

Data Mining
Assignment Presentation

Merlion -AutoML

Lecturer: Mr. Le Hong Trang Student:

Vo Cong Thanh
Phan Khanh Thinh
1814182
Nguyen Duy Thin
1814149

Outline

- 1. Introduction to the Problem
- 2. What is Merlion?
- 3. Merlion Features
- 4. Time Series Forecasting Process
- 5. AutoML for Forecasting
- 6. Data Description
- 7. Visualization
- 8. Quantitative Evaluation Metrics
- 9. Conclusions

Introduce to problem

- IT operation management
- Manufacturing industry
- Cyber security

- Forecast the trends and values of key metrics accurately
- Detect anomalies rapidly and accurately
- Consistent

Introduce to problem

U.S Retail Sales

Stock Market

Time Series

- **Trend:** a long-term increase or decrease in the data which might not be linear. Sometimes the trend might change direction as time increases. I
- Cycle: exists when data exhibit rises and falls that are not of fixed period.
 The average length of cycles is longer than the length of a seasonal pattern. In practice, the trend component is assumed to include also the cyclical component. Sometimes the trend and cyclical components togethe are called as trend-cycle. I
- **Seasonality**: exists when a series exhibits regular fluctuations based on th season (e.g. every month/quarter/year). Seasonality is always of a fixed and known period.
- Irregular Remainder: a stationary process

What is Merlion?

- Unifield interface
- Detect anomaly
- Forecasting in time series
- Ease-of-use
- Visualization and anomaly score calibration

- AutoML for hyperparameter tuning and model selection and model ensembling
- Framework simulates the deployment and re-training of a model

Features

	Forecast		Anomaly		AutoML	Ensembles	Benchmarks	Visualization
	Uni	Multi	Uni	Multi				
alibi-detect	-	_	/	/	-	_	g -	_
Kats	1	/	1	1	✓	-	_	✓
statsmodels	1	/		-	<u>-</u>	-	_	_
gluon-ts	/	/	-) -	-	_	/	N - 7
RRCF	S=2	_	/	/	-	/	<u>-</u>	_
STUMPY	-	-	1	1	_	-	_	_
Greykite	1	-	1	_	1	_	_	/
Prophet	1	5.0 9	1	9870	-	-	_	/
pmdarima	1	-	-	-	1	-	×-	_
Merlion	1	/	/	/	/	/	/	✓

Architecture and Principles

Time Series Forecasting Process

- 1. Initializing a forecasting model (including ensembles and automatic model selectors)
- 2. Training the model
- 3. Producing a forecast with the model
- 4. Visualizing the model's predictions
- 5. Quantitatively evaluating the model
- 6. Saving and loading a trained model
- 7. Simulating the live deployment of a model using a Forecast Evaluator

AutoML for Forecasting

Traditional AutoML:

- Conventional hyper-parameter Optimization
- It automates the selection, composition and parameterization of machine learning models

In Merlion:

- Detection of some characteristics of time series
- Speed up model using approximation strategy: initial list of candidate model that achieve good performance
- Re-train each of these candidates until mode convergence, and finally select the best model by AIC

AutoML for Forecasting

Example in AutoSarima:

- Parameter of Sarima
 - Order: (20,1,5)
 - Seasonal Order: (1,12,1,20)
- HyperParameter Tuning of Sarima Model
 - Order: (auto, auto, auto)
 - Seasonal Order : (auto,auto,auto,auto)

Data Description

M4's Hourly Dataset

Line Graph of Dataset

748 rows × 1 columns

Visualization

Quantitative Evaluation Metrics

$$RMSE = \sqrt{\frac{\sum_{t=1}^{n} e_t^2}{n}},$$

sMAPE =
$$\frac{1}{n} \sum_{t=1}^{n} \frac{|e_t|}{|y_t| + |\hat{y}_t|} * 200(\%),$$

$$e_t = y_t - \hat{y}_t$$

	SMAPE	RMSE	
Sarima	7.81	70.29	
Arima	5.00	36.67	
Prophet	3.72	32.06	
MSES	35.03	191.49	
ForecasterEnsemble	7.76	56.30	
Selector	3.72	32.06	
AutoSarima	3.50	27.61	

Conclusion

- Extensible interfaces and implementations
- Improves the performance of multiple forecasting models
- Good performance on benchmark dataset
- Visualization module for more qualitative analysis

Thanks for listening!

