Key concepts on Deep Neural Networks Quiz, 10 questions

Un-selected is correct

~	Congratulations! You passed!	Next Item
\	1/1 point	
1.		
What i	s the "cache" used for in our implementation of forward propagation and ba	ckward propagation?
0	We use it to pass variables computed during forward propagation to the copropagation step. It contains useful values for backward propagation to co	-
	rect rect, the "cache" records values from the forward propagation units and sendosent pagation units because it is needed to compute the chain rule derivatives.	ds it to the backward
	It is used to cache the intermediate values of the cost function during train	ing.
	It is used to keep track of the hyperparameters that we are searching over, computation.	to speed up
	We use it to pass variables computed during backward propagation to the propagation step. It contains useful values for forward propagation to com	
~	1 / 1 point	
2. Amon	g the following, which ones are "hyperparameters"? (Check all that apply.)	
	activation values $a^{[l]}$	

Key concepts on Deep Neural Networks Quiz, 10 questions Correct number of layers L in the neural network Correct size of the hidden layers $n^{[l]}$ Correct bias vectors $oldsymbol{b}^{[l]}$ **Un-selected is correct** learning rate lphaCorrect weight matrices $W^{\left[l ight]}$ **Un-selected is correct** 1/1 point 3. Which of the following statements is true? The deeper layers of a neural network are typically computing more complex features of the input than the earlier layers. Correct

The earlier layers of a neural network are typically computing more complex features of the input Key concepts one beep Neural Networks

Quiz, 10 questions

1/1 point

4

Vectorization allows you to compute forward propagation in an L-layer neural network without an explicit forloop (or any other explicit iterative loop) over the layers l=1, 2, ..., L. True/False?

True

False

Correct

Forward propagation propagates the input through the layers, although for shallow networks we may just write all the lines ($a^{[2]}=g^{[2]}(z^{[2]})$, $z^{[2]}=W^{[2]}a^{[1]}+b^{[2]}$, ...) in a deeper network, we cannot avoid a for loop iterating over the layers: ($a^{[l]}=g^{[l]}(z^{[l]})$, $z^{[l]}=W^{[l]}a^{[l-1]}+b^{[l]}$, ...).

1/1 point

5

Assume we store the values for $n^{[l]}$ in an array called layers, as follows: layer_dims = $[n_x, 4,3,2,1]$. So layer 1 has four hidden units, layer 2 has 3 hidden units and so on. Which of the following for-loops will allow you to initialize the parameters for the model?

```
1 for(i in range(1, len(layer_dims))):

Key concepts or Deep WeuratiNetwonkom.randn(layers[i-1],

layers[i])) * 0.01

parameter['b' + str(i)] = np.random.randn(layers[i], 1) * 0.01
```

Correct

1/1 point

6. Consider the following neural network.

How many layers does this network have?

igcup The number of layers L is 4. The number of hidden layers is 3.

Correct

Yes. As seen in lecture, the number of layers is counted as the number of hidden layers + 1. The input and output layers are not counted as hidden layers.

The number of layers L is 3. The number of hidden layers is 3.

y cor 10 ques	The number of layers L is 4. The number of hidden layers is 4. Stions The number of layers L is 5. The number of hidden layers is 4.
~	1 / 1 point
functi	g forward propagation, in the forward function for a layer l you need to know what is the activation on in a layer (Sigmoid, tanh, ReLU, etc.). During backpropagation, the corresponding backward function eeds to know what is the activation function for layer l , since the gradient depends on it. True/False?
0	True
Yes bac	rect , as you've seen in the week 3 each activation has a different derivative. Thus, during kpropagation you need to know which activation was used in the forward propagation to be able to npute the correct derivative.
	False
~	1 / 1 point
8. There	are certain functions with the following properties:
size b	compute the function using a shallow network circuit, you will need a large network (where we measure y the number of logic gates in the network), but (ii) To compute it using a deep network circuit, you need in exponentially smaller network. True/False?
0	True
Cor	rect

9. Keycomcept som i Deap de Networks

Quiz, 10 questions

Which of the following statements are True? (Check all that apply).

Correct

Yes. More generally, the shape of $W^{[l]}$ is $(n^{[l]}, n^{[l-1]})$.

$$oxedsymbol{igsqc} b^{[1]}$$
 will have shape (4, 1)

Correct

Yes. More generally, the shape of $b^{[l]}$ is $(n^{[l]},1)$.

$$igwedge W^{[1]}$$
 will have shape (3, 4)

Un-selected is correct

$$oxedsymbol{igsqc} b^{[1]}$$
 will have shape (3, 1)

Quiz, 10 questions $W^{[2]}$ will have shape (3, 4) Correct Yes. More generally, the shape of $W^{[l]}$ is $(n^{[l]}, n^{[l-1]})$. $b^{[2]}$ will have shape (1, 1) Un-selected is correct $W^{[2]}$ will have shape (3, 1) **Un-selected** is correct $b^{[2]}$ will have shape (3, 1) Correct Yes. More generally, the shape of $b^{[l]}$ is $(n^{[l]},1)$. $W^{[3]}$ will have shape (3, 1) **Un-selected** is correct $b^{[3]}$ will have shape (1, 1) Yes. More generally, the shape of $b^{[l]}$ is $(n^{[l]},1)$. $W^{[3]}$ will have shape (1, 3) Correct Yes. More generally, the shape of $W^{[l]}$ is $(n^{[l]}, n^{[l-1]})$. $b^{[3]}$ will have shape (3, 1)

Un-selected is correct

Key condepts on Deep Neural Networks

Key concepts on Deep Neural Networks

Quiz, 10 questions

1/1 point

10.

Whereas the previous question used a specific network, in the general case what is the dimension of $W^{[l]}$, the weight matrix associated with layer l?

- $igcup W^{[l]}$ has shape $(n^{[l+1]}, n^{[l]})$
- $igcup W^{[l]}$ has shape $(n^{[l]}, n^{[l-1]})$

Correct

True

- $igcup W^{[l]}$ has shape $(n^{[l-1]},n^{[l]})$
- $igcup W^{[l]}$ has shape $(n^{[l]}, n^{[l+1]})$

