Lösungen Aufgabenblatt Aussagenlogik - Mengenlehre 6

- 1a) (1) Zu jeder natürlichen Zahl n existiert eine natürliche Zahl m, so dass n+m=5 ist.
 - (2) Es gibt eine natürliche Zahl m, so dass für jede natürliche Zahl n gilt: m<n+1.
 - (3) Zu jeder natürlichen Zahl n existiert eine natürliche Zahl m, so dass m<n+1 ist.
 - (4) Es gibt zwei natürliche Zahlen n und m, so dass 2n + m = 8 ist.
 - (5) Zu jeder natürlichen Zahl n existiert eine rationale Zahl x, so dass $n = x^2$ ist.
 - (6) Es gibt eine rationale Zahl x, so dass für jede natürliche Zahl n gilt: $n = x^2$.
 - b)c) (1) $\exists n \in \mathbb{N} \ \forall m \in \mathbb{N}$: $n + m \neq 5$ wahr (n=5)
 - (2) $\forall m \in \mathbb{N} \exists n \in \mathbb{N}: m \ge n+1$ falsch (m=1)
 - (3) $\exists n \in \mathbb{N} \ \forall m \in \mathbb{N}: m \ge n+1$ falsch (m=1)
 - (4) \forall $n \in \mathbb{N}$ \forall $m \in \mathbb{N}$: $2n + m \neq 8$ falsch (n=2, m=4)
 - (5) $\exists n \in \mathbb{N} \ \forall x \in \mathbb{Q}$: $n \neq x^2$ wahr (n=2)
 - (6) $\forall x \in \mathbb{Q} \exists n \in \mathbb{N}: n \neq x^2$ falsch (n=1)
- 2a) (1) $\exists x \in \mathbb{Q}$: $\neg(x > 5 \rightarrow 2x + 3 > -1) = \exists x \in \mathbb{Q}$: $(x > 5 \land 2x + 3 \le -1)$
 - (2) $\exists x \in \mathbb{Q}$: $(x^2 = -1 \land x \neq 2 \land x \neq -2)$
 - (3) $\exists x \in \mathbb{Q}$: $(x^2 = 1 \land x \neq 1 \land x \neq -1)$
 - (4) $\exists x \in \mathbb{Q}$: $((x > 2 \land -x \le -2) \lor (x \le 2 \land -x > -2)) = <math>\exists x \in \mathbb{Q}$: $((x > 2) \lor (x < 2))$
 - (5) $\forall n \in \mathbb{N} \exists x \in \mathbb{Q}: (x > n \land x \le n^2)$
 - b) (1) bis (3): Ursprüngliche Aussagen sind wahr
 - (4) Negat ist wahr (z.B. x = 2.5)
 - (5) Ursprüngliche Aussage ist wahr (Negat falsch für z.B. n=1)
- 3a) Viereck ist Quadrat \Rightarrow Viereck hat gleich lange Seiten a(x):= alle Seiten des Vierecks x sind gleich lang; M=Menge aller Quadrate $\forall x \in M$: a(x)
 - b) bis d): Analog