ccast calibration equations

H. E. Motteler and L. L. Strow

UMBC Atmospheric Spectroscopy Lab Joint Center for Earth Systems Technology

August 13, 2014

calibration equation

The CCAST reference calibration equation is

$$r_{\text{OBS}} = F \cdot r_{\text{ICT}} \cdot f \cdot \text{SA}^{-1} \cdot f \cdot \frac{\text{ES} - \text{SP}}{\text{IT} - \text{SP}}$$

- r_{OBS} is calibrated radiance at the user grid
- ► *F* is Fourier interpolation from sensor to user grid
- f is a raised-cosine bandpass filter
- r_{ICT} is expected ICT radiance at the sensor grid
- ► SA⁻¹ is the inverse of the ILS matrix
- ES is earth-scene count spectra
- ▶ IT is calibration target count spectra
- SP is space-look count spectra

notes

- the IT and SP looks are averaged over several scans
- we divide the count spectra by the numeric filter at the sensor grid, but this cancels out in the ratio (ES – SP)/(IT – SP)
- ▶ *F* is a zero-filled double Fourier interpolation
- ▶ $f \cdot SA^{-1} \cdot f$ can be considered as a physically-based smoothing of the rows and columns of SA^{-1}

alternate calibration equation 2

Alternate calibration equation c2 is

$$r_{\text{OBS}} = F \cdot r_{\text{ICT}} \cdot f \cdot \frac{\text{SA}^{-1} N^{-1} (\text{ES} - \text{SP})}{\text{SA}^{-1} N^{-1} (\text{IT} - \text{SP})}$$

- r_{OBS} is calibrated radiance at the user grid
- F is Fourier interpolation from sensor to user grid
- f is a raised-cosine bandpass filter
- r_{ICT} is calculated ICT radiance at the sensor grid
- ▶ SA⁻¹ is the inverse of the ILS matrix
- $ightharpoonup N^{-1}$ is the inverse of the numeric filter
- ES is earth-scene count spectra
- IT is calibration target count spectra
- SP is space-look count spectra

alternate calibration equation 1

Alternate calibration equation c1 is

$$r_{\text{OBS}} = F \cdot r_{\text{ICT}} \cdot f \cdot \frac{\text{SA}^{-1} \cdot f \cdot N^{-1}(\text{ES} - \text{SP})}{\text{SA}^{-1} \cdot f \cdot N^{-1}(\text{IT} - \text{SP})}$$

- r_{OBS} is calibrated radiance at the user grid
- F is Fourier interpolation from sensor to user grid
- f is a raised-cosine bandpass filter
- r_{ICT} is expected ICT radiance at the sensor grid
- ▶ SA⁻¹ is the inverse of the ILS matrix
- $ightharpoonup N^{-1}$ is the inverse of the numeric filter
- ES is earth-scene count spectra
- IT is calibration target count spectra
- SP is space-look count spectra

CrIS ILS

the CrIS ILS for FOV; can be represented as

$$\int_{\text{FOV}_i} w_i(\theta) \operatorname{sinc}(2\pi d(v - v_0 \cos \theta)) d\theta$$

- d is max OPD
- v is frequency
- v₀ is reference or channel frequency
- ightharpoonup sinc(x) = sin(x)/x for $x \neq 0$, 1 for x = 0.
- ▶ $sinc(2\pi d(v v_0 cos \theta))$ gives the ILS for a single ray at off-axis angle θ
- ▶ integration is over the intersection of on-axis arcs with FOV_i, with $w_i(\theta)$ the length of an intersecting arc at off-axis angle θ