2017 Statistical Methods for Spatial Data: Homework 1

To be handed in on Monday January 23rd, 2017. Hand in your R code as an appendix.

1. Consider the data discussed in class in which counts of male lip cancer Y_i over $i=1,\ldots,56$ counties in Scotland are available along with expected counts E_i and the proportion in agriculture, fishing and farming (AFF), x_i .

Consider a quasi-likelihood Poisson log-linear regression model

$$\mathsf{E}[Y_i] = E_i \exp(\alpha + \beta x_i) \tag{1}$$

with $var(Y_i) = \kappa E[Y_i]$, i = 1, ..., 56, where $\kappa > 0$ is a parameter that allows overdispersion to be modeled.

- (a) Provide maps of the SMRs, Y_i/E_i , and of the proportion in AFF, x_i . [Hint: look at the help function for the mapvariable in the SpatialEpi R package.]
- (b) Give an interpretation of the parameters $\exp(\alpha)$ and $\exp(\beta)$.
- (c) Fit model (1) and report the estimates and standard errors for each of α and β . Give a 95% confidence interval for $\exp(\beta)$. Also report the estimate of κ .
- (d) Now fit an alternative model that includes latitude and longitude in the log-linear model, in order to investigate "confounding by location".
 [Hint: the eastings and northings are contained in scotland\$geo.]
- (e) Discuss your findings.
- 2. On a separate sheet, and in less than a page, describe your course project.