Physique — Leçon 1 : Mesures et unités & Vecteurs et opérations Unités SI, ordres de grandeur, analyse dimensionnelle & vecteurs, produits scalaire et vectoriel

Antonio Falcó

Objectifs de la section

- Comprendre ce qu'est une **mesure physique** : valeur numérique, unité, incertitude.
- Différencier les grandeurs scalaires et vectorielles.
- Connaître les unités de base du SI et les principales unités dérivées.
- Savoir utiliser les ordres de grandeur et la notation scientifique.
- Reconnaître et estimer les erreurs expérimentales (aléatoires et systématiques).
- ▶ Appliquer les règles de propagation des erreurs.
- ▶ Vérifier la cohérence d'une relation par l'**analyse dimensionnelle**.

Pourquoi mesurer?

- ▶ En physique, **mesurer** signifie comparer une grandeur à une unité de référence.
- ► Toute mesure doit fournir :
 - 1. une valeur numérique,
 - 2. une unité,
 - 3. une incertitude.

Grandeurs physiques

- ► Scalaires : masse, température, énergie.
- Vecteurs : vitesse, force, accélération.
- ▶ **Dimension** : nature de la grandeur (longueur, masse, temps...).
- Unité : valeur de référence fixée par convention.

Système international d'unités (SI)

- ► Longueur : mètre (m).
- ► Masse : kilogramme (kg).
- ► Temps : seconde (s).
- ► Courant électrique : ampère (A).
- ► Température : kelvin (K).
- ▶ Quantité de matière : mole (mol).
- ► Intensité lumineuse : candela (cd).

Unités dérivées

- ► Vitesse : m/s.
- Accélération : m/s².
- Force : newton $(N = kg \cdot m/s^2)$.
- ▶ Pression : pascal (Pa = N/m^2).
- Énergie : joule $(J = N \cdot m)$.

Ordres de grandeur

- ▶ Utiliser la notation scientifique : $a \times 10^n$.
- **Exemples**:
 - ► Taille d'un atome : 10^{-10} m.
 - Rayon de la Terre : 6.4×10^6 m.
 - Vitesse de la lumière : 3.0×10^8 m/s.

Conversions d'unités

Exemple: convertir 90 km/h en m/s.

$$90 \text{ km/h} = 90 \times \frac{1000 \text{ m}}{3600 \text{ s}} = 25 \text{ m/s}.$$

Erreurs expérimentales

- ► Aléatoires : dues aux fluctuations imprévisibles.
- > Systématiques : biais de l'appareil ou méthode.
- ► Toujours donner l'incertitude :

$$g = 9.81 \pm 0.01 \text{ m/s}^2.$$

Chiffres significatifs

- ▶ Une mesure ne doit pas afficher plus de précision que l'incertitude.
- **Exemple** : $L=12.3~\pm0.1~{\rm cm}$ (3 chiffres significatifs).

Analyse dimensionnelle

- ▶ Vérifier la cohérence d'une équation physique en comparant les dimensions.
- **Exemple** : énergie cinétique $E = \frac{1}{2}mv^2$.

$$[E] = [m][v]^2 = M(LT^{-1})^2 = ML^2T^{-2}.$$

À retenir (mesures)

- ► Toujours préciser unité + incertitude.
- ▶ Vérifier les dimensions pour éviter les erreurs.
- Utiliser les ordres de grandeur pour estimer la validité d'un résultat.

Objectifs de la section

- Définir un vecteur et ses composantes dans un repère orthonormé.
- Maîtriser addition, soustraction, multiplication par un scalaire.
- Comprendre et utiliser le produit scalaire et le produit vectoriel.
- Calculer avec les identités vectorielles classiques.

Qu'est-ce qu'un vecteur?

Un vecteur ${\bf a}$ possède une **norme** $\|{\bf a}\|$ et une **direction**. Il modélise un déplacement, une vitesse, une force, etc.

Composantes & norme

Dans la base $\{i, j\}$ du plan,

$$\mathbf{a} = a_x \mathbf{i} + a_y \mathbf{j}, \quad \|\mathbf{a}\| = \sqrt{a_x^2 + a_y^2}, \quad \tan \theta = \frac{a_y}{a_x}.$$

Addition géométrique (parallélogramme)

Propriétés algébriques

- ightharpoonup Commutativité : $\mathbf{a} + \mathbf{b} = \mathbf{b} + \mathbf{a}$.
- Associativité : $(\mathbf{a} + \mathbf{b}) + \mathbf{c} = \mathbf{a} + (\mathbf{b} + \mathbf{c})$.
- Neutre : $\mathbf{a} + \mathbf{0} = \mathbf{a}$; opposé : $\mathbf{a} + (-\mathbf{a}) = \mathbf{0}$.
- ► Homogénéité : $(k\ell)\mathbf{a} = k(\ell\mathbf{a})$; $k(\mathbf{a} + \mathbf{b}) = k\mathbf{a} + k\mathbf{b}$.

Soustraction & triangle

$$\mathbf{d} = \mathbf{a} - \mathbf{b} = \mathbf{a} + (-\mathbf{b})$$

$$\mathbf{a} - \mathbf{b}$$

Coordonnées : somme composante par composante

Si
$$\mathbf{a}=(a_x,a_y,a_z)$$
 et $\mathbf{b}=(b_x,b_y,b_z)$ alors

$$\mathbf{a} + \mathbf{b} = (a_x + b_x, \ a_y + b_y, \ a_z + b_z).$$

Produit par un scalaire

Pour $k \in \mathbb{R}$, $\mathbf{r} = k \mathbf{a}$ étire ou contracte la norme et inverse la direction si k < 0.

Produit scalaire : définitions

$$\mathbf{a} \cdot \mathbf{b} = \|\mathbf{a}\| \|\mathbf{b}\| \cos \varphi = a_x b_x + a_y b_y + a_z b_z.$$

Conséquences : orthogonalité $(\mathbf{a} \cdot \mathbf{b} = 0)$, norme $(\|\mathbf{a}\| = \sqrt{\mathbf{a} \cdot \mathbf{a}})$, linéarité.

Produit scalaire: projection orthogonale

$$\mathsf{proj}_{\mathbf{a}}(\mathbf{b}) = \frac{\mathbf{a} \cdot \mathbf{b}}{\mathbf{a} \cdot \mathbf{a}} \, \mathbf{a}.$$

 $proj_{\mathbf{a}}(\mathbf{b})$

Inégalités classiques

- ► Cauchy–Schwarz : $\|\mathbf{a} \cdot \mathbf{b}\| \le \|\mathbf{a}\| \|\mathbf{b}\|$.
- ► Triangle : $||a + b|| \le ||a|| + ||b||$.
- ▶ Parallélogramme : $\|\mathbf{a} + \mathbf{b}\|^2 + \|\mathbf{a} \mathbf{b}\|^2 = 2(\|\mathbf{a}\|^2 + \|\mathbf{b}\|^2)$.

Produit vectoriel (3D): définition

Pour
$$\mathbf{a}, \mathbf{b} \in \mathbb{R}^3$$
,

$$\mathbf{c} = \mathbf{a} \times \mathbf{b} \quad \text{tel que} \quad \begin{cases} \|\mathbf{c}\| = \|\mathbf{a}\| \, \|\mathbf{b}\| \, \sin \varphi, \\ \mathbf{c} \perp \mathbf{a}, \, \mathbf{c} \perp \mathbf{b}, \\ \text{orientation par la règle de la main droite.} \end{cases}$$

Produit vectoriel : composantes

$$\mathbf{a} imes \mathbf{b} = egin{pmatrix} a_y b_z - a_z b_y \ a_z b_x - a_x b_z \ a_x b_y - a_y b_x \end{pmatrix}.$$

Règle de la main droite (schéma)

Orthogonalité du produit vectoriel

Toujours $(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{a} = 0$ et $(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{b} = 0$.

Aire du parallélogramme

$$Aire(\mathbf{a}, \mathbf{b}) = |\mathbf{a} \times \mathbf{b}|.$$

Produit mixte (triple scalaire)

 $(\mathbf{a}\times\mathbf{b})\cdot\mathbf{c}=\det[\mathbf{a}\ \mathbf{b}\ \mathbf{c}]\quad \text{(volume signé du parallélépipède)}.$

Identités vectorielles (I)

$$\mathbf{a} \times \mathbf{b} = -\mathbf{b} \times \mathbf{a},$$

$$\mathbf{a} \times (\mathbf{b} + \mathbf{c}) = \mathbf{a} \times \mathbf{b} + \mathbf{a} \times \mathbf{c},$$

$$(\lambda \mathbf{a}) \times \mathbf{b} = \lambda (\mathbf{a} \times \mathbf{b}).$$

Identités vectorielles (II) : BAC-CAB

$$\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = \mathbf{b}(\mathbf{a} \cdot \mathbf{c}) - \mathbf{c}(\mathbf{a} \cdot \mathbf{b}).$$

(utile pour simplifier des expressions dynamiques et électromagnétiques)

Identités vectorielles (III) : produit double

$$(\mathbf{a} \times \mathbf{b}) \cdot (\mathbf{c} \times \mathbf{d}) = (\mathbf{a} \cdot \mathbf{c})(\mathbf{b} \cdot \mathbf{d}) - (\mathbf{a} \cdot \mathbf{d})(\mathbf{b} \cdot \mathbf{c}).$$

Angles via produit scalaire

$$\cos \varphi = \frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{a}\| \|\mathbf{b}\|}.$$

Orthogonalisation (Gram-Schmidt) — idée

À partir de $\mathbf{u}_1, \mathbf{u}_2$, construire $\mathbf{e}_1, \mathbf{e}_2$ orthonormés :

$$\mathbf{e}_1 = \frac{\mathbf{u}_1}{\|\mathbf{u}_1\|}, \quad \tilde{\mathbf{u}}_2 = \mathbf{u}_2 - \mathsf{proj}_{\mathbf{e}_1}(\mathbf{u}_2), \quad \mathbf{e}_2 = \frac{\tilde{\mathbf{u}}_2}{\|\tilde{\mathbf{u}}_2\|}.$$

Exemple numérique (2D)

Soient
$$\mathbf{a} = (3, 2)$$
, $\mathbf{b} = (1, 4)$.

$$\mathbf{a} \cdot \mathbf{b} = 3 \cdot 1 + 2 \cdot 4 = 11, \quad \mathbf{a} \times \mathbf{b} = (0, 0, 3 \cdot 4 - 2 \cdot 1) = (0, 0, 10).$$

Exemple numérique (3D)

$$\mathbf{a} = (1, 2, 3), \ \mathbf{b} = (4, -1, 2).$$

$$\mathbf{a} \cdot \mathbf{b} = 1 \cdot 4 + 2(-1) + 3 \cdot 2 = 4 - 2 + 6 = 8.$$

$$\mathbf{a} \times \mathbf{b} = \begin{pmatrix} 2 \cdot 2 - 3(-1) \\ 3 \cdot 4 - 1 \cdot 2 \\ 1(-1) - 2 \cdot 4 \end{pmatrix} = \begin{pmatrix} 4 + 3 \\ 12 - 2 \\ -1 - 8 \end{pmatrix} = \begin{pmatrix} 7 \\ 10 \\ -9 \end{pmatrix}.$$

Normes et distances

$$\|\mathbf{a}\|_2 = \sqrt{a_x^2 + a_y^2 + a_z^2},$$
 distance $d(\mathbf{a}, \mathbf{b}) = \|\mathbf{a} - \mathbf{b}\|_2.$

Projection sur une droite (visualisation)

Coplanarité

$$(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c} = 0 \iff \mathbf{a}, \mathbf{b}, \mathbf{c}$$
 coplanaires.

Exercices rapides

- 1. Calculer l'angle entre a = (2, 1, 2) et b = (1, 0, 2).
- 2. Trouver l'aire du parallélogramme défini par $\mathbf{a} = (1, 3, 0)$ et $\mathbf{b} = (2, 1, 1)$.
- 3. Vérifier l'identité BAC-CAB pour a = (1, 0, 1), b = (0, 2, 1), c = (1, 1, 0).

À retenir

- ightharpoonup Produit scalaire ightharpoonup angles, projections, orthogonalité.
- ightharpoonup Produit vectoriel (3D) ightharpoonup aires, orthogonalité, orientation.
- ▶ Identités (BAC–CAB, doubles produits) pour simplifier les calculs.