Linear algebra

For unitary matrix U, (normalised) eigenvectors $|v_i
angle$ and eigenvalues λ_i : $U|v_i
angle=\lambda_i|v_i
angle$

For diagonalisable matrix, spectral decomposition $U = \sum_{i=1}^n \lambda_i |v_i
angle \ \langle v_i|.$

Unitary $A^\dagger A = I$, Hermitian $A = A^\dagger \subseteq$ normal matrices $A^\dagger A = A A^\dagger.$

Postulates of quantum mechanics

Superposition, interference

Entanglement: non-separability

Concepts in quantum mechanics

Measurement and the Helstrom-Holevo bound $p \leq rac{1+\sin heta}{2}$, where $|\langle \psi_a | \psi_b
angle| = \cos heta$.

The no-signalling principle: after measurement, the entanglement is collapsed, thus not possible to transmit information.

The no-cloning principle: impossible to copy an unknown quantum state. $\nexists U.U(|\psi\rangle|0\rangle) = |\psi\rangle|\psi\rangle$.

The no-deleting principle: impossible to delete one of the unknown quantum state copies. $\nexists \tilde{U}.\tilde{U}(|\psi\rangle|\psi\rangle)=|\psi\rangle|0\rangle.$

Quantum circuits

Universal gate set: $\{H,T,CNOT\}$, where $\pi/8$ gate is T. $\pi/4$ gate is S. (not self-invertible)

Phase gate $S=T^2$, $Z=S^2$, X=HZH , Y=iXZ=SXSZ .

- ullet proof for Z=HXH (L8. search)
 - o either by matrix multiplication.
 - \circ or geometric interpretation (X/Z: rotate 180 degree about x/z-axis, H: swap x and z axis).

by self-inverse, $CNOT = CX = (I \otimes H) \times CZ \times (I \otimes H)$.

SWAP can be decomposed into 3 CNOTs.

Entanglement circuits via Hadamard-CNOT combination $\left| \mathrm{CNOT}(H \otimes I) | 00
ight> = rac{1}{\sqrt{2}} (|00
angle + |11
angle)$

Quantum information applications

Super**dense** coding (send **two bits** via one qubit) $\{I, X, Z, XZ\} o ext{CNOT} + ext{Hadamard}.$

Deutsch-Jozsa algorithm

 $f:\{0,1\}^n o \{0,1\}$, which is either constant or balanced.

$$\ket{H^{\otimes n}|x} = rac{1}{\sqrt{2^n}} \sum_{z \in \{0,1\}^n} (-1)^{x \cdot z} |z
angle$$

Proof: as $|x\rangle = |x_1...x_n
angle$, where $x_i \in \{0,1\}$ and

$$egin{aligned} H|x_i
angle &=rac{1}{\sqrt{2}}(|0
angle + (-1)^{x_i}|1
angle) \ &=rac{1}{\sqrt{2}}(|z_1=0
angle + (-1)^{x_i}|z_j=1
angle) \ &=rac{1}{\sqrt{2}}((-1)^{x_i imes 0}|z_1=0
angle + (-1)^{x_i imes 1}|z_2=1
angle) \ &=rac{1}{\sqrt{2}}((-1)^{x_i imes z_1}|z_1=0
angle + (-1)^{x_i imes z_2}|z_2=1
angle) \ &=rac{1}{\sqrt{2}}\sum_{z_j\in\{0,1\}}(-1)^{x_i imes z_j}|z_j
angle \end{aligned}$$

 $H^{\otimes n}|x_1...x_n
angle=\otimes_i(H|x_i
angle)$, and the power of the function is $\sum_i x_i imes z_i=x\cdot z$, we are done.

Quantum Search

Grover's algorithm

QFT & QPE

QFT
$$|x
angle=\sum_{j=0}^{N-1}x_j|j
angle o |y
angle=\sum_{k=0}^{N-1}y_k|k
angle$$
 , where $y_k=rac{1}{\sqrt{N}}\sum_{j=0}^{N-1}x_je^{i2\pirac{k}{N}j}$

The dimension of Hilbert space for n qubits $N=2^n$. The sinusoid's frequency $f=\frac{k}{N}$, i.e., k cycles per N samples.

iQFT
$$|y
angle = \sum_{k=0}^{N-1} y_k |k
angle o |x
angle = \sum_{j=0}^{N-1} x_j |j
angle$$
, where $x_j = \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} y_k e^{-i2\pi \frac{k}{N} j}$.

Note that the normalizing terms should be a product of $\frac{1}{N}$, where the above satisfies unitary. The exponential term is negated in one of the two.

QPE up to t bits. If given the eigenvector $|u\rangle$ of U and eigenvalue $e^{i2\pi\phi}$ with **phase** $\phi\in[0,1)$, we have $U|u\rangle=e^{i2\pi\phi}|u\rangle$.

- preparation
 - $\circ~1^{st}$ register: $H^{\otimes t}|0
 angle^{\otimes t}=rac{1}{\sqrt{2^t}}\sum_{x\in\{0,1\}^t}|x
 angle$ (superposition)
 - $\circ 2^{nd}$ register: the (superposition of) given eigenvector(s) $|u\rangle$ with eigenvalue $e^{i2\pi\phi}$,
- ullet oracle U^j on the $\mathbf{1}^{st}$ register (Entanglement)
 - $egin{array}{l} \circ rac{1}{\sqrt{2}}(\ket{0}+\ket{1})
 ightarrow rac{1}{\sqrt{2}}(\ket{0}+(e^{i2\pi\phi})^j\ket{1}) \end{array}$
 - $egin{array}{c} \circ rac{1}{\sqrt{2^t}} \sum_{x=0}^{2^t-1} |x
 angle
 ightarrow rac{1}{\sqrt{2^t}} \sum_{j=0}^{2^t-1} (e^{i2\pi\phi})^j |j
 angle \ \end{array}$
 - $\circ \ 2^{nd}$ register: respective $|u\rangle$ with eigenvalue $e^{i2\pi\phi}$ and phase ϕ .
- iQFT (Interference)
- measurement
 - $\circ~1^{st}$ register: t bits approximation of $| ilde{\phi}
 angle$
 - $\circ~2^{nd}$ register: $|u\rangle$ with phase ϕ .

QFT

iQFT / QPE

QFT & QPE: factoring

order finding: for coprime x and N, find $x^r \equiv 1 \mod N$, where r is the least positive integer.

$$U|r
angle=|(x\cdot r)\mod N
angle \implies$$
 For eigenstates $s\in [0,r-1],$ we have eigenvectors $|u_s
angle=rac{1}{\sqrt{r}}\sum_{j=0}^{r-1}e^{-i2\pirac{s}{r}}j|x^j\mod N
angle$ with **phase** $\phi=rac{s}{r}.$

Use QPE, 2^{nd} register prepared with equal superposition of unknown eigenvectors $\frac{1}{\sqrt{r}}\sum_{j=0}^{r-1}|u_j\rangle=|1\rangle$ (shallow-depth quantum circuit X).

factoring: for composite integer N , $N=p\cdot q$, where p and q are prime numbers.

Shor's algorithm

QFT & QPE: quantum chemistry

Trotter formula: $U=e^{-i(H_1+H_2)t}=U_1U_2=e^{-iH_1t}e^{-iH_2t}+O(t^2)$, where U_1 and U_2 don't commute.

Projective measurement with (normalized) eigenvectors

Ground state energy estimation $|e_0\rangle$ of a H with eigenvalue $\lambda_0=E_0.$

Use QPE, 2^{nd} register should be prepared as close to the eigenvector such that it's sufficiently dominated by the ground state $|e_0\rangle$ (L15. adiabatic state preparation).

Fault tolerance

Fault tolerance threshold $p_{th}=rac{1}{c}$, for suppressed error rate $p=cp_e^2+O(p_e^3)$. Per-gate error rate $rac{(cp_e)^{2^k}}{c}$ after k concatenation.