LUMISSIL MICROSYSTEMS A Division of [53]

16-CH PROGRAMMABLE CAPACITIVE TOUCH SENSOR

April 2023

GENERAL DESCRIPTION

IS31SE5117 is an ultra-low-power, 16-channel capacitive touch controller. The controller allows sleep mode (under 10uA) and uses auto-detection for wakeup. It also provides a shield output to increase moisture immunity. The built-in hardware monitor and calibration for the environment is to prevent false triggers.

A host MCU is required to communicate with IS31SE5117. An on-chip I²C slave controller with 100kHz capability serves as the communication port for the host MCU. An interrupt, INT, can be configured and it is generated when a touch trigger event occurs. Trigger conditions can be configured by setting the interrupt register. IS31SE5117 can support proximity sensing.

IS31SE5117 is available in the QFN-24 package. It operates from 2.7V to 5.5V over the temperature range from -40°C to +105°C.

FEATURES

- 16-channel capacitive touch controller with readable key value
- Touch threshold setting for individual key
- Optional multiple-key function
- GPIO toggle/invert function
- Automatic calibration
- Individual key calibration
- Interrupt output with auto-clear and repeating
- Auto sleep mode for extremely low power
- Keys wake up from sleep mode
- Shield output shared with touch key channels
- Buzzer/Melody Generator shared with touch key channels
- 100kHz fast-mode I²C interface
- Operating temperature between -40°C ~ +105°C
- QFN-24
- ROHS & Halogen-Free compliant package

APPLICATIONS

- Touch keys for home appliances
- Touch keys for industrial control

TYPICAL APPLICATION CIRCUIT (QFN-24)

- Note 1: The IC should be placed far away from the noise source to prevent EMS.
- Note 2: The R_S and C_S should be placed as close to IC as possible to reduce EMI.
- Note 3: The AD pin can be configured as KEY15.
- Note 4: The capacitors connected to VDD and VDDC should be as close to the chip as possible to reduce EMI.
- Note 5: The capacitor 1uf connected to VDDC might need to be removed for quick VDD rising time application.

PIN CONFIGURATION

PIN DESCRIPTION

No.	Pin	Description
1	KEY0/Buzzer	Multiple function key. Can be configured to input sense channel 0, or Buzzer output.
2 - 4	KEY1 – KEY3	Input sense channel 1 – 3
5	Cref	External reference Capacitor for touch sense
6	VDDC	Internal 1.5V power supply. Typical decoupling capacitors of 0.1µF and 1µF should be connected. between VDDC and GND.
7	VDD	Power supply
8	VSS	Ground
9 – 16	KEY4 – KEY11	Input sense channel 4 - 11
17	KEY12/POW	Multiple function key. Can be configured to input sense channel 12, or Melody power control.
18 – 19	KEY13 – KEY14	Input sense channel 13 - 14
20	AD/KEY15	Multiple function key. Can be configured to I2C address or input sense channel 15.
21	SDA	I2C serial data
22	SCL	I2C serial clock

A Division of

23	INTB	Interrupt output (active low)
24	RSTN	Reset Low Active

ORDERING INFORMATION

Industrial Range: -40°C to +105°C

Order Part No.	Package	QTY
IS31SE5117-QFLS3-TR	QFN-24, Lead-free	2500/Reel

Copyright © 2020~2022 Integrated Silicon Solution, Inc. All rights reserved. ISSI reserves the right to make changes to this specification and its products at any time without notice. ISSI assumes no liability arising out of the application or use of any information, products or services described herein. Customers are advised to obtain the latest version of this device specification before relying on any published information and before placing orders for products.

Integrated Silicon Solution, Inc. does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless Integrated Silicon Solution, Inc. receives written assurance to its satisfaction, that:

- a.) the risk of injury or damage has been minimized;
- b.) the user assumes all such risks; and
- c.) potential liability of Integrated Silicon Solution, Inc is adequately protected under the circumstances

ABSOLUTE MAXIMUM RATINGS

Supply voltage, V _{DD}	-0.3V ~ +6.0V
Voltage at any input pin	-0.3V ~ V _{DD} +0.3V
Maximum junction temperature, T _{JMAX}	+150°C
Storage temperature range, T _{STG}	-65°C ~ +150°C
Operating temperature range, T _A =T _J	-40°C ~ +105°C
Junction Package thermal resistance, junction to ambient (4 layer	
standard test PCB based on JESD 51-2A), θ _{JA} (QFN-24)	29°C/W
ESD (HBM)	±2kV
ESD (CDM)	±750V

Note 6: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other condition beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

 $T_A = 25$ °C, $V_{DD} = 2.7V \sim 5.5V$, unless otherwise noted. Typical values are $T_A = 25$ °C, $V_{DD} = 3.6V$.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
VDD	Supply voltage		2.7		5.5	V
IDD Normal	Total IDD through VDD at 16MHz			7		mA
IDD versus Frequency	Total IDD Core Current versus Frequency	VDD = 5.5V		150		μΑ/ MHz
IDD, Stop	IDD, stop mode	VDD = 5.5V		150		μA
IDD, Sleep	IDD, sleep mode, 25°C	Main regulator off		1	3	μA
од, зіеер	IDD, sleep mode, 85°C	Main regulator off		5	15	μA
ΔCs	Minimum detectable capacitance	C _S = 5pF (Note 7)		0.2		pF
GPIO DC Ch	aracteristics					
VOH,4.5V	Output High Voltage 1 mA	Reference to VDD		-0.2	-0.4	V
VOL,4.5V	Output Low Voltage 8 mA	Reference to VSS		0.3	0.5	V
VOH,3.0V	Output High Voltage 1 mA	Reference to VDD		-0.3	-0.5	V
VOL,3.0V	Output Low Voltage 8 mA	Reference to VSS		0.3	0.5	V
IIOT	Total IO Sink and Source Current		-100		100	mA
VIH	Input High Voltage		¾VDD			V
VIL	Input Low Voltage				1/4VDD	V
VIHYS	Input Hysteresis			600		mV
RPU	Equivalent Pull-Up resistance			5K		Ohm
RPU,RSTN	RSTN Pull-Up resistance			5K		Ohm
RPD	Equivalent Pull-Down Resistance			5K		Ohm
DECANA	Equivalent ANIO Switch Resistance, 3.3V	ANIO1 Switch		220		Ohm
REQAN1	Equivalent ANIO Switch Resistance, 5V	ANIO1 Switch		70		Ohm
REQAN2	Equivalent ANIO Switch Resistance, 3.3V	ANIO2 Switch		220		Ohm

Equivalent ANIO Switch ANIO2 Switch 70 Ohm

DIGITAL INPUT	SWITCHING	CHARACTERISTICS (N	lote 7)
----------------------	-----------	---------------------------	---------

Resistance, 5V

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
fscL	Serial-Clock frequency				100	kHz
t _{BUF}	Bus free time between a STOP and a START condition		1.3			μs
t _{HD, STA}	Hold time (repeated) START condition		0.6			μs
tsu, sta	Repeated START condition setup time		0.6			μs
tsu, sто	STOP condition setup time		0.6			μs
t _{HD, DAT}	Data hold time				0.9	μs
tsu, dat	Data setup time		100			ns
t _{LOW}	SCL clock low period		1.3			μs
tніgн	SCL clock high period		0.7			μs
t _R	Rise time of both SDA and SCL signals.	(Note 8)		20+0.1C _b	300	ns
t _F	Fall time of both SDA and SCL signals.	(Note 8)		20+0.1C _b	300	ns

Note 7: Guaranteed by design.

Note 8: C_b = total capacitance of one bus line in pF. $I_{SINK} \le 6mA$. t_R and t_F measured between $0.3 \times V_{DD}$ and $0.7 \times V_{DD}$.

FUNCTION BLOCK DIAGRAM

Figure 2: Function Block Diagram

Basic introduction for touch sense data process flow

Figure 3: Touch Sense Data Process Flow

Baseline process based on difference of baseline and raw count

Figure 4: Baseline Process based on difference of baseline and raw count

Touch sense data identification

Ignore touch key scan if the signal exceeds the lock threshold.

Figure 5: Touch Sense Data Identification

DETAILED DESCRIPTION

12C INTERFACE

The IS31SE5117 uses a serial bus, which conforms to the I2C protocol, to control the chip's functions with two wires: SCL and SDA. IS31SE5117 has a 7-bit slave address (A7:A1), followed by the R/W bit, A0. Set A0 "0" for a write command and set A0 "1" for a read command. The value of bits A1 and A2 are determined by the connection of the AD pin, to GND, VDD, or Floating.

The complete slave address is:

Bit	A7:A3	A2:A1	A0
Value	01111	AD	1/0

AD floating, AD = 00;

AD connected to GND, AD = 01;

AD connected to VDD. AD = 10:

AD pin can also be configured as a Touch Key channel. When AD pin is used for a Touch Key channel, A2: A1 = 00.

The SCL line is uni-directional. The SDA line is bi-directional (open collector) with a pull-up resistor (typically 4.7k Ω). During communication, microcontroller is the master and IS31SE5117 is the slave.

The timing diagram for the I2C is shown in Figure 6. The SDA is latched on the stable high level of the SCL. When there is no bus activity, the SDA line should be held high.

The "START" signal is generated by lowering the SDA signal while the SCL signal is high. The start signal will alert all devices attached to the I2C bus to check the incoming address against their own chip address.

The 8-bit chip address is sent next, and the most significant bit first. Each address bit must be stable while the SCL level is high.

After the last bit of the chip address is sent, the master checks for IS31SE5117 acknowledgement. The master releases the SDA line high (through a pull-up resistor). Then the master sends an SCL pulse. If IS31SE5117 has received the address correctly, then it holds the SDA line low during the SCL pulse. If the SDA line is not low, then the master should send a "STOP" signal (discussed later) and abort the transfer.

Following acknowledge of IS31SE5117, the register address byte is sent, and the most significant bit first. IS31SE5117 must generate another acknowledgment indicating that the register address has been received.

Then 8-bit of data bytes are sent next, the most significant bit first. Each data bit should be valid while the SCL level is stable high. After the data byte is sent, IS31SE5117 must generate another acknowledgment to indicate that the data was received.

The "STOP" signal ends the transfer. To signal "STOP", the SDA signal goes high while the SCL signal is high.

READING PORT REGISTERS

To read the device data, the bus master must first send the address of IS31SE5117 with the R/ \overline{W} bit set to "0", followed by the command byte, which determines which register is accessed. After a restart, the bus master must send IS31SE5117 address with the R/ \overline{W} bit set to "1". Data from the register defined by the command byte is sent from IS31SE5117 to the master (Figure 9).

Figure 6: Interface Timing

Figure 7: Bit Transfer

Figure 8: Writing to IS31SE5117

Figure 9: Reading from IS31SE5117

Note: Successive read or write protocol is supported.

REGISTER DEFINITION

Page 0 Register list Address R/W Default Name Definition 00h R 17h Chip Part Number Chip's part number 01h-02h Chip Version Chip's version R 03h Firmware Version Firmware version R 40h System reset, power saving and parameters 04h W Main Control 00h management 05h Switch Page Switch for Page 0 and Page 1 R/W 00h 06h-07h Key Status Key 0-Key 15 status bits R 00h 08h BM Buzzer data or stop command W 08h BM Available buzzer buffer size R 0Ah 09h-18h Key Signal Key 0-Key 15 signal value R 00h 19h-38h 00h **Key Raw Count** Key 0-Key 15 raw count value R 39h-58h Key Baseline Key 0-Key 15 baseline value R 00h 59h-68h Key Finger Threshold Key 0-Key 15 finger threshold setting R/W 50h 69h-78h Key Noise Threshold Key 0-Key 15 noise threshold setting R/W 28h Key Negative Noise Key 0-Key 15 negative noise threshold R/W 79h-88h 28h Threshold setting 89h-98h Key Low Baseline Reset Key 0-Key 15 low baseline reset setting R/W 1Eh 99h-A8h R/W 09h Key Hysteresis Key 0-Key 15 hysteresis setting Key 0-Key 15 debounce setting R/W A9h-B8h Key ON Debounce 03h Key 0-Key 15 enables Interrupts associated R/W B9h-BAh Key Interrupt Enable 00h with capacitive touch sensor inputs BBh Raw Count Filter R/W 00h Raw count filter setting BCh Baseline IIR Ratio Baseline IIR ratio setting R/W 01h BDh-BEh Lock Threshold R/W 03E8h Lock threshold setting BFh Lock Scan Cycle Lock scan cycle setting R/W 08h C0h R/W Raw Count Difference Limit Raw count difference limit setting 64h

C1h	Multi Touch Key Configure	Multiple touch key function setting	R/W	03h
C2h	Max Duration Time	Maximum duration time setting	R/W	1Ah
C3h	Interrupt Configuration	Interrupt configuration	R/W	0Ah
C4h	Interrupt Repeat Time	Repeat cycle for pressing key interrupt setting	R/W	00h
C5h	Key Pin Select	Select pins as Key0-Key7	R/W	00h
C6h	Key Pin Select	Select pins as Key8-Key15	R/W	00h
C7h-C8h	Shield Pin Select	Select pin as shield	R/W	0040h
C9h-CAh	INT Pin Select	Select pin as INT	R/W	0000h
CBh-CCh	Buzzer Pin Select	Select pin as buzzer	R/W	0100h
CDh-CEh	POW Pin Select	Select pin as buzzer power	R/W	0000h
CFh	GPIO Pin Select	Sets the GPIO enable KEY0~KEY7	R/W	0Eh
D0h	GPIO Pin Select	Sets the GPIO enable KEY8~KEY15	R/W	00h
D1h	Slider 1 Pin Select	Max 6 keys	R/W	00h
D2h	Slider 1 Pin Select	Max 6 keys	R/W	3Fh
D3h-D4h	Slider 2 Pin Select	Max 6 keys	R/W	0000h
D5h	TKIII Control register 1	Repeat sequence, initial setting delay, auto mode start delay, and low frequency noise filter	R/W	13h
D6h	TKIII Control register 2	Pseudo random sequence setting	R/W	20h
D7h	TKIII Control register 3	Multi frequency scan/cycle count setting	R/W	03h
D8h	TKIII CCHG	Internal charge capacitance setting	R/W	60h
D9h	TKIII PUD	Pull-up current/ pull-up resistors setting	R/W	00h
DAh	System Clock Select	System clock setting	R/W	00h
DBh	Spread Spectrum	Spread spectrum setting	R/W	0Ch
DCh	Auto Sleep Mode	Auto enter sleep mode time setting	R/W	0Fh

11

Rev. E, 04/28/2023

DDh	Sleep Mode Control	Sleep mode control setting	R/W	00h
DEh-DFh	Wake Up Key Select	Select Key0~Key15 to exit sleep mode	R/W	0000h
E0h	Wake Up Threshold	Wake up threshold setting	R/W	08h
E1h	TKIII Sleep Mode CCHG	Sleep mode internal charge capacitance setting	R/W	60h
E2h	TKIII Sleep Mode PUD	Sleep mode pull-up current/ pull-up resistors setting	R/W	00h
E3h-E4h	SLP_RAW	Sleep mode raw count value	R	0000h
E5h-E6h	SLP_Baseline	Sleep mode baseline value	R	0000h
E7h-ECh	Slider 1-2 status	3 slider status registers for each slider	R/W	E9h 80h, others 00h
EDh	Slider 1 Mapping	Slider 1 Key position	R/W	89h
EEh	Slider 1 Mapping	Slider 1 Key position	R/W	ABh
EFh	Slider 1 Mapping	Slider 1 Key position	R/W	CDh
F0h-F2h	Slider 2 Mapping	Slider 2 Key position	R/W	00h
F3h-FEh	Slider 1-2 Calibration	Slider 1-2 Calibration	R/W	28h

Page 1 Register list (extension memory)

Address	Name	Definition	R/W	Default
0100h	Chip Part Number	Chip's part number	R	17h
0101h- 0102h	Chip Version	Chip's version	R	-
0103h	Firmware Version	Firmware version	R	40h
0104h	Main Control	System reset, power saving and parameters management	W	00h
0105h	Switch Page	Switch for Page 0 and Page 1	R/W	00h
0106h- 0107h	Key Status	Key 0-Key 15 status bits	R	00h
0108h	ВМ	Buzzer data or stop command	W	-
0108h	ВМ	Available buzzer buffer size	R	0Ah
0109h	GPIO Value 1	Sensing the GPIO values for KEY0 – KEY7	R/W	0Eh

12

Rev. E, 04/28/2023

A Division of

010Ah	GPIO Value 2	Sensing the GPIO values for KEY8 – KEY15	R/W	00h
010Bh	GPIO Enable 1	Enable key KEY0 – KEY7 for GPIO	R/W	70h
010Ch	GPIO Enable 2	Enable key KEY8 – KEY15 for GPIO	R/W	00h
010Dh	GPIO Mapping 1	Key to GPIO mapping; see register for details	R/W	00h
010Eh	GPIO Mapping 2	Key to GPIO mapping; see register for details	R/W	00h
010Fh	GPIO Mapping 3	Key to GPIO mapping; see register for details	R/W	12h
0110h	GPIO Mapping 4	Key to GPIO mapping; see register for details	R/W	03h
0111h- 0114h	GPIO Mapping 5-8	Key to GPIO mapping; see register for details	R/W	00h
0115h	GPIO Toggle EN 1	Enable GPIO Toggle mode for KEY0 – KEY7	R/W	10h
0116h	GPIO Toggle EN 2	Enable GPIO Toggle mode for KEY8 - KEY15	R/W	00h
0117h	Key Scan Once	I2C control key scan	R/W	00h
0118h	Table Ready Mark	Mark for flash data ready	R	00h

00h Chip Part Number Register (RO)

Bit	D7:D0
Name	CPN[7:0]
Default	0001 0111

CPN Chip Part Number

Chip's part number 17h

01h Chip Version Register 1 (RO)

The Chip version register 1 (NO)			
Bit	D7:D0		
Name	CV1[7:0]		
Default	-		

CV1 Chip Version information 1

02h Chip Version Register 2 (RO)

Bit	D7:D0
Name	CV2[7:0]
Default	-

CV2 Chip Version information 2

CV1 & CV2 bytes contain chip revision. CV1 indicates mask set version. CV2 indicates minor version.

03h Firmware Version Register (RO)

Bit	D7:D0				
Name	FV1[2:0]	FV2[2:0]	FV3[1:0]		
Default	010	000	00		

FV Firmware Version

Default version is 2.0.0

FV1[2:0] Major version

FV2[2:0] Minor version

FV3[1:0] Patch version

04h Main Control Register (WO)

				_		
Bit	D7	D6	D5	D4	D3	D2:D0
Name	SR	RD	ı	SP	SS	-
Default	0	0	0	0	0	000

A Division of

1 System reset

RD Reset All Parameters to Manufacturer Default Setting.

1 Reset all user defined parameters to manufacture default setting.

SP Sleep Mode 1 Sleep mode

SS Save User Defined Parameters

1 Save current parameters into flash.

05h Switch Page (RW)

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	-	-	-	-	-	-	-	FLAG
Default	0	0	0	0	0	0	0	0

FLAG=0 Page 0 (Address: 0x00~0xFF) FLAG=1 Page 1 (Address: 0x100~0x1FF)

06h Key Status Register 1 (RO)

our ney	on key status kegister i (ko)				
Bit	D7:D0				
Name	KS[7:0]				
Default	0000 0000				

KSx Key0~Key7 Status

If the key is detected as pressed, the corresponding bit (KSx) will be set to "1".

Not detected.Key is detected.

07h Key Status Register 2 (RO)

711 Rey Clarus Register 2 (RO)				
Bit	D7:D0			
Name	KS[15:8]			
Default	0000 0000			

KSx Key8~Key15 Status

If the key is detected as pressed, the corresponding bit (KSx) will be set to "1".

Not detected.

Key is detected.

08h Buzzer Register (W)

Bit	D7:D0
Name	BM[7:0]
Default	-

BM Buzzer Register Write

Buzzer data or stop command

08h Buzzer Register (R)

Bit	D7:D0
Name	BM[7:0]
Default	0000 1010

BM Buzzer Register Read

It shows the available tone buffer size. IS31SE5117 has 10 built-in note buffers.

09h~18h KEY0~KEY15 Signal Register (RO)

	· · · · · · · · · · · · · · · · · · ·
Bit	D7:D0
Name	KEYx_SIGNAL[7:0]
Default	0000 0000

KEYx_SIGNAL Key Signal Count

The difference between baseline and raw count.

The maximum value is 254. It will keep 254 if the value is over 254. Value 255 means noise existence.

19h, 1Bh..., 35h, 37h KEY0~KEY15 Raw Count High Byte Register (RO)

light byte register (RO)					
Bit	D7:D0				
Name	KEYx_RAWCOUNT[15:8]				
Default	0000 0000				

1Ah, 1Ch..., 36h, 38h KEY0~KEY15 Raw Count Low Byte Register (RO)

Bit	D7:D0				
Name	KEYx_RAWCOUNT[7:0]				
Default	0000 0000				

KEYX RAWCOUNT

Raw count of each key provides an indication of the magnitude of the sensor's capacitance.

39h, 3Bh ..., 55h, 57h KEY0~KEY15 Baseline High Byte Register (RO)

•	Byte Register (RO)							
	Bit	D7:D0						
	Name	KEYx_BASELINE[15:8]						
	Default	0000 0000						

3Ah, 3Ch ..., 56h, 58h KEY0~KEY15 Baseline Low Byte Register (RO)

Sylo Rogiotor (Ro)							
Bit	D7:D0						
Name	KEYx_BASELINE[7:0]						
Default	0000 0000						

KEYx_Baseline

Baseline of each key

59h~68h KEY0~KEY15 Finger Threshold Register (RW)

Bit	D7:D0
Name	KEYx_TH[7:0]
Default	0101 0000

KEYx_TH

Finger threshold of each key. It is used with hysteresis to determine the key state.

69h~78h KEY0~KEY15 Noise Threshold Register (RW)

,	
Bit	D7:D0
Name	KEYx_NTH[7:0]
Default	0010 1000

KEYx_NTH

Noise threshold of each key

Baseline needs to be updated if the difference (baseline and raw count) is less than the noise threshold.

79h~88h KEY0~KEY15 Negative Noise Threshold Register (RW)

ivegister ((1744)
Bit	D7:D0
Name	KEYx_NNTH[7:0]
Default	0010 1000

KEYx_NNTH

Negative noise threshold of each key.

89h~98h KEY0~KEY15 Low Baseline Reset Register (RW)

٠.	register ((1744)
	Bit	D7:D0
	Name	RCx[7:0]
	Default	0001 1110

RCx Reset Count

Low baseline reset count of each key. A reset count increases one if the absolute |raw count – baseline| > absolute |negative noise threshold|. Once the reset count exceeds the low baseline reset register value, the baseline is reset to the current raw count. The reset count will be reset to 0 if the absolute |raw count – baseline| <= absolute |negative noise threshold|.

99h~A8h KEY0~KEY15 Hysteresis Register (RW)

	, , , , , , , , , , , , , , , , , , ,
Bit	D7:D0
Name	HYSTERESISx[7:0]
Default	0000 1001

HYSTERESISx

Hysteresis of each key

A9h~B8h KEY0~KEY15 On Debounce Register (RW)

Bit	D7:D0
Name	DEBOUNCEx[7:0]
Default	0000 0011

DEBOUNCEX

Debounce number of each key. When the acquired number > debounce setting value, then the key is granted as on.

B9h~BAh Key Interrupt Enable Register (RW)

Bit	D7:D0
Name	INTEN[7:0]
Default	0000 0000

The Interrupt Enable Register determines whether a key causes the interrupt pin to be asserted when it is detected touched with the key's interrupt enable bit set.

INTEN Key Interrupt Enable

0 Disable1 Enable

The default value for Interrupt Enable Registers is interrupt disable. Setting INE bit of Interrupt Configuration Register (C3h) to "1", INTB pin will generate interrupt signal.

BBh Raw Count Filter Register (RW)

==:::tan eeaner mei regieter (ttr)							
Bit	D7	D6	D5:D4	D3	D2:D1	D0	
Name	MF	AF	IIR[1:0]	JF	JD[1:0]	-	
Default	0	0	00	0	00	0	

MF Median Filter

0 Disable

1 Enable

AF Average Filter

0 Disable1 Enable

IIR IIR Filter

00 Disable

01 1/2

11 1/8

10

JF Jitter Filter

1/4

0 Disable

1 Enable

JD Jitter Delta

00 1

01 2

10 4

11 8

BCh Baseline IIR Ratio Register (RW)

Bit	D7:D0
Name	RATIO[7:0]
Default	0000 0001

RATIO

Range 1 ~ 255

BDh Lock Threshold High Byte Register (RW)

-	zzn zeek nineeneig nigh zyte kegietei (itti)				
	Bit	D7:D0			
	Name	LT[15:8]			
	Default	0000 0011			

BEh Lock Threshold Low Byte Register (RW)

-	BEIT EOOK THICSHOID LOW Byte Register (RW)		
	Bit	D7:D0	
Name		LT[7:0]	
	Default	1110 1000	

LT Lock Threshold

BFh Lock Scan Cycle Register (RW)

	, , , , , , , , , , , , , , , , , , ,
Bit	D7:D0
Name	LSC[7:0]
Default	0000 1000

LSC Lock Scan Cycle

Ignore the key scan data for the setting Lock scan cycle if the |raw count – baseline| > Lock threshold.

C0h Raw Count Difference Limit Register (RW)

	(1117)				
Bit	D7:D0				
Name	RCDL[7:0]				
Default	0110 0100				

RCDL Raw Count Difference Limit

Ignore the key scan data if the difference between previous raw count and current raw count exceeds the limit.

C1h Multiple Touch Key Configure Register (RW)

Bit	D7:D2	D1:D0
Name	-	MTK[1:0]
Default	000000	11

MTK Multi Touch Key

01 Allow one key triggered at one time.

Allow two keys triggered at one time.

11 Allow three keys triggered at one

time.

A Division of

C2h Max Duration Time Register (RW)

Bit	D7	D6	D5	D4	D3:D0
Name	-	-	-	MDEN	MDT[3:0]-
Default	0	0	0	1	1010

MDEN N	/lavimum	Duration	Time	Fnahla

0	Disable
1	Enable

MDT Maximum Durat	tion Time
-------------------	-----------

MDI	Maximum
0000	0.5s
0001	1s
0010	2s
0011	3s
0100	4s
0101	5s
0110	6s
0111	7s
1000	8s
1001	9s
1010	10s
1011	11s
1100	12s
1101	13s
1110	14s

15s

1111

MDT bits set the pressed time. When key pressed duration exceeds the programmed time (MDT), device will be forced to calibrate the pressed key. Set MDEN to "1" will enable this function.

C3h Interrupt Configuration Register (RW)

Bit	D7	D6:D4	D3	D2:D0
Name	INE	-	ACEN	ACT[2:0]
Default	0	000	1	010

INE Interrupt Function Enable

0	Disable
1	Enable

ACEN Auto-Clear Interrupt Enable

0	Disable
1	Enable

ACT Auto-Clear Interrupt Time

000	10ms
001	20ms

010	30ms
011	40ms
100	50ms
101	100ms
110	150ms
111	200ms

When ACEN=0, the INT will keep low until device 06h or 07h register is read or the key is released. When ACEN=1, the INT will be released after ACT setting time is expired even 06h or 07h register is not read or key is still pressed.

C4h Interrupt Repeat Time Register (RW)

Bit	D7:D4	D3:D0
Name	-	INTRT[3:0]
Default	0000	0000

INTRT	Interrupt Repeat Time	
0000	disable	
0001	50ms	
0010	100ms	
0011	150ms	
0100	200ms	
0101	250ms	
0110	300ms	
0111	350ms	
1000	400ms	
1001	450ms	
1010	500ms	
1011	600ms	
1100	700ms	
1101	800ms	
1110	900ms	
1111	1s	

After INTRT is set, second interrupt will be generated after the interrupt repeat time is expired If there is a key keeping pressed.

C5h~C6h Key Pin Select Register (RW)

Bit	D7:D0
Name	KS[7:0]
Default	0000 0000

A Division of

Bit	D7:D0
Name	KS[15:8]
Default	0000 0000

Bit	D7:D0	Bit	D7:D0
Name	KS[15:8]	Name	BPS2[7:0]
Default	0000 0000	Default	

KS **Key Pin Selection Setting**

Disable Enable 1

BPS1/2 Buzzer output Select 1/2

Enable BPS1[0] will set Pin1 as Buzzer output pin.

BPS1[7:1] & BPS2[7:0] unused register bits.

C7h~C8h Shield Pin Select Register (RW	C7h~C8h	Shield Pi	in Select	Register	(RW
--	---------	-----------	-----------	----------	-----

Bit	D7:D0
Name	SHDE[7:0]
Default	0000 0000

Bit	D7:D0
Name	SHDE[15:8]
Default	0100 0000

CDh Enable Buzzer Power Register 1 (RW)

bii Eliabio Bazzoi i olioi kogistoi i (kti)			
Bit	D7:D0		
Name	EBP1 [7:0]		
Default			

CEh Enable Buzzer Power Register 2 (RW)

- 7	<u> </u>				
	Bit	D7:D0			
	Name	EBP2 [0]			
	Default	0			

SHDE Shield Enable (default for SHDE[14])

Disable shield driver **Enable shield driver**

EBP1/2 Buzzer Power Select 1/2

EBP1[7:0] unused register bits.

EBP2[4] maps to KEY12, write 1 will enable KEY12 as Buzzer Power. Setting other EBP2 bits doesn't work.

C9h~CAh **INT Pin Select Register (RW)**

	3 \ /
Bit	D7:D0
Name	IPS1[7:0]
Default	0000 0000

Bit	D7:D0
Name	IPS1[15:8]
Default	0000 0000

IS31SE5117 interrupt Pin has been fixed at Pin 23 INTB and it doesn't work to set INT Pin Select Register C9h and CAh.

CFh~D0h **GPIO Pin Select Register (RW)**

	<u> </u>
Bit	D7:D0
Name	GPIO[7:0]
Default	0000 1110

Bit	D7:D0	
Name	GPIO[15:8]	
Default	0000 0000	

GPIO pin select will go with register 109h GPIO Value 1 and register 10Ah GPIO Value 2 to have GPIO pin high or low.

CBh~CCh Buzzer Pin Select Register 1 (RW)

Bit	D7:D0
Name	BPS1[7:0]
Default	1

D1h~D2h Slider1 Pin Select Register (RW)

Bit	D7:D0
Name	GPIO[7:0]
Default	0000 0000

A Division of 3

Bit	D7:D0
Name	GPIO[15:8]
Default	0011 1111

D3h~D4h Slider2 Pin Select Register (RW)

Bit	D7:D0
Name	GPIO[7:0]
Default	0000 0000

Bit	D7:D0
Name	GPIO[15:8]
Default	0000 0000

D5hTKIII Control Register 1 (RW)

Bit	D7:D6	D5:D4	D3:D2	D1:D0
Name	RPT	INI	ASTDLY	LFNF
Default	00	01	00	11

RPT Repeat Sequence Count

00	No repeat
01	Repeat 4 times
10	Repeat 8 times
11	Repeat 16 times

INI Initial Setting Delay

INI[1-0] defines the number of TKCLK period for initial settling of pin Cref. The delay is (INI[1-0] + 1) *4*TKCLK.

ASTDLY Auto Mode Start Delay

ASTDLY[1-0] inserts an inter-sequence idle time of (ASTDLY[1-0] +1) * 256 TKCLK at each sequence start. This delay allows the stabilization time from normal mode to sleep mode.

LFNF Low Frequency Noise Filter Setting

Low Frequency Noise Filter Setting

00 Disable LFNE

If the scan count with noise injection detect is larger than (LFNF [1-0] * 8), the scan result is ignored.

D6h TKIII Control Register 2 (RW)

Bit	D3		:D1	D0
Name	-		-	-
Default	0	C	00	0
Bit	D7	D6	D5	D4
Name	-	-	PRS	-
Default	0	0	1	0

PRS Pseudo Random Sequence

0 Disable PRS1 Enable PRS

D7h TKIII Control Register 3 (RW)

Bit	D7:D4	D3	D2:D0
Name	-	MFEN	CCNT[2:0]
Default	0000	0	011

MFEN Multi Frequency Scan

0	Disable MF
1	Enable MF

CCNT Cycle Count of Each Conversion Sequence

000	1024	
001	2048	
010	4096	
011	8192	
100	12288	
101	16384	
110	32768	
111	65536	

D8h TKIII CCHG Register (RW)

Bit	D7:D5	D4:D0
Name	CCHG[2:0]	-
Default	011	00000

CCHG Internal Reference Capacitance Select

000	10pF
001	20pF
010	30pF
011	40pF
100	50pF
101	60pF
110	70pF

LUMISSIL MICROSYSTEMS

A Division of [33]

111 80pF 1 Enable stretching

D9h TKIII PUD Register (RW)

7511 Titili T OD Register (RVV)				
Bit	D3:D0			
Name	PUD [3:0]			
Default	0000			
Bit	D7 D6 D5:D4			
Name	PUDIEN PUDREN -			
Default	0	00	00	

TK3PUD is to configure a constant DC pull-up/pull-down on pin Cref to allow high capacitance touch-key detection. A DC pull-up/pull-down can compensate for the equivalent resistance which is caused by a high capacitance key. Connecting a constant current source or resistor can thus maintain touch key detection sensitivity. In general, we will try to maintain the raw count around half of CCNT for the case without key touched.

For DC current, PUD [3:0] enables 8uA/4uA/2uA/1uA current source. For Resistor, PUD [3-0] enables 5K/10K/20K/40K resistor

PUDIEN Pull-up/Pull-down DC Current Enable

PUDREN Pull-up/Pull-down DC Resistor Enable

	-
1000	Enable 8uA current source.
0100	Enable 4uA current source.
0010	Enable 2uA current source.
0001	Enable 1uA current source.
PUD	Pull up Resistor
PUD 1000	Pull up Resistor Enable 5K resistor source.
	•
1000	Enable 5K resistor source.

Pull up DC Current

PUD

DAh System Clock Select Register (RW)

Bit	D7:D4	D3	D2:D0
Name	-	CLKS	OSCD[2:0]
Default	0000	0	000

CLKS Clock Stretching (For I2C)

0 Disable stretching

OSCD	Oscillator Division
000	1
001	2
010	4
011	8
100	16
101	32
110	64
111	128

The default setting is 1 for 16MHz system clock.

DBh Spread Spectrum Register (RW)

Bit	D7:D2		
Name	SSR[3:0]	SSA[1:0]	-
Default	0000	11	-

SS Spread Spectrum Setting

With spread spectrum technique, electromagnetic energy produced over a particular bandwidth is spread in the frequency domain, and that can reduce EMI. Two parameters are listed as follows:

SSR [3:0] Defines the spread spectrum sweep rate. If the SSR[3:0] =0, then spread spectrum is disabled.

SSA [1:0] Defines how to adjust the spread spectrum frequency bandwidth. The frequency is adjusted by adding SSA [1:0] range to the actual internal OSC

control register.

SSA [1:0]=11 +/- 32 SSA [1:0]=10 +/- 16 SSA [1:0]=01 +/- 8 SSA [1:0]=00 +/- 4

DCh Auto Sleep Mode Register (RW)

Den Auto Sieep wode Register (RW)				
Bit	D3:D0			
Name	AST[3:0]-			
Default	1111			
Bit	D7	D6	D5:D4	
Name	ASEN	-	BLMA[1:0]	
Default	0	0	00	

ASEN Auto-SLEEP Enable

Lumissil Microsystems – www.lumissil.com

0	Disable
1	Enable

BLMA Baseline moving average

Hardware baseline can be generated by slow moving average setting.

00	32 average
01	64 average
10	128 average
11	256 average

AST	Auto Sleep Time
0000	0.5s
0001	1s
0010	1.5s
0011	2s
0100	2.5s
0101	3s
0110	3.5s
0111	4s
1000	4.5s
1001	5s
1010	6s
1011	7s
1100	8s
1101	9s
1110	10s

DDh Sleep Mode Control Register (RW)

ben block made control regions: (rem)					
Bit	D3:D2		D1:D0		
Name	T2	T2[1:0]		T1[1:0]	
Default	00		00		
Bit	D7	D6	D5	D4	
Name	-	PW	-	SC	
Default	0	0	0	0	

PW Proximity Wakeup

Disable: wake up>>scan key once>>go

to sleep again

Enable: wake up>> generates INT signal (optional) >>go to sleep after Auto Sleep Time is expired if no key is detected.

0 Disable1 Enable

SC Sleep Calibration

0 Disable1 Enable

T2 Wake Up Period with Key Disable

Device will be woken up according to the T2 setting by polling the status of Key.

00	50ms
01	100ms
10	200ms
11	300ms

T1 Wake Up Period with Key Enable

Device will be woken up according to the T1 setting to maintain the baseline to prevent the change of environment from stopping Key waking up device.

00	2s
01	4s
10	8s
11	16s

DEh~DFh Wake Up Key Select Register (RW)

Bit	D7:D0
Name	WK[7:0]
Default	0000 0000

Bit	D7:D0
Name	WK[15:8]
Default	0000 0000

WK Wakeup Key Select Setting

0 Disable1 Enable

E0h Wake Up Threshold Register (RW)

Bit	D7:D0
Name	WTH[7:0]
Default	0000 1000

Wake up threshold range from 0 to 255

Enable 10K resistor source.

0010 Enable 20K resistor source.

0100

0001 Enable 40K resistor source.

Em Trill Sleep Wode Cond Register (RW)			
Bit	D7:D5	D4:D0	
Name	CCHG[2:0]	-	
Default	011	00000	

CCHG	Internal Reference Capacitance Select
000	10pF
001	20pF
010	30pF
011	40pF
100	50pF
101	60pF
110	70pF
111	80pF

E2h TKIII Sleep Mode PUD Register (RW)

viam circle inches ce ce grown (circle)			
Bit	D3:D0		
Name	PUD[3:0]		
Default	0000		
Bit	D7	D6	D5:D4
Name	PUDIEN	PUDREN	-
Default	0	0	00

TK3 PUD is to configure a constant DC pull-up/pulldown on pin Cref to allow high capacitance touch-key detection. A DC pull-up/pull-down can compensate for the equivalent resistance caused by a high capacitance key. Connecting a switching current source or resistor can thus maintain touch key detection sensitivity.

For DC current, PUD[3:0] can enable 8uA/4uA/2uA/1uA current source. For Resistor, PUD[3-0] can enable 5K/10K/20K/40K resistor

PUDIEN Pull-up/Pull-down DC Current Enable

PUDREN Pull-up/Pull-down DC Resistor Enable

PUD	Pull up DC Current
1000	Enable 8uA current source.
0100	Enable 4uA current source.
0010	Enable 2uA current source.
0001	Enable 1uA current source.

PUD **Pull up Resistor**

1000 Enable 5K resistor source.

E3h Sleep Mode Raw Count Register 1 (RO)

ion oleep wede naw oodni negister i (no)					
Bit	D7:D0				
Name	SLRC[15:8]				
Default	0000 0000				

E4h Sleep Mode Raw Count Register 2 (RO)

Bit	D7:D0
Name	SLRC[7:0]
Default	0000 0000

SLRC Sleep Mode Raw Count Read only. Value for reference

E5h Sleep Mode Baseline Register 1 (RO)

Bit	D7:D0
Name	SLB[15:8]
Default	0000 0000

E6h Sleep Mode Baseline Register 2 (RO)

Bit	D7:D0
Name	SLB[7:0]
Default	0000 0000

SLB Sleep Mode Baseline Read only. Value for reference

E7h Slider1 Status Register 1 (RO)

Bit	D7	D6:D0
Name	ACT	INIP
Default	0	0000000

ACT Slider is active Disable slider Enable slider 1

INIP Initial position

E8h Slider1 Status Register 2 (RO)

Bit	D7	D6:D0
Name	DIR	ENDP

Default 0 0000000

DIR Direction of Slide10 Rotate to left1 Rotate to right

ENDP End position of the slider

E9h Slider1 Status Register 3 (RW)

		3 (/
Bit	D7	D6:D0
Name	STA	DUR
Default	1	0000000

STA Status of Slider1

0 Wheel 1 Slider

STA is the only bit for write.

DUR Duration

The duration between initial position to end position. Every DUR bit increase presents 0.1s.

EAh Slider2 Status Register 1 (RO)

Bit	D7	D6:D0
Name	ACT	INIP
Default	0	0000000

ACT Slider2 is active 0 Disable slider 1 Enable slider

INIP Initial position

EBh Slider2 Status Register 2 (RO)

Bit	D7	D6:D0
Name	DIR	ENDP
Default	0	0000000

DIR Direction of Slide20 Rotate to left1 Rotate to right

ENDP End position of the slider

ECh Slider2 Status Register 3 (RO)

	uoi = Otati	io regiotor o (reo)
Bit	D7	D6:D0

Name	STA	DUR
Default	0	0000000

STA Status of Slider2

0 Wheel1 Slider

DUR Duration

The duration between initial position to end position. Every DUR bit increase presents 0.1s.

EDh Slider1 Map Register 1 (RW)

Bit	D7:D4	D3:D0
Name	S1K1[3:0]	S1K2[3:0]
Default	1000	1001

EEh Slider1 Map Register 2 (RW)

Bit	D7:D4	D3:D0
Name	S1K3[3:0]	S1K4[3:0]
Default	1010	1011

EFh Slider1 Map Register 3 (RW)

Bit	D7:D4	D3:D0
Name	S1K5[3:0]	S1K6[3:0]
Default	1100	1101

S1Kx Slider1 Keyx Map table

Slider1 KEYx is mapped to Touch Key S1Kx[3:0]

F0h Slider2 Map Register 1 (RW)

i on onderz map kegister i (kw)		
Bit	D7:D4	D3:D0
Name	S2K1[3:0]	S2K2[3:0]
Default	0000	0000

F1h Slider2 Map Register 2 (RW)

		<u> </u>
Bit	D7:D4	D3:D0
Name	S2K3[3:0]	S2K4[3:0]
Default	0000	0000

F2h Slider2 Map Register 3 (RW)

	<u> </u>	, ,
Bit	D7:D4	D3:D0
Name	S2K5[3:0]	S2K4[3:0]
Default	0000	0000

S2Kx Slider2 Keyx Map table

Slider2 KEYx is mapped to Touch Key S2Kx[3:0]

F3h – F8h Slider1 Calibration Register 1 - 6 (RW)

(,	
Bit	D7:D1
Name	S1CRKx[7:0]
Default	0010 1000

S1CRKx These registers are used for slider1 calibration. The slider1 is composed of six touch keys. The range of x is from 1 to 6 which means Key1 to Key6.

F9h – FEh Slider2 Calibration Register 1 – 6 (RW)

Bit	D7:D1
Name	S2CRKx [7:0]
Default	0010 1000

S2CRKx These registers are used for slider2 calibration. The slider2 is composed of six touch keys. The range of x is from 1 to 6 which means Key1 to Key6.

Page 1 (For Expand Memory)

100h Chip Part Number Register (RO)

10011	Chip i art Number Neglater (NO)	
Bit	D7:D0	
Name	CPN[7:0]	
Default	0001 0111	

CPN Chip Part Number

Chip's part number 17h

101h Chip Version Register 1 (RO)

To The Version Register 1 (RO)		
Bit	D7:D0	
Name	CV1[7:0]	
Default	-	

CV1 Chip Version information 1

102h Chip Version Register 2 (RO)

ioni cinproloni regiotei i (re)	
Bit	D7:D0
Name	CV2[7:0]
Default	-

CV2 Chip Version information 2

CV1 & CV2 bytes contain chip revision. CV1 indicates mask set version. CV2 indicates minor version.

103h Firmware Version Register (RO)

Bit		D7:D0	
Name	FV1[2:0]	FV2[2:0]	FV3[1:0]
Default	010	000	00

FV Firmware Version

Default version is 2.0.0

FV1[2:0] Major version

FV2[2:0] Minor version

FV3[1:0] Patch version

104h Main Control Register (WO)

		manife of the grown (in o)							
Bit	D7	D6	D5	D4	D3	D2:D0			
Name	SR	RD	-	SP	SS	-			
Default	0	0	0	0	0	000			

SR System Reset

1 System reset

RD Reset All Parameters to Manufacturer Default Setting.

1 Reset all user-defined parameters to manufacture default setting.

SP Sleep Mode

1 Sleep mode

SS Save User-Defined Parameters

1 Save current parameters into flash.

105h Switch Page (RW)

				<u> </u>				
Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	ı	1	1	1	1	ı	ı	FLAG

A Division of SSS

Default	0	0	0	0	0	0	0	0
Delault	0	0	U	U	U	U	0	

FLAG=0 Page 0 (Address: 0x00~0xFF)
FLAG=1 Page 1 (Address: 0x100~0x1FF)

106h~107h Key Status Register 1 (RO)

	, <u> </u>
Bit	D7:D0
Name	KS[7:0]
Default	0000 0000

KSx Key0~Key7 Status

If the key is detected as pressed, the corresponding bit (KSx) will be set to "1".

0 Not detected

1 Key is detected.

Key Status Register 2 (RO)

Bit	D7:D0
Name	KS[15:8]
Default	0000 0000

KSx Key8~Key15 Status

If the key is detected as pressed, the corresponding bit (KSx) will be set to "1".

0 Not detected

1 Key is detected.

108h Buzzer Register (W)

Bit	D7:D0
Name	BM[7:0]
Default	-

BM Buzzer Register Write

Buzzer data or stop command

108h Buzzer Register (R)

I OOH	buzzer Register (R)				
	D7:D0				
Name	BM[7:0]				
Default	0000 1010				

BM Buzzer Register Read

It shows the available tone buffer size. IS31SE5117 has 10 built-in note buffers.

109h	GPIO	Value	Register	1	(R/W)

Bit	D7:D0
Name	GPV [7:0]
Default	0000 1110

10Ah GPIO Value Register 2 (R/W)

IOAII OI	10 Value Register 2 (1777)
Bit	D7:D0
Name	GPV [15:8]
Default	0000 0000

GPV GPIO Value

Define GPIO values

0 GPIO LOW

1 GPIO HIGH

Above GPIO pin HIGH or LOW will be set only when the corresponding bits of the register GPIO Pin Select registers (CFh and D0h) are enabled.

10Bh GPIO Enable Register 1 (R/W)

Bit	D7:D0
Name	GPE [7:0]
Default	0111 0000

10Ch GPIO Enable Register 2 (R/W)

Bit	D7:D0	
Name	GPE [15:8]	
Default	0000 0000	

GPE GPIO Enable

Disable Key X GPIO functionEnable Key X GPIO function

10Dh GPIO Map Register 1 (R/W)

Bit	D7:D4	D3:D0
Name	GM1[3:0]	GM0[3:0]
Default	0000	0000

10Eh GPIO Map Register 2 (R/W)

<u> </u>	re map regions.	_ \/
Bit	D7:D4	D3:D0
Name	GM3[3:0]	GM2[3:0]
Default	0000	0000

10Fh GPIO Map Register 3 (R/W)

or it map regions (i.i.i.)		
Bit	D7:D4	D3:D0
Name	GM5[3:0]	GM4[3:0]

A Division of 3

-			
	Default	0001	0010

110h GPIO Map Register 4 (R/W)

Ton One map register 4 (1977)		
Bit	D7:D4	D3:D0
Name	GM7[3:0]	GM6[3:0]
Default	0000	0011

111h GPIO Map Register 5 (R/W)

Time of the interaction of the try		
Bit	D7:D4	D3:D0
Name	GM9[3:0]	GM8[3:0]
Default	0000	0000

112h GPIO Map Register 6 (R/W)

	ie map itegiete.	(1.0.11)
Bit	D7:D4	D3:D0
Name	GM11[3:0]	GM10[3:0]
Default	0000	0000

113h GPIO Map Register 7 (R/W)

Bit	D7:D4	D3:D0
Name	GM13[3:0]	GM12[3:0]
Default	0000	0000

114h GPIO Map Register 8 (R/W)

Bit	D7:D4	D3:D0
Name	GM15[3:0]	GM14[3:0]
Default	0000	0000

GMx [3:0] Map touch key x to which IS31SE5117 pin according to the following table and the value of GMx [3:0].

IS31SE5117 Pin #	GMx [3:0]
P1	0
P2	1
P3	2
P4	3
P9	4
P10	5
P11	6
P12	7
P13	8
P14	9

P15	10
P16	11
P17	12
P18	13
P19	14
P20	15

115h GPIO Toggle Enable Register 1 (R/W)

	
Bit	D7:D0
Name	TOEN [7:0]
Default	0001 0000

116h GPIO Toggle Enable Register 2 (R/W)

	<u> </u>
Bit	D7:D0
Name	TOEN [15:8]
Default	0000 0000

TOENx Enable GPIO Toggle Mode

Disable Touch Key channel to enter GPIO Toggle Mode.

 Enable Touch Key channel to enter GPIO Toggle Mode.

117h Key Scan Once Register (RW)

Bit	D7:D2	D1	D0
Name	-	TR	EN
Default	0000	00	00

TR

Write 1 Trigger one scan

Read 1 Busy

Read 0 Data ready

EN Enable Key Scan Once

0 Continuous scan of all enabled keys

1 Scan all enabled keys once

118h Table Ready Mark Register (RO)

	rabio redady mark regions (rec)
Bit	D7:D0
Name	MARK[7:0]
Default	0000 0000

MARK

This register is used by firmware to indicate parameters are correctly programmed.

Ready/Fail status

00 ready

Others not ready

BUZZER / MELODY APPLICATION

F0h Buzzer/Melody Register (W)

Bit	D7:D0
Name	BM
Default	-

1st byte 2nd byte		3rd byte	4th byte
Scale ID	Tt	Tw	Тр

Tt, Tw and Tp range from 0 to 255 @ 4ms step

A Tone played duration is defined as Tt + Tp.

The support scale is from 3A to 8G#.

	Frequencies for equal-tempered scale, A 4 = 440 Hz "Middle C" is C4											
	3	freq	divisor	freq error	4	freq	divisor	freq error	5	freq	divisor	freq error
С					3	261.6	1911	0.01%	15	523.3	956	-0.05%
C#					4	277.2	1804	-0.01%	16	554.4	902	-0.01%
D					5	293.7	1703	-0.02%	17	587.3	851	0.04%
D#					6	311.1	1607	0.00%	18	622.3	804	-0.06%
Е					7	329.6	1517	-0.01%	19	659.3	758	0.06%
F					8	349.2	1432	-0.02%	20	698.5	716	-0.02%
F#						370.0	1351	0.03%	21	740.0	676	-0.05%
G					10	392.0	1276	-0.04%	22	784.0	638	-0.04%
G#					11	415.3	1204	-0.01%	23	830.6	602	-0.01%
Α	0	220.0	2273	-0.01%	12	440.0	1136	0.03%	24	0.088	568	0.03%
A#	1	233.1	2145	0.01%	13	466.2	1073	-0.04%	25	932.3	536	0.05%
В	2	246.9	2025	-0.01%	14	493.9	1012	0.04%	26	987.8	506	0.04%

A Division of

	6	freq	divisor	freq error	7	freq	divisor	freq error	8	freq	divisor	freq error
С	27	1046.5	478	-0.05%	39	2093.0	239	-0.05%	51	4186.0	119	0.37%
C#	28	1108.7	451	-0.01%	40	2217.5	225	0.21%	52	4434.9	113	-0.23%
D	29	1174.7	426	-0.08%	41	2349.3	213	-0.08%	53	4698.6	106	0.39%
D#	30	1244.5	402	-0.06%	42	2489.0	201	-0.06%	54	4978.0	100	0.44%
Е	31	1318.5	379	0.06%	43	2637.0	190	-0.21%	55	5274.0	95	-0.21%
F	32	1396.9	358	-0.02%	44	2793.8	179	-0.02%	56	5587.7	89	0.54%
F#	33	1480.0	338	-0.05%	45	2960.0	169	-0.05%	57	5919.9	84	0.55%
G	34	1568.0	319	-0.04%	46	3136.0	159	0.28%	58	6271.9	80	-0.35%
G#	35	1661.2	301	-0.01%	47	3322.4	150	0.33%	59	6644.9	75	0.33%
Α	36	1760.0	284	0.03%	48	3520.0	142	0.03%				
A#	37	1864.7	268	0.05%	49	3729.3	134	0.05%				
В	38	1975.5	253	0.04%	50	3951.1	127	-0.36%				

Scale ID(Sid): 0 is 3A, 1 is 3A#, 2 is 3B

08h Buzzer/Melody Register (W)

Bit	D7:D0
Name	ВМ
Default	-

Clear Melody buffer and stop play.

08h Buzzer/Melody Register (R)

Bit	D7:D0
Name	ВМ
Default	0000 1010

BM Buzzer/Melody Register Read. It shows the available tone buffer size. IS31SE5117 has 10 built-in note buffers.

I2C command format - Each node is composed of 4-byte data, and the incomplete note will be ignored. The incoming note data will be ignored if the FIFO is full)

0x78, 0xF0, (Sid, Tt, Tw, Tp), (Sid, Tt, Tw, Tp),

0x78, 0xF0, 0xFF stop the melody play and clear the FIFO

0x78, 0xF0 Set the register number to 0xF0 0x79 Read FIFO remaining length

Reference schematic and tone waveform are introduced as follows:

Figure 10: Buzzer/ Melody waveform example

Note:

100R as below figure 11 decides the signal ramp up rate. $\mathsf{T}_{\mathsf{ramp-up}}$:

The signal ramps down because POW is low and 47uF capacitor as below figure 11 decides the ramp $T_{ramp-down}$: down rate.

Figure 11: Typical application circuit for Melody

A Division of SSI

	S S
Bit	D7:D0
Name	BPS1[7:0]
Default	1

CCh Buzzer Pin Select Register 2

Bit	D0
Name	BPS2[7:0]
Default	

BPS1/2 Buzzer output Select 1/2

Enable BPS1[0] will set Pin1 as Buzzer output pin.

BPS1[7:1] & BPS2[7:0] unused register bits.

CDh Enable Buzzer Power Register 1

Bit	D7:D0
Name	EBP1[7:0]
Default	

CEh Enable Buzzer Power Register 2

Bit	D7:D0
Name	EBP2[7:0]
Default	1

EBP1/2 Buzzer Power Select ½

EBP1[7:0] unused register.

EBP2[4] maps to KEY12, write 1 will enable KEY12 as Buzzer Power. Setting other EBP2 bits doesn't work.

TYPICAL APPLICATION INFORMATION

The IS31SE5117 is an ultra-low power, fully integrated 16-channel solution for capacitive touch-buttons applications. The chip allows electrodes to project sense fields through any dielectric material such as glass or plastic.

SENSITIVITY ADJUSTING

Sensitivity can be adjusted by the external capacitor or internal register.

A higher capacitor value will yield lower detection sensitivity. A lower capacitor value will yield higher detection sensitivity.

INTERRUPT

Touch key detection event will trigger INTB pin. The INTB pin will be driven low when the selected channel is pressed or released.

CLASSIFICATION REFLOW PROFILE

Profile Feature	Pb-Free Assembly
Preheat & Soak Temperature min (Tsmin) Temperature max (Tsmax) Time (Tsmin to Tsmax) (ts)	150°C 200°C 60-120 seconds
Average ramp-up rate (Tsmax to Tp) Liquidous temperature (TL) Time at liquidous (tL)	3°C/second max. 217°C 60-150 seconds
Peak package body temperature (Tp)* Time (tp)** within 5°C of the specified classification temperature (Tc)	Max 260°C Max 30 seconds
Average ramp-down rate (Tp to Tsmax) Time 25°C to peak temperature	6°C/second max. 8 minutes max.

Figure 12: Classification Profile

PACKAGE INFORMATION 24-pin QFN RECOMMENDED LAND PATTERN

Figure 13: 24 QFN Recommended Land Pattern

POD

Note:

- 1. Land pattern complies to IPC-7351.
- 2. This document (including dimensions, notes & specs) is a recommendation based on typical circuit board manufacturing parameters. Since land pattern design depends on many unknown factors (e.g., user's board manufacturing specs), user must make own decisions.

REVISIONS

Revision	Detailed Information	Date
А	First formal release	2021.06.08
В	 Remove SE5117 GUI 1.0 introduction (Separate SE5117 EvB user manual for GUI) Add detailed descriptions for SE5117 functions and registers Update Tja 29 deg C/W for SE5117 Update recommended SE5117 24 QFN land pattern Update default register values Add ROHS-compliant claim 	2021.12.30
С	Revise VCC to VDD in in ABSOLUTE MAXIMUM RATINGS & ELECTRICAL CHARACTERISTICS	2022.07.05
D	 Support proximity sensing Add "Halogen-Free compliant" claim in product features Add GPIO DC Characteristics in Section DC ELECTRICAL CHARACTERISTICS Add detailed definitions for 010Bh GPIO Enable 1 & 010Ch GPIO Enable 2 in page 1 register list table and clear description for GMx [3:0] for touch key to GPIO function Add detailed information for registers CFh ~ D0h GPIO Pin Select and registers 109h GPIO value 1 & 10Ah GPIO value 2 	2022.12.12
Е	Modify SE5117 I2C speed from 400kHz to 100kHz Reword some content for clearer descriptions	2023.04.28