4.11 Mikrofysisk tolkning av S [LHL/7.11; YF 20.8] 49
Mikroskopisk tilstand for N partikler er gitt ved posisjonene r: og impulsene p: ; i=1,2,, N. Makroskopisk tilstand er gitt ved noen få termodynamiske variable p, V, T.
Anta Ω ulike mikrotilstander for en gitt makrotilstand, med lik sannsynlighet $1/\Omega$ (for enkelhets skyld). Hvordan avhenger entropien S av Ω ?
5 øker med I (Ff. eks. med utvidelse au ideell gass: Flere mikrotilstander for N molekyler i volum 2Vo enn i volum Vo.)
S er ekstensiv (If. els. med temperaturutjeuning.)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Ω_j = antall mikrotilst. i delsystem j ; $j=1,2$ $\Omega = \Omega_1 \cdot \Omega_2 = \text{antall mikrotilst. totalt}$
Dermed: $S(\Omega) = S(\Omega_1 \cdot \Omega_2) = S(\Omega_1) + S(\Omega_2)$
som gjelder for loganismer. Enhet: [S] = [Q/T] = 3/K; [kB] = 3/K
Boltzmanns definisjon: [S=kBln I]
[På Bollzmanns gravstein: S=k lnW; arbeid er jo A for Arbeit på tysk.]

Eks1: Myntkast, N=4 og N>1 mynter $N=4: \Omega = 2^N = 2^4 = 16$ mikrotilstander K = antall "krone" = 5 makrotilstander O I 1/16 Mest sannsynlig med
1 1/4 Like mange kron og mynt.
3 1/4 Like mange kron og mynt. $N \gg 1$: $\Omega_{\kappa} = \binom{\kappa}{\kappa} = \frac{\kappa! (N-\kappa)!}{N!}$ Smal sannsynlighets fordeling sentrert om K= N/2. F.eks: Hvis N=10000, hva er 25000/25100, dus P(K=N/2)/P(K=N+VN')? $\ln n! = \ln (1.2.3...n) = \sum_{x=1}^{n} \ln x \approx \int \ln x \, dx$ $= |(x \ln x - x) = n \ln n - n + 1 \approx n \ln n - n$ $\Omega_{5000} = 10^4! / (5000!)^2$; $\Omega_{5100} = 10^4! / 5100! \cdot 4900!$ $S_{5000}/k_B \approx 10^4 \ln 10^4 - 2.5000 \cdot \ln 5000 = 6931.47$ S5100 /kB ≈ 10 ln 10 - 5100 ln 5100 - 4900 ln 4900 = 6929.47 $\Rightarrow \frac{\Omega_{5000}}{\Omega_{5000}} \approx e^2 \approx 7.4$ Med andre ord: Overveiende sannsynlig med P1 K≈ N/2; variasjoner (fluktuasjoner) av storrelsesorden VN.

Eks 2: Utvidelse av ideell gass, N molekyler

ΔS= 3

Losning: Del volumet V_0 i M små delvolum $\Delta = V_0/M$ og spesifiser en gitt mikrotilstand ved hvilket delvolum hver partikkel befinner seg i.

 $\Rightarrow \Omega(V_o) = M^N ; \Omega(2V_o) = (2M)^N$

(*)

 $\Rightarrow \Delta S = S(2V_0) - S(V_0)$

= $k_B \ln (2M)^N - k_B \ln M^N$

= NkB (ln 2 + ln M - ln M)

= NkB ln 2

Som med termodynamick s. 48, evt. s. 45 $S(T,V) - S(T_0,V_0) = G_V \ln \frac{T}{T_0} + nR \ln \frac{V}{V_0}$ med $T = T_0$ og $V = 2V_0$.

[(*) Med ideell gass, dus punktpartiker uten innbyrdes vekselvirkning, er alle disse mikrotilstandene like sannsynlige.]

En siste kommentar: Kvantemekanisk system er i grunntilstanden (lavest mulig energi) når $T \rightarrow 0$. Hvis det kun er en grunntilstand, $\Omega = 1$, blir $S(T \rightarrow 0) = k_B \ln 1 = 0$.

Kinetisk teori

[PCH 9.1-9.5 + App.B; LHL 14.1-14.3; YF 18.3-18.5]

9.1 Kinetisk gassteon, antagelser

 Law tetthet, V_{molekyl} << V/N = tilgjengelig volum pr molekyl. OK ved normale betingelser:
 V_{molekyl} ≈ (3Å)³

 $\frac{V}{N} = \frac{k_BT}{P} \approx \frac{1.38 \cdot 10^{-23} \cdot 300}{10^5} \text{ m}^3 \approx (35\text{ Å})^3$

- Klassisk dynamikk, elastiske kollisjoner mot glatte vegger (impuls || veggen bevart i kollisjon)
- · Isotropi: ingen foretrukne retninger

9.3 Trykket i en ideell gass

N, V $P, T \longrightarrow U_x A \longrightarrow Trykk mot veggen:$ $P = F_x A = \Delta P_x / A \cdot \Delta t$ $V_x \cdot \Delta t$

Impuls overfort fra gassmolekylene til A i løpet av st:

(53)

Dermed: p = V · mux

Molekylene har en fordeling av hastigheter, så vi må bruke midlere (gjennomsnittig) v_{\times}^2 , $dv_{\times} < v_{\times}^2$.

Isotropi => (v2) = (v2) = (v2) = (v2)

 $\Rightarrow p = \frac{N}{V} \cdot \frac{1}{3} m \langle v^2 \rangle = \frac{N}{V} \cdot \frac{2}{3} \langle E_k^{trans} \rangle$

siden midlere translasjonsenergi pr molekyl er

$$\langle E_k^{trans} \rangle = \frac{1}{2} m \langle v^2 \rangle$$

Mikroskopisk tolkning au T:

P=NkBT/V = 2N(Ek)/3V

 \Rightarrow $\langle E_k^{\text{trans}} \rangle = \frac{3}{2} k_B T$

Dus: Ter et mål på molekylenes midlere translasjonsenengi.

Eks: Gy for edelgasser

Gass med enkeltatomer, slik at Ek = Ek. Dermed:

U = N. (Etrans) = 3 NkBT

⇒ G_V = 30/3T = 3Nk_B = 3nR,

i samsvar med elsp. verdier (se s. 20)

9.2, 9.4, 9.5 Maxwells hastighetsfordeling

Hastighet: \vec{G} Fart: $\vec{U} = |\vec{G}|$ Komponenter: Ux etc

Fartsfordeling: f(v)·dv = andel molekyler med fart mellom v og v+dv

= sanns. for at et gitt molekyl har fart mellom v og v+dv

Komponentfordeling: g(vx)dvx = sanns. for at gitt molekyl har x-komponent our if mellom vx og vx+dvx

Normering: $\int f(v)dv = 1$; $\int g(v_x)dv_x = 1$

Hastighets-fordeling: F(v) d3v = sanns. for hastighet i volumelement d3v = dv, dv, dv, omkning v. Normaning: $[F(\vec{v})d^3v = 1]$

Med isotrop fordeling er F(v) = F(v); da er kulekoord. hensiktsmessig: d³v = v²dvdΩ = v²dv sinθdθ dφ

Fartsfordelingen må tilsvare hastighetsfordelingen integrent over alle mulige retninger:

 $f(v)dv = \iint F(v)v^2dv d\Omega = 4\pi F(v)v^2dv$

Middelverdier: (Un) = Jun f(v) du

(Ux) = JUx g(Ux) dux

Utledning av F, g og f:

Vi antar (i tillegg til isotropi, F(v)=F(v))

statistisk uavhengige hastighetskomponenter. Da er

 $F(v)d^3v = \{g(v_x)dv_x\} \cdot \{g(v_y)dv_y\} \cdot \{g(v_z)dv_z\}$

LSom ved f.eks. terningkast; P(bare 6-ere) = 6.6.6....]

 $\Rightarrow F(v) = g(v_x) \cdot g(v_y) \cdot g(v_z)$

Bare "gauss-funksjoner"

 $g(v_x) = \alpha \cdot e^{-bv_x^2}$

er brukbare. Da er $g(v_x)g(v_y)g(v_z) = a^3 e^{-bv^2} = F(v)$, kun awhengig av $v = |\vec{v}|$, som forutsatt.

Fastlegger a og b med normening av $g(v_x)$, samt at $\langle v_x^2 \rangle = \langle v^2 \rangle/3 = k_B T/m$:

 $\int_{-\infty}^{\infty} a e^{-bv^2} dv = 1$

 $\int_{-\infty}^{\infty} v_{x}^{2} a e^{-bv_{x}^{2}} dv_{x} = \frac{k_{B}T}{m}$

Dus, vi må løse noen gaussintegraler.