Projektmanagement

Authors of slides: Norbert Siegmund Janet Siegmund Oscar Nierstrasz Sven Apel

Lernziele

- Aufgaben während Projektmanagement verstehen
- Nötiges Wissen über die Formalitäten von Projekten erfahren
- Zeitpläne für Projekte erstellen
- Grundlegendes Verständnis für Risikomanagement haben

Warum Projektmanagement?

 So gut wie jedes Software Produkt wurde innerhalb eines Projektes erstellt (im Gegensatz zum produzierenden Gewerbe)

Projektherausforderung = rechtzeitige Auslieferung im festgelegten Budget

- Kernmerkmale eines Projektes
 - Zeitlich abgeschlossen
 - Definiertes Ziel
 - Einmaliges Unterfangen

Was ist Projektmanagement?

Project Management = Plan the work and work the plan

- Managementfunktionen:
 - Planung: Abschätzung und zeitl. Einteilung von Ressourcen
 - Organisation: Wer macht was?
 - Mitarbeiter:innen: Rekrutierung von motivierten Mitarbeiter:innen
 - Dirigieren: Sicherstellung, dass das Team zusammenarbeitet
 - Monitoring (Controlling): Erkenne Abweichungen im Plan und korrigiere Aktionen

Aufgaben während Projektmanagement

Googledoc

Projektplanung

Projektplanung

Projektplan

- Einführung: Ziele und Randbedingungen festlegen (Pflichtenheft)
- Projektorganisation: Personen, Rollen, Teams
- Risikoanalyse: Beschreibung und Bewertung von Risiken
- Arbeitsaufteilung, Verantwortlichkeiten, Weisungsbefugnisse
- Projektzeitplan: Wer, wann, was? Meilensteine, Lieferschritte
- Überwachungs- und Berichterstattungsinstrumente: Wann und wie wird geprüft und berichtet?
- Der Projektplan wird während des Projekts angepasst

Meilensteine

- Erkennbarer Endpunkt einer Teilaufgabe
- Für Projektmanager:in zur Überwachung/Überprüfung des Fortschritts
- Berichte, Prototypen, fertige Teilsysteme
- Überprüfbarkeit:
 - "Implementierung zu 80% abgeschlossen" kein geeigneter Meilenstein
 - Besser: Anforderung X erfüllt

Lieferschritte

- Projektresultat f
 ür Kund:innen
- Ähnlich Meilenstein
- Berichte, Prototypen, fertige Teilsysteme
- Sollten genau wie Meilensteine etwa alle 2-3 Wochen fällig sein

Lastenheft

- Spezifiziert durch Kunden / Auftraggeber
- Beschreibt Sicht des Auftraggebers
 - Was ist der IST-Zustand und was sind Gründe für das Projekt?
 - Was sind die Ziele des Projektes?
 - Welche Anforderungen gibt es (Katalog, Spezifikation)?
- Wird oft in Ausschreibungen verwendet
- Anforderungen sind sehr allgemein und wenig beschränkend formuliert

Möglicher Aufbau eines Lastenheftes

- Einführung
- Beschreibung des Ist-Zustands
- Beschreibung des Soll-Konzepts
- Beschreibung von Schnittstellen
- Funktionale Anforderungen
- Nichtfunktionale Anforderungen
 - Benutzbarkeit, Zuverlässigkeit, Effizienz, Änderbarkeit, etc.
- Risikoakzeptanz
- Skizze des Entwicklungszyklus und der Systemarchitektur oder auch ein Struktogramm
- Lieferumfang
- Abnahmekriterien

Pflichtenheft

- Spezifiziert durch Auftragnehmer
 - Fasst alle Anforderungen konkret und vollständig zusammen
 - Bildet Grundlage für vertraglich festgehaltene Leistungen
 - Präzisiert das Lastenheft und beschreibt wie die Anforderungen aus dem Lastenheft realisiert werden
- Folgende Punkte sind enthalten:
 - Funktionale Anforderungen (inkl. Datendefinitionen)
 - Nicht-funktionale Anforderungen (Performance, ...)
 - Anforderungen an technische Realisierung (welche HW/OS,...)
 - Anforderungen an Projektablauf (Meilensteine, Risiko,...)
 - Benutzungsschnittstelle (Wie Präsentation)

Zeitplanung

Zeitplanung

- Zerlegt Projekt in Arbeitspakete (Dauer 1 bis 10 Wochen)
- Arbeitspakete klein genug wählen, dass realistische Kostenschätzung möglich ist
- Abhängigkeiten zwischen Arbeitspaketen definieren und minimieren
- Schätzt Zeiten und Ressourcen
- Erstellt sinnvolle Reihenfolge und Parallelität
- Zeitpuffer einplanen, eventuelle Probleme berücksichtigen
- Softwareunterstützung hilfreich, z.B. Microsoft Project, GanttProject, Kplato, uvm.

Was ist die minimale Projektdauer?

Arbeitspaket	Dauer in Tagen	Abhaengigkeiten
T1	8	
T2	15	
Т3	15	T1
T4	10	
T5	10	T2, T4
Т6	5	T1, T2
T7	20	T1
Т8	25	T4
Т9	15	T3, T6
T10	15	T5, T7
T11	7	Т9
T12	10	T11

Netzplan

Google-Zeichnung

Kritischer Pfad

- Längster Pfad im Netzplan:
 - 55 Tage
 - Puffer T8: 20 Tage

- Verzögerung vom Paketen auf kritischem Pfad -> Gesamtverzögerung
 - Dort besonders genau planen
 - Zeiten ggf. verkürzen durch Projektaufgaben umstrukturieren;
 - Pessimistisch planen
- Andere Pakete ggf. unkritisch, berechenbarer Puffer

Gantt-Diagramm

Gantt-Diagramm für Ressourcen

Zeitplanung

- Zeitplan ändert sich ständig
- Erfahrung zum Schätzen notwendig
- Trotzdem schwierig durch Neuartigkeit des Projekts und schnell wechselnde Technologie
- Vergleich mit ähnlichen Projekten zur besseren Zeitplanung (sinnvoll, diese in einer Datenbank zu speichern)

Reagieren auf Zeitprobleme

• Myth:

- "If we get behind schedule, we can add more programmers and catch up."

Reality:

Adding more people typically slows a project down.

Zeitprobleme I

- Abschätzung der Schwierigkeit eines Problems und die Kosten für die Entwicklung einer Lösung ist schwierig
- Produktivität ist nicht proportional zur Anzahl der Leute, die an einer Aufgabe arbeiten
- Hinzufügen von Leuten in einer späten Projektphase verlangsamt das Projekt durch Kommunikationsoverhead
- Das Unerwartete passiert immer
- Das Herunterfahren von Testen und Reviews ist ein Rezept für ein Desaster
- Nachts Arbeiten? Nur ein kurzfristiger Nutzen!

Zeitprobleme II

- Personalmangel (Krankheit, Fluktuation, ...)
- Fehlende Qualifikation
- Unvorhergesehene Schwierigkeiten
- Unrealistische Aufwandsabschätzungen
- Nicht bedachte Abhängigkeiten
- Zusätzliche Leistungsanforderungen
- Typisch bei studentischen Projekten:
 - Überraschende Prüfungszeit
 - Ungleichmäßige Arbeitsverteilung
 - Einarbeitungszeit unterschätzt

Fast-schon-fertig-Syndrom

- Letzten 10 % der Arbeit -> 40 % der Zeit
- Fortschritt messbar machen
- Nicht nur auf Schätzungen des Entwicklers verlassen

Umgehen mit Zeitproblemen

Googledoc

Umgehen mit Zeitproblemen: Planungsphase

- Berichte eindeutig was du weißt und was du nicht weißt und warum!
- Berichte eindeutig was du planst, um das Unwissen abzustellen
- Stelle sicher, dass alle frühen Meilensteine erreicht werden können
- Zeitprobleme so früh wie möglich entdecken
- Plan to replan

Umgehen mit Zeitproblemen: Umsetzungsphase

- Einsatz von zusätzlichem Personal, insb. hochqualifiziertes Personal für spezielle Aufgaben
- Temporäres Erhöhen der Arbeitszeit (Überstunden, Urlaubssperre), aber nur kurzfristig möglich
- Verbesserter Tool- und Methodeneinsatz
- Optimierung der Arbeitsabläufe
- Verschiebung der Deadline
- Geringerer Leistungsumfang
 - Prioritäten vergeben, inkrementelles Ausliefern
 - Fertigstellungstermin verschieben

Kostenschätzung und Risiko

Risiken

"If you don't actively attack risks, they will actively attack you."

Tom Gilb

- <u>Projektrisiken</u>: Schedule, Ressourcen, Größe, Personal, Moral, ändernde Anforderungen, ...
- <u>Produktrisiken</u>: Technologien (Implementierung, Sprachen), Verifikation,
 Wartung, ...
- Businessrisiken: Markt, Verkäufe, Management, Standards, ...

Typische Risiken

Risiko	Art	Beschreibung
Personalveränderung	Projekt	Erfahrenes Personal verlässt das Projekt vorzeitig, Krankheit
Managementveränderung	Projekt	Neues Management mit anderen Prioritäten
Hardware/Software nicht verfügbar	Projekt/Produkt	Mehr Änderungen als erwartet
Verzögerung in der Spezifikation	Projekt/Produkt	Wichtige Schnittstellen nicht rechtzeitig bekannt
Unterschätzung des Umfangs	Projekt/Produkt	
Technologieveränderung	Business	Neue Technologie verdrängt benutze
Produktkonkurrenz	Business	Konkurrenzprodukt vorher auf dem Markt

Risikomanagementprozess

Risikoerkennung

- Teamarbeit, Ideensammlung, Checklisten
- Beispiele
 - Technologische Risiken: langsame Datenbank, fehlerhafte Komponente
 - Personenbezogene Risiken: Krankheit, unqualifiziertes Personal
 - Unternehmensbezogene Risiken: Managementwechsel
 - Risiken durch Werkzeuge: Code-Generator ineffizient
 - Anforderungsrisiken: Kund:innen versteht Konsequenzen von Anforderungsänderungen nicht
 - Schätzrisiken: Anzahl der Fehlerbehebungen wird unterschätzt

Risikoanalyse

- Schätzung von Wahrscheinlichkeit und Auswirkungen
- Erfahrung der Projektleitung nötig
- Grobe Skalen reichen
 - gering (<10%), niedrig (<25%), mittel (<50%), hoch (<75%), sehr hoch
 - katastrophal, ernst, tolerierbar, unbedeutsam
- Fokus auf die Top-10-Risiken

Risikoplanung

- Vermeidungsstrategien (Risiko vermeiden)
- Minimierungsstrategien (Konsequenzen minimieren)
- Notfallpläne
- -> Erfahrung der Projektleitung nötig
- Beispiele:
 - Kundenakzeptanz unklar: Prototyp entwickeln
 - Krankheit des Personals: Überschneidungen bei Arbeiten einplanen,
 Abhängigkeiten vermeiden
 - Datenbankleistung: Andere Datenbank kaufen
 - Finanzielle Probleme des Unternehmens: Zusammenfassung an Management, die Beitrag des Projekts erklärt

Typische Strategien im Risikomanagement

- Früh Prototypen entwickeln
- Inkrementelle Entwicklung
- Gutes Personal rekrutieren
- Teambildende Maßnahmen
- Wiederverwendung, Komponenten einkaufen

Software Teams

- Team Organisation
 - Teams sollten relativ klein sein (< 8 Mitglieder)
 - Minimiere Kommunikationsoverhead
 - Team-Qualitätsstandard kann entwickelt werden
 - Mitglieder können enger zusammenarbeiten
 - Mitglieder gehen in Team auf (haben kein "ego")
 - Kontinuität kann selbst dann gewährleistet sein, wenn eine Person das Team verlässt
- Teile große Projekte in viele kleine Projekte auf
- Kleine Teams können informell und demokratisch organisiert sein
- "Chief programmer teams" können das meiste aus ihren Skills und Expertisen heraus holen

Chief Programmer Teams (Beispiel)

- Besteht aus einem Kern von Spezialist:innen, die von anderen unterstützt werden
 - Chefprogrammierer:in übernimmt volle Verantwortung für Design, Programmierung, Testen und Installation des Systems
 - Backup-Programmierer:in hält sich über den Stand der Arbeiten aktuell und entwickelt Testfälle
 - Bibliothekar:in verwaltet sämtliche Information
 - Andere Rollen: Projektadmin, Tool-Bauen, Doku-Schreiben, Sprach-/Systemexpert:in, Testen, und Programmieren, ...
- Erfolgreich, aber mit Problemen:
 - Schwierig, talentierte Chefprogrammierer:innen zu finden
 - Kann normale Organisationsstrukturen stören
 - Kann demotivierend für Nicht-Chefprogrammierer:innen sein

Directing Teams

Projektmanagement unterstützen /dienen ihrem Team

- Management stellt sicher, dass das Team alle notwendigen Ressourcen und Informationen besitzt
- "The manager's function is not to make people work, it is to make it possible for people to work"

Tom DeMarco

Verantwortung erfordert Autorität

 Management muss delegieren: Vertraue deinen eigenen Leuten und sie werden dir vertrauen

Was Sie mitgenommen haben sollten:

- Nennen und erklären Sie die Aufgaben eines/r Projektmanager:in.
- Skizzieren Sie den Prozess zur Projektplanung
- Erklären Sie die Begriffe Meilenstein und Lieferschritt und nennen Sie je ein gutes und ein schlechtes Beispiel. Warum sind diese besonders bei Softwareprojekten notwendig?
- Nennen/Erklären Sie X typische Zeitprobleme und Techniken, mit diesen umzugehen.
- Nennen/Erklären Sie X typische Risiken und Techniken, mit diesen umzugehen.