

Categorical Attributes

Let's switch to a different dataset (a toy one)

- We want to train a model to choose whether to go out and play
- ...Based on weather conditions

Loading the Data

The dataset is in the weather.csv file from the data folder

```
In [19]: data = pd.read_csv(os.path.join('..', 'data', 'weather.csv'), sep=',')
          data.head()
Out[19]:
              outlook temperature humidity windy play
                      85
                                 85
                                          False
            0 sunny
                                                no
                      80
                                 90
                                          True
            1 sunny
                                                no
            2 overcast 83
                                 86
                                          False
                                                yes
            3 rainy
                                          False
                      70
                                 96
                      68
                                 80
            4 rainy
                                          False
                                               ves
```

- Several attributes do not have a numeric value
- Instead, their value is discrete with no clear ordering, i.e. categorical

We need a numeric encoding to handle this data with linear models

Encoding Binary Attributes

Binary attributes can be encoded with the values 0 and 1

This is the case for the columns "windy" and "play"

First, we tell pandas that the columns have a categorical type

- Categorical data is still displayed as a string
- ...But internally it is encoded as an integer

Encoding Binary Attributes

Next, we replace the values with their integer code

We will store the results in a copy of the original table

```
In [21]: data2 = data.copy() # We prepare a cop for the numeric encodings
          data2['windy'] = windy.cat.codes
          data2['play'] = play.cat.codes
          data2.head()
Out[21]:
              outlook temperature humidity windy play
                     85
                               85
           0 sunny
                                       0
                     80
                               90
           1 sunny
           2 overcast 83
                               86
                                       0
           3 rainy
                     70
                               96
                                       0
           4 rainy
                               80
                     68
                                       0
```

Now it is apparent that "windy" and "play" have become numbers

Encoding Discrete Attributes

We could use the same approach for discrete attribute in general

E.g. for the attribute "outlook" in our table

- That would yield a numeric integer encoding
- ...Which implies an ordering among the values (e.g. rainy < overcast < sunny)
- When no such ranking exists, this is a bad idea

In these cases, it is better to adopt a one-hot encoding

- lacktriangle We introduce a column for each value v_k of the attribute xj
- The column contains a 1 iff $x_j = v_k$, and 0 otherwise

For example, "sunny | sunny | overcast" becomes:

rainy	overcast	sunny
0	0	1
0	0	1
0	1	0

Encoding Discrete Attributes

We can obtain a one-hot encoding in pandas via the get_dummies method

In [22]: data3 = pd.get dummies(data2, columns=['outlook']) data3.head() Out[22]: temperature humidity windy play outlook overcast outlook rainy outlook sunny **0** 85 85 0 0 False False True **1** 80 90 1 ()False False True **2** 83 86 0 True False False **3** 70 96 0 False True False **4** 68 80 False True False

- The method by default processes all columns with categorical or object type
 - Strings in csv files are often parsed as "object" columns
- get_dummies can also handle the special case of binary variables
 - ...But I wanted to show you how to obtain an integer encoding, too :-)

Our goal is to predict the value of "play", i.e. a categorical attribute

We say that we are dealing with a classification problem

- This is second type of ML task
- I.e. another broad definition of an ML problem

Classification problem can be tackled via Linear Models

...Via a relatively simple modification

- However, even if it looks like a simple mathematical "hack"
- ...The modification has a strong theoretical basis!

We will discuss this topic a bit in this lecture

Classification and regression have a distinct statistical foundation

A linear model for classification can be obtained as follows:

• First, we compute the output as usual:

$$g(x; w) = \sum_{j=1}^{\infty} w_j x_j + w_0$$

■ ...But then we feed it to a logistic function:

$$\frac{1}{1+e^{-x}}$$

Overall, we obtain:

$$f(x; w) = \frac{1}{1 + e^{-g(x;w)}}$$

The logistic function is a type of sigmoid function

```
In [23]: x = np.linspace(-10, 10, 100)
           plt.figure(figsize=(14, 3))
           plt.plot(x, 1 / (1 + np.exp(-x)))
           plt.tight_layout(); plt.grid(':')
            0.8
            0.6
            0.4
            0.2
            0.0
                 -10.0
                              -7.5
                                          -5.0
                                                      -2.5
                                                                              2.5
                                                                                          5.0
                                                                                                     7.5
                                                                                                                 10.0
```

Due to its use, this approach is known as logistic regression

Why using the logistic function?

- We can view the model output as a probability distribution
- Specifically, as the probability of the class being "1"

With this convention, the target can also be interpreted as a probability

We view:

- $y_i = 0$ as "the probability of the class being 1 is equal to 0"
- $y_i = 1$ as "the probability of the class being 1 is equal to 1"

Maximum Likelihood Estimation

This detail is important because it defines how we perform training

The process relies on a change of perspective

- We pretend that our model is a data generator
- ...And compute a formula for the chance of generating the training set

This formula is called a likelihood function

From this perspective:

- lacktriangle Training means to change the model parameters $oldsymbol{w}$
- ...So that generating the training set is as likely as possible

This approach is known as Maximum Likelihood Estimation

- We will see how it can be applied to Logistic Regression
- It's going to be hard: if you get lost, try to understand at least the main idea

Maximum Likelihood Estimation

If we assume that f(x; w) is the source of our data

...Then, when we have (e.g.) f(x; w) = 0.7:

- We will generate a 1 with 70% chance
- We will generate a 0 with 30% chance

Now we can measure the chance that the model makes the right guess:

- If the label is 1, i.e. $y_i = 1$
 - We will generate that with a f(x; w) probability
- If the label is 0, i.e. $y_i = 0$
 - We will generate that with a 1 f(x; w) probability

Likelihood Function

If we repeat for all examples (assuming statistical independence)...

We get the the probability of correctly generating example in each class.

■ For all the examples where the class is 1, we get:

$$\prod_{y_i=1} f(x_i; w)$$

■ For all the examples where the class is 0, we get:

$$\prod_{y_i=0} (1 - f(x_i; w))$$

Intuitively:

- When we have $y_i = 1$, we want f(x; w) to be high
- When we have $y_i = 0$, we want f(x; w) to be low

Likelihood Function

With another product we get the chance of generating all the training data

$$L(w) = \prod_{y_i=1} f(x_i; w) \prod_{y_i=0} (1 - f(x_i; w))$$

- The is sort of a probability, but is associated to our model, not to the data itself
- lacktriangleright ...And it also depends on the parameters $oldsymbol{w}$

This is an example of a likelihood function

We want to train a model that is a likely source for our data

This means that we can choose the weights by solving:

$$\operatorname{argmax}_{w} \log L(w)$$

- I.e. to maximize the likelihood of the data
- This often done via Gradient Descent

Maximum Likelihood Estimation

MLE is very important in many Machine Learning approaches

- It provides a mathematical foundation for the training process
- It applies to linear regression, too!
- ...Since the MSE can be interpreted in terms of likelihood

In practice, scikit-learn does all the heavy lifting for us

- ...But understanding the main idea is still very useful
- If you feel confused, that's because likelihood is not an easy concept
- But it was worth to at least mention in

Using Logistic Regression

Using Logistic Regression in scikit-learn is actually easy

We begin by splitting input/output data as usual:

Then the training and test set:

```
In [26]: from sklearn.model_selection import train_test_split
X_tr, X_ts, y_tr, y_ts = train_test_split(X, y, test_size=0.34, random_state=0)
```

Using Logistic Regression

Then, we build a LogisticRegression model

```
In [27]: from sklearn.linear_model import LogisticRegression

m = LogisticRegression()
```

...And we call the fit method as usual:

```
In [28]: m.fit(X_tr, y_tr);
```

Finally, we can obtain out predictions:

```
In [29]: y_pred_tr = m.predict(X_tr)
y_pred_ts = m.predict(X_ts)
```

A Better Look at the Predictions

By default, the prediction is the class with the largest probability

```
In [30]: y_pred_tr
Out[30]: array([0, 1, 0, 0, 1, 0, 0, 1, 1], dtype=int8)
```

- If we are interested in the raw probability values...
- ...We can call the predict_proba method:

- Scikit-learn gives us the predicted probability of both classes
- Hence, we get two separate columns

We can evaluate the results using metrics

There are four basic metrics for binary classification:

- Number of True Positives, i.e. $TP = \sum_{y_i=1} \tilde{f}(x_i; w)$
- Number of True Negatives, i.e. $TN = \sum_{y_i=0} (1 \tilde{f}(x_i; w))$
- Number of False Positives, i.e. $FP = \sum_{y_i=0} \tilde{f}(x_i; w)$
- Number of False Negatives, i.e. $FN = \sum_{y_i=1} (1 \tilde{f}(x_i; w))$

In all cases $ilde{f}(x_i;w)$ is the most probable class for the example x_i

From these we can derive a few more complex metrics

The model (binary) accuracy is defined as:

$$ACC = \frac{TP + TN}{m}$$

- I.e. the fraction of examples that is correctly classified
- The accuracy ranges over the interval [0, 1]

```
In [32]: from sklearn.metrics import accuracy_score
    print(f'Accuracy on the training set: {accuracy_score(y_tr, y_pred_tr):.3}')
    print(f'Accuracy on the test set: {accuracy_score(y_ts, y_pred_ts):.3}')

Accuracy on the training set: 0.778
    Accuracy on the test set: 0.8
```

...Or we can plot all basic metrics via a confusion matrix

Here's the one for the training set:

...Or we can plot all basic metrics via a confusion matrix

...And the one for the test set

Conclusions and Take-Home Messages

- Handling categorical attributes
 - Binary attributes can be handled via 0-1 encoding
 - Ordinal attributes via an integer encoding
 - Categorical attributes via a one-hot encoding
- Logistic regression is a linear model for classification tasks
 - The output can be interpreted as a probability
- Training for maximum likelihood
 - The most common training method in the ML literature
 - Goal: maximize the estimated probability of the training data
- Evaluation of classification models
 - Use metrics for a compact evaluation
 - ...And a confusion matrix to inspect the details