The EFSM is the tuple $S = (Q, \Sigma 1, \Sigma 2, q0, V, \Lambda)$,

where

Q = {dormant, init, idle, monitoring, safe_shutdown, error_diagnosis, final}

Σ1 = {kill, start, init_ok, begin_monitoring, moni_crash, init_crash, idle_crash, retry_init, idle_rescue, moni_rescue, shutdown, sleep}

q0: dormant

$$V : retry = \{0, 1, 2, 3\}$$

$$\Lambda_{unrefined} = {}$$

- 1. \rightarrow dormant
- 2. dormant $\stackrel{kill}{\longrightarrow}$ final
- 3. dormant \xrightarrow{start} init
- 4. init $\xrightarrow{init_ok}$ idle
- 5. init $\xrightarrow{init_{crash}/init_err_msg}$ error_diagnosis
- 6. init $\stackrel{kill}{\longrightarrow}$ final
- 7. $idle \xrightarrow{begin_monitoring} monitoring$
- 8. $idle \xrightarrow{idle_crash/idle_err_msg} error_diagnosis$
- 9. $idle \xrightarrow{kill} final$

```
10. monitoring \stackrel{kill}{\longrightarrow} final

\xrightarrow{moni\_crash/\ moni\_err\_msg}
 error_diagnosis
11. monitoring-
12. error_diagnosis\xrightarrow{kill} final
13. error_diagnosis\xrightarrow{moni\_rescue} monitoring
14. error_diagnosis \xrightarrow{retry\_init[retry \le 3]/retry++} init
15. error_diagnosis \xrightarrow{idle\_rescue} idle
16. error_diagnosis \xrightarrow{shutdown[retry>3]/retry=0} safe_shutdown
17. safe_shutdown \stackrel{kill}{\longrightarrow} final
18. safe_shutdown \xrightarrow{sleep} dormant
}
The EFSM of the init state is the tuple S = (Q, \Sigma1, \Sigma2, q0, V, \Lambda),
where
Q = {boot_hw, senchk, tchk, psichk, ready }
\Sigma 1 = \{\text{hw ok, sen ok, t ok, psi ok}\}\
\Sigma 2 = \{\}
q0:boot hw
```

```
V = {}
```

$\Lambda_{refined} = {}$

- 1. \rightarrow boot_hw
- 2. boot_hw $\xrightarrow{hw_ok}$ senchk
- 3. $\operatorname{senchk} \xrightarrow{\operatorname{sen_ok}} \operatorname{tchk}$
- 4. $tchk \xrightarrow{t_ok} psichk$
- 5. $psichk \xrightarrow{psi_ok} ready$

}