AMB-11

Волынцев Дмитрий 676 гр.

5 мая 2018

Задача 1

- 1) f = 2 + 2 + 3 = 7
- 2) Прямые ребра: c-f; обратные: f>0

- 3) В остаточном графе существует увеличивающий путь, значит поток не максимален
- 4)
- a)

б)

д)

Увеличивающих путей не осталось, максимальный поток f=14

5) Величина максимального потока равна пропускной способности минимального среза, так что ответ 14:

Как видно, 3+3+3+5=14

Задача 2

1)

Восользуемя алгоритмом Форда-Фалкерсона, получим:

Так как максимальный поток равен 165, это наибольшее количество пациентов, получивших дозу, то есть 4 человека не получили дозу крови. 2) Всех пациентов не получится обслужить. Для пациентов 1 группы нужна кровь только 1 группы, значит мы потратим 42 дозы, 3 остаентся про запас для других групп. Для обслуживания пациентов 2 группы мы потратим все 32 дозы в наличии и еще для 3 человек можем предложить кровь 1 группы. Тем не менее этого не хватит для обслуживания 39 человек, и 4 человека с кровью этой группы не получат дозу, а использовать кровь 3 и 4 групп для них нельзя.

Задача 3

Для этого нужно сделать граф с большим весом ребер, тогда алгоритм даже при малом количсетве ребер будет работать очень долго. Например в этом случае каждая итерация будет добавлять 1, а максимальный поток при этом 99999 + 99999

Задача 4

Задача 5

(идея взята у другой группы)

Разобьем каждую вершину v на v_1 и v_2 так, чтобы ребра, входившие в v входили в v_1 , а выходившие из v - выходили из v_2 . При этом пропускные способности (v_1, v_2) и (v_2, s), где между s и v существует ребро, будут равны пропускной способности вершины. Далее ищем максимальный поток в сети.

Задача 6

Дополним граф веришинами s и t, укажем пропускные способности и увеличивающий путь:

Далее по алгоритму:

Больше увеличивающих путей нет. Таким образом, максимальный поток равен 5, это же пропускная способность минимального разреза. Сам минимальный разрез ниже:

Задача 7

Уравнение прямой: ax+by+c=0. Тогда, подставляя поочередно x=0 и y=0, получим ограничения $0\le -\frac{c}{b}\le 3$ и $-2\le -\frac{c}{a}\le 1$ $\sum_{i=1}^7 (ax_i+by_i+c)=36a+64b+7c\to min$ Кроме того $-\frac{a}{b}\ge 0$

Задача 8

Система координат - (x_1, x_2, x_3) . Стартуем в (0, 0, 0). $(0, 0, 0) \rightarrow (0, x_2, 0) \rightarrow (x_1, x_2, 0) \rightarrow (x_1, 0, 0) \rightarrow (x_1, 0, x_3) \rightarrow (x_1, x_2, x_3) \rightarrow (0, x_2, x_3) \rightarrow (0, 0, x_3)$

Таким образом прошли по всем вершинам.

Задача 9

(идея взята у А.Станкевича)

- 1) Пусть вторая система совместна. Тогда $p^TAy = 0$. В то же время совместность первой системы дает условие $p^TAy < 0$ противоречие.
- 2) Пусть первая система совместна, тогда существует вектор $a:A^Tp+a=$

0, а значит $y^TA^Tp + y^Ta = 0$. Если Ay = 0 совместна, то $y^Ta = 0$ и y = 0 противоречие.