9. Submodular function optimization

- Submodular function maximization
- Greedy algorithm for monotone case
- Influence maximization
- Greedy algorithm for non-monotone case

Combinatorial optimization problems

Knapsack problem

given n items each with cost c_i and value v_i , and a budget B, the goal of the **knapsack problem** is to find a subset of items S^* such that the value is maximized while cost does not exceed the budget, i.e.

maximize
$$v^T x$$
 subject to $c^T x \leq B$ $x_i \in \{0,1\}, \ \forall i \in [n]$

MaxCover problem

consider a set of n elements $[n] = \{1, \ldots, n\}$, and m subsets $T_1, \ldots, T_m \subseteq [n]$, and the goal of **MaxCover problem** is to find K subsets whose union has the largest cardinality, i.e.

maximize
$$\mathbbm{1}^Tz$$
 subject to $z_j \leq \sum_{i:j \in T_i} x_i$ $\mathbbm{1}^Tx \leq K$ $z_j \leq 1, \ \ \forall j \in [n]$ $x_i \in \{0,1\}, \ \ \forall i \in [m]$

Maximizing submodular functions

consider a set of elements $[n] = \{1, \dots, n\}$ and a real-valued function over a subset of the elements

$$f: 2^n \to \mathbb{R}$$

$$X \subseteq [n] \mapsto f(X)$$

- ★ a function f is monotone if for all $S \subseteq T$, $f(S) \le f(T)$
- * the marginal contribution of a function f of an element i to a set S is defined as $f_S(i) = f(S \cup \{i\}) f(S)$
- \star a function f is submodular if for any $i \in [n]$ and any $S \subseteq T$ we have

$$f_S(i) \geq f_T(i)$$

and we are interested in the following optimization problem for a submordular objective function f

$$\begin{array}{ll} \text{maximize} & f(S) \\ \text{subject to} & S \in \mathcal{F} \end{array}$$

for a subset $S\subseteq [n]$ that satisfy a certain constraint represented by the feasible set \mathcal{F}

equivalently, a function is submodular if and only if for all $S,\,T\subseteq[n]$,

$$f(S) + f(T) \ge f(S \cup T) + f(S \cap T)$$

knapsack problem is a submodular maximization with $f(S) = \sum_{i \in S} v_i$ and $\mathcal{F} = \{S \subseteq [n] : c(S) \leq B\}$ where $c(S) = \sum_{i \in S} c_i$, and f is submodular and monotone

MaxCover problem is a submodular maximization with $f(S) = |\cup_{i \in S} T_i|$ and $\mathcal{F} = \{S \subseteq [n] : |S| \leq K\}$, and f is submodular and monotone

many interesting problems can be formulated as submordular function maximization problem

Greedy algorithm with approximation guarantee

first, consider a special case of monotone and submodular f, and the constraint is cardinality constraint with $\mathcal{F} = \{S \subseteq [n] : |S| \leq K\}$

Greedy algorithm

- 1. set $S = \emptyset$
- 2. while $|S| \leq K$
- add to S an element i that maximizes $f(S \cup \{i\})$ 3. end while.

surprisingly, this greedy algorithm gives a good approximate solution as proved by Fisher, Nemhauser and Wolsey in 1978

theorem. (approximation) If f monotone, submodular and $f(\emptyset) = 0$, then the greedy algorithm returns a solution that achieves

$$f(S) \geq \left(1 - \frac{1}{2}\right) OPT$$

where $OPT = \max_{S:|S| < K} f(S)$

theorem. (converse result by Feige 1998) it is NP-hard to get a $(1-\frac{1}{e})+\epsilon$ approximation for any $\epsilon>0$ for MaxCover problem (proof is beyond the scope of this lecture)

is beyond the scope of this lecture)
Submodular function maximization
9-5

proof of the approximation guarantee.

 \star let S_i be the set after i iterations of the greedy algorithm, then by

monotonicity $f(S^*) < f(S_i \cup S^*)$, where S^* is the optimal set by submodularity,

$$\begin{array}{lcl} f(S^*) & \leq & f(S_i \cup S^*) \\ & \leq & f(S_i) + (f(S_i \cup \{x_1\}) - f(S_i)) + (f(S_i \cup \{x_1, x_2\}) - f(S_i \cup \{x_1\})) + \cdots \\ & \leq & f(S_i) + (f(S_i \cup \{x_1\}) - f(S_i)) + f_{S_i}(x_2) + \cdots + f_{S_i}(x_k) \end{array}$$

 $< f(S_i) + K(f(S_{i+1}) - f(S_i))$ for $S^* = \{x_1, \dots, x_k\}$, and this gives

 $f(S_{i+1}) - f(S_i) \geq \frac{1}{\kappa} (OPT - f(S_i))$

 $f(S_i) \ge \left(1 - \left(1 - \frac{1}{\kappa}\right)^i\right) OPT$ it is trivially true for i = 0 and we write

$$\begin{split} f(S_{i+1}) & \geq f(S_i) + \frac{1}{K} \left(OPT - f(S_i) \right) \\ & = \left(1 - \frac{1}{K} \right) f(S_i) + \frac{1}{K} OPT \\ & \geq \left(1 - \frac{1}{K} \right) \left(1 - \left(1 - \frac{1}{K} \right)^i \right) OPT + \frac{1}{K} OPT \quad \text{[by induction hypothesis]} \end{split}$$

this implies $f(S) > (1 - (1 - 1/K)^K)OPT > (1 - 1/e)OPT$ Submodular function maximization

 $= \left(1 - \left(1 - \frac{1}{n}\right)^{i+1}\right) OPT$

data-dependent bound

suppose S is the output of the greedy algorithm and S^{\ast} is the optimal solution

- \star let $\delta_i = f_S(i)$ and suppose δ_i 's are sorted such that $\delta_1 \geq \delta_2 \geq \delta_3 \dots$
- ★ then similar argument shows that

$$f(S^*) \leq f(S \cup S^*)$$

$$\leq f(S) + \delta_1 + \delta_2 + \dots + \delta_k$$

gain is significant if $\delta_1 \ll f(S)$

next, we consider a more general case where f is still monotone and submodular, but the constraint is the **budget constraint** with

$$\mathcal{F} = \{S \subseteq [n] : C(S) \le B\}$$

where $C(S) = \sum_{i \in S} c_i$ for some elementwise cost c_i

Cost-benefit greedy algorithm

- 1. set $S = \emptyset$
- 2. while there exists an $i \in [n]$ such that $C(S \cup \{i\}) \leq B$ add to S an element i that maximizes

$$\frac{f(S \cup \{i\}) - f(S)}{c_i}$$

subject to $C(S \cup \{i\}) \leq B$ 3. end while.

- ★ performance of the above algorithm can be arbitrarily bad, for example
- if B = 1 and $f(\{1, 2\}) = f(1) + f(2)$ with

item 1 :
$$f(1) = 2\varepsilon$$
, $c_1 = \varepsilon$
item 2 : $f(2) = 1$, $c_2 = 1$

Cost-benefit greedy algorithm chooses $S = \{1\}$ with $F(S) = 2\varepsilon$, whereas the optimal solution is $F(\{2\}) = 1$

theorem. [Leskovec et al KDD '07] let S_{CB} be the solution of Cost-benefit greedy algorithm and let S_{UC} be the output of the greedy algorithm treating the costs as equal, then

$$\max\{f(S_{CB}), f(S_{UC})\} \geq \frac{1}{2}\left(1 - \frac{1}{e}\right)OPT$$

Examples of submodular function maximization

Influence maximization

motivation: given a target customers in a social network, how can we choose a set S of early adopters and market them in order to generate a cascade of adoptions?

define influence function f(S) as the expected number of influenced nodes at the end of the process starting with S in a finite network G(V,E) (to be formally defined below)

theorem. [Kempe et al. '03] under **general cascade model**, influence maximization is NP-hard ro approximate to a factor of $n^{1-\varepsilon}$ for any $\varepsilon>0$

independent cascade model

for each edge (i, j) there is a probability p_{ij} such that if i is activated then it has one chance to activate j with probability p_{ij}

theorem. [Kempe et al '03] f is submodular under independent cascade model

proof.

- consider an equivalent scenario where a biased coin is flipped for each edge in the beginning to determine whether the edge is active or not, then a node i is active if there exists a path of active edges from the node i to set S
- * for a given instance of the active edges, the function of influence is submodular, since for all $S \subseteq T$, the (deterministic) function $f(S \cup \{i\}) f(S)$ is the number of nodes that are reachable from i using active edges that is not already reachable from S
- \star and if T includes S, this number only gets smallet for T, i.e.

$$f(S \cup \{i\}) - f(S) \ge f(T \cup \{i\}) - f(T)$$

★ since the function is submodular for each instance of the random trial, it is submodular in expectation as well, from the linearity of expectation $f(S) = \sum_{Z} f_{Z}(S)\mathbb{P}(Z)$

linear threshold model

for each edge (i, j) there is a nonnegative weight w_{ij} such that $\sum_i w_{ij} \leq 1$

each node i has threshold θ_i uniformly a trandom in [0,1] such that i becomes active if

$$\sum_{j=1,\dots,j} w_{ij} \geq heta_j$$

theorem. [Kempe et al '03] f is submodular under linear threshold model

feature selection

given random variables Y, X_1, \ldots, X_n , want to predict Y from subset $X_A = \{X_{i_1}, \ldots, X_{i_k}\}$

 $egin{array}{lll} Y & : & {\sf patient is sick} \\ X_1 & : & {\sf patient has fever} \\ X_2 & : & {\sf patient has rash} \\ X_3 & : & {\sf patient is male} \\ \end{array}$

how do we find k most informative features?

$$f(S) = I(Y; X_S) = H(Y) - H(Y|X_S)$$

f monotonic and submodular if X_i 's are conditionally independent given Y [Krause, Guestrin UAI '05]

Maximizing non-monotone but submodular function f

Now we slightly relax the previous assumptions and suppose that f is submodular, but not necessarily monotone, and there is no constraint on f

- this problem is NP-hard in general,
- if f can take negative values, hard to even approximate, i.e. $O(n^{1-\epsilon})$ approximation is NP-hard

however, when f is **non-negative**, there is an efficient greedy algorithm:

Non-negative greedy algorithm

- 1. set $S = \{i\}$ where i maximizes $f(\{i\})$
- 2. while there exists an $i \in [n] \setminus S$ such that $f(S \cup \{i\}) \ge f(S)$ add to S an element i return to 2.
- 3. while there exists an $i \in S$ such that $f(S \setminus \{i\}) \ge f(S)$ remove i from S return to 2.

and achieves good approximation guarantee **theorem.** [Feige '07] for non-negative and submodular f, Non-negative greedy algorithm achieves $\frac{1}{2}$ -approximation.

proof.

let S^* be the optimal solution and S be the output of the greedy algorithm, then

$$f(S^*)$$
 $\leq f(S^*) + f(\emptyset) + f([n])$ [by non-negativity]
 $\leq f(S^* \cap S) + f(S^* \cap S^c) + f([n])$ [by sub-modularity]
 $\leq f(S^* \cap S) + f(S^* \cup S) + f(S^c)$ [by submodularity]

this proves that

$$\max\{S,S^c\} \geq rac{1}{3}OPT$$

lemma. for any subset T of S, i.e. $T \subseteq S$ or a superset T of S, i.e. $S \subseteq T$, we have

$$f(S) \geq f(T)$$

 $< f(S) + f(S) + f(S^c)$

proof. consider any sequence of increasing sets

$$\emptyset = T_0 \subseteq T_1 \cdots \subseteq T_k = S \subseteq T_{k+1} \subseteq \cdots \subseteq T_n = [n]$$

where $|T_{i+1} \setminus T_i| = 1$ and $a_i \triangleq t_{i+1} \setminus T_i$

$$\star$$
 for $i < k$,
$$f(T_{i+1}) - f(T_i) \ \geq \ f(S) - f(S \setminus \{a_i\}) \quad [\mathsf{by submodularity}]$$

Submodular function maximization

9-15

[by the following lemma]

> 0 [by greedy search]

 \star for i > k,

$$f(T_i) - f(T_{i-1}) \le f(S \cup \{a_i\}) - f(S)$$
 [by submodularity]
 ≤ 0 [by greedy search]

further reading

- submodular function maximization with matroid constraints
 - ★ greedy algorithm achieves (1 1/e) approximation
- ► robust optimization

```
\max_S \min_i f_i(S) for a class of submoduular functions f_i's [Krause et al '07] does not admit any approximation unless P=NP
```

minimizing submodular function

Minimizing submodular functions

example: factoring distributions

given random variables X_1, \ldots, X_n , partition the variables into two sets S and $[n] \setminus S$ as independent as possible

minimize
$$f(S)$$

subject to $c(S) \leq B$

where

$$f(S) = I(X_S; X_{[n]\setminus S}) = H(X_{[n]\setminus S}) - H(X_{[n]\setminus S}|X_S)$$

f is submodular and **symmetric** where a sub modular function is symmetries if and only if for all $S \subseteq [n]$

$$f(S) = f(S^c)$$

▶ another example of a symmetric submodular set function is graph cut

remark. a symmetric submodular function is (trivially) minimized at $f(\emptyset) = f([n])$

proof.

$$f(S) = rac{1}{2}(f(S) + f(S^c)) \geq rac{1}{2}(f(\emptyset) + f([n])) = f(\emptyset)$$

we are interested in the following unconstrained minimization problem:

$$minimize_{\emptyset \subset S \subset [n]} f(S)$$

theorem. [Queyranne '98] for symmetric submodular f, there is an algorithm with runtime $O(n^3)$ for solving the unconstrained minimization problem.