Распределенные системы. Алгоритмы балансирования весов орграфа

Выполнил: Ёров Собир Руководитель: Мальковский Н. В.

Актуальность темы

- Распределенные системы
 - 3TO ...
 - плюсы ...

Неформальное описание задачи

- Есть распределенная система, где все связи односторонние.
- Можем представить это как ориентированный граф.
- Хотим определить можем ли мы получить информацию от узла, которого мы видим напрямую, а он нас напрямую не видит.
- Это же определение сильной связности орграфа!

Постановка задачи

- 1. Определить сильную связность в распределенной сети.
- 2. Написать приложение моделирующее работу сети и позволяющее для двух произвольных "узлов" сети сказать связаны они или нет.
- 3. Написать сетевое приложение, с той же функциональностью.

Альтернативные подходы

- Алгоритмы нахождения компонент сильной связности
 - Алгоритм Тарьяна
 - Алгоритм Косарайю
 - Алгоритм DCSC (Компоненты сильной связности по принципу "Разделяй и властвуй")
- Чем лучше наш алгоритм??

Как хотим проверить сильную связность?

- Воспользуемся алгоритмом балансирования весов орграфа!
- Теорема. Орграф сильно связен тогда и только тогда, когда его ребра можно сбалансировать (см. лит.).
- Используем итеративный алгоритм со следующей матрицей перехода:

$$P = I - B + BD^{-1}A$$
, $B = diag(\beta_i)$, $D = diag(outdeg(j))$, $A - матрица смежности$

Этапы

Знакомство с алгоритмами балансирования весов орграфа распределенно:

- A. I. Rikos and C. N. Hadjicostis, "Distributed balancing of a digraph with integer weights"
- Apostolos I. Rikos, Themistoklis Charalambous, "Distributed weight balancing over digraph"

Приложение, моделирующее работу сети на одной машине, для определения сильной связности графа взаимодействий в сети:

- Многопоточность в Java

Сетевое приложение для определения связности вершин:

- TCP
- UDP

Основные проблемы в ходе решения задачи

new Thread(client).start();

- Неиспользование пула трэдов
- Проблемы с синхронизацией.
 - Один узел находится в одной стадии итерации алгоритма а другой узел в другом

Результаты

- Многопоточное приложение
 - Моделирующее работу сети граф взаимодействий в сети
 - Возможность проверки сильной связности

• Сетевое приложение с той же функциональностью

Пример работы программы

Когда алгоритм не работает

Технологии

- Java
 - Многопоточность
 - TCP/IP

Что сделали и что хотим сделать

• Выполнили основную задачу:

 Сетевое приложение для проверки сильной связности графа взаимодействий в сети.

• Хотим сделать:

- Доработать алгоритм, чтобы мы могли точно сказать про каждое ребро, то что она соединяет вершины одной компоненты или нет.
- Провести сравнение с другими алгоритмами проверки сильной связности.
- Попробовать ускорить.

Спасибо за внимание!

- Код доступен по ссылке:
 - https://github.com/YorovSobir/second-semester-research