Лабораторная работа 1.4.8 Измерение модуя Юнга методом аккустического резонанса

Красоткина Виктория

14 ноября 2022 г.

Цель: Определить скорость полета пули, применяя законы сохранения и используя баллистические маятники.

Приборы:

- духовое ружье на штативе
- осветитель
- оптическая система для измерения отклонений маятника
- измерительная линейка
- пули и весы для их взвешивания
- пинцет
- также баллистические маятники

Теоретическая часть

Относительная деформация по оси, вдоль которой приложено механическое напряжение σ : $\varepsilon = \frac{\Delta x}{x_0}$ определяется соотношением:

$$\sigma = \varepsilon E$$

Скорость u распространения продольной акустической волны, вызванной малой деформацией тела, в случае длинного тонкого стержня определяется соотношением:

$$u = \sqrt{\frac{E}{\rho}}$$

С точки зрения распространения волн стержень можно считать тонким, если длина λ звуковых волн в нём велика по сравнению с его радиусом: $\lambda \ll R$. Такая волна свободно распространяется только вдоль стержня, поэтому можно считать, что стержень испытывает деформации растяжения и сжатия только вдоль своей оси.

Если боковые стенки тонкого стержня свободны, то его деформации описывается законом Гука, и, упругие свойства определяются модулем Юнга среды.

Акустическая волна, распространяющаяся в стержне конечной длины L, испытает отражение от торцов стержня. Если при этом на длине стержня укладывается целое число полуволн, то отражённые волны будут складываться в фазе с падающими, что приведёт к резкому усилению амплитуды их колебаний и возникновению акустического резонанса в стержне. Измеряя соответствующие резонансные частоты, можно определить скорость звуковой волны в стержне и, таким образом, измерить модуль Юнга материала стержня.

Уравнение волны в тонком стержне

Направим ось Ox вдоль геометрической оси стержня (рис. ??). Разобьём исходно недеформированный стержень на тонкие слои толщиной Δx . При продольной дефор-

мации среды границы слоёв сместятся в некоторые новые положения. Пусть плоскость среды, находящаяся исходно в точке x, сместилась к моменту t на расстояние $\xi(x,t)$ Тогда слой, занимавший исходно отрезок $[x;x+\Delta x]$, изменил свой продольный размер на величину $\Delta \xi = \xi(x+\Delta x,t)-\xi(x,t)$. Пользуясь малостью Δx и определением производной, получим $\Delta \xi = \frac{\partial \xi}{\partial x} \Delta x$. Относительное удлинение элемента стержня в точке x.

Рис. 1: Силы, действующие на элемент стержня при продольных колебаниях

$$\Delta \xi = \frac{\partial \xi}{\partial x} \Delta x$$

По закону Гука:

$$\sigma = \varepsilon E = E \frac{\partial \xi}{\partial x},$$

 $\sigma = \frac{F}{S}$ (F – сила, S – площадь поперечного сечения.)

Из-за разницы напряжений возникнет возвращающая сила:

$$\Delta F = S\sigma(x + \Delta x) - S\sigma(x) = \frac{\partial \sigma}{\partial x} S\Delta x = \frac{\partial^2 \xi}{\partial x^2} ES\Delta x$$

Ускорение маленького элемента массой Δm :

$$a = \frac{\partial^2 \xi}{\partial t^2}$$

Из предыдущих соотношений получаем уравнение движени среды:

$$S\rho \Delta x \frac{\partial^2 \xi}{\partial t^2} = SE \Delta x \frac{\partial^2 \xi}{\partial x^2}$$

Если принять $u=\sqrt{\frac{E}{p}}$ (скорость распространения волны в срерде) получаем волновое уравение:

$$S\rho \Delta x \frac{\partial^2 \xi}{\partial t^2} = SE \Delta x \frac{\partial^2 \xi}{\partial x^2}$$
 (1)

Бегущие акустические волны. Скорость волны.

Решение волнового уравнения, зависящее от $X = x - ut - \xi(x, t) = \phi(x - ut)$. Волновое уравнение обращается в тождество при любой $\phi(x - ut)$

$$\frac{\partial^2 \phi}{\partial t^2} = (-u)^2 \phi'', \quad \frac{\partial^2 \phi}{\partial x^2} = \phi'' \to \frac{\partial^2 \phi}{\partial t^2} \equiv u^2 \frac{\partial^2 \phi}{\partial x^2}$$

 $\phi(x-ut)$ описывает возмущение среды произвольной формы, которое смещается поступательно во времени по оси Ox со скоростью $u=\dfrac{dx}{dt}$, не меняя своей формы.

Общее решение дифференциального уравнения 1 представимо в виде суммы двух волн произвольной формы, бегущих в противоположные стороны со скоростями $\pm u$:

$$\xi(x, t) = \phi_1(x - ut) + \phi_2(x + ut),$$

где u — скорость волны, ϕ_1 и ϕ_2 — функции, вид которых в конкретной задаче определяется из начальных и граничных условий.

Собственные колебания стержня

В случае гармонического возбуждения колебаний с частотой f продольная волна в тонком стержне может быть представлена в виде суперпозиции двух бегущих навстречу гармонических волн:

$$\xi(x,t) = A_1 \sin(\omega t - kx + \varphi_1) + A_2 \sin(\omega t + kx + \varphi_2), \tag{2}$$

где $\omega = 2\pi f$ — циклическая частота. Коэффициент $k = \frac{2\pi}{\lambda}$ называют волновым числом или пространственной частотой волны.

Первое слагаемое 2 описывает гармоническую (синусоидальную) волну, бегущую в положительном направлении по x, второе – в отрицательном. Соотношения между амплитудами A_1, A_2 и начальными фазами ϕ_1, ϕ_2 этих волн, а также возможные частоты колебаний ω , определяются граничными условиями на концах стержня.

Пусть концы стержня не закреплены. Тогда напряжения в них должны равняться нулю. Пусть координаты торцов x=0 и L=x. Получаем граничные условия для свободных концов стержня:

$$\sigma(0) = 0 \to \frac{\partial \xi}{\partial x}\Big|_{x=0} = 0, \quad \sigma(L) = 0 \to \frac{\partial \xi}{\partial x}\Big|_{x=L} = 0$$

Эти соотношения должны выполняться в произвольный момент времени. Получаем:

$$-kA_1\cos(\omega t + \varphi_1) + kA_2\cos(\omega t + \varphi_2) = 0$$

Выполняется при любом t, если у падающией и отражённой волн равны:

$$A_1 = A_2$$

$$\varphi_1 = \varphi_2$$

Амплитуды бедут равны, если волны отражаются без потери энергии. Равенство фаз означает то, что при отражении синусоидальной волны от свободного окнца стержня фаза не меняется. Перепишем исследуемую функцию 1:

$$\xi(x, t) = 2A\cos(kx)\sin(\omega t + \varphi)$$

Такие колебания - стоячие волны.

Выражая через длину волны получаем:

$$\lambda_n = \frac{2L}{n}, \quad n \in \mathbb{N}$$

Для возбуждения стоячей волны на длине стрежня должно укладываться целое число полуволн.

Допустимые значения частот – собственные частоты колебаний стержня длиной L:

$$f_n = \frac{u}{\lambda_n} = n \frac{u}{2L}, \quad n \in \mathbb{N},$$

При совпадении внешней частоты с одной из собственных частот в стежне возникает акустический резонанс.

Зависимость амплитуды смещения ξ от координаты x для собственных колебаний стержня с незакреплёнными концами. Она распределена по гармоническому закону: $\xi_0(x) = 2A\cos kx$. В реальной системе стоячая волна не может быть получена в чистом виде, так как всегда существуют потери энергии.

Рис. 2: Собственные продольные колебания стержня с незакреплёнными концами

Схема и методика измерений

Исследуемый стержень 5 размещается на стойке 10. Возбуждение и приём колебаний в стержне осуществляются электромагнитными преобразователями 4 и 6, расположенными рядом с торцами стержня. Крепления 9, 11 электромагнитов дают возможность регулировать их расположение по высоте, а также перемещать вправовлево по столу 12. Электромагнит 4 служит для возбуждения упругих механических продольных колебаний в стержне. На него с генератора звуковой частоты 1 подаётся сигнал синусоидальной формы: протекающий в катушке электромагнита ток создаёт пропорциональное ему магнитное поле, вызывающее периодическое воздействие заданной частоты на торец стержня. Рядом с другим торцом стержня находится аналогичный электромагнитный датчик 6, который служит для преобразования механических колебаний в электрические. Сигнал с выхода генератора поступает на частотомер 2 и на вход канала X осциллографа 3. ЭДС, возбуждаемая в регистрирующем электромагните 6, пропорциональная амплитуде колебаний торца стержня,

Рис. 3. Схема установки: 1 — генератор звуковой частоты, 2 — частотомер, 3 — осциллограф, 4 — электромагнит-возбудитель, 5 — образец, 6 — электромагнит-приемник, 7 — усилитель звуковой частоты, 8 — блок питания усилителя, 9, 11 — стойки крепления электромагнитов, 10 — стойка крепления образца, 12 — направляющая.

Рис. 3: Схема установки

усиливается усилителем 7 и подаётся на вход канала Y осциллографа. Изменяя частоту генератора и наблюдая за амплитудой сигнала с регистрирующего датчика, можно определить частоту акустического резонанса в стержне. Наблюдения в режиме X-Y позволяют сравнить сигналы генератора и датчика, а также облегчает поиск резонанса при слабом сигнале.

Методика измерений

Модуль Юнга материала E может быть найден по скорости распространения акустических волн в стержне u и его плотности ρ . Для определения скорости используем метод аккустического резонанса.

Зная номер гармоники n и резонансную частоту ν_n , на которой наблюдается усиление амплитуды колебаний, вычисляем скорость распространения подольных волн в стержне:

$$u = 2L\frac{f_n}{n}$$

Таким образом, для измерения скорости u необходимо измерить длину стержня L и получить зависимость резонансной частоты от номера резонанса $f_n(n)$. Принимаем во внимание только резонансы, опысываемые выше.

Ход работы

Сперва определим погрешности приборов:

• штангенциркуль:
$$2 \cdot \frac{\text{цена деления}}{2} = 0.1 \text{ мм}$$

• микрометр:
$$2 \cdot \frac{\text{цена деления}}{2} = 1$$
 мкм

Систематическую погрешность будем определять по формуле

$$\sigma_{\text{CHCT}} = \sqrt{\frac{1}{N(N-1)} \sum_{i=1}^{N} (x_i - \langle x \rangle)^2}$$

Общую погрешность найдем как среднеквадратичную величину из всех погрешностей:

$$\sigma = \sqrt{\sigma_{\text{случ}}^2 + \sigma_{\text{пр}}^2 + \dots}$$

- 1. Познакомимся с основными органами управления электронного осциллографа. По техническому описанию к работе проведем предварительную настройку осциллографа и звукового генератора.
- 2. Раздвинем датчики и поместим между ними медный стержень.
- 3. Разместим электромагниты напротив торцов стержня так, чтобы торцы стержня совпали с центрами датиков, а зазор между полюсами электромагнита и торцевой поверхностью стержней составлял 1-3 мм. Плоскость магнитов при этом должна быть перпендикулярна оси стержня. Стержень и электромагниты не должны соприкасаться.
- 4. Оценим частоту первого резонанса по формуле

$$f_1 = \frac{u}{2L},$$

где $u = 3.7 \cdot 10^3$ м/с (для меди). В нашем случае L = 60 см, следовательно

$$f_1 = 3083 \, \Gamma$$
ц

- 5. Найдем первый резонанс вблизи частоты f_1 , наблюдая за амплитудой колебаний на экране осциллографа. Биения должны отсутствовать, на экране должен наблюдаться эллипс, который при резонансе достигает максимального размера.
- 6. Определим значение первой резонансной частоты по индикатору частотометра. Для точности измерения повторим несколько раз:

№ опыта	1	2	3
f_1 , Гц	3248	3249	3249

Среднее значение частоты первого резонанса:

$$\langle f_1 \rangle = 3248.7 \ \Gamma$$
ц

- 7. Получим резонансы на частотах, соответствующих кратным гармоникам: для этого будем добиваться резонанса вбилизи частот $f_n=nf_1$, где $n=2,3,\ldots$ Измеренные значения запишем в таблицу 1.
- 8. Определим плотность материала стержня. Для этого измерим линейные размеры и массу нескольких образцов стержня. Данные запишем в таблицу 2. Плотность будем рассчитывать по формуле

$$\rho = \frac{4m}{\pi d^2 l}$$

материал	n	f, Гц	f, Гц	<i>f</i> , Гц	$\langle f \rangle$, Гц
	1	3248	3249	3249	3248.7
	2	6485	6510	6508	6501.0
медь	3	9726	9725	9727	9726.0
_	4	12958	12988	12992	12979.3
	5	16233	16231	16232	16232.0
	1	4129	4130	4129	4129.3
	2	8271	8271	8277	8273.0
сталь	3	12402	12404	12405	12403.7
	4	16541	16535	16536	16537.3
	5	20671	20669	20671	20670.3
	1	4256	4256	4256	4256.0
алюминий	2	8537	8563	8549	8549.7
	3	12781	12777	12774	12777.3
	4	17030	17031	17039	17033.3
	5	21279	21272	21269	21273.3

Таблица 1: Частоты резонансов для разных материалов

Приборная погрешность плотности рассчитана по формуле

$$\sigma_{\rho} = \sqrt{\left(\frac{\partial \rho}{\partial m}\right)^2 \cdot \sigma_m^2 + \left(\frac{\partial \rho}{\partial d}\right)^2 \cdot \sigma_d^2 + \left(\frac{\partial \rho}{\partial l}\right)^2 \cdot \sigma_l^2} = \sqrt{\frac{4}{\pi d^2 l} \cdot \sigma_m^2 + \frac{8m}{\pi d^3 l} \cdot \sigma_d^2 + \frac{4m}{\pi d^2 l^2} \cdot \sigma_l^2}$$

9. Определим среднее значение диаметра исследуемого стержня, измерив его штангенциркулем в нескольких местах. Результаты измерений занесем в таблицу 3. Проверим справделивость приближения тонкого стержня:

$$\frac{R}{\lambda} = \frac{d}{2\lambda} \ll 1,$$

т.к. $\lambda \approx 1$ м.

- 10. Повторим опыты п. 2-9 для стержней из стали и алюминия. Результаты измерений запишем в таблицы 1, 2 и 3.
- 11. Для стержня из алюминия проведем дополнительный опыт: добьемся возбуждения первой гармоники f_1 резонансных колебаний в стержне при половинной частоте генератора $f = f_1/2$. Пронаблюдаем на экране фигуру Лиссажу (рис. 4)
- 12. Не выполнялся.
- 13. Не выполнялся.
- 14. Построим графики зависимости частоты от номера гармоники f(n) для каждого стержня.

На графике черным цветом представлена зависимость для меди, зеленым – для стали, красным – для алюминия.

Как видно, зависимость является линейной и проходит через начало координат, что согласуется с теорией.

материал	d, mm	l, cm	т, г	ρ , Γ/cm^3	$\langle \rho \rangle$, Γ/cm^3
	11.90	4.05	40.348	8.95	
	11.88	4.20	41.331	8.87	
	11.52	4.15	38.705	8.95	
MOHI	11.70	4.25	40.985	8.97	8.94 ± 0.2
медь	11.82	4.03	39.379	8.91	
	11.68	3.07	29.448	8.95	
	11.66	3.01	29.107	9.06	
	11.90	3.04	30.104	8.91	
	11.64	4.41	36.912	7.87	
	11.68	4.38	37.073	7.90	
	11.82	3.29	28.104	7.78	7.85 ± 0.2
070 71	12.00	3.95	34.941	7.82	
сталь	11.96	4.02	35.178	7.79	
	12.00	3.95	35.134	7.86	
	12.00	2.94	26.153	7.87	
	11.98	2.93	26.020	7.88	
	11.62	4.30	12.174	2.67	
	11.70	4.48	13.234	2.75	8.94 ± 0.2 7.85 ± 0.2
	11.36	4.24	11.782	2.74	
алюминий	11.50	3.29	9.262	2.71	2.73 ± 0.01
алюминии	11.80	3.12	9.484	2.78	
	11.46	4.37	12.450	2.76	
	11.72	3.16	9.194	2.68	
	11.44	3.23	8.994	2.71	

Таблица 2: Плотности разных материалов

материал	d, MM	d, MM	d, MM	$\langle d \rangle$, mm
медь	11.89	11.89	11.89	11.89
сталь	11.96	11.96	11.96	11.96
алюминий	11.59	11.59	11.59	11.59

Таблица 3: Диаметры стержней из разных материалов

15. Построим наилучшие прямые по экспериментальным точкам. Определим коэффициент наклона по формуле

$$k = \frac{\langle xy \rangle - \langle x \rangle \langle y \rangle}{\langle x^2 \rangle - \langle x \rangle^2}$$

Занесем рассчитанные значения в таблицу 5.

Погрешность коэффициента k:

$$\sigma_k^{\text{CJ}} = \sqrt{\frac{1}{n-2} \left(\frac{D_{yy}}{D_{xx}} - k^2 \right)}$$

Величины погрешностей также заносим в таблицу 5.

Рис. 4: Фигура Лиссажу

материал	к, Гц	σ_k , Гц	<i>u</i> , м/c
медь	3244.5	3.7	3893.4 ± 4.4
сталь	4134.6	10.0	4961.5 ± 12.0
алюминий	4251.8	9.4	5102.2 ± 11.3

Таблица 4: Коэффициенты наклона

Скорости звука считаем по формуле

$$u = 2Lk$$
,

где L = 60 см, и также записываем в таблицу.

16. Определим модуль Юнга для каждого стержня по формуле

$$E = u^2 \cdot \rho$$

Погрешность величины:

$$\sigma_E = \sqrt{\left(\frac{\partial E}{\partial u}\right)^2 \cdot \sigma_u^2 + \left(\frac{\partial E}{\partial \rho}\right)^2 \cdot \sigma_\rho^2} = \sqrt{(2u\rho)^2 \cdot \sigma_u^2 + u^4 \cdot \sigma_\rho^2}$$

Результаты совпадают с табличными данными.

17. Не выполнялся.

Рис. 5: График зависимости f от n

материал	E, ГПа	$σ_E$, ΓΠα
медь	135.5	0.3
сталь	193.2	0.9
алюминий	71.8	0.3

Таблица 5: Модули Юнга

Вывод

В результате эксперимента получили значения скорости звука в представленных материалах и модули Юнга этих материалов. Достижение такой хорошей точности возможно благодаря высокой чувствительности генератора колебаний. Однако достаточно большую погрешность в результаты измерений вносит неточность определения резонанса визуальным методом, так как не всегда каринка на осциллографе получалась чёткой и отличалась при изменении частоты колебаний.