To Do

Read Sections 6.1 – 6.3.

Assignment 4 is due Friday November 25.

Last Class

- (1) Confidence Interval for Slope β and Testing H_0 : $\beta = \beta_0$
- (2) Test of No Relationship between Response and Explanatory Variates
- (3) Confidence interval for the mean response $\mu(x) = \alpha + \beta x$
- (4) Prediction Interval for an Individual Response Y

Simple Linear Regression Model

For data (x_i, y_i) , i = 1, 2, ..., nwe assume the model

$$Y_i \sim G(\alpha + \beta x_i, \sigma)$$
 for $i = 1, 2, ..., n$
independently and where the x_i 's, $i = 1, 2, ..., n$
are assumed to be known constants.

Today's Class

- (1) General Form of a Gaussian Response Model
- (2) Linear Regression Models
- (3) Checking the Assumptions of the Simple Linear Regression Model

Simple Linear Regression Model Simple linear regression model

$$Y_i \sim G(\alpha + \beta x_i, \sigma)$$
 for $i = 1, 2, ..., n$
independently and where the x_i 's, $i = 1, 2, ..., n$
are assumed to be known constants.

This model is a member of a larger family of models called Gaussian response models.

Gaussian Response Models

The general form of a Gaussian response model is

$$Y_i \sim G(\mu(x_i), \sigma)$$
 for $i=1,2,...,n$ independently and where the x_i 's, $i=1,2,...,n$ are assumed to be known constants (possibly vectors).

In this model

$$\mathsf{E}(\mathsf{Y}_\mathsf{i}) = \mu(\mathsf{x}_\mathsf{i})$$

depends on the explanatory variate x_i , but

$$sd(Y_i) = \sigma$$

does not.

Gaussian Response Model

The Gaussian Response Model

 $Y_i \sim G(\mu(x_i), \sigma)$ for i = 1, 2, ..., n independently can also be written in the form

 $Y_i = \mu(x_i) + R_i$ where $R_i \sim G(0,\sigma)$, i = 1,2,...,n independently.

 Y_i is a sum of two components.

The first component, $\mu(x_i)$, is a deterministic component (not a random variable) and the second component, R_i , is a random component or random variable.

Linear Regression Models and STAT 331/STAT 371/STAT 373

In many examples the deterministic component takes the form

$$E(Y_i) = \mu(\boldsymbol{x}_i) = \beta_0 + \sum_{j=1}^k \beta_j x_{ij}$$

so $E(Y_i)$ is a linear function of

 $x_i = (x_{i1}, x_{i2}, ..., x_{ik})$, a vector of explanatory variates for unit i, and the unknown parameters $\beta_0, \beta_1, ..., \beta_k$.

These models are called linear regression models. The β_j 's are called the regression coefficients. The x_i 's are called covariates.

Model Checking

There are two main assumptions for Gaussian linear response models:

- (1) Y_i (given covariates x_i) has a Gaussian distribution with standard deviation σ which does not depend on the covariates.
- (2) $E(Y_i) = \mu(x_i)$ is a linear combination of known covariates $x_i = (x_{i1}, x_{i2}, ..., x_{ik})$, and unknown regression coefficients $\beta_0, \beta_1, ..., \beta_k$.

MODEL ASSUMPTIONS SHOULD ALWAYS BE CHECKED!!!

We use graphical methods to do this.

Model Checking Method 1

In simple linear regression, a scatterplot of the data with the fitted line superimposed indicates how well the model fits the data.

Model Checking Method 2 - Residual Plots

Residual plots are very useful for model checking when there are 2 or more covariates. For the simple linear regression model let

$$\hat{\mu}_i = \hat{\alpha} + \hat{\beta}_i x_i$$

(often called the "fitted" response) and

$$\hat{r}_i = y_i - \hat{\mu}_i$$

The \hat{r}_i 's are called residuals since \hat{r}_i represents what is "left" after the model has been "fitted" to the data.

Residual Plots

The idea behind the \hat{r}_i 's is that they can be thought of as "observed" R_i 's in the model

 $Y_i = \mu_i + R_i$ where $R_i \sim G(0,\sigma)$, i = 1,2,...,n independently.

This isn't exactly correct since we are using $\hat{\mu}_i$ instead of μ_i .

However if the model is correct, then the \hat{r}_i 's should behave roughly like a random sample from the $G(0,\sigma)$ distribution.

Residual Plots

Recall

$$\hat{\alpha} = \overline{y} - \hat{\beta}\overline{x}$$
 or $\overline{y} - \hat{\alpha} - \hat{\beta}\overline{x} = 0$

which implies

$$0 = \overline{y} - \hat{\alpha} - \hat{\beta}\overline{x} = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{\alpha} - \hat{\beta}x_i) = \frac{1}{n} \sum_{i=1}^{n} \hat{r}_i$$

so that the average of the residuals is always zero.

Residual Plots

If the model assumptions hold then a plot of the points $(x_i, \hat{r_i})$, i = 1, 2, ..., n should lie more or less within a horizontal band or belt around the line $\hat{r_i} = 0$ showing no obvious pattern.

STAT 231/230 Residual Plot

What would you conclude?

Standardized Residual Plots

Define the standardized residuals

$$\hat{r}_i^* = \frac{\hat{r}_i}{s_e} = \frac{y_i - \hat{\mu}_i}{s_e}$$
 $i = 1, 2, ..., n$

What is the only difference between a plot of the points (x_i, \hat{r}_i) , i = 1, 2, ..., n and a plot of the points (x_i, \hat{r}_i^*) , i = 1, 2, ..., n?

If the model is correct then the $\hat{r_i}^*$ values will lie in the range (-3,3). Why is this?

Example – Standardized Residual Plot

STAT 231/230 Standardized Residual Plot

Residual Plot Type 2

Another type of residual plot consists of plotting the points $(\hat{\mu}_i, \hat{r}_i^*), i = 1, 2, ..., n$

Such a plot can be used to check the assumption about the form of the mean $E(Y_i) = \mu(x_i)$.

For the simple linear regression model we are checking whether the assumed mean $E(Y_i) = \mu(x_i) = \alpha + \beta x_i$ is reasonable.

If the assumed mean is reasonable we should see approximately a horizontal band around the line

$$\hat{r}_i^* = 0$$

Example – Standardized Residual Plot Using Muhat

STAT 231/230 Standardized Residual Plot with Muhat

Qqplot of Residuals

To check the Gaussian assumption we use a qqplot of the standardized residuals. Since our assumed model is

$$R_i / \sigma = (Y_i - \mu_i)/\sigma \sim G(0,1)$$

the \hat{r}_i^* 's should roughly represent a sample from the G(0,1) distribution.

Therefore a qqplot of the \hat{r}_i^* 's should give approximately a straight line if the model assumptions hold.

Example - Qqplot

STAT 231/230 Qqplot

Interpreting Residual Plots

If a plot of the points

$$(\hat{\mu}_i, \hat{r}_i^*), i = 1, 2, ..., n$$

or

$$(\hat{\mu}_i, \hat{r}_i), i = 1, 2, ..., n$$

shows a distinctive pattern then this suggests the assumed form for $E(Y_i) = \mu(x_i)$ may be inappropriate.

Interpreting Residual Plots

If a plot of the points

$$(\hat{\mu}_i, \hat{r}_i^*), i = 1, 2, ..., n$$

indicates that the variability in the \hat{r}_i^* 's is bigger for large values of $\hat{\mu}_i$ than for small values of $\hat{\mu}_i$ (or vice versa) then there is evidence to suggest that the assumption of constant variance, $Var(Y_i) = Var(R_i) = \sigma^2$, i=1,2,...,ndoes not hold.

Interpreting Residual Plots

If the points in the qqplot do not lie roughly in a straight line then this suggests the Gaussian assumption may not hold.

Interpreting Residual Plots - Warning

Reading these plots takes practice and you should try not to read too much into plots especially if the plots are based on a small number of points.

The plots on the next slides exhibit patterns.

Examples of Residual Plots with Patterns

This plot suggests that the function $\mu(x_i)$ is not correctly specified. Can you suggest a better model?

Examples of Residual Plots with Patterns

Assume a quadratic model for the mean: $\mu(x_i) = \alpha + \beta x_i + \gamma x_i^2$ rather than $\mu(x_i) = \alpha + \beta x_i$

Examples of Residual Plots with Patterns

What do you notice?

Scatterplot for same data

