mguaggi Formali e Traduttori

3.1 Grammatiche libere dal contesto

- Sommario
- Grammatiche libere dal contesto
- Derivazioni
- Esempio
- Linguaggio generato da una grammatica
- Grammatiche e linguaggi regolari
- Esempio: stringhe della forma aⁿbⁿ
- Esempio: stringhe della forma ambn
- Esempio: espressioni aritmetiche
- Esempio: comando di assegnamento in Java
- Esercizi

È proibito condividere e divulgare in qualsiasi forma i materiali didattici caricati sulla piattaforma e le lezioni svolte in videoconferenza: ogni azione che viola questa norma sarà denunciata agli organi di Ateneo e perseguita a termini di legge.

Sommario

Motivazione

- ullet Il linguaggio $L=\{a^nb^n\mid n\in\mathbb{N}\}$ non è regolare.
- Ponendo a= (e b=), notiamo che L è il linguaggio delle <u>parentesi bilanciate</u>.
- ullet Linguaggi come $oldsymbol{L}$ sono di fondamentale importanza per descrivere la struttura di espressioni e blocchi nei linguaggi di programmazione.

In questa lezione

- Studiamo un approccio generativo le **grammatiche libere** per la descrizione di **linguaggi liberi**.
- Definiamo grammatiche per generare alcuni linguaggi liberi, tra cui $m{L}$.
- Mostriamo che i linguaggi liberi includono tutti quelli regolari.

Grammatiche libere dal contesto

Definizione

Una grammatica libera dal contesto (o semplicemente grammatica libera) è una quadrupla G=(V,T,P,S) dove:

- ullet V è un insieme <u>finito</u> di **variabili** (o **simboli non terminali**, o **categorie sintattiche**).
- T è un alfabeto di simboli terminali.
- P è un insieme <u>finito</u> di **produzioni** della forma A o lpha, in cui:
 - $A \in V$ è detta **testa** della produzione;
 - $\circ \alpha \in (V \cup T)^*$ è detta **corpo** della produzione.
- $S \in V$ è il **simbolo iniziale** della grammatica.

Convenzioni

- Le lettere a, b, c, ... denotano simboli terminali (elementi di T).
- Le lettere A, B, C, ... denotano variabili (elementi di V).
- Le lettere X, Y, Z, ... denotano simboli (elementi di $V \cup T$).
- Le lettere u, v, w, ... denotano stringhe di simboli terminali (elementi di T^*).
- Le lettere $\alpha, \beta, \gamma, ...$ denotano stringhe di simboli (elementi di $(V \cup T)^*$).
- ullet Abbreviamo $A olpha_1,\ldots,A olpha_n$ con $A olpha_1\mid\cdots\midlpha_n$

Derivazioni

Definizione

Fissata una grammatica G=(V,T,P,S), definiamo le derivazioni in un passo e in zero o più passi come segue:

ullet scriviamo $lpha Aeta \Rightarrow_G lpha \gammaeta$ se $A o \gamma\in P.$

In tal caso diciamo che $lpha\gammaeta$ deriva <u>in un passo</u> da lpha Aeta in G.

- scriviamo \Rightarrow_G^* per la chiusura riflessiva e transitiva di \Rightarrow_G , ovvero:
 - $\circ \alpha \Rightarrow_{G}^{*} \alpha$
 - \circ se $\alpha \Rightarrow_G \beta$ e $\beta \Rightarrow_G^* \gamma$, allora $\alpha \Rightarrow_G^* \gamma$

Quando $lpha \Rightarrow_G^* eta$ diciamo che eta deriva <u>in zero o più passi</u> da lpha in G.

Convenzione

Omettiamo G da $\Rightarrow_G e \Rightarrow_G^*$ quando è chiaro a quale grammatica ci si riferisce.

Esempio

Data la grammatica

$$G = (\{A\}, \{0,1\}, \{A
ightarrow arepsilon \mid 0 \mid 1 \mid 0A0 \mid 1A1\}, A)$$

abbiamo le seguenti derivazioni:

- $A \Rightarrow \varepsilon$
- $A \Rightarrow 0$
- $A \Rightarrow 1$
- $A \Rightarrow 0A0 \Rightarrow 00$
- $A \Rightarrow 1A1 \Rightarrow 101$
- $A \Rightarrow 0A0 \Rightarrow 01A10 \Rightarrow 011A110 \Rightarrow 0110110$

Note

- ullet La **variabile** $oldsymbol{A}$ indica una stringa palindroma $oldsymbol{a}$ rbitraria
- ullet Le produzioni ci permettono di **riscrivere** $oldsymbol{A}$ in una stringa palindroma <u>più specifica</u>
- ullet Riscrivendo A ottengo tutte e sole le stringhe w palindrome ($w=w^R$)

Linguaggio generato da una grammatica

Definizione

Data una grammatica G=(V,T,P,S), il **linguaggio generato** da G, denotato da L(G) è definito come

$$L(G) \stackrel{\mathsf{def}}{=} \{ w \in T^* \mid S \Rightarrow_G^* w \}$$

Esempio

Per la grammatica $oldsymbol{G}$ della slide precedente abbiamo

$$L(G) = \{w \in \{0,1\}^* \mid w = w^R\}$$

Definizione

Diciamo che $oldsymbol{L}$ è un **linguaggio libero** se esiste una grammatica libera che lo genera.

Grammatiche e linguaggi regolari

Teorema

Per ogni linguaggio regolare L esiste una grammatica G tale che L(G)=L.

Dimostrazione

Sia $A=(Q,\Sigma,\delta,q_0,F)$ un DFA che riconosce L.

Definiamo la grammatica $G=(Q,\Sigma,P,q_0)$ dove P è così definito:

- ullet se $q\in Q$ e $a\in \mathcal{\Sigma}$, allora $q o a\delta(q,a)\in P$
- ullet se $q\in F$, allora $q oarepsilon\in P$

È facile vedere che $q_0 \Rightarrow^* w \Leftrightarrow \hat{\delta}(q_0,w) \in F$ da cui segue il risultato.

Osservazioni

- Il teorema mostra che le grammatiche possono generare tutti i linguaggi regolari.
- Sappiamo che le grammatiche possono generare linguaggi non regolari (come quello delle stringhe palindrome).
- I linguaggi liberi includono propriamente i linguaggi regolari.

Esempio: stringhe della forma anbn

Si consideri la grammatica

$$(\{S\}, \{a,b\}, P, S)$$

in cui $m{P}$ è l'insieme di produzioni

- ullet S oarepsilon
- ullet S o aSb

Alcune derivazioni

- $S \Rightarrow \varepsilon$
- $S \Rightarrow aSb \Rightarrow ab$
- $S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aabb$
- $S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aaaSbbb \Rightarrow aaabbb$

In generale

ullet $S\Rightarrow^* a^nb^n$ per ogni $n\in\mathbb{N}$

Esempio: stringhe della forma ambn

Si consideri la grammatica

$$(\{S, A, B\}, \{a, b\}, P, S)$$

in cui \boldsymbol{P} è l'insieme di produzioni:

- $S \rightarrow AB$
- ullet $A oarepsilon\mid aA$
- $B
 ightarrow arepsilon \mid bB$

Alcune derivazioni

- $S \Rightarrow AB \Rightarrow A \Rightarrow \varepsilon$
- $S \Rightarrow AB \Rightarrow aAB \Rightarrow aAbB \Rightarrow abB \Rightarrow ab$
- $S \Rightarrow AB \Rightarrow aAB \Rightarrow aaAB \Rightarrow aaaB \Rightarrow aaabB \Rightarrow aaab$

In generale

ullet $S\Rightarrow^* a^mb^n$ per ogni $m,n\in\mathbb{N}$

Esempio: espressioni aritmetiche

Si consideri la grammatica

$$({E}, {x, y, +, *, (,)}, P, E)$$

in cui $m{P}$ è l'insieme di produzioni

- ullet E o x
- $E \rightarrow y$
- $E \rightarrow E + E$
- $E \rightarrow E * E$
- $E \rightarrow (E)$

Alcune derivazioni

- $E \Rightarrow E + E \Rightarrow x + E \Rightarrow x + y$
- $E \Rightarrow E + E \Rightarrow x + E \Rightarrow x + E * E \Rightarrow x + y * E \Rightarrow x + y * y$
- $E \Rightarrow E * E \Rightarrow (E) * E \Rightarrow (E + E) * E$ $\Rightarrow (x + E) * E \Rightarrow (x + y) * E \Rightarrow (x + y) * y$

Esempio: comando di assegnamento in Java

Si consideri la grammatica

$$(\{S, R, E\}, \{=, [,], c, x\}, P, S)$$

in cui $m{P}$ è l'insieme di produzioni

- ullet S o R = E
- $R \rightarrow x \mid R[E]$
- $E
 ightarrow c \mid R$

Alcune derivazioni

- $S \Rightarrow R = E \Rightarrow x = E \Rightarrow x = c$
- $S \Rightarrow R = E \Rightarrow R = R \Rightarrow x = R \Rightarrow x = x$
- $S \Rightarrow R = E \Rightarrow R[E] = E \Rightarrow x[E] = E \Rightarrow x[c] = E \Rightarrow x[c] = c$

Alcune stringhe non derivabili

- $S \Rightarrow^* x$
- $S \Rightarrow^* c = x$

Esercizi

Sulla definizione di grammatiche

Definire grammatiche per generare i seguenti linguaggi:

- 1. Il linguaggio generato da $(ab)^*$.
- 2. Le stringhe di parentesi quadre bilanciate (es. [[][[]]]).
- 3. Le stringhe di 0 e 1 della forma ww^R .
- 4. Stringhe di 0 e 1 in cui c'è lo stesso numero di 0 e 1 (es. 00100111).
- 5. Espressioni booleane composte dalle costanti t (true), f (false) e i connettivi \land (congiunzione), \lor (disgiunzione) e \neg (negazione). Ammettere la possibilità di usare parentesi (es. $t \land (f \lor \neg t)$ e $\neg (t \lor f)$).

Sul linguaggio generato da una grammatica

Descrivere il linguaggio generato dalle seguenti grammatiche:

- 1. $(\{S\},\{a,b\},\{S
 ightarrowarepsilon\mid aaSb\},S)$
- 2. $(\{S,A\},\{a,b\},\{S
 ightarrowarepsilon\mid ASb,A
 ightarrowarepsilon\mid a\},S)$
- 3. $(\{S,X,C\},\{a,b,c\},\{S o XC,X oarepsilon\mid aXb,C oarepsilon\mid cC\},S)$
- 4. $(\{S\}, \{a,b\}, \{S \rightarrow \varepsilon \mid aSb \mid bSa\}, S)$