Esercizio di esame di Identificazione dei Sistemi Incerti – 2023-2024 Traccia C

Il sistema in figura, ispirato alla fonte al <u>link</u>¹, è descritto dalle seguenti equazioni del moto:

$$M\ddot{x} = -C_a v_c + F$$

 $J\ddot{\theta} = -Mgl \sin \theta + C_a l v_c \cos \theta - FL \cos(\theta)$
 $v_c = (\dot{x} - l\dot{\theta}\cos(\theta))$
 $y = x + h \sin(\theta)$

Il gruppo:

- a) scelga un insieme di valori nominali ragionevoli per i parametri in gioco
- b) progetti ed implementi uno stimatore dello stato del sistema assumendo di aver a disposizione sensori per la misura di:
 - 1. distanza D
 - 2. velocità angolare ω della puleggia di raggio r della funivia
 - 3. SENSORE ASSEGNATO

secondo i metodi:

- 1. EKF
- 2. ALTRO METODO ASSEGNATO

Step:

- Implementazione e validazione del modello (incluso modello dei sensori) in ambiente Simulink.
- Implementazione in ambiente MATLAB o Simulink delle tecniche di filtraggio assegnate.
- Analisi dei risultati ottenuti.

¹ https://www.centropiaggio.unipi.it/sites/default/files/course/material/20090127.pdf

•	Ricavare la traiettoria regolarizzata secondo Rauch Tung Striebel ed analizzare il risultato ottenuto.