1、最大流问题:在网络图中指定一个源节点和一个汇节点,源节点的供应量为f,汇节点的需求量为f,图中其他节点均为中转节点。图中各边(i,j)流量的下界 $L_{ij}=0$,上界 $C_{ij}>0$ 。对于一个给定的图,各节点流入、流出的流量保持平衡,各边上的流量为非负且不超过相应边的流量上界,求通过图的最大流量f的问题就是网络最大流问题。

现实中的许多系统都存在各种各样的流,如公路系统中的车辆流、水利系统中的水流、电力系统中的电流、生产系统中的产品流、金融系统中的货币流、服务系统中的顾客流、信息系统中的信息流等。

2、我们一般只研究有一个发点和一个收点的网络,对于有多个发点和多个收点的网络,可以另外虚设一个总发点和总收点,并将其分别于各收点、各发点连接起来,就可以转换称一个只有一个收点和一个发点的网络。

3、基本概念

(1) 网络流: 是指在一定条件下通过一个网络的某种流在各边上的流量的集合。

这里的一定条件指的是:

- ①. 网络上有一个始点以和一个终点以
- ②. 通过网络的流量有一定的方向,一般用有向网络N = (V, A)加以描述,各弧的方向就是流量通过的方向。
- ③. 对于每一个弧 $(V_i, V_j) \in A$,都赋予一个容量 $r(V_i, V_j) = r_{ij}$ 或 c_{ij} ,表示允许通过该弧的最大流量。

在一个网络N=(V,A)中,设以 $x_{ij}=x(v_i,v_j)$ 表示通过弧 (v_i,v_j) \in A的流量,则集合 $X=\{x_{ij}|(v_i,v_j)\in A\}$ 称为该网络的一个流。其流量记为f=f(X)

- (2) 可行流:满足下列条件的流称为可行流
 - ①弧流量限制条件: $0 \le x_{ij} \le r_{ij}(c_{ij}), (v_i, v_i) \in A$
- ②中间点平衡条件: $\sum x_{ij} \sum x_{ji} = 0$, $i \neq s, t$, 这意味着每个中间点的净贮流量为 0, 即每个中间点的流入量必须等于流出量, 二者必须平衡。

(3) 最大流: 流量最大的可行流称为最大流,即为 $X^* = \{x_{ij}^*\}$,其流量记为 $f^* = f(X^*)$

最大流问题的线性规划模型

$$\max f = f(X)$$

$$s.t. \begin{cases} \sum_{j} x_{ij} - \sum_{j} x_{ji} = \begin{cases} f, i = s \\ 0, i \neq s \\ -f, i = t \end{cases} \\ 0 \le x_{ij} \le r_{ij}, \quad (v_i, v_j) \in A \end{cases}$$

可行流恒在,比如 $X_0 = \{x_{ij} = 0 | (v_i, v_j) \in A\}$ 就是一个可行流,称为零流,其流量 $f(X_0) = 0$

(4)链的前向弧和后项弧

设 μ 是网络N中的一条从 V_s 到 V_t 的一条链,则链 μ 与链的方向一致的弧 称为前向弧,其集合为 μ^+ ,链 μ 与链的方向相反的弧称为后向弧,其集合为 μ^-

(5) 增广链

设 $X = \{x_{ij}\}$ 是一可行流, μ 是网络N中的一条从 V_s 到 V_t 的一条链,若 μ 上各弧流量满足下述条件: $\begin{cases} x_{ij} > 0, (v_i, v_j) \in \mu^- \\ x_{ij} \le r_{ij}, (v_i, v_j) \in \mu^+ \end{cases}$ 非饱和弧

(6) 截集

则称 μ 是关于一条可行流X的增广链、记为 $\mu(X)$

②S中各点不须经由S中的点而均连通

 \bar{S} 中的点也不须经由S中的点而均连通

则把始点在S中而终点在 \overline{S} 中的一切弧所构成的集合,称为一个分离 V_s 和 V_t 的截集,记为 (S,\overline{S})

- (7) 截量 $r(S,\bar{S}) = \sum_{(V_i,V_j) \in (S,\bar{S})} r_{ij}$
- (8) 最小截集 在网络N中,容量最小的截集称为最小截集,记为 (S^*, \bar{S}^*)
- 4、两个定理
- ①流量-截集定理

在网络N=(V,A)中,设 $X=\{x(u,v)|u,v\in V\}$ 是任一可行流, (S,\bar{S}) 是任一截集, $f(X)\leq r(S,\bar{S})$

②增广链调整法

设 $X = \{x_{ij}\}$ 是N = (V, A)中的一个可行流, $\mu = V_s V_1 V_2 \dots V_k \dots V_t$ 是关于X的一条增广链

③最大流的充要条件

设 $X^* = \{x_{ij}^*\}$ 是网络N = (V, A)的一个可行流,则 X^* 为最大流的充要条件是:网络N中不存在增广链 $\mu(X^*)$ 。

④最大流量-最小截量定理

网络中从 V_s 到 V_t 的最大流的流量等于分离 V_s 和 V_t 的最小截集的截量。即若 X^* 为一最大流, (S^*, \bar{S}^*) 为一最小截集,则有 $f(X^*) = r(S^*, \bar{S}^*)$

截集与可行流无关,而只与网络本身有关,最小截量是个定值

٧	$\overline{\mathbf{v}}$	截集	截集的容量
S	V ₁ ,V ₂ ,V ₃ ,V ₄ ,†	(s,1) (s,2)	15
s, v _i	V2, V3, V4, †	(s,2) (1,2) (1,3)	21
S, V ₂	V ₁ , V ₃ ,V ₄ ,†	(s, 1) (2,4)	17
s, V ₁ ,V ₂	V ₃ ,V ₄ ,†	(1,3) (2,4)	18
S, V ₁ , V ₃	V ₂ ,V ₄ ,†	(s,2) (1,2) (3,2) (3,t)	19
S, V ₂ ,V ₄	v ₁ , v ₃ ,†	(s,1) (4,3) (4,t)	24
s, V ₁ ,V ₂ ,V ₃	V ₄ ,†	(2,4) (3,1)	14
s, V ₁ ,V ₂ , V ₄	V ₃ ,†	(1,3) (4,3) (4,1)	25
S, V ₁ ,V ₂ ,V ₃ ,V ₄	t	(3,†) (4,†)	15

5、用标号法(福特-富尔克逊标号法)求网络最大流问题

从某一可行流X(如零流)出发,按一定规则找出一条增广链,并按增广链调整法调整X,得到一个流量增大θ的新可行流X′。重复上述做法直到找不出增广链为止,这时就得到一个最大流,同时还得到一个最小截集。

- (1) 给始点以标号(0,∞),则以已标号待检查
- (2) 取一个已标号待检查的点 V_i ,对所有与 V_i 相邻而未标号的点 V_j 依次判断、执行如下手续:
- ①若关联 V_j 与 V_i 的弧为 (V_i,V_j) ,则当该弧上的流量 $x_{ij} < r_{ij}$ 时,给 V_i 标号 $(V_i,b(V_i))$,其中

$$b(V_j) = \min\{b(V_i), r_{ij} - x_{ij}\}\$$

表示 (V_i, V_j) 弧上的流量的最大可调整量; 而当 $x_{ij} = r_{ij}$ 时, 不给 V_j 标号。

②若关联 V_j 与 V_i 的弧为 (V_j,V_i) 则当该弧上的流量 $x_{ji}>0$ 时,给 V_i 标号 $(-V_i,b(V_i))$,其中

$$b(V_i) = \min\{b(V_i), x_{ji}\}\$$

而当 $x_{ji} = 0$ 时,不给 V_j 标号。

当所有与 V_i 相邻而未标号的点 V_j 都执行完上述手续后,就给点 V_i 打 \checkmark ,表示对它已检查完毕。

- (3) 重复(2),可能出现两种结果:
- ① 终点 V_t 得到标号。则从 V_t 回溯标号点的第一个标号,就能找出一条由标号点和相应的弧连接而成的从 V_s 到 V_t 的增广链 $\mu(X)$,转到第 (4) 步:
- ② 所有标号点均已打 $\sqrt{(检查过)}$, 而 V_t 又未得标号。这说明不存在增广链, 而当前的可行流即最大流, 算出其流量, 停止。
 - (4) 取调整量 $\theta = b(V_t)$ (即终点 V_t 的第二个标号),令

$$x_{ij} = x_{ij} + \theta$$
, $\forall -\forall i (V_i, V_j) \in \mu^+$

$$x_{ij} = x_{ij} - \theta$$
, $\forall -\forall i (V_i, V_j) \in \mu^-$

非增广链上的各弧流量 x_{ij} 不变。

- (5) 删除网络中原有一切标号, 返回 第 (1) 步
- 6、例:用标号法求下图中 s→t 的最大流量,并找出该网络的最小割集.

解

(与分割线相交线的流量之和)

7、

8、分配问题

	A	В	C	D	加工件数
甲	1		1		18
Z	1	1		√	19
丙		√	√		18
需求量	10	20	15	10	55

