Odevzdání: 5. 10. 2009

Vypracoval(a): Kartin

VarvasaZ

UČO:

325408

Skupina: 14

2. [2 body] Nechť L je jazyk nad abecedou $\Sigma = \{a,b\}$ tvořený právě všemi slovy, která splňují následující podmínku:

Končí-li slovo písmenem a, pak obsahuje lichý počet písmen b.

Zapište jazyk L pomocí jednoprvkových jazyků $\{a\}$ a $\{b\}$ a s využitím operací průnik (\cap) , sjednocení(∪), zřetězení(·) a iterace(*,+). Chcete-li použít jiné operace nebo jazyky, musíte je nejprve definovat pomocí výše uvedených operací a jazyků.

6283

LI, LZ #CE

 $L_1 = 83$ $L_2 = 820$ L_2 (i = 24, $k \in N$) - references to the second to the se

Odevzdání: 5. 10. 2009

Vypracoval(a): haden

14

Varragate

UČO: 32540e

Skupina:

1. [2 body] Mějme nasledující jazyky nad abecedou $\Sigma = \{a,b\}$. Zjistěte, kolik slov má jazyk L. Odpověď zdůvodněte.

$$L_{\rm 1}=\{\varepsilon,a\}$$

$$L_2 = \{\varepsilon, a, ba\}$$

$$L_3 = \{a, b\}$$

$$L_4 = ((L_1^0, L_2^2) \setminus L_1^+)^*$$

$$L_5 = (L_2.L_1) \cup L_3$$

$$L_6 = ((L_3.L_1) \setminus L_3)^+$$

$$L=(L_4\cap L_5)\smallsetminus L_6$$

kz,

0

IB102 - úkol 2

Odevzdání: 12.10.2009

Vypracoval(a): truth

Variatala

UČO:

325408

Skupina:

14

1. [2 body] Popište jazyk generovaný gramatikou $G = (\{S,A,B,C\},\{a,b\},P,S),$ kde

$$P = \{ \begin{array}{ccc} S \, \to \, aA \mid bB \mid a \mid b, \\ A \, \to \, aA \mid bC \mid a, \\ B \, \to \, aB \mid bB \mid b, \\ C \, \to \, aC \mid bA \mid b \end{array} \}$$

Je tento jazyk regulární?

S=> a A => aa A=> aa 5 => aa 66

Talo gramatika generije jayte všech slov mad abeceden £-{c1,63}

We tento jazzk tim regulari fillet to the total total total alle total t

٥ (نور له) کا چ

or (qn,c)=97

Vypracoval(a): Takka Skupina: 14 Manuia

UČO: 325408

2. [2 body] Sestrojte deterministický konečný automat akceptující jazyk:

$$L = \{w \in \{a,b,c\}^* \ | \ (\#_a(w) + 2\#_b(w) + 3\#_c(w)) \ mod \ 4 = 3 \land \ w \text{ obsahuje znak } c\}$$

Clohn le rozditit ver kompozici drou autonatio a to:

1. w obsahnje znak c

2. (#a(w) + 2 #s(w) + 3#2 (w) mod 4 = 3

M=(£90,41, 92, 92, 94, 95, 96, 953, 80, 403, 0, 90, 89 5)

2. (0) - q = (Eq., q, a, q, 3, 5a4c3, or, qo,

kompozici dostavame: d(qo, a)= q, d'Gr. , a J'(q, 4) = 92 0 (45.4) J(90,6) = 94 d'(456 90 97) 0 (41) = 92 or(q1,a)= q2 cr (46,0 0 (90,6 Or(q,,,c) = q,4 0-(96,6 or(q2,a)= 91 ઈ (G_{*, વ} ~(q216) = q0 on (9 + 5 $O(q_2,c) = q_{\pm}$ J. 64, c 9x 0/9, 9)=90 J(9315) 2 91 o (9,1,4) = 9,6 (q4,0)= q5

IB102 - úkol 3

Odevzdání: 19.10.2009

Vypracoval(a): Martin Vavrušák

UČO:

325408

Skupina: 14

1. [2 body] Nechť $\mathcal G$ je gramatika ($\{S,X,Y\},\{a,b,c\},P,S$), kde P obsahuje pravidla:

$$S \rightarrow aS \mid Sa \mid bXb \mid a$$

$$X \rightarrow aX \mid Xa \mid cYc \mid c$$

$$Y \rightarrow cYc$$

Popište jazyk generovaný gramatikou \mathcal{G} . Rozhodněte, je-li tento jazyk regulární. Své rozhodnutí dokažte. (K důkazu regularity jazyka stačí napsat příslušnou gramatiku nebo automat.)

Jazyk generovaný gramatikou je regulární, protože jej rozpoznává následující automat.

 $M = (\{S0, Sa, Sb, Sbc, Sbcb\}, \{a, b, c\}, \delta, S0, \{Sa, Sbcb\})$

Odevzdání: 19.10.2009

Vypracoval(a): Martin Vavrušák

UČO: 325408

Skupina: 14

2. [2 body] Rozhodněte, zda je jazyk $L = \{b^i c^j \mid i, j \geq 0, 2i = 3j\}$ regulární. Své rozhodnutí dokažte. (K důkazu regularity jazyka stačí napsat příslušnou gramatiku nebo automat.)

$$\{b^{i}c^{i} | j?0; 2i = 3j\}$$

Pro všecha
$$n$$
, $n \in \mathbb{N}$ $m \in \mathbb{Z}$

$$w = b^n c^{\frac{2}{3^n}} \in L$$

všechna rozdělení:

$$\mathbf{x}=b^l, l\geq 0$$

$$y = b^k, k \ge 1, l + k \le n$$

$$z = b^{n-l-k} c^{\frac{2}{3}n}$$

$$i = 2$$
: $w' = xy^2z = b^{T}b^{2k}b^{2k}b^{2k-k-1}c^{\frac{2}{3}} = b^{2k}c^{\frac{2}{3}} \notin L$
protože $2i = 3j \implies 2(n+k) = 3 \cdot \frac{2}{3}n$

$$2n + 2k = 2n$$

k = 0 spor protože $k \ge 1$

IB102 - úkol 5

Odevzdání: 2.11.2009

Vypracoval(a): Martin Vavrušák

UČO: 325408

Skupina:

14

 $1.~[2~{
m body}]~{
m K}$ zadanému konečnému automatu zkonstruujte ekvivalentní minimální konečný automat v kanonickém tvaru. Konstrukci zde uveďte.

	1	, , , , , , , , , , , , , , , , , , ,
	a	b
$\longrightarrow 1$	Ø	$\{2,3\}$
2	$\{1,6\}$	{7}
3	Ø	$\{4,\!5,\!7\}$
$\leftarrow 4$	{6}	$\{2,8\}$
5	{1}	Ø
6	{6}	Ø
7	Ø ·	{8}
← 8	{1}	$\{4,5\}$

Zadaný automat je nederministi

MOIO JEJ	melbi ac	<u>acrei inimiz</u>
	a	ь
{1}	(Ø)	{2,3}
{2,3}	{1,6}	{4,5,7}
{1,6}	{6 }	{2,3}
{4,5,7}	{1,6}	{2,8}
(6)	- {δ }	{Ø}
{2,8}	{1,6}	{4,5,7}

Nyní už deterministický automat stotálníme a pro přehlednost přejmenujeme."

	a	ь
1	a 7	ь 2 4 2
3	<u>3</u> 5	4
3		2
4	3	6
5 6.	. <u>5</u>	7
6.	3	4
7	7	7

Nyní provedeme minimalizaci.

=	0	a	ь
I.	1	I	I
	2	I	П
	2 3 5	I	I.
	5	I	·I
	7	I	I.
II.	4	Ι	П
	6	Ι	П

=1	≡ 1		Ъ
I	1	Ī	П
	3	I:	П
	์ว	I	I
. :	7	I	I
ш	2	I	Π
Ⅲ	4	Ī	Ш
	6	I	Ш

= 2	\equiv_2		ь
I.	1	П	П
	3	П	Ħ
II.	5	П	П
	7	11	П
Ш	2	I	IV
IV.	.4	I	ŢV
	6	I	ĪV
<u> </u>		. 1	

	·	a	ъ
_	→ I	П	Ш
	П	П	П
	Ш	Ī	IV
÷	-IV	1	IV

Nyní provedeme kanonizaci

		a	ь
_	≯A	·B	O
	В	В	В
	Ċ	A	D
4	-D	Α	D

ok 25

Odevzdání: 2.11.2009

Vypracoval(a): Martin Vavrušák

UČO: 325408

Skupina:

14

2. [2 body] Nechť $\Sigma = \{a,b,c\}$ je pevná abeceda a nechť L je jazyk nad abecedou Σ . Definujme následující operaci:

 $\mathsf{noaces}(L) = \{ w \mid w \in L \land w \text{ neobsahuje podslovo } aa \}$

Například pro $L = \{aba, aaa, bbaa, bbb\}$ platí noaces $(L) = \{aba, bbb\}$.

Uveďte obecný postup, kterým lze pro libovolný deterministický konečný automat \mathcal{M} nad abecedou Σ sestrojit deterministický konečný automat \mathcal{M}' , pro který platí $L(\mathcal{M}') = \mathsf{noaces}(L(\mathcal{M}))$. Zdůvodněte správnost své konstrukce.

A TEN BUDE LAPADAT JAKZ

V tomto případě by stačilo vytvořit automat, který bude rozpoznávat slova neobsahující poslovo "aa" a udělat synchronní paralelní kompozici těchto dvou automatů. Každý z těchto automatů rozpoznává množinu slov. Synchronní paralelní kompozice v tomto případě by se rovnala průniku těchto dvou množin a výsledná množina by obsahovala právě ta slova, kter akceptoval předchozí automat a které neobsahují poslovo "aa".

IB102 - úkol 6

Odevzdání: 9.11.2009

Vypracoval(a): Martin Vavrušák

UČO: 325408

Skupina:

14

1. [2 body] Zadaný NFA s $\varepsilon\text{-kroky}$ převeďte na ekvivalentní NFA bez $\varepsilon\text{-kroků}.$

$D_{\epsilon}(1) = \{1,5\}$ $D_{\epsilon}(2) = \{2,3\}$ $D_{\epsilon}(3) = \{3\}$ $D_{\epsilon}(4) = \{4\}$ $D_{\epsilon}(5) = \{1,3,5,6\}$	<u>→</u> ←
$D_{\epsilon}(5) = \{1, 3, 5, 6\} $	<u></u>

	a	b	. c	ε
$\rightarrow 1$	Ø	{3}	{1}	· {5}
<u>←</u> 2.	$\{6\}$	$\{3,4\}$	$\{2, 6\}$	{3}
3	Ø	$\{2\}$	{3}	Ø
4	$\{3, 4\}$	$\{6\}$	$\{2, 3, 4\}$	Ø.
← 5	{3}	Ø	Ø	{1}
← 6	Ø	Ø	${\{3,6\}}^{-}$	${3,5}$

$$\delta(1,a): D_{r}(1) = \{1,5\}: \delta\begin{pmatrix} 1\\5,a \end{pmatrix} = \{3\}: D_{r}(3) = \{3\}$$

$$\delta(1,b): D_{r}(1) = \{1,5\}: \delta\begin{pmatrix} 1\\5,b \end{pmatrix} = \{3\}: D_{r}(3) = \{3\}$$

$$\delta(2,a): D_{r}(2) = \{2,3\}: \delta\begin{pmatrix} 2\\3\\5\\6 \end{pmatrix} = D_{r}(1) \cup D_{r}(3) \cup D_{r}(5) \cup D_{r}(6) = \{1,3,5,6\}$$

$$\delta(1,e): D_{\epsilon}(1) = \{1,5\}: \delta\begin{pmatrix}1\\5\end{pmatrix} = \{1\}: D_{\epsilon}(1) = \{1,5\}$$

$$\delta(2,b): D_{\tau}(2) = \{2,3\}: \delta\binom{2}{3}, b = \{2,3,4\}: D_{\tau}\binom{2}{3} = D_{\tau}(2) \cup D_{\tau}(3) \cup D_{\tau}(4) = \{2,3,4\}$$

$$\delta(3,a): D_{x}(3) = \{3\}; \ \delta(3,a) = \emptyset$$

$$\delta(3,b): D_{x}(3) = \{3\}; \ \delta(3,b) = \{2\}; D_{x}(2) = \{2,3\}$$

$$\delta(3,b): D_r(3) = \{3\}: \delta(3,b) = \{2\}: D_r(2) = \{2,3\}$$

$$\delta(3,c): D_r(3) = \{3\}: \delta(3,c) = \{3\}: D_r(3) = \{3\}$$

$$\delta(2,c): D_{\tau}(2) = \langle 2,3 \rangle: \delta\begin{pmatrix} 2\\3\\c \end{pmatrix} = \langle 2,3,6 \rangle: D_{\tau}\begin{pmatrix} 2\\3\\6 \end{pmatrix} = D_{\tau}(2) \cup D_{\tau}(3) \cup D_{\tau}(6) = \langle 1,2,3,5,6 \rangle$$

$$\delta(4,\alpha): D_x(4) = \{4\}: \delta(4,\alpha) = \{3,4\}: D_x\begin{pmatrix} 3\\4 \end{pmatrix} = \dots = \{3,4\}$$

$$\delta(4,b): D_{\epsilon}(4) = \{4\}: \delta(4,b) = \{6\}: D_{\epsilon}(6) = \{1,3,5,6\}$$

$$\delta(4,c): D_{\varepsilon}(4) = \{4\}: \delta(4,c) = \{2,3,4\}: D_{\varepsilon} \begin{pmatrix} 2\\3\\4 \end{pmatrix} = \dots = \{2,3,4\}$$

$$\delta(5,\alpha): D_{\tau}(5) = \{1,5\}: \delta\left(\frac{1}{5},\alpha\right) = \{3\}: D_{\tau}(3) = \{3\}$$

$$\delta(5,b): D_{\epsilon}(5) = \{1,5\}: \delta\begin{pmatrix}1\\5\\b\end{pmatrix} = \{3\}: D_{\epsilon}(3) = \{3\}$$

$$\delta(5,c): D_{r}(5) = \{1,5\}: \delta\left(\frac{1}{5},c\right) = \{1\}: D_{r}(1) = \{1,5\}$$

$$\delta(6,a): D_{r}(6) = \{1,3,5,6\}: \delta \begin{pmatrix} 1\\3\\5.a\\6 \end{pmatrix} = \{3\}: D_{r}(3) = \{3\}$$

$$\delta(6,a): D_{\epsilon}(6) = \{1,3,5,6\}: \delta \begin{pmatrix} 1\\3\\5,a\\6 \end{pmatrix} = \{3\}: D_{\epsilon}(3) = \{3\}$$

$$\delta(6,b): D_{\epsilon}(6) = \{1,3,5,6\}: \delta \begin{pmatrix} 1\\3\\5,b\\6 \end{pmatrix} = \{2,3\}: D_{\epsilon}\begin{pmatrix} 2\\3 \end{pmatrix} = \dots = \{2,3\}$$

$$\delta(6,c): D_{\epsilon}(6) = \{1,3,5,6\}: \delta \begin{pmatrix} 1\\3\\5,c\\6 \end{pmatrix} = \{1,3,6\}: D_{\epsilon}\begin{pmatrix} 1\\3\\6 \end{pmatrix} = \dots = \{1,3,5,6\}$$

$$\delta(6,c): D_{c}(6) = \{1,3,5,6\}: \delta\begin{bmatrix} 1\\3\\5,c\\6 \end{bmatrix} = \{1,3,6\}: D_{c}\begin{bmatrix} 1\\3\\6 \end{bmatrix} = \dots = \{1,3,5,6\}$$

- 0	•				
- U ₁	ري		a	ь	C
7	\leftarrow	> 1	{E}	{3}	{1.5}
	<	_ 2	{1,3,5,6}	{2,3,4}	{1,2,3,5,6}
		(J)	Ø	{2,3}	{3}
		4	{\$\ \E\}	{1,3,5,6}	{2,3,4}
	+	5	{ S }	{ E }	{1,5}
	•	<u> </u>	_ {E}	{2,3}/	{1,3,5,6}/

Odevzdání: 9.11.2009

Vypracoval(a): Martin Vavrušák

UČO: 325408

Skupina:

14

2. [2 body] Rozhodněte, zda pro všechny jazyky L,R platí následující implikace. Svá rozhodnutí zdůvodněte.

- (a) L a L.R jsou regulární $\implies R$ je regulární
- (b) L i $L \setminus R$ jsou regulární a $R \subseteq L \implies R$ je regulární
- a) Mějme jazyky:

 $L = \{a,b\} *$

- je regulární

 $R = \{a^nb^n \mid n \ge 0\}$

- není regulární

 $L.R \neq \{a,b\}^*$

- je regulární

Tedy zjevně neplatí že:

L i L R regulární => R regulární pro všechny L, R

b) L je regulární L\R je regulární R⊆L

Protože $R \subseteq L$ pak co- $R = L \setminus R \Leftrightarrow L \setminus \text{co-}R = R$ (R je podmnožinou L a doplněk R je tedy $L \setminus R$)

Protože LAR je regulární, pak i co-R je regulární (z rovnosti)

Tedy L\ co-R = R. L i co-R jsou regulární, potom z uzávěrových vlastností i R musí být regulární.

Vypracoval(a): Martin Vavrušák

UČO: 325408

Skupina:

14

1. [2 body] Pomocí regulárního výrazu popište následující jazyk:

$$L = \{w \in \{a,b,c\}^* \mid \#_b(w) = 2k, \ k \geq 0, \ c \text{ se ve } w \text{ vyskytuje nejvýše jednou}\}$$

Vytvorime dva automaty, prvni rozpoznava slova s nanejvyse jednim "c". Druhy rozpoznava slova se sudym poctem "b". Paralelni kompozici je spojime a vytvorime automat ktery potom preveden regularni vyraz.

L=s + (a+ba*b)*.c.(a+ba*b)* + (a+ba*b)*.(ba*ca*b).(a+ba*b)*

SLOVO OBSAROVALO C POKUD NIM PRAZDNE

IB102 - úkol 7

Vypracoval(a): Martin Vavrušák

UČO: 325408

Skupina:

14

2. [2 body] K zadanému konečnému automatu zkonstruujte ekvivalentní regulární výraz.

	a	b
<u>→</u> 1	$\{1,2\}$	$\{1, \overline{4}\}$
2	$\{1,2\}$	$\{1,3,4\}$
3	$\{1\}$	Ø
<u>← 4</u>	$\{1,2\}$	$\{1, \pm \}$

Nakreslime graf automatu a vytvorime prechodovy graf regularnih vyrazu, ktery postupne upravime na regularni vyraz.

elim

 $(a+b+bb^{*}(a+b)+(a+bb^{*}a)\cdot(a+bb^{*}a)^{*}\cdot(a+b+ba+bb^{*}\cdot(a+bb^{*}a))^{*}\cdot(a+bb^{*}a)\cdot(a+bb^{*}a)^{*}\cdot bb^{*}$

1,5

Odevzdání: 30, 11, 2009

Vypracoval(a): Martin Vavrušák

14

Skupina:

UČO: 325408

2. [2 body] Mějme bezkontextovou gramatiku $G = (\{S,A,B,C,D,E,F,G,H\},\{a,b,c\},P,S),$ kde

$$P = \{ S \rightarrow aAb \mid BD, \\ A \rightarrow ACE \mid BcB \mid AF \mid bAa \mid H \mid a, \\ B \rightarrow D \mid bb \mid \varepsilon, \\ C \rightarrow BDC \mid CcF \mid cc \mid \varepsilon, \\ D \rightarrow SS \mid aFG \mid C, \\ E \rightarrow FE \mid EF, \\ F \rightarrow Eabc, \\ G \rightarrow GG \mid GE \mid abc, \\ H \rightarrow FF \mid A \}.$$

Zkonstruujte vlastní bezkontextovou gramatiku G' takovou, že L(G') = L(G).

1. Nejprve odstraníme epsilon pravidla:

$\begin{array}{l} N_1 = (B,C) \\ N_2 = (B,C,D) \\ N_3 = (B,C,D,S) \\ N_4 = (B,C,D,S) = N_3 \\ G1 = ((S',S,A,B,C,D,E,F,G,H),(a,b,c),P1,S') \\ P1 = \{S' \rightarrow S \mid e \\ S \rightarrow AAb \mid BD \mid B \mid D \\ A \rightarrow ACE \mid BcB \mid AF \mid bAa \mid H \mid a \mid AB \mid BC \mid C \\ B \rightarrow bb \mid D \\ C \rightarrow BDC \mid CcF \mid cc \mid BD \mid DC \mid BC \mid B \mid D \mid C \\ D \rightarrow SS \mid aFG \mid C \mid S \\ E \rightarrow FE \mid EF \\ F \rightarrow Eabc \\ G \rightarrow GG \mid GE \mid abc \\ H \rightarrow FF \mid A \end{array}$

Nakonec provedeme redukci

2. Odstraníme jednoduché pravidla

Výsledná gramatika: