HeteroSketch

Coordinating Network-wide Monitoring in Heterogeneous & Dynamic Networks

Anup Agarwal (CMU), Zaoxing (Alan) Liu (BU), Srinivasan Seshan (CMU)

> Carnegie Mellon University

Advances: sketches & programmability

Sketches (data structures)

Deploy sketches anywhere

- Small (sub-linear) memory
- Accurate, Robust to workloads
- Variety of queries (Heavy-hitters, entropy, changes...)

Network-wide monitoring

Coordinate vantage points:

- Cover traffic
- Ensure accuracy
- Meet memory constraints

Assume network of homogeneous devices

Increasing trend towards heterogeneity

- Cetus. Alibaba [NSDI 22]
- Large-scale SmartNIC
 deployments. Azure [NSDI 18]
- Virtual software switches,
 VFP. Azure [NSDI 17]
- Push from vendors
 Nvidia Mellanox, Intel
 Barefoot, Netronome...

Overlooking heterogeneity is costly

- Existing works use **excessive resources** or **hamper performance**
- From evaluation: 1 extra core per server ⇒ 100k cores for 100k servers

Place sketches & allocate resources?

System requirement:

Performance & resource efficiency, prompt responses (secs to mins)

HeteroSketch in a nutshell

Formulate as constrained optimization problem

Key Insights

- Structure of sketches simplifies
 profiling ⇒ Cost/benefit analysis
- Patterns in traffic and monitoring requirements ⇒ Quick responses

HeteroSketch Outline

1. Automated Profiler

2. Fast Optimizer

HeteroSketch in a nutshell

Formulate as constrained optimization problem

Key Insights

- Structure of sketches simplifies
 profiling ⇒ Cost/benefit analysis
- Patterns in traffic and monitoring
 requirements ⇒ Quick responses

HeteroSketch Outline

1. Automated Profiler

2. Fast Optimizer

Profiler: Goal & Challenge

Hardware Performance Sketches (Architecture, Resources) (Params, Implementation) (Time per packet)

Performance prediction is hard in general

MonoTasks [SOSP17], Clara [HotNets20], SLOMO [SIGCOMM20]...

Sketch structure simplifies profiling

- Many Independent primitive operations
- 2) Limited control flow and data dependencies.
- 3) Fixed Memory

⇒ Performance largely governed by number of primitive ops

Micro-benchmarks: Device complexity

Device Agnostic. No intrusive measurements.

3 Phases: Micro-benchmark

1. Primitive Ops

Data-level parallelism

H&M			
	H&M		
		H&M	
			н&м

2. Compositions

Instruction-level parallelism

3. Resource Allocations

Thread-level parallelism

HeteroSketch in a nutshell

Formulate as constrained optimization problem

Key Insights

- Structure of sketches simplifies
 profiling ⇒ Cost/benefit analysis
- Patterns in traffic and monitoring
 requirements ⇒ Quick responses

HeteroSketch Outline

1. Automated Profiler

2. Fast Optimizer

Optimizer

O1: resources Minimize
$$\sum_{d \in \mathcal{D}} (res_d + mem_d)$$
, s.t. (1)

C1: coverage $\sum_{d \in p_{\pi}} b_{(d,s)} \geq 1 \quad \forall p \in \mathcal{P}, \forall s \in p_s$

C2: accuracy $mem_{(d,s)} \geq s_{mem} \cdot b_{(d,s)} \quad \forall s \in \mathcal{S}, \forall d \in \mathcal{D}$

C3: capacity $\sum_{s \in \mathcal{S}} b_{(d,s)} \cdot s_{rows} \leq d_{rows}$, and $mem_d = \sum_{s \in \mathcal{S}} mem_{(d,s)} \leq d_{mem} \quad \forall d \in \mathcal{D}$

C4: profiles $\forall d \in \mathcal{D}$: $time_d = d_{time}(res_d, \mathcal{P}_d, \{(mem_{(d,s)}, b_{(d,s)}) | s \in \mathcal{S}\})$

C5: traffic $time_d \leq \frac{1}{d_{traffic}} \quad \forall d \in \mathcal{D}, \quad \text{where}$
 $d_{traffic} = \sum_{p \in \mathcal{P}_d} p_t, \quad \mathcal{P}_d = \{p | d \in p_{\pi}, p \in \mathcal{P}\}$

Placement and resource allocation
→ Mixed-Integer Program

Minimizes total resource usage

accuracy

capacity

H hashes
M memory

performance (from Profiler)

⇒ 10 Mpps

Challenge: Scalability & Dynamics

- Large and complex (non-convex) NP-Hard optimization problem.
 - ⇒ Take hours to solve for a typical network with 1000s nodes.

Hierarchically cluster devices to partition optimization into independent sub-problems

- Cluster devices
- Optimizer assigns sketches to clusters
- Optimizer (in-parallel) places sketches to devices inside the cluster

Clustering strategy matters

Independent sub-problems can't share information

⇒ Infeasibility or sub-optimality

Keep devices that see the same traffic together

Evaluation: Profiler

Devices:

- Programmable switch (Barefoot Tofino)
- 2. FPGA Smart-NIC (Xilinx AU280)
- 3. SoC Smart-NIC (Netronome Agilio)
- 4. Software switch (OVS x86-based)

Sketches:

- 1. Count-Min Sketch
- 2. Count Sketch
- 3. UnivMon [SIGCOMM 16]

Within ~5% relative error

Evaluation: Optimizer

Metrics:

- 1. Resource overhead
- Time to compute placement
 & resource allocation

Baselines:

- 1. <u>Baseline</u>: Memory only from UnivMon [SIGCOMM 16]
- Baseline+Alloc: profile aware resource allocation post placement
- 3. Optimal: joint placement and allocation
- 4. ... (others in paper)

Saves 20-30% resources. Close to optimal

Evaluation: Optimizer scalability

Metrics:

- 1. Resource overhead
- 2. Time to compute placement & resource allocation

10x to 1000x quicker responses.

Scales to > 40k devices

^{*} HeteroSketch+FastPath – additional optimization above clustering heuristic. See paper for details.

Summary & Future work

Existing solutions overlook heterogeneity and dynamics

HeteroSketch: Manage heterogeneity & dynamics Automated Profiler, Fast Optimizer

- ✓ Reduce resource overhead by 20-30%.
- ✓ Prompt Responses. Scale to 40,000 devices.
- → Extended for general packet processing programs?
- → Clustering for other network optimization? (NCFlow [NSDI21])

anupa@cmu.edu Anup Agarwal

Zaoxing (Alan) Liu

Srinivasan Seshan

Thanks for your time! – Backup Slides

[NSDI22] HeteroSketch: Coordinating Network-wide Monitoring in Heterogeneous and Dynamic Networks

Anup Agarwal

Zaoxing (Alan) Liu

Srinivasan Seshan

How? ⇒ Key sources of benefits

- Sketch-device affinity
- Bottleneck Awareness

- Able to trade-off resources
- Resource usage aware packing

v/s OmniMon (SIGCOMM 20)

- General way to handle device heterogeneity. OmniMon mostly leverages location in topology and considers memory capacity. How would OmniMon differentiate between an ASIC vs FPGA SmartNIC?
- Memory / storage overheads scale with number of flows/packets.
- We consider dynamics w.r.t. changing requirements, traffic matrices, resources, topology.
- Sketch based v/s per-flow counters.
- Handling multiple flow definitions? 5-tuple, src/dest.

Evaluation: Dynamics (Fast Path)

