

Computer Vision and Image Processing (CSEL-393)

Lecture 6

Dr. Qurat ul Ain Akram
Assistant Professor
Computer Science Department (New Campus) KSK, UET, Lahore

Smoothing Spatial Filter

- One of the simplest spatial filtering operations we can perform is a smoothing operation
- 1/₉ 1/₉ 1/₉
 1/₉ 1/₉ 1/₉
 1/₉ 1/₉ 1/₉
- Simply average all of the pixels in a neighborhood around a central value
- Especially useful in removing noise from images
- Also useful for highlighting overall details of image
- Blur the overall image

Average Smoothing Filter

- (a)The image at the top left is an original image of size 500 * 500 pixels
- The subsequent images (b-f) show the image after filtering with an averaging filter of increasing sizes a 5. 9. 15 and 35
- Image gets blur as we increase size of an average filter unable to differentiate the objects

Notice how detail begins to disappear

Weighted Smoothing filter

 More effective smoothing filters can be generated by allowing different pixels in the neighborhood different weights in the averaging function

1/16	² / ₁₆	1/16
² / ₁₆	4/16	2/16
1/16	² / ₁₆	1/16

- We make high priority of the central pixel
- No equal contribution works
- Pixels closer to the central pixel are more important (giving second higher priority)
- Referred to as a weighted averaging filter
- Each weight is divided by sum of all weights

Median Filter

- Write steps to apply median filter of size 3x3 on the image
- Steps:

Median Filter

 Write steps to apply median filter of size 3x3 on the image

123	125	126	130	140
122	124	126	127	135
118	120	150	125	134
119	115	119	123	133
111	116	110	120	130

• Steps:

Step1: List all pixel values surrounded by window

124 126 127 120 150 125 115 119 123

Step2: Sort All values

115 119 120 123 124 125 126 127 150

Step3: Pick middle value and replace with center pixel value

115 | 119 | 120 | 123 | **124** | 125 | 126 | 127 | 150

Average Vs. Median Filter

- •Median Filter is one of the most useful filter in image enhancement using spatial filter
- Provides good noise reduction for certain types of noise such as impulse noise
- Considerably less blurring than weighted averaging filter
- Forces a pixel to be like its neighbors

a h c

FIGURE 3.35 (a) X-ray image of circuit board corrupted by salt-and-pepper noise. (b) Noise reduction with a 3×3 averaging mask. (c) Noise reduction with a 3×3 median filter. (Original image courtesy of Mr. Joseph E. Pascente, Lixi, Inc.)

Correlation Vs Convolution

• Correlation: Correlation is the process of moving a filter mask over the image and computing the sum of products at each location.

$$e_{processed} = v*e + r*a + s*b + t*c + u*d + w*f + x*g + y*h + z*i$$

Correlation Vs Convolution

• Convolution: Similar to the correlation operation but has a slight difference. In Convolution operation, the kernel is first flipped by an angle of 180 degrees and is then applied to the image.

$$e_{processed} = v^*e + z^*a + y^*b + x^*c + w^*d + u^*e + 1^*f + s^*g + r^*h$$

Sharpening spatial Filters

- Sharpening filter highlights or enhances details of objects in images
- Sharpening filter enhances the quality to get clear/refined details of individual objects (either small or large)
- Sharpening filter removes blurring from images
- Sharpening filter highlights edges
- Sharpening filters are based on spatial differentiation i.e. processing the rate of change. Edge s are very effectively extracted using differentiation filters.

Sharpening spatial Filters

• Spatial Derivative: calculate rate of change of neighboring pixels intensities.

First Order Derivative

· Rate of change

Step: Change from white to black or from black to white is called STEP

• The formula for the 1st derivative of a function is as follows:

$$\frac{\partial f}{\partial x} = f(x+1) - f(x)$$

 Its just the difference between subsequent values and measures the rate of change of the function

1st Derivative

- Observations
- Must be zero in flat segments (area of constant gray levels)
- Must be non-zero at the onset of a gray level step or ramp
- Must be non zero along ramps

2nd order derivative

• The 2nd derivative of a function is given by:

$$\frac{\partial^2 f}{\partial^2 x} = f(x+1) + f(x-1) - 2f(x)$$

 Simply takes into account the values both before and after the current value

2nd Order Derivative

- Observations
 - Must be zero in flat segments
 - Must be non-zero at the onset and end of a gray level step or ramp
 - Must be non zero along ramps of constant slope

Filters for Derivatives to sharpen the image

- Laplacian Filter
- Finding of derivatives with respect to both directions x and y i.e. $\nabla^2 f = \frac{\partial^2 f}{\partial^2 x} + \frac{\partial^2 f}{\partial^2 v}$

• Where partial 1st derivative in x direction is defined as $\frac{\partial^2 f}{\partial^2 x} = f(x+1,y) + f(x-1,y) - 2f(x,y)$

• And in y direction is defined as

$$\frac{\partial^2 f}{\partial^2 y} = f(x, y+1) + f(x, y-1) - 2f(x, y)$$

Laplacian Filter

• By taking sum of both directions we have

$$\nabla^2 f = [f(x+1,y) + f(x-1,y) + f(x,y+1) + f(x,y-1)] - 4f(x,y)$$

• Laplacian filter can be built as

	x-1,y	
x,y-1	x,y	x,y+1
	x+1,y	

0	1	0
1	-4	1
0	1	0

Different types of Laplacian Filters

 0
 1
 0
 1
 1
 1

 1
 -4
 1
 1
 -8
 1

 0
 1
 0
 1
 1
 1

 0
 -1
 0
 -1
 -1
 -1

 -1
 4
 -1
 -1
 8
 -1

 0
 -1
 0
 -1
 -1
 -1

To give priority to the center pixels and give less priority to neighboring pixels

Sharpening using Laplacian Filter

- After applying Laplacian filter on an image
- The new image contains highlighted edges and discontinuities.
- However image is not giving an enhanced view

Image Sharpening using Laplacian

Solution

- Subtract the resultant image(after application of Laplacian filter) from the original Image
- Sharpe Image= Original Image- Resultant Image

Simplified Filter

$$g(x,y) = f(x,y) - \nabla^2 f$$

$$= f(x,y) - [f(x+1,y) + f(x-1,y) + f(x,y+1) + f(x,y+1) + f(x,y-1) - 4f(x,y)]$$

$$g(x,y) = f(x,y) - \nabla^2 f$$

$$= 5f(x,y) - f(x+1,y) - f(x-1,y) - f(x,y+1) -$$

Simplified Filter

Variants of Simplified Filter

UnSharp Mask and Highboost

- Steps for highboost filtering:
- sequence of linear spatial filters in order to get sharpening effect.
 - 1. Blur
 - 2. Subtract from original image img with details
 - 3. Add resulting mask to original image sharpened image

Sharpening using Highboost Filtering

• Subtract from original image to produce sharp image

$$g(x,y) = f(x,y) - \overline{f}(x,y)$$

· Generalized Formula of Unsharp Masking

$$g(x,y) = Af(x,y) - \overline{f}(x,y)$$

0	-1	0	-1	-1	-1
-1	A + 4	-1	-1	A + 8	-1
0	-1	0	-1	-1	-1

First Order Derivative

- Implementation of 1st derivative filters is difficult in practice
- For a function f(x,y) the gradient of f at coordinates (x. y) is given as the column vector:

$$\nabla \mathbf{f} = \begin{bmatrix} G_x \\ G_y \end{bmatrix} = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{bmatrix}$$

First Order Derivative

• Magnitude of this vector is defined as:

$$\nabla f = mag(\nabla f)$$

$$= \left[G_x^2 + G_y^2\right]^{1/2}$$

$$= \left[\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2\right]^{1/2}$$
Simplified as
$$\begin{vmatrix} z_1 & z_2 & z_3 \\ z_4 & z_5 & z_6 \\ z_7 & z_8 & z_9 \end{vmatrix} \qquad \nabla f \approx \left[\left(z_7 + 2z_8 + z_9\right) - \left(z_1 + 2z_2 + z_3\right)\right]$$

$$+ \left[\left(z_3 + 2z_6 + z_9\right) - \left(z_1 + 2z_4 + z_7\right)\right]$$

Using coordinate system

Reading from book

- Chapter # 3 of book.
- Book:
- Gonzalez, R. C. and Woods, R. E., Digital Image Processing, Second Edition, Pearson-Prentice Hall, Inc., 2002. ISBN 81-7758-168-6

THANK YOU