EINFÜHRUNG IN DIE GEOMETRIE UND TOPOLOGIE Blatt 1

Jendrik Stelzner

18. April 2014

Aufgabe 1.4:

(a)

Für alle $x, y \in X$ ist

$$d'(x,y) = 0 \Leftrightarrow \frac{d(x,y)}{d(x,y)+1} = 0 \Leftrightarrow d(x,y) = 0 \Leftrightarrow x = y$$

und

$$d'(x,y) = \frac{d(x,y)}{d(x,y)+1} = \frac{d(y,x)}{d(y,x)+1} = d'(y,x),$$

da d eine Metrik auf X ist. Die Dreiecksungleichung für d' ergibt sich aus der Dreiecksungleichung für d durch

$$\begin{split} d'(x,z) &= \frac{d(x,z)}{d(x,z)+1} = 1 - \frac{1}{d(x,z)+1} \le 1 - \frac{1}{d(x,y)+d(y,z)+1} \\ &= \frac{d(x,y)+d(y,z)}{1+d(x,y)+d(y,z)} = \frac{d(x,y)}{1+d(x,y)+d(y,z)} + \frac{d(y,z)}{1+d(x,y)+d(y,z)} \\ &\le \frac{d(x,y)}{1+d(x,y)} + \frac{d(y,z)}{1+d(y,z)} = d'(x,y) + d'(y,z) \end{split}$$

für alle $x, y, z \in X$. Das zeigt, dass d'' eine Metrik auf X ist.

(b)

Für alle $x, y \in X$ ist

$$d''(x,y) = 0 \Leftrightarrow \min\{d(x,y), 1\} = 0 \Leftrightarrow d(x,y) = 0 \Leftrightarrow x = y$$

und

$$d''(x,y) = \min\{d(x,y), 1\} = \min\{d(y,x), 1\} = d''(y,x),$$

da deine Metrik auf Xist. Die Dreiecksungleichung für $d^{\prime\prime}$ ergibt sich aus der Dreiecksungleichung für d durch

$$\begin{split} d''(x,z) &= \min\{d(x,z),1\} \leq \min\{d(x,y) + d(y,z),1\} \\ &\leq \min\{d(x,y),1\} + \min\{d(y,z),1\} = d''(x,y) + d''(y,z) \end{split}$$

für alle $x, y, z \in X$. Dabei haben wir genutzt, dass

$$\min\{a+b,c\} \leq \min\{a+b,a+c,c+b,2c\} = \min\{a,c\} + \min\{b,c\}$$

für alle $a, b, c \ge 0$.

(c)

Es ist klar, dass d und d'' die gleich Topologie induzieren, denn für eine Teilmenge $U\subseteq X$ und einen Punkt $x\in U$ gibt es genau dann ein $\varepsilon>0$ mit $B_\varepsilon(x)\subseteq U$, wenn es ein $0<\varepsilon'\le 1$ mit $B_{\varepsilon'}(x)\subseteq U$ gibt. (Existiert ein solches ε' , so kann man $\varepsilon=\varepsilon'$ wählen; existiert ein solches ε , so kann man $\varepsilon'=\min\{\varepsilon,1\}$ wählen.)

d' und d'' induzieren die gleiche Topologie auf X, da

$$d'(x,y) \le d''(x,y) \le 2d'(x,y)$$
 für alle $x, y \in X$,

was sich aus

$$\frac{a}{a+1} \leq \min\{a,1\} \leq \frac{2a}{a+1} \text{ für alle } a \geq 0.$$

ergibt.

Der erste Teil der Ungleichung folgt daraus, dass für alle $a \geq 0$

$$\frac{a}{a+1} \le a \text{ und } \frac{a}{a+1} \le 1$$

und damit

$$\frac{a}{a+1} \le \min\{a,1\}.$$

Der zweite Teil der Ungleichung ergibt sich wegen

$$\min\{a,1\} \leq \frac{2a}{a+1} \Leftrightarrow (a+1)\min\{a,1\} \leq 2a \text{ für alle } a \geq 0$$

durch eine einfache Fallunterscheidung: Für $0 \leq a < 1$ ist

$$(a+1)a \le 2a \Leftrightarrow a(1-a) \ge 0$$
,

was offenbar gilt, und für $a \geq 1$ ist

$$a+1 \le 2a \Leftrightarrow a \ge 1$$
.

Das zeigt, dass auch d' und d'' die gleiche Topologie induzieren.