Stochastik

Nico Mexis 18. Oktober 2019

Inhaltsverzeichnis

Kapitel 1: Wahrscheinlichkeitsräume

3

Kapitel 1: Wahrscheinlichkeitsräume

Die Menge aller möglichen Ausgänge/Ergebnisse ω eines Zufallsexperiments heißt Ergebnisraum/Stichprobenraum/Grundmenge Ω

Eine Teilmenge $A \subseteq \overline{\Omega}$, welcher eine Wahrscheinlichkeit zugeordnet werden soll, heißt Ereignis.

"A tritt ein", falls $\omega \in A$

Für $\omega \in \Omega$ heißt $\{\omega\} \subseteq \Omega$ Elementarereignis.

Ereignisraum A: Menge aller Ereignisse in Ω , d.h. $A \subseteq \mathcal{P}$.

Seien A, B Ereignisse.

$$A \cup B$$
 "oder"
 $A \cap B$ "und"
 $A^C = \overline{A} = \Omega \setminus A$ "nicht"

Sei Ω eine Menge. Ein Teilmengensystem $\mathcal{A} \subseteq \mathcal{P}(\Omega)$ heißt σ -Algebra (in Ω), falls

- 1) $\Omega \in \mathcal{A}$
- 2) $A \in \mathcal{A} \Rightarrow A^C \in \mathcal{A}$
- 3) $A_1, A_2, \dots \in \mathcal{A} \Rightarrow \bigcup_{i=1}^{\infty} A_i \in \mathcal{A}$

 (Ω, \mathcal{A}) heißt messbarer Raum, Elemente $A \in \mathcal{A}$ heißen \mathcal{A} -messbare Teilmengen. Ω beliebig $\Rightarrow \mathcal{A}_1 = \{\Omega, \varnothing\}$ ist die gröbste σ -Algebra.

 $A_2 = \mathcal{P}(\Omega)$ ist die feinste σ -Algebra.

In einem höchstens abzählbaren Grundraum Ω betrachtet man in der Regel die feinste σ -Algebra $\mathcal{A} = \mathcal{P}(\Omega)$. Für überabzählbares Ω ist dies i.A. nicht sinnvoll (s. Kapitel 4).

Sei \mathcal{A} eine σ -Algebra. Dann gilt:

- 1) $\emptyset \in \mathcal{A}$
- 2) $A, B \in \mathcal{A} \Rightarrow A \cup B \in \mathcal{A}, A \cap B \in \mathcal{A}, A \setminus B \in \mathcal{A}$
- 3) $A_1, A_2, \dots \in \mathcal{A} \Rightarrow \bigcap_{i=1}^{\infty} A_i \in \mathcal{A}$

Sei $E \subseteq \mathcal{P}(\Omega)$. Dann gibt es (bzgl. Inklusion) eine <u>kleinste</u> σ -Algebra, welche E enthält.

Mit anderen Worten: Es gibt eine sparsamste $\sigma\text{-Algebra},$ für die jedes $A\in E$ ein Ereignis ist.

Man nennt $\mathcal{A} = \bigcap_{k \in I} \mathcal{A}_k$, wobei $(A_k)_{k \in I}$ das System <u>aller</u> σ -Algebra in Ω mit $\forall k \in I : E \subseteq A_k$ ist, die von E erzeugte σ -Algebra.

Notation: $\mathcal{A} = \sigma(E)$

Wir wollen jetzt jedem Ereignis $A \in \mathcal{A}$ eine Wahrscheinlichkeit $\mathbb{P}(A)$ zuordnen. Notation: Mengen $A_1, A_2, \dots \subseteq \Omega$ heißen <u>paarweise disjunkt</u> (p.d.), falls $\forall i, j \in \mathbb{N} : i \neq j, A_i \cap A_j = \emptyset$.

Sei \mathcal{A} eine σ -Algebra in Ω (d.h. (Ω, \mathcal{A}) messbarer Raum). Eine Abbildung $\mathbb{P}: \mathcal{A} \to [0,1]$ heißt Wahrscheinlichkeitsmaß/Wahrscheinlichkeitsverteilung auf \mathcal{A} , falls

- 1) $\mathbb{P}(\Omega) = 1 \ (\widehat{=} \ 100\%)$
- 2) $A_1, A_2, \dots \in \mathcal{A}$ p.d. $\Rightarrow \mathbb{P}(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} \mathbb{P}(A_i) \ (\sigma\text{-Additivität})$

Es folgen sofort:

- 1) $\mathbb{P}(\emptyset) = 0$
- 2) <u>Additivität</u>: Falls $A_1, \ldots, A_n \in \mathcal{A}$ p.d. $\Rightarrow \mathbb{P}(\bigcup_{i=1}^n A_i) = \sum_{i=1}^n \mathbb{P}(A_i)$

Sei (Ω, \mathcal{A}) ein messbarer Raum und $\mathbb{P}: \mathcal{A} \to [0, 1]$ ein Wahrscheinlichkeitsmaß auf \mathcal{A} . Dann heißt $(\Omega, \mathcal{A}, \mathbb{P})$ ein Wahrscheinlichkeitsraum.

Sei $\Omega \neq \emptyset$ endlich, $\mathcal{A} = \mathcal{P}(\Omega)$, $A \subseteq \Omega$

Gleichverteilung auf Ω : $\mathbb{P}(A) = \frac{|A|}{|\Omega|}$ (uniforme Verteilung) Speziell für $\omega \in \Omega$: $\mathbb{P}(\{\omega\}) = \frac{1}{|\Omega|}$ d.h. jeder Ausgang des Experiments ist gleich wahrscheinlich (Laplace-Annahme). \mathbb{P} ist Wahrheitsmaß auf \mathcal{A} .

 $(\Omega, \mathcal{A}, \mathbb{P})$ heißt Laplace-Raum.