

第4章 触发器

- 4.1 触发器概述
- 4.2 基本RS触发器的描述方法
- 4.3 时钟控制触发器
- 4.4 主从触发器和边沿触发器
- 4.5 触发器的逻辑符号及时序图

主 讲: 任爱锋

Email: afren@mail.xidian.edu.cn

第四章 触发器

4.1 触发器概述

组合电路:输出只与当前的输入有关。

时序电路:输出不仅与当前的输入有关,而且与过去的状态有关。

过去的状态是如何保存的?

触发器

一、时序电路结构

二、触发器的定义

触发器 (Flip-Flop): 具有记忆功能的双稳态电路。

现态 (Q^n) — 表示触发器现在的状态; Q^n 常省略写成 Q^n 次态 (Q^{n+1}) — 表示触发器的下一个状态;

三、基本RS触发器电路及工作原理

$R_D S_D$	$Q^{n+1} \overline{Q^{n+1}}$	功能
0 0	1 1	不允许(约束条件)
0 1	0 1	清0 (Reset)
1 0	1 0	置1 (Set)
1 1	$Q \overline{Q}$	保持(记忆)

 R_D 和 S_D 为高电平时输出状态不发生变化,仅当其中一个为低电平时,输出才发生变化,称 R_D 、 S_D 为低电平有效,在逻辑符号中用字符上加一横提示为 \overline{R}_D 、 \overline{S}_D ,并且在输入端加有小圆圈。

问题1:用或非门构成的基本RS触发器如图所示,其真值表和逻辑符号如何表示?

问题2:两个基本RS触发器逻辑符号如下图所示,它们的区别是什么?

4.1节小结:

- (1) 时序电路的基本结构及术语
- (2) "与非门"构成的基本RS触发器及其功能
- (3) "或非门"构成的基本RS触发器及其功能
- (4) 两种基本RS触发器的逻辑符号及区别