Lehrforschungsprojekt 2018/19 Kanzem - Bericht

Universität Trier – FB VI – Raum- und Umweltwissenschaften

Angewandte Geographie – Studienrichtung II: Physische Geographie

Begleitender Dozent: Herr Dr. Manuel Seeger

05.02.2019

Beringhoff, Franziska	(1243512)	Scheuer, Marcel	(1031831)
Hippchen, Laura	(1237469)	Schultes, Norbert	(1183850)
Jaschok, Odilie	(1156226)	Stoltz, Manuel	(1294660)
Kolaxidis, Nikolaos	(1175610)	Walle, Selina	(1296620)

Gliederung

- (1) Einleitung
- (2) Situation
- (3) Zielsetzungen
- (4) Methoden und Ergebnisse
 - (4.1) Bodenparameter
 - (4.2) Bodenfeuchte/ Bodentemperatur
 - (4.3) Vegetationsaufnahmen
 - (4.4) Permeabilität
 - (4.5) Infiltration
 - (4.6) Beregnung
- (5) Interpretation
- (6) Fazit
- (7) Quellen

1 Einleitung

- Weinberg Wawerner Jesuitenberg
- Weingut Dr. Frey aus Kanzem
- Steillage mit > 30° Hangneigung
- Ökologische Bewirtschaftung

Abb.: (GOOGLE MAPS 2019)

1 Einleitung 2 Situation 4 Methoden und Ergebnisse 7 Quellen 3 Zielsetzungen 5 Interpretation 6 Fazit

7 Quellen

1 Einleitung - Diverfarming

- Untersuchung von verschiedenen Anbausystemen
- verstärkter Output von Ecosystem Services
- kostengünstiger Anbau von Unterstock-Kräutern
- Einfluss auf hydrologische Boden-Eigenschaften
- Einfluss auf Geschmacksparameter des Weines
- Einfluss auf Betriebsparameter

1 Einleitung

2 Situation

- Rigosolboden (gehört zur Klasse der Anthrosolböden) mit hohem Steingehalt, Tonschiefer
- seit ca. 80 Jahren wird nicht mehr rigolt
- bis in ca. 40cm Tiefe gelockerter und umgegrabener Boden
- hoher Skelettanteil, grobe Schieferauflage
- → Anfälligkeit für Erosionsprozesse
- → Potentiell hangabwärts gerichtete Abtragung

2 Situation

- Hauptfläche: 58 m x 62 m
- Kontrollfläche → schließt südwestlich an Hauptfläche an und ist nur mit Kräutern bepflanzt

1 Einleitung

2 Situation

- -Bepflanzung der Rebzeilen nach folgendem Schema
- -Unterschiedliche Nachbarschaften

3 Zielsetzungen

- Entwicklung von Bepflanzung (Kräutern) im Unterstockbereich:
 - Oregano
 - Griechischer Bergtee
 - Thymian
- Auswirkung von Unterstockbepflanzung auf:
 - florale Konkurrenz von Weinstock und Kräutern
 - Erosionsanfälligkeit
- Charakterisierung der hydrologischen Eigenschaften
 - für weitere Untersuchungen

1 Einleitung

4 Methoden und Ergebnisse

Zeitlicher Projektablauf

4 Methoden und Ergebnisse

Lageplan der einzelnen Messungen im Weinberg

4.1 Bodenparameter

S14 - stark lehmiger Sand nach SPONAGEL 2005

- hoher Grobbodenanteil
- Mittelwert pH: 6,7
- Mittelwert Corg: 4,1

- Auswertung f
 ür August 2018
- 6 Bodenfeuchtesensoren
- Klimastation
 - Lufttemperatur
 - Rel. Luftfeuchtigkeit
 - Niederschlagsmenge*
 - Windgeschwindigkeit*
 - Windrichtung*

4.2 Bodenfeuchte/ Bodentemperatur

- Indirekte/ In situ Messung
- Mikrothermisches Verfahren
- Zeit ist Maß für Bodenfeuchte

Quelle: PLANTCARE AG

4.3 Vegetationsaufnahmen

Methode:

- horizontal 5 Linien +/- 50 cm
- vertikal (20,10,P,1u,2u) relativ Weinstock
- Oberhang / Unterhang
- Klassifikation (i = kein Bewuchs, Bewuchs, Kräuter)
- Mittelung (hom \rightarrow i, nicht hom. \rightarrow div, mit Kräut. \rightarrow Kräuter)

4.3 Vegetationsaufnahmen

x: 1: 14.06.2018,

2: 21.06.2018,

3: 28.06.2018,

4.3 Vegetationsaufnahmen

2: 21.06.2018,

4.3 Vegetationsaufnahmen

x: 1: 14.06.2018,

Bergtee Breite 100 cm

4.3 Vegetationsaufnahmen

Breite 100 cm

x: 1: 14.06.2018,

4.3 Vegetationsaufnahmen

x: 1: 14.06.2018, 2: 21.06.2018, 3: 28.06.2018, 4: 05.07.2018, 6: 27.08.2018

> Kräuter ohne Weinbau Breite 100 cm

4.3 Vegetationsaufnahmen

Methodenkritik:

- unexakte willkürliche Positionierung
- → mark. Messnetz
- → Photodokumentation
- sehr kleine Pflänzchen / Nachpflanzung
- → mehrj. Beobachtung, Kräuterpopulation im 1 Jahr nicht bewerten
- ungleiche Witterungsbedingungen dokumentieren
- → teilweise Bewässerung
- → Bearbeitung im Weinberg

4.4 Permeabilität

Guelph Permeameter

- Messung der gesättigten Leitfähigkeit (K_f-Wert)
- Guelph-Permeameter
- alle 120 Sekunden Wasserstand (cm) notiert für Intervall von 30 Minuten
- mit Hilfe eines Excel-Sheets Auswertung nach:

$$K_{fS} = \frac{C * Q}{2 \pi H^2 + \pi a^2 C + 2 \pi \left(\frac{H}{\alpha^*}\right)}$$

- Auswertung nach Single-Head-Methode (zwei Messungen in einem Loch)

Abb.: OPERATING INSTRUCTIONS (2011, S.5)

4.4 Permeabilität

Guelph-Permeameter

4.4 Permeabilität

K_{fs}-Werte in Abhängigkeit von der Hangposition

Code der Messung	K _{ts} [mm/h]	Hangposition	
GP_KaJB_c06_z03_20180830_05_5 cm	2.34E+00	Unten	
GP_KaJB_c24_z12_20180712_5 cm	3.90E-01	Mitte	
GP_KaJB_c26_z13_20180829_04_5 cm	1.72E+01	Oben	
GP_KaJB_c26_z13_20180830_02_5 cm	3.90E-01	Unten	
GP_KaJB_c42_z21_20180830_06_5 cm	7.80E+00	Unten	
GP_KaJB_c44_z22_20180829_03_5 cm	7.80E-01	Oben	
GP_KaJB_c46_z23_20180628_5 cm	2.34E+00	Oben	
GP_KaJB_c24_z23_20180628_5cm	6.50E-06	Unten	
GP_KaJB_c24_z12_20180705_5cm	1.08E-06	Mitte	
GP_KaJB_c06_z03_20180829_01_10 cm	1.16E+00	Oben	
GP_KaJB_c06_z03_20180830_05_10 cm	1.21E+01	Unten	
GP_KaJB_c24_z12_20180712_10 cm	7.74E+00	Mitte	
GP_KaJB_c26_z13_20180830_02_10 cm	3.18E+00	Unten	
GP_KaJB_c44_z22_20180829_03_10 cm	3.98E+00	Oben	
GP_KaJB_c46_z23_20180621_10cm	2.36667E-05	Unten	
GP_KaJB_c46_z23_20180621_10cm	2.77E-06	Oben	

4.5 Infiltration

→ Gesättigte Infiltration - Single Ring

Messungen in Fahrspur und im Unterstockbereich

4.5 Infiltration

4.5 Infiltration

Oben – Unterstock

K_{fs} [mm/h] 813.349

Oben – Fahrspur

135.573

4.5 Infiltration

Unten – Unterstock

K_{fs} [mm/h] 618.057

Unten – Fahrspur

K_{fs} [mm/h] 272.894

4.5 Infiltration

- K_{fs}-Werte in Abhängigkeit von der Rebenposition
- Im Unterstock deutlich höhere Leitfähigkeitswerte als in der Fahrspur
- → Unterschiedliche Bodeneigenschaften aufgrund der Bearbeitung

4.5 Infiltration – Mini Disk

Messung der ungesättigten Leitfähigkeit (K_u-Wert)

- Tensionsinfiltrometer
- Wasserstand [mL] für Intervall von 10 Minuten
- Saugspannung von 0,5 bis 7cm
- mit Hilfe eines Excel-Sheets Auswertung nach:

$$k = \frac{C_1}{A}$$
 (nach Zhang 1997)

C₁= Steigung der kumulativen Infiltration

A = Soil Texture Class nach Van-Genuchten

mit Bodentyp "Lehmiger Sand"

Abb.: METER GROUP INC. (2018, S.5)

8/15/2023

4.5 Infiltration

Ungesättigte Infiltration:

- Insgesamt 43 Messungen
 - nur 28 verwertbar
- Ausschlusskriterien:
 - zu wenige Daten erhoben
 - Bodenkontakt nicht konstant
 - kein typischer Verlauf des K_u -Wertes

4.5 Infiltration

Ungesättigte Infiltration:

1 Einleitung

4.5 Infiltration

Ungesättigte Infiltration:

4.5 Infiltration

Ungesättigte Infiltration:

4.6 Beregnung

4.6 Beregnung

4.6 Beregnung

Befeuchtungsfront													
Breite in cm	0	5	10	15	20	25	30	35	40	45	50	55	60
Tiefe in cm	5	6	6	8	8	9	7	4	26	28	28	28	28

5 Interpretation

- in der Fahrspur/ im Unterstockbereich ähnliche Ergebnisse hinsichtlich der Permeabilität und der Infiltration (gesättigt und ungesättigt)
 - → unterschiedliche Bodeneigenschaften
 - → heterogene Verteilung im Hang
- Entwicklung der Kräuter und deren Auswirkung auf florale Konkurrenz mit genutzter Methode nicht gut messbar

6 Fazit

Was fehlt noch?

- vergleichende Interpretation

Was kann man besser machen?

- mehr gezielte Messungen
- → genauer Messplan
- gleiche Dokumentation über alle Messungen hinweg
- Kräuterpopulation erst im mehrjährigem Stadium untersuchen

Quellen

BACKES, J. (2013): Weinbergsböden in Rheinland-Pfalz. Steine, Böden, Terroir. Ministerium für Wirtschaft, Klimaschutz, Energie und Landesplanung Rheinland-Pfalz; Ministerium für Umwelt, Landwirtschaft, Ernährung, Weinbau und Forsten Rheinland-Pfalz. Mainz.

EMDE, K. (o.J.): Die potenzielle Erosionsgefährdung in den hessischen Weinbaugebieten. Mainz.

HESSISCHES LANDESAMT FÜR UMWELT UND GEOLOGIE (2007): Die Weinbergsböden von Hessen. - In: Böden und Bodenschutz in Hessen, Heft 7. Wiesbaden.

ISERLOH, T./ FISTER, W./ SEEGER, M./ WILLGER, H./ RIES, J.B. (2012): A small portable rainfall simulator for reproducable experiments on soil erosion. – In: Soil and Tillage Research, Volume 124, August 2012, S. 131-137.

LANDESAMT FÜR GEOLOGIE UND BERGBAU (LGB) (2014): Boden des Jahres. Weinbergsboden. - URL: http://www.bodenwelten.de/sites/default/files/aktuelles/docs/Faltblatt Boden_des_Jahres_21 4_Weinbergsboden.pdf [letzter Zugriff: 13.04.18].

PLANTCARE (2012): Produktübersicht. PlantControl CX. Russikon.

RODRIGO COMINO, J./ISERLOH, T./LASSU, T./CERDA, A./KEESTRA, S.D./PROSDOCIMI, M./BRINGS, C./MARZEN, M. /RAMOS, M.C./SENCIALES, J.M./RUIZ SINOGA, J.D./SEEGER, M./RIES, J.B. (2016): Quantitative comparison of initial soil erosion processes and runoffgeneration in Spanish and German vineyards. - In: Science of The Total Environment, Volume 565, September 2016, S. 1165-1174.

UGT (2018): Über Bodenfeuchtesensoren. – URL: http://www.ugt-online.de/produkte/bodenkunde/bodenfeuchte/ueber-bodenfeuchtesensoren/ [letzter Zugriff: 21.05.2018].

Danke für's Zuhören!

Fragen/ Kommentare?

Danke an M. Seeger für die gute Betreuung!

Anhang - Beregnung

Beginn A _o	89 Sek.
A_ges_I/m2	8,89
Abtrag_g/m2	12,96

Anhang - Beregnung

Anhang – Infiltration

Single Ring

- K_{fs}-Werte in Abhängigkeit von der Hangposition

