#### Grammatiche e Linguaggi Liberi dal Contesto

- Abbiamo visto che molti linguaggi non sono regolari. Consideriamo allora classi piu' grandi di linguaggi.
- Linguaggi Liberi dal Contesto (CFL = Context-Free Languages) sono stati usati nello studio dei linguaggi naturali dal 1950, e nello studio dei (generatori di) compilatori dal 1960.
- Le grammatiche libere dal contesto (CFG = Context-Free Grammars) sono la base della sintassi BNF (Backus-Naur-Form), usate per i linguaggi di programmazione.
- Oggi i CFL sono importanti anche per XML.

Studieremo: CFG, i linguaggi che generano, gli alberi sintattici, gli automi a pila, e le proprieta' di chiusura dei CFL.

## Esempio informale di CFG

Consideriamo  $L_{pal} = \{w \in \Sigma^* : w = w^R\}$ 

Per esempio: otto  $\in L_{pal}$ , ara  $\in L_{pal}$ .

Sia  $\Sigma = \{0,1\}$  e supponiamo che  $L_{pal}$  sia regolare.

Sia n dato dal pumping lemma. Allora  $0^n10^n \in L_{pal}$ . Nel leggere  $0^n$  il FA deve passare per un loop. Se omettiamo il loop, contraddizione.

Definiamo  $L_{pal}$  induttivamente:

**Base:**  $\epsilon$ , 0, e 1 sono palindromi.

**Induzione:** Se w e' una palindrome, anche 0w0 e 1w1 lo sono.

Nessun altra stringa e' una palindrome.

Le CFG sono un modo formale per definizioni come quella per  ${\cal L}_{pal}.$ 

- 1.  $S \to \epsilon$
- 2.  $S \rightarrow 0$
- 3.  $S \rightarrow 1$
- 4.  $S \rightarrow 0S0$
- 5.  $S \rightarrow 1S1$

0 e 1 sono terminali

S e' una categoria sintattica (o, piu' tecnicamente, variabile)

S e' in questa grammatica anche la categoria sintattica *iniziale*.

1-5 sono produzioni (o regole)

### Definizione formale di CFG

Una grammatica libera dal contesto e' una quadrupla

$$G = (V, T, P, S)$$

dove

V e' un insieme finito di *variabili* (o *non-terminali*).

T e' un insieme finito di terminali.

P e' un insieme finito di *produzioni* della forma  $A \to \alpha$ , dove A e' una variabile e  $\alpha \in (V \cup T)^*$ 

S e' una variabile distinta chiamata variabile iniziale.

Esempio: 
$$G_{pal} = (\{S\}, \{0, 1\}, P, S), \text{ dove } P = \{S \to \epsilon, S \to 0, S \to 1, S \to 0S0, S \to 1S1\}.$$

A volte raggruppiamo le produzioni con la stessa testa:  $P = \{S \to \epsilon | 0 | 1 | 0S0 | 1S1 \}.$ 

Esempio: espressioni (semplici) in un tipico linguaggio di programmazione. Gli operatori sono + e \*, e gli operandi sono identificatori, cioe' stringhe in  $L((a+b)(a+b+0+1)^*)$ 

Le espressioni sono definite dalla grammatica

$$G = (\{E, I\}, T, P, E)$$

dove  $T = \{+, *, (,), a, b, 0, 1\}$  e P e' il seguente insieme di produzioni:

- 1.  $E \rightarrow I$
- 2.  $E \rightarrow E + E$
- 3.  $E \rightarrow E * E$
- 4.  $E \rightarrow (E)$
- 5.  $I \rightarrow a$
- 6.  $I \rightarrow b$
- 7.  $I \rightarrow Ia$
- 8.  $I \rightarrow Ib$
- 9.  $I \rightarrow I0$
- 10.  $I \rightarrow I1$

### Derivazioni usando le grammatiche

Sia 
$$G = (V, T, P, S)$$
 una CFG,  $A \in V$ ,  $\{\alpha, \beta\} \subset (V \cup T)^*$ , e  $A \to \gamma \in P$ .

Allora scriviamo

$$\alpha A\beta \Rightarrow \alpha \gamma \beta$$

o, se e' ovvia la G,

$$\alpha A\beta \Rightarrow \alpha \gamma \beta$$

e diciamo che da  $\alpha A\beta$  si deriva  $\alpha\gamma\beta$ .

Definiamo  $\stackrel{*}{\Rightarrow}$  la chiusura riflessiva e transitiva di  $\Rightarrow$ , cioe':

**Base:** Sia  $\alpha \in (V \cup T)^*$ . Allora  $\alpha \stackrel{*}{\Rightarrow} \alpha$ .

**Induzione:** Se  $\alpha \stackrel{*}{\Rightarrow} \beta$ , e  $\beta \Rightarrow \gamma$ , allora  $\alpha \stackrel{*}{\Rightarrow} \gamma$ .

Esempio: Derivazione di a\*(a+b00) da E nella grammatica delle espressioni:

$$E \Rightarrow E * E \Rightarrow I * E \Rightarrow a * E \Rightarrow a * (E) \Rightarrow$$

$$a * (E + E) \Rightarrow a * (I + E) \Rightarrow a * (a + E) \Rightarrow a * (a + I) \Rightarrow$$

$$a * (a + I0) \Rightarrow a * (a + I00) \Rightarrow a * (a + b00)$$

Nota: ad ogni passo potremmo avere varie regole tra cui scegliere, ad esempio

$$I*E \Rightarrow a*E \Rightarrow a*(E)$$
, oppure  $I*E \Rightarrow I*(E) \Rightarrow a*(E)$ .

Nota: non tutte le scelte portano a derivazioni di una particolare stringa, per esempio

$$E \Rightarrow E + E$$

non ci fa derivare a \* (a + b00).

#### Derivazioni a sinistra e a destra

Derivazione a sinistra  $\Rightarrow$ : rimpiazza sempre la variabile piu' a sinistra con il corpo di una delle sue regole.

Derivazione a destra  $\Rightarrow$ : rimpiazza sempre la variabile piu' a destra con il corpo di una delle sue regole.

Der. a sinistra: quella del lucido precedente.

A destra:

$$E \underset{rm}{\Rightarrow} E * E \underset{rm}{\Rightarrow}$$

$$E * (E) \underset{rm}{\Rightarrow} E * (E + E) \underset{rm}{\Rightarrow} E * (E + I) \underset{rm}{\Rightarrow} E * (E + I0)$$

$$\underset{rm}{\Rightarrow} E * (E + I00) \underset{rm}{\Rightarrow} E * (E + b00) \underset{rm}{\Rightarrow} E * (I + b00)$$

$$\underset{rm}{\Rightarrow} E * (a + b00) \underset{rm}{\Rightarrow} I * (a + b00) \underset{rm}{\Rightarrow} a * (a + b00)$$

Possiamo concludere che  $E \stackrel{*}{\underset{rm}{\Rightarrow}} a * (a + b00)$ 

# Il linguaggio di una grammatica

Se G(V,T,P,S) e' una CFG, allora il *linguaggio di G* e'

$$L(G) = \{ w \in T^* : S \underset{G}{\overset{*}{\Rightarrow}} w \}$$

cioe' l'insieme delle stringhe su  $T^*$  derivabili dal simbolo iniziale.

Se G e' una CFG, chiameremo L(G) un linguaggio libero dal contesto.

Esempio:  $L(G_{pal})$  e' un linguaggio libero dal contesto.

#### Alberi sintattici

- Se  $w \in L(G)$ , per una CFG, allora w ha un albero sintattico, che ci dice la **struttura** (sintattica) di w.
- ullet w potrebbe essere un programma, una query SQL, un documento XML, ...
- Gli alberi sintattici sono una rappresentazione alternativa alle derivazioni.
- Ci possono essere diversi alberi sintattici per la stessa stringa.
- Idealmente ci dovrebbe essere **solo un albero sintattico** (la "vera" struttura), cioè la CFG dovrebbe essere **non ambigua**.
- Sfortunatamente, non sempre possiamo rimuovere l'ambiguita'.

#### Costruzione di un albero sintattico

Sia G = (V, T, P, S) una CFG. Un albero e' un albero sintattico per G se:

- 1. Ogni **nodo interno** e' etichettato con una **variabile** in V.
- 2. Ogni foglia e' etichettata con un simbolo in  $V \cup T \cup \{\epsilon\}$ . Ogni foglia etichettata con  $\epsilon$  e' l'unico figlio del suo genitore.
- 3. Se un nodo interno e' etichettato A, e i suoi figli (da sinistra a destra) sono etichettati

$$X_1, X_2, \ldots, X_k,$$

allora  $A \to X_1 X_2 \dots X_k \in P$ .

Esempio: nella grammnatica

1. 
$$E \rightarrow I$$

2. 
$$E \rightarrow E + E$$

3. 
$$E \rightarrow E * E$$

4. 
$$E \rightarrow (E)$$

il seguente e' un albero sintattico:



Questo albero sintattico mostra la derivazione  $E \stackrel{*}{\Rightarrow} I + E$ 

Esempio: nella grammatica

- 1.  $P \rightarrow \epsilon$
- 2.  $P \rightarrow 0$
- 3.  $P \rightarrow 1$
- 4.  $P \rightarrow 0P0$
- 5.  $P \rightarrow 1P1$

il seguente e' un albero sintattico:



Mostra la derivazione  $P \stackrel{*}{\Rightarrow} 0110$ .

Il prodotto di un albero sintattico

Il *prodotto* di un albero sintattico e' la **stringa di foglie da sinistra** a **destra**.

Importanti sono quegli alberi sintattici dove:

- 1. Il prodotto e' **una stringa terminale**.
- 2. La radice e' etichettata dal simbolo iniziale.

L'insieme dei prodotti di questi alberi sintattici e' il linguaggio della grammatica.

# Esempio:



Il prodotto e' a \* (a + b00).

Sia G = (V, T, P, S) una CFG, e  $A \in V$ . I seguenti sono equivalenti:

- 1.  $A \stackrel{*}{\Rightarrow} w$
- 2.  $A \stackrel{*}{\underset{lm}{\Rightarrow}} w$ , e  $A \stackrel{*}{\underset{rm}{\Rightarrow}} w$
- 3. C'e' un albero sintattico di G con radice A e prodotto w.

Per provare l'equivalenza, usiamo il seguente piano:

- Dagli alberi alle derivazioni a sinistra (destra): visito l'albero da sinistra a destra (da destra a sinistra)
- Una derivazione sinistra (o destra) è anche una derivazione
- Leggendo la derivazione costruisco l'albero

Esempio: Costruiamo la derivazione a sinistra per l'albero



Supponiamo di aver induttivamente costruito la deriv. a sinistra

$$E \underset{lm}{\Rightarrow} I \underset{lm}{\Rightarrow} a$$

corrispondente al sottoalbero piu' a sinistra, e la deriv. a sinistra

$$E \underset{lm}{\Rightarrow} (E) \underset{lm}{\Rightarrow} (E+E) \underset{lm}{\Rightarrow} (I+E) \underset{lm}{\Rightarrow} (a+E) \underset{lm}{\Rightarrow}$$

$$(a+I) \underset{lm}{\Rightarrow} (a+I0) \underset{lm}{\Rightarrow} (a+I00) \underset{lm}{\Rightarrow} (a+b00)$$

corrispondente al sottoalbero piu' a destra.

Per la derivazione corrispondente all'intero albero, iniziamo con  $E\Rightarrow E*E$  e espandiamo la prima E con la prima derivazione e la seconda E con la seconda derivazione:

$$E \underset{lm}{\Rightarrow} E * E \underset{lm}{\Rightarrow}$$

$$I * E \underset{lm}{\Rightarrow}$$

$$a * E \underset{lm}{\Rightarrow}$$

$$a * (E) \underset{lm}{\Rightarrow}$$

$$a * (E + E) \underset{lm}{\Rightarrow}$$

$$a * (I + E) \underset{lm}{\Rightarrow}$$

$$a * (a + E) \underset{lm}{\Rightarrow}$$

$$a * (a + I) \underset{lm}{\Rightarrow}$$

$$a * (a + I0) \underset{lm}{\Rightarrow}$$

$$a * (a + I00) \underset{lm}{\Rightarrow}$$

$$a * (a + b00)$$

# Ambiguita' in Grammatiche e Linguaggi

### Nella grammatica

1. 
$$E \rightarrow I$$

2. 
$$E \rightarrow E + E$$

3. 
$$E \rightarrow E * E$$

4. 
$$E \rightarrow (E)$$

E + E \* E ha due derivazioni:

$$E \Rightarrow E + E \Rightarrow E + E * E$$
 e  $E \Rightarrow E * E \Rightarrow E + E * E$ 

$$E \Rightarrow E * E \Rightarrow E + E * E$$

Questo ci da' due alberi sintattici:





(b)

L'esistenza di varie *derivazioni* di per se non e' pericolosa, e' l'esistenza di vari alberi sintattici che rovina la grammatica.

Esempio: Nella stessa grammatica

5. 
$$I \rightarrow a$$

6. 
$$I \rightarrow b$$

7. 
$$I \rightarrow Ia$$

8. 
$$I \rightarrow Ib$$

9. 
$$I \rightarrow I0$$

10. 
$$I \rightarrow I1$$

la stringa a + b ha varie derivazioni:

$$E \Rightarrow E + E \Rightarrow I + E \Rightarrow a + E \Rightarrow a + I \Rightarrow a + b$$

е

$$E \Rightarrow E + E \Rightarrow E + I \Rightarrow I + I \Rightarrow I + b \Rightarrow a + b$$

Pero' il loro albero sintattico e' lo stesso (anche per le altre possibili derivazioni di a+b): la struttura di a+b e' quindi non ambigua.

**Definizione:** Sia G = (V, T, P, S) una CFG. Diciamo che G e' ambigua se esiste una stringa in  $T^*$  che ha piu' di un albero sintattico.

Se ogni stringa in L(G) ha un unico albero sintattico, G e' detta non-ambigua.

Esempio: La stringa terminale a + a \* a ha due alberi sintattici:



### Derivazioni a sinistra e ambiguita'

I due alberi sintattici per a + a \* a



danno luogo a due derivazioni:

$$E \underset{lm}{\Rightarrow} E + E \underset{lm}{\Rightarrow} I + E \underset{lm}{\Rightarrow} a + E \underset{lm}{\Rightarrow} a + E * E$$

$$\underset{lm}{\Rightarrow} a + I * E \underset{lm}{\Rightarrow} a + a * E \underset{lm}{\Rightarrow} a + a * I \underset{lm}{\Rightarrow} a + a * a$$

е

$$E \underset{lm}{\Rightarrow} E * E \underset{lm}{\Rightarrow} E + E * E \underset{lm}{\Rightarrow} I + E * E \underset{lm}{\Rightarrow} a + E * E$$

$$\underset{lm}{\Rightarrow} a + I * E \underset{lm}{\Rightarrow} a + a * E \underset{lm}{\Rightarrow} a + a * I \underset{lm}{\Rightarrow} a + a * a$$

#### In generale:

- Ad un albero sintattico corrispondono molte derivazioni, ma
- ad ogni (diverso) albero sintattico corrisponde un'unica (diversa) derivazione *a sinistra*.
- ad ogni (diverso) albero sintattico corrisponde un'unica (diversa) derivazione *a destra*.

**Teorema 5.29:** Data una CFG G, una stringa terminale w ha due distinti alberi sintattici se e solo se w ha due distinte derivazioni a sinistra dal simbolo iniziale.

#### Rimuovere l'ambiguita' dalle grammatiche

Buone notizie: a volte possiamo rimuovere l'ambiguita'

Cattive notizie: non c'e' nessun algoritmo per farlo in modo sistematico

Ancora cattive notizie: alcuni CFL hanno solo CFG ambigue

Studiamo la grammatica

$$E \rightarrow I \mid E + E \mid E * E \mid (E)$$
$$I \rightarrow a \mid b \mid Ia \mid Ib \mid I0 \mid I1$$

Bisogna modificarla in modo da stabilire:

- 1. Chi ha precedenza tra \* e +
- 2. Come si raggruppano sequenze di uno stesso operatore: E+E+E e' inteso come E+(E+E) o come (E+E)+E?

Soluzione: Introduciamo una gerarchica di variabili che stabilisca un ordine di precedenza tra gli operatori

- 1. espressioni E: composizioni di uno o più termini T tramite +
- 2. termini T: composizioni di uno o più fattori F tramite \*
- 3. fattori F:
  - (a) identificatori I
  - (b) espressioni E racchiuse tra parentesi

I termini T non possono generare + che siano fuori da parentesi: questa gerarchia stabilisce che \* ha precedenza rispetto a +.

Esempio: l'unico modo di generare a + a \* a, visto in precedenza, e' considerando a \* a come un termine T (albero sintattico di sinistra)

#### Formalmente:

1. 
$$E \rightarrow T \mid E + E$$

$$2. \ T \to F \mid T * T$$

3. 
$$F \rightarrow I \mid (E)$$

4. 
$$I \rightarrow a \mid b \mid Ia \mid Ib \mid I0 \mid I1$$

Questa grammatica e' non ambigua?

No! Dobbiamo anche imporre un ordine per raggruppamento operatori allo stesso livello. Es con associativita' a sinistra:

1. 
$$E \rightarrow T \mid E + T$$

2. 
$$T \rightarrow F \mid T * F$$

3. 
$$F \rightarrow I \mid (E)$$

4. 
$$I \rightarrow a \mid b \mid Ia \mid Ib \mid I0 \mid I1$$

Grammatica non ambigua, es. unico albero sintattico di a + a \* a è



# Ambiguita' inerente

Un CFL L e' inerentemente ambiguo se tutte le grammatiche per L sono ambigue.

Esempio: Consideriamo L =

$${a^nb^nc^md^m:n\geq 1,m\geq 1}\cup {a^nb^mc^md^n:n\geq 1,m\geq 1}.$$

Una grammatica per L e'

$$S \rightarrow AB \mid C$$

$$A \rightarrow aAb \mid ab$$

$$B \rightarrow cBd \mid cd$$

$$C \rightarrow aCd \mid aDd$$

$$D \rightarrow bDc \mid bc$$

Guardiamo la struttura sintattica della stringa aabbccdd.



Vediamo che ci sono due derivazioni a sinistra:

$$S \underset{lm}{\Rightarrow} AB \underset{lm}{\Rightarrow} aAbB \underset{lm}{\Rightarrow} aabbB \underset{lm}{\Rightarrow} aabbcBd \underset{lm}{\Rightarrow} aabbccdd$$

е

$$S \underset{lm}{\Rightarrow} C \underset{lm}{\Rightarrow} aCd \underset{lm}{\Rightarrow} aaDdd \underset{lm}{\Rightarrow} aabDcdd \underset{lm}{\Rightarrow} aabbccdd$$

Puo' essere provato che ogni grammatica per L si comporta come questa. Il linguaggio L e' quindi inerentemente ambiguo.

### Automi a pila

Un automa a pila (PDA) e' in pratica un  $\epsilon$ -NFA con una pila.

In una transizione un PDA:

- 1. Consuma un simbolo di input o esegue una transizione  $\epsilon$ .
- 2. Va in un nuovo stato (o rimane dove e').
- Rimpiazza il top della pila con una stringa (consuma il carattere in cima, e mette al suo posto una stringa, eventualmente vuota o uguale al carattere consumato lasciando quindi la pila inalterata)



Esempio: Consideriamo

$$L_{wwr} = \{ww^R : w \in \{0, 1\}^*\},\$$

con "grammatica"  $P \to 0P0, \ P \to 1P1, \ P \to \epsilon$ . Un PDA per  $L_{wwr}$  ha **tre stati**, e funziona come segue:

- 1. Legge w un simbolo alla volta, rimanendo nello stato  $q_0$ , e aggiungendo il simbolo di input alla pila.
- 2. Decide non deterministicamente che sta nel mezzo di  $ww^R$  e va nello stato  $q_1$ .
- 3. Legge  $w^R$  un simbolo alla volta e lo paragona col simbolo al top della pila: Se sono uguali, fa un pop della pila, e rimane nello stato  $q_1$ . Se non sono uguali, si blocca.
- 4. Se la pila non ha piu' simboli (0 o 1), va nello stato  $q_2$  e accetta.

Il PDA per  $L_{wwr}$  come diagramma di transizione:

$$\begin{array}{c} 0\;,\; Z_{\,0}\;/0\; Z_{\,0} \\ 1\;,\; Z_{\,0}\;/1\; Z_{\,0} \\ 0\;,\; 0\;/0\; 0 \\ 0\;,\; 1\;/0\; 1 \\ 1\;,\; 0\;/1\; 0 \\ 1\;,\; 1\;/1\; 1 \\ \end{array} \qquad \begin{array}{c} 0\;,\; 0\;/\; \epsilon \\ 1\;,\; 1\;/1\; 1 \\ \end{array}$$
 Start 
$$\begin{array}{c} 0\;,\; 0\;/\; \epsilon \\ 0\;,\; Z_{\,0}\;/Z_{\,0} \\ \epsilon\;,\; 0\;/\; 0 \\ \epsilon\;,\; 0\;/\; 0 \\ \epsilon\;,\; 1\;/\; 1 \end{array}$$

#### Definizione formale di PDA

Un PDA e' una tupla di 7 elementi:

$$P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F),$$

dove

- Q e' un insieme finito di stati,
- $\bullet$   $\Sigma$  e' un alfabeto finito di input,
- Γ e' un alfabeto finito di pila,
- $\delta$  e' una funzione di transizione da  $Q \times (\Sigma \cup \{\epsilon\}) \times \Gamma$  a sottinsiemi di  $Q \times \Gamma^*$ ,
- $q_0$  e' lo stato iniziale,
- $Z_0 \in \Gamma$  e' il *simbolo iniziale* per la pila, e
- $F \subseteq Q$  e' l'insieme di *stati di accettazione*.

### Esempio: Il PDA

$$\begin{array}{c} 0\;,\; Z_{\,0}\;/0\; Z_{\,0} \\ 1\;,\; Z_{\,0}\;/1\; Z_{\,0} \\ 0\;,\; 0\;/0\; 0 \\ 0\;,\; 1\;/0\; 1 \\ 1\;,\; 0\;/1\; 0 \\ 1\;,\; 1\;/1\; 1 \\ \end{array} \qquad \begin{array}{c} 0\;,\; 0\;/\; \epsilon \\ 1\;,\; 1\;/1\; 1 \\ \end{array}$$

e' la 7-tupla

$$P = (\{q_0, q_1, q_2\}, \{0, 1\}, \{0, 1, Z_0\}, \delta, q_0, Z_0, \{q_2\}),$$

dove  $\delta$  e' data dalla tabella seguente:

|                        | $0, Z_0$          | $1, Z_0$          | 0,0                  | 0,1            | 1,0             | 1,1                  | $\epsilon, Z_0$  | $\epsilon, 0$ | $\epsilon,1$             |
|------------------------|-------------------|-------------------|----------------------|----------------|-----------------|----------------------|------------------|---------------|--------------------------|
| $\rightarrow q_0$      | $\{(q_0, 0Z_0)\}$ | $\{(q_0, 1Z_0)\}$ | $\{(q_0,00)\}$       | $\{(q_0,01)\}$ | $\{(q_0, 10)\}$ | $\{(q_0,11)\}$       | $\{(q_1, Z_0)\}$ | $\{(q_1,0)\}$ | $\overline{\{(q_1,1)\}}$ |
| $q_1$                  | Ø                 | Ø                 | $\{(q_1,\epsilon)\}$ | Ø              | Ø               | $\{(q_1,\epsilon)\}$ | $\{(q_2,Z_0)\}$  | Ø             | Ø                        |
| <i>⋆q</i> <sub>2</sub> | Ø                 | Ø                 | Ø                    | Ø              | Ø               | Ø                    | Ø                | Ø             | Ø                        |

### Descrizioni istantanee

Un PDA passa da una configurazione ad un'altra configurazione:

- consumando un simbolo di input (o tramite transizione  $\epsilon$ ),
- consumando la cima dello stack sostituendolo con una stringa (eventualmente vuota).

Per ragionare sulle computazioni dei PDA, usiamo delle descrizioni istantanee (ID) del PDA. Una ID e' una tripla

$$(q, w, \gamma)$$

dove q e' lo stato, w l'input rimanente, e  $\gamma$  il contenuto della pila.

Sia 
$$P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$$
 un PDA. Allora  $\forall w \in \Sigma^*, \beta \in \Gamma^*$ :  $(p, \alpha) \in \delta(q, a, X) \Rightarrow (q, aw, X\beta) \vdash (p, w, \alpha\beta).$ 

Definiamo  $\stackrel{*}{\vdash}$  la chiusura riflessiva e transitiva di  $\vdash$ .

Esempio: Su input 1111 il PDA



ha le seguenti sequenze di computazioni:

$$(\ q_0\ ,\ 1111, Z_0\ ) \\ (\ q_0\ ,\ 1111, 1Z_0\ ) \\ (\ q_1\ ,\ 1111, Z_0\ ) \\ (\ q_0\ ,\ 11, 11Z_0\ ) \\ (\ q_1\ ,\ 111, 11Z_0\ ) \\ (\ q_1\ ,\ 11, 11Z_0\ ) \\ (\ q_1\ ,\ 11, 11Z_0\ ) \\ (\ q_1\ ,\ 1, 111Z_0\ ) \\ (\ q_1\ ,\ \epsilon\ , 1111Z_0\ ) \\ (\ q_1\ ,\ \epsilon\ , 1111Z_0\ ) \\ (\ q_1\ ,\ \epsilon\ , 1111Z_0\ ) \\ (\ q_1\ ,\ \epsilon\ , 111Z_0\ ) \\ (\ q_2\ ,\ \epsilon\ ,\ Z_0\ ) \\ (\$$

# Accettazione per stato finale

Sia  $P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$  un PDA. Il linguaggio accettato da P per stato finale e'

$$L(P) = \{w : (q_0, w, Z_0) \stackrel{*}{\vdash} (q, \epsilon, \alpha), q \in F\}.$$

Esempio: Il PDA di prima accetta esattamente  $L_{wwr}$ .

# Accettazione per pila vuota

Sia  $P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$  un PDA. Il linguaggio accettato da P per pila vuota e'

$$N(P) = \{w : (q_0, w, Z_0) \stackrel{*}{\vdash} (q, \epsilon, \epsilon)\}.$$

Nota: q puo' essere uno stato qualunque.

Domanda: come modificare il PDA per  $ww^R$  per accettare lo stesso linguaggio per pila vuota?

### Da pila vuota a stato finale

**Teorema 6.9:** Se  $L = N(P_N)$  per un PDA  $P_N = (Q, \Sigma, \Gamma, \delta_N, q_0, Z_0)$ , allora  $\exists$  PDA  $P_F$ , tale che  $L = L(P_F)$ .

Prova: Sia

$$P_F = (Q \cup \{p_0, p_f\}, \Sigma, \Gamma \cup \{X_0\}, \delta_F, p_0, X_0, \{p_f\})$$

dove  $\delta_F(p_0, \epsilon, X_0) = \{(q_0, Z_0 X_0)\}$ , e per ogni  $q \in Q, a \in \Sigma \cup \{\epsilon\}, Y \in \Gamma : \delta_F(q, a, Y) = \delta_N(q, a, Y)$ , e inoltre  $(p_f, \epsilon) \in \delta_F(q, \epsilon, X_0)$ .



Consideriamo il seguente automa a pila:



Formalmente,

$$P_N = (\{q\}, \{i, e\}, \{Z\}, \delta_N, q, Z),$$
 dove  $\delta_N(q, i, Z) = \{(q, ZZ)\}$ , e  $\delta_N(q, e, Z) = \{(q, \epsilon)\}$ .

### Da $P_N$ possiamo costruire

$$P_F = (\{p, q, r\}, \{i, e\}, \{Z, X_0\}, \delta_F, p, X_0, \{r\}),$$

dove

$$\delta_F(p, \epsilon, X_0) = \{(q, ZX_0)\},\$$
 $\delta_F(q, i, Z) = \delta_N(q, i, Z) = \{(q, ZZ)\},\$ 
 $\delta_F(q, e, Z) = \delta_N(q, e, Z) = \{(q, \epsilon)\},\$  and
 $\delta_F(q, \epsilon, X_0) = \{(r, \epsilon)\}$ 

Il diagramma per  $P_F$  e'



### Da stato finale a pila vuota

**Teorema 6.11:** Sia  $L = L(P_F)$ , per un PDA  $P_F = (Q, \Sigma, \Gamma, \delta_F, q_0, Z_0, F)$ . Allora  $\exists$  PDA  $P_N$ , tale che  $L = N(P_N)$ .

Prova: Sia

$$P_N = (Q \cup \{p_0, p\}, \Sigma, \Gamma \cup \{X_0\}, \delta_N, p_0, X_0)$$

dove  $\delta_N(p_0, \epsilon, X_0) = \{(q_0, Z_0 X_0)\}$ ,  $\delta_N(p, \epsilon, Y) = \{(p, \epsilon)\}$ , per  $Y \in \Gamma \cup \{X_0\}$ , e per tutti i  $q \in Q$ ,  $a \in \Sigma \cup \{\epsilon\}, Y \in \Gamma : \delta_N(q, a, Y) = \delta_F(q, a, Y)$ , e inoltre  $\forall q \in F$ , e  $Y \in \Gamma \cup \{X_0\} : (p, \epsilon) \in \delta_N(q, \epsilon, Y)$ .



# Equivalenza di PDA e CFG

Un linguaggio e'

generato da una CFG

se e solo se e'

accettato da un PDA per pila vuota

se e solo se e'

accettato da un PDA per stato finale



Sappiamo gia' andare da pila vuota a stato finale.

### Da CFG a PDA

Idea: data G, costruiamo un PDA che simula  $\stackrel{*}{\underset{lm}{\Rightarrow}}$ .

Scriviamo le stringhe ottenute lungo una derivazione sinistra come

$$xA\alpha$$

dove A e' la variabile piu' a sinistra. Ad esempio,



Sia  $xA\alpha \Rightarrow x\beta\alpha$  (a causa di una produzione  $A \to \beta$  della CFG). Questo corrisponde al PDA che, dopo aver consumato input x, e essersi ritrovato con  $A\alpha$  sulla pila, ora esegue una transizione  $\epsilon$  che elimina A e mette al suo posto  $\beta$  sulla pila.

Piu' formalmente, sia w la stringa data in *input* al PDA e y tale che w=xy. Allora il PDA va non deterministicamente dalla configurazione  $(q,y,A\alpha)$  alla configurazione  $(q,y,\beta\alpha)$ .

Alla configurazione  $(q, y, \beta \alpha)$  il PDA si comporta come prima, a meno che ci siano *terminali* nel prefisso di  $\beta$ . In questo caso, il PDA li elimina, se *li legge nell'input* (se fanno match con l'input).

Se tutte le scommesse sono giuste (consentono di matchare l'input), il PDA finisce l'input con la *pila vuota*.

# Quindi la trasformazione è la seguente.

Sia G = (V, T, Q, S) una CFG. Definiamo  $P_G$  come

$$(\{q\}, T, V \cup T, \delta, q, S),$$

dove

$$\delta(q, \epsilon, A) = \{(q, \beta) : A \to \beta \in Q\},\$$

per  $A \in V$ , e

$$\delta(q, a, a) = \{(q, \epsilon)\},\$$

per  $a \in T$ .

# Esempio:

Consideriamo la grammatica

$$S \rightarrow \epsilon |SS| iS| iSe.$$

Il PDA corrispondente e'

$$P = (\{q\}, \{i, e\}, \{S, i, e\}, \delta, q, S),$$

dove  $\delta(q, \epsilon, S) = \{(q, \epsilon), (q, SS), (q, iS), (q, iSe)\}, \ \delta(q, i, i) = \{(q, \epsilon)\}, \ e \ \delta(q, e, e) = \{(q, \epsilon)\}.$ 

# Da PDA a CFG

Idea: comportamento dei PDA per rimuovere simbolo Y dalla pila (usando una transizione che sostituisce Y con  $Y_1Y_2\cdots Y_k$ )



Definiremo una grammatica con variabili della forma  $[p_{i-1}Y_ip_i]$  che rappresentano il passaggio da  $p_{i-1}$  a  $p_i$  con l'effetto di eliminare  $Y_i$ .

Quindi stringa terminale generata da variabile [pXq] rappresenta: input letto da PDA andando da p a q e rimuovendo X da pila

**Formalmente**, sia  $P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0)$  un PDA. Definiamo  $G = (V, \Sigma, R, S)$ , con

$$V = \{[pXq] : \{p,q\} \subseteq Q, X \in \Gamma\} \cup \{S\}$$

$$R = \{S \to [q_0Z_0p] : p \in Q\} \cup$$

$$\{[\mathbf{q}Xr_k] \to a[\mathbf{r}Y_1r_1] \cdots [r_{k-1}Y_kr_k] :$$

$$a \in \Sigma \cup \{\epsilon\},$$

$$\{r_1, \dots, r_k\} \subseteq Q,$$

$$(\mathbf{r}, Y_1Y_2 \cdots Y_k) \in \delta(\mathbf{q}, a, X)\}$$

dove, in caso k = 0 si ha:  $Y_1 Y_2 \cdots Y_k = \epsilon$  e  $r_k = \mathbf{r}$ 

### Esempio: Convertiamo



$$P_N = (\{q\}, \{i, e\}, \{Z\}, \delta_N, q, Z),$$

dove  $\delta_N(q, i, Z) = \{(q, ZZ)\}$ , e  $\delta_N(q, e, Z) = \{(q, \epsilon)\}$ 

in una grammatica

$$G = (V, \{i, e\}, R, S),$$

dove 
$$V = \{[qZq], S\}$$
 e  $R = \{S \rightarrow [qZq], [qZq] \rightarrow i[qZq], [qZq], [qZq] \rightarrow e\}.$ 

Se rimpiazziamo [qZq] con A otteniamo le produzioni  $S \to A$  e  $A \to iAA|e$ .

**Esempio:** Convertiamo  $P=(\{p,q\},\{0,1\},\{X,Z_0\},\delta,q,Z_0)$ , dove  $\delta$  e' data da

1. 
$$\delta(q, 1, Z_0) = \{(q, XZ_0)\}$$

2. 
$$\delta(q, 1, X) = \{(q, XX)\}$$

3. 
$$\delta(q, 0, X) = \{(p, X)\}$$

4. 
$$\delta(q, \epsilon, X) = \{(q, \epsilon)\}$$

5. 
$$\delta(p, 1, X) = \{(p, \epsilon)\}$$

6. 
$$\delta(p, 0, Z_0) = \{(q, Z_0)\}$$

in una CFG.

Otteniamo  $G = (V, \{0, 1\}, R, S)$ , dove

 $V = \{[qZ_0q], [pZ_0q], [qZ_0p], [pZ_0p], [qXq], [pXq], [qXp], [pXp], S\}$  e le produzioni in R sono

$$S \to [qZ_0q]|[qZ_0p]$$

Dalla transizione (1)  $\delta(q, 1, Z_0) = \{(q, XZ_0)\}$  si ha:

$$[qZ_0q] \rightarrow \mathbf{1}[qXq][qZ_0q]$$

$$[qZ_0q] \rightarrow 1[qXp][pZ_0q]$$

$$[qZ_0p] \rightarrow 1[qXq][qZ_0p]$$

$$[qZ_0p] \rightarrow 1[qXp][pZ_0p]$$

Dalla transizione (2)  $\delta(q, 1, X) = \{(q, XX)\}$  si ha:

$$[qXq] \rightarrow 1[qXq][qXq]$$

$$[qXq] \rightarrow 1[qXp][pXq]$$

$$[qXp] \rightarrow 1[qXq][qXp]$$

$$[qXp] \rightarrow 1[qXp][pXp]$$

Dalla transizione (3)  $\delta(q, 0, X) = \{(p, X)\}$  si ha:

$$[qXq] \to 0[pXq]$$
$$[qXp] \to 0[pXp]$$

Dalla transizione (4)  $\delta(q, \epsilon, X) = \{(q, \epsilon)\}$  si ha:

$$[qXq] \to \epsilon$$

Dalla transizione (5)  $\delta(p, 1, X) = \{(p, \epsilon)\}$  si ha:

$$[pXp] \rightarrow 1$$

Dalla transizione (6)  $\delta(p, 0, Z_0) = \{(q, Z_0)\}$  si ha:

$$[pZ_0q] \to 0[qZ_0q]$$
$$[pZ_0p] \to 0[qZ_0p]$$

# **PDA** deterministici

Un PDA  $P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$  e' deterministico se e solo se:

- 1. ogni  $\delta(q, a, X)$ , con  $a \in \Sigma \cup \{\epsilon\}$ , contiene al piu' un elemento
- 2. se  $\delta(q, a, X)$  non vuoto per un  $a \in \Sigma$ , allora  $\delta(q, \epsilon, X)$  vuoto.

Esempio: Definiamo

$$L_{wcwr} = \{wcw^R : w \in \{0, 1\}^*\}$$

Allora  $L_{wcwr}$  e' riconosciuto dal seguente DPDA

$$\begin{array}{c}
0, Z_0 / 0 Z_0 \\
1, Z_0 / 1 Z_0 \\
0, 0 / 0 0 \\
0, 1 / 0 1 \\
1, 0 / 1 0 & 0, 0 / \varepsilon \\
1, 1 / 1 1 & 1, 1 / \varepsilon
\end{array}$$
Start
$$\begin{array}{c}
c, Z_0 / Z_0 \\
c, 0 / 0 \\
c, 1 / 1
\end{array}$$

### **DPDA** che accettano per stato finale

Mostreremo che Regolari  $\subset L(\mathsf{DPDA}) \subset \mathsf{CFL}$ 

**Teorema 6.17:** Se L e' regolare, allora L = L(P) per qualche DPDA P.

**Prova:** Dato che L e' regolare, esiste un DFA A tale che L = L(A). Sia

$$A = (Q, \Sigma, \delta_A, q_0, F)$$

definiamo il DPDA

$$P = (Q, \Sigma, \{Z_0\}, \delta_P, q_0, Z_0, F),$$

dove

$$\delta_P(q, a, Z_0) = \{(\delta_A(q, a), Z_0)\},\$$

per tutti i  $p, q \in Q$  e  $a \in \Sigma$ .

Un'induzione su |w| ci da'

$$(q_0, w, Z_0) \stackrel{*}{\vdash} (p, \epsilon, Z_0) \Leftrightarrow \hat{\delta}_A(q_0, w) = p$$

- Abbiamo visto che Regolari  $\subseteq L(\mathsf{DPDA})$ .
- $L_{wcwr} \in L(\mathsf{DPDA}) \setminus \mathsf{Regolari}$
- ullet Ci sono linguaggi in CFL\ $L(\mathsf{DPDA})$ .

Si, per esempio  $L_{wwr}$ .

### **DPDA** che accettano per pila vuota

E i DPDA che accettano per pila vuota?

Possono riconoscere solo linguaggi con la proprieta' del prefisso.

Un linguaggio L ha la *proprieta' del prefisso* se **non** esistono due stringhe distinte in L, tali che una e' un prefisso dell'altra.

Esempio:  $L_{wcwr}$  ha la proprieta' del prefisso.

Esempio:  $\{0\}^*$  non ha la proprieta' del prefisso.

**Teorema 6.19:** L e' N(P) per qualche DPDA P se e solo se L ha la proprieta' del prefisso e L e' L(P') per qualche DPDA P'.

### **DPDA** e non ambiguità

L(DPDA) coincide con i CFL aventi grammatiche **non ambigue** (cioe' non inerentemente ambigui)? **No**. Per esempio:

 $L_{wwr}$  ha una grammatica non ambigua  $S \to 0S0|1S1|\epsilon$  ma non e'  $L(\mathsf{DPDA})$ .

L'inverso invece vale! Abbiamo, preliminarmente:

**Teorema 6.20:** Se L = N(P) per qualche DPDA P, allora L ha una CFG non ambigua.

**Prova:** Applicando la costruzione vista da PDA a CFG, se la costruzione e' applicata ad un DPDA, il risultato e' una CFG con derivazioni a sinistra uniche per ogni stringa.

Teorema 6.20 puo' essere rafforzato:

**Teorema 6.21:** Se L = L(P) per qualche DPDA P, allora L ha una CFG non ambigua.

**Prova:** Sia \$ un simbolo fuori dell'alfabeto di L, e sia  $L' = L\{\$\}$ . E' facile modificare P per riconoscere L' (PDA ancora deterministico); inoltre L' ha la proprieta' del prefisso.

Per il teorema 6.19 abbiamo L'=N(P') per qualche DPDA P'. Per il teorema 6.20 L' puo' essere generato da una CFG G' non ambigua

Modifichiamo G' in G, tale che L(G) = L, aggiungendo la produzione

$$\$ \rightarrow \epsilon$$

(e considerando \$ una variabile anziche' un terminale)

Dato che G' ha derivazioni a sinistra uniche, anche G le avra' uniche, dato che l'unica cosa nuova e' l'aggiunta di derivazioni

$$w\$ \Rightarrow_{lm} w$$

alla fine.

### Proprieta' dei CFL

- Semplificazione di una CFG. Se un linguaggio e' un CFL, ha una grammatica in una possibile forma speciale.
- Pumping Lemma per CFL. Simile ai linguaggi regolari.
- Proprieta' di chiusura. Solo alcune delle proprieta' di chiusura dei linguaggi regolari valgono anche per i CFL.
- Proprieta' di decisione. Possiamo controllare l'appartenenza e l'essere vuoto, ma, per esempio, l'equivalenza di CFL e' non verificabile tramite un algoritmo (indecidibile).

# Forma normale di Chomsky

Ogni CFL (senza  $\epsilon$ ) e' generato da una CFG dove tutte le produzioni sono della forma

$$A \to BC$$
, o  $A \to a$ 

dove A, B, e C sono variabili, e a e' un simbolo terminale. Questa e' detta forma normale di Chomsky (CNF), e per ottenerla dobbiamo innanzitutto "pulire" la grammatica:

- Eliminare i *simboli inutili*, quelli che non appaiono in nessuna derivazione  $S \stackrel{*}{\Rightarrow} w$ , per simbolo iniziale S e terminale w.
- Eliminare le produzioni  $\epsilon$ , della forma  $A \to \epsilon$ .
- Eliminare le *produzioni unita'*, cioe' produzioni della forma  $A \rightarrow B$ , dove A e B sono variabili.

### Eliminazione simboli inutili

• Un simbolo X e' *utile* per una grammatica G=(V,T,P,S), se esiste una derivazione

$$S \stackrel{*}{\underset{G}{\Rightarrow}} \alpha X \beta \stackrel{*}{\underset{G}{\Rightarrow}} w$$

per una stringa di terminali w. Simboli che non sono utili sono detti inutili.

- ullet Un simbolo X e'  $\underbrace{generante}$  se  $X \overset{*}{\underset{G}{\rightleftharpoons}} w$ , per qualche  $w \in T^*$
- Un simbolo X e' raggiungibile se  $S \stackrel{*}{\underset{G}{\Rightarrow}} \alpha X \beta$ , per qualche  $\{\alpha,\beta\} \subseteq (V \cup T)^*$

Se in G (con  $L(G) \neq \emptyset$ ) eliminiamo prima i simboli non generanti, e poi quelli non raggiungibili, rimarranno solamente simboli utili.

Esempio: Sia G la grammatica

$$S \to AB|a, A \to b$$

S e A sono generanti, B non lo e'. Se eliminiamo B dobbiamo eliminare  $S \to AB$ , riducendo la grammatica

$$S \to a, A \to b$$

Ora, solo la variabile S e' raggiungibile. Eliminando A rimane solo

$$S \to a$$

con linguaggio  $\{a\}$ .

**Nota** Se eliminiamo prima i simboli non raggiungibili, si ha che tutti i simboli sono raggiungibili. Da

$$S \to AB|a, A \to b$$

eliminiamo B in quanto non generante, e rimane la grammatica

$$S \to a, A \to b$$

che contiene ancora simboli inutili

### Eliminazione produzioni $\epsilon$

Si ha che se L e' un CFL, allora  $L \setminus \{\epsilon\}$  ha una grammatica priva di produzioni  $\epsilon$  (cio' mostra anche che  $L \setminus \{\epsilon\}$  e' CFL).

La variabile A e' annullabile se  $A \stackrel{*}{\Rightarrow} \epsilon$ .

Sia A annullabile. Rimpiazzeremo una regola del tipo

$$B \to \alpha A \beta$$

con

$$B \to \alpha A\beta$$
,  $B \to \alpha\beta$ 

(rimpiazzando in tal modo anche le nuove regole via via ottenute) e cancelleremo tutte le regole con corpo  $\epsilon$ .

Indichiamo con n(G), l'insieme dei simboli annullabili di una grammatica G = (V, T, P, S)

Esempio: Sia G la grammatica

$$S \to AB, \ A \to aAA|\epsilon, \ B \to bBB|\epsilon$$

Abbiamo  $n(G) = \{A, B, S\}$ . La prima regola diventa

$$S \to AB|A|B$$

la seconda

$$A \rightarrow aAA|aA|aA|a$$

e la terza

$$B \rightarrow bBB|bB|bB|b$$

Eliminiamo le regole con corpo  $\epsilon$ , ed otteniamo la grammatica  $G_1$ :

$$S \to AB|A|B, A \to aAA|aA|a, B \to bBB|bB|b$$

# Eliminazione produzioni unita'

$$A \to B$$

e' una produzione unita', nel caso in cui A e B siano variabili.

Produzioni unita' possono essere eliminate.

Si consideri la grammatica

$$E \rightarrow T \mid E + T$$

$$T \rightarrow F \mid T * F$$

$$F \rightarrow I \mid (E)$$

$$I \rightarrow a \mid b \mid Ia \mid Ib \mid I0 \mid I1$$

ha le produzioni unita'  $E \to T$ ,  $T \to F$ , e  $F \to I$ 

Si consideri la **produzione unità**  $E \to T$  . Si trasforma tale produzione con il seguente procedimento a **espansione**.

Si espande  $E \rightarrow T$  ottenendo le produzioni:

$$E \to F, E \to T * F$$

Poi, espandendo  $E \rightarrow F$ , si ottiene:

$$E \to I|(E)|T * F$$

Infine, espandendo  $E \rightarrow I$ , si ottiene:

$$E \rightarrow a \mid b \mid Ia \mid Ib \mid I0 \mid I1 \mid (E) \mid T * F$$

Si considerano poi le altre produzioni unità  $\mathbf{T} \to \mathbf{F}$  e  $\mathbf{F} \to \mathbf{I}$  della grammatica e, per ciascuna, si applica analogo procedimento.

#### La grammatica inziale

$$E \rightarrow T \mid E + T$$

$$T \rightarrow F \mid T * F$$

$$F \rightarrow I \mid (E)$$

$$I \rightarrow a \mid b \mid Ia \mid Ib \mid I0 \mid I1$$

viene quindi modificata trasformando:

$$E \to T$$
 in

$$E \rightarrow a \mid b \mid Ia \mid Ib \mid I0 \mid I1 \mid (E) \mid T * F$$

$$T \to F$$
 in

$$T \rightarrow a \mid b \mid Ia \mid Ib \mid I0 \mid I1 \mid (E)$$

$$F \rightarrow I$$
 in

$$F \rightarrow a \mid b \mid Ia \mid Ib \mid I0 \mid I1$$

Quindi, eliminando le produzioni unità, la grammatica diviene

$$E \to a \mid b \mid Ia \mid Ib \mid I0 \mid I1 \mid (E) \mid T * F \mid E + T$$

$$T \to a \mid b \mid Ia \mid Ib \mid I0 \mid I1 \mid (E) \mid T * F$$

$$F \to a \mid b \mid Ia \mid Ib \mid I0 \mid I1 \mid (E)$$

$$I \to a \mid b \mid Ia \mid Ib \mid I0 \mid I1$$

Consideriamo ancora il **procedimento a espansione usato per trasformare le produzioni unità**. Ad esempio per  $E \rightarrow T$ :

Si espande  $E \rightarrow T$  ottenendo le produzioni:

$$E \to F, E \to T * F$$

Poi, espandendo  $E \rightarrow F$ , si ottiene:

$$E \to I|(E)|T * F$$

Infine, espandendo  $E \rightarrow I$ , si ottiene:

$$E \rightarrow a \mid b \mid Ia \mid Ib \mid I0 \mid I1 \mid (E) \mid T * F$$

Questo procedimento funziona per qualsiasi grammatica?

**No!** Se ci sono **cicli** il procedimento visto non consente di giungere alla rimozione delle produzioni unità che via via si generano!

Si consideri per esempio la grammatica:  $A \rightarrow B, \ B \rightarrow C, \ C \rightarrow A$ 

#### Soluzione:

Se durante il procedimento sopra si genera una produzione unità che si ha già espanso la si può semplicemente rimuovere (espandendola si otterrebbero di nuovo produzioni gia' generate)

Esempio: si consideri la grammatica

$$A \to B \mid a$$

$$B \to C \mid b$$

$$C \to A \mid c$$

Comincio trasformando la **produzione unità**  $A \rightarrow B$ .

Si espande  $A \rightarrow B$  ottenendo le produzioni:

$$A \to C \mid b$$

Poi, espandendo  $A \rightarrow C$ , si ottiene:

$$A \rightarrow A \mid c \mid b$$

Infine, espandendo  $A \rightarrow A$ , si ottiene:

$$A \rightarrow B \mid a \mid c \mid b$$

Andando avanti ottengo ovviamente sempre produzioni che ho già, quindi mi posso fermare ed eliminare  $A \to B\,.$ 

La produzione unità  $A \rightarrow B$  si trasforma quindi in:

$$A \rightarrow a \mid c \mid b$$

La grammatica inziale

$$A \to B \mid a$$

$$B \to C \mid b$$

$$C \to A \mid c$$

viene quindi modificata trasformando:

$$A \rightarrow B$$
 in

$$A \rightarrow a | c | b$$

$$B \to C$$
 in

$$B \rightarrow b \mid a \mid c$$

$$C \to A$$
 in

$$C \rightarrow c \mid b \mid a$$

Quindi, eliminando le produzioni unità, la grammatica diviene

$$A \to a \mid b \mid c$$

$$B \rightarrow a \mid b \mid c$$

$$C \rightarrow a \mid b \mid c$$

## Sommario

Per "pulire" una grammatica si deve

- 1. Eliminare le produzioni  $\epsilon$
- 2. Eliminare le produzioni unita'
- 3. Eliminare i simboli inutili

in questo ordine.

**Esercizio.** Trovare una grammatica in cui cambiando l'ordine non si ottiene una versione "pulita"

## Forma Normale di Chomsky, CNF

Ogni CFL non vuoto, che non contiene  $\epsilon$ , ha una grammatica G priva di simboli inutili, con produzioni nella forma

- $A \to BC$ , dove  $\{A, B, C\} \subseteq V$ , o
- $A \rightarrow a$ , dove  $A \in V$ , e  $a \in T$ .

Per ottenerla, si effettuano le seguenti trasformazioni su una qualsiasi grammatica per il CFL

- 1. "Pulire" la grammatica
- 2. Modificare le produzioni con 2 o piu' simboli in modo tale che siano tutte variabili
- 3. Ridurre il corpo delle regole di lunghezza superiore a 2 in cascate di produzioni con corpi da 2 variabili.

- ullet Per il passo 2, per ogni terminale a che compare in un corpo di lunghezza  $\geq$  2, creare una nuova variabile, ad esempio A, e sostituire a con A in tutti i corpi, e aggiungere la nuova regola  $A \rightarrow a$ .
- Per il passo 3, per ogni regola nella forma

$$A \to B_1 B_2 \cdots B_k$$

 $k \geq$  3, introdurre le nuove variabili  $C_1, C_2, \ldots C_{k-2}$ , e sostituire la regola con

$$\begin{array}{cccc}
A & \rightarrow & B_1C_1 \\
C_1 & \rightarrow & B_2C_2 \\
& & \cdots \\
C_{k-3} & \rightarrow & B_{k-2}C_{k-2} \\
C_{k-2} & \rightarrow & B_{k-1}B_k
\end{array}$$

# Illustrazione dell'effetto del passo 3.



### Esempio

### Iniziamo dalla grammatica

$$E \to E + T \mid T * F \mid (E) \mid a \mid b \mid Ia \mid Ib \mid I0 \mid I1$$

$$T \to T * F \mid (E) \mid a \mid b \mid Ia \mid Ib \mid I0 \mid I1$$

$$F \to (E) \mid a \mid b \mid Ia \mid Ib \mid I0 \mid I1$$

$$I \to a \mid b \mid Ia \mid Ib \mid I0 \mid I1$$

Per il passo 2 usiamo le regole

$$A \rightarrow a, B \rightarrow b, Z \rightarrow 0, O \rightarrow 1$$

$$P \rightarrow +, M \rightarrow *, L \rightarrow (, R \rightarrow)$$

e otteniamo la grammatica

$$E \rightarrow EPT \mid TMF \mid LER \mid a \mid b \mid IA \mid IB \mid IZ \mid IO$$

$$T \rightarrow TMF \mid LER \mid a \mid b \mid IA \mid IB \mid IZ \mid IO$$

$$F \rightarrow LER \mid a \mid b \mid IA \mid IB \mid IZ \mid IO$$

$$I \rightarrow a \mid b \mid IA \mid IB \mid IZ \mid IO$$

$$A \rightarrow a, B \rightarrow b, Z \rightarrow 0, O \rightarrow 1$$

$$P \rightarrow +, M \rightarrow *, L \rightarrow (, R \rightarrow)$$

### Per il passo 3, rimpiazziamo

$$E o EPT ext{ con } E o EC_1, C_1 o PT$$
 $E o TMF, T o TMF ext{ con } E o TC_2, T o TC_2, C_2 o MF$ 
 $E o LER, T o LER, F o LER ext{ con } E o LC_3, T o LC_3, F o LC_3, C_3 o ER$ 

### La grammatica in CNF finale e'

$$E \to EC_1 \mid TC_2 \mid LC_3 \mid a \mid b \mid IA \mid IB \mid IZ \mid IO$$

$$T \to TC_2 \mid LC_3 \mid a \mid b \mid IA \mid IB \mid IZ \mid IO$$

$$F \to LC_3 \mid a \mid b \mid IA \mid IB \mid IZ \mid IO$$

$$I \to a \mid b \mid IA \mid IB \mid IZ \mid IO$$

$$C_1 \to PT, C_2 \to MF, C_3 \to ER$$

$$A \to a, B \to b, Z \to 0, O \to 1$$

$$P \to +, M \to *, L \to (, R \to)$$

## **Pumping Lemma per CFL**

Pumping Lemma per linguaggi regolari: per una stringa del linguaggio abbastanza lunga da causare un ciclo nel relativo DFA si può "ripetere" il ciclo e scoprire una infinita' di stringhe che appartengono al linguaggio

**Pumping Lemma per CFL** (un po' piu' complicato): per una stringa del linguaggio sufficientemente lunga e' sempre possibile trovare due pezzi distinti da ripetere "in tandem":

ripetendoli lo stesso numero di volte "i", otteniamo, per ogni "i", una nuova stringa appartenente al linguaggio

## Enunciato del Pumping Lemma per CFL

## **Pumping Lemma:**

Sia L un CFL. Allora  $\exists n \geq 1$  che soddisfa:

ogni  $z \in L$ :  $|z| \ge n$  è scomponibile in 5 stringhe z = uvwxy tali che:

- 1.  $|vwx| \leq n$
- 2. |vx| > 0
- 3. per ogni  $i \geq 0$ ,  $uv^iwx^iy \in L$

### Dimostrazione Pumping Lemma per CFL

#### Prova:

- ullet Si consideri una grammatica per  $L\setminus\{\epsilon\}$  in CNF
- Assumiamo che la grammatica abbia m variabili. Sia  $n=2^m$
- $\bullet$  Sia  $z\in L$  una qualsiasi stringa tale che  $|z|\geq n=2^m.$  Si ha che ogni albero sintattico di z contiene un cammino di lunghezza  $\geq m+1$

**Lemma 1:** Se tutti i cammini dell'albero sintattico hanno lunghezza  $\leq m$ , allora la stringa generata ha lunghezza  $\leq 2^{m-1}$ 

#### Prova:



 $\bullet$  Consideriamo un cammino  $A_0A_1\dots A_ka$  di lunghezza massima: ha lunghezza  $\geq m+1.$ 



Esistono  $i \neq j$  tali che  $A_i = A_j$  (assumiamo che i,j siano fra le **ultime** m+1 variabili del cammino)



- Osservazione 1: l'albero radicato in  $A_i$  ha altezza  $\leq m+1$ , quindi la stringa corrispondente ha lunghezza  $\leq 2^m=n$  (cioe'  $|vwx|\leq n$ )
- Osservazione 2: le stringhe v e x non possono essere entrambe vuote in quanto  $A_i$  (essendo la grammatica in CNF) genera due variabili entrambe non annullabili (quindi |vx| > 0)
- Osservazione 3: l'albero sintattico ottenuto ripetendo un numero arbitrario di volte (possibilmente anche 0 volte) la parte di albero radicato in  $A_i$  meno l'albero radicato in  $A_j$ , continua ad essere un albero sintattico corretto (quindi per ogni  $i \geq 0$ ,  $uv^i wx^i y \in L$ )



### Applicazioni del Pumping Lemma per CFL

Come per i linguaggi regolari, il Pumping Lemma per CFL puo' essere usato per dimostrare che un dato linguaggio non e' libero

**Esempio 1:** Si consideri  $L = \{0^m 10^m 10^m : m \ge 1\}$ . Dimostrare che L non e' un CFL.

**Prova:** Assumiamo, per assurdo, che L sia CFL. Sia n la costante del Pumping Lemma. Si consideri la stringa  $z=0^n10^n10^n$ . Si ha che  $z\in L$  e  $|z|\geq n$ . Allora, per Pumping Lemma, z=uvwxy con  $|vwx|\leq n,\ |vx|>0$  e  $uv^iwx^iy\in L$  per ogni  $i\geq 0$ . Consideriamo ora i due seguenti casi:

- vx contiene almeno un 1. In questo caso  $uwy \not\in L$  visto che ha al piu' un solo 1
- vx contiene solo 0.
   Ci sono solo due casi. O vx include 0 tutti appartenenti ad uno stesso gruppo di 0 oppure v appartiene ad un gruppo ed x ad un altro.

In entrambi i casi  $uwy \notin L$  in quanto almeno un gruppo di 0 mantiene lunghezza n ed un'altro si riduce a lunghezza < n

**Esempio 2:** Si consideri  $L = \{0^{k^2} : k \ge 1\}$ . Dimostrare che L non e' un CFL.

**Prova:** Assumiamo, per assurdo, che L sia CFL. Sia n la costante del Pumping Lemma. Si consideri la stringa  $z=0^{n^2}$ . Si ha che  $z\in L$  e  $|z|\geq n$ . Allora, per Pumping Lemma, z=uvwxy con  $|vwx|\leq n,\ |vx|>0$  e  $uv^iwx^iy\in L$  per ogni  $i\geq 0$ . Consideriamo ora il seguente caso:

- $uv^2wx^2y \in L$  per Pumping Lemma;
- $n^2 < |uv^2wx^2y| \le n^2 + n < n^2 + 2n + 1 = (n+1)^2$ . Non essendoci quadrati perfetti strettamente inclusi fra  $n^2$  e  $(n+1)^2$  allora  $uv^2wx^2y \not\in L$ , contraddicendo il punto precedente.

## Proprieta' di chiusura dei CFL

**Teorema 7.24:** I CFL sono chiusi rispetto ai seguenti operatori (i): unione, (ii): concatenazione e (iii): chiusura di Kleene e chiusura positiva +

Prova: Per esercizio.

**Teorema:** Se L e CFL, allora lo e' anche  $L^R$ .

**Prova:** Supponiamo che L sia generato da G=(V,T,P,S). Costruiamo  $G^R=(V,T,P^R,S)$ , dove

$$P^R = \{A \to \alpha^R : A \to \alpha \in P\}$$

Si mostra per induzione sulla lunghezza delle derivazioni in G e in  $G^R$  che  $(L(G))^R = L(G^R)$ .

### I CFL non sono chiusi rispetto all'intersezione

Sia  $L_1=\{0^n1^n2^i:n\geq 1,i\geq 1\}$ . Allora  $L_1$  e' CFL con grammatica  $S\to AB$   $A\to 0A1|01$   $B\to 2B|2$ 

Inoltre, 
$$L_2=\{0^i1^n2^n:n\geq 1,i\geq 1\}$$
 e' CFL con grammatica 
$$S\to AB$$
 
$$A\to 0A|0$$
 
$$B\to 1B2|12$$

Invece,  $L_1 \cap L_2 = \{0^n 1^n 2^n : n \ge 1\}$  non e' CFL (dimostrazione tramite Pumping Lemma per esercizio).

## Operazioni su liberi e regolari

**Teorema 7.27:** Se L e' CFL, e R e' regolare, allora  $L \cap R$  e' CFL.

**Prova:** Sia L accettato dal PDA

$$P = (Q_P, \Sigma, \Gamma, \delta_P, q_P, Z_0, F_P)$$

per stato finale, e sia R accettato dal DFA

$$A = (Q_A, \Sigma, \delta_A, q_A, F_A)$$

Costruiremo un PDA per  $L \cap R$  secondo la figura



Formalmente, definiamo

$$P' = (Q_P \times Q_A, \Sigma, \Gamma, \delta, (q_P, q_A), Z_0, F_P \times F_A)$$

dove

$$\delta((q,p),a,X) = \{((r,\widehat{\delta}_A(p,a)),\gamma) : (r,\gamma) \in \delta_P(q,a,X)\}$$

Possiamo provare per induzione su  $\stackrel{*}{\vdash}$  che

$$(q_P, w, Z_0) \stackrel{*}{\vdash} (q, \epsilon, \gamma)$$
 in  $P$ 

se e solo se

$$((q_P,q_A),w,Z_0)\stackrel{*}{dash} \left((q,\widehat{\delta}(q_A,w)),\epsilon,\gamma
ight)$$
 in  $P'$ 

**Teorema 7.29:** Siano  $L, L_1, L_2$  CFL e R regolare. Allora

- 1.  $L \setminus R$  e' CFL
- 2.  $\bar{L}$  non e' necessariamente CFL
- 3.  $L_1 \setminus L_2$  non e' necessariamente CFL

#### Prova:

- 1.  $\bar{R}$  e' regolare,  $L \cap \bar{R}$  e' CFL, e  $L \cap \bar{R} = L \setminus R$ .
- 2. Se  $\bar{L}$  fosse sempre CFL, seguirebbe che

$$L_1 \cap L_2 = \overline{\overline{L_1} \cup \overline{L_2}}$$

sarebbe sempre CFL.

3. Notare che  $\Sigma^*$  e' CFL, quindi se  $L_1 \setminus L_2$  fosse sempre CFL, allora lo sarebbe sempre anche  $\Sigma^* \setminus L = \overline{L}$ .

# Proprieta' di decisione per CFL

Analizzeremo i seguenti problemi decidibili:

- Verificare se  $L(G) \neq \emptyset$ , per una CFG G
- ullet Verificare se  $w\in L(G)$ , per una stringa w ed una CFG G

E elencheremo alcuni problemi indecidibili

# Verificare se un CFL e' vuoto

L(G) e' non-vuoto se il simbolo iniziale S e' generante

Una implementazione naive del calcolo dei simboli generanti di G richiede tempo  ${\cal O}(n^2)$ 

Ottimizzando le strutture dati di appoggio può essere calcolato in tempo  $\mathcal{O}(n)$ .

 $w \in L(G)$ ?

#### Tecnica inefficiente:

Supponiamo che G sia in CNF, e che la stringa w abbia lunghezza |w|=n. Visto che il suo albero sintattico e' binario, ci sono 2n-1 nodi interni

Basta quindi generare tutti gli alberi sintattici di G con 2n-1 nodi interni, e poi controllare se almeno uno genera w

Numero degli alberi/etichettature possibili (complessita' algoritmo) quindi esponenziale in n.

## Problemi indecidibili per CFL

I seguenti problemi sono indecidibili:

- 1. Una data CFG G e' ambigua?
- 2. Un dato CFL L e' inerentemente ambigua?
- 3. L'intersezione di due CFL e' vuota?
- 4. Due CFL sono uguali?
- 5. Un CFL e' universale (cioe' uguale a  $\Sigma^*$ )?