

Department of Physics, Shandong University

Compressed EWK study(ISRC1N2)

Chengxin Liao

liaocx@ihep.ac.cn

Wed, Feb 5, 2024

Outline

- 1. Hyperparameters optimization
- 2. Performance of Model

Chengxin Liao IHEP SUSY Meeting

Task-list

- Machine learning for LH channel
 - check more Variable and select significance var for ML(DONE)
 - BDTG hyperparameters optimization/ Setup a Grid Search framework (DONE)
- Preliminary study on multibody quantum mechanics (In Progress)
 QFT Lecture (Peskin part I)
- BSc thesis: https://www.overleaf.com/project/674e7119837a2580151a0868
- CS61A (python): https://cs61a.vercel.app/index.html

Hyperparameters optimization

Input(LH-Channel):

Sample:

Sig: ISRC1N2(mass_C1 = 100GeV, mass_N2 = 70GeV)->21225 entries

Bkg: 1703476 entries

All input data(C1N2_100_70 and Bkg) already passed pre-selection

Strategy:

method: BDTG

Separate sig(bkg) into five folders, one for test, the other three for train, and last one for validation set, then traverse all possibilities.

```
Signal -- training events : 12735
Signal -- testing events : 4245
Signal -- training and testing events: 16980
Background -- training events : 1022092
Background -- testing events : 340692
Background -- training and testing events: 1362784
```

Pre-Selection

```
lep-had channel: nTaus \ge 1, nLeps \ge 1

pass\ MET\ trigger;\ MET \ge 200

1 \le nBaseJet \le 8

b-Veto

OS
```

Hyperparameters optimization

Variables:

Obj kinematics

pt_lep
pt_tau
mt_tau
e lep(energy of tau2)

Angular correlations

dPhit1x dRt1x dRtt dPhitt **Event kinematics**

MII(Invariant Mass of tau1 and tau2)

METsig MT2 50

Mwh(Invariant Mass of tau1 and MET)

Mwl(Invariant Mass of tau2 and MET)

MCT(Transverse Mass Squared)

Proj_j(Projection of pt jet on zeta)

Proj_tt(Projection of tau1+tau2 on zeta)

mt_quad_sum

mt_sum

frac_MET_tau1
frac_MET_tau2

frac_MET_sqrtHT_40

frac_jet_tau1
frac_jet_tau2
frac_jet_tt

Note:

zeta is bisector direction of tau1 and tau2[PhyUtils::bisector(tau1, tau2)]

Hyperparameters optimization

Grid Search:

Ntrees: 200, 300, 400

Max Depth: 6, 8, 10, 12

MinNodeSize: 1%, 2%, 3%

Learning Rate: 0.01, 0.05, 0.1

Show top Zn

v top zn

	Model Name	Binned Significance 14.8848 14.8236 13.8790 14.7405 13.8773 14.7362 14.6892 14.8200 13.8466 14.1171 14.0737 14.6952 14.3038 14.6835 14.1184 14.7532 14.7532 14.7486 14.1753 14.6361 14.6725 14.6021 14.6962 13.7790 14.6454 14.0489 14.5987 14.2632 14.6525	Max Zn	Max Zn Bin
123	400 12 1 01	14.8848	3.05602	198
137	300 12 1 01	14.8236	2.99004	198
90	400_12_3_001	13.8790	2.98769	189
138	$40\overline{0} \ 1\overline{0} \ \overline{1} \ 01$	14.7405	2.95654	198
46	400_10_3_001	13.8773	2.95293	189
24	400_10_2_01	14.7362	2.94729	197
18	400_8_1_01	14.6892	2.92850	197
140	400_12_1_005	14.8200	2.89803	197
129	400_8_3_001	13.8466	2.89472	189
80	400_10_2_001	14.1171	2.88777	190
48	400_8_2_001	14.0737	2.88315	190
36	300_10_1_01	14.6952	2.86815	197
25	100_10_1_005	14.3038	2.86286	192
112	200_12_1_005	14.6835	2.86017	195
52	400_12_2_001	14.1184	2.85548	190
85	200_12_1_01	14.7532	2.84807	197
0	300_12_1_005	14.7486	2.84744	196
76	100_12_2_005	14.1753	2.84528	191
50	400_12_2_01	14.6361	2.83824	198
6	400_8_1_005	14.6725	2.80702	197
120	300_8_1_005	14.6021	2.80602	196
49	400_10_1_005	14.6962	2.79191	197
101	400_6_3_001	13.7790	2.78598	189
61	300_10_1_005	14.6454	2.78360	196
82	300_12_1_001	14.0489	2.78242	186
143	300_12_2_01	14.5987	2.77344	197
95	400_12_1_001	14.2632	2.74588	191
124	300_10_2_01	14.6525	2.74520	197

Shiyi's result of LH channel

hy	sig	zn
400_10_2_0.05	15.3225	4.47044
300 11 1 0.05	15.3127	4.65233
500 10 2 0.05	15.3099	4.32933
400 6 1 0.05	15.3075	4.69647
500 8 1 0.05	15.2990	4.30067
400 8 2 0.05	15.2980	4.49312
300 6 1 0.05	15.2929	4.91804
500 8 2 0.05	15.2891	4.35987
200 11 1 0.05	15.2849	4.71509
300 11 2 0.05	15.2804	4.62741
400 11 2 0.05	15.2780	4.42181
300 8 1 0.05	15.2753	4.59008
300 10 1 0.05	15.2733	4.46305
400 11 1 0.05	15.2701	4.33036
500 6 1 0.05	15.2593	4.61315
200 6 1 0.1		
400 12 1 0.05	15.2554	4.29994
500 10 1 0.05	15.2493	4.19292
300 12 1 0.05	15.2461	4.45857
300 6 1 0.1		4.48235
300_10_2_0.05	15.2319	4.52470
200 8 1 0.1	15.2283	4.44394
200 12 1 0.05	15.2279	4.68456
300 8 1 0.1	15.2267	4.28422
500 12 2 0.05	15.2216	4.18619
300 12 2 0.05	15.2161	4.43485
400_6_1_0.1	15.2142	4.28123
400 8 1 0.05	15.2139	4.29323

Comment:

compare with shiyi's result, my Max Zn is still quite low and even lower than HH-channel

Binned significance: $Z = \sqrt{2((s_i + b_i) \log(1 + \frac{s_i}{b_i}) - s_i)}$

TODO

1. check more vars and try other method

Chengxin Liao IHEP SUSY Meeting