Gerenciamento Ágil de Projeto

por Adriana Silveira de Souza

Alguns detalhes importantes

Cronograma

Dia	Semana	Carga Horária
13/04/2018	Sexta-feira	18:50 h - 22:00 h
27/04/2018	Sexta-feira	18:50 h - 22:00 h
11/05/2018	Sexta-feira	18:50 h - 22:00 h
25/05/2018	Sexta-feira	18:50 h - 22:00 h
Total		20 h

Alguns detalhes importantes

Ementa

Manifesto ágil; métodos e frameworks ágeis; iniciação de projetos ágeis; planejamento de projetos ágeis; execução de projetos ágeis; monitoramento e controle de projetos ágeis; e melhoria contínua.

Avaliação

- → Participação na Aula
- → Exercícios práticos individuais ou em grupos aplicados ao longo das aulas
- → Seminários em grupos

Aplicação da agilidade

Pode ser aplicada a qualquer processo de sw. Para obtêla é essencial:

- que seja projetado para que a equipe possa adaptar e alinhar (racionalizar) tarefas
- 2) conduzir o planejamento compreendendo a fluidez de uma abordagem ágil de desenvolvimento
- 3) possa eliminar tudo, exceto os artefatos essenciais, conservando-os enxutos
- enfatize a entrega incremental, entregando para o cliente o mais rápido possível o sw operacional

Do caos para a previsibilidade

- Software é tratado de forma caótica
 - → Sem planejamento
 - code and fix (até dar certo)
 - → Funciona inicialmente, mas...
 - não é escalável
 - dificulta a qualidade
 - exige longa fase de depuração e teste (pelos clientes!)
- Métodos de Engenharia impõem disciplina sobre o caos
 - → Previsibilidade e eficiência de processos
 - Organiza e orienta o ritmo de desenvolvimento
 - Planeje, faça, prove que fez

Da previsibilidade para a agilidade

- Métodos de Engenharia são baseados em planejamento e controle de processos
 - → Funciona para manufatura, mas...
 - não se aplica em tarefas que envolvem criação e inovação
 - como avaliar a complexidade de algo que não existe?
 - exige enorme capacidade de prever o processo e esforço para comprovar o passado

Da previsibilidade para a agilidade

- Métodos Ágeis rejeitam o rigor burocrático dos métodos de engenharia
 - → Limita a quantidade de controles dos processos
 - Abordagem adaptativa em vez de preditiva
 - Orientada a pessoas e comunicação e não a planos e processos
 - → Processo Empírico em vez de Processo Definido

Tipos de processos

- Processo definido ou preditivo ou rigoroso (Heavy Weigth)
 - → Indicado para trabalho repetitivo e previsível, em ambientes bem controlados
 - → Princípios
 - Planejamento
 - Medição e Controle

- Processo empírico ou Light Weigth
 - Indicado para processos complexos, variáveis e imprevisíveis
 - → Princípios
 - Visibilidade
 - Inspeção
 - Adaptabilidade

Processos de Software

- Desenvolvimento de software envolve criatividade, aprendizagem e esforço intelectual
 - → Logo, não é um bom contexto para processos rigorosamente definidos (burocráticos)
- O desenvolvimento de um software nunca é estritamente repetitivo e bem planejado
 - → No entanto, existem padrões que podem ser usados

Abordagem Ágil de Desenvolvimento

O Manifesto para Desenvolvimento Ágil

- http://www.agilemanifesto.org/
 - → Promove mudança evolucionária e interativa

Princípios

- → Mudanças em requisitos são bem-vindas
- → Satisfazer o cliente com entregas imediatas e contínuas de software que agrega valor ao negócio
- Métodos ágeis valorizam, <u>quando em conflito</u>, a característica da esquerda
- → Indivíduos e interações sobre processos e ferramentas
- → **Software funcional** sobre documentação exaustiva
- → Colaboração com o cliente sobre negociação contratual
- → **Resposta a mudanças** sobre seguir um plano

Desenvolvimento Ágil

Valores da Abordagem Ágil

- Prioridade é satisfazer o cliente com entrega imediata e contínua de software de valor
- Mudanças, mesmo tardias, são bem-vindas
- Entrega frequente de software que funciona
- Clientes e técnicos trabalham juntos diariamente
- A equipe deve estar motivada e não pressionada
- A comunicação mais efetiva é feita face-a-face
 - A medida fundamental de progresso é software funcionando

Desenvolvimento Iterativo

- Várias liberações de partes do produto ao longo do projeto
 - → Contraposição a uma grande e única liberação ao final de um projeto
- Envolvimento do cliente ao longo do projeto
 - → Problemas encontrados mais cedo
 - → Ajustes feitos mais cedo
- Partes úteis disponibilizadas e usadas mais cedo
 - → 80% do valor do software vem de 20% de suas funcionalidades

Agilidade E Disciplina

Direção é tão importante quanto Velocidade

Scrum

Rugby

método de reinício de uma jogada no rush

Scrum framework

Papéis

- Dono do produto
- ScrumMaster
- Equipe

Processo

- Planejamento
- Revisão e Retrospectiva
- Reunião diária

Artefatos

- Product backlog
- Sprint backlog
- Gráfico de Burndown

Quem usa o Scrum?

- Microsoft
- Yahoo
- Google
- Philips
- Siemens
- Nokia
- ✓ BBC
- ✓ HP
- Google
- Toyota

- Intel
- BMC Software
- Motorola
- Salesforce.com
- Time Warner
- ✓ Globo
- Oracle
- ✓ E muitas outras ...

O Padrão Scrum

Contexto

→ Projetos que envolvem trabalho intelectual intenso e incertezas sobre o escopo

Problema

- → Balancear necessidades conflitantes
 - Desenvolvedores precisam trabalhar sem interrupções e perturbações
 - Interessados precisam ver o progresso e receber valor pelo investimento
 - Gerentes precisam controlar suas equipes

✓ Solução

- → Desenvolvimento iterativo e incremental
- → Duração e escopo fechados em cada iteração
- → Escopo definido com base na prioridade e na capacidade

Visão Geral do Scrum

- Scrum é um padrão bem definido para gestão de projeto ágil que
 - → mantém o foco na entrega do maior valor de negócio
 - → no menor tempo possível
 - → através de rápida e contínua inspeção do software em produção
- As necessidades do negócio são o mais importante
 - → determinam as prioridades do desenvolvimento de software
- As equipes se auto-organizam
 - → para definir a melhor maneira de entregar as funcionalidades de maior prioridade para o negócio, respeitando suas regras
- A cada iteração todos podem ver o software real, em produção
 - → decidindo se ele deve ser liberado ou continuar a ser aprimorado por mais um "sprint"

Padrão de Processo Scrum

Principais Artefatos

Backlog do Produto

- → Tudo o que foi aprovado para o produto, e não tudo o que foi solicitado
- Roadmap que reflete a integridade conceitual do produto
- Backlog do Sprint
 - → Não muda durante a execução do Sprint
- Quadro do Sprint
 - → Tarefas priorizadas e organizadas por status
 - → Lista de Impedimentos

Ciclo de Desenvolvimento

Nonaka. Harvard Business Review, January 1986.

Backlog do Produto

- Lista única e priorizada de todas as características desejadas para o produto, incluindo
- → Requisitos não funcionais
- desempenho, confiabilidade, segurança, usabilidade, manutenibilidade,
 ...
- Requisitos do ambiente
- treinamentos, investigação de ferramentas, refatoração, ...
- Cada item no backlog de produto contém um valor de negócio associado
- Cresce e muda com o maior conhecimento sobre o produto e os clientes
- Nenhum item de backlog pode ser maior que um sprint
- → Evita trabalho desnecessário
 - Funcionalidades e características que nunca serão utilizadas

Sprints (Iterações)

Mudanças no Sprint

- Mudanças no Backlog do sprint não são aceitas
 - → O objetivo não pode ser mudado durante o Sprint
 - Cancelar o Sprint pode ser uma opção
 - → A equipe pode incluir ou excluir tarefas para cumprir o objetivo do Sprint
 - Estimativas podem ser atualizadas sempre que houver novas informações
- Mudanças nos compromissos do Sprint só podem ser sugeridas pela equipe
 - → Negociação direta com o dono do produto

Planejamento do Sprint

- A equipe aceita itens prioritários do Product Backlog e se compromete a atendê-los
- ✓ O Sprint Backlog é criado
 - Tarefas identificadas e estimadas (1 a 16 horas)
 - De forma colaborativa pela equipe, com apoio do ScrumMaster
- Planejamento de alto nível é considerado

Quero que os usuários do portal possam planejar suas férias, escolhendo itinerários online Modelagem (8 horas)
Codificar interface (4)
Escrever textos (4)
Codificar a classe Férias (6)
Atualizar testes de regressão (4)

Planejamento do Sprint

- Reunião de Planejamento do Sprint 1
 - →4h com o *Dono de Produto* e o Time para
 - Dono define as características de alta prioridade
 - Time seleciona as histórias para o próximo Sprint
- Reunião de Planejamento do Sprint 2
 - →4h com o Time para fazer o plano de trabalho do Sprint
 - Definir a arquitetura, design e as tarefas para construção das funcionalidades
 - Dono pode redefinir o Product Backlog
 - → O Objetivo da Sprint é definido
 - Estimativa do tempo baseada em Sprints anteriores

Reunião de Planejamento

- Reunião de Estimativa
 - → Entrada: Backlog do Produto priorizado
 - → Saída: Itens relevantes do Backlog do Produto estimados
 - → Participantes: Equipe e ScrumMaster
- Sprint Planning I
 - → Entrada: Backlog priorizado e estimado
 - → Saída: Objetivo do Sprint e Backlog Selecionado para o Sprint
 - Entendimento do Escopo
 - Estimativas de complexidade
 - → Participantes: Dono do Produto, Equipe e ScrumMaster

Reunião de Planejamento 2

- Sprint Planning II
 - → Entrada: Backlog do Sprint

→ Saída:

- Comprometimento com o objetivo do Sprint
- Itens do backlog planejados em tarefas de desenvolvimento de software
- Tarefas são estimadas em horas (<=16)

→ Participantes:

Equipe e ScrumMaster

Scrum diário

- Parâmetros
 - → Mesmo local e horário
 - → Punição para faltas e atrasos
 - → Duração máxima: 15 minutos
 - → Todo mundo é convidado
 - → Apenas os membros da equipe, ScrumMaster, e dono do produto podem falar
- A reunião diária não é para a solução de problemas
 - → As respostas não são um "relatório" para o ScrumMaster
 - → Elas são compromissos perante os pares

Perguntas do Scrum diário

- Três perguntas básicas para cada membro
 - → O que você fez desde a última reunião?
 - → O que você fará até a próxima reunião?
 - → O que está impedindo o seu trabalho?
- ScrumMaster cuida dos impedimentos
 - → Após a reunião
- Questões adicionais
 - → Alguma tarefa a adicionar neste sprint?
 - → Alguma lição aprendida ou decisão tomada a compartilhar?
 - → Alguma estimativa precisa ser revista?

Revisão do Sprint

- Equipe apresenta os resultados obtidos do Sprint
 - → Demonstração de novas funcionalidades ou de sua arquitetura
- Dono do Produto
 - → Valida os itens entregues
 - → Verifica se o objetivo do Sprint foi atingido
- Reunião Informal
 - → 2 horas de preparação, **Sem slides**
- Toda a equipe participa, o mundo é convidado
 - → Momento para celebrar o sucesso!

Retrospectiva do Sprint

- Todos observam o que funcionou e o que não funcionou
 - → Resumo das observações comunicadas na reunião diária
 - Lições aprendidas são usadas no próximo Sprint
- Apenas a equipe participa da reunião de retrospectiva
 - → Momento para reflexão e aprendizado
- Gera discussões para sobre o próximo Sprint
 - → Resolução de Impedimentos organizacionais
 - → Requisitos não funcionais, treinamentos e outros itens para que o DP avalie a inclusão no backlog do produto

Gerência de Projetos de SW MPS.BR

Um exemplo de um processo de Gerência prescritivo

Níveis de Maturidade

Capacidade de Processos

Atributos de Processo (AP)

- AP 1.1: O processo é executado
- AP 2.1: O processo é gerenciado
- AP 2.2: Os produtos de trabalho do processo são gerenciados
- AP 3.1: O processo é definido
- AP 3.2: O processo está implementado
- AP 4.1: O processo é medido
- AP 4.2: O processo é controlado
- AP 5.1: O processo é objeto de melhorias e inovações
- AP 5.2: O processo é otimizado continuamente

NÍVEL G – PARCIALMENTE GERENCIADO

Nível G

- Primeiro nível e um dos mais difíceis
- Organizações devem ser capazes de gerenciar parcialmente seus projetos de desenvolvimento
- Dois pontos críticos
 - Mudança de cultura organizacional
 - Definição do conceito do que é um projeto para organização
- Padrões e procedimentos próprios
- Organizações devem ser orientadas a projetos
- Isto significa redefinir algumas operações (atividades de rotina), estabelecendo objetivos, prazos e escopo para sua execução

Propósito

- O propósito do processo Gerência de Projetos é estabelecer e manter planos que definem as atividades, recursos e responsabilidades do projeto, bem como prover informações sobre o andamento do projeto que permitam a realização de correções quando houver desvios significativos no desempenho do projeto.
- O propósito deste processo evolui à medida que a organização cresce em maturidade. No nível E passa a ser um processo definido.

- GPR 1. O escopo do trabalho para o projeto é definido
- GPR 2. As tarefas e os produtos de trabalho do projeto são dimensionados utilizando métodos apropriados
- GPR 3. O modelo e as fases do ciclo de vida do projeto são definidos
- **GPR 4.** (Até o nível F) O esforço e o custo para a execução das tarefas e dos produtos de trabalho são estimados com base em dados históricos ou referências técnicas

- GPR 5. O orçamento e o cronograma do projeto, incluindo a definição de marcos e pontos de controle, são estabelecidos e mantidos
- GPR 6. Os riscos do projeto são identificados e o seu impacto,
 probabilidade de ocorrência e prioridade de tratamento são determinados e documentados
- GPR 7. Os recursos humanos para o projeto são planejados considerando o perfil e o conhecimento necessários para executá-lo
- GPR 8. Os recursos e o ambiente de trabalho necessários para executar o projeto são planejados

- GPR 9. Os dados relevantes do projeto são identificados e planejados quanto à forma de coleta, armazenamento e distribuição. Um mecanismo é estabelecido para acessá-los, incluindo, se pertinente, questões de privacidade e segurança
- GPR 10. Um plano geral para a execução do projeto é estabelecido com a integração de planos específicos
- GPR 11. A viabilidade de atingir as metas do projeto é explicitamente avaliada considerando restrições e recursos disponíveis. Se necessário, ajustes são realizados

- GPR 12. O Plano do Projeto é revisado com todos os interessados e o compromisso com ele é obtido
- GPR 13. O escopo, as tarefas, as estimativas, o orçamento e o cronograma do projeto são monitorados em relação ao planejado
- GPR 14. Os recursos materiais e humanos bem como os dados relevantes do projeto são monitorados em relação ao planejado
- **GPR 15.** Os riscos são monitorados em relação ao planejado

- GPR 16. O envolvimento das partes interessadas no projeto é planejado,
 monitorado e mantido
- GPR 17. Revisões são realizadas em marcos do projeto e conforme estabelecido no planejamento
- GPR 18. Registros de problemas identificados e o resultado da análise de questões pertinentes, incluindo dependências críticas, são estabelecidos e tratados com as partes interessadas

• GPR 19. Ações para corrigir desvios em relação ao planejado e para prevenir a repetição dos problemas identificados são estabelecidas, implementadas e acompanhadas até a sua conclusão

Exercício

- Com base nos resultados do modelo de gerência de projetos do MPS.Br (19 resultados), diga como você incluiria as atividades do Scrum.
- Então, como faz um processo rigoroso-ágil.
- Para isso, basta descrever para cada resultado ou conjunto de resultados,como implementaria.
- Trabalho: Individual
- Entrega: no moodle mediante tarefa e impresso na aula do dia 11/05/2018