TEMA 2

CIRCUITOS COMBINACIONALES MSI

CLASIFICACIÓN DE LOS CIRCUITOS INTEGRADOS DIGITALES.-

Circuitos SSI: Baja escala de integración. Chips con menos de 12 puertas (74...)

Circuitos MSI: Mediana escala de integración. Entre 12 y 99 puertas (Decodificadores...)

Circuitos LSI: Alta escala de integración. De entre 100 y 10.000 puertas lógicas (Memorias...)

Circuitos VLSI: muy alta escala de integración. De 10.000 a 99.999 puertas (Microcontroladores)

ULSI (Ultra Large Scale Integration). Entre 100.000 a 999.999

GSI (Giga Scale Integration). 1.000.000 o más puertas.

CIRCUITOS COMBINACIONALES MSI

Un circuito digital combinacional es aquel circuito digital con una serie de entradas y salidas en el que los valores que toman las salidas en un instante dependen únicamente de los valores que tomen las entradas en ese mismo

CIRCUITOS COMBINACIONALES MSI

Circuitos de comunicación son los que sirven tanto para transmitir información por una línea cómo para modificar la estructura de dicha información.

Circuitos Aritméticos realizan operaciones aritméticas con datos binarios

Circuitos de comunicación

- -Decodificadores
- -Convertidores de código
- -Multiplexores
- -Demultiplexores

Circuitos Aritméticos

- Sumadores
- Comparadores
- Restadores

DECODIFICADORES

DECODIFICADORES

Son circuitos combinacionales M.S.I. con n entradas y hasta 2ⁿ salidas y que funcionan activando la salida correspondiente a la combinación binaria presente en las entradas.

La salida puede ser activada con ceros o con unos.

Decodificador de 2 entradas a 4 salidas.

Entrada (Código binario)		Salida decodificada			
В	А	S ₃	S ₂	S ₁	S ₀
0	0	0	0	0	1
0	1	0	0	1	0
1	0	0	1	0	0
1	1	1	0	0	0

Decodificador binario con entrada de habilitación

G	В	Α	S ₃	S ₂	S ₁	S ₀
0	Х	Х	0	0	0	0
	0	0	0	0	0	1
1	0	1	0	0	1	0
1	1	0	0	1	0	0
	1	1	1	0	0	0

Circuito esquemático

Decodificador 3-8

Е	A_2	A ₁	A_0	SALIDA
0	X	X	X	0
1	0	0	0	Q_0
1	0	0	1	Q_1
1	0	1	0	Q_2
1	0	1	1	Q_3
1	1	0	0	Q ₄
1	1	0	1	Q_5
1	1	1	0	Q_6
1	1	1	1	Q ₇

Se pueden considerar dos grupos de decodificadores:

• No excitadores, generadores de funciones lógicas.

• Excitadores, BCD a display de 7 segmentos.

Decodificadores no excitadores:

Realizan la función inversa a los codificadores. Es decir, que son sistemas con un conjunto de "n" variables binaria de entrada y "2" variables de salida. Para cada combinación de entrada se activa una sola salida

Decodificadores excitadores:

Se aparta de la definición general ya que cada combinación de valores de las entradas activa varias salidas, en lugar de una sola.

74155-74156 74137 74145

Formas comerciales

Decodificadores 2 a 4

74x139: Dual 2 to 4 Decoder / Demultiplexer

74x155: Dual 2 to 4 Line Decoder / 3 to 8 Line Decoder

INPU	JTS		OUTPUTS				
ENABLE	SELECT		\overline{Y}_0	_ Y ₁	- Y ₂	_ Y ₃	SELECTED
G	В	Α	'0	'1	12	13	
Н	Х	Х	Н	Н	Н	Н	NONE
L	L	L	(L)	Η	Η	Н	\overline{Y}_0
L	L	Н	Н		Н	Н	\overline{Y}_1
L	Н	L	Н)I		Ξ(\overline{Y}_2
L	Н	Н	Н	Н) =		\overline{Y}_3

Decodificador 4 a 16 MSI. 74154

IMPLEMENTACIÓN DE FUNCIONES LÓGICAS CON DECODIFICADORES

Implementación de funciones: con decodificadores (I)

- Salidas activas a nivel alto => generador de minitérminos
- Suma de productos = suma de minitérminos

A	В	С	F
0	0	0	1
0	0	1	1 0
0 0 0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	0
1 1 1 1	1	0	1 1
1	1	1	1

Se necesitan puertas de tantas entradas como 1's hay

Implementación de funciones lógicas usando decodificadores

• $C=\Sigma x,y,z(2,3,6,7)$ C=x'yz'+x'yz+xyz'+xyz

Implementación de funciones: con decodificadores (II)

- Si una función tiene muchos 1's, es preferible implementar la función complementaria, que tendrá pocos 1's, y finalmente complementar la complementaria.
- En la práctica esto equivale a coger un puerta NOR (OR seguida de inversor) con los 0's

Implementación de funciones: con decodificadores (III)

- Salidas activas a nivel bajo => generador de maxitérminos
- Producto de sumas = producto de maxitérminos

A	В	С	F
0	0	0	1 0
0	0	1	0
0	1	0	1
0	1	1	1 0
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

Implementación de funciones: con decodificadores (IV)

- Si una función tiene muchos 1's, es preferible implementar la función complementaria, que tendrá pocos 1's, y finalmente complementar la complementaria.
- En la práctica equivale a coger un puerta AND (NAND seguida de inversor) con los 0's

Ejemplo

$$Z = f(A,B,C) = \sum m(2,3,5,6,7)$$

Ejemplo

$$Z = f(A, B, C) = \sum m(2,3,5,6,7)$$

Realizar la función $f(a,b,c) = \sum (0,1,4,6,7)$ de las siguientes formas:

Utilizando un decodificador con salidas activas en nivel alto y puertas OR Con un decodificador con salidas activas en alto y puertas NOR Utilizando un decodificador con salidas activas en nivel bajo y puertas AND Utilizando un decodificador con salidas activas en bajo y puertas NAND

■ Decodificador 3x8 a partir de decodificadores 2x4

Conexion de decodificadores en paralelo

 Construir un decodificador de 4 a 16 con dos deco
 3 a 8

■ Decodificador 4x16 a partir DEC 2x4 de decodificadores 2x4 DEC 2x4 A, 1 DEC 2x4 0 DEC 2x4 $-D_{12}$ 2x4 3 -D15