Statistical Inference: A Clear Guide

For Dr. Faisal Bukhari's Probability and Statistics Course (Lecture 21) English + Urdu for Exam Prep

1 Topic 1: Population vs Sample

1.1 English Explanation

- **Population**: All the data you are concerned with (e.g., all students in PU).
- **Sample**: A part of the population (e.g., 30 students from PU).
- In real life, we **can't test everyone**, so we use samples to **estimate** population characteristics.

1.2 Urdu Explanation

- Population: Wo poora group jis par research ho rahi ho (jaise PU ke sab students).
- Sample: Us group ka chhota hissa (jaise 30 random students).
- Har kisi se data lena mushkil hota hai, isliye **sample** se estimate karte hain.

2 Topic 2: Statistic vs Parameter

lightgray Term	Meaning (English)	Urdu
Parameter	Value from population (e.g., μ, σ)	Asal value jo poori population ka hissa ho
Statistic		Sample se nikaala gaya number

Real Use: You don't know the population mean μ . You take a sample, calculate \bar{x} , and use it to estimate μ .

3 Topic 3: Point Estimate vs Interval Estimate

3.1 Point Estimate

- A single value (e.g., \bar{x}) used to estimate a parameter (e.g., μ).
- Example: "We estimate the average height is 5.6 feet."

3.2 Interval Estimate

- A range (e.g., [5.4, 5.8]) with a confidence level.
- Example: "We are 95% confident that average height is between 5.4 and 5.8."

3.3 Urdu Explanation

- **Point Estimate**: Ek number (jaise $\bar{x} = 5.6$).
- **Interval Estimate**: Range (5.4 se 5.8 tak) jisme asal value hone ka chance ho.

4 Topic 4: Confidence Interval Formula (for μ when σ known)

$$\mathbf{CI} = \bar{x} \pm Z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}$$

Where:

 $\circ \bar{x}$ = sample mean

 $\circ \sigma$ = population standard deviation (known)

 \circ *n* = sample size

 $\circ~Z_{lpha/2}$ = z-critical value (from z-table)

lightgray Confidence Level	α	z-value
90%	0.10	1.645
95%	0.05	1.96
99%	0.01	2.575

5 Keywords for Confidence Interval Questions

lightgray Clue Words	What to Do
"Estimate with 95% confidence" "Margin of error"	Use CI formula Use $E=Z\cdot rac{\sigma}{\sqrt{n}}$
"Interval in which parameter lies"	Use CI
"Find z for 90%, 95%, 99%" "Give upper/lower bound"	Use z-table CI upper/lower

6 Exam-Style Questions (Bukhari Style)

1. A sample of 40 values has mean = 20, $\sigma = 4$. Find the 95% confidence interval.

2. If n=25, $\bar{x}=75$, $\sigma=10$, find the margin of error at 99% confidence.

3. What z-value corresponds to 90% confidence?

4. Interpret: "We are 95% confident that μ lies between 58 and 62." Is this interval likely to include μ ?

5. Population mean weight is unknown. You sample 100 people, mean weight is 70 kg, $\sigma=5$. Find the CI.

2

6.1 Answers

1.
$$CI = 20 \pm 1.96 \cdot \frac{4}{\sqrt{40}} = 20 \pm 1.24 \Rightarrow [18.76, 21.24]$$

2.
$$E = 2.575 \cdot \frac{10}{\sqrt{25}} = 2.575 \cdot 2 = 5.15$$

3. Z = 1.645

4. Yes, the interval is designed to capture μ with 95% certainty.

5.
$$CI = 70 \pm 1.96 \cdot \frac{5}{\sqrt{100}} = 70 \pm 0.98 \Rightarrow [69.02, 70.98]$$

7 Fast Cheat Sheet (Revision Aid)

lightgray Concept	Formula / Shortcut
Margin of Error (E)	$Z \cdot \frac{\sigma}{\sqrt{n}}$
CI (when σ known)	
Z for 95%	1.96
Z for 90%	1.645
Z for 99%	2.575

Ready for Hypothesis Testing or more Confidence Interval practice? Ask your instructor!