

Page No.

Date /_ NUCLEAR PHYSICS
A × n Z: atomic number (proton)
N: neutoon number
A: mass number
(N = A-2)
사용하다 보다
9solopes - same Z, different N (35 cl, 37cl)
9sotones - same N, different Z (2H, 3He)
950 hors - same mass number A
350 DOUG Sunto
H → hydorogen, deutærium, Toritium
1 3u
100)
(too many brotons to be stable) - light stable nuclides tend to lie close
to line N=Z
heavier nuclides tend to have more
neutrons) neutrons than protons
Neutron - no stable nuclides with Z>83
(bismuth)
length 1-fm = 10-15 m
length 1 fm = 10 m Size nange: 1 fm (single nucleon) - 7 fm (heaviest nucleon)
Size slange. I All (Single Mades)
<u>Time</u>
nuclease seactions: 10 ⁻²⁰ s
y decays of nuclei: 10-9-10-12 s
Radioactive decay (x & B): min/hus/millions of years
Energy nuclear energy: Mev
- β & γ decay: 1 MeV
- low energy nuclear reactions: kinetic energy of
was 10 Mer

Radioactivity (unstable nuclei and transformed into other nuclear species by decay process) 1896, Becquerel discovered that crystals of uranium salt emitted rays similar to x-rays. 1898, (vovies (Marie & Piere) discovered Polonium and Radium. The activity of radium as measured by intensity of the emitted scays was more than a million times that of uranium. FRANKLINE KYMAN BUMELL enperument experiment 1 Kipade Cardboard Aluminium 8 maneste dfield - radioactive material [Alpha: 4 He nuclei lead B-particle : electrons Y-rays: high-energy photons aprime were also added positron Gamma decay - emission of Y-ray because nucleus has excess energy. Alpha decay -> emission of a-particle -> nucleus too lange Beta decay -> emission of electron by -> nucleus has too many newtrons neutron changes neutron to proton relative to no of brotons. Page No.

more protons Electron capture -> capture of e- by nelative to neutron. changes proton to neutron -> emission of et by more protons Positron capture relative to broton emission neutoons. changes proton to newtoon Radioactivity Types -1 Natural (emission of radiation due to disintegration of naturally occurring heavy elements.) 2 Induced Artificial. (induced by producing artificial transmutation of elements) (Radioactive decay is statistical in nature) Radioactive decay 2: probability per unit time for decay of each nucleus of a given nuclide N: undecayed nuclei dN: the number dN that decay in a time minus because N decreases (dn = - Nadt) with increasing time $\int_{N}^{N} dN = -\lambda \int_{N}^{\infty} dt$ { N = Noe-xt } Radioactive decay

- the decay constant of the radionuclide whose half-life is 5.00 h is

Wife is 5.00 h is
$$\lambda = 0.693 = 0.698 = 3.85 \times 10^{-5} \text{ s}^{-1}$$

$$T_{V_2} = 5h \times 36005 \text{ h}$$

- Mean Time (lifeTime)

as,
$$9 = 0.693$$
, hence $\{ = 1.44 \text{ Ty}_2 \}$

Exponential decay of a radionuclide

$$N = No\left(\frac{1}{2}\right) \qquad \text{Cut. Tr}_2 \qquad Nor \qquad$$

$$N = N_0 \left(\frac{1}{2}\right)^n$$
, at $nT_{1/2}$

$$\begin{cases} n = t \\ T_{1/2} \end{cases}$$

to the content of the

Service for the Contract of the State of the