Import Data

In [1]:

```
from collections import Counter
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn import preprocessing
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
```

localhost:8889/lab 1/120

In [2]:

```
# DownLoad data

df_house_price_sample=pd.read_csv('house_price_sample_submission.csv')

df_house_price_test=pd.read_csv('house_price_test.csv')

df_house_price_train=pd.read_csv('house_price_train.csv')

df_house_price_train.drop(columns='Id',inplace=True)

df_house_price_test.drop(columns='Id',inplace=True)

df_house_price_sample.drop(columns='Id',inplace=True)

df_house_price_train.head() # X_train, Y_train - Split for training - by 'SalePrice'
```

Out[2]:

	MSSubClass	MSZoning	LotFrontage	LotArea	Street	Alley	LotShape	LandContour	Utilities	LotConfig	 PoolArea	PoolQC	Fe
0	60	RL	65.0	8450	Pave	NaN	Reg	Lvl	AllPub	Inside	 0	NaN	
1	20	RL	80.0	9600	Pave	NaN	Reg	LvI	AllPub	FR2	 0	NaN	1
2	60	RL	68.0	11250	Pave	NaN	IR1	LvI	AllPub	Inside	 0	NaN	1
3	70	RL	60.0	9550	Pave	NaN	IR1	LvI	AllPub	Corner	 0	NaN	1
4	60	RL	84.0	14260	Pave	NaN	IR1	Lvl	AllPub	FR2	 0	NaN	I

5 rows × 80 columns

localhost:8889/lab 2/120

In [3]:

```
df_house_price_test.head() # X_test
```

Out[3]:

	MSSubClass	MSZoning	LotFrontage	LotArea	Street	Alley	LotShape	LandContour	Utilities	LotConfig	 ScreenPorch	PoolAre
0	20	RH	80.0	11622	Pave	NaN	Reg	LvI	AllPub	Inside	 120	<u> </u>
1	20	RL	81.0	14267	Pave	NaN	IR1	Lvl	AllPub	Corner	 0	
2	60	RL	74.0	13830	Pave	NaN	IR1	Lvl	AllPub	Inside	 0	
3	60	RL	78.0	9978	Pave	NaN	IR1	LvI	AllPub	Inside	 0	
4	120	RL	43.0	5005	Pave	NaN	IR1	HLS	AllPub	Inside	 144	

5 rows × 79 columns

In [4]:

df_house_price_sample.head() # Y_test

Out[4]:

SalePrice

- **0** 169277.052498
- **1** 187758.393989
- **2** 183583.683570
- **3** 179317.477511
- **4** 150730.079977

localhost:8889/lab 3/120

In [5]:

```
X=df_house_price_train.drop(columns='SalePrice')
Y=df_house_price_train['SalePrice']
```

Exploratory Data Analysis

Initial Data Exploration:

Objects

In [6]:

```
# Object Dataframe Preview
df_house_price_train_objects=df_house_price_train.select_dtypes(include=['object'])
df_house_price_train_objects.head()
```

Out[6]:

	MSZoning	Street	Alley	LotShape	LandContour	Utilities	LotConfig	LandSlope	Neighborhood	Condition1	 GarageType	Garag
0	RL	Pave	NaN	Reg	LvI	AllPub	Inside	Gtl	CollgCr	Norm	 Attchd	
1	RL	Pave	NaN	Reg	Lvl	AllPub	FR2	Gtl	Veenker	Feedr	 Attchd	
2	RL	Pave	NaN	IR1	Lvl	AllPub	Inside	Gtl	CollgCr	Norm	 Attchd	
3	RL	Pave	NaN	IR1	LvI	AllPub	Corner	Gtl	Crawfor	Norm	 Detchd	
4	RL	Pave	NaN	IR1	LvI	AllPub	FR2	Gtl	NoRidge	Norm	 Attchd	

5 rows × 43 columns

localhost:8889/lab 4/120

In [7]:

df_house_price_train_objects.describe()

Out[7]:

	MSZoning	Street	Alley	LotShape	LandContour	Utilities	LotConfig	LandSlope	Neighborhood	Condition1	 GarageType	(
count	1460	1460	91	1460	1460	1460	1460	1460	1460	1460	 1379	
unique	5	2	2	4	4	2	5	3	25	9	 6	
top	RL	Pave	Grvl	Reg	Lvl	AllPub	Inside	Gtl	NAmes	Norm	 Attchd	
freq	1151	1454	50	925	1311	1459	1052	1382	225	1260	 870	

4 rows × 43 columns

localhost:8889/lab 5/120

In [8]:

Bar chart of missing values for objects dataset
df_house_price_train_objects_missing_data=df_house_price_train_objects.isnull().sum().sort_values(ascending=False).head(1
5)
sns.barplot(y=df_house_price_train_objects_missing_data.index,x=df_house_price_train_objects_missing_data)

Out[8]:

<matplotlib.axes._subplots.AxesSubplot at 0x179d32fc4f0>

localhost:8889/lab 6/120

In [9]:

```
# Scatterplot of Object Dataframe for visualization of categorical distribution
for i in range(len(df_house_price_train_objects.columns)):
    sns.scatterplot(y=df_house_price_train_objects.columns[i],x=df_house_price_train['SalePrice'],data=df_house_price_tra
in_objects)
    plt.show()
    df_house_price_train_object_sorted=df_house_price_train_objects[df_house_price_train_objects.columns[i]].value_counts
(ascending=True)
    y_pos = np.arange(len(df_house_price_train_object_sorted))
    plt.barh(y_pos,df_house_price_train_object_sorted,tick_label=df_house_price_train_object_sorted.index)
    plt.show()
```

localhost:8889/lab 7/120

localhost:8889/lab 16/120

localhost:8889/lab 20/120

localhost:8889/lab 22/120

localhost:8889/lab 24/120

26/120

31/120


```
In [10]:
## Fill NANs with '0's
df house price train objects filled=df house price train objects.fillna('0')
In [11]:
# Label encode 'df house price train objects filled' dataframe
le = preprocessing.LabelEncoder()
In [12]:
df house price train objects filled.columns
# 43 # range(len(df house price train objects filled.columns))
Out[12]:
Index(['MSZoning', 'Street', 'Alley', 'LotShape', 'LandContour', 'Utilities',
       'LotConfig', 'LandSlope', 'Neighborhood', 'Condition1', 'Condition2',
       'BldgType', 'HouseStyle', 'RoofStyle', 'RoofMatl', 'Exterior1st',
       'Exterior2nd', 'MasVnrType', 'ExterQual', 'ExterCond', 'Foundation',
       'BsmtQual', 'BsmtCond', 'BsmtExposure', 'BsmtFinType1', 'BsmtFinType2',
       'Heating', 'HeatingQC', 'CentralAir', 'Electrical', 'KitchenQual',
       'Functional', 'FireplaceQu', 'GarageType', 'GarageFinish', 'GarageQual',
       'GarageCond', 'PavedDrive', 'PoolQC', 'Fence', 'MiscFeature',
       'SaleType', 'SaleCondition'],
      dtype='object')
In [13]:
```

house_price_train_objects_table_encoded=[le.fit_transform(df_house_price_train_objects_filled[df_house_price_train_objects_filled.columns[i]]) for i in range(len(df_house_price_train_objects_filled.columns))]

localhost:8889/lab 51/120

In [14]:

```
df_house_price_train_objects_table_encoded=pd.DataFrame(house_price_train_objects_table_encoded,index=df_house_price_train_objects_filled.columns).transpose()
df_house_price_train_objects_table_encoded['SalePrice']=df_house_price_train['SalePrice']
df_house_price_train_objects_table_encoded.head()
```

Out[14]:

	MSZoning	Street	Alley	LotShape	LandContour	Utilities	LotConfig	LandSlope	Neighborhood	Condition1	 GarageFinish	Gara
0	3	1	0	3	3	0	4	0	5	2	 2	
1	3	1	0	3	3	0	2	0	24	1	 2	
2	3	1	0	0	3	0	4	0	5	2	 2	
3	3	1	0	0	3	0	0	0	6	2	 3	
4	3	1	0	0	3	0	2	0	15	2	 2	

5 rows × 44 columns

localhost:8889/lab 52/120

In [15]:

df house price train objects table encoded.describe()

Out[15]:

	MSZoning	Street	Alley	LotShape	LandContour	Utilities	LotConfig	LandSlope	Neighborhood	Con
count	1460.000000	1460.000000	1460.000000	1460.000000	1460.000000	1460.000000	1460.000000	1460.000000	1460.000000	1460.
mean	3.028767	0.995890	0.090411	1.942466	2.777397	0.000685	3.019178	0.062329	12.251370	2.
std	0.632017	0.063996	0.372151	1.409156	0.707666	0.026171	1.622634	0.276232	6.013735	0.
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.
25%	3.000000	1.000000	0.000000	0.000000	3.000000	0.000000	2.000000	0.000000	7.000000	2.
50%	3.000000	1.000000	0.000000	3.000000	3.000000	0.000000	4.000000	0.000000	12.000000	2.
75%	3.000000	1.000000	0.000000	3.000000	3.000000	0.000000	4.000000	0.000000	17.000000	2.
max	4.000000	1.000000	2.000000	3.000000	3.000000	1.000000	4.000000	2.000000	24.000000	8.

8 rows × 44 columns

In [16]:

Correlation

 $\label{lem:condition} $$ df_house_price_train_objects_table_encoded_fit=preprocessing. StandardScaler().fit(df_house_price_train_objects_table_encoded). $$ transform(df_house_price_train_objects_table_encoded)$$$

•

df_house_price_train_objects_table_encoded_corr=pd.DataFrame(data=df_house_price_train_objects_table_encoded_fit,columns=
df house price train objects table encoded.columns).corr()

localhost:8889/lab 53/120

In [17]:

```
fig,ax=plt.subplots(figsize=(16,12))
sns.heatmap(df_house_price_train_objects_table_encoded_corr)
plt.show()
```

localhost:8889/lab 54/120

localhost:8889/lab 55/120

In [18]:

```
df_house_price_train_objects_table_encoded_corr_saleprice=df_house_price_train_objects_table_encoded_corr['SalePrice'].so
rt_values()
y_pos = np.arange(len(df_house_price_train_objects_table_encoded_corr_saleprice))
fig,ax=plt.subplots(figsize=(20,12))
plt.barh(y_pos, df_house_price_train_objects_table_encoded_corr_saleprice,tick_label=df_house_price_train_objects_table_e
ncoded_corr_saleprice.index)
plt.show()
```


Numbers

localhost:8889/lab 56/120

In [19]:

```
# Numbers Dataset Preview
df_house_price_train_numbers=df_house_price_train.select_dtypes(include=['number'])
df_house_price_train_numbers.head()
```

Out[19]:

	MSSubClass	LotFrontage	LotArea	OverallQual	OverallCond	YearBuilt	YearRemodAdd	MasVnrArea	BsmtFinSF1	BsmtFinSF2	
0	60	65.0	8450	7	5	2003	2003	196.0	706	0	
1	20	80.0	9600	6	8	1976	1976	0.0	978	0	
2	60	68.0	11250	7	5	2001	2002	162.0	486	0	
3	70	60.0	9550	7	5	1915	1970	0.0	216	0	
4	60	84.0	14260	8	5	2000	2000	350.0	655	0	

5 rows × 37 columns

localhost:8889/lab 57/120

In [20]:

```
# Bar plot of missing values in the number dataset
df_house_price_train_numbers_missing_data=df_house_price_train_numbers.isnull().sum().sort_values(ascending=False).head(3
)
sns.barplot(y=df_house_price_train_numbers_missing_data.index,x=df_house_price_train_numbers_missing_data)
```

Out[20]:

<matplotlib.axes._subplots.AxesSubplot at 0x179d37c2c70>

localhost:8889/lab 58/120

In [21]:

Out[21]:

	LotFrontage	LotArea	YearBuilt	YearRemodAdd	MasVnrArea	BsmtFinSF1	BsmtFinSF2	BsmtUnfSF	TotalBsmtSF	1stFlrSF	 Ga
0	65.0	8450	2003	2003	196.0	706	0	150	856	856	
1	80.0	9600	1976	1976	0.0	978	0	284	1262	1262	
2	68.0	11250	2001	2002	162.0	486	0	434	920	920	
3	60.0	9550	1915	1970	0.0	216	0	540	756	961	
4	84.0	14260	2000	2000	350.0	655	0	490	1145	1145	

5 rows × 23 columns

localhost:8889/lab 59/120

In [22]:

df_house_price_train_numbers_continuous.describe()

Out[22]:

	LotFrontage	LotArea	YearBuilt	YearRemodAdd	MasVnrArea	BsmtFinSF1	BsmtFinSF2	BsmtUnfSF	TotalBsmtSF	
count	1201.000000	1460.000000	1460.000000	1460.000000	1452.000000	1460.000000	1460.000000	1460.000000	1460.000000	14
mean	70.049958	10516.828082	1971.267808	1984.865753	103.685262	443.639726	46.549315	567.240411	1057.429452	11
std	24.284752	9981.264932	30.202904	20.645407	181.066207	456.098091	161.319273	441.866955	438.705324	3
min	21.000000	1300.000000	1872.000000	1950.000000	0.000000	0.000000	0.000000	0.000000	0.000000	3
25%	59.000000	7553.500000	1954.000000	1967.000000	0.000000	0.000000	0.000000	223.000000	795.750000	8
50%	69.000000	9478.500000	1973.000000	1994.000000	0.000000	383.500000	0.000000	477.500000	991.500000	10
75%	80.000000	11601.500000	2000.000000	2004.000000	166.000000	712.250000	0.000000	808.000000	1298.250000	13
max	313.000000	215245.000000	2010.000000	2010.000000	1600.000000	5644.000000	1474.000000	2336.000000	6110.000000	46

8 rows × 23 columns

localhost:8889/lab 60/120

In [23]:

localhost:8889/lab 61/120

C:\Users\marky\anaconda3\envs\geo_env\lib\site-packages\numpy\lib\histograms.py:839: RuntimeWarning: invalid
value encountered in greater_equal

keep = (tmp_a >= first_edge)

C:\Users\marky\anaconda3\envs\geo_env\lib\site-packages\numpy\lib\histograms.py:840: RuntimeWarning: invalid value encountered in less_equal

keep &= (tmp_a <= last_edge)

localhost:8889/lab 62/120

C:\Users\marky\anaconda3\envs\geo_env\lib\site-packages\numpy\lib\histograms.py:839: RuntimeWarning: invalid
value encountered in greater_equal

keep = (tmp_a >= first_edge)

C:\Users\marky\anaconda3\envs\geo_env\lib\site-packages\numpy\lib\histograms.py:840: RuntimeWarning: invalid value encountered in less_equal

keep &= (tmp_a <= last_edge)

localhost:8889/lab 66/120

localhost:8889/lab 67/120

localhost:8889/lab 68/120

localhost:8889/lab 69/120

localhost:8889/lab 70/120

localhost:8889/lab 71/120

C:\Users\marky\anaconda3\envs\geo_env\lib\site-packages\numpy\lib\histograms.py:839: RuntimeWarning: invalid
value encountered in greater_equal

keep = (tmp_a >= first_edge)

C:\Users\marky\anaconda3\envs\geo_env\lib\site-packages\numpy\lib\histograms.py:840: RuntimeWarning: invalid
value encountered in less_equal

keep &= (tmp_a <= last_edge)</pre>

In [24]:

```
plt.subplots(figsize=(10,7))
df_house_price_train_numbers_continuous_fit=preprocessing.StandardScaler().fit(df_house_price_train_numbers_continuous).t
ransform(df_house_price_train_numbers_continuous)
df_house_price_train_numbers_continuous_corr=pd.DataFrame(data=df_house_price_train_numbers_continuous,columns=df_house_p
rice_train_numbers_continuous.columns).corr()
sns.heatmap(df_house_price_train_numbers_continuous_corr)
plt.show()
```


localhost:8889/lab 88/120

In [25]:

df_house_price_train_numbers_continuous_corr_saleprice=df_house_price_train_numbers_continuous_corr['SalePrice'].sort_val
ues()

In [26]:

```
plt.subplots(figsize=(12,7))
y_pos = np.arange(len(df_house_price_train_numbers_continuous_corr_saleprice))
plt.barh(y_pos, df_house_price_train_numbers_continuous_corr_saleprice,tick_label=df_house_price_train_numbers_continuous
_corr_saleprice.index)
plt.show()
```


localhost:8889/lab 89/120

In [27]:

df_house_price_train_numbers_ordinal_columns = list((Counter(df_house_price_train_numbers) - Counter(df_house_price_train_numbers_continuous)).elements())

In [28]:

df_house_price_train_numbers_ordinal=df_house_price_train_numbers[df_house_price_train_numbers_ordinal_columns]

In [29]:

```
df_house_price_train_numbers_ordinal['SalePrice']=df_house_price_train_numbers_continuous['SalePrice']
```

<ipython-input-29-049508acd956>:1: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#r eturning-a-view-versus-a-copy

df house price train numbers ordinal['SalePrice']=df house price train numbers continuous['SalePrice']

localhost:8889/lab 90/120

In [30]:

df_house_price_train_numbers_ordinal

Out[30]:

	MSSubClass	OverallQual	OverallCond	BsmtFullBath	BsmtHalfBath	FullBath	HalfBath	BedroomAbvGr	KitchenAbvGr	TotRmsA
0	60	7	5	1	0	2	1	3	1	
1	20	6	8	0	1	2	0	3	1	
2	60	7	5	1	0	2	1	3	1	
3	70	7	5	1	0	1	0	3	1	
4	60	8	5	1	0	2	1	4	1	
1455	60	6	5	0	0	2	1	3	1	
1456	20	6	6	1	0	2	0	3	1	
1457	70	7	9	0	0	2	0	4	1	
1458	20	5	6	1	0	1	0	2	1	
1459	20	5	6	1	0	1	1	3	1	

1460 rows × 15 columns

localhost:8889/lab 91/120

In [31]:

df_house_price_train_numbers_ordinal.describe()

Out[31]:

	MSSubClass	OverallQual	OverallCond	BsmtFullBath	BsmtHalfBath	FullBath	HalfBath	BedroomAbvGr	KitchenAbvGr
count	1460.000000	1460.000000	1460.000000	1460.000000	1460.000000	1460.000000	1460.000000	1460.000000	1460.000000
mean	56.897260	6.099315	5.575342	0.425342	0.057534	1.565068	0.382877	2.866438	1.046575
std	42.300571	1.382997	1.112799	0.518911	0.238753	0.550916	0.502885	0.815778	0.220338
min	20.000000	1.000000	1.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
25%	20.000000	5.000000	5.000000	0.000000	0.000000	1.000000	0.000000	2.000000	1.000000
50%	50.000000	6.000000	5.000000	0.000000	0.000000	2.000000	0.000000	3.000000	1.000000
75%	70.000000	7.000000	6.000000	1.000000	0.000000	2.000000	1.000000	3.000000	1.000000
max	190.000000	10.000000	9.000000	3.000000	2.000000	3.000000	2.000000	8.000000	3.000000

localhost:8889/lab 92/120

In [32]:

```
for i in range(len(df_house_price_train_numbers_ordinal.columns)):
    sns.regplot(y=df_house_price_train_numbers_ordinal.columns[i],x='SalePrice',data=df_house_price_train_numbers_ordinal
)
    plt.show()
    df_house_price_train_numbers_ordinal_sorted=df_house_price_train_numbers_ordinal[df_house_price_train_numbers_ordinal
.columns[i]].value_counts(ascending=True)
    y_pos = np.arange(len(df_house_price_train_numbers_ordinal_sorted))
    plt.hist(df_house_price_train_numbers_ordinal[df_house_price_train_numbers_ordinal.columns[i]],orientation='horizonta
l')
    plt.show()
```

localhost:8889/lab 93/120

localhost:8889/lab 106/120

In [33]:

```
plt.subplots(figsize=(5,3.5))
df_house_price_train_numbers_ordinal_fit=preprocessing.StandardScaler().fit(df_house_price_train_numbers_ordinal).transfo
rm(df_house_price_train_numbers_ordinal)
df_house_price_train_numbers_ordinal_corr=pd.DataFrame(data=df_house_price_train_numbers_ordinal_fit,columns=df_house_pri
ce_train_numbers_ordinal.columns).corr()
sns.heatmap(df_house_price_train_numbers_ordinal_corr)
plt.show()
```


In [34]:

df_house_price_train_numbers_ordinal_corr_saleprice=df_house_price_train_numbers_ordinal_corr['SalePrice'].sort_values(as cending=True)

localhost:8889/lab 109/120

In [35]:

```
y_pos = np.arange(len(df_house_price_train_numbers_ordinal_corr_saleprice))
plt.barh(y_pos, df_house_price_train_numbers_ordinal_corr_saleprice,tick_label=df_house_price_train_numbers_ordinal_corr_
saleprice.index)
plt.show()
```


Data Cleaning

Find and replace 'NAN's to '0's

localhost:8889/lab 110/120

In [36]:

 ${\tt df_house_price_train_objects_table_encoded.isnull().sum().sort_values(ascending={\tt False})}$

localhost:8889/lab 111/120

Out[36]:

SalePrice	0
SaleCondition	0
ExterCond	0
ExterQual	0
MasVnrType	0
Exterior2nd	0
Exterior1st	0
RoofMatl	0
RoofStyle	0
HouseStyle	0
BldgType	0
Condition2	0
Condition1	0
Neighborhood	0
LandSlope	0
LotConfig	0
Utilities	0
LandContour	0
LotShape	0
Alley	0
Street	0
Foundation	0
BsmtQual	0
BsmtCond	0
GarageType	0
SaleType	0
MiscFeature	0
Fence	0
PoolQC	0
PavedDrive	0
GarageCond	0
GarageQual	0
GarageFinish	0
FireplaceQu	0
BsmtExposure	0
Functional	0
KitchenQual	0
Electrical	0
CentralAir	0
HeatingQC	0
Heating	0
3	-

localhost:8889/lab

112/120

BsmtFinType2 0
BsmtFinType1 0
MSZoning 0
dtype: int64

localhost:8889/lab 113/120

In [37]:

```
df_house_price_train_numbers=df_house_price_train_numbers.fillna('0')
df_house_price_train_numbers.isnull().sum().sort_values(ascending=False)
```

localhost:8889/lab 114/120

Out[37]:

SalePrice	0
BsmtHalfBath	0
GrLivArea	0
LowQualFinSF	0
2ndFlrSF	0
1stFlrSF	0
TotalBsmtSF	0
BsmtUnfSF	0
BsmtFinSF2	0
BsmtFinSF1	0
MasVnrArea	0
YearRemodAdd	0
YearBuilt	0
OverallCond	0
OverallQual	0
LotArea	0
LotFrontage	0
BsmtFullBath	0
FullBath	0
YrSold	0
HalfBath	0
MoSold	0
MiscVal	0
PoolArea	0
ScreenPorch	0
3SsnPorch	0
EnclosedPorch	0
OpenPorchSF	0
WoodDeckSF	0
GarageArea	0
GarageCars	0
GarageYrBlt	0
Fireplaces	0
TotRmsAbvGrd	0
KitchenAbvGr	0
BedroomAbvGr	0
MSSubClass	0
dtype: int64	

localhost:8889/lab 115/120

Combine Dataframes

In [38]:

```
df_house_price_train_objects_table_encoded.drop(columns='SalePrice',inplace=True)
#df_house_price_train_numbers.drop(columns='SalePrice',inplace=True)
```

Compare Dataframes

In [39]:

```
# Cleaned Dataframe
df_house_prices=pd.concat([df_house_price_train_objects_table_encoded,df_house_price_train_numbers], axis=1)
df_house_prices.head()
```

Out[39]:

	MSZoning	Street	Alley	LotShape	LandContour	Utilities	LotConfig	LandSlope	Neighborhood	Condition1	•••	WoodDeckSF	Ope
0	3	1	0	3	3	0	4	0	5	2		0	
1	3	1	0	3	3	0	2	0	24	1		298	
2	3	1	0	0	3	0	4	0	5	2		0	
3	3	1	0	0	3	0	0	0	6	2		0	
4	3	1	0	0	3	0	2	0	15	2		192	

5 rows × 80 columns

localhost:8889/lab

In [40]:

Vs Original Dataframe
df_house_price_train.head()

Out[40]:

	MSSubClass	MSZoning	LotFrontage	LotArea	Street	Alley	LotShape	LandContour	Utilities	LotConfig	 PoolArea	PoolQC	Fe
0	60	RL	65.0	8450	Pave	NaN	Reg	Lvl	AllPub	Inside	 0	NaN	<u> </u>
1	20	RL	80.0	9600	Pave	NaN	Reg	LvI	AllPub	FR2	 0	NaN	I
2	60	RL	68.0	11250	Pave	NaN	IR1	Lvl	AllPub	Inside	 0	NaN	I
3	70	RL	60.0	9550	Pave	NaN	IR1	Lvl	AllPub	Corner	 0	NaN	I
4	60	RL	84.0	14260	Pave	NaN	IR1	LvI	AllPub	FR2	 0	NaN	1

5 rows × 80 columns

localhost:8889/lab 117/120

In [54]:

```
# Re-order cleaned dataframe to match original dataframe
df_house_prices=df_house_prices[df_house_price_train.columns]
df_house_prices.head()
```

Out[54]:

	MSSubClass	MSZoning	LotFrontage	LotArea	Street	Alley	LotShape	LandContour	Utilities	LotConfig	 PoolArea	PoolQC	Fe
0	60	3	65	8450	1	0	3	3	0	4	 0	0	_
1	20	3	80	9600	1	0	3	3	0	2	 0	0	
2	60	3	68	11250	1	0	0	3	0	4	 0	0	
3	70	3	60	9550	1	0	0	3	0	0	 0	0	
4	60	3	84	14260	1	0	0	3	0	2	 0	0	

5 rows × 80 columns

In []:

Remove outliers

In [42]:

Determine PCA

In [43]:

Potential Dimension Reduction

In [44]:

Repeat for non-linear set

In [45]:

```
#
#sns.pairplot(df_house_price_train_numbers_continous)
```

localhost:8889/lab 118/120

In []:
<pre>In []:</pre>
In []:
In [46]:
Clean Data
In [47]:
Visualize Data
VISUULIZE DULU
In [48]:
Clean Data
In [49]:
Regression Model
Negression model
In [50]:
Regression Performance
In [51]:
Create Clusters (Optional)
In [52]:
Map Clusters (Optional)

localhost:8889/lab 119/120

In [53]:

Data Stats (Optional)

localhost:8889/lab 120/120