Mathematics UN1102
Section 3, Fall 2017
Practice Midterm 1
October 9, 2017
OD' T' ', FF NA' ,

Name:		
UNI:		

Time Limit: 75 Minutes

Instructions: This exam contains 7 problems. Please make sure you attempt all problems.

Present your solutions in a **legible, coherent** manner. Unless otherwise specified, you should show your work; you will be evaluated on both your reasoning and your answer. Unsupported or illegible solutions may not receive full credit.

Please write your **final answer** for each problem in the provided box. Please show your work in the space below the box. If you need additional space for scratchwork, you may use the back side of the problem sheets or the blank pages stapled to the end of the exam.

The use of outside material including books, notes, calculators, and electronic devices is not allowed.

Question	1	2	3	4	5	6	7	Total
Points	10	15	15	20	15	20	5	100
Score								

Formulas

$$\sin^2 \theta + \cos^2 \theta = 1$$

$$\sin(2\theta) = 2\sin\theta\cos\theta$$

$$\sin^2 \theta = \frac{1}{2}(1 - \cos(2\theta))$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a}\arctan\left(\frac{x}{a}\right) + C$$

$$\int \tan x \, dx = \ln|\sec x| + C$$

$$1 + \tan^2 \theta = \sec^2 \theta$$

$$\cos(2\theta) = \cos^2 \theta - \sin^2 \theta$$

$$\cos^2 \theta = \frac{1}{2}(1 + \cos(2\theta))$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \arcsin\left(\frac{x}{a}\right) + C$$

$$\int \sec x \, dx = \ln|\sec x| + C$$

Problem 1 (10 points) Evaluate the definite integral $\int_0^1 x e^x dx.$ Answer:

 $\int \frac{\sqrt{x^2 - 9}}{x^4} dx.$ Answer:

 $\textbf{Problem 2} \ (15 \ \text{points}) \ \text{Using an appropriate trigonometric substitution, evaluate the indefinite integral}$

Problem 3 (15 points) Evaluate the indefinite integral							
	$\int \theta \cos^2 \theta d\theta.$						
Answe	r:						

Problem 4 (20 points) Evaluate the indefinite integral

$$\int \frac{x^2 + 4x - 3}{x^3 + x^2 + x + 1} dx$$

in the following two steps.

(a) (10 points) Write a partial fraction decomposition for

$$\frac{x^2 + 4x - 3}{x^3 + x^2 + x + 1}.$$

Answer:			

(b) (10 points) Evaluate the resulting integral.

Answer:

Problem 5 (15 points) Does the improper integral

$$\int_{1}^{\infty} \frac{1}{x^2 + 1} dx$$

converge or diverge? If it converges, compute its value.

Answer:			

Answer:				
l				
(15 points) Com State whether yo	oute the volume of the	e solid of revolution od of disks/washers	obtained by rotatin or the method of cy	g A about the y -axilindrical shells.
(15 points) Com State whether yo Answer:	pute the volume of the u are using the method	e solid of revolution od of disks/washers	obtained by rotatin or the method of cy	g A about the y -axilindrical shells.
State whether yo	pute the volume of the u are using the method	e solid of revolution od of disks/washers	obtained by rotatin or the method of cy	g A about the y -axilindrical shells.
State whether yo	oute the volume of the u are using the method	e solid of revolution od of disks/washers	obtained by rotatin or the method of cy	g A about the y -axilindrical shells.

Problem 6 (20 points) Consider the region A between the line y = x and the curve $y = x^4$.

Problem 7 (5 points) Set up a definite integral to compute the arc length of the curve

$$y = \sin(x), \qquad \frac{\pi}{2} \le x \le \pi.$$

You do not need to evaluate the integral.

Answer:			