Predicting King County Property Prices

Flatiron School, Data Science, Flex Program

Milad Shirani

Contents

- Project Overview
- Data
 - Categorical Data
 - Numerical Data
 - Data Preparation
 - Converted Data
- Modeling and Results
- Suggestions
- ▶ Q&A

Project Overview

- King County in Washington State has decided to help newly married couples to find a property in this county and the county wants to estimate the value of a property
- 2. King County in Washington State has asked us to suggest them two ways that they can apply to increase the value of a property.
- 3. We use linear regression to find the model to predict the value of a property

Data

- 1. We use 21099 data points for our analysis
- Data is coming from King County Open Data Source and it contains information about a property such as
 - Number of bedrooms, bathrooms and floors in a house
 - Year when the property was built
 - Zipcode and condition of the property
 - Square footage of living space in the home
- 3. Categorical variables are:
 - waterfront, condition, grade, zipecode
- 4. Numerical variables are:
 - price, bedrooms, bathrooms, sqft_living, floors, yr_built, lat, long

Categorical Data

Numerical Data

Numerical Data

Data Preparation

- 1. There is one data point for "3 Poor" value in grade
- 2. Removing outliers from price
- 3. maximum number of bedroom is 8
- 4. maximum number of bathroom is 7
- 5. minimum number of bathroom is 1
- 6. maximum number of floors is 3.5
- 7. long is multiplied by -1 to become positive
- 8. We use the natural logarithm to convert
 - lat, long, yr_built, sqft_living, sqft_lot

Converted Data

Converted Data

Converted Data

Modeling and Results

- We used Linear Regression for modeling
- 2. $R^2 = 0.72$
- 3. Mean Squared Error \$143922.7
- 4. Interpreting the coefficient of square footage living area (c_s) is:

$$\frac{p(s+\Delta s)}{p(s)} = \exp(\frac{s+\Delta s}{s})^{c_s}$$

	feature	coefficient
0	bedrooms	-0.0208
1	floors	0.054
2	5 Fair	-0.1196
3	7 Average	0.1789
4	4 Low	-0.2152
5	8 Good	0.3805
6	sqft_living	0.4858
7	waterfront_impute	0.5539
8	9 Better	0.5932
9	10 Very Good	0.7328
10	11 Excellent	0.861
11	12 Luxury	1.0057
12	yr_built	-7.6526
13	lat	62.5153
14	const	-174.335

Conclusion

- King County asked us to estimate the value of properties and suggest them two ways that can increase properties' values.
- 2. We used linear regression to model the data
- 3. We concluded that
 - Latitude and Square Footage of Living Area are the first and second numerical features that have the highet impact on the price of a property
- 4. The property owners might consider the following that might increase the value of their property
 - Reduce the number of bedrooms
 - Increase the square footage of living area
 - Increase the grade of the property at lease to very good.

Next Steps

- 1. Adding other features such as renovation year or square footage of basement to the model
- 2. Adding some combination of features into the model
- 3. Considering adding polynomial features to the model

Q and A

