One for All, All for One: Learning and Transferring User Embeddings for Cross-Domain Recommendation

Chenglin Li¹, Yuanzhen Xie², Chenyun Yu³, Bo Hu², Zang Li², Guoqiang Shu², Xiaohu Qie², Di Niu¹

1. University of Alberta, AB, Canada

2. Platform and Content business group, Tencent, Shenzhen, China

3. Sun Yat-sen University, Shenzhen, China

Presented by: Chenglin Li

Multi-target CDR

- Multiple domains (≥ 3)
- Boost recommendations in all domains simultaneously

Previous Methods

- Global representation
- Joint training
- Sharing of raw data

HeroGraph¹

MPF²

MTCDR: Challenges

- Negative transfer
 - Irrelevant or noisy information
- Biased global representation
 - Data unbalance between domains
 - Biased towards dense domain
- Data privacy

Proposed Method

- Overview
 - Pre-train in a single domain
 - Share latent user embedding
 - One For All
 - Extract unbiased global representation
 - All For One
 - Transfer all useful features to help recommend in the target domain

Domain2

Domain3

Recommend

Domain1

One For All

- Global user representation
 - AutoEncoder
- Unbiased global representation
 - Contrastive AutoEncoder (CAT)
 - Randomly mask out one domain

All For One

- All available features are transferred
- Final user embedding
 - Target domain-specific features
 - Unbiased global embedding
 - Source domain-specific features
 - Attention-based representation transfer (ART)

Model Training

- Loss
 - BPR loss
 - Reconstruction (MSE)
 - Contrastive (Cross-entropy)
- Training scheme

Algorithm 1: CAT-ART Algorithm

Input: User set U, and item sets: $\{V_1, \dots, V_n\}, n \ge 3$; User-Item interaction matrices: $\{R^1, \dots, R^n\}$;

Stage 1 (parallel):

for $\forall d \in [1, n]$ do

Train domain-specific user and item embeddings: \mathbb{E}^d and \mathbb{I}^d according to BPR loss.

Stage 2:

Train the CAT module according to reconstruction and contrastive loss.

Stage 3 (parallel):

Fix the CAT module and domain-specific user embeddings in all domains.

for $\forall d \in [1, n]$ do

Train the ART unit according to the BPR loss and the enhanced user embedding.

Evaluation: Experiment Settings

- Datasets
 - 5 domains: App install, App usage, Articles, Long video, Short video
- Baselines
 - Single-domain MF
 - CMF, MPF, GA-MTCDR, HeroGraph
- Metrics
 - Precision, Recall, NDCG

Table 1: Statistics of the Collected Dataset with 5 Domains.

Domain	#Users	#Items	#Interactions	Density(‰)
	#ОЗСІЗ		50,26 +125 + PPA USBUNG T + 96 177 U-39 Müselfelt = 1-96 176 Media 40,27 U-36 U-36 U-36 U-36 U-36 U-36 U-36 U-36	• • •
App-Ins		100,000	101,981,793	0.874
APP-Use		100,000	18,156,535	0.155
Articles	1,166,552	50,000	102,832,656	1.763
Video-S		50,000	74,911,020	1.284
Video-L		50,000	11,412,988	0.196

Evaluation: Main Results

- Negative transfer
 - Avoiding NT in all domains
- Boosted performance in all domains

Model	Domain	Precision		Recall		NDCG	
Wiodei		@10	@20	@10	@20	@10	@20
SMF	APP-Ins	33.82±0.70	25.46±0.88	21.51±0.39	31.91±1.22	32.56±0.43	32.53±0.89
	APP-Use	20.91±0.23	12.21 ± 0.26	65.5±0.89	75±1.50	57.39±1.46	60.81 ± 1.72
	Article	16.02±0.73	12.05 ± 0.58	16.64±0.43	23.25 ± 0.40	21.59±1.30	21.93 ± 1.06
	Video-S	3.9±0.03	3.86 ± 0.02	3.59 ± 0.44	6.9 ± 0.77	3.83±0.13	4.84 ± 0.25
	Video-L	5.98±0.20	3.91 ± 0.10	26.73±0.87	34.6 ± 0.88	20.37±1.19	22.91±1.2
CMF	APP-Ins	33.57±0.37 [↓]	$25.19\pm0.37^{\downarrow}$	21.8±0.19	32.05 ± 0.43	32.39±0.29 [↓]	$32.45\pm0.27^{\downarrow}$
	APP-Use	20.41±0.11 [↓]	12.17 ± 0.05 \downarrow	64.91±0.27 [↓]	75.54 ± 0.16	43.99±0.78 [↓]	$47.89\pm0.74^{\downarrow}$
	Article	10.29±0.27 [↓]	8.37±0.19 [↓]	8.83±0.23 [↓]	$13.79\pm0.28^{\downarrow}$	11.24±0.34 [↓]	$12.07\pm0.31^{\downarrow}$
	Video-S	3.87±0.12	$3.81 \pm 0.12^{\downarrow}$	4.08±0.17	7.6 ± 0.29	4.00±0.14	5.04 ± 0.18
	Video-L	4.74±0.03 [↓]	$3.26\pm0.01^{\downarrow}$	21.44±0.12 [↓]	29.14 ± 0.06	12.67±0.07 [↓]	$15.14\pm0.05^{\downarrow}$
	APP-Ins	36.08±1.53	27.11±0.41	23.28±0.99	34.29±0.44	36.95±5.56	36.53±4.02
	APP-Use	20.95±0.12	12.26 ± 0.16	65.55±0.44	75.18 ± 0.84	55.67±2.71 [↓]	$59.14 \pm 2.52^{\downarrow}$
MPF	Article	14.55±0.16 [↓]	$11.14 \pm 0.11^{\downarrow}$	15.35±0.07 [↓]	$21.72 \pm 0.12^{\downarrow}$	20.96±0.63 [↓]	$21.29 \pm 0.52^{\downarrow}$
	Video-S	3.63±0.29 [↓]	3.67±0.13 [↓]	3.71±0.30	7.16 ± 0.68	3.85±0.40	4.91 ± 0.11
	Video-L	2.74±0.95 [↓]	2.09 ± 0.52	11.96±4.31 [↓]	18.2±4.66 [↓]	8.03±3.65 [↓]	10.01±3.79 [↓]
	APP-Ins	16.77±0.05 [↓]	10.35±0.02 [↓]	11.7±0.01 [↓]	14.37±0.03 [↓]	17.81±0.08↓	16.01±0.03↓
	APP-Use	13.88±0.05 [↓]	$10.46 \pm 0.01^{\downarrow}$	45.44±0.13 [↓]	67.2±0.16 [↓]	32.35±0.13 [↓]	$40.16 \pm 0.1^{\downarrow}$
GA-MTCDR	Article	4.62±0.13 [↓]	3.73±0.03 [↓]	4.12±0.14 [↓]	$6.37 \pm 0.11^{\downarrow}$	6.22±0.18 [↓]	$6.36\pm0.13^{\downarrow}$
	Video-S	3.44±0.03 [↓]	3.1±0.02 [↓]	3.48±0.08 [↓]	6.03±0.06 [↓]	4.22±0.05	4.69 ± 0.04
	Video-L	3.18±0.15 [↓]	2.22±0.07 [↓]	14.21±0.74 [↓]	19.76±0.54 $^{↓}$	10.46±0.63 [↓]	12.23±0.49 [↓]
	APP-Ins	34.05±2.01	24.47±1.16 [↓]	22.34±1.14	31.61±1.35↓	40.5±1.91	38.12±1.51
HeroGRAPH-L	APP-Use	20.68±0.36↓	11.98±0.15↓	66.11±0.83	$74.96 \pm 0.61^{\downarrow}$	59.51±1.08	62.74 ± 0.98
	Article	11.27±0.12 [↓]	8.61±0.12 [↓]	15.01±0.2 [↓]	20.68±0.33 [↓]	18.19±0.16↓	18.86±0.23↓
	Video-S	3.99±0.14	3.7 ± 0.15	5.29 ± 0.21	8.97 ± 0.34	5.31 ±0.18	6.2 ± 0.23
	Video-L	5.42±0.29 [↓]	$3.65 \pm 0.15^{\downarrow}$	24.62±1.22 [↓]	32.84±1.29 [↓]	18.71±1.21 [↓]	$21.35 \pm 1.24^{\downarrow}$
CAT-ART	APP-Ins	38.36 ±0.58	27.96 ±0.31	24.86 ±0.34	35.46 ±0.39	43.47±1.23	41.55 ±0.94
	APP-Use	21.23 ±0.18	12.33 ± 0.18	66.53 ±0.65	75.66 ± 1.02	59.98 ±0.86	63.27 ± 1.02
	Article	16.82 ±0.21	12.4 ± 0.13	18.76 ±0.56	25.47 ± 0.6	25.97 ±0.61	25.79 ± 0.58
	Video-S	3.93±0.08	3.93 ± 0.06	3.83±0.50	7.35 ± 0.82	3.93±0.14	5.05 ± 0.24
	Video-L	6.08 ±0.09	3.96 ±0.08	27.18 ±0.39	35.01 ±0.67	21.03 ±0.38	23.54 ±0.86

Evaluation: Ablation Study

- Base model (SMF)
- +Autoencoder
- +Contrastive
 - The full CAT module
- +ART
 - Features from all domains

Domain	Metric	SMF	+Autoencoder	+Contrastive	+ART	-Attention
App-Ins	Precision@10	33.82±0.70	37.64±1.17	37.95±0.45	38.36 ± 0.58	36.24±0.26
	Recall@10	21.51±0.39	24.35 ± 0.76	24.58 ± 0.35	24.86 ± 0.34	23.35±0.23
	NDCG@10	32.56±0.43	41.34 ± 3.75	42.56 ± 2.02	43.47 ± 1.23	36.08±1.54
APP-Use	Precision@10	20.91±0.23	21.00±0.11	21.08±0.23	21.23 ±0.18	21.01±0.07
	Recall@10	65.50±0.89	65.77 ± 0.33	66.01 ± 0.88	66.53 ± 0.65	65.92±0.41
	NDCG@10	57.39±1.46	59.09 ± 0.37	58.61 ± 0.40	59.98 ± 0.86	59.28±0.24
Article	Precision@10	16.02±0.73	16.54±0.46	16.46±0.34	16.82 ±0.21	$15.88 \pm 0.15^{\downarrow}$
	Recall@10	16.64±0.43	17.48 ± 1.21	17.19 ± 1.13	18.76 ± 0.56	15.89±0.38 [↓]
	NDCG@10	21.59±1.30	23.98 ± 2.28	23.54 ± 2.75	25.97 ± 0.61	22.25±1.71
Video-S	Precision@10	3.89±0.025	3.91±0.08	3.97±0.13	3.93±0.08	3.82±0.28 [↓]
	Recall@10	3.59±0.44	3.71 ± 0.40	3.72 ± 0.37	3.83 ± 0.50	3.46±0.25 [↓]
	NDCG@10	3.83±0.13	3.87 ± 0.08	3.91 ± 0.05	3.93 ± 0.14	3.73±0.18 [↓]
Video-L	Precision@10	5.98±0.20	6.04±0.01	6.07±0.04	6.08 ±0.09	5.86±0.03 [↓]
	Recall@10	26.73±0.87	27.00 ± 0.08	27.17 ± 0.20	27.18 ± 0.39	26.27±0.09 [↓]
	NDCG@10	20.37±1.19	21.00 ± 0.14	21.12±0.21	21.03 ± 0.38	20.26±0.15 [↓]

-Attention

Thank you! Q & A