Neural Architecture Search with Reinforcement Learning

Traditional Machine Perception

Hand crafted feature extractors

^{*}https://www.slideshare.net/kuanhoong/big-data-malaysia-a-primer-on-deep-learning

Machine Learning V.S. Deep Learning deep networks we can perform feature extraction and

deep networks we can perform feature extraction and classification in one shot.

Traditional Machine Learning vs. Deep Learning

*https://www.wirelessdesignmag.com/article/2016/08/applying-deep-learning-edge-analytics-sensors-building-automation

Machine Learning V.S. Deep Learning deep networks we can perform feature extraction and

deep networks we can perform feature extraction and classification in one shot.

*https://www.google.com.tw/url?sa=i&source=images&cd=&ved=2ahUKEwiqnrCA2qrcAhXIkpQKHepaBBQQjhx6BAgBEAM&url=https%3A%2F%2Fwww.slideshare.net%2Fmravendi%2Fintro-deep-learning&psig=AOvVaw3l8bhj0cl_AahIythbq8PC&ust=1532073514111634

Machine Learning V.S. Deep Learning

We saw that Deep Learning algorithms don't have a "plateau in performance" compared to traditional machine learning algorithms

Neural network V.S. Deep Learning

Deep neural network is simply a feedforward network with many hidden layers

Network Architectures: Which one is better?

^{*}https://www.google.com.tw/url?sa=i&source=images&cd=&ved=2ahUKEwiR0-fR6arcAhUGwbwKHR9WBSYQjhx6BAgBEAM&url=https%3A%2F%2Fwww.slideshare.net%2Fsamchoi7%2Fcnn-tutorial-66719728&psig=AOvVaw3jL88DQsXCj0XovPEIdMMv&ust=1532077977363109

Put Problem Into Model Architecture Design

Handcraft Feature Extraction

Model Architecture Design

Neural architecture search

- RL-based architecture search
- Model architecture evolution
- learning to learn or meta-learning
- #mean field theory and dynamic isometry

Types of Machine Learning

^{*}https://medium.com/@shweta_bhatt/reinforcement-learning-101-e24b50e1d292

- 1. Environment Physical world in which the agent operates
- 2. State Current situation of the agent
- **3. Reward** Feedback from the environment
- 4. Policy Method to map agent's state to actions
- **5. Value** Future reward that an agent would receive by taking an action in a particular state

^{*}https://medium.com/@shweta_bhatt/reinforcement-learning-101-e24b50e1d292

enterprise % 26 psig % 3 DAOv Vaw 0 LT5 rvSl 2 X4 qax 8 lFy K6 kt % 26 ust % 3 D1532397357086253 &psig = AOv Vaw 0 LT5 rvSl 2 X4 qax 8 lFy K6 kt % 26 ust % 3 D1532397357086253 &psig = AOv Vaw 0 LT5 rvSl 2 X4 qax 8 lFy K6 kt % 26 ust % 3 D1532397357086253 &psig = AOv Vaw 0 LT5 rvSl 2 X4 qax 8 lFy K6 kt % 26 ust % 3 D1532397357086253 &psig = AOv Vaw 0 LT5 rvSl 2 X4 qax 8 lFy K6 kt % 26 ust % 3 D1532397357086253 &psig = AOv Vaw 0 LT5 rvSl 2 X4 qax 8 lFy K6 kt % 26 ust % 3 D1532397357086253 &psig = AOv Vaw 0 LT5 rvSl 2 X4 qax 8 lFy K6 kt % 26 ust % 3 D1532397357086253 &psig = AOv Vaw 0 LT5 rvSl 2 X4 qax 8 lFy K6 kt % 26 ust % 3 D1532397357086253 &psig = AOv Vaw 0 LT5 rvSl 2 X4 qax 8 lFy K6 kt % 26 ust % 3 D1532397357086253 &psig = AOv Vaw 0 LT5 rvSl 2 X4 qax 8 lFy K6 kt % 26 ust % 3 D1532397357086253 &psig = AOv Vaw 0 LT5 rvSl 2 X4 qax 8 lFy K6 kt % 26 ust % 3 D1532397357086253 &psig = AOv Vaw 0 LT5 rvSl 2 X4 qax 8 lFy K6 kt % 26 ust % 3 D1532397357086253 &psig = AOv Vaw 0 LT5 rvSl 2 X4 qax 8 lFy K6 kt % 26 ust % 3 D1532397357086253 &psig = AOv Vaw 0 LT5 rvSl 2 X4 qax 8 lFy K6 kt % 26 ust % 3 D153239981 &psig = AOv Vaw 0 LT5 rvSl 2 X4 qax 8 lFy K6 kt % 26 ust % 3 D153239981 &psig = AOv Vaw 0 LT5 rvSl 2 X4 qax 8 lFy K6 kt % 26 ust % 3 D153239981 &psig = AOv Vaw 0 LT5 rvSl 2 X4 qax 8 lFy K6 kt % 26 ust % 3 D153239981 &psig = AOv Vaw 0 LT5 rvSl 2 X4 qax 8 lFy K6 kt % 26 ust % 3 D153239981 &psig = AOv Vaw 0 LT5 rvSl 2 X4 qax 8 lFy K6 kt % 26 ust % 3 D153239981 &psig = AOv Vaw 0 LT5 rvSl 2 X4 qax 8 lFy K6 kt % 26 ust % 3 D153239981 &psig = AOv Vaw 0 LT5 rvSl 2 X4 qax 8 lFy K6 kt % 26 ust % 3 D153239981 &psig = AOv Vaw 0 LT5 rvSl 2 X4 qax 8 lFy K6 kt % 26 ust % 3 D153239981 &psig = AOv Vaw 0 LT5 rvSl 2 X4 qax 8 lFy K6 kt % 26 ust % 3 D153239981 &psig = AOv Vaw 0 LT5 rvSl 2 X4 qax 8 lFy K6 kt % 26 ust % 3 D153239981 &psig = AOv Vaw 0 LT5 rvSl 2 X4 qax 8 lFy K6 kt % 26 ust % 3 D153239981 &psig = AOv Vaw 0 LT5 rvSl 2 X4 qax 8 lFy K6 kt % 26 ust % 3 D153239981 &psig = AOv Vaw 0 LT5 rvSl 2 X4 qax 8 lFy K6 kt % 26 ust % 3 D1

^{*}https://www.google.com.tw/url?sa=i&source=images&cd=&ved=2ahUKEwjNwIidj7TcAhVDH5QKHb9wBqkQjhx6BAgBEAM&url=%2Furl%3Fsa%3Di%26source%3Dimages%26cd%3D%26ved%3D%26url%3Dhttps%253A%252F%252Fdzone.com%252Farticles%252Freinforcement-learning-for-the-

Paper solution

Neural Architecture Search with Reinforcement Learning

How our controller recurrent neural network samples a simple convolutional network

The controller uses anchor points, and setselection attention to form skip connections.

Generate Recurrent Cell Architectures

Classic

Reinforcement

*https://www.slideshare.net/YanKang/rnn-explore-71268007

LEARNING CONVOLUTIONAL ARCHITECTURES FOR CIFAR-10

LEARNING CONVOLUTIONAL ARCHITECTURES FOR CIFAR-10

Model	Depth	Parameters	Error rate (%)
Network in Network (Lin et al., 2013)	-	-	8.81
All-CNN (Springenberg et al., 2014)	-	-	7.25
Deeply Supervised Net (Lee et al., 2015)	-	-	7.97
Highway Network (Srivastava et al., 2015)	-	-	7.72
Scalable Bayesian Optimization (Snoek et al., 2015)	-	-	6.37
FractalNet (Larsson et al., 2016)	21	38.6M	5.22
with Dropout/Drop-path	21	38.6M	4.60
ResNet (He et al., 2016a)	110	1.7M	6.61
ResNet (reported by Huang et al. (2016c))	110	1.7M	6.41
ResNet with Stochastic Depth (Huang et al., 2016c)	110	1.7M	5.23
	1202	10.2M	4.91
Wide ResNet (Zagoruyko & Komodakis, 2016)	16	11.0M	4.81
	28	36.5M	4.17
ResNet (pre-activation) (He et al., 2016b)	164	1.7M	5.46
	1001	10.2M	4.62
DenseNet $(L = 40, k = 12)$ Huang et al. (2016a)	40	1.0M	5.24
DenseNet($L = 100, k = 12$) Huang et al. (2016a)	100	7.0M	4.10
DenseNet $(L = 100, k = 24)$ Huang et al. (2016a)	100	27.2M	3.74
DenseNet-BC ($L = 100, k = 40$) Huang et al. (2016b)	190	25.6M	3.46
Neural Architecture Search v1 no stride or pooling	15	4.2M	5.50
Neural Architecture Search v2 predicting strides	20	2.5M	6.01
Neural Architecture Search v3 max pooling	39	7.1M	4.47
Neural Architecture Search v3 max pooling + more filters	39	37.4M	3.65

- The controller RNN is a two-layer LSTM with 35 hidden units on each layer. It is trained with the ADAM optimizer with a learning rate of 0.0006.
- After the controller trains 12,800
 architectures, we find the architecture
 that achieves the best validation
 accuracy.
- The DenseNet model that achieves 3.46% error rate (Huang et al., 2016b) uses 1x1 convolutions to reduce its total number of parameters, which we did not do, so it is not an exact comparison.

Experiments an

LEARNING CONVOLUTION

LEARNING RECURRENT CELLS FOR PENN TREEBANK

1.	CC	Coordinating conjunction	25.	TO	to
2.	CD	Cardinal number	26.	UH	Interjection
3.	DT	Determiner	27.	VB	Verb, base form
4.	EX	Existential there	28.	VBD	Verb, past tense
5.	FW	Foreign word	29.	VBG	Verb, gerund/present
6.	IN	Preposition/subordinating			participle
		conjunction	30.	VBN	Verb, past participle
7.	IJ	Adjective	31.	VBP	Verb, non-3rd ps. sing. present
8.	JJR	Adjective, comparative	32.	VBZ	Verb, 3rd ps. sing. present
9.	JJS	Adjective, superlative	33.	WDT	wh-determiner
10.	LS	List item marker	34.	WP	wh-pronoun
11.	MD	Modal	35.	WP\$	Possessive wh-pronoun
12.	NN	Noun, singular or mass	36.	WRB	wh-adverb
13.	NNS	Noun, plural	37.	#	Pound sign
14.	NNP	Proper noun, singular	38.	\$	Dollar sign
15.	NNPS	Proper noun, plural	39.		Sentence-final punctuation
16.	PDT	Predeterminer	40.	,	Comma
17.	POS	Possessive ending	4 1.	:	Colon, semi-colon
18.	PRP	Personal pronoun	42.	(Left bracket character
19.	PP\$	Possessive pronoun	43.)	Right bracket character
20.	RB	Adverb	44.	'n	Straight double quote
21.	RBR	Adverb, comparative	45.	1	Left open single quote
22.	RBS	Adverb, superlative	46.	"	Left open double quote
23.	RP	Particle	47.		Right close single quote
24.	SYM	Symbol (mathematical or scientific)	48.	"	Right close double quote

LEARNING RECURRENT CELLS FOR PENN TREEBANK

Model	Parameters	Test Perplexity
Mikolov & Zweig (2012) - KN-5	2M [‡]	141.2
Mikolov & Zweig (2012) - KN5 + cache	2M [‡]	125.7
Mikolov & Zweig (2012) - RNN	6M [‡]	124.7
Mikolov & Zweig (2012) - RNN-LDA	7M [‡]	113.7
Mikolov & Zweig (2012) - RNN-LDA + KN-5 + cache	9M [‡]	92.0
Pascanu et al. (2013) - Deep RNN	6M	107.5
Cheng et al. (2014) - Sum-Prod Net	5M [‡]	100.0
Zaremba et al. (2014) - LSTM (medium)	20M	82.7
Zaremba et al. (2014) - LSTM (large)	66M	78.4
Gal (2015) - Variational LSTM (medium, untied)	20M	79.7
Gal (2015) - Variational LSTM (medium, untied, MC)	20M	78.6
Gal (2015) - Variational LSTM (large, untied)	66M	75.2
Gal (2015) - Variational LSTM (large, untied, MC)	66M	73.4
Kim et al. (2015) - CharCNN	19M	78.9
Press & Wolf (2016) - Variational LSTM, shared embeddings	51M	73.2
Merity et al. (2016) - Zoneout + Variational LSTM (medium)	20M	80.6
Merity et al. (2016) - Pointer Sentinel-LSTM (medium)	21M	70.9
Inan et al. (2016) - VD-LSTM + REAL (large)	51M	68.5
Zilly et al. (2016) - Variational RHN, shared embeddings	24M	66.0
Neural Architecture Search with base 8	32M	67.9
Neural Architecture Search with base 8 and shared embeddings	25M	64.0
Neural Architecture Search with base 8 and shared embeddings	54M	62.4

- The controller and its training are almost identical to the CIFAR-10 experiments except for a few modifications: 1. the learning rate for the controller RNN is 0.0005.
- Not only is our cell is better, the model that achieves 64 perplexity is also more than two times faster because the previous best network requires running a cell 10 times per time step.

LEARNING RECURRENT CELLS FOR PENN TREEBANK

Automated Data Science & Machine Learning Is coming...