

Knowledge Transfer Partnerships

Investigation of cooling process using CFD

Outline

- The aim of the project
- CFD Approach
 - Estimation of the current set up
 - Mathematical Models
 - CFD approach: validation of solvers
- Summary

Aim and motivation

- Investigation of cooling process in spirals using CFD
- Motivation:
- Reduction in energy consumption
- Increasing productivity
- Product exportation possibility
- Improving spirals environment

Estimation

Current facts on spiral (ambient)

Flow rate $\approx 10 \ m/s$

Volume of air injected 6 m^3/s

Total volume 6 \times 5400 (90 minutes) = 32400 m^3

 $\approx 3.6 \, m^3/s$ for each pasty

Pasty cooling requirement

Total surface of a unit product $\approx 0.03 m^2$

Required air volume for cooling $\approx 0.3 m^3 / s$

we could cool 12 units!!!

Mathematical models

Navier-Stokes equations for flow

$$\frac{\partial \rho}{\partial t} + \rho(\nabla \cdot \boldsymbol{u}) = 0$$

$$\frac{\partial(\rho\boldsymbol{u})}{\partial t} + \nabla \cdot (\rho\boldsymbol{u} \times \boldsymbol{u}) = \nabla P + \nabla \tau + \rho \boldsymbol{g}$$

Transport equation for heat transfer

$$\frac{\partial T}{\partial t} + \boldsymbol{u} \cdot \nabla T = \alpha \Delta T$$

CFD approach

- Why CFD?
 - Computer based experiments
 - Low cost and applicable to most of the cases
 - Credibility of CFD solution?
- Mesh generation (pre-processing): Discretization of the domain into small sub-volumes (cells)
- Approximation of Mathematical models: Finite difference, finite volume or finite elements
- Post processing: Analysing and interpreting data
- Propension Converts the equations into algebraic equation: A V = B

Validation of OpenFoam

> Hydrodynamic Solver

Incompressible flow around cylinder

Validation of OpenFoam

Validation of OpenFoam

Heat Transfer Solver Cooling rectangle metal

Animation

Temperature distribution profile in solid box from the bottom to the top at t=0 s

Temperature distribution profile in solid from the bottom to the top at t=4.7 S

Summary

Solvers reproduce flow behaviour and show heat extracting from a solid

Investigation of the coupled hydrodynamics-Thermal solvers

Applying it to pasty (model)