HO CHI MINH CITY UNIVERSITY OF TRANSPORT

Kiến thức - Kỹ năng - Sáng tạo - Hội nhập $\frac{\text{Sứ mệnh - Tầm nhìn}}{\text{Triết lý Giáo dục - Giá trị cốt lõi}}$

Contents

0	Database and Python Resources	2							
	0.1 Database	2							
	0.2 Python Environment	2							
	0.3 Python is a programming interface	2							
1	Functional Dependencies (FDs)	2							
2	Amstrong's Axiom								
3	Closure	3							
4	Keys	6							
5	Normal Form by FDs	6							
6	Multivalued Dependencies (MVDs)	8							
7	Tableau Chase Test	9							
8	More Normal form and Dependencies	11							

0 Database and Python Resources

0.1 Database

- 1. SQLite: https://sqlite.org Tool: https://sqlitebrowser.org , https://dbeaver.io
- 2. PostgreSQL: https://www.postgresql.org Tool: https://www.pgadmin.org , https://dbeaver.io

0.2 Python Environment

- 1. Online: https://colab.research.google.com
- 2. Offline: Anaconda \rightarrow Jupyter Notebook: https://www.anaconda.com/products/individual-d

0.3 Python is a programming interface

- 1. Python tutorial: https://pythonbasics.org/
- 2. Using python to connect with database to execute queries.
- 3. Tkinter GUI: https://docs.python.org/3/library/tk.html
- 4. PyQt: https://www.pythonguis.com/

1 Functional Dependencies (FDs)

Exercise 1.1							Α	В	С	D
Consider relation r below:							1	2	3	4
r:	R(A	В	\mathbf{C}	D	E)		5	6	11	8
t_1	0	0	0	0	0		40	10	11	12
t_2	0	1	1		0		13	14	15	16
t_3	1	0		2	0					
t_4	1	0	3	2	0					
t_5	2	1	4	U	U					

Which of the following FDs does r satisfy (why?):

- a) $A \to B$ a) Sai (0->0, 0->1 là sai)
- b) $AB \rightarrow D$ b) Đúng (Có 2 cặp 1-0 AB nhưng đều có giá trị 2 ở D là đúng)
- c) $C \rightarrow BDE$ c) Đúng (Cột C khác nhau từng đôi một)
- d) Sai (0->0, 0->1 là sai)
- e) Đúng (Cột E giống nhau)

Exercise 1.2

Prove that r satisfies $X \to Y$ if and only if X is a key of $\pi_{XY}(r)$.

Exercise 1.3

Let r be a relation on R, with X a subset of R. Show that if $\pi_X(r)$ has the same number of tuples as r, then r satisfies $X \to Y$ for any subset Y of R.

Exercise 1.4

Prove or disprove the following inference rules for a relation r(R) with W, X, Y, Z subsets of R.

- a) $X \to Y$ and $Z \to W$ imply $XZ \to YW$.
- b) $XY \to Z$ and $Z \to X$ imply $Z \to Y$.
- c) $X \to Y$ and $Y \to Z$ imply $X \to YZ$.
- d) $X \to Y$, $W \to Z$, and $Y \supseteq W$ imply $X \to Z$.

2 Amstrong's Axiom

Exercise 2.1

Consider $F = \{AB \to CD, A \to BE, BH \to DK, H \to BC \}$ Prove by Amstrong: $F \models AH \to CK$

Exercise 2.2

Consider $F = \{AB \rightarrow E, AG \rightarrow J, BE \rightarrow I, E \rightarrow G, GI \rightarrow H\}$ Prove by Amstrong: $F \models AB \rightarrow GH$

Exercise 2.3

Consider $F = \{A \to D, B \to CE, E \to H, D \to E, E \to C\}$ Prove by Amstrong:

- a) $F \models B \rightarrow H$
- b) $F \models AB \rightarrow CH$

Exercise 2.4

Consider $F = \{ D \to BK, \ AB \to GK, \ B \to H, \ CE \to AG, \ H \to E, \ K \to G, \ EH \to K, \ G \to AH \}$ Prove by Amstrong:

- a) $F \models AB \rightarrow GH$
- b) $F \models DE \rightarrow AG$
- c) $F \models BH \rightarrow EK$

3 Closure

Exercise 3.1

Show that for any set of FDs F, $F^+ = (F^+)^+$.

Exercise 3.2

Suppose R(ABCDE) and set of functional dependencies: $F = \{ A \rightarrow BC, CD \rightarrow E, B \rightarrow D, E \rightarrow A \}$. Compute:

- a) CD_F^+
- b) E_F^+

Exercise 3.3

Suppose R(ABCDEK) and set of functional dependencies: $F = \{AB \to C, BC \to AD, D \to E, CK \to B\}$. Compute:

- a) BCK_F^+
- b) CD_F^+
- c) D_F^+

Exercise 3.4

Suppose R(ABCDEKGH) and set of functional dependencies: $F = \{A \rightarrow BC, E \rightarrow C, AH \rightarrow D, CD \rightarrow E, D \rightarrow AEH, DH \rightarrow BC\}$. Compute:

- a) AE_F^+
- b) BCD_F^+

Exercise 3.5

Consider:

$$F_1 = \left\{ \begin{array}{l} AB \rightarrow CD, \ A \rightarrow BE, \ BH \rightarrow DK, \ H \rightarrow BC \end{array} \right\}$$

$$F_2 = \left\{ \begin{array}{l} AB \rightarrow E, \ AG \rightarrow J, \ BE \rightarrow I, \ E \rightarrow G, \ GI \rightarrow H \end{array} \right\}$$

$$F_3 = \left\{ \begin{array}{l} A \rightarrow D, \ B \rightarrow CE, \ E \rightarrow H, \ D \rightarrow E, \ E \rightarrow C \end{array} \right\}$$

$$F_4 = \left\{ \begin{array}{l} D \rightarrow BK, \ AB \rightarrow GK, \ B \rightarrow H, \ CE \rightarrow AG, \ H \rightarrow E, \ K \rightarrow G, \ EH \rightarrow K, \ G \rightarrow AH \end{array} \right\}$$
 Compute:

- a) $AH_{F_1}^+$
- b) $AB_{F_2}^+$
- c) $B_{F_3}^+$
- d) $AB_{F_2}^+$
- e) $AB_{F_4}^+$
- f) $DE_{F_4}^+$
- g) $BH_{F_4}^+$

Exercise 3.6

Consider $F = \{A \to B, A \to C, CD \to E, B \to D, E \to A\}$ Which of the following functional dependencies is NOT implied by the above set?

- a) $CD \to AC$
- b) $BD \to CD$
- c) $BC \to CD$
- d) $AC \rightarrow BC$

Exercise 3.7

From Axiom 1, 2, 3 prove Axiom 4, 5 and 6.

Exercise 3.8

Prove that inference axioms 1, 2, and 6 are independent. That is, no one of them can be proved from the other two.

Exercise 3.9

```
R(ABCD) having two FDs sets: F = \left\{ \begin{array}{l} A \rightarrow B, \ B \rightarrow C, \ AB \rightarrow D \end{array} \right\}, \\ G = \left\{ \begin{array}{l} A \rightarrow B, \ B \rightarrow C, \ A \rightarrow C, \ A \rightarrow D \end{array} \right\} Are the two sets equivalent ?
```

Exercise 3.10

```
R(ABCD) having two FDs sets: F = \{A \rightarrow B, B \rightarrow C, A \rightarrow C\}, G = \{A \rightarrow B, B \rightarrow C, A \rightarrow D\} Are the two sets equivalent ?
```

Exercise 3.11

$$R(ACDEH)$$
 having two FDs sets: $F = \{A \rightarrow C, AC \rightarrow D, E \rightarrow AD, E \rightarrow H\},$ $G = \{A \rightarrow CD, E \rightarrow AH\}$ Are the two sets equivalent?

Exercise 3.12

```
R(ABCDE) having two FDs sets: F = \{A \rightarrow BC, A \rightarrow D, CD \rightarrow E\}, G = \{A \rightarrow BCE, A \rightarrow ABD, CD \rightarrow E\} Are the two sets equivalent?
```

Exercise 3.13

R(ABCDE) having two FDs sets: $F = \left\{ \begin{array}{l} AB \rightarrow C, \ A \rightarrow B, \ B \rightarrow C, \ A \rightarrow C \end{array} \right\},$ $G = \left\{ \begin{array}{l} AB \rightarrow C, \ A \rightarrow B, \ B \rightarrow C \end{array} \right\}$ Are the two sets equivalent ?

Exercise 3.14

Consider $F = \{ A \to B, B \to C, C \to A, B \to A, A \to C \}$

- a) Find a minimum cover F_c of F by loop from right to left
- b) Find a minimum cover F_c of F by loop from left to right

Exercise 3.15

Consider $F = \{ A \to BC, B \to C, A \to B, AB \to C \}$ Find a minimum cover F_c of F

Exercise 3.16

Consider $F = \{ A \to BC, CD \to E, B \to D, E \to A \}$ Find a minimum cover F_c of F

Exercise 3.17

Consider $F = \{ B \to A, AD \to BC, C \to ABD \}$ Find a minimum cover F_c of F

Exercise 3.18

Consider R(ABC), $F = \{AB \rightarrow C, A \rightarrow B\}$ $G = \{A \rightarrow B, B \rightarrow C\}$

- a) Find a minimum cover F_c of F
- b) Is G a minimal cover of F? Otherwise give a data instance of R satisfy F but not G

Exercise 3.19

Consider R(ABCDE), $F=\left\{AB\to CD,\ B\to CD,\ CD\to AE,\ DE\to AB,\ D\to E\right\}$ Compute Projected Functional Dependencies:

- a) $\pi_{R_1(ABC)}(F)$
- b) $\pi_{R_2(BCD)}(F)$
- c) $\pi_{R_3(CDE)}(F)$
- d) $\pi_{R_4(ADE)}(F)$
- e) $\pi_{R_5(BDE)}(F)$
- f) $\pi_{R_6(AE)}(F)$
- g) $\pi_{R_7(DE)}(F)$

Exercise 3.20

Consider R(ABCDEGH), $F = \{AB \rightarrow CD, E \rightarrow D, ABC \rightarrow DE, E \rightarrow AB, D \rightarrow AG, ACD \rightarrow BE \}$ Compute Projected Functional Dependencies:

- a) $\pi_{R_1(ABCD)}(F)$
- b) $\pi_{R_2(DEGH)}(F)$
- c) $\pi_{R_3(CDE)}(F)$
- d) $\pi_{R_4(ADE)}(F)$
- e) $\pi_{R_5(BDE)}(F)$
- f) $\pi_{R_6(AE)}(F)$
- g) $\pi_{R_7(DE)}(F)$

B1: L = ABCED, R = BDCA

NF = H, OL = E, LR = ABCD

ABC, ABD, ACD, BCD, ABCD

B2: 0, A, B, C, D, AB, AC, AD, BC, BD, CD

Keys

Exercise 4.1

Consider R(ABCDEH) with a set of FDs $F = \{ A \rightarrow B, BC \rightarrow D, E \rightarrow C, D \rightarrow A \}$ What are the candidate keys of R

- a) AE, BE
- b) AE, BE, DE
- c) AEH, BEH, BCH
- d) AEH, BEH, DEH

Exercise 4.2

Consider R(DEGHIJKLMN) with a set of FDs $F = \{ DE \rightarrow G, D \rightarrow IJ, EH \rightarrow KL, K \rightarrow M, L \rightarrow N \}$ What is the key for R?

- a) EF
- b) DEH
- c) DEHKL
- d) E

Exercise 4.3

Consider R(ABCDEKGH) with a set of FDs $F = \{ABC \rightarrow DE, AB \rightarrow D, DE \rightarrow ABCK, E \rightarrow C\}$ Find all the candidate keys of R

Exercise 4.4

Consider R(ABCDEGHK) with a set of FDs $F = \{ CD \rightarrow A, EC \rightarrow H, GHB \rightarrow AB, C \rightarrow D, EG \rightarrow A, H \rightarrow B, BE \rightarrow CD, EC \rightarrow B \}$ Find all the candidate keys of R

Normal Form by FDs 5

Exercise 5.1

Which normal form of relational scheme below:

- a) $R_1(ABC), F_1 = \{ A \to C \}$
- b) $R_2(ABC), F_2 = \{ C \to B \}$
- c) $R_3(ABCD)$, $F_3 = \{A \rightarrow B, B \rightarrow A\}$
- d) $R_4(ABCD)$, $F_4 = \{ D \rightarrow C, B \rightarrow A \}$
- e) $R_5(ABCD)$, $F_5 = \{ B \rightarrow D, C \rightarrow D \}$
- f) $R_6(ABCDE)$, $F_6 = \{AB \rightarrow C, B \rightarrow A, D \rightarrow A\}$
- g) $R_7(ABCDE)$, $F_7 = \{AB \rightarrow C, C \rightarrow D, D \rightarrow A\}$
- h) $R_8(ABCDE)$, $F_8 = \{AB \rightarrow CD, CD \rightarrow AE, D \rightarrow A\}$
- i) $R_9(ABCDE)$, $F_9 = \{ D \rightarrow A, BC \rightarrow E, A \rightarrow C \}$
- j) $R_{10}(ABCDEG), F_{10} = \{AB \rightarrow CG, G \rightarrow D, B \rightarrow D \}$
- k) $R_{11}(ABCDE)$, $F_{11} = \{ E \rightarrow D, C \rightarrow B, A \rightarrow E B \rightarrow A, D \rightarrow C \}$
- 1) $R_{12}(ABCDE)$, $F_{12} = \{AC \rightarrow B, BD \rightarrow C, CE \rightarrow D\}$
- $m) R_{13}(ABCD), F_{13} = \emptyset$

Exercise 5.2

Consider R(ABCD), $F = \{A \rightarrow C, B \rightarrow D\}$

- a) Keys and Normal form?
- b) Decompose R

Exercise 5.3

Consider R(ABCD), $F = \{AC \rightarrow D\}$

- a) Keys and Normal form?
- b) Decompose R

Exercise 5.4

Consider R(ABCDE), $F = \{AB \rightarrow C, B \rightarrow A, D \rightarrow A\}$

- a) Keys and Normal form?
- b) Decompose R

Exercise 5.5

Consider R(ABCDE), $F = \{CD \rightarrow A, EC \rightarrow B, AD \rightarrow C\}$

- a) Keys and Normal form?
- b) Decompose R

Exercise 5.6

Consider R(ABCDEGH), $F = \{ CD \rightarrow A, EC \rightarrow H, GHB \rightarrow AB, C \rightarrow D, EG \rightarrow A, H \rightarrow B, BE \rightarrow CD, EC \rightarrow B \}$

- a) Keys and Normal form?
- b) Decompose R

Exercise 5.7

Consider R(ABCD), $F = \{A \rightarrow B, B \rightarrow C, D \rightarrow B\}$

- a) Normal form of R?
- b) If R is not good, let try to find a good decomposition for R

Exercise 5.8

```
Consider R(ABCD), F = \{A \rightarrow B, B \rightarrow C, A \rightarrow D, D \rightarrow C\}
One decomposition \rho of R:
        R_1(AB), F_1
        R_2(AC), F_2
        R_3(BD), F_3
```

- a) F_i ?
- b) Keys and Normal form of R_i ?

Exercise 5.9

```
Consider R(A B D E M N O P X Y Z V W),
F = \{ D \to XMNPE, MPN \to EYABO, MN \to ZO, O \to V, P \to ABW, AB \to P, NE \to MP \}
One decomposition \rho of R:
     R_1(DXMNPE), F_1
     R_2(MNPEYABO), F_2
     R_3(MNZO), F_3
     R_4(OV), F_4
     R_5(PABW), F_5
  a) F_i?
```

- b) Keys and Normal form of R_i ?
- c) Evaluate the quality of ρ (Normal form, Conserve information, Conserve FDs)
- d) If ρ is not good, let make a improvement of ρ

Exercise 5.10

Consider R(ABCDEGH), $F = \{ CD \rightarrow A, EC \rightarrow H, GHB \rightarrow AB, C \rightarrow D, EG \rightarrow A, H \rightarrow B, BE \rightarrow CD, EC \rightarrow B \}$ Evaluate the decomposition below (Normal form, Conserve information, Conserve FDs) $\rho = \{ R_1(ABC), R_2(CDEG), R_3(EGH) \}$

Exercise 5.11

Give an example of a relation in 3NF that has some prime attribute transitively dependent upon a key

Exercise 5.12

Let R_1 and R_2 be relation schemes with $R_1 \cap R_2 = X$. Show that for any relation $r(R_1R_2)$ that satisfies $X \to R_2$,

$$r = \pi_{R_1}(r) \bowtie \pi_{R_2}(r)$$

6 Multivalued Dependencies (MVDs)

Exercise 6.1

Consider relation r below:

R(A В С D E) 0 0 0 0 t_1 1 0 2 0 0 t_2 2 2 0 0 1 t_3

From data instance R above make R satisfies each MVD below:

- a) $AB \rightarrow C$
- b) $AB \rightarrow E$
- c) $D \rightarrow C$
- d) $AD \rightarrow C$
- e) $C \rightarrow DE$

Exercise 6.2

Let R(ABCDE), $\mathfrak{D} = \{A \twoheadrightarrow BC, A \twoheadrightarrow E, E \twoheadrightarrow CD \}$ Proving by MVDs axiom:

- a) $\mathfrak{D} \models A \twoheadrightarrow C$
- b) $\mathfrak{D} \models A \rightarrow BD$
- c) $\mathfrak{D} \models AC \twoheadrightarrow BD$
- d) $\mathfrak{D} \models AC \twoheadrightarrow BE$
- e) $\mathfrak{D} \models DE \twoheadrightarrow AC$
- f) $\mathfrak{D} \models DE \twoheadrightarrow AB$

Exercise 6.3

Let R(ABCDGH), $\mathfrak{D} = \{A \twoheadrightarrow B, B \twoheadrightarrow GH, CD \twoheadrightarrow G\}$ Proving by MVDs axiom:

- a) $\mathfrak{D} \models BC \twoheadrightarrow AD$
- b) $\mathfrak{D} \models BC \twoheadrightarrow GH$
- c) $\mathfrak{D} \models BC \twoheadrightarrow DG$
- d) $\mathfrak{D} \models CD \twoheadrightarrow AB$
- e) $\mathfrak{D} \models CD \twoheadrightarrow BG$
- f) $\mathfrak{D} \models CD \twoheadrightarrow GH$

Exercise 6.4

Let R(ABCGHI), $\mathfrak{D} = \{A \twoheadrightarrow B, B \twoheadrightarrow HI, CG \twoheadrightarrow H\}$ Compute $X_{\mathfrak{D}}^{++}$:

- a) $A_{\mathfrak{D}}^{++}$
- b) $AG_{\mathfrak{D}}^{++}$
- c) $BG_{\mathfrak{D}}^{++}$
- d) $BC_{\mathfrak{D}}^{++}$
- e) $HG_{\mathfrak{D}}^{++}$

Exercise 6.5

Prove the correctness of inference axioms M1 and M2.

Exercise 6.6

Prove the correctness of inference axiom M3.

Exercise 6.7

We know axiom M7 is correct from Lemma 8.3

Prove the correctness of inference axiom M4 using axioms M3 and M7.

Exercise 6.8

Prove the correctness of inference axiom M5 using axioms M4.

Exercise 6.9

Prove the correctness of inference axiom M6 using axioms M1-M5 and M7

7 Tableau Chase Test

Exercise 7.1

Consider $\mathfrak{D} = \{AB \to CD, A \to BE, BH \to DK, H \to BC\}$ Prove by Tableau Chase test: $\mathfrak{D} \models AH \to CK$

Exercise 7.2

Consider $\mathfrak{D} = \{AB \to E, AG \to J, BE \to I, E \to G, GI \to H\}$ Prove by Tableau Chase test: $\mathfrak{D} \models AB \to GH$

Exercise 7.3

Consider $\mathfrak{D} = \{ A \to D, B \to CE, E \to H, D \to E, E \to C \}$ Prove by Tableau Chase test:

- a) $\mathfrak{D} \models B \to H$
- b) $\mathfrak{D} \models AB \to CH$

Exercise 7.4

Consider $\mathfrak{D} = \{ D \to BK, AB \to GK, B \to H, CE \to AG, H \to E, K \to G, EH \to K, G \to AH \}$ Prove by Tableau Chase test:

- a) $\mathfrak{D} \models AB \to GH$
- b) $\mathfrak{D} \models DE \to AG$
- c) $\mathfrak{D} \models BH \to EK$

Exercise 7.5

Suppose R(ABCDE) and set of functional dependencies:

 $\mathfrak{D} = \{ A \to BC, CD \to E, B \to D, E \to A \}$. Using Tableau Chase test to compute:

- a) $CD_{\mathfrak{D}}^+$
- b) $E_{\mathfrak{D}}^+$

Exercise 7.6

Suppose R(ABCDEK) and set of functional dependencies:

 $\mathfrak{D} = \{AB \to C, BC \to AD, D \to E, CK \to B\}$. Using Tableau Chase test to compute:

- a) $BCK_{\mathfrak{D}}^{+}$
- b) $CD_{\mathfrak{D}}^+$
- c) $D_{\mathfrak{D}}^{+}$

Exercise 7.7

Suppose R(ABCDEKGH) and set of functional dependencies:

 $\mathfrak{D} = \{ A \to BC, E \to C, AH \to D, CD \to E, D \to AEH, DH \to BC \}$. Using Tableau Chase test to compute:

- a) $AE_{\mathfrak{D}}^+$
- b) $BCD_{\mathfrak{D}}^+$

Exercise 7.8

Consider:

- a) $AH_{\mathfrak{D}_1}^+$
- b) $AB_{\mathfrak{D}_{\alpha}}^{+}$
- c) $B_{\mathfrak{D}_2}^+$
- d) $AB_{\mathfrak{D}_{\alpha}}^{+}$
- e) $AB_{\mathfrak{D}_{4}}^{+}$
- f) $DE_{\mathfrak{D}_4}^+$
- g) $BH_{\mathfrak{D}_4}^+$

Exercise 7.9

Consider $\mathfrak{D} = \{ A \to B, A \to C, CD \to E, B \to D, E \to A \}$

Using Tableau Chase test to compute: Which of the following functional dependencies is NOT implied by the above set?

- a) $CD \to AC$
- b) $BD \to CD$
- c) $BC \to CD$
- d) $AC \rightarrow BC$

Exercise 7.10

Let R(ABCDE), $\mathfrak{D} = \{A \twoheadrightarrow BC, A \twoheadrightarrow E, E \twoheadrightarrow CD\}$ Using Tableau Chase test to compute:

- a) $\mathfrak{D} \models A \twoheadrightarrow C$
- b) $\mathfrak{D} \models A \twoheadrightarrow BD$
- c) $\mathfrak{D} \models AC \twoheadrightarrow BD$
- d) $\mathfrak{D} \models AC \twoheadrightarrow BE$
- e) $\mathfrak{D} \models DE \twoheadrightarrow AC$
- f) $\mathfrak{D} \models DE \twoheadrightarrow AB$

Exercise 7.11

Let R(ABCDGH), $\mathfrak{D} = \{A \twoheadrightarrow B, B \twoheadrightarrow GH, CD \twoheadrightarrow G\}$ Using Tableau Chase test to compute:

- a) $\mathfrak{D} \models BC \twoheadrightarrow AD$
- b) $\mathfrak{D} \models BC \twoheadrightarrow GH$
- c) $\mathfrak{D} \models BC \twoheadrightarrow DG$
- d) $\mathfrak{D} \models CD \twoheadrightarrow AB$
- e) $\mathfrak{D} \models CD \twoheadrightarrow BG$
- f) $\mathfrak{D} \models CD \twoheadrightarrow GH$

8 More Normal form and Dependencies

Exercise 8.1

Modify the relation r below to satisfy the MVDs $A \rightarrow BC$ and $CD \rightarrow BE$ by adding rows.

В \mathbf{C} D E0 0 0 0 0 t_1 0 0 1 0 1 t_2 t_3 1 0 0 0 1

Exercise 8.2

Prove that if a relation r(R) satisfies the MVDs $X woheadrightarrow Y_1$, $X woheadrightarrow Y_2 woheadrightarrow Y_k$, where $R = XY_1Y_2...Y_k$, then r decomposes converse information onto the relation schemes XY_1 , XY_2 , ..., XY_k .

Exercise 8.3

Let r(R) be a relation where $R_1 \subseteq R$, $R_2 \subseteq R$ and $R = R_1R_2$. Prove that $r = \pi_{R_1}(r) \bowtie \pi_{R_2}(r)$ if and only if: $Count(\pi_R([X=x](r))) = Count(\pi_R([X=x](r))) \times Count(\pi_R([X=x](r)))$ for every X-value x in r

Exercise 8.4

Prove that if relation r(R) satisfies X woheadrightarrow Y and Z = R - XY, then $\pi_Z(\sigma_{X=x}(r)) = \pi_Z(\sigma_{XY=xy}(r))$ for every XY-value xy in r

Exercise 8.5

Let relation scheme R and let W, X, Y, $Z \subseteq R$. Show that: $\{X \twoheadrightarrow Y , Z \subseteq W \} \models XW \twoheadrightarrow YZ$

Exercise 8.6

Prove the correctness of inference axiom M6 using axioms M1-M5 and M7

Exercise 8.7

Let relation scheme R and let $X, Y, Z \subseteq R$. Show that: $\{X \twoheadrightarrow Y \ , \ XY \to Z \ \} \models X \to Z - Y$