MATH 3423 Statistical Inference

Assignment 2

Please submit your solution (in pdf) on Canvas before 4pm on Nov 13, 2020.

Question 1: Consider a random sample $\{X_1, ..., X_n\}$ of size n > 1 from a normal distribution with an unknown mean $\mu \in (-\infty, \infty)$ and unknown variance $\sigma^2 \in (0, \infty)$. Show that S_n^2 has a smaller MSE than S_{n-1}^2 , and find the value of k such that $k \sum_{i=1}^n (X_i - \bar{X})^2$ has an minimal MSE.

Question 2: Consider a random sample $\{X_1, ..., X_n\}$ of size n > 2 from $U[0, \theta]$, where θ is positive and finite. We found that $X_{(n)}$ is the MLE of θ , and it is easy to see that $2\overline{X}$ is the MME of θ . In the sense of MSE, which one is better? Please justify your answer.

Question 3: Consider a random sample $\{X_1, ..., X_n\}$ of size n > 1 from a uniform distribution on an interval $[\mu - \sqrt{3}\sigma, \mu + \sqrt{3}\sigma]$, where $\mu \in (-\infty, \infty)$ and $\sigma \in (0, \infty)$ are unknown. Find

- a) the MMEs of μ and σ , and
- b) the MLEs of μ and σ .

Question 4: Consider a random sample $\{X_1, ..., X_n\}$ from a distribution with a pdf defined by

$$f(x|\theta) = \begin{cases} \theta x^{\theta-1}, & \text{for } x \in (0,1) \\ 0, & \text{otherwise} \end{cases}$$

where $0 < \theta < \infty$. Let $g(\theta) = 1/\theta$.

- a) Find the MLE of $g(\theta)$.
- b) Is the MLE an unbiased estimator of $g(\theta)$?

Given that the regularity conditions hold, then

- c) Find the C-R inequality for $g(\theta)$.
- d) Show that the MLE found in (a) is the UMVUE of $g(\theta)$.