Aufgabe 1

Gegeben sei eine unsortierte Liste von n verschiedenen natürlichen Zahlen. Das k-kleinste Element ist das Element, das größer als genau k-1 Elemente der Liste ist.

(a) Geben Sie einen Algorithmus mit Laufzeit $\mathcal{O}(n \cdot \log n)$ an, um das k-kleinste Element zu berechnen.

```
a

______ahttps://en.wikipedia.org/wiki/Quickselect
```

(b) Gegeben sei nun ein Algorithmus A, der den Median einer unsortierten Liste von n Zahlen in $\mathcal{O}(n)$ Schritten berechnet. Nutzen Sie Algorithmus A um einen Algorithmus B anzugeben, welcher das k-kleinste Element in $\mathcal{O}(n)$ Schritten berechnet.

Argumentieren Sie auch, dass der Algorithmus die gewünschte Laufzeit besitzt.

```
a
_____ahttps://en.wikipedia.org/wiki/Median_of_medians
```

(c) Geben Sie einen Algorithmus an, der für alle $i=1\ldots, \lfloor n/k \rfloor$ das $i\cdot k$ -kleinste Element berechnet. Die Laufzeit Ihres Algorithmus sollte $\mathcal{O}(n\cdot log(n/k))$ sein. Sie dürfen weiterhin Algorithmus A, wie in Teilaufgabe (b) beschrieben, nutzen.