

Bias Correction The ISI-MIP Method

S. Hempel

Outline

- The aim of ISI-MIP
- Bias corrected climate input?
- A trend-preserving method

What is ISI-MIP

- First Inter-Sectoral Impact Model Intercomparison project
- Main research questions:
 - What are the impact projections in agriculture, water, biomes, health and infastructure sectors at different levels of global warming?
 - How big is the uncertainty arising from different climate inputs and individual impact models?

http://www.isi-mip.org/

Selecting the climate input for the fast track

- Common climate input for different sectors
 - → availability of many climate variables
- Impacts at different levels of global warming
 - → climate projections until 2100 for multiple RCPs
 - → predicted temperature and precipitation changes span a large range

Selecting the climate input for the fast track

- Common climate input for different sectors
 - → availability of many climate variables
- Impacts at different levels of global warming
 - → climate projections until 2100 for multiple RCPs
 - predicted temperature and precipitation changes span a large range

Pros of Bias Correction

- Provide realistic climate data
- Compare observed and simulated impacts during historical reference period
- Smooth transition into future
- Activation-threshold behavior
- More detailed altitude information
- Variance of downscaled data

Cons of Bias Correction

- Quality of observational data limits quality of correction
- Errors of major circulation system cannot be corrected
- Stationarity must be assumed
- Even most basic methods may destroy physical consistency
- Potential to change the trend (i.e., if mean and variablility are adjusted the climate signal is changed)

In ISI-MIP we modified the method of statistical bias correction described by Piani et al (2010) to preserve the trend

Bias correction - Methodology

- Construction period: 01-01-1960 12-31-1999
- Application period: 01-01-1950 12-31-2099
- Model data corrected to Watch Forcing Data [WFD]
- Interpolation of GCM data to 0.5° grid and standard calendar
- Two steps:
 - Correction of long-term monthly mean
 - Adjustment of daily variability
- Trend of temporally interpolated data is preserved with respect to the monthly mean

Temperature Algorithm – Step 1

- Aim: Preserve absolute trend
- 40 year long-term mean of average temperature for each month calculated from GCM and WFD

$$\delta_{j} = \underset{ik}{mean}(tas_{ijk}^{WFD}) - \underset{ik}{mean}(tas_{ijk}^{GCM})$$

$$i...day, j...month, k...year$$

 Constant offset to adjust the reference starting level to observational data

$$\overline{tas'}_{jk} = \underset{i}{mean}(tas_{ijk}^{GCM}) - \delta_j = \overline{tas}_{jk} - \delta_j$$

Temperature Algorithm – Step 2

Remove actual montly means

$$\Delta tas_{ijk} = tas_{ijk} - \overline{tas}_{jk}$$

$$tas_{jk} = \underset{i}{mean}(tas_{ijk})$$

$$i...day, j...month, k...year$$

for WATCH and GCM (construction/application period)

Temperature Algorithm – Step 2

Construct linear transfer function for the residuals

Apply transfer function to residuals and add old monthly mean

$$tas_{ijk}^{GCM} = \delta_j + b \cdot \Delta tas_{ijk}^{GCM} + tas_{jk}^{GCM} + tas_{jk}^{GCM}$$

 $i...day, j...month, k...year,$

 δ_{j} ...longterm mean, b...slope, tas_{jk} ...monthly mean

Precipitation Algorithm - Step 1

- Multiplicative correction due to positivity constraints
- Aim: Preserve the relative trend
- Correct frequency of dry days and dry months
 - 40 year long-term mean

$$\rho_{j} = \underset{ik}{mean}(pr_{ijk}^{WFD}) / \underset{ik}{mean}(pr_{ijk}^{GFD})$$

i...day, j...month, k...year

 Constant ratio to adjust reference starting level

$$\frac{-pr'_{jk}}{pr'_{jk}} = \rho_j \cdot pr_{jk}$$

Precipitation Algorithm – Step 2

Precipitation Algorithm – Step 2

- Derive a (nonlinear) transfer function from the normalized values
 - → Choose linear or exponential fit

Ongoing challenges

- Classification of dry months and dry days
- Ratio of 40 year monthly mean ρ_j
 - can be zero in very dry regions or blow up
- Multiplicative correction
 - → unphysically high daily precipitation values
- Drizzle days truncated to adjust frequency of dry days
 - → reduced monthly mean
 - → redistribution of rain
- Adjust daily variability of normalized data → mean affected
- No correction of monthly variability
 - → some GCM exhibit highly unrealistic monthly variability

Correction of other variables

- Pressure, radiation and total wind use precipitation algorithm to preserve relative trend
- Minimal and maximal daily temperature corrected by a factor preserving the distance to the average temperature
- Snowfall corrected as fraction of total precipitation
- Wind components corrected with the same factor as total wind

Summary – Bias correction status

variable	monthly mean	daily variance
tas	additive	additive
tasmin/tasmax	from tas	from tas
pr	multiplicative	only partially
prsn	from pr	only partially
rlds/rsds/ps/wind	multiplicative	only partially

- Validate extended multiplicative algorithm
 - → ISI-MIP fast track & amended bias corrected climate input will be made available to the public
- Integration to Climate and Environmental Retrieval and Archive (CERA) is scheduled for spring 2013

http://http://www.dkrz.de/daten/

Thank You

http://www.isi-mip.org/

Temperature Trend

 New method preserve absolute temperature trend of GCM (2091-1961)

Precipitation Trend – Deviation to GCM output

- Relative trend (2091/1961) of GCM is almost preserved
- Small deviations due to temporal interpolation
- If monthly mean zero in one year / dataset then no comparison

Adjustment of daily rainfall distribution

World map of interquantile distance (1960-1999, Jan)

Adjustment of daily rainfall distribution

Research Questions

- What are the impact projections in agriculture, water, biomes, health and infastructure sectors at different levels of global warming?
- How big is the uncertainty arising from different climate inputs and individual impact models?

http://www.isi-mip.org/

Method

- Inter-Sectoral Impact Model Intercomparison project
- Common climate (and socio-economic) input
- Different climate models, scenarios and impact models
- Trend-preserving bias correction

http://www.isi-mip.org/

