INSERT POSTER TITLE

Author hw454@bath.ac.uk Supervisors: Co-SuperVisors, Supervisors University

Who are we? CHANGE THIS TO THE TITLE OF YOUR FIRST COLLUMN.

PhD Student BLOCK TITLE

BLOCK TEXT H.

Wragg

SAMBa aligned PhD student at the University of Bath.

Supervisors BLOCK TITLE

BLOCK TEXT Primary

Supervisor:

C. Budd

Professor of Applied Mathematics at the University of Bath and Professor of Mathematics at the Royal Institution of Great Britain.

Secondary Supervisor:

R. Watson

Senior Lecturer in the department of Electronic and Electrical Engineering at the University of Bath.

Industrial Supervisors BLOCK TITLE

BLOCK TEXT K. Briggs A research mathematician, for BT TSO at Adastral Park.

M. Fitch A research engineer for BT TSO at Adastral Park.

The Project

AIM BLOCK TITLE

BLOCK TEXT

- Create an accurate model and reduce the time it takes to simulate indoor-to-indoor WiFi propagation in a domestic environment.
- Use the model to optimize the location of low powered base stations.

Proposed method BLOCK TITLE

BLOCK TEXT

- Use intelligent algorithms and adaptive mesh techniques to decrease execution time.
- Compare simulation results to PDE models and to measured results from BT.
- Develop a stochastic model for the environment.
- Optimize the location of the transmitter using the developed model.

High frequency BLOCK TITLE

BLOCK TEXT BLOCK TEXT

Figure: The rays propagating from the transmitter.

- The signal strength can be calculated along the trajectory of the ray.
- This takes into account the loss from the distance travelled, and from the interactions with the furniture.

BLOCK TEXT

- Since the waves we are looking at are at a high frequency (typically of the order of 3GHz, but sometimes going higher) we can model them using ray-tracing.
- This is very computationally costly to run and requires lots of input information.

Figure: The signal strength along the ray trajectories.

Collisions BLOCK TITLE

BLOCK TEXT Colliding with an object causes a loss in the signal power.

Reflection

Refraction

BLOCK TEXT After colliding with an object at some angle of incidence i, a ray is then reflected at an angle of reflection r. **BLOCK TEXT When** a ray travels through an object, it is refracted slightly

towards the normal.

Scattering

When colliding with a rough surface, a ray can scatter. This can be unpredictable, and can be computationally costly to simulate.

BLOCK TEXT

BLOCK TEXT Collision with the corner of an object causes the ray to diffract, which is also difficult to predict.

References

[1] Excel@Physics.

http://www.excelatphysics.com/reflection-of-light.html, 2014. Accessed: 2016-11-14.

Waves Tutorial 6: Reflection, Refraction, and Optical Fibres refraction. http://www.antonine-education.co.uk/Pages/Physics_2/Waves/WAV_ 06/Waves_6.htm, 2012. Accessed: 2016-11-14.

[3] Simon Saunders.

Antennas and Propagation for Wireless Communication Systems. Manning Publications Co., Connecticut, USA, 2000.

TEMS iBuildNet: Ray-Tracing multi-path. http://www.tems.com/blog/item/74-tems-ibuildnet-ray-tracing,

Accessed: 2016-11-13. [5] C. Wutz.

Drahtlose Kommunikation.

http://www.iis.fraunhofer.de/de/ff/kom/tech/ drahtlose-kommunikation.html, 2016. Accessed: 2016-11-14.

[6] Don Dingee.

Left2MyOwnDeviceswait, i thought femtocells were the solution. http://l2myowndevices.com/index.php/2011/08/31/

wait-i-thought-femtocells-were-the-solution/, 2011. Accessed: 2016-11-14.

[7] IXIA. Lte-femtocells.

https://support.ixiacom.com/sites/default/files/resources/ quick-reference-sheet/femtocell-qrs.pdf, 2011. Accessed: 2016-11-14.

[8] Jim Zyren and Wes McCoy. Overview of the 3gpp long term evolution physical layer.

Freescale Semiconductor, Inc., white paper, 2007

Domestic environment **BLOCK TITLE**

BLOCK TEXT

- A domestic environment is very cluttered, which reduces the number of line-of-sight paths.
- Each collision results in the wave having a combination of reflections, diffractions, and refractions.

Where? TITLE

Adastral Park BLOCK TITLE

BLOCK **TEXT** Adastral Park is home