

Description

The μ PD4464 is a high-speed 8,192-word by 8-bit static RAM fabricated with advanced silicon-gate technology. Full CMOS storage cells with six transistors make the μ PD4464 a very low-power device that requires no clock or refreshing to operate.

Two chip enable pins are provided for battery backup application, and an output enable pin is included for easy interface. Data retention is guaranteed at a power supply voltage as low as 2 volts.

The µPD4464 is available in standard 28-pin plastic DIP or miniflat packaging.

Features

- ☐ Operating temperature range: -40 to 85°C
- ☐ Single +5-volt power supply
- □ Fully static operation no clock or refreshing required
- ☐ TTL-compatible inputs and outputs
- ☐ Common I/O using three-state output
- One output enable pin and two chip enable pins for easy application
- ☐ Data retention voltage: 2 V minimum
- ☐ Standard 28-pin plastic DIP or miniflat packagin

Ordering Information

Access Time Part Number (max)		Active Current (max)	Standby Current (max)	Fackage
μPD4464C-12	120 ns	40 mA	10 μA/	28 pin plastic DIP
C-15	150 ns	40 mA	<u> </u>	2
C-20	200 ns	35 mA		\Rightarrow
μPD4464C-12L	120 ns	40 mA	/ N/A (at	28-pin plastic DIP
C-15L	150 ns	40 mA	-Tx = 803C)	
C-20L	200 ns	35 m	())	
μPD4464G-12	120 ns	40 ma	10 µA	28-pin plastic
G-15	150 ns	ADVOR	>	miniflat
G-20	200 ns	35 mA		
μPD4464G-12L	120 ns	40 mA	1 μA (at	28-pin plastic
G-15L	150 ns	40 mA	$T_A = 60 ^{\circ}C)$	miniflat
G-20L	200 ns	35 mA		

Pin Configuration

28-Pin Plastic DIP or Miniflat

Pin Identification

Symbol	Function
AD PORT	Address inputs
170-120	Data inputs/outputs
(Ex)	Chip enable (active low)
Ŭ ⁄2	Chip enable (active high)
ŌĒ	Output enable
WE	Write enable
GND	Ground
V _{CC}	+5-volt power supply
NC	No connection

Absolute Maximum Ratings

Power supply voltage, V _{CC} (Note 1)	-0.5 to +7.0 V
Input voltage, V _{IN} (Note 1)	-0.5 to V _{CC} + 0.5 V
Output voltage, V _{OUT} (Note 1)	-0.5 to V _{CC} + 0.5 V
Operating temperature, T _{OPR}	-40 to 85°C
Storage temperature, T _{STG}	−55 to 125°C
Power dissipation, P _D	1.0 W

Notes:

(1) -3.0 V minimum (pulse width = 50 ns maximum)

Comment: Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC Characteristics.

Block Diagram

Recommended DC Operating Conditions

 $T_A = -40$ to 85°C

		·	1		
Parameter	Symbol	Min	Тур	Max	Unit
Supply voltage	V _{CC}	4.5	5.0	5.5	٧
Input voltage, low (Note 1)	V _{IL}	-0.3		0.8	٧
Input voltage, high	V _{IH}	2.2		V _{CC} + 0.5	٧

Notes

(1) −3.0 V minimum (pulse width = 50 ns maximum)

Capacitance

 $T_A = 25$ °C; f = 1.0 MHz

			Limit	8		
Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions
Input capacitance	CIN			6	pF	V _{IN} = 0 V
I/O capacitance	C _{I/O}			8	pF	$V_{1/0} = 0 V$

DC Characteristics

 $T_A = -40 \text{ to } 85 \,^{\circ}\text{C}; V_{CC} = +5.0 \text{ V} \pm 10\%$

			Limita			
Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions
Input leakage current	l _{Ll}			1	μΑ	$V_{\text{IN}} = 0 \text{ V to } V_{\text{CC}}$
I/O leakage current	I _{LO}			1	μΑ	$\begin{array}{c} V_{I/O} = 0 \text{ V to V}_{CC};\\ \overline{CE}_1 = V_{IH} \text{ or }\\ \underline{CE}_2 = V_{IL} \text{ or }\\ \overline{0E} = V_{IH} \text{ or }\\ \overline{WE} = V_{IL} \end{array}$
Operating supply current	I _{CCA1}			40 (Note		
	I _{CCA2}		5	10	mA	$\overline{CE} = V_{IL};$ $CE_2 = V_{IH};$ $I_{I/0} = 0$ (dc current)
Standby supply current	I _{CCS1}		0.004	10 (Note	μA 2)	$\begin{array}{c} \overline{\text{CE}} \geq \text{V}_{\text{CC}} - 0.2 \text{ V}; \\ \text{CE}_2 \geq \text{V}_{\text{CC}} - 0.2 \text{ V} \end{array}$
	I _{CCS2}		0.004	10 (Note	μA 2)	CE ₂ ≤ 0.2 V
Output voltage, low	V _{OL}		•	0.4	٧	I _{OL} = 2.1 mA
Output voltage, high	V _{OH}	2.4			٧	$I_{OH} = -1.0 \text{ mA}$

Notes:

- (1) μPD4464-20/-20L: 35 mA max
- (2) μ PD4464-12L/-15L/-20L: 1.0 μ A max (-40 to 60°C) 0.2 μ A max (-40 to 25°C)

Truth Table

CE ₁	CE ₂	ŌĒ	WE	Mode	1/0	Icc
Н	Х	X	Х	Not selected	High-Z	Standby
X	L	Х	Х	Not selected	High-Z	Standby
L	Н	Н	Н	D _{OUT} disabled	High-Z	Active
L	Н	L	Н	Read	D _{OUT}	Active
L	Н	Х	L	Write	D _{IN}	Active

Notes:

(1) X = don't care

AC Characteristics

 $T_A = -40$ to 85°C; $V_{CC} = +5.0$ V $\pm 10\%$

				Lit	nits				Test Conditions (Note 1)
		µPD4	464-12	μ P 04	464-15	μ P 044	64-20		
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit	
Read Cycle									
Read cycle time	t _{RC}	120		150		200		ns	
Address access time	t _{AA}		120		150		200	ns	
CE ₁ access time	t _{CO1}		120		150		200	ns	
CE ₂ access time	t _{C02}		120		150		200	ns	
Output enable to output valid	toE		60		75		100	ns	
Output hold from address change	tон	10		10		10		ns	
Chip enable (CE ₁) to output in low-Z	t _{LZ1}	10		10		100		ns	
Chip enable (CE ₂) to output in low-Z	t _{LZ2}	10		10		10		ns	
Output enable to output in low-Z	t _{OLZ}	5		5		5		ns	
Chip enable (CE ₁) to output in high-Z	t _{HZ1}		40		75		100	ns	
Chip enable (CE ₂) to output in high-Z	t _{HZ2}		40		75		100	ns	
Output enable to output in high-Z	tonz		40		60		80	ns	
Write Cycle						,			
Write cycle time	twc	120		150		200		ns	
Chip enable (CE ₁) to end of write	t _{CW1}	85		130		180		ns	
Chip enable (CE ₂) to end of write	t _{CW2}	85	,	130		180		ns	
Address valid to end of write	t _{AW}	85		130		180		ns	
Address setup time	tas	0		0		0		ns	
Write pulse width	twp	70		100		140		ns	
Write recovery time	twr	5		5		5		ns	
Data valid to end of write	t _{DW}	50		70		80		ns	
Data hold time	t _{DH}	5		5		5		ns	
Write enable to output in high-Z	twHZ		40		75		100	ns	
Output active from end of write	tow	5		10		10		ns	

Notes:

⁽¹⁾ Input pulse levels = 0.8 V to 2.4 V; input pulse rise and fall times = 5 ns; timing reference levels = 1.5 V; output load = 1 TTL gate and $C_L = 100$ pF.

Timing Waveforms

Read Cycle No. 1 (Address Access)

Read Cycle No. 2 (Chip Enable Access)

Write Cycle No. 1 (WE-Controlled)

- [2] $\overline{\text{CE}}_1$ or $\overline{\text{WE}}$ [or CE_2] must be high [low] during any address transition.
- [3] If OE is high the I/O pins remain in a high impedance state.

83-001757A

Timing Waveforms (cont)

Write Cycle No. 2 (CE₁-Controlled)

Write Cycle No. 3 (CE2-Controlled)

Low V_{CC} Data Retention Characteristics $T_A = -40$ to 85 °C

			Limits				
Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions	
Data retention supply voltage	V _{CCDR1}	2.0		5.5	٧	$\begin{array}{c} \overline{\text{CE}}_1 \geq \text{V}_{\text{CC}} - 0.2 \text{ V}; \\ \text{CE}_2 \geq \text{V}_{\text{CC}} - 0.2 \text{ V} \end{array}$	
	V _{CCDR2}	2.0		5.5	٧	$CE_2 \le 0.2 \text{ V}$	
Data retention supply current	ICCDR1		0.003	10 (Note	μA I)	$\begin{array}{l} V_{CC} = 3.0 \text{ V}; \\ CE_1 \geq V_{CC} - 0.2 \text{ V}; \\ CE_2 \geq V_{CC} - 0.2 \text{ V} \\ \text{or } CE_2 \leq 0.2 \text{ V} \end{array}$	
	CCDR2		0.003	10 (Note	μA I)	$V_{CC} = 3.0 \text{ V};$ $CE_2 \leq 0.2 \text{ V}$	
Chip deselect to data reten- tion time	t _{CDR}	0			ns		
Operation recovery time	t _R	t _{RC}			ns		

Notes:

(1) μPD4464-12L/-15L/-20L: 1.0 μA max (-40 to 60°C) 0.2 µA max (-40 to 25°C)

Data Retention (CE₁-Controlled)

Data Retention (CE2-Controlled)

