TP 1

Prise en Main des outils et Concepts de base

1.1 But de la session

- Utiliser ChemCompute, Gamess, un éditeur de texte, un tableur
- Visualiser des OM
- Visualiser des Vibrations, Translation, Rotation

1.2 Déroulé

Cette session s'appuie entièrement sur un tutorial de ChemCompute : [Gamess Information & Experiments].

Dans les menus de ChemCompute suivre

- GAMESS Experiments (11)
- étendre le sous menu "Physical Chemistry"
- sélectionner le "**Lab Experiment**" du sous-menu "Molecular Orbitals, Vibrational Spectra, and Relative pKa Calculations"

1.2.1 Modifications générale par rapport aux menus

Durant votre travail vous suivez les directives donnée sur ChemCompute, mais vous ferez en plus (+) les points suivant :

- Sauf mention contraire, on décochera la case "Use Symmetry" avant d'appuyer sur le bouton "Next" qui permet de passer du "3D panel" au "Set Parameter"
- Toujours copier dans un fichier texte le fichier d'entrée que vous allez soumettre : appuyer sur le bouton gris "**Optional : Edit input file**".
- Reporter le numéro de job et les résultats dans un fichier tableur de travail.

1.2.2 Travail spécifique (en + des consignes du site web)

(1) MO's of H2

- 1. Demandez un calcul de thermodynamique
- 2. Dans les "Vibrations", dénombrez les translations, les rotations et dénombrez les vibrations.
- 3. Pour la visualisation des OM
 - Notez l'utilisation du cut-off .
 - Notez la présence d'orbitales moléculaires construites sur les orbitales 2s des hydrogènes.
- 4. Avec le bouton "Thermo" faites apparaître les données de thermodynamique. Reportez vous si nécessaire à notre page "thermo" sur la doc des TP.
- 5. Téléchargez le fichier "out", ouvrez le avec un éditeur de texte (SublimeText par exemple)

- A la mention "***** EQUILIBRIUM GEOMETRY" Notez la décomposition de l'énergie en termes positifs (répulsion) ou négatifs.
- Notez comment les orbitales sont écrites de façon littérale.
- A la mention "**THERMOCHEMISTRY AT T**= " On retrouve les données de thermochimie vues plus haut.

(2) Benzene Part 1

— Notez que le calcul AM1 donne des OM assez pertinentes (contrairement à ce qu'annonce le texte)

(3) Benzene Part 2

— Garder la symétrie D_{6h} pour accélerer les calculs. En profiter pour remarquer que le fichier input ne contient que 2 atomes au lieu de 12. Expliquez.

1.2.3 Compte rendu

Dans votre compte rendu, vous ferez un maximum de rappels à des chapitres que vous avez vu au cours de vos années à l'Université (diagrammes d'OM, symétrie, énergie d'une orbitale, répulsion/attraction de charge électriques, etc)