Homework 2 M 383C - Method of Applied Mathematics

Lianghao Cao

October 2, 2018

Problem 2.10. Prove the following:

Corollary. If X and Y are NLS's, X finite dimensional, and $T: X \to Y$ linear, then T is bounded. The dual space $X^* = B(X, \mathbb{F})$ is isomorphic and homeomorphic to \mathbb{F}^d .

Proof. Let d be the dimension of X and $\{e_n\}_{n=1}^d$ be a basis. Then,

$$||T(x)||_{Y} = \left||T(\sum_{n=1}^{d} x_{n} e_{n})\right||_{Y} \le \sum_{n=1}^{d} |x_{n}| ||T(e_{n})||_{Y} \le M \sum_{n=1}^{d} |x_{n}| = M ||x||_{\ell^{1}}$$

where $M = \max_{n=1,2,\dots,d} \{\|T(e_n)\|_Y\} < \infty$. Since all norms on a finite dimensional vector space are equivalent, $\exists C > 0$ s.t. $\|T(x)\|_Y \leq M \|x\|_{\ell^1} \leq CM \|x\|_X$, where $\|\cdot\|_X$ is any norm on X. Therefore, T is bounded.

By Proposition 2.11, X and \mathbb{F}^d are isomorphic and homeomorphic. We need to show the same for X and X^* to complete the proof. For any basis $\{e_n\}_{n=1}^d$ in X, consider the set of linear functionals $\{e_n^*\}_{n=1}^d$ in X^* s.t. $e_i^*(e_j) = \delta_{ij}$. We can show that it forms a basis in X^* :

For any $f \in X^*$, let $f_n := f(e_n)$, it can be represented by

$$f(x) = f(\sum_{n=1}^{d} x_n e_n) = \sum_{n=1}^{d} x_n f_n = \sum_{n=1}^{d} f_n e_n^*(x)$$

Therefore, $\{e_n^*\}_{n=1}^d$ spans X^* .

We also have

$$\sum_{n=1}^{d} \alpha_n e_n^* = \mathbf{0} \implies 0 = (\sum_{n=1}^{d} \alpha_n e_n^*) e_i = \sum_{n=1}^{d} \alpha_n \delta_{in} = \alpha_i \ \forall i = 1, 2, ..., n$$

Therefore, $\{e_n^*\}_{n=1}^d$ are linearly independent.

This concludes that the dimension of X and X^* are the same, thus they are isomorphic. Since the linear mappings between X and X^* in both way are bounded, as proved above, they must be continuous as well. Thus, X and X^* are also homeomorphic. \square

Problem 2.12. Consider the space $(\ell^p, ||\cdot||_p)$.

(a) Prove that $\|\cdot\|_p$ is a norm for $1 \le p \le \infty$.

Proof. Let $x = \{x_n\}_{n=1}^{\infty}$ and $y = \{y_n\}_{n=1}^{\infty}$ be in ℓ^p . Let $\lambda \in \mathbb{F}$.

- (1) For $1 \le p < \infty$, $\|\lambda x\|_p = \left(\sum_{n=1}^{\infty} |\lambda x_n|^p\right)^{1/p} = |\lambda| \left(\sum_{n=1}^{\infty} |x_n|^p\right)^{1/p} = |\lambda| \|x\|_p$. When $p = \infty$, $\|\lambda x\|_{\infty} = \sup_{n} |\lambda x_n| = |\lambda| \sup_{n} |x_n| = |\lambda| \|x\|_{\infty}$.
- (2) $||x||_p = 0 \iff \left(\sum_{n=1}^{\infty} |x_n|^p\right)^{1/p} \text{ or } \sup_n |x_n| = 0 \iff x_n = 0 \ \forall n \in \mathbb{N}$
- (3) The triangle inequality for p = 1 and $p = \infty$ can be obtained easily by applying $|x_n + y_n| \le |x_n| + |y_n|$.

To prove the triangle inequality for 1 , consider the following:

$$||x+y||_p^p = \sum_{n=1}^{\infty} |x_n + y_n|^p \le \sum_{n=1}^{\infty} |x_n + y_n|^{p-1} (|x_n| + |y_n|)$$

$$\le \left(\sum_{n=1}^{\infty} |x_n + y_n|^{(p-1)q}\right)^{1/q} (||f||_p + ||g||_p)$$

by applying Hölder's Inequality twice. Since (p-1)q = p and 1/q = (p-1)/p, we have:

$$||x+y||_p^p \le ||x+y||_p^{p-1} (||x||_p + ||y||_p)$$

For $||x+y||_p = 0$, the triangle inequality is trivial. For $||x+y||_p > 0$, cancel out the power p-1 and the result follows.

(b) Prove that for $1 \leq p \leq \infty$, ℓ^p is a Banach space (using that \mathbb{R} is complete).

Proof. Let $\{x^i\}_{i=1}^{\infty}$ be a Cauchy sequence in ℓ^p and it follows that

$$\forall \epsilon > 0 \; \exists N \in \mathbb{N} \; : \; \epsilon > \left\| x^i - x^k \right\|_p = \begin{cases} \left(\sum_{k=1}^{\infty} |x_n^i - x_n^k|^p \right)^{1/p} & 1 \leq p < \infty \\ \sup_n |x_n^i - x_n^k| & p = \infty \end{cases}, \; \forall i, k > N$$

and this implies that $|x_n^i - x_n^k| < \epsilon$ for every $n \in N$ and $\{x_n^i\}_{i=1}^{\infty}$ is a Cauchy sequence in \mathbb{R} . Since \mathbb{R} is complete, $\lim_{i \to \infty} x_n^i = x_n \in \mathbb{R}$. Let $x = \{x_n\}_{n=1}^{\infty}$.

(1) For $1 \le p < \infty$,

$$\lim_{i \to \infty} \left(\sum_{n=1}^{\infty} |x_n^i - x_n^k|^p \right)^{1/p} = \left(\sum_{n=1}^{\infty} |x_n - x_n^k|^p \right)^{1/p} = \left\| |x - x^k| \right\|_p < \epsilon \ \forall k > N$$

For $p = \infty$, $\lim_{i \to \infty} \sup_{n} |x_n^i - x_n^k| = \sup_{n} |x_n - x_n^k| = ||x - x^k||_{\infty} < \epsilon \ \forall k > N$ Therefore, $x = \lim_{i \to \infty} x^i$. (2) $||x||_p \le ||x - x^k||_p + ||x^k||_p \le \epsilon + ||x^k||_p < \infty$ Therefore, $x \in \ell^p$ and ℓ^p is a Banach space.

(c) Show that $\|\cdot\|_p$ is not a norm for $0 (by first showing the result on <math>\mathbb{R}^2$.)

 $\begin{array}{l} \textit{Proof. Let } x = (1,0), y = (0,1) \text{ and } p = 1/2, \text{ then } \|x+y\|_{1/2} = 4 \text{ and } \\ \|x\|_{1/2} = \|y\|_{1/2} = 1. \text{ Therefore, } \|x+y\|_{1/2} > \|x\|_{1/2} + \|y\|_{1/2} \text{ and } \|\cdot\|_p \text{ is not a norm for } 0$

Similarly, for any
$$x=(1,0,0,0,0,...)\in \ell^p$$
 and $y=(0,1,0,0,...)\in \ell^p$, we have $\|x+y\|_p=2^{1/p}>\|x\|_p+\|y\|_p=2$ $\forall p\in (0,1)$

(d) In Euclidean space \mathbb{R}^2 , sketch the unit ball in the ℓ^p -norm, for $1 \leq p \leq \infty$. What does the "unit ball" look like for p < 1?

The "unit ball" looks like a star (shown below).

Problem 2.14. If $f \in L^p(\Omega)$ show that

$$||f||_p = \sup \left| \int_{\Omega} fg \, dx \right| = \sup \int_{\Omega} |fg| \, dx$$

where the supremum is taken over all $g \in L^q(\Omega)$ such that $||g||_q \leq 1$, where $1 \leq p, q \leq \infty$ and 1/p + 1/q = 1.

Proof.

(1) $1 \le p < \infty$ Let $h \in L^q(\Omega)$ and $||h||_q \ne 0$. Let $g = \epsilon h/||h||_q \in L^q$ where $\epsilon \in [0, 1]$. Notice that $||g||_q = \epsilon \le 1$. Then, we can replace the restriction on g with a restriction on ϵ :

$$\sup_{\substack{g \in L^q(\Omega) \\ 0 < \|g\|_q \le 1}} \left| \int_{\Omega} fg \ dx \right| = \sup_{\substack{\epsilon \in (0,1] \\ h \in L^q(\Omega) \\ \|h\|_q \ne 0}} \frac{\epsilon}{\|h\|_q} \left| \int_{\Omega} fh \ dx \right|$$

The supremum is reached when $\epsilon = 1$, which is when $||g||_q = 1$. In that case, we have

$$\sup_{\substack{g\in L^q(\Omega)\\0<\|g\|_q\leq 1}}\left|\int_{\Omega}fg\;dx\right|=\sup_{\substack{h\in L^q(\Omega)\\\|h\|_q\neq 0}}\frac{\left|\int_{\Omega}fh\;dx\right|}{\|h\|_q}=\|f\|_p$$

Moreover, the Hölder Inequality gives:

$$\left| \int_{\Omega} fg \, dx \right| \le \int_{\Omega} |fg| \, dx \le \|f\|_p \|g\|_q.$$

which implies

$$\|f\|_p = \sup_{\substack{g \in L^q(\Omega) \\ 0 < \|g\|_q \le 1}} \left| \int_{\Omega} fg \ dx \right| \le \sup_{\substack{g \in L^q(\Omega) \\ 0 < \|g\|_q \le 1}} \int_{\Omega} \left| fg \right| \ dx \le \|f\|_p$$

Therefore,

$$||f||_p = \sup_{\substack{g \in L^q(\Omega) \\ 0 < ||g||_q \le 1}} \left| \int_{\Omega} fg \, dx \right| = \sup_{\substack{g \in L^q(\Omega) \\ 0 < ||g||_q \le 1}} \int_{\Omega} |fg| \, dx.$$

(2) $p = \infty$ and q = 1Notice that if we restrict sign(g) = sign(f) at which the supremum is reached, we have

$$\sup_{\substack{g \in L^1(\Omega) \\ 0 < \|g\|_1 \le 1}} \left| \int_{\Omega} fg \ dx \right| = \sup_{\substack{g \in L^1(\Omega) \\ 0 < \|g\|_1 \le 1}} \int_{\Omega} |fg| \ dx$$

It's sufficient to prove that the latter is bounded by $||f||_{\infty}$ from above and below. Taking supremum over Hölder Inequality gives:

$$\sup_{\substack{g \in L^1(\Omega) \\ 0 < \|g\|_1 \le 1}} \int_{\Omega} \! |fg| \, dx \le \sup_{\substack{g \in L^1(\Omega) \\ 0 < \|g\|_1 \le 1}} \|f\|_{\infty} \, \|g\|_1 = \|f\|_{\infty} \, .$$

Now for $||f||_{\infty} = 0$, i.e. f = 0 a.e. on Ω , the result is obvious. When $||f||_{\infty} > 0$, let $\epsilon \in [0, ||f||_{\infty})$ and consider the set

$$\Omega_{\epsilon} = \{x \in \Omega : |f(x)| \ge ||f||_{\infty} - \epsilon\}$$

According to the definition of infinity norm, $\mu(\Omega_{\epsilon}) > 0$. Thus, we have

$$\int_{\Omega} |fg| \ dx \ge (\|f\|_{\infty} - \epsilon) \left(\int_{\Omega} |g| \ dx \right) = (\|f\|_{\infty} - \epsilon) \|g\|_{1}$$

Take supremum on both sides:

$$\sup_{\substack{g \in L^1(\Omega) \\ 0 < \|g\|_1 \le 1}} \int_{\Omega} |fg| \, dx \ge \|f\|_{\infty} - \epsilon$$

Since ϵ is arbiriarly small, the result follows.

Problem 2.15. Suppose $\Omega \subset \mathbb{R}^d$ is measurable with finite measure and $1 \leq p \leq q \leq \infty$.

(a) Prove that if $f \in L^q(\Omega)$, then $f \in L^p(\Omega)$ and

$$||f||_p \le (\mu(\Omega))^{1/p-1/q} ||f||_q$$

Proof. The result is trivial for p = q. Consider the following cases:

(1) $1 \le p < q < \infty$ Notice that p/q < 1. Apply Hölder Inequality to $|f|^p$ and g = 1 on Ω :

$$\int_{\Omega} |f|^p dx \le \left(\int_{\Omega} 1 dx\right)^{1-p/q} \left(\int_{\Omega} |f|^{pq/p} dx\right)^{p/q} = \left(\mu(\Omega)\right)^{1-p/q} \left(\int_{\Omega} |f|^q dx\right)^{p/q}$$

Now raising both side to the power 1/p:

$$||f||_p = \left(\int_{\Omega} |f|^p \ dx\right)^{1/p} \le \left(\mu(\Omega)\right)^{1/p - 1/q} \left(\int_{\Omega} |f|^q \ dx\right)^{1/q} = \left(\mu(\Omega)\right)^{1/p - 1/q} ||f||_q$$

(2) $1 \le p < q = \infty$ Let 1/q = 0 and apply the same Hölder Inequality to $|f|^p$ and g = 1 on Ω :

$$\int_{\Omega} |f|^p \ dx \leq \Big(\int_{\Omega} 1 \ dx\Big) \, \||f|^p\|_{\infty} = \mu(\Omega) \Big(\underset{x \in \Omega}{\operatorname{ess \, sup}} |f(x)|^p \Big) = \mu(\Omega) \Big(\underset{x \in \Omega}{\operatorname{ess \, sup}} |f(x)| \Big)^p$$

Raising both side to the power 1/p:

$$||f||_p = \left(\int_{\Omega} |f|^p dx\right)^{1/p} \le \mu(\Omega)^{1/p} \left(\underset{x \in \Omega}{\text{ess sup}} |f(x)|\right) = \left(\mu(\Omega)\right)^{1/p} ||f||_{\infty}$$

(b) Prove that if $f \in L^{\infty}(\Omega)$, then

$$\lim_{p \to \infty} \|f\|_p = \|f\|_{\infty}$$

Proof.

(1) $\lim_{p\to\infty} \|f\|_p \le \|f\|_{\infty}$ From (a) above, $\|f\|_p \le (\mu(\Omega))^{1/p} \|f\|_{\infty}$. Pass both side to the limit as $p\to\infty$, the result follows.

(2) $\lim_{p\to\infty} \|f\|_p \ge \|f\|_{\infty}$ If $\|f\|_{\infty} = 0$, then f = 0 a.e. in Ω . Therefore, $\|f\|_p = 0$ and the equality holds. When $\|f\|_{\infty} > 0$, let $\epsilon \in [0, \|f\|_{\infty})$ and consider the set

$$\Omega_{\epsilon} = \{x \in \Omega : |f(x)| \ge ||f||_{\infty} - \epsilon\}$$

6

According to the definition of infinity norm, $\mu(\Omega_{\epsilon}) > 0$. Integrate on both side of the inequality:

$$||f||_p = \left(\int_{\Omega} |f|^p \, dx\right)^{1/p} \ge (||f||_{\infty} - \epsilon) \left(\int_{\Omega} 1 \, dx\right)^{1/p} = (||f||_{\infty} - \epsilon) \left(\mu(\Omega)\right)^{1/p}$$

Pass both side to the limit as $\to \infty$, then $\lim_{p \to \infty} ||f||_p \ge ||f||_\infty - \epsilon$. Since ϵ can be arbitrarily small, the result follows.

(c) Prove that if $f \in L^p(\Omega)$ for all p with $1 \leq p < \infty$ and there is K > 0 such that $\|f\|_p \leq K$, then $f \in L^\infty(\Omega)$ and $\|f\|_\infty \leq K$.

Proof. Assume $f \notin L^{\infty}(\Omega)$, then $\underset{x \in \Omega}{\operatorname{ess sup}} |f| = \infty$. Consider the set that contain the essential supremum positions.

$$\Omega_{\infty} = \{x \in \Omega : |f(x)| = \inf_{\mu(A)=0} \sup_{x \in \Omega - A} |f(x)|\}$$

Then,

$$\int_{\Omega} |f|^p dx = \int_{\Omega \setminus \Omega_{\infty}} |f|^p dx + \int_{\Omega_{\infty}} |f|^p dx = \infty$$

This implies that $f \notin L^p(\Omega)$, a contradiction. Therefore, $f \in L^{\infty}(\Omega)$ and, as proved in (b), $\lim_{p \to \infty} ||f||_p = ||f||_{\infty} \le K$

Problem 2.16. Let $1 \leq p < \infty$ and define, for each $r \in \mathbb{R}^d$, the translation operator $\tau_r : L^p(\mathbb{R}^d) \to L^p(\mathbb{R}^d)$ by

$$\tau_r(f)(x) = f(x+r).$$

(a) Verify that $\tau_r(f) \in L^p(\mathbb{R}^d)$ and that τ_r is bounded and linear. What is the norm of τ_r ?

Proof.

(1) Notice that

$$\int_{\mathbb{R}^d} \tau_r(f)(x) \ dx = \int_{\mathbb{R}^d} f(x+r) \ dx = \int_{\mathbb{R}^d} f(x) \ dx$$

Therefore $f \in L^p(\mathbb{R}^d) \Rightarrow \tau_r(f) \in L^p(\mathbb{R}^d)$

- (2) $\tau_r(\alpha f + \beta g)(x) = (\alpha f + \beta g)(x+r) = \alpha f(x+r) + \beta g(x+r) = (\alpha \tau_r(f) + \beta \tau_r(g))(x)$. Therefore, τ_r is linear
- (3) Apparently, τ_r is a continuous operator, as it preserves norms in $L^p(\mathbb{R}^d)$. Thus, it is bounded and the norm of τ_r is 1.

(b) Show that as $r \to s$, $\|\tau_r f - \tau_s f\|_{L^p} \to 0$. [Hint: use that the set of continuous functions with compact support are dense in $L^p(\mathbb{R}^d)$ for $p < \infty$.]

Proof. Let $g \in C_0(\Omega)$ s.t. $\|g - f\|_{L^p} < \frac{\epsilon}{3}$ for some $\epsilon > 0$. Since τ is continuous and translational, $\|\tau_r(g) - \tau_r(f)\|_{L^p} < \frac{\epsilon}{3}$ and $\|\tau_s(g) - \tau_s(f)\|_{L^p} < \frac{\epsilon}{3}$. Consequently:

$$\|\tau_r(f) - \tau_s(f)\|_{L^p} \le \|\tau_r(f) - \tau_r(g)\|_{L^p} + \|\tau_r(g) - \tau_s(g)\|_{L^p} + \|\tau_s(g) - \tau_s(f)\|_{L^p}$$

Due to continuity, $\exists \delta > 0$ s.t. $|r - s| < \delta \Rightarrow ||\tau_r(g) - \tau_s(g)||_{L^p} \leq \frac{\epsilon}{3}$. Therefore,

$$\|\tau_r(f) - \tau_s(f)\|_{L^p} \le \epsilon$$

Thus, $\|\tau_r f - \tau_s f\|_{L^p} \to 0$ as $r \to s$

Problem 2.19. If X and Y are NLS"s, then the product space $X \times Y$ is also an NLS with any of the norms

$$||(x,y)||_{X\times Y} = \max\{||x||_X, ||y||_Y\}$$

or, for any $1 \le p < \infty$,

$$\|(x,y)\|_{X\times Y} = (\|x\|_X^p + \|y\|_Y^p)^{1/p}$$

(a) Why are these norms equivalent?

$$\max\{\|x\|_X\,,\|y\|_Y\} \leq (\|x\|_X^p + \|y\|_Y^p)^{1/p} \leq 2^{1/p} \,\, \max\{\|x\|_X\,,\|y\|_Y\}$$

(b) if X and Y are Banach spaces, prove that $X \times Y$ is a Banach space.

Proof. Let $\{(x_n,y_n)\}_{n=1}^{\infty}$ be a Cauchy sequence in $X\times Y$, then $\forall \epsilon>0\ \exists N\in\mathbb{N}$ s.t.

$$||(x_n, y_n) - (x_m, y_m)||_{X \times Y} = ||(x_n - x_m), (y_n - y_m)||_{X \times Y}$$
$$= \max\{||x_n - x_m||_X, ||y_n - y_m||_Y\} \le \epsilon \ \forall n, m > N$$

This implies that $\{x_n\}_{n=1}^{\infty}$ and $\{y_n\}_{n=1}^{\infty}$ are Cauchy sequences in X and Y respectively. Now let $x_n \to x \in X$ and $y_n \to y \in Y$, then $\forall N_{\delta} \in \mathbb{N} \ \exists \epsilon_1, \epsilon_2 > 0$ s.t. $\|x_n - x\|_X < \epsilon_1$ and $\|y_n - y\|_Y < \epsilon_2 \ \forall n \geq N$. Let $\delta = \max\{\epsilon_1, \epsilon_2\}$, then

$$\|(x_n, y_n) - (x, y)\|_{X \times Y} = \max\{\|x_n - x\|_X, \|y_n - y\|_Y\} \le \delta \ \forall n \ge N$$

which means that $(x_n, y_n) \to (x, y) \in X \times Y$ and $X \times Y$ is a Banach space.

Problem 2.20. Let X be an NLS and M a nonempty subset. The annihilator M^a of M is defined to be the set of all bounded linear functionals $f \in X^*$ such that f restricted to M is zero.

(a) Show that M^a is a closed subspace of X^* .

Proof. Consider a sequence $\{f_n\}_{n=1}^{\infty} \in M^a$ s.t. $f_n \to f$ and $f \in \overline{M^a}$. This means that

$$\forall \epsilon > 0 \ \exists N \in \mathbb{N} : \|f - f_n\|_{X^*} < \epsilon \ \forall n \ge N.$$

Also notice that

$$|f(x) - f_n(x)| \le ||f - f_n||_{X^*} ||x||_X \le \epsilon ||x||_X$$

Since $f_n(x) = 0 \ \forall x \in M$ and ϵ is arbitrarily small, we must have $f(x) = 0 \ \forall x \in M$. Therefore, $f \in M^a$ and M^a is sequentially closed, which implies that M^a is closed under $\|\cdot\|_{X^*}$.

Moreover, $\mathbf{0} \in X^*$ s.t. $\mathbf{0}(x) = 0 \ \forall x \in X$ is also in M^a . If $f_1, f_2 \in M^a$ and $\alpha, \beta \in \mathbb{F}$, then

$$(\alpha f_1 + \beta f_2)(x) = \alpha f_1(x) + \beta f_2(x) = 0 \quad \forall x \in M.$$

Therefore, M^a is a closed subspace of X^*

(b) What are X^a and 0^a ? $X^a = \mathbf{0}$ and $0^a = X^*$