Operating System Definition

- System View
 - OS is a resource allocator
 - Manages all resources
 - Decides between conflicting requests for efficient and fair resource use
 - OS is a control program
 - Controls execution of programs to prevent errors and improper use of the computer.

Operating System Definition (Cont.)

- No universally accepted definition
- "The one program running at all times on the computer" is the kernel.
- Everything else is either,
 - a system program, or an application program.

Computer-System Organization

A modern computer system.

- One or more CPUs
- Number of device controllers
- Shared memory
- Memory controller

Computer Startup

- bootstrap program is loaded at power-up or reboot
 - Stored in ROM or EPROM (erasable programmable read-only memory)
 - Known as **firmware** (permanent software programmed into a read-only memory)
 - Initializes all aspects of system
 - Loads operating system kernel and starts execution

Common Functions of Interrupts

- Interrupt transfers control to the interrupt service routine generally, through the interrupt vector, which contains the addresses of all the service routines
- Interrupt architecture must save the address of the interrupted instruction
- A trap or exception is a software-generated interrupt caused either by an error or a user request
- An operating system is **interrupt driven**

Storage Structure

- Main Memory
 - RAM
 - Main memory is usually too small to store all needed programs and data permanently.
 - Main memory is a volatile storage device that loses its contents when power is turned off or otherwise lost
- Read-only memory (ROM)
 - A typical instruction—execution cycle
- Secondary storage
 - hold large quantities of data permanently
 - magnetic disk

Storage-device hierarchy

Operating System Structure

- Multiprogramming (Batch system) needed for efficiency
 - Single user cannot keep CPU and I/O devices busy at all times
 - Multiprogramming organizes jobs (code and data) so CPU always has one to execute
 - A subset of total jobs in system is kept in memory
 - One job selected and run via job scheduling(from job pool)
 - When it has to wait (for I/O for example), OS switches to another job
- Timesharing (multitasking) is logical extension in which CPU switches jobs so frequently that users can interact with each job while it is running, creating interactive computing
 - Response time should be < 1 second
 - Each user has at least one program executing in memory ⇒ process
 - If several jobs ready to run at the same time ⇒ CPU scheduling(picking jobs from memory)
 - If processes don't fit in memory, **SWapping** moves them in and out to run
 - Virtual memory allows execution of processes not completely in memory

Memory Layout for Multiprogrammed System

job pool job scheduling CPU scheduling Swapping Virtual memory

Operating-System Operations

- Modern OS are Interrupt driven (hardware and software)
 - Hardware interrupt by one of the devices: A signal created and sent to the CPU that is caused by some action taken by a **hardware** device. keystroke depressions and mouse movements cause hardware interrupts.
 - Software interrupt (exception or trap):
 - Software error (e.g., division by zero)
 - invalid memory access
 - Request from user program to access a specific operating system service
 - For each type of interrupt, separate segments of code in the operating system determine what action should be taken.
 - An interrupt service routine is provided that is responsible for dealing with the interrupt.
 - Other process problems include infinite loop, processes modifying each other or the operating system