HIERARCHICAL BLOCK MODELS

Lecture 7, Fall 2014 CSCI 5352, Network Analysis and Models

Prof. Aaron Clauset University of Colorado, Boulder

ADVANCED GENERATIVE MODELS

- 1. hierarchical random graph model example
- 2. examples of tasks generative models can do
- 3. application to some real-world data sets

no structure

no structure

block structure

one scale

hierarchical structure no structure block structure

one scale

multi-scale

how can we extract a network's hierarchy?

GENERATIVE MODELS

- 1. write down hierarchical stochastic block model
- 2. estimate / learn model from data
- 3. evaluate model goodness-of-fit
- 4. evaluate model predictions

A MODEL OF HIERARCHY

A MODEL OF HIERARCHY

model

= $p_{\text{(lowest common ancestor of } i,j)}$

HIERARCHICAL RANDOM GRAPH

advantages

- explicit hierarchical structure
- flexible (2n parameters)
- captures structure at all scales
- captures mixtures of assortativity, disassortativity
- like SBM, decomposes adjacencies into "bundles" (each a random bipartite graph)
- learnable directly from data
- nice interpretable structure

disadvantages

- flexible (2n parameters)
- computationally slow
- can overfit to degree structure (like SBM)

FITTING THE MODEL

- likelihood function $\mathcal{L} = \Pr(|\text{data}||\text{model}|)$ (\mathcal{L} scores quality of model)
- sample all good models
 via Markov chain Monte Carlo*
 over all dendrograms
- technical details in

Clauset, Moore and Newman, *Nature* **453**, 98-101 (2008) and Clauset, Moore and Newman, *ICML* (2006)

LIKELIHOOD FUNCTION

$$\mathcal{L}(\mathcal{D}, \{p_r\}) = \prod_r p_r^{E_r} (1 - p_r)^{L_r R_r - E_r}$$

 L_r = number nodes in left subtree

 R_r = number nodes in right subtree

 E_r = number edges with r as lowest common ancestor

EXAMPLE

BAD DENDROGRAM

$$\mathcal{L}(\mathcal{D}, \{p_r\}) = \prod_r p_r^{E_r} (1 - p_r)^{L_r R_r - E_r}$$

BAD DENDROGRAM

GOOD DENDROGRAM

$$\mathcal{L}(\mathcal{D}, \{p_r\}) = \prod_r p_r^{E_r} (1 - p_r)^{L_r R_r - E_r}$$

GOOD DENDROGRAM

$$\mathcal{L}(\mathcal{D}, \{p_r\}) = \prod p_r^{E_r} (1 - p_r)^{L_r R_r - E_r}$$

$$\mathcal{L} = \left[\left(\frac{1}{9} \right)^1 \left(\frac{8}{9} \right)^8 \right]$$

$$\mathcal{L} = 0.0433$$

MARKOV CHAIN MONTE CARLO (MCMC)

Given \mathcal{D} , choose random internal node

Choose random reconfiguration of subtrees

[ergodicity]

Recompute probabilities $\{p_r\}$ and likelihood $\mathcal L$

Sampling states according to their likelihood

[detailed balance]

three subtree configurations

(up to relabeling)

SOME APPLICATIONS

TWO CASE STUDIES

NCAA Schedule 2000

$$n = 115$$
 $m = 613$

Zachary's Karate Club

$$n = 34$$
 $m = 78$

MIXING TIMES

MCMC mixes relatively quickly

Equilibrium in $\sim O(n^2)$ steps

HIERARCHIES

point estimate

consensus hierarchy

HIERARCHIES

point estimate

consensus hierarchy

EDGE ANNOTATIONS

Average likelihood of edge existing

- For each edge (i,j) in G, compute average associated parameter $\langle \theta_r \rangle_{(i,j)}$ over sampled models
- $\langle \theta_r \rangle_{(i,j)}$ is edge annotation (weight)

VERTEX ANNOTATIONS

Group-affiliation strengths

- If each vertex has known group label
- Ask, how often does vertex *i* appear in a subtree with majority of its fellows?
- Frequency is vertex annotation (strength)

EDGE, NOTE ANNOTATIONS

MODEL CHECKING

MODEL CHECKING

- Given graph *G*
- run MCMC to equilibrium
- then, for each sampled \mathcal{D} , draw a **resampled** graph G' from ensemble

Checking the model (goodness-of-fit): do resampled graphs look like original?

DEGREE DISTRIBUTION

CLUSTERING COEFFICIENT

DISTANCE DISTRIBUTION

PREDICTING MISSING LINKS

many networks partially known, noisy

• social nets, food webs, protein interactions, etc.

can hierarchies predict their missing links?

previous approaches

- Liben-Nowell & Kleinberg (2003)
- Goldberg & Roth (2003)
- Szilágyi et al. (2005)
- many more now

ACCURACY IS HARD

- ullet remove k edges from G
- how easy to guess a missing link?

$$p_{\text{guess}} \approx \frac{k}{n^2 - m + k}$$

$$= O(n^{-2})$$

$$n = 75$$

$$m = 113$$

$$p_{\text{guess}} = k/(2662 + k)$$

GENERATIVE MODEL APROACH

- ullet Given incomplete graph G
- run MCMC to equilibrium
- then, over sampled \mathcal{D} , compute average $\langle p_r \rangle$ for links $(i,j) \not\in G$
- predict links with high $\langle p_r \rangle$ values are missing

Test via leave-k-out cross-validation

perfect accuracy: AUC = 1

no better than chance: AUC = 1/2

SCORING THE PREDICTIONS

PERFORMANCE 1

simple predictors

PERFORMANCE 2

SOME FINAL THOUGHTS

- what processes create these hierarchical structures?
- scaling up the running time from $O(n^2)$?
- active learning
- generalization to weighted, directed edges
- generalization to non-Poisson distributions