

MATH F113 Probability and Statistics

BITS Pilani
Pilani Campus

Dr. Shivi Agarwal Department of Mathematics

Chapter # 7

Estimation

- Point Estimation
- Interval Estimation
- Significance testing
- Hypothesis testing

- To estimate numerical value of a population parameter using a sample of some size n.
- We must device an appropriate statistic (on random sample of size n) so that we only need to consider its value on the observed sample.
- It is desirable that the statistic satisfies certain properties. We may want to have such a statistic.

Estimator and Estimate

- A statistic (which is a function on a random sample, and hence a random variable) used to estimate the population parameter θ is called a **point estimator** for θ and is denoted by $\hat{\theta}$
- The value of the point estimator on a particular sample of that size is called a point estimate for θ.

Point Estimator

- –Unbiased Estimator
- -Method of Moments for estimator
- -Maximum Likelihood estimator

Desirable Properties

- 1. $\hat{\theta}$ to be unbiased for θ .
- 2. $\hat{\theta}$ to have a small variance for large sample size.

Unbiased estimator:

An estimator $\hat{\theta}$ is an unbiased estimator for a population parameter θ if and only if

$$E(\hat{\theta})=\theta.$$

Unbiased estimator:

Let θ be the parameter of interest and $\hat{\theta}$ be a statistic. Then the statistic $\hat{\theta}$ is said to be an unbiased estimator, or its value an unbiased estimate, if and only if the mean of the sampling distribution of the estimator equals θ , whatever the value of θ , viz. $E[\hat{\theta}] = \theta$.

Theorem:

The sample mean \overline{X} of a random sample of size n from population X is an unbiased estimator of the population mean μ .

More efficient unbiased estimator:

A statistics $\hat{\theta}_1$ is said to be a more efficient unbiased estimator of the parameter θ than the statistics $\hat{\theta}_2$ if

1. $\hat{\theta}_1$ and $\hat{\theta}_2$ are both unbiased estimators of θ ;

the variance of the sampling distribution of the first estimator is no larger than that of the second and is smaller for at least one value of θ .

Theorem:

$$\sigma_{\overline{X}}^2 = Var(\overline{X}) = \frac{\sigma^2}{n}$$

- •From this theorem, it follows that larger the sample size, sample mean can be expected to lie close to population mean.
- •Thus choosing large sample makes estimation more reliable.

Definition: Let X denote the sample mean of a (random) sample of size n from a distribution of standard deviation σ. Then

Standard error of mean =

$$\sigma_{\overline{X}} = \sigma / \sqrt{n}$$
.

Unbiased estimator of variance

Theorem: The sample variance S^2 of a random sample of size n from a population X is an unbiased estimator for population variance σ^2 , viz. $E[S^2] = \sigma^2$.

$$E[S^{2}] = E \left[\frac{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}}{n-1} \right] = \frac{1}{n-1} E \left[\sum_{i=1}^{n} (X_{i}^{2} + \overline{X}^{2} - 2X_{i} \overline{X}) \right]$$

$$= \frac{1}{n-1} \left[E(\sum_{i=1}^{n} X_i^2) + E(\sum_{i=1}^{n} \overline{X}^2) - 2E(\sum_{i=1}^{n} X_i \overline{X}) \right]$$

$$= \frac{1}{n-1} \left| E(\sum_{i=1}^{n} X_i^2) + E(\overline{X}^2.n) - 2E(\overline{X}.n\overline{X}) \right|$$

$$= \frac{1}{n-1} \left[E(\sum_{i=1}^{n} X_{i}^{2}) - nE(\overline{X}^{2}) \right] = \frac{1}{n-1} \left[n.E(X_{i}^{2}) - nE(\overline{X}^{2}) \right]$$

$$\operatorname{Var}(\mathbf{X}_i) = E(\mathbf{X}_i^2) - (E(\mathbf{X}_i))^2 \Rightarrow \sigma^2 = E(\mathbf{X}_i^2) - \mu^2$$

$$E(X_i^2) = \sigma^2 + \mu^2$$

and
$$Var(\overline{X}) = E(\overline{X}^2) - (E(\overline{X}))^2$$

$$Var\left(\frac{\sum_{i=1}^{n} X_{i}}{n}\right) = E(\overline{X}^{2}) - \mu^{2} \Rightarrow \frac{Var(\sum_{i=1}^{n} X_{i})}{n^{2}} = E(\overline{X}^{2}) - \mu^{2}$$

$$\frac{1}{n^2} \sum_{i=1}^n Var(X_i) = E(\overline{X}^2) - \mu^2 \Rightarrow \frac{1}{n^2} n\sigma^2 = E(\overline{X}^2) - \mu^2$$

$$E(\overline{X}^2) = \frac{1}{n}\sigma^2 + \mu^2$$

lead

$$E[S^{2}] = \frac{n}{n-1} \left[E(X_{i}^{2}) - E(\overline{X}^{2}) \right]$$

$$= \frac{n}{n-1} \left[(\sigma^{2} + \mu^{2}) - (\frac{1}{n}\sigma^{2} + \mu^{2}) \right]$$

$$= \frac{n}{n-1} \left[\sigma^{2} - \frac{1}{n}\sigma^{2} \right]$$

$$= \frac{n}{n-1} \cdot \frac{n-1}{n} \sigma^{2} = \sigma^{2}$$

- Q.4: An interactive computer system is achieve available at a large installation. Let X denote the number of requests for this system received per hr. Assume X has Poisson dist with parameter λs. These data are obtained: 25 20 20 30 24 15 10 23 4.
- (a) Find an unbiased estimate for λs .
- (b)Find an unbiased estimate for the average number of requests per hr.
- (c) Find an unbiased estimate for the average number of requests per quarter of an hr.

Q.8

Note that S is a statistic, and unless X is constant, its value varies from sample to sample, thus Var[S]>0. Show S is not an unbiased estimator of σ by method of contradiction.

If
$$E[S] = \sigma$$
, $Var[S] = E[S^2] - E[S]^2 = \sigma^2 - \sigma^2 = 0$.

7.2. Methods to find estimators

To find 'good' estimators for other population parameters, we describe 2 methods:

- 1. Method of moments
- 2. Maximal likelihood method.

Methods of Moments

Method of Moments:

$$k^{th}$$
 moment = E (X^k)

 An estimator of E (X^k) based on a random sample size n = M_k

$$\mathbf{M}_{k} = \sum_{i=1}^{n} (\mathbf{X}^{k}_{i} / \mathbf{n})$$

$$\mathbf{M}_1 = \sum_{i=1}^{n} (\mathbf{X}_i / \mathbf{n}) = \overline{\mathbf{X}}$$

$$M_2 = \sum_{i=1}^{n} (X^2_i / n)$$

$$M_3 = \sum_{i=1}^n (X_i^3 / n)$$

Method of moments

- 1) Use estimators $M_k = \sum_{i=1}^{n} \frac{X_i^k}{n}$ for the moments $E[X^k], k = 1, 2, etc...$
- 2) Express $E[X^k]$ in terms of parameters of the distribution.
- 3) Set the equations by replacing the parameters in $E[X^k]$ by their estimators and equating to M_k .
- 4) Set as many (suitable) equations as number of parameters and solve them for the estimators of the parameters in terms of M_k 's.

Ex. Show method of moments estimator for σ^2 is (n-1)S²/n, hence not unbiased.

 $\sigma^2 = E[X^2]-E[X]^2$, therefore its estimator is

Q. 7.2.16

Let X₁, ..., X_m be a random sample of size m from a binomial distribution with parameters n, assumed to be known, and p (unknown). Show that the method of moments estimator of p is

$$\hat{p} = \frac{\overline{X}}{n}$$

Example 7.2.2

Let X_1, \ldots, X_n be a random sample from a gamma distribution with parameters α , β . Find method of moments estimators for α , β .

Using E[X]= $\alpha\beta$, E[X²]-(E[X])² = $\alpha\beta$ ², we get

$$\hat{\beta} = \frac{M_2 - M_1^2}{M_1}, \hat{\alpha} = \frac{M_1^2}{M_2 - M_1^2}.$$

Maximum likelihood

estimation:

Consider a random sample of size n from population $f(x;\theta)$ that depends on a parameter θ . The joint distribution is $f(x_1;\theta)f(x_2;\theta)....f(x_n;\theta).$

lead

 $L(\theta) = f(x_1; \theta) f(x_2; \theta) \dots f(x_n; \theta)$

is called the likelihood function. The maximum likelihood estimator of θ is the random variable which equals the value for θ that maximizes the probability of the observed sample.

innovate achieve lead

Maximum Likelihood Estimation

- 1. MLE is the most widely used parameter estimation method as on today.
- 2. The basic principle is to maximize the likelihood of the parameters, denoted by $L(\theta | x)$, as a function of the model parameters θ .
- 3. Note that the θ can be a single parameter or a vector of parameters;

$$\theta = (\theta_1, \theta_2, \dots, \theta_p).$$

- 4. The likelihood function $L(\theta | x)$ is defined as $L(\theta | x) = \prod_{i=1}^{n} f(x_i; \theta)$
- 5. As log is a one to one function, maximization of log likelihood ($\ln L$) is often preferred for computational ease.

Method of Maximum Likelihood function for Estimating θ

- 1. Obtain a random sample X₁, X₂, X₃,....., X_n from the distribution of a random variable X with the density 'f' and associated parameter θ
- 2. Define a function $L(\theta)$ by

- This function is called the **likelihood** function for the sample.
- 3. Find the expression for θ that maximizes the likelihood function. This can be done directly or by maximizing $\ln L(\theta)$. BITS Pilani, Pilani Campus

- 4. Replace θ by $\hat{\theta}$ to obtain an expression for the maximum likelihood estimator for θ
- 5. Find the observed value of this estimator for a given sample.

Example: Let $X_1, X_2, X_3, \ldots, X_n$ be a random sample from a normal distribution with mean μ variance σ^2 . The density for X is $f(x)=(1/\sqrt{(2\pi)}\sigma) e^{-(1/2)[(x-\mu)/\sigma]^2}$

The likelihood function for the sample is a function of both μ and σ . In particular,

$$L(\mu,\sigma) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2}(\frac{x_i-\mu}{\sigma})^2}$$

$$= \left(\frac{1}{\sqrt{2\pi\sigma}}\right)^n e^{-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2}$$

$$ln(L(\mu,\sigma)) = -n \ln(\sqrt{2\pi}) - n \ln(\sigma) - \frac{1}{2\sigma^2} \sum_{i=1}^{n} (x_i - \mu)^2$$

To maximize this function , we take the partial derivatives with respect to μ and σ , set these derivatives equal to 0, and solve the equations simultaneously for μ and σ :

The method of moments estimator for a parameter and the maximum likelihood estimator often agree. However, if they do not, the maximum likelihood estimator is usually preferred.

Q. 30. Let $X_1, X_2, X_3, ..., X_m$ be a random sample of size m from a Binomial distribution with parameters n (known) and p (unknown). Find the maximum likelihood estimator for p.

Q. 31. Let W be an exponential random variable with parameter β unknown. Find the maximum likelihood estimator for β based on a sample of size n.