Chapter3_1

2021年4月21日 8:36

@ Relation of Plasma Physics to Ordinary Electromagnetics

· Maxwell Equations

in vacuum	in medium
1. E. V·E = o	1. ∇.D = σ
2. V×E = -B	2. ∇× E = - B
3. 7.B = 0	3, A.B = 0
4. Dx B = Mo(j+ 80 =)	4. V×H=j+D
	5, D = EE
	6. B = uH

· Huid Equation.

$$\frac{dG}{dt}(x,t) = \frac{\partial G}{\partial t} + \frac{\partial G}{\partial x} \frac{dx}{dt}$$

$$= \frac{\partial G}{\partial t} + \frac{\partial G}{\partial x}$$

$$\frac{dG}{dt} = \frac{\partial G}{\partial t} + (u \cdot \nabla)G \cdots (x)$$

$$m_{\Lambda} \left[\frac{\partial u}{\partial t} + (u \cdot \nabla) u \right] = q_{\Lambda} (E + u \times B) - \nabla p$$

$$(*)$$

$$torce pressure$$

with collision

Eq. of continuity
$$\frac{\partial n}{\partial t} + \nabla \cdot (n \cdot u) = 0$$

· Complete set of Fluid Eqs.

the current

j = niqiv; + neqe ve

t = niqi+ neqe

with maxwell Eqs., Fluid Eqs.

So V.E = niqi+ neqe

3. ∇·B=0

4. The V × B = Niqi Vi + Neqe Ve + Eo E

5. $m_{i}n_{j}\left[\frac{\partial q_{j}}{\partial \tau} + (v_{j} \cdot \nabla)v_{j}\right] = q_{j}n_{j}(E + v_{j} \times B) - \nabla p_{j}$ (j := ion, electron)

6. 3nj + V·(nj·vj) = 0

7. Pj = Cj nj

16 equations in 16 unknowns.