Use of EPP-ASM for CSAVR

Jeff Eaton, Guy Mahiane, Rob Glaubius, John Stover Sun Apr 22 09:58:51 2018

Introduction

Following discussion at the October 2018 UNAIDS Reference Group meeting, we showed that the code for the EPP-ASM model was able to take annual HIV incidence rates as inputs and reproduce Spectrum model ouputs for the numbers of new HIV infections, PLHIV, and AIDS deaths for the age 15+ population. This report extends that analysis to explore combining the EPP-ASM and CSAVR models for epidemic inference from case surveillance and vital registration data.

There a number of motivations for exploring a combined model:

- Consider opportunities for more efficient estimation for CSAVR countries.
- Explore influence of modelling incidence rate or transmission rate for estimates of recent incidence trends and potential harmonization of assumptions for CSAVR and EPP.
- Work towards incorporating case surveillance data into HIV estimates for SSA.

Example data: Netherlands and Chile 2017 Spectrum files

As an example case study, we use data about new diagnoses and numbers of AIDS deaths from the Netherlands and Chile 2017 Spectrum files. For the Netherlands, the Spectrum file only includes a partial time series of AIDS deaths, so we updated these with the full time series of AIDS deaths to adults aged 15+ from the WHO Mortality database. Moreover, Netherlands uses the ECDC model for direct incidence estimates, not CSAVR, and so it is uncertain the source or accuracy of new case inputs in the Spectrum file. In short, consider any outputs a proof of concept only.

The tables below summarize the data for the Netherlands and Chile datasets.

Table 1: Netherlands case surveillance and vital registration data

	plhiv	undercount	new_cases	undercount	$aids_deaths$	undercount
1983					8	
1984					16	
1985					30	
1986					63	
1987					105	
1988					132	
1989					201	
1990					267	
1991					291	
1992					409	
1993					424	
1994					444	
1995					435	
1996					320	
1997			813		181	
1998			647		134	
1999			687		137	

	plhiv	undercount	${\it new_cases}$	undercount	$aids_deaths$	undercount
2000			843		132	
2001			960		127	
2002			1027		89	
2003			1065		87	
2004			1174		85	
2005			1219		80	
2006			1136		48	
2007			1233		66	
2008			1315		53	
2009			1214		70	
2010			1218		50	
2011			1158		54	
2012			1073		44	
2013	22400		1035		34	
2014	22600		897		38	
2015	22900		866		33	

Table 2: Chile case surveillance and vital registration data $\,$

	plhiv	undercount	${\rm new_cases}$	undercount	$aids_deaths$	undercount
1987			93	39		
1988			234	39		
1989			388	31		
1990			597	31		
1991			651	24		
1992			897	24		
1993			1025	18		
1994			1083	18		
1995			1282	18		
1996			1669	18		
1997			1651	18	410	10
1998			1723	13	383	10
1999			1959	13	474	10
2000			2116	13	458	10
2001			2123	13	552	10
2002			1993	13	440	10
2003			2005	13	423	3
2004			2029	8	399	5
2005			2084	8	395	7
2006			2200	8	422	6
2007			2477	8	398	8
2008			2717	8	392	8
2009			2787	8	435	8
2010			2982	5	435	7
2011			3159	5	472	7
2012			3395	5	456	9
2013			4014	5	523	8
2014			4080	2	506	10
2015			4301	2		
2016			4964	2		

Model for case surveillance data

Model for new diagnoses

For demonstration purposes, we used an much simplified model for new diagnoses. We assumed that the untreated population not on ART is equivalent to the undiagnosed population and modelled the diagnosis rate $\Delta_{s,a,m}(t)$ for untreated HIV positive persons of sex s, age group a, and in CD4 stage m at time t. The relative diagnosis rate across groups at time t is assumed to be proportional to the HIV mortality rate $\mu_{s,a,m}$ and the trend in diagnosis rate of the course of the epidemic is modelled by a cumulative gamma distribution function with shape parameter 1 and rate parameter θ . That is

$$\Delta_{s,a,m}(t) = \mu_{s,a,m} \cdot \gamma_{max} \cdot \int_{t_0}^t e^{-\theta \tau} d\tau$$
 (1)

where t_0 is the start time of the epidemic (e.g. $t_0 = 1970$).

Unlike the approximation by Mahiane, this simple model equating the untreated population to the undiagnosed population does not track the proportion diagnosed over the course of the epidemic. The full model should be implemented if this approach is taken beyond this proof of concept.

For Bayesian inference, we define diffuse prior distributions on the parameters for the diagnosis rate over time:

$$\log(\gamma_{max}) \sim \text{normal}(3,5)$$

 $\log(\theta) \sim \text{normal}(-3,5)$

Models for incidence and transmission rate

We considered three parameteric models for the HIV incidence rate, denoted $\lambda(t)$, or HIV transmission r(t). For directly modelling $\lambda(t)$, we implemented the single logistic (two parameters) and double logistic (four parameters) models implemented by the current CSAVR software. The single logistic model is

$$\lambda(t) = c \cdot \frac{e^{\alpha(t-t_0)}}{1 + e^{\alpha(t-t_0)}} \tag{2}$$

where c is the equilibrium incidence rate and alpha determines the rate of increase in incidence. The double logistic model is

$$\lambda(t) = \frac{e^{\alpha(t - t_{mid})}}{1 + e^{\alpha(t - t_{mid})}} \cdot \left(2 \cdot a \cdot \frac{e^{\beta(t - t_{mid})}}{1 + e^{\beta(t - t_{mid})}} + b\right) \tag{3}$$

b is the equilibrium incidence reate, (a+b)/2 is the incidence rate at the inflection point t_{mid} , α determines the rate of increase and β determines the rate of convergence to the asymptote.

Secondly, instead of directly modelling the HIV incidence rate $\lambda(t)$, we considered modelling the transmission rate r(t), as in the EPP model. In this case, the incidence rate is

$$\lambda(t) = r(t) \cdot \frac{I(t)}{N(t)} \cdot \left(1 - 0.7 * \frac{A(t)}{I(t)}\right). \tag{4}$$

The expression I(t)/N(t) is the HIV prevalence at time t, A(t)/I(t) is the ART coverage and 0.7 is the average reduction in transmission per additional person on ART. We use a logistic function to model the logarithm or r(t), termed the *rlogistic* model, with four parameters

$$\log r(t) = r_0 - (r_\infty - r_0) \cdot \frac{1}{1 + e^{-\alpha \cdot (t - t_{mid})}}$$
 (5)

where e^{r_0} is the initial exponential growth rate of the epidemic, $e^{r_{\infty}}$ is the equilibrium value for r(t), α is the rate of change in $\log r(t)$ and t_{mid} is the inflection point. For this model we additionally specify a fifth parmaeter ι as the incidence rate at time $t=t_0$ providing the initial pulse of infections.

For Bayesian inference, we defined diffuse prior distributions on all parameters. For the single and double logistic models, we defined the following prior distributions

$$\log \alpha, \log \beta \sim \text{normal}(-1, 5)$$

 $\log a, \log b \sim \text{normal}(-10, 5)$

$$t_{mid} \sim \text{normal}(1995, 10)$$

For the rlogistic model, we used prior distributions

$$r_0 \sim \text{normal}(\log(0.35), 0.5)$$

$$r_{\infty} \sim \text{normal}(\log(0.09), 0.3)$$

$$\log \alpha \sim \text{normal}(\log(0.2), 0.5)$$

$$t_{mid} \sim \text{normal}(1993, 5)$$

$$\log \iota \sim \text{normal}(-13, 5)$$

Semi-parametric model variants for incidence rate or transmission rate (segmented polynomials, p-splines, random walk, etc.) remain to be implemented and tested.

Likelihood

The total number of expected diagnoses in year t is the sum of expected diagnoses over all sex, age, and CD4 groups of undiagnosed persons

$$n_I(t) = \sum_{s} \sum_{a} \sum_{m} \Delta_{s,a,m}(t) \cdot U_{s,a,m}(t)$$

where $\Delta_{s,a,m}(t)$ is the diagnosis rate describe above and $U_{s,a,m}(t)$ are the number HIV positive undiagnosed, recalling that for simplicity we assumed this was equal to the untreated population. A Poisson distribution is used as the likelihood for the reported number of diagnoses $y_I(t)$ given the expected number of diagnoses $n_I(t)$ and the proportion estimated underreporting of new diagnoses $u_I(t)$

$$y_I(t) \sim \text{Poisson}(n_I(t) \cdot (1 - u_I(t)))$$
 (6)

A Poisson likelihood is also used for the reported number of AIDS deaths $y_D(t)$ given the expected number of AIDS deaths $n_D(t)$ predicted by the Spectrum model and the estimated underreporting of AIDS deaths $u_D(t)$:

$$y_D(t) \sim \text{Poisson}(n_D(t) \cdot (1 - u_D(t)))$$
 (7)

We have not yet implemented the likelihood for the mean CD4 count at diagnosis developed by Mahiane.

Model estimation

To fit the model, we first create a model fitting object consisting of the Spectrum model inputs and the CSAVR data inputs.

```
## Create fitting objects
nl <- list(fp = nl_fp, csavrd = nl_csavrd)
cl <- list(fp = cl_fp, csavrd = cl_csavrd)</pre>
```

The code below illustrates fitting each of the three models to the Netherlands dataset using either optimization (optfit = TRUE) or full Bayesian inference with IMIS. The function fitmod_csavr(...) will prepare the model fit and data, and then call the requested model fitting routine.

Fit model to Chile dataset.

The figure below shows model results for the Netherlands from IMIS.

The figure below shows model results for Chile.

We should be cautious about over interpreting these results because we have not fully implemented the model

for new diagnoses and all of the parametric models implemented thus far are relatively inflexible to matching data-driven trends. A few observations:

- Both the double logistic model and rlogistic model, which each have five parameters, are better able to fit the data compared to the two parameter single logistic model.
- The uncertainty ranges are very narrow. This is likely due to both using relatively few parameters and not considering any uncertainty in other model processes such as disease progression or changes in testing and new diagnoses.
- Both the double logistic model and rlogistic model give fairly similar fits to observed new diagnoses and AIDS deaths, but result in qualitatively different estimates for recent HIV incidence trends. This conclusion should be reconsidered after implementing more flexible models for the incidence rate and transmission rate.

Benchmarking

The table summarizes the time in seconds for model fitting via optimization and IMIS.

Country	Model	Optimization	IMIS
Netherlands	logistic	0.51	145.1
Netherlands	double logistic	7.82	221.0
Netherlands	r(t) logistic	4.25	389.7
Chile	logistic	0.85	75.6
Chile	double logistic	1.80	241.0
Chile	r(t) logistic	4.86	360.1