Exercise 3. Here is a "proof" that every relation C that is both symmetric and transitive is also reflexive: "Since C is symmetric, aCb implies bCa. Since C is transitive, aCb and bCa together imply aCa, as desired." Find the flaw in this argument.

Proof.

Let $A = \{1, 2, 3\}$ and C the relation defined by the following part of $A \times A$: $C = \{(1, 1), (1, 3), (3, 3), (3, 1)\}$. By construction, C is both symmetric and transitive, but is not reflexive since $(2, 2) \notin C$. The flaw in the reasoning comes from the fact that it only considers elements of C, whereas reflexivity is $\forall x \in A$, xCx.