Claims:

- 1. In a method for improving the expression of a heterologous gene in plants by modifying the structural coding sequence of said gene, the improvement which comprises reducing the occurrence of polyadenylation signals selected from the group consisting of AATAAA, AATAAT, AACCAA, ATATAA, AATCAA, ATACAA, ATACAA, ATACAA, ATACAA, ATACAA, ATTAAA, AATACA, AATACA, ATTAAA, AATACA, AATACA, AATACA, ATTAAA, AATTAAA, AATACA, AATACA, AATACA, ATTAAA.
 - 2. The method of Claim 1 further comprising the improvement of reducing the occurrence of ATTTA sequences within the structural coding sequence.
 - 3. A method for modifying a wild-type structural gene sequence which encodes an insecticidal protein of Bacillus thuringiensis to enhance the expression of said protein in plants which comprises:
 - a) removing polyadenylation signals contained in said wild-type gene while retaining a sequence which encodes said protein; and
 - b) removing ATTTA sequences contained in said wild-type gene while retaining a sequence which encodes said protein.
 - 4. A method of Claim 3 further comprising the removal of self-complementary sequences and replacement of such sequences with nonself-complementary DNA comprising plant preferred codons while retaining a structural gene sequence encoding said protein.
 - 5. A method of Claim 4 further comprising the use of plant preferred sequences in the removal of the polyadenylation signals and ATTTA sequences.

15

20

25

- 6. A method of Claim 3 in which the polyadenylation signals are selected from the group consisting of AATAAA, AATAAT, AACCAA, ATATAA, AATCAA, ATACTA, ATAAAA, ATGAAA, AAGCAT, ATTAAT, ATACAT, AAAATA, ATTAAA, AATTAA, AATACA and CATAAA.
- 7. A method of Claim 4 in which the polyadenylation signals are selected from the group consisting of AATAAA, AATAAT, AACCAA, ATATAA, AATCAA, ATACTA, ATAAAA, ATGAAA, AAGCAT, ATTAAT, ATACAT, AAAATA, ATTAAA, AATTAA, AATACA and CATAAA.
- 8. A method of Claim 5 in which the polyadenylation signals are selected from the group consisting of AATAAA, AATAAT AACCAA, ATATAA, AATCAA, ATACAT, ATACAT, ATACAT, ATACAT, AAAATA, ATTAAA, AATTAA, AATACA and CATAAA.
 - 9. A method for modifying a wild-type structural gene sequence which encodes and insecticidal protein of Bacillus thuringiensis to enhance the expression of said protein in plants which comprises:
 - identifying regions within said sequence with greater than four consecutive adenine or thymine nucleotides;
 - b) modifying the regions of step (a) which have two or more polyadenylation signals within a ten base sequence to remove said signals while maintaining a gene sequence which encodes said protein; and
 - c) modifying the 15-30 base regions surrounding the regions of step (a) to remove major plant polyadenylation signals, consecutive sequences containing more than one minor polyadenylation

25

20

5

signal and consecutive sequences containing more than one ATTTA sequence while maintaining a gene sequence which encodes said protein.

10. A method of Claim 9 in which the major plant polyadenylation signals are selected from the group consisting of AATAAA and AATAAT.

11. A method of Claim 10 in which the polyadenylation signals are selected from the group consisting of AATAAA, AATAAT, AACCAA, ATATAA, AATCAA, ATACAT, ATAAAA, ATTAAA, AATTAA, AATACA and CATAAA.

12. A method of Claim 11 further comprising the use of plant preferred sequences in the removal of polyadenylation signals and ATTTA sequences.

13. A structural gene which encodes an insecticidal protein of Bacillus thuringiensis, said gene being substantially devoid of polyadenylation signals and ATTTA sequences,

14. A structural gene of Claim 13 which is substantially devoid of polyadenylation signals selected from the group consisting of AATAAA, AATAAT, AACCAA, ATATAA, AATCAA, ATACAT, ATAAAA, AATTAAA, AATTAAAA, AATTAAA, AATTAAAA, AATTAAA, AATTAAAA, AATTAAA, AATTAAAA, AATTAAA, AATTAAA, AATTAAAA, AATTAAA, AATTAAAA, AATTAAAA, AATTAAAA, AATTAAAA, AATTAAAA, AATTAAAA, AATTAAAA, AATTAAAA, AATTAAAAA

25

20

	15	. A structural gene of Claim 13 which encodes an	
		ticidal protein of B.t.k. HD-1 having the	:
5	seque	nce:	
J			
	1	ATGGCTATAGAAACTGGTTACACCCCAATCGATATTTCCT 40	
	41	TGTCGCTAACGCAATTTCTTTTGAGTGAATTTGTTCCCGG 80	
10	81	TGCTGGATTTGTGTTAGGACTAGTTGATATTATCTGGGGA 120	
	121	ATTTTTGGTCCCTCTCAATGGGACGCATTTCTTGTACAAA 160	
1	161	TTGAACAGCTCATCAACCAGAGAATCGAAGAGTTCGCTAG 200	
15	201	GAATCAAGCCATTTCTAGATTAGAAGGACTAAGCAATCTT 240	
	241	TATCAAATTTACGCAGAATCTTTTAGAGAGTGGGAAGCAG 280	
20	281	ATCCTACTAATCCAGCATTAAGAGAAGAGATGCGTATTCA 320	
	321	ATTCAATGACATGAACAGTGCCCTTACAACCGCTATTCCT 360	
	361	CTTTTTGCAGTTCAAAATTATCAAGTTCCTCTCCCCCCCC	
25	401	TGTACGTTCAAGCTGCCAACCTCCACCTCTCAGTTTTGAG 440	
	441	AGATGTTTCAGTGTTTGGACAAAGGTGGGGATTTGATGCC 480	
30	481	GCGACTATCAATAGTCGTTATAATGATTTAACTAGGCTTA 520	

	521	TTGGCAACTATACAGATCATGCTGTACGCTGGTACAATAC	560
5	561	GGGATTAGAGCGTGTATGGGGACCGGATTCTAGAGATTGG	600
	601	ATCAGGTACAACCAGTTCAGAAGAGAGCTTACACTAACTG	640
	641		680
10	681		720
			760
	721	ATTTATACAAACCCAGTATTAGAAAATTTTGATGGTAGTT	
15	761	TTCGAGGCTCGGCTCAGGGCATAGAAGGAAGTATTAGGAG	800
	801	TCCACATTTGATGGATATACTTAATAGTATAACCATCTAT	840
	841	ACGGATGCTCATAGAGGAGAATACTACTGGTCCGGTCACC	880
20	881	AGATCATGGCTTCTCCTGTAGGGTTTTCGGGGCCAGAATT	920
	921	CACTTTTCCGCTATATGGAACTATGGGAAATGCAGCTCCA	960
05	961	CAACAACGTATTGTTGCTCAACTAGGTCAGGGCGTGTATA	1000
25	1001	GAACATTATCGTCCACCTTATATAGAAGACCTTTTAACAT	1040
	1041		1080
30	1081	GAATTTGCTTATGGAACCTCCTCAAATTTGCCATCCGCTG	1120
•	1001	JAMIIIOCIINIOOMACGICCICMENIIIIOOONIOOOOIG	

	1121	TATACAGAAAAAGCGGAACGGTAGATTCGCTGGATGAAAT	1160
5	1161	ACCGCCACAGAATAACAACGTGCCACCTAGGCAAGGATTT	1200
	1201	AGTCATCGATTAAGCCATGTTTCAATGTTTCGTTCAGGCT	1240
10	1241	TTAGTAATAGTGTAAGTATAATAAGAGCTCCTATGTT	1280
10	1281	CTCTTGGATACATCGTAGTGCTGAGTTCAACAACATCATC	1320
	1321		1360
15	1361	· · · · · · · · · · · · · · · · · · ·	1400
	1401	ATTTACAGGAGAGATATTCTTCGAAGAACTTCACCTGGC	1440
	1441	CAGATTTCAACCTTAAGAGTAAATATTACTGCACCATTAT	1480
20	1481	CACAAAGATATCGGGTAAGAATTCGCTACGCTTCTACCAC	1520
	1521	AAACCTTCAGTTCCACACATCAATTGACGGAAGACCTATT	1560
25	1561	AATCAGGGGAATTTTTCAGCAACTATGAGTAGTGGGAGTA	1600
20	1601	ATTTACAGTCCGGAAGCTTTAGGACTGTAGGTTTTACTAC	1640
	1641	TCCGTTTAACTTTTCAAATGGATCAAGTGTATTTACGTTA	1680
30			

		4	
	1681	AGTGCTCATGTCTTCAATTCAGGCAATGAAGTTTATATAG	1720
5	1721	ATCGAATTGAATTTGTTCCGGCA 1743.	
		. A structural gene of Claim 13 which enco	
	insec	ticidal protein of B.t.k. HD-73 havin	ng the
	seque	nce:	
10	•		
	1	ATGGCCATTGAAACCGCTTACACTCCCATCGACATCTCCT	40
	41	TGTCCTTGACACAGTTTCTGCTCAGCGAGTTCGTGCCAGG	80
15	81	TGCTGGGTTCGTTCTCGGACTAGTTGACATCATCTGGGGT	120
W	01		
	_	· · · · · · · · · · · · · · · · · · ·	1.60
	121	ATCTTTGGTCCATCTCAATGGGATGCATTCCTGGTGCAAA	160
	161	TTGAGCAGTTGATCAACCAGAGGATCGAAGAGTTCGCCAG	200
~			
20	201	GAACCAGGCCATCTCTAGGTTGGAAGGATTGAGCAATCTC	240
	201		
			200
	241	TACCAAATCTATGCAGAGAGCTTCAGAGAGTGGGAAGCCG	280
	281	ATCCTACTAACCCAGCTCTCCGCGAGGAAATGCGTATTCA	320
25			
	321	ATTCAACGACATGAACAGCGCCTTGACCACAGCTATCCCA	360
	022		
	261		400
	361	TTGTTCGCAGTCCAGAA¢TACCAAGTTCCTCTTTGTCCG	400
30	401	T_{C}	440

	441	AGACGTTAGCGTGTTTGGGCAAAGGTGGGGATTCGATGCT	480
5	481	GCAACCATCAATAGCCGTTACAACGACCTTACTAGGCTGA	520
	521	TTGGAAACTACACCGACCACGCTGTTCGTTGGTACAACAC	560
	561	TGGCTTGGAGCGTGTCTGGGGTCCTGATTCTAGAGATTGG	600
10	601	ATTAGATACAACCAGTTCAGGAGAGAATTGACCCTCACAG	640
	641		680
15	681		720
	721	ATCTATACTAACCCAGTTCTTGAGAACTTCGACGGTAGCT	760
	761	TCCGTGGTTCTGCCCAAGGTATCGAAGGCTCCATCAGGAG	800
20	801		840
	841	ACCGATGCTCACAGAGGAGAGTATTACTGGTCTGGACACC	880
	881	AGATCATGGCCTCTCCAGTTGGATTCAGCGGGCCCGAGTT	920
25	921	TACCTTTCCTCTATGGAACTATGGGAAACGCCGCTCCA	960
	961	CAACAACGTATCGTTGCTCAACTAGGTCAGGGTGTCTACA	1000
30	1001	GAACCTTGTCTTCCACCTTGTACAGAAGACCCTTCAATAT	1040
-	1001		

	1041	CGGTATCAACAACCAGCAACTTTCCGTTCTTGACGGAACA	1080
5	1081	GAGTTCGCCTATGGAACCTCTTCTAACTTGCCATCCGCTG	1120
	1121	TTTACAGAAAGAGCGGAACCGTTGATTCCTTGGACGAAAT	1160
	1161		1200
10	1201		1240
	1241		1280
15	1281		1320
~	1321		1360
	1361	ACTTTCTCTTCAACGGTTCTGTCATTTCAGGACCAGGATT	1400
20			
	1401	CACTGGTGGAGACCTCGTTAGACTCAACAGCAGTGGAAAT	1440
	1441	AACATTCAGAATAGAGGGGTATATTGAAGTTCCAATTCACT	1480
25	1481	TCCCATCCACATCTACCAGATATAGAGTTCGTGTGAGGTA	1520
	1521	TGCTTCTGTGACCCCTATTCACCTCAACGTTAATTGGGGT	1560
	1561	AATTCATCCATCTTCTCCAATACAGTTCCAGCTACAGCTA	1600
30	1601	CCTCCTTGGATAATCTCCAATCCAGCGATTTCGGTTACTT	1640

		_	
	1641	TGAAAGTGCCAATGCTTTACATCTTCACTCGGTAACATC	1680
5	1681	GTGGGTGTTAGAAACTTTAGTGGGACTGCAGGAGTGATTA	1720
	1721	TCGACAGATTCGAGTTCCAGTTACTGCAACACTCGA	1760
10	1761	GGCTGAG 1767.	
10	17	. A structural gene of Claim 13 encod	ding a
	insec	ticidal protein of B.t.k. HD-1 havir	ng the
	seque	nce:	
15	1	ATGGACAACAACCAAACATCAACGAATGCATTCCATACA	40
	41		80
	81	ACGCATTGAAACCGGTTACACTCCCATCGACATCTCCTTG	120
20	121	TCCTTGACACAGTTTCTGCTCAGCGAGTTCGTGCCAGGTG	160
	161	CTGGGTTCGTCTCGGACTAGTTGACATCATCTGGGGTAT	200
25	201	CTTTGGTCCATCTCAATGGGATGCATTCCTGGTGCAAATT	240
	241	GAGCAGTTGATCAACCAGAGGATCGAAGAGTTCGCCAGGA	280
	281	ACCAGGCCATCTCTAGGTTGGAAGGATTGAGCAATCTCTA	320
30	321	CCAAATCTATGCAGAGAGCTTCAGAGAGTGGGAAGCCGAT	360

	361	CCTACTAACCCAGCTCTCCGCGAGGAAATGCGTATTCAAT	400
5	401	TCAACGACATGAACAGCGCCTTGACCACAGCTATCCCATT	440
	441	GTTCGCAGTCCAGAACTACCAAGTTCCTCTTGTCCGTG	480
	481	TACGTTCAAGCAGCTAATCTTCACCTCAGCGTGCTTCGAG	520
10	521	ACGTTAGCGTGTTTGGGCAAAGGTGGGGATTCGATGCTGC	560
	561		600
15	601	GGAAACTACACCGACCACGCTGTTCGTTGGTACAACACTG	640
	641	GCTTGGAGCGTGTCTGGGGTCCTGATTCTAGAGATTGGAT	680
	681	TAGATACAACCAGTTCAGGAGAGAATTGACCCTCACAGTT	720
20	721		760
	761		800
	801		840
25	841	CGTGGTTCTGCCCAAGGTATCGAAGGCTCCATCAGGAGCC	880
	• • •		920
00	881	CACACTTGATGGACATCTTGAACAGCATAACTATCTACAC	
30	921	CGATGCTCACAGAGGAGAGTATTACTGGTCTGGACACCAG	960

	961	ATCATGGCCTCTCCAGTTGGATTCAGCGGGCCCGAGTTTA	1000
5	1001	CCTTTCCTCTATGGAACTATGGGAAACGCCGCTCCACA	1040
	1041	ACAACGTATCGTTGCTCAACTAGGTCAGGGTGTCTACAGA	1080
	1081	ACCTTGTCTTCCACCTTGTACAGAAGACCCTTCAATATCG	1120
10	1001		
		· · · · · · · · · · · · · · · · · · ·	1160
	1121	GTATCAACAACCAGCAACTTTCCGTTCTTGACGGAACAGA	1100
		·	
	1161	GTTCGCCTATGGAACCTCTTCTAACTTGCCATCCGCTGTT	1200
15	1201	TACAGAAAGAGCGGAACCGTTGATTCCTTGGACGAAATCC	1240
ш	1001		
			1280
	1241	CACCACAGAACAATGTGCCACCCAGGCAAGGATTCTC	1200
	1281	CCACAGGTTGAGCCACGTGTCCATGTTCCGTTCCGGATTC	1320
00			
20	1321	AGCAACAGTTCCGTGAGCATCATCAGAGCTCCTATGTTCT	1360
	1011		
			1400
	1361	CATGGATTCATCGTAGTGCTGAGTTCAACAATATCATTCC	1400
~ ~	1401	TTCCTCTCAAATCACCCAAATCCCATTGACCAAGTCTACT	1440
25			
	1441	AACCTTGGATCTGGAACTTCTGTCGTGAAAGGACCAGGCT	1480
	1 4 0 1	TCACAGGAGGTGATATTCTTAGAAGAACTTCTCCTGGCCA	1520
	1481	1CACAGGAGGIGATATICITAGAAGAACTICICCIGGCCA	1020
30	1521	GATTAGCACCCTCAGAGTTAACATCACTGCACCACTTTCT	1560

		. }	
	1561	CAAAGATATCGTGTCAGGATTCGTTACGCATCTACCACTA	1600
5			
J	1601	ACTTGCAATTCCACACCTCCATCGACGGAAGGCCTATCAA	1640
	1641	TCAGGGTAACTTCTCCGCAACCATGTCAAGCGGCAGCAAC	1680
	1.601		1720
10	1681	TTGCAATCCGGCAGCTTCAGAACCGTCGGTTTCACTACTC	1720
	1721	CTTTCAACTTCTCTAACGGATCAAGCGTTTTCACCCTTAG	1760
	1121		
	1761	CGCTCATGTGTTCAATTCTGGCAATGAAGTGTACATTGAC	1800
15	1801	CGTATTGAGTTTGTGCCTGCGAAGTTACCTTCGAGGCTG	1840
	1841	AGTAC 1845.	
	_	10 a second	ing an
	-	18. A structural gene of Claim 13 encode ticidal protein derived from B.t.k. HD-73	
20		equence:	naving
	the 3	equence.	
	1	ATGGACAACAACCCAAACATCAACGAATGCATTCCATACA	40
	41	ACTGCTTGAGTAACCCAGAAGTTGAAGTACTTGGTGGAGA	80
25			
	81	ACGCATTGAAACCGGTTACACTCCCATCGACATCTCCTTG	120
	121	TCCTTGACACAGTTTCTGCTCAGCGAGTTCGTGCCAGGTG	160
20		· · · · · · · · · · · · · · · · · · ·	200
30	161	CTGGGTTCGTTCTCGGACTAGTTGACATCATCTGGGGTAT	200

	201	CTTTGGTCCATCTCAATGGGATGCATTCCTGGTGCAAATT	240
5	241	GAGCAGTTGATCAACCAGAGGATCGAAGAGTTCGCCAGGA	280
	281	ACCAGGCCATCTCTAGGTTGGAAGGATTGAGCAATCTCTA	320
	321		360
10	361		400
	401		440
15	441	GTTCGCAGTCCAGAACTACCAAGTTCCTCTCTTGTCCGTG	480
Ú		· • • • • • • • • • • • • • • • • • • •	520
	481	TACGTTCAAGCAGCTAATCTTCACCTCAGCGTGCTTCGAG	
20	521	ACGTTAGCGTGTTTGGGCAAAGGTGGGGATTCGATGCTGC	560
	561	AACCATCAATAGCCGTTACAACGACCTTACTAGGCTGATT	600
	601	GGAAACTACACCGACCACCTGTTCGTTGGTACAACACTG	640
25	641	GCTTGGAGCGTGTCTGGGGTCCTGATTCTAGAGATTGGAT	680
	681	TAGATACAACCAGTTCAGGAGAATTGACCCTCACAGTT	720
	721	TTGGACATTGTGTCTCTCTTCCCGAACTATGACTCCAGAA	760
30	761	CCTACCCTATCCGTACAGTGTCCCAACTTACCAGAGAAAT	800
		1	

	801	CTATACTAACCCAGTTCTTGAGAACTTCGACGGTAGCTTC	840
5	841	CGTGGTTCTGCCCAAGGTATCGAAGGCTCCATCAGGAGCC	880
	881		920
	921		960
10	961	ATCATGGCCTCTCCAGTTGGATTCAGCGGGCCCGAGTTTA	1000
	1001		1040
15	1041		1080
	1081	ACCTTGTCTTCCACCTTGTACAGAAGACCCTTCAATATCG	1120
		GTATCAACAACCAGCAACTTTCCGTTCTTGACGGAACAGA	1160
20	1121		
	1161	GTTCGCCTATGGAACCTCTTCTAACTTGCCATCCGCTGTT	1200
	1201	TACAGAAAGAGCGGAACCGTTGATTCCTTGGACGAAATCC	1240
25	1241	CACCACAGAACAATGTGCCACCCAGGCAAGGATTCTC	1280
	1281	CCACAGGTTGAGCCACGTGTCCATGTTCCGTTCCGGATTC	1320
	1321	AGCAACAGTTCCGTGAGCATCATCAGAGCTCCTATGTTCT	1360
30	1361	CTTGGATACACCGTAGTGCTGAGTTCAACAACATCATCGC	1400

	1401	ATCCGATAGTATTACTCAAATCCCTGCAGTGAAGGGAAAC 1440
5	1441	TTTCTCTTCAACGGTTCTGTCATTTCAGGACCAGGATTCA 1480
	1481	CTGGTGGAGACCTCGTTAGACTCAACAGCAGTGGAAATAA 1520
	1521	CATTCAGAATAGAGGGTATATTGAAGTTCCAATTCACTTC 1560
10	1561	
	1601	CTTCTGTGACCCCTATTCACCTCAACGTTAATTGGGGTAA 1640
15	1641	TTCATCCATCTTCTCCAATACAGTTCCAGCTACAGCTACC 1680
	1681	TCCTTGGATAATCTCCAATCCAGCGATTTCGGTTACTTTG 1720
	1721	AAAGTGCCAATGCTTTTACATCTTCACTCGGTAACATCGT 1760
20	1761	GGGTGTTAGAAACTTTAGTGGGACTGCAGGAGTGATTATC 1800
	1801	GACAGATTCGAGTTCCAGTTACTGCAACACTCGAGG 1840
	1841	CTGAATATAATCTGGAAAGAGCGCAGAAGGCGGTAATGCG 1880
25	1881	
	19	9. A structural gene of Claim 13 encoding the
		-length insecticidal protein of B.t.k. HD-73
30		ng the sequence:

		1	
	_		40
	. 1	ATGGACAACAACCCAAACATCAACGAATGCATTCCATACA	40
5	4.4		80
	41	ACTGCTTGAGTAACCCAGAAGTTGAAGTACTTGGTGGAGA	80
	0.1	ACGCATTGAAACCGGTTACACTCCCATCGACATCTCCTTG	120
	81	ACGCATTGAAACCGGTTACACTCCCATCGACATCTCCTTG	120
	121	TCCTTGACACAGTTTCT\$CTCAGCGAGTTCGTGCCAGGTG	160
10	121		
	161	CTGGGTTCGTCTCGGACTAGTTGACATCATCTGGGGTAT	200
	101		
	201	CTTTGGTCCATCTCAATGGGATGCATTCCTGGTGCAAATT	240
15	241	GAGCAGTTGATCAACCAGAGGATCGAAGAGTTCGCCAGGA	280
10			
	281	ACCAGGCCATCTCTAGGTTGGAAGGATTGAGCAATCTCTA	320
		· • • • • • • • • • • • • • • • • • • •	
	321	CCAAATCTATGCAGAGAGCTTCAGAGAGTGGGAAGCCGAT	360
20			
20	361	CCTACTAACCCAGCTCTCCGCGAGGAAATGCGTATTCAAT	400
	401	TCAACGACATGAACAGGGCCTTGACCACAGCTATCCCATT	440
05	441	GTTCGCAGTCCAGAACTACCAAGTTCCTCTCTTGTCCGTG	480
25		·	
	481	TACGTTCAAGCAGCTAATCTTCACCTCAGCGTGCTTCGAG	520
	521	ACGTTAGCGTGTTTGGGCAAAGGTGGGGATTCGATGCTGC	560
0.0			600
30	561	AACCATCAATAGCCGTTACAACGACCTTACTAGGCTGATT	600

		. 1	
	601	GGAAACTACACCGACCACGCTGTTCGTTGGTACAACACTG	640
5	641	GCTTGGAGCGTGTCTGGGGTCCTGATTCTAGAGATTGGAT	680
	681	TAGATACAACCAGTTCAGGAGAATTGACCCTCACAGTT	720
	721	TTGGACATTGTGTCTCTCTTCCCGAACTATGACTCCAGAA	760
10	761		800
	801		840
15		CGTGGTTCTGCCCAAGGTATCGAAGGCTCCATCAGGAGCC	880
15	841		
	881	CACACTTGATGGACATCTTGAACAGCATAACTATCTACAC	920
20	921	CGATGCTCACAGAGGAGAGTATTACTGGTCTGGACACCAG	960
	961	ATCATGGCCTCTCCAGTTGGATTCAGCGGGCCCGAGTTTA	1000
	1001	CCTTTCCTCTATGGAACTATGGGAAACGCCGCTCCACA	1040
25	1041	ACAACGTATCGTTGCTCAACTAGGTCAGGGTGTCTACAGA	1080
	1081	ACCTTGTCTTCCACCTTGTACAGAAGACCCTTCAATATCG	1120
	1121	GTATCAACAACCAGCAACTTTCCGTTCTTGACGGAACAGA	1160
30	1161	GTTCGCCTATGGAACCTCTTCTAACTTGCCATCCGCTGTT	1200

		. 1		•
	1201	TACAGAAAGAGCGGAACCG	TTGATTCCTTGGACGAAAT	CC 1240
_				•
5	1241	CACCACAGAACAACAATGT	GCCACCCAGGCAAGGATTC	rc 1280
		•	•	•
	1281	CCACAGGTTGAGCCACGTG	TCCATGTTCCGTTCCGGAT	rc 1320
		•	•	•
	1321	AGCAACAGTTCCGTGAGCA	TCATCAGAGCTCCTATGTT	CT 1360
10		•		
	1361	CTTGGATACACCGTAGTGC	TGAGTTCAACAACATCATC	GC 1400
		•	•	•
	1401	ATCCGATAGTATTACTCAA	ATCCCTGCAGTGAAGGGAA	AC 1440
		•	•	•
15	1441	TTTCTCTTCAACGGTTCT	TCATTTCAGGACCAGGATT	CA 1480
		\cdot (λ .	•
	1481	CTGGTGGAGACCTCGTTAG	ACTCAACAGCAGTGGAAAT	AA 1520
		•		•
	1521	CATTCAGAATAGAGGGTAT	ATTGAAGTTCCAATTCACT	TC 1560
20		•		•
	1561	CCATCCACATCTACCAGAT	ATAGAGTTCGTGTGAGGTA	TG 1600
		•		•
	1601	CTTCTGTGACCCCTATTCA	CCTCAACGTTAATTGGGGT	AA 1640
		•	•	•
05	1641	TTCATCCATCTTCTCCAAT	ACAGTTCCAGCTACAGCTA	CC 1680
25		•		•
	1681	TCCTTGGATAATCTCCAAT	CCAGCGATTTCGGTTACTT	TG 1720
		•		•
	1721	AAAGTGCCAATGCTTTTAC	ATCTTCACTCGGTAACATC	GT 1760
		•	· ·	•
30	1761	GGGTGTTAGAAACTTTAGT	GGGACTGCAGGAGTGATTA	TC 1800

		1.	
	1801	GACAGATTCGAGTTCATTCCAGTTACTGCAACACTCGAGG	1840
5	1841	CTGAATATAATCTGGAAAGAGCGCAGAAGGCGGTGAATGC	1880
	1881	GCTGTTTACGTCTACAAACCAGCTCGGCCTCAAGACCAAT	1920
	1921		1960
10	1961		2000
	2001		2040
15	2041	GAACGCAATTTACTCCAAGATTCAAATTTCAAAGACATTA	2080
20	2081		2120
	2121	TACCATCCAGGGAGGTGACGACGTGTTCAAGGAGAACTAC	2160
20			2200
	2161	GTCACACTATCAGGTACCTTTGATGAGTGCTATCCAACAT	
	2201	ACCTCTACCAGAAGATCGACGAGTCCAAGTTGAAAGCCTT	2240
25	2241	TACCCGTTATCAATTAAGAGGGTATATCGAAGATAGTCAA	2280
	2281	GACCTCGAGATCTACCTCATCCGCTACAATGCAAAACATG	2320
	2321	AAACAGTAAATGTGCCAGGTACGGGTTCCTTATGGCCGCT	2360
30	2361	TTCAGCCCAAAGTCCAATCGGAAAGTGTGGAGAGCCGAAT	2400

	2401	CGATGCGCGCCACACCTTGAATGGAATCCTGACTTAGATT	2440
5	2441	GTTCGTGTAGGGATGGAGAAAAGTGTGCCCATCATTCGCA	2480
	2481	TCATTTCTCCTTAGACATTGATGTAGGATGTACAGACTTA	2520
10	2521	AATGAGGACCTAGGTGTATGGGTGATCTTTAAGATTAAGA	2560
10	2561	CGCAAGATGGGCACGCAAGACTAGGGAATCTAGAGTTTCT	2600
	2601	CGAAGAGAAACCATTAGTAGGAGAAGCGCTAGCTCGTGTG	2640
15	2641	AAAAGAGCGGAGAAAAAATGGAGAGACAAACGTGAGAAGT	2680
	2681	TGGAATGGGAGACCAAGATCGTCTACAAAGAGGCAAAAGA	2720
	2721	ATCTGTAGATGCTTTATTTGTAAACTCTCAATATGATCAA	2760
20	2761	TTACAAGCGGATACGAATATTGCCATGATTCATGCGGCAG	2800
	2801	ATAAACGTGTTCATAGCATTCGAGAAGCTTATCTGCCTGA	2840
25	2841	GCTGTCTGTGATTCCGGGTGTCAATGCGGCTATTTTTGAA	2880
_	2881	GAATTAGAAGGGCGTATTTTCACTGCATTCTCCCTCTACG	2920
	2921	ATGCCAGAAACGTCATCAAGAACGGTGACTTCAACAATGG	2960
30	2961	CTTATCCTGCTGGAACGTGAAAGGGCATGTAGATGTAGAA	3000

	3001	GAACAAAACAACCAACGTTCGGTCCTTGTTCCCGGAAT	3040
5	3041	GGGAAGCAGAAGTGTCACAAGAAGTTCGTGTCTGTCCGGG	3080
	3081		3120
	3121	TATGGAGAAGGTTGCGTAACCATTCATGAGATCGAGAACA	3160
10	3161		3200
	3201		3240
15	3241	GTAAATCAAGAAGAATACGGAGGTGCGTACACTTCTCGTA	3280
	3281		3320
	3321	TGCGTCAGTCTATGAAGAAAAATCGTATACAGATGGACGA	3360
20	3361		3400
	3401		3440
	3441		3480
25	3481	GAAACGGAAGGAACATTTATCGTGGACAGCGTGGAATTAC	3520
	3521	. TCCTTATGGAGGAA 3534.	
20		·	

	20.	A structural gene of Claim 13 encoding a fu	111-
	length	insecticidal protein of B.t.k. HD-73 having	the
5	sequenc	ce:	
ບ			
	1	ATGGACAACCAAACATCAACGAATGCATTCCATACA	40
	41	ACTGCTTGAGTAACCCAGAAGTTGAAGTACTTGGTGGAGA	80
10			
10	81	ACGCATTGAAACCGGTTACACTCCCATCGACATCTCCTTG	120
			160
	121	TCCTTGACACAGTTTCTGCTCAGCGAGTTCGTGCCAGGTG	100
	1.61	CTGGGTTCGTTCTCGGACTAGTTGACATCATCTGGGGTAT	200
15	161	CTGGGTTCGTTCTCGGACTAGTTGACATCATCTGGGGTAT	200
15	201	CTTTGGTCCATCTCAATGGGATGCATTCCTGGTGCAAATT	240
	201	CITIGGICCATCICIAN COMPONITION CONTINUES	
	241	GAGCAGTTGATCAACCAGAGGATCGAAGAGTTCGCCAGGA	280
	2.11		
~	281	ACCAGGCCATCTCTAGGTTGGAAGGATTGAGCAATCTCTA	320
20			
	321	CCAAATCTATGCAGAGAGCTTCAGAGAGTGGGAAGCCGAT	360
	361	CCTACTAACCCAGCTCTCGCGAGGAAATGCGTATTCAAT	400
~~			
25	401	L TCAACGACATGAACAGCCCTTGACCACAGCTATCCCATT	440
		·	
	441	L GTTCGCAGTCCAGAACTACCAAGTTCCTCTCTTGTCCGTG	480
		·	
•	481	1 TACGTTCAAGCAGCTAATCTTCACCTCAGCGTGCTTCGAG	520
30			

		·	
	521	ACGTTAGCGTGTTTGGGCAAAGGTGGGGATTCGATGCTGC	560
5	561	AACCATCAATAGCCGTTACAACGACCTTACTAGGCTGATT	600
	601	GGAAACTACACCGACCACGCTGTTCGTTGGTACAACACTG	640
10	641	GCTTGGAGCGTGTCTGGGGTCCTGATTCTAGAGATTGGAT	680
10	681	TAGATACAACCAGTTCAGGAGAATTGACCCTCACAGTT	720
	721	TTGGACATTGTGTCTCTCTCCCGAACTATGACTCCAGAA	760
15	761	CCTACCCTATCCGTACAGTGTCCCAACTTACCAGAGAAAT	800
	801	CTATACTAACCCAGTTCTTGAGAACTTCGACGGTAGCTTC	840
	841	CGTGGTTCTGCCCAAGGTATCGAAGGCTCCATCAGGAGCC	880
20	881	CACACTTGATGGACATCTTGAACAGCATAACTATCTACAC	920.
	921	CGATGCTCACAGAGGAGAGTATTACTGGTCTGGACACCAG	960
25	961	ATCATGGCCTCTCCAGTTGGATTCAGCGGGCCCGAGTTTA	1000
	1001	CCTTTCCTCTATGGAACTATGGGAAACGCCGCTCCACA	1040
	1041	ACAACGTATCGTTGCTCAACTAGGTCAGGGTGTCTACAGA	1080
30	1081	ACCTTGTCTTCCACCTTGTACAGAAGACCCTTCAATATCG	1120

-	1	3	9	-
---	---	---	---	---

	1121	GTATCAACAACCAGCAACTTTCCGTTCTTGACGGAACAGA	1160
5	1161	GTTCGCCTATGGAACCTCTTCTAACTTGCCATCCGCTGTT	1200
	1201	TACAGAAAGAGCGGAACCGTTGATTCCTTGGACGAAATCC	1240
10	1241	CACCACAGAACAATGTGCCACCCAGGCAAGGATTCTC	1280
20	1281	CCACAGGTTGAGCCACGTGTCCATGTTCCGTTCCGGATTC	1320
	1321	AGCAACAGTTCCGTGAGCATCATCAGAGCTCCTATGTTCT	1360
15	1361	CTTGGATACACCGTAGTGCTGAGTTCAACAACATCATCGC	1400
	1401	ATCCGATAGTATTACTCAAATCCCTGCAGTGAAGGGAAAC	1440
	1441	TTTCTCTTCAACGGTTCTGTCATTTCAGGACCAGGATTCA	1480
20	1481	CTGGTGGAGACCTCGTTAGACTCAACAGCAGTGGAAATAA	1520
	1521	CATTCAGAATAGAGGGTATATTGAAGTTCCAATTCACTTC	1560
25	1561	CCATCCACATCTACCAGATATAGAGTTCGTGTGAGGTATG	1600
	1601	CTTCTGTGACCCCTATTCACCTCAACGTTAATTGGGGTAA	164.0
	1641	TTCATCCATCTTCTCCAATACAGTTCCAGCTACAGCTACC	1680
30	1681	TCCTTGGATAATCTCCAATCCAGCGATTTCGGTTACTTTG	1720

		. 1.	
	1721	AAAGTGCCAATGCTTTTACATCTTCACTCGGTAACATCGT	1760
5	1761	GGGTGTTAGAAACTTTAGTGGGACTGCAGGAGTGATTATC	1800
	1801	GACAGATTCGAGTTCATTCCAGTTACTGCAACACTCGAGG	1840
	1841		1880
10	1881	GCTGTTTACGTCTACAAA¢CAACTAGGGCTAAAAACAAAT	1920
			1960
	1921	GTAACGGATTATCATATTGATCAAGTGTCCAATTTAGTTA	
15	1961	CGTATTTATCGGATGAATTTTGTCTGGATGAAAAGCGAGA	2000
	2001	ATTGTCCGAGAAAGTCAAACATGCGAAGCGACTCAGTGAT	2040
90	2041	GAACGCAATTTACTCCAAGATTCAAATTTCAAAGACATTA	2080
20	2081	ATAGGCAACCAGAACGTGGGTGGGGCGGAAGTACAGGGAT	2120
	2121	TACCATCCAAGGAGGGGATGACGTATTTAAAGAAAATTAC	2160
25	2161	GTCACACTATCAGGTACCTTTGATGAGTGCTATCCAACAT	2200
	2201	ATTTGTATCAAAAATCGATGAATCAAAATTAAAAGCCTT	2240
	2241	TACCCGTTATCAATTAAGAGGGTATATCGAAGATAGTCAA	2280
30	2281	GACTTAGAAATCTATTTAATTCGCTACAATGCAAAACATG	2320

-	1	4	1	_

	2321	AAACAGTAAATGTGCCAGGTACGGGTTCCTTATGGCCGCT	2360
5	2361	TTCAGCCCAAAGTCCAATCGGAAAGTGTGGAGAGCCGAAT	2400
	2401		2440
	2441	GTTCGTGTAGGGATGGAGAAAAGTGTGCCCATCATTCGCA	2480
10	2481		2520
	2521		2560
15	2561		2600
	2601		2640
	2641	AAAAGAGCGGAGAAAAAATGGAGAGACAAACGTGAAAAAT	2680
20	2681	TGGAATGGGAAACAAATATGGTTTATAAAGAGGCAAAAGA	2720
			2760
	2721	ATCTGTAGATGCTTTATTTGTAAACTCTCAATATGATCAA	
25	2761	TTACAAGCGGATACGAATATTGCCATGATTCATGCGGCAG	2800
	2801	ATAAACGTGTTCATAGCATTCGAGAAGCTTATCTGCCTGA	2840
	2841	GCTGTCTGTGATTCCGGGTGTCAATGCGGCTATTTTTGAA	2880
30	2881	GAATTAGAAGGGCGTATTTTCACTGCATTCTCCCTATATG	2920

-:	14	2	-
----	----	---	---

		1	
	2921	ATGCGAGAAATGTCATTAAAAATGGTGATTTTAATAATGG	2960
5	2961	· · · · · · · · · · · · · · · · · · ·	3000
	3001	GAACAAAACAACCAACGTTCGGTCCTTGTTGTTCCGGAAT	3040
	3041		3080
10	3081		3120
			3160
	3121	TATGGAGAAGGTTGCGTAACCATTCATGAGATCGAGAACA	
15	3161	ATACAGACGAACTGAAGTTTAĞCAACTGCGTAGAAGAGGA	3200
	3201	AATCTATCCAAATAACACGGTAACGTGTAATGATTATACT	3240
~	3241	GTAAATCAAGAAGAATACGGAGGTGCGTACACTTCTCGTA	3280
20	3281	ATCGAGGATATAACGAAGCTCCTTCCGTACCAGCTGATTA	3320
	3321	TGCGTCAGTCTATGAAGAAAATCGTATACAGATGGACGA	3360
25	3361	AGAGAGAATCCTTGTGAATTTAACAGAGGGTATAGGGATT	3400
	3401	ACACGCCACTACCAGTTGGTTATGTGACAAAAGAATTAGA	3440
	3441	ATACTTCCCAGAAACCGATAAGGTATGGATTGAGATTGGA	3480

	3481	GAAACGGAAGGAACATTTATCGTGGACAGCGTGGAATTAC	3520
5	3521	TCCTTATGGAGGAA 3534.	
		. A structural gene of Claim 13 encoding a n insecticidal protein of B.t.k. HD-73 havince:	
10			
	1	ATGGACAACAACCCAAACATCAACGAATGCATTCCATACA	40
	41	ACTGCTTGAGTAACCCAGAAGTTGAAGTACTTGGTGGAGA	80
15	81	ACGCATTGAAACCGGTTACACTCCCATCGACATCTCCTTG	120
	121	TCCTTGACACAGTTTCTGGTCAGCGAGTTCGTGCCAGGTG	160
	161	CTGGGTTCGTCTCGGACTAGTTGACATCATCTGGGGTAT	200
20	201		240
	241	GAGCAGTTGATCAACCAGAGGATCGAAGAGTTCGCCAGGA	280
25	281	ACCAGGCCATCTCTAGGTTGGAAGGATTGAGCAATCTCTA	320
	321		360
	361		400
30	401	TCAACGACATGAACAGCGCCTTGACCACAGCTATCCCATT	440

	441	GTTCGCAGTCCAGAACTACCAAGTTCCTCTTGTCCGTG	480
5	481	TACGTTCAAGCAGCTAATCTTCACCTCAGCGTGCTTCGAG	520
	521	ACGTTAGCGTGTTTGGGCAAAGGTGGGGATTCGATGCTGC	560
	561	AACCATCAATAGCCGTTACAACGACCTTACTAGGCTGATT	600
10	601	GGAAACTACACCGACCACGCTGTTCGTTGGTACAACACTG	640
	641		680
15	681		720
	721	TTGGACATTGTGTCTCTCTTCCCGAACTATGACTCCAGAA	760
	761		800
20	801		840
	841		880
	881		920
25	921		960
	961	ATCATGGCCTCTCCAGTTGGATTCAGCGGGCCCGAGTTTA	1000
30			1040
	1001	CCTTTCCTCTATGGAACTATGGGAAACGCCGCTCCACA	1040

	1041	ACAACGTATCGTTGCTCAACTAGGTCAGGGTGTCTACAGA	1080
5	1081	ACCTTGTCTTCCACCTTGTACAGAAGACCCTTCAATATCG	1120
	1121	GTATCAACAACCAGCAACTTTCCGTTCTTGACGGAACAGA	1160
	1161	GTTCGCCTATGGAACCTCTTCTAACTTGCCATCCGCTGTT	1200
10	1201	TACAGAAAGAGCGGAACCGTTGATTCCTTGGACGAAATCC	1240
		CACCACAGAACAACAATGTGCCACCCAGGCAAGGATTCTC	1280
	1241		
15	1281	CCACAGGTTGAGCCACGTGTCCATGTTCCGTTCCGGATTC	1320
	1321	AGCAACAGTTCCGTGAGCATCATCAGAGCTCCTATGTTCT	1360
20	1361	CTTGGATACACCGTAGTGCTGAGTTCAACAACATCATCGC	1400
20	1401	ATCCGATAGTATTACTCAAATCCCTGCAGTGAAGGGAAAC	1440
	1441	TTTCTCTTCAACGGTTCTGTCATTTCAGGACCAGGATTCA	1480
25	1481	CTGGTGGAGACCTCGTTAGACTCAACAGCAGTGGAAATAA	1520
	1521	CATTCAGAATAGAGGGTATATTGAAGTTCCAATTCACTTC	1560
	1561	CCATCCACATCTACCAGATATAGAGTTCGTGTGAGGTATG	1600
30	1601	CTTCTGTGACCCCTATTCACCTCAACGTTAATTGGGGTAA	1640
		•	

		1		
	1641	TTCATCCATCTTCTCCAATA	CAGTTCCAGCTACAGCTACC	1680
5	1681	TCCTTGGATAATCTCCAATC	CAGCGATTTCGGTTACTTTG	1720
	1721	AAAGTGCCAATGCTTTTACA	TCTTCACTCGGTAACATCGT	1760
10	1761	GGGTGTTAGAAACTTTAGTG	GGACTGCAGGAGTGATTATC	1800
	1801	GACAGATTCGAGTTCATTC	AGTTACTGCAACACTCGAGG	1840
	1841	CTGAGTACAACCTTGAGAGA	GCCCAGAAGGCTGTGAACGC	1880
15	1881	CCTCTTTACCTCCACCAAT	AGCTTGGCTTGAAAACTAAC	1920
	1921	GTTACTGACTATCACATTGA	ACCAAGTGTCCAACTTGGTCA	1960
	1961	CCTACCTTAGCGATGAGTT	CTGCCTCGACGAGAAGCGTGA	2000
20	2001	ACTCTCCGAGAAAGTTAAA	CACGCCAAGCGTCTCAGCGAC	2040
	2041	GAGAGGAATCTCTTGCAAG	ACTCCAACTTCAAAGACATCA	2080
25	2081	ACAGGCAGCCAGAACGTGG	TTGGGGTGGAAGCACCGGGAT	2120
	2121	CACCATCCAAGGAGGCGAC	GATGTGTTCAAGGAGAACTAC	2160
	2161	GTCACCCTCTCCGGAACTT	CGACGAGTGCTACCTACCT	2200
30	2201	ACTTGTACCAGAAGATCGA	IGAGTCCAAACTCAAAGCCTT	2240

)	
	2241	CACCAGGTATCAACTTAGAGGCTACATCGAAGACAGCCAA	2280
5	2281	GACCTTGAAATCTACTCGATCAGGTACAATGCCAAGCACG	2320
	2321	AGACCGTGAATGTCCCAGGTACTGGTTCCCTCTGGCCACT	2360
10	2361	TTCTGCCCAATCTCCCATTGGGAAGTGTGGAGAGCCTAAC	2400
10	2401	AGATGCGCTCCACACCTTGAGTGGAATCCTGACTTGGACT	2440
	2441	GCTCCTGCAGGGATGGCGAGAAGTGTGCCCACCATTCTCA	2480
15	2481	TCACTTCTCCTTGGACATCGATGTGGGATGTACTGACCTG	2520
	2521	AATGAGGACCTCGGAGTCTGGGTCATCTTCAAGATCAAGA	2560
	2561	CCCAAGACGGACACGCAAGACTTGGCAACCTTGAGTTTCT	2600
20	2601	CGAAGAGAAACCATTGGTCGGTGAAGCTCTCGCTCGTGTG	2640
	2641	AAGAGAGCAGAGAAAGTGGAGGACAAACGTGAGAAAC	2680
25	2681	TCGAATGGGAAACTAACATCGTTTACAAGGAGGCCAAAGA	2720
	2721	GTCCGTGGATGCTTTGTTCGTGAACTCCCAATATGATCAG	2760
	2761	TTGCAAGCCGACACCAACATCGCCATGATCCACGCCGCAG	2800
30	2801	ACAAACGTGTGCACAGCATTCGTGAGGCTTACTTGCCTGA	2840

		!	
	2841	GTTGTCCGTGATCCCTGGTCTGAACGCTGCCATCTTCGAG	2880
5	2881	GAACTTGAGGGACGTATCTTTACCGCATTCTCCTTGTACG	2920
	2921	ATGCCAGAAACGTCATCAACAACGGTGACTTCAACAATGG	2960
10	2961	CCTCAGCTGCTGGAATGTGAAAGGTCATGTGGACGTGGAG	3000
10	3001	GAACAGAACAATCAGCGTTCCGTCCTGGTTGTGCCTGAGT	3040
	3041	GGGAAGCTGAAGTGTCCCAAGAGGTTAGAGTCTGTCCAGG	3080
15	3081	TAGAGGCTACATTCTCCGTGTGACCGCTTACAAGGAGGGA	3120
	3121	TACGGTGAGGGTTGCGTGACATCCACGAGATCGAGAACA	3160
	3161	ACACCGACGAGCTTAAGTTCTCCAACTGCGTCGAGGAAGA	3200
20	3201	AATCTATCCCAACAACACCGTTACTTGCAACGACTACACT	3240
	3241	GTGAATCAGGAAGAGTACGGAGGTGCCTACACTAGCCGTA	3280
25	3281	ACAGAGGTTACAACGAAGCTCCTTCCGTTCCTGACTA	3320
	3321	TGCCTCCGTGTACGAGGAGAAATCCTACACAGATGGCAGA	3360
	3361	CGTGAGAACCCTTGCGAGTTCAACAGAGGTTACAGGGACT	3400
30	3401	ACACACCACTTCCAGTTGGCTATGTTACCAAGGAGCTTGA	3440
		ı	

		Ţ		
	3441	GTACTTTCCTGAGACCGACA	AAGTGTGGATCGAGATCGGT	3480
5	3481	GAAACCGAGGGAACCTTCAT	CGTGGACAGCGTGGAGCTTC	3520
	3521	TCTTGATGGAGGAA 3534	•	
10		. A structural gene		
	1	ATGACTGCAGACAACAACAC	CGAAGCCCTCGACAGTTCTA	40
	41	CCACTAAGGATGTTATCCAG	AAGGGTATCTCCGTTGTGGG \	80
15	81	AGACCTCTTGGGCGTGGTTG	/\ GATTTCCCTTCGGTGGAGCC	120
	121	· CTCGTGAGCTTCTATACAAA	CTTTCTCAACACCATTTGGC	160
20	161	CAAGCGAGGACCCTTGGAAA	GCATTCATGGAGCAAGTTGA	200
	201	AGCTCTTATGGATCAGAAGA	TTGCAGATTATGCCAAGAAC	240
	241	AAGGCTTTGGCAGAACTCCA	GGGCCTTCAGAACAATGTGG	280
25	281	AGGACTACGTGAGTGCATTG	TCCAGCTGGCAGAAGAACCC	320
	321	. TGTTAGCTCCAGAAATCCTC	ACAGCCAAGGTAGGATCAGA	360
30	361	. GAGTTGTTCTCTCAAGCCGA	· ATCCCACTTCAGAAATTCCA	400
~			I	

		1.	
	401	TGCCTAGCTTTGCTATCTCCGGTTACGAGGTTCTTTTCCT	440
5	441		480
	481		520
	521	AGAAAGAGGACATTGCTGAGTTCTACAAGCGTCAACTTAA	560
10	561	GCTCACCCAAGAGTACACTGACCATTGCGTGAAATGGTAT	600
	601	AACGTTGGTCTCGATAAGCTCAGAGGCTCTTCCTACGAGT	640
15	641	CTTGGGTGAACTTCAACAGATACAGGAGAGAGATGACCTT	680
	681	GACTGTGCTCGATCTTATCGCACTCTTTCCCTTGTACGAT	720
	721	GTGAGACTCTACCCAAAGGAAGTGAAAACTGAGCTTACCA	760
20	761	GAGACGTGCTCACTGACCCTATTGTCGGAGTCAACAACCT	800
	801	TAGGGGTTATGGAACTACCTTCAGCAATATCGAAAACTAC	840
	841	ATTAGGAAACCACATCTCTTCGACTATCTTCACAGAATTC	880
25	881	AATTCCACACAAGGTTTCAACCAGGATACTATGGTAACGA	920
	• • •	CTCCTTCAACTATTGGTCCGGTAACTATGTTTCCACCAGA	960
20	921		1000
30	961	CCAAGCATTGGATCTAATGACATCACATCTCCCTTCT	1000

	1001	ATGGTAACAAGTCCAGTGAACCTGTGCAGAACCTTGAGTT	1040
5	1041	CAACGGCGAGAAAGTCTATAGAGCCGTCGCAAACACCAAT	1080
	1081		1120
10	1121	AGGTGGAGTTTAGTCAGTATAACGATCAGACCGATGAGGC	1160
10	1161	CAGCACCCAGACTTACGACTCCAAACGTAACGTTGGCGCA	1200
	1201	GTCTCTTGGGATTCTATCGACCAATTGCCTCCAGAAACCA	1240
15	1241	CAGACGAACCATTGGAGAAGGGCTACAGCCACCAACTTAA	1280
	1281	CTATGTGATGTGCTTCTTGATGCAAGGTTCCAGAGGGACC	1320
	1321	ATTCCAGTGTTGACCTGGACACACAAGTCCGTGGACTTCT	1360
20	1361	TCAACATGATCGATAGCAAGAAGATCACTCAACTTCCCTT	1400
	1401	GGTGAAAGCCTACAAGCTGCAATCTGGTGCTTCCGTTGTC	1440
25	1441	GCAGGTCCCAGATTCACTGGAGGTGACATCATCCAGTGCA	1480
	1481	CAGAGAACGGCAGCGCAGCTACTATCTACGTGACACCTGA	1520
	1521	TGTGTCTTACTCTCAGAAGTACAGGGCACGTATTCATTAC	1560
30	1561	GCATCTACCAGCCAGATCACCTTCACACTCAGCTTGGATG	1600

	1601	GAGCACCCTTCAACCAGTATTACTTTGACAAGACCATCAA	1640
5	1641	CAAAGGTGACACTCTCACATACAATAGCTTCAACTTGGCA	1680
	1681	AGTTTCAGCACACCATTTGAACTCTCAGGCAACAATCTTC	1720
10	1721	AGATCGGCGTCACCGGTCTCAGCGCCGGAGACAAAGTCTA	1760
10	1761	CATCGACAAGATTGAGTTCATCCCAGTGAAC 1791.	
		. A structural gene of Claim 13 which enco	
15	seque		ing the
	1	ATGGAGGAGAACAACCAAAACCAATGCATTCCATACAACT	40
	41	GCTTGAGTAACCCAGAAGAGGTATTGCTTGATGGAGAACG	80
20	81	CATTTCAACCGGTAACTCTTCCATCGACATCTCCTTGTCC	120
	121	TTGGTCCAGTTTCTGGTCAGCAACTTCGTGCCAGGTGGTG	160
25	161	GGTTCCTTGTCGGACTAATTGACTTCGTCTGGGGTATCGT	200
	201	TGGTCCATCTCAATGGGATCCATTCCTGGTGCAAATTGAG	240
	241	CAGTTGATCAACGAGAGGATCGCTGAGTTCGCCAGGAACG	280
30	281	CTGCCATCGCTAACTTGGAAGGATTGGGCAATAACTTCAA	320

		į	
	321		360
5	361	AACAACCCAGAGACCCGCACTAGGGTGATCGACAGATTCA	400
	401	GAATCTTGGACGGCCTCTTGGAGAGAGATATCCCATCCTT	440
10	441	CAGAATCTCTGGCTTCGAAGTTCCTCTTGTCCGTGTAC	480
10	481	GCTCAAGCAGCTAATCTTCACCTCGCTATCCTTCGAGACA	520
	521	GTGTCATCTTTGGGGAAAGGTGGGGATTGACCACTATCAA	560
15	561	CGTCAATGAGAATTACAACAGACTTATCAGGCACATTGAC	600
	601	GAGTACGCCGACCACTGTGCTAACACCTACAACCGTGGCT	640
	641	TGAACAATCTCCCTAAGTCTACTTATCAAGATTGGATTAC	680
20	681	CTACAACAGGTTGAGGAGAGACTTGACCCTCACAGTTTTG	720
	721	GACATTGCAGCTTTCTTCCCGAACTATGACAACAGGAGAT	760
25	761	ACCCTATCCAACCAGTGGGTCAACTTACCAGAGAAGTCTA	800
	801	TACTGACCCACTTATCAACTTCAACCCTCAGTTGCAAAGT	840
	841	GTCGCCCAACTTCCCACATTCAACGTCATGGAGTCCAGCC	880
30	881	GTATCAGGAACCCACACTTGTTTGACATCTTGAACAACCT	920

		4	
	921	TACTATCTTCACCGATTGGTTCAGCGTTGGGCGTAACTTC	960
5	961	TATTGGGGTGGACACAGGGTCATCTCCTCTTATTGGAG	1000
	1001	GTGGGAACATTACCTCTCCTATCTATGGACGTGAGGCAAA	1040
10	1041		1080
10	1081	TTCAGAACCTTGTCTAACCCTACCTTGAGATTGCTCCAGC	1120
	1121	AACCTTGGCCAGCTCCACCTTTCAACCTTAGAGGTGTTGA	1160
15	1161	GGGCGTTGAGTTCTCTACTCCTACCAACTCCTTCACTTAC	1200
	1201	AGAGGTAGAGGAACCGTTGATCCTTGACCGAACTCCCAC	1240
	1241	CAGAGGACAATAGCGTGCCACCCAGGGAAGGCTACTCCCA	1280
20	1281	CAGGTTGTGCCACGCAACCTTCGTGCAGCGTTCCGGAACT	1320
	1321	CCATTCCTCACTACAGGAGTTGTGTTCTCATGGACTGATC	1360
25	1361	GTAGTGCTACTCTCACTAATACCATTGATCCCGAGAGGAT	1400
	1401	CAATCAAATCCCATTGGTCAAGGGTTTCCGTGTGTGGGGA	1440
	1441	GGAACTTCTGTCATCACAGGACCAGGCTTCACAGGAGGTG	1480
30	1481	ATATTCTTAGAAGAAACACTTTTGGCGACTTTGTGAGCCT	1520

		1	
	1521	CCAAGTTAACATCAACTCTCCAATTACTCAAAGATATCGT	1560
5	1561	CTCAGGTTTCGTTACGCATCTTCCCGTGACGCTAGAGTCA	1600
	1601	TCGTGCTCACCGGAGCAGCTTCTACCGGTGTCGGTGGACA	1640
	1641	AGTCTCCGTGAACATGCCACTCCAGAAGACTATGGAGATC	1680
10	1681	GGCGAGAACTTGACATCCAGGACCTTCAGATACACCGACT	1720
	1721		1760
15	1761	TGGCATTAGCGAACAACCPGTCTTTTGGAGCTGGTAGCATC	1800
	1801	TCATCTGGCGAATTGTACATTGACAAGATTGAGATCATTC	1840
	1841		1880
20	1881	AGCCCAGAAGGCTGTGAACGCCCTCTTTACCTCCTCTAAT	1920
	1921	CAGATTGGCTTGAAAACTGACGTTACTGACTATCACATTG	1960
	1961		2000
25		CTGCCTCGACGAGAAGCGTGAACTCTCCGAGAAAGTTAAA	2040
	2001		
	2041		2080
30	2081	ACCCCAACTTCAGAGGCATCAACAGGCAGCCAGACCGTGG	2120

	2121	TTGGAGAGGAAGCACCGACATCACCATCCAAGGAGGCGAC	2160
5	01.61	GATGTGTTCAAGGAGAACTACGTCACCCTCCCAGGAACTG	2200
	2161	GATGTGTTCAAGGAGAACTACGTCACCCTCCCAGGAACTG	2200
	2201	TGGACGAGTGCTACCTACCTGTACCAGAAGATCGA	2240
10	2241	TGAGTCCAAACTCAAAGCCTACACCAGGTATGAACTTAGA	2280
20	2281	GGCTACATCGAAGACAGCCAAGACCTTGAAATCTACCTCA	2320
	2321	TCAGGTACAATGCCAAGCACGAGATCGTGAATGTCCCAGG	2360
15	2361	TACTGGTTCCCTCTGGCCACTTTCTGCCCAAATGCCCATT	2400
	2401	GGGAAGTGTGGAGAGCCTAACAGATGCGCTCCACACCTTG	2440
	2441	AGTGGAATCCTGACTTGGACTGCTCCTGCAGGGATGGCGA	2480
20	2481	GAAGTGTGCCCACCATTCTCATCACCTTCACCTTGGACATC	2520
	2521	GATGTGGGATGTACTGACCTGAATGAGGACCTCGGAGTCT	2560
25	2561	GGGTCATCTTCAAGATCAAGACCCAAGACGGACACGCAAG	2600
	2601	ACTTGGCAACCTTGAGTTTCTCGAAGAGAAACCATTGCTC	2640
	2641	GGTGAAGCTCTCGCTCGTGTGAAGAGGAGCAGAAGAAGT	2680
30	2681	GGAGGGACAAACGTGAGAAACTCCAACTCGAGACTAACAT	2720

		1	
	2721	CGTTTACAAGGAGGCCAAAGAGTCCGTGGATGCTTTGTTC	2760
5	2761	GTGAACTCCCAATATGATAGGTTGCAAGTGGACACCAACA	2800
	2801	TCGCCATGATCCACGCTGCAGACAAACGTGTGCACAGGAT	2840
	2841	TCGTGAGGCTTACTTGCCTGAGTTGTCCGTGATCCCTGGT	2880
10	2881	GTGAACGCTGCCATCTTCGAGGAACTTGAGGGACGTATCT	2920
	2921		2960
15	2961		3000
	3001	AAAGGTCATGTGGACGTGGAGGAACAGAACAATCACCGTT	3040
	3041		3080
20	3081	AGAGGTTAGAGTCTGTCCAGGTAGAGGCTACATTCTCCGT	3120
	3121	GTGACCGCTTACAAGGAGGGATACGGTGAGGGTTGCGTGA	3160
	3161		3200
25	3201		3240
	3241		3280
30		AAGGTACCTACACTAGCCGTAACCAAGGTTACGACGAAGC	3320
w	3201	AAGGIACCIACACIAGCCGIAACCAAGGIIACGACGAAGC	3320

		1	
	3321	TTACGGAAACAATCCTTCCGTTCCTGCTGACTATGCCTCC	3360
5	3361	GTGTACGAGGAGAAATCCTACACAGATGGCAGACGTGAGA	3400
	3401	ACCCTTGCGAGTCCAACAGAGGTTACGGTGACTACACACC	3440
	3441	ACTTCCAGCAGGCTATGTTACCAAGGACCTTGAGTACTTT	3480
10	3481		3520
	3521	AGGGAACCTTCATCGTGGACAGCGTGGAGCTTCTCTTGAT	3560
15	3561	GGAGGAA 3567.	
		(V)	
	24	. A structural gene of Claim 13 which end	codes a
		. A structural gene of Claim 13 which end secticidal protein having the sequence:	codes a
20		l l	codes a
20	P2 in	secticidal protein having the sequence:	
20	P2 in	secticidal protein having the sequence: ATGGACAACAACGTCTTGAACTCTGGTAGAACAACCATCT	40
20	P2 in	secticidal protein having the sequence: ATGGACAACAACGTCTTGAACTCTGGTAGAACAACCATCT GCGACGCATACAACGTCGTGGCTCACGATCCATTCAGCTT	40
	P2 in 1 41 81	secticidal protein having the sequence:	40 80 120
	P2 in 1 41 81	secticidal protein having the sequence:	40 80 120 160

		.)		
	241	ATCATCTTCCATCTGGGTCCACTAATCTCATG	CAAGACA 28	30
5	281	TCTTGAGGGAGACCGAACAGTTTCTCAACCAGC	GTCTCAA 32	20
	321		GATCGGT 36	50
	361	. CTCCAAGCAAACATTCGTGAGTTCAACCAGCAA	GTGGACA 40	00
10	401	ACTTCTTGAATCCAACTCAGAATCCTGTGCCTC	TTTCCAT 44	10
	441			30
		AGATTGCCTCAGTTTCAGATTCAAGGCTACCAG		20
15	481		•	
	521	TTCTTCCACTCTTTGCTCAGGCTGCCAACATGC		60
20	561	CTTCATACGTGACGTGATCCTCAACGCTGACGA	ATGGGGA 60	00
	601	ATCTCTGCAGCCACTCTTAGGACATACAGAGAC	TACTTGA 64	40
	641	GGAACTACACTCGTGATTACTCCAACTATTGCA	TCAACAC 68	80
25	681	TTATCAGACTGCCTTTCGTGGACTCAATACTAC	GCTTCAC 72	20
	721	GACATGCTTGAGTTCAGGACCTACATGTTCCTT	AACGTGT 76	60
	761	TTGAGTACGTCAGCATTTGGAGTCTCTTCAAG	PACCAGAG 80	00
30	801	CTTGATGGTGTCCTCTGGAGCCAATCTCTACG	CTCTGGC 84	40

		1	
	841	AGTGGACCACAGCAAACTCAGAGCTTCACAGCTCAGAACT	880
5	881	GGCCATTCTTGTATAGCTTGTTCCAAGTCAACTCCAACTA	920
	921	CATTCTCAGTGGTATCTCTGGGACCAGACTCTCCATAACC	960
	961		1000
10	1001	ATAGCCTTAACTCTGCCAGAGTGAACTACAGTGGAGGTGT	1040
	1041		1080
15	1081	TTCAATTGCTCCACCGTCTTGCCACCTCTGAGCACACCGT	1120
	1121		1160
	1161	AGTTGCTACCTCTACAAACTGGCAAACCGAGTCCTTCCAA	1200
20	1201	ACCACTCTTAGCCTTCGGTGTGGAGCTTTCTCTGCACGTG	1240
	1241	GGAATTCAAACTACTTTCCAGACTACTTCATTAGGAACAT	1280
25	1281	CTCTGGTGTTCCTCTCGTCATCAGGAATGAAGACCTCACC	1320
20	1321	CGTCCACTTCATTACAACCAGATTAGGAACATCGAGTCTC	1360
	1361	CATCCGGTACTCCAGGAGGTGCAAGAGCTTACCTCGTGTC	1400
30	1401	TGTCCATAACAGGAAGAACAACATCTACGCTGCCAACGAG	1440
		1	

	1441	AATGGCACCATGATTCACCTTGCACCAGAAGATTACACTG	1480
5	1481	GATTCACCATCTCTCCAATCCATGCTACCCAAGTGAACAA	1520
	1521		1560
	1561	GGTGACTCCTTGAGGTTCGAGCAATCCAACACTACCGCTA	1600
10	1601	GGTACACTTTGAGAGGCAATGGAAACAGCTACAACCTTTA	1640
			1680
		CTTGAGAGTTAGCTCCATTGGTAACTCCACCATCCGTGTT	
15	1681	ACCATCAACGGACGTGTTTACACAGTCTCTAATGTGAACA	1720
	1721	CTACAACGAACAATGATĠGCGTTAACGACAACGGAGCCAG	1760
~	1761	ATTCAGCGACATCAACATTGGCAACATCGTGGCCTCTGAC	1800
20	1801	AACACTAACGTTACTTTGGACATCAATGTGACCCTCAATT	1840
	1841	CTGGAACTCCATTTGATCTCATGAACATCATGTTTGTGCC	1880
25	1881	AACTAACCTCCCTCCATTGTACTAA 1905.	
		. A plant transformation vector comprigene containing a structural gene of Claim	

		1	
	26	. A structural gene sequence of Claim	13
	encod	ing a fusion protein comprising the N-termin	al
_	610 a	mino acids of $B.$ $t.k.$ HD-1 and the C-terminal 5	67
5	amino	acids of $B.t.k$. HD-73, said gene having t	he
	seque	nce:	
	1	ATGGACAACAACCAAACATCAACGAATGCATTCCATACA 40	
10	41	ACTGCTTGAGTAACCCAGAAGTTGAAGTACTTGGTGGAGA 80	
	81	ACGCATTGAAACCGGTTACACTCCCATCGACATCTCCTTG 120	
	121	TCCTTGACACAGTTTCTGCTCAGCGAGTTCGTGCCAGGTG 160	
15		CTGGGTTCGTCTCGGACTAGTTGACATCATCTGGGGTAT 200	
	161	CTGGGTTCGTCTCGGACTÁGTTGACATCATCTGGGGTAT 200	
	201	CTTTGGTCCATCTCAATGGGATGCATTCCTGGTGCAAATT 240	
	201	CITIGGICCATCICAATGGGATGCATTCCTGGTGCAAATT 240	
	241	GAGCAGTTGATCAACCAGAGGATCGAAGAGTTCGCCAGGA 280	
20	241	GAGCAGTIONION.	
	281	ACCAGGCCATCTCTAGGTTGGAAGGATTGAGCAATCTCTA 320	
	201		
	321	CCAAATCTATGCAGAGAGCTTCAGAGAGTGGGAAGCCGAT 360	
25	361	CCTACTAACCCAGCTCTCCGCGAGGAAATGCGTATTCAAT 400	
	401	TCAACGACATGAACAGCGCTTGACCACAGCTATCCCATT 440	

		1	
	441	GTTCGCAGTCCAGAACTACCAAGTTCCTCTTGTCCGTG	480
5			520
	481	TACGTTCAAGCAGCTAATCTTCACCTCAGCGTGCTTCGAG	520
	521	ACGTTAGCGTGTTTGGGCAAAGGTGGGGATTCGATGCTGC	560
	561	AACCATCAATAGCCGTTACAACGACCTTACTAGGCTGATT	600
10	601	GGAAACTACACCGACCACGCTGTTCGTTGGTACAACACTG	640
	641	GCTTGGAGCGTGTCTGGGGTCCTGATTCTAGAGATTGGAT	680
15	681	TAGATACAACCAGTTCAGGAGAGAATTGACCCTCACAGTT	720
ш	721	TTGGACATTGTGTCTCTCTTGCCGAACTATGACTCCAGAA	760
	721		
	761	CCTACCCTATCCGTACAGTGTCCCAACTTACCAGAGAAAT	800
20	801	CTATACTAACCCAGTTCTTGAGAACTTCGACGGTAGCTTC	840
	841	CGTGGTTCTGCCCAAGGTATCGAAGGCTCCATCAGGAGCC	880
05	881	CACACTTGATGGACATCTTGAACAGCATAACTATCTACAC	920
25	921		960
	961	ATCATGGCCTCTCCAGTTGGATTCAGCGGGCCCGAGTTTA	1000
30	1001		1040

		1	
	1041	ACAACGTATCGTTGCTCAACTAGGTCAGGGTGTCTACAGA	1080
5	1081	ACCTTGTCTTCCACCTTGTACAGAAGACCCTTCAATATCG	1120
	1121		1160
	1161	GTTCGCCTATGGAACCTCTTCTAACTTGCCATCCGCTGTT	1200
10			
	1201	TACAGAAAGAGCGGAACCGTTGATTCCTTGGACGAAATCC	1240
	1241	CACCACAGAACAACAATGTGCCACCCAGGCAAGGATTCTC	1280
15	1281	CCACAGGTTGAGCCACGTGTCCATGTTCCGTTCCGGATTC	1320
	1321	AGCAACAGTTCCGTGAGCATCATCAGAGCTCCTATGTTCT	1360
	1361	CATGGATTCATCGTAGTGCTGAGTTCAACAATATCATTCC	1400
20	1401		1440
	1441	AACCTTGGATCTGGAACTTCTGTCGTGAAAGGACCAGGCT	1480
	1481		1520
25	1521	GATTAGCACCTCAGAGTTAACATCACTGCACCACTTTCT	1560
		CAAAGATATCGTGTCAGGATTCGTTACGCATCTACCACTA	1600
00	1561		
30	1601	ACTTGCAATTCCACACCTCCATCGACGGAAGGCCTATCAA	1640

		1	
	1641	TCAGGGTAACTTCTCCGCAACCATGTCAAGCGGCAGCAAC	1680
5	1681	TTGCAATCCGGCAGCTTCAGAACCGTCGGTTTCACTACTC	1720
	1721	CTTTCAACTTCTCTAACGGATCAAGCGTTTTCACCCTTAG	1760
10	1761		1800
10	1801		1840
	1841	AGTACAACCTTGAGAGAGCCCAGAAGGCTGTGAACGCCCT	1880
15	1881	CTTTACCTCCACCAATCAGCTTGGCTTGAAAACTAACGTT	1920
	1921	ACTGACTATCACATTGACCAAGTGTCCAACTTGGTCACCT	1960
	1961	ACCTTAGCGATGAGTTCTGCCTCGACGAGAAGCGTGAACT	,2000
20	2001		2040
	2041	AGGAATCTCTTGCAAGACTCCAACTTCAAAGACATCAACA	2080
25	2081	GGCAGCCAGAACGTGGTTGGGGTGGAAGCACCGGGATCAC	2120
	2121	CATCCAAGGAGGCGACGATGTGTTCAAGGAGAACTACGTC	2160
	2161	ACCCTCTCCGGAACTTTCGACGAGTGCTACCCTACCT	2200
30	2201	TGTACCAGAAGATCGATGAGTCCAAACTCAAAGCCTTCAC	2240

		1		
	2241	CAGGTATCAACTTAGAGGCTAC	CATCGAAGACAGCCAAGAC	2280
5	2281	CTTGAAATCTACTCGATCAGGT	FACAATGCCAAGCACGAGA	2320
	2321	CCGTGAATGTCCCAGGTACTGC	GTTCCCTCTGGCCACTTTC	2360
10	2361	TGCCCAATCTCCCATTGGGAA	GTGTGGAGAGCCTAACAGA	2400
10	2401	TGCGCTCCACACCTTGAGTGG	AATCCTGACTTGGACTGCT	2440
	2441	CCTGCAGGGATGGCGAGAAGT	GTGCCCACCATTCTCATCA	2480
15	2481	CTTCTCCTTGGACATCGATGT	GGGATGTACTGACCTGAAT	2520
	2521	GAGGACCTCGGAGTCTGGGTC	ATCTTCAAGATCAAGACCC	2560
	2561	AAGACGGACACGCAAGACTTG	GCAACCTTGAGTTTCTCGA	2600
20	2601	AGAGAAACCATTGGTCGGTGA	AGCTCTCGCTCGTGTGAAG	2640
	2641	AGAGCAGAGAAGAAGTGGAGG	GACAAACGTGAGAAACTCG	2680
25	2681	AATGGGAAACTAACATCGTTT	ACAAGGAGGCCAAAGAGTC	2720
	2721	CGTGGATGCTTTGTTCGTGAA	CTCCCAATATGATCAGTTG	2760
	2761	CAAGCCGACACCAACATCGCC	ATGATCCACGCCGCAGACA	2800
30	2801	AACGTGTGCACAGCATTCGT	SAGGCTTACTTGCCTGAGTT	2840

		1	
	2841	GTCCGTGATCCCTGGTGTGAACGCTGCCATCTTCGAGGAA	2880
5	2881		2920
	2921		2960
	2961		3000
10	3001		3040
	3041		3080
		AGGCTACATTCTCCGTGTGACCGCTTACAAGGAGGGATAC	3120
15	3081		3160
	3121	GGTGAGGGTTGCGTGACCATCCACGAGATCGAGAACAACA	
20	3161	CCGACGAGCTTAAGTTCTCCAACTGCGTCGAGGAAGAAAT	3200
20	3201	CTATCCCAACACACCGTTACTTGCAACGACTACACTGTG	3240
	3241	AATCAGGAAGAGTACGGAGGTGCCTACACTAGCCGTAACA	3280
25	3281	GAGGTTACAACGAAGCTCCTTCCGTTCCTGCTGACTATGC	3320
	3321	CTCCGTGTACGAGGAGAAATCCTACACAGATGGCAGACGT	3360
	3361	GAGAACCCTTGCGAGTTCAACAGAGGTTACAGGGACTACA	3400
30	3401	CACCACTTCCAGTTGGCTATGTTACCAAGGAGCTTGAGTA	3440

		1	
	3441	CTTTCCTGAGACCGACAAAGTGTGGATCGAGATCGGTGAA	3480
5	3481	ACCGAGGGAACCTTCATCGTGGACAGCGTGGAGCTTCTCT	3520
	3521	TGATGGAGGAA 3531	
10	of sec	. A method of Claim 4 further comprising a quences comprising more than five consecution bases.	ve A+T
		. A structural gene sequence of Cla	im 13
	_	ising a majority of plant preferred codons. . A structural gene encoding the coat prot	tein of
15	potato	o leaf roll virus, said gene having the seq	quence:
	1	ATGAGTACTGTCGTGGTTAAGGGAAACGTGAACGGTGGTG	40
	41	TTCAACAACCTAGAAGGAGGAAGGCAATCCCTTCGTAG	80
20	81	GAGAGCTAACAGAGTTCAGCCAGTGGTTATGGTCACTGCT	120
	121		160
25	161	ATCGCAGATCAAGAAGAACTGGAGTTCCCAGAGGAAGAGG	200
	201	TTCAAGCGAGACATTCGTGTTTACAAAGGACAACCTCGTG	240
	241	GGCAACTCCCAAGGAAGTTTCACCTTCGGACCAAGTGTTT	280
30	281	CAGACTGTCCAGCATTCAAGGATGGAATACTCAAGGCTTA	320

	321	CCATGAGTACAAGATCACAAGTATCTTGCTTCAGTTCGTC	360
5	261	AGCGAGGCCTCTTCCACCTCTCCAGGCTCCATCGCTTATG	400
	361	AGCGAGGCCTCTTCCACCTCTCCAGGCTCCATCGCTTATG	100
·	401	AGTTAGATCCACATTGCAAAGTTTCATCCCTCCAGTCCTA	440
	441	CGTCAACAAGTTCCAAATCACAAAGGGTGGTGCTAAGACC	480
10	441		
	481	TATCAAGCTCGTATGATCAACGGAGTTGAATGGCACGATT	520
	521	CTTCTGAGGATCAGTGCAGAATCCTTTGGAAAGGAAATGG	560
	521		
15	561	AAAGTCTTCAGATCCAGCTGGATCTTTCAGAGTTACCATC	600
	601	AGAGTTGCTCTTCAAAACCGAAAG 624.	

- 30. A chimeric plant gene which comprises a structural coding sequence encoding an insecticidal protein of Bacillus thuringiensis, said structural coding sequence being modified to reduce the number of putative polyadenylation signals within said structural coding sequence.
- 31. A chimeric plant dene of Claim 30 in which the polyadenylation signals are selected from the group consisting of AATAAA, AATAAT, AACCAA, ATATAA, AATCAA, ATACTA, ATAAAA, ATGAAA, AAGCAT, ATTAAT, ATACAT, AAAATA, ATTAAA, AATTAAA and CATAAA.

- 32. A chimeric plant gene of Claim 31 in which said structural coding sequence is further modified to reduce the number of ATTTA sequences within said structural coding sequence.
- 33. A chimeric plant gene of Claim 32 in which said structural coding sequence is substantially devoid of polyadenylation signals and ATTTA sequences.
- 34. A transformed plant cell containing a gene of O Claim 33.
 - 35. A transformed plant cell of Claim 34 selected from the group consisting of soybean, cotton, alfalfa, oilseed rape, flax, tomato, sugarbeet, sunflower, potato, tobacco, maize, rice and wheat.
- 15 36. A plant comprising transformed plant cells of Claim 34.
 - 37. A plant of Claim 36 which comprises plant cells of Claim 35.
 - 38. A seed produced by a plant of Claim 36.

15 25/

5