllh stack(), and omp exception catcher::impl ::OMPExceptionCatcher< IntType >::run().

Referenced by mappel::CGaussMLE< Model >::compute_estimate_debug(), mappel::ThreadedEstimator< Model >::estimate max stack(), and mappel::Estimator< Model >::~Estimator().

7.9.1.7 template < class Model > void mappel::methods::objective::openmp::rllh_stack (const Model & model, const ImageT < Model > & image, const ParamVecT < Model > & theta stack, VecT & rllh_stack)

Definition at line 514 of file openmp_methods.h.

References omp_exception_catcher::impl_::OMPExceptionCatcher< IntType >::rethrow(), and omp_exception_catcher::impl_::OMPExceptionCatcher< IntType >::run().

Referenced by rllh_stack().

7.10 mappel::methods::openmp Namespace Reference

Functions

template < class Model > void sample_prior_stack (Model & model, ParamVecT < Model > & theta_stack)

Parallel sampling of the model prior.

template < class Model >
 void model_image_stack (const Model & model, const ParamVecT < Model > & theta_stack, ImageStackT < Model > & image_stack)

Parallel computation of the model image.

template < class Model >
 void simulate_image_stack (Model & model, const ParamVecT < Model > & theta_stack, ImageStackT < Model >
 & image_stack)

Parallel simulation of images from one or more theta.

- template<class Model >
 void cr_lower_bound_stack (const Model &model, const ParamVecT< Model > &theta_stack, ParamVecT<
 Model > &crlb stack)
- template<class Model >
 void expected_information_stack (const Model &model, const ParamVecT< Model > &theta_stack, CubeT
 &fisherl_stack)
- template<class Model >
 void estimate_max_stack (Model &model, const ModelDataStackT< Model > &data_stack, const std::string &method, ParamVecT< Model > &theta_max_stack, VecT &theta_max_rllh, CubeT &obsl_stack)
- template<class Model >
 void estimate_max_stack (Model &model, const ModelDataStackT< Model > &data_stack, const std::string
 &method, ParamVecT< Model > &theta_max_stack, VecT &theta_max_rllh, CubeT &obsl_stack, StatsT &stats)
- template<class Model >
 void estimate_max_stack (Model &model, const ModelDataStackT< Model > &data_stack, const std::string
 &method, ParamVecT< Model > &theta_init_stack, ParamVecT< Model > &theta_max_stack, VecT &theta
 _max_rllh, CubeT &obsl_stack)
- template < class Model >
 void estimate_max_stack (Model &model, const ModelDataStackT < Model > &data_stack, const std::string &method, ParamVecT < Model > &theta_init_stack, ParamVecT < Model > &theta_max_stack, VecT &theta
 max rllh, CubeT &obsl stack, StatsT &stats)

template<class Model >
 void estimate_profile_likelihood (Model &model, const ModelDataT< Model > &data, const IdxVecT &fixed_
 parameters, const MatT &fixed_values, const std::string &method, VecT &profile_likelihood, ParamVecT< Model
 > &profile_parameters)

- template<class Model >
 void estimate_profile_likelihood (Model &model, const ModelDataT< Model > &data, const IdxVecT &fixed_←
 parameters, const MatT &fixed_values, const std::string &method, VecT &profile_likelihood, ParamVecT< Model
 > &profile parameters, StatsT &stats)
- template < class Model >
 void estimate_profile_likelihood (Model &model, const ModelDataT < Model > &data, const IdxVecT &fixed_←
 parameters, const MatT &fixed_values, const std::string &method, const ParamVecT < Model > &theta_init, VecT
 &profile_likelihood, ParamVecT < Model > &profile_parameters)
- template < class Model >
 void estimate_profile_likelihood (Model &model, const ModelDataT < Model > &data, const IdxVecT &fixed_←
 parameters, const MatT &fixed_values, const std::string &method, const ParamVecT < Model > &theta_init, VecT
 &profile likelihood, ParamVecT < Model > &profile parameters, StatsT &stats)
- template<class Model >
 void estimate_mcmc_sample_stack (Model &model, const ModelDataStackT< Model > &data_stack, const
 ParamVecT< Model > &theta_init_stack, ldxT Nsamples, ldxT Nburnin, ldxT thin, CubeT &sample_stack, MatT
 &sample_rllh_stack)
- template<class Model >
 void estimate_mcmc_sample_stack (Model &model, const ModelDataStackT< Model > &data_stack, ldxT
 Nsamples, ldxT Nburnin, ldxT thin, CubeT &sample, MatT &sample rllh)
- template<class Model >
 void estimate_mcmc_posterior_stack (Model &model, const ModelDataStackT< Model > &data_stack, const
 ParamVecT< Model > &theta_init_stack, ldxT Nsamples, ldxT Nburnin, ldxT thin, MatT &theta_mean_stack,
 CubeT &theta cov stack)
- template<class Model >
 void estimate_mcmc_posterior_stack (Model &model, const ModelDataStackT< Model > &data_stack, IdxT
 Nsamples, IdxT Nburnin, IdxT thin, MatT &theta_mean_stack, CubeT &theta_cov_stack)
- template < class Model >
 void error_bounds_expected_stack (const Model & model, const MatT & theta_est_stack, double confidence, MatT & theta_lb_stack, MatT & theta_ub_stack)
- template < class Model >
 void error_bounds_observed_stack (const Model & model, const MatT & theta_est_stack, CubeT & obsl_stack,
 double confidence, MatT & theta_lb_stack, MatT & theta_ub_stack)
- template<class Model >
 void error_bounds_posterior_credible_stack (const Model &model, const CubeT &sample_stack, double confidence, MatT &theta_mean_stack, MatT &theta_lb_stack, MatT &theta_ub_stack)

7.10.1 Function Documentation

7.10.1.1 template < class Model > void mappel::methods::openmp::cr_lower_bound_stack (const Model & model, const ParamVecT < Model > & theta_stack, ParamVecT < Model > & crlb_stack)

Definition at line 135 of file openmp methods.h.

References omp_exception_catcher::impl_::OMPExceptionCatcher< IntType >::rethrow(), and omp_exception_ \leftarrow catcher::impl_::OMPExceptionCatcher< IntType >::run().

Referenced by error bounds expected stack().

7.10.1.2 template < class Model > void mappel::methods::openmp::error_bounds_expected_stack (const Model & model, const MatT & theta est stack, double confidence, MatT & theta lb stack, MatT & theta ub stack)

Definition at line 312 of file openmp_methods.h.

References cr_lower_bound_stack(), and mappel::normal_quantile_twosided().

7.10.1.3 template < class Model > void mappel::methods::openmp::error_bounds_observed_stack (const Model & model, const MatT & theta_est_stack, CubeT & obsl_stack, double confidence, MatT & theta_lb_stack, MatT & theta_ub_stack)

Definition at line 327 of file openmp_methods.h.

References omp exception catcher::impl ::OMPExceptionCatcher< IntType >::run().

7.10.1.4 template < class Model > void mappel::methods::openmp::error_bounds_posterior_credible_stack (const Model & model, const CubeT & sample_stack, double confidence, MatT & theta_mean_stack, MatT & theta_lb_stack, MatT & theta_ub_stack)

Definition at line 358 of file openmp methods.h.

References omp_exception_catcher::impl_::OMPExceptionCatcher< IntType >::rethrow(), and omp_exception_catcher:impl ::OMPExceptionCatcher< IntType >::run().

7.10.1.5 template < class Model > void mappel::methods::openmp::estimate_max_stack (Model & model, const ModelDataStackT < Model > & data_stack, const std::string & method, ParamVecT < Model > & theta_max_stack, VecT & theta_max_rllh, CubeT & obsl_stack)

Definition at line 165 of file openmp_methods.h.

References mappel::methods::make_estimator().

7.10.1.6 template < class Model > void mappel::methods::openmp::estimate_max_stack (Model & model, const ModelDataStackT < Model > & data_stack, const std::string & method, ParamVecT < Model > & theta_max_stack, VecT & theta_max_rllh, CubeT & obsl_stack, StatsT & stats)

Definition at line 173 of file openmp_methods.h.

References mappel::methods::make estimator().

7.10.1.7 template < class Model > void mappel::methods::openmp::estimate_max_stack (Model & model, const ModelDataStackT < Model > & data_stack, const std::string & method, ParamVecT < Model > & theta_init_stack, ParamVecT < Model > & theta_max_stack, VecT & theta_max_rllh, CubeT & obsl_stack)

Definition at line 182 of file openmp methods.h.

References mappel::methods::make estimator().

7.10.1.8 template < class Model > void mappel::methods::openmp::estimate_max_stack (Model & model, const ModelDataStackT < Model > & data_stack, const std::string & method, ParamVecT < Model > & theta_init_stack, ParamVecT < Model > & theta_max_stack, VecT & theta_max_rllh, CubeT & obsl_stack, StatsT & stats)

Definition at line 190 of file openmp methods.h.

References mappel::methods::make estimator().

7.10.1.9 template < class Model > void mappel::methods::openmp::estimate_mcmc_posterior_stack (Model & model, const ModelDataStackT < Model > & data_stack, const ParamVecT < Model > & theta_init_stack, IdxT Nsamples, IdxT Nburnin, IdxT thin, MatT & theta_mean_stack, CubeT & theta_cov_stack)

Definition at line 275 of file openmp_methods.h.

References omp_exception_catcher::impl_::OMPExceptionCatcher< IntType >::rethrow(), and omp_exception_ \leftarrow catcher::impl_::OMPExceptionCatcher< IntType >::run().

Referenced by estimate mcmc posterior stack().

7.10.1.10 template < class Model > void mappel::methods::openmp::estimate_mcmc_posterior_stack (Model & model, const ModelDataStackT < Model > & data_stack, IdxT Nsamples, IdxT Nburnin, IdxT thin, MatT & theta_mean_stack, CubeT & theta_cov_stack)

Definition at line 303 of file openmp_methods.h.

References estimate_mcmc_posterior_stack().

7.10.1.11 template < class Model > void mappel::methods::openmp::estimate_mcmc_sample_stack (Model & model, const ModelDataStackT < Model > & data_stack, const ParamVecT < Model > & theta_init_stack, IdxT Nsamples, IdxT Nburnin, IdxT thin, CubeT & sample_stack, MatT & sample_rllh_stack)

Definition at line 241 of file openmp methods.h.

References omp_exception_catcher::impl_::OMPExceptionCatcher< IntType >::rethrow(), and omp_exception_ \leftarrow catcher::impl_::OMPExceptionCatcher< IntType >::run().

Referenced by estimate_mcmc_sample_stack().

7.10.1.12 template < class Model > void mappel::methods::openmp::estimate_mcmc_sample_stack (Model & model, const ModelDataStackT < Model > & data_stack, IdxT Nsamples, IdxT Nburnin, IdxT thin, CubeT & sample, MatT & sample_rllh)

Definition at line 266 of file openmp_methods.h.

References estimate_mcmc_sample_stack().

7.10.1.13 template < class Model > void mappel::methods::openmp::estimate_profile_likelihood (Model & model, const ModelDataT < Model > & data, const IdxVecT & fixed_parameters, const MatT & fixed_values, const std::string & method, VecT & profile_likelihood, ParamVecT < Model > & profile_parameters)

Definition at line 200 of file openmp methods.h.

References mappel::methods::make estimator().

7.10.1.14 template < class Model > void mappel::methods::openmp::estimate_profile_likelihood (Model & model, const ModelDataT < Model > & data, const IdxVecT & fixed_parameters, const MatT & fixed_values, const std::string & method, VecT & profile_likelihood, ParamVecT < Model > & profile_parameters, StatsT & stats)

Definition at line 210 of file openmp_methods.h.

References mappel::methods::make estimator().

7.10.1.15 template < class Model > void mappel::methods::openmp::estimate_profile_likelihood (Model & model, const ModelDataT < Model > & data, const IdxVecT & fixed_parameters, const MatT & fixed_values, const std::string & method, const ParamVecT < Model > & theta_init, VecT & profile_likelihood, ParamVecT < Model > & profile parameters)

Definition at line 221 of file openmp methods.h.

References mappel::methods::make_estimator().

7.10.1.16 template < class Model > void mappel::methods::openmp::estimate_profile_likelihood (Model & model, const ModelDataT < Model > & data, const IdxVecT & fixed_parameters, const MatT & fixed_values, const std::string & method, const ParamVecT < Model > & theta_init, VecT & profile_likelihood, ParamVecT < Model > & profile_parameters, StatsT & stats)

Definition at line 231 of file openmp methods.h.

References mappel::methods::make_estimator().

7.10.1.17 template < class Model > void mappel::methods::openmp::expected_information_stack (const Model & model, const ParamVecT < Model > & theta_stack, CubeT & fisherl_stack)

Definition at line 150 of file openmp_methods.h.

References omp_exception_catcher::impl_::OMPExceptionCatcher< IntType >::rethrow(), and omp_exception_ \leftarrow catcher::impl_::OMPExceptionCatcher< IntType >::run().

7.10.1.18 template < class Model > void mappel::methods::openmp::model_image_stack (const Model & model, const ParamVecT < Model > & theta_stack, ImageStackT < Model > & image_stack)

Parallel computation of the model image.

The model image is the expected photon count at each pixel under parameter theta.

Use: model.make_param_stack() to make a parameter stack of appropriate dimensions for the model Use: model.

— make_image_stack() to make an image stack of appropriate dimensions for the model

Template Parameters

Model A concrete subclass of PointEmitterModel

Parameters

in	model	A PointEmitterModel object.
in	theta_stack	Sequence of thetas for which to generate images. Size: [model.num_params, nThetas]
out	image_stack	Sequence of model images generated.

Definition at line 70 of file openmp_methods.h.

References omp_exception_catcher::impl_::OMPExceptionCatcher< IntType >::rethrow(), and omp_exception_ \leftarrow catcher::impl_::OMPExceptionCatcher< IntType >::run().

7.10.1.19 template < class Model > void mappel::methods::openmp::sample_prior_stack (Model & model, ParamVecT < Model > & theta stack)

Parallel sampling of the model prior.

Use: model.make param stack() to make a parameter stack of appropriate dimensions for the model

Template Parameters

Model	A concrete subclass of PointEmitterModel
-------	--

Parameters

in	model,A	PointEmitterModel object.
out	theta_stack,A	sequence of sampled thetas. Size: [model.num_params, nSamples]

Definition at line 42 of file openmp methods.h.

References omp_exception_catcher::impl_::OMPExceptionCatcher< IntType >::rethrow(), and omp_exception_ \leftarrow catcher::impl_::OMPExceptionCatcher< IntType >::run().

7.10.1.20 template < class Model > void mappel::methods::openmp::simulate_image_stack (Model & model, const ParamVecT < Model > & theta_stack, ImageStackT < Model > & image_stack)

Parallel simulation of images from one or more theta.

This accepts either a single theta and a stack of images, or a stack of thetas and a stack of images.

Use: model.make_param_stack() to make a parameter stack of appropriate dimensions for the model Use: model.

— make_image_stack() to make an image stack of appropriate dimensions for the model

Template Parameters

Model A concrete subclass of PointEmitterMode	subclass of PointEmitterModel	Model	
---	-------------------------------	-------	--

Parameters

	in	model	A PointEmitterModel object.
	in	theta_stack	Single theta or a sequence of thetas. Size: [model.num_params, nThetas]
Ī	out	image_stack	Sequence of model images generated.

Definition at line 97 of file openmp_methods.h.

References mappel::methods::model_image(), omp_exception_catcher::impl_::OMPExceptionCatcher< IntType >::rethrow(), omp_exception_catcher::impl_::OMPExceptionCatcher< IntType >::run(), and mappel::methods \leftarrow ::simulate_image().

7.11 omp_exception_catcher Namespace Reference

Namespaces

• impl_

Typedefs

using OMPExceptionCatcher = impl_::OMPExceptionCatcher < uint32_t >

7.11.1 Typedef Documentation

 $7.11.1.1 \quad using \ omp_exception_catcher:: OMPExceptionCatcher = typedef \ impl_:: OMPExceptionCatcher < uint 32_t > 1.11.1.1 \quad using \ omp_exception_catcher:: OMPExceptionCatcher = typedef \ impl_:: OMPExceptionCatcher < uint 32_t > 1.11.1.1 \quad using \ omp_exceptionCatcher < uint 32_t > 1.11.1.1 \quad using \ omp_exceptionCatcher < uint 32_t > 1.11.1.1 \quad using \ omp_exceptionCatcher < uint 32_t > 1.11.1.1 \quad using \ omp_exceptionCatcher < uint 32_t > 1.11.1.1 \quad using \ omp_exceptionCatcher < uint 32_t > 1.11.1.1 \quad using \ omp_exceptionCatcher < uint 32_t > 1.11.1.1 \quad using \ omp_exceptionCatcher < uint 32_t > 1.11.1.1 \quad using \ omp_exceptionCatcher < uint 32_t > 1.11.1.1 \quad using \ omp_exceptionCatcher < uint 32_t > 1.11.1.1 \quad using \ omp_exceptionCatcher < uint 32_t > 1.11.1.1 \quad using \ omp_exceptionCatcher < uint 32_t > 1.11.1.1 \quad using \ omp_exceptionCatcher < uint 32_t > 1.11.1.1 \quad using \ omp_exceptionCatcher < uint 32_t > 1.11.1.1 \quad using \ omp_exceptionCatcher < uint 32_t > 1.11.1.1 \quad using \ omp_exceptionCatcher < uint 32_t > 1.11.1.1 \quad using \ omp_exceptionCatcher < uint 32_t > 1.11.1.1 \quad using \ omp_exceptionCatcher < uint 32_t > 1.11.1.1 \quad using \ omp_exceptionCatcher < uint 32_t > 1.11.1.1 \quad using \ omp_exceptionCatcher < uint 32_t > 1.11.1.1 \quad using \ omp_exceptionCatcher < uint 32_t > 1.11.1.1 \quad using \ omp_exceptionCatcher < uint 32_t > 1.11.1.1 \quad using \ omp_exceptionCatcher < uint 32_t > 1.11.1.1 \quad using \ omp_exceptionCatcher < uint 32_t > 1.11.1.1 \quad using \ omp_exceptionCatcher < uint 32_t > 1.11.1.1 \quad using \ omp_exceptionCatcher < uint 32_t > 1.11.1.1 \quad using \ omp_exceptionCatcher < uint 32_t > 1.11.1.1 \quad using \ omp_exceptionCatcher < uint 32_t > 1.11.1.1 \quad using \ omp_exceptionCatcher < uint 32_t > 1.11.1.1 \quad using \ omp_exceptionCatcher < uint 32_t > 1.11.1.1 \quad using \ omp_exceptionCatcher < uint 32_t > 1.11.1.1 \quad using \ omp_exceptionCatcher < uint 32_t > 1.11.1.1 \quad using \ omp_exceptionCatcher < uint 32_t > 1.11.1.1 \quad using \ omp_exceptionCatcher < uint 32_t > 1.11.1.1 \quad using \ omp_excep$

Definition at line 94 of file OMPExceptionCatcher.h.

7.12 omp_exception_catcher::impl_ Namespace Reference

Classes

· class OMPExceptionCatcher

8 Class Documentation

8.1 mappel::ArrayShapeError Struct Reference

Array is not of the right dimensionality.

#include </home/travis/build/markjolah/Mappel/include/Mappel/util.h>

 $Inheritance\ diagram\ for\ mappel:: Array Shape Error:$

Public Member Functions

ArrayShapeError (std::string message)

8.1.1 Detailed Description

Array is not of the right dimensionality.

Definition at line 72 of file util.h.

- 8.1.2 Constructor & Destructor Documentation
- **8.1.2.1** mappel::ArrayShapeError::ArrayShapeError (std::string message) [inline]

Definition at line 74 of file util.h.

The documentation for this struct was generated from the following file:

• util.h

8.2 mappel::ArraySizeError Struct Reference

Array is not of the right size.

#include </home/travis/build/markjolah/Mappel/include/Mappel/util.h>

Inheritance diagram for mappel::ArraySizeError:

Public Member Functions

• ArraySizeError (std::string message)

8.2.1 Detailed Description

Array is not of the right size.

Definition at line 79 of file util.h.

8.2.2 Constructor & Destructor Documentation

8.2.2.1 mappel::ArraySizeError::ArraySizeError (std::string message) [inline]

Definition at line 81 of file util.h.

The documentation for this struct was generated from the following file:

· util.h

8.3 mappel::CGaussHeuristicEstimator < Model > Class Template Reference

#include </home/travis/build/markjolah/Mappel/include/Mappel/estimator.h>

Inheritance diagram for mappel::CGaussHeuristicEstimator< Model >:

Public Types

```
    enum ExitCode::IdxT {
        ExitCode::Unassigned = 8, ExitCode::MaxIter = 7, ExitCode::MaxBacktracks = 6, ExitCode::TrustRegionRadius = 5,
        ExitCode::GradRatio = 4, ExitCode::FunctionChange = 3, ExitCode::StepSize = 2, ExitCode::Success = 1,
        ExitCode::Error = 0 }
```

Public Member Functions

- CGaussHeuristicEstimator (Model &model)
- StatsT get_stats ()
- StatsT get_debug_stats ()
- std::string name () const
- void estimate_max_stack (const ModelDataStackT< Model > &im, const ParamVecT< Model > &theta_init, ParamVecT< Model > &theta, VecT &rllh, CubeT &obsl)
- void estimate_max_stack (const ModelDataStackT < Model > &im_stack, ParamVecT < Model > &theta_est_← stack, VecT &rllh stack, CubeT &obsl stack)
- void estimate_profile_stack (const ModelDataT < Model > &data, const IdxVecT &fixed_parameters, const MatT &values, const ParamVecT < Model > &theta_init, VecT &profile_likelihood, ParamVecT < Model > &profile_← parameters)
- void clear stats ()
- Model & get model ()

- void set_model (Model &new_model)
- StencilT < Model > estimate max (const ModelDataT < Model > &im)
- StencilT< Model > estimate_max (const ModelDataT< Model > &im, const ParamT< Model > &theta_init)
- StencilT < Model > estimate max (const ModelDataT < Model > &im, double &rllh)
- StencilT < Model > estimate_max (const ModelDataT < Model > &im, const ParamT < Model > &theta_init, double &rllh)
- void estimate max (const ModelDataT < Model > &im, ParamT < Model > &theta, double &rllh, MatT &obsl)
- void estimate_max (const ModelDataT< Model > &im, const ParamT< Model > &theta_init, ParamT< Model > &theta, double &rllh, MatT &obsl)
- void estimate_max_debug (const ModelDataT< Model > &im, const ParamT< Model > &theta_init, ParamT
 Model > &theta est, double &rllh, MatT &obsl, MatT &sequence, VecT &sequence rllh)

Static Public Attributes

static constexpr int NumExitCodes = 9

Protected Member Functions

- void record exit code (ExitCode code)
- virtual void compute_estimate (const ModelDataT< Model > &im, const ParamT< Model > &theta_init, ParamT< Model > &theta_est, double &rllh, MatT &obsl)

Default base class implementation computes rllh and obsl seperately from stencil This should be overridden by Estimator subclasses that already have access to this information.

- virtual StencilT< Model > compute_estimate_debug (const ModelDataT< Model > &im, const ParamT< Model > &theta_init, ParamVecT< Model > &sequence, VecT &sequence_rllh)
- virtual void compute_profile_estimate (const ModelDataT< Model > &im, const ParamT< Model > &theta_init, const IdxVecT &fixed parameters, ParamT< Model > &theta est, double &rllh)
- void record_walltime (ClockT::time_point start_walltime, int nimages)

Protected Attributes

- · int max threads
- int num_threads
- std::mutex mtx
- Model & model
- int num estimations = 0
- double total walltime = 0.
- IdxVecT exit_counts

8.3.1 Detailed Description

template<class Model> class mappel::CGaussHeuristicEstimator< Model>

Definition at line 162 of file estimator.h.

```
8.3.2 Member Enumeration Documentation
```

```
8.3.2.1 template < class Model > enum mappel::Estimator::ExitCode: ldxT [strong], [inherited]
```

Enumerator

Unassigned

MaxIter

MaxBacktracks

TrustRegionRadius

GradRatio

FunctionChange

StepSize

Success

Error

Definition at line 40 of file estimator.h.

8.3.3 Constructor & Destructor Documentation

8.3.3.1 template < class Model > mappel::CGaussHeuristicEstimator < Model > ::CGaussHeuristicEstimator (Model & model) [inline]

Definition at line 164 of file estimator.h.

References mappel::Estimator< Model >::get_debug_stats(), and mappel::Estimator< Model >::get_stats().

8.3.4 Member Function Documentation

8.3.4.1 template < class Model > void mappel::ThreadedEstimator < Model >::clear_stats () [virtual], [inherited]

Reimplemented from mappel::Estimator < Model >.

Reimplemented in mappel::IterativeMaximizer < Model >.

Definition at line 378 of file estimator_impl.h.

References mappel::Estimator< Model >::clear_stats(), mappel::ThreadedEstimator< Model >::mtx, and mappel:: \leftarrow ThreadedEstimator< Model >::num threads.

Referenced by mappel::IterativeMaximizer< Model >::clear stats().

8.3.4.2 template < class Model > void mappel::Estimator < Model > ::compute_estimate (const ModelDataT < Model > & im, const ParamT < Model > & theta_init, ParamT < Model > & theta_est, double & rllh, MatT & obsl)

[protected], [virtual], [inherited]

Default base class implementation computes rllh and obsl seperately from stencil This should be overridden by Estimator subclasses that already have access to this information.

Definition at line 183 of file estimator impl.h.

References mappel::Estimator< Model >::compute_estimate(), mappel::Estimator< Model >::model, and mappel \leftarrow ::methods::observed information().

8.3.4.3 template < class Model > StencilT < Model > mappel::Estimator < Model > ::compute_estimate_debug (const ModelDataT < Model > & im, const ParamT < Model > & theta_init, ParamVecT < Model > & sequence, VecT & sequence_rllh) [protected], [virtual], [inherited]

Estimators that produce a sequence of results (e.g. IterativeEstimators) can override this dummy debug implementation.

Reimplemented in mappel::IterativeMaximizer < Model >, mappel::SimulatedAnnealingMaximizer < Model >, and mappel::CGaussMLE < Model >.

Definition at line 242 of file estimator impl.h.

References mappel::Estimator< Model >::compute_estimate(), mappel::Estimator< Model >::Error, mappel::Estimator< Model >::record_exit_code().

Referenced by mappel::Estimator< Model >::estimate_max_debug(), mappel::CGaussMLE< Model >::name(), mappel::SimulatedAnnealingMaximizer< Model >::name(), and mappel::Estimator< Model >:: \sim Estimator().

8.3.4.4 template < class Model > void mappel::Estimator < Model >::compute_profile_estimate (const ModelDataT < Model > & im, const ParamT < Model > & theta_init, const IdxVecT & fixed_parameters, ParamT < Model > & theta_est, double & rllh) [protected], [virtual], [inherited]

Reimplemented in mappel::IterativeMaximizer < Model >.

Definition at line 192 of file estimator_impl.h.

References mappel::Estimator< Model >::model.

Referenced by mappel::ThreadedEstimator< Model >::estimate_profile_stack(), and mappel::Estimator< Model > \leftarrow :: \sim Estimator().

8.3.4.5 template < class Model > StencilT < Model > mappel::Estimator < Model > ::estimate_max (const ModelDataT < Model > & im) [inherited]

Definition at line 64 of file estimator_impl.h.

References mappel::Estimator< Model >::model.

Referenced by mappel::Estimator < Model >::estimate max(), and mappel::Estimator < Model >::~Estimator().

8.3.4.6 template < class Model > StencilT < Model > mappel::Estimator < Model > ::estimate_max (const ModelDataT < Model > & im, const ParamT < Model > & theta_init) [inherited]

Definition at line 82 of file estimator impl.h.

References mappel::Estimator < Model >::estimate max(), and mappel::methods::objective::rllh().

8.3.4.7 template < class Model > StencilT < Model > mappel::Estimator < Model > ::estimate_max (const ModelDataT < Model > & im, double & rllh) [inherited]

Definition at line 73 of file estimator_impl.h.

References mappel::Estimator< Model >::estimate_max(), and mappel::Estimator< Model >::model.

8.3.4.8 template < class Model > StencilT < Model > mappel::Estimator < Model >::estimate_max (const ModelDataT < Model > & im, const ParamT < Model > & theta_init, double & rllh) [inherited]

Definition at line 90 of file estimator impl.h.

References mappel::Estimator< Model >::compute_estimate(), mappel::Estimator< Model >::Error, mappel:: \leftarrow Estimator< Model >::record_exit_code(), and mappel \leftarrow ::Estimator< Model >::record_walltime().

8.3.4.9 template < class Model > void mappel::Estimator < Model > ::estimate_max (const ModelDataT < Model > & im, ParamT < Model > & theta, double & tllh, MatT & tllh (inherited]

Definition at line 119 of file estimator_impl.h.

References mappel::Estimator < Model >::estimate max(), and mappel::Estimator < Model >::model.

8.3.4.10 template < class Model > void mappel::Estimator < Model > ::estimate_max (const ModelDataT < Model > & im, const ParamT < Model > & theta_init, ParamT < Model > & theta, double & rllh, MatT & obsl) [inherited]

Definition at line 128 of file estimator_impl.h.

References mappel::Estimator< Model >::compute_estimate(), mappel::Estimator< Model >::Error, mappel::print _ _ image(), mappel::Estimator< Model >::record_exit_code(), mappel::Estimator< Model >::record_walltime(), and mappel::methods::objective::rllh().

8.3.4.11 template < class Model > void mappel::Estimator < Model > ::estimate_max_debug (const ModelDataT < Model > & im, const ParamT < Model > & theta_init, ParamT < Model > & theta_est, double & rllh, MatT & obsl, MatT & sequence, VecT & sequence rllh) [inherited]

Definition at line 158 of file estimator_impl.h.

References mappel::Estimator < Model >::compute_estimate_debug(), mappel::Estimator < Model >::model, mappel \leftarrow ::methods::observed_information(), mappel::Estimator < Model >::record_walltime(), and mappel::methods::objective \leftarrow ::rllh().

Referenced by mappel::Estimator < Model >::~Estimator().

8.3.4.12 template < class Model > void mappel::Estimator < Model > ::estimate_max_stack (const ModelDataStackT < Model > & im_stack, ParamVecT < Model > & theta_est_stack, VecT & rllh_stack, CubeT & obsl_stack)

[inherited]

Definition at line 170 of file estimator impl.h.

References mappel::Estimator < Model >::estimate max stack(), and mappel::Estimator < Model >::model.

8.3.4.13 template < class Model > void mappel::ThreadedEstimator < Model >::estimate_max_stack (const ModelDataStackT < Model > & im, const ParamVecT < Model > & theta_init, ParamVecT < Model > & theta, VecT & rllh, CubeT & obsl) [virtual], [inherited]

Implements mappel::Estimator < Model >.

Definition at line 285 of file estimator_impl.h.

References mappel::Estimator< Model >::compute_estimate(), mappel::Estimator< Model >::Error, mappel:: \leftarrow Estimator< Model >::model, mappel::ThreadedEstimator< Model >::num_threads, mappel::print_image(), mappel ::ThreadedEstimator< Model >::record_exit_code(), mappel::Estimator< Model >::record_walltime(), and mappel ::methods::objective::openmp::rllh_stack().

8.3.4.14 template < class Model > void mappel::ThreadedEstimator < Model >::estimate_profile_stack (const ModelDataT < Model > & data, const IdxVecT & fixed_parameters, const MatT & values, const ParamVecT < Model > & theta_init, VecT & profile_likelihood, ParamVecT < Model > & profile_parameters) [virtual], [inherited]

Implements mappel::Estimator < Model >.

Definition at line 323 of file estimator_impl.h.

References mappel::Estimator< Model >::compute_profile_estimate(), mappel::Estimator< Model >::Error, mappel \leftarrow ::Estimator< Model >::model, mappel::ThreadedEstimator< Model >::num_threads, mappel::print_image(), mappel \leftarrow ::ThreadedEstimator< Model >::record_exit_code(), and mappel::Estimator< Model >::record_walltime().

8.3.4.15 template < class Model > StatsT mappel::CGaussHeuristicEstimator < Model >::get_debug_stats () [virtual]

Reimplemented from mappel::ThreadedEstimator< Model >.

Definition at line 447 of file estimator impl.h.

References mappel::ThreadedEstimator< Model >::get_stats().

8.3.4.16 template < class Model > Model & mappel::Estimator < Model >::get_model() [inherited]

Definition at line 50 of file estimator_impl.h.

References mappel::Estimator< Model >::model.

Referenced by mappel::Estimator< Model >::~Estimator().

8.3.4.17 template < class Model > StatsT mappel::CGaussHeuristicEstimator < Model >::get_stats() [virtual]

Reimplemented from mappel::ThreadedEstimator< Model >.

Definition at line 437 of file estimator impl.h.

References mappel::ThreadedEstimator< Model >::get stats().

8.3.4.18 template < class Model > std::string mappel::CGaussHeuristicEstimator < Model >::name () const [inline], [virtual]

Implements mappel::Estimator < Model >.

Definition at line 168 of file estimator.h.

References mappel::Estimator < Model >::compute estimate(), and mappel::methods::objective::rllh().

8.3.4.19 template < class Model > void mappel::ThreadedEstimator < Model >::record_exit_code (ExitCode code) [protected], [virtual], [inherited]

Implements mappel::Estimator < Model >.

Definition at line 386 of file estimator_impl.h.

References mappel::Estimator< Model >::exit_counts, mappel::Estimator< Model >::model, mappel::Threaded ← Estimator< Model >::mtx, and mappel::methods::objective::rllh().

Referenced by mappel::IterativeMaximizer< Model >::backtrack(), mappel::CGaussMLE< Model >::compute - _estimate(), mappel::CGaussMLE< Model >::compute_estimate_debug(), mappel::IterativeMaximizer< Model >::compute_estimate_debug(), mappel::Threaded - ::convergence_test(), mappel::Threaded - ::convergence_test(), mappel::Threaded - ::estimate_max_stack(), mappel::ThreadedEstimator< Model >::estimate_profile_stack(), mappel::NewtonDiagonalMaximizer< Model >::maximize(), mappel::NewtonMaximizer< Model >::maximize(), and mappel::TrustRegionMaximizer< Model >::maximize().

8.3.4.20 template < class Model > void mappel::Estimator < Model >::record_walltime (ClockT::time_point start_walltime, int nimages) [protected], [inherited]

Definition at line 266 of file estimator impl.h.

References mappel::Estimator < Model >::num estimations, and mappel::Estimator < Model >::total walltime.

Referenced by mappel::Estimator< Model >::estimate_max(), mappel::Estimator< Model >::estimate_max_ \leftarrow debug(), mappel::ThreadedEstimator< Model >::estimate_max_stack(), and mappel::ThreadedEstimator< Model >::estimate_profile_stack().

8.3.4.21 template < class Model > void mappel::Estimator < Model >::set_model (Model & new_model) [inherited]

Definition at line 54 of file estimator impl.h.

References mappel::Estimator< Model >::model.

Referenced by mappel::Estimator < Model >::~Estimator().

8.3.5 Member Data Documentation

8.3.5.1 template < class Model > IdxVecT mappel::Estimator < Model >::exit_counts [protected], [inherited]

Definition at line 114 of file estimator.h.

Referenced by mappel::Estimator< Model >::clear_stats(), mappel::Estimator< Model >::get_stats(), and mappel::

ThreadedEstimator< Model >::record exit code().

8.3.5.2 template < class Model > int mappel::ThreadedEstimator < Model >::max_threads [protected], [inherited]

Definition at line 142 of file estimator.h.

8.3.5.3 template < class Model > Model& mappel::Estimator < Model >::model [protected], [inherited]

Definition at line 109 of file estimator.h.

Referenced by mappel::SimulatedAnnealingMaximizer< Model >::anneal(), mappel::IterativeMaximizer< Model >::backtrack(), mappel::Estimator< Model >::compute_estimate(), mappel::CGaussMLE< Model >::compute_estimate(), mappel::IterativeMaximizer< Model >::compute_estimate(), mappel::IterativeMaximizer< Model >::compute_estimate(), mappel::CGaussML ← E< Model >::compute_estimate_debug(), mappel::SimulatedAnnealingMaximizer< Model >::compute_estimate_debug(), mappel::IterativeMaximizer< Model >::compute_estimate_debug(), mappel::IterativeMaximizer< Model >::compute_estimate(), mappel::IterativeMaximizer< Model >::compute_profile_estimate(), mappel::Estimator< Model >::estimate_max(), mappel::Estimator< Model >::estimate_max_debug(), mappel::ThreadedEstimator< Model >::estimate_max_stack(), mappel::ThreadedEstimator< Model >::estimate_max_stack(), mappel::IterativeMaximizer< Model >::estimate_max_stack(), mappel::ThreadedEstimator< Model >::estimate_max_stack(), mappel::ThreadedEstimator< Model >::get_model(), mappel::IterativeMaximizer< Model >::local_maximize(), mappel::NewtonDiagonalMaximizer< Model >::maximize(), mappel::ThreadedEstimator< Model >::record ← exit code(), and mappel::Estimator< Model >::set model().

8.3.5.4 template < class Model > std::mutex mappel::ThreadedEstimator < Model >::mtx [protected], [inherited]

Definition at line 144 of file estimator.h.

Referenced by mappel::ThreadedEstimator< Model >::clear_stats(), mappel::IterativeMaximizer< Model >::clear-_stats(), mappel::ThreadedEstimator< Model >::get_stats(), mappel::IterativeMaximizer< Model >::get_stats(), mappel::ThreadedEstimator< Model >::record_exit_code(), and mappel::IterativeMaximizer< Model >::record_crun_statistics().

Definition at line 112 of file estimator.h.

Referenced by mappel::Estimator< Model >::clear_stats(), mappel::Estimator< Model >::get_stats(), mappel:: \leftarrow ::ThreadedEstimator< Model >::get_stats(), and mappel:: \leftarrow Estimator< Model >::record walltime().

8.3.5.6 template < class Model > int mappel::ThreadedEstimator < Model >::num_threads [protected], [inherited]

Definition at line 143 of file estimator.h.

Referenced by mappel::ThreadedEstimator< Model >::clear_stats(), mappel::ThreadedEstimator< Model >::estimate_max_stack(), mappel::ThreadedEstimator< Model >::estimate_profile_stack(), and mappel::Threaded \leftarrow Estimator< Model >::get_stats().

8.3.5.7 template<**class Model** > **constexpr int mappel::Estimator**< **Model** >::**NumExitCodes** = **9** [static], [inherited]

Definition at line 39 of file estimator.h.

8.3.5.8 template < class Model > double mappel::Estimator < Model >::total_walltime = 0. [protected], [inherited]

Definition at line 113 of file estimator.h.

Referenced by mappel::Estimator< Model >::clear_stats(), mappel::Estimator< Model >::get_stats(), mappel::

ThreadedEstimator< Model >::get_stats(), and mappel::Estimator< Model >::record walltime().

The documentation for this class was generated from the following files:

- · estimator.h
- estimator_impl.h

8.4 mappel::CGaussMLE < Model > Class Template Reference

#include </home/travis/build/markjolah/Mappel/include/Mappel/estimator.h>

Inheritance diagram for mappel::CGaussMLE< Model >:

Public Types

```
    enum ExitCode::IdxT {
        ExitCode::Unassigned = 8, ExitCode::MaxIter = 7, ExitCode::MaxBacktracks = 6, ExitCode::TrustRegionRadius = 5,
        ExitCode::GradRatio = 4, ExitCode::FunctionChange = 3, ExitCode::StepSize = 2, ExitCode::Success = 1,
        ExitCode::Error = 0 }
```

Public Member Functions

- CGaussMLE (Model &model, int num_iterations=DEFAULT_CGAUSS_ITERATIONS)
- StatsT get_stats ()
- StatsT get_debug_stats ()
- std::string name () const
- void estimate_max_stack (const ModelDataStackT< Model > &im, const ParamVecT< Model > &theta_init, ParamVecT< Model > &theta, VecT &rllh, CubeT &obsl)

- void clear stats ()
- Model & get model ()
- void set model (Model &new model)
- StencilT< Model > estimate_max (const ModelDataT< Model > &im)
- StencilT < Model > estimate_max (const ModelDataT < Model > &im, const ParamT < Model > &theta_init)
- StencilT < Model > estimate max (const ModelDataT < Model > &im, double &rllh)
- StencilT < Model > estimate_max (const ModelDataT < Model > &im, const ParamT < Model > &theta_init, double &rllh)
- void estimate_max (const ModelDataT < Model > &im, ParamT < Model > &theta, double &rllh, MatT &obsl)
- void estimate_max (const ModelDataT < Model > &im, const ParamT < Model > &theta_init, ParamT < Model > &theta, double &rllh, MatT &obsl)
- void estimate_max_debug (const ModelDataT< Model > &im, const ParamT< Model > &theta_init, ParamT
 Model > &theta_est, double &rllh, MatT &obsl, MatT &sequence, VecT &sequence_rllh)

Public Attributes

int num_iterations

Static Public Attributes

static constexpr int NumExitCodes = 9

Protected Member Functions

- StencilT < Model > compute_estimate (const ModelDataT < Model > &im, const ParamT < Model > &theta_init, double &rllh)
- StencilT< Model > compute_estimate_debug (const ModelDataT< Model > &im, const ParamT< Model > &theta_init, ParamVecT< Model > &sequence, VecT &sequence_rllh)
- void record exit code (ExitCode code)
- virtual void compute_estimate (const ModelDataT< Model > &im, const ParamT< Model > &theta_init, ParamT< Model > &theta_est, double &rllh, MatT &obsl)

Default base class implementation computes rllh and obsl seperately from stencil This should be overridden by Estimator subclasses that already have access to this information.

- virtual void compute_profile_estimate (const ModelDataT< Model > &im, const ParamT< Model > &theta_init, const IdxVecT &fixed parameters, ParamT< Model > &theta est, double &rllh)
- void record walltime (ClockT::time point start walltime, int nimages)

Protected Attributes

- · int max threads
- · int num threads
- std::mutex mtx
- Model & model
- int num estimations = 0
- double total_walltime = 0.
- IdxVecT exit_counts

8.4.1 Detailed Description

```
template<class Model>
class mappel::CGaussMLE< Model>
```

Definition at line 176 of file estimator.h.

8.4.2 Member Enumeration Documentation

8.4.2.1 template < class Model > enum mappel::Estimator::ExitCode: ldxT [strong], [inherited]

Enumerator

Unassigned

MaxIter

MaxBacktracks

TrustRegionRadius

GradRatio

FunctionChange

StepSize

Success

Error

Definition at line 40 of file estimator.h.

8.4.3 Constructor & Destructor Documentation

8.4.3.1 template < class Model > mappel::CGaussMLE < Model >::CGaussMLE (Model & model, int num_iterations = DEFAULT_CGAUSS_ITERATIONS) [inline]

Definition at line 179 of file estimator.h.

References mappel::Estimator< Model >::get_debug_stats(), and mappel::Estimator< Model >::get_stats().

```
8.4.4 Member Function Documentation
```

```
8.4.4.1 template < class Model > void mappel::ThreadedEstimator < Model >::clear_stats ( ) [virtual], [inherited]
```

Reimplemented from mappel::Estimator < Model >.

Reimplemented in mappel::IterativeMaximizer < Model >.

Definition at line 378 of file estimator impl.h.

References mappel::Estimator< Model >::clear_stats(), mappel::ThreadedEstimator< Model >::mtx, and mappel:: \leftarrow ThreadedEstimator< Model >::num_threads.

Referenced by mappel::IterativeMaximizer< Model >::clear stats().

8.4.4.2 template < class Model > void mappel::Estimator < Model > :::compute_estimate (const ModelDataT < Model > & im, const ParamT < Model > & theta_init, ParamT < Model > & theta_est, double & rllh, MatT & obsl)

[protected], [virtual], [inherited]

Default base class implementation computes rllh and obsl seperately from stencil This should be overridden by Estimator subclasses that already have access to this information.

Definition at line 183 of file estimator_impl.h.

References mappel::Estimator< Model >::compute_estimate(), mappel::Estimator< Model >::model, and mappel
::methods::observed_information().

8.4.4.3 template < class Model > StencilT < Model > mappel::CGaussMLE < Model > :::compute_estimate (const ModelDataT < Model > & im, const ParamT < Model > & theta_init, double & rllh) [protected], [virtual]

Implements mappel::Estimator < Model >.

Definition at line 471 of file estimator impl.h.

References mappel::cgauss_compute_estimate(), mappel::cgauss_heuristic_compute_estimate(), mappel::Estimator < Model >::model, mappel::ThreadedEstimator < Model >::record_exit_code(), and mappel::methods::objective::rllh().

8.4.4.4 template < class Model > StencilT < Model > mappel::CGaussMLE < Model > ::compute_estimate_debug (const ModelDataT < Model > & im, const ParamT < Model > & theta_init, ParamVecT < Model > & sequence, VecT & sequence_rllh) [protected], [virtual]

Estimators that produce a sequence of results (e.g. IterativeEstimators) can override this dummy debug implementation.

Reimplemented from mappel::Estimator < Model >.

Definition at line 498 of file estimator_impl.h.

References mappel::cgauss_compute_estimate_debug(), mappel::cgauss_heuristic_compute_estimate(), mappel:: \leftarrow Estimator< Model >::record_exit_code(), and mappel::methods \leftarrow ::objective::openmp::rllh stack().

8.4.4.5 template < class Model > void mappel::Estimator < Model >::compute_profile_estimate (const ModelDataT < Model > & im, const ParamT < Model > & theta_init, const IdxVecT & fixed_parameters, ParamT < Model > & theta_est, double & rllh) [protected], [virtual], [inherited]

Reimplemented in mappel::IterativeMaximizer < Model >.

Definition at line 192 of file estimator impl.h.

References mappel::Estimator< Model >::model.

Referenced by mappel::ThreadedEstimator< Model >::estimate_profile_stack(), and mappel::Estimator< Model > \leftarrow :: \sim Estimator().

8.4.4.6 template < class Model > StencilT < Model > mappel::Estimator < Model > ::estimate_max (const ModelDataT < Model > & im) [inherited]

Definition at line 64 of file estimator_impl.h.

References mappel::Estimator< Model >::model.

Referenced by mappel::Estimator < Model >::estimate max(), and mappel::Estimator < Model >::~Estimator().

8.4.4.7 template < class Model > StencilT < Model > mappel::Estimator < Model > ::estimate_max (const ModelDataT < Model > & im, const ParamT < Model > & theta_init) [inherited]

Definition at line 82 of file estimator_impl.h.

References mappel::Estimator < Model >::estimate max(), and mappel::methods::objective::rllh().

8.4.4.8 template < class Model > StencilT < Model > mappel::Estimator < Model > ::estimate_max (const ModelDataT < Model > & im. double & rllh) [inherited]

Definition at line 73 of file estimator_impl.h.

References mappel::Estimator < Model >::estimate_max(), and mappel::Estimator < Model >::model.

8.4.4.9 template < class Model > StencilT < Model > mappel::Estimator < Model > ::estimate_max (const ModelDataT < Model > & im, const ParamT < Model > & theta_init, double & rllh) [inherited]

Definition at line 90 of file estimator impl.h.

References mappel::Estimator< Model >::compute_estimate(), mappel::Estimator< Model >::Error, mappel:: \leftarrow Estimator< Model >::model, mappel::print_image(), mappel::Estimator< Model >::record_exit_code(), and mappel ::Estimator< Model >::record_walltime().

8.4.4.10 template < class Model > void mappel::Estimator < Model > ::estimate_max (const ModelDataT < Model > & im, ParamT < Model > & theta, double & rllh, MatT & obsl) [inherited]

Definition at line 119 of file estimator impl.h.

References mappel::Estimator < Model >::estimate max(), and mappel::Estimator < Model >::model.

8.4.4.11 template < class Model > void mappel::Estimator < Model > ::estimate_max (const ModelDataT < Model > & im, const ParamT < Model > & theta_init, ParamT < Model > & theta, double & rllh, MatT & obsl) [inherited]

Definition at line 128 of file estimator_impl.h.

References mappel::Estimator< Model >::compute_estimate(), mappel::Estimator< Model >::Error, mappel::print = _image(), mappel::Estimator< Model >::record_exit_code(), mappel::Estimator< Model >::record_walltime(), and mappel::methods::objective::rllh().

8.4.4.12 template < class Model > void mappel::Estimator < Model > ::estimate_max_debug (const ModelDataT < Model > & im, const ParamT < Model > & theta_init, ParamT < Model > & theta_est, double & rllh, MatT & obsl, MatT & sequence, VecT & sequence_rllh) [inherited]

Definition at line 158 of file estimator impl.h.

References mappel::Estimator < Model >::compute_estimate_debug(), mappel::Estimator < Model >::model, mappel \leftarrow ::methods::observed_information(), mappel::Estimator < Model >::record_walltime(), and mappel::methods::objective \leftarrow ::rllh().

Referenced by mappel::Estimator < Model >::~Estimator().

8.4.4.13 template < class Model > void mappel::Estimator < Model >::estimate_max_stack (const ModelDataStackT < Model > & im_stack, ParamVecT < Model > & theta_est_stack, VecT & rllh_stack, CubeT & obsl_stack)
[inherited]

Definition at line 170 of file estimator impl.h.

References mappel::Estimator< Model >::estimate_max_stack(), and mappel::Estimator< Model >::model.

8.4.4.14 template < class Model > void mappel::ThreadedEstimator < Model >::estimate_max_stack (const ModelDataStackT < Model > & im, const ParamVecT < Model > & theta_init, ParamVecT < Model > & theta, VecT & rllh, CubeT & obsl) [virtual], [inherited]

Implements mappel::Estimator< Model >.

Definition at line 285 of file estimator_impl.h.

References mappel::Estimator< Model >::compute_estimate(), mappel::Estimator< Model >::Error, mappel:: \leftarrow Estimator< Model >::mum_threads, mappel::print_image(), mappel ::ThreadedEstimator< Model >::record_exit_code(), mappel::Estimator< Model >::record_walltime(), and mappel ::methods::objective::openmp::rllh_stack().

8.4.4.15 template < class Model > void mappel::ThreadedEstimator < Model >::estimate_profile_stack (const ModelDataT < Model > & data, const IdxVecT & fixed_parameters, const MatT & values, const ParamVecT < Model > & theta_init, VecT & profile_likelihood, ParamVecT < Model > & profile_parameters) [virtual], [inherited]

Implements mappel::Estimator < Model >.

Definition at line 323 of file estimator impl.h.

References mappel::Estimator< Model >::compute_profile_estimate(), mappel::Estimator< Model >::Error, mappel ::Estimator< Model >::num_threads, mappel::print_image(), mappel ::ThreadedEstimator< Model >::record exit code(), and mappel::Estimator< Model >::record walltime().

```
8.4.4.16 template < class Model > StatsT mappel::CGaussMLE < Model > ::get_debug_stats( ) [virtual]
```

 $\label{lem:lemented_from_mappel::ThreadedEstimator} Reimplemented \ from \ mappel::ThreadedEstimator < \ Model>.$

Definition at line 464 of file estimator_impl.h.

References mappel::ThreadedEstimator< Model >::get_stats().

8.4.4.17 template < class Model > Model & mappel::Estimator < Model > ::get_model() [inherited]

Definition at line 50 of file estimator_impl.h.

References mappel::Estimator< Model >::model.

Referenced by mappel::Estimator < Model >::~Estimator().

8.4.4.18 template < class Model > StatsT mappel::CGaussMLE < Model >::get_stats() [virtual]

Reimplemented from mappel::ThreadedEstimator< Model >.

Definition at line 454 of file estimator_impl.h.

References mappel::ThreadedEstimator< Model >::get_stats().

8.4.4.19 template < class Model > std::string mappel::CGaussMLE < Model >::name() const [inline], [virtual]

Implements mappel::Estimator < Model >.

Definition at line 184 of file estimator.h.

 $References\ mappel::Estimator<\ Model>::compute_estimate(),\ mappel::Estimator<\ Model>::compute_estimate_\leftarrow\ debug(),\ and\ mappel::methods::objective::rllh().$

```
8.4.4.20 template < class Model > void mappel::ThreadedEstimator < Model >::record_exit_code ( ExitCode code ) [protected], [virtual], [inherited]
```

Implements mappel::Estimator < Model >.

Definition at line 386 of file estimator impl.h.

References mappel::Estimator< Model >::exit_counts, mappel::Estimator< Model >::model, mappel::Threaded Estimator< Model >::mtx, and mappel::methods::objective::rllh().

Referenced by mappel::IterativeMaximizer< Model >::backtrack(), mappel::CGaussMLE< Model >::compute - estimate(), mappel::CGaussMLE< Model >::compute_estimate_debug(), mappel::IterativeMaximizer< Model >::compute_estimate_debug(), mappel::Threaded - Estimator< Model >::estimate_max_stack(), mappel::ThreadedEstimator< Model >::estimate_profile_stack(), mappel::HeuristicEstimator< Model >::get_debug_stats(), mappel::NewtonDiagonalMaximizer< Model >::maximize(), mappel::NewtonMaximizer< Model >::maximize(), and mappel::TrustRegionMaximizer< Model >::maximize().

8.4.4.21 template < class Model > void mappel::Estimator < Model >::record_walltime (ClockT::time_point start_walltime, int nimages) [protected], [inherited]

Definition at line 266 of file estimator impl.h.

References mappel::Estimator < Model >::num_estimations, and mappel::Estimator < Model >::total_walltime.

Referenced by mappel::Estimator< Model >::estimate_max(), mappel::Estimator< Model >::estimate_max_ \leftarrow debug(), mappel::ThreadedEstimator< Model >::estimate_max_stack(), and mappel::ThreadedEstimator< Model >::estimate_profile_stack().

8.4.4.22 template < class Model > void mappel::Estimator < Model >::set_model (Model & new_model) [inherited]

Definition at line 54 of file estimator_impl.h.

References mappel::Estimator< Model >::model.

Referenced by mappel::Estimator < Model >::~Estimator().

8.4.5 Member Data Documentation

8.4.5.1 template < class Model > IdxVecT mappel::Estimator < Model >::exit_counts [protected], [inherited]

Definition at line 114 of file estimator.h.

Referenced by mappel::Estimator< Model >::clear_stats(), mappel::Estimator< Model >::get_stats(), and mappel::

ThreadedEstimator< Model >::record_exit_code().

8.4.5.2 template < class Model > int mappel::ThreadedEstimator < Model >::max_threads [protected], [inherited]

Definition at line 142 of file estimator.h.

8.4.5.3 template < class Model > Model& mappel::Estimator < Model >::model [protected], [inherited]

Definition at line 109 of file estimator.h.

Referenced by mappel::SimulatedAnnealingMaximizer< Model >::anneal(), mappel::IterativeMaximizer< Model >::backtrack(), mappel::Estimator< Model >::compute_estimate(), mappel::CGaussMLE< Model >::compute_estimate(), mappel::IterativeMaximizer< Model >::compute_estimate(), mappel::IterativeMaximizer< Model >::compute_estimate_debug(), mappel::CGaussML \(\to \) E< Model >::compute_estimate_debug(), mappel::SimulatedAnnealingMaximizer< Model >::compute_estimate_\(\to \) debug(), mappel::IterativeMaximizer< Model >::compute_estimate_debug(), mappel::Estimator< Model >::compute_estimate(), mappel::IterativeMaximizer< Model >::compute_profile_estimate(), mappel::Estimator< Model >::estimate_max(), mappel::Estimator< Model >::estimate_max_debug(), mappel::Estimator< Model >::estimate_max_stack(), mappel::ThreadedEstimator< Model >::estimate_max_stack(), mappel::ThreadedEstimator< Model >::get_debug_stats(), mappel::Estimator< Model >::get_model(), mappel::IterativeMaximizer< Model >::local_maximize(), mappel::NewtonDiagonalMaximizer< Model >::maximize(), mappel::ThreadedEstimator< Model >::record \(\to \) exit code(), and mappel::Estimator< Model >::set model().

8.4.5.4 template < class Model > std::mutex mappel::ThreadedEstimator < Model >::mtx [protected], [inherited]

Definition at line 144 of file estimator.h.

Referenced by mappel::ThreadedEstimator< Model >::clear_stats(), mappel::IterativeMaximizer< Model >::clear \leftarrow _stats(), mappel::ThreadedEstimator< Model >::get_stats(), mappel::IterativeMaximizer< Model >::get_stats(), mappel::IterativeMaximizer< Model >::record_ \leftarrow run statistics().

8.4.5.5 template<**class Model** > **int mappel**::**Estimator**< **Model** >::**num**_**estimations** = **0** [protected], [inherited]

Definition at line 112 of file estimator.h.

Referenced by mappel::Estimator< Model >::clear_stats(), mappel::Estimator< Model >::get_stats(), mappel:: \leftarrow ::ThreadedEstimator< Model >::get_stats(), and mappel:: \leftarrow Estimator< Model >::record_walltime().

8.4.5.6 template < class Model > int mappel::CGaussMLE < Model >::num_iterations

Definition at line 178 of file estimator.h.

8.4.5.7 template<**class Model** > **int mappel::ThreadedEstimator**< **Model** >::**num_threads** [protected], [inherited]

Definition at line 143 of file estimator.h.

Referenced by mappel::ThreadedEstimator< Model >::clear_stats(), mappel::ThreadedEstimator< Model >::estimate_max_stack(), mappel::ThreadedEstimator< Model >::estimate_profile_stack(), and mappel::Threaded \leftarrow Estimator< Model >::get_stats().

8.4.5.8 template < class Model > constexpr int mappel::Estimator < Model >::NumExitCodes = 9 [static], [inherited]

Definition at line 39 of file estimator.h.

8.4.5.9 template < class Model > double mappel::Estimator < Model >::total_walltime = 0. [protected], [inherited]

Definition at line 113 of file estimator.h.

Referenced by mappel::Estimator< Model >::clear_stats(), mappel::Estimator< Model >::get_stats(), mappel::

ThreadedEstimator< Model >::get_stats(), and mappel::Estimator< Model >::record_walltime().

The documentation for this class was generated from the following files:

- · estimator.h
- · estimator impl.h

8.5 mappel::Estimator < Model > Class Template Reference

#include </home/travis/build/markjolah/Mappel/include/Mappel/estimator.h>

Inheritance diagram for mappel::Estimator< Model >:

Public Types

enum ExitCode::IdxT {
 ExitCode::Unassigned = 8, ExitCode::MaxIter = 7, ExitCode::MaxBacktracks = 6, ExitCode::TrustRegionRadius = 5,
 ExitCode::GradRatio = 4, ExitCode::FunctionChange = 3, ExitCode::StepSize = 2, ExitCode::Success = 1,
 ExitCode::Error = 0 }

Public Member Functions

- Estimator (Model &_model)
- virtual ~Estimator ()
- virtual std::string name () const =0
- Model & get_model ()
- void set model (Model &new model)
- StencilT< Model > estimate max (const ModelDataT< Model > &im)
- StencilT< Model > estimate_max (const ModelDataT< Model > &im, const ParamT< Model > &theta_init)
- StencilT< Model > estimate max (const ModelDataT< Model > &im, double &rllh)
- StencilT< Model > estimate_max (const ModelDataT< Model > &im, const ParamT< Model > &theta_init, double &rllh)
- void estimate_max (const ModelDataT< Model > &im, ParamT< Model > &theta, double &rllh, MatT &obsl)
- void estimate_max (const ModelDataT< Model > &im, const ParamT< Model > &theta_init, ParamT< Model > &theta, double &rllh, MatT &obsl)
- void estimate_max_debug (const ModelDataT< Model > &im, const ParamT< Model > &theta_init, ParamT< Model > &theta_est, double &rllh, MatT &obsl, MatT &sequence, VecT &sequence_rllh)
- virtual void estimate_max_stack (const ModelDataStackT< Model > &im_stack, const ParamVecT< Model > &theta_init_stack, ParamVecT< Model > &theta_est_stack, VecT &rllh_stack, CubeT &obsl_stack)=0
- virtual void estimate_profile_stack (const ModelDataT< Model > &data, const IdxVecT &fixed_parameters, const MatT &values, const ParamVecT< Model > &theta_init, VecT &profile_likelihood, ParamVecT< Model > &profile_parameters)=0
- virtual StatsT get_stats ()
- virtual StatsT get_debug_stats ()=0
- virtual void clear_stats ()

Static Public Attributes

static constexpr int NumExitCodes = 9

Protected Member Functions

- virtual StencilT< Model > compute_estimate (const ModelDataT< Model > &im, const ParamT< Model > &theta init, double &rllh)=0
- virtual StencilT< Model > compute_estimate_debug (const ModelDataT< Model > &im, const ParamT< Model > &theta_init, ParamVecT< Model > &sequence, VecT &sequence_rllh)
- virtual void compute_estimate (const ModelDataT< Model > &im, const ParamT< Model > &theta_init, ParamT< Model > &theta_est, double &rllh, MatT &obsl)

Default base class implementation computes rllh and obsl seperately from stencil This should be overridden by Estimator subclasses that already have access to this information.

- virtual void compute_profile_estimate (const ModelDataT< Model > &im, const ParamT< Model > &theta_init, const IdxVecT &fixed parameters, ParamT< Model > &theta est, double &rllh)
- void record_walltime (ClockT::time_point start_walltime, int nimages)
- virtual void record_exit_code (ExitCode code)=0

Protected Attributes

- Model & model
- int num estimations = 0
- double total walltime = 0.
- IdxVecT exit counts

Friends

```
    template<class T >
        std::ostream & operator<< (std::ostream &out, Estimator< T > &estimator)
```

8.5.1 Detailed Description

```
template<class Model>
class mappel::Estimator< Model>
```

Definition at line 37 of file estimator.h.

8.5.2 Member Enumeration Documentation

```
8.5.2.1 template < class Model > enum mappel::Estimator::ExitCode : ldxT [strong]
```

Enumerator

Unassigned

MaxIter

MaxBacktracks

TrustRegionRadius

GradRatio

FunctionChange

StepSize

Success

Error

Definition at line 40 of file estimator.h.

- 8.5.3 Constructor & Destructor Documentation
- 8.5.3.1 template < class Model > mappel::Estimator < Model >::Estimator (Model & _model)

Definition at line 44 of file estimator_impl.h.

8.5.3.2 template < class Model > virtual mappel::Estimator < Model >::~Estimator () [inline], [virtual]

Definition at line 52 of file estimator.h.

References mappel::Estimator< Model >::clear_stats(), mappel::Estimator< Model >::compute_estimate(), mappel \leftarrow ::Estimator< Model >::compute_estimate_debug(), mappel::Estimator< Model >::compute_profile_estimate(), mappel::Estimator< Model >::estimate_max_debug(), mappel \leftarrow ::Estimator< Model >::estimate_max_stack(), mappel::Estimator< Model >::estimate_profile_stack(), mappel:: \leftarrow Estimator< Model >::get_debug_stats(), mappel::Estimator< Model >::get_model(), mappel::Estimator< Model >::get_stats(), mappel::Estimator< Model >::get_stats(), mappel::Estimator< Model >::get_model(), mappel::methods::objective \leftarrow ::openmp::rllh_stack(), and mappel::Estimator< Model >::set_model().

- 8.5.4 Member Function Documentation
- **8.5.4.1** template < class Model > void mappel::Estimator < Model >::clear_stats () [virtual]

Reimplemented in mappel::IterativeMaximizer < Model >, and mappel::ThreadedEstimator < Model >.

Definition at line 218 of file estimator_impl.h.

References mappel::Estimator< Model >::exit_counts, mappel::Estimator< Model >::num_estimations, and mappel ::Estimator< Model >::total walltime.

Referenced by mappel::ThreadedEstimator< Model >::clear_stats(), and mappel::Estimator< Model >::~Estimator().

8.5.4.2 template < class Model > virtual StencilT < Model > mappel::Estimator < Model > ::compute_estimate (const ModelDataT < Model > & im, const ParamT < Model > & theta_init, double & rllh) [protected], [pure virtual]

 $Implemented \ \ in \ \ mappel:: Iterative Maximizer < \ \ Model \ >, \ \ mappel:: Simulated Annealing Maximizer < \ \ Model \ >, \ \ and \ \ mappel:: CGauss MLE < Model >.$

Referenced by mappel::Estimator< Model >::compute_estimate(), mappel::Estimator< Model >::compute_estimate \leftarrow _debug(), mappel::Estimator< Model >::estimate_max(), mappel::ThreadedEstimator< Model >::estimate_max \leftarrow _stack(), mappel::HeuristicEstimator< Model >::name(), mappel::CGaussHeuristicEstimator< Model >::name(), mappel::CGaussMLE< Model >::name(), and mappel:: \leftarrow Estimator< Model >:: \sim Estimator().

8.5.4.3 template < class Model > void mappel::Estimator < Model > ::compute_estimate (const ModelDataT < Model > & im, const ParamT < Model > & theta_est, double & rllh, MatT & obsl) [protected], [virtual]

Default base class implementation computes rllh and obsl seperately from stencil This should be overridden by Estimator subclasses that already have access to this information.

Definition at line 183 of file estimator impl.h.

References mappel::Estimator< Model >::compute_estimate(), mappel::Estimator< Model >::model, and mappel \leftarrow ::methods::observed information().

8.5.4.4 template < class Model > StencilT < Model > mappel::Estimator < Model > ::compute_estimate_debug (const ModelDataT < Model > & im, const ParamT < Model > & theta_init, ParamVecT < Model > & sequence, VecT & sequence_rllh) [protected], [virtual]

Estimators that produce a sequence of results (e.g. IterativeEstimators) can override this dummy debug implementation.

Reimplemented in mappel::IterativeMaximizer< Model >, mappel::SimulatedAnnealingMaximizer< Model >, and mappel::CGaussMLE< Model >.

Definition at line 242 of file estimator impl.h.

References mappel::Estimator< Model >::compute_estimate(), mappel::Estimator< Model >::Error, mappel::Estimator< Model >::record_exit_code().

Referenced by mappel::Estimator< Model >::estimate_max_debug(), mappel::CGaussMLE< Model >::name(), mappel::SimulatedAnnealingMaximizer< Model >::name(), and mappel::Estimator< Model >:: \sim Estimator().

8.5.4.5 template < class Model > void mappel::Estimator < Model >::compute_profile_estimate (const ModelDataT < Model > & im, const ParamT < Model > & theta_init, const IdxVecT & fixed_parameters, ParamT < Model > & theta_est, double & rllh) [protected], [virtual]

Reimplemented in mappel::IterativeMaximizer < Model >.

Definition at line 192 of file estimator_impl.h.

References mappel::Estimator< Model >::model.

Referenced by mappel::ThreadedEstimator< Model >::estimate_profile_stack(), and mappel::Estimator< Model >:: \sim Estimator().

8.5.4.6 template < class Model > StencilT < Model > mappel::Estimator < Model > ::estimate_max (const ModelDataT < Model > & im)

Definition at line 64 of file estimator_impl.h.

References mappel::Estimator< Model >::model.

Referenced by mappel::Estimator < Model >::estimate max(), and mappel::Estimator < Model >::~Estimator().

8.5.4.7 template < class Model > StencilT < Model > mappel::Estimator < Model > ::estimate_max (const ModelDataT < Model > & im. const ParamT < Model > & theta init)

Definition at line 82 of file estimator impl.h.

References mappel::Estimator < Model >::estimate max(), and mappel::methods::objective::rllh().

8.5.4.8 template < class Model > StencilT < Model > mappel::Estimator < Model > ::estimate_max (const ModelDataT < Model > & im. double & rllh)

Definition at line 73 of file estimator impl.h.

References mappel::Estimator < Model >::estimate_max(), and mappel::Estimator < Model >::model.

8.5.4.9 template < class Model > StencilT < Model > mappel::Estimator < Model > ::estimate_max (const ModelDataT < Model > & im, const ParamT < Model > & theta_init, double & rllh)

Definition at line 90 of file estimator impl.h.

References mappel::Estimator< Model >::compute_estimate(), mappel::Estimator< Model >::Error, mappel:: \leftarrow Estimator< Model >::record_exit_code(), and mappel ::Estimator< Model >::record_exit_code(), and mappel ::Estimator< Model >::record_walltime().

8.5.4.10 template < class Model > void mappel::Estimator < Model > ::estimate_max (const ModelDataT < Model > & im, ParamT < Model > & theta, double & rllh, MatT & obsl)

Definition at line 119 of file estimator_impl.h.

 $References\ mappel::Estimator < Model > ::estimate_max(), and\ mappel::Estimator < Model > ::model.$

8.5.4.11 template < class Model > void mappel::Estimator < Model > ::estimate_max (const ModelDataT < Model > & im, const ParamT < Model > & theta_init, ParamT < Model > & theta, double & rllh, MatT & obsl)

Definition at line 128 of file estimator_impl.h.

References mappel::Estimator< Model >::compute_estimate(), mappel::Estimator< Model >::Error, mappel::print← _image(), mappel::Estimator< Model >::record_exit_code(), mappel::Estimator< Model >::record_walltime(), and mappel::methods::objective::rllh().

8.5.4.12 template < class Model > void mappel::Estimator < Model > ::estimate_max_debug (const ModelDataT < Model > & im, const ParamT < Model > & theta_init, ParamT < Model > & theta_est, double & rllh, MatT & obsl, MatT & sequence, VecT & sequence_rllh)

Definition at line 158 of file estimator_impl.h.

References mappel::Estimator < Model >::compute_estimate_debug(), mappel::Estimator < Model >::methods::observed_information(), mappel::Estimator < Model >::record_walltime(), and mappel::methods::objective \leftarrow ::rllh().

Referenced by mappel::Estimator < Model >::~Estimator().

8.5.4.13 template < class Model > virtual void mappel::Estimator < Model > ::estimate_max_stack (const ModelDataStackT < Model > & im_stack, const ParamVecT < Model > & theta_init_stack, ParamVecT < Model > & theta_est_stack, VecT & rllh_stack, CubeT & obsl_stack) [pure virtual]

Implemented in mappel::ThreadedEstimator< Model >.

Referenced by mappel::Estimator< Model >::estimate_max_stack(), and mappel::Estimator< Model >::~Estimator().

8.5.4.14 template < class Model > void mappel::Estimator < Model > ::estimate_max_stack (const ModelDataStackT < Model > & im_stack, ParamVecT < Model > & theta_est_stack, VecT & rllh_stack, CubeT & obsl_stack)

Definition at line 170 of file estimator impl.h.

References mappel::Estimator< Model >::estimate_max_stack(), and mappel::Estimator< Model >::model.

8.5.4.15 template < class Model > virtual void mappel::Estimator < Model > ::estimate_profile_stack (const ModelDataT < Model > & data, const IdxVecT & fixed_parameters, const MatT & values, const ParamVecT < Model > & theta_init, VecT & profile_likelihood, ParamVecT < Model > & profile_parameters) [pure virtual]

Implemented in mappel::ThreadedEstimator< Model >.

Referenced by mappel::Estimator < Model >::~Estimator().

8.5.4.16 template < class Model > virtual StatsT mappel::Estimator < Model > ::get_debug_stats() [pure virtual]

 $\label{lem:lemonted} \begin{tabular}{ll} Implemented in mappel::IterativeMaximizer< Model>, mappel::SimulatedAnnealingMaximizer< Model>, mappel::CGaussMLE< Model>, mappel::HeuristicEstimator< Model>, and mappel::ThreadedEstimator< Model>. \\\end{tabular}$

Referenced by mappel::CGaussHeuristicEstimator< Model >::CGaussHeuristicEstimator(), mappel::CGaussMLE< Model >::CGaussMLE(), mappel::HeuristicEstimator< Model >::HeuristicEstimator(), mappel::SimulatedAnnealing Maximizer
Maximizer
Model >::SimulatedAnnealingMaximizer(), and mappel::Estimator
Model >::~Estimator().

8.5.4.17 template < class Model > Model & mappel::Estimator < Model >::get_model ()

Definition at line 50 of file estimator impl.h.

References mappel::Estimator< Model >::model.

Referenced by mappel::Estimator < Model >::~Estimator().

8.5.4.18 template < class Model > StatsT mappel::Estimator < Model >::get stats() [virtual]

Definition at line 200 of file estimator impl.h.

References mappel::Estimator< Model >::Error, mappel::Estimator< Model >::exit_counts, mappel::Estimator< Model >::FunctionChange, mappel::Estimator< Model >::GradRatio, mappel::Estimator< Model >::MaxBacktracks, mappel::Estimator< Model >::MaxIter, mappel::Estimator< Model >::num_estimations, mappel::Estimator< Model >::StepSize, mappel::Estimator< Model >::Success, mappel::Estimator< Model >::total_walltime, and mappel::Estimator< Model >::TrustRegionRadius.

Referenced by mappel::CGaussHeuristicEstimator< Model >::CGaussHeuristicEstimator(), mappel::CGaussM \leftarrow LE< Model >::CGaussMLE(), mappel::ThreadedEstimator< Model >::get_stats(), mappel::HeuristicEstimator< Model >::HeuristicEstimator(), mappel::SimulatedAnnealingMaximizer< Model >::SimulatedAnnealingMaximizer(), and mappel::Estimator< Model >:: \sim Estimator().

8.5.4.19 template < class Model > virtual std::string mappel::Estimator < Model > ::name() const [pure virtual]

Referenced by mappel::Estimator < Model >::~Estimator().

8.5.4.20 template < class Model > virtual void mappel::Estimator < Model > ::record_exit_code (ExitCode code) [protected], [pure virtual]

Implemented in mappel::ThreadedEstimator< Model >.

Referenced by mappel::Estimator< Model >::compute_estimate_debug(), and mappel::Estimator< Model >::estimate_max().

8.5.4.21 template < class Model > void mappel::Estimator < Model >::record_walltime (ClockT::time_point start_walltime, int nimages) [protected]

Definition at line 266 of file estimator impl.h.

References mappel::Estimator < Model >::num_estimations, and mappel::Estimator < Model >::total_walltime.

Referenced by mappel::Estimator< Model >::estimate_max(), mappel::Estimator< Model >::estimate_max_ \leftarrow debug(), mappel::ThreadedEstimator< Model >::estimate_max_stack(), and mappel::ThreadedEstimator< Model >::estimate_profile_stack().

8.5.4.22 template < class Model > void mappel::Estimator < Model > ::set_model (Model & new_model)

Definition at line 54 of file estimator_impl.h.

References mappel::Estimator< Model >::model.

Referenced by mappel::Estimator < Model >::~Estimator().

- 8.5.5 Friends And Related Function Documentation
- 8.5.5.1 template < class Model > template < class T > std::ostream & operator << (std::ostream & out, Estimator < T > & estimator) [friend]
- 8.5.6 Member Data Documentation
- **8.5.6.1** template < class Model > IdxVecT mappel::Estimator < Model >::exit_counts [protected]

Definition at line 114 of file estimator.h.

Referenced by mappel::Estimator< Model >::clear_stats(), mappel::Estimator< Model >::get_stats(), and mappel:: \leftarrow ThreadedEstimator< Model >::record exit code().

8.5.6.2 template < class Model > Model& mappel::Estimator < Model >::model [protected]

Definition at line 109 of file estimator.h.

Referenced by mappel::SimulatedAnnealingMaximizer< Model >::anneal(), mappel::IterativeMaximizer< Model >::backtrack(), mappel::Estimator< Model >::compute_estimate(), mappel::CGaussMLE< Model >::compute_estimate(), mappel::IterativeMaximizer< Model >::compute_estimate(), mappel::IterativeMaximizer< Model >::compute_estimate_debug(), mappel::CGaussML ← E< Model >::compute_estimate_debug(), mappel::SimulatedAnnealingMaximizer< Model >::compute_estimate_debug(), mappel::IterativeMaximizer< Model >::compute_estimate_debug(), mappel::IterativeMaximizer< Model >::compute_profile_estimate(), mappel::Estimator< Model >::compute_profile_estimate(), mappel::Estimator< Model >::estimate_max(), mappel::Estimator< Model >::estimate_max_debug(), mappel::ThreadedEstimator< Model >::estimate_max_stack(), mappel::ThreadedEstimator< Model >::estimate_max_stack(), mappel::ThreadedEstimator< Model >::estimate_max_stack(), mappel::ThreadedEstimator< Model >::get_model(), mappel::ThreadedEstimator< Model >::get_model(), mappel::NewtonDiagonalMaximizer< Model >::maximize(), mappel::NewtonDiagonalMaximizer< Model >::maximize(), mappel::ThreadedEstimator< Model >::record ← __exit_code(), and mappel::Estimator< Model >::set_model().

8.5.6.3 template < class Model > int mappel::Estimator < Model >::num_estimations = 0 [protected]

Definition at line 112 of file estimator.h.

Referenced by mappel::Estimator< Model >::clear_stats(), mappel::Estimator< Model >::get_stats(), mappel:: ::ThreadedEstimator< Model >::get_stats(), mappel::lterativeMaximizer< Model >::get_stats(), and mappel:: Estimator< Model >::record_walltime().

8.5.6.4 template < class Model > constexpr int mappel::Estimator < Model >::NumExitCodes = 9 [static]

Definition at line 39 of file estimator.h.

8.5.6.5 template < class Model > double mappel::Estimator < Model >::total_walltime = 0. [protected]

Definition at line 113 of file estimator.h.

Referenced by mappel::Estimator< Model >::clear_stats(), mappel::Estimator< Model >::get_stats(), mappel::

ThreadedEstimator< Model >::get_stats(), and mappel::Estimator< Model >::record_walltime().

The documentation for this class was generated from the following files:

- · estimator.h
- · estimator impl.h

8.6 mappel::Gauss1DMAP Class Reference

A 1D Gaussian with fixed PSF under an Poisson Read Noise assumption and MAP Objective.

#include </home/travis/build/markjolah/Mappel/include/Mappel/Gauss1DMAP.h>

Inheritance diagram for mappel::Gauss1DMAP:

Public Types

```
    using StencilVecT = std::vector < Stencil >

• using ParamT = arma::vec
• using ParamVecT = arma::mat
• using ImageCoordT = uint32 t
• using ImagePixeIT = double

    template<class CoordT >

  using ImageSizeShapeT = CoordT

    template<class CoordT >

  using ImageSizeVecShapeT = arma::Col < CoordT >

    using ImageSizeT = ImageSizeShapeT < ImageCoordT >

    using ImageSizeVecT = ImageSizeVecShapeT < ImageCoordT >

    template < class PixelT >

  using ImageShapeT = arma::Col< PixelT >

    template<class PixelT >

  using ImageStackShapeT = arma::Mat< PixeIT >
using ImageT = ImageShapeT < ImagePixeIT >
```

using ImageStackT = ImageStackShapeT < ImagePixeIT >

Public Member Functions

- Gauss1DMAP (arma::Col< ImageCoordT > size, VecT psf_sigma, const std::string &prior_type=DefaultPrior
 — Type)
- Gauss1DMAP (ImageSizeT size, double psf_sigma, const std::string &prior_type=DefaultPriorType)
- Gauss1DMAP (ImageSizeT size, double psf_sigma, CompositeDist &&prior)
- Gauss1DMAP (ImageSizeT size, double psf_sigma, const CompositeDist &prior)
- Gauss1DMAP (const Gauss1DMAP &o)
- Gauss1DMAP & operator= (const Gauss1DMAP &o)
- Gauss1DMAP (Gauss1DMAP &&o)
- Gauss1DMAP & operator= (Gauss1DMAP &&o)
- · double get psf sigma () const

using ModelDataT = ImageT

using ModelDataStackT = ImageStackT

- double get_psf_sigma (ldxT idx) const
- void set_psf_sigma (double new_psf_sigma)
- void set psf sigma (const VecT &new psf sigma)
- StatsT get_stats () const
- Stencil make_stencil (const ParamT &theta, bool compute_derivatives=true) const

Make a new Model::Stencil object at theta.

- double pixel_model_value (ldxT i, const Stencil &s) const
- void pixel grad (ldxT i, const Stencil &s, ParamT &pgrad) const
- void pixel grad2 (IdxT i, const Stencil &s, ParamT &pgrad2) const
- void pixel hess (ldxT i, const Stencil &s, MatT &hess) const
- void pixel_hess_update (ldxT i, const Stencil &s, double dm_ratio_m1, double dmm_ratio, ParamT &grad, MatT &hess) const

pixel derivative inner loop calculations.

Stencil initial theta estimate (const ImageT &im) const

Fast, heuristic estimate of initial theta.

Stencil initial theta estimate (const ImageT &im, const ParamT &theta init) const

- IdxT get_num_params () const
- void check_param_shape (const ParamT &theta) const
- void check_param_shape (const ParamVecT &theta) const
- void check psf sigma (double psf sigma) const
- void check psf sigma (const VecT &psf sigma) const
- · ParamT make param () const
- template<class FillT >

ParamT make param (FillT fill) const

- ParamVecT make_param_stack (ldxT n) const
- template<class FillT >

ParamVecT make param stack (IdxT n, FillT fill) const

- · MatT make param mat () const
- template<class FillT >

MatT make param mat (FillT fill) const

- CubeT make param mat stack (ldxT n) const
- template<class FillT >

CubeT make_param_mat_stack (ldxT n, FillT fill) const

- CompositeDist & get_prior ()
- const CompositeDist & get_prior () const
- void set prior (CompositeDist &&prior)
- void set prior (const CompositeDist &prior)
- IdxT get_num_hyperparams () const
- void set_hyperparams (const VecT &hyperparams)
- VecT get_hyperparams () const
- bool has hyperparam (const std::string &name) const
- double get_hyperparam_value (const std::string &name) const
- int get hyperparam index (const std::string &name) const
- void set_hyperparam_value (const std::string &name, double value)
- void rename_hyperparam (const std::string &old_name, const std::string &new_name)
- StringVecT get_param_names () const
- void set_param_names (const StringVecT &desc)
- StringVecT get_hyperparam_names () const
- void set_hyperparam_names (const StringVecT &desc)
- template < class RngT >

ParamT sample_prior (RngT &rng)

- ParamT sample_prior ()
- void set_bounds (const ParamT &lbound, const ParamT &ubound)
- void set_lbound (const ParamT &lbound)
- void set ubound (const ParamT &ubound)
- · const ParamT & get_lbound () const
- · const ParamT & get ubound () const
- · bool theta in bounds (const ParamT &theta) const
- void bound_theta (ParamT &theta, double epsilon=bounds_epsilon) const
- ParamT bounded_theta (const ParamT &theta, double epsilon=bounds_epsilon) const
- ParamT reflected theta (const ParamT &theta) const
- BoolVecT theta stack in bounds (const ParamVecT &theta) const
- · ParamVecT bounded theta stack (const ParamVecT &theta, double epsilon=bounds epsilon) const
- ParamVecT reflected_theta_stack (const ParamVecT &theta) const
- ImageT make_image () const
- ImageStackT make image stack (ImageCoordT n) const
- ImageCoordT get size image stack (const ImageStackT &stack) const

- ImageT get_image_from_stack (const ImageStackT &stack, ImageCoordT n) const
- template<class ImT >

void set_image_in_stack (ImageStackT &stack, ImageCoordT n, const ImT &im) const

- ImageSizeT get_size () const
- ImageCoordT get_size (IdxT idx) const
- ImageCoordT get num pixels () const
- void set size (const ImageSizeT &size)
- void set size (const arma::Col< ImageCoordT > &sz)
- void check image shape (const ImageT &im) const

Check the shape of a single images is correct for model size.

void check_image_shape (const ImageStackT &ims) const

Check the shape of a stack of images is correct for model size.

- void sample mcmc candidate (ldxT sample index, ParamT &candidate, double step scale=1.0)
- void set intensity mcmc sampling (double eta I=-1)
- void set background mcmc sampling (double eta bg=-1)
- void set_mcmc_sigma_scale (double scale)
- double get_mcmc_sigma_scale () const
- · IdxT get mcmc num phases () const

Static Public Member Functions

- static CompositeDist make_default_prior (ldxT size, const std::string &prior_type)
- static CompositeDist make default prior beta position (ldxT size)
- static CompositeDist make default prior normal position (ldxT size)
- static CompositeDist make_prior_beta_position (ldxT size, double beta_xpos, double mean_I, double kappa_I, double mean_bg, double kappa_bg)
- static CompositeDist make_prior_normal_position (ldxT size, double sigma_xpos, double mean_l, double kappa_l, double mean_bg, double kappa_bg)
- static prior_hessian::ScaledSymmetricBetaDist make_prior_component_position_beta (ldxT size, double pos_
 beta=default_beta_pos)
- static prior_hessian::TruncatedGammaDist make_prior_component_intensity (double mean=default_mean_ U, double kappa=default_intensity_kappa)
- static prior_hessian::TruncatedParetoDist make_prior_component_sigma (double min_sigma, double max_
 sigma, double alpha=default_alpha_sigma)
- static void set_rng_seed (RngSeedT seed)
- static ParallelRngManagerT & get rng manager ()
- static ParallelRngGeneratorT & get rng generator ()
- static void check size (const ImageSizeT &size)

Check the size argument for the model.

Static Public Attributes

- static const std::string name
- static const StringVecT prior_types
- static const std::string DefaultPriorType = "Normal"
- static const std::string DefaultSeperableInitEstimator = "TrustRegion"
- static const double bounds epsilon = 1.0E-6

- static const double global_min_psf_sigma = 1E-1
- static const double global_max_psf_sigma = 1E2
- static const double default beta pos = 3
- static const double default_sigma_pos = 1
- static const double default_mean_I = 300
- static const double default_max_I = INFINITY
- static const double default_intensity_kappa = 2
- static const double default_pixel_mean_bg = 4
- static const double default alpha sigma = 2
- static const ImageCoordT num_dim = 1
- static const ImageCoordT global_min_size = 3
- static const ImageCoordT global max size = 512
- static const double global default mcmc sigma scale = 0.05
- static const double global_max_mcmc_sigma_scale = 0.5
- static const std::vector< std::string > estimator_names

Protected Member Functions

void set_mcmc_num_phases (ldxT num_phases)

Protected Attributes

- · double psf_sigma
- · CompositeDist prior
- IdxT num_params
- · IdxT num hyperparams
- ParamT Ibound
- ParamT ubound
- ImageSizeT size
- double eta_x =0
- double eta_l =0
- double eta_bg =0
- · IdxT num_phases
- · double sigma_scale

8.6.1 Detailed Description

A 1D Gaussian with fixed PSF under an Poisson Read Noise assumption and MAP Objective.

Model: Gauss1DModel - 1D Gaussian PSF with fixed PSF sigma Objective: PoissonNoise1DObjective - Poisson noise model for 1D Estimator: MAPstimator - Maximum a-posteriori estimator

Definition at line 23 of file Gauss1DMAP.h.

8.6.2 Member Typedef Documentation

8.6.2.1 using mappel::ImageFormat1DBase::ImageCoordT = uint32_t [inherited]

Image size coordinate storage type

Definition at line 25 of file ImageFormat1DBase.h.

8.6.2.2 using mappel::ImageFormat1DBase::ImagePixelT = double [inherited]

Image pixel storage type

Definition at line 26 of file ImageFormat1DBase.h.

8.6.2.3 template < class PixelT > using mappel::ImageFormat1DBase::ImageShapeT = arma::Col < PixelT > [inherited]

Shape of the data type for a single image

Definition at line 33 of file ImageFormat1DBase.h.

8.6.2.4 template < class CoordT > using mappel::ImageFormat1DBase::ImageSizeShapeT = CoordT [inherited]

Shape of the data type to store 1-image's coordinates

Definition at line 28 of file ImageFormat1DBase.h.

8.6.2.5 using mappel::ImageFormat1DBase::ImageSizeT = ImageSizeShapeT < ImageCoordT > [inherited]

Data type for a single image size

Definition at line 30 of file ImageFormat1DBase.h.

8.6.2.6 template < class CoordT > using mappel::ImageFormat1DBase::ImageSizeVecShapeT = arma::Col < CoordT > [inherited]

Shape of the data type to store a vector of image's coordinates

Definition at line 29 of file ImageFormat1DBase.h.

8.6.2.7 using mappel::ImageFormat1DBase::ImageSizeVecT = ImageSizeVecShapeT < ImageCoordT > [inherited]

Data type for a sequence of image sizes

Definition at line 31 of file ImageFormat1DBase.h.

8.6.2.8 template < class PixeIT > using mappel::ImageFormat1DBase::ImageStackShapeT = arma::Mat < PixeIT > [inherited]

Shape of the data type for a sequence of images

Definition at line 34 of file ImageFormat1DBase.h.

8.6.2.9 using mappel::ImageFormat1DBase::ImageStackT = ImageStackShapeT < ImagePixeIT > [inherited]

Data type to represent a sequence of images

Definition at line 36 of file ImageFormat1DBase.h.

8.6.2.10 using mappel::ImageFormat1DBase::ImageT = ImageShapeT < ImagePixeIT > [inherited]

Data type to represent single image

Definition at line 35 of file ImageFormat1DBase.h.

8.6.2.11 using mappel::PoissonNoise1DObjective::ModelDataStackT = ImageStackT [inherited]

Objective function data stack type: 1D double precision image stack, of images gain-corrected to approximate photons counts

Definition at line 26 of file PoissonNoise1DObjective.h.

8.6.2.12 using mappel::PoissonNoise1DObjective::ModelDataT = ImageT [inherited]

Objective function data type: 1D double precision image, gain-corrected to approximate photons counts

Definition at line 25 of file PoissonNoise1DObjective.h.

8.6.2.13 using mappel::PointEmitterModel::ParamT = arma::vec [inherited]

Parameter vector

Definition at line 47 of file PointEmitterModel.h.

8.6.2.14 using mappel::PointEmitterModel::ParamVecT = arma::mat [inherited]

Vector of parameter vectors

Definition at line 48 of file PointEmitterModel.h.

8.6.2.15 using mappel::Gauss1DModel::StencilVecT = std::vector < Stencil> [inherited]

Definition at line 49 of file Gauss1DModel.h.

8.6.3 Constructor & Destructor Documentation

8.6.3.1 mappel::Gauss1DMAP::Gauss1DMAP (arma::Col < ImageCoordT > size, VecT psf_sigma, const std::string & prior_type = DefaultPriorType)

Definition at line 11 of file Gauss1DMAP.cpp.

8.6.3.2 mappel::Gauss1DMAP::Gauss1DMAP (ImageSizeT size, double psf_sigma, const std::string & prior_type = DefaultPriorType)

Definition at line 15 of file Gauss1DMAP.cpp.

8.6.3.3 mappel::Gauss1DMAP::Gauss1DMAP (ImageSizeT size, double psf_sigma, CompositeDist && prior)

Definition at line 19 of file Gauss1DMAP.cpp.

8.6.3.4 mappel::Gauss1DMAP::Gauss1DMAP (ImageSizeT size, double psf_sigma, const CompositeDist & prior)

Definition at line 27 of file Gauss1DMAP.cpp.

8.6.3.5 mappel::Gauss1DMAP::Gauss1DMAP (const Gauss1DMAP & o)

Definition at line 35 of file Gauss1DMAP.cpp.

8.6.3.6 mappel::Gauss1DMAP::Gauss1DMAP (Gauss1DMAP && o)

Definition at line 43 of file Gauss1DMAP.cpp.

8.6.4 Member Function Documentation

8.6.4.1 void mappel::PointEmitterModel::bound_theta (ParamT & theta, double epsilon = bounds_epsilon) const [inherited]

Definition at line 248 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::Point← EmitterModel::num_params, and mappel::PointEmitterModel::ubound.

8.6.4.2 PointEmitterModel::ParamT mappel::PointEmitterModel::bounded_theta (const ParamT & theta, double epsilon = bounds_epsilon) const [inherited]

Definition at line 265 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::ubound.

Referenced by mappel::PointEmitterModel::bounded theta stack().

8.6.4.3 PointEmitterModel::ParamVecT mappel::PointEmitterModel::bounded_theta_stack(const ParamVecT & theta, double epsilon = bounds_epsilon) const [inherited]

Definition at line 307 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::check_param_shape(), and mappel::PointEmitterModel::make_param_stack().

8.6.4.4 void ImageFormat1DBase::check image shape (const ImageT & im) const [inherited]

Check the shape of a single images is correct for model size.

Definition at line 59 of file ImageFormat1DBase.cpp.

References mappel::ImageFormat1DBase::size.

8.6.4.5 void ImageFormat1DBase::check_image_shape(const ImageStackT & ims) const [inherited]

Check the shape of a stack of images is correct for model size.

Definition at line 71 of file ImageFormat1DBase.cpp.

References mappel::ImageFormat1DBase::size.

8.6.4.6 void mappel::PointEmitterModel::check_param_shape(const ParamT & theta)const [inherited]

Definition at line 167 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::num_params.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::reflected_theta(), mappel::PointEmitterModel::reflected_theta(), mappel::PointEmitterModel::theta_in_bounds(), and mappel::PointEmitterModel \leftarrow ::theta_stack_in_bounds().

8.6.4.7 void mappel::PointEmitterModel::check_param_shape (const ParamVecT & theta) const [inherited]

Definition at line 176 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::num params.

8.6.4.8 void mappel::PointEmitterModel::check_psf_sigma (double psf_sigma) const [inherited]

Definition at line 185 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::global_max_psf_sigma, and mappel::PointEmitterModel::global_min_psf_ sigma.

Referenced by mappel::Gauss1DModel(), mappel::Gauss2DModel::Gauss2DModel(), mappel:: \leftarrow Gauss2DsModel::Gauss2DsModel(), mappel::Gauss1DsModel::set_max_sigma(), mappel::Gauss2DsModel::set_ \leftarrow max_sigma(), mappel::Gauss1DsModel::set_min_sigma(), mappel:: \leftarrow Gauss1DModel::set_psf sigma(), and mappel::Gauss2DModel::set_psf sigma().

8.6.4.9 void mappel::PointEmitterModel::check_psf_sigma (const VecT & psf_sigma) const [inherited]

Definition at line 197 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::global_max_psf_sigma, and mappel::PointEmitterModel::global_min_psf_ sigma.

8.6.4.10 void ImageFormat1DBase::check_size(const ImageSizeT & size_) [static], [inherited]

Check the size argument for the model.

Definition at line 39 of file ImageFormat1DBase.cpp.

References mappel::ImageFormat1DBase::global_max_size, and mappel::ImageFormat1DBase::global_min_size.

Referenced by mappel::ImageFormat1DBase::ImageFormat1DBase(), and mappel::ImageFormat1DBase::set_size().

8.6.4.11 int mappel::PointEmitterModel::get_hyperparam_index (const std::string & name) const [inline], [inherited]

Definition at line 236 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.6.4.12 StringVecT mappel::PointEmitterModel::get_hyperparam_names() const [inline], [inherited]

Definition at line 256 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.6.4.13 double mappel::PointEmitterModel::get_hyperparam_value (const std::string & name) const [inline], [inherited]

Definition at line 232 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

Referenced by mappel::MCMCAdaptor1D::set_background_mcmc_sampling(), and mappel::MCMCAdaptor1D::set_circle intensity_mcmc_sampling().

8.6.4.14 PointEmitterModel::ParamT mappel::PointEmitterModel::get_hyperparams () const [inline], [inherited]

Definition at line 224 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.6.4.15 ImageFormat1DBase::ImageT ImageFormat1DBase::get_image_from_stack(const ImageStackT & stack, ImageCoordT n) const [inline], [inherited]

Definition at line 108 of file ImageFormat1DBase.h.

```
8.6.4.16 const PointEmitterModel::ParamT & mappel::PointEmitterModel::get_lbound( ) const [inline], [inherited]
```

Definition at line 212 of file PointEmitterModel.h.

References mappel::PointEmitterModel::lbound.

Referenced by mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCMCAdaptor2D::MCMCAdaptor2D(), and mappel::MCMCAdaptor1D::set_background_mcmc_sampling().

8.6.4.17 IdxT mappel::MCMCAdaptorBase::get_mcmc_num_phases()const [inherited]

Definition at line 56 of file MCMCAdaptorBase.cpp.

References mappel::MCMCAdaptorBase::num_phases.

8.6.4.18 double mappel::MCMCAdaptorBase::get_mcmc_sigma_scale() const [inherited]

Definition at line 53 of file MCMCAdaptorBase.cpp.

References mappel::MCMCAdaptorBase::sigma_scale.

8.6.4.19 IdxT mappel::PointEmitterModel::get_num_hyperparams() const [inline], [inherited]

Definition at line 208 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num hyperparams.

8.6.4.20 IdxT mappel::PointEmitterModel::get_num_params() const [inline], [inherited]

Definition at line 160 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

8.6.4.21 ImageFormat1DBase::ImageCoordT ImageFormat1DBase::get_num_pixels() const [inline], [inherited]

Definition at line 82 of file ImageFormat1DBase.h.

References mappel::ImageFormat1DBase::size.

Referenced by mappel::ImageFormat1DBase::get_stats().

8.6.4.22 StringVecT mappel::PointEmitterModel::get_param_names()const [inline],[inherited]

Definition at line 248 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

```
8.6.4.23 CompositeDist & mappel::PointEmitterModel::get_prior( ) [inline], [inherited]
Definition at line 200 of file PointEmitterModel.h.
References mappel::PointEmitterModel::prior.
Referenced by mappel::Gauss2DModel::update internal 1Dsum estimators(), and mappel::Gauss2DsModel ←
::update internal 1Dsum estimators().
8.6.4.24 const CompositeDist & mappel::PointEmitterModel::get_prior() const [inline], [inherited]
Definition at line 204 of file PointEmitterModel.h.
References mappel::PointEmitterModel::prior.
8.6.4.25 double mappel::Gauss1DModel::get_psf_sigma() const [inline], [inherited]
Definition at line 127 of file Gauss1DModel.h.
References mappel::Gauss1DModel::psf_sigma.
Referenced by mappel::Gauss1DModel::get stats().
8.6.4.26 double mappel::Gauss1DModel::get_psf_sigma ( ldxT idx ) const [inherited]
Definition at line 131 of file Gauss1DModel.cpp.
References mappel::Gauss1DModel::psf_sigma.
8.6.4.27 ParallelRngGeneratorT & mappel::PointEmitterModel::get_rng_generator( ) [static], [inherited]
Definition at line 120 of file PointEmitterModel.cpp.
References mappel::rng_manager.
8.6.4.28 ParallelRngManagerT & mappel::PointEmitterModel::get_rng_manager( ) [static],[inherited]
Definition at line 115 of file PointEmitterModel.cpp.
References mappel::rng_manager.
8.6.4.29 ImageFormat1DBase::ImageSizeT ImageFormat1DBase::get_size( )const [inline], [inherited]
Definition at line 71 of file ImageFormat1DBase.h.
References mappel::ImageFormat1DBase::size.
```

Referenced by mappel::ImageFormat1DBase::get stats().

8.6.4.30 ImageFormat1DBase::ImageCoordT ImageFormat1DBase::get_size(IdxT idx) const [inherited]

Definition at line 20 of file ImageFormat1DBase.cpp.

References mappel::ImageFormat1DBase::size.

8.6.4.31 ImageFormat1DBase::ImageCoordT ImageFormat1DBase::get_size_image_stack (const ImageStackT & stack) const [inline],[inherited]

Definition at line 101 of file ImageFormat1DBase.h.

8.6.4.32 StatsT mappel::Gauss1DModel::get_stats() const [inherited]

Definition at line 178 of file Gauss1DModel.cpp.

References mappel::Gauss1DModel::get_psf_sigma(), mappel::MCMCAdaptor1D::get_stats(), mappel::Image ← Format1DBase::get_stats(), and mappel::PointEmitterModel::get_stats().

8.6.4.33 const PointEmitterModel::ParamT & mappel::PointEmitterModel::get_ubound() const [inline], [inherited]

Definition at line 216 of file PointEmitterModel.h.

References mappel::PointEmitterModel::ubound.

Referenced by mappel::Gauss2DsxyModel::get_max_sigma_ratio(), mappel::Gauss2DsModel::get_max_sigma_ratio(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCMCAdaptor2D(), mappel::MCMCAdaptor2D(), mappel::MCMCAdaptor1D::set_background_mcmc_sampling(), and mappel::Gauss2DsModel::set_max_sigma_ratio().

8.6.4.34 bool mappel::PointEmitterModel::has_hyperparam (const std::string & name) const [inline], [inherited]

Definition at line 228 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.6.4.35 Gauss1DModel::Gauss1DModel::initial_theta_estimate(const ImageT & im) const [inline], [inherited]

Fast, heuristic estimate of initial theta.

Definition at line 169 of file Gauss1DModel.h.

References mappel::PointEmitterModel::make_param(), and mappel::Gauss1DModel::Stencil::theta.

8.6.4.36 Gauss1DModel::Stencil mappel::Gauss1DModel::initial_theta_estimate (const ImageT & im, const ParamT & theta_init) const [inherited]

Definition at line 207 of file Gauss1DModel.cpp.

References mappel::Gauss1DModel::Stencil::bg(), mappel::Gauss1DModel::Stencil::l(), mappel::Gauss1DModel ← ::make stencil(), mappel::PointEmitterModel::num params, and mappel::ImageFormat1DBase::size.

8.6.4.37 CompositeDist mappel::Gauss1DModel::make_default_prior(ldxT size, const std::string & prior_type) [static], [inherited]

Definition at line 59 of file Gauss1DModel.cpp.

References mappel::istarts_with(), mappel::Gauss1DModel::make_default_prior_beta_position(), and mappel::

Gauss1DModel::make_default_prior_normal_position().

8.6.4.38 CompositeDist mappel::Gauss1DModel::make_default_prior_beta_position (ldxT *size*) [static], [inherited]

Definition at line 80 of file Gauss1DModel.cpp.

References mappel::PointEmitterModel::default_pixel_mean_bg, mappel::PointEmitterModel::make_prior_component ← __intensity(), and mappel::PointEmitterModel::make_prior_component_position_beta().

Referenced by mappel::Gauss1DModel::make_default_prior().

8.6.4.39 CompositeDist mappel::Gauss1DModel::make_default_prior_normal_position (ldxT *size*) [static], [inherited]

Definition at line 90 of file Gauss1DModel.cpp.

References mappel::PointEmitterModel::default_pixel_mean_bg, mappel::PointEmitterModel::make_prior_component ← __intensity(), and mappel::PointEmitterModel::make_prior_component_position_normal().

Referenced by mappel::Gauss1DModel::make_default_prior().

8.6.4.40 ImageFormat1DBase::ImageT ImageFormat1DBase::make_image()const [inline], [inherited]

Definition at line 87 of file ImageFormat1DBase.h.

References mappel::ImageFormat1DBase::size.

8.6.4.41 ImageFormat1DBase::ImageStackT ImageFormat1DBase::make_image_stack(ImageCoordT n) const [inline], [inherited]

Definition at line 94 of file ImageFormat1DBase.h.

References mappel::ImageFormat1DBase::size.

8.6.4.42 PointEmitterModel::ParamT mappel::PointEmitterModel::make_param() const [inline], [inherited]

Definition at line 164 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

Referenced by mappel::Gauss1DModel::initial_theta_estimate(), mappel::Gauss1DsModel::initial_theta_estimate(), mappel::Gauss2DModel::initial_theta_estimate(), mappel::Gauss2DsxyModel::initial_theta_estimate(), mappel:: \leftarrow Gauss2DsModel::initial_theta_estimate(), mappel::Gauss1DModel::pixel_hess_update(), mappel::Gauss1DsModel \leftarrow ::pixel_hess_update(), mappel::Gauss2DsModel::pixel_hess_update(), and mappel::Gauss2DsModel::pixel_hess_update().

8.6.4.43 template < class FillT > PointEmitterModel::ParamT mappel::PointEmitterModel::make_param (FillT fill) const [inherited]

Definition at line 181 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

8.6.4.44 MatT mappel::PointEmitterModel::make_param_mat()const [inline],[inherited]

Definition at line 172 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

8.6.4.45 template < class FillT > MatT mappel::PointEmitterModel::make_param_mat (FillT fill) const [inherited]

Definition at line 191 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

8.6.4.46 CubeT mappel::PointEmitterModel::make_param_mat_stack(| ldxT n) const [inline], [inherited]

Definition at line 176 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

8.6.4.47 template < class FillT > CubeT mappel::PointEmitterModel::make_param_mat_stack (ldxT n, FillT fill) const [inherited]

Definition at line 196 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

8.6.4.48 PointEmitterModel::ParamVecT mappel::PointEmitterModel::make_param_stack(ldxT n) const [inline], [inherited]

Definition at line 168 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

Referenced by mappel::PointEmitterModel::bounded_theta_stack(), and mappel::PointEmitterModel::reflected_theta __stack().

8.6.4.49 template < class FillT > PointEmitterModel::ParamVecT mappel::PointEmitterModel::make_param_stack (ldxT n, FillT fill) const [inherited]

Definition at line 186 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

8.6.4.50 CompositeDist mappel::Gauss1DModel::make_prior_beta_position (ldxT size, double beta_xpos, double mean_l, double kappa_l, double mean_bg, double kappa_bg) [static], [inherited]

Definition at line 101 of file Gauss1DModel.cpp.

References mappel::PointEmitterModel::make_prior_component_intensity(), and mappel::PointEmitterModel::make_component_position beta().

Referenced by mappel::Gauss2DModel::make internal 1Dsum estimator().

8.6.4.51 prior_hessian::TruncatedGammaDist mappel::PointEmitterModel::make_prior_component_intensity (double mean = default_mean_I, double kappa = default_intensity_kappa) [static], [inherited]

Definition at line 98 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::default_max_I.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DModel::make_ \leftarrow default_prior_beta_position(), mappel::Gauss1DModel::make_default_prior_beta_position(), mappel::Gauss2Ds \leftarrow Model::make_default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss1DsModel::make_default_prior_normal_ \leftarrow ::Gauss1DsModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_prior_ \leftarrow beta_position(), mappel::Gauss2DsModel::make_prior_beta_position(), mappel::Gauss2DModel::make_prior_beta_position(), mappel::Gauss2DModel::make_prior_beta_position(), mappel::Gauss2DModel::make_prior_normal_ \leftarrow position(), mappel::Gauss1DsModel::make_prior_normal_position(), mappel::Gauss1DModel::make_prior_normal_ \leftarrow position(), and mappel::Gauss2DsModel::make_prior_normal_position().

8.6.4.52 prior_hessian::ScaledSymmetricBetaDist mappel::PointEmitterModel::make_prior_component_position_beta (ldxT size, double pos_beta = default_beta_pos) [static],[inherited]

Definition at line 92 of file PointEmitterModel.cpp.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_beta_position(), mappel::Gauss1DModel::make_default_prior_beta_position(), mappel::Gauss2Ds \leftarrow Model::make_default_prior_beta_position(), mappel::Gauss1DsModel::make_prior_beta_position(), mappel::Gauss2Ds \leftarrow DModel::make_prior_beta_position(), mappel::Gauss1DModel::make_prior_beta_position(), and mappel::Gauss2Ds \leftarrow Model::make_prior_beta_position().

8.6.4.53 prior_hessian::TruncatedNormalDist mappel::PointEmitterModel::make_prior_component_position_normal(ldxT size, double pos_sigma = default_sigma_pos) [static], [inherited]

Definition at line 85 of file PointEmitterModel.cpp.

Referenced by mappel::Gauss1DsModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_ \leftarrow default_prior_normal_position(), mappel::Gauss1DModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_prior_normal_position(), mappel::Gauss1DsModel::make_prior_normal_position(), and mappel::Gauss2DsModel::make_prior_normal_position().

8.6.4.54 prior_hessian::TruncatedParetoDist mappel::PointEmitterModel::make_prior_component_sigma (double min_sigma, double max_sigma, double alpha = default_alpha_sigma) [static], [inherited]

Definition at line 104 of file PointEmitterModel.cpp.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DsModel::make_default_prior_normal_position(), mappel::Gauss2DsModel::make_default_prior_normal_position(), mappel::Gauss1DsModel::make_prior_beta_position(), mappel::Gauss1DsModel::make_prior_beta_position(), mappel::Gauss1DsModel::make_prior_normal_position(), and mappel::Gauss2DsModel::make_prior_normal_position().

8.6.4.55 CompositeDist mappel::Gauss1DModel::make_prior_normal_position (ldxT size, double sigma_xpos, double mean_l, double kappa_l, double mean_bg, double kappa_bg) [static], [inherited]

Definition at line 114 of file Gauss1DModel.cpp.

References mappel::PointEmitterModel::make_prior_component_intensity(), and mappel::PointEmitterModel::make_ prior_component_position_normal().

Referenced by mappel::Gauss2DModel::make_internal_1Dsum_estimator().

8.6.4.56 Gauss1DModel::Stencil mappel::Gauss1DModel::make_stencil (const ParamT & theta, bool compute_derivatives = true) const [inline], [inherited]

Make a new Model::Stencil object at theta.

Stencils store all of the important calculations necessary for evaluating the log-likelihood and its derivatives at a particular theta (parameter) value.

This allows re-use of the most expensive computations. Stencils can be easily passed around by reference, and most functions in the mappel::methods namespace accept a const Stencil reference in place of the model parameter.

Throws mappel::ModelBoundsError if not model.theta_in_bounds(theta).

If derivatives will not be computed with this stencil set compute_derivatives=false

Parameters

theta	Prameter to evaluate at
compute_derivatives	True to also prepare for derivative computations

Returns

A new Stencil object ready to compute with

Definition at line 116 of file Gauss1DModel.h.

References mappel::Gauss1DModel::Stencil::Stencil(), and mappel::PointEmitterModel::theta_in_bounds().

Referenced by mappel::Gauss1DModel::initial theta estimate().

8.6.4.57 Gauss1DMAP & mappel::Gauss1DMAP::operator= (const Gauss1DMAP & o)

Definition at line 51 of file Gauss1DMAP.cpp.

References mappel::MAPEstimator::operator=(), mappel::PoissonNoise1DObjective::operator=(), mappel::Gauss1D (), model::operator=(), and mappel::PointEmitterModel::operator=().

8.6.4.58 Gauss1DMAP & mappel::Gauss1DMAP::operator=(Gauss1DMAP && o)

Definition at line 62 of file Gauss1DMAP.cpp.

References mappel::MAPEstimator::operator=(), mappel::PoissonNoise1DObjective::operator=(), mappel::Gauss1D \leftarrow Model::operator=(), and mappel::PointEmitterModel::operator=().

8.6.4.59 void mappel::Gauss1DModel::pixel_grad (ldxT i, const Stencil & s, ParamT & pgrad) const [inline], [inherited]

Definition at line 141 of file Gauss1DModel.h.

References mappel::Gauss1DModel::Stencil::DX, mappel::Gauss1DModel::Stencil::I(), and mappel::Gauss1DModel ← ::Stencil::X.

Referenced by mappel::Gauss1DModel::pixel_hess_update().

8.6.4.60 void mappel::Gauss1DModel::pixel_grad2 (ldxT i, const Stencil & s, ParamT & pgrad2) const [inline], [inherited]

Definition at line 150 of file Gauss1DModel.h.

References mappel::Gauss1DModel::Stencil::DXS, mappel::Gauss1DModel::Stencil::I(), and mappel::Gauss1D \leftarrow Model::psf_sigma.

Definition at line 159 of file Gauss1DModel.h.

 $References\ mappel::Gauss1DModel::Stencil::DXS,\ mappel::Gauss1DModel::Example::Gauss1DModel::Gauss2DModel::Gauss1DModel::Gauss2DModel::Gaus$

8.6.4.62 void mappel::Gauss1DModel::pixel_hess_update (IdxT i, const Stencil & s, double dm_ratio_m1, double dmm_ratio,
ParamT & grad, MatT & hess) const [inherited]

pixel derivative inner loop calculations.

Definition at line 191 of file Gauss1DModel.cpp.

References mappel::Gauss1DModel::Stencil::DXS, mappel::Gauss1DModel::Stencil::I(), mappel::PointEmitterModel ::make param(), mappel::Gauss1DModel::pixel grad(), and mappel::Gauss1DModel::psf sigma. 8.6.4.63 double mappel::Gauss1DModel::pixel_model_value(ldxTi, const Stencil & s) const [inline], [inherited]

Definition at line 135 of file Gauss1DModel.h.

References mappel::Gauss1DModel::Stencil::bg(), mappel::Gauss1DModel::Stencil::I(), and mappel::Gauss1DModel ← ::Stencil::X.

8.6.4.64 PointEmitterModel::ParamT mappel::PointEmitterModel::reflected_theta (const ParamT & theta) const [inherited]

Definition at line 276 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::ubound.

Referenced by mappel::PointEmitterModel::reflected theta stack().

8.6.4.65 PointEmitterModel::ParamVecT mappel::PointEmitterModel::reflected_theta_stack (const ParamVecT & theta) const [inherited]

Definition at line 317 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::make_param_stack(), and mappel::PointEmitterModel::reflected_theta().

8.6.4.66 void mappel::PointEmitterModel::rename_hyperparam (const std::string & old_name, const std::string & new_name)
[inline], [inherited]

Definition at line 244 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.6.4.67 void mappel::MCMCAdaptor1D::sample_mcmc_candidate (ldxT sample_index, ParamT & candidate, double step_scale = 1.0) [inherited]

Definition at line 108 of file MCMCAdaptor1D.cpp.

References mappel::MCMCAdaptor1D::eta_bg, mappel::MCMCAdaptor1D::eta_l, mappel::MCMCAdaptor1D::eta_ \leftarrow x, mappel::MCMCAdaptorBase::num_phases, and mappel::rng_manager.

8.6.4.68 template < class RngT > PointEmitterModel::ParamT mappel::PointEmitterModel::sample_prior (RngT & rng) [inherited]

Definition at line 264 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.6.4.69 PointEmitterModel::ParamT mappel::PointEmitterModel::sample_prior() [inline], [inherited]

Definition at line 268 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior, and mappel::rng manager.

8.6.4.70 void mappel::MCMCAdaptor1D::set background mcmc sampling (double eta bg = -1) [inherited]

Definition at line 81 of file MCMCAdaptor1D.cpp.

Referenced by mappel::MCMCAdaptor1D::MCMCAdaptor1D().

8.6.4.71 void mappel::PointEmitterModel::set_bounds (const ParamT & *lbound_*, const ParamT & *ubound_*)
[inherited]

Box-type parameter bounds

Modifies the prior bounds to prevent sampling outside the valid box-constraints.

Definition at line 213 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounds_epsilon, mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::ubound, mappel::PointEmitterModel::ubound.

8.6.4.72 void mappel::PointEmitterModel::set_hyperparam_names (const StringVecT & *desc*) [inline], [inherited]

Definition at line 260 of file PointEmitterModel.h.

 $References\ mappel:: Point Emitter Model:: prior.$

8.6.4.73 void mappel::PointEmitterModel::set_hyperparam_value (const std::string & name, double value) [inline], [inherited]

Definition at line 240 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.6.4.74 void mappel::PointEmitterModel::set_hyperparams (const VecT & hyperparams) [inline], [inherited]

Definition at line 220 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

Referenced by mappel::Gauss2DModel::set hyperparams(), and mappel::Gauss2DsModel::set hyperparams().

8.6.4.75 template < class ImT > void ImageFormat1DBase::set_image_in_stack (ImageStackT & stack, ImageCoordT n, const ImT & im) const [inherited]

Definition at line 115 of file ImageFormat1DBase.h.

8.6.4.76 void mappel::MCMCAdaptor1D::set_intensity_mcmc_sampling (double eta_l = -1) [inherited]

Definition at line 65 of file MCMCAdaptor1D.cpp.

References mappel::PointEmitterModel::default_mean_I, mappel::MCMCAdaptor1D::eta_I, mappel::PointEmitter ← Model::get_hyperparam_value(), and mappel::MCMCAdaptorBase::sigma_scale.

Referenced by mappel::MCMCAdaptor1D::MCMCAdaptor1D().

8.6.4.77 void mappel::PointEmitterModel::set_lbound (const ParamT & lbound) [inherited]

Definition at line 226 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounds_epsilon, mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::pointEmitterModel::ubound, mappel::PointEmitterModel::pointEmitterModel::ubound.

Referenced by mappel::Gauss1DsModel::set min sigma().

8.6.4.78 void mappel::MCMCAdaptorBase::set_mcmc_num_phases (ldxT num_phases) [protected], [inherited]

Definition at line 59 of file MCMCAdaptorBase.cpp.

References mappel::MCMCAdaptorBase::num phases.

Referenced by mappel::MCMCAdaptor1Ds::MCMCAdaptor1Ds(), and mappel::MCMCAdaptor2Ds::MCMCAdaptor2 → Ds().

8.6.4.79 void mappel::MCMCAdaptorBase::set_mcmc_sigma_scale(double *scale*) [inherited]

Definition at line 39 of file MCMCAdaptorBase.cpp.

References mappel::MCMCAdaptorBase::global_max_mcmc_sigma_scale, and mappel::MCMCAdaptorBase::sigma ← scale.

8.6.4.80 void mappel::PointEmitterModel::set_param_names (const StringVecT & desc) [inline], [inherited]

Definition at line 252 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.6.4.81 void mappel::PointEmitterModel::set_prior (CompositeDist && prior_) [inherited]

Definition at line 158 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::Ibound, mappel::PointEmitterModel::num_hyperparams, mappel::PointEmitterModel::prior, and mappel::PointEmitterModel::ubound.

Referenced by mappel::Gauss2DModel::set prior(), and mappel::Gauss2DsModel::set prior().

8.6.4.82 void mappel::PointEmitterModel::set_prior (const CompositeDist & prior_) [inherited]

Definition at line 149 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::Ibound, mappel::PointEmitterModel::num_hyperparams, mappel::PointEmitterModel::prior, and mappel::PointEmitterModel::ubound.

8.6.4.83 void mappel::Gauss1DModel::set_psf_sigma (double new_psf_sigma) [inherited]

Definition at line 125 of file Gauss1DModel.cpp.

References mappel::PointEmitterModel::check_psf_sigma(), and mappel::Gauss1DModel::psf_sigma.

Referenced by mappel::Gauss1DModel::set psf sigma(), and mappel::Gauss2DModel::set psf sigma().

8.6.4.84 void mappel::Gauss1DModel::set_psf_sigma(const VecT & new_psf_sigma) [inline], [inherited]

Definition at line 131 of file Gauss1DModel.h.

References mappel::Gauss1DModel::set_psf_sigma().

8.6.4.85 void mappel::PointEmitterModel::set_rng_seed(RngSeedT seed) [static],[inherited]

Definition at line 110 of file PointEmitterModel.cpp.

References mappel::rng manager.

8.6.4.86 void ImageFormat1DBase::set_size (const ImageSizeT & size_) [inherited]

Definition at line 30 of file ImageFormat1DBase.cpp.

References mappel::ImageFormat1DBase::check_size(), and mappel::ImageFormat1DBase::size.

Referenced by mappel::ImageFormat1DBase::set_size(), mappel::Gauss2DModel::set_size(), and mappel::Gauss2 DSModel::set_size().

8.6.4.87 void ImageFormat1DBase::set_size (const arma::Col < ImageCoordT > & sz) [inline], [inherited]

Definition at line 75 of file ImageFormat1DBase.h.

References mappel::ImageFormat1DBase::set_size().

8.6.4.88 void mappel::PointEmitterModel::set_ubound (const ParamT & ubound) [inherited]

Definition at line 237 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounds_epsilon, mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::ubound, mappel::PointEmitterModel::ubound.

Referenced by mappel::Gauss1DsModel::set max sigma(), and mappel::Gauss2DsModel::set max sigma ratio().

8.6.4.89 bool mappel::PointEmitterModel::theta_in_bounds (const ParamT & theta) const [inherited]

Definition at line 257 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::Point← EmitterModel::num params, and mappel::PointEmitterModel::ubound.

Referenced by mappel::Gauss2DModel::initial_theta_estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::Gauss1DModel::make_stencil(), mappel::Gauss2DModel::make_stencil(), mappel::Gauss2DsModel::make_stencil(), mappel::Gauss2DsModel::make_stencil(), and mappel::Point EmitterModel::theta_stack_in_bounds().

8.6.4.90 BoolVecT mappel::PointEmitterModel::theta_stack_in_bounds (const ParamVecT & theta) const [inherited]

Definition at line 297 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), and mappel::PointEmitterModel::theta_in_bounds().

8.6.5 Member Data Documentation

8.6.5.1 const double mappel::PointEmitterModel::bounds_epsilon = 1.0E-6 [static], [inherited]

Distance from the boundary to constrain in bound_theta and bounded_theta methods

Definition at line 52 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::set_bounds(), mappel::PointEmitterModel::set_lbound(), mappel::Gauss2 DsModel::set_max_sigma_ratio(), and mappel::PointEmitterModel::set_ubound().

8.6.5.2 const double mappel::PointEmitterModel::default_alpha_sigma = 2 [static], [inherited]

Default per-pixel background gamma distribution shape

Definition at line 62 of file PointEmitterModel.h.

8.6.5.3 const double mappel::PointEmitterModel::default_beta_pos = 3 [static], [inherited]

Default position parameter in symmetric beta-distributions

Definition at line 56 of file PointEmitterModel.h.

8.6.5.4 const double mappel::PointEmitterModel::default_intensity_kappa = 2 [static], [inherited]

Default shape for intensity gamma distributions

Definition at line 60 of file PointEmitterModel.h.

8.6.5.5 const double mappel::PointEmitterModel::default_max_I = INFINITY [static], [inherited]

Default maximum emitter intensity

Definition at line 59 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::make_prior_component_intensity().

8.6.5.6 const double mappel::PointEmitterModel::default_mean_l = 300 [static], [inherited]

Default emitter intensity mean

Definition at line 58 of file PointEmitterModel.h.

Referenced by mappel::MCMCAdaptor1D::set intensity mcmc sampling().

8.6.5.7 const double mappel::PointEmitterModel::default_pixel_mean_bg = 4 [static], [inherited]

Default per-pixel mean background counts

Definition at line 61 of file PointEmitterModel.h.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DModel::make default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_beta_position(), mappel::Gauss1DModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), and mappel::MCMCAdaptor1D control control

8.6.5.8 const double mappel::PointEmitterModel::default_sigma_pos = 1 [static], [inherited]

Default position parameter in symmetric beta-distributions

Definition at line 57 of file PointEmitterModel.h.

8.6.5.9 const std::string mappel::Gauss1DModel::DefaultPriorType = "Normal" [static], [inherited]

Definition at line 53 of file Gauss1DModel.h.

Referenced by mappel::Gauss1DModel::operator=().

8.6.5.10 const std::string mappel::PointEmitterModel::DefaultSeperableInitEstimator = "TrustRegion" [static], [inherited]

Estimator name to use in 1D separable initializations

Definition at line 49 of file PointEmitterModel.h.

Referenced by mappel::Gauss2DModel::initial_theta_estimate(), mappel::Gauss2DsxyModel::initial_theta_estimate(), and mappel::Gauss2DsModel::initial_theta_estimate().

8.6.5.11 const std::vector < std::string > mappel::PoissonNoise1DObjective::estimator_names [static], [inherited]

Definition at line 24 of file PoissonNoise1DObjective.h.

8.6.5.12 double mappel::MCMCAdaptor1D::eta_bg =0 [protected], [inherited]

The standard deviation for the normally distributed perturbation to theta_bg in the random walk MCMC sampling

Definition at line 32 of file MCMCAdaptor1D.h.

Referenced by mappel::MCMCAdaptor1D::get_stats(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MC—CMCAdaptor1D::operator=(), mappel::MCMCAdaptor2D::sample_mcmc_candidate(), mappel::MCMCAdaptor1Ds::sample_mcmc_candidate(), mappel::MCMCAdaptor1Dc-:sample_mcmc_candidate(), and mappel::MCMCAdaptor1D::set_background_mcmc_sampling().

8.6.5.13 double mappel::MCMCAdaptor1D::eta_I = 0 [protected], [inherited]

The standard deviation for the normally distributed perturbation to theta_I in the random walk MCMC sampling

Definition at line 31 of file MCMCAdaptor1D.h.

Referenced by mappel::MCMCAdaptor1D::get_stats(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCCAdaptor1D(), mappel::MCMCAdaptor2D::sample_mcmc_candidate(), mappel::MCMCAdaptor2Ds \leftarrow ::sample_mcmc_candidate(), mappel::MCMCAdaptor1D::sample_mcmc_candidate(), mappel::MCMCAdaptor1D \leftarrow ::sample_mcmc_candidate(), and mappel::MCMCAdaptor1D::set_intensity_mcmc_sampling().

8.6.5.14 double mappel::MCMCAdaptor1D::eta_x = 0 [protected], [inherited]

The standard deviation for the normally distributed perturbation to theta_x in the random walk MCMC sampling

Definition at line 30 of file MCMCAdaptor1D.h.

Referenced by mappel::MCMCAdaptor1D::get_stats(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCCAdaptor1D::perator=(), mappel::MCMCAdaptor1Ds::sample_mcmc_candidate(), mappel::MCMCAdaptor2D \leftarrow ::sample_mcmc_candidate(), mappel::MCMCAdaptor2Ds::sample_mcmc_candidate(), and mappel::MCMCAdaptor1 \leftarrow D::sample_mcmc_candidate().

8.6.5.15 const double mappel::MCMCAdaptorBase::global_default_mcmc_sigma_scale = 0.05 [static], [inherited]

Definition at line 16 of file MCMCAdaptorBase.h.

Referenced by mappel::MCMCAdaptor1Ds::MCMCAdaptor1Ds(), mappel::MCMCAdaptor2D::MCMCAdaptor2D(), and mappel::MCMCAdaptor2Ds::MCMCAdaptor2Ds().

8.6.5.16 const double mappel::MCMCAdaptorBase::global_max_mcmc_sigma_scale = 0.5 [static], [inherited]

Definition at line 17 of file MCMCAdaptorBase.h.

Referenced by mappel::MCMCAdaptorBase::MCMCAdaptorBase(), and mappel::MCMCAdaptorBase::set_mcmc_ sigma scale().

```
8.6.5.17 const double mappel::PointEmitterModel::global_max_psf_sigma = 1E2 [static], [inherited]
```

Global maxmimum for any psf_sigma. Sizes above this value are invalid, and nowhere near useful for practical point emitter localization

Definition at line 54 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::check_psf_sigma().

Maximum size along any dimension of the image. This is insanely big to catch obvious errors

Definition at line 40 of file ImageFormat1DBase.h.

Referenced by mappel::ImageFormat1DBase::check_size().

```
8.6.5.19 const double mappel::PointEmitterModel::global_min_psf_sigma = 1E-1 [static], [inherited]
```

Global minimum for any psf_sigma. Sizes below this value are invalid, and nowhere near useful for practical point emitter localization

Definition at line 53 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::check_psf_sigma().

```
8.6.5.20 const ImageFormat1DBase::ImageCoordT ImageFormat1DBase::global_min_size = 3 [static], [inherited]
```

Minimum size along any dimension of the image.

Definition at line 39 of file ImageFormat1DBase.h.

Referenced by mappel::ImageFormat1DBase::check_size().

```
8.6.5.21 ParamT mappel::PointEmitterModel::lbound [protected], [inherited]
```

Definition at line 148 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel ::PointEmitterModel::bounded_theta(), mappel ::PointEmitterModel::get_lbound(), mappel::PointEmitterModel::get_stats(), mappel::Gauss1DsModel::initial_theta = estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::PointEmitterModel::pointEmitterModel::reflected_theta(), mappel::PointEmitterModel = ::set_bounds(), mappel::PointEmitterModel::set_lbound(), mappel::PointEmitterModel::set_prior(), mappel::PointEmitterModel::set_bounds().

```
8.6.5.22 const std::string mappel::Gauss1DMAP::name [static]
```

Definition at line 34 of file Gauss1DMAP.h.

8.6.5.23 const ImageFormat1DBase::ImageCoordT ImageFormat1DBase::num_dim = 1 [static], [inherited]

Number of image dimensions.

Definition at line 38 of file ImageFormat1DBase.h.

Referenced by mappel::ImageFormat1DBase::get_stats().

8.6.5.24 IdxT mappel::PointEmitterModel::num_hyperparams [protected], [inherited]

Definition at line 147 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::get_num_hyperparams(), mappel::PointEmitterModel::get_stats(), mappel::PointEmitterModel::operator=(), and mappel::PointEmitterModel::set_prior().

8.6.5.25 IdxT mappel::PointEmitterModel::num_params [protected], [inherited]

Definition at line 146 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel ::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::get_num_params(), mappel::PointEmitter
Model::get_stats(), mappel::Gauss1DModel::initial_theta_estimate(), mappel::Gauss2DModel::initial_theta_estimate(), mappel::PointEmitterModel::make_param(), mappel::PointEmitterModel::make_param(), mappel::PointEmitterModel::make_param_mat_stack(), mappel::PointEmitterModel::make_param_stack(), mappel::PointEmitterModel::pointEmit

```
8.6.5.26 IdxT mappel::MCMCAdaptorBase::num_phases [protected],[inherited]
```

The number of different sampling phases for candidate selection MCMC. Each phase changes a different subset of variables.

Definition at line 29 of file MCMCAdaptorBase.h.

Referenced by mappel::MCMCAdaptorBase::get_mcmc_num_phases(), mappel::MCMCAdaptorBase::get_stats(), mappel::MCMCAdaptor1Ds::sample_mcmc_candidate(), mappel::MCMCAdaptor2Ds::sample_mcmc_candidate(), mappel::MCMCAdaptor1D::sample_mcmc_candidate(), and mappel::MCMCAdaptorBase::set_mcmc_num_phases().

```
8.6.5.27 CompositeDist mappel::PointEmitterModel::prior [protected], [inherited]
```

Definition at line 145 of file PointEmitterModel.h.

Referenced by mappel::Gauss2DModel::debug_internal_sum_model_y(), mappel::Gauss2DsModel::debug_internal \
_sum_model_y(), mappel::Gauss2DModel::Gauss2DModel(), mappel::Gauss2DsModel::Gauss2DsModel(), mappel \
::PointEmitterModel::get_hyperparam_index(), mappel::PointEmitterModel::get_hyperparam_names(), mappel::PointEmitterModel::get_hyperparam_names(), mappel::PointEmitterModel::get_param_names(), mappel::PointEmitterModel::get_param_names(), mappel::PointEmitterModel::get_param_names(), mappel::PointEmitterModel::get_param_names(), mappel::PointEmitterModel::pointEmitterModel::has_\(\cdot \) hyperparam(), mappel::PointEmitterModel::pointEmitterModel::pointEmitterModel(), mappel::\(\cdot \) PointEmitterModel::pointEmitterModel::set_hyperparam_names(), mappel::PointEmitterModel::set_hyperparam \(\cdot \) value(), mappel::PointEmitterModel::set_hyperparam \(\cdot \) value(), mappel::PointEmitterModel::set_hyperparam(), mappel::PointEmitterModel::set_lyperparam(), mappel::PointEmitterModel::set_hyperparam(), mappel::PointEmitterModel::set_lyperparam(), mappel::PointEmitterModel::set

8.6.5.28 const StringVecT mappel::Gauss1DModel::prior_types [static], [inherited]

Initial value:

```
= { "Beta", "Normal" }
```

Definition at line 52 of file Gauss1DModel.h.

Referenced by mappel::Gauss1DModel::operator=().

```
8.6.5.29 double mappel::Gauss1DModel::psf_sigma [protected], [inherited]
```

Standard deviation of the fixed-sigma 1D Gaussian PSF in pixels

Definition at line 90 of file Gauss1DModel.h.

Referenced by mappel::Gauss1DModel::Stencil::compute_derivatives(), mappel::Gauss1DModel::get_psf_sigma(), mappel::Gauss1DModel::pixel_prad2(), mappel::Gauss1DModel::pixel_hess(), mappel::Gauss1DModel::pixel_hess_update(), mappel::Gauss1DModel::set_psf_sigma(), and mappel::Gauss1D Model::Stencil().

```
8.6.5.30 double mappel::MCMCAdaptorBase::sigma_scale [protected], [inherited]
```

A scaling factor for step sizes as a fraction of the size of the domain dimension we are walking in. (0.05 default)

Definition at line 30 of file MCMCAdaptorBase.h.

```
8.6.5.31 ImageSizeT mappel::ImageFormat1DBase::size [protected], [inherited]
```

Number of pixels in X dimension for 1D image

Definition at line 65 of file ImageFormat1DBase.h.

8.6.5.32 ParamT mappel::PointEmitterModel::ubound [protected], [inherited]

Definition at line 148 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::get_ubound(), mappel::Gauss1DsModel::initial_theta = estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::PointEmitterModel::point

The documentation for this class was generated from the following files:

- Gauss1DMAP.h
- Gauss1DMAP.cpp

8.7 mappel::Gauss1DMLE Class Reference

A 1D Gaussian with fixed PSF under an Poisson noise assumption and maximum-likelihood objective.

#include </home/travis/build/markjolah/Mappel/include/Mappel/Gauss1DMLE.h>

Inheritance diagram for mappel::Gauss1DMLE:

Public Types

- using StencilVecT = std::vector< Stencil >
- using ParamT = arma::vec
- using ParamVecT = arma::mat
- using ImageCoordT = uint32_t
- using ImagePixeIT = double
- $\bullet \;\; {\sf template}{<} {\sf class} \; {\sf CoordT} >$

using ImageSizeShapeT = CoordT

template < class CoordT >

using ImageSizeVecShapeT = arma::Col < CoordT >

- using ImageSizeT = ImageSizeShapeT < ImageCoordT >
- using ImageSizeVecT = ImageSizeVecShapeT < ImageCoordT >
- template<class PixeIT >

using ImageShapeT = arma::Col < PixelT >

- template < class PixelT >
 - using ImageStackShapeT = arma::Mat< PixelT >
- using ImageT = ImageShapeT < ImagePixeIT >
- using ImageStackT = ImageStackShapeT < ImagePixeIT >
- using ModelDataT = ImageT
- using ModelDataStackT = ImageStackT

Public Member Functions

Gauss1DMLE (arma::Col< ImageCoordT > size, VecT psf_sigma, const std::string &prior_type=DefaultPrior
 —
 Type)

- Gauss1DMLE (ImageSizeT size, double psf_sigma, const std::string &prior_type=DefaultPriorType)
- Gauss1DMLE (ImageSizeT size, double psf_sigma, CompositeDist &&prior)
- Gauss1DMLE (ImageSizeT size, double psf_sigma, const CompositeDist &prior)
- Gauss1DMLE (const Gauss1DMLE &o)
- Gauss1DMLE & operator= (const Gauss1DMLE &o)
- Gauss1DMLE (Gauss1DMLE &&o)
- Gauss1DMLE & operator= (Gauss1DMLE &&o)
- double get psf sigma () const
- double get psf sigma (ldxT idx) const
- void set psf sigma (double new psf sigma)
- void set_psf_sigma (const VecT &new_psf_sigma)
- StatsT get stats () const
- Stencil make_stencil (const ParamT &theta, bool compute_derivatives=true) const

Make a new Model::Stencil object at theta.

- · double pixel model value (ldxT i, const Stencil &s) const
- void pixel_grad (ldxT i, const Stencil &s, ParamT &pgrad) const
- void pixel_grad2 (ldxT i, const Stencil &s, ParamT &pgrad2) const
- void pixel hess (IdxT i, const Stencil &s, MatT &hess) const
- void pixel_hess_update (ldxT i, const Stencil &s, double dm_ratio_m1, double dmm_ratio, ParamT &grad, MatT &hess) const

pixel derivative inner loop calculations.

· Stencil initial theta estimate (const ImageT &im) const

Fast, heuristic estimate of initial theta.

- Stencil initial_theta_estimate (const ImageT &im, const ParamT &theta_init) const
- IdxT get_num_params () const
- void check param shape (const ParamT &theta) const
- void check param shape (const ParamVecT &theta) const
- · void check psf sigma (double psf sigma) const
- void check_psf_sigma (const VecT &psf_sigma) const
- ParamT make_param () const
- template<class FillT >

ParamT make_param (FillT fill) const

- ParamVecT make_param_stack (ldxT n) const
- template<class FillT >

ParamVecT make_param_stack (ldxT n, FillT fill) const

- MatT make param mat () const
- template<class FillT >

MatT make param mat (FillT fill) const

- CubeT make_param_mat_stack (ldxT n) const
- template<class FilIT >

CubeT make param mat stack (ldxT n, FillT fill) const

- CompositeDist & get_prior ()
- const CompositeDist & get_prior () const
- void set_prior (CompositeDist &&prior_)
- void set_prior (const CompositeDist &prior_)
- IdxT get num hyperparams () const
- void set hyperparams (const VecT &hyperparams)

- VecT get_hyperparams () const
- bool has hyperparam (const std::string &name) const
- double get_hyperparam_value (const std::string &name) const
- int get_hyperparam_index (const std::string &name) const
- void set hyperparam value (const std::string &name, double value)
- void rename_hyperparam (const std::string &old_name, const std::string &new_name)
- StringVecT get param names () const
- void set param names (const StringVecT &desc)
- StringVecT get hyperparam names () const
- void set hyperparam names (const StringVecT &desc)
- template < class RngT >

ParamT sample prior (RngT &rng)

- ParamT sample prior ()
- void set bounds (const ParamT & lbound, const ParamT & ubound)
- void set Ibound (const ParamT &lbound)
- void set ubound (const ParamT &ubound)
- const ParamT & get Ibound () const
- const ParamT & get ubound () const
- bool theta in bounds (const ParamT &theta) const
- · void bound theta (ParamT &theta, double epsilon=bounds epsilon) const
- ParamT bounded theta (const ParamT &theta, double epsilon=bounds epsilon) const
- ParamT reflected theta (const ParamT &theta) const
- BoolVecT theta stack in bounds (const ParamVecT &theta) const
- ParamVecT bounded theta stack (const ParamVecT &theta, double epsilon=bounds epsilon) const
- ParamVecT reflected theta stack (const ParamVecT &theta) const
- ImageT make image () const
- ImageStackT make image stack (ImageCoordT n) const
- ImageCoordT get_size_image_stack (const ImageStackT &stack) const
- ImageT get image from stack (const ImageStackT &stack, ImageCoordT n) const

template<class ImT >

void set_image_in_stack (ImageStackT &stack, ImageCoordT n, const ImT &im) const

- ImageSizeT get size () const
- ImageCoordT get size (IdxT idx) const
- ImageCoordT get num pixels () const
- void set size (const ImageSizeT &size)
- void set_size (const arma::Col< ImageCoordT > &sz)
- void check image shape (const ImageT &im) const

Check the shape of a single images is correct for model size.

void check_image_shape (const ImageStackT &ims) const

Check the shape of a stack of images is correct for model size.

- void sample mcmc candidate (ldxT sample index, ParamT &candidate, double step scale=1.0)
- void set intensity mcmc sampling (double eta I=-1)
- void set background mcmc sampling (double eta bg=-1)
- void set mcmc sigma scale (double scale)
- double get_mcmc_sigma_scale () const
- IdxT get mcmc num phases () const

Static Public Member Functions

- static CompositeDist make_default_prior (ldxT size, const std::string &prior_type)
- static CompositeDist make_default_prior_beta_position (ldxT size)
- static CompositeDist make default prior normal position (ldxT size)
- static CompositeDist make_prior_beta_position (ldxT size, double beta_xpos, double mean_I, double kappa_I, double mean bg, double kappa bg)
- static CompositeDist make_prior_normal_position (IdxT size, double sigma_xpos, double mean_I, double kappa_I, double mean_bg, double kappa_bg)
- static prior_hessian::ScaledSymmetricBetaDist make_prior_component_position_beta (ldxT size, double pos_ beta=default_beta_pos)
- static prior_hessian::TruncatedParetoDist make_prior_component_sigma (double min_sigma, double max_
 sigma, double alpha=default alpha sigma)
- static void set_rng_seed (RngSeedT seed)
- static ParallelRngManagerT & get rng manager ()
- static ParallelRngGeneratorT & get rng generator ()
- static void check_size (const ImageSizeT &size_)

Check the size argument for the model.

Static Public Attributes

- static const std::string name
- static const StringVecT prior types
- static const std::string DefaultPriorType = "Normal"
- static const std::string DefaultSeperableInitEstimator = "TrustRegion"
- static const double bounds_epsilon = 1.0E-6
- static const double global_min_psf_sigma = 1E-1
- static const double global max psf sigma = 1E2
- static const double default beta pos = 3
- static const double default sigma pos = 1
- static const double default_mean_l = 300
- static const double default max I = INFINITY
- static const double default_intensity_kappa = 2
- static const double default pixel mean bg = 4
- static const double default alpha sigma = 2
- static const ImageCoordT num dim = 1
- static const ImageCoordT global_min_size = 3
- static const ImageCoordT global_max_size = 512
- static const double global default mcmc sigma scale = 0.05
- static const double global max mcmc sigma scale = 0.5
- static const std::vector< std::string > estimator_names

Protected Member Functions

void set mcmc num phases (IdxT num phases)

Protected Attributes

- double psf_sigma
- · CompositeDist prior
- IdxT num_params
- IdxT num_hyperparams
- ParamT Ibound
- · ParamT ubound
- ImageSizeT size
- double eta_x =0
- double eta I =0
- double eta_bg =0
- IdxT num_phases
- double sigma_scale

8.7.1 Detailed Description

A 1D Gaussian with fixed PSF under an Poisson noise assumption and maximum-likelihood objective.

Model: Gauss1DModel - 1D Gaussian PSF with fixed PSF sigma Objective: PoissonNoise1DObjective - Poisson noise model for 1D Estimator: MLEstimator - Pure-likelihood estimator

Definition at line 23 of file Gauss1DMLE.h.

8.7.2 Member Typedef Documentation

8.7.2.1 using mappel::ImageFormat1DBase::ImageCoordT = uint32_t [inherited]

Image size coordinate storage type

Definition at line 25 of file ImageFormat1DBase.h.

8.7.2.2 using mappel::ImageFormat1DBase::ImagePixelT = double [inherited]

Image pixel storage type

Definition at line 26 of file ImageFormat1DBase.h.

8.7.2.3 template<**class PixelT** > **using mappel**::**ImageFormat1DBase**::**ImageShapeT** = **arma**::**Col**<**PixelT**> [inherited]

Shape of the data type for a single image

Definition at line 33 of file ImageFormat1DBase.h.

8.7.2.4 template < class CoordT > using mappel::ImageFormat1DBase::ImageSizeShapeT = CoordT [inherited]

Shape of the data type to store 1-image's coordinates

Definition at line 28 of file ImageFormat1DBase.h.

8.7.2.5 using mappel::ImageFormat1DBase::ImageSizeT = ImageSizeShapeT < ImageCoordT > [inherited]

Data type for a single image size

Definition at line 30 of file ImageFormat1DBase.h.

8.7.2.6 template < class CoordT > using mappel::ImageFormat1DBase::ImageSizeVecShapeT = arma::Col < CoordT > [inherited]

Shape of the data type to store a vector of image's coordinates

Definition at line 29 of file ImageFormat1DBase.h.

8.7.2.7 using mappel::ImageFormat1DBase::ImageSizeVecT = ImageSizeVecShapeT < ImageCoordT > [inherited]

Data type for a sequence of image sizes

Definition at line 31 of file ImageFormat1DBase.h.

8.7.2.8 template < class PixelT > using mappel::ImageFormat1DBase::ImageStackShapeT = arma::Mat < PixelT > [inherited]

Shape of the data type for a sequence of images

Definition at line 34 of file ImageFormat1DBase.h.

8.7.2.9 using mappel::ImageFormat1DBase::ImageStackT = ImageStackShapeT<ImagePixeIT>
[inherited]

Data type to represent a sequence of images

Definition at line 36 of file ImageFormat1DBase.h.

8.7.2.10 using mappel::ImageFormat1DBase::ImageT = ImageShapeT < ImagePixeIT > [inherited]

Data type to represent single image

Definition at line 35 of file ImageFormat1DBase.h.

8.7.2.11 using mappel::PoissonNoise1DObjective::ModelDataStackT = ImageStackT [inherited]

Objective function data stack type: 1D double precision image stack, of images gain-corrected to approximate photons counts

Definition at line 26 of file PoissonNoise1DObjective.h.

8.7.2.12 using mappel::PoissonNoise1DObjective::ModelDataT = ImageT [inherited]

Objective function data type: 1D double precision image, gain-corrected to approximate photons counts

Definition at line 25 of file PoissonNoise1DObjective.h.

8.7.2.13 using mappel::PointEmitterModel::ParamT = arma::vec [inherited]

Parameter vector

Definition at line 47 of file PointEmitterModel.h.

8.7.2.14 using mappel::PointEmitterModel::ParamVecT = arma::mat [inherited]

Vector of parameter vectors

Definition at line 48 of file PointEmitterModel.h.

8.7.2.15 using mappel::Gauss1DModel::StencilVecT = std::vector < Stencil > [inherited]

Definition at line 49 of file Gauss1DModel.h.

8.7.3 Constructor & Destructor Documentation

8.7.3.1 mappel::Gauss1DMLE::Gauss1DMLE (arma::Col< ImageCoordT > size, VecT psf_sigma, const std::string & prior_type = DefaultPriorType)

Definition at line 11 of file Gauss1DMLE.cpp.

8.7.3.2 mappel::Gauss1DMLE::Gauss1DMLE (ImageSizeT size, double psf_sigma, const std::string & prior_type = DefaultPriorType)

Definition at line 15 of file Gauss1DMLE.cpp.

8.7.3.3 mappel::Gauss1DMLE::Gauss1DMLE (ImageSizeT size, double psf_sigma, CompositeDist && prior)

Definition at line 19 of file Gauss1DMLE.cpp.

8.7.3.4 mappel::Gauss1DMLE::Gauss1DMLE (ImageSizeT size, double psf_sigma, const CompositeDist & prior)

Definition at line 27 of file Gauss1DMLE.cpp.

8.7.3.5 mappel::Gauss1DMLE::Gauss1DMLE (const Gauss1DMLE & o)

Definition at line 35 of file Gauss1DMLE.cpp.

8.7.3.6 mappel::Gauss1DMLE::Gauss1DMLE (Gauss1DMLE && o)

Definition at line 43 of file Gauss1DMLE.cpp.

8.7.4 Member Function Documentation

8.7.4.1 void mappel::PointEmitterModel::bound_theta (ParamT & theta, double epsilon = bounds_epsilon) const [inherited]

Definition at line 248 of file PointEmitterModel.cpp.

 $References\ mappel::PointEmitterModel::lbound,\ mappel::PointEmi$

8.7.4.2 PointEmitterModel::ParamT mappel::PointEmitterModel::bounded_theta (const ParamT & theta, double epsilon = bounds_epsilon) const [inherited]

Definition at line 265 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::ubound.

Referenced by mappel::PointEmitterModel::bounded_theta_stack().

8.7.4.3 PointEmitterModel::ParamVecT mappel::PointEmitterModel::bounded_theta_stack(const ParamVecT & theta, double epsilon = bounds_epsilon) const [inherited]

Definition at line 307 of file PointEmitterModel.cpp.

 $References \quad mappel:: PointEmitterModel:: bounded_theta(), \quad mappel:: PointEmitterModel:: check_param_shape(), \quad and \\ mappel:: PointEmitterModel:: make_param_stack().$

8.7.4.4 void ImageFormat1DBase::check_image_shape(const ImageT & im) const [inherited]

Check the shape of a single images is correct for model size.

Definition at line 59 of file ImageFormat1DBase.cpp.

References mappel::ImageFormat1DBase::size.

8.7.4.5 void ImageFormat1DBase::check_image_shape(const ImageStackT & ims) const [inherited]

Check the shape of a stack of images is correct for model size.

Definition at line 71 of file ImageFormat1DBase.cpp.

References mappel::ImageFormat1DBase::size.

8.7.4.6 void mappel::PointEmitterModel::check_param_shape(const ParamT & theta) const [inherited]

Definition at line 167 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::num_params.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::bounded_theta_stack(), mappel::PointEmitterModel::reflected_theta(), mappel::PointEmitterModel::reflected_theta(), mappel::PointEmitterModel::theta_in_bounds(), and mappel::PointEmitterModel ::theta_stack in bounds().

8.7.4.7 void mappel::PointEmitterModel::check_param_shape (const ParamVecT & theta) const [inherited]

Definition at line 176 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::num params.

8.7.4.8 void mappel::PointEmitterModel::check psf sigma (double psf sigma) const [inherited]

Definition at line 185 of file PointEmitterModel.cpp.

 $References\ mappel:: PointEmitter Model:: global_max_psf_sigma,\ and\ mappel:: PointEmitter Model:: global_min_psf_colored sigma.$

Referenced by mappel::Gauss1DModel(), mappel::Gauss2DModel(), mappel::Gauss2DModel(), mappel:: \leftarrow Gauss2DsModel::Gauss2DsModel(), mappel::Gauss1DsModel::set_max_sigma(), mappel::Gauss2DsModel::set_ \leftarrow max_sigma(), mappel::Gauss1DsModel::set_min_sigma(), mappel:: \leftarrow Gauss1DModel::set_psf_sigma(), and mappel::Gauss2DModel::set_psf_sigma().

8.7.4.9 void mappel::PointEmitterModel::check_psf_sigma (const VecT & psf_sigma) const [inherited]

Definition at line 197 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::global_max_psf_sigma, and mappel::PointEmitterModel::global_min_psf_ \leftarrow sigma.

8.7.4.10 void ImageFormat1DBase::check_size(const ImageSizeT & size_) [static], [inherited]

Check the size argument for the model.

Definition at line 39 of file ImageFormat1DBase.cpp.

References mappel::ImageFormat1DBase::global_max_size, and mappel::ImageFormat1DBase::global_min_size.

Referenced by mappel::ImageFormat1DBase::ImageFormat1DBase(), and mappel::ImageFormat1DBase::set size().

8.7.4.11 int mappel::PointEmitterModel::get_hyperparam_index (const std::string & name) const [inline], [inherited]

Definition at line 236 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.7.4.12 StringVecT mappel::PointEmitterModel::get_hyperparam_names() const [inline], [inherited]

Definition at line 256 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.7.4.13 double mappel::PointEmitterModel::get_hyperparam_value (const std::string & name) const [inline], [inherited]

Definition at line 232 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

Referenced by mappel::MCMCAdaptor1D::set_background_mcmc_sampling(), and mappel::MCMCAdaptor1D::set_circle intensity_mcmc_sampling().

8.7.4.14 PointEmitterModel::ParamT mappel::PointEmitterModel::get_hyperparams () const [inline], [inherited]

Definition at line 224 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.7.4.15 ImageFormat1DBase::ImageT ImageFormat1DBase::get_image_from_stack(const ImageStackT & stack, ImageCoordT n) const [inline], [inherited]

Definition at line 108 of file ImageFormat1DBase.h.

8.7.4.16 const PointEmitterModel::ParamT & mappel::PointEmitterModel::get_lbound() const [inline], [inherited]

Definition at line 212 of file PointEmitterModel.h.

References mappel::PointEmitterModel::lbound.

Referenced by mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCMCAdaptor2D::MCMCAdaptor2D(), and mappel::MCMCAdaptor1D::set_background_mcmc_sampling().

8.7.4.17 IdxT mappel::MCMCAdaptorBase::get_mcmc_num_phases()const [inherited]

Definition at line 56 of file MCMCAdaptorBase.cpp.

References mappel::MCMCAdaptorBase::num phases.

8.7.4.18 double mappel::MCMCAdaptorBase::get_mcmc_sigma_scale()const [inherited] Definition at line 53 of file MCMCAdaptorBase.cpp. References mappel::MCMCAdaptorBase::sigma scale. 8.7.4.19 IdxT mappel::PointEmitterModel::get_num_hyperparams() const [inline], [inherited] Definition at line 208 of file PointEmitterModel.h. References mappel::PointEmitterModel::num_hyperparams. 8.7.4.20 IdxT mappel::PointEmitterModel::get_num_params() const [inline], [inherited] Definition at line 160 of file PointEmitterModel.h. References mappel::PointEmitterModel::num params. 8.7.4.21 ImageFormat1DBase::ImageCoordT ImageFormat1DBase::get_num_pixels() const [inline], [inherited] Definition at line 82 of file ImageFormat1DBase.h. References mappel::ImageFormat1DBase::size. Referenced by mappel::ImageFormat1DBase::get_stats(). 8.7.4.22 StringVecT mappel::PointEmitterModel::get_param_names() const [inline], [inherited] Definition at line 248 of file PointEmitterModel.h. References mappel::PointEmitterModel::prior. **8.7.4.23** CompositeDist & mappel::PointEmitterModel::get prior() [inline],[inherited] Definition at line 200 of file PointEmitterModel.h. References mappel::PointEmitterModel::prior. Referenced by mappel::Gauss2DModel::update_internal_1Dsum_estimators(), and mappel::Gauss2DsModel ← ::update_internal_1Dsum_estimators(). 8.7.4.24 const CompositeDist & mappel::PointEmitterModel::get_prior() const [inline], [inherited] Definition at line 204 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.7.4.25 double mappel::Gauss1DModel::get_psf_sigma()const [inline], [inherited] Definition at line 127 of file Gauss1DModel.h. References mappel::Gauss1DModel::psf_sigma. Referenced by mappel::Gauss1DModel::get_stats(). 8.7.4.26 double mappel::Gauss1DModel::get_psf_sigma(ldxT idx) const [inherited] Definition at line 131 of file Gauss1DModel.cpp. References mappel::Gauss1DModel::psf_sigma. 8.7.4.27 ParallelRngGeneratorT & mappel::PointEmitterModel::get_rng_generator() [static], [inherited] Definition at line 120 of file PointEmitterModel.cpp. References mappel::rng manager. 8.7.4.28 ParallelRngManagerT & mappel::PointEmitterModel::get_rng_manager() [static],[inherited] Definition at line 115 of file PointEmitterModel.cpp. References mappel::rng_manager. 8.7.4.29 ImageFormat1DBase::ImageSizeT ImageFormat1DBase::get_size() const [inline], [inherited] Definition at line 71 of file ImageFormat1DBase.h. References mappel::ImageFormat1DBase::size. Referenced by mappel::ImageFormat1DBase::get_stats(). 8.7.4.30 ImageFormat1DBase::ImageCoordT ImageFormat1DBase::get_size(IdxT idx) const [inherited] Definition at line 20 of file ImageFormat1DBase.cpp. References mappel::ImageFormat1DBase::size. 8.7.4.31 ImageFormat1DBase::ImageCoordT ImageFormat1DBase::get_size_image_stack(const ImageStackT & stack) const [inline],[inherited] Definition at line 101 of file ImageFormat1DBase.h. **8.7.4.32 StatsT** mappel::Gauss1DModel::get_stats() const [inherited] Definition at line 178 of file Gauss1DModel.cpp.

References mappel::Gauss1DModel::get psf sigma(), mappel::MCMCAdaptor1D::get stats(),

Format1DBase::get stats(), and mappel::PointEmitterModel::get stats().

mappel::Image ←

8.7.4.33 const PointEmitterModel::ParamT & mappel::PointEmitterModel::get_ubound () const [inline], [inherited]

Definition at line 216 of file PointEmitterModel.h.

References mappel::PointEmitterModel::ubound.

Referenced by mappel::Gauss2DsxyModel::get_max_sigma_ratio(), mappel::Gauss2DsModel::get_max_sigma_ratio(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCMCAdaptor2D(), mappel::MCMCAdaptor2D(), mappel::MCMCAdaptor1D::set background mcmc sampling(), and mappel::Gauss2DsModel::set max sigma ratio().

8.7.4.34 bool mappel::PointEmitterModel::has hyperparam (const std::string & name) const [inline], [inherited]

Definition at line 228 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.7.4.35 Gauss1DModel::Stencil mappel::Gauss1DModel::initial_theta_estimate(const ImageT & im) const [inline], [inherited]

Fast, heuristic estimate of initial theta.

Definition at line 169 of file Gauss1DModel.h.

References mappel::PointEmitterModel::make_param(), and mappel::Gauss1DModel::Stencil::theta.

8.7.4.36 Gauss1DModel::Stencil mappel::Gauss1DModel::initial_theta_estimate (const ImageT & im, const ParamT & theta_init) const [inherited]

Definition at line 207 of file Gauss1DModel.cpp.

References mappel::Gauss1DModel::Stencil::bg(), mappel::Gauss1DModel::Stencil::l(), mappel::Gauss1DModel ::make stencil(), mappel::PointEmitterModel::num params, and mappel::ImageFormat1DBase::size.

8.7.4.37 CompositeDist mappel::Gauss1DModel::make_default_prior(ldxT size, const std::string & prior_type) [static], [inherited]

Definition at line 59 of file Gauss1DModel.cpp.

References mappel::istarts_with(), mappel::Gauss1DModel::make_default_prior_beta_position(), and mappel::

Gauss1DModel::make_default_prior_beta_position().

Definition at line 80 of file Gauss1DModel.cpp.

References mappel::PointEmitterModel::default_pixel_mean_bg, mappel::PointEmitterModel::make_prior_component ← __intensity(), and mappel::PointEmitterModel::make_prior_component_position_beta().

Referenced by mappel::Gauss1DModel::make_default_prior().

8.7.4.39 CompositeDist mappel::Gauss1DModel::make_default_prior_normal_position (ldxT size) [static], [inherited]

Definition at line 90 of file Gauss1DModel.cpp.

References mappel::PointEmitterModel::default_pixel_mean_bg, mappel::PointEmitterModel::make_prior_component ← __intensity(), and mappel::PointEmitterModel::make_prior_component_position_normal().

Referenced by mappel::Gauss1DModel::make_default_prior().

8.7.4.40 ImageFormat1DBase::ImageT ImageFormat1DBase::make_image() const [inline], [inherited]

Definition at line 87 of file ImageFormat1DBase.h.

References mappel::ImageFormat1DBase::size.

8.7.4.41 ImageFormat1DBase::ImageStackT ImageFormat1DBase::make_image_stack(ImageCoordT n) const [inline], [inherited]

Definition at line 94 of file ImageFormat1DBase.h.

References mappel::ImageFormat1DBase::size.

8.7.4.42 PointEmitterModel::ParamT mappel::PointEmitterModel::make_param() const [inline], [inherited]

Definition at line 164 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

Referenced by mappel::Gauss1DModel::initial_theta_estimate(), mappel::Gauss1DsModel::initial_theta_estimate(), mappel::Gauss2DModel::initial_theta_estimate(), mappel::Gauss2DsxyModel::initial_theta_estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::Gauss1DModel::pixel_hess_update(), mappel::Gauss1DsModel::pixel_hess_update(), mappel::Gauss2DsModel::pixel_hess_update(), and mappel::Gauss2DsModel::pixel_hess_update().

8.7.4.43 template < class FillT > PointEmitterModel::ParamT mappel::PointEmitterModel::make_param (FillT fill) const [inherited]

Definition at line 181 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

8.7.4.44 MatT mappel::PointEmitterModel::make_param_mat()const [inline],[inherited]

Definition at line 172 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

8.7.4.45 template < class FillT > MatT mappel::PointEmitterModel::make_param_mat(FillT fill) const [inherited]

Definition at line 191 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

8.7.4.46 CubeT mappel::PointEmitterModel::make param mat stack(ldxT n) const [inline], [inherited]

Definition at line 176 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

8.7.4.47 template < class FillT > CubeT mappel::PointEmitterModel::make_param_mat_stack (ldxT n, FillT fill) const [inherited]

Definition at line 196 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

8.7.4.48 PointEmitterModel::ParamVecT mappel::PointEmitterModel::make_param_stack(ldxT n) const [inline], [inherited]

Definition at line 168 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

Referenced by mappel::PointEmitterModel::bounded_theta_stack(), and mappel::PointEmitterModel::reflected_theta ← __stack().

8.7.4.49 template < class FillT > PointEmitterModel::ParamVecT mappel::PointEmitterModel::make_param_stack(ldxT n, FillT fill) const [inherited]

Definition at line 186 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

8.7.4.50 CompositeDist mappel::Gauss1DModel::make_prior_beta_position (ldxT size, double beta_xpos, double mean_l, double kappa_l, double mean_bg, double kappa_bg) [static],[inherited]

Definition at line 101 of file Gauss1DModel.cpp.

References mappel::PointEmitterModel::make_prior_component_intensity(), and mappel::PointEmitterModel::make_ \leftarrow prior_component_position_beta().

Referenced by mappel::Gauss2DModel::make internal 1Dsum estimator().

8.7.4.51 prior_hessian::TruncatedGammaDist mappel::PointEmitterModel::make_prior_component_intensity (double mean = default mean I. double kappa = default intensity kappa) [static],[inherited]

Definition at line 98 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::default max I.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_beta_position(), mappel::Gauss2Ds \leftarrow default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss1DsModel::make_default_prior_normal_position(), mappel::Gauss1DsModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_prior_cormal_position(), mappel::Gauss2DModel::make_prior_beta_position(), mappel::Gauss1DsModel::make_prior_beta_position(), mappel::Gauss2DsModel::make_prior_beta_position(), mappel::Gauss2DModel::make_prior_normal_cosition(), mappel::Gauss2DsModel::make_prior_normal_cosition(), mappel::Gauss1DsModel::make_prior_normal_cosition(), mappel::Gauss2DsModel::make_prior_normal_cosition(), and mappel::Gauss2DsModel::make_prior_normal_position().

8.7.4.52 prior_hessian::ScaledSymmetricBetaDist mappel::PointEmitterModel::make_prior_component_position_beta (ldxT size, double pos_beta = default_beta_pos) [static], [inherited]

Definition at line 92 of file PointEmitterModel.cpp.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_beta_position(), mappel::Gauss1DModel::make_default_prior_beta_position(), mappel::Gauss2Ds \leftarrow Model::make_default_prior_beta_position(), mappel::Gauss1DsModel::make_prior_beta_position(), mappel::Gauss2Ds \leftarrow DModel::make_prior_beta_position(), mappel::Gauss1DModel::make_prior_beta_position(), and mappel::Gauss2Ds \leftarrow Model::make_prior_beta_position().

8.7.4.53 prior_hessian::TruncatedNormalDist mappel::PointEmitterModel::make_prior_component_position_normal(ldxT size, double pos_sigma = default_sigma_pos) [static], [inherited]

Definition at line 85 of file PointEmitterModel.cpp.

Referenced by mappel::Gauss1DsModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_ \leftarrow default_prior_normal_position(), mappel::Gauss1DModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_prior_normal_position(), mappel::Gauss2DModel::make_prior_normal_position(), mappel::Gauss1DsModel::make_prior_normal_position(), and mappel::Gauss2DsModel::make_prior_normal_position().

8.7.4.54 prior_hessian::TruncatedParetoDist mappel::PointEmitterModel::make_prior_component_sigma (double min_sigma, double max_sigma, double alpha = default_alpha_sigma) [static], [inherited]

Definition at line 104 of file PointEmitterModel.cpp.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DsModel::make_default_prior_normal_position(), mappel::Gauss2DsModel::make_default_prior_normal_position(), mappel::Gauss2DsModel::make_default_prior_normal_position(), mappel::Gauss1DsModel::make_prior_beta_position(), mappel::Gauss2DsModel::make_prior_beta_position(), and mappel ::Gauss2DsModel::make_prior_normal_position().

8.7.4.55 CompositeDist mappel::Gauss1DModel::make_prior_normal_position(ldxT size, double sigma_xpos, double mean_l, double kappa_l, double mean_bg, double kappa_bg) [static], [inherited]

Definition at line 114 of file Gauss1DModel.cpp.

References mappel::PointEmitterModel::make_prior_component_intensity(), and mappel::PointEmitterModel::make_component_position normal().

Referenced by mappel::Gauss2DModel::make_internal_1Dsum_estimator().

8.7.4.56 Gauss1DModel::Stencil mappel::Gauss1DModel::make_stencil (const ParamT & theta, bool compute_derivatives = true) const [inline], [inherited]

Make a new Model::Stencil object at theta.

Stencils store all of the important calculations necessary for evaluating the log-likelihood and its derivatives at a particular theta (parameter) value.

This allows re-use of the most expensive computations. Stencils can be easily passed around by reference, and most functions in the mappel::methods namespace accept a const Stencil reference in place of the model parameter.

Throws mappel::ModelBoundsError if not model.theta_in_bounds(theta).

If derivatives will not be computed with this stencil set compute_derivatives=false

Parameters

theta	Prameter to evaluate at
compute_derivatives	True to also prepare for derivative computations

Returns

A new Stencil object ready to compute with

Definition at line 116 of file Gauss1DModel.h.

References mappel::Gauss1DModel::Stencil::Stencil(), and mappel::PointEmitterModel::theta in bounds().

Referenced by mappel::Gauss1DModel::initial_theta_estimate().

8.7.4.57 Gauss1DMLE & mappel::Gauss1DMLE::operator= (const Gauss1DMLE & o)

Definition at line 51 of file Gauss1DMLE.cpp.

References mappel::MLEstimator::operator=(), mappel::PoissonNoise1DObjective::operator=(), mappel::Gauss1D← Model::operator=(), and mappel::PointEmitterModel::operator=().

8.7.4.58 Gauss1DMLE & mappel::Gauss1DMLE::operator= (Gauss1DMLE && o)

Definition at line 62 of file Gauss1DMLE.cpp.

References mappel::MLEstimator::operator=(), mappel::PoissonNoise1DObjective::operator=(), mappel::Gauss1D (Model::operator=(), and mappel::PointEmitterModel::operator=().

8.7.4.59 void mappel::Gauss1DModel::pixel_grad (IdxT *i*, **const Stencil &** *s*, **ParamT &** *pgrad*) **const** [inline], [inherited]

Definition at line 141 of file Gauss1DModel.h.

References mappel::Gauss1DModel::Stencil::DX, mappel::Gauss1DModel::Stencil::I(), and mappel::Gauss1DModel ← ::Stencil::X.

Referenced by mappel::Gauss1DModel::pixel_hess_update().

8.7.4.60 void mappel::Gauss1DModel::pixel_grad2 (ldxT i, const Stencil & s, ParamT & pgrad2) const [inline], [inherited]

Definition at line 150 of file Gauss1DModel.h.

References mappel::Gauss1DModel::Stencil::DXS, mappel::Gauss1DModel::Stencil::I(), and mappel::Gauss1D \leftarrow Model::psf sigma.

8.7.4.61 void mappel::Gauss1DModel::pixel_hess (ldxT i, const Stencil & s, MatT & hess) const [inline], [inherited]

Definition at line 159 of file Gauss1DModel.h.

 $References\ mappel::Gauss1DModel::Stencil::DXS,\ mappel::Gauss1DModel::Stencil::DXS,\ mappel::Gauss1DModel::\hookrightarrow Stencil::I(),\ and\ mappel::Gauss1DModel::psf_sigma.$

8.7.4.62 void mappel::Gauss1DModel::pixel_hess_update (IdxT i, const Stencil & s, double dm_ratio_m1, double dmm_ratio, ParamT & grad, MatT & hess) const [inherited]

pixel derivative inner loop calculations.

Definition at line 191 of file Gauss1DModel.cpp.

References mappel::Gauss1DModel::Stencil::DXS, mappel::Gauss1DModel::Stencil::I(), mappel::PointEmitterModel ::make param(), mappel::Gauss1DModel::pixel grad(), and mappel::Gauss1DModel::psf sigma.

8.7.4.63 double mappel::Gauss1DModel::pixel_model_value(ldxT i, const Stencil & s) const [inline], [inherited]

Definition at line 135 of file Gauss1DModel.h.

References mappel::Gauss1DModel::Stencil::bg(), mappel::Gauss1DModel::Stencil::I(), and mappel::Gauss1DModel ← ::Stencil::X.

8.7.4.64 PointEmitterModel::ParamT mappel::PointEmitterModel::reflected_theta (const ParamT & theta) const [inherited]

Definition at line 276 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::ubound.

Referenced by mappel::PointEmitterModel::reflected_theta_stack().

8.7.4.65 PointEmitterModel::ParamVecT mappel::PointEmitterModel::reflected_theta_stack (const ParamVecT & theta) const [inherited]

Definition at line 317 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::make_param_stack(), and mappel::PointEmitterModel::reflected theta().

8.7.4.66 void mappel::PointEmitterModel::rename_hyperparam (const std::string & old_name, const std::string & new_name)
[inline], [inherited]

Definition at line 244 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.7.4.67 void mappel::MCMCAdaptor1D::sample_mcmc_candidate (ldxT sample_index, ParamT & candidate, double step_scale = 1.0) [inherited]

Definition at line 108 of file MCMCAdaptor1D.cpp.

References mappel::MCMCAdaptor1D::eta_bg, mappel::MCMCAdaptor1D::eta_l, mappel::MCMCAdaptor1D::eta_c x, mappel::MCMCAdaptorBase::num_phases, and mappel::rng_manager.

8.7.4.68 template < class RngT > PointEmitterModel::ParamT mappel::PointEmitterModel::sample_prior (RngT & rng) [inherited]

Definition at line 264 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.7.4.69 PointEmitterModel::ParamT mappel::PointEmitterModel::sample_prior() [inline], [inherited]

Definition at line 268 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior, and mappel::rng manager.

8.7.4.70 void mappel::MCMCAdaptor1D::set_background_mcmc_sampling (double eta_bg = -1) [inherited]

Definition at line 81 of file MCMCAdaptor1D.cpp.

References mappel::PointEmitterModel::default_pixel_mean_bg, mappel::MCMCAdaptor1D::eta_bg, mappel::PointcointcointerModel::get_hyperparam_value(), mappel::PointEmitterModel::get_bound(), mappel::PointEmitterModel::get_cointcointermodel::get_cointcoint

Referenced by mappel::MCMCAdaptor1D::MCMCAdaptor1D().

8.7.4.71 void mappel::PointEmitterModel::set_bounds (const ParamT & *lbound_*, const ParamT & *ubound_*) [inherited]

Box-type parameter bounds

Modifies the prior bounds to prevent sampling outside the valid box-constraints.

Definition at line 213 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounds_epsilon, mappel::PointEmitterModel::lbound, mappel::PointEmitter Model::num_params, mappel::PointEmitterModel::prior, and mappel::PointEmitterModel::ubound.

Definition at line 260 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.7.4.73 void mappel::PointEmitterModel::set_hyperparam_value (const std::string & name, double value) [inline], [inherited]

Definition at line 240 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.7.4.74 void mappel::PointEmitterModel::set_hyperparams (const VecT & hyperparams) [inline], [inherited]

Definition at line 220 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

Referenced by mappel::Gauss2DModel::set_hyperparams(), and mappel::Gauss2DsModel::set_hyperparams().

8.7.4.75 template < class ImT > void ImageFormat1DBase::set_image_in_stack (ImageStackT & stack, ImageCoordT n, const ImT & im) const [inherited]

Definition at line 115 of file ImageFormat1DBase.h.

8.7.4.76 void mappel::MCMCAdaptor1D::set_intensity_mcmc_sampling (double eta_l = -1) [inherited]

Definition at line 65 of file MCMCAdaptor1D.cpp.

References mappel::PointEmitterModel::default_mean_I, mappel::MCMCAdaptor1D::eta_I, mappel::PointEmitter ← Model::get hyperparam value(), and mappel::MCMCAdaptorBase::sigma scale.

Referenced by mappel::MCMCAdaptor1D::MCMCAdaptor1D().

8.7.4.77 void mappel::PointEmitterModel::set_lbound (const ParamT & lbound) [inherited]

Definition at line 226 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounds_epsilon, mappel::PointEmitterModel::lbound, mappel::PointEmitter ← Model::num_params, mappel::PointEmitterModel::prior, and mappel::PointEmitterModel::ubound.

Referenced by mappel::Gauss1DsModel::set_min_sigma().

8.7.4.78 void mappel::MCMCAdaptorBase::set_mcmc_num_phases (ldxT num_phases) [protected], [inherited]

Definition at line 59 of file MCMCAdaptorBase.cpp.

References mappel::MCMCAdaptorBase::num phases.

Referenced by mappel::MCMCAdaptor1Ds::MCMCAdaptor1Ds(), and mappel::MCMCAdaptor2Ds::MCMCAdaptor2 → Ds().

8.7.4.79 void mappel::MCMCAdaptorBase::set mcmc sigma scale (double scale) [inherited]

Definition at line 39 of file MCMCAdaptorBase.cpp.

References mappel::MCMCAdaptorBase::global_max_mcmc_sigma_scale, and mappel::MCMCAdaptorBase::sigma ← scale.

8.7.4.80 void mappel::PointEmitterModel::set_param_names (const StringVecT & desc) [inline], [inherited]

Definition at line 252 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.7.4.81 void mappel::PointEmitterModel::set_prior(CompositeDist && prior_) [inherited]

Definition at line 158 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::num_hyperparams, mappel::PointEmitterModel::pointEmitterModel::pointEmitterModel::ubound.

Referenced by mappel::Gauss2DModel::set prior(), and mappel::Gauss2DsModel::set prior().

8.7.4.82 void mappel::PointEmitterModel::set_prior (const CompositeDist & prior_) [inherited]

Definition at line 149 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::Ibound, mappel::PointEmitterModel::num_hyperparams, mappel::PointEmitterModel::prior, and mappel::PointEmitterModel::ubound.

8.7.4.83 void mappel::Gauss1DModel::set_psf_sigma (double new_psf_sigma) [inherited]

Definition at line 125 of file Gauss1DModel.cpp.

References mappel::PointEmitterModel::check_psf_sigma(), and mappel::Gauss1DModel::psf_sigma.

Referenced by mappel::Gauss1DModel::set_psf_sigma(), and mappel::Gauss2DModel::set_psf_sigma().

8.7.4.84 void mappel::Gauss1DModel::set_psf_sigma(const VecT & new_psf_sigma) [inline], [inherited]

Definition at line 131 of file Gauss1DModel.h.

References mappel::Gauss1DModel::set_psf_sigma().

8.7.4.85 void mappel::PointEmitterModel::set_rng_seed(RngSeedT seed) [static],[inherited]

Definition at line 110 of file PointEmitterModel.cpp.

References mappel::rng manager.

8.7.4.86 void ImageFormat1DBase::set_size (const ImageSizeT & size_) [inherited]

Definition at line 30 of file ImageFormat1DBase.cpp.

References mappel::ImageFormat1DBase::check size(), and mappel::ImageFormat1DBase::size.

Referenced by mappel::ImageFormat1DBase::set_size(), mappel::Gauss2DModel::set_size(), and mappel::Gauss2 \leftarrow DsModel::set_size().

8.7.4.87 void ImageFormat1DBase::set_size (const arma::Col < ImageCoordT > & sz) [inline], [inherited]

Definition at line 75 of file ImageFormat1DBase.h.

References mappel::ImageFormat1DBase::set_size().

8.7.4.88 void mappel::PointEmitterModel::set_ubound (const ParamT & ubound) [inherited]

Definition at line 237 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounds_epsilon, mappel::PointEmitterModel::lbound, mappel::PointEmitter Wodel::num params, mappel::PointEmitterModel::prior, and mappel::PointEmitterModel::ubound.

Referenced by mappel::Gauss1DsModel::set max sigma(), and mappel::Gauss2DsModel::set max sigma ratio().

8.7.4.89 bool mappel::PointEmitterModel::theta_in_bounds (const ParamT & theta) const [inherited]

Definition at line 257 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::Point← EmitterModel::num params, and mappel::PointEmitterModel::ubound.

Referenced by mappel::Gauss2DModel::initial_theta_estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::Gauss1DModel::make_stencil(), mappel::Gauss2DModel::make_stencil(), mappel::Gauss2DsModel::make_stencil(), mappel::Gauss2DsModel::make_stencil(), and mappel::Point
EmitterModel::theta_stack_in_bounds().

8.7.4.90 BoolVecT mappel::PointEmitterModel::theta_stack_in_bounds (const ParamVecT & theta) const [inherited]

Definition at line 297 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check param shape(), and mappel::PointEmitterModel::theta in bounds().

8.7.5 Member Data Documentation

8.7.5.1 const double mappel::PointEmitterModel::bounds_epsilon = 1.0E-6 [static], [inherited]

Distance from the boundary to constrain in bound_theta and bounded_theta methods

Definition at line 52 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::set_bounds(), mappel::PointEmitterModel::set_lbound(), mappel::Gauss2 DsModel::set_max_sigma_ratio(), and mappel::PointEmitterModel::set_ubound().

8.7.5.2 const double mappel::PointEmitterModel::default_alpha_sigma = 2 [static], [inherited]

Default per-pixel background gamma distribution shape

Definition at line 62 of file PointEmitterModel.h.

8.7.5.3 const double mappel::PointEmitterModel::default_beta_pos = 3 [static], [inherited]

Default position parameter in symmetric beta-distributions

Definition at line 56 of file PointEmitterModel.h.

8.7.5.4 const double mappel::PointEmitterModel::default_intensity_kappa = 2 [static], [inherited]

Default shape for intensity gamma distributions

Definition at line 60 of file PointEmitterModel.h.

8.7.5.5 const double mappel::PointEmitterModel::default_max_I = INFINITY [static], [inherited]

Default maximum emitter intensity

Definition at line 59 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::make_prior_component_intensity().

8.7.5.6 const double mappel::PointEmitterModel::default_mean_l = 300 [static], [inherited]

Default emitter intensity mean

Definition at line 58 of file PointEmitterModel.h.

Referenced by mappel::MCMCAdaptor1D::set intensity mcmc sampling().

8.7.5.7 const double mappel::PointEmitterModel::default_pixel_mean_bg = 4 [static], [inherited]

Default per-pixel mean background counts

Definition at line 61 of file PointEmitterModel.h.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DModel::make default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_beta_position(), mappel::Gauss1DModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), and mappel::MCMCAdaptor1D control control

8.7.5.8 const double mappel::PointEmitterModel::default_sigma_pos = 1 [static], [inherited]

Default position parameter in symmetric beta-distributions

Definition at line 57 of file PointEmitterModel.h.

8.7.5.9 const std::string mappel::Gauss1DModel::DefaultPriorType = "Normal" [static], [inherited]

Definition at line 53 of file Gauss1DModel.h.

Referenced by mappel::Gauss1DModel::operator=().

8.7.5.10 const std::string mappel::PointEmitterModel::DefaultSeperableInitEstimator = "TrustRegion" [static], [inherited]

Estimator name to use in 1D separable initializations

Definition at line 49 of file PointEmitterModel.h.

Referenced by mappel::Gauss2DModel::initial_theta_estimate(), mappel::Gauss2DsxyModel::initial_theta_estimate(), and mappel::Gauss2DsModel::initial_theta_estimate().

8.7.5.11 const std::vector < std::string > mappel::PoissonNoise1DObjective::estimator_names [static], [inherited]

Definition at line 24 of file PoissonNoise1DObjective.h.

8.7.5.12 double mappel::MCMCAdaptor1D::eta_bg = 0 [protected], [inherited]

The standard deviation for the normally distributed perturbation to theta_bg in the random walk MCMC sampling

Definition at line 32 of file MCMCAdaptor1D.h.

Referenced by mappel::MCMCAdaptor1D::get_stats(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCMCAdaptor1D(), mappel::MCMCAdaptor2Dscample_mcmc_candidate(), mappel::MCMCAdaptor2Dscample_mcmc_candidate(), mappel::MCMCAdaptor1Dccample_mcmc_candidate(), mappel::MCMCAdaptor1Dccample_mcmc_candidate(), and mappel::MCMCAdaptor1Dccample_mcmc_sampling().

8.7.5.13 double mappel::MCMCAdaptor1D::eta_I = 0 [protected], [inherited]

The standard deviation for the normally distributed perturbation to theta_I in the random walk MCMC sampling

Definition at line 31 of file MCMCAdaptor1D.h.

Referenced by mappel::MCMCAdaptor1D::get_stats(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCCAdaptor1D(), mappel::MCMCAdaptor2D::sample_mcmc_candidate(), mappel::MCMCAdaptor2Ds \leftarrow ::sample_mcmc_candidate(), mappel::MCMCAdaptor1D::sample_mcmc_candidate(), mappel::MCMCAdaptor1D \leftarrow ::sample_mcmc_candidate(), and mappel::MCMCAdaptor1D::set_intensity_mcmc_sampling().

8.7.5.14 double mappel::MCMCAdaptor1D::eta_x = 0 [protected], [inherited]

The standard deviation for the normally distributed perturbation to theta_x in the random walk MCMC sampling

Definition at line 30 of file MCMCAdaptor1D.h.

Referenced by mappel::MCMCAdaptor1D::get_stats(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::M \leftarrow CMCAdaptor1D::operator=(), mappel::MCMCAdaptor2D::sample_mcmc_candidate(), mappel::MCMCAdaptor1Ds \hookleftarrow ::sample_mcmc_candidate(), mappel::MCMCAdaptor2Ds::sample_mcmc_candidate(), and mappel::MCMCAdaptor1 \hookleftarrow D::sample_mcmc_candidate().

8.7.5.15 const double mappel::MCMCAdaptorBase::global_default_mcmc_sigma_scale = 0.05 [static], [inherited]

Definition at line 16 of file MCMCAdaptorBase.h.

Referenced by mappel::MCMCAdaptor1Ds::MCMCAdaptor1Ds(), mappel::MCMCAdaptor2D::MCMCAdaptor2D(), and mappel::MCMCAdaptor2Ds::MCMCAdaptor2Ds().

8.7.5.16 const double mappel::MCMCAdaptorBase::global_max_mcmc_sigma_scale = 0.5 [static], [inherited]

Definition at line 17 of file MCMCAdaptorBase.h.

Referenced by mappel::MCMCAdaptorBase::MCMCAdaptorBase(), and mappel::MCMCAdaptorBase::set_mcmc_ sigma scale().

```
8.7.5.17 const double mappel::PointEmitterModel::global_max_psf_sigma = 1E2 [static], [inherited]
```

Global maxmimum for any psf_sigma. Sizes above this value are invalid, and nowhere near useful for practical point emitter localization

Definition at line 54 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::check_psf_sigma().

```
8.7.5.18 const ImageFormat1DBase::ImageCoordT ImageFormat1DBase::global_max_size = 512 [static], [inherited]
```

Maximum size along any dimension of the image. This is insanely big to catch obvious errors

Definition at line 40 of file ImageFormat1DBase.h.

Referenced by mappel::ImageFormat1DBase::check_size().

```
8.7.5.19 const double mappel::PointEmitterModel::global_min_psf_sigma = 1E-1 [static], [inherited]
```

Global minimum for any psf_sigma. Sizes below this value are invalid, and nowhere near useful for practical point emitter localization

Definition at line 53 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::check_psf_sigma().

Minimum size along any dimension of the image.

Definition at line 39 of file ImageFormat1DBase.h.

Referenced by mappel::ImageFormat1DBase::check_size().

```
8.7.5.21 ParamT mappel::PointEmitterModel::lbound [protected], [inherited]
```

Definition at line 148 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel ::PointEmitterModel::bounded_theta(), mappel ::PointEmitterModel::get_lbound(), mappel::PointEmitterModel::get_stats(), mappel::Gauss1DsModel::initial_theta = estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::PointEmitterModel::pointEmitterModel::reflected_theta(), mappel::PointEmitterModel = ::set_bounds(), mappel::PointEmitterModel::set_lbound(), mappel::PointEmitterModel::set_prior(), mappel::PointEmitterModel::set_bounds().

```
8.7.5.22 const std::string mappel::Gauss1DMLE::name [static]
```

Definition at line 34 of file Gauss1DMLE.h.

8.7.5.23 const ImageFormat1DBase::ImageCoordT ImageFormat1DBase::num_dim = 1 [static], [inherited]

Number of image dimensions.

Definition at line 38 of file ImageFormat1DBase.h.

Referenced by mappel::ImageFormat1DBase::get_stats().

8.7.5.24 IdxT mappel::PointEmitterModel::num_hyperparams [protected], [inherited]

Definition at line 147 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::get_num_hyperparams(), mappel::PointEmitterModel::get_stats(), mappel::PointEmitterModel::operator=(), and mappel::PointEmitterModel::set_prior().

8.7.5.25 IdxT mappel::PointEmitterModel::num_params [protected], [inherited]

Definition at line 146 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel ::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::get_num_params(), mappel::PointEmitter
Model::get_stats(), mappel::Gauss1DModel::initial_theta_estimate(), mappel::Gauss2DModel::initial_theta_estimate(), mappel::PointEmitterModel::make_param(), mappel::PointEmitterModel::make_param(), mappel::PointEmitterModel::make_param_mat_stack(), mappel::PointEmitterModel::make_param_stack(), mappel::PointEmitterModel::pointEmit

8.7.5.26 IdxT mappel::MCMCAdaptorBase::num_phases [protected],[inherited]

The number of different sampling phases for candidate selection MCMC. Each phase changes a different subset of variables.

Definition at line 29 of file MCMCAdaptorBase.h.

Referenced by mappel::MCMCAdaptorBase::get_mcmc_num_phases(), mappel::MCMCAdaptorBase::get_stats(), mappel::MCMCAdaptor2Ds::sample_mcmc_candidate(), mappel::MCMCAdaptor1Ds::sample_mcmc_candidate(), mappel::MCMCAdaptor1Ds::sample_mcmc_candidate(), and mappel::MCMCAdaptorBase::set_mcmc_num_phases().

8.7.5.27 CompositeDist mappel::PointEmitterModel::prior [protected], [inherited]

Definition at line 145 of file PointEmitterModel.h.

Referenced by mappel::Gauss2DModel::debug_internal_sum_model_y(), mappel::Gauss2DsModel::debug_internal \
_sum_model_y(), mappel::Gauss2DModel::Gauss2DModel(), mappel::Gauss2DsModel::Gauss2DsModel(), mappel \
::PointEmitterModel::get_hyperparam_index(), mappel::PointEmitterModel::get_hyperparam_names(), mappel::PointEmitterModel::get_hyperparam_names(), mappel::PointEmitterModel::get_param_names(), mappel::PointEmitterModel::get_param_names(), mappel::PointEmitterModel::get_param_names(), mappel::PointEmitterModel::get_param_names(), mappel::PointEmitterModel::pointEmitterModel::has_\(\cdot \) hyperparam(), mappel::PointEmitterModel::pointEmitterModel::pointEmitterModel(), mappel::PointEmitterModel(), mappel::PointEmitterModel::set_hyperparam_names(), mappel::PointEmitterModel::set_hyperparam-\(\cdot \) value(), mappel::PointEmitterModel::set_hyperparam-\(\cdot \) nappel::PointEmitterModel::set_hyperparam-\(\cdot \) nappel::PointEmitterModel::set_hyperparam-\(\cdot \) nappel::PointEmitterModel::set_param-\(\cdot \) nappel::PointEmitterModel::set_param-\(\cdot \) nappel::PointEmitterModel::set_param-\(\cdot \) nappel::PointEmitterModel::set_param-\(\cdot \cdot \) nappel::PointEmitterModel::set_param-\(\cdot \cdot \) nappel::PointEmitterModel::set_param-\(\cdot \cdot \cdot \) nappel::PointEmitterModel::set_param-\(\cdot \cdo

8.7.5.28 const StringVecT mappel::Gauss1DModel::prior_types [static], [inherited]

Initial value:

```
= { "Beta", "Normal" }
```

Definition at line 52 of file Gauss1DModel.h.

Referenced by mappel::Gauss1DModel::operator=().

```
8.7.5.29 double mappel::Gauss1DModel::psf_sigma [protected], [inherited]
```

Standard deviation of the fixed-sigma 1D Gaussian PSF in pixels

Definition at line 90 of file Gauss1DModel.h.

Referenced by mappel::Gauss1DModel::Stencil::compute_derivatives(), mappel::Gauss1DModel::get_psf_sigma(), mappel::Gauss1DModel::pixel_prad2(), mappel::Gauss1DModel::pixel_hess(), mappel::Gauss1DModel::pixel_hess_update(), mappel::Gauss1DModel::set_psf_sigma(), and mappel::Gauss1D Model::Stencil().

```
8.7.5.30 double mappel::MCMCAdaptorBase::sigma_scale [protected], [inherited]
```

A scaling factor for step sizes as a fraction of the size of the domain dimension we are walking in. (0.05 default)

Definition at line 30 of file MCMCAdaptorBase.h.

```
8.7.5.31 ImageSizeT mappel::ImageFormat1DBase::size [protected], [inherited]
```

Number of pixels in X dimension for 1D image

Definition at line 65 of file ImageFormat1DBase.h.

8.7.5.32 ParamT mappel::PointEmitterModel::ubound [protected], [inherited]

Definition at line 148 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel ::PointEmitterModel::get_ubound(), mappel::Gauss1DsModel::initial_theta == estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::PointEmitterModel::pointEmitterModel

The documentation for this class was generated from the following files:

- · Gauss1DMLE.h
- · Gauss1DMLE.cpp

8.8 mappel::Gauss1DModel Class Reference

A base class for 1D Gaussian PSF with a fixed sigma (standard dev.)

#include </home/travis/build/markjolah/Mappel/include/Mappel/Gauss1DModel.h>

Inheritance diagram for mappel::Gauss1DModel:

Classes

· class Stencil

Stencil for 1D fixed-sigma models.

Public Types

```
using StencilVecT = std::vector< Stencil >
using ParamT = arma::vec
using ParamVecT = arma::mat
using ImageCoordT = uint32_t
using ImagePixelT = double
template<class CoordT >
using ImageSizeShapeT = CoordT
template<class CoordT >
using ImageSizeVecShapeT = arma::Col< CoordT >
using ImageSizeVecShapeT = lmageSizeShapeT< ImageCoordT >
using ImageSizeVecT = ImageSizeVecShapeT< ImageCoordT >
template<class PixelT >
using ImageShapeT = arma::Col< PixelT >
template<class PixelT >
using ImageStackShapeT = arma::Mat< PixelT >
```

Public Member Functions

- double get_psf_sigma () const
- double get_psf_sigma (ldxT idx) const
- void set psf sigma (double new psf sigma)

using ImageT = ImageShapeT < ImagePixeIT >

using ImageStackT = ImageStackShapeT < ImagePixeIT >

- void set psf sigma (const VecT &new psf sigma)
- StatsT get_stats () const
- Stencil make_stencil (const ParamT &theta, bool compute_derivatives=true) const

Make a new Model::Stencil object at theta.

- · double pixel model value (ldxT i, const Stencil &s) const
- void pixel_grad (ldxT i, const Stencil &s, ParamT &pgrad) const
- void pixel_grad2 (ldxT i, const Stencil &s, ParamT &pgrad2) const
- void pixel hess (IdxT i, const Stencil &s, MatT &hess) const
- void pixel_hess_update (ldxT i, const Stencil &s, double dm_ratio_m1, double dmm_ratio, ParamT &grad, MatT &hess) const

pixel derivative inner loop calculations.

Stencil initial theta estimate (const ImageT &im) const

Fast, heuristic estimate of initial theta.

- Stencil initial_theta_estimate (const ImageT &im, const ParamT &theta_init) const
- IdxT get num params () const
- · void check param shape (const ParamT &theta) const
- void check param shape (const ParamVecT &theta) const
- void check_psf_sigma (double psf_sigma) const
- void check_psf_sigma (const VecT &psf_sigma) const
- ParamT make_param () const
- template<class FillT >

ParamT make param (FillT fill) const

- ParamVecT make_param_stack (ldxT n) const
- template < class FillT >

ParamVecT make param stack (IdxT n, FillT fill) const

- MatT make_param_mat () const
- template<class FillT >

MatT make param mat (FillT fill) const

- CubeT make_param_mat_stack (ldxT n) const
- template<class FillT >

CubeT make_param_mat_stack (ldxT n, FillT fill) const

- CompositeDist & get prior ()
- const CompositeDist & get_prior () const
- void set prior (CompositeDist &&prior)
- void set prior (const CompositeDist &prior)
- IdxT get num hyperparams () const
- void set hyperparams (const VecT &hyperparams)
- VecT get_hyperparams () const
- bool has hyperparam (const std::string &name) const
- double get hyperparam value (const std::string &name) const
- int get_hyperparam_index (const std::string &name) const
- void set_hyperparam_value (const std::string &name, double value)
- void rename hyperparam (const std::string &old name, const std::string &new name)
- StringVecT get_param_names () const
- void set_param_names (const StringVecT &desc)
- StringVecT get hyperparam names () const
- void set_hyperparam_names (const StringVecT &desc)
- template<class RngT >

ParamT sample_prior (RngT &rng)

- ParamT sample_prior ()
- void set bounds (const ParamT &lbound, const ParamT &ubound)
- void set Ibound (const ParamT &lbound)
- · void set ubound (const ParamT &ubound)
- const ParamT & get_lbound () const
- · const ParamT & get ubound () const
- bool theta in bounds (const ParamT &theta) const
- void bound_theta (ParamT &theta, double epsilon=bounds_epsilon) const
- ParamT bounded theta (const ParamT &theta, double epsilon=bounds epsilon) const
- ParamT reflected theta (const ParamT &theta) const
- BoolVecT theta_stack_in_bounds (const ParamVecT &theta) const
- ParamVecT bounded_theta_stack (const ParamVecT &theta, double epsilon=bounds_epsilon) const
- ParamVecT reflected_theta_stack (const ParamVecT &theta) const
- ImageT make_image () const
- ImageStackT make image stack (ImageCoordT n) const
- ImageCoordT get_size_image_stack (const ImageStackT &stack) const
- ImageT get_image_from_stack (const ImageStackT &stack, ImageCoordT n) const
- template<class ImT >

void set_image_in_stack (ImageStackT &stack, ImageCoordT n, const ImT &im) const

- ImageSizeT get size () const
- ImageCoordT get_size (IdxT idx) const
- ImageCoordT get_num_pixels () const
- void set_size (const ImageSizeT &size_)
- void set_size (const arma::Col< ImageCoordT > &sz)
- void check image shape (const ImageT &im) const

Check the shape of a single images is correct for model size.

void check image shape (const ImageStackT &ims) const

Check the shape of a stack of images is correct for model size.

- void sample mcmc candidate (ldxT sample index, ParamT &candidate, double step scale=1.0)
- void set intensity mcmc sampling (double eta I=-1)
- void set background mcmc sampling (double eta bg=-1)
- void set mcmc sigma scale (double scale)
- double get mcmc sigma scale () const
- · IdxT get mcmc num phases () const

Static Public Member Functions

- static CompositeDist make default prior (IdxT size, const std::string &prior type)
- static CompositeDist make default prior beta position (IdxT size)
- static CompositeDist make_default_prior_normal_position (ldxT size)
- static CompositeDist make_prior_beta_position (ldxT size, double beta_xpos, double mean_l, double kappa_l, double mean bg, double kappa bg)
- static CompositeDist make_prior_normal_position (ldxT size, double sigma_xpos, double mean_I, double kappa I, double mean bg, double kappa bg)
- static prior_hessian::TruncatedNormalDist make_prior_component_position_normal (ldxT size, double pos_
 sigma=default_sigma_pos)
- static prior_hessian::ScaledSymmetricBetaDist make_prior_component_position_beta (ldxT size, double pos_
 beta=default_beta_pos)
- static prior_hessian::TruncatedParetoDist make_prior_component_sigma (double min_sigma, double max_ double alpha=default_alpha_sigma)
- static void set_rng_seed (RngSeedT seed)
- static ParallelRngManagerT & get_rng_manager ()
- static ParallelRngGeneratorT & get_rng_generator ()
- static void check_size (const ImageSizeT &size_)

Check the size argument for the model.

Static Public Attributes

- static const StringVecT prior types
- static const std::string DefaultPriorType = "Normal"
- static const std::string DefaultSeperableInitEstimator = "TrustRegion"
- static const double bounds epsilon = 1.0E-6
- static const double global_min_psf_sigma = 1E-1
- static const double global max psf sigma = 1E2
- static const double default_beta_pos = 3
- static const double default_sigma_pos = 1
- static const double default_mean_I = 300
- static const double default_max_I = INFINITY
- static const double default_intensity_kappa = 2
- static const double default_pixel_mean_bg = 4
- static const double default_alpha_sigma = 2
- static const ImageCoordT num_dim = 1
- static const ImageCoordT global min size = 3
- static const ImageCoordT global_max_size = 512
- static const double global default mcmc sigma scale = 0.05
- static const double global max mcmc sigma scale = 0.5

Protected Member Functions

- Gauss1DModel (IdxT size, double psf_sigma)
- Gauss1DModel (const Gauss1DModel &o)
- Gauss1DModel (Gauss1DModel &&o)
- Gauss1DModel & operator= (const Gauss1DModel &o)
- Gauss1DModel & operator= (Gauss1DModel &&o)
- void set mcmc num phases (ldxT num phases)

Protected Attributes

- double psf sigma
- · CompositeDist prior
- · IdxT num params
- IdxT num_hyperparams
- ParamT Ibound
- ParamT ubound
- ImageSizeT size
- double eta_x =0
- double eta I =0
- double eta_bg =0
- IdxT num_phases
- double sigma_scale

8.8.1 Detailed Description

A base class for 1D Gaussian PSF with a fixed sigma (standard dev.)

This base class defines the Stencil type for 1D Gaussian PSF as well as the prior shape and parameters.

Initialized by an integer, size, and double, psf_sigma.

Definition at line 24 of file Gauss1DModel.h.

8.8.2 Member Typedef Documentation

8.8.2.1 using mappel::ImageFormat1DBase::ImageCoordT = uint32_t [inherited]

Image size coordinate storage type

Definition at line 25 of file ImageFormat1DBase.h.

8.8.2.2 using mappel::ImageFormat1DBase::ImagePixelT = double [inherited]

Image pixel storage type

Definition at line 26 of file ImageFormat1DBase.h.

8.8.2.3 template < class PixelT > using mappel::ImageFormat1DBase::ImageShapeT = arma::Col < PixelT > [inherited]

Shape of the data type for a single image

Definition at line 33 of file ImageFormat1DBase.h.

8.8.2.4 template < class CoordT > using mappel::ImageFormat1DBase::ImageSizeShapeT = CoordT [inherited]

Shape of the data type to store 1-image's coordinates

Definition at line 28 of file ImageFormat1DBase.h.

8.8.2.5 using mappel::ImageFormat1DBase::ImageSizeT = ImageSizeShapeT < ImageCoordT > [inherited]

Data type for a single image size

Definition at line 30 of file ImageFormat1DBase.h.

8.8.2.6 template < class CoordT > using mappel::ImageFormat1DBase::ImageSizeVecShapeT = arma::Col < CoordT > [inherited]

Shape of the data type to store a vector of image's coordinates

Definition at line 29 of file ImageFormat1DBase.h.

8.8.2.7 using mappel::ImageFormat1DBase::ImageSizeVecT = ImageSizeVecShapeT < ImageCoordT > [inherited]

Data type for a sequence of image sizes

Definition at line 31 of file ImageFormat1DBase.h.

8.8.2.8 template < class PixeIT > using mappel::ImageFormat1DBase::ImageStackShapeT = arma::Mat < PixeIT > [inherited]

Shape of the data type for a sequence of images

Definition at line 34 of file ImageFormat1DBase.h.

8.8.2.9 using mappel::ImageFormat1DBase::ImageStackT = ImageStackShapeT < ImagePixeIT > [inherited]

Data type to represent a sequence of images

Definition at line 36 of file ImageFormat1DBase.h.

8.8.2.10 using mappel::ImageFormat1DBase::ImageT = ImageShapeT < ImagePixeIT > [inherited]

Data type to represent single image

Definition at line 35 of file ImageFormat1DBase.h.

8.8.2.11 using mappel::PointEmitterModel::ParamT = arma::vec [inherited]

Parameter vector

Definition at line 47 of file PointEmitterModel.h.

8.8.2.12 using mappel::PointEmitterModel::ParamVecT = arma::mat [inherited]

Vector of parameter vectors

Definition at line 48 of file PointEmitterModel.h.

8.8.2.13 using mappel::Gauss1DModel::StencilVecT = std::vector<Stencil>

Definition at line 49 of file Gauss1DModel.h.

8.8.3 Constructor & Destructor Documentation

8.8.3.1 mappel::Gauss1DModel::Gauss1DModel (ldxT size, double psf_sigma) [protected]

Definition at line 12 of file Gauss1DModel.cpp.

References mappel::PointEmitterModel::check_psf_sigma().

8.8.3.2 mappel::Gauss1DModel::Gauss1DModel (const Gauss1DModel & o) [protected]

Definition at line 20 of file Gauss1DModel.cpp.

8.8.3.3 mappel::Gauss1DModel::Gauss1DModel && o) [protected]

Definition at line 26 of file Gauss1DModel.cpp.

8.8.4 Member Function Documentation

8.8.4.1 void mappel::PointEmitterModel::bound_theta (ParamT & theta, double epsilon = bounds_epsilon) const [inherited]

Definition at line 248 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::Point← EmitterModel::num params, and mappel::PointEmitterModel::ubound.

8.8.4.2 PointEmitterModel::ParamT mappel::PointEmitterModel::bounded_theta (const ParamT & theta, double epsilon = bounds epsilon) const [inherited]

Definition at line 265 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::ubound, mappel::PointEmitterModel::ubound.

Referenced by mappel::PointEmitterModel::bounded theta stack().

8.8.4.3 PointEmitterModel::ParamVecT mappel::PointEmitterModel::bounded_theta_stack(const ParamVecT & theta, double epsilon = bounds_epsilon) const [inherited]

Definition at line 307 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::check_param_shape(), and mappel::PointEmitterModel::make param stack().

8.8.4.4 void ImageFormat1DBase::check_image_shape(const ImageT & im) const [inherited]

Check the shape of a single images is correct for model size.

Definition at line 59 of file ImageFormat1DBase.cpp.

References mappel::ImageFormat1DBase::size.

8.8.4.5 void ImageFormat1DBase::check_image_shape(const ImageStackT & ims) const [inherited]

Check the shape of a stack of images is correct for model size.

Definition at line 71 of file ImageFormat1DBase.cpp.

References mappel::ImageFormat1DBase::size.

8.8.4.6 void mappel::PointEmitterModel::check_param_shape(const ParamT & theta) const [inherited]

Definition at line 167 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::num_params.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::reflected_theta(), mappel::PointEmitterModel::reflected_theta(), mappel::PointEmitterModel::theta_in_bounds(), and mappel::PointEmitterModel \leftarrow ::theta_stack_in_bounds().

8.8.4.7 void mappel::PointEmitterModel::check_param_shape (const ParamVecT & theta) const [inherited]

Definition at line 176 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::num params.

8.8.4.8 void mappel::PointEmitterModel::check_psf_sigma (double psf_sigma) const [inherited]

Definition at line 185 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::global_max_psf_sigma, and mappel::PointEmitterModel::global_min_psf_ sigma.

Referenced by Gauss1DModel(), mappel::Gauss2DModel::Gauss2DModel::Gauss2DsModel::Gauss2DsModel::Gauss2DsModel::Gauss2DsModel::Gauss2DsModel::Gauss2DsModel::Gauss2DsModel::Set_max_sigma(), mappel::Gauss2DsModel::Set_max_sigma(), mappel::Gauss2DsModel::Set_min_sigma(), set_psf_sigma(), and mappel::Gauss2Dc \leftarrow Model::Set_psf_sigma().

8.8.4.9 void mappel::PointEmitterModel::check_psf_sigma (const VecT & psf_sigma) const [inherited]

Definition at line 197 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::global_max_psf_sigma, and mappel::PointEmitterModel::global_min_psf_ sigma.

8.8.4.10 void ImageFormat1DBase::check_size(const ImageSizeT & size_) [static], [inherited]

Check the size argument for the model.

Definition at line 39 of file ImageFormat1DBase.cpp.

References mappel::ImageFormat1DBase::global_max_size, and mappel::ImageFormat1DBase::global_min_size.

Referenced by mappel::ImageFormat1DBase::ImageFormat1DBase(), and mappel::ImageFormat1DBase::set_size().

8.8.4.11 int mappel::PointEmitterModel::get_hyperparam_index (const std::string & name) const [inline], [inherited]

Definition at line 236 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.8.4.12 StringVecT mappel::PointEmitterModel::get_hyperparam_names() const [inline], [inherited]

Definition at line 256 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.8.4.13 double mappel::PointEmitterModel::get_hyperparam_value (const std::string & name) const [inline], [inherited]

Definition at line 232 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

Referenced by mappel::MCMCAdaptor1D::set_background_mcmc_sampling(), and mappel::MCMCAdaptor1D::set_circle intensity mcmc_sampling().

```
8.8.4.14 PointEmitterModel::ParamT mappel::PointEmitterModel::get_hyperparams ( ) const [inline],
        [inherited]
Definition at line 224 of file PointEmitterModel.h.
References mappel::PointEmitterModel::prior.
8.8.4.15 ImageFormat1DBase::ImageT ImageFormat1DBase::get_image_from_stack( const ImageStackT & stack,
        ImageCoordT n ) const [inline], [inherited]
Definition at line 108 of file ImageFormat1DBase.h.
8.8.4.16 const PointEmitterModel::ParamT & mappel::PointEmitterModel::get_lbound( ) const [inline],
        [inherited]
Definition at line 212 of file PointEmitterModel.h.
References mappel::PointEmitterModel::lbound.
Referenced by mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCMCAdaptor2D::MCMCAdaptor2D(), and
mappel::MCMCAdaptor1D::set background mcmc sampling().
8.8.4.17 | IdxT mappel::MCMCAdaptorBase::get_mcmc_num_phases( ) const [inherited]
Definition at line 56 of file MCMCAdaptorBase.cpp.
References mappel::MCMCAdaptorBase::num_phases.
8.8.4.18 double mappel::MCMCAdaptorBase::get_mcmc_sigma_scale() const [inherited]
Definition at line 53 of file MCMCAdaptorBase.cpp.
References mappel::MCMCAdaptorBase::sigma_scale.
8.8.4.19 IdxT mappel::PointEmitterModel::get_num_hyperparams( )const [inline],[inherited]
Definition at line 208 of file PointEmitterModel.h.
References mappel::PointEmitterModel::num hyperparams.
8.8.4.20 IdxT mappel::PointEmitterModel::get_num_params() const [inline], [inherited]
Definition at line 160 of file PointEmitterModel.h.
References mappel::PointEmitterModel::num params.
```

8.8.4.21 ImageFormat1DBase::ImageCoordT ImageFormat1DBase::get_num_pixels() const [inline], [inherited] Definition at line 82 of file ImageFormat1DBase.h. References mappel::ImageFormat1DBase::size. Referenced by mappel::ImageFormat1DBase::get stats(). 8.8.4.22 StringVecT mappel::PointEmitterModel::get param names () const [inline], [inherited] Definition at line 248 of file PointEmitterModel.h. References mappel::PointEmitterModel::prior. 8.8.4.23 CompositeDist & mappel::PointEmitterModel::get_prior() [inline],[inherited] Definition at line 200 of file PointEmitterModel.h. References mappel::PointEmitterModel::prior. Referenced by mappel::Gauss2DModel::update_internal_1Dsum_estimators(), and mappel::Gauss2DsModel ← ::update internal 1Dsum estimators(). 8.8.4.24 const CompositeDist & mappel::PointEmitterModel::get_prior() const [inline], [inherited] Definition at line 204 of file PointEmitterModel.h. References mappel::PointEmitterModel::prior. 8.8.4.25 double mappel::Gauss1DModel::get_psf_sigma() const [inline] Definition at line 127 of file Gauss1DModel.h. References psf sigma. Referenced by get_stats(). 8.8.4.26 double mappel::Gauss1DModel::get_psf_sigma (IdxT idx) const Definition at line 131 of file Gauss1DModel.cpp. References psf sigma. **8.8.4.27** ParallelRngGeneratorT & mappel::PointEmitterModel::get_rng_generator() [static], [inherited]

Definition at line 120 of file PointEmitterModel.cpp.

References mappel::rng manager.

8.8.4.28 ParallelRngManagerT & mappel::PointEmitterModel::get_rng_manager() [static], [inherited]

Definition at line 115 of file PointEmitterModel.cpp.

References mappel::rng_manager.

8.8.4.29 ImageFormat1DBase::ImageSizeT ImageFormat1DBase::get size() const [inline], [inherited]

Definition at line 71 of file ImageFormat1DBase.h.

References mappel::ImageFormat1DBase::size.

Referenced by mappel::ImageFormat1DBase::get_stats().

8.8.4.30 ImageFormat1DBase::ImageCoordT ImageFormat1DBase::get_size(IdxT idx) const [inherited]

Definition at line 20 of file ImageFormat1DBase.cpp.

References mappel::ImageFormat1DBase::size.

8.8.4.31 ImageFormat1DBase::ImageCoordT ImageFormat1DBase::get_size_image_stack(const ImageStackT & stack) const [inline],[inherited]

Definition at line 101 of file ImageFormat1DBase.h.

8.8.4.32 StatsT mappel::Gauss1DModel::get_stats () const

Definition at line 178 of file Gauss1DModel.cpp.

 $References\ get_psf_sigma(),\ mappel:: MCMCAdaptor 1D:: get_stats(),\ mappel:: ImageFormat 1DBase:: get_stats(),\ and\ mappel:: PointEmitter Model:: get_stats().$

8.8.4.33 const PointEmitterModel::ParamT & mappel::PointEmitterModel::get_ubound() const [inline], [inherited]

Definition at line 216 of file PointEmitterModel.h.

References mappel::PointEmitterModel::ubound.

Referenced by mappel::Gauss2DsxyModel::get_max_sigma_ratio(), mappel::Gauss2DsModel::get_max_sigma_ratio(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCMCAdaptor2D(), mappel::MCMCAdaptor2D(), mappel::MCMCAdaptor1D::set background mcmc sampling(), and mappel::Gauss2DsModel::set max sigma ratio().

8.8.4.34 bool mappel::PointEmitterModel::has_hyperparam (const std::string & name) const [inline], [inherited]

Definition at line 228 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.8.4.35 Gauss1DModel::Stencil mappel::Gauss1DModel::initial_theta_estimate (const ImageT & im) const [inline]

Fast, heuristic estimate of initial theta.

Definition at line 169 of file Gauss1DModel.h.

References mappel::PointEmitterModel::make param(), and mappel::Gauss1DModel::Stencil::theta.

8.8.4.36 Gauss1DModel::Stencil mappel::Gauss1DModel::initial_theta_estimate (const ImageT & im, const ParamT & theta init) const

Definition at line 207 of file Gauss1DModel.cpp.

References mappel::Gauss1DModel::Stencil::bg(), mappel::Gauss1DModel::Stencil::I(), make_stencil(), mappel::← PointEmitterModel::num_params, and mappel::ImageFormat1DBase::size.

8.8.4.37 CompositeDist mappel::Gauss1DModel::make_default_prior (ldxT size, const std::string & prior_type) [static]

Definition at line 59 of file Gauss1DModel.cpp.

References mappel::istarts_with(), make_default_prior_beta_position(), and make_default_prior_normal_position().

8.8.4.38 CompositeDist mappel::Gauss1DModel::make_default_prior_beta_position(ldxT size) [static]

Definition at line 80 of file Gauss1DModel.cpp.

References mappel::PointEmitterModel::default_pixel_mean_bg, mappel::PointEmitterModel::make_prior_component ← __intensity(), and mappel::PointEmitterModel::make_prior_component_position_beta().

Referenced by make_default_prior().

8.8.4.39 CompositeDist mappel::Gauss1DModel::make_default_prior_normal_position(ldxT size) [static]

Definition at line 90 of file Gauss1DModel.cpp.

References mappel::PointEmitterModel::default_pixel_mean_bg, mappel::PointEmitterModel::make_prior_component ← intensity(), and mappel::PointEmitterModel::make prior component position normal().

Referenced by make default prior().

8.8.4.40 ImageFormat1DBase::ImageT ImageFormat1DBase::make image() const [inline],[inherited]

Definition at line 87 of file ImageFormat1DBase.h.

References mappel::ImageFormat1DBase::size.

8.8.4.41 ImageFormat1DBase::ImageStackT ImageFormat1DBase::make_image_stack(ImageCoordT n) const [inline], [inherited]

Definition at line 94 of file ImageFormat1DBase.h.

References mappel::ImageFormat1DBase::size.

8.8.4.42 PointEmitterModel::ParamT mappel::PointEmitterModel::make_param() const [inline], [inherited]

Definition at line 164 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

Referenced by initial_theta_estimate(), mappel::Gauss1DsModel::initial_theta_estimate(), mappel::Gauss2DModel::initial_theta_estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::Gauss2DsModel::pixel_heta_estimate(), mappel::Gauss2DsModel::pixel_heta_estimate(), mappel::Gauss2DModel::pixel_heta_estimate(), mappel::Gauss2DsModel::pixel_heta_estimate(), mappel::Gauss2DsMo

8.8.4.43 template < class FillT > PointEmitterModel::ParamT mappel::PointEmitterModel::make_param (FillT fill) const [inherited]

Definition at line 181 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

8.8.4.44 MatT mappel::PointEmitterModel::make_param_mat() const [inline], [inherited]

Definition at line 172 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

8.8.4.45 template < class FillT > MatT mappel::PointEmitterModel::make_param_mat(FillT fill) const [inherited]

Definition at line 191 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

8.8.4.46 CubeT mappel::PointEmitterModel::make_param_mat_stack(|dxT n)const [inline],[inherited]

Definition at line 176 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

8.8.4.47 template < class FillT > CubeT mappel::PointEmitterModel::make_param_mat_stack (ldxT n, FillT fill) const [inherited]

Definition at line 196 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

8.8.4.48 PointEmitterModel::ParamVecT mappel::PointEmitterModel::make_param_stack(ldxT n) const [inline], [inherited]

Definition at line 168 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

 $Referenced\ by\ mappel:: PointEmitterModel:: bounded_theta_stack(),\ and\ mappel:: PointEmitterModel:: reflected_theta \\ _stack().$

8.8.4.49 template < class FillT > PointEmitterModel::ParamVecT mappel::PointEmitterModel::make_param_stack(ldxT n, FillT fill) const [inherited]

Definition at line 186 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

8.8.4.50 CompositeDist mappel::Gauss1DModel::make_prior_beta_position (ldxT size, double beta_xpos, double mean_l, double kappa_l, double mean_bg, double kappa_bg) [static]

Definition at line 101 of file Gauss1DModel.cpp.

References mappel::PointEmitterModel::make_prior_component_intensity(), and mappel::PointEmitterModel::make_component_position_beta().

Referenced by mappel::Gauss2DModel::make internal 1Dsum estimator().

8.8.4.51 prior_hessian::TruncatedGammaDist mappel::PointEmitterModel::make_prior_component_intensity (double mean = default_mean_I, double kappa = default_intensity_kappa) [static], [inherited]

Definition at line 98 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::default_max_I.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DModel::make_ \leftarrow default_prior_beta_position(), make_default_prior_beta_position(), mappel::Gauss2DsModel::make_default_prior_ \leftarrow beta_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss1DsModel::make_default_prior_normal_position(), mappel::Gauss2DsModel::make_default_prior_normal_position(), mappel::Gauss2DsModel::make_prior_beta_position(), mappel::Gauss1DsModel::make_prior_beta_position(), mappel::Gauss2DsModel::make_prior_beta_position(), mappel::Gauss2DsModel::make_prior_normal_position(), mappel::Gauss1DsModel::make_prior_normal_position(), make_prior_normal_position(), make_prior_normal_position(), make_prior_normal_position(), make_prior_normal_position(), make_prior_normal_position().

8.8.4.52 prior_hessian::ScaledSymmetricBetaDist mappel::PointEmitterModel::make_prior_component_position_beta (IdxT size, double pos_beta = default_beta_pos_) [static], [inherited]

Definition at line 92 of file PointEmitterModel.cpp.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DModel::make_ \leftarrow default_prior_beta_position(), mappel::Gauss2DsModel::make_default_prior_ \leftarrow beta_position(), mappel::Gauss1DsModel::make_prior_beta_position(), mappel::Gauss2DModel::make_prior_beta_ \leftarrow position(), make_prior_beta_position(), and mappel::Gauss2DsModel::make_prior_beta_position().

8.8.4.53 prior_hessian::TruncatedNormalDist mappel::PointEmitterModel::make_prior_component_position_normal(ldxT size, double pos_sigma = default sigma pos) [static], [inherited]

Definition at line 85 of file PointEmitterModel.cpp.

Referenced by mappel::Gauss1DsModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss2DsModel::make_default_default_prior_normal_position(), mappel::Gauss2DsModel::make_default_default_prior_normal_position(), mappel::Gauss1DsModel::make_default_prior_normal_position(), mapp

8.8.4.54 prior_hessian::TruncatedParetoDist mappel::PointEmitterModel::make_prior_component_sigma (double min_sigma, double max sigma, double alpha = default alpha sigma) [static].[inherited]

Definition at line 104 of file PointEmitterModel.cpp.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DsModel::make_default_prior_normal_position(), mappel::Gauss2DsModel::make_default_prior_normal_position(), mappel::Gauss1DsModel::make_prior_beta_position(), mappel::Gauss1DsModel::make_prior_beta_position(), mappel::Gauss1DsModel::make_prior_normal_position(), and mappel::Gauss2DsModel::make_prior_normal_position().

8.8.4.55 CompositeDist mappel::Gauss1DModel::make_prior_normal_position (IdxT size, double sigma_xpos, double mean_l, double kappa_l, double mean_bg, double kappa_bg) [static]

Definition at line 114 of file Gauss1DModel.cpp.

References mappel::PointEmitterModel::make_prior_component_intensity(), and mappel::PointEmitterModel::make_ prior_component_position_normal().

Referenced by mappel::Gauss2DModel::make_internal_1Dsum_estimator().

8.8.4.56 Gauss1DModel::Stencil mappel::Gauss1DModel::make_stencil (const ParamT & theta, bool compute_derivatives = true) const [inline]

Make a new Model::Stencil object at theta.

Stencils store all of the important calculations necessary for evaluating the log-likelihood and its derivatives at a particular theta (parameter) value.

This allows re-use of the most expensive computations. Stencils can be easily passed around by reference, and most functions in the mappel::methods namespace accept a const Stencil reference in place of the model parameter.

Throws mappel::ModelBoundsError if not model.theta_in_bounds(theta).

If derivatives will not be computed with this stencil set compute derivatives=false

Parameters

theta	Prameter to evaluate at
compute_derivatives	True to also prepare for derivative computations

Returns

A new Stencil object ready to compute with

Definition at line 116 of file Gauss1DModel.h.

References mappel::Gauss1DModel::Stencil::Stencil(), and mappel::PointEmitterModel::theta_in_bounds().

Referenced by initial theta estimate().

8.8.4.57 Gauss1DModel & mappel::Gauss1DModel::operator=(const Gauss1DModel & o) [protected]

Definition at line 32 of file Gauss1DModel.cpp.

References mappel::MCMCAdaptor1D::operator=(), and psf_sigma.

Referenced by mappel::Gauss1DMAP::operator=(), and mappel::Gauss1DMLE::operator=().

8.8.4.58 Gauss1DModel & mappel::Gauss1DModel::operator=(Gauss1DModel && o) [protected]

Definition at line 41 of file Gauss1DModel.cpp.

References DefaultPriorType, mappel::MCMCAdaptor1D::operator=(), prior types, and psf sigma.

8.8.4.59 void mappel::Gauss1DModel::pixel_grad (IdxT i, const Stencil & s, ParamT & pgrad) const [inline]

Definition at line 141 of file Gauss1DModel.h.

References mappel::Gauss1DModel::Stencil::DX, mappel::Gauss1DModel::Stencil::I(), and mappel::Gauss1DModel
::Stencil::X.

Referenced by pixel_hess_update().

8.8.4.60 void mappel::Gauss1DModel::pixel_grad2 (IdxT i, const Stencil & s, ParamT & pgrad2) const [inline]

Definition at line 150 of file Gauss1DModel.h.

References mappel::Gauss1DModel::Stencil::DXS, mappel::Gauss1DModel::Stencil::I(), and psf_sigma.

8.8.4.61 void mappel::Gauss1DModel::pixel_hess (IdxT i, const Stencil & s, MatT & hess) const [inline]

Definition at line 159 of file Gauss1DModel.h.

References mappel::Gauss1DModel::Stencil::DXS, mappel::Gauss1DModel::DXS, mappel::Gauss2DModel::DXS, mappel::Gauss2DModel::DXS, mappel::Gauss2DModel::DXS, mappel::Gauss2DModel::DXS, mappel::Gauss2DModel::DXS, mappel::Gauss2DModel::DXS, mappel::Gauss2DModel::DXS

8.8.4.62 void mappel::Gauss1DModel::pixel_hess_update (IdxT i, const Stencil & s, double dm_ratio_m1, double dmm_ratio, ParamT & grad, MatT & hess) const

pixel derivative inner loop calculations.

Definition at line 191 of file Gauss1DModel.cpp.

 $References\ mappel::Gauss1DModel::Stencil::DXS,\ mappel::Gauss1DModel::Stencil::I(),\ mappel::PointEmitterModel \\ ::make_param(),\ pixel_grad(),\ and\ psf_sigma.$

8.8.4.63 double mappel::Gauss1DModel::pixel_model_value (ldxT i, const Stencil & s) const [inline]

Definition at line 135 of file Gauss1DModel.h.

References mappel::Gauss1DModel::Stencil::bg(), mappel::Gauss1DModel::Stencil::I(), and mappel::Gauss1DModel ← ::Stencil::X.

8.8.4.64 PointEmitterModel::ParamT mappel::PointEmitterModel::reflected_theta (const ParamT & theta) const

Definition at line 276 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::Point← EmitterModel::num params, and mappel::PointEmitterModel::ubound.

Referenced by mappel::PointEmitterModel::reflected_theta_stack().

8.8.4.65 PointEmitterModel::ParamVecT mappel::PointEmitterModel::reflected_theta_stack (const ParamVecT & theta) const [inherited]

Definition at line 317 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::make_param_stack(), and mappel::PointEmitterModel::reflected_theta().

8.8.4.66 void mappel::PointEmitterModel::rename_hyperparam (const std::string & old_name, const std::string & new_name)
[inline], [inherited]

Definition at line 244 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.8.4.67 void mappel::MCMCAdaptor1D::sample_mcmc_candidate (ldxT sample_index, ParamT & candidate, double step_scale = 1.0) [inherited]

Definition at line 108 of file MCMCAdaptor1D.cpp.

References mappel::MCMCAdaptor1D::eta_bg, mappel::MCMCAdaptor1D::eta_l, mappel::MCMCAdaptor1D::eta_c x, mappel::MCMCAdaptorBase::num phases, and mappel::rng manager.

8.8.4.68 template < class RngT > PointEmitterModel::ParamT mappel::PointEmitterModel::sample_prior (RngT & rng) [inherited]

Definition at line 264 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.8.4.69 PointEmitterModel::ParamT mappel::PointEmitterModel::sample_prior() [inline], [inherited]

Definition at line 268 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior, and mappel::rng manager.

8.8.4.70 void mappel::MCMCAdaptor1D::set_background_mcmc_sampling (double *eta_bg = -*1) [inherited]

Definition at line 81 of file MCMCAdaptor1D.cpp.

References mappel::PointEmitterModel::default_pixel_mean_bg, mappel::MCMCAdaptor1D::eta_bg, mappel::PointcointcointerModel::get_hyperparam_value(), mappel::PointEmitterModel::get_bound(), mappel::PointEmitterModel::get_cointcointermodel::get_cointcoint

Referenced by mappel::MCMCAdaptor1D::MCMCAdaptor1D().

8.8.4.71 void mappel::PointEmitterModel::set_bounds (const ParamT & lbound_, const ParamT & ubound_)
[inherited]

Box-type parameter bounds

Modifies the prior bounds to prevent sampling outside the valid box-constraints.

Definition at line 213 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounds_epsilon, mappel::PointEmitterModel::lbound, mappel::PointEmitter Model::num_params, mappel::PointEmitterModel::prior, and mappel::PointEmitterModel::ubound.

Definition at line 260 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.8.4.73 void mappel::PointEmitterModel::set_hyperparam_value (const std::string & name, double value) [inline], [inherited]

Definition at line 240 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.8.4.74 void mappel::PointEmitterModel::set_hyperparams (const VecT & hyperparams) [inline], [inherited]

Definition at line 220 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

Referenced by mappel::Gauss2DModel::set_hyperparams(), and mappel::Gauss2DsModel::set_hyperparams().

8.8.4.75 template < class $ImT > void ImageFormat1DBase::set_image_in_stack (ImageStackT & stack, ImageCoordT n, const <math>ImT \& im$) const [inherited]

Definition at line 115 of file ImageFormat1DBase.h.

8.8.4.76 void mappel::MCMCAdaptor1D::set_intensity_mcmc_sampling (double eta_l = -1) [inherited]

Definition at line 65 of file MCMCAdaptor1D.cpp.

References mappel::PointEmitterModel::default_mean_I, mappel::MCMCAdaptor1D::eta_I, mappel::PointEmitter Model::get_hyperparam_value(), and mappel::MCMCAdaptorBase::sigma_scale.

Referenced by mappel::MCMCAdaptor1D::MCMCAdaptor1D().

8.8.4.77 void mappel::PointEmitterModel::set_lbound (const ParamT & lbound) [inherited]

Definition at line 226 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounds_epsilon, mappel::PointEmitterModel::lbound, mappel::PointEmitter ← Model::num_params, mappel::PointEmitterModel::prior, and mappel::PointEmitterModel::ubound.

Referenced by mappel::Gauss1DsModel::set_min_sigma().

8.8.4.78 void mappel::MCMCAdaptorBase::set_mcmc_num_phases (ldxT num_phases) [protected], [inherited]

Definition at line 59 of file MCMCAdaptorBase.cpp.

References mappel::MCMCAdaptorBase::num phases.

Referenced by mappel::MCMCAdaptor1Ds::MCMCAdaptor1Ds(), and mappel::MCMCAdaptor2Ds::MCMCAdaptor2 → Ds().

8.8.4.79 void mappel::MCMCAdaptorBase::set mcmc sigma scale (double scale) [inherited]

Definition at line 39 of file MCMCAdaptorBase.cpp.

References mappel::MCMCAdaptorBase::global_max_mcmc_sigma_scale, and mappel::MCMCAdaptorBase::sigma
scale.

8.8.4.80 void mappel::PointEmitterModel::set_param_names (const StringVecT & desc) [inline], [inherited]

Definition at line 252 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.8.4.81 void mappel::PointEmitterModel::set_prior(CompositeDist && prior_) [inherited]

Definition at line 158 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::num_hyperparams, mappel::PointEmitterModel::pointEmitterModel::pointEmitterModel::ubound.

Referenced by mappel::Gauss2DModel::set prior(), and mappel::Gauss2DsModel::set prior().

8.8.4.82 void mappel::PointEmitterModel::set_prior (const CompositeDist & prior_) [inherited]

Definition at line 149 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::Ibound, mappel::PointEmitterModel::num_hyperparams, mappel::PointEmitterModel::prior, and mappel::PointEmitterModel::ubound.

8.8.4.83 void mappel::Gauss1DModel::set_psf_sigma (double new_psf_sigma)

Definition at line 125 of file Gauss1DModel.cpp.

References mappel::PointEmitterModel::check_psf_sigma(), and psf_sigma.

Referenced by set_psf_sigma(), and mappel::Gauss2DModel::set_psf_sigma().

8.8.4.84 void mappel::Gauss1DModel::set_psf_sigma (const VecT & new_psf_sigma) [inline]

Definition at line 131 of file Gauss1DModel.h.

References set_psf_sigma().

8.8.4.85 void mappel::PointEmitterModel::set_rng_seed(RngSeedT seed) [static],[inherited]

Definition at line 110 of file PointEmitterModel.cpp.

References mappel::rng manager.

8.8.4.86 void ImageFormat1DBase::set_size (const ImageSizeT & size_) [inherited]

Definition at line 30 of file ImageFormat1DBase.cpp.

References mappel::ImageFormat1DBase::check size(), and mappel::ImageFormat1DBase::size.

Referenced by mappel::ImageFormat1DBase::set_size(), mappel::Gauss2DModel::set_size(), and mappel::Gauss2colored by mappel::Gauss2DModel::set_size().

8.8.4.87 void ImageFormat1DBase::set_size (const arma::Col < ImageCoordT > & sz) [inline], [inherited]

Definition at line 75 of file ImageFormat1DBase.h.

References mappel::ImageFormat1DBase::set_size().

8.8.4.88 void mappel::PointEmitterModel::set_ubound (const ParamT & ubound) [inherited]

Definition at line 237 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounds_epsilon, mappel::PointEmitterModel::lbound, mappel::PointEmitter Wodel::num params, mappel::PointEmitterModel::prior, and mappel::PointEmitterModel::ubound.

Referenced by mappel::Gauss1DsModel::set max sigma(), and mappel::Gauss2DsModel::set max sigma ratio().

8.8.4.89 bool mappel::PointEmitterModel::theta_in_bounds (const ParamT & theta) const [inherited]

Definition at line 257 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::Point← EmitterModel::num_params, and mappel::PointEmitterModel::ubound.

Referenced by mappel::Gauss2DModel::initial_theta_estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), make_stencil(), mappel::Gauss1DsModel::make_stencil(), mappel::Gauss2DModel::make_stencil(), mappel::Gauss2DsModel::make_stencil(), and mappel::PointEmitterModel::theta_stack_ \leftarrow in bounds().

8.8.4.90 BoolVecT mappel::PointEmitterModel::theta_stack_in_bounds (const ParamVecT & theta) const [inherited]

Definition at line 297 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check param shape(), and mappel::PointEmitterModel::theta in bounds().

8.8.5 Member Data Documentation

8.8.5.1 const double mappel::PointEmitterModel::bounds_epsilon = 1.0E-6 [static], [inherited]

Distance from the boundary to constrain in bound theta and bounded theta methods

Definition at line 52 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::set_bounds(), mappel::PointEmitterModel::set_lbound(), mappel::Gauss2 \leftarrow DsModel::set_max_sigma_ratio(), and mappel::PointEmitterModel::set_ubound().

8.8.5.2 const double mappel::PointEmitterModel::default_alpha_sigma = 2 [static], [inherited]

Default per-pixel background gamma distribution shape

Definition at line 62 of file PointEmitterModel.h.

8.8.5.3 const double mappel::PointEmitterModel::default_beta_pos = 3 [static], [inherited]

Default position parameter in symmetric beta-distributions

Definition at line 56 of file PointEmitterModel.h.

8.8.5.4 const double mappel::PointEmitterModel::default_intensity_kappa = 2 [static], [inherited]

Default shape for intensity gamma distributions

Definition at line 60 of file PointEmitterModel.h.

8.8.5.5 const double mappel::PointEmitterModel::default_max_I = INFINITY [static], [inherited]

Default maximum emitter intensity

Definition at line 59 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::make prior component intensity().

8.8.5.6 const double mappel::PointEmitterModel::default_mean_l = 300 [static], [inherited]

Default emitter intensity mean

Definition at line 58 of file PointEmitterModel.h.

Referenced by mappel::MCMCAdaptor1D::set_intensity_mcmc_sampling().

8.8.5.7 const double mappel::PointEmitterModel::default_pixel_mean_bg = 4 [static], [inherited]

Default per-pixel mean background counts

Definition at line 61 of file PointEmitterModel.h.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_beta_position(), mappel::Gauss2DsModel::make_default_prior_default_prior_beta_position(), mappel::Gauss2DsModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss2DsModel::make_default_default_prior_normal_position(), mappel::Gauss2DsModel::make_default_default_default_prior_normal_position(), and mappel::MCMCAdaptor1D::set_background_mcmc_sampling().

8.8.5.8 const double mappel::PointEmitterModel::default sigma pos = 1 [static], [inherited]

Default position parameter in symmetric beta-distributions

Definition at line 57 of file PointEmitterModel.h.

8.8.5.9 const std::string mappel::Gauss1DModel::DefaultPriorType = "Normal" [static]

Definition at line 53 of file Gauss1DModel.h.

Referenced by operator=().

8.8.5.10 const std::string mappel::PointEmitterModel::DefaultSeperableInitEstimator = "TrustRegion" [static], [inherited]

Estimator name to use in 1D separable initializations

Definition at line 49 of file PointEmitterModel.h.

Referenced by mappel::Gauss2DModel::initial_theta_estimate(), mappel::Gauss2DsxyModel::initial_theta_estimate(), and mappel::Gauss2DsModel::initial_theta_estimate().

```
8.8.5.11 double mappel::MCMCAdaptor1D::eta_bg =0 [protected], [inherited]
```

The standard deviation for the normally distributed perturbation to theta_bg in the random walk MCMC sampling

Definition at line 32 of file MCMCAdaptor1D.h.

Referenced by mappel::MCMCAdaptor1D::get_stats(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MC—CMCAdaptor1D::operator=(), mappel::MCMCAdaptor2D::sample_mcmc_candidate(), mappel::MCMCAdaptor1Ds::sample_mcmc_candidate(), mappel::MCMCAdaptor1Dc—::sample_mcmc_candidate(), and mappel::MCMCAdaptor1D::set background mcmc sampling().

```
8.8.5.12 double mappel::MCMCAdaptor1D::eta_I = 0 [protected], [inherited]
```

The standard deviation for the normally distributed perturbation to theta. I in the random walk MCMC sampling

Definition at line 31 of file MCMCAdaptor1D.h.

Referenced by mappel::MCMCAdaptor1D::get_stats(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCCAdaptor1D(), mappel::MCMCAdaptor2D::sample_mcmc_candidate(), mappel::MCMCAdaptor2Ds \leftarrow ::sample_mcmc_candidate(), mappel::MCMCAdaptor1D::sample_mcmc_candidate(), mappel::MCMCAdaptor1D \leftarrow ::sample_mcmc_candidate(), and mappel::MCMCAdaptor1D::set_intensity_mcmc_sampling().

```
8.8.5.13 double mappel::MCMCAdaptor1D::eta_x = 0 [protected], [inherited]
```

The standard deviation for the normally distributed perturbation to theta_x in the random walk MCMC sampling

Definition at line 30 of file MCMCAdaptor1 D.h.

Referenced by mappel::MCMCAdaptor1D::get_stats(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCMCAdaptor1D(), mappel::MCMCAdaptor2D(), mappel::MCMCAdaptor1Ds::sample_mcmc_candidate(), mappel::MCMCAdaptor2D() ::sample_mcmc_candidate(), and mappel::MCMCAdaptor1() D::sample_mcmc_candidate().

```
8.8.5.14 const double mappel::MCMCAdaptorBase::global_default_mcmc_sigma_scale = 0.05 [static], [inherited]
```

Definition at line 16 of file MCMCAdaptorBase.h.

 $Referenced \ by \ mappel::MCMCAdaptor1Ds::MCMCAdaptor1Ds(), \ mappel::MCMCAdaptor2D::MCMCAdaptor2D(), \ and \ mappel::MCMCAdaptor2Ds::MCMCAdaptor2Ds().$

8.8.5.15 const double mappel::MCMCAdaptorBase::global_max_mcmc_sigma_scale = 0.5 [static], [inherited]

Definition at line 17 of file MCMCAdaptorBase.h.

Referenced by mappel::MCMCAdaptorBase::MCMCAdaptorBase(), and mappel::MCMCAdaptorBase::set_mcmc_ sigma scale().

8.8.5.16 const double mappel::PointEmitterModel::global_max_psf_sigma = 1E2 [static], [inherited]

Global maxmimum for any psf_sigma. Sizes above this value are invalid, and nowhere near useful for practical point emitter localization

Definition at line 54 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::check_psf_sigma().

Maximum size along any dimension of the image. This is insanely big to catch obvious errors

Definition at line 40 of file ImageFormat1DBase.h.

Referenced by mappel::ImageFormat1DBase::check_size().

8.8.5.18 const double mappel::PointEmitterModel::global_min_psf_sigma = 1E-1 [static], [inherited]

Global minimum for any psf_sigma. Sizes below this value are invalid, and nowhere near useful for practical point emitter localization

Definition at line 53 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::check_psf_sigma().

8.8.5.19 const ImageFormat1DBase::ImageCoordT ImageFormat1DBase::global_min_size = 3 [static], [inherited]

Minimum size along any dimension of the image.

Definition at line 39 of file ImageFormat1DBase.h.

Referenced by mappel::ImageFormat1DBase::check_size().

8.8.5.20 ParamT mappel::PointEmitterModel::lbound [protected], [inherited]

Definition at line 148 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel ::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::get_stats(), mappel::Gauss1DsModel::initial_theta = estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::PointEmitterModel::pointEmitterModel::reflected_theta(), mappel::PointEmitterModel = ::set_bounds(), mappel::PointEmitterModel::set_lbound(), mappel::PointEmitterModel::set_prior(), mappel::PointEmitterModel::pointEmitterModel::set_prior(), mappel::PointEmitterModel::pointEmitterModel::set_prior(), mappel::PointEmitterModel::pointEmitterModel::set_prior(), mappel::PointEmitterModel::pointEmitterModel::set_prior(), mappel::PointEmitterModel::pointEmitterModel::set_prior(), mappel::PointEmitterModel::set_prior(), mappel::PointEmitterModel::set_prior

8.8.5.21 const ImageFormat1DBase::ImageCoordT ImageFormat1DBase::num_dim = 1 [static], [inherited]

Number of image dimensions.

Definition at line 38 of file ImageFormat1DBase.h.

Referenced by mappel::ImageFormat1DBase::get_stats().

8.8.5.22 IdxT mappel::PointEmitterModel::num_hyperparams [protected], [inherited]

Definition at line 147 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::get_num_hyperparams(), mappel::PointEmitterModel::get_stats(), mappel::PointEmitterModel::operator=(), and mappel::PointEmitterModel::set_prior().

8.8.5.23 IdxT mappel::PointEmitterModel::num_params [protected], [inherited]

Definition at line 146 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel ::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::get_num_params(), mappel::PointEmitter
Model::get_stats(), initial_theta_estimate(), mappel::Gauss2DModel::initial_theta_estimate(), mappel::Gauss2Ds
Model::initial_theta_estimate(), mappel::PointEmitterModel::make_param(), mappel::PointEmitterModel::make_param_extack(), mappel::PointEmitterModel::make_param_extack(), mappel::PointEmitterModel::poi

8.8.5.24 IdxT mappel::MCMCAdaptorBase::num_phases [protected],[inherited]

The number of different sampling phases for candidate selection MCMC. Each phase changes a different subset of variables.

Definition at line 29 of file MCMCAdaptorBase.h.

Referenced by mappel::MCMCAdaptorBase::get_mcmc_num_phases(), mappel::MCMCAdaptorBase::get_stats(), mappel::MCMCAdaptor2D::sample_mcmc_candidate(), mappel::MCMCAdaptor1Ds::sample_mcmc_candidate(), mappel::MCMCAdaptor1D::sample_mcmc_candidate(), and mappel::MCMCAdaptorBase::set_mcmc_num_phases().

8.8.5.25 CompositeDist mappel::PointEmitterModel::prior [protected], [inherited]

Definition at line 145 of file PointEmitterModel.h.

Referenced by mappel::Gauss2DModel::debug_internal_sum_model_y(), mappel::Gauss2DsModel::debug_internal \
_sum_model_y(), mappel::Gauss2DModel::Gauss2DModel(), mappel::Gauss2DsModel::Gauss2DsModel(), mappel \
::PointEmitterModel::get_hyperparam_index(), mappel::PointEmitterModel::get_hyperparam_names(), mappel::PointEmitterModel::get_hyperparam_names(), mappel::PointEmitterModel::get_param_names(), mappel::PointEmitterModel::get_param_names(), mappel::PointEmitterModel::get_param_names(), mappel::PointEmitterModel::get_param_names(), mappel::PointEmitterModel::pointEmitterModel::has_\(\cdot \) hyperparam(), mappel::PointEmitterModel::pointEmitterModel::pointEmitterModel::pointEmitterModel(), mappel::PointEmitterModel::set_bounds(), mappel::PointEmitterModel::set_hyperparam_names(), mappel::PointEmitterModel::set_hyperparam \(\cdot \) value(), mappel::PointEmitterModel::set_hyperparam(), mappel::PointEmitterModel::set_lyperparam(), mappel::PointEmitte

8.8.5.26 const StringVecT mappel::Gauss1DModel::prior_types [static]

Initial value:

```
= { "Beta", "Normal" }
```

Definition at line 52 of file Gauss1DModel.h.

Referenced by operator=().

8.8.5.27 double mappel::Gauss1DModel::psf_sigma [protected]

Standard deviation of the fixed-sigma 1D Gaussian PSF in pixels

Definition at line 90 of file Gauss1DModel.h.

Referenced by mappel::Gauss1DModel::Stencil::compute_derivatives(), get_psf_sigma(), operator=(), pixel_grad2(), pixel_hess(), pixel_hess_update(), set_psf_sigma(), and mappel::Gauss1DModel::Stencil::Stencil().

8.8.5.28 double mappel::MCMCAdaptorBase::sigma_scale [protected], [inherited]

A scaling factor for step sizes as a fraction of the size of the domain dimension we are walking in. (0.05 default)

Definition at line 30 of file MCMCAdaptorBase.h.

8.8.5.29 ImageSizeT mappel::ImageFormat1DBase::size [protected], [inherited]

Number of pixels in X dimension for 1D image

Definition at line 65 of file ImageFormat1DBase.h.

Referenced by mappel::ImageFormat1DBase::check_image_shape(), mappel::Gauss1DsModel::Stencil::compute \leftarrow _derivatives(), mappel::Gauss1DModel::Stencil::compute_derivatives(), mappel::ImageFormat1DBase::get_num_ \leftarrow pixels(), mappel::ImageFormat1DBase::get_size(), initial_theta_estimate(), mappel::Gauss1DsModel::initial_theta \leftarrow _estimate(), mappel::ImageFormat1DBase::make_image(), mappel::ImageFormat1DBase::make_image_stack(), mappel::ImageFormat1DBase::set_size(), mappel::Gauss1DsModel::Stencil(), and mappel::Gauss1DModel \leftarrow ::Stencil::Stencil().

8.8.5.30 ParamT mappel::PointEmitterModel::ubound [protected], [inherited]

Definition at line 148 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel ::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::get_ubound(), mappel::Gauss1DsModel::initial_theta = estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::PointEmitterModel::pointEmitterModel::reflected_theta(), mappel::PointEmitterModel = ::set_bounds(), mappel::PointEmitterModel::set_lbound(), mappel::PointEmitterModel::set_prior(), mappel::PointEmitterModel::pointEmitterModel::set_prior(), mappel::PointEmitterModel::set_prior(), mappel::PointEmitterModel::set_

The documentation for this class was generated from the following files:

- Gauss1DModel.h
- Gauss1DModel.cpp

8.9 mappel::Gauss1DsMAP Class Reference

A 1D Gaussian with variable PSF sigma under an Poisson read noise assumption and MAP Objective.

#include </home/travis/build/markjolah/Mappel/include/Mappel/Gauss1DsMAP.h>

Inheritance diagram for mappel::Gauss1DsMAP:

Public Types

- using StencilVecT = std::vector < Stencil >
- using ParamT = arma::vec
- using ParamVecT = arma::mat
- using ImageCoordT = uint32_t
- using ImagePixeIT = double
- template<class CoordT >

using ImageSizeShapeT = CoordT

template < class CoordT >

using ImageSizeVecShapeT = arma::Col < CoordT >

- using ImageSizeT = ImageSizeShapeT < ImageCoordT >
- using ImageSizeVecT = ImageSizeVecShapeT < ImageCoordT >
- template < class PixelT >

using ImageShapeT = arma::Col < PixelT >

• template<class PixeIT >

using ImageStackShapeT = arma::Mat< PixeIT >

- using ImageT = ImageShapeT < ImagePixeIT >
- using ImageStackT = ImageStackShapeT < ImagePixeIT >
- using ModelDataT = ImageT
- using ModelDataStackT = ImageStackT

Public Member Functions

- Gauss1DsMAP (arma::Col < ImageCoordT > size, VecT min_sigma, VecT max_sigma, const std::string &prior
 _type=DefaultPriorType)
- Gauss1DsMAP (ImageSizeT size, CompositeDist &&prior)
- Gauss1DsMAP (ImageSizeT size, const CompositeDist &prior)
- Gauss1DsMAP (const Gauss1DsMAP &o)
- Gauss1DsMAP & operator= (const Gauss1DsMAP &o)
- Gauss1DsMAP (Gauss1DsMAP &&o)
- Gauss1DsMAP & operator= (Gauss1DsMAP &&o)
- double get min sigma () const
- double get_max_sigma () const
- void set min sigma (double min sigma)
- void set_min_sigma (const VecT &min_sigma)
- void set_max_sigma (double max_sigma)
- void set_max_sigma (const VecT &max_sigma)
- StatsT get stats () const
- Stencil make stencil (const ParamT &theta, bool compute derivatives=true) const

Make a new Model::Stencil object at theta.

- double pixel_model_value (ldxT i, const Stencil &s) const
- void pixel_grad (ldxT i, const Stencil &s, ParamT &pgrad) const
- void pixel_grad2 (ldxT i, const Stencil &s, ParamT &pgrad2) const
- void pixel hess (IdxT i, const Stencil &s, MatT &hess) const
- void pixel_hess_update (ldxT i, const Stencil &s, double dm_ratio_m1, double dmm_ratio, ParamT &grad, MatT &hess) const
- Stencil initial_theta_estimate (const ImageT &im) const

Fast, heuristic estimate of initial theta.

- Stencil initial_theta_estimate (const ImageT &im, const ParamT &theta_init) const
- IdxT get num params () const
- void check_param_shape (const ParamT &theta) const
- void check_param_shape (const ParamVecT &theta) const
- void check_psf_sigma (double psf_sigma) const
- void check_psf_sigma (const VecT &psf_sigma) const
- ParamT make_param () const
- template<class FillT >

ParamT make_param (FillT fill) const

- ParamVecT make_param_stack (ldxT n) const
- $\bullet \ \ \text{template}{<} \text{class FillT} >$

ParamVecT make param stack (ldxT n, FillT fill) const

- · MatT make param mat () const
- template<class FillT >

MatT make param mat (FillT fill) const

- CubeT make param mat stack (ldxT n) const
- template<class FillT >

CubeT make_param_mat_stack (ldxT n, FillT fill) const

- CompositeDist & get_prior ()
- const CompositeDist & get_prior () const
- void set prior (CompositeDist &&prior)
- void set prior (const CompositeDist &prior)

- IdxT get_num_hyperparams () const
- void set hyperparams (const VecT &hyperparams)
- VecT get_hyperparams () const
- bool has_hyperparam (const std::string &name) const
- double get_hyperparam_value (const std::string &name) const
- int get hyperparam index (const std::string &name) const
- void set_hyperparam_value (const std::string &name, double value)
- void rename hyperparam (const std::string &old name, const std::string &new name)
- StringVecT get_param_names () const
- void set param names (const StringVecT &desc)
- StringVecT get hyperparam names () const
- void set hyperparam names (const StringVecT &desc)
- template<class RngT >

ParamT sample prior (RngT &rng)

- ParamT sample prior ()
- void set bounds (const ParamT &lbound, const ParamT &ubound)
- void set Ibound (const ParamT &lbound)
- void set_ubound (const ParamT &ubound)
- const ParamT & get Ibound () const
- · const ParamT & get ubound () const
- bool theta in bounds (const ParamT &theta) const
- · void bound theta (ParamT &theta, double epsilon=bounds epsilon) const
- ParamT bounded theta (const ParamT &theta, double epsilon=bounds epsilon) const
- ParamT reflected_theta (const ParamT &theta) const
- BoolVecT theta stack in bounds (const ParamVecT &theta) const
- ParamVecT bounded_theta_stack (const ParamVecT &theta, double epsilon=bounds_epsilon) const
- ParamVecT reflected theta stack (const ParamVecT &theta) const
- · ImageT make image () const
- ImageStackT make_image_stack (ImageCoordT n) const
- ImageCoordT get_size_image_stack (const ImageStackT &stack) const
- ImageT get_image_from_stack (const ImageStackT &stack, ImageCoordT n) const
- template<class ImT >

void set_image_in_stack (ImageStackT &stack, ImageCoordT n, const ImT &im) const

- ImageSizeT get_size () const
- ImageCoordT get_size (IdxT idx) const
- ImageCoordT get num pixels () const
- void set size (const ImageSizeT &size)
- void set_size (const arma::Col< ImageCoordT > &sz)
- void check image shape (const ImageT &im) const

Check the shape of a single images is correct for model size.

void check_image_shape (const ImageStackT &ims) const

Check the shape of a stack of images is correct for model size.

- void sample mcmc candidate (ldxT sample index, ParamT &candidate, double step scale=1.0)
- void set_intensity_mcmc_sampling (double eta_l=-1)
- void set_background_mcmc_sampling (double eta_bg=-1)
- void set_mcmc_sigma_scale (double scale)
- double get_mcmc_sigma_scale () const
- IdxT get mcmc num phases () const

Static Public Member Functions

- static CompositeDist make_default_prior (ldxT size, double min_sigma, double max_sigma, const std::string &prior type)
- static CompositeDist make default prior beta position (ldxT size, double min sigma, double max sigma)
- static CompositeDist make_default_prior_normal_position (ldxT size, double min_sigma, double max_sigma)
- static CompositeDist make_prior_beta_position (ldxT size, double beta_xpos, double mean_I, double kappa_I, double mean_bg, double kappa_bg, double min_sigma, double max_sigma, double alpha_sigma)
- static CompositeDist make_prior_normal_position (ldxT size, double sigma_xpos, double mean_I, double kappa_I, double mean_bg, double kappa_bg, double min_sigma, double max_sigma, double alpha_sigma)

- static prior_hessian::TruncatedGammaDist make_prior_component_intensity (double mean=default_mean_ \leftarrow I, double kappa=default_intensity kappa)
- static prior_hessian::TruncatedParetoDist make_prior_component_sigma (double min_sigma, double max_
 sigma, double alpha=default_alpha_sigma)
- static void set_rng_seed (RngSeedT seed)
- static ParallelRngManagerT & get_rng_manager ()
- static ParallelRngGeneratorT & get_rng_generator ()
- static void check size (const ImageSizeT &size)

Check the size argument for the model.

Static Public Attributes

- static const std::string name
- static const StringVecT prior types
- static const std::string DefaultPriorType = "Normal"
- static const std::string DefaultSeperableInitEstimator = "TrustRegion"
- static const double bounds epsilon = 1.0E-6
- static const double global min psf sigma = 1E-1
- static const double global_max_psf_sigma = 1E2
- static const double default_beta_pos = 3
- static const double default_sigma_pos = 1
- static const double default mean I = 300
- static const double default max I = INFINITY
- static const double default_intensity_kappa = 2
- static const double default_pixel_mean_bg = 4
- static const double default_alpha_sigma = 2
- static const ImageCoordT num_dim = 1
- static const ImageCoordT global_min_size = 3
- static const ImageCoordT global_max_size = 512
- static const double global default mcmc sigma scale = 0.05
- static const double global max mcmc sigma scale = 0.5
- static const std::vector< std::string > estimator names

Protected Member Functions

void set mcmc num phases (ldxT num phases)

Protected Attributes

- · CompositeDist prior
- IdxT num_params
- IdxT num_hyperparams
- ParamT Ibound
- · ParamT ubound
- ImageSizeT size
- double eta_sigma =-1
- double eta_x =0
- double eta I =0
- double eta_bg =0
- IdxT num_phases
- double sigma_scale

8.9.1 Detailed Description

A 1D Gaussian with variable PSF sigma under an Poisson read noise assumption and MAP Objective.

Model: Gauss1DsModel a 1D gaussian PSF with variable psf_sigma Objective: PoissonNoise1DObjective - Poisson noise model for 1D Estimator: MAPstimator - Maximum a-posteriori estimator

Definition at line 24 of file Gauss1DsMAP.h.

8.9.2 Member Typedef Documentation

8.9.2.1 using mappel::ImageFormat1DBase::ImageCoordT = uint32_t [inherited]

Image size coordinate storage type

Definition at line 25 of file ImageFormat1DBase.h.

8.9.2.2 using mappel::ImageFormat1DBase::ImagePixelT = double [inherited]

Image pixel storage type

Definition at line 26 of file ImageFormat1DBase.h.

8.9.2.3 template < class PixelT > using mappel::ImageFormat1DBase::ImageShapeT = arma::Col < PixelT > [inherited]

Shape of the data type for a single image

Definition at line 33 of file ImageFormat1DBase.h.

8.9.2.4 template < class CoordT > using mappel::ImageFormat1DBase::ImageSizeShapeT = CoordT [inherited]

Shape of the data type to store 1-image's coordinates

Definition at line 28 of file ImageFormat1DBase.h.

8.9.2.5 using mappel::ImageFormat1DBase::ImageSizeT = ImageSizeShapeT < ImageCoordT > [inherited]

Data type for a single image size

Definition at line 30 of file ImageFormat1DBase.h.

8.9.2.6 template < class CoordT > using mappel::ImageFormat1DBase::ImageSizeVecShapeT = arma::Col < CoordT > [inherited]

Shape of the data type to store a vector of image's coordinates

Definition at line 29 of file ImageFormat1DBase.h.

8.9.2.7 using mappel::ImageFormat1DBase::ImageSizeVecT = ImageSizeVecShapeT < ImageCoordT > [inherited]

Data type for a sequence of image sizes

Definition at line 31 of file ImageFormat1DBase.h.

8.9.2.8 template < class PixelT > using mappel::ImageFormat1DBase::ImageStackShapeT = arma::Mat < PixelT > [inherited]

Shape of the data type for a sequence of images

Definition at line 34 of file ImageFormat1DBase.h.

8.9.2.9 using mappel::ImageFormat1DBase::ImageStackT = ImageStackShapeT<ImagePixeIT>
[inherited]

Data type to represent a sequence of images

Definition at line 36 of file ImageFormat1DBase.h.

8.9.2.10 using mappel::ImageFormat1DBase::ImageT = ImageShapeT < ImagePixeIT > [inherited]

Data type to represent single image

Definition at line 35 of file ImageFormat1DBase.h.

8.9.2.11 using mappel::PoissonNoise1DObjective::ModelDataStackT = ImageStackT [inherited]

Objective function data stack type: 1D double precision image stack, of images gain-corrected to approximate photons counts

Definition at line 26 of file PoissonNoise1DObjective.h.

8.9.2.12 using mappel::PoissonNoise1DObjective::ModelDataT = ImageT [inherited]

Objective function data type: 1D double precision image, gain-corrected to approximate photons counts

Definition at line 25 of file PoissonNoise1DObjective.h.

8.9.2.13 using mappel::PointEmitterModel::ParamT = arma::vec [inherited]

Parameter vector

Definition at line 47 of file PointEmitterModel.h.

8.9.2.14 using mappel::PointEmitterModel::ParamVecT = arma::mat [inherited]

Vector of parameter vectors

Definition at line 48 of file PointEmitterModel.h.

8.9.2.15 using mappel::Gauss1DsModel::StencilVecT = std::vector<Stencil> [inherited]

Definition at line 47 of file Gauss1DsModel.h.

8.9.3 Constructor & Destructor Documentation

8.9.3.1 mappel::Gauss1DsMAP::Gauss1DsMAP (arma::Col < ImageCoordT > size, VecT min_sigma, VecT max_sigma, const std::string & prior_type = DefaultPriorType)

Definition at line 12 of file Gauss1DsMAP.cpp.

8.9.3.2 mappel::Gauss1DsMAP::Gauss1DsMAP (ImageSizeT size, double min_sigma, double max_sigma, const std::string & prior_type = DefaultPriorType)

Definition at line 16 of file Gauss1DsMAP.cpp.

8.9.3.3 mappel::Gauss1DsMAP::Gauss1DsMAP (ImageSizeT size, CompositeDist && prior)

Definition at line 20 of file Gauss1DsMAP.cpp.

8.9.3.4 mappel::Gauss1DsMAP::Gauss1DsMAP (ImageSizeT size, const CompositeDist & prior)

Definition at line 28 of file Gauss1DsMAP.cpp.

8.9.3.5 mappel::Gauss1DsMAP::Gauss1DsMAP (const Gauss1DsMAP & o)

Definition at line 36 of file Gauss1DsMAP.cpp.

8.9.3.6 mappel::Gauss1DsMAP::Gauss1DsMAP (Gauss1DsMAP && o)

Definition at line 44 of file Gauss1DsMAP.cpp.

8.9.4 Member Function Documentation

8.9.4.1 void mappel::PointEmitterModel::bound_theta (ParamT & theta, double epsilon = bounds_epsilon) const [inherited]

Definition at line 248 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::Point← EmitterModel::num_params, and mappel::PointEmitterModel::ubound.

8.9.4.2 PointEmitterModel::ParamT mappel::PointEmitterModel::bounded_theta (const ParamT & theta, double epsilon = bounds_epsilon) const [inherited]

Definition at line 265 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::Point← EmitterModel::num params, and mappel::PointEmitterModel::ubound.

Referenced by mappel::PointEmitterModel::bounded_theta_stack().

8.9.4.3 PointEmitterModel::ParamVecT mappel::PointEmitterModel::bounded_theta_stack(const ParamVecT & theta, double epsilon = bounds_epsilon) const [inherited]

Definition at line 307 of file PointEmitterModel.cpp.

 $References \quad mappel:: PointEmitterModel:: bounded_theta(), \quad mappel:: PointEmitterModel:: check_param_shape(), \quad and \\ mappel:: PointEmitterModel:: make_param_stack().$

8.9.4.4 void ImageFormat1DBase::check_image_shape(const ImageT & im) const [inherited]

Check the shape of a single images is correct for model size.

Definition at line 59 of file ImageFormat1DBase.cpp.

References mappel::ImageFormat1DBase::size.

8.9.4.5 void ImageFormat1DBase::check_image_shape(const ImageStackT & ims) const [inherited]

Check the shape of a stack of images is correct for model size.

Definition at line 71 of file ImageFormat1DBase.cpp.

References mappel::ImageFormat1DBase::size.

8.9.4.6 void mappel::PointEmitterModel::check_param_shape(const ParamT & theta) const [inherited]

Definition at line 167 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::num_params.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::reflected_theta(), mappel::PointEmitterModel::reflected_theta(), mappel::PointEmitterModel::theta_in_bounds(), and mappel::PointEmitterModel \leftarrow ::theta stack in bounds().

8.9.4.7 void mappel::PointEmitterModel::check_param_shape (const ParamVecT & theta) const [inherited]

Definition at line 176 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::num params.

8.9.4.8 void mappel::PointEmitterModel::check psf sigma (double psf sigma) const [inherited]

Definition at line 185 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::global_max_psf_sigma, and mappel::PointEmitterModel::global_min_psf_ \leftarrow sigma.

Referenced by mappel::Gauss1DModel(), mappel::Gauss2DModel::Gauss2DModel(), mappel:: \leftarrow Gauss2DsModel::Gauss2DsModel(), mappel::Gauss1DsModel::set_max_sigma(), mappel::Gauss2DsModel::set_ \leftarrow max_sigma(), mappel::Gauss1DsModel::set_min_sigma(), mappel:: \leftarrow Gauss1DModel::set_psf sigma(), and mappel::Gauss2DModel::set_psf sigma().

8.9.4.9 void mappel::PointEmitterModel::check_psf_sigma (const VecT & psf_sigma) const [inherited]

Definition at line 197 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::global_max_psf_sigma, and mappel::PointEmitterModel::global_min_psf_ sigma.

8.9.4.10 void ImageFormat1DBase::check_size(const ImageSizeT & size_) [static], [inherited]

Check the size argument for the model.

Definition at line 39 of file ImageFormat1DBase.cpp.

References mappel::ImageFormat1DBase::global_max_size, and mappel::ImageFormat1DBase::global_min_size.

Referenced by mappel::ImageFormat1DBase::ImageFormat1DBase(), and mappel::ImageFormat1DBase::set_size().

Definition at line 236 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.9.4.12 StringVecT mappel::PointEmitterModel::get_hyperparam_names() const [inline], [inherited]

Definition at line 256 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.9.4.13 double mappel::PointEmitterModel::get_hyperparam_value (const std::string & name) const [inline], [inherited]

Definition at line 232 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

Referenced by mappel::MCMCAdaptor1D::set_background_mcmc_sampling(), and mappel::MCMCAdaptor1D::set_contensity_mcmc_sampling().

8.9.4.14 PointEmitterModel::ParamT mappel::PointEmitterModel::get_hyperparams () const [inline], [inherited]

Definition at line 224 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.9.4.15 ImageFormat1DBase::ImageT ImageFormat1DBase::get_image_from_stack(const ImageStackT & stack, ImageCoordT n) const [inline], [inherited]

Definition at line 108 of file ImageFormat1DBase.h.

8.9.4.16 const PointEmitterModel::ParamT & mappel::PointEmitterModel::get_lbound() const [inline], [inherited]

Definition at line 212 of file PointEmitterModel.h.

References mappel::PointEmitterModel::lbound.

Referenced by mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCMCAdaptor2D::MCMCAdaptor2D(), and mappel::MCMCAdaptor1D::set_background_mcmc_sampling().

8.9.4.17 double mappel::Gauss1DsModel::get_max_sigma()const [inline], [inherited]

Definition at line 102 of file Gauss1DsModel.h.

References mappel::PointEmitterModel::prior.

Referenced by mappel::Gauss1DsModel::get stats(), and mappel::Gauss1DsModel::set min sigma().

```
8.9.4.18 IdxT mappel::MCMCAdaptorBase::get_mcmc_num_phases( )const [inherited]
Definition at line 56 of file MCMCAdaptorBase.cpp.
References mappel::MCMCAdaptorBase::num phases.
8.9.4.19 double mappel::MCMCAdaptorBase::get_mcmc_sigma_scale( ) const [inherited]
Definition at line 53 of file MCMCAdaptorBase.cpp.
References mappel::MCMCAdaptorBase::sigma scale.
8.9.4.20 double mappel::Gauss1DsModel::get_min_sigma() const [inline], [inherited]
Definition at line 98 of file Gauss1DsModel.h.
References mappel::PointEmitterModel::prior.
Referenced by mappel::Gauss1DsModel::get_stats(), and mappel::Gauss1DsModel::set_max_sigma().
8.9.4.21 IdxT mappel::PointEmitterModel::get_num_hyperparams( ) const [inline], [inherited]
Definition at line 208 of file PointEmitterModel.h.
References mappel::PointEmitterModel::num hyperparams.
8.9.4.22 IdxT mappel::PointEmitterModel::get_num_params() const [inline], [inherited]
Definition at line 160 of file PointEmitterModel.h.
References mappel::PointEmitterModel::num params.
8.9.4.23 ImageFormat1DBase::ImageCoordT ImageFormat1DBase::get_num_pixels() const [inline],
        [inherited]
Definition at line 82 of file ImageFormat1DBase.h.
References mappel::ImageFormat1DBase::size.
Referenced by mappel::ImageFormat1DBase::get_stats().
8.9.4.24 StringVecT mappel::PointEmitterModel::get_param_names() const [inline], [inherited]
Definition at line 248 of file PointEmitterModel.h.
References mappel::PointEmitterModel::prior.
```

8.9.4.25 CompositeDist & mappel::PointEmitterModel::get_prior() [inline], [inherited] Definition at line 200 of file PointEmitterModel.h. References mappel::PointEmitterModel::prior. Referenced by mappel::Gauss2DModel::update_internal_1Dsum_estimators(), and mappel::Gauss2DsModel ← ::update internal 1Dsum estimators(). 8.9.4.26 const CompositeDist & mappel::PointEmitterModel::get_prior() const [inline], [inherited] Definition at line 204 of file PointEmitterModel.h. References mappel::PointEmitterModel::prior. **8.9.4.27** ParallelRngGeneratorT & mappel::PointEmitterModel::get_rng_generator() [static], [inherited] Definition at line 120 of file PointEmitterModel.cpp. References mappel::rng_manager. 8.9.4.28 ParallelRngManagerT & mappel::PointEmitterModel::get_rng_manager() [static], [inherited] Definition at line 115 of file PointEmitterModel.cpp. References mappel::rng_manager. 8.9.4.29 ImageFormat1DBase::ImageSizeT ImageFormat1DBase::get_size() const [inline], [inherited] Definition at line 71 of file ImageFormat1DBase.h. References mappel::ImageFormat1DBase::size. Referenced by mappel::ImageFormat1DBase::get_stats(). 8.9.4.30 ImageFormat1DBase::ImageCoordT ImageFormat1DBase::get_size(IdxT idx) const [inherited] Definition at line 20 of file ImageFormat1DBase.cpp. References mappel::ImageFormat1DBase::size.

8.9.4.31 ImageFormat1DBase::ImageCoordT ImageFormat1DBase::get_size_image_stack(const ImageStackT & stack)

Definition at line 101 of file ImageFormat1DBase.h.

const [inline],[inherited]

8.9.4.32 StatsT mappel::Gauss1DsModel::get_stats() const [inherited]

Definition at line 198 of file Gauss1DsModel.cpp.

References mappel::Gauss1DsModel::get_max_sigma(), mappel::Gauss1DsModel::get_min_sigma(), mappel::MCM CAdaptor1Ds::get_stats(), mappel::ImageFormat1DBase::get_stats(), and mappel::PointEmitterModel::get_stats().

8.9.4.33 const PointEmitterModel::ParamT & mappel::PointEmitterModel::get_ubound () const [inline], [inherited]

Definition at line 216 of file PointEmitterModel.h.

References mappel::PointEmitterModel::ubound.

Referenced by mappel::Gauss2DsxyModel::get_max_sigma_ratio(), mappel::Gauss2DsModel::get_max_sigma_ratio(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCMCAdaptor2D::MCMCAdaptor2D(), mappel::MCMC \leftarrow Adaptor1D::set_background_mcmc_sampling(), and mappel::Gauss2DsModel::set_max_sigma_ratio().

8.9.4.34 bool mappel::PointEmitterModel::has hyperparam (const std::string & name) const [inline], [inherited]

Definition at line 228 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.9.4.35 Gauss1DsModel::Stencil mappel::Gauss1DsModel::initial_theta_estimate (const ImageT & im) const [inline], [inherited]

Fast, heuristic estimate of initial theta.

Definition at line 173 of file Gauss1DsModel.h.

References mappel::PointEmitterModel::make_param().

8.9.4.36 Gauss1DsModel::Stencil mappel::Gauss1DsModel::initial_theta_estimate (const ImageT & im, const ParamT & theta_init) const [inherited]

Definition at line 231 of file Gauss1DsModel.cpp.

References mappel::Gauss1DsModel::Stencil::bg(), mappel::Gauss1DsModel::Stencil::l(), mappel::PointEmitter \leftarrow Model::Ibound, mappel::Gauss1DsModel::make_stencil(), mappel::Gauss1DsModel::Stencil::sigma(), mappel::Image \leftarrow Format1DBase::size, and mappel::PointEmitterModel::ubound.

8.9.4.37 CompositeDist mappel::Gauss1DsModel::make_default_prior (ldxT size, double min_sigma, double max_sigma, const std::string & prior_type) [static], [inherited]

Definition at line 50 of file Gauss1DsModel.cpp.

References mappel::istarts_with(), mappel::Gauss1DsModel::make_default_prior_beta_position(), and mappel::

Gauss1DsModel::make default prior normal position().

8.9.4.38 CompositeDist mappel::Gauss1DsModel::make_default_prior_beta_position (ldxT size, double min_sigma, double max sigma) [static].[inherited]

Definition at line 72 of file Gauss1DsModel.cpp.

References mappel::PointEmitterModel::default_pixel_mean_bg, mappel::PointEmitterModel::make_prior_component __ intensity(), mappel::PointEmitterModel::make_prior_component_position_beta(), and mappel::PointEmitterModel __ ::make_prior_component_sigma().

Referenced by mappel::Gauss1DsModel::make default prior().

8.9.4.39 CompositeDist mappel::Gauss1DsModel::make_default_prior_normal_position (ldxT size, double min_sigma, double max_sigma) [static],[inherited]

Definition at line 83 of file Gauss1DsModel.cpp.

References mappel::PointEmitterModel::default_pixel_mean_bg, mappel::PointEmitterModel::make_prior_component __ intensity(), mappel::PointEmitterModel::make_prior_component_position_normal(), and mappel::PointEmitterModel __ ::make_prior_component_sigma().

Referenced by mappel::Gauss1DsModel::make_default_prior().

8.9.4.40 ImageFormat1DBase::ImageT ImageFormat1DBase::make_image()const [inline], [inherited]

Definition at line 87 of file ImageFormat1DBase.h.

References mappel::ImageFormat1DBase::size.

8.9.4.41 ImageFormat1DBase::ImageStackT ImageFormat1DBase::make_image_stack(ImageCoordT n) const [inline], [inherited]

Definition at line 94 of file ImageFormat1DBase.h.

References mappel::ImageFormat1DBase::size.

8.9.4.42 PointEmitterModel::ParamT mappel::PointEmitterModel::make_param() const [inline], [inherited]

Definition at line 164 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

Referenced by mappel::Gauss1DModel::initial_theta_estimate(), mappel::Gauss1DsModel::initial_theta_estimate(), mappel::Gauss2DModel::initial_theta_estimate(), mappel::Gauss2DsxyModel::initial_theta_estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::Gauss1DModel::pixel_hess_update(), mappel::Gauss1DsModel::pixel_hess_update(), mappel::Gauss2DsModel::pixel_hess_update(), and mappel::Gauss2DsModel::pixel_hess_update().

8.9.4.43 template < class FillT > PointEmitterModel::ParamT mappel::PointEmitterModel::make_param (FillT fill) const [inherited]

Definition at line 181 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

8.9.4.44 MatT mappel::PointEmitterModel::make_param_mat()const [inline],[inherited]

Definition at line 172 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

8.9.4.45 template < class FillT > MatT mappel::PointEmitterModel::make_param_mat(FillT fill) const [inherited]

Definition at line 191 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

8.9.4.46 CubeT mappel::PointEmitterModel::make_param_mat_stack(ldxT n) const [inline], [inherited]

Definition at line 176 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

8.9.4.47 template < class FillT > CubeT mappel::PointEmitterModel::make_param_mat_stack (ldxT n, FillT fill) const [inherited]

Definition at line 196 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

8.9.4.48 PointEmitterModel::ParamVecT mappel::PointEmitterModel::make_param_stack(ldxT n) const [inline], [inherited]

Definition at line 168 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

Referenced by mappel::PointEmitterModel::bounded_theta_stack(), and mappel::PointEmitterModel::reflected_theta stack().

8.9.4.49 template < class FillT > PointEmitterModel::ParamVecT mappel::PointEmitterModel::make_param_stack(ldxT n, FillT fill) const [inherited]

Definition at line 186 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

8.9.4.50 CompositeDist mappel::Gauss1DsModel::make_prior_beta_position (IdxT size, double beta_xpos, double mean_l, double kappa_l, double mean_bg, double kappa_bg, double min_sigma, double max_sigma, double alpha_sigma) [static], [inherited]

Definition at line 94 of file Gauss1DsModel.cpp.

References mappel::PointEmitterModel::make_prior_component_intensity(), mappel::PointEmitterModel::make_prior component_position_beta(), and mappel::PointEmitterModel::make_prior_component_sigma().

Referenced by mappel::Gauss2DsModel::make internal 1Dsum estimator().

8.9.4.51 prior_hessian::TruncatedGammaDist mappel::PointEmitterModel::make_prior_component_intensity (double mean = default_mean_l, double kappa = default_intensity_kappa) [static], [inherited]

Definition at line 98 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::default max I.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_beta_position(), mappel::Gauss2Ds \leftarrow default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss1DsModel::make_default_prior_normal_position(), mappel::Gauss1DsModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_prior_cormal_position(), mappel::Gauss2DModel::make_prior_beta_position(), mappel::Gauss1DsModel::make_prior_beta_position(), mappel::Gauss2DsModel::make_prior_beta_position(), mappel::Gauss2DModel::make_prior_normal_cosition(), mappel::Gauss2DsModel::make_prior_normal_cosition(), mappel::Gauss1DsModel::make_prior_normal_cosition(), mappel::Gauss2DsModel::make_prior_normal_cosition(), and mappel::Gauss2DsModel::make_prior_normal_position().

8.9.4.52 prior_hessian::ScaledSymmetricBetaDist mappel::PointEmitterModel::make_prior_component_position_beta (IdxT size, double pos_beta = default_beta_pos) [static], [inherited]

Definition at line 92 of file PointEmitterModel.cpp.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_beta_position(), mappel::Gauss1DModel::make_default_prior_beta_position(), mappel::Gauss2Ds Model::make_default_prior_beta_position(), mappel::Gauss1DsModel::make_prior_beta_position(), mappel::Gauss2Ds DModel::make_prior_beta_position(), mappel::Gauss2Ds Model::make_prior_beta_position().

8.9.4.53 prior_hessian::TruncatedNormalDist mappel::PointEmitterModel::make_prior_component_position_normal (ldxT size, double pos_sigma = default_sigma_pos) [static], [inherited]

Definition at line 85 of file PointEmitterModel.cpp.

Referenced by mappel::Gauss1DsModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_ \leftarrow default_prior_normal_position(), mappel::Gauss1DModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_prior_normal_position(), mappel::Gauss2DModel::make_prior_normal_position(), mappel::Gauss1DsModel::make_prior_normal_position(), and mappel::Gauss2DsModel::make_prior_normal_position().

8.9.4.54 prior_hessian::TruncatedParetoDist mappel::PointEmitterModel::make_prior_component_sigma (double min_sigma, double max_sigma, double alpha = default alpha sigma) [static], [inherited]

Definition at line 104 of file PointEmitterModel.cpp.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DsModel::make_default_prior_normal_position(), mappel::Gauss2DsModel::make_default_prior_normal_position(), mappel::Gauss2DsModel::make_default_prior_normal_position(), mappel::Gauss1DsModel::make_prior_beta_position(), mappel::Gauss2DsModel::make_prior_beta_position(), and mappel ::Gauss2DsModel::make_prior_normal_position().

8.9.4.55 CompositeDist mappel::Gauss1DsModel::make_prior_normal_position (IdxT size, double sigma_xpos, double mean_l, double kappa_l, double mean_bg, double kappa_bg, double min_sigma, double max_sigma, double alpha_sigma)

[static], [inherited]

Definition at line 108 of file Gauss1DsModel.cpp.

References mappel::PointEmitterModel::make_prior_component_intensity(), mappel::PointEmitterModel::make_prior ← component position normal(), and mappel::PointEmitterModel::make prior component sigma().

Referenced by mappel::Gauss2DsModel::make_internal_1Dsum_estimator().

8.9.4.56 Gauss1DsModel::Stencil mappel::Gauss1DsModel::make_stencil (const ParamT & theta, bool compute_derivatives = true) const [inline], [inherited]

Make a new Model::Stencil object at theta.

Stencils store all of the important calculations necessary for evaluating the log-likelihood and its derivatives at a particular theta (parameter) value.

This allows re-use of the most expensive computations. Stencils can be easily passed around by reference, and most functions in the mappel::methods namespace accept a const Stencil reference in place of the model parameter.

Throws mappel::ModelBoundsError if not model.theta_in_bounds(theta).

If derivatives will not be computed with this stencil set compute derivatives=false

Parameters

theta	Prameter to evaluate at
compute_derivatives	True to also prepare for derivative computations

Returns

A new Stencil object ready to compute with

Definition at line 123 of file Gauss1DsModel.h.

References mappel::Gauss1DsModel::Stencil(), and mappel::PointEmitterModel::theta in bounds().

Referenced by mappel::Gauss1DsModel::initial theta estimate().

8.9.4.57 Gauss1DsMAP & mappel::Gauss1DsMAP::operator= (const Gauss1DsMAP & o)

Definition at line 52 of file Gauss1DsMAP.cpp.

References mappel::MAPEstimator::operator=(), mappel::PoissonNoise1DObjective::operator=(), mappel::Gauss1Ds (), model::operator=(), and mappel::PointEmitterModel::operator=().

8.9.4.58 Gauss1DsMAP & mappel::Gauss1DsMAP::operator= (Gauss1DsMAP && o)

Definition at line 63 of file Gauss1DsMAP.cpp.

References mappel::MAPEstimator::operator=(), mappel::PoissonNoise1DObjective::operator=(), mappel::Gauss1Ds (Model::operator=(), and mappel::PointEmitterModel::operator=().

8.9.4.59 void mappel::Gauss1DsModel::pixel_grad (ldxT i, const Stencil & s, ParamT & pgrad) const [inline], [inherited]

Definition at line 140 of file Gauss1DsModel.h.

References mappel::Gauss1DsModel::Stencil::DX, mappel::Gauss1DsModel::Stencil::DXS, mappel::Gauss1DsModel::Stencil::I(), and mappel::Gauss1DsModel::Stencil::X.

Referenced by mappel::Gauss1DsModel::pixel hess update().

8.9.4.60 void mappel::Gauss1DsModel::pixel_grad2 (ldxT i, const Stencil & s, ParamT & pgrad2) const [inline], [inherited]

Definition at line 150 of file Gauss1DsModel.h.

References mappel::Gauss1DsModel::Stencil::DXS, mappel::Gauss1DsModel::Stencil::DXS2, mappel::Gauss1Ds ← Model::Stencil::I(), and mappel::Gauss1DsModel::Stencil::sigma().

8.9.4.61 void mappel::Gauss1DsModel::pixel_hess (ldxT i, const Stencil & s, MatT & hess) const [inline], [inherited]

Definition at line 160 of file Gauss1DsModel.h.

References mappel::Gauss1DsModel::Stencil::DX, mappel::Gauss1DsModel::Stencil::DXS, mappel::Gauss1DsModel::Stencil::DXS2, mappel::Gauss1DsModel::Stencil::DXSX, mappel::Gauss1DsModel::Stencil::I(), and mappel:: \leftarrow Gauss1DsModel::Stencil::sigma().

8.9.4.62 void mappel::Gauss1DsModel::pixel_hess_update (IdxT i, const Stencil & s, double dm_ratio_m1, double dmm_ratio, ParamT & grad, MatT & hess) const [inherited]

Definition at line 211 of file Gauss1DsModel.cpp.

References mappel::Gauss1DsModel::Stencil::DX, mappel::Gauss1DsModel::Stencil::DXS, mappel::Gauss1DsModel::Stencil::DXS, mappel::Gauss1DsModel::Stencil::DXSX, mappel::Gauss1DsModel::Stencil::I(), mappel::Point
EmitterModel::make param(), mappel::Gauss1DsModel::pixel grad(), and mappel::Gauss1DsModel::Stencil::sigma().

8.9.4.63 double mappel::Gauss1DsModel::pixel_model_value (ldxT i, const Stencil & s) const [inline], [inherited]

Definition at line 134 of file Gauss1DsModel.h.

References mappel::Gauss1DsModel::Stencil::bg(), mappel::Gauss1DsModel::Stencil::l(), and mappel::Gauss1Ds ← Model::Stencil::X.

8.9.4.64 PointEmitterModel::ParamT mappel::PointEmitterModel::reflected_theta (const ParamT & theta) const

Definition at line 276 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::Point← EmitterModel::num params, and mappel::PointEmitterModel::ubound.

Referenced by mappel::PointEmitterModel::reflected theta stack().

8.9.4.65 PointEmitterModel::ParamVecT mappel::PointEmitterModel::reflected_theta_stack (const ParamVecT & theta) const [inherited]

Definition at line 317 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::make_param_stack(), and mappel::PointEmitterModel::reflected theta().

8.9.4.66 void mappel::PointEmitterModel::rename_hyperparam (const std::string & old_name, const std::string & new_name)
[inline], [inherited]

Definition at line 244 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.9.4.67 void mappel::MCMCAdaptor1Ds::sample_mcmc_candidate (IdxT sample_index, ParamT & candidate, double step_scale = 1.0) [inherited]

Definition at line 59 of file MCMCAdaptor1Ds.cpp.

References mappel::MCMCAdaptor1D::eta_bg, mappel::MCMCAdaptor1D::eta_l, mappel::MCMCAdaptor1Ds::eta_ sigma, mappel::MCMCAdaptor1D::eta_x, mappel::MCMCAdaptorBase::num_phases, and mappel::rng_manager.

8.9.4.68 template < class RngT > PointEmitterModel::ParamT mappel::PointEmitterModel::sample_prior (RngT & rng) [inherited]

Definition at line 264 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.9.4.69 PointEmitterModel::ParamT mappel::PointEmitterModel::sample_prior() [inline], [inherited]

Definition at line 268 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior, and mappel::rng manager.

8.9.4.70 void mappel::MCMCAdaptor1D::set_background_mcmc_sampling (double eta_bg = -1) [inherited]

Definition at line 81 of file MCMCAdaptor1D.cpp.

References mappel::PointEmitterModel::default_pixel_mean_bg, mappel::MCMCAdaptor1D::eta_bg, mappel::PointcointcointerModel::get_hyperparam_value(), mappel::PointEmitterModel::get_bound(), mappel::PointEmitterModel::get_cointcointermodel::get_cointcoint

Referenced by mappel::MCMCAdaptor1D::MCMCAdaptor1D().

8.9.4.71 void mappel::PointEmitterModel::set_bounds (const ParamT & *lbound_*, const ParamT & *ubound_*) [inherited]

Box-type parameter bounds

Modifies the prior bounds to prevent sampling outside the valid box-constraints.

Definition at line 213 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounds_epsilon, mappel::PointEmitterModel::lbound, mappel::PointEmitter Model::num_params, mappel::PointEmitterModel::prior, and mappel::PointEmitterModel::ubound.

```
8.9.4.72 void mappel::PointEmitterModel::set_hyperparam_names ( const StringVecT & desc ) [inline], [inherited]
```

Definition at line 260 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.9.4.73 void mappel::PointEmitterModel::set_hyperparam_value (const std::string & name, double value) [inline], [inherited]

Definition at line 240 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.9.4.74 void mappel::PointEmitterModel::set_hyperparams (const VecT & hyperparams) [inline], [inherited]

Definition at line 220 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

Referenced by mappel::Gauss2DModel::set_hyperparams(), and mappel::Gauss2DsModel::set_hyperparams().

8.9.4.75 template < class ImT > void ImageFormat1DBase::set_image_in_stack (ImageStackT & stack, ImageCoordT n, const ImT & im) const [inherited]

Definition at line 115 of file ImageFormat1DBase.h.

8.9.4.76 void mappel::MCMCAdaptor1D::set_intensity_mcmc_sampling (double eta_l = -1) [inherited]

Definition at line 65 of file MCMCAdaptor1D.cpp.

References mappel::PointEmitterModel::default_mean_I, mappel::MCMCAdaptor1D::eta_I, mappel::PointEmitter Model::get_hyperparam_value(), and mappel::MCMCAdaptorBase::sigma_scale.

Referenced by mappel::MCMCAdaptor1D::MCMCAdaptor1D().

8.9.4.77 void mappel::PointEmitterModel::set_lbound (const ParamT & lbound) [inherited]

Definition at line 226 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounds_epsilon, mappel::PointEmitterModel::lbound, mappel::PointEmitter Model::num_params, mappel::PointEmitterModel::prior, and mappel::PointEmitterModel::ubound.

Referenced by mappel::Gauss1DsModel::set min sigma().

8.9.4.78 void mappel::Gauss1DsModel::set_max_sigma (double max_sigma) [inherited]

Definition at line 135 of file Gauss1DsModel.cpp.

References mappel::PointEmitterModel::check_psf_sigma(), mappel::Gauss1DsModel::get_min_sigma(), mappel:: PointEmitterModel::prior, and mappel::PointEmitterModel::set ubound().

Referenced by mappel::Gauss1DsModel::set_max_sigma(), mappel::Gauss2DsModel::set_max_sigma_ratio(), and mappel::Gauss2DsModel::set_min_sigma().

8.9.4.79 void mappel::Gauss1DsModel::set max sigma (const VecT & max sigma) [inherited]

Definition at line 153 of file Gauss1DsModel.cpp.

References mappel::Gauss1DsModel::set_max_sigma().

8.9.4.80 void mappel::MCMCAdaptorBase::set_mcmc_num_phases (ldxT num_phases) [protected], [inherited]

Definition at line 59 of file MCMCAdaptorBase.cpp.

References mappel::MCMCAdaptorBase::num phases.

Referenced by mappel::MCMCAdaptor1Ds::MCMCAdaptor1Ds(), and mappel::MCMCAdaptor2Ds::MCMCAdaptor2→Ds().

8.9.4.81 void mappel::MCMCAdaptorBase::set_mcmc_sigma_scale (double scale) [inherited]

Definition at line 39 of file MCMCAdaptorBase.cpp.

References mappel::MCMCAdaptorBase::global_max_mcmc_sigma_scale, and mappel::MCMCAdaptorBase::sigma
scale.

8.9.4.82 void mappel::Gauss1DsModel::set_min_sigma (double min_sigma) [inherited]

Definition at line 122 of file Gauss1DsModel.cpp.

References mappel::PointEmitterModel::check_psf_sigma(), mappel::Gauss1DsModel::get_max_sigma(), mappel:: PointEmitterModel::prior, and mappel::PointEmitterModel::set lbound().

Referenced by mappel::Gauss1DsModel::set min sigma(), and mappel::Gauss2DsModel::set min sigma().

8.9.4.83 void mappel::Gauss1DsModel::set_min_sigma (const VecT & min_sigma) [inherited]

Definition at line 148 of file Gauss1DsModel.cpp.

References mappel::Gauss1DsModel::set min sigma().

8.9.4.84 void mappel::PointEmitterModel::set_param_names (const StringVecT & desc) [inline], [inherited]

Definition at line 252 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.9.4.85 void mappel::PointEmitterModel::set_prior(CompositeDist && prior_) [inherited]

Definition at line 158 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::num_hyperparams, mappel::Point← EmitterModel::num params, mappel::PointEmitterModel::prior, and mappel::PointEmitterModel::ubound.

Referenced by mappel::Gauss2DModel::set_prior(), and mappel::Gauss2DsModel::set_prior().

8.9.4.86 void mappel::PointEmitterModel::set_prior (const CompositeDist & prior_) [inherited]

Definition at line 149 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::Ibound, mappel::PointEmitterModel::num_hyperparams, mappel::Point← EmitterModel::num params, mappel::PointEmitterModel::prior, and mappel::PointEmitterModel::ubound.

8.9.4.87 void mappel::PointEmitterModel::set_rng_seed (RngSeedT seed) [static], [inherited]

Definition at line 110 of file PointEmitterModel.cpp.

References mappel::rng_manager.

8.9.4.88 void ImageFormat1DBase::set_size (const ImageSizeT & size_) [inherited]

Definition at line 30 of file ImageFormat1DBase.cpp.

References mappel::ImageFormat1DBase::check_size(), and mappel::ImageFormat1DBase::size.

Referenced by mappel::ImageFormat1DBase::set_size(), mappel::Gauss2DModel::set_size(), and mappel::Gauss2 DSModel::set_size().

8.9.4.89 void ImageFormat1DBase::set_size (const arma::Col < ImageCoordT > & sz) [inline], [inherited]

Definition at line 75 of file ImageFormat1DBase.h.

References mappel::ImageFormat1DBase::set_size().

8.9.4.90 void mappel::PointEmitterModel::set_ubound (const ParamT & ubound) [inherited]

Definition at line 237 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounds_epsilon, mappel::PointEmitterModel::lbound, mappel::PointEmitter (
Model::num params, mappel::PointEmitterModel::prior, and mappel::PointEmitterModel::ubound.

Referenced by mappel::Gauss1DsModel::set_max_sigma(), and mappel::Gauss2DsModel::set_max_sigma_ratio().

8.9.4.91 bool mappel::PointEmitterModel::theta_in_bounds (const ParamT & theta) const [inherited]

Definition at line 257 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::ubound.

Referenced by mappel::Gauss2DModel::initial_theta_estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::Gauss1DModel::make_stencil(), mappel::Gauss1DsModel::make_stencil(), mappel::Gauss2DsModel::make_stencil(), mappel::Gauss2DsModel::make_stencil(), and mappel::Point
EmitterModel::theta stack in bounds().

8.9.4.92 BoolVecT mappel::PointEmitterModel::theta_stack_in_bounds(const ParamVecT & theta) const [inherited]

Definition at line 297 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check param shape(), and mappel::PointEmitterModel::theta in bounds().

8.9.5 Member Data Documentation

8.9.5.1 const double mappel::PointEmitterModel::bounds_epsilon = 1.0E-6 [static], [inherited]

Distance from the boundary to constrain in bound_theta and bounded_theta methods

Definition at line 52 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::set_bounds(), mappel::PointEmitterModel::set_lbound(), mappel::Gauss2 DsModel::set_max_sigma_ratio(), and mappel::PointEmitterModel::set_ubound().

8.9.5.2 const double mappel::PointEmitterModel::default_alpha_sigma = 2 [static], [inherited]

Default per-pixel background gamma distribution shape

Definition at line 62 of file PointEmitterModel.h.

8.9.5.3 const double mappel::PointEmitterModel::default_beta_pos = 3 [static], [inherited]

Default position parameter in symmetric beta-distributions

Definition at line 56 of file PointEmitterModel.h.

8.9.5.4 const double mappel::PointEmitterModel::default_intensity_kappa = 2 [static], [inherited]

Default shape for intensity gamma distributions

Definition at line 60 of file PointEmitterModel.h.

8.9.5.5 const double mappel::PointEmitterModel::default_max_I = INFINITY [static], [inherited]

Default maximum emitter intensity

Definition at line 59 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::make_prior_component_intensity().

8.9.5.6 const double mappel::PointEmitterModel::default mean I = 300 [static], [inherited]

Default emitter intensity mean

Definition at line 58 of file PointEmitterModel.h.

Referenced by mappel::MCMCAdaptor1D::set_intensity_mcmc_sampling().

8.9.5.7 const double mappel::PointEmitterModel::default_pixel_mean_bg = 4 [static], [inherited]

Default per-pixel mean background counts

Definition at line 61 of file PointEmitterModel.h.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DModel::make default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_beta_position(), mappel::Gauss1DsModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss2DsModel::make_default_prior_normal_position(), and mappel::MCMCAdaptor1Ddisset_background_mcmc_sampling().

8.9.5.8 const double mappel::PointEmitterModel::default_sigma_pos = 1 [static], [inherited]

Default position parameter in symmetric beta-distributions

Definition at line 57 of file PointEmitterModel.h.

8.9.5.9 const std::string mappel::Gauss1DsModel::DefaultPriorType = "Normal" [static], [inherited]

Definition at line 51 of file Gauss1DsModel.h.

Referenced by mappel::Gauss1DsModel::operator=().

8.9.5.10 const std::string mappel::PointEmitterModel::DefaultSeperableInitEstimator = "TrustRegion" [static], [inherited]

Estimator name to use in 1D separable initializations

Definition at line 49 of file PointEmitterModel.h.

Referenced by mappel::Gauss2DModel::initial_theta_estimate(), mappel::Gauss2DsxyModel::initial_theta_estimate(), and mappel::Gauss2DsModel::initial_theta_estimate().

8.9.5.11 const std::vector < std::string > mappel::PoissonNoise1DObjective::estimator names [static], [inherited]

Definition at line 24 of file PoissonNoise1DObjective.h.

8.9.5.12 double mappel::MCMCAdaptor1D::eta_bg = 0 [protected], [inherited]

The standard deviation for the normally distributed perturbation to theta bg in the random walk MCMC sampling

Definition at line 32 of file MCMCAdaptor1D.h.

Referenced by mappel::MCMCAdaptor1D::get_stats(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCCAdaptor1D(), mappel::MCMCAdaptor2Ds(), mappel::MCMCAdaptor2Ds(), mappel::MCMCAdaptor1Ds::sample_mcmc_candidate(), mappel::MCMCAdaptor1Dc::sample_mcmc_candidate(), mappel::MCMCAdaptor1Dc::sample_mcmc_candidate(), and mappel::MCMCAdaptor1D::set_background_mcmc_sampling().

```
8.9.5.13 double mappel::MCMCAdaptor1D::eta_I = 0 [protected], [inherited]
```

The standard deviation for the normally distributed perturbation to theta_I in the random walk MCMC sampling

Definition at line 31 of file MCMCAdaptor1D.h.

Referenced by mappel::MCMCAdaptor1D::get_stats(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCMCAdaptor1D(), mappel::MCMCAdaptor2Ds::sample_mcmc_candidate(), mappel::MCMCAdaptor2Ds::sample_mcmc_candidate(), mappel::MCMCAdaptor1Ds::sample_mcmc_candidate(), mappel::MCMCAdaptor1Dc::sample_mcmc_candidate(), and mappel::MCMCAdaptor1Dc::set intensity mcmc sampling().

```
8.9.5.14 double mappel::MCMCAdaptor1Ds::eta_sigma =-1 [protected], [inherited]
```

The standard deviation for the normally distributed perturbation to theta bg in the random walk MCMC sampling

Definition at line 27 of file MCMCAdaptor1Ds.h.

Referenced by mappel::MCMCAdaptor1Ds::get_stats(), mappel::MCMCAdaptor1Ds::MCMCAdaptor1Ds::MCMCAdaptor1Ds::perator=(), and mappel::MCMCAdaptor1Ds::sample mcmc candidate().

8.9.5.15 double mappel::MCMCAdaptor1D::eta_x = 0 [protected], [inherited]

The standard deviation for the normally distributed perturbation to theta x in the random walk MCMC sampling

Definition at line 30 of file MCMCAdaptor1D.h.

Referenced by mappel::MCMCAdaptor1D::get_stats(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCMCAdaptor1Ds:MCMCAdaptor1Ds(), mappel::MCMCAdaptor1Ds:MCMCAdaptor1Ds(), mappel::MCMCAdaptor2Ds::MCMCAdaptor1Ds(), and mappel::MCMCAdaptor1CDs(), mappel::MCMCAdaptor1CDs(), and mappel::MCMCAdaptor1CDs(), mappel::MCMCAdaptor1CDs(), and mappel::MCMCAdaptor1CDs(), mappel::MCMCAdaptor1CDs(), and mappel::MCMCAdaptor1CDs(), mappel::MCMCAdaptor1CDs(), mappel::MCMCAdaptor1Ds(), mappel::MCMCAdaptor1Ds

8.9.5.16 const double mappel::MCMCAdaptorBase::global_default_mcmc_sigma_scale = 0.05 [static], [inherited]

Definition at line 16 of file MCMCAdaptorBase.h.

Referenced by mappel::MCMCAdaptor1Ds::MCMCAdaptor1Ds(), mappel::MCMCAdaptor2D::MCMCAdaptor2D(), and mappel::MCMCAdaptor2Ds::MCMCAdaptor2Ds().

8.9.5.17 const double mappel::MCMCAdaptorBase::global_max_mcmc_sigma_scale = 0.5 [static], [inherited]

Definition at line 17 of file MCMCAdaptorBase.h.

Referenced by mappel::MCMCAdaptorBase::MCMCAdaptorBase(), and mappel::MCMCAdaptorBase::set_mcmc_ sigma_scale().

8.9.5.18 const double mappel::PointEmitterModel::global_max_psf_sigma = 1E2 [static], [inherited]

Global maxmimum for any psf_sigma. Sizes above this value are invalid, and nowhere near useful for practical point emitter localization

Definition at line 54 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::check_psf_sigma().

8.9.5.19 const ImageFormat1DBase::ImageCoordT ImageFormat1DBase::global_max_size = 512 [static], [inherited]

Maximum size along any dimension of the image. This is insanely big to catch obvious errors

Definition at line 40 of file ImageFormat1DBase.h.

Referenced by mappel::ImageFormat1DBase::check_size().

8.9.5.20 const double mappel::PointEmitterModel::global_min_psf_sigma = 1E-1 [static], [inherited]

Global minimum for any psf_sigma. Sizes below this value are invalid, and nowhere near useful for practical point emitter localization

Definition at line 53 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::check_psf_sigma().

Minimum size along any dimension of the image.

Definition at line 39 of file ImageFormat1DBase.h.

Referenced by mappel::ImageFormat1DBase::check_size().

8.9.5.22 ParamT mappel::PointEmitterModel::lbound [protected], [inherited]

Definition at line 148 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel ::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::get_stats(), mappel::Gauss1DsModel::initial_theta = estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::PointEmitterModel::pointEmitterModel::reflected_theta(), mappel::PointEmitterModel = ::set_bounds(), mappel::PointEmitterModel::set_lbound(), mappel::PointEmitterModel::set_prior(), mappel::PointEmitterModel::pointEmitterModel::set_prior(), mappel::PointEmitterModel::set_prior(), mappel::PointEmitterModel::set_p

8.9.5.23 const std::string mappel::Gauss1DsMAP::name [static]

Definition at line 35 of file Gauss1DsMAP.h.

8.9.5.24 const ImageFormat1DBase::ImageCoordT ImageFormat1DBase::num_dim = 1 [static], [inherited]

Number of image dimensions.

Definition at line 38 of file ImageFormat1DBase.h.

Referenced by mappel::ImageFormat1DBase::get_stats().

8.9.5.25 IdxT mappel::PointEmitterModel::num_hyperparams [protected], [inherited]

Definition at line 147 of file PointEmitterModel.h.

 $Referenced \quad by \quad mappel:: PointEmitterModel:: get_num_hyperparams(), \quad mappel:: PointEmitterModel:: get_stats(), \\ mappel:: PointEmitterModel:: get_sta$

8.9.5.26 IdxT mappel::PointEmitterModel::num_params [protected], [inherited]

Definition at line 146 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel ::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::get_num_params(), mappel::PointEmitter
Model::get_stats(), mappel::Gauss1DModel::initial_theta_estimate(), mappel::Gauss2DModel::initial_theta_estimate(), mappel::PointEmitterModel::make_param(), mappel::PointEmitterModel::make_param(), mappel::PointEmitterModel::make_param_mat_stack(), mappel::PointEmitterModel::make_param_stack(), mappel::PointEmitterModel::pointEmit

```
8.9.5.27 IdxT mappel::MCMCAdaptorBase::num_phases [protected], [inherited]
```

The number of different sampling phases for candidate selection MCMC. Each phase changes a different subset of variables.

Definition at line 29 of file MCMCAdaptorBase.h.

Referenced by mappel::MCMCAdaptorBase::get_mcmc_num_phases(), mappel::MCMCAdaptorBase::get_stats(), mappel::MCMCAdaptor1Ds::sample_mcmc_candidate(), mappel::MCMCAdaptor2Ds::sample_mcmc_candidate(), mappel::MCMCAdaptor1D::sample_mcmc_candidate(), and mappel::MCMCAdaptorBase::set mcmc num phases().

```
8.9.5.28 CompositeDist mappel::PointEmitterModel::prior [protected], [inherited]
```

Definition at line 145 of file PointEmitterModel.h.

Referenced by mappel::Gauss2DModel::debug_internal_sum_model_y(), mappel::Gauss2DsModel::debug_internal \
_sum_model_y(), mappel::Gauss2DModel::Gauss2DModel(), mappel::Gauss2DsModel::Gauss2DsModel(), mappel \
::PointEmitterModel::get_hyperparam_index(), mappel::PointEmitterModel::get_hyperparam_names(), mappel::PointEmitterModel::get_hyperparam_names(), mappel::PointEmitterModel::get_param_names(), mappel::PointEmitterModel::get_param_names(), mappel::PointEmitterModel::get_param_names(), mappel::PointEmitterModel::get_param_names(), mappel::PointEmitterModel::pointEmitterModel::has_\(\cdot \) hyperparam(), mappel::PointEmitterModel::pointEmitterModel::pointEmitterModel::pointEmitterModel(), mappel::PointEmitterModel::set_bounds(), mappel::PointEmitterModel::set_hyperparam_names(), mappel::PointEmitterModel::set_hyperparam \(\cdot \) value(), mappel::PointEmitterModel::set_hyperparam(), mappel::PointEmitterModel::set_lyperparam(), mappel::PointEmitte

8.9.5.29 const StringVecT mappel::Gauss1DsModel::prior_types [static], [inherited]

Initial value:

```
= { "Beta", "Normal" }
```

Definition at line 50 of file Gauss1DsModel.h.

Referenced by mappel::Gauss1DsModel::operator=().

```
8.9.5.30 double mappel::MCMCAdaptorBase::sigma_scale [protected], [inherited]
```

A scaling factor for step sizes as a fraction of the size of the domain dimension we are walking in. (0.05 default)

Definition at line 30 of file MCMCAdaptorBase.h.

Referenced by mappel::MCMCAdaptorBase::get_mcmc_sigma_scale(), mappel::MCMCAdaptorBase::get_stats(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCMCAdaptor1Ds::MCMCAdaptor1Ds(), mappel::MCMCAdaptor1Ds::MCMCAdaptor1Ds(), mappel::MCMCAdaptor2Ds::MCMCAdaptor2Ds(), mappel::MCMCAdaptor1D::set background_mcmc_sampling(), mappel::MCMCAdaptor1D::set_intensity_mcmc_sampling(), and mappel::MCMCAdaptorBase::set mcmc sigma scale().

8.9.5.31 ImageSizeT mappel::ImageFormat1DBase::size [protected], [inherited]

Number of pixels in X dimension for 1D image

Definition at line 65 of file ImageFormat1DBase.h.

8.9.5.32 ParamT mappel::PointEmitterModel::ubound [protected], [inherited]

Definition at line 148 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel ::PointEmitterModel::get_ubound(), mappel::Gauss1DsModel::initial_theta == estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::PointEmitterModel::pet_ubound(), mappel::PointEmitterModel::pet_ubound(), mappel::PointEmitterModel::pet_ubound(), mappel::PointEmitterModel::pet_ubound(), mappel::PointEmitterModel::pet_ubound(), mappel::PointEmitterModel::pet_ubound(), mappel::PointEmitterModel::pet_ubound(), mappel::PointEmitterModel::pet_ubound(), mappel::PointEmitterModel::pet_ubound(), mappel::PointEmitterModel::pet_ubound().

The documentation for this class was generated from the following files:

- Gauss1DsMAP.h
- Gauss1DsMAP.cpp

8.10 mappel::Gauss1DsMLE Class Reference

A 1D Gaussian with variable PSF under an Poisson noise assumption and maximum-likelihood estimator.

#include </home/travis/build/markjolah/Mappel/include/Mappel/Gauss1DsMLE.h>

Inheritance diagram for mappel::Gauss1DsMLE:

mappel::MCMCAdaptorBase

mappel::MCMCAdaptorID

mappel::MCMCAdaptorID

mappel::MCMCAdaptorIDs

mappel:

Public Types

```
    using StencilVecT = std::vector< Stencil >

• using ParamT = arma::vec

    using ParamVecT = arma::mat

    using ImageCoordT = uint32 t

• using ImagePixeIT = double

    template < class CoordT >

  using ImageSizeShapeT = CoordT
template<class CoordT >
  using ImageSizeVecShapeT = arma::Col < CoordT >

    using ImageSizeT = ImageSizeShapeT < ImageCoordT >

    using ImageSizeVecT = ImageSizeVecShapeT < ImageCoordT >

    template < class PixeIT >

  using ImageShapeT = arma::Col < PixelT >

    template < class PixelT >

  using ImageStackShapeT = arma::Mat< PixeIT >

    using ImageT = ImageShapeT < ImagePixeIT >

    using ImageStackT = ImageStackShapeT < ImagePixeIT >
```

Public Member Functions

using ModelDataT = ImageT

using ModelDataStackT = ImageStackT

- Gauss1DsMLE (arma::Col < ImageCoordT > size, VecT min_sigma, VecT max_sigma, const std::string &prior
 _type=DefaultPriorType)
- Gauss1DsMLE (ImageSizeT size, CompositeDist &&prior)
- Gauss1DsMLE (ImageSizeT size, const CompositeDist &prior)
- Gauss1DsMLE (const Gauss1DsMLE &o)
- Gauss1DsMLE & operator= (const Gauss1DsMLE &o)
- Gauss1DsMLE (Gauss1DsMLE &&o)
- Gauss1DsMLE & operator= (Gauss1DsMLE &&o)
- double get_min_sigma () const
- double get_max_sigma () const
- void set_min_sigma (double min_sigma)
- void set_min_sigma (const VecT &min_sigma)
- void set_max_sigma (double max_sigma)
- void set_max_sigma (const VecT &max_sigma)
- StatsT get stats () const
- Stencil make_stencil (const ParamT &theta, bool compute_derivatives=true) const

Make a new Model::Stencil object at theta.

- double pixel model value (ldxT i, const Stencil &s) const
- · void pixel grad (ldxT i, const Stencil &s, ParamT &pgrad) const
- void pixel_grad2 (ldxT i, const Stencil &s, ParamT &pgrad2) const
- void pixel_hess (ldxT i, const Stencil &s, MatT &hess) const
- void pixel_hess_update (ldxT i, const Stencil &s, double dm_ratio_m1, double dmm_ratio, ParamT &grad, MatT &hess) const
- Stencil initial theta estimate (const ImageT &im) const

Fast, heuristic estimate of initial theta.

- Stencil initial_theta_estimate (const ImageT &im, const ParamT &theta_init) const
- IdxT get_num_params () const
- void check param shape (const ParamT &theta) const
- void check param shape (const ParamVecT &theta) const
- void check psf sigma (double psf sigma) const
- void check psf sigma (const VecT &psf sigma) const
- ParamT make param () const
- template<class FillT >

ParamT make param (FillT fill) const

- ParamVecT make_param_stack (ldxT n) const
- template<class FillT >

ParamVecT make_param_stack (ldxT n, FillT fill) const

- MatT make param mat () const
- template<class FillT >

MatT make_param_mat (FillT fill) const

- CubeT make_param_mat_stack (ldxT n) const
- template<class FillT >

CubeT make param mat stack (ldxT n, FillT fill) const

- CompositeDist & get prior ()
- · const CompositeDist & get prior () const
- void set_prior (CompositeDist &&prior_)
- void set_prior (const CompositeDist &prior_)
- IdxT get_num_hyperparams () const
- void set hyperparams (const VecT &hyperparams)
- VecT get_hyperparams () const
- bool has hyperparam (const std::string &name) const
- double get_hyperparam_value (const std::string &name) const
- int get_hyperparam_index (const std::string &name) const
- void set_hyperparam_value (const std::string &name, double value)
- void rename_hyperparam (const std::string &old_name, const std::string &new_name)
- StringVecT get_param_names () const
- void set_param_names (const StringVecT &desc)
- StringVecT get_hyperparam_names () const
- void set_hyperparam_names (const StringVecT &desc)
- template<class RngT >

ParamT sample_prior (RngT &rng)

- ParamT sample_prior ()
- void set bounds (const ParamT &lbound, const ParamT &ubound)
- void set Ibound (const ParamT &Ibound)
- void set ubound (const ParamT &ubound)
- · const ParamT & get Ibound () const
- const ParamT & get_ubound () const
- bool theta_in_bounds (const ParamT &theta) const
- void bound theta (ParamT &theta, double epsilon=bounds epsilon) const
- ParamT bounded theta (const ParamT &theta, double epsilon=bounds epsilon) const
- · ParamT reflected theta (const ParamT &theta) const
- BoolVecT theta_stack_in_bounds (const ParamVecT &theta) const
- ParamVecT bounded_theta_stack (const ParamVecT &theta, double epsilon=bounds_epsilon) const
- ParamVecT reflected theta stack (const ParamVecT &theta) const
- ImageT make image () const

- ImageStackT make_image_stack (ImageCoordT n) const
- ImageCoordT get_size image_stack (const ImageStackT &stack) const
- ImageT get_image_from_stack (const ImageStackT &stack, ImageCoordT n) const
- void set_image_in_stack (ImageStackT &stack, ImageCoordT n, const ImT &im) const

template<class ImT >

- ImageSizeT get_size () constImageCoordT get_size (IdxT idx) const
- ImageCoordT get_num_pixels () const
- void set size (const ImageSizeT &size)
- void set_size (const arma::Col< ImageCoordT > &sz)
- void check image shape (const ImageT &im) const

Check the shape of a single images is correct for model size.

void check image shape (const ImageStackT &ims) const

Check the shape of a stack of images is correct for model size.

- void sample mcmc candidate (ldxT sample index, ParamT &candidate, double step scale=1.0)
- void set_intensity_mcmc_sampling (double eta_l=-1)
- void set background mcmc sampling (double eta bg=-1)
- void set_mcmc_sigma_scale (double scale)
- double get mcmc sigma scale () const
- IdxT get_mcmc_num_phases () const

Static Public Member Functions

- static CompositeDist make_default_prior (ldxT size, double min_sigma, double max_sigma, const std::string &prior_type)
- static CompositeDist make default prior beta position (ldxT size, double min sigma, double max sigma)
- static CompositeDist make default prior normal position (IdxT size, double min sigma, double max sigma)
- static CompositeDist make_prior_beta_position (ldxT size, double beta_xpos, double mean_I, double kappa_I, double mean_bg, double kappa_bg, double min_sigma, double max_sigma, double alpha_sigma)
- static CompositeDist make_prior_normal_position (IdxT size, double sigma_xpos, double mean_I, double kappa_I, double mean_bg, double kappa_bg, double min_sigma, double max_sigma, double alpha_sigma)
- static prior_hessian::ScaledSymmetricBetaDist make_prior_component_position_beta (ldxT size, double pos_
 beta=default_beta_pos)
- static prior_hessian::TruncatedParetoDist make_prior_component_sigma (double min_sigma, double max_
 sigma, double alpha=default_alpha_sigma)
- static void set rng seed (RngSeedT seed)
- static ParallelRngManagerT & get_rng_manager ()
- static ParallelRngGeneratorT & get_rng_generator ()
- static void check size (const ImageSizeT &size)

Check the size argument for the model.

Static Public Attributes

- static const std::string name
- static const StringVecT prior_types
- static const std::string DefaultPriorType = "Normal"
- static const std::string DefaultSeperableInitEstimator = "TrustRegion"
- static const double bounds epsilon = 1.0E-6
- static const double global_min_psf_sigma = 1E-1
- static const double global_max_psf_sigma = 1E2
- static const double default beta pos = 3
- static const double default sigma pos = 1
- static const double default mean I = 300
- static const double default max I = INFINITY
- static const double default_intensity_kappa = 2
- static const double default pixel mean bg = 4
- static const double default alpha sigma = 2
- static const ImageCoordT num dim = 1
- static const ImageCoordT global min size = 3
- static const ImageCoordT global_max_size = 512
- static const double global_default_mcmc_sigma_scale = 0.05
- static const double global max mcmc sigma scale = 0.5
- static const std::vector< std::string > estimator_names

Protected Member Functions

void set_mcmc_num_phases (ldxT num_phases)

Protected Attributes

- · CompositeDist prior
- IdxT num params
- IdxT num hyperparams
- ParamT Ibound
- ParamT ubound
- ImageSizeT size
- double eta_sigma =-1
- double eta x = 0
- double eta_l =0
- double eta_bg =0
- IdxT num_phases
- double sigma_scale

8.10.1 Detailed Description

A 1D Gaussian with variable PSF under an Poisson noise assumption and maximum-likelihood estimator.

Model: Gauss1DsModel - 1D Gaussian PSF with variable PSF sigma Objective: PoissonNoise1DObjective - Poisson noise model for 1D Estimator: MLEstimator - Pure-likelihood estimator

Definition at line 24 of file Gauss1DsMLE.h.

```
8.10.2 Member Typedef Documentation
```

8.10.2.1 using mappel::ImageFormat1DBase::ImageCoordT = uint32_t [inherited]

Image size coordinate storage type

Definition at line 25 of file ImageFormat1DBase.h.

8.10.2.2 using mappel::ImageFormat1DBase::ImagePixelT = double [inherited]

Image pixel storage type

Definition at line 26 of file ImageFormat1DBase.h.

8.10.2.3 template < class PixeIT > using mappel::ImageFormat1DBase::ImageShapeT = arma::Col < PixeIT > [inherited]

Shape of the data type for a single image

Definition at line 33 of file ImageFormat1DBase.h.

8.10.2.4 template < class CoordT > using mappel::ImageFormat1DBase::ImageSizeShapeT = CoordT [inherited]

Shape of the data type to store 1-image's coordinates

Definition at line 28 of file ImageFormat1DBase.h.

8.10.2.5 using mappel::ImageFormat1DBase::ImageSizeT = ImageSizeShapeT < ImageCoordT > [inherited]

Data type for a single image size

Definition at line 30 of file ImageFormat1DBase.h.

8.10.2.6 template < class CoordT > using mappel::ImageFormat1DBase::ImageSizeVecShapeT = arma::Col < CoordT > [inherited]

Shape of the data type to store a vector of image's coordinates

Definition at line 29 of file ImageFormat1DBase.h.

8.10.2.7 using mappel::ImageFormat1DBase::ImageSizeVecT = ImageSizeVecShapeT < ImageCoordT > [inherited]

Data type for a sequence of image sizes

Definition at line 31 of file ImageFormat1DBase.h.

8.10.2.8 template < class PixelT > using mappel::ImageFormat1DBase::ImageStackShapeT = arma::Mat < PixelT > [inherited]

Shape of the data type for a sequence of images

Definition at line 34 of file ImageFormat1DBase.h.

8.10.2.9 using mappel::ImageFormat1DBase::ImageStackT = ImageStackShapeT < ImagePixeIT > [inherited]

Data type to represent a sequence of images

Definition at line 36 of file ImageFormat1DBase.h.

8.10.2.10 using mappel::ImageFormat1DBase::ImageT = ImageShapeT < ImagePixeIT > [inherited]

Data type to represent single image

Definition at line 35 of file ImageFormat1DBase.h.

8.10.2.11 using mappel::PoissonNoise1DObjective::ModelDataStackT = ImageStackT [inherited]

Objective function data stack type: 1D double precision image stack, of images gain-corrected to approximate photons counts

Definition at line 26 of file PoissonNoise1DObjective.h.

8.10.2.12 using mappel::PoissonNoise1DObjective::ModelDataT = ImageT [inherited]

Objective function data type: 1D double precision image, gain-corrected to approximate photons counts

Definition at line 25 of file PoissonNoise1DObjective.h.

8.10.2.13 using mappel::PointEmitterModel::ParamT = arma::vec [inherited]

Parameter vector

Definition at line 47 of file PointEmitterModel.h.

8.10.2.14 using mappel::PointEmitterModel::ParamVecT = arma::mat [inherited]

Vector of parameter vectors

Definition at line 48 of file PointEmitterModel.h.

8.10.2.15 using mappel::Gauss1DsModel::StencilVecT = std::vector < Stencil > [inherited]

Definition at line 47 of file Gauss1DsModel.h.

8.10.3 Constructor & Destructor Documentation

8.10.3.1 mappel::Gauss1DsMLE::Gauss1DsMLE (arma::Col < ImageCoordT > size, VecT min_sigma, VecT max_sigma, const std::string & prior_type = DefaultPriorType)

Definition at line 12 of file Gauss1DsMLE.cpp.

8.10.3.2 mappel::Gauss1DsMLE::Gauss1DsMLE (ImageSizeT size, double min_sigma, double max_sigma, const std::string & prior_type = DefaultPriorType)

Definition at line 16 of file Gauss1DsMLE.cpp.

8.10.3.3 mappel::Gauss1DsMLE::Gauss1DsMLE (ImageSizeT size, CompositeDist && prior)

Definition at line 20 of file Gauss1DsMLE.cpp.

8.10.3.4 mappel::Gauss1DsMLE::Gauss1DsMLE (ImageSizeT size, const CompositeDist & prior)

Definition at line 28 of file Gauss1DsMLE.cpp.

8.10.3.5 mappel::Gauss1DsMLE::Gauss1DsMLE (const Gauss1DsMLE & o)

Definition at line 36 of file Gauss1DsMLE.cpp.

8.10.3.6 mappel::Gauss1DsMLE::Gauss1DsMLE (Gauss1DsMLE && o)

Definition at line 44 of file Gauss1DsMLE.cpp.

8.10.4 Member Function Documentation

8.10.4.1 void mappel::PointEmitterModel::bound_theta (ParamT & theta, double epsilon = bounds_epsilon) const [inherited]

Definition at line 248 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::Point← EmitterModel::num_params, and mappel::PointEmitterModel::ubound.

8.10.4.2 PointEmitterModel::ParamT mappel::PointEmitterModel::bounded_theta (const ParamT & theta, double epsilon = bounds_epsilon) const [inherited]

Definition at line 265 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::ubound.

Referenced by mappel::PointEmitterModel::bounded theta stack().

8.10.4.3 PointEmitterModel::ParamVecT mappel::PointEmitterModel::bounded_theta_stack(const ParamVecT & theta, double epsilon = bounds_epsilon) const [inherited]

Definition at line 307 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::check_param_shape(), and mappel::PointEmitterModel::make_param_stack().

8.10.4.4 void ImageFormat1DBase::check_image_shape(const ImageT & im) const [inherited]

Check the shape of a single images is correct for model size.

Definition at line 59 of file ImageFormat1DBase.cpp.

References mappel::ImageFormat1DBase::size.

8.10.4.5 void ImageFormat1DBase::check_image_shape (const ImageStackT & ims) const [inherited]

Check the shape of a stack of images is correct for model size.

Definition at line 71 of file ImageFormat1DBase.cpp.

References mappel::ImageFormat1DBase::size.

8.10.4.6 void mappel::PointEmitterModel::check_param_shape (const ParamT & theta) const [inherited]

Definition at line 167 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::num_params.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::reflected_theta(), mappel::PointEmitterModel::reflected_theta(), mappel::PointEmitterModel::theta_in_bounds(), and mappel::PointEmitterModel \leftarrow ::theta_stack_in_bounds().

8.10.4.7 void mappel::PointEmitterModel::check_param_shape (const ParamVecT & theta) const [inherited]

Definition at line 176 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::num params.

8.10.4.8 void mappel::PointEmitterModel::check_psf_sigma (double psf_sigma) const [inherited]

Definition at line 185 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::global_max_psf_sigma, and mappel::PointEmitterModel::global_min_psf_ sigma.

Referenced by mappel::Gauss1DModel(), mappel::Gauss2DModel::Gauss2DModel(), mappel:: \leftarrow Gauss2DsModel::Gauss2DsModel(), mappel::Gauss1DsModel::set_max_sigma(), mappel::Gauss2DsModel::set_ \leftarrow max_sigma(), mappel::Gauss1DsModel::set_min_sigma(), mappel:: \leftarrow Gauss1DModel::set_psf sigma(), and mappel::Gauss2DModel::set_psf sigma().

8.10.4.9 void mappel::PointEmitterModel::check_psf_sigma (const VecT & psf_sigma) const [inherited]

Definition at line 197 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::global_max_psf_sigma, and mappel::PointEmitterModel::global_min_psf_ sigma.

8.10.4.10 void ImageFormat1DBase::check_size(const ImageSizeT & size_) [static], [inherited]

Check the size argument for the model.

Definition at line 39 of file ImageFormat1DBase.cpp.

References mappel::ImageFormat1DBase::global_max_size, and mappel::ImageFormat1DBase::global_min_size.

Referenced by mappel::ImageFormat1DBase::ImageFormat1DBase(), and mappel::ImageFormat1DBase::set_size().

8.10.4.11 int mappel::PointEmitterModel::get_hyperparam_index (const std::string & name) const [inline], [inherited]

Definition at line 236 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.10.4.12 StringVecT mappel::PointEmitterModel::get_hyperparam_names() const [inline], [inherited]

Definition at line 256 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.10.4.13 double mappel::PointEmitterModel::get_hyperparam_value (const std::string & name) const [inline], [inherited]

Definition at line 232 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

Referenced by mappel::MCMCAdaptor1D::set_background_mcmc_sampling(), and mappel::MCMCAdaptor1D::set_circle intensity_mcmc_sampling().

8.10.4.14 PointEmitterModel::ParamT mappel::PointEmitterModel::get_hyperparams () const [inline], [inherited]

Definition at line 224 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.10.4.15 ImageFormat1DBase::ImageT ImageFormat1DBase::get_image_from_stack (const ImageStackT & stack, ImageCoordT n) const [inline], [inherited]

Definition at line 108 of file ImageFormat1DBase.h.

8.10.4.16 const PointEmitterModel::ParamT & mappel::PointEmitterModel::get_lbound() const [inline], [inherited] Definition at line 212 of file PointEmitterModel.h. References mappel::PointEmitterModel::lbound. Referenced by mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCMCAdaptor2D::MCMCAdaptor2D(), and mappel::MCMCAdaptor1D::set background mcmc sampling(). 8.10.4.17 double mappel::Gauss1DsModel::get_max_sigma() const [inline], [inherited] Definition at line 102 of file Gauss1DsModel.h. References mappel::PointEmitterModel::prior. Referenced by mappel::Gauss1DsModel::get_stats(), and mappel::Gauss1DsModel::set_min_sigma(). 8.10.4.18 IdxT mappel::MCMCAdaptorBase::get_mcmc_num_phases() const [inherited] Definition at line 56 of file MCMCAdaptorBase.cpp. References mappel::MCMCAdaptorBase::num phases. 8.10.4.19 double mappel::MCMCAdaptorBase::get_mcmc_sigma_scale() const [inherited] Definition at line 53 of file MCMCAdaptorBase.cpp. References mappel::MCMCAdaptorBase::sigma_scale. 8.10.4.20 double mappel::Gauss1DsModel::get_min_sigma() const [inline], [inherited] Definition at line 98 of file Gauss1DsModel.h. References mappel::PointEmitterModel::prior. Referenced by mappel::Gauss1DsModel::get stats(), and mappel::Gauss1DsModel::set max sigma(). 8.10.4.21 | IdxT mappel::PointEmitterModel::get_num_hyperparams() const [inline], [inherited] Definition at line 208 of file PointEmitterModel.h. References mappel::PointEmitterModel::num hyperparams. 8.10.4.22 IdxT mappel::PointEmitterModel::get num params() const [inline], [inherited]

Definition at line 160 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

```
8.10.4.23 ImageFormat1DBase::ImageCoordT ImageFormat1DBase::get_num_pixels( ) const [inline],
         [inherited]
Definition at line 82 of file ImageFormat1DBase.h.
References mappel::ImageFormat1DBase::size.
Referenced by mappel::ImageFormat1DBase::get stats().
8.10.4.24 StringVecT mappel::PointEmitterModel::get param names() const [inline], [inherited]
Definition at line 248 of file PointEmitterModel.h.
References mappel::PointEmitterModel::prior.
8.10.4.25 CompositeDist & mappel::PointEmitterModel::get_prior( ) [inline],[inherited]
Definition at line 200 of file PointEmitterModel.h.
References mappel::PointEmitterModel::prior.
Referenced by mappel::Gauss2DModel::update_internal_1Dsum_estimators(), and mappel::Gauss2DsModel ←
::update internal 1Dsum estimators().
8.10.4.26 const CompositeDist & mappel::PointEmitterModel::get_prior() const [inline], [inherited]
Definition at line 204 of file PointEmitterModel.h.
References mappel::PointEmitterModel::prior.
8.10.4.27 ParallelRngGeneratorT & mappel::PointEmitterModel::get_rng_generator() [static], [inherited]
Definition at line 120 of file PointEmitterModel.cpp.
References mappel::rng manager.
8.10.4.28 ParallelRngManagerT & mappel::PointEmitterModel::get_rng_manager( ) [static], [inherited]
Definition at line 115 of file PointEmitterModel.cpp.
References mappel::rng manager.
8.10.4.29 ImageFormat1DBase::ImageSizeT ImageFormat1DBase::get_size() const [inline], [inherited]
Definition at line 71 of file ImageFormat1DBase.h.
References mappel::ImageFormat1DBase::size.
```

Referenced by mappel::ImageFormat1DBase::get stats().

8.10.4.30 ImageFormat1DBase::ImageCoordT ImageFormat1DBase::get_size(IdxT idx) const [inherited]

Definition at line 20 of file ImageFormat1DBase.cpp.

References mappel::ImageFormat1DBase::size.

8.10.4.31 ImageFormat1DBase::ImageCoordT ImageFormat1DBase::get_size_image_stack(const ImageStackT & stack) const [inline],[inherited]

Definition at line 101 of file ImageFormat1DBase.h.

8.10.4.32 StatsT mappel::Gauss1DsModel::get_stats() const [inherited]

Definition at line 198 of file Gauss1DsModel.cpp.

References mappel::Gauss1DsModel::get_max_sigma(), mappel::Gauss1DsModel::get_min_sigma(), mappel::MCM← CAdaptor1Ds::get_stats(), mappel::ImageFormat1DBase::get_stats(), and mappel::PointEmitterModel::get_stats().

8.10.4.33 const PointEmitterModel::ParamT & mappel::PointEmitterModel::get_ubound() const [inline], [inherited]

Definition at line 216 of file PointEmitterModel.h.

References mappel::PointEmitterModel::ubound.

Referenced by mappel::Gauss2DsxyModel::get_max_sigma_ratio(), mappel::Gauss2DsModel::get_max_sigma_ratio(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCMCAdaptor2D(), mappel::MCMCAdaptor2D(), mappel::MCMCAdaptor1D::set background mcmc sampling(), and mappel::Gauss2DsModel::set max sigma ratio().

8.10.4.34 bool mappel::PointEmitterModel::has_hyperparam (const std::string & name) const [inline], [inherited]

Definition at line 228 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.10.4.35 Gauss1DsModel::Stencil mappel::Gauss1DsModel::initial_theta_estimate (const ImageT & im) const [inline], [inherited]

Fast, heuristic estimate of initial theta.

Definition at line 173 of file Gauss1DsModel.h.

References mappel::PointEmitterModel::make_param().

8.10.4.36 Gauss1DsModel::Stencil mappel::Gauss1DsModel::initial_theta_estimate (const ImageT & im, const ParamT & theta_init) const [inherited]

Definition at line 231 of file Gauss1DsModel.cpp.

References mappel::Gauss1DsModel::Stencil::bg(), mappel::Gauss1DsModel::Stencil::I(), mappel::PointEmitter (), mappel::Gauss1DsModel::Btencil::I(), mappel::Gauss1DsModel::Btencil::I(), mappel::Image (), mappel:

8.10.4.37 CompositeDist mappel::Gauss1DsModel::make_default_prior(ldxT size, double min_sigma, double max_sigma, const std::string & prior type) [static].[inherited]

Definition at line 50 of file Gauss1DsModel.cpp.

References mappel::istarts_with(), mappel::Gauss1DsModel::make_default_prior_beta_position(), and mappel::

Gauss1DsModel::make default prior normal position().

8.10.4.38 CompositeDist mappel::Gauss1DsModel::make_default_prior_beta_position (ldxT size, double min_sigma, double max sigma) [static],[inherited]

Definition at line 72 of file Gauss1DsModel.cpp.

References mappel::PointEmitterModel::default_pixel_mean_bg, mappel::PointEmitterModel::make_prior_component __ intensity(), mappel::PointEmitterModel::make_prior_component_position_beta(), and mappel::PointEmitterModel __ ::make_prior_component_sigma().

Referenced by mappel::Gauss1DsModel::make default prior().

8.10.4.39 CompositeDist mappel::Gauss1DsModel::make_default_prior_normal_position (ldxT size, double min_sigma, double max_sigma) [static], [inherited]

Definition at line 83 of file Gauss1DsModel.cpp.

References mappel::PointEmitterModel::default_pixel_mean_bg, mappel::PointEmitterModel::make_prior_component __intensity(), mappel::PointEmitterModel::make_prior_component_position_normal(), and mappel::PointEmitterModel __ ::make_prior_component_sigma().

Referenced by mappel::Gauss1DsModel::make_default_prior().

8.10.4.40 ImageFormat1DBase::ImageT ImageFormat1DBase::make_image() const [inline], [inherited]

Definition at line 87 of file ImageFormat1DBase.h.

References mappel::ImageFormat1DBase::size.

8.10.4.41 ImageFormat1DBase::ImageStackT ImageFormat1DBase::make_image_stack(ImageCoordT n) const [inline], [inherited]

Definition at line 94 of file ImageFormat1DBase.h.

References mappel::ImageFormat1DBase::size.

8.10.4.42 PointEmitterModel::ParamT mappel::PointEmitterModel::make_param()const [inline],[inherited]

Definition at line 164 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

Referenced by mappel::Gauss1DModel::initial_theta_estimate(), mappel::Gauss1DsModel::initial_theta_estimate(), mappel::Gauss2DModel::initial_theta_estimate(), mappel::Gauss2DsxyModel::initial_theta_estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::Gauss1DModel::pixel_hess_update(), mappel::Gauss1DsModel::pixel_hess_update(), mappel::Gauss2DsModel::pixel_hess_update(), and mappel::Gauss2DsModel::pixel_hess_update().

8.10.4.43 template < class FillT > PointEmitterModel::ParamT mappel::PointEmitterModel::make_param (FillT fill) const [inherited]

Definition at line 181 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

8.10.4.44 MatT mappel::PointEmitterModel::make_param_mat() const [inline], [inherited]

Definition at line 172 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

8.10.4.45 template < class FillT > MatT mappel::PointEmitterModel::make_param_mat(FillT fill) const [inherited]

Definition at line 191 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

8.10.4.46 CubeT mappel::PointEmitterModel::make param mat stack (ldxT n) const [inline], [inherited]

Definition at line 176 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

8.10.4.47 template < class FillT > CubeT mappel::PointEmitterModel::make_param_mat_stack (ldxT n, FillT fill) const [inherited]

Definition at line 196 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

8.10.4.48 PointEmitterModel::ParamVecT mappel::PointEmitterModel::make_param_stack(ldxT n) const [inline], [inherited]

Definition at line 168 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

Referenced by mappel::PointEmitterModel::bounded_theta_stack(), and mappel::PointEmitterModel::reflected_theta __stack().

8.10.4.49 template < class FillT > PointEmitterModel::ParamVecT mappel::PointEmitterModel::make_param_stack (ldxT n, FillT fill) const [inherited]

Definition at line 186 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

8.10.4.50 CompositeDist mappel::Gauss1DsModel::make_prior_beta_position (IdxT size, double beta_xpos, double mean_l, double kappa_l, double mean_bg, double kappa_bg, double min_sigma, double max_sigma, double alpha_sigma) [static], [inherited]

Definition at line 94 of file Gauss1DsModel.cpp.

References mappel::PointEmitterModel::make_prior_component_intensity(), mappel::PointEmitterModel::make_prior component position beta(), and mappel::PointEmitterModel::make prior component sigma().

Referenced by mappel::Gauss2DsModel::make internal 1Dsum estimator().

8.10.4.51 prior_hessian::TruncatedGammaDist mappel::PointEmitterModel::make_prior_component_intensity (double mean = default_mean_l, double kappa = default_intensity_kappa) [static], [inherited]

Definition at line 98 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::default max I.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_beta_position(), mappel::Gauss2Ds \leftarrow default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss1DsModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_normal_cosition(), mappel::Gauss2DModel::make_prior_cosition(), mappel::Gauss2DModel::make_prior_beta_position(), mappel::Gauss1DModel::make_prior_beta_position(), mappel::Gauss2DModel::make_prior_beta_position(), mappel::Gauss2DModel::make_prior_normal_cosition(), mappel::Gauss2DModel::make_prior_normal_cosition(), mappel::Gauss1DsModel::make_prior_normal_cosition(), mappel::Gauss1DsModel::make_prior_normal_cosition(), mappel::Gauss1DsModel::make_prior_normal_cosition(), mappel::Gauss2DsModel::make_prior_normal_cosition(), mappel::Gauss2DsModel::make_prior_normal_cosition().

8.10.4.52 prior_hessian::ScaledSymmetricBetaDist mappel::PointEmitterModel::make_prior_component_position_beta (ldxT size, double pos_beta = default_beta_pos_) [static], [inherited]

Definition at line 92 of file PointEmitterModel.cpp.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_beta_position(), mappel::Gauss1DModel::make_default_prior_beta_position(), mappel::Gauss2Ds \leftarrow Model::make_default_prior_beta_position(), mappel::Gauss1DsModel::make_prior_beta_position(), mappel::Gauss2Ds \leftarrow DModel::make_prior_beta_position(), mappel::Gauss1DModel::make_prior_beta_position(), and mappel::Gauss2Ds \leftarrow Model::make_prior_beta_position().

8.10.4.53 prior_hessian::TruncatedNormalDist mappel::PointEmitterModel::make_prior_component_position_normal(ldxT size, double pos sigma = default sigma pos) [static],[inherited]

Definition at line 85 of file PointEmitterModel.cpp.

Referenced by mappel::Gauss1DsModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_ \leftarrow default_prior_normal_position(), mappel::Gauss1DModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_prior_normal_position(), mappel::Gauss1DsModel::make_prior_normal_position(), and mappel::Gauss2DsModel::make_prior_normal_position().

8.10.4.54 prior_hessian::TruncatedParetoDist mappel::PointEmitterModel::make_prior_component_sigma (double min_sigma, double max sigma, double alpha = default alpha sigma) [static],[inherited]

Definition at line 104 of file PointEmitterModel.cpp.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DsModel::make_ \leftarrow default_prior_beta_position(), mappel::Gauss1DsModel::make_default_prior_normal_position(), mappel::Gauss2 \leftarrow DsModel::make_default_prior_normal_position(), mappel::Gauss1DsModel::make_prior_beta_position(), mappel::Gauss1DsModel::make_prior_normal_position(), and mappel \leftarrow ::Gauss2DsModel::make_prior_normal_position().

8.10.4.55 CompositeDist mappel::Gauss1DsModel::make_prior_normal_position (ldxT size, double sigma_xpos, double mean_l, double kappa_l, double mean_bg, double kappa_bg, double min_sigma, double max_sigma, double alpha_sigma)

[static],[inherited]

Definition at line 108 of file Gauss1DsModel.cpp.

References mappel::PointEmitterModel::make_prior_component_intensity(), mappel::PointEmitterModel::make_prior component position normal(), and mappel::PointEmitterModel::make prior component sigma().

Referenced by mappel::Gauss2DsModel::make_internal_1Dsum_estimator().

8.10.4.56 Gauss1DsModel::Stencil mappel::Gauss1DsModel::make_stencil (const ParamT & theta, bool compute_derivatives = true) const [inline], [inherited]

Make a new Model::Stencil object at theta.

Stencils store all of the important calculations necessary for evaluating the log-likelihood and its derivatives at a particular theta (parameter) value.

This allows re-use of the most expensive computations. Stencils can be easily passed around by reference, and most functions in the mappel::methods namespace accept a const Stencil reference in place of the model parameter.

Throws mappel::ModelBoundsError if not model.theta_in_bounds(theta).

If derivatives will not be computed with this stencil set compute derivatives=false

Parameters

theta	Prameter to evaluate at
compute_derivatives	True to also prepare for derivative computations

Returns

A new Stencil object ready to compute with

Definition at line 123 of file Gauss1DsModel.h.

References mappel::Gauss1DsModel::Stencil::Stencil(), and mappel::PointEmitterModel::theta in bounds().

Referenced by mappel::Gauss1DsModel::initial theta estimate().

8.10.4.57 Gauss1DsMLE & mappel::Gauss1DsMLE::operator=(const Gauss1DsMLE & o)

Definition at line 52 of file Gauss1DsMLE.cpp.

References mappel::MLEstimator::operator=(), mappel::PoissonNoise1DObjective::operator=(), mappel::Gauss1Ds Model::operator=(), and mappel::PointEmitterModel::operator=().

8.10.4.58 Gauss1DsMLE & mappel::Gauss1DsMLE::operator=(Gauss1DsMLE && o)

Definition at line 63 of file Gauss1DsMLE.cpp.

References mappel::MLEstimator::operator=(), mappel::PoissonNoise1DObjective::operator=(), mappel::Gauss1Ds (), Model::operator=(), and mappel::PointEmitterModel::operator=().

8.10.4.59 void mappel::Gauss1DsModel::pixel_grad (ldxT i, const Stencil & s, ParamT & pgrad) const [inline], [inherited]

Definition at line 140 of file Gauss1DsModel.h.

References mappel::Gauss1DsModel::Stencil::DX, mappel::Gauss1DsModel::Stencil::DXS, mappel::Gauss1DsModel::Stencil::I(), and mappel::Gauss1DsModel::Stencil::X.

Referenced by mappel::Gauss1DsModel::pixel hess update().

8.10.4.60 void mappel::Gauss1DsModel::pixel_grad2 (IdxT i, const Stencil & s, ParamT & pgrad2) const [inline], [inherited]

Definition at line 150 of file Gauss1DsModel.h.

References mappel::Gauss1DsModel::Stencil::DXS, mappel::Gauss1DsModel::Stencil::DXS2, mappel::Gauss1DsModel::Stencil::I(), and mappel::Gauss1DsModel::Stencil::sigma().

8.10.4.61 void mappel::Gauss1DsModel::pixel_hess (ldxT i, const Stencil & s, MatT & hess) const [inline], [inherited]

Definition at line 160 of file Gauss1DsModel.h.

References mappel::Gauss1DsModel::Stencil::DX, mappel::Gauss1DsModel::Stencil::DXS, mappel::Gauss1DsModel::Stencil::DXS2, mappel::Gauss1DsModel::Stencil::DXSX, mappel::Gauss1DsModel::Stencil::I(), and mappel:: \leftarrow Gauss1DsModel::Stencil::sigma().

8.10.4.62 void mappel::Gauss1DsModel::pixel_hess_update (ldxT i, const Stencil & s, double dm_ratio_m1, double dmm_ratio, ParamT & grad, MatT & hess) const [inherited]

Definition at line 211 of file Gauss1DsModel.cpp.

References mappel::Gauss1DsModel::Stencil::DX, mappel::Gauss1DsModel::Stencil::DXS, mappel::Gauss1DsModel::Stencil::DXS, mappel::Gauss1DsModel::Stencil::DXSX, mappel::Gauss1DsModel::Stencil::I(), mappel::Point← EmitterModel::make param(), mappel::Gauss1DsModel::pixel grad(), and mappel::Gauss1DsModel::Stencil::sigma().

```
8.10.4.63 double mappel::Gauss1DsModel::pixel_model_value ( ldxT i, const Stencil & s ) const [inline], [inherited]
```

Definition at line 134 of file Gauss1DsModel.h.

References mappel::Gauss1DsModel::Stencil::bg(), mappel::Gauss1DsModel::Stencil::I(), and mappel::Gauss1Ds \leftarrow Model::Stencil::X.

8.10.4.64 PointEmitterModel::ParamT mappel::PointEmitterModel::reflected_theta (const ParamT & theta) const [inherited]

Definition at line 276 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::ubound, mappel::PointEmitterModel::ubound.

Referenced by mappel::PointEmitterModel::reflected theta stack().

8.10.4.65 PointEmitterModel::ParamVecT mappel::PointEmitterModel::reflected_theta_stack (const ParamVecT & theta) const [inherited]

Definition at line 317 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::make_param_stack(), and mappel::PointEmitterModel::reflected_theta().

8.10.4.66 void mappel::PointEmitterModel::rename_hyperparam (const std::string & old_name, const std::string & new_name)
[inline], [inherited]

Definition at line 244 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.10.4.67 void mappel::MCMCAdaptor1Ds::sample_mcmc_candidate (ldxT sample_index, ParamT & candidate, double step_scale = 1.0) [inherited]

Definition at line 59 of file MCMCAdaptor1Ds.cpp.

References mappel::MCMCAdaptor1D::eta_bg, mappel::MCMCAdaptor1D::eta_I, mappel::MCMCAdaptor1Ds::eta_cigma, mappel::MCMCAdaptor1D::eta_x, mappel::MCMCAdaptorBase::num_phases, and mappel::rng_manager.

8.10.4.68 template < class RngT > PointEmitterModel::ParamT mappel::PointEmitterModel::sample_prior (RngT & rng) [inherited]

Definition at line 264 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.10.4.69 PointEmitterModel::ParamT mappel::PointEmitterModel::sample_prior() [inline], [inherited]

Definition at line 268 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior, and mappel::rng manager.

8.10.4.70 void mappel:: $MCMCAdaptor1D::set\ background\ mcmc\ sampling(double\ eta\ bg=-1)$ [inherited]

Definition at line 81 of file MCMCAdaptor1D.cpp.

References mappel::PointEmitterModel::default_pixel_mean_bg, mappel::MCMCAdaptor1D::eta_bg, mappel::Pointc— EmitterModel::get_hyperparam_value(), mappel::PointEmitterModel::get_lbound(), mappel::PointEmitterModel::get_cubound(), and mappel::MCMCAdaptorBase::sigma_scale.

Referenced by mappel::MCMCAdaptor1D::MCMCAdaptor1D().

8.10.4.71 void mappel::PointEmitterModel::set_bounds (const ParamT & *lbound_*, const ParamT & *ubound_*)
[inherited]

Box-type parameter bounds

Modifies the prior bounds to prevent sampling outside the valid box-constraints.

Definition at line 213 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounds_epsilon, mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::ubound, mappel::PointEmitterModel::ubound.

8.10.4.72 void mappel::PointEmitterModel::set_hyperparam_names (const StringVecT & *desc*) [inline], [inherited]

Definition at line 260 of file PointEmitterModel.h.

 $References\ mappel :: Point Emitter Model :: prior.$

8.10.4.73 void mappel::PointEmitterModel::set_hyperparam_value (const std::string & name, double value) [inline], [inherited]

Definition at line 240 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.10.4.74 void mappel::PointEmitterModel::set_hyperparams (const VecT & hyperparams) [inline], [inherited]

Definition at line 220 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

Referenced by mappel::Gauss2DModel::set hyperparams(), and mappel::Gauss2DsModel::set hyperparams().

8.10.4.75 template < class ImT > void ImageFormat1DBase::set_image_in_stack (ImageStackT & stack, ImageCoordT n, const ImT & im) const [inherited]

Definition at line 115 of file ImageFormat1DBase.h.

8.10.4.76 void mappel::MCMCAdaptor1D::set intensity mcmc sampling (double eta I = -1) [inherited]

Definition at line 65 of file MCMCAdaptor1D.cpp.

References mappel::PointEmitterModel::default_mean_I, mappel::MCMCAdaptor1D::eta_I, mappel::PointEmitter Model::get_hyperparam_value(), and mappel::MCMCAdaptorBase::sigma_scale.

Referenced by mappel::MCMCAdaptor1D::MCMCAdaptor1D().

8.10.4.77 void mappel::PointEmitterModel::set_lbound (const ParamT & lbound) [inherited]

Definition at line 226 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounds_epsilon, mappel::PointEmitterModel::lbound, mappel::PointEmitter Model::num_params, mappel::PointEmitterModel::pointEmitterModel::ubound.

Referenced by mappel::Gauss1DsModel::set min sigma().

8.10.4.78 void mappel::Gauss1DsModel::set_max_sigma (double max_sigma) [inherited]

Definition at line 135 of file Gauss1DsModel.cpp.

References mappel::PointEmitterModel::check_psf_sigma(), mappel::Gauss1DsModel::get_min_sigma(), mappel:: PointEmitterModel::prior, and mappel::PointEmitterModel::set_ubound().

 $Referenced \ by \ mappel:: Gauss 1Ds Model:: set_max_sigma(), \ mappel:: Gauss 2Ds Model:: set_max_sigma_ratio(), \ and \ mappel:: Gauss 2Ds Model:: set_min_sigma().$

8.10.4.79 void mappel::Gauss1DsModel::set max sigma (const VecT & max sigma) [inherited]

Definition at line 153 of file Gauss1DsModel.cpp.

References mappel::Gauss1DsModel::set_max_sigma().

8.10.4.80 void mappel::MCMCAdaptorBase::set_mcmc_num_phases(| IdxT num_phases) [protected], [inherited]

Definition at line 59 of file MCMCAdaptorBase.cpp.

References mappel::MCMCAdaptorBase::num_phases.

Referenced by mappel::MCMCAdaptor1Ds::MCMCAdaptor1Ds(), and mappel::MCMCAdaptor2Ds::MCMCAdaptor2C Ds().

8.10.4.81 void mappel::MCMCAdaptorBase::set_mcmc_sigma_scale(double scale) [inherited]

Definition at line 39 of file MCMCAdaptorBase.cpp.

References mappel::MCMCAdaptorBase::global_max_mcmc_sigma_scale, and mappel::MCMCAdaptorBase::sigma
scale.

8.10.4.82 void mappel::Gauss1DsModel::set min_sigma (double min_sigma) [inherited]

Definition at line 122 of file Gauss1DsModel.cpp.

References mappel::PointEmitterModel::check_psf_sigma(), mappel::Gauss1DsModel::get_max_sigma(), mappel:: PointEmitterModel::prior, and mappel::PointEmitterModel::set_lbound().

Referenced by mappel::Gauss1DsModel::set_min_sigma(), and mappel::Gauss2DsModel::set_min_sigma().

8.10.4.83 void mappel::Gauss1DsModel::set_min_sigma (const VecT & min_sigma) [inherited]

Definition at line 148 of file Gauss1DsModel.cpp.

References mappel::Gauss1DsModel::set_min_sigma().

8.10.4.84 void mappel::PointEmitterModel::set_param_names (const StringVecT & desc) [inline], [inherited]

Definition at line 252 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.10.4.85 void mappel::PointEmitterModel::set_prior (CompositeDist && prior_) [inherited]

Definition at line 158 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::num_hyperparams, mappel::PointEmitterModel::prior, and mappel::PointEmitterModel::ubound.

Referenced by mappel::Gauss2DModel::set prior(), and mappel::Gauss2DsModel::set prior().

8.10.4.86 void mappel::PointEmitterModel::set_prior (const CompositeDist & prior_) [inherited]

Definition at line 149 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::num_hyperparams, mappel::PointEmitterModel::prior, and mappel::PointEmitterModel::ubound.

8.10.4.87 void mappel::PointEmitterModel::set_rng_seed(RngSeedT seed) [static], [inherited]

Definition at line 110 of file PointEmitterModel.cpp.

References mappel::rng manager.

8.10.4.88 void ImageFormat1DBase::set_size(const ImageSizeT & size_) [inherited]

Definition at line 30 of file ImageFormat1DBase.cpp.

References mappel::ImageFormat1DBase::check size(), and mappel::ImageFormat1DBase::size.

Referenced by mappel::ImageFormat1DBase::set_size(), mappel::Gauss2DModel::set_size(), and mappel::Gauss2 DSModel::set_size().

8.10.4.89 void ImageFormat1DBase::set_size(const arma::Col < ImageCoordT > & sz) [inline], [inherited]

Definition at line 75 of file ImageFormat1DBase.h.

References mappel::ImageFormat1DBase::set_size().

8.10.4.90 void mappel::PointEmitterModel::set_ubound (const ParamT & ubound) [inherited]

Definition at line 237 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounds_epsilon, mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::pointEmitterModel::ubound, mappel::PointEmitterModel::pointEmitterModel::ubound.

Referenced by mappel::Gauss1DsModel::set_max_sigma(), and mappel::Gauss2DsModel::set_max_sigma_ratio().

8.10.4.91 bool mappel::PointEmitterModel::theta_in_bounds (const ParamT & theta) const [inherited]

Definition at line 257 of file PointEmitterModel.cpp.

 $References\ mappel::PointEmitterModel::heck_param_shape(),\ mappel::PointEmitterModel::lbound,\ mappel::PointEmitterModel::lbound,\ mappel::PointEmitterModel::lbound,\ mappel::PointEmitterModel::helpintEmitterModel::h$

Referenced by mappel::Gauss2DModel::initial_theta_estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::Gauss1DModel::make_stencil(), mappel::Gauss2DModel::make_stencil(), mappel::Gauss2DsModel::make_stencil(), mappel::Gauss2DsModel::make_stencil(), and mappel::Point
EmitterModel::theta stack in bounds().

8.10.4.92 BoolVecT mappel::PointEmitterModel::theta_stack_in_bounds (const ParamVecT & theta) const [inherited]

Definition at line 297 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), and mappel::PointEmitterModel::theta_in_bounds().

8.10.5 Member Data Documentation

8.10.5.1 const double mappel::PointEmitterModel::bounds_epsilon = 1.0E-6 [static], [inherited]

Distance from the boundary to constrain in bound theta and bounded theta methods

Definition at line 52 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::set_bounds(), mappel::PointEmitterModel::set_lbound(), mappel::Gauss2 DsModel::set max sigma ratio(), and mappel::PointEmitterModel::set ubound().

8.10.5.2 const double mappel::PointEmitterModel::default_alpha_sigma = 2 [static], [inherited]

Default per-pixel background gamma distribution shape

Definition at line 62 of file PointEmitterModel.h.

8.10.5.3 const double mappel::PointEmitterModel::default beta pos = 3 [static], [inherited]

Default position parameter in symmetric beta-distributions

Definition at line 56 of file PointEmitterModel.h.

8.10.5.4 const double mappel::PointEmitterModel::default_intensity_kappa = 2 [static], [inherited]

Default shape for intensity gamma distributions

Definition at line 60 of file PointEmitterModel.h.

8.10.5.5 const double mappel::PointEmitterModel::default_max_I = INFINITY [static], [inherited]

Default maximum emitter intensity

Definition at line 59 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::make prior component intensity().

8.10.5.6 const double mappel::PointEmitterModel::default_mean_l = 300 [static], [inherited]

Default emitter intensity mean

Definition at line 58 of file PointEmitterModel.h.

Referenced by mappel::MCMCAdaptor1D::set_intensity_mcmc_sampling().

8.10.5.7 const double mappel::PointEmitterModel::default_pixel_mean_bg = 4 [static], [inherited]

Default per-pixel mean background counts

Definition at line 61 of file PointEmitterModel.h.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DModel::make default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_beta_position(), mappel::Gauss1DsModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss2DsModel::make_default_prior_normal_position(), and mappel::MCMCAdaptor1D \leftarrow ::set background mcmc sampling().

8.10.5.8 const double mappel::PointEmitterModel::default_sigma_pos = 1 [static], [inherited]

Default position parameter in symmetric beta-distributions

Definition at line 57 of file PointEmitterModel.h.

8.10.5.9 const std::string mappel::Gauss1DsModel::DefaultPriorType = "Normal" [static], [inherited]

Definition at line 51 of file Gauss1DsModel.h.

Referenced by mappel::Gauss1DsModel::operator=().

8.10.5.10 const std::string mappel::PointEmitterModel::DefaultSeperableInitEstimator = "TrustRegion" [static], [inherited]

Estimator name to use in 1D separable initializations

Definition at line 49 of file PointEmitterModel.h.

Referenced by mappel::Gauss2DModel::initial_theta_estimate(), mappel::Gauss2DsxyModel::initial_theta_estimate(), and mappel::Gauss2DsModel::initial_theta_estimate().

8.10.5.11 const std::vector < std::string > mappel::PoissonNoise1DObjective::estimator_names [static], [inherited]

Definition at line 24 of file PoissonNoise1DObjective.h.

8.10.5.12 double mappel::MCMCAdaptor1D::eta_bg = 0 [protected], [inherited]

The standard deviation for the normally distributed perturbation to theta_bg in the random walk MCMC sampling

Definition at line 32 of file MCMCAdaptor1D.h.

Referenced by mappel::MCMCAdaptor1D::get_stats(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MC—CMCAdaptor1D::operator=(), mappel::MCMCAdaptor2D::sample_mcmc_candidate(), mappel::MCMCAdaptor1Ds::sample_mcmc_candidate(), mappel::MCMCAdaptor1Dc-:sample_mcmc_candidate(), and mappel::MCMCAdaptor1D::set_background_mcmc_sampling().

8.10.5.13 double mappel::MCMCAdaptor1D::eta_l = 0 [protected], [inherited]

The standard deviation for the normally distributed perturbation to theta_I in the random walk MCMC sampling

Definition at line 31 of file MCMCAdaptor1D.h.

Referenced by mappel::MCMCAdaptor1D::get_stats(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCMCAdaptor1D::operator=(), mappel::MCMCAdaptor2D::sample_mcmc_candidate(), mappel::MCMCAdaptor2Ds ::sample_mcmc_candidate(), mappel::MCMCAdaptor1D ::sample_mcmc_candidate(), mappel::MCMCAdaptor1D ::sample mcmc candidate(), and mappel::MCMCAdaptor1D::set intensity mcmc sampling().

8.10.5.14 double mappel::MCMCAdaptor1Ds::eta_sigma =-1 [protected], [inherited]

The standard deviation for the normally distributed perturbation to theta bg in the random walk MCMC sampling

Definition at line 27 of file MCMCAdaptor1Ds.h.

Referenced by mappel::MCMCAdaptor1Ds::get_stats(), mappel::MCMCAdaptor1Ds::MCMCAdaptor1Ds(), mappel:: \leftarrow MCMCAdaptor1Ds::operator=(), and mappel::MCMCAdaptor1Ds::sample_mcmc_candidate().

8.10.5.15 double mappel::MCMCAdaptor1D::eta_x = 0 [protected], [inherited]

The standard deviation for the normally distributed perturbation to theta x in the random walk MCMC sampling

Definition at line 30 of file MCMCAdaptor1D.h.

Referenced by mappel::MCMCAdaptor1D::get_stats(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCMCAdaptor1D::candidate(), mappel::MCMCAdaptor2D \leftarrow ::sample_mcmc_candidate(), mappel::MCMCAdaptor2Ds::sample_mcmc_candidate(), and mappel::MCMCAdaptor1 \leftarrow D::sample mcmc candidate().

8.10.5.16 const double mappel::MCMCAdaptorBase::global_default_mcmc_sigma_scale = 0.05 [static], [inherited]

Definition at line 16 of file MCMCAdaptorBase.h.

Referenced by mappel::MCMCAdaptor1Ds::MCMCAdaptor1Ds(), mappel::MCMCAdaptor2D::MCMCAdaptor2D(), and mappel::MCMCAdaptor2Ds::MCMCAdaptor2Ds().

8.10.5.17 const double mappel::MCMCAdaptorBase::global_max_mcmc_sigma_scale = 0.5 [static], [inherited]

Definition at line 17 of file MCMCAdaptorBase.h.

Referenced by mappel::MCMCAdaptorBase::MCMCAdaptorBase(), and mappel::MCMCAdaptorBase::set_mcmc_ \leftarrow sigma_scale().

8.10.5.18 const double mappel::PointEmitterModel::global_max_psf_sigma = 1E2 [static], [inherited]

Global maxmimum for any psf_sigma. Sizes above this value are invalid, and nowhere near useful for practical point emitter localization

Definition at line 54 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::check_psf_sigma().

8.10.5.19 const ImageFormat1DBase::ImageCoordT ImageFormat1DBase::global_max_size = 512 [static], [inherited]

Maximum size along any dimension of the image. This is insanely big to catch obvious errors

Definition at line 40 of file ImageFormat1DBase.h.

Referenced by mappel::ImageFormat1DBase::check_size().

```
8.10.5.20 const double mappel::PointEmitterModel::global_min_psf_sigma = 1E-1 [static], [inherited]
```

Global minimum for any psf_sigma. Sizes below this value are invalid, and nowhere near useful for practical point emitter localization

Definition at line 53 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::check_psf_sigma().

Minimum size along any dimension of the image.

Definition at line 39 of file ImageFormat1DBase.h.

Referenced by mappel::ImageFormat1DBase::check_size().

```
8.10.5.22 ParamT mappel::PointEmitterModel::lbound [protected], [inherited]
```

Definition at line 148 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel \leftarrow ::PointEmitterModel::get_lbound(), mappel::PointEmitterModel::get_stats(), mappel::Gauss1DsModel::initial_theta \leftarrow _estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::PointEmitterModel::pointEmitterModel::reflected_theta(), mappel::PointEmitterModel \leftarrow ::set_bounds(), mappel::PointEmitterModel::set_lbound(), mappel::PointEmitterModel::set_prior(), mappel::PointEmitterModel::pointEmitterModel

```
8.10.5.23 const std::string mappel::Gauss1DsMLE::name [static]
```

Definition at line 35 of file Gauss1DsMLE.h.

```
8.10.5.24 const ImageFormat1DBase::ImageCoordT ImageFormat1DBase::num_dim = 1 [static], [inherited]
```

Number of image dimensions.

Definition at line 38 of file ImageFormat1DBase.h.

Referenced by mappel::ImageFormat1DBase::get_stats().

```
8.10.5.25 | IdxT mappel::PointEmitterModel::num_hyperparams [protected], [inherited]
```

Definition at line 147 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::get_num_hyperparams(), mappel::PointEmitterModel::get_stats(), mappel::PointEmitterModel::operator=(), and mappel::PointEmitterModel::set_prior().

8.10.5.26 IdxT mappel::PointEmitterModel::num_params [protected], [inherited]

Definition at line 146 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel ::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::get_num_params(), mappel::PointEmitter
Model::get_stats(), mappel::Gauss1DModel::initial_theta_estimate(), mappel::Gauss2DModel::initial_theta_estimate(), mappel::PointEmitterModel::make_param(), mappel::PointEmitterModel::make_param(), mappel::PointEmitterModel::make_param_mat_stack(), mappel::PointEmitterModel::make_param_stack(), mappel::PointEmitterModel::pointEmitterModel::pointEmitterModel::pointEmitterModel::pointEmitterModel::pointEmitterModel::pointEmitterModel::pointEmitterModel::pointEmitterModel::set_prior(), mappel::PointEmitterModel::set_prior(), mappel::PointEmitterModel

```
8.10.5.27 IdxT mappel::MCMCAdaptorBase::num_phases [protected], [inherited]
```

The number of different sampling phases for candidate selection MCMC. Each phase changes a different subset of variables.

Definition at line 29 of file MCMCAdaptorBase.h.

Referenced by mappel::MCMCAdaptorBase::get_mcmc_num_phases(), mappel::MCMCAdaptorBase::get_stats(), mappel::MCMCAdaptor2Ds::sample_mcmc_candidate(), mappel::MCMCAdaptor1Ds::sample_mcmc_candidate(), mappel::MCMCAdaptor1Ds::sample_mcmc_candidate(), and mappel::MCMCAdaptorBase::set_mcmc_num_phases().

```
8.10.5.28 CompositeDist mappel::PointEmitterModel::prior [protected], [inherited]
```

Definition at line 145 of file PointEmitterModel.h.

Referenced by mappel::Gauss2DModel::debug_internal_sum_model_y(), mappel::Gauss2DsModel::debug_internal \
_sum_model_y(), mappel::Gauss2DModel::Gauss2DModel(), mappel::Gauss2DsModel::Gauss2DsModel(), mappel \
::PointEmitterModel::get_hyperparam_index(), mappel::PointEmitterModel::get_hyperparam_names(), mappel::PointEmitterModel::get_hyperparam_names(), mappel::PointEmitterModel::get_param_names(), mappel::PointEmitterModel::get_param_names(), mappel::PointEmitterModel::get_param_names(), mappel::PointEmitterModel::get_param_names(), mappel::PointEmitterModel::pointEmitterModel::has_\(\cdot \) hyperparam(), mappel::PointEmitterModel::pointEmitterModel::pointEmitterModel(), mappel::\(\cdot \) PointEmitterModel::pointEmitterModel::set_hyperparam(), mappel::PointEmitterModel::set_hyperparam(), mappel::PointEmitterModel::set_hyperparam(), mappel::PointEmitterModel::set_hyperparam(), mappel::PointEmitterModel::set_hyperparam(), mappel::PointEmitterModel::set_hyperparam(), mappel::PointEmitterModel::set_hyperparam(), mappel::PointEmitterModel::set_param_\(\cdot \) nappel::PointEmitterModel::set_param_\(\cdot \) nappel::PointEmitterModel::set_param_\(\cdot \cdot \) nappel::PointEmitterModel::set_param_\(\cdot \cdot \cdot \) nappel::PointEmitterModel::set_param_\(\cdot \

```
8.10.5.29 const StringVecT mappel::Gauss1DsModel::prior_types [static], [inherited]
```

Initial value:

```
= { "Beta", "Normal" }
```

Definition at line 50 of file Gauss1DsModel.h.

Referenced by mappel::Gauss1DsModel::operator=().

8.10.5.30 double mappel::MCMCAdaptorBase::sigma_scale [protected], [inherited]

A scaling factor for step sizes as a fraction of the size of the domain dimension we are walking in. (0.05 default) Definition at line 30 of file MCMCAdaptorBase.h.

Referenced by mappel::MCMCAdaptorBase::get_mcmc_sigma_scale(), mappel::MCMCAdaptorBase::get_stats(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCMCAdaptor1Ds::MCMCAdaptor1Ds(), mappel::MCMCAdaptor1Ds:

8.10.5.31 ImageSizeT mappel::ImageFormat1DBase::size [protected], [inherited]

Number of pixels in X dimension for 1D image

Definition at line 65 of file ImageFormat1DBase.h.

Referenced by mappel::ImageFormat1DBase::check_image_shape(), mappel::Gauss1DsModel::Stencil::compute compute compute

8.10.5.32 ParamT mappel::PointEmitterModel::ubound [protected], [inherited]

Definition at line 148 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel ::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::get_ubound(), mappel::Gauss1DsModel::initial_theta = estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::PointEmitterModel::pointEmitterModel::reflected_theta(), mappel::PointEmitterModel = ::set_bounds(), mappel::PointEmitterModel::set_lbound(), mappel::PointEmitterModel::set_prior(), mappel::PointEmitterModel::pointEmitterModel::set_prior(), mappel::PointEmitterModel::set_prior(), mappel::PointEmitterModel::set_

The documentation for this class was generated from the following files:

- Gauss1DsMLE.h
- Gauss1DsMLE.cpp

8.11 mappel::Gauss1DsModel Class Reference

Base class for 1D Gaussian PSF with variable Gaussian sigma (standard deviation) measured in units of pixels.

#include </home/travis/build/markjolah/Mappel/include/Mappel/Gauss1DsModel.h>
Inheritance diagram for mappel::Gauss1DsModel:

Classes

class Stencil

Stencil for 1D variable-sigma models.

Public Types

```
    using StencilVecT = std::vector < Stencil >
```

- using ParamT = arma::vec
- using ParamVecT = arma::mat
- using ImageCoordT = uint32_t
- using ImagePixeIT = double
- template < class CoordT >
 using ImageSizeShapeT = CoordT
- template < class CoordT >
- using ImageSizeVecShapeT = arma::Col< CoordT >
- using ImageSizeT = ImageSizeShapeT < ImageCoordT >
- using ImageSizeVecT = ImageSizeVecShapeT < ImageCoordT >
- template < class PixelT >
 using ImageShapeT = arma::Col < PixelT >
- template < class PixelT >
- using ImageStackShapeT = arma::Mat< PixeIT >
- using ImageT = ImageShapeT < ImagePixeIT >
- using ImageStackT = ImageStackShapeT < ImagePixeIT >

Public Member Functions

- double get_min_sigma () const
- · double get max sigma () const
- void set_min_sigma (double min_sigma)
- void set_max_sigma (double max_sigma)
- void set min sigma (const VecT &min sigma)
- void set_max_sigma (const VecT &max_sigma)
- StatsT get_stats () const
- Stencil make stencil (const ParamT &theta, bool compute derivatives=true) const

Make a new Model::Stencil object at theta.

- double pixel model value (ldxT i, const Stencil &s) const
- void pixel grad (ldxT i, const Stencil &s, ParamT &pgrad) const
- void pixel grad2 (IdxT i, const Stencil &s, ParamT &pgrad2) const
- void pixel hess (IdxT i, const Stencil &s, MatT &hess) const
- void pixel_hess_update (ldxT i, const Stencil &s, double dm_ratio_m1, double dmm_ratio, ParamT &grad, MatT &hess) const
- Stencil initial_theta_estimate (const ImageT &im) const

Fast, heuristic estimate of initial theta.

- Stencil initial_theta_estimate (const ImageT &im, const ParamT &theta_init) const
- IdxT get_num_params () const
- void check_param_shape (const ParamT &theta) const
- void check param shape (const ParamVecT &theta) const
- void check psf sigma (double psf sigma) const

- void check_psf_sigma (const VecT &psf_sigma) const
- · ParamT make param () const
- template<class FillT >

ParamT make_param (FillT fill) const

- ParamVecT make param stack (ldxT n) const
- template<class FillT >

ParamVecT make_param_stack (ldxT n, FillT fill) const

- · MatT make param mat () const
- template<class FillT >

MatT make_param_mat (FillT fill) const

- CubeT make_param_mat_stack (ldxT n) const
- template < class FillT >

CubeT make param mat stack (ldxT n, FillT fill) const

- CompositeDist & get prior ()
- const CompositeDist & get_prior () const
- void set_prior (CompositeDist &&prior_)
- void set_prior (const CompositeDist &prior_)
- IdxT get_num_hyperparams () const
- void set hyperparams (const VecT &hyperparams)
- VecT get hyperparams () const
- bool has hyperparam (const std::string &name) const
- double get hyperparam value (const std::string &name) const
- int get hyperparam index (const std::string &name) const
- void set hyperparam value (const std::string &name, double value)
- void rename_hyperparam (const std::string &old_name, const std::string &new_name)
- · StringVecT get param names () const
- void set param names (const StringVecT &desc)
- StringVecT get_hyperparam_names () const
- void set_hyperparam_names (const StringVecT &desc)
- template<class RngT >

ParamT sample_prior (RngT &rng)

- ParamT sample_prior ()
- void set bounds (const ParamT &lbound, const ParamT &ubound)
- void set_lbound (const ParamT &lbound)
- void set_ubound (const ParamT &ubound)
- const ParamT & get_lbound () const
- const ParamT & get ubound () const
- bool theta in bounds (const ParamT &theta) const
- void bound theta (ParamT &theta, double epsilon=bounds epsilon) const
- ParamT bounded theta (const ParamT &theta, double epsilon=bounds epsilon) const
- ParamT reflected_theta (const ParamT &theta) const
- BoolVecT theta_stack_in_bounds (const ParamVecT &theta) const
- ParamVecT bounded theta stack (const ParamVecT &theta, double epsilon=bounds epsilon) const
- ParamVecT reflected theta stack (const ParamVecT &theta) const
- · ImageT make image () const
- ImageStackT make image stack (ImageCoordT n) const
- ImageCoordT get_size_image_stack (const ImageStackT &stack) const
- ImageT get_image_from_stack (const ImageStackT &stack, ImageCoordT n) const
- template<class ImT >

void set image in stack (ImageStackT &stack, ImageCoordT n, const ImT &im) const

ImageSizeT get size () const

- ImageCoordT get_size (IdxT idx) const
- ImageCoordT get num pixels () const
- void set size (const ImageSizeT &size)
- void set_size (const arma::Col< ImageCoordT > &sz)
- void check image shape (const ImageT &im) const

Check the shape of a single images is correct for model size.

void check image shape (const ImageStackT &ims) const

Check the shape of a stack of images is correct for model size.

- void sample mcmc candidate (ldxT sample index, ParamT &candidate, double step scale=1.0)
- void set intensity mcmc sampling (double eta I=-1)
- void set background mcmc sampling (double eta bg=-1)
- void set mcmc sigma scale (double scale)
- double get_mcmc_sigma_scale () const
- · IdxT get mcmc num phases () const

Static Public Member Functions

- static CompositeDist make_default_prior (ldxT size, double min_sigma, double max_sigma, const std::string &prior_type)
- static CompositeDist make default prior beta position (ldxT size, double min sigma, double max sigma)
- static CompositeDist make default prior normal position (ldxT size, double min sigma, double max sigma)
- static CompositeDist make_prior_beta_position (ldxT size, double beta_xpos, double mean_I, double kappa_I, double mean bg, double kappa bg, double min sigma, double max sigma, double alpha sigma)
- static CompositeDist make_prior_normal_position (ldxT size, double sigma_xpos, double mean_I, double kappa_I, double mean_bg, double kappa_bg, double min_sigma, double max_sigma, double alpha_sigma)
- static prior_hessian::ScaledSymmetricBetaDist make_prior_component_position_beta (ldxT size, double pos_
 beta=default_beta_pos)
- static prior_hessian::TruncatedParetoDist make_prior_component_sigma (double min_sigma, double max_ double alpha=default alpha sigma)
- static void set_rng_seed (RngSeedT seed)
- static ParallelRngManagerT & get rng manager ()
- static ParallelRngGeneratorT & get_rng_generator ()
- static void check_size (const ImageSizeT &size_)

Check the size argument for the model.

Static Public Attributes

- static const StringVecT prior types
- static const std::string DefaultPriorType = "Normal"
- static const std::string DefaultSeperableInitEstimator = "TrustRegion"
- static const double bounds_epsilon = 1.0E-6
- static const double global_min_psf_sigma = 1E-1
- static const double global_max_psf_sigma = 1E2
- static const double default beta pos = 3
- static const double default_sigma_pos = 1

- static const double default_mean_I = 300
- static const double default max I = INFINITY
- static const double default intensity kappa = 2
- static const double default_pixel_mean_bg = 4
- static const double default alpha sigma = 2
- static const ImageCoordT num_dim = 1
- static const ImageCoordT global_min_size = 3
- static const ImageCoordT global_max_size = 512
- static const double global default mcmc sigma scale = 0.05
- static const double global_max_mcmc_sigma_scale = 0.5

Protected Member Functions

- Gauss1DsModel (IdxT size)
- Gauss1DsModel (const Gauss1DsModel &o)
- Gauss1DsModel (Gauss1DsModel &&o)
- Gauss1DsModel & operator= (const Gauss1DsModel &o)
- Gauss1DsModel & operator= (Gauss1DsModel &&o)
- void set mcmc num phases (ldxT num phases)

Protected Attributes

- · CompositeDist prior
- · IdxT num params
- IdxT num hyperparams
- ParamT Ibound
- · ParamT ubound
- ImageSizeT size
- double eta_sigma =-1
- double eta_x =0
- double eta_I =0
- double eta_bg =0
- ldxT num_phases double sigma scale
- 8.11.1 Detailed Description

Base class for 1D Gaussian PSF with variable Gaussian sigma (standard deviation) measured in units of pixels.

Definition at line 19 of file Gauss1DsModel.h.

8.11.2 Member Typedef Documentation

8.11.2.1 using mappel::ImageFormat1DBase::ImageCoordT = uint32_t [inherited]

Image size coordinate storage type

Definition at line 25 of file ImageFormat1DBase.h.

8.11.2.2 using mappel::ImageFormat1DBase::ImagePixelT = double [inherited]

Image pixel storage type

Definition at line 26 of file ImageFormat1DBase.h.

8.11.2.3 template < class PixelT > using mappel::ImageFormat1DBase::ImageShapeT = arma::Col < PixelT > [inherited]

Shape of the data type for a single image

Definition at line 33 of file ImageFormat1DBase.h.

8.11.2.4 template < class CoordT > using mappel::ImageFormat1DBase::ImageSizeShapeT = CoordT [inherited]

Shape of the data type to store 1-image's coordinates

Definition at line 28 of file ImageFormat1DBase.h.

8.11.2.5 using mappel::ImageFormat1DBase::ImageSizeT = ImageSizeShapeT < ImageCoordT > [inherited]

Data type for a single image size

Definition at line 30 of file ImageFormat1DBase.h.

8.11.2.6 template < class CoordT > using mappel::ImageFormat1DBase::ImageSizeVecShapeT = arma::Col < CoordT > [inherited]

Shape of the data type to store a vector of image's coordinates

Definition at line 29 of file ImageFormat1DBase.h.

8.11.2.7 using mappel::ImageFormat1DBase::ImageSizeVecT = ImageSizeVecShapeT < ImageCoordT > [inherited]

Data type for a sequence of image sizes

Definition at line 31 of file ImageFormat1DBase.h.

8.11.2.8 template < class PixelT > using mappel::ImageFormat1DBase::ImageStackShapeT = arma::Mat < PixelT > [inherited]

Shape of the data type for a sequence of images

Definition at line 34 of file ImageFormat1DBase.h.

```
8.11.2.9 using mappel::ImageFormat1DBase::ImageStackT = ImageStackShapeT < ImagePixeIT >
        [inherited]
Data type to represent a sequence of images
Definition at line 36 of file ImageFormat1DBase.h.
8.11.2.10 using mappel::ImageFormat1DBase::ImageT = ImageShapeT < ImagePixeIT > [inherited]
Data type to represent single image
Definition at line 35 of file ImageFormat1DBase.h.
8.11.2.11 using mappel::PointEmitterModel::ParamT = arma::vec [inherited]
Parameter vector
Definition at line 47 of file PointEmitterModel.h.
8.11.2.12 using mappel::PointEmitterModel::ParamVecT = arma::mat [inherited]
Vector of parameter vectors
Definition at line 48 of file PointEmitterModel.h.
8.11.2.13 using mappel::Gauss1DsModel::StencilVecT = std::vector<Stencil>
Definition at line 47 of file Gauss1DsModel.h.
8.11.3 Constructor & Destructor Documentation
8.11.3.1 mappel::Gauss1DsModel::Gauss1DsModel ( ldxT size_ ) [explicit], [protected]
Definition at line 12 of file Gauss1DsModel.cpp.
8.11.3.2 mappel::Gauss1DsModel::Gauss1DsModel ( const Gauss1DsModel & o ) [protected]
Definition at line 17 of file Gauss1DsModel.cpp.
8.11.3.3 mappel::Gauss1DsModel::Gauss1DsModel && o ) [protected]
Definition at line 22 of file Gauss1DsModel.cpp.
```

8.11.4 Member Function Documentation

8.11.4.1 void mappel::PointEmitterModel::bound_theta (ParamT & theta, double epsilon = bounds_epsilon) const [inherited]

Definition at line 248 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::Point← EmitterModel::num_params, and mappel::PointEmitterModel::ubound.

8.11.4.2 PointEmitterModel::ParamT mappel::PointEmitterModel::bounded_theta (const ParamT & theta, double epsilon = bounds epsilon) const [inherited]

Definition at line 265 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::ubound.

Referenced by mappel::PointEmitterModel::bounded_theta_stack().

8.11.4.3 PointEmitterModel::ParamVecT mappel::PointEmitterModel::bounded_theta_stack (const ParamVecT & theta, double epsilon = bounds_epsilon) const [inherited]

Definition at line 307 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::check_param_shape(), and mappel::PointEmitterModel::make_param_stack().

8.11.4.4 void ImageFormat1DBase::check_image_shape(const ImageT & im) const [inherited]

Check the shape of a single images is correct for model size.

Definition at line 59 of file ImageFormat1DBase.cpp.

References mappel::ImageFormat1DBase::size.

8.11.4.5 void ImageFormat1DBase::check_image_shape(const ImageStackT & ims) const [inherited]

Check the shape of a stack of images is correct for model size.

Definition at line 71 of file ImageFormat1DBase.cpp.

References mappel::ImageFormat1DBase::size.

8.11.4.6 void mappel::PointEmitterModel::check_param_shape(const ParamT & theta) const [inherited]

Definition at line 167 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::num_params.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::reflected_theta(), mappel::PointEmitterModel::reflected_theta(), mappel::PointEmitterModel::theta_in_bounds(), and mappel::PointEmitterModel \leftarrow ::theta stack in bounds().

8.11.4.7 void mappel::PointEmitterModel::check_param_shape(const ParamVecT & theta) const [inherited]

Definition at line 176 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::num_params.

8.11.4.8 void mappel::PointEmitterModel::check_psf_sigma (double psf_sigma) const [inherited]

Definition at line 185 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::global_max_psf_sigma, and mappel::PointEmitterModel::global_min_psf_ sigma.

Referenced by mappel::Gauss1DModel(), mappel::Gauss2DModel(), mappel::Gauss2DModel(), mappel::Gauss2DSModel(), mappel::Gauss2DsModel::Set_max_sigma(), mappel::Gauss2DsModel::Set_max_sigma(), set_min_sigma(), mappel::Gauss2DsModel::Set_min_sigma(), and mappel::Gauss2DModelGauss2DSModel() ::Set_psf_sigma().

8.11.4.9 void mappel::PointEmitterModel::check_psf_sigma (const VecT & psf_sigma) const [inherited]

Definition at line 197 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::global_max_psf_sigma, and mappel::PointEmitterModel::global_min_psf_ \leftarrow sigma.

8.11.4.10 void ImageFormat1DBase::check_size(const ImageSizeT & size_) [static], [inherited]

Check the size argument for the model.

Definition at line 39 of file ImageFormat1DBase.cpp.

References mappel::ImageFormat1DBase::global_max_size, and mappel::ImageFormat1DBase::global_min_size.

Referenced by mappel::ImageFormat1DBase::ImageFormat1DBase(), and mappel::ImageFormat1DBase::set_size().

Definition at line 236 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.11.4.12 StringVecT mappel::PointEmitterModel::get_hyperparam_names() const [inline], [inherited]

Definition at line 256 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.11.4.13 double mappel::PointEmitterModel::get_hyperparam_value (const std::string & name) const [inline], [inherited]

Definition at line 232 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

Referenced by mappel::MCMCAdaptor1D::set_background_mcmc_sampling(), and mappel::MCMCAdaptor1D::set_circle intensity_mcmc_sampling().

8.11.4.14 PointEmitterModel::ParamT mappel::PointEmitterModel::get_hyperparams () const [inline], [inherited]

Definition at line 224 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.11.4.15 ImageFormat1DBase::ImageT ImageFormat1DBase::get_image_from_stack (const ImageStackT & stack, ImageCoordT n) const [inline], [inherited]

Definition at line 108 of file ImageFormat1DBase.h.

8.11.4.16 const PointEmitterModel::ParamT & mappel::PointEmitterModel::get_lbound () const [inline], [inherited]

Definition at line 212 of file PointEmitterModel.h.

References mappel::PointEmitterModel::lbound.

Referenced by mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCMCAdaptor2D::MCMCAdaptor2D(), and mappel::MCMCAdaptor1D::set background mcmc sampling().

8.11.4.17 double mappel::Gauss1DsModel::get_max_sigma() const [inline]

Definition at line 102 of file Gauss1DsModel.h.

References mappel::PointEmitterModel::prior.

Referenced by get_stats(), and set_min_sigma().

8.11.4.18 IdxT mappel::MCMCAdaptorBase::get_mcmc_num_phases()const [inherited]

Definition at line 56 of file MCMCAdaptorBase.cpp.

References mappel::MCMCAdaptorBase::num_phases.

8.11.4.19 double mappel::MCMCAdaptorBase::get_mcmc_sigma_scale() const [inherited]

Definition at line 53 of file MCMCAdaptorBase.cpp.

References mappel::MCMCAdaptorBase::sigma scale.

```
8.11.4.20 double mappel::Gauss1DsModel::get_min_sigma() const [inline]
Definition at line 98 of file Gauss1DsModel.h.
References mappel::PointEmitterModel::prior.
Referenced by get stats(), and set max sigma().
8.11.4.21 IdxT mappel::PointEmitterModel::get_num_hyperparams( )const [inline], [inherited]
Definition at line 208 of file PointEmitterModel.h.
References mappel::PointEmitterModel::num_hyperparams.
8.11.4.22 IdxT mappel::PointEmitterModel::get_num_params( )const [inline],[inherited]
Definition at line 160 of file PointEmitterModel.h.
References mappel::PointEmitterModel::num_params.
8.11.4.23 ImageFormat1DBase::ImageCoordT ImageFormat1DBase::get_num_pixels( ) const [inline],
         [inherited]
Definition at line 82 of file ImageFormat1DBase.h.
References mappel::ImageFormat1DBase::size.
Referenced by mappel::ImageFormat1DBase::get_stats().
8.11.4.24 StringVecT mappel::PointEmitterModel::get_param_names() const [inline], [inherited]
Definition at line 248 of file PointEmitterModel.h.
References mappel::PointEmitterModel::prior.
8.11.4.25 CompositeDist & mappel::PointEmitterModel::get_prior() [inline], [inherited]
Definition at line 200 of file PointEmitterModel.h.
References mappel::PointEmitterModel::prior.
Referenced by mappel::Gauss2DModel::update internal 1Dsum estimators(), and mappel::Gauss2DsModel ←
::update internal 1Dsum estimators().
8.11.4.26 const CompositeDist & mappel::PointEmitterModel::get_prior( ) const [inline], [inherited]
Definition at line 204 of file PointEmitterModel.h.
References mappel::PointEmitterModel::prior.
```

8.11.4.27 ParallelRngGeneratorT & mappel::PointEmitterModel::get_rng_generator() [static], [inherited]

Definition at line 120 of file PointEmitterModel.cpp.

References mappel::rng_manager.

8.11.4.28 ParallelRngManagerT & mappel::PointEmitterModel::get_rng_manager() [static],[inherited]

Definition at line 115 of file PointEmitterModel.cpp.

References mappel::rng_manager.

8.11.4.29 ImageFormat1DBase::ImageSizeTImageFormat1DBase::get_size()const [inline],[inherited]

Definition at line 71 of file ImageFormat1DBase.h.

References mappel::ImageFormat1DBase::size.

Referenced by mappel::ImageFormat1DBase::get_stats().

8.11.4.30 ImageFormat1DBase::ImageCoordT ImageFormat1DBase::get size (IdxT idx) const [inherited]

Definition at line 20 of file ImageFormat1DBase.cpp.

References mappel::ImageFormat1DBase::size.

8.11.4.31 ImageFormat1DBase::ImageCoordT ImageFormat1DBase::get_size_image_stack(const ImageStackT & stack) const [inline], [inherited]

Definition at line 101 of file ImageFormat1DBase.h.

8.11.4.32 StatsT mappel::Gauss1DsModel::get_stats() const

Definition at line 198 of file Gauss1DsModel.cpp.

References get_max_sigma(), get_min_sigma(), mappel::MCMCAdaptor1Ds::get_stats(), mappel::ImageFormat1D \leftarrow Base::get_stats(), and mappel::PointEmitterModel::get_stats().

8.11.4.33 const PointEmitterModel::ParamT & mappel::PointEmitterModel::get_ubound() const [inline], [inherited]

Definition at line 216 of file PointEmitterModel.h.

 $References\ mappel:: Point Emitter Model:: ubound.$

Referenced by mappel::Gauss2DsxyModel::get_max_sigma_ratio(), mappel::Gauss2DsModel::get_max_sigma_ratio(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCMCAdaptor2D(), mappel::MCMCAdaptor2D(), mappel::MCMCAdaptor1D::set background mcmc sampling(), and mappel::Gauss2DsModel::set max sigma ratio().

8.11.4.34 bool mappel::PointEmitterModel::has_hyperparam (const std::string & name) const [inline], [inherited]

Definition at line 228 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.11.4.35 Gauss1DsModel::Stencil mappel::Gauss1DsModel::initial_theta_estimate (const ImageT & im) const [inline]

Fast, heuristic estimate of initial theta.

Definition at line 173 of file Gauss1DsModel.h.

References mappel::PointEmitterModel::make param().

8.11.4.36 Gauss1DsModel::Stencil mappel::Gauss1DsModel::initial_theta_estimate (const ImageT & im, const ParamT & theta_init) const

Definition at line 231 of file Gauss1DsModel.cpp.

References mappel::Gauss1DsModel::Stencil::bg(), mappel::Gauss1DsModel::Stencil::l(), mappel::PointEmitter \leftarrow Model::Ibound, make_stencil(), mappel::Gauss1DsModel::Stencil::sigma(), mappel::ImageFormat1DBase::size, and mappel::PointEmitterModel::ubound.

8.11.4.37 CompositeDist mappel::Gauss1DsModel::make_default_prior (IdxT size, double min_sigma, double max_sigma, const std::string & prior_type) [static]

Definition at line 50 of file Gauss1DsModel.cpp.

References mappel::istarts_with(), make_default_prior_beta_position(), and make_default_prior_normal_position().

8.11.4.38 CompositeDist mappel::Gauss1DsModel::make_default_prior_beta_position (IdxT size, double min_sigma, double max_sigma) [static]

Definition at line 72 of file Gauss1DsModel.cpp.

References mappel::PointEmitterModel::default_pixel_mean_bg, mappel::PointEmitterModel::make_prior_component \leftarrow _intensity(), mappel::PointEmitterModel::make_prior_component_position_beta(), and mappel::PointEmitterModel \leftarrow ::make_prior_component_sigma().

Referenced by make default prior().

8.11.4.39 CompositeDist mappel::Gauss1DsModel::make_default_prior_normal_position (ldxT size, double min_sigma, double max_sigma) [static]

Definition at line 83 of file Gauss1DsModel.cpp.

References mappel::PointEmitterModel::default_pixel_mean_bg, mappel::PointEmitterModel::make_prior_component __intensity(), mappel::PointEmitterModel::make_prior_component_position_normal(), and mappel::PointEmitterModel __::make_prior_component_sigma().

Referenced by make default prior().

8.11.4.40 ImageFormat1DBase::ImageT ImageFormat1DBase::make_image() const [inline], [inherited]

Definition at line 87 of file ImageFormat1DBase.h.

References mappel::ImageFormat1DBase::size.

8.11.4.41 ImageFormat1DBase::ImageStackT ImageFormat1DBase::make_image_stack(ImageCoordT n) const [inline], [inherited]

Definition at line 94 of file ImageFormat1DBase.h.

References mappel::ImageFormat1DBase::size.

8.11.4.42 PointEmitterModel::ParamT mappel::PointEmitterModel::make_param() const [inline], [inherited]

Definition at line 164 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

Referenced by mappel::Gauss1DModel::initial_theta_estimate(), initial_theta_estimate(), mappel::Gauss2DModel ::initial_theta_estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::Gauss2DsModel::pixel_hess_update(), mappel::Gauss2DModel::pixel_hess_update(), mappel::Gauss2DModel::pixel_hess_update(), mappel::Gauss2DsModel::pixel_hess_update().

8.11.4.43 template < class FillT > PointEmitterModel::ParamT mappel::PointEmitterModel::make_param (FillT fill) const [inherited]

Definition at line 181 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

8.11.4.44 MatT mappel::PointEmitterModel::make_param_mat()const [inline], [inherited]

Definition at line 172 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

8.11.4.45 template < class FillT > MatT mappel::PointEmitterModel::make_param_mat(FillT fill) const [inherited]

Definition at line 191 of file PointEmitterModel.h.

 $References\ mappel:: Point Emitter Model:: num_params.$

8.11.4.46 CubeT mappel::PointEmitterModel::make_param_mat_stack(ldxT n) const [inline], [inherited]

Definition at line 176 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

8.11.4.47 template < class FillT > CubeT mappel::PointEmitterModel::make_param_mat_stack (ldxT n, FillT fill) const [inherited]

Definition at line 196 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

8.11.4.48 PointEmitterModel::ParamVecT mappel::PointEmitterModel::make_param_stack(ldxT n) const [inline], [inherited]

Definition at line 168 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

Referenced by mappel::PointEmitterModel::bounded_theta_stack(), and mappel::PointEmitterModel::reflected_theta __stack().

8.11.4.49 template < class FillT > PointEmitterModel::ParamVecT mappel::PointEmitterModel::make_param_stack (ldxT n, FillT fill) const [inherited]

Definition at line 186 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

8.11.4.50 CompositeDist mappel::Gauss1DsModel::make_prior_beta_position (ldxT size, double beta_xpos, double mean_l, double kappa_l, double mean_bg, double kappa_bg, double min_sigma, double max_sigma, double alpha_sigma) [static]

Definition at line 94 of file Gauss1DsModel.cpp.

References mappel::PointEmitterModel::make_prior_component_intensity(), mappel::PointEmitterModel::make_prior component position beta(), and mappel::PointEmitterModel::make prior component sigma().

Referenced by mappel::Gauss2DsModel::make internal 1Dsum estimator().

8.11.4.51 prior_hessian::TruncatedGammaDist mappel::PointEmitterModel::make_prior_component_intensity (double mean = default_mean_l, double kappa = default_intensity_kappa) [static], [inherited]

Definition at line 98 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::default_max_I.

Referenced by make_default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_beta_position(), mappel::Gauss1DModel::make_default_prior_beta_position(), mappel::Gauss2DsModel::make_default_prior_beta position(), mappel::Gauss2DsModel::make_default_prior_normal_position(), mappel::Gauss1DModel::make_default_prior_normal_position(), mappel::Gauss2DsModel::make_default_prior_ormal_position(), mappel::Gauss2DsModel::make_default_prior_ormal_position(), mappel::Gauss2DsModel::make_prior_beta_position(), mappel::Gauss1DModel::make_prior_beta_position(), mappel::Gauss2DsModel::make_prior_beta_position(), mappel::Gauss2DsModel::make_prior_beta_position(), mappel::Gauss1DModel::make_prior_normal_position(), mappel::Gauss1DModel::make_prior_ormal_position().

8.11.4.52 prior_hessian::ScaledSymmetricBetaDist mappel::PointEmitterModel::make_prior_component_position_beta (IdxT size, double pos beta = default beta pos) [static],[inherited]

Definition at line 92 of file PointEmitterModel.cpp.

Referenced by make_default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_beta_position(), mappel::Gauss1DModel::make_default_prior_beta_position(), mappel::Gauss2DsModel::make_default_prior_beta position(), mappel::Gauss2DModel::make_prior_beta_position(), mappel::Gauss1D Model::make_prior_beta_position(), and mappel::Gauss2DsModel::make_prior_beta_position().

8.11.4.53 prior_hessian::TruncatedNormalDist mappel::PointEmitterModel::make_prior_component_position_normal(ldxT size, double pos_sigma = default_sigma_pos) [static], [inherited]

Definition at line 85 of file PointEmitterModel.cpp.

Referenced by make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss1DModel::make_default_prior_normal_position(), mappel::Gauss2DsModel::make_default_prior_cormal_position(), mappel::Gauss2DModel::make_prior_normal_position(), mappel::Causs2DsModel::make_prior_normal_position(), mappel::Causs2DsModel::make_prior_normal_position().

8.11.4.54 prior_hessian::TruncatedParetoDist mappel::PointEmitterModel::make_prior_component_sigma (double min_sigma, double max_sigma, double alpha = default alpha sigma) [static], [inherited]

Definition at line 104 of file PointEmitterModel.cpp.

Referenced by make_default_prior_beta_position(), mappel::Gauss2DsModel::make_default_prior_beta_position(), make_default_prior_normal_position(), make_prior beta_position(), make_prior_beta_position(), make_prior_normal_position(), and mappel ::Gauss2DsModel::make_prior_normal_position(), and mappel ::Gauss2DsModel::make_prior_normal_position().

8.11.4.55 CompositeDist mappel::Gauss1DsModel::make_prior_normal_position (ldxT size, double sigma_xpos, double mean_l, double kappa_l, double mean_bg, double kappa_bg, double min_sigma, double max_sigma, double alpha_sigma)

[static]

Definition at line 108 of file Gauss1DsModel.cpp.

References mappel::PointEmitterModel::make_prior_component_intensity(), mappel::PointEmitterModel::make_prior component_position_normal(), and mappel::PointEmitterModel::make_prior_component_sigma().

Referenced by mappel::Gauss2DsModel::make_internal_1Dsum_estimator().

8.11.4.56 Gauss1DsModel::Stencil mappel::Gauss1DsModel::make_stencil (const ParamT & theta, bool compute_derivatives = true) const [inline]

Make a new Model::Stencil object at theta.

Stencils store all of the important calculations necessary for evaluating the log-likelihood and its derivatives at a particular theta (parameter) value.

This allows re-use of the most expensive computations. Stencils can be easily passed around by reference, and most functions in the mappel::methods namespace accept a const Stencil reference in place of the model parameter.

Throws mappel::ModelBoundsError if not model.theta_in_bounds(theta).

If derivatives will not be computed with this stencil set compute derivatives=false

Parameters

theta	Prameter to evaluate at
compute_derivatives	True to also prepare for derivative computations

Returns

A new Stencil object ready to compute with

Definition at line 123 of file Gauss1DsModel.h.

References mappel::Gauss1DsModel::Stencil::Stencil(), and mappel::PointEmitterModel::theta_in_bounds().

Referenced by initial_theta_estimate().

8.11.4.57 Gauss1DsModel & mappel::Gauss1DsModel::operator=(const Gauss1DsModel & o) [protected]

Definition at line 27 of file Gauss1DsModel.cpp.

References mappel::MCMCAdaptor1Ds::operator=().

Referenced by mappel::Gauss1DsMAP::operator=(), and mappel::Gauss1DsMLE::operator=().

8.11.4.58 Gauss1DsModel & mappel::Gauss1DsModel::operator=(Gauss1DsModel && o) [protected]

Definition at line 35 of file Gauss1DsModel.cpp.

References DefaultPriorType, mappel::MCMCAdaptor1Ds::operator=(), and prior_types.

8.11.4.59 void mappel::Gauss1DsModel::pixel_grad (IdxT i, const Stencil & s, ParamT & pgrad) const [inline]

Definition at line 140 of file Gauss1DsModel.h.

References mappel::Gauss1DsModel::Stencil::DX, mappel::Gauss1DsModel::Stencil::DXS, mappel::Gauss1DsModel::Stencil::I(), and mappel::Gauss1DsModel::Stencil::X.

Referenced by pixel_hess_update().

8.11.4.60 void mappel::Gauss1DsModel::pixel_grad2 (IdxT i, const Stencil & s, ParamT & pgrad2) const [inline]

Definition at line 150 of file Gauss1DsModel.h.

References mappel::Gauss1DsModel::Stencil::DXS, mappel::Gauss1DsModel::Stencil::DXS2, mappel::Gauss1Ds ← Model::Stencil::I(), and mappel::Gauss1DsModel::Stencil::sigma().

8.11.4.61 void mappel::Gauss1DsModel::pixel_hess (IdxT i, const Stencil & s, MatT & hess) const [inline]

Definition at line 160 of file Gauss1DsModel.h.

References mappel::Gauss1DsModel::Stencil::DX, mappel::Gauss1DsModel::Stencil::DXS, mappel::Gauss1DsModel::Stencil::DXS2, mappel::Gauss1DsModel::Stencil::DXSX, mappel::Gauss1DsModel::Stencil::I(), and mappel::Gauss1DsModel::Stencil::I(), and mappel::Gauss1DsModel::Stencil::Gauss1DsModel::Stencil::I(), and mappel::Gauss1DsModel::Stencil::I(), and mappel::Gauss1DsModel::Gauss1DsModel::Stencil::I(), and mappel::Gauss1DsModel::Gauss1DsModel::Gauss

8.11.4.62 void mappel::Gauss1DsModel::pixel_hess_update (IdxT i, const Stencil & s, double dm_ratio_m1, double dmm_ratio, ParamT & grad, MatT & hess) const

Definition at line 211 of file Gauss1DsModel.cpp.

References mappel::Gauss1DsModel::Stencil::DX, mappel::Gauss1DsModel::Stencil::DXS, mappel::Gauss1DsModel::Stencil::DXS2, mappel::Gauss1DsModel::Stencil::DXS2, mappel::Gauss1DsModel::Stencil::I(), mappel::← PointEmitterModel::make param(), pixel grad(), and mappel::Gauss1DsModel::Stencil::sigma().

8.11.4.63 double mappel::Gauss1DsModel::pixel_model_value (ldxT i, const Stencil & s) const [inline]

Definition at line 134 of file Gauss1DsModel.h.

References mappel::Gauss1DsModel::Stencil::bg(), mappel::Gauss1DsModel::Stencil::I(), and mappel::Gauss1Ds← Model::Stencil::X.

8.11.4.64 PointEmitterModel::ParamT mappel::PointEmitterModel::reflected_theta (const ParamT & theta) const [inherited]

Definition at line 276 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::ubound.

Referenced by mappel::PointEmitterModel::reflected_theta_stack().

8.11.4.65 PointEmitterModel::ParamVecT mappel::PointEmitterModel::reflected_theta_stack (const ParamVecT & theta) const [inherited]

Definition at line 317 of file PointEmitterModel.cpp.

 $References\ mappel:: PointEmitterModel:: heck_param_shape(),\ mappel:: PointEmitterModel:: make_param_stack(),\ and\ mappel:: PointEmitterModel:: reflected_theta().$

8.11.4.66 void mappel::PointEmitterModel::rename_hyperparam (const std::string & old_name, const std::string & new_name)
[inline], [inherited]

Definition at line 244 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.11.4.67 void mappel::MCMCAdaptor1Ds::sample_mcmc_candidate (ldxT sample_index, ParamT & candidate, double step scale = 1.0) [inherited]

Definition at line 59 of file MCMCAdaptor1Ds.cpp.

References mappel::MCMCAdaptor1D::eta_bg, mappel::MCMCAdaptor1D::eta_l, mappel::MCMCAdaptor1Ds::eta_← sigma, mappel::MCMCAdaptor1D::eta x, mappel::MCMCAdaptorBase::num phases, and mappel::rng manager.

8.11.4.68 template < class RngT > PointEmitterModel::ParamT mappel::PointEmitterModel::sample_prior (RngT & rng) [inherited]

Definition at line 264 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.11.4.69 PointEmitterModel::ParamT mappel::PointEmitterModel::sample_prior() [inline], [inherited]

Definition at line 268 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior, and mappel::rng_manager.

8.11.4.70 void mappel:: $MCMCAdaptor1D::set_background_mcmc_sampling(double eta_bg = -1) [inherited]$

Definition at line 81 of file MCMCAdaptor1 D.cpp.

References mappel::PointEmitterModel::default_pixel_mean_bg, mappel::MCMCAdaptor1D::eta_bg, mappel::PointcointcointerModel::get_hyperparam_value(), mappel::PointEmitterModel::get_bound(), mappel::PointEmitterModel::get_cointcointermodel::get_cointcoint

Referenced by mappel::MCMCAdaptor1D::MCMCAdaptor1D().

8.11.4.71 void mappel::PointEmitterModel::set_bounds (const ParamT & *lbound_*, const ParamT & *ubound_*)

[inherited]

Box-type parameter bounds

Modifies the prior bounds to prevent sampling outside the valid box-constraints.

Definition at line 213 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounds_epsilon, mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::pointEmitterModel::ubound, mappel::PointEmitterModel::ubound.

8.11.4.72 void mappel::PointEmitterModel::set_hyperparam_names (const StringVecT & *desc* **)** [inline], [inherited]

Definition at line 260 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.11.4.73 void mappel::PointEmitterModel::set_hyperparam_value (const std::string & name, double value) [inline], [inherited]

Definition at line 240 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.11.4.74 void mappel::PointEmitterModel::set_hyperparams (const VecT & hyperparams) [inline], [inherited]

Definition at line 220 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

Referenced by mappel::Gauss2DModel::set_hyperparams(), and mappel::Gauss2DsModel::set_hyperparams().

8.11.4.75 template < class ImT > void ImageFormat1DBase::set_image_in_stack (ImageStackT & stack, ImageCoordT n, const ImT & im) const [inherited]

Definition at line 115 of file ImageFormat1DBase.h.

8.11.4.76 void mappel::MCMCAdaptor1D::set_intensity_mcmc_sampling (double eta_I = -1) [inherited]

Definition at line 65 of file MCMCAdaptor1 D.cpp.

References mappel::PointEmitterModel::default_mean_I, mappel::MCMCAdaptor1D::eta_I, mappel::PointEmitter Model::get hyperparam value(), and mappel::MCMCAdaptorBase::sigma scale.

Referenced by mappel::MCMCAdaptor1D::MCMCAdaptor1D().

8.11.4.77 void mappel::PointEmitterModel::set_lbound (const ParamT & lbound) [inherited]

Definition at line 226 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounds_epsilon, mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::ubound, mappel::PointEmitterModel::ubound.

Referenced by set_min_sigma().

8.11.4.78 void mappel::Gauss1DsModel::set_max_sigma (double max_sigma)

Definition at line 135 of file Gauss1DsModel.cpp.

 $References\ mappel::PointEmitterModel::check_psf_sigma(),\ get_min_sigma(),\ mappel::PointEmitterModel::prior,\ and\ mappel::PointEmitterModel::set_ubound().$

Referenced by set_max_sigma(), mappel::Gauss2DsModel::set_max_sigma_ratio(), and mappel::Gauss2DsModel ::set_min_sigma().

8.11.4.79 void mappel::Gauss1DsModel::set_max_sigma (const VecT & max_sigma)

Definition at line 153 of file Gauss1DsModel.cpp.

References set max sigma().

8.11.4.80 void mappel::MCMCAdaptorBase::set_mcmc_num_phases(| IdxT num_phases) [protected], [inherited]

Definition at line 59 of file MCMCAdaptorBase.cpp.

References mappel::MCMCAdaptorBase::num phases.

Referenced by mappel::MCMCAdaptor1Ds::MCMCAdaptor1Ds(), and mappel::MCMCAdaptor2Ds::MCMCAdaptor2Ds().

8.11.4.81 void mappel::MCMCAdaptorBase::set_mcmc_sigma_scale (double scale) [inherited]

Definition at line 39 of file MCMCAdaptorBase.cpp.

References mappel::MCMCAdaptorBase::global_max_mcmc_sigma_scale, and mappel::MCMCAdaptorBase::sigma
scale.

8.11.4.82 void mappel::Gauss1DsModel::set_min_sigma (double min_sigma)

Definition at line 122 of file Gauss1DsModel.cpp.

References mappel::PointEmitterModel::check_psf_sigma(), get_max_sigma(), mappel::PointEmitterModel::prior, and mappel::PointEmitterModel::set_lbound().

Referenced by set_min_sigma(), and mappel::Gauss2DsModel::set_min_sigma().

8.11.4.83 void mappel::Gauss1DsModel::set_min_sigma (const VecT & min_sigma)

Definition at line 148 of file Gauss1DsModel.cpp.

References set_min_sigma().

8.11.4.84 void mappel::PointEmitterModel::set_param_names (const StringVecT & desc) [inline], [inherited]

Definition at line 252 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.11.4.85 void mappel::PointEmitterModel::set_prior(CompositeDist && prior_) [inherited]

Definition at line 158 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::num_hyperparams, mappel::PointEmitterModel::pointEmitterModel::pointEmitterModel::ubound.

Referenced by mappel::Gauss2DModel::set prior(), and mappel::Gauss2DsModel::set prior().

8.11.4.86 void mappel::PointEmitterModel::set_prior(const CompositeDist & prior_) [inherited]

Definition at line 149 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::num_hyperparams, mappel::PointEmitterModel::prior, and mappel::PointEmitterModel::ubound.

8.11.4.87 void mappel::PointEmitterModel::set_rng_seed(RngSeedT seed) [static],[inherited]

Definition at line 110 of file PointEmitterModel.cpp.

References mappel::rng_manager.

8.11.4.88 void ImageFormat1DBase::set_size(const ImageSizeT & size_) [inherited]

Definition at line 30 of file ImageFormat1DBase.cpp.

References mappel::ImageFormat1DBase::check size(), and mappel::ImageFormat1DBase::size.

Referenced by mappel::ImageFormat1DBase::set_size(), mappel::Gauss2DModel::set_size(), and mappel::Gauss2 DSModel::set_size().

8.11.4.89 void ImageFormat1DBase::set size (const arma::Col < ImageCoordT > & sz) [inline], [inherited]

Definition at line 75 of file ImageFormat1DBase.h.

References mappel::ImageFormat1DBase::set_size().

8.11.4.90 void mappel::PointEmitterModel::set_ubound(const ParamT & ubound) [inherited]

Definition at line 237 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounds_epsilon, mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::pointEmitterModel::ubound, mappel::PointEmitterModel::pointEmitterModel::ubound.

Referenced by set max sigma(), and mappel::Gauss2DsModel::set max sigma ratio().

8.11.4.91 bool mappel::PointEmitterModel::theta_in_bounds (const ParamT & theta) const [inherited]

Definition at line 257 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::ubound, mappel::PointEmitterModel::ubound.

Referenced by mappel::Gauss2DModel::initial_theta_estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::Gauss1DModel::make_stencil(), make_stencil(), mappel::Gauss2DModel::make_stencil(), mappel::Gauss2DsModel::make_stencil(), and mappel::PointEmitterModel::theta_stack_ \leftarrow in bounds().

8.11.4.92 BoolVecT mappel::PointEmitterModel::theta_stack_in_bounds (const ParamVecT & theta) const [inherited]

Definition at line 297 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check param shape(), and mappel::PointEmitterModel::theta in bounds().

8.11.5 Member Data Documentation

8.11.5.1 const double mappel::PointEmitterModel::bounds_epsilon = 1.0E-6 [static], [inherited]

Distance from the boundary to constrain in bound_theta and bounded_theta methods

Definition at line 52 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::set_bounds(), mappel::PointEmitterModel::set_lbound(), mappel::Gauss2 DsModel::set max sigma ratio(), and mappel::PointEmitterModel::set ubound().

8.11.5.2 const double mappel::PointEmitterModel::default_alpha_sigma = 2 [static], [inherited]

Default per-pixel background gamma distribution shape

Definition at line 62 of file PointEmitterModel.h.

8.11.5.3 const double mappel::PointEmitterModel::default_beta_pos = 3 [static], [inherited]

Default position parameter in symmetric beta-distributions

Definition at line 56 of file PointEmitterModel.h.

8.11.5.4 const double mappel::PointEmitterModel::default_intensity_kappa = 2 [static], [inherited]

Default shape for intensity gamma distributions

Definition at line 60 of file PointEmitterModel.h.

8.11.5.5 const double mappel::PointEmitterModel::default_max_I = INFINITY [static], [inherited]

Default maximum emitter intensity

Definition at line 59 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::make prior component intensity().

8.11.5.6 const double mappel::PointEmitterModel::default_mean_I = 300 [static], [inherited]

Default emitter intensity mean

Definition at line 58 of file PointEmitterModel.h.

Referenced by mappel::MCMCAdaptor1D::set intensity mcmc sampling().

8.11.5.7 const double mappel::PointEmitterModel::default_pixel_mean_bg = 4 [static], [inherited]

Default per-pixel mean background counts

Definition at line 61 of file PointEmitterModel.h.

Referenced by make_default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_beta_position(), mappel::Gauss1DModel::make_default_prior_beta_position(), mappel::Gauss2DsModel::make_default_prior_beta position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss1DModel::make_default_prior_normal_position(), mappel::Gauss1DModel::make_default_prior_normal_position(), mappel::Gauss2DsModel::make_default_prior_cormal_position(), and mappel::MCMCAdaptor1D::set_background_mcmc_sampling().

8.11.5.8 const double mappel::PointEmitterModel::default_sigma_pos = 1 [static], [inherited]

Default position parameter in symmetric beta-distributions

Definition at line 57 of file PointEmitterModel.h.

8.11.5.9 const std::string mappel::Gauss1DsModel::DefaultPriorType = "Normal" [static]

Definition at line 51 of file Gauss1DsModel.h.

Referenced by operator=().

8.11.5.10 const std::string mappel::PointEmitterModel::DefaultSeperableInitEstimator = "TrustRegion" [static], [inherited]

Estimator name to use in 1D separable initializations

Definition at line 49 of file PointEmitterModel.h.

Referenced by mappel::Gauss2DModel::initial_theta_estimate(), mappel::Gauss2DsxyModel::initial_theta_estimate(), and mappel::Gauss2DsModel::initial_theta_estimate().

```
8.11.5.11 double mappel::MCMCAdaptor1D::eta_bg =0 [protected], [inherited]
```

The standard deviation for the normally distributed perturbation to theta_bg in the random walk MCMC sampling

Definition at line 32 of file MCMCAdaptor1D.h.

Referenced by mappel::MCMCAdaptor1D::get_stats(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::M \leftarrow CMCAdaptor1D::operator=(), mappel::MCMCAdaptor2D::sample_mcmc_candidate(), mappel::MCMCAdaptor2Ds \hookleftarrow ::sample_mcmc_candidate(), mappel::MCMCAdaptor1D \hookleftarrow ::sample_mcmc_candidate(), and mappel::MCMCAdaptor1D::set_background_mcmc_sampling().

```
8.11.5.12 double mappel::MCMCAdaptor1D::eta_l = 0 [protected], [inherited]
```

The standard deviation for the normally distributed perturbation to theta_I in the random walk MCMC sampling

Definition at line 31 of file MCMCAdaptor1D.h.

Referenced by mappel::MCMCAdaptor1D::get_stats(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MC—CMCAdaptor1D::operator=(), mappel::MCMCAdaptor2D::sample_mcmc_candidate(), mappel::MCMCAdaptor1Ds::sample_mcmc_candidate(), mappel::MCMCAdaptor1Dc—::sample_mcmc_candidate(), and mappel::MCMCAdaptor1D::set intensity mcmc sampling().

```
8.11.5.13 double mappel::MCMCAdaptor1Ds::eta_sigma =-1 [protected], [inherited]
```

The standard deviation for the normally distributed perturbation to theta bg in the random walk MCMC sampling

Definition at line 27 of file MCMCAdaptor1Ds.h.

Referenced by mappel::MCMCAdaptor1Ds::get_stats(), mappel::MCMCAdaptor1Ds::MCMCAdaptor1Ds(), mappel::

MCMCAdaptor1Ds::operator=(), and mappel::MCMCAdaptor1Ds::sample_mcmc_candidate().

```
8.11.5.14 double mappel::MCMCAdaptor1D::eta_x = 0 [protected], [inherited]
```

The standard deviation for the normally distributed perturbation to theta x in the random walk MCMC sampling

Definition at line 30 of file MCMCAdaptor1D.h.

Referenced by mappel::MCMCAdaptor1D::get_stats(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCCAdaptor1D::perator=(), mappel::MCMCAdaptor2D::sample_mcmc_candidate(), mappel::MCMCAdaptor1Ds \leftarrow ::sample_mcmc_candidate(), mappel::MCMCAdaptor2Ds::sample_mcmc_candidate(), and mappel::MCMCAdaptor1 \leftarrow D::sample_mcmc_candidate().

```
8.11.5.15 const double mappel::MCMCAdaptorBase::global_default_mcmc_sigma_scale = 0.05 [static], [inherited]
```

Definition at line 16 of file MCMCAdaptorBase.h.

Referenced by mappel::MCMCAdaptor1Ds::MCMCAdaptor1Ds(), mappel::MCMCAdaptor2D::MCMCAdaptor2D(), and mappel::MCMCAdaptor2Ds::MCMCAdaptor2Ds().

```
8.11.5.16 const double mappel::MCMCAdaptorBase::global_max_mcmc_sigma_scale = 0.5 [static], [inherited]
```

Definition at line 17 of file MCMCAdaptorBase.h.

Referenced by mappel::MCMCAdaptorBase::MCMCAdaptorBase(), and mappel::MCMCAdaptorBase::set_mcmc_ \leftarrow sigma_scale().

```
8.11.5.17 const double mappel::PointEmitterModel::global_max_psf_sigma = 1E2 [static], [inherited]
```

Global maxmimum for any psf_sigma. Sizes above this value are invalid, and nowhere near useful for practical point emitter localization

Definition at line 54 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::check_psf_sigma().

Maximum size along any dimension of the image. This is insanely big to catch obvious errors

Definition at line 40 of file ImageFormat1DBase.h.

Referenced by mappel::ImageFormat1DBase::check_size().

8.11.5.19 const double mappel::PointEmitterModel::global_min_psf_sigma = 1E-1 [static], [inherited]

Global minimum for any psf_sigma. Sizes below this value are invalid, and nowhere near useful for practical point emitter localization

Definition at line 53 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::check_psf_sigma().

Minimum size along any dimension of the image.

Definition at line 39 of file ImageFormat1DBase.h.

Referenced by mappel::ImageFormat1DBase::check_size().

8.11.5.21 ParamT mappel::PointEmitterModel::lbound [protected], [inherited]

Definition at line 148 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel:: \leftarrow PointEmitterModel::get_lbound(), mappel::PointEmitterModel::get_stats(), initial_theta_estimate(), mappel::Gauss2 \leftarrow DModel::initial_theta_estimate(), mappel::PointEmitterModel \leftarrow ::operator=(), mappel::PointEmitterModel::reflected_theta(), mappel::PointEmitterModel::set_bounds(), mappel::PointEmitterModel::set_ubound(), and mappel::PointEmitterModel::set_ubounds().

8.11.5.22 const ImageFormat1DBase::ImageCoordT ImageFormat1DBase::num_dim = 1 [static], [inherited]

Number of image dimensions.

Definition at line 38 of file ImageFormat1DBase.h.

Referenced by mappel::ImageFormat1DBase::get_stats().

8.11.5.23 IdxT mappel::PointEmitterModel::num_hyperparams [protected], [inherited]

Definition at line 147 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::get_num_hyperparams(), mappel::PointEmitterModel::get_stats(), mappel::PointEmitterModel::operator=(), and mappel::PointEmitterModel::set_prior().

8.11.5.24 IdxT mappel::PointEmitterModel::num_params [protected], [inherited]

Definition at line 146 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel \leftarrow ::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::get_num_params(), mappel::PointEmitter \leftarrow Model::get_stats(), mappel::Gauss1DModel::initial_theta_estimate(), mappel::Gauss2DModel::initial_theta_estimate(), mappel::PointEmitterModel::make_param(), mappel::PointEmitterModel::make_param(), mappel::PointEmitterModel::make_param_mat_stack(), mappel::PointEmitterModel::make_param_stack(), mappel::PointEmitterModel::pointEmitterModel

```
8.11.5.25 IdxT mappel::MCMCAdaptorBase::num_phases [protected], [inherited]
```

The number of different sampling phases for candidate selection MCMC. Each phase changes a different subset of variables.

Definition at line 29 of file MCMCAdaptorBase.h.

Referenced by mappel::MCMCAdaptorBase::get_mcmc_num_phases(), mappel::MCMCAdaptorBase::get_stats(), mappel::MCMCAdaptor2D::sample_mcmc_candidate(), mappel::MCMCAdaptor1Ds::sample_mcmc_candidate(), mappel::MCMCAdaptor1D::sample_mcmc_candidate(), and mappel::MCMCAdaptorBase::set_mcmc_num_phases().

```
8.11.5.26 CompositeDist mappel::PointEmitterModel::prior [protected], [inherited]
```

Definition at line 145 of file PointEmitterModel.h.

Referenced by mappel::Gauss2DModel::debug_internal_sum_model_y(), mappel::Gauss2DsModel::debug_internal ← _sum_model_y(), mappel::Gauss2DModel::Gauss2DModel(), mappel::Gauss2DsModel::Gauss2DsModel(), mappel ::PointEmitterModel::get_hyperparam_index(), mappel::PointEmitterModel::get_hyperparam_names(), mappel::Point← EmitterModel::get hyperparam value(), mappel::PointEmitterModel::get hyperparams(), get max sigma(), get min← sigma(), mappel::PointEmitterModel::get param names(), mappel::PointEmitterModel::get prior(), mappel::Point← EmitterModel::get stats(), mappel::PointEmitterModel::has hyperparam(), mappel::PointEmitterModel::operator=(), mappel::PointEmitterModel::PointEmitterModel(), mappel::PointEmitterModel::rename hyperparam(), PointEmitterModel::sample_prior(), mappel::PointEmitterModel::set bounds(), mappel::PointEmitterModel::set← hyperparam names(), mappel::PointEmitterModel::set hyperparam value(), mappel::PointEmitterModel::set ← hyperparams(), mappel::PointEmitterModel::set lbound(), set max sigma(), set min sigma(), mappel::PointEmitter⊷ Model::set param names(), mappel::PointEmitterModel::set prior(), and mappel::PointEmitterModel::set ubound().

8.11.5.27 const StringVecT mappel::Gauss1DsModel::prior_types [static]

Initial value:

Definition at line 50 of file Gauss1DsModel.h.

Referenced by operator=().

```
8.11.5.28 double mappel::MCMCAdaptorBase::sigma_scale [protected], [inherited]
```

A scaling factor for step sizes as a fraction of the size of the domain dimension we are walking in. (0.05 default)

Definition at line 30 of file MCMCAdaptorBase.h.

8.11.5.29 ImageSizeT mappel::ImageFormat1DBase::size [protected], [inherited]

Number of pixels in X dimension for 1D image

Definition at line 65 of file ImageFormat1DBase.h.

Referenced by mappel::ImageFormat1DBase::check_image_shape(), mappel::Gauss1DsModel::Stencil::compute — __derivatives(), mappel::Gauss1DModel::Stencil::compute_derivatives(), mappel::ImageFormat1DBase::get_num_ — pixels(), mappel::ImageFormat1DBase::get_size(), mappel::Gauss1DModel::initial_theta_estimate(), initial_theta — __estimate(), mappel::ImageFormat1DBase::make_image(), mappel::ImageFormat1DBase::make_image_stack(), mappel::ImageFormat1DBase::set_size(), mappel::Gauss1DsModel::Stencil(), and mappel::Gauss1DModel — ::Stencil().

8.11.5.30 ParamT mappel::PointEmitterModel::ubound [protected], [inherited]

Definition at line 148 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel:: \leftarrow PointEmitterModel::get_stats(), mappel::PointEmitterModel::get_ubound(), initial_theta_estimate(), mappel::Gauss2 \leftarrow DModel::initial_theta_estimate(), mappel::PointEmitterModel \leftarrow ::operator=(), mappel::PointEmitterModel::reflected_theta(), mappel::PointEmitterModel::set_bounds(), mappel::PointEmitterModel::set_ubound(), and mappel::PointEmitterModel::set_ubounds().

The documentation for this class was generated from the following files:

- · Gauss1DsModel.h
- Gauss1DsModel.cpp

8.12 mappel::Gauss2DMAP Class Reference

A 2D Gaussian with fixed PSF under an Poisson Read Noise assumption and MAP Objective.

#include </home/travis/build/markjolah/Mappel/include/Mappel/Gauss2DMAP.h>

Inheritance diagram for mappel::Gauss2DMAP:

Public Types

```
    using Gauss1DSumModelT = Gauss1DMAP

    using StencilVecT = std::vector < Stencil >

• using ParamT = arma::vec
• using ParamVecT = arma::mat
• using ImageCoordT = uint32 t

    using ImagePixeIT = double

    template < class CoordT >

  using ImageSizeShapeT = arma::Col< CoordT >

    template < class CoordT >

  using ImageSizeVecShapeT = arma::Mat < CoordT >

    using ImageSizeT = ImageSizeShapeT < ImageCoordT >

    using ImageSizeVecT = ImageSizeVecShapeT < ImageCoordT >

    template < class PixelT >

  using ImageShapeT = arma::Mat< PixeIT >

    template<class PixelT >

  using ImageStackShapeT = arma::Cube < PixeIT >

    using ImageT = ImageShapeT < ImagePixeIT >

    using ImageStackT = ImageStackShapeT < ImagePixeIT >

    using ModelDataT = ImageT

    using ModelDataStackT = ImageStackT
```

Public Member Functions

- Gauss2DMAP (ImageCoordT size, double psf_sigma, const std::string &prior_type=DefaultPriorType)
- Gauss2DMAP (const ImageSizeT &size, double psf sigma, const std::string &prior type=DefaultPriorType)
- template < class IntType , class FloatType >
 Gauss2DMAP (const arma::Col < IntType > &size, const arma::Col < FloatType > &psf_sigma, const std::string &prior_type=DefaultPriorType)
- Gauss2DMAP (const ImageSizeT &size, const VecT &psf sigma, CompositeDist &&prior)
- Gauss2DMAP (ImageSizeT &&size, VecT &&psf_sigma, CompositeDist &&prior)
- Gauss2DMAP (const ImageSizeT &size, const VecT &psf_sigma, const CompositeDist &prior)
- Gauss2DMAP (const Gauss2DMAP &o)
- Gauss2DMAP & operator= (const Gauss2DMAP &o)
- Gauss2DMAP (Gauss2DMAP &&o)
- Gauss2DMAP & operator= (Gauss2DMAP &&o)
- void set_hyperparams (const VecT &hyperparams)
- void set prior (CompositeDist &&prior)
- void set prior (const CompositeDist &prior)
- void set_size (const ImageSizeT &size_)
- const VecT & get_psf_sigma () const
- double get psf sigma (ldxT idx) const
- · void set psf sigma (double new psf sigma)
- void set psf sigma (const VecT &new psf sigma)
- StatsT get_stats () const
- Stencil make_stencil (const ParamT &theta, bool compute_derivatives=true) const

Make a new Model::Stencil object at theta.

- double pixel model value (int i, int j, const Stencil &s) const
- void pixel grad (int i, int j, const Stencil &s, ParamT &pgrad) const

- void pixel_grad2 (int i, int j, const Stencil &s, ParamT &pgrad2) const
- void pixel hess (int i, int j, const Stencil &s, MatT &hess) const
- void pixel_hess_update (int i, int j, const Stencil &s, double dm_ratio_m1, double dmm_ratio, ParamT &grad, MatT &hess) const

pixel derivative inner loop calculations.

Stencil initial_theta_estimate (const ImageT &im)

Fast, heuristic estimate of initial theta.

- Stencil initial theta estimate (const ImageT &im, const ParamT &theta init)
- Stencil initial theta estimate (const ImageT &im, const ParamT &theta init, const std::string &estimator)
- Gauss1DSumModelT debug_internal_sum_model_x () const
- Gauss1DSumModelT debug_internal_sum_model_y () const
- IdxT get_num_params () const
- void check param shape (const ParamT &theta) const
- void check param shape (const ParamVecT &theta) const
- · void check psf sigma (double psf sigma) const
- · void check psf sigma (const VecT &psf sigma) const
- ParamT make_param () const
- template<class FillT >

ParamT make param (FillT fill) const

- ParamVecT make_param_stack (ldxT n) const
- template<class FillT >

ParamVecT make param stack (ldxT n, FillT fill) const

- MatT make param mat () const
- template<class FillT >

MatT make param mat (FillT fill) const

- CubeT make_param_mat_stack (ldxT n) const
- template<class FillT >

CubeT make_param_mat_stack (ldxT n, FillT fill) const

- CompositeDist & get_prior ()
- const CompositeDist & get_prior () const
- ldxT get_num_hyperparams () const
- VecT get_hyperparams () const
- bool has_hyperparam (const std::string &name) const
- double get_hyperparam_value (const std::string &name) const
- int get hyperparam index (const std::string &name) const
- void set_hyperparam_value (const std::string &name, double value)
- void rename_hyperparam (const std::string &old_name, const std::string &new_name)
- StringVecT get param names () const
- void set param names (const StringVecT &desc)
- StringVecT get_hyperparam_names () const
- void set_hyperparam_names (const StringVecT &desc)
- template<class RngT >

ParamT sample_prior (RngT &rng)

- ParamT sample prior ()
- void set bounds (const ParamT &lbound, const ParamT &ubound)
- void set_lbound (const ParamT &lbound)
- void set ubound (const ParamT &ubound)
- · const ParamT & get_lbound () const
- const ParamT & get_ubound () const
- bool theta in bounds (const ParamT &theta) const
- void bound theta (ParamT &theta, double epsilon=bounds epsilon) const

- ParamT bounded_theta (const ParamT &theta, double epsilon=bounds_epsilon) const
- ParamT reflected theta (const ParamT &theta) const
- BoolVecT theta_stack_in_bounds (const ParamVecT &theta) const
- ParamVecT bounded theta stack (const ParamVecT &theta, double epsilon=bounds epsilon) const
- ParamVecT reflected theta stack (const ParamVecT &theta) const
- ImageT make_image () const
- ImageStackT make_image_stack (ImageCoordT n) const
- ImageCoordT get_size_image_stack (const ImageStackT &stack) const
- ImageT get image from stack (const ImageStackT &stack, ImageCoordT n) const
- template<class ImT >

void set_image_in_stack (ImageStackT &stack, ImageCoordT n, const ImT &im) const

- const ImageSizeT & get_size () const
- ImageCoordT get_size (IdxT idx) const
- ImageCoordT get_num_pixels () const
- void check image shape (const ImageT &im) const

Check the shape of a single images is correct for model size.

void check_image_shape (const ImageStackT &ims) const

Check the shape of a stack of images is correct for model size.

- void sample mcmc candidate (IdxT sample index, ParamT &candidate, double step scale=1.0)
- void set_intensity_mcmc_sampling (double eta_l=-1)
- void set background mcmc sampling (double eta bg=-1)
- void set mcmc sigma scale (double scale)
- · double get mcmc sigma scale () const
- IdxT get_mcmc_num_phases () const

Static Public Member Functions

- static CompositeDist make_default_prior (const ImageSizeT &size, const std::string &prior_type)
- static CompositeDist make default prior beta position (const ImageSizeT &size)
- static CompositeDist make_default_prior_normal_position (const ImageSizeT &size)
- static CompositeDist make_prior_beta_position (const ImageSizeT &size, double beta_xpos, double beta_ypos, double mean I, double kappa I, double mean bg, double kappa bg)

- static prior_hessian::ScaledSymmetricBetaDist make_prior_component_position_beta (ldxT size, double pos_
 beta=default_beta_pos)
- static prior_hessian::TruncatedParetoDist make_prior_component_sigma (double min_sigma, double max_component_sigma) double alpha=default_alpha_sigma)
- static void set_rng_seed (RngSeedT seed)
- static ParallelRngManagerT & get_rng_manager ()
- static ParallelRngGeneratorT & get_rng_generator ()
- static void check size (const ImageSizeT &size)

Check the size argument for the model.

Static Public Attributes

- · static const std::string name
- static const StringVecT prior_types
- static const std::string DefaultPriorType = "Normal"
- static const std::string DefaultSeperableInitEstimator = "TrustRegion"
- static const double bounds epsilon = 1.0E-6
- static const double global min psf sigma = 1E-1
- static const double global_max_psf_sigma = 1E2
- static const double default_beta_pos = 3
- static const double default sigma pos = 1
- static const double default mean I = 300
- static const double default_max_I = INFINITY
- static const double default intensity kappa = 2
- static const double default_pixel_mean_bg = 4
- static const double default_alpha_sigma = 2
- static const ImageCoordT num dim =2
- static const ImageCoordT global_min_size =3
- static const ImageCoordT global_max_size =512
- static const double global default mcmc sigma scale = 0.05
- static const double global max mcmc sigma scale = 0.5
- static const std::vector< std::string > estimator_names

Protected Member Functions

- void update_internal_1Dsum_estimators ()
- void set mcmc num phases (ldxT num phases)

Static Protected Member Functions

static Gauss1DSumModelT make_internal_1Dsum_estimator (ldxT dim, const ImageSizeT &size, const VecT &psf_sigma, const CompositeDist &prior)

Protected Attributes

- · VecT psf sigma
- Gauss1DSumModelT x model
- Gauss1DSumModelT y_model
- · CompositeDist prior
- IdxT num_params
- IdxT num hyperparams
- ParamT Ibound
- · ParamT ubound
- ImageSizeT size
- double eta_y =0
- double eta_x =0
- double eta_I =0
- double eta_bg =0
- IdxT num phases
- · double sigma scale

```
8.12.1 Detailed Description
```

A 2D Gaussian with fixed PSF under an Poisson Read Noise assumption and MAP Objective.

Model: Gauss2DModel a 2D gaussian PSF with fixed psf_sigma Objective: PoissonNoise2DObjective - Poisson noise model for 2D Estimator: MAPEstimator - Maximum a-posteriori estimator

Definition at line 23 of file Gauss2DMAP.h.

8.12.2 Member Typedef Documentation

8.12.2.1 using mappel::Gauss2DModel::Gauss1DSumModelT = Gauss1DMAP [inherited]

Definition at line 23 of file Gauss2DModel.h.

8.12.2.2 using mappel::ImageFormat2DBase::ImageCoordT = uint32_t [inherited]

Image size coordinate storage type

Definition at line 24 of file ImageFormat2DBase.h.

8.12.2.3 using mappel::ImageFormat2DBase::ImagePixelT = double [inherited]

Image pixel storage type

Definition at line 25 of file ImageFormat2DBase.h.

8.12.2.4 template < class PixelT > using mappel::ImageFormat2DBase::ImageShapeT = arma::Mat < PixelT > [inherited]

Shape of the data type for a single image

Definition at line 32 of file ImageFormat2DBase.h.

8.12.2.5 template < class CoordT > using mappel::ImageFormat2DBase::ImageSizeShapeT = arma::Col < CoordT > [inherited]

Shape of the data type to store a single image's coordinates

Definition at line 27 of file ImageFormat2DBase.h.

Data type for a single image size

Definition at line 29 of file ImageFormat2DBase.h.

8.12.2.7 template < class CoordT > using mappel::ImageFormat2DBase::ImageSizeVecShapeT = arma::Mat < CoordT > [inherited]

Shape of the data type to store a vector of image's coordinates

Definition at line 28 of file ImageFormat2DBase.h.

8.12.2.8 using mappel::ImageFormat2DBase::ImageSizeVecT = ImageSizeVecShapeT < ImageCoordT > [inherited]

Data type for a sequence of image sizes

Definition at line 30 of file ImageFormat2DBase.h.

8.12.2.9 template < class PixelT > using mappel::ImageFormat2DBase::ImageStackShapeT = arma::Cube < PixelT > [inherited]

Shape of the data type for a sequence of images

Definition at line 33 of file ImageFormat2DBase.h.

8.12.2.10 using mappel::ImageFormat2DBase::ImageStackT = ImageStackShapeT<ImagePixeIT>
[inherited]

Data type to represent a sequence of images

Definition at line 35 of file ImageFormat2DBase.h.

8.12.2.11 using mappel::ImageFormat2DBase::ImageT = ImageShapeT < ImagePixelT > [inherited]

Data type to represent single image

Definition at line 34 of file ImageFormat2DBase.h.

8.12.2.12 using mappel::PoissonNoise2DObjective::ModelDataStackT = ImageStackT [inherited]

Objective function data stack type: 2D double precision image stack, of images gain-corrected to approximate photons counts

Definition at line 25 of file PoissonNoise2DObjective.h.

8.12.2.13 using mappel::PoissonNoise2DObjective::ModelDataT = ImageT [inherited]

Objective function data type: 2D double precision image, gain-corrected to approximate photons counts

Definition at line 24 of file PoissonNoise2DObjective.h.

```
8.12.2.14 using mappel::PointEmitterModel::ParamT = arma::vec [inherited]
Parameter vector
Definition at line 47 of file PointEmitterModel.h.
8.12.2.15 using mappel::PointEmitterModel::ParamVecT = arma::mat [inherited]
Vector of parameter vectors
Definition at line 48 of file PointEmitterModel.h.
8.12.2.16 using mappel::Gauss2DModel::StencilVecT = std::vector < Stencil > [inherited]
Definition at line 47 of file Gauss2DModel.h.
8.12.3 Constructor & Destructor Documentation
8.12.3.1 mappel::Gauss2DMAP::Gauss2DMAP ( ImageCoordT size, double psf_sigma, const std::string & prior_type =
         DefaultPriorType )
Definition at line 11 of file Gauss2DMAP.cpp.
8.12.3.2 mappel::Gauss2DMAP::Gauss2DMAP ( const ImageSizeT & size, double psf_sigma, const std::string & prior_type =
         DefaultPriorType )
Definition at line 15 of file Gauss2DMAP.cpp.
8.12.3.3 template < class IntType , class FloatType > mappel::Gauss2DMAP::Gauss2DMAP ( const arma::Col < IntType > & size,
         const arma::Col < FloatType > & psf_sigma, const std::string & prior_type = DefaultPriorType )
Definition at line 41 of file Gauss2DMAP.h.
8.12.3.4 mappel::Gauss2DMAP::Gauss2DMAP ( const ImageSizeT & size, const VecT & psf_sigma, CompositeDist && prior )
Definition at line 27 of file Gauss2DMAP.cpp.
8.12.3.5 mappel::Gauss2DMAP::Gauss2DMAP( ImageSizeT && size, VecT && psf_sigma, CompositeDist && prior )
Definition at line 19 of file Gauss2DMAP.cpp.
8.12.3.6 mappel::Gauss2DMAP::Gauss2DMAP ( const ImageSizeT & size, const VecT & psf_sigma, const CompositeDist & prior
Definition at line 35 of file Gauss2DMAP.cpp.
```

8.12.3.7 mappel::Gauss2DMAP::Gauss2DMAP (const Gauss2DMAP & o)

Definition at line 43 of file Gauss2DMAP.cpp.

8.12.3.8 mappel::Gauss2DMAP::Gauss2DMAP (Gauss2DMAP && o)

Definition at line 51 of file Gauss2DMAP.cpp.

8.12.4 Member Function Documentation

8.12.4.1 void mappel::PointEmitterModel::bound_theta (ParamT & theta, double epsilon = bounds_epsilon) const [inherited]

Definition at line 248 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::ubound, mappel::PointEmitterModel::ubound.

8.12.4.2 PointEmitterModel::ParamT mappel::PointEmitterModel::bounded_theta (const ParamT & theta, double epsilon = bounds epsilon) const [inherited]

Definition at line 265 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::ubound.

Referenced by mappel::PointEmitterModel::bounded_theta_stack().

8.12.4.3 PointEmitterModel::ParamVecT mappel::PointEmitterModel::bounded_theta_stack (const ParamVecT & theta, double epsilon = bounds epsilon) const [inherited]

Definition at line 307 of file PointEmitterModel.cpp.

 $References \quad mappel:: PointEmitterModel:: bounded_theta(), \quad mappel:: PointEmitterModel:: check_param_shape(), \quad and \\ mappel:: PointEmitterModel:: make_param_stack().$

8.12.4.4 void mappel::ImageFormat2DBase::check_image_shape(const ImageT & im) const [inherited]

Check the shape of a single images is correct for model size.

Definition at line 80 of file ImageFormat2DBase.cpp.

References mappel::ImageFormat2DBase::size.

8.12.4.5 void mappel::ImageFormat2DBase::check_image_shape(const ImageStackT & ims) const [inherited]

Check the shape of a stack of images is correct for model size.

Definition at line 93 of file ImageFormat2DBase.cpp.

References mappel::ImageFormat2DBase::size.

8.12.4.6 void mappel::PointEmitterModel::check_param_shape (const ParamT & theta) const [inherited]

Definition at line 167 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::num params.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel ::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::reflected_theta(), mappel::PointEmitterModel::reflected_theta(), mappel::PointEmitterModel::theta_in_bounds(), and mappel::PointEmitterModel ::theta_stack_in_bounds().

8.12.4.7 void mappel::PointEmitterModel::check_param_shape (const ParamVecT & theta) const [inherited]

Definition at line 176 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::num params.

8.12.4.8 void mappel::PointEmitterModel::check_psf_sigma (double psf_sigma) const [inherited]

Definition at line 185 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::global_max_psf_sigma, and mappel::PointEmitterModel::global_min_psf_ \hookleftarrow sigma.

Referenced by mappel::Gauss1DModel(), mappel::Gauss2DModel::Gauss2DModel(), mappel:: \leftarrow Gauss2DsModel::Gauss2DsModel(), mappel::Gauss1DsModel::set_max_sigma(), mappel::Gauss2DsModel::set_ \leftarrow max_sigma(), mappel::Gauss1DsModel::set_min_sigma(), mappel:: \leftarrow Gauss1DModel::set_psf sigma(), and mappel::Gauss2DModel::set_psf sigma().

8.12.4.9 void mappel::PointEmitterModel::check_psf_sigma (const VecT & psf_sigma) const [inherited]

Definition at line 197 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::global_max_psf_sigma, and mappel::PointEmitterModel::global_min_psf_ sigma.

8.12.4.10 void mappel::ImageFormat2DBase::check_size(const ImageSizeT & size_) [static], [inherited]

Check the size argument for the model.

Definition at line 60 of file ImageFormat2DBase.cpp.

References mappel::ImageFormat2DBase::global_max_size, and mappel::ImageFormat2DBase::global_min_size.

Referenced by mappel::ImageFormat2DBase::ImageFormat2DBase(), and mappel::ImageFormat2DBase::set_size().

8.12.4.11 Gauss1DSumModelT mappel::Gauss2DModel::debug_internal_sum_model_x () const [inline], [inherited]

Definition at line 89 of file Gauss2DModel.h.

References mappel::Gauss2DModel::x model.

8.12.4.12 Gauss1DSumModelT mappel::Gauss2DModel::debug_internal_sum_model_y () const [inline], [inherited]

Definition at line 90 of file Gauss2DModel.h.

References mappel::Gauss2DModel::Gauss2DModel::Gauss2DModel::make_internal_1Dsum_estimator(), mappel::Gauss2DModel::operator=(), mappel::PointEmitterModel::prior, mappel::Gauss2DModel::psf_sigma, mappel ::ImageFormat2DBase::size, mappel::Gauss2DModel::update_internal_1Dsum_estimators(), and mappel::Gauss2D \leftarrow Model::y model.

8.12.4.13 int mappel::PointEmitterModel::get_hyperparam_index (const std::string & name) const [inline], [inherited]

Definition at line 236 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.12.4.14 StringVecT mappel::PointEmitterModel::get_hyperparam_names() const [inline], [inherited]

Definition at line 256 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.12.4.15 double mappel::PointEmitterModel::get_hyperparam_value (const std::string & name) const [inline], [inherited]

Definition at line 232 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

Referenced by mappel::MCMCAdaptor1D::set_background_mcmc_sampling(), and mappel::MCMCAdaptor1D::set_ \leftarrow intensity_mcmc_sampling().

8.12.4.16 PointEmitterModel::ParamT mappel::PointEmitterModel::get_hyperparams () const [inline], [inherited]

Definition at line 224 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.12.4.17 ImageFormat2DBase::ImageT mappel::ImageFormat2DBase::get_image_from_stack (const ImageStackT & stack, ImageCoordT n) const [inline], [inherited]

Definition at line 106 of file ImageFormat2DBase.h.

8.12.4.18 const PointEmitterModel::ParamT & mappel::PointEmitterModel::get_lbound() const [inline], [inherited]

Definition at line 212 of file PointEmitterModel.h.

References mappel::PointEmitterModel::lbound.

Referenced by mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCMCAdaptor2D::MCMCAdaptor2D(), and mappel::MCMCAdaptor1D::set background mcmc sampling().

8.12.4.19 IdxT mappel::MCMCAdaptorBase::get_mcmc_num_phases()const [inherited] Definition at line 56 of file MCMCAdaptorBase.cpp. References mappel::MCMCAdaptorBase::num phases. 8.12.4.20 double mappel::MCMCAdaptorBase::get_mcmc_sigma_scale() const [inherited] Definition at line 53 of file MCMCAdaptorBase.cpp. References mappel::MCMCAdaptorBase::sigma_scale. 8.12.4.21 | IdxT mappel::PointEmitterModel::get_num_hyperparams() const [inline], [inherited] Definition at line 208 of file PointEmitterModel.h. References mappel::PointEmitterModel::num hyperparams. 8.12.4.22 IdxT mappel::PointEmitterModel::get_num_params()const [inline], [inherited] Definition at line 160 of file PointEmitterModel.h. References mappel::PointEmitterModel::num_params. 8.12.4.23 ImageFormat2DBase::ImageCoordT mappel::ImageFormat2DBase::get_num_pixels()const [inline], [inherited] Definition at line 79 of file ImageFormat2DBase.h. References mappel::ImageFormat2DBase::size. Referenced by mappel::ImageFormat2DBase::get_stats(). 8.12.4.24 StringVecT mappel::PointEmitterModel::get param_names() const [inline], [inherited] Definition at line 248 of file PointEmitterModel.h. References mappel::PointEmitterModel::prior. 8.12.4.25 CompositeDist & mappel::PointEmitterModel::get_prior() [inline], [inherited] Definition at line 200 of file PointEmitterModel.h.

Referenced by mappel::Gauss2DModel::update internal 1Dsum estimators(), and mappel::Gauss2DsModel ←

References mappel::PointEmitterModel::prior.

::update internal 1Dsum estimators().

Generated by Doxygen

8.12.4.26 const CompositeDist & mappel::PointEmitterModel::get_prior() const [inline], [inherited] Definition at line 204 of file PointEmitterModel.h. References mappel::PointEmitterModel::prior. 8.12.4.27 const VecT & mappel::Gauss2DModel::get_psf_sigma() const [inline], [inherited] Definition at line 142 of file Gauss2DModel.h. References mappel::Gauss2DModel::psf_sigma. Referenced by mappel::Gauss2DModel::get_stats(). 8.12.4.28 double mappel::Gauss2DModel::get_psf_sigma (ldxT idx) const [inherited] Definition at line 132 of file Gauss2DModel.cpp. References mappel::Gauss2DModel::DefaultPriorType, mappel::Gauss2DModel::prior_types, and mappel::Gauss2D← Model::psf_sigma. **8.12.4.29 ParallelRngGeneratorT & mappel::PointEmitterModel::get_rng_generator()** [static], [inherited] Definition at line 120 of file PointEmitterModel.cpp. References mappel::rng manager. 8.12.4.30 ParallelRngManagerT & mappel::PointEmitterModel::get_rng_manager() [static], [inherited] Definition at line 115 of file PointEmitterModel.cpp. References mappel::rng manager. 8.12.4.31 const ImageFormat2DBase::ImageSizeT & mappel::ImageFormat2DBase::get_size() const [inline], [inherited] Definition at line 74 of file ImageFormat2DBase.h. References mappel::ImageFormat2DBase::size. 8.12.4.32 ImageFormat2DBase::ImageCoordT mappel::ImageFormat2DBase::get_size (IdxT idx) const

Definition at line 41 of file ImageFormat2DBase.cpp.

References mappel::ImageFormat2DBase::size.

[inherited]

8.12.4.33 ImageFormat2DBase::ImageCoordT mappel::ImageFormat2DBase::get_size_image_stack(const ImageStackT & stack) const [inline],[inherited]

Definition at line 99 of file ImageFormat2DBase.h.

8.12.4.34 StatsT mappel::Gauss2DModel::get_stats() const [inherited]

Definition at line 268 of file Gauss2DModel.cpp.

References mappel::Gauss2DModel::get_psf_sigma(), mappel::MCMCAdaptor2D::get_stats(), mappel::Image Format2DBase::get_stats(), and mappel::PointEmitterModel::get_stats().

8.12.4.35 const PointEmitterModel::ParamT & mappel::PointEmitterModel::get_ubound() const [inline], [inherited]

Definition at line 216 of file PointEmitterModel.h.

References mappel::PointEmitterModel::ubound.

Referenced by mappel::Gauss2DsxyModel::get_max_sigma_ratio(), mappel::Gauss2DsModel::get_max_sigma_ratio(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCMCAdaptor2D(), mappel::MCMCAdaptor2D(), mappel::MCMCAdaptor1D::set_background_mcmc_sampling(), and mappel::Gauss2DsModel::set_max_sigma_ratio().

8.12.4.36 bool mappel::PointEmitterModel::has_hyperparam(const std::string & name) const [inline], [inherited]

Definition at line 228 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.12.4.37 Gauss2DModel::Stencil mappel::Gauss2DModel::initial_theta_estimate(const ImageT & im) [inline], [inherited]

Fast, heuristic estimate of initial theta.

Definition at line 194 of file Gauss2DModel.h.

References mappel::PointEmitterModel::DefaultSeperableInitEstimator, and mappel::PointEmitterModel::make $_\leftarrow$ param().

Referenced by mappel::Gauss2DModel::initial_theta_estimate().

8.12.4.38 Gauss2DModel::Stencil mappel::Gauss2DModel::initial_theta_estimate (const ImageT & im, const ParamT & theta_init) [inline], [inherited]

Definition at line 201 of file Gauss2DModel.h.

References mappel::PointEmitterModel::DefaultSeperableInitEstimator, and mappel::Gauss2DModel::initial_theta_ \leftarrow estimate().

8.12.4.39 Gauss2DModel::Stencil mappel::Gauss2DModel::initial_theta_estimate (const ImageT & im, const ParamT & theta init, const std::string & estimator) [inherited]

Definition at line 303 of file Gauss2DModel.cpp.

References mappel::Gauss2DModel::Stencil::bg(), mappel::methods::estimate_max(), mappel::Gauss2DModel:: \leftarrow Stencil::I(), mappel::PointEmitterModel::Ibound, mappel::Gauss2DModel::make_stencil(), mappel::PointEmitterModel \leftarrow ::num_params, mappel::ImageFormat2DBase::size, mappel::PointEmitterModel::theta_in_bounds(), mappel::Point \leftarrow EmitterModel::ubound, mappel::Gauss2DModel::x_model, and mappel::Gauss2DModel::y_model.

8.12.4.40 CompositeDist mappel::Gauss2DModel::make_default_prior(const ImageSizeT & size, const std::string & prior_type) [static], [inherited]

Definition at line 150 of file Gauss2DModel.cpp.

References mappel::istarts_with(), mappel::Gauss2DModel::make_default_prior_beta_position(), and mappel::Gauss2DModel::make_default_prior_normal_position().

8.12.4.41 CompositeDist mappel::Gauss2DModel::make_default_prior_beta_position(const ImageSizeT & *size*) [static], [inherited]

Definition at line 171 of file Gauss2DModel.cpp.

References mappel::PointEmitterModel::default_pixel_mean_bg, mappel::PointEmitterModel::make_prior_component __ intensity(), mappel::PointEmitterModel::make_prior_component_position_beta(), and mappel::ImageFormat2DBase \leftarrow ::size.

Referenced by mappel::Gauss2DModel::make_default_prior().

8.12.4.42 CompositeDist mappel::Gauss2DModel::make_default_prior_normal_position (const ImageSizeT & size) [static], [inherited]

Definition at line 182 of file Gauss2DModel.cpp.

References mappel::PointEmitterModel::default_pixel_mean_bg, mappel::PointEmitterModel::make_prior_component __intensity(), mappel::PointEmitterModel::make_prior_component_position_normal(), and mappel::ImageFormat2D Base::size.

Referenced by mappel::Gauss2DModel::make_default_prior().

8.12.4.43 ImageFormat2DBase::ImageT mappel::ImageFormat2DBase::make_image() const [inline], [inherited]

Definition at line 85 of file ImageFormat2DBase.h.

References mappel::ImageFormat2DBase::size.

8.12.4.44 ImageFormat2DBase::ImageStackT mappel::ImageFormat2DBase::make_image_stack(ImageCoordT n) const [inline], [inherited]

Definition at line 92 of file ImageFormat2DBase.h.

References mappel::ImageFormat2DBase::size.

8.12.4.45 Gauss2DModel::Gauss1DSumModelT mappel::Gauss2DModel::make_internal_1Dsum_estimator(ldxT dim, const ImageSizeT & size, const VecT & psf_sigma, const CompositeDist & prior) [static], [protected], [inherited]

Definition at line 62 of file Gauss2DModel.cpp.

References mappel::Gauss1DModel::make_prior_beta_position(), mappel::Gauss1DModel::make_prior_normal_
position(), mappel::Gauss2DModel::psf_sigma, and mappel::ImageFormat2DBase::size.

Referenced by mappel::Gauss2DModel::debug_internal_sum_model_y(), mappel::Gauss2DModel::Gauss2DModel(), and mappel::Gauss2DModel::update_internal_1Dsum_estimators().

8.12.4.46 PointEmitterModel::ParamT mappel::PointEmitterModel::make_param()const [inline], [inherited]

Definition at line 164 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

Referenced by mappel::Gauss1DModel::initial_theta_estimate(), mappel::Gauss1DsModel::initial_theta_estimate(), mappel::Gauss2DModel::initial_theta_estimate(), mappel::Gauss2DsxyModel::initial_theta_estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::Gauss1DModel::pixel_hess_update(), mappel::Gauss1DsModel::pixel_hess_update(), mappel::Gauss2DsModel::pixel_hess_update(), and mappel::Gauss2DsModel::pixel_hess_update().

8.12.4.47 template < class FillT > PointEmitterModel::ParamT mappel::PointEmitterModel::make_param (FillT fill) const [inherited]

Definition at line 181 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

8.12.4.48 MatT mappel::PointEmitterModel::make_param_mat() const [inline], [inherited]

Definition at line 172 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

8.12.4.49 template < class FillT > MatT mappel::PointEmitterModel::make_param_mat(FillT fill) const [inherited]

Definition at line 191 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

8.12.4.50 CubeT mappel::PointEmitterModel::make param mat stack (ldxT n) const [inline], [inherited]

Definition at line 176 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

8.12.4.51 template < class FillT > CubeT mappel::PointEmitterModel::make_param_mat_stack (ldxT n, FillT fill) const [inherited]

Definition at line 196 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

8.12.4.52 PointEmitterModel::ParamVecT mappel::PointEmitterModel::make_param_stack(ldxT n) const [inline], [inherited]

Definition at line 168 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

Referenced by mappel::PointEmitterModel::bounded_theta_stack(), and mappel::PointEmitterModel::reflected_theta _ _stack().

8.12.4.53 template < class FillT > PointEmitterModel::ParamVecT mappel::PointEmitterModel::make_param_stack (ldxT n, FillT fill) const [inherited]

Definition at line 186 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

8.12.4.54 CompositeDist mappel::Gauss2DModel::make_prior_beta_position (const ImageSizeT & size, double beta_xpos, double beta_ypos, double mean_l, double kappa_l, double mean_bg, double kappa_bg) [static], [inherited]

Definition at line 193 of file Gauss2DModel.cpp.

References mappel::PointEmitterModel::make_prior_component_intensity(), mappel::PointEmitterModel::make_prior ← _ component_position_beta(), and mappel::ImageFormat2DBase::size.

8.12.4.55 prior_hessian::TruncatedGammaDist mappel::PointEmitterModel::make_prior_component_intensity (double mean = default mean I, double kappa = default intensity kappa) [static], [inherited]

Definition at line 98 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::default max I.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_beta_position(), mappel::Gauss2Ds \leftarrow default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss1DsModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_normal_costion(), mappel::Gauss2DModel::make_prior_costion(), mappel::Gauss2DModel::make_prior_costion(), mappel::Gauss1DsModel::make_prior_beta_position(), mappel::Gauss2DModel::make_prior_beta_position(), mappel::Gauss2DModel::make_prior_normal_costion(), mappel::Gauss2DModel::make_prior_normal_costion(), mappel::Gauss1DsModel::make_prior_normal_costion(), mappel::Gauss1DsModel::make_prior_normal_costion(), mappel::Gauss1DsModel::make_prior_normal_costion(), mappel::Gauss2DsModel::make_prior_normal_costion(), mappel::Gauss2DsModel::make_pri

8.12.4.56 prior_hessian::ScaledSymmetricBetaDist mappel::PointEmitterModel::make_prior_component_position_beta (ldxT size, double pos beta = default beta pos) [static],[inherited]

Definition at line 92 of file PointEmitterModel.cpp.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_beta_position(), mappel::Gauss1DModel::make_default_prior_beta_position(), mappel::Gauss2Ds beta_position(), mappel::Gauss1DsModel::make_prior_beta_position(), mappel::Gauss2Ds beta_position(), mappel::Gauss1DModel::make_prior_beta_position(), and mappel::Gauss2Ds beta_position().

8.12.4.57 prior_hessian::TruncatedNormalDist mappel::PointEmitterModel::make_prior_component_position_normal (ldxT size, double pos_sigma = default_sigma_pos) [static], [inherited]

Definition at line 85 of file PointEmitterModel.cpp.

Referenced by mappel::Gauss1DsModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_ \leftarrow default_prior_normal_position(), mappel::Gauss1DModel::make_default_prior_normal_position(), mappel::Gauss2 \leftarrow DsModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_prior_normal_position(), mappel::Gauss1DsModel::make_prior_normal_position(), and mappel::Gauss2DsModel::make_prior_normal_position().

8.12.4.58 prior_hessian::TruncatedParetoDist mappel::PointEmitterModel::make_prior_component_sigma (double min_sigma, double max_sigma, double alpha = default_alpha_sigma) [static], [inherited]

Definition at line 104 of file PointEmitterModel.cpp.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DsModel::make_default_prior_normal_position(), mappel::Gauss2DsModel::make_default_prior_normal_position(), mappel::Gauss1DsModel::make_prior_beta_position(), mappel::Gauss1DsModel::make_prior_beta_position(), mappel::Gauss2DsModel::make_prior_beta_position(), and mappel::Gauss2DsModel::make_prior_normal_position().

8.12.4.59 CompositeDist mappel::Gauss2DModel::make_prior_normal_position(const ImageSizeT & size, double sigma_xpos, double beta_ypos, double mean_l, double kappa_l, double mean_bg, double kappa_bg) [static], [inherited]

Definition at line 206 of file Gauss2DModel.cpp.

References mappel::PointEmitterModel::make_prior_component_intensity(), mappel::PointEmitterModel::make_prior component_position_normal(), and mappel::ImageFormat2DBase::size.

8.12.4.60 Gauss2DModel::Stencil mappel::Gauss2DModel::make_stencil (const ParamT & theta, bool compute_derivatives = true) const [inline], [inherited]

Make a new Model::Stencil object at theta.

Stencils store all of the important calculations necessary for evaluating the log-likelihood and its derivatives at a particular theta (parameter) value.

This allows re-use of the most expensive computations. Stencils can be easily passed around by reference, and most functions in the mappel::methods namespace accept a const Stencil reference in place of the model parameter.

Throws mappel::ModelBoundsError if not model.theta in bounds(theta).

If derivatives will not be computed with this stencil set compute derivatives=false

Parameters

theta	Prameter to evaluate at
compute_derivatives	True to also prepare for derivative computations

Returns

A new Stencil object ready to compute with

Definition at line 131 of file Gauss2DModel.h.

References mappel::Gauss2DModel::Stencil::Stencil(), and mappel::PointEmitterModel::theta_in_bounds().

Referenced by mappel::Gauss2DModel::initial_theta_estimate().

8.12.4.61 Gauss2DMAP & mappel::Gauss2DMAP::operator= (const Gauss2DMAP & o)

Definition at line 59 of file Gauss2DMAP.cpp.

References mappel::MAPEstimator::operator=(), mappel::PoissonNoise2DObjective::operator=(), mappel::Image Format2DBase::operator=(), mappel::Gauss2DModel::operator=(), and mappel::PointEmitterModel::operator=().

8.12.4.62 Gauss2DMAP & mappel::Gauss2DMAP::operator=(Gauss2DMAP && o)

Definition at line 70 of file Gauss2DMAP.cpp.

References mappel::MAPEstimator::operator=(), mappel::PoissonNoise2DObjective::operator=(), mappel::Image Format2DBase::operator=(), mappel::Gauss2DModel::operator=(), and mappel::PointEmitterModel::operator=().

8.12.4.63 void mappel::Gauss2DModel::pixel_grad (int i, int j, const Stencil & s, ParamT & pgrad) const [inline], [inherited]

Definition at line 159 of file Gauss2DModel.h.

References mappel::Gauss2DModel::Stencil::DX, mappel::Gauss2DModel::Stencil::DY, mappel::Gauss2DModel::Gauss2DModel::Gauss2DModel::Gauss2DModel::Gauss2DModel::Gauss2DModel::Stencil::Y.

Referenced by mappel::Gauss2DModel::pixel_hess_update().

8.12.4.64 void mappel::Gauss2DModel::pixel_grad2 (int *i*, int *j*, const Stencil & s, ParamT & pgrad2) const [inline], [inherited]

Definition at line 170 of file Gauss2DModel.h.

References mappel::Gauss2DModel::Stencil::DXS, mappel::Gauss2DModel::Stencil::DYS, mappel::Gauss2DModel:: \leftarrow Stencil::I(), mappel::Gauss2DModel::psf_sigma, mappel::Gauss2DModel:: \leftarrow Stencil::Y.

8.12.4.65 void mappel::Gauss2DModel::pixel_hess (int i, int j, const Stencil & s, MatT & hess) const [inline], [inherited]

Definition at line 181 of file Gauss2DModel.h.

References mappel::Gauss2DModel::Stencil::DX, mappel::Gauss2DModel::Stencil::DXS, mappel::Gauss2DModel::Stencil::DYS, mappel::Gauss2DModel::Stencil::DYS, mappel::Gauss2DModel::Stencil::I(), mappel::Gauss2DModel::Stencil::X, and mappel::Gauss2DModel::Stencil::Y.

8.12.4.66 void mappel::Gauss2DModel::pixel_hess_update (int i, int j, const Stencil & s, double dm_ratio_m1, double dmm_ratio, ParamT & grad, MatT & hess) const [inherited]

pixel derivative inner loop calculations.

Definition at line 282 of file Gauss2DModel.cpp.

References mappel::Gauss2DModel::Stencil::DX, mappel::Gauss2DModel::Edauss2DModel::Causs2DModel::Causs2DModel::Causs2DModel::Gau

8.12.4.67 double mappel::Gauss2DModel::pixel_model_value (int *i*, int *j*, const Stencil & *s*) const [inline], [inherited]

Definition at line 152 of file Gauss2DModel.h.

References mappel::Gauss2DModel::Stencil::bg(), mappel::Gauss2DModel::Stencil::I(), mappel::Gauss2DModel::

Stencil::X, and mappel::Gauss2DModel::Stencil::Y.

8.12.4.68 PointEmitterModel::ParamT mappel::PointEmitterModel::reflected_theta (const ParamT & theta) const [inherited]

Definition at line 276 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::Point← EmitterModel::num params, and mappel::PointEmitterModel::ubound.

Referenced by mappel::PointEmitterModel::reflected theta stack().

8.12.4.69 PointEmitterModel::ParamVecT mappel::PointEmitterModel::reflected_theta_stack (const ParamVecT & theta) const [inherited]

Definition at line 317 of file PointEmitterModel.cpp.

 $References\ mappel:: PointEmitterModel:: heck_param_shape(),\ mappel:: PointEmitterModel:: make_param_stack(),\ and\ mappel:: PointEmitterModel:: reflected_theta().$

8.12.4.70 void mappel::PointEmitterModel::rename_hyperparam (const std::string & old_name, const std::string & new_name)
[inline], [inherited]

Definition at line 244 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.12.4.71 void mappel::MCMCAdaptor2D::sample_mcmc_candidate (ldxT sample_index, ParamT & candidate, double step_scale = 1.0) [inherited]

Definition at line 59 of file MCMCAdaptor2D.cpp.

References mappel::MCMCAdaptor1D::eta_bg, mappel::MCMCAdaptor1D::eta_L, mappel::MCMCAdaptor1D::eta_c x, mappel::MCMCAdaptor2D::eta y, mappel::MCMCAdaptorBase::num phases, and mappel::rng manager.

8.12.4.72 template < class RngT > PointEmitterModel::ParamT mappel::PointEmitterModel::sample_prior (RngT & rng) [inherited]

Definition at line 264 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.12.4.73 PointEmitterModel::ParamT mappel::PointEmitterModel::sample_prior() [inline], [inherited]

Definition at line 268 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior, and mappel::rng_manager.

8.12.4.74 void mappel::MCMCAdaptor1D::set_background_mcmc_sampling (double eta_bg = -1) [inherited]

Definition at line 81 of file MCMCAdaptor1 D.cpp.

References mappel::PointEmitterModel::default_pixel_mean_bg, mappel::MCMCAdaptor1D::eta_bg, mappel::Pointc— EmitterModel::get_hyperparam_value(), mappel::PointEmitterModel::get_lbound(), mappel::PointEmitterModel::get_cubound(), and mappel::MCMCAdaptorBase::sigma_scale.

Referenced by mappel::MCMCAdaptor1D::MCMCAdaptor1D().

8.12.4.75 void mappel::PointEmitterModel::set_bounds (const ParamT & *lbound_*, const ParamT & *ubound_*)

[inherited]

Box-type parameter bounds

Modifies the prior bounds to prevent sampling outside the valid box-constraints.

Definition at line 213 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounds_epsilon, mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::pointEmitterModel::ubound, mappel::PointEmitterModel::ubound.

8.12.4.76 void mappel::PointEmitterModel::set_hyperparam_names (const StringVecT & *desc* **)** [inline], [inherited]

Definition at line 260 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.12.4.77 void mappel::PointEmitterModel::set_hyperparam_value (const std::string & name, double value) [inline], [inherited]

Definition at line 240 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.12.4.78 void mappel::Gauss2DModel::set hyperparams (const VecT & hyperparams) [inherited]

Definition at line 109 of file Gauss2DModel.cpp.

References mappel::PointEmitterModel::set_hyperparams(), and mappel::Gauss2DModel::update_internal_1Dsum_ estimators().

8.12.4.79 template < class ImT > void mappel::ImageFormat2DBase::set_image_in_stack (ImageStackT & stack, ImageCoordT n, const ImT & im) const [inherited]

Definition at line 113 of file ImageFormat2DBase.h.

8.12.4.80 void mappel::MCMCAdaptor1D::set intensity mcmc sampling (double eta I = -1) [inherited]

Definition at line 65 of file MCMCAdaptor1D.cpp.

References mappel::PointEmitterModel::default_mean_I, mappel::MCMCAdaptor1D::eta_I, mappel::PointEmitter (
Model::get hyperparam value(), and mappel::MCMCAdaptorBase::sigma scale.

Referenced by mappel::MCMCAdaptor1D::MCMCAdaptor1D().

8.12.4.81 void mappel::PointEmitterModel::set Ibound (const ParamT & Ibound) [inherited]

Definition at line 226 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounds_epsilon, mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::pointEmitterModel::ubound, mappel::PointEmitterModel::pointEmitterModel::ubound.

Referenced by mappel::Gauss1DsModel::set_min_sigma().

8.12.4.82 void mappel::MCMCAdaptorBase::set_mcmc_num_phases(| IdxT num_phases) [protected], [inherited]

Definition at line 59 of file MCMCAdaptorBase.cpp.

References mappel::MCMCAdaptorBase::num_phases.

Referenced by mappel::MCMCAdaptor1Ds::MCMCAdaptor1Ds(), and mappel::MCMCAdaptor2Ds::MCMCAdaptor2C Ds().

8.12.4.83 void mappel::MCMCAdaptorBase::set mcmc sigma scale (double scale) [inherited]

Definition at line 39 of file MCMCAdaptorBase.cpp.

References mappel::MCMCAdaptorBase::global_max_mcmc_sigma_scale, and mappel::MCMCAdaptorBase::sigma
scale.

8.12.4.84 void mappel::PointEmitterModel::set_param_names (const StringVecT & desc) [inline], [inherited]

Definition at line 252 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.12.4.85 void mappel::Gauss2DModel::set_prior(CompositeDist && prior_) [inherited]

Definition at line 97 of file Gauss2DModel.cpp.

References mappel::PointEmitterModel::set_prior(), and mappel::Gauss2DModel::update_internal_1Dsum_ estimators().

8.12.4.86 void mappel::Gauss2DModel::set_prior(const CompositeDist & prior_) [inherited]

Definition at line 103 of file Gauss2DModel.cpp.

References mappel::PointEmitterModel::set_prior(), and mappel::Gauss2DModel::update_internal_1Dsum_ \leftarrow estimators().

8.12.4.87 void mappel::Gauss2DModel::set_psf_sigma (double new_psf_sigma) [inline], [inherited]

Definition at line 146 of file Gauss2DModel.h.

8.12.4.88 void mappel::Gauss2DModel::set_psf_sigma (const VecT & new_psf_sigma) [inherited]

Definition at line 123 of file Gauss2DModel.cpp.

References mappel::PointEmitterModel::check_psf_sigma(), mappel::Gauss2DModel::psf_sigma, mappel::Gauss1D \leftarrow Model::set_psf_sigma(), mappel::Gauss2DModel::y_model.

8.12.4.89 void mappel::PointEmitterModel::set_rng_seed(RngSeedT seed) [static], [inherited]

Definition at line 110 of file PointEmitterModel.cpp.

References mappel::rng manager.

8.12.4.90 void mappel::Gauss2DModel::set_size(const ImageSizeT & size_) [inherited]

Definition at line 115 of file Gauss2DModel.cpp.

 $References \quad mappel::ImageFormat2DBase::set_size(), \quad mappel::ImageFormat1DBase::set_size(), \quad mappel::ImageFormat2DBase::set_size(), \quad mappel::ImageFormat2DB$

8.12.4.91 void mappel::PointEmitterModel::set_ubound (const ParamT & ubound) [inherited]

Definition at line 237 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounds_epsilon, mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::pointEmitterModel::ubound, mappel::PointEmitterModel::pointEmitterModel::ubound.

Referenced by mappel::Gauss1DsModel::set max sigma(), and mappel::Gauss2DsModel::set max sigma ratio().

8.12.4.92 bool mappel::PointEmitterModel::theta_in_bounds (const ParamT & theta) const [inherited]

Definition at line 257 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::ubound, mappel::PointEmitterModel::ubound.

Referenced by mappel::Gauss2DModel::initial_theta_estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::Gauss1DModel::make_stencil(), mappel::Gauss2DModel::make_stencil(), mappel::Gauss2DsModel::make_stencil(), mappel::Gauss2DsModel::make_stencil(), and mappel::Point
EmitterModel::theta stack in bounds().

8.12.4.93 BoolVecT mappel::PointEmitterModel::theta_stack_in_bounds (const ParamVecT & theta) const [inherited]

Definition at line 297 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), and mappel::PointEmitterModel::theta_in_bounds().

8.12.4.94 void mappel::Gauss2DModel::update_internal_1Dsum_estimators() [protected], [inherited]

Definition at line 91 of file Gauss2DModel.cpp.

References mappel::PointEmitterModel::get_prior(), mappel::Gauss2DModel::make_internal_1Dsum_estimator(), mappel::Gauss2DModel::psf_sigma, mappel::ImageFormat2DBase::size, mappel::Gauss2DModel::x_model, and mappel::Gauss2DModel::y model.

Referenced by mappel::Gauss2DModel::debug_internal_sum_model_y(), mappel::Gauss2DModel::set_hyperparams(), and mappel::Gauss2DModel::set_prior().

8.12.5 Member Data Documentation

8.12.5.1 const double mappel::PointEmitterModel::bounds epsilon = 1.0E-6 [static],[inherited]

Distance from the boundary to constrain in bound_theta and bounded_theta methods

Definition at line 52 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::set_bounds(), mappel::PointEmitterModel::set_lbound(), mappel::Gauss2 DsModel::set_max_sigma_ratio(), and mappel::PointEmitterModel::set_ubound().

8.12.5.2 const double mappel::PointEmitterModel::default_alpha_sigma = 2 [static], [inherited]

Default per-pixel background gamma distribution shape

Definition at line 62 of file PointEmitterModel.h.

8.12.5.3 const double mappel::PointEmitterModel::default_beta_pos = 3 [static], [inherited]

Default position parameter in symmetric beta-distributions

Definition at line 56 of file PointEmitterModel.h.

8.12.5.4 const double mappel::PointEmitterModel::default intensity_kappa = 2 [static], [inherited]

Default shape for intensity gamma distributions

Definition at line 60 of file PointEmitterModel.h.

8.12.5.5 const double mappel::PointEmitterModel::default_max_I = INFINITY [static], [inherited]

Default maximum emitter intensity

Definition at line 59 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::make_prior_component_intensity().

8.12.5.6 const double mappel::PointEmitterModel::default_mean_I = 300 [static], [inherited]

Default emitter intensity mean

Definition at line 58 of file PointEmitterModel.h.

Referenced by mappel::MCMCAdaptor1D::set_intensity_mcmc_sampling().

8.12.5.7 const double mappel::PointEmitterModel::default_pixel_mean_bg = 4 [static], [inherited]

Default per-pixel mean background counts

Definition at line 61 of file PointEmitterModel.h.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DModel::make default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_beta_position(), mappel::Gauss1DModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss2DsModel::make_default_prior_normal_position(), and mappel::MCMCAdaptor1D $\column{c}\column{$

8.12.5.8 const double mappel::PointEmitterModel::default_sigma_pos = 1 [static], [inherited]

Default position parameter in symmetric beta-distributions

Definition at line 57 of file PointEmitterModel.h.

8.12.5.9 const std::string mappel::Gauss2DModel::DefaultPriorType = "Normal" [static], [inherited]

Definition at line 51 of file Gauss2DModel.h.

Referenced by mappel::Gauss2DModel::get_psf_sigma().

8.12.5.10 const std::string mappel::PointEmitterModel::DefaultSeperableInitEstimator = "TrustRegion" [static], [inherited]

Estimator name to use in 1D separable initializations

Definition at line 49 of file PointEmitterModel.h.

Referenced by mappel::Gauss2DModel::initial_theta_estimate(), mappel::Gauss2DsxyModel::initial_theta_estimate(), and mappel::Gauss2DsModel::initial_theta_estimate().

8.12.5.11 const std::vector < std::string > mappel::PoissonNoise2DObjective::estimator_names [static], [inherited]

Definition at line 23 of file PoissonNoise2DObjective.h.

8.12.5.12 double mappel::MCMCAdaptor1D::eta_bg = 0 [protected], [inherited]

The standard deviation for the normally distributed perturbation to theta_bg in the random walk MCMC sampling

Definition at line 32 of file MCMCAdaptor1D.h.

Referenced by mappel::MCMCAdaptor1D::get_stats(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MC—CMCAdaptor1D::operator=(), mappel::MCMCAdaptor2D::sample_mcmc_candidate(), mappel::MCMCAdaptor1Ds::sample_mcmc_candidate(), mappel::MCMCAdaptor1Dc-:sample_mcmc_candidate(), and mappel::MCMCAdaptor1D::set_background_mcmc_sampling().

```
8.12.5.13 double mappel::MCMCAdaptor1D::eta_l = 0 [protected], [inherited]
```

The standard deviation for the normally distributed perturbation to theta_I in the random walk MCMC sampling

Definition at line 31 of file MCMCAdaptor1D.h.

Referenced by mappel::MCMCAdaptor1D::get_stats(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCMCAdaptor1D(), mappel::MCMCAdaptor2Ds::sample_mcmc_candidate(), mappel::MCMCAdaptor2Ds::sample_mcmc_candidate(), mappel::MCMCAdaptor1Dc::sample_mcmc_candidate(), mappel::MCMCAdaptor1Dc::sample_mcmc_candidate(), and mappel::MCMCAdaptor1D::set_intensity_mcmc_sampling().

```
8.12.5.14 double mappel::MCMCAdaptor1D::eta_x =0 [protected], [inherited]
```

The standard deviation for the normally distributed perturbation to theta_x in the random walk MCMC sampling

Definition at line 30 of file MCMCAdaptor1D.h.

Referenced by mappel::MCMCAdaptor1D::get_stats(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCCAdaptor1D::perator=(), mappel::MCMCAdaptor1Ds::sample_mcmc_candidate(), mappel::MCMCAdaptor2D \leftarrow ::sample_mcmc_candidate(), mappel::MCMCAdaptor2Ds::sample_mcmc_candidate(), and mappel::MCMCAdaptor1 \leftarrow D::sample mcmc candidate().

8.12.5.15 double mappel::MCMCAdaptor2D::eta_y = 0 [protected], [inherited]

The standard deviation for the normally distributed perturbation to theta y in the random walk MCMC sampling

Definition at line 27 of file MCMCAdaptor2D.h.

Referenced by mappel::MCMCAdaptor2D::get_stats(), mappel::MCMCAdaptor2D::MCMCAdaptor2D(), mappel::MCCAdaptor2D::mcMCAdaptor2D::mcMcAdaptor2Dc::mcMcAdaptor2Dc::mcMcAdaptor2Dc::mcMcAdaptor2Dc::sample mcmc candidate().

8.12.5.16 const double mappel::MCMCAdaptorBase::global_default_mcmc_sigma_scale = 0.05 [static], [inherited]

Definition at line 16 of file MCMCAdaptorBase.h.

Referenced by mappel::MCMCAdaptor1Ds::MCMCAdaptor1Ds(), mappel::MCMCAdaptor2D::MCMCAdaptor2D(), and mappel::MCMCAdaptor2Ds::MCMCAdaptor2Ds().

8.12.5.17 const double mappel::MCMCAdaptorBase::global_max_mcmc_sigma_scale = 0.5 [static], [inherited]

Definition at line 17 of file MCMCAdaptorBase.h.

Referenced by mappel::MCMCAdaptorBase::MCMCAdaptorBase(), and mappel::MCMCAdaptorBase::set_mcmc_ sigma scale().

8.12.5.18 const double mappel::PointEmitterModel::global_max_psf_sigma = 1E2 [static], [inherited]

Global maxmimum for any psf_sigma. Sizes above this value are invalid, and nowhere near useful for practical point emitter localization

Definition at line 54 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::check_psf_sigma().

8.12.5.19 const ImageFormat2DBase::ImageCoordT mappel::ImageFormat2DBase::global_max_size =512 [static], [inherited]

Maximum size along any dimension of the image. This is insanely big to catch obvious errors

Definition at line 39 of file ImageFormat2DBase.h.

Referenced by mappel::ImageFormat2DBase::check_size().

8.12.5.20 const double mappel::PointEmitterModel::global_min_psf_sigma = 1E-1 [static], [inherited]

Global minimum for any psf_sigma. Sizes below this value are invalid, and nowhere near useful for practical point emitter localization

Definition at line 53 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::check_psf_sigma().

8.12.5.21 const ImageFormat2DBase::ImageCoordT mappel::ImageFormat2DBase::global_min_size =3 [static], [inherited]

Minimum size along any dimension of the image.

Definition at line 38 of file ImageFormat2DBase.h.

Referenced by mappel::ImageFormat2DBase::check_size().

8.12.5.22 ParamT mappel::PointEmitterModel::lbound [protected], [inherited]

Definition at line 148 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel ::PointEmitterModel::bounded_theta(), mappel ::PointEmitterModel::get_lbound(), mappel::PointEmitterModel::get_stats(), mappel::Gauss1DsModel::initial_theta = estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::PointEmitterModel::pointEmitterModel::reflected_theta(), mappel::PointEmitterModel = ::set_bounds(), mappel::PointEmitterModel::pointE

8.12.5.23 const std::string mappel::Gauss2DMAP::name [static]

Definition at line 37 of file Gauss2DMAP.h.

8.12.5.24 const ImageFormat2DBase::ImageCoordT mappel::ImageFormat2DBase::num_dim =2 [static], [inherited]

Number of image dimensions.

Definition at line 37 of file ImageFormat2DBase.h.

Referenced by mappel::ImageFormat2DBase::get_stats().

8.12.5.25 IdxT mappel::PointEmitterModel::num_hyperparams [protected], [inherited]

Definition at line 147 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::get_num_hyperparams(), mappel::PointEmitterModel::get_stats(), mappel::PointEmitterModel::operator=(), and mappel::PointEmitterModel::set_prior().

8.12.5.26 IdxT mappel::PointEmitterModel::num_params [protected], [inherited]

Definition at line 146 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel \leftarrow ::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::get_num_params(), mappel::PointEmitter \leftarrow Model::get_stats(), mappel::Gauss1DModel::initial_theta_estimate(), mappel::Gauss2DModel::initial_theta_estimate(), mappel::PointEmitterModel::make_param(), mappel::PointEmitterModel::make_param(), mappel::PointEmitterModel::make_param_mat_stack(), mappel::PointEmitterModel::make_param_stack(), mappel::PointEmitterModel::operator=(), mappel::PointEmitterModel::reflected_theta(), mappel::PointEmitterModel::set_bounds(), mappel::PointEmitterModel::set_bounds(), mappel::PointEmitterModel::set_bounds().

```
8.12.5.27 IdxT mappel::MCMCAdaptorBase::num_phases [protected], [inherited]
```

The number of different sampling phases for candidate selection MCMC. Each phase changes a different subset of variables.

Definition at line 29 of file MCMCAdaptorBase.h.

Referenced by mappel::MCMCAdaptorBase::get_mcmc_num_phases(), mappel::MCMCAdaptorBase::get_stats(), mappel::MCMCAdaptor1Ds::sample_mcmc_candidate(), mappel::MCMCAdaptor2Ds::sample_mcmc_candidate(), mappel::MCMCAdaptor1D::sample_mcmc_candidate(), and mappel::MCMCAdaptorBase::set_mcmc_num_phases().

```
8.12.5.28 CompositeDist mappel::PointEmitterModel::prior [protected], [inherited]
```

Definition at line 145 of file PointEmitterModel.h.

Referenced by mappel::Gauss2DModel::debug_internal_sum_model_y(), mappel::Gauss2DsModel::debug_internal \
_sum_model_y(), mappel::Gauss2DModel::Gauss2DModel(), mappel::Gauss2DsModel::Gauss2DsModel(), mappel \
::PointEmitterModel::get_hyperparam_index(), mappel::PointEmitterModel::get_hyperparam_names(), mappel::PointEmitterModel::get_hyperparam_names(), mappel::PointEmitterModel::get_param_names(), mappel::PointEmitterModel::get_param_names(), mappel::PointEmitterModel::get_param_names(), mappel::PointEmitterModel::get_param_names(), mappel::PointEmitterModel::pointEmitterModel::has_\(\to \) hyperparam(), mappel::PointEmitterModel::pointEmitterModel::pointEmitterModel::pointEmitterModel(), mappel::PointEmitterModel::set_bounds(), mappel::PointEmitterModel::set_hyperparam_names(), mappel::PointEmitterModel::set_hyperparam_\(\to \) value(), mappel::PointEmitterModel::set_hyperparam(), mappel::PointEmitterModel::set_lyperparam(), mappel::PointEmitterModel::set_hyperparam(), mappel::PointEmitterModel::set_hyperparam(), mappel::PointEmitterModel::set_param_\(\to \) namppel::PointEmitterModel::set_param_\(\to \) namppe

8.12.5.29 const StringVecT mappel::Gauss2DModel::prior_types [static], [inherited]

Initial value:

```
= { "Beta", "Normal" }
```

Definition at line 50 of file Gauss2DModel.h.

Referenced by mappel::Gauss2DModel::get_psf_sigma().

```
8.12.5.30 VecT mappel::Gauss2DModel::psf sigma [protected],[inherited]
```

Standard deviation of the fixed-sigma 1D Gaussian PSF in pixels

Definition at line 104 of file Gauss2DModel.h.

Referenced by mappel::cgauss_compute_estimate(), mappel::cgauss_compute_estimate_debug(), mappel::cgauss \leftarrow _heuristic_compute_estimate(), mappel::Gauss2DModel::Stencil::compute_derivatives(), mappel::Gauss2DModel \leftarrow ::debug_internal_sum_model_y(), mappel::Gauss2DModel::Gauss2DModel(), mappel::Gauss2DModel::get_psf_ \leftarrow sigma(), mappel::Gauss2DModel::make_internal_1Dsum_estimator(), mappel::Gauss2DModel::operator=(), mappel \leftarrow ::Gauss2DModel::pixel_grad2(), mappel::Gauss2DModel::pixel_hess(), mappel::Gauss2DModel::pixel_hess_update(), mappel::Gauss2DModel::set_psf_sigma(), mappel::Gauss2DModel::Stencil(), and mappel::Gauss2DModel \leftarrow ::update internal 1Dsum_estimators().

8.12.5.31 double mappel::MCMCAdaptorBase::sigma_scale [protected], [inherited]

A scaling factor for step sizes as a fraction of the size of the domain dimension we are walking in. (0.05 default)

Definition at line 30 of file MCMCAdaptorBase.h.

Referenced by mappel::MCMCAdaptorBase::get_mcmc_sigma_scale(), mappel::MCMCAdaptorBase::get_stats(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCMCAdaptor1Ds::MCMCAdaptor1Ds(), mappel::MCMCAdaptor1Ds::MCMCAdaptor1Ds::MCMCAdaptor1Dc::mcMcAdaptor1Dc:

8.12.5.32 ImageSizeT mappel::ImageFormat2DBase::size [protected], [inherited]

Number of pixels in X dimension for 1D image

Definition at line 67 of file ImageFormat2DBase.h.

Referenced by mappel::cgauss_compute_estimate(), mappel::cgauss_compute_estimate_debug(), mappel::cgauss ← _heuristic_compute_estimate(), mappel::ImageFormat2DBase::check_image_shape(), mappel::Gauss2DModel::← Stencil::compute_derivatives(), mappel::Gauss2DsModel::Stencil::compute_derivatives(), mappel::Gauss2DModel ← ::debug internal sum model y(), mappel::Gauss2DsModel::debug internal sum model y(), mappel::methods ← ::expected information(), mappel::Gauss2DModel::Gauss2DModel(), mappel::Gauss2DsMAP::Gauss2DsMA← P(), mappel::Gauss2DsMLE::Gauss2DsMLE(), mappel::Gauss2DsModel::Gauss2DsModel(), mappel::Image <--Format2DBase::get_num_pixels(), mappel::ImageFormat2DBase::get_size(), mappel::ImageFormat2DBase::get _stats(), mappel::methods::likelihood::grad(), mappel::methods::likelihood::grad2(), mappel::methods::likelihood⇔ ::debug::grad components(), mappel::methods::likelihood::hessian(), mappel::methods::likelihood::debug::hessian ← components(), mappel::Gauss2DModel::initial theta estimate(), mappel::Gauss2DsModel::initial theta estimate(), mappel::methods::likelihood::llh(), mappel::methods::likelihood::debug::llh components(), mappel::Gauss2DModel ← ::make default prior beta position(), mappel::Gauss2DsModel::make default prior beta position(), Gauss2DModel::make default prior normal position(), mappel::Gauss2DsModel::make default prior normal← mappel::ImageFormat2DBase::make image(), mappel::ImageFormat2DBase::make image stack(), position(), mappel::Gauss2DModel::make internal 1Dsum estimator(), mappel::Gauss2DsModel::make internal 1Dsum ← mappel::Gauss2DModel::make prior beta position(), mappel::Gauss2DsModel::make prior beta ← position(), mappel::Gauss2DModel::make_prior_normal_position(), mappel::Gauss2DsModel::make_prior_normal ← mappel::methods::model image(), mappel::ImageFormat2DBase::operator=(), mappel::methods ← mappel::methods::likelihood::debug::rllh_components(), mappel::ImageFormat2DBase::set ← ::likelihood::rllh(), size(), mappel::Gauss2DModel::set_size(), mappel::Gauss2DsModel::set_size(), mappel::methods::simulate_image(), mappel::methods::simulate image from model(), mappel::Gauss2DModel::Stencil(), mappel::Gauss2Ds ← Model::Stencil::Stencil(), mappel::Gauss2DModel::update internal 1Dsum estimators(), and mappel::Gauss2Ds ← Model::update internal 1Dsum estimators().

8.12.5.33 ParamT mappel::PointEmitterModel::ubound [protected],[inherited]

Definition at line 148 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel \leftarrow ::PointEmitterModel::get_stats(), mappel::PointEmitterModel::get_ubound(), mappel::Gauss1DsModel::initial_theta \leftarrow _estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::PointEmitterModel::get_ubound(), mappel::PointEmitterModel::get_ubound().

8.12.5.34 Gauss1DSumModelT mappel::Gauss2DModel::x_model [protected], [inherited]

X-model fits 2D images X-axis (column sum)

Definition at line 105 of file Gauss2DModel.h.

Referenced by mappel::Gauss2DModel::debug_internal_sum_model_x(), mappel::Gauss2DModel::initial_theta_ \leftarrow estimate(), mappel::Gauss2DModel::operator=(), mappel::Gauss2DModel::set_psf_sigma(), mappel::Gauss2DModel \leftarrow ::set_size(), and mappel::Gauss2DModel::update_internal_1Dsum_estimators().

8.12.5.35 Gauss1DSumModelT mappel::Gauss2DModel::y_model [protected], [inherited]

Y-model fits 2D images Y-axis (row sum)

Definition at line 106 of file Gauss2DModel.h.

The documentation for this class was generated from the following files:

- · Gauss2DMAP.h
- Gauss2DMAP.cpp

8.13 mappel::Gauss2DMLE Class Reference

A 2D Gaussian with fixed PSF under an Poisson noise assumption and maximum-likelihood objective.

#include </home/travis/build/markjolah/Mappel/include/Mappel/Gauss2DMLE.h>

Inheritance diagram for mappel::Gauss2DMLE:

Public Types

```
    using Gauss1DSumModelT = Gauss1DMAP

    using StencilVecT = std::vector < Stencil >

using ParamT = arma::vec
• using ParamVecT = arma::mat

    using ImageCoordT = uint32 t

    using ImagePixeIT = double

    template < class CoordT >

  using ImageSizeShapeT = arma::Col < CoordT >

    template<class CoordT >

  using ImageSizeVecShapeT = arma::Mat< CoordT >

    using ImageSizeT = ImageSizeShapeT < ImageCoordT >

    using ImageSizeVecT = ImageSizeVecShapeT < ImageCoordT >

    template < class PixeIT >

  using ImageShapeT = arma::Mat< PixeIT >

    template < class PixelT >

  using ImageStackShapeT = arma::Cube < PixeIT >

    using ImageT = ImageShapeT < ImagePixeIT >

    using ImageStackT = ImageStackShapeT < ImagePixeIT >
```

Public Member Functions

using ModelDataT = ImageT

using ModelDataStackT = ImageStackT

- Gauss2DMLE (ImageCoordT size, double psf_sigma, const std::string &prior_type=DefaultPriorType)
- Gauss2DMLE (const ImageSizeT &size, double psf sigma, const std::string &prior type=DefaultPriorType)
- Gauss2DMLE (const ImageSizeT &size, const VecT &psf sigma, const std::string &prior type=DefaultPriorType)
- Gauss2DMLE (const ImageSizeT &size, const VecT &psf sigma, CompositeDist &&prior)
- Gauss2DMLE (const ImageSizeT &size, const VecT &psf_sigma, const CompositeDist &prior)
- Gauss2DMLE (const Gauss2DMLE &o)
- Gauss2DMLE & operator= (const Gauss2DMLE &o)
- Gauss2DMLE (Gauss2DMLE &&o)
- Gauss2DMLE & operator= (Gauss2DMLE &&o)
- void set_hyperparams (const VecT &hyperparams)
- void set prior (CompositeDist &&prior)
- void set prior (const CompositeDist &prior)
- void set_size (const ImageSizeT &size_)
- const VecT & get_psf_sigma () const
- double get_psf_sigma (ldxT idx) const
- void set_psf_sigma (double new_psf_sigma)
- void set_psf_sigma (const VecT &new_psf_sigma)
- StatsT get_stats () const
- Stencil make stencil (const ParamT &theta, bool compute derivatives=true) const

Make a new Model::Stencil object at theta.

- double pixel_model_value (int i, int j, const Stencil &s) const
- void pixel_grad (int i, int j, const Stencil &s, ParamT &pgrad) const
- void pixel_grad2 (int i, int j, const Stencil &s, ParamT &pgrad2) const
- void pixel hess (int i, int j, const Stencil &s, MatT &hess) const

void pixel_hess_update (int i, int j, const Stencil &s, double dm_ratio_m1, double dmm_ratio, ParamT &grad, MatT &hess) const

pixel derivative inner loop calculations.

Stencil initial theta estimate (const ImageT &im)

Fast, heuristic estimate of initial theta.

- Stencil initial_theta_estimate (const ImageT &im, const ParamT &theta_init)
- Stencil initial theta estimate (const ImageT &im, const ParamT &theta init, const std::string &estimator)
- Gauss1DSumModelT debug_internal_sum_model_x () const
- Gauss1DSumModelT debug internal sum model y () const
- IdxT get_num_params () const
- void check_param_shape (const ParamT &theta) const
- void check_param_shape (const ParamVecT &theta) const
- void check_psf_sigma (double psf_sigma) const
- void check psf sigma (const VecT &psf sigma) const
- ParamT make param () const
- template<class FillT >

ParamT make param (FillT fill) const

- ParamVecT make_param_stack (ldxT n) const
- template<class FillT >

ParamVecT make_param_stack (ldxT n, FillT fill) const

- MatT make_param_mat () const
- template<class FillT >

MatT make param mat (FillT fill) const

- CubeT make_param_mat_stack (ldxT n) const
- template<class FillT >

CubeT make_param_mat_stack (ldxT n, FillT fill) const

- CompositeDist & get_prior ()
- · const CompositeDist & get_prior () const
- · IdxT get num hyperparams () const
- · VecT get hyperparams () const
- bool has hyperparam (const std::string &name) const
- double get hyperparam value (const std::string &name) const
- int get_hyperparam_index (const std::string &name) const
- void set_hyperparam_value (const std::string &name, double value)
- void rename hyperparam (const std::string &old name, const std::string &new name)
- StringVecT get_param_names () const
- void set_param_names (const StringVecT &desc)
- StringVecT get_hyperparam_names () const
- void set_hyperparam_names (const StringVecT &desc)
- template<class RngT >

ParamT sample_prior (RngT &rng)

- ParamT sample_prior ()
- void set_bounds (const ParamT &lbound, const ParamT &ubound)
- void set Ibound (const ParamT &lbound)
- void set ubound (const ParamT &ubound)
- · const ParamT & get_lbound () const
- const ParamT & get_ubound () const
- bool theta_in_bounds (const ParamT &theta) const
- void bound_theta (ParamT &theta, double epsilon=bounds_epsilon) const
- ParamT bounded theta (const ParamT &theta, double epsilon=bounds epsilon) const
- ParamT reflected theta (const ParamT &theta) const

- BoolVecT theta_stack_in_bounds (const ParamVecT &theta) const
- ParamVecT bounded theta stack (const ParamVecT &theta, double epsilon=bounds epsilon) const
- ParamVecT reflected theta stack (const ParamVecT &theta) const
- ImageT make_image () const
- ImageStackT make_image_stack (ImageCoordT n) const
- ImageCoordT get_size_image_stack (const ImageStackT &stack) const
- ImageT get_image_from_stack (const ImageStackT &stack, ImageCoordT n) const
- template < class ImT >

void set image in stack (ImageStackT &stack, ImageCoordT n, const ImT &im) const

- const ImageSizeT & get_size () const
- ImageCoordT get_size (IdxT idx) const
- ImageCoordT get_num_pixels () const
- void check_image_shape (const ImageT &im) const

Check the shape of a single images is correct for model size.

void check image shape (const ImageStackT &ims) const

Check the shape of a stack of images is correct for model size.

- void sample mcmc candidate (ldxT sample index, ParamT &candidate, double step scale=1.0)
- void set intensity mcmc sampling (double eta I=-1)
- void set_background_mcmc_sampling (double eta_bg=-1)
- void set mcmc sigma scale (double scale)
- · double get mcmc sigma scale () const
- IdxT get_mcmc_num_phases () const

Static Public Member Functions

- static CompositeDist make default prior (const ImageSizeT &size, const std::string &prior type)
- static CompositeDist make_default_prior_beta_position (const ImageSizeT &size)
- static CompositeDist make_default_prior_normal_position (const ImageSizeT &size)
- static CompositeDist make_prior_beta_position (const ImageSizeT &size, double beta_xpos, double beta_ypos, double mean I, double kappa I, double mean bg, double kappa bg)
- static CompositeDist make_prior_normal_position (const ImageSizeT &size, double sigma_xpos, double beta_
 —
 ypos, double mean_I, double kappa_I, double mean_bg, double kappa_bg)
- static prior_hessian::ScaledSymmetricBetaDist make_prior_component_position_beta (IdxT size, double pos_
 beta=default_beta_pos)
- static prior_hessian::TruncatedParetoDist make_prior_component_sigma (double min_sigma, double max_
 sigma, double alpha=default_alpha_sigma)
- static void set rng seed (RngSeedT seed)
- static ParallelRngManagerT & get_rng_manager ()
- static ParallelRngGeneratorT & get_rng_generator ()
- static void check_size (const ImageSizeT &size_)

Check the size argument for the model.

Static Public Attributes

- · static const std::string name
- static const StringVecT prior_types
- static const std::string DefaultPriorType = "Normal"
- static const std::string DefaultSeperableInitEstimator = "TrustRegion"
- static const double bounds epsilon = 1.0E-6
- static const double global min psf sigma = 1E-1
- static const double global_max_psf_sigma = 1E2
- static const double default_beta_pos = 3
- static const double default sigma pos = 1
- static const double default mean I = 300
- static const double default_max_I = INFINITY
- static const double default intensity kappa = 2
- static const double default_pixel_mean_bg = 4
- static const double default_alpha_sigma = 2
- static const ImageCoordT num dim =2
- static const ImageCoordT global_min_size =3
- static const ImageCoordT global_max_size =512
- static const double global default mcmc sigma scale = 0.05
- static const double global max mcmc sigma scale = 0.5
- static const std::vector< std::string > estimator_names

Protected Member Functions

- void update_internal_1Dsum_estimators ()
- void set mcmc num phases (ldxT num phases)

Static Protected Member Functions

static Gauss1DSumModelT make_internal_1Dsum_estimator (ldxT dim, const ImageSizeT &size, const VecT &psf_sigma, const CompositeDist &prior)

Protected Attributes

- · VecT psf sigma
- Gauss1DSumModelT x model
- Gauss1DSumModelT y_model
- · CompositeDist prior
- IdxT num_params
- · IdxT num hyperparams
- ParamT Ibound
- · ParamT ubound
- ImageSizeT size
- double eta_y =0
- double eta_x =0
- double eta I =0
- double eta_bg =0
- IdxT num phases
- · double sigma scale

```
8.13.1 Detailed Description
```

A 2D Gaussian with fixed PSF under an Poisson noise assumption and maximum-likelihood objective.

Model: Gauss2DModel - 2D Gaussian PSF with fixed PSF sigma Objective: PoissonNoise2DObjective - Poisson noise model for 2D Estimator: MLEstimator - Pure-likelihood estimator

Definition at line 24 of file Gauss2DMLE.h.

8.13.2 Member Typedef Documentation

8.13.2.1 using mappel::Gauss2DModel::Gauss1DSumModelT = Gauss1DMAP [inherited]

Definition at line 23 of file Gauss2DModel.h.

8.13.2.2 using mappel::ImageFormat2DBase::ImageCoordT = uint32_t [inherited]

Image size coordinate storage type

Definition at line 24 of file ImageFormat2DBase.h.

8.13.2.3 using mappel::ImageFormat2DBase::ImagePixelT = double [inherited]

Image pixel storage type

Definition at line 25 of file ImageFormat2DBase.h.

8.13.2.4 template < class PixelT > using mappel::ImageFormat2DBase::ImageShapeT = arma::Mat < PixelT > [inherited]

Shape of the data type for a single image

Definition at line 32 of file ImageFormat2DBase.h.

8.13.2.5 template < class CoordT > using mappel::ImageFormat2DBase::ImageSizeShapeT = arma::Col < CoordT > [inherited]

Shape of the data type to store a single image's coordinates

Definition at line 27 of file ImageFormat2DBase.h.

8.13.2.6 using mappel::ImageFormat2DBase::ImageSizeT = ImageSizeShapeT < ImageCoordT > [inherited]

Data type for a single image size

Definition at line 29 of file ImageFormat2DBase.h.

8.13.2.7 template < class CoordT > using mappel::ImageFormat2DBase::ImageSizeVecShapeT = arma::Mat < CoordT > [inherited]

Shape of the data type to store a vector of image's coordinates

Definition at line 28 of file ImageFormat2DBase.h.

8.13.2.8 using mappel::ImageFormat2DBase::ImageSizeVecT = ImageSizeVecShapeT < ImageCoordT > [inherited]

Data type for a sequence of image sizes

Definition at line 30 of file ImageFormat2DBase.h.

8.13.2.9 template < class PixelT > using mappel::ImageFormat2DBase::ImageStackShapeT = arma::Cube < PixelT > [inherited]

Shape of the data type for a sequence of images

Definition at line 33 of file ImageFormat2DBase.h.

8.13.2.10 using mappel::ImageFormat2DBase::ImageStackT = ImageStackShapeT<ImagePixeIT>
[inherited]

Data type to represent a sequence of images

Definition at line 35 of file ImageFormat2DBase.h.

8.13.2.11 using mappel::ImageFormat2DBase::ImageT = ImageShapeT < ImagePixeIT > [inherited]

Data type to represent single image

Definition at line 34 of file ImageFormat2DBase.h.

8.13.2.12 using mappel::PoissonNoise2DObjective::ModelDataStackT = ImageStackT [inherited]

Objective function data stack type: 2D double precision image stack, of images gain-corrected to approximate photons counts

Definition at line 25 of file PoissonNoise2DObjective.h.

8.13.2.13 using mappel::PoissonNoise2DObjective::ModelDataT = ImageT [inherited]

Objective function data type: 2D double precision image, gain-corrected to approximate photons counts

Definition at line 24 of file PoissonNoise2DObjective.h.

```
8.13.2.14 using mappel::PointEmitterModel::ParamT = arma::vec [inherited]
Parameter vector
Definition at line 47 of file PointEmitterModel.h.
8.13.2.15 using mappel::PointEmitterModel::ParamVecT = arma::mat [inherited]
Vector of parameter vectors
Definition at line 48 of file PointEmitterModel.h.
8.13.2.16 using mappel::Gauss2DModel::StencilVecT = std::vector<Stencil> [inherited]
Definition at line 47 of file Gauss2DModel.h.
8.13.3 Constructor & Destructor Documentation
8.13.3.1 mappel::Gauss2DMLE::Gauss2DMLE ( ImageCoordT size, double psf_sigma, const std::string & prior_type =
        DefaultPriorType )
Definition at line 11 of file Gauss2DMLE.cpp.
8.13.3.2 mappel::Gauss2DMLE::Gauss2DMLE ( const ImageSizeT & size, double psf_sigma, const std::string & prior_type =
        DefaultPriorType )
Definition at line 15 of file Gauss2DMLE.cpp.
8.13.3.3 mappel::Gauss2DMLE::Gauss2DMLE ( const ImageSizeT & size, const VecT & psf_sigma, const std::string &
        prior_type = DefaultPriorType )
Definition at line 19 of file Gauss2DMLE.cpp.
8.13.3.4 mappel::Gauss2DMLE::Gauss2DMLE ( const ImageSizeT & size, const VecT & psf_sigma, CompositeDist && prior )
Definition at line 23 of file Gauss2DMLE.cpp.
8.13.3.5 mappel::Gauss2DMLE::Gauss2DMLE ( const ImageSizeT & size, const VecT & psf_sigma, const CompositeDist & prior
        )
Definition at line 31 of file Gauss2DMLE.cpp.
8.13.3.6 mappel::Gauss2DMLE::Gauss2DMLE ( const Gauss2DMLE & o )
Definition at line 39 of file Gauss2DMLE.cpp.
```

8.13.3.7 mappel::Gauss2DMLE::Gauss2DMLE (Gauss2DMLE && o)

Definition at line 47 of file Gauss2DMLE.cpp.

8.13.4 Member Function Documentation

8.13.4.1 void mappel::PointEmitterModel::bound_theta (ParamT & theta, double epsilon = bounds_epsilon) const [inherited]

Definition at line 248 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::ubound.

8.13.4.2 PointEmitterModel::ParamT mappel::PointEmitterModel::bounded_theta (const ParamT & theta, double epsilon = bounds_epsilon) const [inherited]

Definition at line 265 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::Point← EmitterModel::num params, and mappel::PointEmitterModel::ubound.

Referenced by mappel::PointEmitterModel::bounded_theta_stack().

8.13.4.3 PointEmitterModel::ParamVecT mappel::PointEmitterModel::bounded_theta_stack(const ParamVecT & theta, double epsilon = bounds_epsilon) const [inherited]

Definition at line 307 of file PointEmitterModel.cpp.

 $References \quad mappel:: PointEmitterModel:: bounded_theta(), \quad mappel:: PointEmitterModel:: check_param_shape(), \quad and \\ mappel:: PointEmitterModel:: make_param_stack().$

8.13.4.4 void mappel::ImageFormat2DBase::check_image_shape(const ImageT & im) const [inherited]

Check the shape of a single images is correct for model size.

Definition at line 80 of file ImageFormat2DBase.cpp.

References mappel::ImageFormat2DBase::size.

8.13.4.5 void mappel::ImageFormat2DBase::check_image_shape (const ImageStackT & ims) const [inherited]

Check the shape of a stack of images is correct for model size.

Definition at line 93 of file ImageFormat2DBase.cpp.

References mappel::ImageFormat2DBase::size.

8.13.4.6 void mappel::PointEmitterModel::check_param_shape (const ParamT & theta) const [inherited]

Definition at line 167 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::num params.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::reflected_theta(), mappel::PointEmitterModel::reflected_theta(), mappel::PointEmitterModel::theta_in_bounds(), and mappel::PointEmitterModel \leftarrow ::theta stack in bounds().

8.13.4.7 void mappel::PointEmitterModel::check_param_shape (const ParamVecT & theta) const [inherited]

Definition at line 176 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::num params.

8.13.4.8 void mappel::PointEmitterModel::check_psf_sigma (double psf_sigma) const [inherited]

Definition at line 185 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::global_max_psf_sigma, and mappel::PointEmitterModel::global_min_psf_ \hookleftarrow sigma.

Referenced by mappel::Gauss1DModel(), mappel::Gauss2DModel::Gauss2DModel(), mappel:: \leftarrow Gauss2DsModel::Gauss2DsModel(), mappel::Gauss1DsModel::set_max_sigma(), mappel::Gauss2DsModel::set_ \leftarrow max_sigma(), mappel::Gauss1DsModel::set_min_sigma(), mappel:: \leftarrow Gauss1DModel::set_psf sigma(), and mappel::Gauss2DModel::set_psf sigma().

8.13.4.9 void mappel::PointEmitterModel::check_psf_sigma (const VecT & psf_sigma) const [inherited]

Definition at line 197 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::global_max_psf_sigma, and mappel::PointEmitterModel::global_min_psf_ sigma.

8.13.4.10 void mappel::ImageFormat2DBase::check_size(const ImageSizeT & size_) [static], [inherited]

Check the size argument for the model.

Definition at line 60 of file ImageFormat2DBase.cpp.

References mappel::ImageFormat2DBase::global_max_size, and mappel::ImageFormat2DBase::global_min_size.

Referenced by mappel::ImageFormat2DBase::ImageFormat2DBase(), and mappel::ImageFormat2DBase::set_size().

8.13.4.11 Gauss1DSumModelT mappel::Gauss2DModel::debug_internal_sum_model_x () const [inline], [inherited]

Definition at line 89 of file Gauss2DModel.h.

References mappel::Gauss2DModel::x model.

8.13.4.12 Gauss1DSumModelT mappel::Gauss2DModel::debug_internal_sum_model_y() const [inline], [inherited]

Definition at line 90 of file Gauss2DModel.h.

References mappel::Gauss2DModel::Gauss2DModel::Gauss2DModel::make_internal_1Dsum_estimator(), mappel::Gauss2DModel::operator=(), mappel::PointEmitterModel::prior, mappel::Gauss2DModel::psf_sigma, mappel ::ImageFormat2DBase::size, mappel::Gauss2DModel::update_internal_1Dsum_estimators(), and mappel::Gauss2D \leftarrow Model::y model.

8.13.4.13 int mappel::PointEmitterModel::get_hyperparam_index (const std::string & name) const [inline], [inherited]

Definition at line 236 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.13.4.14 StringVecT mappel::PointEmitterModel::get_hyperparam_names() const [inline], [inherited]

Definition at line 256 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.13.4.15 double mappel::PointEmitterModel::get_hyperparam_value (const std::string & name) const [inline], [inherited]

Definition at line 232 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

Referenced by mappel::MCMCAdaptor1D::set_background_mcmc_sampling(), and mappel::MCMCAdaptor1D::set_ \leftarrow intensity_mcmc_sampling().

8.13.4.16 PointEmitterModel::ParamT mappel::PointEmitterModel::get_hyperparams () const [inline], [inherited]

Definition at line 224 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.13.4.17 ImageFormat2DBase::ImageT mappel::ImageFormat2DBase::get_image_from_stack (const ImageStackT & stack, ImageCoordT n) const [inline], [inherited]

Definition at line 106 of file ImageFormat2DBase.h.

8.13.4.18 const PointEmitterModel::ParamT & mappel::PointEmitterModel::get_lbound() const [inline], [inherited]

Definition at line 212 of file PointEmitterModel.h.

References mappel::PointEmitterModel::lbound.

Referenced by mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCMCAdaptor2D::MCMCAdaptor2D(), and mappel::MCMCAdaptor1D::set background mcmc sampling().

8.13.4.19 IdxT mappel::MCMCAdaptorBase::get_mcmc_num_phases()const [inherited] Definition at line 56 of file MCMCAdaptorBase.cpp. References mappel::MCMCAdaptorBase::num phases. 8.13.4.20 double mappel::MCMCAdaptorBase::get_mcmc_sigma_scale() const [inherited] Definition at line 53 of file MCMCAdaptorBase.cpp. References mappel::MCMCAdaptorBase::sigma_scale. 8.13.4.21 IdxT mappel::PointEmitterModel::get_num_hyperparams()const [inline],[inherited] Definition at line 208 of file PointEmitterModel.h. References mappel::PointEmitterModel::num hyperparams. 8.13.4.22 IdxT mappel::PointEmitterModel::get_num_params()const [inline], [inherited] Definition at line 160 of file PointEmitterModel.h. References mappel::PointEmitterModel::num_params. 8.13.4.23 ImageFormat2DBase::ImageCoordT mappel::ImageFormat2DBase::get_num_pixels()const [inline], [inherited] Definition at line 79 of file ImageFormat2DBase.h. References mappel::ImageFormat2DBase::size. Referenced by mappel::ImageFormat2DBase::get_stats(). 8.13.4.24 StringVecT mappel::PointEmitterModel::get param_names() const [inline], [inherited] Definition at line 248 of file PointEmitterModel.h. References mappel::PointEmitterModel::prior. 8.13.4.25 CompositeDist & mappel::PointEmitterModel::get_prior() [inline], [inherited] Definition at line 200 of file PointEmitterModel.h.

Referenced by mappel::Gauss2DModel::update internal 1Dsum estimators(), and mappel::Gauss2DsModel ←

References mappel::PointEmitterModel::prior.

::update internal 1Dsum estimators().

8.13.4.26 const CompositeDist & mappel::PointEmitterModel::get_prior() const [inline], [inherited] Definition at line 204 of file PointEmitterModel.h. References mappel::PointEmitterModel::prior. 8.13.4.27 const VecT & mappel::Gauss2DModel::get_psf_sigma() const [inline], [inherited] Definition at line 142 of file Gauss2DModel.h. References mappel::Gauss2DModel::psf_sigma. Referenced by mappel::Gauss2DModel::get_stats(). 8.13.4.28 double mappel::Gauss2DModel::get_psf_sigma (ldxT idx) const [inherited] Definition at line 132 of file Gauss2DModel.cpp. References mappel::Gauss2DModel::DefaultPriorType, mappel::Gauss2DModel::prior_types, and mappel::Gauss2D← Model::psf_sigma. **8.13.4.29 ParallelRngGeneratorT & mappel::PointEmitterModel::get_rng_generator()** [static], [inherited] Definition at line 120 of file PointEmitterModel.cpp. References mappel::rng manager. 8.13.4.30 ParallelRngManagerT & mappel::PointEmitterModel::get_rng_manager() [static], [inherited] Definition at line 115 of file PointEmitterModel.cpp. References mappel::rng manager. 8.13.4.31 const ImageFormat2DBase::ImageSizeT & mappel::ImageFormat2DBase::get_size() const [inline], [inherited] Definition at line 74 of file ImageFormat2DBase.h. References mappel::ImageFormat2DBase::size. 8.13.4.32 ImageFormat2DBase::ImageCoordT mappel::ImageFormat2DBase::get_size (IdxT idx) const

Definition at line 41 of file ImageFormat2DBase.cpp.

References mappel::ImageFormat2DBase::size.

[inherited]

8.13.4.33 ImageFormat2DBase::ImageCoordT mappel::ImageFormat2DBase::get_size_image_stack(const ImageStackT & stack) const [inline], [inherited]

Definition at line 99 of file ImageFormat2DBase.h.

8.13.4.34 StatsT mappel::Gauss2DModel::get_stats() const [inherited]

Definition at line 268 of file Gauss2DModel.cpp.

References mappel::Gauss2DModel::get_psf_sigma(), mappel::MCMCAdaptor2D::get_stats(), mappel::Image Format2DBase::get_stats(), and mappel::PointEmitterModel::get_stats().

8.13.4.35 const PointEmitterModel::ParamT & mappel::PointEmitterModel::get_ubound() const [inline], [inherited]

Definition at line 216 of file PointEmitterModel.h.

References mappel::PointEmitterModel::ubound.

Referenced by mappel::Gauss2DsxyModel::get_max_sigma_ratio(), mappel::Gauss2DsModel::get_max_sigma_ratio(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCMCAdaptor2D(), mappel::MCMCAdaptor2D(), mappel::MCMCAdaptor1D::set_background_mcmc_sampling(), and mappel::Gauss2DsModel::set_max_sigma_ratio().

8.13.4.36 bool mappel::PointEmitterModel::has_hyperparam(const std::string & name) const [inline], [inherited]

Definition at line 228 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.13.4.37 Gauss2DModel::Stencil mappel::Gauss2DModel::initial_theta_estimate (const ImageT & im) [inline], [inherited]

Fast, heuristic estimate of initial theta.

Definition at line 194 of file Gauss2DModel.h.

References mappel::PointEmitterModel::DefaultSeperableInitEstimator, and mappel::PointEmitterModel::make $_\leftarrow$ param().

Referenced by mappel::Gauss2DModel::initial_theta_estimate().

8.13.4.38 Gauss2DModel::Stencil mappel::Gauss2DModel::initial_theta_estimate (const ImageT & im, const ParamT & theta_init) [inline], [inherited]

Definition at line 201 of file Gauss2DModel.h.

References mappel::PointEmitterModel::DefaultSeperableInitEstimator, and mappel::Gauss2DModel::initial_theta_ \leftarrow estimate().

8.13.4.39 Gauss2DModel::Stencil mappel::Gauss2DModel::initial_theta_estimate (const ImageT & im, const ParamT & theta init, const std::string & estimator) [inherited]

Definition at line 303 of file Gauss2DModel.cpp.

References mappel::Gauss2DModel::Stencil::bg(), mappel::methods::estimate_max(), mappel::Gauss2DModel:: \leftarrow Stencil::I(), mappel::PointEmitterModel::Ibound, mappel::Gauss2DModel::make_stencil(), mappel::PointEmitterModel \leftarrow ::num_params, mappel::ImageFormat2DBase::size, mappel::PointEmitterModel::theta_in_bounds(), mappel::Point \leftarrow EmitterModel::ubound, mappel::Gauss2DModel::x_model, and mappel::Gauss2DModel::y_model.

8.13.4.40 CompositeDist mappel::Gauss2DModel::make_default_prior(const ImageSizeT & size, const std::string & prior_type) [static], [inherited]

Definition at line 150 of file Gauss2DModel.cpp.

References mappel::istarts_with(), mappel::Gauss2DModel::make_default_prior_beta_position(), and mappel:: \leftarrow Gauss2DModel::make_default_prior_normal_position().

8.13.4.41 CompositeDist mappel::Gauss2DModel::make_default_prior_beta_position(const ImageSizeT & size) [static], [inherited]

Definition at line 171 of file Gauss2DModel.cpp.

References mappel::PointEmitterModel::default_pixel_mean_bg, mappel::PointEmitterModel::make_prior_component __ intensity(), mappel::PointEmitterModel::make_prior_component_position_beta(), and mappel::ImageFormat2DBase \leftarrow ::size.

Referenced by mappel::Gauss2DModel::make_default_prior().

8.13.4.42 CompositeDist mappel::Gauss2DModel::make_default_prior_normal_position (const ImageSizeT & size) [static], [inherited]

Definition at line 182 of file Gauss2DModel.cpp.

References mappel::PointEmitterModel::default_pixel_mean_bg, mappel::PointEmitterModel::make_prior_component __intensity(), mappel::PointEmitterModel::make_prior_component_position_normal(), and mappel::ImageFormat2D Base::size.

Referenced by mappel::Gauss2DModel::make_default_prior().

8.13.4.43 ImageFormat2DBase::ImageT mappel::ImageFormat2DBase::make_image() const [inline], [inherited]

Definition at line 85 of file ImageFormat2DBase.h.

References mappel::ImageFormat2DBase::size.

8.13.4.44 ImageFormat2DBase::ImageStackT mappel::ImageFormat2DBase::make_image_stack(ImageCoordT n) const [inline], [inherited]

Definition at line 92 of file ImageFormat2DBase.h.

References mappel::ImageFormat2DBase::size.

8.13.4.45 Gauss2DModel::Gauss1DSumModelT mappel::Gauss2DModel::make_internal_1Dsum_estimator(ldxT dim, const ImageSizeT & size, const VecT & psf_sigma, const CompositeDist & prior) [static], [protected], [inherited]

Definition at line 62 of file Gauss2DModel.cpp.

References mappel::Gauss1DModel::make_prior_beta_position(), mappel::Gauss1DModel::make_prior_normal_ position(), mappel::Gauss2DModel::psf_sigma, and mappel::ImageFormat2DBase::size.

Referenced by mappel::Gauss2DModel::debug_internal_sum_model_y(), mappel::Gauss2DModel::Gauss2DModel(), and mappel::Gauss2DModel::update internal 1Dsum estimators().

8.13.4.46 PointEmitterModel::ParamT mappel::PointEmitterModel::make_param()const [inline], [inherited]

Definition at line 164 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

Referenced by mappel::Gauss1DModel::initial_theta_estimate(), mappel::Gauss1DsModel::initial_theta_estimate(), mappel::Gauss2DModel::initial_theta_estimate(), mappel::Gauss2DsxyModel::initial_theta_estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::Gauss1DModel::pixel_hess_update(), mappel::Gauss1DsModel::pixel_hess_update(), mappel::Gauss2DsModel::pixel_hess_update(), and mappel::Gauss2DsModel::pixel_hess_update().

8.13.4.47 template < class FillT > PointEmitterModel::ParamT mappel::PointEmitterModel::make_param (FillT fill) const [inherited]

Definition at line 181 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

8.13.4.48 MatT mappel::PointEmitterModel::make_param_mat() const [inline], [inherited]

Definition at line 172 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

8.13.4.49 template < class FillT > MatT mappel::PointEmitterModel::make_param_mat(FillT fill) const [inherited]

Definition at line 191 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

8.13.4.50 CubeT mappel::PointEmitterModel::make param mat stack(ldxT n) const [inline], [inherited]

Definition at line 176 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

8.13.4.51 template < class FillT > CubeT mappel::PointEmitterModel::make_param_mat_stack (ldxT n, FillT fill) const [inherited]

Definition at line 196 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

8.13.4.52 PointEmitterModel::ParamVecT mappel::PointEmitterModel::make_param_stack(ldxT n) const [inline], [inherited]

Definition at line 168 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

Referenced by mappel::PointEmitterModel::bounded_theta_stack(), and mappel::PointEmitterModel::reflected_theta _ _ stack().

8.13.4.53 template < class FillT > PointEmitterModel::ParamVecT mappel::PointEmitterModel::make_param_stack (ldxT n, FillT fill) const [inherited]

Definition at line 186 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

8.13.4.54 CompositeDist mappel::Gauss2DModel::make_prior_beta_position (const ImageSizeT & size, double beta_xpos, double beta_ypos, double mean_l, double kappa_l, double mean_bg, double kappa_bg) [static], [inherited]

Definition at line 193 of file Gauss2DModel.cpp.

References mappel::PointEmitterModel::make_prior_component_intensity(), mappel::PointEmitterModel::make_prior ← _component_position_beta(), and mappel::ImageFormat2DBase::size.

8.13.4.55 prior_hessian::TruncatedGammaDist mappel::PointEmitterModel::make_prior_component_intensity (double mean = default mean I, double kappa = default intensity kappa) [static], [inherited]

Definition at line 98 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::default max I.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_beta_position(), mappel::Gauss2Ds \leftarrow default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss1DsModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_normal_costion(), mappel::Gauss2DModel::make_prior_costion(), mappel::Gauss2DModel::make_prior_costion(), mappel::Gauss1DsModel::make_prior_beta_position(), mappel::Gauss1DModel::make_prior_beta_position(), mappel::Gauss2DModel::make_prior_normal_costion(), mappel::Gauss1DsModel::make_prior_normal_costion(), mappel::Gauss1DsModel::make_prior_normal_costion(), mappel::Gauss1DsModel::make_prior_normal_costion(), mappel::Gauss1DsModel::make_prior_normal_costion(), and mappel::Gauss2DsModel::make_prior_normal_position().

8.13.4.56 prior_hessian::ScaledSymmetricBetaDist mappel::PointEmitterModel::make_prior_component_position_beta (IdxT size, double pos beta = default beta pos) [static],[inherited]

Definition at line 92 of file PointEmitterModel.cpp.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_beta_position(), mappel::Gauss1DModel::make_default_prior_beta_position(), mappel::Gauss2Ds beta_position(), mappel::Gauss1DsModel::make_prior_beta_position(), mappel::Gauss2Ds beta_position(), mappel::Gauss1DModel::make_prior_beta_position(), and mappel::Gauss2Ds beta_position().

8.13.4.57 prior_hessian::TruncatedNormalDist mappel::PointEmitterModel::make_prior_component_position_normal (ldxT size, double pos_sigma = default_sigma_pos) [static], [inherited]

Definition at line 85 of file PointEmitterModel.cpp.

Referenced by mappel::Gauss1DsModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_ \leftarrow default_prior_normal_position(), mappel::Gauss1DModel::make_default_prior_normal_position(), mappel::Gauss2 \leftarrow DsModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_prior_normal_position(), mappel::Gauss1DsModel::make_prior_normal_position(), and mappel::Gauss2DsModel::make_prior_normal_position().

8.13.4.58 prior_hessian::TruncatedParetoDist mappel::PointEmitterModel::make_prior_component_sigma (double min_sigma, double max_sigma, double alpha = default_alpha_sigma) [static], [inherited]

Definition at line 104 of file PointEmitterModel.cpp.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DsModel::make_default_prior_normal_position(), mappel::Gauss2DsModel::make_default_prior_normal_position(), mappel::Gauss1DsModel::make_prior_beta_position(), mappel::Gauss1DsModel::make_prior_beta_position(), mappel::Gauss2DsModel::make_prior_beta_position(), and mappel::Gauss2DsModel::make_prior_normal_position().

8.13.4.59 CompositeDist mappel::Gauss2DModel::make_prior_normal_position(const ImageSizeT & size, double sigma_xpos, double beta_ypos, double mean_l, double kappa_l, double mean_bg, double kappa_bg) [static], [inherited]

Definition at line 206 of file Gauss2DModel.cpp.

References mappel::PointEmitterModel::make_prior_component_intensity(), mappel::PointEmitterModel::make_prior component_position_normal(), and mappel::ImageFormat2DBase::size.

8.13.4.60 Gauss2DModel::Stencil mappel::Gauss2DModel::make_stencil (const ParamT & theta, bool compute_derivatives = true) const [inline], [inherited]

Make a new Model::Stencil object at theta.

Stencils store all of the important calculations necessary for evaluating the log-likelihood and its derivatives at a particular theta (parameter) value.

This allows re-use of the most expensive computations. Stencils can be easily passed around by reference, and most functions in the mappel::methods namespace accept a const Stencil reference in place of the model parameter.

Throws mappel::ModelBoundsError if not model.theta in bounds(theta).

If derivatives will not be computed with this stencil set compute derivatives=false

Parameters

theta	Prameter to evaluate at
compute_derivatives	True to also prepare for derivative computations

Returns

A new Stencil object ready to compute with

Definition at line 131 of file Gauss2DModel.h.

References mappel::Gauss2DModel::Stencil::Stencil(), and mappel::PointEmitterModel::theta_in_bounds().

Referenced by mappel::Gauss2DModel::initial_theta_estimate().

8.13.4.61 Gauss2DMLE & mappel::Gauss2DMLE::operator= (const Gauss2DMLE & o)

Definition at line 55 of file Gauss2DMLE.cpp.

References mappel::MLEstimator::operator=(), mappel::PoissonNoise2DObjective::operator=(), mappel::Image Format2DBase::operator=(), mappel::Gauss2DModel::operator=(), and mappel::PointEmitterModel::operator=().

8.13.4.62 Gauss2DMLE & mappel::Gauss2DMLE::operator= (Gauss2DMLE && o)

Definition at line 66 of file Gauss2DMLE.cpp.

References mappel::MLEstimator::operator=(), mappel::PoissonNoise2DObjective::operator=(), mappel::Image Format2DBase::operator=(), mappel::Gauss2DModel::operator=(), and mappel::PointEmitterModel::operator=().

8.13.4.63 void mappel::Gauss2DModel::pixel_grad (int i, int j, const Stencil & s, ParamT & pgrad) const [inline], [inherited]

Definition at line 159 of file Gauss2DModel.h.

References mappel::Gauss2DModel::Stencil::DX, mappel::Gauss2DModel::Stencil::DY, mappel::Gauss2DModel::Causs2DModel::Gauss2DModel::Gauss2DModel::Gauss2DModel::Stencil::Y.

Referenced by mappel::Gauss2DModel::pixel_hess_update().

8.13.4.64 void mappel::Gauss2DModel::pixel_grad2 (int *i*, int *j*, const Stencil & s, ParamT & pgrad2) const [inline], [inherited]

Definition at line 170 of file Gauss2DModel.h.

References mappel::Gauss2DModel::Stencil::DXS, mappel::Gauss2DModel::Stencil::DYS, mappel::Gauss2DModel::

Stencil::I(), mappel::Gauss2DModel::psf_sigma, mappel::Gauss2DModel::Stencil::X, and mappel::Gauss2DModel::

Stencil::Y.

8.13.4.65 void mappel::Gauss2DModel::pixel_hess (int i, int j, const Stencil & s, MatT & hess) const [inline], [inherited]

Definition at line 181 of file Gauss2DModel.h.

References mappel::Gauss2DModel::Stencil::DX, mappel::Gauss2DModel::Stencil::DXS, mappel::Gauss2DModel::Stencil::DYS, mappel::Gauss2DModel::Stencil::DYS, mappel::Gauss2DModel::Stencil::I(), mappel::Gauss2DModel::Stencil::X, and mappel::Gauss2DModel::Stencil::Y.

8.13.4.66 void mappel::Gauss2DModel::pixel_hess_update (int *i*, int *j*, const Stencil & *s*, double *dm_ratio_m1*, double *dmm_ratio*, ParamT & *grad*, MatT & *hess*) const [inherited]

pixel derivative inner loop calculations.

Definition at line 282 of file Gauss2DModel.cpp.

References mappel::Gauss2DModel::Stencil::DX, mappel::Gauss2DModel::Edauss2DModel::Causs2DModel::Causs2DModel::Causs2DModel::Gau

8.13.4.67 double mappel::Gauss2DModel::pixel_model_value (int *i*, int *j*, const Stencil & *s*) const [inline], [inherited]

Definition at line 152 of file Gauss2DModel.h.

References mappel::Gauss2DModel::Stencil::bg(), mappel::Gauss2DModel::Stencil::I(), mappel::Gauss2DModel::

Stencil::X, and mappel::Gauss2DModel::Stencil::Y.

8.13.4.68 PointEmitterModel::ParamT mappel::PointEmitterModel::reflected_theta (const ParamT & theta) const [inherited]

Definition at line 276 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::Point← EmitterModel::num params, and mappel::PointEmitterModel::ubound.

Referenced by mappel::PointEmitterModel::reflected theta stack().

8.13.4.69 PointEmitterModel::ParamVecT mappel::PointEmitterModel::reflected_theta_stack (const ParamVecT & theta) const [inherited]

Definition at line 317 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::make_param_stack(), and mappel::PointEmitterModel::reflected_theta().

8.13.4.70 void mappel::PointEmitterModel::rename_hyperparam (const std::string & old_name, const std::string & new_name)
[inline], [inherited]

Definition at line 244 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.13.4.71 void mappel::MCMCAdaptor2D::sample_mcmc_candidate (ldxT sample_index, ParamT & candidate, double step_scale = 1.0) [inherited]

Definition at line 59 of file MCMCAdaptor2D.cpp.

References mappel::MCMCAdaptor1D::eta_bg, mappel::MCMCAdaptor1D::eta_L, mappel::MCMCAdaptor1D::eta_c x, mappel::MCMCAdaptor2D::eta y, mappel::MCMCAdaptorBase::num phases, and mappel::rng manager.

8.13.4.72 template < class RngT > PointEmitterModel::ParamT mappel::PointEmitterModel::sample_prior (RngT & rng) [inherited]

Definition at line 264 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.13.4.73 PointEmitterModel::ParamT mappel::PointEmitterModel::sample_prior() [inline], [inherited]

Definition at line 268 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior, and mappel::rng_manager.

8.13.4.74 void mappel::MCMCAdaptor1D::set_background_mcmc_sampling (double eta_bg = -1) [inherited]

Definition at line 81 of file MCMCAdaptor1 D.cpp.

References mappel::PointEmitterModel::default_pixel_mean_bg, mappel::MCMCAdaptor1D::eta_bg, mappel::Pointc— EmitterModel::get_hyperparam_value(), mappel::PointEmitterModel::get_lbound(), mappel::PointEmitterModel::get_cubound(), and mappel::MCMCAdaptorBase::sigma_scale.

Referenced by mappel::MCMCAdaptor1D::MCMCAdaptor1D().

8.13.4.75 void mappel::PointEmitterModel::set_bounds (const ParamT & *lbound_*, const ParamT & *ubound_*)

[inherited]

Box-type parameter bounds

Modifies the prior bounds to prevent sampling outside the valid box-constraints.

Definition at line 213 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounds_epsilon, mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::pointEmitterModel::ubound, mappel::PointEmitterModel::ubound.

8.13.4.76 void mappel::PointEmitterModel::set_hyperparam_names (const StringVecT & *desc* **)** [inline], [inherited]

Definition at line 260 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.13.4.77 void mappel::PointEmitterModel::set_hyperparam_value (const std::string & name, double value) [inline], [inherited]

Definition at line 240 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.13.4.78 void mappel::Gauss2DModel::set hyperparams (const VecT & hyperparams) [inherited]

Definition at line 109 of file Gauss2DModel.cpp.

References mappel::PointEmitterModel::set_hyperparams(), and mappel::Gauss2DModel::update_internal_1Dsum_ estimators().

8.13.4.79 template < class ImT > void mappel::ImageFormat2DBase::set_image_in_stack (ImageStackT & stack, ImageCoordT n, const ImT & im) const [inherited]

Definition at line 113 of file ImageFormat2DBase.h.

8.13.4.80 void mappel::MCMCAdaptor1D::set intensity mcmc sampling (double eta I = -1) [inherited]

Definition at line 65 of file MCMCAdaptor1D.cpp.

References mappel::PointEmitterModel::default_mean_I, mappel::MCMCAdaptor1D::eta_I, mappel::PointEmitter (
Model::get hyperparam value(), and mappel::MCMCAdaptorBase::sigma scale.

Referenced by mappel::MCMCAdaptor1D::MCMCAdaptor1D().

8.13.4.81 void mappel::PointEmitterModel::set lbound (const ParamT & lbound) [inherited]

Definition at line 226 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounds_epsilon, mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::pointEmitterModel::ubound, mappel::PointEmitterModel::pointEmitterModel::ubound.

Referenced by mappel::Gauss1DsModel::set_min_sigma().

8.13.4.82 void mappel::MCMCAdaptorBase::set_mcmc_num_phases(| IdxT num_phases) [protected], [inherited]

Definition at line 59 of file MCMCAdaptorBase.cpp.

References mappel::MCMCAdaptorBase::num_phases.

Referenced by mappel::MCMCAdaptor1Ds::MCMCAdaptor1Ds(), and mappel::MCMCAdaptor2Ds::MCMCAdaptor2CDs().

8.13.4.83 void mappel::MCMCAdaptorBase::set mcmc sigma scale (double scale) [inherited]

Definition at line 39 of file MCMCAdaptorBase.cpp.

References mappel::MCMCAdaptorBase::global_max_mcmc_sigma_scale, and mappel::MCMCAdaptorBase::sigma
scale.

8.13.4.84 void mappel::PointEmitterModel::set_param_names (const StringVecT & desc) [inline], [inherited]

Definition at line 252 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.13.4.85 void mappel::Gauss2DModel::set_prior(CompositeDist && prior_) [inherited]

Definition at line 97 of file Gauss2DModel.cpp.

References mappel::PointEmitterModel::set_prior(), and mappel::Gauss2DModel::update_internal_1Dsum_ estimators().

8.13.4.86 void mappel::Gauss2DModel::set_prior(const CompositeDist & prior_) [inherited]

Definition at line 103 of file Gauss2DModel.cpp.

References mappel::PointEmitterModel::set_prior(), and mappel::Gauss2DModel::update_internal_1Dsum_ \leftarrow estimators().

8.13.4.87 void mappel::Gauss2DModel::set_psf_sigma (double new_psf_sigma) [inline], [inherited]

Definition at line 146 of file Gauss2DModel.h.

8.13.4.88 void mappel::Gauss2DModel::set_psf_sigma (const VecT & new_psf_sigma) [inherited]

Definition at line 123 of file Gauss2DModel.cpp.

References mappel::PointEmitterModel::check_psf_sigma(), mappel::Gauss2DModel::psf_sigma, mappel::Gauss1D \leftarrow Model::set_psf_sigma(), mappel::Gauss2DModel::y_model.

8.13.4.89 void mappel::PointEmitterModel::set_rng_seed(RngSeedT seed) [static], [inherited]

Definition at line 110 of file PointEmitterModel.cpp.

References mappel::rng manager.

8.13.4.90 void mappel::Gauss2DModel::set_size(const ImageSizeT & size_) [inherited]

Definition at line 115 of file Gauss2DModel.cpp.

References mappel::ImageFormat2DBase::set_size(), mappel::ImageFormat1DBase::set_size(), mappel::ImageFormat2DBase::set_size(), mappel

8.13.4.91 void mappel::PointEmitterModel::set_ubound (const ParamT & ubound) [inherited]

Definition at line 237 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounds_epsilon, mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::pointEmitterModel::ubound, mappel::PointEmitterModel::pointEmitterModel::ubound.

Referenced by mappel::Gauss1DsModel::set max sigma(), and mappel::Gauss2DsModel::set max sigma ratio().

8.13.4.92 bool mappel::PointEmitterModel::theta_in_bounds (const ParamT & theta) const [inherited]

Definition at line 257 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::ubound.

Referenced by mappel::Gauss2DModel::initial_theta_estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::Gauss1DModel::make_stencil(), mappel::Gauss2DModel::make_stencil(), mappel::Gauss2DsModel::make_stencil(), mappel::Gauss2DsModel::make_stencil(), and mappel::Point
EmitterModel::theta stack in bounds().

8.13.4.93 BoolVecT mappel::PointEmitterModel::theta_stack_in_bounds (const ParamVecT & theta) const [inherited]

Definition at line 297 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), and mappel::PointEmitterModel::theta_in_bounds().

8.13.4.94 void mappel::Gauss2DModel::update_internal_1Dsum_estimators() [protected], [inherited]

Definition at line 91 of file Gauss2DModel.cpp.

References mappel::PointEmitterModel::get_prior(), mappel::Gauss2DModel::make_internal_1Dsum_estimator(), mappel::Gauss2DModel::psf_sigma, mappel::ImageFormat2DBase::size, mappel::Gauss2DModel::x_model, and mappel::Gauss2DModel::y model.

 $Referenced \ by \ mappel:: Gauss 2D Model:: debug_internal_sum_model_y(), \ mappel:: Gauss 2D Model:: set_hyperparams(), \ and \ mappel:: Gauss 2D Model:: set_prior().$

8.13.5 Member Data Documentation

8.13.5.1 const double mappel::PointEmitterModel::bounds_epsilon = 1.0E-6 [static], [inherited]

Distance from the boundary to constrain in bound_theta and bounded_theta methods

Definition at line 52 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::set_bounds(), mappel::PointEmitterModel::set_lbound(), mappel::Gauss2 DsModel::set_max_sigma_ratio(), and mappel::PointEmitterModel::set_ubound().

8.13.5.2 const double mappel::PointEmitterModel::default_alpha_sigma = 2 [static], [inherited]

Default per-pixel background gamma distribution shape

Definition at line 62 of file PointEmitterModel.h.

8.13.5.3 const double mappel::PointEmitterModel::default_beta_pos = 3 [static], [inherited]

Default position parameter in symmetric beta-distributions

Definition at line 56 of file PointEmitterModel.h.

8.13.5.4 const double mappel::PointEmitterModel::default_intensity_kappa = 2 [static], [inherited]

Default shape for intensity gamma distributions

Definition at line 60 of file PointEmitterModel.h.

8.13.5.5 const double mappel::PointEmitterModel::default_max_I = INFINITY [static], [inherited]

Default maximum emitter intensity

Definition at line 59 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::make_prior_component_intensity().

8.13.5.6 const double mappel::PointEmitterModel::default mean I = 300 [static], [inherited]

Default emitter intensity mean

Definition at line 58 of file PointEmitterModel.h.

Referenced by mappel::MCMCAdaptor1D::set_intensity_mcmc_sampling().

8.13.5.7 const double mappel::PointEmitterModel::default_pixel_mean_bg = 4 [static], [inherited]

Default per-pixel mean background counts

Definition at line 61 of file PointEmitterModel.h.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DModel::make default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_beta_position(), mappel::Gauss1DModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss2DsModel::make_default_prior_normal_position(), and mappel::MCMCAdaptor1D $\column{c}\column{$

8.13.5.8 const double mappel::PointEmitterModel::default_sigma_pos = 1 [static], [inherited]

Default position parameter in symmetric beta-distributions

Definition at line 57 of file PointEmitterModel.h.

8.13.5.9 const std::string mappel::Gauss2DModel::DefaultPriorType = "Normal" [static], [inherited]

Definition at line 51 of file Gauss2DModel.h.

Referenced by mappel::Gauss2DModel::get_psf_sigma().

8.13.5.10 const std::string mappel::PointEmitterModel::DefaultSeperableInitEstimator = "TrustRegion" [static], [inherited]

Estimator name to use in 1D separable initializations

Definition at line 49 of file PointEmitterModel.h.

Referenced by mappel::Gauss2DModel::initial_theta_estimate(), mappel::Gauss2DsxyModel::initial_theta_estimate(), and mappel::Gauss2DsModel::initial_theta_estimate().

8.13.5.11 const std::vector < std::string > mappel::PoissonNoise2DObjective::estimator_names [static], [inherited]

Definition at line 23 of file PoissonNoise2DObjective.h.

8.13.5.12 double mappel::MCMCAdaptor1D::eta_bg = 0 [protected], [inherited]

The standard deviation for the normally distributed perturbation to theta_bg in the random walk MCMC sampling

Definition at line 32 of file MCMCAdaptor1D.h.

Referenced by mappel::MCMCAdaptor1D::get_stats(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MC—CMCAdaptor1D::operator=(), mappel::MCMCAdaptor2D::sample_mcmc_candidate(), mappel::MCMCAdaptor1Ds::sample_mcmc_candidate(), mappel::MCMCAdaptor1Dc-:sample_mcmc_candidate(), and mappel::MCMCAdaptor1D::set_background_mcmc_sampling().

```
8.13.5.13 double mappel::MCMCAdaptor1D::eta_l = 0 [protected], [inherited]
```

The standard deviation for the normally distributed perturbation to theta_I in the random walk MCMC sampling

Definition at line 31 of file MCMCAdaptor1D.h.

Referenced by mappel::MCMCAdaptor1D::get_stats(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCMCAdaptor1D(), mappel::MCMCAdaptor2Ds::sample_mcmc_candidate(), mappel::MCMCAdaptor2Ds::sample_mcmc_candidate(), mappel::MCMCAdaptor1Dc::sample_mcmc_candidate(), mappel::MCMCAdaptor1Dc::sample_mcmc_candidate(), and mappel::MCMCAdaptor1D::set_intensity_mcmc_sampling().

```
8.13.5.14 double mappel::MCMCAdaptor1D::eta_x =0 [protected], [inherited]
```

The standard deviation for the normally distributed perturbation to theta_x in the random walk MCMC sampling

Definition at line 30 of file MCMCAdaptor1D.h.

Referenced by mappel::MCMCAdaptor1D::get_stats(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::M \leftarrow CMCAdaptor1D::operator=(), mappel::MCMCAdaptor2D::sample_mcmc_candidate(), mappel::MCMCAdaptor1Ds \leftarrow ::sample_mcmc_candidate(), mappel::MCMCAdaptor2Ds::sample_mcmc_candidate(), and mappel::MCMCAdaptor1 \leftarrow D::sample mcmc candidate().

8.13.5.15 double mappel::MCMCAdaptor2D::eta_y = 0 [protected], [inherited]

The standard deviation for the normally distributed perturbation to theta y in the random walk MCMC sampling

Definition at line 27 of file MCMCAdaptor2D.h.

Referenced by mappel::MCMCAdaptor2D::get_stats(), mappel::MCMCAdaptor2D::MCMCAdaptor2D(), mappel::MCCAdaptor2D::mcMCAdaptor2D::mcMcAdaptor2Dc::mcMcAdaptor2Dc::mcMcAdaptor2Dc::mcMcAdaptor2Dc::sample mcmc candidate().

8.13.5.16 const double mappel::MCMCAdaptorBase::global_default_mcmc_sigma_scale = 0.05 [static], [inherited]

Definition at line 16 of file MCMCAdaptorBase.h.

Referenced by mappel::MCMCAdaptor1Ds::MCMCAdaptor1Ds(), mappel::MCMCAdaptor2D::MCMCAdaptor2D(), and mappel::MCMCAdaptor2Ds::MCMCAdaptor2Ds().

8.13.5.17 const double mappel::MCMCAdaptorBase::global_max_mcmc_sigma_scale = 0.5 [static], [inherited]

Definition at line 17 of file MCMCAdaptorBase.h.

Referenced by mappel::MCMCAdaptorBase::MCMCAdaptorBase(), and mappel::MCMCAdaptorBase::set_mcmc_ sigma scale().

8.13.5.18 const double mappel::PointEmitterModel::global_max_psf_sigma = 1E2 [static], [inherited]

Global maxmimum for any psf_sigma. Sizes above this value are invalid, and nowhere near useful for practical point emitter localization

Definition at line 54 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::check_psf_sigma().

8.13.5.19 const ImageFormat2DBase::ImageCoordT mappel::ImageFormat2DBase::global_max_size =512 [static], [inherited]

Maximum size along any dimension of the image. This is insanely big to catch obvious errors

Definition at line 39 of file ImageFormat2DBase.h.

Referenced by mappel::ImageFormat2DBase::check_size().

8.13.5.20 const double mappel::PointEmitterModel::global_min_psf_sigma = 1E-1 [static], [inherited]

Global minimum for any psf_sigma. Sizes below this value are invalid, and nowhere near useful for practical point emitter localization

Definition at line 53 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::check_psf_sigma().

8.13.5.21 const ImageFormat2DBase::ImageCoordT mappel::ImageFormat2DBase::global_min_size =3 [static], [inherited]

Minimum size along any dimension of the image.

Definition at line 38 of file ImageFormat2DBase.h.

Referenced by mappel::ImageFormat2DBase::check_size().

8.13.5.22 ParamT mappel::PointEmitterModel::lbound [protected], [inherited]

Definition at line 148 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel ::PointEmitterModel::bounded_theta(), mappel ::PointEmitterModel::get_lbound(), mappel::PointEmitterModel::get_stats(), mappel::Gauss1DsModel::initial_theta = estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::PointEmitterModel::pointEmitterModel::reflected_theta(), mappel::PointEmitterModel = ::set_bounds(), mappel::PointEmitterModel::set_lbound(), mappel::PointEmitterModel::set_prior(), mappel::PointEmitterModel::set_bounds().

8.13.5.23 const std::string mappel::Gauss2DMLE::name [static]

Definition at line 37 of file Gauss2DMLE.h.

8.13.5.24 const ImageFormat2DBase::ImageCoordT mappel::ImageFormat2DBase::num_dim =2 [static], [inherited]

Number of image dimensions.

Definition at line 37 of file ImageFormat2DBase.h.

Referenced by mappel::ImageFormat2DBase::get_stats().

8.13.5.25 IdxT mappel::PointEmitterModel::num_hyperparams [protected], [inherited]

Definition at line 147 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::get_num_hyperparams(), mappel::PointEmitterModel::get_stats(), mappel::PointEmitterModel::operator=(), and mappel::PointEmitterModel::set_prior().

8.13.5.26 IdxT mappel::PointEmitterModel::num_params [protected], [inherited]

Definition at line 146 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel \leftarrow ::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::get_num_params(), mappel::PointEmitter \leftarrow Model::get_stats(), mappel::Gauss1DModel::initial_theta_estimate(), mappel::Gauss2DModel::initial_theta_estimate(), mappel::PointEmitterModel::make_param(), mappel::PointEmitterModel::make_param(), mappel::PointEmitterModel::make_param_mat_stack(), mappel::PointEmitterModel::make_param_stack(), mappel::PointEmitterModel::operator=(), mappel::PointEmitterModel::reflected_theta(), mappel::PointEmitterModel::set_bounds(), mappel::PointEmitterModel::set_bounds(), mappel::PointEmitterModel::set_bounds().

```
8.13.5.27 IdxT mappel::MCMCAdaptorBase::num_phases [protected], [inherited]
```

The number of different sampling phases for candidate selection MCMC. Each phase changes a different subset of variables.

Definition at line 29 of file MCMCAdaptorBase.h.

Referenced by mappel::MCMCAdaptorBase::get_mcmc_num_phases(), mappel::MCMCAdaptorBase::get_stats(), mappel::MCMCAdaptor2Ds::sample_mcmc_candidate(), mappel::MCMCAdaptor1Ds::sample_mcmc_candidate(), mappel::MCMCAdaptor1Ds::sample_mcmc_candidate(), and mappel::MCMCAdaptorBase::set_mcmc_num_phases().

```
8.13.5.28 CompositeDist mappel::PointEmitterModel::prior [protected], [inherited]
```

Definition at line 145 of file PointEmitterModel.h.

Referenced by mappel::Gauss2DModel::debug_internal_sum_model_y(), mappel::Gauss2DsModel::debug_internal \
_sum_model_y(), mappel::Gauss2DModel::Gauss2DModel(), mappel::Gauss2DsModel(), mappel::PointEmitterModel::get_hyperparam_names(), mappel::PointEmitterModel::get_hyperparam_names(), mappel::PointEmitterModel::get_hyperparam_names(), mappel::PointEmitterModel::get_hyperparams(), mappel::Gauss1DsModel \
::get_max_sigma(), mappel::Gauss1DsModel::get_min_sigma(), mappel::PointEmitterModel::get_param_names(), mappel::PointEmitterModel::get_param_names(), mappel::PointEmitterModel::has_\(\phi \) hyperparam(), mappel::PointEmitterModel::has_\(\phi \) hyperparam(), mappel::PointEmitterModel::pointEmitterModel(), mappel::PointEmitterModel(), mappel::PointEmitterModel(), mappel::PointEmitterModel(), mappel::PointEmitterModel(), mappel::PointEmitterModel::set_hyperparam \(\phi \) value(), mappel::PointEmitterModel::set_hyperparams(), mappel::PointEmitterModel::set_lyperparam \(\phi \) value(), mappel::PointEmitterModel::set_param_\(\phi \) nappel::Gauss1DsModel::set_min_sigma(), mappel::PointEmitterModel::set_param_\(\phi \) namppel::PointEmitterModel::set_param_\(\phi \) namppel::PointEmitterMo

8.13.5.29 const StringVecT mappel::Gauss2DModel::prior_types [static], [inherited]

Initial value:

```
= { "Beta", "Normal" }
```

Definition at line 50 of file Gauss2DModel.h.

Referenced by mappel::Gauss2DModel::get_psf_sigma().

```
8.13.5.30 VecT mappel::Gauss2DModel::psf sigma [protected],[inherited]
```

Standard deviation of the fixed-sigma 1D Gaussian PSF in pixels

Definition at line 104 of file Gauss2DModel.h.

Referenced by mappel::cgauss_compute_estimate(), mappel::cgauss_compute_estimate_debug(), mappel::cgauss \leftarrow _heuristic_compute_estimate(), mappel::Gauss2DModel::Stencil::compute_derivatives(), mappel::Gauss2DModel \leftarrow ::debug_internal_sum_model_y(), mappel::Gauss2DModel::Gauss2DModel(), mappel::Gauss2DModel::get_psf_ \leftarrow sigma(), mappel::Gauss2DModel::make_internal_1Dsum_estimator(), mappel::Gauss2DModel::operator=(), mappel \leftarrow ::Gauss2DModel::pixel_grad2(), mappel::Gauss2DModel::pixel_hess(), mappel::Gauss2DModel::pixel_hess_update(), mappel::Gauss2DModel::set_psf_sigma(), mappel::Gauss2DModel::Stencil(), and mappel::Gauss2DModel \leftarrow ::update internal 1Dsum estimators().

8.13.5.31 double mappel::MCMCAdaptorBase::sigma_scale [protected], [inherited]

A scaling factor for step sizes as a fraction of the size of the domain dimension we are walking in. (0.05 default)

Definition at line 30 of file MCMCAdaptorBase.h.

Referenced by mappel::MCMCAdaptorBase::get_mcmc_sigma_scale(), mappel::MCMCAdaptorBase::get_stats(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCMCAdaptor1Ds::MCMCAdaptor1Ds(), mappel::MCMCAdaptor1Ds::MCMCAdaptor1Ds::MCMCAdaptor1Dc::mcMcAdaptor1Dc:

8.13.5.32 ImageSizeT mappel::ImageFormat2DBase::size [protected], [inherited]

Number of pixels in X dimension for 1D image

Definition at line 67 of file ImageFormat2DBase.h.

Referenced by mappel::cgauss_compute_estimate(), mappel::cgauss_compute_estimate_debug(), mappel::cgauss ← _heuristic_compute_estimate(), mappel::ImageFormat2DBase::check_image_shape(), mappel::Gauss2DModel::← Stencil::compute_derivatives(), mappel::Gauss2DsModel::Stencil::compute_derivatives(), mappel::Gauss2DModel ← ::debug internal sum model y(), mappel::Gauss2DsModel::debug internal sum model y(), mappel::methods ← ::expected information(), mappel::Gauss2DModel::Gauss2DModel(), mappel::Gauss2DsMAP::Gauss2DsMA← P(), mappel::Gauss2DsMLE::Gauss2DsMLE(), mappel::Gauss2DsModel::Gauss2DsModel(), mappel::Image← Format2DBase::get_num_pixels(), mappel::ImageFormat2DBase::get_size(), mappel::ImageFormat2DBase::get _stats(), mappel::methods::likelihood::grad(), mappel::methods::likelihood::grad2(), mappel::methods::likelihood⇔ ::debug::grad components(), mappel::methods::likelihood::hessian(), mappel::methods::likelihood::debug::hessian ← components(), mappel::Gauss2DModel::initial theta estimate(), mappel::Gauss2DsModel::initial theta estimate(), mappel::methods::likelihood::llh(), mappel::methods::likelihood::debug::llh components(), mappel::Gauss2DModel ← ::make default prior beta position(), mappel::Gauss2DsModel::make default prior beta position(), Gauss2DModel::make default prior normal position(), mappel::Gauss2DsModel::make default prior normal← mappel::ImageFormat2DBase::make image(), mappel::ImageFormat2DBase::make image stack(), position(), mappel::Gauss2DModel::make internal 1Dsum estimator(), mappel::Gauss2DsModel::make internal 1Dsum ← mappel::Gauss2DModel::make prior beta position(), mappel::Gauss2DsModel::make prior beta ← position(), mappel::Gauss2DModel::make_prior_normal_position(), mappel::Gauss2DsModel::make_prior_normal ← mappel::methods::model image(), mappel::ImageFormat2DBase::operator=(), mappel::methods ← mappel::methods::likelihood::debug::rllh_components(), mappel::ImageFormat2DBase::set ← ::likelihood::rllh(), size(), mappel::Gauss2DModel::set_size(), mappel::Gauss2DsModel::set_size(), mappel::methods::simulate_image(), mappel::methods::simulate image from model(), mappel::Gauss2DModel::Stencil(), mappel::Gauss2Ds ← Model::Stencil::Stencil(), mappel::Gauss2DModel::update internal 1Dsum estimators(), and mappel::Gauss2Ds ← Model::update internal 1Dsum estimators().

8.13.5.33 ParamT mappel::PointEmitterModel::ubound [protected],[inherited]

Definition at line 148 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel ::PointEmitterModel::get_ubound(), mappel::Gauss1DsModel::initial_theta = cstimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::PointEmitterModel::pointEmitt

8.13.5.34 Gauss1DSumModelT mappel::Gauss2DModel::x_model [protected], [inherited]

X-model fits 2D images X-axis (column sum)

Definition at line 105 of file Gauss2DModel.h.

Referenced by mappel::Gauss2DModel::debug_internal_sum_model_x(), mappel::Gauss2DModel::initial_theta_ \leftarrow estimate(), mappel::Gauss2DModel::operator=(), mappel::Gauss2DModel::set_psf_sigma(), mappel::Gauss2DModel \leftarrow ::set_size(), and mappel::Gauss2DModel::update_internal_1Dsum_estimators().

8.13.5.35 Gauss1DSumModelT mappel::Gauss2DModel::y_model [protected], [inherited]

Y-model fits 2D images Y-axis (row sum)

Definition at line 106 of file Gauss2DModel.h.

The documentation for this class was generated from the following files:

- · Gauss2DMLE.h
- Gauss2DMLE.cpp

8.14 mappel::Gauss2DModel Class Reference

A base class for 2D Gaussian PSF with fixed but possibly asymmetric sigma.

#include </home/travis/build/markjolah/Mappel/include/Mappel/Gauss2DModel.h>

Inheritance diagram for mappel::Gauss2DModel:

Classes

· class Stencil

Stencil for 2D fixed-sigma models.

Public Types

```
    using Gauss1DSumModelT = Gauss1DMAP

    using StencilVecT = std::vector < Stencil >

• using ParamT = arma::vec
```

using ParamVecT = arma::mat

• using ImageCoordT = uint32 t

• using ImagePixeIT = double

 template < class CoordT > using ImageSizeShapeT = arma::Col < CoordT >

template < class CoordT >

using ImageSizeVecShapeT = arma::Mat< CoordT >

- using ImageSizeT = ImageSizeShapeT < ImageCoordT >
- using ImageSizeVecT = ImageSizeVecShapeT < ImageCoordT >
- template < class PixelT >

using ImageShapeT = arma::Mat< PixelT >

template < class PixelT >

using ImageStackShapeT = arma::Cube < PixeIT >

- using ImageT = ImageShapeT < ImagePixeIT >
- using ImageStackT = ImageStackShapeT < ImagePixeIT >

Public Member Functions

- void set hyperparams (const VecT &hyperparams)
- void set prior (CompositeDist &&prior)
- void set_prior (const CompositeDist &prior)
- void set_size (const ImageSizeT &size_)
- const VecT & get_psf_sigma () const
- double get_psf_sigma (IdxT idx) const
- void set psf sigma (double new psf sigma)
- void set psf sigma (const VecT &new psf sigma)
- StatsT get stats () const
- Stencil make_stencil (const ParamT &theta, bool compute_derivatives=true) const

Make a new Model::Stencil object at theta.

- double pixel model value (int i, int j, const Stencil &s) const
- void pixel grad (int i, int j, const Stencil &s, ParamT &pgrad) const
- void pixel_grad2 (int i, int j, const Stencil &s, ParamT &pgrad2) const
- void pixel_hess (int i, int j, const Stencil &s, MatT &hess) const
- void pixel hess update (int i, int j, const Stencil &s, double dm ratio m1, double dmm ratio, ParamT &grad, MatT &hess) const

pixel derivative inner loop calculations.

Stencil initial_theta_estimate (const ImageT &im)

Fast, heuristic estimate of initial theta.

- Stencil initial theta estimate (const ImageT &im, const ParamT &theta init)
- Stencil initial_theta_estimate (const ImageT &im, const ParamT &theta_init, const std::string &estimator)
- Gauss1DSumModelT debug internal sum model x () const
- Gauss1DSumModelT debug_internal_sum_model_y () const
- IdxT get_num_params () const
- void check param shape (const ParamT &theta) const
- void check param shape (const ParamVecT &theta) const

- · void check_psf_sigma (double psf_sigma) const
- void check psf sigma (const VecT &psf sigma) const
- · ParamT make param () const
- template<class FillT >

ParamT make param (FillT fill) const

- ParamVecT make param stack (IdxT n) const
- template<class FillT >

ParamVecT make param stack (IdxT n, FillT fill) const

- MatT make param mat () const
- template<class FillT >

MatT make_param_mat (FillT fill) const

- CubeT make_param_mat_stack (ldxT n) const
- template < class FillT >

CubeT make_param_mat_stack (ldxT n, FillT fill) const

- CompositeDist & get_prior ()
- const CompositeDist & get_prior () const
- IdxT get_num_hyperparams () const
- VecT get_hyperparams () const
- bool has hyperparam (const std::string &name) const
- double get_hyperparam_value (const std::string &name) const
- int get_hyperparam_index (const std::string &name) const
- void set_hyperparam_value (const std::string &name, double value)
- void rename_hyperparam (const std::string &old_name, const std::string &new_name)
- StringVecT get param names () const
- void set_param_names (const StringVecT &desc)
- StringVecT get hyperparam names () const
- void set_hyperparam_names (const StringVecT &desc)
- template<class RngT >

ParamT sample_prior (RngT &rng)

- ParamT sample_prior ()
- void set_bounds (const ParamT &lbound, const ParamT &ubound)
- void set_lbound (const ParamT &lbound)
- void set ubound (const ParamT &ubound)
- const ParamT & get_lbound () const
- const ParamT & get_ubound () const
- bool theta_in_bounds (const ParamT &theta) const
- void bound theta (ParamT &theta, double epsilon=bounds epsilon) const
- ParamT bounded theta (const ParamT &theta, double epsilon=bounds epsilon) const
- ParamT reflected theta (const ParamT &theta) const
- BoolVecT theta stack in bounds (const ParamVecT &theta) const
- · ParamVecT bounded theta stack (const ParamVecT &theta, double epsilon=bounds epsilon) const
- ParamVecT reflected_theta_stack (const ParamVecT &theta) const
- ImageT make_image () const
- ImageStackT make image stack (ImageCoordT n) const
- ImageCoordT get_size image_stack (const ImageStackT &stack) const
- ImageT get_image_from_stack (const ImageStackT &stack, ImageCoordT n) const
- template<class ImT >

void set_image_in_stack (ImageStackT &stack, ImageCoordT n, const ImT &im) const

- const ImageSizeT & get_size () const
- ImageCoordT get_size (IdxT idx) const
- ImageCoordT get num pixels () const

- void check_image_shape (const ImageT &im) const
 - Check the shape of a single images is correct for model size.
- void check_image_shape (const ImageStackT &ims) const

Check the shape of a stack of images is correct for model size.

- void sample mcmc candidate (IdxT sample index, ParamT &candidate, double step scale=1.0)
- void set intensity mcmc sampling (double eta I=-1)
- void set_background_mcmc_sampling (double eta_bg=-1)
- void set_mcmc_sigma_scale (double scale)
- double get mcmc sigma scale () const
- IdxT get mcmc num phases () const

Static Public Member Functions

- static CompositeDist make_default_prior (const ImageSizeT &size, const std::string &prior_type)
- static CompositeDist make default prior beta position (const ImageSizeT &size)
- static CompositeDist make_default_prior_normal_position (const ImageSizeT &size)
- static CompositeDist make_prior_beta_position (const ImageSizeT &size, double beta_xpos, double beta_ypos, double mean I, double kappa I, double mean bg, double kappa bg)

- static prior_hessian::ScaledSymmetricBetaDist make_prior_component_position_beta (ldxT size, double pos_
 beta=default_beta_pos)
- static prior_hessian::TruncatedParetoDist make_prior_component_sigma (double min_sigma, double max_
 sigma, double alpha=default_alpha_sigma)
- static void set_rng_seed (RngSeedT seed)
- static ParallelRngManagerT & get_rng_manager ()
- static ParallelRngGeneratorT & get_rng_generator ()
- static void check size (const ImageSizeT &size)

Check the size argument for the model.

Static Public Attributes

- static const StringVecT prior types
- static const std::string DefaultPriorType = "Normal"
- static const std::string DefaultSeperableInitEstimator = "TrustRegion"
- static const double bounds_epsilon = 1.0E-6
- static const double global_min_psf_sigma = 1E-1
- static const double global_max_psf_sigma = 1E2
- static const double default beta pos = 3
- static const double default sigma pos = 1
- static const double default mean I = 300
- static const double default max I = INFINITY
- static const double default intensity kappa = 2
- static const double default_pixel_mean_bg = 4
- static const double default alpha sigma = 2
- static const ImageCoordT num dim =2
- static const ImageCoordT global_min_size =3
- static const ImageCoordT global max size =512
- static const double global default mcmc sigma scale = 0.05
- static const double global max mcmc sigma scale = 0.5

Protected Member Functions

- Gauss2DModel (const ImageSizeT &size, const VecT &psf_sigma)
- Gauss2DModel (const Gauss2DModel &o)
- Gauss2DModel (Gauss2DModel &&o)
- Gauss2DModel & operator= (const Gauss2DModel &o)
- Gauss2DModel & operator= (Gauss2DModel &&o)
- void update_internal_1Dsum_estimators ()
- void set_mcmc_num_phases (ldxT num_phases)

Static Protected Member Functions

static Gauss1DSumModelT make_internal_1Dsum_estimator (ldxT dim, const ImageSizeT &size, const VecT &psf_sigma, const CompositeDist &prior)

Protected Attributes

- VecT psf_sigma
- Gauss1DSumModelT x_model
- Gauss1DSumModelT y_model
- · CompositeDist prior
- IdxT num_params
- ldxT num_hyperparams
- ParamT Ibound
- · ParamT ubound
- · ImageSizeT size
- double eta y =0
- double eta_x =0
- double eta_I =0
- double eta_bg =0
- IdxT num_phases
- double sigma_scale

8.14.1 Detailed Description

A base class for 2D Gaussian PSF with fixed but possibly asymmetric sigma.

Definition at line 20 of file Gauss2DModel.h.

8.14.2 Member Typedef Documentation

8.14.2.1 using mappel::Gauss2DModel::Gauss1DSumModelT = Gauss1DMAP

Definition at line 23 of file Gauss2DModel.h.

8.14.2.2 using mappel::ImageFormat2DBase::ImageCoordT = uint32_t [inherited] Image size coordinate storage type Definition at line 24 of file ImageFormat2DBase.h. **8.14.2.3** using mappel::ImageFormat2DBase::ImagePixelT = double [inherited] Image pixel storage type Definition at line 25 of file ImageFormat2DBase.h. $\textbf{8.14.2.4} \quad \textbf{template} < \textbf{class PixelT} > \textbf{using mappel::} \textbf{ImageFormat2DBase::} \textbf{ImageShapeT} = \textbf{arma::} \textbf{Mat} < \textbf{PixelT} > \textbf{mageShapeT} = \textbf{mageShapeT} = \textbf{arma::} \textbf{Mat} < \textbf{PixelT} > \textbf{mageShapeT} = \textbf{mageShap$ [inherited] Shape of the data type for a single image Definition at line 32 of file ImageFormat2DBase.h. 8.14.2.5 template < class CoordT > using mappel::ImageFormat2DBase::ImageSizeShapeT = arma::Col < CoordT > [inherited] Shape of the data type to store a single image's coordinates Definition at line 27 of file ImageFormat2DBase.h. 8.14.2.6 using mappel::ImageFormat2DBase::ImageSizeT = ImageSizeShapeT < ImageCoordT > [inherited] Data type for a single image size

Definition at line 29 of file ImageFormat2DBase.h.

8.14.2.7 template < class CoordT > using mappel::ImageFormat2DBase::ImageSizeVecShapeT = arma::Mat < CoordT > [inherited]

Shape of the data type to store a vector of image's coordinates

Definition at line 28 of file ImageFormat2DBase.h.

8.14.2.8 using mappel::ImageFormat2DBase::ImageSizeVecT = ImageSizeVecShapeT < ImageCoordT > [inherited]

Data type for a sequence of image sizes

Definition at line 30 of file ImageFormat2DBase.h.

8.14.2.9 template < class PixelT > using mappel::ImageFormat2DBase::ImageStackShapeT = arma::Cube < PixelT > [inherited]

Shape of the data type for a sequence of images

Definition at line 33 of file ImageFormat2DBase.h.

8.14.2.10 using mappel::ImageFormat2DBase::ImageStackT = ImageStackShapeT<ImagePixeIT>
[inherited]

Data type to represent a sequence of images

Definition at line 35 of file ImageFormat2DBase.h.

8.14.2.11 using mappel::ImageFormat2DBase::ImageT = ImageShapeT < ImagePixeIT > [inherited]

Data type to represent single image

Definition at line 34 of file ImageFormat2DBase.h.

8.14.2.12 using mappel::PointEmitterModel::ParamT = arma::vec [inherited]

Parameter vector

Definition at line 47 of file PointEmitterModel.h.

8.14.2.13 using mappel::PointEmitterModel::ParamVecT = arma::mat [inherited]

Vector of parameter vectors

Definition at line 48 of file PointEmitterModel.h.

8.14.2.14 using mappel::Gauss2DModel::StencilVecT = std::vector<Stencil>

Definition at line 47 of file Gauss2DModel.h.

8.14.3 Constructor & Destructor Documentation

8.14.3.1 mappel::Gauss2DModel::Gauss2DModel(const ImageSizeT & size, const VecT & psf_sigma) [protected]

Definition at line 12 of file Gauss2DModel.cpp.

References mappel::PointEmitterModel::check_psf_sigma(), make_internal_1Dsum_estimator(), mappel::Point← EmitterModel::prior, psf_sigma, mappel::ImageFormat2DBase::size, and y_model.

Referenced by debug internal sum model y().

8.14.3.2 mappel::Gauss2DModel::Gauss2DModel (const Gauss2DModel & o) [protected]

Definition at line 22 of file Gauss2DModel.cpp.

References make_internal_1Dsum_estimator(), mappel::PointEmitterModel::prior, psf_sigma, mappel::Image ← Format2DBase::size, and y model.

8.14.3.3 mappel::Gauss2DModel::Gauss2DModel && o) [protected]

Definition at line 30 of file Gauss2DModel.cpp.

References make_internal_1Dsum_estimator(), mappel::PointEmitterModel::prior, psf_sigma, mappel::Image \leftarrow Format2DBase::size, and y model.

8.14.4 Member Function Documentation

8.14.4.1 void mappel::PointEmitterModel::bound_theta (ParamT & theta, double epsilon = bounds_epsilon) const [inherited]

Definition at line 248 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::ubound.

8.14.4.2 PointEmitterModel::ParamT mappel::PointEmitterModel::bounded_theta (const ParamT & theta, double epsilon = bounds epsilon) const [inherited]

Definition at line 265 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::ubound.

Referenced by mappel::PointEmitterModel::bounded theta stack().

8.14.4.3 PointEmitterModel::ParamVecT mappel::PointEmitterModel::bounded_theta_stack (const ParamVecT & theta, double epsilon = bounds_epsilon) const [inherited]

Definition at line 307 of file PointEmitterModel.cpp.

 $References \quad mappel:: PointEmitterModel:: bounded_theta(), \quad mappel:: PointEmitterModel:: check_param_shape(), \quad and \\ mappel:: PointEmitterModel:: make_param_stack().$

8.14.4.4 void mappel::ImageFormat2DBase::check image shape (const ImageT & im) const [inherited]

Check the shape of a single images is correct for model size.

Definition at line 80 of file ImageFormat2DBase.cpp.

References mappel::ImageFormat2DBase::size.

8.14.4.5 void mappel::ImageFormat2DBase::check_image_shape (const ImageStackT & ims) const [inherited]

Check the shape of a stack of images is correct for model size.

Definition at line 93 of file ImageFormat2DBase.cpp.

References mappel::ImageFormat2DBase::size.

8.14.4.6 void mappel::PointEmitterModel::check_param_shape(const ParamT & theta) const [inherited]

Definition at line 167 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::num_params.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::reflected_theta(), mappel::PointEmitterModel::reflected_theta(), mappel::PointEmitterModel::theta_in_bounds(), and mappel::PointEmitterModel \leftarrow ::theta stack in bounds().

8.14.4.7 void mappel::PointEmitterModel::check_param_shape(const ParamVecT & theta) const [inherited]

Definition at line 176 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::num params.

8.14.4.8 void mappel::PointEmitterModel::check_psf_sigma (double psf_sigma) const [inherited]

Definition at line 185 of file PointEmitterModel.cpp.

 $References\ mappel::PointEmitterModel::global_max_psf_sigma,\ and\ mappel::PointEmitterModel::global_min_psf_colored sigma.$

Referenced by mappel::Gauss1DModel::Gauss1DModel(), Gauss2DModel(), mappel::Gauss2DsModel::Gauss2DsModel::Gauss2DsModel::Gauss2DsModel::Gauss2DsModel::set_max_sigma(), mappel::Gauss2DsModel::set_max_sigma(), mappel::Gauss1DModel::set_psf_sigma(), and set_psf_sigma().

8.14.4.9 void mappel::PointEmitterModel::check_psf_sigma (const VecT & psf_sigma) const [inherited]

Definition at line 197 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::global_max_psf_sigma, and mappel::PointEmitterModel::global_min_psf_ \leftarrow sigma.

8.14.4.10 void mappel::ImageFormat2DBase::check_size(const ImageSizeT & size_) [static], [inherited]

Check the size argument for the model.

Definition at line 60 of file ImageFormat2DBase.cpp.

References mappel::ImageFormat2DBase::global_max_size, and mappel::ImageFormat2DBase::global_min_size.

Referenced by mappel::ImageFormat2DBase::ImageFormat2DBase(), and mappel::ImageFormat2DBase::set size().

8.14.4.11 Gauss1DSumModelT mappel::Gauss2DModel::debug_internal_sum_model_x() const [inline]

Definition at line 89 of file Gauss2DModel.h.

References x_model.

8.14.4.12 Gauss1DSumModelT mappel::Gauss2DModel::debug internal sum model y()const [inline]

Definition at line 90 of file Gauss2DModel.h.

References Gauss2DModel(), make_internal_1Dsum_estimator(), operator=(), mappel::PointEmitterModel::prior, psf—sigma, mappel::ImageFormat2DBase::size, update_internal_1Dsum_estimators(), and y_model.

8.14.4.13 int mappel::PointEmitterModel::get_hyperparam_index (const std::string & name) const [inline], [inherited]

Definition at line 236 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.14.4.14 StringVecT mappel::PointEmitterModel::get_hyperparam_names() const [inline], [inherited]

Definition at line 256 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.14.4.15 double mappel::PointEmitterModel::get_hyperparam_value (const std::string & name) const [inline], [inherited]

Definition at line 232 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

Referenced by mappel::MCMCAdaptor1D::set_background_mcmc_sampling(), and mappel::MCMCAdaptor1D::set_ \hookleftarrow intensity_mcmc_sampling().

8.14.4.16 PointEmitterModel::ParamT mappel::PointEmitterModel::get_hyperparams () const [inline], [inherited]

Definition at line 224 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.14.4.17 ImageFormat2DBase::ImageT mappel::ImageFormat2DBase::get_image_from_stack (const ImageStackT & stack, ImageCoordT n) const [inline], [inherited]

Definition at line 106 of file ImageFormat2DBase.h.

8.14.4.18 const PointEmitterModel::ParamT & mappel::PointEmitterModel::get_lbound() const [inline], [inherited]

Definition at line 212 of file PointEmitterModel.h.

References mappel::PointEmitterModel::lbound.

Referenced by mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCMCAdaptor2D::MCMCAdaptor2D(), and mappel::MCMCAdaptor1D::set_background_mcmc_sampling().

8.14.4.19 IdxT mappel::MCMCAdaptorBase::get_mcmc_num_phases()const [inherited]

Definition at line 56 of file MCMCAdaptorBase.cpp.

References mappel::MCMCAdaptorBase::num_phases.

8.14.4.20 double mappel::MCMCAdaptorBase::get_mcmc_sigma_scale() const [inherited]

Definition at line 53 of file MCMCAdaptorBase.cpp.

References mappel::MCMCAdaptorBase::sigma_scale.

8.14.4.21 | IdxT mappel::PointEmitterModel::get_num_hyperparams() const [inline], [inherited]

Definition at line 208 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num hyperparams.

8.14.4.22 IdxT mappel::PointEmitterModel::get_num_params() const [inline], [inherited]

Definition at line 160 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

8.14.4.23 ImageFormat2DBase::ImageCoordT mappel::ImageFormat2DBase::get_num_pixels() const [inline], [inherited]

Definition at line 79 of file ImageFormat2DBase.h.

References mappel::ImageFormat2DBase::size.

Referenced by mappel::ImageFormat2DBase::get stats().

8.14.4.24 StringVecT mappel::PointEmitterModel::get_param_names()const [inline], [inherited]

Definition at line 248 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

```
8.14.4.25 CompositeDist & mappel::PointEmitterModel::get_prior() [inline], [inherited]
Definition at line 200 of file PointEmitterModel.h.
References mappel::PointEmitterModel::prior.
Referenced by update_internal_1Dsum_estimators(), and mappel::Gauss2DsModel::update_internal_1Dsum_←
estimators().
8.14.4.26 const CompositeDist & mappel::PointEmitterModel::get prior ( ) const [inline], [inherited]
Definition at line 204 of file PointEmitterModel.h.
References mappel::PointEmitterModel::prior.
8.14.4.27 const VecT & mappel::Gauss2DModel::get_psf_sigma() const [inline]
Definition at line 142 of file Gauss2DModel.h.
References psf_sigma.
Referenced by get_stats().
8.14.4.28 double mappel::Gauss2DModel::get_psf_sigma ( IdxT idx ) const
Definition at line 132 of file Gauss2DModel.cpp.
References DefaultPriorType, prior_types, and psf_sigma.
8.14.4.29 ParallelRngGeneratorT & mappel::PointEmitterModel::get rng generator() [static],[inherited]
Definition at line 120 of file PointEmitterModel.cpp.
References mappel::rng manager.
8.14.4.30 ParallelRngManagerT & mappel::PointEmitterModel::get_rng_manager( ) [static], [inherited]
Definition at line 115 of file PointEmitterModel.cpp.
References mappel::rng_manager.
8.14.4.31 const ImageFormat2DBase::ImageSizeT & mappel::ImageFormat2DBase::get_size( ) const [inline],
         [inherited]
Definition at line 74 of file ImageFormat2DBase.h.
```

References mappel::ImageFormat2DBase::size.

8.14.4.32 ImageFormat2DBase::ImageCoordT mappel::ImageFormat2DBase::get_size (IdxT idx) const [inherited]

Definition at line 41 of file ImageFormat2DBase.cpp.

References mappel::ImageFormat2DBase::size.

8.14.4.33 ImageFormat2DBase::ImageCoordT mappel::ImageFormat2DBase::get_size_image_stack(const ImageStackT & stack) const [inline], [inherited]

Definition at line 99 of file ImageFormat2DBase.h.

8.14.4.34 StatsT mappel::Gauss2DModel::get_stats () const

Definition at line 268 of file Gauss2DModel.cpp.

References get_psf_sigma(), mappel::MCMCAdaptor2D::get_stats(), mappel::ImageFormat2DBase::get_stats(), and mappel::PointEmitterModel::get_stats().

8.14.4.35 const PointEmitterModel::ParamT & mappel::PointEmitterModel::get_ubound() const [inline], [inherited]

Definition at line 216 of file PointEmitterModel.h.

References mappel::PointEmitterModel::ubound.

Referenced by mappel::Gauss2DsxyModel::get_max_sigma_ratio(), mappel::Gauss2DsModel::get_max_sigma_ratio(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCMCAdaptor2D(), mappel::MCMCAdaptor2D(), mappel::MCMCAdaptor1D::set background mcmc sampling(), and mappel::Gauss2DsModel::set max sigma ratio().

8.14.4.36 bool mappel::PointEmitterModel::has_hyperparam (const std::string & name) const [inline], [inherited]

Definition at line 228 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.14.4.37 Gauss2DModel::Stencil mappel::Gauss2DModel::initial_theta_estimate (const ImageT & im) [inline]

Fast, heuristic estimate of initial theta.

Definition at line 194 of file Gauss2DModel.h.

References mappel::PointEmitterModel::DefaultSeperableInitEstimator, and mappel::PointEmitterModel::make $_\leftarrow$ param().

Referenced by initial theta estimate().

8.14.4.38 Gauss2DModel::Stencil mappel::Gauss2DModel::initial_theta_estimate (const ImageT & im, const ParamT & theta init) [inline]

Definition at line 201 of file Gauss2DModel.h.

References mappel::PointEmitterModel::DefaultSeperableInitEstimator, and initial theta estimate().

8.14.4.39 Gauss2DModel::Stencil mappel::Gauss2DModel::initial_theta_estimate (const ImageT & im, const ParamT & theta_init, const std::string & estimator)

Definition at line 303 of file Gauss2DModel.cpp.

References mappel::Gauss2DModel::Stencil::bg(), mappel::methods::estimate_max(), mappel::Gauss2DModel:: \leftarrow Stencil::I(), mappel::PointEmitterModel::lbound, make_stencil(), mappel::PointEmitterModel::num_params, mappel:: \leftarrow ImageFormat2DBase::size, mappel::PointEmitterModel::ubound, x_ \leftarrow model, and y model.

8.14.4.40 CompositeDist mappel::Gauss2DModel::make_default_prior (const ImageSizeT & size, const std::string & prior_type)

[static]

Definition at line 150 of file Gauss2DModel.cpp.

References mappel::istarts with(), make default prior beta position(), and make default prior normal position().

8.14.4.41 CompositeDist mappel::Gauss2DModel::make_default_prior_beta_position(_const ImageSizeT & size) [static]

Definition at line 171 of file Gauss2DModel.cpp.

References mappel::PointEmitterModel::default_pixel_mean_bg, mappel::PointEmitterModel::make_prior_component __intensity(), mappel::PointEmitterModel::make_prior_component_position_beta(), and mappel::ImageFormat2DBase \leftarrow ::size.

Referenced by make_default_prior().

8.14.4.42 CompositeDist mappel::Gauss2DModel::make_default_prior_normal_position (const ImageSizeT & size) [static]

Definition at line 182 of file Gauss2DModel.cpp.

References mappel::PointEmitterModel::default_pixel_mean_bg, mappel::PointEmitterModel::make_prior_component
__intensity(), mappel::PointEmitterModel::make_prior_component_position_normal(), and mappel::ImageFormat2D
__ Base::size.

Referenced by make_default_prior().

8.14.4.43 ImageFormat2DBase::ImageT mappel::ImageFormat2DBase::make_image() const [inline], [inherited]

Definition at line 85 of file ImageFormat2DBase.h.

References mappel::ImageFormat2DBase::size.

8.14.4.44 ImageFormat2DBase::ImageStackT mappel::ImageFormat2DBase::make_image_stack(ImageCoordT n) const [inline], [inherited]

Definition at line 92 of file ImageFormat2DBase.h.

References mappel::ImageFormat2DBase::size.

8.14.4.45 Gauss2DModel::Gauss1DSumModelT mappel::Gauss2DModel::make_internal_1Dsum_estimator (ldxT dim, const ImageSizeT & size, const VecT & psf_sigma, const CompositeDist & prior) [static], [protected]

Definition at line 62 of file Gauss2DModel.cpp.

References mappel::Gauss1DModel::make_prior_beta_position(), mappel::Gauss1DModel::make_prior_normal_ position(), psf_sigma, and mappel::ImageFormat2DBase::size.

Referenced by debug internal sum model y(), Gauss2DModel(), and update internal 1Dsum estimators().

8.14.4.46 PointEmitterModel::ParamT mappel::PointEmitterModel::make_param()const [inline], [inherited]

Definition at line 164 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

Referenced by mappel::Gauss1DModel::initial_theta_estimate(), mappel::Gauss1DsModel::initial_theta_estimate(), initial_theta_estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::Gauss1DsModel::pixel_hess_update(), pixel_\circ hess_update(), and mappel::Gauss2DsModel::pixel_hess_update().

8.14.4.47 template < class FillT > PointEmitterModel::ParamT mappel::PointEmitterModel::make_param (FillT fill) const [inherited]

Definition at line 181 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

8.14.4.48 MatT mappel::PointEmitterModel::make_param_mat() const [inline], [inherited]

Definition at line 172 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

8.14.4.49 template < class FillT > MatT mappel::PointEmitterModel::make_param_mat(FillT fill) const [inherited]

Definition at line 191 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

8.14.4.50 CubeT mappel::PointEmitterModel::make_param_mat_stack(ldxT n) const [inline], [inherited]

Definition at line 176 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

8.14.4.51 template < class FillT > CubeT mappel::PointEmitterModel::make_param_mat_stack (ldxT n, FillT fill) const [inherited]

Definition at line 196 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

8.14.4.52 PointEmitterModel::ParamVecT mappel::PointEmitterModel::make_param_stack(ldxT n) const [inline], [inherited]

Definition at line 168 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

Referenced by mappel::PointEmitterModel::bounded_theta_stack(), and mappel::PointEmitterModel::reflected_theta __stack().

8.14.4.53 template < class FillT > PointEmitterModel::ParamVecT mappel::PointEmitterModel::make_param_stack (ldxT n, FillT fill) const [inherited]

Definition at line 186 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

8.14.4.54 CompositeDist mappel::Gauss2DModel::make_prior_beta_position (const ImageSizeT & size, double beta_xpos, double beta_ypos, double mean_l, double kappa_l, double mean_bg, double kappa_bg) [static]

Definition at line 193 of file Gauss2DModel.cpp.

References mappel::PointEmitterModel::make_prior_component_intensity(), mappel::PointEmitterModel::make_prior \leftarrow _component_position_beta(), and mappel::ImageFormat2DBase::size.

8.14.4.55 prior_hessian::TruncatedGammaDist mappel::PointEmitterModel::make_prior_component_intensity (double mean = default mean I, double kappa = default intensity kappa) [static],[inherited]

Definition at line 98 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::default max I.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), make_default_prior_beta_position(), mappel::Gauss1DModel::make_default_prior_beta_position(), mappel::Gauss2DsModel::make_default_prior_beta_ \leftarrow position(), make_default_prior_normal_position(), mappel::Gauss1DsModel::make_default_prior_normal_position(), mappel::Gauss2DsModel::make_default_prior_ \leftarrow normal_position(), make_prior_beta_position(), mappel::Gauss1DsModel::make_prior_beta_position(), mappel::Gauss1DModel::make_prior_beta_position(), mappel::Gauss2DsModel::make_prior_beta_position(), make_prior_ \leftarrow normal_position(), mappel::Gauss1DsModel::make_prior_beta_position(), mappel::Gauss1DModel::make_prior_ \leftarrow normal_position(), and mappel::Gauss2DsModel::make_prior_normal_position().

8.14.4.56 prior_hessian::ScaledSymmetricBetaDist mappel::PointEmitterModel::make_prior_component_position_beta (IdxT size, double pos beta = default beta pos) [static],[inherited]

Definition at line 92 of file PointEmitterModel.cpp.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), make_default_prior_beta_position(), mappel::Gauss1DModel::make_default_prior_beta_position(), mappel::Gauss2DsModel::make_default_prior_beta position(), mappel::Gauss1DsModel::make_prior_beta_position(), mappel::Gauss1Dcookies1Dcookies1Dcookies2DsModel::make_prior_beta_position(), and mappel::Gauss2DsModel::make_prior_beta_position().

8.14.4.57 prior_hessian::TruncatedNormalDist mappel::PointEmitterModel::make_prior_component_position_normal(ldxT size, double pos sigma = default sigma pos) [static],[inherited]

Definition at line 85 of file PointEmitterModel.cpp.

Referenced by mappel::Gauss1DsModel::make_default_prior_normal_position(), make_default_prior_normal_cosition(), mappel::Gauss1DModel::make_default_prior_normal_position(), mappel::Gauss2DsModel::make_defaultcosition(), make_prior_normal_position(), mappel::Gauss1DsModel::make_prior_normal_position(), mappel::Gauss1DsModel::make_prior_normal_position().

8.14.4.58 prior_hessian::TruncatedParetoDist mappel::PointEmitterModel::make_prior_component_sigma (double min_sigma, double max_sigma, double alpha = default_alpha_sigma) [static], [inherited]

Definition at line 104 of file PointEmitterModel.cpp.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DsModel::make_ \leftarrow default_prior_beta_position(), mappel::Gauss1DsModel::make_default_prior_normal_position(), mappel::Gauss2 \leftarrow DsModel::make_default_prior_normal_position(), mappel::Gauss1DsModel::make_prior_beta_position(), mappel::Gauss2DsModel::make_prior_beta_position(), and mappel \leftarrow ::Gauss2DsModel::make_prior_normal_position().

8.14.4.59 CompositeDist mappel::Gauss2DModel::make_prior_normal_position (const ImageSizeT & size, double sigma_xpos, double beta_ypos, double mean_l, double kappa_l, double mean_bg, double kappa_bg) [static]

Definition at line 206 of file Gauss2DModel.cpp.

References mappel::PointEmitterModel::make_prior_component_intensity(), mappel::PointEmitterModel::make_prior component position normal(), and mappel::ImageFormat2DBase::size.

8.14.4.60 Gauss2DModel::Stencil mappel::Gauss2DModel::make_stencil (const ParamT & theta, bool compute_derivatives = true) const [inline]

Make a new Model::Stencil object at theta.

Stencils store all of the important calculations necessary for evaluating the log-likelihood and its derivatives at a particular theta (parameter) value.

This allows re-use of the most expensive computations. Stencils can be easily passed around by reference, and most functions in the mappel::methods namespace accept a const Stencil reference in place of the model parameter.

Throws mappel::ModelBoundsError if not model.theta in bounds(theta).

If derivatives will not be computed with this stencil set compute derivatives=false

Parameters

theta	Prameter to evaluate at
compute_derivatives	True to also prepare for derivative computations

Returns

A new Stencil object ready to compute with

Definition at line 131 of file Gauss2DModel.h.

References mappel::Gauss2DModel::Stencil::Stencil(), and mappel::PointEmitterModel::theta_in_bounds().

Referenced by initial_theta_estimate().

8.14.4.61 Gauss2DModel & mappel::Gauss2DModel::operator=(const Gauss2DModel & o) [protected]

Definition at line 38 of file Gauss2DModel.cpp.

References mappel::MCMCAdaptor2D::operator=(), psf_sigma, x_model, and y_model.

Referenced by debug_internal_sum_model_y(), mappel::Gauss2DMAP::operator=(), and mappel::Gauss2DMLE

::operator=().

8.14.4.62 Gauss2DModel & mappel::Gauss2DModel::operator=(Gauss2DModel && o) [protected]

Definition at line 49 of file Gauss2DModel.cpp.

References mappel::MCMCAdaptor2D::operator=(), psf_sigma, x_model, and y_model.

8.14.4.63 void mappel::Gauss2DModel::pixel_grad (int i, int j, const Stencil & s, ParamT & pgrad) const [inline]

Definition at line 159 of file Gauss2DModel.h.

References mappel::Gauss2DModel::Stencil::DX, mappel::Gauss2DModel::Stencil::DY, mappel::Gauss2DModel::Gauss2DModel::Stencil::Y.

Referenced by pixel_hess_update().

8.14.4.64 void mappel::Gauss2DModel::pixel_grad2 (int i, int j, const Stencil & s, ParamT & pgrad2) const [inline]

Definition at line 170 of file Gauss2DModel.h.

References mappel::Gauss2DModel::Stencil::DXS, mappel::Gauss2DModel::Stencil::DYS, mappel::Gauss2DModel::

Stencil::I(), psf sigma, mappel::Gauss2DModel::Stencil::X, and mappel::Gauss2DModel::Stencil::Y.

8.14.4.65 void mappel::Gauss2DModel::pixel_hess (int i, int j, const Stencil & s, MatT & hess) const [inline]

Definition at line 181 of file Gauss2DModel.h.

References mappel::Gauss2DModel::Stencil::DX, mappel::Gauss2DModel::Stencil::DXS, mappel::Gauss2DModel:: \Box Stencil::DY, mappel::Gauss2DModel::Stencil::DYS, mappel::Gauss2DModel::Stencil::I(), psf_sigma, mappel::Gauss2 \Box DModel::Stencil::X, and mappel::Gauss2DModel::Stencil::Y.

8.14.4.66 void mappel::Gauss2DModel::pixel_hess_update (int *i*, int *j*, const Stencil & *s*, double *dm_ratio_m1*, double *dmm_ratio*, ParamT & *grad*, MatT & *hess*) const

pixel derivative inner loop calculations.

Definition at line 282 of file Gauss2DModel.cpp.

References mappel::Gauss2DModel::Stencil::DX, mappel::Gauss2DModel::Eduss2DModel::Causs2DModel::Causs2DModel::Causs2DModel::Causs2DModel::Stencil::DY, mappel::Gauss2DModel::Stencil::DY, mappel::Gauss2DModel::Stencil::I(), mappel::PointEmitterModelcommake_param(), pixel_grad(), psf_sigma, mappel::Gauss2DModel::Stencil::X, and mappel::Gauss2DModel::Stencil::Y.

8.14.4.67 double mappel::Gauss2DModel::pixel_model_value (int i, int j, const Stencil & s) const [inline]

Definition at line 152 of file Gauss2DModel.h.

References mappel::Gauss2DModel::Stencil::bg(), mappel::Gauss2DModel::Stencil::I(), mappel::Gauss2DModel::

Stencil::X, and mappel::Gauss2DModel::Stencil::Y.

8.14.4.68 PointEmitterModel::ParamT mappel::PointEmitterModel::reflected_theta (const ParamT & theta) const [inherited]

Definition at line 276 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::ubound, mappel::PointEmitterModel::ubound.

Referenced by mappel::PointEmitterModel::reflected_theta_stack().

8.14.4.69 PointEmitterModel::ParamVecT mappel::PointEmitterModel::reflected_theta_stack(const ParamVecT & theta) const [inherited]

Definition at line 317 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::make_param_stack(), and mappel::PointEmitterModel::reflected_theta().

8.14.4.70 void mappel::PointEmitterModel::rename_hyperparam (const std::string & old_name, const std::string & new_name)
[inline], [inherited]

Definition at line 244 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.14.4.71 void mappel::MCMCAdaptor2D::sample_mcmc_candidate (ldxT sample_index, ParamT & candidate, double step_scale = 1.0) [inherited]

Definition at line 59 of file MCMCAdaptor2D.cpp.

References mappel::MCMCAdaptor1D::eta_bg, mappel::MCMCAdaptor1D::eta_l, mappel::MCMCAdaptor1D::eta_← x, mappel::MCMCAdaptor2D::eta y, mappel::MCMCAdaptorBase::num phases, and mappel::rng manager.

8.14.4.72 template < class RngT > PointEmitterModel::ParamT mappel::PointEmitterModel::sample_prior(RngT & rng) [inherited]

Definition at line 264 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.14.4.73 PointEmitterModel::ParamT mappel::PointEmitterModel::sample_prior() [inline], [inherited]

Definition at line 268 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior, and mappel::rng_manager.

8.14.4.74 void mappel:: $MCMCAdaptor1D::set_background_mcmc_sampling(double eta_bg = -1) [inherited]$

Definition at line 81 of file MCMCAdaptor1 D.cpp.

References mappel::PointEmitterModel::default_pixel_mean_bg, mappel::MCMCAdaptor1D::eta_bg, mappel::PointcointcointerModel::get_hyperparam_value(), mappel::PointEmitterModel::get_bound(), mappel::PointEmitterModel::get_cointcointermodel::get_cointcoint

Referenced by mappel::MCMCAdaptor1D::MCMCAdaptor1D().

8.14.4.75 void mappel::PointEmitterModel::set_bounds (const ParamT & *lbound_*, const ParamT & *ubound_*)

[inherited]

Box-type parameter bounds

Modifies the prior bounds to prevent sampling outside the valid box-constraints.

Definition at line 213 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounds_epsilon, mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::pointEmitterModel::ubound, mappel::PointEmitterModel::ubound.

8.14.4.76 void mappel::PointEmitterModel::set_hyperparam_names (const StringVecT & *desc* **)** [inline], [inherited]

Definition at line 260 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.14.4.77 void mappel::PointEmitterModel::set_hyperparam_value (const std::string & name, double value) [inline], [inherited]

Definition at line 240 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.14.4.78 void mappel::Gauss2DModel::set_hyperparams (const VecT & hyperparams)

Definition at line 109 of file Gauss2DModel.cpp.

References mappel::PointEmitterModel::set_hyperparams(), and update_internal_1Dsum_estimators().

8.14.4.79 template < class ImT > void mappel::ImageFormat2DBase::set_image_in_stack (ImageStackT & stack, ImageCoordT n, const ImT & im) const [inherited]

Definition at line 113 of file ImageFormat2DBase.h.

8.14.4.80 void mappel::MCMCAdaptor1D::set_intensity_mcmc_sampling (double eta_I = -1) [inherited]

Definition at line 65 of file MCMCAdaptor1D.cpp.

References mappel::PointEmitterModel::default_mean_I, mappel::MCMCAdaptor1D::eta_I, mappel::PointEmitter Model::get hyperparam value(), and mappel::MCMCAdaptorBase::sigma scale.

Referenced by mappel::MCMCAdaptor1D::MCMCAdaptor1D().

8.14.4.81 void mappel::PointEmitterModel::set Ibound (const ParamT & Ibound) [inherited]

Definition at line 226 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounds_epsilon, mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::pointEmitterModel::ubound, mappel::PointEmitterModel::ubound.

Referenced by mappel::Gauss1DsModel::set min sigma().

8.14.4.82 void mappel::MCMCAdaptorBase::set_mcmc_num_phases(| IdxT num_phases) [protected], [inherited]

Definition at line 59 of file MCMCAdaptorBase.cpp.

References mappel::MCMCAdaptorBase::num_phases.

Referenced by mappel::MCMCAdaptor1Ds::MCMCAdaptor1Ds(), and mappel::MCMCAdaptor2Ds::MCMCAdaptor2Ds().

8.14.4.83 void mappel::MCMCAdaptorBase::set_mcmc_sigma_scale (double scale) [inherited]

Definition at line 39 of file MCMCAdaptorBase.cpp.

References mappel::MCMCAdaptorBase::global_max_mcmc_sigma_scale, and mappel::MCMCAdaptorBase::sigma
scale.

```
8.14.4.84 void mappel::PointEmitterModel::set_param_names ( const StringVecT & desc ) [inline], [inherited]
Definition at line 252 of file PointEmitterModel.h.
References mappel::PointEmitterModel::prior.
8.14.4.85 void mappel::Gauss2DModel::set_prior ( CompositeDist && prior_ )
Definition at line 97 of file Gauss2DModel.cpp.
References mappel::PointEmitterModel::set prior(), and update internal 1Dsum estimators().
8.14.4.86 void mappel::Gauss2DModel::set_prior ( const CompositeDist & prior_ )
Definition at line 103 of file Gauss2DModel.cpp.
References mappel::PointEmitterModel::set prior(), and update internal 1Dsum estimators().
8.14.4.87 void mappel::Gauss2DModel::set psf sigma ( double new psf sigma ) [inline]
Definition at line 146 of file Gauss2DModel.h.
8.14.4.88 void mappel::Gauss2DModel::set_psf_sigma ( const VecT & new_psf_sigma )
Definition at line 123 of file Gauss2DModel.cpp.
References mappel::PointEmitterModel::check psf sigma(), psf sigma, mappel::Gauss1DModel::set psf sigma(), x←
_model, and y_model.
8.14.4.89 void mappel::PointEmitterModel::set_rng_seed( RngSeedT seed ) [static], [inherited]
Definition at line 110 of file PointEmitterModel.cpp.
References mappel::rng_manager.
8.14.4.90 void mappel::Gauss2DModel::set_size ( const ImageSizeT & size_ )
Definition at line 115 of file Gauss2DModel.cpp.
References mappel::ImageFormat2DBase::set_size(), mappel::ImageFormat1DBase::set_size(), mappel::ImageFormat1DBase::set_size(), mappel::ImageFormat2DBase::set_size(), mappel
Format2DBase::size, x_model, and y_model.
8.14.4.91 void mappel::PointEmitterModel::set_ubound ( const ParamT & ubound ) [inherited]
Definition at line 237 of file PointEmitterModel.cpp.
```

Referenced by mappel::Gauss1DsModel::set_max_sigma(), and mappel::Gauss2DsModel::set_max_sigma_ratio().

Model::num params, mappel::PointEmitterModel::prior, and mappel::PointEmitterModel::ubound.

References mappel::PointEmitterModel::bounds epsilon, mappel::PointEmitterModel::lbound, mappel::PointEmitter←

8.14.4.92 bool mappel::PointEmitterModel::theta_in_bounds (const ParamT & theta) const [inherited]

Definition at line 257 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::Point← EmitterModel::num_params, and mappel::PointEmitterModel::ubound.

Referenced by initial_theta_estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::Gauss1DModel :::make_stencil(), mappel::Gauss2DsxyModel::make_c ::make_stencil(), mappel::Gauss2DsxyModel::make_c ::pointEmitterModel::theta stack in bounds().

8.14.4.93 BoolVecT mappel::PointEmitterModel::theta_stack_in_bounds (const ParamVecT & theta) const [inherited]

Definition at line 297 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), and mappel::PointEmitterModel::theta_in_bounds().

8.14.4.94 void mappel::Gauss2DModel::update_internal_1Dsum_estimators() [protected]

Definition at line 91 of file Gauss2DModel.cpp.

References mappel::PointEmitterModel::get_prior(), make_internal_1Dsum_estimator(), psf_sigma, mappel::Image ← Format2DBase::size, x_model, and y_model.

Referenced by debug_internal_sum_model_y(), set_hyperparams(), and set_prior().

8.14.5 Member Data Documentation

8.14.5.1 const double mappel::PointEmitterModel::bounds_epsilon = 1.0E-6 [static], [inherited]

Distance from the boundary to constrain in bound_theta and bounded_theta methods

Definition at line 52 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::set_bounds(), mappel::PointEmitterModel::set_lbound(), mappel::Gauss2 DsModel::set_max_sigma_ratio(), and mappel::PointEmitterModel::set_ubound().

8.14.5.2 const double mappel::PointEmitterModel::default_alpha_sigma = 2 [static], [inherited]

Default per-pixel background gamma distribution shape

Definition at line 62 of file PointEmitterModel.h.

8.14.5.3 const double mappel::PointEmitterModel::default_beta_pos = 3 [static], [inherited]

Default position parameter in symmetric beta-distributions

Definition at line 56 of file PointEmitterModel.h.

8.14.5.4 const double mappel::PointEmitterModel::default_intensity_kappa = 2 [static], [inherited] Default shape for intensity gamma distributions Definition at line 60 of file PointEmitterModel.h. 8.14.5.5 const double mappel::PointEmitterModel::default_max_I = INFINITY [static], [inherited] Default maximum emitter intensity Definition at line 59 of file PointEmitterModel.h. Referenced by mappel::PointEmitterModel::make prior component intensity(). **8.14.5.6** const double mappel::PointEmitterModel::default_mean_l = 300 [static], [inherited] Default emitter intensity mean Definition at line 58 of file PointEmitterModel.h. Referenced by mappel::MCMCAdaptor1D::set intensity mcmc sampling(). **8.14.5.7** const double mappel::PointEmitterModel::default_pixel_mean_bg = 4 [static], [inherited] Default per-pixel mean background counts Definition at line 61 of file PointEmitterModel.h. Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), make_default_prior_beta_position(), mappel::Gauss1DModel::make default prior beta position(), mappel::Gauss2DsModel::make default prior beta ← position(), mappel::Gauss1DsModel::make default prior normal position(), make default prior normal position(), mappel::Gauss1DModel::make default prior normal position(), mappel::Gauss2DsModel::make default prior ← normal_position(), and mappel::MCMCAdaptor1D::set_background_mcmc_sampling(). 8.14.5.8 const double mappel::PointEmitterModel::default_sigma_pos = 1 [static], [inherited] Default position parameter in symmetric beta-distributions Definition at line 57 of file PointEmitterModel.h. **8.14.5.9** const std::string mappel::Gauss2DModel::DefaultPriorType = "Normal" [static] Definition at line 51 of file Gauss2DModel.h. Referenced by get psf sigma().

8.14.5.10 const std::string mappel::PointEmitterModel::DefaultSeperableInitEstimator = "TrustRegion" [static], [inherited]

Estimator name to use in 1D separable initializations

Definition at line 49 of file PointEmitterModel.h.

Referenced by initial_theta_estimate(), mappel::Gauss2DsxyModel::initial_theta_estimate(), and mappel::Gauss2Ds Model::initial_theta_estimate().

```
8.14.5.11 double mappel::MCMCAdaptor1D::eta_bg = 0 [protected], [inherited]
```

The standard deviation for the normally distributed perturbation to theta bg in the random walk MCMC sampling

Definition at line 32 of file MCMCAdaptor1D.h.

Referenced by mappel::MCMCAdaptor1D::get_stats(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MC—CMCAdaptor1D::operator=(), mappel::MCMCAdaptor2D::sample_mcmc_candidate(), mappel::MCMCAdaptor1Ds::sample_mcmc_candidate(), mappel::MCMCAdaptor1Dc-:sample_mcmc_candidate(), and mappel::MCMCAdaptor1D::set_background_mcmc_sampling().

```
8.14.5.12 double mappel::MCMCAdaptor1D::eta_l = 0 [protected], [inherited]
```

The standard deviation for the normally distributed perturbation to theta_I in the random walk MCMC sampling

Definition at line 31 of file MCMCAdaptor1D.h.

Referenced by mappel::MCMCAdaptor1D::get_stats(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCCAdaptor1D(), mappel::MCMCAdaptor2Ds(), mappel::MCMCAdaptor2Ds(), mappel::MCMCAdaptor1Ds::sample_mcmc_candidate(), mappel::MCMCAdaptor1Dc::sample_mcmc_candidate(), mappel::MCMCAdaptor1Dc::sample_mcmc_candidate(), and mappel::MCMCAdaptor1D::set_intensity_mcmc_sampling().

```
8.14.5.13 double mappel::MCMCAdaptor1D::eta_x = 0 [protected], [inherited]
```

The standard deviation for the normally distributed perturbation to theta x in the random walk MCMC sampling

Definition at line 30 of file MCMCAdaptor1D.h.

Referenced by mappel::MCMCAdaptor1D::get_stats(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCCAdaptor1D::perator=(), mappel::MCMCAdaptor1Ds::sample_mcmc_candidate(), mappel::MCMCAdaptor2D \leftarrow ::sample_mcmc_candidate(), mappel::MCMCAdaptor2Ds::sample_mcmc_candidate(), and mappel::MCMCAdaptor1 \leftarrow D::sample_mcmc_candidate().

```
8.14.5.14 double mappel::MCMCAdaptor2D::eta_y =0 [protected], [inherited]
```

The standard deviation for the normally distributed perturbation to theta_y in the random walk MCMC sampling

Definition at line 27 of file MCMCAdaptor2D.h.

Referenced by mappel::MCMCAdaptor2D::get_stats(), mappel::MCMCAdaptor2D::MCMCAdaptor2D(), mappel::MCCAdaptor2D::mcMCAdaptor2D::mcMcAdaptor2D::mcMcAdaptor2Dc::mcMcAdaptor2Dc::mcMcAdaptor2Dc::sample mcmc candidate().

8.14.5.15 const double mappel::MCMCAdaptorBase::global_default_mcmc_sigma_scale = 0.05 [static], [inherited]

Definition at line 16 of file MCMCAdaptorBase.h.

Referenced by mappel::MCMCAdaptor1Ds::MCMCAdaptor1Ds(), mappel::MCMCAdaptor2D::MCMCAdaptor2D(), and mappel::MCMCAdaptor2Ds::MCMCAdaptor2Ds().

8.14.5.16 const double mappel::MCMCAdaptorBase::global_max_mcmc_sigma_scale = 0.5 [static], [inherited]

Definition at line 17 of file MCMCAdaptorBase.h.

Referenced by mappel::MCMCAdaptorBase::MCMCAdaptorBase(), and mappel::MCMCAdaptorBase::set_mcmc_ sigma_scale().

8.14.5.17 const double mappel::PointEmitterModel::global_max_psf_sigma = 1E2 [static], [inherited]

Global maxmimum for any psf_sigma. Sizes above this value are invalid, and nowhere near useful for practical point emitter localization

Definition at line 54 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::check_psf_sigma().

8.14.5.18 const ImageFormat2DBase::ImageCoordT mappel::ImageFormat2DBase::global_max_size =512 [static], [inherited]

Maximum size along any dimension of the image. This is insanely big to catch obvious errors

Definition at line 39 of file ImageFormat2DBase.h.

Referenced by mappel::ImageFormat2DBase::check_size().

8.14.5.19 const double mappel::PointEmitterModel::global_min_psf_sigma = 1E-1 [static], [inherited]

Global minimum for any psf_sigma. Sizes below this value are invalid, and nowhere near useful for practical point emitter localization

Definition at line 53 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::check_psf_sigma().

8.14.5.20 const ImageFormat2DBase::ImageCoordT mappel::ImageFormat2DBase::global_min_size =3 [static], [inherited]

Minimum size along any dimension of the image.

Definition at line 38 of file ImageFormat2DBase.h.

Referenced by mappel::ImageFormat2DBase::check_size().

8.14.5.21 ParamT mappel::PointEmitterModel::lbound [protected], [inherited]

Definition at line 148 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel:: \leftarrow PointEmitterModel::get_lbound(), mappel::PointEmitterModel::get_stats(), mappel::Gauss1DsModel::initial_theta_ \leftarrow estimate(), initial_theta_estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::PointEmitterModel.::operator=(), mappel::PointEmitterModel::reflected_theta(), mappel::PointEmitterModel::set_bounds(), mappel::PointEmitterModel::set_ubound(), and mappel::PointEmitterModel::set_ubounds().

8.14.5.22 const ImageFormat2DBase::ImageCoordT mappel::ImageFormat2DBase::num_dim =2 [static], [inherited]

Number of image dimensions.

Definition at line 37 of file ImageFormat2DBase.h.

Referenced by mappel::ImageFormat2DBase::get_stats().

8.14.5.23 | IdxT mappel::PointEmitterModel::num_hyperparams [protected], [inherited]

Definition at line 147 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::get_num_hyperparams(), mappel::PointEmitterModel::get_stats(), mappel::get_stats(), mappel::get_stats()

8.14.5.24 IdxT mappel::PointEmitterModel::num_params [protected], [inherited]

Definition at line 146 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel ::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::get_num_params(), mappel::PointEmitter \leftarrow Model::get_stats(), mappel::Gauss1DModel::initial_theta_estimate(), initial_theta_estimate(), mappel::Gauss2Ds \leftarrow Model::initial_theta_estimate(), mappel::PointEmitterModel::make_param(), mappel::PointEmitterModel::make_toparam_mat(), mappel::PointEmitterModel::make_param_mat_stack(), mappel::PointEmitterModel::make_param_toparam_toparam_toparam(), mappel::PointEmitterModel::pointEm

8.14.5.25 IdxT mappel::MCMCAdaptorBase::num_phases [protected], [inherited]

The number of different sampling phases for candidate selection MCMC. Each phase changes a different subset of variables.

Definition at line 29 of file MCMCAdaptorBase.h.

Referenced by mappel::MCMCAdaptorBase::get_mcmc_num_phases(), mappel::MCMCAdaptorBase::get_stats(), mappel::MCMCAdaptor2D::sample_mcmc_candidate(), mappel::MCMCAdaptor1Ds::sample_mcmc_candidate(), mappel::MCMCAdaptor1D::sample_mcmc_candidate(), and mappel::MCMCAdaptorBase::set mcmc num phases().

8.14.5.26 CompositeDist mappel::PointEmitterModel::prior [protected], [inherited]

Definition at line 145 of file PointEmitterModel.h.

Referenced by debug_internal_sum_model_y(), mappel::Gauss2DsModel::debug_internal_sum_model_y(), Gauss2 DModel(), mappel::Gauss2DsModel::Gauss2DsModel(), mappel::PointEmitterModel::get_hyperparam_index(), mappel::PointEmitterModel::get_hyperparam_value(), mappel::PointEmitterModel::get_hyperparam_value(), mappel::PointEmitterModel::get_hyperparam_value(), mappel::PointEmitterModel::get_param_names(), mappel::PointEmitterModel::get_prior(), mappel::PointEmitterModel::get_prior(), mappel::PointEmitterModel::get_prior(), mappel::PointEmitterModel::pointEmitterModel::pointEmitterModel::rename_hyperparam(), mappel::PointEmitterModel::pointEmitterModel::set_bounds(), mappel::PointEmitterModel::set_pyperparam_value(), mappel::PointEmitterModel::set_pyperparam_value(), mappel::PointEmitterModel::set_pyperparam_value(), mappel::PointEmitterModel::set_pyperparam_value(), mappel::PointEmitterModel::set_pyperparam_s(), mappel::PointEmitterModel::set_pyperparam_names(), map

8.14.5.27 const StringVecT mappel::Gauss2DModel::prior_types [static]

Initial value:

```
= { "Beta", "Normal" }
```

Definition at line 50 of file Gauss2DModel.h.

Referenced by get_psf_sigma().

8.14.5.28 VecT mappel::Gauss2DModel::psf_sigma [protected]

Standard deviation of the fixed-sigma 1D Gaussian PSF in pixels

Definition at line 104 of file Gauss2DModel.h.

Referenced by mappel::cgauss_compute_estimate(), mappel::cgauss_compute_estimate_debug(), mappel::cgauss_ \leftarrow heuristic_compute_estimate(), mappel::Gauss2DModel::Stencil::compute_derivatives(), debug_internal_sum_model \leftarrow _y(), Gauss2DModel(), get_psf_sigma(), make_internal_1Dsum_estimator(), operator=(), pixel_grad2(), pixel_hess(), pixel_hess_update(), set_psf_sigma(), mappel::Gauss2DModel::Stencil::Stencil(), and update_internal_1Dsum_ \leftarrow estimators().

8.14.5.29 double mappel::MCMCAdaptorBase::sigma_scale [protected], [inherited]

A scaling factor for step sizes as a fraction of the size of the domain dimension we are walking in. (0.05 default)

Definition at line 30 of file MCMCAdaptorBase.h.

8.14.5.30 ImageSizeT mappel::ImageFormat2DBase::size [protected], [inherited]

Number of pixels in X dimension for 1D image

Definition at line 67 of file ImageFormat2DBase.h.

Referenced by mappel::cgauss_compute_estimate(), mappel::cgauss_compute_estimate_debug(), mappel::cgauss ← _heuristic_compute_estimate(), $\,\,$ mappel::ImageFormat2DBase::check_image_shape(), $\,\,$ mappel::Gauss2DModel:: \leftarrow Stencil::compute_derivatives(), mappel::Gauss2DsModel::Stencil::compute_derivatives(), debug_internal_sum_ <-mappel::Gauss2DsModel::debug internal sum model y(), mappel::methods::expected information(), Gauss2DModel(), mappel::Gauss2DsMAP::Gauss2DsMAP(), mappel::Gauss2DsMLE::Gauss2DsMLE(), mappel ← ::Gauss2DsModel::Gauss2DsModel(), mappel::ImageFormat2DBase::get num pixels(), mappel::ImageFormat2D ← Base::get size(), mappel::ImageFormat2DBase::get stats(), mappel::methods::likelihood::grad(), mappel::methods⇔ ::likelihood::grad2(), mappel::methods::likelihood::debug::grad components(), mappel::methods::likelihood::hessian(), mappel::methods::likelihood::debug::hessian components(), initial theta estimate(), mappel::Gauss2DsModel← ::initial theta estimate(), mappel::methods::likelihood::llh(), mappel::methods::likelihood::debug::llh components(), make_default_prior_beta_position(), mappel::Gauss2DsModel::make_default_prior_beta_position(), make_default_← prior normal position(), mappel::Gauss2DsModel::make default prior normal position(), mappel::ImageFormat2← DBase::make image(), mappel::ImageFormat2DBase::make image stack(), make internal 1Dsum estimator(), mappel::Gauss2DsModel::make internal 1Dsum estimator(), make prior beta position(), mappel::Gauss2Ds ← Model::make prior beta position(), make prior normal position(), mappel::Gauss2DsModel::make prior normal ← _position(), mappel::methods::model_image(), mappel::lmageFormat2DBase::operator=(), mappel::methods ← ::likelihood::rllh(), mappel::methods::likelihood::debug::rllh components(), mappel::ImageFormat2DBase::set size(), set_size(), mappel::Gauss2DsModel::set_size(), mappel::methods::simulate_image(), mappel::methods::simulate_← image from model(), mappel::Gauss2DModel::Stencil(), mappel::Gauss2DsModel::Stencil(), update ← _internal_1Dsum_estimators(), and mappel::Gauss2DsModel::update_internal_1Dsum_estimators().

8.14.5.31 ParamT mappel::PointEmitterModel::ubound [protected], [inherited]

Definition at line 148 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel:: \leftarrow PointEmitterModel::get_stats(), mappel::PointEmitterModel::get_ubound(), mappel::Gauss1DsModel::initial_theta_compared estimate(), initial_theta_estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::PointEmitterModel.::operator=(), mappel::PointEmitterModel::reflected_theta(), mappel::PointEmitterModel::set_bounds(), mappel::PointEmitterModel::set_ubound(), and mappel::PointEmitterModel::set_ubounds().

8.14.5.32 Gauss1DSumModelT mappel::Gauss2DModel::x_model [protected]

X-model fits 2D images X-axis (column sum)

Definition at line 105 of file Gauss2DModel.h.

Referenced by debug_internal_sum_model_x(), initial_theta_estimate(), operator=(), set_psf_sigma(), set_size(), and update internal 1Dsum estimators().

8.14.5.33 Gauss1DSumModelT mappel::Gauss2DModel::y_model [protected]

Y-model fits 2D images Y-axis (row sum)

Definition at line 106 of file Gauss2DModel.h.

Referenced by debug_internal_sum_model_y(), Gauss2DModel(), initial_theta_estimate(), operator=(), set_psf \leftarrow sigma(), set_size(), and update_internal_1Dsum_estimators().

The documentation for this class was generated from the following files:

- · Gauss2DModel.h
- Gauss2DModel.cpp

8.15 mappel::Gauss2DsMAP Class Reference

A 2D Gaussian with a variable scalar PSF sigma under a Poisson noise assumption using a maximum a-posteriori objective.

#include </home/travis/build/markjolah/Mappel/include/Mappel/Gauss2DsMAP.h>

Inheritance diagram for mappel::Gauss2DsMAP:

Public Types

- using Gauss1DSumModelT = Gauss1DsMAP
- using StencilVecT = std::vector < Stencil >
- using ParamT = arma::vec
- using ParamVecT = arma::mat
- using ImageCoordT = uint32 t
- using ImagePixeIT = double
- template < class CoordT >

using ImageSizeShapeT = arma::Col< CoordT >

• template<class CoordT >

using ImageSizeVecShapeT = arma::Mat< CoordT >

- using ImageSizeT = ImageSizeShapeT < ImageCoordT >
- using ImageSizeVecT = ImageSizeVecShapeT< ImageCoordT >
- template < class PixelT >

using ImageShapeT = arma::Mat< PixeIT >

template < class PixelT >

using ImageStackShapeT = arma::Cube < PixelT >

- using ImageT = ImageShapeT < ImagePixelT >
- using ImageStackT = ImageStackShapeT < ImagePixeIT >
- using ModelDataT = ImageT
- using ModelDataStackT = ImageStackT

Public Member Functions

- Gauss2DsMAP (const ImageSizeT &size, const VecT &min_sigma, double max_sigma_ratio, const std::string &prior_type=DefaultPriorType)
- Gauss2DsMAP (const ImageSizeT &size, const VecT &min_sigma, const VecT &max_sigma, const std::string &prior_type=DefaultPriorType)
- Gauss2DsMAP (const ImageSizeT &size, const VecT &min_sigma, CompositeDist &&prior)
- Gauss2DsMAP (const ImageSizeT &size, const VecT &min_sigma, const CompositeDist &prior)
- Gauss2DsMAP (const Gauss2DsMAP &o)
- Gauss2DsMAP & operator= (const Gauss2DsMAP &o)
- Gauss2DsMAP (Gauss2DsMAP &&o)
- Gauss2DsMAP & operator= (Gauss2DsMAP &&o)
- void set_hyperparams (const VecT &hyperparams)
- void set_prior (CompositeDist &&prior_)
- void set_prior (const CompositeDist &prior)
- void set size (const ImageSizeT &size)
- VecT get_min_sigma () const
- double get_min_sigma (ldxT dim) const
- VecT get max sigma () const
- double get_max_sigma (ldxT dim) const
- double get_max_sigma_ratio () const
- void set min sigma (const VecT &min sigma)
- void set max sigma (const VecT &max sigma)
- void set_max_sigma_ratio (double max_sigma_ratio)
- StatsT get_stats () const
- Stencil make_stencil (const ParamT &theta, bool compute_derivatives=true) const

Make a new Model::Stencil object at theta.

- · double pixel model value (int i, int j, const Stencil &s) const
- void pixel_grad (int i, int j, const Stencil &s, ParamT &pgrad) const
- void pixel grad2 (int i, int j, const Stencil &s, ParamT &pgrad2) const
- void pixel_hess (int i, int j, const Stencil &s, MatT &hess) const
- void pixel_hess_update (int i, int j, const Stencil &s, double dm_ratio_m1, double dmm_ratio, ParamT &grad, MatT &hess) const

pixel derivative inner loop calculations.

Stencil initial_theta_estimate (const ImageT &im)

Fast, heuristic estimate of initial theta.

- Stencil initial_theta_estimate (const ImageT &im, const ParamT &theta_init)
- Stencil initial_theta_estimate (const ImageT &im, const ParamT &theta_init, const std::string &estimator)
- Gauss1DSumModelT debug_internal_sum_model_x () const
- Gauss1DSumModelT debug internal sum model y () const
- IdxT get num params () const
- void check param shape (const ParamT &theta) const
- void check param shape (const ParamVecT &theta) const
- void check_psf_sigma (double psf_sigma) const
- void check_psf_sigma (const VecT &psf_sigma) const
- ParamT make param () const
- template<class FillT >

ParamT make param (FillT fill) const

- ParamVecT make_param_stack (ldxT n) const
- template < class FillT >

ParamVecT make param stack (IdxT n, FillT fill) const

- MatT make_param_mat () const
- template < class FillT >

MatT make param mat (FillT fill) const

- CubeT make_param_mat_stack (ldxT n) const
- template<class FillT >

CubeT make_param_mat_stack (ldxT n, FillT fill) const

- CompositeDist & get prior ()
- · const CompositeDist & get prior () const
- IdxT get_num_hyperparams () const
- VecT get_hyperparams () const
- bool has hyperparam (const std::string &name) const
- double get_hyperparam_value (const std::string &name) const
- int get hyperparam index (const std::string &name) const
- void set hyperparam value (const std::string &name, double value)
- void rename hyperparam (const std::string &old name, const std::string &new name)
- StringVecT get_param_names () const
- void set param names (const StringVecT &desc)
- StringVecT get_hyperparam_names () const
- void set_hyperparam_names (const StringVecT &desc)
- template<class RngT >

ParamT sample_prior (RngT &rng)

- ParamT sample prior ()
- void set_bounds (const ParamT &lbound, const ParamT &ubound)
- void set Ibound (const ParamT & Ibound)
- void set ubound (const ParamT &ubound)
- · const ParamT & get_lbound () const
- · const ParamT & get ubound () const
- bool theta_in_bounds (const ParamT &theta) const
- void bound_theta (ParamT &theta, double epsilon=bounds_epsilon) const
- ParamT bounded_theta (const ParamT &theta, double epsilon=bounds_epsilon) const
- ParamT reflected_theta (const ParamT &theta) const
- BoolVecT theta_stack_in_bounds (const ParamVecT &theta) const
- ParamVecT bounded_theta_stack (const ParamVecT &theta, double epsilon=bounds_epsilon) const
- ParamVecT reflected theta stack (const ParamVecT &theta) const
- ImageT make_image () const
- ImageStackT make_image_stack (ImageCoordT n) const
- ImageCoordT get_size_image_stack (const ImageStackT &stack) const
- ImageT get image from stack (const ImageStackT &stack, ImageCoordT n) const
- template<class ImT >

void set image in stack (ImageStackT &stack, ImageCoordT n, const ImT &im) const

- const ImageSizeT & get_size () const
- ImageCoordT get_size (IdxT idx) const
- ImageCoordT get num pixels () const
- void check_image_shape (const ImageT &im) const

Check the shape of a single images is correct for model size.

void check_image_shape (const ImageStackT &ims) const

Check the shape of a stack of images is correct for model size.

- void sample mcmc candidate (IdxT sample index, ParamT &candidate, double step scale=1.0)
- void set_intensity_mcmc_sampling (double eta_I=-1)
- void set background mcmc sampling (double eta bg=-1)
- void set_mcmc_sigma_scale (double scale)
- double get_mcmc_sigma_scale () const
- IdxT get mcmc num phases () const

Static Public Member Functions

- static CompositeDist make_default_prior (const ImageSizeT &size, double max_sigma_ratio, const std::string &prior_type)
- static CompositeDist make_default_prior_beta_position (const ImageSizeT &size, double max_sigma_ratio)
- static CompositeDist make_default_prior_normal_position (const ImageSizeT &size, double max_sigma_ratio)
- static CompositeDist make_prior_beta_position (const ImageSizeT &size, double beta_xpos, double beta_ypos, double mean_l, double kappa_l, double mean_bg, double kappa_bg, double max_sigma_ratio, double alpha_
 sigma)
- static CompositeDist make_prior_normal_position (const ImageSizeT &size, double sigma_xpos, double sigma_xpos, double sigma_ypos, double mean_l, double kappa_l, double mean_bg, double kappa_bg, double max_sigma_ratio, double alpha sigma)
- static prior_hessian::ScaledSymmetricBetaDist make_prior_component_position_beta (IdxT size, double pos_
 beta=default_beta_pos)

- static void set_rng_seed (RngSeedT seed)
- static ParallelRngManagerT & get_rng_manager ()
- static ParallelRngGeneratorT & get_rng_generator()
- static void check_size (const ImageSizeT &size_)

Check the size argument for the model.

Static Public Attributes

- · static const std::string name
- static const StringVecT prior types
- static const std::string DefaultPriorType = "Normal"
- static const std::string DefaultSeperableInitEstimator = "TrustRegion"
- static const double bounds_epsilon = 1.0E-6
- static const double global min psf sigma = 1E-1
- static const double global max psf sigma = 1E2
- static const double default_beta_pos = 3
- static const double default_sigma_pos = 1
- static const double default_mean_I = 300
- static const double default_max_I = INFINITY
- static const double default_intensity_kappa = 2
- static const double default_pixel_mean_bg = 4
- static const double default_alpha_sigma = 2
- static const ImageCoordT num dim =2
- static const ImageCoordT global_min_size =3
- static const ImageCoordT global max size =512
- static const double global default mcmc sigma scale = 0.05
- static const double global_max_mcmc_sigma_scale = 0.5
- static const std::vector< std::string > estimator names

Protected Member Functions

- void update internal 1Dsum estimators ()
- void set_mcmc_num_phases (ldxT num_phases)

Static Protected Member Functions

- static Gauss1DSumModelT make_internal_1Dsum_estimator (ldxT dim, const ImageSizeT &size, const VecT &min_sigma, const VecT &max_sigma, const CompositeDist &prior)
- static double compute_max_sigma_ratio (const VecT &min_sigma, const VecT &max_sigma)

Protected Attributes

- · VecT min sigma
- Gauss1DSumModelT x_model
- · Gauss1DSumModelT y model
- CompositeDist prior
- IdxT num_params
- · IdxT num hyperparams
- ParamT Ibound
- · ParamT ubound
- ImageSizeT size
- double eta_sigma =0
- double eta y =0
- double eta_x =0
- double eta_l =0
- double eta_bg =0
- IdxT num_phases
- · double sigma scale

8.15.1 Detailed Description

A 2D Gaussian with a variable scalar PSF sigma under a Poisson noise assumption using a maximum a-posteriori objective.

Model: Gauss2DsModel - 2D Gaussian variable scalar PSF sigma Objective: PoissonNoise2DObjective - Poisson noise model for 2D Estimator: MAPEstimator - Maximum a-posteriori estimator

Definition at line 24 of file Gauss2DsMAP.h.

- 8.15.2 Member Typedef Documentation
- 8.15.2.1 using mappel::Gauss2DsModel::Gauss1DSumModelT = Gauss1DsMAP [inherited]

Definition at line 26 of file Gauss2DsModel.h.

8.15.2.2 using mappel::ImageFormat2DBase::ImageCoordT = uint32_t [inherited]

Image size coordinate storage type

Definition at line 24 of file ImageFormat2DBase.h.

8.15.2.3 using mappel::ImageFormat2DBase::ImagePixelT = double [inherited]

Image pixel storage type

Definition at line 25 of file ImageFormat2DBase.h.

8.15.2.4 template < class PixelT > using mappel::ImageFormat2DBase::ImageShapeT = arma::Mat < PixelT > [inherited]

Shape of the data type for a single image

Definition at line 32 of file ImageFormat2DBase.h.

8.15.2.5 template < class CoordT > using mappel::ImageFormat2DBase::ImageSizeShapeT = arma::Col < CoordT > [inherited]

Shape of the data type to store a single image's coordinates

Definition at line 27 of file ImageFormat2DBase.h.

8.15.2.6 using mappel::ImageFormat2DBase::ImageSizeT = ImageSizeShapeT<ImageCoordT>
[inherited]

Data type for a single image size

Definition at line 29 of file ImageFormat2DBase.h.

8.15.2.7 template < class CoordT > using mappel::ImageFormat2DBase::ImageSizeVecShapeT = arma::Mat < CoordT > [inherited]

Shape of the data type to store a vector of image's coordinates

Definition at line 28 of file ImageFormat2DBase.h.

8.15.2.8 using mappel::ImageFormat2DBase::ImageSizeVecT = ImageSizeVecShapeT < ImageCoordT > [inherited]

Data type for a sequence of image sizes

Definition at line 30 of file ImageFormat2DBase.h.

8.15.2.9 template < class PixelT > using mappel::ImageFormat2DBase::ImageStackShapeT = arma::Cube < PixelT > [inherited]

Shape of the data type for a sequence of images

Definition at line 33 of file ImageFormat2DBase.h.

8.15.2.10 using mappel::ImageFormat2DBase::ImageStackT = ImageStackShapeT < ImagePixeIT > [inherited]

Data type to represent a sequence of images

Definition at line 35 of file ImageFormat2DBase.h.

8.15.2.11 using mappel::ImageFormat2DBase::ImageT = ImageShapeT < ImagePixeIT > [inherited]

Data type to represent single image

Definition at line 34 of file ImageFormat2DBase.h.

8.15.2.12 using mappel::PoissonNoise2DObjective::ModelDataStackT = ImageStackT [inherited]

Objective function data stack type: 2D double precision image stack, of images gain-corrected to approximate photons counts

Definition at line 25 of file PoissonNoise2DObjective.h.

8.15.2.13 using mappel::PoissonNoise2DObjective::ModelDataT = ImageT [inherited]

Objective function data type: 2D double precision image, gain-corrected to approximate photons counts

Definition at line 24 of file PoissonNoise2DObjective.h.

8.15.2.14 using mappel::PointEmitterModel::ParamT = arma::vec [inherited]

Parameter vector

Definition at line 47 of file PointEmitterModel.h.

8.15.2.15 using mappel::PointEmitterModel::ParamVecT = arma::mat [inherited]

Vector of parameter vectors

Definition at line 48 of file PointEmitterModel.h.

8.15.2.16 using mappel::Gauss2DsModel::StencilVecT = std::vector < Stencil > [inherited]

Definition at line 55 of file Gauss2DsModel.h.

8.15.3 Constructor & Destructor Documentation

8.15.3.1 mappel::Gauss2DsMAP::Gauss2DsMAP (const ImageSizeT & size, const VecT & min_sigma, double max_sigma_ratio, const std::string & prior_type = DefaultPriorType)

Definition at line 11 of file Gauss2DsMAP.cpp.

References mappel::Gauss2DsModel::min sigma, and mappel::ImageFormat2DBase::size.

8.15.3.2 mappel::Gauss2DsMAP::Gauss2DsMAP (const ImageSizeT & size, const VecT & min_sigma, const VecT & max_sigma, const std::string & prior_type = DefaultPriorType)

Definition at line 15 of file Gauss2DsMAP.cpp.

References mappel::Gauss2DsModel::compute_max_sigma_ratio(), mappel::Gauss2DsModel::make_default_prior(), mappel::Gauss2DsModel::min sigma, and mappel::ImageFormat2DBase::size.

8.15.3.3 mappel::Gauss2DsMAP::Gauss2DsMAP (const ImageSizeT & size, const VecT & min_sigma, CompositeDist && prior)

Definition at line 19 of file Gauss2DsMAP.cpp.

8.15.3.4 mappel::Gauss2DsMAP::Gauss2DsMAP (const ImageSizeT & size, const VecT & min_sigma, const CompositeDist & prior)

Definition at line 27 of file Gauss2DsMAP.cpp.

8.15.3.5 mappel::Gauss2DsMAP::Gauss2DsMAP (const Gauss2DsMAP & o)

Definition at line 35 of file Gauss2DsMAP.cpp.

8.15.3.6 mappel::Gauss2DsMAP::Gauss2DsMAP (Gauss2DsMAP && o)

Definition at line 43 of file Gauss2DsMAP.cpp.

8.15.4 Member Function Documentation

8.15.4.1 void mappel::PointEmitterModel::bound_theta (ParamT & theta, double epsilon = bounds_epsilon) const [inherited]

Definition at line 248 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::Point← EmitterModel::num params, and mappel::PointEmitterModel::ubound.

8.15.4.2 PointEmitterModel::ParamT mappel::PointEmitterModel::bounded_theta (const ParamT & theta, double epsilon = bounds epsilon) const [inherited]

Definition at line 265 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::ubound, mappel::PointEmitterModel::ubound.

Referenced by mappel::PointEmitterModel::bounded theta stack().

8.15.4.3 PointEmitterModel::ParamVecT mappel::PointEmitterModel::bounded_theta_stack(const ParamVecT & theta, double epsilon = bounds_epsilon) const [inherited]

Definition at line 307 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::check_param_shape(), and mappel::PointEmitterModel::make param stack().

8.15.4.4 void mappel::ImageFormat2DBase::check_image_shape(const ImageT & im) const [inherited]

Check the shape of a single images is correct for model size.

Definition at line 80 of file ImageFormat2DBase.cpp.

References mappel::ImageFormat2DBase::size.

8.15.4.5 void mappel::ImageFormat2DBase::check_image_shape (const ImageStackT & ims) const [inherited]

Check the shape of a stack of images is correct for model size.

Definition at line 93 of file ImageFormat2DBase.cpp.

References mappel::ImageFormat2DBase::size.

8.15.4.6 void mappel::PointEmitterModel::check_param_shape (const ParamT & theta) const [inherited]

Definition at line 167 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::num_params.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::reflected_theta(), mappel::PointEmitterModel::reflected_theta(), mappel::PointEmitterModel::theta_in_bounds(), and mappel::PointEmitterModel \leftarrow ::theta_stack_in_bounds().

8.15.4.7 void mappel::PointEmitterModel::check_param_shape (const ParamVecT & theta) const [inherited]

Definition at line 176 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::num params.

8.15.4.8 void mappel::PointEmitterModel::check_psf_sigma (double psf_sigma) const [inherited]

Definition at line 185 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::global_max_psf_sigma, and mappel::PointEmitterModel::global_min_psf_ sigma.

Referenced by mappel::Gauss1DModel(), mappel::Gauss2DModel::Gauss2DModel(), mappel:: \leftarrow Gauss2DsModel::Gauss2DsModel(), mappel::Gauss1DsModel::set_max_sigma(), mappel::Gauss2DsModel::set_ \leftarrow max_sigma(), mappel::Gauss1DsModel::set_min_sigma(), mappel:: \leftarrow Gauss1DModel::set_psf sigma(), and mappel::Gauss2DModel::set_psf sigma().

8.15.4.9 void mappel::PointEmitterModel::check_psf_sigma (const VecT & psf_sigma) const [inherited]

Definition at line 197 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::global_max_psf_sigma, and mappel::PointEmitterModel::global_min_psf_ \hookleftarrow sigma.

8.15.4.10 void mappel::ImageFormat2DBase::check_size(const ImageSizeT & size_) [static], [inherited]

Check the size argument for the model.

Definition at line 60 of file ImageFormat2DBase.cpp.

References mappel::ImageFormat2DBase::global_max_size, and mappel::ImageFormat2DBase::global_min_size.

Referenced by mappel::ImageFormat2DBase::ImageFormat2DBase(), and mappel::ImageFormat2DBase::set_size().

8.15.4.11 double mappel::Gauss2DsModel::compute_max_sigma_ratio (const VecT & min_sigma, const VecT & max_sigma) [static], [protected], [inherited]

Definition at line 162 of file Gauss2DsModel.cpp.

References mappel::Gauss2DsModel::min_sigma.

Referenced by mappel::Gauss2DsModel::debug_internal_sum_model_y(), Gauss2DsMAP(), mappel::Gauss2DsMLC::Gauss2DsMDLC::Gauss2DsMOdel::set max sigma().

8.15.4.12 Gauss1DSumModelT mappel::Gauss2DsModel::debug_internal_sum_model_x () const [inline], [inherited]

Definition at line 104 of file Gauss2DsModel.h.

References mappel::Gauss2DsModel::x model.

8.15.4.13 Gauss1DSumModelT mappel::Gauss2DsModel::debug_internal_sum_model_y () const [inline], [inherited]

Definition at line 105 of file Gauss2DsModel.h.

References mappel::Gauss2DsModel::compute_max_sigma_ratio(), mappel::Gauss2DsModel::Gauss2DsModel(), mappel::Gauss2DsModel::make_internal_1Dsum_estimator(), mappel::Gauss2DsModel::min_sigma, mappel::

Gauss2DsModel::operator=(), mappel::PointEmitterModel::prior, mappel::ImageFormat2DBase::size, mappel::

Gauss2DsModel::update internal 1Dsum estimators(), and mappel::Gauss2DsModel::y model.

8.15.4.14 int mappel::PointEmitterModel::get_hyperparam_index (const std::string & name) const [inline], [inherited]

Definition at line 236 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.15.4.15 StringVecT mappel::PointEmitterModel::get_hyperparam_names()) const [inline], [inherited]

Definition at line 256 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.15.4.16 double mappel::PointEmitterModel::get_hyperparam_value (const std::string & name) const [inline], [inherited]

Definition at line 232 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

Referenced by mappel::MCMCAdaptor1D::set_background_mcmc_sampling(), and mappel::MCMCAdaptor1D::set_ \leftarrow intensity_mcmc_sampling().

8.15.4.17 PointEmitterModel::ParamT mappel::PointEmitterModel::get_hyperparams () const [inline], [inherited]

Definition at line 224 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.15.4.18 ImageFormat2DBase::ImageT mappel::ImageFormat2DBase::get_image_from_stack (const ImageStackT & stack, ImageCoordT n) const [inline], [inherited]

Definition at line 106 of file ImageFormat2DBase.h.

8.15.4.19 const PointEmitterModel::ParamT & mappel::PointEmitterModel::get_lbound() const [inline], [inherited]

Definition at line 212 of file PointEmitterModel.h.

References mappel::PointEmitterModel::lbound.

Referenced by mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCMCAdaptor2D::MCMCAdaptor2D(), and mappel::MCMCAdaptor1D::set_background_mcmc_sampling().

8.15.4.20 VecT mappel::Gauss2DsModel::get_max_sigma()const [inline], [inherited]

Definition at line 132 of file Gauss2DsModel.h.

References mappel::Gauss2DsModel::get max sigma ratio(), and mappel::Gauss2DsModel::get min sigma().

Referenced by mappel::Gauss2DsModel::Gauss2DsModel(), mappel::Gauss2DsModel::get_stats(), mappel::Gauss2CDsModel::get_stats(), mappel::Gauss2DsModel::get_stats(), mappel::Gauss2DsModel::get_max_sigma_ratio(), mappel::Gauss2DsModel::set_min_sigma(), and mappel::Gauss2DsModel::update_internal_1Dsum_estimators().

8.15.4.21 double mappel::Gauss2DsModel::get_max_sigma (ldxT dim) const [inline], [inherited]

Definition at line 136 of file Gauss2DsModel.h.

References mappel::Gauss2DsModel::get max sigma ratio(), and mappel::Gauss2DsModel::get min sigma().

8.15.4.22 double mappel::Gauss2DsModel::get_max_sigma_ratio() const [inline], [inherited]

Definition at line 140 of file Gauss2DsModel.h.

References mappel::PointEmitterModel::get_ubound().

Referenced by mappel::Gauss2DsModel::get_max_sigma(), and mappel::Gauss2DsModel::get_stats().

8.15.4.23 IdxT mappel::MCMCAdaptorBase::get_mcmc_num_phases()const [inherited]

Definition at line 56 of file MCMCAdaptorBase.cpp.

References mappel::MCMCAdaptorBase::num_phases.

8.15.4.24 double mappel::MCMCAdaptorBase::get_mcmc_sigma_scale() const [inherited]

Definition at line 53 of file MCMCAdaptorBase.cpp.

References mappel::MCMCAdaptorBase::sigma_scale.

8.15.4.25 VecT mappel::Gauss2DsModel::get_min_sigma() const [inline], [inherited]

Definition at line 128 of file Gauss2DsModel.h.

References mappel::Gauss2DsModel::min_sigma.

Referenced by mappel::Gauss2DsModel::get_max_sigma(), mappel::Gauss2DsModel::get_stats(), and mappel:: \leftarrow Gauss2DsModel::set_max_sigma().

8.15.4.26 double mappel::Gauss2DsModel::get_min_sigma (ldxT dim) const [inherited]

Definition at line 191 of file Gauss2DsModel.cpp.

References mappel::Gauss2DsModel::DefaultPriorType, mappel::Gauss2DsModel::min_sigma, and mappel::Gauss2← DsModel::prior types.

```
8.15.4.27 | IdxT mappel::PointEmitterModel::get_num_hyperparams( ) const [inline], [inherited]
Definition at line 208 of file PointEmitterModel.h.
References mappel::PointEmitterModel::num hyperparams.
8.15.4.28 IdxT mappel::PointEmitterModel::get_num_params() const [inline], [inherited]
Definition at line 160 of file PointEmitterModel.h.
References mappel::PointEmitterModel::num_params.
8.15.4.29 ImageFormat2DBase::ImageCoordT mappel::ImageFormat2DBase::get_num_pixels( ) const [inline],
         [inherited]
Definition at line 79 of file ImageFormat2DBase.h.
References mappel::ImageFormat2DBase::size.
Referenced by mappel::ImageFormat2DBase::get_stats().
8.15.4.30 StringVecT mappel::PointEmitterModel::get param names() const [inline], [inherited]
Definition at line 248 of file PointEmitterModel.h.
References mappel::PointEmitterModel::prior.
8.15.4.31 CompositeDist & mappel::PointEmitterModel::get_prior() [inline], [inherited]
Definition at line 200 of file PointEmitterModel.h.
References mappel::PointEmitterModel::prior.
Referenced by mappel::Gauss2DModel::update internal 1Dsum estimators(), and mappel::Gauss2DsModel ←
::update_internal_1Dsum_estimators().
8.15.4.32 const CompositeDist & mappel::PointEmitterModel::get_prior() const [inline], [inherited]
Definition at line 204 of file PointEmitterModel.h.
References mappel::PointEmitterModel::prior.
8.15.4.33 ParallelRngGeneratorT & mappel::PointEmitterModel::get rng generator() [static], [inherited]
Definition at line 120 of file PointEmitterModel.cpp.
References mappel::rng manager.
```

8.15.4.34 ParallelRngManagerT & mappel::PointEmitterModel::get_rng_manager() [static], [inherited]

Definition at line 115 of file PointEmitterModel.cpp.

References mappel::rng_manager.

8.15.4.35 const ImageFormat2DBase::ImageSizeT & mappel::ImageFormat2DBase::get_size() const [inline], [inherited]

Definition at line 74 of file ImageFormat2DBase.h.

References mappel::ImageFormat2DBase::size.

8.15.4.36 ImageFormat2DBase::ImageCoordT mappel::ImageFormat2DBase::get_size (IdxT idx) const [inherited]

Definition at line 41 of file ImageFormat2DBase.cpp.

References mappel::ImageFormat2DBase::size.

8.15.4.37 ImageFormat2DBase::ImageCoordT mappel::ImageFormat2DBase::get_size_image_stack(const ImageStackT & stack) const [inline], [inherited]

Definition at line 99 of file ImageFormat2DBase.h.

8.15.4.38 StatsT mappel::Gauss2DsModel::get_stats() const [inherited]

Definition at line 341 of file Gauss2DsModel.cpp.

References mappel::Gauss2DsModel::get_max_sigma(), mappel::Gauss2DsModel::get_max_sigma_ratio(), mappel ::Gauss2DsModel::get_min_sigma(), mappel::MCMCAdaptor2Ds::get_stats(), mappel::ImageFormat2DBase::get_ \leftarrow stats(), and mappel::PointEmitterModel::get_stats().

8.15.4.39 const PointEmitterModel::ParamT & mappel::PointEmitterModel::get_ubound() const [inline], [inherited]

Definition at line 216 of file PointEmitterModel.h.

References mappel::PointEmitterModel::ubound.

Referenced by mappel::Gauss2DsxyModel::get_max_sigma_ratio(), mappel::Gauss2DsModel::get_max_sigma_ratio(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCMCAdaptor2D::MCMCAdaptor2D(), mappel::MCMCAdaptor1D::set_background_mcmc_sampling(), and mappel::Gauss2DsModel::set_max_sigma_ratio().

8.15.4.40 bool mappel::PointEmitterModel::has_hyperparam (const std::string & name) const [inline], [inherited]

Definition at line 228 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.15.4.41 Gauss2DsModel::Stencil mappel::Gauss2DsModel::initial_theta_estimate(const ImageT & im) [inline], [inherited]

Fast, heuristic estimate of initial theta.

Definition at line 224 of file Gauss2DsModel.h.

References mappel::PointEmitterModel::DefaultSeperableInitEstimator, and mappel::PointEmitterModel::make $_\leftarrow$ param().

Referenced by mappel::Gauss2DsModel::initial_theta_estimate().

8.15.4.42 Gauss2DsModel::Stencil mappel::Gauss2DsModel::initial_theta_estimate (const ImageT & im, const ParamT & theta_init) [inline], [inherited]

Definition at line 231 of file Gauss2DsModel.h.

References mappel::PointEmitterModel::DefaultSeperableInitEstimator, and mappel::Gauss2DsModel::initial_theta $_\leftarrow$ estimate().

8.15.4.43 Gauss2DsModel::Stencil mappel::Gauss2DsModel::initial_theta_estimate (const ImageT & im, const ParamT & theta_init, const std::string & estimator) [inherited]

Definition at line 385 of file Gauss2DsModel.cpp.

References mappel::Gauss2DsModel::Stencil::bg(), mappel::methods::estimate_max(), mappel::Gauss2DsModel:: \leftarrow Stencil::I(), mappel::PointEmitterModel::lbound, mappel::Gauss2DsModel::make_stencil(), mappel::Gauss2DsModel::min_sigma, mappel::PointEmitterModel::num_params, mappel::Gauss2DsModel::Stencil::sigma_ratio(), mappel ::ImageFormat2DBase::size, mappel::PointEmitterModel::theta_in_bounds(), mappel::PointEmitterModel::ubound, mappel::Gauss2DsModel::x model, and mappel::Gauss2DsModel::y model.

8.15.4.44 CompositeDist mappel::Gauss2DsModel::make_default_prior (const ImageSizeT & size, double max_sigma_ratio, const std::string & prior_type) [static], [inherited]

Definition at line 208 of file Gauss2DsModel.cpp.

References mappel::istarts_with(), mappel::Gauss2DsModel::make_default_prior_beta_position(), and mappel:: \leftarrow Gauss2DsModel::make_default_prior_normal_position().

 $Referenced \ by \ Gauss 2Ds MAP(), \ and \ mappel :: Gauss 2Ds MLE :: Gauss 2Ds MLE().$

8.15.4.45 CompositeDist mappel::Gauss2DsModel::make_default_prior_beta_position (const ImageSizeT & size, double max_sigma_ratio) [static], [inherited]

Definition at line 230 of file Gauss2DsModel.cpp.

References mappel::PointEmitterModel::default_pixel_mean_bg, mappel::PointEmitterModel::make_prior_component __ __intensity(), mappel::PointEmitterModel::make_prior_component_position_beta(), mappel::PointEmitterModel::make __ __ prior_component_sigma(), and mappel::ImageFormat2DBase::size.

Referenced by mappel::Gauss2DsModel::make default prior().

8.15.4.46 CompositeDist mappel::Gauss2DsModel::make_default_prior_normal_position (const ImageSizeT & size, double max_sigma_ratio) [static], [inherited]

Definition at line 243 of file Gauss2DsModel.cpp.

References mappel::PointEmitterModel::default_pixel_mean_bg, mappel::PointEmitterModel::make_prior_component __intensity(), mappel::PointEmitterModel::make_prior_component_position_normal(), mappel::PointEmitterModel __::make_prior_component_sigma(), and mappel::ImageFormat2DBase::size.

Referenced by mappel::Gauss2DsModel::make_default_prior().

Definition at line 85 of file ImageFormat2DBase.h.

References mappel::ImageFormat2DBase::size.

8.15.4.48 ImageFormat2DBase::ImageStackT mappel::ImageFormat2DBase::make_image_stack(ImageCoordT n) const [inline], [inherited]

Definition at line 92 of file ImageFormat2DBase.h.

References mappel::ImageFormat2DBase::size.

8.15.4.49 Gauss2DsModel::Gauss1DSumModelT mappel::Gauss2DsModel::make_internal_1Dsum_estimator (ldxT dim, const ImageSizeT & size, const VecT & min_sigma, const VecT & max_sigma, const CompositeDist & prior)
[static], [protected], [inherited]

Definition at line 69 of file Gauss2DsModel.cpp.

References mappel::Gauss1DsModel::make_prior_beta_position(), mappel::Gauss1DsModel::make_prior_normal_ \hookleftarrow position(), mappel::Gauss2DsModel::min_sigma, and mappel::ImageFormat2DBase::size.

Referenced by mappel::Gauss2DsModel::debug_internal_sum_model_y(), mappel::Gauss2DsModel::Gauss2DsModel::Gauss2DsModel::debug_internal_sum_model_y(), and mappel::Gauss2DsModel::update_internal_1Dsum_estimators().

8.15.4.50 PointEmitterModel::ParamT mappel::PointEmitterModel::make_param()const [inline], [inherited]

Definition at line 164 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

Referenced by mappel::Gauss1DModel::initial_theta_estimate(), mappel::Gauss1DsModel::initial_theta_estimate(), mappel::Gauss2DModel::initial_theta_estimate(), mappel::Gauss2DsxyModel::initial_theta_estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::Gauss1DModel::pixel_hess_update(), mappel::Gauss1DsModel::pixel_hess_update(), mappel::Gauss2DsModel::pixel_hess_update(), and mappel::Gauss2DsModel::pixel_hess_update().

8.15.4.51 template < class FillT > PointEmitterModel::ParamT mappel::PointEmitterModel::make_param (FillT fill) const [inherited]

Definition at line 181 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

8.15.4.52 MatT mappel::PointEmitterModel::make_param_mat() const [inline], [inherited]

Definition at line 172 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

8.15.4.53 template < class FillT > MatT mappel::PointEmitterModel::make_param_mat(FillT fill) const [inherited]

Definition at line 191 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

8.15.4.54 CubeT mappel::PointEmitterModel::make param mat stack (ldxT n) const [inline], [inherited]

Definition at line 176 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

8.15.4.55 template < class FillT > CubeT mappel::PointEmitterModel::make_param_mat_stack (ldxT n, FillT fill) const [inherited]

Definition at line 196 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

8.15.4.56 PointEmitterModel::ParamVecT mappel::PointEmitterModel::make_param_stack(ldxT n) const [inline], [inherited]

Definition at line 168 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

Referenced by mappel::PointEmitterModel::bounded_theta_stack(), and mappel::PointEmitterModel::reflected_theta __ stack().

8.15.4.57 template < class FillT > PointEmitterModel::ParamVecT mappel::PointEmitterModel::make_param_stack (ldxT n, FillT fill) const [inherited]

Definition at line 186 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

8.15.4.58 CompositeDist mappel::Gauss2DsModel::make_prior_beta_position (const ImageSizeT & size, double beta_xpos, double beta_ypos, double mean_l, double kappa_l, double mean_bg, double kappa_bg, double max_sigma_ratio, double alpha_sigma) [static], [inherited]

Definition at line 255 of file Gauss2DsModel.cpp.

References mappel::PointEmitterModel::make_prior_component_intensity(), mappel::PointEmitterModel::make_prior component_position_beta(), mappel::PointEmitterModel::make_prior_component_sigma(), and mappel::Image Format2DBase::size.

8.15.4.59 prior_hessian::TruncatedGammaDist mappel::PointEmitterModel::make_prior_component_intensity (double mean = default_mean_I, double kappa = default_intensity_kappa) [static], [inherited]

Definition at line 98 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::default max I.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_beta_position(), mappel::Gauss2Ds \leftarrow default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss1DsModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_normal_cosition(), mappel::Gauss2DModel::make_prior_cosition(), mappel::Gauss2DModel::make_prior_beta_position(), mappel::Gauss1DsModel::make_prior_beta_position(), mappel::Gauss2DsModel::make_prior_beta_position(), mappel::Gauss2DModel::make_prior_normal_cosition(), mappel::Gauss2DsModel::make_prior_normal_cosition(), mappel::Gauss1DsModel::make_prior_normal_cosition(), mappel::Gauss1DsModel::make_prior_normal_cosition(), mappel::Gauss2DsModel::make_prior_normal_cosition(), mappel::Gauss2DsModel::make_prior_normal_cositi

8.15.4.60 prior_hessian::ScaledSymmetricBetaDist mappel::PointEmitterModel::make_prior_component_position_beta (ldxT size, double pos_beta = default_beta_pos_) [static], [inherited]

Definition at line 92 of file PointEmitterModel.cpp.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DModel::make_ \leftarrow default_prior_beta_position(), mappel::Gauss1DModel::make_default_prior_beta_position(), mappel::Gauss2Ds \leftarrow Model::make_default_prior_beta_position(), mappel::Gauss1DsModel::make_prior_beta_position(), mappel::Gauss2Ds \leftarrow DModel::make_prior_beta_position(), mappel::Gauss1DModel::make_prior_beta_position(), and mappel::Gauss2Ds \leftarrow Model::make_prior_beta_position().

8.15.4.61 prior_hessian::TruncatedNormalDist mappel::PointEmitterModel::make_prior_component_position_normal (ldxT size, double pos_sigma = default_sigma_pos) [static], [inherited]

Definition at line 85 of file PointEmitterModel.cpp.

Referenced by mappel::Gauss1DsModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_ \leftarrow default_prior_normal_position(), mappel::Gauss1DModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_prior_normal_position(), mappel::Gauss1DsModel::make_prior_normal_position(), and mappel::Gauss2DsModel::make_prior_normal_position().

8.15.4.62 prior_hessian::TruncatedParetoDist mappel::PointEmitterModel::make_prior_component_sigma (double min_sigma, double max sigma, double alpha = default alpha sigma) [static],[inherited]

Definition at line 104 of file PointEmitterModel.cpp.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DsModel::make_default_prior_beta_position(), mappel::Gauss1DsModel::make_default_prior_normal_position(), mappel::Gauss2\to DsModel::make_default_prior_normal_position(), mappel::Gauss1DsModel::make_prior_beta_position(), mappel::Gauss2DsModel::make_prior_beta_position(), and mappel\to ::Gauss2DsModel::make_prior_normal_position().

8.15.4.63 CompositeDist mappel::Gauss2DsModel::make_prior_normal_position (const ImageSizeT & size, double sigma_xpos, double sigma_ypos, double mean_l, double kappa_l, double mean_bg, double kappa_bg, double max_sigma_ratio, double alpha_sigma) [static], [inherited]

Definition at line 271 of file Gauss2DsModel.cpp.

References mappel::PointEmitterModel::make_prior_component_intensity(), mappel::PointEmitterModel::make_prior component_position_normal(), mappel::PointEmitterModel::make_prior_component_sigma(), and mappel::Image Format2DBase::size.

8.15.4.64 Gauss2DsModel::Stencil mappel::Gauss2DsModel::make_stencil (const ParamT & theta, bool compute_derivatives = true) const [inline], [inherited]

Make a new Model::Stencil object at theta.

Stencils store all of the important calculations necessary for evaluating the log-likelihood and its derivatives at a particular theta (parameter) value.

This allows re-use of the most expensive computations. Stencils can be easily passed around by reference, and most functions in the mappel::methods namespace accept a const Stencil reference in place of the model parameter.

Throws mappel::ModelBoundsError if not model.theta in bounds(theta).

If derivatives will not be computed with this stencil set compute derivatives=false

Parameters

theta	Prameter to evaluate at
compute_derivatives	True to also prepare for derivative computations

Returns

A new Stencil object ready to compute with

Definition at line 162 of file Gauss2DsModel.h.

References mappel::Gauss2DsModel::Stencil::Stencil(), and mappel::PointEmitterModel::theta_in_bounds().

Referenced by mappel::Gauss2DsModel::initial theta estimate().

8.15.4.65 Gauss2DsMAP & mappel::Gauss2DsMAP::operator=(const Gauss2DsMAP & o)

Definition at line 51 of file Gauss2DsMAP.cpp.

References mappel::MAPEstimator::operator=(), mappel::PoissonNoise2DObjective::operator=(), mappel::Image
Format2DBase::operator=(), mappel::Gauss2DsModel::operator=(), and mappel::PointEmitterModel::operator=().

8.15.4.66 Gauss2DsMAP & mappel::Gauss2DsMAP::operator= (Gauss2DsMAP && o)

Definition at line 62 of file Gauss2DsMAP.cpp.

References mappel::MAPEstimator::operator=(), mappel::PoissonNoise2DObjective::operator=(), mappel::Image Format2DBase::operator=(), mappel::Gauss2DsModel::operator=(), and mappel::PointEmitterModel::operator=().

8.15.4.67 void mappel::Gauss2DsModel::pixel_grad (int *i,* **int** *j,* **const Stencil &** *s,* **ParamT &** *pgrad* **) const** [inline], [inherited]

Definition at line 180 of file Gauss2DsModel.h.

References mappel::Gauss2DsModel::Stencil::DX, mappel::Gauss2DsModel::Stencil::DXS, mappel::Gauss2DsModel::Stencil::DYS, mappel::Gauss2DsModel::Stencil::I(), mappel::Gauss2DsModel::Stencil::Y.

Referenced by mappel::Gauss2DsModel::pixel_hess_update().

8.15.4.68 void mappel::Gauss2DsModel::pixel_grad2 (int *i*, int *j*, const Stencil & *s*, ParamT & pgrad2) const [inline], [inherited]

Definition at line 192 of file Gauss2DsModel.h.

References mappel::Gauss2DsModel::Stencil::DXS, mappel::Gauss2DsModel::Stencil::DXS2, mappel::Gauss2DsModel::Stencil::DYS2, mappel::Gauss2DsModel::Stencil::I(), mappel::Gauss2DsModel::Stencil::sigmaY(), mappel::Gauss2DsModel::Stencil::X, and mappel::Gauss2DsModel::Stencil::Y.

8.15.4.69 void mappel::Gauss2DsModel::pixel_hess (int i, int j, const Stencil & s, MatT & hess) const [inline], [inherited]

Definition at line 204 of file Gauss2DsModel.h.

References mappel::Gauss2DsModel::Stencil::DX, mappel::Gauss2DsModel::Stencil::DXS, mappel::Gauss2DsModel::Stencil::DXS, mappel::Gauss2DsModel::Stencil::DXS, mappel::Gauss2DsModel::Stencil::DYS, mappel::Gauss2DsModel::Stencil::DYS, mappel::Gauss2DsModel::Stencil::DYS, mappel::Gauss2DsModel::Stencil::DYSY, mappel::Gauss2DsModel::Stencil::I), mappel::Gauss2DsModel::Stencil::Stencil::Stencil::Gauss2DsModel::Stencil::Stencil::Stencil::Stencil::Stencil::Stencil::Stencil::Stencil::Stencil::Y, and mappel::Gauss2DsModel::Stencil::Y.

8.15.4.70 void mappel::Gauss2DsModel::pixel_hess_update (int i, int j, const Stencil & s, double dm_ratio_m1, double dmm ratio. ParamT & grad. MatT & hess) const [inherited]

pixel derivative inner loop calculations.

Definition at line 358 of file Gauss2DsModel.cpp.

References mappel::Gauss2DsModel::Stencil::DX, mappel::Gauss2DsModel::Stencil::DXS, mappel::Gauss2DsModel::Gauss2DsModel::Stencil::DXS, mappel::Gauss2DsModel::Stencil::DXS, mappel:: \hookrightarrow Gauss2DsModel::Stencil::DYS, mappel::Gauss2DsModel::Stencil::DYS, mappel::Gauss2DsModel::Stencil::DYSY, mappel::Gauss2DsModel::Stencil::I(), mappel::PointEmitterModel::make_param(), mappel::Gauss2DsModel::Stencil::Gauss2DsModel::Stencil::Gauss2DsModel::Stencil::Stencil::Gauss2DsModel:

8.15.4.71 double mappel::Gauss2DsModel::pixel_model_value (int *i*, int *j*, const Stencil & *s*) const [inline], [inherited]

Definition at line 173 of file Gauss2DsModel.h.

References mappel::Gauss2DsModel::Stencil::bg(), mappel::Gauss2DsModel::Stencil::I(), mappel::Gauss2DsModel ← ::Stencil::X, and mappel::Gauss2DsModel::Stencil::Y.

8.15.4.72 PointEmitterModel::ParamT mappel::PointEmitterModel::reflected_theta (const ParamT & theta) const [inherited]

Definition at line 276 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::Point← EmitterModel::num_params, and mappel::PointEmitterModel::ubound.

Referenced by mappel::PointEmitterModel::reflected_theta_stack().

8.15.4.73 PointEmitterModel::ParamVecT mappel::PointEmitterModel::reflected_theta_stack(const ParamVecT & theta) const [inherited]

Definition at line 317 of file PointEmitterModel.cpp.

 $References\ mappel:: PointEmitterModel:: heck_param_shape(),\ mappel:: PointEmitterModel:: make_param_stack(),\ and\ mappel:: PointEmitterModel:: reflected_theta().$

8.15.4.74 void mappel::PointEmitterModel::rename_hyperparam (const std::string & old_name, const std::string & new_name)
[inline], [inherited]

Definition at line 244 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.15.4.75 void mappel::MCMCAdaptor2Ds::sample_mcmc_candidate (ldxT sample_index, ParamT & candidate, double step_scale = 1.0) [inherited]

Definition at line 56 of file MCMCAdaptor2Ds.cpp.

References mappel::MCMCAdaptor1D::eta_bg, mappel::MCMCAdaptor1D::eta_l, mappel::MCMCAdaptor2Ds::eta
__sigma, mappel::MCMCAdaptor1D::eta_x, mappel::MCMCAdaptor2D::eta_y, mappel::MCMCAdaptorBase::num_

phases, and mappel::rng manager.

8.15.4.76 template < class RngT > PointEmitterModel::ParamT mappel::PointEmitterModel::sample_prior(RngT & rng) [inherited]

Definition at line 264 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.15.4.77 PointEmitterModel::ParamT mappel::PointEmitterModel::sample_prior() [inline], [inherited]

Definition at line 268 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior, and mappel::rng_manager.

8.15.4.78 void mappel::MCMCAdaptor1D::set background mcmc sampling (double eta bq = -1) [inherited]

Definition at line 81 of file MCMCAdaptor1D.cpp.

References mappel::PointEmitterModel::default_pixel_mean_bg, mappel::MCMCAdaptor1D::eta_bg, mappel::PointcointCointEmitterModel::get_hyperparam_value(), mappel::PointEmitterModel::get_lbound(), mappel::PointEmitterModel::get_cointCointEmitterModel::get_cointCointEmitterModel::get_cointEmitterModel

Referenced by mappel::MCMCAdaptor1D::MCMCAdaptor1D().

8.15.4.79 void mappel::PointEmitterModel::set_bounds (const ParamT & *lbound_*, const ParamT & *ubound_*) [inherited]

Box-type parameter bounds

Modifies the prior bounds to prevent sampling outside the valid box-constraints.

Definition at line 213 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounds_epsilon, mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::pointEmitterModel::ubound, mappel::PointEmitterModel::pointEmitterModel::ubound.

8.15.4.80 void mappel::PointEmitterModel::set_hyperparam_names (const StringVecT & *desc* **)** [inline], [inherited]

Definition at line 260 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.15.4.81 void mappel::PointEmitterModel::set_hyperparam_value (const std::string & name, double value) [inline], [inherited]

Definition at line 240 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.15.4.82 void mappel::Gauss2DsModel::set_hyperparams (const VecT & hyperparams) [inherited]

Definition at line 119 of file Gauss2DsModel.cpp.

References mappel::PointEmitterModel::set_hyperparams(), and mappel::Gauss2DsModel::update_internal_1Dsum← _estimators().

8.15.4.83 template < class ImT > void mappel::ImageFormat2DBase::set_image_in_stack (ImageStackT & stack, ImageCoordT n, const ImT & im) const [inherited]

Definition at line 113 of file ImageFormat2DBase.h.

8.15.4.84 void mappel::MCMCAdaptor1D::set intensity mcmc sampling (double eta l = -1) [inherited]

Definition at line 65 of file MCMCAdaptor1D.cpp.

References mappel::PointEmitterModel::default_mean_I, mappel::MCMCAdaptor1D::eta_I, mappel::PointEmitter (
Model::get hyperparam value(), and mappel::MCMCAdaptorBase::sigma scale.

Referenced by mappel::MCMCAdaptor1D::MCMCAdaptor1D().

8.15.4.85 void mappel::PointEmitterModel::set_lbound (const ParamT & lbound) [inherited]

Definition at line 226 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounds_epsilon, mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::pointEmitterModel::ubound, mappel::PointEmitterModel::pointEmitterModel::ubound.

Referenced by mappel::Gauss1DsModel::set_min_sigma().

8.15.4.86 void mappel::Gauss2DsModel::set_max_sigma (const VecT & new_sigma) [inherited]

Set the max sigma ratio based on the new max sigma's ratio with the current min sigma.

Definition at line 155 of file Gauss2DsModel.cpp.

References mappel::PointEmitterModel::check_psf_sigma(), mappel::Gauss2DsModel::compute_max_sigma_ratio(), mappel::Gauss2DsModel::get min sigma(), and mappel::Gauss2DsModel::set max sigma ratio().

8.15.4.87 void mappel::Gauss2DsModel::set_max_sigma_ratio (double max_sigma_ratio) [inherited]

Definition at line 176 of file Gauss2DsModel.cpp.

References mappel::PointEmitterModel::bounds_epsilon, mappel::Gauss2DsModel::get_max_sigma(), mappel::Point← EmitterModel::get_ubound(), mappel::Gauss1DsModel::set_max_sigma(), mappel::PointEmitterModel::set_ubound(), mappel::Gauss2DsModel::x model, and mappel::Gauss2DsModel::y model.

Referenced by mappel::Gauss2DsModel::set_max_sigma().

8.15.4.88 void mappel::MCMCAdaptorBase::set_mcmc_num_phases (ldxT *num_phases*) [protected], [inherited]

Definition at line 59 of file MCMCAdaptorBase.cpp.

References mappel::MCMCAdaptorBase::num phases.

Referenced by mappel::MCMCAdaptor1Ds::MCMCAdaptor1Ds(), and mappel::MCMCAdaptor2Ds::MCMCAdaptor2 → Ds().

8.15.4.89 void mappel::MCMCAdaptorBase::set_mcmc_sigma_scale (double scale) [inherited]

Definition at line 39 of file MCMCAdaptorBase.cpp.

References mappel::MCMCAdaptorBase::global_max_mcmc_sigma_scale, and mappel::MCMCAdaptorBase::sigma ← __scale.

8.15.4.90 void mappel::Gauss2DsModel::set_min_sigma (const VecT & new_sigma) [inherited]

Set the minimum sigma, keeping the max sigma ratio the same.

Definition at line 137 of file Gauss2DsModel.cpp.

References mappel::PointEmitterModel::check_psf_sigma(), mappel::Gauss2DsModel::get_max_sigma(), mappel::Gauss2DsModel::set_max_sigma(), mappel::Gauss1DsModel::set_min_ sigma(), mappel::Gauss2DsModel::xet_min_ mappel::Gaus

8.15.4.91 void mappel::PointEmitterModel::set_param_names (const StringVecT & desc) [inline], [inherited]

Definition at line 252 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.15.4.92 void mappel::Gauss2DsModel::set_prior(CompositeDist && prior_) [inherited]

Definition at line 107 of file Gauss2DsModel.cpp.

References mappel::PointEmitterModel::set_prior(), and mappel::Gauss2DsModel::update_internal_1Dsum_ \leftarrow estimators().

8.15.4.93 void mappel::Gauss2DsModel::set_prior(const CompositeDist & prior_) [inherited]

Definition at line 113 of file Gauss2DsModel.cpp.

References mappel::PointEmitterModel::set_prior(), and mappel::Gauss2DsModel::update_internal_1Dsum_ \leftarrow estimators().

8.15.4.94 void mappel::PointEmitterModel::set_rng_seed(RngSeedT seed) [static], [inherited]

Definition at line 110 of file PointEmitterModel.cpp.

References mappel::rng_manager.

8.15.4.95 void mappel::Gauss2DsModel::set_size(const ImageSizeT & size_) [inherited]

Definition at line 125 of file Gauss2DsModel.cpp.

References mappel::ImageFormat2DBase::set_size(), mappel::ImageFormat1DBase::set_size(), mappel::ImageFormat2DBase::set_size(), mappel:

8.15.4.96 void mappel::PointEmitterModel::set_ubound(const ParamT & ubound) [inherited]

Definition at line 237 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounds_epsilon, mappel::PointEmitterModel::lbound, mappel::PointEmitter (
Model::num_params, mappel::PointEmitterModel::prior, and mappel::PointEmitterModel::ubound.

 $Referenced\ by\ mappel:: Gauss 1Ds Model:: set_max_sigma(),\ and\ mappel:: Gauss 2Ds Model:: set_max_sigma_ratio().$

8.15.4.97 bool mappel::PointEmitterModel::theta_in_bounds (const ParamT & theta) const [inherited]

Definition at line 257 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::ubound, mappel::PointEmitterModel::ubound.

Referenced by mappel::Gauss2DModel::initial_theta_estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::Gauss1DModel::make_stencil(), mappel::Gauss2DModel::make_stencil(), mappel::Gauss2DsModel::make_stencil(), mappel::Gauss2DsModel::make_stencil(), and mappel::Point
EmitterModel::theta stack in bounds().

8.15.4.98 BoolVecT mappel::PointEmitterModel::theta_stack_in_bounds (const ParamVecT & theta) const [inherited]

Definition at line 297 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check param shape(), and mappel::PointEmitterModel::theta in bounds().

8.15.4.99 void mappel::Gauss2DsModel::update_internal_1Dsum_estimators() [protected], [inherited]

Definition at line 100 of file Gauss2DsModel.cpp.

References mappel::Gauss2DsModel::get_max_sigma(), mappel::PointEmitterModel::get_prior(), mappel::Gauss2Ds Model::make_internal_1Dsum_estimator(), mappel::Gauss2DsModel::min_sigma, mappel::ImageFormat2DBase::size, mappel::Gauss2DsModel::y_model, and mappel::Gauss2DsModel::y_model.

Referenced by mappel::Gauss2DsModel::debug_internal_sum_model_y(), mappel::Gauss2DsModel::set_hyperparams(), and mappel::Gauss2DsModel::set_prior().

8.15.5 Member Data Documentation

8.15.5.1 const double mappel::PointEmitterModel::bounds_epsilon = 1.0E-6 [static], [inherited]

Distance from the boundary to constrain in bound_theta and bounded_theta methods

Definition at line 52 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::set_bounds(), mappel::PointEmitterModel::set_lbound(), mappel::Gauss2 DsModel::set_max_sigma_ratio(), and mappel::PointEmitterModel::set_ubound().

8.15.5.2 const double mappel::PointEmitterModel::default alpha sigma = 2 [static], [inherited]

Default per-pixel background gamma distribution shape

Definition at line 62 of file PointEmitterModel.h.

8.15.5.3 const double mappel::PointEmitterModel::default_beta_pos = 3 [static], [inherited]

Default position parameter in symmetric beta-distributions

Definition at line 56 of file PointEmitterModel.h.

8.15.5.4 const double mappel::PointEmitterModel::default_intensity_kappa = 2 [static], [inherited]

Default shape for intensity gamma distributions

Definition at line 60 of file PointEmitterModel.h.

8.15.5.5 const double mappel::PointEmitterModel::default_max_I = INFINITY [static], [inherited]

Default maximum emitter intensity

Definition at line 59 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::make prior component intensity().

8.15.5.6 const double mappel::PointEmitterModel::default_mean_l = 300 [static], [inherited]

Default emitter intensity mean

Definition at line 58 of file PointEmitterModel.h.

Referenced by mappel::MCMCAdaptor1D::set intensity mcmc sampling().

8.15.5.7 const double mappel::PointEmitterModel::default_pixel_mean_bg = 4 [static], [inherited]

Default per-pixel mean background counts

Definition at line 61 of file PointEmitterModel.h.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DModel::make default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_beta_position(), mappel::Gauss1DsModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss2DsModel::make_default_prior_normal_position(), and mappel::MCMCAdaptor1D default_prior_normal_position().

8.15.5.8 const double mappel::PointEmitterModel::default_sigma_pos = 1 [static], [inherited]

Default position parameter in symmetric beta-distributions

Definition at line 57 of file PointEmitterModel.h.

8.15.5.9 const std::string mappel::Gauss2DsModel::DefaultPriorType = "Normal" [static], [inherited]

Definition at line 59 of file Gauss2DsModel.h.

Referenced by mappel::Gauss2DsModel::get_min_sigma().

8.15.5.10 const std::string mappel::PointEmitterModel::DefaultSeperableInitEstimator = "TrustRegion" [static], [inherited]

Estimator name to use in 1D separable initializations

Definition at line 49 of file PointEmitterModel.h.

Referenced by mappel::Gauss2DModel::initial_theta_estimate(), mappel::Gauss2DsxyModel::initial_theta_estimate(), and mappel::Gauss2DsModel::initial_theta_estimate().

8.15.5.11 const std::vector < std::string > mappel::PoissonNoise2DObjective::estimator_names [static], [inherited]

Definition at line 23 of file PoissonNoise2DObjective.h.

8.15.5.12 double mappel::MCMCAdaptor1D::eta_bg =0 [protected], [inherited]

The standard deviation for the normally distributed perturbation to theta bg in the random walk MCMC sampling

Definition at line 32 of file MCMCAdaptor1D.h.

Referenced by mappel::MCMCAdaptor1D::get_stats(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MC—CMCAdaptor1D::operator=(), mappel::MCMCAdaptor2D::sample_mcmc_candidate(), mappel::MCMCAdaptor1Ds::sample_mcmc_candidate(), mappel::MCMCAdaptor1Dc-:sample_mcmc_candidate(), and mappel::MCMCAdaptor1D::set_background_mcmc_sampling().

8.15.5.13 double mappel::MCMCAdaptor1D::eta_I = 0 [protected], [inherited]

The standard deviation for the normally distributed perturbation to theta_I in the random walk MCMC sampling

Definition at line 31 of file MCMCAdaptor1D.h.

Referenced by mappel::MCMCAdaptor1D::get_stats(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCCAdaptor1D(), mappel::MCMCAdaptor2D::sample_mcmc_candidate(), mappel::MCMCAdaptor2Ds \leftarrow ::sample_mcmc_candidate(), mappel::MCMCAdaptor1D::sample_mcmc_candidate(), mappel::MCMCAdaptor1D \leftarrow ::sample_mcmc_candidate(), and mappel::MCMCAdaptor1D::set_intensity_mcmc_sampling().

8.15.5.14 double mappel::MCMCAdaptor2Ds::eta_sigma = 0 [protected], [inherited]

The standard deviation for the normally distributed perturbation to theta_bg in the random walk MCMC sampling

Definition at line 26 of file MCMCAdaptor2Ds.h.

Referenced by mappel::MCMCAdaptor2Ds::get_stats(), mappel::MCMCAdaptor2Ds::MCMCAdaptor2Ds::MCMCAdaptor2Ds::perator=(), and mappel::MCMCAdaptor2Ds::sample_mcmc_candidate().

8.15.5.15 double mappel::MCMCAdaptor1D::eta_x = 0 [protected], [inherited]

The standard deviation for the normally distributed perturbation to theta_x in the random walk MCMC sampling

Definition at line 30 of file MCMCAdaptor1D.h.

Referenced by mappel::MCMCAdaptor1D::get_stats(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::M \leftarrow CMCAdaptor1D::operator=(), mappel::MCMCAdaptor2D::sample_mcmc_candidate(), mappel::MCMCAdaptor1Ds \hookleftarrow ::sample_mcmc_candidate(), mappel::MCMCAdaptor2Ds::sample_mcmc_candidate(), and mappel::MCMCAdaptor1 \hookleftarrow D::sample_mcmc_candidate().

8.15.5.16 double mappel::MCMCAdaptor2D::eta_y =0 [protected], [inherited]

The standard deviation for the normally distributed perturbation to theta y in the random walk MCMC sampling

Definition at line 27 of file MCMCAdaptor2D.h.

Referenced by mappel::MCMCAdaptor2D::get_stats(), mappel::MCMCAdaptor2D::MCMCAdaptor2D(), mappel::MCCAdaptor2D::mcMCAdaptor2D::mcMcAdaptor2D::mcMcAdaptor2Dc::mcMcAdaptor2Dc::mcMcAdaptor2Dc::sample mcmc candidate().

8.15.5.17 const double mappel::MCMCAdaptorBase::global_default_mcmc_sigma_scale = 0.05 [static], [inherited]

Definition at line 16 of file MCMCAdaptorBase.h.

 $Referenced \ by \ mappel::MCMCAdaptor1Ds::MCMCAdaptor1Ds(), \ mappel::MCMCAdaptor2D::MCMCAdaptor2D(), \ and \ mappel::MCMCAdaptor2Ds::MCMCAdaptor2Ds().$

8.15.5.18 const double mappel::MCMCAdaptorBase::global_max_mcmc_sigma_scale = 0.5 [static], [inherited]

Definition at line 17 of file MCMCAdaptorBase.h.

Referenced by mappel::MCMCAdaptorBase::MCMCAdaptorBase(), and mappel::MCMCAdaptorBase::set_mcmc_ sigma_scale().

8.15.5.19 const double mappel::PointEmitterModel::global_max_psf_sigma = 1E2 [static], [inherited]

Global maxmimum for any psf_sigma. Sizes above this value are invalid, and nowhere near useful for practical point emitter localization

Definition at line 54 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::check_psf_sigma().

8.15.5.20 const ImageFormat2DBase::ImageCoordT mappel::ImageFormat2DBase::global_max_size =512 [static], [inherited]

Maximum size along any dimension of the image. This is insanely big to catch obvious errors

Definition at line 39 of file ImageFormat2DBase.h.

Referenced by mappel::ImageFormat2DBase::check_size().

8.15.5.21 const double mappel::PointEmitterModel::global_min_psf_sigma = 1E-1 [static], [inherited]

Global minimum for any psf_sigma. Sizes below this value are invalid, and nowhere near useful for practical point emitter localization

Definition at line 53 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::check_psf_sigma().

8.15.5.22 const ImageFormat2DBase::ImageCoordT mappel::ImageFormat2DBase::global_min_size =3 [static], [inherited]

Minimum size along any dimension of the image.

Definition at line 38 of file ImageFormat2DBase.h.

Referenced by mappel::ImageFormat2DBase::check_size().

8.15.5.23 ParamT mappel::PointEmitterModel::lbound [protected], [inherited]

Definition at line 148 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel ::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::get_stats(), mappel::Gauss1DsModel::initial_theta = estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::PointEmitterModel::perator=(), mappel::PointEmitterModel::reflected_theta(), mappel::PointEmitterModel = ::set_bounds(), mappel::PointEmitterModel::set_bound(), mappel::PointEmitterModel::set_prior(), mappel::PointEmitterModel::pointEmitterModel::set_bounds().

8.15.5.24 VecT mappel::Gauss2DsModel::min_sigma [protected], [inherited]

Gaussian PSF in pixels

Definition at line 118 of file Gauss2DsModel.h.

Referenced by mappel::Gauss2DsModel::compute_max_sigma_ratio(), mappel::Gauss2DsModel::debug_internal — _sum_model_y(), Gauss2DsMAP(), mappel::Gauss2DsMLE::Gauss2DsMLE(), mappel::Gauss2DsModel::Gauss2DsModel::Gauss2DsModel::Gauss2DsModel::initial_theta_estimate(), mappel ::Gauss2DsModel::make_internal_1Dsum_estimator(), mappel::Gauss2DsModel::operator=(), mappel::Gauss2DsModel::Stencil::sigmaX(), mappel::Gauss2DsModel::Stencil::sigmaX(), and mappel::Gauss2DsModel::update internal 1Dsum_estimators().

8.15.5.25 const std::string mappel::Gauss2DsMAP::name [static]

Definition at line 36 of file Gauss2DsMAP.h.

Number of image dimensions.

Definition at line 37 of file ImageFormat2DBase.h.

Referenced by mappel::ImageFormat2DBase::get_stats().

8.15.5.27 | IdxT mappel::PointEmitterModel::num_hyperparams [protected], [inherited]

Definition at line 147 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::get_num_hyperparams(), mappel::PointEmitterModel::get_stats(), mappel::PointEmitterModel::operator=(), and mappel::PointEmitterModel::set_prior().

8.15.5.28 IdxT mappel::PointEmitterModel::num_params [protected], [inherited]

Definition at line 146 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel \leftarrow ::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::get_num_params(), mappel::PointEmitter \leftarrow Model::get_stats(), mappel::Gauss1DModel::initial_theta_estimate(), mappel::Gauss2DModel::initial_theta_estimate(), mappel::PointEmitterModel::make_param(), mappel::PointEmitterModel::make_param(), mappel::PointEmitterModel::make_param_mat_stack(), mappel::PointEmitterModel::make_param_stack(), mappel::PointEmitterModel::pointEmitterModel

```
8.15.5.29 IdxT mappel::MCMCAdaptorBase::num_phases [protected], [inherited]
```

The number of different sampling phases for candidate selection MCMC. Each phase changes a different subset of variables.

Definition at line 29 of file MCMCAdaptorBase.h.

Referenced by mappel::MCMCAdaptorBase::get_mcmc_num_phases(), mappel::MCMCAdaptorBase::get_stats(), mappel::MCMCAdaptor1Ds::sample_mcmc_candidate(), mappel::MCMCAdaptor2Ds::sample_mcmc_candidate(), mappel::MCMCAdaptor1D::sample_mcmc_candidate(), and mappel::MCMCAdaptorBase::set mcmc num phases().

```
8.15.5.30 CompositeDist mappel::PointEmitterModel::prior [protected], [inherited]
```

Definition at line 145 of file PointEmitterModel.h.

Referenced by mappel::Gauss2DModel::debug_internal_sum_model_y(), mappel::Gauss2DsModel::debug_internal \leftarrow _sum_model_y(), mappel::Gauss2DModel::Gauss2DModel::Gauss2DModel(), mappel::PointEmitterModel::Gauss2DsModel(), mappel::PointEmitterModel::get_hyperparam_names(), mappel::PointEmitterModel::get_hyperparam_names(), mappel::PointEmitterModel::get_hyperparams(), mappel::Gauss1DsModel \leftarrow ::get_max_sigma(), mappel::Gauss1DsModel::get_min_sigma(), mappel::PointEmitterModel::get_param_names(), mappel::PointEmitterModel::get_prior(), mappel::PointEmitterModel::get_stats(), mappel::PointEmitterModel::has_ \leftarrow hyperparam(), mappel::PointEmitterModel::pointEmitterModel::pointEmitterModel(), mappel::PointEmitterModel::set_bounds(), mappel::PointEmitterModel::set_hyperparam_names(), mappel::PointEmitterModel::set_hyperparam \leftarrow _value(), mappel::PointEmitterModel::set_hyperparams(), mappel::PointEmitterModel::set_lyperparam. \leftarrow _value(), mappel::PointEmitterModel::set_hyperparams(), mappel::PointEmitterModel::set_param. \leftarrow _value(), mappel::PointEmitterModel::set_param._\circ _value(), mappel::PointEmitterModel::set_param._\circ _value(), mappel::PointEmitterModel::set_param._\circ _value(), mappel::PointEmitterModel::set_param._\circ _value(), mappel::PointEmitterModel::set_param._\circ _value(), mappel::PointEmitterModel::set_param._\circ _value(), mappel::PointEmi

```
8.15.5.31 const StringVecT mappel::Gauss2DsModel::prior_types [static], [inherited]
```

Initial value:

```
= { "Beta", "Normal"
```

Definition at line 58 of file Gauss2DsModel.h.

Referenced by mappel::Gauss2DsModel::get min sigma().

```
8.15.5.32 double mappel::MCMCAdaptorBase::sigma_scale [protected], [inherited]
```

A scaling factor for step sizes as a fraction of the size of the domain dimension we are walking in. (0.05 default)

Definition at line 30 of file MCMCAdaptorBase.h.

Referenced by mappel::MCMCAdaptorBase::get_mcmc_sigma_scale(), mappel::MCMCAdaptorBase::get_stats(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCMCAdaptor1Ds::MCMCAdaptor1Ds::MCMCAdaptor1Ds::MCMCAdaptor1Ds::MCMCAdaptor1Ds::MCMCAdaptor1Ds::MCMCAdaptor2Ds::MCMCAdaptor2Ds::MCMCAdaptor2Ds::MCMCAdaptor1D::set background_mcmc_sampling(), mappel::MCMCAdaptor1D::set_intensity_mcmc_sampling(), and mappel::MCMCbadaptorBase::set_mcmc_sigma_scale().

8.15.5.33 ImageSizeT mappel::ImageFormat2DBase::size [protected], [inherited]

Number of pixels in X dimension for 1D image

Definition at line 67 of file ImageFormat2DBase.h.

Referenced by mappel::cgauss compute estimate(), mappel::cgauss compute estimate debug(), mappel::cgauss ← _heuristic_compute_estimate(), mappel::ImageFormat2DBase::check_image_shape(), mappel::Gauss2DModel::← Stencil::compute_derivatives(), mappel::Gauss2DsModel::Stencil::compute_derivatives(), mappel::Gauss2DModel ← ::debug internal sum model y(), mappel::Gauss2DsModel::debug internal sum model y(), mappel::methods ← ::expected_information(), mappel::Gauss2DModel::Gauss2DModel(), Gauss2DsMAP(), mappel::Gauss2DsMLE ← ::Gauss2DsMLE(), mappel::Gauss2DsModel::Gauss2DsModel(), mappel::ImageFormat2DBase::get num pixels(), mappel::ImageFormat2DBase::get size(), mappel::ImageFormat2DBase::get stats(), mappel::methods::likelihood ← ::grad(), mappel::methods::likelihood::grad2(), mappel::methods::likelihood::debug::grad_components(), mappel ← ::methods::likelihood::hessian(), mappel::methods::likelihood::debug::hessian components(), mappel::Gauss2D ← Model::initial theta estimate(), mappel::Gauss2DsModel::initial theta estimate(), mappel::methods::likelihood← ::llh(), mappel::methods::likelihood::debug::llh components(), mappel::Gauss2DModel::make default prior beta ← position(), mappel::Gauss2DsModel::make default prior beta position(), mappel::Gauss2DModel::make default ← prior_normal_position(), mappel::ImageFormat2D← Base::make image(), mappel::ImageFormat2DBase::make image stack(), mappel::Gauss2DModel::make internal ← 1Dsum estimator(), mappel::Gauss2DsModel::make internal 1Dsum estimator(), mappel::Gauss2DModel::make ← _prior_beta_position(), mappel::Gauss2DsModel::make_prior_beta_position(), mappel::Gauss2DModel::make \leftarrow prior_normal_position(), mappel::Gauss2DsModel::make_prior_normal_position(), mappel::methods::model_image(), mappel::ImageFormat2DBase::operator=(), mappel::methods::likelihood::rllh(), mappel::methods::likelihood::debug← ::rllh_components(), mappel::ImageFormat2DBase::set_size(), mappel::Gauss2DModel::set_size(), mappel::Gauss2← DsModel::set_size(), mappel::methods::simulate_image(), mappel::methods::simulate_image_from_model(), mappel ← ::Gauss2DModel::Stencil::Stencil(), mappel::Gauss2DsModel::Stencil(), mappel::Gauss2DModel::update ← internal 1Dsum estimators(), and mappel::Gauss2DsModel::update internal 1Dsum estimators().

8.15.5.34 ParamT mappel::PointEmitterModel::ubound [protected], [inherited]

Definition at line 148 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel \leftarrow ::PointEmitterModel::get_stats(), mappel::PointEmitterModel::get_ubound(), mappel::Gauss1DsModel::initial_theta \leftarrow _estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::PointEmitterModel::pet_dauss2DsModel::initial_theta_estimate(), mappel::PointEmitterModel::pet_dauss2DsModel::pet_dauss2DsModel::initial_theta_estimate(), mappel::P

8.15.5.35 Gauss1DSumModelT mappel::Gauss2DsModel::x_model [protected], [inherited]

X-model fits 2D images X-axis (column sum). Using variable sigma 1D model.

Definition at line 119 of file Gauss2DsModel.h.

Referenced by mappel::Gauss2DsModel::debug_internal_sum_model_x(), mappel::Gauss2DsModel::initial_theta — _estimate(), mappel::Gauss2DsModel::operator=(), mappel::Gauss2DsModel::set_max_sigma_ratio(), mappel:: \leftarrow Gauss2DsModel::set_min_sigma(), mappel::Gauss2DsModel::set_size(), and mappel::Gauss2DsModel::update_ \leftarrow internal 1Dsum estimators().

8.15.5.36 Gauss1DSumModelT mappel::Gauss2DsModel::y_model [protected], [inherited]

Y-model fits 2D images Y-axis (row sum). Using variable sigma 1D model.

Definition at line 120 of file Gauss2DsModel.h.

Referenced by mappel::Gauss2DsModel::debug_internal_sum_model_y(), mappel::Gauss2DsModel::Gauss2DsModel::Gauss2DsModel::Gauss2DsModel::Gauss2DsModel::Gauss2DsModel::Gauss2DsModel::Gauss2DsModel::Gauss2DsModel::Gauss2DsModel::set_max_sigma_ratio(), mappel::Gauss2DsModel::set_min_sigma(), mappel::Gauss2DsModel::set_size(), and mappel::Gauss2DsModel::update_internal_1Dsum_estimators().

The documentation for this class was generated from the following files:

- · Gauss2DsMAP.h
- Gauss2DsMAP.cpp

8.16 mappel::Gauss2DsMLE Class Reference

A 2D Gaussian with a variable scalar PSF sigma under a Poisson noise assumption using a maximum-likelihood objective

#include </home/travis/build/markjolah/Mappel/include/Mappel/Gauss2DsMLE.h>
Inheritance diagram for mappel::Gauss2DsMLE:

Public Types

- using Gauss1DSumModelT = Gauss1DsMAP
- using StencilVecT = std::vector< Stencil >
- using ParamT = arma::vec
- using ParamVecT = arma::mat
- using ImageCoordT = uint32 t
- using ImagePixeIT = double
- $\bullet \ \ \text{template}{<} \text{class CoordT} >$
 - using ImageSizeShapeT = arma::Col< CoordT >
- template < class CoordT >
 - using ImageSizeVecShapeT = arma::Mat< CoordT >
- using ImageSizeT = ImageSizeShapeT < ImageCoordT >
- using ImageSizeVecT = ImageSizeVecShapeT < ImageCoordT >
- template < class PixelT >
 - using ImageShapeT = arma::Mat< PixeIT >
- template<class PixelT >
 - using ImageStackShapeT = arma::Cube < PixelT >
- using ImageT = ImageShapeT < ImagePixeIT >
- using ImageStackT = ImageStackShapeT < ImagePixeIT >
- using ModelDataT = ImageT
- using ModelDataStackT = ImageStackT

Public Member Functions

- Gauss2DsMLE (const ImageSizeT &size, const VecT &min_sigma, double max_sigma_ratio, const std::string &prior_type=DefaultPriorType)
- Gauss2DsMLE (const ImageSizeT &size, const VecT &min_sigma, const VecT &max_sigma, const std::string &prior_type=DefaultPriorType)
- Gauss2DsMLE (const ImageSizeT &size, const VecT &min_sigma, CompositeDist &&prior)
- Gauss2DsMLE (const ImageSizeT &size, const VecT &min_sigma, const CompositeDist &prior)
- Gauss2DsMLE (const Gauss2DsMLE &o)
- Gauss2DsMLE & operator= (const Gauss2DsMLE &o)
- Gauss2DsMLE (Gauss2DsMLE &&o)
- Gauss2DsMLE & operator= (Gauss2DsMLE &&o)
- void set hyperparams (const VecT &hyperparams)
- void set_prior (CompositeDist &&prior_)
- void set_prior (const CompositeDist &prior_)
- void set size (const ImageSizeT &size)
- VecT get_min_sigma () const
- double get_min_sigma (ldxT dim) const
- VecT get_max_sigma () const
- double get_max_sigma (ldxT dim) const
- double get_max_sigma_ratio () const
- void set_min_sigma (const VecT &min_sigma)
- void set max sigma (const VecT &max sigma)
- void set_max_sigma_ratio (double max_sigma_ratio)
- StatsT get_stats () const
- Stencil make_stencil (const ParamT &theta, bool compute_derivatives=true) const

Make a new Model::Stencil object at theta.

- double pixel model value (int i, int j, const Stencil &s) const
- void pixel_grad (int i, int j, const Stencil &s, ParamT &pgrad) const
- void pixel grad2 (int i, int j, const Stencil &s, ParamT &pgrad2) const
- void pixel_hess (int i, int j, const Stencil &s, MatT &hess) const
- void pixel_hess_update (int i, int j, const Stencil &s, double dm_ratio_m1, double dmm_ratio, ParamT &grad, MatT &hess) const

pixel derivative inner loop calculations.

Stencil initial_theta_estimate (const ImageT &im)

Fast, heuristic estimate of initial theta.

- Stencil initial_theta_estimate (const ImageT &im, const ParamT &theta_init)
- Stencil initial_theta_estimate (const ImageT &im, const ParamT &theta_init, const std::string &estimator)
- Gauss1DSumModelT debug_internal_sum_model_x () const
- Gauss1DSumModelT debug internal sum model y () const
- IdxT get num params () const
- void check param shape (const ParamT &theta) const
- void check param shape (const ParamVecT &theta) const
- void check_psf_sigma (double psf_sigma) const
- void check_psf_sigma (const VecT &psf_sigma) const
- ParamT make param () const
- template<class FillT >

ParamT make param (FillT fill) const

- ParamVecT make_param_stack (ldxT n) const
- template < class FillT >

ParamVecT make param stack (IdxT n, FillT fill) const

- MatT make_param_mat () const
- template<class FillT >

MatT make param mat (FillT fill) const

- CubeT make_param_mat_stack (ldxT n) const
- template<class FillT >

CubeT make_param_mat_stack (ldxT n, FillT fill) const

- CompositeDist & get prior ()
- · const CompositeDist & get prior () const
- IdxT get_num_hyperparams () const
- VecT get_hyperparams () const
- bool has hyperparam (const std::string &name) const
- double get_hyperparam_value (const std::string &name) const
- int get hyperparam index (const std::string &name) const
- void set hyperparam value (const std::string &name, double value)
- void rename hyperparam (const std::string &old name, const std::string &new name)
- StringVecT get param names () const
- void set param names (const StringVecT &desc)
- StringVecT get_hyperparam_names () const
- void set_hyperparam_names (const StringVecT &desc)
- template<class RngT >

ParamT sample_prior (RngT &rng)

- ParamT sample prior ()
- void set_bounds (const ParamT &lbound, const ParamT &ubound)
- void set Ibound (const ParamT & Ibound)
- void set ubound (const ParamT &ubound)
- const ParamT & get Ibound () const
- const ParamT & get_ubound () const
- bool theta_in_bounds (const ParamT &theta) const
- void bound_theta (ParamT &theta, double epsilon=bounds_epsilon) const
- ParamT bounded_theta (const ParamT &theta, double epsilon=bounds_epsilon) const
- ParamT reflected_theta (const ParamT &theta) const
- BoolVecT theta_stack_in_bounds (const ParamVecT &theta) const
- ParamVecT bounded_theta_stack (const ParamVecT &theta, double epsilon=bounds_epsilon) const
- ParamVecT reflected_theta_stack (const ParamVecT &theta) const
- ImageT make_image () const
- ImageStackT make_image_stack (ImageCoordT n) const
- ImageCoordT get_size_image_stack (const ImageStackT &stack) const
- ImageT get_image_from_stack (const ImageStackT &stack, ImageCoordT n) const
- template<class ImT >

void set image in stack (ImageStackT &stack, ImageCoordT n, const ImT &im) const

- const ImageSizeT & get_size () const
- ImageCoordT get_size (IdxT idx) const
- ImageCoordT get num pixels () const
- void check_image_shape (const ImageT &im) const

Check the shape of a single images is correct for model size.

void check_image_shape (const ImageStackT &ims) const

Check the shape of a stack of images is correct for model size.

- void sample mcmc candidate (ldxT sample index, ParamT &candidate, double step scale=1.0)
- void set_intensity_mcmc_sampling (double eta_I=-1)
- void set background mcmc sampling (double eta bg=-1)
- void set_mcmc_sigma_scale (double scale)
- · double get_mcmc_sigma_scale () const
- IdxT get mcmc num phases () const

Static Public Member Functions

- static CompositeDist make_default_prior (const ImageSizeT &size, double max_sigma_ratio, const std::string &prior_type)
- static CompositeDist make_default_prior_beta_position (const ImageSizeT &size, double max_sigma_ratio)
- static CompositeDist make_default_prior_normal_position (const ImageSizeT &size, double max_sigma_ratio)
- static CompositeDist make_prior_beta_position (const ImageSizeT &size, double beta_xpos, double beta_ypos, double mean_I, double kappa_I, double mean_bg, double kappa_bg, double max_sigma_ratio, double alpha_
 sigma)
- static CompositeDist make_prior_normal_position (const ImageSizeT &size, double sigma_xpos, double sigma_ypos, double mean_I, double kappa_I, double mean_bg, double kappa_bg, double max_sigma_ratio, double alpha_sigma)
- static prior_hessian::ScaledSymmetricBetaDist make_prior_component_position_beta (IdxT size, double pos_
 beta=default_beta_pos)
- static prior_hessian::TruncatedGammaDist make_prior_component_intensity (double mean=default_mean_ U, double kappa=default_intensity kappa)
- static void set_rng_seed (RngSeedT seed)
- static ParallelRngManagerT & get_rng_manager ()
- static ParallelRngGeneratorT & get_rng_generator()
- static void check_size (const ImageSizeT &size_)

Check the size argument for the model.

Static Public Attributes

- · static const std::string name
- static const StringVecT prior types
- static const std::string DefaultPriorType = "Normal"
- static const std::string DefaultSeperableInitEstimator = "TrustRegion"
- static const double bounds_epsilon = 1.0E-6
- static const double global min psf sigma = 1E-1
- static const double global_max_psf_sigma = 1E2
- static const double default_beta_pos = 3
- static const double default sigma pos = 1
- static const double default_mean_I = 300
- static const double default_max_I = INFINITY
- static const double default intensity kappa = 2
- static const double default_pixel_mean_bg = 4
- static const double default_alpha_sigma = 2
- static const ImageCoordT num dim =2
- static const ImageCoordT global_min_size =3
- static const ImageCoordT global_max_size =512
- static const double global default mcmc sigma scale = 0.05
- static const double global_max_mcmc_sigma_scale = 0.5
- static const std::vector< std::string > estimator names

Protected Member Functions

- void update internal 1Dsum estimators ()
- void set_mcmc_num_phases (ldxT num_phases)

Static Protected Member Functions

- static Gauss1DSumModelT make_internal_1Dsum_estimator (ldxT dim, const ImageSizeT &size, const VecT &min_sigma, const VecT &max_sigma, const CompositeDist &prior)
- static double compute_max_sigma_ratio (const VecT &min_sigma, const VecT &max_sigma)

Protected Attributes

- · VecT min sigma
- Gauss1DSumModelT x_model
- · Gauss1DSumModelT y model
- CompositeDist prior
- IdxT num_params
- · IdxT num hyperparams
- ParamT Ibound
- · ParamT ubound
- ImageSizeT size
- double eta_sigma =0
- double eta y =0
- double eta_x =0
- double eta_l =0
- double eta_bg =0
- IdxT num_phases
- · double sigma scale

8.16.1 Detailed Description

A 2D Gaussian with a variable scalar PSF sigma under a Poisson noise assumption using a maximum-likelihood objective.

Model: Gauss2DsModel - 2D Gaussian variable scalar PSF sigma Objective: PoissonNoise2DObjective - Poisson noise model for 2D Estimator: MLEstimator - Pure-likelihood estimator

Definition at line 24 of file Gauss2DsMLE.h.

- 8.16.2 Member Typedef Documentation
- 8.16.2.1 using mappel::Gauss2DsModel::Gauss1DSumModelT = Gauss1DsMAP [inherited]

Definition at line 26 of file Gauss2DsModel.h.

8.16.2.2 using mappel::ImageFormat2DBase::ImageCoordT = uint32_t [inherited]

Image size coordinate storage type

Definition at line 24 of file ImageFormat2DBase.h.

8.16.2.3 using mappel::ImageFormat2DBase::ImagePixelT = double [inherited]

Image pixel storage type

Definition at line 25 of file ImageFormat2DBase.h.

8.16.2.4 template < class PixelT > using mappel::ImageFormat2DBase::ImageShapeT = arma::Mat < PixelT > [inherited]

Shape of the data type for a single image

Definition at line 32 of file ImageFormat2DBase.h.

8.16.2.5 template < class CoordT > using mappel::ImageFormat2DBase::ImageSizeShapeT = arma::Col < CoordT > [inherited]

Shape of the data type to store a single image's coordinates

Definition at line 27 of file ImageFormat2DBase.h.

8.16.2.6 using mappel::ImageFormat2DBase::ImageSizeT = ImageSizeShapeT<ImageCoordT>
[inherited]

Data type for a single image size

Definition at line 29 of file ImageFormat2DBase.h.

8.16.2.7 template < class CoordT > using mappel::ImageFormat2DBase::ImageSizeVecShapeT = arma::Mat < CoordT > [inherited]

Shape of the data type to store a vector of image's coordinates

Definition at line 28 of file ImageFormat2DBase.h.

8.16.2.8 using mappel::ImageFormat2DBase::ImageSizeVecT = ImageSizeVecShapeT < ImageCoordT > [inherited]

Data type for a sequence of image sizes

Definition at line 30 of file ImageFormat2DBase.h.

8.16.2.9 template < class PixelT > using mappel::ImageFormat2DBase::ImageStackShapeT = arma::Cube < PixelT > [inherited]

Shape of the data type for a sequence of images

Definition at line 33 of file ImageFormat2DBase.h.

8.16.2.10 using mappel::ImageFormat2DBase::ImageStackT = ImageStackShapeT < ImagePixeIT > [inherited]

Data type to represent a sequence of images

Definition at line 35 of file ImageFormat2DBase.h.

8.16.2.11 using mappel::ImageFormat2DBase::ImageT = ImageShapeT < ImagePixeIT > [inherited]

Data type to represent single image

Definition at line 34 of file ImageFormat2DBase.h.

8.16.2.12 using mappel::PoissonNoise2DObjective::ModelDataStackT = ImageStackT [inherited]

Objective function data stack type: 2D double precision image stack, of images gain-corrected to approximate photons counts

Definition at line 25 of file PoissonNoise2DObjective.h.

8.16.2.13 using mappel::PoissonNoise2DObjective::ModelDataT = ImageT [inherited]

Objective function data type: 2D double precision image, gain-corrected to approximate photons counts

Definition at line 24 of file PoissonNoise2DObjective.h.

8.16.2.14 using mappel::PointEmitterModel::ParamT = arma::vec [inherited]

Parameter vector

Definition at line 47 of file PointEmitterModel.h.

8.16.2.15 using mappel::PointEmitterModel::ParamVecT = arma::mat [inherited]

Vector of parameter vectors

Definition at line 48 of file PointEmitterModel.h.

8.16.2.16 using mappel::Gauss2DsModel::StencilVecT = std::vector < Stencil > [inherited]

Definition at line 55 of file Gauss2DsModel.h.

8.16.3 Constructor & Destructor Documentation

8.16.3.1 mappel::Gauss2DsMLE::Gauss2DsMLE (const ImageSizeT & size, const VecT & min_sigma, double max_sigma_ratio, const std::string & prior_type = DefaultPriorType)

Definition at line 11 of file Gauss2DsMLE.cpp.

References mappel::Gauss2DsModel::min sigma, and mappel::ImageFormat2DBase::size.

8.16.3.2 mappel::Gauss2DsMLE::Gauss2DsMLE (const ImageSizeT & size, const VecT & min_sigma, const VecT & max_sigma, const std::string & prior_type = DefaultPriorType)

Definition at line 15 of file Gauss2DsMLE.cpp.

References mappel::Gauss2DsModel::compute_max_sigma_ratio(), mappel::Gauss2DsModel::make_default_prior(), mappel::Gauss2DsModel::min sigma, and mappel::ImageFormat2DBase::size.

8.16.3.3 mappel::Gauss2DsMLE::Gauss2DsMLE (const ImageSizeT & size, const VecT & min_sigma, CompositeDist && prior)

Definition at line 19 of file Gauss2DsMLE.cpp.

8.16.3.4 mappel::Gauss2DsMLE::Gauss2DsMLE (const ImageSizeT & size, const VecT & min_sigma, const CompositeDist & prior)

Definition at line 27 of file Gauss2DsMLE.cpp.

8.16.3.5 mappel::Gauss2DsMLE::Gauss2DsMLE (const Gauss2DsMLE & o)

Definition at line 35 of file Gauss2DsMLE.cpp.

8.16.3.6 mappel::Gauss2DsMLE::Gauss2DsMLE (Gauss2DsMLE && o)

Definition at line 43 of file Gauss2DsMLE.cpp.

8.16.4 Member Function Documentation

8.16.4.1 void mappel::PointEmitterModel::bound_theta (ParamT & theta, double epsilon = bounds_epsilon) const [inherited]

Definition at line 248 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::Point← EmitterModel::num params, and mappel::PointEmitterModel::ubound.

8.16.4.2 PointEmitterModel::ParamT mappel::PointEmitterModel::bounded_theta (const ParamT & theta, double epsilon = bounds_epsilon) const [inherited]

Definition at line 265 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::ubound, mappel::PointEmitterModel::ubound.

Referenced by mappel::PointEmitterModel::bounded theta stack().

8.16.4.3 PointEmitterModel::ParamVecT mappel::PointEmitterModel::bounded_theta_stack(const ParamVecT & theta, double epsilon = bounds_epsilon) const [inherited]

Definition at line 307 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::check_param_shape(), and mappel::PointEmitterModel::make param stack().

8.16.4.4 void mappel::ImageFormat2DBase::check_image_shape(const ImageT & im) const [inherited]

Check the shape of a single images is correct for model size.

Definition at line 80 of file ImageFormat2DBase.cpp.

References mappel::ImageFormat2DBase::size.

8.16.4.5 void mappel::ImageFormat2DBase::check_image_shape (const ImageStackT & ims) const [inherited]

Check the shape of a stack of images is correct for model size.

Definition at line 93 of file ImageFormat2DBase.cpp.

References mappel::ImageFormat2DBase::size.

8.16.4.6 void mappel::PointEmitterModel::check_param_shape (const ParamT & theta) const [inherited]

Definition at line 167 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::num_params.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::reflected_theta(), mappel::PointEmitterModel::reflected_theta(), mappel::PointEmitterModel::theta_in_bounds(), and mappel::PointEmitterModel \leftarrow ::theta_stack_in_bounds().

8.16.4.7 void mappel::PointEmitterModel::check_param_shape (const ParamVecT & theta) const [inherited]

Definition at line 176 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::num params.

8.16.4.8 void mappel::PointEmitterModel::check_psf_sigma (double psf_sigma) const [inherited]

Definition at line 185 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::global_max_psf_sigma, and mappel::PointEmitterModel::global_min_psf_ sigma.

Referenced by mappel::Gauss1DModel(), mappel::Gauss2DModel::Gauss2DModel(), mappel:: \leftarrow Gauss2DsModel::Gauss2DsModel(), mappel::Gauss1DsModel::set_max_sigma(), mappel::Gauss2DsModel::set_ \leftarrow max_sigma(), mappel::Gauss1DsModel::set_min_sigma(), mappel:: \leftarrow Gauss1DModel::set_psf sigma(), and mappel::Gauss2DModel::set_psf sigma().

8.16.4.9 void mappel::PointEmitterModel::check_psf_sigma (const VecT & psf_sigma) const [inherited]

Definition at line 197 of file PointEmitterModel.cpp.

 $References\ mappel:: PointEmitter Model:: global_max_psf_sigma,\ and\ mappel:: PointEmitter Model:: global_min_psf_constraint = 1000 and the properties of the properties of$

8.16.4.10 void mappel::ImageFormat2DBase::check_size(const ImageSizeT & size_) [static], [inherited]

Check the size argument for the model.

Definition at line 60 of file ImageFormat2DBase.cpp.

References mappel::ImageFormat2DBase::global_max_size, and mappel::ImageFormat2DBase::global_min_size.

Referenced by mappel::ImageFormat2DBase::ImageFormat2DBase(), and mappel::ImageFormat2DBase::set_size().

8.16.4.11 double mappel::Gauss2DsModel::compute_max_sigma_ratio (const VecT & min_sigma, const VecT & max_sigma) [static], [protected], [inherited]

Definition at line 162 of file Gauss2DsModel.cpp.

References mappel::Gauss2DsModel::min_sigma.

Referenced by mappel::Gauss2DsModel::debug_internal_sum_model_y(), mappel::Gauss2DsMAP::Gauss2DsMAP(), Gauss2DsMLE(), and mappel::Gauss2DsModel::set max sigma().

8.16.4.12 Gauss1DSumModelT mappel::Gauss2DsModel::debug_internal_sum_model_x () const [inline], [inherited]

Definition at line 104 of file Gauss2DsModel.h.

References mappel::Gauss2DsModel::x model.

8.16.4.13 Gauss1DSumModelT mappel::Gauss2DsModel::debug_internal_sum_model_y () const [inline], [inherited]

Definition at line 105 of file Gauss2DsModel.h.

References mappel::Gauss2DsModel::compute_max_sigma_ratio(), mappel::Gauss2DsModel::Gauss2DsModel(), mappel::Gauss2DsModel::make_internal_1Dsum_estimator(), mappel::Gauss2DsModel::min_sigma, mappel::

Gauss2DsModel::operator=(), mappel::PointEmitterModel::prior, mappel::ImageFormat2DBase::size, mappel::

Gauss2DsModel::update internal 1Dsum estimators(), and mappel::Gauss2DsModel::y model.

8.16.4.14 int mappel::PointEmitterModel::get_hyperparam_index (const std::string & name) const [inline], [inherited]

Definition at line 236 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.16.4.15 StringVecT mappel::PointEmitterModel::get_hyperparam_names() const [inline], [inherited]

Definition at line 256 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.16.4.16 double mappel::PointEmitterModel::get_hyperparam_value (const std::string & name) const [inline], [inherited]

Definition at line 232 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

Referenced by mappel::MCMCAdaptor1D::set_background_mcmc_sampling(), and mappel::MCMCAdaptor1D::set_ \leftarrow intensity_mcmc_sampling().

8.16.4.17 PointEmitterModel::ParamT mappel::PointEmitterModel::get_hyperparams () const [inline], [inherited]

Definition at line 224 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.16.4.18 ImageFormat2DBase::ImageT mappel::ImageFormat2DBase::get_image_from_stack (const ImageStackT & stack, ImageCoordT n) const [inline], [inherited]

Definition at line 106 of file ImageFormat2DBase.h.

8.16.4.19 const PointEmitterModel::ParamT & mappel::PointEmitterModel::get_lbound () const [inline], [inherited]

Definition at line 212 of file PointEmitterModel.h.

References mappel::PointEmitterModel::lbound.

Referenced by mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCMCAdaptor2D::MCMCAdaptor2D(), and mappel::MCMCAdaptor1D::set background mcmc sampling().

8.16.4.20 VecT mappel::Gauss2DsModel::get_max_sigma()const [inline], [inherited]

Definition at line 132 of file Gauss2DsModel.h.

References mappel::Gauss2DsModel::get max sigma ratio(), and mappel::Gauss2DsModel::get min sigma().

Referenced by mappel::Gauss2DsModel::Gauss2DsModel::Gauss2DsModel::Gauss2DsModel::get_stats(), mappel::Gauss2DsModel::get_stats(), mappel::get_stats(), mappel::ge

8.16.4.21 double mappel::Gauss2DsModel::get_max_sigma (ldxT dim) const [inline], [inherited]

Definition at line 136 of file Gauss2DsModel.h.

References mappel::Gauss2DsModel::get max sigma ratio(), and mappel::Gauss2DsModel::get min sigma().

8.16.4.22 double mappel::Gauss2DsModel::get_max_sigma_ratio() const [inline], [inherited]

Definition at line 140 of file Gauss2DsModel.h.

References mappel::PointEmitterModel::get_ubound().

Referenced by mappel::Gauss2DsModel::get_max_sigma(), and mappel::Gauss2DsModel::get_stats().

8.16.4.23 IdxT mappel::MCMCAdaptorBase::get_mcmc_num_phases()const [inherited]

Definition at line 56 of file MCMCAdaptorBase.cpp.

References mappel::MCMCAdaptorBase::num_phases.

8.16.4.24 double mappel::MCMCAdaptorBase::get_mcmc_sigma_scale() const [inherited]

Definition at line 53 of file MCMCAdaptorBase.cpp.

References mappel::MCMCAdaptorBase::sigma_scale.

8.16.4.25 VecT mappel::Gauss2DsModel::get_min_sigma() const [inline], [inherited]

Definition at line 128 of file Gauss2DsModel.h.

References mappel::Gauss2DsModel::min_sigma.

Referenced by mappel::Gauss2DsModel::get_max_sigma(), mappel::Gauss2DsModel::get_stats(), and mappel:: \leftarrow Gauss2DsModel::set_max_sigma().

8.16.4.26 double mappel::Gauss2DsModel::get_min_sigma (ldxT dim) const [inherited]

Definition at line 191 of file Gauss2DsModel.cpp.

References mappel::Gauss2DsModel::DefaultPriorType, mappel::Gauss2DsModel::min_sigma, and mappel::Gauss2← DsModel::prior types.

```
8.16.4.27 | IdxT mappel::PointEmitterModel::get_num_hyperparams( ) const [inline], [inherited]
Definition at line 208 of file PointEmitterModel.h.
References mappel::PointEmitterModel::num hyperparams.
8.16.4.28 IdxT mappel::PointEmitterModel::get_num_params() const [inline], [inherited]
Definition at line 160 of file PointEmitterModel.h.
References mappel::PointEmitterModel::num_params.
8.16.4.29 ImageFormat2DBase::ImageCoordT mappel::ImageFormat2DBase::get_num_pixels( ) const [inline],
         [inherited]
Definition at line 79 of file ImageFormat2DBase.h.
References mappel::ImageFormat2DBase::size.
Referenced by mappel::ImageFormat2DBase::get_stats().
8.16.4.30 StringVecT mappel::PointEmitterModel::get param names() const [inline], [inherited]
Definition at line 248 of file PointEmitterModel.h.
References mappel::PointEmitterModel::prior.
8.16.4.31 CompositeDist & mappel::PointEmitterModel::get_prior() [inline], [inherited]
Definition at line 200 of file PointEmitterModel.h.
References mappel::PointEmitterModel::prior.
Referenced by mappel::Gauss2DModel::update internal 1Dsum estimators(), and mappel::Gauss2DsModel ←
::update_internal_1Dsum_estimators().
8.16.4.32 const CompositeDist & mappel::PointEmitterModel::get_prior() const [inline], [inherited]
Definition at line 204 of file PointEmitterModel.h.
References mappel::PointEmitterModel::prior.
8.16.4.33 ParallelRngGeneratorT & mappel::PointEmitterModel::get rng generator() [static], [inherited]
Definition at line 120 of file PointEmitterModel.cpp.
References mappel::rng manager.
```

8.16.4.34 ParallelRngManagerT & mappel::PointEmitterModel::get_rng_manager() [static], [inherited]

Definition at line 115 of file PointEmitterModel.cpp.

References mappel::rng_manager.

8.16.4.35 const ImageFormat2DBase::ImageSizeT & mappel::ImageFormat2DBase::get_size() const [inline], [inherited]

Definition at line 74 of file ImageFormat2DBase.h.

References mappel::ImageFormat2DBase::size.

8.16.4.36 ImageFormat2DBase::ImageCoordT mappel::ImageFormat2DBase::get_size (IdxT idx) const [inherited]

Definition at line 41 of file ImageFormat2DBase.cpp.

References mappel::ImageFormat2DBase::size.

8.16.4.37 ImageFormat2DBase::ImageCoordT mappel::ImageFormat2DBase::get_size_image_stack(const ImageStackT & stack) const [inline], [inherited]

Definition at line 99 of file ImageFormat2DBase.h.

8.16.4.38 StatsT mappel::Gauss2DsModel::get_stats() const [inherited]

Definition at line 341 of file Gauss2DsModel.cpp.

References mappel::Gauss2DsModel::get_max_sigma(), mappel::Gauss2DsModel::get_max_sigma_ratio(), mappel ::Gauss2DsModel::get_min_sigma(), mappel::MCMCAdaptor2Ds::get_stats(), mappel::ImageFormat2DBase::get_ \leftarrow stats(), and mappel::PointEmitterModel::get_stats().

8.16.4.39 const PointEmitterModel::ParamT & mappel::PointEmitterModel::get_ubound() const [inline], [inherited]

Definition at line 216 of file PointEmitterModel.h.

References mappel::PointEmitterModel::ubound.

Referenced by mappel::Gauss2DsxyModel::get_max_sigma_ratio(), mappel::Gauss2DsModel::get_max_sigma_ratio(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCMCAdaptor2D::MCMCAdaptor2D(), mappel::MCMCAdaptor1D::set_background_mcmc_sampling(), and mappel::Gauss2DsModel::set_max_sigma_ratio().

8.16.4.40 bool mappel::PointEmitterModel::has_hyperparam (const std::string & name) const [inline], [inherited]

Definition at line 228 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.16.4.41 Gauss2DsModel::Stencil mappel::Gauss2DsModel::initial_theta_estimate(const ImageT & im) [inline], [inherited]

Fast, heuristic estimate of initial theta.

Definition at line 224 of file Gauss2DsModel.h.

References mappel::PointEmitterModel::DefaultSeperableInitEstimator, and mappel::PointEmitterModel::make $_\leftarrow$ param().

Referenced by mappel::Gauss2DsModel::initial_theta_estimate().

8.16.4.42 Gauss2DsModel::Stencil mappel::Gauss2DsModel::initial_theta_estimate (const ImageT & im, const ParamT & theta_init) [inline], [inherited]

Definition at line 231 of file Gauss2DsModel.h.

References mappel::PointEmitterModel::DefaultSeperableInitEstimator, and mappel::Gauss2DsModel::initial_theta $_\leftarrow$ estimate().

8.16.4.43 Gauss2DsModel::Stencil mappel::Gauss2DsModel::initial_theta_estimate (const ImageT & im, const ParamT & theta_init, const std::string & estimator) [inherited]

Definition at line 385 of file Gauss2DsModel.cpp.

References mappel::Gauss2DsModel::Stencil::bg(), mappel::methods::estimate_max(), mappel::Gauss2DsModel:: \leftarrow Stencil::I(), mappel::PointEmitterModel::lbound, mappel::Gauss2DsModel::make_stencil(), mappel::Gauss2DsModel::min_sigma, mappel::PointEmitterModel::num_params, mappel::Gauss2DsModel::Stencil::sigma_ratio(), mappel ::ImageFormat2DBase::size, mappel::PointEmitterModel::theta_in_bounds(), mappel::PointEmitterModel::ubound, mappel::Gauss2DsModel::x model, and mappel::Gauss2DsModel::y model.

8.16.4.44 CompositeDist mappel::Gauss2DsModel::make_default_prior (const ImageSizeT & size, double max_sigma_ratio, const std::string & prior_type) [static], [inherited]

Definition at line 208 of file Gauss2DsModel.cpp.

References mappel::istarts_with(), mappel::Gauss2DsModel::make_default_prior_beta_position(), and mappel:: \leftarrow Gauss2DsModel::make_default_prior_normal_position().

Referenced by mappel::Gauss2DsMAP::Gauss2DsMAP(), and Gauss2DsMLE().

8.16.4.45 CompositeDist mappel::Gauss2DsModel::make_default_prior_beta_position (const ImageSizeT & size, double max_sigma_ratio) [static], [inherited]

Definition at line 230 of file Gauss2DsModel.cpp.

References mappel::PointEmitterModel::default_pixel_mean_bg, mappel::PointEmitterModel::make_prior_component __ __intensity(), mappel::PointEmitterModel::make_prior_component_position_beta(), mappel::PointEmitterModel::make __ __ prior_component_sigma(), and mappel::ImageFormat2DBase::size.

Referenced by mappel::Gauss2DsModel::make default prior().

8.16.4.46 CompositeDist mappel::Gauss2DsModel::make_default_prior_normal_position (const ImageSizeT & size, double max_sigma_ratio) [static], [inherited]

Definition at line 243 of file Gauss2DsModel.cpp.

References mappel::PointEmitterModel::default_pixel_mean_bg, mappel::PointEmitterModel::make_prior_component __intensity(), mappel::PointEmitterModel::make_prior_component_position_normal(), mappel::PointEmitterModel __::make_prior_component_sigma(), and mappel::ImageFormat2DBase::size.

Referenced by mappel::Gauss2DsModel::make_default_prior().

Definition at line 85 of file ImageFormat2DBase.h.

References mappel::ImageFormat2DBase::size.

8.16.4.48 ImageFormat2DBase::ImageStackT mappel::ImageFormat2DBase::make_image_stack(ImageCoordT n) const [inline], [inherited]

Definition at line 92 of file ImageFormat2DBase.h.

References mappel::ImageFormat2DBase::size.

8.16.4.49 Gauss2DsModel::Gauss1DSumModelT mappel::Gauss2DsModel::make_internal_1Dsum_estimator (ldxT dim, const ImageSizeT & size, const VecT & min_sigma, const VecT & max_sigma, const CompositeDist & prior)
[static], [protected], [inherited]

Definition at line 69 of file Gauss2DsModel.cpp.

References mappel::Gauss1DsModel::make_prior_beta_position(), mappel::Gauss1DsModel::make_prior_normal_ \hookleftarrow position(), mappel::Gauss2DsModel::min_sigma, and mappel::ImageFormat2DBase::size.

Referenced by mappel::Gauss2DsModel::debug_internal_sum_model_y(), mappel::Gauss2DsModel::Gauss2DsModel::Gauss2DsModel::debug_internal_sum_model_y(), and mappel::Gauss2DsModel::update_internal_1Dsum_estimators().

8.16.4.50 PointEmitterModel::ParamT mappel::PointEmitterModel::make_param()const [inline], [inherited]

Definition at line 164 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

Referenced by mappel::Gauss1DModel::initial_theta_estimate(), mappel::Gauss1DsModel::initial_theta_estimate(), mappel::Gauss2DModel::initial_theta_estimate(), mappel::Gauss2DsxyModel::initial_theta_estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::Gauss1DModel::pixel_hess_update(), mappel::Gauss1DsModel::pixel_hess_update(), mappel::Gauss2DsModel::pixel_hess_update(), and mappel::Gauss2DsModel::pixel_hess_update().

8.16.4.51 template < class FillT > PointEmitterModel::ParamT mappel::PointEmitterModel::make_param (FillT fill) const

Definition at line 181 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

8.16.4.52 MatT mappel::PointEmitterModel::make_param_mat()const [inline], [inherited]

Definition at line 172 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

8.16.4.53 template < class FillT > MatT mappel::PointEmitterModel::make_param_mat(FillT fill) const [inherited]

Definition at line 191 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

8.16.4.54 CubeT mappel::PointEmitterModel::make param mat stack (ldxT n) const [inline], [inherited]

Definition at line 176 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

8.16.4.55 template < class FillT > CubeT mappel::PointEmitterModel::make_param_mat_stack (ldxT n, FillT fill) const [inherited]

Definition at line 196 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

8.16.4.56 PointEmitterModel::ParamVecT mappel::PointEmitterModel::make_param_stack(ldxT n) const [inline], [inherited]

Definition at line 168 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

 $Referenced\ by\ mappel:: PointEmitterModel::bounded_theta_stack(),\ and\ mappel:: PointEmitterModel::reflected_theta \\ _stack().$

8.16.4.57 template < class FillT > PointEmitterModel::ParamVecT mappel::PointEmitterModel::make_param_stack (ldxT n, FillT fill) const [inherited]

Definition at line 186 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

8.16.4.58 CompositeDist mappel::Gauss2DsModel::make_prior_beta_position (const ImageSizeT & size, double beta_xpos, double beta_ypos, double mean_l, double kappa_l, double mean_bg, double kappa_bg, double max_sigma_ratio, double alpha_sigma) [static], [inherited]

Definition at line 255 of file Gauss2DsModel.cpp.

References mappel::PointEmitterModel::make_prior_component_intensity(), mappel::PointEmitterModel::make_prior component_position_beta(), mappel::PointEmitterModel::make_prior_component_sigma(), and mappel::Image Format2DBase::size.

8.16.4.59 prior_hessian::TruncatedGammaDist mappel::PointEmitterModel::make_prior_component_intensity (double mean = default_mean_I, double kappa = default_intensity_kappa) [static], [inherited]

Definition at line 98 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::default max I.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_beta_position(), mappel::Gauss2Ds \leftarrow default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss1DsModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_normal_cosition(), mappel::Gauss2DModel::make_prior_cosition(), mappel::Gauss2DModel::make_prior_beta_position(), mappel::Gauss1DsModel::make_prior_beta_position(), mappel::Gauss2DsModel::make_prior_beta_position(), mappel::Gauss2DModel::make_prior_normal_cosition(), mappel::Gauss2DsModel::make_prior_normal_cosition(), mappel::Gauss1DsModel::make_prior_normal_cosition(), mappel::Gauss1DsModel::make_prior_normal_cosition(), mappel::Gauss2DsModel::make_prior_normal_cosition(), mappel::Gauss2DsModel::make_prior_normal_cositi

8.16.4.60 prior_hessian::ScaledSymmetricBetaDist mappel::PointEmitterModel::make_prior_component_position_beta (ldxT size, double pos_beta = default_beta_pos_) [static], [inherited]

Definition at line 92 of file PointEmitterModel.cpp.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_beta_position(), mappel::Gauss1DModel::make_default_prior_beta_position(), mappel::Gauss2Ds \leftarrow Model::make_default_prior_beta_position(), mappel::Gauss1DsModel::make_prior_beta_position(), mappel::Gauss2Ds \leftarrow DModel::make_prior_beta_position(), mappel::Gauss1DModel::make_prior_beta_position(), and mappel::Gauss2Ds \leftarrow Model::make_prior_beta_position().

8.16.4.61 prior_hessian::TruncatedNormalDist mappel::PointEmitterModel::make_prior_component_position_normal (ldxT size, double pos_sigma = default_sigma_pos) [static], [inherited]

Definition at line 85 of file PointEmitterModel.cpp.

Referenced by mappel::Gauss1DsModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_ \leftarrow default_prior_normal_position(), mappel::Gauss1DModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_prior_normal_position(), mappel::Gauss1DsModel::make_prior_normal_position(), and mappel::Gauss2DsModel::make_prior_normal_position().

8.16.4.62 prior_hessian::TruncatedParetoDist mappel::PointEmitterModel::make_prior_component_sigma (double min_sigma, double max sigma, double alpha = default alpha sigma) [static],[inherited]

Definition at line 104 of file PointEmitterModel.cpp.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DsModel::make_default_prior_beta_position(), mappel::Gauss1DsModel::make_default_prior_normal_position(), mappel::Gauss2\to DsModel::make_default_prior_normal_position(), mappel::Gauss1DsModel::make_prior_beta_position(), mappel::Gauss2DsModel::make_prior_beta_position(), and mappel\to ::Gauss2DsModel::make_prior_normal_position().

8.16.4.63 CompositeDist mappel::Gauss2DsModel::make_prior_normal_position (const ImageSizeT & size, double sigma_xpos, double sigma_ypos, double mean_l, double kappa_l, double mean_bg, double kappa_bg, double max_sigma_ratio, double alpha_sigma) [static], [inherited]

Definition at line 271 of file Gauss2DsModel.cpp.

References mappel::PointEmitterModel::make_prior_component_intensity(), mappel::PointEmitterModel::make_prior component_position_normal(), mappel::PointEmitterModel::make_prior_component_sigma(), and mappel::Image Format2DBase::size.

8.16.4.64 Gauss2DsModel::Stencil mappel::Gauss2DsModel::make_stencil (const ParamT & theta, bool compute_derivatives = true) const [inline],[inherited]

Make a new Model::Stencil object at theta.

Stencils store all of the important calculations necessary for evaluating the log-likelihood and its derivatives at a particular theta (parameter) value.

This allows re-use of the most expensive computations. Stencils can be easily passed around by reference, and most functions in the mappel::methods namespace accept a const Stencil reference in place of the model parameter.

Throws mappel::ModelBoundsError if not model.theta in bounds(theta).

If derivatives will not be computed with this stencil set compute derivatives=false

Parameters

theta	Prameter to evaluate at
compute_derivatives	True to also prepare for derivative computations

Returns

A new Stencil object ready to compute with

Definition at line 162 of file Gauss2DsModel.h.

References mappel::Gauss2DsModel::Stencil::Stencil(), and mappel::PointEmitterModel::theta_in_bounds().

Referenced by mappel::Gauss2DsModel::initial theta estimate().

8.16.4.65 Gauss2DsMLE & mappel::Gauss2DsMLE::operator= (const Gauss2DsMLE & o)

Definition at line 51 of file Gauss2DsMLE.cpp.

References mappel::MLEstimator::operator=(), mappel::PoissonNoise2DObjective::operator=(), mappel::Image
Format2DBase::operator=(), mappel::Gauss2DsModel::operator=(), and mappel::PointEmitterModel::operator=().

8.16.4.66 Gauss2DsMLE & mappel::Gauss2DsMLE::operator=(Gauss2DsMLE && o)

Definition at line 62 of file Gauss2DsMLE.cpp.

References mappel::MLEstimator::operator=(), mappel::PoissonNoise2DObjective::operator=(), mappel::Image Format2DBase::operator=(), mappel::Gauss2DsModel::operator=(), and mappel::PointEmitterModel::operator=().

8.16.4.67 void mappel::Gauss2DsModel::pixel_grad (int *i,* **int** *j,* **const Stencil &** *s,* **ParamT &** *pgrad* **) const** [inline], [inherited]

Definition at line 180 of file Gauss2DsModel.h.

References mappel::Gauss2DsModel::Stencil::DX, mappel::Gauss2DsModel::Stencil::DXS, mappel::Gauss2DsModel::Stencil::DY, mappel::Gauss2DsModel::Stencil::DY, mappel::Gauss2DsModel::Stencil::I(), mappel::Gauss2DsModel::Stencil::Y.

Referenced by mappel::Gauss2DsModel::pixel_hess_update().

8.16.4.68 void mappel::Gauss2DsModel::pixel_grad2 (int *i*, int *j*, const Stencil & *s*, ParamT & pgrad2) const [inline], [inherited]

Definition at line 192 of file Gauss2DsModel.h.

References mappel::Gauss2DsModel::Stencil::DXS, mappel::Gauss2DsModel::Stencil::DXS2, mappel::Gauss2DsModel::Stencil::DYS2, mappel::Gauss2DsModel::Stencil::I(), mappel::Gauss2DsModel::Stencil::sigmaY(), mappel::Gauss2DsModel::Stencil::X, and mappel::Gauss2DsModel::Stencil::Y.

8.16.4.69 void mappel::Gauss2DsModel::pixel_hess (int i, int j, const Stencil & s, MatT & hess) const [inline], [inherited]

Definition at line 204 of file Gauss2DsModel.h.

References mappel::Gauss2DsModel::Stencil::DX, mappel::Gauss2DsModel::Stencil::DXS, mappel::Gauss2DsModel::Stencil::DXS, mappel::Gauss2DsModel::Stencil::DXS, mappel::Gauss2DsModel::Stencil::DYS, mappel::Gauss2DsModel::Stencil::DYS, mappel::Gauss2DsModel::Stencil::DYS, mappel::Gauss2DsModel::Stencil::DYSY, mappel::Gauss2DsModel::Stencil::I), mappel::Gauss2DsModel::Stencil::Stencil::Stencil::Stencil::Stencil::Stencil::Y, and mappel::Gauss2DsModel::Stencil::Y.

8.16.4.70 void mappel::Gauss2DsModel::pixel_hess_update (int i, int j, const Stencil & s, double dm_ratio_m1, double dmm_ratio, ParamT & grad, MatT & hess) const [inherited]

pixel derivative inner loop calculations.

Definition at line 358 of file Gauss2DsModel.cpp.

References mappel::Gauss2DsModel::Stencil::DX, mappel::Gauss2DsModel::Stencil::DXS, mappel::Gauss2DsModel::Gauss2DsModel::Stencil::DXS, mappel::Gauss2DsModel::Stencil::DXS, mappel:: \hookrightarrow Gauss2DsModel::Stencil::DYS, mappel::Gauss2DsModel::Stencil::DYS, mappel::Gauss2DsModel::Stencil::DYSY, mappel::Gauss2DsModel::Stencil::I(), mappel::PointEmitterModel::make_param(), mappel::Gauss2DsModel::Stencil::Gauss2DsModel::Stencil::Gauss2DsModel::Stencil::Stencil::Gauss2DsModel:

8.16.4.71 double mappel::Gauss2DsModel::pixel_model_value (int *i*, int *j*, const Stencil & *s*) const [inline], [inherited]

Definition at line 173 of file Gauss2DsModel.h.

References mappel::Gauss2DsModel::Stencil::bg(), mappel::Gauss2DsModel::Stencil::I(), mappel::Gauss2DsModel.:Stencil::Y.

8.16.4.72 PointEmitterModel::ParamT mappel::PointEmitterModel::reflected_theta (const ParamT & theta) const [inherited]

Definition at line 276 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::Point← EmitterModel::num_params, and mappel::PointEmitterModel::ubound.

Referenced by mappel::PointEmitterModel::reflected_theta_stack().

8.16.4.73 PointEmitterModel::ParamVecT mappel::PointEmitterModel::reflected_theta_stack(const ParamVecT & theta) const [inherited]

Definition at line 317 of file PointEmitterModel.cpp.

 $References\ mappel:: PointEmitterModel:: heck_param_shape(),\ mappel:: PointEmitterModel:: make_param_stack(),\ and\ mappel:: PointEmitterModel:: reflected_theta().$

8.16.4.74 void mappel::PointEmitterModel::rename_hyperparam (const std::string & old_name, const std::string & new_name)
[inline], [inherited]

Definition at line 244 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.16.4.75 void mappel::MCMCAdaptor2Ds::sample_mcmc_candidate (ldxT sample_index, ParamT & candidate, double step_scale = 1.0) [inherited]

Definition at line 56 of file MCMCAdaptor2Ds.cpp.

References mappel::MCMCAdaptor1D::eta_bg, mappel::MCMCAdaptor1D::eta_l, mappel::MCMCAdaptor2Ds::eta
__sigma, mappel::MCMCAdaptor1D::eta_x, mappel::MCMCAdaptor2D::eta_y, mappel::MCMCAdaptorBase::num_

phases, and mappel::rng manager.

8.16.4.76 template < class RngT > PointEmitterModel::ParamT mappel::PointEmitterModel::sample_prior(RngT & rng) [inherited]

Definition at line 264 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.16.4.77 PointEmitterModel::ParamT mappel::PointEmitterModel::sample_prior() [inline], [inherited]

Definition at line 268 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior, and mappel::rng_manager.

8.16.4.78 void mappel::MCMCAdaptor1D::set background mcmc sampling (double eta bq = -1) [inherited]

Definition at line 81 of file MCMCAdaptor1D.cpp.

References mappel::PointEmitterModel::default_pixel_mean_bg, mappel::MCMCAdaptor1D::eta_bg, mappel::PointcointCointEmitterModel::get_hyperparam_value(), mappel::PointEmitterModel::get_lbound(), mappel::PointEmitterModel::get_cointCointEmitterModel::get_cointCointEmitterModel::get_cointEmitterModel

Referenced by mappel::MCMCAdaptor1D::MCMCAdaptor1D().

8.16.4.79 void mappel::PointEmitterModel::set_bounds (const ParamT & *lbound_*, const ParamT & *ubound_*) [inherited]

Box-type parameter bounds

Modifies the prior bounds to prevent sampling outside the valid box-constraints.

Definition at line 213 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounds_epsilon, mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::pointEmitterModel::ubound, mappel::PointEmitterModel::pointEmitterModel::ubound.

8.16.4.80 void mappel::PointEmitterModel::set_hyperparam_names (const StringVecT & *desc* **)** [inline], [inherited]

Definition at line 260 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.16.4.81 void mappel::PointEmitterModel::set_hyperparam_value (const std::string & name, double value) [inline], [inherited]

Definition at line 240 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.16.4.82 void mappel::Gauss2DsModel::set_hyperparams (const VecT & hyperparams) [inherited]

Definition at line 119 of file Gauss2DsModel.cpp.

References mappel::PointEmitterModel::set_hyperparams(), and mappel::Gauss2DsModel::update_internal_1Dsum← _estimators().

8.16.4.83 template < class ImT > void mappel::ImageFormat2DBase::set_image_in_stack (ImageStackT & stack, ImageCoordT n, const ImT & im) const [inherited]

Definition at line 113 of file ImageFormat2DBase.h.

8.16.4.84 void mappel::MCMCAdaptor1D::set intensity mcmc sampling (double eta l = -1) [inherited]

Definition at line 65 of file MCMCAdaptor1D.cpp.

References mappel::PointEmitterModel::default_mean_I, mappel::MCMCAdaptor1D::eta_I, mappel::PointEmitter (
Model::get hyperparam value(), and mappel::MCMCAdaptorBase::sigma scale.

Referenced by mappel::MCMCAdaptor1D::MCMCAdaptor1D().

8.16.4.85 void mappel::PointEmitterModel::set_lbound (const ParamT & lbound) [inherited]

Definition at line 226 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounds_epsilon, mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::pointEmitterModel::ubound, mappel::PointEmitterModel::pointEmitterModel::ubound.

Referenced by mappel::Gauss1DsModel::set_min_sigma().

8.16.4.86 void mappel::Gauss2DsModel::set_max_sigma (const VecT & new_sigma) [inherited]

Set the max_sigma_ratio based on the new max_sigma's ratio with the current min_sigma.

Definition at line 155 of file Gauss2DsModel.cpp.

References mappel::PointEmitterModel::check_psf_sigma(), mappel::Gauss2DsModel::compute_max_sigma_ratio(), mappel::Gauss2DsModel::get min sigma(), and mappel::Gauss2DsModel::set max sigma ratio().

8.16.4.87 void mappel::Gauss2DsModel::set_max_sigma_ratio (double max_sigma_ratio) [inherited]

Definition at line 176 of file Gauss2DsModel.cpp.

References mappel::PointEmitterModel::bounds_epsilon, mappel::Gauss2DsModel::get_max_sigma(), mappel::Point← EmitterModel::get_ubound(), mappel::Gauss1DsModel::set_max_sigma(), mappel::PointEmitterModel::set_ubound(), mappel::Gauss2DsModel::x model, and mappel::Gauss2DsModel::y model.

Referenced by mappel::Gauss2DsModel::set_max_sigma().

8.16.4.88 void mappel::MCMCAdaptorBase::set_mcmc_num_phases (ldxT *num_phases*) [protected], [inherited]

Definition at line 59 of file MCMCAdaptorBase.cpp.

References mappel::MCMCAdaptorBase::num phases.

Referenced by mappel::MCMCAdaptor1Ds::MCMCAdaptor1Ds(), and mappel::MCMCAdaptor2Ds::MCMCAdaptor2 → Ds().

8.16.4.89 void mappel::MCMCAdaptorBase::set_mcmc_sigma_scale (double scale) [inherited]

Definition at line 39 of file MCMCAdaptorBase.cpp.

References mappel::MCMCAdaptorBase::global_max_mcmc_sigma_scale, and mappel::MCMCAdaptorBase::sigma ← __scale.

8.16.4.90 void mappel::Gauss2DsModel::set_min_sigma (const VecT & new_sigma) [inherited]

Set the minimum sigma, keeping the max sigma ratio the same.

Definition at line 137 of file Gauss2DsModel.cpp.

References mappel::PointEmitterModel::check_psf_sigma(), mappel::Gauss2DsModel::get_max_sigma(), mappel::Gauss2DsModel::set_max_sigma(), mappel::Gauss1DsModel::set_min_ sigma(), mappel::Gauss2DsModel::xet_min_ mappel::Gaus

8.16.4.91 void mappel::PointEmitterModel::set_param_names (const StringVecT & desc) [inline], [inherited]

Definition at line 252 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.16.4.92 void mappel::Gauss2DsModel::set prior (CompositeDist && prior) [inherited]

Definition at line 107 of file Gauss2DsModel.cpp.

References mappel::PointEmitterModel::set_prior(), and mappel::Gauss2DsModel::update_internal_1Dsum_ \leftarrow estimators().

8.16.4.93 void mappel::Gauss2DsModel::set_prior(const CompositeDist & prior_) [inherited]

Definition at line 113 of file Gauss2DsModel.cpp.

References mappel::PointEmitterModel::set_prior(), and mappel::Gauss2DsModel::update_internal_1Dsum_ \leftarrow estimators().

8.16.4.94 void mappel::PointEmitterModel::set_rng_seed(RngSeedT seed) [static], [inherited]

Definition at line 110 of file PointEmitterModel.cpp.

References mappel::rng_manager.

8.16.4.95 void mappel::Gauss2DsModel::set_size(const ImageSizeT & size_) [inherited]

Definition at line 125 of file Gauss2DsModel.cpp.

References mappel::ImageFormat2DBase::set_size(), mappel::ImageFormat1DBase::set_size(), mappel::ImageFormat2DBase::set_size(), mappel:

8.16.4.96 void mappel::PointEmitterModel::set_ubound(const ParamT & ubound) [inherited]

Definition at line 237 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounds_epsilon, mappel::PointEmitterModel::lbound, mappel::PointEmitter (
Model::num_params, mappel::PointEmitterModel::prior, and mappel::PointEmitterModel::ubound.

Referenced by mappel::Gauss1DsModel::set max sigma(), and mappel::Gauss2DsModel::set max sigma ratio().

8.16.4.97 bool mappel::PointEmitterModel::theta_in_bounds (const ParamT & theta) const [inherited]

Definition at line 257 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::ubound, mappel::PointEmitterModel::ubound.

Referenced by mappel::Gauss2DModel::initial_theta_estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::Gauss1DModel::make_stencil(), mappel::Gauss2DModel::make_stencil(), mappel::Gauss2DsModel::make_stencil(), mappel::Gauss2DsModel::make_stencil(), and mappel::Point \leftarrow EmitterModel::theta_stack_in_bounds().

8.16.4.98 BoolVecT mappel::PointEmitterModel::theta_stack_in_bounds (const ParamVecT & theta) const [inherited]

Definition at line 297 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check param shape(), and mappel::PointEmitterModel::theta in bounds().

8.16.4.99 void mappel::Gauss2DsModel::update_internal_1Dsum_estimators() [protected], [inherited]

Definition at line 100 of file Gauss2DsModel.cpp.

References mappel::Gauss2DsModel::get_max_sigma(), mappel::PointEmitterModel::get_prior(), mappel::Gauss2Ds Model::make_internal_1Dsum_estimator(), mappel::Gauss2DsModel::min_sigma, mappel::ImageFormat2DBase::size, mappel::Gauss2DsModel::y_model, and mappel::Gauss2DsModel::y_model.

Referenced by mappel::Gauss2DsModel::debug_internal_sum_model_y(), mappel::Gauss2DsModel::set_hyperparams(), and mappel::Gauss2DsModel::set_prior().

8.16.5 Member Data Documentation

8.16.5.1 const double mappel::PointEmitterModel::bounds_epsilon = 1.0E-6 [static], [inherited]

Distance from the boundary to constrain in bound_theta and bounded_theta methods

Definition at line 52 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::set_bounds(), mappel::PointEmitterModel::set_lbound(), mappel::Gauss2 DsModel::set_max_sigma_ratio(), and mappel::PointEmitterModel::set_ubound().

8.16.5.2 const double mappel::PointEmitterModel::default_alpha_sigma = 2 [static], [inherited]

Default per-pixel background gamma distribution shape

Definition at line 62 of file PointEmitterModel.h.

8.16.5.3 const double mappel::PointEmitterModel::default_beta_pos = 3 [static], [inherited]

Default position parameter in symmetric beta-distributions

Definition at line 56 of file PointEmitterModel.h.

8.16.5.4 const double mappel::PointEmitterModel::default_intensity_kappa = 2 [static], [inherited]

Default shape for intensity gamma distributions

Definition at line 60 of file PointEmitterModel.h.

8.16.5.5 const double mappel::PointEmitterModel::default_max_I = INFINITY [static], [inherited]

Default maximum emitter intensity

Definition at line 59 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::make prior component intensity().

8.16.5.6 const double mappel::PointEmitterModel::default_mean_l = 300 [static], [inherited]

Default emitter intensity mean

Definition at line 58 of file PointEmitterModel.h.

Referenced by mappel::MCMCAdaptor1D::set intensity mcmc sampling().

8.16.5.7 const double mappel::PointEmitterModel::default_pixel_mean_bg = 4 [static], [inherited]

Default per-pixel mean background counts

Definition at line 61 of file PointEmitterModel.h.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DModel::make default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_beta_position(), mappel::Gauss1DsModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss2DsModel::make_default_prior_normal_position(), and mappel::MCMCAdaptor1D default_prior_normal_position().

8.16.5.8 const double mappel::PointEmitterModel::default_sigma_pos = 1 [static], [inherited]

Default position parameter in symmetric beta-distributions

Definition at line 57 of file PointEmitterModel.h.

8.16.5.9 const std::string mappel::Gauss2DsModel::DefaultPriorType = "Normal" [static], [inherited]

Definition at line 59 of file Gauss2DsModel.h.

Referenced by mappel::Gauss2DsModel::get_min_sigma().

8.16.5.10 const std::string mappel::PointEmitterModel::DefaultSeperableInitEstimator = "TrustRegion" [static], [inherited]

Estimator name to use in 1D separable initializations

Definition at line 49 of file PointEmitterModel.h.

Referenced by mappel::Gauss2DModel::initial_theta_estimate(), mappel::Gauss2DsxyModel::initial_theta_estimate(), and mappel::Gauss2DsModel::initial_theta_estimate().

8.16.5.11 const std::vector < std::string > mappel::PoissonNoise2DObjective::estimator_names [static], [inherited]

Definition at line 23 of file PoissonNoise2DObjective.h.

8.16.5.12 double mappel::MCMCAdaptor1D::eta_bg =0 [protected], [inherited]

The standard deviation for the normally distributed perturbation to theta bg in the random walk MCMC sampling

Definition at line 32 of file MCMCAdaptor1D.h.

Referenced by mappel::MCMCAdaptor1D::get_stats(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MC—CMCAdaptor1D::operator=(), mappel::MCMCAdaptor2D::sample_mcmc_candidate(), mappel::MCMCAdaptor1Ds::sample_mcmc_candidate(), mappel::MCMCAdaptor1Dc-:sample_mcmc_candidate(), and mappel::MCMCAdaptor1D::set_background_mcmc_sampling().

8.16.5.13 double mappel::MCMCAdaptor1D::eta_l = 0 [protected], [inherited]

The standard deviation for the normally distributed perturbation to theta_I in the random walk MCMC sampling

Definition at line 31 of file MCMCAdaptor1D.h.

Referenced by mappel::MCMCAdaptor1D::get_stats(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCCAdaptor1D(), mappel::MCMCAdaptor2D::sample_mcmc_candidate(), mappel::MCMCAdaptor2Ds \leftarrow ::sample_mcmc_candidate(), mappel::MCMCAdaptor1D::sample_mcmc_candidate(), mappel::MCMCAdaptor1D \leftarrow ::sample_mcmc_candidate(), and mappel::MCMCAdaptor1D::set_intensity_mcmc_sampling().

8.16.5.14 double mappel::MCMCAdaptor2Ds::eta_sigma =0 [protected], [inherited]

The standard deviation for the normally distributed perturbation to theta_bg in the random walk MCMC sampling

Definition at line 26 of file MCMCAdaptor2Ds.h.

Referenced by mappel::MCMCAdaptor2Ds::get_stats(), mappel::MCMCAdaptor2Ds::MCMCAdaptor2Ds::MCMCAdaptor2Ds::perator=(), and mappel::MCMCAdaptor2Ds::sample_mcmc_candidate().

8.16.5.15 double mappel::MCMCAdaptor1D::eta_x = 0 [protected], [inherited]

The standard deviation for the normally distributed perturbation to theta_x in the random walk MCMC sampling

Definition at line 30 of file MCMCAdaptor1D.h.

Referenced by mappel::MCMCAdaptor1D::get_stats(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCCAdaptor1D::perator=(), mappel::MCMCAdaptor1Ds::sample_mcmc_candidate(), mappel::MCMCAdaptor2D \leftarrow ::sample_mcmc_candidate(), mappel::MCMCAdaptor2Ds::sample_mcmc_candidate(), and mappel::MCMCAdaptor1 \leftarrow D::sample_mcmc_candidate().

8.16.5.16 double mappel::MCMCAdaptor2D::eta_y =0 [protected], [inherited]

The standard deviation for the normally distributed perturbation to theta y in the random walk MCMC sampling

Definition at line 27 of file MCMCAdaptor2D.h.

Referenced by mappel::MCMCAdaptor2D::get_stats(), mappel::MCMCAdaptor2D::MCMCAdaptor2D(), mappel::MCCAdaptor2D::mcMCAdaptor2D::mcMcAdaptor2D::mcMcAdaptor2Dc::mcMcAdaptor2Dc::mcMcAdaptor2Dc::sample mcmc candidate().

8.16.5.17 const double mappel::MCMCAdaptorBase::global_default_mcmc_sigma_scale = 0.05 [static], [inherited]

Definition at line 16 of file MCMCAdaptorBase.h.

Referenced by mappel::MCMCAdaptor1Ds::MCMCAdaptor1Ds(), mappel::MCMCAdaptor2D::MCMCAdaptor2D(), and mappel::MCMCAdaptor2Ds::MCMCAdaptor2Ds().

8.16.5.18 const double mappel::MCMCAdaptorBase::global_max_mcmc_sigma_scale = 0.5 [static], [inherited]

Definition at line 17 of file MCMCAdaptorBase.h.

Referenced by mappel::MCMCAdaptorBase::MCMCAdaptorBase(), and mappel::MCMCAdaptorBase::set_mcmc_ sigma_scale().

8.16.5.19 const double mappel::PointEmitterModel::global_max_psf_sigma = 1E2 [static], [inherited]

Global maxmimum for any psf_sigma. Sizes above this value are invalid, and nowhere near useful for practical point emitter localization

Definition at line 54 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::check_psf_sigma().

8.16.5.20 const ImageFormat2DBase::ImageCoordT mappel::ImageFormat2DBase::global_max_size =512 [static], [inherited]

Maximum size along any dimension of the image. This is insanely big to catch obvious errors

Definition at line 39 of file ImageFormat2DBase.h.

Referenced by mappel::ImageFormat2DBase::check_size().

8.16.5.21 const double mappel::PointEmitterModel::global_min_psf_sigma = 1E-1 [static], [inherited]

Global minimum for any psf_sigma. Sizes below this value are invalid, and nowhere near useful for practical point emitter localization

Definition at line 53 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::check_psf_sigma().

8.16.5.22 const ImageFormat2DBase::ImageCoordT mappel::ImageFormat2DBase::global_min_size =3 [static], [inherited]

Minimum size along any dimension of the image.

Definition at line 38 of file ImageFormat2DBase.h.

Referenced by mappel::ImageFormat2DBase::check_size().

8.16.5.23 ParamT mappel::PointEmitterModel::lbound [protected], [inherited]

Definition at line 148 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel ::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::get_stats(), mappel::Gauss1DsModel::initial_theta = estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::PointEmitterModel::perator=(), mappel::PointEmitterModel::reflected_theta(), mappel::PointEmitterModel = ::set_bounds(), mappel::PointEmitterModel::set_bound(), mappel::PointEmitterModel::set_prior(), mappel::PointEmitterModel::pointEmitterModel::set_bounds().

8.16.5.24 VecT mappel::Gauss2DsModel::min_sigma [protected], [inherited]

Gaussian PSF in pixels

Definition at line 118 of file Gauss2DsModel.h.

Referenced by mappel::Gauss2DsModel::compute_max_sigma_ratio(), mappel::Gauss2DsModel::debug_internal — _sum_model_y(), mappel::Gauss2DsMAP::Gauss2DsMAP(), Gauss2DsMLE(), mappel::Gauss2DsModel::Gauss2DsModel::Gauss2DsModel::Gauss2DsModel::Gauss2DsModel::initial_theta_estimate(), mappel ::Gauss2DsModel::make_internal_1Dsum_estimator(), mappel::Gauss2DsModel::operator=(), mappel::Gauss2DsModel::Stencil::sigmaX(), mappel::Gauss2DsModel::Stencil::sigmaX(), and mappel::Gauss2DsModel::update internal 1Dsum_estimators().

8.16.5.25 const std::string mappel::Gauss2DsMLE::name [static]

Definition at line 36 of file Gauss2DsMLE.h.

Number of image dimensions.

Definition at line 37 of file ImageFormat2DBase.h.

Referenced by mappel::ImageFormat2DBase::get_stats().

8.16.5.27 IdxT mappel::PointEmitterModel::num_hyperparams [protected], [inherited]

Definition at line 147 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::get_num_hyperparams(), mappel::PointEmitterModel::get_stats(), mappel::PointEmitterModel::operator=(), and mappel::PointEmitterModel::set_prior().

8.16.5.28 IdxT mappel::PointEmitterModel::num_params [protected], [inherited]

Definition at line 146 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel \leftarrow ::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::get_num_params(), mappel::PointEmitter \leftarrow Model::get_stats(), mappel::Gauss1DModel::initial_theta_estimate(), mappel::Gauss2DModel::initial_theta_estimate(), mappel::PointEmitterModel::make_param(), mappel::PointEmitterModel::make_param(), mappel::PointEmitterModel::make_param_mat_stack(), mappel::PointEmitterModel::make_param_stack(), mappel::PointEmitterModel::pointEmitterModel::reflected_theta(), mappel::PointEmitterModel::set_bounds(), mappel::PointEmitterModel::set_bounds(), mappel::PointEmitterModel::set \leftarrow prior(), mappel::PointEmitterModel::set ubound(), and mappel::PointEmitterModel::theta in bounds().

```
8.16.5.29 IdxT mappel::MCMCAdaptorBase::num_phases [protected], [inherited]
```

The number of different sampling phases for candidate selection MCMC. Each phase changes a different subset of variables.

Definition at line 29 of file MCMCAdaptorBase.h.

Referenced by mappel::MCMCAdaptorBase::get_mcmc_num_phases(), mappel::MCMCAdaptorBase::get_stats(), mappel::MCMCAdaptor2Ds::sample_mcmc_candidate(), mappel::MCMCAdaptor1Ds::sample_mcmc_candidate(), mappel::MCMCAdaptor1Ds::sample_mcmc_candidate(), and mappel::MCMCAdaptorBase::set mcmc num phases().

```
8.16.5.30 CompositeDist mappel::PointEmitterModel::prior [protected], [inherited]
```

Definition at line 145 of file PointEmitterModel.h.

Referenced by mappel::Gauss2DModel::debug_internal_sum_model_y(), mappel::Gauss2DsModel::debug_internal \
_sum_model_y(), mappel::Gauss2DModel::Gauss2DModel(), mappel::Gauss2DsModel::Gauss2DsModel(), mappel \
::PointEmitterModel::get_hyperparam_index(), mappel::PointEmitterModel::get_hyperparam_names(), mappel::PointEmitterModel::get_hyperparam_names(), mappel::PointEmitterModel::get_param_names(), mappel::PointEmitterModel::get_param_names(), mappel::PointEmitterModel::get_param_names(), mappel::PointEmitterModel::get_param_names(), mappel::PointEmitterModel::pointEmitterModel::has_\(\cdot \) hyperparam(), mappel::PointEmitterModel::pointEmitterMode

```
8.16.5.31 const StringVecT mappel::Gauss2DsModel::prior_types [static], [inherited]
```

Initial value:

```
= { "Beta", "Normal" }
```

Definition at line 58 of file Gauss2DsModel.h.

Referenced by mappel::Gauss2DsModel::get_min_sigma().

```
8.16.5.32 double mappel::MCMCAdaptorBase::sigma_scale [protected], [inherited]
```

A scaling factor for step sizes as a fraction of the size of the domain dimension we are walking in. (0.05 default)

Definition at line 30 of file MCMCAdaptorBase.h.

Referenced by mappel::MCMCAdaptorBase::get_mcmc_sigma_scale(), mappel::MCMCAdaptorBase::get_stats(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCMCAdaptor1Ds::MCMCAdaptor1Ds::MCMCAdaptor1Ds::MCMCAdaptor1Ds::MCMCAdaptor1Ds::MCMCAdaptor1Ds::MCMCAdaptor2Ds::MCMCAdaptor2Ds::MCMCAdaptor2Ds::MCMCAdaptor1D::set background_mcmc_sampling(), mappel::MCMCAdaptor1D::set_intensity_mcmc_sampling(), and mappel::MCMCbadaptorBase::set_mcmc_sigma_scale().

8.16.5.33 ImageSizeT mappel::ImageFormat2DBase::size [protected], [inherited]

Number of pixels in X dimension for 1D image

Definition at line 67 of file ImageFormat2DBase.h.

Referenced by mappel::cgauss compute estimate(), mappel::cgauss compute estimate debug(), mappel::cgauss ← _heuristic_compute_estimate(), mappel::ImageFormat2DBase::check_image_shape(), mappel::Gauss2DModel::← Stencil::compute_derivatives(), mappel::Gauss2DsModel::Stencil::compute_derivatives(), mappel::Gauss2DModel ← ::debug internal sum model y(), mappel::Gauss2DsModel::debug internal sum model y(), mappel::methods ← mappel::Gauss2DModel::Gauss2DModel(), mappel::Gauss2DsMAP::Gauss2DsMAP(), ::expected information(), Gauss2DsMLE(), mappel::Gauss2DsModel::Gauss2DsModel(), mappel::ImageFormat2DBase::get num pixels(), mappel::ImageFormat2DBase::get size(), mappel::ImageFormat2DBase::get stats(), mappel::methods::likelihood ← ::grad(), mappel::methods::likelihood::grad2(), mappel::methods::likelihood::debug::grad_components(), mappel ← ::methods::likelihood::hessian(), mappel::methods::likelihood::debug::hessian components(), mappel::Gauss2D ← Model::initial theta estimate(), mappel::Gauss2DsModel::initial theta estimate(), mappel::methods::likelihood← ::llh(), mappel::methods::likelihood::debug::llh components(), mappel::Gauss2DModel::make default prior beta ← position(), mappel::Gauss2DsModel::make default prior beta position(), mappel::Gauss2DModel::make default ← prior_normal_position(), mappel::ImageFormat2D← Base::make image(), mappel::ImageFormat2DBase::make image stack(), mappel::Gauss2DModel::make internal ← 1Dsum estimator(), mappel::Gauss2DsModel::make internal 1Dsum estimator(), mappel::Gauss2DModel::make ← _prior_beta_position(), mappel::Gauss2DsModel::make_prior_beta_position(), mappel::Gauss2DModel::make \leftarrow prior_normal_position(), mappel::Gauss2DsModel::make_prior_normal_position(), mappel::methods::model_image(), mappel::ImageFormat2DBase::operator=(), mappel::methods::likelihood::rllh(), mappel::methods::likelihood::debug← ::rllh_components(), mappel::ImageFormat2DBase::set_size(), mappel::Gauss2DModel::set_size(), mappel::Gauss2← DsModel::set_size(), mappel::methods::simulate_image(), mappel::methods::simulate_image_from_model(), mappel ← ::Gauss2DModel::Stencil::Stencil(), mappel::Gauss2DsModel::Stencil(), mappel::Gauss2DModel::update ← internal 1Dsum estimators(), and mappel::Gauss2DsModel::update internal 1Dsum estimators().

8.16.5.34 ParamT mappel::PointEmitterModel::ubound [protected], [inherited]

Definition at line 148 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel \leftarrow ::PointEmitterModel::get_stats(), mappel::PointEmitterModel::get_ubound(), mappel::Gauss1DsModel::initial_theta \leftarrow _estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::PointEmitterModel::pointEmitterModel::reflected_theta(), mappel::PointEmitterModel \leftarrow ::set_bounds(), mappel::PointEmitterModel::set_lbound(), mappel::PointEmitterModel::set_prior(), mappel::PointEmitterModel::pointEmitterModel

8.16.5.35 Gauss1DSumModelT mappel::Gauss2DsModel::x_model [protected], [inherited]

X-model fits 2D images X-axis (column sum). Using variable sigma 1D model.

Definition at line 119 of file Gauss2DsModel.h.

Referenced by mappel::Gauss2DsModel::debug_internal_sum_model_x(), mappel::Gauss2DsModel::initial_theta — _estimate(), mappel::Gauss2DsModel::operator=(), mappel::Gauss2DsModel::set_max_sigma_ratio(), mappel:: \leftarrow Gauss2DsModel::set_min_sigma(), mappel::Gauss2DsModel::set_size(), and mappel::Gauss2DsModel::update_ \leftarrow internal 1Dsum estimators().

8.16.5.36 Gauss1DSumModelT mappel::Gauss2DsModel::y_model [protected], [inherited]

Y-model fits 2D images Y-axis (row sum). Using variable sigma 1D model.

Definition at line 120 of file Gauss2DsModel.h.

Referenced by mappel::Gauss2DsModel::debug_internal_sum_model_y(), mappel::Gauss2DsModel::Gauss2DsModel::Gauss2DsModel::Gauss2DsModel::Gauss2DsModel::Gauss2DsModel::Gauss2DsModel::Gauss2DsModel::gauss2DsModel::gauss2DsModel::gauss2DsModel::set_min_sigma(), mappel::Gauss2DsModel::set_size(), and mappel::Gauss2DsModel::update_internal_1Dsum_estimators().

The documentation for this class was generated from the following files:

- · Gauss2DsMLE.h
- Gauss2DsMLE.cpp

8.17 mappel::Gauss2DsModel Class Reference

A base class for 2D Gaussian PSF where the gaussian sigma is controlled by a single scalar parameter which is called sigma_ratio. The size of the gaussian psf is sigma_ratio*psf_sigma, where psf_sigma is considered as a vector [psf_\circ sigmaX, psf_sigmaY].

#include </home/travis/build/markjolah/Mappel/include/Mappel/Gauss2DsModel.h>

Inheritance diagram for mappel::Gauss2DsModel:

Classes

class Stencil

Stencil for 2D scalar-sigma models.

Public Types

```
    using Gauss1DSumModelT = Gauss1DsMAP

    using StencilVecT = std::vector < Stencil >

• using ParamT = arma::vec
using ParamVecT = arma::mat

    using ImageCoordT = uint32 t

• using ImagePixeIT = double

    template < class CoordT >

  using ImageSizeShapeT = arma::Col < CoordT >

    template < class CoordT >

  using ImageSizeVecShapeT = arma::Mat< CoordT >

    using ImageSizeT = ImageSizeShapeT < ImageCoordT >

    using ImageSizeVecT = ImageSizeVecShapeT < ImageCoordT >

    template<class PixelT >

  using ImageShapeT = arma::Mat< PixelT >

    template < class PixelT >

  using ImageStackShapeT = arma::Cube < PixeIT >
```

Public Member Functions

void set hyperparams (const VecT &hyperparams)

using ImageT = ImageShapeT < ImagePixeIT >

using ImageStackT = ImageStackShapeT < ImagePixeIT >

- void set_prior (CompositeDist &&prior_)
- void set_prior (const CompositeDist &prior_)
- void set_size (const ImageSizeT &size_)
- VecT get min sigma () const
- double get_min_sigma (ldxT dim) const
- · VecT get max sigma () const
- double get max sigma (ldxT dim) const
- double get_max_sigma_ratio () const
- void set_min_sigma (const VecT &min_sigma)
- void set max sigma (const VecT &max sigma)
- void set_max_sigma_ratio (double max_sigma_ratio)
- StatsT get_stats () const
- Stencil make stencil (const ParamT &theta, bool compute derivatives=true) const

Make a new Model::Stencil object at theta.

- double pixel_model_value (int i, int j, const Stencil &s) const
- void pixel_grad (int i, int j, const Stencil &s, ParamT &pgrad) const
- · void pixel_grad2 (int i, int j, const Stencil &s, ParamT &pgrad2) const
- void pixel hess (int i, int j, const Stencil &s, MatT &hess) const
- void pixel_hess_update (int i, int j, const Stencil &s, double dm_ratio_m1, double dmm_ratio, ParamT &grad, MatT &hess) const

pixel derivative inner loop calculations.

Stencil initial_theta_estimate (const ImageT &im)

Fast, heuristic estimate of initial theta.

- Stencil initial_theta_estimate (const ImageT &im, const ParamT &theta_init)
- Stencil initial theta estimate (const ImageT &im, const ParamT &theta init, const std::string &estimator)
- Gauss1DSumModelT debug internal sum model x () const

- Gauss1DSumModelT debug_internal_sum_model_y () const
- IdxT get num params () const
- void check_param_shape (const ParamT &theta) const
- void check_param_shape (const ParamVecT &theta) const
- void check_psf_sigma (double psf_sigma) const
- void check_psf_sigma (const VecT &psf_sigma) const
- · ParamT make param () const
- template<class FillT >

ParamT make_param (FillT fill) const

- ParamVecT make_param_stack (ldxT n) const
- template<class FillT >

ParamVecT make_param_stack (IdxT n, FillT fill) const

- MatT make param mat () const
- template<class FillT >

MatT make_param_mat (FillT fill) const

- CubeT make_param_mat_stack (ldxT n) const
- template<class FillT >

CubeT make_param_mat_stack (ldxT n, FillT fill) const

- CompositeDist & get_prior ()
- const CompositeDist & get_prior () const
- IdxT get_num_hyperparams () const
- VecT get hyperparams () const
- bool has_hyperparam (const std::string &name) const
- double get hyperparam value (const std::string &name) const
- int get hyperparam index (const std::string &name) const
- void set hyperparam value (const std::string &name, double value)
- void rename hyperparam (const std::string &old name, const std::string &new name)
- StringVecT get_param_names () const
- void set_param_names (const StringVecT &desc)
- StringVecT get hyperparam names () const
- void set hyperparam names (const StringVecT &desc)
- template<class RngT >

ParamT sample_prior (RngT &rng)

- ParamT sample_prior ()
- void set bounds (const ParamT &lbound, const ParamT &ubound)
- void set_lbound (const ParamT &lbound)
- void set ubound (const ParamT &ubound)
- · const ParamT & get Ibound () const
- const ParamT & get_ubound () const
- bool theta in bounds (const ParamT &theta) const
- · void bound_theta (ParamT &theta, double epsilon=bounds_epsilon) const
- ParamT bounded theta (const ParamT &theta, double epsilon=bounds epsilon) const
- ParamT reflected theta (const ParamT &theta) const
- BoolVecT theta stack in bounds (const ParamVecT &theta) const
- ParamVecT bounded theta stack (const ParamVecT &theta, double epsilon=bounds epsilon) const
- ParamVecT reflected_theta_stack (const ParamVecT &theta) const
- ImageT make image () const
- ImageStackT make image stack (ImageCoordT n) const
- ImageCoordT get_size_image_stack (const ImageStackT &stack) const
- ImageT get image from stack (const ImageStackT &stack, ImageCoordT n) const

- template < class ImT > void set image in stack (ImageStackT & stack, ImageCoordT n, const ImT & im) const
- · const ImageSizeT & get size () const
- ImageCoordT get_size (IdxT idx) const
- ImageCoordT get_num_pixels () const
- void check_image_shape (const ImageT &im) const

Check the shape of a single images is correct for model size.

void check image shape (const ImageStackT &ims) const

Check the shape of a stack of images is correct for model size.

- void sample mcmc candidate (ldxT sample index, ParamT &candidate, double step scale=1.0)
- void set intensity mcmc sampling (double eta I=-1)
- void set_background_mcmc_sampling (double eta_bg=-1)
- void set_mcmc_sigma_scale (double scale)
- double get_mcmc_sigma_scale () const
- IdxT get mcmc num phases () const

Static Public Member Functions

- static CompositeDist make_default_prior (const ImageSizeT &size, double max_sigma_ratio, const std::string &prior type)
- static CompositeDist make_default_prior_beta_position (const ImageSizeT &size, double max_sigma_ratio)
- static CompositeDist make_default_prior_normal_position (const ImageSizeT &size, double max_sigma_ratio)
- static CompositeDist make_prior_beta_position (const ImageSizeT &size, double beta_xpos, double beta_ypos, double mean_I, double kappa_I, double mean_bg, double kappa_bg, double max_sigma_ratio, double alpha_
 sigma)
- static CompositeDist make_prior_normal_position (const ImageSizeT &size, double sigma_xpos, double sigma_xpos, double sigma_ypos, double mean_l, double kappa_l, double mean_bg, double kappa_bg, double max_sigma_ratio, double alpha sigma)
- static prior_hessian::ScaledSymmetricBetaDist make_prior_component_position_beta (ldxT size, double pos_
 beta=default_beta_pos)
- static prior_hessian::TruncatedGammaDist make_prior_component_intensity (double mean=default_mean_ U, double kappa=default_intensity_kappa)
- static prior_hessian::TruncatedParetoDist make_prior_component_sigma (double min_sigma, double max_ double alpha=default alpha sigma)
- static void set rng seed (RngSeedT seed)
- static ParallelRngManagerT & get_rng_manager ()
- static ParallelRngGeneratorT & get_rng_generator ()
- static void check size (const ImageSizeT &size)

Check the size argument for the model.

Static Public Attributes

- static const StringVecT prior types
- static const std::string DefaultPriorType = "Normal"
- static const std::string DefaultSeperableInitEstimator = "TrustRegion"
- static const double bounds epsilon = 1.0E-6
- static const double global min psf sigma = 1E-1

- static const double global_max_psf_sigma = 1E2
- static const double default beta pos = 3
- static const double default_sigma_pos = 1
- static const double default_mean_l = 300
- static const double default max I = INFINITY
- static const double default intensity kappa = 2
- static const double default pixel mean bg = 4
- static const double default alpha sigma = 2
- static const ImageCoordT num_dim =2
- static const ImageCoordT global_min_size =3
- static const ImageCoordT global_max_size =512
- static const double global_default_mcmc_sigma_scale = 0.05
- static const double global max mcmc sigma scale = 0.5

Protected Member Functions

- Gauss2DsModel (const ImageSizeT &size, const VecT &min sigma, const VecT &max sigma)
- Gauss2DsModel (const Gauss2DsModel &o)
- Gauss2DsModel (Gauss2DsModel &&o)
- Gauss2DsModel & operator= (const Gauss2DsModel &o)
- Gauss2DsModel & operator= (Gauss2DsModel &&o)
- void update internal 1Dsum estimators ()
- void set_mcmc_num_phases (ldxT num_phases)

Static Protected Member Functions

- static Gauss1DSumModelT make_internal_1Dsum_estimator (ldxT dim, const ImageSizeT &size, const VecT &min_sigma, const VecT &max_sigma, const CompositeDist &prior)
- static double compute max sigma ratio (const VecT &min sigma, const VecT &max sigma)

Protected Attributes

- VecT min_sigma
- Gauss1DSumModelT x_model
- Gauss1DSumModelT y model
- CompositeDist prior
- IdxT num_params
- IdxT num_hyperparams
- ParamT lbound
- ParamT ubound
- ImageSizeT size
- double eta sigma =0
- double eta_y =0
- double eta_x =0
- double eta_l =0
- double eta_bg =0
- IdxT num phases
- · double sigma scale

8.17.1 Detailed Description

A base class for 2D Gaussian PSF where the gaussian sigma is controlled by a single scalar parameter which is called sigma_ratio. The size of the gaussian psf is sigma_ratio*psf_sigma, where psf_sigma is considered as a vector [psf_\circ sigmaX, psf_sigmaY].

Definition at line 23 of file Gauss2DsModel.h.

8.17.2 Member Typedef Documentation

8.17.2.1 using mappel::Gauss2DsModel::Gauss1DSumModelT = Gauss1DsMAP

Definition at line 26 of file Gauss2DsModel.h.

8.17.2.2 using mappel::ImageFormat2DBase::ImageCoordT = uint32_t [inherited]

Image size coordinate storage type

Definition at line 24 of file ImageFormat2DBase.h.

8.17.2.3 using mappel::ImageFormat2DBase::ImagePixelT = double [inherited]

Image pixel storage type

Definition at line 25 of file ImageFormat2DBase.h.

8.17.2.4 template < class PixelT > using mappel::ImageFormat2DBase::ImageShapeT = arma::Mat < PixelT > [inherited]

Shape of the data type for a single image

Definition at line 32 of file ImageFormat2DBase.h.

8.17.2.5 template < class CoordT > using mappel::ImageFormat2DBase::ImageSizeShapeT = arma::Col < CoordT > [inherited]

Shape of the data type to store a single image's coordinates

Definition at line 27 of file ImageFormat2DBase.h.

8.17.2.6 using mappel::ImageFormat2DBase::ImageSizeT = ImageSizeShapeT < ImageCoordT > [inherited]

Data type for a single image size

Definition at line 29 of file ImageFormat2DBase.h.

8.17.2.7 template < class CoordT > using mappel::ImageFormat2DBase::ImageSizeVecShapeT = arma::Mat < CoordT > [inherited]

Shape of the data type to store a vector of image's coordinates

Definition at line 28 of file ImageFormat2DBase.h.

8.17.2.8 using mappel::ImageFormat2DBase::ImageSizeVecT = ImageSizeVecShapeT < ImageCoordT > [inherited]

Data type for a sequence of image sizes

Definition at line 30 of file ImageFormat2DBase.h.

8.17.2.9 template<class PixelT > using mappel::ImageFormat2DBase::ImageStackShapeT = arma::Cube<PixelT> [inherited]

Shape of the data type for a sequence of images

Definition at line 33 of file ImageFormat2DBase.h.

8.17.2.10 using mappel::ImageFormat2DBase::ImageStackT = ImageStackShapeT<ImagePixeIT>
[inherited]

Data type to represent a sequence of images

Definition at line 35 of file ImageFormat2DBase.h.

8.17.2.11 using mappel::ImageFormat2DBase::ImageT = ImageShapeT < ImagePixeIT > [inherited]

Data type to represent single image

Definition at line 34 of file ImageFormat2DBase.h.

8.17.2.12 using mappel::PointEmitterModel::ParamT = arma::vec [inherited]

Parameter vector

Definition at line 47 of file PointEmitterModel.h.

8.17.2.13 using mappel::PointEmitterModel::ParamVecT = arma::mat [inherited]

Vector of parameter vectors

Definition at line 48 of file PointEmitterModel.h.

8.17.2.14 using mappel::Gauss2DsModel::StencilVecT = std::vector<Stencil>

Definition at line 55 of file Gauss2DsModel.h.

8.17.3 Constructor & Destructor Documentation

8.17.3.1 mappel::Gauss2DsModel::Gauss2DsModel (const ImageSizeT & size, const VecT & min_sigma, const VecT & max_sigma) [protected]

Definition at line 12 of file Gauss2DsModel.cpp.

References mappel::PointEmitterModel::check_psf_sigma(), make_internal_1Dsum_estimator(), min_sigma, mappel ::PointEmitterModel::prior, mappel::ImageFormat2DBase::size, and y model.

Referenced by debug_internal_sum_model_y().

8.17.3.2 mappel::Gauss2DsModel::Gauss2DsModel (const Gauss2DsModel & o) [protected]

Definition at line 28 of file Gauss2DsModel.cpp.

References get_max_sigma(), make_internal_1Dsum_estimator(), min_sigma, mappel::PointEmitterModel::prior, mappel::ImageFormat2DBase::size, and y model.

8.17.3.3 mappel::Gauss2DsModel::Gauss2DsModel && o) [protected]

Definition at line 36 of file Gauss2DsModel.cpp.

References get_max_sigma(), make_internal_1Dsum_estimator(), min_sigma, mappel::PointEmitterModel::prior, mappel::ImageFormat2DBase::size, and y model.

8.17.4 Member Function Documentation

8.17.4.1 void mappel::PointEmitterModel::bound_theta (**ParamT** & *theta*, double *epsilon* = **bounds_epsilon**) const [inherited]

Definition at line 248 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::ubound.

8.17.4.2 PointEmitterModel::ParamT mappel::PointEmitterModel::bounded_theta (const ParamT & theta, double epsilon = bounds_epsilon) const [inherited]

Definition at line 265 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::ubound, mappel::PointEmitterModel::ubound.

Referenced by mappel::PointEmitterModel::bounded theta stack().

8.17.4.3 PointEmitterModel::ParamVecT mappel::PointEmitterModel::bounded_theta_stack(const ParamVecT & theta, double epsilon = bounds_epsilon) const [inherited]

Definition at line 307 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::check_param_shape(), and mappel::PointEmitterModel::make param stack().

8.17.4.4 void mappel::ImageFormat2DBase::check_image_shape(const ImageT & im) const [inherited]

Check the shape of a single images is correct for model size.

Definition at line 80 of file ImageFormat2DBase.cpp.

References mappel::ImageFormat2DBase::size.

8.17.4.5 void mappel::ImageFormat2DBase::check image shape (const ImageStackT & ims) const [inherited]

Check the shape of a stack of images is correct for model size.

Definition at line 93 of file ImageFormat2DBase.cpp.

References mappel::ImageFormat2DBase::size.

8.17.4.6 void mappel::PointEmitterModel::check_param_shape(const ParamT & theta) const [inherited]

Definition at line 167 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::num_params.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::reflected_theta(), mappel::PointEmitter \leftarrow Model::reflected_theta_stack(), mappel::PointEmitterModel::theta_in_bounds(), and mappel::PointEmitterModel \leftarrow ::theta stack in bounds().

8.17.4.7 void mappel::PointEmitterModel::check_param_shape(const ParamVecT & theta) const [inherited]

Definition at line 176 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::num params.

8.17.4.8 void mappel::PointEmitterModel::check psf sigma (double psf sigma) const [inherited]

Definition at line 185 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::global_max_psf_sigma, and mappel::PointEmitterModel::global_min_psf_ sigma.

Referenced by mappel::Gauss1DModel::Gauss1DModel(), mappel::Gauss2DModel(), Gauss2Ds Model(), mappel::Gauss1DsModel::set_max_sigma(), set_max_sigma(), mappel::Gauss1DsModel::set_min_sigma(), set_min_sigma(), mappel::Gauss1DModel::set_psf_sigma(), and mappel::Gauss2DModel::set_psf_sigma().

8.17.4.9 void mappel::PointEmitterModel::check_psf_sigma (const VecT & psf_sigma) const [inherited]

Definition at line 197 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::global_max_psf_sigma, and mappel::PointEmitterModel::global_min_psf_← sigma.

8.17.4.10 void mappel::ImageFormat2DBase::check_size(const ImageSizeT & size_) [static], [inherited]

Check the size argument for the model.

Definition at line 60 of file ImageFormat2DBase.cpp.

References mappel::ImageFormat2DBase::global_max_size, and mappel::ImageFormat2DBase::global_min_size.

Referenced by mappel::ImageFormat2DBase::ImageFormat2DBase(), and mappel::ImageFormat2DBase::set_size().

8.17.4.11 double mappel::Gauss2DsModel::compute_max_sigma_ratio (const VecT & min_sigma, const VecT & max_sigma)

[static], [protected]

Definition at line 162 of file Gauss2DsModel.cpp.

References min_sigma.

Referenced by debug_internal_sum_model_y(), mappel::Gauss2DsMAP::Gauss2DsMAP(), mappel::Gauss2DsMLE \leftrightarrow ::Gauss2DsMLE(), and set_max_sigma().

8.17.4.12 Gauss1DSumModelT mappel::Gauss2DsModel::debug_internal_sum_model_x() const [inline]

Definition at line 104 of file Gauss2DsModel.h.

References x model.

8.17.4.13 Gauss1DSumModelT mappel::Gauss2DsModel::debug_internal_sum_model_y() const [inline]

Definition at line 105 of file Gauss2DsModel.h.

References compute_max_sigma_ratio(), Gauss2DsModel(), make_internal_1Dsum_estimator(), min_sigma, operator=(), mappel::PointEmitterModel::prior, mappel::ImageFormat2DBase::size, update_internal_1Dsum_estimators(), and y model.

8.17.4.14 int mappel::PointEmitterModel::get_hyperparam_index (const std::string & name) const [inline], [inherited]

Definition at line 236 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.17.4.15 StringVecT mappel::PointEmitterModel::get_hyperparam_names() const [inline], [inherited]

Definition at line 256 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.17.4.16 double mappel::PointEmitterModel::get_hyperparam_value (const std::string & name) const [inline], [inherited]

Definition at line 232 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

Referenced by mappel::MCMCAdaptor1D::set_background_mcmc_sampling(), and mappel::MCMCAdaptor1D::set_circle intensity_mcmc_sampling().

8.17.4.17 PointEmitterModel::ParamT mappel::PointEmitterModel::get_hyperparams () const [inline], [inherited]

Definition at line 224 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.17.4.18 ImageFormat2DBase::ImageT mappel::ImageFormat2DBase::get_image_from_stack (const ImageStackT & stack, ImageCoordT n) const [inline], [inherited]

Definition at line 106 of file ImageFormat2DBase.h.

8.17.4.19 const PointEmitterModel::ParamT & mappel::PointEmitterModel::get_lbound () const [inline], [inherited]

Definition at line 212 of file PointEmitterModel.h.

References mappel::PointEmitterModel::lbound.

Referenced by mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCMCAdaptor2D::MCMCAdaptor2D(), and mappel::MCMCAdaptor1D::set_background_mcmc_sampling().

8.17.4.20 VecT mappel::Gauss2DsModel::get_max_sigma() const [inline]

Definition at line 132 of file Gauss2DsModel.h.

References get_max_sigma_ratio(), and get_min_sigma().

Referenced by Gauss2DsModel(), get_stats(), operator=(), set_max_sigma_ratio(), set_min_sigma(), and update_
internal 1Dsum estimators().

```
8.17.4.21 double mappel::Gauss2DsModel::get_max_sigma ( ldxT dim ) const [inline]
Definition at line 136 of file Gauss2DsModel.h.
References get_max_sigma_ratio(), and get_min_sigma().
8.17.4.22 double mappel::Gauss2DsModel::get_max_sigma_ratio() const [inline]
Definition at line 140 of file Gauss2DsModel.h.
References mappel::PointEmitterModel::get_ubound().
Referenced by get_max_sigma(), and get_stats().
8.17.4.23 IdxT mappel::MCMCAdaptorBase::get_mcmc_num_phases( ) const [inherited]
Definition at line 56 of file MCMCAdaptorBase.cpp.
References mappel::MCMCAdaptorBase::num phases.
8.17.4.24 double mappel::MCMCAdaptorBase::get_mcmc_sigma_scale( ) const [inherited]
Definition at line 53 of file MCMCAdaptorBase.cpp.
References mappel::MCMCAdaptorBase::sigma_scale.
8.17.4.25 VecT mappel::Gauss2DsModel::get_min_sigma( ) const [inline]
Definition at line 128 of file Gauss2DsModel.h.
References min_sigma.
Referenced by get max sigma(), get stats(), and set max sigma().
8.17.4.26 double mappel::Gauss2DsModel::get_min_sigma ( IdxT dim ) const
Definition at line 191 of file Gauss2DsModel.cpp.
References DefaultPriorType, min_sigma, and prior_types.
8.17.4.27 | IdxT mappel::PointEmitterModel::get_num_hyperparams( ) const [inline], [inherited]
Definition at line 208 of file PointEmitterModel.h.
References mappel::PointEmitterModel::num_hyperparams.
8.17.4.28 IdxT mappel::PointEmitterModel::get_num_params() const [inline], [inherited]
Definition at line 160 of file PointEmitterModel.h.
References mappel::PointEmitterModel::num params.
```

```
8.17.4.29 ImageFormat2DBase::ImageCoordT mappel::ImageFormat2DBase::get_num_pixels( ) const [inline],
         [inherited]
Definition at line 79 of file ImageFormat2DBase.h.
References mappel::ImageFormat2DBase::size.
Referenced by mappel::ImageFormat2DBase::get_stats().
8.17.4.30 StringVecT mappel::PointEmitterModel::get param_names( ) const [inline], [inherited]
Definition at line 248 of file PointEmitterModel.h.
References mappel::PointEmitterModel::prior.
8.17.4.31 CompositeDist & mappel::PointEmitterModel::get_prior() [inline], [inherited]
Definition at line 200 of file PointEmitterModel.h.
References mappel::PointEmitterModel::prior.
Referenced by mappel::Gauss2DModel::update internal 1Dsum estimators(), and update internal 1Dsum ←
estimators().
8.17.4.32 const CompositeDist & mappel::PointEmitterModel::get_prior( ) const [inline], [inherited]
Definition at line 204 of file PointEmitterModel.h.
References\ mappel:: Point Emitter Model:: prior.
8.17.4.33 ParallelRngGeneratorT & mappel::PointEmitterModel::get rng generator() [static],[inherited]
Definition at line 120 of file PointEmitterModel.cpp.
References mappel::rng_manager.
8.17.4.34 ParallelRngManagerT & mappel::PointEmitterModel::get_rng_manager( ) [static],[inherited]
Definition at line 115 of file PointEmitterModel.cpp.
References mappel::rng manager.
8.17.4.35 const ImageFormat2DBase::ImageSizeT & mappel::ImageFormat2DBase::get_size( ) const [inline],
         [inherited]
Definition at line 74 of file ImageFormat2DBase.h.
```

References mappel::ImageFormat2DBase::size.

8.17.4.36 ImageFormat2DBase::ImageCoordT mappel::ImageFormat2DBase::get_size (IdxT idx) const [inherited]

Definition at line 41 of file ImageFormat2DBase.cpp.

References mappel::ImageFormat2DBase::size.

8.17.4.37 ImageFormat2DBase::ImageCoordT mappel::ImageFormat2DBase::get_size_image_stack(const ImageStackT & stack) const [inline], [inherited]

Definition at line 99 of file ImageFormat2DBase.h.

8.17.4.38 StatsT mappel::Gauss2DsModel::get_stats () const

Definition at line 341 of file Gauss2DsModel.cpp.

References get_max_sigma(), get_max_sigma_ratio(), get_min_sigma(), mappel::MCMCAdaptor2Ds::get_stats(), mappel::ImageFormat2DBase::get_stats(), and mappel::PointEmitterModel::get_stats().

8.17.4.39 const PointEmitterModel::ParamT & mappel::PointEmitterModel::get_ubound () const [inline], [inherited]

Definition at line 216 of file PointEmitterModel.h.

References mappel::PointEmitterModel::ubound.

Referenced by mappel::Gauss2DsxyModel::get_max_sigma_ratio(), get_max_sigma_ratio(), mappel::MCMC \leftarrow Adaptor1D::MCMCAdaptor1D(), mappel::MCMCAdaptor2D::MCMCAdaptor2D(), mappel::MCMCAdaptor1D::set_ \leftarrow background_mcmc_sampling(), and set_max_sigma_ratio().

8.17.4.40 bool mappel::PointEmitterModel::has_hyperparam (const std::string & name) const [inline], [inherited]

Definition at line 228 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.17.4.41 Gauss2DsModel::Stencil mappel::Gauss2DsModel::initial_theta_estimate (const ImageT & im) [inline]

Fast, heuristic estimate of initial theta.

Definition at line 224 of file Gauss2DsModel.h.

References mappel::PointEmitterModel::DefaultSeperableInitEstimator, and mappel::PointEmitterModel::make $_\leftarrow$ param().

Referenced by initial theta estimate().

8.17.4.42 Gauss2DsModel::Stencil mappel::Gauss2DsModel::initial_theta_estimate (const ImageT & im, const ParamT & theta init) [inline]

Definition at line 231 of file Gauss2DsModel.h.

References mappel::PointEmitterModel::DefaultSeperableInitEstimator, and initial_theta_estimate().

8.17.4.43 Gauss2DsModel::Stencil mappel::Gauss2DsModel::initial_theta_estimate (const ImageT & im, const ParamT & theta_init, const std::string & estimator)

Definition at line 385 of file Gauss2DsModel.cpp.

References mappel::Gauss2DsModel::Stencil::bg(), mappel::methods::estimate_max(), mappel::Gauss2DsModel:: \leftarrow Stencil::I(), mappel::PointEmitterModel::lbound, make_stencil(), min_sigma, mappel::PointEmitterModel::num_params, mappel::Gauss2DsModel::Stencil::sigma_ratio(), mappel::ImageFormat2DBase::size, mappel::PointEmitterModel \leftarrow ::theta_in_bounds(), mappel::PointEmitterModel::ubound, x_model, and y_model.

8.17.4.44 CompositeDist mappel::Gauss2DsModel::make_default_prior (const ImageSizeT & size, double max_sigma_ratio, const std::string & prior_type) [static]

Definition at line 208 of file Gauss2DsModel.cpp.

References mappel::istarts with(), make default prior beta position(), and make default prior normal position().

Referenced by mappel::Gauss2DsMAP::Gauss2DsMAP(), and mappel::Gauss2DsMLE::Gauss2DsMLE().

8.17.4.45 CompositeDist mappel::Gauss2DsModel::make_default_prior_beta_position (const ImageSizeT & size, double max_sigma_ratio) [static]

Definition at line 230 of file Gauss2DsModel.cpp.

 $References\ mappel::PointEmitterModel::default_pixel_mean_bg,\ mappel::PointEmitterModel::make_prior_component \\ _intensity(),\ mappel::PointEmitterModel::make_prior_component_position_beta(),\ mappel::PointEmitterModel::make \\ _prior_component_sigma(),\ and\ mappel::ImageFormat2DBase::size.$

Referenced by make_default_prior().

8.17.4.46 CompositeDist mappel::Gauss2DsModel::make_default_prior_normal_position (const ImageSizeT & size, double max_sigma_ratio) [static]

Definition at line 243 of file Gauss2DsModel.cpp.

Referenced by make default prior().

8.17.4.47 ImageFormat2DBase::ImageT mappel::ImageFormat2DBase::make_image() const [inline], [inherited]

Definition at line 85 of file ImageFormat2DBase.h.

References mappel::ImageFormat2DBase::size.

8.17.4.48 ImageFormat2DBase::ImageStackT mappel::ImageFormat2DBase::make_image_stack(ImageCoordT n) const [inline], [inherited]

Definition at line 92 of file ImageFormat2DBase.h.

References mappel::ImageFormat2DBase::size.

8.17.4.49 Gauss2DsModel::Gauss1DSumModelT mappel::Gauss2DsModel::make_internal_1Dsum_estimator (ldxT dim, const ImageSizeT & size, const VecT & min_sigma, const VecT & max_sigma, const CompositeDist & prior)
[static], [protected]

Definition at line 69 of file Gauss2DsModel.cpp.

References mappel::Gauss1DsModel::make_prior_beta_position(), mappel::Gauss1DsModel::make_prior_normal_
position(), min_sigma, and mappel::ImageFormat2DBase::size.

Referenced by debug_internal_sum_model_y(), Gauss2DsModel(), and update_internal_1Dsum_estimators().

8.17.4.50 PointEmitterModel::ParamT mappel::PointEmitterModel::make_param()const [inline], [inherited]

Definition at line 164 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

Referenced by mappel::Gauss1DModel::initial_theta_estimate(), mappel::Gauss1DsModel::initial_theta_estimate(), mappel::Gauss2DModel::initial_theta_estimate(), mappel::Gauss2DsxyModel::initial_theta_estimate(), initial_theta_estimate(), mappel::Gauss1DsModel::pixel_hess_update(), mappel::Gauss1DsModel::pixel_hess_update(), mappel::Gauss2DModel::pixel_hess_update(), and pixel_hess_update().

8.17.4.51 template < class FillT > PointEmitterModel::ParamT mappel::PointEmitterModel::make_param (FillT fill) const [inherited]

Definition at line 181 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

8.17.4.52 MatT mappel::PointEmitterModel::make_param_mat() const [inline], [inherited]

Definition at line 172 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

8.17.4.53 template < class FillT > MatT mappel::PointEmitterModel::make_param_mat(FillT fill) const [inherited]

Definition at line 191 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

8.17.4.54 CubeT mappel::PointEmitterModel::make param mat stack (ldxT n) const [inline], [inherited]

Definition at line 176 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

8.17.4.55 template < class FillT > CubeT mappel::PointEmitterModel::make_param_mat_stack (ldxT n, FillT fill) const [inherited]

Definition at line 196 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

8.17.4.56 PointEmitterModel::ParamVecT mappel::PointEmitterModel::make_param_stack(ldxT n) const [inline], [inherited]

Definition at line 168 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

Referenced by mappel::PointEmitterModel::bounded_theta_stack(), and mappel::PointEmitterModel::reflected_theta __ stack().

8.17.4.57 template < class FillT > PointEmitterModel::ParamVecT mappel::PointEmitterModel::make_param_stack (ldxT n, FillT fill) const [inherited]

Definition at line 186 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

8.17.4.58 CompositeDist mappel::Gauss2DsModel::make_prior_beta_position (const ImageSizeT & size, double beta_xpos, double beta_ypos, double mean_l, double kappa_l, double mean_bg, double kappa_bg, double max_sigma_ratio, double alpha_sigma) [static]

Definition at line 255 of file Gauss2DsModel.cpp.

References mappel::PointEmitterModel::make_prior_component_intensity(), mappel::PointEmitterModel::make_prior component_position_beta(), mappel::PointEmitterModel::make_prior_component_sigma(), and mappel::Image Format2DBase::size.

8.17.4.59 prior_hessian::TruncatedGammaDist mappel::PointEmitterModel::make_prior_component_intensity (double mean = default mean I. double kappa = default intensity kappa) [static].[inherited]

Definition at line 98 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::default max I.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_beta_position(), make_default_prior_deta_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss1DsModel::make_default_prior_normal_position(), mappel::Gauss1DsModel::make_default_prior_normal_position(), make_default_default_default_default_prior_normal_position(), mappel::Gauss2DModel::make_prior_beta_position(), mappel::Gauss1DsModel::make_default_defau

8.17.4.60 prior_hessian::ScaledSymmetricBetaDist mappel::PointEmitterModel::make_prior_component_position_beta (IdxT size, double pos_beta = default_beta_pos_) [static], [inherited]

Definition at line 92 of file PointEmitterModel.cpp.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_beta_position(), make_default_prior_beta_position(), make_default_prior_beta_position(), mappel::Gauss1DsModel::make_prior_beta_position(), mappel::Gauss2DModel::make_prior_beta_position(), mappel::Gauss1DsModel::make_prior_beta_position(), and make_prior_beta_position().

8.17.4.61 prior_hessian::TruncatedNormalDist mappel::PointEmitterModel::make_prior_component_position_normal(ldxT size, double pos_sigma = default_sigma_pos) [static], [inherited]

Definition at line 85 of file PointEmitterModel.cpp.

Referenced by mappel::Gauss1DsModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make default_prior_normal_position(), mappel::Gauss1DModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_prior_normal_position(), mappel::Gauss1DsModel::make_prior_normal_position(), mappel::Gauss1DsModel::make_prior_normal_position(), and make_prior_normal_position().

8.17.4.62 prior_hessian::TruncatedParetoDist mappel::PointEmitterModel::make_prior_component_sigma (double min_sigma, double max_sigma, double alpha = default_alpha_sigma) [static], [inherited]

Definition at line 104 of file PointEmitterModel.cpp.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), make_default_prior_beta_position(), mappel::Gauss1DsModel::make_default_prior_normal_position(), make_default_prior_normal_position(), mappel::Gauss1DsModel::make_prior_beta_position(), make_prior_beta_position(), mappel::Gauss1DsModel::make_prior_cormal_position(), and make_prior_normal_position().

8.17.4.63 CompositeDist mappel::Gauss2DsModel::make_prior_normal_position (const ImageSizeT & size, double sigma_xpos, double sigma_ypos, double mean_l, double mean_bg, double kappa_bg, double max_sigma_ratio, double alpha_sigma) [static]

Definition at line 271 of file Gauss2DsModel.cpp.

References mappel::PointEmitterModel::make_prior_component_intensity(), mappel::PointEmitterModel::make_prior component_position_normal(), mappel::PointEmitterModel::make_prior_component_sigma(), and mappel::Image Format2DBase::size.

8.17.4.64 Gauss2DsModel::Stencil mappel::Gauss2DsModel::make_stencil (const ParamT & theta, bool compute_derivatives = true) const [inline]

Make a new Model::Stencil object at theta.

Stencils store all of the important calculations necessary for evaluating the log-likelihood and its derivatives at a particular theta (parameter) value.

This allows re-use of the most expensive computations. Stencils can be easily passed around by reference, and most functions in the mappel::methods namespace accept a const Stencil reference in place of the model parameter.

Throws mappel::ModelBoundsError if not model.theta in bounds(theta).

If derivatives will not be computed with this stencil set compute derivatives=false

Parameters

theta	Prameter to evaluate at
compute_derivatives	True to also prepare for derivative computations

Returns

A new Stencil object ready to compute with

Definition at line 162 of file Gauss2DsModel.h.

References mappel::Gauss2DsModel::Stencil(), and mappel::PointEmitterModel::theta_in_bounds().

Referenced by initial_theta_estimate().

8.17.4.65 Gauss2DsModel & mappel::Gauss2DsModel::operator=(const Gauss2DsModel & o) [protected]

Definition at line 44 of file Gauss2DsModel.cpp.

References get max sigma(), min sigma, mappel::MCMCAdaptor2Ds::operator=(), x model, and y model.

Referenced by debug_internal_sum_model_y(), mappel::Gauss2DsMAP::operator=(), and mappel::Gauss2DsMLE ← ::operator=().

8.17.4.66 Gauss2DsModel & mappel::Gauss2DsModel::operator=(Gauss2DsModel && o) [protected]

Definition at line 56 of file Gauss2DsModel.cpp.

References min_sigma, mappel::MCMCAdaptor2Ds::operator=(), x_model, and y_model.

8.17.4.67 void mappel::Gauss2DsModel::pixel_grad (int i, int j, const Stencil & s, ParamT & pgrad) const [inline]

Definition at line 180 of file Gauss2DsModel.h.

References mappel::Gauss2DsModel::Stencil::DX, mappel::Gauss2DsModel::Stencil::DXS, mappel::Gauss2DsModel::Stencil::DYS, mappel::Gauss2DsModel::Stencil::I(), mappel::Gauss2DsModel::Stencil::Y. mappel::Gauss2DsModel::Stencil::Y.

Referenced by pixel hess update().

8.17.4.68 void mappel::Gauss2DsModel::pixel_grad2 (int i, int j, const Stencil & s, ParamT & pgrad2) const [inline]

Definition at line 192 of file Gauss2DsModel.h.

References mappel::Gauss2DsModel::Stencil::DXS, mappel::Gauss2DsModel::Stencil::DXS2, mappel::Gauss2DsModel::Stencil::DYS2, mappel::Gauss2DsModel::Stencil::I(), mappel::Gauss2DsModel::Stencil::sigmaY(), mappel::Gauss2DsModel::Stencil::X, and mappel::Gauss2DsModel::Stencil::Y.

8.17.4.69 void mappel::Gauss2DsModel::pixel_hess (int i, int j, const Stencil & s, MatT & hess) const [inline]

Definition at line 204 of file Gauss2DsModel.h.

References mappel::Gauss2DsModel::Stencil::DX, mappel::Gauss2DsModel::Stencil::DXS, mappel::Gauss2DsModel::Stencil::DXS, mappel::Gauss2DsModel::Stencil::DXS, mappel::Gauss2DsModel::Stencil::DYS, mappel::Gauss2DsModel::Stencil::DYS, mappel::Gauss2DsModel::Stencil::DYS, mappel::Gauss2DsModel::Stencil::DYSY, mappel::Gauss2DsModel::Stencil::I(), mappel::Gauss2DsModel::Stencil::sigmaX(), mappel::Gauss2DsModel::Stencil::X, and mappel::Gauss2DsModel::Stencil::Y.

8.17.4.70 void mappel::Gauss2DsModel::pixel_hess_update (int i, int j, const Stencil & s, double dm_ratio_m1, double dmm_ratio, ParamT & grad, MatT & hess) const

pixel derivative inner loop calculations.

Definition at line 358 of file Gauss2DsModel.cpp.

References mappel::Gauss2DsModel::Stencil::DX, mappel::Gauss2DsModel::Stencil::DXS, mappel::Gauss2Ds- Model::Stencil::DXS2, mappel::Gauss2DsModel::Stencil::DXSX, mappel::Gauss2DsModel::Stencil::DYS, mappel::Gauss2DsModel::Stencil::DYS, mappel::Gauss2DsModel::Stencil::DYSY, mappel::Gauss2DsModel::Stencil::I(), mappel::Gauss2DsModel::Stencil::DYSY, mappel::Gauss2DsModel::Stencil::I(), mappel::Gauss2DsModel::Stencil::sigmaY(), mappel::Gauss2DsModel::Stencil::X, and mappel::Gauss2DsModel::Stencil::Y.

8.17.4.71 double mappel::Gauss2DsModel::pixel_model_value (int i, int j, const Stencil & s) const [inline]

Definition at line 173 of file Gauss2DsModel.h.

 $References\ mappel::Gauss2DsModel::Stencil::bg(),\ mappel::Gauss2DsModel::Stencil::I(),\ mappel::Gauss2DsModel::Stencil::I(),\ mappel::Gauss2DsModel::Stencil::Y.$

8.17.4.72 PointEmitterModel::ParamT mappel::PointEmitterModel::reflected_theta (const ParamT & theta) const [inherited]

Definition at line 276 of file PointEmitterModel.cpp.

 $References\ mappel::PointEmitterModel::hound,\ mappel::PointEmitterModel::lbound,\ mappel::PointEmit$

Referenced by mappel::PointEmitterModel::reflected theta stack().

8.17.4.73 PointEmitterModel::ParamVecT mappel::PointEmitterModel::reflected_theta_stack (const ParamVecT & theta) const [inherited]

Definition at line 317 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::make_param_stack(), and mappel::PointEmitterModel::reflected_theta().

8.17.4.74 void mappel::PointEmitterModel::rename_hyperparam (const std::string & old_name, const std::string & new_name)

[inline],[inherited]

Definition at line 244 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.17.4.75 void mappel::MCMCAdaptor2Ds::sample_mcmc_candidate (ldxT sample_index, ParamT & candidate, double step_scale = 1 . 0) [inherited]

Definition at line 56 of file MCMCAdaptor2Ds.cpp.

8.17.4.76 template < class RngT > PointEmitterModel::ParamT mappel::PointEmitterModel::sample_prior (RngT & rng) [inherited]

Definition at line 264 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.17.4.77 PointEmitterModel::ParamT mappel::PointEmitterModel::sample_prior() [inline], [inherited]

Definition at line 268 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior, and mappel::rng_manager.

8.17.4.78 void mappel:: $MCMCAdaptor1D::set_background_mcmc_sampling(double eta_bg = -1)$ [inherited]

Definition at line 81 of file MCMCAdaptor1D.cpp.

References mappel::PointEmitterModel::default_pixel_mean_bg, mappel::MCMCAdaptor1D::eta_bg, mappel::PointtemitterModel::get_hyperparam_value(), mappel::PointEmitterModel::get_lbound(), mappel::PointEmitterModel::get_ebound(), and mappel::MCMCAdaptorBase::sigma_scale.

Referenced by mappel::MCMCAdaptor1D::MCMCAdaptor1D().

8.17.4.79 void mappel::PointEmitterModel::set_bounds (const ParamT & *lbound_*, const ParamT & *ubound_*)

Box-type parameter bounds

Modifies the prior bounds to prevent sampling outside the valid box-constraints.

Definition at line 213 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounds_epsilon, mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::pointEmitterModel::ubound, mappel::PointEmitterModel::pointEmitterModel::ubound.

```
8.17.4.80 void mappel::PointEmitterModel::set_hyperparam_names ( const StringVecT &  desc ) [inline], [inherited]
```

Definition at line 260 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

```
8.17.4.81 void mappel::PointEmitterModel::set_hyperparam_value ( const std::string & name, double value ) [inline], [inherited]
```

Definition at line 240 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.17.4.82 void mappel::Gauss2DsModel::set_hyperparams (const VecT & hyperparams)

Definition at line 119 of file Gauss2DsModel.cpp.

References mappel::PointEmitterModel::set_hyperparams(), and update_internal_1Dsum_estimators().

8.17.4.83 template < class ImT > void mappel::ImageFormat2DBase::set_image_in_stack (ImageStackT & stack, ImageCoordT n, const ImT & im) const [inherited]

Definition at line 113 of file ImageFormat2DBase.h.

8.17.4.84 void mappel::MCMCAdaptor1D::set_intensity_mcmc_sampling (double eta_I = -1) [inherited]

Definition at line 65 of file MCMCAdaptor1D.cpp.

References mappel::PointEmitterModel::default_mean_I, mappel::MCMCAdaptor1D::eta_I, mappel::PointEmitter (Model::get_hyperparam_value()), and mappel::MCMCAdaptorBase::sigma_scale.

Referenced by mappel::MCMCAdaptor1D::MCMCAdaptor1D().

8.17.4.85 void mappel::PointEmitterModel::set_lbound (const ParamT & lbound) [inherited]

Definition at line 226 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounds_epsilon, mappel::PointEmitterModel::lbound, mappel::PointEmitter Wodel::num params, mappel::PointEmitterModel::prior, and mappel::PointEmitterModel::ubound.

Referenced by mappel::Gauss1DsModel::set_min_sigma().

8.17.4.86 void mappel::Gauss2DsModel::set_max_sigma (const VecT & new_sigma)

Set the max sigma ratio based on the new max sigma's ratio with the current min sigma.

Definition at line 155 of file Gauss2DsModel.cpp.

References mappel::PointEmitterModel::check_psf_sigma(), compute_max_sigma_ratio(), get_min_sigma(), and set ___max_sigma_ratio().

8.17.4.87 void mappel::Gauss2DsModel::set_max_sigma_ratio (double max_sigma_ratio)

Definition at line 176 of file Gauss2DsModel.cpp.

References mappel::PointEmitterModel::bounds_epsilon, get_max_sigma(), mappel::PointEmitterModel::get_ubound(), mappel::Gauss1DsModel::set_max_sigma(), mappel::PointEmitterModel::set_ubound(), x_model, and y_model.

Referenced by set_max_sigma().

8.17.4.88 void mappel::MCMCAdaptorBase::set_mcmc_num_phases(| IdxT num_phases) [protected], [inherited]

Definition at line 59 of file MCMCAdaptorBase.cpp.

References mappel::MCMCAdaptorBase::num_phases.

Referenced by mappel::MCMCAdaptor1Ds::MCMCAdaptor1Ds(), and mappel::MCMCAdaptor2Ds::MCMCAdaptor2 → Ds().

8.17.4.89 void mappel::MCMCAdaptorBase::set_mcmc_sigma_scale (double scale) [inherited]

Definition at line 39 of file MCMCAdaptorBase.cpp.

References mappel::MCMCAdaptorBase::global_max_mcmc_sigma_scale, and mappel::MCMCAdaptorBase::sigma - _ scale.

8.17.4.90 void mappel::Gauss2DsModel::set_min_sigma (const VecT & new_sigma)

Set the minimum sigma, keeping the max_sigma_ratio the same.

Definition at line 137 of file Gauss2DsModel.cpp.

References mappel::PointEmitterModel::check_psf_sigma(), get_max_sigma(), min_sigma, mappel::Gauss1Ds Model::set max sigma(), mappel::Gauss1DsModel::set min sigma(), x model, and y model.

8.17.4.91 void mappel::PointEmitterModel::set_param_names (const StringVecT & desc) [inline], [inherited]

Definition at line 252 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.17.4.92 void mappel::Gauss2DsModel::set_prior (CompositeDist && prior_)

Definition at line 107 of file Gauss2DsModel.cpp.

References mappel::PointEmitterModel::set_prior(), and update_internal_1Dsum_estimators().

8.17.4.93 void mappel::Gauss2DsModel::set_prior (const CompositeDist & prior_)

Definition at line 113 of file Gauss2DsModel.cpp.

References mappel::PointEmitterModel::set prior(), and update internal 1Dsum estimators().

8.17.4.94 void mappel::PointEmitterModel::set_rng_seed(RngSeedT seed) [static], [inherited]

Definition at line 110 of file PointEmitterModel.cpp.

References mappel::rng manager.

8.17.4.95 void mappel::Gauss2DsModel::set_size (const ImageSizeT & size_)

Definition at line 125 of file Gauss2DsModel.cpp.

 $References \quad mappel::ImageFormat2DBase::set_size(), \quad mappel::ImageFormat1DBase::set_size(), \quad mappel::ImageFormat2DBase::set_size(), \quad mappel::ImageFormat2DB$

8.17.4.96 void mappel::PointEmitterModel::set_ubound (const ParamT & ubound) [inherited]

Definition at line 237 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounds_epsilon, mappel::PointEmitterModel::lbound, mappel::PointEmitter← Model::num params, mappel::PointEmitterModel::prior, and mappel::PointEmitterModel::ubound.

Referenced by mappel::Gauss1DsModel::set_max_sigma(), and set_max_sigma_ratio().

8.17.4.97 bool mappel::PointEmitterModel::theta in bounds (const ParamT & theta) const [inherited]

Definition at line 257 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::ubound, mappel::PointEmitterModel::ubound.

Referenced by mappel::Gauss2DModel::initial_theta_estimate(), initial_theta_estimate(), mappel::Gauss1DModel ::make_stencil(), mappel::Gauss2DModel::make_stencil(), mappel::Gauss2DModel::make_stencil(), mappel::Gauss2DsxyModel::make_stencil(), and mappel::PointEmitterModel::theta_stack_in_bounds().

8.17.4.98 BoolVecT mappel::PointEmitterModel::theta_stack_in_bounds (const ParamVecT & theta) const [inherited]

Definition at line 297 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), and mappel::PointEmitterModel::theta_in_bounds().

8.17.4.99 void mappel::Gauss2DsModel::update_internal_1Dsum_estimators() [protected]

Definition at line 100 of file Gauss2DsModel.cpp.

References get_max_sigma(), mappel::PointEmitterModel::get_prior(), make_internal_1Dsum_estimator(), min_sigma, mappel::ImageFormat2DBase::size, x model, and y model.

Referenced by debug_internal_sum_model_y(), set_hyperparams(), and set_prior().

8.17.5 Member Data Documentation

8.17.5.1 const double mappel::PointEmitterModel::bounds epsilon = 1.0E-6 [static], [inherited]

Distance from the boundary to constrain in bound theta and bounded theta methods

Definition at line 52 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::set_bounds(), mappel::PointEmitterModel::set_lbound(), set_max_sigma _ ratio(), and mappel::PointEmitterModel::set_ubound().

8.17.5.2 const double mappel::PointEmitterModel::default_alpha_sigma = 2 [static], [inherited]

Default per-pixel background gamma distribution shape

Definition at line 62 of file PointEmitterModel.h.

8.17.5.3 const double mappel::PointEmitterModel::default beta pos = 3 [static], [inherited]

Default position parameter in symmetric beta-distributions

Definition at line 56 of file PointEmitterModel.h.

8.17.5.4 const double mappel::PointEmitterModel::default_intensity_kappa = 2 [static], [inherited]

Default shape for intensity gamma distributions

Definition at line 60 of file PointEmitterModel.h.

8.17.5.5 const double mappel::PointEmitterModel::default_max_I = INFINITY [static], [inherited]

Default maximum emitter intensity

Definition at line 59 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::make prior component intensity().

8.17.5.6 const double mappel::PointEmitterModel::default_mean_I = 300 [static], [inherited]

Default emitter intensity mean

Definition at line 58 of file PointEmitterModel.h.

Referenced by mappel::MCMCAdaptor1D::set intensity mcmc sampling().

8.17.5.7 const double mappel::PointEmitterModel::default_pixel_mean_bg = 4 [static], [inherited]

Default per-pixel mean background counts

Definition at line 61 of file PointEmitterModel.h.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DModel::make_ \leftarrow default_prior_beta_position(), mappel::Gauss1DModel::make_default_prior_beta_position(), make_default_prior_ \leftarrow beta_position(), mappel::Gauss1DsModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make \leftarrow default_prior_normal_position(), mappel::Gauss1DModel::make_default_prior_normal_position(), make_default_ \leftarrow prior_normal_position(), and mappel::MCMCAdaptor1D::set_background_mcmc_sampling().

8.17.5.8 const double mappel::PointEmitterModel::default_sigma_pos = 1 [static], [inherited]

Default position parameter in symmetric beta-distributions

Definition at line 57 of file PointEmitterModel.h.

8.17.5.9 const std::string mappel::Gauss2DsModel::DefaultPriorType = "Normal" [static]

Definition at line 59 of file Gauss2DsModel.h.

Referenced by get min sigma().

8.17.5.10 const std::string mappel::PointEmitterModel::DefaultSeperableInitEstimator = "TrustRegion" [static], [inherited]

Estimator name to use in 1D separable initializations

Definition at line 49 of file PointEmitterModel.h.

Referenced by mappel:: $Gauss2DModel::initial_theta_estimate()$, mappel:: $Gauss2DsxyModel::initial_theta_estimate()$, and initial_theta_estimate().

```
8.17.5.11 double mappel::MCMCAdaptor1D::eta_bg =0 [protected], [inherited]
```

The standard deviation for the normally distributed perturbation to theta_bg in the random walk MCMC sampling

Definition at line 32 of file MCMCAdaptor1D.h.

Referenced by mappel::MCMCAdaptor1D::get_stats(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCMCAdaptor1D(), mappel::MCMCAdaptor2Dscample_mcmc_candidate(), mappel::MCMCAdaptor2Dscample_mcmc_candidate(), mappel::MCMCAdaptor1Dccample_mcmc_candidate(), mappel::MCMCAdaptor1Dccample_mcmc_candidate(), and mappel::MCMCAdaptor1Dccample_mcmc_candidate(), and mappel::MCMCAdaptor1Dccample_mcmc_candidate().

```
8.17.5.12 double mappel::MCMCAdaptor1D::eta_l = 0 [protected], [inherited]
```

The standard deviation for the normally distributed perturbation to theta_I in the random walk MCMC sampling

Definition at line 31 of file MCMCAdaptor1D.h.

Referenced by mappel::MCMCAdaptor1D::get_stats(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCCAdaptor1D(), mappel::MCMCAdaptor2Ds(), mappel::MCMCAdaptor2Ds(), mappel::MCMCAdaptor1Ds::sample_mcmc_candidate(), mappel::MCMCAdaptor1Dc::sample_mcmc_candidate(), mappel::MCMCAdaptor1Dc::sample_mcmc_candidate(), and mappel::MCMCAdaptor1D::set_intensity_mcmc_sampling().

```
8.17.5.13 double mappel::MCMCAdaptor2Ds::eta_sigma = 0 [protected], [inherited]
```

The standard deviation for the normally distributed perturbation to theta_bg in the random walk MCMC sampling

Definition at line 26 of file MCMCAdaptor2Ds.h.

Referenced by mappel::MCMCAdaptor2Ds::get_stats(), mappel::MCMCAdaptor2Ds::MCMCAdaptor2Ds::MCMCAdaptor2Ds::perator=(), and mappel::MCMCAdaptor2Ds::sample_mcmc_candidate().

```
8.17.5.14 double mappel::MCMCAdaptor1D::eta_x = 0 [protected], [inherited]
```

The standard deviation for the normally distributed perturbation to theta x in the random walk MCMC sampling

Definition at line 30 of file MCMCAdaptor1D.h.

Referenced by mappel::MCMCAdaptor1D::get_stats(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCMCAdaptor1D:: $MCMCAdaptor1D::MCMCAdaptor1D::MCMCAdaptor1Ds::MCMCAdaptor1Ds::sample_mcmc_candidate(), mappel::MCMCAdaptor1Ds::sample_mcmc_candidate(), and mappel::MCMCAdaptor1 <math>\leftarrow$ D::sample mcmc candidate().

```
8.17.5.15 double mappel::MCMCAdaptor2D::eta_y =0 [protected], [inherited]
```

The standard deviation for the normally distributed perturbation to theta_y in the random walk MCMC sampling

Definition at line 27 of file MCMCAdaptor2D.h.

Referenced by mappel::MCMCAdaptor2D::get_stats(), mappel::MCMCAdaptor2D::MCMCAdaptor2D(), mappel::MC \leftarrow MCAdaptor2D::operator=(), mappel::MCMCAdaptor2Ds::sample_mcmc_candidate(), and mappel::MCMCAdaptor2D \leftarrow ::sample_mcmc_candidate().

8.17.5.16 const double mappel::MCMCAdaptorBase::global_default_mcmc_sigma_scale = 0.05 [static], [inherited]

Definition at line 16 of file MCMCAdaptorBase.h.

Referenced by mappel::MCMCAdaptor1Ds::MCMCAdaptor1Ds(), mappel::MCMCAdaptor2D::MCMCAdaptor2D(), and mappel::MCMCAdaptor2Ds::MCMCAdaptor2Ds().

8.17.5.17 const double mappel::MCMCAdaptorBase::global_max_mcmc_sigma_scale = 0.5 [static], [inherited]

Definition at line 17 of file MCMCAdaptorBase.h.

Referenced by mappel::MCMCAdaptorBase::MCMCAdaptorBase(), and mappel::MCMCAdaptorBase::set_mcmc_ sigma scale().

8.17.5.18 const double mappel::PointEmitterModel::global_max_psf_sigma = 1E2 [static], [inherited]

Global maxmimum for any psf_sigma. Sizes above this value are invalid, and nowhere near useful for practical point emitter localization

Definition at line 54 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::check_psf_sigma().

8.17.5.19 const ImageFormat2DBase::ImageCoordT mappel::ImageFormat2DBase::global_max_size =512 [static], [inherited]

Maximum size along any dimension of the image. This is insanely big to catch obvious errors

Definition at line 39 of file ImageFormat2DBase.h.

Referenced by mappel::ImageFormat2DBase::check_size().

8.17.5.20 const double mappel::PointEmitterModel::global_min_psf_sigma = 1E-1 [static], [inherited]

Global minimum for any psf_sigma. Sizes below this value are invalid, and nowhere near useful for practical point emitter localization

Definition at line 53 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::check_psf_sigma().

8.17.5.21 const ImageFormat2DBase::ImageCoordT mappel::ImageFormat2DBase::global_min_size =3 [static], [inherited]

Minimum size along any dimension of the image.

Definition at line 38 of file ImageFormat2DBase.h.

Referenced by mappel::ImageFormat2DBase::check_size().

8.17.5.22 ParamT mappel::PointEmitterModel::lbound [protected], [inherited]

Definition at line 148 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel \leftarrow ::PointEmitterModel::get_lbound(), mappel::PointEmitterModel::get_stats(), mappel::Gauss1DsModel::initial_theta \leftarrow _estimate(), mappel::Gauss2DModel::initial_theta_estimate(), initial_theta_estimate(), mappel::PointEmitterModel \leftarrow ::operator=(), mappel::PointEmitterModel::reflected_theta(), mappel::PointEmitterModel::set_bounds(), mappel::PointEmitterModel::set_ubound(), and mappel::PointEmitterModel::set_ubounds().

8.17.5.23 VecT mappel::Gauss2DsModel::min_sigma [protected]

Gaussian PSF in pixels

Definition at line 118 of file Gauss2DsModel.h.

Referenced by compute_max_sigma_ratio(), debug_internal_sum_model_y(), mappel::Gauss2DsMAP::Gauss2DsMAP::Gauss2DsMLE(), mappel::Gauss2DsMLE(), get_min_sigma(), initial_theta_estimate(), make __internal_1Dsum_estimator(), operator=(), set_min_sigma(), mappel::Gauss2DsModel::Stencil::sigmaX(), mappel::Gauss2DsModel::Stencil::sigmaY(), and update internal 1Dsum_estimators().

8.17.5.24 const ImageFormat2DBase::ImageCoordT mappel::ImageFormat2DBase::num_dim =2 [static], [inherited]

Number of image dimensions.

Definition at line 37 of file ImageFormat2DBase.h.

Referenced by mappel::ImageFormat2DBase::get_stats().

8.17.5.25 | IdxT mappel::PointEmitterModel::num_hyperparams [protected], [inherited]

Definition at line 147 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::get_num_hyperparams(), mappel::PointEmitterModel::get_stats(), mappel::PointEmitterModel::operator=(), and mappel::PointEmitterModel::set_prior().

8.17.5.26 IdxT mappel::PointEmitterModel::num_params [protected], [inherited]

Definition at line 146 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel \leftarrow ::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::get_num_params(), mappel::PointEmitter \leftarrow Model::get_stats(), mappel::Gauss1DModel::initial_theta_estimate(), mappel::Gauss2DModel::initial_theta_estimate(), initial_theta_estimate(), mappel::PointEmitterModel::make_param_mat(), mappel::PointEmitterModel::make_param_mat(), mappel::PointEmitterModel::make_param_stack(), mappel::PointEmitterModel::set_ebounds(), mappel::PointEmitterModel::set_bounds(), mappel::PointEmitterModel::set_prior(), mappel::PointEmitterModel::set_bounds().

8.17.5.27 IdxT mappel::MCMCAdaptorBase::num_phases [protected], [inherited]

The number of different sampling phases for candidate selection MCMC. Each phase changes a different subset of variables.

Definition at line 29 of file MCMCAdaptorBase.h.

Referenced by mappel::MCMCAdaptorBase::get_mcmc_num_phases(), mappel::MCMCAdaptorBase::get_stats(), mappel::MCMCAdaptor2D::sample_mcmc_candidate(), mappel::MCMCAdaptor1Ds::sample_mcmc_candidate(), mappel::MCMCAdaptor1D::sample_mcmc_candidate(), and mappel::MCMCAdaptorBase::set mcmc num phases().

8.17.5.28 CompositeDist mappel::PointEmitterModel::prior [protected], [inherited]

Definition at line 145 of file PointEmitterModel.h.

Referenced by mappel::Gauss2DModel::debug internal sum model y(), debug internal sum model y(), mappel::← Gauss2DModel::Gauss2DModel(), Gauss2DsModel(), mappel::PointEmitterModel::get hyperparam index(), mappel ← ::PointEmitterModel::get hyperparam names(), mappel::PointEmitterModel::get hyperparam value(), mappel::Point← EmitterModel::get hyperparams(), mappel::Gauss1DsModel::get max sigma(), mappel::Gauss1DsModel::get min← _sigma(), mappel::PointEmitterModel::get_param_names(), mappel::PointEmitterModel::get_prior(), mappel::Point← EmitterModel::get_stats(), mappel::PointEmitterModel::has_hyperparam(), mappel::PointEmitterModel::operator=(), mappel::PointEmitterModel::PointEmitterModel(), mappel::PointEmitterModel::rename hyperparam(), PointEmitterModel::sample prior(), mappel::PointEmitterModel::set_bounds(), mappel::PointEmitterModel::set← hyperparam names(), mappel::PointEmitterModel::set hyperparam value(), mappel::PointEmitterModel::set ← hyperparams(), mappel::PointEmitterModel::set_lbound(), mappel::Gauss1DsModel::set_max_sigma(), mappel::← Gauss1DsModel::set min sigma(), mappel::PointEmitterModel::set param names(), mappel::PointEmitterModel ← ::set_prior(), and mappel::PointEmitterModel::set_ubound().

8.17.5.29 const StringVecT mappel::Gauss2DsModel::prior_types [static]

Initial value:

```
= { "Beta", "Normal" }
```

Definition at line 58 of file Gauss2DsModel.h.

Referenced by get_min_sigma().

8.17.5.30 double mappel::MCMCAdaptorBase::sigma scale [protected],[inherited]

A scaling factor for step sizes as a fraction of the size of the domain dimension we are walking in. (0.05 default)

Definition at line 30 of file MCMCAdaptorBase.h.

8.17.5.31 ImageSizeT mappel::ImageFormat2DBase::size [protected], [inherited]

Number of pixels in X dimension for 1D image

Definition at line 67 of file ImageFormat2DBase.h.

Referenced by mappel::cgauss_compute_estimate(), mappel::cgauss_compute_estimate_debug(), mappel::cgauss ← heuristic compute estimate(), mappel::ImageFormat2DBase::check image shape(), mappel::Gauss2DModel ← ::Stencil::compute derivatives(), mappel::Gauss2DsModel::Stencil::compute_derivatives(), mappel::Gauss2D← Model::debug internal sum model y(), debug internal sum model y(), mappel::methods::expected information(), mappel::Gauss2DModel:;Gauss2DModel(), mappel::Gauss2DsMAP(), mappel Gauss2DsMLE(), Gauss2DsModel(), mappel::ImageFormat2DBase::get num pixels(), mappel::ImageFormat2D ← Base::get size(), mappel::ImageFormat2DBase::get stats(), mappel::methods::likelihood::grad(), mappel::methods⇔ ::likelihood::grad2(), mappel::methods::likelihood::debug::grad components(), mappel::methods::likelihood::hessian(), mappel::methods::likelihood::debug::hessian_components(), mappel::Gauss2DModel::initial_theta_estimate(), initial ← theta estimate(), mappel::methods::likelihood::llh(), mappel::methods::likelihood::debug::llh components(), mappel ::Gauss2DModel::make_default_prior_beta_position(), make_default_prior_beta_position(), mappel::Gauss2DModel ← ::make default prior normal position(), make default prior normal position(), mappel::ImageFormat2DBase← ::make image(), mappel::ImageFormat2DBase::make image stack(), mappel::Gauss2DModel::make internal← _1Dsum_estimator(), make internal 1Dsum estimator(), mappel::Gauss2DModel::make prior beta position(), make prior beta position(), mappel::Gauss2DModel::make prior normal position(), make prior normal position(), mappel::methods::model_image(), mappel::ImageFormat2DBase::operator=(), mappel::methods::likelihood::rllh(), mappel::methods::likelihood::debug::rllh components(), mappel::ImageFormat2DBase::set size(), mappel::Gauss2← DModel::set_size(), set_size(), mappel::methods::simulate_image(), mappel::methods::simulate_image_from_model(), mappel::Gauss2DModel::Stencil::Stencil(), mappel::Gauss2DsModel::Stencil(), mappel::Gauss2DModel← ::update_internal_1Dsum_estimators(), and update_internal_1Dsum_estimators().

8.17.5.32 ParamT mappel::PointEmitterModel::ubound [protected], [inherited]

Definition at line 148 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel \leftarrow ::PointEmitterModel::get_stats(), mappel::PointEmitterModel::get_ubound(), mappel::Gauss1DsModel::initial_theta \leftarrow _estimate(), mappel::Gauss2DModel::initial_theta_estimate(), initial_theta_estimate(), mappel::PointEmitterModel \leftarrow ::operator=(), mappel::PointEmitterModel::reflected_theta(), mappel::PointEmitterModel::set_bounds(), mappel::PointEmitterModel::set_ubound(), and mappel::PointEmitterModel::set_ubounds().

8.17.5.33 Gauss1DSumModelT mappel::Gauss2DsModel::x_model [protected]

X-model fits 2D images X-axis (column sum). Using variable sigma 1D model.

Definition at line 119 of file Gauss2DsModel.h.

Referenced by debug_internal_sum_model_x(), initial_theta_estimate(), operator=(), set_max_sigma_ratio(), set_min sigma(), set_size(), and update internal 1Dsum estimators().

8.17.5.34 Gauss1DSumModelT mappel::Gauss2DsModel::y_model [protected]

Y-model fits 2D images Y-axis (row sum). Using variable sigma 1D model.

Definition at line 120 of file Gauss2DsModel.h.

Referenced by debug_internal_sum_model_y(), Gauss2DsModel(), initial_theta_estimate(), operator=(), set_max_ \leftarrow sigma_ratio(), set_min_sigma(), set_size(), and update_internal_1Dsum_estimators().

The documentation for this class was generated from the following files:

- Gauss2DsModel.h
- · Gauss2DsModel.cpp

8.18 mappel::Gauss2DsxyMAP Class Reference

A 1D Gaussian with fixed PSF under an Poisson Read Noise assumption and MAP Objective.

#include </home/travis/build/markjolah/Mappel/include/Mappel/Gauss2DsxyMAP.h>

Inheritance diagram for mappel::Gauss2DsxyMAP:

Public Types

- using StencilVecT = std::vector< Stencil >
- using ParamT = arma::vec
- using ParamVecT = arma::mat
- using ImageCoordT = uint32 t
- using ImagePixeIT = double
- template < class CoordT >

using ImageSizeShapeT = CoordT

- $\bullet \ \ \text{template}{<} \text{class CoordT} >$
 - using ImageSizeVecShapeT = arma::Col < CoordT >
- using ImageSizeT = ImageSizeShapeT < ImageCoordT >
- using ImageSizeVecT = ImageSizeVecShapeT < ImageCoordT >
- template < class PixeIT >
- using ImageShapeT = arma::Col < PixelT >
- template<class PixeIT >
 - using ImageStackShapeT = arma::Mat< PixeIT >
- using ImageT = ImageShapeT < ImagePixeIT >
- using ImageStackT = ImageStackShapeT< ImagePixeIT >
- using ModelDataT = ImageT
- using ModelDataStackT = ImageStackT

Public Member Functions

- Gauss2DsxyMAP (const ImageSizeT &size, const VecT &min sigma, const VecT &max sigma)
- Gauss2DsxyMAP (const ImageSizeT &size, const VecT &min_sigma, const VecT &max_sigma, CompositeDist &&prior)
- · double get psf sigma () const
- double get_psf_sigma (ldxT idx) const
- void set_psf_sigma (double new_psf_sigma)
- void set psf sigma (const VecT &new psf sigma)
- StatsT get stats () const
- Stencil make_stencil (const ParamT &theta, bool compute_derivatives=true) const

Make a new Model::Stencil object at theta.

- double pixel_model_value (ldxT i, const Stencil &s) const
- void pixel grad (ldxT i, const Stencil &s, ParamT &pgrad) const
- void pixel_grad2 (ldxT i, const Stencil &s, ParamT &pgrad2) const
- · void pixel hess (IdxT i, const Stencil &s, MatT &hess) const
- void pixel_hess_update (ldxT i, const Stencil &s, double dm_ratio_m1, double dmm_ratio, ParamT &grad, MatT &hess) const

pixel derivative inner loop calculations.

Stencil initial theta estimate (const ImageT &im) const

Fast, heuristic estimate of initial theta.

- Stencil initial theta estimate (const ImageT &im, const ParamT &theta init) const
- IdxT get_num_params () const
- · void check param shape (const ParamT &theta) const
- void check param shape (const ParamVecT &theta) const
- · void check psf sigma (double psf sigma) const
- void check psf sigma (const VecT &psf sigma) const
- ParamT make_param () const
- template<class FillT >

ParamT make_param (FillT fill) const

- ParamVecT make param stack (ldxT n) const
- template<class FillT >

ParamVecT make_param_stack (IdxT n, FillT fill) const

- · MatT make param mat () const
- $\bullet \ \ \text{template}{<} \text{class FillT} >$

MatT make_param_mat (FillT fill) const

- CubeT make_param_mat_stack (ldxT n) const
- template<class FillT >

CubeT make_param_mat_stack (ldxT n, FillT fill) const

- CompositeDist & get_prior ()
- const CompositeDist & get_prior () const
- void set_prior (CompositeDist &&prior_)
- void set_prior (const CompositeDist &prior_)
- IdxT get num hyperparams () const
- void set hyperparams (const VecT &hyperparams)
- VecT get_hyperparams () const
- bool has_hyperparam (const std::string &name) const
- double get_hyperparam_value (const std::string &name) const
- int get_hyperparam_index (const std::string &name) const
- void set hyperparam value (const std::string &name, double value)
- void rename hyperparam (const std::string &old name, const std::string &new name)

- StringVecT get_param_names () const
- void set param names (const StringVecT &desc)
- StringVecT get hyperparam names () const
- void set_hyperparam_names (const StringVecT &desc)
- template < class RngT >

ParamT sample_prior (RngT &rng)

- ParamT sample_prior ()
- void set bounds (const ParamT &lbound, const ParamT &ubound)
- void set Ibound (const ParamT &lbound)
- void set ubound (const ParamT &ubound)
- · const ParamT & get Ibound () const
- · const ParamT & get ubound () const
- bool theta_in_bounds (const ParamT &theta) const
- · void bound theta (ParamT &theta, double epsilon=bounds epsilon) const
- ParamT bounded_theta (const ParamT &theta, double epsilon=bounds_epsilon) const
- ParamT reflected theta (const ParamT &theta) const
- BoolVecT theta stack in bounds (const ParamVecT &theta) const
- · ParamVecT bounded theta stack (const ParamVecT &theta, double epsilon=bounds epsilon) const
- ParamVecT reflected theta stack (const ParamVecT &theta) const
- ImageT make image () const
- ImageStackT make_image_stack (ImageCoordT n) const
- ImageCoordT get_size_image_stack (const ImageStackT &stack) const
- ImageT get_image from_stack (const ImageStackT &stack, ImageCoordT n) const
- template<class ImT >

void set_image_in_stack (ImageStackT &stack, ImageCoordT n, const ImT &im) const

- ImageSizeT get_size () const
- ImageCoordT get_size (IdxT idx) const
- ImageCoordT get_num_pixels () const
- void set_size (const ImageSizeT &size_)
- void set_size (const arma::Col< ImageCoordT > &sz)
- void check_image_shape (const ImageT &im) const

Check the shape of a single images is correct for model size.

void check_image_shape (const ImageStackT &ims) const

Check the shape of a stack of images is correct for model size.

- void sample_mcmc_candidate (ldxT sample_index, ParamT &candidate, double step_scale=1.0)
- void set intensity mcmc sampling (double eta I=-1)
- void set background mcmc sampling (double eta bg=-1)
- void set mcmc sigma scale (double scale)
- · double get mcmc sigma scale () const
- · IdxT get mcmc num phases () const

Static Public Member Functions

- static CompositeDist make_default_prior (ldxT size, const std::string &prior_type)
- static CompositeDist make default prior beta position (IdxT size)
- static CompositeDist make default prior normal position (ldxT size)
- static CompositeDist make_prior_beta_position (ldxT size, double beta_xpos, double mean_I, double kappa_I, double mean_bg, double kappa_bg)
- static CompositeDist make_prior_normal_position (IdxT size, double sigma_xpos, double mean_I, double kappa I, double mean bg, double kappa bg)

- static prior_hessian::ScaledSymmetricBetaDist make_prior_component_position_beta (IdxT size, double pos_
 beta=default_beta_pos)
- static prior_hessian::TruncatedParetoDist make_prior_component_sigma (double min_sigma, double max_
 sigma, double alpha=default alpha sigma)
- static void set_rng_seed (RngSeedT seed)
- static ParallelRngManagerT & get_rng_manager ()
- static ParallelRngGeneratorT & get rng generator ()
- static void check size (const ImageSizeT &size)

Check the size argument for the model.

Static Public Attributes

- static const std::string name
- static const StringVecT prior types
- static const std::string DefaultPriorType = "Normal"
- static const std::string DefaultSeperableInitEstimator = "TrustRegion"
- static const double bounds epsilon = 1.0E-6
- static const double global min psf sigma = 1E-1
- static const double global max psf sigma = 1E2
- static const double default beta pos = 3
- static const double default sigma pos = 1
- static const double default_mean_I = 300
- static const double default max I = INFINITY
- static const double default_intensity_kappa = 2
- static const double default_pixel_mean_bg = 4
- static const double default_alpha_sigma = 2
- static const ImageCoordT num dim = 1
- static const ImageCoordT global min size = 3
- static const ImageCoordT global_max_size = 512
- static const double global_default_mcmc_sigma_scale = 0.05
- static const double global max mcmc sigma scale = 0.5
- static const std::vector< std::string > estimator names

Protected Member Functions

void set mcmc num phases (IdxT num phases)

Protected Attributes

- double psf_sigma
- · CompositeDist prior
- IdxT num_params
- IdxT num_hyperparams
- ParamT Ibound
- · ParamT ubound
- ImageSizeT size
- double eta_x =0
- double eta I =0
- double eta_bg =0
- IdxT num_phases
- double sigma_scale

8.18.1 Detailed Description

A 1D Gaussian with fixed PSF under an Poisson Read Noise assumption and MAP Objective.

Model: Gauss1DModel a 1D gaussian PSF with fixed psf_sigma Objective Statistical Noise Model: PoissonNoise1D← MAPObjective an MLE objective for Poisson noise ImageFormat: ImageFormat1DBase - Data format

Definition at line 25 of file Gauss2DsxyMAP.h.

```
8.18.2 Member Typedef Documentation
```

8.18.2.1 using mappel::ImageFormat1DBase::ImageCoordT = uint32_t [inherited]

Image size coordinate storage type

Definition at line 25 of file ImageFormat1DBase.h.

8.18.2.2 using mappel::ImageFormat1DBase::ImagePixelT = double [inherited]

Image pixel storage type

Definition at line 26 of file ImageFormat1DBase.h.

8.18.2.3 template < class PixelT > using mappel::ImageFormat1DBase::ImageShapeT = arma::Col < PixelT > [inherited]

Shape of the data type for a single image

Definition at line 33 of file ImageFormat1DBase.h.

8.18.2.4 template < class CoordT > using mappel::ImageFormat1DBase::ImageSizeShapeT = CoordT [inherited]

Shape of the data type to store 1-image's coordinates

Definition at line 28 of file ImageFormat1DBase.h.

8.18.2.5 using mappel::ImageFormat1DBase::ImageSizeT = ImageSizeShapeT < ImageCoordT > [inherited]

Data type for a single image size

Definition at line 30 of file ImageFormat1DBase.h.

8.18.2.6 template < class CoordT > using mappel::ImageFormat1DBase::ImageSizeVecShapeT = arma::Col < CoordT > [inherited]

Shape of the data type to store a vector of image's coordinates

Definition at line 29 of file ImageFormat1DBase.h.

8.18.2.7 using mappel::ImageFormat1DBase::ImageSizeVecT = ImageSizeVecShapeT < ImageCoordT > [inherited]

Data type for a sequence of image sizes

Definition at line 31 of file ImageFormat1DBase.h.

8.18.2.8 template < class PixelT > using mappel::ImageFormat1DBase::ImageStackShapeT = arma::Mat < PixelT > [inherited]

Shape of the data type for a sequence of images

Definition at line 34 of file ImageFormat1DBase.h.

8.18.2.9 using mappel::ImageFormat1DBase::ImageStackT = ImageStackShapeT < ImagePixeIT > [inherited]

Data type to represent a sequence of images

Definition at line 36 of file ImageFormat1DBase.h.

8.18.2.10 using mappel::ImageFormat1DBase::ImageT = ImageShapeT < ImagePixeIT > [inherited]

Data type to represent single image

Definition at line 35 of file ImageFormat1DBase.h.

8.18.2.11 using mappel::PoissonNoise1DObjective::ModelDataStackT = ImageStackT [inherited]

Objective function data stack type: 1D double precision image stack, of images gain-corrected to approximate photons counts

Definition at line 26 of file PoissonNoise1DObjective.h.

8.18.2.12 using mappel::PoissonNoise1DObjective::ModelDataT = ImageT [inherited]

Objective function data type: 1D double precision image, gain-corrected to approximate photons counts

Definition at line 25 of file PoissonNoise1DObjective.h.

8.18.2.13 using mappel::PointEmitterModel::ParamT = arma::vec [inherited]

Parameter vector

Definition at line 47 of file PointEmitterModel.h.

8.18.2.14 using mappel::PointEmitterModel::ParamVecT = arma::mat [inherited]

Vector of parameter vectors

Definition at line 48 of file PointEmitterModel.h.

8.18.2.15 using mappel::Gauss1DModel::StencilVecT = std::vector < Stencil > [inherited]

Definition at line 49 of file Gauss1DModel.h.

- 8.18.3 Constructor & Destructor Documentation
- 8.18.3.1 mappel::Gauss2DsxyMAP::Gauss2DsxyMAP (const ImageSizeT & size, const VecT & min_sigma, const VecT & max_sigma)
- 8.18.3.2 mappel::Gauss2DsxyMAP::Gauss2DsxyMAP (const ImageSizeT & size, const VecT & min_sigma, const VecT & max_sigma, CompositeDist && prior)
- 8.18.4 Member Function Documentation
- 8.18.4.1 void mappel::PointEmitterModel::bound_theta (ParamT & theta, double epsilon = bounds_epsilon) const [inherited]

Definition at line 248 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::Point← EmitterModel::num params, and mappel::PointEmitterModel::ubound.

8.18.4.2 PointEmitterModel::ParamT mappel::PointEmitterModel::bounded_theta (const ParamT & theta, double epsilon = bounds epsilon) const [inherited]

Definition at line 265 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::ubound, mappel::PointEmitterModel::ubound.

Referenced by mappel::PointEmitterModel::bounded theta stack().

8.18.4.3 PointEmitterModel::ParamVecT mappel::PointEmitterModel::bounded_theta_stack(const ParamVecT & theta, double epsilon = bounds_epsilon) const [inherited]

Definition at line 307 of file PointEmitterModel.cpp.

 $References \quad mappel:: PointEmitterModel:: bounded_theta(), \quad mappel:: PointEmitterModel:: check_param_shape(), \quad and \\ mappel:: PointEmitterModel:: make_param_stack().$

8.18.4.4 void ImageFormat1DBase::check_image_shape(const ImageT & im) const [inherited]

Check the shape of a single images is correct for model size.

Definition at line 59 of file ImageFormat1DBase.cpp.

References mappel::ImageFormat1DBase::size.

8.18.4.5 void ImageFormat1DBase::check_image_shape (const ImageStackT & ims) const [inherited]

Check the shape of a stack of images is correct for model size.

Definition at line 71 of file ImageFormat1DBase.cpp.

References mappel::ImageFormat1DBase::size.

8.18.4.6 void mappel::PointEmitterModel::check_param_shape (const ParamT & theta) const [inherited]

Definition at line 167 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::num_params.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::reflected_theta(), mappel::PointEmitterModel::reflected_theta(), mappel::PointEmitterModel::theta_in_bounds(), and mappel::PointEmitterModel \leftarrow ::theta_stack_in_bounds().

8.18.4.7 void mappel::PointEmitterModel::check_param_shape (const ParamVecT & theta) const [inherited]

Definition at line 176 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::num params.

8.18.4.8 void mappel::PointEmitterModel::check_psf_sigma (double psf_sigma) const [inherited]

Definition at line 185 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::global_max_psf_sigma, and mappel::PointEmitterModel::global_min_psf_ sigma.

Referenced by mappel::Gauss1DModel(), mappel::Gauss2DModel(), mappel::Gauss2DModel(), mappel::Gauss2DModel(), mappel::Gauss2DsModel(), mappel::Gauss2DsModel(), mappel::Gauss2DsModel(), mappel::Gauss2DsModel(), mappel::Gauss2DsModel(), mappel::Gauss2DsModel(), mappel::Gauss2DsModel(), mappel::Gauss2DsModel(), mappel(), mappel

8.18.4.9 void mappel::PointEmitterModel::check_psf_sigma (const VecT & psf_sigma) const [inherited]

Definition at line 197 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::global_max_psf_sigma, and mappel::PointEmitterModel::global_min_psf_ sigma.

8.18.4.10 void ImageFormat1DBase::check_size(const ImageSizeT & size_) [static], [inherited]

Check the size argument for the model.

Definition at line 39 of file ImageFormat1DBase.cpp.

References mappel::ImageFormat1DBase::global_max_size, and mappel::ImageFormat1DBase::global_min_size.

Referenced by mappel::ImageFormat1DBase::ImageFormat1DBase(), and mappel::ImageFormat1DBase::set_size().

8.18.4.11 int mappel::PointEmitterModel::get_hyperparam_index (const std::string & name) const [inline], [inherited]

Definition at line 236 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.18.4.12 StringVecT mappel::PointEmitterModel::get_hyperparam_names()const [inline], [inherited]

Definition at line 256 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.18.4.13 double mappel::PointEmitterModel::get_hyperparam_value (const std::string & name) const [inline], [inherited]

Definition at line 232 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

Referenced by mappel::MCMCAdaptor1D::set_background_mcmc_sampling(), and mappel::MCMCAdaptor1D::set_circle intensity mcmc_sampling().

```
8.18.4.14 PointEmitterModel::ParamT mappel::PointEmitterModel::get_hyperparams ( ) const [inline],
         [inherited]
Definition at line 224 of file PointEmitterModel.h.
References mappel::PointEmitterModel::prior.
8.18.4.15 ImageFormat1DBase::ImageT ImageFormat1DBase::get_image_from_stack ( const ImageStackT & stack,
         ImageCoordT n ) const [inline], [inherited]
Definition at line 108 of file ImageFormat1DBase.h.
8.18.4.16 const PointEmitterModel::ParamT & mappel::PointEmitterModel::get_lbound( ) const [inline],
         [inherited]
Definition at line 212 of file PointEmitterModel.h.
References mappel::PointEmitterModel::lbound.
Referenced by mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCMCAdaptor2D::MCMCAdaptor2D(), and
mappel::MCMCAdaptor1D::set background mcmc sampling().
8.18.4.17 | IdxT mappel::MCMCAdaptorBase::get mcmc_num_phases( ) const [inherited]
Definition at line 56 of file MCMCAdaptorBase.cpp.
References mappel::MCMCAdaptorBase::num_phases.
8.18.4.18 double mappel::MCMCAdaptorBase::get_mcmc_sigma_scale( ) const [inherited]
Definition at line 53 of file MCMCAdaptorBase.cpp.
References mappel::MCMCAdaptorBase::sigma_scale.
8.18.4.19 IdxT mappel::PointEmitterModel::get_num_hyperparams( )const [inline], [inherited]
Definition at line 208 of file PointEmitterModel.h.
References mappel::PointEmitterModel::num hyperparams.
8.18.4.20 IdxT mappel::PointEmitterModel::get_num_params() const [inline], [inherited]
Definition at line 160 of file PointEmitterModel.h.
```

References mappel::PointEmitterModel::num params.

8.18.4.21 ImageFormat1DBase::ImageCoordT ImageFormat1DBase::get_num_pixels() const [inline], [inherited] Definition at line 82 of file ImageFormat1DBase.h. References mappel::ImageFormat1DBase::size. Referenced by mappel::ImageFormat1DBase::get stats(). 8.18.4.22 StringVecT mappel::PointEmitterModel::get param names() const [inline], [inherited] Definition at line 248 of file PointEmitterModel.h. References mappel::PointEmitterModel::prior. 8.18.4.23 CompositeDist & mappel::PointEmitterModel::get prior() [inline], [inherited] Definition at line 200 of file PointEmitterModel.h. References mappel::PointEmitterModel::prior. Referenced by mappel::Gauss2DModel::update_internal_1Dsum_estimators(), and mappel::Gauss2DsModel ← ::update internal 1Dsum estimators(). 8.18.4.24 const CompositeDist & mappel::PointEmitterModel::get_prior() const [inline], [inherited] Definition at line 204 of file PointEmitterModel.h. References mappel::PointEmitterModel::prior. 8.18.4.25 double mappel::Gauss1DModel::get_psf_sigma() const [inline], [inherited] Definition at line 127 of file Gauss1DModel.h. References mappel::Gauss1DModel::psf_sigma. Referenced by mappel::Gauss1DModel::get stats(). **8.18.4.26** double mappel::Gauss1DModel::get_psf_sigma (ldxT idx) const [inherited] Definition at line 131 of file Gauss1DModel.cpp. References mappel::Gauss1DModel::psf_sigma. **8.18.4.27 ParallelRngGeneratorT & mappel::PointEmitterModel::get_rng_generator()** [static], [inherited]

Generated by Doxygen

Definition at line 120 of file PointEmitterModel.cpp.

References mappel::rng manager.

8.18.4.28 ParallelRngManagerT & mappel::PointEmitterModel::get_rng_manager() [static], [inherited]

Definition at line 115 of file PointEmitterModel.cpp.

References mappel::rng_manager.

8.18.4.29 ImageFormat1DBase::ImageSizeT ImageFormat1DBase::get size() const [inline], [inherited]

Definition at line 71 of file ImageFormat1DBase.h.

References mappel::ImageFormat1DBase::size.

Referenced by mappel::ImageFormat1DBase::get stats().

8.18.4.30 ImageFormat1DBase::ImageCoordT ImageFormat1DBase::get_size (IdxT idx) const [inherited]

Definition at line 20 of file ImageFormat1DBase.cpp.

References mappel::ImageFormat1DBase::size.

8.18.4.31 ImageFormat1DBase::ImageCoordT ImageFormat1DBase::get_size_image_stack(const ImageStackT & stack) const [inline],[inherited]

Definition at line 101 of file ImageFormat1DBase.h.

8.18.4.32 StatsT mappel::Gauss1DModel::get_stats() const [inherited]

Definition at line 178 of file Gauss1DModel.cpp.

 $References \quad mappel:: Gauss 1DModel:: get_psf_sigma(), \quad mappel:: MCMCAdaptor 1D:: get_stats(), \quad mappel:: Image \leftarrow Format 1DB ase:: get_stats(), \quad and \quad mappel:: Point Emitter Model:: get_stats().$

8.18.4.33 const PointEmitterModel::ParamT & mappel::PointEmitterModel::get_ubound() const [inline], [inherited]

Definition at line 216 of file PointEmitterModel.h.

References mappel::PointEmitterModel::ubound.

Referenced by mappel::Gauss2DsxyModel::get_max_sigma_ratio(), mappel::Gauss2DsModel::get_max_sigma_ratio(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCMCAdaptor2D(), mappel::MCMCAdaptor2D(), mappel::MCMCAdaptor1D::set background mcmc sampling(), and mappel::Gauss2DsModel::set max sigma ratio().

8.18.4.34 bool mappel::PointEmitterModel::has_hyperparam (const std::string & name) const [inline], [inherited]

Definition at line 228 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.18.4.35 Gauss1DModel::Stencil mappel::Gauss1DModel::initial_theta_estimate(const ImageT & im) const [inline], [inherited]

Fast, heuristic estimate of initial theta.

Definition at line 169 of file Gauss1DModel.h.

References mappel::PointEmitterModel::make param(), and mappel::Gauss1DModel::Stencil::theta.

8.18.4.36 Gauss1DModel::Stencil mappel::Gauss1DModel::initial_theta_estimate (const ImageT & im, const ParamT & theta_init) const [inherited]

Definition at line 207 of file Gauss1DModel.cpp.

References mappel::Gauss1DModel::Stencil::bg(), mappel::Gauss1DModel::Stencil::l(), mappel::Gauss1DModel ← ::make stencil(), mappel::PointEmitterModel::num params, and mappel::ImageFormat1DBase::size.

8.18.4.37 CompositeDist mappel::Gauss1DModel::make_default_prior(ldxT *size*, const std::string & *prior_type*) [static], [inherited]

Definition at line 59 of file Gauss1DModel.cpp.

References mappel::istarts_with(), mappel::Gauss1DModel::make_default_prior_beta_position(), and mappel::

Gauss1DModel::make default prior normal position().

8.18.4.38 CompositeDist mappel::Gauss1DModel::make_default_prior_beta_position (ldxT size) [static], [inherited]

Definition at line 80 of file Gauss1DModel.cpp.

References mappel::PointEmitterModel::default_pixel_mean_bg, mappel::PointEmitterModel::make_prior_component ← intensity(), and mappel::PointEmitterModel::make prior component position beta().

Referenced by mappel::Gauss1DModel::make_default_prior().

8.18.4.39 CompositeDist mappel::Gauss1DModel::make_default_prior_normal_position (ldxT *size*) [static], [inherited]

Definition at line 90 of file Gauss1DModel.cpp.

References mappel::PointEmitterModel::default_pixel_mean_bg, mappel::PointEmitterModel::make_prior_component ← intensity(), and mappel::PointEmitterModel::make prior component position normal().

Referenced by mappel::Gauss1DModel::make_default_prior().

8.18.4.40 ImageFormat1DBase::ImageT ImageFormat1DBase::make_image() const [inline], [inherited]

Definition at line 87 of file ImageFormat1DBase.h.

References mappel::ImageFormat1DBase::size.

8.18.4.41 ImageFormat1DBase::ImageStackT ImageFormat1DBase::make_image_stack(ImageCoordT n) const [inline], [inherited]

Definition at line 94 of file ImageFormat1DBase.h.

References mappel::ImageFormat1DBase::size.

8.18.4.42 PointEmitterModel::ParamT mappel::PointEmitterModel::make_param() const [inline], [inherited]

Definition at line 164 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

Referenced by mappel::Gauss1DModel::initial_theta_estimate(), mappel::Gauss1DsModel::initial_theta_estimate(), mappel::Gauss2DModel::initial_theta_estimate(), mappel::Gauss2DsxyModel::initial_theta_estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::Gauss1DModel::pixel_hess_update(), mappel::Gauss1DsModel::pixel_hess_update(), mappel::Gauss2DsModel::pixel_hess_update(), and mappel::Gauss2DsModel::pixel_hess_update().

8.18.4.43 template < class FillT > PointEmitterModel::ParamT mappel::PointEmitterModel::make_param (FillT fill) const

Definition at line 181 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

8.18.4.44 MatT mappel::PointEmitterModel::make_param_mat() const [inline], [inherited]

Definition at line 172 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

8.18.4.45 template < class FillT > MatT mappel::PointEmitterModel::make_param_mat(FillT fill) const [inherited]

Definition at line 191 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

8.18.4.46 CubeT mappel::PointEmitterModel::make_param_mat_stack(ldxT n) const [inline], [inherited]

Definition at line 176 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

8.18.4.47 template < class FillT > CubeT mappel::PointEmitterModel::make_param_mat_stack (ldxT n, FillT fill) const [inherited]

Definition at line 196 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

8.18.4.48 PointEmitterModel::ParamVecT mappel::PointEmitterModel::make_param_stack(ldxT n) const [inline], [inherited]

Definition at line 168 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

Referenced by mappel::PointEmitterModel::bounded_theta_stack(), and mappel::PointEmitterModel::reflected_theta ← stack().

8.18.4.49 template < class FillT > PointEmitterModel::ParamVecT mappel::PointEmitterModel::make_param_stack (ldxT n, FillT fill) const [inherited]

Definition at line 186 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

8.18.4.50 CompositeDist mappel::Gauss1DModel::make_prior_beta_position (ldxT size, double beta_xpos, double mean_l, double kappa_l, double mean_bg, double kappa_bg) [static], [inherited]

Definition at line 101 of file Gauss1DModel.cpp.

References mappel::PointEmitterModel::make_prior_component_intensity(), and mappel::PointEmitterModel::make_ prior_component_position_beta().

Referenced by mappel::Gauss2DModel::make_internal_1Dsum_estimator().

8.18.4.51 prior_hessian::TruncatedGammaDist mappel::PointEmitterModel::make_prior_component_intensity (double mean = default_mean_I, double kappa = default_intensity_kappa) [static], [inherited]

Definition at line 98 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::default_max_I.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_beta_position(), mappel::Gauss2Ds \leftarrow default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss1DsModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_prior_cormal_position(), mappel::Gauss2DModel::make_prior_beta_position(), mappel::Gauss2DModel::make_prior_beta_position(), mappel::Gauss2DModel::make_prior_beta_position(), mappel::Gauss2DModel::make_prior_normal_cosition(), mappel::Gauss2DModel::make_prior_normal_cosition(), mappel::Gauss2DModel::make_prior_normal_cosition(), mappel::Gauss2DModel::make_prior_normal_cosition(), and mappel::Gauss2DsModel::make_prior_normal_position().

8.18.4.52 prior_hessian::ScaledSymmetricBetaDist mappel::PointEmitterModel::make_prior_component_position_beta (ldxT size, double pos_beta = default_beta_pos) [static], [inherited]

Definition at line 92 of file PointEmitterModel.cpp.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_beta_position(), mappel::Gauss1DModel::make_default_prior_beta_position(), mappel::Gauss2Ds \leftarrow Model::make_default_prior_beta_position(), mappel::Gauss1DsModel::make_prior_beta_position(), mappel::Gauss2Ds \leftarrow DModel::make_prior_beta_position(), mappel::Gauss1DModel::make_prior_beta_position(), and mappel::Gauss2Ds \leftarrow Model::make_prior_beta_position().

8.18.4.53 prior_hessian::TruncatedNormalDist mappel::PointEmitterModel::make_prior_component_position_normal(ldxT size, double pos sigma = default sigma pos) [static].[inherited]

Definition at line 85 of file PointEmitterModel.cpp.

Referenced by mappel::Gauss1DsModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_ \leftarrow default_prior_normal_position(), mappel::Gauss1DModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_prior_normal_position(), mappel::Gauss2DModel::make_prior_normal_position(), mappel::Gauss1DsModel::make_prior_normal_position(), and mappel::Gauss2DsModel::make_prior_normal_position().

8.18.4.54 prior_hessian::TruncatedParetoDist mappel::PointEmitterModel::make_prior_component_sigma (double min_sigma, double max_sigma, double alpha = default_alpha_sigma) [static], [inherited]

Definition at line 104 of file PointEmitterModel.cpp.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DsModel::make_ \leftarrow default_prior_beta_position(), mappel::Gauss1DsModel::make_default_prior_normal_position(), mappel::Gauss2 \leftarrow DsModel::make_default_prior_normal_position(), mappel::Gauss1DsModel::make_prior_beta_position(), mappel::Gauss1DsModel::make_prior_normal_position(), and mappel \leftarrow ::Gauss2DsModel::make_prior_normal_position().

8.18.4.55 CompositeDist mappel::Gauss1DModel::make_prior_normal_position (ldxT size, double sigma_xpos, double mean_l, double kappa_l, double mean_bg, double kappa_bg) [static], [inherited]

Definition at line 114 of file Gauss1DModel.cpp.

References mappel::PointEmitterModel::make_prior_component_intensity(), and mappel::PointEmitterModel::make_component_prior_co

Referenced by mappel::Gauss2DModel::make_internal_1Dsum_estimator().

8.18.4.56 Gauss1DModel::Stencil mappel::Gauss1DModel::make_stencil (const ParamT & theta, bool compute_derivatives = true) const [inline], [inherited]

Make a new Model::Stencil object at theta.

Stencils store all of the important calculations necessary for evaluating the log-likelihood and its derivatives at a particular theta (parameter) value.

This allows re-use of the most expensive computations. Stencils can be easily passed around by reference, and most functions in the mappel::methods namespace accept a const Stencil reference in place of the model parameter.

Throws mappel::ModelBoundsError if not model.theta_in_bounds(theta).

If derivatives will not be computed with this stencil set compute derivatives=false

Parameters

theta	Prameter to evaluate at
compute_derivatives	True to also prepare for derivative computations

Returns

A new Stencil object ready to compute with

Definition at line 116 of file Gauss1DModel.h.

References mappel::Gauss1DModel::Stencil::Stencil(), and mappel::PointEmitterModel::theta in bounds().

Referenced by mappel::Gauss1DModel::initial theta estimate().

8.18.4.57 void mappel::Gauss1DModel::pixel_grad (ldxT i, const Stencil & s, ParamT & pgrad) const [inline], [inherited]

Definition at line 141 of file Gauss1DModel.h.

References mappel::Gauss1DModel::Stencil::DX, mappel::Gauss1DModel::Stencil::I(), and mappel::Gauss1DModel ← ::Stencil::X.

Referenced by mappel::Gauss1DModel::pixel_hess_update().

8.18.4.58 void mappel::Gauss1DModel::pixel_grad2 (ldxT i, const Stencil & s, ParamT & pgrad2) const [inline], [inherited]

Definition at line 150 of file Gauss1DModel.h.

References mappel::Gauss1DModel::Stencil::DXS, mappel::Gauss1DModel::Stencil::I(), and mappel::Gauss1D← Model::psf sigma.

8.18.4.59 void mappel::Gauss1DModel::pixel_hess (ldxT *i,* **const Stencil &** *s,* **MatT &** *hess* **) const** [inline], [inherited]

Definition at line 159 of file Gauss1DModel.h.

References mappel::Gauss1DModel::Stencil::DX, mappel::Gauss1DModel::Stencil::DXS, mappel::Gauss1DModel:: \leftarrow Stencil::I(), and mappel::Gauss1DModel::psf_sigma.

8.18.4.60 void mappel::Gauss1DModel::pixel_hess_update(ldxT i, const Stencil & s, double dm_ratio_m1, double dmm_ratio, ParamT & grad, MatT & hess) const [inherited]

pixel derivative inner loop calculations.

Definition at line 191 of file Gauss1DModel.cpp.

 $References\ mappel::Gauss1DModel::Stencil::DXS,\ mappel::Gauss1DModel::Stencil::I(),\ mappel::PointEmitterModel \\ :::make_param(),\ mappel::Gauss1DModel::pixel_grad(),\ and\ mappel::Gauss1DModel::psf_sigma.$

8.18.4.61 double mappel::Gauss1DModel::pixel_model_value (ldxT i, const Stencil & s) const [inline], [inherited]

Definition at line 135 of file Gauss1DModel.h.

References mappel::Gauss1DModel::Stencil::bg(), mappel::Gauss1DModel::Stencil::I(), and mappel::Gauss1DModel ← ::Stencil::X.

8.18.4.62 PointEmitterModel::ParamT mappel::PointEmitterModel::reflected_theta (const ParamT & theta) const [inherited]

Definition at line 276 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::Point← EmitterModel::num params, and mappel::PointEmitterModel::ubound.

Referenced by mappel::PointEmitterModel::reflected theta stack().

8.18.4.63 PointEmitterModel::ParamVecT mappel::PointEmitterModel::reflected_theta_stack(const ParamVecT & theta) const [inherited]

Definition at line 317 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::make_param_stack(), and mappel::PointEmitterModel::reflected_theta().

8.18.4.64 void mappel::PointEmitterModel::rename_hyperparam (const std::string & old_name, const std::string & new_name)
[inline], [inherited]

Definition at line 244 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.18.4.65 void mappel::MCMCAdaptor1D::sample_mcmc_candidate (ldxT sample_index, ParamT & candidate, double step_scale = 1.0) [inherited]

Definition at line 108 of file MCMCAdaptor1D.cpp.

References mappel::MCMCAdaptor1D::eta_bg, mappel::MCMCAdaptor1D::eta_l, mappel::MCMCAdaptor1D::eta_c x, mappel::MCMCAdaptorBase::num phases, and mappel::rng manager.

8.18.4.66 template < class RngT > PointEmitterModel::ParamT mappel::PointEmitterModel::sample_prior(RngT & rng) [inherited]

Definition at line 264 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.18.4.67 PointEmitterModel::ParamT mappel::PointEmitterModel::sample_prior() [inline], [inherited]

Definition at line 268 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior, and mappel::rng manager.

8.18.4.68 void mappel:: $MCMCAdaptor1D::set_background_mcmc_sampling(double eta_bg = -1)$ [inherited]

Definition at line 81 of file MCMCAdaptor1D.cpp.

References mappel::PointEmitterModel::default_pixel_mean_bg, mappel::MCMCAdaptor1D::eta_bg, mappel::PointcointcointerModel::get_hyperparam_value(), mappel::PointEmitterModel::get_bound(), mappel::PointEmitterModel::get_cointcointermodel::get_cointcoint

Referenced by mappel::MCMCAdaptor1D::MCMCAdaptor1D().

8.18.4.69 void mappel::PointEmitterModel::set_bounds (const ParamT & *lbound_*, const ParamT & *ubound_*)

[inherited]

Box-type parameter bounds

Modifies the prior bounds to prevent sampling outside the valid box-constraints.

Definition at line 213 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounds_epsilon, mappel::PointEmitterModel::lbound, mappel::PointEmitter Model::num_params, mappel::PointEmitterModel::prior, and mappel::PointEmitterModel::ubound.

```
8.18.4.70 void mappel::PointEmitterModel::set_hyperparam_names ( const StringVecT &  desc ) [inline], [inherited]
```

Definition at line 260 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.18.4.71 void mappel::PointEmitterModel::set_hyperparam_value (const std::string & name, double value) [inline], [inherited]

Definition at line 240 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.18.4.72 void mappel::PointEmitterModel::set_hyperparams (const VecT & hyperparams) [inline], [inherited]

Definition at line 220 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

Referenced by mappel::Gauss2DModel::set_hyperparams(), and mappel::Gauss2DsModel::set_hyperparams().

8.18.4.73 template < class ImT > void ImageFormat1DBase::set_image_in_stack (ImageStackT & stack, ImageCoordT n, const ImT & im) const [inherited]

Definition at line 115 of file ImageFormat1DBase.h.

8.18.4.74 void mappel::MCMCAdaptor1D::set_intensity_mcmc_sampling (double eta_I = -1) [inherited]

Definition at line 65 of file MCMCAdaptor1D.cpp.

References mappel::PointEmitterModel::default_mean_I, mappel::MCMCAdaptor1D::eta_I, mappel::PointEmitter Model::get_hyperparam_value(), and mappel::MCMCAdaptorBase::sigma_scale.

Referenced by mappel::MCMCAdaptor1D::MCMCAdaptor1D().

8.18.4.75 void mappel::PointEmitterModel::set_lbound (const ParamT & lbound) [inherited]

Definition at line 226 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounds_epsilon, mappel::PointEmitterModel::lbound, mappel::PointEmitter ← Model::num_params, mappel::PointEmitterModel::prior, and mappel::PointEmitterModel::ubound.

Referenced by mappel::Gauss1DsModel::set_min_sigma().

8.18.4.76 void mappel::MCMCAdaptorBase::set_mcmc_num_phases(| IdxT num_phases) [protected], [inherited]

Definition at line 59 of file MCMCAdaptorBase.cpp.

References mappel::MCMCAdaptorBase::num phases.

Referenced by mappel::MCMCAdaptor1Ds::MCMCAdaptor1Ds(), and mappel::MCMCAdaptor2Ds::MCMCAdaptor2 → Ds().

8.18.4.77 void mappel::MCMCAdaptorBase::set mcmc sigma scale (double scale) [inherited]

Definition at line 39 of file MCMCAdaptorBase.cpp.

References mappel::MCMCAdaptorBase::global_max_mcmc_sigma_scale, and mappel::MCMCAdaptorBase::sigma
scale.

8.18.4.78 void mappel::PointEmitterModel::set_param_names (const StringVecT & desc) [inline], [inherited]

Definition at line 252 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.18.4.79 void mappel::PointEmitterModel::set_prior (CompositeDist && prior_) [inherited]

Definition at line 158 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::num_hyperparams, mappel::PointEmitterModel::pointEmitterModel::pointEmitterModel::ubound.

Referenced by mappel::Gauss2DModel::set prior(), and mappel::Gauss2DsModel::set prior().

8.18.4.80 void mappel::PointEmitterModel::set_prior(const CompositeDist & prior_) [inherited]

Definition at line 149 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::Ibound, mappel::PointEmitterModel::num_hyperparams, mappel::PointEmitterModel::prior, and mappel::PointEmitterModel::ubound.

8.18.4.81 void mappel::Gauss1DModel::set_psf_sigma (double new_psf_sigma) [inherited]

Definition at line 125 of file Gauss1DModel.cpp.

References mappel::PointEmitterModel::check_psf_sigma(), and mappel::Gauss1DModel::psf_sigma.

Referenced by mappel::Gauss1DModel::set_psf_sigma(), and mappel::Gauss2DModel::set_psf_sigma().

8.18.4.82 void mappel::Gauss1DModel::set_psf_sigma (const VecT & new_psf_sigma) [inline], [inherited]

Definition at line 131 of file Gauss1DModel.h.

References mappel::Gauss1DModel::set_psf_sigma().

8.18.4.83 void mappel::PointEmitterModel::set_rng_seed(RngSeedT seed) [static], [inherited]

Definition at line 110 of file PointEmitterModel.cpp.

References mappel::rng manager.

8.18.4.84 void ImageFormat1DBase::set_size (const ImageSizeT & size_) [inherited]

Definition at line 30 of file ImageFormat1DBase.cpp.

References mappel::ImageFormat1DBase::check size(), and mappel::ImageFormat1DBase::size.

Referenced by mappel::ImageFormat1DBase::set_size(), mappel::Gauss2DModel::set_size(), and mappel::Gauss2 DSModel::set_size().

8.18.4.85 void ImageFormat1DBase::set_size(const arma::Col < ImageCoordT > & sz) [inline], [inherited]

Definition at line 75 of file ImageFormat1DBase.h.

References mappel::ImageFormat1DBase::set_size().

8.18.4.86 void mappel::PointEmitterModel::set_ubound(const ParamT & ubound) [inherited]

Definition at line 237 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounds_epsilon, mappel::PointEmitterModel::lbound, mappel::PointEmitter Wodel::num params, mappel::PointEmitterModel::prior, and mappel::PointEmitterModel::ubound.

Referenced by mappel::Gauss1DsModel::set max sigma(), and mappel::Gauss2DsModel::set max sigma ratio().

8.18.4.87 bool mappel::PointEmitterModel::theta_in_bounds (const ParamT & theta) const [inherited]

Definition at line 257 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::Point← EmitterModel::num params, and mappel::PointEmitterModel::ubound.

Referenced by mappel::Gauss2DModel::initial_theta_estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::Gauss1DModel::make_stencil(), mappel::Gauss2DModel::make_stencil(), mappel::Gauss2DsModel::make_stencil(), mappel::Gauss2DsModel::make_stencil(), and mappel::Point
EmitterModel::theta stack in bounds().

8.18.4.88 BoolVecT mappel::PointEmitterModel::theta_stack_in_bounds (const ParamVecT & theta) const [inherited]

Definition at line 297 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), and mappel::PointEmitterModel::theta_in_bounds().

8.18.5 Member Data Documentation

8.18.5.1 const double mappel::PointEmitterModel::bounds_epsilon = 1.0E-6 [static], [inherited]

Distance from the boundary to constrain in bound theta and bounded theta methods

Definition at line 52 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::set_bounds(), mappel::PointEmitterModel::set_lbound(), mappel::Gauss2 DsModel::set_max_sigma_ratio(), and mappel::PointEmitterModel::set_ubound().

8.18.5.2 const double mappel::PointEmitterModel::default_alpha_sigma = 2 [static], [inherited]

Default per-pixel background gamma distribution shape

Definition at line 62 of file PointEmitterModel.h.

8.18.5.3 const double mappel::PointEmitterModel::default_beta_pos = 3 [static], [inherited]

Default position parameter in symmetric beta-distributions

Definition at line 56 of file PointEmitterModel.h.

8.18.5.4 const double mappel::PointEmitterModel::default intensity kappa = 2 [static], [inherited]

Default shape for intensity gamma distributions

Definition at line 60 of file PointEmitterModel.h.

8.18.5.5 const double mappel::PointEmitterModel::default_max_l = INFINITY [static], [inherited]

Default maximum emitter intensity

Definition at line 59 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::make_prior_component_intensity().

8.18.5.6 const double mappel::PointEmitterModel::default_mean_l = 300 [static], [inherited]

Default emitter intensity mean

Definition at line 58 of file PointEmitterModel.h.

Referenced by mappel::MCMCAdaptor1D::set_intensity_mcmc_sampling().

8.18.5.7 const double mappel::PointEmitterModel::default_pixel_mean_bg = 4 [static], [inherited]

Default per-pixel mean background counts

Definition at line 61 of file PointEmitterModel.h.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DModel::make default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_beta_position(), mappel::Gauss1DModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss2DsModel::make_default_prior_normal_position(), and mappel::MCMCAdaptor1Ddisset_background_mcmc_sampling().

8.18.5.8 const double mappel::PointEmitterModel::default_sigma_pos = 1 [static], [inherited]

Default position parameter in symmetric beta-distributions

Definition at line 57 of file PointEmitterModel.h.

8.18.5.9 const std::string mappel::Gauss1DModel::DefaultPriorType = "Normal" [static], [inherited]

Definition at line 53 of file Gauss1DModel.h.

Referenced by mappel::Gauss1DModel::operator=().

8.18.5.10 const std::string mappel::PointEmitterModel::DefaultSeperableInitEstimator = "TrustRegion" [static], [inherited]

Estimator name to use in 1D separable initializations

Definition at line 49 of file PointEmitterModel.h.

Referenced by mappel::Gauss2DModel::initial_theta_estimate(), mappel::Gauss2DsxyModel::initial_theta_estimate(), and mappel::Gauss2DsModel::initial_theta_estimate().

8.18.5.11 const std::vector < std::string > mappel::PoissonNoise1DObjective::estimator_names [static], [inherited]

Definition at line 24 of file PoissonNoise1DObjective.h.

8.18.5.12 double mappel::MCMCAdaptor1D::eta_bg = 0 [protected], [inherited]

The standard deviation for the normally distributed perturbation to theta_bg in the random walk MCMC sampling

Definition at line 32 of file MCMCAdaptor1D.h.

Referenced by mappel::MCMCAdaptor1D::get_stats(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MC—CMCAdaptor1D::operator=(), mappel::MCMCAdaptor2D::sample_mcmc_candidate(), mappel::MCMCAdaptor1Ds::sample_mcmc_candidate(), mappel::MCMCAdaptor1Dc-:sample_mcmc_candidate(), and mappel::MCMCAdaptor1D::set_background_mcmc_sampling().

8.18.5.13 double mappel::MCMCAdaptor1D::eta_l = 0 [protected], [inherited]

The standard deviation for the normally distributed perturbation to theta_I in the random walk MCMC sampling

Definition at line 31 of file MCMCAdaptor1D.h.

Referenced by mappel::MCMCAdaptor1D::get_stats(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCMCAdaptor1D::operator=(), mappel::MCMCAdaptor2D::sample_mcmc_candidate(), mappel::MCMCAdaptor1Ds::sample_mcmc_candidate(), mappel::MCMCAdaptor1Dc::sample_mcmc_candidate(), mappel::MCMCAdaptor1Dc::sample_mcmc_candidate(), and mappel::MCMCAdaptor1Dc::set_intensity_mcmc_sampling().

8.18.5.14 double mappel::MCMCAdaptor1D::eta_x = 0 [protected], [inherited]

The standard deviation for the normally distributed perturbation to theta x in the random walk MCMC sampling

Definition at line 30 of file MCMCAdaptor1D.h.

Referenced by mappel::MCMCAdaptor1D::get_stats(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCCAdaptor1D::perator=(), mappel::MCMCAdaptor1Ds::sample_mcmc_candidate(), mappel::MCMCAdaptor2D \leftarrow ::sample_mcmc_candidate(), mappel::MCMCAdaptor2Ds::sample_mcmc_candidate(), and mappel::MCMCAdaptor1 \leftarrow D::sample_mcmc_candidate().

8.18.5.15 const double mappel::MCMCAdaptorBase::global_default_mcmc_sigma_scale = 0.05 [static], [inherited]

Definition at line 16 of file MCMCAdaptorBase.h.

Referenced by mappel::MCMCAdaptor1Ds::MCMCAdaptor1Ds(), mappel::MCMCAdaptor2D::MCMCAdaptor2D(), and mappel::MCMCAdaptor2Ds::MCMCAdaptor2Ds().

8.18.5.16 const double mappel::MCMCAdaptorBase::global_max_mcmc_sigma_scale = 0.5 [static], [inherited]

Definition at line 17 of file MCMCAdaptorBase.h.

 $Referenced\ by\ mappel::MCMCAdaptorBase::MCMCAdaptorBase(),\ and\ mappel::MCMCAdaptorBase::set_mcmc_{\hookleftarrow}\ sigma_scale().$

```
8.18.5.17 const double mappel::PointEmitterModel::global_max_psf_sigma = 1E2 [static], [inherited]
```

Global maxmimum for any psf_sigma. Sizes above this value are invalid, and nowhere near useful for practical point emitter localization

Definition at line 54 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::check_psf_sigma().

```
8.18.5.18 const ImageFormat1DBase::ImageCoordT ImageFormat1DBase::global_max_size = 512 [static], [inherited]
```

Maximum size along any dimension of the image. This is insanely big to catch obvious errors

Definition at line 40 of file ImageFormat1DBase.h.

Referenced by mappel::ImageFormat1DBase::check_size().

```
8.18.5.19 const double mappel::PointEmitterModel::global_min_psf_sigma = 1E-1 [static], [inherited]
```

Global minimum for any psf_sigma. Sizes below this value are invalid, and nowhere near useful for practical point emitter localization

Definition at line 53 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::check_psf_sigma().

```
8.18.5.20 const ImageFormat1DBase::ImageCoordT ImageFormat1DBase::global_min_size = 3 [static], [inherited]
```

Minimum size along any dimension of the image.

Definition at line 39 of file ImageFormat1DBase.h.

Referenced by mappel::ImageFormat1DBase::check_size().

```
8.18.5.21 ParamT mappel::PointEmitterModel::lbound [protected], [inherited]
```

Definition at line 148 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel \leftarrow ::PointEmitterModel::get_lbound(), mappel::PointEmitterModel::get_stats(), mappel::Gauss1DsModel::initial_theta \leftarrow _estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::PointEmitterModel::pointEmitterModel::reflected_theta(), mappel::PointEmitterModel \leftarrow ::set_bounds(), mappel::PointEmitterModel::set_lbound(), mappel::PointEmitterModel::set_prior(), mappel::PointEmitterModel::pointEmitterModel::set_prior(), mappel::PointEmitterModel::pointEmitterModel::set_prior(), mappel::PointEmitterModel::pointEmitterModel::pointEmitterModel::set_prior(), mappel::PointEmitterModel::pointEmitte

```
8.18.5.22 const std::string mappel::Gauss2DsxyMAP::name [static]
```

Definition at line 30 of file Gauss2DsxyMAP.h.

8.18.5.23 const ImageFormat1DBase::ImageCoordT ImageFormat1DBase::num_dim = 1 [static], [inherited]

Number of image dimensions.

Definition at line 38 of file ImageFormat1DBase.h.

Referenced by mappel::ImageFormat1DBase::get_stats().

8.18.5.24 IdxT mappel::PointEmitterModel::num_hyperparams [protected],[inherited]

Definition at line 147 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::get_num_hyperparams(), mappel::PointEmitterModel::get_stats(), mappel::PointEmitterModel::operator=(), and mappel::PointEmitterModel::set_prior().

8.18.5.25 IdxT mappel::PointEmitterModel::num_params [protected], [inherited]

Definition at line 146 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel ::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::get_num_params(), mappel::PointEmitter
Model::get_stats(), mappel::Gauss1DModel::initial_theta_estimate(), mappel::Gauss2DModel::initial_theta_estimate(), mappel::PointEmitterModel::make_param(), mappel::PointEmitterModel::make_param(), mappel::PointEmitterModel::make_param_mat_stack(), mappel::PointEmitterModel::make_param_stack(), mappel::PointEmitterModel::pointEmit

8.18.5.26 IdxT mappel::MCMCAdaptorBase::num_phases [protected],[inherited]

The number of different sampling phases for candidate selection MCMC. Each phase changes a different subset of variables.

Definition at line 29 of file MCMCAdaptorBase.h.

Referenced by mappel::MCMCAdaptorBase::get_mcmc_num_phases(), mappel::MCMCAdaptorBase::get_stats(), mappel::MCMCAdaptor1Ds::sample_mcmc_candidate(), mappel::MCMCAdaptor2Ds::sample_mcmc_candidate(), mappel::MCMCAdaptor1D::sample_mcmc_candidate(), and mappel::MCMCAdaptorBase::set_mcmc_num_phases().

8.18.5.27 CompositeDist mappel::PointEmitterModel::prior [protected], [inherited]

Definition at line 145 of file PointEmitterModel.h.

Referenced by mappel::Gauss2DModel::debug_internal_sum_model_y(), mappel::Gauss2DsModel::debug_internal \
_sum_model_y(), mappel::Gauss2DModel::Gauss2DModel(), mappel::Gauss2DsModel::Gauss2DsModel(), mappel \
::PointEmitterModel::get_hyperparam_index(), mappel::PointEmitterModel::get_hyperparam_names(), mappel::PointEmitterModel::get_hyperparam_names(), mappel::PointEmitterModel::get_param_names(), mappel::PointEmitterModel::get_param_names(), mappel::PointEmitterModel::get_param_names(), mappel::PointEmitterModel::get_param_names(), mappel::PointEmitterModel::pointEmitterModel::has_\(\cdot \) hyperparam(), mappel::PointEmitterModel::pointEmitterModel::pointEmitterModel::pointEmitterModel(), mappel::PointEmitterModel::set_bounds(), mappel::PointEmitterModel::set_hyperparam_names(), mappel::PointEmitterModel::set_hyperparam \(\cdot \) value(), mappel::PointEmitterModel::set_hyperparam(), mappel::PointEmitterModel::set_lyperparam(), mappel::PointEmitte

8.18.5.28 const StringVecT mappel::Gauss1DModel::prior_types [static], [inherited]

Initial value:

```
= { "Beta", "Normal" }
```

Definition at line 52 of file Gauss1DModel.h.

Referenced by mappel::Gauss1DModel::operator=().

```
8.18.5.29 double mappel::Gauss1DModel::psf_sigma [protected], [inherited]
```

Standard deviation of the fixed-sigma 1D Gaussian PSF in pixels

Definition at line 90 of file Gauss1DModel.h.

Referenced by mappel::Gauss1DModel::Stencil::compute_derivatives(), mappel::Gauss1DModel::get_psf_sigma(), mappel::Gauss1DModel::pixel_grad2(), mappel::Gauss1DModel::pixel_hess(), mappel::Gauss1DModel::pixel_hess_update(), mappel::Gauss1DModel::set_psf_sigma(), and mappel::Gauss1D Model::Stencil::Stencil().

```
8.18.5.30 double mappel::MCMCAdaptorBase::sigma_scale [protected], [inherited]
```

A scaling factor for step sizes as a fraction of the size of the domain dimension we are walking in. (0.05 default)

Definition at line 30 of file MCMCAdaptorBase.h.

Referenced by mappel::MCMCAdaptorBase::get_mcmc_sigma_scale(), mappel::MCMCAdaptorBase::get_stats(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCMCAdaptor1Ds::MCMCAdaptor1Ds(), mappel::MCMCAdaptor2D::MCMCAdaptor2Ds::MCMCAdaptor2Ds::MCMCAdaptor2Ds::MCMCAdaptor2Ds::MCMCAdaptor1D::set background_mcmc_sampling(), mappel::MCMCAdaptor1D::set_intensity_mcmc_sampling(), and mappel::MCMCAdaptorBase::set_mcmc_sigma_scale().

```
8.18.5.31 ImageSizeT mappel::ImageFormat1DBase::size [protected], [inherited]
```

Number of pixels in X dimension for 1D image

Definition at line 65 of file ImageFormat1DBase.h.

8.18.5.32 ParamT mappel::PointEmitterModel::ubound [protected], [inherited]

Definition at line 148 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel ::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::get_ubound(), mappel::Gauss1DsModel::initial_theta = estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::PointEmitterModel::pointEmitterModel::reflected_theta(), mappel::PointEmitterModel = ::set_bounds(), mappel::PointEmitterModel::set_lbound(), mappel::PointEmitterModel::set_prior(), mappel::PointEmitterModel::pointEmitterModel::set_prior(), mappel::PointEmitterModel::set_prior(), mappel::PointEmitterModel::set_

The documentation for this class was generated from the following file:

Gauss2DsxyMAP.h

8.19 mappel::Gauss2DsxyModel Class Reference

A base class for 2D Gaussian PSF with axis-aligned gaussian with free parameters for both sigma_x and sigma_\(\to \) y. Gaussian sigma parameters sigma_x and sigma_y are measured in units of pixels. The model has 6 parameters, [x,y,l,bg,sigma_x,sigma_y].

 $\verb|#include| </home/travis/build/markjolah/Mappel/include/Mappel/Gauss2DsxyModel. \leftarrow h>$

Inheritance diagram for mappel::Gauss2DsxyModel:

Classes

class Stencil

Stencil for 2D free-sigma (astigmatic) models.

Public Types

```
• using StencilVecT = std::vector< Stencil >
```

- using ParamT = arma::vec
- using ParamVecT = arma::mat
- using ImageCoordT = uint32_t
- using ImagePixeIT = double
- template<class CoordT >

```
using ImageSizeShapeT = arma::Col < CoordT >
```

- $\bullet \ \ \text{template}{<} \text{class CoordT} >$
 - using ImageSizeVecShapeT = arma::Mat< CoordT >
- using ImageSizeT = ImageSizeShapeT < ImageCoordT >
- using ImageSizeVecT = ImageSizeVecShapeT < ImageCoordT >
- template < class PixelT >
 - using ImageShapeT = arma::Mat< PixeIT >
- template<class PixelT >
 - using ImageStackShapeT = arma::Cube < PixelT >
- using ImageT = ImageShapeT < ImagePixelT >
- using ImageStackT = ImageStackShapeT < ImagePixeIT >

Public Member Functions

- Gauss2DsxyModel (const ImageSizeT &size, const VecT &min sigma, const VecT &max sigma)
- void set_hyperparams (const VecT &hyperparams)
- void set prior (CompositeDist &&prior)
- void set size (const ImageSizeT &size)
- · VecT get min sigma () const
- double get min sigma (ldxT dim) const
- VecT get max sigma () const
- double get_max_sigma (ldxT dim) const
- · double get max sigma ratio () const
- void set_min_sigma (const VecT &min_sigma)
- void set_max_sigma (const VecT &max_sigma)
- void set_max_sigma_ratio (double max_sigma_ratio)
- StatsT get stats () const
- Stencil make stencil (const ParamT &theta, bool compute derivatives=true) const

Make a new Model::Stencil object at theta.

- double pixel_model_value (int i, int j, const Stencil &s) const
- void pixel grad (int i, int j, const Stencil &s, ParamT &pgrad) const
- void pixel grad2 (int i, int j, const Stencil &s, ParamT &pgrad2) const
- void pixel_hess (int i, int j, const Stencil &s, MatT &hess) const
- void pixel_hess_update (int i, int j, const Stencil &s, double dm_ratio_m1, double dmm_ratio, ParamT &grad, MatT &hess) const
- Stencil initial theta estimate (const ImageT &im)

Fast, heuristic estimate of initial theta.

- Stencil initial_theta_estimate (const ImageT &im, const ParamT &theta_init)
- Stencil initial_theta_estimate (const ImageT &im, const ParamT &theta_init, const std::string &estimator)
- void sample_mcmc_candidate (int sample_index, ParamT &canidate_theta, double scale=1.0)
- IdxT get_num_params () const
- void check param shape (const ParamT &theta) const
- void check param shape (const ParamVecT &theta) const
- · void check psf sigma (double psf sigma) const
- void check_psf_sigma (const VecT &psf_sigma) const
- ParamT make_param () const
- template<class FillT >

ParamT make_param (FillT fill) const

- ParamVecT make_param_stack (ldxT n) const
- template < class FillT >

ParamVecT make_param_stack (ldxT n, FillT fill) const

- MatT make param mat () const
- template < class FillT >

MatT make param mat (FillT fill) const

- CubeT make_param_mat_stack (ldxT n) const
- template<class FillT >

CubeT make param mat stack (ldxT n, FillT fill) const

- CompositeDist & get_prior ()
- const CompositeDist & get_prior () const
- void set_prior (const CompositeDist &prior_)
- IdxT get_num_hyperparams () const
- VecT get hyperparams () const
- bool has hyperparam (const std::string &name) const

- double get_hyperparam_value (const std::string &name) const
- int get_hyperparam_index (const std::string &name) const
- void set_hyperparam_value (const std::string &name, double value)
- void rename hyperparam (const std::string &old name, const std::string &new name)
- StringVecT get_param_names () const
- void set param names (const StringVecT &desc)
- StringVecT get hyperparam names () const
- void set_hyperparam_names (const StringVecT &desc)
- template<class RngT >
 - ParamT sample_prior (RngT &rng)
- ParamT sample prior ()
- void set bounds (const ParamT & lbound, const ParamT & ubound)
- void set_lbound (const ParamT &lbound)
- void set ubound (const ParamT &ubound)
- · const ParamT & get_lbound () const
- · const ParamT & get ubound () const
- bool theta in bounds (const ParamT &theta) const
- · void bound theta (ParamT &theta, double epsilon=bounds epsilon) const
- ParamT bounded_theta (const ParamT &theta, double epsilon=bounds_epsilon) const
- ParamT reflected theta (const ParamT &theta) const
- BoolVecT theta_stack_in_bounds (const ParamVecT &theta) const
- ParamVecT bounded_theta_stack (const ParamVecT &theta, double epsilon=bounds_epsilon) const
- ParamVecT reflected_theta_stack (const ParamVecT &theta) const
- ImageT make_image () const
- ImageStackT make_image_stack (ImageCoordT n) const
- ImageCoordT get size image stack (const ImageStackT &stack) const
- ImageT get image from stack (const ImageStackT &stack, ImageCoordT n) const
- template<class ImT >
 - void set_image_in_stack (ImageStackT &stack, ImageCoordT n, const ImT &im) const
- const ImageSizeT & get size () const
- ImageCoordT get_size (IdxT idx) const
- ImageCoordT get_num_pixels () const
- void check_image_shape (const ImageT &im) const

Check the shape of a single images is correct for model size.

void check_image_shape (const ImageStackT &ims) const

Check the shape of a stack of images is correct for model size.

Static Public Member Functions

- static CompositeDist make_default_prior (const ImageSizeT &size, double max_sigma_ratio)
- static CompositeDist make_prior_beta_position (const ImageSizeT &size, double beta_xpos, double beta_ypos, double mean_I, double kappa_I, double mean_bg, double kappa_bg, double max_sigma_ratio, double alpha_
 sigma)
- static CompositeDist make_prior_normal_position (const ImageSizeT &size, double sigma_xpos, double sigma_ypos, double mean_l, double kappa_l, double mean_bg, double kappa_bg, double max_sigma_ratio, double alpha sigma)
- static prior_hessian::ScaledSymmetricBetaDist make_prior_component_position_beta (IdxT size, double pos_
 beta=default_beta_pos)

- static prior_hessian::TruncatedGammaDist make_prior_component_intensity (double mean=default_mean_ U, double kappa=default_intensity kappa)
- static prior_hessian::TruncatedParetoDist make_prior_component_sigma (double min_sigma, double max_
 sigma, double alpha=default_alpha_sigma)
- static void set rng seed (RngSeedT seed)
- static ParallelRngManagerT & get rng manager ()
- static ParallelRngGeneratorT & get rng generator ()
- static void check_size (const ImageSizeT &size_)

Check the size argument for the model.

Static Public Attributes

- static const std::string DefaultSeperableInitEstimator = "TrustRegion"
- static const double bounds epsilon = 1.0E-6
- static const double global_min_psf_sigma = 1E-1
- static const double global max psf sigma = 1E2
- static const double default_beta_pos = 3
- static const double default_sigma_pos = 1
- static const double default_mean_I = 300
- static const double default_max_I = INFINITY
- static const double default intensity kappa = 2
- static const double default pixel mean bg = 4
- static const double default_alpha_sigma = 2
- static const ImageCoordT num_dim =2
- static const ImageCoordT global_min_size =3
- static const ImageCoordT global_max_size =512

Protected Member Functions

· void update internal 1D estimators ()

Static Protected Member Functions

static double compute_max_sigma_ratio (const VecT &min_sigma, const VecT &max_sigma)

Protected Attributes

- double mcmc_candidate_eta_y
- double mcmc_candidate_eta_sigma
- VecT min_sigma
- Gauss1DsMAP x model
- · Gauss1DsMAP y model
- · CompositeDist prior
- IdxT num_params
- IdxT num_hyperparams
- ParamT Ibound
- ParamT ubound
- ImageSizeT size

8.19.1 Detailed Description

A base class for 2D Gaussian PSF with axis-aligned gaussian with free parameters for both sigma_x and sigma_ y. Gaussian sigma parameters sigma_x and sigma_y are measured in units of pixels. The model has 6 parameters, [x,y,l,bg,sigma_x,sigma_y].

Importantly sigma_x and sigma_y must be in the range given by parameters min_sigma, max_sigma. Each is a 2-element vector, giving the minimum and maximum acceptable values for the gaussian sigma. It is important that min—sigma is at least 0.5 pixel, estimating gaussian centers when any component of the sigma is significantly smaller than a pixel will lead to poor results anyways.

Definition at line 27 of file Gauss2DsxyModel.h.

8.19.2 Member Typedef Documentation

8.19.2.1 using mappel::ImageFormat2DBase::ImageCoordT = uint32_t [inherited]

Image size coordinate storage type

Definition at line 24 of file ImageFormat2DBase.h.

8.19.2.2 using mappel::ImageFormat2DBase::ImagePixelT = double [inherited]

Image pixel storage type

Definition at line 25 of file ImageFormat2DBase.h.

8.19.2.3 template < class PixelT > using mappel::ImageFormat2DBase::ImageShapeT = arma::Mat < PixelT > [inherited]

Shape of the data type for a single image

Definition at line 32 of file ImageFormat2DBase.h.

8.19.2.4 template < class CoordT > using mappel::ImageFormat2DBase::ImageSizeShapeT = arma::Col < CoordT > [inherited]

Shape of the data type to store a single image's coordinates

Definition at line 27 of file ImageFormat2DBase.h.

8.19.2.5 using mappel::ImageFormat2DBase::ImageSizeT = ImageSizeShapeT<ImageCoordT>
[inherited]

Data type for a single image size

Definition at line 29 of file ImageFormat2DBase.h.

8.19.2.6 template < class CoordT > using mappel::ImageFormat2DBase::ImageSizeVecShapeT = arma::Mat < CoordT > [inherited]

Shape of the data type to store a vector of image's coordinates

Definition at line 28 of file ImageFormat2DBase.h.

8.19.2.7 using mappel::ImageFormat2DBase::ImageSizeVecT = ImageSizeVecShapeT < ImageCoordT > [inherited]

Data type for a sequence of image sizes

Definition at line 30 of file ImageFormat2DBase.h.

8.19.2.8 template < class PixelT > using mappel::ImageFormat2DBase::ImageStackShapeT = arma::Cube < PixelT > [inherited]

Shape of the data type for a sequence of images

Definition at line 33 of file ImageFormat2DBase.h.

8.19.2.9 using mappel::ImageFormat2DBase::ImageStackT = ImageStackShapeT < ImagePixeIT > [inherited]

Data type to represent a sequence of images

Definition at line 35 of file ImageFormat2DBase.h.

8.19.2.10 using mappel::ImageFormat2DBase::ImageT = ImageShapeT < ImagePixeIT > [inherited]

Data type to represent single image

Definition at line 34 of file ImageFormat2DBase.h.

8.19.2.11 using mappel::PointEmitterModel::ParamT = arma::vec [inherited]

Parameter vector

Definition at line 47 of file PointEmitterModel.h.

8.19.2.12 using mappel::PointEmitterModel::ParamVecT = arma::mat [inherited]

Vector of parameter vectors

Definition at line 48 of file PointEmitterModel.h.

8.19.2.13 using mappel::Gauss2DsxyModel::StencilVecT = std::vector < Stencil>

Definition at line 59 of file Gauss2DsxyModel.h.

- 8.19.3 Constructor & Destructor Documentation
- 8.19.3.1 mappel::Gauss2DsxyModel::Gauss2DsxyModel (const ImageSizeT & size, const VecT & min_sigma, const VecT & max_sigma)
- 8.19.4 Member Function Documentation
- 8.19.4.1 void mappel::PointEmitterModel::bound_theta (ParamT & theta, double epsilon = bounds_epsilon) const [inherited]

Definition at line 248 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::ubound, mappel::PointEmitterModel::ubound.

8.19.4.2 PointEmitterModel::ParamT mappel::PointEmitterModel::bounded_theta (const ParamT & theta, double epsilon = bounds_epsilon) const [inherited]

Definition at line 265 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::ubound, mappel::PointEmitterModel::ubound.

Referenced by mappel::PointEmitterModel::bounded theta stack().

8.19.4.3 PointEmitterModel::ParamVecT mappel::PointEmitterModel::bounded_theta_stack (const ParamVecT & theta, double epsilon = bounds_epsilon) const [inherited]

Definition at line 307 of file PointEmitterModel.cpp.

 $References \quad mappel:: PointEmitterModel:: bounded_theta(), \quad mappel:: PointEmitterModel:: check_param_shape(), \quad and \\ mappel:: PointEmitterModel:: make_param_stack().$

8.19.4.4 void mappel::ImageFormat2DBase::check image shape (const ImageT & im) const [inherited]

Check the shape of a single images is correct for model size.

Definition at line 80 of file ImageFormat2DBase.cpp.

References mappel::ImageFormat2DBase::size.

8.19.4.5 void mappel::ImageFormat2DBase::check_image_shape (const ImageStackT & ims) const [inherited]

Check the shape of a stack of images is correct for model size.

Definition at line 93 of file ImageFormat2DBase.cpp.

References mappel::ImageFormat2DBase::size.

8.19.4.6 void mappel::PointEmitterModel::check_param_shape (const ParamT & theta) const [inherited]

Definition at line 167 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::num params.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::reflected_theta(), mappel::PointEmitterModel::reflected_theta(), mappel::PointEmitterModel::theta_in_bounds(), and mappel::PointEmitterModel \leftarrow ::theta stack in bounds().

8.19.4.7 void mappel::PointEmitterModel::check_param_shape(const ParamVecT & theta) const [inherited]

Definition at line 176 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::num_params.

8.19.4.8 void mappel::PointEmitterModel::check_psf_sigma (double psf_sigma) const [inherited]

Definition at line 185 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::global_max_psf_sigma, and mappel::PointEmitterModel::global_min_psf_⇔ sigma.

Referenced by mappel::Gauss1DModel(), mappel::Gauss2DModel::Gauss2DModel(), mappel:: \leftarrow Gauss2DsModel::Gauss2DsModel(), mappel::Gauss1DsModel::set_max_sigma(), mappel::Gauss2DsModel::set_ \leftarrow max_sigma(), mappel::Gauss1DsModel::set_min_sigma(), mappel:: \leftarrow Gauss1DModel::set_psf sigma(), and mappel::Gauss2DModel::set_psf sigma().

8.19.4.9 void mappel::PointEmitterModel::check_psf_sigma (const VecT & psf_sigma) const [inherited]

Definition at line 197 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::global_max_psf_sigma, and mappel::PointEmitterModel::global_min_psf_ sigma.

8.19.4.10 void mappel::ImageFormat2DBase::check size (const ImageSizeT & size) [static], [inherited]

Check the size argument for the model.

Definition at line 60 of file ImageFormat2DBase.cpp.

References mappel::ImageFormat2DBase::global max size, and mappel::ImageFormat2DBase::global min size.

Referenced by mappel::ImageFormat2DBase::ImageFormat2DBase(), and mappel::ImageFormat2DBase::set size().

8.19.4.11 static double mappel::Gauss2DsxyModel::compute_max_sigma_ratio (const VecT & min_sigma, const VecT & max sigma) [static].[protected]

8.19.4.12 int mappel::PointEmitterModel::get_hyperparam_index (const std::string & name) const [inline], [inherited]

Definition at line 236 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.19.4.13 StringVecT mappel::PointEmitterModel::get_hyperparam_names()const [inline], [inherited]

Definition at line 256 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.19.4.14 double mappel::PointEmitterModel::get_hyperparam_value (const std::string & name) const [inline], [inherited]

Definition at line 232 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

Referenced by mappel::MCMCAdaptor1D::set_background_mcmc_sampling(), and mappel::MCMCAdaptor1D::set_circle intensity_mcmc_sampling().

8.19.4.15 PointEmitterModel::ParamT mappel::PointEmitterModel::get_hyperparams () const [inline], [inherited]

Definition at line 224 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.19.4.16 ImageFormat2DBase::ImageT mappel::ImageFormat2DBase::get_image_from_stack (const ImageStackT & stack, ImageCoordT n) const [inline],[inherited]

Definition at line 106 of file ImageFormat2DBase.h.

8.19.4.17 const PointEmitterModel::ParamT & mappel::PointEmitterModel::get_lbound() const [inline], [inherited]

Definition at line 212 of file PointEmitterModel.h.

References mappel::PointEmitterModel::lbound.

Referenced by mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCMCAdaptor2D::MCMCAdaptor2D(), and mappel::MCMCAdaptor1D::set background mcmc sampling().

```
8.19.4.18 VecT mappel::Gauss2DsxyModel::get_max_sigma() const [inline]
Definition at line 127 of file Gauss2DsxyModel.h.
References get max sigma ratio(), and get min sigma().
8.19.4.19 double mappel::Gauss2DsxyModel::get_max_sigma ( ldxT dim ) const [inline]
Definition at line 131 of file Gauss2DsxyModel.h.
References get_max_sigma_ratio(), and get_min_sigma().
8.19.4.20 double mappel::Gauss2DsxyModel::get_max_sigma_ratio( ) const [inline]
Definition at line 135 of file Gauss2DsxyModel.h.
References mappel::PointEmitterModel::get_ubound().
Referenced by get_max_sigma().
8.19.4.21 VecT mappel::Gauss2DsxyModel::get_min_sigma() const [inline]
Definition at line 122 of file Gauss2DsxyModel.h.
References min sigma.
Referenced by get_max_sigma().
8.19.4.22 double mappel::Gauss2DsxyModel::get_min_sigma ( IdxT dim ) const
8.19.4.23 | IdxT mappel::PointEmitterModel::get_num_hyperparams( ) const [inline], [inherited]
Definition at line 208 of file PointEmitterModel.h.
References mappel::PointEmitterModel::num_hyperparams.
8.19.4.24 | IdxT mappel::PointEmitterModel::get_num_params() const [inline],[inherited]
Definition at line 160 of file PointEmitterModel.h.
References mappel::PointEmitterModel::num_params.
8.19.4.25 ImageFormat2DBase::ImageCoordT mappel::ImageFormat2DBase::get_num_pixels( ) const [inline],
         [inherited]
Definition at line 79 of file ImageFormat2DBase.h.
References mappel::ImageFormat2DBase::size.
Referenced by mappel::ImageFormat2DBase::get stats().
```

```
8.19.4.26 StringVecT mappel::PointEmitterModel::get_param_names( )const [inline], [inherited]
Definition at line 248 of file PointEmitterModel.h.
References mappel::PointEmitterModel::prior.
8.19.4.27 CompositeDist & mappel::PointEmitterModel::get_prior() [inline], [inherited]
Definition at line 200 of file PointEmitterModel.h.
References mappel::PointEmitterModel::prior.
Referenced by mappel::Gauss2DModel::update_internal_1Dsum_estimators(), and mappel::Gauss2DsModel ←
::update_internal_1Dsum_estimators().
8.19.4.28 const CompositeDist & mappel::PointEmitterModel::get_prior() const [inline], [inherited]
Definition at line 204 of file PointEmitterModel.h.
References mappel::PointEmitterModel::prior.
8.19.4.29 ParallelRngGeneratorT & mappel::PointEmitterModel::get_rng_generator() [static], [inherited]
Definition at line 120 of file PointEmitterModel.cpp.
References mappel::rng manager.
8.19.4.30 ParallelRngManagerT & mappel::PointEmitterModel::get_rng_manager( ) [static], [inherited]
Definition at line 115 of file PointEmitterModel.cpp.
References mappel::rng manager.
8.19.4.31 const ImageFormat2DBase::ImageSizeT & mappel::ImageFormat2DBase::get_size( ) const [inline],
         [inherited]
Definition at line 74 of file ImageFormat2DBase.h.
References mappel::ImageFormat2DBase::size.
8.19.4.32 ImageFormat2DBase::ImageCoordT mappel::ImageFormat2DBase::get_size ( IdxT idx ) const
         [inherited]
Definition at line 41 of file ImageFormat2DBase.cpp.
```

References mappel::ImageFormat2DBase::size.

8.19.4.33 ImageFormat2DBase::ImageCoordT mappel::ImageFormat2DBase::get_size_image_stack(const ImageStackT & stack) const [inline],[inherited]

Definition at line 99 of file ImageFormat2DBase.h.

8.19.4.34 StatsT mappel::Gauss2DsxyModel::get_stats () const

8.19.4.35 const PointEmitterModel::ParamT & mappel::PointEmitterModel::get_ubound() const [inline], [inherited]

Definition at line 216 of file PointEmitterModel.h.

References mappel::PointEmitterModel::ubound.

Referenced by get_max_sigma_ratio(), mappel::Gauss2DsModel::get_max_sigma_ratio(), mappel::MCMCAdaptor1 \leftarrow D::MCMCAdaptor1D(), mappel::MCMCAdaptor2D::MCMCAdaptor2D(), mappel::MCMCAdaptor1D::set_background \leftarrow _mcmc_sampling(), and mappel::Gauss2DsModel::set_max_sigma_ratio().

8.19.4.36 bool mappel::PointEmitterModel::has_hyperparam (const std::string & name) const [inline], [inherited]

Definition at line 228 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.19.4.37 Gauss2DsxyModel::Stencil mappel::Gauss2DsxyModel::initial_theta_estimate (const ImageT & im) [inline]

Fast, heuristic estimate of initial theta.

Definition at line 222 of file Gauss2DsxyModel.h.

References mappel::PointEmitterModel::DefaultSeperableInitEstimator, and mappel::PointEmitterModel::make $_\leftarrow$ param().

Referenced by initial theta estimate().

8.19.4.38 Gauss2DsxyModel::Stencil mappel::Gauss2DsxyModel::initial_theta_estimate (const ImageT & im, const ParamT & theta_init) [inline]

Definition at line 229 of file Gauss2DsxyModel.h.

References mappel::PointEmitterModel::DefaultSeperableInitEstimator, and initial_theta_estimate().

- 8.19.4.39 Stencil mappel::Gauss2DsxyModel::initial_theta_estimate (const ImageT & im, const ParamT & theta_init, const std::string & estimator)
- 8.19.4.40 static CompositeDist mappel::Gauss2DsxyModel::make_default_prior (const ImageSizeT & size, double max_sigma_ratio) [static]
- **8.19.4.41 ImageFormat2DBase::ImageT mappel::ImageFormat2DBase::make_image() const** [inline], [inherited]

Definition at line 85 of file ImageFormat2DBase.h.

References mappel::ImageFormat2DBase::size.

8.19.4.42 ImageFormat2DBase::ImageStackT mappel::ImageFormat2DBase::make_image_stack(ImageCoordT n) const [inline], [inherited]

Definition at line 92 of file ImageFormat2DBase.h.

References mappel::ImageFormat2DBase::size.

8.19.4.43 PointEmitterModel::ParamT mappel::PointEmitterModel::make param() const [inline], [inherited]

Definition at line 164 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

Referenced by mappel::Gauss1DModel::initial_theta_estimate(), mappel::Gauss1DsModel::initial_theta_estimate(), mappel::Gauss2DModel::initial_theta_estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::Gauss2DsModel::pixel_hess_update(), mappel::Gauss1DsModel::pixel_hess_update(), mappel::Gauss2DModel::pixel_hess_update(), mappel::Gauss2DsModel::pixel_hess_update().

8.19.4.44 template < class FillT > PointEmitterModel::ParamT mappel::PointEmitterModel::make_param (FillT fill) const [inherited]

Definition at line 181 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

8.19.4.45 MatT mappel::PointEmitterModel::make_param_mat()const [inline], [inherited]

Definition at line 172 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

8.19.4.46 template < class FillT > MatT mappel::PointEmitterModel::make_param_mat(FillT fill) const [inherited]

Definition at line 191 of file PointEmitterModel.h.

 $References\ mappel:: Point Emitter Model:: num_params.$

8.19.4.47 CubeT mappel::PointEmitterModel::make_param_mat_stack(ldxT n) const [inline], [inherited]

Definition at line 176 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

8.19.4.48 template < class FillT > CubeT mappel::PointEmitterModel::make_param_mat_stack (ldxT n, FillT fill) const [inherited]

Definition at line 196 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

8.19.4.49 PointEmitterModel::ParamVecT mappel::PointEmitterModel::make_param_stack(ldxT n) const [inline], [inherited]

Definition at line 168 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

Referenced by mappel::PointEmitterModel::bounded_theta_stack(), and mappel::PointEmitterModel::reflected_theta __stack().

8.19.4.50 template < class FillT > PointEmitterModel::ParamVecT mappel::PointEmitterModel::make_param_stack (ldxT n, FillT fill) const [inherited]

Definition at line 186 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

- 8.19.4.51 static CompositeDist mappel::Gauss2DsxyModel::make_prior_beta_position (const ImageSizeT & size, double beta_xpos, double beta_ypos, double mean_l, double kappa_l, double mean_bg, double kappa_bg, double max sigma ratio, double alpha sigma) [static]
- 8.19.4.52 prior_hessian::TruncatedGammaDist mappel::PointEmitterModel::make_prior_component_intensity (double mean = default mean I, double kappa = default intensity kappa) [static],[inherited]

Definition at line 98 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::default max I.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_beta_position(), mappel::Gauss2Ds default_prior_beta_position(), mappel::Gauss2Ds default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss1DsModel::make_default_prior_normal_position(), mappel::Gauss1DsModel::make_default_prior_normal_default_prior_normal_position(), mappel::Gauss2DModel::make_prior_default_prior_normal_position(), mappel::Gauss2DModel::make_prior_beta_position(), mappel::Gauss1DsModel::make_prior_beta_position(), mappel::Gauss2DsModel::make_prior_beta_position(), mappel::Gauss2DModel::make_prior_normal_default_prior_normal_position(), mappel::Gauss1DsModel::make_prior_normal_default_prior_normal_def

8.19.4.53 prior_hessian::ScaledSymmetricBetaDist mappel::PointEmitterModel::make_prior_component_position_beta (ldxT size, double pos_beta = default_beta_pos_) [static],[inherited]

Definition at line 92 of file PointEmitterModel.cpp.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_beta_position(), mappel::Gauss1DModel::make_default_prior_beta_position(), mappel::Gauss2Ds \leftarrow Model::make_default_prior_beta_position(), mappel::Gauss1DsModel::make_prior_beta_position(), mappel::Gauss2Ds \leftarrow DModel::make_prior_beta_position(), mappel::Gauss1DModel::make_prior_beta_position(), and mappel::Gauss2Ds \leftarrow Model::make_prior_beta_position().

8.19.4.54 prior_hessian::TruncatedNormalDist mappel::PointEmitterModel::make_prior_component_position_normal(ldxT size, double pos sigma = default sigma pos) [static].[inherited]

Definition at line 85 of file PointEmitterModel.cpp.

Referenced by mappel::Gauss1DsModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_ \leftarrow default_prior_normal_position(), mappel::Gauss1DModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_prior_normal_position(), mappel::Gauss2DModel::make_prior_normal_position(), mappel::Gauss1DsModel::make_prior_normal_position(), and mappel::Gauss2DsModel::make_prior_normal_position().

8.19.4.55 prior_hessian::TruncatedParetoDist mappel::PointEmitterModel::make_prior_component_sigma (double min_sigma, double max_sigma, double alpha = default_alpha_sigma) [static], [inherited]

Definition at line 104 of file PointEmitterModel.cpp.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DsModel::make_ \leftarrow default_prior_beta_position(), mappel::Gauss1DsModel::make_default_prior_normal_position(), mappel::Gauss2 \leftarrow DsModel::make_default_prior_normal_position(), mappel::Gauss1DsModel::make_prior_beta_position(), mappel::Gauss1DsModel::make_prior_normal_position(), and mappel \leftarrow ::Gauss2DsModel::make_prior_normal_position().

- 8.19.4.56 static CompositeDist mappel::Gauss2DsxyModel::make_prior_normal_position (const ImageSizeT & size, double sigma_xpos, double sigma_ypos, double mean_l, double kappa_l, double mean_bg, double kappa_bg, double max_sigma_ratio, double alpha_sigma) [static]
- 8.19.4.57 Gauss2DsxyModel::Stencil mappel::Gauss2DsxyModel::make_stencil (const ParamT & theta, bool compute_derivatives = true) const [inline]

Make a new Model::Stencil object at theta.

Stencils store all of the important calculations necessary for evaluating the log-likelihood and its derivatives at a particular theta (parameter) value.

This allows re-use of the most expensive computations. Stencils can be easily passed around by reference, and most functions in the mappel::methods namespace accept a const Stencil reference in place of the model parameter.

Throws mappel::ModelBoundsError if not model.theta in bounds(theta).

If derivatives will not be computed with this stencil set compute derivatives=false

Parameters

theta	Prameter to evaluate at
compute_derivatives	True to also prepare for derivative computations

Returns

A new Stencil object ready to compute with

Definition at line 157 of file Gauss2DsxyModel.h.

References mappel::Gauss2DsxyModel::Stencil::Stencil(), and mappel::PointEmitterModel::theta in bounds().

8.19.4.58 void mappel::Gauss2DsxyModel::pixel_grad (int i, int j, const Stencil & s, ParamT & pgrad) const [inline]

Definition at line 178 of file Gauss2DsxyModel.h.

References mappel::Gauss2DsxyModel::Stencil::DX, mappel::Gauss2DsxyModel::Stencil::DXS, mappel::Gauss2DsxyModel::Stencil::DXS, mappel::Gauss2DsxyModel::Stencil::I(), mappel::Gauss2DsxyModel::Stencil::I(), mappel::Gauss2DsxyModel::Stencil::Y.

8.19.4.59 void mappel::Gauss2DsxyModel::pixel_grad2 (int i, int j, const Stencil & s, ParamT & pgrad2) const [inline]

Definition at line 190 of file Gauss2DsxyModel.h.

References mappel::Gauss2DsxyModel::Stencil::DXS, mappel::Gauss2DsxyModel::Stencil::DXS2, mappel:: \leftarrow Gauss2DsxyModel::Stencil::DYS, mappel::Gauss2DsxyModel::Stencil::DYS2, mappel::Gauss2DsxyModel::Stencil::I(), mappel::Gauss2DsxyModel::Stencil::sigmaY(), mappel::Gauss2DsxyModel::Stencil::sigmaY(), mappel::Gauss2DsxyModel::Stencil::Y.

8.19.4.60 void mappel::Gauss2DsxyModel::pixel hess (int i, int j, const Stencil & s, MatT & hess) const [inline]

Definition at line 202 of file Gauss2DsxyModel.h.

References mappel::Gauss2DsxyModel::Stencil::DX, mappel::Gauss2DsxyModel::Stencil::DXS, mappel::Gauss2DsxyModel::Stencil::DXS, mappel::Gauss2DsxyModel::Stencil::DXSX, mappel::Gauss2DsxyModel::Stencil::DYS, mappel::Gauss2DsxyModel::Stencil::DYS2, mappel::Gauss2DsxyModel::Stencil::DYS2, mappel::Gauss2DsxyModel::Stencil::DYS2, mappel::Gauss2DsxyModel::Stencil::DYS2, mappel::Gauss2DsxyModel::Stencil

8.19.4.61 void mappel::Gauss2DsxyModel::pixel_hess_update (int i, int j, const Stencil & s, double dm_ratio_m1, double dmm_ratio, ParamT & grad, MatT & hess) const

8.19.4.62 double mappel::Gauss2DsxyModel::pixel_model_value (int i, int j, const Stencil & s) const [inline]

Definition at line 171 of file Gauss2DsxyModel.h.

References mappel::Gauss2DsxyModel::Stencil::bg(), mappel::Gauss2DsxyModel::Stencil::l(), mappel::Gauss2DsxyModel::Stencil::l(), mappel::Gauss2DsxyModel::Stencil::Y.

8.19.4.63 PointEmitterModel::ParamT mappel::PointEmitterModel::reflected_theta (const ParamT & theta) const [inherited]

Definition at line 276 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::Point← EmitterModel::num params, and mappel::PointEmitterModel::ubound.

Referenced by mappel::PointEmitterModel::reflected theta stack().

8.19.4.64 PointEmitterModel::ParamVecT mappel::PointEmitterModel::reflected_theta_stack(const ParamVecT & theta) const [inherited]

Definition at line 317 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::make_param_stack(), and mappel::PointEmitterModel::reflected theta().

8.19.4.65 void mappel::PointEmitterModel::rename_hyperparam (const std::string & old_name, const std::string & new_name)
[inline], [inherited]

Definition at line 244 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.19.4.66 void mappel::Gauss2DsxyModel::sample_mcmc_candidate (int sample_index, ParamT & canidate_theta, double scale = 1 . 0)

8.19.4.67 template < class RngT > PointEmitterModel::ParamT mappel::PointEmitterModel::sample_prior(RngT & rng)
[inherited]

Definition at line 264 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.19.4.68 PointEmitterModel::ParamT mappel::PointEmitterModel::sample_prior() [inline],[inherited]

Definition at line 268 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior, and mappel::rng_manager.

8.19.4.69 void mappel::PointEmitterModel::set_bounds (const ParamT & *lbound_*, const ParamT & *ubound_*) [inherited]

Box-type parameter bounds

Modifies the prior bounds to prevent sampling outside the valid box-constraints.

Definition at line 213 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounds_epsilon, mappel::PointEmitterModel::lbound, mappel::PointEmitter Wodel::num params, mappel::PointEmitterModel::pointEmitterModel::ubound.

8.19.4.70 void mappel::PointEmitterModel::set_hyperparam_names (const StringVecT & *desc* **)** [inline], [inherited]

Definition at line 260 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.19.4.71 void mappel::PointEmitterModel::set_hyperparam_value (const std::string & name, double value) [inline], [inherited] Definition at line 240 of file PointEmitterModel.h. References mappel::PointEmitterModel::prior. 8.19.4.72 void mappel::Gauss2DsxyModel::set_hyperparams (const VecT & hyperparams) 8.19.4.73 template < class ImT > void mappel::ImageFormat2DBase::set_image_in_stack(_ImageStackT & stack, ImageCoordT n, const ImT & im) const [inherited] Definition at line 113 of file ImageFormat2DBase.h. 8.19.4.74 void mappel::PointEmitterModel::set_lbound (const ParamT & lbound) [inherited] Definition at line 226 of file PointEmitterModel.cpp. References mappel::PointEmitterModel::bounds_epsilon, mappel::PointEmitterModel::lbound, mappel::PointEmitter⊷ Model::num params, mappel::PointEmitterModel::prior, and mappel::PointEmitterModel::ubound. Referenced by mappel::Gauss1DsModel::set min sigma(). 8.19.4.75 void mappel::Gauss2DsxyModel::set max sigma (const VecT & max sigma) 8.19.4.76 void mappel::Gauss2DsxyModel::set_max_sigma_ratio (double max_sigma_ratio) 8.19.4.77 void mappel::Gauss2DsxyModel::set min sigma (const VecT & min sigma) 8.19.4.78 void mappel::PointEmitterModel::set_param_names (const StringVecT & desc) [inline], [inherited] Definition at line 252 of file PointEmitterModel.h. References mappel::PointEmitterModel::prior. 8.19.4.79 void mappel::Gauss2DsxyModel::set_prior (CompositeDist && prior_) 8.19.4.80 void mappel::PointEmitterModel::set_prior(const CompositeDist & prior) [inherited] Definition at line 149 of file PointEmitterModel.cpp. References mappel::PointEmitterModel::Ibound, mappel::PointEmitterModel::num_hyperparams, mappel::Point← EmitterModel::num_params, mappel::PointEmitterModel::prior, and mappel::PointEmitterModel::ubound. 8.19.4.81 void mappel::PointEmitterModel::set_rng_seed(RngSeedT seed) [static], [inherited]

References mappel::rng_manager.

Definition at line 110 of file PointEmitterModel.cpp.

```
8.19.4.82 void mappel::Gauss2DsxyModel::set_size ( const ImageSizeT & size_ )
```

8.19.4.83 void mappel::PointEmitterModel::set ubound (const ParamT & ubound) [inherited]

Definition at line 237 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounds_epsilon, mappel::PointEmitterModel::lbound, mappel::PointEmitter Model::num_params, mappel::PointEmitterModel::pointEmitterModel::ubound.

Referenced by mappel::Gauss1DsModel::set max sigma(), and mappel::Gauss2DsModel::set max sigma ratio().

8.19.4.84 bool mappel::PointEmitterModel::theta_in_bounds (const ParamT & theta) const [inherited]

Definition at line 257 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::ubound.

Referenced by mappel::Gauss2DModel::initial_theta_estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::Gauss1DModel::make_stencil(), mappel::Gauss2DModel::make_stencil(), mappel::Gauss2DModel::make_stencil(), mappel::Gauss2DsModel::make_stencil(), and mappel::PointEmitterModel::theta_stack_in_ bounds().

8.19.4.85 BoolVecT mappel::PointEmitterModel::theta_stack_in_bounds (const ParamVecT & theta) const [inherited]

Definition at line 297 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), and mappel::PointEmitterModel::theta_in_bounds().

8.19.4.86 void mappel::Gauss2DsxyModel::update_internal_1D_estimators() [protected]

8.19.5 Member Data Documentation

8.19.5.1 const double mappel::PointEmitterModel::bounds epsilon = 1.0E-6 [static], [inherited]

Distance from the boundary to constrain in bound_theta and bounded_theta methods

Definition at line 52 of file PointEmitterModel.h.

 $Referenced \ by \ mappel::PointEmitterModel::set_bounds(), \ mappel::PointEmitterModel::set_lbound(), \ mappel::PointEmitterModel::set_lbound(), \ mappel::PointEmitterModel::set_ubound().$

8.19.5.2 const double mappel::PointEmitterModel::default_alpha_sigma = 2 [static], [inherited]

Default per-pixel background gamma distribution shape

Definition at line 62 of file PointEmitterModel.h.

8.19.5.3 const double mappel::PointEmitterModel::default_beta_pos = 3 [static], [inherited]

Default position parameter in symmetric beta-distributions

Definition at line 56 of file PointEmitterModel.h.

8.19.5.4 const double mappel::PointEmitterModel::default_intensity_kappa = 2 [static], [inherited]

Default shape for intensity gamma distributions

Definition at line 60 of file PointEmitterModel.h.

8.19.5.5 const double mappel::PointEmitterModel::default_max_I = INFINITY [static], [inherited]

Default maximum emitter intensity

Definition at line 59 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::make_prior_component_intensity().

8.19.5.6 const double mappel::PointEmitterModel::default_mean_I = 300 [static], [inherited]

Default emitter intensity mean

Definition at line 58 of file PointEmitterModel.h.

Referenced by mappel::MCMCAdaptor1D::set_intensity_mcmc_sampling().

8.19.5.7 const double mappel::PointEmitterModel::default_pixel_mean_bg = 4 [static], [inherited]

Default per-pixel mean background counts

Definition at line 61 of file PointEmitterModel.h.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DModel::make default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_beta_position(), mappel::Gauss1DModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss2DsModel::make_default_prior_normal_position(), and mappel::MCMCAdaptor1D $\column{c}\column{$

8.19.5.8 const double mappel::PointEmitterModel::default_sigma_pos = 1 [static], [inherited]

Default position parameter in symmetric beta-distributions

Definition at line 57 of file PointEmitterModel.h.

```
8.19.5.9 const std::string mappel::PointEmitterModel::DefaultSeperableInitEstimator = "TrustRegion" [static], [inherited]
```

Estimator name to use in 1D separable initializations

Definition at line 49 of file PointEmitterModel.h.

Referenced by mappel::Gauss2DModel::initial_theta_estimate(), initial_theta_estimate(), and mappel::Gauss2Ds \leftarrow Model::initial_theta_estimate().

```
8.19.5.10 const double mappel::PointEmitterModel::global_max_psf_sigma = 1E2 [static], [inherited]
```

Global maxmimum for any psf_sigma. Sizes above this value are invalid, and nowhere near useful for practical point emitter localization

Definition at line 54 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::check_psf_sigma().

```
8.19.5.11 const ImageFormat2DBase::ImageCoordT mappel::ImageFormat2DBase::global_max_size =512 [static], [inherited]
```

Maximum size along any dimension of the image. This is insanely big to catch obvious errors

Definition at line 39 of file ImageFormat2DBase.h.

Referenced by mappel::ImageFormat2DBase::check_size().

```
8.19.5.12 const double mappel::PointEmitterModel::global_min_psf_sigma = 1E-1 [static], [inherited]
```

Global minimum for any psf_sigma. Sizes below this value are invalid, and nowhere near useful for practical point emitter localization

Definition at line 53 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::check_psf_sigma().

```
8.19.5.13 const ImageFormat2DBase::ImageCoordT mappel::ImageFormat2DBase::global_min_size =3 [static], [inherited]
```

Minimum size along any dimension of the image.

Definition at line 38 of file ImageFormat2DBase.h.

Referenced by mappel::ImageFormat2DBase::check_size().

8.19.5.14 ParamT mappel::PointEmitterModel::lbound [protected], [inherited]

Definition at line 148 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel ::PointEmitterModel::bounded_theta(), mappel ::PointEmitterModel::get_lbound(), mappel::PointEmitterModel::get_stats(), mappel::Gauss1DsModel::initial_theta = estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::PointEmitterModel::pointEmitterModel::reflected_theta(), mappel::PointEmitterModel ::set_bounds(), mappel::PointEmitterModel::set_bound(), mappel::PointEmitterModel::set_prior(), mappel::PointEmitterModel::set_bounds().

8.19.5.15 double mappel::Gauss2DsxyModel::mcmc_candidate_eta_sigma [protected]

The standard deviation for the normally distributed pertebation to theta_sigma in the random walk MCMC sampling

Definition at line 108 of file Gauss2DsxyModel.h.

8.19.5.16 double mappel::Gauss2DsxyModel::mcmc candidate eta_y [protected]

Std-dev for the normal perturbations to theta_y under MCMC sampling

Definition at line 107 of file Gauss2DsxyModel.h.

8.19.5.17 VecT mappel::Gauss2DsxyModel::min_sigma [protected]

Gaussian PSF in pixels

Definition at line 113 of file Gauss2DsxyModel.h.

Referenced by get_min_sigma().

8.19.5.18 const ImageFormat2DBase::ImageCoordT mappel::ImageFormat2DBase::num_dim =2 [static], [inherited]

Number of image dimensions.

Definition at line 37 of file ImageFormat2DBase.h.

Referenced by mappel::ImageFormat2DBase::get stats().

8.19.5.19 IdxT mappel::PointEmitterModel::num_hyperparams [protected], [inherited]

Definition at line 147 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::get_num_hyperparams(), mappel::PointEmitterModel::get_stats(), mappel::PointEmitterModel::operator=(), and mappel::PointEmitterModel::set_prior().

8.19.5.20 IdxT mappel::PointEmitterModel::num_params [protected], [inherited]

Definition at line 146 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel ::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::get_num_params(), mappel::PointEmitter
Model::get_stats(), mappel::Gauss1DModel::initial_theta_estimate(), mappel::Gauss2DModel::initial_theta_estimate(), mappel::PointEmitterModel::make_param(), mappel::PointEmitterModel::make_param(), mappel::PointEmitterModel::make_param_mat_stack(), mappel::PointEmitterModel::make_param_stack(), mappel::PointEmitterModel::pointEmit

8.19.5.21 CompositeDist mappel::PointEmitterModel::prior [protected], [inherited]

Definition at line 145 of file PointEmitterModel.h.

Referenced by mappel::Gauss2DModel::debug_internal_sum_model_y(), mappel::Gauss2DsModel::debug_internal \circ _sum_model_y(), mappel::Gauss2DModel::Gauss2DModel::Gauss2DModel(), mappel::PointEmitterModel::get_hyperparam_index(), mappel::PointEmitterModel::get_hyperparam_names(), mappel::PointEmitterModel::get_hyperparam_names(), mappel::PointEmitterModel::get_hyperparam(), mappel::PointEmitterModel::get_param_names(), mappel::PointEmitterModel::get_param_names(), mappel::PointEmitterModel::get_param_names(), mappel::PointEmitterModel::get_param_names(), mappel::PointEmitterModel::pointEmitterModel::has_\circ hyperparam(), mappel::PointEmitterModel::po

8.19.5.22 ImageSizeT mappel::ImageFormat2DBase::size [protected], [inherited]

Number of pixels in X dimension for 1D image

Definition at line 67 of file ImageFormat2DBase.h.

Referenced by mappel::cgauss compute estimate(), mappel::cgauss compute estimate debug(), mappel::cgauss ← _heuristic_compute_estimate(), mappel::ImageFormat2DBase::check_image_shape(), mappel::Gauss2DModel::← Stencil::compute_derivatives(), mappel::Gauss2DsModel::Stencil::compute_derivatives(), mappel::Gauss2DModel ← ::debug_internal_sum_model_y(), mappel::Gauss2DsModel::debug_internal_sum_model_y(), mappel::methods ← ::expected information(), mappel::Gauss2DModel::Gauss2DModel(), mappel::Gauss2DsMAP::Gauss2DsMA← P(), mappel::Gauss2DsMLE::Gauss2DsMLE(), mappel::Gauss2DsModel::Gauss2DsModel(), mappel::Image ← Format2DBase::get num pixels(), mappel::ImageFormat2DBase::get size(), mappel::ImageFormat2DBase::get ← stats(), mappel::methods::likelihood::grad(), mappel::methods::likelihood::grad2(), mappel::methods::likelihood ::debug::grad_components(), mappel::methods::likelihood::hessian(), mappel::methods::likelihood::debug::hessian ← _components(), mappel::Gauss2DModel::initial_theta_estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::methods::likelihood::llh(), mappel::methods::likelihood::debug::llh_components(), mappel::Gauss2DModel ← ::make default prior beta position(), mappel::Gauss2DsModel::make default prior beta position(), Gauss2DModel::make default prior normal position(), mappel::Gauss2DsModel::make default prior normal← mappel::ImageFormat2DBase::make image(), mappel::ImageFormat2DBase::make image stack(), position(),

 $\label{lem:make_internal_1Dsum_estimator} mappel::Gauss2DModel::make_internal_1Dsum_estimator(), mappel::Gauss2DSModel::make_prior_beta_position(), mappel::Gauss2DSModel::make_prior_beta_position(), mappel::Gauss2DSModel::make_prior_beta_position(), mappel::Gauss2DSModel::make_prior_normal_position(), mappel::Gauss2DSModel::make_prior_normal_position(), mappel::mathods::make_prior_normal_position(), mappel::Gauss2DSModel::make_prior_normal_position(), mappel::Gauss2DSModel::make_prior_normal_position(), mappel::mathods::make_prior_normal_position(), mappel::mathods::make_prior_beta_cposition(), mappel::mathods:$

8.19.5.23 ParamT mappel::PointEmitterModel::ubound [protected], [inherited]

Definition at line 148 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel ::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::get_ubound(), mappel::Gauss1DsModel::initial_theta = estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::PointEmitterModel::poin

8.19.5.24 Gauss1DsMAP mappel::Gauss2DsxyModel::x_model [protected]

X-model fits 2D images X-axis (column sum). Using variable sigma 1D model.

Definition at line 114 of file Gauss2DsxyModel.h.

8.19.5.25 Gauss1DsMAP mappel::Gauss2DsxyModel::y_model [protected]

Y-model fits 2D images Y-axis (row sum). Using variable sigma 1D model.

Definition at line 115 of file Gauss2DsxyModel.h.

The documentation for this class was generated from the following file:

· Gauss2DsxyModel.h

8.20 mappel::HeuristicEstimator < Model > Class Template Reference

#include </home/travis/build/markjolah/Mappel/include/Mappel/estimator.h>

Inheritance diagram for mappel::HeuristicEstimator< Model >:

Public Types

```
    enum ExitCode::IdxT {
        ExitCode::Unassigned = 8, ExitCode::MaxIter = 7, ExitCode::MaxBacktracks = 6, ExitCode::TrustRegionRadius = 5,
        ExitCode::GradRatio = 4, ExitCode::FunctionChange = 3, ExitCode::StepSize = 2, ExitCode::Success = 1,
        ExitCode::Error = 0 }
```

Public Member Functions

- HeuristicEstimator (Model &model)
- StatsT get stats ()
- StatsT get_debug_stats ()
- std::string name () const
- void estimate_max_stack (const ModelDataStackT< Model > &im, const ParamVecT< Model > &theta_init, ParamVecT< Model > &theta, VecT &rllh, CubeT &obsl)
- void estimate_profile_stack (const ModelDataT< Model > &data, const IdxVecT &fixed_parameters, const MatT &values, const ParamVecT< Model > &theta_init, VecT &profile_likelihood, ParamVecT< Model > &profile_← parameters)
- · void clear_stats ()
- Model & get_model ()
- void set model (Model &new model)
- StencilT< Model > estimate_max (const ModelDataT< Model > &im)
- StencilT < Model > estimate_max (const ModelDataT < Model > &im, const ParamT < Model > &theta_init)
- StencilT< Model > estimate_max (const ModelDataT< Model > &im, double &rllh)
- StencilT< Model > estimate_max (const ModelDataT< Model > &im, const ParamT< Model > &theta_init, double &rllh)
- void estimate_max (const ModelDataT < Model > &im, ParamT < Model > &theta, double &rllh, MatT &obsl)
- void estimate_max (const ModelDataT< Model > &im, const ParamT< Model > &theta_init, ParamT< Model > &theta, double &rllh, MatT &obsl)
- void estimate_max_debug (const ModelDataT< Model > &im, const ParamT< Model > &theta_init, ParamT
 Model > &theta est, double &rllh, MatT &obsl, MatT &sequence, VecT &sequence rllh)

Static Public Attributes

• static constexpr int NumExitCodes = 9

Protected Member Functions

- void record exit code (ExitCode code)
- virtual void compute_estimate (const ModelDataT< Model > &im, const ParamT< Model > &theta_init, ParamT< Model > &theta est, double &rllh, MatT &obsl)

Default base class implementation computes rllh and obsl seperately from stencil This should be overridden by Estimator subclasses that already have access to this information.

- virtual StencilT < Model > compute_estimate_debug (const ModelDataT < Model > &im, const ParamT < Model > &theta init, ParamVecT < Model > &sequence, VecT &sequence rllh)
- virtual void compute_profile_estimate (const ModelDataT< Model > &im, const ParamT< Model > &theta_init, const IdxVecT &fixed_parameters, ParamT< Model > &theta_est, double &rllh)
- void record walltime (ClockT::time point start walltime, int nimages)

Protected Attributes

- · int max threads
- · int num threads
- std::mutex mtx
- Model & model
- int num estimations = 0
- double total_walltime = 0.
- IdxVecT exit_counts

8.20.1 Detailed Description

```
\label{lem:lemplate} $$\operatorname{class\ Model}>$$ $\operatorname{class\ mappel}::\operatorname{HeuristicEstimator}<\operatorname{Model}>$$
```

Definition at line 150 of file estimator.h.

8.20.2 Member Enumeration Documentation

8.20.2.1 template < class Model > enum mappel::Estimator::ExitCode: ldxT [strong], [inherited]

Enumerator

Unassigned

MaxIter

MaxBacktracks

TrustRegionRadius

GradRatio

FunctionChange

StepSize

Success

Error

Definition at line 40 of file estimator.h.

8.20.3 Constructor & Destructor Documentation

8.20.3.1 template < class Model > mappel::HeuristicEstimator < Model >::HeuristicEstimator (Model & model) [inline]

Definition at line 152 of file estimator.h.

References mappel::Estimator< Model >::get_debug_stats(), and mappel::Estimator< Model >::get_stats().

8.20.4 Member Function Documentation

Reimplemented from mappel::Estimator< Model >.

Reimplemented in mappel::IterativeMaximizer < Model >.

Definition at line 378 of file estimator impl.h.

References mappel::Estimator< Model >::clear_stats(), mappel::ThreadedEstimator< Model >::mtx, and mappel:: \leftarrow ThreadedEstimator< Model >::num threads.

Referenced by mappel::IterativeMaximizer< Model >::clear stats().

8.20.4.2 template < class Model > void mappel::Estimator < Model >::compute_estimate (const ModelDataT < Model > & im, const ParamT < Model > & theta_init, ParamT < Model > & theta_est, double & rllh, MatT & obsl)

[protected], [virtual], [inherited]

Default base class implementation computes rllh and obsl seperately from stencil This should be overridden by Estimator subclasses that already have access to this information.

Definition at line 183 of file estimator impl.h.

References mappel::Estimator< Model >::compute_estimate(), mappel::Estimator< Model >::model, and mappel ::methods::observed_information().

8.20.4.3 template < class Model > StencilT < Model > mappel::Estimator < Model >::compute_estimate_debug (const ModelDataT < Model > & im, const ParamT < Model > & theta_init, ParamVecT < Model > & sequence, VecT & sequence_rllh) [protected], [virtual], [inherited]

Estimators that produce a sequence of results (e.g. IterativeEstimators) can override this dummy debug implementation.

 $\label{lem:lemented:mappel::IterativeMaximizer} Reimplemented in mappel:: IterativeMaximizer < Model >, \ mappel:: SimulatedAnnealingMaximizer < Model >, \ and \ mappel:: CGaussMLE < Model >.$

Definition at line 242 of file estimator impl.h.

References mappel::Estimator< Model >::compute_estimate(), mappel::Estimator< Model >::Error, mappel:: \leftarrow Estimator< Model >::record_exit_code().

Referenced by mappel::Estimator< Model >::estimate_max_debug(), mappel::CGaussMLE< Model >::name(), mappel::SimulatedAnnealingMaximizer< Model >::name(), and mappel::Estimator< Model >::~Estimator().

8.20.4.4 template < class Model > void mappel::Estimator < Model >::compute_profile_estimate (const ModelDataT < Model > & im, const ParamT < Model > & theta_init, const IdxVecT & fixed_parameters, ParamT < Model > & theta_est, double & rllh) [protected], [virtual], [inherited]

Reimplemented in mappel::IterativeMaximizer < Model >.

Definition at line 192 of file estimator_impl.h.

References mappel::Estimator< Model >::model.

Referenced by mappel::ThreadedEstimator< Model >::estimate_profile_stack(), and mappel::Estimator< Model > \leftarrow :: \sim Estimator().

8.20.4.5 template < class Model > StencilT < Model > mappel::Estimator < Model > ::estimate_max (const ModelDataT < Model > & im) [inherited]

Definition at line 64 of file estimator_impl.h.

References mappel::Estimator< Model >::model.

Referenced by mappel::Estimator< Model >::estimate max(), and mappel::Estimator< Model >::~Estimator().

8.20.4.6 template < class Model > StencilT < Model > mappel::Estimator < Model > ::estimate_max (const ModelDataT < Model > & im, const ParamT < Model > & theta_init) [inherited]

Definition at line 82 of file estimator impl.h.

References mappel::Estimator < Model >::estimate max(), and mappel::methods::objective::rllh().

8.20.4.7 template < class Model > StencilT < Model > mappel::Estimator < Model > ::estimate_max (const ModelDataT < Model > & im, double & rllh) [inherited]

Definition at line 73 of file estimator impl.h.

References mappel::Estimator < Model >::estimate max(), and mappel::Estimator < Model >::model.

8.20.4.8 template < class Model > StencilT < Model > mappel::Estimator < Model > ::estimate_max (const ModelDataT < Model > & im, const ParamT < Model > & theta_init, double & rllh) [inherited]

Definition at line 90 of file estimator_impl.h.

References mappel::Estimator< Model >::compute_estimate(), mappel::Estimator< Model >::Error, mappel:: \leftarrow Estimator< Model >::record_exit_code(), and mappel ::Estimator< Model >::record_exit_code(), and mappel ::Estimator< Model >::record_walltime().

8.20.4.9 template < class Model > void mappel::Estimator < Model > ::estimate_max (const ModelDataT < Model > & im, ParamT < Model > & theta, double & rllh, MatT & obsl) [inherited]

Definition at line 119 of file estimator_impl.h.

References mappel::Estimator< Model >::estimate_max(), and mappel::Estimator< Model >::model.

8.20.4.10 template < class Model > void mappel::Estimator < Model > ::estimate_max (const ModelDataT < Model > & im, const ParamT < Model > & theta_init, ParamT < Model > & theta, double & rllh, MatT & obsl) [inherited]

Definition at line 128 of file estimator impl.h.

References mappel::Estimator< Model >::compute_estimate(), mappel::Estimator< Model >::Error, mappel::print = _image(), mappel::Estimator< Model >::record_exit_code(), mappel::Estimator< Model >::record_walltime(), and mappel::methods::objective::rllh().

8.20.4.11 template < class Model > void mappel::Estimator < Model > ::estimate_max_debug (const ModelDataT < Model > & im, const ParamT < Model > & theta_init, ParamT < Model > & theta_est, double & rllh, MatT & obsl, MatT & sequence, VecT & sequence_rllh) [inherited]

Definition at line 158 of file estimator impl.h.

References mappel::Estimator < Model >::compute_estimate_debug(), mappel::Estimator < Model >::methods::observed_information(), mappel::Estimator < Model >::record_walltime(), and mappel::methods::objective \leftarrow ::rllh().

Referenced by mappel::Estimator < Model >::~Estimator().

8.20.4.12 template < class Model > void mappel::Estimator < Model > ::estimate_max_stack (const ModelDataStackT < Model > & im_stack, ParamVecT < Model > & theta_est_stack, VecT & rllh_stack, CubeT & obsl_stack)
[inherited]

Definition at line 170 of file estimator_impl.h.

References mappel::Estimator< Model >::estimate_max_stack(), and mappel::Estimator< Model >::model.

8.20.4.13 template < class Model > void mappel::ThreadedEstimator < Model > ::estimate_max_stack (const ModelDataStackT < Model > & im, const ParamVecT < Model > & theta_init, ParamVecT < Model > & theta, VecT & rllh, CubeT & obsl) [virtual], [inherited]

Implements mappel::Estimator < Model >.

Definition at line 285 of file estimator impl.h.

References mappel::Estimator< Model >::compute_estimate(), mappel::Estimator< Model >::Error, mappel:: \leftarrow Estimator< Model >::model, mappel::ThreadedEstimator< Model >::num_threads, mappel::print_image(), mappel ::ThreadedEstimator< Model >::record_exit_code(), mappel::Estimator< Model >::record_walltime(), and mappel ::methods::objective::openmp::rllh_stack().

8.20.4.14 template < class Model > void mappel::ThreadedEstimator < Model > ::estimate_profile_stack (const ModelDataT < Model > & data, const IdxVecT & fixed_parameters, const MatT & values, const ParamVecT < Model > & theta_init, VecT & profile_likelihood, ParamVecT < Model > & profile_parameters) [virtual], [inherited]

Implements mappel::Estimator < Model >.

Definition at line 323 of file estimator impl.h.

References mappel::Estimator< Model >::compute_profile_estimate(), mappel::Estimator< Model >::Error, mappel :: Estimator< Model >::model, mappel::ThreadedEstimator< Model >::num_threads, mappel::print_image(), mappel ::ThreadedEstimator< Model >::record_exit_code(), and mappel::Estimator< Model >::record_walltime().

8.20.4.15 template < class Model > StatsT mappel::HeuristicEstimator < Model >::get_debug_stats() [virtual]

Reimplemented from mappel::ThreadedEstimator< Model >.

Definition at line 414 of file estimator impl.h.

References mappel::cgauss_heuristic_compute_estimate(), mappel::ThreadedEstimator< Model >::get_stats(), mappel::Estimator< Model >::model, mappel::ThreadedEstimator< Model >::record_exit_code(), and mappel::methods::objective::rllh().

8.20.4.16 template < class Model > Model & mappel::Estimator < Model > ::get_model() [inherited]

Definition at line 50 of file estimator impl.h.

References mappel::Estimator< Model >::model.

Referenced by mappel::Estimator < Model >::~Estimator().

8.20.4.17 template < class Model > StatsT mappel::HeuristicEstimator < Model >::get_stats() [virtual]

Reimplemented from mappel::ThreadedEstimator< Model >.

Definition at line 404 of file estimator impl.h.

References mappel::ThreadedEstimator< Model >::get stats().

8.20.4.18 template < class Model > std::string mappel::HeuristicEstimator < Model >::name() const [inline], [virtual]

Implements mappel::Estimator < Model >.

Definition at line 156 of file estimator.h.

References mappel::Estimator < Model >::compute_estimate(), and mappel::methods::objective::rllh().

8.20.4.19 template < class Model > void mappel::ThreadedEstimator < Model >::record_exit_code (ExitCode code) [protected], [virtual], [inherited]

Implements mappel::Estimator < Model >.

Definition at line 386 of file estimator impl.h.

References mappel::Estimator< Model >::exit_counts, mappel::Estimator< Model >::model, mappel::Threaded \leftarrow Estimator< Model >::mtx, and mappel::methods::objective::rllh().

Referenced by mappel::IterativeMaximizer< Model >::backtrack(), mappel::CGaussMLE< Model >::compute - estimate(), mappel::CGaussMLE< Model >::compute_estimate_debug(), mappel::IterativeMaximizer< Model >::compute_estimate_debug(), mappel::Threaded >::convergence_test(), mappel::Threade

8.20.4.20 template < class Model > void mappel::Estimator < Model >::record_walltime (ClockT::time_point start_walltime, int nimages) [protected], [inherited]

Definition at line 266 of file estimator_impl.h.

References mappel::Estimator < Model >::num_estimations, and mappel::Estimator < Model >::total_walltime.

Referenced by mappel::Estimator< Model >::estimate_max(), mappel::Estimator< Model >::estimate_max_ \leftarrow debug(), mappel::ThreadedEstimator< Model >::estimate_max_stack(), and mappel::ThreadedEstimator< Model >::estimate profile stack().

8.20.4.21 template < class Model > void mappel::Estimator < Model >::set_model (Model & new_model) [inherited]

Definition at line 54 of file estimator impl.h.

References mappel::Estimator < Model >::model.

Referenced by mappel::Estimator< Model >::~Estimator().

8.20.5 Member Data Documentation

```
8.20.5.1 template < class Model > IdxVecT mappel::Estimator < Model >::exit_counts [protected], [inherited]
```

Definition at line 114 of file estimator.h.

Referenced by mappel::Estimator< Model >::clear_stats(), mappel::Estimator< Model >::get_stats(), and mappel::

ThreadedEstimator< Model >::record_exit_code().

```
8.20.5.2 template < class Model > int mappel::ThreadedEstimator < Model >::max_threads [protected], [inherited]
```

Definition at line 142 of file estimator.h.

```
8.20.5.3 template < class Model > Model& mappel::Estimator < Model >::model [protected], [inherited]
```

Definition at line 109 of file estimator.h.

Referenced by mappel::SimulatedAnnealingMaximizer< Model >::anneal(), mappel::IterativeMaximizer< Model >::backtrack(), mappel::Estimator< Model >::compute_estimate(), mappel::CGaussMLE< Model >::compute_estimate(), mappel::IterativeMaximizer< Model >::compute_estimate(), mappel::IterativeMaximizer< Model >::compute_estimate(), mappel::CGaussML ← E< Model >::compute_estimate_debug(), mappel::Estimator< Model >::compute_estimate_debug(), mappel::IterativeMaximizer< Model >::compute_estimate_debug(), mappel::IterativeMaximizer< Model >::compute_estimate(), mappel::Estimator< Model >::compute_profile_estimate(), mappel::Estimator< Model >::estimate_max(), mappel::Estimator< Model >::estimate_max_debug(), mappel::Estimator< Model >::estimate_max_stack(), mappel::ThreadedEstimator< Model >::estimate_max_stack(), mappel::ThreadedEstimator< Model >::get_model(), mappel::IterativeMaximizer< Model >::local_maximize(), mappel::NewtonDiagonalMaximizer< Model >::maximize(), mappel::TustRegionMaximizer< Model >::maximize(), mappel::ThreadedEstimator< Model >::record ← _exit_code(), and mappel::Estimator< Model >::set_model().

```
8.20.5.4 template < class Model > std::mutex mappel::ThreadedEstimator < Model >::mtx [protected], [inherited]
```

Definition at line 144 of file estimator.h.

Referenced by mappel::ThreadedEstimator< Model >::clear_stats(), mappel::IterativeMaximizer< Model >::clear \leftarrow _stats(), mappel::ThreadedEstimator< Model >::get_stats(), mappel::IterativeMaximizer< Model >::get_stats(), mappel::ThreadedEstimator< Model >::record_exit_code(), and mappel::IterativeMaximizer< Model >::record_ \leftarrow run statistics().

8.20.5.5 template < class Model > int mappel::Estimator < Model >::num_estimations = 0 [protected], [inherited]

Definition at line 112 of file estimator.h.

Referenced by mappel::Estimator< Model >::clear_stats(), mappel::Estimator< Model >::get_stats(), mappel:: \leftarrow ::ThreadedEstimator< Model >::get_stats(), and mappel:: \leftarrow Estimator< Model >::record_walltime().

8.20.5.6 template < class Model > int mappel::ThreadedEstimator < Model >::num_threads [protected], [inherited]

Definition at line 143 of file estimator.h.

Referenced by mappel::ThreadedEstimator< Model >::clear_stats(), mappel::ThreadedEstimator< Model >::estimate_max_stack(), mappel::ThreadedEstimator< Model >::estimate_profile_stack(), and mappel::Threaded \leftarrow Estimator< Model >::get_stats().

Definition at line 39 of file estimator.h.

Definition at line 113 of file estimator.h.

Referenced by mappel::Estimator< Model >::clear_stats(), mappel::Estimator< Model >::get_stats(), mappel:: \leftarrow ThreadedEstimator< Model >::get stats(), and mappel::Estimator< Model >::record walltime().

The documentation for this class was generated from the following files:

- · estimator.h
- estimator_impl.h

8.21 mappel::ImageFormat1DBase Class Reference

A virtual base class for 2D image localization objectives.

 $\verb|#include| < / home/travis/build/markjolah/Mappel/include/Mappel/ImageFormat1D \leftrightarrow Base.h>$

 $Inheritance\ diagram\ for\ mappel:: Image Format 1DB as e:$

Public Types

```
• using ImageCoordT = uint32_t
```

- using ImagePixeIT = double
- template < class CoordT > using ImageSizeShapeT = CoordT
- template < class CoordT >

using ImageSizeVecShapeT = arma::Col < CoordT >

- using ImageSizeT = ImageSizeShapeT < ImageCoordT >
- using ImageSizeVecT = ImageSizeVecShapeT < ImageCoordT >
- template < class PixelT >

using ImageShapeT = arma::Col< PixelT >

template < class PixelT >

using ImageStackShapeT = arma::Mat< PixelT >

- using ImageT = ImageShapeT < ImagePixeIT >
- using ImageStackT = ImageStackShapeT < ImagePixeIT >

Public Member Functions

• StatsT get_stats () const

template<class ImT >

- ImageT make_image () const
- ImageStackT make image stack (ImageCoordT n) const
- ImageCoordT get_size_image_stack (const ImageStackT &stack) const
- ImageT get image from stack (const ImageStackT &stack, ImageCoordT n) const

void set_image_in_stack (ImageStackT &stack, ImageCoordT n, const ImT &im) const

- ImageSizeT get size () const
- ImageCoordT get size (IdxT idx) const
- ImageCoordT get_num_pixels () const
- void set size (const ImageSizeT &size)
- void set_size (const arma::Col< ImageCoordT > &sz)
- void check_image_shape (const ImageT &im) const

Check the shape of a single images is correct for model size.

void check image shape (const ImageStackT &ims) const

Check the shape of a stack of images is correct for model size.

Static Public Member Functions

static void check_size (const ImageSizeT &size_)

Check the size argument for the model.

Static Public Attributes

- static const ImageCoordT num dim = 1
- static const ImageCoordT global min size = 3
- static const ImageCoordT global max size = 512

Protected Member Functions

- ImageFormat1DBase ()=default
- ImageFormat1DBase (ImageSizeT size_)

Protected Attributes

ImageSizeT size

8.21.1 Detailed Description

A virtual base class for 2D image localization objectives.

This class should be inherited virtually by both the model and the objective so that the common image information and functions are available in both Model and Objective classes hierarchies

Definition at line 23 of file ImageFormat1DBase.h.

8.21.2 Member Typedef Documentation

8.21.2.1 using mappel::ImageFormat1DBase::ImageCoordT = uint32_t

Image size coordinate storage type

Definition at line 25 of file ImageFormat1DBase.h.

8.21.2.2 using mappel::ImageFormat1DBase::ImagePixeIT = double

Image pixel storage type

Definition at line 26 of file ImageFormat1DBase.h.

8.21.2.3 template < class PixelT > using mappel::ImageFormat1DBase::ImageShapeT = arma::Col < PixelT >

Shape of the data type for a single image

Definition at line 33 of file ImageFormat1DBase.h.

8.21.2.4 template < class CoordT > using mappel::ImageFormat1DBase::ImageSizeShapeT = CoordT

Shape of the data type to store 1-image's coordinates

Definition at line 28 of file ImageFormat1DBase.h.

8.21.2.5 using mappel::ImageFormat1DBase::ImageSizeT = ImageSizeShapeT < ImageCoordT > Data type for a single image size Definition at line 30 of file ImageFormat1DBase.h. 8.21.2.6 template < class CoordT > using mappel::ImageFormat1DBase::ImageSizeVecShapeT = arma::Col < CoordT > Shape of the data type to store a vector of image's coordinates Definition at line 29 of file ImageFormat1DBase.h. 8.21.2.7 using mappel::ImageFormat1DBase::ImageSizeVecT = ImageSizeVecShapeT < ImageCoordT > Data type for a sequence of image sizes Definition at line 31 of file ImageFormat1DBase.h. 8.21.2.8 template < class PixelT > using mappel::ImageFormat1DBase::ImageStackShapeT = arma::Mat < PixelT > Shape of the data type for a sequence of images Definition at line 34 of file ImageFormat1DBase.h. 8.21.2.9 using mappel::ImageFormat1DBase::ImageStackT = ImageStackShapeT < ImagePixeIT > Data type to represent a sequence of images Definition at line 36 of file ImageFormat1DBase.h. 8.21.2.10 using mappel::ImageFormat1DBase::ImageT = ImageShapeT < ImagePixeIT > Data type to represent single image Definition at line 35 of file ImageFormat1DBase.h. 8.21.3 Constructor & Destructor Documentation **8.21.3.1** mappel::ImageFormat1DBase::ImageFormat1DBase() [protected], [default] **8.21.3.2** ImageFormat1DBase::ImageFormat1DBase(ImageSizeT size_) [explicit], [protected] Definition at line 13 of file ImageFormat1DBase.cpp. References check size().

8.21.4 Member Function Documentation8.21.4.1 void ImageFormat1DBase::check_image_shape (const ImageT & im) const

Check the shape of a single images is correct for model size.

Definition at line 59 of file ImageFormat1DBase.cpp.

References size.

8.21.4.2 void ImageFormat1DBase::check_image_shape (const ImageStackT & ims) const

Check the shape of a stack of images is correct for model size.

Definition at line 71 of file ImageFormat1DBase.cpp.

References size.

8.21.4.3 void ImageFormat1DBase::check_size(const ImageSizeT & size_) [static]

Check the size argument for the model.

Definition at line 39 of file ImageFormat1DBase.cpp.

References global_max_size, and global_min_size.

Referenced by ImageFormat1DBase(), and set size().

8.21.4.4 ImageFormat1DBase::ImageT ImageFormat1DBase::get_image_from_stack(const ImageStackT & stack, ImageCoordT n) const [inline]

Definition at line 108 of file ImageFormat1DBase.h.

8.21.4.5 ImageFormat1DBase::ImageCoordT ImageFormat1DBase::get_num_pixels () const [inline]

Definition at line 82 of file ImageFormat1DBase.h.

References size.

Referenced by get_stats().

8.21.4.6 ImageFormat1DBase::ImageSizeT ImageFormat1DBase::get_size() const [inline]

Definition at line 71 of file ImageFormat1DBase.h.

References size.

Referenced by get stats().

8.21.4.7 ImageFormat1DBase::ImageCoordT ImageFormat1DBase::get_size (IdxT idx) const Definition at line 20 of file ImageFormat1DBase.cpp. References size. 8.21.4.8 ImageFormat1DBase::ImageCoordT ImageFormat1DBase::get_size_image_stack(const ImageStackT & stack) const [inline] Definition at line 101 of file ImageFormat1DBase.h. 8.21.4.9 StatsT ImageFormat1DBase::get_stats () const Definition at line 81 of file ImageFormat1DBase.cpp. References get_num_pixels(), get_size(), and num_dim. Referenced by mappel::Gauss1DModel::get stats(), and mappel::Gauss1DsModel::get stats(). 8.21.4.10 ImageFormat1DBase::ImageT ImageFormat1DBase::make image() const [inline] Definition at line 87 of file ImageFormat1DBase.h. References size. 8.21.4.11 ImageFormat1DBase::ImageStackT ImageFormat1DBase::make_image_stack(ImageCoordT n) const [inline] Definition at line 94 of file ImageFormat1DBase.h. References size. 8.21.4.12 template < class lmT > void ImageFormat1DBase::set_image_in_stack (ImageStackT & stack, ImageCoordT n, const ImT & im) const Definition at line 115 of file ImageFormat1DBase.h.

8.21.4.13 void ImageFormat1DBase::set_size (const ImageSizeT & size_)

Definition at line 30 of file ImageFormat1DBase.cpp.

References check_size(), and size.

 $Referenced\ by\ set_size(),\ mappel::Gauss2DModel::set_size(),\ and\ mappel::Gauss2DsModel::set_size().$

8.21.4.14 void ImageFormat1DBase::set_size (const arma::Col < ImageCoordT > & sz) [inline]

Definition at line 75 of file ImageFormat1DBase.h.

References set size().

8.21.5 Member Data Documentation

8.21.5.1 const ImageFormat1DBase::ImageCoordT ImageFormat1DBase::global_max_size = 512 [static]

Maximum size along any dimension of the image. This is insanely big to catch obvious errors

Definition at line 40 of file ImageFormat1DBase.h.

Referenced by check size().

8.21.5.2 const ImageFormat1DBase::ImageCoordT ImageFormat1DBase::global_min_size = 3 [static]

Minimum size along any dimension of the image.

Definition at line 39 of file ImageFormat1DBase.h.

Referenced by check_size().

8.21.5.3 const ImageFormat1DBase::ImageCoordT ImageFormat1DBase::num_dim = 1 [static]

Number of image dimensions.

Definition at line 38 of file ImageFormat1DBase.h.

Referenced by get_stats().

8.21.5.4 ImageSizeT mappel::ImageFormat1DBase::size [protected]

Number of pixels in X dimension for 1D image

Definition at line 65 of file ImageFormat1DBase.h.

Referenced by check_image_shape(), mappel::Gauss1DsModel::Stencil::compute_derivatives(), mappel::Gauss1Dc- Model::Stencil::compute_derivatives(), get_num_pixels(), get_size(), mappel::Gauss1DModel::initial_theta_estimate(), mappel::Gauss1DsModel::initial_theta_estimate(), make_image_stack(), set_size(), mappel::Gauss1c- DsModel::Stencil::Stencil(), and mappel::Gauss1DModel::Stencil().

The documentation for this class was generated from the following files:

- ImageFormat1DBase.h
- ImageFormat1DBase.cpp

mappel::ImageFormat2DBase Class Reference

A virtual base class for 2D image localization objectives.

#include </home/travis/build/markjolah/Mappel/include/Mappel/ImageFormat2D↔ Base.h>

Inheritance diagram for mappel::ImageFormat2DBase:

Public Types

- using ImageCoordT = uint32 t
- using ImagePixeIT = double
- template < class CoordT > using ImageSizeShapeT = arma::Col< CoordT >
- template < class CoordT > using ImageSizeVecShapeT = arma::Mat< CoordT >
- using ImageSizeT = ImageSizeShapeT < ImageCoordT >
- using ImageSizeVecT = ImageSizeVecShapeT < ImageCoordT >
- template<class PixeIT > using ImageShapeT = arma::Mat< PixeIT >
- template < class PixelT >
- using ImageStackShapeT = arma::Cube < PixelT > using ImageT = ImageShapeT < ImagePixeIT >
- using ImageStackT = ImageStackShapeT < ImagePixeIT >

Public Member Functions

• StatsT get stats () const

template<class ImT >

- ImageT make image () const
- ImageStackT make image stack (ImageCoordT n) const
- ImageCoordT get_size_image_stack (const ImageStackT &stack) const
- ImageT get_image_from_stack (const ImageStackT &stack, ImageCoordT n) const
- void set_image_in_stack (ImageStackT &stack, ImageCoordT n, const ImT &im) const
- const ImageSizeT & get size () const
- ImageCoordT get size (IdxT idx) const
- ImageCoordT get num pixels () const
- void set_size (const ImageSizeT &size_)
- void check_image_shape (const ImageT &im) const

Check the shape of a single images is correct for model size.

void check_image_shape (const ImageStackT &ims) const

Check the shape of a stack of images is correct for model size.

Static Public Member Functions

static void check_size (const ImageSizeT &size_)
 Check the size argument for the model.

Static Public Attributes

- static const ImageCoordT num_dim =2
- static const ImageCoordT global_min_size =3
- static const ImageCoordT global_max_size =512

Protected Member Functions

- ImageFormat2DBase ()=default
- ImageFormat2DBase (const ImageSizeT &size)
- ImageFormat2DBase (const ImageFormat2DBase &)
- ImageFormat2DBase (ImageFormat2DBase &&)
- ImageFormat2DBase & operator= (const ImageFormat2DBase &)
- ImageFormat2DBase & operator= (ImageFormat2DBase &&)

Protected Attributes

· ImageSizeT size

8.22.1 Detailed Description

A virtual base class for 2D image localization objectives.

This class should be inherited virtually by both the model and the objective so that the common image information and functions are available in both Model and Objective classes hierarchies

Definition at line 22 of file ImageFormat2DBase.h.

8.22.2 Member Typedef Documentation

8.22.2.1 using mappel::ImageFormat2DBase::ImageCoordT = uint32_t

Image size coordinate storage type

Definition at line 24 of file ImageFormat2DBase.h.

8.22.2.2 using mappel::ImageFormat2DBase::ImagePixeIT = double

Image pixel storage type

Definition at line 25 of file ImageFormat2DBase.h.

8.22.2.3 template < class PixelT > using mappel::ImageFormat2DBase::ImageShapeT = arma::Mat<PixelT>

Shape of the data type for a single image

Definition at line 32 of file ImageFormat2DBase.h.

8.22.2.4 template < class CoordT > using mappel::ImageFormat2DBase::ImageSizeShapeT = arma::Col < CoordT >

Shape of the data type to store a single image's coordinates

Definition at line 27 of file ImageFormat2DBase.h.

8.22.2.5 using mappel::ImageFormat2DBase::ImageSizeT = ImageSizeShapeT < ImageCoordT >

Data type for a single image size

Definition at line 29 of file ImageFormat2DBase.h.

8.22.2.6 template < class CoordT > using mappel::ImageFormat2DBase::ImageSizeVecShapeT = arma::Mat < CoordT >

Shape of the data type to store a vector of image's coordinates

Definition at line 28 of file ImageFormat2DBase.h.

8.22.2.7 using mappel::ImageFormat2DBase::ImageSizeVecT = ImageSizeVecShapeT < ImageCoordT >

Data type for a sequence of image sizes

Definition at line 30 of file ImageFormat2DBase.h.

 $8.22.2.8 \quad template < class \ PixelT > using \ mappel:: ImageFormat2DBase:: ImageStackShapeT = arma:: Cube < PixelT > template < class \ PixelT > template < clast \ PixelT > template < class \ PixelT > template < class \ Pix$

Shape of the data type for a sequence of images

Definition at line 33 of file ImageFormat2DBase.h.

8.22.2.9 using mappel::ImageFormat2DBase::ImageStackT = ImageStackShapeT < ImagePixeIT >

Data type to represent a sequence of images

Definition at line 35 of file ImageFormat2DBase.h.

8.22.2.10 using mappel::ImageFormat2DBase::ImageT = ImageShapeT<ImagePixeIT>

Data type to represent single image

Definition at line 34 of file ImageFormat2DBase.h.

```
8.22.3 Constructor & Destructor Documentation
8.22.3.1 mappel::ImageFormat2DBase::ImageFormat2DBase() [protected], [default]
8.22.3.2 mappel::ImageFormat2DBase:ImageFormat2DBase (const ImageSizeT & size ) [explicit], [protected]
Definition at line 13 of file ImageFormat2DBase.cpp.
References check_size().
8.22.3.3 mappel::ImageFormat2DBase::ImageFormat2DBase ( const ImageFormat2DBase & o ) [protected]
Definition at line 19 of file ImageFormat2DBase.cpp.
8.22.3.4 mappel::ImageFormat2DBase:ImageFormat2DBase ( ImageFormat2DBase && o ) [protected]
Definition at line 23 of file ImageFormat2DBase.cpp.
8.22.4 Member Function Documentation
8.22.4.1 void mappel::ImageFormat2DBase::check_image_shape ( const ImageT & im ) const
Check the shape of a single images is correct for model size.
Definition at line 80 of file ImageFormat2DBase.cpp.
References size.
8.22.4.2 void mappel::ImageFormat2DBase::check_image_shape ( const ImageStackT & ims ) const
Check the shape of a stack of images is correct for model size.
Definition at line 93 of file ImageFormat2DBase.cpp.
References size.
8.22.4.3 void mappel::ImageFormat2DBase::check size ( const ImageSizeT & size_ ) [static]
Check the size argument for the model.
Definition at line 60 of file ImageFormat2DBase.cpp.
References global_max_size, and global_min_size.
```

Referenced by ImageFormat2DBase(), and set size().

8.22.4.4 ImageFormat2DBase::ImageT mappel::ImageFormat2DBase::get_image_from_stack (const ImageStackT & stack, ImageCoordT n) const [inline]

Definition at line 106 of file ImageFormat2DBase.h.

8.22.4.5 ImageFormat2DBase::ImageCoordT mappel::ImageFormat2DBase::get_num_pixels() const [inline]

Definition at line 79 of file ImageFormat2DBase.h.

References size.

Referenced by get_stats().

8.22.4.6 const ImageFormat2DBase::ImageSizeT & mappel::ImageFormat2DBase::get_size() const [inline]

Definition at line 74 of file ImageFormat2DBase.h.

References size.

8.22.4.7 ImageFormat2DBase::ImageCoordT mappel::ImageFormat2DBase::get_size(_ldxT_idx_) const

Definition at line 41 of file ImageFormat2DBase.cpp.

References size.

8.22.4.8 ImageFormat2DBase::ImageCoordT mappel::ImageFormat2DBase::get_size_image_stack(const ImageStackT & stack) const [inline]

Definition at line 99 of file ImageFormat2DBase.h.

8.22.4.9 StatsT mappel::ImageFormat2DBase::get_stats () const

Definition at line 103 of file ImageFormat2DBase.cpp.

References get num pixels(), num dim, and size.

Referenced by mappel::Gauss2DModel::get_stats(), and mappel::Gauss2DsModel::get_stats().

8.22.4.10 ImageFormat2DBase::ImageT mappel::ImageFormat2DBase::make image() const [inline]

Definition at line 85 of file ImageFormat2DBase.h.

References size.

8.22.4.11 ImageFormat2DBase::ImageStackT mappel::ImageFormat2DBase::make_image_stack(ImageCoordT n) const [inline]

Definition at line 92 of file ImageFormat2DBase.h.

References size.

8.22.4.12 ImageFormat2DBase & mappel::ImageFormat2DBase::operator= (const ImageFormat2DBase & o)

[protected]

Definition at line 27 of file ImageFormat2DBase.cpp.

References size.

Referenced by mappel::Gauss2DsMAP::operator=(), mappel::Gauss2DsMLE::operator=(), mappel::Gauss2DMAP ← ::operator=(), and mappel::Gauss2DMLE::operator=().

8.22.4.13 ImageFormat2DBase & mappel::ImageFormat2DBase::operator=(ImageFormat2DBase && o)
[protected]

Definition at line 33 of file ImageFormat2DBase.cpp.

References size.

8.22.4.14 template < class ImT > void mappel::ImageFormat2DBase::set_image_in_stack (ImageStackT & stack, ImageCoordT n, const ImT & im) const

Definition at line 113 of file ImageFormat2DBase.h.

8.22.4.15 void mappel::ImageFormat2DBase::set_size (const ImageSizeT & size_)

Definition at line 51 of file ImageFormat2DBase.cpp.

References check_size(), and size.

Referenced by mappel::Gauss2DModel::set_size(), and mappel::Gauss2DsModel::set_size().

8.22.5 Member Data Documentation

8.22.5.1 const ImageFormat2DBase::ImageCoordT mappel::ImageFormat2DBase::global max_size =512 [static]

Maximum size along any dimension of the image. This is insanely big to catch obvious errors

Definition at line 39 of file ImageFormat2DBase.h.

Referenced by check_size().

8.22.5.2 const ImageFormat2DBase::ImageCoordT mappel::ImageFormat2DBase::global_min_size =3 [static]

Minimum size along any dimension of the image.

Definition at line 38 of file ImageFormat2DBase.h.

Referenced by check size().

8.22.5.3 const ImageFormat2DBase::ImageCoordT mappel::ImageFormat2DBase::num_dim =2 [static]

Number of image dimensions.

Definition at line 37 of file ImageFormat2DBase.h.

Referenced by get stats().

8.22.5.4 ImageSizeT mappel::ImageFormat2DBase::size [protected]

Number of pixels in X dimension for 1D image

Definition at line 67 of file ImageFormat2DBase.h.

Referenced by mappel::cgauss_compute_estimate(), mappel::cgauss_compute_estimate_debug(), mappel::cgauss← heuristic compute estimate(), mappel::Gauss2DModel::Stencil::compute derivatives(), check image shape(), mappel::Gauss2DsModel::Stencil::compute_derivatives(), mappel::Gauss2DModel::debug internal sum model y(), mappel::Gauss2DsModel::debug internal sum model y(), mappel::methods::expected information(), mappel::← Gauss2DModel::Gauss2DModel(), mappel::Gauss2DsMAP(), mappel::Gauss2DsMAP(), mappel::Gauss2DsMLE MLE(), mappel::Gauss2DsModel::Gauss2DsModel(), get num pixels(), get size(), get stats(), mappel::methods← mappel::methods::likelihood::grad2(), ::likelihood::grad(), mappel::methods::likelihood::debug::grad components(), mappel::methods::likelihood::hessian(), mappel::methods::likelihood::debug::hessian components(), mappel::Gauss2DsModel::initial_theta_estimate(), Gauss2DModel::initial_theta_estimate(), mappel::methods ← ::likelihood::llh(), mappel::methods::likelihood::debug::llh components(), mappel::Gauss2DModel::make default ← prior_beta_position(), mappel::Gauss2DsModel::make_default_prior_beta_position(), mappel::Gauss2DModel::make ← default prior normal position(), mappel::Gauss2DsModel::make default prior normal position(), make image(), make_image_stack(), mappel::Gauss2DModel::make_internal_1Dsum_estimator(), mappel::Gauss2DsModel::make ← _internal_1Dsum_estimator(), mappel::Gauss2DModel::make prior beta position(), mappel::Gauss2DsModel← ::make_prior_beta_position(), mappel::Gauss2DModel::make_prior_normal_position(), mappel::Gauss2DsModel ::make prior normal position(), mappel::methods::model image(), operator=(), mappel::methods::likelihood::rllh(), mappel::methods::likelihood::debug::rllh components(), set size(), mappel::Gauss2DModel::set size(), mappel::← Gauss2DsModel::set_size(), mappel::methods::simulate_image(), mappel::methods::simulate_image_from_model(), mappel::Gauss2DModel::Stencil(), mappel::Gauss2DsModel::Stencil(), mappel::Gauss2DModel← ::update_internal_1Dsum_estimators(), and mappel::Gauss2DsModel::update_internal_1Dsum_estimators().

The documentation for this class was generated from the following files:

- ImageFormat2DBase.h
- ImageFormat2DBase.cpp

8.23 mappel::IterativeMaximizer < Model > Class Template Reference

#include </home/travis/build/markjolah/Mappel/include/Mappel/estimator.h>

Inheritance diagram for mappel::IterativeMaximizer < Model >:

mappel::IterativeMaximizer< Model >

mappel::NewtonDiagonalMaximizer< Model >

mappel::NewtonMaximizer< Mode

Classes

· class MaximizerData

Public Types

```
    enum ExitCode::IdxT {
        ExitCode::Unassigned = 8, ExitCode::MaxIter = 7, ExitCode::MaxBacktracks = 6, ExitCode::TrustRegionRadius = 5,
        ExitCode::GradRatio = 4, ExitCode::FunctionChange = 3, ExitCode::StepSize = 2, ExitCode::Success = 1,
        ExitCode::Error = 0 }
```

Public Member Functions

- IterativeMaximizer (Model &model, int max_iterations=DEFAULT_ITERATIONS)
- double mean iterations ()
- double mean backtracks ()
- double mean fun evals ()
- double mean der evals ()
- StatsT get stats ()
- StatsT get_debug_stats ()
- void clear stats ()
- void local_maximize (const ModelDataT< Model > &im, const StencilT< Model > &theta_init, StencilT< Model > &stencil, double &rllh)

Perform a local maximization to finish off a simulated annealing run.

- void estimate_max_stack (const ModelDataStackT< Model > &im, const ParamVecT< Model > &theta_init, ParamVecT< Model > &theta, VecT &rllh, CubeT &obsl)
- void estimate_profile_stack (const ModelDataT< Model > &data, const IdxVecT &fixed_parameters, const MatT &values, const ParamVecT< Model > &theta_init, VecT &profile_likelihood, ParamVecT< Model > &profile_
 parameters)
- virtual std::string name () const =0
- Model & get_model ()
- void set model (Model &new model)
- StencilT< Model > estimate_max (const ModelDataT< Model > &im)
- StencilT< Model > estimate_max (const ModelDataT< Model > &im, const ParamT< Model > &theta_init)
- StencilT< Model > estimate_max (const ModelDataT< Model > &im, double &rllh)
- StencilT< Model > estimate_max (const ModelDataT< Model > &im, const ParamT< Model > &theta_init, double &rllh)
- void estimate_max (const ModelDataT < Model > &im, ParamT < Model > &theta, double &rllh, MatT &obsl)
- void estimate_max (const ModelDataT< Model > &im, const ParamT< Model > &theta_init, ParamT< Model > &theta, double &rllh, MatT &obsl)
- void estimate_max_debug (const ModelDataT< Model > &im, const ParamT< Model > &theta_init, ParamT< Model > &theta_est, double &rllh, MatT &obsl, MatT &sequence, VecT &sequence_rllh)

Static Public Attributes

static constexpr int NumExitCodes = 9

Protected Member Functions

- void record_run_statistics (const MaximizerData &data)
- StencilT< Model > compute_estimate (const ModelDataT< Model > &im, const ParamT< Model > &theta_init, double &rllh)
- StencilT< Model > compute_estimate_debug (const ModelDataT< Model > &im, const ParamT< Model > &theta init, ParamVecT< Model > &sequence, VecT &sequence rllh)
- void compute_profile_estimate (const ModelDataT< Model > &im, const ParamT< Model > &theta_init, const ldxVecT &fixed_parameters, ParamT< Model > &theta_est, double &rllh)
- virtual void maximize (MaximizerData &data)=0
- bool backtrack (MaximizerData &data)
- bool convergence_test (MaximizerData &data)
- void record_exit_code (ExitCode code)
- virtual void compute_estimate (const ModelDataT< Model > &im, const ParamT< Model > &theta_init, ParamT< Model > &theta_est, double &rllh, MatT &obsl)

Default base class implementation computes rllh and obsl seperately from stencil This should be overridden by Estimator subclasses that already have access to this information.

void record walltime (ClockT::time point start walltime, int nimages)

Protected Attributes

- int max_iterations
- double epsilon = 1e-6
- double delta = 1e-6
- double lambda min = 0.05
- double alpha = 1e-4
- int max backtracks = 8
- int total iterations = 0
- int total backtracks = 0
- int total_fun_evals = 0
- int total der evals = 0
- IdxVecT last backtrack idxs
- int max_threads
- · int num_threads
- std::mutex mtx
- Model & model
- int num_estimations = 0
- double total walltime = 0.
- · IdxVecT exit counts

8.23.1 Detailed Description

template < class Model > class mappel::IterativeMaximizer < Model >

Definition at line 219 of file estimator.h.

8.23.2 Member Enumeration Documentation

8.23.2.1 template < class Model > enum mappel::Estimator::ExitCode: ldxT [strong], [inherited]

Enumerator

Unassigned

MaxIter

MaxBacktracks

TrustRegionRadius

GradRatio

FunctionChange

StepSize

Success

Error

Definition at line 40 of file estimator.h.

8.23.3 Constructor & Destructor Documentation

8.23.3.1 template < class Model > mappel::IterativeMaximizer < Model >::IterativeMaximizer (Model & model, int max_iterations = DEFAULT_ITERATIONS)

Definition at line 525 of file estimator_impl.h.

8.23.4 Member Function Documentation

8.23.4.1 template < class Model > bool mappel::IterativeMaximizer < Model >::backtrack (MaximizerData & data) [protected]

Definition at line 647 of file estimator impl.h.

References mappel::IterativeMaximizer< Model >::alpha, mappel::IterativeMaximizer< Model >::convergence_ test(), mappel::IterativeMaximizer< Model >::MaximizerData::free_parameters, mappel::IterativeMaximizer< Model >::MaximizerData::im, mappel::IterativeMaximizer< Model >::MaximizerData::im, mappel::IterativeMaximizer< Model >::MaximizerData::im, mappel::IterativeMaximizer</br>
Model >::max_backtracks, mappel::Estimator< Model >::max_backtracks, mappel::IterativeMaximizer
Data::num_fixed_parameters, mappel::IterativeMaximizer
Model >::MaximizerData::record_backtrack(), mappel::HerativeMaximizer
ThreadedEstimator
Model >::max_mizerData::restore_stencil(), mappel::methods::objective::rllh(), mappel::IterativeMaximizer
Model >::MaximizerData::restore_stencil(), mappel::IterativeMaximizer
Model >::MaximizerData::relativeMaximizer
Model >::MaximizerData::saved_theta(), mappel::IterativeMaximizer
Model >::MaximizerData::stencil(), and mappel
::IterativeMaximizer
Model >::MaximizerData::stencil(), and mappel
::IterativeMaximizer
Model >::MaximizerData::stencil(), and mappel
::IterativeMaximizer

Referenced by mappel::NewtonDiagonalMaximizer< Model >::maximize(), mappel::NewtonMaximizer< Model >::maximize(), and mappel::QuasiNewtonMaximizer< Model >::maximize().

```
8.23.4.2 template < class Model > void mappel::IterativeMaximizer < Model > ::clear_stats( ) [virtual]
```

Reimplemented from mappel::ThreadedEstimator< Model >.

Definition at line 625 of file estimator impl.h.

References mappel::ThreadedEstimator< Model >::clear_stats(), mappel::ThreadedEstimator< Model >::mtx, mappel::IterativeMaximizer< Model >::total_backtracks, mappel::IterativeMaximizer< Model >::total_der_evals, mappel::IterativeMaximizer< Model >::total_iterativeMaximizer< Model >::total_iterat

```
8.23.4.3 template < class Model > void mappel::Estimator < Model > ::compute_estimate ( const ModelDataT < Model > & im, const ParamT < Model > & theta_init, ParamT < Model > & theta_est, double & rllh, MatT & obsl ) [protected], [virtual], [inherited]
```

Default base class implementation computes rllh and obsl seperately from stencil This should be overridden by Estimator subclasses that already have access to this information.

Definition at line 183 of file estimator impl.h.

References mappel::Estimator< Model >::compute_estimate(), mappel::Estimator< Model >::model, and mappel ::methods::observed_information().

Implements mappel::Estimator < Model >.

Definition at line 753 of file estimator impl.h.

References mappel::IterativeMaximizer< Model >::maximize(), mappel::Estimator< Model >::model, mappel:: \leftarrow IterativeMaximizer< Model >::record_run_statistics(), mappel::IterativeMaximizer< Model >::MaximizerData::rllh, and mappel::IterativeMaximizer< Model >::MaximizerData::stencil().

Estimators that produce a sequence of results (e.g. IterativeEstimators) can override this dummy debug implementation.

Reimplemented from mappel::Estimator < Model >.

Definition at line 768 of file estimator_impl.h.

References mappel::IterativeMaximizer< Model >::MaximizerData::get_theta_sequence(), mappel::Iterative \leftarrow Maximizer

Maximizer

Model >::MaximizerData::get_theta_sequence_rllh(), mappel::IterativeMaximizer

Model >::max_ \leftarrow backtracks, mappel::IterativeMaximizer

Model >::max_iterations, mappel::IterativeMaximizer

Model >::maximize(), mappel::Estimator

Model >::record_exit_ \leftarrow code(), mappel::IterativeMaximizer

Model >::record_run_statistics(), and mappel::IterativeMaximizer

Model >:: \leftarrow MaximizerData::stencil().

8.23.4.6 template < class Model > void mappel::IterativeMaximizer < Model > :::compute_profile_estimate (const ModelDataT < Model > & im, const ParamT < Model > & theta_init, const IdxVecT & fixed_parameters, ParamT < Model > & theta_est, double & rllh) [protected], [virtual]

Reimplemented from mappel::Estimator < Model >.

Definition at line 797 of file estimator impl.h.

References mappel::IterativeMaximizer< Model >::maximize(), mappel::Estimator< Model >::model, mappel:: \leftarrow IterativeMaximizer< Model >::record_run_statistics(), mappel::IterativeMaximizer< Model >::MaximizerData::rllh, mappel::IterativeMaximizer< Model >::MaximizerData::set_fixed_parameters(), and mappel::IterativeMaximizer< Model >::MaximizerData::theta().

8.23.4.7 template < class Model > bool mappel::IterativeMaximizer < Model >::convergence_test (MaximizerData & data) [protected]

Definition at line 731 of file estimator_impl.h.

References mappel::IterativeMaximizer< Model >::delta, mappel::IterativeMaximizer< Model >::epsilon, mappel::

IterativeMaximizer< Model >::MaximizerData::free_parameters, mappel::IterativeMaximizer< Model >::Maximizer

Data::grad, mappel::IterativeMaximizer< Model >::MaximizerData::num_fixed_parameters, mappel::Threaded

Estimator< Model >::record_exit_code(), mappel::IterativeMaximizer< Model >::MaximizerData::rllh, mappel::

IterativeMaximizer< Model >::MaximizerData::saved_theta(), and mappel::IterativeMaximizer< Model >::Maximizer

Data::theta().

Referenced by mappel::IterativeMaximizer < Model >::backtrack().

8.23.4.8 template < class Model > StencilT < Model > mappel::Estimator < Model > ::estimate_max (const ModelDataT < Model > & im) [inherited]

Definition at line 64 of file estimator_impl.h.

References mappel::Estimator< Model >::model.

Referenced by mappel::Estimator< Model >::estimate_max(), and mappel::Estimator< Model >::~Estimator().

8.23.4.9 template < class Model > StencilT < Model > mappel::Estimator < Model > ::estimate_max (const ModelDataT < Model > & im, const ParamT < Model > & theta_init) [inherited]

Definition at line 82 of file estimator_impl.h.

References mappel::Estimator< Model >::estimate_max(), and mappel::methods::objective::rllh().

8.23.4.10 template < class Model > StencilT < Model > mappel::Estimator < Model >::estimate_max (const ModelDataT < Model > & im, double & rllh) [inherited]

Definition at line 73 of file estimator_impl.h.

References mappel::Estimator < Model >::estimate max(), and mappel::Estimator < Model >::model.

8.23.4.11 template < class Model > StencilT < Model > mappel::Estimator < Model > ::estimate_max (const ModelDataT < Model > & im. const ParamT < Model > & theta init, double & rIlh) [inherited]

Definition at line 90 of file estimator impl.h.

References mappel::Estimator< Model >::compute_estimate(), mappel::Estimator< Model >::Error, mappel:: \leftarrow Estimator< Model >::record_exit_code(), and mappel ::Estimator< Model >::record_exit_code(), and mappel ::Estimator< Model >::record_walltime().

8.23.4.12 template < class Model > void mappel::Estimator < Model > ::estimate_max (const ModelDataT < Model > & im, ParamT < Model > & theta, double & rllh, MatT & obsl) [inherited]

Definition at line 119 of file estimator_impl.h.

References mappel::Estimator < Model >::estimate max(), and mappel::Estimator < Model >::model.

8.23.4.13 template < class Model > void mappel::Estimator < Model > ::estimate_max (const ModelDataT < Model > & im, const ParamT < Model > & theta_init, ParamT < Model > & theta, double & rllh, MatT & obsl) [inherited]

Definition at line 128 of file estimator_impl.h.

References mappel::Estimator< Model >::compute_estimate(), mappel::Estimator< Model >::Error, mappel::print \leftarrow _image(), mappel::Estimator< Model >::record_exit_code(), mappel::Estimator< Model >::record_walltime(), and mappel::methods::objective::rllh().

8.23.4.14 template < class Model > void mappel::Estimator < Model > ::estimate_max_debug (const ModelDataT < Model > & im, const ParamT < Model > & theta_init, ParamT < Model > & theta_est, double & rllh, MatT & obsl, MatT & sequence, VecT & sequence_rllh) [inherited]

Definition at line 158 of file estimator impl.h.

References mappel::Estimator < Model >::compute_estimate_debug(), mappel::Estimator < Model >::methods::observed_information(), mappel::Estimator < Model >::record_walltime(), and mappel::methods::objective \leftarrow ::rllh().

Referenced by mappel::Estimator < Model >::~Estimator().

8.23.4.15 template < class Model > void mappel::Estimator < Model > ::estimate_max_stack (const ModelDataStackT < Model > & im_stack, ParamVecT < Model > & theta_est_stack, VecT & rllh_stack, CubeT & obsl_stack)
[inherited]

Definition at line 170 of file estimator impl.h.

References mappel::Estimator < Model >::estimate max stack(), and mappel::Estimator < Model >::model.

8.23.4.16 template < class Model > void mappel::ThreadedEstimator < Model > ::estimate_max_stack (const ModelDataStackT < Model > & im, const ParamVecT < Model > & theta_init, ParamVecT < Model > & theta, VecT & rllh, CubeT & obsl) [virtual], [inherited]

Implements mappel::Estimator < Model >.

Definition at line 285 of file estimator impl.h.

References mappel::Estimator< Model >::compute_estimate(), mappel::Estimator< Model >::Error, mappel:: \leftarrow Estimator< Model >::model, mappel::ThreadedEstimator< Model >::num_threads, mappel::print_image(), mappel ::ThreadedEstimator< Model >::record_exit_code(), mappel::Estimator< Model >::record_walltime(), and mappel ::methods::objective::openmp::rllh stack().

8.23.4.17 template < class Model > void mappel::ThreadedEstimator < Model > ::estimate_profile_stack (const ModelDataT < Model > & data, const IdxVecT & fixed_parameters, const MatT & values, const ParamVecT < Model > & theta_init, VecT & profile_likelihood, ParamVecT < Model > & profile_parameters) [virtual], [inherited]

 $Implements \ mappel :: Estimator < Model >.$

Definition at line 323 of file estimator_impl.h.

References mappel::Estimator< Model >::compute_profile_estimate(), mappel::Estimator< Model >::Error, mappel :: Estimator< Model >::model, mappel::ThreadedEstimator< Model >::num_threads, mappel::print_image(), mappel ::ThreadedEstimator< Model >::record_exit_code(), and mappel::Estimator< Model >::record_walltime().

8.23.4.18 template < class Model > StatsT mappel::IterativeMaximizer < Model >::get_debug_stats() [virtual]

Reimplemented from mappel::ThreadedEstimator< Model >.

Definition at line 609 of file estimator_impl.h.

References mappel::IterativeMaximizer< Model >::MaximizerData::backtrack_idxs, mappel::IterativeMaximizer< Model >::get_stats(), and mappel::IterativeMaximizer< Model >::last_backtrack_idxs.

8.23.4.19 template < class Model > Model & mappel::Estimator < Model >::get_model() [inherited]

Definition at line 50 of file estimator impl.h.

References mappel::Estimator< Model >::model.

Referenced by mappel::Estimator < Model >::~Estimator().

8.23.4.20 template < class Model > StatsT mappel::IterativeMaximizer < Model >::get_stats() [virtual]

Reimplemented from mappel::ThreadedEstimator< Model >.

Definition at line 588 of file estimator impl.h.

References mappel::IterativeMaximizer< Model >::delta, mappel::IterativeMaximizer< Model >::epsilon, mappel :: ::ThreadedEstimator< Model >::get_stats(), mappel::IterativeMaximizer< Model >::max_backtracks, mappel::← IterativeMaximizer< Model >::mtx, mappel::Estimator< Model >::num_estimations, mappel::IterativeMaximizer< Model >::total_backtracks, mappel::IterativeMaximizer< Model >::total_der_evals, mappel::IterativeMaximizer< Model >::total_iterativeMaximizer< Model >::total_iterativeMaximizer< Model

Referenced by mappel::SimulatedAnnealingMaximizer< Model >::get_debug_stats(), and mappel::Iterative
Maximizer < Model >::get_debug_stats().

8.23.4.21 template < class Model > void mappel::IterativeMaximizer < Model > ::local_maximize (const ModelDataT < Model > & im, const StencilT < Model > & theta init. StencilT < Model > & stencil. double & rIlh)

Perform a local maximization to finish off a simulated annealing run.

Definition at line 811 of file estimator impl.h.

References mappel::IterativeMaximizer< Model >::maximize(), mappel::Estimator< Model >::model, mappel:: \leftarrow IterativeMaximizer< Model >::MaximizerData::rllh, and mappel::IterativeMaximizer< Model >::MaximizerData \leftarrow ::stencil().

Referenced by mappel::SimulatedAnnealingMaximizer< Model >::anneal().

```
8.23.4.22 template < class Model > virtual void mappel::IterativeMaximizer < Model >::maximize ( MaximizerData & data ) [protected], [pure virtual]
```

Referenced by mappel::IterativeMaximizer< Model >::compute_estimate(), mappel::IterativeMaximizer< Model >::compute_estimate_debug(), mappel::IterativeMaximizer< Model >::compute_profile_estimate(), and mappel:: \leftarrow IterativeMaximizer< Model >::local_maximize().

```
8.23.4.23 template < class Model > double mappel::IterativeMaximizer < Model >::mean_backtracks ( )

8.23.4.24 template < class Model > double mappel::IterativeMaximizer < Model >::mean_der_evals ( )

8.23.4.25 template < class Model > double mappel::IterativeMaximizer < Model >::mean_fun_evals ( )
```

8.23.4.27 template < class Model > virtual std::string mappel::Estimator < Model >::name() const [pure virtual], [inherited]

8.23.4.26 template < class Model > double mappel::IterativeMaximizer < Model >::mean_iterations ()

Referenced by mappel::Estimator < Model >::~Estimator().

```
8.23.4.28 template < class Model > void mappel::ThreadedEstimator < Model >::record_exit_code ( ExitCode code ) [protected], [virtual], [inherited]
```

Implements mappel::Estimator < Model >.

Definition at line 386 of file estimator impl.h.

References mappel::Estimator< Model >::exit_counts, mappel::Estimator< Model >::model, mappel::Threaded Estimator< Model >::mtx, and mappel::methods::objective::rllh().

Referenced by mappel::IterativeMaximizer< Model >::backtrack(), mappel::CGaussMLE< Model >::compute _estimate(), mappel::CGaussMLE< Model >::compute_estimate_debug(), mappel::IterativeMaximizer< Model
>::compute_estimate_debug(), mappel::IterativeMaximizer< Model >::convergence_test(), mappel::Threaded Estimator< Model >::estimate_max_stack(), mappel::ThreadedEstimator< Model >::estimate_profile_stack(),
mappel::HeuristicEstimator< Model >::get_debug_stats(), mappel::NewtonDiagonalMaximizer< Model >::maximize(),
mappel::NewtonMaximizer< Model >::maximize(), and
mappel::TrustRegionMaximizer< Model >::maximize().

8.23.4.29 template < class Model > void mappel::IterativeMaximizer < Model >::record_run_statistics (const MaximizerData & data) [protected]

Definition at line 636 of file estimator impl.h.

References mappel::IterativeMaximizer< Model >::MaximizerData::get_backtrack_idxs(), mappel::IterativeMaximizer< Model >::MaximizerData::get_backtrack_idxs(), mappel::IterativeMaximizer< Model >::mtx, mappel::IterativeMaximizer< Model >::MaximizerData::nBacktracks, mappel::IterativeMaximizer< Model >::MaximizerData::nIterations, mappel::Iterative

Maximizer< Model >::MaximizerData::save_seq, mappel::IterativeMaximizer< Model >::total_backtracks, mappel::←

IterativeMaximizer< Model >::total_der_evals, mappel::HerativeMaximizer< Model >::total_fun_evals, and mappel::←

IterativeMaximizer< Model >::total_iterations.

Referenced by mappel::IterativeMaximizer< Model >::compute_estimate(), mappel::IterativeMaximizer< Model >::compute_estimate_debug(), and mappel::IterativeMaximizer< Model >::compute_profile_estimate().

8.23.4.30 template < class Model > void mappel::Estimator < Model >::record_walltime (ClockT::time_point start_walltime, int nimages) [protected], [inherited]

Definition at line 266 of file estimator_impl.h.

References mappel::Estimator < Model >::num_estimations, and mappel::Estimator < Model >::total_walltime.

Referenced by mappel::Estimator< Model >::estimate_max(), mappel::Estimator< Model >::estimate_max_\circ} debug(), mappel::ThreadedEstimator< Model >::estimate_max_stack(), and mappel::ThreadedEstimator< Model >::estimate profile stack().

8.23.4.31 template < class Model > void mappel::Estimator < Model >::set_model (Model & new_model) [inherited]

Definition at line 54 of file estimator impl.h.

References mappel::Estimator< Model >::model.

Referenced by mappel::Estimator < Model >::~Estimator().

8.23.5 Member Data Documentation

8.23.5.1 template < class Model > double mappel::IterativeMaximizer < Model > ::alpha = 1e-4 [protected]

Definition at line 245 of file estimator.h.

 $\label{lem:lem:mappel::IterativeMaximizer} Referenced by mappel:: IterativeMaximizer < Model > :: backtrack(), and mappel:: TrustRegionMaximizer < Model > :: bound_step().$

8.23.5.2 template < class Model > double mappel::IterativeMaximizer < Model > ::delta = 1e-6 [protected]

Definition at line 242 of file estimator.h.

Referenced by mappel::IterativeMaximizer< Model >::convergence_test(), mappel::IterativeMaximizer< Model >::get_stats(), mappel::NewtonMaximizer< Model >::maximize(), mappel::TrustRegionMaximizer< Model >::maximize(), mappel::TrustRegionMaximizer< Model >::solve restricted step length newton(), and mappel::TrustRegionMaximizer< Model >::solve TR subproblem().

8.23.5.3 template < class Model > double mappel::IterativeMaximizer < Model >::epsilon = 1e-6 [protected]

Definition at line 241 of file estimator.h.

Referenced by mappel::IterativeMaximizer< Model >::convergence_test(), mappel::IterativeMaximizer< Model >-::get_stats(), mappel::TrustRegionMaximizer< Model >-::maximize(), and mappel::TrustRegionMaximizer< Model >-::solve restricted step length newton().

8.23.5.4 template < class Model > IdxVecT mappel::Estimator < Model >::exit_counts [protected], [inherited]

Definition at line 114 of file estimator.h.

Referenced by mappel::Estimator< Model >::clear_stats(), mappel::Estimator< Model >::get_stats(), and mappel:: \leftarrow ThreadedEstimator< Model >::record_exit_code().

8.23.5.5 template < class Model > double mappel::IterativeMaximizer < Model >::lambda min = 0.05 [protected]

Definition at line 244 of file estimator.h.

Referenced by mappel::TrustRegionMaximizer< Model >::solve_restricted_step_length_newton(), and mappel::Trust← RegionMaximizer< Model >::solve TR subproblem().

8.23.5.6 template < class Model > IdxVecT mappel::IterativeMaximizer < Model >::last_backtrack_idxs [protected]

Definition at line 255 of file estimator.h.

Referenced by mappel::IterativeMaximizer < Model >::get_debug_stats(), and mappel::IterativeMaximizer < Model > \cdot ::record run statistics().

8.23.5.7 template < class Model > int mappel::IterativeMaximizer < Model >::max_backtracks = 8 [protected]

Definition at line 246 of file estimator.h.

Referenced by mappel::IterativeMaximizer < Model >::backtrack(), mappel::IterativeMaximizer < Model >::compute_ estimate debug(), and mappel::IterativeMaximizer < Model >::get stats().

8.23.5.8 template < class Model > int mappel::IterativeMaximizer < Model >::max_iterations [protected]

Definition at line 238 of file estimator.h.

Referenced by mappel::IterativeMaximizer < Model >::compute_estimate_debug(), mappel::IterativeMaximizer < Model >::get_stats(), mappel::NewtonDiagonalMaximizer < Model >::maximize(), mappel::NewtonMaximizer < Model >::maximize(), and mappel::QuasiNewtonMaximizer < Model >::maximize().

8.23.5.9 template < class Model > int mappel::ThreadedEstimator < Model >::max_threads [protected], [inherited]

Definition at line 142 of file estimator.h.

8.23.5.10 template < class Model > Model& mappel::Estimator < Model >::model [protected], [inherited]

Definition at line 109 of file estimator.h.

Referenced by mappel::SimulatedAnnealingMaximizer< Model >::anneal(), mappel::IterativeMaximizer< Model >::backtrack(), mappel::Estimator< Model >::compute_estimate(), mappel::CGaussMLE< Model >::compute_estimate(), mappel::IterativeMaximizer< Model >::compute_estimate(), mappel::IterativeMaximizer< Model >::compute_estimate(), mappel::CGaussML ← E< Model >::compute_estimate_debug(), mappel::Estimator< Model >::compute_estimate_debug(), mappel::IterativeMaximizer< Model >::compute_estimate_compute_estimate = debug(), mappel::IterativeMaximizer< Model >::compute_estimate(), mappel::Estimator< Model >::compute_profile_estimate(), mappel::Estimator< Model >::estimate_max(), mappel::Estimator< Model >::estimate_max_debug(), mappel::Estimator< Model >::estimate_max_stack(), mappel::ThreadedEstimator< Model >::estimate_max_stack(), mappel::ThreadedEstimator< Model >::estimate_max_stack(), mappel::Estimator< Model >::estimate_max_stack(), mappel::ThreadedEstimator< Model >::estimate_max_stack(), mappel::ThreadedEstimator< Model >::get_model(), mappel::ThreadedEstimator< Model >::maximize(), mappel::NewtonDiagonalMaximizer< Model >::maximize(), mappel::ThreadedEstimator< Model >::record ← _ exit_code(), and mappel::Estimator< Model >::set_model().

```
8.23.5.11 template < class Model > std::mutex mappel::ThreadedEstimator < Model >::mtx [protected], [inherited]
```

Definition at line 144 of file estimator.h.

Referenced by mappel::ThreadedEstimator< Model >::clear_stats(), mappel::IterativeMaximizer< Model >::clear = _stats(), mappel::ThreadedEstimator< Model >::get_stats(), mappel::IterativeMaximizer< Model >::get_stats(), mappel::ThreadedEstimator< Model >::record_exit_code(), and mappel::IterativeMaximizer< Model >::record_exit_code(), and mappel::IterativeMaximizer< Model >::record_exit_code().

```
8.23.5.12 template < class Model > int mappel::Estimator < Model >::num_estimations = 0 [protected], [inherited]
```

Definition at line 112 of file estimator.h.

Referenced by mappel::Estimator< Model >::clear_stats(), mappel::Estimator< Model >::get_stats(), mappel:: \leftarrow ::ThreadedEstimator< Model >::get_stats(), and mappel:: \leftarrow Estimator< Model >::record_walltime().

```
8.23.5.13 template < class Model > int mappel::ThreadedEstimator < Model >::num_threads [protected], [inherited]
```

Definition at line 143 of file estimator.h.

Referenced by mappel::ThreadedEstimator< Model >::clear_stats(), mappel::ThreadedEstimator< Model >::estimate_max_stack(), mappel::ThreadedEstimator< Model >::estimate_profile_stack(), and mappel::Threaded \leftarrow Estimator< Model >::get_stats().

Definition at line 39 of file estimator.h.

8.23.5.15 template < class Model > int mappel::IterativeMaximizer < Model >::total_backtracks = 0 [protected]

Definition at line 250 of file estimator.h.

Referenced by mappel::IterativeMaximizer < Model >::clear_stats(), mappel::IterativeMaximizer < Model >::get_stats(), and mappel::IterativeMaximizer < Model >::record_run_statistics().

8.23.5.16 template < class Model > int mappel::IterativeMaximizer < Model >::total_der_evals = 0 [protected]

Definition at line 252 of file estimator.h.

Referenced by mappel::IterativeMaximizer< Model >::clear_stats(), mappel::IterativeMaximizer< Model >::get_stats(), and mappel::IterativeMaximizer< Model >::record run statistics().

8.23.5.17 template < class Model > int mappel::IterativeMaximizer < Model >::total_fun_evals = 0 [protected]

Definition at line 251 of file estimator.h.

Referenced by mappel::IterativeMaximizer< Model >::clear_stats(), mappel::IterativeMaximizer< Model >::get_stats(), and mappel::IterativeMaximizer< Model >::record run statistics().

8.23.5.18 template < class Model > int mappel::lterativeMaximizer < Model >::total_iterations = 0 [protected]

Definition at line 249 of file estimator.h.

Referenced by mappel::IterativeMaximizer< Model >::clear_stats(), mappel::IterativeMaximizer< Model >::get_stats(), and mappel::IterativeMaximizer< Model >::record run statistics().

8.23.5.19 template < class Model > double mappel::Estimator < Model >::total_walltime = 0. [protected], [inherited]

Definition at line 113 of file estimator.h.

The documentation for this class was generated from the following files:

- · estimator.h
- estimator_impl.h

8.24 mappel::LogicalError Struct Reference

Failure of code or algorithm logic.

#include </home/travis/build/markjolah/Mappel/include/Mappel/util.h>

Inheritance diagram for mappel::LogicalError:

Public Member Functions

• LogicalError (std::string message)

8.24.1 Detailed Description

Failure of code or algorithm logic.

Definition at line 100 of file util.h.

8.24.2 Constructor & Destructor Documentation

8.24.2.1 mappel::LogicalError::LogicalError(std::string message) [inline]

Definition at line 102 of file util.h.

The documentation for this struct was generated from the following file:

• util.h

8.25 mappel::MAPEstimator Class Reference

A Mixin class to configure a for MLE estimation (null prior).

#include </home/travis/build/markjolah/Mappel/include/Mappel/MAPEstimator.h>

Inheritance diagram for mappel::MAPEstimator:

Public Types

- using ParamT = arma::vec
- using ParamVecT = arma::mat

Public Member Functions

- StatsT get_stats () const
- IdxT get_num_params () const
- void check param shape (const ParamT &theta) const
- void check param shape (const ParamVecT &theta) const
- void check_psf_sigma (double psf_sigma) const
- void check psf sigma (const VecT &psf sigma) const
- ParamT make_param () const
- template<class FillT >

ParamT make_param (FillT fill) const

- ParamVecT make param stack (ldxT n) const
- template<class FillT >

ParamVecT make param stack (IdxT n, FillT fill) const

- MatT make param mat () const
- template<class FillT >

MatT make_param_mat (FillT fill) const

- CubeT make_param_mat_stack (ldxT n) const
- template<class FillT >

CubeT make_param_mat_stack (ldxT n, FillT fill) const

- CompositeDist & get prior ()
- · const CompositeDist & get_prior () const
- void set_prior (CompositeDist &&prior_)
- void set prior (const CompositeDist &prior)
- IdxT get_num_hyperparams () const
- void set hyperparams (const VecT &hyperparams)
- VecT get hyperparams () const
- bool has hyperparam (const std::string &name) const
- double get_hyperparam_value (const std::string &name) const
- int get_hyperparam_index (const std::string &name) const
- void set_hyperparam_value (const std::string &name, double value)
- void rename_hyperparam (const std::string &old_name, const std::string &new_name)
- StringVecT get param names () const
- void set param names (const StringVecT &desc)
- StringVecT get_hyperparam_names () const
- void set_hyperparam_names (const StringVecT &desc)
- template < class RngT >

ParamT sample_prior (RngT &rng)

- ParamT sample prior ()
- void set bounds (const ParamT &lbound, const ParamT &ubound)
- void set Ibound (const ParamT & Ibound)
- void set ubound (const ParamT &ubound)
- const ParamT & get_lbound () const
- const ParamT & get_ubound () const
- bool theta in bounds (const ParamT &theta) const
- · void bound theta (ParamT &theta, double epsilon=bounds epsilon) const
- · ParamT bounded theta (const ParamT &theta, double epsilon=bounds epsilon) const
- ParamT reflected_theta (const ParamT &theta) const
- BoolVecT theta_stack_in_bounds (const ParamVecT &theta) const
- ParamVecT bounded theta stack (const ParamVecT &theta, double epsilon=bounds epsilon) const
- ParamVecT reflected theta stack (const ParamVecT &theta) const

Static Public Member Functions

- static prior_hessian::TruncatedNormalDist make_prior_component_position_normal (ldxT size, double pos_
 sigma=default sigma pos)
- static prior_hessian::ScaledSymmetricBetaDist make_prior_component_position_beta (IdxT size, double pos_
 beta=default_beta_pos)
- static prior_hessian::TruncatedParetoDist make_prior_component_sigma (double min_sigma, double max_
 sigma, double alpha=default_alpha_sigma)
- static void set rng seed (RngSeedT seed)
- static ParallelRngManagerT & get_rng_manager ()
- static ParallelRngGeneratorT & get_rng_generator ()

Static Public Attributes

- static const std::string DefaultSeperableInitEstimator = "TrustRegion"
- static const double bounds_epsilon = 1.0E-6
- static const double global min psf sigma = 1E-1
- static const double global_max_psf_sigma = 1E2
- static const double default_beta_pos = 3
- static const double default_sigma_pos = 1
- static const double default_mean_I = 300
- static const double default_max_I = INFINITY
- static const double default_intensity_kappa = 2
- static const double default_pixel_mean_bg = 4
- static const double default_alpha_sigma = 2

Protected Member Functions

- MAPEstimator ()
- MAPEstimator (const MAPEstimator &o)
- MAPEstimator (MAPEstimator &&o)
- MAPEstimator & operator= (const MAPEstimator &o)
- MAPEstimator & operator= (MAPEstimator &&o)

Protected Attributes

- CompositeDist prior
- · IdxT num params
- IdxT num hyperparams
- ParamT Ibound
- ParamT ubound

8.25.1 Detailed Description

A Mixin class to configure a for MLE estimation (null prior).

Inheriting from this class modifies the objective function undergoing optimization to use a Null prior, by simply ignoreing the effect of the prior on the objective. This which effectively turns the objective function into a pure likelihood function, and the estimator becomes an MLE estimator.

Definition at line 22 of file MAPEstimator.h.

8.25.2 Member Typedef Documentation

8.25.2.1 using mappel::PointEmitterModel::ParamT = arma::vec [inherited]

Parameter vector

Definition at line 47 of file PointEmitterModel.h.

8.25.2.2 using mappel::PointEmitterModel::ParamVecT = arma::mat [inherited]

Vector of parameter vectors

Definition at line 48 of file PointEmitterModel.h.

8.25.3 Constructor & Destructor Documentation

8.25.3.1 mappel::MAPEstimator::MAPEstimator() [inline], [protected]

Definition at line 24 of file MAPEstimator.h.

8.25.3.2 mappel::MAPEstimator::MAPEstimator (const MAPEstimator & o) [inline], [protected]

Definition at line 25 of file MAPEstimator.h.

8.25.3.3 mappel::MAPEstimator::MAPEstimator (MAPEstimator && o) [inline], [protected]

Definition at line 26 of file MAPEstimator.h.

8.25.4 Member Function Documentation

8.25.4.1 void mappel::PointEmitterModel::bound_theta (ParamT & theta, double epsilon = bounds_epsilon) const [inherited]

Definition at line 248 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::Point← EmitterModel::num params, and mappel::PointEmitterModel::ubound.

8.25.4.2 PointEmitterModel::ParamT mappel::PointEmitterModel::bounded_theta (const ParamT & theta, double epsilon = bounds epsilon) const [inherited]

Definition at line 265 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::ubound.

Referenced by mappel::PointEmitterModel::bounded theta stack().

8.25.4.3 PointEmitterModel::ParamVecT mappel::PointEmitterModel::bounded_theta_stack(const ParamVecT & theta, double epsilon = bounds epsilon) const [inherited]

Definition at line 307 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::check_param_shape(), and mappel::PointEmitterModel::make_param_stack().

8.25.4.4 void mappel::PointEmitterModel::check_param_shape (const ParamT & theta) const [inherited]

Definition at line 167 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::num params.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel ::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::reflected_theta(), mappel::PointEmitterModel::reflected_theta(), mappel::PointEmitterModel::theta_in_bounds(), and mappel::PointEmitterModel ::theta_stack_in_bounds().

8.25.4.5 void mappel::PointEmitterModel::check_param_shape (const ParamVecT & theta) const [inherited]

Definition at line 176 of file PointEmitterModel.cpp.

 $References\ mappel:: Point Emitter Model:: num_params.$

8.25.4.6 void mappel::PointEmitterModel::check_psf_sigma (double psf_sigma) const [inherited]

Definition at line 185 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::global_max_psf_sigma, and mappel::PointEmitterModel::global_min_psf_ \leftarrow sigma.

Referenced by mappel::Gauss1DModel(), mappel::Gauss2DModel(), mappel::Gauss2DModel(), mappel::Gauss2DSModel(), mappel::Gauss2DSModel()

8.25.4.7 void mappel::PointEmitterModel::check_psf_sigma (const VecT & psf_sigma) const [inherited]

Definition at line 197 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::global_max_psf_sigma, and mappel::PointEmitterModel::global_min_psf_ \leftarrow sigma.

8.25.4.8 int mappel::PointEmitterModel::get_hyperparam_index (const std::string & name) const [inline], [inherited]

Definition at line 236 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.25.4.9 StringVecT mappel::PointEmitterModel::get_hyperparam_names() const [inline], [inherited]

Definition at line 256 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.25.4.10 double mappel::PointEmitterModel::get_hyperparam_value (const std::string & name) const [inline], [inherited]

Definition at line 232 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

Referenced by mappel::MCMCAdaptor1D::set_background_mcmc_sampling(), and mappel::MCMCAdaptor1D::set_circle intensity_mcmc_sampling().

8.25.4.11 PointEmitterModel::ParamT mappel::PointEmitterModel::get_hyperparams () const [inline], [inherited]

Definition at line 224 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.25.4.12 const PointEmitterModel::ParamT & mappel::PointEmitterModel::get_lbound () const [inline], [inherited]

Definition at line 212 of file PointEmitterModel.h.

References mappel::PointEmitterModel::lbound.

Referenced by mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCMCAdaptor2D::MCMCAdaptor2D(), and mappel::MCMCAdaptor1D::set_background_mcmc_sampling().

8.25.4.13 | IdxT mappel::PointEmitterModel::get_num_hyperparams() const [inline], [inherited]

Definition at line 208 of file PointEmitterModel.h.

 $References\ mappel:: Point Emitter Model:: num_hyperparams.$

8.25.4.14 IdxT mappel::PointEmitterModel::get_num_params()const [inline], [inherited]

Definition at line 160 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

8.25.4.15 StringVecT mappel::PointEmitterModel::get_param_names()const [inline], [inherited]

Definition at line 248 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.25.4.16 CompositeDist & mappel::PointEmitterModel::get_prior() [inline], [inherited]

Definition at line 200 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

Referenced by mappel::Gauss2DModel::update_internal_1Dsum_estimators(), and mappel::Gauss2DsModel ::update_internal_1Dsum_estimators().

8.25.4.17 const CompositeDist & mappel::PointEmitterModel::get_prior() const [inline], [inherited]

Definition at line 204 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.25.4.18 ParallelRngGeneratorT & mappel::PointEmitterModel::get_rng_generator() [static], [inherited]

Definition at line 120 of file PointEmitterModel.cpp.

References mappel::rng manager.

8.25.4.19 ParallelRngManagerT & mappel::PointEmitterModel::get_rng_manager() [static], [inherited]

Definition at line 115 of file PointEmitterModel.cpp.

References mappel::rng_manager.

8.25.4.20 StatsT mappel::PointEmitterModel::get_stats() const [inherited]

Definition at line 125 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::Ibound, mappel::PointEmitterModel::num_hyperparams, mappel::PointEmitterModel::prior, mappel::rng_manager, and mappel::PointEmitter Model::ubound.

Referenced by mappel::Gauss1DModel::get_stats(), mappel::Gauss1DsModel::get_stats(), mappel::Gauss2DModel ::get_stats(), and mappel::Gauss2DsModel::get_stats().

8.25.4.21 const PointEmitterModel::ParamT & mappel::PointEmitterModel::get_ubound() const [inline], [inherited]

Definition at line 216 of file PointEmitterModel.h.

References mappel::PointEmitterModel::ubound.

Referenced by mappel::Gauss2DsxyModel::get_max_sigma_ratio(), mappel::Gauss2DsModel::get_max_sigma_ratio(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCMCAdaptor2D(), mappel::MCMCAdaptor2D(), mappel::MCMCAdaptor1D::set background mcmc sampling(), and mappel::Gauss2DsModel::set max sigma ratio().

8.25.4.22 bool mappel::PointEmitterModel::has_hyperparam (const std::string & name) const [inline], [inherited]

Definition at line 228 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.25.4.23 PointEmitterModel::ParamT mappel::PointEmitterModel::make_param()const [inline], [inherited]

Definition at line 164 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

Referenced by mappel::Gauss1DModel::initial_theta_estimate(), mappel::Gauss1DsModel::initial_theta_estimate(), mappel::Gauss2DModel::initial_theta_estimate(), mappel::Gauss2DsxyModel::initial_theta_estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::Gauss1DModel::pixel_hess_update(), mappel::Gauss1DsModel::pixel_hess_update(), mappel::Gauss2DsModel::pixel_hess_update(), and mappel::Gauss2DsModel::pixel_hess_update().

8.25.4.24 template < class FillT > PointEmitterModel::ParamT mappel::PointEmitterModel::make_param (FillT fill) const [inherited]

Definition at line 181 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

8.25.4.25 MatT mappel::PointEmitterModel::make_param_mat() const [inline], [inherited]

Definition at line 172 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

8.25.4.26 template < class FillT > MatT mappel::PointEmitterModel::make_param_mat(FillT fill) const [inherited]

Definition at line 191 of file PointEmitterModel.h.

 $References\ mappel:: Point Emitter Model:: num_params.$

8.25.4.27 CubeT mappel::PointEmitterModel::make_param_mat_stack(ldxT n) const [inline], [inherited]

Definition at line 176 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

8.25.4.28 template < class FillT > CubeT mappel::PointEmitterModel::make_param_mat_stack (ldxT n, FillT fill) const [inherited]

Definition at line 196 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

8.25.4.29 PointEmitterModel::ParamVecT mappel::PointEmitterModel::make_param_stack(ldxT n) const [inline], [inherited]

Definition at line 168 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

Referenced by mappel::PointEmitterModel::bounded_theta_stack(), and mappel::PointEmitterModel::reflected_theta _ _ stack().

8.25.4.30 template < class FillT > PointEmitterModel::ParamVecT mappel::PointEmitterModel::make_param_stack (ldxT n, FillT fill) const [inherited]

Definition at line 186 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

8.25.4.31 prior_hessian::TruncatedGammaDist mappel::PointEmitterModel::make_prior_component_intensity (double mean = default_mean_I, double kappa = default_intensity_kappa) [static], [inherited]

Definition at line 98 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::default max I.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_beta_position(), mappel::Gauss2Ds \leftarrow default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss1DsModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_normal_cosition(), mappel::Gauss2DModel::make_prior_cosition(), mappel::Gauss2DModel::make_prior_cosition(), mappel::Gauss1DsModel::make_prior_beta_position(), mappel::Gauss2DModel::make_prior_beta_position(), mappel::Gauss2DModel::make_prior_normal_cosition(), mappel::Gauss2DModel::make_prior_normal_cosition(), mappel::Gauss1DsModel::make_prior_normal_cosition(), mappel::Gauss1DsModel::make_prior_normal_cosition(), mappel::Gauss2DsModel::make_prior_normal_cosition(), m

8.25.4.32 prior_hessian::ScaledSymmetricBetaDist mappel::PointEmitterModel::make_prior_component_position_beta (ldxT size, double pos_beta = default_beta_pos_) [static], [inherited]

Definition at line 92 of file PointEmitterModel.cpp.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DModel::make_ \leftarrow default_prior_beta_position(), mappel::Gauss1DModel::make_default_prior_beta_position(), mappel::Gauss2Ds \leftarrow Model::make_default_prior_beta_position(), mappel::Gauss1DsModel::make_prior_beta_position(), mappel::Gauss2Ds \leftarrow DModel::make_prior_beta_position(), mappel::Gauss1DModel::make_prior_beta_position(), and mappel::Gauss2Ds \leftarrow Model::make_prior_beta_position().

8.25.4.33 prior_hessian::TruncatedNormalDist mappel::PointEmitterModel::make_prior_component_position_normal(ldxT size, double pos_sigma = default_sigma_pos) [static], [inherited]

Definition at line 85 of file PointEmitterModel.cpp.

Referenced by mappel::Gauss1DsModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_ \leftarrow default_prior_normal_position(), mappel::Gauss1DModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_prior_normal_position(), mappel::Gauss2DModel::make_prior_normal_position(), mappel::Gauss1DsModel::make_prior_normal_position(), and mappel::Gauss2DsModel::make_prior_normal_position().

8.25.4.34 prior_hessian::TruncatedParetoDist mappel::PointEmitterModel::make_prior_component_sigma (double min_sigma, double max_sigma, double alpha = default_alpha_sigma) [static], [inherited]

Definition at line 104 of file PointEmitterModel.cpp.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DsModel::make_ \leftarrow default_prior_beta_position(), mappel::Gauss1DsModel::make_default_prior_normal_position(), mappel::Gauss2 \leftarrow DsModel::make_default_prior_normal_position(), mappel::Gauss1DsModel::make_prior_beta_position(), mappel::Gauss1DsModel::make_prior_normal_position(), and mappel \leftarrow ::Gauss2DsModel::make_prior_normal_position().

8.25.4.35 MAPEstimator& mappel::MAPEstimator::operator=(const MAPEstimator & o) [inline], [protected]

Definition at line 27 of file MAPEstimator.h.

Referenced by mappel::Gauss1DMAP::operator=(), mappel::Gauss1DsMAP::operator=(), mappel::Gauss2DsMAP::operator=(), and mappel::Gauss2DMAP::operator=().

8.25.4.36 MAPEstimator& mappel::MAPEstimator::operator=(MAPEstimator && o) [inline], [protected]

Definition at line 28 of file MAPEstimator.h.

8.25.4.37 PointEmitterModel::ParamT mappel::PointEmitterModel::reflected_theta (const ParamT & theta) const [inherited]

Definition at line 276 of file PointEmitterModel.cpp.

 $References\ mappel::PointEmitterModel::lbound,\ mappel::PointEmi$

Referenced by mappel::PointEmitterModel::reflected theta stack().

8.25.4.38 PointEmitterModel::ParamVecT mappel::PointEmitterModel::reflected_theta_stack (const ParamVecT & theta) const [inherited]

Definition at line 317 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::make_param_stack(), and mappel::PointEmitterModel::reflected_theta().

8.25.4.39 void mappel::PointEmitterModel::rename_hyperparam (const std::string & old_name, const std::string & new_name)
[inline], [inherited]

Definition at line 244 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.25.4.40 template < class RngT > PointEmitterModel::ParamT mappel::PointEmitterModel::sample_prior(RngT & rng) [inherited]

Definition at line 264 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.25.4.41 PointEmitterModel::ParamT mappel::PointEmitterModel::sample_prior() [inline], [inherited]

Definition at line 268 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior, and mappel::rng_manager.

8.25.4.42 void mappel::PointEmitterModel::set_bounds (const ParamT & *lbound_*, const ParamT & *ubound_*)

Box-type parameter bounds

Modifies the prior bounds to prevent sampling outside the valid box-constraints.

Definition at line 213 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounds_epsilon, mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::pointEmitterModel::ubound, mappel::PointEmitterModel::ubound.

8.25.4.43 void mappel::PointEmitterModel::set_hyperparam_names (const StringVecT & *desc* **)** [inline], [inherited]

Definition at line 260 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.25.4.44 void mappel::PointEmitterModel::set_hyperparam_value (const std::string & name, double value) [inline], [inherited]

Definition at line 240 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.25.4.45 void mappel::PointEmitterModel::set_hyperparams (const VecT & hyperparams) [inline], [inherited]

Definition at line 220 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

Referenced by mappel::Gauss2DModel::set hyperparams(), and mappel::Gauss2DsModel::set hyperparams().

8.25.4.46 void mappel::PointEmitterModel::set_lbound (const ParamT & lbound) [inherited]

Definition at line 226 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounds_epsilon, mappel::PointEmitterModel::lbound, mappel::PointEmitter— Model::num params, mappel::PointEmitterModel::prior, and mappel::PointEmitterModel::ubound.

Referenced by mappel::Gauss1DsModel::set_min_sigma().

8.25.4.47 void mappel::PointEmitterModel::set_param_names (const StringVecT & desc) [inline], [inherited]

Definition at line 252 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.25.4.48 void mappel::PointEmitterModel::set_prior (CompositeDist && prior_) [inherited]

Definition at line 158 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::num_hyperparams, mappel::Point← EmitterModel::num_params, mappel::PointEmitterModel::prior, and mappel::PointEmitterModel::ubound.

Referenced by mappel::Gauss2DModel::set_prior(), and mappel::Gauss2DsModel::set_prior().

8.25.4.49 void mappel::PointEmitterModel::set prior (const CompositeDist & prior) [inherited]

Definition at line 149 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::Ibound, mappel::PointEmitterModel::num_hyperparams, mappel::PointEmitterModel::prior, and mappel::PointEmitterModel::ubound.

8.25.4.50 void mappel::PointEmitterModel::set_rng_seed(RngSeedT seed) [static], [inherited]

Definition at line 110 of file PointEmitterModel.cpp.

References mappel::rng_manager.

8.25.4.51 void mappel::PointEmitterModel::set_ubound (const ParamT & ubound) [inherited]

Definition at line 237 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounds_epsilon, mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::pointEmitterModel::ubound, mappel::PointEmitterModel::pointEmitterModel::ubound.

Referenced by mappel::Gauss1DsModel::set max sigma(), and mappel::Gauss2DsModel::set max sigma ratio().

8.25.4.52 bool mappel::PointEmitterModel::theta_in_bounds (const ParamT & theta) const [inherited]

Definition at line 257 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::Point← EmitterModel::num params, and mappel::PointEmitterModel::ubound.

Referenced by mappel::Gauss2DModel::initial_theta_estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::Gauss1DModel::make_stencil(), mappel::Gauss2DModel::make_stencil(), mappel::Gauss2DsModel::make_stencil(), mappel::Gauss2DsModel::make_stencil(), and mappel::Point
EmitterModel::theta_stack_in_bounds().

8.25.4.53 BoolVecT mappel::PointEmitterModel::theta_stack_in_bounds (const ParamVecT & theta) const [inherited]

Definition at line 297 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), and mappel::PointEmitterModel::theta_in_bounds().

8.25.5 Member Data Documentation

8.25.5.1 const double mappel::PointEmitterModel::bounds_epsilon = 1.0E-6 [static], [inherited]

Distance from the boundary to constrain in bound theta and bounded theta methods

Definition at line 52 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::set_bounds(), mappel::PointEmitterModel::set_lbound(), mappel::Gauss2 \leftarrow DsModel::set_max_sigma_ratio(), and mappel::PointEmitterModel::set_ubound().

8.25.5.2 const double mappel::PointEmitterModel::default_alpha_sigma = 2 [static], [inherited]

Default per-pixel background gamma distribution shape

Definition at line 62 of file PointEmitterModel.h.

8.25.5.3 const double mappel::PointEmitterModel::default_beta_pos = 3 [static], [inherited]

Default position parameter in symmetric beta-distributions

Definition at line 56 of file PointEmitterModel.h.

8.25.5.4 const double mappel::PointEmitterModel::default intensity kappa = 2 [static], [inherited]

Default shape for intensity gamma distributions

Definition at line 60 of file PointEmitterModel.h.

8.25.5.5 const double mappel::PointEmitterModel::default_max_l = INFINITY [static], [inherited]

Default maximum emitter intensity

Definition at line 59 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::make prior component intensity().

8.25.5.6 const double mappel::PointEmitterModel::default_mean_I = 300 [static], [inherited]

Default emitter intensity mean

Definition at line 58 of file PointEmitterModel.h.

Referenced by mappel::MCMCAdaptor1D::set_intensity_mcmc_sampling().

8.25.5.7 const double mappel::PointEmitterModel::default_pixel_mean_bg = 4 [static], [inherited]

Default per-pixel mean background counts

Definition at line 61 of file PointEmitterModel.h.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DModel::make default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_beta_position(), mappel::Gauss1DModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss2DsModel::make_default_prior_normal_position(), and mappel::MCMCAdaptor1Ddisset_background_mcmc_sampling().

8.25.5.8 const double mappel::PointEmitterModel::default_sigma_pos = 1 [static], [inherited]

Default position parameter in symmetric beta-distributions

Definition at line 57 of file PointEmitterModel.h.

8.25.5.9 const std::string mappel::PointEmitterModel::DefaultSeperableInitEstimator = "TrustRegion" [static], [inherited]

Estimator name to use in 1D separable initializations

Definition at line 49 of file PointEmitterModel.h.

Referenced by mappel::Gauss2DModel::initial_theta_estimate(), mappel::Gauss2DsxyModel::initial_theta_estimate(), and mappel::Gauss2DsModel::initial_theta_estimate().

8.25.5.10 const double mappel::PointEmitterModel::global_max_psf_sigma = 1E2 [static], [inherited]

Global maxmimum for any psf_sigma. Sizes above this value are invalid, and nowhere near useful for practical point emitter localization

Definition at line 54 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::check_psf_sigma().

8.25.5.11 const double mappel::PointEmitterModel::global_min_psf_sigma = 1E-1 [static], [inherited]

Global minimum for any psf_sigma. Sizes below this value are invalid, and nowhere near useful for practical point emitter localization

Definition at line 53 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::check_psf_sigma().

8.25.5.12 ParamT mappel::PointEmitterModel::lbound [protected], [inherited]

Definition at line 148 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel ::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::get_stats(), mappel::Gauss1DsModel::initial_theta = estimate(), mappel::Gauss2DsModel::initial_theta = estimate(), mappel::PointEmitterModel::perator=(), mappel::PointEmitterModel::reflected_theta(), mappel::PointEmitterModel = ::set_bounds(), mappel::PointEmitterModel::set_bound(), mappel::PointEmitterModel::set_prior(), mappel::PointEmitterModel::poi

8.25.5.13 IdxT mappel::PointEmitterModel::num_hyperparams [protected], [inherited]

Definition at line 147 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::get_num_hyperparams(), mappel::PointEmitterModel::get_stats(), mappel::PointEmitterModel::operator=(), and mappel::PointEmitterModel::set_prior().

8.25.5.14 IdxT mappel::PointEmitterModel::num_params [protected], [inherited]

Definition at line 146 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel \leftarrow ::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::get_num_params(), mappel::PointEmitter \leftarrow Model::get_stats(), mappel::Gauss1DModel::initial_theta_estimate(), mappel::Gauss2DModel::initial_theta_estimate(), mappel::PointEmitterModel::make_param(), mappel::PointEmitterModel::make_param(), mappel::PointEmitterModel::make_param_mat_stack(), mappel::PointEmitterModel::make_param_stack(), mappel::PointEmitterModel::pointEmitterModel::reflected_theta(), mappel::PointEmitterModel::set_bounds(), mappel::PointEmitterModel::set_bounds(), mappel::PointEmitterModel::set_bounds().

8.25.5.15 CompositeDist mappel::PointEmitterModel::prior [protected], [inherited]

Definition at line 145 of file PointEmitterModel.h.

Referenced by mappel::Gauss2DModel::debug_internal_sum_model_y(), mappel::Gauss2DsModel::debug_internal \
_sum_model_y(), mappel::Gauss2DModel::Gauss2DModel(), mappel::Gauss2DsModel::Gauss2DsModel(), mappel \
::PointEmitterModel::get_hyperparam_index(), mappel::PointEmitterModel::get_hyperparam_names(), mappel::PointEmitterModel::get_hyperparam_names(), mappel::PointEmitterModel::get_param_names(), mappel::PointEmitterModel::get_param_names(), mappel::PointEmitterModel::get_param_names(), mappel::PointEmitterModel::get_param_names(), mappel::PointEmitterModel::pointEmitterModel::has_\(\cdot \) hyperparam(), mappel::PointEmitterModel::pointEmitterModel::pointEmitterModel(), mappel::\(\cdot \) PointEmitterModel::rename_hyperparam(), mappel::PointEmitterModel::set_hyperparam\(\cdot \) mappel::PointEmitterModel::set_hyperparam\(\cdot \) mappel::PointEmitterModel::set_hyperparam\(\cdot \) value(), mappel::PointEmitterModel::set_hyperparam(), mappel::PointEmitterModel::set_lound(), mappel::Gauss1\(\cdot \) DsModel::set_max_sigma(), mappel::Gauss1DsModel::set_min_sigma(), mappel::PointEmitterModel::set_param_\(\cdot \) namppel::PointEmitterModel::set_param\(\cdot \cdot \) namppel::PointEmitterModel::set_param\(\cdot \cdot \cdot \cdot \) namppel::PointEmitterModel::set_param\(\cdot \cd

8.25.5.16 ParamT mappel::PointEmitterModel::ubound [protected], [inherited]

Definition at line 148 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel \leftarrow ::PointEmitterModel::get_stats(), mappel::PointEmitterModel::get_ubound(), mappel::Gauss1DsModel::initial_theta \leftarrow _estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::PointEmitterModel::pointEmitterModel::reflected_theta(), mappel::PointEmitterModel \leftarrow ::set_bounds(), mappel::PointEmitterModel::set_lbound(), mappel::PointEmitterModel::set_prior(), mappel::PointEmitterModel::pointEmitterModel

The documentation for this class was generated from the following file:

· MAPEstimator.h

8.26 mappel::IterativeMaximizer < Model >::MaximizerData Class Reference

#include </home/travis/build/markjolah/Mappel/include/Mappel/estimator.h>

Public Member Functions

- MaximizerData (const Model &model, const ModelDataT< Model > &im, const StencilT< Model > &s, bool save_seq=false, int max_seq_len=0)
- void record iteration ()
- void record_iteration (const ParamT< Model > &accepted_theta)

Record an iteration point (derivatives computed)

void record_backtrack (double rejected_rllh)

Record a backtracked point (no derivative computations performed) Using the saved theta as the default.

void record backtrack (const ParamT< Model > &rejected theta, double rejected rllh)

Record a backtracked point (no derivative computations performed)

• ParamVecT< Model > get theta sequence () const

Return the saved theta sequence.

- IdxVecT get_backtrack_idxs () const
- · VecT get theta sequence rllh () const
- StencilT < Model > & stencil ()

Get the current stencil.

- void set stencil (const StencilT < Model > &s)
- · void save_stencil ()

Save the current stencil to the single reserve spot. Overwrites any previously saved stencil. This is used to save a stencil when backtracking.

void restore stencil ()

Restore the single reserved stencil to the current stencil spot. Overwrites any previously saved stencil. This is used to restore a last good iterate (and associated stencil data) when backtracking.

StencilT < Model > & saved stencil ()

Get the saved stencil.

ParamT< Model > & theta ()

Get the current stencil's theta.

• ParamT< Model > & saved theta ()

Get the saved stencil's theta.

- int getIteration () const
- void set fixed parameters (const ldxVecT &fixed parameters)

Public Attributes

- const ModelDataT< Model > & im
- ParamT< Model > grad
- ParamT< Model > step
- VecT Ibound
- VecT ubound
- double rllh
- int nBacktracks =0
- int nlterations =0
- · bool save seq
- VecT free parameters
- IdxT num_fixed_parameters =0
- IdxVecT fixed idxs

Protected Attributes

- StencilT< Model > s0
- StencilT< Model > s1
- bool current_stencil
- ParamVecT< Model > theta seq
- VecT seq_rllh
- IdxVecT backtrack idxs
- int seq_len =0
- const int max_seq_len

8.26.1 Detailed Description

template<class Model> class mappel::IterativeMaximizer< Model >::MaximizerData

Definition at line 257 of file estimator.h.

8.26.2 Constructor & Destructor Documentation

8.26.2.1 template < class Model > mappel::IterativeMaximizer < Model >::MaximizerData::MaximizerData (const Model & model, const ModelDataT < Model > & im, const StencilT < Model > & s, bool save_seq = false, int max_seq_len = 0)

Definition at line 531 of file estimator_impl.h.

References mappel::IterativeMaximizer< Model >::MaximizerData::backtrack_idxs, mappel::IterativeMaximizer< Model >::MaximizerData::record_iteration(), mappel::IterativeMaximizer< Model >::MaximizerData::seq_rllh, and mappel::IterativeMaximizer< Model >::MaximizerData::theta seq.

8.26.3 Member Function Documentation

8.26.3.1 template < class Model > IdxVecT mappel::IterativeMaximizer < Model >::MaximizerData::get_backtrack_idxs () const [inline]

Definition at line 280 of file estimator.h.

Referenced by mappel::IterativeMaximizer< Model >::record_run_statistics().

8.26.3.2 template < class Model > ParamVecT < Model > mappel::IterativeMaximizer < Model >::MaximizerData::get_theta_sequence() const [inline]

Return the saved theta sequence.

Definition at line 279 of file estimator.h.

Referenced by mappel::IterativeMaximizer < Model >::compute_estimate_debug().

8.26.3.3 template < class Model > VecT mappel::IterativeMaximizer < Model >::MaximizerData::get_theta_sequence_rllh() const [inline]

Definition at line 281 of file estimator.h.

Referenced by mappel::IterativeMaximizer < Model >::compute_estimate_debug().

8.26.3.4 template < class Model > int mappel::IterativeMaximizer < Model >::MaximizerData::getIteration () const [inline]

Definition at line 301 of file estimator.h.

8.26.3.5 template < class Model > void mappel::IterativeMaximizer < Model >::MaximizerData::record_backtrack (double rejected_rllh) [inline]

Record a backtracked point (no derivative computations performed) Using the saved theta as the default.

Definition at line 274 of file estimator.h.

References mappel::IterativeMaximizer< Model >::MaximizerData::record backtrack().

Referenced by mappel::IterativeMaximizer< Model >::backtrack(), and mappel::IterativeMaximizer< Model >::

MaximizerData::record backtrack().

 $8.26.3.6 \quad template < class \ Model > void \ mappel::Iterative \ Maximizer < \ Model > ::Maximizer \ Data::record_backtrack (\ construction \ Param \ T < Model > \& \ rejected_theta, \ double \ rejected_rllh \)$

Record a backtracked point (no derivative computations performed)

Definition at line 566 of file estimator_impl.h.

References mappel::IterativeMaximizer< Model >::MaximizerData::backtrack_idxs, mappel::IterativeMaximizer< Model >::MaximizerData::max_seq_len, mappel::IterativeMaximizer< Model >::MaximizerData::nBacktracks, mappel::IterativeMaximizer< Model >::MaximizerData::save_seq, mappel::IterativeMaximizer< Model >::MaximizerData::seq_rllh, and mappel::IterativeMaximizer< Model >::MaximizerData::seq_rllh, and mappel::IterativeMaximizer

```
8.26.3.7 template < class Model > void mappel::IterativeMaximizer < Model >::MaximizerData::record_iteration ( )
```

Definition at line 270 of file estimator.h.

References mappel::IterativeMaximizer< Model >::MaximizerData::record iteration().

Referenced by mappel::IterativeMaximizer < Model >::backtrack(), mappel::IterativeMaximizer < Model >::Maximizer < Model >::Maximizer Data::Maximizer Data::record_iteration().

8.26.3.8 template < class Model > void mappel::IterativeMaximizer < Model > ::MaximizerData::record_iteration (const ParamT < Model > & accepted_theta)

Record an iteration point (derivatives computed)

Definition at line 554 of file estimator_impl.h.

References mappel::IterativeMaximizer< Model >::MaximizerData::max_seq_len, mappel::IterativeMaximizer< Model >::MaximizerData::rllh, mappel::IterativeMaximizer< Model >::MaximizerData::rllh, mappel::Iterative \hookrightarrow Maximizer< Model >::MaximizerData::save_seq, mappel::IterativeMaximizer< Model >::MaximizerData::seq_ \hookleftarrow len, mappel::IterativeMaximizer< Model >:: \hookleftarrow MaximizerData::theta_seq.

```
8.26.3.9 template < class Model > void mappel::IterativeMaximizer < Model >::MaximizerData::restore_stencil( )
```

Restore the single reserved stencil to the current stencil spot. Overwrites any previously saved stencil. This is used to restore a last good iterate (and associated stencil data) when backtracking.

Definition at line 294 of file estimator.h.

Referenced by mappel::IterativeMaximizer< Model >::backtrack().

```
8.26.3.10 template < class Model > void mappel::IterativeMaximizer < Model >::MaximizerData::save_stencil( ) [inline]
```

Save the current stencil to the single reserve spot. Overwrites any previously saved stencil. This is used to save a stencil when backtracking.

Definition at line 289 of file estimator.h.

Referenced by mappel::IterativeMaximizer< Model >::backtrack().

```
8.26.3.11 template < class Model > StencilT < Model > & mappel::IterativeMaximizer < Model >::MaximizerData::saved_stencil( ) [inline]
```

Get the saved stencil.

Definition at line 296 of file estimator.h.

8.26.3.12 template < class Model > ParamT < Model > & mappel::IterativeMaximizer < Model > ::MaximizerData::saved_theta
() [inline]

Get the saved stencil's theta.

Definition at line 300 of file estimator.h.

Referenced by mappel::IterativeMaximizer< Model >::backtrack(), and mappel::IterativeMaximizer< Model >::convergence test().

8.26.3.13 template < class Model > void mappel::IterativeMaximizer < Model > ::MaximizerData::set_fixed_parameters (const IdxVecT & fixed_parameters)

Definition at line 579 of file estimator_impl.h.

References mappel::IterativeMaximizer< Model >::MaximizerData::fixed_idxs, mappel::IterativeMaximizer< Model >::MaximizerData::free_parameters, and mappel::IterativeMaximizer< Model >::MaximizerData::num_fixed_ \leftarrow parameters.

Referenced by mappel::IterativeMaximizer < Model >::compute profile estimate().

8.26.3.14 template < class Model > void mappel::IterativeMaximizer < Model >::MaximizerData::set_stencil (const StencilT < Model > & s) [inline]

Definition at line 284 of file estimator.h.

Referenced by mappel::IterativeMaximizer < Model >::backtrack().

8.26.3.15 template < class Model > StencilT < Model > & mappel::IterativeMaximizer < Model > ::MaximizerData::stencil()

Get the current stencil.

Definition at line 283 of file estimator.h.

Referenced by mappel::IterativeMaximizer< Model >::backtrack(), mappel::IterativeMaximizer< Model >::compute = __estimate(), mappel::IterativeMaximizer< Model >::compute_estimate_debug(), and mappel::IterativeMaximizer< Model >::local_maximize().

8.26.3.16 template < class | Model > ParamT < Model > ** Maximizer Data::theta () | Finline

Get the current stencil's theta.

Definition at line 298 of file estimator.h.

Referenced by mappel::TrustRegionMaximizer< Model >::compute_bound_scaling_vec(), mappel::Iterative \(\to \) Maximizer < Model >::convergence test().

8.26.4 Member Data Documentation

8.26.4.1 template < class Model > IdxVecT mappel::IterativeMaximizer < Model >::MaximizerData::backtrack_idxs [protected]

Definition at line 313 of file estimator.h.

Referenced by mappel::IterativeMaximizer< Model >::get_debug_stats(), mappel::IterativeMaximizer< Model >:: \leftarrow MaximizerData::MaximizerData(), and mappel::IterativeMaximizer< Model >::MaximizerData::record backtrack().

8.26.4.2 template < class Model > bool mappel::IterativeMaximizer < Model >::MaximizerData::current_stencil [protected]

Definition at line 309 of file estimator.h.

8.26.4.3 template < class Model > IdxVecT mappel::IterativeMaximizer < Model > ::MaximizerData::fixed_idxs

Definition at line 305 of file estimator.h.

Referenced by mappel::IterativeMaximizer < Model >::MaximizerData::set fixed parameters().

8.26.4.4 template < class Model > VecT mappel::IterativeMaximizer < Model >::MaximizerData::free_parameters

Definition at line 303 of file estimator.h.

Referenced by mappel::IterativeMaximizer< Model >::backtrack(), mappel::IterativeMaximizer< Model >::convergence_test(), and mappel::IterativeMaximizer< Model >::MaximizerData::set_fixed_parameters().

8.26.4.5 template < class Model > ParamT < Model > mappel::IterativeMaximizer < Model >::MaximizerData::grad

Definition at line 260 of file estimator.h.

8.26.4.6 template < class Model > const ModelDataT < Model > a mappel::IterativeMaximizer < Model > ::MaximizerData::im

Definition at line 259 of file estimator.h.

Referenced by mappel::IterativeMaximizer< Model >::backtrack().

8.26.4.7 template < class Model > VecT mappel::IterativeMaximizer < Model >::MaximizerData::Ibound

Definition at line 262 of file estimator.h.

Referenced by mappel::TrustRegionMaximizer< Model >::compute bound scaling vec().

8.26.4.8 template < class Model > const int mappel::IterativeMaximizer < Model >::MaximizerData::max_seq_len [protected]

Definition at line 315 of file estimator.h.

Referenced by mappel::IterativeMaximizer< Model >::MaximizerData::record_backtrack(), and mappel::Iterative \(\to \) Maximizer \(\to \) Model >::MaximizerData::record iteration().

8.26.4.9 template < class Model > int mappel::IterativeMaximizer < Model >::MaximizerData::nBacktracks = 0

Definition at line 264 of file estimator.h.

Referenced by mappel::IterativeMaximizer< Model >::MaximizerData::record_backtrack(), and mappel::Iterative
Maximizer< Model >::record_run_statistics().

8.26.4.10 template < class Model > int mappel::IterativeMaximizer < Model >::MaximizerData::nlterations = 0

Definition at line 265 of file estimator.h.

Referenced by mappel::IterativeMaximizer< Model >::MaximizerData::record_iteration(), and mappel::Iterative \(\to \) Maximizer < Model >::record run statistics().

8.26.4.11 template < class Model > IdxT mappel::IterativeMaximizer < Model > ::MaximizerData::num_fixed_parameters = 0

Definition at line 304 of file estimator.h.

Referenced by mappel::IterativeMaximizer< Model >::backtrack(), mappel::IterativeMaximizer< Model >::convergence_test(), and mappel::IterativeMaximizer< Model >::MaximizerData::set_fixed_parameters().

8.26.4.12 template < class Model > double mappel::IterativeMaximizer < Model > ::MaximizerData::rllh

Definition at line 263 of file estimator.h.

Referenced by mappel::IterativeMaximizer< Model >::backtrack(), mappel::SimulatedAnnealingMaximizer< Model >::compute_estimate(), mappel::IterativeMaximizer< Model >::compute_estimate(), mappel::IterativeMaximizer< Model >::compute_estimate_debug(), mappel::IterativeMaximizer< Model >::compute_profile_estimate(), mappel::IterativeMaximizer< Model >::convergence_test(), mappel::IterativeMaximizer< Model >::local_maximize(), and mappel::IterativeMaximizer< Model >::MaximizerData::record_iteration().

8.26.4.13 template < class Model > StencilT < Model > mappel::IterativeMaximizer < Model > ::MaximizerData::s0 [protected]

Definition at line 308 of file estimator.h.

 $\textbf{8.26.4.14} \quad \textbf{template} < \textbf{class Model} > \textbf{StencilT} < \textbf{Model} > \textbf{mappel} :: \textbf{IterativeMaximizer} < \textbf{Model} > :: \textbf{MaximizerData} :: \textbf{standard} = \textbf{standard}$

Definition at line 308 of file estimator.h.

8.26.4.15 template < class Model > bool mappel::IterativeMaximizer < Model >::MaximizerData::save_seq

Definition at line 266 of file estimator.h.

Referenced by mappel::IterativeMaximizer< Model >::MaximizerData::record_backtrack(), mappel::Iterative \cord Maximizer Model >::MaximizerData::record_iteration(), and mappel::IterativeMaximizer< Model >::record_run \cord _ statistics().

8.26.4.16 template < class Model > int mappel::IterativeMaximizer < Model >::MaximizerData::seq_len = 0 [protected]

Definition at line 314 of file estimator.h.

Referenced by mappel::IterativeMaximizer< Model >::MaximizerData::record_backtrack(), and mappel::Iterative
Maximizer< Model >::MaximizerData::record iteration().

8.26.4.17 template < class Model > VecT mappel::IterativeMaximizer < Model >::MaximizerData::seq_rllh [protected]

Definition at line 312 of file estimator.h.

Referenced by mappel::IterativeMaximizer< Model >::MaximizerData::MaximizerData(), mappel::IterativeMaximizer< Model >::MaximizerData::record_backtrack(), and mappel::IterativeMaximizer< Model >::MaximizerData::record_citeration().

8.26.4.18 template < class Model > ParamT < Model > mappel::IterativeMaximizer < Model > ::MaximizerData::step

Definition at line 261 of file estimator.h.

Referenced by mappel::IterativeMaximizer< Model >::backtrack(), and mappel::TrustRegionMaximizer< Model > \leftarrow ::bound_step().

8.26.4.19 template < class Model > ParamVecT < Model > mappel::IterativeMaximizer < Model > ::MaximizerData::theta_seq [protected]

Definition at line 311 of file estimator.h.

Referenced by mappel::IterativeMaximizer< Model >::MaximizerData::MaximizerData(), mappel::IterativeMaximizer< Model >::MaximizerData::record_backtrack(), and mappel::IterativeMaximizer< Model >::MaximizerData::record_citeration().

8.26.4.20 template < class Model > VecT mappel::IterativeMaximizer < Model > ::MaximizerData::ubound

Definition at line 262 of file estimator.h.

Referenced by mappel::TrustRegionMaximizer< Model >::compute bound scaling vec().

The documentation for this class was generated from the following files:

- · estimator.h
- · estimator impl.h

8.27 mappel::MCMCAdaptor1D Class Reference

#include </home/travis/build/markjolah/Mappel/include/Mappel/MCMCAdaptor1D.h>

Inheritance diagram for mappel::MCMCAdaptor1D:

Public Types

- using ParamT = arma::vec
- using ParamVecT = arma::mat

Public Member Functions

- void sample_mcmc_candidate (ldxT sample_index, ParamT &candidate, double step_scale=1.0)
- void set_intensity_mcmc_sampling (double eta_I=-1)
- void set_background_mcmc_sampling (double eta_bg=-1)
- IdxT get_num_params () const
- void check_param_shape (const ParamT &theta) const
- void check_param_shape (const ParamVecT &theta) const
- void check_psf_sigma (double psf_sigma) const
- void check_psf_sigma (const VecT &psf_sigma) const
- · ParamT make param () const
- template<class FillT >
 - ParamT make_param (FillT fill) const
- ParamVecT make_param_stack (ldxT n) const
- template<class FillT >
 - ParamVecT make_param_stack (ldxT n, FillT fill) const
- MatT make_param_mat () const
- template<class FillT >
 - MatT make param mat (FillT fill) const
- CubeT make_param_mat_stack (ldxT n) const
- template<class FillT >
 - CubeT make_param_mat_stack (ldxT n, FillT fill) const
- CompositeDist & get_prior ()
- const CompositeDist & get_prior () const
- void set prior (CompositeDist &&prior)
- void set_prior (const CompositeDist &prior_)
- IdxT get_num_hyperparams () const
- void set_hyperparams (const VecT &hyperparams)
- VecT get_hyperparams () const
- bool has hyperparam (const std::string &name) const
- double get hyperparam value (const std::string &name) const

- int get_hyperparam_index (const std::string &name) const
- void set_hyperparam_value (const std::string &name, double value)
- void rename_hyperparam (const std::string &old_name, const std::string &new_name)
- StringVecT get param names () const
- void set param names (const StringVecT &desc)
- StringVecT get hyperparam names () const
- void set hyperparam names (const StringVecT &desc)
- template<class RngT >
 - ParamT sample_prior (RngT &rng)
- ParamT sample prior ()
- void set bounds (const ParamT &lbound, const ParamT &ubound)
- void set Ibound (const ParamT & Ibound)
- void set_ubound (const ParamT &ubound)
- const ParamT & get Ibound () const
- · const ParamT & get ubound () const
- bool theta in bounds (const ParamT &theta) const
- void bound_theta (ParamT &theta, double epsilon=bounds_epsilon) const
- ParamT bounded_theta (const ParamT &theta, double epsilon=bounds_epsilon) const
- ParamT reflected theta (const ParamT &theta) const
- BoolVecT theta stack in bounds (const ParamVecT &theta) const
- ParamVecT bounded_theta_stack (const ParamVecT &theta, double epsilon=bounds_epsilon) const
- ParamVecT reflected theta stack (const ParamVecT & theta) const
- void set mcmc sigma scale (double scale)
- double get_mcmc_sigma_scale () const
- IdxT get mcmc num phases () const

Static Public Member Functions

- static prior_hessian::ScaledSymmetricBetaDist make_prior_component_position_beta (ldxT size, double pos_
 beta=default_beta_pos)
- static prior_hessian::TruncatedParetoDist make_prior_component_sigma (double min_sigma, double max_
 sigma, double alpha=default_alpha_sigma)
- static void set_rng_seed (RngSeedT seed)
- static ParallelRngManagerT & get rng manager ()
- static ParallelRngGeneratorT & get_rng_generator ()

Static Public Attributes

- static const std::string DefaultSeperableInitEstimator = "TrustRegion"
- static const double bounds epsilon = 1.0E-6
- static const double global min psf sigma = 1E-1
- static const double global_max_psf_sigma = 1E2
- static const double default_beta_pos = 3
- static const double default sigma pos = 1
- static const double default mean I = 300

- static const double default_max_I = INFINITY
- static const double default_intensity_kappa = 2
- static const double default_pixel_mean_bg = 4
- static const double default alpha sigma = 2
- static const double global_default_mcmc_sigma_scale = 0.05
- static const double global_max_mcmc_sigma_scale = 0.5

Protected Member Functions

- MCMCAdaptor1D ()
- MCMCAdaptor1D (double sigma_scale)
- MCMCAdaptor1D (const MCMCAdaptor1D &o)
- MCMCAdaptor1D (MCMCAdaptor1D &&o)
- MCMCAdaptor1D & operator= (const MCMCAdaptor1D &o)
- MCMCAdaptor1D & operator= (MCMCAdaptor1D &&o)
- StatsT get_stats () const
- void set_mcmc_num_phases (IdxT num_phases)

Protected Attributes

- double eta x =0
- double eta_I =0
- double eta bg =0
- · CompositeDist prior
- IdxT num_params
- IdxT num hyperparams
- ParamT Ibound
- · ParamT ubound
- IdxT num_phases
- double sigma_scale

8.27.1 Detailed Description

Definition at line 15 of file MCMCAdaptor1D.h.

8.27.2 Member Typedef Documentation

8.27.2.1 using mappel::PointEmitterModel::ParamT = arma::vec [inherited]

Parameter vector

Definition at line 47 of file PointEmitterModel.h.

8.27.2.2 using mappel::PointEmitterModel::ParamVecT = arma::mat [inherited]

Vector of parameter vectors

Definition at line 48 of file PointEmitterModel.h.

8.27.3 Constructor & Destructor Documentation

8.27.3.1 mappel::MCMCAdaptor1D::MCMCAdaptor1D() [protected]

Definition at line 11 of file MCMCAdaptor1D.cpp.

8.27.3.2 mappel::MCMCAdaptor1D::MCMCAdaptor1D(double sigma_scale) [explicit], [protected]

Definition at line 14 of file MCMCAdaptor1D.cpp.

References eta_x, mappel::PointEmitterModel::get_lbound(), mappel::PointEmitterModel::get_ubound(), set_ background_mcmc_sampling(), set_intensity_mcmc_sampling(), and mappel::MCMCAdaptorBase::sigma_scale.

8.27.3.3 mappel::MCMCAdaptor1D::MCMCAdaptor1D (const MCMCAdaptor1D & o) [protected]

Definition at line 24 of file MCMCAdaptor1D.cpp.

References eta bg, eta I, and eta x.

8.27.3.4 mappel::MCMCAdaptor1D::MCMCAdaptor1D(MCMCAdaptor1D && o) [protected]

Definition at line 33 of file MCMCAdaptor1D.cpp.

References eta bg, eta I, and eta x.

8.27.4 Member Function Documentation

8.27.4.1 void mappel::PointEmitterModel::bound_theta (ParamT & theta, double epsilon = bounds_epsilon) const [inherited]

Definition at line 248 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::ubound.

8.27.4.2 PointEmitterModel::ParamT mappel::PointEmitterModel::bounded_theta (const ParamT & theta, double epsilon = bounds_epsilon) const [inherited]

Definition at line 265 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::ubound, mappel::PointEmitterModel::ubound.

Referenced by mappel::PointEmitterModel::bounded theta stack().

8.27.4.3 PointEmitterModel::ParamVecT mappel::PointEmitterModel::bounded_theta_stack(const ParamVecT & theta, double epsilon = bounds_epsilon) const [inherited]

Definition at line 307 of file PointEmitterModel.cpp.

 $References \quad mappel:: PointEmitterModel:: bounded_theta(), \quad mappel:: PointEmitterModel:: check_param_shape(), \quad and \\ mappel:: PointEmitterModel:: make_param_stack().$

8.27.4.4 void mappel::PointEmitterModel::check_param_shape (const ParamT & theta) const [inherited]

Definition at line 167 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::num_params.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::reflected_theta(), mappel::PointEmitterModel::reflected_theta(), mappel::PointEmitterModel::theta_in_bounds(), and mappel::PointEmitterModel \leftarrow ::theta_stack_in_bounds().

8.27.4.5 void mappel::PointEmitterModel::check_param_shape (const ParamVecT & theta) const [inherited]

Definition at line 176 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::num params.

8.27.4.6 void mappel::PointEmitterModel::check_psf_sigma (double psf_sigma) const [inherited]

Definition at line 185 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::global_max_psf_sigma, and mappel::PointEmitterModel::global_min_psf_ \leftarrow sigma.

Referenced by mappel::Gauss1DModel(), mappel::Gauss2DModel(), mappel::Gauss2DModel(), mappel:: \leftarrow Gauss2DsModel::Gauss2DsModel(), mappel::Gauss1DsModel::set_max_sigma(), mappel::Gauss2DsModel::set_ \leftarrow max_sigma(), mappel::Gauss1DsModel::set_min_sigma(), mappel:: \leftarrow Gauss1DModel::set_psf_sigma(), and mappel::Gauss2DModel::set_psf_sigma().

8.27.4.7 void mappel::PointEmitterModel::check_psf_sigma (const VecT & psf_sigma) const [inherited]

Definition at line 197 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::global_max_psf_sigma, and mappel::PointEmitterModel::global_min_psf_ sigma.

8.27.4.8 int mappel::PointEmitterModel::get_hyperparam_index (const std::string & name) const [inline], [inherited]

Definition at line 236 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.27.4.9 StringVecT mappel::PointEmitterModel::get_hyperparam_names() const [inline], [inherited]

Definition at line 256 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.27.4.10 double mappel::PointEmitterModel::get_hyperparam_value (const std::string & name) const [inline], [inherited]

Definition at line 232 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

Referenced by set_background_mcmc_sampling(), and set_intensity_mcmc_sampling().

8.27.4.11 PointEmitterModel::ParamT mappel::PointEmitterModel::get_hyperparams () const [inline], [inherited]

Definition at line 224 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.27.4.12 const PointEmitterModel::ParamT & mappel::PointEmitterModel::get_lbound() const [inline], [inherited]

Definition at line 212 of file PointEmitterModel.h.

References mappel::PointEmitterModel::lbound.

Referenced by MCMCAdaptor1D(), mappel::MCMCAdaptor2D::MCMCAdaptor2D(), and set_background_mcmc_ sampling().

8.27.4.13 IdxT mappel::MCMCAdaptorBase::get_mcmc_num_phases() const [inherited]

Definition at line 56 of file MCMCAdaptorBase.cpp.

References mappel::MCMCAdaptorBase::num_phases.

8.27.4.14 double mappel::MCMCAdaptorBase::get_mcmc_sigma_scale() const [inherited]

Definition at line 53 of file MCMCAdaptorBase.cpp.

References mappel::MCMCAdaptorBase::sigma_scale.

8.27.4.15 | IdxT mappel::PointEmitterModel::get_num_hyperparams() const [inline], [inherited]

Definition at line 208 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num hyperparams.

8.27.4.16 IdxT mappel::PointEmitterModel::get_num_params() const [inline], [inherited] Definition at line 160 of file PointEmitterModel.h. References mappel::PointEmitterModel::num params. 8.27.4.17 StringVecT mappel::PointEmitterModel::get_param_names() const [inline], [inherited] Definition at line 248 of file PointEmitterModel.h. References mappel::PointEmitterModel::prior. 8.27.4.18 CompositeDist & mappel::PointEmitterModel::get_prior() [inline], [inherited] Definition at line 200 of file PointEmitterModel.h. References mappel::PointEmitterModel::prior. Referenced by mappel::Gauss2DModel::update_internal_1Dsum_estimators(), and mappel::Gauss2DsModel ← ::update_internal_1Dsum_estimators(). 8.27.4.19 const CompositeDist & mappel::PointEmitterModel::get prior () const [inline], [inherited] Definition at line 204 of file PointEmitterModel.h. References mappel::PointEmitterModel::prior. **8.27.4.20** ParallelRngGeneratorT & mappel::PointEmitterModel::get_rng_generator() [static], [inherited] Definition at line 120 of file PointEmitterModel.cpp. References mappel::rng_manager. 8.27.4.21 ParallelRngManagerT & mappel::PointEmitterModel::get_rng_manager() [static],[inherited] Definition at line 115 of file PointEmitterModel.cpp. References mappel::rng manager. **8.27.4.22** StatsT mappel::MCMCAdaptor1D::get_stats() const [protected] Definition at line 98 of file MCMCAdaptor1D.cpp. References eta_bg, eta_I, eta_x, and mappel::MCMCAdaptorBase::get_stats().

Referenced by mappel::MCMCAdaptor1Ds::get stats(), mappel::MCMCAdaptor2D::get stats(), and mappel::Gauss1←

DModel::get stats().

8.27.4.23 const PointEmitterModel::ParamT & mappel::PointEmitterModel::get_ubound() const [inline], [inherited]

Definition at line 216 of file PointEmitterModel.h.

References mappel::PointEmitterModel::ubound.

Referenced by mappel::Gauss2DsxyModel::get_max_sigma_ratio(), mappel::Gauss2DsModel::get_max_sigma_ \leftarrow ratio(), MCMCAdaptor1D(), mappel::MCMCAdaptor2D::MCMCAdaptor2D(), set_background_mcmc_sampling(), and mappel::Gauss2DsModel::set_max_sigma_ratio().

8.27.4.24 bool mappel::PointEmitterModel::has_hyperparam (const std::string & name) const [inline], [inherited]

Definition at line 228 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.27.4.25 PointEmitterModel::ParamT mappel::PointEmitterModel::make_param()const [inline], [inherited]

Definition at line 164 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

Referenced by mappel::Gauss1DModel::initial_theta_estimate(), mappel::Gauss1DsModel::initial_theta_estimate(), mappel::Gauss2DsxyModel::initial_theta_estimate(), mappel::Gauss2DsxyModel::initial_theta_estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::Gauss1DModel::pixel_hess_update(), mappel::Gauss1DsModel::pixel_hess_update(), mappel::Gauss2DsModel::pixel_hess_update(), and mappel::Gauss2DsModel::pixel_hess_update().

8.27.4.26 template < class FillT > PointEmitterModel::ParamT mappel::PointEmitterModel::make_param (FillT fill) const [inherited]

Definition at line 181 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

8.27.4.27 MatT mappel::PointEmitterModel::make_param_mat()const [inline], [inherited]

Definition at line 172 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

8.27.4.28 template < class FillT > MatT mappel::PointEmitterModel::make_param_mat(FillT fill) const [inherited]

Definition at line 191 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

8.27.4.29 CubeT mappel::PointEmitterModel::make_param_mat_stack(ldxT n) const [inline], [inherited]

Definition at line 176 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

8.27.4.30 template < class FillT > CubeT mappel::PointEmitterModel::make_param_mat_stack (ldxT n, FillT fill) const [inherited]

Definition at line 196 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

8.27.4.31 PointEmitterModel::ParamVecT mappel::PointEmitterModel::make_param_stack(ldxT n) const [inline], [inherited]

Definition at line 168 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

Referenced by mappel::PointEmitterModel::bounded_theta_stack(), and mappel::PointEmitterModel::reflected_theta __stack().

8.27.4.32 template < class FillT > PointEmitterModel::ParamVecT mappel::PointEmitterModel::make_param_stack(ldxT n, FillT fill) const [inherited]

Definition at line 186 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

8.27.4.33 prior_hessian::TruncatedGammaDist mappel::PointEmitterModel::make_prior_component_intensity (double mean = default_mean_I, double kappa = default_intensity_kappa) [static], [inherited]

Definition at line 98 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::default_max_I.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_beta_position(), mappel::Gauss2Ds \leftarrow default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss1DsModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_normal_costion(), mappel::Gauss2DModel::make_prior_costion(), mappel::Gauss2DModel::make_prior_beta_position(), mappel::Gauss1DModel::make_prior_beta_position(), mappel::Gauss2DModel::make_prior_beta_position(), mappel::Gauss2DModel::make_prior_normal_costion(), mappel::Gauss1DsModel::make_prior_normal_costion(), mappel::Gauss1DsModel::make_prior_normal_costion(), mappel::Gauss1DsModel::make_prior_normal_costion(), mappel::Gauss1DsModel::make_prior_normal_costion(), mappel::Gauss2DsModel::make_prior_normal_costion(), mappel::Gauss2DsModel::make_prior_normal_costion(), mappel::Gauss2DsModel::make_prior_normal_costion(), mappel::Gauss2DsModel::make_prior_normal_costion(), mappel::Gauss2DsModel::make_prior_normal_position().

8.27.4.34 prior_hessian::ScaledSymmetricBetaDist mappel::PointEmitterModel::make_prior_component_position_beta (ldxT size, double pos_beta = default_beta_pos_) [static], [inherited]

Definition at line 92 of file PointEmitterModel.cpp.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DModel::make_ \leftarrow default_prior_beta_position(), mappel::Gauss1DModel::make_default_prior_beta_position(), mappel::Gauss2Ds \leftarrow Model::make_default_prior_beta_position(), mappel::Gauss1DsModel::make_prior_beta_position(), mappel::Gauss2Ds \leftarrow DModel::make_prior_beta_position(), mappel::Gauss1DModel::make_prior_beta_position(), and mappel::Gauss2Ds \leftarrow Model::make_prior_beta_position().

8.27.4.35 prior_hessian::TruncatedNormalDist mappel::PointEmitterModel::make_prior_component_position_normal(ldxT size, double pos_sigma = default_sigma_pos) [static], [inherited]

Definition at line 85 of file PointEmitterModel.cpp.

Referenced by mappel::Gauss1DsModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_ \leftarrow default_prior_normal_position(), mappel::Gauss1DModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_prior_normal_position(), mappel::Gauss2DModel::make_prior_normal_position(), mappel::Gauss1DsModel::make_prior_normal_position(), and mappel::Gauss2DsModel::make_prior_normal_position().

8.27.4.36 prior_hessian::TruncatedParetoDist mappel::PointEmitterModel::make_prior_component_sigma (double min_sigma, double max_sigma, double alpha = default_alpha_sigma) [static], [inherited]

Definition at line 104 of file PointEmitterModel.cpp.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DsModel::make_default_prior_beta_position(), mappel::Gauss1DsModel::make_default_prior_normal_position(), mappel::Gauss2\to DsModel::make_default_prior_normal_position(), mappel::Gauss1DsModel::make_prior_beta_position(), mappel::Gauss2DsModel::make_prior_beta_position(), and mappel\to ::Gauss2DsModel::make_prior_normal_position().

8.27.4.37 MCMCAdaptor1D & mappel::MCMCAdaptor1D::operator=(const MCMCAdaptor1D & o) [protected]

Definition at line 42 of file MCMCAdaptor1D.cpp.

References eta bg, eta I, and eta x.

Referenced by mappel::MCMCAdaptor1Ds::operator=(), mappel::MCMCAdaptor2D::operator=(), and mappel:: \leftarrow Gauss1DModel::operator=().

8.27.4.38 MCMCAdaptor1D & mappel::MCMCAdaptor1D::operator=(MCMCAdaptor1D && o) [protected]

Definition at line 53 of file MCMCAdaptor1D.cpp.

References eta bg, eta I, and eta x.

8.27.4.39 PointEmitterModel::ParamT mappel::PointEmitterModel::reflected_theta (const ParamT & theta) const [inherited]

Definition at line 276 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::Point← EmitterModel::num_params, and mappel::PointEmitterModel::ubound.

Referenced by mappel::PointEmitterModel::reflected_theta_stack().

8.27.4.40 PointEmitterModel::ParamVecT mappel::PointEmitterModel::reflected_theta_stack(const ParamVecT & theta) const [inherited]

Definition at line 317 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::make_param_stack(), and mappel::PointEmitterModel::reflected_theta().

8.27.4.41 void mappel::PointEmitterModel::rename_hyperparam (const std::string & old_name, const std::string & new_name)
[inline], [inherited]

Definition at line 244 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.27.4.42 void mappel::MCMCAdaptor1D::sample_mcmc_candidate (IdxT sample_index, ParamT & candidate, double step_scale = 1 . 0)

Definition at line 108 of file MCMCAdaptor1D.cpp.

References eta_bg, eta_I, eta_x, mappel::MCMCAdaptorBase::num_phases, and mappel::rng_manager.

8.27.4.43 template < class RngT > PointEmitterModel::ParamT mappel::PointEmitterModel::sample_prior(RngT & rng)
[inherited]

Definition at line 264 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.27.4.44 PointEmitterModel::ParamT mappel::PointEmitterModel::sample_prior() [inline], [inherited]

Definition at line 268 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior, and mappel::rng manager.

8.27.4.45 void mappel:: $MCMCAdaptor1D::set_background_mcmc_sampling (double eta_bg = -1)$

Definition at line 81 of file MCMCAdaptor1D.cpp.

References mappel::PointEmitterModel::default_pixel_mean_bg, eta_bg, mappel::PointEmitterModel::get_hyperparam __value(), mappel::PointEmitterModel::get_lbound(), mappel::PointEmitterModel::get_ubound(), and mappel::MCMC __ AdaptorBase::sigma_scale.

Referenced by MCMCAdaptor1D().

```
8.27.4.46 void mappel::PointEmitterModel::set_bounds ( const ParamT & lbound_, const ParamT & ubound_ )
[inherited]
```

Box-type parameter bounds

Modifies the prior bounds to prevent sampling outside the valid box-constraints.

Definition at line 213 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounds_epsilon, mappel::PointEmitterModel::lbound, mappel::PointEmitter— Model::num_params, mappel::PointEmitterModel::pointEmitterModel::ubound.

```
8.27.4.47 void mappel::PointEmitterModel::set_hyperparam_names ( const StringVecT & desc ) [inline], [inherited]
```

Definition at line 260 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

```
8.27.4.48 void mappel::PointEmitterModel::set_hyperparam_value ( const std::string & name, double value ) [inline], [inherited]
```

Definition at line 240 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

```
8.27.4.49 void mappel::PointEmitterModel::set_hyperparams ( const VecT & hyperparams ) [inline], [inherited]
```

Definition at line 220 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

Referenced by mappel::Gauss2DModel::set_hyperparams(), and mappel::Gauss2DsModel::set_hyperparams().

```
8.27.4.50 void mappel::MCMCAdaptor1D::set_intensity_mcmc_sampling ( double eta_l = -1 )
```

Definition at line 65 of file MCMCAdaptor1D.cpp.

References mappel::PointEmitterModel::default_mean_I, eta_I, mappel::PointEmitterModel::get_hyperparam_value(), and mappel::MCMCAdaptorBase::sigma_scale.

Referenced by MCMCAdaptor1D().

8.27.4.51 void mappel::PointEmitterModel::set_lbound (const ParamT & lbound) [inherited]

Definition at line 226 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounds_epsilon, mappel::PointEmitterModel::lbound, mappel::PointEmitter— Model::num_params, mappel::PointEmitterModel::pointEmitterModel::ubound.

Referenced by mappel::Gauss1DsModel::set min sigma().

8.27.4.52 void mappel::MCMCAdaptorBase::set_mcmc_num_phases(| IdxT num_phases) [protected], [inherited]

Definition at line 59 of file MCMCAdaptorBase.cpp.

References mappel::MCMCAdaptorBase::num_phases.

Referenced by mappel::MCMCAdaptor1Ds::MCMCAdaptor1Ds(), and mappel::MCMCAdaptor2Ds::MCMCAdaptor2 → Ds().

8.27.4.53 void mappel::MCMCAdaptorBase::set_mcmc_sigma_scale (double scale) [inherited]

Definition at line 39 of file MCMCAdaptorBase.cpp.

References mappel::MCMCAdaptorBase::global_max_mcmc_sigma_scale, and mappel::MCMCAdaptorBase::sigma - _ scale.

8.27.4.54 void mappel::PointEmitterModel::set_param_names (const StringVecT & desc) [inline], [inherited]

Definition at line 252 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.27.4.55 void mappel::PointEmitterModel::set_prior(CompositeDist && prior_) [inherited]

Definition at line 158 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::num_hyperparams, mappel::PointEmitterModel::pointEmitterModel::pointEmitterModel::ubound.

Referenced by mappel::Gauss2DModel::set_prior(), and mappel::Gauss2DsModel::set_prior().

8.27.4.56 void mappel::PointEmitterModel::set_prior (const CompositeDist & prior_) [inherited]

Definition at line 149 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::num_hyperparams, mappel::PointEmitterModel::pointEmitterModel::pointEmitterModel::ubound.

8.27.4.57 void mappel::PointEmitterModel::set_rng_seed(RngSeedT seed) [static], [inherited]

Definition at line 110 of file PointEmitterModel.cpp.

References mappel::rng_manager.

8.27.4.58 void mappel::PointEmitterModel::set_ubound(const ParamT & ubound) [inherited]

Definition at line 237 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounds_epsilon, mappel::PointEmitterModel::lbound, mappel::PointEmitter (
Model::num params, mappel::PointEmitterModel::prior, and mappel::PointEmitterModel::ubound.

Referenced by mappel::Gauss1DsModel::set_max_sigma(), and mappel::Gauss2DsModel::set_max_sigma_ratio().

8.27.4.59 bool mappel::PointEmitterModel::theta_in_bounds (const ParamT & theta) const [inherited]

Definition at line 257 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::ubound.

Referenced by mappel::Gauss2DModel::initial_theta_estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::Gauss1DModel::make_stencil(), mappel::Gauss2DModel::make_stencil(), mappel::Gauss2DsModel::make_stencil(), mappel::Gauss2DsModel::make_stencil(), and mappel::Point
EmitterModel::theta stack in bounds().

8.27.4.60 BoolVecT mappel::PointEmitterModel::theta stack in bounds (const ParamVecT & theta) const [inherited]

Definition at line 297 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check param shape(), and mappel::PointEmitterModel::theta in bounds().

8.27.5 Member Data Documentation

8.27.5.1 const double mappel::PointEmitterModel::bounds_epsilon = 1.0E-6 [static], [inherited]

Distance from the boundary to constrain in bound_theta and bounded_theta methods

Definition at line 52 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::set_bounds(), mappel::PointEmitterModel::set_lbound(), mappel::Gauss2 DsModel::set_max_sigma_ratio(), and mappel::PointEmitterModel::set_ubound().

8.27.5.2 const double mappel::PointEmitterModel::default_alpha_sigma = 2 [static], [inherited]

Default per-pixel background gamma distribution shape

Definition at line 62 of file PointEmitterModel.h.

8.27.5.3 const double mappel::PointEmitterModel::default_beta_pos = 3 [static], [inherited] Default position parameter in symmetric beta-distributions Definition at line 56 of file PointEmitterModel.h. 8.27.5.4 const double mappel::PointEmitterModel::default intensity_kappa = 2 [static], [inherited] Default shape for intensity gamma distributions Definition at line 60 of file PointEmitterModel.h. 8.27.5.5 const double mappel::PointEmitterModel::default_max_I = INFINITY [static], [inherited] Default maximum emitter intensity Definition at line 59 of file PointEmitterModel.h. Referenced by mappel::PointEmitterModel::make prior component intensity(). 8.27.5.6 const double mappel::PointEmitterModel::default mean I = 300 [static], [inherited] Default emitter intensity mean Definition at line 58 of file PointEmitterModel.h. Referenced by set_intensity_mcmc_sampling(). 8.27.5.7 const double mappel::PointEmitterModel::default pixel mean bq = 4 [static], [inherited] Default per-pixel mean background counts Definition at line 61 of file PointEmitterModel.h. Referenced by mappel::Gauss1DsModel::make default prior beta position(), mappel::Gauss2DModel::make ← default prior beta position(), mappel::Gauss1DModel::make_default_prior_beta_position(), mappel::Gauss2← DsModel::make default prior beta position(), mappel::Gauss1DsModel::make default prior normal position(), mappel::Gauss2DModel::make_default_prior_normal_position(), $mappel::Gauss1DModel::make_default_prior_{\leftarrow}$ normal position(), mappel::Gauss2DsModel::make_default_prior_normal_position(), and set_background_mcmc_ sampling(). **8.27.5.8** const double mappel::PointEmitterModel::default_sigma_pos = 1 [static], [inherited]

Default position parameter in symmetric beta-distributions

Definition at line 57 of file PointEmitterModel.h.

8.27.5.9 const std::string mappel::PointEmitterModel::DefaultSeperableInitEstimator = "TrustRegion" [static], [inherited]

Estimator name to use in 1D separable initializations

Definition at line 49 of file PointEmitterModel.h.

Referenced by mappel::Gauss2DModel::initial_theta_estimate(), mappel::Gauss2DsxyModel::initial_theta_estimate(), and mappel::Gauss2DsModel::initial_theta_estimate().

8.27.5.10 double mappel::MCMCAdaptor1D::eta_bg =0 [protected]

The standard deviation for the normally distributed perturbation to theta bg in the random walk MCMC sampling

Definition at line 32 of file MCMCAdaptor1D.h.

Referenced by get_stats(), MCMCAdaptor1D(), operator=(), mappel::MCMCAdaptor2D::sample_mcmc_candidate(), mappel::MCMCAdaptor2Ds::sample_mcmc_candidate(), mappel::MCMCAdaptor1Ds::sample_mcmc_candidate(), sample_mcmc_candidate(), and set_background_mcmc_sampling().

8.27.5.11 double mappel::MCMCAdaptor1D::eta_l = 0 [protected]

The standard deviation for the normally distributed perturbation to theta_I in the random walk MCMC sampling

Definition at line 31 of file MCMCAdaptor1D.h.

Referenced by get_stats(), MCMCAdaptor1D(), operator=(), mappel::MCMCAdaptor2D::sample_mcmc_candidate(), mappel::MCMCAdaptor2Ds::sample_mcmc_candidate(), mappel::MCMCAdaptor1Ds::sample_mcmc_candidate(), sample mcmc candidate(), and set intensity mcmc sampling().

8.27.5.12 double mappel::MCMCAdaptor1D::eta_x = 0 [protected]

The standard deviation for the normally distributed perturbation to theta_x in the random walk MCMC sampling

Definition at line 30 of file MCMCAdaptor1D.h.

Referenced by get_stats(), MCMCAdaptor1D(), operator=(), mappel::MCMCAdaptor2D::sample_mcmc_candidate(), mappel::MCMCAdaptor1Ds::sample_mcmc_candidate(), and sample mcmc candidate().

8.27.5.13 const double mappel::MCMCAdaptorBase::global_default_mcmc_sigma_scale = 0.05 [static], [inherited]

Definition at line 16 of file MCMCAdaptorBase.h.

 $Referenced \ by \ mappel::MCMCAdaptor1Ds::MCMCAdaptor1Ds(), \ mappel::MCMCAdaptor2D::MCMCAdaptor2D(), \ and \ mappel::MCMCAdaptor2Ds::MCMCAdaptor2Ds().$

8.27.5.14 const double mappel::MCMCAdaptorBase::global_max_mcmc_sigma_scale = 0.5 [static], [inherited]

Definition at line 17 of file MCMCAdaptorBase.h.

Referenced by mappel::MCMCAdaptorBase::MCMCAdaptorBase(), and mappel::MCMCAdaptorBase::set_mcmc_ sigma scale().

8.27.5.15 const double mappel::PointEmitterModel::global_max_psf_sigma = 1E2 [static], [inherited]

Global maxmimum for any psf_sigma. Sizes above this value are invalid, and nowhere near useful for practical point emitter localization

Definition at line 54 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::check_psf_sigma().

8.27.5.16 const double mappel::PointEmitterModel::global_min_psf_sigma = 1E-1 [static], [inherited]

Global minimum for any psf_sigma. Sizes below this value are invalid, and nowhere near useful for practical point emitter localization

Definition at line 53 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::check_psf_sigma().

8.27.5.17 ParamT mappel::PointEmitterModel::lbound [protected], [inherited]

Definition at line 148 of file PointEmitterModel.h.

8.27.5.18 IdxT mappel::PointEmitterModel::num_hyperparams [protected], [inherited]

Definition at line 147 of file PointEmitterModel.h.

 $Referenced \quad by \quad mappel::PointEmitterModel::get_num_hyperparams(), \quad mappel::PointEmitterModel::get_stats(), \\ mappel::PointEmitterModel::operator=(), and \\ mappel::PointEmitterModel::set_prior().$

8.27.5.19 IdxT mappel::PointEmitterModel::num_params [protected], [inherited]

Definition at line 146 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel \leftarrow ::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::get_num_params(), mappel::PointEmitter \leftarrow Model::get_stats(), mappel::Gauss1DModel::initial_theta_estimate(), mappel::Gauss2DModel::initial_theta_estimate(), mappel::PointEmitterModel::make_param(), mappel::PointEmitterModel::make_param(), mappel::PointEmitterModel::make_param_mat_stack(), mappel::PointEmitterModel::make_param_stack(), mappel::PointEmitterModel::operator=(), mappel::PointEmitterModel::reflected_theta(), mappel::PointEmitterModel::set_bounds(), mappel::PointEmitterModel::set_bounds(), mappel::PointEmitterModel::set_bounds().

8.27.5.20 IdxT mappel::MCMCAdaptorBase::num_phases [protected], [inherited]

The number of different sampling phases for candidate selection MCMC. Each phase changes a different subset of variables.

Definition at line 29 of file MCMCAdaptorBase.h.

Referenced by mappel::MCMCAdaptorBase::get_mcmc_num_phases(), mappel::MCMCAdaptorBase::get_stats(), mappel::MCMCAdaptor2Ds::sample_mcmc_candidate(), mappel::MCMCAdaptor1Ds::sample_mcmc_candidate(), sample_mcmc_candidate(), and mappel::MCMCAdaptor Base::set_mcmc_num_phases().

8.27.5.21 CompositeDist mappel::PointEmitterModel::prior [protected], [inherited]

Definition at line 145 of file PointEmitterModel.h.

8.27.5.22 double mappel::MCMCAdaptorBase::sigma_scale [protected], [inherited]

A scaling factor for step sizes as a fraction of the size of the domain dimension we are walking in. (0.05 default)

Definition at line 30 of file MCMCAdaptorBase.h.

Referenced by mappel::MCMCAdaptorBase::get_mcmc_sigma_scale(), mappel::MCMCAdaptorBase::get_stats(), MCMCAdaptor1D(), mappel::MCMCAdaptor1Ds::MCMCAdaptor1Ds::MCMCAdaptor1Ds::MCMCAdaptor2D::MCMCAdaptor2Dc::MCMCAdaptor2Dc::MCMCAdaptor2Dc(), set_background_mcmc_sampling(), set_intensity_mcmc_ sampling(), and mappel::MCMCAdaptorBase::set mcmc sigma scale().

8.27.5.23 ParamT mappel::PointEmitterModel::ubound [protected], [inherited]

Definition at line 148 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel ::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::get_ubound(), mappel::Gauss1DsModel::initial_theta = estimate(), mappel::Gauss2DsModel::initial_theta = estimate(), mappel::PointEmitterModel::perator=(), mappel::PointEmitterModel::reflected_theta(), mappel::PointEmitterModel = ::set_bounds(), mappel::PointEmitterModel::set_bound(), mappel::PointEmitterModel::set_prior(), mappel::PointEmitterModel::pointEmitterModel::set_prior(), mappel::PointEmitterModel::set_bounds().

The documentation for this class was generated from the following files:

- MCMCAdaptor1D.h
- MCMCAdaptor1D.cpp

8.28 mappel::MCMCAdaptor1Ds Class Reference

#include </home/travis/build/markjolah/Mappel/include/Mappel/MCMCAdaptor1Ds.h>

Inheritance diagram for mappel::MCMCAdaptor1Ds:

Public Types

- using ParamT = arma::vec
- using ParamVecT = arma::mat

Public Member Functions

- void sample_mcmc_candidate (IdxT sample_index, ParamT &candidate, double step_scale=1.0)
- void set_intensity_mcmc_sampling (double eta_I=-1)
- void set background mcmc sampling (double eta bg=-1)
- IdxT get num params () const
- · void check param shape (const ParamT &theta) const
- void check param shape (const ParamVecT &theta) const
- void check_psf_sigma (double psf_sigma) const
- void check_psf_sigma (const VecT &psf_sigma) const
- ParamT make param () const
- template<class FillT >
 - ParamT make_param (FillT fill) const
- ParamVecT make param stack (IdxT n) const
- template<class FillT >
 - ParamVecT make param stack (IdxT n, FillT fill) const
- · MatT make param mat () const
- template<class FillT >
 - MatT make_param_mat (FillT fill) const
- CubeT make_param_mat_stack (ldxT n) const
- template<class FillT >
 - CubeT make_param_mat_stack (ldxT n, FillT fill) const
- CompositeDist & get_prior ()
- const CompositeDist & get_prior () const
- void set prior (CompositeDist &&prior)

- void set_prior (const CompositeDist &prior_)
- IdxT get num hyperparams () const
- void set_hyperparams (const VecT &hyperparams)
- VecT get_hyperparams () const
- bool has hyperparam (const std::string &name) const
- double get_hyperparam_value (const std::string &name) const
- int get_hyperparam_index (const std::string &name) const
- void set hyperparam value (const std::string &name, double value)
- void rename hyperparam (const std::string &old name, const std::string &new name)
- StringVecT get param names () const
- void set_param_names (const StringVecT &desc)
- StringVecT get hyperparam names () const
- void set hyperparam names (const StringVecT &desc)
- template < class RngT >
 ParamT sample_prior (RngT &rng)
- ParamT sample prior ()
- void set bounds (const ParamT &lbound, const ParamT &ubound)
- void set_lbound (const ParamT &lbound)
- void set ubound (const ParamT &ubound)
- · const ParamT & get_lbound () const
- const ParamT & get_ubound () const
- bool theta in bounds (const ParamT &theta) const
- void bound theta (ParamT &theta, double epsilon=bounds epsilon) const
- ParamT bounded_theta (const ParamT &theta, double epsilon=bounds_epsilon) const
- · ParamT reflected theta (const ParamT &theta) const
- BoolVecT theta stack in bounds (const ParamVecT &theta) const
- · ParamVecT bounded theta stack (const ParamVecT &theta, double epsilon=bounds epsilon) const
- ParamVecT reflected theta stack (const ParamVecT &theta) const
- void set_mcmc_sigma_scale (double scale)
- double get_mcmc_sigma_scale () const
- IdxT get_mcmc_num_phases () const

Static Public Member Functions

- static prior_hessian::ScaledSymmetricBetaDist make_prior_component_position_beta (ldxT size, double pos_
 beta=default_beta_pos)
- static prior_hessian::TruncatedParetoDist make_prior_component_sigma (double min_sigma, double max_
 sigma, double alpha=default alpha sigma)
- static void set_rng_seed (RngSeedT seed)
- static ParallelRngManagerT & get_rng_manager ()
- static ParallelRngGeneratorT & get rng generator ()

Static Public Attributes

- static const std::string DefaultSeperableInitEstimator = "TrustRegion"
- static const double bounds epsilon = 1.0E-6
- static const double global_min_psf_sigma = 1E-1
- static const double global_max_psf_sigma = 1E2
- static const double default_beta_pos = 3
- static const double default sigma pos = 1
- static const double default_mean_l = 300
- static const double default max I = INFINITY
- static const double default intensity kappa = 2
- static const double default pixel mean bg = 4
- static const double default alpha sigma = 2
- static const double global default mcmc sigma scale = 0.05
- static const double global_max_mcmc_sigma_scale = 0.5

Protected Member Functions

- MCMCAdaptor1Ds ()
- MCMCAdaptor1Ds (double sigma_scale)
- MCMCAdaptor1Ds (const MCMCAdaptor1Ds &o)
- MCMCAdaptor1Ds (MCMCAdaptor1Ds &&o)
- MCMCAdaptor1Ds & operator= (const MCMCAdaptor1Ds &o)
- MCMCAdaptor1Ds & operator= (MCMCAdaptor1Ds &&o)
- StatsT get_stats () const
- void set_mcmc_num_phases (ldxT num_phases)

Protected Attributes

- double eta sigma =-1
- double eta x =0
- double eta I =0
- double eta_bg =0
- · CompositeDist prior
- IdxT num_params
- IdxT num hyperparams
- ParamT Ibound
- · ParamT ubound
- IdxT num_phases
- double sigma_scale

8.28.1 Detailed Description

Definition at line 14 of file MCMCAdaptor1Ds.h.

8.28.2 Member Typedef Documentation

8.28.2.1 using mappel::PointEmitterModel::ParamT = arma::vec [inherited]

Parameter vector

Definition at line 47 of file PointEmitterModel.h.

8.28.2.2 using mappel::PointEmitterModel::ParamVecT = arma::mat [inherited]

Vector of parameter vectors

Definition at line 48 of file PointEmitterModel.h.

8.28.3 Constructor & Destructor Documentation

8.28.3.1 mappel::MCMCAdaptor1Ds::MCMCAdaptor1Ds() [protected]

Definition at line 11 of file MCMCAdaptor1Ds.cpp.

References mappel::MCMCAdaptorBase::global default mcmc sigma scale.

8.28.3.2 mappel::MCMCAdaptor1Ds::MCMCAdaptor1Ds (double sigma_scale) [explicit], [protected]

Definition at line 14 of file MCMCAdaptor1Ds.cpp.

References eta_sigma, mappel::MCMCAdaptorBase::set_mcmc_num_phases(), and mappel::MCMCAdaptorBase ← ::sigma scale.

8.28.3.3 mappel::MCMCAdaptor1Ds::MCMCAdaptor1Ds (const MCMCAdaptor1Ds & o) [protected]

Definition at line 21 of file MCMCAdaptor1Ds.cpp.

References eta_sigma.

8.28.3.4 mappel::MCMCAdaptor1Ds::MCMCAdaptor1Ds (MCMCAdaptor1Ds && o) [protected]

Definition at line 28 of file MCMCAdaptor1Ds.cpp.

References eta_sigma.

8.28.4 Member Function Documentation

8.28.4.1 void mappel::PointEmitterModel::bound_theta (ParamT & theta, double epsilon = bounds_epsilon) const [inherited]

Definition at line 248 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::Point← EmitterModel::num params, and mappel::PointEmitterModel::ubound.

8.28.4.2 PointEmitterModel::ParamT mappel::PointEmitterModel::bounded_theta (const ParamT & theta, double epsilon = bounds_epsilon) const [inherited]

Definition at line 265 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::ubound, mappel::PointEmitterModel::ubound.

Referenced by mappel::PointEmitterModel::bounded theta stack().

8.28.4.3 PointEmitterModel::ParamVecT mappel::PointEmitterModel::bounded_theta_stack (const ParamVecT & theta, double epsilon = bounds_epsilon) const [inherited]

Definition at line 307 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::check_param_shape(), and mappel::PointEmitterModel::make_param_stack().

8.28.4.4 void mappel::PointEmitterModel::check_param_shape (const ParamT & theta) const [inherited]

Definition at line 167 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::num params.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::reflected_theta(), mappel::PointEmitterModel::reflected_theta(), mappel::PointEmitterModel::theta_in_bounds(), and mappel::PointEmitterModel \leftarrow ::theta_stack_in_bounds().

8.28.4.5 void mappel::PointEmitterModel::check_param_shape (const ParamVecT & theta) const [inherited]

Definition at line 176 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::num_params.

8.28.4.6 void mappel::PointEmitterModel::check_psf_sigma (double psf_sigma) const [inherited]

Definition at line 185 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::global_max_psf_sigma, and mappel::PointEmitterModel::global_min_psf_ \hookleftarrow sigma.

Referenced by mappel::Gauss1DModel(), mappel::Gauss2DModel(), mappel::Gauss2DModel(), mappel::Gauss2DSModel(), mappel::Gauss2DSModel()

8.28.4.7 void mappel::PointEmitterModel::check_psf_sigma (const VecT & psf_sigma) const [inherited]

Definition at line 197 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::global_max_psf_sigma, and mappel::PointEmitterModel::global_min_psf_ \leftarrow sigma.

8.28.4.8 int mappel::PointEmitterModel::get_hyperparam_index (const std::string & name) const [inline], [inherited]

Definition at line 236 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.28.4.9 StringVecT mappel::PointEmitterModel::get_hyperparam_names() const [inline], [inherited]

Definition at line 256 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.28.4.10 double mappel::PointEmitterModel::get_hyperparam_value (const std::string & name) const [inline], [inherited]

Definition at line 232 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

Referenced by mappel::MCMCAdaptor1D::set_background_mcmc_sampling(), and mappel::MCMCAdaptor1D::set_circle intensity_mcmc_sampling().

8.28.4.11 PointEmitterModel::ParamT mappel::PointEmitterModel::get_hyperparams () const [inline], [inherited]

Definition at line 224 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.28.4.12 const PointEmitterModel::ParamT & mappel::PointEmitterModel::get_lbound() const [inline], [inherited]

Definition at line 212 of file PointEmitterModel.h.

References mappel::PointEmitterModel::lbound.

Referenced by mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCMCAdaptor2D::MCMCAdaptor2D(), and mappel::MCMCAdaptor1D::set_background_mcmc_sampling().

8.28.4.13 IdxT mappel::MCMCAdaptorBase::get_mcmc_num_phases()const [inherited]

Definition at line 56 of file MCMCAdaptorBase.cpp.

References mappel::MCMCAdaptorBase::num_phases.

8.28.4.14 double mappel::MCMCAdaptorBase::get_mcmc_sigma_scale() const [inherited]

Definition at line 53 of file MCMCAdaptorBase.cpp.

References mappel::MCMCAdaptorBase::sigma scale.

```
8.28.4.15 | IdxT mappel::PointEmitterModel::get_num_hyperparams() const [inline], [inherited]
Definition at line 208 of file PointEmitterModel.h.
References mappel::PointEmitterModel::num hyperparams.
8.28.4.16 IdxT mappel::PointEmitterModel::get_num_params( )const [inline],[inherited]
Definition at line 160 of file PointEmitterModel.h.
References\ mappel:: Point Emitter Model:: num\_params.
8.28.4.17 StringVecT mappel::PointEmitterModel::get_param_names( )const [inline], [inherited]
Definition at line 248 of file PointEmitterModel.h.
References mappel::PointEmitterModel::prior.
8.28.4.18 CompositeDist & mappel::PointEmitterModel::get_prior() [inline], [inherited]
Definition at line 200 of file PointEmitterModel.h.
References mappel::PointEmitterModel::prior.
Referenced by mappel::Gauss2DModel::update_internal_1Dsum_estimators(), and mappel::Gauss2DsModel ←
::update internal 1Dsum estimators().
8.28.4.19 const CompositeDist & mappel::PointEmitterModel::get_prior( ) const [inline], [inherited]
Definition at line 204 of file PointEmitterModel.h.
References mappel::PointEmitterModel::prior.
8.28.4.20 ParallelRngGeneratorT & mappel::PointEmitterModel::get_rng_generator() [static], [inherited]
Definition at line 120 of file PointEmitterModel.cpp.
References mappel::rng_manager.
8.28.4.21 ParallelRngManagerT & mappel::PointEmitterModel::get_rng_manager() [static], [inherited]
Definition at line 115 of file PointEmitterModel.cpp.
References mappel::rng_manager.
8.28.4.22 StatsT mappel::MCMCAdaptor1Ds::get_stats( ) const [protected]
Definition at line 51 of file MCMCAdaptor1Ds.cpp.
References eta_sigma, and mappel::MCMCAdaptor1D::get_stats().
```

Referenced by mappel::Gauss1DsModel::get_stats().

8.28.4.23 const PointEmitterModel::ParamT & mappel::PointEmitterModel::get_ubound() const [inline], [inherited]

Definition at line 216 of file PointEmitterModel.h.

References mappel::PointEmitterModel::ubound.

Referenced by mappel::Gauss2DsxyModel::get_max_sigma_ratio(), mappel::Gauss2DsModel::get_max_sigma_ratio(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCMCAdaptor2D(), mappel::MCMCAdaptor2D(), mappel::MCMCAdaptor1D::set_background_mcmc_sampling(), and mappel::Gauss2DsModel::set_max_sigma_ratio().

8.28.4.24 bool mappel::PointEmitterModel::has_hyperparam (const std::string & name) const [inline], [inherited]

Definition at line 228 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.28.4.25 PointEmitterModel::ParamT mappel::PointEmitterModel::make_param()const [inline],[inherited]

Definition at line 164 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

Referenced by mappel::Gauss1DModel::initial_theta_estimate(), mappel::Gauss1DsModel::initial_theta_estimate(), mappel::Gauss2DsxyModel::initial_theta_estimate(), mappel::Gauss2DsxyModel::initial_theta_estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::Gauss1DModel::pixel_hess_update(), mappel::Gauss1DsModel::pixel_hess_update(), mappel::Gauss2DsModel::pixel_hess_update(), and mappel::Gauss2DsModel::pixel_hess_update().

8.28.4.26 template < class FillT > PointEmitterModel::ParamT mappel::PointEmitterModel::make_param (FillT fill) const [inherited]

Definition at line 181 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

8.28.4.27 MatT mappel::PointEmitterModel::make_param_mat()const [inline], [inherited]

Definition at line 172 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

8.28.4.28 template < class FillT > MatT mappel::PointEmitterModel::make_param_mat(FillT fill) const [inherited]

Definition at line 191 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

8.28.4.29 CubeT mappel::PointEmitterModel::make_param_mat_stack(ldxT n) const [inline], [inherited]

Definition at line 176 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

8.28.4.30 template < class FillT > CubeT mappel::PointEmitterModel::make_param_mat_stack (ldxT n, FillT fill) const [inherited]

Definition at line 196 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

8.28.4.31 PointEmitterModel::ParamVecT mappel::PointEmitterModel::make_param_stack(ldxT n) const [inline], [inherited]

Definition at line 168 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

Referenced by mappel::PointEmitterModel::bounded_theta_stack(), and mappel::PointEmitterModel::reflected_theta __stack().

8.28.4.32 template < class FillT > PointEmitterModel::ParamVecT mappel::PointEmitterModel::make_param_stack(ldxT n, FillT fill) const [inherited]

Definition at line 186 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

8.28.4.33 prior_hessian::TruncatedGammaDist mappel::PointEmitterModel::make_prior_component_intensity (double mean = default_mean_I, double kappa = default_intensity_kappa) [static], [inherited]

Definition at line 98 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::default_max_I.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_beta_position(), mappel::Gauss2Ds \leftarrow default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss1DsModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_normal_costion(), mappel::Gauss2DModel::make_prior_costion(), mappel::Gauss2DModel::make_prior_beta_position(), mappel::Gauss1DModel::make_prior_beta_position(), mappel::Gauss2DModel::make_prior_beta_position(), mappel::Gauss2DModel::make_prior_normal_costion(), mappel::Gauss1DsModel::make_prior_normal_costion(), mappel::Gauss1DsModel::make_prior_normal_costion(), mappel::Gauss1DsModel::make_prior_normal_costion(), mappel::Gauss1DsModel::make_prior_normal_costion(), mappel::Gauss2DsModel::make_prior_normal_costion(), mappel::Gauss2DsModel::make_prior_normal_costion(), mappel::Gauss2DsModel::make_prior_normal_costion(), mappel::Gauss2DsModel::make_prior_normal_costion(), mappel::Gauss2DsModel::make_prior_normal_position().

8.28.4.34 prior_hessian::ScaledSymmetricBetaDist mappel::PointEmitterModel::make_prior_component_position_beta (ldxT size, double pos_beta = default_beta_pos_) [static], [inherited]

Definition at line 92 of file PointEmitterModel.cpp.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_beta_position(), mappel::Gauss1DModel::make_default_prior_beta_position(), mappel::Gauss2Ds \leftarrow Model::make_default_prior_beta_position(), mappel::Gauss1DsModel::make_prior_beta_position(), mappel::Gauss2Ds \leftarrow DModel::make_prior_beta_position(), mappel::Gauss1DModel::make_prior_beta_position(), and mappel::Gauss2Ds \leftarrow Model::make_prior_beta_position().

8.28.4.35 prior_hessian::TruncatedNormalDist mappel::PointEmitterModel::make_prior_component_position_normal(ldxT size, double pos_sigma = default_sigma_pos) [static], [inherited]

Definition at line 85 of file PointEmitterModel.cpp.

Referenced by mappel::Gauss1DsModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_ \leftarrow default_prior_normal_position(), mappel::Gauss1DModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_prior_normal_position(), mappel::Gauss2DModel::make_prior_normal_position(), mappel::Gauss1DsModel::make_prior_normal_position(), and mappel::Gauss2DsModel::make_prior_normal_position().

8.28.4.36 prior_hessian::TruncatedParetoDist mappel::PointEmitterModel::make_prior_component_sigma (double min_sigma, double max_sigma, double alpha = default_alpha_sigma) [static], [inherited]

Definition at line 104 of file PointEmitterModel.cpp.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DsModel::make_ \leftarrow default_prior_beta_position(), mappel::Gauss1DsModel::make_default_prior_normal_position(), mappel::Gauss2 \leftarrow DsModel::make_default_prior_normal_position(), mappel::Gauss1DsModel::make_prior_beta_position(), mappel::Gauss1DsModel::make_prior_normal_position(), and mappel \leftarrow ::Gauss2DsModel::make_prior_normal_position().

8.28.4.37 MCMCAdaptor1Ds & mappel::MCMCAdaptor1Ds::operator=(const MCMCAdaptor1Ds & o) [protected]

Definition at line 35 of file MCMCAdaptor1Ds.cpp.

References eta sigma, and mappel::MCMCAdaptor1D::operator=().

Referenced by mappel::Gauss1DsModel::operator=().

8.28.4.38 MCMCAdaptor1Ds & mappel::MCMCAdaptor1Ds::operator=(MCMCAdaptor1Ds && o) [protected]

Definition at line 43 of file MCMCAdaptor1Ds.cpp.

References eta sigma, and mappel::MCMCAdaptor1D::operator=().

8.28.4.39 PointEmitterModel::ParamT mappel::PointEmitterModel::reflected_theta (const ParamT & theta) const [inherited]

Definition at line 276 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::Point← EmitterModel::num params, and mappel::PointEmitterModel::ubound.

Referenced by mappel::PointEmitterModel::reflected theta stack().

8.28.4.40 PointEmitterModel::ParamVecT mappel::PointEmitterModel::reflected_theta_stack(const ParamVecT & theta) const [inherited]

Definition at line 317 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::make_param_stack(), and mappel::PointEmitterModel::reflected theta().

8.28.4.41 void mappel::PointEmitterModel::rename_hyperparam (const std::string & old_name, const std::string & new_name)
[inline], [inherited]

Definition at line 244 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.28.4.42 void mappel::MCMCAdaptor1Ds::sample_mcmc_candidate (IdxT sample_index, ParamT & candidate, double step_scale = 1 . 0)

Definition at line 59 of file MCMCAdaptor1Ds.cpp.

References mappel::MCMCAdaptor1D::eta_bg, mappel::MCMCAdaptor1D::eta_l, eta_sigma, mappel::MCMC Adaptor1D::eta x, mappel::MCMCAdaptorBase::num phases, and mappel::rng manager.

8.28.4.43 template < class RngT > PointEmitterModel::ParamT mappel::PointEmitterModel::sample_prior(RngT & rng) [inherited]

Definition at line 264 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.28.4.44 PointEmitterModel::ParamT mappel::PointEmitterModel::sample_prior() [inline], [inherited]

Definition at line 268 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior, and mappel::rng manager.

8.28.4.45 void mappel:: $MCMCAdaptor1D::set_background_mcmc_sampling(double eta_bg = -1) [inherited]$

Definition at line 81 of file MCMCAdaptor1D.cpp.

References mappel::PointEmitterModel::default_pixel_mean_bg, mappel::MCMCAdaptor1D::eta_bg, mappel::PointcointcointerModel::get_hyperparam_value(), mappel::PointEmitterModel::get_bound(), mappel::PointEmitterModel::get_cointcointermodel::get_cointcoint

Referenced by mappel::MCMCAdaptor1D::MCMCAdaptor1D().

8.28.4.46 void mappel::PointEmitterModel::set_bounds (const ParamT & *lbound_*, const ParamT & *ubound_*)
[inherited]

Box-type parameter bounds

Modifies the prior bounds to prevent sampling outside the valid box-constraints.

Definition at line 213 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounds_epsilon, mappel::PointEmitterModel::lbound, mappel::PointEmitter— Model::num_params, mappel::PointEmitterModel::pointEmitterModel::ubound.

```
8.28.4.47 void mappel::PointEmitterModel::set_hyperparam_names ( const StringVecT &  desc ) [inline], [inherited]
```

Definition at line 260 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

```
8.28.4.48 void mappel::PointEmitterModel::set_hyperparam_value ( const std::string & name, double value ) [inline], [inherited]
```

Definition at line 240 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.28.4.49 void mappel::PointEmitterModel::set_hyperparams (const VecT & hyperparams) [inline], [inherited]

Definition at line 220 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

Referenced by mappel::Gauss2DModel::set_hyperparams(), and mappel::Gauss2DsModel::set_hyperparams().

 $\textbf{8.28.4.50} \quad \text{void mappel::} \textbf{MCMCAdaptor1D::set_intensity_mcmc_sampling (double \textit{eta_I} = -1 \) \quad [\texttt{inherited}]$

Definition at line 65 of file MCMCAdaptor1D.cpp.

References mappel::PointEmitterModel::default_mean_I, mappel::MCMCAdaptor1D::eta_I, mappel::PointEmitter \leftarrow Model::get_hyperparam_value(), and mappel::MCMCAdaptorBase::sigma_scale.

Referenced by mappel::MCMCAdaptor1D::MCMCAdaptor1D().

8.28.4.51 void mappel::PointEmitterModel::set_lbound (const ParamT & lbound) [inherited]

Definition at line 226 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounds_epsilon, mappel::PointEmitterModel::lbound, mappel::PointEmitter Wodel::num params, mappel::PointEmitterModel::prior, and mappel::PointEmitterModel::ubound.

Referenced by mappel::Gauss1DsModel::set min sigma().

8.28.4.52 void mappel::MCMCAdaptorBase::set_mcmc_num_phases (ldxT num_phases) [protected], [inherited]

Definition at line 59 of file MCMCAdaptorBase.cpp.

References mappel::MCMCAdaptorBase::num phases.

Referenced by MCMCAdaptor1Ds(), and mappel::MCMCAdaptor2Ds::MCMCAdaptor2Ds().

8.28.4.53 void mappel::MCMCAdaptorBase::set_mcmc_sigma_scale (double scale) [inherited]

Definition at line 39 of file MCMCAdaptorBase.cpp.

References mappel::MCMCAdaptorBase::global_max_mcmc_sigma_scale, and mappel::MCMCAdaptorBase::sigma
scale.

8.28.4.54 void mappel::PointEmitterModel::set_param_names (const StringVecT & desc) [inline], [inherited]

Definition at line 252 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.28.4.55 void mappel::PointEmitterModel::set_prior (CompositeDist && prior_) [inherited]

Definition at line 158 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::Ibound, mappel::PointEmitterModel::num_hyperparams, mappel::Point← EmitterModel::num params, mappel::PointEmitterModel::prior, and mappel::PointEmitterModel::ubound.

Referenced by mappel::Gauss2DModel::set prior(), and mappel::Gauss2DsModel::set prior().

8.28.4.56 void mappel::PointEmitterModel::set_prior(const CompositeDist & prior_) [inherited]

Definition at line 149 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::num_hyperparams, mappel::PointEmitterModel::prior, and mappel::PointEmitterModel::ubound.

8.28.4.57 void mappel::PointEmitterModel::set_rng_seed(RngSeedT seed) [static], [inherited]

Definition at line 110 of file PointEmitterModel.cpp.

References mappel::rng manager.

8.28.4.58 void mappel::PointEmitterModel::set_ubound(const ParamT & ubound) [inherited]

Definition at line 237 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounds_epsilon, mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::pointEmitterModel::ubound, mappel::PointEmitterModel::pointEmitterModel::ubound.

Referenced by mappel::Gauss1DsModel::set_max_sigma(), and mappel::Gauss2DsModel::set_max_sigma_ratio().

8.28.4.59 bool mappel::PointEmitterModel::theta_in_bounds (const ParamT & theta) const [inherited]

Definition at line 257 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::Point← EmitterModel::num params, and mappel::PointEmitterModel::ubound.

Referenced by mappel::Gauss2DModel::initial_theta_estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::Gauss1DModel::make_stencil(), mappel::Gauss2DModel::make_stencil(), mappel::Gauss2DsModel::make_stencil(), mappel::Gauss2DsModel::make_stencil(), and mappel::Point
EmitterModel::theta_stack_in_bounds().

8.28.4.60 BoolVecT mappel::PointEmitterModel::theta_stack_in_bounds (const ParamVecT & theta) const [inherited]

Definition at line 297 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check param shape(), and mappel::PointEmitterModel::theta in bounds().

8.28.5 Member Data Documentation

8.28.5.1 const double mappel::PointEmitterModel::bounds epsilon = 1.0E-6 [static], [inherited]

Distance from the boundary to constrain in bound_theta and bounded_theta methods

Definition at line 52 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::set_bounds(), mappel::PointEmitterModel::set_lbound(), mappel::Gauss2 DsModel::set_max_sigma_ratio(), and mappel::PointEmitterModel::set_ubound().

8.28.5.2 const double mappel::PointEmitterModel::default alpha sigma = 2 [static], [inherited]

Default per-pixel background gamma distribution shape

Definition at line 62 of file PointEmitterModel.h.

8.28.5.3 const double mappel::PointEmitterModel::default_beta_pos = 3 [static], [inherited]

Default position parameter in symmetric beta-distributions

Definition at line 56 of file PointEmitterModel.h.

8.28.5.4 const double mappel::PointEmitterModel::default_intensity_kappa = 2 [static], [inherited]

Default shape for intensity gamma distributions

Definition at line 60 of file PointEmitterModel.h.

8.28.5.5 const double mappel::PointEmitterModel::default_max_l = INFINITY [static], [inherited]

Default maximum emitter intensity

Definition at line 59 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::make_prior_component_intensity().

8.28.5.6 const double mappel::PointEmitterModel::default_mean_I = 300 [static], [inherited]

Default emitter intensity mean

Definition at line 58 of file PointEmitterModel.h.

Referenced by mappel::MCMCAdaptor1D::set_intensity_mcmc_sampling().

8.28.5.7 const double mappel::PointEmitterModel::default_pixel_mean_bg = 4 [static], [inherited]

Default per-pixel mean background counts

Definition at line 61 of file PointEmitterModel.h.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DModel::make default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_beta_position(), mappel::Gauss1DsModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss2DsModel::make_default_prior_normal_position(), and mappel::MCMCAdaptor1D \leftarrow ::set_background_mcmc_sampling().

8.28.5.8 const double mappel::PointEmitterModel::default sigma pos = 1 [static], [inherited]

Default position parameter in symmetric beta-distributions

Definition at line 57 of file PointEmitterModel.h.

8.28.5.9 const std::string mappel::PointEmitterModel::DefaultSeperableInitEstimator = "TrustRegion" [static], [inherited]

Estimator name to use in 1D separable initializations

Definition at line 49 of file PointEmitterModel.h.

Referenced by mappel::Gauss2DModel::initial_theta_estimate(), mappel::Gauss2DsxyModel::initial_theta_estimate(), and mappel::Gauss2DsModel::initial_theta_estimate().

8.28.5.10 double mappel::MCMCAdaptor1D::eta_bg =0 [protected], [inherited]

The standard deviation for the normally distributed perturbation to theta_bg in the random walk MCMC sampling

Definition at line 32 of file MCMCAdaptor1D.h.

Referenced by mappel::MCMCAdaptor1D::get_stats(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCCAdaptor1D(), mappel::MCMCAdaptor2Dscample_mcmc_candidate(), mappel::MCMCAdaptor2Dscample_mcmc_candidate(), sample_mcmc_candidate(), and mappel::MCMCAdaptor1D::set_background_mcmc_sampling().

8.28.5.11 double mappel::MCMCAdaptor1D::eta_l = 0 [protected], [inherited]

The standard deviation for the normally distributed perturbation to theta_I in the random walk MCMC sampling

Definition at line 31 of file MCMCAdaptor1D.h.

Referenced by mappel::MCMCAdaptor1D::get_stats(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCCAdaptor1D::perator=(), mappel::MCMCAdaptor2D::sample_mcmc_candidate(), mappel::MCMCAdaptor2Dsc::sample_mcmc_candidate(), sample_mcmc_candidate(), and mappel::MCMCAdaptor1D::set intensity mcmc sampling().

8.28.5.12 double mappel::MCMCAdaptor1Ds::eta_sigma =-1 [protected]

The standard deviation for the normally distributed perturbation to theta_bg in the random walk MCMC sampling

Definition at line 27 of file MCMCAdaptor1Ds.h.

Referenced by get stats(), MCMCAdaptor1Ds(), operator=(), and sample mcmc candidate().

8.28.5.13 double mappel::MCMCAdaptor1D::eta_x = 0 [protected], [inherited]

The standard deviation for the normally distributed perturbation to theta_x in the random walk MCMC sampling

Definition at line 30 of file MCMCAdaptor1D.h.

Referenced by mappel::MCMCAdaptor1D::get_stats(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel:: \leftarrow MCMCAdaptor1D::operator=(), sample_mcmc_candidate(), mappel::MCMCAdaptor2D::sample_mcmc_candidate(), mappel::MCMCAdaptor1D::sample mcmc candidate().

8.28.5.14 const double mappel::MCMCAdaptorBase::global_default_mcmc_sigma_scale = 0.05 [static], [inherited]

Definition at line 16 of file MCMCAdaptorBase.h.

Referenced by MCMCAdaptor1Ds(), mappel::MCMCAdaptor2D::MCMCAdaptor2D(), and mappel::MCMCAdaptor2 \leftarrow Ds::MCMCAdaptor2Ds().

8.28.5.15 const double mappel::MCMCAdaptorBase::global_max_mcmc_sigma_scale = 0.5 [static], [inherited]

Definition at line 17 of file MCMCAdaptorBase.h.

Referenced by mappel::MCMCAdaptorBase::MCMCAdaptorBase(), and mappel::MCMCAdaptorBase::set_mcmc_ sigma scale().

```
8.28.5.16 const double mappel::PointEmitterModel::global_max_psf_sigma = 1E2 [static], [inherited]
```

Global maxmimum for any psf_sigma. Sizes above this value are invalid, and nowhere near useful for practical point emitter localization

Definition at line 54 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::check_psf_sigma().

```
8.28.5.17 const double mappel::PointEmitterModel::global_min_psf_sigma = 1E-1 [static], [inherited]
```

Global minimum for any psf_sigma. Sizes below this value are invalid, and nowhere near useful for practical point emitter localization

Definition at line 53 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::check_psf_sigma().

```
8.28.5.18 ParamT mappel::PointEmitterModel::lbound [protected], [inherited]
```

Definition at line 148 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel \leftarrow ::PointEmitterModel::get_lbound(), mappel::PointEmitterModel::get_stats(), mappel::Gauss1DsModel::initial_theta \leftarrow _estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::PointEmitterModel::pet_stats(), mappel::pet_stats(), map

```
8.28.5.19 IdxT mappel::PointEmitterModel::num_hyperparams [protected], [inherited]
```

Definition at line 147 of file PointEmitterModel.h.

 $Referenced \quad by \quad mappel::PointEmitterModel::get_num_hyperparams(), \quad mappel::PointEmitterModel::get_stats(), \\ mappel::PointEmitterModel::operator=(), and \\ mappel::PointEmitterModel::set_prior().$

```
8.28.5.20 IdxT mappel::PointEmitterModel::num_params [protected], [inherited]
```

Definition at line 146 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel \leftarrow ::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::get_num_params(), mappel::PointEmitter \leftarrow Model::get_stats(), mappel::Gauss1DModel::initial_theta_estimate(), mappel::Gauss2DModel::initial_theta_estimate(), mappel::PointEmitterModel::make_param(), mappel::PointEmitterModel::make_param(), mappel::PointEmitterModel::make_param_mat_stack(), mappel::PointEmitterModel::make_param_stack(), mappel::PointEmitterModel::operator=(), mappel::PointEmitterModel::reflected_theta(), mappel::PointEmitterModel::set_bounds(), mappel::PointEmitterModel::set_bounds(), mappel::PointEmitterModel::set_bounds().

8.28.5.21 IdxT mappel::MCMCAdaptorBase::num_phases [protected], [inherited]

The number of different sampling phases for candidate selection MCMC. Each phase changes a different subset of variables.

Definition at line 29 of file MCMCAdaptorBase.h.

Referenced by mappel::MCMCAdaptorBase::get_mcmc_num_phases(), mappel::MCMCAdaptorBase::get_stats(), mappel::MCMCAdaptor2D::sample_mcmc_candidate(), sample_mcmc_candidate(), mappel::MCMCAdaptor2Ds ::sample_mcmc_candidate(), mappel::MCMCAdaptor1D::sample_mcmc_candidate(), and mappel::MCMCAdaptor Base::set_mcmc_num_phases().

8.28.5.22 CompositeDist mappel::PointEmitterModel::prior [protected], [inherited]

Definition at line 145 of file PointEmitterModel.h.

Referenced by mappel::Gauss2DModel::debug_internal_sum_model_y(), mappel::Gauss2DsModel::debug_internal \leftarrow _sum_model_y(), mappel::Gauss2DModel::Gauss2DModel::Gauss2DModel(), mappel::PointEmitterModel::Gauss2DsModel(), mappel::PointEmitterModel::get_hyperparam_names(), mappel::PointEmitterModel::get_hyperparam_names(), mappel::PointEmitterModel::get_hyperparams(), mappel::Gauss1DsModel \leftarrow ::get_max_sigma(), mappel::Gauss1DsModel::get_min_sigma(), mappel::PointEmitterModel::get_param_names(), mappel::PointEmitterModel::get_param_names(), mappel::PointEmitterModel::get_param_names(), mappel::PointEmitterModel::has_ \leftarrow hyperparam(), mappel::PointEmitterModel::pointEmitterModel::pointEmitterModel(), mappel::PointEmitterModel::set_bounds(), mappel::PointEmitterModel::set_hyperparam_names(), mappel::PointEmitterModel::set_hyperparam \leftarrow _value(), mappel::PointEmitterModel::set_hyperparams(), mappel::PointEmitterModel::set_lyperparam. \leftarrow _value(), mappel::PointEmitterModel::set_hyperparams(), mappel::PointEmitterModel::set_param. \leftarrow _value(), m

8.28.5.23 double mappel::MCMCAdaptorBase::sigma_scale [protected], [inherited]

A scaling factor for step sizes as a fraction of the size of the domain dimension we are walking in. (0.05 default)

Definition at line 30 of file MCMCAdaptorBase.h.

Referenced by mappel::MCMCAdaptorBase::get_mcmc_sigma_scale(), mappel::MCMCAdaptorBase::get_stats(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), MCMCAdaptor1Ds(), mappel::MCMCAdaptor2D::MCMCAdaptor2D \cup D(), mappel::MCMCAdaptor2Ds::MCMCAdaptor2Ds(), mappel::MCMCAdaptor1D::set_background_mcmc_sampling(), mappel::MCMCAdaptor1D::set_intensity_mcmc_sampling(), and mappel::MCMCAdaptorBase::set_mcmc_sigma_ \leftarrow scale().

8.28.5.24 ParamT mappel::PointEmitterModel::ubound [protected], [inherited]

Definition at line 148 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel \leftarrow ::PointEmitterModel::get_stats(), mappel::PointEmitterModel::get_ubound(), mappel::Gauss1DsModel::initial_theta \leftarrow _estimate(), mappel::Gauss2DModel::initial_theta_estimate(), mappel::PointEmitterModel::perator=(), mappel::PointEmitterModel::reflected_theta(), mappel::PointEmitterModel \leftarrow ::set_bounds(), mappel::PointEmitterModel::set_lbound(), mappel::PointEmitterModel::set_prior(), mappel::PointEmitterModel::pointEmitterModel

The documentation for this class was generated from the following files:

- MCMCAdaptor1Ds.h
- MCMCAdaptor1Ds.cpp

8.29 mappel::MCMCAdaptor2D Class Reference

#include </home/travis/build/markjolah/Mappel/include/Mappel/MCMCAdaptor2D.h>

Inheritance diagram for mappel::MCMCAdaptor2D:

Public Types

- using ParamT = arma::vec
- using ParamVecT = arma::mat

Public Member Functions

- void sample mcmc candidate (ldxT sample index, ParamT &candidate, double step scale=1.0)
- void set_intensity_mcmc_sampling (double eta_I=-1)
- void set background mcmc sampling (double eta bg=-1)
- IdxT get_num_params () const
- void check_param_shape (const ParamT &theta) const
- void check_param_shape (const ParamVecT &theta) const
- void check_psf_sigma (double psf_sigma) const
- void check_psf_sigma (const VecT &psf_sigma) const
- · ParamT make param () const
- template<class FillT >
 - ParamT make_param (FillT fill) const
- ParamVecT make_param_stack (ldxT n) const
- template<class FillT >
 - ParamVecT make_param_stack (IdxT n, FillT fill) const
- MatT make param mat () const
- template < class FillT >
 - MatT make_param_mat (FillT fill) const
- CubeT make_param_mat_stack (ldxT n) const
- template<class FillT >
 - CubeT make_param_mat_stack (ldxT n, FillT fill) const
- CompositeDist & get prior ()
- const CompositeDist & get_prior () const
- void set prior (CompositeDist &&prior)
- void set prior (const CompositeDist &prior)

- IdxT get_num_hyperparams () const
- void set_hyperparams (const VecT &hyperparams)
- VecT get_hyperparams () const
- bool has hyperparam (const std::string &name) const
- double get_hyperparam_value (const std::string &name) const
- int get hyperparam index (const std::string &name) const
- void set_hyperparam_value (const std::string &name, double value)
- void rename_hyperparam (const std::string &old_name, const std::string &new_name)
- StringVecT get param names () const
- void set_param_names (const StringVecT &desc)
- StringVecT get_hyperparam_names () const
- void set hyperparam names (const StringVecT &desc)
- template<class RngT >
 ParamT sample prior (RngT &rng)
- ParamT sample_prior ()
- void set bounds (const ParamT &lbound, const ParamT &ubound)
- void set_lbound (const ParamT &lbound)
- void set ubound (const ParamT &ubound)
- const ParamT & get_lbound () const
- const ParamT & get ubound () const
- bool theta_in_bounds (const ParamT &theta) const
- void bound theta (ParamT &theta, double epsilon=bounds epsilon) const
- ParamT bounded_theta (const ParamT &theta, double epsilon=bounds_epsilon) const
- ParamT reflected theta (const ParamT &theta) const
- BoolVecT theta_stack_in_bounds (const ParamVecT &theta) const
- ParamVecT bounded_theta_stack (const ParamVecT &theta, double epsilon=bounds_epsilon) const
- ParamVecT reflected_theta_stack (const ParamVecT &theta) const
- void set mcmc sigma scale (double scale)
- double get_mcmc_sigma_scale () const
- IdxT get_mcmc_num_phases () const

Static Public Member Functions

- static prior_hessian::ScaledSymmetricBetaDist make_prior_component_position_beta (ldxT size, double pos_
 beta=default_beta_pos)
- static prior_hessian::TruncatedGammaDist make_prior_component_intensity (double mean=default_mean_ \leftarrow I, double kappa=default_intensity_kappa)
- static prior_hessian::TruncatedParetoDist make_prior_component_sigma (double min_sigma, double max_
 sigma, double alpha=default_alpha_sigma)
- static void set rng seed (RngSeedT seed)
- static ParallelRngManagerT & get_rng_manager ()
- static ParallelRngGeneratorT & get rng generator ()

Static Public Attributes

- static const std::string DefaultSeperableInitEstimator = "TrustRegion"
- static const double bounds epsilon = 1.0E-6
- static const double global_min_psf_sigma = 1E-1
- static const double global_max_psf_sigma = 1E2
- static const double default_beta_pos = 3
- static const double default sigma pos = 1
- static const double default_mean_l = 300
- static const double default max I = INFINITY
- static const double default intensity kappa = 2
- static const double default pixel mean bg = 4
- static const double default alpha sigma = 2
- static const double global default mcmc sigma scale = 0.05
- static const double global_max_mcmc_sigma_scale = 0.5

Protected Member Functions

- MCMCAdaptor2D ()
- MCMCAdaptor2D (double sigma_scale)
- MCMCAdaptor2D (const MCMCAdaptor2D &o)
- MCMCAdaptor2D (MCMCAdaptor2D &&o)
- MCMCAdaptor2D & operator= (const MCMCAdaptor2D &o)
- MCMCAdaptor2D & operator= (MCMCAdaptor2D &&o)
- StatsT get_stats () const
- void set_mcmc_num_phases (ldxT num_phases)

Protected Attributes

- double eta y =0
- double eta_x =0
- double eta_I =0
- double eta_bg =0
- · CompositeDist prior
- IdxT num_params
- IdxT num hyperparams
- ParamT Ibound
- · ParamT ubound
- IdxT num_phases
- double sigma_scale

8.29.1 Detailed Description

Definition at line 14 of file MCMCAdaptor2D.h.

8.29.2 Member Typedef Documentation

8.29.2.1 using mappel::PointEmitterModel::ParamT = arma::vec [inherited]

Parameter vector

Definition at line 47 of file PointEmitterModel.h.

8.29.2.2 using mappel::PointEmitterModel::ParamVecT = arma::mat [inherited]

Vector of parameter vectors

Definition at line 48 of file PointEmitterModel.h.

8.29.3 Constructor & Destructor Documentation

8.29.3.1 mappel::MCMCAdaptor2D::MCMCAdaptor2D() [protected]

Definition at line 11 of file MCMCAdaptor2D.cpp.

References mappel::MCMCAdaptorBase::global default mcmc sigma scale.

8.29.3.2 mappel::MCMCAdaptor2D::MCMCAdaptor2D (double sigma_scale) [explicit], [protected]

Definition at line 14 of file MCMCAdaptor2D.cpp.

References eta_y, mappel::PointEmitterModel::get_lbound(), mappel::PointEmitterModel::get_ubound(), and mappel ::MCMCAdaptorBase::sigma scale.

8.29.3.3 mappel::MCMCAdaptor2D::MCMCAdaptor2D (const MCMCAdaptor2D & o) [protected]

Definition at line 22 of file MCMCAdaptor2D.cpp.

References eta_y.

8.29.3.4 mappel::MCMCAdaptor2D::MCMCAdaptor2D (MCMCAdaptor2D && o) [protected]

Definition at line 27 of file MCMCAdaptor2D.cpp.

References eta_y.

8.29.4 Member Function Documentation

8.29.4.1 void mappel::PointEmitterModel::bound_theta (ParamT & theta, double epsilon = bounds_epsilon) const [inherited]

Definition at line 248 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::Point← EmitterModel::num params, and mappel::PointEmitterModel::ubound.

8.29.4.2 PointEmitterModel::ParamT mappel::PointEmitterModel::bounded_theta (const ParamT & theta, double epsilon = bounds epsilon) const [inherited]

Definition at line 265 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::ubound, mappel::PointEmitterModel::ubound.

Referenced by mappel::PointEmitterModel::bounded theta stack().

8.29.4.3 PointEmitterModel::ParamVecT mappel::PointEmitterModel::bounded_theta_stack(const ParamVecT & theta, double epsilon = bounds epsilon) const [inherited]

Definition at line 307 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::check_param_shape(), and mappel::PointEmitterModel::make_param_stack().

8.29.4.4 void mappel::PointEmitterModel::check_param_shape (const ParamT & theta) const [inherited]

Definition at line 167 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::num params.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::reflected_theta(), mappel::PointEmitterModel::reflected_theta(), mappel::PointEmitterModel::theta_in_bounds(), and mappel::PointEmitterModel \leftarrow ::theta_stack_in_bounds().

8.29.4.5 void mappel::PointEmitterModel::check_param_shape (const ParamVecT & theta) const [inherited]

Definition at line 176 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::num_params.

8.29.4.6 void mappel::PointEmitterModel::check_psf_sigma (double psf_sigma) const [inherited]

Definition at line 185 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::global_max_psf_sigma, and mappel::PointEmitterModel::global_min_psf_ \leftarrow sigma.

Referenced by mappel::Gauss1DModel(), mappel::Gauss2DModel(), mappel::Gauss2DModel(), mappel::Gauss2DSModel(), mappel::Gauss2DSModel()

8.29.4.7 void mappel::PointEmitterModel::check_psf_sigma (const VecT & psf_sigma) const [inherited]

Definition at line 197 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::global_max_psf_sigma, and mappel::PointEmitterModel::global_min_psf_ \leftarrow sigma.

Definition at line 236 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.29.4.9 StringVecT mappel::PointEmitterModel::get_hyperparam_names() const [inline],[inherited]

Definition at line 256 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.29.4.10 double mappel::PointEmitterModel::get_hyperparam_value (const std::string & name) const [inline], [inherited]

Definition at line 232 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

Referenced by mappel::MCMCAdaptor1D::set_background_mcmc_sampling(), and mappel::MCMCAdaptor1D::set_circle intensity_mcmc_sampling().

8.29.4.11 PointEmitterModel::ParamT mappel::PointEmitterModel::get_hyperparams () const [inline], [inherited]

Definition at line 224 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.29.4.12 const PointEmitterModel::ParamT & mappel::PointEmitterModel::get_lbound () const [inline], [inherited]

Definition at line 212 of file PointEmitterModel.h.

References mappel::PointEmitterModel::lbound.

Referenced by mappel::MCMCAdaptor1D::MCMCAdaptor1D(), MCMCAdaptor2D(), and mappel::MCMCAdaptor1D ::set_background_mcmc_sampling().

8.29.4.13 IdxT mappel::MCMCAdaptorBase::get_mcmc_num_phases()const [inherited]

Definition at line 56 of file MCMCAdaptorBase.cpp.

References mappel::MCMCAdaptorBase::num_phases.

8.29.4.14 double mappel::MCMCAdaptorBase::get_mcmc_sigma_scale() const [inherited]

Definition at line 53 of file MCMCAdaptorBase.cpp.

References mappel::MCMCAdaptorBase::sigma scale.

```
8.29.4.15 | IdxT mappel::PointEmitterModel::get_num_hyperparams() const [inline], [inherited]
Definition at line 208 of file PointEmitterModel.h.
References mappel::PointEmitterModel::num hyperparams.
8.29.4.16 IdxT mappel::PointEmitterModel::get_num_params( )const [inline],[inherited]
Definition at line 160 of file PointEmitterModel.h.
References mappel::PointEmitterModel::num_params.
8.29.4.17 StringVecT mappel::PointEmitterModel::get_param_names( )const [inline], [inherited]
Definition at line 248 of file PointEmitterModel.h.
References mappel::PointEmitterModel::prior.
8.29.4.18 CompositeDist & mappel::PointEmitterModel::get_prior() [inline], [inherited]
Definition at line 200 of file PointEmitterModel.h.
References mappel::PointEmitterModel::prior.
Referenced by mappel::Gauss2DModel::update_internal_1Dsum_estimators(), and mappel::Gauss2DsModel ←
::update internal 1Dsum estimators().
8.29.4.19 const CompositeDist & mappel::PointEmitterModel::get_prior( ) const [inline], [inherited]
Definition at line 204 of file PointEmitterModel.h.
References mappel::PointEmitterModel::prior.
8.29.4.20 ParallelRngGeneratorT & mappel::PointEmitterModel::get_rng_generator() [static], [inherited]
Definition at line 120 of file PointEmitterModel.cpp.
References mappel::rng_manager.
8.29.4.21 ParallelRngManagerT & mappel::PointEmitterModel::get_rng_manager() [static], [inherited]
Definition at line 115 of file PointEmitterModel.cpp.
References mappel::rng_manager.
8.29.4.22 StatsT mappel::MCMCAdaptor2D::get stats() const [protected]
Definition at line 51 of file MCMCAdaptor2D.cpp.
References eta_y, and mappel::MCMCAdaptor1D::get_stats().
```

Referenced by mappel::MCMCAdaptor2Ds::get stats(), and mappel::Gauss2DModel::get stats().

8.29.4.23 const PointEmitterModel::ParamT & mappel::PointEmitterModel::get_ubound() const [inline], [inherited]

Definition at line 216 of file PointEmitterModel.h.

References mappel::PointEmitterModel::ubound.

Referenced by mappel::Gauss2DsxyModel::get_max_sigma_ratio(), mappel::Gauss2DsModel::get_max_sigma_ratio(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), MCMCAdaptor2D(), mappel::MCMCAdaptor1D::set_background_

mcmc_sampling(), and mappel::Gauss2DsModel::set_max_sigma_ratio().

8.29.4.24 bool mappel::PointEmitterModel::has_hyperparam (const std::string & name) const [inline], [inherited]

Definition at line 228 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.29.4.25 PointEmitterModel::ParamT mappel::PointEmitterModel::make_param()const [inline], [inherited]

Definition at line 164 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

Referenced by mappel::Gauss1DModel::initial_theta_estimate(), mappel::Gauss1DsModel::initial_theta_estimate(), mappel::Gauss2DsxyModel::initial_theta_estimate(), mappel::Gauss2DsxyModel::initial_theta_estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::Gauss1DModel::pixel_hess_update(), mappel::Gauss1DsModel::pixel_hess_update(), mappel::Gauss2DsModel::pixel_hess_update(), and mappel::Gauss2DsModel::pixel_hess_update().

8.29.4.26 template < class FillT > PointEmitterModel::ParamT mappel::PointEmitterModel::make_param (FillT fill) const [inherited]

Definition at line 181 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

8.29.4.27 MatT mappel::PointEmitterModel::make_param_mat()const [inline], [inherited]

Definition at line 172 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

8.29.4.28 template < class FillT > MatT mappel::PointEmitterModel::make_param_mat(FillT fill) const [inherited]

Definition at line 191 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

8.29.4.29 CubeT mappel::PointEmitterModel::make_param_mat_stack(ldxT n) const [inline], [inherited]

Definition at line 176 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

8.29.4.30 template < class FillT > CubeT mappel::PointEmitterModel::make_param_mat_stack (ldxT n, FillT fill) const [inherited]

Definition at line 196 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

8.29.4.31 PointEmitterModel::ParamVecT mappel::PointEmitterModel::make_param_stack(ldxT n) const [inline], [inherited]

Definition at line 168 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

Referenced by mappel::PointEmitterModel::bounded_theta_stack(), and mappel::PointEmitterModel::reflected_theta __stack().

8.29.4.32 template < class FillT > PointEmitterModel::ParamVecT mappel::PointEmitterModel::make_param_stack(ldxT n, FillT fill) const [inherited]

Definition at line 186 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

8.29.4.33 prior_hessian::TruncatedGammaDist mappel::PointEmitterModel::make_prior_component_intensity (double mean = default_mean_I, double kappa = default_intensity_kappa) [static], [inherited]

Definition at line 98 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::default_max_I.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_beta_position(), mappel::Gauss2Ds \leftarrow default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss1DsModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_normal_costion(), mappel::Gauss2DModel::make_prior_costion(), mappel::Gauss2DModel::make_prior_costion(), mappel::Gauss1DsModel::make_prior_beta_position(), mappel::Gauss2DModel::make_prior_beta_position(), mappel::Gauss2DModel::make_prior_normal_costion(), mappel::Gauss2DModel::make_prior_normal_costion(), mappel::Gauss1DsModel::make_prior_normal_costion(), mappel::Gauss1DsModel::make_prior_normal_costion(), mappel::Gauss1DsModel::make_prior_normal_costion(), mappel::Gauss2DsModel::make_prior_normal_costion(), and mappel::Gauss2DsModel::make_prior_normal_position().

8.29.4.34 prior_hessian::ScaledSymmetricBetaDist mappel::PointEmitterModel::make_prior_component_position_beta (ldxT size, double pos_beta = default_beta_pos_) [static], [inherited]

Definition at line 92 of file PointEmitterModel.cpp.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_beta_position(), mappel::Gauss1DModel::make_default_prior_beta_position(), mappel::Gauss2Ds \leftarrow Model::make_default_prior_beta_position(), mappel::Gauss1DsModel::make_prior_beta_position(), mappel::Gauss2Ds \leftarrow DModel::make_prior_beta_position(), mappel::Gauss1DModel::make_prior_beta_position(), and mappel::Gauss2Ds \leftarrow Model::make_prior_beta_position().

8.29.4.35 prior_hessian::TruncatedNormalDist mappel::PointEmitterModel::make_prior_component_position_normal(ldxT size, double pos_sigma = default_sigma_pos) [static], [inherited]

Definition at line 85 of file PointEmitterModel.cpp.

Referenced by mappel::Gauss1DsModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_ \leftarrow default_prior_normal_position(), mappel::Gauss1DModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_prior_normal_position(), mappel::Gauss2DModel::make_prior_normal_position(), mappel::Gauss1DsModel::make_prior_normal_position(), and mappel::Gauss2DsModel::make_prior_normal_position().

8.29.4.36 prior_hessian::TruncatedParetoDist mappel::PointEmitterModel::make_prior_component_sigma (double min_sigma, double max_sigma, double alpha = default_alpha_sigma) [static], [inherited]

Definition at line 104 of file PointEmitterModel.cpp.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DsModel::make_default_prior_normal_position(), mappel::Gauss2DsModel::make_default_prior_normal_position(), mappel::Gauss2DsModel::make_default_prior_normal_position(), mappel::Gauss1DsModel::make_prior_beta_position(), mappel::Gauss1DsModel::make_prior_normal_position(), and mappel::Gauss2DsModel::make_prior_normal_position().

8.29.4.37 MCMCAdaptor2D & mappel::MCMCAdaptor2D::operator= (const MCMCAdaptor2D & o) [protected]

Definition at line 32 of file MCMCAdaptor2D.cpp.

References eta_y, and mappel::MCMCAdaptor1D::operator=().

Referenced by mappel::MCMCAdaptor2Ds::operator=(), and mappel::Gauss2DModel::operator=().

8.29.4.38 MCMCAdaptor2D & mappel::MCMCAdaptor2D::operator=(MCMCAdaptor2D && o) [protected]

Definition at line 41 of file MCMCAdaptor2D.cpp.

References eta y, and mappel::MCMCAdaptor1D::operator=().

8.29.4.39 PointEmitterModel::ParamT mappel::PointEmitterModel::reflected_theta (const ParamT & theta) const [inherited]

Definition at line 276 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::Point← EmitterModel::num params, and mappel::PointEmitterModel::ubound.

Referenced by mappel::PointEmitterModel::reflected theta stack().

8.29.4.40 PointEmitterModel::ParamVecT mappel::PointEmitterModel::reflected_theta_stack (const ParamVecT & theta) const [inherited]

Definition at line 317 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::make_param_stack(), and mappel::PointEmitterModel::reflected_theta().

8.29.4.41 void mappel::PointEmitterModel::rename_hyperparam (const std::string & old_name, const std::string & new_name)
[inline], [inherited]

Definition at line 244 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.29.4.42 void mappel::MCMCAdaptor2D::sample_mcmc_candidate (IdxT sample_index, ParamT & candidate, double step_scale = 1 . 0)

Definition at line 59 of file MCMCAdaptor2D.cpp.

References mappel::MCMCAdaptor1D::eta_bg, mappel::MCMCAdaptor1D::eta_l, mappel::MCMCAdaptor1D::eta_c x, eta_y, mappel::MCMCAdaptorBase::num_phases, and mappel::rng_manager.

8.29.4.43 template < class RngT > PointEmitterModel::ParamT mappel::PointEmitterModel::sample_prior(RngT & rng) [inherited]

Definition at line 264 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.29.4.44 PointEmitterModel::ParamT mappel::PointEmitterModel::sample_prior() [inline], [inherited]

Definition at line 268 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior, and mappel::rng manager.

8.29.4.45 void mappel:: $MCMCAdaptor1D::set_background_mcmc_sampling(double eta_bg = -1)$ [inherited]

Definition at line 81 of file MCMCAdaptor1D.cpp.

References mappel::PointEmitterModel::default_pixel_mean_bg, mappel::MCMCAdaptor1D::eta_bg, mappel::PointcointcointerModel::get_hyperparam_value(), mappel::PointEmitterModel::get_bound(), mappel::PointEmitterModel::get_cointcointermodel::get_cointcoint

Referenced by mappel::MCMCAdaptor1D::MCMCAdaptor1D().

8.29.4.46 void mappel::PointEmitterModel::set_bounds (const ParamT & *lbound_*, const ParamT & *ubound_*)
[inherited]

Box-type parameter bounds

Modifies the prior bounds to prevent sampling outside the valid box-constraints.

Definition at line 213 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounds_epsilon, mappel::PointEmitterModel::lbound, mappel::PointEmitter— Model::num_params, mappel::PointEmitterModel::pointEmitterModel::ubound.

```
8.29.4.47 void mappel::PointEmitterModel::set_hyperparam_names ( const StringVecT &  desc ) [inline], [inherited]
```

Definition at line 260 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

```
8.29.4.48 void mappel::PointEmitterModel::set_hyperparam_value ( const std::string & name, double value ) [inline], [inherited]
```

Definition at line 240 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.29.4.49 void mappel::PointEmitterModel::set_hyperparams (const VecT & hyperparams) [inline], [inherited]

Definition at line 220 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

Referenced by mappel::Gauss2DModel::set_hyperparams(), and mappel::Gauss2DsModel::set_hyperparams().

 $\textbf{8.29.4.50} \quad \text{void mappel::} \textbf{MCMCAdaptor1D::set_intensity_mcmc_sampling (double \textit{eta_I} = -1 \) \quad [\texttt{inherited}]$

Definition at line 65 of file MCMCAdaptor1D.cpp.

References mappel::PointEmitterModel::default_mean_I, mappel::MCMCAdaptor1D::eta_I, mappel::PointEmitter \leftarrow Model::get_hyperparam_value(), and mappel::MCMCAdaptorBase::sigma_scale.

Referenced by mappel::MCMCAdaptor1D::MCMCAdaptor1D().

8.29.4.51 void mappel::PointEmitterModel::set_lbound (const ParamT & lbound) [inherited]

Definition at line 226 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounds_epsilon, mappel::PointEmitterModel::lbound, mappel::PointEmitter (
Model::num params, mappel::PointEmitterModel::prior, and mappel::PointEmitterModel::ubound.

Referenced by mappel::Gauss1DsModel::set min sigma().

8.29.4.52 void mappel::MCMCAdaptorBase::set_mcmc_num_phases(| IdxT num_phases) [protected], [inherited]

Definition at line 59 of file MCMCAdaptorBase.cpp.

References mappel::MCMCAdaptorBase::num_phases.

Referenced by mappel::MCMCAdaptor1Ds::MCMCAdaptor1Ds(), and mappel::MCMCAdaptor2Ds::MCMCAdaptor2 → Ds().

8.29.4.53 void mappel::MCMCAdaptorBase::set_mcmc_sigma_scale (double scale) [inherited]

Definition at line 39 of file MCMCAdaptorBase.cpp.

References mappel::MCMCAdaptorBase::global_max_mcmc_sigma_scale, and mappel::MCMCAdaptorBase::sigma - _ scale.

8.29.4.54 void mappel::PointEmitterModel::set_param_names (const StringVecT & desc) [inline], [inherited]

Definition at line 252 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.29.4.55 void mappel::PointEmitterModel::set_prior(CompositeDist && prior_) [inherited]

Definition at line 158 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::num_hyperparams, mappel::PointEmitterModel::pointEmitterModel::pointEmitterModel::ubound.

Referenced by mappel::Gauss2DModel::set_prior(), and mappel::Gauss2DsModel::set_prior().

8.29.4.56 void mappel::PointEmitterModel::set_prior (const CompositeDist & prior_) [inherited]

Definition at line 149 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::num_hyperparams, mappel::Point← EmitterModel::num params, mappel::PointEmitterModel::prior, and mappel::PointEmitterModel::ubound.

8.29.4.57 void mappel::PointEmitterModel::set_rng_seed(RngSeedT seed) [static], [inherited]

Definition at line 110 of file PointEmitterModel.cpp.

References mappel::rng_manager.

8.29.4.58 void mappel::PointEmitterModel::set_ubound(const ParamT & ubound) [inherited]

Definition at line 237 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounds_epsilon, mappel::PointEmitterModel::lbound, mappel::PointEmitter (
Model::num params, mappel::PointEmitterModel::prior, and mappel::PointEmitterModel::ubound.

Referenced by mappel::Gauss1DsModel::set_max_sigma(), and mappel::Gauss2DsModel::set_max_sigma_ratio().

8.29.4.59 bool mappel::PointEmitterModel::theta_in_bounds (const ParamT & theta) const [inherited]

Definition at line 257 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::ubound.

Referenced by mappel::Gauss2DModel::initial_theta_estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::Gauss1DModel::make_stencil(), mappel::Gauss2DModel::make_stencil(), mappel::Gauss2DsModel::make_stencil(), mappel::Gauss2DsModel::make_stencil(), and mappel::Point
EmitterModel::theta stack in bounds().

8.29.4.60 BoolVecT mappel::PointEmitterModel::theta stack in bounds (const ParamVecT & theta) const [inherited]

Definition at line 297 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check param shape(), and mappel::PointEmitterModel::theta in bounds().

8.29.5 Member Data Documentation

8.29.5.1 const double mappel::PointEmitterModel::bounds_epsilon = 1.0E-6 [static], [inherited]

Distance from the boundary to constrain in bound_theta and bounded_theta methods

Definition at line 52 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::set_bounds(), mappel::PointEmitterModel::set_lbound(), mappel::Gauss2 DsModel::set_max_sigma_ratio(), and mappel::PointEmitterModel::set_ubound().

8.29.5.2 const double mappel::PointEmitterModel::default_alpha_sigma = 2 [static], [inherited]

Default per-pixel background gamma distribution shape

Definition at line 62 of file PointEmitterModel.h.

8.29.5.3 const double mappel::PointEmitterModel::default_beta_pos = 3 [static], [inherited] Default position parameter in symmetric beta-distributions Definition at line 56 of file PointEmitterModel.h. 8.29.5.4 const double mappel::PointEmitterModel::default intensity kappa = 2 [static], [inherited] Default shape for intensity gamma distributions Definition at line 60 of file PointEmitterModel.h. 8.29.5.5 const double mappel::PointEmitterModel::default_max_I = INFINITY [static], [inherited] Default maximum emitter intensity Definition at line 59 of file PointEmitterModel.h. Referenced by mappel::PointEmitterModel::make prior component intensity(). 8.29.5.6 const double mappel::PointEmitterModel::default mean I = 300 [static], [inherited] Default emitter intensity mean Definition at line 58 of file PointEmitterModel.h. Referenced by mappel::MCMCAdaptor1D::set intensity mcmc sampling(). 8.29.5.7 const double mappel::PointEmitterModel::default pixel mean bq = 4 [static], [inherited] Default per-pixel mean background counts Definition at line 61 of file PointEmitterModel.h. Referenced by mappel::Gauss1DsModel::make default prior beta position(), mappel::Gauss2DModel::make ← default prior beta position(), mappel::Gauss1DModel::make_default_prior_beta_position(), mappel::Gauss2← DsModel::make default prior beta position(), mappel::Gauss1DsModel::make default prior normal position(), mappel::Gauss2DModel::make_default_prior_normal_position(), $mappel::Gauss1DModel::make_default_prior_{\leftarrow}$ normal position(), mappel::Gauss2DsModel::make default prior normal position(), and mappel::MCMCAdaptor1D ← ::set_background_mcmc_sampling(). 8.29.5.8 const double mappel::PointEmitterModel::default_sigma_pos = 1 [static], [inherited]

Default position parameter in symmetric beta-distributions

Definition at line 57 of file PointEmitterModel.h.

8.29.5.9 const std::string mappel::PointEmitterModel::DefaultSeperableInitEstimator = "TrustRegion" [static], [inherited]

Estimator name to use in 1D separable initializations

Definition at line 49 of file PointEmitterModel.h.

Referenced by mappel::Gauss2DModel::initial_theta_estimate(), mappel::Gauss2DsxyModel::initial_theta_estimate(), and mappel::Gauss2DsModel::initial_theta_estimate().

```
8.29.5.10 double mappel::MCMCAdaptor1D::eta_bg =0 [protected], [inherited]
```

The standard deviation for the normally distributed perturbation to theta bg in the random walk MCMC sampling

Definition at line 32 of file MCMCAdaptor1D.h.

Referenced by mappel::MCMCAdaptor1D::get_stats(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel:: \leftarrow MCMCAdaptor1D::operator=(), sample_mcmc_candidate(), mappel::MCMCAdaptor2Ds::sample_mcmc_candidate(), mappel::MCMCAdaptor1Ds::sample_mcmc_candidate(), and mappel::MCMCAdaptor1D::set_background_mcmc_sampling().

```
8.29.5.11 double mappel::MCMCAdaptor1D::eta_l = 0 [protected], [inherited]
```

The standard deviation for the normally distributed perturbation to theta. I in the random walk MCMC sampling

Definition at line 31 of file MCMCAdaptor1D.h.

Referenced by mappel::MCMCAdaptor1D::get_stats(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel:: \leftarrow MCMCAdaptor1D::operator=(), sample_mcmc_candidate(), mappel::MCMCAdaptor2Ds::sample_mcmc_candidate(), mappel::MCMCAdaptor1D::sample_mcmc_candidate(), and mappel::MCMCAdaptor1D::set intensity mcmc sampling().

```
8.29.5.12 double mappel::MCMCAdaptor1D::eta_x = 0 [protected], [inherited]
```

The standard deviation for the normally distributed perturbation to theta_x in the random walk MCMC sampling

Definition at line 30 of file MCMCAdaptor1D.h.

Referenced by mappel::MCMCAdaptor1D::get_stats(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel:: \leftarrow MCMCAdaptor1D::operator=(), sample_mcmc_candidate(), mappel::MCMCAdaptor1Ds::sample_mcmc_candidate(), mappel::MCMCAdaptor1D::sample_mcmc_candidate().

```
8.29.5.13 double mappel::MCMCAdaptor2D::eta_y =0 [protected]
```

The standard deviation for the normally distributed perturbation to theta y in the random walk MCMC sampling

Definition at line 27 of file MCMCAdaptor2D.h.

Referenced by get_stats(), MCMCAdaptor2D(), operator=(), mappel::MCMCAdaptor2Ds::sample_mcmc_candidate(), and sample mcmc candidate().

8.29.5.14 const double mappel::MCMCAdaptorBase::global_default_mcmc_sigma_scale = 0.05 [static], [inherited]

Definition at line 16 of file MCMCAdaptorBase.h.

Referenced by mappel::MCMCAdaptor1Ds::MCMCAdaptor1Ds(), MCMCAdaptor2D(), and mappel::MCMCAdaptor2 Ds::MCMCAdaptor2Ds().

8.29.5.15 const double mappel::MCMCAdaptorBase::global_max_mcmc_sigma_scale = 0.5 [static], [inherited]

Definition at line 17 of file MCMCAdaptorBase.h.

Referenced by mappel::MCMCAdaptorBase::MCMCAdaptorBase(), and mappel::MCMCAdaptorBase::set_mcmc_ sigma_scale().

8.29.5.16 const double mappel::PointEmitterModel::global_max_psf_sigma = 1E2 [static], [inherited]

Global maxmimum for any psf_sigma. Sizes above this value are invalid, and nowhere near useful for practical point emitter localization

Definition at line 54 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::check_psf_sigma().

8.29.5.17 const double mappel::PointEmitterModel::global_min_psf_sigma = 1E-1 [static], [inherited]

Global minimum for any psf_sigma. Sizes below this value are invalid, and nowhere near useful for practical point emitter localization

Definition at line 53 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::check_psf_sigma().

8.29.5.18 ParamT mappel::PointEmitterModel::lbound [protected], [inherited]

Definition at line 148 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel \leftarrow ::PointEmitterModel::get_lbound(), mappel::PointEmitterModel::get_stats(), mappel::Gauss1DsModel::initial_theta \leftarrow _estimate(), mappel::Gauss2DModel::initial_theta_estimate(), mappel::PointEmitterModel::perator=(), mappel::PointEmitterModel::reflected_theta(), mappel::PointEmitterModel \leftarrow ::set_bounds(), mappel::PointEmitterModel::set_lbound(), mappel::PointEmitterModel::set_prior(), mappel::PointEmitterModel::pointEmitterModel

8.29.5.19 IdxT mappel::PointEmitterModel::num_hyperparams [protected], [inherited]

Definition at line 147 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::get_num_hyperparams(), mappel::PointEmitterModel::get_stats(), mappel::PointEmitterModel::operator=(), and mappel::PointEmitterModel::set_prior().

8.29.5.20 IdxT mappel::PointEmitterModel::num_params [protected], [inherited]

Definition at line 146 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel \leftarrow ::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::get_num_params(), mappel::PointEmitter \leftarrow Model::get_stats(), mappel::Gauss1DModel::initial_theta_estimate(), mappel::Gauss2DModel::initial_theta_estimate(), mappel::PointEmitterModel::make_param(), mappel::PointEmitterModel::make_param(), mappel::PointEmitterModel::make_param_mat_stack(), mappel::PointEmitterModel::make_param_stack(), mappel::PointEmitterModel::operator=(), mappel::PointEmitterModel::reflected_theta(), mappel::PointEmitterModel::set_bounds(), mappel::PointEmitterModel::set_bounds(), mappel::PointEmitterModel::set_bounds().

8.29.5.21 IdxT mappel::MCMCAdaptorBase::num_phases [protected], [inherited]

The number of different sampling phases for candidate selection MCMC. Each phase changes a different subset of variables.

Definition at line 29 of file MCMCAdaptorBase.h.

Referenced by mappel::MCMCAdaptorBase::get_mcmc_num_phases(), mappel::MCMCAdaptorBase::get_stats(), mappel::MCMCAdaptor1Ds::sample_mcmc_candidate(), mappel::MCMCAdaptor2Ds::sample_mcmc_candidate(), sample_mcmc_candidate(), mappel::MCMCAdaptor1D::sample_mcmc_candidate(), and mappel::MCMCAdaptor Base::set_mcmc_num_phases().

8.29.5.22 CompositeDist mappel::PointEmitterModel::prior [protected], [inherited]

Definition at line 145 of file PointEmitterModel.h.

Referenced by mappel::Gauss2DModel::debug_internal_sum_model_y(), mappel::Gauss2DsModel::debug_internal \
_sum_model_y(), mappel::Gauss2DModel::Gauss2DModel(), mappel::Gauss2DsModel::Gauss2DsModel(), mappel \
::PointEmitterModel::get_hyperparam_index(), mappel::PointEmitterModel::get_hyperparam_names(), mappel::PointEmitterModel::get_hyperparam_names(), mappel::PointEmitterModel::get_param_names(), mappel::PointEmitterModel::get_param_names(), mappel::PointEmitterModel::get_param_names(), mappel::PointEmitterModel::get_param_names(), mappel::PointEmitterModel::pointEmitterModel::has_\(\cdot \) hyperparam(), mappel::PointEmitterModel::pointEmitterModel::pointEmitterModel(), mappel::\(\cdot \) PointEmitterModel::pointEmitterModel::set_hyperparam_names(), mappel::PointEmitterModel::set_hyperparam \(\cdot \) value(), mappel::PointEmitterModel::set_hyperparam \(\cdot \) value(), mappel::PointEmitterModel::set_hyperparam(), mappel::PointEmitterModel::set_lyperparam(), mappel::PointEmitterModel::set_hyperparam(), mappel::PointEmitterModel::set_lyperparam(), mappel::PointEmitterModel::set

8.29.5.23 double mappel::MCMCAdaptorBase::sigma_scale [protected], [inherited]

A scaling factor for step sizes as a fraction of the size of the domain dimension we are walking in. (0.05 default)

Definition at line 30 of file MCMCAdaptorBase.h.

Referenced by mappel::MCMCAdaptorBase::get_mcmc_sigma_scale(), mappel::MCMCAdaptorBase::get_stats(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCMCAdaptor1Ds::MCMCAdaptor1Ds(), MCMCAdaptor2 \(\to \) D(), mappel::MCMCAdaptor2Ds::MCMCAdaptor2Ds::MCMCAdaptor2Ds::MCMCAdaptor1D::set_background_mcmc_sampling(), mappel::MCMCAdaptor1D::set_intensity_mcmc_sampling(), and mappel::MCMCAdaptorBase::set_mcmc_sigma_\(\to \) scale().

8.29.5.24 ParamT mappel::PointEmitterModel::ubound [protected], [inherited]

Definition at line 148 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel ::PointEmitterModel::get_ubound(), mappel::Gauss1DsModel::initial_theta == stimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::PointEmitterModel::pointEmitt

The documentation for this class was generated from the following files:

- MCMCAdaptor2D.h
- MCMCAdaptor2D.cpp

8.30 mappel::MCMCAdaptor2Ds Class Reference

#include </home/travis/build/markjolah/Mappel/include/Mappel/MCMCAdaptor2Ds.h>

Inheritance diagram for mappel::MCMCAdaptor2Ds:

Public Types

- using ParamT = arma::vec
- using ParamVecT = arma::mat

Public Member Functions

- void sample mcmc candidate (IdxT sample index, ParamT &candidate, double step scale=1.0)
- void set_intensity_mcmc_sampling (double eta_I=-1)
- void set_background_mcmc_sampling (double eta_bg=-1)
- IdxT get num params () const
- void check_param_shape (const ParamT &theta) const
- void check param shape (const ParamVecT &theta) const
- void check_psf_sigma (double psf_sigma) const
- void check psf sigma (const VecT &psf sigma) const
- · ParamT make param () const
- template<class FillT >

ParamT make_param (FillT fill) const

- ParamVecT make param stack (IdxT n) const
- template<class FillT >

ParamVecT make_param_stack (IdxT n, FillT fill) const

- MatT make param mat () const
- template<class FilIT >

MatT make param mat (FillT fill) const

- CubeT make_param_mat_stack (ldxT n) const
- template<class FillT >

CubeT make_param_mat_stack (ldxT n, FillT fill) const

- CompositeDist & get_prior ()
- const CompositeDist & get_prior () const
- void set prior (CompositeDist &&prior)
- void set prior (const CompositeDist &prior)
- IdxT get num hyperparams () const
- void set hyperparams (const VecT &hyperparams)
- VecT get_hyperparams () const
- bool has_hyperparam (const std::string &name) const
- double get_hyperparam_value (const std::string &name) const
- int get_hyperparam_index (const std::string &name) const
- void set hyperparam value (const std::string &name, double value)
- void rename_hyperparam (const std::string &old_name, const std::string &new_name)
- StringVecT get_param_names () const
- void set_param_names (const StringVecT &desc)
- StringVecT get hyperparam names () const
- void set hyperparam names (const StringVecT &desc)
- $\bullet \;\; {\sf template}{<} {\sf class} \; {\sf RngT} >$

ParamT sample_prior (RngT &rng)

- ParamT sample_prior ()
- void set_bounds (const ParamT &lbound, const ParamT &ubound)
- void set_lbound (const ParamT &lbound)
- void set_ubound (const ParamT &ubound)
- const ParamT & get_lbound () const
- · const ParamT & get ubound () const
- bool theta_in_bounds (const ParamT &theta) const
- · void bound theta (ParamT &theta, double epsilon=bounds epsilon) const
- ParamT bounded_theta (const ParamT &theta, double epsilon=bounds_epsilon) const
- ParamT reflected theta (const ParamT &theta) const
- BoolVecT theta stack in bounds (const ParamVecT &theta) const

- ParamVecT bounded theta_stack (const ParamVecT &theta, double epsilon=bounds_epsilon) const
- ParamVecT reflected theta stack (const ParamVecT &theta) const
- void set mcmc sigma scale (double scale)
- double get_mcmc_sigma_scale () const
- IdxT get_mcmc_num_phases () const

Static Public Member Functions

- static prior_hessian::TruncatedNormalDist make_prior_component_position_normal (ldxT size, double pos_
 sigma=default sigma pos)
- static prior_hessian::ScaledSymmetricBetaDist make_prior_component_position_beta (IdxT size, double pos_
 beta=default_beta_pos)
- static prior_hessian::TruncatedParetoDist make_prior_component_sigma (double min_sigma, double max_
 sigma, double alpha=default alpha sigma)
- static void set_rng_seed (RngSeedT seed)
- static ParallelRngManagerT & get_rng_manager ()
- static ParallelRngGeneratorT & get_rng_generator ()

Static Public Attributes

- static const std::string DefaultSeperableInitEstimator = "TrustRegion"
- static const double bounds epsilon = 1.0E-6
- static const double global_min_psf_sigma = 1E-1
- static const double global max psf sigma = 1E2
- static const double default_beta_pos = 3
- static const double default_sigma_pos = 1
- static const double default_mean_I = 300
- static const double default_max_I = INFINITY
- static const double default_intensity_kappa = 2
- static const double default_pixel_mean_bg = 4
- static const double default alpha sigma = 2
- static const double global_default_mcmc_sigma_scale = 0.05
- static const double global_max_mcmc_sigma_scale = 0.5

Protected Member Functions

- MCMCAdaptor2Ds ()
- MCMCAdaptor2Ds (double sigma_scale)
- MCMCAdaptor2Ds (const MCMCAdaptor2Ds &o)
- MCMCAdaptor2Ds (MCMCAdaptor2Ds &&o)
- MCMCAdaptor2Ds & operator= (const MCMCAdaptor2Ds &o)
- MCMCAdaptor2Ds & operator= (MCMCAdaptor2Ds &&o)
- StatsT get_stats () const
- void set mcmc num phases (ldxT num phases)

Protected Attributes

- double eta_sigma =0
- double eta_y =0
- double eta x = 0
- double eta I =0
- double eta_bg =0
- · CompositeDist prior
- IdxT num params
- · IdxT num hyperparams
- · ParamT Ibound
- · ParamT ubound
- IdxT num_phases
- double sigma_scale

8.30.1 Detailed Description

Definition at line 14 of file MCMCAdaptor2Ds.h.

8.30.2 Member Typedef Documentation

8.30.2.1 using mappel::PointEmitterModel::ParamT = arma::vec [inherited]

Parameter vector

Definition at line 47 of file PointEmitterModel.h.

8.30.2.2 using mappel::PointEmitterModel::ParamVecT = arma::mat [inherited]

Vector of parameter vectors

Definition at line 48 of file PointEmitterModel.h.

8.30.3 Constructor & Destructor Documentation

 $\textbf{8.30.3.1} \quad \textbf{mappel::MCMCAdaptor2Ds::MCMCAdaptor2Ds} \ (\ \) \quad \texttt{[protected]}$

Definition at line 11 of file MCMCAdaptor2Ds.cpp.

References mappel::MCMCAdaptorBase::global_default_mcmc_sigma_scale.

8.30.3.2 mappel::MCMCAdaptor2Ds::MCMCAdaptor2Ds (double sigma_scale) [explicit], [protected]

Definition at line 14 of file MCMCAdaptor2Ds.cpp.

8.30.3.3 mappel::MCMCAdaptor2Ds::MCMCAdaptor2Ds (const MCMCAdaptor2Ds & o) [protected]

Definition at line 22 of file MCMCAdaptor2Ds.cpp.

References eta sigma.

8.30.3.4 mappel::MCMCAdaptor2Ds::MCMCAdaptor2Ds (MCMCAdaptor2Ds && o) [protected]

Definition at line 27 of file MCMCAdaptor2Ds.cpp.

References eta_sigma.

8.30.4 Member Function Documentation

8.30.4.1 void mappel::PointEmitterModel::bound_theta (ParamT & theta, double epsilon = bounds_epsilon) const [inherited]

Definition at line 248 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::Point← EmitterModel::num params, and mappel::PointEmitterModel::ubound.

8.30.4.2 PointEmitterModel::ParamT mappel::PointEmitterModel::bounded_theta (const ParamT & theta, double epsilon = bounds epsilon) const [inherited]

Definition at line 265 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::Point← EmitterModel::num_params, and mappel::PointEmitterModel::ubound.

Referenced by mappel::PointEmitterModel::bounded theta stack().

8.30.4.3 PointEmitterModel::ParamVecT mappel::PointEmitterModel::bounded_theta_stack (const ParamVecT & theta, double epsilon = bounds_epsilon) const [inherited]

Definition at line 307 of file PointEmitterModel.cpp.

 $References \quad mappel:: PointEmitterModel:: bounded_theta(), \quad mappel:: PointEmitterModel:: check_param_shape(), \quad and \\ mappel:: PointEmitterModel:: make_param_stack().$

8.30.4.4 void mappel::PointEmitterModel::check_param_shape (const ParamT & theta) const [inherited]

Definition at line 167 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::num_params.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::bounded_theta_stack(), mappel::PointEmitterModel::reflected_theta(), mappel::PointEmitterModel::reflected_theta(), mappel::PointEmitterModel::theta_in_bounds(), and mappel::PointEmitterModel \leftarrow ::theta stack in bounds().

8.30.4.5 void mappel::PointEmitterModel::check_param_shape (const ParamVecT & theta) const [inherited]

Definition at line 176 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::num params.

8.30.4.6 void mappel::PointEmitterModel::check_psf_sigma (double psf_sigma) const [inherited]

Definition at line 185 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::global_max_psf_sigma, and mappel::PointEmitterModel::global_min_psf_ sigma.

Referenced by mappel::Gauss1DModel(), mappel::Gauss2DModel(), mappel::Gauss2DModel(), mappel::Gauss2DModel(), mappel::Gauss2DsModel(), mappel::Gauss2DsModel(), mappel::Gauss2DsModel(), mappel::Gauss2DsModel(), mappel::Gauss2DsModel(), mappel::Gauss2DsModel(), mappel::Gauss2DsModel(), mappel::Gauss2DsModel(), mappel(), mappel

8.30.4.7 void mappel::PointEmitterModel::check_psf_sigma (const VecT & psf_sigma) const [inherited]

Definition at line 197 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::global_max_psf_sigma, and mappel::PointEmitterModel::global_min_psf_ sigma.

8.30.4.8 int mappel::PointEmitterModel::get_hyperparam_index (const std::string & name) const [inline], [inherited]

Definition at line 236 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.30.4.9 StringVecT mappel::PointEmitterModel::get_hyperparam_names() const [inline], [inherited]

Definition at line 256 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.30.4.10 double mappel::PointEmitterModel::get_hyperparam_value (const std::string & name) const [inline], [inherited]

Definition at line 232 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

Referenced by mappel::MCMCAdaptor1D::set_background_mcmc_sampling(), and mappel::MCMCAdaptor1D::set_circle intensity mcmc_sampling().

```
8.30.4.11 PointEmitterModel::ParamT mappel::PointEmitterModel::get_hyperparams( ) const [inline],
         [inherited]
Definition at line 224 of file PointEmitterModel.h.
References mappel::PointEmitterModel::prior.
8.30.4.12 const PointEmitterModel::ParamT & mappel::PointEmitterModel::get_lbound( ) const [inline],
         [inherited]
Definition at line 212 of file PointEmitterModel.h.
References mappel::PointEmitterModel::lbound.
Referenced by mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCMCAdaptor2D::MCMCAdaptor2D(), and
mappel::MCMCAdaptor1D::set background mcmc sampling().
8.30.4.13 IdxT mappel::MCMCAdaptorBase::get_mcmc_num_phases( )const [inherited]
Definition at line 56 of file MCMCAdaptorBase.cpp.
References mappel::MCMCAdaptorBase::num phases.
8.30.4.14 double mappel::MCMCAdaptorBase::get_mcmc_sigma_scale( ) const [inherited]
Definition at line 53 of file MCMCAdaptorBase.cpp.
References mappel::MCMCAdaptorBase::sigma scale.
8.30.4.15 IdxT mappel::PointEmitterModel::get_num_hyperparams( )const [inline], [inherited]
Definition at line 208 of file PointEmitterModel.h.
References mappel::PointEmitterModel::num_hyperparams.
8.30.4.16 IdxT mappel::PointEmitterModel::get_num_params() const [inline], [inherited]
Definition at line 160 of file PointEmitterModel.h.
References mappel::PointEmitterModel::num params.
8.30.4.17 StringVecT mappel::PointEmitterModel::get param names() const [inline], [inherited]
Definition at line 248 of file PointEmitterModel.h.
```

References mappel::PointEmitterModel::prior.

8.30.4.18 CompositeDist & mappel::PointEmitterModel::get_prior() [inline], [inherited]

Definition at line 200 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

Referenced by mappel::Gauss2DModel::update_internal_1Dsum_estimators(), and mappel::Gauss2DsModel ← ::update internal 1Dsum estimators().

8.30.4.19 const CompositeDist & mappel::PointEmitterModel::get_prior() const [inline], [inherited]

Definition at line 204 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.30.4.20 ParallelRngGeneratorT & mappel::PointEmitterModel::get_rng_generator() [static], [inherited]

Definition at line 120 of file PointEmitterModel.cpp.

References mappel::rng_manager.

8.30.4.21 ParallelRngManagerT & mappel::PointEmitterModel::get_rng_manager() [static], [inherited]

Definition at line 115 of file PointEmitterModel.cpp.

References mappel::rng_manager.

8.30.4.22 StatsT mappel::MCMCAdaptor2Ds::get_stats() const [protected]

Definition at line 48 of file MCMCAdaptor2Ds.cpp.

References eta_sigma, and mappel::MCMCAdaptor2D::get_stats().

Referenced by mappel::Gauss2DsModel::get_stats().

8.30.4.23 const PointEmitterModel::ParamT & mappel::PointEmitterModel::get_ubound() const [inline], [inherited]

Definition at line 216 of file PointEmitterModel.h.

References mappel::PointEmitterModel::ubound.

Referenced by mappel::Gauss2DsxyModel::get_max_sigma_ratio(), mappel::Gauss2DsModel::get_max_sigma_ratio(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCMCAdaptor2D::MCMCAdaptor2D(), mappel::MCMC \leftarrow Adaptor1D::set_background_mcmc_sampling(), and mappel::Gauss2DsModel::set_max_sigma_ratio().

8.30.4.24 bool mappel::PointEmitterModel::has_hyperparam (const std::string & name) const [inline], [inherited]

Definition at line 228 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.30.4.25 PointEmitterModel::ParamT mappel::PointEmitterModel::make_param()const [inline], [inherited]

Definition at line 164 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

Referenced by mappel::Gauss1DModel::initial_theta_estimate(), mappel::Gauss1DsModel::initial_theta_estimate(), mappel::Gauss2DsxyModel::initial_theta_estimate(), mappel::Gauss2DsxyModel::initial_theta_estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::Gauss1DModel::pixel_hess_update(), mappel::Gauss1DsModel::pixel_hess_update(), mappel::Gauss2DsModel::pixel_hess_update(), and mappel::Gauss2DsModel::pixel_hess_update().

8.30.4.26 template < class FillT > PointEmitterModel::ParamT mappel::PointEmitterModel::make_param (FillT fill) const [inherited]

Definition at line 181 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

8.30.4.27 MatT mappel::PointEmitterModel::make_param_mat() const [inline], [inherited]

Definition at line 172 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

8.30.4.28 template < class FillT > MatT mappel::PointEmitterModel::make param mat(FillT fill) const [inherited]

Definition at line 191 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

8.30.4.29 CubeT mappel::PointEmitterModel::make_param_mat_stack(ldxT n) const [inline], [inherited]

Definition at line 176 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

8.30.4.30 template < class FillT > CubeT mappel::PointEmitterModel::make_param_mat_stack (IdxT n, FillT fill) const [inherited]

Definition at line 196 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

8.30.4.31 PointEmitterModel::ParamVecT mappel::PointEmitterModel::make_param_stack(ldxT n) const [inline], [inherited]

Definition at line 168 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

Referenced by mappel::PointEmitterModel::bounded_theta_stack(), and mappel::PointEmitterModel::reflected_theta stack().

8.30.4.32 template < class FillT > PointEmitterModel::ParamVecT mappel::PointEmitterModel::make_param_stack(ldxT n, FillT fill) const [inherited]

Definition at line 186 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

8.30.4.33 prior_hessian::TruncatedGammaDist mappel::PointEmitterModel::make_prior_component_intensity (double mean = default_mean_I, double kappa = default_intensity_kappa) [static], [inherited]

Definition at line 98 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::default_max_I.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_beta_position(), mappel::Gauss2Ds \leftarrow default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss1DsModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_normal_cosition(), mappel::Gauss2DModel::make_prior_cosition(), mappel::Gauss2DModel::make_prior_beta_position(), mappel::Gauss1DModel::make_prior_beta_position(), mappel::Gauss2DModel::make_prior_beta_position(), mappel::Gauss2DModel::make_prior_normal_cosition(), mappel::Gauss1DsModel::make_prior_normal_cosition(), mappel::Gauss1DsModel::make_prior_normal_cosition(), mappel::Gauss1DsModel::make_prior_normal_cosition(), and mappel::Gauss2DsModel::make_prior_normal_position().

8.30.4.34 prior_hessian::ScaledSymmetricBetaDist mappel::PointEmitterModel::make_prior_component_position_beta (ldxT size, double pos_beta = default_beta_pos) [static], [inherited]

Definition at line 92 of file PointEmitterModel.cpp.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DModel::make_ \leftarrow default_prior_beta_position(), mappel::Gauss1DModel::make_default_prior_beta_position(), mappel::Gauss2Ds \leftarrow Model::make_default_prior_beta_position(), mappel::Gauss1DsModel::make_prior_beta_position(), mappel::Gauss2Ds \leftarrow DModel::make_prior_beta_position(), mappel::Gauss1DModel::make_prior_beta_position(), and mappel::Gauss2Ds \leftarrow Model::make_prior_beta_position().

8.30.4.35 prior_hessian::TruncatedNormalDist mappel::PointEmitterModel::make_prior_component_position_normal(ldxT size, double pos_sigma = default_sigma_pos) [static], [inherited]

Definition at line 85 of file PointEmitterModel.cpp.

Referenced by mappel::Gauss1DsModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_ \leftarrow default_prior_normal_position(), mappel::Gauss1DModel::make_default_prior_normal_position(), mappel::Gauss2 \leftarrow DsModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_prior_normal_position(), mappel::Gauss1DsModel::make_prior_normal_position(), and mappel::Gauss2DsModel::make_prior_normal_position().

8.30.4.36 prior_hessian::TruncatedParetoDist mappel::PointEmitterModel::make_prior_component_sigma (double min_sigma, double max_sigma, double alpha = default alpha sigma) [static], [inherited]

Definition at line 104 of file PointEmitterModel.cpp.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DsModel::make_default_prior_normal_position(), mappel::Gauss2DsModel::make_default_prior_normal_position(), mappel::Gauss2DsModel::make_default_prior_normal_position(), mappel::Gauss1DsModel::make_prior_beta_position(), mappel::Gauss2DsModel::make_prior_beta_position(), and mappel ::Gauss2DsModel::make_prior_normal_position().

8.30.4.37 MCMCAdaptor2Ds & mappel::MCMCAdaptor2Ds::operator=(const MCMCAdaptor2Ds & o) [protected]

Definition at line 32 of file MCMCAdaptor2Ds.cpp.

References eta sigma, and mappel::MCMCAdaptor2D::operator=().

Referenced by mappel::Gauss2DsModel::operator=().

8.30.4.38 MCMCAdaptor2Ds & mappel::MCMCAdaptor2Ds::operator=(MCMCAdaptor2Ds && o) [protected]

Definition at line 40 of file MCMCAdaptor2Ds.cpp.

References eta_sigma, and mappel::MCMCAdaptor2D::operator=().

8.30.4.39 PointEmitterModel::ParamT mappel::PointEmitterModel::reflected_theta (const ParamT & theta) const [inherited]

Definition at line 276 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::ubound, mappel::PointEmitterModel::ubound.

Referenced by mappel::PointEmitterModel::reflected_theta_stack().

8.30.4.40 PointEmitterModel::ParamVecT mappel::PointEmitterModel::reflected_theta_stack (const ParamVecT & theta) const [inherited]

Definition at line 317 of file PointEmitterModel.cpp.

 $References\ mappel:: PointEmitterModel:: deck_param_shape(),\ mappel:: PointEmitterModel:: make_param_stack(),\ and\ mappel:: PointEmitterModel:: reflected_theta().$

8.30.4.41 void mappel::PointEmitterModel::rename_hyperparam (const std::string & old_name, const std::string & new_name)
[inline], [inherited]

Definition at line 244 of file PointEmitterModel.h.

 $References\ mappel :: Point Emitter Model :: prior.$

8.30.4.42 void mappel::MCMCAdaptor2Ds::sample_mcmc_candidate (IdxT sample_index, ParamT & candidate, double step_scale = 1 . 0)

Definition at line 56 of file MCMCAdaptor2Ds.cpp.

References mappel::MCMCAdaptor1D::eta_bg, mappel::MCMCAdaptor1D::eta_l, eta_sigma, mappel::MCMC← Adaptor1D::eta_x, mappel::MCMCAdaptor2D::eta_y, mappel::MCMCAdaptorBase::num_phases, and mappel::rng_← manager.

8.30.4.43 template < class RngT > PointEmitterModel::ParamT mappel::PointEmitterModel::sample_prior (RngT & rng) [inherited]

Definition at line 264 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.30.4.44 PointEmitterModel::ParamT mappel::PointEmitterModel::sample_prior() [inline],[inherited]

Definition at line 268 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior, and mappel::rng manager.

8.30.4.45 void mappel:: $MCMCAdaptor1D::set_background_mcmc_sampling(double eta_bg = -1)$ [inherited]

Definition at line 81 of file MCMCAdaptor1D.cpp.

References mappel::PointEmitterModel::default_pixel_mean_bg, mappel::MCMCAdaptor1D::eta_bg, mappel::PointcointcointerModel::get_hyperparam_value(), mappel::PointEmitterModel::get_bound(), mappel::PointEmitterModel::get_cointcointermodel::get_cointcoint

Referenced by mappel::MCMCAdaptor1D::MCMCAdaptor1D().

8.30.4.46 void mappel::PointEmitterModel::set_bounds (const ParamT & *lbound_*, const ParamT & *ubound_*)

[inherited]

Box-type parameter bounds

Modifies the prior bounds to prevent sampling outside the valid box-constraints.

Definition at line 213 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounds_epsilon, mappel::PointEmitterModel::lbound, mappel::PointEmitter Model::num params, mappel::PointEmitterModel::pointEmitterModel::ubound.

```
8.30.4.47 void mappel::PointEmitterModel::set_hyperparam_names ( const StringVecT &  desc ) [inline], [inherited]
```

Definition at line 260 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.30.4.48 void mappel::PointEmitterModel::set_hyperparam_value (const std::string & name, double value) [inline], [inherited]

Definition at line 240 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.30.4.49 void mappel::PointEmitterModel::set_hyperparams (const VecT & hyperparams) [inline], [inherited]

Definition at line 220 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

Referenced by mappel::Gauss2DModel::set hyperparams(), and mappel::Gauss2DsModel::set hyperparams().

8.30.4.50 void mappel::MCMCAdaptor1D::set_intensity_mcmc_sampling (double eta_l = -1) [inherited]

Definition at line 65 of file MCMCAdaptor1D.cpp.

References mappel::PointEmitterModel::default_mean_I, mappel::MCMCAdaptor1D::eta_I, mappel::PointEmitter \leftarrow Model::get_hyperparam_value(), and mappel::MCMCAdaptorBase::sigma_scale.

Referenced by mappel::MCMCAdaptor1D::MCMCAdaptor1D().

8.30.4.51 void mappel::PointEmitterModel::set_lbound (const ParamT & lbound) [inherited]

Definition at line 226 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounds_epsilon, mappel::PointEmitterModel::lbound, mappel::PointEmitter— Model::num params, mappel::PointEmitterModel::prior, and mappel::PointEmitterModel::ubound.

Referenced by mappel::Gauss1DsModel::set min sigma().

8.30.4.52 void mappel::MCMCAdaptorBase::set_mcmc_num_phases(| IdxT num_phases) [protected], [inherited]

Definition at line 59 of file MCMCAdaptorBase.cpp.

References mappel::MCMCAdaptorBase::num_phases.

Referenced by mappel::MCMCAdaptor1Ds::MCMCAdaptor1Ds(), and MCMCAdaptor2Ds().

8.30.4.53 void mappel::MCMCAdaptorBase::set_mcmc_sigma_scale (double scale) [inherited]

Definition at line 39 of file MCMCAdaptorBase.cpp.

References mappel::MCMCAdaptorBase::global_max_mcmc_sigma_scale, and mappel::MCMCAdaptorBase::sigma — _scale.

8.30.4.54 void mappel::PointEmitterModel::set_param_names (const StringVecT & *desc*) [inline], [inherited]

Definition at line 252 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.30.4.55 void mappel::PointEmitterModel::set_prior (CompositeDist && prior_) [inherited]

Definition at line 158 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::num_hyperparams, mappel::PointEmitterModel::prior, and mappel::PointEmitterModel::ubound.

Referenced by mappel::Gauss2DModel::set_prior(), and mappel::Gauss2DsModel::set_prior().

8.30.4.56 void mappel::PointEmitterModel::set_prior(const CompositeDist & prior_) [inherited]

Definition at line 149 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::num_hyperparams, mappel::Point← EmitterModel::num params, mappel::PointEmitterModel::prior, and mappel::PointEmitterModel::ubound.

8.30.4.57 void mappel::PointEmitterModel::set_rng_seed(RngSeedT seed) [static], [inherited]

Definition at line 110 of file PointEmitterModel.cpp.

References mappel::rng_manager.

8.30.4.58 void mappel::PointEmitterModel::set_ubound(const ParamT & ubound) [inherited]

Definition at line 237 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounds_epsilon, mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::pointEmitterModel::ubound, mappel::PointEmitterModel::pointEmitterModel::ubound.

Referenced by mappel::Gauss1DsModel::set max sigma(), and mappel::Gauss2DsModel::set max sigma ratio().

8.30.4.59 bool mappel::PointEmitterModel::theta in bounds (const ParamT & theta) const [inherited]

Definition at line 257 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::ubound, mappel::PointEmitterModel::ubound.

Referenced by mappel::Gauss2DModel::initial_theta_estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::Gauss1DModel::make_stencil(), mappel::Gauss2DsModel::make_stencil(), mappel::Gauss2DsModel::make_stencil(), mappel::Gauss2DsModel::make_stencil(), and mappel::Point
EmitterModel::theta_stack_in_bounds().

8.30.4.60 BoolVecT mappel::PointEmitterModel::theta stack in bounds (const ParamVecT & theta) const [inherited]

Definition at line 297 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check param shape(), and mappel::PointEmitterModel::theta in bounds().

```
8.30.5 Member Data Documentation
8.30.5.1 const double mappel::PointEmitterModel::bounds_epsilon = 1.0E-6 [static], [inherited]
Distance from the boundary to constrain in bound_theta and bounded_theta methods
Definition at line 52 of file PointEmitterModel.h.
Referenced by mappel::PointEmitterModel::set_bounds(), mappel::PointEmitterModel::set_lbound(), mappel::Gauss2←
DsModel::set max sigma ratio(), and mappel::PointEmitterModel::set ubound().
8.30.5.2 const double mappel::PointEmitterModel::default_alpha_sigma = 2 [static], [inherited]
Default per-pixel background gamma distribution shape
Definition at line 62 of file PointEmitterModel.h.
8.30.5.3 const double mappel::PointEmitterModel::default_beta_pos = 3 [static], [inherited]
Default position parameter in symmetric beta-distributions
Definition at line 56 of file PointEmitterModel.h.
8.30.5.4 const double mappel::PointEmitterModel::default_intensity_kappa = 2 [static], [inherited]
Default shape for intensity gamma distributions
Definition at line 60 of file PointEmitterModel.h.
8.30.5.5 const double mappel::PointEmitterModel::default_max_I = INFINITY [static], [inherited]
Default maximum emitter intensity
Definition at line 59 of file PointEmitterModel.h.
Referenced by mappel::PointEmitterModel::make prior component intensity().
8.30.5.6 const double mappel::PointEmitterModel::default_mean_I = 300 [static], [inherited]
Default emitter intensity mean
Definition at line 58 of file PointEmitterModel.h.
```

Referenced by mappel::MCMCAdaptor1D::set intensity mcmc sampling().

8.30.5.7 const double mappel::PointEmitterModel::default_pixel_mean_bg = 4 [static], [inherited]

Default per-pixel mean background counts

Definition at line 61 of file PointEmitterModel.h.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DModel::make default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_beta_position(), mappel::Gauss1DsModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss2DsModel::make_default_prior_cdot normal_position(), mappel::Gauss2DsModel::make_default_prior_normal_position(), and mappel::MCMCAdaptor1Ddot::set background mcmc sampling().

```
8.30.5.8 const double mappel::PointEmitterModel::default_sigma_pos = 1 [static], [inherited]
```

Default position parameter in symmetric beta-distributions

Definition at line 57 of file PointEmitterModel.h.

```
8.30.5.9 const std::string mappel::PointEmitterModel::DefaultSeperableInitEstimator = "TrustRegion" [static], [inherited]
```

Estimator name to use in 1D separable initializations

Definition at line 49 of file PointEmitterModel.h.

Referenced by mappel::Gauss2DModel::initial_theta_estimate(), mappel::Gauss2DsxyModel::initial_theta_estimate(), and mappel::Gauss2DsModel::initial_theta_estimate().

```
8.30.5.10 double mappel::MCMCAdaptor1D::eta_bg =0 [protected], [inherited]
```

The standard deviation for the normally distributed perturbation to theta_bg in the random walk MCMC sampling

Definition at line 32 of file MCMCAdaptor1D.h.

Referenced by mappel::MCMCAdaptor1D::get_stats(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel:: \leftarrow MCMCAdaptor1D::operator=(), mappel::MCMCAdaptor2D::sample_mcmc_candidate(), sample_mcmc_candidate(), mappel::MCMCAdaptor1Ds::sample_mcmc_candidate(), and mappel::MCMCAdaptor1D::set_background_mcmc_sampling().

```
8.30.5.11 double mappel::MCMCAdaptor1D::eta_l = 0 [protected], [inherited]
```

The standard deviation for the normally distributed perturbation to theta_I in the random walk MCMC sampling

Definition at line 31 of file MCMCAdaptor1D.h.

Referenced by mappel::MCMCAdaptor1D::get_stats(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel:: \leftarrow MCMCAdaptor1D::operator=(), mappel::MCMCAdaptor2D::sample_mcmc_candidate(), sample_mcmc_candidate(), mappel::MCMCAdaptor1D::sample_mcmc_candidate(), and mappel::MCMCAdaptor1D::set intensity mcmc sampling().

```
8.30.5.12 double mappel::MCMCAdaptor2Ds::eta_sigma =0 [protected]
```

The standard deviation for the normally distributed perturbation to theta_bg in the random walk MCMC sampling

Definition at line 26 of file MCMCAdaptor2Ds.h.

Referenced by get stats(), MCMCAdaptor2Ds(), operator=(), and sample mcmc candidate().

```
8.30.5.13 double mappel::MCMCAdaptor1D::eta_x = 0 [protected], [inherited]
```

The standard deviation for the normally distributed perturbation to theta_x in the random walk MCMC sampling

Definition at line 30 of file MCMCAdaptor1D.h.

Referenced by mappel::MCMCAdaptor1D::get_stats(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCMCAdaptor1D::perator=(), mappel::MCMCAdaptor1Ds::sample_mcmc_candidate(), mappel::MCMCAdaptor2D \leftarrow ::sample_mcmc_candidate(), sample_mcmc_candidate().

```
8.30.5.14 double mappel::MCMCAdaptor2D::eta_y =0 [protected], [inherited]
```

The standard deviation for the normally distributed perturbation to theta_y in the random walk MCMC sampling

Definition at line 27 of file MCMCAdaptor2D.h.

Referenced by mappel::MCMCAdaptor2D::get_stats(), mappel::MCMCAdaptor2D::MCMCAdaptor2D(), mappel::MC
MCAdaptor2D::operator=(), sample_mcmc_candidate(), and mappel::MCMCAdaptor2D::sample_mcmc_candidate().

8.30.5.15 const double mappel::MCMCAdaptorBase::global default mcmc sigma scale = 0.05 [static], [inherited]

Definition at line 16 of file MCMCAdaptorBase.h.

Referenced by mappel::MCMCAdaptor1Ds::MCMCAdaptor1Ds(), mappel::MCMCAdaptor2D::MCMCAdaptor2D(), and MCMCAdaptor2Ds().

8.30.5.16 const double mappel::MCMCAdaptorBase::global_max_mcmc_sigma_scale = 0.5 [static], [inherited]

Definition at line 17 of file MCMCAdaptorBase.h.

Referenced by mappel::MCMCAdaptorBase::MCMCAdaptorBase(), and mappel::MCMCAdaptorBase::set_mcmc_ \leftarrow sigma_scale().

8.30.5.17 const double mappel::PointEmitterModel::global_max_psf_sigma = 1E2 [static], [inherited]

Global maxmimum for any psf_sigma. Sizes above this value are invalid, and nowhere near useful for practical point emitter localization

Definition at line 54 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::check_psf_sigma().

8.30.5.18 const double mappel::PointEmitterModel::global_min_psf_sigma = 1E-1 [static], [inherited]

Global minimum for any psf_sigma. Sizes below this value are invalid, and nowhere near useful for practical point emitter localization

Definition at line 53 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::check_psf_sigma().

8.30.5.19 ParamT mappel::PointEmitterModel::lbound [protected], [inherited]

Definition at line 148 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel ::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::get_stats(), mappel::Gauss1DsModel::initial_theta = estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::PointEmitterModel::pointEmitterModel::reflected_theta(), mappel::PointEmitterModel = ::set_bounds(), mappel::PointEmitterModel::set_lbound(), mappel::PointEmitterModel::set_prior(), mappel::PointEmitterModel::pointEmitterModel::set_prior(), mappel::PointEmitterModel::set_prior(), mappel::PointEmitterModel::set_p

8.30.5.20 IdxT mappel::PointEmitterModel::num_hyperparams [protected], [inherited]

Definition at line 147 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::get_num_hyperparams(), mappel::PointEmitterModel::get_stats(), mappel::PointEmitterModel::operator=(), and mappel::PointEmitterModel::set_prior().

8.30.5.21 IdxT mappel::PointEmitterModel::num_params [protected], [inherited]

Definition at line 146 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel \leftarrow ::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::get_num_params(), mappel::PointEmitter \leftarrow Model::get_stats(), mappel::Gauss1DModel::initial_theta_estimate(), mappel::Gauss2DModel::initial_theta_estimate(), mappel::PointEmitterModel::make_param(), mappel::PointEmitterModel::make_param(), mappel::PointEmitterModel::make_param_mat_stack(), mappel::PointEmitterModel::make_param_stack(), mappel::PointEmitterModel::pointEmitterModel::reflected_theta(), mappel::PointEmitterModel::set_bounds(), mappel::PointEmitterModel::set_bounds(), mappel::PointEmitterModel::set_bounds().

8.30.5.22 IdxT mappel::MCMCAdaptorBase::num_phases [protected], [inherited]

The number of different sampling phases for candidate selection MCMC. Each phase changes a different subset of variables.

Definition at line 29 of file MCMCAdaptorBase.h.

Referenced by mappel::MCMCAdaptorBase::get_mcmc_num_phases(), mappel::MCMCAdaptorBase::get_stats(), sample_mcmc_candidate(), mappel::MCMCAdaptor2D::sample_mcmc_candidate(), mappel::MCMCAdaptor1Ds \leftarrow ::sample_mcmc_candidate(), mappel::MCMCAdaptor1D::sample_mcmc_candidate(), and mappel::MCMCAdaptor \leftarrow Base::set mcmc num phases().

8.30.5.23 CompositeDist mappel::PointEmitterModel::prior [protected], [inherited]

Definition at line 145 of file PointEmitterModel.h.

8.30.5.24 double mappel::MCMCAdaptorBase::sigma_scale [protected], [inherited]

A scaling factor for step sizes as a fraction of the size of the domain dimension we are walking in. (0.05 default)

Definition at line 30 of file MCMCAdaptorBase.h.

Referenced by mappel::MCMCAdaptorBase::get_mcmc_sigma_scale(), mappel::MCMCAdaptorBase::get_stats(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCMCAdaptor1Ds::MCMCAdaptor1Ds(), mappel::MCMCAdaptor1Ds::MCMCAdaptor1Ds::MCMCAdaptor1Ds::MCMCAdaptor1Ds::MCMCAdaptor1Ds::mcmc_sampling(), mappel::MCMCAdaptor1D::set_intensity_mcmc_sampling(), and mappel::MCMCAdaptorBase::set_mcmc_sigma_ scale().

8.30.5.25 ParamT mappel::PointEmitterModel::ubound [protected], [inherited]

Definition at line 148 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel ::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::get_ubound(), mappel::Gauss1DsModel::initial_theta = estimate(), mappel::Gauss2DsModel::initial_theta = estimate(), mappel::PointEmitterModel::perator=(), mappel::PointEmitterModel::reflected_theta(), mappel::PointEmitterModel = ::set_bounds(), mappel::PointEmitterModel::set_prior(), mappel::PointEmitterModel::poin

The documentation for this class was generated from the following files:

- MCMCAdaptor2Ds.h
- MCMCAdaptor2Ds.cpp

8.31 mappel::MCMCAdaptorBase Class Reference

 $\label{local_mark_jolah_mappel} $$\#include < \frac{\mbox{McMCAdaptor} \leftarrow \mbox{Base.h}}{$$}$$

Inheritance diagram for mappel::MCMCAdaptorBase:

Public Member Functions

- void set_mcmc_sigma_scale (double scale)
- double get_mcmc_sigma_scale () const
- IdxT get_mcmc_num_phases () const

Static Public Attributes

- static const double global_default_mcmc_sigma_scale = 0.05
- static const double global_max_mcmc_sigma_scale = 0.5

Protected Member Functions

- MCMCAdaptorBase (IdxT num_phases)
- MCMCAdaptorBase (ldxT num_phases, double sigma_scale)
- void set_mcmc_num_phases (IdxT num_phases)
- StatsT get_stats () const

Protected Attributes

- · IdxT num phases
- double sigma_scale

8.31.1 Detailed Description

Definition at line 13 of file MCMCAdaptorBase.h.

8.31.2 Constructor & Destructor Documentation

8.31.2.1 mappel::MCMCAdaptorBase::MCMCAdaptorBase (ldxT num_phases) [protected]

Definition at line 14 of file MCMCAdaptorBase.cpp.

```
8.31.2.2 mappel::MCMCAdaptorBase::MCMCAdaptorBase ( IdxT num_phases, double sigma_scale ) [protected]
Definition at line 18 of file MCMCAdaptorBase.cpp.
References global max mcmc sigma scale.
8.31.3 Member Function Documentation
8.31.3.1 IdxT mappel::MCMCAdaptorBase::get_mcmc_num_phases ( ) const
Definition at line 56 of file MCMCAdaptorBase.cpp.
References num phases.
8.31.3.2 double mappel::MCMCAdaptorBase::get_mcmc_sigma_scale ( ) const
Definition at line 53 of file MCMCAdaptorBase.cpp.
References sigma scale.
8.31.3.3 StatsT mappel::MCMCAdaptorBase::get_stats( ) const [protected]
Definition at line 70 of file MCMCAdaptorBase.cpp.
References num phases, and sigma scale.
Referenced by mappel::MCMCAdaptor1D::get stats().
8.31.3.4 void mappel::MCMCAdaptorBase::set mcmc_num_phases ( ldxT num_phases ) [protected]
Definition at line 59 of file MCMCAdaptorBase.cpp.
References num phases.
Referenced by mappel::MCMCAdaptor1Ds::MCMCAdaptor1Ds(), and mappel::MCMCAdaptor2Ds::MCMCAdaptor2C→
Ds().
8.31.3.5 void mappel::MCMCAdaptorBase::set_mcmc_sigma_scale ( double scale )
Definition at line 39 of file MCMCAdaptorBase.cpp.
References global max mcmc sigma scale, and sigma scale.
```

8.31.4 Member Data Documentation

8.31.4.1 const double mappel::MCMCAdaptorBase::global_default_mcmc_sigma_scale = 0.05 [static]

Definition at line 16 of file MCMCAdaptorBase.h.

Referenced by mappel::MCMCAdaptor1Ds::MCMCAdaptor1Ds(), mappel::MCMCAdaptor2D::MCMCAdaptor2D(), and mappel::MCMCAdaptor2Ds::MCMCAdaptor2Ds().

8.31.4.2 const double mappel::MCMCAdaptorBase::global_max_mcmc_sigma_scale = 0.5 [static]

Definition at line 17 of file MCMCAdaptorBase.h.

Referenced by MCMCAdaptorBase(), and set_mcmc_sigma_scale().

8.31.4.3 IdxT mappel::MCMCAdaptorBase::num_phases [protected]

The number of different sampling phases for candidate selection MCMC. Each phase changes a different subset of variables.

Definition at line 29 of file MCMCAdaptorBase.h.

Referenced by get_mcmc_num_phases(), get_stats(), mappel::MCMCAdaptor2D::sample_mcmc_candidate(), mappel::MCMCAdaptor1Ds::sample_mcmc_candidate(), mappel::MCMCAdaptor2Ds::sample_mcmc_candidate(), mappel::MCMCAdaptor1D::sample_mcmc_candidate(), and set_mcmc_num_phases().

8.31.4.4 double mappel::MCMCAdaptorBase::sigma scale [protected]

A scaling factor for step sizes as a fraction of the size of the domain dimension we are walking in. (0.05 default)

Definition at line 30 of file MCMCAdaptorBase.h.

Referenced by get_mcmc_sigma_scale(), get_stats(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCMCAdaptor1Ds::MCMCAdaptor1Ds::MCMCAdaptor2Ds::MCMCAdaptor2Ds::MCMCAdaptor2Ds::MCMCAdaptor2Ds::MCMCAdaptor2Ds::MCMCAdaptor2Ds::MCMCAdaptor1D::set_background_mcmc_sampling(), mappel::MCMCAdaptor1D::set_contensity_mcmc_sampling(), and set_mcmc_sigma_scale().

The documentation for this class was generated from the following files:

- · MCMCAdaptorBase.h
- MCMCAdaptorBase.cpp

8.32 mappel::MLEstimator Class Reference

A Mixin class to configure a for MLE estimation (null prior).

#include </home/travis/build/markjolah/Mappel/include/Mappel/MLEstimator.h>

Inheritance diagram for mappel::MLEstimator:

Public Types

- using ParamT = arma::vec
- using ParamVecT = arma::mat

Public Member Functions

- StatsT get stats () const
- IdxT get_num_params () const
- void check param shape (const ParamT &theta) const
- void check param shape (const ParamVecT &theta) const
- · void check_psf_sigma (double psf_sigma) const
- void check psf sigma (const VecT &psf sigma) const
- · ParamT make param () const
- template<class FillT >

ParamT make param (FillT fill) const

- ParamVecT make param stack (ldxT n) const
- template<class FillT >

ParamVecT make param stack (IdxT n, FillT fill) const

- MatT make param mat () const
- template<class FillT >

MatT make param mat (FillT fill) const

- CubeT make param mat stack (ldxT n) const
- template < class FillT >

CubeT make_param_mat_stack (ldxT n, FillT fill) const

- CompositeDist & get_prior ()
- · const CompositeDist & get prior () const
- void set_prior (CompositeDist &&prior_)
- void set prior (const CompositeDist &prior)
- IdxT get_num_hyperparams () const
- void set_hyperparams (const VecT &hyperparams)
- VecT get hyperparams () const
- bool has hyperparam (const std::string &name) const
- double get_hyperparam_value (const std::string &name) const
- int get hyperparam index (const std::string &name) const
- void set hyperparam value (const std::string &name, double value)
- void rename hyperparam (const std::string &old name, const std::string &new name)
- StringVecT get_param_names () const
- void set_param_names (const StringVecT &desc)
- StringVecT get_hyperparam_names () const
- void set_hyperparam_names (const StringVecT &desc)
- template<class RngT >

ParamT sample_prior (RngT &rng)

- ParamT sample_prior ()
- void set bounds (const ParamT &lbound, const ParamT &ubound)
- void set Ibound (const ParamT &Ibound)
- void set_ubound (const ParamT &ubound)
- const ParamT & get_lbound () const
- const ParamT & get ubound () const
- bool theta in bounds (const ParamT &theta) const

- void bound_theta (ParamT &theta, double epsilon=bounds_epsilon) const
- ParamT bounded theta (const ParamT &theta, double epsilon=bounds epsilon) const
- ParamT reflected theta (const ParamT &theta) const
- BoolVecT theta_stack_in_bounds (const ParamVecT &theta) const
- ParamVecT bounded theta stack (const ParamVecT &theta, double epsilon=bounds epsilon) const
- ParamVecT reflected theta stack (const ParamVecT &theta) const

Static Public Member Functions

- static prior_hessian::ScaledSymmetricBetaDist make_prior_component_position_beta (ldxT size, double pos_
 beta=default_beta_pos)
- static prior_hessian::TruncatedParetoDist make_prior_component_sigma (double min_sigma, double max_
 sigma, double alpha=default_alpha_sigma)
- static void set rng seed (RngSeedT seed)
- static ParallelRngManagerT & get_rng_manager ()
- static ParallelRngGeneratorT & get rng generator ()

Static Public Attributes

- static const std::string DefaultSeperableInitEstimator = "TrustRegion"
- static const double bounds epsilon = 1.0E-6
- static const double global min psf sigma = 1E-1
- static const double global_max_psf_sigma = 1E2
- static const double default beta pos = 3
- static const double default_sigma_pos = 1
- static const double default_mean_I = 300
- static const double default_max_I = INFINITY
- static const double default_intensity_kappa = 2
- static const double default_pixel_mean_bg = 4
- static const double default_alpha_sigma = 2

Protected Member Functions

- MLEstimator ()=default
- MLEstimator (const MLEstimator &o)
- MLEstimator (MLEstimator &&o)
- MLEstimator & operator= (const MLEstimator &o)
- MLEstimator & operator= (MLEstimator &&o)

Protected Attributes

- CompositeDist prior
- IdxT num params
- IdxT num_hyperparams
- ParamT Ibound
- ParamT ubound

8.32.1 Detailed Description

A Mixin class to configure a for MLE estimation (null prior).

Inheriting from this class modifies the objective function undergoing optimization to use a Null prior, by simply ignoring the effect of the prior on the objective. This which effectively turns the objective function into a pure likelihood function, and the estimator becomes an MLE estimator.

Definition at line 22 of file MLEstimator.h.

8.32.2 Member Typedef Documentation

8.32.2.1 using mappel::PointEmitterModel::ParamT = arma::vec [inherited]

Parameter vector

Definition at line 47 of file PointEmitterModel.h.

8.32.2.2 using mappel::PointEmitterModel::ParamVecT = arma::mat [inherited]

Vector of parameter vectors

Definition at line 48 of file PointEmitterModel.h.

8.32.3 Constructor & Destructor Documentation

8.32.3.1 mappel::MLEstimator::MLEstimator() [protected], [default]

8.32.3.2 mappel::MLEstimator::MLEstimator (const MLEstimator & o) [inline], [protected]

Definition at line 25 of file MLEstimator.h.

8.32.3.3 mappel::MLEstimator::MLEstimator (MLEstimator && o) [inline], [protected]

Definition at line 26 of file MLEstimator.h.

8.32.4 Member Function Documentation

8.32.4.1 void mappel::PointEmitterModel::bound_theta (ParamT & theta, double epsilon = bounds_epsilon) const [inherited]

Definition at line 248 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::Point← EmitterModel::num params, and mappel::PointEmitterModel::ubound.

8.32.4.2 PointEmitterModel::ParamT mappel::PointEmitterModel::bounded_theta (const ParamT & theta, double epsilon = bounds epsilon) const [inherited]

Definition at line 265 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::Point← EmitterModel::num params, and mappel::PointEmitterModel::ubound.

Referenced by mappel::PointEmitterModel::bounded theta stack().

8.32.4.3 PointEmitterModel::ParamVecT mappel::PointEmitterModel::bounded_theta_stack (const ParamVecT & theta, double epsilon = bounds_epsilon) const [inherited]

Definition at line 307 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::check_param_shape(), and mappel::PointEmitterModel::make_param_stack().

8.32.4.4 void mappel::PointEmitterModel::check_param_shape (const ParamT & theta) const [inherited]

Definition at line 167 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::num params.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel ::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::reflected_theta(), mappel::PointEmitterModel::reflected_theta(), mappel::PointEmitterModel::theta_in_bounds(), and mappel::PointEmitterModel ::theta_stack_in_bounds().

8.32.4.5 void mappel::PointEmitterModel::check_param_shape (const ParamVecT & theta) const [inherited]

Definition at line 176 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::num_params.

8.32.4.6 void mappel::PointEmitterModel::check_psf_sigma (double psf_sigma) const [inherited]

Definition at line 185 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::global_max_psf_sigma, and mappel::PointEmitterModel::global_min_psf_ \leftarrow sigma.

Referenced by mappel::Gauss1DModel(), mappel::Gauss2DModel(), mappel::Gauss2DModel(), mappel::Gauss2DSModel(), mappel::Gauss2DSModel()

8.32.4.7 void mappel::PointEmitterModel::check_psf_sigma (const VecT & psf_sigma) const [inherited]

Definition at line 197 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::global_max_psf_sigma, and mappel::PointEmitterModel::global_min_psf_ \leftarrow sigma.

8.32.4.8 int mappel::PointEmitterModel::get_hyperparam_index (const std::string & name) const [inline], [inherited]

Definition at line 236 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.32.4.9 StringVecT mappel::PointEmitterModel::get_hyperparam_names() const [inline],[inherited]

Definition at line 256 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.32.4.10 double mappel::PointEmitterModel::get_hyperparam_value (const std::string & name) const [inline], [inherited]

Definition at line 232 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

Referenced by mappel::MCMCAdaptor1D::set_background_mcmc_sampling(), and mappel::MCMCAdaptor1D::set_circle intensity_mcmc_sampling().

8.32.4.11 PointEmitterModel::ParamT mappel::PointEmitterModel::get_hyperparams () const [inline], [inherited]

Definition at line 224 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.32.4.12 const PointEmitterModel::ParamT & mappel::PointEmitterModel::get_lbound() const [inline], [inherited]

Definition at line 212 of file PointEmitterModel.h.

References mappel::PointEmitterModel::lbound.

Referenced by mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCMCAdaptor2D::MCMCAdaptor2D(), and mappel::MCMCAdaptor1D::set_background_mcmc_sampling().

8.32.4.13 | IdxT mappel::PointEmitterModel::get_num_hyperparams() const [inline], [inherited]

Definition at line 208 of file PointEmitterModel.h.

 $References\ mappel:: Point Emitter Model:: num_hyperparams.$

8.32.4.14 IdxT mappel::PointEmitterModel::get_num_params()const [inline],[inherited]

Definition at line 160 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

8.32.4.15 StringVecT mappel::PointEmitterModel::get_param_names()const [inline], [inherited]

Definition at line 248 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.32.4.16 CompositeDist & mappel::PointEmitterModel::get_prior() [inline], [inherited]

Definition at line 200 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

Referenced by mappel::Gauss2DModel::update_internal_1Dsum_estimators(), and mappel::Gauss2DsModel ::update_internal_1Dsum_estimators().

8.32.4.17 const CompositeDist & mappel::PointEmitterModel::get_prior() const [inline], [inherited]

Definition at line 204 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.32.4.18 ParallelRngGeneratorT & mappel::PointEmitterModel::get_rng_generator() [static],[inherited]

Definition at line 120 of file PointEmitterModel.cpp.

References mappel::rng_manager.

8.32.4.19 ParallelRngManagerT & mappel::PointEmitterModel::get_rng_manager() [static], [inherited]

Definition at line 115 of file PointEmitterModel.cpp.

References mappel::rng_manager.

8.32.4.20 StatsT mappel::PointEmitterModel::get_stats() const [inherited]

Definition at line 125 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::Ibound, mappel::PointEmitterModel::num_hyperparams, mappel::PointEmitterModel::prior, mappel::rng_manager, and mappel::PointEmitter Model::ubound.

Referenced by mappel::Gauss1DModel::get_stats(), mappel::Gauss1DsModel::get_stats(), mappel::Gauss2DModel::get_stats(), and mappel::Gauss2DsModel::get_stats().

8.32.4.21 const PointEmitterModel::ParamT & mappel::PointEmitterModel::get_ubound() const [inline], [inherited]

Definition at line 216 of file PointEmitterModel.h.

References mappel::PointEmitterModel::ubound.

Referenced by mappel::Gauss2DsxyModel::get_max_sigma_ratio(), mappel::Gauss2DsModel::get_max_sigma_ratio(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCMCAdaptor2D(), mappel::MCMCAdaptor2D(), mappel::MCMCAdaptor1D::set background mcmc sampling(), and mappel::Gauss2DsModel::set max sigma ratio().

8.32.4.22 bool mappel::PointEmitterModel::has_hyperparam (const std::string & name) const [inline], [inherited]

Definition at line 228 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.32.4.23 PointEmitterModel::ParamT mappel::PointEmitterModel::make_param()const [inline], [inherited]

Definition at line 164 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

Referenced by mappel::Gauss1DModel::initial_theta_estimate(), mappel::Gauss1DsModel::initial_theta_estimate(), mappel::Gauss2DModel::initial_theta_estimate(), mappel::Gauss2DsxyModel::initial_theta_estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::Gauss1DModel::pixel_hess_update(), mappel::Gauss1DsModel::pixel_hess_update(), mappel::Gauss2DsModel::pixel_hess_update(), and mappel::Gauss2DsModel::pixel_hess_update().

8.32.4.24 template < class FillT > PointEmitterModel::ParamT mappel::PointEmitterModel::make_param (FillT fill) const [inherited]

Definition at line 181 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

8.32.4.25 MatT mappel::PointEmitterModel::make_param_mat() const [inline], [inherited]

Definition at line 172 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

8.32.4.26 template < class FillT > MatT mappel::PointEmitterModel::make_param_mat(FillT fill) const [inherited]

Definition at line 191 of file PointEmitterModel.h.

 $References\ mappel:: Point Emitter Model:: num_params.$

8.32.4.27 CubeT mappel::PointEmitterModel::make_param_mat_stack(ldxT n) const [inline], [inherited]

Definition at line 176 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

8.32.4.28 template < class FillT > CubeT mappel::PointEmitterModel::make_param_mat_stack (IdxT n, FillT fill) const [inherited]

Definition at line 196 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

8.32.4.29 PointEmitterModel::ParamVecT mappel::PointEmitterModel::make_param_stack(ldxT n) const [inline], [inherited]

Definition at line 168 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num_params.

Referenced by mappel::PointEmitterModel::bounded_theta_stack(), and mappel::PointEmitterModel::reflected_theta _ _ stack().

8.32.4.30 template < class FillT > PointEmitterModel::ParamVecT mappel::PointEmitterModel::make_param_stack (ldxT n, FillT fill) const [inherited]

Definition at line 186 of file PointEmitterModel.h.

References mappel::PointEmitterModel::num params.

8.32.4.31 prior_hessian::TruncatedGammaDist mappel::PointEmitterModel::make_prior_component_intensity (double mean = default_mean_I, double kappa = default_intensity_kappa) [static], [inherited]

Definition at line 98 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::default max I.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_beta_position(), mappel::Gauss2Dsdodel::make_default_prior_beta_position(), mappel::Gauss2Dsdodel::make_default_prior_normal_position(), mappel::Gauss1DsModel::make_default_prior_normal_position(), mappel::Gauss1DsModel::make_default_prior_normal_default_prior_normal_position(), mappel::Gauss2DsModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_prior_deta_position(), mappel::Gauss1DsModel::make_prior_beta_position(), mappel::Gauss2DsModel::make_prior_beta_position(), mappel::Gauss2DsModel::make_prior_normal_default_prio

8.32.4.32 prior_hessian::ScaledSymmetricBetaDist mappel::PointEmitterModel::make_prior_component_position_beta (IdxT size, double pos_beta = default_beta_pos_) [static], [inherited]

Definition at line 92 of file PointEmitterModel.cpp.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DModel::make_ \leftarrow default_prior_beta_position(), mappel::Gauss1DModel::make_default_prior_beta_position(), mappel::Gauss2Ds \leftarrow Model::make_default_prior_beta_position(), mappel::Gauss1DsModel::make_prior_beta_position(), mappel::Gauss2Ds \leftarrow DModel::make_prior_beta_position(), mappel::Gauss1DModel::make_prior_beta_position(), and mappel::Gauss2Ds \leftarrow Model::make_prior_beta_position().

8.32.4.33 prior_hessian::TruncatedNormalDist mappel::PointEmitterModel::make_prior_component_position_normal(ldxT size, double pos_sigma = default_sigma_pos) [static], [inherited]

Definition at line 85 of file PointEmitterModel.cpp.

Referenced by mappel::Gauss1DsModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_ \leftarrow default_prior_normal_position(), mappel::Gauss1DModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_prior_normal_position(), mappel::Gauss2DModel::make_prior_normal_position(), mappel::Gauss1DsModel::make_prior_normal_position(), and mappel::Gauss2DsModel::make_prior_normal_position().

8.32.4.34 prior_hessian::TruncatedParetoDist mappel::PointEmitterModel::make_prior_component_sigma (double min_sigma, double max_sigma, double alpha = default_alpha_sigma) [static], [inherited]

Definition at line 104 of file PointEmitterModel.cpp.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DsModel::make_ \leftarrow default_prior_beta_position(), mappel::Gauss1DsModel::make_default_prior_normal_position(), mappel::Gauss2 \leftarrow DsModel::make_default_prior_normal_position(), mappel::Gauss1DsModel::make_prior_beta_position(), mappel::Gauss1DsModel::make_prior_normal_position(), and mappel \leftarrow ::Gauss2DsModel::make_prior_normal_position().

8.32.4.35 MLEstimator& mappel::MLEstimator::operator=(const MLEstimator & o) [inline], [protected]

Definition at line 27 of file MLEstimator.h.

Referenced by mappel::Gauss1DMLE::operator=(), mappel::Gauss1DsMLE::operator=(), mappel::Gauss2DsMLE::operator=().

8.32.4.36 MLEstimator& mappel::MLEstimator::operator=(MLEstimator && o) [inline], [protected]

Definition at line 28 of file MLEstimator.h.

8.32.4.37 PointEmitterModel::ParamT mappel::PointEmitterModel::reflected_theta (const ParamT & theta) const [inherited]

Definition at line 276 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::ubound, mappel::PointEmitterModel::ubound.

Referenced by mappel::PointEmitterModel::reflected theta stack().

8.32.4.38 PointEmitterModel::ParamVecT mappel::PointEmitterModel::reflected_theta_stack (const ParamVecT & theta) const [inherited]

Definition at line 317 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::make_param_stack(), and mappel::PointEmitterModel::reflected_theta().

8.32.4.39 void mappel::PointEmitterModel::rename_hyperparam (const std::string & old_name, const std::string & new_name)
[inline], [inherited]

Definition at line 244 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.32.4.40 template < class RngT > PointEmitterModel::ParamT mappel::PointEmitterModel::sample_prior(RngT & rng) [inherited]

Definition at line 264 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.32.4.41 PointEmitterModel::ParamT mappel::PointEmitterModel::sample_prior() [inline], [inherited]

Definition at line 268 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior, and mappel::rng_manager.

8.32.4.42 void mappel::PointEmitterModel::set_bounds (const ParamT & *lbound_*, const ParamT & *ubound_*)

Box-type parameter bounds

Modifies the prior bounds to prevent sampling outside the valid box-constraints.

Definition at line 213 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounds_epsilon, mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::pointEmitterModel::ubound, mappel::PointEmitterModel::pointEmitterModel::ubound.

8.32.4.43 void mappel::PointEmitterModel::set_hyperparam_names (const StringVecT & *desc*) [inline], [inherited]

Definition at line 260 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.32.4.44 void mappel::PointEmitterModel::set_hyperparam_value (const std::string & name, double value) [inline], [inherited]

Definition at line 240 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.32.4.45 void mappel::PointEmitterModel::set_hyperparams (const VecT & hyperparams) [inline], [inherited]

Definition at line 220 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

Referenced by mappel::Gauss2DModel::set hyperparams(), and mappel::Gauss2DsModel::set hyperparams().

8.32.4.46 void mappel::PointEmitterModel::set_lbound (const ParamT & lbound) [inherited]

Definition at line 226 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounds_epsilon, mappel::PointEmitterModel::lbound, mappel::PointEmitter— Model::num params, mappel::PointEmitterModel::prior, and mappel::PointEmitterModel::ubound.

Referenced by mappel::Gauss1DsModel::set_min_sigma().

8.32.4.47 void mappel::PointEmitterModel::set_param_names (const StringVecT & desc) [inline], [inherited]

Definition at line 252 of file PointEmitterModel.h.

References mappel::PointEmitterModel::prior.

8.32.4.48 void mappel::PointEmitterModel::set_prior (CompositeDist && prior_) [inherited]

Definition at line 158 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::num_hyperparams, mappel::Point← EmitterModel::num_params, mappel::PointEmitterModel::prior, and mappel::PointEmitterModel::ubound.

Referenced by mappel::Gauss2DModel::set_prior(), and mappel::Gauss2DsModel::set_prior().

8.32.4.49 void mappel::PointEmitterModel::set prior (const CompositeDist & prior) [inherited]

Definition at line 149 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::Ibound, mappel::PointEmitterModel::num_hyperparams, mappel::PointEmitterModel::prior, and mappel::PointEmitterModel::ubound.

8.32.4.50 void mappel::PointEmitterModel::set_rng_seed(RngSeedT seed) [static], [inherited]

Definition at line 110 of file PointEmitterModel.cpp.

References mappel::rng_manager.

8.32.4.51 void mappel::PointEmitterModel::set_ubound(const ParamT & ubound) [inherited]

Definition at line 237 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::bounds_epsilon, mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::pointEmitterModel::ubound, mappel::PointEmitterModel::pointEmitterModel::ubound.

Referenced by mappel::Gauss1DsModel::set max sigma(), and mappel::Gauss2DsModel::set max sigma ratio().

8.32.4.52 bool mappel::PointEmitterModel::theta_in_bounds (const ParamT & theta) const [inherited]

Definition at line 257 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::lbound, mappel::PointEmitterModel::ubound.

Referenced by mappel::Gauss2DModel::initial_theta_estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::Gauss1DModel::make_stencil(), mappel::Gauss2DModel::make_stencil(), mappel::Gauss2DsModel::make_stencil(), mappel::Gauss2DsModel::make_stencil(), and mappel::Point
EmitterModel::theta_stack_in_bounds().

8.32.4.53 BoolVecT mappel::PointEmitterModel::theta_stack_in_bounds (const ParamVecT & theta) const [inherited]

Definition at line 297 of file PointEmitterModel.cpp.

References mappel::PointEmitterModel::check_param_shape(), and mappel::PointEmitterModel::theta_in_bounds().

8.32.5 Member Data Documentation

8.32.5.1 const double mappel::PointEmitterModel::bounds_epsilon = 1.0E-6 [static], [inherited]

Distance from the boundary to constrain in bound theta and bounded theta methods

Definition at line 52 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::set_bounds(), mappel::PointEmitterModel::set_lbound(), mappel::Gauss2 DsModel::set_max_sigma_ratio(), and mappel::PointEmitterModel::set_ubound().

8.32.5.2 const double mappel::PointEmitterModel::default_alpha_sigma = 2 [static], [inherited]

Default per-pixel background gamma distribution shape

Definition at line 62 of file PointEmitterModel.h.

8.32.5.3 const double mappel::PointEmitterModel::default_beta_pos = 3 [static], [inherited]

Default position parameter in symmetric beta-distributions

Definition at line 56 of file PointEmitterModel.h.

8.32.5.4 const double mappel::PointEmitterModel::default intensity kappa = 2 [static], [inherited]

Default shape for intensity gamma distributions

Definition at line 60 of file PointEmitterModel.h.

8.32.5.5 const double mappel::PointEmitterModel::default_max_l = INFINITY [static], [inherited]

Default maximum emitter intensity

Definition at line 59 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::make prior component intensity().

8.32.5.6 const double mappel::PointEmitterModel::default_mean_I = 300 [static], [inherited]

Default emitter intensity mean

Definition at line 58 of file PointEmitterModel.h.

Referenced by mappel::MCMCAdaptor1D::set intensity mcmc sampling().

8.32.5.7 const double mappel::PointEmitterModel::default_pixel_mean_bg = 4 [static], [inherited]

Default per-pixel mean background counts

Definition at line 61 of file PointEmitterModel.h.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DModel::make default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_beta_position(), mappel::Gauss1DModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), and mappel::MCMCAdaptor1D \leftarrow ::set_background_mcmc_sampling().

8.32.5.8 const double mappel::PointEmitterModel::default_sigma_pos = 1 [static], [inherited]

Default position parameter in symmetric beta-distributions

Definition at line 57 of file PointEmitterModel.h.

8.32.5.9 const std::string mappel::PointEmitterModel::DefaultSeperableInitEstimator = "TrustRegion" [static], [inherited]

Estimator name to use in 1D separable initializations

Definition at line 49 of file PointEmitterModel.h.

Referenced by mappel::Gauss2DModel::initial_theta_estimate(), mappel::Gauss2DsxyModel::initial_theta_estimate(), and mappel::Gauss2DsModel::initial_theta_estimate().

8.32.5.10 const double mappel::PointEmitterModel::global_max_psf_sigma = 1E2 [static], [inherited]

Global maxmimum for any psf_sigma. Sizes above this value are invalid, and nowhere near useful for practical point emitter localization

Definition at line 54 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::check_psf_sigma().

8.32.5.11 const double mappel::PointEmitterModel::global_min_psf_sigma = 1E-1 [static], [inherited]

Global minimum for any psf_sigma. Sizes below this value are invalid, and nowhere near useful for practical point emitter localization

Definition at line 53 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::check_psf_sigma().

8.32.5.12 ParamT mappel::PointEmitterModel::lbound [protected], [inherited]

Definition at line 148 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel ::PointEmitterModel::bounded_theta(), mappel::PointEmitterModel::get_stats(), mappel::Gauss1DsModel::initial_theta = estimate(), mappel::Gauss2DsModel::initial_theta = estimate(), mappel::PointEmitterModel::perator=(), mappel::PointEmitterModel::reflected_theta(), mappel::PointEmitterModel = ::set_bounds(), mappel::PointEmitterModel::set_bound(), mappel::PointEmitterModel::set_prior(), mappel::PointEmitterModel::poi

8.32.5.13 IdxT mappel::PointEmitterModel::num_hyperparams [protected], [inherited]

Definition at line 147 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::get_num_hyperparams(), mappel::PointEmitterModel::get_stats(), mappel::PointEmitterModel::operator=(), and mappel::PointEmitterModel::set_prior().

8.32.5.14 IdxT mappel::PointEmitterModel::num_params [protected], [inherited]

Definition at line 146 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel \leftarrow ::PointEmitterModel::check_param_shape(), mappel::PointEmitterModel::get_num_params(), mappel::PointEmitter \leftarrow Model::get_stats(), mappel::Gauss1DModel::initial_theta_estimate(), mappel::Gauss2DModel::initial_theta_estimate(), mappel::PointEmitterModel::make_param(), mappel::PointEmitterModel::make_param(), mappel::PointEmitterModel::make_param_mat_stack(), mappel::PointEmitterModel::make_param_stack(), mappel::PointEmitterModel::pointEmitterModel::reflected_theta(), mappel::PointEmitterModel::set_bounds(), mappel::PointEmitterModel::set_bounds(), mappel::PointEmitterModel::set_bounds().

8.32.5.15 CompositeDist mappel::PointEmitterModel::prior [protected], [inherited]

Definition at line 145 of file PointEmitterModel.h.

Referenced by mappel::Gauss2DModel::debug_internal_sum_model_y(), mappel::Gauss2DsModel::debug_internal \
_sum_model_y(), mappel::Gauss2DModel::Gauss2DModel(), mappel::Gauss2DsModel::Gauss2DsModel(), mappel \
::PointEmitterModel::get_hyperparam_index(), mappel::PointEmitterModel::get_hyperparam_names(), mappel::PointEmitterModel::get_hyperparam_names(), mappel::PointEmitterModel::get_param_names(), mappel::PointEmitterModel::get_param_names(), mappel::PointEmitterModel::get_param_names(), mappel::PointEmitterModel::get_param_names(), mappel::PointEmitterModel::pointEmitterModel::has_\(\cdot \) hyperparam(), mappel::PointEmitterModel::pointEmitterModel::pointEmitterModel(), mappel::\(\cdot \) PointEmitterModel::pointEmitterModel::set_hyperparam_names(), mappel::PointEmitterModel::set_hyperparam \(\cdot \) value(), mappel::PointEmitterModel::set_hyperparam \(\cdot \) value(), mappel::PointEmitterModel::set_hyperparam(), mappel::PointEmitterModel::set_lyperparam(), mappel::PointEmitterModel::set_hyperparam(), mappel::PointEmitterModel::set_lyperparam(), mappel::PointEmitterModel::set

8.32.5.16 ParamT mappel::PointEmitterModel::ubound [protected], [inherited]

Definition at line 148 of file PointEmitterModel.h.

Referenced by mappel::PointEmitterModel::bound_theta(), mappel::PointEmitterModel::bounded_theta(), mappel ::PointEmitterModel::get_ubound(), mappel::Gauss1DsModel::initial_theta = estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::PointEmitterModel::get_ubound(), mappel::PointEmitterModel::pointEmitterModel::reflected_theta(), mappel::PointEmitterModel = ::set_bounds(), mappel::PointEmitterModel::set_lbound(), mappel::PointEmitterModel::set_prior(), mappel::PointEmitterModel::pointEmitterModel::set_prior(), mappel::PointEmitterModel::set_ubound(), and mappel::PointEmitterModel::theta_in_bounds().

The documentation for this class was generated from the following file:

· MLEstimator.h

8.33 mappel::ModelBoundsError Struct Reference

Access outside the model bounds is attempted.

#include </home/travis/build/markjolah/Mappel/include/Mappel/util.h>

Inheritance diagram for mappel::ModelBoundsError:

Public Member Functions

ModelBoundsError (std::string message)

8.33.1 Detailed Description

Access outside the model bounds is attempted.

Definition at line 86 of file util.h.

8.33.2 Constructor & Destructor Documentation

8.33.2.1 mappel::ModelBoundsError::ModelBoundsError (std::string message) [inline]

Definition at line 88 of file util.h.

The documentation for this struct was generated from the following file:

· util.h

8.34 mappel::NewtonDiagonalMaximizer < Model > Class Template Reference

#include </home/travis/build/markjolah/Mappel/include/Mappel/estimator.h>

Inheritance diagram for mappel::NewtonDiagonalMaximizer < Model >:

Public Types

- using MaximizerData = typename IterativeMaximizer< Model >::MaximizerData
- enum ExitCode::IdxT {
 ExitCode::Unassigned = 8, ExitCode::MaxIter = 7, ExitCode::MaxBacktracks = 6, ExitCode::TrustRegionRadius = 5,
 ExitCode::GradRatio = 4, ExitCode::FunctionChange = 3, ExitCode::StepSize = 2, ExitCode::Success = 1,
 ExitCode::Error = 0 }

Public Member Functions

- NewtonDiagonalMaximizer (Model &model, int max_iterations=DEFAULT_ITERATIONS)
- std::string name () const
- double mean_iterations ()
- double mean_backtracks ()
- double mean fun evals ()
- double mean_der_evals ()
- StatsT get_stats ()
- StatsT get_debug_stats ()
- void clear_stats ()
- void local_maximize (const ModelDataT< Model > &im, const StencilT< Model > &theta_init, StencilT< Model > &stencil, double &rllh)

Perform a local maximization to finish off a simulated annealing run.

- void estimate_max_stack (const ModelDataStackT< Model > &im, const ParamVecT< Model > &theta_init, ParamVecT< Model > &theta, VecT &rllh, CubeT &obsl)
- void estimate_profile_stack (const ModelDataT< Model > &data, const IdxVecT &fixed_parameters, const MatT &values, const ParamVecT< Model > &theta_init, VecT &profile_likelihood, ParamVecT< Model > &profile_
 parameters)
- Model & get model ()
- void set model (Model &new model)

- StencilT< Model > estimate_max (const ModelDataT< Model > &im)
- StencilT< Model > estimate_max (const ModelDataT< Model > &im, const ParamT< Model > &theta_init)
- StencilT < Model > estimate_max (const ModelDataT < Model > &im, double &rllh)
- StencilT< Model > estimate_max (const ModelDataT< Model > &im, const ParamT< Model > &theta_init, double &rllh)
- void estimate_max (const ModelDataT < Model > &im, ParamT < Model > &theta, double &rllh, MatT &obsl)
- void estimate_max (const ModelDataT< Model > &im, const ParamT< Model > &theta_init, ParamT< Model > &theta, double &rllh, MatT &obsl)
- void estimate_max_debug (const ModelDataT< Model > &im, const ParamT< Model > &theta_init, ParamT
 Model > &theta_est, double &rllh, MatT &obsl, MatT &sequence, VecT &sequence_rllh)

Static Public Attributes

static constexpr int NumExitCodes = 9

Protected Member Functions

- void maximize (MaximizerData &data)
- void record run statistics (const MaximizerData &data)
- StencilT < Model > compute_estimate (const ModelDataT < Model > &im, const ParamT < Model > &theta_init, double &rllh)
- virtual void compute_estimate (const ModelDataT< Model > &im, const ParamT< Model > &theta_init, ParamT< Model > &theta est, double &rllh, MatT &obsl)

Default base class implementation computes rllh and obsl seperately from stencil This should be overridden by Estimator subclasses that already have access to this information.

- StencilT < Model > compute_estimate_debug (const ModelDataT < Model > &im, const ParamT < Model > &theta_init, ParamVecT < Model > &sequence, VecT &sequence_rllh)
- void compute_profile_estimate (const ModelDataT< Model > &im, const ParamT< Model > &theta_init, const ldxVecT &fixed_parameters, ParamT< Model > &theta_est, double &rllh)
- virtual void maximize (MaximizerData &data)=0
- bool backtrack (MaximizerData &data)
- · bool convergence test (MaximizerData &data)
- void record_exit_code (ExitCode code)
- void record_walltime (ClockT::time_point start_walltime, int nimages)

Protected Attributes

- int max_iterations
- double epsilon = 1e-6
- double delta = 1e-6
- double lambda min = 0.05
- double alpha = 1e-4
- int max backtracks = 8
- int total iterations = 0
- int total backtracks = 0
- int total fun evals = 0
- int total_der_evals = 0
- IdxVecT last backtrack idxs
- · int max threads

- int num_threads
- std::mutex mtx
- Model & model
- int num estimations = 0
- double total walltime = 0.
- IdxVecT exit_counts
- 8.34.1 Detailed Description

template<class Model>

class mappel::NewtonDiagonalMaximizer< Model >

Definition at line 333 of file estimator.h.

- 8.34.2 Member Typedef Documentation

Definition at line 335 of file estimator.h.

- 8.34.3 Member Enumeration Documentation
- **8.34.3.1** template < class Model > enum mappel::Estimator::ExitCode: ldxT [strong], [inherited]

Enumerator

Unassigned

Maxiter

MaxBacktracks

TrustRegionRadius

GradRatio

FunctionChange

StepSize

Success

Error

Definition at line 40 of file estimator.h.

- 8.34.4 Constructor & Destructor Documentation
- 8.34.4.1 template < class Model > mappel::NewtonDiagonalMaximizer < Model >::NewtonDiagonalMaximizer (Model & model, int max_iterations = DEFAULT_ITERATIONS) [inline]

Definition at line 337 of file estimator.h.

8.34.5 Member Function Documentation

8.34.5.1 template < class Model > bool mappel::IterativeMaximizer < Model >::backtrack (MaximizerData & data) [protected], [inherited]

Definition at line 647 of file estimator impl.h.

References mappel::IterativeMaximizer< Model >::alpha, mappel::IterativeMaximizer< Model >::convergence_ test(), mappel::IterativeMaximizer< Model >::MaximizerData::free_parameters, mappel::IterativeMaximizer< Model >::MaximizerData::im, mappel::IterativeMaximizer< Model >::MaximizerData::im, mappel::IterativeMaximizer

>::MaximizerData::grad, mappel::IterativeMaximizer
Model >::MaximizerData::im, mappel::IterativeMaximizer
Model >::MaximizerData::max_backtracks, mappel::IterativeMaximizer
Model >::MaximizerData::record_backtrack(), mappel::converservers

Referenced by mappel::NewtonDiagonalMaximizer< Model >::maximize(), mappel::NewtonMaximizer< Model >::maximize(), and mappel::QuasiNewtonMaximizer< Model >::maximize().

```
8.34.5.2 template < class Model > void mappel::IterativeMaximizer < Model >::clear_stats ( ) [virtual], [inherited]
```

Reimplemented from mappel::ThreadedEstimator< Model >.

Definition at line 625 of file estimator_impl.h.

References mappel::ThreadedEstimator< Model >::clear_stats(), mappel::ThreadedEstimator< Model >::mtx, mappel::IterativeMaximizer< Model >::total_backtracks, mappel::IterativeMaximizer< Model >::total_der_evals, mappel::IterativeMaximizer< Model >::total_iterativeMaximizer< Model >::total_iterat

```
8.34.5.3 template < class Model > void mappel::Estimator < Model > ::compute_estimate ( const ModelDataT < Model > & im, const ParamT < Model > & theta_init, ParamT < Model > & theta_est, double & rllh, MatT & obsl ) [protected], [virtual], [inherited]
```

Default base class implementation computes rllh and obsl seperately from stencil This should be overridden by Estimator subclasses that already have access to this information.

Definition at line 183 of file estimator_impl.h.

References mappel::Estimator< Model >::compute_estimate(), mappel::Estimator< Model >::model, and mappel \leftarrow ::methods::observed information().

Implements mappel::Estimator < Model >.

Definition at line 753 of file estimator_impl.h.

References mappel::IterativeMaximizer< Model >::maximize(), mappel::Estimator< Model >::model, mappel:: \leftarrow IterativeMaximizer< Model >::record_run_statistics(), mappel::IterativeMaximizer< Model >::MaximizerData::rllh, and mappel::IterativeMaximizer< Model >::MaximizerData::stencil().

Estimators that produce a sequence of results (e.g. IterativeEstimators) can override this dummy debug implementation.

Reimplemented from mappel::Estimator < Model >.

Definition at line 768 of file estimator impl.h.

References mappel::IterativeMaximizer< Model >::MaximizerData::get_theta_sequence(), mappel::Iterative Maximizer
Maximizer
Model >::MaximizerData::get_theta_sequence_rllh(), mappel::IterativeMaximizer
Model >::max_
backtracks, mappel::IterativeMaximizer
Model >::max_iterations, mappel::IterativeMaximizer
Model >::maximize(), mappel::IterativeMaximizer
Model >::record_exit_
code(), mappel::IterativeMaximizer
Model >::record_run_statistics(), and mappel::IterativeMaximizer
Model >::
MaximizerData::stencil().

8.34.5.6 template < class Model > void mappel::IterativeMaximizer < Model > :::compute_profile_estimate (const ModelDataT < Model > & im, const ParamT < Model > & theta_init, const IdxVecT & fixed_parameters, ParamT < Model > & theta_est, double & rllh) [protected], [virtual], [inherited]

Reimplemented from mappel::Estimator < Model >.

Definition at line 797 of file estimator_impl.h.

References mappel::IterativeMaximizer< Model >::maximize(), mappel::Estimator< Model >::model, mappel:: \leftarrow IterativeMaximizer< Model >::record_run_statistics(), mappel::IterativeMaximizer< Model >::MaximizerData::rllh, mappel::IterativeMaximizer< Model >::MaximizerData::set_fixed_parameters(), and mappel::IterativeMaximizer< Model >::MaximizerData::theta().

8.34.5.7 template < class Model > bool mappel::IterativeMaximizer < Model >::convergence_test (MaximizerData & data) [protected], [inherited]

Definition at line 731 of file estimator_impl.h.

References mappel::IterativeMaximizer< Model >::delta, mappel::IterativeMaximizer< Model >::epsilon, mappel::← IterativeMaximizer< Model >::MaximizerData::free_parameters, mappel::IterativeMaximizer< Model >::Maximizer← Data::grad, mappel::IterativeMaximizer< Model >::MaximizerData::num_fixed_parameters, mappel::Threaded← Estimator< Model >::record_exit_code(), mappel::IterativeMaximizer< Model >::MaximizerData::rllh, mappel::← IterativeMaximizer< Model >::MaximizerData::saved_theta(), and mappel::IterativeMaximizer< Model >::Maximizer← Data::theta().

Referenced by mappel::IterativeMaximizer < Model >::backtrack().

8.34.5.8 template < class Model > StencilT < Model > mappel::Estimator < Model > ::estimate_max (const ModelDataT < Model > & im) [inherited]

Definition at line 64 of file estimator_impl.h.

References mappel::Estimator< Model >::model.

Referenced by mappel::Estimator < Model >::estimate max(), and mappel::Estimator < Model >::~Estimator().

8.34.5.9 template < class Model > StencilT < Model > mappel::Estimator < Model > ::estimate_max (const ModelDataT < Model > & im, const ParamT < Model > & theta_init) [inherited]

Definition at line 82 of file estimator impl.h.

References mappel::Estimator < Model >::estimate max(), and mappel::methods::objective::rllh().

8.34.5.10 template < class Model > StencilT < Model > mappel::Estimator < Model > ::estimate_max (const ModelDataT < Model > & im, double & rilh) [inherited]

Definition at line 73 of file estimator impl.h.

References mappel::Estimator < Model >::estimate_max(), and mappel::Estimator < Model >::model.

8.34.5.11 template < class Model > StencilT < Model > mappel::Estimator < Model > ::estimate_max (const ModelDataT < Model > & im, const ParamT < Model > & theta init, double & rllh) [inherited]

Definition at line 90 of file estimator impl.h.

References mappel::Estimator< Model >::compute_estimate(), mappel::Estimator< Model >::Error, mappel:: \leftarrow Estimator< Model >::record_exit_code(), and mappel ::Estimator< Model >::record_exit_code(), and mappel ::Estimator< Model >::record_walltime().

8.34.5.12 template < class Model > void mappel::Estimator < Model > ::estimate_max (const ModelDataT < Model > & im, ParamT < Model > & theta, double & rllh, MatT & obsl) [inherited]

Definition at line 119 of file estimator_impl.h.

References mappel::Estimator < Model >::estimate max(), and mappel::Estimator < Model >::model.

8.34.5.13 template < class Model > void mappel::Estimator < Model > ::estimate_max (const ModelDataT < Model > & im, const ParamT < Model > & theta_init, ParamT < Model > & theta, double & rllh, MatT & obsl) [inherited]

Definition at line 128 of file estimator_impl.h.

References mappel::Estimator< Model >::compute_estimate(), mappel::Estimator< Model >::Error, mappel::print \leftarrow _image(), mappel::Estimator< Model >::record_exit_code(), mappel::Estimator< Model >::record_walltime(), and mappel::methods::objective::rllh().

8.34.5.14 template < class Model > void mappel::Estimator < Model > ::estimate_max_debug (const ModelDataT < Model > & im, const ParamT < Model > & theta_init, ParamT < Model > & theta_est, double & rllh, MatT & obsl, MatT & sequence, VecT & sequence rllh) [inherited]

Definition at line 158 of file estimator_impl.h.

 $References\ mappel::Estimator < Model > :: compute_estimate_debug(),\ mappel::Estimator < Model > :: model,\ mappel :: Estimator < Model > :: record_walltime(),\ and\ mappel:: methods:: objective \leftarrow :: relh().$

Referenced by mappel::Estimator < Model >::~Estimator().

8.34.5.15 template < class Model > void mappel::Estimator < Model > ::estimate_max_stack (const ModelDataStackT < Model > & im_stack, ParamVecT < Model > & theta_est_stack, VecT & rllh_stack, CubeT & obsl_stack)

[inherited]

Definition at line 170 of file estimator_impl.h.

References mappel::Estimator< Model >::estimate_max_stack(), and mappel::Estimator< Model >::model.

8.34.5.16 template < class Model > void mappel::ThreadedEstimator < Model > ::estimate_max_stack (const ModelDataStackT < Model > & im, const ParamVecT < Model > & theta_init, ParamVecT < Model > & theta, VecT & rllh, CubeT & obsl) [virtual], [inherited]

Implements mappel::Estimator < Model >.

Definition at line 285 of file estimator_impl.h.

References mappel::Estimator< Model >::compute_estimate(), mappel::Estimator< Model >::Error, mappel:: \leftarrow Estimator< Model >::model, mappel::ThreadedEstimator< Model >::num_threads, mappel::print_image(), mappel ::ThreadedEstimator< Model >::record_exit_code(), mappel::Estimator< Model >::record_walltime(), and mappel ::methods::objective::openmp::rllh stack().

8.34.5.17 template < class Model > void mappel::ThreadedEstimator < Model > ::estimate_profile_stack (const ModelDataT < Model > & data, const IdxVecT & fixed_parameters, const MatT & values, const ParamVecT < Model > & theta_init, VecT & profile_likelihood, ParamVecT < Model > & profile_parameters) [virtual], [inherited]

Implements mappel::Estimator < Model >.

Definition at line 323 of file estimator impl.h.

 $References\ mappel::Estimator<\ Model>::compute_profile_estimate(),\ mappel::Estimator<\ Model>::Error,\ mappel::Estimator<\ Model>::Estimator<\ Model>::num_threads,\ mappel::print_image(),\ mappel::ThreadedEstimator<\ Model>::record_exit_code(),\ and\ mappel::Estimator<\ Model>::record_walltime().$

8.34.5.18 template < class Model > StatsT mappel::IterativeMaximizer < Model >::get_debug_stats() [virtual], [inherited]

Reimplemented from mappel::ThreadedEstimator< Model >.

Definition at line 609 of file estimator_impl.h.

References mappel::IterativeMaximizer< Model >::MaximizerData::backtrack_idxs, mappel::IterativeMaximizer< Model >::get stats(), and mappel::IterativeMaximizer< Model >::last backtrack idxs.

8.34.5.19 template < class Model > Model & mappel::Estimator < Model >::get_model() [inherited]

Definition at line 50 of file estimator impl.h.

References mappel::Estimator< Model >::model.

Referenced by mappel::Estimator < Model >::~Estimator().

8.34.5.20 template < class Model > StatsT mappel::IterativeMaximizer < Model >::get_stats() [virtual], [inherited]

Reimplemented from mappel::ThreadedEstimator< Model >.

Definition at line 588 of file estimator_impl.h.

References mappel::IterativeMaximizer< Model >::delta, mappel::IterativeMaximizer< Model >::epsilon, mappel ::ThreadedEstimator< Model >::get_stats(), mappel::IterativeMaximizer< Model >::max_backtracks, mappel:: \leftarrow IterativeMaximizer< Model >::mtx, mappel::Estimator< Model >::num_estimations, mappel::IterativeMaximizer< Model >::total_backtracks, mappel::IterativeMaximizer< Model >::total_der_evals, mappel::IterativeMaximizer< Model >::total_fun_evals, and mappel::IterativeMaximizer< Model >::total iterations.

Referenced by mappel::SimulatedAnnealingMaximizer< Model >::get_debug_stats(), and mappel::Iterative
Maximizer < Model >::get_debug_stats().

8.34.5.21 template < class Model > void mappel::IterativeMaximizer < Model > ::local_maximize (const ModelDataT < Model > & im, const StencilT < Model > & theta_init, StencilT < Model > & stencil, double & rllh)

[inherited]

Perform a local maximization to finish off a simulated annealing run.

Definition at line 811 of file estimator_impl.h.

References mappel::IterativeMaximizer< Model >::maximize(), mappel::Estimator< Model >::model, mappel:: \leftarrow IterativeMaximizer< Model >::MaximizerData::rllh, and mappel::IterativeMaximizer< Model >::MaximizerData \leftarrow ::stencil().

Referenced by mappel::SimulatedAnnealingMaximizer< Model >::anneal().

8.34.5.22 template < class Model > virtual void mappel::IterativeMaximizer < Model > ::maximize (MaximizerData & data) [protected], [pure virtual], [inherited]

Referenced by mappel::IterativeMaximizer< Model >::compute_estimate(), mappel::IterativeMaximizer< Model >::compute_estimate_debug(), mappel::IterativeMaximizer< Model >::compute_profile_estimate(), and mappel:: \leftarrow IterativeMaximizer< Model >::local_maximize().

8.34.5.23 template < class Model > void mappel::NewtonDiagonalMaximizer < Model >::maximize (MaximizerData & data) [protected]

Definition at line 820 of file estimator impl.h.

References mappel::IterativeMaximizer< Model >::backtrack(), mappel::methods::objective::grad2(), mappel:: \leftarrow IterativeMaximizer< Model >::max_iterations, mappel::Estimator< Model >::model, and mappel::ThreadedEstimator< Model >::record exit code().

```
8.34.5.24 template < class Model > double mappel::IterativeMaximizer < Model >::mean_backtracks( ) [inherited]
8.34.5.25 template < class Model > double mappel::IterativeMaximizer < Model >::mean_der_evals( ) [inherited]
8.34.5.26 template < class Model > double mappel::IterativeMaximizer < Model >::mean_fun_evals( ) [inherited]
8.34.5.27 template < class Model > double mappel::IterativeMaximizer < Model >::mean_iterations( ) [inherited]
8.34.5.28 template < class Model > std::string mappel::NewtonDiagonalMaximizer < Model >::name( ) const [inline], [virtual]
```

Implements mappel::Estimator < Model >.

Definition at line 340 of file estimator.h.

```
8.34.5.29 template < class Model > void mappel::ThreadedEstimator < Model >::record_exit_code ( ExitCode code ) [protected], [virtual], [inherited]
```

Implements mappel::Estimator < Model >.

Definition at line 386 of file estimator_impl.h.

References mappel::Estimator< Model >::exit_counts, mappel::Estimator< Model >::model, mappel::Threaded Estimator< Model >::mtx, and mappel::methods::objective::rllh().

Referenced by mappel::IterativeMaximizer< Model >::backtrack(), mappel::CGaussMLE< Model >::compute - _estimate(), mappel::CGaussMLE< Model >::compute_estimate_debug(), mappel::IterativeMaximizer< Model >::compute_estimate_debug(), mappel::Threaded - ::convergence_test(), mappel::Threaded - ::convergence_test(), mappel::Threaded - ::estimate_max_stack(), mappel::ThreadedEstimator< Model >::estimate_profile_stack(), mappel::NewtonDiagonalMaximizer< Model >::maximize(), mappel::NewtonMaximizer< Model >::maximize(), and mappel::TrustRegionMaximizer< Model >::maximize().

```
8.34.5.30 template < class Model > void mappel::IterativeMaximizer < Model >::record_run_statistics ( const MaximizerData & data ) [protected], [inherited]
```

Definition at line 636 of file estimator impl.h.

References mappel::IterativeMaximizer< Model >::MaximizerData::get_backtrack_idxs(), mappel::IterativeMaximizer< Model >::MaximizerData::get_backtrack_idxs(), mappel::IterativeMaximizer< Model >::mtx, mappel::IterativeMaximizer< Model >::MaximizerData::nBacktracks, mappel::IterativeMaximizer< Model >::MaximizerData::nIterative. mappel::IterativeMaximizer< Model >::MaximizerData::nIterative. mappel::IterativeMaximizer< Model >::total_backtracks, mappel::(
IterativeMaximizer< Model >::total_der_evals, mappel::(
IterativeMaximizer< Model >::total_fun_evals, and mappel::(
IterativeMaximizer< Model >::total_iterations.

Referenced by mappel::IterativeMaximizer< Model >::compute_estimate(), mappel::IterativeMaximizer< Model >-::compute estimate debug(), and mappel::IterativeMaximizer< Model >::compute profile estimate().

8.34.5.31 template < class Model > void mappel::Estimator < Model >::record_walltime (ClockT::time_point start_walltime, int nimages) [protected], [inherited]

Definition at line 266 of file estimator_impl.h.

References mappel::Estimator < Model >::num estimations, and mappel::Estimator < Model >::total walltime.

Referenced by mappel::Estimator< Model >::estimate_max(), mappel::Estimator< Model >::estimate_max_ \leftarrow debug(), mappel::ThreadedEstimator< Model >::estimate_max_stack(), and mappel::ThreadedEstimator< Model >::estimate_profile_stack().

8.34.5.32 template < class Model > void mappel::Estimator < Model >::set_model (Model & new_model) [inherited]

Definition at line 54 of file estimator impl.h.

References mappel::Estimator< Model >::model.

Referenced by mappel::Estimator< Model >::~Estimator().

8.34.6 Member Data Documentation

8.34.6.1 template < class Model > double mappel::IterativeMaximizer < Model >::alpha = 1e-4 [protected], [inherited]

Definition at line 245 of file estimator.h.

Referenced by mappel::IterativeMaximizer< Model >::backtrack(), and mappel::TrustRegionMaximizer< Model >\ldots ::bound step().

8.34.6.2 template < class Model > double mappel::IterativeMaximizer < Model >::delta = 1e-6 [protected], [inherited]

Definition at line 242 of file estimator.h.

Referenced by mappel::IterativeMaximizer< Model >::convergence_test(), mappel::IterativeMaximizer< Model >::get_stats(), mappel::NewtonMaximizer< Model >::maximize(), mappel::QuasiNewtonMaximizer< Model >::maximize(), mappel::TrustRegionMaximizer< Model >::solve_restricted_step_length_newton(), and mappel::TrustRegionMaximizer< Model >::solve_TR_subproblem().

8.34.6.3 template < class Model > double mappel::IterativeMaximizer < Model >::epsilon = 1e-6 [protected], [inherited]

Definition at line 241 of file estimator.h.

Referenced by mappel::IterativeMaximizer< Model >::convergence_test(), mappel::IterativeMaximizer< Model > \leftarrow ::get_stats(), mappel::TrustRegionMaximizer< Model >::maximize(), and mappel::TrustRegionMaximizer< Model > \leftarrow ::solve restricted step length newton().

8.34.6.4 template < class Model > IdxVecT mappel::Estimator < Model > ::exit_counts [protected], [inherited]

Definition at line 114 of file estimator.h.

Referenced by mappel::Estimator< Model >::clear_stats(), mappel::Estimator< Model >::get_stats(), and mappel::

ThreadedEstimator< Model >::record_exit_code().

8.34.6.5 template < class Model > double mappel::IterativeMaximizer < Model >::lambda_min = 0.05 [protected], [inherited]

Definition at line 244 of file estimator.h.

Referenced by mappel::TrustRegionMaximizer < Model >::solve_restricted_step_length_newton(), and mappel::Trust <--- RegionMaximizer < Model >::solve_TR_subproblem().

8.34.6.6 template < class Model > IdxVecT mappel::IterativeMaximizer < Model >::last_backtrack_idxs [protected], [inherited]

Definition at line 255 of file estimator.h.

Referenced by mappel::IterativeMaximizer < Model >::get_debug_stats(), and mappel::IterativeMaximizer < Model >::record_run_statistics().

8.34.6.7 template < class Model > int mappel::IterativeMaximizer < Model >::max_backtracks = 8 [protected], [inherited]

Definition at line 246 of file estimator.h.

Referenced by mappel::IterativeMaximizer < Model >::backtrack(), mappel::IterativeMaximizer < Model >::compute_ \leftarrow estimate_debug(), and mappel::IterativeMaximizer < Model >::get_stats().

8.34.6.8 template < class Model > int mappel::IterativeMaximizer < Model >::max_iterations [protected], [inherited]

Definition at line 238 of file estimator.h.

Referenced by mappel::IterativeMaximizer < Model >::compute_estimate_debug(), mappel::IterativeMaximizer < Model >::get_stats(), mappel::NewtonDiagonalMaximizer < Model >::maximize(), mappel::NewtonMaximizer < Model >::maximize(), and mappel::QuasiNewtonMaximizer < Model >::maximize().

8.34.6.9 template < class Model > int mappel::ThreadedEstimator < Model >::max_threads [protected], [inherited]

Definition at line 142 of file estimator.h.

8.34.6.10 template < class Model > Model& mappel::Estimator < Model >::model [protected], [inherited]

Definition at line 109 of file estimator.h.

Referenced by mappel::SimulatedAnnealingMaximizer< Model >::anneal(), mappel::IterativeMaximizer< Model >::backtrack(), mappel::Estimator< Model >::compute_estimate(), mappel::CGaussMLE< Model >::compute_estimate(), mappel::IterativeMaximizer< Model >::compute_estimate(), mappel::IterativeMaximizer< Model >::compute_estimate_debug(), mappel::CGaussML ← E< Model >::compute_estimate_debug(), mappel::SimulatedAnnealingMaximizer< Model >::compute_estimate_ debug(), mappel::IterativeMaximizer< Model >::compute_estimate_debug(), mappel::IterativeMaximizer< Model >::compute_profile_estimate(), mappel::Estimator< Model >::compute_profile_estimate(), mappel::Estimator< Model >::estimate_max(), mappel::Estimator< Model >::estimate_max_debug(), mappel::ThreadedEstimator< Model >::estimate_max_stack(), mappel::ThreadedEstimator< Model >::estimate_max_stack(), mappel::ThreadedEstimator< Model >::get_debug_stats(), mappel::Estimator< Model >::get_model(), mappel::ThreadedEstimator< Model >::maximize(), mappel::NewtonDiagonalMaximizer< Model >::maximize(), mappel::NewtonDiagonalMaximizer< Model >::maximize(), mappel::ThreadedEstimator< Model >::record ← ::maximize(), mappel::ThreadedEst

```
8.34.6.11 template < class Model > std::mutex mappel::ThreadedEstimator < Model >::mtx [protected], [inherited]
```

Definition at line 144 of file estimator.h.

Referenced by mappel::ThreadedEstimator< Model >::clear_stats(), mappel::IterativeMaximizer< Model >::clear = _stats(), mappel::ThreadedEstimator< Model >::get_stats(), mappel::IterativeMaximizer< Model >::get_stats(), mappel::ThreadedEstimator< Model >::record_exit_code(), and mappel::IterativeMaximizer< Model >::record_exit_code(), and mappel::IterativeMaximizer< Model >::record_exit_code().

```
8.34.6.12 template < class Model > int mappel::Estimator < Model >::num_estimations = 0 [protected], [inherited]
```

Definition at line 112 of file estimator.h.

Referenced by mappel::Estimator< Model >::clear_stats(), mappel::Estimator< Model >::get_stats(), mappel:: \leftarrow ::ThreadedEstimator< Model >::get_stats(), mappel:: \leftarrow Estimator< Model >::record_walltime().

```
8.34.6.13 template < class Model > int mappel::ThreadedEstimator < Model >::num_threads [protected], [inherited]
```

Definition at line 143 of file estimator.h.

Referenced by mappel::ThreadedEstimator< Model >::clear_stats(), mappel::ThreadedEstimator< Model >::estimate_max_stack(), mappel::ThreadedEstimator< Model >::estimate_profile_stack(), and mappel::Threaded \leftarrow Estimator< Model >::get_stats().

Definition at line 39 of file estimator.h.

8.34.6.15 template < class Model > int mappel::IterativeMaximizer < Model >::total_backtracks = 0 [protected], [inherited]

Definition at line 250 of file estimator.h.

Referenced by mappel::IterativeMaximizer < Model >::clear_stats(), mappel::IterativeMaximizer < Model >::get_stats(), and mappel::IterativeMaximizer < Model >::record_run_statistics().

8.34.6.16 template < class Model > int mappel::IterativeMaximizer < Model > ::total_der_evals = 0 [protected], [inherited]

Definition at line 252 of file estimator.h.

Referenced by mappel::IterativeMaximizer< Model >::clear_stats(), mappel::IterativeMaximizer< Model >::get_stats(), and mappel::IterativeMaximizer< Model >::record_run_statistics().

8.34.6.17 template < class Model > int mappel::IterativeMaximizer < Model > ::total_fun_evals = 0 [protected], [inherited]

Definition at line 251 of file estimator.h.

Referenced by mappel::IterativeMaximizer< Model >::clear_stats(), mappel::IterativeMaximizer< Model >::get_stats(), and mappel::IterativeMaximizer< Model >::record run statistics().

8.34.6.18 template < class Model > int mappel::IterativeMaximizer < Model >::total_iterations = 0 [protected], [inherited]

Definition at line 249 of file estimator.h.

Referenced by mappel::IterativeMaximizer< Model >::clear_stats(), mappel::IterativeMaximizer< Model >::get_stats(), and mappel::IterativeMaximizer< Model >::record run statistics().

8.34.6.19 template<**class Model** > **double mappel::Estimator**< **Model** >::total_walltime = 0. [protected], [inherited]

Definition at line 113 of file estimator.h.

The documentation for this class was generated from the following files:

- · estimator.h
- · estimator impl.h

8.35 mappel::NewtonMaximizer < Model > Class Template Reference

#include </home/travis/build/markjolah/Mappel/include/Mappel/estimator.h>

Inheritance diagram for mappel::NewtonMaximizer < Model >:

Public Types

- using MaximizerData = typename IterativeMaximizer< Model >::MaximizerData
- enum ExitCode::IdxT {
 ExitCode::Unassigned = 8, ExitCode::MaxIter = 7, ExitCode::MaxBacktracks = 6, ExitCode::TrustRegionRadius = 5,
 ExitCode::GradRatio = 4, ExitCode::FunctionChange = 3, ExitCode::StepSize = 2, ExitCode::Success = 1,
 ExitCode::Error = 0 }

Public Member Functions

- NewtonMaximizer (Model &model, int max_iterations=DEFAULT_ITERATIONS)
- std::string name () const
- double mean_iterations ()
- double mean_backtracks ()
- double mean fun evals ()
- double mean_der_evals ()
- StatsT get_stats ()
- StatsT get_debug_stats ()
- void clear stats ()
- void local_maximize (const ModelDataT < Model > &im, const StencilT < Model > &theta_init, StencilT < Model > &stencil, double &rllh)

Perform a local maximization to finish off a simulated annealing run.

- void estimate_max_stack (const ModelDataStackT< Model > &im, const ParamVecT< Model > &theta_init, ParamVecT< Model > &theta, VecT &rllh, CubeT &obsl)
- void estimate_profile_stack (const ModelDataT< Model > &data, const IdxVecT &fixed_parameters, const MatT &values, const ParamVecT< Model > &theta_init, VecT &profile_likelihood, ParamVecT< Model > &profile_
 parameters)
- Model & get model ()
- void set model (Model &new model)

- StencilT< Model > estimate_max (const ModelDataT< Model > &im)
- StencilT < Model > estimate_max (const ModelDataT < Model > &im, const ParamT < Model > &theta_init)
- StencilT < Model > estimate_max (const ModelDataT < Model > &im, double &rllh)
- StencilT< Model > estimate_max (const ModelDataT< Model > &im, const ParamT< Model > &theta_init, double &rllh)
- void estimate_max (const ModelDataT< Model > &im, ParamT< Model > &theta, double &rllh, MatT &obsl)
- void estimate_max (const ModelDataT< Model > &im, const ParamT< Model > &theta_init, ParamT< Model > &theta, double &rllh, MatT &obsl)
- void estimate_max_debug (const ModelDataT< Model > &im, const ParamT< Model > &theta_init, ParamT
 Model > &theta_est, double &rllh, MatT &obsl, MatT &sequence, VecT &sequence_rllh)

Static Public Attributes

static constexpr int NumExitCodes = 9

Protected Member Functions

- void maximize (MaximizerData &data)
- void record run statistics (const MaximizerData &data)
- StencilT < Model > compute_estimate (const ModelDataT < Model > &im, const ParamT < Model > &theta_init, double &rllh)
- virtual void compute_estimate (const ModelDataT< Model > &im, const ParamT< Model > &theta_init, ParamT< Model > &theta est, double &rllh, MatT &obsl)

Default base class implementation computes rllh and obsl seperately from stencil This should be overridden by Estimator subclasses that already have access to this information.

- StencilT < Model > compute_estimate_debug (const ModelDataT < Model > &im, const ParamT < Model > &theta_init, ParamVecT < Model > &sequence, VecT &sequence_rllh)
- void compute_profile_estimate (const ModelDataT< Model > &im, const ParamT< Model > &theta_init, const ldxVecT &fixed_parameters, ParamT< Model > &theta_est, double &rllh)
- virtual void maximize (MaximizerData &data)=0
- bool backtrack (MaximizerData &data)
- bool convergence_test (MaximizerData &data)
- · void record exit code (ExitCode code)
- void record_walltime (ClockT::time_point start_walltime, int nimages)

Protected Attributes

- int max_iterations
- double epsilon = 1e-6
- double delta = 1e-6
- double lambda min = 0.05
- double alpha = 1e-4
- int max backtracks = 8
- int total_iterations = 0
- int total_backtracks = 0
- int total_fun_evals = 0
- int total_der_evals = 0
- IdxVecT last backtrack idxs
- · int max threads

- int num_threads
- std::mutex mtx
- Model & model
- int num estimations = 0
- double total_walltime = 0.
- IdxVecT exit_counts
- 8.35.1 Detailed Description

```
template<class Model>
class mappel::NewtonMaximizer< Model>
```

Definition at line 347 of file estimator.h.

- 8.35.2 Member Typedef Documentation

Definition at line 349 of file estimator.h.

- 8.35.3 Member Enumeration Documentation
- **8.35.3.1** template < class Model > enum mappel::Estimator::ExitCode: ldxT [strong], [inherited]

Enumerator

Unassigned

Maxiter

MaxBacktracks

TrustRegionRadius

GradRatio

FunctionChange

StepSize

Success

Error

Definition at line 40 of file estimator.h.

- 8.35.4 Constructor & Destructor Documentation
- 8.35.4.1 template < class Model > mappel::NewtonMaximizer < Model >::NewtonMaximizer (Model & model, int max_iterations = DEFAULT_ITERATIONS) [inline]

Definition at line 351 of file estimator.h.

8.35.5 Member Function Documentation

8.35.5.1 template < class Model > bool mappel::IterativeMaximizer < Model >::backtrack (MaximizerData & data) [protected], [inherited]

Definition at line 647 of file estimator impl.h.

References mappel::IterativeMaximizer< Model >::alpha, mappel::IterativeMaximizer< Model >::convergence_ test(), mappel::IterativeMaximizer< Model >::MaximizerData::free_parameters, mappel::IterativeMaximizer< Model >::MaximizerData::im, mappel::IterativeMaximizer< Model >::MaximizerData::im, mappel::IterativeMaximizer< Model >::MaximizerData::im, mappel::IterativeMaximizer
Model >::max_backtracks, mappel::Estimator< Model >::max_backtracks, mappel::IterativeMaximizer< Model >::MaximizerData::record_backtrack(), mappel::

ThreadedEstimator< Model >::record_exit_code(), mappel::IterativeMaximizer< Model >::MaximizerData::restore_stencil(), mappel::methods::objective::rllh(), mappel::IterativeMaximizer< Model >::MaximizerData::restore_stencil(), mappel::IterativeMaximizer< Model >::MaximizerData::save_stencil(), mappel::IterativeMaximizer< Model >::MaximizerData::saved_theta(), mappel::IterativeMaximizer
Model >::MaximizerData::set_cil(), and mappel::IterativeMaximizer
Model >::MaximizerData::stencil(), and mappel::IterativeMaximizer

**IderativeMaximizer
Model >::MaximizerData::stencil(), and mappel::IterativeMaximizer

Referenced by mappel::NewtonDiagonalMaximizer< Model >::maximize(), mappel::NewtonMaximizer< Model >::maximize(), and mappel::QuasiNewtonMaximizer< Model >::maximize().

```
8.35.5.2 template < class Model > void mappel::IterativeMaximizer < Model >::clear_stats ( ) [virtual], [inherited]
```

Reimplemented from mappel::ThreadedEstimator< Model >.

Definition at line 625 of file estimator_impl.h.

References mappel::ThreadedEstimator< Model >::clear_stats(), mappel::ThreadedEstimator< Model >::mtx, mappel::IterativeMaximizer< Model >::total_backtracks, mappel::IterativeMaximizer< Model >::total_der_evals, mappel::IterativeMaximizer< Model >::total_iterativeMaximizer< Model >::total_iterat

```
8.35.5.3 template < class Model > void mappel::Estimator < Model > ::compute_estimate ( const ModelDataT < Model > & im, const ParamT < Model > & theta_init, ParamT < Model > & theta_est, double & rllh, MatT & obsl ) [protected], [virtual], [inherited]
```

Default base class implementation computes rllh and obsl seperately from stencil This should be overridden by Estimator subclasses that already have access to this information.

Definition at line 183 of file estimator_impl.h.

References mappel::Estimator< Model >::compute_estimate(), mappel::Estimator< Model >::model, and mappel \leftarrow ::methods::observed information().

Implements mappel::Estimator < Model >.

Definition at line 753 of file estimator impl.h.

References mappel::IterativeMaximizer< Model >::maximize(), mappel::Estimator< Model >::model, mappel:: \leftarrow IterativeMaximizer< Model >::record_run_statistics(), mappel::IterativeMaximizer< Model >::MaximizerData::rllh, and mappel::IterativeMaximizer< Model >::MaximizerData::stencil().

Estimators that produce a sequence of results (e.g. IterativeEstimators) can override this dummy debug implementation.

Reimplemented from mappel::Estimator < Model >.

Definition at line 768 of file estimator impl.h.

References mappel::IterativeMaximizer< Model >::MaximizerData::get_theta_sequence(), mappel::Iterative Maximizer
Maximizer
Model >::MaximizerData::get_theta_sequence_rllh(), mappel::IterativeMaximizer
Model >::max_
backtracks, mappel::IterativeMaximizer
Model >::max_iterations, mappel::IterativeMaximizer
Model >::maximize(), mappel::IterativeMaximizer
Model >::record_exit_
code(), mappel::IterativeMaximizer
Model >::record_run_statistics(), and mappel::IterativeMaximizer
Model >::
MaximizerData::stencil().

8.35.5.6 template < class Model > void mappel::IterativeMaximizer < Model > :::compute_profile_estimate (const ModelDataT < Model > & im, const ParamT < Model > & theta_init, const IdxVecT & fixed_parameters, ParamT < Model > & theta_est, double & rllh) [protected], [virtual], [inherited]

Reimplemented from mappel::Estimator < Model >.

Definition at line 797 of file estimator_impl.h.

References mappel::IterativeMaximizer< Model >::maximize(), mappel::Estimator< Model >::model, mappel:: \leftarrow IterativeMaximizer< Model >::record_run_statistics(), mappel::IterativeMaximizer< Model >::MaximizerData::rllh, mappel::IterativeMaximizer< Model >::MaximizerData::set_fixed_parameters(), and mappel::IterativeMaximizer< Model >::MaximizerData::theta().

8.35.5.7 template < class Model > bool mappel::IterativeMaximizer < Model >::convergence_test (MaximizerData & data) [protected], [inherited]

Definition at line 731 of file estimator_impl.h.

References mappel::IterativeMaximizer< Model >::delta, mappel::IterativeMaximizer< Model >::epsilon, mappel::← IterativeMaximizer< Model >::MaximizerData::free_parameters, mappel::IterativeMaximizer< Model >::Maximizer← Data::grad, mappel::IterativeMaximizer< Model >::MaximizerData::num_fixed_parameters, mappel::Threaded← Estimator< Model >::record_exit_code(), mappel::IterativeMaximizer< Model >::MaximizerData::rllh, mappel::← IterativeMaximizer< Model >::MaximizerData::saved_theta(), and mappel::IterativeMaximizer< Model >::Maximizer← Data::theta().

Referenced by mappel::IterativeMaximizer < Model >::backtrack().

8.35.5.8 template < class Model > StencilT < Model > mappel::Estimator < Model > ::estimate_max (const ModelDataT < Model > & im) [inherited]

Definition at line 64 of file estimator_impl.h.

References mappel::Estimator< Model >::model.

Referenced by mappel::Estimator < Model >::estimate max(), and mappel::Estimator < Model >::~Estimator().

8.35.5.9 template < class Model > StencilT < Model > mappel::Estimator < Model > ::estimate_max (const ModelDataT < Model > & im. const ParamT < Model > & theta init) [inherited]

Definition at line 82 of file estimator impl.h.

References mappel::Estimator < Model >::estimate max(), and mappel::methods::objective::rllh().

8.35.5.10 template < class Model > StencilT < Model > mappel::Estimator < Model > ::estimate_max (const ModelDataT < Model > & im, double & rllh) [inherited]

Definition at line 73 of file estimator_impl.h.

References mappel::Estimator < Model >::estimate_max(), and mappel::Estimator < Model >::model.

8.35.5.11 template < class Model > StencilT < Model > mappel::Estimator < Model > ::estimate_max (const ModelDataT < Model > & im, const ParamT < Model > & theta_init, double & rllh) [inherited]

Definition at line 90 of file estimator impl.h.

References mappel::Estimator< Model >::compute_estimate(), mappel::Estimator< Model >::Error, mappel:: \leftarrow Estimator< Model >::record_exit_code(), and mappel ::Estimator< Model >::record_exit_code(), and mappel ::Estimator< Model >::record_walltime().

8.35.5.12 template < class Model > void mappel::Estimator < Model > ::estimate_max (const ModelDataT < Model > & im, ParamT < Model > & theta, double & rllh, MatT & obsl) [inherited]

Definition at line 119 of file estimator_impl.h.

 $References\ mappel::Estimator < Model > ::estimate_max(), and\ mappel::Estimator < Model > ::model.$

8.35.5.13 template < class Model > void mappel::Estimator < Model > ::estimate_max (const ModelDataT < Model > & im, const ParamT < Model > & theta_init, ParamT < Model > & theta, double & rllh, MatT & obsl) [inherited]

Definition at line 128 of file estimator_impl.h.

References mappel::Estimator< Model >::compute_estimate(), mappel::Estimator< Model >::Error, mappel::print \leftarrow _image(), mappel::Estimator< Model >::record_exit_code(), mappel::Estimator< Model >::record_walltime(), and mappel::methods::objective::rllh().

8.35.5.14 template < class Model > void mappel::Estimator < Model > ::estimate_max_debug (const ModelDataT < Model > & im, const ParamT < Model > & theta_init, ParamT < Model > & theta_est, double & rllh, MatT & obsl, MatT & sequence, VecT & sequence rllh) [inherited]

Definition at line 158 of file estimator_impl.h.

 $References\ mappel::Estimator < Model > ::compute_estimate_debug(),\ mappel::Estimator < Model > ::model,\ mappel :: Estimator < Model > ::record_walltime(),\ and\ mappel::methods::objective \leftarrow ::rllh().$

Referenced by mappel::Estimator < Model >::~Estimator().

8.35.5.15 template < class Model > void mappel::Estimator < Model > ::estimate_max_stack (const ModelDataStackT < Model > & im_stack, ParamVecT < Model > & theta_est_stack, VecT & rllh_stack, CubeT & obsl_stack)

[inherited]

Definition at line 170 of file estimator_impl.h.

References mappel::Estimator< Model >::estimate_max_stack(), and mappel::Estimator< Model >::model.

8.35.5.16 template < class Model > void mappel::ThreadedEstimator < Model >::estimate_max_stack (const ModelDataStackT < Model > & im, const ParamVecT < Model > & theta_init, ParamVecT < Model > & theta, VecT & rllh, CubeT & obsl) [virtual], [inherited]

Implements mappel::Estimator< Model >.

Definition at line 285 of file estimator_impl.h.

References mappel::Estimator< Model >::compute_estimate(), mappel::Estimator< Model >::Error, mappel:: \leftarrow Estimator< Model >::model, mappel::ThreadedEstimator< Model >::num_threads, mappel::print_image(), mappel \leftarrow ::ThreadedEstimator< Model >::record_exit_code(), mappel::Estimator< Model >::record_walltime(), and mappel \leftarrow ::methods::objective::openmp::rllh stack().

8.35.5.17 template < class Model > void mappel::ThreadedEstimator < Model > ::estimate_profile_stack (const ModelDataT < Model > & data, const IdxVecT & fixed_parameters, const MatT & values, const ParamVecT < Model > & theta_init, VecT & profile_likelihood, ParamVecT < Model > & profile_parameters) [virtual], [inherited]

Implements mappel::Estimator < Model >.

Definition at line 323 of file estimator impl.h.

 $References\ mappel::Estimator<\ Model>::compute_profile_estimate(),\ mappel::Estimator<\ Model>::Error,\ mappel\leftrightarrow::Estimator<\ Model>::mum_threads,\ mappel::print_image(),\ mappel\leftrightarrow::ThreadedEstimator<\ Model>::record_exit_code(),\ and\ mappel::Estimator<\ Model>::record_walltime().$

8.35.5.18 template < class Model > StatsT mappel::IterativeMaximizer < Model >::get_debug_stats() [virtual], [inherited]

Reimplemented from mappel::ThreadedEstimator< Model >.

Definition at line 609 of file estimator_impl.h.

 $\label{lem:mappel::lterativeMaximizer} References \quad mappel::lterativeMaximizer < \quad Model > :: Maximizer Data:: backtrack_idxs, \quad mappel::lterativeMaximizer < \\ Model > :: get_stats(), \ and \ mappel::lterativeMaximizer < Model > :: last_backtrack_idxs.$

8.35.5.19 template < class Model > Model & mappel::Estimator < Model >::get_model() [inherited]

Definition at line 50 of file estimator impl.h.

References mappel::Estimator< Model >::model.

Referenced by mappel::Estimator < Model >::~Estimator().

8.35.5.20 template < class Model > StatsT mappel::IterativeMaximizer < Model >::get_stats() [virtual], [inherited]

Reimplemented from mappel::ThreadedEstimator< Model >.

Definition at line 588 of file estimator impl.h.

References mappel::IterativeMaximizer< Model >::delta, mappel::IterativeMaximizer< Model >::epsilon, mappel :::ThreadedEstimator< Model >::get_stats(), mappel::IterativeMaximizer< Model >::max_backtracks, mappel:::LerativeMaximizer< Model >::mtx, mappel::Estimator< Model >::num_estimations, mappel::IterativeMaximizer< Model >::total_backtracks, mappel::IterativeMaximizer< Model >::total_der_evals, mappel::IterativeMaximizer< Model >::total_fun_evals, and mappel::IterativeMaximizer< Model >::total_iterativeMaximizer< Model >::total_iter

Referenced by mappel::SimulatedAnnealingMaximizer< Model >::get_debug_stats(), and mappel::Iterative
Maximizer < Model >::get_debug_stats().

8.35.5.21 template < class Model > void mappel::IterativeMaximizer < Model > ::local_maximize (const ModelDataT < Model > & im, const StencilT < Model > & theta_init, StencilT < Model > & stencil, double & rllh)
[inherited]

Perform a local maximization to finish off a simulated annealing run.

Definition at line 811 of file estimator impl.h.

References mappel::IterativeMaximizer< Model >::maximize(), mappel::Estimator< Model >::model, mappel:: \leftarrow IterativeMaximizer< Model >::MaximizerData::rllh, and mappel::IterativeMaximizer< Model >::MaximizerData \leftarrow ::stencil().

Referenced by mappel::SimulatedAnnealingMaximizer< Model >::anneal().

8.35.5.22 template < class Model > virtual void mappel::IterativeMaximizer < Model > ::maximize (MaximizerData & data) [protected], [pure virtual], [inherited]

Referenced by mappel::IterativeMaximizer < Model >::compute_estimate(), mappel::IterativeMaximizer < Model >::compute_estimate(), and mappel:: \leftarrow IterativeMaximizer < Model >::local_maximize().

8.35.5.23 template < class Model > void mappel::NewtonMaximizer < Model >::maximize (MaximizerData & data) [protected]

Definition at line 857 of file estimator impl.h.

References mappel::IterativeMaximizer< Model >::backtrack(), mappel::cholesky_convert_full_matrix(), mappel::cholesky_solve(), mappel::copy_Usym_mat(), mappel::IterativeMaximizer< Model >::delta, mappel::methods ::objective::hessian(), mappel::IterativeMaximizer< Model >::max_iterations, mappel::Estimator< Model >::model, mappel::modified cholesky(), and mappel::ThreadedEstimator< Model >::record exit code().

```
8.35.5.24 template < class Model > double mappel::IterativeMaximizer < Model >::mean_backtracks( ) [inherited]
8.35.5.25 template < class Model > double mappel::IterativeMaximizer < Model >::mean_der_evals( ) [inherited]
8.35.5.26 template < class Model > double mappel::IterativeMaximizer < Model >::mean_fun_evals( ) [inherited]
8.35.5.27 template < class Model > double mappel::IterativeMaximizer < Model >::mean_iterations( ) [inherited]
8.35.5.28 template < class Model > std::string mappel::NewtonMaximizer < Model >::name( ) const [inline],
[virtual]
```

Implements mappel::Estimator < Model >.

Definition at line 354 of file estimator.h.

```
8.35.5.29 template < class Model > void mappel::ThreadedEstimator < Model >::record_exit_code ( ExitCode code ) [protected], [virtual], [inherited]
```

Implements mappel::Estimator < Model >.

Definition at line 386 of file estimator_impl.h.

References mappel::Estimator< Model >::exit_counts, mappel::Estimator< Model >::model, mappel::Threaded Estimator< Model >::mtx, and mappel::methods::objective::rllh().

Referenced by mappel::IterativeMaximizer< Model >::backtrack(), mappel::CGaussMLE< Model >::compute - _estimate(), mappel::CGaussMLE< Model >::compute_estimate_debug(), mappel::IterativeMaximizer< Model >::compute_estimate_debug(), mappel::Threaded - ::convergence_test(), mappel::Threaded - ::convergence_test(), mappel::Threaded - ::estimate_max_stack(), mappel::ThreadedEstimator< Model >::estimate_profile_stack(), mappel::NewtonDiagonalMaximizer< Model >::maximize(), mappel::NewtonMaximizer< Model >::maximize(), and mappel::TrustRegionMaximizer< Model >::maximize().

```
8.35.5.30 template < class Model > void mappel::IterativeMaximizer < Model >::record_run_statistics ( const MaximizerData & data ) [protected], [inherited]
```

Definition at line 636 of file estimator impl.h.

References mappel::IterativeMaximizer< Model >::MaximizerData::get_backtrack_idxs(), mappel::IterativeMaximizer< Model >::MaximizerData::get_backtrack_idxs(), mappel::IterativeMaximizer< Model >::mtx, mappel::IterativeMaximizer< Model >::MaximizerData::nlterativeMaximizer< Model >::MaximizerData::nlterativeMaximizerData::nlterativeMaximizerData::nlterativeMaximizerOata

Referenced by mappel::IterativeMaximizer< Model >::compute_estimate(), mappel::IterativeMaximizer< Model >-::compute estimate debug(), and mappel::IterativeMaximizer< Model >::compute profile estimate().

8.35.5.31 template < class Model > void mappel::Estimator < Model >::record_walltime (ClockT::time_point start_walltime, int nimages) [protected], [inherited]

Definition at line 266 of file estimator_impl.h.

References mappel::Estimator < Model >::num estimations, and mappel::Estimator < Model >::total walltime.

Referenced by mappel::Estimator< Model >::estimate_max(), mappel::Estimator< Model >::estimate_max_ \leftarrow debug(), mappel::ThreadedEstimator< Model >::estimate_max_stack(), and mappel::ThreadedEstimator< Model >::estimate profile stack().

8.35.5.32 template < class Model > void mappel::Estimator < Model >::set_model (Model & new_model) [inherited]

Definition at line 54 of file estimator impl.h.

References mappel::Estimator< Model >::model.

Referenced by mappel::Estimator< Model >::~Estimator().

8.35.6 Member Data Documentation

8.35.6.1 template < class Model > double mappel::IterativeMaximizer < Model >::alpha = 1e-4 [protected], [inherited]

Definition at line 245 of file estimator.h.

Referenced by mappel::IterativeMaximizer < Model >::backtrack(), and mappel::TrustRegionMaximizer < Model >::bound step().

8.35.6.2 template < class Model > double mappel::IterativeMaximizer < Model >::delta = 1e-6 [protected], [inherited]

Definition at line 242 of file estimator.h.

Referenced by mappel::IterativeMaximizer< Model >::convergence_test(), mappel::IterativeMaximizer< Model >::get_stats(), mappel::NewtonMaximizer< Model >::maximize(), mappel::QuasiNewtonMaximizer< Model >::maximize(), mappel::TrustRegionMaximizer< Model >::solve_restricted_step_length_newton(), and mappel::TrustRegionMaximizer< Model >::solve_TR_subproblem().

8.35.6.3 template < class Model > double mappel::IterativeMaximizer < Model >::epsilon = 1e-6 [protected], [inherited]

Definition at line 241 of file estimator.h.

Referenced by mappel::IterativeMaximizer< Model >::convergence_test(), mappel::IterativeMaximizer< Model > \leftarrow ::get_stats(), mappel::TrustRegionMaximizer< Model > \leftarrow ::solve_restricted_step_length_newton().

```
8.35.6.4 template<class Model > IdxVecT mappel::Estimator< Model >::exit_counts [protected], [inherited]
```

Definition at line 114 of file estimator.h.

Referenced by mappel::Estimator< Model >::clear_stats(), mappel::Estimator< Model >::get_stats(), and mappel::

ThreadedEstimator< Model >::record_exit_code().

```
8.35.6.5 template < class Model > double mappel::IterativeMaximizer < Model >::lambda_min = 0.05 [protected], [inherited]
```

Definition at line 244 of file estimator.h.

Referenced by mappel::TrustRegionMaximizer< Model >::solve_restricted_step_length_newton(), and mappel::Trust RegionMaximizer< Model >::solve_TR_subproblem().

```
8.35.6.6 template < class Model > IdxVecT mappel::IterativeMaximizer < Model >::last_backtrack_idxs [protected], [inherited]
```

Definition at line 255 of file estimator.h.

Referenced by mappel::IterativeMaximizer < Model >::get_debug_stats(), and mappel::IterativeMaximizer < Model > ::record_run_statistics().

```
8.35.6.7 template < class Model > int mappel::IterativeMaximizer < Model >::max_backtracks = 8 [protected], [inherited]
```

Definition at line 246 of file estimator.h.

Referenced by mappel::IterativeMaximizer < Model >::backtrack(), mappel::IterativeMaximizer < Model >::compute_ \leftarrow estimate_debug(), and mappel::IterativeMaximizer < Model >::get_stats().

```
8.35.6.8 template<class Model > int mappel::lterativeMaximizer< Model >::max_iterations [protected], [inherited]
```

Definition at line 238 of file estimator.h.

Referenced by mappel::IterativeMaximizer < Model >::compute_estimate_debug(), mappel::IterativeMaximizer < Model >::get_stats(), mappel::NewtonDiagonalMaximizer < Model >::maximize(), mappel::NewtonMaximizer < Model >::maximize(), and mappel::QuasiNewtonMaximizer < Model >::maximize().

```
8.35.6.9 template < class Model > int mappel::ThreadedEstimator < Model >::max_threads [protected], [inherited]
```

Definition at line 142 of file estimator.h.

8.35.6.10 template < class Model > Model& mappel::Estimator < Model >::model [protected], [inherited]

Definition at line 109 of file estimator.h.

Referenced by mappel::SimulatedAnnealingMaximizer< Model >::anneal(), mappel::IterativeMaximizer< Model >::backtrack(), mappel::Estimator< Model >::compute_estimate(), mappel::CGaussMLE< Model >::compute_estimate(), mappel::IterativeMaximizer< Model >::compute_estimate(), mappel::IterativeMaximizer< Model >::compute_estimate(), mappel::CGaussML ← E< Model >::compute_estimate_debug(), mappel::Estimator< Model >::compute_estimate_debug(), mappel::IterativeMaximizer< Model >::compute_estimate_compute_estimate = debug(), mappel::IterativeMaximizer< Model >::compute_estimate(), mappel::Estimator< Model >::compute_profile_estimate(), mappel::Estimator< Model >::estimate_max(), mappel::Estimator< Model >::estimate_max_debug(), mappel::Estimator< Model >::estimate_max_stack(), mappel::ThreadedEstimator< Model >::estimate_max_stack(), mappel::ThreadedEstimator< Model >::estimate_max_stack(), mappel::Estimator< Model >::estimate_max_stack(), mappel::ThreadedEstimator< Model >::estimate_max_stack(), mappel::ThreadedEstimator< Model >::get_model(), mappel::ThreadedEstimator< Model >::maximize(), mappel::NewtonDiagonalMaximizer< Model >::maximize(), mappel::ThreadedEstimator< Model >::record ← _ exit_code(), and mappel::Estimator< Model >::set_model().

```
8.35.6.11 template < class Model > std::mutex mappel::ThreadedEstimator < Model >::mtx [protected], [inherited]
```

Definition at line 144 of file estimator.h.

Referenced by mappel::ThreadedEstimator< Model >::clear_stats(), mappel::IterativeMaximizer< Model >::clear = _stats(), mappel::ThreadedEstimator< Model >::get_stats(), mappel::IterativeMaximizer< Model >::get_stats(), mappel::ThreadedEstimator< Model >::record_exit_code(), and mappel::IterativeMaximizer< Model >::record_exit_code(), and mappel::IterativeMaximizer< Model >::record_exit_code().

```
8.35.6.12 template < class Model > int mappel::Estimator < Model >::num_estimations = 0 [protected], [inherited]
```

Definition at line 112 of file estimator.h.

Referenced by mappel::Estimator< Model >::clear_stats(), mappel::Estimator< Model >::get_stats(), mappel:: \leftarrow ::ThreadedEstimator< Model >::get_stats(), mappel:: \leftarrow Estimator< Model >::record_walltime().

```
8.35.6.13 template < class Model > int mappel::ThreadedEstimator < Model >::num_threads [protected], [inherited]
```

Definition at line 143 of file estimator.h.

Referenced by mappel::ThreadedEstimator< Model >::clear_stats(), mappel::ThreadedEstimator< Model >::estimate_max_stack(), mappel::ThreadedEstimator< Model >::estimate_profile_stack(), and mappel::Threaded \leftarrow Estimator< Model >::get_stats().

Definition at line 39 of file estimator.h.

```
8.35.6.15 template < class Model > int mappel::IterativeMaximizer < Model >::total_backtracks = 0 [protected], [inherited]
```

Definition at line 250 of file estimator.h.

Referenced by mappel::IterativeMaximizer< Model >::clear_stats(), mappel::IterativeMaximizer< Model >::get_stats(), and mappel::IterativeMaximizer< Model >::record_run_statistics().

```
8.35.6.16 template < class Model > int mappel::Iterative Maximizer < Model > ::total_der_evals = 0 [protected], [inherited]
```

Definition at line 252 of file estimator.h.

Referenced by mappel::IterativeMaximizer< Model >::clear_stats(), mappel::IterativeMaximizer< Model >::get_stats(), and mappel::IterativeMaximizer< Model >::record_run_statistics().

```
8.35.6.17 template < class Model > int mappel::IterativeMaximizer < Model > ::total_fun_evals = 0 [protected], [inherited]
```

Definition at line 251 of file estimator.h.

Referenced by mappel::IterativeMaximizer< Model >::clear_stats(), mappel::IterativeMaximizer< Model >::get_stats(), and mappel::IterativeMaximizer< Model >::record run statistics().

```
8.35.6.18 template < class Model > int mappel::IterativeMaximizer < Model > ::total_iterations = 0 [protected], [inherited]
```

Definition at line 249 of file estimator.h.

Referenced by mappel::IterativeMaximizer< Model >::clear_stats(), mappel::IterativeMaximizer< Model >::get_stats(), and mappel::IterativeMaximizer< Model >::record_run_statistics().

```
8.35.6.19 template<class Model > double mappel::Estimator< Model >::total_walltime = 0. [protected], [inherited]
```

Definition at line 113 of file estimator.h.

The documentation for this class was generated from the following files:

- · estimator.h
- · estimator impl.h

8.36 mappel::NotImplementedError Struct Reference

Feature not yet implemented.

#include </home/travis/build/markjolah/Mappel/include/Mappel/util.h>

Inheritance diagram for mappel::NotImplementedError:

Public Member Functions

• NotImplementedError (std::string message)

8.36.1 Detailed Description

Feature not yet implemented.

Definition at line 107 of file util.h.

8.36.2 Constructor & Destructor Documentation

8.36.2.1 mappel::NotImplementedError::NotImplementedError (std::string message) [inline]

Definition at line 109 of file util.h.

The documentation for this struct was generated from the following file:

• util.h

8.37 mappel::NumericalError Struct Reference

Expected numerical condition does not hold.

#include </home/travis/build/markjolah/Mappel/include/Mappel/util.h>

Inheritance diagram for mappel::NumericalError:

Public Member Functions

• NumericalError (std::string message)

8.37.1 Detailed Description

Expected numerical condition does not hold.

Definition at line 93 of file util.h.

8.37.2 Constructor & Destructor Documentation

8.37.2.1 mappel::NumericalError::NumericalError (std::string message) [inline]

Definition at line 95 of file util.h.

The documentation for this struct was generated from the following file:

· util.h

8.38 omp_exception_catcher::impl_::OMPExceptionCatcher < IntType > Class Template Reference

#include </home/travis/build/markjolah/Mappel/include/Mappel/OMPException←
Catcher/OMPExceptionCatcher.h>

Public Types

enum Strategy::IntType { Strategy::DoNotTry, Strategy::Continue, Strategy::Abort, Strategy::RethrowFirst }

Public Member Functions

- OMPExceptionCatcher ()
- OMPExceptionCatcher (Strategy strategy_)
- void rethrow () const
- template < class Function, class... Parameters > void run (Function func, Parameters...params)

Static Public Member Functions

static void setGlobalDefaultStrategy (Strategy s)

8.38.1 Detailed Description

```
template < class IntType = uint32_t > class omp_exception_catcher::impl_::OMPExceptionCatcher < IntType >
```

Definition at line 42 of file OMPExceptionCatcher.h.

8.38.2 Member Enumeration Documentation

8.38.2.1 template < class IntType = uint32_t> enum omp_exception_catcher::impl_::OMPExceptionCatcher::Strategy : IntType [strong]

Enumerator

DoNotTry

Continue

Abort

RethrowFirst

Definition at line 45 of file OMPExceptionCatcher.h.

- 8.38.3 Constructor & Destructor Documentation
- 8.38.3.1 template < class IntType = uint32_t> omp_exception_catcher::impl_::OMPExceptionCatcher < IntType >::OMPExceptionCatcher() [inline]

Definition at line 50 of file OMPExceptionCatcher.h.

8.38.3.2 template < class IntType = uint32_t > omp_exception_catcher::impl_::OMPExceptionCatcher < IntType >::OMPExceptionCatcher (Strategy strategy_) [inline]

Definition at line 52 of file OMPExceptionCatcher.h.

- 8.38.4 Member Function Documentation
- 8.38.4.1 template < class IntType = uint32_t > void omp_exception_catcher::impl_::OMPExceptionCatcher < IntType >::rethrow() const [inline]

Definition at line 54 of file OMPExceptionCatcher.h.

References omp_exception_catcher::impl_::OMPExceptionCatcher< IntType >::RethrowFirst.

Referenced by mappel::methods::openmp::cr_lower_bound_stack(), mappel::methods::openmp::error_bounds - __posterior_credible_stack(), mappel::methods::openmp::estimate_mcmc_posterior_stack(), mappel::methods - ::openmp::estimate_mcmc_sample_stack(), mappel::methods::openmp::expected_information_stack(), mappel - ::methods::objective::openmp::hessian_stack(), mappel::methods-:objective::openmp::llh_stack(), mappel::methods::objective::openmp::negative_definite_hessian_stack(), mappel::methods::objective::openmp::rllh_stack(), mappel::methods-:objective::openmp::rllh_stack(), mappel::methods-:objective::openmp::rllh_stack(), mappel::methods-:objective::openmp::rllh_stack(), mappel::methods--:openmp::sample_prior_stack(), and mappel::methods::openmp::simulate_image_stack().

8.38.4.2 template < class IntType = uint32_t > template < class Function , class... Parameters > void omp_exception ← _catcher::impl_::OMPExceptionCatcher < IntType >::run (Function func, Parameters... params)
[inline]

Definition at line 57 of file OMPExceptionCatcher.h.

References omp_exception_catcher::impl_::OMPExceptionCatcher< IntType >::Abort, omp_exception_catcher::impl -::OMPExceptionCatcher< IntType >::Continue, omp_exception_catcher::impl_::OMPExceptionCatcher< IntType >::DoNotTry, and omp_exception_catcher::impl_::OMPExceptionCatcher< IntType >::RethrowFirst.

Referenced by mappel::methods::openmp::cr_lower_bound_stack(), mappel::methods::openmp::error_bounds_
observed_stack(), mappel::methods::openmp::error_bounds_posterior_credible_stack(), mappel::methods::openmp
::estimate_mcmc_posterior_stack(), mappel::methods::openmp::estimate_mcmc_sample_stack(), mappel::methods
::openmp::expected_information_stack(), mappel::methods::objective::openmp::grad_stack(), mappel::methods
::objective::openmp::hessian_stack(), mappel::methods::objective::openmp::llh_stack(), mappel::methods::objective::openmp::negative_definite_hessian_stack(), mappel::methods
::objective::openmp::rllh_stack(), mappel::methods::openmp::sample_prior_stack(), and mappel::methods::openmp
::simulate_image_stack().

8.38.4.3 template < class IntType = uint32_t> static void omp_exception_catcher::impl_::OMPExceptionCatcher < IntType >::setGlobalDefaultStrategy (Strategy s) [inline], [static]

Definition at line 49 of file OMPExceptionCatcher.h.

The documentation for this class was generated from the following file:

OMPExceptionCatcher.h

8.39 mappel::ParameterValueError Struct Reference

Parameter value is not valid.

#include </home/travis/build/markjolah/Mappel/include/Mappel/util.h>

Inheritance diagram for mappel::ParameterValueError:

Public Member Functions

ParameterValueError (std::string message)

8.39.1 Detailed Description

Parameter value is not valid.

Definition at line 65 of file util.h.

8.39.2 Constructor & Destructor Documentation

8.39.2.1 mappel::ParameterValueError::ParameterValueError (std::string message) [inline]

Definition at line 67 of file util.h.

The documentation for this struct was generated from the following file:

· util.h

8.40 mappel::PointEmitterModel Class Reference

A virtual Base type for point emitter localization models.

 $\verb|#include| </home/travis/build/markjolah/Mappel/include/Mappel/PointEmitter| \leftarrow Model.h>$

Inheritance diagram for mappel::PointEmitterModel:

Public Types

- using ParamT = arma::vec
- using ParamVecT = arma::mat

Public Member Functions

- StatsT get stats () const
- IdxT get_num_params () const
- void check param shape (const ParamT &theta) const
- void check param shape (const ParamVecT &theta) const
- void check_psf_sigma (double psf_sigma) const
- void check_psf_sigma (const VecT &psf_sigma) const
- · ParamT make param () const
- ParamVecT make param stack (ldxT n) const
- MatT make_param_mat () const
- CubeT make_param_mat_stack (ldxT n) const
- template<class FillT >

ParamT make_param (FillT fill) const

template<class FillT >

ParamVecT make param stack (ldxT n, FillT fill) const

template<class FillT >

MatT make param mat (FillT fill) const

template<class FillT >

CubeT make_param_mat_stack (ldxT n, FillT fill) const

- CompositeDist & get_prior ()
- · const CompositeDist & get prior () const
- void set_prior (CompositeDist &&prior_)
- void set prior (const CompositeDist &prior)
- IdxT get_num_hyperparams () const
- void set_hyperparams (const VecT &hyperparams)
- VecT get hyperparams () const
- bool has hyperparam (const std::string &name) const
- double get_hyperparam_value (const std::string &name) const
- int get hyperparam index (const std::string &name) const
- void set hyperparam value (const std::string &name, double value)
- void rename hyperparam (const std::string &old name, const std::string &new name)
- StringVecT get_param_names () const
- void set_param_names (const StringVecT &desc)
- StringVecT get_hyperparam_names () const
- void set_hyperparam_names (const StringVecT &desc)
- template<class RngT >

ParamT sample_prior (RngT &rng)

- ParamT sample prior ()
- void set bounds (const ParamT &lbound, const ParamT &ubound)
- void set Ibound (const ParamT &Ibound)
- void set_ubound (const ParamT &ubound)
- const ParamT & get_lbound () const
- const ParamT & get ubound () const
- bool theta in bounds (const ParamT &theta) const

- void bound_theta (ParamT &theta, double epsilon=bounds_epsilon) const
- ParamT bounded_theta (const ParamT &theta, double epsilon=bounds_epsilon) const
- ParamT reflected theta (const ParamT &theta) const
- BoolVecT theta stack in bounds (const ParamVecT &theta) const
- ParamVecT bounded_theta_stack (const ParamVecT &theta, double epsilon=bounds_epsilon) const
- ParamVecT reflected theta stack (const ParamVecT &theta) const

Static Public Member Functions

- static prior_hessian::ScaledSymmetricBetaDist make_prior_component_position_beta (IdxT size, double pos_
 beta=default_beta_pos)
- static prior_hessian::TruncatedParetoDist make_prior_component_sigma (double min_sigma, double max_
 sigma, double alpha=default_alpha_sigma)
- static void set_rng_seed (RngSeedT seed)
- static ParallelRngManagerT & get_rng_manager ()
- static ParallelRngGeneratorT & get_rng_generator ()

Static Public Attributes

- static const std::string DefaultSeperableInitEstimator = "TrustRegion"
- static const double bounds epsilon = 1.0E-6
- static const double global min psf sigma = 1E-1
- static const double global_max_psf_sigma = 1E2
- static const double default_beta_pos = 3
- static const double default sigma pos = 1
- static const double default_mean_I = 300
- static const double default_max_I = INFINITY
- static const double default intensity kappa = 2
- static const double default_pixel_mean_bg = 4
- static const double default_alpha_sigma = 2

Protected Member Functions

- PointEmitterModel ()
- PointEmitterModel (const CompositeDist &prior)
- PointEmitterModel (CompositeDist &&prior)
- PointEmitterModel (const PointEmitterModel &)
- PointEmitterModel (PointEmitterModel &&)
- PointEmitterModel & operator= (const PointEmitterModel &)
- PointEmitterModel & operator= (PointEmitterModel &&)

Protected Attributes

- CompositeDist prior
- IdxT num_params
- ldxT num_hyperparams
- ParamT Ibound
- ParamT ubound

8.40.1 Detailed Description

A virtual Base type for point emitter localization models.

<Composite distribution from prior_hessian:: for representing priorsInitialized with a prior as a PriorHessian:: CompositeDist object, this sets the dimensionality (num_params) and num_hyperparams, and the associated descriptions.

Box-type bounding constraints are controlled with the set_bounds() method.

Of note some of the common MCMC variables are rooted here in the inheritance tree.

Definition at line 44 of file PointEmitterModel.h.

8.40.2 Member Typedef Documentation

8.40.2.1 using mappel::PointEmitterModel::ParamT = arma::vec

Parameter vector

Definition at line 47 of file PointEmitterModel.h.

8.40.2.2 using mappel::PointEmitterModel::ParamVecT = arma::mat

Vector of parameter vectors

Definition at line 48 of file PointEmitterModel.h.

8.40.3 Constructor & Destructor Documentation

8.40.3.1 mappel::PointEmitterModel::PointEmitterModel() [protected]

Definition at line 31 of file PointEmitterModel.cpp.

8.40.3.2 mappel::PointEmitterModel::PointEmitterModel (const CompositeDist & prior_) [explicit], [protected]

Definition at line 43 of file PointEmitterModel.cpp.

8.40.3.3 mappel::PointEmitterModel::PointEmitterModel(CompositeDist && prior_) [explicit], [protected]

Definition at line 37 of file PointEmitterModel.cpp.

8.40.3.4 mappel::PointEmitterModel::PointEmitterModel (const PointEmitterModel & o) [protected]

Definition at line 49 of file PointEmitterModel.cpp.

References prior.

8.40.3.5 mappel::PointEmitterModel::PointEmitterModel (PointEmitterModel && o) [protected]

Definition at line 55 of file PointEmitterModel.cpp.

8.40.4 Member Function Documentation

8.40.4.1 void mappel::PointEmitterModel::bound_theta (ParamT & theta, double epsilon = bounds_epsilon) const

Definition at line 248 of file PointEmitterModel.cpp.

References check_param_shape(), lbound, num_params, and ubound.

8.40.4.2 PointEmitterModel::ParamT mappel::PointEmitterModel::bounded_theta (const ParamT & theta, double epsilon = bounds_epsilon) const

Definition at line 265 of file PointEmitterModel.cpp.

References check_param_shape(), lbound, num_params, and ubound.

Referenced by bounded_theta_stack().

8.40.4.3 PointEmitterModel::ParamVecT mappel::PointEmitterModel::bounded_theta_stack (const ParamVecT & theta, double epsilon = bounds_epsilon) const

Definition at line 307 of file PointEmitterModel.cpp.

References bounded_theta(), check_param_shape(), and make_param_stack().

8.40.4.4 void mappel::PointEmitterModel::check_param_shape (const ParamT & theta) const

Definition at line 167 of file PointEmitterModel.cpp.

References num params.

Referenced by bound_theta(), bounded_theta(), bounded_theta_stack(), reflected_theta(), reflected_theta_stack(), theta in bounds(), and theta stack in bounds().

8.40.4.5 void mappel::PointEmitterModel::check_param_shape (const ParamVecT & theta) const

Definition at line 176 of file PointEmitterModel.cpp.

References num_params.

8.40.4.6 void mappel::PointEmitterModel::check_psf_sigma (double psf_sigma) const

Definition at line 185 of file PointEmitterModel.cpp.

References global_max_psf_sigma, and global_min_psf_sigma.

Referenced by mappel::Gauss1DModel(), mappel::Gauss2DModel(), mappel::Gauss2DModel(), mappel:: \leftarrow Gauss2DsModel::Gauss2DsModel(), mappel::Gauss1DsModel::set_max_sigma(), mappel::Gauss2DsModel::set_ \leftarrow max_sigma(), mappel::Gauss1DsModel::set_min_sigma(), mappel:: \leftarrow Gauss1DModel::set_psf_sigma(), and mappel::Gauss2DModel::set_psf_sigma().

8.40.4.7 void mappel::PointEmitterModel::check_psf_sigma (const VecT & psf_sigma) const

Definition at line 197 of file PointEmitterModel.cpp.

References global_max_psf_sigma, and global_min_psf_sigma.

8.40.4.8 int mappel::PointEmitterModel::get_hyperparam_index(const std::string & name) const [inline]

Definition at line 236 of file PointEmitterModel.h.

References prior.

8.40.4.9 StringVecT mappel::PointEmitterModel::get_hyperparam_names() const [inline]

Definition at line 256 of file PointEmitterModel.h.

References prior.

8.40.4.10 double mappel::PointEmitterModel::get_hyperparam_value (const std::string & name) const [inline]

Definition at line 232 of file PointEmitterModel.h.

References prior.

Referenced by mappel::MCMCAdaptor1D::set_background_mcmc_sampling(), and mappel::MCMCAdaptor1D::set_contensity_mcmc_sampling().

8.40.4.11 PointEmitterModel::ParamT mappel::PointEmitterModel::get_hyperparams() const [inline]

Definition at line 224 of file PointEmitterModel.h.

References prior.

```
8.40.4.12 const PointEmitterModel::ParamT & mappel::PointEmitterModel::get_lbound( ) const [inline]
Definition at line 212 of file PointEmitterModel.h.
References Ibound.
Referenced by mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCMCAdaptor2D::MCMCAdaptor2D(), and
mappel::MCMCAdaptor1D::set_background_mcmc_sampling().
8.40.4.13 IdxT mappel::PointEmitterModel::get num_hyperparams( ) const [inline]
Definition at line 208 of file PointEmitterModel.h.
References num hyperparams.
8.40.4.14 IdxT mappel::PointEmitterModel::get_num_params() const [inline]
Definition at line 160 of file PointEmitterModel.h.
References num_params.
8.40.4.15 StringVecT mappel::PointEmitterModel::get param_names( ) const [inline]
Definition at line 248 of file PointEmitterModel.h.
References prior.
8.40.4.16 CompositeDist & mappel::PointEmitterModel::get_prior() [inline]
Definition at line 200 of file PointEmitterModel.h.
References prior.
Referenced by mappel::Gauss2DModel::update internal 1Dsum estimators(), and mappel::Gauss2DsModel ←
::update_internal_1Dsum_estimators().
8.40.4.17 const CompositeDist & mappel::PointEmitterModel::get_prior( ) const [inline]
Definition at line 204 of file PointEmitterModel.h.
References prior.
8.40.4.18 ParallelRngGeneratorT & mappel::PointEmitterModel::get_rng_generator() [static]
Definition at line 120 of file PointEmitterModel.cpp.
```

References mappel::rng manager.

8.40.4.19 ParallelRngManagerT & mappel::PointEmitterModel::get_rng_manager() [static]

Definition at line 115 of file PointEmitterModel.cpp.

References mappel::rng_manager.

8.40.4.20 StatsT mappel::PointEmitterModel::get_stats () const

Definition at line 125 of file PointEmitterModel.cpp.

References Ibound, num_hyperparams, num_params, prior, mappel::rng_manager, and ubound.

Referenced by mappel::Gauss1DModel::get_stats(), mappel::Gauss1DsModel::get_stats(), mappel::Gauss2DModel ← ::get_stats(), and mappel::Gauss2DsModel::get_stats().

8.40.4.21 const PointEmitterModel::ParamT & mappel::PointEmitterModel::get_ubound() const [inline]

Definition at line 216 of file PointEmitterModel.h.

References ubound.

Referenced by mappel::Gauss2DsxyModel::get_max_sigma_ratio(), mappel::Gauss2DsModel::get_max_sigma_ratio(), mappel::MCMCAdaptor1D::MCMCAdaptor1D(), mappel::MCMCAdaptor2D::MCMCAdaptor2D(), mappel::MCMCAdaptor1D::set_background_mcmc_sampling(), and mappel::Gauss2DsModel::set_max_sigma_ratio().

8.40.4.22 bool mappel::PointEmitterModel::has_hyperparam (const std::string & name) const [inline]

Definition at line 228 of file PointEmitterModel.h.

References prior.

8.40.4.23 PointEmitterModel::ParamT mappel::PointEmitterModel::make_param() const [inline]

Definition at line 164 of file PointEmitterModel.h.

References num params.

Referenced by mappel::Gauss1DModel::initial_theta_estimate(), mappel::Gauss1DsModel::initial_theta_estimate(), mappel::Gauss2DModel::initial_theta_estimate(), mappel::Gauss2DsxyModel::initial_theta_estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::Gauss1DModel::pixel_hess_update(), mappel::Gauss1DsModel::pixel_hess_update(), mappel::Gauss2DsModel::pixel_hess_update(), and mappel::Gauss2DsModel::pixel_hess_update().

8.40.4.24 template < class FillT > PointEmitterModel::ParamT mappel::PointEmitterModel::make_param(FillT fill) const

Definition at line 181 of file PointEmitterModel.h.

References num params.

8.40.4.25 MatT mappel::PointEmitterModel::make_param_mat() const [inline]

Definition at line 172 of file PointEmitterModel.h.

References num params.

8.40.4.26 template < class FillT > MatT mappel::PointEmitterModel::make_param_mat (FillT fill) const

Definition at line 191 of file PointEmitterModel.h.

References num_params.

8.40.4.27 CubeT mappel::PointEmitterModel::make_param_mat_stack(ldxT n) const [inline]

Definition at line 176 of file PointEmitterModel.h.

References num_params.

8.40.4.28 template < class FillT > CubeT mappel::PointEmitterModel::make_param_mat_stack (IdxT n, FillT fill) const

Definition at line 196 of file PointEmitterModel.h.

References num_params.

8.40.4.29 PointEmitterModel::ParamVecT mappel::PointEmitterModel::make_param_stack(ldxT n) const [inline]

Definition at line 168 of file PointEmitterModel.h.

References num_params.

Referenced by bounded_theta_stack(), and reflected_theta_stack().

8.40.4.30 template < class FillT > PointEmitterModel::ParamVecT mappel::PointEmitterModel::make_param_stack (IdxT n, FillT fill) const

Definition at line 186 of file PointEmitterModel.h.

References num params.

8.40.4.31 prior_hessian::TruncatedGammaDist mappel::PointEmitterModel::make_prior_component_intensity (double mean = default_mean_l, double kappa = default_intensity_kappa) [static]

Definition at line 98 of file PointEmitterModel.cpp.

References default max I.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_beta_position(), mappel::Gauss2Ds \leftarrow default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss1DsModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_normal_costion(), mappel::Gauss2DModel::make_prior_costion(), mappel::Gauss2DModel::make_prior_costion(), mappel::Gauss1DsModel::make_prior_beta_position(), mappel::Gauss2DModel::make_prior_beta_position(), mappel::Gauss2DModel::make_prior_normal_costion(), mappel::Gauss2DModel::make_prior_normal_costion(), mappel::Gauss1DsModel::make_prior_normal_costion(), mappel::Gauss1DsModel::make_prior_normal_costion(), mappel::Gauss1DsModel::make_prior_normal_costion(), mappel::Gauss2DsModel::make_prior_normal_costion(), mappel::Gauss2DsModel::make_pri

8.40.4.32 prior_hessian::ScaledSymmetricBetaDist mappel::PointEmitterModel::make_prior_component_position_beta (IdxT size, double pos beta = default beta pos) [static]

Definition at line 92 of file PointEmitterModel.cpp.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_beta_position(), mappel::Gauss1DModel::make_default_prior_beta_position(), mappel::Gauss2Ds \leftarrow Model::make_default_prior_beta_position(), mappel::Gauss1DsModel::make_prior_beta_position(), mappel::Gauss2Ds \leftarrow DModel::make_prior_beta_position(), mappel::Gauss1DModel::make_prior_beta_position(), and mappel::Gauss2Ds \leftarrow Model::make_prior_beta_position().

8.40.4.33 prior_hessian::TruncatedNormalDist mappel::PointEmitterModel::make_prior_component_position_normal (ldxT size, double pos_sigma = default_sigma_pos) [static]

Definition at line 85 of file PointEmitterModel.cpp.

Referenced by mappel::Gauss1DsModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_ \leftarrow default_prior_normal_position(), mappel::Gauss1DModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_prior_normal_position(), mappel::Gauss2DModel::make_prior_normal_position(), mappel::Gauss1DsModel::make_prior_normal_position(), and mappel::Gauss2DsModel::make_prior_normal_position().

8.40.4.34 prior_hessian::TruncatedParetoDist mappel::PointEmitterModel::make_prior_component_sigma (double min_sigma, double max_sigma, double alpha = default alpha sigma) [static]

Definition at line 104 of file PointEmitterModel.cpp.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DsModel::make_ \leftarrow default_prior_beta_position(), mappel::Gauss1DsModel::make_default_prior_normal_position(), mappel::Gauss2 \leftarrow DsModel::make_default_prior_normal_position(), mappel::Gauss1DsModel::make_prior_beta_position(), mappel::Gauss1DsModel::make_prior_normal_position(), and mappel \leftarrow ::Gauss2DsModel::make_prior_normal_position().

8.40.4.35 PointEmitterModel & mappel::PointEmitterModel::operator=(const PointEmitterModel & o) [protected]

Definition at line 61 of file PointEmitterModel.cpp.

References prior.

Referenced by mappel::Gauss1DMAP::operator=(), mappel::Gauss1DMLE::operator=(), mappel::Gauss1DsMLE \leftarrow ::operator=(), mappel::Gauss2DsMAP::operator=(), mappel::Gauss2DsMLE::operator=(), mappel::Gauss2DMLE::operator=().

8.40.4.36 PointEmitterModel & mappel::PointEmitterModel::operator=(PointEmitterModel && o) [protected]

Definition at line 68 of file PointEmitterModel.cpp.

References Ibound, num_hyperparams, num_params, prior, and ubound.

8.40.4.37 PointEmitterModel::ParamT mappel::PointEmitterModel::reflected_theta (const ParamT & theta) const

Definition at line 276 of file PointEmitterModel.cpp.

References check_param_shape(), lbound, num_params, and ubound.

Referenced by reflected theta stack().

8.40.4.38 PointEmitterModel::ParamVecT mappel::PointEmitterModel::reflected_theta_stack (const ParamVecT & theta) const

Definition at line 317 of file PointEmitterModel.cpp.

References check_param_shape(), make_param_stack(), and reflected_theta().

8.40.4.39 void mappel::PointEmitterModel::rename_hyperparam (const std::string & old_name, const std::string & new_name)
[inline]

Definition at line 244 of file PointEmitterModel.h.

References prior.

8.40.4.40 template < class RngT > PointEmitterModel::ParamT mappel::PointEmitterModel::sample_prior (RngT & rng)

Definition at line 264 of file PointEmitterModel.h.

References prior.

8.40.4.41 PointEmitterModel::ParamT mappel::PointEmitterModel::sample_prior() [inline]

Definition at line 268 of file PointEmitterModel.h.

References prior, and mappel::rng_manager.

8.40.4.42 void mappel::PointEmitterModel::set_bounds (const ParamT & lbound_, const ParamT & ubound_)

Box-type parameter bounds

Modifies the prior bounds to prevent sampling outside the valid box-constraints.

Definition at line 213 of file PointEmitterModel.cpp.

References bounds_epsilon, lbound, num_params, prior, and ubound.

8.40.4.43 void mappel::PointEmitterModel::set_hyperparam_names (const StringVecT & desc) [inline]

Definition at line 260 of file PointEmitterModel.h.

References prior.

```
8.40.4.44 void mappel::PointEmitterModel::set_hyperparam_value ( const std::string & name, double value ) [inline]
Definition at line 240 of file PointEmitterModel.h.
References prior.
8.40.4.45 void mappel::PointEmitterModel::set_hyperparams ( const VecT & hyperparams ) [inline]
Definition at line 220 of file PointEmitterModel.h.
References prior.
Referenced by mappel::Gauss2DModel::set_hyperparams(), and mappel::Gauss2DsModel::set_hyperparams().
8.40.4.46 void mappel::PointEmitterModel::set_lbound ( const ParamT & lbound )
Definition at line 226 of file PointEmitterModel.cpp.
References bounds epsilon, Ibound, num params, prior, and ubound.
Referenced by mappel::Gauss1DsModel::set min sigma().
8.40.4.47 void mappel::PointEmitterModel::set_param_names ( const StringVecT & desc ) [inline]
Definition at line 252 of file PointEmitterModel.h.
References prior.
8.40.4.48 void mappel::PointEmitterModel::set_prior ( CompositeDist && prior_ )
Definition at line 158 of file PointEmitterModel.cpp.
References Ibound, num_hyperparams, num_params, prior, and ubound.
Referenced by mappel::Gauss2DModel::set_prior(), and mappel::Gauss2DsModel::set_prior().
8.40.4.49 void mappel::PointEmitterModel::set_prior ( const CompositeDist & prior_ )
Definition at line 149 of file PointEmitterModel.cpp.
References Ibound, num hyperparams, num params, prior, and ubound.
8.40.4.50 void mappel::PointEmitterModel::set_rng_seed( RngSeedT seed) [static]
Definition at line 110 of file PointEmitterModel.cpp.
References mappel::rng manager.
```

8.40.4.51 void mappel::PointEmitterModel::set_ubound (const ParamT & ubound)

Definition at line 237 of file PointEmitterModel.cpp.

References bounds epsilon, Ibound, num params, prior, and ubound.

Referenced by mappel::Gauss1DsModel::set_max_sigma(), and mappel::Gauss2DsModel::set_max_sigma_ratio().

8.40.4.52 bool mappel::PointEmitterModel::theta_in_bounds (const ParamT & theta) const

Definition at line 257 of file PointEmitterModel.cpp.

References check param shape(), Ibound, num params, and ubound.

Referenced by mappel::Gauss2DModel::initial_theta_estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), mappel::Gauss1DModel::make_stencil(), mappel::Gauss1DsModel::make_stencil(), mappel::Gauss2DModel::make_stencil(), mappel::Gauss2DsModel::make_stencil(), and theta_stack_in bounds().

8.40.4.53 BoolVecT mappel::PointEmitterModel::theta_stack_in_bounds (const ParamVecT & theta) const

Definition at line 297 of file PointEmitterModel.cpp.

References check param shape(), and theta in bounds().

8.40.5 Member Data Documentation

8.40.5.1 const double mappel::PointEmitterModel::bounds_epsilon = 1.0E-6 [static]

Distance from the boundary to constrain in bound_theta and bounded_theta methods

Definition at line 52 of file PointEmitterModel.h.

Referenced by set_bounds(), set_lbound(), mappel::Gauss2DsModel::set_max_sigma_ratio(), and set_ubound().

8.40.5.2 const double mappel::PointEmitterModel::default_alpha_sigma = 2 [static]

Default per-pixel background gamma distribution shape

Definition at line 62 of file PointEmitterModel.h.

8.40.5.3 const double mappel::PointEmitterModel::default beta pos = 3 [static]

Default position parameter in symmetric beta-distributions

Definition at line 56 of file PointEmitterModel.h.

8.40.5.4 const double mappel::PointEmitterModel::default_intensity_kappa = 2 [static]

Default shape for intensity gamma distributions

Definition at line 60 of file PointEmitterModel.h.

8.40.5.5 const double mappel::PointEmitterModel::default_max_I = INFINITY [static]

Default maximum emitter intensity

Definition at line 59 of file PointEmitterModel.h.

Referenced by make prior component intensity().

8.40.5.6 const double mappel::PointEmitterModel::default_mean_l = 300 [static]

Default emitter intensity mean

Definition at line 58 of file PointEmitterModel.h.

Referenced by mappel::MCMCAdaptor1D::set intensity mcmc sampling().

8.40.5.7 const double mappel::PointEmitterModel::default_pixel_mean_bg = 4 [static]

Default per-pixel mean background counts

Definition at line 61 of file PointEmitterModel.h.

Referenced by mappel::Gauss1DsModel::make_default_prior_beta_position(), mappel::Gauss2DModel::make default_prior_beta_position(), mappel::Gauss2DModel::make_default_prior_beta_position(), mappel::Gauss1DsModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss2DModel::make_default_prior_normal_position(), mappel::Gauss2DsModel::make_default_prior_normal_position(), and mappel::MCMCAdaptor1D \leftarrow ::set_background_mcmc_sampling().

8.40.5.8 const double mappel::PointEmitterModel::default_sigma_pos = 1 [static]

Default position parameter in symmetric beta-distributions

Definition at line 57 of file PointEmitterModel.h.

8.40.5.9 const std::string mappel::PointEmitterModel::DefaultSeperableInitEstimator = "TrustRegion" [static]

Estimator name to use in 1D separable initializations

Definition at line 49 of file PointEmitterModel.h.

Referenced by mappel::Gauss2DModel::initial_theta_estimate(), mappel::Gauss2DsxyModel::initial_theta_estimate(), and mappel::Gauss2DsModel::initial_theta_estimate().

8.40.5.10 const double mappel::PointEmitterModel::global_max_psf_sigma = 1E2 [static]

Global maxmimum for any psf_sigma. Sizes above this value are invalid, and nowhere near useful for practical point emitter localization

Definition at line 54 of file PointEmitterModel.h.

Referenced by check_psf_sigma().

8.40.5.11 const double mappel::PointEmitterModel::global_min_psf_sigma = 1E-1 [static]

Global minimum for any psf_sigma. Sizes below this value are invalid, and nowhere near useful for practical point emitter localization

Definition at line 53 of file PointEmitterModel.h.

Referenced by check_psf_sigma().

8.40.5.12 ParamT mappel::PointEmitterModel::Ibound [protected]

Definition at line 148 of file PointEmitterModel.h.

Referenced by bound_theta(), bounded_theta(), get_lbound(), get_stats(), mappel::Gauss1DsModel::initial_theta_\circ} estimate(), mappel::Gauss2DModel::initial_theta_estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), operator=(), reflected theta(), set bounds(), set lbound(), set prior(), set ubound(), and theta in bounds().

8.40.5.13 IdxT mappel::PointEmitterModel::num_hyperparams [protected]

Definition at line 147 of file PointEmitterModel.h.

Referenced by get_num_hyperparams(), get_stats(), operator=(), and set_prior().

8.40.5.14 IdxT mappel::PointEmitterModel::num_params [protected]

Definition at line 146 of file PointEmitterModel.h.

Referenced by bound_theta(), bounded_theta(), check_param_shape(), get_num_params(), get_stats(), mappel::

Gauss1DModel::initial_theta_estimate(), mappel::Gauss2DModel::initial_theta_estimate(), mappel::Gauss2DsModel
::initial_theta_estimate(), make_param(), make_param_mat(), make_param_mat_stack(), make_param_stack(), operator=(), reflected_theta(), set_bounds(), set_prior(), set_ubound(), and theta_in_bounds().

8.40.5.15 CompositeDist mappel::PointEmitterModel::prior [protected]

Definition at line 145 of file PointEmitterModel.h.

Referenced by mappel::Gauss2DModel::debug_internal_sum_model_y(), mappel::Gauss2DsModel::debug_internal \leftarrow _sum_model_y(), mappel::Gauss2DModel::Gauss2DModel(), get_ \leftarrow hyperparam_index(), get_hyperparam_names(), get_hyperparam_value(), get_hyperparams(), mappel::Gauss1Ds \leftarrow Model::get_max_sigma(), mappel::Gauss1DsModel::get_min_sigma(), get_param_names(), get_prior(), get_stats(), has_hyperparam(), operator=(), PointEmitterModel(), rename_hyperparam(), sample_prior(), set_bounds(), set_ \leftarrow hyperparam_names(), set_hyperparam_value(), set_hyperparams(), set_lbound(), mappel::Gauss1DsModel::set_ \leftarrow max_sigma(), mappel::Gauss1DsModel::set_min_sigma(), set_param_names(), set_prior(), and set_ubound().

8.40.5.16 ParamT mappel::PointEmitterModel::ubound [protected]

Definition at line 148 of file PointEmitterModel.h.

Referenced by bound_theta(), bounded_theta(), get_stats(), get_ubound(), mappel::Gauss1DsModel::initial_theta_ \leftarrow estimate(), mappel::Gauss2DModel::initial_theta_estimate(), mappel::Gauss2DsModel::initial_theta_estimate(), operator=(), reflected_theta(), set_bounds(), set_prior(), set_ubound(), and theta_in_bounds().

The documentation for this class was generated from the following files:

- · PointEmitterModel.h
- PointEmitterModel.cpp

8.41 PoissonGaussianNoise2DObjective < ModelBase > Class Template Reference

A Base type for point emitter localization models that use 2d images.

#include </home/travis/build/markjolah/Mappel/include/Mappel/PoissonGaussian←
Noise2DObjective.h>

Inheritance diagram for PoissonGaussianNoise2DObjective < ModelBase >:

Public Types

- using CoordldxT = uint32_t
- using CoordT = arma::vec< uint32_t >
- using CoordStackT = arma::mat< uint32_t >
- using ModelDataT = std::pair < ImageT, CoordT >
- using ModelDataStackT = std::pair< ImageStackT, CoordStackT >

Public Member Functions

PoissonGaussianNoise2DObjective (const ImageSizeVecT &size, const ImageT &sensor_gain_map, const ImageT &sensor_bg_map)

Public Attributes

- · ImageT sensor_gain_map
- ImageT sensor bg map

Static Public Attributes

static const StringVecT estimator names

8.41.1 Detailed Description

```
template<typename ModelBase> class PoissonGaussianNoise2DObjective< ModelBase >
```

A Base type for point emitter localization models that use 2d images.

We don't assume much here, so that it is possible to have a wide range of 2D models

Definition at line 23 of file PoissonGaussianNoise2DObjective.h.

8.41.2 Member Typedef Documentation

8.41.2.1 template < typename ModelBase > using PoissonGaussianNoise2DObjective < ModelBase >::CoordIdxT = uint32_t

Definition at line 26 of file PoissonGaussianNoise2DObjective.h.

8.41.2.2 template<typename ModelBase > using PoissonGaussianNoise2DObjective< ModelBase >::CoordStackT = arma::mat<uint32_t>

Definition at line 28 of file PoissonGaussianNoise2DObjective.h.

8.41.2.3 template < typename ModelBase > using PoissonGaussianNoise2DObjective < ModelBase >::CoordT = arma::vec < uint32_t >

Definition at line 27 of file PoissonGaussianNoise2DObjective.h.

8.41.2.4 template < typename ModelBase > using PoissonGaussianNoise2DObjective < ModelBase > ::ModelDataStackT = std::pair < ImageStackT, CoordStackT >

Objective function data stack type: 2D double precision image stack, of images gain-corrected to approximate photons counts

Definition at line 30 of file PoissonGaussianNoise2DObjective.h.

8.41.2.5 template<typename ModelBase > using PoissonGaussianNoise2DObjective< ModelBase >::ModelDataT = std::pair<ImageT, CoordT>

Objective function data type: 2D double precision image, gain-corrected to approximate photons counts

Definition at line 29 of file PoissonGaussianNoise2DObjective.h.

- 8.41.3 Constructor & Destructor Documentation
- 8.41.3.1 template < typename ModelBase > PoissonGaussianNoise2DObjective < ModelBase >::PoissonGaussian ← Noise2DObjective (const ImageSizeVecT & size, const ImageT & sensor_gain_map, const ImageT & sensor_bg_map)
- 8.41.4 Member Data Documentation

Definition at line 25 of file PoissonGaussianNoise2DObjective.h.

8.41.4.2 template < typename ModelBase > ImageT PoissonGaussianNoise2DObjective < ModelBase >::sensor_bg_map

Definition at line 34 of file PoissonGaussianNoise2DObjective.h.

8.41.4.3 template < typename ModelBase > ImageT PoissonGaussianNoise2DObjective < ModelBase >::sensor_gain_map

Definition at line 33 of file PoissonGaussianNoise2DObjective.h.

The documentation for this class was generated from the following files:

- · PoissonGaussianNoise2DObjective.h
- PoissonGaussianNoise2DObjective.cpp

8.42 mappel::PoissonNoise1DObjective Class Reference

A base class for 1D objectives with Poisson read noise. This objective function and its subclasses are for models where the only source of noise is the "shot" or "counting" or Poisson noise inherent to a discrete capture of phontons given a certain mean rate of incidence on each pixel.

#include </home/travis/build/markjolah/Mappel/include/Mappel/PoissonNoise1D↔Objective.h>

Inheritance diagram for mappel::PoissonNoise1DObjective:

Public Types

- using ModelDataT = ImageT
- using ModelDataStackT = ImageStackT
- using ImageCoordT = uint32 t
- using ImagePixeIT = double
- template < class CoordT >

using ImageSizeShapeT = CoordT

template < class CoordT >

using ImageSizeVecShapeT = arma::Col < CoordT >

- using ImageSizeT = ImageSizeShapeT < ImageCoordT >
- using ImageSizeVecT = ImageSizeVecShapeT < ImageCoordT >
- template < class PixeIT >

using ImageShapeT = arma::Col< PixelT >

template < class PixelT >

using ImageStackShapeT = arma::Mat< PixelT >

- using ImageT = ImageShapeT < ImagePixeIT >
- using ImageStackT = ImageStackShapeT < ImagePixeIT >

Public Member Functions

- StatsT get_stats () const
- ImageT make_image () const
- ImageStackT make_image_stack (ImageCoordT n) const
- ImageCoordT get_size_image_stack (const ImageStackT &stack) const
- ImageT get_image_from_stack (const ImageStackT &stack, ImageCoordT n) const
- template<class ImT >

void set image in stack (ImageStackT &stack, ImageCoordT n, const ImT &im) const

- ImageSizeT get size () const
- ImageCoordT get_size (IdxT idx) const
- ImageCoordT get num pixels () const
- void set_size (const ImageSizeT &size_)
- void set size (const arma::Col< ImageCoordT > &sz)
- void check image shape (const ImageT &im) const

Check the shape of a single images is correct for model size.

void check_image_shape (const ImageStackT &ims) const

Check the shape of a stack of images is correct for model size.

Static Public Member Functions

static void check_size (const ImageSizeT &size_)

Check the size argument for the model.

Static Public Attributes

- static const std::vector< std::string > estimator_names
- static const ImageCoordT num_dim = 1
- static const ImageCoordT global min size = 3
- static const ImageCoordT global max size = 512

Protected Member Functions

- PoissonNoise1DObjective ()
- PoissonNoise1DObjective (const PoissonNoise1DObjective &o)
- PoissonNoise1DObjective (PoissonNoise1DObjective &&o)
- PoissonNoise1DObjective & operator= (const PoissonNoise1DObjective &o)
- PoissonNoise1DObjective & operator= (PoissonNoise1DObjective &&o)

Protected Attributes

· ImageSizeT size

8.42.1 Detailed Description

A base class for 1D objectives with Poisson read noise. This objective function and its subclasses are for models where the only source of noise is the "shot" or "counting" or Poisson noise inherent to a discrete capture of phontons given a certain mean rate of incidence on each pixel.

Definition at line 22 of file PoissonNoise1DObjective.h.

8.42.2 Member Typedef Documentation

8.42.2.1 using mappel::ImageFormat1DBase::ImageCoordT = uint32_t [inherited]

Image size coordinate storage type

Definition at line 25 of file ImageFormat1DBase.h.

8.42.2.2 using mappel::ImageFormat1DBase::ImagePixelT = double [inherited]

Image pixel storage type

Definition at line 26 of file ImageFormat1DBase.h.

8.42.2.3 template < class PixelT > using mappel::ImageFormat1DBase::ImageShapeT = arma::Col < PixelT > [inherited]

Shape of the data type for a single image

Definition at line 33 of file ImageFormat1DBase.h.

8.42.2.4 template < class CoordT > using mappel::ImageFormat1DBase::ImageSizeShapeT = CoordT [inherited]

Shape of the data type to store 1-image's coordinates

Definition at line 28 of file ImageFormat1DBase.h.

8.42.2.5 using mappel::ImageFormat1DBase::ImageSizeT = ImageSizeShapeT<ImageCoordT>
[inherited]

Data type for a single image size

Definition at line 30 of file ImageFormat1DBase.h.

8.42.2.6 template < class CoordT > using mappel::ImageFormat1DBase::ImageSizeVecShapeT = arma::Col < CoordT > [inherited]

Shape of the data type to store a vector of image's coordinates

Definition at line 29 of file ImageFormat1DBase.h.

8.42.2.7 using mappel::ImageFormat1DBase::ImageSizeVecT = ImageSizeVecShapeT < ImageCoordT > [inherited]

Data type for a sequence of image sizes

Definition at line 31 of file ImageFormat1DBase.h.

8.42.2.8 template < class PixelT > using mappel::ImageFormat1DBase::ImageStackShapeT = arma::Mat < PixelT > [inherited]

Shape of the data type for a sequence of images

Definition at line 34 of file ImageFormat1DBase.h.

8.42.2.9 using mappel::ImageFormat1DBase::ImageStackT = ImageStackShapeT<ImagePixeIT>
[inherited]

Data type to represent a sequence of images

Definition at line 36 of file ImageFormat1DBase.h.

8.42.2.10 using mappel::ImageFormat1DBase::ImageT = ImageShapeT < ImagePixeIT > [inherited]

Data type to represent single image

Definition at line 35 of file ImageFormat1DBase.h.

8.42.2.11 using mappel::PoissonNoise1DObjective::ModelDataStackT = ImageStackT

Objective function data stack type: 1D double precision image stack, of images gain-corrected to approximate photons counts

Definition at line 26 of file PoissonNoise1DObjective.h.

8.42.2.12 using mappel::PoissonNoise1DObjective::ModelDataT = ImageT

Objective function data type: 1D double precision image, gain-corrected to approximate photons counts

Definition at line 25 of file PoissonNoise1DObjective.h.

8.42.3 Constructor & Destructor Documentation

8.42.3.1 mappel::PoissonNoise1DObjective::PoissonNoise1DObjective() [protected]

Definition at line 14 of file PoissonNoise1DObjective.cpp.

8.42.3.2 mappel::PoissonNoise1DObjective::PoissonNoise1DObjective (const PoissonNoise1DObjective & o)

[protected]

Definition at line 18 of file PoissonNoise1DObjective.cpp.

8.42.3.3 mappel::PoissonNoise1DObjective::PoissonNoise1DObjective (PoissonNoise1DObjective && o)

[protected]

Definition at line 22 of file PoissonNoise1DObjective.cpp.

8.42.4 Member Function Documentation

8.42.4.1 void ImageFormat1DBase::check_image_shape(const ImageT & im) const [inherited]

Check the shape of a single images is correct for model size.

Definition at line 59 of file ImageFormat1DBase.cpp.

References mappel::ImageFormat1DBase::size.

8.42.4.2 void ImageFormat1DBase::check_image_shape (const ImageStackT & ims) const [inherited]

Check the shape of a stack of images is correct for model size.

Definition at line 71 of file ImageFormat1DBase.cpp.

References mappel::ImageFormat1DBase::size.

8.42.4.3 void ImageFormat1DBase::check_size(const ImageSizeT & size_) [static], [inherited]

Check the size argument for the model.

Definition at line 39 of file ImageFormat1DBase.cpp.

References mappel::ImageFormat1DBase::global_max_size, and mappel::ImageFormat1DBase::global_min_size.

Referenced by mappel::ImageFormat1DBase::ImageFormat1DBase(), and mappel::ImageFormat1DBase::set_size().

8.42.4.4 ImageFormat1DBase::ImageT ImageFormat1DBase::get_image_from_stack(const ImageStackT & stack, ImageCoordT n) const [inline].[inherited]

Definition at line 108 of file ImageFormat1DBase.h.

8.42.4.5 ImageFormat1DBase::ImageCoordT ImageFormat1DBase::get_num_pixels()const [inline], [inherited]

Definition at line 82 of file ImageFormat1DBase.h.

References mappel::ImageFormat1DBase::size.

Referenced by mappel::ImageFormat1DBase::get_stats().

8.42.4.6 ImageFormat1DBase::ImageSizeT ImageFormat1DBase::get_size() const [inline], [inherited]

Definition at line 71 of file ImageFormat1DBase.h.

References mappel::ImageFormat1DBase::size.

Referenced by mappel::ImageFormat1DBase::get stats().

8.42.4.7 ImageFormat1DBase::ImageCoordT ImageFormat1DBase::get_size(IdxT idx) const [inherited]

Definition at line 20 of file ImageFormat1DBase.cpp.

References mappel::ImageFormat1DBase::size.

8.42.4.8 ImageFormat1DBase::ImageCoordT ImageFormat1DBase::get_size_image_stack(const ImageStackT & stack) const [inline], [inherited]

Definition at line 101 of file ImageFormat1DBase.h.

8.42.4.9 StatsT ImageFormat1DBase::get_stats() const [inherited]

Definition at line 81 of file ImageFormat1DBase.cpp.

References mappel::ImageFormat1DBase::get_num_pixels(), mappel::ImageFormat1DBase::get_size(), and mappel ::ImageFormat1DBase::num_dim.

Referenced by mappel::Gauss1DModel::get_stats(), and mappel::Gauss1DsModel::get_stats().

8.42.4.10 ImageFormat1DBase::ImageT ImageFormat1DBase::make image() const [inline], [inherited]

Definition at line 87 of file ImageFormat1DBase.h.

References mappel::ImageFormat1DBase::size.

8.42.4.11 ImageFormat1DBase::ImageStackT ImageFormat1DBase::make_image_stack(ImageCoordT *n*) const [inline], [inherited]

Definition at line 94 of file ImageFormat1DBase.h.

References mappel::ImageFormat1DBase::size.

8.42.4.12 PoissonNoise1DObjective & mappel::PoissonNoise1DObjective::operator= (const PoissonNoise1DObjective & o) [protected]

Definition at line 26 of file PoissonNoise1DObjective.cpp.

Referenced by mappel::Gauss1DMAP::operator=(), mappel::Gauss1DMLE::operator=(), mappel::Gauss1DsMAP ::operator=(), and mappel::Gauss1DsMLE::operator=().

8.42.4.13 PoissonNoise1DObjective & mappel::PoissonNoise1DObjective::operator=(PoissonNoise1DObjective && o)

[protected]

Definition at line 31 of file PoissonNoise1DObjective.cpp.

8.42.4.14 template < class ImT > void ImageFormat1DBase::set_image_in_stack (ImageStackT & stack, ImageCoordT n, const ImT & im) const [inherited]

Definition at line 115 of file ImageFormat1DBase.h.

8.42.4.15 void ImageFormat1DBase::set_size(const ImageSizeT & size_) [inherited]

Definition at line 30 of file ImageFormat1DBase.cpp.

References mappel::ImageFormat1DBase::check_size(), and mappel::ImageFormat1DBase::size.

Referenced by mappel::ImageFormat1DBase::set_size(), mappel::Gauss2DModel::set_size(), and mappel::Gauss2 DSModel::set_size().

8.42.4.16 void ImageFormat1DBase::set_size(const arma::Col < ImageCoordT > & sz) [inline], [inherited]

Definition at line 75 of file ImageFormat1DBase.h.

References mappel::ImageFormat1DBase::set size().

8.42.5 Member Data Documentation

8.42.5.1 const std::vector < std::string > mappel::PoissonNoise1DObjective::estimator_names [static]

Definition at line 24 of file PoissonNoise1DObjective.h.

8.42.5.2 const ImageFormat1DBase::ImageCoordT ImageFormat1DBase::global_max_size = 512 [static], [inherited]

Maximum size along any dimension of the image. This is insanely big to catch obvious errors

Definition at line 40 of file ImageFormat1DBase.h.

Referenced by mappel::ImageFormat1DBase::check_size().

8.42.5.3 const ImageFormat1DBase::ImageCoordT ImageFormat1DBase::global_min_size = 3 [static], [inherited]

Minimum size along any dimension of the image.

Definition at line 39 of file ImageFormat1DBase.h.

Referenced by mappel::ImageFormat1DBase::check_size().

8.42.5.4 const ImageFormat1DBase::ImageCoordT ImageFormat1DBase::num_dim = 1 [static],[inherited]

Number of image dimensions.

Definition at line 38 of file ImageFormat1DBase.h.

Referenced by mappel::ImageFormat1DBase::get_stats().

8.42.5.5 ImageSizeT mappel::ImageFormat1DBase::size [protected], [inherited]

Number of pixels in X dimension for 1D image

Definition at line 65 of file ImageFormat1DBase.h.

The documentation for this class was generated from the following files:

- PoissonNoise1DObjective.h
- PoissonNoise1DObjective.cpp

8.43 mappel::PoissonNoise2DObjective Class Reference

A base class for 2D objectives with Poisson read noise. This objective function and its subclasses are for models where the only source of noise is the "shot" or "counting" or Poisson noise inherent to a discrete capture of phontons given a certain mean rate of incidence on each pixel.

#include </home/travis/build/markjolah/Mappel/include/Mappel/PoissonNoise2D←
Objective.h>

Inheritance diagram for mappel::PoissonNoise2DObjective:

Public Types

- using ModelDataT = ImageT
- using ModelDataStackT = ImageStackT
- using ImageCoordT = uint32 t
- using ImagePixeIT = double
- template < class CoordT >
 - using ImageSizeShapeT = arma::Col< CoordT >
- template<class CoordT >
 - using ImageSizeVecShapeT = arma::Mat< CoordT >
- using ImageSizeT = ImageSizeShapeT < ImageCoordT >
- $\bullet \ \ using \ ImageSizeVecT = ImageSizeVecShapeT < ImageCoordT >$
- $\bullet \ \ \text{template}{<} \text{class PixelT} >$
 - using ImageShapeT = arma::Mat< PixelT >
- template < class PixelT >
 - using ImageStackShapeT = arma::Cube < PixelT >
- using ImageT = ImageShapeT < ImagePixeIT >
- using ImageStackT = ImageStackShapeT < ImagePixeIT >

Public Member Functions

- StatsT get_stats () const
- ImageT make image () const
- ImageStackT make_image_stack (ImageCoordT n) const
- ImageCoordT get_size image_stack (const ImageStackT &stack) const
- ImageT get image from stack (const ImageStackT &stack, ImageCoordT n) const
- template<class ImT >
 - void set_image_in_stack (ImageStackT &stack, ImageCoordT n, const ImT &im) const
- const ImageSizeT & get_size () const
- ImageCoordT get_size (IdxT idx) const
- ImageCoordT get num pixels () const
- void set size (const ImageSizeT &size)
- void check_image_shape (const ImageT &im) const

Check the shape of a single images is correct for model size.

void check_image_shape (const ImageStackT &ims) const

Check the shape of a stack of images is correct for model size.

Static Public Member Functions

static void check_size (const ImageSizeT &size_)
 Check the size argument for the model.

Static Public Attributes

- static const std::vector< std::string > estimator names
- static const ImageCoordT num_dim =2
- static const ImageCoordT global min size =3
- static const ImageCoordT global_max_size =512

Protected Member Functions

- PoissonNoise2DObjective ()
- PoissonNoise2DObjective (const PoissonNoise2DObjective &o)
- PoissonNoise2DObjective (PoissonNoise2DObjective &&o)
- PoissonNoise2DObjective & operator= (const PoissonNoise2DObjective &o)
- PoissonNoise2DObjective & operator= (PoissonNoise2DObjective &&o)

Protected Attributes

· ImageSizeT size

8.43.1 Detailed Description

A base class for 2D objectives with Poisson read noise. This objective function and its subclasses are for models where the only source of noise is the "shot" or "counting" or Poisson noise inherent to a discrete capture of phontons given a certain mean rate of incidence on each pixel.

Definition at line 21 of file PoissonNoise2DObjective.h.

8.43.2 Member Typedef Documentation

8.43.2.1 using mappel::ImageFormat2DBase::ImageCoordT = uint32_t [inherited]

Image size coordinate storage type

Definition at line 24 of file ImageFormat2DBase.h.

8.43.2.2 using mappel::ImageFormat2DBase::ImagePixelT = double [inherited]

Image pixel storage type

Definition at line 25 of file ImageFormat2DBase.h.

8.43.2.3 template < class PixelT > using mappel::ImageFormat2DBase::ImageShapeT = arma::Mat < PixelT > [inherited]

Shape of the data type for a single image

Definition at line 32 of file ImageFormat2DBase.h.

8.43.2.4 template < class CoordT > using mappel::ImageFormat2DBase::ImageSizeShapeT = arma::Col < CoordT > [inherited]

Shape of the data type to store a single image's coordinates

Definition at line 27 of file ImageFormat2DBase.h.

8.43.2.5 using mappel::ImageFormat2DBase::ImageSizeT = ImageSizeShapeT < ImageCoordT > [inherited]

Data type for a single image size

Definition at line 29 of file ImageFormat2DBase.h.

8.43.2.6 template < class CoordT > using mappel::ImageFormat2DBase::ImageSizeVecShapeT = arma::Mat < CoordT > [inherited]

Shape of the data type to store a vector of image's coordinates

Definition at line 28 of file ImageFormat2DBase.h.

8.43.2.7 using mappel::ImageFormat2DBase::ImageSizeVecT = ImageSizeVecShapeT < ImageCoordT > [inherited]

Data type for a sequence of image sizes

Definition at line 30 of file ImageFormat2DBase.h.

8.43.2.8 template < class PixelT > using mappel::ImageFormat2DBase::ImageStackShapeT = arma::Cube < PixelT > [inherited]

Shape of the data type for a sequence of images

Definition at line 33 of file ImageFormat2DBase.h.

8.43.2.9 using mappel::ImageFormat2DBase::ImageStackT = ImageStackShapeT < ImagePixeIT > [inherited]

Data type to represent a sequence of images

Definition at line 35 of file ImageFormat2DBase.h.

8.43.2.10 using mappel::ImageFormat2DBase::ImageT = ImageShapeT < ImagePixelT > [inherited]

Data type to represent single image

Definition at line 34 of file ImageFormat2DBase.h.

8.43.2.11 using mappel::PoissonNoise2DObjective::ModelDataStackT = ImageStackT

Objective function data stack type: 2D double precision image stack, of images gain-corrected to approximate photons counts

Definition at line 25 of file PoissonNoise2DObjective.h.

8.43.2.12 using mappel::PoissonNoise2DObjective::ModelDataT = ImageT

Objective function data type: 2D double precision image, gain-corrected to approximate photons counts

Definition at line 24 of file PoissonNoise2DObjective.h.

8.43.3 Constructor & Destructor Documentation

8.43.3.1 mappel::PoissonNoise2DObjective::PoissonNoise2DObjective() [protected]

Definition at line 15 of file PoissonNoise2DObjective.cpp.

8.43.3.2 mappel::PoissonNoise2DObjective::PoissonNoise2DObjective (const PoissonNoise2DObjective & o) [protected]

Definition at line 19 of file PoissonNoise2DObjective.cpp.

8.43.3.3 mappel::PoissonNoise2DObjective::PoissonNoise2DObjective (PoissonNoise2DObjective && o) [protected]

Definition at line 23 of file PoissonNoise2DObjective.cpp.

8.43.4 Member Function Documentation

8.43.4.1 void mappel::ImageFormat2DBase::check_image_shape(const ImageT & im) const [inherited]

Check the shape of a single images is correct for model size.

Definition at line 80 of file ImageFormat2DBase.cpp.

References mappel::ImageFormat2DBase::size.

8.43.4.2 void mappel::ImageFormat2DBase::check_image_shape (const ImageStackT & ims) const [inherited]

Check the shape of a stack of images is correct for model size.

Definition at line 93 of file ImageFormat2DBase.cpp.

References mappel::ImageFormat2DBase::size.

8.43.4.3 void mappel::ImageFormat2DBase::check_size(const ImageSizeT & size_) [static], [inherited]

Check the size argument for the model.

Definition at line 60 of file ImageFormat2DBase.cpp.

References mappel::ImageFormat2DBase::global_max_size, and mappel::ImageFormat2DBase::global_min_size.

Referenced by mappel::ImageFormat2DBase::ImageFormat2DBase(), and mappel::ImageFormat2DBase::set_size().

8.43.4.4 ImageFormat2DBase::ImageT mappel::ImageFormat2DBase::get_image_from_stack (const ImageStackT & stack, ImageCoordT n) const [inline], [inherited]

Definition at line 106 of file ImageFormat2DBase.h.

8.43.4.5 ImageFormat2DBase::ImageCoordT mappel::ImageFormat2DBase::get_num_pixels() const [inline], [inherited]

Definition at line 79 of file ImageFormat2DBase.h.

References mappel::ImageFormat2DBase::size.

Referenced by mappel::ImageFormat2DBase::get_stats().

8.43.4.6 const ImageFormat2DBase::ImageSizeT & mappel::ImageFormat2DBase::get_size() const [inline], [inherited]

Definition at line 74 of file ImageFormat2DBase.h.

References mappel::ImageFormat2DBase::size.

8.43.4.7 ImageFormat2DBase::ImageCoordT mappel::ImageFormat2DBase::get_size(IdxT idx) const [inherited]

Definition at line 41 of file ImageFormat2DBase.cpp.

References mappel::ImageFormat2DBase::size.

8.43.4.8 ImageFormat2DBase::ImageCoordT mappel::ImageFormat2DBase::get_size_image_stack(const ImageStackT & stack) const [inline], [inherited]

Definition at line 99 of file ImageFormat2DBase.h.

8.43.4.9 StatsT mappel::ImageFormat2DBase::get_stats() const [inherited]

Definition at line 103 of file ImageFormat2DBase.cpp.

References mappel::ImageFormat2DBase::get_num_pixels(), mappel::ImageFormat2DBase::num_dim, and mappel ::ImageFormat2DBase::size.

Referenced by mappel::Gauss2DModel::get stats(), and mappel::Gauss2DsModel::get stats().

8.43.4.10 ImageFormat2DBase::ImageT mappel::ImageFormat2DBase::make_image() const [inline], [inherited]

Definition at line 85 of file ImageFormat2DBase.h.

References mappel::ImageFormat2DBase::size.

8.43.4.11 ImageFormat2DBase::ImageStackT mappel::ImageFormat2DBase::make_image_stack(ImageCoordT n) const [inline], [inherited]

Definition at line 92 of file ImageFormat2DBase.h.

References mappel::ImageFormat2DBase::size.

8.43.4.12 PoissonNoise2DObjective & mappel::PoissonNoise2DObjective::operator=(const PoissonNoise2DObjective & o) [protected]

Definition at line 27 of file PoissonNoise2DObjective.cpp.

Referenced by mappel::Gauss2DsMAP::operator=(), mappel::Gauss2DsMLE::operator=(), mappel::Gauss2DMAP ::operator=().

8.43.4.13 PoissonNoise2DObjective & mappel::PoissonNoise2DObjective::operator=(PoissonNoise2DObjective && o)

[protected]

Definition at line 32 of file PoissonNoise2DObjective.cpp.

Definition at line 113 of file ImageFormat2DBase.h.

8.43.4.15 void mappel::ImageFormat2DBase::set_size(const ImageSizeT & size_) [inherited]

Definition at line 51 of file ImageFormat2DBase.cpp.

References mappel::ImageFormat2DBase::check_size(), and mappel::ImageFormat2DBase::size.

Referenced by mappel::Gauss2DModel::set size(), and mappel::Gauss2DsModel::set size().

```
8.43.5 Member Data Documentation
```

8.43.5.1 const std::vector < std::string > mappel::PoissonNoise2DObjective::estimator_names [static]

Definition at line 23 of file PoissonNoise2DObjective.h.

8.43.5.2 const ImageFormat2DBase::ImageCoordT mappel::ImageFormat2DBase::global_max_size =512 [static], [inherited]

Maximum size along any dimension of the image. This is insanely big to catch obvious errors

Definition at line 39 of file ImageFormat2DBase.h.

Referenced by mappel::ImageFormat2DBase::check_size().

8.43.5.3 const ImageFormat2DBase::ImageCoordT mappel::ImageFormat2DBase::global_min_size =3 [static], [inherited]

Minimum size along any dimension of the image.

Definition at line 38 of file ImageFormat2DBase.h.

Referenced by mappel::ImageFormat2DBase::check_size().

8.43.5.4 const ImageFormat2DBase::ImageCoordT mappel::ImageFormat2DBase::num_dim =2 [static], [inherited]

Number of image dimensions.

Definition at line 37 of file ImageFormat2DBase.h.

Referenced by mappel::ImageFormat2DBase::get stats().

8.43.5.5 ImageSizeT mappel::ImageFormat2DBase::size [protected], [inherited]

Number of pixels in X dimension for 1D image

Definition at line 67 of file ImageFormat2DBase.h.

 mappel::methods::likelihood::llh(), mappel::methods::likelihood::debug::llh_components(), mappel::Gauss2DModel ← ::make default prior beta position(), mappel::Gauss2DsModel::make default prior beta position(). Gauss2DModel::make default prior normal position(), mappel::Gauss2DsModel::make default prior normal← position(), mappel::ImageFormat2DBase::make image(), mappel::ImageFormat2DBase::make image stack(), mappel::Gauss2DModel::make internal 1Dsum estimator(), mappel::Gauss2DsModel::make internal 1Dsum \leftarrow estimator(), mappel::Gauss2DModel::make prior beta position(), mappel::Gauss2DsModel::make prior beta ← position(), mappel::Gauss2DModel::make prior normal position(), mappel::Gauss2DsModel::make prior normal ← mappel::methods::model image(), mappel::lmageFormat2DBase::operator=(), mappel::methods ← position(), mappel::methods::likelihood::debug::rllh components(), ::likelihood::rllh(), mappel::ImageFormat2DBase::set ← size(), mappel::Gauss2DModel::set_size(), mappel::Gauss2DsModel::set_size(), mappel::methods::simulate_image(), mappel::methods::simulate_image_from_model(), mappel::Gauss2DModel::Stencil::Stencil(), mappel::Gauss2Ds↔ Model::Stencil::Stencil(), mappel::Gauss2DModel::update_internal_1Dsum_estimators(), and mappel::Gauss2Ds ← Model::update internal 1Dsum estimators().

The documentation for this class was generated from the following files:

- · PoissonNoise2DObjective.h
- PoissonNoise2DObjective.cpp

8.44 mappel::PriorMAP1DObjective Class Reference

A Mixin class to configure a Gauss1DModel for MAP estimation (default 1D prior).

 $\verb|#include| </home/travis/build/markjolah/Mappel/include/Mappel/PriorMAP1DObjective. \leftarrow h>$

Protected Types

- using ParamT = arma::vec
- using ParamMatT = arma::mat

Protected Member Functions

- void set_hyperparameters (double beta_x, double mean_I, double kappa_I, double mean_bg, double kappa_bg)
 public
- double prior_log_likelihood (const ParamT &theta) const
- double prior_relative_log_likelihood (const ParamT &theta) const
- · void prior grad update (const ParamT &theta, ParamT &grad) const
- void prior grad2 update (const ParamT &theta, ParamT &grad2) const
- void prior_hess_update (const ParamT &theta, ParamMatT &hess) const

Protected Attributes

- double log_prior_pos_const
- double log_prior_l_const
- · double log prior bg const

```
8.44.1 Detailed Description
```

A Mixin class to configure a Gauss1DModel for MAP estimation (default 1D prior).

Definition at line 18 of file PriorMAP1DObjective.h.

8.44.2 Member Typedef Documentation

8.44.2.1 using mappel::PriorMAP1DObjective::ParamMatT = arma::mat [protected]

Definition at line 22 of file PriorMAP1DObjective.h.

8.44.2.2 using mappel::PriorMAP1DObjective::ParamT = arma::vec [protected]

Definition at line 21 of file PriorMAP1DObjective.h.

8.44.3 Member Function Documentation

8.44.3.1 void mappel::PriorMAP1DObjective::prior_grad2_update (const ParamT & theta, ParamT & grad2) const [inline], [protected]

Definition at line 72 of file PriorMAP1DObjective.h.

References mappel::beta_prior_grad2(), mappel::gamma_prior_grad2(), and mappel::methods::objective::grad2().

Referenced by set_hyperparameters().

8.44.3.2 void mappel::PriorMAP1DObjective::prior_grad_update (const ParamT & theta, ParamT & grad) const [inline], [protected]

Definition at line 64 of file PriorMAP1DObjective.h.

References mappel::beta prior grad(), mappel::gamma prior grad(), and mappel::methods::objective::grad().

Referenced by set_hyperparameters().

8.44.3.3 void mappel::PriorMAP1DObjective::prior_hess_update (const ParamT & theta, ParamMatT & hess) const [inline], [protected]

Definition at line 80 of file PriorMAP1DObjective.h.

References mappel::beta_prior_grad2(), and mappel::gamma_prior_grad2().

Referenced by set hyperparameters().

8.44.3.4 double mappel::PriorMAP1DObjective::prior_log_likelihood (const ParamT & theta) const [inline], [protected]

Definition at line 48 of file PriorMAP1DObjective.h.

References log_prior_bg_const, log_prior_l_const, log_prior_pos_const, prior_relative_log_likelihood(), and mappel ::methods::objective::rllh().

Referenced by set_hyperparameters().

8.44.3.5 double mappel::PriorMAP1DObjective::prior_relative_log_likelihood (const ParamT & theta) const [inline], [protected]

Definition at line 55 of file PriorMAP1DObjective.h.

References mappel::rllh_beta_prior(), and mappel::rllh_gamma_prior().

Referenced by prior_log_likelihood(), and set_hyperparameters().

8.44.3.6 void mappel::PriorMAP1DObjective::set_hyperparameters (double beta_x, double mean_l, double kappa_l, double mean_bg, double kappa_bg) [inline], [protected]

Definition at line 31 of file PriorMAP1DObjective.h.

References mappel::methods::objective::grad(), mappel::methods::objective::grad2(), prior_grad2_update(), prior_log_likelihood(), and prior_relative_log_likelihood().

8.44.4 Member Data Documentation

8.44.4.1 double mappel::PriorMAP1DObjective::log_prior_bg_const [protected]

This is kappa_bg*(log(kappa_bg)-1/mean_bg-log(mean_bg))-lgamma(kappa_bg)

Definition at line 30 of file PriorMAP1DObjective.h.

Referenced by prior_log_likelihood().

8.44.4.2 double mappel::PriorMAP1DObjective::log_prior_l_const [protected]

This is kappa_I*(log(kappa_I)-1/mean_I-log(mean_I))-lgamma(kappa_I)

Definition at line 29 of file PriorMAP1DObjective.h.

Referenced by prior log likelihood().

8.44.4.3 double mappel::PriorMAP1DObjective::log_prior_pos_const [protected]

This is -2*Igamma(beta x)-Igamma(2*beta x)

Definition at line 28 of file PriorMAP1DObjective.h.

Referenced by prior_log_likelihood().

The documentation for this class was generated from the following file:

• PriorMAP1DObjective.h

8.45 mappel::QuasiNewtonMaximizer < Model > Class Template Reference

#include </home/travis/build/markjolah/Mappel/include/Mappel/estimator.h>

Inheritance diagram for mappel::QuasiNewtonMaximizer < Model >:

Public Types

- using MaximizerData = typename IterativeMaximizer< Model >::MaximizerData
- enum ExitCode::IdxT {
 ExitCode::Unassigned = 8, ExitCode::MaxIter = 7, ExitCode::MaxBacktracks = 6, ExitCode::TrustRegionRadius = 5,
 ExitCode::GradRatio = 4, ExitCode::FunctionChange = 3, ExitCode::StepSize = 2, ExitCode::Success = 1,
 ExitCode::Error = 0 }

Public Member Functions

- QuasiNewtonMaximizer (Model &model, int max iterations=DEFAULT ITERATIONS)
- std::string name () const
- double mean_iterations ()
- double mean backtracks ()
- double mean_fun_evals ()
- double mean_der_evals ()
- StatsT get_stats ()
- StatsT get debug stats ()

- void clear_stats ()
- void local_maximize (const ModelDataT< Model > &im, const StencilT< Model > &theta_init, StencilT< Model > &stencil, double &rllh)

Perform a local maximization to finish off a simulated annealing run.

- void estimate_max_stack (const ModelDataStackT< Model > &im, const ParamVecT< Model > &theta_init, ParamVecT< Model > &theta, VecT &rllh, CubeT &obsl)
- void estimate_profile_stack (const ModelDataT< Model > &data, const IdxVecT &fixed_parameters, const MatT &values, const ParamVecT< Model > &theta_init, VecT &profile_likelihood, ParamVecT< Model > &profile_
 parameters)
- · Model & get model ()
- · void set model (Model &new model)
- StencilT< Model > estimate max (const ModelDataT< Model > &im)
- StencilT< Model > estimate max (const ModelDataT< Model > &im, const ParamT< Model > &theta init)
- StencilT < Model > estimate_max (const ModelDataT < Model > &im, double &rllh)
- StencilT< Model > estimate_max (const ModelDataT< Model > &im, const ParamT< Model > &theta_init, double &rllh)
- void estimate_max (const ModelDataT < Model > &im, ParamT < Model > &theta, double &rllh, MatT &obsl)
- void estimate_max (const ModelDataT< Model > &im, const ParamT< Model > &theta_init, ParamT< Model > &theta, double &rllh, MatT &obsl)
- void estimate_max_debug (const ModelDataT< Model > &im, const ParamT< Model > &theta_init, ParamT< Model > &theta_est, double &rllh, MatT &obsl, MatT &sequence, VecT &sequence_rllh)

Static Public Attributes

• static constexpr int NumExitCodes = 9

Protected Member Functions

- void maximize (MaximizerData &data)
- void record_run_statistics (const MaximizerData &data)
- StencilT < Model > compute_estimate (const ModelDataT < Model > &im, const ParamT < Model > &theta_init, double &rllh)
- virtual void compute_estimate (const ModelDataT< Model > &im, const ParamT< Model > &theta_init, ParamT< Model > &theta_est, double &rllh, MatT &obsl)

Default base class implementation computes rllh and obsl seperately from stencil This should be overridden by Estimator subclasses that already have access to this information.

- StencilT< Model > compute_estimate_debug (const ModelDataT< Model > &im, const ParamT< Model > &theta_init, ParamVecT< Model > &sequence, VecT &sequence_rllh)
- void compute_profile_estimate (const ModelDataT< Model > &im, const ParamT< Model > &theta_init, const IdxVecT &fixed parameters, ParamT< Model > &theta est, double &rllh)
- virtual void maximize (MaximizerData &data)=0
- bool backtrack (MaximizerData &data)
- · bool convergence test (MaximizerData &data)
- void record_exit_code (ExitCode code)
- void record walltime (ClockT::time point start walltime, int nimages)

Protected Attributes

- · int max iterations
- double epsilon = 1e-6
- double delta = 1e-6
- double lambda min = 0.05
- double alpha = 1e-4
- int max backtracks = 8
- int total iterations = 0
- int total_backtracks = 0
- int total fun evals = 0
- int total der evals = 0
- IdxVecT last backtrack idxs
- int max_threads
- · int num_threads
- std::mutex mtx
- Model & model
- int num estimations = 0
- double total_walltime = 0.
- IdxVecT exit_counts

8.45.1 Detailed Description

template < class Model > class mappel::QuasiNewtonMaximizer < Model >

Definition at line 361 of file estimator.h.

- 8.45.2 Member Typedef Documentation

Definition at line 363 of file estimator.h.

- 8.45.3 Member Enumeration Documentation
- $\textbf{8.45.3.1} \quad \textbf{template} < \textbf{class Model} > \textbf{enum mappel} :: \textbf{Estimator} :: \textbf{ExitCode} : \textbf{ldxT} \quad \texttt{[strong], [inherited]}$

Enumerator

Unassigned

MaxIter

MaxBacktracks

TrustRegionRadius

GradRatio

FunctionChange

StepSize

Success

Error

Definition at line 40 of file estimator.h.

- 8.45.4 Constructor & Destructor Documentation
- 8.45.4.1 template < class Model > mappel::QuasiNewtonMaximizer < Model >::QuasiNewtonMaximizer (Model & model, int max_iterations = DEFAULT_ITERATIONS) [inline]

Definition at line 365 of file estimator.h.

- 8.45.5 Member Function Documentation
- 8.45.5.1 template < class Model > bool mappel::IterativeMaximizer < Model >::backtrack (MaximizerData & data) [protected], [inherited]

Definition at line 647 of file estimator impl.h.

References mappel::IterativeMaximizer< Model >::alpha, mappel::IterativeMaximizer< Model >::convergence_ test(), mappel::IterativeMaximizer< Model >::MaximizerData::free_parameters, mappel::IterativeMaximizer< Model >::MaximizerData::grad, mappel::IterativeMaximizer< Model >::MaximizerData::im, mappel::IterativeMaximizer< Model >::MaximizerData::im, mappel::IterativeMaximizer</br/>
Model >::max_backtracks, mappel::Estimator< Model >::maximizerData::record_backtrack(), mappel::HerativeMaximizer</br/>
Data::num_fixed_parameters, mappel::IterativeMaximizer</br/>
Model >::MaximizerData::record_backtrack(), mappel::HerativeMaximizer</br>
ThreadedEstimator< Model >::record_exit_code(), mappel::IterativeMaximizer</br>
Model >::MaximizerData::restore_stencil(), mappel::IterativeMaximizer</br>
Model >::MaximizerData::reliveMaximizer</br>
Model >::MaximizerData::reliveMaximizer</br>
Model >::MaximizerData::saved_theta(), mappel::IterativeMaximizer</br>
Model >::MaximizerData::set_cil(), and mappel</br>
::IterativeMaximizer</br>
Model >::MaximizerData::stencil(), and mappel</br>
::IterativeMaximizer</br>

Referenced by mappel::NewtonDiagonalMaximizer< Model >::maximize(), mappel::NewtonMaximizer< Model >::maximize(), and mappel::QuasiNewtonMaximizer< Model >::maximize().

```
8.45.5.2 template < class Model > void mappel::IterativeMaximizer < Model >::clear_stats ( ) [virtual], [inherited]
```

Reimplemented from mappel::ThreadedEstimator< Model >.

Definition at line 625 of file estimator_impl.h.

References mappel::ThreadedEstimator< Model >::clear_stats(), mappel::ThreadedEstimator< Model >::mtx, mappel::IterativeMaximizer< Model >::total_backtracks, mappel::IterativeMaximizer< Model >::total_der_evals, mappel::IterativeMaximizer< Model >::total_iterativeMaximizer< Model >::total_iterat

```
8.45.5.3 template < class Model > void mappel::Estimator < Model > ::compute_estimate ( const ModelDataT < Model > & im, const ParamT < Model > & theta_init, ParamT < Model > & theta_est, double & rllh, MatT & obsl )

[protected], [virtual], [inherited]
```

Default base class implementation computes rllh and obsl seperately from stencil This should be overridden by Estimator subclasses that already have access to this information.

Definition at line 183 of file estimator_impl.h.

References mappel::Estimator< Model >::compute_estimate(), mappel::Estimator< Model >::model, and mappel ::methods::observed information().

Implements mappel::Estimator < Model >.

Definition at line 753 of file estimator impl.h.

References mappel::IterativeMaximizer< Model >::maximize(), mappel::Estimator< Model >::model, mappel:: \leftarrow IterativeMaximizer< Model >::record_run_statistics(), mappel::IterativeMaximizer< Model >::MaximizerData::rllh, and mappel::IterativeMaximizer< Model >::MaximizerData::stencil().

Estimators that produce a sequence of results (e.g. IterativeEstimators) can override this dummy debug implementation.

Reimplemented from mappel::Estimator < Model >.

Definition at line 768 of file estimator_impl.h.

References mappel::IterativeMaximizer< Model >::MaximizerData::get_theta_sequence(), mappel::Iterative
Maximizer< Model >::MaximizerData::get_theta_sequence_rllh(), mappel::IterativeMaximizer< Model >::max_
backtracks, mappel::IterativeMaximizer< Model >::max_iterations, mappel::IterativeMaximizer< Model >::maximize(), mappel::Estimator< Model >::model, mappel::print_image(), mappel::ThreadedEstimator< Model >::record_exit_
code(), mappel::IterativeMaximizer< Model >::record_run_statistics(), and mappel::IterativeMaximizer< Model >::
MaximizerData::stencil().

8.45.5.6 template < class Model > void mappel::IterativeMaximizer < Model > :::compute_profile_estimate (const ModelDataT < Model > & im, const ParamT < Model > & theta_init, const IdxVecT & fixed_parameters, ParamT < Model > & theta_est, double & rllh) [protected], [virtual], [inherited]

Reimplemented from mappel::Estimator < Model >.

Definition at line 797 of file estimator impl.h.

References mappel::IterativeMaximizer< Model >::maximize(), mappel::Estimator< Model >::model, mappel:: \leftarrow IterativeMaximizer< Model >::record_run_statistics(), mappel::IterativeMaximizer< Model >::MaximizerData::rllh, mappel::IterativeMaximizer< Model >::MaximizerData::set_fixed_parameters(), and mappel::IterativeMaximizer< Model >::MaximizerData::theta().

8.45.5.7 template < class Model > bool mappel::IterativeMaximizer < Model >::convergence_test (MaximizerData & data) [protected], [inherited]

Definition at line 731 of file estimator_impl.h.

References mappel::IterativeMaximizer< Model >::delta, mappel::IterativeMaximizer< Model >::epsilon, mappel::← IterativeMaximizer< Model >::MaximizerData::free_parameters, mappel::IterativeMaximizer< Model >::Maximizer← Data::grad, mappel::IterativeMaximizer< Model >::MaximizerData::num_fixed_parameters, mappel::Threaded← Estimator< Model >::record_exit_code(), mappel::IterativeMaximizer< Model >::MaximizerData::rllh, mappel::← IterativeMaximizer< Model >::MaximizerData::saved_theta(), and mappel::IterativeMaximizer< Model >::Maximizer← Data::theta().

Referenced by mappel::IterativeMaximizer < Model >::backtrack().

8.45.5.8 template < class Model > StencilT < Model > mappel::Estimator < Model > ::estimate_max (const ModelDataT < Model > & im) [inherited]

Definition at line 64 of file estimator_impl.h.

References mappel::Estimator< Model >::model.

Referenced by mappel::Estimator< Model >::estimate max(), and mappel::Estimator< Model >::~Estimator().

8.45.5.9 template < class Model > StencilT < Model > mappel::Estimator < Model > ::estimate_max (const ModelDataT < Model > & im, const ParamT < Model > & theta_init) [inherited]

Definition at line 82 of file estimator impl.h.

References mappel::Estimator < Model >::estimate max(), and mappel::methods::objective::rllh().

8.45.5.10 template < class Model > StencilT < Model > mappel::Estimator < Model > ::estimate_max (const ModelDataT < Model > & im, double & rllh) [inherited]

Definition at line 73 of file estimator impl.h.

References mappel::Estimator < Model >::estimate max(), and mappel::Estimator < Model >::model.

8.45.5.11 template < class Model > StencilT < Model > mappel::Estimator < Model > ::estimate_max (const ModelDataT < Model > & im, const ParamT < Model > & theta_init, double & rllh) [inherited]

Definition at line 90 of file estimator_impl.h.

References mappel::Estimator< Model >::compute_estimate(), mappel::Estimator< Model >::Error, mappel:: \leftarrow Estimator< Model >::record_exit_code(), and mappel ::Estimator< Model >::record_exit_code(), and mappel ::Estimator< Model >::record_walltime().

8.45.5.12 template < class Model > void mappel::Estimator < Model > ::estimate_max (const ModelDataT < Model > & im, ParamT < Model > & theta, double & rllh, MatT & obsl) [inherited]

Definition at line 119 of file estimator_impl.h.

References mappel::Estimator< Model >::estimate_max(), and mappel::Estimator< Model >::model.

8.45.5.13 template < class Model > void mappel::Estimator < Model > ::estimate_max (const ModelDataT < Model > & im, const ParamT < Model > & theta_init, ParamT < Model > & theta, double & rllh, MatT & obsl) [inherited]

Definition at line 128 of file estimator impl.h.

References mappel::Estimator< Model >::compute_estimate(), mappel::Estimator< Model >::Error, mappel::print = _image(), mappel::Estimator< Model >::record_exit_code(), mappel::Estimator< Model >::record_walltime(), and mappel::methods::objective::rllh().

8.45.5.14 template < class Model > void mappel::Estimator < Model > ::estimate_max_debug (const ModelDataT < Model > & im, const ParamT < Model > & theta_init, ParamT < Model > & theta_est, double & rllh, MatT & obsl, MatT & sequence, VecT & sequence_rllh) [inherited]

Definition at line 158 of file estimator impl.h.

References mappel::Estimator< Model >::compute_estimate_debug(), mappel::Estimator< Model >::model, mappel :: Estimator< Model >::record_walltime(), and mappel::methods::objective ::rllh().

Referenced by mappel::Estimator < Model >::~Estimator().

8.45.5.15 template < class Model > void mappel::Estimator < Model > ::estimate_max_stack (const ModelDataStackT < Model > & im_stack, ParamVecT < Model > & theta_est_stack, VecT & rllh_stack, CubeT & obsl_stack)
[inherited]

Definition at line 170 of file estimator_impl.h.

References mappel::Estimator< Model >::estimate_max_stack(), and mappel::Estimator< Model >::model.

8.45.5.16 template < class Model > void mappel::ThreadedEstimator < Model > ::estimate_max_stack (const ModelDataStackT < Model > & im, const ParamVecT < Model > & theta_init, ParamVecT < Model > & theta, VecT & rllh, CubeT & obsl) [virtual], [inherited]

Implements mappel::Estimator < Model >.

Definition at line 285 of file estimator impl.h.

References mappel::Estimator< Model >::compute_estimate(), mappel::Estimator< Model >::Error, mappel:: \leftarrow Estimator< Model >::model, mappel::ThreadedEstimator< Model >::num_threads, mappel::print_image(), mappel ::ThreadedEstimator< Model >::record_exit_code(), mappel::Estimator< Model >::record_walltime(), and mappel ::methods::objective::openmp::rllh_stack().

8.45.5.17 template < class Model > void mappel::ThreadedEstimator < Model > ::estimate_profile_stack (const ModelDataT < Model > & data, const IdxVecT & fixed_parameters, const MatT & values, const ParamVecT < Model > & theta_init, VecT & profile_likelihood, ParamVecT < Model > & profile_parameters) [virtual], [inherited]

Implements mappel::Estimator < Model >.

Definition at line 323 of file estimator impl.h.

References mappel::Estimator< Model >::compute_profile_estimate(), mappel::Estimator< Model >::Error, mappel :: Estimator< Model >::model, mappel::ThreadedEstimator< Model >::num_threads, mappel::print_image(), mappel ::ThreadedEstimator< Model >::record_exit_code(), and mappel::Estimator< Model >::record_walltime().

8.45.5.18 template < class Model > StatsT mappel::IterativeMaximizer < Model >::get_debug_stats() [virtual], [inherited]

Reimplemented from mappel::ThreadedEstimator< Model >.

Definition at line 609 of file estimator impl.h.

References mappel::IterativeMaximizer< Model >::MaximizerData::backtrack_idxs, mappel::IterativeMaximizer< Model >::get stats(), and mappel::IterativeMaximizer< Model >::last backtrack idxs.

8.45.5.19 template < class Model > Model & mappel::Estimator < Model > ::get_model() [inherited]

Definition at line 50 of file estimator impl.h.

References mappel::Estimator< Model >::model.

Referenced by mappel::Estimator < Model >::~Estimator().

8.45.5.20 template < class Model > StatsT mappel::IterativeMaximizer < Model >::get_stats() [virtual], [inherited]

Reimplemented from mappel::ThreadedEstimator< Model >.

Definition at line 588 of file estimator_impl.h.

References mappel::IterativeMaximizer< Model >::delta, mappel::IterativeMaximizer< Model >::epsilon, mappel ::ThreadedEstimator< Model >::get_stats(), mappel::IterativeMaximizer< Model >::max_backtracks, mappel:: \leftarrow IterativeMaximizer< Model >::mtx, mappel::Estimator< Model >::num_estimations, mappel::IterativeMaximizer< Model >::total_backtracks, mappel::IterativeMaximizer< Model >::total_der_evals, mappel::IterativeMaximizer< Model >::total_fun_evals, and mappel::IterativeMaximizer< Model >::total_iterativeMaximizer< Model >::total_i

Referenced by mappel::SimulatedAnnealingMaximizer< Model >::get_debug_stats(), and mappel::Iterative \leftarrow Maximizer< Model >::get_debug_stats().

8.45.5.21 template < class Model > void mappel::IterativeMaximizer < Model > ::local_maximize (const ModelDataT < Model > & im, const StencilT < Model > & theta_init, StencilT < Model > & stencil, double & rllh)
[inherited]

Perform a local maximization to finish off a simulated annealing run.

Definition at line 811 of file estimator impl.h.

References mappel::IterativeMaximizer< Model >::maximize(), mappel::Estimator< Model >::model, mappel:: \leftarrow IterativeMaximizer< Model >::MaximizerData::rllh, and mappel::IterativeMaximizer< Model >::MaximizerData \leftarrow ::stencil().

Referenced by mappel::SimulatedAnnealingMaximizer< Model >::anneal().

8.45.5.22 template < class Model > virtual void mappel::IterativeMaximizer < Model >::maximize (MaximizerData & data) [protected], [pure virtual], [inherited]

Referenced by mappel::IterativeMaximizer< Model >::compute_estimate(), mappel::IterativeMaximizer< Model >-- ::compute_estimate_debug(), mappel::IterativeMaximizer< Model >::compute_profile_estimate(), and mappel::- IterativeMaximizer< Model >::local maximize().

8.45.5.23 template < class Model > void mappel::QuasiNewtonMaximizer < Model > ::maximize (MaximizerData & data) [protected]

Definition at line 933 of file estimator impl.h.

References mappel::IterativeMaximizer< Model >::backtrack(), mappel::IterativeMaximizer< Model >::delta, mappel ::methods::objective::grad(), mappel::methods::objective::hessian(), mappel::is_positive_definite(), mappel::Iterative (Maximizer< Model >::max_iterations, mappel::Estimator< Model >::model, and mappel::ThreadedEstimator< Model >::record exit code().

```
8.45.5.25 template < class Model > double mappel::IterativeMaximizer < Model >::mean_backtracks() [inherited]
8.45.5.26 template < class Model > double mappel::IterativeMaximizer < Model >::mean_der_evals() [inherited]
8.45.5.26 template < class Model > double mappel::IterativeMaximizer < Model >::mean_fun_evals() [inherited]
8.45.5.27 template < class Model > double mappel::IterativeMaximizer < Model >::mean_iterations() [inherited]
8.45.5.28 template < class Model > std::string mappel::QuasiNewtonMaximizer < Model >::name() const [inline], [virtual]
```

Implements mappel::Estimator < Model >.

Definition at line 368 of file estimator.h.

```
8.45.5.29 template < class Model > void mappel::ThreadedEstimator < Model >::record_exit_code ( ExitCode code ) [protected], [virtual], [inherited]
```

Implements mappel::Estimator < Model >.

Definition at line 386 of file estimator_impl.h.

References mappel::Estimator< Model >::exit_counts, mappel::Estimator< Model >::model, mappel::Threaded Estimator< Model >::mtx, and mappel::methods::objective::rllh().

Referenced by mappel::IterativeMaximizer< Model >::backtrack(), mappel::CGaussMLE< Model >::compute - _estimate(), mappel::CGaussMLE< Model >::compute_estimate_debug(), mappel::IterativeMaximizer< Model >::compute_estimate_debug(), mappel::Threaded - ::convergence_test(), mappel::Threaded - ::convergence_test(), mappel::Threaded - ::estimate_max_stack(), mappel::ThreadedEstimator< Model >::estimate_profile_stack(), mappel::NewtonDiagonalMaximizer< Model >::maximize(), mappel::NewtonMaximizer< Model >::maximize(), and mappel::TrustRegionMaximizer< Model >::maximize().

```
8.45.5.30 template < class Model > void mappel::IterativeMaximizer < Model >::record_run_statistics ( const MaximizerData & data ) [protected], [inherited]
```

Definition at line 636 of file estimator impl.h.

References mappel::IterativeMaximizer< Model >::MaximizerData::get_backtrack_idxs(), mappel::IterativeMaximizer< Model >::MaximizerData::get_backtrack_idxs(), mappel::IterativeMaximizer< Model >::mtx, mappel::IterativeMaximizer< Model >::MaximizerData::nBacktracks, mappel::IterativeMaximizer< Model >::MaximizerData::nIterative MaximizerData::save_seq, mappel::IterativeMaximizer< Model >::total_backtracks, mappel::← IterativeMaximizer< Model >::total_fun_evals, and mappel::← IterativeMaximizer< Model >::total_iterativeMaximizer< Model >::total_iterativeMaximizer<

Referenced by mappel::IterativeMaximizer< Model >::compute_estimate(), mappel::IterativeMaximizer< Model >-::compute estimate debug(), and mappel::IterativeMaximizer< Model >::compute profile estimate().

8.45.5.31 template < class Model > void mappel::Estimator < Model >::record_walltime (ClockT::time_point start_walltime, int nimages) [protected], [inherited]

Definition at line 266 of file estimator_impl.h.

References mappel::Estimator < Model >::num estimations, and mappel::Estimator < Model >::total walltime.

Referenced by mappel::Estimator< Model >::estimate_max(), mappel::Estimator< Model >::estimate_max_ \leftarrow debug(), mappel::ThreadedEstimator< Model >::estimate_max_stack(), and mappel::ThreadedEstimator< Model >::estimate profile stack().

8.45.5.32 template < class Model > void mappel::Estimator < Model >::set_model (Model & new_model) [inherited]

Definition at line 54 of file estimator impl.h.

References mappel::Estimator< Model >::model.

Referenced by mappel::Estimator< Model >::~Estimator().

8.45.6 Member Data Documentation

8.45.6.1 template < class Model > double mappel::IterativeMaximizer < Model >::alpha = 1e-4 [protected], [inherited]

Definition at line 245 of file estimator.h.

Referenced by mappel::IterativeMaximizer < Model >::backtrack(), and mappel::TrustRegionMaximizer < Model >::bound step().

8.45.6.2 template < class Model > double mappel::IterativeMaximizer < Model >::delta = 1e-6 [protected], [inherited]

Definition at line 242 of file estimator.h.

Referenced by mappel::IterativeMaximizer< Model >::convergence_test(), mappel::IterativeMaximizer< Model >::get_stats(), mappel::NewtonMaximizer< Model >::maximize(), mappel::QuasiNewtonMaximizer< Model >::maximize(), mappel::TrustRegionMaximizer< Model >::solve_restricted_step_length_newton(), and mappel::TrustRegionMaximizer< Model >::solve_TR_subproblem().

8.45.6.3 template < class Model > double mappel::IterativeMaximizer < Model >::epsilon = 1e-6 [protected], [inherited]

Definition at line 241 of file estimator.h.

Referenced by mappel::IterativeMaximizer< Model >::convergence_test(), mappel::IterativeMaximizer< Model > \leftarrow ::get_stats(), mappel::TrustRegionMaximizer< Model >::maximize(), and mappel::TrustRegionMaximizer< Model > \leftarrow ::solve restricted step length newton().

```
8.45.6.4 template < class Model > IdxVecT mappel::Estimator < Model > ::exit_counts [protected], [inherited]
```

Definition at line 114 of file estimator.h.

Referenced by mappel::Estimator< Model >::clear_stats(), mappel::Estimator< Model >::get_stats(), and mappel::

ThreadedEstimator< Model >::record exit code().

```
8.45.6.5 template < class Model > double mappel::IterativeMaximizer < Model >::lambda_min = 0.05 [protected], [inherited]
```

Definition at line 244 of file estimator.h.

Referenced by mappel::TrustRegionMaximizer< Model >::solve_restricted_step_length_newton(), and mappel::Trust RegionMaximizer< Model >::solve_TR_subproblem().

```
8.45.6.6 template < class Model > IdxVecT mappel::IterativeMaximizer < Model >::last_backtrack_idxs [protected], [inherited]
```

Definition at line 255 of file estimator.h.

Referenced by mappel::IterativeMaximizer < Model >::get_debug_stats(), and mappel::IterativeMaximizer < Model > ::record_run_statistics().

```
8.45.6.7 template < class Model > int mappel::IterativeMaximizer < Model >::max_backtracks = 8 [protected], [inherited]
```

Definition at line 246 of file estimator.h.

Referenced by mappel::IterativeMaximizer < Model >::backtrack(), mappel::IterativeMaximizer < Model >::compute_ \leftarrow estimate_debug(), and mappel::IterativeMaximizer < Model >::get_stats().

```
8.45.6.8 template<class Model > int mappel::lterativeMaximizer< Model >::max_iterations [protected], [inherited]
```

Definition at line 238 of file estimator.h.

Referenced by mappel::IterativeMaximizer < Model >::compute_estimate_debug(), mappel::IterativeMaximizer < Model >::get_stats(), mappel::NewtonDiagonalMaximizer < Model >::maximize(), mappel::NewtonMaximizer < Model >::maximize(), and mappel::QuasiNewtonMaximizer < Model >::maximize().

Definition at line 142 of file estimator.h.

8.45.6.10 template < class Model > Model& mappel::Estimator < Model >::model [protected], [inherited]

Definition at line 109 of file estimator.h.

Referenced by mappel::SimulatedAnnealingMaximizer< Model >::anneal(), mappel::IterativeMaximizer< Model >::backtrack(), mappel::Estimator< Model >::compute_estimate(), mappel::CGaussMLE< Model >::compute_estimate(), mappel::IterativeMaximizer< Model >::compute_estimate(), mappel::IterativeMaximizer< Model >::compute_estimate(), mappel::CGaussML ← E< Model >::compute_estimate_debug(), mappel::Estimator< Model >::compute_estimate_debug(), mappel::IterativeMaximizer< Model >::compute_estimate_compute_estimate = debug(), mappel::IterativeMaximizer< Model >::compute_estimate(), mappel::Estimator< Model >::compute_profile_estimate(), mappel::Estimator< Model >::estimate_max(), mappel::Estimator< Model >::estimate_max_debug(), mappel::Estimator< Model >::estimate_max_stack(), mappel::ThreadedEstimator< Model >::estimate_max_stack(), mappel::ThreadedEstimator< Model >::estimate_max_stack(), mappel::Estimator< Model >::estimate_max_stack(), mappel::ThreadedEstimator< Model >::estimate_max_stack(), mappel::ThreadedEstimator< Model >::get_model(), mappel::ThreadedEstimator< Model >::maximize(), mappel::NewtonDiagonalMaximizer< Model >::maximize(), mappel::ThreadedEstimator< Model >::record ← _ exit_code(), and mappel::Estimator< Model >::set_model().

```
8.45.6.11 template < class Model > std::mutex mappel::ThreadedEstimator < Model >::mtx [protected], [inherited]
```

Definition at line 144 of file estimator.h.

Referenced by mappel::ThreadedEstimator< Model >::clear_stats(), mappel::IterativeMaximizer< Model >::clear = _stats(), mappel::ThreadedEstimator< Model >::get_stats(), mappel::IterativeMaximizer< Model >::get_stats(), mappel::ThreadedEstimator< Model >::record_exit_code(), and mappel::IterativeMaximizer< Model >::record_exit_code(), and mappel::IterativeMaximizer< Model >::record_exit_code().

```
8.45.6.12 template < class Model > int mappel::Estimator < Model >::num_estimations = 0 [protected], [inherited]
```

Definition at line 112 of file estimator.h.

Referenced by mappel::Estimator< Model >::clear_stats(), mappel::Estimator< Model >::get_stats(), mappel:: \leftarrow ::ThreadedEstimator< Model >::get_stats(), and mappel:: \leftarrow Estimator< Model >::record_walltime().

```
8.45.6.13 template < class Model > int mappel::ThreadedEstimator < Model >::num_threads [protected], [inherited]
```

Definition at line 143 of file estimator.h.

Referenced by mappel::ThreadedEstimator< Model >::clear_stats(), mappel::ThreadedEstimator< Model >::estimate_max_stack(), mappel::ThreadedEstimator< Model >::estimate_profile_stack(), and mappel::Threaded \leftarrow Estimator< Model >::get_stats().

Definition at line 39 of file estimator.h.

```
8.45.6.15 template<class Model > int mappel::IterativeMaximizer< Model >::total_backtracks = 0 [protected], [inherited]
```

Definition at line 250 of file estimator.h.

Referenced by mappel::IterativeMaximizer< Model >::clear_stats(), mappel::IterativeMaximizer< Model >::get_stats(), and mappel::IterativeMaximizer< Model >::record_run_statistics().

```
8.45.6.16 template < class Model > int mappel::IterativeMaximizer < Model > ::total_der_evals = 0 [protected], [inherited]
```

Definition at line 252 of file estimator.h.

Referenced by mappel::IterativeMaximizer< Model >::clear_stats(), mappel::IterativeMaximizer< Model >::get_stats(), and mappel::IterativeMaximizer< Model >::record_run_statistics().

```
8.45.6.17 template<class Model > int mappel::lterativeMaximizer< Model >::total_fun_evals = 0 [protected], [inherited]
```

Definition at line 251 of file estimator.h.

Referenced by mappel::IterativeMaximizer< Model >::clear_stats(), mappel::IterativeMaximizer< Model >::get_stats(), and mappel::IterativeMaximizer< Model >::record run statistics().

```
8.45.6.18 template < class Model > int mappel::IterativeMaximizer < Model > ::total_iterations = 0 [protected], [inherited]
```

Definition at line 249 of file estimator.h.

Referenced by mappel::IterativeMaximizer< Model >::clear_stats(), mappel::IterativeMaximizer< Model >::get_stats(), and mappel::IterativeMaximizer< Model >::record_run_statistics().

```
8.45.6.19 template<class Model > double mappel::Estimator< Model >::total_walltime = 0. [protected], [inherited]
```

Definition at line 113 of file estimator.h.

The documentation for this class was generated from the following files:

- · estimator.h
- · estimator impl.h

8.46 mappel::SimulatedAnnealingMaximizer < Model > Class Template Reference

#include </home/travis/build/markjolah/Mappel/include/Mappel/estimator.h>

Inheritance diagram for mappel::SimulatedAnnealingMaximizer< Model >:

Public Types

```
    enum ExitCode::IdxT {
        ExitCode::Unassigned = 8, ExitCode::MaxIter = 7, ExitCode::MaxBacktracks = 6, ExitCode::TrustRegionRadius = 5,
        ExitCode::GradRatio = 4, ExitCode::FunctionChange = 3, ExitCode::StepSize = 2, ExitCode::Success = 1,
        ExitCode::Error = 0 }
```

Public Member Functions

- SimulatedAnnealingMaximizer (Model &model)
- StatsT get_stats ()
- StatsT get_debug_stats ()
- std::string name () const
- void estimate_max_stack (const ModelDataStackT< Model > &im, const ParamVecT< Model > &theta_init, ParamVecT< Model > &theta, VecT &rllh, CubeT &obsl)
- void estimate_profile_stack (const ModelDataT< Model > &data, const IdxVecT &fixed_parameters, const MatT &values, const ParamVecT< Model > &theta_init, VecT &profile_likelihood, ParamVecT< Model > &profile_
 parameters)
- void clear stats ()
- Model & get_model ()
- void set model (Model &new model)
- StencilT< Model > estimate_max (const ModelDataT< Model > &im)
- StencilT< Model > estimate max (const ModelDataT< Model > &im, const ParamT< Model > &theta init)
- StencilT< Model > estimate_max (const ModelDataT< Model > &im, double &rllh)
- StencilT< Model > estimate_max (const ModelDataT< Model > &im, const ParamT< Model > &theta_init, double &rllh)
- void estimate max (const ModelDataT < Model > &im, ParamT < Model > &theta, double &rllh, MatT &obsl)
- void estimate_max (const ModelDataT< Model > &im, const ParamT< Model > &theta_init, ParamT< Model > &theta, double &rllh, MatT &obsl)
- void estimate_max_debug (const ModelDataT< Model > &im, const ParamT< Model > &theta_init, ParamT
 Model > &theta est, double &rllh, MatT &obsl, MatT &sequence, VecT &sequence rllh)

Public Attributes

- double T_init =100.
- double cooling rate =1.02
- int num_iterations =500

Static Public Attributes

static constexpr int NumExitCodes = 9

Protected Member Functions

- StencilT< Model > compute_estimate (const ModelDataT< Model > &im, const ParamT< Model > &theta_init, double &rllh)
- StencilT< Model > compute_estimate_debug (const ModelDataT< Model > &im, const ParamT< Model > &theta_init, ParamVecT< Model > &sequence, VecT &sequence_rllh)
- StencilT< Model > anneal (const ModelDataT< Model > &im, const StencilT< Model > &theta_init, double &rllh, MatT &sequence, VecT &sequence_rllh)
- void record_exit_code (ExitCode code)
- virtual void compute_estimate (const ModelDataT< Model > &im, const ParamT< Model > &theta_init, ParamT< Model > &theta est, double &rllh, MatT &obsl)

Default base class implementation computes rllh and obsl seperately from stencil This should be overridden by Estimator subclasses that already have access to this information.

- virtual void compute_profile_estimate (const ModelDataT< Model > &im, const ParamT< Model > &theta_init, const IdxVecT &fixed_parameters, ParamT< Model > &theta_est, double &rllh)
- void record_walltime (ClockT::time_point start_walltime, int nimages)

Protected Attributes

- int max_threads
- · int num threads
- std::mutex mtx
- Model & model
- int num_estimations = 0
- double total walltime = 0.
- IdxVecT exit_counts

8.46.1 Detailed Description

 $\label{local_constraints} \mbox{template}{<} \mbox{class Model}{>} \\ \mbox{class mappel}{::} \mbox{SimulatedAnnealingMaximizer}{<} \mbox{ Model}{>} \\$

Definition at line 196 of file estimator.h.

```
8.46.2 Member Enumeration Documentation
```

8.46.2.1 template < class Model > enum mappel::Estimator::ExitCode: ldxT [strong], [inherited]

Enumerator

Unassigned

MaxIter

MaxBacktracks

TrustRegionRadius

GradRatio

FunctionChange

StepSize

Success

Error

Definition at line 40 of file estimator.h.

8.46.3 Constructor & Destructor Documentation

8.46.3.1 template < class Model > mappel::SimulatedAnnealingMaximizer < Model >::SimulatedAnnealingMaximizer (Model & model) [inline]

Definition at line 202 of file estimator.h.

References mappel::Estimator < Model >::get_debug_stats(), and mappel::Estimator < Model >::get_stats().

8.46.4 Member Function Documentation

8.46.4.1 template < class Model > StencilT < Model > mappel::SimulatedAnnealingMaximizer < Model > ::anneal (const ModelDataT < Model > & im, const StencilT < Model > & theta_init, double & rllh, MatT & sequence, VecT & sequence_rllh) [protected]

Definition at line 1552 of file estimator_impl.h.

References mappel::IterativeMaximizer< Model >::local_maximize(), mappel::Estimator< Model >::model, and mappel::methods::objective::rllh().

8.46.4.2 template < class Model > void mappel::ThreadedEstimator < Model >::clear_stats () [virtual], [inherited]

Reimplemented from mappel::Estimator < Model >.

Reimplemented in mappel::IterativeMaximizer < Model >.

Definition at line 378 of file estimator_impl.h.

 $References\ mappel::Estimator < Model > :: clear_stats(),\ mappel::ThreadedEstimator < Model > :: mtx,\ and\ mappel:: \leftarrow ThreadedEstimator < Model > :: num_threads.$

Referenced by mappel::IterativeMaximizer< Model >::clear stats().

```
8.46.4.3 template < class Model > void mappel::Estimator < Model > ::compute_estimate ( const ModelDataT < Model > & im, const ParamT < Model > & theta_init, ParamT < Model > & theta_est, double & rllh, MatT & obsl ) [protected], [virtual], [inherited]
```

Default base class implementation computes rllh and obsl seperately from stencil This should be overridden by Estimator subclasses that already have access to this information.

Definition at line 183 of file estimator impl.h.

References mappel::Estimator< Model >::compute_estimate(), mappel::Estimator< Model >::model, and mappel
::methods::observed information().

```
8.46.4.4 template < class Model > StencilT < Model > mappel::SimulatedAnnealingMaximizer < Model >::compute_estimate ( const ModelDataT < Model > & im, const ParamT < Model > & theta_init, double & rllh ) [protected], [virtual]
```

Implements mappel::Estimator < Model >.

Definition at line 1532 of file estimator_impl.h.

References mappel::Estimator< Model >::model, and mappel::IterativeMaximizer< Model >::MaximizerData::rllh.

```
8.46.4.5 template < class Model > StencilT < Model > mappel::SimulatedAnnealingMaximizer < Model >::compute_estimate_debug ( const ModelDataT < Model > & im, const ParamT < Model > & theta_init, ParamVecT < Model > & sequence, VecT & sequence_rllh ) [protected], [virtual]
```

Estimators that produce a sequence of results (e.g. IterativeEstimators) can override this dummy debug implementation.

Reimplemented from mappel::Estimator < Model >.

Definition at line 1541 of file estimator_impl.h.

References mappel::Estimator< Model >::model, and mappel::IterativeMaximizer< Model >::MaximizerData::rllh.

```
8.46.4.6 template < class Model > void mappel::Estimator < Model > ::compute_profile_estimate ( const ModelDataT < Model > & im, const ParamT < Model > & theta_init, const IdxVecT & fixed_parameters, ParamT < Model > & theta_est, double & rllh ) [protected], [virtual], [inherited]
```

Reimplemented in mappel::IterativeMaximizer < Model >.

Definition at line 192 of file estimator_impl.h.

References mappel::Estimator< Model >::model.

Referenced by mappel::ThreadedEstimator< Model >::estimate_profile_stack(), and mappel::Estimator< Model > \leftarrow :: \sim Estimator().

```
8.46.4.7 template < class Model > StencilT < Model > mappel::Estimator < Model > ::estimate_max ( const ModelDataT < Model > & im ) [inherited]
```

Definition at line 64 of file estimator_impl.h.

References mappel::Estimator< Model >::model.

Referenced by mappel::Estimator < Model >::estimate max(), and mappel::Estimator < Model >::~Estimator().

8.46.4.8 template < class Model > StencilT < Model > mappel::Estimator < Model > ::estimate_max (const ModelDataT < Model > & im. const ParamT < Model > & theta init) [inherited]

Definition at line 82 of file estimator impl.h.

References mappel::Estimator < Model >::estimate max(), and mappel::methods::objective::rllh().

8.46.4.9 template < class Model > StencilT < Model > mappel::Estimator < Model > ::estimate_max (const ModelDataT < Model > & im, double & rllh) [inherited]

Definition at line 73 of file estimator_impl.h.

References mappel::Estimator < Model >::estimate_max(), and mappel::Estimator < Model >::model.

8.46.4.10 template < class Model > StencilT < Model > mappel::Estimator < Model > ::estimate_max (const ModelDataT < Model > & im, const ParamT < Model > & theta_init, double & rllh) [inherited]

Definition at line 90 of file estimator impl.h.

References mappel::Estimator< Model >::compute_estimate(), mappel::Estimator< Model >::Error, mappel:: \leftarrow Estimator< Model >::record_exit_code(), and mappel ::Estimator< Model >::record_exit_code(), and mappel ::Estimator< Model >::record_walltime().

8.46.4.11 template < class Model > void mappel::Estimator < Model > ::estimate_max (const ModelDataT < Model > & im, ParamT < Model > & theta, double & rllh, MatT & obsl) [inherited]

Definition at line 119 of file estimator impl.h.

 $References\ mappel::Estimator < Model > ::estimate_max(), and\ mappel::Estimator < Model > ::model.$

8.46.4.12 template < class Model > void mappel::Estimator < Model > ::estimate_max (const ModelDataT < Model > & im, const ParamT < Model > & theta_init, ParamT < Model > & theta, double & rllh, MatT & obsl) [inherited]

Definition at line 128 of file estimator_impl.h.

References mappel::Estimator< Model >::compute_estimate(), mappel::Estimator< Model >::Error, mappel::print _ _ image(), mappel::Estimator< Model >::record_exit_code(), mappel::Estimator< Model >::record_walltime(), and mappel::methods::objective::rllh().

8.46.4.13 template < class Model > void mappel::Estimator < Model > ::estimate_max_debug (const ModelDataT < Model > & im, const ParamT < Model > & theta_init, ParamT < Model > & theta_est, double & rllh, MatT & obsl, MatT & sequence, VecT & sequence rllh) [inherited]

Definition at line 158 of file estimator_impl.h.

References mappel::Estimator < Model >::compute_estimate_debug(), mappel::Estimator < Model >::model, mappel \leftarrow ::methods::observed_information(), mappel::Estimator < Model >::record_walltime(), and mappel::methods::objective \leftarrow ::rllh().

Referenced by mappel::Estimator < Model >::~Estimator().

8.46.4.14 template < class Model > void mappel::Estimator < Model > ::estimate_max_stack (const ModelDataStackT < Model > & im_stack, ParamVecT < Model > & theta_est_stack, VecT & rllh_stack, CubeT & obsl_stack)
[inherited]

Definition at line 170 of file estimator impl.h.

References mappel::Estimator < Model >::estimate max stack(), and mappel::Estimator < Model >::model.

8.46.4.15 template < class Model > void mappel::ThreadedEstimator < Model > ::estimate_max_stack (const ModelDataStackT < Model > & im, const ParamVecT < Model > & theta_init, ParamVecT < Model > & theta, VecT & rllh, CubeT & obsl) [virtual], [inherited]

Implements mappel::Estimator< Model >.

Definition at line 285 of file estimator_impl.h.

References mappel::Estimator< Model >::compute_estimate(), mappel::Estimator< Model >::Error, mappel:: \leftarrow Estimator< Model >::model, mappel::ThreadedEstimator< Model >::num_threads, mappel::print_image(), mappel ::ThreadedEstimator< Model >::record_exit_code(), mappel::Estimator< Model >::record_walltime(), and mappel ::methods::objective::openmp::rllh_stack().

8.46.4.16 template < class Model > void mappel::ThreadedEstimator < Model > ::estimate_profile_stack (const ModelDataT < Model > & data, const IdxVecT & fixed_parameters, const MatT & values, const ParamVecT < Model > & theta_init, VecT & profile_likelihood, ParamVecT < Model > & profile_parameters) [virtual], [inherited]

Implements mappel::Estimator < Model >.

Definition at line 323 of file estimator_impl.h.

 $References\ mappel::Estimator<\ Model>::compute_profile_estimate(),\ mappel::Estimator<\ Model>::Error,\ mappel\leftrightarrow::Estimator<\ Model>::mum_threads,\ mappel::print_image(),\ mappel\leftrightarrow::ThreadedEstimator<\ Model>::record_exit_code(),\ and\ mappel::Estimator<\ Model>::record_walltime().$

8.46.4.17 template < class Model > StatsT mappel::SimulatedAnnealingMaximizer < Model >::get_debug_stats() [virtual]

Reimplemented from mappel::ThreadedEstimator< Model >.

Definition at line 1616 of file estimator impl.h.

References mappel::IterativeMaximizer< Model >::get_stats().

8.46.4.18 template < class Model > Model & mappel::Estimator < Model > ::get_model() [inherited]

Definition at line 50 of file estimator_impl.h.

References mappel::Estimator< Model >::model.

Referenced by mappel::Estimator< Model >::~Estimator().

```
8.46.4.19 template < class Model > StatsT mappel::SimulatedAnnealingMaximizer < Model >::get_stats ( ) [virtual]
```

Reimplemented from mappel::ThreadedEstimator< Model >.

Definition at line 1604 of file estimator impl.h.

References mappel::ThreadedEstimator< Model >::get stats().

8.46.4.20 template < class Model > std::string mappel::SimulatedAnnealingMaximizer < Model >::name () const [inline], [virtual]

Implements mappel::Estimator < Model >.

Definition at line 206 of file estimator.h.

References mappel::Estimator< Model >::compute_estimate(), mappel::Estimator< Model >::compute_estimate_
debug(), and mappel::methods::objective::rllh().

8.46.4.21 template < class Model > void mappel::ThreadedEstimator < Model >::record_exit_code (ExitCode code) [protected], [virtual], [inherited]

Implements mappel::Estimator < Model >.

Definition at line 386 of file estimator_impl.h.

References mappel::Estimator< Model >::exit_counts, mappel::Estimator< Model >::model, mappel::Threaded \leftarrow Estimator< Model >::mtx, and mappel::methods::objective::rllh().

Referenced by mappel::IterativeMaximizer< Model >::backtrack(), mappel::CGaussMLE< Model >::compute - _estimate(), mappel::CGaussMLE< Model >::compute_estimate_debug(), mappel::IterativeMaximizer< Model >::compute_estimate_debug(), mappel::Threaded - ::convergence_test(), mappel::Threaded - ::convergence_test(), mappel::Threaded - ::estimate_max_stack(), mappel::ThreadedEstimator< Model >::estimate_profile_stack(), mappel::NewtonDiagonalMaximizer< Model >::maximize(), mappel::NewtonMaximizer< Model >::maximize(), and mappel::TrustRegionMaximizer< Model >::maximize().

8.46.4.22 template < class Model > void mappel::Estimator < Model >::record_walltime (ClockT::time_point start_walltime, int nimages) [protected], [inherited]

Definition at line 266 of file estimator_impl.h.

References mappel::Estimator < Model >::num estimations, and mappel::Estimator < Model >::total walltime.

Referenced by mappel::Estimator< Model >::estimate_max(), mappel::Estimator< Model >::estimate_max_ \leftarrow debug(), mappel::ThreadedEstimator< Model >::estimate_max_stack(), and mappel::ThreadedEstimator< Model >::estimate profile stack().

8.46.4.23 template < class Model > void mappel::Estimator < Model >::set_model (Model & new_model) [inherited]

Definition at line 54 of file estimator_impl.h.

References mappel::Estimator< Model >::model.

Referenced by mappel::Estimator < Model >::~Estimator().

8.46.5 Member Data Documentation

8.46.5.1 template < class Model > double mappel::Simulated Annealing Maximizer < Model >::cooling_rate = 1.02

Definition at line 199 of file estimator.h.

```
8.46.5.2 template < class Model > IdxVecT mappel::Estimator < Model >::exit_counts [protected], [inherited]
```

Definition at line 114 of file estimator.h.

Referenced by mappel::Estimator< Model >::clear_stats(), mappel::Estimator< Model >::get_stats(), and mappel::

ThreadedEstimator< Model >::record_exit_code().

```
8.46.5.3 template < class Model > int mappel::ThreadedEstimator < Model >::max_threads [protected], [inherited]
```

Definition at line 142 of file estimator.h.

8.46.5.4 template < class Model > Model& mappel::Estimator < Model >::model [protected], [inherited]

Definition at line 109 of file estimator.h.

Referenced by mappel::SimulatedAnnealingMaximizer< Model >::anneal(), mappel::IterativeMaximizer< Model >::backtrack(), mappel::Estimator< Model >::compute_estimate(), mappel::CGaussMLE< Model >::compute_estimate(), mappel::IterativeMaximizer< Model >::compute_estimate(), mappel::IterativeMaximizer< Model >::compute_estimate_debug(), mappel::CGaussML \(\to \) E< Model >::compute_estimate_debug(), mappel::SimulatedAnnealingMaximizer< Model >::compute_estimate_\(\to \) debug(), mappel::IterativeMaximizer< Model >::compute_estimate_debug(), mappel::Estimator< Model >::compute_estimate(), mappel::IterativeMaximizer< Model >::compute_profile_estimate(), mappel::Estimator< Model >::estimate_max(), mappel::Estimator< Model >::estimate_max_debug(), mappel::Estimator< Model >::estimate_max_stack(), mappel::ThreadedEstimator< Model >::estimate_max_stack(), mappel::ThreadedEstimator< Model >::get_debug_stats(), mappel::Estimator< Model >::get_model(), mappel::IterativeMaximizer< Model >::local_maximize(), mappel::NewtonDiagonalMaximizer< Model >::maximize(), mappel::ThreadedEstimator< Model >::record \(\to \) exit code(), and mappel::Estimator< Model >::set model().

8.46.5.5 template<**class Model** > **std::mutex mappel::ThreadedEstimator**< **Model** >::mtx [protected], [inherited]

Definition at line 144 of file estimator.h.

Referenced by mappel::ThreadedEstimator< Model >::clear_stats(), mappel::IterativeMaximizer< Model >::clear = _stats(), mappel::ThreadedEstimator< Model >::get_stats(), mappel::IterativeMaximizer< Model >::get_stats(), mappel::ThreadedEstimator< Model >::record_exit_code(), and mappel::IterativeMaximizer< Model >::record_exit_code() = _statistics().

8.46.5.6 template < class Model > int mappel::Estimator < Model >::num_estimations = 0 [protected], [inherited]

Definition at line 112 of file estimator.h.

Referenced by mappel::Estimator< Model >::clear_stats(), mappel::Estimator< Model >::get_stats(), mappel:: \leftarrow ::ThreadedEstimator< Model >::get_stats(), and mappel:: \leftarrow Estimator< Model >::record walltime().

8.46.5.7 template < class Model > int mappel::SimulatedAnnealingMaximizer < Model >::num_iterations = 500

Definition at line 200 of file estimator.h.

```
8.46.5.8 template<class Model > int mappel::ThreadedEstimator< Model >::num_threads [protected], [inherited]
```

Definition at line 143 of file estimator.h.

Referenced by mappel::ThreadedEstimator< Model >::clear_stats(), mappel::ThreadedEstimator< Model >::estimate_max_stack(), mappel::ThreadedEstimator< Model >::estimate_profile_stack(), and mappel::Threaded \leftarrow Estimator< Model >::get stats().

Definition at line 39 of file estimator.h.

8.46.5.10 template < class Model > double mappel::SimulatedAnnealingMaximizer < Model >::T init =100.

Definition at line 198 of file estimator.h.

```
8.46.5.11 template < class Model > double mappel::Estimator < Model >::total_walltime = 0. [protected], [inherited]
```

Definition at line 113 of file estimator.h.

Referenced by mappel::Estimator< Model >::clear_stats(), mappel::Estimator< Model >::get_stats(), mappel::

ThreadedEstimator< Model >::get_stats(), and mappel::Estimator< Model >::record walltime().

The documentation for this class was generated from the following files:

- · estimator.h
- · estimator impl.h

8.47 mappel::Gauss1DModel::Stencil Class Reference

Stencil for 1D fixed-sigma models.

#include </home/travis/build/markjolah/Mappel/include/Mappel/Gauss1DModel.h>

Public Types

• using ParamT = Gauss1DModel::ParamT

Public Member Functions

- Stencil ()
- Stencil (const Gauss1DModel &model, const ParamT &theta, bool compute_derivatives=true)
- void compute_derivatives ()
- double x () const
- double I () const
- double bg () const

Public Attributes

- bool derivatives_computed = false
- Gauss1DModel const * model
- · ParamT theta
- VecT dx
- VecT Gx
- VecT X
- VecT DX
- VecT DXS

Friends

std::ostream & operator<< (std::ostream &out, const Gauss1DModel::Stencil &s)

8.47.1 Detailed Description

Stencil for 1D fixed-sigma models.

Definition at line 29 of file Gauss1DModel.h.

8.47.2 Member Typedef Documentation

8.47.2.1 using mappel::Gauss1DModel::Stencil::ParamT = Gauss1DModel::ParamT

Definition at line 32 of file Gauss1DModel.h.

8.47.3 Constructor & Destructor Documentation

8.47.3.1 mappel::Gauss1DModel::Stencil() [inline]

Definition at line 41 of file Gauss1DModel.h.

References compute derivatives().

Referenced by mappel::Gauss1DModel::make stencil().

8.47.3.2 mappel::Gauss1DModel::Stencil:(const Gauss1DModel & model, const ParamT & theta, bool compute_derivatives = true)

Definition at line 142 of file Gauss1DModel.cpp.

References compute_derivatives(), dx, mappel::make_d_stencil(), mappel::make_X_stencil(), model, mappel:: \leftarrow Gauss1DModel::psf_sigma, mappel::ImageFormat1DBase::size, X, and x().

8.47.4 Member Function Documentation

8.47.4.1 double mappel::Gauss1DModel::Stencil::bg() const [inline]

Definition at line 46 of file Gauss1DModel.h.

References operator<<, and theta.

Referenced by mappel::Gauss1DModel::initial_theta_estimate(), and mappel::Gauss1DModel::pixel_model_value().

8.47.4.2 void mappel::Gauss1DModel::Stencil::compute_derivatives ()

Definition at line 153 of file Gauss1DModel.cpp.

References derivatives_computed, dx, DX, DXS, Gx, mappel::make_DX_stencil(), mappel::make_DXS_stencil(), mappel::make_G_stencil(), model, mappel::Gauss1DModel::psf_sigma, and mappel::ImageFormat1DBase::size.

Referenced by Stencil().

8.47.4.3 double mappel::Gauss1DModel::Stencil::I() const [inline]

Definition at line 45 of file Gauss1DModel.h.

References theta.

Referenced by mappel::Gauss1DModel::initial_theta_estimate(), mappel::Gauss1DModel::pixel_grad(), mappel::Gauss1DModel::pixel_grad2(), mappel::Gauss1DModel::pixel_hess(), mappel::Gauss1DModel::pixel_hess_update(), and mappel::Gauss1DModel::pixel model value().

8.47.4.4 double mappel::Gauss1DModel::Stencil::x() const [inline] Definition at line 44 of file Gauss1DModel.h. References theta. Referenced by Stencil(). 8.47.5 Friends And Related Function Documentation 8.47.5.1 std::ostream& operator << (std::ostream & out, const Gauss1DModel::Stencil & s) [friend] Definition at line 164 of file Gauss1DModel.cpp. Referenced by bg(). 8.47.6 Member Data Documentation 8.47.6.1 bool mappel::Gauss1DModel::Stencil::derivatives_computed = false Definition at line 31 of file Gauss1DModel.h. Referenced by compute_derivatives(), and mappel::operator<<(). 8.47.6.2 VecT mappel::Gauss1DModel::Stencil::dx Definition at line 36 of file Gauss1DModel.h. Referenced by compute_derivatives(), mappel::operator<<(), and Stencil(). 8.47.6.3 VecT mappel::Gauss1DModel::Stencil::DX Definition at line 39 of file Gauss1DModel.h. Referenced by compute_derivatives(), mappel::operator<<(), mappel::Gauss1DModel::pixel_grad(), and mappel:: Gauss1DModel::pixel hess(). 8.47.6.4 VecT mappel::Gauss1DModel::Stencil::DXS Definition at line 40 of file Gauss1DModel.h.

Referenced by compute_derivatives(), mappel::operator<<(), mappel::Gauss1DModel::pixel_grad2(), mappel::←

Gauss1DModel::pixel hess(), and mappel::Gauss1DModel::pixel hess update().

8.47.6.5 VecT mappel::Gauss1DModel::Stencil::Gx

Definition at line 37 of file Gauss1DModel.h.

Referenced by compute_derivatives(), and mappel::operator<<().

8.47.6.6 Gauss1DModel const* mappel::Gauss1DModel::Stencil::model

Definition at line 33 of file Gauss1DModel.h.

Referenced by compute_derivatives(), and Stencil().

8.47.6.7 ParamT mappel::Gauss1DModel::Stencil::theta

Definition at line 35 of file Gauss1DModel.h.

Referenced by bg(), I(), mappel::Gauss1DModel::initial_theta_estimate(), mappel::operator<<(), and x().

8.47.6.8 VecT mappel::Gauss1DModel::Stencil::X

Definition at line 38 of file Gauss1DModel.h.

Referenced by mappel::operator << (), mappel::Gauss1DModel::pixel_grad(), mappel::Gauss1DModel::pixel_model_ \leftarrow value(), and Stencil().

The documentation for this class was generated from the following files:

- · Gauss1DModel.h
- Gauss1DModel.cpp

8.48 mappel::Gauss1DsModel::Stencil Class Reference

Stencil for 1D variable-sigma models.

#include </home/travis/build/markjolah/Mappel/include/Mappel/Gauss1DsModel.h>

Public Types

using ParamT = Gauss1DsModel::ParamT

Public Member Functions

- Stencil ()
- Stencil (const Gauss1DsModel &model, const ParamT &theta, bool _compute_derivatives=true)
- void compute_derivatives ()
- double x () const
- double I () const
- double bg () const
- · double sigma () const

Public Attributes

- bool derivatives_computed = false
- Gauss1DsModel const * model
- · ParamT theta
- VecT dx
- VecT Gx
- VecT X
- VecT DX
- VecT DXS
- VecT DXS2
- VecT DXSX

Friends

• std::ostream & operator<< (std::ostream &out, const Gauss1DsModel::Stencil &s)

8.48.1 Detailed Description

Stencil for 1D variable-sigma models.

Definition at line 24 of file Gauss1DsModel.h.

8.48.2 Member Typedef Documentation

8.48.2.1 using mappel::Gauss1DsModel::Stencil::ParamT = Gauss1DsModel::ParamT

Definition at line 27 of file Gauss1DsModel.h.

8.48.3 Constructor & Destructor Documentation

8.48.3.1 mappel::Gauss1DsModel::Stencil::Stencil() [inline]

Definition at line 38 of file Gauss1DsModel.h.

References compute_derivatives().

Referenced by mappel::Gauss1DsModel::make_stencil().

8.48.3.2 mappel::Gauss1DsModel::Stencil::Stencil (const Gauss1DsModel & model, const ParamT & theta, bool _compute_derivatives = true)

Definition at line 159 of file Gauss1DsModel.cpp.

References compute_derivatives(), dx, mappel::make_d_stencil(), mappel::make_X_stencil(), model, sigma(), mappel::lmageFormat1DBase::size, X, and x().

8.48.4 Member Function Documentation

8.48.4.1 double mappel::Gauss1DsModel::Stencil::bg() const [inline]

Definition at line 43 of file Gauss1DsModel.h.

References theta.

Referenced by mappel::Gauss1DsModel::initial_theta_estimate(), and mappel::Gauss1DsModel::pixel_model_value().

8.48.4.2 void mappel::Gauss1DsModel::Stencil::compute_derivatives ()

Definition at line 170 of file Gauss1DsModel.cpp.

References derivatives_computed, dx, DX, DXS, DXS2, DXSX, Gx, mappel::make_DX_stencil(), mappel::make_DXS_stencil(), mappel::make_DXS_stencil(), mappel::make_G_stencil(), model, sigma(), and mappel::lmageFormat1DBase::size.

Referenced by Stencil().

8.48.4.3 double mappel::Gauss1DsModel::Stencil::I() const [inline]

Definition at line 42 of file Gauss1DsModel.h.

References theta.

Referenced by mappel::Gauss1DsModel::initial_theta_estimate(), mappel::Gauss1DsModel::pixel_grad(), mappel::Gauss1DsModel::pixel_grad2(), mappel::Gauss1DsModel::pixel_hess(), mappel::Gauss1DsModel::pixel_hess_ \leftarrow update(), and mappel::Gauss1DsModel::pixel_model_value().

8.48.4.4 double mappel::Gauss1DsModel::Stencil::sigma () const [inline]

Definition at line 44 of file Gauss1DsModel.h.

References operator<<, and theta.

Referenced by compute_derivatives(), mappel::Gauss1DsModel::initial_theta_estimate(), mappel::Gauss1DsModel.:pixel_grad2(), mappel::Gauss1DsModel::pixel_hess(), mappel::Gauss1DsModel::pixel_hess_update(), and Stencil().

8.48.4.5 double mappel::Gauss1DsModel::Stencil::x() const [inline]

Definition at line 41 of file Gauss1DsModel.h.

References theta.

Referenced by Stencil().

8.48.5 Friends And Related Function Documentation

8.48.5.1 std::ostream & out, const Gauss1DsModel::Stencil & s) [friend]

Definition at line 182 of file Gauss1DsModel.cpp.

Referenced by sigma().

8.48.6 Member Data Documentation

8.48.6.1 bool mappel::Gauss1DsModel::Stencil::derivatives_computed = false

Definition at line 26 of file Gauss1DsModel.h.

Referenced by compute_derivatives(), and mappel::operator<<().

8.48.6.2 VecT mappel::Gauss1DsModel::Stencil::dx

Definition at line 31 of file Gauss1DsModel.h.

Referenced by compute derivatives(), mappel::operator<<(), and Stencil().

8.48.6.3 VecT mappel::Gauss1DsModel::Stencil::DX

Definition at line 34 of file Gauss1DsModel.h.

Referenced by compute_derivatives(), mappel::operator<<(), mappel::Gauss1DsModel::pixel_grad(), mappel:: \leftarrow Gauss1DsModel::pixel_hess(), and mappel::Gauss1DsModel::pixel_hess_update().

8.48.6.4 VecT mappel::Gauss1DsModel::Stencil::DXS

Definition at line 35 of file Gauss1DsModel.h.

Referenced by compute_derivatives(), mappel::operator <<(), mappel::Gauss1DsModel::pixel_grad(), mappel:: \leftarrow Gauss1DsModel::pixel_prad2(), mappel::Gauss1DsModel::pixel_hess(), and mappel::Gauss1DsModel::pixel_hess_ \leftarrow update().

8.48.6.5 VecT mappel::Gauss1DsModel::Stencil::DXS2

Definition at line 36 of file Gauss1DsModel.h.

Referenced by compute_derivatives(), mappel::operator <<(), mappel::Gauss1DsModel::pixel_grad2(), mappel:: \leftarrow Gauss1DsModel::pixel_hess(), and mappel::Gauss1DsModel::pixel_hess_update().

8.48.6.6 VecT mappel::Gauss1DsModel::Stencil::DXSX

Definition at line 37 of file Gauss1DsModel.h.

Referenced by compute_derivatives(), mappel::operator<<(), mappel::Gauss1DsModel::pixel_hess(), and mappel::
Gauss1DsModel::pixel_hess update().

8.48.6.7 VecT mappel::Gauss1DsModel::Stencil::Gx

Definition at line 32 of file Gauss1DsModel.h.

Referenced by compute derivatives(), and mappel::operator<<().

8.48.6.8 Gauss1DsModel const* mappel::Gauss1DsModel::Stencil::model

Definition at line 28 of file Gauss1DsModel.h.

Referenced by compute_derivatives(), and Stencil().

8.48.6.9 ParamT mappel::Gauss1DsModel::Stencil::theta

Definition at line 30 of file Gauss1DsModel.h.

Referenced by bg(), I(), mappel::operator<<(), sigma(), and x().

8.48.6.10 VecT mappel::Gauss1DsModel::Stencil::X

Definition at line 33 of file Gauss1DsModel.h.

Referenced by mappel:: $Gauss1DsModel::pixel_grad()$, mappel:: $Gauss1DsModel::pixel_grad()$, mappel:: $Gauss1DsModel::pixel_del()$, and $Gauss1DsModel::pixel_del()$.

The documentation for this class was generated from the following files:

- Gauss1DsModel.h
- Gauss1DsModel.cpp

8.49 mappel::Gauss2DsxyModel::Stencil Class Reference

Stencil for 2D free-sigma (astigmatic) models.

#include </home/travis/build/markjolah/Mappel/include/Mappel/Gauss2DsxyModel. \leftarrow h>

Public Types

typedef Gauss2DsxyModel::ParamT ParamT

Public Member Functions

- Stencil ()
- Stencil (const Gauss2DsxyModel &model, const ParamT &theta, bool compute derivatives=true)
- void compute_derivatives ()
- double x () const
- double y () const
- double I () const
- · double bg () const
- double sigmaX () const
- double sigmaY () const

Public Attributes

- bool derivatives_computed =false
- Gauss2DsxyModel const * model
- · ParamT theta
- VecT dx
- VecT dy
- VecT Gx
- VecT Gy
- VecT X
- VecT Y
- VecT DX
- VecT DY
- VecT DXSX
- VecT DYSX
- VecT DXS
- VecT DYS
- VecT DXS2
- VecT DYS2
- VecT DYSY

Friends

std::ostream & operator<< (std::ostream &out, const Gauss2DsxyModel::Stencil &s)

8.49.1 Detailed Description

Stencil for 2D free-sigma (astigmatic) models.

Definition at line 32 of file Gauss2DsxyModel.h.

8.49.2 Member Typedef Documentation

8.49.2.1 typedef Gauss2DsxyModel::ParamT mappel::Gauss2DsxyModel::Stencil::ParamT

Definition at line 35 of file Gauss2DsxyModel.h.

```
8.49.3 Constructor & Destructor Documentation
8.49.3.1 mappel::Gauss2DsxyModel::Stencil() [inline]
Definition at line 47 of file Gauss2DsxyModel.h.
References compute derivatives().
Referenced by mappel::Gauss2DsxyModel::make_stencil().
8.49.3.2 mappel::Gauss2DsxyModel::Stencil::Stencil ( const Gauss2DsxyModel & model, const ParamT & theta, bool
        _compute_derivatives = true )
8.49.4 Member Function Documentation
8.49.4.1 double mappel::Gauss2DsxyModel::Stencil::bg( )const [inline]
Definition at line 53 of file Gauss2DsxyModel.h.
References theta.
Referenced by mappel::Gauss2DsxyModel::pixel_model_value().
8.49.4.2 void mappel::Gauss2DsxyModel::Stencil::compute_derivatives ( )
Referenced by Stencil().
8.49.4.3 double mappel::Gauss2DsxyModel::Stencil::I() const [inline]
Definition at line 52 of file Gauss2DsxyModel.h.
References theta.
Referenced by mappel::Gauss2DsxyModel::pixel_grad(), mappel::Gauss2DsxyModel::pixel_grad2(), mappel::←
Gauss2DsxyModel::pixel_hess(), and mappel::Gauss2DsxyModel::pixel_model_value().
8.49.4.4 double mappel::Gauss2DsxyModel::Stencil::sigmaX( )const [inline]
Definition at line 54 of file Gauss2DsxyModel.h.
References theta.
Referenced by mappel::Gauss2DsxyModel::pixel grad2(), and mappel::Gauss2DsxyModel::pixel hess().
8.49.4.5 double mappel::Gauss2DsxyModel::Stencil::sigmaY( )const [inline]
Definition at line 55 of file Gauss2DsxyModel.h.
References operator<<, and theta.
Referenced by mappel::Gauss2DsxyModel::pixel grad2(), and mappel::Gauss2DsxyModel::pixel hess().
```

8.49.4.6 double mappel::Gauss2DsxyModel::Stencil::x()const [inline] Definition at line 50 of file Gauss2DsxyModel.h. References theta. **8.49.4.7** double mappel::Gauss2DsxyModel::Stencil::y()const [inline] Definition at line 51 of file Gauss2DsxyModel.h. References theta. 8.49.5 Friends And Related Function Documentation 8.49.5.1 std::ostream& operator << (std::ostream & out, const Gauss2DsxyModel::Stencil & s) [friend] Referenced by sigmaY(). 8.49.6 Member Data Documentation 8.49.6.1 bool mappel::Gauss2DsxyModel::Stencil::derivatives_computed =false Definition at line 34 of file Gauss2DsxyModel.h. 8.49.6.2 VecT mappel::Gauss2DsxyModel::Stencil::dx Definition at line 39 of file Gauss2DsxyModel.h. 8.49.6.3 VecT mappel::Gauss2DsxyModel::Stencil::DX Definition at line 42 of file Gauss2DsxyModel.h. Referenced by mappel::Gauss2DsxyModel::pixel_grad(), and mappel::Gauss2DsxyModel::pixel_hess(). 8.49.6.4 VecT mappel::Gauss2DsxyModel::Stencil::DXS Definition at line 44 of file Gauss2DsxyModel.h. Referenced by mappel::Gauss2DsxyModel::pixel_grad(), mappel::Gauss2DsxyModel::pixel_grad2(), and mappel:: Gauss2DsxyModel::pixel_hess(). 8.49.6.5 VecT mappel::Gauss2DsxyModel::Stencil::DXS2 Definition at line 45 of file Gauss2DsxyModel.h.

Referenced by mappel::Gauss2DsxyModel::pixel grad2(), and mappel::Gauss2DsxyModel::pixel hess().

8.49.6.6 VecT mappel::Gauss2DsxyModel::Stencil::DXSX

Definition at line 43 of file Gauss2DsxyModel.h.

Referenced by mappel::Gauss2DsxyModel::pixel_hess().

8.49.6.7 VecT mappel::Gauss2DsxyModel::Stencil::dy

Definition at line 39 of file Gauss2DsxyModel.h.

8.49.6.8 VecT mappel::Gauss2DsxyModel::Stencil::DY

Definition at line 42 of file Gauss2DsxyModel.h.

Referenced by mappel::Gauss2DsxyModel::pixel_grad(), and mappel::Gauss2DsxyModel::pixel_hess().

8.49.6.9 VecT mappel::Gauss2DsxyModel::Stencil::DYS

Definition at line 44 of file Gauss2DsxyModel.h.

Referenced by mappel::Gauss2DsxyModel::pixel_grad(), mappel::Gauss2DsxyModel::pixel_grad2(), and mappel::Gauss2DsxyModel::gauss2DsxyModel::gauss2DsxyModel

8.49.6.10 VecT mappel::Gauss2DsxyModel::Stencil::DYS2

Definition at line 45 of file Gauss2DsxyModel.h.

Referenced by mappel::Gauss2DsxyModel::pixel_grad2(), and mappel::Gauss2DsxyModel::pixel_hess().

8.49.6.11 VecT mappel::Gauss2DsxyModel::Stencil::DYSX

Definition at line 43 of file Gauss2DsxyModel.h.

8.49.6.12 VecT mappel::Gauss2DsxyModel::Stencil::DYSY

Definition at line 46 of file Gauss2DsxyModel.h.

Referenced by mappel::Gauss2DsxyModel::pixel_hess().

8.49.6.13 VecT mappel::Gauss2DsxyModel::Stencil::Gx

Definition at line 40 of file Gauss2DsxyModel.h.

8.49.6.14 VecT mappel::Gauss2DsxyModel::Stencil::Gy

Definition at line 40 of file Gauss2DsxyModel.h.

8.49.6.15 Gauss2DsxyModel const* mappel::Gauss2DsxyModel::Stencil::model

Definition at line 36 of file Gauss2DsxyModel.h.

8.49.6.16 ParamT mappel::Gauss2DsxyModel::Stencil::theta

Definition at line 38 of file Gauss2DsxyModel.h.

Referenced by bg(), I(), sigmaX(), sigmaY(), x(), and y().

8.49.6.17 VecT mappel::Gauss2DsxyModel::Stencil::X

Definition at line 41 of file Gauss2DsxyModel.h.

Referenced by mappel::Gauss2DsxyModel::pixel_grad(), mappel::Gauss2DsxyModel::pixel_grad2(), mappel:: \leftarrow Gauss2DsxyModel::pixel_hess(), and mappel::Gauss2DsxyModel::pixel_model_value().

8.49.6.18 VecT mappel::Gauss2DsxyModel::Stencil::Y

Definition at line 41 of file Gauss2DsxyModel.h.

Referenced by mappel::Gauss2DsxyModel::pixel_grad(), mappel::Gauss2DsxyModel::pixel_grad2(), mappel::

Gauss2DsxyModel::pixel_hess(), and mappel::Gauss2DsxyModel::pixel_model_value().

The documentation for this class was generated from the following file:

· Gauss2DsxyModel.h

8.50 mappel::Gauss2DsModel::Stencil Class Reference

Stencil for 2D scalar-sigma models.

#include </home/travis/build/markjolah/Mappel/include/Mappel/Gauss2DsModel.h>

Public Types

typedef Gauss2DsModel::ParamT ParamT

Public Member Functions

- Stencil ()
- Stencil (const Gauss2DsModel &model, const ParamT &theta, bool compute derivatives=true)
- void compute_derivatives ()
- double x () const
- double y () const
- double I () const
- double bg () const
- double sigma_ratio () const
- double sigmaX () const
- · double sigmaY () const

Public Attributes

- bool derivatives computed =false
- Gauss2DsModel const * model
- · ParamT theta
- VecT dx
- VecT dy
- VecT Gx
- VecT Gy
- VecT X
- VecT Y
- VecT DX
- VecT DY
- VecT DXS
- VecT DYS
- VecT DXS2
- VecT DYS2
- VecT DXSX
- VecT DYSY

Friends

• std::ostream & operator<< (std::ostream &out, const Gauss2DsModel::Stencil &s)

8.50.1 Detailed Description

Stencil for 2D scalar-sigma models.

Definition at line 29 of file Gauss2DsModel.h.

8.50.2 Member Typedef Documentation

 $8.50.2.1 \quad type def \ Gauss 2Ds Model :: Param T \ mappel :: Gauss 2Ds Model :: Stencil :: Param T \ mappel :: Gauss 2Ds Model ::$

Definition at line 32 of file Gauss2DsModel.h.

8.50.3 Constructor & Destructor Documentation

8.50.3.1 mappel::Gauss2DsModel::Stencil::Stencil() [inline]

Definition at line 43 of file Gauss2DsModel.h.

References compute_derivatives().

Referenced by mappel::Gauss2DsModel::make_stencil().

8.50.3.2 mappel::Gauss2DsModel::Stencil::Stencil (const Gauss2DsModel & model, const ParamT & theta, bool _compute_derivatives = true)

Definition at line 286 of file Gauss2DsModel.cpp.

References compute_derivatives(), dx, dy, mappel::make_d_stencil(), mappel::make_X_stencil(), model, sigmaX(), sigmaY(), mappel::ImageFormat2DBase::size, X, x(), Y, and y().

8.50.4 Member Function Documentation

8.50.4.1 double mappel::Gauss2DsModel::Stencil::bg() const [inline]

Definition at line 49 of file Gauss2DsModel.h.

References theta.

Referenced by mappel::Gauss2DsModel::initial theta estimate(), and mappel::Gauss2DsModel::pixel model value().

8.50.4.2 void mappel::Gauss2DsModel::Stencil::compute_derivatives ()

Definition at line 300 of file Gauss2DsModel.cpp.

References derivatives_computed, dx, DX, DXS, DXS2, DXSX, dy, DY, DYS, DYS2, DYSY, Gx, Gy, mappel::make — DX_stencil(), mappel::make_DXS2_stencil(), mappel::make_DXSX_stencil(), mappel::make_DXSX_stencil(), mappel::make_G_stencil(), model, sigmaX(), sigmaY(), and mappel::lmageFormat2DBase::size.

Referenced by Stencil().

8.50.4.3 double mappel::Gauss2DsModel::Stencil::I() const [inline]

Definition at line 48 of file Gauss2DsModel.h.

References theta.

Referenced by mappel::Gauss2DsModel::initial_theta_estimate(), mappel::Gauss2DsModel::pixel_grad(), mappel ::Gauss2DsModel::pixel_grad2(), mappel::Gauss2DsModel::pixel_hess(), mappel::Gauss2DsModel::pixel_hess_ \leftarrow update(), and mappel::Gauss2DsModel::pixel_model_value().

8.50.4.4 double mappel::Gauss2DsModel::Stencil::sigma_ratio() const [inline]

Definition at line 50 of file Gauss2DsModel.h.

References theta.

Referenced by mappel::Gauss2DsModel::initial theta estimate(), sigmaX(), and sigmaY().

8.50.4.5 double mappel::Gauss2DsModel::Stencil::sigmaX () const [inline] Definition at line 51 of file Gauss2DsModel.h. References mappel::Gauss2DsModel::min_sigma, and sigma_ratio(). Referenced by compute_derivatives(), mappel::Gauss2DsModel::pixel_grad2(), mappel::Gauss2DsModel::pixel_hess(), mappel::Gauss2DsModel::pixel_hess_update(), and Stencil(). 8.50.4.6 double mappel::Gauss2DsModel::Stencil::sigmaY () const [inline] Definition at line 52 of file Gauss2DsModel.h. References mappel::Gauss2DsModel::min_sigma, operator<<, and sigma_ratio(). Referenced by compute derivatives(), mappel::Gauss2DsModel::pixel grad2(), mappel::Gauss2DsModel::pixel hess(), mappel::Gauss2DsModel::pixel hess update(), and Stencil(). 8.50.4.7 double mappel::Gauss2DsModel::Stencil::x() const [inline] Definition at line 46 of file Gauss2DsModel.h. References theta. Referenced by Stencil(). 8.50.4.8 double mappel::Gauss2DsModel::Stencil::y()const [inline] Definition at line 47 of file Gauss2DsModel.h. References theta. Referenced by Stencil(). 8.50.5 Friends And Related Function Documentation 8.50.5.1 std::ostream& operator << (std::ostream & out, const Gauss2DsModel::Stencil & s) [friend] Definition at line 318 of file Gauss2DsModel.cpp. Referenced by sigmaY(). 8.50.6 Member Data Documentation 8.50.6.1 bool mappel::Gauss2DsModel::Stencil::derivatives_computed =false

Definition at line 31 of file Gauss2DsModel.h.

Referenced by compute derivatives(), and mappel::operator<<().

8.50.6.2 VecT mappel::Gauss2DsModel::Stencil::dx

Definition at line 36 of file Gauss2DsModel.h.

Referenced by compute derivatives(), mappel::operator<<(), and Stencil().

8.50.6.3 VecT mappel::Gauss2DsModel::Stencil::DX

Definition at line 39 of file Gauss2DsModel.h.

Referenced by compute_derivatives(), mappel::operator<<<(), mappel::Gauss2DsModel::pixel_grad(), mappel:: \leftarrow Gauss2DsModel::pixel_hess(), and mappel::Gauss2DsModel::pixel_hess_update().

8.50.6.4 VecT mappel::Gauss2DsModel::Stencil::DXS

Definition at line 40 of file Gauss2DsModel.h.

Referenced by compute_derivatives(), mappel::operator <<(), mappel::Gauss2DsModel::pixel_grad(), mappel:: \leftarrow Gauss2DsModel::pixel_grad2(), mappel::Gauss2DsModel::pixel_hess(), and mappel::Gauss2DsModel::pixel_hess \leftarrow update().

8.50.6.5 VecT mappel::Gauss2DsModel::Stencil::DXS2

Definition at line 41 of file Gauss2DsModel.h.

Referenced by compute_derivatives(), mappel::operator <<(), mappel::Gauss2DsModel::pixel_grad2(), mappel:: \leftarrow Gauss2DsModel::pixel_hess(), and mappel::Gauss2DsModel::pixel_hess_update().

8.50.6.6 VecT mappel::Gauss2DsModel::Stencil::DXSX

Definition at line 42 of file Gauss2DsModel.h.

Referenced by compute_derivatives(), mappel::operator<<(), mappel::Gauss2DsModel::pixel_hess(), and mappel::
Gauss2DsModel::pixel hess update().

8.50.6.7 VecT mappel::Gauss2DsModel::Stencil::dy

Definition at line 36 of file Gauss2DsModel.h.

Referenced by compute_derivatives(), mappel::operator<<(), and Stencil().

8.50.6.8 VecT mappel::Gauss2DsModel::Stencil::DY

Definition at line 39 of file Gauss2DsModel.h.

Referenced by compute_derivatives(), mappel::operator<<(), mappel::Gauss2DsModel::pixel_grad(), mappel:: \leftarrow Gauss2DsModel::pixel hess(), and mappel::Gauss2DsModel::pixel hess update().

8.50.6.9 VecT mappel::Gauss2DsModel::Stencil::DYS

Definition at line 40 of file Gauss2DsModel.h.

Referenced by compute_derivatives(), mappel::operator <<(), mappel::Gauss2DsModel::pixel_grad(), mappel:: \leftarrow Gauss2DsModel::pixel_grad2(), mappel::Gauss2DsModel::pixel_hess(), and mappel::Gauss2DsModel::pixel_hess \leftarrow update().

8.50.6.10 VecT mappel::Gauss2DsModel::Stencil::DYS2

Definition at line 41 of file Gauss2DsModel.h.

Referenced by compute_derivatives(), mappel::operator << (), mappel::Gauss2DsModel::pixel_grad2(), mappel:: \leftarrow Gauss2DsModel::pixel_hess(), and mappel::Gauss2DsModel::pixel_hess_update().

8.50.6.11 VecT mappel::Gauss2DsModel::Stencil::DYSY

Definition at line 42 of file Gauss2DsModel.h.

Referenced by compute_derivatives(), mappel::operator<<(), mappel::Gauss2DsModel::pixel_hess(), and mappel::
Gauss2DsModel::pixel hess update().

8.50.6.12 VecT mappel::Gauss2DsModel::Stencil::Gx

Definition at line 37 of file Gauss2DsModel.h.

Referenced by compute_derivatives(), and mappel::operator<<().

8.50.6.13 VecT mappel::Gauss2DsModel::Stencil::Gy

Definition at line 37 of file Gauss2DsModel.h.

Referenced by compute_derivatives(), and mappel::operator<<().

8.50.6.14 Gauss2DsModel const* mappel::Gauss2DsModel::Stencil::model

Definition at line 33 of file Gauss2DsModel.h.

Referenced by compute derivatives(), and Stencil().

8.50.6.15 ParamT mappel::Gauss2DsModel::Stencil::theta

Definition at line 35 of file Gauss2DsModel.h.

Referenced by bg(), I(), mappel::operator<<(), sigma ratio(), x(), and y().

8.50.6.16 VecT mappel::Gauss2DsModel::Stencil::X

Definition at line 38 of file Gauss2DsModel.h.

Referenced by mappel::operator << (), mappel::Gauss2DsModel::pixel_grad(), mappel::Gauss2DsModel::pixel_grad2(), mappel::Gauss2DsModel::pixel_hess_update(), mappel::Gauss2DsModel :: pixel_model_value(), and Stencil().

8.50.6.17 VecT mappel::Gauss2DsModel::Stencil::Y

Definition at line 38 of file Gauss2DsModel.h.

Referenced by mappel::operator <<(), mappel::Gauss2DsModel::pixel_grad(), mappel::Gauss2DsModel::pixel_grad2(), mappel::Gauss2DsModel::pixel_hess_update(), mappel::Gauss2DsModel \leftarrow ::pixel_model_value(), and Stencil().

The documentation for this class was generated from the following files:

- · Gauss2DsModel.h
- Gauss2DsModel.cpp

8.51 mappel::Gauss2DModel::Stencil Class Reference

Stencil for 2D fixed-sigma models.

#include </home/travis/build/markjolah/Mappel/include/Mappel/Gauss2DModel.h>

Public Types

• using ParamT = Gauss2DModel::ParamT

Public Member Functions

- Stencil ()
- Stencil (const Gauss2DModel &model, const ParamT &theta, bool compute_derivatives=true)
- void compute derivatives ()
- double x () const
- double y () const
- double I () const
- double bg () const

Public Attributes

- bool derivatives_computed =false
- Gauss2DModel const * model
- · ParamT theta
- VecT dx
- VecT dy
- VecT Gx
- VecT Gy
- VecT X
- VecT Y
- VecT DX
- VecT DY
- VecT DXS
- VecT DYS

Friends

std::ostream & operator<< (std::ostream &out, const Gauss2DModel::Stencil &s)

8.51.1 Detailed Description

Stencil for 2D fixed-sigma models.

Definition at line 26 of file Gauss2DModel.h.

8.51.2 Member Typedef Documentation

8.51.2.1 using mappel::Gauss2DModel::Stencil::ParamT = Gauss2DModel::ParamT

Definition at line 29 of file Gauss2DModel.h.

8.51.3 Constructor & Destructor Documentation

8.51.3.1 mappel::Gauss2DModel::Stencil() [inline]

Definition at line 38 of file Gauss2DModel.h.

References compute_derivatives().

Referenced by mappel::Gauss2DModel::make_stencil().

8.51.3.2 mappel::Gauss2DModel::Stencil: Const Gauss2DModel & model, const ParamT & theta, bool compute derivatives = true)

Definition at line 218 of file Gauss2DModel.cpp.

References compute_derivatives(), dx, dy, mappel::make_d_stencil(), mappel::make_X_stencil(), model, mappel::← Gauss2DModel::psf_sigma, mappel::lmageFormat2DBase::size, X, x(), Y, and y().

8.51.4 Member Function Documentation

8.51.4.1 double mappel::Gauss2DModel::Stencil::bg()const [inline]

Definition at line 44 of file Gauss2DModel.h.

References operator<<, and theta.

Referenced by mappel::Gauss2DModel::initial theta estimate(), and mappel::Gauss2DModel::pixel model value().

8.51.4.2 void mappel::Gauss2DModel::Stencil::compute_derivatives ()

Definition at line 232 of file Gauss2DModel.cpp.

References derivatives_computed, dx, DX, DXS, dy, DY, DYS, Gx, Gy, mappel::make_DX_stencil(), mappel::make_← DXS_stencil(), mappel::make_G_stencil(), model, mappel::Gauss2DModel::psf_sigma, and mappel::ImageFormat2D← Base::size.

Referenced by Stencil().

8.51.4.3 double mappel::Gauss2DModel::Stencil::I() const [inline]

Definition at line 43 of file Gauss2DModel.h.

References theta.

Referenced by mappel::Gauss2DModel::pixel_grad(), mappel::Gauss2DModel::pixel_grad(), mappel:: \leftarrow Gauss2DModel::pixel_grad2(), mappel::Gauss2DModel::pixel_hess(), mappel::Gauss2DModel::pixel_hess_update(), and mappel::Gauss2DModel::pixel_model_value().

8.51.4.4 double mappel::Gauss2DModel::Stencil::x() const [inline]

Definition at line 41 of file Gauss2DModel.h.

References theta.

Referenced by Stencil().

8.51.4.5 double mappel::Gauss2DModel::Stencil::y()const [inline]

Definition at line 42 of file Gauss2DModel.h.

References theta.

Referenced by Stencil().

8.51.5 Friends And Related Function Documentation

8.51.5.1 std::ostream& operator << (std::ostream & out, const Gauss2DModel::Stencil & s) [friend]

Definition at line 249 of file Gauss2DModel.cpp.

Referenced by bg().

8.51.6 Member Data Documentation

8.51.6.1 bool mappel::Gauss2DModel::Stencil::derivatives_computed =false

Definition at line 28 of file Gauss2DModel.h.

Referenced by compute_derivatives(), and mappel::operator<<().

8.51.6.2 VecT mappel::Gauss2DModel::Stencil::dx

Definition at line 33 of file Gauss2DModel.h.

Referenced by compute_derivatives(), mappel::operator<<(), and Stencil().

8.51.6.3 VecT mappel::Gauss2DModel::Stencil::DX

Definition at line 36 of file Gauss2DModel.h.

Referenced by compute_derivatives(), mappel::operator << (), mappel::Gauss2DModel::pixel_grad(), mappel:: \leftarrow Gauss2DModel::pixel_hess(), and mappel::Gauss2DModel::pixel_hess_update().

8.51.6.4 VecT mappel::Gauss2DModel::Stencil::DXS

Definition at line 37 of file Gauss2DModel.h.

Referenced by compute_derivatives(), mappel::operator<<(), mappel::Gauss2DModel::pixel_grad2(), mappel:: \leftarrow Gauss2DModel::pixel hess(), and mappel::Gauss2DModel::pixel hess update().

8.51.6.5 VecT mappel::Gauss2DModel::Stencil::dy

Definition at line 33 of file Gauss2DModel.h.

Referenced by compute derivatives(), mappel::operator<<(), and Stencil().

8.51.6.6 VecT mappel::Gauss2DModel::Stencil::DY

Definition at line 36 of file Gauss2DModel.h.

Referenced by compute_derivatives(), mappel::operator<<<(), mappel::Gauss2DModel::pixel_grad(), mappel:: \leftarrow Gauss2DModel::pixel_hess(), and mappel::Gauss2DModel::pixel_hess_update().

8.51.6.7 VecT mappel::Gauss2DModel::Stencil::DYS

Definition at line 37 of file Gauss2DModel.h.

Referenced by compute_derivatives(), mappel::operator<<<(), mappel::Gauss2DModel::pixel_grad2(), mappel:: \leftarrow Gauss2DModel::pixel_hess(), and mappel::Gauss2DModel::pixel_hess_update().

8.51.6.8 VecT mappel::Gauss2DModel::Stencil::Gx

Definition at line 34 of file Gauss2DModel.h.

Referenced by compute_derivatives(), and mappel::operator<<().

8.51.6.9 VecT mappel::Gauss2DModel::Stencil::Gy

Definition at line 34 of file Gauss2DModel.h.

Referenced by compute derivatives(), and mappel::operator<<().

8.51.6.10 Gauss2DModel const* mappel::Gauss2DModel::Stencil::model

Definition at line 30 of file Gauss2DModel.h.

 $Referenced\ by\ compute_derivatives(),\ and\ Stencil().$

8.51.6.11 ParamT mappel::Gauss2DModel::Stencil::theta

Definition at line 32 of file Gauss2DModel.h.

Referenced by bg(), I(), mappel::operator<<(), x(), and y().

8.51.6.12 VecT mappel::Gauss2DModel::Stencil::X

Definition at line 35 of file Gauss2DModel.h.

Referenced by mappel::operator<<(), mappel::Gauss2DModel::pixel_grad(), mappel::Gauss2DModel::pixel_grad2(), mappel::Gauss2DModel::pixel_hess(), mappel::Gauss2DModel::pixel_hess_update(), mappel::Gauss2DModel::pixel model value(), and Stencil().

8.51.6.13 VecT mappel::Gauss2DModel::Stencil::Y

Definition at line 35 of file Gauss2DModel.h.

Referenced by mappel::operator << (), mappel::Gauss2DModel::pixel_grad(), mappel::Gauss2DModel::pixel_grad2(), mappel::Gauss2DModel::pixel_hess(), mappel::Gauss2DModel::pixel bess_update(), mapp

The documentation for this class was generated from the following files:

- · Gauss2DModel.h
- · Gauss2DModel.cpp

8.52 mappel::ThreadedEstimator< Model > Class Template Reference

#include </home/travis/build/markjolah/Mappel/include/Mappel/estimator.h>

Inheritance diagram for mappel::ThreadedEstimator< Model >:

Public Types

```
    enum ExitCode::IdxT {
        ExitCode::Unassigned = 8, ExitCode::MaxIter = 7, ExitCode::MaxBacktracks = 6, ExitCode::TrustRegionRadius = 5,
        ExitCode::GradRatio = 4, ExitCode::FunctionChange = 3, ExitCode::StepSize = 2, ExitCode::Success = 1,
        ExitCode::Error = 0 }
```

Public Member Functions

- ThreadedEstimator (Model &model)
- void estimate_max_stack (const ModelDataStackT< Model > &im, const ParamVecT< Model > &theta_init, ParamVecT< Model > &theta, VecT &rllh, CubeT &obsl)
- void estimate_profile_stack (const ModelDataT< Model > &data, const IdxVecT &fixed_parameters, const MatT &values, const ParamVecT< Model > &theta_init, VecT &profile_likelihood, ParamVecT< Model > &profile_
 parameters)
- StatsT get stats ()
- StatsT get debug stats ()
- void clear_stats ()
- virtual std::string name () const =0
- Model & get_model ()
- void set_model (Model &new_model)
- StencilT< Model > estimate max (const ModelDataT< Model > &im)
- StencilT < Model > estimate max (const ModelDataT < Model > &im, const ParamT < Model > &theta init)

- StencilT< Model > estimate_max (const ModelDataT< Model > &im, double &rllh)
- StencilT < Model > estimate_max (const ModelDataT < Model > &im, const ParamT < Model > &theta_init, double &rllh)
- void estimate_max (const ModelDataT < Model > &im, ParamT < Model > &theta, double &rllh, MatT &obsl)
- void estimate_max (const ModelDataT < Model > &im, const ParamT < Model > &theta_init, ParamT < Model > &theta, double &rllh, MatT &obsl)
- void estimate_max_debug (const ModelDataT< Model > &im, const ParamT< Model > &theta_init, ParamT<
 Model > &theta est, double &rllh, MatT &obsl, MatT &sequence, VecT &sequence rllh)
- void estimate_max_stack (const ModelDataStackT< Model > &im_stack, ParamVecT< Model > &theta_est_← stack, VecT &rllh_stack, CubeT &obsl_stack)

Static Public Attributes

static constexpr int NumExitCodes = 9

Protected Member Functions

- void record_exit_code (ExitCode code)
- virtual StencilT< Model > compute_estimate (const ModelDataT< Model > &im, const ParamT< Model > &theta init, double &rllh)=0
- virtual void compute_estimate (const ModelDataT< Model > &im, const ParamT< Model > &theta_init, ParamT< Model > &theta_est, double &rllh, MatT &obsl)

Default base class implementation computes rllh and obsl seperately from stencil This should be overridden by Estimator subclasses that already have access to this information.

- virtual StencilT< Model > compute_estimate_debug (const ModelDataT< Model > &im, const ParamT< Model > &theta_init, ParamVecT< Model > &sequence, VecT &sequence_rllh)
- virtual void compute_profile_estimate (const ModelDataT< Model > &im, const ParamT< Model > &theta_init, const IdxVecT &fixed_parameters, ParamT< Model > &theta_est, double &rllh)
- void record_walltime (ClockT::time_point start_walltime, int nimages)

Protected Attributes

- int max_threads
- · int num_threads
- std::mutex mtx
- · Model & model
- int num estimations = 0
- double total walltime = 0.
- IdxVecT exit counts

8.52.1 Detailed Description

 $\label{local_constraints} {\it template} < {\it class Model} > \\ {\it class mappel::} {\it ThreadedEstimator} < {\it Model} > \\$

We avoid combining Estimator and ThreadedEstimator classes so that a future GPU implementation can inherit directly from Estimator as it will present a differnt method for estimate_stack pure virtual member function. For now all other (CPU) estimators inherit from ThreadedEstimator.

Definition at line 127 of file estimator.h.

```
8.52.2 Member Enumeration Documentation
```

8.52.2.1 template < class Model > enum mappel::Estimator::ExitCode: ldxT [strong], [inherited]

Enumerator

Unassigned

MaxIter

MaxBacktracks

TrustRegionRadius

GradRatio

FunctionChange

StepSize

Success

Error

Definition at line 40 of file estimator.h.

8.52.3 Constructor & Destructor Documentation

8.52.3.1 template < class Model > mappel::ThreadedEstimator < Model >::ThreadedEstimator (Model & model)

Definition at line 276 of file estimator impl.h.

8.52.4 Member Function Documentation

8.52.4.1 template < class Model > void mappel::ThreadedEstimator < Model >::clear_stats() [virtual]

Reimplemented from mappel::Estimator < Model >.

Reimplemented in mappel::IterativeMaximizer< Model >.

Definition at line 378 of file estimator impl.h.

 $References\ mappel::Estimator < Model > :: clear_stats(),\ mappel::ThreadedEstimator < Model > :: mtx,\ and\ mappel:: \leftarrow ThreadedEstimator < Model > :: num_threads.$

Referenced by mappel::IterativeMaximizer< Model >::clear stats().

8.52.4.2 template < class Model > virtual StencilT < Model > mappel::Estimator < Model > ::compute_estimate (const ModelDataT < Model > & im, const ParamT < Model > & theta_init, double & rllh) [protected], [pure virtual], [inherited]

 $Implemented \ \ in \ \ mappel:: Iterative Maximizer < \ \ Model \ >, \ \ mappel:: Simulated Annealing Maximizer < \ \ Model \ >, \ \ and \ \ mappel:: CGauss MLE < Model >.$

Referenced by mappel::Estimator< Model >::compute_estimate(), mappel::Estimator< Model >::compute_estimate \leftarrow _debug(), mappel::Estimator< Model >::estimate_max(), mappel::ThreadedEstimator< Model >::estimate_max \leftarrow _stack(), mappel::HeuristicEstimator< Model >::name(), mappel::CGaussHeuristicEstimator< Model >::name(), mappel::CGaussMLE< Model >::name(), and mappel:: \leftarrow Estimator< Model >:: \sim Estimator().

8.52.4.3 template < class Model > void mappel::Estimator < Model >::compute_estimate (const ModelDataT < Model > & im, const ParamT < Model > & theta_init, ParamT < Model > & theta_est, double & rllh, MatT & obsl)

[protected], [virtual], [inherited]

Default base class implementation computes rllh and obsl seperately from stencil This should be overridden by Estimator subclasses that already have access to this information.

Definition at line 183 of file estimator impl.h.

References mappel::Estimator< Model >::compute_estimate(), mappel::Estimator< Model >::model, and mappel \leftarrow ::methods::observed information().

8.52.4.4 template < class Model > StencilT < Model > mappel::Estimator < Model >::compute_estimate_debug (const ModelDataT < Model > & im, const ParamT < Model > & theta_init, ParamVecT < Model > & sequence, VecT & sequence_rllh) [protected], [virtual], [inherited]

Estimators that produce a sequence of results (e.g. IterativeEstimators) can override this dummy debug implementation.

Reimplemented in mappel::IterativeMaximizer < Model >, mappel::SimulatedAnnealingMaximizer < Model >, and mappel::CGaussMLE < Model >.

Definition at line 242 of file estimator impl.h.

References mappel::Estimator< Model >::compute_estimate(), mappel::Estimator< Model >::Error, mappel::← Estimator< Model >::record exit code().

Referenced by mappel::Estimator< Model >::estimate_max_debug(), mappel::CGaussMLE< Model >::name(), mappel::SimulatedAnnealingMaximizer< Model >::name(), and mappel::Estimator< Model >:: \sim Estimator().

8.52.4.5 template < class Model > void mappel::Estimator < Model >::compute_profile_estimate (const ModelDataT < Model > & im, const ParamT < Model > & theta_init, const IdxVecT & fixed_parameters, ParamT < Model > & theta_est, double & rllh) [protected], [virtual], [inherited]

Reimplemented in mappel::IterativeMaximizer < Model >.

Definition at line 192 of file estimator_impl.h.

References mappel::Estimator< Model >::model.

Referenced by mappel::ThreadedEstimator< Model >::estimate_profile_stack(), and mappel::Estimator< Model >:: \sim Estimator().

8.52.4.6 template < class Model > StencilT < Model > mappel::Estimator < Model > ::estimate_max (const ModelDataT < Model > & im) [inherited]

Definition at line 64 of file estimator_impl.h.

References mappel::Estimator< Model >::model.

Referenced by mappel::Estimator < Model >::estimate max(), and mappel::Estimator < Model >::~Estimator().

8.52.4.7 template < class Model > StencilT < Model > mappel::Estimator < Model > ::estimate_max (const ModelDataT < Model > & im. const ParamT < Model > & theta init) [inherited]

Definition at line 82 of file estimator impl.h.

References mappel::Estimator < Model >::estimate max(), and mappel::methods::objective::rllh().

8.52.4.8 template < class Model > StencilT < Model > mappel::Estimator < Model > ::estimate_max (const ModelDataT < Model > & im, double & rllh) [inherited]

Definition at line 73 of file estimator_impl.h.

References mappel::Estimator < Model >::estimate_max(), and mappel::Estimator < Model >::model.

8.52.4.9 template < class Model > StencilT < Model > mappel::Estimator < Model > ::estimate_max (const ModelDataT < Model > & im, const ParamT < Model > & theta_init, double & rllh) [inherited]

Definition at line 90 of file estimator impl.h.

References mappel::Estimator< Model >::compute_estimate(), mappel::Estimator< Model >::Error, mappel:: \leftarrow Estimator< Model >::record_exit_code(), and mappel ::Estimator< Model >::record_exit_code(), and mappel ::Estimator< Model >::record_walltime().

8.52.4.10 template < class Model > void mappel::Estimator < Model > ::estimate_max (const ModelDataT < Model > & im, ParamT < Model > & theta, double & rllh, MatT & obsl) [inherited]

Definition at line 119 of file estimator_impl.h.

 $References\ mappel::Estimator < Model > ::estimate_max(), and\ mappel::Estimator < Model > ::model.$

8.52.4.11 template < class Model > void mappel::Estimator < Model > ::estimate_max (const ModelDataT < Model > & im, const ParamT < Model > & theta_init, ParamT < Model > & theta, double & rllh, MatT & obsl) [inherited]

Definition at line 128 of file estimator_impl.h.

References mappel::Estimator< Model >::compute_estimate(), mappel::Estimator< Model >::Error, mappel::print← _image(), mappel::Estimator< Model >::record_exit_code(), mappel::Estimator< Model >::record_walltime(), and mappel::methods::objective::rllh().

8.52.4.12 template < class Model > void mappel::Estimator < Model > ::estimate_max_debug (const ModelDataT < Model > & im, const ParamT < Model > & theta_init, ParamT < Model > & theta_est, double & rllh, MatT & obsl, MatT & sequence, VecT & sequence rllh) [inherited]

Definition at line 158 of file estimator_impl.h.

References mappel::Estimator < Model >::compute_estimate_debug(), mappel::Estimator < Model >::model, mappel \leftarrow ::methods::observed_information(), mappel::Estimator < Model >::record_walltime(), and mappel::methods::objective \leftarrow ::rllh().

Referenced by mappel::Estimator < Model >::~Estimator().

8.52.4.13 template < class Model > void mappel::Estimator < Model > ::estimate_max_stack (const ModelDataStackT < Model > & im_stack, ParamVecT < Model > & theta_est_stack, VecT & rllh_stack, CubeT & obsl_stack)
[inherited]

Definition at line 170 of file estimator_impl.h.

References mappel::Estimator< Model >::estimate_max_stack(), and mappel::Estimator< Model >::model.

8.52.4.14 template < class Model > void mappel::ThreadedEstimator < Model > ::estimate_max_stack (const ModelDataStackT < Model > & im, const ParamVecT < Model > & theta_init, ParamVecT < Model > & theta, VecT & rllh, CubeT & obsl) [virtual]

Implements mappel::Estimator < Model >.

Definition at line 285 of file estimator_impl.h.

References mappel::Estimator< Model >::compute_estimate(), mappel::Estimator< Model >::Error, mappel:: \leftarrow Estimator< Model >::model, mappel::ThreadedEstimator< Model >::num_threads, mappel::print_image(), mappel \leftarrow ::ThreadedEstimator< Model >::record_exit_code(), mappel::Estimator< Model >::record_walltime(), and mappel \leftarrow ::methods::objective::openmp::rllh stack().

8.52.4.15 template < class Model > void mappel::ThreadedEstimator < Model > ::estimate_profile_stack (const ModelDataT < Model > & data, const IdxVecT & fixed_parameters, const MatT & values, const ParamVecT < Model > & theta_init, VecT & profile_likelihood, ParamVecT < Model > & profile_parameters) [virtual]

Implements mappel::Estimator < Model >.

Definition at line 323 of file estimator_impl.h.

 $References\ mappel::Estimator<\ Model>::compute_profile_estimate(),\ mappel::Estimator<\ Model>::Error,\ mappel\leftrightarrow::Estimator<\ Model>::mum_threads,\ mappel::print_image(),\ mappel\leftrightarrow::ThreadedEstimator<\ Model>::record_exit_code(),\ and\ mappel::Estimator<\ Model>::record_walltime().$

8.52.4.16 template < class Model > StatsT mappel::ThreadedEstimator < Model > ::get_debug_stats() [virtual]

Implements mappel::Estimator < Model >.

Reimplemented in mappel::IterativeMaximizer < Model >, mappel::SimulatedAnnealingMaximizer < Model >, mappel::CGaussMLE < Model >, mappel::CGaussHeuristicEstimator < Model >, and mappel::HeuristicEstimator < Model >.

Definition at line 372 of file estimator impl.h.

References mappel::ThreadedEstimator< Model >::get stats().

8.52.4.17 template < class Model > Model & mappel::Estimator < Model >::get_model() [inherited]

Definition at line 50 of file estimator_impl.h.

References mappel::Estimator< Model >::model.

Referenced by mappel::Estimator < Model >::~Estimator().

8.52.4.18 template < class Model > StatsT mappel::ThreadedEstimator < Model >::get_stats() [virtual]

Reimplemented from mappel::Estimator < Model >.

Reimplemented in mappel::IterativeMaximizer < Model >, mappel::SimulatedAnnealingMaximizer < Model >, mappel ← ::CGaussMLE < Model >, mappel::CGaussHeuristicEstimator < Model >, and mappel::HeuristicEstimator < Model >.

Definition at line 361 of file estimator impl.h.

References mappel::Estimator< Model >::get_stats(), mappel::ThreadedEstimator< Model >::mtx, mappel:: \leftarrow Estimator< Model >::num_estimations, mappel:: \leftarrow Estimator< Model >::num_threads, and mappel:: \leftarrow Estimator< Model >::total walltime.

8.52.4.19 template < class Model > virtual std::string mappel::Estimator < Model >::name() const [pure virtual], [inherited]

Referenced by mappel::Estimator < Model >::~Estimator().

8.52.4.20 template < class Model > void mappel::ThreadedEstimator < Model >::record_exit_code (ExitCode code) [protected],[virtual]

Implements mappel::Estimator < Model >.

Definition at line 386 of file estimator impl.h.

References mappel::Estimator< Model >::exit_counts, mappel::Estimator< Model >::model, mappel::Threaded \leftarrow Estimator< Model >::mtx, and mappel::methods::objective::rllh().

Referenced by mappel::IterativeMaximizer< Model >::backtrack(), mappel::CGaussMLE< Model >::compute - _estimate(), mappel::CGaussMLE< Model >::compute_estimate_debug(), mappel::IterativeMaximizer< Model >::compute_estimate_debug(), mappel::IterativeMaximizer< Model >::convergence_test(), mappel::Threaded - Estimator< Model >::estimate_max_stack(), mappel::ThreadedEstimator< Model >::estimate_profile_stack(), mappel::NewtonDiagonalMaximizer< Model >::maximize(), mappel::NewtonMaximizer< Model >::maximize(), and mappel::TrustRegionMaximizer< Model >::maximize().

8.52.4.21 template < class Model > void mappel::Estimator < Model >::record_walltime (ClockT::time_point start_walltime, int nimages) [protected], [inherited]

Definition at line 266 of file estimator impl.h.

References mappel::Estimator < Model >::num_estimations, and mappel::Estimator < Model >::total_walltime.

Referenced by mappel::Estimator< Model >::estimate_max(), mappel::Estimator< Model >::estimate_max_ \leftarrow debug(), mappel::ThreadedEstimator< Model >::estimate_max_stack(), and mappel::ThreadedEstimator< Model >::estimate profile stack().

8.52.4.22 template < class Model > void mappel::Estimator < Model >::set_model (Model & new_model) [inherited]

Definition at line 54 of file estimator impl.h.

References mappel::Estimator< Model >::model.

Referenced by mappel::Estimator < Model >::~Estimator().

8.52.5 Member Data Documentation

```
8.52.5.1 template < class Model > IdxVecT mappel::Estimator < Model >::exit_counts [protected], [inherited]
```

Definition at line 114 of file estimator.h.

Referenced by mappel::Estimator< Model >::clear_stats(), mappel::Estimator< Model >::get_stats(), and mappel::

ThreadedEstimator< Model >::record exit code().

8.52.5.2 template < class Model > int mappel::ThreadedEstimator < Model >::max threads [protected]

Definition at line 142 of file estimator.h.

8.52.5.3 template < class Model > Model& mappel::Estimator < Model >::model [protected], [inherited]

Definition at line 109 of file estimator.h.

Referenced by mappel::SimulatedAnnealingMaximizer< Model >::anneal(), mappel::IterativeMaximizer< Model >::backtrack(), mappel::Estimator< Model >::compute_estimate(), mappel::CGaussMLE< Model >::compute_estimate(), mappel::IterativeMaximizer< Model >::compute_estimate(), mappel::IterativeMaximizer< Model >::compute_estimate(), mappel::CGaussML ← E< Model >::compute_estimate_debug(), mappel::Estimator< Model >::compute_estimate_debug(), mappel::IterativeMaximizer< Model >::compute_estimate_compute_estimate = debug(), mappel::IterativeMaximizer< Model >::compute_estimate(), mappel::Estimator< Model >::compute_profile_estimate(), mappel::Estimator< Model >::estimate_max(), mappel::Estimator< Model >::estimate_max_debug(), mappel::Estimator< Model >::estimate_max_stack(), mappel::ThreadedEstimator< Model >::estimate_max_stack(), mappel::ThreadedEstimator< Model >::get_debug_stats(), mappel::Estimator< Model >::get_model(), mappel::ThreadedEstimator< Model >::get_model(), mappel::NewtonDiagonalMaximizer< Model >::maximize(), mappel::NewtonDiagonalMaximizer< Model >::maximize(), mappel::ThreadedEstimator< Model >::record ← gent_code(), and mappel::Estimator< Model >::record ← gent_code(), and mappel::Estimator< Model >::set_model().

8.52.5.4 template < class Model > std::mutex mappel::ThreadedEstimator < Model >::mtx [protected]

Definition at line 144 of file estimator.h.

Referenced by mappel::ThreadedEstimator< Model >::clear_stats(), mappel::IterativeMaximizer< Model >::clear = _stats(), mappel::ThreadedEstimator< Model >::get_stats(), mappel::IterativeMaximizer< Model >::get_stats(), mappel::ThreadedEstimator< Model >::record_exit_code(), and mappel::IterativeMaximizer< Model >::record_exit_code(), and mappel::IterativeMaximizer< Model >::record_exit_code().

8.52.5.5 template < class Model > int mappel::Estimator < Model >::num_estimations = 0 [protected], [inherited]

Definition at line 112 of file estimator.h.

Referenced by mappel::Estimator< Model >::clear_stats(), mappel::Estimator< Model >::get_stats(), mappel:: \leftarrow ::ThreadedEstimator< Model >::get_stats(), and mappel:: \leftarrow Estimator< Model >::record walltime().

8.52.5.6 template < class Model > int mappel::ThreadedEstimator < Model >::num_threads [protected]

Definition at line 143 of file estimator.h.

Referenced by mappel::ThreadedEstimator< Model >::clear_stats(), mappel::ThreadedEstimator< Model >::estimate_max_stack(), mappel::ThreadedEstimator< Model >::estimate_profile_stack(), and mappel::Threaded \leftarrow Estimator< Model >::get_stats().

Definition at line 39 of file estimator.h.

8.52.5.8 template < class Model > double mappel::Estimator < Model > ::total_walltime = 0. [protected], [inherited]

Definition at line 113 of file estimator.h.

Referenced by mappel::Estimator< Model >::clear_stats(), mappel::Estimator< Model >::get_stats(), mappel::

ThreadedEstimator< Model >::get_stats(), and mappel::Estimator< Model >::record_walltime().

The documentation for this class was generated from the following files:

- · estimator.h
- · estimator_impl.h

8.53 mappel::TrustRegionMaximizer < Model > Class Template Reference

#include </home/travis/build/markjolah/Mappel/include/Mappel/estimator.h>

Inheritance diagram for mappel::TrustRegionMaximizer < Model >:

Public Types

- using MaximizerData = typename IterativeMaximizer< Model >::MaximizerData
- enum ExitCode::IdxT {
 ExitCode::Unassigned = 8, ExitCode::MaxIter = 7, ExitCode::MaxBacktracks = 6, ExitCode::TrustRegionRadius = 5,
 ExitCode::GradRatio = 4, ExitCode::FunctionChange = 3, ExitCode::StepSize = 2, ExitCode::Success = 1,
 ExitCode::Error = 0 }

Public Member Functions

- TrustRegionMaximizer (Model &model, int max iterations=DEFAULT ITERATIONS)
- std::string name () const
- double mean_iterations ()
- · double mean backtracks ()
- double mean_fun_evals ()
- double mean_der_evals ()
- StatsT get stats ()
- StatsT get_debug_stats ()
- void clear stats ()
- void local_maximize (const ModelDataT < Model > &im, const StencilT < Model > &theta_init, StencilT < Model > &stencil, double &rllh)

Perform a local maximization to finish off a simulated annealing run.

- void estimate_max_stack (const ModelDataStackT< Model > &im, const ParamVecT< Model > &theta_init, ParamVecT< Model > &theta, VecT &rllh, CubeT &obsl)
- void estimate_profile_stack (const ModelDataT< Model > &data, const IdxVecT &fixed_parameters, const MatT &values, const ParamVecT< Model > &theta_init, VecT &profile_likelihood, ParamVecT< Model > &profile_
 parameters)
- Model & get_model ()
- void set_model (Model &new_model)
- StencilT < Model > estimate_max (const ModelDataT < Model > &im)
- StencilT< Model > estimate max (const ModelDataT< Model > &im, const ParamT< Model > &theta init)
- StencilT < Model > estimate max (const ModelDataT < Model > &im, double &rllh)
- StencilT < Model > estimate_max (const ModelDataT < Model > &im, const ParamT < Model > &theta_init, double &rllh)
- void estimate max (const ModelDataT < Model > &im, ParamT < Model > &theta, double &rllh, MatT &obsl)
- void estimate_max (const ModelDataT< Model > &im, const ParamT< Model > &theta_init, ParamT< Model > &theta, double &rllh, MatT &obsl)
- void estimate_max_debug (const ModelDataT< Model > &im, const ParamT< Model > &theta_init, ParamT< Model > &theta_est, double &rllh, MatT &obsl, MatT &sequence, VecT &sequence_rllh)

Static Public Attributes

- static const double rho_cauchy_min = 0.1
- static const double rho_obj_min = 0.25
- static const double rho_obj_opt = 0.75
- static const double delta decrease min = 0.125
- static const double delta decrease = 0.25

- static const double delta_increase = 2
- static const double min scaling = 1.0e-5
- static const double max scaling = 1.0e5
- static const double delta init min = 1.0e-3
- static const double delta init max = 1.0e3
- static const double boundary_stepback_min_kappa = 1.0 1.0e-5
- static constexpr int NumExitCodes = 9

Protected Member Functions

- void maximize (MaximizerData &data)
- VecT bound_step (const VecT &step_hat, const VecT &D, const VecT &theta, const VecT &lbound, const VecT &ubound)
- void record_run_statistics (const MaximizerData &data)
- StencilT< Model > compute_estimate (const ModelDataT< Model > &im, const ParamT< Model > &theta_init, double &rllh)
- virtual void compute_estimate (const ModelDataT< Model > &im, const ParamT< Model > &theta_init, ParamT< Model > &theta est, double &rllh, MatT &obsl)

Default base class implementation computes rllh and obsl seperately from stencil This should be overridden by Estimator subclasses that already have access to this information.

- StencilT< Model > compute_estimate_debug (const ModelDataT< Model > &im, const ParamT< Model > &theta_init, ParamVecT< Model > &sequence, VecT &sequence_rllh)
- void compute_profile_estimate (const ModelDataT< Model > &im, const ParamT< Model > &theta_init, const ldxVecT &fixed_parameters, ParamT< Model > &theta_est, double &rllh)
- virtual void maximize (MaximizerData &data)=0
- bool backtrack (MaximizerData &data)
- bool convergence_test (MaximizerData &data)
- void record exit code (ExitCode code)
- void record walltime (ClockT::time point start walltime, int nimages)

Static Protected Member Functions

- static VecT compute_D_scale (const VecT &oldDscale, const VecT &grad2)
- static double compute initial trust radius (const VecT &ghat)
- static double quadratic_model_value (const VecT &step, const VecT &grad, const MatT &hess)

Quadratic model value at given step Compute a quadratic model.

static void compute_bound_scaling_vec (const VecT &theta, const VecT &grad, const VecT &lbound, const VecT &ubound, VecT &v, VecT &Jv)

The vector used for bound constrained TR scaling.

- static VecT compute cauchy point (const VecT &g, const MatT &H, double delta)
- static VecT solve_TR_subproblem (const VecT &g, const MatT &H, double delta, double epsilon)

Exactly solver the TR subproblem even for non-positive definite H.

Protected Attributes

- · int max iterations
- double epsilon = 1e-6
- double delta = 1e-6
- double lambda min = 0.05
- double alpha = 1e-4
- int max backtracks = 8
- int total iterations = 0
- int total_backtracks = 0
- int total fun evals = 0
- int total der evals = 0
- IdxVecT last backtrack idxs
- int max_threads
- · int num_threads
- std::mutex mtx
- Model & model
- int num estimations = 0
- double total_walltime = 0.
- IdxVecT exit_counts

8.53.1 Detailed Description

template<class Model>
class mappel::TrustRegionMaximizer< Model>

Definition at line 375 of file estimator.h.

- 8.53.2 Member Typedef Documentation

Definition at line 377 of file estimator.h.

- 8.53.3 Member Enumeration Documentation
- $\textbf{8.53.3.1} \quad \textbf{template} < \textbf{class Model} > \textbf{enum mappel} :: \textbf{Estimator} :: \textbf{ExitCode} : \textbf{ldxT} \quad \texttt{[strong], [inherited]}$

Enumerator

Unassigned

MaxIter

MaxBacktracks

TrustRegionRadius

GradRatio

FunctionChange

StepSize

Success

Error

Definition at line 40 of file estimator.h.

- 8.53.4 Constructor & Destructor Documentation
- 8.53.4.1 template < class Model > mappel::TrustRegionMaximizer < Model >::TrustRegionMaximizer (Model & model, int max_iterations = DEFAULT_ITERATIONS) [inline]

Definition at line 392 of file estimator.h.

- 8.53.5 Member Function Documentation
- 8.53.5.1 template < class Model > bool mappel::IterativeMaximizer < Model >::backtrack (MaximizerData & data) [protected], [inherited]

Definition at line 647 of file estimator impl.h.

References mappel::IterativeMaximizer< Model >::alpha, mappel::IterativeMaximizer< Model >::convergence_ test(), mappel::IterativeMaximizer< Model >::MaximizerData::free_parameters, mappel::IterativeMaximizer< Model >::MaximizerData::grad, mappel::IterativeMaximizer< Model >::MaximizerData::im, mappel::IterativeMaximizer< Model >::MaximizerData::im, mappel::IterativeMaximizer< Model >::MaximizerData::max_backtracks, mappel::Estimator< Model >::max_backtracks, mappel::IterativeMaximizer< Model >::MaximizerData::record_backtrack(), mappel::convergence_ terration(), mappel::IterativeMaximizer< Model >::MaximizerData::record_ terration(), mappel::IterativeMaximizer< Model >::MaximizerData::restore_stencil(), mappel::methods::objective::rllh(), mappel::IterativeMaximizer< Model >::MaximizerData::relativeMaximizer< Model >::MaximizerData::save_stencil(), mappel::IterativeMaximizer< Model >::MaximizerData::saved_theta(), mappel::IterativeMaximizer< Model >::MaximizerData::stencil(), and mappel ::IterativeMaximizer< Model >::IterativeMaximizer</br>

Referenced by mappel::NewtonDiagonalMaximizer < Model >::maximize(), mappel::NewtonMaximizer < Model >::maximize(), and mappel::QuasiNewtonMaximizer < Model >::maximize().

8.53.5.2 template < class Model > VecT mappel::TrustRegionMaximizer < Model >::bound_step (const VecT & step_hat, const VecT & D, const VecT & theta, const VecT & lbound, const VecT & ubound) [protected]

This is alpha[d] from Coleman and Li

Definition at line 1301 of file estimator impl.h.

References mappel::IterativeMaximizer< Model >::alpha, and mappel::IterativeMaximizer< Model >::MaximizerData ::step.

8.53.5.3 template < class Model > void mappel::IterativeMaximizer < Model >::clear_stats () [virtual], [inherited]

Reimplemented from mappel::ThreadedEstimator< Model >.

Definition at line 625 of file estimator_impl.h.

References mappel::ThreadedEstimator< Model >::clear_stats(), mappel::ThreadedEstimator< Model >::mtx, mappel::IterativeMaximizer< Model >::total_backtracks, mappel::IterativeMaximizer< Model >::total_der_evals, mappel::IterativeMaximizer< Model >::total fun evals, and mappel::IterativeMaximizer< Model >::total iterations.

8.53.5.4 template < class Model > void mappel::TrustRegionMaximizer < Model >::compute_bound_scaling_vec (const VecT & theta, const VecT & g, const VecT & lbound, const VecT & ubound, VecT & v, VecT & Jv) [static], [protected]

The vector used for bound constrained TR scaling.

This v is from Coleman&Li (1996). It represents a scaling factor for bound constrained problems. For unconstrained problems v = sgn(grad);

In all cases

Definition at line 1265 of file estimator impl.h.

References mappel::IterativeMaximizer< Model >::MaximizerData::Ibound, mappel::Ign(), mappel::Iterative Aximizer Model >::MaximizerData::ubound.

8.53.5.5 template < class Model > VecT mappel::TrustRegionMaximizer < Model >::compute_cauchy_point (const VecT & g, const MatT & H, double delta) [static], [protected]

Definition at line 1342 of file estimator impl.h.

8.53.5.6 template < class Model > VecT mappel::TrustRegionMaximizer < Model >::compute_D_scale (const VecT & oldDscale, const VecT & grad2) [static], [protected]

This works for either minimization or maximization. sign(grad2) is not important

Definition at line 1226 of file estimator impl.h.

8.53.5.7 template < class Model > void mappel::Estimator < Model >::compute_estimate (const ModelDataT < Model > & im, const ParamT < Model > & theta_init, ParamT < Model > & theta_est, double & rllh, MatT & obsl)

[protected], [virtual], [inherited]

Default base class implementation computes rllh and obsl seperately from stencil This should be overridden by Estimator subclasses that already have access to this information.

Definition at line 183 of file estimator impl.h.

References mappel::Estimator< Model >::compute_estimate(), mappel::Estimator< Model >::model, and mappel \leftarrow ::methods::observed_information().

Implements mappel::Estimator < Model >.

Definition at line 753 of file estimator impl.h.

References mappel::IterativeMaximizer< Model >::maximize(), mappel::Estimator< Model >::model, mappel:: \leftarrow IterativeMaximizer< Model >::record_run_statistics(), mappel::IterativeMaximizer< Model >::MaximizerData::rllh, and mappel::IterativeMaximizer< Model >::MaximizerData::stencil().

Estimators that produce a sequence of results (e.g. IterativeEstimators) can override this dummy debug implementation.

Reimplemented from mappel::Estimator < Model >.

Definition at line 768 of file estimator impl.h.

References mappel::IterativeMaximizer< Model >::MaximizerData::get_theta_sequence(), mappel::Iterative
Maximizer< Model >::MaximizerData::get_theta_sequence_rllh(), mappel::IterativeMaximizer< Model >::max_
backtracks, mappel::IterativeMaximizer< Model >::max_iterations, mappel::IterativeMaximizer< Model >::maximize(), mappel::Estimator< Model >::model, mappel::print_image(), mappel::ThreadedEstimator< Model >::record_exit_
code(), mappel::IterativeMaximizer< Model >::record_run_statistics(), and mappel::IterativeMaximizer< Model >::
MaximizerData::stencil().

8.53.5.10 template < class Model > double mappel::TrustRegionMaximizer < Model >::compute_initial_trust_radius (const VecT & ghat) [inline], [static], [protected]

Works for minimization or maximization. Indepdendet of sign or grad

Definition at line 1239 of file estimator impl.h.

8.53.5.11 template < class Model > void mappel::IterativeMaximizer < Model >::compute_profile_estimate (const ModelDataT < Model > & im, const ParamT < Model > & theta_init, const IdxVecT & fixed_parameters, ParamT < Model > & theta_est, double & rllh) [protected], [virtual], [inherited]

Reimplemented from mappel::Estimator < Model >.

Definition at line 797 of file estimator_impl.h.

References mappel::IterativeMaximizer< Model >::maximize(), mappel::Estimator< Model >::model, mappel::← IterativeMaximizer< Model >::record_run_statistics(), mappel::IterativeMaximizer< Model >::MaximizerData::rllh, mappel::IterativeMaximizer< Model >::MaximizerData::set_fixed_parameters(), and mappel::IterativeMaximizer< Model >::MaximizerData::theta().

8.53.5.12 template < class Model > bool mappel::IterativeMaximizer < Model >::convergence_test (MaximizerData & data) [protected], [inherited]

Definition at line 731 of file estimator impl.h.

References mappel::IterativeMaximizer< Model >::delta, mappel::IterativeMaximizer< Model >::epsilon, mappel::← IterativeMaximizer< Model >::MaximizerData::free_parameters, mappel::IterativeMaximizer< Model >::Maximizer← Data::grad, mappel::IterativeMaximizer< Model >::MaximizerData::num_fixed_parameters, mappel::Threaded← Estimator< Model >::record_exit_code(), mappel::IterativeMaximizer< Model >::MaximizerData::rllh, mappel::← IterativeMaximizer< Model >::MaximizerData::saved_theta(), and mappel::IterativeMaximizer< Model >::Maximizer← Data::theta().

Referenced by mappel::IterativeMaximizer < Model >::backtrack().

8.53.5.13 template < class Model > StencilT < Model > mappel::Estimator < Model > ::estimate_max (const ModelDataT < Model > & im) [inherited]

Definition at line 64 of file estimator_impl.h.

References mappel::Estimator< Model >::model.

Referenced by mappel::Estimator< Model >::estimate max(), and mappel::Estimator< Model >::~Estimator().

8.53.5.14 template < class Model > StencilT < Model > mappel::Estimator < Model >::estimate_max (const ModelDataT < Model > & im, const ParamT < Model > & theta_init) [inherited]

Definition at line 82 of file estimator impl.h.

References mappel::Estimator < Model >::estimate max(), and mappel::methods::objective::rllh().

8.53.5.15 template < class Model > StencilT < Model > mappel::Estimator < Model > ::estimate_max (const ModelDataT < Model > & im, double & rllh) [inherited]

Definition at line 73 of file estimator impl.h.

References mappel::Estimator < Model >::estimate max(), and mappel::Estimator < Model >::model.

8.53.5.16 template < class Model > StencilT < Model > mappel::Estimator < Model > ::estimate_max (const ModelDataT < Model > & im, const ParamT < Model > & theta_init, double & rllh) [inherited]

Definition at line 90 of file estimator_impl.h.

References mappel::Estimator< Model >::compute_estimate(), mappel::Estimator< Model >::Error, mappel:: \leftarrow Estimator< Model >::record_exit_code(), and mappel \leftarrow ::Estimator< Model >::record_walltime().

8.53.5.17 template < class Model > void mappel::Estimator < Model > ::estimate_max (const ModelDataT < Model > & im, ParamT < Model > & theta, double & rllh, MatT & obsl) [inherited]

Definition at line 119 of file estimator_impl.h.

References mappel::Estimator< Model >::estimate_max(), and mappel::Estimator< Model >::model.

8.53.5.18 template < class Model > void mappel::Estimator < Model > ::estimate_max (const ModelDataT < Model > & im, const ParamT < Model > & theta_init, ParamT < Model > & theta, double & rllh, MatT & obsl) [inherited]

Definition at line 128 of file estimator impl.h.

References mappel::Estimator< Model >::compute_estimate(), mappel::Estimator< Model >::Error, mappel::print = _image(), mappel::Estimator< Model >::record_exit_code(), mappel::Estimator< Model >::record_walltime(), and mappel::methods::objective::rllh().

8.53.5.19 template < class Model > void mappel::Estimator < Model > ::estimate_max_debug (const ModelDataT < Model > & im, const ParamT < Model > & theta_init, ParamT < Model > & theta_est, double & rllh, MatT & obsl, MatT & sequence, VecT & sequence_rllh) [inherited]

Definition at line 158 of file estimator impl.h.

References mappel::Estimator < Model >::compute_estimate_debug(), mappel::Estimator < Model >::methods::observed_information(), mappel::Estimator < Model >::record_walltime(), and mappel::methods::objective \leftarrow ::rllh().

Referenced by mappel::Estimator < Model >::~Estimator().

8.53.5.20 template < class Model > void mappel::Estimator < Model > ::estimate_max_stack (const ModelDataStackT < Model > & im_stack, ParamVecT < Model > & theta_est_stack, VecT & rllh_stack, CubeT & obsl_stack)
[inherited]

Definition at line 170 of file estimator_impl.h.

References mappel::Estimator< Model >::estimate_max_stack(), and mappel::Estimator< Model >::model.

8.53.5.21 template < class Model > void mappel::ThreadedEstimator < Model >::estimate_max_stack (const ModelDataStackT < Model > & im, const ParamVecT < Model > & theta_init, ParamVecT < Model > & theta, VecT & rllh, CubeT & obsl) [virtual], [inherited]

Implements mappel::Estimator < Model >.

Definition at line 285 of file estimator impl.h.

References mappel::Estimator< Model >::compute_estimate(), mappel::Estimator< Model >::Error, mappel:: \leftarrow Estimator< Model >::model, mappel::ThreadedEstimator< Model >::num_threads, mappel::print_image(), mappel ::ThreadedEstimator< Model >::record_exit_code(), mappel::Estimator< Model >::record_walltime(), and mappel ::methods::objective::openmp::rllh_stack().

8.53.5.22 template < class Model > void mappel::ThreadedEstimator < Model > ::estimate_profile_stack (const ModelDataT < Model > & data, const IdxVecT & fixed_parameters, const MatT & values, const ParamVecT < Model > & theta_init, VecT & profile_likelihood, ParamVecT < Model > & profile_parameters) [virtual], [inherited]

Implements mappel::Estimator < Model >.

Definition at line 323 of file estimator impl.h.

References mappel::Estimator< Model >::compute_profile_estimate(), mappel::Estimator< Model >::Error, mappel :: Estimator< Model >::model, mappel::ThreadedEstimator< Model >::num_threads, mappel::print_image(), mappel ::ThreadedEstimator< Model >::record_exit_code(), and mappel::Estimator< Model >::record_walltime().

8.53.5.23 template < class Model > StatsT mappel::IterativeMaximizer < Model >::get_debug_stats() [virtual], [inherited]

Reimplemented from mappel::ThreadedEstimator< Model >.

Definition at line 609 of file estimator impl.h.

References mappel::IterativeMaximizer< Model >::MaximizerData::backtrack_idxs, mappel::IterativeMaximizer< Model >::get stats(), and mappel::IterativeMaximizer< Model >::last backtrack idxs.

8.53.5.24 template < class Model > Model & mappel::Estimator < Model > ::get_model() [inherited]

Definition at line 50 of file estimator_impl.h.

References mappel::Estimator< Model >::model.

Referenced by mappel::Estimator < Model >::~Estimator().

8.53.5.25 template < class Model > StatsT mappel::IterativeMaximizer < Model >::get_stats() [virtual], [inherited]

Reimplemented from mappel::ThreadedEstimator< Model >.

Definition at line 588 of file estimator_impl.h.

References mappel::IterativeMaximizer< Model >::delta, mappel::IterativeMaximizer< Model >::epsilon, mappel :::ThreadedEstimator< Model >::get_stats(), mappel::IterativeMaximizer< Model >::max_backtracks, mappel::: IterativeMaximizer< Model >::mtx, mappel::Estimator< Model >::num_estimations, mappel::IterativeMaximizer< Model >::total_backtracks, mappel::IterativeMaximizer< Model >::total_der_evals, mappel::IterativeMaximizer< Model >::total_fun_evals, and mappel::IterativeMaximizer< Model >::total iterations.

Referenced by mappel::SimulatedAnnealingMaximizer< Model >::get_debug_stats(), and mappel::Iterative \leftarrow Maximizer< Model >::get_debug_stats().

8.53.5.26 template < class Model > void mappel::IterativeMaximizer < Model >::local_maximize (const ModelDataT < Model > & im, const StencilT < Model > & theta_init, StencilT < Model > & stencil, double & rllh)

[inherited]

Perform a local maximization to finish off a simulated annealing run.

Definition at line 811 of file estimator_impl.h.

References mappel::IterativeMaximizer< Model >::maximize(), mappel::Estimator< Model >::model, mappel:: \leftarrow IterativeMaximizer< Model >::MaximizerData::rllh, and mappel::IterativeMaximizer< Model >::MaximizerData \leftarrow ::stencil().

Referenced by mappel::SimulatedAnnealingMaximizer< Model >::anneal().

8.53.5.27 template < class Model > virtual void mappel::IterativeMaximizer < Model >::maximize (MaximizerData & data) [protected], [pure virtual], [inherited]

Referenced by mappel::IterativeMaximizer< Model >::compute_estimate(), mappel::IterativeMaximizer< Model >::compute_estimate_debug(), mappel::IterativeMaximizer< Model >::compute_profile_estimate(), and mappel:: \leftarrow IterativeMaximizer< Model >::local_maximize().

8.53.5.28 template < class Model > void mappel::TrustRegionMaximizer < Model >::maximize (MaximizerData & data) [protected]

Definition at line 1059 of file estimator impl.h.

References mappel::IterativeMaximizer< Model >::delta, mappel::IterativeMaximizer< Model >::epsilon, mappel ::methods::objective::hessian(), mappel::Estimator< Model >::model, mappel::ThreadedEstimator< Model >::record = exit code(), and mappel::methods::objective::rllh().

```
8.53.5.29 template < class Model > double mappel::IterativeMaximizer < Model >::mean_backtracks( ) [inherited]
8.53.5.30 template < class Model > double mappel::IterativeMaximizer < Model >::mean_der_evals( ) [inherited]
8.53.5.31 template < class Model > double mappel::IterativeMaximizer < Model >::mean_fun_evals( ) [inherited]
8.53.5.32 template < class Model > double mappel::IterativeMaximizer < Model >::mean_iterations( ) [inherited]
8.53.5.33 template < class Model > std::string mappel::TrustRegionMaximizer < Model >::name( ) const [inline],
[virtual]
```

Implements mappel::Estimator < Model >.

Definition at line 395 of file estimator.h.

References mappel::methods::objective::grad(), and mappel::methods::objective::grad2().

```
8.53.5.34 template < class Model > double mappel::TrustRegionMaximizer < Model >::quadratic_model_value ( const VecT & step, const VecT & grad, const MatT & hess ) [inline], [static], [protected]
```

Quadratic model value at given step Compute a quadratic model.

Definition at line 1251 of file estimator impl.h.

```
8.53.5.35 template < class Model > void mappel::ThreadedEstimator < Model >::record_exit_code ( ExitCode code ) [protected], [virtual], [inherited]
```

Implements mappel::Estimator < Model >.

Definition at line 386 of file estimator impl.h.

References mappel::Estimator< Model >::exit_counts, mappel::Estimator< Model >::model, mappel::Threaded← Estimator< Model >::mtx, and mappel::methods::objective::rllh().

Referenced by mappel::IterativeMaximizer< Model >::backtrack(), mappel::CGaussMLE< Model >::compute - _estimate(), mappel::CGaussMLE< Model >::compute_estimate_debug(), mappel::IterativeMaximizer< Model >::compute_estimate_debug(), mappel::Threaded >::convergence_test(), mappel::Threaded >::convergence_test(), mappel::Threaded >::estimator< Model >::estimate_max_stack(), mappel::ThreadedEstimator< Model >::estimate_profile_stack(), mappel::NewtonDiagonalMaximizer< Model >::maximize(), mappel::NewtonMaximizer< Model >::maximize(), and mappel::TrustRegionMaximizer< Model >::maximize().

```
8.53.5.36 template < class Model > void mappel::IterativeMaximizer < Model >::record_run_statistics ( const MaximizerData & data ) [protected], [inherited]
```

Definition at line 636 of file estimator_impl.h.

References mappel::IterativeMaximizer< Model >::MaximizerData::get_backtrack_idxs(), mappel::IterativeMaximizer< Model >::MaximizerData::get_backtrack_idxs(), mappel::IterativeMaximizer< Model >::mtx, mappel::IterativeMaximizer< Model >::MaximizerData::nBacktracks, mappel::IterativeMaximizer< Model >::MaximizerData::nIterative. MaximizerData::save_seq, mappel::IterativeMaximizer< Model >::total_backtracks, mappel::← IterativeMaximizer< Model >::total_fun_evals, and mappel::← IterativeMaximizer< Model >::total_iterativeMaximizer< Model >::total_iterativeMaximizer<

Referenced by mappel::IterativeMaximizer< Model >::compute_estimate(), mappel::IterativeMaximizer< Model >-::compute estimate debug(), and mappel::IterativeMaximizer< Model >::compute profile estimate().

8.53.5.37 template < class Model > void mappel::Estimator < Model >::record_walltime (ClockT::time_point start_walltime, int nimages) [protected], [inherited]

Definition at line 266 of file estimator impl.h.

References mappel::Estimator < Model >::num estimations, and mappel::Estimator < Model >::total walltime.

Referenced by mappel::Estimator< Model >::estimate_max(), mappel::Estimator< Model >::estimate_max_ \leftarrow debug(), mappel::ThreadedEstimator< Model >::estimate_max_stack(), and mappel::ThreadedEstimator< Model >::estimate_profile_stack().

8.53.5.38 template < class Model > void mappel::Estimator < Model >::set_model (Model & new_model) [inherited]

Definition at line 54 of file estimator_impl.h.

References mappel::Estimator< Model >::model.

Referenced by mappel::Estimator < Model >:: \sim Estimator().

8.53.5.39 template < class Model > VecT mappel::TrustRegionMaximizer < Model >::solve_restricted_step_length_newton(const VecT & g, const MatT & H, double delta, double lambda_lb, double lambda_ub, double epsilon) [static], [protected]

Definition at line 1451 of file estimator_impl.h.

References mappel::cholesky(), mappel::cholesky_convert_lower_triangular(), mappel::cholesky_solve(), mappel::cholesky_solve(), mappel::cholesky_solve(), mappel::derativeMaximizer< Model >::epsilon, and mappel::lterativeMaximizer< Model >::lambda min.

8.53.5.40 template < class Model > VecT mappel::TrustRegionMaximizer < Model >::solve_TR_subproblem (const VecT & g, const MatT & H, double delta, double epsilon) [static], [protected]

Exactly solver the TR subproblem even for non-positive definite H.

This method is a hybrid technique mixing ideas from Geyer (2013) and the "trust" R-package Nocetal and Wright (2000) More and Sorensen (1981)

Definition at line 1359 of file estimator_impl.h.

References mappel::cholesky(), mappel::cholesky_solve(), mappel::IterativeMaximizer< Model >::delta, and mappel
::IterativeMaximizer< Model >::lambda min.

8.53.6 Member Data Documentation

8.53.6.1 template < class Model > double mappel::IterativeMaximizer < Model >::alpha = 1e-4 [protected], [inherited]

Definition at line 245 of file estimator.h.

Referenced by mappel::IterativeMaximizer< Model >::backtrack(), and mappel::TrustRegionMaximizer< Model >\ldots ::bound step().

8.53.6.2 template < class Model > const double mappel::TrustRegionMaximizer < Model >::boundary_stepback_min_kappa = 1.0 - 1.0e-5 [static]

Definition at line 390 of file estimator.h.

8.53.6.3 template < class Model > double mappel::IterativeMaximizer < Model >::delta = 1e-6 [protected], [inherited]

Definition at line 242 of file estimator.h.

Referenced by mappel::IterativeMaximizer< Model >::convergence_test(), mappel::IterativeMaximizer< Model >::get_stats(), mappel::NewtonMaximizer< Model >::maximize(), mappel::QuasiNewtonMaximizer< Model >::maximize(), mappel::TrustRegionMaximizer< Model >::solve_restricted_step_length_newton(), and mappel::TrustRegionMaximizer< Model >::solve_TR_subproblem().

8.53.6.4 template < class Model > const double mappel::TrustRegionMaximizer < Model >::delta_decrease = 0.25 [static]

Definition at line 383 of file estimator.h.

8.53.6.5 template < class Model > const double mappel::TrustRegionMaximizer < Model >::delta_decrease_min = 0.125 [static]

Definition at line 382 of file estimator.h.

8.53.6.6 template < class Model > const double mappel::TrustRegionMaximizer < Model >::delta_increase = 2 [static]

Definition at line 384 of file estimator.h.

8.53.6.7 template < class Model > const double mappel::TrustRegionMaximizer < Model >::delta_init_max = 1.0e3 [static]

Definition at line 389 of file estimator.h.

8.53.6.8 template < class Model > const double mappel::TrustRegionMaximizer < Model >::delta_init_min = 1.0e-3 [static]

Definition at line 388 of file estimator.h.

8.53.6.9 template < class Model > double mappel::IterativeMaximizer < Model > ::epsilon = 1e-6 [protected], [inherited]

Definition at line 241 of file estimator.h.

Referenced by mappel::IterativeMaximizer< Model >::convergence_test(), mappel::IterativeMaximizer< Model > \leftarrow ::get_stats(), mappel::TrustRegionMaximizer< Model >::maximize(), and mappel::TrustRegionMaximizer< Model > \leftarrow ::solve restricted step length newton().

```
8.53.6.10 template < class Model > IdxVecT mappel::Estimator < Model >::exit_counts [protected], [inherited]
```

Definition at line 114 of file estimator.h.

Referenced by mappel::Estimator < Model >::clear_stats(), mappel::Estimator < Model >::get_stats(), and mappel:: \leftarrow ThreadedEstimator < Model >::record_exit_code().

```
8.53.6.11 template < class Model > double mappel::IterativeMaximizer < Model >::lambda_min = 0.05 [protected], [inherited]
```

Definition at line 244 of file estimator.h.

Referenced by mappel::TrustRegionMaximizer < Model >::solve_restricted_step_length_newton(), and mappel::Trust <--- RegionMaximizer < Model >::solve TR subproblem().

```
8.53.6.12 template < class Model > IdxVecT mappel::IterativeMaximizer < Model >::last_backtrack_idxs [protected], [inherited]
```

Definition at line 255 of file estimator.h.

Referenced by mappel::IterativeMaximizer < Model >::get_debug_stats(), and mappel::IterativeMaximizer < Model > \cdot ::record run statistics().

```
8.53.6.13 template<class Model > int mappel::lterativeMaximizer< Model >::max_backtracks = 8 [protected], [inherited]
```

Definition at line 246 of file estimator.h.

Referenced by mappel::IterativeMaximizer< Model >::backtrack(), mappel::IterativeMaximizer< Model >::compute_ estimate debug(), and mappel::IterativeMaximizer< Model >::get stats().

```
8.53.6.14 template<class Model > int mappel::IterativeMaximizer< Model >::max_iterations [protected], [inherited]
```

Definition at line 238 of file estimator.h.

Referenced by mappel::IterativeMaximizer< Model >::compute_estimate_debug(), mappel::IterativeMaximizer< Model >::get_stats(), mappel::NewtonDiagonalMaximizer< Model >::maximize(), mappel::NewtonMaximizer< Model >::maximize(), and mappel::QuasiNewtonMaximizer< Model >::maximize().

```
8.53.6.15 template < class Model > const double mappel::TrustRegionMaximizer < Model >::max_scaling = 1.0e5 [static]
```

Definition at line 387 of file estimator.h.

```
8.53.6.16 template < class Model > int mappel::ThreadedEstimator < Model >::max_threads [protected], [inherited]
```

Definition at line 142 of file estimator.h.

8.53.6.17 template < class Model > const double mappel::TrustRegionMaximizer < Model >::min_scaling = 1.0e-5 [static]

Definition at line 386 of file estimator.h.

8.53.6.18 template < class Model > Model& mappel::Estimator < Model >::model [protected], [inherited]

Definition at line 109 of file estimator.h.

Referenced by mappel::SimulatedAnnealingMaximizer< Model >::anneal(), mappel::IterativeMaximizer< Model >::backtrack(), mappel::Estimator< Model >::compute_estimate(), mappel::CGaussMLE< Model >::compute_estimate(), mappel::IterativeMaximizer< Model >::compute_estimate(), mappel::IterativeMaximizer< Model >::compute_estimate(), mappel::CGaussML ← E< Model >::compute_estimate_debug(), mappel::Estimator< Model >::compute_estimate_debug(), mappel::IterativeMaximizer< Model >::compute_estimate_compute_estimate = debug(), mappel::IterativeMaximizer< Model >::compute_estimate(), mappel::IterativeMaximizer< Model >::compute_profile_estimate(), mappel::Estimator< Model >::estimate_max(), mappel::Estimator< Model >::estimate_max_debug(), mappel::IterativeMaximizer< Model >::estimate_max_stack(), mappel::ThreadedEstimator< Model >::estimate_max_stack(), mappel::IterativeMaximizer< Model >::estimate_max_stack(), mappel::IterativeMaximizer< Model >::estimate_max_stack(), mappel::IterativeMaximizer< Model >::estimate_max_stack(), mappel::ThreadedEstimator< Model >::get_model(), mappel::IterativeMaximizer< Model >::local_maximize(), mappel::NewtonDiagonalMaximizer< Model >::maximize(), mappel::ThreadedEstimator< Model >::record ← __exit_code(), and mappel::Estimator< Model >::set_model().

```
8.53.6.19 template < class Model > std::mutex mappel::ThreadedEstimator < Model >::mtx [protected], [inherited]
```

Definition at line 144 of file estimator.h.

Referenced by mappel::ThreadedEstimator< Model >::clear_stats(), mappel::IterativeMaximizer< Model >::clear \leftarrow _stats(), mappel::ThreadedEstimator< Model >::get_stats(), mappel::IterativeMaximizer< Model >::get_stats(), mappel::ThreadedEstimator< Model >::record_exit_code(), and mappel::IterativeMaximizer< Model >::record_ \leftarrow run_statistics().

```
8.53.6.20 template<class Model > int mappel::Estimator< Model >::num_estimations = 0 [protected], [inherited]
```

Definition at line 112 of file estimator.h.

Referenced by mappel::Estimator< Model >::clear_stats(), mappel::Estimator< Model >::get_stats(), mappel::ThreadedEstimator< Model >::get_stats(), and mappel:: \leftarrow Estimator< Model >::record walltime().

```
8.53.6.21 template<class Model > int mappel::ThreadedEstimator< Model >::num_threads [protected], [inherited]
```

Definition at line 143 of file estimator.h.

Referenced by mappel::ThreadedEstimator< Model >::clear_stats(), mappel::ThreadedEstimator< Model >::estimate_max_stack(), mappel::ThreadedEstimator< Model >::estimate_profile_stack(), and mappel::Threaded \leftarrow Estimator< Model >::get stats().

8.53.6.22 template < class Model > constexpr int mappel::Estimator < Model >::NumExitCodes = 9 [static], [inherited]

Definition at line 39 of file estimator.h.

8.53.6.23 template < class Model > const double mappel::TrustRegionMaximizer < Model >::rho_cauchy_min = 0.1 [static]

Definition at line 379 of file estimator.h.

8.53.6.24 template < class Model > const double mappel::TrustRegionMaximizer < Model >::rho_obj_min = 0.25 [static]

Definition at line 380 of file estimator.h.

8.53.6.25 template < class Model > const double mappel::TrustRegionMaximizer < Model >::rho_obj_opt = 0.75 [static]

Definition at line 381 of file estimator.h.

8.53.6.26 template < class Model > int mappel::IterativeMaximizer < Model >::total_backtracks = 0 [protected], [inherited]

Definition at line 250 of file estimator.h.

Referenced by mappel::IterativeMaximizer< Model >::clear_stats(), mappel::IterativeMaximizer< Model >::get_stats(), and mappel::IterativeMaximizer< Model >::record_run_statistics().

8.53.6.27 template < class Model > int mappel::IterativeMaximizer < Model > ::total_der_evals = 0 [protected], [inherited]

Definition at line 252 of file estimator.h.

Referenced by mappel::IterativeMaximizer< Model >::clear_stats(), mappel::IterativeMaximizer< Model >::get_stats(), and mappel::IterativeMaximizer< Model >::record_run_statistics().

Definition at line 251 of file estimator.h.

Referenced by mappel::IterativeMaximizer< Model >::clear_stats(), mappel::IterativeMaximizer< Model >::get_stats(), and mappel::IterativeMaximizer< Model >::record_run_statistics().

8.53.6.29 template < class Model > int mappel::Iterative Maximizer < Model >::total_iterations = 0 [protected], [inherited]

Definition at line 249 of file estimator.h.

Referenced by mappel::IterativeMaximizer < Model >::clear_stats(), mappel::IterativeMaximizer < Model >::get_stats(), and mappel::IterativeMaximizer < Model >::record run statistics().

9 File Documentation 793

```
8.53.6.30 template < class Model > double mappel::Estimator < Model >::total_walltime = 0. [protected], [inherited]
```

Definition at line 113 of file estimator.h.

Referenced by mappel::Estimator< Model >::clear_stats(), mappel::Estimator< Model >::get_stats(), mappel:: \leftarrow ThreadedEstimator< Model >::get_stats(), and mappel::Estimator< Model >::record_walltime().

The documentation for this class was generated from the following files:

- · estimator.h
- · estimator_impl.h

9 File Documentation

9.1 display.cpp File Reference

```
#include "Mappel/display.h"
```

Namespaces

mappel

Functions

- const char * mappel::lambda_term_color (int size, int Lidx)
- ostream & mappel::print_centered_title (ostream &out, char fill, int width, const char *title=nullptr)
- ostream & mappel::print_labeled_image (ostream &out, const arma::mat &im, const char *title, const char *color)
- template<>
 - std::ostream & mappel::print_image (std::ostream &out, const arma::vec &im)
- template<>
- std::ostream & mappel::print_image (std::ostream &out, const arma::mat &im)
- template<>
 - std::ostream & mappel::print_image (std::ostream &out, const arma::cube &im)

Variables

- const char * mappel::TERM_BLACK ="1;30"
- const char * mappel::TERM RED ="1;31"
- const char * mappel::TERM_GREEN ="1;32"
- const char * mappel::TERM YELLOW ="1;33"
- const char * mappel::TERM BLUE ="1;34"
- const char * mappel::TERM_MAGENTA ="1;35"
- const char * mappel::TERM CYAN ="1;36"
- const char * mappel::TERM_WHITE ="1;37"
- const char * mappel::TERM_DIM_BLACK ="0;30"
- const char * mappel::TERM DIM RED ="0;31"
- const char * mappel::TERM_DIM_GREEN ="0;32"
- const char * mappel::TERM_DIM_YELLOW ="0;33"
- const char * mappel::TERM_DIM_BLUE ="0;34"
- const char * mappel::TERM DIM MAGENTA ="0;35"
- const char * mappel::TERM DIM CYAN ="0;36"
- const char * mappel::TERM DIM WHITE ="0;37"

9.1.1 Detailed Description

Author

```
Mark J. Olah (mjo@cs.unm DOT edu)
```

Date

03-23-2014

9.2 display.h File Reference

```
#include <iostream>
#include <iomanip>
#include <armadillo>
```

Namespaces

• mappel

Functions

- template < class ImageT >
 std::ostream & mappel::print_image (std::ostream &out, const ImageT &im)
- template < class Vec >
 std::ostream & mappel::print_vec_row (std::ostream &out, const Vec &vec, const char *header, int header_width, const char *color=nullptr)

9.2.1 Detailed Description

Author

```
Mark J. Olah (mjo@cs.unm DOT edu)
```

Date

03-23-2014

9.3 estimator.h File Reference

The class declaration and inline and templated functions for the Estimator class hierarchy.

```
#include <exception>
#include <fstream>
#include <string>
#include <limits>
#include <memory>
#include <mutex>
#include <map>
#include "Mappel/rng.h"
#include "cGaussMLE/cGaussMLE.h"
#include "Mappel/util.h"
```

Classes

- class mappel::Estimator< Model >
- class mappel::ThreadedEstimator< Model >
- class mappel::HeuristicEstimator< Model >
- class mappel::CGaussHeuristicEstimator< Model >
- class mappel::CGaussMLE< Model >
- class mappel::SimulatedAnnealingMaximizer< Model >
- class mappel::IterativeMaximizer< Model >
- class mappel::IterativeMaximizer< Model >::MaximizerData
- class mappel::NewtonDiagonalMaximizer< Model >
- class mappel::NewtonMaximizer< Model >
- class mappel::QuasiNewtonMaximizer < Model >
- class mappel::TrustRegionMaximizer< Model >

Namespaces

mappel

Typedefs

• typedef std::chrono::high_resolution_clock ClockT

9.3.1 Detailed Description

The class declaration and inline and templated functions for the Estimator class hierarchy.

Author

Mark J. Olah (mjo@cs.unm DOT edu)

Date

04-01-2014

9.3.2 Typedef Documentation

9.3.2.1 typedef std::chrono::high_resolution_clock ClockT

Definition at line 25 of file estimator.h.

9.4 estimator_impl.h File Reference

```
#include <thread>
#include <cmath>
#include <armadillo>
#include "estimator.h"
#include "Mappel/rng.h"
#include "Mappel/numerical.h"
#include "Mappel/display.h"
```

Namespaces

· mappel

Functions

```
    template<class Model >
        std::ostream & mappel::operator<< (std::ostream &out, Estimator< Model > &estimator)
```

9.4.1 Detailed Description

Author

```
Mark J. Olah (mjo@cs.unm DOT edu)
```

Date

01-15-2014

9.5 estimator_statics.cpp File Reference

```
#include "Mappel/Gauss1DMAP.h"
#include "Mappel/estimator_impl.h"
```

Namespaces

mappel

9.5.1 Detailed Description

Author

```
Mark J. Olah (mjo@cs.unm DOT edu)
```

Date

01-15-2014

9.6 Gauss1DMAP.cpp File Reference

The class definition and template Specializations for Gauss1DMAP.

```
#include "Mappel/Gauss1DMAP.h"
```

Namespaces

mappel

9.6.1 Detailed Description

The class definition and template Specializations for Gauss1DMAP.

Author

```
Mark J. Olah (mjo@cs.unm DOT edu)
```

Date

2014-2019

9.7 Gauss1DMAP.h File Reference

The class declaration and inline and templated functions for Gauss1DMAP.

```
#include "Mappel/Gauss1DModel.h"
#include "Mappel/PoissonNoise1DObjective.h"
#include "Mappel/MAPEstimator.h"
#include "Mappel/model_methods.h"
```

Classes

• class mappel::Gauss1DMAP

A 1D Gaussian with fixed PSF under an Poisson Read Noise assumption and MAP Objective.

Namespaces

mappel

9.7.1 Detailed Description

The class declaration and inline and templated functions for Gauss1DMAP.

Author

```
Mark J. Olah (mjo@cs.unm DOT edu)
```

Date

2014-2019

9.8 Gauss1DMLE.cpp File Reference

The class definition and template Specializations for Gauss1DMLE.

```
#include "Mappel/Gauss1DMLE.h"
```

Namespaces

mappel

9.8.1 Detailed Description

The class definition and template Specializations for Gauss1DMLE.

Author

Mark J. Olah (mjo@cs.unm DOT edu)

Date

2014-2019

9.9 Gauss1DMLE.h File Reference

The class declaration and inline and templated functions for Gauss1DMLE.

```
#include "Mappel/Gauss1DModel.h"
#include "Mappel/PoissonNoise1DObjective.h"
#include "Mappel/MLEstimator.h"
#include "Mappel/model_methods.h"
```

Classes

• class mappel::Gauss1DMLE

A 1D Gaussian with fixed PSF under an Poisson noise assumption and maximum-likelihood objective.

Namespaces

mappel

9.9.1 Detailed Description

The class declaration and inline and templated functions for Gauss1DMLE.

Author

```
Mark J. Olah (mjo@cs.unm DOT edu)
```

Date

2014-2019

9.10 Gauss1DModel.cpp File Reference

The class definition and template Specializations for Gauss1DModel.

```
#include "Mappel/Gauss1DModel.h"
#include "Mappel/stencil.h"
```

Namespaces

mappel

Functions

std::ostream & mappel::operator<< (std::ostream &out, const Gauss1DModel::Stencil &s)

9.10.1 Detailed Description

The class definition and template Specializations for Gauss1DModel.

Author

```
Mark J. Olah (mjo@cs.unm DOT edu)
```

Date

2014-2019

9.11 Gauss1DModel.h File Reference

The class declaration and inline and templated functions for Gauss1DModel.

```
#include "Mappel/PointEmitterModel.h"
#include "Mappel/ImageFormat1DBase.h"
#include "Mappel/MCMCAdaptor1D.h"
```

Classes

• class mappel::Gauss1DModel

A base class for 1D Gaussian PSF with a fixed sigma (standard dev.)

• class mappel::Gauss1DModel::Stencil

Stencil for 1D fixed-sigma models.

Namespaces

· mappel

9.11.1 Detailed Description

The class declaration and inline and templated functions for Gauss1DModel.

Author

Mark J. Olah (mjo@cs.unm DOT edu)

Date

2014-2019

9.12 Gauss1DsMAP.cpp File Reference

The class definition and template Specializations for Gauss1DsMAP.

```
#include "Mappel/Gauss1DsMAP.h"
```

Namespaces

mappel

9.12.1 Detailed Description

The class definition and template Specializations for Gauss1DsMAP.

Author

```
Mark J. Olah (mjo@cs.unm DOT edu)
```

Date

2017

9.13 Gauss1DsMAP.h File Reference

The class declaration and inline and templated functions for Gauss1DsMAP.

```
#include "Mappel/Gauss1DsModel.h"
#include "Mappel/PoissonNoise1DObjective.h"
#include "Mappel/MAPEstimator.h"
#include "Mappel/model_methods.h"
```

Classes

· class mappel::Gauss1DsMAP

A 1D Gaussian with variable PSF sigma under an Poisson read noise assumption and MAP Objective.

Namespaces

mappel

9.13.1 Detailed Description

The class declaration and inline and templated functions for Gauss1DsMAP.

Author

```
Mark J. Olah (mjo@cs.unm DOT edu)
```

Date

2014-2019

9.14 Gauss1DsMLE.cpp File Reference

The class definition and template Specializations for Gauss1DsMLE.

```
#include "Mappel/Gauss1DsMLE.h"
```

Namespaces

mappel

9.14.1 Detailed Description

The class definition and template Specializations for Gauss1DsMLE.

Author

```
Mark J. Olah (mjo@cs.unm DOT edu)
```

Date

2017

9.15 Gauss1DsMLE.h File Reference

The class declaration and inline and templated functions for Gauss1DsMLE.

```
#include "Mappel/Gauss1DsModel.h"
#include "Mappel/PoissonNoise1DObjective.h"
#include "Mappel/MLEstimator.h"
#include "Mappel/model_methods.h"
```

Classes

class mappel::Gauss1DsMLE

A 1D Gaussian with variable PSF under an Poisson noise assumption and maximum-likelihood estimator.

Namespaces

mappel

9.15.1 Detailed Description

The class declaration and inline and templated functions for Gauss1DsMLE.

Author

```
Mark J. Olah (mjo@cs.unm DOT edu)
```

Date

2014-2019

9.16 Gauss1DsModel.cpp File Reference

The class definition and template Specializations for Gauss1DsModel.

```
#include "Mappel/Gauss1DsModel.h"
#include "Mappel/stencil.h"
```

Namespaces

mappel

Functions

std::ostream & mappel::operator<< (std::ostream &out, const Gauss1DsModel::Stencil &s)

9.16.1 Detailed Description

The class definition and template Specializations for Gauss1DsModel.

Author

```
Mark J. Olah (mjo@cs.unm DOT edu)
```

Date

2014-2019

9.17 Gauss1DsModel.h File Reference

The class declaration and inline and templated functions for Gauss1DsModel.

```
#include "Mappel/PointEmitterModel.h"
#include "Mappel/ImageFormat1DBase.h"
#include "Mappel/MCMCAdaptor1Ds.h"
```

Classes

• class mappel::Gauss1DsModel

Base class for 1D Gaussian PSF with variable Gaussian sigma (standard deviation) measured in units of pixels.

• class mappel::Gauss1DsModel::Stencil

Stencil for 1D variable-sigma models.

Namespaces

mappel

9.17.1 Detailed Description

The class declaration and inline and templated functions for Gauss1DsModel.

Author

Mark J. Olah (mjo@cs.unm DOT edu)

Date

2014-2019

9.18 Gauss2DMAP.cpp File Reference

The class definition and template Specializations for Gauss2DMAP.

```
#include "Mappel/Gauss2DMAP.h"
```

Namespaces

mappel

9.18.1 Detailed Description

The class definition and template Specializations for Gauss2DMAP.

Author

```
Mark J. Olah (mjo@cs.unm DOT edu)
```

Date

2014-2019

9.19 Gauss2DMAP.h File Reference

The class declaration and inline and templated functions for Gauss2DMAP.

```
#include "Mappel/Gauss2DModel.h"
#include "Mappel/PoissonNoise2DObjective.h"
#include "Mappel/MAPEstimator.h"
#include "Mappel/model_methods.h"
```

Classes

· class mappel::Gauss2DMAP

A 2D Gaussian with fixed PSF under an Poisson Read Noise assumption and MAP Objective.

Namespaces

mappel

9.19.1 Detailed Description

The class declaration and inline and templated functions for Gauss2DMAP.

Author

```
Mark J. Olah (mjo@cs.unm DOT edu)
```

Date

2014-2019

9.20 Gauss2DMLE.cpp File Reference

The class definition and template Specializations for Gauss2DMLE.

```
#include "Mappel/Gauss2DMLE.h"
```

Namespaces

mappel

9.20.1 Detailed Description

The class definition and template Specializations for Gauss2DMLE.

Author

```
Mark J. Olah (mjo@cs.unm DOT edu)
```

Date

2014-2019

9.21 Gauss2DMLE.h File Reference

The class declaration and inline and templated functions for Gauss2DMLE.

```
#include "Mappel/Gauss2DModel.h"
#include "Mappel/PoissonNoise2DObjective.h"
#include "Mappel/MLEstimator.h"
#include "Mappel/model_methods.h"
```

Classes

• class mappel::Gauss2DMLE

A 2D Gaussian with fixed PSF under an Poisson noise assumption and maximum-likelihood objective.

Namespaces

mappel

9.21.1 Detailed Description

The class declaration and inline and templated functions for Gauss2DMLE.

Author

```
Mark J. Olah (mjo@cs.unm DOT edu)
```

Date

2014-2019

9.22 Gauss2DModel.cpp File Reference

The class definition and template Specializations for Gauss2DModel.

```
#include "Mappel/Gauss2DModel.h"
#include "Mappel/stencil.h"
```

Namespaces

mappel

Functions

• std::ostream & mappel::operator<< (std::ostream &out, const Gauss2DModel::Stencil &s)

9.22.1 Detailed Description

The class definition and template Specializations for Gauss2DModel.

Author

```
Mark J. Olah (mjo@cs.unm DOT edu)
```

Date

2014-2019

9.23 Gauss2DModel.h File Reference

The class declaration and inline and templated functions for Gauss2DModel.

```
#include "Mappel/PointEmitterModel.h"
#include "Mappel/ImageFormat2DBase.h"
#include "Mappel/MCMCAdaptor2D.h"
#include "Mappel/Gauss1DMAP.h"
```

Classes

· class mappel::Gauss2DModel

A base class for 2D Gaussian PSF with fixed but possibly asymmetric sigma.

· class mappel::Gauss2DModel::Stencil

Stencil for 2D fixed-sigma models.

Namespaces

mappel

Functions

- template < class Model >
 std::enable_if < std::is_base_of < Gauss2DModel, Model > ::value, ParamT < Model > > ::type mappel::cgauss
 _heuristic_compute_estimate (const Model & model, const ModelDataT < Model > & im, const ParamT < Model > & theta_init)
- template < class Model >
 std::enable_if < std::is_base_of < Gauss2DModel, Model > ::value, ParamT < Model > > ::type mappel::cgauss ←
 _compute_estimate (Model & model, const ModelDataT < Model > & im, const ParamT < Model > & theta_init, int max_iterations)
- template < class Model >
 std::enable_if < std::is_base_of < Gauss2DModel, Model > ::value, ParamT < Model > > ::type mappel::cgauss
 _compute_estimate_debug (const Model & model, const ModelDataT < Model > & im, const ParamT < Model >
 & theta_init, int max_iterations, ParamVecT < Model > & sequence)

9.23.1 Detailed Description

The class declaration and inline and templated functions for Gauss2DModel.

Author

Mark J. Olah (mjo@cs.unm DOT edu)

Date

2014-2019

9.24 Gauss2DsMAP.cpp File Reference

The class definition and template Specializations for Gauss2DsMAP.

```
#include "Mappel/Gauss2DsMAP.h"
```

Namespaces

mappel

9.24.1 Detailed Description

The class definition and template Specializations for Gauss2DsMAP.

Author

```
Mark J. Olah (mjo@cs.unm DOT edu)
```

Date

2014-2019

9.25 Gauss2DsMAP.h File Reference

The class declaration and inline and templated functions for Gauss2DsMAP.

```
#include "Mappel/Gauss2DsModel.h"
#include "Mappel/PoissonNoise2DObjective.h"
#include "Mappel/MLEstimator.h"
#include "Mappel/model_methods.h"
```

Classes

class mappel::Gauss2DsMAP

A 2D Gaussian with a variable scalar PSF sigma under a Poisson noise assumption using a maximum a-posteriori objective.

Namespaces

mappel

9.25.1 Detailed Description

The class declaration and inline and templated functions for Gauss2DsMAP.

Author

```
Mark J. Olah (mjo@cs.unm DOT edu)
```

Date

2014-2019

9.26 Gauss2DsMLE.cpp File Reference

The class definition and template Specializations for Gauss2DsMLE.

```
#include "Mappel/Gauss2DsMLE.h"
```

Namespaces

mappel

9.26.1 Detailed Description

The class definition and template Specializations for Gauss2DsMLE.

Author

```
Mark J. Olah (mjo@cs.unm DOT edu)
```

Date

2014-2019

9.27 Gauss2DsMLE.h File Reference

The class declaration and inline and templated functions for Gauss2DsMLE.

```
#include "Mappel/Gauss2DsModel.h"
#include "Mappel/PoissonNoise2DObjective.h"
#include "Mappel/MLEstimator.h"
#include "Mappel/model_methods.h"
```

Classes

class mappel::Gauss2DsMLE

A 2D Gaussian with a variable scalar PSF sigma under a Poisson noise assumption using a maximum-likelihood objective.

Namespaces

mappel

9.27.1 Detailed Description

The class declaration and inline and templated functions for Gauss2DsMLE.

Author

```
Mark J. Olah (mjo@cs.unm DOT edu)
```

Date

2014-2019

9.28 Gauss2DsModel.cpp File Reference

The class definition and template Specializations for Gauss2DsModel.

```
#include "Mappel/Gauss2DsModel.h"
#include "Mappel/stencil.h"
```

Namespaces

mappel

Functions

std::ostream & mappel::operator<< (std::ostream &out, const Gauss2DsModel::Stencil &s)

9.28.1 Detailed Description

The class definition and template Specializations for Gauss2DsModel.

Author

```
Mark J. Olah (mjo@cs.unm DOT edu)
```

Date

2014-2019

9.29 Gauss2DsModel.h File Reference

The class declaration and inline and templated functions for Gauss2DsModel.

```
#include "Mappel/PointEmitterModel.h"
#include "Mappel/ImageFormat2DBase.h"
#include "Mappel/MCMCAdaptor2Ds.h"
#include "Mappel/Gauss1DsMAP.h"
```

Classes

· class mappel::Gauss2DsModel

A base class for 2D Gaussian PSF where the gaussian sigma is controlled by a single scalar parameter which is called sigma_ratio. The size of the gaussian psf is sigma_ratio*psf_sigma, where psf_sigma is considered as a vector [psf_\circ sigmaX, psf_sigmaY].

• class mappel::Gauss2DsModel::Stencil

Stencil for 2D scalar-sigma models.

Namespaces

mappel

Functions

- template<class Model > std::enable_if< std::is_base_of< Gauss2DsModel, Model >::value, ParamT< Model > >::type mappel ← ::cgauss_heuristic_compute_estimate (const Model &model, const ModelDataT< Model > &im, const ParamT< Model > &theta init)
- template < class Model >
 std::enable_if < std::is_base_of < Gauss2DsModel, Model >::value, ParamT < Model > >::type mappel ←
 ::cgauss_compute_estimate (Model &model, const ModelDataT < Model > &im, const ParamT < Model >
 &theta_init, int max_iterations)
- template<class Model >
 std::enable_if< std::is_base_of< Gauss2DsModel, Model >::value, ParamT< Model > >::type mappel
 ::cgauss_compute_estimate_debug (const Model &model, const ModelDataT< Model > &im, const ParamT
 Model > &theta_init, int max_iterations, ParamVecT< Model > &sequence)

9.29.1 Detailed Description

The class declaration and inline and templated functions for Gauss2DsModel.

Author

Mark J. Olah (mjo@cs.unm DOT edu)

Date

2014-2019

9.30 Gauss2DsxyMAP.h File Reference

The class declaration and inline and templated functions for Gauss2DsxyMAP.

```
#include "Mappel/PoissonNoise2DObjective.h"
#include "Mappel/MAPEstimator.h"
#include "Mappel/Gauss1DModel.h"
#include "Mappel/model_methods.h"
```

Classes

class mappel::Gauss2DsxyMAP

A 1D Gaussian with fixed PSF under an Poisson Read Noise assumption and MAP Objective.

Namespaces

· mappel

9.30.1 Detailed Description

The class declaration and inline and templated functions for Gauss2DsxyMAP.

Author

```
Mark J. Olah (mjo@cs.unm DOT edu)
```

Date

2017

9.31 Gauss2DsxyModel.h File Reference

The class declaration and inline and templated functions for Gauss2DsxyModel.

```
#include "Mappel/PointEmitterModel.h"
#include "Mappel/ImageFormat2DBase.h"
#include "Mappel/Gauss1DsMAP.h"
```

Classes

· class mappel::Gauss2DsxyModel

A base class for 2D Gaussian PSF with axis-aligned gaussian with free parameters for both sigma_x and sigma_ \leftarrow y. Gaussian sigma parameters sigma_x and sigma_y are measured in units of pixels. The model has 6 parameters, [x,y,l,bg,sigma_x,sigma_y].

class mappel::Gauss2DsxyModel::Stencil

Stencil for 2D free-sigma (astigmatic) models.

Namespaces

mappel

Functions

- template < class Model >
 std::enable_if < std::is_base_of < Gauss2DsxyModel, Model >::value, ParamT < Model > >::type mappel ←
 ::cgauss_heuristic_compute_estimate (const Model & model, const ModelDataT < Model > &im, const ParamT <
 Model > &theta init)
- template < class Model >
 std::enable_if < std::is_base_of < Gauss2DsxyModel, Model >::value, ParamT < Model > >::type mappel ←
 ::cgauss_compute_estimate (Model &model, const ModelDataT < Model > &im, const ParamT < Model >
 &theta init, int max iterations)
- template < class Model >
 std::enable_if < std::is_base_of < Gauss2DsxyModel, Model >::value, ParamT < Model > >::type mappel ←
 ::cgauss_compute_estimate_debug (const Model & model, const ModelDataT < Model > &im, const ParamT <
 Model > &theta init, int max iterations, ParamVecT < Model > &sequence)

9.31.1 Detailed Description

The class declaration and inline and templated functions for Gauss2DsxyModel.

Author

Mark J. Olah (mjo@cs.unm DOT edu)

Date

2014-2019

9.32 ImageFormat1DBase.cpp File Reference

The class definition and template Specializations for ImageFormat1DBase.

```
#include "Mappel/ImageFormat1DBase.h"
```

Namespaces

mappel

9.32.1 Detailed Description

The class definition and template Specializations for ImageFormat1DBase.

Author

```
Mark J. Olah (mjo@cs.unm DOT edu)
```

Date

2014-2019

9.33 ImageFormat1DBase.h File Reference

The class declaration and inline and templated functions for ImageFormat1DBase.

```
#include "Mappel/util.h"
#include "Mappel/ImageFormat2DBase.h"
```

Classes

· class mappel::ImageFormat1DBase

A virtual base class for 2D image localization objectives.

Namespaces

- mappel
- mappel::methods

Templated functions for operating on a PointEmitterModel.

Functions

template < class Model >
 ReturnIfSubclassT < ImageT < Model >, Model, ImageFormat1DBase > mappel::methods::model_image (const Model & model, const StencilT < Model > &s)

9.33.1 Detailed Description

The class declaration and inline and templated functions for ImageFormat1DBase.

Author

```
Mark J. Olah (mjo@cs.unm DOT edu)
```

Date

2014-2019 The virtual base class for all point 2D image based emitter Models and Objectives

9.34 ImageFormat2DBase.cpp File Reference

The class definition and template Specializations for ImageFormat2DBase.

```
#include "Mappel/ImageFormat2DBase.h"
```

Namespaces

· mappel

9.34.1 Detailed Description

The class definition and template Specializations for ImageFormat2DBase.

Author

Mark J. Olah (mjo@cs.unm DOT edu)

Date

2014-2019

9.35 ImageFormat2DBase.h File Reference

The class declaration and inline and templated functions for ImageFormat2DBase.

```
#include "Mappel/util.h"
```

Classes

· class mappel::ImageFormat2DBase

A virtual base class for 2D image localization objectives.

Namespaces

- mappel
- mappel::methods

Templated functions for operating on a PointEmitterModel.

Functions

template < class Model >
 ReturnIfSubclassT < ImageT < Model >, Model, ImageFormat2DBase > mappel::methods::model_image (const Model &model, const typename Model::Stencil &s)

9.35.1 Detailed Description

The class declaration and inline and templated functions for ImageFormat2DBase.

Author

```
Mark J. Olah (mjo@cs.unm DOT edu)
```

Date

2014-2019 The virtual base class for all point 2D image based emitter Models and Objectives

9.36 Install.md File Reference

9.37 MAPEstimator.h File Reference

Class declaration and inline and templated functions for MAPEstimator.

```
#include "Mappel/PointEmitterModel.h"
#include "Mappel/MLEstimator.h"
```

Classes

· class mappel::MAPEstimator

A Mixin class to configure a for MLE estimation (null prior).

Namespaces

- mappel
- · mappel::methods

Templated functions for operating on a PointEmitterModel.

- mappel::methods::objective
- · mappel::methods::objective::debug

Functions

template<class Model >
 ReturnIfSubclassT< double, Model, MAPEstimator > mappel::methods::objective::llh (const Model &model, const ModelDataT< Model > &data im, const StencilT< Model > &s)

template<class Model >

 $ReturnIfSubclassT < double, \ MaPEstimator > mappel::methods::objective::rllh \ (const \ Model \ \&model, \ const \ ModelDataT < Model > \&data_im, \ const \ StencilT < Model > \&s)$

template<class Model >

ReturnIfSubclassT< ParamT< Model >, Model, MAPEstimator > mappel::methods::objective::grad (const Model &model, const ModelDataT< Model > &data_im, const StencilT< Model > &s)

template<class Model >

ReturnIfSubclassT< void, Model, MAPEstimator > mappel::methods::objective::grad2 (const Model &model, const ModelDataT< Model > &data_im, const StencilT< Model > &s, ParamT< Model > &grad, ParamT< Model > &grad2)

template<class Model >

ReturnIfSubclassT< void, Model, MAPEstimator > mappel::methods::objective::hessian (const Model &model, const ModelDataT< Model > &data im, const StencilT< Model > &s, ParamT< Model > &grad, MatT &hess)

template<class Model >

ReturnIfSubclassT< VecT, Model, MAPEstimator > mappel::methods::objective::debug::llh_components (const Model &model, const ModelDataT< Model > &data im, const StencilT< Model > &s)

• template<class Model >

 $ReturnIfSubclassT < VecT, Model, MAPEstimator > mappel::methods::objective::debug::rllh_components (const Model \&model, const ModelDataT < Model > \&data_im, const StencilT < Model > \&s)\\$

template<class Model >

ReturnIfSubclassT< MatT, Model, MAPEstimator > mappel::methods::objective::debug::grad_components (const Model &model, const ModelDataT< Model > &data_im, const StencilT< Model > &s)

template < class Model >

ReturnIfSubclassT< CubeT, Model, MAPEstimator > mappel::methods::objective::debug::hessian_components (const Model &model, const ModelDataT< Model > &data im, const StencilT< Model > &s)

9.37.1 Detailed Description

Class declaration and inline and templated functions for MAPEstimator.

Author

Mark J. Olah (mjo@cs.unm DOT edu)

Date

2017-2019

9.38 mcmc.cpp File Reference

#include "Mappel/util.h"

Namespaces

- mappel
- mappel::mcmc

Functions

- IdxT mappel::mcmc::num_oversample (IdxT Nsample, IdxT Nburnin, IdxT thin)
- MatT mappel::mcmc::thin sample (MatT &sample, IdxT Nburnin, IdxT thin)
- void mappel::mcmc::thin_sample (const MatT &sample, const VecT &sample_rllh, ldxT Nburnin, ldxT thin, MatT &subsample, VecT &subsample_rllh)

9.39 mcmc.h File Reference

Templated MCMC methods for posterior estimation.

```
#include <cmath>
#include "Mappel/util.h"
#include "Mappel/rng.h"
#include <trng/uniform01_dist.hpp>
```

Namespaces

- mappel
- · mappel::mcmc

Functions

- IdxT mappel::mcmc::num_oversample (IdxT Nsample, IdxT Nburnin, IdxT thin)
- MatT mappel::mcmc::thin sample (MatT &sample, IdxT Nburnin, IdxT thin)
- void mappel::mcmc::thin_sample (const MatT &sample, const VecT &sample_rllh, ldxT Nburnin, ldxT thin, MatT &subsample, VecT &subsample_rllh)
- void mappel::mcmc::estimate_sample_posterior (const MatT &sample, VecT &theta_posterior_mean, MatT &theta_posterior_cov)
- template<class Model >
 void mappel::mcmc::sample_posterior (Model &model, const ModelDataT< Model > &im, const StencilT< Model
 > &theta_init, MatT &sample, VecT &sample_rllh)
- template<class Model > void mappel::mcmc::sample_posterior_debug (Model &model, const ModelDataT< Model > &im, const StencilT< Model > &theta_init, MatT &sample, VecT &sample_rllh, MatT &candidate, VecT &candidate_ rllh)

```
9.39.1 Detailed Description
```

Templated MCMC methods for posterior estimation.

Author

```
Mark J. Olah (mjo@cs.unm DOT edu)
```

Date

2015-2019

9.40 MCMCAdaptor1D.cpp File Reference

The class definition and template Specializations for MCMCAdaptor1D.

```
#include "Mappel/MCMCAdaptor1D.h"
```

Namespaces

mappel

9.40.1 Detailed Description

The class definition and template Specializations for MCMCAdaptor1D.

Author

```
Mark J. Olah (mjo@cs.unm DOT edu)
```

Date

2018

9.41 MCMCAdaptor1D.h File Reference

The class declaration and inline and templated functions for MCMCAdaptor1D.

```
#include "Mappel/MCMCAdaptorBase.h"
#include "Mappel/PointEmitterModel.h"
```

Classes

class mappel::MCMCAdaptor1D

Namespaces

mappel

9.41.1 Detailed Description

The class declaration and inline and templated functions for MCMCAdaptor1D.

Author

```
Mark J. Olah (mjo@cs.unm DOT edu)
```

Date

2018-2019

9.42 MCMCAdaptor1Ds.cpp File Reference

The class definition and template Specializations for MCMCAdaptor1Ds.

```
#include "Mappel/MCMCAdaptor1Ds.h"
```

Namespaces

• mappel

9.42.1 Detailed Description

The class definition and template Specializations for MCMCAdaptor1Ds.

Author

```
Mark J. Olah (mjo@cs.unm DOT edu)
```

Date

9.43 MCMCAdaptor1Ds.h File Reference

The class declaration and inline and templated functions for MCMCAdaptor1Ds.

```
#include "Mappel/MCMCAdaptor1D.h"
```

Classes

• class mappel::MCMCAdaptor1Ds

Namespaces

mappel

9.43.1 Detailed Description

The class declaration and inline and templated functions for MCMCAdaptor1Ds.

Author

```
Mark J. Olah (mjo@cs.unm DOT edu)
```

Date

2018-2019

9.44 MCMCAdaptor2D.cpp File Reference

The class definition and template Specializations for MCMCAdaptor2D.

```
#include "Mappel/MCMCAdaptor2D.h"
```

Namespaces

mappel

9.44.1 Detailed Description

The class definition and template Specializations for MCMCAdaptor2D.

Author

Mark J. Olah (mjo@cs.unm DOT edu)

Date

9.45 MCMCAdaptor2D.h File Reference

The class declaration and inline and templated functions for MCMCAdaptor2D.

```
#include "Mappel/MCMCAdaptor1D.h"
```

Classes

• class mappel::MCMCAdaptor2D

Namespaces

mappel

9.45.1 Detailed Description

The class declaration and inline and templated functions for MCMCAdaptor2D.

Author

```
Mark J. Olah (mjo@cs.unm DOT edu)
```

Date

2018-2019

9.46 MCMCAdaptor2Ds.cpp File Reference

The class definition and template Specializations for MCMCAdaptor2Ds.

```
#include "Mappel/MCMCAdaptor2Ds.h"
```

Namespaces

mappel

9.46.1 Detailed Description

The class definition and template Specializations for MCMCAdaptor2Ds.

Author

Mark J. Olah (mjo@cs.unm DOT edu)

Date

9.47 MCMCAdaptor2Ds.h File Reference

The class declaration and inline and templated functions for MCMCAdaptor2Ds.

```
#include "Mappel/MCMCAdaptor2D.h"
```

Classes

· class mappel::MCMCAdaptor2Ds

Namespaces

mappel

9.47.1 Detailed Description

The class declaration and inline and templated functions for MCMCAdaptor2Ds.

Author

```
Mark J. Olah (mjo@cs.unm DOT edu)
```

Date

2018-2019

9.48 MCMCAdaptorBase.cpp File Reference

The class definition and template Specializations for MCMCAdaptorBase.

```
#include "Mappel/MCMCAdaptorBase.h"
```

Namespaces

mappel

9.48.1 Detailed Description

The class definition and template Specializations for MCMCAdaptorBase.

Author

Mark J. Olah (mjo@cs.unm DOT edu)

Date

2014-2018

9.49 MCMCAdaptorBase.h File Reference

The class declaration and inline and templated functions for MCMCAdaptorBase.

```
#include "Mappel/util.h"
```

Classes

• class mappel::MCMCAdaptorBase

Namespaces

mappel

9.49.1 Detailed Description

The class declaration and inline and templated functions for MCMCAdaptorBase.

Author

Mark J. Olah (mjo@cs.unm DOT edu)

Date

2018

9.50 MLEstimator.h File Reference

Class declaration and inline and templated functions for MLEstimator.

```
#include "Mappel/PointEmitterModel.h"
#include "Mappel/MAPEstimator.h"
```

Classes

class mappel::MLEstimator

A Mixin class to configure a for MLE estimation (null prior).

Namespaces

- mappel
- · mappel::methods

Templated functions for operating on a PointEmitterModel.

- mappel::methods::objective
- · mappel::methods::objective::debug

Functions

template<class Model >

ReturnIfSubclassT< double, Model, MLEstimator > mappel::methods::objective::llh (const Model &model, const ModelDataT< Model > &data im, const StencilT< Model > &s)

template < class Model >

ReturnIfSubclassT< double, Model, MLEstimator > mappel::methods::objective::rllh (const Model &model, const ModelDataT< Model > &data im, const StencilT< Model > &s)

template<class Model >

ReturnIfSubclassT< ParamT< Model >, Model, MLEstimator > mappel::methods::objective::grad (const Model &model, const ModelDataT< Model > &data_im, const StencilT< Model > &s)

template < class Model >

ReturnIfSubclassT< void, Model, MLEstimator > mappel::methods::objective::grad2 (const Model &model, const ModelDataT< Model > &data_im, const StencilT< Model > &s, ParamT< Model > &grad, ParamT< Model > &grad2)

template<class Model >

ReturnIfSubclassT< void, Model, MLEstimator > mappel::methods::objective::hessian (const Model &model, const ModelDataT< Model > &data im, const StencilT< Model > &s, ParamT< Model > &grad, MatT &hess)

template < class Model >

 $ReturnIfSubclassT < VecT, \ Model, \ MLEstimator > mappel::methods::objective::debug::llh_components \ (const \ Model \ \&model, \ const \ ModelDataT < Model > \&data_im, \ const \ StencilT < Model > \&s)$

template < class Model >

 $ReturnIfSubclassT < VecT, \ Model, \ MLEstimator > mappel::methods::objective::debug::rllh_components \ (const \ Model \ \&model, \ const \ ModelDataT < Model > \&data_im, \ const \ StencilT < Model > \&s)$

template < class Model >

ReturnIfSubclassT< MatT, Model, MLEstimator > mappel::methods::objective::debug::grad_components (const Model &model, const ModelDataT< Model > &data im, const StencilT< Model > &s)

• template<class Model >

ReturnIfSubclassT< CubeT, Model, MLEstimator > mappel::methods::objective::debug::hessian_components (const Model &model, const ModelDataT< Model > &data_im, const StencilT< Model > &s)

9.50.1 Detailed Description

Class declaration and inline and templated functions for MLEstimator.

Author

Mark J. Olah (mjo@cs.unm DOT edu)

Date

9.51 model methods.h File Reference

```
#include "Mappel/OMPExceptionCatcher/OMPExceptionCatcher.h"
#include "Mappel/estimator.h"
#include "Mappel/mcmc.h"
#include "Mappel/openmp_methods.h"
#include "Mappel/model_methods_impl.h"
#include "Mappel/estimator_impl.h"
```

Namespaces

- mappel
- · mappel::methods

Templated functions for operating on a PointEmitterModel.

- · mappel::methods::objective
- mappel::methods::objective::debug
- · mappel::methods::debug

Functions

- template < class Model , class rng_t >
 ModelDataT < Model > mappel::methods::simulate image (Model & model, const ParamT < Model > & theta)
- template < class Model , class rng_t >
 ModelDataT < Model > mappel::methods::simulate_image (Model & model, const ParamT < Model > &theta, rng_t &rng)
- template < class Model >
 ModelDataT < Model > mappel::methods::simulate_image (Model & model, const StencilT < Model > &s)
- template < class Model >
 ModelDataT < Model > mappel::methods::simulate_image_from_model (Model &model, const ImageT < Model > &model im)
- template < class Model >
 double mappel::methods::objective::llh (const Model &model, const ModelDataT < Model > &data_im, const
 ParamT < Model > &theta)
- template<class Model >
 double mappel::methods::objective::rllh (const Model &model, const ModelDataT< Model > &data_im, const
 ParamT< Model > &theta)
- template < class Model >
 ParamT < Model > mappel::methods::objective::grad (const Model &model, const ModelDataT < Model >
 &data_im, const ParamT < Model > &theta)
- template<class Model >
 ParamT< Model > mappel::methods::objective::grad2 (const Model &model, const ModelDataT< Model >
 &data im, const ParamT< Model > &theta)
- template<class Model >
 void mappel::methods::objective::grad2 (const Model &model, const ModelDataT< Model > &data_im, const
 ParamT< Model > &theta, ParamT< Model > &grad_val, ParamT< Model > &grad2_val)
- template<class Model >
 MatT mappel::methods::objective::hessian (const Model &model, const ModelDataT< Model > &data_im, const
 ParamT< Model > &theta)

template < class Model >

MatT mappel::methods::objective::hessian (const Model &model, const ModelDataT < Model > &data_im, const StencilT < Model > &s)

• template < class Model >

void mappel::methods::objective::hessian (const Model &model, const ModelDataT< Model > &data_im, const ParamT< Model > &theta, ParamT< Model > &grad, MatT &hess)

template<class Model >

void mappel::methods::objective::hessian (const Model &model, const ModelDataT< Model > &data_im, const ParamT< Model > &theta, MatT &hess)

• template<class Model >

MatT mappel::methods::objective::negative_definite_hessian (const Model &model, const ModelDataT< Model > &data im, const ParamT< Model > &theta)

template < class Model >

MatT mappel::methods::objective::negative_definite_hessian (const Model &model, const ModelDataT< Model > &data im, const StencilT< Model > &s)

template<class Model >

void mappel::methods::objective::negative_definite_hessian (const Model &model, const ModelDataT< Model > &data im, const ParamT< Model > &theta, ParamT< Model > &grad, MatT &hess)

template < class Model >

void mappel::methods::objective::negative_definite_hessian (const Model &model, const ModelDataT< Model > &data im, const StencilT< Model > &s, ParamT< Model > &grad, MatT &hess)

template<class Model >

VecT mappel::methods::objective::debug::llh_components (const Model &model, const ModelDataT< Model > &data im, const ParamT< Model > &theta)

template<class Model >

VecT mappel::methods::objective::debug::rllh_components (const Model &model, const ModelDataT< Model > &data_im, const ParamT< Model > &theta)

template<class Model >

MatT mappel::methods::objective::debug::grad_components (const Model &model, const ModelDataT < Model > &data_im, const ParamT < Model > &theta)

template<class Model >

CubeT mappel::methods::objective::debug::hessian_components (const Model &model, const ModelDataT < Model > &data_im, const ParamT < Model > &theta)

template < class Model >

 $\label{local_posterior} $$\operatorname{\mathsf{Model}} = \operatorname{\mathsf{Model}} = \operatorname{$

template<class Model >

void mappel::methods::aposteriori_objective (const Model &model, const ModelDataT < Model > &data_im, const ParamT < Model > &theta, double &rllh, ParamT < Model > &grad, MatT &hess)

template < class Model >

void mappel::methods::prior_objective (const Model &model, const ParamT< Model > &theta, double &rllh, ParamT< Model > &grad, MatT &hess)

template < class Model >

void mappel::methods::likelihood_objective (const Model &model, const ModelDataT< Model > &data_im, const StencilT< Model > &s, double &rllh, ParamT< Model > &grad, MatT &hess)

template < class Model >

void mappel::methods::likelihood_objective (const Model &model, const ModelDataT< Model > &data_im, const ParamT< Model > &theta, double &rllh, ParamT< Model > &grad, MatT &hess)

template<class Model >

ParamT< Model > mappel::methods::cr_lower_bound (const Model &model, const typename Model::Stencil &s)

Calculate the Cramer-Rao lower bound at the given parameters.

template<class Model >

ParamT < Model > mappel::methods::cr lower bound (const Model &model, const ParamT < Model > &theta)

- template < class Model >
 MatT mappel::methods::expected information (const Model & model, const ParamT < Model > & theta)
- template < class Model >
 MatT mappel::methods::observed_information (const Model & model, const ModelDataT < Model > & data, const
 ParamT < Model > & theta mode)
- template < class Model >
 MatT mappel::methods::observed_information (const Model & model, const ModelDataT < Model > & data, const
 StencilT < Model > & theta mode)
- template<class Model >
 StencilT< Model > mappel::methods::estimate_max (Model &model, const ModelDataT< Model > &data, const std::string &method)
- template<class Model >
 StencilT< Model > mappel::methods::estimate_max (Model &model, const ModelDataT< Model > &data, const std::string &method, const ParamT< Model > &theta_init, double &rllh)
- template < class Model >
 void mappel::methods::estimate_max (Model &model, const ModelDataT < Model > &data, const std::string &method, ParamT < Model > &theta_max, double &theta_max_llh, MatT &obsl)
- template<class Model >
 void mappel::methods::estimate_max (Model &model, const ModelDataT< Model > &data, const std::string &method, ParamT< Model > &theta_max, double &theta_max_llh, MatT &obsl, StatsT &stats)
- template<class Model >
 void mappel::methods::estimate_max (Model &model, const ModelDataT< Model > &data, const std::string &method, const ParamT< Model > &theta_init, ParamT< Model > &theta_max, double &theta_max_llh, MatT &obsl)
- template<class Model >
 void mappel::methods::estimate_max (Model &model, const ModelDataT< Model > &data, const std::string &method, const ParamT< Model > &theta_init, ParamT< Model > &theta_max, double &theta_max_llh, MatT &obsl, StatsT &stats)
- template<class Model >
 MatT mappel::methods::estimate_mcmc_sample (Model &model, const ModelDataT< Model > &data, IdxT Nsample=1000, IdxT Nburnin=100, IdxT thin=0)
- template<class Model >
 MatT mappel::methods::estimate_mcmc_sample (Model &model, const ModelDataT< Model > &data, const
 ParamT< Model > &theta_init, IdxT Nsample=1000, IdxT Nburnin=100, IdxT thin=0)
- template < class Model >
 void mappel::methods::estimate_mcmc_sample (Model & model, const ModelDataT < Model > & data, const
 ParamT < Model > & theta_init, IdxT Nsample, IdxT Nburnin, IdxT thin, MatT & sample, VecT & sample_rllh)
- template < class Model >
 void mappel::methods::estimate_mcmc_posterior (Model &model, const ModelDataT < Model > &data, IdxT
 Nsample, IdxT Nburnin, IdxT thin, ParamT < Model > &posterior mean, MatT &posterior cov)
- template < class Model >
 void mappel::methods::estimate_mcmc_posterior (Model &model, const ModelDataT < Model > &data, const
 ParamT < Model > &theta_init, IdxT Nsample, IdxT Nburnin, IdxT thin, ParamT < Model > &posterior_mean,
 MatT &posterior_cov)
- template < class Model > void mappel::methods::error_bounds_expected (const Model & model, const ParamT < Model > & theta_est, double confidence, ParamT < Model > & theta_lb, ParamT < Model > & theta_ub)
- template<class Model >
 void mappel::methods::error_bounds_observed (const Model &model, const ParamT< Model > &theta_est, MatT
 &obsl, double confidence, ParamT< Model > &theta_lb, ParamT< Model > &theta_ub)
- template<class Model >
 void mappel::methods::error_bounds_posterior_credible (const Model &model, const MatT &sample, double confidence, ParamT< Model > &theta mean, ParamT< Model > &theta lb, ParamT< Model > &theta ub)

- template<class Model >
 void mappel::methods::debug::estimate_max_debug (Model &model, const ModelDataT< Model > &data,
 const std::string &method, ParamT< Model > &theta_est, double &rllh, MatT &obsl, MatT &sequence, VecT
 &sequence_rllh, StatsT &stats)
- template<class Model >
 void mappel::methods::debug::estimate_max_debug (Model &model, const ModelDataT< Model > &data, const std::string &method, const ParamT< Model > &theta_init, ParamT< Model > &theta_est, double &rllh, MatT &bullet &model &model > &theta_est, double &rllh, MatT &sequence, VecT &sequence_rllh, StatsT &stats)
- template<class Model >
 void mappel::methods::debug::estimate_mcmc_sample_debug (Model &model, const ModelDataT< Model >
 &data, IdxT Nsample, MatT &sample, VecT &sample_rllh, MatT &candidates, VecT &candidates_rllh)
- template<class Model >
 void mappel::methods::debug::estimate_mcmc_sample_debug (Model &model, const ModelDataT< Model >
 &data, const ParamT< Model > &theta_init, ldxT Nsample, MatT &sample, VecT &sample_rllh, MatT &candidates, VecT &candidates rllh)

9.52 model_methods_impl.h File Reference

#include "Mappel/numerical.h"

Namespaces

- mappel
- mappel::methods

Templated functions for operating on a PointEmitterModel.

- mappel::methods::objective
- · mappel::methods::objective::debug
- · mappel::methods::debug

Functions

- template < class Model >
 Model::ImageT mappel::methods::model_image (const Model & model, const ParamT < Model > & theta)
- template < class Model >
 ModelDataT < Model > mappel::methods::simulate_image (Model & model, const ParamT < Model > & theta)
- template < class Model , class RngT >
 ModelDataT < Model > mappel::methods::simulate_image (Model & model, const ParamT < Model > &theta,
 RngT &rng)
- template < class Model >
 ModelDataT < Model > mappel::methods::simulate_image (Model & model, const StencilT < Model > &s)
- template < class Model >
 ModelDataT < Model > mappel::methods::simulate_image_from_model (Model &model, const ImageT < Model > &model im)
- template < class Model >
 double mappel::methods::objective::llh (const Model & model, const ModelDataT < Model > & data_im, const
 ParamT < Model > & theta)

template<class Model >
 double mappel::methods::objective::rllh (const Model &model, const ModelDataT< Model > &data_im, const

• template<class Model >

ParamT< Model > &theta)

ParamT< Model > mappel::methods::objective::grad (const Model &model, const ModelDataT< Model > &data im, const ParamT< Model > &theta)

template < class Model >

ParamT< Model > mappel::methods::objective::grad2 (const Model &model, const ModelDataT< Model > &data im, const ParamT< Model > &theta)

template<class Model >

void mappel::methods::objective::grad2 (const Model &model, const ModelDataT< Model > &data_im, const ParamT< Model > &theta, ParamT< Model > &grad val, ParamT< Model > &grad2 val)

template < class Model >

MatT mappel::methods::objective::hessian (const Model &model, const ModelDataT < Model > &data_im, const ParamT < Model > &theta)

template < class Model >

MatT mappel::methods::objective::hessian (const Model &model, const ModelDataT < Model > &data_im, const StencilT < Model > &s)

• template<class Model >

void mappel::methods::objective::hessian (const Model &model, const ModelDataT< Model > &data_im, const ParamT< Model > &theta, ParamT< Model > &grad, MatT &hess)

template<class Model >

void mappel::methods::objective::hessian (const Model &model, const ModelDataT< Model > &data_im, const ParamT< Model > &theta, MatT &hess)

template<class Model >

MatT mappel::methods::objective::negative_definite_hessian (const Model &model, const ModelDataT< Model > &data im, const ParamT< Model > &theta)

template < class Model >

MatT mappel::methods::objective::negative_definite_hessian (const Model &model, const ModelDataT< Model > &data im, const StencilT< Model > &s)

template<class Model >

void mappel::methods::objective::negative_definite_hessian (const Model &model, const ModelDataT< Model > &data im, const ParamT< Model > &theta, ParamT< Model > &grad, MatT &hess)

template<class Model >

void mappel::methods::objective::negative_definite_hessian (const Model &model, const ModelDataT< Model > &data_im, const StencilT< Model > &s, ParamT< Model > &grad, MatT &hess)

template<class Model >

VecT mappel::methods::objective::debug::llh_components (const Model &model, const ModelDataT< Model > &data_im, const ParamT< Model > &theta)

template < class Model >

VecT mappel::methods::objective::debug::rllh_components (const Model &model, const ModelDataT< Model > &data_im, const ParamT< Model > &theta)

template < class Model >

MatT mappel::methods::objective::debug::grad_components (const Model &model, const ModelDataT < Model > &data im, const ParamT < Model > &theta)

template < class Model >

CubeT mappel::methods::objective::debug::hessian_components (const Model &model, const ModelDataT < Model > &data_im, const ParamT < Model > &theta)

template < class Model >

void mappel::methods::aposteriori_objective (const Model &model, const ModelDataT < Model > &data_im, const StencilT < Model > &s, double &rllh, ParamT < Model > &grad, MatT &hess)

• template<class Model >

 $\label{local_problem} \begin{tabular}{ll} void & mappel::methods::prior_objective (const Model & model, const ParamT< Model > & theta, double & rllh, ParamT< Model > & grad, MatT & hess) \\ \end{tabular}$

template<class Model >
 void mappel::methods::likelihood_objective (const Model &model, const ModelDataT< Model > &data_im, const
 StencilT< Model > &s, double &rllh, ParamT< Model > &grad, MatT &hess)

- template < class Model >
 void mappel::methods::aposteriori_objective (const Model & model, const ModelDataT < Model > &data_im, const
 ParamT < Model > &theta, double &rllh, ParamT < Model > &grad, MatT &hess)
- template < class Model >
 void mappel::methods::likelihood_objective (const Model & model, const ModelDataT < Model > & data_im, const
 ParamT < Model > & theta, double & rllh, ParamT < Model > & grad, MatT & hess)
- template < class Model >
 ParamT < Model > mappel::methods::cr_lower_bound (const Model &model, const typename Model::Stencil &s)
 Calculate the Cramer-Rao lower bound at the given parameters.
- template < class Model >
 ParamT < Model > mappel::methods::cr_lower_bound (const Model &model, const ParamT < Model > &theta)
- template < class Model >
 MatT mappel::methods::expected_information (const Model &model, const ParamT < Model > &theta)
- template < class Model >
 MatT mappel::methods::observed_information (const Model & model, const ModelDataT < Model > & data, const
 StencilT < Model > & theta mode)
- template<class Model >
 MatT mappel::methods::observed_information (const Model &model, const ModelDataT< Model > &data, const
 ParamT< Model > &theta mode)
- template < class Model >
 StencilT < Model > mappel::methods::estimate_max (Model & model, const ModelDataT < Model > & data, const std::string & method)
- template < class Model >
 StencilT < Model > mappel::methods::estimate_max (Model & model, const ModelDataT < Model > & data, const std::string & method, const ParamT < Model > & theta_init, double & rllh)
- template<class Model >
 void mappel::methods::estimate_max (Model &model, const ModelDataT< Model > &data, const std::string &method, ParamT< Model > &theta max, double &theta max Ilh, MatT &obsl)
- template < class Model >
 void mappel::methods::estimate_max (Model &model, const ModelDataT < Model > &data, const std::string &method, ParamT < Model > &theta_max, double &theta_max_llh, MatT &obsl, StatsT &stats)
- template < class Model >
 void mappel::methods::estimate_max (Model & model, const ModelDataT < Model > &data, const std::string &method, const ParamT < Model > &theta_init, ParamT < Model > &theta_max, double &theta_max_llh, MatT &obsl)
- template<class Model >
 void mappel::methods::estimate_max (Model &model, const ModelDataT< Model > &data, const std::string &method, const ParamT< Model > &theta_init, ParamT< Model > &theta_max, double &theta_max_llh, MatT &obsl, StatsT &stats)
- template < class Model >
 MatT mappel::methods::estimate_mcmc_sample (Model &model, const ModelDataT < Model > &data, IdxT Nsample=1000, IdxT Nburnin=100, IdxT thin=0)
- template < class Model >
 MatT mappel::methods::estimate_mcmc_sample (Model &model, const ModelDataT < Model > &data, const
 ParamT < Model > &theta_init, IdxT Nsample=1000, IdxT Nburnin=100, IdxT thin=0)
- template < class Model >
 void mappel::methods::estimate_mcmc_sample (Model &model, const ModelDataT < Model > &data, const
 ParamT < Model > &theta init, ldxT Nsample, ldxT Nburnin, ldxT thin, MatT &sample, VecT &sample rllh)

- template<class Model >
 void mappel::methods::estimate_mcmc_posterior (Model &model, const ModelDataT< Model > &data, IdxT
 Nsample, IdxT Nburnin, IdxT thin, ParamT< Model > &posterior_mean, MatT &posterior_cov)
- template<class Model >
 void mappel::methods::estimate_mcmc_posterior (Model &model, const ModelDataT< Model > &data, const
 ParamT< Model > &theta_init, ldxT Nsample, ldxT Nburnin, ldxT thin, ParamT< Model > &posterior_mean,
 MatT &posterior_cov)
- template < class Model >
 void mappel::methods::error_bounds_expected (const Model & model, const ParamT < Model > & theta_est, double confidence, ParamT < Model > & theta_lb, ParamT < Model > & theta_ub)
- template < class Model >
 void mappel::methods::error_bounds_observed (const Model & model, const ParamT < Model > & theta_est, MatT
 & obsl, double confidence, ParamT < Model > & theta_lb, ParamT < Model > & theta_ub)
- template < class Model >
 void mappel::methods::error_bounds_posterior_credible (const Model &model, const MatT &sample, double confidence, ParamT < Model > &theta mean, ParamT < Model > &theta lb, ParamT < Model > &theta ub)
- template < class Model >
 void mappel::methods::debug::estimate_max_debug (Model &model, const ModelDataT < Model > &data,
 const std::string &method, ParamT < Model > &theta_est, double &rllh, MatT &obsl, MatT &sequence, VecT
 &sequence rllh, StatsT &stats)
- template<class Model >
 void mappel::methods::debug::estimate_max_debug (Model &model, const ModelDataT< Model > &data, const std::string &method, const ParamT< Model > &theta_init, ParamT< Model > &theta_est, double &rllh, MatT &sequence, VecT &sequence_rllh, StatsT &stats)
- template<class Model >
 void mappel::methods::debug::estimate_mcmc_sample_debug (Model &model, const ModelDataT< Model >
 &data, IdxT Nsample, MatT &sample, VecT &sample_rllh, MatT &candidates, VecT &candidates_rllh)
- template<class Model >
 void mappel::methods::debug::estimate_mcmc_sample_debug (Model &model, const ModelDataT< Model >
 &data, const ParamT< Model > &theta_init, ldxT Nsample, MatT &sample, VecT &sample_rllh, MatT &candidates, VecT &candidates rllh)

9.53 numerical.cpp File Reference

Numerical matrix operations.

```
#include <cassert>
#include "Mappel/numerical.h"
```

Namespaces

mappel

Functions

- void mappel::copy_Usym_mat (arma::mat &usym)
- void mappel::copy_Usym_mat_stack (arma::cube &usym_stack)
- void mappel::copy_Lsym_mat (arma::mat &lsym)
- void mappel::cholesky_make_negative_definite (arma::mat &m)
- void mappel::cholesky_make_positive_definite (arma::mat &m)
- bool mappel::is_negative_definite (const arma::mat &usym)
- bool mappel::is_positive_definite (const arma::mat &usym)
- bool mappel::is symmetric (const arma::mat &A)
- void mappel::cholesky_convert_lower_triangular (arma::mat &chol)
- void mappel::cholesky convert full matrix (arma::mat &chol)
- bool mappel::cholesky (arma::mat &A)
- bool mappel::modified_cholesky (arma::mat &A)
- arma::vec mappel::cholesky_solve (const arma::mat &C, const arma::vec &b)

9.53.1 Detailed Description

Numerical matrix operations.

Author

Mark J. Olah (mjo@cs.unm DOT edu)

Date

05-2015

9.54 numerical.h File Reference

Numerical matrix operations.

```
#include <cmath>
#include <climits>
#include <armadillo>
#include "Mappel/util.h"
```

Namespaces

mappel

Functions

- void mappel::copy_Usym_mat (arma::mat &usym)
- void mappel::copy_Usym_mat_stack (arma::cube &usym_stack)
- void mappel::copy_Lsym_mat (arma::mat &lsym)
- void mappel::cholesky_convert_lower_triangular (arma::mat &chol)
- void mappel::cholesky_convert_full_matrix (arma::mat &chol)
- void mappel::cholesky make negative definite (arma::mat &m)
- void mappel::cholesky make positive definite (arma::mat &m)
- bool mappel::is_positive_definite (const arma::mat &usym)
- bool mappel::is_negative_definite (const arma::mat &usym)
- bool mappel::is_symmetric (const arma::mat &A)
- bool mappel::cholesky (arma::mat &A)
- bool mappel::modified cholesky (arma::mat &A)
- arma::vec mappel::cholesky_solve (const arma::mat &C, const arma::vec &b)

9.54.1 Detailed Description

Numerical matrix operations.

Author

Mark J. Olah (mjo@cs.unm DOT edu)

Date

05-22-2015

9.55 OMPExceptionCatcher.h File Reference

A lightweight class for managing C++ exception handling strategies for openMP methods.

```
#include <exception>
#include <mutex>
#include <functional>
#include <cstdint>
```

Classes

class omp_exception_catcher::impl_::OMPExceptionCatcher< IntType >

Namespaces

- · omp_exception_catcher
- · omp_exception_catcher::impl_

Typedefs

using omp_exception_catcher::OMPExceptionCatcher = impl_::OMPExceptionCatcher < uint32_t >

9.55.1 Detailed Description

A lightweight class for managing C++ exception handling strategies for openMP methods.

Author

```
Mark J. Olah (mjo@cs.unm DOT edu)
```

Date

2019 OpenMP code must catch any exceptions that may have been thrown before exiting the OpenMP block. This class acts as lightweight wrapper that allows an arbitrary function or lambda expression to be run safely and efficiently in OMP even if it might throw exceptions. We employ one of 4 possible strategies as determined By the OMPExceptionCatcher::Strategies enum.

Strategy's: OMPExceptionCatcher::Strategies::DoNotTry - Don't even try, this is a null op to completely disable this class's effect. OMPExceptionCatcher::Strategies::Continue - Catch exceptions and keep going OMPException Catcher::Strategies::Abort - Catch exceptions and abort OMPExceptionCatcher::Strategies::RethrowFirst - Re-throws first exception thrown by any thread

Example useage: OMPExceptionCatcher catcher(OMPExceptionCatcher<>::Strategies::Continue); #pragma omp parallel for for(int n=0; n < N; n++) catcher.run([&]{ my_ouput(n)=do_my calulations(args(n)); } catcher.rethrow(); //Required only if you ever might use RethrowFirst strategy

9.56 openmp_methods.h File Reference

Namespaces for OpenMP parallelized versions of the mappel::model namespace functions (external methods)

```
#include <omp.h>
#include "Mappel/util.h"
#include "Mappel/mcmc.h"
```

Namespaces

- mappel
- · mappel::methods

Templated functions for operating on a PointEmitterModel.

- mappel::methods::openmp
- · mappel::methods::objective
- mappel::methods::objective::openmp

Functions

- template < class Model >
 void mappel::methods::openmp::sample_prior_stack (Model & model, ParamVecT < Model > & theta_stack)
 Parallel sampling of the model prior.
- template < class Model >
 void mappel::methods::openmp::model_image_stack (const Model &model, const ParamVecT < Model >
 &theta stack, ImageStackT < Model > &image stack)

Parallel computation of the model image.

template<class Model >
 void mappel::methods::openmp::simulate_image_stack (Model &model, const ParamVecT< Model > &theta_←
 stack, ImageStackT< Model > &image stack)

Parallel simulation of images from one or more theta.

- template < class Model >
 void mappel::methods::openmp::cr_lower_bound_stack (const Model &model, const ParamVecT < Model >
 &theta_stack, ParamVecT < Model > &crlb_stack)
- template<class Model >
 void mappel::methods::openmp::expected_information_stack (const Model &model, const ParamVecT< Model >
 &theta_stack, CubeT &fisherl_stack)
- template<class Model >
 void mappel::methods::openmp::estimate_max_stack (Model &model, const ModelDataStackT< Model >
 &data_stack, const std::string &method, ParamVecT< Model > &theta_max_stack, VecT &theta_max_rllh,
 CubeT &obsl_stack)
- template < class Model >
 void mappel::methods::openmp::estimate_max_stack (Model &model, const ModelDataStackT < Model >
 &data_stack, const std::string &method, ParamVecT < Model > &theta_max_stack, VecT &theta_max_rllh,
 CubeT &obsl_stack, StatsT &stats)
- template<class Model >
 void mappel::methods::openmp::estimate_max_stack (Model &model, const ModelDataStackT< Model >
 &data_stack, const std::string &method, ParamVecT< Model > &theta_init_stack, ParamVecT< Model >
 &theta max stack, VecT &theta max rllh, CubeT &obsl stack)
- template<class Model >
 void mappel::methods::openmp::estimate_max_stack (Model &model, const ModelDataStackT< Model >
 &data_stack, const std::string &method, ParamVecT< Model > &theta_init_stack, ParamVecT< Model >
 &theta max stack, VecT &theta max rllh, CubeT &obsl stack, StatsT &stats)
- template<class Model >
 void mappel::methods::openmp::estimate_profile_likelihood (Model &model, const ModelDataT< Model > &data,
 const IdxVecT &fixed_parameters, const MatT &fixed_values, const std::string &method, VecT &profile_likelihood,
 ParamVecT< Model > &profile_parameters)
- template<class Model >
 void mappel::methods::openmp::estimate_profile_likelihood (Model &model, const ModelDataT< Model > &data,
 const IdxVecT &fixed_parameters, const MatT &fixed_values, const std::string &method, VecT &profile_likelihood,
 ParamVecT< Model > &profile parameters, StatsT &stats)
- template<class Model >
 void mappel::methods::openmp::estimate_profile_likelihood (Model &model, const ModelDataT< Model > &data,
 const IdxVecT &fixed_parameters, const MatT &fixed_values, const std::string &method, const ParamVecT
 Model > &theta init, VecT &profile likelihood, ParamVecT< Model > &profile parameters)
- template < class Model >
 void mappel::methods::openmp::estimate_profile_likelihood (Model &model, const ModelDataT < Model > &data,
 const IdxVecT &fixed_parameters, const MatT &fixed_values, const std::string &method, const ParamVecT <
 Model > &theta init, VecT &profile likelihood, ParamVecT < Model > &profile parameters, StatsT &stats)

template<class Model >

void mappel::methods::openmp::estimate_mcmc_sample_stack (Model &model, const ModelDataStackT< Model > &data_stack, const ParamVecT< Model > &theta_init_stack, IdxT Nsamples, IdxT Nburnin, IdxT thin, CubeT &sample stack, MatT &sample rllh stack)

template<class Model >

void mappel::methods::openmp::estimate_mcmc_sample_stack (Model &model, const ModelDataStackT < Model > &data_stack, IdxT Nsamples, IdxT Nburnin, IdxT thin, CubeT &sample, MatT &sample_rllh)

template<class Model >

void mappel::methods::openmp::estimate_mcmc_posterior_stack (Model &model, const ModelDataStackT < Model > &data_stack, const ParamVecT < Model > &theta_init_stack, ldxT Nsamples, ldxT Nburnin, ldxT thin, MatT &theta mean stack, CubeT &theta cov stack)

template < class Model >

void mappel::methods::openmp::estimate_mcmc_posterior_stack (Model &model, const ModelDataStackT < Model > &data_stack, IdxT Nsamples, IdxT Nburnin, IdxT thin, MatT &theta_mean_stack, CubeT &theta_cov← stack)

template < class Model >

void mappel::methods::openmp::error_bounds_expected_stack (const Model &model, const MatT &theta_est_ stack, double confidence, MatT &theta_lb_stack, MatT &theta_ub_stack)

template < class Model >

void mappel::methods::openmp::error_bounds_observed_stack (const Model &model, const MatT &theta_est_
 stack, CubeT &obsl_stack, double confidence, MatT &theta_lb_stack, MatT &theta_ub_stack)

template < class Model >

void mappel::methods::openmp::error_bounds_posterior_credible_stack (const Model &model, const CubeT &sample_stack, double confidence, MatT &theta_mean_stack, MatT &theta_lb_stack, MatT &theta_ub_stack)

template < class Model >

void mappel::methods::objective::openmp::llh_stack (const Model &model, const ImageT< Model > &image, const ParamVecT< Model > &theta_stack, VecT &llh_stack)

Parallel log_likelihood calculations for a single image.

template < class Model >

void mappel::methods::objective::openmp::llh_stack (const Model &model, const ImageStackT< Model > &image stack, const ParamVecT< Model > &theta stack, VecT &llh stack)

Parallel log_likelihood calculations for a stack of images.

template < class Model >

void mappel::methods::objective::openmp::rllh_stack (const Model &model, const ImageStackT< Model > &image_stack, const ParamVecT< Model > &theta_stack, VecT &rllh_stack)

Parallel relative log_likelihood calculations for a stack of images.

template<class Model >

void mappel::methods::objective::openmp::rllh_stack (const Model &model, const ImageT< Model > &image, const ParamVecT< Model > &theta stack, VecT &rllh stack)

template<class Model >

void mappel::methods::objective::openmp::grad_stack (const Model &model, const ImageStackT< Model > &image_stack, const ParamVecT< Model > &theta_stack, ParamVecT< Model > &grad_stack)

Parallel model gradient calculations for a stack of images.

template < class Model >

void mappel::methods::objective::openmp::hessian_stack (const Model &model, const ImageStackT< Model > &image_stack, const ParamVecT< Model > &theta_stack, CubeT &hessian_stack)

Parallel model Hessian calculations for a stack of images.

template < class Model >

void mappel::methods::objective::openmp::negative_definite_hessian_stack (const Model &model, const Image ← StackT < Model > &image_stack, const ParamVecT < Model > &theta_stack, CubeT &hessian_stack)

Parallel model negative definite Hessian approximation calculations for a stack of images.

9.56.1 Detailed Description

Namespaces for OpenMP parallelized versions of the mappel::model namespace functions (external methods)

Author

```
Mark J. Olah (mjo@cs.unm DOT edu)
```

Date

2013-2019 OpenMP computation for stacked Model operations on vector data.

Design Decisions

- OpenMP vectorized versions are implemented as templated external methods in inline namespaces openmp.
 This allows easy future replacement with other palatalization mechanisms (CUDA, C++11 threads, etc..). Also allows the vectorized versions to directly overload with the non-vectorized base-versions.
- Because we want to integrate as seamlessly as possible with matlab, we use the armadillo package which stores
 arrays in column major order.
- Therefore in the *_stack operations, if they are to be parallelized, we want the data stored as a nParms X n matrix, i.e. each column is a parameter matrix. Similarly stacks are size X size X n, so that contiguous images sequences are contiguous in memory. This avoids false sharing.

9.57 PointEmitterModel.cpp File Reference

The class definition and template Specializations for PointEmitterModel.

```
#include <cmath>
#include <algorithm>
#include "Mappel/PointEmitterModel.h"
```

Namespaces

mappel

9.57.1 Detailed Description

The class definition and template Specializations for PointEmitterModel.

Author

```
Mark J. Olah (mjo@cs.unm DOT edu)
```

Date

03-13-2014

9.58 PointEmitterModel.h File Reference

The class declaration and inline and templated functions for PointEmitterModel.

```
#include <iostream>
#include <string>
#include <armadillo>
#include <PriorHessian/CompositeDist.h>
#include <PriorHessian/TruncatedNormalDist.h>
#include <PriorHessian/ScaledSymmetricBetaDist.h>
#include <PriorHessian/TruncatedGammaDist.h>
#include <PriorHessian/TruncatedParetoDist.h>
#include "Mappel/util.h"
#include "Mappel/stencil.h"
#include "Mappel/display.h"
#include "Mappel/rng.h"
```

Classes

class mappel::PointEmitterModel

A virtual Base type for point emitter localization models.

Namespaces

mappel

Functions

template < class Model, typename = EnablelfSubclassT < Model, PointEmitterModel >> std::ostream & mappel::operator << (std::ostream & out, const Model & model)

9.58.1 Detailed Description

The class declaration and inline and templated functions for PointEmitterModel.

Author

Mark J. Olah (mjo@cs.unm DOT edu)

Date

03-13-2014 The base class for all point emitter localization models

9.59 PoissonGaussianNoise2DObjective.cpp File Reference

#include "Mappel/PoissonGaussianNoise2DObjective.h"

Namespaces

· mappel

9.60 PoissonGaussianNoise2DObjective.h File Reference

The class declaration and inline and templated functions for PoissonGaussianNoise2DObjective.

```
#include "Mappel/PoissonNoise2D.h"
```

Classes

class PoissonGaussianNoise2DObjective < ModelBase >

A Base type for point emitter localization models that use 2d images.

Functions

- template < class Model >
 std::enable_if < std::is_base_of < PoissonGaussianNoise2DObjective, Model >::value, typename Model::ImageT
 >::type model_image (const Model &model, const typename Model::Stencil &s)
- template < class Model , class rng_t > std::enable_if < std::is_base_of < PoissonGaussianNoise2DObjective, Model >::value, typename Model::ImageT >::type simulate image (const Model &model, const typename Model::Stencil &s, rng t &rng)

Simulate an image using the PSF model, by generating Poisson noise.

- template < class Model , class rng_t > std::enable_if < std::is_base_of < PoissonGaussianNoise2DObjective, Model >::value, typename Model::ImageT >::type simulate_image (const Model &model, const typename Model::ImageT &model_im, rng_t &rng)
- template<class Model >
 std::enable_if< std::is_base_of< PoissonGaussianNoise2DObjective, Model >::value >::type model_grad (const
 Model &model, const typename Model::ImageT &im, const typename Model::Stencil &s, typename Model::
 ParamT &grad)
- template < class Model >
 std::enable_if < std::is_base_of < PoissonGaussianNoise2DObjective, Model >::value >::type model_grad2
 (const Model &model, const typename Model::ImageT &im, const typename Model::Stencil &s, typename Model::ParamT &grad, typename Model::ParamT &grad2)
- template < class Model >
 std::enable_if < std::is_base_of < PoissonGaussianNoise2DObjective, Model >::value >::type model_hessian
 (const Model &model, const typename Model::ImageT &im, const typename Model::Stencil &s, typename
 Model::ParamT &grad, typename Model::MatT &hess)

template < class Model >
 std::enable_if < std::is_base_of < PoissonGaussianNoise2DObjective, Model >::value, double >::type log_←
 likelihood (const Model &model, const typename Model::ImageT &data_im, const typename Model::Stencil &s)

template<class Model >
 std::enable_if< std::is_base_of< PoissonGaussianNoise2DObjective, Model >::value, double >::type relative
 _log_likelihood (const Model &model, const typename Model::ImageT &data_im, const typename Model::Stencil &s)

template < class Model >
 std::enable_if < std::is_base_of < PoissonGaussianNoise2DObjective, Model >::value, typename Model::MatT
 >::type fisher_information (const Model &model, const typename Model::Stencil &s)

template < class Model >
 std::enable_if < std::is_base_of < PoissonGaussianNoise2DObjective, Model >::value, std::shared_ptr <
 Estimator < Model > > >::type make_estimator (const Model & model, std::string ename)

9.60.1 Detailed Description

The class declaration and inline and templated functions for PoissonGaussianNoise2DObjective.

Author

Mark J. Olah (mjo@cs.unm DOT edu)

Date

04-2017

9.60.2 Function Documentation

9.60.2.1 template < class Model > std::enable_if < std::is_base_of < PoissonGaussianNoise2DObjective, Model > \leftarrow ::value, typename Model::MatT>::type fisher_information (const Model & model, const typename Model::Stencil & s)

Definition at line 200 of file PoissonGaussianNoise2DObjective.h.

Referenced by mappel::fisher information stack().

9.60.2.2 template < class Model > std::enable_if < std::is_base_of < PoissonGaussianNoise2DObjective,Model > \leftarrow ::value,double > ::type log_likelihood (const Model & model, const typename Model::ImageT & data_im, const typename Model::Stencil & s)

Definition at line 172 of file PoissonGaussianNoise2DObjective.h.

References mappel::methods::objective::llh(), and mappel::poisson log likelihood().

Referenced by mappel::log likelihood stack().

9.60.2.3 template < class Model > std::enable_if < std::is_base_of < PoissonGaussianNoise2DObjective, Model > \leftarrow ::value, std::shared_ptr < Estimator < Model > \rightarrow ::type make_estimator (const Model & model, std::string ename)

Definition at line 217 of file PoissonGaussianNoise2DObjective.h.

References mappel::istarts with().

9.60.2.4 template < class Model > std::enable_if < std::is_base_of < PoissonGaussianNoise2DObjective, Model > ::value > \(\times \) ::type model_grad (const Model & model, const typename Model::Brand & im, const typename Model::Stencil & s, typename Model::ParamT & grad)

Definition at line 101 of file PoissonGaussianNoise2DObjective.h.

Referenced by mappel::model grad stack().

9.60.2.5 template < class Model > std::enable_if < std::is_base_of < PoissonGaussianNoise2DObjective, Model > ::value > ← ::type model_grad2 (const Model & model, const typename Model::ParamT & im, const typename Model::ParamT & grad, typename Model::ParamT & grad2)

Definition at line 119 of file PoissonGaussianNoise2DObjective.h.

9.60.2.6 template < class Model > std::enable_if < std::is_base_of < PoissonGaussianNoise2DObjective,Model > ::type model_hessian (const Model & model, const typename Model::lmageT & im, const typename Model::Stencil & s, typename Model::ParamT & grad, typename Model::MatT & hess)

Definition at line 148 of file PoissonGaussianNoise2DObjective.h.

Referenced by mappel::model_hessian_stack().

9.60.2.7 template < class Model > std::enable_if < std::is_base_of < PoissonGaussianNoise2DObjective,Model > ← ::value,typename Model::ImageT > ::type model_image (const Model & *model*, const typename Model::Stencil & s)

Definition at line 59 of file PoissonGaussianNoise2DObjective.h.

Referenced by mappel::model_image_stack(), and mappel::simulate_image_stack().

9.60.2.8 template < class Model > std::enable_if < std::is_base_of < PoissonGaussianNoise2DObjective, Model > ← ::value, double > ::type relative_log_likelihood (const Model & model, const typename Model::ImageT & data_im, const typename Model::Stencil & s)

Definition at line 185 of file PoissonGaussianNoise2DObjective.h.

References mappel::relative_poisson_log_likelihood(), and mappel::methods::objective::rllh().

9.60.2.9 template < class Model , class rng_t > std::enable_if < std::is_base_of < PoissonGaussianNoise2D ←
Objective,Model>::value,typename Model::ImageT>::type simulate_image (const Model & model, const typename
Model::Stencil & s, rng_t & rng)

Simulate an image using the PSF model, by generating Poisson noise.

Parameters

out	image	An image to populate.
in	theta	The parameter values to us
in,out	rng	An initialized random number generator

Definition at line 78 of file PoissonGaussianNoise2DObjective.h.

References mappel::generate_poisson().

9.60.2.10 template < class Model , class rng_t > std::enable_if < std::is_base_of < PoissonGaussianNoise2D ←
Objective,Model > ::value,typename Model::ImageT > ::type simulate_image (const Model & model, const typename Model::ImageT & model_im, rng_t & rng)

Definition at line 89 of file PoissonGaussianNoise2DObjective.h.

References mappel::generate poisson().

9.61 PoissonNoise1DObjective.cpp File Reference

The class definition and template Specializations for PoissonNoise1DObjective.

#include "Mappel/PoissonNoise1DObjective.h"

Namespaces

mappel

9.61.1 Detailed Description

The class definition and template Specializations for PoissonNoise1DObjective.

Author

Mark J. Olah (mjo@cs.unm DOT edu)

Date

2014-2019

9.62 PoissonNoise1DObjective.h File Reference

The class declaration and inline and templated functions for PoissonNoise1DObjective.

```
#include "Mappel/ImageFormat1DBase.h"
#include "Mappel/PoissonNoise2DObjective.h"
#include "Mappel/estimator.h"
```

Classes

class mappel::PoissonNoise1DObjective

A base class for 1D objectives with Poisson read noise. This objective function and its subclasses are for models where the only source of noise is the "shot" or "counting" or Poisson noise inherent to a discrete capture of phontons given a certain mean rate of incidence on each pixel.

Namespaces

- mappel
- · mappel::methods

Templated functions for operating on a PointEmitterModel.

- mappel::methods::likelihood
- · mappel::methods::likelihood::debug

Functions

template < class Model , class rng_t >

ReturnIfSubclassT< ModelDataT< Model >, Model, PoissonNoise1DObjective > mappel::methods::simulate ← __image (const Model &model, const StencilT< Model > &s, rng_t &rng)

Simulate an image at a given theta stencil, by generating Poisson noise Enabled for PoissonNoise1DObjective.

template < class Model , class rng_t >

ReturnIfSubclassT< ModelDataT< Model >, Model, PoissonNoise1DObjective > mappel::methods::simulate ← image from model (const Model &model, const ImageT< Model > &model im, rng t &rng)

Simulate an image at a given theta stencil, by generating Poisson noise Enabled for PoissonNoise1DObjective.

template < class Model >

ReturnIfSubclassT< MatT, Model, PoissonNoise1DObjective > mappel::methods::expected_information (const Model &model, const StencilT< Model > &s)

Compute the expected information (Fisher information at theta). Note: Expected information is an average quantity and is independent of the data. Enabled for PoissonNoise1DObjective.

template<class Model >

ReturnIfSubclassT< std::unique_ptr< Estimator< Model > >, Model, PoissonNoise1DObjective > mappel← ::methods::make_estimator (Model &model, std::string ename)

template < class Model >

ReturnIfSubclassT< double, Model, PoissonNoise1DObjective > mappel::methods::likelihood::llh (const Model &model, const ModelDataT< Model > &data_im, const StencilT< Model > &s)

template<class Model >

ReturnIfSubclassT< double, Model, PoissonNoise1DObjective > mappel::methods::likelihood::rllh (const Model &model, const ModelDataT< Model > &data im, const StencilT< Model > &s)

template<class Model >

ReturnIfSubclassT< ParamT< Model >, Model, PoissonNoise1DObjective > mappel::methods::likelihood::grad (const Model &model, const ModelDataT< Model > &im, const StencilT< Model > &s)

• template<class Model >

ReturnIfSubclassT < void, Model, PoissonNoise1DObjective > mappel::methods::likelihood::grad2 (const Model & model, const Model DataT < Model > & model >

template<class Model >

 $ReturnIfSubclassT< void, \ Model, \ PoissonNoise1DObjective > mappel::methods::likelihood::hessian \ (const \ Model \& model, const \ ModelDataT< Model > \&im, const \ StencilT< Model > \&s, \ ParamT< Model > \&grad_val, \ MatT \& hess \ val)$

template < class Model >

ReturnIfSubclassT< VecT, Model, PoissonNoise1DObjective > mappel::methods::likelihood::debug::llh_components (const Model &model, const ModelDataT< Model > &data_im, const StencilT< Model > &s)

template < class Model >

ReturnIfSubclassT< VecT, Model, PoissonNoise1DObjective > mappel::methods::likelihood::debug::rllh_components (const Model &model, const ModelDataT< Model > &data im, const StencilT< Model > &s)

template<class Model >

ReturnIfSubclassT< MatT, Model, PoissonNoise1DObjective > mappel::methods::likelihood::debug::grad_components (const Model &model, const ModelDataT< Model > &data im, const StencilT< Model > &s)

template<class Model >

ReturnIfSubclassT< CubeT, Model, PoissonNoise1DObjective > mappel::methods::likelihood::debug::hessian ← components (const Model &model, const ModelDataT< Model > &data im, const StencilT< Model > &s)

9.62.1 Detailed Description

The class declaration and inline and templated functions for PoissonNoise1DObjective.

Author

Mark J. Olah (mjo@cs.unm DOT edu)

Date

2014-2019

9.63 PoissonNoise2DObjective.cpp File Reference

The class definition and template Specializations for PoissonNoise2DObjective.

#include "Mappel/PoissonNoise2DObjective.h"

Namespaces

mappel

9.63.1 Detailed Description

The class definition and template Specializations for PoissonNoise2DObjective.

Author

```
Mark J. Olah (mjo@cs.unm DOT edu)
```

Date

2014-2019

9.64 PoissonNoise2DObjective.h File Reference

The class declaration and inline and templated functions for PoissonNoise2DObjective.

```
#include "Mappel/ImageFormat2DBase.h"
#include "Mappel/estimator.h"
```

Classes

• class mappel::PoissonNoise2DObjective

A base class for 2D objectives with Poisson read noise. This objective function and its subclasses are for models where the only source of noise is the "shot" or "counting" or Poisson noise inherent to a discrete capture of phontons given a certain mean rate of incidence on each pixel.

Namespaces

- mappel
- mappel::methods

Templated functions for operating on a PointEmitterModel.

- · mappel::methods::likelihood
- mappel::methods::likelihood::debug

848 CONTENTS

Functions

template < class Model , class rng_t >

ReturnIfSubclassT< ImageT< Model >, Model, PoissonNoise2DObjective > mappel::methods::simulate_image (const Model &model, const StencilT< Model > &s, rng t &rng)

Simulate an image at a given theta stencil, by generating Poisson noise Enabled for PoissonNoise2DObjective.

template < class Model , class rng t >

ReturnIfSubclassT< ImageT< Model >, Model, PoissonNoise2DObjective > mappel::methods::simulate_
image from model (const Model &model, const ImageT< Model > &model im, rng t &rng)

Simulate an image at a given theta stencil, by generating Poisson noise Enabled for PoissonNoise2DObjective.

template < class Model >

ReturnIfSubclassT< MatT, Model, PoissonNoise2DObjective > mappel::methods::expected_information (const Model &model, const StencilT< Model > &s)

Compute the expected information (Fisher information at theta). Note: Expected information is an average quantity and is independent of the data. Enabled for PoissonNoise2DObjective.

template<class Model >

ReturnIfSubclassT< std::unique_ptr< Estimator< Model > >, Model, PoissonNoise2DObjective > mappel ::methods::make_estimator (Model &model, std::string ename)

template < class Model >

ReturnIfSubclassT< double, Model, PoissonNoise2DObjective > mappel::methods::likelihood::llh (const Model &model, const ModelDataT< Model > &data im, const StencilT< Model > &s)

template < class Model >

ReturnIfSubclassT< double, Model, PoissonNoise2DObjective > mappel::methods::likelihood::rllh (const Model &model, const ModelDataT< Model > &data im, const StencilT< Model > &s)

template < class Model >

ReturnIfSubclassT< ParamT< Model >, Model, PoissonNoise2DObjective > mappel::methods::likelihood::grad (const Model &model, const ModelDataT< Model > &data im, const StencilT< Model > &s)

template<class Model >

ReturnIfSubclassT< void, Model, PoissonNoise2DObjective > mappel::methods::likelihood::grad2 (const Model &model, const ModelDataT< Model > &data_im, const StencilT< Model > &s, ParamT< Model > &grad_val, ParamT< Model > &grad2 val)

template < class Model >

ReturnIfSubclassT< void, Model, PoissonNoise2DObjective > mappel::methods::likelihood::hessian (const Model &model, const ModelDataT< Model > &data_im, const StencilT< Model > &s, ParamT< Model > &grad val, MatT &hess val)

template < class Model >

ReturnIfSubclassT< VecT, Model, PoissonNoise2DObjective > mappel::methods::likelihood::debug::llh_components (const Model & model, const ModelDataT< Model > & data im, const StencilT< Model > &s)

template < class Model >

ReturnIfSubclassT< VecT, Model, PoissonNoise2DObjective > mappel::methods::likelihood::debug::rllh_components (const Model &model, const ModelDataT< Model > &data im, const StencilT< Model > &s)

template < class Model >

ReturnIfSubclassT< MatT, Model, PoissonNoise2DObjective > mappel::methods::likelihood::debug::grad_← components (const Model &model, const ModelDataT< Model > &data im, const StencilT< Model > &s)

template < class Model >

ReturnIfSubclassT< CubeT, Model, PoissonNoise2DObjective > mappel::methods::likelihood::debug::hessian ← _components (const Model &model, const ModelDataT< Model > &data_im, const StencilT< Model > &s)

9.64.1 Detailed Description

The class declaration and inline and templated functions for PoissonNoise2DObjective.

Author

Mark J. Olah (mjo@cs.unm DOT edu)

Date

2014-2019

9.65 PriorMAP1DObjective.h File Reference

The class declaration and inline and templated functions for PriorMAP1DObjective.

```
#include <armadillo>
#include "Mappel/stencil.h"
```

Classes

• class mappel::PriorMAP1DObjective

A Mixin class to configure a Gauss1DModel for MAP estimation (default 1D prior).

Namespaces

mappel

9.65.1 Detailed Description

The class declaration and inline and templated functions for PriorMAP1DObjective.

Author

Mark J. Olah (mjo@cs.unm.edu)

Date

03-22-2014

9.66 README.md File Reference

9.67 rng.cpp File Reference

```
#include "Mappel/rng.h"
```

850 CONTENTS

Namespaces

mappel

Variables

ParallelRngManagerT mappel::rng_manager

9.68 rng.h File Reference

Random number generation usign sfmt.

```
#include <random>
#include "Mappel/util.h"
#include <trng/lcg64_shift.hpp>
#include <ParallelRngManager/ParallelRngManager.h>
```

Namespaces

mappel

Typedefs

- using mappel::ParallelRngGeneratorT = trng::lcg64_shift
- using mappel::ParallelRngManagerT = parallel_rng::ParallelRngManager
 ParallelRngGeneratorT >
- using mappel::RngSeedT = parallel_rng::SeedT
- using mappel::UniformDistT = std::uniform_real_distribution< double >

Functions

```
    template < class RngT >
        IdxT mappel::generate_poisson_small (RngT &rng, double mu)
        Genrates a single poisson disributed int from distribution with mean mu.
```

template<class RngT >
 IdxT mappel::generate_poisson_large (RngT &rng, double mu)

template < class RngT >
 double mappel::generate_poisson (RngT &rng, double mu)

9.68.1 Detailed Description

Random number generation usign sfmt.

Author

Mark J. Olah (email mjo@cs.unm DOT edu)

Date

12-12-2013

9.69 stackcomp.h File Reference

Data-parallel versions of core computational functions using OpenMP.

```
#include <omp.h>
#include "Mappel/rng.h"
```

Namespaces

mappel

Functions

template<class Model > void mappel::sample_prior_stack (Model &model, typename Model::ParamVecT &theta_stack)

Parallel sampling of the model prior.

• template<class Model >

void mappel::model_image_stack (const Model &model, const typename Model::ParamVecT &theta_stack, typename Model::ImageStackT &image_stack)

Parallel computation of the model image.

template < class Model >

void mappel::simulate_image_stack (const Model &model, const typename Model::ParamVecT &theta_stack, typename Model::ImageStackT &image_stack)

Parallel simulation of images from one or more theta.

• template<class Model >

void mappel::log_likelihood_stack (const Model &model, const typename Model::ImageT &image, const typename Model::ParamVecT &theta_stack, VecT &llh_stack)

Parallel log_likelihood calculations for a single image.

template<class Model >

void magestackT &image_stackT &image_stack, const typename Model::ImageStackT &image_stack, const typename Model::ParamVecT &theta_stack, VecT &Ilh_stack)

Parallel log_likelihood calculations for a stack of images.

template < class Model >

void magestack (const Model &model, const typename Model::ImageStackT &image_stack, const typename Model::ParamVecT &theta stack, typename Model::ParamVecT &grad stack)

Parallel model gradient calculations for a stack of images.

template < class Model >

void mappel::model_hessian_stack (const Model &model, const typename Model::lmageStackT &image_stack, const typename Model::ParamVecT &theta_stack, CubeT &hessian_stack)

Parallel model Hessian calculations for a stack of images.

template < class Model >

void mappel::model_positive_hessian_stack (const Model &model, const typename Model::lmageStackT &image_stack, const typename Model::ParamVecT &theta_stack, CubeT &hessian_stack)

Parallel model positive-definite Hessian approximation calculations for a stack of images.

template<class Model >

void mappel::cr_lower_bound_stack (const Model &model, const typename Model::ParamVecT &theta_stack, typename Model::ParamVecT &crlb_stack)

template<class Model >
 void mappel::fisher_information_stack (const Model &model, const typename Model::ParamVecT &theta_stack,
 CubeT &fisherI stack)

852 CONTENTS

9.69.1 Detailed Description

Data-parallel versions of core computational functions using OpenMP.

Author

```
Mark J. Olah (mjo@cs.unm.edu)
```

Date

2013-2017 OpenMP computation for stacked Model operations on verctor data.

- · Design Decisions
- Because we want to integrate as seamlessly as possible with matlab, we use the armadillo package which stores arrays in column major order.
- Therefore in the *_stack operations, if they are to be parallelized, we want the data stored as a nParms X n matrix, i.e. each column is a parameter matrix. Simillarly stacks are size X size X n, so that contiguous images sequences are contiguous in memory. This avoids false sharing.

9.70 stencil.cpp File Reference

The stencils for pixel based computations.

```
#include <sstream>
#include "Mappel/util.h"
#include "Mappel/stencil.h"
#include "Mappel/display.h"
```

Namespaces

mappel

Functions

- double mappel::normal_quantile_twosided (double confidence)
- double mappel::normal quantile onesided (double confidence)
- void mappel::fill_gaussian_stencil (int size, double stencil[], double sigma)
- double mappel::gaussian_convolution (int x, int y, const MatT &data, const VecT &Xstencil, const VecT &Ystencil)
- void mappel::estimate_gaussian_2Dmax (const MatT &data, const VecT &Xstencil, const VecT &Ystencil, int max pos[], double &min val)
- void mappel::refine_gaussian_2Dmax (const MatT &data, const VecT &Xstencil, const VecT &Ystencil, int max
 pos[])
- double mappel::gaussian_3D_convolution (int x, int y, int z, const CubeT &data, const VecFieldT &stencils)
- void mappel::estimate_gaussian_3Dmax (const CubeT &data, const VecFieldT &stencils, int max_pos[], double &min val)
- void mappel::refine gaussian 3Dmax (const CubeT &data, const VecFieldT &stencils, int max pos[])
- double mappel::estimate background (const MatT &im, const MatT &unit model im, double min bg)
- double mappel::estimate_intensity (const MatT &im, const MatT &unit_model_im, double bg)
- double mappel::estimate_background (const CubeT &im, const CubeT &unit_model_im)
- double mappel::estimate intensity (const CubeT &im, const CubeT &unit model im, double bg)

9.70.1 Detailed Description

The stencils for pixel based computations.

Author

```
Mark J. Olah (mjo@cs.unm DOT edu)
```

Date

03-22-2014

9.71 stencil.h File Reference

The stencils for pixel based computations.

```
#include <cmath>
#include <climits>
#include "Mappel/util.h"
#include "Mappel/rng.h"
```

Namespaces

mappel

Functions

- double mappel::gauss_norm (double sigma)
- void mappel::fill_d_stencil (int size, double stencil[], double theta_x)
- void mappel::fill_G_stencil (int size, double stencil[], const double dx[], double theta_sigma)
- void mappel::fill_X_stencil (int size, double stencil[], const double dx[], double theta_sigma)
- void mappel::fill DX stencil (int size, double stencil[], const double Gx[], double theta sigma)
- void mappel::fill_DXS_stencil (int size, double stencil[], const double dx[], const double Gx[], double theta_sigma)
- void mappel::fill_DXS2_stencil (int size, double stencil[], const double dx[], const double Gx[], const double D

 XS[], double theta sigma)
- void mappel::fill_DXSX_stencil (int size, double stencil[], const double dx[], const double Gx[], const double DX[], double theta_sigma)
- VecT mappel::make_d_stencil (int size, double theta_x)
- VecT mappel::make_G_stencil (int size, const VecT &dx, double theta_sigma)
- VecT mappel::make_X_stencil (int size, const VecT &dx, double theta_sigma)
- VecT mappel::make_DX_stencil (int size, const VecT &Gx, double theta_sigma)
- VecT mappel::make DXS stencil (int size, const VecT &dx, const VecT &Gx, double theta sigma)
- VecT mappel::make_DXS2_stencil (int size, const VecT &dx, const VecT &Gx, const VecT &DXS, double theta
 sigma)
- VecT mappel::make_DXSX_stencil (int size, const VecT &dx, const VecT &Gx, const VecT &DX, double theta_

 sigma)
- void mappel::fill gaussian stencil (int size, double stencil], double sigma)

854 CONTENTS

- VecT mappel::make_gaussian_stencil (int size, double sigma)
- void mappel::estimate_gaussian_2Dmax (const MatT &data, const VecT &Xstencil, const VecT &Ystencil, int max pos[], double &min val)
- void mappel::refine_gaussian_2Dmax (const MatT &data, const VecT &Xstencil, const VecT &Ystencil, int max
 _pos[])
- double mappel::gaussian_convolution (int x, int y, const MatT &data, const VecT &Xstencil, const VecT &Ystencil)
- void mappel::estimate_gaussian_3Dmax (const CubeT &data, const VecFieldT &stencils, int max_pos[], double &min val)
- void mappel::refine_gaussian_3Dmax (const CubeT &data, const VecFieldT &stencils, int max_pos[])
- double mappel::gaussian 3D convolution (int x, int y, int z, const CubeT &data, const VecFieldT &stencils)
- double mappel::poisson log likelihood (double model val, double data val)
- double mappel::relative poisson log likelihood (double model val, double data val)
- double mappel::check lower bound hyperparameter (const char *name, double value, double lower bound)
- double mappel::check_positive_hyperparameter (const char *name, double value, double hyperprior_epsilon=1 ← E-6)
- double mappel::check_unit_hyperparameter (const char *name, double value, double hyperprior_epsilon=1E-6)
- double mappel::log prior beta const (double beta)
- double mappel::log prior beta2 const (double beta0, double beta1)
- double mappel::log_prior_gamma_const (double kappa, double mean)
- double mappel::log prior pareto const (double alpha, double min)
- double mappel::log prior normal const (double sigma)
- double mappel::rllh beta prior (double beta, double v, double max=1., double min=0.)
- double mappel::rllh_beta2_prior (double beta0, double beta1, double v, double max=1., double min=0.)
- double mappel::rllh gamma prior (double kappa, double mean, double v)
- double mappel::rllh pareto prior (double alpha, double v)
- double mappel::rllh_normal_prior (double mu, double sigma)
- double mappel::beta prior grad (double beta, double v, double max=1., double min=0.)
- double mappel::beta2 prior grad (double beta0, double beta1, double v, double max=1., double min=0.)
- double mappel::gamma prior grad (double kappa, double mean, double v)
- double mappel::pareto prior grad (double alpha, double v)
- double mappel::normal_prior_grad (double mu, double sigma)
- double mappel::beta prior grad2 (double beta, double v, double max=1., double min=0.)
- double mappel::beta2 prior grad2 (double beta0, double beta1, double v, double max=1., double min=0.)
- double mappel::gamma prior grad2 (double kappa, double v)
- double mappel::pareto_prior_grad2 (double alpha, double v)
- double mappel::normal_prior_grad (double sigma)
- double mappel::normal_quantile_twosided (double confidence)
- double mappel::normal_quantile_onesided (double confidence)
- double mappel::rllh_normal_prior (double mu, double sigma, double v)
- double mappel::normal_prior_grad (double mu, double sigma, double v)
- double mappel::normal_prior_grad2 (double sigma)

9.71.1 Detailed Description

The stencils for pixel based computations.

Author

Mark J. Olah (mjo@cs.unm DOT edu)

Date

03-22-2014

9.72 util.cpp File Reference

```
#include <sched.h>
#include <cctype>
#include <omp.h>
#include "Mappel/util.h"
```

Namespaces

mappel

Functions

- void mappel::enable_all_cpus ()
- bool mappel::istarts with (const char *s, const char *pattern)
- bool mappel::istarts_with (const std::string &str, const char *pattern)
- const char * mappel::icontains (const char *s, const char *pattern)
- int mappel::maxidx (const VecT &v)
- std::ostream & mappel::operator<< (std::ostream &out, const StatsT &stats)

9.73 util.h File Reference

```
#include <cstdint>
#include <cmath>
#include <memory>
#include <utility>
#include <string>
#include <map>
#include <sstream>
#include <armadillo>
#include <BacktraceException/BacktraceException.h>
```

Classes

· struct mappel::ParameterValueError

Parameter value is not valid.

• struct mappel::ArrayShapeError

Array is not of the right dimensionality.

struct mappel::ArraySizeError

Array is not of the right size.

• struct mappel::ModelBoundsError

Access outside the model bounds is attempted.

struct mappel::NumericalError

Expected numerical condition does not hold.

struct mappel::LogicalError

Failure of code or algorithm logic.

struct mappel::NotImplementedError

Feature not yet implemented.

856 CONTENTS

Namespaces

mappel

Typedefs

```
using mappel::BoolT = uint16_t
using mappel::BoolVecT = arma::Col< uint16_t >

    using mappel::ldxT = arma::uword

using mappel::IdxVecT = arma::Col< IdxT >
using mappel::ldxMatT = arma::Mat< ldxT >
using mappel::VecT = arma::vec
using mappel::MatT = arma::mat
using mappel::CubeT = arma::cube

    using mappel::VecFieldT = arma::field < VecT >

• using mappel::StatsT = std::map< std::string, double >
using mappel::StringVecT = std::vector< std::string >

    template < class ModelT , class ModelBaseT >

  using mappel::EnableIfSubclassT = typename std::enable if< std::is base of< ModelBaseT, ModelT >::value,
  void >::type
\bullet \;\; \text{template} {<} \text{class ReturnT , class ModelT , class ModelBaseT} >
  using mappel::ReturnIfSubclassT = typename std::enable if < std::is base of < ModelBaseT, ModelT >::value,
  ReturnT >::type

    template < class Model >

  using mappel::ImageCoordT = typename Model::ImageCoordT

    template < class Model >

  using mappel::ImagePixelT = typename Model::ImagePixelT

    template < class Model >

  using mappel::ParamT = typename Model::ParamT

    template<class Model >

  using mappel::ParamVecT = typename Model::ParamVecT

    template<class Model >

  using mappel::ImageT = typename Model::ImageT

    template<class Model >

  using mappel::ModelDataT = typename Model::ModelDataT

    template < class Model >

  using mappel::StencilT = typename Model::Stencil

    template<class Model >

  using mappel::ImageStackT = typename Model::ImageStackT

    template < class Model >

  using mappel::ModelDataStackT = typename Model::ModelDataStackT

    template < class Model >

  using mappel::StencilVecT = typename Model::StencilVecT

    using mappel::MappelError = backtrace exception::BacktraceException
```

9.73 util.h File Reference 857

Functions

- void mappel::enable_all_cpus ()
- bool mappel::istarts_with (const char *s, const char *pattern)
- bool mappel::istarts with (const std::string &str, const char *pattern)
- const char * mappel::icontains (const char *s, const char *pattern)
- int mappel::maxidx (const VecT &v)
- template<typename T > int mappel::sgn (T val)

sign (signum) function: -1/0/1

- template<typename T > T mappel::square (T x)
- double mappel::restrict_value_range (double val, double minval, double maxval)
- template<typename T, typename... Args>
 std::unique_ptr< T > mappel::make_unique (Args &&...args)
- std::ostream & mappel::operator<< (std::ostream &out, const StatsT &stats)

Index

\sim Estimator	mappel::Gauss1DModel, 173
mappel::Estimator, 106	mappel::Gauss1DsMAP, 201
	mappel::Gauss1DsMLE, 229
Abort	mappel::Gauss1DsModel, 257
omp_exception_catcher::impl_::OMPException←	mappel::Gauss2DMAP, 285
Catcher, 687	mappel::Gauss2DMLE, 315
alpha	mappel::Gauss2DModel, 344
mappel::IterativeMaximizer, 541	mappel::Gauss2DsMAP, 373
mappel::NewtonDiagonalMaximizer, 668	mappel::Gauss2DsMLE, 405
mappel::NewtonMaximizer, 681	mappel::Gauss2DsModel, 437
mappel::QuasiNewtonMaximizer, 733	mappel::Gauss2DsxyMAP, 467
mappel::TrustRegionMaximizer, 788	mappel::Gauss2DsxyModel, 494
anneal	mappel::MAPEstimator, 548
mappel::SimulatedAnnealingMaximizer, 739	mappel::MCMCAdaptor1Ds, 589
aposteriori_objective	mappel::MCMCAdaptor1D, 571
mappel::methods, 53	mappel::MCMCAdaptor2Ds, 626
ArrayShapeError	mappel::MCMCAdaptor2D, 607
mappel::ArrayShapeError, 86	mappel::MLEstimator, 646
ArraySizeError	mappel::PointEmitterModel, 693
mappel::ArraySizeError, 87	boundary_stepback_min_kappa
ha a alutura al c	mappel::TrustRegionMaximizer, 788
backtrack	bounded_theta
mappel::IterativeMaximizer, 535	mappel::Gauss1DMAP, 118
mappel::NewtonDiagonalMaximizer, 662	mappel::Gauss1DMLE, 146
mappel::NewtonMaximizer, 675	mappel::Gauss1DModel, 173
mappel::QuasiNewtonMaximizer, 727	mappel::Gauss1DsMAP, 201
mappel::TrustRegionMaximizer, 781	mappel::Gauss1DsMLE, 229
backtrack_idxs	mappel::Gauss1DsModel, 257
mappel::IterativeMaximizer::MaximizerData, 565	mappel::Gauss2DMAP, 285
beta2_prior_grad	mappel::Gauss2DMLE, 315
mappel, 28	mappel::Gauss2DModel, 344
beta2_prior_grad2	mappel::Gauss2DsMAP, 373
mappel, 28	mappel::Gauss2DsMLE, 405
beta_prior_grad	mappel::Gauss2DsModel, 437
mappel, 28	mappel::Gauss2DsxyMAP, 467
beta_prior_grad2	mappel::Gauss2DsxyModel, 494
mappel, 28	mappel::MAPEstimator, 548
bg	mappel::MCMCAdaptor1Ds, 589
mappel::Gauss1DModel::Stencil, 747	mappel::MCMCAdaptor1D, 571
mappel::Gauss1DsModel::Stencil, 751	mappel::MCMCAdaptor1B, 371
mappel::Gauss2DModel::Stencil, 766	mappel::MCMCAdaptor2D, 607
mappel::Gauss2DsModel::Stencil, 760	mappel::MLEstimator, 646
mappel::Gauss2DsxyModel::Stencil, 755 BoolVecT	mappel::PointEmitterModel, 693
	bounded theta stack
mappel, 25	mappel::Gauss1DMAP, 118
BoolT	mappel::Gauss1DMLE, 146
mappel, 25	• •
bound_step	mappel::Gauss1DModel, 174
mappel::TrustRegionMaximizer, 781	mappel::Gauss1DsMAP, 201
bound_theta	mappel::Gauss1DsMLE, 229
mappel::Gauss1DMAP, 118	mappel::Gauss1DsModel, 257
mappel::Gauss1DMLE, 146	mappel::Gauss2DMAP, 285

mappel::Gauss2DMLE, 315	mappel::Gauss2DMAP, 285
mappel::Gauss2DModel, 344	mappel::Gauss2DMLE, 315
mappel::Gauss2DsMAP, 374	mappel::Gauss2DModel, 344
mappel::Gauss2DsMLE, 406	mappel::Gauss2DsMAP, 374
mappel::Gauss2DsModel, 437	mappel::Gauss2DsMLE, 406
mappel::Gauss2DsxyMAP, 468	mappel::Gauss2DsModel, 438
mappel::Gauss2DsxyModel, 494	mappel::Gauss2DsxyMAP, 468
mappel::MAPEstimator, 549	mappel::Gauss2DsxyModel, 494
mappel::MCMCAdaptor1Ds, 590	mappel::ImageFormat1DBase, 523
mappel::MCMCAdaptor1D, 571	mappel::ImageFormat2DBase, 529
mappel::MCMCAdaptor2Ds, 626	mappel::PoissonNoise1DObjective, 710
mappel::MCMCAdaptor2D, 608	mappel::PoissonNoise2DObjective, 717
mappel::MLEstimator, 647	check_lower_bound_hyperparameter
mappel::PointEmitterModel, 693	mappel, 29
bounds_epsilon	check_param_shape
mappel::Gauss1DMAP, 133	mappel::Gauss1DMAP, 119
mappel::Gauss1DMLE, 161	mappel::Gauss1DMLE, 147
mappel::Gauss1DModel, 188	mappel::Gauss1DModel, 174
mappel::Gauss1DsMAP, 216	mappel::Gauss1DsMAP, 202
mappel::Gauss1DsMLE, 244	mappel::Gauss1DsMLE, 230
mappel::Gauss1DsModel, 272	mappel::Gauss1DsModel, 257
mappel::Gauss2DMAP, 300	mappel::Gauss2DMAP, 285, 286
mappel::Gauss2DMLE, 330	mappel::Gauss2DMLE, 315, 316
mappel::Gauss2DModel, 359	mappel::Gauss2DModel, 345
mappel::Gauss2DsMAP, 391	mappel::Gauss2DsMAP, 374
mappel::Gauss2DsMLE, 423	mappel::Gauss2DsMLE, 406
mappel::Gauss2DsModel, 454	mappel::Gauss2DsModel, 438
mappel::Gauss2DsxyMAP, 482	mappel::Gauss2DsxyMAP, 468
mappel::Gauss2DsxyModel, 506	mappel::Gauss2DsxyModel, 494, 495
mappel::MAPEstimator, 557	mappel::MAPEstimator, 549
mappel::MCMCAdaptor1Ds, 599	mappel::MCMCAdaptor1Ds, 590
mappel::MCMCAdaptor1D, 581	mappel::MCMCAdaptor1D, 572
mappel::MCMCAdaptor2Ds, 636	mappel::MCMCAdaptor2Ds, 626
mappel::MCMCAdaptor2D, 617	mappel::MCMCAdaptor2D, 608
mappel::MLEstimator, 655	mappel::MLEstimator, 647
mappel::PointEmitterModel, 701	mappel::PointEmitterModel, 693
	check_positive_hyperparameter
CGaussHeuristicEstimator	mappel, 29
mappel::CGaussHeuristicEstimator, 89	check_psf_sigma
CGaussMLE	mappel::Gauss1DMAP, 119
mappel::CGaussMLE, 97	mappel::Gauss1DMLE, 147
cgauss_compute_estimate	mappel::Gauss1DModel, 174, 175
mappel, 28	mappel::Gauss1DsMAP, 202
cgauss_compute_estimate_debug	mappel::Gauss1DsMLE, 230
mappel, 28, 29	mappel::Gauss1DsModel, 258
cgauss_heuristic_compute_estimate	mappel::Gauss2DMAP, 286
mappel, 29	mappel::Gauss2DMLE, 316
check_image_shape	mappel::Gauss2DModel, 345
mappel::Gauss1DMAP, 119	mappel::Gauss2DsMAP, 374, 375
mappel::Gauss1DMLE, 146	mappel::Gauss2DsMLE, 406, 407
mappel::Gauss1DModel, 174	mappel::Gauss2DsModel, 438
mappel::Gauss1DsMAP, 201	mappel::Gauss2DsxyMAP, 468, 469
mappel::Gauss1DsMLE, 230	mappel::Gauss2DsxyModel, 495
mappel::Gauss1DsModel, 257	mappel::MAPEstimator, 549

	manus alv.Tu. atDania aManiasia au 700
mappel::MCMCAdaptor1Ds, 590	mappel::TrustRegionMaximizer, 782
mappel::MCMCAdaptor1D, 572	compute_bound_scaling_vec
mappel::MCMCAdaptor2Ds, 627	mappel::TrustRegionMaximizer, 781
mappel::MCMCAdaptor2D, 608	compute_cauchy_point
mappel::MLEstimator, 647	mappel::TrustRegionMaximizer, 782
mappel::PointEmitterModel, 694	compute_derivatives
check_size	mappel::Gauss1DModel::Stencil, 747
mappel::Gauss1DMAP, 120	mappel::Gauss1DsModel::Stencil, 751
mappel::Gauss1DMLE, 147	mappel::Gauss2DModel::Stencil, 766
mappel::Gauss1DModel, 175	mappel::Gauss2DsModel::Stencil, 760
mappel::Gauss1DsMAP, 202	mappel::Gauss2DsxyModel::Stencil, 755
mappel::Gauss1DsMLE, 231	compute_estimate
mappel::Gauss1DsModel, 258	mappel::CGaussHeuristicEstimator, 89
mappel::Gauss2DMAP, 286	mappel::CGaussMLE, 98
mappel::Gauss2DMLE, 316	mappel::Estimator, 106
mappel::Gauss2DModel, 345	mappel::HeuristicEstimator, 514
mappel::Gauss2DsMAP, 375	mappel::IterativeMaximizer, 536
mappel::Gauss2DsMLE, 407	mappel::NewtonDiagonalMaximizer, 662
mappel::Gauss2DsModel, 439	mappel::NewtonMaximizer, 675
mappel::Gauss2DsxyMAP, 469	mappel::QuasiNewtonMaximizer, 727
mappel::Gauss2DsxyModel, 495	mappel::SimulatedAnnealingMaximizer, 739, 740
mappel::ImageFormat1DBase, 523	mappel::ThreadedEstimator, 771
mappel::ImageFormat2DBase, 529	mappel::TrustRegionMaximizer, 782
mappel::PoissonNoise1DObjective, 710	compute estimate debug
mappel::PoissonNoise2DObjective, 718	mappel::CGaussHeuristicEstimator, 90
check_unit_hyperparameter	mappel::CGaussMLE, 98
mappel, 29	mappel::Estimator, 107
cholesky	mappel::HeuristicEstimator, 514
mappel, 29	mappel::IterativeMaximizer, 536
cholesky_convert_full_matrix	mappel::NewtonDiagonalMaximizer, 662
mappel, 30	mappel::NewtonMaximizer, 675
cholesky_convert_lower_triangular	mappel::QuasiNewtonMaximizer, 728
mappel, 30	mappel::SimulatedAnnealingMaximizer, 740
cholesky make negative definite	mappel::ThreadedEstimator, 772
<i>7</i> — — • —	• •
mappel, 30	mappel::TrustRegionMaximizer, 782
cholesky_make_positive_definite	compute_initial_trust_radius
mappel, 30	mappel::TrustRegionMaximizer, 783
cholesky_solve	compute_max_sigma_ratio
mappel, 30	mappel::Gauss2DsMAP, 375
clear_stats	mappel::Gauss2DsMLE, 407
mappel::CGaussHeuristicEstimator, 89	mappel::Gauss2DsModel, 439
mappel::CGaussMLE, 98	mappel::Gauss2DsxyModel, 495
mappel::Estimator, 106	compute_profile_estimate
mappel::HeuristicEstimator, 514	mappel::CGaussHeuristicEstimator, 90
mappel::IterativeMaximizer, 535	mappel::CGaussMLE, 98
mappel::NewtonDiagonalMaximizer, 662	mappel::Estimator, 107
mappel::NewtonMaximizer, 675	mappel::HeuristicEstimator, 514
mappel::QuasiNewtonMaximizer, 727	mappel::IterativeMaximizer, 536
mappel::SimulatedAnnealingMaximizer, 739	mappel::NewtonDiagonalMaximizer, 663
mappel::ThreadedEstimator, 771	mappel::NewtonMaximizer, 676
mappel::TrustRegionMaximizer, 781	mappel::QuasiNewtonMaximizer, 728
ClockT	mappel::SimulatedAnnealingMaximizer, 740
estimator.h, 796	mappel::ThreadedEstimator, 772
compute_D_scale	mappel::TrustRegionMaximizer, 783

Continue	mappel::Gauss2DsxyModel::Stencil, 757
$omp_exception_catcher::impl_::OMPException \leftarrow$	DYS
Catcher, 687	mappel::Gauss2DModel::Stencil, 768
convergence_test	mappel::Gauss2DsModel::Stencil, 762
mappel::IterativeMaximizer, 537	mappel::Gauss2DsxyModel::Stencil, 757
mappel::NewtonDiagonalMaximizer, 663	debug_internal_sum_model_x
mappel::NewtonMaximizer, 676	mappel::Gauss2DMAP, 286
mappel::QuasiNewtonMaximizer, 728	mappel::Gauss2DMLE, 316
mappel::TrustRegionMaximizer, 783	mappel::Gauss2DModel, 345
cooling_rate	mappel::Gauss2DsMAP, 375
mappel::SimulatedAnnealingMaximizer, 744	mappel::Gauss2DsMLE, 407
CoordldxT	mappel::Gauss2DsModel, 439
PoissonGaussianNoise2DObjective, 705	debug_internal_sum_model_y
CoordStackT	mappel::Gauss2DMAP, 286
PoissonGaussianNoise2DObjective, 705	mappel::Gauss2DMLE, 316
CoordT	mappel::Gauss2DModel, 346
PoissonGaussianNoise2DObjective, 705	mappel::Gauss2DsMAP, 375
copy_Lsym_mat	mappel::Gauss2DsMLE, 407
mappel, 31	mappel::Gauss2DsModel, 439
copy_Usym_mat	default_alpha_sigma
mappel, 31	mappel::Gauss1DMAP, 133
copy_Usym_mat_stack	mappel::Gauss1DMLE, 161
mappel, 31	mappel::Gauss1DModel, 188
cr_lower_bound	mappel::Gauss1DsMAP, 216
mappel::methods, 54	mappel::Gauss1DsMLE, 244
cr_lower_bound_stack	mappel::Gauss1DsModel, 272
mappel, 31	mappel::Gauss2DMAP, 300
mappel::methods::openmp, 80	mappel::Gauss2DMLE, 330
CubeT	mappel::Gauss2DModel, 359
mappel, 25	mappel::Gauss2DsMAP, 391
current_stencil	mappel::Gauss2DsMLE, 423
mappel::IterativeMaximizer::MaximizerData, 565	mappel::Gauss2DsModel, 454
	mappel::Gauss2DsxyMAP, 482
DXS2	mappel::Gauss2DsxyModel, 506
mappel::Gauss1DsModel::Stencil, 752	mappel::MAPEstimator, 557
mappel::Gauss2DsModel::Stencil, 762	mappel::MCMCAdaptor1Ds, 599
mappel::Gauss2DsxyModel::Stencil, 756	mappel::MCMCAdaptor1D, 581
DXSX	mappel::MCMCAdaptor2Ds, 636
mappel::Gauss1DsModel::Stencil, 752	mappel::MCMCAdaptor2D, 617
mappel::Gauss2DsModel::Stencil, 762	mappel::MLEstimator, 655
mappel::Gauss2DsxyModel::Stencil, 756	mappel::PointEmitterModel, 701
DXS	default_beta_pos
mappel::Gauss1DModel::Stencil, 748	mappel::Gauss1DMAP, 133
mappel::Gauss1DsModel::Stencil, 752	mappel::Gauss1DMLE, 161
mappel::Gauss2DModel::Stencil, 767	mappel::Gauss1DModel, 188
mappel::Gauss2DsModel::Stencil, 762	mappel::Gauss1DsMAP, 216
mappel::Gauss2DsxyModel::Stencil, 756	mappel::Gauss1DsMLE, 245
DYS2	mappel::Gauss1DsModel, 272
mappel::Gauss2DsModel::Stencil, 763	mappel::Gauss2DMAP, 300
mappel::Gauss2DsxyModel::Stencil, 757	mappel::Gauss2DMLE, 330
DYSX	mappel::Gauss2DModel, 359
mappel::Gauss2DsxyModel::Stencil, 757	mappel::Gauss2DsMAP, 391
DYSY	mappel::Gauss2DsMLE, 423
mappel::Gauss2DsModel::Stencil, 763	mappel::Gauss2DsModel, 454

mappel::Gauss2DsxyMAP, 482	mappel::Gauss1DMAP, 134
mappel::Gauss2DsxyModel, 506	mappel::Gauss1DMLE, 162
mappel::MAPEstimator, 557	mappel::Gauss1DModel, 189
mappel::MCMCAdaptor1Ds, 599	mappel::Gauss1DsMAP, 217
mappel::MCMCAdaptor1D, 581	mappel::Gauss1DsMLE, 245
mappel::MCMCAdaptor2Ds, 636	mappel::Gauss1DsModel, 272
mappel::MCMCAdaptor2D, 617	mappel::Gauss2DMAP, 301
mappel::MLEstimator, 655	mappel::Gauss2DMLE, 331
mappel::PointEmitterModel, 701	mappel::Gauss2DModel, 360
default_intensity_kappa	mappel::Gauss2DsMAP, 391
mappel::Gauss1DMAP, 133	mappel::Gauss2DsMLE, 423
mappel::Gauss1DMLE, 161	mappel::Gauss2DsModel, 454
mappel::Gauss1DModel, 188	mappel::Gauss2DsxyMAP, 483
mappel::Gauss1DsMAP, 217	mappel::Gauss2DsxyModel, 507
mappel::Gauss1DsMLE, 245	mappel::MAPEstimator, 558
mappel::Gauss1DsModel, 272	mappel::MCMCAdaptor1Ds, 600
mappel::Gauss2DMAP, 301	mappel::MCMCAdaptor1D, 582
mappel::Gauss2DMLE, 331	mappel::MCMCAdaptor2Ds, 636
mappel::Gauss2DModel, 359	mappel::MCMCAdaptor2D, 618
mappel::Gauss2DsMAP, 391	mappel::MLEstimator, 656
mappel::Gauss2DsMLE, 423	mappel::PointEmitterModel, 702
mappel::Gauss2DsModel, 454	default_pixel_mean_bg
mappel::Gauss2DsxyMAP, 482	mappel::Gauss1DMAP, 134
mappel::Gauss2DsxyModel, 507	mappel::Gauss1DMLE, 162
mappel::MAPEstimator, 557	mappel::Gauss1DModel, 189
mappel::MCMCAdaptor1Ds, 599	mappel::Gauss1DsMAP, 217
mappel::MCMCAdaptor1D, 582	mappel::Gauss1DsMLE, 245
mappel::MCMCAdaptor2Ds, 636	mappel::Gauss1DsModel, 272
mappel::MCMCAdaptor2D, 618	mappel::Gauss2DMAP, 301
mappel::MLEstimator, 655	mappel::Gauss2DMLE, 331
mappel::PointEmitterModel, 701	mappel::Gauss2DMcE, 351
default_max_l	mappel::Gauss2DsMAP, 392
mappel::Gauss1DMAP, 133	mappel::Gauss2DsMLE, 424
mappel::Gauss1DMLE, 161	mappel::Gauss2DsMcL, 424
mappel::Gauss1DModel, 188	mappel::Gauss2DsxyMAP, 483
• •	mappel::Gauss2DsxyMAF, 463
mappel::Gauss1DsMAP, 217	* *
mappel::Gauss1DsMLE, 245	mappel::MAPEstimator, 558
mappel::Gauss1DsModel, 272	mappel::MCMCAdaptor1Ds, 600
mappel::Gauss2DMAP, 301	mappel::MCMCAdaptor1D, 582
mappel::Gauss2DMLE, 331	mappel::MCMCAdaptor2Ds, 636
mappel::Gauss2DModel, 360	mappel::MCMCAdaptor2D, 618
mappel::Gauss2DsMAP, 391	mappel::MLEstimator, 656
mappel::Gauss2DsMLE, 423	mappel::PointEmitterModel, 702
mappel::Gauss2DsModel, 454	default_sigma_pos
mappel::Gauss2DsxyMAP, 482	mappel::Gauss1DMAP, 134
mappel::Gauss2DsxyModel, 507	mappel::Gauss1DMLE, 162
mappel::MAPEstimator, 557	mappel::Gauss1DModel, 189
mappel::MCMCAdaptor1Ds, 600	mappel::Gauss1DsMAP, 217
mappel::MCMCAdaptor1D, 582	mappel::Gauss1DsMLE, 245
mappel::MCMCAdaptor2Ds, 636	mappel::Gauss1DsModel, 273
mappel::MCMCAdaptor2D, 618	mappel::Gauss2DMAP, 301
mappel::MLEstimator, 655	mappel::Gauss2DMLE, 331
mappel::PointEmitterModel, 702	mappel::Gauss2DModel, 360
default_mean_I	mappel::Gauss2DsMAP, 392

mappel::Gauss2DsMLE, 424	mappel::TrustRegionMaximizer, 789
mappel::Gauss2DsModel, 455	delta_decrease_min
mappel::Gauss2DsxyMAP, 483	mappel::TrustRegionMaximizer, 789
mappel::Gauss2DsxyModel, 507	delta_increase
mappel::MAPEstimator, 558	mappel::TrustRegionMaximizer, 789
mappel::MCMCAdaptor1Ds, 600	delta_init_max
mappel::MCMCAdaptor1D, 582	mappel::TrustRegionMaximizer, 789
mappel::MCMCAdaptor2Ds, 637	delta_init_min
mappel::MCMCAdaptor2D, 618	mappel::TrustRegionMaximizer, 789
mappel::MLEstimator, 656	derivatives_computed
mappel::PointEmitterModel, 702	mappel::Gauss1DModel::Stencil, 748
DefaultPriorType	mappel::Gauss1DsModel::Stencil, 752
mappel::Gauss1DMAP, 134	mappel::Gauss2DModel::Stencil, 767
mappel::Gauss1DMLE, 162	mappel::Gauss2DsModel::Stencil, 761
mappel::Gauss1DModel, 189	mappel::Gauss2DsxyModel::Stencil, 756
mappel::Gauss1DsMAP, 217	display.cpp, 793
mappel::Gauss1DsMLE, 246	display.h, 794
mappel::Gauss1DsModel, 273	DoNotTry
mappel::Gauss2DMAP, 301	omp_exception_catcher::impl_::OMPException←
mappel::Gauss2DMLE, 331	Catcher, 687
mappel::Gauss2DModel, 360	DX
mappel::Gauss2DsMAP, 392	mappel::Gauss1DModel::Stencil, 748
mappel::Gauss2DsMLE, 424	mappel::Gauss1DsModel::Stencil, 752
mappel::Gauss2DsModel, 455	mappel::Gauss2DModel::Stencil, 767
mappel::Gauss2DsxyMAP, 483	mappel::Gauss2DsModel::Stencil, 762
DefaultSeperableInitEstimator	mappel::Gauss2DsxyModel::Stencil, 756
mappel::Gauss1DMAP, 134	dx
mappel::Gauss1DMLE, 162	mappel::Gauss1DModel::Stencil, 748
mappel::Gauss1DModel, 189	mappel::Gauss1DsModel::Stencil, 740
mappel::Gauss1DModel, 103	mappel::Gauss2DModel::Stencil, 767
mappel::Gauss1DsMLE, 246	mappel::Gauss2DsModel::Stencil, 767
mappel::Gauss1DsModel, 273	mappel::Gauss2DsxyModel::Stencil, 761
mappel::Gauss2DMAP, 302	DY
• •	
mappel::Gauss2DMLE, 332	mappel::Gauss2DModel::Stencil, 768
mappel::Gauss2DModel, 360	mappel::Gauss2DsModel::Stencil, 762
mappel::Gauss2DsMAP, 392	mappel::Gauss2DsxyModel::Stencil, 757
mappel::Gauss2DsMLE, 424	dy
mappel::Gauss2DsModel, 455	mappel::Gauss2DModel::Stencil, 767
mappel::Gauss2DsxyMAP, 483	mappel::Gauss2DsModel::Stencil, 762
mappel::Gauss2DsxyModel, 507	mappel::Gauss2DsxyModel::Stencil, 757
mappel::MAPEstimator, 558	
mappel::MCMCAdaptor1Ds, 600	enable_all_cpus
mappel::MCMCAdaptor1D, 582	mappel, 31
mappel::MCMCAdaptor2Ds, 637	EnableIfSubclassT
mappel::MCMCAdaptor2D, 618	mappel, 25
mappel::MLEstimator, 656	epsilon
mappel::PointEmitterModel, 702	mappel::IterativeMaximizer, 541
delta	mappel::NewtonDiagonalMaximizer, 668
mappel::IterativeMaximizer, 541	mappel::NewtonMaximizer, 681
mappel::NewtonDiagonalMaximizer, 668	mappel::QuasiNewtonMaximizer, 733
mappel::NewtonMaximizer, 681	mappel::TrustRegionMaximizer, 789
mappel::QuasiNewtonMaximizer, 733	Error
mappel::TrustRegionMaximizer, 789	mappel::CGaussHeuristicEstimator, 89
delta_decrease	mappel::CGaussMLE, 97

mappel::Estimator, 105	mappel::methods::debug, 62
mappel::HeuristicEstimator, 513	estimate_max_stack
mappel::IterativeMaximizer, 535	mappel::CGaussHeuristicEstimator, 91, 92
mappel::NewtonDiagonalMaximizer, 661	mappel::CGaussMLE, 100
mappel::NewtonMaximizer, 674	mappel::Estimator, 108, 109
mappel::QuasiNewtonMaximizer, 726	mappel::HeuristicEstimator, 516
mappel::SimulatedAnnealingMaximizer, 739	mappel::IterativeMaximizer, 538
mappel::ThreadedEstimator, 771	mappel::NewtonDiagonalMaximizer, 664, 665
mappel::TrustRegionMaximizer, 780	mappel::NewtonMaximizer, 677, 678
error_bounds_expected	mappel::QuasiNewtonMaximizer, 730
mappel::methods, 54	mappel::SimulatedAnnealingMaximizer, 741, 742
error_bounds_expected_stack	mappel::ThreadedEstimator, 773, 774
mappel::methods::openmp, 80	mappel::TrustRegionMaximizer, 785
error_bounds_observed	mappel::methods::openmp, 81
mappel::methods, 54	estimate_mcmc_posterior
error_bounds_observed_stack	mappel::methods, 55
mappel::methods::openmp, 81	estimate_mcmc_posterior_stack
error_bounds_posterior_credible	mappel::methods::openmp, 82
mappel::methods, 54	estimate_mcmc_sample
error_bounds_posterior_credible_stack	mappel::methods, 56
mappel::methods::openmp, 81	estimate_mcmc_sample_debug
estimate_background	mappel::methods::debug, 62
mappel, 31	estimate_mcmc_sample_stack
estimate_gaussian_2Dmax	mappel::methods::openmp, 82
mappel, 32	estimate_profile_likelihood
estimate_gaussian_3Dmax	mappel::methods::openmp, 82, 83
mappel, 32	estimate_profile_stack
estimate_intensity	mappel::CGaussHeuristicEstimator, 92
mappel, 32	mappel::CGaussMLE, 100
estimate_max	mappel::Estimator, 109
mappel::CGaussHeuristicEstimator, 90, 91	mappel::HeuristicEstimator, 516
mappel::CGaussMLE, 99	mappel::IterativeMaximizer, 539
mappel::Estimator, 107, 108	mappel::NewtonDiagonalMaximizer, 665
mappel::HeuristicEstimator, 514, 515	mappel::NewtonMaximizer, 678
mappel::IterativeMaximizer, 537, 538	mappel::QuasiNewtonMaximizer, 730
mappel::NewtonDiagonalMaximizer, 663, 664	mappel::SimulatedAnnealingMaximizer, 742
mappel::NewtonMaximizer, 676, 677	mappel::ThreadedEstimator, 774
mappel::QuasiNewtonMaximizer, 728, 729	mappel::TrustRegionMaximizer, 785
mappel::SimulatedAnnealingMaximizer, 740, 741	estimate_sample_posterior
mappel::ThreadedEstimator, 772, 773	mappel::mcmc, 49
mappel::TrustRegionMaximizer, 783, 784	Estimator
mappel::methods, 54, 55	mappel::Estimator, 106
estimate_max_debug	estimator.h, 795
mappel::CGaussHeuristicEstimator, 91	ClockT, 796
mappel::CGaussMLE, 100	estimator_impl.h, 796
mappel::Estimator, 108	estimator_names
mappel::HeuristicEstimator, 515	mappel::Gauss1DMAP, 134
mappel::IterativeMaximizer, 538	mappel::Gauss1DMLE, 162
mappel::NewtonDiagonalMaximizer, 664	mappel::Gauss1DsMAP, 218
mappel::NewtonMaximizer, 677	mappel::Gauss1DsMLE, 246
mappel::QuasiNewtonMaximizer, 729	mappel::Gauss2DMAP, 302
mappel::SimulatedAnnealingMaximizer, 741	mappel::Gauss2DMLE, 332
mappel::ThreadedEstimator, 773	mappel::Gauss2DsMAP, 392
mappel::TrustRegionMaximizer, 784	mappel::Gauss2DsMLE, 424
appoint acti togrammaximizor, 707	appoaaaooeboiviee, ie i

mappel::Gauss2DsxyMAP, 483	mappel::Gauss1DsMAP, 218
mappel::PoissonNoise1DObjective, 712	mappel::Gauss1DsMLE, 247
mappel::PoissonNoise2DObjective, 720	mappel::Gauss1DsModel, 274
PoissonGaussianNoise2DObjective, 706	mappel::Gauss2DMAP, 302
estimator_statics.cpp, 796	mappel::Gauss2DMLE, 332
eta_bg	mappel::Gauss2DModel, 361
mappel::Gauss1DMAP, 135	mappel::Gauss2DsMAP, 393
mappel::Gauss1DMLE, 163	mappel::Gauss2DsMLE, 425
mappel::Gauss1DModel, 189	mappel::Gauss2DsModel, 456
mappel::Gauss1DsMAP, 218	mappel::Gauss2DsxyMAP, 484
mappel::Gauss1DsMLE, 246	mappel::MCMCAdaptor1Ds, 601
mappel::Gauss1DsModel, 273	mappel::MCMCAdaptor1D, 583
mappel::Gauss2DMAP, 302	mappel::MCMCAdaptor2Ds, 638
mappel::Gauss2DMLE, 332	mappel::MCMCAdaptor2D, 619
mappel::Gauss2DModel, 361	eta_y
mappel::Gauss2DsMAP, 392	mappel::Gauss2DMAP, 302
mappel::Gauss2DsMLE, 424	mappel::Gauss2DMLE, 332
mappel::Gauss2DsModel, 455	mappel::Gauss2DModel, 361
mappel::Gauss2DsxyMAP, 484	mappel::Gauss2DsMAP, 393
mappel::MCMCAdaptor1Ds, 600	mappel::Gauss2DsMLE, 425
mappel::MCMCAdaptor1D, 583	mappel::Gauss2DsModel, 456
mappel::MCMCAdaptor2Ds, 637	mappel::MCMCAdaptor2Ds, 638
mappel::MCMCAdaptor2D, 619	mappel::MCMCAdaptor2D, 619
eta I	exit_counts
mappel::Gauss1DMAP, 135	mappel::CGaussHeuristicEstimator, 94
mappel::Gauss1DMLE, 163	mappel::CGaussMLE, 102
mappel::Gauss1DModel, 190	mappel::Estimator, 110
mappel::Gauss1DsMAP, 218	mappel::HeuristicEstimator, 518
mappel::Gauss1DsMLE, 246	mappel::IterativeMaximizer, 542
mappel::Gauss1DsModel, 273	mappel::NewtonDiagonalMaximizer, 668
mappel::Gauss2DMAP, 302	mappel::NewtonMaximizer, 681
mappel::Gauss2DMLE, 332	mappel::QuasiNewtonMaximizer, 733
mappel::Gauss2DMcLt, 361	mappel::SimulatedAnnealingMaximizer, 744
mappel::Gauss2DsMAP, 393	mappel::ThreadedEstimator, 776
mappel::Gauss2DsMAF, 393	mappel::TrustRegionMaximizer, 789
mappel::Gauss2DsMcE, 425	ExitCode
mappel::Gauss2Dswodel, 455	
mappel::MCMCAdaptor1Ds, 601	mappel::CGaussHeuristicEstimator, 89 mappel::CGaussMLE, 97
··	mappel::Estimator, 105
mappel::MCMCAdaptor1D, 583	mappel::HeuristicEstimator, 513
mappel::MCMCAdaptor2Ds, 637	••
mappel::MCMCAdaptor2D, 619	mappel::IterativeMaximizer, 535
eta_sigma	mappel::NewtonDiagonalMaximizer, 661
mappel::Gauss1DsMAP, 218	mappel::NewtonMaximizer, 674
mappel::Gauss1DsMLE, 246	mappel::QuasiNewtonMaximizer, 726
mappel::Gauss1DsModel, 273	mappel::SimulatedAnnealingMaximizer, 739
mappel::Gauss2DsMAP, 393	mappel::ThreadedEstimator, 771
mappel::Gauss2DsMLE, 425	mappel::TrustRegionMaximizer, 780
mappel::Gauss2DsModel, 456	expected_information
mappel::MCMCAdaptor1Ds, 601	mappel::methods, 56, 57
mappel::MCMCAdaptor2Ds, 637	expected_information_stack
eta_x	mappel::methods::openmp, 83
mappel::Gauss1DMAP, 135	CH DV
mappel::Gauss1DMLE, 163	fill_DX_stencil
mappel::Gauss1DModel, 190	mappel, 32

fill_DXS2_stencil	mappel::Gauss2DModel, 341
mappel, 32	mappel::Gauss2DsMAP, 370
fill_DXS_stencil	mappel::Gauss2DsMLE, 402
mappel, 32	mappel::Gauss2DsModel, 435
fill_DXSX_stencil	Gauss1DsMAP.cpp, 801
mappel, 33	Gauss1DsMAP.h, 801
fill_G_stencil	Gauss1DsMAP
mappel, 33	mappel::Gauss1DsMAP, 200, 201
fill_X_stencil	Gauss1DsMLE.cpp, 802
mappel, 33	Gauss1DsMLE.h, 802
fill_d_stencil	Gauss1DsMLE
mappel, 32	mappel::Gauss1DsMLE, 229
fill_gaussian_stencil	Gauss1DsModel
mappel, 33	mappel::Gauss1DsModel, 256
fisher_information	Gauss1DsModel.cpp, 803
PoissonGaussianNoise2DObjective.h, 842	Gauss1DsModel.h, 804
fisher_information_stack	Gauss2DMAP.cpp, 804
mappel, 33	Gauss2DMAP.h, 805
fixed idxs	Gauss2DMAP
mappel::IterativeMaximizer::MaximizerData, 565	mappel::Gauss2DMAP, 284, 285
free_parameters	Gauss2DMLE.cpp, 806
mappel::IterativeMaximizer::MaximizerData, 565	Gauss2DMLE.h, 806
FunctionChange	Gauss2DMLE
mappel::CGaussHeuristicEstimator, 89	mappel::Gauss2DMLE, 314
mappel::CGaussMLE, 97	Gauss2DModel
mappel::Estimator, 105	mappel::Gauss2DModel, 343, 344
mappel::HeuristicEstimator, 513	Gauss2DModel.cpp, 807
mappel::IterativeMaximizer, 535	Gauss2DModel.h, 808
mappel::NewtonDiagonalMaximizer, 661	Gauss2DsMAP.cpp, 809
mappel::NewtonMaximizer, 674	Gauss2DsMAP.h, 809
mappel::QuasiNewtonMaximizer, 726	Gauss2DsMAP
mappel::SimulatedAnnealingMaximizer, 739	mappel::Gauss2DsMAP, 373
mappel::ThreadedEstimator, 771	Gauss2DsMLE.cpp, 810
mappel::TrustRegionMaximizer, 780	Gauss2DsMLE.h, 810
	Gauss2DsMLE
gamma_prior_grad	mappel::Gauss2DsMLE, 405
mappel, 33	Gauss2DsModel
gamma_prior_grad2	mappel::Gauss2DsModel, 437
mappel, 33	Gauss2DsModel.cpp, 811
Gauss1DMAP.cpp, 797	Gauss2DsModel.h, 812
Gauss1DMAP.h, 797	Gauss2DsxyMAP.h, 813
Gauss1DMAP	Gauss2DsxyMAP
mappel::Gauss1DMAP, 118	mappel::Gauss2DsxyMAP, 467
Gauss1DMLE.cpp, 798	Gauss2DsxyModel
Gauss1DMLE.h, 799	mappel::Gauss2DsxyModel, 494
Gauss1DMLE	Gauss2DsxyModel.h, 813
mappel::Gauss1DMLE, 145, 146	gauss_norm
Gauss1DModel	mappel, 34
mappel::Gauss1DModel, 173	gaussian_3D_convolution
Gauss1DModel.cpp, 799	mappel, 34
Gauss1DModel.h, 800	gaussian_convolution
Gauss1DSumModelT	mappel, 34
mappel::Gauss2DMAP, 282	generate_poisson
mappel::Gauss2DMLE, 312	mappel, 34
appointation Divide, OTE	appoi, o i

generate_poisson_large	mappel::Gauss2DsxyModel, 496
mappel, 34	mappel::MAPEstimator, 550
generate_poisson_small	mappel::MCMCAdaptor1Ds, 591
mappel, 34	mappel::MCMCAdaptor1D, 572
get_backtrack_idxs	mappel::MCMCAdaptor2Ds, 627
mappel::IterativeMaximizer::MaximizerData, 562	mappel::MCMCAdaptor2D, 609
get_debug_stats	mappel::MLEstimator, 648
mappel::CGaussHeuristicEstimator, 92	mappel::PointEmitterModel, 694
mappel::CGaussMLE, 100	get_hyperparam_value
mappel::Estimator, 109	mappel::Gauss1DMAP, 120
mappel::HeuristicEstimator, 516	mappel::Gauss1DMLE, 148
mappel::IterativeMaximizer, 539	mappel::Gauss1DModel, 175
mappel::NewtonDiagonalMaximizer, 665	mappel::Gauss1DsMAP, 203
mappel::NewtonMaximizer, 678	mappel::Gauss1DsMLE, 231
mappel::QuasiNewtonMaximizer, 730	mappel::Gauss1DsModel, 258
mappel::SimulatedAnnealingMaximizer, 742	mappel::Gauss2DMAP, 287
mappel::ThreadedEstimator, 774	mappel::Gauss2DMLE, 317
mappel::TrustRegionMaximizer, 785	mappel::Gauss2DModel, 346
get_hyperparam_index	mappel::Gauss2DsMAP, 376
mappel::Gauss1DMAP, 120	mappel::Gauss2DsMLE, 408
mappel::Gauss1DMLE, 147	mappel::Gauss2DsModel, 440
mappel::Gauss1DModel, 175	mappel::Gauss2DsxyMAP, 469
mappel::Gauss1DsMAP, 202	mappel::Gauss2DsxyModel, 496
mappel::Gauss1DsMLE, 231	mappel::MAPEstimator, 550
mappel::Gauss1DsModel, 258	mappel::MCMCAdaptor1Ds, 591
mappel::Gauss2DMAP, 287	mappel::MCMCAdaptor1D, 573
mappel::Gauss2DMLE, 317	mappel::MCMCAdaptor2Ds, 627
mappel::Gauss2DModel, 346	mappel::MCMCAdaptor2D, 609
mappel::Gauss2DsMAP, 376	mappel::MLEstimator, 648
mappel::Gauss2DsMLE, 408	mappel::PointEmitterModel, 694
mappel::Gauss2DsModel, 439	get_hyperparams
mappel::Gauss2DsxyMAP, 469	mappel::Gauss1DMAP, 120
mappel::Gauss2DsxyModel, 496	mappel::Gauss1DMLE, 148
mappel::MAPEstimator, 549	mappel::Gauss1DModel, 175
mappel::MCMCAdaptor1Ds, 590	mappel::Gauss1DsMAP, 203
mappel::MCMCAdaptor1D, 572	mappel::Gauss1DsMLE, 231
mappel::MCMCAdaptor2Ds, 627	mappel::Gauss1DsModel, 259
mappel::MCMCAdaptor2D, 608	mappel::Gauss2DMAP, 287
mappel::MLEstimator, 647	mappel::Gauss2DMLE, 317
mappel::PointEmitterModel, 694	mappel::Gauss2DModel, 346
get_hyperparam_names	mappel::Gauss2DsMAP, 376
mappel::Gauss1DMAP, 120	mappel::Gauss2DsMLE, 408
mappel::Gauss1DMLE, 148	mappel::Gauss2DsModel, 440
mappel::Gauss1DModel, 175	mappel::Gauss2DsxyMAP, 469
mappel::Gauss1DsMAP, 203	mappel::Gauss2DsxyModel, 496
mappel::Gauss1DsMLE, 231	mappel::MAPEstimator, 550
mappel::Gauss1DsModel, 258	mappel::MCMCAdaptor1Ds, 591
mappel::Gauss2DMAP, 287	mappel::MCMCAdaptor1D, 573
mappel::Gauss2DMLE, 317	mappel::MCMCAdaptor2Ds, 627
mappel::Gauss2DModel, 346	mappel::MCMCAdaptor2D, 609
mappel::Gauss2DsMAP, 376	mappel::MLEstimator, 648
mappel::Gauss2DsMLE, 408	mappel::PointEmitterModel, 694
mappel::Gauss2DsModel, 439	get_image_from_stack
mappel::Gauss2DsxyMAP, 469	mappel::Gauss1DMAP, 120
mappoinaddoolboxyivii ii , Too	mappomaduoo i Divirti , 120

1.0 4.04.5	1.0 (5)415 (40)
mappel::Gauss1DMLE, 148	mappel::Gauss1DMLE, 148
mappel::Gauss1DModel, 176	mappel::Gauss1DModel, 176
mappel::Gauss1DsMAP, 203	mappel::Gauss1DsMAP, 203
mappel::Gauss1DsMLE, 231	mappel::Gauss1DsMLE, 232
mappel::Gauss1DsModel, 259	mappel::Gauss1DsModel, 259
mappel::Gauss2DMAP, 287	mappel::Gauss2DMAP, 287
mappel::Gauss2DMLE, 317	mappel::Gauss2DMLE, 317
mappel::Gauss2DModel, 346	mappel::Gauss2DModel, 347
mappel::Gauss2DsMAP, 376	mappel::Gauss2DsMAP, 377
mappel::Gauss2DsMLE, 408	mappel::Gauss2DsMLE, 409
mappel::Gauss2DsModel, 440	mappel::Gauss2DsModel, 441
mappel::Gauss2DsxyMAP, 470	mappel::Gauss2DsxyMAP, 470
mappel::Gauss2DsxyModel, 496	mappel::MCMCAdaptor1Ds, 591
mappel::ImageFormat1DBase, 523	mappel::MCMCAdaptor1D, 573
mappel::ImageFormat2DBase, 529	mappel::MCMCAdaptor2Ds, 628
mappel::PoissonNoise1DObjective, 710	mappel::MCMCAdaptor2D, 609
mappel::PoissonNoise2DObjective, 718	mappel::MCMCAdaptorBase, 642
get_lbound	get_mcmc_sigma_scale
mappel::Gauss1DMAP, 120	mappel::Gauss1DMAP, 121
mappel::Gauss1DMLE, 148	mappel::Gauss1DMLE, 148
mappel::Gauss1DModel, 176	mappel::Gauss1DModel, 176
mappel::Gauss1DsMAP, 203	mappel::Gauss1DsMAP, 204
mappel::Gauss1DsMLE, 231	mappel::Gauss1DsMLE, 232
mappel::Gauss1DsModel, 259	mappel::Gauss1DsModel, 259
mappel::Gauss2DMAP, 287	mappel::Gauss2DMAP, 288
mappel::Gauss2DMLE, 317	mappel::Gauss2DMLE, 318
mappel::Gauss2DModel, 346	mappel::Gauss2DModel, 347
mappel::Gauss2DsMAP, 376	mappel::Gauss2DsMAP, 377
mappel::Gauss2DsMLE, 408	mappel::Gauss2DsMLE, 409
mappel::Gauss2DsModel, 440	mappel::Gauss2DsModel, 441
mappel::Gauss2DsxyMAP, 470	mappel::Gauss2DsxyMAP, 470
mappel::Gauss2DsxyModel, 496	mappel::MCMCAdaptor1Ds, 591
mappel::MAPEstimator, 550	mappel::MCMCAdaptor1D, 573
mappel::MCMCAdaptor1Ds, 591	mappel::MCMCAdaptor2Ds, 628
mappel::MCMCAdaptor1D, 573	mappel::MCMCAdaptor2D, 609
mappel::MCMCAdaptor2Ds, 628	mappel::MCMCAdaptorBase, 642
mappel::MCMCAdaptor2D, 609	get_min_sigma
mappel::MLEstimator, 648	mappel::Gauss1DsMAP, 204
mappel::PointEmitterModel, 694	mappel::Gauss1DsMLE, 232
get_max_sigma	mappel::Gauss1DsModel, 259
mappel::Gauss1DsMAP, 203	mappel::Gauss2DsMAP, 377
mappel::Gauss1DsMLE, 232	mappel::Gauss2DsMLE, 409
mappel::Gauss1DsModel, 259	mappel::Gauss2DsModel, 441
mappel::Gauss2DsMAP, 376, 377	mappel::Gauss2Dsiviouei, 447 mappel::Gauss2DsxyModel, 497
mappel::Gauss2DsMLE, 408, 409	get_model
mappel::Gauss2DsModel, 440	- —
• •	mappel::CGaussHeuristicEstimator, 92 mappel::CGaussMLE, 101
mappel::Gauss2DsxyModel, 496, 497	mappel::Estimator, 109
get_max_sigma_ratio	,
mappel::Gauss2DsMAP, 377	mappel::HeuristicEstimator, 516
mappel::Gauss2DsMLE, 409	mappel::IterativeMaximizer, 539
mappel::Gauss2DsModel, 441	mappel::NewtonDiagonalMaximizer, 665
mappel::Gauss2DsxyModel, 497	mappel::NewtonMaximizer, 678
get_mcmc_num_phases	mappel::QuasiNewtonMaximizer, 730
mappel::Gauss1DMAP, 121	mappel::SimulatedAnnealingMaximizer, 742

mappel::ThreadedEstimator, 774	mappel::Gauss2DMLE, 318
mappel::TrustRegionMaximizer, 785	mappel::Gauss2DModel, 347
get_num_hyperparams	mappel::Gauss2DsMAP, 378
mappel::Gauss1DMAP, 121	mappel::Gauss2DsMLE, 410
mappel::Gauss1DMLE, 149	mappel::Gauss2DsModel, 441
mappel::Gauss1DModel, 176	mappel::Gauss2DsxyMAP, 470
mappel::Gauss1DsMAP, 204	mappel::Gauss2DsxyModel, 497
mappel::Gauss1DsMLE, 232	mappel::ImageFormat1DBase, 523
mappel::Gauss1DsModel, 260	mappel::ImageFormat2DBase, 530
mappel::Gauss2DMAP, 288	mappel::PoissonNoise1DObjective, 711
mappel::Gauss2DMLE, 318	mappel::PoissonNoise2DObjective, 718
mappel::Gauss2DModel, 347	get param names
mappel::Gauss2DsMAP, 377	mappel::Gauss1DMAP, 121
mappel::Gauss2DsMLE, 409	mappel::Gauss1DMLE, 149
mappel::Gauss2DsModel, 441	mappel::Gauss1DModel, 177
mappel::Gauss2DsxyMAP, 470	mappel::Gauss1DsMAP, 204
mappel::Gauss2DsxyModel, 497	mappel::Gauss1DsMLE, 233
mappel::MAPEstimator, 550	mappel::Gauss1DsModel, 260
mappel::MCMCAdaptor1Ds, 591	mappel::Gauss2DMAP, 288
mappel::MCMCAdaptor1D, 573	mappel::Gauss2DMLE, 318
mappel::MCMCAdaptor2Ds, 628	mappel::Gauss2DModel, 347
mappel::MCMCAdaptor2D, 609	mappel::Gauss2DsMAP, 378
mappel::MLEstimator, 648	mappel::Gauss2DsMAF, 376
• •	mappel::Gauss2DsModel, 442
mappel::PointEmitterModel, 695	11
get_num_params	mappel::Gauss2DsxyMAP, 471
mappel::Gauss1DMAP, 121	mappel::Gauss2DsxyModel, 497
mappel::Gauss1DMLE, 149	mappel::MAPEstimator, 550
mappel::Gauss1DModel, 176	mappel::MCMCAdaptor1Ds, 592
mappel::Gauss1DsMAP, 204	mappel::MCMCAdaptor1D, 574
mappel::Gauss1DsMLE, 232	mappel::MCMCAdaptor2Ds, 628
mappel::Gauss1DsModel, 260	mappel::MCMCAdaptor2D, 610
mappel::Gauss2DMAP, 288	mappel::MLEstimator, 648
mappel::Gauss2DMLE, 318	mappel::PointEmitterModel, 695
mappel::Gauss2DModel, 347	get_prior
mappel::Gauss2DsMAP, 378	mappel::Gauss1DMAP, 121, 122
mappel::Gauss2DsMLE, 410	mappel::Gauss1DMLE, 149
mappel::Gauss2DsModel, 441	mappel::Gauss1DModel, 177
mappel::Gauss2DsxyMAP, 470	mappel::Gauss1DsMAP, 204, 205
mappel::Gauss2DsxyModel, 497	mappel::Gauss1DsMLE, 233
mappel::MAPEstimator, 550	mappel::Gauss1DsModel, 260
mappel::MCMCAdaptor1Ds, 592	mappel::Gauss2DMAP, 288
mappel::MCMCAdaptor1D, 573	mappel::Gauss2DMLE, 318
mappel::MCMCAdaptor2Ds, 628	mappel::Gauss2DModel, 347, 348
mappel::MCMCAdaptor2D, 610	mappel::Gauss2DsMAP, 378
mappel::MLEstimator, 648	mappel::Gauss2DsMLE, 410
mappel::PointEmitterModel, 695	mappel::Gauss2DsModel, 442
get_num_pixels	mappel::Gauss2DsxyMAP, 471
mappel::Gauss1DMAP, 121	mappel::Gauss2DsxyModel, 498
mappel::Gauss1DMLE, 149	mappel::MAPEstimator, 551
mappel::Gauss1DModel, 176	mappel::MCMCAdaptor1Ds, 592
mappel::Gauss1DsMAP, 204	mappel::MCMCAdaptor1D, 574
mappel::Gauss1DsMLE, 232	mappel::MCMCAdaptor2Ds, 628, 629
mappel::Gauss1DsModel, 260	mappel::MCMCAdaptor2D, 610
mappel::Gauss2DMAP, 288	mappel::MLEstimator, 649

mappel::PointEmitterModel, 695	mappel::Gauss1DMAP, 122
get_psf_sigma	mappel::Gauss1DMLE, 150
mappel::Gauss1DMAP, 122	mappel::Gauss1DModel, 178
mappel::Gauss1DMLE, 149, 150	mappel::Gauss1DsMAP, 205
mappel::Gauss1DModel, 177	mappel::Gauss1DsMLE, 233
mappel::Gauss2DMAP, 289	mappel::Gauss1DsModel, 261
mappel::Gauss2DMLE, 319	mappel::Gauss2DMAP, 289
mappel::Gauss2DModel, 348	mappel::Gauss2DMLE, 319
mappel::Gauss2DsxyMAP, 471	mappel::Gauss2DModel, 348
get_rng_generator	mappel::Gauss2DsMAP, 379
mappel::Gauss1DMAP, 122	mappel::Gauss2DsMLE, 411
mappel::Gauss1DMLE, 150	mappel::Gauss2DsModel, 442
mappel::Gauss1DModel, 177	mappel::Gauss2DsxyMAP, 472
mappel::Gauss1DsMAP, 205	mappel::Gauss2DsxyModel, 498
mappel::Gauss1DsMLE, 233	mappel::ImageFormat1DBase, 523
mappel::Gauss1DsModel, 260	mappel::ImageFormat2DBase, 530
mappel::Gauss2DMAP, 289	mappel::PoissonNoise1DObjective, 711
mappel::Gauss2DMLE, 319	mappel::PoissonNoise2DObjective, 718
mappel::Gauss2DModel, 348	get_size_image_stack
mappel::Gauss2DsMAP, 378	mappel::Gauss1DMAP, 123
mappel::Gauss2DsMLE, 410	mappel::Gauss1DMLE, 150
mappel::Gauss2DsModel, 442	mappel::Gauss1DModel, 178
mappel::Gauss2DsxyMAP, 471	mappel::Gauss1DsMAP, 205
mappel::Gauss2DsxyModel, 498	mappel::Gauss1DsMLE, 234
mappel::MAPEstimator, 551	mappel::Gauss1DsModel, 261
mappel::MCMCAdaptor1Ds, 592	mappel::Gauss2DMAP, 289
mappel::MCMCAdaptor1D, 574	mappel::Gauss2DMLE, 319
mappel::MCMCAdaptor2Ds, 629	mappel::Gauss2DModel, 349
mappel::MCMCAdaptor2D, 610	mappel::Gauss2DsMAP, 379
mappel::MLEstimator, 649	mappel::Gauss2DsMLE, 411
mappel::PointEmitterModel, 695	mappel::Gauss2DsModel, 443
get_rng_manager	mappel::Gauss2DsxyMAP, 472
mappel::Gauss1DMAP, 122	mappel::Gauss2DsxyModel, 498
mappel::Gauss1DMLE, 150	mappel::ImageFormat1DBase, 524
mappel::Gauss1DModel, 177	mappel::ImageFormat2DBase, 530
mappel::Gauss1DsMAP, 205	mappel::PoissonNoise1DObjective, 711
mappel::Gauss1DsMLE, 233	mappel::PoissonNoise2DObjective, 718
mappel::Gauss1DsModel, 261	get_stats
mappel::Gauss2DMAP, 289	mappel::CGaussHeuristicEstimator, 92
mappel::Gauss2DMLE, 319	mappel::CGaussMLE, 101
mappel::Gauss2DModel, 348	mappel::Estimator, 109
mappel::Gauss2DsMAP, 378	mappel::Gauss1DMAP, 123
mappel::Gauss2DsMLE, 410	mappel::Gauss1DMLE, 150
mappel::Gauss2DsModel, 442	mappel::Gauss1DModel, 178
mappel::Gauss2DsxyMAP, 471	mappel::Gauss1DsMAP, 205
mappel::Gauss2DsxyModel, 498	mappel::Gauss1DsMLE, 234
mappel::MAPEstimator, 551	mappel::Gauss1DsModel, 261
mappel::MCMCAdaptor1Ds, 592	mappel::Gauss2DMAP, 290
mappel::MCMCAdaptor1D, 574	mappel::Gauss2DMLE, 320
mappel::MCMCAdaptor2Ds, 629	mappel::Gauss2DModel, 349
mappel::MCMCAdaptor2D, 610	mappel::Gauss2DsMAP, 379
mappel::MLEstimator, 649	mappel::Gauss2DsMLE, 411
mappel::PointEmitterModel, 695	mappel::Gauss2DsModel, 443
get_size	mappel::Gauss2DsxyMAP, 472

mappel::Gauss2DsxyModel, 499	mappel::Gauss1DsMLE, 247
mappel::HeuristicEstimator, 517	mappel::Gauss1DsModel, 274
mappel::ImageFormat1DBase, 524	mappel::Gauss2DMAP, 303
mappel::ImageFormat2DBase, 530	mappel::Gauss2DMLE, 333
mappel::IterativeMaximizer, 539	mappel::Gauss2DModel, 361
mappel::MAPEstimator, 551	mappel::Gauss2DsMAP, 393
mappel::MCMCAdaptor1Ds, 592	mappel::Gauss2DsMLE, 425
mappel::MCMCAdaptor1D, 574	mappel::Gauss2DsModel, 456
mappel::MCMCAdaptor2Ds, 629	mappel::Gauss2DsxyMAP, 484
mappel::MCMCAdaptor2D, 610	mappel::MCMCAdaptor1Ds, 601
mappel::MCMCAdaptorBase, 642	mappel::MCMCAdaptor1D, 583
mappel::MLEstimator, 649	mappel::MCMCAdaptor2Ds, 638
mappel::NewtonDiagonalMaximizer, 665	mappel::MCMCAdaptor2D, 619
mappel::NewtonMaximizer, 678	mappel::MCMCAdaptorBase, 643
mappel::PointEmitterModel, 696	global_max_mcmc_sigma_scale
mappel::PoissonNoise1DObjective, 711	mappel::Gauss1DMAP, 135
mappel::PoissonNoise2DObjective, 718	mappel::Gauss1DMLE, 163
mappel::QuasiNewtonMaximizer, 731	mappel::Gauss1DModel, 190
mappel::SimulatedAnnealingMaximizer, 742	mappel::Gauss1DsMAP, 219
mappel::ThreadedEstimator, 774	mappel::Gauss1DsMLE, 247
mappel::TrustRegionMaximizer, 786	mappel::Gauss1DsModel, 274
get theta sequence	mappel::Gauss2DMAP, 303
mappel::IterativeMaximizer::MaximizerData, 562	mappel::Gauss2DMLE, 333
get_theta_sequence_rllh	mappel::Gauss2DModel, 362
mappel::IterativeMaximizer::MaximizerData, 562	mappel::Gauss2DsMAP, 394
get_ubound	mappel::Gauss2DsMLE, 426
mappel::Gauss1DMAP, 123	mappel::Gauss2DsModel, 456
mappel::Gauss1DMLE, 150	mappel::Gauss2DsxyMAP, 484
mappel::Gauss1DModel, 178	mappel::MCMCAdaptor1Ds, 601
mappel::Gauss1DsMAP, 206	mappel::MCMCAdaptor1D, 583
mappel::Gauss1DsMLE, 234	mappel::MCMCAdaptor2Ds, 638
mappel::Gauss1DsModel, 261	mappel::MCMCAdaptor2D, 620
mappel::Gauss2DMAP, 290	mappel::MCMCAdaptorBase, 643
mappel::Gauss2DMLE, 320	global_max_psf_sigma
mappel::Gauss2DMcL, 320	mappel::Gauss1DMAP, 135
mappel::Gauss2DsMAP, 379	mappel::Gauss1DMLE, 163
mappel::Gauss2DsMAF, 379	mappel::Gauss1DMcLe, 103
• •	• •
mappel::Gauss2DsModel, 443 mappel::Gauss2DsxyMAP, 472	mappel::Gauss1DsMAP, 219 mappel::Gauss1DsMLE, 247
• • •	• •
mappel::Gauss2DsxyModel, 499	mappel::Gauss1DsModel, 274
mappel::MAPEstimator, 551	mappel::Gauss2DMAP, 303
mappel::MCMCAdaptor1Ds, 592	mappel::Gauss2DMLE, 333
mappel::MCMCAdaptor1D, 574	mappel::Gauss2DModel, 362
mappel::MCMCAdaptor2Ds, 629	mappel::Gauss2DsMAP, 394
mappel::MCMCAdaptor2D, 610	mappel::Gauss2DsMLE, 426
mappel::MLEstimator, 649	mappel::Gauss2DsModel, 457
mappel::PointEmitterModel, 696	mappel::Gauss2DsxyMAP, 484
getIteration	mappel::Gauss2DsxyModel, 508
mappel::IterativeMaximizer::MaximizerData, 562	mappel::MAPEstimator, 558
global_default_mcmc_sigma_scale	mappel::MCMCAdaptor1Ds, 601
mappel::Gauss1DMAP, 135	mappel::MCMCAdaptor1D, 583
mappel::Gauss1DMLE, 163	mappel::MCMCAdaptor2Ds, 638
mappel::Gauss1DModel, 190	mappel::MCMCAdaptor2D, 620
mappel::Gauss1DsMAP, 219	mappel::MLEstimator, 656

mappel::PointEmitterModel, 702	mappel::Gauss2DsModel, 457
global_max_size	mappel::Gauss2DsxyMAP, 485
mappel::Gauss1DMAP, 136	mappel::Gauss2DsxyModel, 508
mappel::Gauss1DMLE, 164	mappel::ImageFormat1DBase, 525
mappel::Gauss1DModel, 191	mappel::ImageFormat2DBase, 531
mappel::Gauss1DsMAP, 219	mappel::PoissonNoise1DObjective, 713
mappel::Gauss1DsMLE, 247	mappel::PoissonNoise2DObjective, 720
mappel::Gauss1DsModel, 274	grad
mappel::Gauss2DMAP, 303	mappel::IterativeMaximizer::MaximizerData, 565
mappel::Gauss2DMLE, 333	mappel::methods::likelihood, 63
mappel::Gauss2DModel, 362	mappel::methods::objective, 68, 69
mappel::Gauss2DsMAP, 394	grad2
mappel::Gauss2DsMLE, 426	mappel::methods::likelihood, 63, 64
mappel::Gauss2DsModel, 457	mappel::methods::objective, 69
mappel::Gauss2DsxyMAP, 485	grad_components
mappel::Gauss2DsxyModel, 508	mappel::methods::likelihood::debug, 66
mappel::ImageFormat1DBase, 525	mappel::methods::objective::debug, 73
mappel::ImageFormat2DBase, 531	grad_stack
mappel::PoissonNoise1DObjective, 712	mappel::methods::objective::openmp, 75
mappel::PoissonNoise2DObjective, 720	GradRatio
global_min_psf_sigma	mappel::CGaussHeuristicEstimator, 89
mappel::Gauss1DMAP, 136	mappel::CGaussMLE, 97
mappel::Gauss1DMLE, 164	mappel::Estimator, 105
mappel::Gauss1DModel, 191	mappel::HeuristicEstimator, 513
mappel::Gauss1DsMAP, 219	mappel::IterativeMaximizer, 535
mappel::Gauss1DsMLE, 247	mappel::NewtonDiagonalMaximizer, 661
mappel::Gauss1DsModel, 274	mappel::NewtonMaximizer, 674
mappel::Gauss2DMAP, 303	mappel::QuasiNewtonMaximizer, 726
mappel::Gauss2DMLE, 333	mappel::SimulatedAnnealingMaximizer, 739
mappel::Gauss2DModel, 362	mappel::ThreadedEstimator, 771
mappel::Gauss2DsMAP, 394	mappel::TrustRegionMaximizer, 780
mappel::Gauss2DsMLE, 426	Gx
mappel::Gauss2DsModel, 457	mappel::Gauss1DModel::Stencil, 748
mappel::Gauss2DsxyMAP, 485	mappel::Gauss1DsModel::Stencil, 752
mappel::Gauss2DsxyModel, 508	mappel::Gauss2DModel::Stencil, 768
mappel::MAPEstimator, 558	mappel::Gauss2DsModel::Stencil, 763
mappel::MCMCAdaptor1Ds, 602	mappel::Gauss2DsxyModel::Stencil, 757
mappel::MCMCAdaptor1D, 584	Gy
mappel::MCMCAdaptor2Ds, 638	mappel::Gauss2DModel::Stencil, 768
mappel::MCMCAdaptor2D, 620	mappel::Gauss2DsModel::Stencil, 763
mappel::MLEstimator, 656	mappel::Gauss2DsxyModel::Stencil, 757
mappel::PointEmitterModel, 703	mappondads52D5xymodenotenen, 707
global_min_size	has_hyperparam
mappel::Gauss1DMAP, 136	mappel::Gauss1DMAP, 123
mappel::Gauss1DMLE, 164	mappel::Gauss1DMLE, 151
mappel::Gauss1DMcEl, 104	mappel::Gauss1DModel, 178
mappel::Gauss1DsMAP, 219	mappel::Gauss1DsMAP, 206
• •	mappel::Gauss1DsMLE, 234
mappel::Gauss1DsMLE, 248	
mappel::Gauss1DsModel, 275	mappel::Gauss1DsModel, 261
mappel::Gauss2DMAP, 303	mappel::Gauss2DMAP, 290
mappel::Gauss2DMLE, 333	mappel::Gauss2DMctel, 320
mappel::Gauss2DModel, 362	mappel::Gauss2DModel, 349
mappel::Gauss2DsMAP, 394	mappel::Gauss2DsMAP, 379
mappel::Gauss2DsMLE, 426	mappel::Gauss2DsMLE, 411

mappel::Gauss2DsModel, 443	mappel::ImageFormat2DBase, 527
mappel::Gauss2DsxyMAP, 472	mappel::PoissonNoise1DObjective, 708
mappel::Gauss2DsxyModel, 499	mappel::PoissonNoise2DObjective, 715
mappel::MAPEstimator, 551	ImageFormat1DBase
mappel::MCMCAdaptor1Ds, 593	mappel::ImageFormat1DBase, 522
mappel::MCMCAdaptor1D, 575	ImageFormat1DBase.cpp, 814
mappel::MCMCAdaptor2Ds, 629	ImageFormat1DBase.h, 815
mappel::MCMCAdaptor2D, 611	ImageFormat2DBase
mappel::MLEstimator, 649	mappel::ImageFormat2DBase, 529
mappel::PointEmitterModel, 696	ImageFormat2DBase.cpp, 816
hessian	ImageFormat2DBase.h, 816
mappel::methods::likelihood, 64	ImagePixeIT
mappel::methods::objective, 69, 70	mappel, 26
hessian_components	mappel::Gauss1DMAP, 116
mappel::methods::likelihood::debug, 66	mappel::Gauss1DMLE, 143
mappel::methods::objective::debug, 73	mappel::Gauss1DModel, 171
hessian_stack	mappel::Gauss1DsMAP, 198
mappel::methods::objective::openmp, 76	mappel::Gauss1DsMLE, 227
HeuristicEstimator	mappel::Gauss1DsModel, 254
mappel::HeuristicEstimator, 513	mappel::Gauss2DMAP, 282
	mappel::Gauss2DMLE, 312
I	mappel::Gauss2DModel, 342
mappel::Gauss1DModel::Stencil, 747	mappel::Gauss2DsMAP, 371
mappel::Gauss1DsModel::Stencil, 751	mappel::Gauss2DsMLE, 403
mappel::Gauss2DModel::Stencil, 766	mappel::Gauss2DsModel, 435
mappel::Gauss2DsModel::Stencil, 760	mappel::Gauss2DsxyMAP, 465
mappel::Gauss2DsxyModel::Stencil, 755	mappel::Gauss2DsxyModel, 492
icontains	mappel::ImageFormat1DBase, 521
mappel, 35	mappel::ImageFormat2DBase, 527
IdxMatT	mappel::PoissonNoise1DObjective, 708
mappel, 25	mappel::PoissonNoise2DObjective, 715
IdxVecT	ImageShapeT
mappel, 25	mappel::Gauss1DMAP, 116
IdxT	mappel::Gauss1DMLE, 143
mappel, 25	mappel::Gauss1DModel, 171
im	mappel::Gauss1DsMAP, 198
mappel::IterativeMaximizer::MaximizerData, 565	mappel::Gauss1DsMLE, 227
ImageCoordT	mappel::Gauss1DsModel, 255
mappel, 25	mappel::Gauss2DMAP, 282
mappel::Gauss1DMAP, 116	mappel::Gauss2DMLE, 312
mappel::Gauss1DMLE, 143	mappel::Gauss2DModel, 342
mappel::Gauss1DModel, 171	mappel::Gauss2DsMAP, 371
mappel::Gauss1DsMAP, 198	mappel::Gauss2DsMLE, 403
mappel::Gauss1DsMLE, 227	mappel::Gauss2DsModel, 435
mappel::Gauss1DsModel, 254	mappel::Gauss2DsxyMAP, 465
mappel::Gauss2DMAP, 282	mappel::Gauss2DsxyModel, 492
mappel::Gauss2DMLE, 312	mappel::ImageFormat1DBase, 521
mappel::Gauss2DModel, 341	mappel::ImageFormat2DBase, 527
mappel::Gauss2DsMAP, 370	mappel::PoissonNoise1DObjective, 708
mappel::Gauss2DsMLE, 402	mappel::PoissonNoise2DObjective, 715
mappel::Gauss2DsModel, 435	ImageSizeShapeT
mappel::Gauss2DsxyMAP, 465	mappel::Gauss1DMAP, 116
mappel::Gauss2DsxyModel, 492	mappel::Gauss1DMLE, 143
mappel::ImageFormat1DBase, 521	mappel::Gauss1DModel, 172

mappel::Gauss1DsMAP, 198	mappel::Gauss1DMAP, 116
mappel::Gauss1DsMLE, 227	mappel::Gauss1DMLE, 144
mappel::Gauss1DsModel, 255	mappel::Gauss1DModel, 172
mappel::Gauss2DMAP, 282	mappel::Gauss1DsMAP, 199
mappel::Gauss2DMLE, 312	mappel::Gauss1DsMLE, 227
mappel::Gauss2DModel, 342	mappel::Gauss1DsModel, 255
mappel::Gauss2DsMAP, 371	mappel::Gauss2DMAP, 282
mappel::Gauss2DsMLE, 403	mappel::Gauss2DMLE, 312
mappel::Gauss2DsModel, 435	mappel::Gauss2DModel, 342
mappel::Gauss2DsxyMAP, 465	mappel::Gauss2DsMAP, 371
mappel::Gauss2DsxyModel, 492	mappel::Gauss2DsMLE, 403
mappel::ImageFormat1DBase, 521	mappel::Gauss2DsModel, 435
mappel::ImageFormat2DBase, 528	mappel::Gauss2DsxyMAP, 466
mappel::PoissonNoise1DObjective, 708	mappel::Gauss2DsxyModel, 492
mappel::PoissonNoise2DObjective, 716	mappel::ImageFormat1DBase, 521
ImageSizeVecShapeT	mappel::ImageFormat2DBase, 528
mappel::Gauss1DMAP, 116	mappel::PoissonNoise1DObjective, 708
mappel::Gauss1DMLE, 144	mappel::PoissonNoise2DObjective, 716
mappel::Gauss1DModel, 172	ImageStackShapeT
mappel::Gauss1DsMAP, 199	mappel::Gauss1DMAP, 116
mappel::Gauss1DsMLE, 227	mappel::Gauss1DMLE, 144
mappel::Gauss1DsModel, 255	mappel::Gauss1DModel, 172
mappel::Gauss2DMAP, 282	mappel::Gauss1DsMAP, 199
mappel::Gauss2DMLE, 312	mappel::Gauss1DsMLE, 227
mappel::Gauss2DModel, 342	mappel::Gauss1DsModel, 255
mappel::Gauss2DsMAP, 371	mappel::Gauss2DMAP, 283
mappel::Gauss2DsMLE, 403	mappel::Gauss2DMLE, 313
mappel::Gauss2DsModel, 435	mappel::Gauss2DModel, 342
mappel::Gauss2DsxyMAP, 466	mappel::Gauss2DsMAP, 371
mappel::Gauss2DsxyModel, 492	mappel::Gauss2DsMLE, 403
mappel::ImageFormat1DBase, 522	mappel::Gauss2DsModel, 436
mappel::ImageFormat2DBase, 528	mappel::Gauss2DsxyMAP, 466
mappel::PoissonNoise1DObjective, 709	mappel::Gauss2DsxyModel, 493
mappel::PoissonNoise2DObjective, 716	mappel::ImageFormat1DBase, 522
ImageSizeVecT	mappel::ImageFormat2DBase, 528
mappel::Gauss1DMAP, 116	mappel::PoissonNoise1DObjective, 709
mappel::Gauss1DMLE, 144	mappel::PoissonNoise2DObjective, 716
mappel::Gauss1DModel, 172	ImageStackT
mappel::Gauss1DsMAP, 199	mappel, 26
mappel::Gauss1DsMLE, 227	mappel::Gauss1DMAP, 117
mappel::Gauss1DsModel, 255	mappel::Gauss1DMLE, 144
mappel::Gauss2DMAP, 283	mappel::Gauss1DModel, 172
mappel::Gauss2DMLE, 313	mappel::Gauss1DsMAP, 199
mappel::Gauss2DModel, 342	mappel::Gauss1DsMLE, 228
mappel::Gauss2DsMAP, 371	mappel::Gauss1DsModel, 255
mappel::Gauss2DsMLE, 403	mappel::Gauss2DMAP, 283
mappel::Gauss2DsModel, 436	mappel::Gauss2DMLE, 313
mappel::Gauss2DsxyMAP, 466	mappel::Gauss2DModel, 343
mappel::Gauss2DsxyModel, 493	mappel::Gauss2DsMAP, 372
mappel::ImageFormat1DBase, 522	mappel::Gauss2DsMAP, 372 mappel::Gauss2DsMLE, 404
mappel::ImageFormat1Dbase, 522 mappel::ImageFormat2DBase, 528	• •
· · · -	mappel::Gauss2DsModel, 436
mappel::PoissonNoise1DObjective, 709	mappel::Gauss2DsxyMAP, 466
mappel::PoissonNoise2DObjective, 716	mappel::Gauss2DsxyModel, 493
ImageSizeT	mappel::ImageFormat1DBase, 522

mappel::ImageFormat2DBase, 528	mappel::QuasiNewtonMaximizer, 734
mappel::PoissonNoise1DObjective, 709	mappel::TrustRegionMaximizer, 790
mappel::PoissonNoise2DObjective, 716	lambda_term_color
ImageT	mappel, 36
mappel, 26	last_backtrack_idxs
mappel::Gauss1DMAP, 117	mappel::IterativeMaximizer, 542
mappel::Gauss1DMLE, 144	mappel::NewtonDiagonalMaximizer, 669
mappel::Gauss1DModel, 172	mappel::NewtonMaximizer, 682
mappel::Gauss1DsMAP, 199	mappel::QuasiNewtonMaximizer, 734
mappel::Gauss1DsMLE, 228	mappel::TrustRegionMaximizer, 790
mappel::Gauss1DsModel, 256	lbound
mappel::Gauss2DMAP, 283	mappel::Gauss1DMAP, 136
mappel::Gauss2DMLE, 313	mappel::Gauss1DMLE, 164
mappel::Gauss2DModel, 343	mappel::Gauss1DModel, 191
mappel::Gauss2DsMAP, 372	mappel::Gauss1DsMAP, 220
mappel::Gauss2DsMLE, 404	mappel::Gauss1DsMLE, 248
mappel::Gauss2DsModel, 436	mappel::Gauss1DsModel, 275
mappel::Gauss2DsxyMAP, 466	mappel::Gauss2DMAP, 304
mappel::Gauss2DsxyModel, 493	mappel::Gauss2DMLE, 334
mappel::ImageFormat1DBase, 522	mappel::Gauss2DModel, 362
mappel::ImageFormat2DBase, 528	mappel::Gauss2DsMAP, 394
mappel::PoissonNoise1DObjective, 709	mappel::Gauss2DsMLE, 426
mappel::PoissonNoise2DObjective, 716	mappel::Gauss2DsModel, 457
initial_theta_estimate	mappel::Gauss2DsxyMAP, 485
mappel::Gauss1DMAP, 123	mappel::Gauss2DsxyModel, 508
mappel::Gauss1DMLE, 151	mappel::IterativeMaximizer::MaximizerData, 565
mappel::Gauss1DModel, 178, 179	mappel::MAPEstimator, 559
mappel::Gauss1DsMAP, 206	mappel::MCMCAdaptor1Ds, 602
mappel::Gauss1DsMLE, 234	mappel::MCMCAdaptor1D, 584
mappel::Gauss1DsModel, 262	mappel::MCMCAdaptor2Ds, 639
mappel::Gauss2DMAP, 290	mappel::MCMCAdaptor2D, 620
mappel::Gauss2DMLE, 320	mappel::MLEstimator, 657
mappel::Gauss2DModel, 349, 350	mappel::PointEmitterModel, 703
mappel::Gauss2DsMAP, 379, 380	likelihood_objective
mappel::Gauss2DsMLE, 411, 412	mappel::methods, 57
mappel::Gauss2DsModel, 443, 444	llh
mappel::Gauss2DsxyMAP, 472, 473	mappel::methods::likelihood, 64
mappel::Gauss2DsxyModel, 499	mappel::methods::objective, 70, 71
Install.md, 817	Ilh_components
is_negative_definite	mappel::methods::likelihood::debug, 66
mappel, 35	mappel::methods::objective::debug, 74
is_positive_definite	Ilh_stack
mappel, 35	mappel::methods::objective::openmp, 76, 77
is_symmetric	local_maximize
mappel, 35	mappel::IterativeMaximizer, 539
istarts_with	mappel::NewtonDiagonalMaximizer, 666
mappel, 35, 36	mappel::NewtonMaximizer, 679
IterativeMaximizer	mappel::QuasiNewtonMaximizer, 731
mappel::IterativeMaximizer, 535	mappel::TrustRegionMaximizer, 786
	log_likelihood
lambda_min	PoissonGaussianNoise2DObjective.h, 842
mappel::IterativeMaximizer, 542	log_likelihood_stack
mappel::NewtonDiagonalMaximizer, 669	mappel, 36
mappel::NewtonMaximizer, 682	log_prior_I_const

mappel::PriorMAP1DObjective, 723	make_X_stencil
log_prior_beta2_const	mappel, 39
mappel, 37	make_d_stencil
log_prior_beta_const	mappel, 37
mappel, 37	make_default_prior
log_prior_bg_const	mappel::Gauss1DMAP, 123
mappel::PriorMAP1DObjective, 723	mappel::Gauss1DMLE, 151
log_prior_gamma_const	mappel::Gauss1DModel, 179
mappel, 37	mappel::Gauss1DsMAP, 206
log_prior_normal_const	mappel::Gauss1DsMLE, 234
mappel, 37	mappel::Gauss1DsModel, 262
log_prior_pareto_const	mappel::Gauss2DMAP, 291
mappel, 37	mappel::Gauss2DMLE, 321
log_prior_pos_const	mappel::Gauss2DModel, 350
mappel::PriorMAP1DObjective, 723	mappel::Gauss2DsMAP, 380
LogicalError	mappel::Gauss2DsMLE, 412
mappel::LogicalError, 545	mappel::Gauss2DsModel, 444
	mappel::Gauss2DsxyMAP, 473
MAPEstimator	mappel::Gauss2DsxyModel, 499
mappel::MAPEstimator, 548	make_default_prior_beta_position
MAPEstimator.h, 817	mappel::Gauss1DMAP, 124
MCMCAdaptor1 D.cpp, 820	mappel::Gauss1DMLE, 151
MCMCAdaptor1 D.h, 820	mappel::Gauss1DModel, 179
MCMCAdaptor1Ds	mappel::Gauss1DsMAP, 206
mappel::MCMCAdaptor1Ds, 589	mappel::Gauss1DsMLE, 235
MCMCAdaptor1Ds.cpp, 821	mappel::Gauss1DsModel, 262
MCMCAdaptor1Ds.h, 822	mappel::Gauss2DMAP, 291
MCMCAdaptor1D	mappel::Gauss2DMLE, 321
mappel::MCMCAdaptor1D, 571	mappel::Gauss2DModel, 350
MCMCAdaptor2D.cpp, 822	mappel::Gauss2DsMAP, 380
MCMCAdaptor2D.h, 823	mappel::Gauss2DsMLE, 412
MCMCAdaptor2Ds	mappel::Gauss2DsModel, 444
mappel::MCMCAdaptor2Ds, 625, 626	mappel::Gauss2DsxyMAP, 473
MCMCAdaptor2Ds.cpp, 823	make default prior normal position
MCMCAdaptor2Ds.h, 824	mappel::Gauss1DMAP, 124
MCMCAdaptor2D	mappel::Gauss1DMLE, 151
mappel::MCMCAdaptor2D, 607	mappel::Gauss1DModel, 179
MCMCAdaptorBase	mappel::Gauss1DsMAP, 207
mappel::MCMCAdaptorBase, 641	mappel::Gauss1DsMLE, 235
MCMCAdaptorBase.cpp, 824	mappel::Gauss1DsModel, 262
MCMCAdaptorBase.h, 825	mappel::Gauss2DMAP, 291
MLEstimator	mappel::Gauss2DMLE, 321
mappel::MLEstimator, 646	mappel::Gauss2DModel, 350
MLEstimator.h, 825	mappel::Gauss2DsMAP, 380
make DX stencil	mappel::Gauss2DsMLE, 412
mappel, 38	mappel::Gauss2DsModel, 444
make_DXS2_stencil	mappel::Gauss2DsxyMAP, 473
mappel, 38	make estimator
make_DXS_stencil	mappel::methods, 57
mappel, 38	PoissonGaussianNoise2DObjective.h, 842
make_DXSX_stencil	make_gaussian_stencil
mappel, 38	mappel, 39
make_G_stencil	make_image
mappel, 38	mappel::Gauss1DMAP, 124
παρρει, σο	mapperGauss IDIVIAF, 124

mappel::Gauss1DMLE, 152	mappel::Gauss2DsMLE, 413
mappel::Gauss1DModel, 179	mappel::Gauss2DsModel, 445
mappel::Gauss1DsMAP, 207	mappel::Gauss2DsxyMAP, 474
mappel::Gauss1DsMLE, 235	mappel::Gauss2DsxyModel, 500
mappel::Gauss1DsModel, 262	mappel::MAPEstimator, 552
mappel::Gauss2DMAP, 291	mappel::MCMCAdaptor1Ds, 593
mappel::Gauss2DMLE, 321	mappel::MCMCAdaptor1D, 575
mappel::Gauss2DModel, 350	mappel::MCMCAdaptor2Ds, 629, 630
mappel::Gauss2DsMAP, 381	mappel::MCMCAdaptor2D, 611
mappel::Gauss2DsMLE, 413	mappel::MLEstimator, 650
mappel::Gauss2DsModel, 444	mappel::PointEmitterModel, 696
mappel::Gauss2DsxyMAP, 473	make_param_mat
mappel::Gauss2DsxyModel, 499	mappel::Gauss1DMAP, 125
mappel::ImageFormat1DBase, 524	mappel::Gauss1DMLE, 152
mappel::ImageFormat2DBase, 530	mappel::Gauss1DModel, 180
mappel::PoissonNoise1DObjective, 711	mappel::Gauss1DsMAP, 207, 208
mappel::PoissonNoise2DObjective, 719	mappel::Gauss1DsMLE, 236
make_image_stack	mappel::Gauss1DsModel, 263
mappel::Gauss1DMAP, 124	mappel::Gauss2DMAP, 292
mappel::Gauss1DMLE, 152	mappel::Gauss2DMLE, 322
mappel::Gauss1DModel, 179	mappel::Gauss2DModel, 351
mappel::Gauss1DsMAP, 207	mappel::Gauss2DsMAP, 382
mappel::Gauss1DsMLE, 235	mappel::Gauss2DsMLE, 414
mappel::Gauss1DsModel, 263	mappel::Gauss2DsModel, 445
mappel::Gauss2DMAP, 291	mappel::Gauss2DsxyMAP, 474
mappel::Gauss2DMLE, 321	mappel::Gauss2DsxyModel, 500
mappel::Gauss2DModel, 350	mappel::MAPEstimator, 552
mappel::Gauss2DsMAP, 381	mappel::MCMCAdaptor1Ds, 593
mappel::Gauss2DsMLE, 413	mappel::MCMCAdaptor1D, 575
mappel::Gauss2DsModel, 445	mappel::MCMCAdaptor2Ds, 630
mappel::Gauss2DsxyMAP, 473	mappel::MCMCAdaptor2D, 611
mappel::Gauss2DsxyModel, 499	mappel::MLEstimator, 650
mappel::ImageFormat1DBase, 524	mappel::PointEmitterModel, 696, 697
mappel::ImageFormat2DBase, 530	make_param_mat_stack
mappel::PoissonNoise1DObjective, 711	mappel::Gauss1DMAP, 125
mappel::PoissonNoise2DObjective, 719	mappel::Gauss1DMLE, 153
make_internal_1Dsum_estimator	mappel::Gauss1DModel, 180
mappel::Gauss2DMAP, 291	mappel::Gauss1DsMAP, 208
mappel::Gauss2DMLE, 321	mappel::Gauss1DsMLE, 236
mappel::Gauss2DModel, 351	mappel::Gauss1DsModel, 263
mappel::Gauss2DsMAP, 381	mappel::Gauss2DMAP, 292
mappel::Gauss2DsMLE, 413	mappel::Gauss2DMLE, 322
mappel::Gauss2DsModel, 445	mappel::Gauss2DModel, 351, 352
make_param	mappel::Gauss2DsMAP, 382
mappel::Gauss1DMAP, 124	mappel::Gauss2DsMLE, 414
mappel::Gauss1DMLE, 152	mappel::Gauss2DsModel, 446
mappel::Gauss1DModel, 179, 180	mappel::Gauss2DsxyMAP, 474
mappel::Gauss1DsMAP, 207	mappel::Gauss2DsxyModel, 500
mappel::Gauss1DsMLE, 235	mappel::MAPEstimator, 552
mappel::Gauss1DsModel, 263	mappel::MCMCAdaptor1Ds, 593, 594
mappel::Gauss2DMAP, 292	mappel::MCMCAdaptor1D, 575, 576
mappel::Gauss2DMLE, 322	mappel::MCMCAdaptor2Ds, 630
mappel::Gauss2DModel, 351	mappel::MCMCAdaptor2D, 611, 612
mappel::Gauss2DsMAP, 381	mappel::MLEstimator, 650

mappel::PointEmitterModel, 697	mappel::MCMCAdaptor1Ds, 594
make_param_stack	mappel::MCMCAdaptor1D, 576
mappel::Gauss1DMAP, 125	mappel::MCMCAdaptor2Ds, 631
mappel::Gauss1DMLE, 153	mappel::MCMCAdaptor2D, 612
mappel::Gauss1DModel, 180	mappel::MLEstimator, 651
mappel::Gauss1DsMAP, 208	mappel::PointEmitterModel, 697
mappel::Gauss1DsMLE, 236	make_prior_component_position_beta
mappel::Gauss1DsModel, 264	mappel::Gauss1DMAP, 126
mappel::Gauss2DMAP, 293	mappel::Gauss1DMLE, 154
mappel::Gauss2DMLE, 323	mappel::Gauss1DModel, 181
mappel::Gauss2DModel, 352	mappel::Gauss1DsMAP, 209
mappel::Gauss2DsMAP, 382	mappel::Gauss1DsMLE, 237
mappel::Gauss2DsMLE, 414	mappel::Gauss1DsModel, 264
mappel::Gauss2DsModel, 446	mappel::Gauss2DMAP, 293
mappel::Gauss2DsxyMAP, 474, 475	mappel::Gauss2DMLE, 323
mappel::Gauss2DsxyModel, 500, 501	mappel::Gauss2DModel, 352
mappel::MAPEstimator, 552, 553	mappel::Gauss2DsMAP, 383
mappel::MCMCAdaptor1Ds, 594	mappel::Gauss2DsMLE, 415
mappel::MCMCAdaptor1D, 576	mappel::Gauss2DsModel, 447
mappel::MCMCAdaptor2Ds, 630	mappel::Gauss2DsxyMAP, 475
mappel::MCMCAdaptor2D, 612	mappel::Gauss2DsxyModel, 501
mappel::MLEstimator, 650, 651	mappel::MAPEstimator, 553
mappel::PointEmitterModel, 697	mappel::MCMCAdaptor1Ds, 594
make_prior_beta_position	mappel::MCMCAdaptor1D, 576
mappel::Gauss1DMAP, 125	mappel::MCMCAdaptor2Ds, 631
mappel::Gauss1DMLE, 153	mappel::MCMCAdaptor2D, 612
mappel::Gauss1DModel, 181	mappel::MLEstimator, 651
mappel::Gauss1DsMAP, 208	mappel::PointEmitterModel, 697
mappel::Gauss1DsMLE, 236	make_prior_component_position_normal
mappel::Gauss1DsModel, 264	mappel::Gauss1DMAP, 126
mappel::Gauss2DMAP, 293	mappel::Gauss1DMLE, 154
mappel::Gauss2DMLE, 323	mappel::Gauss1DModel, 181
mappel::Gauss2DModel, 352	mappel::Gauss1DsMAP, 209
mappel::Gauss2DsMAP, 382	mappel::Gauss1DsMLE, 237
mappel::Gauss2DsMLE, 414	mappel::Gauss1DsModel, 265
mappel::Gauss2DsModel, 446	mappel::Gauss2DMAP, 294
mappel::Gauss2DsxyMAP, 475	mappel::Gauss2DMLE, 324
mappel::Gauss2DsxyModel, 501	mappel::Gauss2DModel, 353
make_prior_component_intensity	mappel::Gauss2DsMAP, 383
mappel::Gauss1DMAP, 126	mappel::Gauss2DsMLE, 415
mappel::Gauss1DMLE, 153	mappel::Gauss2DsModel, 447
mappel::Gauss1DModel, 181	mappel::Gauss2DsxyMAP, 475
mappel::Gauss1DsMAP, 208	mappel::Gauss2DsxyModel, 501
mappel::Gauss1DsMLE, 237	mappel::MAPEstimator, 553
mappel::Gauss1DsModel, 264	mappel::MCMCAdaptor1Ds, 595
mappel::Gauss2DMAP, 293	mappel::MCMCAdaptor1D, 577
mappel::Gauss2DMLE, 323	mappel::MCMCAdaptor2Ds, 631
mappel::Gauss2DModel, 352	mappel::MCMCAdaptor2D, 613
mappel::Gauss2DsMAP, 383	mappel::MLEstimator, 651
mappel::Gauss2DsMLE, 415	mappel::PointEmitterModel, 698
mappel::Gauss2DsModel, 446	make_prior_component_sigma
mappel::Gauss2DsxyMAP, 475	mappel::Gauss1DMAP, 126
mappel::Gauss2DsxyModel, 501	mappel::Gauss1DMLE, 154
mappel::MAPEstimator, 553	mappel::Gauss1DModel, 181

mappel::Gauss1DsMAP, 209	beta_prior_grad2, 28
mappel::Gauss1DsMLE, 237	BoolVecT, 25
mappel::Gauss1DsModel, 265	BoolT, 25
mappel::Gauss2DMAP, 294	cgauss_compute_estimate, 28
mappel::Gauss2DMLE, 324	cgauss_compute_estimate_debug, 28, 29
mappel::Gauss2DModel, 353	cgauss_heuristic_compute_estimate, 29
mappel::Gauss2DsMAP, 383	check_lower_bound_hyperparameter, 29
mappel::Gauss2DsMLE, 415	check_positive_hyperparameter, 29
mappel::Gauss2DsModel, 447	check_unit_hyperparameter, 29
mappel::Gauss2DsxyMAP, 476	cholesky, 29
mappel::Gauss2DsxyModel, 502	cholesky_convert_full_matrix, 30
mappel::MAPEstimator, 553	cholesky_convert_lower_triangular, 30
mappel::MCMCAdaptor1Ds, 595	cholesky_make_negative_definite, 30
mappel::MCMCAdaptor1D, 577	cholesky_make_positive_definite, 30
mappel::MCMCAdaptor2Ds, 631	cholesky_solve, 30
mappel::MCMCAdaptor2D, 613	copy_Lsym_mat, 31
mappel::MLEstimator, 651	copy_Usym_mat, 31
mappel::PointEmitterModel, 698	copy_Usym_mat_stack, 31
make_prior_normal_position	cr_lower_bound_stack, 31
mappel::Gauss1DMAP, 127	CubeT, 25
mappel::Gauss1DMLE, 154	enable_all_cpus, 31
mappel::Gauss1DModel, 182	EnableIfSubclassT, 25
mappel::Gauss1DsMAP, 209	estimate_background, 31
mappel::Gauss1DsMLE, 238	estimate_gaussian_2Dmax, 32
mappel::Gauss1DsModel, 265	estimate_gaussian_3Dmax, 32
mappel::Gauss2DMAP, 294	estimate_intensity, 32
mappel::Gauss2DMLE, 324	fill_DX_stencil, 32
mappel::Gauss2DModel, 353	fill_DXS2_stencil, 32
mappel::Gauss2DsMAP, 384	fill DXS stencil, 32
mappel::Gauss2DsMLE, 416	fill_DXSX_stencil, 33
mappel::Gauss2DsModel, 447	fill_G_stencil, 33
mappel::Gauss2DsxyMAP, 476	fill_X_stencil, 33
mappel::Gauss2DsxyModel, 502	fill_d_stencil, 32
make_stencil	fill gaussian stencil, 33
mappel::Gauss1DMAP, 127	fisher_information_stack, 33
mappel::Gauss1DMLE, 155	gamma_prior_grad, 33
mappel::Gauss1DModel, 182	gamma_prior_grad2, 33
mappel::Gauss1DsMAP, 210	gauss_norm, 34
mappel::Gauss1DsMLE, 238	gaussian_3D_convolution, 34
mappel::Gauss1DsModel, 265	gaussian_convolution, 34
mappel::Gauss2DMAP, 294	generate_poisson, 34
mappel::Gauss2DMLE, 324	generate_poisson_large, 34
mappel::Gauss2DModel, 353	generate_poisson_small, 34
mappel::Gauss2DsMAP, 384	icontains, 35
mappel::Gauss2DsMLE, 416	ldxMatT, 25
mappel::Gauss2DsModel, 447	IdxVecT, 25
mappel::Gauss2DsxyMAP, 476	ldxT, 25
mappel::Gauss2DsxyModel, 502	ImageCoordT, 25
make_unique	ImagePixelT, 26
mappel, 39	ImageStackT, 26
mappel, 17	ImageT, 26
beta2_prior_grad, 28	is negative definite, 35
beta2_prior_grad2, 28	is_positive_definite, 35
beta_prior_grad, 28	is_symmetric, 35
22.0_p.101_g.440,	.5_5764.0, 00

istarts_with, 35, 36	RngSeedT, 27
lambda_term_color, 36	sample_prior_stack, 45
log_likelihood_stack, 36	sgn, 46
log_prior_beta2_const, 37	simulate_image_stack, 46
log_prior_beta_const, 37	square, 46
log_prior_gamma_const, 37	StatsT, 27
log_prior_normal_const, 37	StencilVecT, 27
log prior pareto const, 37	StencilT, 27
make DX stencil, 38	StringVecT, 27
make_DXS2_stencil, 38	TERM BLACK, 47
make_DXS_stencil, 38	TERM BLUE, 47
make_DXSX_stencil, 38	TERM CYAN, 47
make_G_stencil, 38	TERM DIM BLACK, 47
make_X_stencil, 39	TERM_DIM_BLUE, 47
make_d_stencil, 37	TERM DIM CYAN, 47
make_gaussian_stencil, 39	TERM DIM GREEN, 47
make unique, 39	TERM_DIM_MAGENTA, 48
MappelError, 26	TERM_DIM_RED, 48
MatT, 26	TERM DIM WHITE, 48
maxidx, 39	TERM DIM YELLOW, 48
model_grad_stack, 39	TERM GREEN, 48
model_hessian_stack, 40	TERM MAGENTA, 48
model_image_stack, 40	TERM RED, 48
model_positive_hessian_stack, 41	TERM WHITE, 48
ModelDataStackT, 26	TERM YELLOW, 49
ModelDataT, 26	UniformDistT, 27
modified_cholesky, 41	VecFieldT, 27
normal_prior_grad, 42	VecTield1, 27 VecT, 27
normal_prior_grad2, 42	mappel::ArrayShapeError, 85
normal_quantile_onesided, 42	ArrayShapeError, 86
normal_quantile_twosided, 42	mappel::ArraySizeError, 86
operator<<, 42, 43	ArraySizeError, 87
ParallelRngGeneratorT, 26	mappel::CGaussHeuristicEstimator
ParallelRngManagerT, 26	
ParamVecT, 26	CGaussHeuristicEstimator, 89 clear stats, 89
ParamT, 26	compute_estimate, 89
	• —
pareto_prior_grad, 43	compute_estimate_debug, 90
pareto_prior_grad2, 43	compute_profile_estimate, 90
poisson_log_likelihood, 43	Error, 89
print_centered_title, 43	estimate_max, 90, 91
print_image, 44	estimate_max_debug, 91
print_labeled_image, 44	estimate_max_stack, 91, 92
print_vec_row, 44	estimate_profile_stack, 92
refine_gaussian_2Dmax, 44	exit_counts, 94
refine_gaussian_3Dmax, 44	ExitCode, 89
relative_poisson_log_likelihood, 45	FunctionChange, 89
restrict_value_range, 45	get_debug_stats, 92
ReturnIfSubclassT, 27	get_model, 92
rllh_beta2_prior, 45	get_stats, 92
rllh_beta_prior, 45	GradRatio, 89
rllh_gamma_prior, 45	max_threads, 94
rllh_normal_prior, 45	MaxBacktracks, 89
rllh_pareto_prior, 45	MaxIter, 89
rng_manager, 47	model, 94

mtx, 94	compute_estimate, 106
name, 93	compute_estimate_debug, 107
num_estimations, 94	compute_profile_estimate, 107
num_threads, 94	Error, 105
NumExitCodes, 95	estimate_max, 107, 108
record_exit_code, 93	estimate_max_debug, 108
record_walltime, 93	estimate_max_stack, 108, 109
set_model, 93	estimate_profile_stack, 109
StepSize, 89	Estimator, 106
Success, 89	exit_counts, 110
total_walltime, 95	ExitCode, 105
TrustRegionRadius, 89	FunctionChange, 105
Unassigned, 89	get_debug_stats, 109
mappel::CGaussHeuristicEstimator< Model >, 87	get_model, 109
mappel::CGaussMLE< Model >, 95	get_stats, 109
mappel::CGaussMLE	GradRatio, 105
CGaussMLE, 97	MaxBacktracks, 105
clear_stats, 98	MaxIter, 105
compute_estimate, 98	model, 110
compute_estimate_debug, 98	name, 109
compute_profile_estimate, 98	num_estimations, 111
Error, 97	NumExitCodes, 111
estimate_max, 99	operator<<, 110
estimate_max_debug, 100	record_exit_code, 110
estimate_max_stack, 100	record_walltime, 110
estimate_profile_stack, 100	set_model, 110
exit_counts, 102	StepSize, 105
ExitCode, 97	Success, 105
FunctionChange, 97	total_walltime, 111
get_debug_stats, 100	TrustRegionRadius, 105
get_model, 101	Unassigned, 105
get_stats, 101	mappel::Estimator< Model >, 104
GradRatio, 97	mappel::Gauss1DMAP, 111
max_threads, 102	bound_theta, 118
MaxBacktracks, 97	bounded_theta, 118
MaxIter, 97	bounded_theta_stack, 118
model, 102	bounds_epsilon, 133
mtx, 102	check image shape, 119
name, 101	check_param_shape, 119
num_estimations, 103	check_psf_sigma, 119
num_iterations, 103	check_size, 120
num_threads, 103	default alpha sigma, 133
NumExitCodes, 103	default beta pos, 133
record_exit_code, 101	default_intensity_kappa, 133
record_walltime, 101	default_max_I, 133
set_model, 102	default_mean_I, 134
StepSize, 97	default_pixel_mean_bg, 134
Success, 97	default_sigma_pos, 134
total_walltime, 103	DefaultPriorType, 134
TrustRegionRadius, 97	DefaultSeperableInitEstimator, 134
Unassigned, 97	estimator_names, 134
mappel::Estimator	eta_bg, 135
~Estimator, 106	eta_I, 135
clear_stats, 106	eta_x, 135
_ ,	- '

Gauss1DMAP, 118	make_prior_normal_position, 127
get_hyperparam_index, 120	make_stencil, 127
get_hyperparam_names, 120	ModelDataStackT, 117
get_hyperparam_value, 120	ModelDataT, 117
get_hyperparams, 120	name, 136
get_image_from_stack, 120	num_dim, 136
get_lbound, 120	num_hyperparams, 137
get_mcmc_num_phases, 121	num_params, 137
get_mcmc_sigma_scale, 121	num_phases, 137
get_num_hyperparams, 121	operator=, 127, 128
get_num_params, 121	ParamVecT, 117
get_num_pixels, 121	ParamT, 117
get_param_names, 121	pixel_grad, 128
get_prior, 121, 122	pixel_grad2, 128
get_psf_sigma, 122	pixel_hess, 128
get_rng_generator, 122	pixel_hess_update, 128
get_rng_manager, 122	pixel_model_value, 128
get_size, 122	prior, 137
get_size_image_stack, 123	prior_types, 137
get_stats, 123	psf_sigma, 138
get_ubound, 123	reflected theta, 129
global_default_mcmc_sigma_scale, 135	reflected_theta_stack, 129
global_max_mcmc_sigma_scale, 135	rename_hyperparam, 129
global_max_psf_sigma, 135	sample_mcmc_candidate, 129
global_max_size, 136	sample_prior, 129
global_min_psf_sigma, 136	set_background_mcmc_sampling, 130
global_min_size, 136	set_bounds, 130
has_hyperparam, 123	set_hyperparam_names, 130
ImageCoordT, 116	set_hyperparam_value, 130
ImagePixeIT, 116	set_hyperparams, 130
ImageShapeT, 116	set_image_in_stack, 130
ImageSizeShapeT, 116	set_intensity_mcmc_sampling, 131
ImageSizeVecShapeT, 116	set_lbound, 131
ImageSizeVecT, 116	set_mcmc_num_phases, 131
ImageSizeT, 116	set_mcmc_sigma_scale, 131
ImageStackShapeT, 116	set param names, 131
ImageStackT, 117	set_prior, 131
ImageT, 117	set_psf_sigma, 132
initial theta estimate, 123	set_rng_seed, 132
Ibound, 136	set_size, 132
make_default_prior, 123	set_ubound, 132
make_default_prior_beta_position, 124	sigma_scale, 138
make default prior normal position, 124	size, 138
make_image, 124	StencilVecT, 117
make_image_stack, 124	theta_in_bounds, 132
make_param, 124	theta stack in bounds, 133
make_param_mat, 125	ubound, 138
make param mat stack, 125	mappel::Gauss1DMLE, 139
make_param_stack, 125	bound_theta, 146
make_prior_beta_position, 125	bounded_theta, 146
make_prior_component_intensity, 126	bounded_theta_stack, 146
make_prior_component_position_beta, 126	bounds epsilon, 161
make_prior_component_position_normal, 126	check_image_shape, 146
make_prior_component_sigma, 126	check_nage_shape, 147
mano_prior_component_signia, 120	oncon_param_onape, 147

check_psf_sigma, 147	lbound, 164
check_size, 147	make_default_prior, 151
default_alpha_sigma, 161	make_default_prior_beta_position, 151
default_beta_pos, 161	make_default_prior_normal_position, 151
default_intensity_kappa, 161	make_image, 152
default_max_I, 161	make_image_stack, 152
default_mean_I, 162	make_param, 152
default_pixel_mean_bg, 162	make_param_mat, 152
default_sigma_pos, 162	make_param_mat_stack, 153
DefaultPriorType, 162	make_param_stack, 153
DefaultSeperableInitEstimator, 162	make_prior_beta_position, 153
estimator_names, 162	make_prior_component_intensity, 153
eta_bg, 163	make_prior_component_position_beta, 154
eta_I, 163	make_prior_component_position_normal, 154
eta_x, 163	make_prior_component_sigma, 154
Gauss1DMLE, 145, 146	make_prior_normal_position, 154
get_hyperparam_index, 147	make_stencil, 155
get_hyperparam_names, 148	ModelDataStackT, 144
get_hyperparam_value, 148	ModelDataT, 145
get_hyperparams, 148	name, 164
get_image_from_stack, 148	num_dim, 164
get_lbound, 148	num_hyperparams, 165
get_mcmc_num_phases, 148	num_params, 165
get_mcmc_sigma_scale, 148	num_phases, 165
get_num_hyperparams, 149	operator=, 155
get_num_params, 149	ParamVecT, 145
get_num_pixels, 149	ParamT, 145
get_param_names, 149	pixel_grad, 156
get_prior, 149	pixel_grad2, 156
get_psf_sigma, 149, 150	pixel_hess, 156
get_rng_generator, 150	pixel_hess_update, 156
get_rng_manager, 150	pixel_model_value, 156
get_size, 150	prior, 165
get_size_image_stack, 150	prior_types, 165
get_stats, 150	psf_sigma, 166
get_ubound, 150	reflected_theta, 156
global_default_mcmc_sigma_scale, 163	reflected_theta_stack, 157
global_max_mcmc_sigma_scale, 163	rename_hyperparam, 157
global_max_psf_sigma, 163	sample_mcmc_candidate, 157
global_max_size, 164	sample_prior, 157
global_min_psf_sigma, 164	set_background_mcmc_sampling, 157
global_min_size, 164	set_bounds, 158
has_hyperparam, 151	set_hyperparam_names, 158
ImageCoordT, 143	set_hyperparam_value, 158
ImagePixeIT, 143	set_hyperparams, 158
ImageShapeT, 143	set_image_in_stack, 158
ImageSizeShapeT, 143	set_intensity_mcmc_sampling, 158
ImageSizeVecShapeT, 144	set_lbound, 159
ImageSizeVecT, 144	set_mcmc_num_phases, 159
ImageSizeT, 144	set_mcmc_sigma_scale, 159
ImageStackShapeT, 144	set_param_names, 159
ImageStackT, 144	set_prior, 159
ImageT, 144	set_psf_sigma, 160
initial_theta_estimate, 151	set_rng_seed, 160

set_size, 160	global_min_psf_sigma, 191
set_ubound, 160	global_min_size, 191
sigma_scale, 166	has_hyperparam, 178
size, 166	ImageCoordT, 171
StencilVecT, 145	ImagePixeIT, 171
theta_in_bounds, 160	ImageShapeT, 171
theta_stack_in_bounds, 161	ImageSizeShapeT, 172
ubound, 166	ImageSizeVecShapeT, 172
mappel::Gauss1DModel, 167	ImageSizeVecT, 172
bound_theta, 173	ImageSizeT, 172
bounded_theta, 173	ImageStackShapeT, 172
bounded_theta_stack, 174	ImageStackT, 172
bounds_epsilon, 188	ImageT, 172
check_image_shape, 174	initial_theta_estimate, 178, 179
check_param_shape, 174	lbound, 191
check_psf_sigma, 174, 175	make_default_prior, 179
check_size, 175	make_default_prior_beta_position, 179
default_alpha_sigma, 188	make_default_prior_normal_position, 179
default_beta_pos, 188	make_image, 179
default_intensity_kappa, 188	make_image_stack, 179
default_max_I, 188	make_param, 179, 180
default_mean_I, 189	make_param_mat, 180
default pixel mean bg, 189	make_param_mat_stack, 180
default_sigma_pos, 189	make_param_stack, 180
DefaultPriorType, 189	make_prior_beta_position, 181
DefaultSeperableInitEstimator, 189	make_prior_component_intensity, 181
eta_bg, 189	make_prior_component_position_beta, 181
eta_I, 190	make_prior_component_position_normal, 181
eta_x, 190	make_prior_component_sigma, 181
Gauss1DModel, 173	make_prior_normal_position, 182
get_hyperparam_index, 175	make_stencil, 182
get_hyperparam_names, 175	num_dim, 191
get_hyperparam_value, 175	num_hyperparams, 192
get_hyperparams, 175	num_params, 192
get_image_from_stack, 176	num phases, 192
get_lbound, 176	operator=, 182, 183
get_nomc_num_phases, 176	ParamVecT, 173
get_mcmc_sigma_scale, 176	ParamT, 173
get_num_hyperparams, 176	pixel grad, 183
get_num_params, 176	pixel_grad2, 183
get_num_pixels, 176 get_num_pixels, 176	pixel_hess, 183
get_param_names, 177	pixel_hess_update, 183
get_prior, 177	pixel_model_value, 183
get_psf_sigma, 177	prior, 192
get_rng_generator, 177	prior_types, 192
get_rng_manager, 177	psf_sigma, 193
get_size, 178	reflected_theta, 183
get_size_image_stack, 178	reflected_theta_stack, 184
get_stats, 178	rename_hyperparam, 184
get_ubound, 178	sample_mcmc_candidate, 184
global_default_mcmc_sigma_scale, 190	sample_prior, 184
global_max_mcmc_sigma_scale, 190	set_background_mcmc_sampling, 184
global_max_psf_sigma, 190	set_bounds, 185
global_max_size, 191	set_hyperparam_names, 185

set_hyperparam_value, 185	eta_bg, 218
set_hyperparams, 185	eta_I, 218
set_image_in_stack, 185	eta_sigma, 218
set_intensity_mcmc_sampling, 185	eta_x, 218
set_lbound, 186	Gauss1DsMAP, 200, 201
set_mcmc_num_phases, 186	get_hyperparam_index, 202
set_mcmc_sigma_scale, 186	get_hyperparam_names, 203
set_param_names, 186	get_hyperparam_value, 203
set_prior, 186	get_hyperparams, 203
set_psf_sigma, 187	get_image_from_stack, 203
set_rng_seed, 187	get_lbound, 203
set_size, 187	get_max_sigma, 203
set_ubound, 187	get_mcmc_num_phases, 203
sigma_scale, 193	get_mcmc_sigma_scale, 204
size, 193	get_min_sigma, 204
StencilVecT, 173	get_num_hyperparams, 204
theta_in_bounds, 187	get_num_params, 204
theta_stack_in_bounds, 188	get_num_pixels, 204
ubound, 193	get_param_names, 204
mappel::Gauss1DModel::Stencil, 746	get_prior, 204, 205
bg, 747	get_rng_generator, 205
compute_derivatives, 747	get_rng_manager, 205
DXS, 748	get_size, 205
derivatives_computed, 748	get_size_image_stack, 205
DX, 748	get_stats, 205
dx, 748	get_ubound, 206
Gx, 748	global_default_mcmc_sigma_scale, 219
I, 747	global_max_mcmc_sigma_scale, 219
model, 749	global_max_psf_sigma, 219
operator<<, 748	global_max_size, 219
ParamT, 746	global_min_psf_sigma, 219
Stencil, 747	global_min_size, 219
theta, 749	has_hyperparam, 206
X, 749	ImageCoordT, 198
x, 747	ImagePixelT, 198
mappel::Gauss1DsMAP, 194	ImageShapeT, 198
bound_theta, 201	ImageSizeShapeT, 198
bounded_theta, 201	ImageSizeVecShapeT, 199
bounded theta stack, 201	ImageSizeVecT, 199
bounds_epsilon, 216	ImageSizeT, 199
check_image_shape, 201	ImageStackShapeT, 199
check param shape, 202	ImageStackT, 199
check_psf_sigma, 202	ImageT, 199
check_size, 202	initial theta estimate, 206
default_alpha_sigma, 216	Ibound, 220
default beta pos, 216	make_default_prior, 206
default_intensity_kappa, 217	make default prior beta position, 206
default max I, 217	make default prior normal position, 207
default_max_1, 217 default_mean_I, 217	make_image, 207
default_niean_i, 217 default_pixel_mean_bg, 217	make_image_stack, 207
default_sigma_pos, 217	make_param, 207
DefaultPriorType, 217	make_param_mat, 207, 208
DefaultSeperableInitEstimator, 218	make_param_mat_stack, 208
estimator_names, 218	make_param_stack, 208
ostimator_names, 210	mane_param_stack, 200

make_prior_beta_position, 208	bounded_theta, 229
make_prior_component_intensity, 208	bounded_theta_stack, 229
make_prior_component_position_beta, 209	bounds_epsilon, 244
make_prior_component_position_normal, 209	check_image_shape, 230
make_prior_component_sigma, 209	check_param_shape, 230
make_prior_normal_position, 209	check_psf_sigma, 230
make_stencil, 210	check_size, 231
ModelDataStackT, 199	default_alpha_sigma, 244
ModelDataT, 200	default_beta_pos, 245
name, 220	default_intensity_kappa, 245
num_dim, 220	default_max_I, 245
num_hyperparams, 220	default_mean_I, 245
num_params, 220	default_pixel_mean_bg, 245
num_phases, 220	default_sigma_pos, 245
operator=, 210	DefaultPriorType, 246
ParamVecT, 200	DefaultSeperableInitEstimator, 246
ParamT, 200	estimator_names, 246
pixel_grad, 211	eta_bg, 246
pixel_grad2, 211	eta_I, 246
pixel_hess, 211	eta_sigma, 246
pixel_hess_update, 211	eta_x, 247
pixel_model_value, 211	Gauss1DsMLE, 229
prior, 221	get_hyperparam_index, 231
prior_types, 221	get_hyperparam_names, 231
reflected_theta, 211	get_hyperparam_value, 231
reflected_theta_stack, 212	get_hyperparams, 231
rename_hyperparam, 212	get_image_from_stack, 231
sample_mcmc_candidate, 212	get_lbound, 231
sample_prior, 212	get_max_sigma, 232
set_background_mcmc_sampling, 212	get_mcmc_num_phases, 232
set_bounds, 213	get_mcmc_sigma_scale, 232
set_hyperparam_names, 213	get_min_sigma, 232
set_hyperparam_value, 213	get_num_hyperparams, 232
set_hyperparams, 213	get num params, 232
set image in stack, 213	get_num_pixels, 232
set intensity mcmc sampling, 213	get_param_names, 233
set_lbound, 214	get_prior, 233
set_max_sigma, 214	get_rng_generator, 233
set mcmc num phases, 214	get_rng_manager, 233
set_mcmc_sigma_scale, 214	get_size, 233
set_min_sigma, 214, 215	get_size_image_stack, 234
set_param_names, 215	get_stats, 234
set_prior, 215	get_ubound, 234
-	global_default_mcmc_sigma_scale, 247
set_rng_seed, 215 set size, 215	·
- · · ·	global_max_mcmc_sigma_scale, 247
set_ubound, 216	global_max_psf_sigma, 247
sigma_scale, 221	global_max_size, 247
size, 221	global_min_psf_sigma, 247
StencilVecT, 200	global_min_size, 248
theta_in_bounds, 216	has_hyperparam, 234
theta_stack_in_bounds, 216	ImageCoordT, 227
ubound, 222	ImagePixeIT, 227
mappel::Gauss1DsMLE, 222	ImageShapeT, 227
bound_theta, 229	ImageSizeShapeT, 227

ImageSizeVecShapeT, 227	set_max_sigma, 242
ImageSizeVecT, 227	set_mcmc_num_phases, 242
ImageSizeT, 227	set_mcmc_sigma_scale, 242
ImageStackShapeT, 227	set_min_sigma, 243
ImageStackT, 228	set_param_names, 243
ImageT, 228	set_prior, 243
initial_theta_estimate, 234	set_rng_seed, 243
Ibound, 248	set_size, 243, 244
make_default_prior, 234	set_ubound, 244
make_default_prior_beta_position, 235	sigma_scale, 249
make_default_prior_normal_position, 235	size, 250
make_image, 235	StencilVecT, 228
make_image_stack, 235	theta_in_bounds, 244
make_param, 235	theta_stack_in_bounds, 244
make_param_mat, 236	ubound, 250
make_param_mat_stack, 236	mappel::Gauss1DsModel, 250
make_param_stack, 236	bound_theta, 257
make_prior_beta_position, 236	bounded_theta, 257
make_prior_component_intensity, 237	bounded_theta_stack, 257
make_prior_component_position_beta, 237	bounds_epsilon, 272
make_prior_component_position_normal, 237	check_image_shape, 257
make_prior_component_sigma, 237	check_param_shape, 257
make_prior_normal_position, 238	check_psf_sigma, 258
make_stencil, 238	check_size, 258
ModelDataStackT, 228	default_alpha_sigma, 272
ModelDataT, 228	default_beta_pos, 272
name, 248	default_intensity_kappa, 272
num_dim, 248	default_max_I, 272
num_hyperparams, 248	default_mean_I, 272
num_params, 248	default_pixel_mean_bg, 272
num_phases, 249	default_sigma_pos, 273
operator=, 238, 239	DefaultPriorType, 273
ParamVecT, 228	DefaultSeperableInitEstimator, 273
ParamT, 228	eta_bg, <mark>273</mark>
pixel grad, 239	eta_I, 273
pixel grad2, 239	eta_sigma, 273
pixel_hess, 239	eta_x, 274
pixel_hess_update, 239	Gauss1DsModel, 256
pixel_model_value, 239	get hyperparam index, 258
prior, 249	get_hyperparam_names, 258
prior_types, 249	get_hyperparam_value, 258
reflected_theta, 240	get_hyperparams, 259
reflected theta stack, 240	get_image_from_stack, 259
rename_hyperparam, 240	get Ibound, 259
sample_mcmc_candidate, 240	get_max_sigma, 259
sample_prior, 240	get_mcmc_num_phases, 259
set_background_mcmc_sampling, 241	get mcmc sigma scale, 259
set bounds, 241	get_min_sigma, 259
set_hyperparam_names, 241	get_num_hyperparams, 260
set_hyperparam_value, 241	get_num_params, 260
set_hyperparams, 241	get_num_pixels, 260
set_image_in_stack, 241	get_param_names, 260
set_intensity_mcmc_sampling, 242	get_prior, 260
set_libound, 242	get_phor, 200 get_rng_generator, 260
<u> </u>	90g_9011010(01, 200

get_rng_manager, 261	reflected_theta, 267
get_size, 261	reflected_theta_stack, 267
get_size_image_stack, 261	rename_hyperparam, 267
get_stats, 261	sample_mcmc_candidate, 267
get_ubound, 261	sample_prior, 268
global_default_mcmc_sigma_scale, 274	set_background_mcmc_sampling, 268
global_max_mcmc_sigma_scale, 274	set_bounds, 268
global_max_psf_sigma, 274	set_hyperparam_names, 268
global_max_size, 274	set_hyperparam_value, 268
global_min_psf_sigma, 274	set_hyperparams, 269
global_min_size, 275	set_image_in_stack, 269
has_hyperparam, 261	set_intensity_mcmc_sampling, 269
ImageCoordT, 254	set_lbound, 269
ImagePixeIT, 254	set_max_sigma, 269
ImageShapeT, 255	set_mcmc_num_phases, 270
ImageSizeShapeT, 255	set_mcmc_sigma_scale, 270
ImageSizeVecShapeT, 255	set_min_sigma, 270
ImageSizeVecT, 255	set_param_names, 270
ImageSizeT, 255	set_prior, 270
ImageStackShapeT, 255	set_rng_seed, 271
ImageStackT, 255	set_size, 271
ImageT, 256	set_ubound, 271
initial_theta_estimate, 262	sigma_scale, 276
lbound, 275	size, 276
make_default_prior, 262	StencilVecT, 256
make_default_prior_beta_position, 262	theta_in_bounds, 271
make_default_prior_normal_position, 262	theta_stack_in_bounds, 271
make_image, 262	ubound, 277
make_image_stack, 263	mappel::Gauss1DsModel::Stencil, 749
make_param, 263	bg, 751
make_param_mat, 263	compute_derivatives, 751
make_param_mat_stack, 263	DXS2, 752
make_param_stack, 264	DXSX, 752
make_prior_beta_position, 264	DXS, 752
make_prior_component_intensity, 264	derivatives_computed, 752
make_prior_component_position_beta, 264	DX, 752
make_prior_component_position_normal, 265	dx, 752
make_prior_component_sigma, 265	Gx, 752
make_prior_normal_position, 265	I, 751
make_stencil, 265	model, 753
num_dim, 275	operator<<, 752
num_hyperparams, 275	ParamT, 750
num_params, 275	sigma, 751
num_phases, 275	Stencil, 750
operator=, 266	theta, 753
ParamVecT, 256	X, 753
ParamT, 256	x, 751
pixel_grad, 266	mappel::Gauss2DMAP, 277
pixel_grad2, 266	bound_theta, 285
pixel_hess, 266	bounded_theta, 285
pixel_hess_update, 267	bounded_theta_stack, 285
pixel_model_value, 267	bounds_epsilon, 300
prior, 276	check_image_shape, 285
prior_types, 276	check_param_shape, 285, 286

check_psf_sigma, 286	ImageStackShapeT, 283
check_size, 286	ImageStackT, 283
debug_internal_sum_model_x, 286	ImageT, 283
debug_internal_sum_model_y, 286	initial_theta_estimate, 290
default_alpha_sigma, 300	Ibound, 304
default_beta_pos, 300	make_default_prior, 291
default_intensity_kappa, 301	make_default_prior_beta_position, 291
default_max_I, 301	make_default_prior_normal_position, 291
default_mean_I, 301	make_image, 291
default_pixel_mean_bg, 301	make_image_stack, 291
default_sigma_pos, 301	make_internal_1Dsum_estimator, 291
DefaultPriorType, 301	make_param, 292
DefaultSeperableInitEstimator, 302	make_param_mat, 292
estimator_names, 302	make_param_mat_stack, 292
eta_bg, 302	make_param_stack, 293
eta_I, 302	make_prior_beta_position, 293
eta_x, 302	make_prior_component_intensity, 293
eta_y, 302	make_prior_component_position_beta, 293
Gauss1DSumModelT, 282	make_prior_component_position_normal, 294
Gauss2DMAP, 284, 285	make_prior_component_sigma, 294
get_hyperparam_index, 287	make_prior_normal_position, 294
get_hyperparam_names, 287	make_stencil, 294
get_hyperparam_value, 287	ModelDataStackT, 283
get_hyperparams, 287	ModelDataT, 283
get_image_from_stack, 287	name, 304
get_lbound, 287	num_dim, 304
get_mcmc_num_phases, 287	num_hyperparams, 304
get_mcmc_sigma_scale, 288	num_params, 304
get_num_hyperparams, 288	num_phases, 304
get_num_params, 288	operator=, 295
get_num_pixels, 288	ParamVecT, 284
get_param_names, 288	ParamT, 283
get_prior, 288	pixel_grad, 295
get_psf_sigma, 289	pixel_grad2, 295
get_rng_generator, 289	pixel_hess, 295
get_rng_manager, 289	pixel_hess_update, 296
get_size, 289	pixel_model_value, 296
get_size_image_stack, 289	prior, 305
get_stats, 290	prior_types, 305
get_ubound, 290	psf_sigma, 305
global_default_mcmc_sigma_scale, 303	reflected_theta, 296
global_max_mcmc_sigma_scale, 303	reflected_theta_stack, 296
global_max_psf_sigma, 303	rename_hyperparam, 296
global_max_size, 303	sample_mcmc_candidate, 296
global_min_psf_sigma, 303	sample_prior, 297
global_min_size, 303	set_background_mcmc_sampling, 297
has_hyperparam, 290	set_bounds, 297
ImageCoordT, 282	set_hyperparam_names, 297
ImagePixeIT, 282	set_hyperparam_value, 297
ImageShapeT, 282	set_hyperparams, 298
ImageSizeShapeT, 282	set_image_in_stack, 298
ImageSizeVecShapeT, 282	set_intensity_mcmc_sampling, 298
ImageSizeVecT, 283	set_lbound, 298
ImageSizeT, 282	set_mcmc_num_phases, 298

ant manne simme and 000	aret merene menere 010
set_mcmc_sigma_scale, 298	get_param_names, 318
set_param_names, 298	get_prior, 318
set_prior, 299	get_psf_sigma, 319
set_psf_sigma, 299	get_rng_generator, 319
set_rng_seed, 299	get_rng_manager, 319
set_size, 299	get_size, 319
set_ubound, 299	get_size_image_stack, 319
sigma_scale, 305	get_stats, 320
size, 306	get_ubound, 320
StencilVecT, 284	global_default_mcmc_sigma_scale, 333
theta_in_bounds, 299	global_max_mcmc_sigma_scale, 333
theta_stack_in_bounds, 300	global_max_psf_sigma, 333
ubound, 306	global_max_size, 333
update_internal_1Dsum_estimators, 300	global_min_psf_sigma, 333
x_model, 306	global_min_size, 333
y_model, 307	has_hyperparam, 320
mappel::Gauss2DMLE, 307	ImageCoordT, 312
bound_theta, 315	ImagePixeIT, 312
bounded_theta, 315	ImageShapeT, 312
bounded_theta_stack, 315	ImageSizeShapeT, 312
bounds_epsilon, 330	ImageSizeVecShapeT, 312
check_image_shape, 315	ImageSizeVecT, 313
check_param_shape, 315, 316	ImageSizeT, 312
check_psf_sigma, 316	ImageStackShapeT, 313
check_size, 316	ImageStackT, 313
debug_internal_sum_model_x, 316	ImageT, 313
debug_internal_sum_model_y, 316	initial_theta_estimate, 320
default_alpha_sigma, 330	lbound, 334
default_beta_pos, 330	make_default_prior, 321
default_intensity_kappa, 331	make_default_prior_beta_position, 321
default_max_I, 331	make_default_prior_normal_position, 321
default_mean_I, 331	make_image, 321
default pixel mean bg, 331	make_image_stack, 321
default sigma pos, 331	make_internal_1Dsum_estimator, 321
DefaultPriorType, 331	make param, 322
DefaultSeperableInitEstimator, 332	make param mat, 322
estimator_names, 332	make_param_mat_stack, 322
eta_bg, 332	make_param_stack, 323
eta_I, 332	make_prior_beta_position, 323
eta_x, 332	make_prior_component_intensity, 323
eta_y, 332	make_prior_component_position_beta, 323
Gauss1DSumModelT, 312	make_prior_component_position_normal, 324
Gauss2DMLE, 314	make_prior_component_sigma, 324
get hyperparam index, 317	make_prior_normal_position, 324
get_hyperparam_names, 317	make_stencil, 324
get_hyperparam_value, 317	ModelDataStackT, 313
get_hyperparams, 317	ModelDataT, 313
get_image_from_stack, 317	name, 334
get_lbound, 317	num_dim, 334
get_ncmc_num_phases, 317	num_hyperparams, 334
get_mcmc_sigma_scale, 318	num_params, 334
get_num_hyperparams, 318	num_phases, 334
get_num_params, 318	operator=, 325
get_num_params, 316 get_num_pixels, 318	ParamVecT, 314
ger_nam_pixers, 510	1 4141114661, 314

ParamT, 313	default_mean_I, 360
pixel_grad, 325	default_pixel_mean_bg, 360
pixel_grad2, 325	default_sigma_pos, 360
pixel_hess, 325	DefaultPriorType, 360
pixel_hess_update, 326	DefaultSeperableInitEstimator, 360
pixel_model_value, 326	eta_bg, <mark>361</mark>
prior, 335	eta_I, 361
prior_types, 335	eta_x, 361
psf_sigma, 335	eta_y, <mark>361</mark>
reflected_theta, 326	Gauss1DSumModelT, 341
reflected_theta_stack, 326	Gauss2DModel, 343, 344
rename_hyperparam, 326	get_hyperparam_index, 346
sample_mcmc_candidate, 326	get_hyperparam_names, 346
sample_prior, 327	get_hyperparam_value, 346
set_background_mcmc_sampling, 327	get_hyperparams, 346
set_bounds, 327	get_image_from_stack, 346
set_hyperparam_names, 327	get_lbound, 346
set_hyperparam_value, 327	get_mcmc_num_phases, 347
set_hyperparams, 328	get_mcmc_sigma_scale, 347
set_image_in_stack, 328	get_num_hyperparams, 347
set_intensity_mcmc_sampling, 328	get_num_params, 347
set_lbound, 328	get_num_pixels, 347
set_mcmc_num_phases, 328	get_param_names, 347
set_mcmc_sigma_scale, 328	get_prior, 347, 348
set_param_names, 328	get_psf_sigma, 348
set_prior, 329	get_rng_generator, 348
set_psf_sigma, 329	get_rng_manager, 348
set_rng_seed, 329	get_size, 348
set_size, 329	get_size_image_stack, 349
set_ubound, 329	get_stats, 349
sigma_scale, 335	get_ubound, 349
size, 336	global_default_mcmc_sigma_scale, 361
StencilVecT, 314	global_max_mcmc_sigma_scale, 362
theta_in_bounds, 329	global_max_psf_sigma, 362
theta_stack_in_bounds, 330	global_max_size, 362
ubound, 336	global_min_psf_sigma, 362
update_internal_1Dsum_estimators, 330	global_min_size, 362
x model, 336	has hyperparam, 349
y_model, 337	ImageCoordT, 341
mappel::Gauss2DModel, 337	ImagePixeIT, 342
bound_theta, 344	ImageShapeT, 342
bounded theta, 344	ImageSizeShapeT, 342
bounded theta stack, 344	ImageSizeVecShapeT, 342
bounds epsilon, 359	ImageSizeVecT, 342
check_image_shape, 344	ImageSizeT, 342
check param shape, 345	ImageStackShapeT, 342
check_psf_sigma, 345	ImageStackT, 343
check_size, 345	ImageT, 343
debug_internal_sum_model_x, 345	initial theta estimate, 349, 350
debug_internal_sum_model_y, 346	lbound, 362
default_alpha_sigma, 359	make_default_prior, 350
default_beta_pos, 359	make default prior beta position, 350
default_intensity_kappa, 359	make_default_prior_normal_position, 350
default_max_I, 360	make_image, 350
acidait_max_i, ooo	mano_mago, ooo

make_image_stack, 350	ubound, 365
make_internal_1Dsum_estimator, 351	update_internal_1Dsum_estimators, 359
make param, 351	x_model, 365
make_param_mat, 351	y_model, 365
make_param_mat_stack, 351, 352	mappel::Gauss2DModel::Stencil, 764
make_param_stack, 352	bg, 766
make_prior_beta_position, 352	compute_derivatives, 766
make_prior_component_intensity, 352	DXS, 767
	DXS, 767 DYS, 768
make_prior_component_position_beta, 352	derivatives computed, 767
make_prior_component_position_normal, 353	- · ·
make_prior_component_sigma, 353	DX, 767
make_prior_normal_position, 353	dx, 767
make_stencil, 353	DY, 768
num_dim, 363	dy, 767
num_hyperparams, 363	Gx, 768
num_params, 363	Gy, 768
num_phases, 363	I, 766
operator=, 354	model, 768
ParamVecT, 343	operator<<, 767
ParamT, 343	ParamT, 765
pixel_grad, 354	Stencil, 765
pixel_grad2, 354	theta, 768
pixel_hess, 354	X, 768
pixel_hess_update, 355	x, 766
pixel_model_value, 355	Y, 768
prior, 363	y, 766
prior_types, 364	mappel::Gauss2DsMAP, 366
psf_sigma, 364	bound_theta, 373
reflected_theta, 355	bounded_theta, 373
reflected_theta_stack, 355	bounded_theta_stack, 374
rename_hyperparam, 355	bounds_epsilon, 391
sample_mcmc_candidate, 355	check_image_shape, 374
sample_prior, 356	check_param_shape, 374
set_background_mcmc_sampling, 356	check_psf_sigma, 374, 375
set_bounds, 356	check_size, 375
set_hyperparam_names, 356	compute_max_sigma_ratio, 375
set_hyperparam_value, 356	debug_internal_sum_model_x, 375
set_hyperparams, 357	debug_internal_sum_model_y, 375
set_image_in_stack, 357	default_alpha_sigma, 391
set intensity mcmc sampling, 357	default_beta_pos, 391
set Ibound, 357	default_peta_pos, 001 default_intensity_kappa, 391
set_mcmc_num_phases, 357	default_max_I, 391
set_mcmc_sigma_scale, 357	default_mean_I, 391
set_param_names, 357	default_pixel_mean_bg, 392
set_prior, 358	default_sigma_pos, 392
set_psf_sigma, 358	DefaultPriorType, 392
set_rng_seed, 358	DefaultSeperableInitEstimator, 392
set_size, 358	estimator_names, 392
set_ubound, 358	eta_bg, 392
sigma_scale, 364	eta_I, 393
size, 364	eta_sigma, 393
StencilVecT, 343	eta_x, 393
theta_in_bounds, 358	eta_y, 393
theta_stack_in_bounds, 359	Gauss1DSumModelT, 370

Gauss2DsMAP, 373	make_prior_component_position_beta, 383
get_hyperparam_index, 376	make_prior_component_position_normal, 383
get_hyperparam_names, 376	make_prior_component_sigma, 383
get_hyperparam_value, 376	make_prior_normal_position, 384
get_hyperparams, 376	make_stencil, 384
get_image_from_stack, 376	min_sigma, 395
get_lbound, 376	ModelDataStackT, 372
get_max_sigma, 376, 377	ModelDataT, 372
get_max_sigma_ratio, 377	name, 395
get_mcmc_num_phases, 377	num_dim, 395
get_mcmc_sigma_scale, 377	num_hyperparams, 395
get_min_sigma, 377	num_params, 395
get_num_hyperparams, 377	num_phases, 395
get_num_params, 378	operator=, 384, 385
get_num_pixels, 378	ParamVecT, 372
get_param_names, 378	ParamT, 372
get_prior, 378	pixel_grad, 385
get_rng_generator, 378	pixel_grad2, 385
get_rng_manager, 378	pixel_hess, 385
get_size, 379	pixel_hess_update, 385
get_size_image_stack, 379	pixel_model_value, 386
get_stats, 379	prior, 396
get_ubound, 379	prior_types, 396
global_default_mcmc_sigma_scale, 393	reflected_theta, 386
global_max_mcmc_sigma_scale, 394	reflected_theta_stack, 386
global_max_psf_sigma, 394	rename_hyperparam, 386
global_max_size, 394	sample_mcmc_candidate, 386
global_min_psf_sigma, 394	sample_prior, 387
global_min_size, 394	set_background_mcmc_sampling, 387
has_hyperparam, 379	set_bounds, 387
ImageCoordT, 370	set_hyperparam_names, 387
ImagePixeIT, 371	set_hyperparam_value, 387
ImageShapeT, 371	set_hyperparams, 388
ImageSizeShapeT, 371	set_image_in_stack, 388
ImageSizeVecShapeT, 371	set_intensity_mcmc_sampling, 388
ImageSizeVecT, 371	set_lbound, 388
ImageSizeT, 371	set_max_sigma, 388
ImageStackShapeT, 371	set_max_sigma_ratio, 388
ImageStackT, 372	set_mcmc_num_phases, 389
ImageT, 372	set_mcmc_sigma_scale, 389
initial_theta_estimate, 379, 380	set_min_sigma, 389
Ibound, 394	set_param_names, 389
make_default_prior, 380	set_prior, 389
make_default_prior_beta_position, 380	set_rng_seed, 390
make_default_prior_normal_position, 380	set_size, 390
make_image, 381	set_ubound, 390
make_image_stack, 381	sigma_scale, 396
make_internal_1Dsum_estimator, 381	size, 396
make_param, 381	StencilVecT, 372
make_param_mat, 382	theta_in_bounds, 390
make_param_mat_stack, 382	theta_stack_in_bounds, 390
make_param_stack, 382	ubound, 397
make_prior_beta_position, 382	update_internal_1Dsum_estimators, 390
make_prior_component_intensity, 383	x_model, 397

y_model, 397	global_max_psf_sigma, 426
mappel::Gauss2DsMLE, 398	global_max_size, 426
bound_theta, 405	global_min_psf_sigma, 426
bounded_theta, 405	global_min_size, 426
bounded_theta_stack, 406	has_hyperparam, 411
bounds_epsilon, 423	ImageCoordT, 402
check_image_shape, 406	ImagePixeIT, 403
check_param_shape, 406	ImageShapeT, 403
check_psf_sigma, 406, 407	ImageSizeShapeT, 403
check_size, 407	ImageSizeVecShapeT, 403
compute_max_sigma_ratio, 407	ImageSizeVecT, 403
debug_internal_sum_model_x, 407	ImageSizeT, 403
debug_internal_sum_model_y, 407	ImageStackShapeT, 403
default_alpha_sigma, 423	ImageStackT, 404
default_beta_pos, 423	ImageT, 404
default_intensity_kappa, 423	initial_theta_estimate, 411, 412
default_max_I, 423	Ibound, 426
default_mean_I, 423	make_default_prior, 412
default_pixel_mean_bg, 424	make_default_prior_beta_position, 412
default_sigma_pos, 424	make_default_prior_normal_position, 412
DefaultPriorType, 424	make_image, 413
DefaultSeperableInitEstimator, 424	make_image_stack, 413
estimator_names, 424	make_internal_1Dsum_estimator, 413
eta_bg, 424	make_param, 413
eta_I, 425	make_param_mat, 414
eta_sigma, 425	make_param_mat_stack, 414
eta_x, 425	make_param_stack, 414
eta_y, 425	make_prior_beta_position, 414
Gauss1DSumModelT, 402	make_prior_component_intensity, 415
Gauss2DsMLE, 405	make_prior_component_position_beta, 415
get_hyperparam_index, 408	make_prior_component_position_normal, 415
get_hyperparam_names, 408	make_prior_component_sigma, 415
get_hyperparam_value, 408	make_prior_normal_position, 416
get_hyperparams, 408	make_stencil, 416
get_image_from_stack, 408	min_sigma, 427
get_lbound, 408	ModelDataStackT, 404
get_max_sigma, 408, 409	ModelDataT, 404
get_max_sigma_ratio, 409	name, 427
get_mcmc_num_phases, 409	num_dim, 427
get_mcmc_sigma_scale, 409	num_hyperparams, 427
get_min_sigma, 409	num_params, 427
get_num_hyperparams, 409	num_phases, 427
get_num_params, 410	operator=, 416, 417
get_num_pixels, 410	ParamVecT, 404
get_param_names, 410	ParamT, 404
get_prior, 410	pixel_grad, 417
get_rng_generator, 410	pixel_grad2, 417
get_rng_manager, 410	pixel_grad2, 417
get_size, 411	pixel_hess_update, 417
get_size_image_stack, 411	pixel_model_value, 418
get_stats, 411	prior, 428
get_ubound, 411	•
-	prior_types, 428
global_default_mcmc_sigma_scale, 425 global_max_mcmc_sigma_scale, 426	reflected_theta, 418
giobal_max_mcmc_sigma_scale, 420	reflected_theta_stack, 418

rename_hyperparam, 418	eta_x, 456
sample_mcmc_candidate, 418	eta_y, 456
sample_prior, 419	Gauss1DSumModelT, 435
set_background_mcmc_sampling, 419	Gauss2DsModel, 437
set bounds, 419	get_hyperparam_index, 439
set_hyperparam_names, 419	get_hyperparam_names, 439
set_hyperparam_value, 419	get_hyperparam_value, 440
set_hyperparams, 420	get_hyperparams, 440
set_image_in_stack, 420	get_image_from_stack, 440
set_intensity_mcmc_sampling, 420	get_lbound, 440
set Ibound, 420	-
set_max_sigma, 420	get_max_sigma, 440 get_max_sigma_ratio, 441
-	
set_max_sigma_ratio, 420	get_mcmc_num_phases, 441
set_mcmc_num_phases, 421	get_mcmc_sigma_scale, 441
set_mcmc_sigma_scale, 421	get_min_sigma, 441
set_min_sigma, 421	get_num_hyperparams, 441
set_param_names, 421	get_num_params, 441
set_prior, 421	get_num_pixels, 441
set_rng_seed, 422	get_param_names, 442
set_size, 422	get_prior, 442
set_ubound, 422	get_rng_generator, 442
sigma_scale, 428	get_rng_manager, 442
size, 428	get_size, 442
StencilVecT, 404	get_size_image_stack, 443
theta_in_bounds, 422	get_stats, 443
theta_stack_in_bounds, 422	get_ubound, 443
ubound, 429	global_default_mcmc_sigma_scale, 456
update_internal_1Dsum_estimators, 422	global_max_mcmc_sigma_scale, 456
x_model, 429	global_max_psf_sigma, 457
y_model, 429	global_max_size, 457
mappel::Gauss2DsModel, 430	global_min_psf_sigma, 457
bound_theta, 437	global_min_size, 457
bounded_theta, 437	has_hyperparam, 443
bounded_theta_stack, 437	ImageCoordT, 435
bounds_epsilon, 454	ImagePixelT, 435
check_image_shape, 438	ImageShapeT, 435
check_param_shape, 438	ImageSizeShapeT, 435
check_psf_sigma, 438	ImageSizeVecShapeT, 435
check size, 439	ImageSizeVecT, 436
compute max sigma ratio, 439	ImageSizeT, 435
debug_internal_sum_model_x, 439	ImageStackShapeT, 436
debug_internal_sum_model_y, 439	ImageStackT, 436
default_alpha_sigma, 454	ImageT, 436
default beta pos, 454	initial_theta_estimate, 443, 444
default_intensity_kappa, 454	Ibound, 457
default_max_I, 454	make_default_prior, 444
default_mean_I, 454	make_default_prior_beta_position, 444
default pixel mean bg, 455	make_default_prior_normal_position, 444
default_sigma_pos, 455	make_image, 444
DefaultPriorType, 455	make_image_stack, 445
DefaultSeperableInitEstimator, 455	make_internal_1Dsum_estimator, 445
eta_bg, 455	make_param, 445
eta_I, 455	make_param_mat, 445
eta_sigma, 456	make_param_mat_stack, 446

make_param_stack, 446	y_model, 460
make_prior_beta_position, 446	mappel::Gauss2DsModel::Stencil, 758
make_prior_component_intensity, 446	bg, 760
make_prior_component_position_beta, 447	compute_derivatives, 760
make_prior_component_position_normal, 447	DXS2, 762
make_prior_component_sigma, 447	DXSX, 762
make_prior_normal_position, 447	DXS, 762
make_stencil, 447	DYS2, 763
min_sigma, 457	DYSY, 763
num_dim, 458	DYS, 762
num_hyperparams, 458	derivatives_computed, 761
num_params, 458	DX, 762
num_phases, 458	dx, 761
operator=, 448	DY, 762
ParamVecT, 436	dy, 762
ParamT, 436	Gx, 763
pixel_grad, 448	Gy, 763
pixel_grad2, 448	I, 760
pixel_hess, 449	model, 763
pixel_hess_update, 449	operator<<, 761
pixel_model_value, 449	ParamT, 759
prior, 458	sigma_ratio, 760
prior_types, 459	sigmaX, 760
reflected_theta, 449	sigmaY, 761
reflected_theta_stack, 449	Stencil, 759
rename_hyperparam, 450	theta, 763
sample_mcmc_candidate, 450	X, 763
sample_prior, 450	x, 761
set_background_mcmc_sampling, 450	Y, 764
set_bounds, 450	y, 761
set_hyperparam_names, 451	mappel::Gauss2DsxyMAP, 461
set_hyperparam_value, 451	bound_theta, 467
set_hyperparams, 451	bounded_theta, 467
set_image_in_stack, 451	bounded_theta_stack, 468
set intensity mcmc sampling, 451	bounds_epsilon, 482
set_lbound, 451	check_image_shape, 468
set_max_sigma, 452	check_param_shape, 468
set_max_sigma_ratio, 452	check_psf_sigma, 468, 469
set_mcmc_num_phases, 452	check_size, 469
set_mcmc_sigma_scale, 452	default_alpha_sigma, 482
set_min_sigma, 452	default beta pos, 482
set_param_names, 452	default intensity kappa, 482
set prior, 453	default_max_I, 482
set_phot, 453 set_rng_seed, 453	default mean I, 483
	default_pixel_mean_bg, 483
set_size, 453 set ubound, 453	default_sigma_pos, 483
-	_ ·
sigma_scale, 459	DefaultPriorType, 483
size, 459	DefaultSeperableInitEstimator, 483
StencilVecT, 436	estimator_names, 483
theta_in_bounds, 453	eta_bg, 484
theta_stack_in_bounds, 453	eta_I, 484
ubound, 460	eta_x, 484
update_internal_1Dsum_estimators, 454	Gauss2DsxyMAP, 467
x_model, 460	get_hyperparam_index, 469

get_hyperparam_names, 469	ModelDataStackT, 466
get_hyperparam_value, 469	ModelDataT, 467
get_hyperparams, 469	name, 485
get_image_from_stack, 470	num_dim, 485
get_lbound, 470	num_hyperparams, 486
get_mcmc_num_phases, 470	num_params, 486
get_mcmc_sigma_scale, 470	num_phases, 486
get_num_hyperparams, 470	ParamVecT, 467
get_num_params, 470	ParamT, 467
get_num_pixels, 470	pixel_grad, 477
get_param_names, 471	pixel_grad2, 477
get_prior, 471	pixel_hess, 477
get_psf_sigma, 471	pixel_hess_update, 477
get_rng_generator, 471	pixel_model_value, 477
get_rng_manager, 471	prior, 486
get_size, 472	prior_types, 486
get_size_image_stack, 472	psf_sigma, 487
get_stats, 472	reflected_theta, 477
get_ubound, 472	reflected_theta_stack, 478
global_default_mcmc_sigma_scale, 484	rename_hyperparam, 478
global_max_mcmc_sigma_scale, 484	sample_mcmc_candidate, 478
global_max_psf_sigma, 484	sample_prior, 478
global_max_size, 485	set_background_mcmc_sampling, 478
global_min_psf_sigma, 485	set_bounds, 479
global_min_size, 485	set_hyperparam_names, 479
has_hyperparam, 472	set_hyperparam_value, 479
ImageCoordT, 465	set_hyperparams, 479
ImagePixeIT, 465	set_image_in_stack, 479
ImageShapeT, 465	set_intensity_mcmc_sampling, 479
ImageSizeShapeT, 465	set_lbound, 480
ImageSizeVecShapeT, 466	set_mcmc_num_phases, 480
ImageSizeVecT, 466	set_mcmc_sigma_scale, 480
ImageSizeT, 466	set_param_names, 480
ImageStackShapeT, 466	set_prior, 480
ImageStackT, 466	set_psf_sigma, 481
ImageT, 466	set_rng_seed, 481
initial_theta_estimate, 472, 473	set_size, 481
lbound, 485	set_ubound, 481
make_default_prior, 473	sigma_scale, 487
make_default_prior_beta_position, 473	size, 487
make_default_prior_normal_position, 473	StencilVecT, 467
make_image, 473	theta_in_bounds, 481
make_image_stack, 473	theta_stack_in_bounds, 482
make_param, 474	ubound, 487
make_param_mat, 474	mappel::Gauss2DsxyModel, 488
make_param_mat_stack, 474	bound_theta, 494
make_param_stack, 474, 475	bounded_theta, 494
make_prior_beta_position, 475	bounded_theta_stack, 494
make_prior_component_intensity, 475	bounds_epsilon, 506
make_prior_component_position_beta, 475	check_image_shape, 494
make_prior_component_position_normal, 475	check_param_shape, 494, 495
make_prior_component_sigma, 476	check_psf_sigma, 495
make_prior_normal_position, 476	check_size, 495
make_stencil, 476	compute_max_sigma_ratio, 495

default_alpha_sigma, 506	make_prior_component_intensity, 501
default_beta_pos, 506	make_prior_component_position_beta, 501
default_intensity_kappa, 507	make_prior_component_position_normal, 501
default_max_I, 507	make_prior_component_sigma, 502
default_mean_I, 507	make_prior_normal_position, 502
default_pixel_mean_bg, 507	make_stencil, 502
default_sigma_pos, 507	mcmc_candidate_eta_sigma, 509
DefaultSeperableInitEstimator, 507	mcmc_candidate_eta_y, 509
Gauss2DsxyModel, 494	min_sigma, 509
get_hyperparam_index, 496	num_dim, 509
get_hyperparam_names, 496	num_hyperparams, 509
get_hyperparam_value, 496	num_params, 509
get_hyperparams, 496	ParamVecT, 493
get_image_from_stack, 496	ParamT, 493
get_lbound, 496	pixel_grad, 503
get_max_sigma, 496, 497	pixel_grad2, 503
get_max_sigma_ratio, 497	pixel_hess, 503
get_min_sigma, 497	pixel_hess_update, 503
get_num_hyperparams, 497	pixel_model_value, 503
get_num_params, 497	prior, 510
get_num_pixels, 497	reflected_theta, 503
get_param_names, 497	reflected_theta_stack, 503
get_prior, 498	rename_hyperparam, 504
get_rng_generator, 498	sample_mcmc_candidate, 504
get_rng_manager, 498	sample_prior, 504
get_size, 498	set_bounds, 504
get_size_image_stack, 498	set_hyperparam_names, 504
get_stats, 499	set_hyperparam_value, 504
get_ubound, 499	set_hyperparams, 505
global_max_psf_sigma, 508	set_image_in_stack, 505
global_max_size, 508	set_lbound, 505
global_min_psf_sigma, 508	set_max_sigma, 505
global_min_size, 508	set_max_sigma_ratio, 505
has_hyperparam, 499	set_min_sigma, 505
ImageCoordT, 492	set_param_names, 505
ImagePixeIT, 492	set_prior, 505
ImageShapeT, 492	set_rng_seed, 505
ImageSizeShapeT, 492	set_size, 505
ImageSizeVecShapeT, 492	set_ubound, 506
ImageSizeVecT, 493	size, 510
ImageSizeT, 492	StencilVecT, 493
ImageStackShapeT, 493	theta_in_bounds, 506
ImageStackT, 493	theta_stack_in_bounds, 506
ImageT, 493	ubound, 511
initial_theta_estimate, 499	update_internal_1D_estimators, 506
Ibound, 508	x_model, 511
make_default_prior, 499	y_model, 511
make_image, 499	mappel::Gauss2DsxyModel::Stencil, 753
make_image_stack, 499	bg, 755
make_param, 500	compute_derivatives, 755
make_param_mat, 500	DXS2, 756
make_param_mat_stack, 500	DXSX, 756
make_param_stack, 500, 501	DXS, 756
make prior beta position, 501	DYS2, 757

DYSX, 757	total_walltime, 519
DYSY, 757	TrustRegionRadius, 513
DYS, 757	Unassigned, 513
derivatives_computed, 756	mappel::HeuristicEstimator< Model >, 511
DX, 756	mappel::ImageFormat1DBase, 519
dx, 756	check_image_shape, 523
DY, 757	check_size, 523
dy, 757	get_image_from_stack, 523
Gx, 757	get_num_pixels, 523
Gy, 757	get_size, 523
I, 755	get_size_image_stack, 524
model, 757	get_stats, 524
operator<<, 756	global_max_size, 525
ParamT, 754	global_min_size, 525
sigmaX, 755	ImageCoordT, 521
sigmaY, 755	ImageFormat1DBase, 522
Stencil, 755	ImagePixeIT, 521
theta, 758	ImageShapeT, 521
X, 758	ImageSizeShapeT, 521
x, 755	ImageSizeVecShapeT, 522
Y, 758	ImageSizeVecT, 522
y, 756	ImageSizeT, 521
mappel::HeuristicEstimator	ImageStackShapeT, 522
clear_stats, 514	ImageStackT, 522
compute_estimate, 514	ImageT, 522
compute_estimate_debug, 514	make_image, 524
compute_profile_estimate, 514	make_image_stack, 524
Error, 513	num_dim, 525
estimate_max, 514, 515	set_image_in_stack, 524
estimate_max_debug, 515	set_size, 524
estimate_max_stack, 516	size, 525
estimate_profile_stack, 516	mappel::ImageFormat2DBase, 526
exit_counts, 518	check_image_shape, 529
ExitCode, 513	check_size, 529
FunctionChange, 513	get_image_from_stack, 529
get_debug_stats, 516	get_num_pixels, 530
get_model, 516	get_size, 530
get_stats, 517 GradRatio, 513	get_size_image_stack, 530
HeuristicEstimator, 513	get_stats, 530 global max size, 531
max threads, 518	global_min_size, 531
MaxBacktracks, 513	ImageCoordT, 527
MaxIter, 513	ImageFormat2DBase, 529
model, 518	ImagePixelT, 527
mtx, 518	ImageShapeT, 527
name, 517	ImageSiape1, 327 ImageSizeShapeT, 528
num estimations, 518	ImageSizeVecShapeT, 528
num threads, 519	ImageSizeVec3nape1, 528
NumExitCodes, 519	ImageSizeVeC1, 528
record_exit_code, 517	ImageStackShapeT, 528
record_walltime, 517	ImageStackShape1, 328
set model, 517	ImageT, 528
StepSize, 513	make_image, 530
Success, 513	make_image_stack, 530
3400000, 010	mand_magd_dtadn, 000

num_dim, 531	total_der_evals, 544
operator=, 530, 531	total_fun_evals, 544
set_image_in_stack, 531	total_iterations, 544
set_size, 531	total_walltime, 544
size, <u>532</u>	TrustRegionRadius, 535
mappel::IterativeMaximizer	Unassigned, 535
alpha, 541	mappel::IterativeMaximizer< Model >, 532
backtrack, 535	mappel::IterativeMaximizer< Model >::MaximizerData,
clear_stats, 535	560
compute_estimate, 536	mappel::IterativeMaximizer::MaximizerData
compute_estimate_debug, 536	backtrack_idxs, 565
compute_profile_estimate, 536	current_stencil, 565
convergence_test, 537	fixed_idxs, 565
delta, 541	free_parameters, 565
epsilon, 541	get_backtrack_idxs, 562
Error, 535	get_theta_sequence, 562
estimate_max, 537, 538	get_theta_sequence_rllh, 562
estimate_max_debug, 538	getIteration, 562
estimate_max_stack, 538	grad, 565
estimate_profile_stack, 539	im, 565
exit_counts, 542	lbound, 565
ExitCode, 535	max_seq_len, 565
FunctionChange, 535	MaximizerData, 561
get_debug_stats, 539	nBacktracks, 566
get_model, 539	nIterations, 566
get_stats, 539	num_fixed_parameters, 566
GradRatio, 535	record_backtrack, 562
IterativeMaximizer, 535	record_iteration, 562, 563
lambda_min, 542	restore_stencil, 563
last_backtrack_idxs, 542	rllh, 566
local_maximize, 539	s0, 566
max_backtracks, 542	s1, 566
max_iterations, 542	save_seq, 566
max_threads, 542	save_stencil, 563
MaxBacktracks, 535	saved_stencil, 563
MaxIter, 535	saved_theta, 563
maximize, 540	seq_len, 567
mean_backtracks, 540	seq_rllh, 567
mean_der_evals, 540	set_fixed_parameters, 564
mean_fun_evals, 540	set_stencil, 564
mean_iterations, 540	stencil, 564
model, 542	step, 567
mtx, 543	theta, 564
name, 540	theta_seq, 567
num_estimations, 543	ubound, 567
num_threads, 543	mappel::LogicalError, 544
NumExitCodes, 543	LogicalError, 545
record_exit_code, 540	mappel::MAPEstimator, 545
record_run_statistics, 540	bound_theta, 548
record_walltime, 541	bounded_theta, 548
set_model, 541	bounded_theta_stack, 549
StepSize, 535	bounds_epsilon, 557
Success, 535	check_param_shape, 549
total_backtracks, 543	check_psf_sigma, 549

default_alpha_sigma, 557	theta_stack_in_bounds, 557
default_beta_pos, 557	ubound, 559
default_intensity_kappa, 557	mappel::MCMCAdaptor1Ds, 586
default_max_I, 557	bound_theta, 589
default_mean_I, 558	bounded_theta, 589
default_pixel_mean_bg, 558	bounded_theta_stack, 590
default_sigma_pos, 558	bounds_epsilon, 599
DefaultSeperableInitEstimator, 558	check_param_shape, 590
get_hyperparam_index, 549	check_psf_sigma, 590
get_hyperparam_names, 550	default_alpha_sigma, 599
get_hyperparam_value, 550	default_beta_pos, 599
get_hyperparams, 550	default_intensity_kappa, 599
get_lbound, 550	default_max_I, 600
get_num_hyperparams, 550	default_mean_I, 600
get_num_params, 550	default_pixel_mean_bg, 600
get_param_names, 550	default_sigma_pos, 600
get_prior, 551	DefaultSeperableInitEstimator, 600
get_rng_generator, 551	eta_bg, 600 eta I, 601
get_rng_manager, 551	- :
get_stats, 551 get_ubound, 551	eta_sigma, 601 eta_x, 601
global_max_psf_sigma, 558	get_hyperparam_index, 590
global_min_psf_sigma, 558	get_hyperparam_names, 591
has_hyperparam, 551	get_hyperparam_value, 591
lbound, 559	get_hyperparams, 591
MAPEstimator, 548	get_lbound, 591
make_param, 552	get_mcmc_num_phases, 591
make_param_mat, 552	get_mcmc_sigma_scale, 591
make_param_mat_stack, 552	get_num_hyperparams, 591
make_param_stack, 552, 553	get_num_params, 592
make_prior_component_intensity, 553	get_param_names, 592
make_prior_component_position_beta, 553	get_prior, 592
make_prior_component_position_normal, 553	get_rng_generator, 592
make_prior_component_sigma, 553	get rng manager, 592
num_hyperparams, 559	get stats, 592
num_params, 559	get ubound, 592
operator=, 554	global_default_mcmc_sigma_scale, 601
ParamVecT, 548	global max mcmc sigma scale, 601
ParamT, 548	global_max_psf_sigma, 601
prior, 559	global_min_psf_sigma, 602
reflected_theta, 554	has_hyperparam, 593
reflected_theta_stack, 554	lbound, 602
rename_hyperparam, 554	MCMCAdaptor1Ds, 589
sample_prior, 554, 555	make_param, 593
set_bounds, 555	make_param_mat, 593
set_hyperparam_names, 555	make_param_mat_stack, 593, 594
set_hyperparam_value, 555	make_param_stack, 594
set_hyperparams, 555	make_prior_component_intensity, 594
set_lbound, 555	make_prior_component_position_beta, 594
set_param_names, 556	make_prior_component_position_normal, 595
set_prior, 556	make_prior_component_sigma, 595
set_rng_seed, 556	num_hyperparams, 602
set_ubound, 556	num_params, 602
theta_in_bounds, 556	num_phases, 602

operator EOE	got prior 574
operator=, 595	get_prior, 574
ParamVecT, 589	get_rng_generator, 574
ParamT, 589	get_rng_manager, 574
prior, 603	get_stats, 574
reflected_theta, 595	get_ubound, 574 global default mcmc sigma scale, 583
reflected_theta_stack, 596	
rename_hyperparam, 596	global_max_mcmc_sigma_scale, 583
sample_mcmc_candidate, 596	global_max_psf_sigma, 583
sample_prior, 596	global_min_psf_sigma, 584
set_background_mcmc_sampling, 596	has_hyperparam, 575
set_bounds, 597	lbound, 584
set_hyperparam_names, 597	MCMCAdaptor1D, 571
set_hyperparam_value, 597	make_param, 575
set_hyperparams, 597	make_param_mat, 575
set_intensity_mcmc_sampling, 597	make_param_mat_stack, 575, 576
set_lbound, 597	make_param_stack, 576
set_mcmc_num_phases, 598	make_prior_component_intensity, 576
set_mcmc_sigma_scale, 598	make_prior_component_position_beta, 576
set_param_names, 598	make_prior_component_position_normal, 577
set_prior, 598	make_prior_component_sigma, 577
set_rng_seed, 598	num_hyperparams, 584
set_ubound, 598	num_params, 584
sigma_scale, 603	num_phases, 584
theta_in_bounds, 599	operator=, 577
theta_stack_in_bounds, 599	ParamVecT, 570
ubound, 603	ParamT, 570
mappel::MCMCAdaptor1D, 568	prior, 585
bound_theta, 571	reflected_theta, 577
bounded_theta, 571	reflected_theta_stack, 578
bounded_theta_stack, 571	rename_hyperparam, 578
bounds_epsilon, 581	sample_mcmc_candidate, 578
check_param_shape, 572	sample_prior, 578
check_psf_sigma, 572	set_background_mcmc_sampling, 578
default_alpha_sigma, 581	set_bounds, 579
default_beta_pos, 581	set_hyperparam_names, 579
default_intensity_kappa, 582	set_hyperparam_value, 579
default_max_I, 582	set_hyperparams, 579
default_mean_I, 582	set_intensity_mcmc_sampling, 579
default_pixel_mean_bg, 582	set_lbound, 579
default_sigma_pos, 582	set_mcmc_num_phases, 580
DefaultSeperableInitEstimator, 582	set_mcmc_sigma_scale, 580
eta_bg, 583	set_param_names, 580
eta_I, 583	set_prior, 580
eta_x, 583	set_rng_seed, 580
get_hyperparam_index, 572	set_ubound, 581
get_hyperparam_names, 572	sigma_scale, 585
get_hyperparam_value, 573	theta_in_bounds, 581
get_hyperparams, 573	theta_stack_in_bounds, 581
get_lbound, 573	ubound, 585
get_mcmc_num_phases, 573	mappel::MCMCAdaptor2Ds, 622
get_mcmc_sigma_scale, 573	bound_theta, 626
get_num_hyperparams, 573	bounded_theta, 626
get_num_params, 573	bounded_theta_stack, 626
get_param_names, 574	bounds_epsilon, 636
→	- · <i>·</i>

check_param_shape, 626	rename_hyperparam, 632
check_psf_sigma, 627	sample_mcmc_candidate, 632
default_alpha_sigma, 636	sample_prior, 632, 633
default_beta_pos, 636	set_background_mcmc_sampling, 633
default_intensity_kappa, 636	set_bounds, 633
default_max_I, 636	set_hyperparam_names, 633
default_mean_I, 636	set_hyperparam_value, 633
default_pixel_mean_bg, 636	set_hyperparams, 633
default_sigma_pos, 637	set_intensity_mcmc_sampling, 634
DefaultSeperableInitEstimator, 637	set_lbound, 634
eta_bg, 637	set_mcmc_num_phases, 634
eta_I, 637	set_mcmc_sigma_scale, 634
eta_sigma, 637	set_param_names, 634
eta_x, 638	set_prior, 634, 635
eta_y, 638	set_rng_seed, 635
get_hyperparam_index, 627	set_ubound, 635
get_hyperparam_names, 627	sigma_scale, 640
get_hyperparam_value, 627	theta_in_bounds, 635
get_hyperparams, 627	theta_stack_in_bounds, 635
get_lbound, 628	ubound, 640
get_mcmc_num_phases, 628	mappel::MCMCAdaptor2D, 604
get_mcmc_sigma_scale, 628	bound_theta, 607
get_num_hyperparams, 628	bounded_theta, 607
get_num_params, 628	bounded_theta_stack, 608
get_param_names, 628	bounds_epsilon, 617
get_prior, 628, 629	check_param_shape, 608
get_rng_generator, 629	check_psf_sigma, 608
get_rng_manager, 629	default_alpha_sigma, 617
get_stats, 629	default_beta_pos, 617
get_ubound, 629	default_intensity_kappa, 618
global_default_mcmc_sigma_scale, 638	default_max_I, 618
global_max_mcmc_sigma_scale, 638	default_mean_I, 618
global_max_psf_sigma, 638	default_pixel_mean_bg, 618
global_min_psf_sigma, 638	default_sigma_pos, 618
has_hyperparam, 629	DefaultSeperableInitEstimator, 618
Ibound, 639	eta_bg, 619
MCMCAdaptor2Ds, 625, 626	eta_I, 619
make_param, 629, 630	eta_x, 619
make_param_mat, 630	eta_y, 619
make_param_mat_stack, 630	get_hyperparam_index, 608
make_param_stack, 630	get_hyperparam_names, 609
make_prior_component_intensity, 631	get_hyperparam_value, 609
make_prior_component_position_beta, 631	get_hyperparams, 609
make_prior_component_position_normal, 631	get_lbound, 609
make_prior_component_sigma, 631	get_mcmc_num_phases, 609
num_hyperparams, 639	get_mcmc_sigma_scale, 609
num_params, 639	get_num_hyperparams, 609
num_phases, 639	get_num_params, 610
operator=, 631, 632	get_param_names, 610
ParamVecT, 625	get_prior, 610
ParamT, 625	get_rng_generator, 610
prior, 639	get_rng_manager, 610
reflected_theta, 632	get_stats, 610
reflected_theta_stack, 632	get_ubound, 610

global_default_mcmc_sigma_scale, 619	sigma_scale, 643
global_max_mcmc_sigma_scale, 620	mappel::MLEstimator, 643
global_max_psf_sigma, 620	bound_theta, 646
global_min_psf_sigma, 620	bounded_theta, 646
has_hyperparam, 611	bounded_theta_stack, 647
lbound, 620	bounds_epsilon, 655
MCMCAdaptor2D, 607	check_param_shape, 647
make_param, 611	check_psf_sigma, 647
make_param_mat, 611	default_alpha_sigma, 655
make_param_mat_stack, 611, 612	default_beta_pos, 655
make_param_stack, 612	default_intensity_kappa, 655
make_prior_component_intensity, 612	default_max_I, 655
make_prior_component_position_beta, 612	default_mean_I, 656
make_prior_component_position_normal, 613	default_pixel_mean_bg, 656
make_prior_component_sigma, 613	default_sigma_pos, 656
num_hyperparams, 620	DefaultSeperableInitEstimator, 656
num_params, 620	get_hyperparam_index, 647
num_phases, 621	get_hyperparam_names, 648
operator=, 613	get_hyperparam_value, 648
ParamVecT, 607	get_hyperparams, 648
ParamT, 607	get_lbound, 648
prior, 621	get_num_hyperparams, 648
reflected_theta, 613	get_num_params, 648
reflected_theta_stack, 614	get_param_names, 648
rename_hyperparam, 614	get_prior, 649
sample_mcmc_candidate, 614	get_rng_generator, 649
sample_prior, 614	get_rng_manager, 649
set_background_mcmc_sampling, 614	get_stats, 649
set_bounds, 615	get_ubound, 649
set_hyperparam_names, 615	global_max_psf_sigma, 656
set_hyperparam_value, 615	global_min_psf_sigma, 656
set_hyperparams, 615	has_hyperparam, 649
set_intensity_mcmc_sampling, 615	lbound, 657
set_lbound, 615	MLEstimator, 646
set_mcmc_num_phases, 616	make param, 650
set_mcmc_sigma_scale, 616	make_param_mat, 650
set_param_names, 616	make_param_mat_stack, 650
set prior, 616	make_param_stack, 650, 651
set_rng_seed, 616	make_prior_component_intensity, 651
set_ubound, 617	make prior component position beta, 651
sigma scale, 621	make_prior_component_position_normal, 65
theta_in_bounds, 617	make_prior_component_sigma, 651
	num hyperparams, 657
theta_stack_in_bounds, 617 ubound, 621	num_params, 657
opel::MCMCAdaptorBase, 641	-
get_mcmc_num_phases, 642	operator=, 652
	ParamVecT, 646
get_mcmc_sigma_scale, 642	ParamT, 646
get_stats, 642	prior, 657
global_default_mcmc_sigma_scale, 643	reflected_theta, 652
global_max_mcmc_sigma_scale, 643	reflected_theta_stack, 652
MCMCAdaptorBase, 641	rename_hyperparam, 652
num_phases, 643	sample_prior, 652, 653
set_mcmc_num_phases, 642	set_bounds, 653
set_mcmc_sigma_scale, 642	set_hyperparam_names, 653

set_hyperparam_value, 653	NumExitCodes, 670
set_hyperparams, 653	record_exit_code, 667
set_lbound, 653	record_run_statistics, 667
set_param_names, 654	record_walltime, 667
set_prior, 654	set_model, 668
set_rng_seed, 654	StepSize, 661
set_ubound, 654	Success, 661
theta_in_bounds, 654	total_backtracks, 670
theta_stack_in_bounds, 655	total_der_evals, 671
ubound, 657	total_fun_evals, 671
mappel::ModelBoundsError, 658	total_iterations, 671
ModelBoundsError, 658	total_walltime, 671
mappel::NewtonDiagonalMaximizer	TrustRegionRadius, 661
alpha, 668	Unassigned, 661
backtrack, 662	mappel::NewtonDiagonalMaximizer< Model >, 659
clear_stats, 662	mappel::NewtonMaximizer
compute_estimate, 662	alpha, 681
compute_estimate_debug, 662	backtrack, 675
compute_profile_estimate, 663	clear_stats, 675
convergence_test, 663	compute_estimate, 675
delta, 668	compute_estimate_debug, 675
epsilon, 668	compute_profile_estimate, 676
Error, 661	convergence_test, 676
estimate_max, 663, 664	delta, 681
estimate_max_debug, 664	epsilon, 681
estimate_max_stack, 664, 665	Error, 674
estimate_profile_stack, 665	estimate_max, 676, 677
exit_counts, 668	estimate_max_debug, 677
ExitCode, 661	estimate_max_stack, 677, 678
FunctionChange, 661	estimate_profile_stack, 678
get_debug_stats, 665	exit_counts, 681
get_model, 665	ExitCode, 674
get_stats, 665	FunctionChange, 674
GradRatio, 661	get_debug_stats, 678
lambda_min, 669	get_model, 678
last_backtrack_idxs, 669	get_stats, 678
local_maximize, 666	GradRatio, 674
max_backtracks, 669	lambda_min, 682
max_iterations, 669	last_backtrack_idxs, 682
max_threads, 669	local_maximize, 679
MaxBacktracks, 661	max_backtracks, 682
MaxIter, 661	max_iterations, 682
maximize, 666	max_threads, 682
MaximizerData, 661	MaxBacktracks, 674
mean_backtracks, 666	MaxIter, 674
mean_der_evals, 667	maximize, 679
mean_fun_evals, 667	MaximizerData, 674
mean_iterations, 667	mean_backtracks, 679
model, 669	mean_der_evals, 680
mtx, 670	mean_fun_evals, 680
name, 667	mean_iterations, 680
NewtonDiagonalMaximizer, 661	model, 682
num_estimations, 670	mtx, 683
num_threads, 670	name, 680

NewtonMaximizer, 674	has_hyperparam, 696
num_estimations, 683	lbound, 703
num_threads, 683	make_param, 696
NumExitCodes, 683	make_param_mat, 696, 697
record_exit_code, 680	make_param_mat_stack, 697
record_run_statistics, 680	make_param_stack, 697
record_walltime, 680	make_prior_component_intensity, 697
set_model, 681	make_prior_component_position_beta, 697
StepSize, 674	make_prior_component_position_normal, 698
Success, 674	make_prior_component_sigma, 698
total_backtracks, 683	num_hyperparams, 703
total_der_evals, 684	num_params, 703
total_fun_evals, 684	operator=, 698
total_iterations, 684	ParamVecT, 692
total_walltime, 684	ParamT, 692
TrustRegionRadius, 674	PointEmitterModel, 692, 693
Unassigned, 674	prior, 703
mappel::NewtonMaximizer < Model >, 672	reflected_theta, 698
mappel::NotImplementedError, 685	reflected_theta_stack, 699
NotImplementedError, 685	rename_hyperparam, 699
mappel::NumericalError, 685	sample_prior, 699
NumericalError, 686	set_bounds, 699
mappel::ParameterValueError, 688	set_hyperparam_names, 699
ParameterValueError, 689	set_hyperparam_value, 699
mappel::PointEmitterModel, 689	set_hyperparams, 700
bound_theta, 693	set_lbound, 700
bounded_theta, 693	set_param_names, 700
bounded_theta_stack, 693	set_prior, 700
bounds_epsilon, 701	set_rng_seed, 700
check_param_shape, 693	set_ubound, 700
check_psf_sigma, 694	theta_in_bounds, 701
default_alpha_sigma, 701	theta_stack_in_bounds, 701
default_beta_pos, 701	ubound, 703
default_intensity_kappa, 701	mappel::PoissonNoise1DObjective, 706
default_max_I, 702	check_image_shape, 710
default_mean_I, 702	check_size, 710
default_pixel_mean_bg, 702	estimator_names, 712
default_sigma_pos, 702	get_image_from_stack, 710
DefaultSeperableInitEstimator, 702	get_num_pixels, 711
get_hyperparam_index, 694	get_size, 711
get_hyperparam_names, 694	get_size_image_stack, 711
get_hyperparam_value, 694	get_stats, 711
get hyperparams, 694	global_max_size, 712
get_lbound, 694	global_min_size, 713
get_num_hyperparams, 695	ImageCoordT, 708
get_num_params, 695	ImagePixeIT, 708
get_param_names, 695	ImageShapeT, 708
get_prior, 695	ImageSizeShapeT, 708
get_rng_generator, 695	ImageSizeVecShapeT, 709
get_rng_manager, 695	ImageSizeVecT, 709
get_stats, 696	ImageSizeT, 708
get_ubound, 696	ImageStackShapeT, 709
global_max_psf_sigma, 702	ImageStackT, 709
global_min_psf_sigma, 703	ImageT, 709
J = J = J /	• ,

make_image, 711	alpha, 733
make_image_stack, 711	backtrack, 727
ModelDataStackT, 709	clear_stats, 727
ModelDataT, 709	compute_estimate, 727
num_dim, 713	compute_estimate_debug, 728
operator=, 712	compute_profile_estimate, 728
PoissonNoise1DObjective, 710	convergence_test, 728
set_image_in_stack, 712	delta, 733
set_size, 712	epsilon, 733
size, 713	Error, 726
mappel::PoissonNoise2DObjective, 714	estimate_max, 728, 729
check_image_shape, 717	estimate_max_debug, 729
check_size, 718	estimate_max_stack, 730
estimator_names, 720	estimate_profile_stack, 730
get_image_from_stack, 718	exit_counts, 733
get_num_pixels, 718	ExitCode, 726
get_size, 718	FunctionChange, 726
get_size_image_stack, 718	get_debug_stats, 730
get_stats, 718	get_model, 730
global_max_size, 720	get_stats, 731
global min size, 720	GradRatio, 726
ImageCoordT, 715	lambda_min, 734
ImagePixeIT, 715	last_backtrack_idxs, 734
ImageShapeT, 715	local maximize, 731
ImageSizeShapeT, 716	max backtracks, 734
ImageSizeVecShapeT, 716	max_iterations, 734
ImageSizeVecT, 716	max_threads, 734
ImageSizeT, 716	MaxBacktracks, 726
ImageStackShapeT, 716	MaxIter, 726
ImageStackT, 716	maximize, 731
ImageT, 716	MaximizerData, 726
make_image, 719	mean_backtracks, 731
make_image_stack, 719	mean_der_evals, 732
ModelDataStackT, 717	mean_fun_evals, 732
ModelDataT, 717	mean_iterations, 732
num_dim, 720	model, 734
operator=, 719	mtx, 735
PoissonNoise2DObjective, 717	name, 732
set_image_in_stack, 719	num_estimations, 735
set_size, 719	num threads, 735
size, 720	NumExitCodes, 735
mappel::PriorMAP1DObjective, 721	QuasiNewtonMaximizer, 727
	record exit code, 732
log_prior_I_const, 723	'
log_prior_bg_const, 723	record_run_statistics, 732
log_prior_pos_const, 723	record_walltime, 732
ParamMatT, 722	set_model, 733
ParamT, 722	StepSize, 726
prior_grad2_update, 722	Success, 726
prior_grad_update, 722	total_backtracks, 735
prior_hess_update, 722	total_der_evals, 736
prior_log_likelihood, 722	total_fun_evals, 736
prior_relative_log_likelihood, 723	total_iterations, 736
set_hyperparameters, 723	total_walltime, 736
mappel::QuasiNewtonMaximizer	TrustRegionRadius, 726

Unassigned, 726	FunctionChange, 771
mappel::QuasiNewtonMaximizer < Model >, 724	get_debug_stats, 774
mappel::SimulatedAnnealingMaximizer	get_model, 774
anneal, 739	get_stats, 774
clear_stats, 739	GradRatio, 771
compute_estimate, 739, 740	max threads, 776
compute_estimate_debug, 740	MaxBacktracks, 771
compute_profile_estimate, 740	MaxIter, 771
cooling_rate, 744	model, 776
Error, 739	mtx, 776
estimate_max, 740, 741	name, 775
estimate_max_debug, 741	num_estimations, 776
estimate_max_stack, 741, 742	num_threads, 777
estimate_profile_stack, 742	NumExitCodes, 777
exit counts, 744	record_exit_code, 775
ExitCode, 739	record_walltime, 775
FunctionChange, 739	set_model, 775
get_debug_stats, 742	StepSize, 771
get model, 742	Success, 771
get_stats, 742	ThreadedEstimator, 771
GradRatio, 739	total_walltime, 777
max threads, 744	TrustRegionRadius, 771
MaxBacktracks, 739	Unassigned, 771
	mappel::ThreadedEstimator< Model >, 769
MaxIter, 739 model, 744	mappel::TrustRegionMaximizer
	alpha, 788
mtx, 744 name, 743	backtrack, 781
num_estimations, 745	bound_step, 781
num_iterations, 745	boundary_stepback_min_kappa, 788
num_threads, 745	clear_stats, 781
NumExitCodes, 745	compute_D_scale, 782
record_exit_code, 743	compute_bound_scaling_vec, 781
record_walltime, 743	compute_cauchy_point, 782
set_model, 743	compute_estimate, 782
SimulatedAnnealingMaximizer, 739	compute_estimate_debug, 782
StepSize, 739	compute_initial_trust_radius, 783
Success, 739	compute_profile_estimate, 783
T_init, 745	convergence_test, 783
total_walltime, 745	delta, 789
TrustRegionRadius, 739	delta_decrease, 789
Unassigned, 739	delta_decrease_min, 789
mappel::SimulatedAnnealingMaximizer< Model >, 737	delta_increase, 789
mappel::ThreadedEstimator	delta_init_max, 789
clear_stats, 771	delta_init_min, 789
compute_estimate, 771	epsilon, 789
compute_estimate_debug, 772	Error, 780
compute_profile_estimate, 772	estimate_max, 783, 784
Error, 771	estimate_max_debug, 784
estimate_max, 772, 773	estimate_max_stack, 785
estimate_max_debug, 773	estimate_profile_stack, 785
estimate_max_stack, 773, 774	exit_counts, 789
estimate_profile_stack, 774	ExitCode, 780
exit_counts, 776	FunctionChange, 780
ExitCode, 771	get_debug_stats, 785

mat madel 705	an lawar barred 54
get_model, 785	cr_lower_bound, 54
get_stats, 786	error_bounds_expected, 54
GradRatio, 780	error_bounds_observed, 54
lambda_min, 790	error_bounds_posterior_credible, 54
last_backtrack_idxs, 790	estimate_max, 54, 55
local_maximize, 786	estimate_mcmc_posterior, 55
max_backtracks, 790	estimate_mcmc_sample, 56
max_iterations, 790	expected_information, 56, 57
max_scaling, 790	likelihood_objective, 57
max_threads, 790	make_estimator, 57
MaxBacktracks, 780	model_image, 58
MaxIter, 780	observed_information, 58
maximize, 786	prior_objective, 59
MaximizerData, 780	simulate_image, 59, 60
mean_backtracks, 786	simulate_image_from_model, 60, 61
mean_der_evals, 787	mappel::methods::debug, 61
mean_fun_evals, 787	estimate_max_debug, 62
mean_iterations, 787	estimate_mcmc_sample_debug, 62
min_scaling, 790	mappel::methods::likelihood, 62
model, 791	grad, 63
mtx, 791	grad2, 63, 64
name, 787	hessian, 64
num_estimations, 791	IIh, 64
num_threads, 791	rllh, 64, 65
NumExitCodes, 791	mappel::methods::likelihood::debug, 65
quadratic_model_value, 787	grad_components, 66
record_exit_code, 787	hessian_components, 66
record_run_statistics, 787	Ilh_components, 66
record_walltime, 787	rllh_components, 66, 67
rho_cauchy_min, 792	mappel::methods::objective, 67
rho_obj_min, 792	grad, 68, 69
rho_obj_opt, 792	grad2, 69
set_model, 788	hessian, 69, 70
solve_TR_subproblem, 788	IIh, 70, 71
solve_restricted_step_length_newton, 788	negative_definite_hessian, 71
StepSize, 780	rllh, 71, 72
Success, 780	mappel::methods::objective::debug, 72
total_backtracks, 792	grad_components, 73
total_der_evals, 792	hessian_components, 73
total_fun_evals, 792	Ilh_components, 74
total_iterations, 792	rllh_components, 74
total_walltime, 792	mappel::methods::objective::openmp, 75
TrustRegionMaximizer, 781	grad_stack, 75
TrustRegionRadius, 780	hessian_stack, 76
Unassigned, 780	Ilh_stack, 76, 77
appel::TrustRegionMaximizer< Model >, 777	negative_definite_hessian_stack, 77
appel::mcmc, 49	rllh_stack, 78, 79
estimate_sample_posterior, 49	mappel::methods::openmp, 79
num_oversample, 49	cr_lower_bound_stack, 80
sample_posterior, 49	error_bounds_expected_stack, 80
sample_posterior_debug, 50	error_bounds_observed_stack, 81
thin_sample, 50	error_bounds_posterior_credible_stack, 81
appel::methods, 50	estimate_max_stack, 81
aposteriori_objective, 53	estimate_mcmc_posterior_stack, 82
	_ _ -

estimate_mcmc_sample_stack, 82	mappel::IterativeMaximizer, 535
estimate_profile_likelihood, 82, 83	mappel::NewtonDiagonalMaximizer, 661
expected_information_stack, 83	mappel::NewtonMaximizer, 674
model_image_stack, 83	mappel::QuasiNewtonMaximizer, 726
sample_prior_stack, 84	mappel::SimulatedAnnealingMaximizer, 739
simulate_image_stack, 84	mappel::ThreadedEstimator, 771
MappelError	mappel::TrustRegionMaximizer, 780
mappel, 26	maxidx
MatT	mappel, 39
mappel, 26	maximize
max_backtracks	mappel::IterativeMaximizer, 540
mappel::IterativeMaximizer, 542	mappel::NewtonDiagonalMaximizer, 666
mappel::NewtonDiagonalMaximizer, 669	mappel::NewtonMaximizer, 679
mappel::NewtonMaximizer, 682	mappel::QuasiNewtonMaximizer, 731
mappel::QuasiNewtonMaximizer, 734	mappel::TrustRegionMaximizer, 786
mappel::TrustRegionMaximizer, 790	MaximizerData
max_iterations	mappel::IterativeMaximizer::MaximizerData, 561
mappel::IterativeMaximizer, 542	mappel::NewtonDiagonalMaximizer, 661
mappel::NewtonDiagonalMaximizer, 669	mappel::NewtonMaximizer, 674
mappel::NewtonMaximizer, 682	mappel::QuasiNewtonMaximizer, 726
mappel::QuasiNewtonMaximizer, 734	mappel::TrustRegionMaximizer, 780
mappel::TrustRegionMaximizer, 790	mcmc.cpp, 818
max scaling	mcmc.h, 819
mappel::TrustRegionMaximizer, 790	mcmc candidate eta sigma
max_seq_len	mappel::Gauss2DsxyModel, 509
mappel::IterativeMaximizer::MaximizerData, 565	mcmc_candidate_eta_y
max_threads	mappel::Gauss2DsxyModel, 509
mappel::CGaussHeuristicEstimator, 94	mean backtracks
mappel::CGaussMLE, 102	mappel::IterativeMaximizer, 540
mappel::HeuristicEstimator, 518	mappel::NewtonDiagonalMaximizer, 666
mappel::IterativeMaximizer, 542	mappel::NewtonMaximizer, 679
mappel::NewtonDiagonalMaximizer, 669	mappel::QuasiNewtonMaximizer, 731
mappel::NewtonMaximizer, 682	mappel::TrustRegionMaximizer, 786
mappel::QuasiNewtonMaximizer, 734	mean der evals
mappel::SimulatedAnnealingMaximizer, 744	mappel::IterativeMaximizer, 540
mappel::ThreadedEstimator, 776	mappel::NewtonDiagonalMaximizer, 667
mappel::TrustRegionMaximizer, 790	mappel::NewtonMaximizer, 680
MaxBacktracks	mappel::QuasiNewtonMaximizer, 732
mappel::CGaussHeuristicEstimator, 89	mappel::TrustRegionMaximizer, 787
mappel::CGaussMLE, 97	mean_fun_evals
mappel::Estimator, 105	mappel::IterativeMaximizer, 540
mappel::HeuristicEstimator, 513	mappel::NewtonDiagonalMaximizer, 667
mappel::IterativeMaximizer, 535	mappel::NewtonDiagonalmaximizer, 667
• •	••
mappel::NewtonDiagonalMaximizer, 661 mappel::NewtonMaximizer, 674	mappel::QuasiNewtonMaximizer, 732 mappel::TrustRegionMaximizer, 787
• •	
mappel::QuasiNewtonMaximizer, 726	mean_iterations
mappel::SimulatedAnnealingMaximizer, 739	mappel::IterativeMaximizer, 540
mappel::ThreadedEstimator, 771	mappel::NewtonDiagonalMaximizer, 667
mappel::TrustRegionMaximizer, 780	mappel::NewtonMaximizer, 680
MaxIter	mappel::QuasiNewtonMaximizer, 732
mappel::CGaussHeuristicEstimator, 89	mappel::TrustRegionMaximizer, 787
mappel::CGaussMLE, 97	min_scaling
mappel::Estimator, 105	mappel::TrustRegionMaximizer, 790
mappel::HeuristicEstimator, 513	min_sigma

mappel::Gauss2DsMAP, 395	mappel::PoissonNoise1DObjective, 709
mappel::Gauss2DsMLE, 427	mappel::PoissonNoise2DObjective, 717
mappel::Gauss2DsModel, 457	PoissonGaussianNoise2DObjective, 705
mappel::Gauss2DsxyModel, 509	ModelDataT
model	mappel, 26
mappel::CGaussHeuristicEstimator, 94	mappel::Gauss1DMAP, 117
mappel::CGaussMLE, 102	mappel::Gauss1DMLE, 145
mappel::Estimator, 110	mappel::Gauss1DsMAP, 200
mappel::Gauss1DModel::Stencil, 749	mappel::Gauss1DsMLE, 228
mappel::Gauss1DsModel::Stencil, 753	mappel::Gauss2DMAP, 283
mappel::Gauss2DModel::Stencil, 768	mappel::Gauss2DMLE, 313
mappel::Gauss2DsModel::Stencil, 763	mappel::Gauss2DsMAP, 372
mappel::Gauss2DsxyModel::Stencil, 757	mappel::Gauss2DsMLE, 404
mappel::HeuristicEstimator, 518	mappel::Gauss2DsxyMAP, 467
mappel::IterativeMaximizer, 542	mappel::PoissonNoise1DObjective, 709
mappel::NewtonDiagonalMaximizer, 669	mappel::PoissonNoise2DObjective, 717
mappel::NewtonMaximizer, 682	PoissonGaussianNoise2DObjective, 705
mappel::QuasiNewtonMaximizer, 734	modified_cholesky
mappel::SimulatedAnnealingMaximizer, 744	mappel, 41
mappel::ThreadedEstimator, 776	mtx
mappel::TrustRegionMaximizer, 791	mappel::CGaussHeuristicEstimator, 94
model_grad	mappel::CGaussMLE, 102
PoissonGaussianNoise2DObjective.h, 843	mappel::HeuristicEstimator, 518
model grad2	mappel::IterativeMaximizer, 543
PoissonGaussianNoise2DObjective.h, 843	mappel::NewtonDiagonalMaximizer, 670
•	• • • • • • • • • • • • • • • • • • • •
model_grad_stack	mappel::NewtonMaximizer, 683
mappel, 39	mappel::QuasiNewtonMaximizer, 735
model_hessian	mappel::SimulatedAnnealingMaximizer, 744
PoissonGaussianNoise2DObjective.h, 843	mappel::ThreadedEstimator, 776
model_hessian_stack	mappel::TrustRegionMaximizer, 791
mappel, 40	nBacktracks
model_image	
mappel::methods, 58	mappel::IterativeMaximizer::MaximizerData, 566
PoissonGaussianNoise2DObjective.h, 843	nlterations
model_image_stack	mappel::IterativeMaximizer::MaximizerData, 566
mappel, 40	name
mappel::methods::openmp, 83	mappel::CGaussHeuristicEstimator, 93
model_methods.h, 827	mappel::CGaussMLE, 101
model_methods_impl.h, 830	mappel::Estimator, 109
model_positive_hessian_stack	mappel::Gauss1DMAP, 136
mappel, 41	mappel::Gauss1DMLE, 164
ModelBoundsError	mappel::Gauss1DsMAP, 220
mappel::ModelBoundsError, 658	mappel::Gauss1DsMLE, 248
ModelDataStackT	mappel::Gauss2DMAP, 304
mappel, 26	mappel::Gauss2DMLE, 334
mappel::Gauss1DMAP, 117	mappel::Gauss2DsMAP, 395
mappel::Gauss1DMLE, 144	mappel::Gauss2DsMLE, 427
mappel::Gauss1DsMAP, 199	mappel::Gauss2DsxyMAP, 485
mappel::Gauss1DsMLE, 228	mappel::HeuristicEstimator, 517
mappel::Gauss2DMAP, 283	mappel::IterativeMaximizer, 540
mappel::Gauss2DMLE, 313	mappel::NewtonDiagonalMaximizer, 667
mappel::Gauss2DsMAP, 372	mappel::NewtonMaximizer, 680
mappel::Gauss2DsMLE, 404	mappel::QuasiNewtonMaximizer, 732
mappel::Gauss2DsxyMAP, 466	mappel::SimulatedAnnealingMaximizer, 743

mappel::ThreadedEstimator, 775	mappel::Gauss1DMAP, 137
mappel::TrustRegionMaximizer, 787	mappel::Gauss1DMLE, 165
negative definite hessian	mappel::Gauss1DModel, 192
mappel::methods::objective, 71	mappel::Gauss1DsMAP, 220
negative_definite_hessian_stack	mappel::Gauss1DsMLE, 248
mappel::methods::objective::openmp, 77	mappel::Gauss1DsModel, 275
NewtonDiagonalMaximizer	mappel::Gauss2DMAP, 304
mappel::NewtonDiagonalMaximizer, 661	mappel::Gauss2DMLE, 334
NewtonMaximizer	mappel::Gauss2DModel, 363
mappel::NewtonMaximizer, 674	mappel::Gauss2DsMAP, 395
normal prior grad	mappel::Gauss2DsMLE, 427
mappel, 42	mappel::Gauss2DsMcE, 427
normal_prior_grad2	mappel::Gauss2DsxyMAP, 486
mappel, 42	mappel::Gauss2DsxyModel, 509
• •	· ·
normal_quantile_onesided	mappel::MAPEstimator, 559
mappel, 42	mappel::MCMCAdaptor1Ds, 602
normal_quantile_twosided	mappel::MCMCAdaptor1D, 584
mappel, 42	mappel::MCMCAdaptor2Ds, 639
NotImplementedError	mappel::MCMCAdaptor2D, 620
mappel::NotImplementedError, 685	mappel::MLEstimator, 657
num_dim	mappel::PointEmitterModel, 703
mappel::Gauss1DMAP, 136	num_iterations
mappel::Gauss1DMLE, 164	mappel::CGaussMLE, 103
mappel::Gauss1DModel, 191	mappel::SimulatedAnnealingMaximizer, 745
mappel::Gauss1DsMAP, 220	num_oversample
mappel::Gauss1DsMLE, 248	mappel::mcmc, 49
mappel::Gauss1DsModel, 275	num_params
mappel::Gauss2DMAP, 304	mappel::Gauss1DMAP, 137
mappel::Gauss2DMLE, 334	mappel::Gauss1DMLE, 165
mappel::Gauss2DModel, 363	mappel::Gauss1DModel, 192
mappel::Gauss2DsMAP, 395	mappel::Gauss1DsMAP, 220
mappel::Gauss2DsMLE, 427	mappel::Gauss1DsMLE, 248
mappel::Gauss2DsModel, 458	mappel::Gauss1DsModel, 275
mappel::Gauss2DsxyMAP, 485	mappel::Gauss2DMAP, 304
mappel::Gauss2DsxyModel, 509	mappel::Gauss2DMLE, 334
mappel::ImageFormat1DBase, 525	mappel::Gauss2DModel, 363
mappel::ImageFormat2DBase, 531	mappel::Gauss2DsMAP, 395
mappel::PoissonNoise1DObjective, 713	mappel::Gauss2DsMLE, 427
mappel::PoissonNoise2DObjective, 720	mappel::Gauss2DsModel, 458
num_estimations	mappel::Gauss2DsxyMAP, 486
mappel::CGaussHeuristicEstimator, 94	mappel::Gauss2DsxyModel, 509
mappel::CGaussMLE, 103	mappel::MAPEstimator, 559
mappel::Estimator, 111	mappel::MCMCAdaptor1Ds, 602
mappel::HeuristicEstimator, 518	mappel::MCMCAdaptor1D, 584
mappel::IterativeMaximizer, 543	mappel::MCMCAdaptor2Ds, 639
mappel::NewtonDiagonalMaximizer, 670	mappel::MCMCAdaptor2D, 620
mappel::NewtonMaximizer, 683	mappel::MLEstimator, 657
mappel::QuasiNewtonMaximizer, 735	mappel::PointEmitterModel, 703
mappel::SimulatedAnnealingMaximizer, 745	num_phases
mappel::ThreadedEstimator, 776	mappel::Gauss1DMAP, 137
mappel::TrustRegionMaximizer, 791	mappel::Gauss1DMLE, 165
num_fixed_parameters	mappel::Gauss1DModel, 192
mappel::IterativeMaximizer::MaximizerData, 566	mappel::Gauss1DsMAP, 220
num_hyperparams	mappel::Gauss1DsMLE, 249
- · · · ·	· · · · · · · · · · · · · · · · · · ·

mappel::Gauss1DsModel, 275	DoNotTry, 687
mappel::Gauss2DMAP, 304	OMPExceptionCatcher, 687
mappel::Gauss2DMLE, 334	rethrow, 687
mappel::Gauss2DModel, 363	RethrowFirst, 687
mappel::Gauss2DsMAP, 395	run, 687
mappel::Gauss2DsMLE, 427	setGlobalDefaultStrategy, 688
mappel::Gauss2DsModel, 458	Strategy, 687
mappel::Gauss2DsxyMAP, 486	omp_exception_catcher::impl_::OMPExceptionCatcher<
mappel::MCMCAdaptor1Ds, 602	IntType >, 686
mappel::MCMCAdaptor1D, 584	openmp_methods.h, 836
mappel::MCMCAdaptor2Ds, 639	operator<<
mappel::MCMCAdaptor2D, 621	mappel, 42, 43
mappel::MCMCAdaptorBase, 643	mappel::Estimator, 110
num_threads	mappel::Gauss1DModel::Stencil, 748
mappel::CGaussHeuristicEstimator, 94	mappel::Gauss1DsModel::Stencil, 752
mappel::CGaussMLE, 103	mappel::Gauss2DModel::Stencil, 767
mappel::HeuristicEstimator, 519	mappel::Gauss2DsModel::Stencil, 761
mappel::IterativeMaximizer, 543	mappel::Gauss2DsxyModel::Stencil, 756
mappel::NewtonDiagonalMaximizer, 670	operator=
mappel::NewtonMaximizer, 683	mappel::Gauss1DMAP, 127, 128
mappel::QuasiNewtonMaximizer, 735	mappel::Gauss1DMLE, 155
mappel::SimulatedAnnealingMaximizer, 745	mappel::Gauss1DModel, 182, 183
mappel::ThreadedEstimator, 777	mappel::Gauss1DsMAP, 210
mappel::TrustRegionMaximizer, 791	mappel::Gauss1DsMLE, 238, 239
NumExitCodes	mappel::Gauss1DsModel, 266
mappel::CGaussHeuristicEstimator, 95	mappel::Gauss2DMAP, 295
mappel::CGaussMLE, 103	mappel::Gauss2DMLE, 325
mappel::Estimator, 111	mappel::Gauss2DMcL, 323
• •	mappel::Gauss2DsMAP, 384, 385
mappel::HeuristicEstimator, 519	• •
mappel::IterativeMaximizer, 543	mappel::Gauss2DsMLE, 416, 417
mappel::NewtonDiagonalMaximizer, 670	mappel::Gauss2DsModel, 448
mappel::NewtonMaximizer, 683	mappel::ImageFormat2DBase, 530, 531
mappel::QuasiNewtonMaximizer, 735	mappel::MAPEstimator, 554
mappel::SimulatedAnnealingMaximizer, 745	mappel::MCMCAdaptor1Ds, 595
mappel::ThreadedEstimator, 777	mappel::MCMCAdaptor1D, 577
mappel::TrustRegionMaximizer, 791	mappel::MCMCAdaptor2Ds, 631, 632
numerical.cpp, 833	mappel::MCMCAdaptor2D, 613
numerical.h, 834	mappel::MLEstimator, 652
NumericalError	mappel::PointEmitterModel, 698
mappel::NumericalError, 686	mappel::PoissonNoise1DObjective, 712
	mappel::PoissonNoise2DObjective, 719
OMPExceptionCatcher	
omp_exception_catcher, 85	ParallelRngGeneratorT
omp_exception_catcher::impl_::OMPException←	mappel, 26
Catcher, 687	ParallelRngManagerT
OMPExceptionCatcher.h, 835	mappel, 26
observed_information	ParamMatT
mappel::methods, 58	mappel::PriorMAP1DObjective, 722
omp_exception_catcher, 85	ParamVecT
OMPExceptionCatcher, 85	mappel, 26
omp_exception_catcher::impl_, 85	mappel::Gauss1DMAP, 117
omp_exception_catcher::impl_::OMPExceptionCatcher	mappel::Gauss1DMLE, 145
Abort, 687	mappel::Gauss1DModel, 173
Continue, 687	mappel::Gauss1DsMAP, 200

mappel::Gauss1DsMLE, 228	mappel::Gauss1DMLE, 156
mappel::Gauss1DsModel, 256	mappel::Gauss1DModel, 183
mappel::Gauss2DMAP, 284	mappel::Gauss1DsMAP, 211
mappel::Gauss2DMLE, 314	mappel::Gauss1DsMLE, 239
mappel::Gauss2DModel, 343	mappel::Gauss1DsModel, 266
mappel::Gauss2DsMAP, 372	mappel::Gauss2DMAP, 295
mappel::Gauss2DsMLE, 404	mappel::Gauss2DMLE, 325
mappel::Gauss2DsModel, 436	mappel::Gauss2DModel, 354
mappel::Gauss2DsxyMAP, 467	mappel::Gauss2DsMAP, 385
mappel::Gauss2DsxyModel, 493	mappel::Gauss2DsMLE, 417
mappel::MAPEstimator, 548	mappel::Gauss2DsModel, 448
mappel::MCMCAdaptor1Ds, 589	mappel::Gauss2DsxyMAP, 477
mappel::MCMCAdaptor1D, 570	mappel::Gauss2DsxyModel, 503
mappel::MCMCAdaptor2Ds, 625	pixel_grad2
mappel::MCMCAdaptor2D, 607	mappel::Gauss1DMAP, 128
mappel::MLEstimator, 646	mappel::Gauss1DMLE, 156
mappel::PointEmitterModel, 692	mappel::Gauss1DModel, 183
ParameterValueError	mappel::Gauss1DsMAP, 211
mappel::ParameterValueError, 689	mappel::Gauss1DsMLE, 239
ParamT	mappel::Gauss1DsModel, 266
mappel, 26	mappel::Gauss2DMAP, 295
mappel::Gauss1DMAP, 117	mappel::Gauss2DMLE, 325
mappel::Gauss1DMLE, 145	mappel::Gauss2DModel, 354
mappel::Gauss1DModel, 173	mappel::Gauss2DsMAP, 385
mappel::Gauss1DModel::Stencil, 746	mappel::Gauss2DsMLE, 417
mappel::Gauss1DsMAP, 200	mappel::Gauss2DsModel, 448
mappel::Gauss1DsMLE, 228	mappel::Gauss2DsxyMAP, 477
mappel::Gauss1DsModel, 256	mappel::Gauss2DsxyModel, 503
mappel::Gauss1DsModel::Stencil, 750	pixel_hess
mappel::Gauss2DMAP, 283	mappel::Gauss1DMAP, 128
mappel::Gauss2DMLE, 313	mappel::Gauss1DMAI , 126
mappel::Gauss2DModel, 343	mappel::Gauss1DMcdel, 183
mappel::Gauss2DModel::Stencil, 765	mappel::Gauss1DsMAP, 211
mappel::Gauss2DsMAP, 372	mappel::Gauss1DsMLE, 239
mappel::Gauss2DsMAF, 372	mappel::Gauss1DsModel, 266
mappel::Gauss2DsModel, 436	mappel::Gauss2DMAP, 295
mappel::Gauss2DsModel::Stencil, 759	mappel::Gauss2DMAF, 295
mappel::Gauss2Dsiviouel::Stericli, 739	mappel::Gauss2DMctel, 323
mappel::Gauss2DsxyModel, 493	mappel::Gauss2DsMAP, 385
mappel::Gauss2DsxyModel::Stencil, 754	mappel::Gauss2DsMAF, 363
mappel::MAPEstimator, 548	mappel::Gauss2DsMcLe, 417
• •	• •
mappel::MCMCAdaptor1Ds, 589	mappel::Gauss2DsxyMAP, 477
mappel::MCMCAdaptor1D, 570	mappel::Gauss2DsxyModel, 503
mappel::MCMCAdaptor2Ds, 625	pixel_hess_update
mappel::MCMCAdaptor2D, 607	mappel::Gauss1DMAP, 128
mappel::MLEstimator, 646	mappel::Gauss1DMLE, 156
mappel::PointEmitterModel, 692	mappel::Gauss1DModel, 183
mappel::PriorMAP1DObjective, 722	mappel::Gauss1DsMAP, 211
pareto_prior_grad	mappel::Gauss1DsMLE, 239
mappel, 43	mappel::Gauss1DsModel, 267
pareto_prior_grad2	mappel::Gauss2DMAP, 296
mappel, 43	mappel::Gauss2DMLE, 326
pixel_grad	mappel::Gauss2DModel, 355
mappel::Gauss1DMAP, 128	mappel::Gauss2DsMAP, 385

mappel::Gauss2DsMLE, 417	PoissonNoise2DObjective.h, 847
mappel::Gauss2DsModel, 449	print_centered_title
mappel::Gauss2DsxyMAP, 477	mappel, 43
mappel::Gauss2DsxyModel, 503	print_image
pixel_model_value	mappel, 44
mappel::Gauss1DMAP, 128	print_labeled_image
mappel::Gauss1DMLE, 156	mappel, 44
mappel::Gauss1DModel, 183	print_vec_row
mappel::Gauss1DsMAP, 211	mappel, 44
mappel::Gauss1DsMLE, 239	prior
mappel::Gauss1DsModel, 267	mappel::Gauss1DMAP, 137
mappel::Gauss2DMAP, 296	mappel::Gauss1DMLE, 165
mappel::Gauss2DMLE, 326	mappel::Gauss1DModel, 192
mappel::Gauss2DModel, 355	mappel::Gauss1DsMAP, 221
mappel::Gauss2DsMAP, 386	mappel::Gauss1DsMLE, 249
mappel::Gauss2DsMLE, 418	mappel::Gauss1DsModel, 276
mappel::Gauss2DsModel, 449	mappel::Gauss2DMAP, 305
mappel::Gauss2DsxyMAP, 477	mappel::Gauss2DMLE, 335
mappel::Gauss2DsxyModel, 503	mappel::Gauss2DModel, 363
PointEmitterModel	mappel::Gauss2DsMAP, 396
mappel::PointEmitterModel, 692, 693	mappel::Gauss2DsMLE, 428
PointEmitterModel.cpp, 839	mappel::Gauss2DsModel, 458
PointEmitterModel.h, 840	mappel::Gauss2DsxyMAP, 486
poisson_log_likelihood	mappel::Gauss2DsxyModel, 510
mappel, 43	mappel::MAPEstimator, 559
PoissonGaussianNoise2DObjective	mappel::MCMCAdaptor1Ds, 603
CoordldxT, 705	mappel::MCMCAdaptor1D, 585
CoordStackT, 705	mappel::MCMCAdaptor2Ds, 639
CoordT, 705	mappel::MCMCAdaptor2D, 621
estimator_names, 706	mappel::MLEstimator, 657
ModelDataStackT, 705	mappel::PointEmitterModel, 703
ModelDataT, 705	prior_grad2_update
PoissonGaussianNoise2DObjective, 706	mappel::PriorMAP1DObjective, 722
sensor bg map, 706	prior_grad_update
sensor_gain_map, 706	mappel::PriorMAP1DObjective, 722
PoissonGaussianNoise2DObjective< ModelBase >, 704	prior_hess_update
PoissonGaussianNoise2DObjective https://www.noise2DObjective.cpp , 704 PoissonGaussianNoise2DObjective https://www.noise2Dobjective.cpp , 841	mappel::PriorMAP1DObjective, 722
PoissonGaussianNoise2DObjective.h, 841	prior log likelihood
fisher information, 842	mappel::PriorMAP1DObjective, 722
log likelihood, 842	prior_objective
make_estimator, 842	mappel::methods, 59
	prior_relative_log_likelihood
model_grad, 843	
model_grad2, 843	mappel::PriorMAP1DObjective, 723
model_hessian, 843	prior_types
model_image, 843	mappel::Gauss1DMAP, 137
relative_log_likelihood, 843	mappel::Gauss1DMLE, 165
simulate_image, 843, 844	mappel::Gauss1DModel, 192
PoissonNoise1DObjective	mappel::Gauss1DsMAP, 221
mappel::PoissonNoise1DObjective, 710	mappel::Gauss1DsMLE, 249
PoissonNoise1DObjective.cpp, 844	mappel::Gauss1DsModel, 276
PoissonNoise1DObjective.h, 845	mappel::Gauss2DMAP, 305
PoissonNoise2DObjective	mappel::Gauss2DMLE, 335
mappel::PoissonNoise2DObjective, 717	mappel::Gauss2DModel, 364
PoissonNoise2DObjective.cpp, 846	mappel::Gauss2DsMAP, 396

mappel::Gauss2DsMLE, 428	mappel, 44
mappel::Gauss2DsModel, 459	refine_gaussian_3Dmax
mappel::Gauss2DsxyMAP, 486	mappel, 44
PriorMAP1DObjective.h, 849	reflected_theta
psf_sigma	mappel::Gauss1DMAP, 129
mappel::Gauss1DMAP, 138	mappel::Gauss1DMLE, 156
mappel::Gauss1DMLE, 166	mappel::Gauss1DModel, 183
mappel::Gauss1DModel, 193	mappel::Gauss1DsMAP, 211
mappel::Gauss2DMAP, 305	mappel::Gauss1DsMLE, 240
mappel::Gauss2DMLE, 335	mappel::Gauss1DsModel, 267
mappel::Gauss2DModel, 364	mappel::Gauss2DMAP, 296
mappel::Gauss2DsxyMAP, 487	mappel::Gauss2DMLE, 326
	mappel::Gauss2DModel, 355
quadratic_model_value	mappel::Gauss2DsMAP, 386
mappel::TrustRegionMaximizer, 787	mappel::Gauss2DsMLE, 418
QuasiNewtonMaximizer	mappel::Gauss2DsModel, 449
mappel::QuasiNewtonMaximizer, 727	mappel::Gauss2DsxyMAP, 477
DELDUE 1.000	mappel::Gauss2DsxyModel, 503
README.md, 849	mappel::MAPEstimator, 554
record_backtrack	mappel::MCMCAdaptor1Ds, 595
mappel::IterativeMaximizer::MaximizerData, 562	mappel::MCMCAdaptor1D, 577
record_exit_code	mappel::MCMCAdaptor2Ds, 632
mappel::CGaussHeuristicEstimator, 93	mappel::MCMCAdaptor2D, 613
mappel::CGaussMLE, 101	mappel::MLEstimator, 652
mappel::Estimator, 110	mappel::PointEmitterModel, 698
mappel::HeuristicEstimator, 517	reflected_theta_stack
mappel::IterativeMaximizer, 540	
mappel::NewtonDiagonalMaximizer, 667	mappel::Gauss1DMAP, 129
mappel::NewtonMaximizer, 680	mappel::Gauss1DMLE, 157
mappel::QuasiNewtonMaximizer, 732	mappel::Gauss1DModel, 184
mappel::SimulatedAnnealingMaximizer, 743	mappel::Gauss1DsMAP, 212
mappel::ThreadedEstimator, 775	mappel::Gauss1DsMLE, 240
mappel::TrustRegionMaximizer, 787	mappel::Gauss1DsModel, 267
record_iteration	mappel::Gauss2DMAP, 296
mappel::IterativeMaximizer::MaximizerData, 562,	mappel::Gauss2DMLE, 326
563	mappel::Gauss2DModel, 355
record_run_statistics	mappel::Gauss2DsMAP, 386
mappel::IterativeMaximizer, 540	mappel::Gauss2DsMLE, 418
mappel::NewtonDiagonalMaximizer, 667	mappel::Gauss2DsModel, 449
mappel::NewtonMaximizer, 680	mappel::Gauss2DsxyMAP, 478
mappel::QuasiNewtonMaximizer, 732	mappel::Gauss2DsxyModel, 503
mappel::TrustRegionMaximizer, 787	mappel::MAPEstimator, 554
record_walltime	mappel::MCMCAdaptor1Ds, 596
mappel::CGaussHeuristicEstimator, 93	mappel::MCMCAdaptor1D, 578
mappel::CGaussMLE, 101	mappel::MCMCAdaptor2Ds, 632
mappel::Estimator, 110	mappel::MCMCAdaptor2D, 614
mappel::HeuristicEstimator, 517	mappel::MLEstimator, 652
mappel::IterativeMaximizer, 541	mappel::PointEmitterModel, 699
mappel::NewtonDiagonalMaximizer, 667	relative_log_likelihood
mappel::NewtonMaximizer, 680	PoissonGaussianNoise2DObjective.h, 843
mappel::QuasiNewtonMaximizer, 732	relative_poisson_log_likelihood
mappel::SimulatedAnnealingMaximizer, 743	mappel, 45
mappel::ThreadedEstimator, 775	rename_hyperparam
mappel::TrustRegionMaximizer, 787	mappel::Gauss1DMAP, 129
refine_gaussian_2Dmax	mappel::Gauss1DMLE, 157

mappel::Gauss1DModel, 184	rllh_stack
mappel::Gauss1DsMAP, 212	mappel::methods::objective::openmp, 78, 79
mappel::Gauss1DsMLE, 240	rng.cpp, 849
mappel::Gauss1DsModel, 267	rng.h, 850
mappel::Gauss2DMAP, 296	rng_manager
mappel::Gauss2DMLE, 326	mappel, 47
mappel::Gauss2DModel, 355	RngSeedT
mappel::Gauss2DsMAP, 386	mappel, 27
mappel::Gauss2DsMLE, 418	run
mappel::Gauss2DsModel, 450	omp_exception_catcher::impl_::OMPException ←
mappel::Gauss2DsxyMAP, 478	Catcher, 687
mappel::Gauss2DsxyModel, 504	
mappel::MAPEstimator, 554	s0
mappel::MCMCAdaptor1Ds, 596	mappel::IterativeMaximizer::MaximizerData, 566
mappel::MCMCAdaptor1D, 578	s1
mappel::MCMCAdaptor2Ds, 632	mappel::IterativeMaximizer::MaximizerData, 566
mappel::MCMCAdaptor2D, 614	sample_mcmc_candidate
mappel::MLEstimator, 652	mappel::Gauss1DMAP, 129
mappel::PointEmitterModel, 699	mappel::Gauss1DMLE, 157
restore_stencil	mappel::Gauss1DModel, 184
mappel::IterativeMaximizer::MaximizerData, 563	mappel::Gauss1DsMAP, 212
restrict value range	mappel::Gauss1DsMLE, 240
mappel, 45	mappel::Gauss1DsModel, 267
rethrow	mappel::Gauss2DMAP, 296
omp_exception_catcher::impl_::OMPException←	mappel::Gauss2DMLE, 326
Catcher, 687	mappel::Gauss2DModel, 355
RethrowFirst	mappel::Gauss2DsMAP, 386
omp_exception_catcher::impl_::OMPException←	mappel::Gauss2DsMLE, 418
Catcher, 687	mappel::Gauss2DsModel, 450
ReturnIfSubclassT	mappel::Gauss2DsxyMAP, 478
mappel, 27	mappel::Gauss2DsxyModel, 504
rho_cauchy_min	mappel::MCMCAdaptor1Ds, 596
mappel::TrustRegionMaximizer, 792	mappel::MCMCAdaptor1D, 578
rho_obj_min	mappel::MCMCAdaptor2Ds, 632
mappel::TrustRegionMaximizer, 792	mappel::MCMCAdaptor2D, 614
rho_obj_opt	sample_posterior
mappel::TrustRegionMaximizer, 792	mappel::mcmc, 49
rllh	sample_posterior_debug
mappel::IterativeMaximizer::MaximizerData, 566	mappel::mcmc, 50
mappel::methods::likelihood, 64, 65	sample_prior
mappel::methods::objective, 71, 72	mappel::Gauss1DMAP, 129
rllh_beta2_prior	mappel::Gauss1DMLE, 157
mappel, 45	mappel::Gauss1DModel, 184
rllh_beta_prior	mappel::Gauss1DsMAP, 212
mappel, 45	mappel::Gauss1DsMLE, 240
rllh_components	mappel::Gauss1DsModel, 268
mappel::methods::likelihood::debug, 66, 67	mappel::Gauss2DMAP, 297
mappel::methods::objective::debug, 74	mappel::Gauss2DMLE, 327
rllh_gamma_prior	mappel::Gauss2DModel, 356
mappel, 45	mappel::Gauss2DsMAP, 387
rllh_normal_prior	mappel::Gauss2DsMAI , 307
mappel, 45	mappel::Gauss2DsMcE, 419
rllh_pareto_prior	mappel::Gauss2DsxyMAP, 478
mappel, 45	mappel::Gauss2DsxyModel, 504
παρροι, το	mappemaaussedskylviouei, 304

mappel::MAPEstimator, 554, 555	mappel::Gauss2DsMAP, 387
mappel::MCMCAdaptor1Ds, 596	mappel::Gauss2DsMLE, 419
mappel::MCMCAdaptor1D, 578	mappel::Gauss2DsModel, 450
mappel::MCMCAdaptor2Ds, 632, 633	mappel::Gauss2DsxyMAP, 479
mappel::MCMCAdaptor2D, 614	mappel::Gauss2DsxyModel, 504
mappel::MLEstimator, 652, 653	mappel::MAPEstimator, 555
mappel::PointEmitterModel, 699	mappel::MCMCAdaptor1Ds, 597
sample_prior_stack	mappel::MCMCAdaptor1D, 579
mappel, 45	mappel::MCMCAdaptor2Ds, 633
mappel::methods::openmp, 84	mappel::MCMCAdaptor2D, 615
save_seq	mappel::MLEstimator, 653
mappel::IterativeMaximizer::MaximizerData, 566	mappel::PointEmitterModel, 699
save_stencil	set_fixed_parameters
mappel::IterativeMaximizer::MaximizerData, 563	mappel::IterativeMaximizer::MaximizerData, 564
saved_stencil	set_hyperparam_names
mappel::IterativeMaximizer::MaximizerData, 563	mappel::Gauss1DMAP, 130
saved_theta	mappel::Gauss1DMLE, 158
mappel::IterativeMaximizer::MaximizerData, 563	mappel::Gauss1DModel, 185
sensor_bg_map	mappel::Gauss1DsMAP, 213
PoissonGaussianNoise2DObjective, 706	mappel::Gauss1DsMLE, 241
sensor_gain_map	mappel::Gauss1DsModel, 268
PoissonGaussianNoise2DObjective, 706	mappel::Gauss2DMAP, 297
seq_len	mappel::Gauss2DMLE, 327
mappel::IterativeMaximizer::MaximizerData, 567	mappel::Gauss2DModel, 356
seq_rllh	mappel::Gauss2DsMAP, 387
mappel::IterativeMaximizer::MaximizerData, 567	mappel::Gauss2DsMLE, 419
set_background_mcmc_sampling	mappel::Gauss2DsModel, 451
mappel::Gauss1DMAP, 130	mappel::Gauss2DsxyMAP, 479
mappel::Gauss1DMLE, 157	mappel::Gauss2DsxyModel, 504
mappel::Gauss1DModel, 184	mappel::MAPEstimator, 555
mappel::Gauss1DsMAP, 212	mappel::MCMCAdaptor1Ds, 597
mappel::Gauss1DsMLE, 241	mappel::MCMCAdaptor1D, 579
mappel::Gauss1DsModel, 268	mappel::MCMCAdaptor2Ds, 633
mappel::Gauss2DMAP, 297	mappel::MCMCAdaptor2D, 615
mappel::Gauss2DMLE, 327	mappel::MLEstimator, 653
mappel::Gauss2DModel, 356	mappel::PointEmitterModel, 699
mappel::Gauss2DsMAP, 387	set hyperparam value
mappel::Gauss2DsMLE, 419	mappel::Gauss1DMAP, 130
mappel::Gauss2DsModel, 450	mappel::Gauss1DMLE, 158
mappel::Gauss2DsxyMAP, 478	mappel::Gauss1DModel, 185
mappel::MCMCAdaptor1Ds, 596	mappel::Gauss1DsMAP, 213
mappel::MCMCAdaptor1D, 578	mappel::Gauss1DsMLE, 241
mappel::MCMCAdaptor2Ds, 633	mappel::Gauss1DsModel, 268
mappel::MCMCAdaptor2D, 614	mappel::Gauss2DMAP, 297
set bounds	mappel::Gauss2DMLE, 327
mappel::Gauss1DMAP, 130	mappel::Gauss2DModel, 356
mappel::Gauss1DMLE, 158	mappel::Gauss2DsMAP, 387
mappel::Gauss1DModel, 185	mappel::Gauss2DsMLE, 419
mappel::Gauss1DsMAP, 213	mappel::Gauss2DsMcL, 419
mappel::Gauss1DsMAI , 213	mappel::Gauss2DsxyMAP, 479
mappel::Gauss1DsMcLt, 241	mappel::Gauss2DsxyModel, 504
mappel::Gauss2DMAP, 297	mappel::MAPEstimator, 555
mappel::Gauss2DMAF, 297	mappel::MCMCAdaptor1Ds, 597
mappel::Gauss2DMcdel, 356	mappel::MCMCAdaptor1Ds, 597
mappemaaussediviouei, 500	mappeninononuapion i D, 3/3

mappel::MCMCAdaptor2Ds, 633	mappel::Gauss2DMAP, 298
mappel::MCMCAdaptor2D, 615	mappel::Gauss2DMLE, 328
mappel::MLEstimator, 653	mappel::Gauss2DModel, 357
mappel::PointEmitterModel, 699	mappel::Gauss2DsMAP, 388
set_hyperparameters	mappel::Gauss2DsMLE, 420
mappel::PriorMAP1DObjective, 723	mappel::Gauss2DsModel, 451
set_hyperparams	mappel::Gauss2DsxyMAP, 479
mappel::Gauss1DMAP, 130	mappel::MCMCAdaptor1Ds, 597
mappel::Gauss1DMLE, 158	mappel::MCMCAdaptor1D, 579
mappel::Gauss1DModel, 185	mappel::MCMCAdaptor2Ds, 634
mappel::Gauss1DsMAP, 213	mappel::MCMCAdaptor2D, 615
mappel::Gauss1DsMLE, 241	set Ibound
mappel::Gauss1DsModel, 269	mappel::Gauss1DMAP, 131
mappel::Gauss2DMAP, 298	mappel::Gauss1DMLE, 159
mappel::Gauss2DMLE, 328	mappel::Gauss1DModel, 186
mappel::Gauss2DModel, 357	mappel::Gauss1DsMAP, 214
mappel::Gauss2DsMAP, 388	mappel::Gauss1DsMLE, 242
mappel::Gauss2DsMLE, 420	mappel::Gauss1DsModel, 269
mappel::Gauss2DsModel, 451	mappel::Gauss2DMAP, 298
mappel::Gauss2DsxyMAP, 479	mappel::Gauss2DMLE, 328
mappel::Gauss2DsxyModel, 505	mappel::Gauss2DModel, 357
mappel::MAPEstimator, 555	mappel::Gauss2DsMAP, 388
mappel::MCMCAdaptor1Ds, 597	mappel::Gauss2DsMLE, 420
mappel::MCMCAdaptor1D, 579	mappel::Gauss2DsModel, 451
mappel::MCMCAdaptor2Ds, 633	mappel::Gauss2DsxyMAP, 480
mappel::MCMCAdaptor2D, 615	mappel::Gauss2DsxyModel, 505
mappel::MLEstimator, 653	mappel::MAPEstimator, 555
mappel::PointEmitterModel, 700	mappel::MCMCAdaptor1Ds, 597
set_image_in_stack	mappel::MCMCAdaptor1D, 579
mappel::Gauss1DMAP, 130	mappel::MCMCAdaptor2Ds, 634
mappel::Gauss1DMLE, 158	mappel::MCMCAdaptor2Ds, 605
mappel::Gauss1DModel, 185	mappel::MLEstimator, 653
mappel::Gauss1DsMAP, 213	mappel::PointEmitterModel, 700
mappel::Gauss1DsMLE, 241	set max sigma
mappel::Gauss1DsModel, 269	mappel::Gauss1DsMAP, 214
mappel::Gauss2DMAP, 298	mappel::Gauss1DsMLE, 242
mappel::Gauss2DMLE, 328	mappel::Gauss1DsModel, 269
mappel::Gauss2DMcE, 326	mappel::Gauss2DsMAP, 388
mappel::Gauss2DsMAP, 388	mappel::Gauss2DsMAF, 300
mappel::Gauss2DsMAF, 300	mappel::Gauss2DsMcL, 420
mappel::Gauss2DsMcL, 420	mappel::Gauss2Dswodel, 432
mappel::Gauss2DsxyMAP, 479	set_max_sigma_ratio
mappel::Gauss2DsxyModel, 505	mappel::Gauss2DsMAP, 388
mappel::ImageFormat1DBase, 524	mappel::Gauss2DsMAF, 300
mappel::ImageFormat2DBase, 524	mappel::Gauss2DsMcL, 420
mappel::PoissonNoise1DObjective, 712	mappel::Gauss2Dswodel, 432
mappel::PoissonNoise2DObjective, 719	set mcmc num phases
set_intensity_mcmc_sampling	mappel::Gauss1DMAP, 131
	• •
mappel::Gauss1DMAP, 131	mappel::Gauss1DMLE, 159 mappel::Gauss1DModel, 186
mappel::Gauss1DMLE, 158	mappel::Gauss1DsMAP, 214
mappel::Gauss1DModel, 185	• •
mappel::Gauss1DsMAP, 213	mappel::Gauss1DsMLE, 242
mappel::Gauss1DsMLE, 242	mappel::Gauss1DsModel, 270
mappel::Gauss1DsModel, 269	mappel::Gauss2DMAP, 298

mappel::Gauss2DMLE, 328	mappel::Gauss1DsMAP, 215
mappel::Gauss2DModel, 357	mappel::Gauss1DsMLE, 243
mappel::Gauss2DsMAP, 389	mappel::Gauss1DsModel, 270
mappel::Gauss2DsMLE, 421	mappel::Gauss2DMAP, 298
mappel::Gauss2DsModel, 452	mappel::Gauss2DMLE, 328
mappel::Gauss2DsxyMAP, 480	mappel::Gauss2DModel, 357
mappel::MCMCAdaptor1Ds, 598	mappel::Gauss2DsMAP, 389
mappel::MCMCAdaptor1D, 580	mappel::Gauss2DsMLE, 421
mappel::MCMCAdaptor2Ds, 634	mappel::Gauss2DsModel, 452
mappel::MCMCAdaptor2D, 616	mappel::Gauss2DsxyMAP, 480
mappel::MCMCAdaptorBase, 642	mappel::Gauss2DsxyModel, 505
set_mcmc_sigma_scale	mappel::MAPEstimator, 556
mappel::Gauss1DMAP, 131	mappel::MCMCAdaptor1Ds, 598
mappel::Gauss1DMLE, 159	mappel::MCMCAdaptor1D, 580
mappel::Gauss1DModel, 186	mappel::MCMCAdaptor2Ds, 634
mappel::Gauss1DsMAP, 214	mappel::MCMCAdaptor2D, 616
mappel::Gauss1DsMLE, 242	mappel::MLEstimator, 654
mappel::Gauss1DsModel, 270	mappel::PointEmitterModel, 700
mappel::Gauss2DMAP, 298	set_prior
mappel::Gauss2DMLE, 328	mappel::Gauss1DMAP, 131
mappel::Gauss2DModel, 357	mappel::Gauss1DMLE, 159
mappel::Gauss2DsMAP, 389	mappel::Gauss1DModel, 186
mappel::Gauss2DsMLE, 421	mappel::Gauss1DsMAP, 215
mappel::Gauss2DsModel, 452	mappel::Gauss1DsMLE, 243
mappel::Gauss2DsxyMAP, 480	mappel::Gauss1DsModel, 270
mappel::MCMCAdaptor1Ds, 598	mappel::Gauss2DMAP, 299
mappel::MCMCAdaptor1D, 580	mappel::Gauss2DMLE, 329
mappel::MCMCAdaptor2Ds, 634	mappel::Gauss2DModel, 358
mappel::MCMCAdaptor2D, 616	mappel::Gauss2DsMAP, 389
mappel::MCMCAdaptorBase, 642	mappel::Gauss2DsMLE, 421
set_min_sigma	mappel::Gauss2DsModel, 453
mappel::Gauss1DsMAP, 214, 215	mappel::Gauss2DsxyMAP, 480
mappel::Gauss1DsMLE, 243	mappel::Gauss2DsxyModel, 505
mappel::Gauss1DsModel, 270	mappel::MAPEstimator, 556
mappel::Gauss2DsMAP, 389	mappel::MCMCAdaptor1Ds, 598
mappel::Gauss2DsMLE, 421	mappel::MCMCAdaptor1D, 580
mappel::Gauss2DsModel, 452	mappel::MCMCAdaptor2Ds, 634, 635
mappel::Gauss2DsxyModel, 505	mappel::MCMCAdaptor2D, 616
set_model	mappel::MLEstimator, 654
mappel::CGaussHeuristicEstimator, 93	mappel::PointEmitterModel, 700
mappel::CGaussMLE, 102	set_psf_sigma
mappel::Estimator, 110	mappel::Gauss1DMAP, 132
mappel::HeuristicEstimator, 517	mappel::Gauss1DMLE, 160
mappel::IterativeMaximizer, 541	mappel::Gauss1DModel, 187
mappel::NewtonDiagonalMaximizer, 668	mappel::Gauss2DMAP, 299
mappel::NewtonMaximizer, 681	mappel::Gauss2DMLE, 329
mappel::QuasiNewtonMaximizer, 733	mappel::Gauss2DModel, 358
mappel::SimulatedAnnealingMaximizer, 743	mappel::Gauss2DsxyMAP, 481
mappel::ThreadedEstimator, 775	set_rng_seed
mappel::TrustRegionMaximizer, 788	mappel::Gauss1DMAP, 132
set_param_names	mappel::Gauss1DMLE, 160
mappel::Gauss1DMAP, 131	mappel::Gauss1DModel, 187
mappel::Gauss1DMLE, 159	mappel::Gauss1DsMAP, 215
mappel::Gauss1DModel, 186	mappel::Gauss1DsMLE, 243

mappel::Gauss1DsModel, 271	mappel::MCMCAdaptor1D, 581
mappel::Gauss2DMAP, 299	mappel::MCMCAdaptor2Ds, 635
mappel::Gauss2DMLE, 329	mappel::MCMCAdaptor2D, 617
mappel::Gauss2DModel, 358	mappel::MLEstimator, 654
mappel::Gauss2DsMAP, 390	mappel::PointEmitterModel, 700
mappel::Gauss2DsMLE, 422	setGlobalDefaultStrategy
mappel::Gauss2DsModel, 453	omp_exception_catcher::impl_::OMPException -
mappel::Gauss2DsxyMAP, 481	Catcher, 688
mappel::Gauss2DsxyModel, 505	sgn
mappel::MAPEstimator, 556	mappel, 46
mappel::MCMCAdaptor1Ds, 598	sigma
mappel::MCMCAdaptor1D, 580	mappel::Gauss1DsModel::Stencil, 751
mappel::MCMCAdaptor2Ds, 635	sigma_ratio
mappel::MCMCAdaptor2D, 616	mappel::Gauss2DsModel::Stencil, 760
mappel::MLEstimator, 654	sigma_scale
mappel::PointEmitterModel, 700	mappel::Gauss1DMAP, 138
set_size	mappel::Gauss1DMLE, 166
mappel::Gauss1DMAP, 132	mappel::Gauss1DModel, 193
mappel::Gauss1DMLE, 160	mappel::Gauss1DsMAP, 221
mappel::Gauss1DModel, 187	mappel::Gauss1DsMLE, 249
mappel::Gauss1DsMAP, 215	mappel::Gauss1DsModel, 276
mappel::Gauss1DsMLE, 243, 244	mappel::Gauss2DMAP, 305
mappel::Gauss1DsModel, 271	mappel::Gauss2DMLE, 335
mappel::Gauss2DMAP, 299	mappel::Gauss2DModel, 364
mappel::Gauss2DMLE, 329	mappel::Gauss2DsMAP, 396
mappel::Gauss2DModel, 358	mappel::Gauss2DsMLE, 428
mappel::Gauss2DsMAP, 390	mappel::Gauss2DsModel, 459
mappel::Gauss2DsMLE, 422	mappel::Gauss2DsxyMAP, 487
mappel::Gauss2DsModel, 453	mappel::MCMCAdaptor1Ds, 603
mappel::Gauss2DsxyMAP, 481	mappel::MCMCAdaptor1D, 585
mappel::Gauss2DsxyModel, 505	mappel::MCMCAdaptor2Ds, 640
mappel::ImageFormat1DBase, 524	mappel::MCMCAdaptor2D, 621
mappel::ImageFormat2DBase, 531	mappel::MCMCAdaptorBase, 643
mappel::PoissonNoise1DObjective, 712	sigmaX
mappel::PoissonNoise2DObjective, 712	mappel::Gauss2DsModel::Stencil, 760
set stencil	mappel::Gauss2DsxyModel::Stencil, 755
mappel::IterativeMaximizer::MaximizerData, 564	sigmaY
set ubound	mappel::Gauss2DsModel::Stencil, 761
mappel::Gauss1DMAP, 132	mappel::Gauss2DsxyModel::Stencil, 755
mappel::Gauss1DMLE, 160	simulate image
mappel::Gauss1DModel, 187	mappel::methods, 59, 60
mappel::Gauss1DsMAP, 216	PoissonGaussianNoise2DObjective.h, 843, 844
mappel::Gauss1DsMLE, 244	simulate_image_from_model
mappel::Gauss1DsModel, 271	mappel::methods, 60, 61
mappel::Gauss2DMAP, 299	simulate_image_stack
mappel::Gauss2DMLE, 329	mappel, 46
mappel::Gauss2DModel, 358	mappel::methods::openmp, 84
mappel::Gauss2DsMAP, 390	SimulatedAnnealingMaximizer
• •	
mappel::Gauss2DsMLE, 422	mappel::SimulatedAnnealingMaximizer, 739
mappel::Gauss2DsModel, 453	Size
mappel::Gauss2DsxyMAP, 481	mappel::Gaues1DMP, 138
mappel::Gauss2DsxyModel, 506	mappel::Gauss1DMLE, 166
mappel::MAPEstimator, 556	mappel::Gauss1DModel, 193
mappel::MCMCAdaptor1Ds, 598	mappel::Gauss1DsMAP, 221

mappel::Gauss1DsMLE, 250	mappel::CGaussHeuristicEstimator, 89
mappel::Gauss1DsModel, 276	mappel::CGaussMLE, 97
mappel::Gauss2DMAP, 306	mappel::Estimator, 105
mappel::Gauss2DMLE, 336	mappel::HeuristicEstimator, 513
mappel::Gauss2DModel, 364	mappel::IterativeMaximizer, 535
mappel::Gauss2DModel, 396	mappel::NewtonDiagonalMaximizer, 661
mappel::Gauss2DsMLE, 428	mappel::NewtonMaximizer, 674
mappel::Gauss2DsModel, 459	mappel::QuasiNewtonMaximizer, 726
mappel::Gauss2DsxyMAP, 487	mappel::SimulatedAnnealingMaximizer, 739
mappel::Gauss2DsxyModel, 510	mappel::ThreadedEstimator, 771
mappel::ImageFormat1DBase, 525	mappel::TrustRegionMaximizer, 780
mappel::ImageFormat2DBase, 532	Strategy
mappel::PoissonNoise1DObjective, 713	omp_exception_catcher::impl_::OMPException ←
mappel::PoissonNoise2DObjective, 720	Catcher, 687
solve_TR_subproblem	StringVecT
mappel::TrustRegionMaximizer, 788	mappel, 27
solve_restricted_step_length_newton	Success
mappel::TrustRegionMaximizer, 788	mappel::CGaussHeuristicEstimator, 89
square	mappel::CGaussMLE, 97
mappel, 46	mappel::Estimator, 105
stackcomp.h, 851	mappel::HeuristicEstimator, 513
•	• •
StatsT	mappel::IterativeMaximizer, 535
mappel, 27	mappel::NewtonDiagonalMaximizer, 661
Stencil	mappel::NewtonMaximizer, 674
mappel::Gauss1DModel::Stencil, 747	mappel::QuasiNewtonMaximizer, 726
mappel::Gauss1DsModel::Stencil, 750	mappel::SimulatedAnnealingMaximizer, 739
mappel::Gauss2DModel::Stencil, 765	mappel::ThreadedEstimator, 771
mappel::Gauss2DsModel::Stencil, 759	mappel::TrustRegionMaximizer, 780
mappel::Gauss2DsxyModel::Stencil, 755	
stencil	T_init
mappel::IterativeMaximizer::MaximizerData, 564	mappel::SimulatedAnnealingMaximizer, 745
stencil.cpp, 852	TERM_BLACK
stencil.h, 853	mappel, 47
StencilVecT	TERM BLUE
mappel, 27	mappel, 47
mappel::Gauss1DMAP, 117	TERM CYAN
mappel::Gauss1DMLE, 145	mappel, 47
mappel::Gauss1DModel, 173	TERM_DIM_BLACK
mappel::Gauss1DsMAP, 200	mappel, 47
mappel::Gauss1DsMLE, 228	TERM DIM BLUE
• • • • • • • • • • • • • • • • • • • •	
mappel::Gauss1DsModel, 256	mappel, 47
mappel::Gauss2DMAP, 284	TERM_DIM_CYAN
mappel::Gauss2DMLE, 314	mappel, 47
mappel::Gauss2DModel, 343	TERM_DIM_GREEN
mappel::Gauss2DsMAP, 372	mappel, 47
mappel::Gauss2DsMLE, 404	TERM_DIM_MAGENTA
mappel::Gauss2DsModel, 436	mappel, 48
mappel::Gauss2DsxyMAP, 467	TERM_DIM_RED
mappel::Gauss2DsxyModel, 493	mappel, 48
StencilT	TERM_DIM_WHITE
mappel, 27	mappel, 48
step	TERM_DIM_YELLOW
mappel::IterativeMaximizer::MaximizerData, 567	mappel, 48
StepSize	TERM_GREEN

mappel, 48	mappel::Gauss2DsxyModel, 506
TERM_MAGENTA	mappel::MAPEstimator, 557
mappel, 48	mappel::MCMCAdaptor1Ds, 599
TERM_RED	mappel::MCMCAdaptor1D, 581
mappel, 48	mappel::MCMCAdaptor2Ds, 635
TERM_WHITE	mappel::MCMCAdaptor2D, 617
mappel, 48	mappel::MLEstimator, 655
TERM_YELLOW	mappel::PointEmitterModel, 701
mappel, 49	thin_sample
theta	mappel::mcmc, 50
mappel::Gauss1DModel::Stencil, 749	ThreadedEstimator
mappel::Gauss1DsModel::Stencil, 753	mappel::ThreadedEstimator, 771
mappel::Gauss2DModel::Stencil, 768	total_backtracks
mappel::Gauss2DsModel::Stencil, 763	mappel::IterativeMaximizer, 543
mappel::Gauss2DsxyModel::Stencil, 758	mappel::NewtonDiagonalMaximizer, 670
mappel::IterativeMaximizer::MaximizerData, 564	mappel::NewtonMaximizer, 683
theta_in_bounds	mappel::QuasiNewtonMaximizer, 735
mappel::Gauss1DMAP, 132	mappel::TrustRegionMaximizer, 792
mappel::Gauss1DMLE, 160	total_der_evals
mappel::Gauss1DModel, 187	mappel::IterativeMaximizer, 544
mappel::Gauss1DsMAP, 216	mappel::NewtonDiagonalMaximizer, 671
mappel::Gauss1DsMLE, 244	mappel::NewtonMaximizer, 684
mappel::Gauss1DsModel, 271	mappel::QuasiNewtonMaximizer, 736
mappel::Gauss2DMAP, 299	mappel::TrustRegionMaximizer, 792
mappel::Gauss2DMLE, 329	total_fun_evals
mappel::Gauss2DModel, 358	mappel::IterativeMaximizer, 544
mappel::Gauss2DsMAP, 390	mappel::NewtonDiagonalMaximizer, 671
mappel::Gauss2DsMLE, 422	mappel::NewtonMaximizer, 684
mappel::Gauss2DsModel, 453	mappel::QuasiNewtonMaximizer, 736
mappel::Gauss2DsxyMAP, 481	mappel::TrustRegionMaximizer, 792
mappel::Gauss2DsxyModel, 506	total_iterations
mappel::MAPEstimator, 556	mappel::IterativeMaximizer, 544
mappel::MCMCAdaptor1Ds, 599	mappel::NewtonDiagonalMaximizer, 671
mappel::MCMCAdaptor1D, 581	mappel::NewtonMaximizer, 684
mappel::MCMCAdaptor2Ds, 635	mappel::QuasiNewtonMaximizer, 736
mappel::MCMCAdaptor2D, 617	mappel::TrustRegionMaximizer, 792
mappel::MLEstimator, 654	total walltime
mappel::PointEmitterModel, 701	mappel::CGaussHeuristicEstimator, 95
theta_seq	mappel::CGaussMLE, 103
mappel::IterativeMaximizer::MaximizerData, 567	mappel::Estimator, 111
theta_stack_in_bounds	mappel::HeuristicEstimator, 519
mappel::Gauss1DMAP, 133	mappel::IterativeMaximizer, 544
mappel::Gauss1DMLE, 161	mappel::NewtonDiagonalMaximizer, 671
mappel::Gauss1DModel, 188	mappel::NewtonMaximizer, 684
mappel::Gauss1DsMAP, 216	mappel::QuasiNewtonMaximizer, 736
mappel::Gauss1DsMLE, 244	mappel::SimulatedAnnealingMaximizer, 745
mappel::Gauss1DsModel, 271	mappel::ThreadedEstimator, 777
mappel::Gauss2DMAP, 300	mappel::TrustRegionMaximizer, 792
mappel::Gauss2DMLE, 330	TrustRegionMaximizer
mappel::Gauss2DModel, 359	mappel::TrustRegionMaximizer, 781
mappel::Gauss2DsMAP, 390	TrustRegionRadius
mappel::Gauss2DsMLE, 422	mappel::CGaussHeuristicEstimator, 89
mappel::Gauss2DsModel, 453	mappel::CGaussMLE, 97
mappel::Gauss2DsxyMAP, 482	mappel::Estimator, 105
	· · · · · · · · · · · · · · · · · · ·

ı	mappel::HeuristicEstimator, 513		mappel::Gauss2DsModel, 454	
ı	mappel::IterativeMaximizer, 535	util.	cpp, 855	
ı	mappel::NewtonDiagonalMaximizer, 661	util.h, 855		
ı	mappel::NewtonMaximizer, 674			
ı	mappel::QuasiNewtonMaximizer, 726	Vec	FieldT	
ı	mappel::SimulatedAnnealingMaximizer, 739		mappel, 27	
	mappel::ThreadedEstimator, 771	Vec	:T	
	mappel::TrustRegionMaximizer, 780		mappel, 27	
uboui	nd	Χ		
ı	mappel::Gauss1DMAP, 138		mappel::Gauss1DModel::Stencil, 749	
	mappel::Gauss1DMLE, 166		mappel::Gauss1DsModel::Stencil, 753	
	mappel::Gauss1DModel, 193		mappel::Gauss2DModel::Stencil, 768	
	mappel::Gauss1DsMAP, 222		mappel::Gauss2DsModel::Stencil, 763	
	mappel::Gauss1DsMLE, 250		mappel::Gauss2DsxyModel::Stencil, 758	
	mappel::Gauss1DsModel, 277	Χ		
	mappel::Gauss2DMAP, 306		mappel::Gauss1DModel::Stencil, 747	
	mappel::Gauss2DMLE, 336		mappel::Gauss1DsModel::Stencil, 751	
	mappel::Gauss2DMcdel, 365		mappel::Gauss2DModel::Stencil, 766	
	mappel::Gauss2DsMAP, 397		mappel::Gauss2DsModel::Stencil, 761	
	mappel::Gauss2DsMLE, 429		mappel::Gauss2DsxyModel::Stencil, 755	
	mappel::Gauss2DsMcL, 429	x_n	nodel	
	mappel::Gauss2DsxyMAP, 487		mappel::Gauss2DMAP, 306	
	mappel::Gauss2DsxyModel, 511		mappel::Gauss2DMLE, 336	
			mappel::Gauss2DModel, 365	
	mappel::IterativeMaximizer::MaximizerData, 567		mappel::Gauss2DsMAP, 397	
	mappel::MAPEstimator, 559		mappel::Gauss2DsMLE, 429	
	mappel::MCMCAdaptor1Ds, 603		mappel::Gauss2DsModel, 460	
	mappel::MCMCAdaptor1D, 585		mappel::Gauss2DsxyModel, 511	
	mappel::MCMCAdaptor2Ds, 640			
	mappel::MCMCAdaptor2D, 621	Υ		
	mappel::MLEstimator, 657		mappel::Gauss2DModel::Stencil, 768	
	mappel::PointEmitterModel, 703		mappel::Gauss2DsModel::Stencil, 764	
	signed		mappel::Gauss2DsxyModel::Stencil, 758	
	mappel::CGaussHeuristicEstimator, 89	У		
	mappel::CGaussMLE, 97		mappel::Gauss2DModel::Stencil, 766	
	mappel::Estimator, 105		mappel::Gauss2DsModel::Stencil, 761	
ı	mappel::HeuristicEstimator, 513		mappel::Gauss2DsxyModel::Stencil, 756	
	mappel::IterativeMaximizer, 535	y_n	nodel	
	mappel::NewtonDiagonalMaximizer, 661		mappel::Gauss2DMAP, 307	
	mappel::NewtonMaximizer, 674		mappel::Gauss2DMLE, 337	
	mappel::QuasiNewtonMaximizer, 726		mappel::Gauss2DModel, 365	
	mappel::SimulatedAnnealingMaximizer, 739		mappel::Gauss2DsMAP, 397	
	mappel::ThreadedEstimator, 771		mappel::Gauss2DsMLE, 429	
ı	mappel::TrustRegionMaximizer, 780		mappel::Gauss2DsModel, 460	
Unifo	rmDistT		mappel::Gauss2DsxyModel, 511	
ı	mappel, <mark>27</mark>			
updat	te_internal_1D_estimators			
	mappel::Gauss2DsxyModel, 506			
updat	te_internal_1Dsum_estimators			
ı	mappel::Gauss2DMAP, 300			
ı	mappel::Gauss2DMLE, 330			
ı	mappel::Gauss2DModel, 359			
ı	mappel::Gauss2DsMAP, 390			
ı	mappel::Gauss2DsMLE, 422			