# $\Pi\Lambda H30$

# ΕΝΟΤΗΤΑ 3: ΚΑΝΟΝΙΚΕΣ ΓΛΩΣΣΕΣ

Μάθημα 3.4: Κλειστότητα Πράξεων των Κανονικών Γλωσσών

Δημήτρης Ψούνης





### Α. Σκοπός του Μαθήματος

### Β. Θεωρία

- 1. Κλειστότητα των Κανονικών Γλωσσών
  - 1. Κλειστότητα στην Ενωση
  - 2. Κλειστότητα στην Παράθεση
  - 3. Κλειστότητα στο Αστέρι Kleene
  - 4. Κλειστότητα στο Συμπλήρωμα
  - 5. Κλειστότητα στην Τομή
    - 1. Απλοποίηση ΝΠΑ
- 2. Επιπλέον Κατασκευές
  - 1. Κατασκευή ΝΠΑ για την Ένωση
  - 2. Κατασκευή ΝΠΑ για τη Διαφορά

### Γ.Ασκήσεις

# Α. Σκοπός του Μαθήματος

### Οι στόχοι του μαθήματος είναι:

### Επίπεδο Α

- > Κλειστότητες Κανονικών Γλωσσών
- Επίπεδο Β
- > Απλοποίηση των ΝΠΑ

### Επίπεδο Γ

**>** (-)

# 1. Κλειστότητα

Η έννοια της κλειστότητας είναι κοινή στα μαθηματικά και αφορά το γεγονός αν το αποτέλεσμα μιας πράξης συντηρεί την ιδιότητα που έχουν τα στοιχεία στα οποία εφαρμόσαμε την πράξη.

- Π.χ. λέμε ότι έχουμε κλειστότητα στην πράξη της πρόσθεσης στους φυσικούς αριθμούς.
- Διότι αν έχουμε δύο φυσικούς x,y τότε το αποτέλεσμα x+y είναι και πάλι φυσικός
- Αλλά και στην πράξη του πολλαπλασιασμού στους φυσικούς αριθμούς:
- Διότι αν έχουμε δύο φυσικούς x,y τότε το αποτέλεσμα x\*y είναι και πάλι φυσικός
- Αλλά όχι στην πράξη της αφαίρεσης στους φυσικούς αριθμούς:
- Διότι αν έχουμε δύο φυσικούς x,y τότε το αποτέλεσμα x-y δεν είναι κατ'
  ανάγκην φυσικός αριθμός

# 1. Κλειστότητα των Κανονικών Γλωσσών

Η έννοια της κλειστότητας βρίσκει εφαρμογή και στις γλώσσες.

Θεωρούμε δύο γλώσσες L<sub>1</sub> και L<sub>2</sub> που είναι κανονικές.

- Η <u>ένωση</u> τους είναι κανονική (θα το αποδείξουμε μέσω Κ.Ε.)
- > Η <u>παράθεση</u> τους είναι κανονική (θα το αποδείξουμε μέσω Κ.Ε)
- Το αστέρι Kleene της L₁ είναι κανονική (θα το αποδείξουμε μέσω Κ.Ε)
- Το συμπλήρωμα της L₁ είναι κανονική (θα το αποδείξουμε με ΝΠΑ)
- > Η <u>τομή</u> τους είναι κανονική (θα το αποδείξουμε με ΝΠΑ)

# 1. Κλειστότητα των Κανονικών Γλωσσών

### 1. Κλειστότητα στην Ένωση

### Θεώρημα (Κλειστότητα των Κανονικών Γλωσσών στην Ένωση)

Αν η  $L_1$  είναι Κανονική Γλώσσα και η  $L_2$  είναι Κανονική Γλωσσα τότε και η  $L_1$  U  $L_2$  είναι Κανονική Γλώσσα

#### Απόδειξη

Η  $L_1$  είναι κανονική, άρα περιγράφεται από μία κανονική έκφραση, έστω  $r_1$  Η  $L_2$  είναι κανονική, άρα περιγράφεται από μία κανονική έκφραση, έστω  $r_2$ 

 $H L_1 U L_2$  περιγράφεται από την κανονική έκφραση  $r_1 + r_2$ , άρα είναι κανονική γλώσσα.



# 1. Κλειστότητα των Κανονικών Γλωσσών

### 2. Κλειστότητα στην Παράθεση

### Θεώρημα (Κλειστότητα των Κανονικών Γλωσσών στην Παράθεση)

Αν η  $L_1$  είναι Κανονική Γλώσσα και η  $L_2$  είναι Κανονική Γλωσσα τότε και η  $L_1L_2$  είναι Κανονική Γλώσσα.

#### Απόδειξη

Η L<sub>1</sub> είναι κανονική, άρα περιγράφεται από μία κανονική έκφραση, έστω r<sub>1</sub> Η L<sub>2</sub> είναι κανονική, άρα περιγράφεται από μία κανονική έκφραση, έστω r<sub>2</sub>

 $H L_1 L_2$  περιγράφεται από την κανονική έκφραση  $r_1 r_2$ , άρα είναι κανονική γλώσσα.



# 1. Κλειστότητα των Κανονικών Γλωσσών

### 3. Κλειστότητα στο Αστέρι Kleene

<u>Θεώρημα (Κλειστότητα των Κανονικών Γλωσσών στο Αστέρι Kleene)</u>

Αν η L είναι Κανονική Γλώσσα τότε και η L\* είναι Κανονική Γλώσσα.

#### Απόδειξη

Η L είναι κανονική, άρα περιγράφεται από μία κανονική έκφραση, έστω r

Η L\* περιγράφεται από την κανονική έκφραση r\*, άρα είναι κανονική γλώσσα.



## 1. Κλειστότητα των Κανονικών Γλωσσών

### 4. Κλειστότητα στο Συμπλήρωμα

#### Θεώρημα (Κλειστότητα των Κανονικών Γλωσσών στο Συμπλήρωμα)

Αν η L είναι Κανονική Γλώσσα τότε και η  $\overline{L}$  είναι Κανονική Γλώσσα.

#### Απόδειξη

Η L είναι κανονική άρα υπάρχει ένα ντετερμινιστικό πεπερασμένο αυτόματο Μ που αποφασίζει την γλώσσα.

Κατασκευάζουμε Μ΄ ντετερμινιστικό πεπερασμένο αυτόματο για την  $\overline{L}$  ως εξής: Το Μ' είναι το ίδιο με το Μ, αλλά:

- Κάθε τελική κατάσταση του Μ γίνεται μη τελική στο Μ΄
- Κάθε μη τελική κατάσταση του Μ' γίνεται τελική στο Μ

Μία συμβολοσειρά w που ανήκει στην L, θα οδηγείται σε τελική κατάσταση στο M, άρα σε μη τελική στο M', άρα θα απαντάει ΌΧΙ στο M' αφού η w δεν ανήκει στην  $\overline{L}$ .

Μία συμβολοσειρά w που δεν ανήκει στην L, θα οδηγείται σε μη τελική κατάσταση στο M, άρα σε τελική στο M', άρα θα απαντάει NAI στο M' αφού η w ανήκει στην  $\overline{L}$ .

Συνεπώς το Μ΄ αποφασίζει την  $\overline{L}$ , άρα η  $\overline{L}$  είναι κανονική

#### www.psounis.gr

# Β. Θεωρία

# 1. Κλειστότητα των Κανονικών Γλωσσών

### 4. Κλειστότητα στο Συμπλήρωμα

<u>Παράδειγμα:</u> Το Ντετερμινιστικό Πεπερασμένο Αυτόματο της γλώσσας L={w∈{0,1}\*| w αρχίζει με 00} είναι το ακόλουθο:



Συνεπώς το Ντετερμινιστικό Πεπερασμένο Αυτόματο της γλώσσας  $\overline{L}$  ={ $\mathbf{w} \in \{0,1\}^*$ |  $\mathbf{w}$  δεν αρχίζει με 00} είναι το ακόλουθο:



# 1. Κλειστότητα των Κανονικών Γλωσσών

### 5. Κλειστότητα στην Τομή

### Θεώρημα (Κλειστότητα των Κανονικών Γλωσσών στην Τομή)

Αν η  $L_1$  είναι Κανονική Γλώσσα και η  $L_2$  είναι Κανονική Γλωσσα τότε και η  $L_1 \cap L_2$  είναι Κανονική Γλώσσα.

### Απόδειξη

Οι  $L_1, L_2$  είναι κανονικές, άρα υπάρχουν ντετερμινιστικά πεπερασμένα αυτόματα που τις αποφασίζουν, έστω  $M_1, M_2$ .

Κατασκευάζουμε Μ΄ ντετερμινιστικό πεπερασμένο αυτόματο για την L₁∩L₂ που προσομοιώνει την εκτέλεση των M₁,M₂ ως εξής:

- Έχει ως καταστάσεις όλους τους συνδυασμούς των καταστάσεων των  $M_1, M_2$  (καρτεσιανό γινόμενο των καταστάσεων των δύο αυτομάτων)
- Η συνάρτηση μετάβασης μεταβαίνει από ένα ζεύγος καταστάσεων σε επόμενο προσομοιώνοντας ταυτόχρονα και τις δύο κινήσεις των αυτομάτων
- Αρχική Κατάσταση είναι το ζεύγος αρχικών καταστάσεων των δύο αυτομάτων
- Τελικές Καταστάσεις είναι τα ζεύγη τελικών καταστάσεων των δύο αυτομάτων.

Επειδή το αυτόματο προσομοιώνει την ταυτόχρονη λειτουργία των δύο αυτομάτων, αποφασίζει την γλώσσα  $L_1 \cap L_2$ , άρα αυτή είναι κανονική.

# 1. Κλειστότητα των Κανονικών Γλωσσών

### 5. Κλειστότητα στην Τομή

#### Παράδειγμα:

 $L_1$ ={w∈ {0,1}\*| w περιέχει αρτια 0}



 $L_2$ ={w∈ {0,1}\*| w περιέχει περιττά 1}



Συνεπώς το Ντετερμινιστικό Πεπερασμένο Αυτόματο της γλώσσας  $L_1 \cap L_2 = \{w \in \{0,1\}^* | w$  περιέχει άρτια 0 και περιττά 1 $\}$  είναι το ακόλουθο:



# 1. Κλειστότητα των Κανονικών Γλωσσών

### 5. Κλειστότητα στην Τομή

#### Παράδειγμα 2:

 $L_1 = \{w \in \{0,1\}^* | w περιέχει το 00\}$ 



 $L_2={w\in {0,1}^*| w τελειώνει με 1}$ 



Συνεπώς το Ντετερμινιστικό Πεπερασμένο Αυτόματο της γλώσσας  $L_1 \cap L_2 = \{w \in \{0,1\}^* | w περιέχει το 00 και τελειώνει με 1\} είναι το ακόλουθο:$ 



#### www.psounis.gr

# Β. Θεωρία

# 1. Κλειστότητα των Κανονικών Γλωσσών

### 5. Κλειστότητα στην Τομή (απλοποίηση ΝΠΑ – κανόνας 1)

Το αυτόματο που προκύπτει από τον αλγόριθμο κατασκευής ΝΠΑ για την τομή επιδέχεται

απλοποιήσεις:



Κανόνας Απλοποιήσης 1: Καταστάσεις που δεν έχουν εισερχόμενο βέλος μπορούν να καταργηθούν (άρα η κατάσταση ΒΥ μπορεί να καταργηθεί):



# 1. Κλειστότητα των Κανονικών Γλωσσών

### 5. Κλειστότητα στην Τομή (απλοποίηση ΝΠΑ – κανόνας 2)

Στο αυτόματο που προέκυψε μπορούμε να εφαρμόσουμε και τον δεύτερο κανόνα απλοποίησης



Κανόνας Απλοποιήσης 2: Καταστάσεις που έχουν την ίδια συμπεριφορα, δηλαδή:

- είναι και οι δύο τελικές (ή μη τελικές)
- Πηγαίνουν στις ίδιες καταστάσεις με το ίδιο σύμβολο

Μπορούν να συμπτυχθούν σε μία.

Στο παράδειγμα ενοποιούνται οι καταστάσεις ΑΧ και ΑΥ σε μία νέα (έστω ΑΧ):



#### www.psounis.gr

# Β. Θεωρία

# 1. Κλειστότητα των Κανονικών Γλωσσών

### 5. Κλειστότητα στην Τομή (απλοποίηση ΝΠΑ – κανόνας 2)

Το τελικό αυτόματο που προκύπτει για την γλώσσα είναι  $L_1 \cap L_2 = \{w \in \{0,1\}^* | w \pi \epsilon \rho i \epsilon \chi \epsilon i to 00 και τελειώνει με 1\}:$ 



Οι δύο κανόνες απλοποίησης δρουν επαναληπτικά, δηλαδή όσο βρίσκουν εφαρμογή, συνεχίζουμε να τους εφαρμόζουμε. Όταν δεν βρίσκουν πλέον εφαρμογή, θα έχει προκύψει ΝΠΑ με το ελάχιστο δυνατό πλήθος καταστάσεων.

Η ελαχιστοποίηση των καταστάσεων του αυτομάτου δεν είναι υποχρεωτική! Την εφαρμόζουμε μόνο εφόσον μας το ζητάει η εκφώνηση της άσκησης.



# 2. Επιπλέον Κατασκευές

Στηριζόμαστε στην κατασκευή του ΝΠΑ για την τομή.

Συγκεκριμένα ακολουθούμε ακριβώς τους ίδιους κανόνες για:

- Την κατασκευή καταστάσεων (ως το καρτεσιανό γινόμενο των καταστάσεων των δύο αυτομάτων)
- Τις μεταβάσεις να προσομοιώνουν την λειτουργία των δύο αυτομάτων
- Την αρχική ως τον συνδυασμό αρχικών καάστάσεων των δύο αυτομάτων.

Τροποποιούμε την επιλογή των τελικών καταστάσεων:

- Επιλέγουμε ως τελικές αυτές που περιέχουν τουλάχιστον μία τελική κατάσταση (του πρώτου ή του δεύτερου ή και των δύο)
  - Και έχουμε ΝΠΑ για την <u>ένωση των δύο γλωσσών L1 U L2</u>
- Επιλέγουμε ως τελικές αυτές που περιέχουν τελική κατάσταση του Μ1 και μη τελική κατάσταση του Μ2
  - Και έχουμε ΝΠΑ για την διαφορά των δύο γλωσσών L1 L2

# 2. Επιπλέον Κατασκευές

### 5. Κατασκευή ΝΠΑ για την Ένωση

#### Παράδειγμα:

 $L_1={w\in {0,1}^*| w περιέχει αρτια 0}$ 



 $L_2={w \in {0,1}^*| w περιέχει περιττά 1}$ 



Συνεπώς το Ντετερμινιστικό Πεπερασμένο Αυτόματο της γλώσσας  $L_1$  U  $L_2$  = { $w \in \{0,1\}^*$ | w περιέχει άρτια 0 ή περιττά 1} είναι το ακόλουθο:



Τελικές του L1 (A) και Μη τελικές του L2 (Y)

Νέες τελικές να περιέχεται μία τουλάχιστον από αυτές Άρα τελικές είναι οι ΑΧ,ΑΥ,ΒΥ

# 2. Επιπλέον Κατασκευές

### 5. Κατασκευή ΝΠΑ για την Διαφορά

#### Παράδειγμα:

 $L_1=\{w\in\{0,1\}^*| w περιέχει αρτια 0\}$ 



 $L_2={w \in {0,1}^*| w περιέχει περιττά 1}$ 



Συνεπώς το Ντετερμινιστικό Πεπερασμένο Αυτόματο της γλώσσας  $L_1$  -  $L_2$  =  $\{w \in \{0,1\}^* | w$  περιέχει άρτια 0 και όχι περιττά 1 $\}$  είναι το ακόλουθο:



Τελικές του  $L_1$  (A) και Μη τελικές του  $L_2$  (X) Άρα τελική είναι η ΑΧ



# Δ. Ασκήσεις Εφαρμογή 1

- (A) Δώστε ΝΠΑ για την γλώσσα L={w∈ {0,1}\*| w περιέχει τουλάχιστον έναν 1}
- (B) Δώστε ΝΠΑ για την γλώσσα L={w∈ {0,1}\*| w αρχίζει με 0}
- (Γ) Κατασκευάστε ΝΠΑ για την  $L_1 \cap L_2$  χρησιμοποιώντας τον αλγόριθμο κλειστότητας της τομής

# Δ. Ασκήσεις Εφαρμογή 2

Δίδονται τα ντετερμινιστικά πεπερασμένα αυτόματα  $M_1$  και  $M_2$  που αναγνωρίζουν τις γλώσσες  $L_1$  και  $L_2$  αντίστοιχα





- (Α) Περιγράψτε τις γλώσσες που αναγνωρίζονται από τα δύο αυτόματα.
- (Β) Δώστε τις αντίστοιχες κανονικές εκφράσεις.



www.psounis.gr

(Δ) Απλοποιήστε το ΝΠΑ της τομής.