WHISTLING: Wasp Behavior Inspired Stochastic Sampling

Vincent Cicirello and Stephen F. Smith

The Robotics Institute
Carnegie Mellon University
Pittsburgh PA 15213
{cicirello,sfs}@cs.cmu.edu

Carnegie Mellon

Introduction

- Question: How can we cover higher-valued points of solution-space in combinatorial domains efficiently?
- · Search heuristics can provide a basis
- · Heuristics are not infallible
- We must balance adherence to heuristic against possibility of missing better solutions
- Randomization as approach to hedging on this trade-off

THE ROBOTICS INSTITUTE

Dispatch Scheduling Policies

Local rules for prioritizing work on different resources and coordinating material flows

Examples: FIFO, WSPT, ATC

Advantages:

· Simple, robust control regime

Disadvantages:

- · Decisions tend to be myopic
- No one heuristic tends to dominate across varying production characteristics

Carnegie Mellon

Some Characteristics of Dispatch Heuristics

- Typically quite sensitive to parameter settings
 - Often tuned to individual problem instances during experimental evaluation
- Typically designed and validated under idealized modeling assumptions
 - Adapted to account for additional constraints

Research question: Can the performance of such decision rules be improved by adding randomness?

Amplifying Dispatch Heuristics

Starting assumption: We have a good heuristic, but its discriminatory power varies from context to context

Approach: Calibrate the degree of randomness in the heuristic's choice to the level of uncertainty in a given decision context

Some Related Ideas:

- Limited Discrepancy Search [Harvey & Ginsberg 95]
- Depth-Bounded Discrepancy Search [Walsh 97]
- Heuristic Equivalency [Gomes, Selman, & Kautz 98]
- Heuristic-Biased Stochastic Sampling [Bresina 96]
- Random-PCP [Oddi & Smith 97], Iterative Flattening [Cesta, Oddi, & Smith 99]

Carnegie Mellon

Limited Discrepancy Search (LDS) [Harvey & Ginsberg, 1995]

- · A systematic backtrack search procedure
- Iteration 0: follow search heuristic at each decision point
- Iteration j: systematically consider each solution trajectory with j discrepancies from the heuristic path
- Continue until feasible solution found or searchspace exhausted

Depth-bounded Discrepancy Search [Walsh, 1997]

- Assumes heuristic's advice most fallible near root of search-space
- An iterative-deepening variation of LDS
- Iteration j: Perform LDS restricting discrepancies to depth j of search-space
- Continue until feasible solution found or searchspace exhausted

Carnegie Mellon

Iterative Sampling [Langley, 1992]

- At each decision point, choose a branch of the search space at random until a leaf-node is reached.
- If an infeasible solution is found, return to root of search space and iterate.
- If a feasible solution is found and if this solution is better than the best found so far, then replace the best found solution with this solution. Return to root and iterate.
- A rather naïve approach:
 - Assumes a large number of feasible solutions
 - · Assumes a large number of "good" solutions

Heuristic-Biased Stochastic Sampling [Bresina,1996]

- At each decision point, rank order the possible choices according to a search heuristic.
- Choose branch of search space randomly but biased according to a function of this ranking.
- E.g., choose branch b_i with probability:

$$\frac{bias(rank(b_i))}{\sum bias(rank(b_j))}$$

- · Continue as in Iterative Sampling.
- · Assumes a good ordering heuristic.

Carnegie Mellon

Our Approach: WHISTLING

- Motivation: heuristic more or less discriminating from context to context.
- Same basic idea as in HBSS, but decisions are biased according to a function of the heuristic value.
- E.g., choose branch b_i with probability:

$$\frac{bias(heuristic(b_i))}{\sum bias(heuristic(b_j))}$$

• Eliminates the O(n log n) ranking step of HBSS

Why "Wasp beHavior Inspired"?

- Algorithm's name related to "how" the stochastic decision is computed
- · Obvious method:
 - Pass one: compute $\sum bias(heuristic(b_i))$
 - Generate random number
 - Pass two: choose b_i with probability:

$$\frac{bias(heuristic(b_i))}{\sum bias(heuristic(b_j))}$$

Wasp analogy reduces this to a single pass

Carnegie Mellon

Wasp Behavior Model [Theraulaz et al., 1991]

- Each wasp of the colony has a force variable F_w
- Any two wasps may engage in a dominance contest
- · Wasp 1 defeats wasp 2 with probability:

$$\frac{F_1^2}{F_1^2 + F_2^2}$$

- · Winner's force is increased; loser's force decreased
- · A social hierarchy formed over time
- Possible analogy between most dominant wasp and most "dominant" choice?

WHISTLING: Wasp beHavior Inspired STochastic sampLING

- At a decision point in the search:
 - Each choice represented by a "wasp"
 - Initial force of wasp i:

$$F_i = bias(heuristic(b_i))$$

- Tournament of dominance contests
 - Wasp 0 competes against wasp 1
 - Winner's force F_w accumulates loser's force F_l
 - Loser drops out
 - Winner competes against wasp 2, ...

Carnegie Mellon

Illustrative Example

$$F_{w} = ATCS_{w}(t, l) = \frac{w_{j}}{p_{j}} \exp(-\frac{\max(d_{j} - p_{j} - t, 0)}{k_{1}\overline{p}}) \exp(-\frac{s_{lj}}{k_{2}\overline{s}})$$

$$P(W_2 \text{ winning}) = \frac{1}{1.0001} = 0.999$$
 $P(W_2 \text{ winning}) = \frac{0.04}{0.05} = 0.8$

$$H_1 = 0.1, F_1 = 0.01$$

$$H_2 = 0.2, F_2 = 0.04$$

$$P(W_2 \text{ winning}) = \frac{0.04}{0.05} = 0.8$$

A Competing Approach

- Heuristic-Biased Stochastic Sampling (HBSS) [Bresina, AAAI-96]
- Bias is based on rank ordering

$$H_2 = 1$$
 $H_1 = 0.01$
 $rank_2 = 1$ $rank_1 = 2$

$$\operatorname{rank}_2 = 1 \operatorname{rank}_1 = 2$$

$$P(\text{selecting } J_2) = \frac{1/1^2}{1/1^2 + 1/2^2} = 0.8$$
 $P(\text{selecting } J_2) = \frac{1/1^2}{1/1^2 + 1/2^2} = 0.8$

$$H_2 = 0.2$$
 $H_1 = 0.1$
rank₂ = 1 rank₁ = 2

$$\operatorname{rank}_2 = 1 \operatorname{rank}_1 = 2$$

$$P(\text{selecting } J_2) = \frac{1/1^2}{1/1^2 + 1/2^2} = 0.8$$

Carnegie Mellon

Computational Study

Experimental Design:

- Objective: Weighted tardiness
- Base heuristic: ATCS [Lee, Bhaskaran, and Pinedo 97]
- 120 problem instances
 - 60 jobs each, single machine
 - Varying degrees of due-date tightness, due-date range, and setup severity

Comparative analysis of Whistling and HBSS approaches

- Evaluation of a spectrum of bias functions for each approach
- 1, 10, and 100 restarts considered

Percentage Improvement over Deterministic ATCS Rule

	Whistling	HBSS	Whistling	HBSS	Whistling	HBSS
# Restarts	1	1	10	10	100	100
Loose due-dates	20.29	14.86	45.14	38.98	55.35	52.38
Medium due-dates	2.13	1.47	8.38	6.40	13.73	10.73
Tight due-dates	0.04	0.21	0.91	0.88	1.71	1.83
Severe setups	8.12	4.34	20.94	17.21	27.03	24.37
Moderate setups	6.86	6.69	15.35	13.63	20.16	18.93

Carnegie Mellon

- Same problem instances as in Whistling / HBSS comparison
- · Comparative analysis of Whistling, LDS, and DDS
 - 100 and 200 restarts considered for Whistling
 - LDS:
 - All single discrepancy solutions occurring in 1st four decisions (230)
 - All single discrepancy solutions (1770)
 - DDS: To depth 2 (3539)

Percentage Improvement over Deterministic ATCS Rule

	Whistling	LDS	Whistling	LDS	DDS
# Samples	100	230	200	1770	3539
Loose due-dates	55.35	52.37	57.21	57.14	56.75
Medium due-dates	13.73	11.32	14.84	13.63	12.18
Tight due-dates	1.71	1.81	2.29	2.12	1.83
Severe setups	27.03	25.08	28.11	26.98	26.36
Moderate setups	20.16	18.59	21.45	21.61	20.82

THE

Carnegie Mellon

CPU Time

HBSS	HBSS	Whistling	Whistling	Whistling	LDS	LDS	DDS
10	100	10	100	200	230	1770	3539
1.59 s	15.46	0.16 s	1.50 s	3.01 s	1.46	6.04	20.94

·Note:

- •100 iterations of Whistling in same time as 10 iterations of HBSS
- •100 iterations of Whistling in same time as considering all 230 single discrepancy solutions in first 4 decisions
- •200 iterations of Whistling in half the time of considering all 1770 single discrepancy solutions
- •200 iterations of Whistling in a seventh of the time to consider the 3539 solutions of a DDS to depth 2

THE ROBOTICS INSTITUTE

References

- [Bresina 96] J. Bresina. Heuristic-biased stochastic sampling. In *Proc. 13th Nat. Conf. AI*, 1996.
- [Cesta, Oddi, & Smith 99] A. Cesta, A. Oddi, and S. Smith. An iterative sampling procedure for resource constrained project scheduling with time windows. In Proc. 16th IJCAI, 1999.
- [Gomes, Selman, & Kautz 98] C. Gomes, B. Selman, and H. Kautz. Boosting combinatorial search through randomization. In *Proc.* 15th Nat. Conf. Al, 1998.
- [Harvey & Ginsberg 95] W. Harvey and M. Ginsberg. Limited discrepancy search. In ${\it Proc.}~14^{th}~IJCAI,$ 1995.
- [Langley 92] P. Langley. Systematic and nonsystematic search strategies. In *Proc.* 1st AIPS, 1992.
- [Oddi & Smith 97] A. Oddi and S. Smith. Stochastic procedures for generating feasible schedules. In *Proc.* 14th Nat. Conf. AI, 1997.
- [Theraulaz et al. 91] G. Theraulaz, S. Goss, J. Gervet, and J. Deneubourg. Task differentiation in polistes wasp colonies: a model for self-organizing groups of robots. In *Proc. 1st Int. Conf. On Simulation of Adaptive Behavior*, 1991.
- [Walsh 97] T. Walsh. Depth-bounded discrepancy search. In Proc. 15th IJCAI, 1997.

