Chapter 1

Set

1.1 Ring

1.1.1 morphism

Def

Let A and B be unitary rings . We call morphism of unitary rings from A to B . only mapping $A \to B$ is a morphism of group from (A,+) to (B,+),and a morphism of monoid from (A,\cdot) to (B,\cdot)

Properties

• Let R be a unitary ting. There is a unique morphism from \mathbb{Z} to R

•

algebra

we call k-algebra any pair(R,f), when R is a unitary ring , and $f:k\to R$ is a morphism of unitary rings such that $\forall (b,x)\in k\times R, f(b)x=xf(b)$

Example: For any unitary ring R,the unique morphism of unitary rings $\mathbb{Z} \to R$ define a structure of $\mathbb{Z} - algebra$ on R (extra: \mathbb{Z} is commutative despite R isn't guaranteed)

Notation: Let k be a commutative unitary ring A, f be a k-algebra. If there is no ambiguity on f, for any $A, a \in A$, we denote $A, a \in A$

Formal power series

reminder: $n \in \mathbb{N}$ is possible infinite , so $\sum_{n \in \mathbb{N}}$ couldn't be executed directly.

(extended polynomial actually) Let k be a commutative unitary ring. Def : Let T be a formal symbol. We denote $k^{\mathbb{N}}$ as k[T] If $(a_n)_{n\in\mathbb{N}}$ is an element

of $k^{\mathbb{N}}$, when we denote $k^{\mathbb{N}}$ as k[T] this element is denote as $\sum_{n\in\mathbb{N}} a_n T^n$ Such element is called a formal power series over k and a_n is called the Coefficient of T^n of this formal power series Notation:

- omit terms with coefficient O
- write T' as T
- omit Coefficient those are 1;
- omit T^0

Example $1T^0 + 2T^1 + 1T^2 + 0T^3 + ... + 0T^n + ...$ is written as $1 + 2T + T^2$ Def Remind that $\mathbf{k}[T] = \{ \sum_{n \in \mathbb{N}} a_n T^n \mid (a_n)_{n \in \mathbb{N}} \in k^{\mathbb{N}} \}$, define two composition laws on $\mathbf{k}[T]$

$$\begin{aligned} &\forall F(T) = a_0 + a_+ 1T + \dots & G(T) = b_0 + \dots \\ &\text{let } F + G = (a_0 + b_0) + \dots \\ &FG = \sum_{n \in \mathbb{N}} \sum_{i+j=n} (a_i b_j) T^n \end{aligned}$$

Properties:

- $(k[T], +, \cdot)$ form a commutative unitary ring.
- $k \to k[T]$ $\lambda \mapsto \lambda T$ is a morphism

•
$$(FG)H = \left(\sum_{n \in \mathbb{N}} \sum_{i+j=n} (a_i b_j) T^n\right) \left(\sum_{n \in \mathbb{N}} c_n T^n\right) = \sum_{n \in \mathbb{N}} \left(\sum_{p,q,l=n} a_p b_q c_l\right) T^n$$
 is a trick applied on integral

Derivative:

let
$$F(T) \in k[T]$$

We denote by $F'(T)$ or $\mathcal{D}(F(T))$ the formal power series $\mathcal{D}(F) = \sum_{n \in \mathbb{N}} (n+1)a_{n+1}T^n$

Properties:

- $\mathcal{D}(k[T], +) \to (k[T], +)$ is a morphism of groups
- $\mathcal{D}(FG) = F'G + FG'$

exp

We denote $exp(T) \in k[T]$ as $\sum_{n \in \mathbb{N}} \frac{1}{n!} T^n$, which fulfil the differential equation $\mathcal{D}(exp(T)) = exp(T)$ (interesting)

Cauchy sequence: $(F_i(T))_{i \in \mathbb{N}}$ be a sequence of elements in k[T] and $F(T) \in \mathbb{N}$

Cauchy sequence: $(F_i(T))_{i\in\mathbb{N}}$ be a sequence of elements in k[T],and $F(T) \in k[T]$ We say that $(F_i(T))_{i\in\mathbb{N}}$ is a Cauchy sequence if $\forall l \in \mathbb{N}$, there exists $N(l) \in \mathbb{N}$ such that $\forall (i,j) \in \mathbb{N}^2_{>N(l)}$, $ord(F_i(T) - F_j(T)) \geq l$

Chapter 2

Sequences

2.1 Supremum and infimum

Def:

Let (X,\leq) be a partially ordered set A and Y be subsets of X, such that $A\subseteq Y$

- If the set $\{y \in Y \mid \forall a \in A, a \leq Y\}$ has a least element then we say that A has a Supremum in Y with respect to \leq denoted by $sup_{(y,\leq)}A$ this least element and called it the Supremum of A in Y(this respect to \leq)
- If the set $\{y \in Y \mid \forall a \in A, y \leq a\}$ has a greatest element, we say that A has n infimum in Y with respect to \leq . We denote by $inf_{(y,\leq)}A$ this greatest element and call it the infimum of A in Y
- Observation: $inf_{(Y,\leq)}A = sup_{(Y,\geq)}A$

Notation:

Let (X, \leq) be a partially ordered set, I be a set.

- If f is a function from I to X sup f denotes the supremum of f(I) is X.inf ftakes the same
- If $(x_i)_{i\in I}$ is a family of element in X, then $\sup_{i\in I} x_i$ denotes $\sup\{x_i \mid i\in I\}$ (inX)

If moreover $\mathbb{P}(\cdot)$ denotes a statement depending on a parameter in I then $\sup_{i \in I, \mathbb{P}(i)} x_i$ denotes $\sup\{x_i \mid i \in I, \mathbb{P}(i) \text{ holds}\}$

Example:

Let $A = x \in R \mid 0 \le x < 1 \subseteq \mathbb{R}$ We equip \mathbb{R} with the usual order relation.

$$\{y \in \mathbb{R} \mid \forall x \in A, x \le y\} = \{y \in \mathbb{R} \mid y \ge 1\}$$

So $\sup A = 1$

$$\{y \in \mathbb{R} \mid \forall x \in A, y \le x\} = \{y \in \mathbb{R} \mid y \ge 0\}$$

Hence $\inf A = 0$

Example: For $n \in \mathbb{N}$, let $x_n = (-1)^n \in R$

$$\sup_{n\in\mathbb{N}}\inf_{k\in\mathbb{N},k\geq n}x_k=-1$$

Proposition:

Let (X,\leq) be a partially ordered set, A,Y,Z be subset of X, such that $A\subseteq Z\subseteq Y$

- If max A exists, then is is also equal to $\sup_{(y,\leq)} A$
- If $\sup_{(y,\leq)} A$ exists and belongs to Z, then it is equal to $\sup A$ inf takes the same Prop.

Let X,\leq be a partially ordered set ,A,B,Y be subsets of X such that $A\subseteq B\subseteq Y$

- If $\sup_{(u,<)} A$ and $\sup_{(u,<)} B$ exists, then $\sup_{(u,<)} A \leq \sup_{(u,<)} B$
- If $\inf_{(y,\leq)} A$ and $\inf_{(y,\leq)} B$ exists, then $\inf_{(y,\leq)} A \geq \inf_{(y,\leq)} B$

Prop.

Let (X,\leq) be a partially ordered set ,I be a set and $f,g:I\to X$ be mappings such that $\forall t\in I, f(t)\leq g(t)$

- If $\inf f$ and $\inf g$ exists, then $\inf f \leq \inf g$
- If $\sup f$ and $\sup g$ exists, then $\sup f \leq \sup g$

2.2 Interval

We fix a totally ordered set (X, \leq)

Notation:

If $(a,b) \in X \times X$ such that $a \leq b, [a,b]$ denotes $\{x \in X \mid a \leq x \leq b\}$ Def:

Let $I\subseteq X$. If $\forall (x,y)\in I\times I$ with $x\leq y,$ one has $[x,y]\subseteq I$ then we say that I is a interval in X

Example:

Let $(a,b) \in X \times X$, such that $a \leq b$ Then the following sets are intervals

- $|a,b| := \{x \in X \mid a,x,b\}$
- $[a, b] := \{x \in X \mid a, x, b\}$
- $|a,b| := \{x \in X \mid a, x, b\}$

Prop.

Let Λ be a non-empty set and $(I_{\lambda})_{{\lambda} \in \Lambda}$ be a family of intervals in X.

- $\bigcap_{\lambda \in \Lambda} I_{\lambda}$ is a interval in X
- If $\bigcap_{\lambda \in \Lambda} I_{\lambda} \neq \varnothing, \bigcup_{\lambda \in \Lambda} I_{\lambda}$ is a interval in X

We check that $[a, b] \subseteq I_{\lambda} \cup I_{|\mu}$

- If $b \le x$ $[a, b] \subseteq [a, x] \subseteq I_{\lambda}$ because $\{a, x\} \subseteq I_{\lambda}$
- If $x \leq a$ $[a,b] \subseteq [x,b] \subseteq I_{\mu}$ because $\{b,x\} \subseteq I_{\mu}$
- If a < x < b then $[a,b] = [a,x] \cup [x,b] \subseteq I_{\lambda} \cup I_{\mu}$

Def:

Let (X, \leq) be a totally ordered set .I be a non-empty interval of X. If $\sup I$ exists in X, we call $\sup I$ the right endpoint; inf takes the similar way. Prop.

Let I be an interval in X.

- Suppose that $b = \sup I \text{ exists. } \forall x \in I, [x, b] \subseteq I$
- Suppose that $a = \inf I$ exists. $\forall x \in I,]a, x] \subseteq I$

Prop.

Let I be an interval in X. Suppose that I has supremum b and an infimum a in X.Then I is equal to one of the following sets [a,b] [a,b[]a,b[Def

let (X, \leq) be a totally ordered set . If $\forall (x, z) \in X \times X$, such that $x < z \quad \exists y \in X$ such that x < y < z, than we say that (X, \leq) is thick

Let (X, \leq) be a thick totally ordered set. $(a, b) \in X \times X$, a < b If I is one of the following intervals [a, b]; [a, b[;]a, b[Then inf I = a sup I = b (for it's thick empty set is impossible)

Proof:

Since X is thick, there exists $x_0 \in]a, b[$ By definition,b is an upper bound of I. If b is not the supremum of I, there exists an upper bound M of I such that M_ib. Since X is thick , there is $M' \in X$ such that $x_0 \leq M, M' < b$ Since $[x, b[\subseteq]a, b[\in I]$ Hence M and M' belong to I, which conflicts with the uniqueness of supremum.

2.3 Enhanced real line

Def:

Let $+\infty$ and -infty be two symbols that are different and don not belong to \mathbb{R} We extend the usual total order $\leq on \mathbb{R} to \mathbb{R} \cup \{-\infty, +\infty\}$ such that

$$\forall x \in \mathbb{R}, -\infty < x < +\infty$$

Thus $\mathbb{R} \cup \{-\infty, +\infty\}$ become a totally ordered set, and $\mathbb{R} =]-\infty, +\infty[$ Obviously,this is a thick totally ordered set. We define:

- $\forall x \in]-\infty, +\infty[$ $x + (+\infty) := +\infty$ $(+\infty) + x := +\infty$
- $\forall x \in [-\infty, +\infty[\quad x + (-\infty) := -\infty \quad (-\infty) + x = -\infty$
- $\forall x \in]0, +\infty[$ $x(+\infty) = (+\infty)x = +\infty$ $x(-\infty) = (-\infty)x = -\infty$
- $\forall x \in [-\infty, 0[\quad x(+\infty) = (+\infty)x = -\infty \quad x(-\infty) = (-\infty)x = +\infty$
- $-(+\infty) = -\infty$ $-(-\infty) = +\infty$ $(\infty)^{-1} = 0$
- $(+\infty) + (-\infty)$ $(-\infty) + (+\infty)$ $(+\infty)0$ $0(+\infty)$ $(-\infty)0$ $0(-\infty)$ ARE NOT DEFINED

Def

Let (X, \leq) be a partially ordered set. If for any subset A of X,A has a supremum and an infimum in X, then we say the X is order complete Example

Let Ω be a set $(\mathscr{P}(\Omega),\subseteq)$ is order complete If \mathscr{F} is a subset of $\mathscr{P}(\Omega)$, sup $\mathscr{F}=\bigcup_{\Lambda\in\mathscr{X}}A$

Interesting tip: $\inf \emptyset = \Omega$ $\sup \emptyset = \emptyset$

AXION:

 $\begin{array}{l} (\mathbb{R} \cup \{-\infty, +\infty\}, \leq) \text{ is order complete} \\ \text{In } \mathbb{R} \cup \{-\infty, +\infty\} \quad \sup \varnothing = -\infty \quad \inf \varnothing = +\infty \end{array}$

Notation:

- For any $A\subseteq \mathbb{R}\cup -\infty, +\infty$ and $c\in \mathbb{R}$ We denote by A+c the set $\{a+c\mid a\in A\}$
- If $\lambda \in \mathbb{R} \setminus \{0\}$, λA denotes $\{\lambda a \mid a \in A\}$
- -A denotes (-1)A

Prop

For any $A \subseteq \mathbb{R} \cup \{-\infty, +\infty\}$, $\sup(-A) = -\inf A$, $\inf(-A) + -\sup A$ Def We denote by (R, \leq) a field \mathbb{R} equipped with a total order \leq , which satisfies the following condition:

- $\forall (a,b) \in \mathbb{R} \times \mathbb{R}$ such that a < b , one has $\forall c \in \mathbb{R}, a+c < b+c$
- $\forall (a,b) \in \mathbb{R}_{>0} \times \mathbb{R}_{>0}, ab > 0$
- $\forall A \subseteq \mathbb{R}, \text{if A hsa an upper bound in} \mathbb{R}$, then it has a supremum in \mathbb{R}

Prop.

Let $A \subseteq [-\infty, +\infty]$

- $\forall c \in \mathbb{R}$ $\sup(A+c) = (\sup A) + c$
- $\forall \lambda \in \mathbb{R}_{>0}$ $\sup(\lambda A) = \lambda \sup(A)$
- $\forall \lambda \in \mathbb{R}_{\leq 0}$ $sup(\lambda A) = \lambda \inf(A)$

inf takes the same

Theorem:

Let I and J be non-empty sets

$$f: I \to [-\infty, +\infty], g: J \to [-\infty, +\infty]$$

$$a = \sup_{x \in I} f(x) \quad b = \sup_{y \in J} g(y) \quad c = \sup_{(x,y) \in I \times J, \{f(x), g(y)\} \neq \{+\infty, -\infty\}} (f(x) + g(y))$$
If $\{a, b\} \neq \{+\infty, -\infty\}$ then $c = a + b$

If $\{a, b\} \neq \{+\infty, -\infty\}$ then c = a + b

inf takes the same if $(-\infty) + (+\infty)$ doesn't happen

Corollary:

Let I be a non-empty set, $f: I \to [-\infty, +\infty], g: J \to [-\infty, +\infty]$ $\sup_{x \in I, \{f(x), g(y)\} \neq \{+\infty, -\infty\}} (f(x) + g(x)) \le (\sup_{x \in I} f(x))(\sup_{x \in I} g(x))$ inf takes the similar $(\leq \rightarrow \geq)$ (provided when the sum are defined)

2.4 Vector space

In this section:

K denotes a unitary ring. Let 0 be zero element of K 1 be the unity of K

K-module 2.4.1

Def

Let (V, +) be a commutative group. We call left K-module structure:

any mapping $\Phi: K \times V \to V$

We call right K-module structure:

any mapping $\Phi:(\lambda,x)\mapsto\Phi(\lambda,x)$

- $\forall (a,b) \in K \times K, \forall x \in V \quad \Phi(ab,x) = \Phi(a,\Phi(b,x))$
- $\forall (a,b) \in K \times K, \forall x \in V, \Phi(a+b,x) = \Phi(a,x) + \Phi(b,x)$
- $\forall a \in K, \forall (x,y) \in V \times V, \Phi(a,x+y) = \Phi(a,x)\Phi(a,y)$
- $\forall x \in V, \Phi(1, x) = x$

A commutative group (V,+) equipped with a left/right K-module structure is called a left/right K-module.

Remark

Let K^{op} be the set K equipped with the following composition laws:

- $K \times K \to K$
- $(a,b) \mapsto a+b$
- $K \times K \to K$

•
$$(a,b) \mapsto ba$$

Then K^{op} forms a unitary ring Any left $K^{op} - module$ is a right K-module Any right $K^{op} - module$ is a left K-module

 $(K^{op})^{op} = K$

Notation:

When we talk about a left K-module (V,+), we often write its left K-module structure as $K\times V\to V$ $(a,x)\mapsto ax$

The axions become:

$$\forall (a,b) \in K \times K, \forall x \in V \quad (ab)x = a(bx)$$

$$\forall (a,b) \in K \times K, \forall x \in V \quad (a+b)x = ax + bx$$

$$\forall a \in K, \forall (x,y) \in V \times V \quad a(x+y) = ax + ay$$

$$\forall x \in V \quad 1x = x$$

right K-module the similar way Remark:

If K is commutative, then $K^{op}=K$, so left K-module and right K-module structure are the sae .We simply call them K-module structure. A commutative group equipped with a K-module structure is called a K-module. If K is a field, a K-module is also called a K-vector space

Let $\Phi: K \times V \to V$ be a left or right K-module structure

$$\forall x \in V, \Phi(\cdot, x) : K \to V, (a \in K) \mapsto \Phi(a, x)$$

is a morphism of addition groups. Hence $\Phi(0,x)=0, \Phi(-a,x)=-\Phi(a,x)$ $\forall a\in K, \Phi(a,\cdot):V\to V$ is a morphism of groups. Hence $\Phi(a,0)=0, \Phi(a,-x)=-\Phi(a,x)(\cdot\ is\ a\ var)$ Association: $\forall x\in K$

$$(f(f+g)+h)(x) = (f+g)(x)+h(x) = f(x)+g(x)+h(x)$$
$$(f+(g+h))(x) = f(x)+((g+h)(x)) = f(x)+g(x)+h(x)$$

Let
$$0: I \to K: x \mapsto 0 \quad \forall f \in K^I \quad f + 0 = f$$

Let
$$-f: f + (-f) = 0$$

The mapping $K \times K^I \to K^I : (a, f) \mapsto af \quad (af)(x) = af(x)$ is a left K-module structure

The mapping $K\times K^I\to K^I:(a\in I)\mapsto ((x\in I)\mapsto f(x)a)$ (af)(x)=af(x) is a right K-module structure

Notation:

We can also write an element μ of K^I is the form of a family $(\mu_i)_{i\in I}$ of elements in K (μ_i) is the image of $i\in I$ by μ)
Then

$$(\mu_i)_{i \in I} + (\nu_i)_{i \in I} := (\mu_i + \nu_i)_{i \in I}$$

 $a(\mu_i)_{i \in I} := (a\mu_i)_{i \in I}$
 $(\mu_i)_{i \in I} a = (\mu_i a)_{i \in I}$

Def:

Let V be a left/right K-module. If W is a subgroup of V. Such that $\forall a \in$ $K, \forall x \in W \quad ax/xa \in W$, then we say that W si left/right sub-K-module of V.

Let I be a set .Let $K^{\bigoplus I}$ be the sebset of K^I composed of mappings $f: I \to K$ such that $I_f = x \in I \mid f(x) \neq 0$ is finite. It is a left and right sub-K-module of

In fact,
$$\forall (f,g) \in K^{\bigoplus I} \times K^I$$
 $I_{f-g} = x \in I \mid f(x) - g(x) \neq 0 \subseteq I_f \cup I_g$
Hence $f - g \in K^{\bigoplus I}$ So $K^{\bigoplus I}$ is a subgroup of K^I
 $\forall a \in K, \forall f \in K^{\bigoplus I}$ $I_{af} \subseteq I_f, I_{(x \mapsto f(x)a)} \subseteq I_f$ Def:
Let V and W be left K-module, A morphism of groups $\phi: V \to W$ is called

a morphism of left K-modules if $\forall (a, x) \in K \times V, \phi(ax) = a\phi(x)$

If K is commutative, a morphism of K-modules is also called a K-lines mapping. We denote by $hom_{K-Mod}(V, W)$ the set of all morphism of left-K-module from V to W. This is a subgroup of W^V

Let V be a left K-module. Let I be a set.

The mapping $\hom_{K-Mod}(K^{\bigoplus I}, V) \to V^I$ is a bijection where $e_i : I \to K : j \mapsto$

$$\begin{cases} 1 & j=i \\ 0 & j \neq i \end{cases} \phi \to (\phi(e_i))_{i \in I}$$

In the case where $I = 1, 2, 3, ..., n V^{I} is denoted as V^{n}, K^{I} is denoted as K^{n}$ For any $(x_1,...,x_n) \in V^n$, by the theorem, there exists a unique morphism of left K-modules $\phi: K^n \to V$ such that $\forall i \in 1, ..., n\phi(e_i) = x_i$

We write this ϕ as a column $\begin{pmatrix} x_1 \\ \dots \\ x_n \end{pmatrix}$ It sends $(a_1, \dots, a_n) \in K^n$ to $a_1x_1 + \dots + a_nx_n$