ISTANBUL TECHNICAL UNIVERSITY FACULTY OF COMPUTER AND INFORMATICS

PROJECT TITLE

Graduation Project

Besim Ongun Kanat 150120047

Department: Computer Engineering Division: Computer Engineering

Advisor: Assoc. Prof. Dr. Sanem Sarıel

June 2017

Özgünlük Bildirisi

- 1. Bu çalışmada, başka kaynaklardan yapılan tüm alıntıların, ilgili kaynaklar referans gösterilerek açıkça belirtildiğini,
- 2. Alıntılar dışındaki bölümlerin, özellikle projenin ana konusunu oluşturan teorik çalışmaların ve yazılım/donanımın benim tarafımdan yapıldığını bildiririm.

İstanbul, TARİH

Besim Ongun Kanat

Acknowledgments

Table of Contents

1	Introduction	1
2	Project Description and Plan	2
3	Background	9
4	Analysis and Modeling	4
5	Design and Implementation	Ę
6	Testing and Evaluation	6
7	Conclusion and Future Work	7

1 Introduction

In November 1936 Alan Turing published his groundbreaking paper which creates foundations of computer science [1]. It was the Big-Bang of the computer science that created a new universe from dusty works of his ancestors.

2 Project Description and Plan

This is the best graduation project ever. In Figure 2.1 you can see the Gantt diagram of the project.

Work Package	Feb	Mar	Apr	May	June	July	Aug	Sep	Oct	Nov	Dec
Literature Research											
Changes in the core system											
Generic Input Source Implementation											
Learning the Hark-ROS integration											
Hand State Input Source											
Hark Input Source											
Testing & Experiments											
Report											

Figure 2.1: The Gantt diagram of the project

3 Background

A long long section with many papers.

4 Analysis and Modeling

After long hours of studying we decided. A^* is the best algorithm for searching on the graphs.

5 Design and Implementation

We implemented the depth first search algorithm as shown in Algorithm 5.1.

```
1: Graph G
2: Node start
3: function Depth-First-Search(G, start)
       Tree T
4:
                                                         ▶ The resulting search tree
      Stack S
                                                                  ▶ An empty stack
5:
      Set V

    An empty set of visited nodes

6:
      SET-ROOT(T, current)
7:
      PUSH(S,start)
8:
9:
      while NOT-EMPTY(S) do
          current \leftarrow POP(S)
10:
          if not CONTAINS(V, current) then
11:
12:
             INSERT(V, current)
             for all n: NEIGHBORS(current) do
13:
                PUSH(S, n)
14:
                INSERT-SUB-NODE(T, current, n)
                                                         ▶ Insert node to subtree of
15:
   current
             end for
16:
          end if
17:
      end while
18:
      return T
19:
20: end function
```

Algorithm 5.1: The depth first search algorithm

6 Testing and Evaluation

We compared the performance of the graph search algorithms. The results can be seen in the Table 6.1.

Table 6.1: Performance test results of the graph search algorithms

Algorithm	Number of Generated Nodes	Number of Nodes Expanded	Max Number of Nodes in The Frontier
BFS	77480	6340	71142
DFS	820	88	760
A*	376	33	338

7 Conclusion and Future Work

We tested algorithms and decided that future is bright.

References

[1] A. M. Turing, "On computable numbers, with an application to the entscheidungsproblem," *Proceedings of the London Mathematical Society*, vol. s2-42, no. 1, pp. 230–265, 1937. [Online]. Available: http://dx.doi.org/10.1112/plms/s2-42.1.230