Implied conditional moments by Cornish-Fisher expansion and their applications

Ningning Zhang and Ke Zhu

University of Hong Kong

August 19, 2021

Outline

Introduction

Motivation

Methodology

Implied conditional moments

Quantiles estimation methods

Validity checks for implied conditional moments

Selection of quantile levels

Simulations

Simulated data

Basic results

Sensitivity on conditional quantiles

Sensitivity on quantile levels

Applications

Inference for the unknown news impact functions Interaction effects among conditional moments

Conclusions

Outline

Introduction

Motivation

Methodology

Implied conditional moments

Quantiles estimation methods

Validity checks for implied conditional moments

Selection of quantile levels

Simulations

Simulated data

Basic results

Sensitivity on conditional quantiles

Sensitivity on quantile levels

Applications

Inference for the unknown news impact functions Interaction effects among conditional moments

Conclusions

Important conditional moments

In many applications, it is crucially important to investigate the conditional moments of financial time series over time. Consider $y_t \in \mathbb{R}$, and let $\mathcal{F}_t = \sigma(y_s; s \leqslant t)$ denote the available information at time t. Given \mathcal{F}_{t-1} , the conditional mean, variance, skewness and kurtosis of y_t are defined by

$$\mu_{t} = E(y_{t}|\mathcal{F}_{t-1}),
h_{t} = Var(y_{t}|\mathcal{F}_{t-1}),
s_{t} = E((\frac{y_{t} - \mu_{t}}{\sqrt{h_{t}}})^{3}|\mathcal{F}_{t-1}),
k_{t} = E((\frac{y_{t} - \mu_{t}}{\sqrt{h_{t}}})^{4}|\mathcal{F}_{t-1}).$$
(1.1)

Conditional mean μ_t and conditional variance h_t

As for the conditional mean μ_t , the time-varing μ_t may support us to challenge the efficient market hypothesis in Fama (1970, JOF). If μ_t is tested to have dynamic structure, we could use a linear model (e.g., the autoregressive moving-average model) or a nonlinear model (e.g., the threshold autoregressive model) to study μ_t .

Conditional mean μ_t and conditional variance h_t

- As for the conditional mean μ_t , the time-varing μ_t may support us to challenge the efficient market hypothesis in Fama (1970, JOF). If μ_t is tested to have dynamic structure, we could use a linear model (e.g., the autoregressive moving-average model) or a nonlinear model (e.g., the threshold autoregressive model) to study μ_t .
- For the conditional variance h_t , it plays an important role in the option pricing, derivative pricing, portfolio selection and risk management. It has been widely used as a proxy for risk in financial returns. In the literature, many parametric models are proposed to study the dynamic structures of h_t , such as the generalized autoregressive conditional heterosecdasticity (GARCH) model and its variants (see Engle (1982, Econometrica)).

Recently, a large body of literature have showed that the conditional skewness s_t and kurtosis k_t can capture the asymmetry and tail-fatness of returns.

- Recently, a large body of literature have showed that the conditional skewness s_t and kurtosis k_t can capture the asymmetry and tail-fatness of returns.
- ► The seminal work in Harvey (2000, JOF) showed that the higher skewness tends to imply lower expected returns.

- Recently, a large body of literature have showed that the conditional skewness s_t and kurtosis k_t can capture the asymmetry and tail-fatness of returns.
- ► The seminal work in Harvey (2000, JOF) showed that the higher skewness tends to imply lower expected returns.
- The conditional kurtosis is also getting more and more attention since it can be regarded as the variance of variance and served as a judgment for the modeling of returns and conditional variance.

- Recently, a large body of literature have showed that the conditional skewness s_t and kurtosis k_t can capture the asymmetry and tail-fatness of returns.
- ► The seminal work in Harvey (2000, JOF) showed that the higher skewness tends to imply lower expected returns.
- The conditional kurtosis is also getting more and more attention since it can be regarded as the variance of variance and served as a judgment for the modeling of returns and conditional variance.
- Yet, only several research works have been involved in the study of conditional skewness and kurtosis (see e.g., Harvey and Siddique (1999, JFQA), Jondeau and Rockinger (2003, JEDC)), which lacks the study compared with a wealth of research for conditional variance.

In the above-mentioned pioneering studies, some parametric models are assumed for μ_t , h_t , s_t and k_t , and they are usually estimated altogether. However, we have the following challenges in practice, model mis-specification risk and computation burden.

- In the above-mentioned pioneering studies, some parametric models are assumed for μ_t , h_t , s_t and k_t , and they are usually estimated altogether. However, we have the following challenges in practice, model mis-specification risk and computation burden.
- We propose a new novel method to imply the conditional moments μ_t , h_t , s_t and k_t without specifying any parametric models. In this manner, the model mis-specification risk and computation burden in the existing methods could be largely alleviated.

- In the above-mentioned pioneering studies, some parametric models are assumed for μ_t , h_t , s_t and k_t , and they are usually estimated altogether. However, we have the following challenges in practice, model mis-specification risk and computation burden.
- We propose a new novel method to imply the conditional moments μ_t , h_t , s_t and k_t without specifying any parametric models. In this manner, the model mis-specification risk and computation burden in the existing methods could be largely alleviated.
- ► The greatest strength of the implied conditional moments is that they enable us to imply the conditional moments without any parametric assumptions, and the estimation errors in these implied conditional moments are expected to be small once the conditional quantiles are chosen appropriately.

Outline

Introduction

Motivation

Methodology

Implied conditional moments

Quantiles estimation methods Validity checks for implied conditional moments Selection of quantile levels

Simulations

Simulated data

Basic results

Sensitivity on conditional quantiles

Sensitivity on quantile levels

Applications

Inference for the unknown news impact functions Interaction effects among conditional moments

Conclusions

Given \mathcal{F}_{t-1} , $Q_t(\alpha)$ denotes the conditional quantile of y_t at quantile level α . By the Cornish-Fisher (CF) expansion (see Cornish and Fisher (1938, ISI)), we have

$$Q_t(\alpha) = \mu_t + \sqrt{h_t}\omega_t(\alpha), \qquad (2.1)$$

where

$$\omega_t(\alpha) = x + (x^2 - 1)\frac{s_t}{6} + (x^3 - 3x)\frac{k_t}{24}$$

+ remaining terms on the higher-order conditional moments, (2.2)

and $x = \Phi^{-1}(\alpha)$ with $\Phi(\cdot)$ being the unit normal distribution N(0,1). By ignoring the remaining terms in (2.2), the results in (2.1)-(2.2) imply

$$Q_t(\alpha) \approx \mu_t + \sqrt{h_t} [x + (x^2 - 1)\frac{s_t}{6} + (x^3 - 3x)\frac{k_t}{24}].$$
 (2.3)

Taking four different quantile levels α_i , i=1,2,3,4, the result in (2.3) entails that for each t,

$$\begin{pmatrix} Q_{t}(\alpha_{1}) \\ Q_{t}(\alpha_{2}) \\ Q_{t}(\alpha_{3}) \\ Q_{t}(\alpha_{4}) \end{pmatrix} - \begin{pmatrix} 1 & x_{1} & \frac{x_{1}^{2}-1}{6} & \frac{x_{1}^{3}-3x_{1}}{24} \\ 1 & x_{2} & \frac{x_{2}^{2}-1}{6} & \frac{x_{2}^{3}-3x_{2}}{24} \\ 1 & x_{3} & \frac{x_{3}^{2}-1}{6} & \frac{x_{3}^{3}-3x_{3}}{24} \\ 1 & x_{4} & \frac{x_{4}^{2}-1}{6} & \frac{x_{4}^{3}-3x_{4}}{24} \end{pmatrix} \begin{pmatrix} \mu_{t} \\ \sqrt{h_{t}} s_{t} \\ \sqrt{h_{t}} s_{t} \\ \sqrt{h_{t}} k_{t} \end{pmatrix} \triangleq \mathbf{Q}_{t} - \mathbf{X} \mathbf{M}_{t} \approx 0.$$

$$(2.4)$$

where $x_i = \Phi^{-1}(\alpha_i)$ for i = 1, 2, 3, 4. In view of (2.4), it motivates us to estimate \mathbf{M}_t by

$$\widehat{\boldsymbol{M}}_{t} \triangleq (\widehat{M}_{1t}, \widehat{M}_{2t}, \widehat{M}_{3t}, \widehat{M}_{4t})' = \boldsymbol{X}^{-1} \boldsymbol{Q}_{t}, \tag{2.5}$$

provided that \boldsymbol{X} is invertible. Using $\widehat{\boldsymbol{M}}_t$, we then can estimate μ_t , h_t , s_t , and k_t by

$$\widehat{\mu}_t = \widehat{M}_{1t}$$
, $\widehat{h}_t = \widehat{M}_{2t}^2$, $\widehat{s}_t = \widehat{M}_{3t}/\widehat{M}_{2t}$, and $\widehat{k}_t = \widehat{M}_{4t}/\widehat{M}_{2t} + 3$. (2.6)

▶ First, the implied conditional moments are easily obtained by the simple linear equations, which is tractable once $Q_t(\alpha)$ could be provided.

- First, the implied conditional moments are easily obtained by the simple linear equations, which is tractable once $Q_t(\alpha)$ could be provided.
- Second, the implied conditional moments do not depend on any parametric models for conditional moments. Thus, we can examine the validity of some specified parametric models visa our implied conditional moments.

- First, the implied conditional moments are easily obtained by the simple linear equations, which is tractable once $Q_t(\alpha)$ could be provided.
- Second, the implied conditional moments do not depend on any parametric models for conditional moments. Thus, we can examine the validity of some specified parametric models visa our implied conditional moments.
- ▶ Third, the implied conditional moments can apply to the non-stationary and heteroscedastic data as long as the valid $Q_t(\alpha)$ is obtained in this case.

- First, the implied conditional moments are easily obtained by the simple linear equations, which is tractable once $Q_t(\alpha)$ could be provided.
- Second, the implied conditional moments do not depend on any parametric models for conditional moments. Thus, we can examine the validity of some specified parametric models visa our implied conditional moments.
- ▶ Third, the implied conditional moments can apply to the non-stationary and heteroscedastic data as long as the valid $Q_t(\alpha)$ is obtained in this case.
- ▶ Fourth, the idea of implied conditional moments can be extended to the multivaraite or high dimensional cases, once the corresponding $Q_t(\alpha)$ for each univariate entry is fairly provided.

Outline

Introduction

Motivation

Methodology

Implied conditional moments

Quantiles estimation methods

Validity checks for implied conditional moments Selection of quantile levels

Simulations

Simulated data

Basic results

Sensitivity on conditional quantiles

Sensitivity on quantile levels

Applications

Inference for the unknown news impact functions Interaction effects among conditional moments

Conclusions

Quantiles estimation methods

Quantiles estimation methods

- Univariate case:
 - Conditional Autoregressive Value at Risk (CAViaR) in Engle and Manganelli (2004, JBES)
 - 1. Adaptive:

$$Q_t(\alpha) = Q_{t-1}(\alpha) + \beta_1 \{ [1 + \exp(G[y_{t-1} - Q_{t-1}(\alpha)])]^{-1} - \alpha \}.$$

2. Symmetric absolute value:

$$Q_t(\alpha) = \beta_1 + \beta_2 Q_{t-1}(\alpha) + \beta_3 |y_{t-1}|.$$

3. Asymmetric slope:

$$Q_t(\alpha) = \beta_1 + \beta_2 Q_{t-1}(\alpha) + \beta_3 (y_{t-1})^+ + \beta_4 (y_{t-1})^-.$$

4. Indirect GARCH(1,1):

$$Q_t(\alpha) = (\beta_1 + \beta_2 Q_{t-1}^2(\alpha) + \beta_3 y_{t-1}^2)^{1/2}.$$

- Quantile Autoregression (QAR) in Xiao and Koenker (2009, JASA)
 - 5. QAR(1):

$$Q_t(\alpha) = \theta_0(\alpha) + \theta_1(\alpha)y_{t-1}$$

Quantiles estimation methods

- Univariate case:
 - Conditional Autoregressive Value at Risk (CAViaR) in Engle and Manganelli (2004, JBES)
 - 1. Adaptive:

$$Q_t(\alpha) = Q_{t-1}(\alpha) + \beta_1 \{ [1 + \exp(G[y_{t-1} - Q_{t-1}(\alpha)])]^{-1} - \alpha \}.$$

2. Symmetric absolute value:

$$Q_t(\alpha) = \beta_1 + \beta_2 Q_{t-1}(\alpha) + \beta_3 |y_{t-1}|.$$

Asymmetric slope:

$$Q_t(\alpha) = \beta_1 + \beta_2 Q_{t-1}(\alpha) + \beta_3 (y_{t-1})^+ + \beta_4 (y_{t-1})^-.$$

4. Indirect GARCH(1,1):

$$Q_t(\alpha) = (\beta_1 + \beta_2 Q_{t-1}^2(\alpha) + \beta_3 y_{t-1}^2)^{1/2}.$$

- Quantile Autoregression (QAR) in Xiao and Koenker (2009, JASA)
 - 5. QAR(1):

$$Q_t(\alpha) = \theta_0(\alpha) + \theta_1(\alpha)y_{t-1}$$

Multivariate case:

Multivariate Quantile Autoregression (MQAR) in White et al. (2015, JOE)

$$Q_{1t}(\alpha) = X_{t}^{'}\beta_{1} + b_{11}Q_{1t-1}(\alpha) + b_{12}Q_{2t-1}(\alpha),$$

$$Q_{2t}(\alpha) = X_{t}^{'}\beta_{2} + b_{21}Q_{1t-1}(\alpha) + b_{22}Q_{2t-1}(\alpha),$$

Outline

Introduction

Motivation

Methodology

Implied conditional moments

Quantiles estimation methods

Validity checks for implied conditional moments

Selection of quantile levels

Simulations

Simulated data

Basic results

Sensitivity on conditional quantiles

Sensitivity on quantile levels

Applications

Inference for the unknown news impact functions Interaction effects among conditional moments

Conclusions

Among those implied conditional moments by different quantile estimation methods, how can we find the best one?

- Among those implied conditional moments by different quantile estimation methods, how can we find the best one?
- This gives us the motivation to check the validity of the implied conditional moments based on some regression-based tests. To illustrate the testing idea, we consider a regression model for $\hat{\mu}_t$:

$$y_t = a_1^{\mu} + a_2^{\mu} \hat{\mu}_t + \epsilon_t^{\mu}. \tag{2.7}$$

- Among those implied conditional moments by different quantile estimation methods, how can we find the best one?
- This gives us the motivation to check the validity of the implied conditional moments based on some regression-based tests. To illustrate the testing idea, we consider a regression model for $\hat{\mu}_t$:

$$y_t = a_1^{\mu} + a_2^{\mu} \hat{\mu}_t + \epsilon_t^{\mu}. \tag{2.7}$$

We use the heteroscedasticity-robust Wald test W_{μ} in the spirit of Mincer and Zarnowitz (1969, NBER), White (1980, Econometrica), Pagan and Schwert (1990, JOE) to detect the null hypothesis

$$H_0^\mu: a_1^\mu=0 \ {
m and} \ a_2^\mu=1.$$

- Among those implied conditional moments by different quantile estimation methods, how can we find the best one?
- This gives us the motivation to check the validity of the implied conditional moments based on some regression-based tests. To illustrate the testing idea, we consider a regression model for $\hat{\mu}_t$:

$$y_t = a_1^{\mu} + a_2^{\mu} \hat{\mu}_t + \epsilon_t^{\mu}. \tag{2.7}$$

▶ We use the heteroscedasticity-robust Wald test W_{μ} in the spirit of Mincer and Zarnowitz (1969, NBER), White (1980, Econometrica), Pagan and Schwert (1990, JOE) to detect the null hypothesis

$$H_0^{\mu}: a_1^{\mu} = 0 \text{ and } a_2^{\mu} = 1.$$

▶ If H_0^{μ} is rejected by W_{μ} , then we conclude that $\hat{\mu}_t$ is invalid; otherwise, we conclude that $\hat{\mu}_t$ is valid.

- Among those implied conditional moments by different quantile estimation methods, how can we find the best one?
- This gives us the motivation to check the validity of the implied conditional moments based on some regression-based tests. To illustrate the testing idea, we consider a regression model for $\hat{\mu}_t$:

$$y_t = a_1^{\mu} + a_2^{\mu} \hat{\mu}_t + \epsilon_t^{\mu}. \tag{2.7}$$

▶ We use the heteroscedasticity-robust Wald test W_{μ} in the spirit of Mincer and Zarnowitz (1969, NBER), White (1980, Econometrica), Pagan and Schwert (1990, JOE) to detect the null hypothesis

$$H_0^{\mu}: a_1^{\mu} = 0 \text{ and } a_2^{\mu} = 1.$$

- ▶ If H_0^{μ} is rejected by W_{μ} , then we conclude that $\hat{\mu}_t$ is invalid; otherwise, we conclude that $\hat{\mu}_t$ is valid.
- **b** By applying this test to all choices of $\hat{\mu}_t$ from different quantile estimation methods, we select the best one with the largest p-value.

Following the similar idea, we can further check the validity of \hat{h}_t , \hat{s}_t , and \hat{k}_t by introducing three regression models

$$(y_{t} - \hat{\mu}_{t})^{2} = a_{1}^{h} + a_{2}^{h} \hat{h}_{t} + \epsilon_{t}^{h},$$

$$(\frac{y_{t} - \hat{\mu}_{t}}{\hat{h}_{t}^{1/2}})^{3} = a_{1}^{s} + a_{2}^{s} \hat{s}_{t} + \epsilon_{t}^{s},$$

$$(\frac{y_{t} - \hat{\mu}_{t}}{\hat{h}_{t}^{1/2}})^{4} = a_{1}^{k} + a_{2}^{k} \hat{k}_{t} + \epsilon_{t}^{k}.$$
(2.8)

▶ Then construct three heteroscedasticity-robust Wald tests W_h , W_s , and W_k , respectively, to detect three null hypotheses

$$H_0^h: a_1^h = 0 \text{ and } a_2^h = 1,$$

 $H_0^s: a_1^s = 0 \text{ and } a_2^s = 1,$
 $H_0^k: a_1^k = 0 \text{ and } a_2^k = 1.$ (2.9)

Following the similar idea, we can further check the validity of \hat{h}_t , \hat{s}_t , and \hat{k}_t by introducing three regression models

$$(y_{t} - \hat{\mu}_{t})^{2} = a_{1}^{h} + a_{2}^{h} \hat{h}_{t} + \epsilon_{t}^{h},$$

$$(\frac{y_{t} - \hat{\mu}_{t}}{\hat{h}_{t}^{1/2}})^{3} = a_{1}^{s} + a_{2}^{s} \hat{s}_{t} + \epsilon_{t}^{s},$$

$$(\frac{y_{t} - \hat{\mu}_{t}}{\hat{h}_{t}^{1/2}})^{4} = a_{1}^{k} + a_{2}^{k} \hat{k}_{t} + \epsilon_{t}^{k}.$$
(2.8)

▶ Then construct three heteroscedasticity-robust Wald tests W_h , W_s , and W_k , respectively, to detect three null hypotheses

$$H_0^h: a_1^h = 0 \text{ and } a_2^h = 1,$$

 $H_0^s: a_1^s = 0 \text{ and } a_2^s = 1,$
 $H_0^s: a_1^h = 0 \text{ and } a_2^h = 1.$ (2.9)

Since W_h depends on $\hat{\mu}_t$, and W_s (or W_k) depends on $\hat{\mu}_t$ and \hat{h}_t , we will implement W_μ , W_h , and W_s (or W_k) sequentially. That is, we first apply W_μ to pick up the best $\hat{\mu}_t$, and then use this best $\hat{\mu}_t$ to compute W_h whereby the best \hat{h}_t is chosen. In the end, we implement W_s and W_k analogically based on the best $\hat{\mu}_t$ and \hat{h}_t , to obtain the best \hat{s}_t and \hat{k}_t .

Outline

Introduction

Motivation

Methodology

Implied conditional moments
Quantiles estimation methods
Validity checks for implied conditional moments
Selection of quantile levels

Simulations

Simulated data

Basic results

Sensitivity on conditional quantiles

Sensitivity on quantile levels

Applications

Inference for the unknown news impact functions Interaction effects among conditional moments

Conclusions

Selection of quantile levels

► A natural question for our implied conditional moments is how to choose the optimal quantile levels.

Selection of quantile levels

- ► A natural question for our implied conditional moments is how to choose the optimal quantile levels.
- In practice, we recommend that the first two quantile levels and the last two quantile levels take values from the intervals [0.01, 0.10] and [0.90, 0.99], respectively. In this manner, the information from both left and right tails of the conditional distribution of y_t is taken into account.

Selection of quantile levels

- ► A natural question for our implied conditional moments is how to choose the optimal quantile levels.
- In practice, we recommend that the first two quantile levels and the last two quantile levels take values from the intervals [0.01, 0.10] and [0.90, 0.99], respectively. In this manner, the information from both left and right tails of the conditional distribution of y_t is taken into account.
- ▶ The specific procedure for selection of quantile levels:
 - 1. First, quantile levels $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ respectively take some values from the four intervals [0.01, 0.05], [0.06, 0.10], [0.90, 0.94], [0.95, 0.99] for a collection of quantile levels \mathcal{A} .
 - 2. For each pair of quantile levels in \mathcal{A} , the corresponding implied conditional moments could be obtained by our proposed method.
 - 3. Among various implied conditional moments, carry out the Wald tests W_{μ} , W_h , W_s , W_k for the validity of the implied conditional moments.
 - Finally, select the quantile level with highest p-values of the Wald tests of interest.

Outline

Introduction

Motivation

Methodology

Implied conditional moments

Quantiles estimation methods

Validity checks for implied conditional moments

Selection of quantile levels

Simulations

Simulated data

Basic results

Sensitivity on conditional quantiles

Sensitivity on quantile levels

Applications

Inference for the unknown news impact functions Interaction effects among conditional moments

Conclusions

Outline

Introduction

Motivation

Methodology

Implied conditional moments

Quantiles estimation methods

Validity checks for implied conditional moments

Selection of quantile levels

Simulations

Simulated data

Basic results

Sensitivity on conditional quantiles

Sensitivity on quantile levels

Applications

Inference for the unknown news impact functions Interaction effects among conditional moments

Conclusions

Simulated data

The following simulations adopt ARMA-MN-GARCH(1,1) model in Haas et al. (2004, JOFQA) to simulate the real data with sample size T=1500, and all experiments are carried out based on 1000 replications. Consider a time series Y_t is an ARMA process as

$$Y_t = a_0 + a_1 Y_{t-1} + \epsilon_t + b_1 \epsilon_{t-1},$$
 (3.1)

where ϵ_t refers to an MN-GARCH process

$$\epsilon_t \sim MN(\lambda_1, \lambda_2, \mu_1, \mu_2, \sigma_{1,t}^2, \sigma_{2,t}^2),$$
 (3.2)

where $\lambda_i \in (0,1)$, i=1,2, $\lambda_1+\lambda_2=1$, and $\mu_k=-\sum_{i=1}^{k-1}(\lambda_i/\lambda_k)\mu_i$, k=1,2. Further, for $\sigma_{1,t}^2$ and $\sigma_{2,t}^2$, we have

$$\begin{pmatrix} \sigma_{1,t}^2 \\ \sigma_{2,t}^2 \end{pmatrix} = \begin{pmatrix} \alpha_{10} \\ \alpha_{20} \end{pmatrix} + \begin{pmatrix} \alpha_{11} \\ \alpha_{21} \end{pmatrix} \epsilon_{t-1}^2 + \begin{pmatrix} \beta_{12} & 0 \\ 0 & \beta_{22} \end{pmatrix} \begin{pmatrix} \sigma_{1,t-1}^2 \\ \sigma_{2,t-1}^2 \end{pmatrix}. \quad (3.3)$$

Simulated data

Then, we have its theoretical conditional moments as:

$$\mu_{t}^{0} = \alpha_{0} + \alpha_{1} Y_{t-1} + b_{1} \epsilon_{t-1}$$

$$h_{t}^{0} = \lambda_{1} (\mu_{1}^{2} + \sigma_{1t}^{2}) + \lambda_{2} (\mu_{2}^{2} + \sigma_{2t}^{2}) - (\lambda_{1} \mu_{1} + \lambda_{2} \mu_{2})^{2}$$

$$s_{t}^{0} = \frac{\lambda_{1} (\mu_{1}^{3} + 3\sigma_{1t}^{2} \mu_{1}) + \lambda_{2} (\mu_{2}^{3} + 3\sigma_{2t}^{2} \mu_{2})}{(\lambda_{1} (\mu_{1}^{2} + \sigma_{1t}^{2}) + \lambda_{2} (\mu_{2}^{2} + \sigma_{2t}^{2}))^{3/2}};$$

$$k_{t}^{0} = \frac{\lambda_{1} (\mu_{1}^{4} + 6\mu_{1}^{2} \sigma_{1t}^{2} + 3\sigma_{1t}^{4}) + \lambda_{2} (\mu_{2}^{4} + 6\mu_{2}^{2} * \sigma_{2t}^{2} + 3\sigma_{2t}^{4})}{(\lambda_{1} (\mu_{1}^{2} + \sigma_{1t}^{2}) + \lambda_{2} (\mu_{2}^{2} + \sigma_{2t}^{2}))^{2}}$$

$$(3.4)$$

and its theoretical conditional quantiles as:

$$Q_t^0(\alpha) = \mu_t^0 + Q_t^{\epsilon}(\alpha), \tag{3.5}$$

where $Q_t^\epsilon(\alpha)$ satisfies $\lambda_1 F_t(Q_t^\epsilon(\alpha), \mu_1, \sigma_{1,t}) + \lambda_2 F_t(Q_t^\epsilon(\alpha), \mu_2, \sigma_{2,t}) = \alpha$, and $F_t(Q_t^\epsilon(\alpha), \mu_i, \sigma_{i,t})$ represents the normal curriculum distribution function with mean μ_i and standard deviation $\sigma_{i,t}$, evaluated at the values in $Q_t^\epsilon(\alpha)$, i=1,2.

Outline

Introduction

Motivation

Methodology

Implied conditional moments

Quantiles estimation methods

Validity checks for implied conditional moments

Selection of quantile levels

Simulations

Simulated data

Basic results

Sensitivity on conditional quantiles

Sensitivity on quantile levels

Applications

Inference for the unknown news impact functions Interaction effects among conditional moments

Conclusions

Basic results

- First, we generate 1000 sets of simulated data and utilize the theoretical conditional quantiles and CF expansion to estimate implied conditional moments.
- We compare our implied conditional moments with theoretical moments and investigate the accuracy by computing the root mean squared error (RMSE) as

$$\mathsf{RMSE}^{\mu} = \sqrt{\frac{\sum\limits_{t=1}^{T} (\mu_{t}^{0} - \hat{\mu}_{t})^{2}}{T}}, \mathsf{RMSE}^{h} = \sqrt{\frac{\sum\limits_{t=1}^{T} (h_{t}^{0} - \hat{h}_{t})^{2}}{T}},$$

$$\mathsf{RMSE}^{s} = \sqrt{\frac{\sum\limits_{t=1}^{T} (s_{t}^{0} - \hat{s}_{t})^{2}}{T}}, \mathsf{RMSE}^{k} = \sqrt{\frac{\sum\limits_{t=1}^{T} (k_{t}^{0} - \hat{k}_{t})^{2}}{T}}.$$

Basic results

Figure 1: The comparison of theoretical conditional moments and implied conditional moments.

Basic results: RMSE

Figure 2: The density of RMSEs between theoretical conditional moments and implied conditional moments.

Basic results: regression-based tests

Table 1: The relative frequencies (%) having valid implied conditional moments at 1%, 5%, and 10% confidence levels.

Confidence levels	Mean	Variance	Skewness	Kurtosis
1%	99.2000	97.2000	99.2000	80.9000
5%	94.6000	91.9000	95.4000	68.3000
10%	89.6000	85.2000	89.3000	61.0000

Remarks: The implied conditional moment is valid if its validity is not rejected by the related Wald test at a given confidence interval.

Outline

Introduction

Motivation

Methodology

Implied conditional moments
Quantiles estimation methods
Validity checks for implied conditional moments
Selection of quantile levels

Simulations

Simulated data Basic results

Sensitivity on conditional quantiles

Sensitivity on quantile levels

Applications

Inference for the unknown news impact functions Interaction effects among conditional moments

Conclusions

Sensitivity on conditional quantiles

In this part, we calculate implied conditional moments based on Q_t , where $Q_t = Q_t^0$ + white noise N(0, σ^2), and Q_t^0 is the theoretical conditional quantile.

Sensitivity on conditional quantiles

In this part, we calculate implied conditional moments based on Q_t , where $Q_t = Q_t^0$ + white noise N(0, σ^2), and Q_t^0 is the theoretical conditional quantile.

Figure 3: The plots of RMSEs between theoretical conditional moments and implied conditional moments using Q_t .

Sensitivity on conditional quantiles

Figure 4: At 1%, 5%, and 10% confidence levels, the relative frequencies (%) having valid implied conditional moments using Q_t .

Outline

Introduction

Motivation

Methodology

Implied conditional moments

Quantiles estimation methods

Validity checks for implied conditional moments

Selection of quantile levels

Simulations

Simulated data

Basic results

Sensitivity on conditional quantiles

Sensitivity on quantile levels

Applications

Inference for the unknown news impact functions Interaction effects among conditional moments

Conclusions

In the previous studies, we fix the quantile level $[\alpha_1, \alpha_2, \alpha_3, \alpha_4]$ as [0.025, 0.1, 0.9, 0.975] when implying the conditional moments. In this part, we investigate the sensitivity of our implied conditional moments on various quantile levels.

- In the previous studies, we fix the quantile level $[\alpha_1, \alpha_2, \alpha_3, \alpha_4]$ as [0.025, 0.1, 0.9, 0.975] when implying the conditional moments. In this part, we investigate the sensitivity of our implied conditional moments on various quantile levels.
- For the sake of simplicity, we set the four quantile levels taking values from the sets $\{0.01, 0.03, 0.05\}$, $\{0.06, 0.08, 0.10\}$, $\{0.90, 0.92, 0.94\}$ and $\{0.95, 0.97, 0.99\}$, respectively. In this manner, there are 81 different quantile levels.

- In the previous studies, we fix the quantile level $[\alpha_1, \alpha_2, \alpha_3, \alpha_4]$ as [0.025, 0.1, 0.9, 0.975] when implying the conditional moments. In this part, we investigate the sensitivity of our implied conditional moments on various quantile levels.
- For the sake of simplicity, we set the four quantile levels taking values from the sets $\{0.01,0.03,0.05\}$, $\{0.06,0.08,0.10\}$, $\{0.90,0.92,0.94\}$ and $\{0.95,0.97,0.99\}$, respectively. In this manner, there are 81 different quantile levels.
- We firstly simulate 1000 simulated data sets, and then respectively obtain the implied conditional moments by these 81 sets of quantile levels.

Figure 5: The plots of RMSEs between theoretical conditional moments and implied conditional moments across 81 different quantile levels.

Figure 6: At 1%, 5%, and 10% confidence levels, the plots of relative frequencies (%) having valid conditional moments across 81 different quantile levels.

Outline

Introduction

Motivation

Methodology

Implied conditional moments

Quantiles estimation methods

Validity checks for implied conditional moments

Selection of quantile levels

Simulations

Simulated data

Basic results

Sensitivity on conditional quantiles

Sensitivity on quantile levels

Applications

Inference for the unknown news impact functions Interaction effects among conditional moments

Conclusions

Outline

Introduction

Motivation

Methodology

Implied conditional moments

Quantiles estimation methods

Validity checks for implied conditional moments

Selection of quantile levels

Simulations

Simulated data

Basic results

Sensitivity on conditional quantiles

Sensitivity on quantile levels

Applications

Inference for the unknown news impact functions

Interaction effects among conditional moments

Conclusions

▶ Engle and Ng (1993, JOF) proposed the notion of "news impact function" to exploit how the conditional variance h_t is influenced by the shock ε_{t-1} , where $\varepsilon_t = y_t - \mu_t$. To be specific, suppose h_t could be modeled by

$$h_t = \theta_h h_{t-1} + g_2(\varepsilon_{t-1}), \tag{4.1}$$

in which $g_2(\cdot)$ is the so-called "news impact function", and $\theta_h \in (0,1)$ is the auto-regressive parameter of h_t .

▶ Engle and Ng (1993, JOF) proposed the notion of "news impact function" to exploit how the conditional variance h_t is influenced by the shock ε_{t-1} , where $\varepsilon_t = y_t - \mu_t$. To be specific, suppose h_t could be modeled by

$$h_t = \theta_h h_{t-1} + g_2(\varepsilon_{t-1}), \tag{4.1}$$

in which $g_2(\cdot)$ is the so-called "news impact function", and $\theta_h \in (0,1)$ is the auto-regressive parameter of h_t .

▶ (4.1) is the parent model of ARCH-type models, for example, the GARCH model with $g_2(x) = a_0 + a_1x^2$, the assymmetric GARCH model with $g_2(x) = a_0 + a_1(x + a_2)^2$, and the GJR model with $g_2(x) = a_0 + a_1x^2 + a_2x^2I(x < 0)$, to name just a few.

▶ So many ARCH-type models, which one should we use?

- So many ARCH-type models, which one should we use?
- Estimating θ_h and $g_2(\cdot)$ is difficult if h_t and ε_t are unobserved. Making use of $\hat{\mu}_t$ and \hat{h}_t , we propose a semiparametric implied conditional variance (lcv) model

$$\hat{h}_t = \theta_h \hat{h}_{t-1} + g_2(\hat{\varepsilon}_{t-1}) + \epsilon_t^{lcv}, \tag{4.2}$$

where $\hat{\varepsilon}_t = y_t - \hat{\mu}_t$, and ϵ_t^{lcv} denotes the error resulting from the substitution.

- So many ARCH-type models, which one should we use?
- Estimating θ_h and $g_2(\cdot)$ is difficult if h_t and ε_t are unobserved. Making use of $\hat{\mu}_t$ and \hat{h}_t , we propose a semiparametric implied conditional variance (lcv) model

$$\hat{h}_t = \theta_h \hat{h}_{t-1} + g_2(\hat{\varepsilon}_{t-1}) + \epsilon_t^{lcv}, \qquad (4.2)$$

where $\hat{\varepsilon}_t = y_t - \hat{\mu}_t$, and ϵ_t^{lcv} denotes the error resulting from the substitution.

- ► The specific procedure for the inference of unknown news impact function *g*₂:
 - First, the estimation \hat{g}_2 and $\hat{\theta}_h$ could be achieved by the classical semiparametric method (see Robinson (1988, Econometrica)) directly.
 - ▶ Based on \hat{g}_2 , we choose a reasonable parametric model to fit it.
 - ▶ Check the validity of the parametric hypothesis for g_2 as in Hardle and Mammen (1993, Ann. Stat).

► Following the similar idea, we can extend model (4.2) to the conditional skewness and kurtosis for checking their dynamic structures. Similarly, we consider the following models

$$s_{t} = \theta_{s} s_{t-1} + g_{3}(\eta_{t-1}),$$

$$k_{t} = \theta_{k} k_{t-1} + g_{4}(\eta_{t-1}),$$
(4.3)

where $g_3(\cdot)$ and $g_4(\cdot)$ denote the unknown "news impact functions" of conditional skewness and kurtosis, respectively. $\eta_t = (y_t - \mu_t)/\sqrt{h_t}$ serves as a normalized shock.

Similarly, we propose the following semiparametric implied conditional skewness (Ics) and implied conditional kurtosis (Ick) models, respectively, modeled by

$$\hat{s}_{t} = \theta_{s} \hat{s}_{t-1} + g_{3}(\hat{\eta}_{t-1}) + \epsilon_{t}^{lcs}, \hat{k}_{t} = \theta_{k} \hat{k}_{t-1} + g_{4}(\hat{\eta}_{t-1}) + \epsilon_{t}^{lck},$$
(4.4)

39 / 56

where ϵ_t^{lcs} and ϵ_t^{lck} denote the model errors resulting from the replacement. Then, conduct similar procedure for the inference of unknown news impact functions g_3 and g_4 .

Table 2: Quantile levels and p-values of validity checks for implied conditional moments of four stock indexes.

	S&P500	CAC	W5000	N225
quantile levels(α_1)	0.01	0.01	0.03	0.04
quantile levels (α_2)	0.10	0.09	0.06	0.06
quantile levels(α_3)	0.94	0.94	0.91	0.90
quantile levels(α_4)	0.96	0.97	0.96	0.98
p-values $(\hat{\mu}_t)$	0.9902	0.9312	0.9867	0.5250
p-values (\hat{h}_t)	0.9932	0.8467	0.7390	0.4147
p-values (\hat{s}_t)	0.3516	0.8237	0.9931	0.9103
p-values (\hat{k}_t)	0.1790	0.2403	0.1568	0.1740

Table 3: The implied news impact functions by the implied conditional moments.

	$g_2(\cdot)$	$g_3(\cdot)$	$g_4(\cdot)$
S&P500	$\alpha_0 + \alpha_1 \varepsilon_{t-1}^2$	$\beta_0 + \beta_1 \eta_{t-1}^3$	$ \gamma_0 + \gamma_1 \eta_{t-1} + \gamma_2 s_{t-1} + \gamma_3 I(\eta_{t-1} < 0) \eta_{t-1} $
CAC	$\alpha_0 + \alpha_1 \varepsilon_{t-1}^2$	$\beta_0 + \beta_1 \eta_{t-1} $	$\gamma_0 + \gamma_1 \eta_{t-1} + \gamma_2 s_{t-1}$
W5000	$\alpha_0 + \alpha_1 \varepsilon_{t-1}^2$	$\beta_0 + \beta_1 \eta_{t-1} $	$\gamma_0 + \gamma_1 \eta_{t-1} + \gamma_2 s_{t-1}$
N225	$\alpha_0 + \alpha_1 \varepsilon_{t-1}^2$	$\beta_0 + \beta_1 \eta_{t-1} $	$\gamma_0 + \gamma_1 \eta_{t-1} + \gamma_s s_{t-1}$

Table 4: P-values of testing parametric hypothesis of the three unknown news impact functions with various bandwidth $(c * n^{-0.2})$.

	S	&P500	CAC		W5000		N225	
	С	p-values	С	p-values	С	p-values	С	p-values
	0.2	0.4900	0.3	0.3830	0.2	0.2730	0.3	0.5310
Icv model	0.3	0.5030	0.4	0.3430	0.3	0.3690	0.4	0.4250
icv model	0.4	0.2240	0.5	0.2780	0.4	0.4270	0.5	0.3310
	0.5	0.3450	0.6	0.2160	0.5	0.4430	0.6	0.3270
	0.1	0.5830	0.1	0.2510	0.2	0.9510	0.10	0.7210
Ics model	0.2	0.6660	0.2	0.2450	0.3	0.9680	0.15	0.6810
ics model	0.3	0.6410	0.3	0.4150	0.4	0.9460	0.2	0.6920
	0.4	0.5520	0.4	0.4350	0.5	0.8740	0.25	0.5760
	0.4	0.3590	0.2	0.6440	0.3	0.9240	0.25	0.5390
Ick model	0.5	0.2600	0.3	0.6100	0.4	0.8930	0.3	0.5200
	0.6	0.2190	0.4	0.4770	0.5	0.8190	0.4	0.5160
	0.7	0.2290	0.5	0.4790	0.6	0.7360	0.5	0.5430

Table 5: The parameter estimation for implied news impact functions.

	parameter	sS&P500	CAC	W5000	N225
		0.0424	0.0468		0.1017
	α_0	(0.0064)	(0.0113)	(0.0066)	(0.0131)
Icv model		0.1958	0.0777	0.1672	0.0869
	α_1	(0.0029)	(0.0095)	(0.0066)	(0.0082)
	(0.)	` ,	` ,	0.7912	` ,
	$\alpha_2(\theta_h)$	(0.0078)	(0.0102)	(0.0116)	(0.0112)
		,	,	,	$\frac{(-0.0064)}{-0.0064}$
	eta_0	(0.0029)			
Ics model				-0.0446	
	eta_1	(0.0002)			
				0.7888	
	$\beta_2(\theta_s)$			(0.0161)	
	γ_0			1.0550	-
	70	(0.0592)	(0.0123)	(0.0547)	(0.0151)
Ick mode		0.4022	-0.2127	0.3504	-0.0251
	γ_1	(0.0092)	(0.0066)	(0.0095)	(0.0177)
		0.8251	0.9699	0.6473	0.9699
	γ_2	(0.0136)	(0.0030)	(0.0139)	(0.0013)
		-0.7457	(= = = =)	()	()
	$\gamma_3(\theta_k)$	(0.0164)	-	-	_
		(0.010+)			

Based on the implied news impact functions, we propose the following parametric model, called, the implied GARCH-SK model

$$\begin{cases} y_t &= \bar{y_t} + \epsilon_t \\ \epsilon_t &= \eta_t \sqrt{h_t}, \\ h_t &= \alpha_0 + \alpha_1 \epsilon_{t-1}^2 + \alpha_2 h_{t-1} \\ s_t &= \beta_0 + \beta_1 \eta_{t-1}^3 + \beta_2 s_{t-1} \\ k_t &= \gamma_0 + \gamma_1 \eta_{t-1} + \gamma_2 k_{t-1} + \gamma_3 I(\eta_{t-1} < 0) \eta_{t-1} \end{cases}$$
 and
$$\begin{cases} y_t &= \bar{y_t} + \epsilon_t \\ \epsilon_t &= \eta_t \sqrt{h_t}, \\ h_t &= \alpha_0 + \alpha_1 \epsilon_{t-1}^2 + \alpha_2 h_{t-1} \\ s_t &= \beta_0 + \beta_1 |\eta_{t-1}| + \beta_2 s_{t-1} \\ k_t &= \gamma_0 + \gamma_1 |\eta_{t-1}| + \gamma_2 k_{t-1} \end{cases}$$
 (for CAC, W5000 and N225).

Table 6: The estimation results of implied GARCH-SK model.

	parameters	S&P500	CAC	W5000	N225
	0:-	0.0316	0.0270	0.0307	0.0600
	α_0	(0.0053)	(0.0075)	(0.0056)	(0.0136)
		0.1771	0.1010	0.1713	0.1221
Variance equation	α_1	(0.0184)	(0.0122)	(0.0202)	(0.0172)
		0.7905	0.8761	0.7915	0.8389
	α_2	(0.0200)	(0.0160)	(0.0213)	(0.0208)
	0	-0.0359	-0.0551	0.0010	-0.1803
	β_0	(0.0193)	(0.0686)	(0.0195)	(0.0341)
	0	0.0053	-0.0042	-0.0446	0.0501
Skewness equation	β_1	(0.0022)	(0.0342)	(0.0209)	(0.0343)
	0	0.8018	0.2797	0.8337	$6.4028e^{-4}$
	β_2	(0.0970)	(0.6316)	(0.0754)	(0.0005)
		0.6854	0.5714	1.8081	0.2400
	γ_0	(0.2429)	(0.0498)	(1.6197)	(0.0481)
		0.2452	-0.1952	0.0609	0.0935
	γ_1	(0.0829)	(0.0257)	(0.0763)	(0.0204)
Kurtosis equation		0.7869	0.8780	0.4533	0.9065
·	γ_2	(0.0755)	(0.0102)	(0.4842)	(0.0157)
		-0.1415			
	γ_3	(0.1047)	_	_	_
Log-likehood	_	-2989	-3828	-3038	-3863
AIC	_	5998	7675	6095	7744
BIC	_	6056	7727	6147	7796

The standard GARCH-SK model in Leon et al. (2005, QREF) is

$$\begin{cases} y_t &= \bar{y}_t + \epsilon_t \\ \epsilon_t &= \eta_t \sqrt{h_t}, \\ h_t &= \alpha_0 + \alpha_1 \epsilon_{t-1}^2 + \alpha_2 h_{t-1}. \\ s_t &= \beta_0 + \beta_1 \eta_{t-1}^3 + \beta_2 s_{t-1} \\ k_t &= \gamma_0 + \gamma_1 \eta_{t-1}^4 + \gamma_2 k_{t-1} \end{cases}$$

Table 7: The estimation results of standard GARCH-SK model.

	parameters	S&P500	CAC	W5000	N225
-	0.	0.0339	0.0287	0.0310	0.0504
	$lpha_0$	(0.0055)	(0.0065)	(0.0055)	(0.0140)
		0.1765	0.1011	0.1732	0.1191
Variance equation	α_1	(0.0187)	(0.0131)	(0.0183)	(0.0154)
	0.	0.7798	0.8794	0.7887	0.8507
	α_2	(0.0206)	(0.0151)	(0.0199)	(0.0194)
	β.	-0.0393	-0.0047	-0.0507	-0.1182
	eta_0	(0.0287)	(0.0026)	(0.0372)	(0.2119)
	Q	0.0065	0.0012	0.0082	0.0004
Kurtosis equation	β_1	(0.0028)	(0.0009)	(0.0035)	(0.0021)
	eta_2	0.7538	0.9740	0.7136	0.0026
		(0.1622)	(0.0147)	(0.1906)	(1.7629)
		2.9990	0.1843	1.7000	0.1674
	γ_0	(1.6008)	(0.0190)	(0.8884)	(0.0099)
	0/-	0.0028	0.0002	0.0028	0.0006
Skewness equation	γ_1	(0.0011)	(0.0005)	(0.0011)	(0.0005)
		0.1243	0.9403	0.4955	0.9504
	γ_2	(0.4659)	(0.0059)	(0.2626)	(0.0025)
Log-likehood	_	-2997	-3880	-3043	-3866
AIC	_	6012	7777	6103	7751
BIC	_	6064	7830	6156	7803

Inference for the unknown news impact functions

Table 8: The RMSEs between the implied conditional variance \hat{h}_t and estimated conditional variance by different ARCH-type models.

	GARCH	GJR	EGARCH	AGARCH	APGARCH	NGARCH	GARCHSK	implied GARCHSK
S&P500	0.2166	1.2129	1.1585	0.4156	2.3502	2.4223	0.1309	0.1060
CAC	0.6984	1.8399	0.9723	0.8613	1.0579	1.1154	0.5014	0.4797
W5000	0.4139	1.4123	1.0633	0.6178	2.3200	2.3959	0.2834	0.2813
N225	0.6687	1.1898	0.7323	0.7925	0.7789	0.6948	0.5630	0.5249

Remarks: The implied GARCH-SK model has the smallest RMSEs among eight ARCH-type models for all data sets.

Outline

Introduction

Motivation

Methodology

Implied conditional moments

Quantiles estimation methods

Validity checks for implied conditional moments

Selection of quantile levels

Simulations

Simulated data

Basic results

Sensitivity on conditional quantiles

Sensitivity on quantile levels

Applications

Inference for the unknown news impact functions

Interaction effects among conditional moments

- For a multivariate time series, the study on the interactive effects among the conditional moments of their entries is important in many applications, and this can be easily achieved by our implied conditional moments. In our work, we consider a bivariate time series $y_t = (y_{1t}, y_{2t})'$, since the method below can be easily extended to other multivariate cases. Firstly, we use the method stated before (White et al. (2015, JOE)) to estimate the multivariate quantiles $Q_{i,t}(\alpha)$ (for i=1,2). Then, we can obtain $\hat{\mu}_{i,t}$, $\hat{h}_{i,t}$, $\hat{s}_{i,t}$, and $\hat{k}_{i,t}$.
- Using $\hat{\mu}_{i,t}$ and $\hat{h}_{i,t}$, we can firstly study the volatility spillover effect by the regression model

$$\begin{pmatrix}
\hat{h}_{1,t} \\
\hat{h}_{2,t}
\end{pmatrix} = \begin{pmatrix}
a_{10} \\
a_{20}
\end{pmatrix} + \sum_{i=1}^{p} \begin{pmatrix}
a_{i1,1} & a_{i1,2} \\
a_{i2,1} & a_{i2,2}
\end{pmatrix} \begin{pmatrix}
\hat{h}_{1,t-i} \\
\hat{h}_{2,t-i}
\end{pmatrix}
+ \sum_{j=1}^{q} \begin{pmatrix}
b_{j1,1} & b_{j1,2} \\
b_{j2,1} & b_{j2,2}
\end{pmatrix} \begin{pmatrix}
\hat{\varepsilon}_{1,t-j}^{2} \\
\hat{\varepsilon}_{2,t-j}^{2}
\end{pmatrix} + \begin{pmatrix}
\epsilon_{1,t} \\
\epsilon_{1,t}
\end{pmatrix},$$
(4.5)

where $\hat{\varepsilon}_{i,t} = y_{i,t} - \hat{\mu}_{i,t}$, $(\epsilon_{1,t}, \epsilon_{2,t})'$ is the model error vector, and all coefficients are positive.

- The existing methods used some multivariate GARCH models to study the volatility spillover (see Hamao et al. (1990, RFS)). However, the chosen multivariate GARCH models may be mis-specified, and their computation is also unstable especially for large dimension case. By using our regression model, we can simply check the volatility spillover effect by examining whether $a_{i1,2}$, $a_{i2,1}$, $b_{j1,2}$, $b_{j2,1}$, $i=1,\cdots,p,\ q=1,\cdots,q$, are significant.
- Similarly, we can also detect the skewness and kurtosis spillover effect:

$$\begin{pmatrix} \hat{\mathbf{s}}_{1,t} \\ \hat{\mathbf{s}}_{2,t} \end{pmatrix} = \begin{pmatrix} c_{10} \\ c_{20} \end{pmatrix} + \sum_{i=1}^{p} \begin{pmatrix} c_{i1,1} & c_{i1,2} \\ c_{i2,1} & c_{i2,2} \end{pmatrix} \begin{pmatrix} \hat{\mathbf{s}}_{1,t-i} \\ \hat{\mathbf{s}}_{2,t-i} \end{pmatrix}
+ \sum_{j=1}^{q} \begin{pmatrix} d_{j1,1} & d_{j1,2} \\ d_{j2,1} & d_{j2,2} \end{pmatrix} \begin{pmatrix} \hat{\eta}_{1,t-j}^{3} \\ \hat{\eta}_{2,t-j}^{3} \end{pmatrix} + \begin{pmatrix} \epsilon_{1,t} \\ \epsilon_{1,t} \end{pmatrix},$$
(4.6)

$$\begin{pmatrix}
\hat{k}_{1,t} \\
\hat{k}_{2,t}
\end{pmatrix} = \begin{pmatrix}
e_{10} \\
e_{10}
\end{pmatrix} + \sum_{i=1}^{p} \begin{pmatrix}
e_{i1,1} & e_{i1,2} \\
e_{i2,1} & e_{i2,2}
\end{pmatrix} \begin{pmatrix}
\hat{k}_{1,t-i} \\
\hat{k}_{2,t-i}
\end{pmatrix}
+ \sum_{j=1}^{q} \begin{pmatrix}
f_{j1,1} & f_{j1,2} \\
f_{j2,1} & f_{j2,2}
\end{pmatrix} \begin{pmatrix}
\hat{\eta}_{1,t-j}^{4} \\
\hat{\eta}_{2,t-j}^{2}
\end{pmatrix} + \begin{pmatrix}
\epsilon_{1,t} \\
\epsilon_{1,t}
\end{pmatrix}.$$
(4.7)

Table 9: Quantile levels and p-values of validity checks for implied conditional moments of four pairs of stock indexes in pre and post crisis.

Pre-crisis	parameters	US	DAX	US	SZ	US	HS	US	ATX
	quantile levels (α_1)	0.01		0.03		0.03		0.02	
	quantile levels(α_2)	0.09		0.09		0.07		0.10	
	quantile levels(α_3)	0.90		0.93		0.90		0.90	
	quantile levels (α_4)	0.96		0.96		0.98		0.99	
	p values (mean)	0.2378	0.6288	0.4167	0.9997	0.2141	0.1677	0.6189	0.4869
	p values (variance)	0.3915	0.7470	0.8052	0.8463	0.9553	0.8469	0.9821	0.7069
	p values (skewness)	0.8546	0.4850	0.7503	0.5058	0.3030	0.7284	0.3300	0.2971
	p values (kurtosis)	0.2689	0.1382	0.0306	0.0120	0.1220	0.1607	0.1996	0.3039
Post-crisis									
	quantile levels (α_1)	0.03		0.01		0.02		0.05	
	quantile levels(α_2)	0.10		0.09		0.06		0.10	
	quantile levels (α_3)	0.90		0.90		0.93		0.90	
	quantile levels (α_4)	0.96		0.95		0.97		0.98	
	p values (mean)	0.1287	0.2195	0.6165	0.9068	0.3724	0.5963	0.7134	0.1018
	p values (variance)	0.5510	0.9139	0.5707	0.5601	0.5829	0.7700	0.3616	0.2615
	p values (skewness)	0.9936	0.5214	0.6561	0.9137	0.7532	0.8784	0.8214	0.7055
	p values (kurtosis)	0.0043	0.0837	0.2391	0.3044	0.4501	0.1737	0.7507	0.1577

Dre crisis nor	ameters	US	ATX	Daat a.'-'		LIC	ATV
Pre-crisis parameters		0.0129	0.0860	POST-Crisis	s parameters	US	ATX
a	a_{10}/a_{20}	(0.0043)	(0.0100)		a_{10}/a_{20}	1.4232e ⁻¹¹	
		,			-10/ -20	(0.0343)	(0.0324)
a ₁₁	,1/a _{12,1}	0.9165	3.3779e ⁻¹¹		$a_{11,1}/a_{12,1}$	0.8237	$1.4219e^{-9}$
		(0.0039)				(0.0642)	(0.0586)
	$a_{11,2}/a_{12,2}$	$9.4943e^{-1}$		variance	$a_{11,2}/a_{12,2}$	0.0336	0.8896
variance -11			(0.0144)			(0.0530)	(0.0490)
h.,	1/h10.1	0.0669	0.0261		$b_{11,1}/b_{12,1}$	0.0816	0.0723
511	$b_{11,1}/b_{12,1}$	(0.0025)	(0.0027)			(0.0049)	(0.0051)
b	a/biaa	0.0050	0.0891		$b_{11,2}/b_{12,2}$	0.0302	0.0332
<i>D</i> 11	$_{,2}/b_{12,2}$	(0.0017)	(0.0091)			(0.0039)	(0.0040)
	c_{10}/c_{20}	0.0102	-0.0722		c_{10}/c_{20}	-0.0025	-0.0360
C:		(0.0033)	(0.0080)			(0.0057)	(0.0034)
.	. /	0.9238	0.0609		$c_{11,1}/c_{12,1}$	0.8812	-0.0675
c ₁₁	$c_{11,1}/c_{12,1}$	(0.0107)	(0.0216)			(0.0125)	(0.0077)
.	- /	0.0257	0.6945	skewness	$c_{11,2}/c_{12,2}$	0.0723	0.9328
skewness c_{11}	11,2/12,2	(0.0075)	(0.0196)			(0.0134)	(0.0081)
	$d_{11,1}/d_{12,1}$	-0.0011	-0.0003		$d_{11,1}/d_{12,1}$	-0.0019	0.0002
a_{11}		(8000.0)	(0.0021)			(0.0015)	(8000.0)
	/ -1	-0.0006	-0.0032		$d_{11,2}/d_{12,2}$	ò.0008 ´	-0.0015
a_{11}	$d_{11,2}/d_{12,2}$	(0.0006)	(0.0026)			(0.0005)	(0.0007)
	/-	0.3904	1.0982		,	0.0209	0.1032
e	e_{10}/e_{20}	(0.0440)	(0.1113)		e_{10}/e_{20}	(0.1214)	(0.0430)
	,	0.8776	$1.1447e^{-17}$		$e_{11,1}/e_{12,1}$	0.9429	0.0082
e ₁₁	$_{,1}/e_{12,1}$	(0.0105)	(0.0310)			(0.0133)	(0.0039)
		16501			$e_{11,2}/e_{12,2}$	0.0630	0.9493
kurtosis e ₁₁	$_{,2}/e_{12,2}$	(0.0071)	(0.0198)	kurtosis		(0.0323)	(0.0118)
	$f_{11,1}/f_{12,1}$	0.0005	$7.1265e^{-22}$				9.5266e ⁻¹¹
f_{11}		(0.0005)					(0.0002)
		` ′₁	8 0.0021			· 15	
f ₁₁	$f_{11,2}/f_{12,2}$	3.0301e ⁻¹	(0.0021		$f_{11,2}/f_{12,2}$	(0.0017)	(0.0008)
		(0.0004)	(0.0004)		, ,,-	(0.0017)	(0.0000)

Specially, we focus on the impact of shocks of S&P500 index on the conditional variance of DAX, SZ, HS, and ATX indexes with the increase of order $j,\ j=1,\cdots,q$. For this purpose, let $A=\begin{pmatrix} a_{11,1} & a_{11,2} \\ a_{12,1} & a_{12,2} \end{pmatrix}$, $B=\begin{pmatrix} b_{11,1} & b_{11,2} \\ b_{12,1} & b_{12,2} \end{pmatrix}$, and $C=A^{j-1}B$, then the coefficients of interest are $b_{j2,1}=C(2,1)$, $j=1,\cdots,q$.

Figure 7: The impacts of shocks of S&P500 index on the conditional variance of DAX, SZ, HS, and ATX indexes with the increase of order, respectively.

This project proposes a novel simple method to learn the conditional mean, variance, skewness and kurtosis by using the classical Cornish-Fisher expansion.

- This project proposes a novel simple method to learn the conditional mean, variance, skewness and kurtosis by using the classical Cornish-Fisher expansion.
- Our method provides an easy-to-implement non-parametric way to estimate the implied conditional moments, while the existing methods usually specify certain parametric models to estimate the conditional moments.

- This project proposes a novel simple method to learn the conditional mean, variance, skewness and kurtosis by using the classical Cornish-Fisher expansion.
- Our method provides an easy-to-implement non-parametric way to estimate the implied conditional moments, while the existing methods usually specify certain parametric models to estimate the conditional moments.
- Some regression-based tests are proposed to check the validity of our implied conditional moments.

- This project proposes a novel simple method to learn the conditional mean, variance, skewness and kurtosis by using the classical Cornish-Fisher expansion.
- Our method provides an easy-to-implement non-parametric way to estimate the implied conditional moments, while the existing methods usually specify certain parametric models to estimate the conditional moments.
- Some regression-based tests are proposed to check the validity of our implied conditional moments.
- Simulations show that the implied conditional moments could be good proxies for their unobserved counterparts, and they exhibit robust performances across the choices of quantile estimation and quantile level.

- This project proposes a novel simple method to learn the conditional mean, variance, skewness and kurtosis by using the classical Cornish-Fisher expansion.
- Our method provides an easy-to-implement non-parametric way to estimate the implied conditional moments, while the existing methods usually specify certain parametric models to estimate the conditional moments.
- Some regression-based tests are proposed to check the validity of our implied conditional moments.
- Simulations show that the implied conditional moments could be good proxies for their unobserved counterparts, and they exhibit robust performances across the choices of quantile estimation and quantile level.
- Finally, the implied conditional moments are applied to two important applications, which unveil news impacts functions and interactive effects among the conditional moments.

Thank you!