Seat No.	

King Mongkut's University of Technology Thonburi Final Examination—2/2556 ChE 343 Chemical Engineering Kinetics & Reactor Design

Notes:	
 This exam paper includes 5 problems (100 points) in a total of 9 pages. Only one print textbook or one copied textbook is allowed. A calculator is allowed. Do not take any exam materials/papers out of the exam room. 	
This exam paper has been evaluated and approved by the Department of Chen Engineering's Committee.	nica

(Assoc. Prof. Dr. Piyabutr Wanichpongpan) Departmental Chair

Butadiene and ethylene can be reacted together to form cyclohexene as follows:

$$CH_2 = CHCH = CH_2 + CH_2 - CH_2 \Longrightarrow (C)$$
(B) (C)

If equimolar butadiene and ethylene ($C_B=C_E$) at 450 °C and 1 atm are fed to a PFR operating abiabatically, what is <u>the space time</u> necessary to reach a fractional conversion of 0.1?

Data:

$$k = 10^{7.5} \exp[-27.500/(R_s T)] \text{ L/mol/s}$$

$$\Delta H_r = -30000 \text{ cal/mol}$$

$$C_{p_k} = 36.8 \text{ cal/mol/K}$$

$$C_{p_i} = 20.2 \text{ cal/mol/K}$$

$$C_{r_c} = 59.5 \text{ cal/mol/K}$$

The rate of product desorption can also influence the kinetics of a surface-catalyzed reaction. Consider the following simple catalytic cycle:

$$A+S \stackrel{\kappa_1}{\longleftrightarrow} A \cdot S$$

$$A \cdot S \stackrel{\kappa_2}{\longleftrightarrow} B \cdot S$$

$$B \cdot S \stackrel{\kappa_3}{\longleftrightarrow} B + S$$

If desorption of B from the surface is rate-determining, then all elementary steps prior to desorption are assumed to be quasi-equilibrated.

Show that the final rate expression of this reaction is as follow:

$$r = \frac{kK_1K_2[A]}{1 + (K_1 + K_1K_2)[A]}$$

The double bond isomerization of 1-hexene to form 2-hexene was studied in a laboratory reactor containing rhodium particles supported on alumina at 150°C and atmospheric pressure.

$$H_2C = CH - CH_2 - CH_2 - CH_2 - CH_3 \Rightarrow H_3C - CH = CH - CH_2 - CH_2 - CH_3$$

The reaction was found to be first order in 1-hexene with a rate constant of 0.14 s⁻¹. The pore radius of the alumina is 10 nm, and D_{AB} is 0.050 cm²s⁻¹ and the porosity and tortuosity are assumed to be 0.5 and 4, respectively. The molecular weight of hexene (84 g mol⁻¹).

Find the largest pellet size that can be used in an industrial reactor to achieve 70 percent of the maximum rate.

In a multiple reaction

$$A = P$$
 $R_P = 1.0 C_A (kmol/m^3 s)$
 $2A = S$ $R_S = 0.5 C_A^2 (kmol/m^3 s)$

If the conversion of 98% is desired and the feed contains $C_{A0}=1$, $C_{P0}=0$ (kmol/ms).

Determine the concentration of $P(C_P)$ and the space time in the following cases by keeping the instantaneous yield as high as possible:

- 4.1) CSTR
- 4.2) PFR

Student ID

5. (20%)

In an experiment of gas solid reaction, we found that the reaction followed the unreacted shrinking core model. If the particle size was doubled $(R \to 2R)$ then the time for complete conversion (t^*) was increased three times $(t^* \to 3t^*)$.

Find the contribution of ash diffusion to the overall resistance in these cases:

- 5.1 Ash Resistance (if particle size = R)

 Overall resistance (if particle size = R)
- 5.2 Ash Resistance (if particle size = 2R)

 Overall resistance (if particle size = 2R)