IIT Jodhpur

Biological Vision and Applications Module 03-01: Reasoning Paradigms

Hiranmay Ghosh

What is "reasoning"

- We "know" some facts
 - Supplied by others
 - Sensed by some sensors (percept)
- We infer unknown facts from the known facts

One more example

Premises Inference

Reasoning paradigms

- In human mind, reasoning is intuitive
- For application to machines, we need to formalize the algorithms
- Reasoning paradigms
 - Knowledge driven (top-down)
 - Model based
 - Case based
 - Data driven (bottom-up)

Model-based reasoning

- Create a model of the world of discourse (knowledge)
- Interpret observations with that model leading to inference
- Learning: Inference may lead to change in the model

Model-based reasoning is the formal way of interpreting observations with the model

Rule-based reasoning

Also called deductive reasoning

- Formalized as logic
 - Identical representation for knowledge, observation and inference (statements)
 - Define some formal rules
 - ▶ Apply an appropriate rules on knowledge + observations to "deduce" new statements
- Many flavors
 - Propositional calculus, predicate calculus
 - First order logic, second order logic, ...
 - Descriptions logic

Abductive reasoning

What is the best expnation for the observations ?

- Inexact match robustness
 - Model may not be accurate lack of knowledge
 - Inherent system uncertainty
 - Observations may be missing / inaccurate

Comparing deductive and abductive reasoning

- Reasoning is valid in deductive reasoning
 - ▶ If the premises are true, the consequence <u>must</u> be true can be proved.
 - Inference may not always be correct for abductive reasoning
- Deductive reasoning can discover facts implied by known facts only
 - Abductive reasoning can discover <u>new</u> facts
 - ... e.g., detecting a new human face
- Deductive reasoning needs accurate information on premises
 - If premises are not accurately known, the reasoning breaks down
 - Abductive reasoning is robust

Induction

Generalization from observations

- Example: Suppose you observe
 - Parrot is a bird; parrot can fly
 - Crow is a bird; crow can fly
 - Mynah is a bird; mynah can fly
 - ...
- Now we ask: Hoopoe is a bird; can it fly?
- From your earlier observations
 - You create a generalized model of a bird
 - You extrapolate the properties to a new species of bird
- Induction is a special form of abduction

Wait till we study Hierarchial Bayesian Model

Case based reasoning

- Difference with Induction:
 - In induction, a generic model is formed
 - A new scenario is interpreted with the generic model
 - ▶ In CBR, no generic model is formed, cases exist in isolation
 - A new scenario is compared with earlier cases and the best match is used
- CBR can work with less experiential data

Exact match vs. Inexact match

- In real world, exact match is never possible
 - Inherent variations in the natural systems
 - Our knowledge about the world may be imprecise
- We resort to inexact match
 - Abduction: "Best" explanation
 - CBR: "Closest" case
- How to define the "best" or "closest"?
 - Objective measurement with "features"
 - ► The features are assumed to conform to metric space

Data driven reasoning

Machine learning

- Uses statistical similarity/associations to discover patterns
- We learn the models from data
- Flexible no prior models
- Can't handle sparse and noisy data

Data driven reasoning

Example

	Sneeze	Cough	Body ache	Breathlessness
Patient 1	X	X	X	
Patient 2	X	X		
Patient 3		X	X	X
Patient 4		X	X	
Patient 5		X	X	X
Patient 6	X	X	X	
Patient 7		X		X
Patient 8	X		X	
Patient 9	X	X	X	
Patient 10			X	X

- No prior knowledge about diseases
- Patients 1, 2, 6, and 8 have similar symptoms \rightarrow disease 1
- Patients 3,4,5,9 and 10 have similar symptoms \rightarrow disease 2
- Patient 7 has Unique symptom
 - Observation error?
 - A new unknown disease?
- Pros: can discover new patterns (new models)
- Cons: inductive generalization not possible

Which one?

- Which form of reasoning in used in the human mental processes?
 - Probably all of them, depending on context
- Which form of reasoning in used in the human perception?
 - Involves processing of sensory data (noisy)
 - Differences in visual appearance of object instances (uncertainties)
 - Incomplete model of the world (incomplete knowledge)
 - Abduction / Induction seem to be most appropriate

EdPuzzle: Bayesian Reasoning

Quiz

Quiz 03-01

End of Module 03-01