Assignment 3: Data Exploration

Dori Rathmell

OVERVIEW

This exercise accompanies the lessons in Environmental Data Analytics on Data Exploration.

Directions

- 1. Rename this file <FirstLast>_A03_DataExploration.Rmd (replacing <FirstLast> with your first and last name).
- 2. Change "Student Name" on line 3 (above) with your name.
- 3. Work through the steps, creating code and output that fulfill each instruction.
- 4. Be sure to **answer the questions** in this assignment document.
- 5. When you have completed the assignment, **Knit** the text and code into a single PDF file.
- 6. After Knitting, submit the completed exercise (PDF file) to the dropbox in Sakai.

The completed exercise is due on Sept 30th.

Set up your R session

1. Check your working directory, load necessary packages (tidyverse), and upload two datasets: the ECOTOX neonicotinoid dataset (ECOTOX_Neonicotinoids_Insects_raw.csv) and the Niwot Ridge NEON dataset for litter and woody debris (NEON_NIWO_Litter_massdata_2018-08_raw.csv). Name these datasets "Neonics" and "Litter", respectively. Be sure to include the subcommand to read strings in as factors.

```
#install.packages('formatR')
knitr::opts_chunk$set(tidy.opts=list(width.cutoff=80), tidy=TRUE) #wraps text for knitted file
getwd() #shows working directory
```

[1] "/home/guest/R/EDA Fall/Assignments"

```
library(tidyverse) #load tidyverse package
library(ggplot2)
#open Neonics file
Neonics <- read.csv(".../Data/Raw/ECOTOX_Neonicotinoids_Insects_raw.csv", stringsAsFactors = TRUE)
#open Litter file
Litter <- read.csv(".../Data/Raw/NEON NIWO Litter massdata 2018-08 raw.csv", stringsAsFactors = TRUE)</pre>
```

Learn about your system

2. The neonicotinoid dataset was collected from the Environmental Protection Agency's ECOTOX Knowledgebase, a database for ecotoxicology research. Neonicotinoids are a class of insecticides used

widely in agriculture. The dataset that has been pulled includes all studies published on insects. Why might we be interested in the ecotoxicology of neonicotinoids on insects? Feel free to do a brief internet search if you feel you need more background information.

Answer: Insecticides used for agricultural production can severely impact the surrounding insect population, even insects for which the pesticide is not targeted.

3. The Niwot Ridge litter and woody debris dataset was collected from the National Ecological Observatory Network, which collectively includes 81 aquatic and terrestrial sites across 20 ecoclimatic domains. 32 of these sites sample forest litter and woody debris, and we will focus on the Niwot Ridge long-term ecological research (LTER) station in Colorado. Why might we be interested in studying litter and woody debris that falls to the ground in forests? Feel free to do a brief internet search if you feel you need more background information.

Answer: Litter and woody debris release nutrients into the soil and are critical for maintaining soil health, and leaf litter/woody debris is an important habitat for insect species

4. How is litter and woody debris sampled as part of the NEON network? Read the NEON_Litterfall_UserGuide.pdf document to learn more. List three pieces of salient information about the sampling methods here:

Answer: 1. litter and woody debris is sampled at areas with woody vegetation that is greater than 2m 2. One litter trap is placed every 400 square plot area, with 1 - 4 trap pairs per plot 3. Depending on trap location, the trap placement can either be targeted or randomized

Obtain basic summaries of your data (Neonics)

5. What are the dimensions of the dataset?

```
# view(Neonics)
dim(Neonics) #displays dimensions of Neonics files, there are 4623 rows of 30 columns
```

[1] 4623 30

6. Using the summary function on the "Effect" column, determine the most common effects that are studied. Why might these effects specifically be of interest?

summ	ary(Neonics\$Effect)	#summarizes o	data in effect co	olumn of Neonics fil
##	Accumulation	Avoidance	Behavior	Biochemistry
##	ACCUMUTACION	Avoldance	Dellavioi	BIOCHEMISTIY
##	12	102	360	11
##	Cell(s)	Development	Enzyme(s)	Feeding behavior
##	9	136	62	255
##	Genetics	Growth	Histology	Hormone(s)
##	82	38	5	1
##	Immunological	Intoxication	Morphology	Mortality
##	16	12	22	1493
##	Physiology	Population	Reproduction	
##	7	1803	197	

Answer: Population, Mortality, and behavior are the three most common effects that are studied. This could be because they are broader topics, the other topics studied fall under the umbrella of these three topics, ie. reproduction, avoidance, and food behavior all fall under the 'behavior' category. Additionally all three of the most commonly studied factors are highly impacted by the presence of insecticides since both the population size, health and behavior of insects are all impacted with pesticides.

7. Using the summary function, determine the six most commonly studied species in the dataset (common name). What do these species have in common, and why might they be of interest over other insects? Feel free to do a brief internet search for more information if needed.

summary(Neonics\$Species.Common.Name) #summarizes data of Species.Common.Name from the Neonics file

##	Honey Bee	Parasitic Wasp
##	667	285
##	Buff Tailed Bumblebee	Carniolan Honey Bee
##	183	152
##	Bumble Bee	Italian Honeybee
##	140	113
##	Japanese Beetle	Asian Lady Beetle
##	94	76
##	Euonymus Scale	Wireworm
## ##	75	Minuta Directo Pur
##	European Dark Bee 66	Minute Pirate Bug 62
##	Asian Citrus Psyllid	Parastic Wasp
##	60	58
##	Colorado Potato Beetle	Parasitoid Wasp
##	57	51
##	Erythrina Gall Wasp	Beetle Order
##	49	47
##	Snout Beetle Family, Weevil	Sevenspotted Lady Beetle
##	47	46
##	True Bug Order	Buff-tailed Bumblebee
##	45	39
##	Aphid Family	Cabbage Looper
##	38	38
##	Sweetpotato Whitefly	Braconid Wasp
##	37	33
##	Cotton Aphid	Predatory Mite
##	33	33
##	Ladybird Beetle Family	Parasitoid
##	30	30
##	Scarab Beetle	Spring Tiphia
##	29	29
##	Thrip Order	Ground Beetle Family
##	29	27
##	Rove Beetle Family	Tobacco Aphid
##	27	27
##	Chalcid Wasp	Convergent Lady Beetle
##	25	25
##	Stingless Bee	Spider/Mite Class
##	Z5	Citrus I sofring
## ##	Tobacco Flea Beetle 24	Citrus Leafminer 23
##	Ladybird Beetle	Mason Bee
##	23	22
##	Mosquito	Argentine Ant
##	22	21
##	Beetle	Flatheaded Appletree Borer
##	21	20
##	Horned Oak Gall Wasp	Leaf Beetle Family
##	20	20
##	Potato Leafhopper	Tooth-necked Fungus Beetle
##	20	20
	20	20

##	Codling Moth	Black-spotted Lady Beetle
##	19	18
##	Calico Scale	Fairyfly Parasitoid
##	18	18
##	Lady Beetle	Minute Parasitic Wasps
##	18	18
##	Mirid Bug	Mulberry Pyralid
##	18	18
##	Silkworm	Vedalia Beetle
##	18	18
##	Araneoid Spider Order	Bee Order
##	17	17
##	Egg Parasitoid	Insect Class
##	17	17
##	Moth And Butterfly Order	Oystershell Scale Parasitoid
##	17	17
##	Hemlock Woolly Adelgid Lady Beetle	Hemlock Wooly Adelgid
##	16	16
##	Mite	Onion Thrip
##	16	16
##	Western Flower Thrips	Corn Earworm
##	15	14
##	Green Peach Aphid	House Fly
##	14	14
##	Ox Beetle	Red Scale Parasite
##	14	14
##	Spined Soldier Bug	Armoured Scale Family
##	14	13
##	Diamondback Moth	Eulophid Wasp
##	13	13
##	Monarch Butterfly	Predatory Bug
##	13	13
##	Yellow Fever Mosquito	Braconid Parasitoid
##	13	12
##	Common Thrip	Eastern Subterranean Termite
##	12	12
##	Jassid	Mite Order
##	12	12
##	Pea Aphid	Pond Wolf Spider
##	12	12
##	Spotless Ladybird Beetle	Glasshouse Potato Wasp
##	11	10
##	Lacewing	Southern House Mosquito
##	10	10
##	Two Spotted Lady Beetle	Ant Family
##	10	9
##	Apple Maggot	(Other)
##	9	670

Answer: The honey bee, the parasitic wasp, the buff tailed honeybee, the Carniolan Honey Bee, the Bumble Bee and the Italian Honeybee are the 6 most commonly studied insects. This is likely because bees as a whole are incredibly endangered, with certain bee species being more endangered than others and parasitic wasps are a direct predator of bees and their presence negatively impacts surrounding bee populations. Additionally, parasitic wasps and bees are excellent pollinators,

they are highly vulnerable to insecticides.

8. Concentrations are always a numeric value. What is the class of Conc.1..Author. in the dataset, and why is it not numeric?

class(Neonics\$Conc.1..Author.) #displays the class status of Conc.1..Author

[1] "factor"

Answer: The class is factors, because some data is listed as "NR" (not recorded) strings and earlier in the assignment we ran the strings as factors function, making the data a factor class.

Explore your data graphically (Neonics)

9. Using geom_freqpoly, generate a plot of the number of studies conducted by publication year.

$$ggplot(Neonics, aes(x = Publication.Year)) + geom_freqpoly()$$

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

creates a line graph publication year from the Neonics file

10. Reproduce the same graph but now add a color aesthetic so that different Test.Location are displayed as different colors.

```
ggplot(Neonics, ) + geom_freqpoly(aes(x = Publication.Year, color = Test.Location))
```

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

creates the same graph, but differentiates publication year by test location

Interpret this graph. What are the most common test locations, and do they differ over time?

Answer: The most common test location is the lab, but prior to 2010 the natural field was another common test location.

11. Create a bar graph of Endpoint counts. What are the two most common end points, and how are they defined? Consult the ECOTOX CodeAppendix for more information.

ggplot(Neonics, aes(x = Endpoint)) + geom_bar() + theme(axis.text.x = element_text(angle = 90))

creates a bar chart of the endpoints for the studies, also turned endpoint # labels 90 degrees to read better

Answer: The two most common endpoints are LOEL (the lowest observable effect level), meaning the endpoint with the lowest dose that produced results different from experimental controls and NOEL (no observable effect level) the highest dose that does not produce effects different from the experimental controls.

Explore your data (Litter)

12. Determine the class of collectDate. Is it a date? If not, change to a date and confirm the new class of the variable. Using the unique function, determine which dates litter was sampled in August 2018.

class(Litter\$collectDate) #verifies which class the collectDate data is in the Litter file

[1] "factor"

collectDate_2 <- as.Date(Litter\$collectDate) #changes the class from factor to date
class(collectDate_2) #verifies the class is now date</pre>

[1] "Date"

unique(collectDate_2) #displays the two dates in august where collection happened

[1] "2018-08-02" "2018-08-30"

13. Using the unique function, determine how many plots were sampled at Niwot Ridge. How is the information obtained from unique different from that obtained from summary?

unique(Litter\$plotID) #displays the different plots sampled at Niwot Ridge

- ## [1] NIWO_061 NIWO_064 NIWO_067 NIWO_040 NIWO_041 NIWO_063 NIWO_047 NIWO_051
- ## [9] NIWO_058 NIWO_046 NIWO_062 NIWO_057
- ## 12 Levels: NIWO_040 NIWO_041 NIWO_046 NIWO_047 NIWO_051 NIWO_057 ... NIWO_067

length(unique(Litter\$plotID)) #shows the number of different plots

[1] 12

Answer: a summary gives you information and data on each plot, unique tells you the number of plots.

14. Create a bar graph of functional Group counts. This shows you what type of litter is collected at the Niwot Ridge sites. Notice that litter types are fairly equally distributed across the Niwot Ridge sites.

ggplot(Litter, aes(x = functionalGroup)) + geom_bar()

creates a bar chart of the functional groups of leaf litter and woody debris.

15. Using geom_boxplot and geom_violin, create a boxplot and a violin plot of dryMass by functional-Group.

 $ggplot(Litter, aes(x = functionalGroup, y = dryMass)) + geom_boxplot()$

ggplot(Litter, aes(x = functionalGroup, y = dryMass)) + geom_violin()

creates a box plot and violin plot of the functional group by the drymass.

Why is the boxplot a more effective visualization option than the violin plot in this case?

Answer: Because dry mass is studied in continuous variables that cannot be accurately plotted on a violin plot

What type(s) of litter tend to have the highest biomass at these sites?

Answer: Needles have the highest biomass, followed by Mixed, and twigs/branches