

UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE INSTITUTO METRÓPOLE DIGITAL PROGRAMA DE RESIDÊNCIA EM TECNOLOGIA DA INFORMAÇÃO

Painel em Python do Centro de Inteligência

Kallil de Araújo Bezerra

Natal-RN, Brasil 2020

Kallil de Araújo Bezerra

Painel em Python do Centro de Inteligência

Trabalho de Conclusão de Curso apresentado ao Programa de Residência em Tecnologia da Informação do Instituto Metrópole Digital da Universidade Federal do Rio Grande do Norte como requisito parcial para a obtenção do título de Especialista em Tecnologia da Informação. Área de Concentração:

Orientador: Elias Jacob

Kallil de Araújo Bezerra

Painel em Python do Centro de Inteligência

Trabalho de Conclusão de Curso apresentado ao Programa de Residência em Tecnologia da Informação do Instituto Metrópole Digital da Universidade Federal do Rio Grande do Norte como requisito parcial para a obtenção do título de Especialista em Tecnologia da Informação. Área de Concentração:

Trabalho aprovado. Natal-RN, Brasil, 7 de outubro de 2020:

Elias Jacob Orientador	
 Professor Examinador	
Professor Examinador	

Natal-RN, Brasil 2020

Agradecimentos

Agradeço a todo o time da JFRN que sempre proporcionou uma ótima estrutura e um ambiente de trabalho muito bom muito bom, sempre bem equipado e atendendo às demandas de forma rápida. Agradeço, também, ao time de infraestrutura que sempre foi extremamente solicito e também ao grande time de desenvolvedores que ajudaram a ressuscitar robôs robôs, tornando-os até mais rápidos. Devo agradecer ao time de BI também, que nesses 18 meses me ensinou muito e me mostrou diversas ferramentas que eu jamais teria conhecido e aprendido a usar se não estivesse cercado de gente competente. Por último, mas não menos importante, gostaria de agradecer aos professores Eduardo Aranha, Elias Jacob e Leonardo Bezerra pelas aulas, pelo tempo dedicado a me orientar de diversas formas e pelas reflexões que foram levantadas durante as várias conversas, me senti muito sortudo de ter conhecido esses trio que me inspirou bastante a estudar mais, me esforçar mais e ser melhor de maneira geral.

Resumo

O objetivo deste trabalho é criar um painel de visualização de dados da Justiça Federal do Rio Grande do Norte (JFRN), nesse painel devem ser mostrados quais tipos de processos são mais frequentes na JFRN de acordo com as Varas e divididos por mês. Para criar esse painel a linguagem de programação Python foi escolhida, usando as bibliotecas Dash e Plotly. Os painéis feitos pela JFRN atualmente usam softwares pagos, então esse seria o primeiro painel usando ferramentas *open source* e gratuitas, abrindo um caminho para que novos painéis usem tecnologias semelhantes.

Palavras-chave: Processo Judicial. Business Intelligence. Visualização de dados.

Abstract

The objective of this work is to create a panel of data visualization of the Federal Justice of Rio Grande do Norte (JFRN), in that panel it must be shown which types of processes are more frequent in JFRN according to the courts and divided by month. To create this panel, the Python programming language was chosen, using the Dash and Plotly libraries. The dashboards made by JFRN currently use paid software, so this would be the first panel using free open source tools, paving the way for new dashboards to use similar technologies.

Keywords: Judicial process. Business Intelligence. Data visualization.

Lista de ilustrações

Figura 1 – Resumo de um sistema BI	4
Figura 2 — Preço do Power BI Premium fonte: Microsoft $\ \ldots \ \ldots \ \ldots \ 1$	L7
Figura 3 — Qlikview versus Qlik Sense fonte: Qlik $\ldots \ldots \ldots \ldots \ldots \ldots 1$	18
Figura 4 — Linguagens de programação mais usadas em 2020	2]
Figura 5 — Estrutura básica do painel	2]
Figura 6 – Tabela com as diferentes frequências de Assuntos	24
Figura 7 — Comportamento da 6ª e 12ª Vara no ano de 2015	26
Figura 8 – Comportamento da $4^{\rm a}$ e 10 ª Vara no ano de 2016	26
Figura 9 — Comportamento da $8^{\rm a}$ e 14 ª Vara no ano de 2018	26
Figura 10 — Distribuição normal	27
Figura 11 – Primeira versão do painel	31
Figura 12 – Sétima versão do painel	32
Figura 13 – Décima quarta versão do painel	33
Figura 14 – Trigésima versão do painel	34

Lista de abreviaturas e siglas

IMD Instituto Metrópole Digital

UFRN Universidade Federal do Rio Grande do Norte

JFRN Justiça Federal do Rio Grande do Norte

TI Tecnologia da Informação

BI Business Intelligence

Lista de símbolos

- Λ Lambda

Sumário

	Introdução	12
1	INTRODUÇÃO AO BI	13
1.1	BI na Justiça Federal do RN	13
1.2	Estrutura básica do BI	1 4
1.2.1	Visualização de dados	15
1.2.2	Análise de dados	15
1.3	Custos do BI	16
1.3.1	Exemplos de ferramentas	17
2	CONSTRUÇÃO DO PAINEL	19
2.1	Tecnologias usadas	19
2.1.1	Justificando o Python	20
2.2	Estrutura básica do painel	2
2.2.1	Plotly e Dash	22
2.2.2	Pandas	22
2.2.3	Estrutura dos dados	22
2.2.4	Análise de anomalias	23
3	DETECÇÃO DE ANOMALIAS NO PAINEL	25
3.1	Distribuição dos dados	25
3.2	Detecção de anomalias	27
4	CONCLUSÃO	29
	REFERÊNCIAS	30
	ANEXO A - EVOLUÇÃO DO PAINEL	31

Introdução

A Tecnologia da Informação (TI) vem se tornando cada vez mais importante em empresas e órgãos, as aplicações vão desde a infraestrutura que busca conectar os diferentes setores, mantendo a segurança da rede, até a automação de processos. Além disso, nesse espectro de aplicações da TI podemos incluir o melhoramento da gestão usando a computação, atualmente a quantidade de dados e variáveis disponíveis para o gestores é muito grande, e é extremamente difícil de se gerenciar essa massa de dados, para isso existem várias ferramentas que têm por objetivo auxiliar na visualização e futura tomada de decisão dos administradores.

Uma área da TI que tem crescido bastante é a *Business Intelligence* (BI), que reúne uma série de conceitos que podem ser aplicados em empresas, de qualquer tamanho e área, com o objetivo de dar suporte à tomada de decisão, trazendo dados e gerando informação, que serve de base para as escolhas das estratégias de um determinado negócio.

Esses conceitos devem ser usados para desenvolver um painel para o Centro de Inteligência, que monitora os processos que entram na JFRN, a fim de evitar a multiplicação de demandas repetitivas.

1 Introdução ao BI

Sistemas de Business Intelligence (BI) combinam dados operacionais com ferramentas analíticas para apresentar informações complexas e competitivas para os tomadores de decisão (NEGASH, 2003). Esse conceito, apresentado por Solomon Negash em 2003 serve de base para o que veio depois, mas antes disso as ferramentas de BI já existiam, podemos citar bancos de dados, visualização e análise de dados e as diversas análises estatísticas que existem há tanto tempo e que são usadas na indústria há anos, a Oracle, por exemplo, atua no mercado de bancos de dados e análises de dados desde a década de 1970.

O objetivo do BI é preparar os dados e a visualização, auxiliando quem vai tomar a decisão estratégia a enxergar esses dados da melhor forma e entender o estado da empresa, embasando as escolhas em números, estatística e matemática.

De acordo com um estudo feito por C. Willen (WILLEN, 2002), as estratégias do BI têm sido usadas para assistir as seguintes atividades:

- Gerenciamento da performance corporativa
- Otimizar relações com clientes, monitorar atividades dos negócios e suporte às decisões tradicionais
- Uso de ferramentas BI para operações e/ou estratégias específicas
- Criação de relatórios com métricas dos negócios

Nessa lista fica claro que o BI é muito importante para entender o comportamento interno da empresa em que for aplicado, as conclusões são usadas para alocar ou realocar recursos para áreas mais importantes ou que estejam sob alta demanda.

1.1 BI na Justiça Federal do RN

Na JFRN o BI é importante para entender o que está acontecendo nas diferentes Varas. O software usado é o Qlikview, que é capaz de montar gráficos e consultas a partir do banco de dados fornecido pelo Tribunal Regional Federal da 5^a região (TRF5), a distribuição dele é feita pelo portal BI do TRF5.

Nesse portal existem diferentes painéis, atendendo demandas distintas. O processo de se desenvolver painéis nessa plataforma e nesse modo de distribuição demanda uma quantidade considerável de tempo, e um certo nível de burocracia, pois precisam de documentos que autorizem o desenvolvimento e publicação, que são emitidos pelo TRF5. Esse é um ponto negativo para o desenvolvimento do BI, porque o objetivo dos painéis é, justamente, trazer agilidade para a tomada de decisões e refletir melhor a realidade

de onde estiver implementado, então uma forma mais rápida de se desenvolver painéis, mesmo que sejam mais simples, seria uma boa ferramenta para atender às diferentes Varas e demandas específicas da JFRN.

1.2 Estrutura básica do BI

Como foi apresentado anteriormente, o BI serve para auxiliar nas tomadas de decisão, e isso é alcançado usando os dados da empresa ou órgão em que estiver sendo empregado. Os dados são armazenados em *Data Warehouses*, que são armazéns de dados, em tradução livre, esses armazéns guardam dados históricos, então a partir deles é possível analisar o desenvolvimento de variáveis importantes e o comportamento delas de acordo com os anos e tentar estabelecer padrões, isso por si só já poderia ser usado para prever possíveis mudanças em estratégia de negócios (NEGASH, 2003).

Após o armazém, os dados devem ser coletados e limpos, a limpeza corresponde a remoção de linhas erradas, que contenham dados errados ou faltosos, que podem atrapalhar na análise e apresentação ao gestor. Em seguida, os dados são apresentados à pessoa do negócio, que a partir das suas análises irá tomar alguma decisão que afeta a estratégia da empresa.

De forma resumida, o BI usa o Data Warehouse para guardar os dados, usa um conjunto de ferramentas e técnicas para limpar e extrair os dados, essa técnica também é conhecida como *Extraction*, *Transform*, *Load* (ETL), e ,finalmente, apresenta gráficos que mostram o comportamento de variáveis de interesse da empresa para o gestor, que a partir disso escolhe alguma estratégia para os rumos da empresa/órgão/setor que gerencia.

Figura 1 – Resumo de um sistema BI

Isso tudo que foi tratado acima corresponde às etapas do processamento de dados estruturados, ou seja, dados que podem ser organizados e categorizados em linhas e colunas, e que, muitas vezes, possuem relações entre si. O processo para "manusear"dados não estruturados é um pouco diferente porque eles não são tão bem organizados, e alguns passos precisam ser inseridos nesse caminho para que eles sejam apresentados e tratados da melhor forma, evitando distorções.

É possível ver que a Inteligência de Negócios não é formada por várias áreas diferentes dentro da Tecnologia da Informação, a seguir estão listadas algumas:

• Armazenamento na forma de Data Warehouse

- Visualização de dados
- Mineração de dados
- Processamento analítico na forma de Online Analytic Processing (OLAP)
- Gerenciamento do conhecimento
- Probabilidade
- Estatística
- Análises preditivas
- Detecção de anomalias

No decorrer do trabalho foram utilizados de forma mais frequente a análise de dados, a visualização e a detecção de anomalias.

1.2.1 Visualização de dados

Todas as etapas do processo são importantes, mas o gestor só enxerga o último estágio: a visualização. As decisões serão tomadas a partir das conclusões tiradas da visualização, portanto, a visualização precisa de um cuidado especial, o visual é importante porque ele pode levar a conclusões erradas, então é necessário ter atenção com as cores, os eixos entre outros detalhes (WILKE, 2019).

Quando alguém menciona o visual, um dos exemplos que vem à mente logo é o gráfico em barras, ou o gráfico pizza, porém tabelas também são uma ótima forma de visualização de dados. No painel desenvolvido elas são bastante usadas pela simplicidade e clareza, e apresentam um esquema de cores que ilustra qual tipo de processo é mais frequente nas Varas.

1.2.2 Análise de dados

A análise de dados engloba vários processos distintos, a limpeza, transformação e modelagem dos dados fazem parte desse procedimento que pode apresentar informações relevantes onde estiver sendo aplicado.

Para fazer uma boa análise é necessário conhecer os dados, então estudar sobre o que eles medem e sobre a realidade em que eles são aplicados, no caso da JFRN é importante entender quais são as competências das Varas, por exemplo. Para ilustrar isso um pouco melhor, imagine que numa Vara de Execução Fiscal aparecem, de acordo com os dados, muitos processos de Roubo ou Vícios de Construção, a partir disso podemos ter três hipóteses:

- 1. Os dados estão errados
- 2. A análise dos dados está errada
- 3. As pessoas desconhecem a competência da Vara

Normalmente a análise errada é responsável por alguns problemas na visualização, e cabe ao analista de dados investigar as possíveis anomalias, e descobrir se realmente houveram erros na análise ou se aconteceu algum evento diferente na Vara, por exemplo. Aqui foi tratado de um caso numa Vara, mas esse tipo de análise deve ser feito em qualquer aplicação dos dados.

É interessante notar que apesar das diversas funções que descobrem anomalias e casos extremos, ainda é importante que o analista, humano, conheça os dados e esteja sempre atualizado tanto em relação à tecnologia que será usada como também ao ramo em que estiver atuando.

1.3 Custos do BI

A Tecnologia da Informação é fundamental para o gerenciamento e manutenção correta dos negócios atualmente, ela deve ser vista como um ativo da empresa, que merece investimento em *hardware*, *software* e pessoal capacitado, além dos treinamentos que devem ser dados à medida que a TI expande (NEGASH, 2003).

- Hardware Os custos relacionados ao hardware variam de acordo com a estrutura que a empresa já tiver em mãos, se um data warehouse já existe, então a expansão precisa ser feita para um data mart, que é uma parte dedicada aos sistemas BI. Dependendo da estrutura pode ser necessária a expansão para um sistema de redes mais robusto, que suporte o tráfego dos dados.
- Software Os softwares BI custam alto, mas também possuem muitas funcionalidades, alguns deles como o Power BI tem assinaturas a partir de \$60.000 por ano, como pode ser visto no site da Microsoft, na cotação atual isso passa de R\$300.000, então pesquisar entre os principais fornecedores do mercado é crucial para ter um preço justo e que atenda às necessidades do cliente.
- Implementação Essa categoria é uma extensão da anterior porque está diretamente relacionada. Após a aquisição da ferramenta BI e do hardware é necessário, também, realizar um treinamento do pessoal. Esse tipo de gasto também é recorrente, ou seja, sempre vai existir porque à medida que novas pessoas chegam e que o sistema expande, novos treinamentos devem ser realizados. Estima-se que esse tipo de manutenção corresponde a 15% dos custos.

• Pessoal - O custo com pessoal envolve tanto quem realmente vai trabalhar com BI como envolve quem vai dar suporte às atividades de BI. Por exemplo, o time de infraestrutura deve estar preparado com as tecnologias de engenharia de dados, e manutenção do servidor que armazena os dados do BI.

1.3.1 Exemplos de ferramentas

Existem muitas ferramentas BI no mercado hoje, com o crescimento da área também houve a maior oferta de ferramentas que fazem painéis mais rápidos ou de forma mais simples, exigindo menos treino ou menos infraestrutura. Alguns serviços também oferecem a computação em nuvem, e "alugam"o poder computacional de acordo com o uso do cliente. Com a grande variedade de produtos também vem uma grande diferença de preços. Podemos citar, novamente, o Power BI, um dos líderes nesse tipo de atividade, custando (em 2020) \$4.995 por mês para o serviço *Premium*, e esse preço pode aumentar de acordo com os serviços extra que o cliente desejar incluir no pacote.

Figura 2 – Preço do Power BI Premium fonte: Microsoft

Além do Power BI podemos citar o Qlikview, que é usado na JFRN. Ele é desenvolvido pela Qlik, que ultimamente vem focando os esforços e investimentos no Qlik Sense, que oferece várias vantagens. O Qlikview foi o principal produto da Qlik durante muito tempo, a primeira versão dele data de 1994, e recebeu várias melhorias ao longo dos anos, se adequando às novas tecnologias e incorporando funções diferentes. Atualmente a Qlik

tenta levar os clientes do Qlik View para o Qlik Sense, que fornece painéis em plataformas móveis (*smartphones* por exemplo), integração com APIs e construção de visualização simplificada, através de recursos como clique-e-arraste. Os preços variam de 40 a 70 dólares, por mês por licença.

Feature & Function	Qlik Sense	QlikView
Freeform Associative Exploration	/	✓
Augmented Intelligence	1	
Dashboarding/Guided Analytics	1	1
Governed Self-service Analytics	1	
Visual Data Prep	1	
Advanced Data Prep	✓	✓
Broad Data Connectivity	✓	✓
Modern Platform Built on Open APIs	1	
SaaS/Multi-Cloud	1	
Offline Mobile	1	

Figura 3 – Qlikview versus Qlik Sense fonte: Qlik

2 Construção do painel

Antes de avançar para a parte técnica, é importante explicar o que é o Centro de Inteligência da JFRN e como um painel poderia ajudar na tarefa deles. De acordo com o site do Centro de Inteligência, "A Comissão Judicial de Prevenção de Demandas foi idealizada por juízes da Seção Judiciária do RN como forma de otimizar o trabalho jurisdicional a partir de demandas repetitivas, e isso também será buscado com o Centro de Inteligência."

Esse tipo de demanda deve ser comunicado às autoridades para que a ação sobre esses processos repetitivos seja rápida, e não haja uma sobrecarga. Portanto, o painel será usado para auxiliar na análise dessas demandas, tentando acompanhar a evolução e desenvolvimento delas.

Portanto, um painel que mostre os tipos de Assuntos mais recorrentes em cada Vara pode auxiliar o Centro de Inteligência a se preparar e comunicar embasado nos dados.

2.1 Tecnologias usadas

Uma das tarefas que fez parte do desenvolvimento do painel foi a pesquisa e escolha da ferramenta que poderia gerar a visualização, de forma rápida e com facilidade de ser distribuída pela infraestrutura de TI da JFRN. Como foi mostrado anteriormente, as ferramentas pagas custam caro, e a estrutura de desenvolvimento de painéis do TRF5 usa QlikView, que além de demandar uma licença para desenvolvimento, também precisa de alguns documentos para a publicação do painel. Então, algumas ferramentas gratuitas foram consideradas, e as opções se resumiram em Python e Metabase. O Metabase é uma ferramenta open source e gratuita (na versão básica), que permite gerar visualizações e apresenta uma boa integração com bancos de dados, porém, algumas limitações na versão gratuita a tornaram menos interessante, principalmente quando comparada ao concorrente, que nesse caso era o Python.

Python é uma linguagem de programação de alto nível e de aplicações gerais, portanto, nada tem a ver como uma ferramenta pronta de BI, não tem integração automática de dados, nem criação simples de gráficos e visualizações, porém é completamente gratuita e tem um ótimo suporte da própria comunidade de usuários. Além disso, o Python vem ganhando mais mercado e sendo usado em diferentes aplicações por diversas empresas, tornando-se mais relevante na TI. Por ser uma linguagem de programação, ele possui bibliotecas, que, de forma simplificada, são grandes conjuntos de funções com diferentes objetivos, podemos citar o Pandas, por exemplo, que é uma biblioteca para carregar e manipular dados, muito popular e bastante usada.

Além do Python para construir o painel em si, foi usado o QlikView para extrair os

dados e gerar um arquivo que pudesse ser lido pelo Pandas. Portanto, de forma resumida temos:

- Python
 - Dash
 - Plotly
 - Pandas
- QlikView

2.1.1 Justificando o Python

No final do capítulo 1 foram detalhadas algumas ferramentas BI, entre elas Tableau e Power BI, essas ferramentas já vem prontas com todas as funcionalidades que o usuário vai precisar, já lê os dados automaticamente, identifica campos e cria gráficos de forma muito rápida, porém os custos de implementação são altos, as licenças também são caras e é difícil encontrar profissionais que mexam nessas ferramentas tão específicas. Já no Python alguns desses problemas são resolvidos, Python é uma linguagem de programação, portanto não tem nada pronto, tudo precisa ser construído, desde o leitor de dados, até o construtor de gráficos, o trabalho para se desenvolver um painel usando uma linguagem de programação é difícil, mas uma vez desenvolvido, é muito fácil de se manter e o custo é zero porque não há licenças que limitem a quantidade de usuários que podem acessar o que foi feito. Além disso, é relativamente fácil encontrar desenvolvedores de Python no Rio Grande do Norte (e no Brasil), porque é uma linguagem muito usada no mundo todo, isso pode ser visto no ranking elaborado pelo *Institute of Electrical and Electronics Engineers* (IEEE).

Portanto, construir um painel com gráficos e análises complexas usando uma linguagem de programação pode ser difícil no início, muitas habilidades estão envolvidas no processo, além de conhecer sobre análise e visualização de dados, o desenvolvedor também precisa conhecer um pouco de *front-end*, para os visuais e *back-end*, para a integração entre as analises e a atualização do visual em função do que o usuário quer, e, finalmente, precisa entender um pouco sobre *container* para poder embarcar o código de forma simples.

Outro ponto positivo de se usar Python é a replicabilidade, é possível criar painéis que atendam diferentes Varas da JFRN, que apresentam diferentes demandas e dados. Essa forma de se desenvolver painéis mais simples não precisa ficar restrita ao Centro de Inteligência, ela pode expandir para atender necessidades mais simples, que não precisem do QlikView, de forma mais rápida mas atendendo às necessidades do gestor, levando em conta as características locais dos dados de onde for aplicado.

É claro que esse tipo de expansão da TI deve ser acompanhada de um time maior de profissionais, com diferentes habilidades e competências, treinamentos relacionados

Figura 4 – Linguagens de programação mais usadas em 2020

a Python, visualização de dados, análises de dados etc. Mas os impactos disso seriam bons, os gestores teriam melhor controle sobre seus ambientes de trabalho, com novas visualizações e dados para basear novas estratégias por exemplo.

2.2 Estrutura básica do painel

Com os dados da JFRN em mãos e a ferramenta escolhida, passou-se a pesquisar quais seriam as bibliotecas usadas. Ultimamente algumas empresas tem usado Python para fazer painéis mais simples e leves, e a biblioteca usada pela maioria é a Dash, a partir disso era foi montado o fluxo de apresentação de dados, que ficou da seguinte forma:

Figura 5 – Estrutura básica do painel

A leitura e mineração dos dados é feita pelo Pandas, e a apresentação pelo Dash.

O painel que se propôs ao Centro de Inteligência não tem a estrutura clássica com diferentes tabelas (fato e dimensão), com as quais se geram as visualizações, no lugar disso, existe um arquivo .csv que contém os dados que serão usados, esses dados .csv fazem parte uma extração que veio do PJe, e a partir desse arquivo o painel vai criar subconjuntos de acordo com o ano e órgão julgador escolhidos pelo usuário. Portanto, esse painel se aproxima mais de um visualizador de dados do que de um painel BI. Nele é possível selecionar duas variáveis: o Órgão Julgador e o Ano. A partir dessas escolhas o sistema vai fatiar os dados recebidos e mostrará algumas análises. Essas análises são mostradas em forma de tabelas condicionais, que mudam as cores das células de acordo com a frequência de aparição dos Assuntos.

2.2.1 Plotly e Dash

A Plotly é uma empresa canadense que desenvolve ferramentas para análise e visualização de dados. Os serviços essenciais são gratuitos, basta carregar a biblioteca no programa e começar a usar, isso vale para o plotly graph objects por exemplo, que gera gráficos interativos, e também vale para o Dash, que é um dos seus principais produtos.

Plotly além de ser o nome da empresa, também é o nome da ferramenta de visualização de dados. Ela foi usada nas primeiras versões do painel, mas como a visualização passou a se concentrar nas tabelas, acabou saindo da versão atual.

A biblioteca Dash é um *framework* usado para construir aplicações web que apresentem um visual simples de se configurar e que sirva para análises de dados, não é necessário (porém ajuda bastante) conhecer *html* ou outras tecnologias de *front-end* para montar um painel. O resultado pode ser distribuído pela internet, usando serviços como o *Heroku*, de forma gratuita.

2.2.2 **Pandas**

O Pandas é essencial na execução do painel, ele carrega as ferramentas necessárias para a manipulação dos dados, como a seleção correta do Órgão Julgador escolhido, e o ano a ser visualizado. Além disso, ele também é responsável por montar os *dataframes*, que são estruturas de dados, que servem de base para as tabelas e as avaliações por cores que é mostrada na visualização final.

2.2.3 Estrutura dos dados

Nessa primeira versão do painel os dados virão de um arquivo .csv gerado a partir do Qlikview, que é o software de BI padrão da JF. Esse arquivo carrega várias colunas, entre elas podemos citar número do processo, status, classe judicial, documento da parte, data

do trânsito em julgado. Porém, para fazer a análise dos dados serão usadas as seguintes colunas:

- Órgão Julgador os órgão julgadores são as Varas da JFRN que ficam espalhadas pelo Estado, o usuário precisa selecionar um desses órgãos para visualizar os dados.
- Data Primeira Distribuição essa é a data em que o processo chega na JFRN, mesmo que caia numa Vara que não seja da competência dele essa data é importante para analisar que Vara o recebeu e quando ele chegou na JFRN.
- Assunto é o tema do processo, existem diferentes categorias em que um processo pode ser categorizado, e a partir desse campo é possível contar quantos processos de cada tipo deram entrada na JFRN.
- Assunto Código diferentes assuntos possuem diferentes códigos, e a contagem dos processos se dá usando esse campo, que agrupa os códigos que são iguais e conta o total para saber quantos deram entrada na JFRN.

A partir da escolha do Ano e Órgão Julgador, o painel irá fazer as análises e seleções relevantes, populando a tabela e mostrando ao usuário quais são os processos mais frequentes de cada mês, no Ano e Vara escolhidos.

2.2.4 Análise de anomalias

A detecção de anomalias é, basicamente, uma técnica (ou um conjunto de técnicas) que servem para identificar comportamentos que fogem do que é esperado. Um dos desafios do trabalho foi encontrar uma forma de se detectar os Assuntos que possuíssem alta frequência de entrada na JFRN, porque, teoricamente, cada Ano e cada Vara possuem diferentes distribuições de probabilidade, e um modelo de detecção de anomalia que se encaixa bem em um determinado período, pode não se encaixar em outros. São 15 órgãos julgadores diferentes, e os anos que podem ser consultados são de 2014 até 2020, então são 90 distribuições diferentes. Portanto, usamos uma abordagem simples mas eficaz.

Primeiro, há uma análise da média (\overline{x}) de Assuntos que entraram na Vara, essa análise leva em conta o ano selecionado e o ano anterior, após isso, o desvio padrão (σ) é calculado e novas variáveis são geradas.

As variáveis são:

• $anom_2$ definida como:

$$anom_2 = media_{assuntos} + (2 * \sigma)$$

• $anom_1$ definida como:

$$anom_1 = media_{assumtos} + \sigma$$

• media_{assuntos} que é a média simples dos assuntos, a cada dois anos:

$$media_{assuntos} = \sum_{ano}^{ano-1} \frac{assuntos}{total_{meses}}$$

Com essas variáveis encontradas, a distribuição das cores segue as regras a seguir, em que *total* significa a quantidade total de Assuntos de determinada categoria:

$$F_{cores} = \begin{cases} Vermelho & \text{se } total \ge anom_2 \\ Amarelo & \text{se } total \ge anom_1 \ e \ total < anom_2 \\ Verde & \text{se } total \ge media_{assuntos} \ e \ total < anom_1 \end{cases}$$

$$(2.1)$$

Na figura abaixo é possível ver um exemplo da aplicação das fórmulas no painel.

Figura 6 – Tabela com as diferentes frequências de Assuntos

Dessa forma é possível ver quais são os Assuntos que estão entrando com alta frequência, essa visualização deve ser usada para justificar uma possível análise, feita pelo gestor, para entender se essa frequência é realmente uma anomalia, ou se isso era esperado por qualquer razão que seja.

Ao longo do tempo o painel sofreu diversas mudanças. Essas mudanças foram incrementais e uma das principais fontes de exemplos e usos das ferramentas do Dash foi a plataforma Medium, que apresenta vários artigos exemplificando formas de se usar o Dash e como usar melhor os recursos da biblioteca.

Um desses artigos do Medium foi muito importante para a definição de uma estrutura base de desenvolvimento do painel, o texto de Ishan Mehta (MEHTA, 2020) apresenta uma proposta de estrutura que pode ser replicada e melhorada em trabalhos futuros, e a partir dessa estrutura o painel foi montado e desenvolvido, com novas visualizações e diferentes análises.

3 Detecção de anomalias no painel

Em alguns casos os dados podem apresentar registros que não parecem pertencer ao resto do conjunto, esses registros desviam muito do resto das observações e podem ser um problema na análise. Se o analista de dados conhecer o negócio, ele pode conseguir explicar a origem desses desvios. Por exemplo, imagine que uma loja registra um total de 10 vendas de produtos diariamente, e em uma determinada semana, sem explicação aparente, vendeu 1000 (diariamente também), após isso as vendas voltam para a casa dos 10 por dia, claramente essa semana diferente deveria ser analisada para se entender as razões desse salto, mas se esse mesmo comportamento é registrado durante a black friday, ele pode ser, justamente, o esperado para aquele período. Mas o outlier, como também são conhecidas essas anomalias, pode ter sido originada em algum bug do sistema e isso precisa investigado com as outras áreas do negócio, além da TI.

Por causa dessas nuances a detecção de anomalias deve ser tratada com cuidado, porque analisando apenas os dados por si só não garante que os valores que se distanciam do normal são realmente anômalos. Na prática, é esperado que os dados sejam analisados apenas pelo analista, mas é importante que haja uma integração entre as diferentes áreas do negócio, no caso da JFRN, Varas e equipe de TI, e essa integração é uma tendência porque, como foi dito no capítulo 1, a quantidade de dados e variáveis que precisam ser levadas em conta quando se define uma estratégia, numa empresa ou órgão público, são muito grandes e o gestor precisa tanto conhecer os dados como também saber interpretar o que está diante dele.

3.1 Distribuição dos dados

A própria natureza do das Varas na Justiça já gera uma possível frequência maior de determinados Assuntos, então é esperado que uma Vara Penal receba uma alta demanda de Assuntos da competência dela, o mesmo raciocínio pode ser aplicado na 6ª Vara que é de Execução Fiscal. Mas, também existem Assuntos que aparecem na primeira distribuição dos Processos mas que não são da competência da Vara em que foi criado, e isso, apesar de não acontecer com uma frequência alta, acontece de forma pulverizada, então existem muitos Assuntos que possuem 1, 2 ou até 3 ocorrências, e poucos Assuntos que acontecem em frequências muito altas. Esse comportamento pode ser notado abaixo:

Figura 7 – Comportamento da 6ª e 12ª Vara no ano de 2015

Figura 8 – Comportamento da 4^a e 10^a Vara no ano de 2016

Figura 9 – Comportamento da 8^{a} e 14^{a} Vara no ano de 2018

No eixo horizontal são mostradas as frequências dos Assuntos, e no vertical a quantidade de Assuntos distintos, então essa concentração na esquerda indica que existem muitos processos com Assuntos diferentes mas em pequenas quantidades, e poucos (concentrados à direita) que possuem uma frequência alta, e são justamente esses, concentrados à direita, que pertencem à competência da Vara. Por isso que aparecem numa frequência tão superior aos outros, fazendo com que a distribuição desses processos não seja normal, ou seja, não é bell shaped.

3.2 Detecção de anomalias

Como foi dito no início do capítulo, em alguns casos dados podem ser considerados diferentes demais para pertencerem a algum grupo e podem ser considerados *outliers*, e em muitos casos isso leva em consideração a distribuição normal.

Figura 10 – Distribuição normal

Na distribuição normal 68% dos dados estão dentro de 1 desvio padrão, representado pela letra grega sigma (σ) , e 95% estão dentro de 2, isso facilita a procura por *outliers* porque a partir disso é possível determinar, de forma pragmática, o que pode ser um dado errado. Após isso, o analista de dados pode tentar entender melhor o que originou essa anomalia, e decidir se isso é errado de fato ou se é um fenômeno genuíno que possui uma explicação plausível. No caso do painel, o objetivo não é tentar remover esses dados ou fazer qualquer operação em cima deles, o objetivo é simplesmente mostrar esses dados para o gestor e ele decide o que será feito, inclusive, nesse ponto se torna importante a integração entre a gestão das Varas e o time de TI, porque a partir dessa integração as duas partes conseguem entender melhor os dados que estão sendo exibidos, os possíveis erros e as possíveis causas dos *outliers*, que nem sempre são resultados errados, longe disso, os *outliers* aqui precisam ser mostrados para que sejam pesquisados e entendidos melhor.

A maioria das técnicas de detecção de *outliers* se aplicam para dados com distribuição normal, e se os dados não forem normalizados, alguns passos são acrescidos, como a transformação logarítmica, para forçar a normalização. Esses métodos não atendem à função do painel porque a distribuição apresentada não é normal, e algumas características das Varas são perdidas se forçarmos a normalização.

4 Conclusão

Existem diversas ferramentas de BI no mercado, mas elas podem ser muito caras e exigir uma mão de obra muito específica, pois possuem linguagens de desenvolvimento próprias. Além disso, a distribuição dos acessos é um pouco mais complexa porque exige uma certa burocracia para se permitir que painéis sejam publicados. Então, a biblioteca Dash é uma ótima alternativa à essas ferramentas pagas, pois além de ser gratuito, usa a linguagem de programação Python no desenvolvimento, e essa linguagem é muito difundida no mundo todo, e por ser bastante usada, é relativamente fácil encontrar profissionais que tenham boas noções de desenvolvimento nela.

Além disso, a possibilidade de se desenvolver painéis *in-house* e também fazer essa distribuição dentro da própria infraestrutura da JFRN permite que mais painéis sejam feitos, dando aos gestores uma melhor visão sobre as Varas e suas necessidades, assim, proporciona um melhor suporte às decisões e estratégias tomadas.

Existem dificuldades para se desenvolver esse tipo de painel, porém, após construir uma estrutura básica de desenvolvimento o trabalho fica muito mais fluido, e a preocupação passa a ser somente na colheita dos dados.

Por fim, também fica claro que a integração dos gestores com a TI é essencial para o bom aproveitamento das ferramentas de visualização de dados, pois o analista de dados precisa entender melhor o negócio que os dados representam e os gestores precisam saber interpretar os dados para que as decisões sejam bem embasadas.

Referências

MEHTA, I. Python-Dash data visualization dashboard template. 2020. Disponível em: https://medium.com/analytics-vidhya/ python-dash-data-visualization-dashboard-template-6a5bff3c2b76>. Acesso em: 20 ago. 2020. Citado na página 24.

NEGASH, S. Business intelligence. Communications of the Association for Information Systems, v. 1, n. 1, p. 177–195, 2003. Citado 3 vezes nas páginas 13, 14 e 16.

WILKE, C. O. Fundamentals of Data Visualization. [S.l.]: O'Reilly, 2019. Citado na página 15.

WILLEN, C. Airborne opportunities. *Intelligente Enterprise*, v. 1, p. 11–12, 2002. Citado na página 13.

ANEXO A – Evolução do painel

Figura 11 – Primeira versão do painel

Figura 12 – Sétima versão do painel

Figura 13 – Décima quarta versão do painel

Figura 14 – Trigésima versão do painel