САНКТ-ПЕТЕРБУРГСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ПЕТРА ВЕЛИКОГО

Институт компьютерных наук и технологий Кафедра компьютерных систем и программных технологий

Отчет по лабораторной работе \mathbb{N}_2 4

Дисциплина: «Базы данных»

Тема: «Язык SQL-DML»

Выполнил студент гр. 43501/3	(подпись)	А.Ю. Ламтев
Преподаватель	(подпись)	А.В. Мяснов
		2019 г

Содержание

1	Цел	и работы	3
2	Про	ограмма работы	3
3	Ста	ндартные запросы	3
	3.1	Выборка данных из одной таблицы с использованием логиче-	
		ских операций, LIKE, BETWEEN, IN	3
	3.2	Запрос с вычисляемым полем	4
	3.3	Выборка с сортировкой по нескольким полям	5
	3.4	Запрос с вычислением совокупных характеристик	5
	3.5	Выборка данных из связанных таблиц	6
	3.6	Запрос с подзапросами	7
	3.7	Запрос с ограничением результата группировки	7

1. Цели работы

Познакомиться с языком создания запросов управления данными SQL-DML.

2. Программа работы

- 1. Изучение SQL-DML.
- 2. Выполнение всех запросов из списка стандартных запросов. Демонстрация результатов преподавателю.
- 3. Получение у преподавателя и реализация SQL-запросов в соответствии с индивидуальным заданием.
- 4. Демонстрация результатов преподавателю.
- 5. Сохранение в БД выполненных запросов SELECT в виде представлений, запросов INSERT, UPDATE или DELETE в виде $X\Pi$.

3. Стандартные запросы

3.1. Выборка данных из одной таблицы с использованием логических операций, LIKE, BETWEEN, IN

В листинге 1 представлен запрос, формирующий выборку пользователей мужского пола, родившихся до 30 декабря 2001 года, и длина логина которых находится в диапазоне между 7 и 11.

```
SELECT *
FROM "user"
WHERE sex = '1'
AND length(login) BETWEEN 7 AND 11
AND birthday < '2001-12-30'
```

Листинг 1: like-between-in-1.sql

Выборка, сформированная данным запросом, представлена на рис. 3.1.

```
      Mid : II login
      III password_hash : III email
      III birthday
      III sex
      III first_name
      III last_name

      1 6671 Dino.Von901 336491
      Dino.Von901@email.com
      1967-11-08
      1
      Dino
      Von

      2 7358 Olin.Toy549
      228c58a1
      Olin.Toy549@email.com
      1957-03-18
      1
      Olin
      Toy
```

Рис. 3.1: Выборка, сформированная like-between-in-1.sql

В листинге 2 представлен запрос, формирующий выборку пользователей женского пола, логин которых начинается с «Marie.».

```
SELECT id, login, email, birthday, sex, first_name, last_name
FROM "user"

WHERE sex = '0'
AND login LIKE 'Marie.%'
```

Листинг 2: like-between-in-2.sql

Выборка, сформированная данным запросом, представлена на рис. 3.2.

```
      Image: Time of the properties of th
```

Рис. 3.2: Выборка, сформированная like-between-in-2.sql

В листинге 3 представлен запрос, формирующий выборку фильмов, цена которых \$5 или \$7, при этом они не являются эпизодами сериалов, они были выпущены в октябре (не важно какого года), и их ІМВВ рэйтинг лежит в диапазоне между 7.5 и 7.6. Поля выборки следующие: идентификатор, стоимость, возраст в годах и рейтинг ІМВВ.

```
SELECT id,

price,

date_part('years', age(now(), release_date)) as years_old,

imdb_rating

FROM movie

WHERE price IN ('$5', '$7')

AND imdb_rating BEIWEEN 7.5 AND 7.6

AND series_season_id is NULL

AND date_part('month', release_date) = 10
```

Листинг 3: like-between-in-3.sql

Выборка, сформированная данным запросом, представлена на рис. 3.3.

	id ÷	price	¢	years_old ÷	imdb_rating ÷
1		\$7.00		26	7.560517
2		\$7.00		33	7.5580893
3		\$5.00		31	7.5655518
4		\$5.00		5	7.5696015
5		\$7.00		36	7.561081
6	7757	\$5.00		24	7.5056896

Рис. 3.3: Выборка, сформированная like-between-in-3.sql

3.2. Запрос с вычисляемым полем

В листинге 4 представлен запрос, формирующий выборку из 5-ти еще не закончившихся, автоматически возобновляемых подписок, длительность которых равна 30 дням. Поля у выборки следующие: идентификатор подписки, идентификатор пользователя, стоимость и число дней до завершения подписки. При этом последнее поле является вычисляемым.

```
SELECT id,
user_id,
payment,
floor(extract(EPOCH FROM age(expires, now())) / 3600 / 24) as expires_in_days
FROM subscription
WHERE date_part('days', age(expires, started)) = 30
AND expires > now()
AND autorenewable
LIMIT 5
```

Листинг 4: calculated-field.sql

Выборка, сформированная данным запросом, представлена на рис. 3.4.

	id ÷	user_id ÷	payment ÷	expires_in_days ÷
1	74	19439	\$5.00	25
2	89	4999	\$12.00	15
3	274	18564	\$65.00	176
4	841	2426	\$45.00	176
5	867	18852	\$5.00	16

Рис. 3.4: Выборка, сформированная calculated-field.sql

Значения в столбце expires_in_days, превосходящие 30, объясняются тем, что эти подписки еще не вступили в силу.

3.3. Выборка с сортировкой по нескольким полям

В листинге 5 представлен запрос, формирующий выборку из 5-ти сериалов, при этом сериалы отсортированы по возрастанию числа сезонов и по убыванию стоимости.

```
SELECT *
FROM series
ORDER BY seasons ASC, price DESC
LIMIT 5
```

Листинг 5: sorted.sql

Выборка, сформированная данным запросом, представлена на рис. 3.5.

	. id ÷	. ≣ seasons	‡	. price	‡
1	472		1	\$35.00	
2	454		1	\$35.00	
3	459		1	\$35.00	
4	452		1	\$35.00	
5	473		1	\$35.00	

Рис. 3.5: Выборка, сформированная sorted.sql

3.4. Запрос с вычислением совокупных характеристик

В листинге 6 представлен запрос, формирующий одну строку, содержащую общее число пользователей, максимальную длину имени, минимальную длину фамилии, средний возраст пользователей, а также число ползователей мужского пола.

```
SELECT count(*)

max(length(first_name))

min(length(last_name))

round(avg(date_part('years', age(now(), birthday))))

sum(sex::INT)

FROM "user"

as users_count,

as longest_firstname,

as shortest_lastname,

as avg_age,

as male_count
```

Листинг 6: aggregate.sql

Выборка, сформированная данным запросом, представлена на рис. 3.6.

```
users_count : longest_firstname : shortest_lastname : avg_age : male_count : 1 20001 11 3 49 9172
```

Рис. 3.6: Выборка, сформированная aggregate.sql

3.5. Выборка данных из связанных таблиц

В листинге 7 представлен запрос, в котором соединяются 2 таблицы — series (сериалы) и series_translation (переводы сериалов) для формирования названия сериала с наибольшим числом сезонов и наибольшей стоимостью.

```
SELECT st.name,

max(s.seasons) as max_seasons,

max(s.price) as max_price

FROM series s

JOIN series_translation st ON s.id = st.series_id

GROUP BY st.name

ORDER BY max_seasons DESC, max_price DESC

LIMIT 1
```

Листинг 7: join1.sql

Выборка, сформированная данным запросом, представлена на рис. 3.7.

```
name : max_seasons : max_price : 1 Fear and Trembling 5 $35.00
```

Рис. 3.7: Выборка, сформированная join1.sql

В листинге 8 представлен запрос, в котором соединяются 3 таблицы — movie_translation (переводы фильмов), language (языки) и user_movie (пользователи — фильмы) для определения наиболее часто приобретаемого фильма, который не является эпизодом сериала. Выборка состоит из 2-х записей, содержащих идентификатор фильма, имя фильма, локаль и частоту его покупки, для 2-х локалей: русской и английской.

```
SELECT mt. movie id,
           mt.name,
3
           l . name
                                 as locale.
           count(um.movie_id) as frequency
  FROM movie translation mt
           \underline{\text{JOIN}} language 1 ON mt.language_id = 1.id
  JOIN user_movie um ON mt.movie_id = um.movie_id WHERE mt.movie_id in (SELECT id
                            FROM movie
10
                            WHERE id = mt.movie_id
                              AND series season id IS NULL)
12 GROUP BY mt.movie_id, mt.name, locale
13 ORDER BY frequency DESC
14 LIMIT 2
```

Листинг 8: join2.sql

Выборка, сформированная данным запросом, представлена на рис. 3.8.

Рис. 3.8: Выборка, сформированная join2.sql

3.6. Запрос с подзапросами

В листинге 9 представлен запрос, который аналогично предыдущему запросу выводит название фильма, который наиболее часто покупается пользователями, но уже с помощью вложенных подзапросов.

```
SELECT mt.movie_id, mt.name, l.name as locale
  FROM movie_translation mt

JOIN language l ON mt.language_id = l.id
  WHERE movie_id in (SELECT movie_id
                        FROM user movie
                        WHERE movie_id in (SELECT id
6
7
8
9
                                             FROM movie
                                             WHERE id = movie id
                                               AND series_season_id IS NULL)
                        GROUP BY movie id
10
11
                        ORDER BY count (movie id) DESC
                        LIMIT 1
12
13
```

Листинг 9: inner.sql

Выборка, сформированная данным запросом, представлена на рис. 3.9.

```
movie_id : name : locale :
1 6285 The Man Within en-US
2 6285 This Lime Tree Bower ru-RU
```

Рис. 3.9: Выборка, сформированная inner.sql

Выборка получилась такой же, как и при предыдущем запросе.

3.7. Запрос с ограничением результата группировки

В листинге 10 представлен запрос, находящий пользователей, у которых больше 42 подписок, с помощью ограничения результата группировки по идентификатору пользователя.

```
SELECT user_id
FROM subscription
GROUP BY user_id
HAVING count(user_id) > 42
```

Листинг 10: group.sql

Выборка, сформированная данным запросом, представлена на рис. 3.10.

Рис. 3.10: Выборка, сформированная group.sql

3.8.	Добавление	записей в	таблицы
------	------------	-----------	---------