Project: Cross-validation for model selection (rough draft)

Diego Urdapilleta de la Parra

March 5, 2025

1 Setup and preliminary results

Let n, p_n be positive integers and $\mathcal{D}_n := \{(y_i, \boldsymbol{x}_i) : i \in [n]\}$ be a set of independent data points drawn from a distribution $\mathbb{P}_{y,\boldsymbol{x}}$ for $(y,\boldsymbol{x}) \in \mathbb{R}^{1+p_n}$. We treat the \boldsymbol{x}_i as predictors of the outcome y_i , and we assume a linear model

$$y = X\beta + e$$

where $\boldsymbol{X} = [\boldsymbol{x}_1 \ \boldsymbol{x}_2 \ \cdots \ \boldsymbol{x}_n]^{\top} \in \mathbb{R}^{n \times p_n}$ is the design matrix, $\boldsymbol{y} = [y_1 \ y_2 \ \cdots \ y_n]^{\top}$, and \boldsymbol{e} is a mean-zero random vector with Cov $(\boldsymbol{e}) = \sigma_2 \boldsymbol{I}_n$.

Assumptions

We assume that the following are generally satisfied:

H1: $\liminf_{n\to\infty} \frac{1}{n} \|M_{\alpha} \boldsymbol{X} \boldsymbol{\beta}\|^2 > 0 \text{ for all } \alpha \in \mathcal{A}$

 $\mathbf{H2}: \quad \mathbf{X}^{\top} \mathbf{X} = O(n) \text{ and } (\mathbf{X}^{\top} \mathbf{X})^{-1} = O(n^{-1})$

H3: $\lim_{n\to\infty} \max_{i\leq n} h_{ii,\alpha} = 0 \text{ for all } \alpha \in \mathcal{A}$

We consider the following setup for model selection. Let $\mathcal{A} \subset 2^{[p_n]}$ be a family of index sets representing candidate models. For $\alpha \in \mathcal{A}$, we denote by $p_n(\alpha)$ the cardinality of α and consider the model

$$m_{\alpha}(\boldsymbol{X}) = \boldsymbol{X}_{\alpha}\boldsymbol{\beta}_{\alpha},$$

where X_{α} is the sub-matrix of X containing only the columns indexed by α , and β_{α} is the coefficient vector containing only the entries indexed by α in β .

- 1. We say $\alpha \in \mathcal{A}$ is *correct* if $\mathbb{E}[\boldsymbol{y} \mid \boldsymbol{X}] \stackrel{\text{a.s.}}{=} m_{\alpha}(\boldsymbol{X})$, and we denote by \mathcal{A}_c the set of correct models in \mathcal{A}
- 2. We say $\alpha \in \mathcal{A}$ is wrong if it is not correct, and we denote by \mathcal{A}_w the set of wrong models in \mathcal{A}

3. We say \mathcal{A} is *embedded* if there exists an enumeration $\alpha_1, \alpha_2, \ldots, \alpha_k$ of all elements in \mathcal{A} such that

$$\alpha_1 \subset \alpha_2 \subset \cdots \subset \alpha_k$$
.

Definition 1.1

For $\alpha \in \mathcal{A}$, let $\hat{\boldsymbol{\beta}}_{\alpha}$ be the OLS estimator of $\boldsymbol{\beta}_{\alpha}$ and $\hat{m}_{\alpha}(\boldsymbol{X}) := \boldsymbol{X}_{\alpha}\hat{\boldsymbol{\beta}}_{\alpha}$. We denote the average squared error of \hat{m}_{α} by

$$L_{n}(\alpha) := \frac{1}{n} \left\| \mathbb{E} \left[\boldsymbol{y} \mid \boldsymbol{X} \right] - \hat{m}_{\alpha} \left(\boldsymbol{X} \right) \right\|^{2}.$$

Additionally, we write $R_n(\alpha) := \mathbb{E}[L_n(\alpha) \mid \boldsymbol{X}].$

Proposition 1.1

If we assume a linear model $y = X\beta + e$, then

$$L_n(\alpha) = \frac{1}{n} \|H_{\alpha} \boldsymbol{e}\|^2 + \frac{1}{n} \|M_{\alpha} \boldsymbol{X} \boldsymbol{\beta}\|^2$$
 and $R_n(\alpha) = \frac{1}{n} \sigma^2 p_n(\alpha) + \frac{1}{n} \|M_{\alpha} \boldsymbol{X} \boldsymbol{\beta}\|^2$,

where $H_{\alpha} = \boldsymbol{X}_{\alpha} \left(\boldsymbol{X}_{\alpha}^{\top} \boldsymbol{X}_{\alpha} \right)^{-1} \boldsymbol{X}_{\alpha}^{\top}$ and $M_{\alpha} = I_n - H_{\alpha}$.

Proof. First, we have that

$$\|\mathbb{E}\left[\boldsymbol{y}\mid\boldsymbol{X}\right] - \hat{m}_{\alpha}(\boldsymbol{X})\|^{2} = \left\|\boldsymbol{X}\boldsymbol{\beta} - \boldsymbol{X}_{\alpha}\hat{\boldsymbol{\beta}}_{\alpha}\right\|^{2}$$
$$= \left\|\boldsymbol{X}\boldsymbol{\beta} - H_{\alpha}\left(\boldsymbol{X}\boldsymbol{\beta} + \boldsymbol{e}\right)\right\|^{2}$$
$$= \left\|M_{\alpha}\boldsymbol{X}\boldsymbol{\beta} - H_{\alpha}\boldsymbol{e}\right\|^{2}.$$

Notice that $M_{\alpha} \mathbf{X} \boldsymbol{\beta}$ and $H_{\alpha} \boldsymbol{e}$ are orthogonal:

$$e^{\top} H_{\alpha} M_{\alpha} X \beta = e^{\top} H_{\alpha} (I_n - H_{\alpha}) X \beta = e^{\top} H_{\alpha} X \beta - e^{\top} H_{\alpha} X \beta = 0.$$

Hence, the first part follows from the Pythagorean theorem.

For the second part, we note that $\mathbb{E}\left[\|H_{\alpha}\boldsymbol{e}\|^2 \mid \boldsymbol{X}\right] = \sigma^2 p_n(\alpha)$ by the "trace trick", where $p_n(\alpha)$ denotes the size of model α .

Proposition 1.2

Suppose that the set of correct candidate models $\mathcal{A}_c \subset \mathcal{A}$ is non-empty, and let α^* be the smallest correct model in \mathcal{A}_c . Then, α^* minimizes $R_n(\alpha)$ over $\alpha \in \mathcal{A}$.

Proof. Let $\alpha \in \mathcal{A}$ be arbitrary and suppose that $\alpha \in \mathcal{A}_c$. Then, $\mathbf{X}_{\alpha}\boldsymbol{\beta}_{\alpha} = \mathbf{X}\boldsymbol{\beta}$ and $p_n(\alpha^*) \leq p_n(\alpha^*)$

 $p_n(\alpha)$. Thus,

$$R_{n}(\alpha) = \frac{1}{n}\sigma^{2}p_{n}(\alpha) + \frac{1}{n} \|M_{\alpha}\boldsymbol{X}\boldsymbol{\beta}\|^{2}$$

$$= \frac{1}{n}\sigma^{2}p_{n}(\alpha) + \frac{1}{n} \underbrace{\|M_{\alpha}\boldsymbol{X}_{\alpha}\boldsymbol{\beta}_{\alpha}\|^{2}}_{0}$$

$$= \frac{1}{n}\sigma^{2}p_{n}(\alpha) \geq \frac{1}{n}\sigma^{2}p_{n}(\alpha^{*}) = R_{n}(\alpha^{*}).$$

Now suppose that $\alpha \in \mathcal{A}_w$. If $p_n(\alpha) \geq p_n(\alpha^*)$, the result follows by assumption H1. If $p_n(\alpha) \geq p_n(\alpha^*)$, then ... MISSING.

2 Leave-One-Out CV [1]

In this section, we assume that $p(\alpha) := p_n(\alpha)$ is constant for each $\alpha \in \mathcal{A}$.

Definition 2.1

The LOOCV estimator of $R_n(\alpha)$ is

$$\hat{R}_{n}^{(1)}\left(\alpha\right) := \frac{1}{n} \sum_{i=1}^{n} \left(\frac{y_{i} - \boldsymbol{x}_{i\alpha}^{\mathsf{T}} \hat{\boldsymbol{\beta}}_{\alpha}}{1 - h_{ii,\alpha}} \right)^{2}$$

Lemma 2.1 (Shao, 1993)

$$\hat{R}_{n}^{(1)}(\alpha) = \begin{cases} R_{n}(\alpha) + \sigma^{2} + o_{\mathbb{P}}(1) & \text{if } \alpha \in \mathcal{A}_{w} \\ \frac{1}{n} \|M_{\alpha} \boldsymbol{e}\|^{2} + \frac{2}{n} \sigma^{2} p(\alpha) + o_{\mathbb{P}}(n^{-1}) & \text{if } \alpha \in \mathcal{A}_{c} \end{cases}$$

Proof. Using the Taylor expansion of $1/(1-x)^2 = 1 + 2x + O(x^2)$, we have

$$\frac{1}{\left(1-h_{ii,\alpha}\right)^{2}}=1+2h_{ii,\alpha}+O_{\mathbb{P}}\left(h_{ii,\alpha}^{2}\right).$$

Thus,

$$\hat{R}_{n}^{(1)}(\alpha) = \underbrace{\frac{1}{n} \sum_{i=1}^{n} \left(y_{i} - \boldsymbol{x}_{i\alpha}^{\top} \hat{\boldsymbol{\beta}}_{\alpha} \right)^{2}}_{\boldsymbol{\xi}_{\alpha,n}} + \underbrace{\frac{1}{n} \sum_{i=1}^{n} \left(2h_{ii,\alpha} + O_{\mathbb{P}} \left(h_{ii,\alpha}^{2} \right) \right) \left(y_{i} - \boldsymbol{x}_{i\alpha}^{\top} \hat{\boldsymbol{\beta}}_{\alpha} \right)^{2}}_{\boldsymbol{\zeta}_{\alpha,n}}$$
(1)

Let $\xi_{\alpha,n}$ and $\zeta_{\alpha,n}$ denote the first and second terms in (1), respectively. Note that

$$\xi_{\alpha,n} = \frac{1}{n} \| M_{\alpha} \mathbf{X} \boldsymbol{\beta} + M_{\alpha} \mathbf{e} \|^{2}$$

$$= \frac{1}{n} \left(\| M_{\alpha} \mathbf{e} \|^{2} + \| M_{\alpha} \mathbf{X} \boldsymbol{\beta} \|^{2} + 2 \mathbf{e}^{\mathsf{T}} M_{\alpha} \mathbf{X} \boldsymbol{\beta} \right)$$

$$= \frac{1}{n} \| \mathbf{e} \|^{2} + \| M_{\alpha} \mathbf{X} \boldsymbol{\beta} \|^{2} + \frac{1}{n} \| H_{\alpha} \mathbf{e} \|^{2} + \frac{2}{n} \mathbf{e}^{\mathsf{T}} M_{\alpha} \mathbf{X} \boldsymbol{\beta}$$

$$= \frac{1}{n} \| \mathbf{e} \|^{2} + \frac{1}{n} \| M_{\alpha} \mathbf{X} \boldsymbol{\beta} \|^{2} + o_{\mathbb{P}} (1).$$
(3)

The equality at (3) follows from the fact that $\mathbb{E}\left[\|H_{\alpha}\boldsymbol{e}\|^2 \mid \boldsymbol{X}\right] = \sigma^2 p(\alpha)$ and

$$\mathbb{E}\left[\boldsymbol{e}^{\top} M_{\alpha} \boldsymbol{X} \boldsymbol{\beta} \mid \boldsymbol{X}\right]^{2} = \sigma^{2} \left\| M_{\alpha} \boldsymbol{X} \boldsymbol{\beta} \right\|^{2} = O_{\mathbb{P}}\left(n\right), \tag{?}$$

so that $1/n \|H_{\alpha} \boldsymbol{e}\|^2 \to_{\mathbb{P}} 0$ and $2/n \left(\boldsymbol{e}^{\top} M_{\alpha} \boldsymbol{X} \boldsymbol{\beta}\right) = O_{\mathbb{P}}(1)$. (?) Since $0 < h_{ii,\alpha} < 1$, $2h_{ii,\alpha} + O_{\mathbb{P}}\left(h_{ii,\alpha}^2\right) \leq O_{\mathbb{P}}\left(\max_i h_{ii,\alpha}\right)$. Thus,

$$\zeta_{\alpha,n} \le O_{\mathbb{P}}\left(\max_{i} h_{ii,\alpha}\right) \left(\frac{1}{n} \sum_{i=1}^{n} \left(y_{i} - \boldsymbol{x}_{i\alpha}^{\top} \hat{\boldsymbol{\beta}}_{\alpha}\right)\right)$$
(4)

(3) and (4) imply the first case in the Lemma.

If $\alpha \in \mathcal{A}^c$, it is easy to see from (2) that $\xi_{\alpha,n} = 1/n \|M_{\alpha} e\|^2$, Furthermore,

$$\zeta_{\alpha,n} = \frac{2}{n} \sigma^2 p(\alpha) + o_{\mathbb{P}}(1), \qquad (?)$$

proving the second case.

Proposition 2.2 (Shao, 1993)

Let $\hat{\alpha}^{(1)}$ be the model minimizing $\hat{R}_n^{(1)}(\alpha)$.

1. Under H1, H2, and H3,

$$\lim_{n\to\infty} \mathbb{P}\left(\hat{\alpha}^{(1)} \in \mathcal{A}_w\right) = 0.$$

2. For $\alpha \in \mathcal{A}_c$ with $\alpha \neq \alpha^*$,

$$\mathbb{P}\left(\hat{R}_{n}^{(1)}\left(\alpha\right) \leq \hat{R}_{n}^{(1)}\left(\alpha^{*}\right)\right) = \mathbb{P}\left(2\left(p(\alpha) - p(\alpha^{*})\right)\sigma^{2} < \boldsymbol{e}^{\top}(H_{\alpha} - H_{\alpha^{*}})\boldsymbol{e}\right) + o_{\mathbb{P}}\left(1\right).$$

In particular, if $e \sim \mathcal{N}(0_n, \sigma^2 I_n)$,

$$\mathbb{P}\left(\hat{R}_{n}^{(1)}\left(\alpha\right) \leq \hat{R}_{n}^{(1)}\left(\alpha^{*}\right)\right) = \mathbb{P}\left(2k < \chi^{2}(k)\right) + o_{\mathbb{P}}\left(1\right)$$

for $k = p(\alpha) - p(\alpha^*)$.

3. If $p(\alpha^*) \neq p$,

$$\lim_{n \to \infty} \mathbb{P}\left(\hat{\alpha}^{(1)} = \alpha^*\right) \neq 1.$$

Proof.

1. MISSING

2. The first part follows from Lemma 2.1 by algebraic manipulation. The second part follows by noting that, if $e \sim \mathcal{N}(0_n, \sigma^2 I_n)$, then

$$\frac{e^{\top}}{\sigma} \left(H_{\alpha} - H_{\alpha^*} \right) \frac{e}{\sigma} \sim \chi^2 \left(\operatorname{tr} \left(H_{\alpha} - H_{\alpha^*} \right) \right).$$

3. If $p(\alpha^*) = p$, then $\mathcal{A}_c = \{\alpha^*\}$. It follows from 1. that $\lim_{n\to\infty} \mathbb{P}\left(\hat{\alpha}^{(1)} = \alpha^*\right) = 1$. Conversely, if $\lim_{n\to\infty} \mathbb{P}\left(\hat{\alpha}^{(1)} = \alpha^*\right) = 1$ MISSING

Corollary 2.3

LOOCV is not consistent. In particular, overfits with non-vanishing probability.

3 Shao, 1997 [2]

Definition 3.1

Let $\hat{\alpha}_n$ be the model selected by minimizing some criterion \hat{R}_n over \mathcal{A} , and let α_n^* denote the model minimizing R_n over \mathcal{A} . We say \hat{R}_n is consistent if

$$\mathbb{P}\left\{\hat{\alpha} = \alpha^*\right\} \to 1$$

as $n \to \infty$. We say that \hat{R}_n is assomptotically loss efficient if

$$\frac{R_n(\hat{\alpha})}{R_n(\alpha_n^*)} \to 1$$
 a.s.

Proposition 3.1 (Shao, 1997)

Suppose H1, $p_n/n \to 0$, and that \mathcal{A}_c is non-empty for all but finitely many n.

- 1. If $|\mathcal{A}_c| = 1$ for all but finitely many n, then consistency is equivalent to efficiency in the sense of Definition 3.1
- 2. If $p_n(\alpha_n^*) \not\to_{\mathbb{P}} \infty$, then consistency is equivalent to efficiency in the sense of Definition 3.1

References

- [1] J. Shao, "Linear Model Selection by Cross-validation," *Journal of the American Statistical Association*, vol. 88, pp. 486–494, June 1993.
- [2] J. Shao, "An Asymptotic Theory for Linear Model Selection," *Statistica Sinica*, vol. 7, pp. 221–264, Apr. 1997.