Technical details of explicharr

Kuan Yu¹

September 11, 2018

¹kuanyu@uni-potsdam.de

explicharr³

- sentence simplification with
- character-level
- ► transformer²

"It is located in Potsdam ." \longmapsto "It is in Potsdam ."

model: $S^* \rightarrow T^*$ where

- \triangleright S = the source alphabet
- ightharpoonup T = the target alphabet

³https://github.com/srewai/explicharr

²https://arxiv.org/abs/1706.03762

encoder-decoder, seq-to-seq, autoregressive

soft attention

given a query vector and multiple value vectors

```
attention: \downarrow • \downarrow \downarrow \dots \downarrow \longmapsto \downarrow
```

- compute a weight for each value, according to the query
- normalize the weights with softmax
- ▶ take the weighted sum of the values

transformer

 \bullet = attention

self-attention⁴

encoder self-attention

decoder self-attention

recurrent

⁴https://arxiv.org/abs/1606.01933

attention cells: additive⁵ vs dot-product⁶, key-value⁷

dimensions: time, query, key, value, w intermediate

$$A \cdot B = AB$$
$$A \cdot^T B = A^T B$$

⁵https://arxiv.org/abs/1409.0473

⁶https://arxiv.org/abs/1508.04025

⁷https://arxiv.org/abs/1702.04521

transformer attention

scaled dot-product

- divide weights by \sqrt{k} before applying softmax
- raise temperature
- lower variance

multi-head attention

- split spaces (query, value, key) into disjoint subspaces (subquery, subvalue, subkey)
- one attention head for each split
- concatenate the resulting subvectors

key transformation

value transformation

query transformation

additive ≡ dot-product with non-linear query

transformer

architecture

- 2 encoder layers, 2 decoder layers
- ▶ 2 input embedding layers, 1 output softmax layer
- 256 representation dimension, 512 relu in MLPs
- single-head scaled dot-product attention
- dropout⁸, residual connection⁹, layer normalization¹⁰ after each attention or MLP sublayer

⁸http://jmlr.org/papers/v15/srivastava14a.html

⁹https://arxiv.org/abs/1512.03385

¹⁰https://arxiv.org/abs/1607.06450

training

- cross entropy loss with label smoothing¹¹
- teacher forcing
- ▶ batch size 64
- ~6 minutes per epoch (~223k instances)
- ▶ for 180 epochs

¹¹https://arxiv.org/abs/1512.00567

introspection

- greedy autoregressive decoding
- attention weight matrix

self-attention

- always a diagonal line
- encoder layer 1 and decoder layer 2 slightly fuzzy

introspection: normal

The enshrined kami is Isonotakeru no mikoto (五十猛命?)
The enshrined kami is Isonotakeru no mikoto (____?)

introspection: skip

Sodium iodate (${\tt NaIO3}$) is the sodium salt of iodic acid . Sodium iodate is the sodium salt of iodic acid .

introspection: swap

Their first child , Prince George of Cambridge , was born on $22 \ \mathrm{July} \ 2013$.

Their first child , Prince George of Cambridge , was born on July 22 , 2013 .

introspection: confused

For example , 2 + 3 = 3 + 2 = 5 and 2 \cdot 3 = 3 \cdot 2 = 6 , but 23 = 8 , whereas 32 = 9 .

For example , 2 + 3 = 3 = 3 = 3 = 3 = 3 = 3 , whereas 32 = 9 .

introspection: really confused

 ${\bf 1}$ and - ${\bf 1}$ divide (are divisors of) every integer .

In the 19th century , the state of the state .

