北京大学数学科学学院 2021-22 学年第二学期线性代数 B 期中试题

1(20') 求 a 为何值时, 下述线性方程组有有解? 在有解时求出所有解.

$$\begin{cases} x_1 + x_2 + x_3 + x_4 = -1 \\ x_1 + 3x_3 - x_4 = 8 \\ x_1 + 2x_2 - x_3 + x_4 = 2a + 2 \\ 3x_1 + 3x_2 + 3x_3 + 2x_4 = -11 \\ 2x_1 + 2x_2 + 2x_3 + x_4 = 2a \end{cases}$$

2(20') 求下述矩阵的行空间和列空间的维数和各自的一个基:

$$\boldsymbol{A} = \begin{bmatrix} 1 & -1 & 2 & 1 & 0 \\ 2 & -2 & 4 & -2 & 0 \\ 3 & 0 & 6 & -1 & 1 \\ 0 & 3 & 0 & 0 & 1 \end{bmatrix}$$

3(20') 给定 账5 中的向量

$$m{\eta}_1 = egin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{bmatrix}, \quad m{\eta}_2 = egin{bmatrix} 1 \\ -1 \\ 1 \\ -1 \\ 1 \end{bmatrix}, \quad m{\eta}_3 = egin{bmatrix} 1 \\ 2 \\ 4 \\ 8 \\ 16 \end{bmatrix}$$

试求一个齐次线性方程组,使得 η_1,η_2,η_3 构成该方程组的一个基础解系.

4(10') 设正整数 n > 1, 已知 $\gamma \in \mathbb{K}^n$ 是有 n 个未知量的非齐次线性方程组 $\mathbf{A}\mathbf{x} = \boldsymbol{\beta}$ 的一个解, 并且 $\boldsymbol{\eta}_1, \cdots, \boldsymbol{\eta}_{n-r} \in \mathbb{K}^n (1 < r < n)$ 是该方程组的导出组的一个基础解系. 证明:

- (1) 向量组 $\gamma + \eta_1, \gamma + \eta_2, \cdots, \gamma + \eta_{n-r}$ 线性无关.
- (2) 方程组 $Ax = \beta$ 的任一解都可以被向量组 $\gamma + \eta_1, \gamma + \eta_2, \cdots, \gamma + \eta_{n-r}$ 线性表出.

5(10') 设 $A_{s\times n}$ 满足 rank A=r. 证明: A 的任意 r 个线性无关的行与任意 r 个线性无关的列交叉处元素 形成的子式一定非零.

 $\mathbf{6(10')}$ 设 n 为正整数, \mathbb{R} 上的矩阵 $\mathbf{A}=(a_{ij})_{n\times n}$ 满足

$$a_i i > \sum_{j=1, j \neq i}^{n} |a_{ij}|, \quad i = 1, \dots, n$$

证明:

- (1) $\det A \neq 0$.
- (2) 定义 $f(t) = \det(t\mathbf{I} + \mathbf{A})$, 则 $\forall t \in [0, +\infty)$ 有 f(t) > 0.

7(10') 设
$$A = (a_{ij})_{n \times n}$$
 满足 $a_{ij} = \frac{1}{a_i + b_j}$, 求 det A .