

9.4 运动学综合问题分析

例题1 已知杆AB 的速度v =常量,尺寸b。如图瞬时,OD=BD, $\varphi=60$ $\mathcal{H}=30$ 求此时杆OC的角速度和角加速度,滑块E的速度和加速度。

解: (1)速度分析和计算

取滑块B为动点,动系固连杆OC。

$$v_{\rm a} = v_{\rm e} + v_{\rm r}$$

速度	v_B	v_{Be}	v_{Br}
大小	ν	<i>OB</i> •ω _{OB} (未知)	未知
方向	\rightarrow	$\perp OB$	沿OC

解得

$$v_{Be} = v_B \cos 30^\circ = \frac{\sqrt{3}}{2} v$$
$$v_{Br} = v_B \cos 60^\circ = \frac{1}{2} v$$

OC的角速度

$$\omega_{OC} = \frac{v_{Be}}{OB} = \frac{3}{4} \frac{v}{b}$$

$$v_D = OD \cdot \omega_{\rm OC} = \frac{\sqrt{3}}{4}v$$

西北工业大学

取D点为基点,滑块E的速度为 $v_E = v_D + v_{ED}$

速度	v_E	v_D	v_{ED}
大小	未知	$OD \cdot \omega_{OC}$	未知
方向	水平	$\perp oD$	\perp <i>E D</i>

解得

$$v_E = \frac{v_D}{\cos \theta} = \frac{v_D}{\cos 30^\circ} = \frac{v}{2}$$

应用投影法亦可得

$$v_D = v_E \cos 30^\circ$$

$$v_E = \frac{v_D}{\cos 30^\circ} = \frac{v}{2}$$

(2)加速度分析和计算

$$\boldsymbol{a}_{\mathrm{a}} = \boldsymbol{a}_{\mathrm{e}}^{\mathrm{t}} + \boldsymbol{a}_{\mathrm{e}}^{\mathrm{n}} + \boldsymbol{a}_{\mathrm{r}} + \boldsymbol{a}_{\mathrm{C}}$$

加速度	a_B	$a^{\mathrm{t}}_{B\mathrm{e}}$	a ⁿ _{Be}	a_{Br}	$a_{ m C}$
大小	0	BO •α _{OC} (未知)	$BO \cdot \omega_{oc}^2$	未知	$2\omega_{OC} \cdot v_{Br}$
方向		\perp BO	$B \rightarrow O$	沿OC	\perp BO

投影到a^tBe方向得

$$0 = a_{Be}^{t} - a_{C}$$

$$a_{Be}^{t} = a_{C} = \frac{3v^2}{4b}$$

杆OC的角加速度

$$\alpha_{OC} = \frac{a_{Be}^{t}}{OB} = \frac{3\sqrt{3}v^2}{8b^2}$$

(逆时针)

西北工业大学

为求E点的加速度, 取D点为基点,则有

$a_r =$	∶ a ¹ -	$+a^{n}$	$+a_{rr}^{\iota}$	$+a_{ED}^{n}$
E	D	D	ED	ED

加速度	a_E	a^{t}_{D}	a^{n}_{D}	a^{t}_{ED}	a^{n}_{ED}
大小	未知	$OC \cdot \alpha_{OC}$	$OD \cdot \omega^2_{OC}$	未知	v^2_{ED}/ED
方向	水平向左	\perp DO	$D \rightarrow O$	\perp ED	$E \longrightarrow D$

投影到ED方向得
$$a_E \cos \theta = a_D^t + a_{ED}^n$$

$$a_D^{t} = OD \cdot \alpha_{OC} = \frac{3v}{8b}$$
$$a_{ED}^{n} = \frac{v_{ED}^2}{2} = \frac{v^2}{2}$$

解得

$$a_E = \frac{a_D^{\rm t} + a_{_{ED}}^{\rm n}}{\cos \theta} = \frac{7\sqrt{3}v^2}{24}$$
 方向水平向左。

例10-13 如图所示平面机构中,曲柄 O_1A 长为r,以匀角速度 ω_1 绕水平固定轴 O_1 转动。通过长为的连杆AB,带动滑块B 在水平 导轨内滑动。在连杆AB 的中点用铰链连接一滑块M,它可带动滑 道摇杆 O_2D 绕水平固定轴 O_2 转动,且 O_1O_2 和B 在同一水平线上。试 求 O_1A 和 O_2D 处于图示铅垂位置时摇杆 O_2D 的角速度 ω_2 和角加速度 α_2 。

解: 连杆AB作瞬时平动,有

$$v_A = v_M = v_B = r\omega_1, \quad \omega_{AB} = 0.$$

(1) 求摇杆O₂D的角速度

取滑块M为动点,动系与摇杆O2D相固连.

根据速度合成定理,有

$$\mathbf{v}_{\mathbf{a}} = \mathbf{v}_{\mathbf{e}} + \mathbf{v}_{\mathbf{r}} \tag{1}$$

其中

速度	v _a	$\boldsymbol{v}_{\mathrm{e}}$	v _r
大小	$r\omega_1$	未知	未知
方向	水平向左	水平方向	铅垂方向

因为图示瞬时v_a与v_e均垂直于v_r,故

$$v_{\rm r} = 0$$
, $v_{\rm a} = v_{\rm e}$

则有
$$v_{\rm e} = v_{\rm a} = v_{\rm M} = r\omega_{\rm l}$$

而摇杆O2D的角速度为

$$\omega_2 = \frac{v_e}{O_2 M} = \frac{r\omega_1}{r/2} = 2\omega_1$$

(逆时针)

西北工业大学

(2) 求摇杆 O_2D 的角加速度

根据加速度合成定理,滑块 M的绝对加速度为

$$\boldsymbol{a}_{\mathrm{a}} = \boldsymbol{a}_{\mathrm{e}}^{\mathrm{t}} + \boldsymbol{a}_{\mathrm{e}}^{\mathrm{n}} + \boldsymbol{a}_{\mathrm{r}} + \boldsymbol{a}_{\mathrm{C}} \tag{2}$$

其中

加速度	$a_{\rm a}$	$a_{\mathrm{e}}^{\mathrm{t}}$	a ⁿ _e	$a_{ m r}$	$a_{ m C}$
大小	未知	<i>O</i> ₂ <i>M</i> •α ₂ (未知)	$O_2M \cdot \omega_2^2$	未知	$2\omega_2 \cdot v_r = 0$
方向	未知	$\perp O_2M$	沿MO ₂	沿O ₂ M	

式(2)中含有4个未知量,不能求解。取点A为基点,并考虑到杆AB的角速度在图示瞬时为零,则点M的加速度

$$\boldsymbol{a}_{M} = \boldsymbol{a}_{A} + \boldsymbol{a}_{MA}^{\mathrm{t}} \tag{3}$$

其中

加速度	a_{M}	a_{A}	$a^{\mathrm{t}}_{\mathit{MA}}$
大小	未知	$r\omega_1^2$	$MA \cdot \alpha_{AB}$
方向	未知	铅垂向下	$\perp MA$

联立(2)、(3)两式,可得

$$\boldsymbol{a}_{e}^{t} + \boldsymbol{a}_{e}^{n} + \boldsymbol{a}_{r} = \boldsymbol{a}_{A} + \boldsymbol{a}_{MA}^{t} \qquad (4)$$

西北工业大学

 a^t_{MA}

$$\boldsymbol{a}_{\mathrm{e}}^{\mathrm{t}} + \boldsymbol{a}_{\mathrm{e}}^{\mathrm{n}} + \boldsymbol{a}_{\mathrm{r}} = \boldsymbol{a}_{A} + \boldsymbol{a}_{MA}^{\mathrm{t}}$$

(4)

将式(4)投影到与摇杆 O_2D 相垂直的方向上,得

$$a_{\rm e}^{\rm t} = a_{MA}^{\rm t} \cos \theta = MA \cdot \alpha_{AB} \cos \theta \qquad (5)$$

式 (5) 中 α_{AB} 为未知量,可见, 欲求 a^t_e 还须先求出连杆AB 的角 加速度 α_{AB} 。

取点A为基点,则滑块B的加速度

$$\boldsymbol{a}_{B} = \boldsymbol{a}_{A} + \boldsymbol{a}_{BA}^{\mathrm{t}}$$

$$\boldsymbol{a}_{B} = \boldsymbol{a}_{A} + \boldsymbol{a}_{BA}^{t} \quad (6)$$

其中

加速度	a_B	a_{A}	a^{t}_{BA}
大小	未知	$r\omega_1^2$	$l\cdotlpha_{{\scriptscriptstyle A}{\scriptscriptstyle B}}$
方向	水平	沿AO	$\perp AB$

将式(6)沿铅垂方向投影,得

$$0 = -a_A + a_{BA}^{t} \sin \theta$$

故
$$\alpha_{AB} = \frac{a_{BA}^{t}}{l} = \frac{r\omega_{1}^{2}}{\sqrt{l^{2}-r^{2}}}$$

(逆时针)

$$a_{\rm e}^{\rm t} = a_{MA}^{\rm t} \cos \theta = MA \cdot \alpha_{AB} \cos \theta \tag{5}$$

由式(5)得摇杆O2D的角加速度

$$\alpha_2 = \frac{\alpha_{\rm e}^{\rm t}}{O_2 M} = \frac{MA}{O_2 M} \cos \theta \cdot \alpha_{AB} = \frac{(l/2)r/l}{r/2} \alpha_{AB}$$

$$=\alpha_{AB}=\frac{r\omega_1^2}{\sqrt{l^2-r^2}}$$

(顺时针)

1. 刚体平面运动概念

刚体上处于同一平面内各点到某一固定平面的距离保持不变。

2. 平面图形上点的速度

基点法

$$v_B = v_A + v_{BA}$$

投影法

$$v_A \cos \alpha = v_B \cos \beta$$

速度瞬心法

$$v_M = v_{MP} = MP \cdot \omega$$

3. 平面图形上点的加速度 基点法

$$\boldsymbol{a}_{B} = \boldsymbol{a}_{A} + \boldsymbol{a}_{BA}^{t} + \boldsymbol{a}_{BA}^{n}$$

谢谢!