Vorlesung 10

Folgen und Konvergenz von Folgen

10.1 Der Grenzbegriff für Folgen

Definition 10.1.1. Eine Folge reeller Zahlen ist eine Abbildung

$$\begin{array}{ccc} a: \mathbb{N} & \longrightarrow & \mathbb{R} \\ n & \longmapsto & a_n \end{array}$$

Wir schreiben kurz $(a_n)_{n\geq 1}$ oder oft auch $(a_n)_{n\in\mathbb{N}}$.

Beispiele.

Beispiele		
Folgenglieder	explizite Darstellung	implizite/rekursive
		Darstellung
$a, a, a, a, a, \dots (a \in \mathbb{R})$	$a_n = a$	$a_{n+1} = a_n$
$1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \dots$	$a_n = \frac{1}{n}$	$a_{n+1} = \frac{a_n}{1+a_n}$
$x, x^1, x^2, x^3, x^4, \dots$	$a_n = x^n$	$a_{n+1} = a_n \cdot x$
1, 2, 4, 8, 16,	$a_n = 2^n$	$a_{n+1} = a_n \cdot 2$

Folgender Begriff ist von zentraler Bedeutung:

Definition 10.1.2. Sei $(a_n)_{n\in\mathbb{N}}$ eine Folge. Sie konvergiert gegen ein $a\in\mathbb{R}$,

$$\lim_{n \to \infty} a_n = a$$

falls es zu jedem $\varepsilon > 0$ ein $N(\varepsilon) \in \mathbb{N}$ gibt, derart, dass gilt

$$|a_n - a| < \varepsilon$$
, für alle $n \ge N(\varepsilon)$.

a heißt dann Grenzwert der Folge $(a_n)_{n\in\mathbb{N}}$.

Bemerkung. $N(\varepsilon)$ hängt von ε ab.

Definition 10.1.3. Für $a \in \mathbb{R}$ und $\varepsilon > 0$ definieren wir als ε -Umgebung $U_{\varepsilon}(a) = (a - \varepsilon, a + \varepsilon)$

Sprechweise: "Fast alle" bedeutet "alle bis auf endlich viele Ausnahmen".

Lemma 10.1.4. Eine Folge $(a_n)_{n\in\mathbb{N}}$ konvergiert gegen a genau dann, wenn für jedes $\varepsilon > 0$ fast alle Elemente der Folge in der ε -Umgebung von a liegen.

Andere Formulierung: Wir sagen eine Folge hat den Grenzwert a, wenn gilt: Zu jedem $\varepsilon>0$ (dieser Wert legt die Umgebung von a fest) gibt es ein N, so dass alle Folgenglieder, die einen höheren Folgenindex als N haben, in der ε -Umgebung von a liegen. Somit haben wir

$$\lim_{n \to \infty} a_n = a$$

$$\Leftrightarrow \forall \varepsilon > 0 \exists N \in \mathbb{N} : |a_n - a| < \varepsilon \ \forall n \ge N$$

$$\Leftrightarrow \forall \varepsilon > 0 \exists N \in \mathbb{N} : \forall n \ge N \Rightarrow |a_n - a| < \varepsilon.$$

Beispiele.

• Die konstante Folge $a_n = a$ hat den Grenzwert a.

Beweis. Sei $\varepsilon>0$ beliebig aber fest vorgegeben. Wir setzen $N(\varepsilon)=1.$ Dann gilt

$$\underbrace{|a_n - a|}_{|a - a| = 0 < \varepsilon} < \varepsilon \quad \forall n \ge N = 1$$

Bemerkung. In diesem Beispiel können wir auch N=7 oder N=2015 wählen.

• Wir betrachten die Folge $a_n = \frac{n}{n+1}$. Wir raten und nehmen an der Grenzwert ist 1, also $\lim_{n \to \infty} a_n = 1$.

Beweis. Um zu $\varepsilon>0$ ein $N(\varepsilon)$ zu finden, rechnet man oft versuchsweise rückwärts:

$$|a_n - a| = \left|\frac{n}{n+1} - 1\right| < \varepsilon \quad \Leftrightarrow \quad \left|\frac{n}{n+1} - \frac{n+1}{n+1}\right| < \varepsilon$$

$$\Leftrightarrow \quad \frac{1}{n+1} < \varepsilon \Leftrightarrow n+1 > \frac{1}{\varepsilon}$$

$$\Leftrightarrow \quad n > \frac{1}{\varepsilon} - 1$$

Zu $\varepsilon > 0$ wählen wir $N(\varepsilon)$ mit $N(\varepsilon) > \frac{1}{\varepsilon} - 1$. Dann gilt:

$$\begin{split} n > N(\varepsilon) \Rightarrow n > \frac{1}{\varepsilon} - 1 \Rightarrow n + 1 > \frac{1}{\varepsilon} \Rightarrow \frac{1}{n+1} < \varepsilon \\ \Rightarrow \left| \frac{n}{n+1} - 1 \right| < \varepsilon. \end{split}$$

Das beweist $\lim_{n\to\infty} \frac{n}{n+1} = 1$.

Hierzu ein **Zahlenbeispiel:** Wähle $\varepsilon=\frac{1}{10}$. Dann gilt für $N>\frac{1}{\varepsilon}-1=10-1=9$: $n>9\Rightarrow |a_n-1|<\varepsilon$. So gilt z.B. für a_{10} , dass $|a_{10}-1|=|\frac{10}{11}-1|=|\frac{1}{11}|<\frac{1}{10}$.

• Es gilt $\lim_{n\to\infty} \frac{1}{n} = 0$.

Beweis. Rückwärts rechnen liefert:

$$\left| \frac{1}{n} - 0 \right| < \varepsilon \Leftrightarrow \frac{1}{n} < \varepsilon \Leftrightarrow n > \frac{1}{\varepsilon}$$

Sei nun $\varepsilon>0$ beliebig aber fest vorgegeben. Dann wählen wir $N>\frac{1}{\varepsilon}.$ Somit gilt:

$$n > N = \frac{1}{\varepsilon} \Rightarrow \left| \frac{1}{n} - 0 \right| < \varepsilon$$

• Wir wollen zeigen, dass gilt: $\lim_{n\to\infty} \frac{n}{2^n} = 0$.

Beweis. Wir beweisen zunächst induktiv für n>4 die Behauptung I: $n^2 \leq 2^n \Leftrightarrow \frac{n}{2^n} \leq \frac{1}{n}$ (Übung). Mit Behauptung I gilt für $n\geq 4$:

$$\left| \frac{n}{2^n} - 0 \right| = \frac{n}{2^n} \le \frac{1}{n}$$

Wähle $N(\varepsilon) = \frac{1}{\varepsilon}$. Dann gilt:

$$n > N(\varepsilon) \Rightarrow n > \frac{1}{\varepsilon} \Rightarrow \frac{1}{n} < \varepsilon \Rightarrow \left| \frac{n}{2^n} - 0 \right| < \varepsilon$$

• Wir betrachten die Folge $a_n = (-1)^n$ und wollen zeigen, dass $(a_n)_{n \in \mathbb{N}}$ nicht konvergiert. Wir führen einen Widerspruchsbeweis.

Beweis. Angenommen, die Folge konvergiert gegen einen Grenzwert $a \in \mathbb{R}$. Dann gilt $\lim_{n \to \infty} (-1)^n = a$. Also gibt es zu $\varepsilon = \frac{1}{2}$ ein $N(\varepsilon)$ mit $n \ge N(\frac{1}{2})$ $\Rightarrow |(-1)^n - a| < \frac{1}{2}$. Also gilt für $n \ge N(\frac{1}{2})$:

$$2 = |(-1)^n - (-1)^{n+1}| = |(-1)^n - a + a - (-1)^{n+1}|$$

$$\stackrel{\triangle - Ungl.}{\leq} |(-1)^n - a| + |(-1)^{n+1} - a|$$

$$\leq \frac{1}{2} + \frac{1}{2} = 1 \text{ Widerspruch!}$$

Bemerkung. Im obigen Widerspruchsbeweis können wir anstatt $\varepsilon=\frac{1}{2}$ auch ein beliebiges ε mit $0<\varepsilon\leq 1$ wählen.

Satz 10.1.5 (Grenzwerte und algebraische Operationen, "Grenzwertsätze" (GWS)). Seien $(a_n)_{n\in\mathbb{N}}$ und $(b_n)_{n\in\mathbb{N}}$ konvergente Folgen mit Grenzwerten $a=\lim_{n\to\infty}a_n$ und $b=\lim_{n\to\infty}b_n$.

(i) Seien $\lambda, \mu \in \mathbb{R}$. Dann konvergiert die Folge $(\lambda a_n + \mu b_n)_{n \in \mathbb{N}}$ und es gilt:

$$\lim_{n \to \infty} \lambda a_n + \mu b_n = \lambda a + \mu b$$

(ii) Die Folge $(a_n \cdot b_n)_{n \in \mathbb{N}}$ konvergiert und es gilt:

$$\lim_{n \to \infty} a_n \cdot b_n = a \cdot b$$

(iii) Sei $b \neq 0$. Dann gibts es n_0 mit $n \geq n_0 \Rightarrow b_n \neq 0$. Dann konvergiert $(\frac{a_n}{b_n})_{n \geq n_0}$ und es gilt:

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{a}{b}$$

Beispiele. Wir wenden Satz 10.1.5 auf die Folge $a_n = \frac{n^2 + 4n + 5}{n^2 + n + 1} = \frac{1 + \frac{4}{n} + \frac{5}{n^2}}{1 + \frac{1}{n} + \frac{1}{n^2}}$. Wir dürfen nun den Grenzwert jedes Summanden des Nenners und des Zählers einzeln bestimmen. Wir haben bereits gezeigt, dass $\lim_{n \to \infty} \frac{1}{n} = 0$. Daraus folgt:

$$\lim_{n \to \infty} \frac{4}{n} = \lim_{n \to \infty} 4 \cdot \frac{1}{n} \stackrel{\text{GWS}}{=} 4 \cdot 0 = 0$$

$$\lim_{n \to \infty} \frac{1}{n^2} = \lim_{n \to \infty} \frac{1}{n} \cdot \frac{1}{n} \stackrel{\text{GWS}}{=} 0 \cdot 0 = 0$$

$$\lim_{n \to \infty} \frac{5}{n^2} = \lim_{n \to \infty} 5 \cdot \frac{1}{n} \cdot \frac{1}{n} \stackrel{\text{GWS}}{=} 5 \cdot 0 \cdot 0 = 0$$

Daher gilt für den Nenner bzw. den Zähler der Folge a_n :

$$\lim_{n \to \infty} 1 + \frac{4}{n} + \frac{5}{n^2} \stackrel{\text{GWS}}{=} 1 + 0 + 0 = 1$$
$$\lim_{n \to \infty} 1 + \frac{1}{n} + \frac{1}{n^2} \stackrel{\text{GWS}}{=} 1 + 0 + 0 = 1.$$

Daraus folgt nun $\lim_{n\to\infty} a_n = \frac{1}{1} = 1$.

Satz 10.1.6. (Sandwich-Lemma)

Falls $a_n \leq b_n \leq c_n$ für fast alle $n \in \mathbb{N}$ gilt und $\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n$ ist, so folgt $\lim_{n \to \infty} b_n = \lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n$.

Beispiele. Betrachte die Folge $b_n = \frac{1}{n!}$. Wir schätzen diese Folge nach unten hin mit der konstanten Folge $a_n = 0$ und nach oben hin mit der Folge $c_n = \frac{1}{n}$ ab. Dann gilt für alle $n \in \mathbb{N}$:

$$a_n = 0 \le b_n = \frac{1}{n!} \le c_n = \frac{1}{n}.$$

Zudem gilt

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n = 0 = \lim_{n \to \infty} 0 = \lim_{n \to \infty} \frac{1}{n} = 0$$

Es folgt also mit dem Sandwich-Lemma, dass $\lim_{n\to\infty} b_n = 0$ gilt.