

The Radar Musical Instrument

Josiah W. Smith

Hello!

Josiah Smith

- BS Electrical Engineering UT Dallas
 - Radar + machine learning research
 - 2x senior capstone 1st place (team leader)
 - 3 years start to finish
- PhD Electrical Engineering UT Dallas
 - Signal processing + hybrid algorithms
 - Radar imaging, tracking, localization
 - 3 years start to finish
- Industry Experience
 - Texas Instruments Research
 - IMEC Research
 - Apple

Ecuador with my wife Morgan

Radar Musical Instrument – Outline

- Radar Signal Model for Musical Control
 - MIMO-FMCW mmWave Radar
- 2. Conventional Feature Extraction
 - Range, Cross-range, Doppler Signatures
 - Mapping Spatial and Temporal Features to Music
- 3. Enhanced Feature Extraction & Tracking
 - Image-to-Image Super-Resolution Neural Processor
 - Doppler-Corroborated Particle Filter

Introduction / Motivation

 Low-cost millimeter-wave (mmWave) radar has a host of applications from commercial sensing, security screening, medical imaging, and human-computer interaction

- **Problem Statement:** leverage the richness of the mmWave return signal to create an efficient, high spatial-resolution framework for precise human-computer interaction and digital instrument control.
- Prior work:
 - Camera, RGB+D camera, camera + radar systems, Theremin
 - Issues: spatial resolution, privacy

Frequency-Modulated-Continuous-Wave Radar

Frequency contains spatial information

Doppler Radar

- Doppler Effect
 - FFT across multiple FMCW pulses

- Sensing distance: < 1 m
- Goal: 3-D x-y-z localization
- Issue: efficient MIMO near-field image reconstruction

Range-Doppler is not enough

Multistatic-to-Monostatic Compensation

Round-trip distance

$$R_u = R_T + R_R$$

$$R_u = \sqrt{(x_T - x)^2 + (y_T - y)^2 + (Z_0 - z)^2}$$

$$+ \sqrt{(x_R - x)^2 + (y_R - y)^2 + (Z_0 - z)^2}$$

MIMO Array

Virtual Array

For small distances between Tx/Rx pairs

$$R_u \approx 2R_0 + \frac{(d_u^x)^2 + (d_u^y)^2}{4Z_0} = 2R_0 + \phi_u$$

Efficient Near-Field Spatial Imaging

• Near-field \Rightarrow spherical wavefront

Received signal

$$s(x',y',k) = \iiint \frac{p(x,y,z)}{R_0^2} e^{j2kR_0} dx dy dz$$

Naïve approach (matched filter beamformer)

$$p(x,y,z) = \iiint s(x',y',k)e^{-j2kR_0}dx'dy'dk \implies \mathbf{O}(\mathbf{n}^6)$$

Efficient Near-Field Spatial Imaging

Near-field ⇒ spherical wavefront

Received signal

$$s(x',y',k) = \iiint \frac{p(x,y,z)}{R_0^2} e^{j2kR_0} dx dy dz$$

Efficient approach – key step

$$\frac{e^{j2kR_0}}{R_0} \approx \iint \frac{e^{j(k_x(x'-x)+k_y(y'-y)+k_zZ_0)}}{k_z} dk_x dk_y$$

Efficient Near-Field Spatial Imaging

• Near-field \Rightarrow spherical wavefront

Received signal

$$s(x',y',k) = \iiint \frac{p(x,y,z)}{R_0^2} e^{j2kR_0} dx dy dz$$

Efficient approach (Range Migration Algorithm – RMA)

$$p(x,y,z) = IFT_{3D}^{(k_x,k_y,k_z)} \left[\mathcal{S}\left[FT_{2D}^{(x',y')}[s^*(x',y',k)]k_z]\right] \implies \mathbf{O}(n^3 \log n)$$

Tangent - Efficient Freehand Imaging

Conventional Feature Extraction

• Maximum likelihood estimator of range (z), cross-range (y), and Doppler (v_z)

Music Theory for Engineers

- Notes and Pitch
 - Pitch = fundamental frequency
 - Single frequency sinusoid with natural acoustic harmonics

- Frets
 - Quantize finger placement on some stringed instruments

- Vibrato
 - Frequency modulation applied to pitch

Mapping Radar Signatures to Music

- 1. Range \rightarrow note selection
 - Vertical position to select desired note
 - Virtual fret quantize range into regions
- 2. Cross-range oscillation \rightarrow vibrato

Doppler → MIDI parameter

Simple Methods

Enhanced Feature Extraction

- Enhance RMA images with neural processor prior to feature extraction
- Feed extracted-enhanced features to computer vision tracking algorithm

Spatial Super-Resolution

- Image super-resolution emerging in ML / DL arena
- Image upscaling akin to spatial super-resolution
- Non-linear approach to leverage context / prior on images and signals
- Can hybrid methods employ signal theory + ML for spatial and frequency super-resolution?

0793 from DIV2K [26]

HR (PSNR / SSIM)

EDSR (Ours) (30.94 dB / 0.9318)

Bicubic (23.81 dB / 0.8053)

MDSR (Ours) (30.81 dB / 0.9301)

Tangent - Frequency Super-Resolution

- Frequency super-resolution
 ⇔ signal extrapolation
- Proposed Solution: hybrid algorithms (signal processing + ML)

Tangent - Frequency Super-Resolution

Artificially / blindly improve spectral -> spatial resolution

Two scatterers separated by 2 cm

- 4 GHz bandwidth → 3.75 cm resolution
- 8 GHz bandwidth → 1.875 cm resolution

Spatial Super-Resolution FCNN

Cross-Range (m)

- Image-to-image enhancement
 - Remove distortion, blur, noise, clutter, etc.
 - Improve subsequent feature extraction
- Train on real data from human hands + synthetic simulated data

Particle Filter Tracking

- Particle filter (condensation algorithm) tracking
 - Computer vision approach
 - Can handle sudden movements and non-linear dynamics
- Leverage Doppler for dynamic particle drift weighting

Dynamically update "importance" weight of new measurement

Enhanced Methods

Results – Ground Truth + Simple Methods

Results – Particle Filter + Doppler

FCNN Improves Doppler SNR

Results – Ground Truth + Simple Methods

(c)

Hardware & Software Implementation

- Hardware Setup
 - TI 77 GHz mmWave MIMO-FMCW Radar
 - TI High Speed Data Capture Card
- Software Implementation
 - MATLAB Interface
 - Custom C++/MEX software stream data from TI radar to MATLAB in real-time

Results – Simple Methods

Content available on IEEE Xplore

Results – Enhanced Methods

Content available on IEEE Xplore

Conclusions

- Radar Musical Instrument
 - Signal processing + machine learning + computer vision = hybrid-algorithms
 - High-fidelity tracking framework without any optical sensor
 - Surpass theoretical spatial resolution limitations

- Why APL?
 - Intersection of research and defense industry
 - Impactful work on critical challenges
 - Rapid learner & contributor
 - Solving new problems and "owning the problem"

Music Demo

Content available on IEEE Xplore