Mathemathical Modelling

isakhammer

2020

Contents

1	Lect	cure 1	2
	1.1	Practical Information	2
	1.2	Dimensional Analysis	2
	1.3	Fundamental Units	2
	1.4	Trinity of the first atomic blast	3
	1.5	Steady-state single phase flow in a uniform straight pipeline	4

1 Lecture 1

1.1 Practical Information

You need to know

- Separable 1. order equations.
- Linear 1. order equations.
- 2. order linear equations with constant coefficients.

1.2 Dimensional Analysis

Basic facts

- Any physical relation has to make sense dimensionally.
- Any physical relation must be valid for any choice of fundamental units.

Remark.

Make sure remark looks better

- Forbidden 3m + 2kg = ?
- m = f(x, t) is legal
- e^{-t} and $s = 5t^2$, is nonsense
- Dimension is length, mass, energy, etc.
- Unit is meter, feet, year, etc

numerical value

Given a variable R, we write R =

$$(R)$$
 (R)

If we have a physical relation that is dimensionall correct that

$$f(R_1, R_2, ..., R_n) = 0 \rightarrow f(v(R_1), v(R_2), ..., v(R_n)) = 0$$

1.3 Fundamental Units

Given units F_1, F_2, \ldots, F_m for fundamental if

$$F_1^{\alpha_1}, F_2^{\alpha_2}, \dots, F_m^{\alpha m} = 0 \quad \rightarrow \quad \alpha_1 = \alpha_2 = \dots = 0$$

This units are then independent.

Example 1. The units kg, m, s are independent.

Example 2. In a right angle triangle with angle α and hypothenus c. We know the area A is uniquely determined by α and c

$$A = f(c, \alpha)$$

 α is dimensialless since $\alpha = \frac{s}{r}$. Since A scales as the square of the length, then is

$$f(ac, \alpha) = a^2 f(c, \alpha)$$
$$c = 1 \to f(a, \alpha) = a^2 f(1, \alpha) = a^2 h(\alpha)$$

Which then ends up with the relation

$$A = a^2 h\left(\alpha\right)$$

Make corollary environmet

Lets derive $A=a^2h\left(\alpha\right)$ somwhat differently. We know there is a relation $f\left(A,c,\alpha\right)=0$. We want to introduce new variables.

$$\Pi_1 = \frac{A}{c^2}, \quad c = c_1, \quad \alpha = \alpha_1$$

which means $f(c^2\Pi_1, c, \alpha) = 0$ and $h(\Pi_1, \alpha, c) = 0$. h must be dimensially consistent $\to h$ must be independent of c.

$$\begin{split} h\left(\Pi_{1},\alpha\right) &= 0 \leftrightarrow \Pi_{1} = k\left(\alpha\right) \\ &\rightarrow \frac{A}{c^{2}} = k\left(\alpha\right) \quad \leftrightarrow \quad A = c^{2}k\left(\alpha\right) \end{split} \label{eq:equation:equ$$

1.4 Trinity of the first atomic blast

We assume there is a relation

$$f(E, \rho, r, t) = 0$$

- Energy: $E, [E] = kgm^2s^{-2}$
- Mass density of air: ρ , $[\rho] = kg^{-3}$
- Radius: r, [r] = m
- Time: t, [t] = s

We choose 3 independent variables, say r, t, ρ . Also we call r, t, ρ core variables. Let is define a dimensionalless number Π_1 such that

$$[\Pi_1] = 0$$

The relation is now given by $h\left(\Pi,t,r,\rho\right)=0$, where h is independent of t, r and ρ . Which in fact is $h\left(\Pi\right)=0$, where $\Pi_{1}=c$ s.t. [c]=1.

Given by the definitnion is

$$\frac{Et^2}{\rho r^5} = c \quad \to \quad E = \frac{c\rho r^5}{t^2}$$

Using $\rho = 12kgm^{-3}$, r = 110m, $t = 6 \cdot 10^{-3}$ do we end up with the relation

$$E = c \cdot 7.5 \cdot 10^{13} J$$

1.5 Steady-state single phase flow in a uniform straight pipeline

Figure of a pipe

Pipe with flow u, length L and pressure drop Δp Then there is a relation between

- L: length, [L] = m
- D: diameter [D] = m
- u: flow rate $[u] = ms^{-1}$
- Δp : Pressure drop, $\left[\Delta kgm^{-1}s^{-2}\right]$
- μ : (Shear) viscousity $[\mu] = kgm^{-1}s^{-1}$
- ρ : mass density: $[\rho] = kgm^{-3}$
- E: Wall roughness: [E] = m

We have to choose 3 core variables and they are not unique. Since we have 3 independent units ρ, u, D are independent such that it can be a core variable:

$$\Pi_1 = \frac{L}{D}$$
 , $\Pi_2 = \frac{\Delta p}{\rho u^2}$, $\Pi_3 = \frac{\rho}{\mu}$, $\Pi_4 = \frac{E}{D}$

Then the relation is

$$f\left(\Pi_{1}, \Pi_{2}, \Pi_{3}, \Pi^{4}, \rho, D, u\right) = 0 \quad \Pi_{2} = h\left(\Pi_{1}, \Pi_{3}, \Pi_{4}\right) \leftrightarrow \frac{\Delta p}{\rho u^{2}} = h\left(\Pi_{1}, \Pi_{3}, \Pi_{4}\right)$$

$$\rightarrow \frac{\Delta p}{u^{2}\rho} = \Pi_{1}k\left(\Pi_{3}, \Pi_{4}\right)$$

$$\Delta p = u^{2}\rho \frac{L}{D}k\left(\frac{\rho Du}{\mu}, \frac{E}{D}\right)$$

$$\text{measure} \quad \frac{\rho D\mu}{\mu} \quad , \quad k = \frac{\Delta pD}{u^{2}\rho}$$