

BSM 313 NESNELERİN İNTERNETİ VE UYGULAMALARI

(Internet of Things (IoT) and Applications)

NESNELERİN İNTERNETİ UYGULAMALARINDA SIKLIKLA KULLANILAN KABLOSUZ TEKNOLOJİLER WiFi – ESP8266 Entegresi

Doç. Dr. Cüneyt BAYILMIŞ

ESP8266 WiFi Modülü

- □ Espressif Systems tarafından geliştirilmiş, düşük güçlü (3.3v) WiFi modülüdür.
- ☐ IEEE 802.11 b/g/n kablosuz yerel alan ağı standartlarını destekler.
- ☐ Seri haberleşme ile kablosuz yerel ağına ve kablosuz internete bağlanır.
- TCP/IP protokol yığınına sahiptir.
- Mikroişlemcili sistemler ile seri haberleşme arayüzü ile birlikte kullanılabileceği gibi ESP8266 WiFi modülüne sahip Ardunio gibi birçok hazır kart bulunmaktadır.
- □ ESP8266 WiFi modülü ile kablosuz ağlara bağlanılabildiği gibi, modül ile kendi ağınızı oluşturup, başka cihazların bu ağa bağlantısı sağlanabilir.
- □ 3.3v ile çalışır. Besleme uçları ile, 2 adet GPIO ve RxD ile TxD uçlarına sahiptir.
- ESP8266-01/02/...12 gibi numaralandırılan versiyonları bulunmaktadır.

IEEE 802.11 Standartları

☐ IEEE 802.11, kablolu yerel alan ağlarındaki Ethernet bağlantılarını kablosuz ortam üzerinden sağlar.

Standart	Başlangıç Tarihi	Çalışma Frekansı (GHz)	Band Genişliği (MHz)	Veri İletim Hızı (Mbit/s)	Modülasyon	Kapalı Alanda Kapsama (m)	Açık Alanda Kapsama (m)
802.11	Haziran 1997	2.4	20	1/2	FHSS, DSSS	20	100
802.11a	Eylül 1999	5	20	6/9/12/18 24/36/48/54	OFDM	35	120
802.11b	Eylül 1999	2.4	20	1/2/5.5/11	DSSS	35	140
802.11g	Haziran 2003	2.4	20	6/9/12/18 24/36/48/54	OFDM / DSSS	38	140
802.11n	Ekim 2009	2.4 / 5	20	7.2/14.4/21.7/28.9 43.3/57.8/65/72.2	OFDM	70	250
			40	15/30/45/60 90/120/135/150			
802.11 ac	2011 geliştirilmeye başlandı (Ocak 2014 onaylandı)	5	20	87,6	OFDM (256-QAM)	70	250
			40	200			
			80	433,3			
			160	866,7			
802.11ad	2009 (2012'de onaylandı)	2.4 / 5 / 60	160	7 000	OFDM	60	100

ESP8266 ve AT Komut Seti

- ☐ 'ATtention' kelimesinin kısaltması olan AT Komut Seti, 'Hayes' Telekomuniskasyon firması tarafından geliştirilen bir standarttır.
- □ AT Komut Seti fax, modem, WiFi entegreleri (ESP8266 vd.), GSM/GPRS vb. teknolojilerine sahip cihazların haberleşmesi için kullanılmaktadır.
- ☐ Tüm komutlar 'AT' ile başlar. Her AT komutunun gönderilmesinden yaklaşık 4sn sonra sonuç kod (Result Code) bilgisi alınır.
- ESP modülüne yalnız AT gönderilerek, haberleşme için hazır olup olmadığı sorgulanır. OK sonucu dönerse hazırdır.
- □ ESP modülü ile Ardunio kartlar seri arayüzden bağlı olduğundan haberleşme için serial komutları kullanılır.
- ☐ Örnek:
 - Serial.println ("AT");

ESP8266 AT Komut Örnekleri

- AT+GMR: Esp'ye yüklenen firmware versiyonunu verir.
- ☐ AT+CIFSR: Esp'nin network'un içindeki local IP bilgisini
- AT+CWMODE: Esp modülünün bağlantı modunu temsil eder. (Mode:1 Statik, Mode:2 AP Mode:3 her ikisi)
- □ AT+CWJAP= "wifi_adi", "wifi_sifresi" kablosuz ağa bağlan
- ☐ AT+CIPSTATUS : TCP/IP bağlantı durumunu görüntüler.
- AT+RST : Modülü resetle

ESP8266 Modülü Ardunio Karta Nasıl Bağlanır?

ESP8266 WiFi Modülüne Sahip Ardunio Kartları

NodeMCU

WeMOS D1 mini

ESP8266 WiFi Modülüne Sahip NodeMCU

REST TXD RXD GPIO5 GPIO4 GPIO14 GPIO12 GPIO13 GPIO15 GND GND

NodeMCU Üzerindeki ESP8266 Pin Bağlantısı

NodeMCU Geliştirme Kiti Pin Bağlantısı

Nodemcu	ESP8266 Pin	Nodemcu dev	ESP8266 Pin
dev kit		kit	
D0	GPIO16	D7	GPIO13
D1	GPIO5	D8	GPIO15
D2	GPIO4	D9	GPIO3
D3	GPIO0	D10	GPIO1
D4	GPIO2	D11	GPIO9
D5	GPIO14	D12	GPIO10
D6	GPIO12		

NodeMCU ile Uygulama Geliştirmek

- ESP8266 Wi-Fi sahip NodeMCU vb. kartların Arduino IDE ortamında tanımlanması
- □ Dosya > Tercihler sekmesindeki ekranda "Ek Devre Kartları Yöneticisi URLleri" kutusuna aşağıda verilen linki ekleyiniz. http://arduino.esp8266.com/stable/package_esp8266com_index.json

ESP8266 kütüphanelerini eklemek için Ardunio IDE'de **Araçlar > Kart Yöneticisi** ekranından ESP8266 aratıp, kurunuz.

Kurulum sonrasında Araçlar > Kart > NodeMCU 1.0 (ESP-12E Module) seçeneğini olarak kartınızı işaretlemeli ve Araçlar > Port seçeneğinden sanal COM portunuzu seçmelisiniz.

ESP8266 Wi-Fi Modül Bağlantı Kodu

```
/*** ESP8266 WiFi Kütüphane Dosyası ***/
                                                                                                                                    □ ESP8266 Wi-Fi modülüne sahip NodeMCU loT cihazı wifi bağlantı
#include <ESP8266WiFi.h>
/*** Kablosuz Ağ Bilgileri ***/
const char*
                                      WLAN SSID =
                                                                                   "Ağ Adı"; // Kablosuz Ağ Adı
                                         WLAN PASSWORD = "Sifre"; // Kablosuz Ağ Şifresi
const char*
WiFiClient client;
                                                                     // TCP bağlantısı oluşturmak için client nesnesi oluştur
/*** ESP8266 WiFi Kurulum Fonksiyonu ***/
 void WiFi Setup() {
   delay(10);
   Serial.println(); Serial.print(WLAN SSID);
   Serial.print(" Kablosuz Agina Baglaniyor");
                                                                                                                                                                                    <sup>™</sup> COM3
   WiFi.begin (WLAN SSID, WLAN PASSWORD);
    // WiFi durum kontrolü
                                                                                                                                                                                 \[\langle \langle while (WiFi.status() != WL CONNECTED) {
                                                                                                                                                                                 TTNET
                                                                                                                                                                                                        Kablosuz Agina Baglaniyor..
                                                                                                                                                                                 TTNET
                                                                                                                                                                                                        Kablosuz Agina Baglandi
            delay(500);
                                                                                                                                                                                 IP adresi:
            Serial.print(".");
                                                                                                                                                                                 192.168.1.44
      Serial.println(); Serial.print(WLAN SSID);
      Serial.println(" Kablosuz Agina Baglandi");
      Serial.println("IP adresi: ");
      Serial.println(WiFi.localIP());
 void setup() {
     Serial.begin(115200); // Seri port baud rate ayarı
      WiFi Setup();
                                                                //Kablosuz ağ bağlantı fonksiyonu
                                                                                                                                                                                  Otomatik Kaydırma Show timestamp
                                                                                                                                                                                                                                                                                                  ∨ 115200 baud
```


void loop() {

IoT Uygulama 1: LM35 Sıcaklık Sensörü ile NodeMCU Cihazın ThingSpeak IoT Bulut Platform Uygulaması

- LM35 sıcaklık sensörü
 - ☐ LM35, 3 bacaklı analog bir sıcaklık sensörüdür.
 - -55 ile +150 derece arasındaki sıcaklıkları ölçebilir.
 - ☐ 1º C'lik sıcaklık artışında çıkışı 10 mv artar.
 - ☐ Giriş gerilimi olarak 4v-20v arası çalışabilir.
- ☐ Örnek: LM35 sensörü 240 mV ölçüyorsa kaç derece ölçülmüştür.
 - 240 mV / 10 mV = 24° C
 - □ 10 bitlik ADC kullanılıyorsa 2^{10} = 1024 durum yapar.
 - \square Sıcaklık = Ölçülen Değer * $(\frac{Vref}{1024})$ / 10

Sistem Mimarisi

LM35 NodeMcu Arduino Kodu

/* LM35 sensöründen sıcaklık değeri okuma işlemi */

olculenDeger = analogRead (sicaklikSensor); // A0 analog ucundan değer oku

olculenDeger = (olculenDeger/1024)*3300; // mv'a dönüşüm işlemi

sicaklikDegeri = olculenDeger /10; // mV'u sıcaklığa dönüştür

Ayrıntılar için Thingspeak Genel Uygulama Föyünü inceleyiniz.

11

IoT Uygulama 2: ESP8266 Wi-Fi Modülün Hotspot Kullanımı

- Bu uygulamanın amacı Esp8266 Wi-Fi modülünün erişim noktası olarak kullanılma (hotspot) özelliğinin gösterilmesidir.
- ESP8266 Wi-Fi Modülü, bulunduğu ortamdaki Wi-Fi ağları tarayıp, ilgili ağa kod yazmadan bağlantı sağlamaktır. Böylelikle, son kullanıcılar web arayüzü ile bulunduğu ortamdaki herhangi bir Wi-Fi ağa bağlanabilmektedir.
- □ İlk olarak ESP8266 Wi-Fi modülün hotspot olarak kullanımına izin veren WİFİManager kütüphane (0.14.0 versiyonu) kütüphane dosyasını Taslak > library ekle > libraryleri düzenle ekranından yüklenmelidir.
 - WİFİManager kütüphane dosyası https://www.arduinolibraries.info/libraries/wi-fi-manager adresinden .ZIP olarak indirilip, Şekildeki .ZIP Kitaplığı Ekle... seçeneği ile de yüklenebilir.

Ayrıntılar için Esp_wifiManager Uygulama Föyünü inceleyiniz.

IoT Uygulama 2: ESP8266 Wi-Fi Modülün Hotspot Kullanımı

```
/* Kütüphane Dosyaları */
#include <ESP8266WiFi.h>
                                                                                                HTML Görüntüleyici
#include <DNSServer.h>
                                                                                               AutoConnectAP ağına bağlanıldı
                                                                                               Detayları görüntülemek içi
#include <ESP8266WebServer.h>
#include <WiFiManager.h>
void setup() {
 Serial.begin (115200);
                               // Serihaberleşme 115200 baud hızında başlatılıyor
WiFiManager wifiManager;
                               // WiFiManager kütüphanesinin nesnesini tanimlama
 wifiManager.autoConnect ("AutoConnectAP"); // WiFiManager kütüphanesinin erisim nokta acma fonksiyonu
 Serial.print ("Kablosuz Aga Baglaniyor");
                                                                                                      22:32
                                                                                                                                ... Ö .dl 🗟 💷
// WiFi bağlantı durum kontrolü
                                                                                                        X
                                                                                                                  AutoConnectAP
while (WiFi.status() != WL CONNECTED) {
                                                                                                        Otomatik bağlan
  Serial.print (".");
  delay (500);
                                                                                                          AutoConnectAP
 Serial.println ();
                                                                                                           WiFiManager
 Serial.println (WiFi.SSID());
                                                                                                                 Configure WiFi
 Serial.println ("Kablosuz Aga Baglandi");
                                                                                                             Configure WiFi (No Scan)
 Serial.println ("IP adresi: "); Serial.println (WiFi.localIP());
                                                                                                                      Info
/* Ana (çalışan) fonksiyon */
void loop() {
                                                                                                                     Reset
 // WiFi bağlantısından sonra çalışacak uygulamaya özgü ana kod
                                                                                        Programın sunduğu AutoConnectAP bağlantısından sonra
                                                                                        Configure WiFi seçeneği ile bağlanmak istediğiniz ağı
                                                                                        seçebilirsiniz.
```

Kaynaklar

❖ Temel Kaynaklar

■ Doç. Dr. Cüneyt BAYILMIŞ ve Doç. Dr. Kerem KÜÇÜK, "Nesnelerin İnternet'i: Teori ve Uygulamaları", Papatya Yayınevi, 2019.

❖ Diğer Kaynaklar

- Espressif System, http://www.espressif.com/
- www.esp8266.com
- Doç. Dr. Cüneyt BAYILMIŞ, 'Kablosuz Ağ Teknolojileri ve Uygulamaları' Ders Notları, 2016.
- AT Komut Test Yazılımı, http://m2msupport.net/m2msupport/module-tester/
- Handson Technology, "ESP8266 NodeMCU WiFi Devkit", https://www.handsontec.com/pdf_learn/esp8266-V10.pdf

