Projet pour anticiper les besoins en consommation électrique de bâtiments

Cyril REGAN

Base de données : kaggle.com/city-of-seattle/

16 avril 2020

Table of Contents

Problématique

Feature Engineering

Nettoyage et selection

Transformation variables quan-

Transformation variables quali-

Présentation modèles

Linéaire

Non linéaire

Résultats

Identification meilleur modèle

Garder ou non ENERGYS-

ΓARScore

Erreur sur l'échantillon test

Réduction des caractéristiques

ACP émissions

Selection par les forêts aléatoires sur la consommation

Algo de descente de selection

Conclusion

Conclusion

Perspective

Problématique

Prédire pour la ville de :

les émissions

• et les sources d'énergie

Jeu de donnée :

000

en 2015 : 3340 rows × 47 columns

en 2016 : 3376 rows × 46 columns

qui caractérisent

des individus : batiments de Seattle

 des variables : ID, BuildingType, YearBuilt, ENERGYSTARScore, Zip Codes, etc...

Table of Contents

Problématique **Problématique**

Feature Engineering

Nettoyage et selection Transformation variables quantitatives

Transformation variables qualitatives

Présentation modèles

Linéaire

Dágultata

Identification meilleur modèle

TARScore
Erreur sur l'échantillon test
duction des caractéristiques
ACP émissions

toires sur la consommation Algo de descente de selection

sur la consommation

Conclusion

Conclusion Perspective

Nettoyage et selection des données

- Concaténation 2015 2016 en un seul tableau
- Selection d'une unique variable d'ordre géographique : CouncilDistrictCode
- Vérification des doublons sur l'ID des batiments par années
- Selection de <u>2 variables cibles</u> :
 GHGEmissions(MetricTonsCO2e) et SourceEUI(kBtu/sf)
- Selection de 7 variables quantitatives : CouncilDistrictCode, YearBuilt, NumberofBuildings, NumberofFloors, PropertyGFAParking, PropertyGFABuilding(s), ENERGYSTARScore
- Selection de <u>4 variables qualitatives</u> : *BuildingType*, *LargestPropertyUseType*, *SecondLargestPropertyUseType*, *ThirdLargestPropertyUseType*

Transformation des variables quantitatives

• Variable cible de l'émission distribution de l'émission

distribution de son log

=> nouvelle variable cible : logEMI

• Variable cible de la consommation

ConsoSourceBrute(kBtu) = SourceEUI(kBtu/sf)* (PropertyGFAParking + PropertyGFABuilding(s)) => passage au log : logCONSO

- CouncilDistrictCode
- YearBuilt
- NumberofBuildings=>sqrtNbBuild
- NumberofFloors=>sqrtNbFloor
- PropertyGFAParking=>logGFAPark
- PropertyGFABuilding(s)=> logGFABuild
- ENERGYSTARScore

Transformation variables qualitatives

• BuildingType : OneHotEncoder à 5%

- PropertyUseType : OneHotEncoder à 4.6% avec poids =
 - 3 pour LargestPropertyUseType
 - 2 pour SecondLargestPropertyUseType
 - 1 pour ThirdLargestPropertyUseType

Table of Contents

Problématique

Nettovage et selection

Transformation variables quan-

Transformation variables quali-

Présentation modèles

Linéaire

Non linéaire

Résultats

Identification meilleur modèle

Garder ou non ENERGYS-

Erreur sur l'échantillon test

Réduction des caractéristiques

ACP émissions

Selection par les forêts aléatoires sur la consommation

Algo de descente de selection

Conclusion

Conclusion

Perspective

Présentation des modèles linéaires

- Regression linéaire
- Elastic net
- SVR
- KNN

Validation croisée avec *GridSearch* et *pipelines* (sklearn)

$$X \in \mathbb{R}^{n \times p}$$
, $y \in \mathbb{R}^n$ et $t > 0$

Régression Linéaire :

$$\underset{\beta \in \mathbb{R}^{p+1}}{\operatorname{argmin}} \|y - X\beta\|_2^2$$

\hat{y}_i \hat

Elastic net:

$$\begin{aligned} \underset{\beta \in \mathbb{R}^{p+1}}{\operatorname{argmin}} \|y - X\beta\|_2^2 &+ \lambda \left((1 - \alpha) \|\beta\|_1 + \alpha \|\beta\|_2^2 \right) \\ &\quad \text{ou} \\ \underset{\beta \in \mathbb{R}^{p+1}}{\operatorname{argmin}} \|y - X\beta\|_2^2 \\ &\quad \text{t.q } (1 - \alpha) \|\beta\|_1 + \alpha \|\beta\|_2^2 \leq t \end{aligned}$$

=> GridSearch :
$$\alpha = [0...1, 5], \lambda = [-5... - 1, 5]_{log_{10}}$$

Support Vector Regressor

$$\begin{aligned} \underset{w \in \mathbb{R}^{p}, b \in \mathbb{R}, \xi \in \mathbb{R}^{n}_{+}, \xi^{*} \in \mathbb{R}^{n}_{+}}{\operatorname{argmin}} & \frac{1}{2} \|w\|_{2}^{2} + C \sum_{i=1}^{n} (\xi_{i} + \xi_{i}^{*}) \\ & \text{t.q} \\ y_{i} - \langle w, x_{i} \rangle - b \leq \epsilon + \xi_{i} \\ & \text{et} \\ \langle w, x_{i} \rangle + b - y_{i} \leq \epsilon + \xi_{i}^{*} \end{aligned}$$

$$=>$$
 GridSearch : $C = [-1...2, 5]_{log_{10}}$

K plus proches voisins (KNN)

=> **GridSearch** :
$$k = [1...40, 40]$$

Présentation des modèles non linéaires

- Ridge à noyau
- SVR à noyau
- Réseau de neurones
- Forêts aléatoires
- Gradient boosting

Fonction de redescription ϕ :

Pb non LinéairePb Linéaire $X \in \mathbb{R}^p$ $\phi: \mathbb{R}^p \to \mathbb{R}^m$ $\phi(X) \in \mathbb{R}^m$

L'astuce du noyau :

SVR à noyau => GridSearch :
$$\gamma = \frac{1}{2\sigma^2} = [-3.5... - 1.5, 3]_{log_{10}}$$
, $kernel = rbf$, $C = [-1...2, 5]_{log_{10}}$

 $\frac{\text{Regression Ridge (L2) à noyau}}{\gamma = \frac{1}{2\sigma^2} = [-3.5... - 1.5, 5]_{log_{10}}} = \text{GridSearch} : \textit{kernel} = \textit{rbf},$ $\lambda = [-5...0, 5]_{log_{10}}$

Réseau de neurone :

- Initialisation poids aléatoires des variables (w_{hj}, v_h)
- Sortie de noeud $z_h = a_h(\sum w_{hj}x_j)$, a_h : fct° d'activation ...

$$f(x) = a(\sum v_h z_h)$$

- Descente de gradient par rétropropagation
- (Boucle iter sur toutes les obs) × nb d'époques

=> GridSearch avec *mlpregressor* : iter = [50...300, 6], $Nb_{neur} = (24) \times [1, 2, 3]$, $lear_rate = [-4... - 1, 5]_{log_{10}}$

Forêts aléatoires :

- Tirage avec remise (bootstrap)
- Coupure pour minimiser la variance (ou l'impureté en Classif) des nœuds fils avec un nb réduit de feature (p/3) tirés aléatoirement.
- Critères d'élagage pour réduire la taille des arbres : max-depth, min-samples-leaf
- Résultats par la moyenne de tous les arbres

=> GridSearch : Nb_arbres = [50...500, 6] , max_depth = [10...70, 4]

, $min_samples_leaf = [1...10, 3]$, $max_features = [5...20, 3]$

GradientBoost:

- Arbres petits de même poids
- Arbres construits sur les résidus (et non sur la variable cible)
- Descente de Gradient avec une vitesse d'apprentissage

=> GridSearch: $Nb_arbres = [100...800, 3]$, vitesse d'apprentissage = $[-3...0, 5]_{log_{10}}$, min_samples_leaf = [1...10, 3], max_depth = [3, 5]

Table of Contents

Problématique

ature Engineering

Transformation variables quan-

itatives

Transformation variables quali-

Présentation modèles

Linéaire

Non linéaire

Résultats

Identification meilleur modèle

Garder ou non ENERGYS-TARScore Erreur sur l'échantillon test

Réduction des caractéristiques

ACP émissions

Selection par les forêts aléatoires sur la consommation Algo de descente de selection

sur la consommation

Conclusion

Conclusion

Perspective

Résultats

Les résultats calculés sur le set **d'entrainement** se décomposent comme suit :

- 2 études ont été réalisées : une avec (observations : 4965) et sans (observations : 6515) ENERGYSTARScore
- Pour chaque études 2 variables cibles : l'émission et la consommation.
- 3 métriques utilisées R2 = $1 \frac{\sum_{i=1}^{n} (y_i \hat{y_i})^2}{\sum_{i=1}^{n} (y_i \hat{y}_i)^2}$, RMSE= $\sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i \hat{y_i})^2}$, MAE= $\frac{1}{n} \sum_{i=0}^{n-1} |y_i \hat{y}_i|$.
- 9 modèles d'apprentissage supervisés
- 5 validations croisées pour chaque configuration d'entrainement.

Plan:

- Présentation des 108 calculs sous forme de 4 histogrammes
- Garder ou non **ENERGYSTARScore**

Emissions AVEC ENERGYSTARScore:

=> Vainqueur : La forêt aléatoire!

Consomation AVEC ENERGYSTARScore:

=> Vainqueur : La forêt aléatoire!

Emissions SANS ENERGYSTARScore:

=> Vainqueur : Le Gradient boosting ! (mais tps CPU = 13.4 s / 3.78s pour les forets aléatoires)

Consomation SANS ENERGYSTARScore:

- => Vainqueur : La forêt aléatoire!
- => Le modèle de forêts aléatoires est retenu

Garder ou non ENERGYSTARScore

Résultats sans ENERGYSTARScore moins précis (-6% sur R2) mais satisfaisants

=> ENERGYSTARScore n'est pas retenue.

Erreur sur l'échantillon test : émissions

=> Scores sur log test sont légerement meilleur. Scores sur true test reflètent les vraies erreurs physique des prédictions.

Erreur sur l'échantillon test : consommation

=> Scores sur log test sont légerement meilleur. Scores sur true test reflètent les vraies erreurs physique des prédictions.

Table of Contents

Problématique Feature Engineering

Transformation variables quan-

titatives

Transformation variables quali-

Présentation modèles

Linéaire

Non linéaire

Résultats

Identification meilleur modèle

Garder ou non ENERGYS-TARScore

Réduction des caractéristiques ACP émissions Selection par les forêts aléa-

toires sur la consommation Algo de descente de selection sur la consommation

Conclusion

Conclusion

Perspective

Analyse par composante principales sur les émissions

- Avantage : Evaluer l'importance des composantes principales
- Inconvénient : l'ACP ne selectionne pas directement les variables initales

=> Une analyse avec uniquement les 2 axes principaux donne un score r2 de **57%** (-16% / 73%).

Selection de variables par les forêts aléatoires sur la concomation

- Avantage: Evalue
 l'importance des variables
 sur [0,1]. Importance <=>
 Positions dans les arbres
- Inconvénient : les variables catégorielles sont éclatées

Selection forêt:

- => GFABuild +
 GFAPark ont une
 importance cumulée de
 69%
- => Analyse GFABuild +
 GFAPark : **R2** = **75%**(-12% / 87%)

31 / 38

Algorithme de descente de selection de variables sur la consommation

- Avantage : Evalue l'importance des variables. Groupe les catégories des variables qualitatives en une seule variable.
- Inconvénient : peut être gourmant en tps de calcul

Score r2 pour chaque variable supprimée :

Selection descente de variable :

- => GFABuild+Utype sont les variables les plus importantes.
- => Analyse GFABuild + Utype : R2 = 81% (-6% / 87%)

Moyenne du BestScore-ScoreVariable sur toute les itérations :

Table of Contents

Problématique

Notice Engineering

Transformation variables quan-

itatives

Transformation variables quali-

tatives

Présentation modèles

Linéaire

n linéaire

Résultats

Identification meilleur modèle

Garder ou non ENERGYS-

TARScore

Erreur sur l'échantillon test

Réduction des caractéristiques

ACP émissions

Selection par les forêts aléa-

Algo de descente de selection

Conclusion

Conclusion

Perspectives

Problématique	Feature Engineering	Présentation modèles	Résultats	Réduction des caractéristiques	Conclusion
000	0	0	0	0	0
	0	000	00000	0	•0
	00	00000	0	0	00

Conclusion

- Feature Engineering : selection et transformation de :
 - 2 variables cibles pour l'énegie et la consommation
 - 7 variables quantitatives
 - 4 variables qualitatives
- Présentation des 9 modèles de régression supervisés
- Résultats
 - => Vainqueur : modèle des forêts aléatoires
 - => Le score ENERGYSTAR peut être écarté sans trop pénaliser les prédictions (-6% sur R2)
 - => Les scores sur le jeu test sont légerement meilleurs que sur le train (+5% sur R2)
- Selection de variables
 - ACP :
 - + Une analyse avec seulement les 2 premières composantes principales donne un bon score r2 : 57% (-16% / 73%).
 - l'ACP ne selectionne pas directement les variables initales.

- Selection des forêts :
 - + GFABuild+YearBuild ont une importance cumulée de 60%
 - + Analyse **GFABuild**+**GFAPark** sur consommation : R2 = 75% (-12% / 87%).
 - Les variables qualitatives sont éclatées (OHE)
- Algo de descente :
 - + Variables qualitatives groupées
 - + **GFABuild**+**Utype** sont selectionnées
 - + Analyse **GFABuild+Utype** sur consommation : R2 score = 81% (-6% / 87%).
- => Le modèle des forêts aléatoires pourra être utilisé avec les variables GFABuild et UseType pour prédire la consommation.

Perspectives

- Appliquer ce modèle aux prochaines données terrain.
- Etudier ensuite l'évolution des émissions et consommations suivant la surface au sol ou le type d'usage des batiments

Merci de votre attention

