

RELACIÓN DE PROBLEMAS: VECTORES ALEATORIOS

ANÁLISIS ESTADÍSTICO MULTIVARIANTE GRADO EN CIENCIA E INGENIERÍA DE DATOS

1. Sea (X,Y) un vector aleatorio con función de densidad conjunta

$$f(x,y) = \left\{ \begin{array}{ll} 1 & \text{si } 0 < x < 1, 0 < y < 1 \\ 0 & \text{en otro caso} \end{array} \right.$$

Hallar las distribuciones marginales y condicionadas.

2. Obtener las distribuciones marginales y condicionadas asociadas al vector aleatorio (X,Y) con función de densidad

$$f(x,y) = \left\{ \begin{array}{ll} 2 & \text{si } 0 < x < 1, 0 < y < x \\ 0 & \text{en otro caso} \end{array} \right.$$

3. Sea (X,Y) un vector aleatorio con función de densidad

$$f(x,y) = \left\{ \begin{array}{ll} \frac{3}{4} \left[xy + \frac{x^2}{2} \right] & \text{si } 0 < x < 1, 0 < y < 2 \\ 0 & \text{en otro caso} \end{array} \right.$$

Hallar la distribución marginal de X y la distribución de Y condicionada a $X=\frac{1}{2}$.

4. Sea $\mathbf{X}=(X_1,X_2)$ un vector aleatorio con función masa de probabilidad

$$P[X_1 = x_1, X_2 = x_2] = \frac{k}{2^{x_1 + x_2}}, x_1, x_2 \in \mathbb{N},$$

donde k es una constante. Obtener las distribuciones marginales y condicionadas.

- 5. Calcular la función de densidad de una distribución normal bidimensional en (1, 1) si las medias son cero, las varianzas 1 y 4, y la covarianza 1.
- 6. Sea (X,Y) un vector aleatorio con distribución uniforme en el cuadrado unidad, $[0,1] \times [0,1]$, con función de densidad conjunta

$$f(x,y) = \left\{ \begin{array}{ll} 1 & \text{si } 0 < x < 1, 0 < y < 1 \\ 0 & \text{en otro caso} \end{array} \right.$$

Calcular el valor esperado de $g(X,Y)=XY^2$, es decir, $E[XY^2]$.

7. (X,Y) vector aleatorio discreto con función masa de probabilidad conjunta:

$$\begin{array}{c|cccc}
X \backslash Y & 1 & 2 \\
\hline
1 & 1/9 & 2/9 \\
2 & 2/9 & 4/9
\end{array}$$

- a) Calcular E[X + Y], E[2X + 3Y].
- b) Obtener el vector de medias, la matriz de covarianzas y la matriz de correlaciones del vector (X,Y).
- c) ¿Son independientes? ¿Están incorreladas?
- 8. Demostrar que el vector de medias muestral es el punto de \mathbb{R}^k que minimiza la suma de las distancias al cuadrado (error cuadrático medio, MSE).

1