Chapter 13: I/O Systems

Chapter 13: I/O Systems

- □ I/O Hardware
- □ Objective: Explore the structure of an operating system's I/O subsystem

I/O Hardware

- Incredible variety of I/O devices
- Common concepts
 - Port
 - Bus (daisy chain or shared direct access)
 - Controller (host adapter): a separate circuit board containing the bus controller
- I/O instructions control devices
- Devices have addresses, used by
 - Direct I/O instructions
 - Memory-mapped I/O

A Typical PC Bus Structure

Device I/O Port Locations on PCs (partial)

I/O address range (hexadecimal)	device
000-00F	DMA controller
020–021	interrupt controller
040–043	timer
200–20F	game controller
2F8-2FF	serial port (secondary)
320–32F	hard-disk controller
378–37F	parallel port
3D0-3DF	graphics controller
3F0-3F7	diskette-drive controller
3F8-3FF	serial port (primary)

Polling

- Determines state of device
 - command-ready
 - busy
 - Error
- Busy-wait/polling cycle to wait for I/O from device
 - Inefficient!
- What about involving the CPU only when needed?

Interrupts

- □ CPU Interrupt-request line triggered by I/O device
- Interrupt handler receives interrupts
- Maskable to ignore or delay some interrupts
- Interrupt vector to dispatch interrupt to correct handler
 - Based on priority
 - Some nonmaskable
- Interrupt mechanism also used for exceptions

Interrupt-Driven I/O Cycle

Intel Pentium Processor Event-Vector Table

vector number	description
0	divide error
1	debug exception
2	null interrupt
3	breakpoint
4	INTO-detected overflow
5	bound range exception
6	invalid opcode
7	device not available
8	double fault
9	coprocessor segment overrun (reserved)
10	invalid task state segment
11	segment not present
12	stack fault
13	general protection
14	page fault
15	(Intel reserved, do not use)
16	floating-point error
17	alignment check
18	machine check
19–31	(Intel reserved, do not use)
32–255	maskable interrupts

Direct Memory Access (DMA)

- Used to avoid programmed I/O for large data movement
- □ Requires **DMA** controller
- Bypasses CPU to transfer data directly between I/O device and memory
- Extension: Direct Virtual Memory Access (DVMA)
 - Data transfer between two memory-mapped devices without involving main memory

