CONCEPTOS CLAVE HASTA AQUÍ

Modelo de ML

Aprendizaje Supervisado, No Supervisado y por Refuerzo

Problemas de Clasificación y de Regresión.

Datasets

- Labeling
- Training + Validation + Test
- Cross Validation

Entrenamiento e Inferencia

Minimizar el error de entrenamiento (pero generalizando!)

Underfitting y Overfitting

Parámetros de una red neuronal

- Capas de entrada y de salida
- Cantidad de neuronas en capas ocultas
- Pesos
- Función de activación
- Batch
- Learning rate
- Algoritmo de convergencia
- Optimizadores

DESAFÍOS DE LAS REDES NEURONALES TRADICIONALES

Maldición de la dimensionalidad:

LAS DIMENSIONES CRECEN EXPONENCIALMENTE!!

DESAFÍOS DE LAS REDES NEURONALES TRADICIONALES

Localidad desaprovechada

Los resultados no mejoran linealmente con una mayor cantidad de parámetros

Problemas para aprender regiones conectadas en muchas dimensiones (Manifold)

DEEP LEARNING Y REDES CONVOLUCIONALES

REDES NEURONALES PROFUNDAS

"Non-deep" feedforward neural network

input layer output layer

Deep neural network

REDES NEURONALES PROFUNDAS

- Más capas y más unidades permiten representar funciones más complejas.
- Tareas que consisten en asociar un vector de entrada con uno de salida.
- Pero resultados no mejoran linealmente con mayor cantidad de parámetros

Deep neural network

TIPOS DE REDES NEURONALES PROFUNDAS

01/11/2019

TIPOS DE REDES NEURONALES PROFUNDAS

	Convolucionales	Recurrentes	Generalivas	
Caract.	Basadas en operaciones de Convolución y Pooling.	Conexiones de realimentación con capas anteriores.	Interacción entre un discriminador y un generador.	
Datos	lmágenes.	Texto, voz, series temporales.	lmágenes, texto y voz.	
Tareas	Clasificación, análisis de sentimiento y regresión.	Clasificación, regresión, problemas de predicción de secuencias.	Generar nuevos ejemplos, text-to-image translation, super resolution.	

Pacurrantas

Convolucionales

Generativas

REDES NEURONALES CONVOLUCIONALES

¿Por qué

Redes Neuronales

CONVOLUCIONALES?

LA CLASIFICACIÓN DE IMÁGENES ES COMPLEJA

Iluminación.

Segmentación.

- ¿Cuáles partes pertenecen al mismo objeto?
- *Un objeto puede estar semi oculto detrás de otro objeto.

Deformación.

Punto de vista.

Variaciones del mismo objeto.

IDEA BÁSICA

Utilizar capas que tengan un comportamiento determinado, específico para la tarea a realizar

TIPOS DE CAPAS

Convolución

Extraer características (features) de la imagen de entrada.

Pooling

Reducir dimensionalidad

FILTROS DE CONVOLUCIÓN

ldea clave: usar múltiples **filtros (kernels)** sobre la imagen de entrada.

Cada filtro intentará extraer un tipo de feature.

Los filtros son generalmente pequeños (3x3, 5x5, 7x7) pixeles).

- Se los usa muchas veces, sobre distintas partes de la imagen.
- Stride define cuántos pixeles se mueve el filtro en cada pasada.

Extraen la característica aplicando una **convolución** sobre una porción de la imagen de entrada.

Input

OPERACIÓN DE CONVOLUCIÓN

1	0	1
0	1	0
1	0	1

Filter

1 _{×1}	1,0	1,	0	0
0,0	1,	1,0	1	0
0 _{×1}	0,×0	1,	1	1
0	0	1	1	0
0	1	1	0	0

Image

4	

Convolved Feature

PROBLEMA DE LA CONVOLUCIÓN

No se sabe de antemano cuáles filtros serán necesarios.

Solución: se ponen muchos filtros.

Se generan muchas imágenes intermedias.

- Muchos parámetros para pasar a la siguiente capa.
- Mucho procesamiento requerido.

Entra en juego la operación de pooling.

OPERACIÓN DE POOLING

3.0	3.0	3.0
3.0	3.0	3.0
3.0	2.0	3.0

3	3	2	1	0
0	0	1	3	1
3	1	2	2	3
2	0	0	2	2
2	0	0	0	1

TIPOS DE POOLING

¡ATENCIÓN CON LAS DIMENSIONES!

Al reducir dimensionalidad, es muy fácil meter la pata!

Ejemplo:

Imágenes de entrada: 32 x 32, blanco y negro

Capa de convolución: 6 Filtros de 5 x 5, Stride 1 - ¿Cuál es la salida?

Capa de pooling: Filtros de 2 x 2, Stride 2 - ¿Cuál es la salida?

¿Cómo cambia si la capa de convolución fueran 24 filtros de 3 x 3, Stride 1?

¿Cómo cambia si las imágenes fueran a color?

SOFTMAX

La suma de probabilidades siempre es 1.

Usada sobre todo en clasificaciones de múltiples categorías.

LENET

7 Capas

- 3 Conv
- 2 Pool
- 2 FC

ALEXNET

VGG-16

INCEPTION V3 (GOOGLENET)

22 capas (con submódulos)

6M Params

RESNETXX

xx indica la cantidad de capas.

ResNet50 es la más común.

ResNet152 la de mejor precisión.

COMPARATIVA DNN MÁS POPULARES

Comparison						
Network	Year	Salient Feature	top5 accuracy	Parameters	FLOP	
AlexNet	2012	Deeper	84.70%	62M	1.5B	
VGGNet	2014	Fixed-size kernels	92.30%	138M	19.6B	
Inception	2014	Wider - Parallel kernels	93.30%	6.4M	$2\mathrm{B}$	
ResNet-152	2015	Shortcut connections	95.51%	60.3M	11B	

01/11/2019 MACHINE LEARNING: FUNDAMENTOS Y APLICACIONES

TÉCNICAS ADICIONALES: DROPOUT

(a) Standard Neural Net

(b) After applying dropout.

Consiste en descartar una determinada cantidad de neuronas.

Usado luego de cada capa FC.

Provee regularización, y ayuda a evitar el overfitting.

Introducido por AlexNet.

TENDENCIAS DNN

Las redes vistas fueron agregando capas y parámetros para mejorar la precisión.

¡Resultados ya son lo suficientemente buenos!

- Con gran cantidad de parámetros.
- Convertidos en estándares preentrenados, reutilizables.

Nuevo objetivo: disminuir la cantidad de parámetros.

- Por ejemplo, para hacer inferencia en nuevos dispositivos.
- Nuevas arquitecturas: MobileNet, SqueezeNet, Xception, entre otras.

Nuevo objetivo: aplicar mismas ideas a distintos problemas.

CONCEPTOS CLAVE HASTA AQUÍ

Modelo de ML

Aprendizaje Supervisado, No Supervisado y por Refuerzo Problemas de Clasificación y de Regresión.

Datasets

- Labeling
- Training + Validation + Test
- Cross Validation

Entrenamiento e Inferencia Minimizar el error de entrenamiento (pero generalizando!) Underfitting y Overfitting

Parámetros de una red neuronal

- Capas de entrada y de salida
- Cantidad de neuronas en capas ocultas
- Pesos
- Función de activación
- Batch
- Learning rate
- Algoritmo de convergencia
- Optimizadores

Redes convolucionales

- Capas de convolución
- Filtros (kernels)
- Feature map
- Capas de pooling
 - AVG y MAX
- Softmax
- Dropout
- DNN populares
 - LeNet, AlexNet, VGG-16, GoogLeNet (Inception v3), ResNet50

TAREA PARA LA PRÓXIMA CLASE

Definir los grupos

- 2 Clasificadores CIFAR 10
- Como importar el dataset
- Como tunearla para mejorar la precisión

Tarea: Implementar un clasificador CIFAR 100