

Divide y Vencerás

Algorítmica. Práctica 2

Jose Alberto Hoces Castro Javier Gómez López Moya Martín Castaño

Contenidos

1. Introducción

2. Ejercicio 1

3. Ejercicio 2

Introducción

Problemas planteados

- **Ejercicio 1**: Buscar en un vector ordenado un elemento tal que v[i] = i.
- **Ejercicio 2**: Dados *k* vectores ordenados, de *n* elementos cada uno, combinarlos en un vector ordenado.

Objetivo de la prática

Apreciar la utilidad de la técnica divide y vencerás (DyV) para resolver problemas de forma más eficiente que otras alternativas más sencillas o directas.

Ejercicio 1

Búsqueda secuencial

Es la manera más obvia de buscar en un vector. Empezamos en el primer elemento y lo vamos recorriendo hasta encontrar el elemento deseado. En caso de no encontrarlo, devolvemos un valor que indique error (en nuestro caso -1).

Búsqueda secuencial. Código

```
int buscarSecuencial(int v[], int n){
    for (size_t i = 0; i < n; i++) //0(n)

    {
        if (v[i] == i){ //0(1)
            return i; //0(1)
        }
}

return -1;//0(1)
}</pre>
```

Búsqueda secuencial. Eficiencia teórica

Observamos claramente que

$$T(n) \in O(n)$$

Búsqueda secuencial		
Elementos (n)	Tiempo (s)	
1760000	0.0165694	
2520000	0.0262689	
3280000	0.0336055	
4040000	0.0368924	
4800000	0.0399273	
5560000	0.0485439	
6320000	0.0529679	
7080000	0.0585823	
7840000	0.0649594	
8600000	0.0723527	
9360000	0.0801981	
10120000	0.0856522	
10880000	0.0922361	
11640000	0.0992702	
12400000	0.105115	
13160000	0.114969	
13920000	0.118283	
14680000	0.123955	
15440000	0.132098	
16200000	0.139156	
16960000	0.146774	
17720000	0.150614	
18480000	0.157312	
19240000	0.163214	
20000000	0.169743	

Tabla 1: Experiencia empírica de la búsqueda a fuerza bruta

Búsqueda secuencial. Eficiencia híbrida

Figura 1: Gráfica con los tiempos de ejecución de la búsqueda a fuerza bruta

Búsqueda binaria

La tećnica Divide y Vencerás usada es la búsqueda binaria. Al estar ante un vector ordenado, podemos recurrir hasta algoritmo cuya eficiencia es logarítmica, mucho más preferible que una lineal.

Búsqueda binaria. Código

```
1 <<<<<< HFAD
int buscarBinaria(int *v, int inicio, int fin){
      if(fin >= inicio) \{ // 0(1) \}
3
          int medio = inicio + (fin - inicio) / 2; // 0(1)
4
          if(v[medio] == medio) { // 0(1)}
6
               return medio; // 0(1)
8
9
          if(v[medio] > medio) { // 0(1)}
10
               return buscarBinaria(v, inicio, medio - 1); // 0(n
11
      /2)
12
13
          //else
14
          return buscarBinaria(v, medio + 1, fin); // O(n/2)
      }
16
      return -1; // 0(1)
18
19
```

Búsqueda binaria. Eficiencia teórica

Observamos claramente que

$$T(n) = T\left(\frac{n}{2}\right) + a$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$(x-1)^2 \qquad \qquad \downarrow$$

$$T(2^k) = (co + c1 \cdot k) \cdot 1^k$$

$$\downarrow \qquad \qquad \downarrow$$

$$T(n) = co + c1 \cdot log(n)$$

$$\downarrow \qquad \qquad \downarrow$$

$$T(n) \in O(\log(n))$$

Búsqueda binaria. Eficiencia empírica

Búsqueda binaria		
Elementos (n)	Tiempo (s)	
1760000	0.000000402733	
2520000	0.0000005118	
3280000	0.000000472	
4040000	0.000000538667	
4800000	0.0000006558	
5560000	0.0000006632	
6320000	0.000000618467	
7080000	0.0000005378	
7840000	0.000000617267	
8600000	0.000000618667	
9360000	0.0000007254	
10120000	0.000000638133	
10880000	0.0000006072	
11640000	0.00000071	
12400000	0.000000569667	
13160000	0.0000006822	
13920000	0.000000631667	
14680000	0.000000569333	
15440000	0.000000697867	
16200000	0.0000005758	
16960000	0.00000069	
17720000	0.000000623667	
18480000	0.000000644133	
19240000	0.0000007254	
20000000	0.000000673533	

Búsqueda binaria. Eficiencia híbrida

Figura 2: Gráfica con los tiempos de ejecución de la búsqueda binaria

Búsqueda binaria. Fuerza bruta vs Divide y Vencerás

Figura 3: Gráfica comparativa: Fuerza Bruta vs DyV sin repeticiones

Búsqueda binaria. Fuerza bruta vs Divide y Vencerás

Las expresiones del tiempo de cada algoritmo son:

Fuerza bruta $\longrightarrow T(n) = 8.41755 \cdot 10^{-9}n + 0.00153755$

DyV sin repeticiones $\longrightarrow T(n) = 5.63832 \cdot 10^{-8} \cdot \log_2(n) - 6.87177 \cdot 10^{-7}$.

E igualando las expresiones obtenemos que: **Umbral:** n = 1

¿Elementos repetidos?

¿Qué pasaría si tuviésemos elementos repetidos? Por ejemplo:

1 2 3 4 4 5 6 7

¿Elementos repetidos?. Solución

```
int buscarBinaria(int v[], int inicio,int fin){
      int medio = (inicio + fin)/2; // 0(1)
3
      int resultado = -1; // 0(1)
4
5
      if(v[medio] == medio) { // 0(1)}
6
          return medio; // 0(1)
8
      else{
9
          if(inicio <= fin){ // 0(1)
10
              resultado = buscarBinaria(v, inicio, medio - 1); //
11
      0(n/2)
12
              if(resultado == -1){
                  resultado = buscarBinaria(v, medio + 1, fin); //
14
       0(n/2)
15
16
17
18
```

¿Elementos repetidos?. Eficiencia teórica

$$T(n) = 2 \cdot T\left(\frac{n}{2}\right) + a$$

$$\downarrow$$

$$(x-1)(x-2)$$

$$\downarrow$$

$$T(2^k) = co + c1 \cdot 2^k$$

$$\downarrow$$

$$T(n) = co + c1 \cdot n$$

$$\downarrow$$

$$T(n) \in O(n)$$

¿Elementos repetidos?. Eficiencia empírica

Divide y Vencerás con repeticiones		
Elementos (n)	Tiempo (s)	
1760000	0.020179	
2520000	0.0220417	
3280000	0.0344659	
4040000	0.0398963	
4800000	0.0443348	
5560000	0.0502432	
6320000	0.0558109	
7080000	0.0592223	
7840000	0.0630519	
8600000	0.0698851	
9360000	0.0772074	
10120000	0.0808893	
10880000	0.0893751	
11640000	0.0940162	
12400000	0.0992901	
13160000	0.103868	
13920000	0.116623	
14680000	0.118174	
15440000	0.12476	
16200000	0.131296	
16960000	0.145325	
17720000	0.162416	
18480000	0.170681	
19240000	0.177497	
20000000	0.185571	

¿Elementos repetidos?. Eficiencia híbrida

Figura 4: Gráfica con los tiempos de ejecución de la búsqueda con repeticiones

¿Elementos repetidos?. Fuerza bruta vs DyV con repeticiones

Figura 5: Gráfica comparativa: Fuerza Bruta vs DyV con repeticiones

¿Elementos repetidos?. Fuerza bruta vs DyV con repeticiones

Fuerza bruta
$$\longrightarrow T(n) = 8.41755 \cdot 10^{-9} n + 0.00153755$$
.
DyV con repeticiones $\longrightarrow T(n) = 8.71886 \cdot 10^{-9} \cdot n - 0.00140853$.

¡La pendiente del algoritmo de fuerza bruta es menor que la del "Divide y Vencerás"!

Ejercicio 2

Mezcla secuencial

Es la forma más simple de mezclar k vectores. Copias el primer vector y después vas añadiendo cada elemento de los sucesivos vectores en su posición correspondiente.

Mezcla secuencial. Código

```
void mergeKArrays(int nElementos, int **arr, int nVectores, int
      * &v resultante)
2 {
3
      int k = 0:
4
      bool encontrado;
5
      for(int i = 0; i < nElementos; i++){ //0(n)
6
        v_resultante[i] = arr[0][i];
8
9
      //iteramos por cada vector y por cada elemento del nuevo
10
      vector a insertar
      for(int i = 1; i < nVectores; i++){</pre>
                                                    //0(k)
11
        for(int j = 0; j < nElementos; j++){</pre>
                                                    //0(n)
12
          encontrado = false;
          k = 0:
14
          while(k < nElementos * i + j && !encontrado){ //0(kn +</pre>
15
       n)
            if(v_resultante[k] > arr[i][j])
16
              encontrado = true;
```

Mezcla secuencial. Eficiencia teórica

Observamos como se indica en los comentarios que

$$T(n) \in O(k^2n^2)$$

Mezcla secuencial fijado k. Eficiencia empírica

Mezcla secuencial fijado k		
Elementos (n)	Tiempo (s)	
176	0.025546	
252	0.0542358	
328	0.110631	
404	0.179092	
480	0.192662	
556	0.307523	
632	0.355095	
708	0.472475	
784	0.528376	
860	0.588945	
936	0.679135	
1012	0.810773	
1088	0.935887	
1164	1.07567	
1240	1.19148	
1316	1.43658	
1392	1.57392	
1468	1.67358	
1544	1.92939	
1620	2.13879	
1696	2.38177	
1772	2.54604	
1848	2.67226	
1924	3.0154	
2000	3.19709	

Tabla 4: Experiencia empírica de la mezcla con fuerza bruta fijado k

Mezcla secuencial fijado k. Eficiencia híbrida

Figura 6: Gráfica con los tiempos de ejecución de la mezcla con fuerza bruta fijado k

Mezcla secuencial fijado n. Eficiencia empírica

Mezcla secuencial fijado n		
Elementos (n)	Tiempo (s)	
176	0.0459797	
252	0.10393	
328	0.159313	
404	0.231346	
480	0.340936	
556	0.417845	
632	0.517876	
708	0.649491	
784	0.790378	
860	0.961221	
936	1.01366	
1012	1.33613	
1088	1.53368	
1164	1.7476	
1240	1.78693	
1316	2.27582	
1392	2.73955	
1468	3.09484	
1544	3.2492	
1620	3.48283	
1696	3.72723	
1772	4.12856	
1848	4.72144	
1924	4.95091	
2000	5.2639	

Tabla 5: Experiencia empírica de la mezcla con fuerza bruta fijado n

Mezcla secuencial fijado n. Eficiencia híbrida

Figura 7: Gráfica con los tiempos de ejecución de la mezcla con fuerza bruta fijado n

Mezcla Divide y Vencerás

Aplicamos el método Divide y Vencerás, donde aplicamos una función recursiva en la que dividimos el array de vectores de entrada en 2 arrays de tamaño la mitad, la función se llama a sí misma y, finalmente, se mezclan ambos arrays. El caso base es que el array contenga un único vector y se copia en el resultado final. Tras resolver la ecuación recurrente asociada

$$T(n) = \begin{cases} n & \text{si} & n = 1 \\ \\ 2T(\frac{n}{2}) + c2k \cdot n & \text{si} & n > 1, n = 2^{2} \end{cases}$$

que finalmente resultará

$$T(n) = n^2 + c_2 \cdot \log_2(n) \cdot k \cdot n$$

Mezcla Divide y Vencerás. Código

```
void mergeKArrays(int n, int **arr, int n1,int n2, int * &
      array_resultante)
2 {
      //si solo hay un array
3
      if(n1==n2){
                                          //0(n)
4
           for(int i=0; i < n; i++)</pre>
5
           array_resultante[i]=arr[n1][i];
6
      else{
8
9
         int nVect = n2-n1+1:
10
         int mitad = (n2+n1)/2;
11
12
         //Dimensiones arrays auxiliares
13
         int tam2 = nVect/2;
14
         int tam1 = nVect - tam2;
16
           //Arrays resultantes
18
           int *array1 = nullptr;
19
```

Mezcla Divide y Vencerás. Eficiencia teórica

Observamos por lo indicado en la diapositiva anterior que si $M = max \{n^2, log_2(n) \cdot k \cdot n\}$ nuestra función es

$$T(n) \in O(M)$$

Conclusiones

- El uso de la técnica "Divide y Vencerás" no siempre es garantía de mejora respecto al uso del algoritmo de fuerza bruta.
- En aquellos casos en los que el uso de "Divide y Vencerás" sí nos ayuda a mejorar los tiempos, es importante saber que el algoritmo de fuerza bruta es preferible si se usan tamaños por debajo del umbral.
- EL uso de la recursividad requiere un uso excesivo de la pila y en algunos casos, esto da lugar a algoritmos ineficientes.