

Preparação da base de dados

Luis Enrique Zárate

Agenda

- Limpeza dos dados
 - Dados irrelevantes
 - Granularidade nos dados
 - Inconsistência nos dados
 - Relação entre dados
 - Domínios condicionais
 - Defaults de valores
 - Integridade nos dados
 - Duplicações e redundâncias
 - Poluição

Agenda

- Preparação dos dados
 - Fusão de dados
 - Junção de dados
 - Blocagem de dados
 - Discretização de dados
 - Discretização supervisionada
 - Discretização não-supervisionada

Carga horária: 2 horas e 30 min.

Limpeza dos dados

DADOS IRRELEVANTES

É necessário retirar dados irrelevantes que podem trazer conhecimento falso ou aumentar o tempo de processamento dos algoritmos de Data Mining.

INCONSISTÊNCIAS NOS DADOS

Diferentes "objetos" representados pelo mesmo nome em diferentes sistemas.

Empresas de RH buscam colaboradores que atendam um perfil específico

Empresas internacionais de aluguel de automóveis

RELAÇÕES ENTRE DADOS

É importante observar e analisar a consistência das instâncias dos objetos da estrutura problema.

Maria da Silva; 15 anos; comprou Toyota Prius

Provavelmente uma Inconsistência ou outlier. Recomenda-se eliminar esse registro

DOMÍNIOS CONDICIONAIS

Cada variável possui um domínio particular ou faixa de valores dentro de um contexto.

Domínios das variáveis podem ser condicionais:

Diagnóstico por exámens laboratoriais

Requer

Género

Domínios baseados em regras:

• DEFAULTS DE VALORES

- Alguns campos de um Sistema de Cadastros podem ter valores Default, que são inseridos na base de dados quando os valores reais não são fornecidos. Esses Campos devem ser identificados e cuidadosamente analisados.
 - Ex. Nível de escolaridade, *DEFAULT* = "Ensino médio", Valor real = "Ensino superior"
 - ☐ Ex. Número de dependentes, DEFAULT = 0, Valor real = 3
- Os valores Default tendem a contaminar a base de dados e o conhecimento a ser extraído.
- □ A falta do valor real, leva a um problem de tratamento de dados ausentes. Daí, seria interessante descobrir o mecânismo de ausência de forma a imputar valor coerente.

INTEGRIDADE NOS DADOS

Deve ser observada a integridade das relações em registros complementares.

- 1 Empregado pode ter vários carros
- 1 Empregado não pode ter múltiplos registros funcionais
- 1 Empregado não pode ter múltiplas esposas

ID	EC	Esposa
09(C	Maria

ID	EC	Esposa
09(0	Silvia

DUPLICAÇÕES E REDUNDÂNCIAS

- Ocorre principalmente quando as instâncias dependem de diferentes fluxos de dados

Data de Nascimento => Idade Atual

Preço Unitário x Quantidade => Valor da venda

Peço, altura => IMC

- As variáveis Duplicadas ou Redundantes exigem maior esforço computacional e dependendo do caso podem ser reduzidas.

POLUIÇÃO NOS DADOS

Os campos podem conter espaços em branco, estar incompletos, inexatos, inconsistentes ou não identificáveis.

Pessoa Física	EC	Data de Nasc.	Idade	Depende nte	Escola/ salário	Telefone
Maria da Silva	С	28/02/13	15		30%	(xxx)45678 90
	Inc		ão entificá	vel Ausente	Inexato	Incompleto

Preparação dos dados

- Os dados precisam ser transformados, discretizados e codificados de forma que possam servir de entrada para os algoritmos de Mineração de Dados.
- Normalmente se faz necessária a transformação ou mudanças de escala dos dados garantindo que as características dos valores originais sejam preservadas.
- A melhor forma de transformar os dados é verificar quais requisitos a solução precisa atender e quais são os requisitos que a técnica de mineração de dados impõe.

• FUSÃO DE DADOS

- É o processo de integrar multiplos dados para produzir mais consistentes com informação útil.
- A Integração de dados pode trazer uma redução significativa na dimensionalidade da base, sem perdas de informação.

Empréstimo Janeiro	Empréstimo Fevereiro	Empréstimo Março	Empréstimo Abril	do	Valor Médio Empréstimo nos últimos meses	Desvio Padrão	4	Maior Emprêstimo em (65%) das vezes
2000	3000	1000	2000		2000	700		2700

JUNÇÃO DE DADOS

- Em dados nominais, a Junção de vaiáveis altamente relacionadas pode trazer uma redução significativa na dimensionalidade sem perdas de informação.
- A Junção pode ser um simples produto cartesiano das opções de resposta a questões, ou uma re-codificação destas, criando novas opções.

• JUNÇÃO DE DADOS POR ESCALA

Empréstimo consignado	Empréstimo não consignado	Financiamento bens	Financiamento automóveis	Financiamento imóveis	Cheque especial
0	1	1	1	0	0
1	0	0	0	1	0

Atributos	Pairwise Prejuízo financeiro
Empréstimo consignado	1º
Empréstimo não consignado	4º
Financiamento bens	3º
Financiamento automóveis	5°
Financiamento imóveis	6°
Cheque especial	2º

Atributos	Grupos de Prejuízo Financeiro
Empréstimo consignado	1º
Cheque especial	2º
Financiamento bens	3º
Empréstimo não consignado	40
Financiamento automóveis	50
Financiamento imóveis	6º

Novos Atributos	Prejuízo financeiro
Dívidas de	1º
Baixo Prejuízo	2º
Financeiro	3º
Dívidas de Alto	4º
Prejuízo	5º
Financeiro	6º

Dívidas de Baixo Prejuízo Financeiro	Dívidas de Alto Prejuízo Financeiro
1	1
1	0

BLOCAGEM DE DADOS

Os blocos são formados pela informação das questões que os compõem, e recebe valores diretamente delas, com uma ponderãção de acordo com a relevância da questão.

DISCRETIZAÇÃO DE VARIÁVEIS

- Muitos algoritmos como C4.5, Apriori, Naive Bayes utilizam dados categóricos ou nominais ao invés de dados contínuos. A discretização é uma importante e comúm tarefa em Data Mining.
- Muitos problemas do mundo real, contendo dados numéricos contínuos precissam de métodos de discretização que os convertam para dados categóricos.
- O processo de discretização transforma dados quantitativos em dados qualitativos. Por exemplo, transforma atributos numéricos em atributos discretos ou nominais com um número finito de intervalos.

• DISCRETIZAÇÃO DE VARIÁVEIS

Vantagens:

Algoritmo capazes de lidar com dados contínuos, podem ser menos eficientes para a compreensibilidade dos resultados.

A discretização também pode ser entendida como uma técnica para a redução de dimensionalidade.

Desvantagens:

Perda de informação

Reduzir a perda de informação é o principal objetivo dos métodos de discretização.

DISCRETIZAÇÃO DE VARIÁVEIS

Não-supervisionada:

A discretização é realizada sem levar em conta a informação dos grupos a que pertencem as instâncias de treinamento.

Supervisionada:

A discretização é realizada levando em conta os grupos a que pertencem as instâncias no conjunto de treinamento.

- a) Intervalos com tamanho pré-definidos (univariada)
 - $0 \text{ a } 1 \rightarrow 0$ $2 \text{ a } 5 \rightarrow 1$ $6 \text{ a } 99 \rightarrow 2$
- b) Intervalos de igual tamanho (não necessariamente com a mesma quantidade de valores)
 - 2 intervalos / 5 valores: $0 \text{ a } 4 \rightarrow 0$ 5 a 9 \rightarrow 1
- c) Intervalos com o mesmo número de elementos

$$\{1,2,3,6,7,8,9,13,15,16\}$$

 $\{1,2,3,6,7\} \rightarrow 1$ $\{8,9,13,15,16\} \rightarrow 2$

d) Número pré-determinado de intervalos uniformes (equalinterval binning)

No exemplo (idade):

Considerando Bins (caixas) com largura 6:

$$60 < x \le 66$$
: 64, 65

$$66 < x \le 72$$
: 68, 69, 70, 71, 72, 72

$$72 < x \le 78$$
: 75 , 75

$$78 < x \le 84$$
: 80, 81, 83

$$84 < x \le 90:85$$

- Como qualquer método não supervisionado, arrisca destruir diferenças úteis, devido a divisões muito grandes ou fronteiras inadequadas
- Distribuição de amostras muito irregular.

e) Número uniforme de amostras por intervalo (equal-frequency binning).

No exemplo (idade):

64 65 68 69 70 71 72 72 75 75 80 81 83 85

14 amostras: 4 Bins

x ≤ 69,5:	64, 65, 68, 69
$69,5 < x \le 73,5$:	70, 71, 72, 72
$73,5 < x \le 80,5$:	75 , 75 , 80
x > 80.5:	81. 83. 85

- Também chamado de equalização do histograma.
- Cada bin tem o mesmo número aproximado de amostras

a) Intervalos com tamanho pré-definidos (univariada)

$$0 \text{ a } 1 \rightarrow 0$$
 $2 \text{ a } 5 \rightarrow 1$ $6 \text{ a } 99 \rightarrow 2$

b) Intervalos de igual tamanho (não necessariamente com a mesma quantidade de valores)

2 intervalos / 5 valores:
$$0 \text{ a } 4 \rightarrow 0$$
 5 a 9 \rightarrow 1

c) Intervalos com o mesmo número de elementos

$$\begin{array}{ll} \{1,2,3,6,7,8,9,13,15,16\} \\ \{1,2,3,6,7\} \longrightarrow 1 & \{8,9,13,15,16\} \longrightarrow 2 \end{array}$$

d) Número pré-determinado de intervalos uniformes (equalinterval binning)

Considerando Bins (caixas) com largura 6:

 $60 < x \le 66$: 64, 65

 $66 < x \le 72$: 68, 69, 70, 71, 72, 72

 $72 < x \le 78$: 75, 75

 $78 < x \le 84$: 80, 81, 83

 $84 < x \le 90$: 85

e) Número uniforme de amostras por intervalo (equalfrequency binning).

> x ≤ 69.5: 64, 65, 68, 69 $69,5 < x \le 73,5$: 70, 71, 72, 72 $73.5 < x \le 80.5$: 75.75, 80x > 80.5: 81, 83, 85

Supervisionada: Mapeamento por grupos

f) Intervalos por meio de clusterização (multivariada)

Supervisionada: Mapeamento por grupos

 A técnica de mapeamento por intervalos pode levar a sobre-posição de variáveis categóricas o que pode levar a um processo de discretização com incertezas. Frente a este problema pode ser dado um valor categórico para todo um grupo de variáveis.

•Direto versus Incremental:

- Os métodos de discretização **diretos** dividem os valores do atributo em um **número de intervalos** previamente definido pelo usuário.
- Nos métodos **incrementais**, o processo de discretização é realizado iterativamente até que **um critério de parada** seja alcançado.

Estático versus dinâmico:

- -Um discretizador **estático** é executado **antes** do processo de aprendizagem e independe do algoritmo de aprendizagem.
- -Um discretizador dinâmico é executado no momento da construção do modelo, ou seja, o discretizador é embutido no algoritmo de aprendizagem.

Univariada versus Multivariada:

- Métodos **univariados** consideram **um atributo** contínuo por vez, não levando em conta a relação entre os atributos.
- Multivariados podem considerar simultaneamente todos os atributos e a relação de dependência entre eles.

•Supervisionado versus não-supervisionado:

- Discretizadores **não-supervisionados** não consideram o rótulo da classe, enquanto os **supervisionados** o fazem.
- A maioria dos discretizadores propostos na literatura é supervisionada e teoricamente, usando informações de classe, deve determinar automaticamente o melhor número de intervalos para cada atributo.

Divisão versus Fusão:

- Métodos de **Divisão** realizam a discretização por meio de um processo iterativo de subdivisão do intervalo de valores inicial que é executado até que uma condição de parada seja satisfeita.
- Os métodos de **Fusão** iniciam com os valores do atributo contínuo particionados e, iterativamente, realizam a junção dessas partições enquanto um critério de parada não é alcançado
- Além disso, alguns discretizadores podem ser considerados **híbridos** devido ao fato de que eles podem alternar as divisões.

Global versus Local:

Para tomar uma decisão, um discretizador pode considerar todos os dados disponíveis do atributo ou usar apenas informações parciais.

- Um discretizador **global** utiliza todas as informações disponíveis. Um discretizador **local** faz uso apenas de parte das informações
- Alguns algoritmos seguem o esquema de divisão e conquista e quando é encontrada uma divisão, os dados são recursivamente divididos, restringindo o acesso a dados parciais.

Medidas de avaliação:

- Essas medidas de avaliação são utilizadas pelos discretizadores para comparar intervalos de valores durante o processo de discretização.

São consideradas 5 medidas:

- •Informação: utiliza a entropia
- •Estatística: dependência/correlação entre os atributos
- •Conjuntos aproximados: uso de medidas de conjuntos aproximados
- Wrapper: execução de algoritmos de classificação.
- Binning: quantidade pré-determinada de intervalos

Formação Cientista de Dados

Obrigado!

