Nombre: Pedro Ramos Suárez.

1. Sea A una matriz aleatoria con distribución $W_p(n,I_p)$. Probar que $\mathrm{tr}(A)$. tiene distribución χ^2_{np} .

El resultado 1 sobre marginalización asegura que:

$$\frac{a_{ii}}{\sigma_i^2} \sim \chi_n^2, \quad i = 1, \dots, p$$

y como $\sigma_i^2 = 1, \forall i = 1, \dots, p$ (por ser $\Sigma = I_p$), se tiene que

$$a_{ii} \sim \chi_n^2, \forall i = 1, \dots, p$$

.

Por otro lado, como $A \sim W_p(n, I_p)$ será, por definición, $A \stackrel{d}{=} \sum_{\alpha=1}^n Z_\alpha Z'_\alpha$, con $Z_\alpha \sim N_p(0, I_p)$ independientes, $\forall \alpha = 1, \ldots, n \pmod{n \geq p}$. Para cada α , podemos escribir $Z_\alpha = \begin{pmatrix} Z_{\alpha_1} \\ \vdots \\ Z_{\alpha_p} \end{pmatrix}$. Como I_p es una matriz diagonal, las variables aleatorias $Z_\alpha, \ldots, Z_{\alpha_p}$ componentes A^{-1} .

 I_p es una matriz diagonal, las variables aleatorias $Z_{\alpha_1}, \ldots, Z_{\alpha_p}$ componentes del vector Z_{α} son independientes, $\forall \alpha = 1, \ldots, n$ (pues en el caso de una DNM incorrelación implica independencia), con $Z_{\alpha_i} \sim N(0,1), i = 1, \ldots, p$. Puesto que

$$a_{ii} \stackrel{d}{=} \sum_{\alpha=1}^{n} Z_{\alpha_i} Z'_{\alpha_i}, \quad i = 1, \dots, p$$

es claro que a_{11},\ldots,a_{pp} son independientes. Aplicando finalmente la propiedad de reproductividad de la distribución χ^2 llegamos al resultado buscado:

$$\operatorname{tr}(A) = \sum_{i=1}^{p} a_{ii} \sim \chi_{np}^{2}$$

donde hemos tenido en cuenta que $\sum_{i=1}^{p} n = np$.

- 2. Sea A una matriz aleatoria con distribución $W_p(n,\Sigma)$ $(\Sigma>0)$. Probar que, para cualesquiera vectores $a,b\in\mathbb{R}^p$, las variables aleatorias a'Aa y b'Ab son independientes si y sólo si a' $\Sigma b=0$.
 - a y b linealmente independientes: Consideramos la matriz $M=\begin{pmatrix} a & b \end{pmatrix}_{p\times 2}$, de rango 2. Tenemos:

$$M'AM = \begin{pmatrix} a' \\ b' \end{pmatrix} A \begin{pmatrix} a & b \end{pmatrix} = \begin{pmatrix} a'Aa & a'Ab \\ b'Aa & b'Ab \end{pmatrix}_{4\times 4}$$

y, por la propiedad de reproductividad bajo transformaciones lineales rectangulares de la distribución de Wishart, se cumple que

$$M'AM \sim W_2(n, M'\Sigma M) \equiv W_2(n, \begin{pmatrix} a'\Sigma a & a'\Sigma b \\ b'\Sigma a & b'\Sigma b \end{pmatrix})$$

- \Leftarrow Si $a'\Sigma b=0$, el resultado sobre marginalización por bloques en una distribución de Wishart nos asegura entonces que a'Aa y b'Ab son independientes.
- \Rightarrow Si a'Aa y b'Ab son independientes, se tiene que:

$$0 = Cov(a'Aa, b'Ab) = n((a'\Sigma b)^{2} + (a'\Sigma b)^{2}) = 2n(a'\Sigma b)^{2}$$

Luego ha de ser $a'\Sigma b = 0$.

• a y b linealmente dependiente: Existirá entonces $\alpha \in \mathbb{R}$ tal que $a = \alpha b$, luego

$$a'Aa = (\alpha b')A\alpha b = \alpha^2(b'Ab)$$

esto es, las variables a'Aa y b'Ab no son independientes. Por otro lado, será $a'\Sigma b = \alpha(b'\Sigma b) \neq 0$ ya que Σ es definida positva. Así pues, el contrarrecíproco se cumple trivialmente.

• a = 0 ó b = 0: Entonces a'Aa = 0 ó b'Ab = 0, es decir, una de las variables es degenerada, con P[a'Aa = 0] = 1 ó P[b'Ab = 0] = 1, y una variable aleatoria degenerada es independiente de cualquier otra. Además, será $a'\Sigma b = 0$, de manera que el resultado se cumple trivialmente.

3. Probar que si X_1,\ldots,X_N constituyen una muestra aleatoria simple de una distribución $N_p(\mu,\Sigma)$ $(\Sigma>0)$, y el parámetro vector de medias μ es conocido, entonces el estimador máximo-verosímil de Σ es:

$$\hat{\Sigma} := \frac{1}{N} \sum_{\alpha=1}^{N} (\mathbf{X}_{\alpha} - \mu) (\mathbf{X}_{\alpha} - \mu)'$$

(bajo la condición de ser esta matriz definida positiva). Comprobar si este estimador es o no insesgado.

Vamos a buscar el máximo en Σ de la función $\ln(L(\mu, \Sigma))$, que será el mismo que el de $L(\mu, \Sigma)$ por ser el logaritmo estrictamente creciente.

$$\ln(L(\mu, \Sigma)) = -\frac{pN}{2}\ln(2\pi) - \frac{N}{2}\ln(|\Sigma|) - \frac{1}{2}\sum_{\alpha=1}^{N}(X_{\alpha} - \mu)'\Sigma^{-1}(X_{\alpha} - \mu)$$

donde $\sum_{\alpha=1}^{N} (X_{\alpha} - \mu)' \Sigma^{-1} (X_{\alpha} - \mu)$ es un escalar, de modo que coincide con su traza:

$$\sum_{\alpha=1}^{N} (X_{\alpha} - \mu)' \Sigma^{-1} (X_{\alpha} - \mu) = \operatorname{tr} (\sum_{\alpha=1}^{N} (X_{\alpha} - \mu)' \Sigma^{-1} (X_{\alpha} - \mu)) = \sum_{\alpha=1}^{N} \operatorname{tr} (X_{\alpha} - \mu)' \Sigma^{-1} (X_{\alpha} - \mu)) =$$

$$= \sum_{\alpha=1}^{N} \operatorname{tr} (\Sigma^{-1} (X_{\alpha} - \mu) (X_{\alpha} - \mu)') = \operatorname{tr} (\sum_{\alpha=1}^{N} (\Sigma^{-1} (X_{\alpha} - \mu) (X_{\alpha} - \mu)') =$$

$$= \operatorname{tr} (\Sigma^{-1} \sum_{\alpha=1}^{N} (X_{\alpha} - \mu) (X_{\alpha} - \mu)')$$

Así, llegamos a

$$\ln(L(\mu, \Sigma)) = -\frac{pN}{2}\ln(2\pi) - \frac{N}{2}\ln(|\Sigma|) - \frac{1}{2}\operatorname{tr}(\Sigma^{-1}\sum_{\alpha=1}^{N}(X_{\alpha} - \mu)(X_{\alpha} - \mu)')$$

Consideramos ahora la función

$$f(\Sigma) = 2[\ln(L(\mu, \Sigma)) + \frac{pN}{2}\ln(2\pi)] = -N\ln(|\Sigma|) - \text{tr}(\Sigma^{-1}\sum_{\alpha=1}^{N}(X_{\alpha} - \mu)(X_{\alpha} - \mu)')$$

y aplicamos el lema de Watson con $G = \Sigma$ y $D = \sum_{\alpha=1}^{N} (X_{\alpha} - \mu)(X_{\alpha} - \mu)'$, ambas matrices simétricas y definidas positivas, para obtener que f alcanza el único máximo respecto a Σ en $\Sigma = \frac{1}{N} \sum_{\alpha=1}^{N} (X_{\alpha} - \mu)(X_{\alpha} - \mu)'$. Es claro que f y $\ln(L(\mu, \Sigma))$ alcanzan el máximo para Σ en el mismo punto, de donde deducimos entonces que $\hat{\Sigma} = \frac{1}{N} \sum_{\alpha=1}^{N} (X_{\alpha} - \mu)(X_{\alpha} - \mu)'$ es el estimador máximo versímil de Σ .

Comprobamos que es insesgado:

$$E[\hat{\Sigma}] = E[\frac{1}{N} \sum_{\alpha=1}^{N} (X_{\alpha} - \mu)(X_{\alpha} - \mu)'] = \frac{1}{N} \sum_{\alpha=1}^{N} E[(X_{\alpha} - \mu)(X_{\alpha} - \mu)'] = \frac{1}{N} \sum_{\alpha=1}^{N} N\Sigma = \Sigma$$

luego $\hat{\Sigma}$ es un estimador insesgado.

4. Sea A una matriz aleatoria con distribución $W_p(n,\Sigma)$ $(\Sigma>0).$ Probar usando la función de densidad de Wishart, que

$$\mathbf{E}[|\mathbf{A}|^{\mathbf{r}}] = |\mathbf{\Sigma}|^{\mathbf{r}} \mathbf{2}^{\mathbf{p}\mathbf{r}} rac{\Gamma_{\mathbf{p}}(rac{1}{2}\mathbf{n} + \mathbf{r})}{\Gamma_{\mathbf{p}}(rac{1}{2}\mathbf{n})}, \quad orall \mathbf{r} > \mathbf{0}$$

[OBSERVACIÓN: La definición de la 'densidad de Wishart', y de la correspondiente 'función característica de Wishart', sigue siendo válida, por extensión, tomando como parámetro 'grados de libertad' cualquier número real n tal que n>p-1 (aunque la definición implícita en términos de vectores $\mathbf{Z}_{\alpha} \sim \mathbf{N_p}(\mathbf{0}, \Sigma)$ ($\Sigma>0$) independientes sólo se aplicaría para el caso en que n es entero, con $n\geq p$)]

Sea \mathcal{M}_p el espacio de las matrices reales, simétricas y definidas positivas de orden p. Entonces:

$$E[|A|^r] = \int_{\mathcal{M}_p} |A|^r \frac{|A|^{\frac{n-p-1}{2}} \exp\{-\frac{1}{2}\operatorname{tr}(\Sigma^{-1}A)\}}{2^{\frac{np}{2}}|\Sigma|^{\frac{n}{2}} \Gamma_p(\frac{n}{2})} dA =$$

$$= \int_{\mathcal{M}_p} \frac{|A|^{\frac{n+2r-p-1}{2}} \exp\{-\frac{1}{2}\operatorname{tr}(\Sigma^{-1}A)\}}{2^{\frac{np}{2}}|\Sigma|^{\frac{n}{2}} \Gamma_p(\frac{n}{2})} \cdot \frac{2^{pr}\Gamma_p(\frac{n+2r}{2})|\Sigma|^r}{2^{pr}\Gamma_p(\frac{n+2r}{2})|\Sigma|^r} dA =$$

$$= \int_{\mathcal{M}_p} \frac{|A|^{\frac{n+2r-p-1}{2}} \exp\{-\frac{1}{2}\operatorname{tr}(\Sigma^{-1}A)\}}{2^{\frac{p(n+2r)}{2}}|\Sigma|^{\frac{n+2r}{2}} \Gamma_p(\frac{n+2r}{2})} \cdot \frac{2^{pr}\Gamma_p(\frac{n+2r}{2})|\Sigma|^r}{\Gamma_p(\frac{n}{2})} dA =$$

$$= \frac{2^{pr}\Gamma_p(\frac{n+2r}{2})|\Sigma|^r}{\Gamma_p(\frac{n}{2})} \cdot \int_{\mathcal{M}_p} \frac{|A|^{\frac{n+2r-p-1}{2}} \exp\{-\frac{1}{2}\operatorname{tr}(\Sigma^{-1}A)\}}{2^{\frac{p(n+2r)}{2}}|\Sigma|^{\frac{n+2r}{2}} \Gamma_p(\frac{n+2r}{2})} dA$$

Usando que:

$$f(A) = \frac{|A|^{\frac{n+2r-p-1}{2}} \exp\{-\frac{1}{2}\operatorname{tr}(\Sigma^{-1}A)\}}{2^{\frac{p(n+2r)}{2}}|\Sigma|^{\frac{n+2r}{2}}\Gamma_p(\frac{n+2r}{2})}$$

es la función de distribución de Wishart con n+2r grados de libertad $(W_p(n+2r,\Sigma))$, tenemos:

$$\int_{\mathcal{M}_p} \frac{|A|^{\frac{n+2r-p-1}{1}} \exp\{-\frac{1}{2}\operatorname{tr}(\Sigma^{-1}A)\}}{2^{\frac{p(n+2r)}{2}} |\Sigma|^{\frac{n+2r}{2}} \Gamma_p(\frac{n+2r}{2})} dA = 1$$

y por lo tanto:

$$E[|A|^r] = \frac{|\Sigma|^r 2^{pr} \Gamma_p(\frac{n+2r}{2})}{\Gamma_p(\frac{n}{2})} = |\Sigma|^r 2^{pr} \frac{\Gamma_p(\frac{1}{2}n+r)}{\Gamma_p(\frac{1}{2}n)}, \quad \forall r > 0$$

- 5. Sea X_1,\ldots,X_N una muestra aleatoria simple de una distribución $N_p(\mu,\Sigma)$ $(\Sigma>0)$. Sea $A=\sum_{\alpha=1}^N(X_\alpha-\bar{X})(X_\alpha-\bar{X})'$ la matriz de dispersiones muestral, con $\bar{X}=\frac{1}{N}\sum_{\alpha=1}^N X_\alpha$ el vector de medias muestral.
 - (a) Probar que la matriz $Cov(\bar{\mathbf{X}}, \mathbf{X}_{\alpha} \bar{\mathbf{X}})$ es nula, para $\alpha = 1, \dots, \mathbf{N}$. Deducir, entonces, que $\bar{\mathbf{X}}$ y A son independientes.

Sea
$$\begin{pmatrix} \bar{X} \\ X_{\alpha} - \bar{X} \end{pmatrix}$$
, $\alpha = 1, \dots, N$. Entonces:

$$\begin{pmatrix} \bar{X} \\ X_{\alpha} - \bar{X} \end{pmatrix} = \begin{pmatrix} \frac{1}{N} I_{p} & \cdots & \frac{1}{N} I_{p} & \cdots & \frac{1}{N} I_{p} \\ -\frac{1}{N} I_{p} & \cdots & \frac{N-1}{N} I_{p} & \cdots & -\frac{1}{N} I_{p} \end{pmatrix} \begin{pmatrix} X_{1} \\ \vdots \\ X_{\alpha} \\ \vdots \\ X_{N} \end{pmatrix} = M \begin{pmatrix} X_{1} \\ \vdots \\ X_{\alpha} \\ \vdots \\ X_{N} \end{pmatrix}$$

Notemos que
$$\begin{pmatrix} X_1 \\ \vdots \\ X_N \end{pmatrix} \sim N_{pN}(\bar{\mu}, \bar{\Sigma}),$$
 con

$$\bar{\mu} = \begin{pmatrix} \mu \\ \vdots \\ \mu \end{pmatrix}$$
 y $\bar{\Sigma} = \begin{pmatrix} \Sigma & 0 & \dots & 0 \\ 0 & \Sigma & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \Sigma \end{pmatrix} = \operatorname{diag}(\Sigma, \dots, \Sigma)$

por se los vectores $X_{\alpha} \sim N_p(\mu, \Sigma)$ independientes $\forall \alpha = 1, \dots, N$.

Por el resultado sobre transformaciones lineales de rango máximo de una DNM tenemos que $\begin{pmatrix} \bar{X} \\ X_{\alpha} - \bar{X} \end{pmatrix} \sim N_{2p}(M\bar{\mu}, M\bar{\Sigma}M'), \forall \alpha = 1, \dots, N,$ con:

$$M\bar{\Sigma}M' = \begin{pmatrix} \frac{1}{N}I_p & \cdots & \frac{1}{N}I_p & \cdots & \frac{1}{N}I_p \\ -\frac{1}{N}I_p & \cdots & \frac{N-1}{N}I_p & \cdots & -\frac{1}{N}I_p \end{pmatrix} \begin{pmatrix} \Sigma & 0 & \cdots & 0 \\ 0 & \Sigma & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \Sigma \end{pmatrix} \begin{pmatrix} \frac{1}{N}I_p & -\frac{1}{N}I_p \\ \vdots & \vdots \\ \frac{1}{N}I_p & \frac{N-1}{N}I_p \\ \vdots & \vdots \\ \frac{1}{N}I_p & -\frac{1}{N}I_p \end{pmatrix} =$$

$$= \begin{pmatrix} \frac{1}{N}\Sigma & \dots & \frac{1}{N}\Sigma & \dots & \frac{1}{N}\Sigma \\ -\frac{1}{N}\Sigma & \dots & \frac{N-1}{N}\Sigma & \dots & -\frac{1}{N}\Sigma \end{pmatrix} \begin{pmatrix} \frac{1}{N}I_p & -\frac{1}{N}I_p \\ \vdots & \vdots \\ \frac{1}{N}I_p & \frac{N-1}{N}I_p \\ \vdots & \vdots \\ \frac{1}{N}I_p & -\frac{1}{N}I_p \end{pmatrix} = \begin{pmatrix} \frac{1}{N}\Sigma & 0_{p\times p} \\ 0_{p\times p0} & \frac{N-1}{N}\Sigma \end{pmatrix}$$

Tenemos entonces que $Cov(\bar{X}, X_{\alpha} - \bar{X}) = 0_{p \times p}$ y, además, como en el caso de una DNM la incorrelación implica independencia, los vectores aleatorios \bar{X} y $X_{\alpha} - \bar{X}$ son independientes $\forall \alpha = 1, \ldots, N$.

Finalmente, al ser A una función medible de los vectores $X_{\alpha} - \bar{X}$, tenemos que A y \bar{X} son independientes.

(b) Encontrar una matriz B tal que A = X'BX, con $X = (X_1, ..., X_N)'$ (matriz $(N \times p)$ -dimensional).

$$A = \sum_{\alpha=1}^{N} (X_{\alpha} - \bar{X})(X_{\alpha} - \bar{X})' = (X_{1} - \bar{X} \dots X_{N} - \bar{X}) \begin{pmatrix} X'_{1} - \bar{X}' \\ \vdots \\ X'_{N} - \bar{X}' \end{pmatrix} =$$

$$= [(X_{1} \dots X_{N}) - (\bar{X} \dots \bar{X})] \begin{bmatrix} X'_{1} \\ \vdots \\ X'_{N} \end{pmatrix} - \begin{pmatrix} \bar{X}' \\ \vdots \\ \bar{X}' \end{pmatrix}] =$$

$$= [(X_{1} \dots X_{N}) - \frac{1}{N} \left(\sum_{\alpha=1}^{N} X_{\alpha} \dots \sum_{\alpha=1}^{N} X_{\alpha} \right)] \begin{bmatrix} X'_{1} \\ \vdots \\ X'_{N} \end{pmatrix} - \frac{1}{N} \begin{pmatrix} \sum_{\alpha=1}^{N} X'_{\alpha} \\ \vdots \\ \sum_{\alpha=1}^{N} X'_{\alpha} \end{pmatrix}] =$$

$$= [(X_{1} \dots X_{N}) (I_{N} - \frac{1}{N} \begin{pmatrix} 1 \dots 1 \\ \vdots \dots \vdots \\ 1 \dots 1 \end{pmatrix})] [(I_{N} - \frac{1}{N} \begin{pmatrix} 1 \dots 1 \\ \vdots \dots \vdots \\ 1 \dots 1 \end{pmatrix}) \begin{pmatrix} X'_{1} \\ \vdots \\ X'_{N} \end{pmatrix}] =$$

$$= X'BX$$

donde

$$B = (I_N - \frac{1}{N} \begin{pmatrix} 1 & \dots & 1 \\ \vdots & \ddots & \vdots \\ 1 & \dots & 1 \end{pmatrix}) (I_N - \frac{1}{N} \begin{pmatrix} 1 & \dots & 1 \\ \vdots & \ddots & \vdots \\ 1 & \dots & 1 \end{pmatrix}) =$$

$$= I_N - \frac{1}{N} \begin{pmatrix} 1 & \dots & 1 \\ \vdots & \ddots & \vdots \\ 1 & \dots & 1 \end{pmatrix} = \begin{pmatrix} \frac{N-1}{N} & -\frac{1}{N} & \dots & -\frac{1}{N} \\ -\frac{1}{N} & \frac{N-1}{N} & \dots & -\frac{1}{N} \\ \vdots & \vdots & \ddots & \vdots \\ -\frac{1}{N} & -\frac{1}{N} & \dots & \frac{N-1}{N} \end{pmatrix}$$

(c) Suponiendo que N>p, encontrar alguna matriz $(p\times p)-$ dimensional G tal que $GAG'\sim W_p(N-1,I_p).$

Puesto que $A \sim W_p(N-1,\Sigma)$, tenemos por el resultado de reproductividad bajo transformaciones lineales rectangulares de una distribución de Wishart que $GAG' \sim W_p(N-1,G\Sigma G')$. Así pues, basta encontrar una matriz G de orden p tal que $G\Sigma G' = I_p$.

Tomamos una matriz C de dimensión $p \times p$ no singular tal que $\Sigma = CC'$ (que existe por ser $\Sigma > 0$) y, llamando $G = C^{-1}$ llegamos a que

$$G\Sigma G' = GCC'G' = C^{-1}CC'(C^{-1})' = C^{-1}CC'(C')^{-1} = I_p$$

como buscábamos.