Internet, Principes et Protocoles (IPP)

1. Introduction

FYI

 Les slides sont basees sur celles de Olivier Bonaventure.

- Javier Lethe
 - CCB / CERT.be
 - Javier.lethe@gmail.com (Subject line: IPL IPP)

Table of Contents

- Introduction
- Basics:
 - Definitions
 - Classifications
 - Uni / Multi / Any / Broad -cast
- Internet service: connection oriented connectionless.
- OSI and TCP/IP Model

A network

A network is a set of hardware and software that enables the transmition of information from one sender to one or more receivers.

Examples:

- Plain Old Telephone System (POTS)
- GSM
- Broadcast networks (TV, Radio,...)
- Computer Networks (Internet, home networks, proprietary networks)

Classifications

Based on range

Wide Area Network

Metropolitan Area Network

Local Area Network

Personal Area Network

Based on topologies

Future

- Connected Fridge tells the connected TV to show adds about tomato sauce because the high consumption of that.
- You control your house's lights with your phone.
- Usage and connected machines is expected to grow exponentially.

Transmission Modes

Unicast (Point-to-Point)

Transmission Modes

Mulitcast (Point-to-multipoints)

one sender a group of receivers The same information is sent to all members of the group example : videoconference

Transmition modes

- Broadcast
 - The same information is sent to everyone reachable on the network.
 - Example: the radio
- Anycast
 - The information is sent from one sender to
 - one receiver, among a group of possible receivers.

Sketch of the internet

Table of Contents

- Introduction
- Basics:
 - Definitions
 - Classifications
 - Uni / Multi / Any / Broad -cast
- Internet service: connection oriented connectionless
- OSI and TCP/IP Model

Service Provider: connectionoriented / connectionless

 Before reaching the targeted receiver, the data goes through a network provider (ISPs).

- X.request
 - request from a user to a service provider
- X.indication
 - primitive generated by the network provider to a user (often related to an earlier and remote X.request primitive)
- X.response
 - primitive used to answer to an earlier X indication primitive
- X.confirm
 - primitive generated by the network provider to a user (related to a remote X.response primitive)

Service Provider: connectionless

Goal

Allow a sender to quickly send a message to one receiver

Principle

The sender places the message to be transmitted in a DATA.req primitive and gives it to the network provider The network provider carries the message and delivers it to the receiver by using a DATA.ind primitive

Utilisation

useful to send short-length messages example : post office

Service Provider: connectionless

Service Provider: Variations

confirmation

primitive DATA.confirm delivered by provider to sender to confirm (acknowledge) that some message has been delivered to destination

reliability

- reliable connectionless service (no errors)
- unreliable connectionless service (errors are possible)

protection against transmission errors

service may or may not detect/correct errors

protection against losses

the service may or cannot lose messages

in sequence delivery

The service may or not guarante in-sequence delivery for all messages sent by one source

Goal

Create a logical binding (connection) between two users to allow them to efficiently exchange messages

Main phases of service

- Connection establishment
- Data transfer: both users can send and receive messages over connection
- Connection release

Utilisation

- useful when the two users either
 - must exchange a large number of messages
 - need a structured exchange
- example : telephone

Connection establishment

Primitives CONNECT.request

CONNECT.indication

CONNECT.response

CONNECT.confirm

Connection can be rejected

Message Mode

Provider delivers one Data.ind for each Data.req

Stream Mode

The providers delivers a stream of characters from source to destination

21 / 34

Abrupt Release

Such an abrupt connection release can be caused by the network provider or by the users

Graceful Release

Possible Characteristics

- Bidirectional flow
- Reliability
 - Delivery in sequence
 - No losses
 - Data integrity
- Message or stream mode
- Abrupt or Graceful release

Table of Contents

- Introduction
- Basics:
 - Definitions
 - Classifications
 - Uni / Multi / Any / Broad -cast
- Internet service: connection oriented connectionless
- OSI and TCP/IP Model

OSI Model

Problem

How is it possible to reason about complex systems such as computer networks or the Internet?

Solution

Divide the network in layers. Layer N provides a well defined service to layer N+1 by using the service provided by layer N-1. Each N Layer only "talks" to Layer N-1 and Layer N+1

Layer N+1

Layer N

Layer N-1

Network models OSI Model

Data

Layer

Data

Application
Network Process to

Application

Data

Layers

Host

Media Layers

Presentation

Data representation and Encryption

Data

Session

Interhost communication

Segments

Transport
End-to-End connections and Reliability

Packets

Network Path Determination and IP (Logical addressing)

Frames

Data Link MAC and LLC

(Physical addressing)

Bits

Physical Media, Signal and **Binary Transmission**

OSI MODE

Application Layer

Type of communication: E-mail, file transfer, client/server.

Presentation Layer

Encryption, data conversion: ASCII to EBCDIC, BCD to binary, etc.

Session Layer

Starts, stops session. Maintains order.

Transport Layer

Ensures delivery of entire file or message.

3

Network Layer

Routes data to different LANs and WANs based on network address.

Data Link (MAC) Laver

Transmits packets from node to node based on station address.

Physical Layer

Electrical signals and cabling.

LAYERS OWER

LAYERS

UPPER

OSI and TCP/IP Model OSI MODEL TCP/IP MODEL

Application Layer	
Presentation Layer	Application Layer
Session Layer	
Transport Layer	Transport Layer
Network Layer	Internet Layer
Data Link Layer	Network Access Layer
Physical Layer	

Physical Layer

Goal

Transmit bits between two physically connected devices

Service provided by physical layer

bit transmission and reception

unreliable service

The receiver may decode a 1 while the sender sent 0 Some transmitted bits may be lost

The receiver may decode more bits than the bits that were sent by the sender

Datalink Layer

Goals

Provide a service that allows the exchange of frames

Frame: structured group of bits Support local area networks

Services

- Reliable connection-oriented service
- Unreliable connectionless service

Transport Layer

Goals

Ensure a reliable exchange of data between endsystems even if the network layer does not provide a reliable service

Services

Unreliable connectionless service Reliable connection-oriented service

Application Layer

Goals

Exchange useful information between applications by relying on the transport layer that hides the complexity of the network Unit of information Service Data Unit, SDU

Remarks

 People tend to use "packet" as unit of information, if the information transits online (even if the correct term might be "frame" or "segment")

Sources

- http://networking.layer-x.com/p050000-1.html
- Previous slides
- https://cdn-images-1.medium.com/max/1200/1*17Zz6v0HWIzgiOzQYmO6lA.jpeg
- http://common.ziffdavisinternet.com/encyclopedia_images/OSI.GIF