第六章作业 Hollow Man

复习题

6. 3

- 1. 互斥。
- 2. 占有且等待。
- 3. 不可抢占。
- 4. 循环等待。

习题

6. 2

死锁预防:

占有且等待:要求小汽车请求两个需要通过的象限的通过权限,并且除非此车 同时获得了这两个象限的通过权限否则禁止通行。

不可抢占:释放被指派通过权限的象限,即通过向后倒车的方式。但是如果这辆车后面有另一辆车,这种方式可能会产生问题,因而可能是不切实际的。

循环等待: 为每个象限分配一个线性顺序通过方式。

死锁避免:使用银行家算法,在象限通行权限被分配之前进行检测,如果该分配有问题则不进行分配,避免死锁。

死锁检测: 检测此时是否发生了死锁,如果发生了则恢复死锁发生前的状态,即通过向后倒车的方式。同样,如果这辆车后面有另一辆车,这种方式可能会产生问题。

6.5

a.

根据已分配矩阵,用各自总资源数减去所有被分配给进程的资源数(资源对应列的和),得:

A:
$$15-(2+4+1+1+1) = 6$$

B:
$$6-(1+1+1) = 3$$

C:
$$9-(2+1+1) = 5$$

D:
$$10-(1+1+2+1+1) = 4$$

与可用资源向量中对应值一致, 所以正确。

b.

需求矩阵 = 最大需求矩阵-已分配矩阵 得需求矩阵:

进程	A	В	C	D
P0	7	5	3	4
P1	2	1	2	2
P2	3	4	4	2
P3	2	3	3	1
P4	4	1	2	1
P5	3	4	3	3

C.

序列: P5-> P4-> P3-> P2-> P1-> P0

下表是每个对应进程终止时可用资源向量组成的矩阵:

进程	Α	В	С	D
P5	7	3	6	5
P4	8	4	6	5
P3	9	4	6	6
P2	13	5	6	8
P1	13	6	7	9
P0	15	6	9	10

d.

不可以, 当请求被允许时, 新的已分配矩阵将变为:

进程	Α	В	С	D
P0	2	0	2	1
P1	0	1	1	1
P2	4	1	0	2
P3	1	0	0	1
P4	1	1	0	0
P5	4	2	4	4

新的需求矩阵将变为:

进程	A	В	С	D
P0	7	5	3	4
P1	2	1	2	2
P2	3	4	4	2
P3	2	3	3	1
P4	4	1	2	1
P5	0	2	0	0

可用资源向量将变为:

这将无法满足后续任何进程的需求,进入死锁状态,因而是不安全。

6. 15

最少需要 3 个。总共有 10 个资源。P2 获得 1 个资源,完成后释放 2 个资源。随后 P1 获得 3 个资源,完成后释放 3 个资源。接下来 P4 获得 5 个资源,完成后释放 7 个资源。最后后 P3 获得所需的 6 个资源,完成后所有进程结束。