

数学专业考研笔记

数分高代-结论与真题

作者: 谈欣

组织: 湖北第二师范学院数学与统计学院

时间: 2022/12/31

版本: 1.0

自定义:信息

目录

第·	一草	数分重要命题与结论	1
	1.1	几个很有用的不等式	2
	1.2	基本极限	3
	1.3	两个求分式数列极限的杀招	4
	1.4	一个易错的命题	4
	1.5	三角函数的求和结论	5
	1.6	关于欧拉常数	5
	1.7	数列递推的两个重要命题	6
	1.8	实数系的基本定理	7
	1.9	数列的上下极限	8
	1.10	数分中的双曲函数	9
	1.11	求极限时变量替换的陷阱	10
	1.12	函数间的比较关系	10
	1.13	等价量的替换	11
	1.14	归结原则	12
	1.15	连续函数基础	13
	1.16	闭区间上连续函数的性质	13
		函数的一致收敛	14
	1.18	震撼的反例	15
	1.19	原函数与导函数的奇偶性与周期性	15
	1.20	乘积的高阶导函数	16
	1.21	三大微分中值定理	17
	1.22	函数极限的杀招:洛必达法则	18
	1.23	泰勒公式	18
	1.24	凸性的定义与性质	19
	1.25	两类詹森不等式	20
	1.26	极值点的判定	20
	1.27	反函数的秘密	21
	1.28	可微性、连续性与区间的渊源	22
	1.29	用作结论的重要不定积分	23
	1.30	反函数、复合函数的连续与可导	24
	1.31	可积条件总结	25
	1.32	微积分学基本定理	25

	目灭
1.33 积分中值定理	26
1.34 深思牛顿-莱布尼茨公式	26
1.35 三角函数的定积分结论	27
1.36 定积分中的柯西不等式	27
1.37 三角恒等式	28
1.38 定积分与周期函数	29
1.39 定积分的应用	29
1.40 两类反常积分的柯西收敛准则	31
1.41 非负函数反常积分的比较原则	32
1.42 一般函数反常积分的敛散判别	33
1.43 典型反常积分、级数敛散性	33
1.44 反常积分中的反例	35
1.45 黎曼积分与无穷积分的区别	36
1.46 证明级数发散性的重要手段	36

第一章 数分重要命题与结论

1.1 几个很有用的不等式

命题 1.1 (Bernoulli 不等式)

设 $h > -1, n \in N_+$,则有不等式:

$$(1+h)^n \ge 1 + nh,\tag{1.1}$$

成立,其中n>1时等号成立的充要条件是h=0.

推论 1.1 (对 Bernoulli 不等式的补充)

设 h > -1, $n ∈ N_+$, 则有不等式:

$$(1+h)^n \ge 1 + \frac{n(n-1)h^2}{2},\tag{1.2}$$

成立,其中n>1时等号成立的充要条件是h=0.

这个命题以及推论在求数列极限中是有非常大的作用的,均可由二项式公式轻松推得,杀伤力极强!

命题 1.2 (均值不等式)

设 a_1, a_2, \ldots, a_n 为n个非负实数,则有不等式:

$$\frac{1}{\frac{1}{a_1} + \dots + \frac{1}{a_n}} \le \sqrt[n]{a_1 \dots a_n} \le \frac{a_1 + \dots + a_n}{n} \le \sqrt{\frac{a_1^2 + \dots + a_n^2}{n}},\tag{1.3}$$

成立,其中等号成立的充要条件时 $a_1 = a_2 = \cdots = a_n$.

均值不等式链的作用是不言而喻的,在高中就已经接触到的最基本的不等式,在数分高 代中依然屡见不鲜!

命题 1.3 (Cauchy-Schwarz 不等式)

对实数 a_1, a_2, \ldots, a_n 和 b_1, b_2, \ldots, b_n 有不等式:

$$\left| \sum_{i=1}^{n} a_i b_i \right| \le \sqrt{\sum_{i=1}^{n} a_i^2} \sqrt{\sum_{i=1}^{n} b_i^2}$$
 (1.4)

推论 1.2 (柯西不等式积分形式)

假设函数 f(x) 和 g(x) 在闭合区间 [a,b] 上连续,则有不等式:

$$\left(\int_{a}^{b} f(x)g(x) \, dx\right)^{2} \le \int_{a}^{b} f(x)^{2} \, dx \cdot \int_{a}^{b} g(x)^{2} \, dx,\tag{1.5}$$

成立。其中 f(x) 和 g(x) 是定义在 [a,b] 上的可积函数。

两种形式的柯西不等式,分别对应求和和积分两种情况——这也让我们有了初步的对求和和积分之间建立桥梁的意识,二者在做题时在不同情况下有非常好的效果!

命题 1.4

如果 $0 < x < \frac{\pi}{2}$, 则有不等式:

$$\sin x < x < \tan x. \tag{1.6}$$

 $\forall x ≥ 0$ 有不等式:

$$\sin x \le x. \tag{1.7}$$

 $\forall x \in R$ 有不等式:

$$|\sin x| \le |x|. \tag{1.8}$$

1.2 基本极限

命题 1.5 (基本极限)

在求极限时有一些常见的极限, 称之为基本极限:

1. $\lim_{n\to\infty}\frac{1}{n^{\alpha}}=0, \forall \alpha>0.$ 2. $\lim_{n\to\infty}q^n=0, \forall |q|<1.$ 3. $\lim_{n\to\infty}\sqrt[n]{a}=1, \forall a>0.$

1.
$$\lim_{n\to\infty}\frac{1}{n^{\alpha}}=0, \forall \alpha>0.$$

$$\lim_{n \to \infty} q^n = 0, \forall |q| < 1.$$

3.
$$\lim_{n \to \infty} \sqrt[n]{a} = 1, \forall a > 0.$$

4.
$$\lim_{n \to \infty} \sqrt[q]{n} = 1, \forall a > 0.$$

5.
$$\lim_{n \to \infty} (1 + \frac{1}{n})^n = e$$
.

命题 1.6 (重要极限)

两个重要极限也是非常重要的:

$$1. \lim_{x \to 0} \frac{\sin x}{x} = 1.$$

2.
$$\lim_{x \to \infty} (1 + \frac{1}{x})^x = e$$
.

从此以后遇到的我认为有意义、值得记忆的极限我都会记录在这里,随时更新!

1.3 两个求分式数列极限的杀招

命题 1.7 (Cauchy 命题)

设数列 $\{x_n\}$ 收敛于 a,则有:

$$\lim_{n \to \infty} \frac{x_1 + x_2 + \dots + x_n}{n} = a. \tag{1.9}$$

成立,其中a可以是有限数,也可以是 $+\infty$ 或 $-\infty$,但不能是 ∞ .

命题 1.8 (Stolz 定理)

设 $\{b_n\}$ 是严格单调递增且趋于 +∞ 的数列,如果:

$$\lim_{n\to\infty}\frac{a_n-a_{n-1}}{b_n-b_{n-1}}=A,$$

则有:

$$\lim_{n \to \infty} \frac{a_n}{b_n} = A. \tag{1.10}$$

成立,其中A可以是有限数,也可以是 $+\infty$ 或 $-\infty$,但不能是 ∞ .

这两个结论相当的重要,都没有在课本上出现,但却是求数列极限的杀招,尤其是针对 分式型数列。

1.4 一个易错的命题

命题 1.9

对任意的 $p \in N^+$, 都有

$$\lim_{n\to\infty}(a_{n+p}-a_n)=0,$$

但数列 $\{a_n\}$ 未必收敛.

例题 1.1 我们在这里可以给出反例来说明本命题的正确:设 $a_n = 1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n}$.由柯西收敛准则知: $\{a_n\}$ 是发散数列.又对 $\forall p \in N^+$ 有:

$$a_{n+p} - a_n = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{n+p} \le \frac{p}{n+1} \to 0, n \to \infty.$$

故命题证毕.

接下来补充一个命题,这是华东师大课本上的一道课后习题,大家可以比较一下这两道题目,同时思考一下二者的关系,以及命题 1.1.9 中原数列不收敛的原因

命题 1.10

已知 $\lim_{n\to\infty} (a_n) = a$, 则对任意的 $k \in \mathbb{N}^+$, 都有

$$\lim_{n \to \infty} a_{n+k} = a. \tag{1.11}$$

1.5 三角函数的求和结论

命题 1.11

 $\forall x \neq 2k\pi(k \in \mathbb{Z})$ 时有等式:

$$\sum_{k=1}^{n} \sin kx = \frac{\cos \frac{x}{2} - \cos (n + \frac{1}{2})x}{2\sin \frac{x}{2}}$$
 (1.12)

$$\sum_{k=1}^{n} \cos kx = \frac{\sin (n + \frac{1}{2})x - \sin \frac{x}{2}}{2 \sin \frac{x}{2}}$$
 (1.13)

这个命题经常在使用狄利克雷判别法时发挥极强的作用!

1.6 关于欧拉常数

命题 1.12

关于欧拉常数,有以下两个结论:

1. 对 $\forall n \in \mathbb{N}^+$, 有不等式:

$$(1 + \frac{1}{n})^n < e < (1 + \frac{1}{n})^{n+1} \tag{1.14}$$

成立,且左侧数列单调递增趋于 e 而右侧数列单调递减趋于 e.

2. 数列
$$\left\{ \sum_{k=1}^{\infty} n \frac{1}{k} - \ln n \right\}$$
 收敛于欧拉常数 ϕ .

1.7 数列递推的两个重要命题

命题 1.13 (不动点的定义)

设数列 {xn} 满足递推公式:

$$a_{n+1} = f(x_n), n \in N^+,$$
 (1.15)

且有:

$$\lim_{n \to \infty} x_n = x_0,\tag{1.16}$$

$$\lim_{n \to \infty} f(x_n) = f(x_0), \tag{1.17}$$

则极限 x_0 为方程 f(x) = x 的根, 此时称 x_0 为方程的不动点.

命题 1.14 (递推数列推出单调性)

设数列 {xn} 满足递推公式:

$$a_{n+1} = f(x_n), n \in N^+,$$
 (1.18)

其中函数 f(x) 与数列 $\{x_n\}$ 的每一项均在 I 上,则关于数列 $\{x_n\}$ 仅有两种可能:

- 1. 若 f(x) 为单调递增函数,则数列 $\{x_n\}$ 为单调数列.
- 2. 若 f(x) 为单调递减函数,则数列 $\{x_n\}$ 的两个子列 $\{x_{2n}\}$ 与 $\{x_{2n-1}\}$ 均为单调数列,但单调性相反.

这两个命题拿出了对待递推公式的数列的应有的礼仪,一般可以解决问题。

命题 1.15 (压缩映射原理)

设 f(x) 定义在区间 [a,b] 上且有 $f([a,b]) \subset [a,b]$ 。若有 $k \in (0,1)$ 使 $\forall x,y \in [a,b]$ 都有不等式:

$$|f(x) - f(y)| \le k|x - y|$$
 (1.19)

成立,则有:

- 1. f(x) 在 [a,b] 上存在唯一的不动点 $\zeta = f(\zeta)$
- 2. 对于满足 $a_{n+1} = f(a_n)$ 的数列 $\{a_n\}$ 必有:

$$\lim_{n \to \infty} a_n = \zeta. \tag{1.20}$$

压缩映射原理基本上是处理递推数列的最后杀招了,简而言之最重要的就是要有能力找到压缩系数 k,

1.8 实数系的基本定理

下面的定理为实数系基本定理,以任意的一个为已知条件可以推出另外五个,请务必注意理解这六个定理:

定理 1.1 (确界存在定理)

在实数集中,有上界的数集一定有上确界,有下界的数集一定有下确界.

 \Diamond

定理 1.2 (单调有界定理)

单调有界数列一定收敛.

 \sim

定理 1.3 (Cauchy 收敛准则)

数列 $\{a_n\}$ 收敛的充要条件是:对于 $\forall \epsilon > 0$,存在 $N \in \mathbb{N}^+$,使得 $\forall m, n > N$ 都有不等式:

$$|a_m - a_n| < \epsilon \tag{1.21}$$

成立.

 $^{\circ}$

定理 1.4 (闭区间套定理)

设有闭区间序列 $\{[a_n,b_n]\}$ 满足条件:

$$a_n \le a_{n+1} \le b_{n+1} \le b_n, n \in N^+,$$
 (1.22)

则存在 ζ 使得 $a_n \leq \zeta \leq b_n, n \in \mathbb{N}^+$. 若有:

$$\lim_{n \to \infty} |b_n - a_n| = 0, (1.23)$$

则 ζ 唯一, 且数列 $\{a_n\}$ 与 $\{b_n\}$ 从 ζ 的两侧单调收敛于 ζ .

 \Diamond

定理 1.5 (聚点定理)

有界数列必有收敛子集.

 \sim

定理 1.6 (有限覆盖定理)

设 $[a,b]\subset\bigcup_{\alpha}O_{\alpha}$, 其中每个 O_{α} 都是开区间 (此时我们称 O_{α} 为 [a,b] 上的开覆盖),则存在 $\{O_{\alpha}\}$ 的有限子集 $\{O_{1},O_{2},\ldots,O_{n}\}$ 是区间的开覆盖,即:

$$[a,b] \subset \bigcup_{i=1}^{n} O_{i}. \tag{1.24}$$

 \Diamond

这6条定理给我背得死死的,彻底理解清楚!

1.9 数列的上下极限

数列的上下极限有两种定义方式,二者是等价的,这里逐个介绍:

定义 1.1 (极限点)

数列的极限点是数列的收敛子列的极限。特别地,若存在正(负)无穷大量的子列,亦将 $+\infty(-\infty)$ 作为该数列的极限点.

定义 1.2 (第一定义)

数列的上极限是该数列最大的极限点,记为 $\overline{\lim}_{n\to\infty} x_n$; 数列的下极限是该数列最小的极限点,记为 $\underline{\lim}_{n\to\infty} x_n$.

从上下极限的第一定义可以看出:

- 1. 如果一个数列收敛,则其上下极限都存在且都等于极限值.
- 2. 对于 $\forall \{x_n\}$ 有 $\overline{\lim}_{n\to\infty} x_n \geq \underline{\lim}_{n\to\infty} x_n$.

定义 1.3 (第二定义)

每个数列都有上下极限, 且有:

$$\overline{\lim}_{n \to \infty} x_n = \lim_{n \to \infty} \sup_{k \ge n} \{x_k\}. \tag{1.25}$$

$$\underline{\lim}_{n \to \infty} x_n = \lim_{n \to \infty} \inf_{k \ge n} \{x_k\}. \tag{1.26}$$

1.10 数分中的双曲函数

命题 1.16

函数:

$$cosh x = \frac{e^x + e^{-x}}{2}, sinh x = \frac{e^x - e^{-x}}{2}.$$
(1.27)

分别称为双曲余弦和双曲正弦,则有:

- 1. cosh x 是偶函数, sinh x 是奇函数.
- 2. $\sinh x$ 的反函数为 $y = \ln(x + \sqrt{x^2 + 1})$, $\cosh x$ 的反函数为 $y = \ln(x + \sqrt{x^2 1})$.
- 3. $(\sinh x)' = \cosh x$, $(\cosh x)' = \sinh x$.

命题 1.17 (补充结论)

两个双曲函数还有以下性质, 注意补充:

- 1. $\cosh^2 x \sinh^2 x = 1, x \in R$.
- 2. $\sinh 2x = 2 \sinh x \cosh x$, $\cosh 2x = \cosh^2 x + \sinh^2 x$. 3. $\cosh^2 \left(\frac{x}{2}\right) = \frac{\cosh x + 1}{2}$, $\sinh^2 \left(\frac{x}{2}\right) = \frac{\cosh x 1}{2}$.

这些性质在积分还原的时候有非常好的效果, 需要注意!

1.11 求极限时变量替换的陷阱

命题 1.18 (变量替换的充分条件)

设 $\lim_{x\to a} g(x) = A$, $\lim_{y\to A} f(x) = B$ 成立,且在点 a 的某个领域上有 g(x) = y,如果满足下面三个条件之一:

- 1. 存在点 a 的一个空心领域 $O_{\delta}\{a\} \{a\}$, 在其中 $g(x) \neq A$.
- $\lim_{y \to A} f(y) = f(A).$
- 3. $A = \infty \coprod \lim_{y \to A} f(y)$

则有:

$$\lim_{x \to a} f(g(x)) = \lim_{y \to A} f(y) = B. \tag{1.28}$$

注意: 在使用变量替换求函数极限的时候要注意条件. 具体来说就是在求极限 $\lim_{\substack{x\to a \ y\to A}} F(a)$ 时,如果有 F(x)=f(g(x)),又有 $\lim_{\substack{x\to a \ y\to A}} f(y)=B$,能否推出 $\lim_{\substack{x\to A \ y\to A}} F(x)=B$?

不能! 可以给出反例: 设函数 f(x) 和 g(x) 分别为:

$$f(y) = \begin{cases} 1 & y = 0 \\ 0 & y \neq 0 \end{cases}$$
 (1.29)

$$g(x) \equiv 0.$$
 (1.30)

则有 $f(g(x)) \equiv 1$,但 $\lim_{y \to 0} f(y) = 0$, $\lim_{x \to 0} f(g(x)) = 1$.

1.12 函数间的比较关系

这个问题比较拗口, 所以在此归纳一下:

定义 1.4

设 f(x) 和 g(x) 都是在 a 的某个去心邻域 U(a) 上有定义的无穷小量,且有 $g(x) \neq 0$,那 么就有:

- 1. $f(x) = o(g(x))(x \to a)$ 的定义是: $\lim_{x \to a} (f(x)/g(x)) = 0$. 此时也称 f(x) 是 g(x) 的高阶无穷小量. 那么 $f(x) = o(1)(x \to a)$ 就可以自然地表示为 $\lim_{x \to a} f(x) = 0$.
- 2. $f(x) = O(g(x))(x \to a)$ 的定义是:存在 M > 0 使得 $|\frac{f(x)}{g(x)}| \le M$ 在 a 的某去心邻域成立,也即 $|f(x)| \le M|g(x)|$. 那么 $f(x) = O(1)(x \to a)$ 就可以表示为 f(x) 在 a 的去心邻域上有界. 但是这并不是同阶无穷小量!!!
- 3. 如果有 $\lim_{x\to a} \frac{f(x)}{g(x)} = A \neq 0$,称 f(x) 与 g(x) 为同阶无穷小量.
- 4. $f(x) \sim g(x)(x \to a)$ 的定义是: $\lim_{x \to a} \frac{f(x)}{g(x)} = 1$. 此时称 f(x) 与 g(x) 为等价无穷小量.

1.13 等价量的替换

定理 1.7 (等价量的替换)

设 f(x), g(x) 和 h(x) 在 $U^{o}(x_{0})$ 有定义,且有:

$$f(x) \sim g(x)(x \to x_0),\tag{1.31}$$

则有:

务必注意这种替换只能在乘法与除法中实现!!!

- $1. \ e^x 1 \sim x(x \to 0)$
- 2. $\tan x x \sim \frac{x^3}{3}(x \to 0)$ 3. $x \sin x \sim \tan x(x \to 0)$
- 4. $\ln(1+x) \sim x(x \to 0)$
- 5. $\sin x \sim x(x \to 0)$
- 6. $a^x 1 \sim x \ln a(x \to 0)$
- 7. $(1+x)^{\alpha} 1 \sim ax(x \to 0)$ 8. $1 \cos x \sim \frac{x^2}{2}(x \to 0)$

1.14 归结原则

定理 1.8 (归结原则)

设 $x_0, A \in \mathbb{R}$, 存在极限 $\lim_{x \to x_0} f(x) = A$ 的充要条件是: $\forall \{x_n\} (\lim_{n \to \infty} x_n = x_0)$ 且 $x_n \neq x_0 (\forall n \in \mathbb{N})$ 都有:

$$\lim_{n \to \infty} f(x_n) = A. \tag{1.32}$$

设 $A \in \mathbb{R}$, 存在极限 $\lim_{x \to \infty} f(x) = A$ 的充要条件是: $\forall \{x_n\} (\lim_{n \to \infty} x_n = \infty)$ 都有:

$$\lim_{n \to \infty} f(x_n) = A. \tag{1.33}$$

归结原则要求这个数列每一项都不为,因为函数的极限过程仅与 去心邻域中的点有关,而与 处的取值无关;归结原则的条件还可以强化以应对各种情景的函数极限:

推论 1.3 (归结原则的强化)

一般通过给定数列的单调性来实现强化

- 1. 设函数 f(x) 在点 x_0 的某空心右邻域 $U_+^o(x_0)$ 有定义, $\lim_{x \to x_0^+} f(x) = A$ 的充要条件是:对任给的以 x_0 为极限的递减数列 $\{x_n\} \subset U_+^o(x_0)$ 有 $\lim_{n \to \infty} f(x_n) = A$.
- 2. 设函数 f(x) 在点 x_0 的某空心左邻域 $U^o_-(x_0)$ 有定义, $\lim_{x \to x_0^-} f(x) = A$ 的充要条件 是: 对任给的以 x_0 为极限的递增数列 $\{x_n\} \subset U^o_-(x_0)$ 有 $\lim_{n \to \infty} f(x_n) = A$.
- 3. 设函数 f(x) 在点 $+\infty$ 的某空心邻域 $U^o(+\infty)$ 有定义, $\lim_{x\to +\infty} f(x) = A$ 的充要条件是:对任给的以 x_0 为极限的递减数列 $\{x_n\} \subset U^o(+\infty)$ 有 $\lim_{n\to \infty} f(x_n) = A$.
- 4. 设函数 f(x) 在点 $-\infty$ 的某空心邻域 $U^o(-\infty)$ 有定义, $\lim_{\substack{x\to-\infty\\n\to\infty}} f(x)=A$ 的充要条件 是: 对任给的以 x_0 为极限的递增数列 $\{x_n\}\subset U^o(-\infty)$ 有 $\lim_{\substack{n\to\infty\\n\to\infty}} f(x_n)=A$.

 \Diamond

1.15 连续函数基础

定义 1.5

如果有 $\lim_{x\to a} f(x) = f(a)$ 成立,则称 f(x) 在点 x = a 处连续;如果函数 f(x) 在区间 I 上的每个点上连续,则称 f(x) 在区间 I 上连续.

如果一个函数 f(x) 在点 x_0 处不连续,那么则称 $x = x_0$ 是 f(x) 的间断点,对于间断点类别的判定有下面的结论:

命题 1.20 (间断点的判定)

- 1. 若 $\lim_{x \to x_0} f(x) = A \neq f(x_0)$, 则称 x_0 为 f(x) 的可去间断点.
- 2. 若 $\lim_{x \to x_0^+} f(x) \neq \lim_{x \to x_0^-} f(x)$, 则称 x_0 为 f(x) 的跳跃间断点.
- 3. 若 f(x) 在 x_0 处的左极限或右极限不存在,则称 x_0 为 f(x) 的第二类间断点.

PS: 可去间断点和跳跃间断点统称为第一类间断点.

1.16 闭区间上连续函数的性质

闭区间上的连续函数有很多很好的性质,本部分逐个介绍:

定理 1.9 (最大值最小值定理)

设 f 为闭区间 [a,b] 上的连续函数,则 f(x) 在 [a,b] 上有最大值、最小值.

推论 1.4 (有界性定理)

设 f 为闭区间 [a,b] 上的连续函数,则 f(x) 在 [a,b] 上有界.

定理 1.10 (介值性定理)

设 f 为闭区间 [a,b] 上的连续函数, 且有 $f(a) \neq f(b)$, 若 μ 为介于 f(a) 与 f(b) 的常数,则至少存在一点 $x_0 \in (a,b)$ 使得:

$$f(x_0) = \mu. \tag{1.34}$$

推论 1.5 (根的存在性定理)

设 f 为闭区间 [a,b] 上的连续函数,且 f(a) 与 f(b) 异号(f(a)f(b) < 0),则至少存在一点 $x_0 \in (a,b)$ 使得:

$$f(x_0) = 0. (1.35)$$

即 f(x) 在 (a,b) 至少存在一个根.

 \Diamond

1.17 函数的一致收敛

函数的连续性是函数的局部性质,而一致连续则是函数的全局性质——这是二者最大的 区别!!! 一定要好好地理解。

定义 1.6

设 f(x) 是定义在区间 I 上的函数,若任给的 $\epsilon > 0$,存在 $\delta > 0$ 使得 $\forall x', x'' \in I(|x'-x'' < \delta|)$ 有不等式:

$$|f(x') - f(x'')| < \epsilon \tag{1.36}$$

成立, 则称 f(x) 在区间 I 上一致连续.

定理 1.11 (Cantor 定理)

设 f(x) 为定义在闭区间 [a,b] 上的连续函数,则 f(x) 在闭区间 [a,b] 上一致连续.

\Diamond

推论 1.6

设 f(x) 在闭区间 [a,b] 上一致连续,则 f(x) 在闭区间 $[c,d] \subset [a,b]$ 上一致连续.

\odot

命题 1.21

有界开区间 (a,b) 上的连续函数 f(x) 在 (a,b) 上一致连续的充要条件是: f(x) 在 x=a 处的右极限和 x=b 处的左极限均存在且有限.

推论 1.7

开区间上的一致连续函数一定在开区间上有界.

\sim

命题 1.22

f(x) 在 \mathbb{R} 上一致连续,则存在正实数 a,b 使得:

$$|f(x)| \le a|x| + b. \tag{1.37}$$

1.18 震撼的反例

命题 1.23

存在函数 f(x), 在任意的 x_0 的邻域 $U(x_0)$ 内都是无界的,但当 $x \to x_0$ 时 f(x) 并不趋于无穷大.

例题 1.2 设
$$f(x) = \frac{\cos\frac{1}{x}}{x}$$
. $\forall n \in \mathbb{N}^+$,取 $x_n = \frac{1}{n\pi}$,则有:
$$|f(x_n)| = \left|\frac{\cos n\pi}{\frac{1}{n\pi}}\right| = n\pi \to \infty, n \to \infty. \tag{1.38}$$

这说明 f(x) 在 x = 0 的任一邻域无界. 若取 $\{y_n\} = \frac{1}{(n+\frac{1}{2})\pi}$,则有: $|f(y_n)| = 0. \tag{1.39}$

这说明 $\lim_{x\to 0} f(x) \neq \infty$.

1.19 原函数与导函数的奇偶性与周期性

- 1. 若 f(x) 为可导的周期函数,则 f'(x) 也是周期函数;反之不成立.
- 2. 若 f(x) 为可导的奇函数,则 f'(x) 为偶函数;反之不成立.
- 3. 若 f(x) 为可导的偶函数,则 f'(x) 为奇函数;反之不成立.
- 4. 若 f'(x) 为区间上连续的奇函数,则 f(x) 是偶函数.

1.20 乘积的高阶导函数

定理 1.12 (Leibniz 公式)

对于两个函数乘积的高阶导数, 有如下公式:

$$(uv)^{(n)} = u^{(n)}v^{0} + \binom{n}{1}u^{(n-1)}v^{(1)} + \binom{n}{2}u^{(n-2)}v^{2} + \dots + u^{(0)}v^{(n)}$$

$$= \sum_{k=0}^{n} \binom{n}{k}u^{(n-k)}v^{(k)}.$$
(1.40)

有一些常见的n阶导函数是需要记忆的,如下:

推论 1.8

- 1. $(\sin x)^{(n)} = \sin (x + \frac{n\pi}{2}), (\cos x)^{(n)} = \cos (x + \frac{n\pi}{2}).$

2.
$$((1+x)^{\alpha})^{(n)} = \alpha(\alpha-1)\dots(\alpha-n+1)(1+x)^{\alpha-n}$$
.
3. $\left(\frac{1}{x}\right)^{(n)} = (-1)^n \frac{n!}{x^{n+1}}, \left((1+x)^{-1}\right)^{(n)} = (-1)^n \frac{n!}{(1+x)^{n+1}}, \left((1-x)^{-1}\right)^{(n)} = \frac{n!}{(1-x)^{n+1}}$.

4.
$$(\ln x)^{(n)} = (-1)^{n-1} \frac{(n-1)!}{x^n}, (\ln (1+x))^{(n)} = (-1)^{n-1} \frac{(n-1)!}{(1+x)^n}.$$

5.
$$(\ln(1-x))^{(n)} = -\frac{(n-1)!}{(1-x)^n}$$
.

1.21 三大微分中值定理

定理 1.13 (罗尔中值定理)

若函数 f 同时满足如下三个条件:

- 1. 在闭区间 [a,b] 连续;
- 2. 在开区间 (a, b) 可导;
- 3. f(a) = f(b).

则在 (a,b) 上至少存在一点 ζ 使得:

$$f'(\zeta) = 0. \tag{1.41}$$

定理 1.14 (拉格朗日中值定理)

若函数 f 同时满足如下两个条件:

- 1. 在闭区间 [a,b] 连续;
- 2. 在开区间 (a, b) 可导;

则在 (a,b) 上至少存在一点 ζ 使得:

$$f'(\zeta) = \frac{f(b) - f(a)}{b - a}.$$
 (1.42)

定理 1.15 (柯西中值定理)

若函数 f 与 g 同时满足如下四个条件:

- 1. 在闭区间 [a,b] 连续;
- 2. 在开区间 (a, b) 可导;
- 3. $\forall x \in [a,b]$ 有 $f'(x) \neq g'(x)$).
- 4. $g(a) \neq g(b)$.

则在 (a,b) 上至少存在一点 ζ 使得:

$$\frac{f'(\zeta)}{g'(\zeta)} = \frac{f(b) - f(a)}{g(b) - g(a)}.$$
 (1.43)

1.22 函数极限的杀招:洛必达法则

定理 1.16 (洛必达法则)

设函数 f 和 g 满足:

- 1. $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = 0$. 或 $\lim_{x \to x_0} g(x) = \infty$. 2. 在点 $x = x_0$ 的某空心邻域 $U^o(x_0)$ 上可导,且有 $g'(x) \neq 0$.
- 3. $\lim_{x \to x_0} \frac{f'(x)}{g'(x)} = A$.

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = A. \tag{1.44}$$

此处 A 可以是实数, 也可以是 $+\infty$, $-\infty$, ∞ .

一定要注意: 洛必达法则要求两个函数在点的空心邻域可导, 而不是单点可导.

泰勒公式 1.23

定理 1.17 (泰勒公式)

设函数 f 在 (a,b) 上存在公式中出现的各阶导数,对于任意固定的 $x_0 \in (a,b)$ 有:

$$f(x) = f(x_0) + \frac{1}{1!}f'(x_0)(x - x_0) + \frac{1}{2!}f''(x_0)(x - x_0)^2 + \dots + \frac{1}{n!}f^{(n)}(x_0)(x - x_0)^n + R_n(x), x \in (a, b).$$
 (1.45)

其中 R_n 为泰勒公式的余项,通常有四种可供选择:

1. 佩亚诺型余项:

$$R_n(x) = o((x - x_0)^n), x \to x_0.$$
(1.46)

2. 拉格朗日型余项:

$$R_n(x) = \frac{f^{(n+1)}(\zeta)}{(n+1)!} (x - x_0)^{n+1}$$
 (1.47)

其中, ζ 是介于x与 x_0 之间的值. 此时的泰勒公式即泰勒定理.

3. 柯西型余项:

$$R_n(x) = \frac{f^{(n+1)}(\zeta)}{n!} (x - \zeta)^n (x - x_0), \tag{1.48}$$

其中, ζ 是介于 x 与 x_0 之间的值.

4. 积分型余项:

$$R_n(x) = \frac{1}{n!} \int_{x_0}^x (x - t)^n f^{(n+1)}(t) \mathbf{d}x$$
 (1.49)

这里要求 f 在 (a,b) 有连续的 n+1 阶导数.

1.24 凸性的定义与性质

定义 1.7

设 f 为区间 I 上的函数,如果对于任给的 $x,y \in I$,以及 $\lambda \in [0,1]$ 都有:

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y). \tag{1.50}$$

则称 f 为 I 上的凸函数.

定理 1.18

对于凸函数有以下等价的论断:

- 1. f(x) 在 I 上为凸函数.
- 2. 若 f 在 I 上可微, f'(x) 为 I 上的增函数.
- 3. 若 f 在 I 上二阶可微, $f''(x) \ge 0, x \in I$.
- 4. $\forall x_1, x_2 \in I$ 有不等式:

$$f(x_2) \ge f(x_1) + f'(x_1)(x_2 - x_1). \tag{1.51}$$

5. $\forall x_1 < x_2 < x_3$ 有:

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} \le \frac{f(x_3) - f(x_1)}{x_3 - x_1} \le \frac{f(x_3) - f(x_2)}{x_3 - x_2}.$$
 (1.52)

定义 1.8 (Lipschitz 连续)

函数 f 在 I 上 Lipschitz 连续的充要条件是:存在 L > 0,使得对于所有 x_1 和 x_2 ,满足:

$$|f(x_1) - f(x_2)| \le L|x_1 - x_2|.$$
 (1.53)

Lipschitz 连续性是连续性的一种更强的要求。连续性要求函数在某个点附近具有足够的 光滑性,而 Lipschitz 连续性则进一步要求函数的变化率受到一定限制,不允许出现过于剧烈 的变化。并非所有连续函数都是 Lipschitz 连续的,但 Lipschitz 连续的函数一定是连续的。

命题 1.25

设函数 f 为区间 I 上的凸函数,则有:

- 1. f在I的内部 Lipschitz 连续. 特别地, 开区间上的凸函数必为连续函数.
- 2. f 在 I 的内部有单调递增的 $f'_{-}(x)$ 和 $f'_{-}(x)$, 且有不等式:

$$f'_{-}(x) \le f'_{+}(x).$$
 (1.54)

命题 1.26

若 f 为 [a,b] 上的连续的凸函数,则有:

$$f(\frac{a+b}{2}) \le \frac{1}{b-a} \int_{a}^{b} f(x) \mathbf{d}x \le \frac{f(a) + f(b)}{2}.$$
 (1.55)

 \Diamond

1.25 两类詹森不等式

詹森不等式是凸函数的重要性质之一类似于柯西不等式的, 詹森不等式也有离散和连续两个版本, 且表现为求和和积分形式。

定理 1.19 (离散的詹森不等式)

设函数 f(x) 为 [a,b] 上的凸函数,则对 $\forall x_i \in [a,b], \lambda_i > 0 (i=1,2,...,n)$,有:

$$f\left(\frac{1}{\sum_{i=1}^{n} \lambda_{i}} \sum_{i=1}^{n} \lambda_{i} x_{i}\right) \leq \frac{\sum_{i=1}^{n} \lambda_{i} f(x_{i})}{\sum_{i=1}^{n} \lambda_{i}}.$$

$$(1.56)$$

定理 1.20 (连续的詹森不等式)

设函数 f(x) 和 g(x) 在 [a,b] 上连续, 其中 g(x) > 0, $m \le f(x) \le M$, 如果 $\varphi(x)$ 是 [m,M] 上的连续的凸函数,则有:

$$f\left(\frac{\int_{a}^{b} f(x)g(x)\mathbf{d}x}{\int_{a}^{n} g(x)\mathbf{d}x}\right) \le \frac{\int_{a}^{b} \varphi(f(x))g(x)\mathbf{d}x}{\int_{a}^{b} g(x)\mathbf{d}x}.$$
(1.57)

1.26 极值点的判定

定理 1.21

设 f 在 x_0 连续, 在某邻域 $U^o(x_0, \delta)$ 上可导, 若当 $x \in (x_0 - \delta, x_0)$ 时 $f'(x) \le (\ge)0$. 若当 $x \in (x_0, x_0 + \delta)$ 时 $f'(x) \ge (\le)0$, 则 f(x) 在 x_0 处取极小(大)值.

这是最常见的一种极值点判定的方法,还有另一种在一些情况有奇效:

定理 1.22

设 f 在 x_0 的某邻域 $U(x_0, \delta)$ 上存在 n-1 阶导数,在 $x = x_0$ 处存在 n 阶导数,且 $f^{(k)}(x_0) = 0$ (k = 1, 2, ..., n-1), $f^{(n)} \neq 0$,则有:

- 1. 当 n 为偶数, f 在 x_0 处取极值. 且当 $f^{(n)}(x_0) < 0$ 时取极大值, 当 $f^{(n)}(x_0) > 0$ 时取极小值.
- 2. 当n为奇数, f在 x_0 处不取极值.

注意:这两种方法都是充分条件,反之不一定成立.

1.27 反函数的秘密

定义 1.9 (反函数的定义)

对于给定的函数 f, 如果存在另一个函数 g, 使得对于 f 的定义域内的每个元素 x, 都 f:

$$g(f(x)) = x, (1.58)$$

并且对于 g 的定义域内的每个元素 y, 都有:

$$f(g(y)) = y, (1.59)$$

则函数 g 称为函数 f 的反函数。

定义 1.10 (单射、满射与双射)

对于定义在 D 上的值域为 I 的函数 f(x):

- 1. $\forall x_1, x_2 \in D$, 若 $f(x_1) = f(x_2)$ 则有 $x_1 = x_2$,则称 f 为单射.
- 2. $\forall y \in I$, 都存在 $x \in D$, 使得 f(x) = y, 则称函数 f 为满射.
- 3. 既是单射又是满射的映射是双射.

定义 1.11 (单调函数的定义)

设 f(x) 为定义在 D 上的函数, 若对 $\forall x_1, x_2 \in D$, 当 $x_1 < x_2$ 时总有:

- 1. $f(x_1) \le f(x_2)$, 则称 f 为 D 上的增函数. 特别地, 若有不等式 $f(x_1) < f(x_2)$ 成立,则称 f 为 D 上的严格增函数.
- 2. $f(x_1) \ge f(x_2)$, 则称 f 为 D 上的减函数. 特别地, 若有不等式 $f(x_1) > f(x_2)$ 成立, 则称 f 为 D 上的严格减函数.

增函数和减函数统称为单调函数,严格增函数和严格减函数统称为严格单调函数.

- 1. 若函数 f 为双射,则 f 一定有反函数.反之不成立.
- 2. 若函数 f 在 D 上严格单调递增(递减),则 f 在 D 上一定有反函数. 反之不成立.

1.28 可微性、连续性与区间的渊源

定义 1.12 (单点连续)

设 f 为定义在 $U(x_0)$ 上的函数, 若对 $x_0 \in U(x_0)$ 有:

$$\lim_{x \to x_0} f(x) = f(x_0). \tag{1.60}$$

则称 f 在 x_0 处连续.

定义 1.13 (单点可微)

设 f 为定义在 $U(x_0)$ 上的函数, 若对 $x_0 \in U(x_0)$ 有:

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} \tag{1.61}$$

存在,则称f在 x_0 处可导.

由此可见: 想要函数 f 在 x_0 连续或可导,那么 f 必须在 $U(x_0)$ 有定义.

定理 1.23

若 f 在 x_0 上可导,则 f 在 x_0 上连续.

定义 1.14 (单点二阶可导)

设 f 的导函数 f'(x) 在点 x_0 可导, 即:

$$\lim_{x \to x_0} \frac{f'(x) - f'(x_0)}{x - x_0} \tag{1.62}$$

存在,则将其记为 $f''(x_0)$,并称 f 在 x_0 处二阶可导.

要搞清楚一点: f' 要想在 x_0 处可导,则 f' 必须在在 $U(x_0)$ 有定义.

定义 1.15 (补充: 连续可微)

若函数 f 在 I 上可导,且导函数在 I 上连续,则称 f 在 I 上连续可微.

- 1. 若函数 f 在区间 I 上可导,则 f 在区间 I 上没有间断点. 函数在区间上可导要求函数在区间上不仅连续,而且光滑. 且 f' 在 I 上没有第一类间断点,可能有第二类间断点.
- 2. 若函数 f 在 $x = x_0$ 处 n 阶可导,则 f 在 $U(x_0)$ 有 n-1 阶导函数,且 $f^{(n-1)}$ 在 $U(x_0)$ 连续.
- 3. 若函数 f 在 $U(x_0)$ 上 n 阶可导,则 f 在 $U(x_0)$ 上 k(k = 1, 2, ..., n 1) 阶可导,且 $f^{(n)}$ 在 $U(x_0)$ 连续.

1.29 用作结论的重要不定积分

下面这些不定积分要尽量记住,方法也要掌握:
$$1. \int \frac{1}{x^2 + a^2} \mathbf{d}x = \frac{1}{a} \arctan \frac{x}{a} + C.(a > 0).$$

2.
$$\int \frac{1}{x^2 - a^2} \mathbf{d}x = \frac{1}{2a} \ln \left| \frac{x - a}{x + a} \right| + C.(a \neq 0).$$

3.
$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \arcsin \frac{x}{a} + C.(a > 0).$$

4.
$$\int \frac{1}{\sqrt{x^2 \pm a^2}} \mathbf{d}x = \ln\left|x + \sqrt{x^2 \pm a^2}\right| + C.(a > 0).$$

$$5. \int \ln x \, \mathbf{d}x = x \ln x - x + C.$$

6.
$$\int \sec x \, \mathbf{d}x = \ln|\sec x + \tan x| + C, \int \csc x \, \mathbf{d}x = -\ln|\csc x + \cot x| + C.$$

7.
$$\int \sqrt{x^2 \pm a^2} \mathbf{d}x = \frac{1}{2} (x\sqrt{x^2 \pm a^2} \pm a^2 \ln|x + \sqrt{x^2 \pm a^2}| + C.(a > 0)).$$

8.
$$\int \sqrt{a^2 - x^2} \mathbf{d}x = \frac{1}{2} (x\sqrt{a^2 - x^2} + a^2 \arcsin \frac{x}{a} + C.(a > 0).$$

1.30 反函数、复合函数的连续与可导

定理 1.24 (反函数的连续性)

若函数 f 在 [a,b] 上严格单调并连续,则反函数 f^{-1} 在其定义域 [f(a),f(b)] 或 [f(b),f(a)] 上连续.

定理 1.25 (反函数的可导性)

若函数 y = f(x) 为 $x = \varphi(y)$ 的反函数, 若 $\varphi(x)$ 在点 y_0 的某邻域上连续, 严格单调且 $\varphi'(y_0) \neq 0$, 则 f 在点 $x_0(x_0 = \varphi(y_0))$ 可导, 且有:

$$f'(x_0) = \frac{1}{\varphi'(y_0)}. (1.63)$$

定理 1.26 (复合函数的连续性)

若函数 f 在点 x_0 连续, g 在点 μ_0 连续, 且有 $\mu_0 = f(x_0)$, 则复合函数 $g \circ f$ 在点 x_0 连续. 即:

$$\lim_{x \to x_0} g(f(x)) = g(\lim_{x \to x_0} f(x)) = g(f(x_0)). \tag{1.64}$$

特别地, 若复合函数 $g \circ f$ 的内函数 f 有 $\lim_{x \to x_0} f(x) = a$, 而 $a \neq f(x_0)$, 即 x_0 为 f 的可去间断点. 同时外函数 g 在 u = a 处连续,则仍有:

$$\lim_{x \to x_0} g(f(x)) = g(\lim_{x \to x_0} f(x))). \tag{1.65}$$

定理 1.27 (复合函数的可导性)

设 u = varchi(x) 在点 x_0 可导, y = f(u) 在点 $u_0 = \varphi(x_0)$ 可导, 则复合函数 $f \circ \varphi$ 在点 x_0 可导, 且有:

$$(f \circ \varphi)'(x_0) = f'(\mu_0)\varphi'(x_0) = f'(\varphi(x_0))\varphi'(x_0). \tag{1.66}$$

该式亦被称为链式法则. 函数 $y = f(u), u = \varphi(x)$ 的复合函数在 x 的求导函数一般写作:

$$\frac{\mathbf{d}y}{\mathbf{d}x} = \frac{\mathbf{d}y}{\mathbf{d}u} \cdot \frac{\mathbf{d}u}{\mathbf{d}x}.$$
 (1.67)

1.31 可积条件总结

定理 1.28 (可积的充要条件)

设 f 为 [a,b] 上的有界函数,则下列条件等价:

- 1. f 在 [a, b] 上可积.
- 2. f 在 [a,b] 上的 S(T) 等于 s(T), 或 $\lim_{\|T\|\to 0} (S(T)-s(t))=0$.
- 3. $\forall \epsilon > 0$,存在相应的一个分割 T 使得:

$$S(T) - s(t) < \epsilon. \tag{1.68}$$

也即:

$$\sum_{T} w_i \Delta x < \epsilon. \tag{1.69}$$

4. f 在 [a, b] 上几乎处处连续.

 \sim

定理 1.29 (可积函数类)

- 1. 若 f 为 [a,b] 上的连续函数,则 f 在 [a,b] 上可积.
- 2. 若 f 为 [a,b] 上只有有限个间断点的有界函数,则 f 在 [a,b] 上可积.
- 3. 若 f 为 [a,b] 上的单调函数,则 f 在 [a,b] 上可积.

 \sim

命题 1.30

- 1. $f \in U^o(x_0)$ 有定义 $\leftarrow f \in x_0$ 处有极限.
- 2. $f \in U(x_0)$ 有定义 $\leftarrow f \in x_0$ 处连续或可导.
- 3. $f \in x_0$ 处可积 $\leftarrow f \in x_0$ 处连续 $\leftarrow f \in x_0$ 处可导.

1.32 微积分学基本定理

定理 1.30 (微积分学基本定理)

设f为[a,b]上的可积函数,定义:

$$F(x) = \int_{a}^{x} f(t) \mathbf{d}t, x \in [a, b].$$
 (1.70)

称 F(x) 为 f 在 [a,b] 上的变上限积分,则有:

- 1. F(x) 是 [a,b] 上的连续函数.
- 3. 若 f 为 [a,b] 上的连续函数,则 F(x) 为 [a,b] 上的连续可微函数 F'(x) = f(x).

注意: 并不是 f 连续才有 F 可导,也不是 F 可导就一定有 F'=f.

 \heartsuit

1.33 积分中值定理

定理 1.31 (积分第一中值定理)

若 f 为 [a,b] 上连续,则至少存在一点 $\xi \in [a,b]$,使得:

$$\int_{a}^{b} f(x)\mathbf{d}x = f(\xi)(b-a). \tag{1.71}$$

推论 1.9 (推广的积分第一中值定理)

若 f 与 g 都在 [a,b] 上连续,且 g 在 [a,b] 上不变号,则至少存在一点 $\xi \in [a,b]$,使得:

$$\int_{a}^{b} f(x)g(x)\mathbf{d}x = f(\xi) \int_{a}^{b} g(x)\mathbf{d}x. \tag{1.72}$$

定理 1.32 (积分第二中值定理)

若函数 f 在 [a,b] 上可积:

1. 若函数 g 在 [a,b] 上单调递减,且 $g(x) \ge 0$,则存在 $\xi \in [a,b]$,使得:

$$\int_{a}^{b} f(x)g(x)\mathbf{d}x = g(a) \int_{a}^{\xi} f(x)\mathbf{d}x.$$
 (1.73)

2. 若函数 g 在 [a,b] 上单调递增,且 $g(x) \ge 0$,则存在 $\eta \in [a,b]$,使得:

$$\int_{a}^{b} f(x)g(x)\mathbf{d}x = g(b) \int_{\eta}^{b} f(x)\mathbf{d}x.$$
 (1.74)

1.34 深思牛顿-莱布尼茨公式

定理 1.33 (牛顿-莱布尼茨公式)

若 f 在 [a,b] 上可积, 若原函数 F 在 [a,b] 上连续、在 (a,b) 上可导, 则有:

$$\int_{a}^{b} f(x)\mathbf{d}x = F(b) - F(b). \tag{1.75}$$

命题 1.31 (推广的牛顿-莱布尼茨公式)

若 f 在 [a,b] 上可积,若 F 在 [a,b] 上连续、在 (a,b) 上可导,且除有限个点外有 F'(x) = f(x),则有:

$$\int_{a}^{b} f(x) \mathbf{d}x = F(b) - F(b). \tag{1.76}$$

注意:连续函数一定可积,可导函数一定可积.

1.35 三角函数的定积分结论

定理 1.34

设 f(x,y) 为连续函数,则 $\int_0^{\frac{\pi}{2}} f(\sin x, \cos x) dx = \int_0^{\frac{\pi}{2}} f(\cos x, \sin x) dx$

命题 1.32 (欧拉积分)

 $I = \int_0^{\frac{\pi}{2}} \ln \sin x \, dx = -\frac{\pi}{2} \ln 2.$

推论 1.10

- 1. $\int_0^{\frac{\pi}{2}} \ln \sin x \, dx = \int_0^{\frac{\pi}{2}} \ln \cos x \, dx = -\frac{\pi}{2}$.
- 2. $\int_0^{\frac{\pi}{2}} \ln \tan x \, dx = 0$.
- 3. $\int_0^{\frac{\pi}{2}} \ln \sin x dx = -\pi \ln 2$.

命题 1.33

设 f(x) 为连续函数,则 $\int_0^\pi x f(\sin x) \mathbf{d}x = \frac{\pi}{2} = \pi \int_0^{\frac{\pi}{2}} f(\sin x) \mathbf{d}x$.

1.36 定积分中的柯西不等式

定理 1.35 (Cauchy-Schwarz 不等式)

设 f(x), g(x) 在 [a,b] 可积,则有:

$$\left(\int_{a}^{b} f(x)g(x)\mathbf{d}x\right)^{2} \le \int_{a}^{b} f^{2}(x)\mathbf{d}x \int_{a}^{b} g^{2}(x)\mathbf{d}x \tag{1.77}$$

若f与g均为连续函数,则当f与g线性相关时该不等式取等.

推论 1.11

若 f(x) 在 [a,b] 上可积,则有:

$$\left(\int_{a}^{b} f(x)\mathbf{d}x\right)^{2} \le (b-a)\int_{a}^{b} f^{2}(x)\mathbf{d}x. \tag{1.78}$$

当 f 为连续函数时, 若 f 为常值函数则不等式取等.

推论 1.12

若 f(x) 在 [a,b] 上可积, 且 $f(x) \ge m > 0$, 则有:

$$\int_{a}^{b} f(x) \mathbf{d}x \int_{a}^{b} \frac{1}{f(x)} \mathbf{d}x \ge (b - a)^{2}.$$
 (1.79)

当 f 为连续函数时, 若 f 为恒正常值函数则不等式取等.

27

1.37 三角恒等式

命题 1.34 (三角函数万能公式)

 $\forall \alpha \neq \pi + 2k\pi \ \pi$:

$$\sin \alpha = \frac{2 \tan \frac{\alpha}{2}}{1 + \tan^2 \frac{\alpha}{2}}, \cos \alpha = \frac{1 - \tan^2 \frac{\alpha}{2}}{1 + \tan^2 \frac{\alpha}{2}}, \tan \alpha = \frac{2 \tan \frac{\alpha}{2}}{1 - \tan^2 \frac{\alpha}{2}}.$$
 (1.80)

命题 1.35 (半角公式与倍角公式)

1.
$$\sin\frac{\alpha}{2} = \pm\sqrt{\frac{1-\cos\alpha}{2}}, \cos\frac{\alpha}{2} = \pm\sqrt{\frac{1+\cos\alpha}{2}}, \tan\frac{\alpha}{2} = \frac{\sin\alpha}{1+\cos\alpha}.$$

2. $\sin^2 x = \frac{1-\cos 2x}{2}, \cos^2 x = \frac{1+\cos 2x}{2}.$

2.
$$\sin^2 x = \frac{1 - \cos 2x}{2}$$
, $\cos^2 x = \frac{1 + \cos 2x}{2}$.

3.
$$1 + \tan^2 x = \sec^2 x$$
, $1 + \cot^2 x = \csc^2 x$.

定理 1.36 (积化和差)

1.
$$\sin x \cos y = \frac{1}{2} (\sin (x + y) + \sin (x - y)).$$

2.
$$\sin y \cos x = \frac{1}{2} (\sin (x + y) - \sin (x - y)).$$

3.
$$\cos x \cos y = \frac{1}{2} (\cos (x + y) + \cos (x - y)).$$

4.
$$\sin x \sin y = -\frac{1}{2} (\cos (x+y) + \cos (x-y)).$$

定理 1.37 (和差化积)

1.
$$\sin x + \sin y = 2\sin\frac{x+y}{2}\cos\frac{x-y}{2}$$
.

2.
$$\sin x - \sin y = 2\cos\frac{x+y}{2}\sin\frac{x-y}{2}$$
.

3.
$$\cos x + \cos y = 2\cos\frac{x^2 + y}{2}\cos\frac{x^2 - y}{2}$$

1.
$$\sin x + \sin y = 2 \sin \frac{x+y}{2} \cos \frac{x-y}{2}$$
.
2. $\sin x - \sin y = 2 \cos \frac{x+y}{2} \sin \frac{x-y}{2}$.
3. $\cos x + \cos y = 2 \cos \frac{x+y}{2} \cos \frac{x-y}{2}$.
4. $\cos x - \cos y = -2 \sin \frac{x+y}{2} \sin \frac{x-y}{2}$.

5.
$$\tan x + \tan y = \frac{\sin(x+y)}{\cos x \cos y}$$

命题 1.36

对于反正切函数的差,有结论:

$$\arctan x - \arctan y = \arctan \frac{x - y}{1 + xy}.$$
 (1.81)

1.38 定积分与周期函数

命题 1.37 (Riemann-Lebesgue 引理)

设 f(x) 在 [a,b] 上可积, g(x) 以 T 为周期, 且在 [0,T] 上可积, 则有:

$$\lim_{n \to \infty} \int_a^b f(x)g(nx) \mathbf{d}x = \frac{1}{T} \int 0^T g(x) \mathbf{d}x \int_a^b f(x) \mathbf{d}x.$$
 (1.82)

命题 1.38 (Riemann-Lebesgue 引理)

设 f(x) 在任意有限区间可积,且 $\int_a^{+\infty} f(x) \mathbf{d} x$ 绝对收敛, g(x) 是以 T 为周期的可积函数,则有:

$$\lim_{n \to \infty} \int_{a}^{+\infty} f(x)g(nx) \mathbf{d}x = \frac{1}{T} \int 0^{T} g(x) \mathbf{d}x \int_{a}^{+\infty} f(x) \mathbf{d}x.$$
 (1.83)

这个引理在三角函数中的应用是非常重要的!

推论 1.13

设 f(x) 在 [a,b](b 可以是 $+\infty$) 上可积且绝对可积,则有:

$$\lim_{\lambda \to +\infty} \int_{a}^{b} f(x) \cos \lambda x \mathbf{d}x = 0. \tag{1.84}$$

$$\lim_{\lambda \to +\infty} \int_{a}^{b} f(x) \sin \lambda x \, dx = 0. \tag{1.85}$$

1.39 定积分的应用

命题 1.39 (平面图形的面积)

由上下两条连续曲线 $y = f_1(x)$ 和 $y = f_2(x)$ 以及两条直线 x = a 与 x = b(a < b) 所围成的平面图形的面积为:

$$A = \int_{a}^{b} f_2(x) - f_1(x) \mathbf{d}x. \tag{1.86}$$

命题 1.40 (极坐标下的面积)

设曲线 C 是由极坐标方程

$$r = r(\theta), \theta \in [\alpha, \beta] \tag{1.87}$$

给出,其中 $r(\theta)$ 在 $[\alpha,\beta]$ 上连续, $\beta-\alpha \leq 2\pi$. 由曲线 C 与两射线 $\theta=\alpha,\theta=\beta$ 所围成的 平面图形 (也成为扇形) 的面积为:

$$A = \frac{1}{2} \int_{\alpha}^{\beta} r^2(\theta) \mathbf{d}\theta. \tag{1.88}$$

命题 1.41 (旋转体的截面积与体积)

设 f 是 [a,b] 上的连续函数, Ω 是由平面图形

$$0 \le |y| \le |f(x)|, a \le x \le b. \tag{1.89}$$

绕 x 轴旋转一周所得的旋转体, 那么易知截面面积函数为:

$$A(x) = \pi f^{2}(x), x \in [a, b]. \tag{1.90}$$

而旋转体 Ω 的体积公式为:

$$V = \pi \int_{a}^{b} f^{2}(x) \mathbf{d}x. \tag{1.91}$$

命题 1.42 (弧长与曲率)

设曲线 C 由参数方程

$$\begin{cases} x = x(t) \\ y = y(t) \end{cases}$$
 (1.92)

给出. 若曲线 C 是一条光滑曲线,则 C 是可求长的,且弧长为:

$$s = \int_{\alpha}^{\beta} \sqrt{(x'(t)^2) + (y'(t))^2} \mathbf{d}t.$$
 (1.93)

曲率计算公式为:

$$K = \frac{|x'y'' - x''y'|}{\left((x')^2 + (y')^2\right)^{\frac{3}{2}}}$$
(1.94)

推论 1.14 (极坐标方程的弧长)

若曲线 C 是由极坐标方程

$$r = r(\theta), \theta \in [\alpha, \beta] \tag{1.95}$$

表示,则弧长公式为:

$$s = \int_{\alpha}^{\beta} \sqrt{r^2(\theta) + (r'(\theta))^2} \mathbf{d}\theta. \tag{1.96}$$

1.40 两类反常积分的柯西收敛准则

定理 1.38 (无穷积分的 Cauchy 收敛准则)

无穷积分 $\int_a^{+\infty} f(x) \mathbf{d} x$ 收敛的充分必要条件是: $\forall \epsilon > 0$,存在 A > a 使得对 $\forall u_1, u_2 > A$ 都有:

$$\left| \int_{u_1}^{u_2} f(x) \mathbf{d}x \right| < \epsilon. \tag{1.97}$$

定理 1.39 (瑕积分的 Cauchy 收敛准则)

瑕积分 $\int_a^b f(x) dx$ (瑕点为 a) 收敛的充分必要条件是: $\forall \epsilon > 0$, 存在 $\delta > 0$ 使得对 $\forall u_1, u_2 \in (a, a + \delta)$ 都有:

$$\left| \int_{u_1}^{u_2} f(x) \mathbf{d}x \right| < \epsilon. \tag{1.98}$$

1.41 非负函数反常积分的比较原则

对于非负函数的两种反常积分的敛散性判别,比较原则是非常好用的方法:

定理 1.40 (无穷积分比较原则)

设 f(x), g(x) 为 $[a, +\infty)$ 上的非负函数,它们在任意有限区间 [a, u] 上可积,且有:

$$0 \le f(x) \le g(x), x \in [a, +\infty], \tag{1.99}$$

那么当 $\int_a^{+\infty} g(x) dx$ 收敛时 $\int_a^{+\infty} f(x) dx$ 收敛, 当 $\int_a^{+\infty} f(x) dx$ 发散时 $\int_a^{+\infty} g(x) dx$ 发散.

定理 1.41 (瑕积分比较原则)

设 f(x), g(x) 为 (a,b] 上以 a 为瑕点的函数,它们在任意有限区间 $[u,b] \subset (a,b]$ 上可积, 且有:

$$0 \le f(x) \le g(x), x \in (a, b], \tag{1.100}$$

那么当 $\int_a^b g(x) dx$ 收敛时 $\int_a^b f(x) dx$ 收敛, 当 $\int_a^b f(x) dx$ 发散时 $\int_a^b g(x) dx$ 发散.

比较原则直接使用并不太方便,一般要使用极限形式下特定函数的比较原则推论进行反 常积分敛散性判别:

推论 1.15 (极限形式下的无穷积分比较原则)

设 f(x) 是定义于 $[a,+\infty)$ 上的非负函数, 在 \forall 有限区间 [a,u] 上可积, 且:

$$\lim_{x \to +\infty} x^p f(x) = \lambda. \tag{1.101}$$

则有:

- 1. 当 $p > 1, 0 \le \lambda < +\infty$ 时, $\int_a^{+\infty} f(x) dx$ 收敛;
 2. 当 $p \le 1, 0 < \lambda \le +\infty$ 时, $\int_a^{+\infty} f(x) dx$ 发散;

推论 1.16 (极限形式下的瑕积分比较原则)

设 f(x) 是定义于 (a,b] 上的非负函数, a 为其瑕点, 在 \forall 有限区间 $[u,b] \subset (a,b]$ 上可 积, 且:

$$\lim_{x \to +\infty} (x - a)^p f(x) = \lambda. \tag{1.102}$$

则有:

- 1. 当 $0 时,<math>\int_a^b f(x) dx$ 收敛;
- 2. 当 $p \ge 1, 0 < \lambda \le +\infty$ 时, $\int_a^b f(x) \mathbf{d}x$ 发散;

1.42 一般函数反常积分的敛散判别

定理 1.42 (Dirichlet 判别法)

若 $F(u) = \int_a^u f(x) dx$ 在 $[a, +\infty)$ 上有界,g(x) 在 $[a, +\infty)$ 上当 $x \to +\infty$ 时单调趋于 0,则 $\int_a^{+\infty} f(x)g(x) dx$ 收敛.

定理 1.43 (Albel 判别法)

若 $\int_a^{+\infty} f(x) dx$ 收敛, g(x) 在 $[a, +\infty)$ 上单调有界, 则 $\int_a^{+\infty} f(x) g(x) dx$ 收敛.

上面两个定理是针对无穷反常积分的,下面是瑕积分的对应形式:

定理 1.44 (Dirichlet 判别法)

设 a 为 f(x) 的瑕点,若 $F(u) = \int_u^b f(x) dx$ 在 (a,b] 上有界,g(x) 在 (a,b] 上单调且 $\lim_{x \to a^+} g(x) = 0$,则瑕积分 $\int_a^{+\infty} f(x)g(x) dx$ 收敛.

定理 1.45 (Albel 判别法)

设 a 为 f(x) 的瑕点,若 $\int_a^b f(x) \mathbf{d}x$ 收敛, g(x) 在 (a,b] 上单调有界,则 $\int_a^{+\infty} f(x)g(x) \mathbf{d}x$ 收敛.

1.43 典型反常积分、级数敛散性

命题 1.43 (p 积分)

对于无穷积分 $\int_{1}^{+\infty} \frac{\mathbf{d}x}{x^{p}}$ 有:

$$\lim_{u \to +\infty} \int_{1}^{u} \frac{\mathbf{d}x}{x^{p}} = \begin{cases} \frac{1}{p-1} & p > 1\\ +\infty & p \le 1 \end{cases}$$
 (1.103)

显然其敛散性如下:

1.
$$p > 1$$
 时 $\int_{1}^{+\infty} \frac{\mathbf{d}x}{x^{p}}$ 收敛于 $\frac{1}{p-1}$.

2.
$$p \le 1$$
 时 $\int_1^{+\infty} \frac{\mathbf{d}x}{x^p}$ 发散于 $+\infty$.

命题 1.44 (q 积分)

对于瑕积分 $\int_0^1 \frac{\mathbf{d}x}{r^q}$ 有:

$$\int_{u}^{1} \frac{\mathbf{d}x}{x^{q}} = \begin{cases} \frac{1}{q-1} (1 - u^{1-q}) & q \neq 1\\ -\ln u & q = 1 \end{cases}$$
 (1.104)

显然其敛散性如下:

- 1. 0 < q < 1 时, $\int_0^1 \frac{dx}{x^q}$ 收敛于 $\frac{1}{1-q}$.
- 2. $q \ge 1$ 时, $\int_0^1 \frac{\mathbf{d}x}{x^q}$ 发散于 $+\infty$.

推论 1.17 (p 级数)

对于 p 级数 $\sum \frac{1}{n^p}$ 的敛散性有:

- $1. p > 1 时 \sum_{n=1}^{\infty} \frac{1}{n^p} 收敛.$
- 2. $p \le 1$ 时 $\sum \frac{n^{\nu}}{n^p}$ 发散.

命题 1.45 (几何级数)

对于 $1 + aq + aq^2 + \cdots + aq^n + \ldots$ 的敛散性,有:

$$S_n = 1 + aq + aq^2 + \dots + aq^n = a \cdot \frac{1 - q^n}{1 - q}.$$
 (1.105)

故有:

- 1. |q| < 1 时 $1 + aq + aq^2 + \dots + aq^n + \dots$ 收敛于 $\frac{a}{1 q}$.
- 2. $|q| \ge 1$ 时 $1 + aq + aq^2 + \dots + aq^n + \dots$ 发散.

命题 1.46 (典型级数)

- 1. 调和级数 $1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n} + \ldots$ 是发散的.
- 2. 级数 $\sum \frac{1}{n^2}$ 是收敛的.

1.44 反常积分中的反例

命题 1.47

设函数 f(x) 在任何有限区间 [a,u] 上非负可积,且 $\int_a^{+\infty} f(x) dx$ 收敛,则 f(x) 不一定有界,例如函数

$$f(x) = \begin{cases} x & x \in \mathbb{Z} \\ 0 & x \notin \mathbb{Z} \end{cases}$$
 (1.106)

在任意有限区间 [0,u] 上非负可积,且 $F(u) = \int_0^u f(x) dx = 0$,进而有:

$$\int_0^{+\infty} f(x) \mathbf{d}x = \lim_{u \to +\infty} F(u) = 0. \tag{1.107}$$

故而 $\int_0^{+\infty} f(x) dx$ 收敛, 而 f(x) 在 $[0,+\infty)$ 上是无界的.

命题 1.48

设函数 f(x) 为 $[a, +\infty)$ 上的连续函数,且 $\int_a^{+\infty} f(x) dx$ 收敛,则不一定有 $\lim_{x \to +\infty} f(x) = 0$,例如函数

$$f(x) = \sin x^2. \tag{1.108}$$

显然 $\int_{1}^{+\infty} \sin x^2 dx$ 收敛, 但是 $\lim_{x \to +\infty} \sin x^2$ 不存在.

命题 1.49

设函数 f(x) 为 $[a, +\infty)$ 上的恒正的连续可微函数,且 $\int_a^{+\infty} f(x) dx$ 收敛,则 f(x) 不一定有界,例如函数

$$f(x) = \frac{x}{1 + x^6 \sin^2 x}. ag{1.109}$$

显然 $\int_1^{+\infty} f(x) \mathbf{d} x$ 收敛,且 f(x) 恒正连续可微,但由 $\lim_{n \to \infty} f(n\pi) = +\infty$ 可知 f(x) 无界.

- 1. 无穷积分 $\int_a^{+\infty} f(x) dx$ 收敛或绝对收敛, $\int_a^{+\infty} f^2(x) dx$ 不一定收敛.
- 2. 瑕积分 $\int_a^b f(x) dx$ 收敛, $\int_a^b f^2(x) dx$ 不一定收敛.

1.45 黎曼积分与无穷积分的区别

命题 1.51

- 1. 如果函数 f(x) 在闭区间 [a,b] 上黎曼可积,那么 |f(x)| 在区间 [a,b] 上也黎曼可积,反之不成立.
- 2. 如果函数 |f(x)| 在无穷区间 $[a,+\infty)$ 上可积,即 $\int_a^{+infty} |f(x)| dx$ 收敛,那么 $\int_a^{+infty} f(x) dx$ 收敛,反之不成立.

值得注意的是,对于黎曼积分,函数是否可积取决于间断点的数量是否有限(勒贝格定理)与是否有界,正因如此,求绝对值后间断点数量不会变化,故结论 1 成立;而对于无穷积分,是否收敛取决于无穷远处的函数是否无穷小,故由 $|\int_{A'}^{A''} f(x) dx| \leq \int_{A'}^{A''} |f(x)| dx < \epsilon$ 可知 $\int_{a}^{+\infty} f(x) dx$ 收敛.

1.46 证明级数发散性的重要手段

定理 1.46

定理 1.47 (级数的 Cauchy 收敛准则)

级数 $\sum_{n=1}^{\infty} u_n$ 收敛的充要条件是:对任给的 $\varepsilon>0$,存在 N>0,使得对任意 m>N 以及 $p\in N^+$ 都有:

$$|u_{m+1} + u_{m+2} + \dots + u_{m+p}| < \varepsilon.$$
 (1.110)