```
Analyse de la décipion
T) 1 - Char, préférence, utilité
Eno1, Rappel: C: 4 = $ 1 - CCM CA cherento m
 (+A,B+p)(+(x,y) ∈ (A ∩B))): ]nec(A) ⇒(y & c(B))
Ici: 3 artires pan vin

= pays, embern, prix

C: A # p L > C(A) CA
taction de chin (f. CM1):
 ·) phix ≤ 40 €
  is) puis pays to cond max (+ bel. > France > Ita. > Gop.)
(iv) par couleur ty cond max (+ blanc > nouge > hosé)
   x, = ruge celiforner = 20 € A
   m₂ = blace franças = 20€
   n, = mge celiforate à 25 6
 luy = tong frança s = 30 €
   A = \{x_1, x_2, x_3\}
    (B) = { n2, n3, n4}
   C(A) = d celifornien rouge = 25 € | = lnz 4
C(B) = l français blanc = 20 € { = lnz 4
```

```
Mg cette fonction de choin me vienifie pas
(\forall A, B \neq \emptyset) (\forall (x,y) \in (A \cap B)^{\perp}): \int_{A} e c(A) \Rightarrow (y \notin c(B))
 ie venifie le négation logique de cette propriété:
Crappel: 7 ((HNEX): P(N))
       (=) (∃ u ∈ X): ¬P(u)
le viene: 7 ((32Ex): P(21)
        (=) (+ u E x): 7 [(u))
Just donc ic :
(\partial A_{1}B_{1} \neq \emptyset)(\partial nury \in A_{1}B_{1}): et (on: V)
                  7 (NECCA) Ny &C(A) =) y & C(B)
(nappel: (A =) B)
    (=7 (TAVB)
   dne 7 CA⇒B7
      CA7C7AVB7
     (=7 7(7A1 1/715)
 7 (NECCA) Ny EC(A) => JEC(B)
(=) (nec(A) My &c(A)) M & Ec(B)
```

 $(\exists A_1B \neq \emptyset)(\exists A_1B \neq C(A))$: $(nec(A) \land y \neq C(A)) \land y \in C(B)$ $A = \{x_1, x_2, x_3\}$ $A = \{x_1, x_2, x_4\}$ $A = \{x_2, x_3, x_4\}$ C(A) = d celifornien rouge = 25 € | = ln3 4 C(B) = d français blanc = 20 € { = ln2 4 et il missit de prendre x = nz, y = nz $x_3 \in C(A)$ et $x_2 \in C(B)$ R2 & CCAT Remonque: en panticulier, il n'axiste pas (cf. CMI) de relation de préférence L'nationnelle qui représentenait cette fonction de inclan au sur : c(A) = Luca ((tyca): n = y { A ≠ ø Exo2. 2.1. On difinit $c^*: A \neq \emptyset \longleftrightarrow c^*(A) := C_L(A)U \subset_{M}(A)$ C'est ble un fonction de choin purque M A + p $\begin{cases} CL(A) \subset A = \\ CL(A) \cup CM(A) \subset A \end{cases}$

C_L(A)

i) c^{+} err finiment $\neq \phi$: sit $A \neq \phi$,

C_L(A) $\neq \phi$ (cf. c_L finiment coherents)

=) $c^{+}(A) = c_{L}(A) \cup c_{M}(A) \supset c_{L}(A) \neq \phi$ $\neq \phi$

ii) ct n'est par cohérents:

 $X = \{n, \gamma, 3\}$ $X = \{n, \gamma, 3\}$ $C_{L}(\{n, \gamma, 3\}) = \{n\}$ $C_{L}(\{n, \gamma,$

en (2x, y 4) = dut can ch (2x, y 6) = dy 6 contradinate le cohérence; on pent, pous que cher supposés finiment # \$ en

cohérente le représenter par une relation de préférence: 3 & pationnelle ty (+A≠p): C_ (A) = |x∈A|(+y∈A): x > cy } (reppel: 2 totionnelle () réflérive is complète iii) trankitive) De fait le cohérence in plique qu'on a! (n > 2 2 > 3.) (De même, CL (dx, 34) = (x4...) Pareillement, le cohéverce de cy implique (++7 spicifie complitement cy. Considérens A = la, y, 34, B = ly, 3 1: pour mg ct er incohérents, on doit trouver a et b E ANB tq fa E ct(A) et s E ct(B); b & ct(B); premi a =(3) et b =(y); = 2xx U 234 = 2x, (3)4 \$ y c*(B) = c+(14,34) = c_(14,34) U cm(14,34) = 2 54 0 43(= 19,363y: h ∈ c*(B), Cutadiction à le cohérence.

2.2. En définit X^{t} comme suit: prif.
n 1 to aif.
L 2 × 0
i) réflexive: bit x \ X, x \ _ n (ct. \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
=) n \(\(\) n \(\) n \(\) n
n 2 t n
elle et conteite, donc
ii) confeite: sient nety Ex; 2 est hat. elle en compeite, done hit n 2 y, hit y 2 x;
- H' M LL b, alors 2 L L b 60) N L m b
i ~ L*y
-14 y 2 [x, alors b < [n (=) g 2 m n
ie g 2 ⁴ z
concetive nationnel de 2*):
heprenoup X = 120, y, 3 + et contidévous les deux
neletions his vantes: L: 12 > 3 (définite completement 2)
4ens: 3 /2 x, n /2 y Mais 7 (3 /2 y) of. 7 (3 /2 y v 3 /2 n y) is 7 (3 /2 y) \ \ 7 (3 /2 x y) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
7(3>1 3 × 3> 1 3) is 7(3>10) 1 7(3>10).

T) 1 - Chain, préférence, utilité (fin) Exo 2 (fu). 2.3. Mg on a le reletion privante entre ct et <t: (+(n,y) ex2): x < by = y ect(Lu,y4). Eneffer, ment x, y Ex, n kty = nd nd nd (dif. de kt) (=) y ∈ c (dx,y) (m) y ∈ c (dx, 54) (=) y ∈ CL(LX, y 4) U CM (1x, y 4) (NO. REAUR = REA (REB) (=) y & c* (1x,54). Enos. (L)

A(+ø) CB, nEA; nEC(B) = nEC(A)

(B): mient $A(\#\emptyset) \subset B$, mient X at $y \in C(A)$; Migosons $y \in C(B)$, $y \in C(B)$; Alabounda, $y \in C(B)$, $y \in C(B)$. Alono, $y \in C(A) \subset A \subset B$, done $y \in C(B)$. AND $(=A)$; $y \in C(B)$ $y \in C(A)$: A $y \in C(B)$ Contradit Contradit $y \in C(A)$.
ACB => Ann = A
32 Rici bassian a A haday si
3.2. Réciproquement, pop-pous que c: A ## HI CCAD C A vénitée (2) et (p); ha c est cohérente. Jient donc A et 13,
hieut x et o c ATR ; mpp-sous que
De l'atime de l'attendant de l'atten
Pen l'abrunde, supposons y E CCB). Alen, AND CR = Y E C (AND) AND CA = N = C (AND)
Ansch) one, nety $\in c(AnB)$, $x \in c(A)$ Ansch $(\beta) = y \in c(A)$: contrair $y \notin c(A)$.
Remanance i dans la 20 de
Remanque: i) on n'a utilisé dans le 3.1 le canactère finiment # Ø que
i) pan une fonction de choin con a done l'équivalence:
c finiment ført obtracti (=) c vérifie (d1 et (p)) et finiment fø.

marqui: examiner le cap de la relation 2

définie pan:

(1, 12) 2 (51, 72) = 72, 57 (et) 1257 i) transitionté: suppresons ス2) く (ソハ,ソン) ニタ ₹ (31,30) 3 km: d' ~ le transitionté.

4.2. Jupposoup, pan l'abounde, qu'il existe une fonction d'utilité u: X = (0,152 -1 (P.))
tq: $(\forall (n, p) \in X^2)$: $x \not\leq y \leftarrow y \cap (x) \leq u(y)$. $\frac{1}{\sqrt{n}} \frac{x_2}{\sqrt{n}} = \frac{n_1 n_2 n_3}{\sqrt{n}} = \frac{n_1 n_3 n_3}{\sqrt{$ 0 (n,0) 1 xn 4 5n et nûme 2n 2 3n (nappul: n Ly => n Ly ut 7(5/2)); donc l'intervalle ouvert]p(xn), u(yn) [# ø: 112 4(xn) 1 4(5n) =) 79,60 €]u(xn),u(yn)[(gn notional con 3 ast b E Z, h ≠0, 9, = =) Remanque: content du fait que, par Construerm de PR, Q est dense dans PR, is: trut x EIR get l'inite d'em mite de nationnel. On construit asuc use fonction 9: (0,1) - 9 Q 1 (h) := 9n

li on mg y est injective, on anna injecti"
[0,1] dans Q... ce qui est impossible,
d'in la contradiction d'in la contradiction "on-to-on" En pankialier, p'il existe une injection de E daup F, on dit que cand F > cand E. Gn, ici, on lait que cench Q < cend [0,1]

(cend IN) (cend IR) de sonte qu'on a une contradiction si l'est injorive. Montroup donc que l'est infrctive; sient donc net s & Co. 17 tq el (17) = el (57), et supposous (pan l'abrunde) que n \$6, pan exemple n < s; 56 = 46 (= is) & = 40 1 (x2) (41) u(xn) 9n=9s (u(on) < u(x) 一) つい(なり,い(らのし) つい(なり,い(らのし キタ

