Distributed by:

JAMECO

ELECTRONICS

www.Jameco.com + 1-800-831-4242

The content and copyrights of the attached material are the property of its owner.

Jameco Part Number 391822

256K (32K x 8) Static RAM

Features

- · High speed
 - 55 ns
- Temperature Ranges
 - Commercial: 0°C to 70°C
 Industrial: -40°C to 85°C
 Automotive: -40°C to 125°C
- Voltage range
 - 4.5V 5.5V
- · Low active power and standby power
- Easy memory expansion with $\overline{\text{CE}}$ and $\overline{\text{OE}}$ features
- · TTL-compatible inputs and outputs
- Automatic power-down when deselected
- · CMOS for optimum speed/power
- Available in a Pb-free and non Pb-free standard 28-pin narrow SOIC, 28-pin TSOP-1, 28-pin Reverse TSOP-1 and 28-pin DIP packages

Functional Description[1]

The CY62256 is a high-performance CMOS static RAM organized as 32K words by 8 bits. Easy memory expansion is provided by an active LOW chip enable (CE) and active LOW output enable (OE) and Tri-state drivers. This device has an automatic power-down feature, reducing the power consumption by 99.9% when deselected.

An active LOW write enable signal (\overline{WE}) controls the writing/reading operation of the memory. When \overline{CE} and \overline{WE} inputs are both LOW, data on the eight data input/output pins (I/O₀ through I/O₇) is written into the memory location addressed by the address present on the address pins (A₀ through A₁₄). Reading the device is accomplished by selecting the device and enabling the outputs, \overline{CE} and \overline{OE} active LOW, while \overline{WE} remains inactive or HIGH. Under these conditions, the contents of the location addressed by the information on address pins are present on the eight data input/output pins.

The input/output pins remain in a high-impedance state unless the chip is selected, outputs are enabled, and write enable (WE) is HIGH.

Note:

1. For best practice recommendations, please refer to the Cypress application note "System Design Guidelines" on http://www.cypress.com.

Product Portfolio

							Power Dis	sipation	
V _{CC} Range (V)				Connect	Operat (m	ing, I _{CC} nA)	Standb (μ.	y, I _{SB2} A)	
Product		Min.	Typ. ^[2]	Max.	Speed (ns)	Typ. ^[2]	Max.	Typ. ^[2]	Max.
CY62256L	Com'l/Ind'l	4.5	5.0	5.5	55/70	25	50	2	50
CY62256LL	Commercial				70	25	50	0.1	5
CY62256LL	Industrial				55/70	25	50	0.1	10
CY62256LL	Automotive				55	25	50	0.1	15

Pin Configurations

Pin Definitions

Pin Number Type		Description				
1–10, 21, 23–26	Input	A ₀ -A ₁₄ . Address Inputs				
11–13, 15–19,	Input/Output	I/O ₀ -/O ₇ . Data lines. Used as input or output lines depending on operation				
27	Input/Control	WE. When selected LOW, a WRITE is conducted. When selected HIGH, a READ is conducted				
20	Input/Control	CE. When LOW, selects the chip. When HIGH, deselects the chip				
22	Input/Control	OE . Output Enable. Controls the direction of the I/O pins. When LOW, the I/O pins behave as outputs. When deasserted HIGH, I/O pins are Tri-stated, and act as input data pins				
14	Ground	GND. Ground for the device				
28	Power Supply	V _{CC} . Power supply for the device				

Note:

^{2.} Typical specifications are the mean values measured over a large sample size across normal production process variations and are taken at nominal conditions (T_A = 25°C, V_{CC}). Parameters are guaranteed by design and characterization, and not 100% tested.

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.) Storage Temperature-65°C to +150°C Ambient Temperature with Power Applied......–55°C to +125°C Supply Voltage to Ground Potential DC Voltage Applied to Outputs in High-Z State $^{[3]}$ –0.5V to $\rm V_{CC}$ + 0.5V

DC Input Voltage ^[3]	-0.5V to V _{CC} + 0.5V
Output Current into Outputs (LOW)	20 mA
Static Discharge Voltage(per MIL-STD-883, Method 3015)	> 2001V
Latch-up Current	> 200 mA

Operating Range

Range	Ambient Temperature (T _A) ^[4]	V _{CC}
Commercial	0°C to +70°C	$5V \pm 10\%$
Industrial	–40°C to +85°C	5V ± 10%
Automotive	−40°C to +125°C	5V ± 10%

Electrical Characteristics Over the Operating Range

				С	CY62256-55			CY62256-70			
Parameter	Description	Test Condition	s	Min.	Typ. ^[2]	Max.	Min.	Typ. ^[2]	Max.	Unit	
V _{OH}	Output HIGH Voltage	$V_{CC} = Min., I_{OH} = -1.0 \text{ m}.$	A	2.4			2.4			V	
V _{OL}	Output LOW Voltage	V _{CC} = Min., I _{OL} = 2.1 mA				0.4			0.4	V	
V _{IH}	Input HIGH Voltage			2.2		V _{CC} +0.5V	2.2		V _{CC} +0.5V	V	
V _{IL}	Input LOW Voltage			-0.5		8.0	-0.5		8.0	V	
I _{IX}	Input Leakage Current	$GND \le V_1 \le V_{CC}$		-0.5		+0.5	-0.5		+0.5	μΑ	
l _{OZ}	Output Leakage Current	GND \leq V _O \leq V _{CC} , Output [Disabled	-0.5		+0.5	-0.5		+0.5	μΑ	
I _{CC}	V _{CC} Operating Supply	$V_{CC} = 5.5V$,	L		25	50		25	50	mA	
	Current	$I_{OUT} = 0 \text{ mA},$ $f = f_{Max} = 1/t_{RC}$	LL		25	50		25	50		
I _{SB1}	Automatic CE	$V_{CC} = 5.5V, \overline{CE} \ge V_{IH},$	L		0.4	0.6		0.4	0.6	mA	
	Power-down Current— TTL Inputs	$V_{IN} \ge V_{IH} \text{ or } V_{IN} \le V_{IL},$ $f = f_{Max}$	LL		0.3	0.5		0.3	0.5		
I _{SB2}	Automatic CE	$V_{CC} = 5.5V,$	L		2	50		2	50	μА	
	Power-down Current— CMOS Inputs	$\overline{CE} \ge V_{CC} - 0.3V$ $V_{IN} \ge V_{CC} - 0.3V$, or	LL - Com'l		0.1	5		0.1	5	•	
		$V_{IN} \le V_{CC} - 0.3V$, or $V_{IN} \le 0.3V$, $f = 0$	LL - Ind'l		0.1	10		0.1	10		
			LL - Auto		0.1	15					

Capacitance^[5]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C$, $f = 1$ MHz, $V_{CC} = V_{CC(typ.)}$	6	pF
C _{OUT}	Output Capacitance		8	pF

Thermal Resistance^[5]

Parameter	Description	Test Conditions	DIP	SOIC	TSOP	RTSOP	Unit
Θ_{JA}		Still Air, soldered on a 4.25 x 1.125 inch, 2-layer printed circuit board	75.61	76.56	93.89	93.89	°C/W
Θ _{JC}	Thermal Resistance (Junction to Case)		43.12	36.07	24.64	24.64	°C/W

Notes:

- N_{IL} (min.) = -2.0V for pulse durations of less than 20 ns.
 T_A is the "Instant-On" case temperature.
 Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms

Data Retention Characteristics

Parameter	Description		Conditions ^[6]	Min.	Typ. ^[2]	Max.	Unit
V _{DR}	V _{CC} for Data Retention			2.0			V
I _{CCDR}	Data Retention Current L V		$V_{CC} = 2.0V, \overline{CE} \ge V_{CC} - 0.3V,$		2	50	μА
	LL - Com'l		$V_{IN} \ge V_{CC} - 0.3V$, or $V_{IN} \le 0.3V$		0.1	5	μΑ
		LL - Ind'I			0.1	10	μΑ
		LL - Auto			0.1	10	μΑ
t _{CDR} ^[5]	Chip Deselect to Data Ref	tention Time		0			ns
t _R ^[5]	Operation Recovery Time			t _{RC}			ns

Data Retention Waveform

Note:

6. No input may exceed V_{CC} + 0.5V.

Switching Characteristics Over the Operating Range^[7]

		CY62	256–55	CY62	256–70	
Parameter	Description	Min.	Max.	Min.	Max.	Unit
Read Cycle		1	•			
t _{RC}	Read Cycle Time	55		70		ns
t _{AA}	Address to Data Valid		55		70	ns
t _{OHA}	Data Hold from Address Change	5		5		ns
t _{ACE}	CE LOW to Data Valid		55		70	ns
t _{DOE}	OE LOW to Data Valid		25		35	ns
t _{LZOE}	OE LOW to Low-Z ^[8]	5		5		ns
t _{HZOE}	OE HIGH to High-Z ^[8, 9]		20		25	ns
t _{LZCE}	CE LOW to Low-Z ^[8]	5		5		ns
t _{HZCE}	CE HIGH to High-Z ^[8, 9]		20		25	ns
t _{PU}	CE LOW to Power-up	0		0		ns
t _{PD}	CE HIGH to Power-down		55		70	ns
Write Cycle ^[10, 11]			•		•	
t _{WC}	Write Cycle Time	55		70		ns
t _{SCE}	CE LOW to Write End	45		60		ns
t _{AW}	Address Set-up to Write End	45		60		ns
t _{HA}	Address Hold from Write End	0		0		ns
t _{SA}	Address Set-up to Write Start	0		0		ns
t _{PWE}	WE Pulse Width	40		50		ns
t _{SD}	Data Set-up to Write End	25		30		ns
t _{HD}	Data Hold from Write End	0		0		ns
t _{HZWE}	WE LOW to High-Z ^[8, 9]		20		25	ns
t _{LZWE}	WE HIGH to Low-Z ^[8]	5		5		ns

<sup>Notes:
7. Test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified loL/loH and 100 pF load capacitance.
8. At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZOE} is less than t_{LZOE}, and t_{HZWE} is less than t_{LZWE} for any given device.
9. t_{HZOE}, t_{HZCE}, and t_{HZWE} are specified with C_L = 5 pF as in (b) of AC Test Loads. Transition is measured ±500 mV from steady-state voltage.
10. The internal Write time of the memory is defined by the overlap of CE LOW and WE LOW. Both signals must be LOW to initiate a Write and either signal can terminate a Write by going HIGH. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the Write.
11. The minimum Write cycle time for Write Cycle #3 (WE controlled, OE LOW) is the sum of t_{HZWE} and t_{SD}.</sup>

Switching Waveforms

Read Cycle No. 1 (Address Transition Controlled)^[12, 13]

Read Cycle No. 2 (OE Controlled)[13, 14]

Write Cycle No. 1 (WE Controlled)[10, 15, 16]

- Notes:
 12. <u>Dev</u>ice is continuously selected. <u>OE</u>, <u>CE</u> = V_{IL}.
 13. <u>WE</u> is HIGH for Read cycle.
- 14. Address valid prior to or coincident with $\overline{\text{CE}}$ transition LOW.
- 15. Data I/O is high impedance if $\overline{OE} = V_{|H:}$ 16. If \overline{CE} goes HIGH simultaneously with WE HIGH, the output remains in a high-impedance state.
- 17. During this period, the I/Os are in output state and input signals should not be applied.

Switching Waveforms (continued) Write Cycle No. 2 ($\overline{\text{CE}}$ Controlled) $^{[10,\ 15,\ 16]}$

Write Cycle No. 3 (WE Controlled, OE LOW)[11, 16]

Typical DC and AC Characteristics

OUTPUT VOLTAGE (V)

Typical DC and AC Characteristics (continued)

Truth Table

CE	WE	OE	Inputs/Outputs	Mode	Power
Н	Х	Х	High-Z	Deselect/Power-down	Standby (I _{SB})
L	Н	L	Data Out	Read	Active (I _{CC})
L	L	Х	Data In	Write	Active (I _{CC})
L	Н	Н	High-Z	Output Disabled	Active (I _{CC})

Ordering Information

Speed (ns)	Ordering Code	Package Diagram	Package Type	Operating Range
55	CY62256LL-55SNI	51-85092	28-pin (300-mil Narrow Body) SNC	Industrial
	CY62256LL-55SNXI		28-pin (300-mil Narrow Body) SNC (Pb-free)	
	CY62256LL-55ZXI	51-85071	28-pin TSOP I (Pb-free)	
	CY62256LL-55SNE	51-85092	28-pin (300-mil Narrow Body) SNC	Automotive
	CY62256LL-55SNXE		28-pin (300-mil Narrow Body) SNC (Pb-free)	
	CY62256LL-55ZE	51-85071	28-pin TSOP I	
	CY62256LL-55ZXE		28-pin TSOP I (Pb-free)	
	CY62256LL-55ZRXE	51-85074	28-pin Reverse TSOP I (Pb-free)	
70	CY62256LL-70PC	51-85017	28-pin (600-Mil) Molded DIP	Commercial
	CY62256LL-70PXC		28-pin (600-Mil) Molded DIP (Pb-free)	
	CY62256L-70SNC	51-85092	28-pin (300-mil Narrow Body) SNC	
	CY62256L-70SNXC		28-pin (300-mil Narrow Body) SNC (Pb-free)	
	CY62256LL-70SNC		28-pin (300-mil Narrow Body) SNC	
	CY62256LL-70SNXC		28-pin (300-mil Narrow Body) SNC (Pb-free)	
	CY62256LL-70ZC	51-85071	28-pin TSOP I	
	CY62256LL-70ZXC		28-pin TSOP I (Pb-free)	
	CY62256L-70SNI	51-85092	28-pin (300-mil Narrow Body) SNC	Industrial
	CY62256L-70SNXI		28-pin (300-mil Narrow Body) SNC (Pb-free)	
	CY62256LL-70SNI		28-pin (300-mil Narrow Body) SNC	
	CY62256LL-70SNXI		28-pin (300-mil Narrow Body) SNC (Pb-free)	
	CY62256LL-70ZXI	51-85071	28-pin TSOP I (Pb-free)	
	CY62256LL-70ZRI	51-85074	28-pin Reverse TSOP I	
	CY62256LL-70ZRXI		28-pin Reverse TSOP I (Pb-free)	

Please contact your local Cypress sales representative for availability of these parts

Package Diagrams

28-pin (300-mil) SNC (Narrow Body) (51-85092)

Package Diagrams (continued)

28-pin Thin Small Outline Package Type 1 (8 x 13.4 mm) (51-85071)

NOTE: ORIENTATION I.D MAY BE LOCATED EITHER AS SHOWN IN OPTION 1 OR OPTION 2

Package Diagrams (continued)

28-pin Reverse Thin Small Outline Package Type 1 (8x13.4 mm) (51-85074)

All product and company names mentioned in this document are the trademarks of their respective holders.

Document History Page

	Document Title: CY62256, 256K (32K x 8) Static RAM Document Number: 38-05248								
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change					
**	113454	03/06/02	MGN	Change from Spec number: 38-00455 to 38-05248 Remove obsolete parts from ordering info, standardize format					
*A	115227	05/23/02	GBI	Changed SN Package Diagram					
*B	116506	09/04/02	GBI	Added footnote 1 Corrected package description in Ordering Information table					
*C	238448	See ECN	AJU	Added Automotive product information					
*D	344595	See ECN	SYT	Added Pb-free packages on page# 10					
*E	395936	See ECN	SYT	Changed address of Cypress Semiconductor Corporation on Page# 1 from "3901 North First Street" to "198 Champion Court" Added CY62256L-70SNXI package in the Ordering Information on Page # 10					
*F	493277	See ECN	VKN	Updated Ordering Information table					