Automated band annotation for RNA structure probing experiments with numerous capillary electrophoresis profiles

Seungmyung Lee 1 , Hanjoo Kim 1 , Siqi Tian 2 , Taehoon Lee 1 , Sungroh Yoon 1,3,* , Rhiju Das 2,4,*

¹Department of ECE, Seoul National University, Seoul 151-744, Korea ²Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA ³Interdisciplinary Program in Bionformatics, Seoul National University, Seoul 151-744, Korea ⁴Department of Physics, Stanford University, Stanford, CA 94305, USA

Supplement

Fig. S1. An example of band annotation. The left figure illustrates five profiles (SHAPE, DMS, CMCT, nomod, ddTTP) of CE data and an example of their band annotation. Each band location is directed by red line from the corresponding row (nucleotide) of the prediction matrix on the right side. Basically the objective of band annotation is to determine band locations such that the ones in the prediction matrix correspond to high intensity values, and zeros to low values. It is also important to keep the locations fairly evenly distributed on the entire profile, as in this figure.

Fig. S2. Contrasting examples of band annotations determined by the proposed method with/without employing the variable p. Black curves represent the flurescence intensity for a certain range on the primary profile of data set 'EteRNA ensemble design 11 (conventional).' Red circles point the band locations showing chemical reactivity, whereas blue crosses represent the locations without reactivity. (a) Band annotations determined by the normal proposed method using p. Six red circles are almost exactly located at the six most conspicuous peaks as we intended. (b) Band annotations determined without using p. Two red circles are clustered around the fourth peak from the left, whereas no circle is observed around the leftmost peak. This undesirable band annotation resulted because without p, the algorithm is unable to prevent bands from receiving peak bonus for the same peak.

© Oxford University Press 2015.

^{*}To whom correspondence should be addressed

Fig. S3. The distributions of mean squared error (MSE) for the results from the proposed method with/without information on the secondary structures, from the same method without 'short G bonus,' also from the proposed algorithm carried out per each individual profile, and from an alternative implementation of the proposed method that omits explicit peak-matching (see Section 2.4 in the main text), respectively, over the 95 data sets. MSE units are normalized so that average distance between band locations is unity. The mean and median MSE for the proposed method (mean: 0.839, median: 0.198) are clearly lower than those for the others: no knowledge on secondary structures (mean:0.879, median:0.355), no short G bonus (mean:0.905, median:0.205), the proposed method carried out on individual profiles separately (mean:0.973, median:0.257), the method without explicit peak-matching (mean:1.274, median:0.328).

Fig. S4. Reactivity results from CE analysis and Illumina (next-generation-sequencing)-based structure mapping experiments, over 38 data sets from the EteRNA project. The heatmap presents results from two methods, presented in alternating order from left to right on each RNA sequence; CE analysis results are presented on odd numbered x-positions and Illumina results are shown on even numbered x-positions. Visual inspection suggests concordance over most positions, except in the rectangular region. The original manually band-annotated CE data and Illumina data consistently show the highest intensity at different positions (41 and 39, respectively) higlighting an error in the manual CE annotation.

Fig. S5. Error in band positions with respect to the reference band locations for 187-nt HDV data. Upper plot: error over residue positions for the proposed method; middle: mapping between the reference and computationally predicted band locations; lower: error over residue positions for FAST.

Table S1: Name of data set and corresponding results respectively from the proposed method and QuShape, along with E-score.

		MSE		
Data Set Name	E-score	proposed	QuShape	
Fragments of Old Winners	1.00	0.80	2.38	
FNM Apatamet 1st try	1.00	0.55	0.86	
Freywa - Cross FMN - Reshiram	1.00	0.22	0.68	
wisdave's apatamer #1	1.00	0.24	0.38	
Fiskers single aptamer 2	0.97	1.13	1.49	
Starry's Single III	1.00	0.10	1.78	
fold vs shapes	1.00	0.18	0.15	
ViennaRNA design 01	0.88	0.49	0.74	
ViennaRNA design 03	1.00	0.12	1.11	
ViennaRNA design 04	1.00	0.10	0.33	
NUPACK design 02	0.53	4.73	66.49	
NUPACK design 04	0.88	0.52	1.88	
Freywa - Cross FMN R2 - Zekrom	0.96	1.10	1.10	
Tadpole 2.0	1.00	0.09	0.46	
Kiwi	1.00	0.18	0.51	
LROppy 93.4% FMN	1.00	0.07	1.26	
EteRNA ensemble design 01 (L2)	0.85	2.38	4.95	
EteRNA ensemble design 02 (L2)	1.00	0.18	7.60	
EteRNA ensemble design 03 (L2)	0.99	0.18	0.74	
EteRNA ensemble design 04 (L2)	0.97	0.39	0.34	
EteRNA ensemble design 05 (sparse 5)	0.99	0.05	0.55	
EteRNA ensemble design 06 (sparse 5)	0.94	0.40	1.70	
EteRNA ensemble design 07 (sparse 5)	0.97	0.36	6.38	
EteRNA ensemble design 08 (sparse 5)	1.00	0.10	0.18	
EteRNA ensemble design 09 (conventional)	0.91	1.68	1.06	
EteRNA ensemble design 10 (conventional)	0.82	0.58	1.48	
EteRNA ensemble design 11 (conventional)	0.99	0.15	0.58	
EteRNA ensemble design 12 (conventional)	1.00	0.13	0.36	
Brourd - FMNA 1	1.00	0.08	0.40	
The Revolution of the Mobile Archer	1.00	0.19	0.75	
Fragments of old Winners (3)	0.94	1.05	5.13	
Smart Solution	1.00	0.05	0.07	

		M	SE
Data Set Name	E-score	proposed	QuShape
Lump In My Throat	0.94	0.85	7.12
JP-14-0-17 (FMN-SBS II)	0.94	0.34	0.30
SBSII-2	0.87	0.56	6.44
Mod of Quasispecies design Fragments of old winners	0.87	0.48	7.35
NUPACK design 01	0.74	21.50	62.22
NUPACK design 02	0.90	1.70	16.09
NUPACK design 03	0.90	0.89	46.15
NUPACK design 04	0.84	1.09	5.58
ViennaRNA design 01	0.81	2.18	0.51
ViennaRNA design 02	0.84	0.20	0.36
ViennaRNA design 03	0.84	0.05	0.84
NUPACK design 01	0.84	0.45	0.20
NUPACK design 02	0.87	1.36	3.30
NUPACK design 03	0.90	1.70	0.34
NUPACK design 04	0.90	9.63	0.72
ViennaRNA design 01	0.84	3.20	0.67
ViennaRNA design 03	0.81	0.06	0.25
Fragments of Old Winners (4)	1.00	0.09	0.21
GOOD SOLUTION	1.00	0.15	0.57
Mod of Quasispecies design Fragments of old winners v2	0.87	1.01	10.48
Combo - improved	1.00	0.12	0.30
EteRNA ensemble design 0 (sparse 5)	1.00	0.08	0.59
EteRNA ensemble design 1 (sparse 5)	0.97	0.20	0.75
EteRNA ensemble design 2 (sparse 5)	1.00	0.18	0.75
EteRNA ensemble design 3 (sparse 5)	0.97	0.06	0.28
EteRNA ensemble design 4 (L2)	1.00	0.02	0.20
EteRNA ensemble design 5 (L2)	0.97	0.34	0.78
EteRNA ensemble design 6 (L2)	0.97	0.13	0.68
EteRNA ensemble design 7 (L2)	1.00	0.17	0.34
EteRNA ensemble design 08 (conventional)	1.00	0.05	0.21
EteRNA ensemble design 09 (conventional)	0.97	0.15	0.66
EteRNA ensemble design 10 (conventional)	1.00	0.61	0.65
EteRNA ensemble design 11 (conventional)	1.00	0.15	0.27
Wild Cross - 2	0.94	0.12	0.72
Mod of JerryP70	1.00	0.07	0.55
Mod of brourds 1 st round -	0.84	0.08	0.88
Unique Stacks	0.93	0.24	0.54
G-C pairs in multloops in same direction	0.98	0.04	1.38
Fisker's Binding branches	0.93	0.12	0.76
NUPACK design 01	0.95	0.25	0.93
NUPACK design 02	0.93	0.53	0.39
NUPACK design 03	0.93	3.05	1.41
NUPACK design 04	0.98	0.43	0.39
ViennaRNA design 04	0.88	0.40	0.48
EteRNA ensemble design 02 (conventional)	0.95	1.80	1.35
EteRNA ensemble design 04 (conventional)	1.00	0.03	0.45
EteRNA ensemble design 05 (sparse 5)	1.00	0.06	0.05
EteRNA ensemble design 06 (sparse 5)	1.00	0.26	0.41
EteRNA ensemble design 07 (sparse 5)	0.98	0.19	0.39
EteRNA ensemble design 08 (sparse 5)	0.99	0.12	0.10
EteRNA ensemble design 09 (L2)	1.00	0.28	13.50
EteRNA ensemble design 11 (L2)	0.98	0.21	0.18
EteRNA ensemble design 12 (L2)	0.99	0.08	0.23
UUU / GCA Triloops (Round 2)	0.91	0.69	3.00
Uracil in 1-2 x2	0.85	0.12	0.79
	0.00	0.12	0.17

		M	SE
Data Set Name	E-score	proposed	QuShape
1 U-leg, 1 A-leg	0.94	1.01	3.98
Bonus Army	0.91	0.23	0.86
wisdave's 2nd round	0.76	0.68	1.02
C - BACK	0.88	1.24	0.24
Beauty in Balance	0.97	0.13	1.33
Very Low Entropy ¡0.6 T-B-C #5	0.94	0.09	0.16
Improves on Quasispecies UUU/GCA Triloop	0.91	0.08	0.06
sta1	0.82	0.21	1.86

Table S2: Description of longer data sets and results from the tests with these data sets. a An extraordinary result mainly caused by a misalignment between profiles.

Name	# profiles	# bands per profile	MSE	E-score
GIR1 noref	21	199	0.09	0.99
GIR1 ref	21	225	0.12	0.98
AdoCbl noref	16	179	0.61	0.97
AdoCbl ref	16	205	0.68	0.90
VS noref	48	195	0.16	0.96
VS ref	48	233	0.12	0.96
SAM noref	32	103	0.09	0.96
SAM ref	32	143	0.09	0.96
HTP noref	32	79	0.05	1.00
HTP ref	32	116	0.05	1.00
Tbox	20	141	0.34	0.98
tRNA	20	119	0.63	0.83
cdiAMP	36	171	0.16	0.99
16S	8	125	0.21	0.98
C19	16	319	0.18	0.99
tC19	16	248	0.01	1.00
tC19Z	16	248	0.01	0.99
C1Lig	7	167	0.04	1.00
Hox5	9	261	0.11	0.99
Hox9D	16	296	0.44	0.99
L-21	20	413	2.00^{a}	0.98

Table S3: Name of data set and corresponding results respectively from the proposed method and manual annotation, along with the ratio between two MSE values (proposed / manual)

	MSE		
Data Set Name	ratio	proposed	manual
Fragments of Old Winners	1.15	0.82	0.71
FNM Apatamet 1st try	0.94	0.57	0.61
Freywa - Cross FMN - Reshiram	2.60	0.24	0.09
wisdave's apatamer #1	1.32	0.26	0.20
Fiskers single aptamer 2	9.31	1.43	0.15
Starry's Single III	0.73	0.11	0.15
fold vs shapes	1.22	0.18	0.15
ViennaRNA design 01	0.97	0.58	0.60
ViennaRNA design 03	0.67	0.15	0.22
ViennaRNA design 04	1.04	0.09	0.09
NUPACK design 02	3.80	4.60	1.21
NUPACK design 04	10.10	3.18	0.32
Freywa - Cross FMN R2 - Zekrom	3.31	0.98	0.30
Tadpole 2.0	1.77	0.10	0.06
Kiwi	4.07	0.11	0.03
LROppy 93.4% FMN	2.07	0.09	0.04
EteRNA ensemble design 01 (L2)	5.33	4.27	0.80
EteRNA ensemble design 02 (L2)	3.03	0.19	0.06
EteRNA ensemble design 03 (L2)	1.12	0.22	0.19
EteRNA ensemble design 04 (L2)	1.47	0.39	0.26
EteRNA ensemble design 05 (sparse 5)	2.51	0.17	0.07
EteRNA ensemble design 06 (sparse 5)	1.91	0.58	0.31
EteRNA ensemble design 07 (sparse 5)	0.83	0.37	0.44
EteRNA ensemble design 08 (sparse 5)	5.90	0.75	0.13
EteRNA ensemble design 09 (conventional)	13.01	1.69	0.13
EteRNA ensemble design 10 (conventional)	1.16	1.01	0.87
EteRNA ensemble design 11 (conventional)	1.86	0.17	0.09
EteRNA ensemble design 12 (conventional)	2.51	0.23	0.09
UUU / GCA Triloops (Round 2)	40.59	0.51	0.01
Uracil in 1-2 x2	1.20	0.12	0.10
1 U-leg, 1 A-leg	3.62	1.19	0.33
Bonus Army	1.61	0.39	0.21
wisdave's 2nd round	12.73	0.74	0.06
C - BACK	2.75	1.19	0.43
Beauty in Balance	9.22	1.36	0.15
Very Low Entropy ;0.6 T-B-C #5	1.36	0.14	0.11
Improves on Quasispecies UUU/GCA Triloop	11.22	0.08	0.01
sta1	1.09	0.23	0.21

Table S4: Name and type of data profile, and the Pearson's correlation coefficients between manually quantified areas, and those quantified by the proposed method and by QuShape respectively. Average values are posted for the multiple results from repetitive experiments with same data.

D. C.N.	ъ . т		(averaged)
Data Set Name	Data Type	proposed	QuShape
Fragments of Old Winners	DMS	0.9383	0.9654
FNM Apatamet 1st try	DMS	0.6913	0.9468
Freywa - Cross FMN - Reshiram	DMS	0.9750	0.9433
wisdave's apatamer #1	DMS	0.9796	0.9546
Fiskers single aptamer 2	DMS	0.9708	0.9588
Starry's Single III	DMS	0.9788	0.7297
fold vs shapes	DMS	0.9890	0.9880
ViennaRNA design 01	DMS	0.9927	0.9745
ViennaRNA design 03	DMS	0.9957	0.9929
ViennaRNA design 04	DMS	0.9667	0.9232
NUPACK design 02	DMS	0.9148	0.8848
NUPACK design 04	DMS	0.9557	0.7359
Freywa - Cross FMN R2 - Zekrom	DMS	0.9832	0.7436
Tadpole 2.0	DMS	0.9757	0.9444
Kiwi	DMS	0.9964	0.8889
LROppy 93.4% FMN	DMS	0.9899	0.9422
EteRNA ensemble design 01 (L2)	DMS	0.9935	0.9917
EteRNA ensemble design 02 (L2)	DMS	0.9650	0.8977
EteRNA ensemble design 03 (L2)	DMS	0.9215	0.9130
EteRNA ensemble design 04 (L2)	DMS	0.9145	0.9482
EteRNA ensemble design 05 (Sparse 5)	DMS	0.9835	0.9616
EteRNA ensemble design 06 (Sparse 5)	DMS	0.9889	0.9822
EteRNA ensemble design 07 (sparse 5)	DMS	0.9452	0.8044
EteRNA ensemble design 08 (sparse 5)	DMS	0.9752	0.9748
EteRNA ensemble design 09 (conventional)	DMS	0.5389	0.6876
EteRNA ensemble design 10 (conventional)	DMS	0.9898	0.9867
EteRNA ensemble design 11 (conventional)	DMS	0.9962	0.9480
EteRNA ensemble design 12 (conventional)	DMS	0.9882	0.9109
Brourd - FMNA 1	SHAPE	0.9747	0.9480
Brourd - FMNA 1	DMS	0.9908	0.7227
The Revolution of the Mobile Archer	SHAPE	0.9897	0.9360
The Revolution of the Mobile Archer	DMS	0.9816	0.9785
Fragments of old Winners (3)	SHAPE	0.9942	0.9756
Fragments of old Winners (3)	DMS	0.9976	0.9868
Smart Solution	SHAPE	0.9903	0.9883
Smart Solution	DMS	0.9942	0.8834
Lump In My Throat	SHAPE	0.9529	0.9545
Lump In My Throat	DMS	0.9904	0.7225
JP-14-0-17 (FMN-SBS II)	SHAPE	0.9441	0.9762
JP-14-0-17 (FMN-SBS II)	DMS	0.9827	0.9684
SBSII-2	SHAPE	0.9177	0.9057
SBSII-2	DMS	0.9570	0.9093
Mod of Quasispecies design Fragments of old winners	SHAPE	0.9422	0.9724
Mod of Quasispecies design Fragments of old winners	DMS	0.9649	0.4340
NUPACK design 01	SHAPE	0.9675	0.9706
NUPACK design 01	DMS	0.9858	0.9842
NUPACK design 02	SHAPE	0.8283	0.5124
NUPACK design 02	DMS	0.9225	0.4406
NUPACK design 03	SHAPE	0.9465	0.9102
NUPACK design 03	DMS	0.9987	0.9978

		correlation	(averaged)
Data Set Name	Data Type	proposed	QuShape
NUPACK design 04	SHAPE	0.9990	0.9898
NUPACK design 04	DMS	0.9995	0.9657
ViennaRNA design 01	SHAPE	0.7068	0.7119
ViennaRNA design 01	DMS	0.9524	0.5016
ViennaRNA design 02	SHAPE	0.8846	0.7067
ViennaRNA design 02	DMS	0.9773	0.6991
ViennaRNA design 03	SHAPE	0.9866	0.7357
ViennaRNA design 03	DMS	0.9806	0.7832
NUPACK design 01	SHAPE	0.8479	0.8934
NUPACK design 01	DMS	0.9871	0.9948
NUPACK design 02	SHAPE	0.8883	0.7229
NUPACK design 02	DMS	0.9475	0.9425
NUPACK design 03	SHAPE	0.6236	0.8557
NUPACK design 03	DMS	0.9437	0.9545
NUPACK design 04	SHAPE	0.8638	0.7790
NUPACK design 04	DMS	0.9835	0.8958
ViennaRNA design 01	SHAPE	0.9422	0.7428
ViennaRNA design 01	DMS	0.9710	0.9098
ViennaRNA design 03	SHAPE	0.9845	0.9231
ViennaRNA design 03	DMS	0.9950	0.9144
Fragments of Old Winners (4)	SHAPE	0.9743	0.9742
Fragments of Old Winners (4)	DMS	0.9932	0.9890
GOOD SOLUTION	SHAPE	0.9518	0.9355
GOOD SOLUTION	DMS	0.9840	0.9714
Mod of Quasispecies design Fragments of old winners v2	SHAPE	0.5981	0.6670
Mod of Quasispecies design Fragments of old winners v2	DMS	0.5231	0.9051
Combo - improved	SHAPE	0.9483	0.9111
Combo - improved	DMS	0.9960	0.9854
EteRNA ensemble design 0 (sparse 5)	SHAPE	0.9528	0.9265
EteRNA ensemble design 0 (sparse 5)	DMS	0.9814	0.8917
EteRNA ensemble design 1 (sparse 5)	SHAPE	0.9179	0.9152
EteRNA ensemble design 1 (sparse 5)	DMS	0.9547	0.9228
EteRNA ensemble design 2 (sparse 5)	SHAPE	0.9322	0.9145
EteRNA ensemble design 2 (sparse 5)	DMS	0.9506	0.9029
EteRNA ensemble design 3 (sparse 5)	SHAPE	0.9961	0.9217
EteRNA ensemble design 3 (sparse 5)	DMS	0.9965	0.9216
EteRNA ensemble design 4 (L2)	SHAPE	0.9967	0.9172
EteRNA ensemble design 4 (L2)	DMS	0.9895	0.9782
EteRNA ensemble design 5 (L2)	SHAPE	0.6165	0.4973
EteRNA ensemble design 5 (L2)	DMS	0.8898	0.8574
EteRNA ensemble design 6 (L2)	SHAPE	0.9795	0.9049
EteRNA ensemble design 6 (L2)	DMS	0.9885	0.8338
EteRNA ensemble design 7 (L2)	SHAPE	0.9676	0.9730
EteRNA ensemble design 7 (L2)	DMS	0.9512	0.9526
EteRNA ensemble design 08 (conventional)	SHAPE	0.9904	0.9249
EteRNA ensemble design 08 (conventional)	DMS	0.9947	0.9326
EteRNA ensemble design 09 (conventional)	SHAPE	0.9413	0.9320
EteRNA ensemble design 09 (conventional)	DMS	0.9930	0.9193
EteRNA ensemble design 10 (conventional)	SHAPE	0.6075	0.9218
EteRNA ensemble design 10 (conventional) EteRNA ensemble design 10 (conventional)		0.9651	0.8349
	DMS		
EteRNA ensemble design 11 (conventional)	SHAPE	0.9865	0.9857
EteRNA ensemble design 11 (conventional) Wild Cross - 2	DMS	0.9881	0.9845
	SHAPE	0.9936	0.7966
Wild Cross - 2	DMS	0.9957	0.9414
Mod of JerryP70	SHAPE	0.9583	0.9068

		correlation	(averaged)
Data Set Name	Data Type	proposed	QuShape
Mod of JerryP70	DMS	0.9960	0.7095
Mod of brourds 1 st round -	SHAPE	0.9992	0.8678
Mod of brourds 1 st round -	DMS	0.9998	0.9901
Unique Stacks	SHAPE	0.9687	0.8632
Unique Stacks	DMS	0.9832	0.8142
G-C pairs in multloops in same direction	SHAPE	0.9857	0.9698
G-C pairs in multloops in same direction	DMS	0.9972	0.9866
Fisker's Binding branches	SHAPE	0.3513	0.9764
Fisker's Binding branches	DMS	0.2634	0.9424
NUPACK design 01	SHAPE	0.9909	0.9591
NUPACK design 01	DMS	0.9958	0.9836
NUPACK design 02	SHAPE	0.8850	0.8366
NUPACK design 02	DMS	0.9646	0.8545
NUPACK design 03	SHAPE	0.6981	0.7560
NUPACK design 03	DMS	0.9497	0.7813
NUPACK design 04	SHAPE	0.7580	0.9667
NUPACK design 04	DMS	0.9234	0.9888
ViennaRNA design 04	SHAPE	0.8825	0.8842
ViennaRNA design 04	DMS	0.9937	0.9872
EteRNA ensemble design 02 (conventional)	SHAPE	0.9477	0.9561
EteRNA ensemble design 02 (conventional)	DMS	0.8835	0.8607
EteRNA ensemble design 04 (conventional)	SHAPE	0.9796	0.9433
EteRNA ensemble design 04 (conventional)	DMS	0.9903	0.7494
EteRNA ensemble design 05 (sparse 5)	SHAPE	0.8986	0.9915
EteRNA ensemble design 05 (sparse 5)	DMS	0.9937	0.9961
EteRNA ensemble design 06 (sparse 5)	SHAPE	0.9553	0.5474
EteRNA ensemble design 06 (sparse 5)	DMS	0.9612	0.9208
EteRNA ensemble design 07 (sparse 5)	SHAPE	0.9885	0.9736
EteRNA ensemble design 07 (sparse 5)	DMS	0.9533	0.9637
EteRNA ensemble design 08 (sparse 5)	SHAPE	0.9738	0.9753
EteRNA ensemble design 08 (sparse 5)	DMS	0.9775	0.9060
EteRNA ensemble design 09 (L2)	SHAPE	0.9765	0.9359
EteRNA ensemble design 09 (L2)	DMS	0.9843	0.5745
EteRNA ensemble design 11 (L2)	SHAPE	0.8987	0.9365
EteRNA ensemble design 11 (L2)	DMS	0.9417	0.8063
EteRNA ensemble design 12 (L2)	SHAPE	0.9790	0.9616
EteRNA ensemble design 12 (L2)	DMS	0.9649	0.9511
UUU / GCA Triloops (Round 2)	SHAPE	0.9889	0.8104
Uracil in 1-2 x2	SHAPE	0.9749	0.9665
1 U-leg, 1 A-leg	SHAPE	0.8023	0.6919
Bonus Army	SHAPE	0.9743	0.7612
wisdave's 2nd round	SHAPE	0.9796	0.8770
C - BACK	SHAPE	0.9705	0.9441
Beauty in Balance	SHAPE	0.9879	0.7477
Very Low Entropy ¡0.6 T-B-C #5	SHAPE	0.9745	0.8384
Improves on Quasispecies UUU/GCA Triloop	SHAPE	0.9849	0.9971
sta1	SHAPE	0.9954	0.9117