# CANADA DEPARTMENT OF MINES AND TECHNICAL SURVEYS

MINES BRANCH
INDUSTRIAL MINERALS DIVISION

### INDUSTRIAL WATER RESOURCES OF CANADA

WATER SURVEY REPORT NO. 6

FRASER RIVER DRAINAGE BASIN, 1950-51

By J. F. J. Thomas



Coleman Library
Department of Geological Sciences
University of Toronto

EDMOND CLOUTIER, C.M.G., O.A., D.S.P. QUEEN'S PRINTER AND CONTROLLER OF STATIONERY OTTAWA, 1954



MS 61 -54N47

# CANADA DEPARTMENT OF MINES AND TECHNICAL SURVEYS

MINES BRANCH
INDUSTRIAL MINERALS DIVISION

## INDUSTRIAL WATER RESOURCES OF CANADA

WATER SURVEY REPORT NO. 6

FRASER RIVER DRAINAGE BASIN, 1950-51

By
J. F. J. Thomas



No. 842

Coleman Library
Department of Geological Sciences
University of Toronto



| 0 | 0 | BI | m | TAB              | Th | rs |
|---|---|----|---|------------------|----|----|
| v | u | ж  |   | $\mathbf{r}_{I}$ | N  | 3  |

|          |                                                                                                                                         | PAGE   |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------|--------|
| Introdu  | etion                                                                                                                                   | 5      |
| Fraser 1 | River drainage basin                                                                                                                    | 5      |
| Survey   | procedure                                                                                                                               | 6      |
| Analyti  | cal procedure                                                                                                                           | 6      |
| Part I-  | —Surface waters of Fraser River drainage basin                                                                                          |        |
|          | Discussion                                                                                                                              | 8      |
|          | Summary                                                                                                                                 | 9      |
| Part II- | -Municipal water supplies within Fraser River drainage basin.                                                                           |        |
|          | Description of municipal waterworks systems within Fraser River drainage basin                                                          | 58     |
|          | Discussion                                                                                                                              | 87     |
| Annand   | Summary                                                                                                                                 | 87     |
|          | ix A—Sampling locations of surface waters                                                                                               | 89     |
| Аррепа   | ix B—Municipalities with organized water systems within Fraser River drainage basin                                                     | 91     |
|          | TABLES                                                                                                                                  |        |
|          | I—Tidal influence on Fraser River                                                                                                       | 7      |
|          | II—Chemical quality of surface waters in Fraser River drainage basin                                                                    | 14     |
|          | III—Chemical quality of municipal water supplies within Fraser River drainage basin                                                     | 74     |
|          | IV—Municipal water supplies in Fraser River drainage basin—summary of data on area, total                                               |        |
|          | population, and population served                                                                                                       | 86     |
|          | V—Municipal water supplies in Fraser River drainage basin—summary of data on systems including source, treatment and hardness of waters | 86     |
|          |                                                                                                                                         |        |
|          | FIGURES                                                                                                                                 |        |
| Fig. 1.  | Map showing drainage basins under study in Western Canada                                                                               | 4      |
| Fig. 2.  | Map showing the location of surface water sampling stations and municipal water supplies (in per-                                       | ocket) |
| Fig. 3.  | Chart showing variation in water hardness in Fraser River                                                                               | 10     |
| Fig. 4.  | Relationship between mineral content and river flow, Fraser River at Mission City, B.C                                                  | 11     |
| Fig. 5.  | Relationship between mineral content and river flow, Thompson River at Kamloops, B.C                                                    | 12     |
| Fig. 6.  | Relationship between mineral content and river flow, Quesnel River near Quesnel, B.C                                                    | 13     |



FIGURE 1. MAP SHOWING DRAINAGE BASINS UNDER STUDY IN WESTERN CANADA

### INDUSTRIAL WATER RESOURCES OF CANADA

### Chemical Quality of Surface and Municipal Water Supplies in the Fraser River Drainage Basin, 1950-51

### INTRODUCTION

This report is the sixth in a series on the chemical quality of surface and municipal water supplies available for industrial and domestic use in Canada. Report No. 11 outlines the scope and procedures used in the countrywide survey and discusses the interpretation of analytical results to be recorded in subsequent reports. Reports No. 2<sup>2</sup> and 3<sup>3</sup> cover the results of studies on the Ottawa River and Upper St. Lawrence River-Central Great Lakes drainage basins respectively.

This report and reports Nos. 4 and 5 cover the areas and drainage basins in British Columbia outlined in Figure I. It will be noted that these three reports cover all of British Columbia except the northern portions drained by the Yukon and Mackenzie River systems, which areas will be covered in Report No. 8, now in preparation.

The northern portion of the province, in particular the northern portion of Fraser River and western portion of Skeena River basins, is now the centre of considerable industrial activity and it is expected that expansion of both industry and agriculture in these areas, now relatively sparsely settled, will necessitate more detailed studies of water quality in the near future.

The method of presentation of data on this watershed is similar to that of previous reports and no attempt has been made to discuss in detail all the information recorded in this report or obtained during the survey. Part I tabulates the analytical results of daily, monthly and spot sampling of surface waters in the basin. Part II reports similar analytical data obtained on municipal waters within the basin and also includes information on the operation of most of the organized water systems.

The co-operation and assistance given to the writer by W. C. Warren, District Engineer, and other engineering personnel of the Water Resources Division, Dept. of Resources and Development, Vancouver, B.C. in selecting sampling locations and in supplying the data on river and lake stage and river discharge, used in this report, is gratefully acknowledged.

The co-operation of municipal officials and water works engineers who supplied the writer with information on their waterworks systems by correspondence or during visits to their communities, is also greatly appreciated.

### FRASER RIVER DRAINAGE BASIN

The Fraser River, 850 miles in length, with its many tributaries drains about 91,660 square miles, all of which is in British Columbia except for some 220 square miles in the United States, south of Sumas, B.C. This river and its larger tributaries provide the passes and valleys that permit crossing the mountainous terrain of British Columbia. The railways and Trans-Canada Highway follow the South Thompson (206 miles in length), the Thompson and the lower Fraser River to the sea. Travel from the earliest days into the central areas of British Columbia, in particular the Cariboo and north western portion of the province, has been along the Fraser River and its central plateau. The Canadian National Railway follows the upper Fraser River, its large tributary, the Nechako River (287 miles in length) and the Skeena River to the coast at Prince Rupert.

The Fraser River, rising in the Rocky Mountains just west of the source of the large North Saskatchewan and Athabasca Rivers, flows through almost all types of terrain found in British Columbia. It flows west skirting the Cariboo Range then south along the central plateau lying between the coastal range and Cariboo and Monashee mountain Ranges, then south and west through the coastal range to the sea.

One of the most fertile and heavily-populated areas in British Columbia and indeed in all Canada has developed on the delta of the Fraser River. Here the rich alluvial soil, and a climate tempered by the Japanese current, with abundant rainfall, has given rise to intensive farming particularly of small fruits and vegetables. The abundant rainfall along the coastal range and plain has resulted in heavy forestation and led to the formation of a large lumbering industry with headquarters in the delta area.

<sup>1</sup> Industrial Water Resources of Canada (Water Survey Report No. 1): Scope, Procedure, and Interpretation of Survey Studies, Mines Branch Report No. 833, Dept. of Mines and Technical Surveys, Ottawa, 1952.

2 Industrial Water Resources of Canada (Water Survey Report No. 2): Ottawa River Drainage Basin, Mines Branch Report No. 834, Dept. of Mines and Technical Surveys

<sup>&</sup>lt;sup>a</sup> Industrial Water Resources of Canada (Water Survey Report No. 3): Upper St. Lawrence River-Central Great Lakes Drainage Basin in Canada, Mines Branch Report No. 337, Dept. of Mines and Technical Surveys, Ottawa. (In press.)

Although rainfall is less abundant in the interior plateau of the Fraser Basin, particularly the Cariboo region, the country is ideal grazing land. The wide valleys and plateaus in the upper Fraser, Nechako, Stuart and South Thompson River basins are now being opened to farming and industry. As in other parts of the province the river valleys are extremely fertile but there are only two large areas in the entire province with great agricultural possibilities, the Peace River block lying in the drainage basin of the Mackenzie River, and the Stuart Lake district. Both these areas are rapidly being opened to farming and industry.

As with any large river system in a mountainous region, the rivers are the lifeblood of the country. It is such tributary rivers as the North Thompson, 210 miles in length, the Chilcotin, 146 miles in length, and the West Road River, 140 miles in length, that are permitting the settlement and opening up of this province, rich in natural resources and industrial potential.

In all its length Fraser River is a turbulent, silt-laden stream, for the most part too rapid for transportation. This is also true of most of the tributary rivers except those in the upper lake regions of South Thompson, Nechako and Stuart Rivers, or those flowing for the most part in plateau areas.

### SURVEY PROCEDURE

The methods of sampling and survey procedure employed in this investigation were in general similar to those outlined in previous reports and given in detail in Water Survey Report No. 1<sup>1</sup>. The Fraser River system was studied during 1950-51, at the same time studies were carried out on water quality in the Skeena River basin<sup>2</sup>. Twenty sampling stations were operated in this watershed, two daily stations, and eighteen monthly stations.

At the daily stations samples were collected each day into 16 ounce, pressure-sealed bottles which were shipped thrice monthly by the collector to the British Columbia Research Council at Vancouver. Here data regarding the daily water temperature, water level, etc., were recorded, each daily sample tested for specific conductance and a 10-day composite sample prepared. These composite samples were tested for pH, colour, turbidity, specific conductance and alkalinity and then shipped to the Mines Branch laboratory at Ottawa where a complete analysis was carried out.

The monthly samples were shipped directly by the collector to the laboratory in Ottawa. Whenever possible, samples were also obtained from these stations when the river was at high and low flow.

During the summer of 1950, most of the accessible portion of the basin was travelled with a mobile laboratory, and municipal waters and additional samples of river and lake waters were collected and field-tested.

#### ANALYTICAL PROCEDURE

The methods of analyses and the method of reporting analytical results used in this survey are essentially those outlined in detail in Water Survey Report No. 1.

Until June 15, 1950, all samples received in the Ottawa laboratory were stored unopened in the dark until analyses could be started. It will be noted from Table II that storage time on these earlier samples was usually quite brief. After June 15, 1950, all samples received in the laboratory were immediately tested for pH, colour, turbidity, alkalinity, specific conductance, total hardness and, sometimes, chloride and calcium ion content. Previous experience had shown that these determinations are those normally affected by storage. However, storage time on these samples is still reported as the total time elapsing between sampling and the beginning of final analysis, even though waters after June 15th were usually tested for the unstable constituents within a much shorter period.

The tests carried out by the British Columbia Research Council on composite samples were all repeated in the Ottawa laboratory. A comparison of maximum and minimum individual differences and the arithmetical mean or average of all test results in each laboratory shows that, as in previous work in the two laboratories, the major differences are in the determinations for colour and turbidity. The individual differences in these determinations, particularly colour, was in some cases quite large, and was to be expected because of the turbid nature of many of the waters. Colour determined in the British Columbia Research Council laboratories is in many cases "apparent colour" due to turbidity of the waters whereas in the Ottawa laboratory colour was determined normally on the supernatant or settled sample. It is well known that storage of waters may cause bleaching or loss of colour and coagulation or settling of turbidity. However, even though storage time when "immediate testing" was carried out at Ottawa was on the average almost twice as long as when tests were made in British Columbia, the described survey procedure does give quite satisfactory agreement for pH and alkalinity, two important values that often show considerable changes on storage. The maximum variation in pH between the laboratories on any one sample was 0·5.

<sup>2</sup> Industrial Water Resources of Canada (Water Survey Report No. 5): Skeena River Drainage Basin, Vancouver Island, and Coastal Areas of British Columbia, 1949-51, Mines Branch Report No. 839, Dept. of Mines and Technical Surveys, Ottawa, 1953.

<sup>&</sup>lt;sup>1</sup> Industrial Water Resources of Canada (Water Survey Report No. 1): Scope, Procedure, and Interpretation of Survey Studies, Mines Branch Report No. 833, Dept. of Mines and Technical Surveys, Ottawa, 1952.

### PART I

### SURFACE WATERS OF THE FRASER RIVER DRAINAGE BASIN

Daily samples were collected of Fraser River from the railway bridge at Mission City, and of Thompson River from the highway bridge at Kamloops, during the period February, 1950 to February, 1951. When field work was being carried out in 1950 it was found that sampling at the latter station was from the southern side or Kamloops side of the river and that in many cases the water was probably South Thompson River water. This location is just below the junction of North and South Thompson Rivers and indications were that, at least during much of the year, complete mixing of the river waters does not occur.

During the summer of 1950 additional samples of surface waters and municipal water supplies within the basin were collected. The locations of all surface water sampling points within this watershed are outlined in Appendix A and are shown on the map of the basin, Figure 2 (in map pocket). As in other basins in this province, various areas, in particular the northern and northeastern portion of the basin, were inaccessible by road and consequently several large tributary rivers were not studied. Since these rivers either have their source in the general area or traverse the same type of terrain as nearby streams which were studied it is believed that the quality of their waters can be assumed similar in character. These inaccessible areas are only sparsely settled and domestic and industrial use of the river waters is at present practically nil.

Most samples collected during field work in the summer were tested immediately in the mobile laboratory for the constituents and properties that may change on storage. These field results are reported in Tables II and III in brackets beside the results found later in the laboratory. Repetition of these tests indicates changes in water due to storage and enables estimation of the quality of the water *in situ*.

Table I tabulates available information on the influence of tides on Fraser River water. No special study was made in this regard at this time and the data shown in Table I were supplied by the Water Resources Division, Department of Resources and Development.

### TABLE I

### Tidal Influence—Fraser River

#### A. RISING TIDE

| Sampling Location                                       | River<br>Discharge<br>at                | River<br>Depth               | Sampl                                        | ing                              | High                             | Tide                         | Low                            | Tide                     |                              | Chloride<br>ntent, p.p | .m.                          |
|---------------------------------------------------------|-----------------------------------------|------------------------------|----------------------------------------------|----------------------------------|----------------------------------|------------------------------|--------------------------------|--------------------------|------------------------------|------------------------|------------------------------|
| Sampling Location                                       | Hope, B.C.<br>(second-<br>feet)         | Sampling<br>(feet)           | Date                                         | Average<br>Time                  | Time                             | Height†                      | Time                           | Height†                  | 1/5*                         | 3/5*                   | 4/5*                         |
| Steveston                                               | 27,100<br>128,000<br>318,000<br>121,000 | 13·5<br>8·0<br>9·0<br>8·5    | 13/12/48<br>26/ 4/49<br>17/ 5/49<br>20/ 8/49 | 12·25<br>13·21<br>19·10<br>15·45 | 14·28<br>17·33<br>23·19<br>16·52 | 12·4<br>12·2<br>14·7<br>13·4 | 9·15<br>11·15<br>15·22<br>8·56 | 9·3<br>5·0<br>2·3<br>3·0 | 15·02<br>4·9<br>3·2<br>3·3   |                        | 85·86<br>4·5<br>3·3<br>3·0   |
| Woodward's Landing(main river channel)                  | 27,100<br>128,000<br>318,000<br>121,000 | 18·5<br>15·0<br>25·0<br>21·4 | 13/12/48<br>26/ 4/49<br>17/ 5/49<br>20/ 8/49 | 11·40<br>13·52<br>18·45<br>15·00 | 14·28<br>17·33<br>23·19<br>16·52 | 12·4<br>12·2<br>14·7<br>13·4 | 9·15<br>11·15<br>15·22<br>8·56 | 9·3<br>5·0<br>2·3<br>3·0 | 45·5<br>0·61<br>0·61<br>0·36 |                        | 72·8<br>0·49<br>0·73<br>0·36 |
| At Fraser Ave. Bridge (Vancouver)<br>North arm of river | 27,100<br>128,000<br>318,000<br>121,000 | 15·0<br>12·0<br>10·5<br>10·5 | 13/12/48<br>26/ 4/49<br>17/ 5/49<br>20/ 8/49 | 10·35<br>14·17<br>18·30<br>14·15 | 14·28<br>17·33<br>23·19<br>16·52 | 12·4<br>12·2<br>14·7<br>13·4 | 9·15<br>11·15<br>15·22<br>8·56 | 9·3<br>5·0<br>2·3<br>3·0 | 15·2<br>0·36<br>0·24<br>0·36 |                        | 17·5<br>0·30<br>0·24<br>0·36 |
| New Westminster                                         | 27,100<br>128,000<br>318,000<br>121,000 | 18·0<br>10·5<br>11·5<br>9·6  | 13/12/48<br>26/ 4/49<br>17/ 5/49<br>20/ 8/49 | 13·52<br>15·32<br>17·15<br>13·00 | 14·28<br>17·33<br>23·19<br>16·52 | 12·4<br>12·2<br>14·7<br>13·4 | 9·15<br>11·15<br>15·22<br>8·56 | 9·3<br>5·0<br>2·3<br>3·0 | 1·8<br>0·36<br>0·49<br>0·43  |                        | 6·1<br>0·30<br>0·49<br>0·43  |
| Mission City                                            | 318,000<br>121,000                      | 19·4<br>15·4                 | 17/ 5/49<br>20/ 8/49                         | 15·30<br>11·0                    | 23·19<br>16·52                   | 14·7<br>13·4                 | 15·22<br>8·56                  | 2·3<br>3·0               | 0·49<br>0·49                 |                        | 0·58<br>0·49                 |
| Chilliwack(at Rosedale ferry)                           | 121,000                                 | 13.5                         | 20/ 8/49                                     | 9.40                             | 16.52                            | 13.4                         | 8.56                           | 3.0                      | 0.36                         |                        | 0.43                         |

<sup>\*</sup> Fraction of river depth (column 3) at which sample for chloride content was taken—for example, line 1, 15.02 p.p.m. Clat 1 of 13.5 ft., or at 2.7 ft.

† Above lowest of normal low tides over a period of at least 7 years; reference Vancouver Harbour, B.C.

#### TABLE I-Concluded

### Tidal Influence-Fraser River-Concluded

B. RECEDING TIDE

| KISYB W                       | River<br>Discharge                      | River<br>Depth               | Sampl                                        | ing                              | High                             | Tide                         | Low                              | Tide                     |                              | Chloride<br>ntent, p.p | .m.                          |
|-------------------------------|-----------------------------------------|------------------------------|----------------------------------------------|----------------------------------|----------------------------------|------------------------------|----------------------------------|--------------------------|------------------------------|------------------------|------------------------------|
| Sampling Location             | Hope, B.C.<br>(second-<br>feet)         | Sampling<br>(feet)           | Date                                         | Average<br>Time                  | Time                             | Height<br>feet               | Time                             | Height<br>feet           | 1/5*                         | 3/5*                   | 4/5*                         |
| Mission City                  | 27,100<br>128,000                       | 23·0<br>22·6                 | 13/12/48<br>26/ 4/49                         | 16·20<br>17·52                   | 14·28<br>17·33                   | 12·4<br>12·2                 | 22·17<br>23·01                   | 1·9<br>8·0               | 0·61<br>0·24                 |                        | 0·61<br>0·18                 |
| Chilliwack(at Rosedale Ferry) | 74,600<br>27,100<br>128,000<br>318,000  | 6·0<br>14·0<br>16·0<br>16·0  | 26/10/48<br>13/12/48<br>26/ 4/49<br>17/ 5/49 | 16·30<br>17·32<br>19·30<br>13·30 | 13·42·<br>14·28<br>17·33<br>7·11 | 12·2<br>12·4<br>12·2<br>11·6 | 19·39<br>22·17<br>23·01<br>15·22 | 8·2<br>1·9<br>8·0<br>2·3 | 0·55<br>0·24<br>0·55         | 1.1                    | 0·55<br>0·24<br>0·85         |
| Hope                          | 27,100<br>128,000<br>318,000<br>121,000 | 20·0<br>26·0<br>23·8<br>18·0 | 13/12/48<br>26/ 4/49<br>17/ 5/49<br>20/ 8/49 | 18·35<br>20·52<br>14·30<br>8·00  | 14·28<br>17·33<br>7·11<br>0·04   | 12·4<br>12·2<br>11·6<br>12·9 | 22·17<br>23·01<br>15·22<br>8·56  | 1·9<br>8·0<br>2·3<br>3·0 | 0·06<br>0·36<br>0·85<br>0·36 |                        | 0·06<br>0·36<br>0·85<br>0·43 |

Table II tabulates in detail the results of chemical analyses carried out on surface waters collected at the locations shown in Figure 2 (in map pocket). An average analysis is determined for the sampling period at all daily and monthly stations. This average is the arithmetical mean of each major constituent over the period and is not weighted as to river flow. Per cent sodium and the saturation index have also been calculated for these average waters. The reader is referred to Water Survey Report No. 1 for the interpretation of per cent sodium, saturation index and other values reported in Tables II and III. Boron has also been determined occasionally to indicate the suitability of the waters for irrigation.

Figure 3 shows graphically the variation in total and non-carbonate hardness in the Fraser River.

The relationships between river discharge or level and mineral content or chemical quality of the Fraser River at Mission City, the Thompson River at Kamloops and the Quesnel River near Quesnel, are graphically shown in figures 4, 5 and 6 respectively.

### DISCUSSION

As in previous reports it is not proposed at this time to discuss in any detail the data reported in Table II. It will be noted however that most surface waters in this basin are soft or at the lower limit of medium hard using the following classification:

| Soft water        | Below 60 p.p.m. | total ha | rdness  | as CaCo  | $\mathcal{O}_3$ .      |
|-------------------|-----------------|----------|---------|----------|------------------------|
| Medium hard water | 61—120 "        | "        | 66      | "        |                        |
| Hard water        | 121-180 "       | "        | 66      | "        |                        |
| Very hard water   | Greater than 18 | 0 p.p.m. | total l | nardness | as CaCO <sub>3</sub> . |

In general, the rivers do not show any very marked variation in hardness or mineralization from season to season. However a large proportion of the waters are turbid and show considerable variation in turbidity.

Figure 3 shows graphically some decrease in hardness of Fraser River water as it approaches the sea, which can generally be explained by considering the character and volume of tributary waters entering the main river. Those which flow into Fraser River from the west or from the coastal range, are usually softer in character than those entering from the southern or eastern portion of the basin, even though the latter are not particularly hard. The head waters of Fraser River, which rise in the calcareous Rocky Mountains are, as expected from studies in the Columbia River system, somewhat harder in character. Certain tributary waters are also noticeably different in character, usually harder, as for instance, those from the Merritt area and those from the Cariboo Range or Lac la Hache area.

Figure 4 shows a close relationship between specific conductance and total hardness of Fraser River water at Mission City. The variation in both is quite small in comparison with the wide variation in flow which is paralleled by changes in turbidity. Figure 4 therefore indicates that Fraser River in flood carries a proportionately increased amount of silt but that this silt is relatively insoluble and does not affect to any great extent the mineralization of the water; that is, run-off water which produces flood conditions is not much different in dissolved mineral content than that found at normal river flow.

Figure 5 shows that a somewhat similar relationship exists in the Thompson River at Kamloops although the water is lower in hardness and total mineralization. The major difference is the lack of turbidity in the Thompson River. Even during flood the turbidity never increases enough to cause trouble for most industrial uses.

Figure 6 illustrates that tributary waters from the east central portion of the basin or Cariboo mountains are somewhat harder, but relatively constant except for a marked increase in turbidity during the flood period. During periods of low flow the Quesnel River increases in mineralization, especially sulphate ion content.

Since many of the tributary rivers are clear streams in comparison with the turbid and rapid Fraser River it is found that mixing of the tributary is often not complete for some distance downstream from the junction. A notable example of this is seen at Prince George, the clear Nechako River being visible (in the milky Fraser River) for many miles below Prince George.

Table I indicates that serious contamination of Fraser River water with seawater by tidal action is not found much above Steveston and here only when the tide is rising and river discharge is low.

The influence of incoming tide, shown by increasing chloride ion content, is noted in the river up to New Westminster when river discharge is low, but the effect is very small. From the combinations of sampling times, river discharges and tides shown in Table I it is seen that although tides may influence Fraser River levels for a considerable distance upstream they have little effect on water quality much above Steveston or possibly Woodward's Landing, insofar as industrial use is concerned.

As expected, tides entering the river tend to flow along the bottom of the river; this is indicated by the higher salinities at greater sampling depths.

#### SUMMARY

Surface water supplies within the Fraser River basin are relatively constant in quality. While the main river itself differs from most British Columbia rivers by its constant turbidity it is not a hard water. Some of the cloudiness or turbidity in Fraser River water may also be due to the turbulence and saturation of the water with air and air bubbles, which gives the water a milky appearance. This turbulence also tends to disperse and finely divide the insoluble matter carried by the river so that a considerable portion is in colloidal suspension. Tributary streams except for those entering from calcareous mountain regions are generally very soft to soft in character.

In general, except for the need for clarification of the Fraser River and some tributary waters, surface waters in the basin are satisfactory for industrial use. There is generally an abundance of water available within the watershed for industrial use with little or no treatment required. However, satisfactory clarification of a turbid water such as Fraser River water does present a problem for certain uses.



FIGURE 3. GRAPH SHOWING CHANGE IN HARDNESS ALONG FRASER RIVER WATERSHED



a tri-monthly composite of daily samples



Note. Each subdivision of a month represents a tri-monthly composite of daily samples



TABLE II

## Chemical Analyses of Surface Waters in the Fraser River Drainage Basin

(In parts per million)

|                    | pc     | Stream d<br>(Secon     | dischargea<br>d-feet) | Water                 | gen           | 0              |    |        |           | Susp     | ended<br>tter | Specific               | drie   | e on Eva<br>ed at 10<br>solved so | poration<br>5°C.<br>blids)     | Loss                      |         |
|--------------------|--------|------------------------|-----------------------|-----------------------|---------------|----------------|----|--------|-----------|----------|---------------|------------------------|--------|-----------------------------------|--------------------------------|---------------------------|---------|
| Date of collection | (Baye) | On<br>sampling<br>date | Monthly<br>mean       | tem-<br>pera-<br>ture | Dissolved oxy | Carbon dioxide | Ηď | Colour | Turbidity | Dried at | Ignited at    | K x 10s<br>at<br>25°C. | P.P.M. | Tons<br>per<br>acre-<br>foot      | Thousand<br>tons<br>per<br>day | on<br>igni-<br>tion<br>at | Calcium |

STATION NO. 1: FRASER

| 1 Aug. 17/50 11 | Max. Min.† M | 7 7.48 64 |  | 32 80.2 54.6 0.074 | 4 6.2 11.5 |
|-----------------|--------------|-----------|--|--------------------|------------|
|-----------------|--------------|-----------|--|--------------------|------------|

<sup>•</sup> Values in brackets refer to tests done in the mobile laboratory immediately after sampling.

STATION No. 2: FRASER RIVER

| -  |          |          |     |        |       | 1     |       |    |   |       |              |    |     |     |     |        |      |         | <br>     |      |
|----|----------|----------|-----|--------|-------|-------|-------|----|---|-------|--------------|----|-----|-----|-----|--------|------|---------|----------|------|
|    |          |          |     | Max.   | Min.* | Max.  | Min.* |    |   |       |              |    |     |     |     |        |      |         |          |      |
| 2  | Aug.     | 24/49*** | 78  |        |       |       |       | 61 |   | (1.7) | 7·5<br>(8·1) | 15 | 45  | 43  | 41  | 111    | 71-4 | 0.097   | <br>12.8 | 16-8 |
| 3  | Feb.     | 1-10/50. | 32  | 5.19   | 1-10  |       |       | 33 |   | 1     | 7-9          | 7  | 0.9 |     |     | 151    | 105  | 0.143   | <br>7.0  | 21-5 |
| 4  | Feb.     | 11-20    | 29  | 5.24   | 1.54  | 5-06  | 1.43  | 36 |   |       | 7.6          | 5  | 4   | 9-4 | 6.6 | 120    | 77-4 | 0 · 105 | <br>9-6  | 16.2 |
| 5  | Feb.     | 21-28**. |     | 4.68   | 1.32  |       |       | 37 |   |       | 7.8          | 7  | 3   |     |     | 114    |      |         | <br>     |      |
| 6  | Mar.     | 1-10     | 31  | 5 - 55 | 2.31  |       |       | 37 |   |       | 7.9          | 5  | 15  | 32  | 29  | 116    | 75.2 | 0.102   | <br>9-0  | 15.3 |
| 7  | Mar.     | 11-20    | 33  | 4-66   | 0-879 | 4.83  | 1.31  | 38 |   |       | 8.0          | 5  | 6   | 11  | 9.0 | 123    | 78-8 | 0 - 107 | <br>5-8  | 17-0 |
| 8  | Mar.     | 21-31    | 37  | 4.77   | 0.782 |       |       | 40 |   |       | 7.7          | 10 | 3   |     |     | 119    | 89-4 | 0.122   | <br>10-4 | 15-0 |
| 9  | Apr.     | 1-10     | 29  | 4.87   | 0.79  |       |       | 42 |   |       | 8.0          | 5  | 9   | 16  | 13  | 128    | 84.8 | 0.115   | <br>10-6 | 17-2 |
| 10 | Apr.     | 11-20    | 30  | 4.75   | 1.73  | 4.84  | 1.51  | 43 |   |       | 8.0          | 5  | 15  | 44  | 40  | 124    | 75.8 | 0.103   | <br>8-4  | 16-4 |
| 11 | Apr.     | 21-30    | 23  | 4.90   | 2.01  |       |       | 42 |   |       | 7.7          | 25 | 35  | 89  | 84  | 127    | 86-8 | 0-118   | <br>9-6  | 16-6 |
| 12 | May      | 1–10     | 32  | 6.76   | 4.78  |       |       | 45 |   |       | 7.7          | 30 | 140 | 175 | 169 | 120    | 103  | 0.140   | <br>17-6 | 16-7 |
| 13 | May      | 11-20    | 36  | 11-57  | 10-56 | 10-16 | 8-99  | 48 |   |       | 7.7          | 35 | 210 | 261 | 252 | 113    | 84.0 | 0.114   | <br>14.8 | 16-1 |
| 14 | May      | 21-31    | 25  | 11-97  | 11.38 |       |       | 49 |   |       | 7-6          | 25 | 70  | 104 | 99  | 108    | 78-6 | 0-107   | <br>12.6 | 15-2 |
| 15 | June     | 1-10     | 37  | 14-49  | 14.04 |       |       | 52 |   |       | 7-8          | 10 | 120 | 128 | 120 | 104    | 147  | 0.200   | <br>62-0 | 16.9 |
| 16 | June     | 11-20    | 55  | 21.00  | 19.64 | 19-34 | 18-58 | 56 |   |       | 7-8          | 40 | 200 | 267 | 258 | 101    | 74.6 | 0.101   | <br>11-4 | 15-4 |
| 17 | June     | 21-30    | 45  | 22-55  | 22.07 |       |       | 55 |   |       | 7-7          | 25 | 145 | 187 | 181 | 99-0   | 71-8 | 0.098   | <br>9-4  | 15.0 |
| 18 | July     | 1–10     | 71  | 19-96  | 19-62 |       |       | 59 |   |       | 7.8          | 20 | 85  | 106 | 101 | 91.5   | 71.4 | 0-097   | <br>11.2 | 15-2 |
| 19 | July     | 11-20    | 71  | 16-01  | 15-57 | 16-46 | 16.07 | 60 |   |       | 7.9          | 10 | 70  | 8.8 | 6.0 | 93 - 1 | 69-8 | 0.095   | <br>10.2 | 14-2 |
| 20 | July     | 21-31    | 101 | 13-67  | 11.17 |       |       | 62 |   |       | 7-9          | 10 | 50  | 80  | 77  | 92.3   | 61.8 | 0.084   | <br>9-4  | 13.2 |
| 21 | Aug.     | 1-10     | 90  | 9-81   | 9-22  |       |       | 61 |   |       | 7-5          | 4  | 40  | 60  | 57  | 95-4   | 62.4 | 0.085   | <br>15.2 | 13.5 |
| 22 | Aug.     | 11-20    | 92  | 7-92   | 6.95  | 8-37  | 7.48  | 64 | l |       | 7-6          | 5  | 30  | 47  | 45  | 100    | 67.0 | 0.091   | <br>     | 14.2 |
|    | (B) T) * | <u> </u> | 1 4 |        |       |       |       |    |   |       |              |    |     |     |     |        |      | 2 001   | <br>1    | ~4.9 |

<sup>(\*)</sup> Discharge records are tentative data and subject to revision.
River flow at this station is affected by tide as shown by maximum and minimum gauge levels; see also Table I.
Results shown are preliminary tests carried out on composite sample by British Columbia Research Council; sample lost in transit.
Field sample, not included in average.

## Chemical Analyses of Surface Waters in the Fraser River Drainage Basin--Continued

(In parts per million)

|           | Alkalis |           | Ir<br>(F | on<br>Te) |                    |          |                    |          |       |                     |           | Sil<br>(Si       | ica<br>O <sub>2</sub> ) | Harda<br>Cat           | ness as<br>CO <sub>3</sub> |                        | um            | index      |     |
|-----------|---------|-----------|----------|-----------|--------------------|----------|--------------------|----------|-------|---------------------|-----------|------------------|-------------------------|------------------------|----------------------------|------------------------|---------------|------------|-----|
| Magnesium | Bodium  | Potassium | Total    | Dissolved | Sulphate           | Chloride | Nitrate            | Fluoride | Boron | Bicarbonate         | Carbonate | Gravi-<br>metric | Colori-<br>metric       | Non-<br>car-<br>bonate | Totalb                     | Sum of<br>Constituents | Per cent sodi | Saturation | No. |
| (Mg)      | (Na)    | (K)       |          |           | (SO <sub>4</sub> ) | (C1)     | (NO <sub>3</sub> ) | (F)      | (B)   | (HCO <sub>3</sub> ) | (CO3)     |                  |                         |                        |                            |                        |               | + 1 -      | -   |

### RIVER AT HANEY

<sup>†</sup> Discharge records at Mission City, B.C.

FROM BRIDGE AT MISSION CITY.

| 2.4 |     |     |      | 0.00 | **   |     | m     | 0.10 |      | 54.3         | 0   | 5-6  | 6.2    | 7-3 | 51.8   | 65.7   |   |           | 2   |
|-----|-----|-----|------|------|------|-----|-------|------|------|--------------|-----|------|--------|-----|--------|--------|---|-----------|-----|
|     | 1.4 | 0.9 | 1.0  | 0.02 | 10-2 | (0) | Trace | 0.10 |      | (53.7)       | (0) |      |        |     |        |        |   | <br>      |     |
| 4.5 | 2-9 | 1.0 |      | 0.18 | 14.8 | 0   | 0.5   | 0.05 | 0    | 78-3         | 0   | 16.2 | 13 · 4 | 7.9 | 72-1   | 96.8   |   | <br>***** | 3   |
| 3.6 | 2.2 | 0.8 | 0.57 | 0.06 | 15.5 | 0   | 0.7   | 0.05 |      | 63.2         | 0   | 9-4  | 6.5    | 3.4 | 55.2   | 76.7   |   |           | 4 5 |
|     |     |     |      |      |      | _   |       |      |      |              |     |      |        |     |        |        |   |           |     |
| 3.2 | 2.2 | 0.7 | 1.8  | 0.13 | 18.5 | 0   | 0.5   | 0.05 |      | <b>5</b> 6·6 | 0   | 8.6  | 8-6    | 1.8 | 51-4   | 74-1   |   | <br>      | 6   |
| 3.6 | 2.6 | 0-9 | 1-1  | 0.06 | 16-6 | 0   | 0.5   | 0-10 | 0    | 62-0         | 0   | 6.6  | 7.5    | 6.4 | 57-2   | 79-3   |   | <br>      | 7   |
| 4.0 | 2.7 | 1-3 |      | 0.14 | 9-1  | 0   | 0     | 0.15 |      | 68-3         | 0   | 8-2  | 6-2    | 0   | 53.9   | 72-1   |   | <br>      | 8   |
| 5.0 | 2.7 | 0.9 | 0.93 | 0.11 | 13.0 | 0   | 0     | 0.05 | 0    | 65-9         | 0   | 8-6  | 9.2    | 9.5 | 63-5   | 80.5   |   | <br>      | 9   |
| 3-1 | 8.0 | 0.9 | 1.8  | 0.08 | 15.8 | 0   | 0.4   | 0.15 |      | 61.0         | 0   | 6.6  | 7-0    | 3.7 | 53 - 7 | 76-7   |   | <br>      | 10  |
| 3.4 | 2.6 | 1.1 | 4.3  | 0-22 | 10.2 | 0   | 1.3   | 0.10 |      | 65-9         | 0   | 8.6  | 7.0    | 1.4 | 55 - 4 | 74.9   |   | <br>      | 11  |
| 3.3 | 2-4 | 1.2 | 10.9 | 0.68 | 12.8 | 0   | 0.6   | 0.10 |      | 66-9         | 0   |      | 7-8    | 0.5 | 55-3   | 78-4   |   | <br>      | 12  |
| 3.1 | 2-2 | 1.0 | 17-8 | 0.27 | 6-1  | 0   | 0.7   |      |      | 64-4         | 0   |      | 5.5    | 0.2 | 53.0   | 66-6   |   | <br>      | 13  |
| 2.8 | 1.8 | 0.9 | 5-8  | 0.33 | 7-6  | 0   | 0.5   | 0.05 |      | 59-0         | 0   |      | 5.9    | 1.0 | 49-4   | 64.0   |   | <br>      | 14  |
| 3.1 | 2.2 | 0.7 | 6.5  | 0.11 | 6-4  | 0   | 0.5   | 0.05 |      | 57-8         | 0   |      | 6-7    | 7-6 | 55-0   | 65 - 0 | , | <br>      | 15  |
| 2.1 | 1.8 | 0.8 | 12-5 | 0.20 | 5.6  | 0   | 0.7   | 0.10 | 0    | 56-1         | 0   |      | 6-3    | 1.0 | 47-0   | 60-6   |   | <br>      | 16  |
| 2.4 | 1.6 | 0.7 | 10-2 | 0-27 | 5.8  | 0.2 | 0     | 0.10 |      | 53.7         | 0   |      | 5-7    | 3.3 | 47.3   | 58-1   |   | <br>      | 17  |
| 2.1 | 1.8 | 0.8 | 5.2  | 0.26 | 9-2  | 0   | 0.4   | 0-10 |      | 50.0         | 0   |      | 8.8    | 5.5 | 46.5   | 63 - 3 |   | <br>      | 18  |
| 2.5 | 1.6 | 0.7 | 3.7  | 0.22 | 6.9  | 0   | 0.4   | 0.05 |      | 49-5         | 0   |      | 6.2    | 5.1 | 45.7   | 57.0   |   | <br>      | 19  |
| 2.1 | 2.0 | 0-7 | 3-3  | 0.07 | 5-8  | 0   | 0.6   |      |      | 54.9         | 0   |      | 5-7    | 0   | 41.5   | 57-1   |   | <br>      | 20  |
| 2.3 | 1.8 | 0.8 | 2.3  | 0.03 | 5.8  | 0   | 0.8   |      | 0.01 | 48.8         | 0   |      | 5.5    | 3.2 | 43-2   | 54.5   |   | <br>      | 21  |
| 2.3 | 2.0 | 0.5 | 2.3  | 0.06 | 7-6  | 0   | 0     | 0.10 |      | 52.7         | 0   | l    | 7.7    | 1-7 | 44.9   | 60.3   |   | <br>1     | 22  |

<sup>(</sup>b) Total refers to sum of hardness due to calcium and magnesium ions.
(c) Total iron increases with turbidity in many waters, indicating analyses of iron in colloidal and suspended matters.

## Chemical Analyses of Surface Waters in the Fraser River Drainage Basin—Continued

|     |       |                        | Pc                 | 8      |                    | discharg<br>nd-feet) | rea          | Water                 | ygen             | ide            |     |            |           |                 | ended<br>atter    | Specific               | Residu<br>dri<br>(Dis | e on Eva<br>ed at 10<br>solved s | poration<br>5°C.<br>olids) | Loss                      |        |
|-----|-------|------------------------|--------------------|--------|--------------------|----------------------|--------------|-----------------------|------------------|----------------|-----|------------|-----------|-----------------|-------------------|------------------------|-----------------------|----------------------------------|----------------------------|---------------------------|--------|
| No, |       | ate of<br>llection     | (Days)             | sam    | On<br>pling<br>ate |                      | nthly<br>ean | tem-<br>pera-<br>ture | Dissolved oxygen | Carbon dioxide | Hď  | Colour     | Turbidity | Dried at 105°C. | Ignited at 550°C. | K x 10s<br>at<br>25°C. | P.P.M.                | Tons<br>per<br>acre-<br>foot     | Thousand tons per day      | on<br>igni-<br>tion<br>at | (Ca)   |
|     |       |                        |                    |        |                    |                      |              |                       |                  |                |     |            |           |                 |                   | STAT                   | rion n                | o. 2: FR                         | ASER I                     | RIVER                     | FROM   |
| _   | 1     | 1950                   |                    | Max.   | Min.               | Max.                 | Min.         |                       |                  |                |     |            |           |                 |                   |                        |                       |                                  |                            |                           |        |
| 1   | Aug.  | 21-31                  | 93                 | 7.49   | 6-37               |                      |              | 64                    |                  |                | 7.8 | 15         | 20        | 48              | 47                | 99-8                   | 68-6                  | 0.093                            |                            | 6.2                       | 15.2   |
| 2   | Sept. | 1-10                   | 97                 | 6-41   | 5.44               |                      |              | 62                    |                  |                | 7.8 | 5          | 50        | 56 .            | 50                | 106                    | 68-4                  | 0.093                            |                            | 4-8                       | 15.8   |
| 3   | Sept. | 11-20                  | 73                 | 5.70   | 3-62               | 5.82                 | 4.10         | 60                    |                  |                | 7.9 | 5          | 20        | 32              | 30                | 106                    | 70-8                  | 0.096                            |                            | 6-0                       | 15.7   |
| 4   | Sept. | 21-30                  | 63                 | 5.35   | 3 - 25             |                      |              | 58                    |                  |                | 7.7 | 2          | 45        | 26              | 25                | 103                    | 66-4                  | 0.090                            |                            | 7.0                       | 15.0   |
| 5   | Oct.  | 1–10                   | 67                 | 5.42   | 2.93               |                      |              | 52                    |                  |                | 7-7 | 2          | 35        | 34              | 30                | 107                    | 68-4                  | 0.093                            |                            | 6.6                       | 15-1   |
| 6   | Oct.  | 11-20                  | 110                | 6-41   | 4.30               | 5.96                 | 3-58         | 49                    |                  |                | 7.6 | 20         | 20        | 33              | 30                | 99.7                   | 65-4                  | 0.089                            |                            | 9.8                       | 14.2   |
| 7   | Oct.  | 21-31                  | 100                | 6.03   | 3.51               |                      |              | 46                    |                  |                | 7.6 | 10         | 9         | 18              | 16                | 110                    | 78-0                  | 0.106                            |                            | 11.2                      | 15.2   |
| 8   | Nov.  | 1-10                   | 109                | 6-32   | 4.05               |                      |              | 43                    |                  |                | 7.7 | 15         | 50        | 67              | 61                | 104                    | 76.8                  | 0.104                            |                            | 16.6                      | 18-0   |
| 9   | Nov.  | 11-20                  | 89                 | 6.38   | 3 - 23             | 6.36                 | 3 • 65       | 39                    |                  |                | 7.6 | 5          | 25        | 36              | 34                | 108                    | 70-6                  | 0.096                            |                            | 9-4                       | 16.0   |
| 10  | Nov.  | 21-30                  | 73                 | 6.37   | 3 - 65             |                      |              | 40                    | ,                |                | 7.4 | 15         | 15        | 29              | 27                | 93.3                   | 61.8                  | 0.084                            |                            | 11.6                      | 13 - 4 |
| 11  | Dec.  | 1–10                   | 53                 | 6 · 45 | 3.50               |                      |              | 37                    |                  |                | 7.5 | 5          | 6         | 14              | 12                | 103                    | 66-4                  | 0.090                            |                            | 11.0                      | 14-0   |
| 12  | Dec.  | 11-20                  | 59                 | 6.94   | 4.26               | 7-13                 | 4-51         | 40                    |                  |                | 7.3 | 10         | 20        | 13              | 11                | 90.3                   | 61.0                  | 0.083                            |                            | 15.2                      | 12.9   |
| 13  | Dec.  | 21-31                  | 43                 | 7-92   | 5-65               |                      |              | 42                    |                  |                | 7-6 | 15         | 10        | 34              | 30                | 82.3                   | 57-4                  | 0.078                            |                            | 10.8                      | 11-7   |
| 14  | Jan.  | 1-10/51                | 52                 | 5.98   | 2.72               |                      |              | 37                    |                  |                | 7.5 | 10         | 7         | 12              | 11                | 101                    | 66-8                  | 0.091                            |                            | 10.8                      | 13-8   |
| 15  | Jan,  | 11-20,                 | 42                 | 5.74   | 1.81               | 5.81                 | 2 · 15       | 37                    |                  |                | 7-4 | 10         | 3         |                 |                   | 116                    | 81-2                  | 0.111                            |                            | 12.8                      | 15.6   |
| 16  | Jan.  | 21-31                  | 43                 | 5.70   | 1.95               |                      |              | 36                    |                  |                | 7-6 | 10         | 9         | 19              | 15                | 119                    | 67-6                  | 0.092                            |                            | 9-6                       | 14-7   |
| 17  |       | y Average<br>mples)    | 59                 | 8-36   | 6-15               | 8.34                 | 6-11         | 47                    |                  |                | 7.7 | 10         | 45        |                 |                   | 107-9                  | 76.0                  | 0.103                            |                            | 11.7                      | 15.3   |
|     |       |                        |                    |        |                    |                      |              |                       |                  |                |     |            | -         |                 | 1                 |                        | STAT                  | ION No                           | . 3: FRA                   | SER R                     | IVER   |
| 1   |       |                        |                    | Con    | rao hair           | .h. t t.             |              | 1                     |                  |                |     |            |           |                 | 1                 |                        | 1                     |                                  |                            | 1                         |        |
| 10  | A     | 00 (40%                | ma.                |        | nge nerg           | ght in fe            | ет           |                       |                  |                |     |            |           |                 |                   |                        |                       |                                  |                            |                           |        |
| 18  | Aug.  | 26/49*                 | 76                 | 62     |                    |                      |              |                       | (1.5)            | 7·5<br>(8·3)   | 15  | 50<br>(45) | 50        | 49              | 109               | 73.0                   | 0.099                 |                                  | 12.0                       | 19.6                      |        |
| 19  | Apr.  | 5/50†                  | 12                 |        |                    |                      | 39           |                       |                  | 7.9            | 7   | 9          | 18        | 18              | 153               | 93 · 2                 | 0.127                 |                                  | 7.2                        | 20.5                      |        |
|     | Apr.  | 24                     | 15                 |        |                    |                      | 40           |                       |                  | 8.0            | 20  | 200        | 159       | 153             | 146               | 97.2                   | 0.132                 |                                  | 8.6                        | 20.3                      |        |
|     | May   | 29                     | 38                 |        |                    | 48                   |              |                       | 7.9              | 10             | 70  |            |           | 116             |                   |                        |                       |                                  | 15.8                       |                           |        |
| 1   | July  | 28                     | 42                 |        | 19-42              |                      | 18-48        | 57                    |                  |                | 7-8 | 40         | 150       | 163             | 158               | 98-9                   | 75-0                  | 0 · 102                          |                            | 9.2                       | 15.5   |
| 20  |       | 24 <br><br>l sample, r | 81  <br>not includ |        | 14·18   15·37   61 |                      |              |                       | [.               |                | 7.7 | 5          | 105       | 97              | 92                | 98-8                   | 65 · 4                | 0.089                            |                            | 9.8                       | 16.9   |

<sup>\*</sup> Field sample, not included in average. † Extra sample, not included in average.

## Chemical Analyses of Surface Waters in the Fraser River Drainage Basin-Continued

| -          |             |               |          |            |             |          |                  |          |     |                                  |           |                  |                          |                        |                            |                        |                 |     |                |      |
|------------|-------------|---------------|----------|------------|-------------|----------|------------------|----------|-----|----------------------------------|-----------|------------------|--------------------------|------------------------|----------------------------|------------------------|-----------------|-----|----------------|------|
|            | AIk         | alis          | Ir<br>(H | ron<br>Fe) |             |          |                  |          |     |                                  |           | Sil<br>(Si       | lica<br>O <sub>2</sub> ) | Hardi<br>Ca            | ness as<br>CO <sub>3</sub> |                        |                 |     | rex            |      |
| Magnesium  | mnipog (Na) | (X) Potassium | Total    | Dissolved  | SO Sulphate | Chloride | (NO3)<br>Nitrate | Eluoride | (B) | (HCO <sup>3</sup> )  Bicarbonate | Corbonate | Gravi-<br>metric | Colori-<br>metric        | Non-<br>car-<br>bonate | Totalb                     | Sum of<br>Constituents | Per cent sodium | +   | Daturation inc | No.  |
| BRID       | GE AT       | MISSIO        | N CITY   | —Contin    | ued         |          |                  |          |     |                                  |           |                  |                          |                        |                            |                        |                 |     |                |      |
|            |             |               |          |            |             |          | ]                |          |     |                                  |           |                  |                          |                        |                            |                        |                 |     |                | Ī    |
| 2.4        | 1.8         | 0.7           | 2.0      | 0.05       | 7.6         | 0        | 0.4              | 0.10     |     | 53.7                             | 0         |                  | 6.8                      | 3.8                    | 47.8                       | 61-4                   |                 |     |                | . 1  |
| 2.6        | 1.8         | 1.0           | 3.2      | 0.04       | 9.4         | 0        | 0.5              | 0        |     | 53.7                             | 0         |                  |                          | 6-1                    | 50.1                       | 57.5                   |                 |     |                | . 2  |
| 2.7        | 1.6         | 0.7           | 1.3      | 0.06       | 8.6         | 0        | 0.4              | 0.05     |     | 59.0                             | 0         |                  | 7.0                      | 1.9                    | 50.3                       | 65.8                   |                 |     |                | . 3  |
| 2.6        | 1.8         | 0.7           | 1.0      | 0.06       | 8.6         | 0        | 0.4              | 0.05     |     | 55.6                             | 0         |                  | 4.8                      | 2.5                    | 48-1                       | 62-5                   |                 |     |                | . 4  |
| 2.8        | 1.7         | 0-9           | 2.2      | 0.05       | 8.4         | 0        | 0                | 0.10     |     | 56.1                             | 0         |                  | 5.1                      | 3.2                    | 49-2                       | 64-0                   |                 |     |                | . 5  |
| 2-8        | 2-2         | 1.0           | 1.5      | 0.10       | 8.2         | 0        | 0.5              | 0.10     |     | 53 · 2                           | 0         |                  | 7.0                      | 3-4                    | 47.0                       | 63-8                   |                 |     |                | 6    |
| 2.9        | 2.0         | 0.6           | 0.8      | 0.05       | 8-2         | 0        | 0.5              | 0.10     |     | 57-3                             | 0         |                  | 5-7                      | 3.0                    | 50.0                       | 64-3                   |                 |     |                | . 7  |
| 2.9        | 2.3         | 0.8           | 1.4      | 0.09       | 17-6        | 0        | 0                |          | 0   | 56-1                             | 0         |                  | 3.0                      | 10.8                   | 56.8                       | 73.2                   |                 |     |                | . 8  |
| 2.9        | 1.3         | 0.4           | 1.8      | 0.09       | 9-5         | 0        | 0.6              |          |     | 58-8                             | 0         |                  | 7.5                      | 3-6                    | 51.8                       | 69.0                   |                 |     |                | 9    |
| 2.6        | 2.1         | 0.5           | 2.2      | 0.09       | 6.7         | 0        | 0.9              | 0.05     |     | 51·2<br>55·6                     | 0         |                  | 5·8<br>6·7               | 2·1<br>0·8             | 44.1                       | 59·6<br>61·8           |                 |     |                | 10   |
| 2.8        | 2.3         | 0.3           | 0.9      | 0.10       | 6·3<br>9·1  | 0        | 0.9              | 0.05     |     | 48-8                             | 0         |                  | 6.7                      | 2.5                    | 42.5                       | 60-5                   |                 |     |                | 12   |
| 2·5<br>2·3 | 3·3<br>1·8  | 0.5           | 1.7      | 0.03       | 4-4         | 0        | 1.3              | 0.05     |     | 43.7                             | 0         |                  | 5.2                      | 2.9                    | 38.7                       | 50-6                   |                 |     |                | 13   |
| 2.5        | 1.5         | 0.6           | 0.99     | 0.03       | 7.2         | 0        | 0.4              | 0.10     |     | 51.5                             | 0         | 4.4              | 4-6                      | 2.5                    | 44.7                       | 61.5                   |                 |     |                | 14   |
| 3.1        | 1.9         | 0.6           |          | 0.28       | 8.0         | 0        | 0.5              | 0.05     |     | 60-0                             | 0         |                  | 4-4                      | 2.5                    | 51.7                       | 64 · 1                 |                 |     |                | 15   |
| 3.1        | 1.9         | 0.5           | 1.2      | 0.06       | 10-9        | 0        | 0.7              | 0        |     | 54.9                             | 0         | 7.8              | 7.2                      | 4.4                    | 49-4                       | 66-0                   |                 |     |                | . 16 |
| 2.9        | 2.1         | 0.8           |          | 0.13       | 9.5         | 0        | 0.5              | 0.08     |     | 57.3                             | 0         |                  | 6.6                      | 3.1                    | 50.1                       | 66-0                   | 8-2             |     | 0.8            | 17   |
|            |             |               | [        |            |             |          | 1                |          | !   |                                  | 1         | 1                |                          |                        |                            | !                      | 1               | -   |                | _    |
| FROM       | FERR        | Y AT R        | OSEDA    | LE         |             |          |                  | 1        | 1   |                                  | 1         | 1                | 1                        | 1                      | i                          | 1                      | 1               | 1 1 |                | Т    |
|            |             |               |          |            |             |          |                  |          |     |                                  |           |                  |                          |                        |                            |                        |                 |     |                |      |
| 2.9        | 1.8         | 0.9           | 0.75     | 0.08       | 15.7        | 0        | Trace            | 0.10     |     | 59·5<br>(61·0)                   | 0 (0)     | 5.0              | 6-2                      | 12.0                   | 60.8                       | 76.5                   |                 |     |                | 18   |
| 4.9        | 2.8         | 1.0           | 2.2      | 0.06       | 17.4        | 0        | 0.4              | 0.10     |     | 80.8                             | 0         | 5.8              | 6.6                      | 5.1                    | 71.3                       | 93.5                   |                 |     |                | 19   |
| 4.0        | 3.6         | 1.2           | 8.8      | 0.23       | 10.7        | 0        | 0.5              | 0.10     |     | 78 · 1                           | 0         | 9-2              | 8.5                      | 3.1                    | 67.1                       | 87.5                   |                 |     |                | 20   |
| 2.8        | 2.6         | 1.0           |          |            | 7-6         | 0        |                  |          | 0   | 65 · 4                           | 0         |                  | 7.2                      | 0                      | 50.9                       | 69.2                   |                 |     |                | 21   |
| 2.3        | 1.4         | 0.7           | 4.6      | 0.31       | 6.4         | 0        | 0.4              | 0.05     |     | 56.1                             | 0         |                  | 6.0                      | 2.2                    | 48.2                       | 55.2                   |                 |     |                | 22   |
| 2.2        | 1.8         | 0.7           | 1.2      | 0.14       | 6.4         | 0        | 0.4              | 1        |     | 56.6                             | 0         |                  | 5-2                      | 4.9                    | 51.3                       | 61.5                   | 1               | (   |                | 23   |

## Chemical Analyses of Surface Waters in the Fraser River Drainage Basin-Continued

| Facult Service |             |               |                |                        |                                  |                       |                  |                |              |        |            |             |               |                  |                          |                                     |                                     |                           |         |
|----------------|-------------|---------------|----------------|------------------------|----------------------------------|-----------------------|------------------|----------------|--------------|--------|------------|-------------|---------------|------------------|--------------------------|-------------------------------------|-------------------------------------|---------------------------|---------|
|                |             |               | rd.            | Stream d<br>(Secon     | ischarge <sup>a</sup><br>d-feet) | Water                 | nei              |                |              |        |            | Suspe       |               | Specific         | Residue<br>drie<br>(Diss | e on Evap<br>ed at 105<br>solved so | ooration<br>°C.<br>lids)            | Loss                      |         |
| No.            | Da<br>colle | ate of ection | Storage period | On<br>sampling<br>date | Monthly<br>mean                  | tem-<br>pera-<br>ture | Dissolved oxygen | Carbon dioxide | Hd           | Colour | Turbidity  | Dried<br>at | Ignited<br>at | conduct-<br>ance | P.P.M.                   | Tons<br>per<br>acre-<br>foot        | Thou-<br>sand<br>tons<br>per<br>day | on<br>igni-<br>tion<br>at | Calcium |
| -              |             |               | (Days)         |                        |                                  | (°F.)                 |                  |                | Д,           |        |            | 105°C.      | 550°C.        | at<br>25°C.      |                          | -                                   |                                     | 550°C.                    | (Ca)    |
|                |             |               |                |                        |                                  |                       |                  |                |              |        |            |             |               |                  | STAT                     | ION No                              | 3: FR.                              | ASER R                    | IVER    |
|                |             |               |                | Gauge hei              | ght in feet                      |                       |                  |                |              |        |            |             |               |                  |                          |                                     |                                     |                           |         |
| 1              | Aug.        | 17*           | 111            | 9.32                   | 9.79                             | 65                    |                  |                | 7.4          | 15     | 40         |             |               | 109              |                          |                                     |                                     |                           | 15.9    |
| 2              | Aug.        | 25            | 71             | 8-58                   | 9-79                             | 63                    |                  | (2.0)          | (8·0)<br>7·7 | 10     | (40)<br>50 |             |               | 111              |                          |                                     |                                     |                           | 16.7    |
| 3              | Sept.       | 25            | 70             | 5.80                   | 6.78                             | 59                    |                  |                | 8.0          | 5      | 25         |             |               | 114              |                          |                                     |                                     |                           | 16.3    |
| 4              | Oct.        | 23            | 91             | 4.62                   | 5.35                             | 45                    |                  |                | 7.8          | 5      | 20         | 20          | 19            | 123              | 78-4                     | 0.107                               |                                     | 8-8                       | 17.9    |
| 5              | Nov.        | 25            | 65             | 3.56                   | 5.16                             | 32                    |                  |                | 7.5          | 15     | 15         |             |               | 116              |                          |                                     |                                     |                           | 17.5    |
| 6              | Dec.        | 23/50         | 46             | 4.70                   | 4.51                             | 41                    |                  |                | 7.6          | 15     | 15         |             |               | 108              |                          |                                     |                                     |                           | 15.8    |
| 7              | Feb.        | 5/51          | 8              | 2.44                   | 2.74                             | 34                    |                  |                | 7.5          | 5      | 0.2        |             | <br>          | 138              |                          |                                     |                                     |                           | 22.0    |
| 8              | Feb.        | 28            | 15             | 2.16                   | 2.74                             | 35                    |                  |                | 8-5          | 10     | 9          |             |               | 156              |                          |                                     |                                     |                           | 20.5    |
| 9              | Mar.        | 24            | 114            | 2.06                   | 1.93                             | 38                    | ļ                |                | 7.9          | 10     | 560        | 341         | 319           | 180              | 114                      | 0.155                               |                                     | 34.4                      | 23 - 6  |
| 10             |             | y Average     | 55             | 7.01                   | 7-25                             | 46                    |                  |                | 7.8          | 13     | 100        |             |               | 125 - 5          | 86.0                     | 0-117                               |                                     | 14-2                      | 18-2    |
| -              |             | d sample.     | not incl       | ided in average.       |                                  |                       | 1                |                | i            |        | 1          |             | 1             | 1                | ι                        | <u> </u>                            | 1                                   |                           |         |
| _              |             |               |                |                        |                                  |                       |                  |                |              | ,      |            |             | STAT          | ION No.          | 4: FRAS                  | ER RI                               | VER FR                              | OM BRI                    | IDGE    |
| 11             | Mar.        | 8/50*         | 8              | 23,100                 | 23,600                           | 41                    |                  |                | 7.8          | 7      | 15         | 32          | 30            | 141              | 88.6                     | 0.121                               | 5.54                                | 9.2                       | 19-0    |
| 12             | Mar.        | 23            | 3              | 23,900                 | 23,600                           | 39                    |                  |                | 8.2          | 5      | 15         | 91          | 39            | 156              | 96-2                     | 0.131                               | 6.20                                | 10.0                      | 20.4    |
| 13             | Apr.        | 22            | 17             | 41,800                 | 33,600                           | 40                    |                  |                | 8.0          | 20     | 310        | 196         | 190           | 141              | 94.8                     | <b>0</b> ·129                       | 10.7                                | 9.0                       | 19-5    |
| 14             | May         | 23            | 9              | 160,000                | 142,000                          | 40                    |                  |                | 7.6          | 20     | 115        |             |               | 94.9             |                          |                                     |                                     |                           | 15.0    |
| 15             | June        | 23            | 34             | 427,000                | 309,000                          | 48                    |                  |                | 7.9          | 20     | 140        | 144         | 137           | 75-5             | 55.8                     | 0.076                               | 64.3                                | 6.4                       | 12.4    |
| 16             | July        | 22            | 83             | 197,000                | 231,000                          | 53                    |                  |                | 7.7          | 2      | 85         | 97          | 92            | 95.5             | 64.0                     | 0.087                               | 34.0                                | 21.0                      | 15.0    |
| 17             | Aug.        | 10**          | 118            | 121,000                | 115,000                          | 63                    |                  |                | 8.0          | 8      | 45         |             |               | 103              |                          |                                     |                                     |                           | 16.0    |
| 18             | Aug.        | 18            | 62             | 105,000                | 115,000                          | 55                    | ,                | (1.5)          | (8·0)<br>7·5 | 7      | (60)       |             |               | 98-5             |                          |                                     |                                     |                           | 15-0    |
| 19             | Sept.       | 23            | 66             | 58,200                 | 73,900                           | 61                    |                  |                | 7-9          | 5      | 25         |             |               | 116              |                          |                                     |                                     |                           | 16-1    |
| 20             | Oct.        | 23            | 91             | 48,500                 | 55,300                           | 46                    |                  |                | 7.8          | 5      | 25         | 24          | 23            | 113              | 74.8                     | 0.102                               | 9-79                                | 10.6                      | 16-2    |
| 21             | Nov.        | 24            | 66             | 35,900                 | 53,800                           | 40                    |                  |                | 7-5          | 20     | 20         |             |               | 103              |                          |                                     |                                     |                           | 15.3    |
| 22             | Dec.        | 22            | 47             | 48, 100                | 45,300                           | 42                    |                  |                | 7.5          | 20     | 20         |             |               | 102              |                          |                                     |                                     |                           | 15.3    |
| 23             | Jan.        | 1951          | No sar         | nple taken             | 30,100                           |                       |                  |                |              |        |            |             |               |                  |                          |                                     |                                     |                           |         |
| 24             | Feb.        | 24            | 12             | 25,500                 | 32,900                           | 36                    |                  |                | 7-1          | 5      | 6          | 3.0         | 2.7           | 138              | 93 - 6                   | 0.127                               | 6-44                                | 14-8                      | 20.0    |
| 25             | Mar.        | 12            | 29             |                        |                                  | 38                    |                  |                | 8-0          | 5      | 4          |             |               | 138              |                          |                                     |                                     |                           | 19.9    |
| 26             |             | y Average     | 43             | 106,445                | 95,458                           | 45                    |                  |                | 7.7          | 11     | 66         |             |               | 114              | 79.9                     | 0.109                               |                                     | 12.0                      | 16.7    |
| _              |             | imples)       |                | dod in average         |                                  | -1                    | 1                | 1              | 1            |        |            | 1           |               |                  | l                        |                                     |                                     |                           |         |

<sup>\*</sup> Extra sample, not included in average; low water sample.

\* Field sample, not included in average.

## Chemical Analyses of Surface Waters in the Fraser River Drainage Basin-Continued

|           | Alk    | alis          | Ir<br>(F   | on<br>'e) |          |          |           |          |           |                |           | Sil<br>(Si       | ica<br>O2)        | Hardr<br>Ca(           | iess as<br>COs                               |                        | - d             | lo de              | 401               |      |
|-----------|--------|---------------|------------|-----------|----------|----------|-----------|----------|-----------|----------------|-----------|------------------|-------------------|------------------------|----------------------------------------------|------------------------|-----------------|--------------------|-------------------|------|
| Magnesium | (Na)   | (X) Potassium | Total      | Dissolved | Sulphate | Chloride | ©OX)      | Eluoride | (B) Boron | ©OOH)          | Carbonate | Gravi-<br>metric | Colori-<br>metric | Non-<br>car-<br>bonate | Totalb                                       | Sum of<br>Constituents | Per cent sodium | + Saturation index | NOVIL COUNCIL AND | No.  |
|           |        |               |            |           |          | (01)     | (1408)    | (4.)     | (B)       | (11003)        | (008)     | 1                | '                 |                        | <u>.                                    </u> |                        | -               | 1 T 1              |                   | _    |
| FROM      | FERR   | Y AT R        | OSEDAI     | LE—Cont   | linued   |          |           |          |           |                |           | ı                | 1                 |                        |                                              | 1                      | 1               | 1 1                |                   | _    |
| 2.7       | 2.0    | 0.7           |            |           | 8.6      | 0        |           |          |           | 59-5           | 0         |                  | 6.0               | 2.0                    | 50.8                                         | 65.2                   |                 |                    |                   | 1    |
| 2.7       | 1.8    | 0.6           |            |           | 8.8      | 0        |           |          | 0.01      | (54·9)<br>57·8 | (0)<br>0  |                  | 4.8               | (7·0)<br>5·4           | (52·0)<br>52·8                               | 63-8                   |                 |                    |                   | 2    |
| 3.1       | 1.8    | 0.6           |            |           | 8.0      | 0        | l <b></b> |          |           | 61.5           | 0         |                  | 5.5               | 3.1                    | 53.5                                         | 65.5                   |                 |                    |                   | 3    |
| 3.7       | 2.0    | 0.8           | 1.3        | 0.06      | 8+9      | 0        | 0.4       | 0.05     |           | 65-9           | 0         |                  | 6.4               | 5-9                    | 59-9                                         | 72-6                   | .,              |                    |                   | 4    |
| 3.8       | 2.2    | 0.9           |            |           | 10-1     | 0        |           |          | 0         | 75-6           | 0         |                  | 5.6               | 0                      | 59.5                                         | 77-3                   |                 |                    |                   | 5    |
| 3.2       | 1.7    | 0.4           |            |           | 9.5      | 0        |           |          |           | 58-6           | 0         |                  | 5.1               | 4.5                    | 52.5                                         | 64-5                   |                 |                    |                   | 6    |
| 4.6       | 2.0    | 0.8           |            |           | 11.8     | 0        |           |          |           | 83 · 0         | 0         |                  | 6.0               | 5-8                    | 73.8                                         | 88.0                   |                 |                    |                   | 7    |
| 4.6       | 2-1    | 0-7           |            |           | 14-4     | 0.6      |           |          |           | 79-3           | 0         |                  | 7-2               | 5.1                    | 70-1                                         | 89.1                   |                 |                    |                   | . 8  |
| 6.3       | 4.1    | 1.3           | 18.8       | 0.18      | 17-1     | 0.6      | 0.7       | 0        |           | 90.0           | 0         |                  | 10.3              | 11.0                   | 84.8                                         | 108                    |                 |                    |                   | 9    |
| 3.6       | 2.3    | 0.8           |            | 0.08      | 10.0     | 0.1      | 0.5       | 0.04     |           | 69-0           | 0         |                  | 6.6               | 3.7                    | 60.3                                         | 76.2                   | 7.5             |                    | 0-€               | 10   |
|           |        |               | <u> </u>   | ]         |          | I        | 1         |          |           |                |           | 1                | 1                 |                        | )                                            | 1                      | 1               | 1 1                |                   | 1    |
| AT HO     | OPE-Di | rainage a     | rea, 85,60 | 00 square | miles    |          |           | 1        | i         | 1              |           | 1                |                   | 1                      | 1                                            | 1                      | 1               |                    |                   | 1    |
| 4.6       | 2.6    | 0.8           | 1.5        | 0.11      | 14.0     | 0        | 0.5       | 0.10     |           | 73 - 7         | 0         | 8.2              | 6.8               | 5.9                    | 66.3                                         | 87-0                   |                 |                    |                   | 11   |
| 5.1       | 3.1    | 0.8           | 2-4        | 0.04      | 18.9     | 0        | 0.4       | 0.10     |           | 73 - 7         | 2.9       | 8.6              | 7.1               | 6.7                    | 71.9                                         | 95.1                   |                 |                    |                   | 12   |
| 3.8       | 3.7    | 1.3           | 11-1       | 0.21      | 11.0     | 0        | 0.4       | 0.10     |           | 74 - 4         | 0         | 8.0              | 8.2               | 3.3                    | 64-3                                         | 84.8                   |                 |                    |                   | 13   |
| 2.7       | 2.0    | 0.8           |            |           | 8.1      | 0        |           |          |           | 56.6           | 0         |                  | 6.4               | 2.1                    | 48.5                                         | 62.8                   |                 |                    |                   | 14   |
| 1.2       | 1.4    | 0.6           | 7.4        | 0.18      | 6.6      | 0        | 0.4       | 0.10     |           | 41.5           |           |                  | 5.1               | 1.8                    | 35-8                                         | 48.3                   |                 |                    |                   | 15   |
| 2.3       | 1.6    | 0.8           | 3.0        | 0.12      | 5.8      | 0        | 0.4       |          |           | 53 · 7         | 0         |                  | 5.6               | 2.9                    | 46.9                                         | 58.0                   |                 | ,                  |                   | . 16 |
| 2 · 4     | 1.7    | 0.7           |            |           | 7.6      | 0 (0)    |           |          |           | 53·7<br>(52·5) | 0 (0)     |                  | 5.5               | 5·8<br>(8·0)           | 49·8<br>(51·0)                               | 60.3                   |                 |                    |                   | 17   |
| 2.3       | 1.5    | 0.6           |            |           | 8.0      | 0        |           |          | 0         | 51.0           | 0         |                  | 6.7               | 5.1                    | 46.9                                         | 59.2                   |                 |                    |                   | . 18 |
| 3.3       | 2.0    | 0.7           |            |           | 10.5     | 0        |           |          |           | 61.0           | 0         |                  | 5.2               | 3.8                    | 53.8                                         | 67.8                   |                 |                    |                   | 19   |
| 3.3       | 1.8    | 0.7           | 1.3        | 0.08      | 8-4      | 0        | 0.4       | 0        |           | 61.0           | 0         |                  | 6.8               | 4.0                    | 54.0                                         | 67.6                   |                 |                    |                   | . 20 |
| 3.1       | 2.0    | 0-8           |            |           | 7.0      | 0        |           |          | 0.01      | 63 · 4         | 0         |                  | 4.6               | 0                      | 51.0                                         | 64.0                   |                 |                    |                   | . 21 |
| 2.9       | 1.7    | 0.3           |            |           | 8.7      | 0        |           |          |           | 53 · 7         | 0         |                  | 5.2               | 6.0                    | 50.0                                         | 60-5                   |                 |                    |                   | . 22 |
|           |        |               |            |           |          |          |           |          |           |                |           |                  |                   |                        |                                              |                        |                 |                    |                   | . 23 |
| 4.0       | 2.3    | 0.8           | 0.59       | 0.05      | 9-9      | 1.5      | 0.7       | 0        | 0         | 70.8           | 0         |                  | 9.1               | 8.4                    | 66-4                                         | 83 · 1                 |                 |                    |                   | . 24 |
| 4.2       | 2.0    | 1.0           |            |           | 6.2      | 1.0      | 1.3       |          |           | 75 · 2         | 0         |                  | 17.2              | 5.3                    | 66-9                                         | 89.8                   |                 |                    |                   | . 25 |
| 3.2       | 2.1    | 0.8           |            | 0.11      | 9.1      | 0.2      | 0.6       | 0.06     |           | 61.3           | 0         |                  | 7.3               | 4.6                    | 54.8                                         | 70-4                   | 7.6             |                    | 0.7               | 26   |

## Chemical Analyses of Surface Waters in the Fraser River Drainage Basin-Continued

|     |       |                      | TT.            | Stream d<br>(Secon     | lischarge <sup>a</sup><br>d-feet) |                                | n.              |                |              |         |            |            | ended<br>stter    | Specific         | drie   | e on Evap<br>ed at 108<br>solved so | 5°C.                                | Loss           |         |
|-----|-------|----------------------|----------------|------------------------|-----------------------------------|--------------------------------|-----------------|----------------|--------------|---------|------------|------------|-------------------|------------------|--------|-------------------------------------|-------------------------------------|----------------|---------|
| No. |       | ate of<br>ection     | Storage period | On<br>sampling<br>date | Monthly<br>mean                   | Water<br>tem-<br>pera-<br>ture | Dissolved oxyge | Carbon dioxide | . Hď         | Colour  | Turbidity  | Dried at   | Ignited at 550°C. | K x 106 at 25°C. | P.P.M. | Tons<br>per<br>acre-<br>foot        | Thou-<br>sand<br>tons<br>per<br>day | on ignition at | Calcium |
|     |       |                      |                |                        |                                   |                                |                 |                |              |         |            |            |                   |                  | STAT   | ION No                              | . 5: FRA                            | ASER R         | IVER    |
| 1   | Aug.  | 10/50                | 98             |                        |                                   | 62                             |                 | (1.0)          | 8·0<br>(8·0) | 5       | 45<br>(70) | 56         | 53                | 105              | 67-0   | 0.091                               |                                     | 7.6            | 15.0    |
|     |       |                      |                |                        |                                   |                                |                 |                |              |         |            |            |                   |                  |        | STAT                                | TION N                              | o. 6: FR       | ASER    |
| 2   | Aug.  | 27/49                | 75             |                        |                                   | 61                             |                 | (2.0)          | 7·6<br>(8·3) | 20      | 50 (20)    | 79         | 75                | 110              | 75.8   | 0.103                               |                                     | 15.2           | 17-2    |
|     |       |                      |                | •                      |                                   |                                |                 |                |              |         |            |            |                   | -                | STAT   | ION No                              | . 7: FRA                            | ASER R         | IVER    |
| 1   | -     |                      |                | Gauge hei              | ght in feet                       |                                |                 |                |              |         |            |            |                   |                  |        |                                     |                                     |                |         |
| 3   | Feb.  | 21/50*               | 16             |                        |                                   | 32                             |                 |                | 7.4          | 0       | 0.4        |            |                   | 33-6             | 20.4   | 0.028                               |                                     | 1.0            | 4.9     |
| 4   | Mar.  | 21                   | 6              |                        |                                   | 38                             |                 |                | 7.9          | 5       | 5          | 8.6        | 7-2               | 289              | 180    | 0.245                               |                                     | 16-8           | 36-7    |
| 5   | Apr.  | 21                   | 18             |                        |                                   | 35.5                           |                 |                | 7.9          | 25      | 290        | 261        | 252               | 169              | 114    | 0.155                               |                                     | 10-4           | 22-9    |
| 6   | May   | 23                   | 7              | 19-26                  | 18.23                             | 47                             |                 |                | 8-1          | 40      | 165        |            |                   | 123              |        |                                     |                                     |                | 18-0    |
| 7   | June  | 21                   | 36             | 31.52                  | 26.52                             | 56.5                           |                 |                | 8.1          | 15      | 335        | 376        | 358               | 108              | 74.0   | 0.099                               |                                     | 8-4            | 17-4    |
| 8   | July  | 24                   | 81             | 20.75                  |                                   | 62                             |                 |                | 7.7          | 10      | 145        | 131        | 124               | 109              | 67.6   | 0.092                               |                                     | 12.2           | 16-9    |
| 9   | Aug.  | 18                   | 110            | 14-94                  |                                   | 64                             |                 | /1 =           | 7.8          | 3       | 50         |            |                   | 124              |        |                                     |                                     |                | 18-8    |
| 10  | Sept. | 21                   | 68             | 10-26                  |                                   | 59                             |                 | (1.5)          | (8·2)<br>8·0 | 5       | (40)       |            |                   | 126              |        |                                     |                                     |                | 18-1    |
| 11  | Oct.  | 23                   | 91             | 8-27                   |                                   | 40                             |                 |                | 7.8          | 15      | 10         | 22         | 21                | 134              | 85 - 4 | 0-116                               |                                     | 9.8            | 20-0    |
| 12  | Nov.  | 21                   | 69             | 4.35                   |                                   | 34                             |                 |                | 7.8          | 15      | 15         |            |                   | 151              |        |                                     |                                     |                | 22-9    |
| 13  | Dec.  | 23                   | 46             |                        |                                   | 33                             |                 |                | 7-7          | 15      | 20         |            |                   | 158              |        |                                     |                                     |                | 22.5    |
| 14  | Jan.  |                      | No sar         | nple taken.            |                                   |                                |                 |                |              |         |            |            |                   |                  |        |                                     |                                     |                |         |
| 15  | Feb.  | 21/51                | 27             |                        |                                   | 35                             |                 |                | 7-4          | 10      | 7          | 1.8        | 1-2               | 174              | 109    | 0-148                               |                                     | 12-8           | 24 · 4  |
| 16  |       | y Average<br>amples) | 51             |                        |                                   | 46                             |                 |                | 7.8          | 15      | 100        |            |                   | 151              |        | 0.143                               |                                     |                | 21.7    |
|     | * Not | included i           | n averag       | e. Sampled thro        | ough hole in ice                  | with p                         | robable         | e diluti       | on witl      | melte   | ed snow    | v and ice. |                   | S                | TATION | No. 8:                              | FRASE                               | R RIVE         | RAT     |
| 17  | Aug.  | 8/50                 | 113            |                        |                                   | 64                             |                 | (1.5)          | 7.7 (8.1)    | 6 (25)  | 55 (40)    | 53         | 46                | 120              | 77-4   | 0.105                               |                                     | 5.8            | 19-2    |
|     |       |                      |                |                        |                                   |                                |                 |                |              |         |            |            | -                 |                  | STAT   | ION No                              | ). 9: FRA                           | ASER R         | IVER    |
| 18  | Aug.  | 21/50                | 134            | 52,200†                | 61,100†                           | 64                             | (9.2)           | (1.2)          | 8.0          | 5       | 45 (30)    | 43         | 39                | 122              | 75-4   | 0.103                               | 10-60                               | 27.4           | 18.0    |
|     | † Rec | ords at Ma           | rguerite       | ; maximum for          | year 192,000; mi                  | nimum                          |                 |                |              | age for |            | 37,200 sec | ond-feet.         |                  |        |                                     |                                     |                |         |

## Chemical Analyses of Surface Waters in the Fraser River Drainage Basin-Continued

|               | Alk    | alis        | Ir<br>(H | on<br>Te) |          |              |             |          |           |                  |           | Sil<br>(Si       | ica<br>O <sub>2</sub> ) | Hardn<br>Ca(           | ess as         |                        | д               | a de            |      |         |
|---------------|--------|-------------|----------|-----------|----------|--------------|-------------|----------|-----------|------------------|-----------|------------------|-------------------------|------------------------|----------------|------------------------|-----------------|-----------------|------|---------|
| (M) Magnesium | (Na)   | A Potassium | Totale   | Dissolved | Sulphate | Chloride     | (°O Nitrate | Eluoride | (H) Boron | (CO) Bicarbonate | Carbonate | Gravi-<br>metric | Colori-<br>metric       | Non-<br>car-<br>bonate | Totalb         | Sum of<br>Constituents | Per cent sodium | Saturation inda |      | No.     |
| FROM          | BRID   | GE AT       | SPUZZ    | UM        |          |              |             |          |           |                  |           |                  |                         |                        |                |                        |                 |                 |      |         |
| 2.7           | 1.6    | 0-5         | 2.9      | 0.10      | 8.2      | 0            | 0.4         | 0.05     |           | 56-1             | 0         |                  | 5-7                     | 2·5<br>(4·0)           | 48·5<br>(46·0) | 61.8                   | 6.5             |                 | 0.5  | 1       |
| RIVE          | R AT B | OSTON       | BAR      |           |          |              |             |          |           |                  |           |                  |                         |                        |                |                        | 1               |                 |      | _       |
| 3.0           | 1.8    | 1.0         | 1-3      | 0.13      | 11.2     | 0            | 0.5         | 0.05     |           | 59·1<br>(61·0)   | 0 (0)     | 6-2              | 6.0                     | 6.8 (1.3)              | 55·2<br>(51·3) | 70.0                   | 6.5             |                 | 0.95 | 2       |
| FROM          | BRIDO  | E AT 1      | LILLOO   | ET        |          |              | f           |          | I         | (01.0)           | (0)       | 1                | l                       | (1.9)                  | (01.0)         | l                      | !               |                 |      | <u></u> |
|               |        |             |          |           |          |              |             |          |           |                  |           |                  |                         |                        |                | ]                      |                 |                 |      | -       |
| 0-9           | 0.5    | 0.1         |          | 0.04      | 4-1      | 0            | 0           | Trace    | Trace     | 17-1             | 0         | 2.4              | 2.0                     | 1.9                    | 15-9           | 20.9                   |                 |                 |      | 3       |
| 13.0          | 5.6    | 1.2         | 0-57     | 0.10      | 37-0     | 0            | 2.7         | 0.05     |           | 139              | 0         | 7.6              | 6.5                     | 30-9                   | 145            | 171                    |                 |                 |      | 4       |
| 5-0           | 4.3    | 1.2         | 14-4     | 0.20      | 10.5     | 0            | 0-4         | 0.1      |           | 94.2             | 0         | 10.8             | 10.2                    | 0.5                    | 77-7           | 101                    |                 |                 |      | 5       |
| 3.6           | 1.8    | 0.9         |          |           | 8-4      | 0            |             |          | 0.03      | 66.9             | 2-4       |                  | 6.1                     | 0.9                    | 59.7           | 74-1                   |                 |                 |      | 6       |
| 3-2           | 1.4    | 0.9         | 21.0     | 0.21      | 9-2      | 0            | 0.4         | 0        |           | 56.6             | 2-4       |                  | 5.2                     | 6.2                    | 56-6           | 68-1                   |                 |                 |      | 7       |
| 2-9           | 1.8    | 0.6         | 1.8      | 0.12      | 6.3      | 0            | Trace       |          |           | 59.0             | 0         |                  | 5.1                     | 5.7                    | 54-1           | 62.7                   |                 |                 |      | 8       |
| 3.3           | 1.7    | 0.6         |          |           | 9-1      | <b>0</b> (0) |             |          |           | 67·3<br>(63·4)   | (0)       |                  | 4.5                     | 5.3                    | 60-5           | 71-1                   |                 |                 |      | 9       |
| 3-9           | 2.0    | 0.5         |          |           | 11.9     | 0            |             |          | 0.005     | 70.5             | 0         |                  | 5-2                     | 3.4                    | 61-2           | 76-3                   |                 |                 |      | 10      |
| 4-4           | 2.0    | 0.6         | 1.2      | 0.04      | 9.4      | 0            | 0           | 0.1      |           | 78-1             | 0         |                  | 6.4                     | 4.0                    | 68-0           | 81.3                   |                 |                 |      | 11      |
| 4.9           | 2.4    | 0-7         |          |           | 10.3     | 0            |             |          | 0.02      | 85.9             | 0         |                  | 5.6                     | 7.1                    | 77.5           | 88-5                   |                 |                 |      | 12      |
| 5-2           | 2.0    | 0.5         |          |           | 10.5     | 0            |             |          |           | 88-1             | 0         |                  | 5.8                     | 5-3                    | 77.5           | 89-8                   |                 |                 |      | 13      |
|               |        |             |          |           |          |              |             |          |           |                  |           |                  |                         |                        | 60.0           | 103                    |                 |                 |      | 14      |
| 6.3           | 2.6    | 0.6         | 0.52     | 0.08      | 14.0     | 0.5          | 0.7         | 0        |           | 95.2             | 0         | 9.0              | 7·1<br>5·2              | 7.3                    | 86.8           | 89.7                   | 6.7             |                 | 0.4  | 15      |
| 5.1           | 2.5    | 0.75        |          | 0.11      | 12-4     | 0            |             |          |           | 82.8             |           |                  | 0.2                     | 1.5                    | 10.1           | 08.1                   | 0.1             |                 | 0.5  | 10      |
| BRIDO         | GE NEA | AR WIL      | LIAMS    | LAKE      |          |              |             |          |           |                  |           |                  |                         |                        |                |                        |                 |                 |      |         |
| 3.1           | 1.1    | 0.6         | 2-0      | 0.07      | 8-9      | 0 (0)        | 0.4         | 0.05     |           | 67·1<br>(63·4)   | 0 (0)     |                  | 5-1                     | 5.7                    | 60.7           | 71.5                   | 3.7             |                 | 0.7  | 17      |
| FROM          | FERR   | Y AT M      | LACALIS  | STER      |          | (0)          |             |          |           | , , , , , ,      |           |                  |                         |                        |                |                        |                 |                 |      |         |
| 3-0           | 1.8    | 0.5         | 2-2      | 0.05      | 8.6      | 0            | 0.7         |          |           | 64·4<br>(59·8)   | 0 (0)     |                  | 5.2                     | 4.4 (11.0)             | 57-2           | 69-5                   | 6-3             |                 | 0.5  | 18      |

## Chemical Analyses of Surface Waters in the Fraser River Drainage Basin-Continued

(In parts per million)

|                    | 70     | Stream o               | lischargea<br>d-feet) |                                | gen            |                |    |        |           |          | ended<br>atter | Specific                                       | dri    | e on Eva<br>ed at 10<br>solved so | 5°C.                                | Loss                      |      |
|--------------------|--------|------------------------|-----------------------|--------------------------------|----------------|----------------|----|--------|-----------|----------|----------------|------------------------------------------------|--------|-----------------------------------|-------------------------------------|---------------------------|------|
| Date of collection | (Dava) | On<br>sampling<br>date | Monthly<br>mean       | Water<br>tem-<br>pera-<br>ture | Dissolved oxyg | Carbon dioxide | Hď | Colour | Turbidity | Dried at | Ignited at     | conduct-<br>ance  K x 10 <sup>6</sup> at 25°C. | P.P.M. | Tons<br>per<br>acre-<br>foot      | Thou-<br>sand<br>tons<br>per<br>day | on<br>igni-<br>tion<br>at | (Ca) |

### STATION No. 10: FRASER RIVER AT BRIDGE

|    |       |           |            | Gauge hei         | ght in feet |    |         |       |              |    |             |     |     |     |        |       |          |        |
|----|-------|-----------|------------|-------------------|-------------|----|---------|-------|--------------|----|-------------|-----|-----|-----|--------|-------|----------|--------|
| 1  | Mar.  | 19/50     | 13         | Ice co            | nditions    | 33 |         |       | 7.9          | 2  | Б           | 15  | 12  | 153 | 90-4   | 0-123 | <br>6-4  | 25.4   |
| 2  | Apr.  | 19        | 15         | 5.48              | 5-90        | 44 |         |       | 8.1          | 15 | 155         | 214 | 201 | 154 | 102    | 0-139 | <br>17.8 | 24.0   |
| 3  | May   | 21        | 22         | 13.63             | 13-44       | 52 |         |       | 7.7          | 20 | 130         | 125 | 116 | 125 | 90-6   | 0.123 | <br>39-4 | 18-9   |
| 4  | June  | 19        | 51         | 21.20             | 17.78       | 64 |         |       | 7-7          | 5  | 180         | 237 | 231 | 115 | 83 - 6 | 0.114 | <br>11.2 | 19-2   |
| 5  | July  | 23        | 82         | 13.89             | 14.66       |    |         |       | 7.8          | 5  | 75          | 98  | 93  | 112 | 71.2   | 0.097 | <br>7.8  | 20.0   |
| 6  | Aug.  | 22        | 115        | 9-19              | 10.24       | 66 |         |       | 7.6          | 7  | 50          |     |     | 120 |        |       | <br>     | 17.7   |
| 7  | Sept. | 5         | 84         | 9.84              | 8.03        | 58 |         | (2.0) | (8·2)<br>7·8 | 10 | (25)<br>135 |     |     | 125 |        |       | <br>     | 20.2   |
| 8  | Sept. | 23        | 66         | 6.95              | 8.03        | 55 |         |       | 8-0          | 7  | 35          |     |     | 129 |        |       | <br>     | 19-2   |
| 9  | Oct.  | 28        | 97         | 6.34              | 6-80        | 39 |         |       | 7.9          | 15 | 15          | 27  | 24  | 137 | 96-6   | 0.131 | <br>11-2 | 21.0   |
| 10 | Nov   | -Sample l | ost in tra | ansit.            | 6.44        |    |         |       |              |    |             |     |     |     |        |       |          |        |
| 11 | Dec.  | 21        | 43         | 5.69              | 5.69        | 36 |         |       | 7.5          | 10 | 15          |     |     | 142 |        |       | <br>     | 23 · 3 |
| 12 | Jan.  | 51-No     | sample t   | aken; river froze | n over.     |    |         |       |              |    |             |     |     |     |        |       |          |        |
| 13 | Feb.  | 19        | 29         | Ice con           | nditions    | 34 | . , . , |       | 7.5          | 15 | 5           | 7.6 | 6.2 | 163 | 102    | 0.139 | <br>12.0 | 23 · 8 |
| 14 |       | ge        | 56         | 10-2              | 10-1        | 48 |         |       | 7.8          | 20 | 70          |     |     | 134 | 90.9   | 0.124 | <br>15-1 | 21.2   |

<sup>\*</sup> Above inflow of Quesnel River.

### STATION No. 11: FRASER RIVER BELOW MOUTH

|    |      |               |    | Gauge hei | ight in feet |    |      |     |    |     |     |     |     |      |       |          |        |
|----|------|---------------|----|-----------|--------------|----|------|-----|----|-----|-----|-----|-----|------|-------|----------|--------|
| 15 | Feb. | 17/50         | 15 | Ice con   | ditions      | 33 | <br> | 8-1 | 8  | 1   |     |     | 187 | 123  | 0.167 | <br>13.0 | 29 - 4 |
| 16 | Mar. | 16            | 11 | 17-01     | 16.79        | 34 | <br> | 8.0 | 10 | 3   |     |     | 199 | 123  | 0.167 | <br>8-2  | 30.0   |
| 17 | Apr. | 17            | 15 | 14.30     | 14.65        | 33 | <br> | 8.0 | 0  | 0.5 |     |     | 131 | 83.8 | 0.114 | <br>5.4  | 19-8   |
| 18 | May  | 16            | 14 | 25.70     | 22.79        | 44 | <br> | 7-4 | 40 | 45  |     |     | 108 |      |       | <br>     | 17.0   |
| 19 | June | 18            | 39 | 31.79     | 27.93        | 51 | <br> | 7-8 | 25 | 170 | 152 | 143 | 115 | 72-2 | 0.098 | <br>6.8  | 18.9   |
| 20 | July | 16            | 57 | 24.45     | 24.74        | 54 | <br> | 7-8 | 10 | 20  |     |     | 125 | 78.0 | 0.106 | <br>7.0  | 19-4   |
| 21 | Aug. | 18            | 78 | 19-45     | 19.78        | 55 | <br> | 7-8 | 15 | 50  |     |     | 137 |      |       | <br>     | 22 · 1 |
| 22 |      | ge<br>imples) | 33 | 22.1      | 21.1         | 43 | <br> | 7-8 | 15 | 75  |     |     | 143 | 96.0 | 0.130 | <br>8-1  | 22.4   |

### Chemical Analyses of Surface Waters in the Fraser River Drainage Basin—Continued

(In parts per million)

|           |        | alis      |       | on<br>'e) |                    |          |                    |          |       |                     |                    | Sil<br>(Si       | ica<br>O <sub>2</sub> ) |                        | ness as<br>CO <sub>3</sub> |                        | 8               | dex           |     |
|-----------|--------|-----------|-------|-----------|--------------------|----------|--------------------|----------|-------|---------------------|--------------------|------------------|-------------------------|------------------------|----------------------------|------------------------|-----------------|---------------|-----|
| Magnesium | Sodium | Potassium | Total | Dissolved | Sulphate           | Chloride | Nitrate            | Fluoride | Вогоп | Bicarbonate         | Carbonate          | Gravi-<br>metric | Colori-<br>metric       | Non-<br>car-<br>bonate | Totalb                     | Sum of<br>Constituents | Per cent sodiur | Saturation in | No. |
| (Mg)      | (Na)   | (K)       |       |           | (SO <sub>4</sub> ) | (CD)     | (NO <sub>3</sub> ) | (F)      | (B)   | (HCO <sub>2</sub> ) | (CO <sub>2</sub> ) |                  |                         |                        |                            |                        |                 | + 1 -         |     |

AT QUESNEL\*-Drainage area, 38,000 square miles

|     | LONEL | Dian | lage alea | , 00,000 si | dane mi | 108 |     |      |       |                |       |      |      |      |      |        |     |   |     |    |
|-----|-------|------|-----------|-------------|---------|-----|-----|------|-------|----------------|-------|------|------|------|------|--------|-----|---|-----|----|
|     |       |      |           |             |         |     |     |      |       |                |       |      |      |      |      |        |     |   |     |    |
|     |       |      |           |             |         |     |     |      |       |                |       |      |      |      |      |        |     |   |     |    |
| 3.9 | 1.6   | 0.2  | 0.40      | 0.04        | 15.2    | 0   | 0.7 | 0    |       | 84.2           | 0     | 4.4  | 4.6  | 10.5 | 79-5 | 93 • 1 |     |   |     | -  |
| 5.0 | 2.0   | 0.9  | 30.0      | 0.25        | 11.9    | 0   | 0   | 0.30 |       | 87-8           | 0     | 8.0  | 6.4  | 8-5  | 80.5 | 94.0   |     |   |     |    |
| 2.9 | 1.6   | 0.8  | 1.3       | 0.35        | 3.5     | 0   | 0.9 | 0.20 | 0     | 68-6           | 0     | 6-6  | 3.9  | 2.9  | 59-1 | 70.8   |     | , |     |    |
| 2.5 | 1.0   | 0.5  | 12.6      | 0.45        | 5.8     | 0   | 0.4 | 0    |       | 63 · 4         | 0     |      | 4.8  | 6-2  | 58.2 | 65.9   |     |   |     |    |
| 2-8 | 1.6   | 0.5  | 1.6       | 0.09        | 7-1     | 0   | 0.4 |      |       | 62.2           | 0     |      | 3.5  | 10-4 | 61.4 | 66-6   |     |   |     |    |
| 3.1 | 1.5   | 0.5  |           |             | 8-8     | 0   |     |      |       | 64.7           | 0 (0) |      | 4.1  | 4.0  | 57-0 | 68-0   |     |   |     |    |
| 3.5 | 1.2   | 0-5  |           |             | 9.5     | 0   |     |      | 0.007 | (63·4)<br>69·8 | 0     |      | 4.6  | 7.6  | 64-8 | 74.5   |     |   |     |    |
| 3.6 | 2.0   | 0.7  |           |             | 8.8     | 0   |     |      |       | 73 - 2         | 0     |      | 5.3  | 2.7  | 62.7 | 76-0   |     |   |     |    |
| 4-5 | 2.2   | 0.3  | 1-1       | 0.07        | 9.1     | 0   | 0.5 | 0.10 |       | 82.5           | 0     |      | 10.1 | 3.4  | 71.0 | 88-5   |     |   |     |    |
|     |       |      |           |             |         |     |     |      |       |                |       |      |      |      |      |        |     |   |     | 1  |
| 4.6 | 1.9   | 0.6  |           |             | 14.8    | 0   |     |      |       | 81.5           | 0     |      | 4.6  | 10.2 | 77-0 | 90.3   |     |   |     | 1  |
|     |       |      |           |             |         |     |     |      |       |                |       |      |      |      |      |        |     |   |     | 1  |
| 5.3 | 2.1   | 0.5  | 0.79      | 0.10        | 12.5    | 1.0 | 0.7 | 0    |       | 95.2           | 0     | 10.0 | 7.2  | 3.2  | 81.2 | 100    |     |   |     | [1 |
| 3.8 | 1.7   | 0.6  |           | 0.19        | 9.7     | 0   | 0.5 | 0.10 |       | 75 - 7         | 0     |      | 5.4  | 6.5  | 68.5 | 80.7   | 5.1 |   | 0.5 | ;  |

OF NECHAKO RIVER AT PRINCE GEORGE

| -   |     |     |     |      |      |     |     |      |      |        |     |     |     |     |        |      |     |   |     | Γ  |
|-----|-----|-----|-----|------|------|-----|-----|------|------|--------|-----|-----|-----|-----|--------|------|-----|---|-----|----|
|     |     |     |     |      |      |     |     |      |      |        |     |     |     |     |        |      |     |   |     |    |
| 5.6 | 2.2 | 0.6 |     | 0.10 | 12.4 | 0   | 0.3 | 0    | 0.08 | 104    | 2.4 | 6.0 | 6.2 | 7-6 | 96-4   | 110  |     |   |     | 15 |
| 6-5 | 2.4 | 0.6 |     | 0.32 | 17.3 | 0   | 0.5 | 0.05 |      | 114    | 0   | 8-4 | 7.7 | 7-8 | 102    | 121  |     |   |     | 16 |
| 3.1 | 2.7 | 0.3 |     | 0.09 | 13.5 | 0   | 0.6 | 0.10 |      | 66-6   | 0   | 7.8 | 5-9 | 7.6 | 62 - 2 | 78-8 |     |   |     | 17 |
| 2.7 | 1-1 | 0.6 |     |      | 9-3  | 0   | . ` |      | 0.01 | 63-4   | 0   |     | 4.4 | 1.5 | 53.5   | 66-3 |     |   |     | 18 |
| 2.7 | 0.7 | 0.6 | 6.8 | 0.18 | 6.4  | 0   | 0.5 | 0    |      | 64-9   | 0   |     | 3.5 | 5.1 | 58.3   | 65.3 |     |   |     | 19 |
| 3.7 | 1.4 | 0.7 | 1.5 | 0.41 | 9-9  | 0.5 | 1.3 | 0.05 |      | 67-8   | 0   | 5.2 | 2.7 | 8.0 | 63 - 6 | 71.9 |     |   |     | 20 |
| 3-4 | 1.0 | 0.3 |     |      | 9-1  | 0   |     |      | 0.02 | 73.0   | 0   |     | 4.9 | 9.3 | 69-1   | 76-7 |     |   |     | 21 |
| 4.0 | 1.6 | 0.5 |     | 0-22 | 11-1 |     |     |      |      | 83 · 4 | 0.3 |     | 5.0 | 4.0 | 72.3   | 84-3 | 4.5 |   | 0.4 | 22 |
|     |     |     |     |      |      |     |     |      | 1    | 1      |     | 1   |     |     |        | 1    |     | 1 |     |    |

### Chemical Analyses of Surface Waters in the Fraser River Drainage Basin-Continued

(In parts per million)

|                    | ō                   | Stream d<br>(Secon     | lischarges<br>d-feet) |                                | ten            | 0              |    |        |           | Suspe    | ended<br>tter | Specific         | drie   | e on Eva<br>ed at 103<br>solved so |                                     | Loss                      |              |
|--------------------|---------------------|------------------------|-----------------------|--------------------------------|----------------|----------------|----|--------|-----------|----------|---------------|------------------|--------|------------------------------------|-------------------------------------|---------------------------|--------------|
| Date of collection | (save Storage perio | On<br>sampling<br>date | Monthly<br>mean       | Water<br>tem-<br>pera-<br>ture | Dissolved oxyg | Carbon dioxide | Hď | Colour | Turbidity | Dried at | Ignited at    | conduct-<br>ance | P.P.M. | Tons<br>per<br>acre-<br>foot       | Thou-<br>sand<br>tons<br>per<br>day | on<br>igni-<br>tion<br>at | (Ca) Calcium |

### STATION No. 12: FRASER RIVER ABOVE

| _  |       |           |           |           |             |    | <br>     |                |    |            |    |    |     |      |       |       |      |      |
|----|-------|-----------|-----------|-----------|-------------|----|----------|----------------|----|------------|----|----|-----|------|-------|-------|------|------|
|    |       |           |           | Gauge hei | ght in feet |    |          |                |    |            |    |    |     |      |       |       |      |      |
| 1  | Feb.  | 17/50     | 15        |           |             | 33 | <br>     | 7.7            | 5  | 3          |    |    | 214 | 133  | 0.181 |       | 13.4 | 35.8 |
| 2  | Mar.  | 16        | 11        |           |             | 33 | <br>     | 8-1            | 5  | 0.4        |    |    | 339 | 209  | 0.284 |       | 15.4 | 46-1 |
| 3  | Apr   | No sample | e taken.  |           |             |    |          |                |    |            |    |    |     |      |       |       |      |      |
| 4  | May   | 16        | 14        | 78,000†   | 57,300†     | 44 | <br>     | 7.5            | 45 | 45         |    |    | 109 |      |       |       |      | 17-4 |
| 5  | June- | No sample | taken.    |           | 92,400      |    |          |                |    |            |    |    |     |      |       |       |      |      |
| 6  | July  | 16        | 66        | 54,600    | 57,400      | 55 | <br>     | 7.8            | 15 | 25         | 66 | 63 | 122 | 72.4 | 0.098 | 10.65 | 5.0  | 19.5 |
| 7  | Aug   | -No sampl | e taken.  |           | 31,300      |    |          |                |    |            |    |    |     |      |       |       |      |      |
| 8  | Sept. | 2         | 131       | 29,800    | 21,300      | 55 | <br>     | 7-9            | 15 | 50         |    |    | 138 |      |       |       |      | 21-4 |
| 9  | Sept. | 15        | 70        | 16,400    | 21,300      | 38 | <br>(2.0 | ) (7·7)<br>7·9 | 10 | (30)<br>25 |    |    | 153 |      |       |       |      | 24.0 |
| 10 | Oct   | Sample lo | st in tra | nsit.     | 15,700      |    |          |                |    |            |    |    |     |      |       |       |      |      |
| 11 | Nov   | -No samp  | le taken. |           | 18,600      |    |          |                |    |            |    |    |     |      |       |       |      |      |
| 12 | Dec.  | 12        | 45        | 8,700     | 8,020       | 35 | <br>     | 7.7            | 10 | 15         |    |    | 184 |      |       |       |      | 28.3 |
| 13 | Jan.  | 9/51      | 43        | 6,200     | 5,610       | 34 | <br>     | 7-7            | 15 | 3          |    |    | 193 | 117  | 0.159 | 1.96  | 16-6 | 30.2 |
| 14 | Feb.  | 10        | 38        | 4,900     | 4,820       | 38 | <br>     | 7-8            | 7  | 0.9        |    |    | 213 | 127  | 0.173 | 1.68  | 9-2  | 33.8 |
| 15 |       | ge        | 48        | 28,370    | 34,770      | 41 | <br>     | 7.8            | 15 | 20         |    |    | 185 | 132  | 0.179 |       | 11.9 | 28-5 |

<sup>†</sup> Discharge records at Shelley, drainage area 12,500 square miles; station established May 2, 1950.

### STATION No. 13: FRASER RIVER AT

| 1  |       |        | 1  | 1      | 1 .                                     |    | 1 | 1   | 1  |     |      |     |     |      |         |          | 1    |
|----|-------|--------|----|--------|-----------------------------------------|----|---|-----|----|-----|------|-----|-----|------|---------|----------|------|
| 16 | Feb.  | 16/50* | 16 | Low†   |                                         | 33 |   | 8-2 | 5  | 4   |      |     | 195 |      |         | <br>     |      |
| 17 | Mar.  | 16     |    | Low    |                                         | 34 |   | 8.0 | 5  | 3   |      |     | 194 | 116  | 0.158   | <br>7.0  | 26.0 |
| 18 | Apr.  | 15     | 12 | Low    |                                         | 38 |   | 7.8 | 5  | 5   | 4.6  | 8-2 | 195 | 118  | 0.161   | <br>10.4 | 28.0 |
| 19 | May   | 16     | 27 | Normal | * * * * * * * * * * * * * * * * * * * * | 42 |   | 7.8 | 7  | 7   | 19   | 13  | 152 | 89-8 | 0.121   | <br>33.6 | 20.0 |
| 20 | June  | 15     | 27 | High   |                                         | 50 |   | 8.0 | 10 | 120 | 110  | 104 | 131 | 242  | 0.329   | <br>39-6 | 34-2 |
| 21 | July  | 15     | 58 | High   |                                         | 47 |   | 8-1 | 25 | 35  | 74   | 72  | 113 | 77-2 | 0 · 105 | <br>5.2  | 17-0 |
| 22 | Aug.  | 15     | 65 | Normal |                                         | 52 |   | 8-1 | 10 | 70  |      |     | 112 |      |         | <br>     | 17-8 |
| 23 | Sept. | 16     | 69 | Normal |                                         | 51 |   | 8.0 | 15 | 40  |      |     | 121 |      |         | <br>     | 18.3 |
| 24 | Oct.  | 14     | 52 | Low    |                                         | 44 |   | 7.8 | 2  | 9   | 10.4 | 9-0 | 134 | 82-2 | 0.112   | <br>16-4 | 17-6 |
| _1 |       |        |    |        | 1                                       |    |   |     |    |     |      |     |     |      |         |          |      |

## Chemical Analyses of Surface Waters in the Fraser River Drainage Basin-Continued

(In parts per million)

| -         |        |           |       |           |                    |          |                    |          |       |                     |                    |                  |                         |                        |                |                        |                 |               | _   |
|-----------|--------|-----------|-------|-----------|--------------------|----------|--------------------|----------|-------|---------------------|--------------------|------------------|-------------------------|------------------------|----------------|------------------------|-----------------|---------------|-----|
|           |        | alis      | (F    | on<br>Te) |                    |          |                    |          |       |                     |                    | Sil<br>(Si       | ica<br>O <sub>2</sub> ) |                        | ness as<br>COs |                        | g               | dex           |     |
| Magnesium | Sodium | Potassium | Total | Dissolved | Sulphate           | Chloride | Nitrate            | Fluoride | Boron | Bicarbonate         | Carbonate          | Gravi-<br>metric |                         | Non-<br>car-<br>bonate | Totalb         | Sum of<br>Constituents | Per cent sodiur | Saturation in | No. |
| (Mg)      | (Na)   | (K)       |       |           | (SO <sub>4</sub> ) | (C1)     | (NO <sub>3</sub> ) | (F)      | (B)   | (HCO <sub>3</sub> ) | (CO <sub>3</sub> ) |                  |                         |                        |                |                        |                 | +1-           |     |

MOUTH OF NECHAKO RIVER AT PRINCE GEORGE

|      |     | ECHA | NO RIVI | LICAI . | PRINCI | GEON | - GL |   |      |                |       |      |      |      |      |      |     | <br>    |     |
|------|-----|------|---------|---------|--------|------|------|---|------|----------------|-------|------|------|------|------|------|-----|---------|-----|
|      |     |      |         |         |        |      |      |   |      |                |       |      |      |      |      |      |     |         |     |
| 6-5  | 2.2 | 0.7  |         | 0.15    | 15.0   | 0    | 0.8  | 0 | 0.13 | 123            | 0     | 6-8  | 6-8  | 15.6 | 116  | 128  |     | <br>    | 1   |
| 15-5 | 5-1 | 2.3  |         | 0-09    | 17-6   | 5.1  | 0.4  | 0 |      | 198            | 4.8   | 16-6 | 14.9 | 8.8  | 179  | 209  |     | <br>    | 2   |
|      |     |      |         |         |        |      |      |   |      |                |       |      |      |      |      |      |     |         | 3   |
| 2.7  | 0.9 | 0.8  |         |         | 8-4    | 0    |      |   | 0.21 | 62.5           | 0     |      | 4-3  | 3.3  | 54-5 | 65.0 |     | <br>    | 5   |
| 3.2  | 0.8 | 0.3  | 4.9     | 0.18    | 9.4    | 0    | 0.4  | 0 |      | 65.9           | 0     |      | 5.0  | 7-9  | 61.9 | 71-1 |     | <br>    | 6   |
|      |     |      |         |         |        |      |      |   |      |                |       |      |      |      |      |      |     |         | 7   |
| 4.6  | 1.1 | 0.8  |         |         | 9-1    | 0    | 0    |   |      | 75·6<br>(75·6) | 0 (0) |      | 3.8  | 10.3 | 72.3 | 78-0 |     | <br>    | . 8 |
| 4.1  | 1.4 | 0.4  |         |         | 10.1   | 0    |      |   |      | 90.3           | 0     |      | 5.0  | 2.8  | 76.8 | 89-4 |     | <br>    | 9   |
|      |     |      |         |         |        |      |      |   |      |                |       |      |      |      |      |      |     |         | 10  |
| 5.7  | 1.7 | 0-6  |         |         | 10.3   | 0    |      |   |      | 104            | 0     |      | 5.0  | 8-4  | 94.0 | 103  |     | <br>    | 12  |
| 5-6  | 1.8 | 0-4  |         | 0.09    | 8-6    | 0    | 0    |   |      | 111            | 0     |      | 1.9  | 7.2  | 98-4 | 103  |     | <br>    | 13  |
| 6.9  | 1.9 | 0.4  |         | 0.09    | 13.0   | 0    | 1.1  | 0 |      | 125            | 0     | 6-8  | 6.5  | 10.3 | 113  | 140  |     | <br>    | 14  |
| 6.1  | 1.9 | 0.7  |         | 0-12    | 11.3   |      | 0.45 | 0 |      | 106            | 0.5   |      | 5-9  | 9-3  | 96-2 | 110  | 4.1 | <br>0.2 | 15  |

BRIDGE NEAR TÊTE JAUNE CACHE

|     |     |     |      |      | 30.9 | 0 |     |      |      | 97.4   | 2.4 |     |     | 17.6   | 101  |        |   | <br> | . 16 |
|-----|-----|-----|------|------|------|---|-----|------|------|--------|-----|-----|-----|--------|------|--------|---|------|------|
| 8-0 | 2.0 | 0.9 |      | 0.20 | 21.2 | 0 | 0.4 | 0    | 0    | 97-1   | 0   | 6.0 | 4.7 | 18-2   | 97.8 | 111    |   | <br> | 17   |
| 7.3 | 2.0 | 1.2 | 0.47 | 0-06 | 30.8 | 0 | 0.4 | 0-10 |      | 100    | 0   | 5.0 | 4.6 | 17-9   | 99-9 | 124    |   | <br> | 18   |
| 5.2 | 1.2 | 0.9 | 0.30 | 0.07 | 15.8 | 0 | 0.8 | 0.05 | 0.03 | 73 · 2 | 0.  | 4.0 | 2.9 | 11.3   | 71.3 | 83 · 4 |   | <br> | 19   |
| 5-9 | 1.1 | 1.1 | 10-4 | 0.08 | 12.5 | 0 | 0.7 | 0    |      | 68-6   | 0   |     | 3.2 | 53 · 4 | 110  | 92-4   |   | <br> | . 20 |
| 4-2 | 0.7 | 0.8 | 1.6  | 0.42 | 11-0 | 0 | 0.4 | 0    |      | 55-4   | 0   | 8.0 | 2.4 | 14.3   | 59.7 | 64-1   |   | <br> | 21   |
| 3.0 | 0.8 | 0.9 |      |      | 12-1 | 0 |     |      | 0.02 | 58-6   | 0 . |     | 3-6 | 8.7    | 56.7 | 67-0   |   | <br> | 22   |
| 4.0 | 0.7 | 0.6 |      |      | 12.6 | 0 |     |      |      | 65-9   | 0   |     | 2.9 | 7.8    | 62-2 | 71.5   |   | <br> | 23   |
| 4.5 | 0.8 | 0.6 | 0.68 | 0.04 | 15.0 | 0 | 0.4 | 0-16 |      | 67-1   | 0   |     | 2-9 | 7.4    | 62.4 | 74.9   | , | <br> | 24   |

## Chemical Analyses of Surface Waters in the Fraser River Drainage Basin-Continued

(In parts per million)

|     |       |                           | q                     | Stream (Secon                         | lischarge*<br>id-feet)               |                                | uei              |                |                              |           |            | Suspe           | ended<br>tter     | Specific         | drie                 | e on Eva<br>ed at 10<br>solved so | 5°C.                                | Loss                                |         |
|-----|-------|---------------------------|-----------------------|---------------------------------------|--------------------------------------|--------------------------------|------------------|----------------|------------------------------|-----------|------------|-----------------|-------------------|------------------|----------------------|-----------------------------------|-------------------------------------|-------------------------------------|---------|
|     | Dat   |                           | (Days)                | On<br>sampling<br>date                | Monthly<br>mean                      | Water<br>tem-<br>pera-<br>ture | Dissolved oxygen | Carbon dioxide | Hď                           | Colour    | Turbidity  | Dried at 105°C. | Ignited at 550°C. | K x 10s at 25°C. | P.P.M.               | Tons<br>per<br>acre-<br>foot      | Thou-<br>sand<br>tons<br>per<br>day | on<br>igni-<br>tion<br>at<br>550°C. | Calcium |
|     |       |                           |                       |                                       |                                      |                                |                  |                |                              |           |            |                 |                   | SI               | TATION               | No. 13:                           | FRASE                               | R RIVE                              | ER A    |
| N   | lov.  | 14/50                     | 76                    | Low                                   |                                      | 32                             |                  |                | 7.7                          | 4         | 6          |                 |                   | 151              |                      |                                   |                                     |                                     | 20      |
| D   | ec.   | 14                        | 50                    | Low                                   |                                      | 33                             |                  |                | 7.6                          | 5         | 8          |                 |                   | 163              |                      |                                   |                                     |                                     | 21      |
| Ja  | an.   | 16/51                     | 28                    | Low                                   |                                      | 32                             |                  |                | 7.7                          | 7         | 1          |                 |                   | 176              | 111                  | 0.151                             |                                     | 12.4                                | 24      |
|     |       | mples)                    | 43                    |                                       |                                      | 41                             |                  |                | 7.9                          | 10        | 30         |                 |                   | 149              | 120                  | 0.163                             |                                     | 17.8                                | 22      |
| Ť   | No re | ecords av                 | ailable, 1            | iver levels as re                     | included in aver<br>eported by colle | ctor.                          |                  |                |                              |           |            | 1               | 1                 | <u> </u>         | CATION               | 1 .                               | FRASE                               | 1                                   | 1       |
| Se  | ept.  | 9/50                      | 122                   |                                       |                                      | 50                             |                  | (1.3)          | 7·7<br>(7·8)                 | 10<br>(8) | 15<br>(20) | 11              | 11                | 122              | 73 - 6               | 0.100                             |                                     | 5.2                                 | 16      |
| 1   |       |                           |                       | 1                                     | 1                                    | 1                              | 1                | 1              | 1                            | ł         |            | 1               | 1                 |                  | STAT                 | ION N                             | o. 15: Y                            | ELLOWI                              | HEA     |
| Se  | ept.  | 9/50                      | 130                   |                                       |                                      | 52                             |                  |                | 7.5                          | 15        | 6          | 63              | 42                | 139              | 84.0                 | 0.114                             |                                     | 25.2                                | 16      |
| S   | ept.  | 9/50                      | 130                   |                                       |                                      | 52                             |                  |                | 7·5<br>(8·2)                 | 15        | 6 (5)      | 63              | 42                | 139              |                      |                                   | No. 16:                             | 1                                   |         |
|     |       |                           |                       | Gauge<br>height in feet<br>Max. Min.  |                                      |                                |                  |                | (8.2)                        |           | (5)        |                 |                   |                  | ST                   | ATION                             | No. 16:                             | PITT F                              |         |
|     |       | 9/50                      | 130                   | height in feet                        |                                      | 52                             | (9-9)            | (1.5)          | 7-1                          | 10 (10)   |            | 63              | 9.2               | 24.3             |                      |                                   | No. 16:                             | 1                                   | RIV     |
|     |       |                           |                       | height in feet<br>Max. Min.           |                                      |                                | (9-9)            | (1-5)          | 7-1                          | 10        | (5)        |                 |                   | 24-3             | ST                   | ATION 0.025                       |                                     | PITT F                              | RIVI    |
| A   | ug.   |                           |                       | height in feet<br>Max. Min.           | 483                                  |                                | (9-9)            | (1.5)          | 7·1<br>(7·1)                 | 10        | (5)        |                 |                   | 24-3             | ST                   | ATION 0.025                       |                                     | PITT F                              | RIVI    |
| 7 A | ug.   | 16/50                     | 92                    | height in feet Max. Min.  9-44   7-43 |                                      | 65                             |                  | (1.5)          | 7·1<br>(7·1)                 | 10 (10)   | 7 (5)      |                 |                   | 24.3             | 18·2 TATION          | 0·025                             |                                     | 5-4 ETTE 1                          | RIVI    |
| A   | aug.  | 16/50                     | 92                    | height in feet Max. Min.  9-44   7-43 | 483                                  | 65                             |                  | (1.5)          | 7·1<br>(7·1)<br>7·0<br>(7·2) | 10 (10)   | 7 (5)      |                 |                   | 24.3             | 18·2 TATION          | 0·025                             | : ALOU                              | 5-4 ETTE 1                          | RIVI    |
| A   | aug.  | 16/50<br>17/50<br>um flow | 92<br>69<br>for year, | height in feet Max. Min.  9-44   7-43 | 483<br>m 21; average, (              | 65 65 65                       | ond-fee          | (1·5)          | 7·1<br>(7·1)<br>7·0<br>(7·2) | 10 (10)   | 7 (5)      | 11              | 9-2               | 24-3             | 18-2 TATION 16-2 STA | 0·025  No. 17  0·022  FION N      | /: ALOU                             | 5-4 ETTE I 5-2 TAVE I               | RIVI    |

Maximum flow for year, 25,000; minimum, 60; average, 4,290 second-feet.

## Chemical Analyses of Surface Waters in the Fraser River Drainage Basin-Continued

|           | Alk    | alis      | Ir<br>(1 | on<br>Fe) |                    |          |                    |          |       |                     |                    | Sil<br>(Si       | ica<br>O <sub>2</sub> ) | Hardi<br>Cat           | iess as<br>COs |                        |                 | Jon            |       |     |
|-----------|--------|-----------|----------|-----------|--------------------|----------|--------------------|----------|-------|---------------------|--------------------|------------------|-------------------------|------------------------|----------------|------------------------|-----------------|----------------|-------|-----|
| Magnesium | Sodium | Potassium | Totale   | Dissolved | Sulphate           | Chloride | Nitrate            | Fluoride | Boron | Bicarbonate         | Carbonate          | Gravi-<br>metric | Colori-<br>metric       | Non-<br>car-<br>bonate | Totalb         | Sum of<br>Constituents | Per cent sodium | Sobri actorito |       | No. |
| (Mg)      | (Na)   | (K)       | 1        | 1         | (SO <sub>4</sub> ) | (C1)     | (NO <sub>3</sub> ) | (F)      | (B)   | (HCO <sub>3</sub> ) | (CO <sub>3</sub> ) | <u> </u>         |                         |                        |                | <u> </u>               |                 | 1 + 1          | _     | _   |
| BRID      | GE NEA | R TÉT     | E JAUN   | NE CACI   | HE—cont            | inued    |                    |          |       |                     |                    |                  |                         |                        |                |                        |                 |                |       |     |
| 5.8       | 1-8    | 0.9       |          |           | 16.5               | 0        |                    |          | 0     | 77-3                | 0                  |                  | 4.6                     | 11-6                   | 75.0           | 88-1                   |                 |                |       | 1   |
| 6.2       | 1.3    | 0.8       |          |           | 15-8               | 0        |                    |          |       | 81.0                | 0                  |                  | 4-6                     | 12-1                   | 78-5           | 89-9                   |                 |                |       | 2   |
| 6-6       | 1.5    | 0.9       |          | 0.17      | 17-9               | 0        | 0.4                | 0.05     |       | 93 · 2              | 0                  | 6.2              | 5.1                     | 12-1                   | 88-5           | 103                    |                 |                |       | 3   |
| 5.5       | 1.3    | 0.9       |          | 0.15      | 16.5               | 0        | 0.5                | 0.04     |       | 76-1                | 0                  |                  | 3.8                     | 15.9                   | 78.3           | 88-1                   | 3.4             |                | 0.4   | 4   |
|           |        |           |          |           |                    |          | ·                  |          | 1     |                     |                    | 1                |                         |                        |                |                        |                 |                |       | _   |
| BRID      | GE NEA | R MOU     | INT RO   | BSON      |                    |          |                    |          |       |                     |                    |                  |                         |                        |                |                        |                 |                |       |     |
| 4.9       | 1.5    | 0.4       | 0.70     | 0.03      | 12-2               | 0        | 0.4                | 0.05     |       | 63·2<br>(58·6)      | 0 (0)              |                  | 4.2                     | 8.8                    | 60.6           | 70.9                   | 5.1             |                | 0.8   | 5   |
|           |        |           |          | 1         |                    |          |                    |          |       |                     |                    | 1                | <u> </u>                | ,                      |                |                        |                 |                |       | _   |
| LAKE      | NEAR   | LUCEF     | RNE      | 1         |                    |          | 1                  |          | 1     |                     |                    | 1                | 1                       |                        |                |                        | 1 .             |                |       | _   |
| 7-9       | 0-9    | 0.3       | 0.41     | 0.02      | 16-5               | 0        | 0.7                | 0        |       | 68·6<br>(65·9)      | 0<br>(0)           |                  | 2.7                     | 17-3                   | 73.5           | 79-1                   | 2.6             |                | 1.0   | 6   |
| FROM      | BRIDO  | BE NEA    | R MOU    | тн        |                    |          |                    |          |       |                     |                    |                  |                         |                        |                |                        |                 |                |       |     |
|           |        |           |          |           |                    |          |                    |          |       |                     |                    |                  |                         |                        |                |                        |                 |                |       | Ī   |
|           |        |           |          |           |                    |          |                    |          |       |                     |                    |                  |                         |                        |                |                        |                 |                |       |     |
| 0.2       | 0.6    | 0.3       | 0.68     | 0.10      | 3.6                | 0        | 0.5                | 0.05     |       | 9·8<br>(7·3)        | <b>0</b> (0)       |                  | 3.0                     | 0                      | 7.3            | 25.7                   | 14.5            |                | 3.0   | 7   |
|           |        |           |          |           |                    |          |                    |          |       | (, 5)               | (4)                |                  |                         |                        | -              |                        |                 |                |       | _   |
| AT BE     | RIDGE  | NEAR I    | HANEY    |           |                    |          |                    |          |       |                     |                    |                  |                         |                        |                |                        |                 |                |       |     |
| 0.1       | 0.6    | 0.1       | 0.10     |           | 3.1                | 0        | 0                  | 0        |       | 8·5<br>(6·1)        | 0 (0)              | 3-4              | 3·7<br>(3·4)            | 1·4<br>(2·0)           | 8·4<br>(7·0)   | 15.0                   | 13.3            |                | 3 · 1 | 8   |
| AT ST     | AVE FA | LLS       |          |           |                    |          |                    |          |       |                     |                    |                  |                         |                        |                |                        |                 |                |       |     |
| 0         | 0.9    | 0.2       | 0.11     | 0.03      | 10.0               | 0        | 0.35               | 0.10     |       | 5·4<br>(6·1)        | 0 (0)              | 4.6              | 3.0                     | 7.6                    | 12.0           | 21.9                   | 13.8            |                | 3.3   | 9   |
|           |        |           | 1        |           |                    |          |                    |          |       | (0-1)               | (4)                |                  |                         |                        |                |                        | 1               |                |       | -   |
| HIGH      | WAY BI | RIDGE     | NEAR     | RUSKI     | 1                  |          |                    |          |       |                     |                    |                  |                         |                        |                | 1                      | 1               | 1              |       | _   |
| 0-1       | 0.5    | 0.2       |          |           | 2.5                | 0        |                    |          |       | 6.1                 | 0                  |                  | 2.7                     | 0.9                    | 5.9            | 11.2                   | 15.0            |                | 3.6   | 10  |

## Chemical Analyses of Surface Waters in the Fraser River Drainage Basin-Continued

| _   |            |                   |        |                             |                                  |                       |                  |                |              |          |            |          |                   |                                     |                        |                                     |                                     |                           |              |
|-----|------------|-------------------|--------|-----------------------------|----------------------------------|-----------------------|------------------|----------------|--------------|----------|------------|----------|-------------------|-------------------------------------|------------------------|-------------------------------------|-------------------------------------|---------------------------|--------------|
|     |            |                   | q      | Stream d<br>(Secon          | ischarge <sup>a</sup><br>d-feet) | Water                 | uei              |                |              |          |            | Suspe    | ended<br>tter     | Specific                            | Residu<br>drie<br>(Dis | e on Evap<br>ed at 105<br>solved so | poration<br>°C.<br>lids)            | Loss                      |              |
| No. | Ds<br>coll | ate of<br>lection | (Days) | On<br>sampling<br>date      | Monthly<br>mean                  | tem-<br>pera-<br>ture | Dissolved oxygen | Carbon dioxide | Hq           | Colour   | Turbidity  | Dried at | Ignited at 550°C. | conduct-<br>ance  K x 106  at 25°C. | P.P.M.                 | Tons<br>per<br>acre-<br>foot        | Thou-<br>sand<br>tons<br>per<br>day | on<br>igni-<br>tion<br>at | (Ca) Calcium |
|     |            |                   |        |                             |                                  |                       |                  |                |              |          |            |          |                   |                                     |                        | STATIO                              | N No. 2                             | 20: CAN                   | NELL         |
| 1   | Aug.       | 23/49             | 71     |                             |                                  | 64                    |                  | (8.5)          | 7·1<br>(6·4) | 10 (10)  | 0.4        |          |                   | 27.7                                | 20-6                   | 0.028                               |                                     | 8-6                       | 3.8          |
|     |            |                   |        | 1 1                         |                                  | 1                     |                  | (0 0)          | (0 1)        | (20)     | 1          | 1        | ,                 |                                     | 1                      | STA                                 | TION N                              | o. 21: S                  | UMAS         |
| ī   |            |                   |        | Gauge                       |                                  |                       |                  |                |              |          |            |          |                   |                                     |                        |                                     |                                     |                           |              |
|     |            |                   |        | height in feet<br>Max. Min. |                                  |                       |                  |                |              |          |            |          |                   |                                     |                        |                                     |                                     |                           |              |
| 2   | Aug.       | 10/50             | 123    | 7.45                        |                                  | 70                    |                  | (5.5)          | 7·4<br>(7·6) | (30)     | 12 (10)    | 23       | 17                | 168                                 | 111                    | 0.151                               |                                     | 13.8                      | 16.0         |
|     |            |                   |        |                             |                                  |                       |                  |                |              |          |            | S        | TATION            | No. 22:                             | CHILLI                 | WACK 1                              | RIVER .                             | AT BRI                    | DGE,         |
| Ī   |            |                   |        | Gauge hei                   | ght in feet.                     |                       |                  |                |              |          |            |          |                   |                                     |                        |                                     |                                     |                           | -            |
| 3   | Aug.       | 25/49*            | 69     |                             |                                  | 54                    |                  |                | 7-2          | 5        | 3          |          |                   | 69-8                                | 51.2                   | 0.069                               |                                     | 6.2                       | 12.0         |
| 4   | Feb.       | 1/50*             | 27     | 6-10                        | 6.66                             | 32                    |                  | (1-5)          | (7·9)<br>7·7 | (5)<br>5 | 0.4        |          |                   | 96-6                                | 63-6                   | 0.087                               |                                     | 8-6                       | 15.0         |
| 5   | Feb.       | 25                | 12     | 7.40                        | 6.66                             | 42                    |                  |                | 7.9          | 5        | 15         | 52       | 48                | 101                                 | 59-4                   | 0.081                               |                                     | 8.2                       | 14.2         |
| 6   | Mar.       | 26                | 22     | 7-10                        | 7-62                             | 42                    |                  |                | 7.7          | 5        | 6          | 13.0     | 12.6              | 89.7                                | 58-6                   | 0.080                               |                                     | 3.8                       | 14.8         |
| 7   | Apr.       | 25                | 14     | 7.60                        | 7-34                             | 42                    |                  |                | 7-8          | 10       | 7          | 18       | 15                | 81.3                                | 55-0                   | 0.075                               |                                     | 5.0                       | 13.0         |
| 8   | May        | 26                | 6      | 9-55                        | 8.82                             | 44                    |                  |                | 7-5          | 15       | 105        |          |                   | 56-3                                |                        |                                     |                                     |                           | 12.3         |
| 9   | June       | 26                | 44     | 9.50                        | 10.84                            | 48                    |                  |                | 7.3          | 15       | 15         | 37       | 35                | 48.7                                | 37.0                   | 0.050                               |                                     | 10.0                      | 7-5          |
| 10  | Aug.       | 10                | 118    | 7-45                        | 7.57                             | 62                    |                  | (3.0)          | 7·7<br>(7·85 | 5 (5)    | 7          |          |                   | 77-0                                |                        |                                     |                                     |                           | 12.4         |
| 11  | Aug.       | 15*               | 81     | 8.75                        | 7.57                             | 54                    |                  |                | 7.4          | 15       | (5)<br>105 | 141      | 135               | 54.2                                | 39.2                   | 0.053                               |                                     | 9-4                       | 8-1          |
| 12  | Sept.      | 1                 | 95     | 6.75                        | 6.35                             | 56                    |                  |                | 7-4          | 0        | 4          |          |                   | 61.1                                |                        |                                     |                                     |                           | 9-8          |
| 13  | Sept.      | 13*               | 168    | 6.20                        | 6.35                             | 55                    |                  |                | 7-6          | 7        | 1          |          |                   | 67.2                                |                        |                                     |                                     |                           | 10.5         |
| 14  | Sept.      | 25                | 70     | 6-65                        | 6.35                             | 52                    |                  |                | 7.6          | 3        | 5          |          |                   | 67.9                                |                        |                                     |                                     |                           | 10.6         |
| 15  | Oct.       | 25                | 89     | 8-20                        | 7-67                             | 48                    |                  |                | 7.7          | 15       | 50         | 93       | 89                | 65.3                                | 47.2                   | 0.064                               |                                     | 6.0                       | 10-4         |
| 16  | Nov.       | 25                | 65     | 8.70                        | 8.05                             | 44                    |                  |                | 7.4          | 15       | 45         |          |                   | 75-2                                |                        |                                     |                                     |                           | 13.4         |
| 17  | Dec.       | 12*               | 52     | 9-90                        | 9.00                             | 43                    |                  |                | 7-8          | 10       | 45         |          |                   | 63 - 6                              |                        |                                     |                                     |                           | 9-3          |
| 18  | Dec.       | 26                | 43     | 10-45                       | 9.00                             | 43                    |                  |                | 7-4          | 15       | 35         |          |                   | 65-2                                |                        |                                     |                                     |                           | 10.3         |
| 19  | Jan.       | 25/51             | 19     | 8-05                        | 7-13                             | 38                    |                  |                | 7-4          | 10       | 25         | 49       | 46                | 83 - 5                              | 57.4                   | 0.078                               |                                     | 9-2                       | 13.8         |
| 20  |            | samples)          | 49.8   | 8-1                         | 7.8                              | 46-8                  |                  |                | 7.6          | 9        | 27         |          |                   | 72.7                                | 52.4                   | 0.071                               |                                     | 7-0                       | 11.9         |

<sup>\*</sup> Not included in average.

### Chemical Analyses of Surface Waters in the Fraser River Drainage Basin—Continued

(In parts per million)

|           |             |               |            |           |           |          |               | 2.00 pc         | witt pe   |                |              |                  |                   |                        |         |                        |                 |                    |     |      |
|-----------|-------------|---------------|------------|-----------|-----------|----------|---------------|-----------------|-----------|----------------|--------------|------------------|-------------------|------------------------|---------|------------------------|-----------------|--------------------|-----|------|
|           | Alka        | alis          | Iro<br>(Fe | on<br>e)  |           |          |               |                 |           |                |              | Sil<br>(Si       | ica<br>O2)        | Hardr<br>Ca(           | less as |                        | d               | dex                |     |      |
| Magnesium | mnipos (Na) | (X) Potassium | Totale     | Dissolved | Sulphate  | Chloride | (NOs) Nitrate | Fluoride        | (a) Boron | ©OOH)          | Carbonate    | Gravi-<br>metric | Colori-<br>metric | Non-<br>car-<br>bonate | Totalb  | Sum of<br>Constituents | Per cent sodium | + Saturation index |     | No.  |
|           |             |               | N CITY     |           | (504) [   | (CI)     | (1408)        | (F)             | (8)       | (HCO8)         | (003)        | 1                |                   | ,                      |         |                        |                 | 7 (                |     | _    |
| 0.4       | 1.1         | 0.1           |            | 0.05      | 6.6       | 0 (0)    | 0             | 0               |           | 9·4<br>(11·0)  | 0 (0)        | 3.4              | 4.2               | 3.4                    | 11.2    | 20-9                   | 17-5            |                    | 2.9 | 1    |
| RIVE      | R NEAR      | . KILG        | ARD        |           |           |          |               |                 |           |                |              |                  |                   |                        |         |                        |                 |                    |     |      |
|           |             |               |            |           |           |          |               |                 |           |                |              |                  |                   |                        |         |                        |                 |                    |     |      |
| 6.2       | 6-7         | 1.2           | 2.3        | 0.26      | 7-6       | 8.0      | 3.5           | 0-10            | 0.01      | 75·6<br>(79·3) | <b>0</b> (0) |                  | 21.0              | 3.4                    | 65 - 4  | 108                    | 17.8            |                    | 1.0 | 2    |
| VEDD      | ER CR       | OSSING        | -Draina    | age area, | 450 squar | e miles  |               |                 |           |                |              |                  |                   |                        |         |                        |                 |                    |     |      |
|           |             |               |            |           |           |          |               |                 |           |                |              |                  |                   |                        |         |                        |                 |                    |     |      |
| 0.9       | 1.6         | 0-5           |            | 0.15      | 11.5      | 0        | 0.4           | 0               |           | 25·4<br>(34·2) | (0)          | 4.4              | 7.2               | 12.8                   | 33.6    | 46.8                   |                 |                    |     | 3    |
| 2.4       | 1.8         | 0.3           |            | 0.05      | 10.5      | 0        | 0.6           | 0               |           | 45.4           | 0            | 5.6              | 7.3               | 10.1                   | 47.3    |                        |                 |                    |     | 4    |
| 1.3       | 0.8         | 0.3           | 2.6        | 0.06      | 13.8      | 0        | 0.7           |                 |           | 45.9           | 0            | 5.8              | 6.6               | 3.1                    | 40.7    |                        |                 |                    |     | . 5  |
| 1.3       | 1.4         | 0.6           | 1.1        | 0.03      | 13.5      | 0        | 0.4           | 0.05            |           | 45.9           | 0            | 6.2              | 6.6               | 4.6                    | 42.2    |                        |                 |                    |     | 6    |
| 0.8       | 1.7         | 0.6           | 1.0        | 0.04      | 11.0      | 0        | 0.5           | 0.05            |           | 39.5           | 0            | 6.2              | 6.2               | 3.3                    | 35.7    |                        |                 |                    |     | . 8  |
| 0.8       | 0.9         | 0.5           |            |           | 12.8      | 0        |               |                 |           | 29.0           | 0            |                  | 5.0               | 10.2                   | 34.0    |                        |                 |                    |     | 9    |
| 0.6       | 0.8         | 0.4           | 1.8        | 0.12      | 4.1       | 0        | 0.4           | 0               |           | 19.5           | 0            |                  | 5.0               | 5·2<br>5·0             | 21-2    |                        |                 |                    |     | 10   |
| 1.0       | 1.4         | 0.4           |            |           | 7.8       | (0)      |               |                 |           | 36·6<br>(36·6) | (0)          |                  | 6-2               |                        | 35.0    |                        |                 |                    |     | 11   |
| 0.8       | 0.9         | 0.4           | 0.58       | 0.05      | 3.1       | 0        | 0.6           | - * * * * * * * |           | 29.3           | 0            |                  | 4.3               | 0                      | 23.5    |                        |                 |                    |     |      |
| 0-7       | 0.9         | 0-4           |            |           | 6.6       | 0        |               |                 | 0         | 28.1           | 0            |                  | 6.1               | 4.4                    | 27.4    | , , , , , ,            |                 |                    |     | . 12 |
| 1.1       | 1.4         | 0.6           |            |           | 8.0       | 0        |               |                 |           | 34.2           | 0            |                  | 7.8               | 2.5                    | 30.5    | ,                      |                 |                    |     | . 13 |
| 0.9       | 1.1         | 0.4           |            |           | 4.9       | 0        |               |                 |           | 35.4           | 0            |                  | 5.7               | 1.1                    | 30.1    |                        |                 |                    |     | . 14 |
| 1.1       | 1.5         | 0.5           | 5-0        | 0.12      | 5.8       | 0        | 0-4           | 0.10            |           | 34.4           | 0            |                  | 4.0               | 2.3                    | 30.5    |                        |                 |                    |     | . 15 |
| 1.1       | 2-2         | 1-4           |            |           | 4.5       | 0        |               |                 | 0.01      | 48.8           | 0            |                  | 5.0               | 0                      | 38.0    |                        | 1               |                    |     | . 16 |
| 1-1       | 0.9         | 0.6           |            |           | 6.8       | 0        |               |                 |           | 31.7           | 0            |                  | 5-0               | 1.5                    | 27.5    |                        |                 |                    |     | . 17 |
| 1.0       | 1.7         | 0.9           |            |           | 5.5       | 0        | ,             |                 |           | 35.6           | 0            |                  | 5.9               | 0.8                    | 30.0    |                        |                 |                    |     | . 18 |
| 1.4       | 0.9         | 0.2           | 2.5        | 0.10      | 4.9       | 0        | 0.5           |                 |           | 42.0           | 0            | 5.4              | 5.0               | 5.8                    | 40.2    |                        |                 |                    |     | . 19 |
| 1.0       | 1.3         | 0.5           |            | 0.08      | 7.9       | 0        | 0-8           | 0.06            | 0.01      | 36.7           | 0            |                  | 5.6               | 3.8                    | 33.8    | 47.2                   | 7.5             |                    | 1.2 | 20   |

## Chemical Analyses of Surface Waters in the Fraser River Drainage Basin-Continued

(In parts per million)

|                            | Loss              | poration<br>5°C.<br>olids)     | ie on Eva<br>ied at 10<br>ssolved s | Reside<br>dr<br>(Dis | Specific                                       | ended<br>atter    | Susp            |                                |                              |                                          |                | uəi          |                                        | discharges<br>nd-feet)                                   | Stream (Secon                                            | 70                                |                                               |                                |
|----------------------------|-------------------|--------------------------------|-------------------------------------|----------------------|------------------------------------------------|-------------------|-----------------|--------------------------------|------------------------------|------------------------------------------|----------------|--------------|----------------------------------------|----------------------------------------------------------|----------------------------------------------------------|-----------------------------------|-----------------------------------------------|--------------------------------|
| (0                         | on ignition at    | Thousand<br>tons<br>per<br>day | Tons<br>per<br>acre-<br>foot        | P.P.M.               | conduct-<br>ance  K x 10 <sup>6</sup> at 25°C. | Ignited at 550°C. | Dried at 105°C. | Turbidity                      | Colour                       | Hď                                       | Carbon dioxide | Dissolved ox | Water<br>tem-<br>pera-<br>ture         | Monthly mean                                             | On<br>sampling<br>date                                   | (Days)                            | ate of<br>llection                            |                                |
| LT                         | . 23: CU          | ION No                         | STAT                                |                      |                                                |                   |                 |                                |                              |                                          |                |              |                                        |                                                          |                                                          |                                   |                                               |                                |
| 29                         | 7-2               |                                | 0.142                               | 104                  | 166                                            |                   |                 | 3                              |                              | 8.0                                      | (2.0)          |              | . 73                                   |                                                          |                                                          | 118                               | 10/50                                         | Aug.                           |
| : E                        | N No. 24          | TATIO                          | s                                   |                      |                                                |                   |                 |                                |                              |                                          |                |              |                                        |                                                          |                                                          |                                   |                                               |                                |
| 41                         | 24-6              |                                | 0.209                               | 154                  | 238                                            |                   |                 | 0.3                            |                              | 8-1                                      | (1.2)          |              | . 52                                   |                                                          |                                                          | 34                                | 25/49                                         | Aug.                           |
| IVI                        | ISON R            | HARF                           | No. 25                              | TATION               | S                                              |                   |                 | }                              |                              |                                          |                |              |                                        | ight in feet                                             | Gauge hei                                                | 4                                 |                                               |                                |
|                            |                   |                                |                                     |                      |                                                |                   |                 |                                |                              |                                          |                |              |                                        | ight in feet                                             | Gauge hei                                                |                                   |                                               |                                |
| 7                          | 7.8               |                                | 0.049                               | 36-0                 | 47.2                                           | 3.2               | 3.8             | 5 (7)                          |                              | 7.5                                      | (1.5)          |              | 59                                     |                                                          |                                                          | 76                                | 26/49*                                        | Aug.                           |
| 7                          | 7.8               |                                | 0.052                               | 38.4                 | 46.8                                           |                   |                 | 2                              |                              | 7-5                                      |                |              | 37                                     | 4.78                                                     | 4.53                                                     | 25                                | 7/50                                          | Feb.                           |
|                            | 5.6               |                                | 0.046                               | 34.0                 | 48.8                                           | 3.2               | 5.0             | 4                              | 0                            | 7.3                                      |                |              | 40                                     | 4.13                                                     | 5 · 85                                                   | 10                                | 6**                                           | Mar.                           |
| 7                          |                   |                                | 0.045                               | 33.0                 | 49-1                                           |                   |                 | 0.5                            | 0                            | 7.6                                      |                |              | 42                                     | 4.57                                                     | 3.50                                                     | 14                                | 3                                             | Apr.                           |
| 7                          | 4.0               |                                |                                     | 1                    |                                                |                   |                 |                                | 0                            | 7.7                                      | 1              |              |                                        | 11.89                                                    | 7.70                                                     | 11                                | 4                                             | May                            |
|                            | 4·0<br>7·6        |                                | 0.048                               | 35.4                 | 49-4                                           |                   |                 | 2                              |                              | 1 11                                     |                |              | 45                                     | 11.09                                                    |                                                          |                                   | ~                                             |                                |
| 7                          |                   |                                | 0.048                               | 35.4                 | 49-4                                           |                   |                 | 0.4                            | 3                            | 7.4                                      |                |              | 51                                     | 18-94                                                    | 15.16                                                    | 31                                | 5                                             | June                           |
| 7                          |                   |                                | 0.048                               |                      |                                                |                   |                 |                                |                              |                                          |                |              |                                        |                                                          |                                                          | 31                                |                                               | June<br>July                   |
| 7 6                        | 7-6               |                                |                                     |                      | 49-4                                           |                   |                 | 0.4                            | 3                            | 7.4                                      |                |              | 51                                     | 18-94                                                    | 15.16                                                    |                                   | 5                                             |                                |
| 7 6 7                      | 7-6               |                                |                                     |                      | 49·4<br>50·8                                   |                   |                 | 0·4<br>3<br>9                  | 3<br>5<br>6<br>7             | 7·4<br>7·3<br>7·4<br>7·0                 |                |              | 51<br>51                               | 18·94<br>16·64                                           | 15·16<br>19·48                                           | 37                                | 3                                             | July                           |
| 7 7 6                      | 7·6               |                                |                                     |                      | 49·4<br>50·8<br>45·1                           |                   |                 | 0·4<br>3<br>9                  | 3<br>5<br>6<br>7             | 7·4<br>7·3<br>7·4                        |                |              | 51<br>51<br>58                         | 18-94<br>16-64<br>11-03                                  | 15·16<br>19·48<br>13·65                                  | 37<br><b>79</b>                   | <ol> <li>3</li> <li>1</li> </ol>              | July Aug.                      |
| 6                          | 7·6               |                                | 0.052                               |                      | 49·4<br>50·8<br>45·1<br>44·6                   |                   |                 | 0·4<br>3<br>9<br>6<br>(5)      | 3<br>5<br>6<br>7<br>(5)      | 7·4<br>7·3<br>7·4<br>7·0<br>(7·5)        | (1.3)          |              | 51<br>51<br>58<br>63                   | 18·94<br>16·64<br>11·03                                  | 15·16<br>19·48<br>13·65<br>10·65                         | 37<br><b>79</b><br>111            | <ol> <li>3</li> <li>1</li> <li>17°</li> </ol> | July<br>Aug.<br>Aug.           |
| 7 7 6 7 6                  | 7·6<br>6·8<br>5·0 |                                |                                     | 38.0                 | 49·4<br>50·8<br>45·1<br>44·6<br>43·8           |                   |                 | 0·4<br>3<br>9<br>6<br>(5)<br>5 | 3<br>5<br>6<br>7<br>(5)<br>2 | 7·4<br>7·3<br>7·4<br>7·0<br>(7·5)<br>7·2 | (1.3)          |              | 51<br>51<br>58<br>63<br>60             | 18-94<br>16-64<br>11-03<br>11-03<br>8-01                 | 15·16<br>19·48<br>13·65<br>10·65<br>9·35                 | 37<br>79<br>111<br>40             | 5<br>1<br>17°                                 | July Aug. Aug. Sept.           |
| 7<br>6<br>7<br>6<br>7<br>6 | 7·6               |                                | 0.052                               | 38.0                 | 49·4 50·8 45·1 44·6 43·8 43·1 75·4             |                   |                 | 0·4<br>3<br>9<br>6<br>(5)<br>5 | 3 5 6 7 (5) 2 10             | 7·4 7·3 7·4 7·0 (7·5) 7·2 7·9            | (1·3)          |              | 51<br>51<br>58<br>63<br>60<br>55       | 18-94<br>16-64<br>11-03<br>11-03<br>8-01<br>7-24         | 15·16<br>19·48<br>13·65<br>10·65<br>9·35<br>6·74         | 37<br>79<br>111<br>40<br>63       | 5<br>1<br>17°<br>5                            | July Aug. Aug. Sept. Oct.      |
| 7 7 6 7 7                  | 7·6<br>6·8<br>5·0 |                                | 0.052                               | 38.0                 | 49·4<br>50·8<br>45·1<br>44·6<br>43·8           | 3-6               | 4.9             | 0·4<br>3<br>9<br>6<br>(5)<br>5 | 3 5 6 7 (5) 2 10 5           | 7·4 7·3 7·4 7·0 (7·5) 7·2 7·9 7·8        | (1·3)          |              | 51<br>51<br>58<br>63<br>60<br>55<br>48 | 18-94<br>16-64<br>11-03<br>11-03<br>8-01<br>7-24<br>7-06 | 15·16<br>10·48<br>13·65<br>10·65<br>9·35<br>6·74<br>7·53 | 37<br>79<br>111<br>40<br>63<br>66 | 5<br>1<br>17*<br>5<br>6                       | July Aug. Aug. Sept. Oct. Nov. |

<sup>\*\*</sup> Heavy rains caused flood run-off from Chehalis River which enters above the sampling point.

STATION No. 26: COQUIHALLA

| 1                 | 1 | 1 1  | 1                  | 1 1   |           | )        |      |       | <br>     |      |
|-------------------|---|------|--------------------|-------|-----------|----------|------|-------|----------|------|
| 18 Aug. 10/50 132 |   | <br> | 7·4<br>(1·5) (7·8) | 3 (5) | 1 (clear) | <br>77.7 | 55.8 | 0-076 | <br>12-0 | 13-4 |

## Chemical Analyses of Surface Waters in the Fraser River Drainage Basin-Continued

|                                                                                                                                                                                                                                                                                                                                                                                   |        |           |           |           |          |          |         | (In p    | arts p | er milli       | on)         |                  |                         |                        |         |                        |                 |     |     |     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------|-----------|-----------|----------|----------|---------|----------|--------|----------------|-------------|------------------|-------------------------|------------------------|---------|------------------------|-----------------|-----|-----|-----|
|                                                                                                                                                                                                                                                                                                                                                                                   | Alk    | alis      | Iro<br>(F | on<br>(e) |          |          |         |          |        |                |             | Sil<br>(Si       | ica<br>O <sub>2</sub> ) | Hardr<br>Ca(           | iess as |                        |                 | Po  | 40  | Ī   |
| Magnesium                                                                                                                                                                                                                                                                                                                                                                         | Sodium | Potassium | Totale    | Dissolved | Sulphate | Chloride | Nitrate | Fluoride | Boron  | Bicarbonate    | S Carbonate | Gravi-<br>metric | Colori-<br>metric       | Non-<br>car-<br>bonate | Totalb  | Sum of<br>Constituents | Per cent sodium |     |     | No. |
| Mg) (Na) (K) (SO <sub>4</sub> ) (Cl) (NO <sub>5</sub> ) (F) (B) (HCO <sub>4</sub> ) (CO <sub>5</sub> ) +                                                                                                                                                                                                                                                                          |        |           |           |           |          |          |         |          |        |                |             |                  |                         |                        |         |                        |                 |     |     |     |
| (0) (73-2) (0)                                                                                                                                                                                                                                                                                                                                                                    |        |           |           |           |          |          |         |          |        |                |             |                  |                         |                        | 0.15    | 1                      |                 |     |     |     |
| (0) (73·2) (0)  RIVER NEAR CHILLIWACK  3.0 3.3 0.4 0.04 39.5 1.6 1.2 0.05 90.3 2.4 10.9 37.3 115 148 5.8 0.1                                                                                                                                                                                                                                                                      |        |           |           |           |          |          |         |          |        |                |             |                  |                         |                        | _       |                        |                 |     |     |     |
| 3.0 3.3 0.4 0.04 39.5 1.6 1.2 0.05 90.8 2.4 10.9 37.3 115 148 5.8 0.1                                                                                                                                                                                                                                                                                                             |        |           |           |           |          |          |         |          |        |                |             |                  |                         |                        | 2       |                        |                 |     |     |     |
| AT RA                                                                                                                                                                                                                                                                                                                                                                             | AILWAY | BRID      | GE, HA    | RRISON    | MILLS    | 3        | 1       | 1        | 1      |                |             | 1                | ı                       | 1                      | l       | i                      | 1               |     |     | _   |
|                                                                                                                                                                                                                                                                                                                                                                                   |        |           |           |           |          |          |         |          |        |                |             |                  |                         |                        |         |                        |                 |     |     |     |
|                                                                                                                                                                                                                                                                                                                                                                                   |        |           |           |           |          | (0)      |         | 0.05     |        | (17-1)         | (0)         |                  |                         |                        |         |                        |                 |     |     | 3   |
| 2·3 3·2 0·5 0·1 21·6 0 1·2 0 73·2 1·2 8·0 6·2 21·9 83·9 102 7·8  RIVER NEAR CHILLIWACK  3·0 3·3 0·4 0·04 39·5 1·6 1·2 0·05 90·3 2·4 10·9 37·3 115 148 5·8 0·1  AT RAILWAY BRIDGE, HARRISON MILLS  0·5 1·3 0·6 0·06 0·02 7·9 0 0 10·9 0 6·4 6·4 4·8 21·1 0·5 1·4 0·7 0·06 6·3 0 0 0 0·05 0·02 21·5 0 4·6 5·8 8·1 19·6 0·9 1·3 0·6 0·32 0·06 9·4 0 0 0 0·05 20·7 0 5·8 5·0 4·2 21·2 |        |           |           |           |          |          |         |          |        |                |             |                  |                         |                        |         |                        | 5               |     |     |     |
| 0.5                                                                                                                                                                                                                                                                                                                                                                               | 1.3    | 0.6       |           | 0.06      | 10.7     | 0        | 0       | 0.05     |        | 21.0           | 0           | 3.8              | 4.9                     | 2-9                    | 20-1    |                        |                 |     |     | 6   |
| 0.3                                                                                                                                                                                                                                                                                                                                                                               | 1.5    | 1.0       |           | 0.03      | 6.2      | 0        | 0.4     | 0.10     | 0      | 24-6           | 0           | 4.0              | 4.8                     | 0                      | 18.7    |                        |                 | , , |     | 7   |
| 0.3                                                                                                                                                                                                                                                                                                                                                                               | 1.6    | 0.9       |           |           | 6.4      | 0        |         |          |        | 21.7           | 0           |                  | 5.0                     | 0.4                    | 18-2    |                        |                 |     |     | 8   |
| 1.2                                                                                                                                                                                                                                                                                                                                                                               | 1.3    | 0.6       |           | 0.13      | 6.1      | 0-6      | 0.4     | 0.05     |        | 23 · 7         | 0           | 5.6              | 5.2                     | 4.0                    | 23 · 4  |                        |                 |     |     | 9   |
| 0.3                                                                                                                                                                                                                                                                                                                                                                               | 1.4    | 0.6       |           | ,         | 8.4      | 0        |         |          | 0      | 20.0           | 0           |                  | 5.7                     | 2.8                    | 19-2    |                        |                 |     |     | 10  |
| 0.6                                                                                                                                                                                                                                                                                                                                                                               | 1.4    | 0.6       |           |           | 5.8      | 0        |         |          |        | 19-5<br>(17-1) | (0)         |                  | 5.0                     | 3.2                    | 19-2    |                        |                 |     |     | 11  |
| 0.3                                                                                                                                                                                                                                                                                                                                                                               | 1.1    | 0.6       |           |           | 5.6      | 0        |         |          | 0      | 19-5           | 0           |                  | 5.7                     | 3.2                    | 19.2    |                        |                 |     |     | 12  |
| 0.5                                                                                                                                                                                                                                                                                                                                                                               | 1.2    | 0.7       |           | 0.07      | 6.7      | 0.5      | 0.4     | 0        |        | 19.5           | 0           |                  | 4-7                     | 2.8                    | 18.8    |                        |                 |     |     | 13  |
| 1.6                                                                                                                                                                                                                                                                                                                                                                               | 1.7    | 0.8       |           |           | 8-2      | 0        | 0       |          | 0.01   | 22.0           | 0           |                  | 5.6                     | 3.6                    | 21.6    |                        |                 |     |     | 14  |
| 0.9                                                                                                                                                                                                                                                                                                                                                                               | 1.7    | 0.7       |           |           | 6.2      | 0        |         |          |        | 22.0           | 0           |                  | 5.2                     | 1.0                    | 19.0    |                        |                 |     |     | 15  |
| 0.8                                                                                                                                                                                                                                                                                                                                                                               | 1.8    | 0.6       | 0.4       | 0.05      | 7-9      | 0        | 0       | 0.10     |        | 20.5           | 0           |                  | 5.0                     | 2.0                    | 18-8    |                        |                 |     |     | 16  |
| 0.7                                                                                                                                                                                                                                                                                                                                                                               | 1.4    | 0.7       |           | 0.07      | 7.3      | 0        | 0.1     | 0.06     |        | 21.4           | 0           |                  | 5.2                     | 3.3                    | 20.8    | 33.3                   | 12.3            |     | 1.8 | 17  |
| RIVE                                                                                                                                                                                                                                                                                                                                                                              | R NEAF | R НОРЕ    |           |           |          |          |         |          |        |                |             |                  |                         |                        |         |                        |                 |     |     |     |
|                                                                                                                                                                                                                                                                                                                                                                                   |        | 1         | 1         | 1         | 1        | 1        |         |          |        |                | 1           |                  |                         | 1                      |         |                        | 1               |     |     |     |

|     |     |     | 1    |     |   |   |      | 1                  |     |      |     |     |      |      |     |         |    |
|-----|-----|-----|------|-----|---|---|------|--------------------|-----|------|-----|-----|------|------|-----|---------|----|
| 1.2 | 1.7 | 0.6 | 0.10 | 8.2 | 0 | 0 | 0.05 | <br>41·5<br>(36·6) | (0) | 10.2 | 8.0 | 4.3 | 38.3 | 53-6 | 8-4 | <br>1.3 | 18 |

## Chemical Analyses of Surface Waters in the Fraser River Drainage Basin-Continued

|     |                                   |                      | p         | Stream (Secon          | lischarge <sup>a</sup><br>ud-feet) | Water                                     | gen |                |              |          |           | Suspended matter |                   | Specific         | Residue on Eve<br>dried at 10<br>(Dissolved s |                   | poration<br>5°C.<br>olids) | Loss                      |         |
|-----|-----------------------------------|----------------------|-----------|------------------------|------------------------------------|-------------------------------------------|-----|----------------|--------------|----------|-----------|------------------|-------------------|------------------|-----------------------------------------------|-------------------|----------------------------|---------------------------|---------|
| No. | I<br>co                           | Date of<br>Illection | (Days)    | On<br>sampling<br>date | Monthly<br>mean                    | Water temperature perature peralure (°F.) |     | Carbon dioxide | Ηď           | Colour   | Turbidity | Dried at 105°C.  | Ignited at 550°C. | K x 10° at 25°C. | P.P.M.                                        | Tons per acrefoot | Thousand tons per day      | on<br>igni-<br>tion<br>at | Calcium |
|     |                                   |                      |           |                        |                                    |                                           |     |                |              |          |           |                  |                   |                  |                                               | STATI             | ION No.                    | 27: SCI                   | HKAM    |
| 1   | Aug.                              | 17/50                | 69        |                        |                                    | 67-5                                      |     | (3.0)          | 7.2 (7.4)    | 3 (<5)   | 0         |                  |                   | 67-5             | 42.6                                          | 0.058             |                            | 5-4                       | 8-6     |
| ,   |                                   |                      |           |                        |                                    |                                           |     |                |              |          |           |                  |                   |                  |                                               | STAT              | ION No.                    | 28: LY                    | TOTT    |
| 2   | Aug.                              | 18/50                | 68        |                        |                                    | 60                                        |     | (3.0)          | 7.6          | 2        | 0.2       |                  |                   | 132              | 87-6                                          |                   |                            | 5.4                       | 22.3    |
| _   | STATION No. 29: THOMPSON RIVER AT |                      |           |                        |                                    |                                           |     |                |              |          |           |                  |                   |                  |                                               |                   |                            |                           |         |
| -   |                                   |                      |           | Gauge hei              | ght in feet                        |                                           |     |                |              |          |           | Ì                |                   |                  |                                               |                   |                            |                           |         |
| 3   | Aug.                              | 27/49*               | 75        |                        |                                    | 64                                        |     | (1 2)          | 7.5          | 5        | 4         | 8-6              | 7.2               | 86.3             | 56-8                                          | 0.077             |                            | 22.8                      | 11-4    |
| 4   | Mar.                              | 1/50                 | 8         | 9,230                  | 9,380                              | 35                                        |     | (1.5)          | (8·2)<br>7·8 | (5)<br>0 | 0.5       |                  |                   | 147              | 95-6                                          | 0.130             | 2-460                      | 8.8                       | 19-2    |
| 5   | Mar.                              | 28                   | 8         | 8,510                  | 9,380                              | 40                                        |     |                | 8-1          | 0        | 0.3       |                  |                   | 130              | 78-0                                          | 0.106             | 1.779                      | 10.0                      | 16-6    |
| 6   | Apr.                              | 29                   | 16        | 11,700                 | 9,620                              | 48                                        | ,   |                | 7.9          | 10       | 2         |                  |                   | 134              | 87.2                                          | 1.185             | 2.751                      | 10-4                      | 18.0    |
| 7   | May                               | 31                   | 36        | 48,300                 | 30,300                             | 55                                        |     |                | 7.8          | 7        | 15        |                  |                   | 114              |                                               |                   |                            |                           | 15.6    |
| 8   | June-                             | -No sample           | taken.    |                        | 84,300                             |                                           |     |                |              |          |           |                  |                   |                  |                                               |                   |                            |                           |         |
| 9   | July                              | 4                    | 36        | 91,600                 | 68,400                             | 62                                        |     |                | 7.5          | 7        | 15        | 28               | 27                | 85-3             | 59.0                                          | 0.080             | 1-456                      | 9.6                       | 12-1    |
| 10  | Aug.                              | 1                    | 95        | 46,900                 | 31,300                             | 63                                        |     |                | 7.9          | 10       | 8         |                  |                   | 85.8             |                                               |                   |                            |                           | 13.0    |
| 11  | Aug.                              | 9*                   | 83        | 35,200                 | 31,300                             | 64                                        |     | (1.5)          | 7·9<br>(7·9) | 5<br>(5) | 3 (5)     |                  |                   | 93.8             |                                               |                   |                            |                           | 11.8    |
| 12  | Sept.                             | 6                    | 83        | 20,900                 | 18,300                             | 65                                        |     |                | 7-6          | 2        | 5         |                  |                   | 88-3             |                                               |                   |                            |                           | 12.5    |
| 13  | Oct.                              | 4                    | 54        | 14,800                 | 14,600                             | 58                                        |     |                | 8.0          | 10       | 10        | 2.5              | 1.3               | 95.3             | 64 · 2                                        | 0.087             | 2-564                      | 7.8                       | 13.6    |
| 14  | Oct.                              | 31                   | 94        | 13,200                 | 14,600                             | 48                                        |     |                | 7-4          | 8        | 1         |                  |                   | 104              | 74-4                                          | 0.101             | 2.650                      | 9.0                       | 15.0    |
| 15  | Nov.                              | —No sampl            | e taken.  |                        | 12,900                             |                                           |     |                |              |          |           |                  |                   |                  |                                               |                   |                            |                           |         |
| 16  | Dec.                              | 1                    | 69        | 12,400                 | 11,600                             | 37                                        |     |                | 7-8          | 5        | 0.5       |                  |                   | 102              |                                               |                   |                            |                           | 14.2    |
| 17  | Jan.                              | 6/51                 | 38        | 10,400                 | 9,330                              | 35                                        |     |                | 7.7          | 10       | 0-8       |                  |                   | 83 - 4           |                                               |                   |                            |                           | 14.6    |
| 18  |                                   | samples)             | 49        | 26,175                 | 56,800                             | 49                                        |     |                | 7.1          | 6        | 5         |                  |                   | 106-2            | 76-4                                          | 0.104             |                            | 9-3                       | 14.9    |
|     | * No                              | t included in        | average   | 3.                     |                                    |                                           |     |                |              |          | ,         |                  |                   |                  | ST                                            | ATION             | No. 30:                    | тномі                     | PSON    |
| 19  | Aug.                              | 8/50                 | 84        | 35,800†                | 31,300†                            | 62                                        |     | (2.0)          | 7·8<br>(8·0) | 8 (6)    | 6 (5)     |                  |                   | 86.5             |                                               |                   |                            |                           | 11.5    |
|     | † Rec                             | ords at Spe          | nces Brid | lge—see Station        | No. 29.                            |                                           |     |                | 32           |          |           | ,                |                   |                  |                                               |                   |                            |                           |         |

## Chemical Analyses of Surface Waters in the Fraser River Drainage Basin-Continued

|               | Alkalis Iron   Silica Hardness as   CaCOr   M              |               |         |            |             |          |       |          |      |                |           |                  |                           |                        |                |                        |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |    |
|---------------|------------------------------------------------------------|---------------|---------|------------|-------------|----------|-------|----------|------|----------------|-----------|------------------|---------------------------|------------------------|----------------|------------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|
|               | Alk                                                        | talis         | II (I   | ron<br>Fe) |             |          |       |          |      |                |           | Sii<br>(Si       | lica<br>(O <sub>2</sub> ) | Hardi<br>Ca            | ness as        |                        |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4   |    |
| Magnesium     | Wanipog (Na)                                               | (X) Potassium | Totale  | Dissolved  | Solphate    | Chloride | (NOs) | Eluoride | (B)  | (*OOH)         | Carbonate | Gravi-<br>metric | Colori-<br>metric         | Non-<br>car-<br>bonate | Totalb         | Sum of<br>Constituents | Per cent sodium | No state of the st |     | N  |
| CREEK AT HOPE |                                                            |               |         |            |             |          |       |          |      |                |           |                  |                           |                        | 1 + 1          |                        | ŀ               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |    |
| 1.7           | 1.2                                                        | 0.8           |         | 0.05       | 4.6         | 0 (0)    | 0.4   | 0        |      | 37·3<br>(35·4) | 0 (0)     | 5.4              | 7.0                       | 0 (0)                  | 28·5<br>(29·0) | 42.7                   | 8-1             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.8 |    |
| CREE          | CREEK AT LYTTON                                            |               |         |            |             |          |       |          |      |                |           |                  |                           |                        |                |                        |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |    |
| 1.6           | 2.6                                                        | 0.2           |         | 0.03       | 5.3         | 0 (0)    | 0     | 0        |      | 79·3<br>(78·1) | 0 (0)     | 12               | 14                        | 0 (1.0)                | 62·2<br>(65·0) | 84.9                   | 8.3             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0-7 |    |
| BRID          | RIDGE AT SPENCES BRIDGE—Drainage area, 21,500 square miles |               |         |            |             |          |       |          |      |                |           |                  |                           |                        |                |                        |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |    |
|               |                                                            |               |         |            |             |          |       |          |      |                |           |                  |                           |                        |                |                        |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | Ī  |
| 1.8           | 1.4                                                        | 0.9           | 0.34    | 0.02       | 6.8         | 0        | 0     | 0.05     |      | 40.5           | 0         | 3.6              | 4-4                       | 2.6                    | 35-8           |                        |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |    |
| 4.0           | 4.8                                                        | 1-0           |         |            | 17-3        | 0        | 1.0   | 0.10     | 0.10 | 71.7           | 0         | 8.6              | 7.3                       | 5.6                    | 64-4           |                        |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |    |
| 4.0           | 3.1                                                        | 1.0           |         | 0.02       | 20.9        | 0        | 0.4   | 0.05     |      | 54.7           | 3.4       | 6.4              | 7.0                       | 7.5                    | 57.9           |                        |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |    |
| 3·1<br>2·7    | 3.2                                                        | 1.4           |         | 0.06       | 21·3<br>8·8 | 0        | 0.5   | 0.15     | 0.04 | 63 · 4         | 0         | 7.6              | 7·4<br>9·2                | 1·7<br>0               | 57·7<br>50·0   |                        |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |    |
|               |                                                            |               |         |            |             |          |       |          |      |                |           |                  |                           |                        |                |                        |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |    |
| 2.1           | 1.8                                                        | 0.8           | 2.0     | 0.08       | 6 · 4       | 1.1      | 0     | 0.05     |      | 47-3           | 0         |                  | 5.6                       | 0                      | 38.8           |                        |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |    |
| 1.7           | 2.6                                                        | 0.9           |         |            | 6-6         | 0        |       |          | 0.01 | 43.9           | 0         |                  | 9.3                       | 3-4                    | 39-4           |                        |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | 1  |
| 1.7           | 1.8                                                        | 0.8           |         |            | 7.0         | 0        |       |          |      | 43-9           | 0         |                  | 5.0                       | 0.4                    | 36-4           | ,                      | , .             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | 1  |
| 2.0           | 1.9                                                        | 0.9           |         | , , ,      | 8.6         | 0        |       |          | 0    | 45-4           | 0         | ,                | 5-8                       | 2.2                    | 39-4           |                        |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | 1  |
| 2.2           | 2.2                                                        | 0.9           | 0.3     | 0.02       | 9.4         | 0        | 0.4   | 0.05     |      | 48.8           | 0         |                  | 8.0                       | 3.0                    | 43.0           |                        |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | 1  |
| 2.6           | 2.7                                                        | 1.0           |         | 0-20       | 11.0        | 0        | 0.7   | 0-10     |      | 51.7           | 0         |                  | 7.0                       | 5.6                    | 48.0           |                        |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | 1  |
| 2.5           | 2.2                                                        | 0-8           |         |            | 8-3         | 0        |       |          | 0.05 | 53.7           | 0         |                  | 6-8                       | 1.5                    | 45.5           |                        |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | 1  |
| 2.9           | 1.8                                                        | 0.8           |         |            | 12.2        | 0        |       |          |      | 54-2           | 0         |                  | 4-8                       | 4.0                    | 48-4           |                        |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | 1  |
| 2.7           | 2.8                                                        | 1.1           | . , . , | 0.07       | 11.9        |          | 0.6   | 0.08     | 0.05 | 54.2           |           |                  | 7-1                       | 3.9                    | 48.3           | 68-0                   | 10.9            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.4 | 18 |
| RIVER         | R AT AS                                                    | HCRO          | FT      |            |             |          |       |          |      |                |           |                  |                           |                        |                |                        |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |    |
| 1.6           | 1.8                                                        | 0.8           |         | 1          | 5.8         | 0        |       |          |      | 41.7           | 0         |                  | 4.2                       | 1.1                    | 35.3           | 46.2                   | 9-7             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.9 | 4  |

## Chemical Analyses of Surface Waters in the Fraser River Drainage Basin-Continued

(In parts per million)

|     |                    | ď             | Stream discharges<br>(Second-feet) |                 |                                | gen           | 9              |     |        |           | Suspended<br>matter |            | Specific         | Residue on Evapor<br>dried at 105°C<br>(Dissolved solid |                              | °C.                                 | Loss           |         |
|-----|--------------------|---------------|------------------------------------|-----------------|--------------------------------|---------------|----------------|-----|--------|-----------|---------------------|------------|------------------|---------------------------------------------------------|------------------------------|-------------------------------------|----------------|---------|
| .0. | Date of collection | Storage perio | On<br>sampling<br>date             | Monthly<br>mean | Water<br>tem-<br>pera-<br>ture | Dissolved oxy | Sarbon dioxide | H   | Colour | Turbidity | Dried<br>at         | Ignited at | conduct-<br>ance | P.P.M.                                                  | Tons<br>per<br>acre-<br>foot | Thou-<br>sand<br>tons<br>per<br>day | on ignition at | Calcium |
| Z   |                    | (Dava)        |                                    |                 | (°F.)                          | -             |                | Di. |        | 54        | 105°C.              | 550°C.     | 25°C.            |                                                         |                              |                                     | 550°C.         | (Ca)    |

### STATION No. 31: THOMPSON RIVER AT

|   |      |       |     | Gauge height in feet |       |      |       |       |       |     |      |      |      |      |      |
|---|------|-------|-----|----------------------|-------|------|-------|-------|-------|-----|------|------|------|------|------|
| 1 | Aug. | 27/49 | 13  |                      | 64    | <br> |       | 7.4   | 5     | 6   | <br> | 80.8 | <br> | <br> | 11.0 |
|   |      | 0.150 | 400 |                      |       |      | (1.5) | (8.1) |       | (7) |      |      |      |      | 44.0 |
| 2 | Aug. | 8/50  | 120 | 6.15† 5.7            | 4† 61 |      | (2.0) | 7.6   | 6 (7) | (5) | <br> | 80.0 | <br> | <br> | 11.6 |

<sup>†</sup> Records at Kamloops, B.C.—see Station No. 33.

### STATION No. 32: THOMPSON\* RIVER

| -  |      |          |     |         |       |    | <br>    |   |     |         |        |        |       |          |        |
|----|------|----------|-----|---------|-------|----|---------|---|-----|---------|--------|--------|-------|----------|--------|
| 3  | Feb. | 1-10/50. | 32  | 2.74    |       | 33 | <br>7.5 | 5 | 1   |         | 19-1   | 122    | 0.166 | <br>7.2  | 12.9   |
| 4  | Feb. | 11-20    | 29  | 2.55    | 2.60  | 34 | <br>7.7 | 0 | 0.5 |         | 99-6   | 64-0   | 0.087 | <br>8.2  | 13.2   |
| 5  | Feb. | 21-28    | 20  | 2.50    |       | 33 | <br>7.5 | 0 | 0.5 |         | 101    | 65 - 2 | 0.089 | <br>9.4  | 13.0   |
| 6  | Mar. | 1-10     | 31  | 2.00    |       | 34 | <br>7-6 | 0 | 0.3 |         | 109    | 66-2   | 0.090 | <br>11-6 | 13.5   |
| 7  | Mar. | 11-20    | 33  | 0.54    | 0.86  | 34 | <br>7-4 | 0 | 0.3 |         | 103    | 66-2   | 0.090 | <br>6.0  | 14.2   |
| 8  | Mar. | 21-31    | 32  | 0 · 14  |       | 40 | <br>7.6 | 2 | 2   |         | 101    | 82.6   | 0.112 | <br>17.4 | 14.6   |
| 9  | Apr. | 1-10     | 22  | 0 · 12) |       | 42 | <br>7-6 | 3 | 3   |         | 98.6   | 73.0   | 0.099 | <br>11-4 | 14.6   |
| 10 | Apr. | 11-20    | 30  | 0.41    | 0.46  | 44 | <br>7.9 | 0 | 1   |         | 107    | 69.2   | 0.094 | <br>10.6 | 13.8   |
| 11 | Apr. | 21-30    | 20  | 0.86    |       | 44 | <br>7.6 | 8 | 0.7 |         | 101    | 70-4   | 0.096 | <br>6.6  | 13.0   |
| 12 | May  | 1-10     | 32  | 1.86)   |       | 48 | <br>7.8 | 5 | 0.3 |         | 95-5   | 66-8   | 0.091 | <br>8-2  | 13 · 4 |
| 13 | May  | 11-20    | 36  | 5 - 27  | 4.64  | 52 | <br>7.5 | 5 | 0.4 |         | 93-6   | 65-4   | 0.089 | <br>6.0  | 14-4   |
| 14 | May  | 21-31    | 25  | 6-59    |       | 48 | <br>7.4 | 0 | 0.4 |         | 90-1   | 66.0   | 0.090 | <br>7.2  | 12-1   |
| 15 | June | 1-10     | 37  | 8-32    |       | 50 | <br>7.5 | 2 | 4   | 7.0 3.4 | 90.1   | 113    | 0.154 | <br>44-6 | 12-8   |
| 16 | June | 11-20    | 19  | 13 · 42 | 12.51 | 54 | <br>7-4 | 8 | 0.3 |         | 92.7   | 66-2   | 0.090 | <br>14.0 | 12.8   |
| 17 | June | 21-30    | 6   | 15.78   |       | 57 | <br>7-4 | 3 | 0.5 |         | 82.0   | 64-6   | 0.088 | 11.6     | 13.2   |
| 18 | July | 1-10     | 71  | 13 - 44 |       | 59 | <br>7.4 | 5 | 0.4 |         | 83 - 8 | 62.8   | 0.085 | 10.6     | 13.6   |
| 19 | July | 11-20    | 71  | 10.66   | 10.52 | 58 | <br>7.6 | 5 | 3   |         | 82.0   | 69-8   | 0.095 | 11.8     | 12.2   |
| 20 | July | 21-31    | 101 | 8.70    |       | 60 | <br>7-4 | 5 | 1   |         | 93 - 1 | 61.4   | 0.084 | 9.0      | 11.0   |
| _  |      |          |     |         |       |    |         |   |     |         |        |        |       |          |        |

<sup>\*</sup> Due to sample location being on left side of bridge, water is probably usually from the South Thompson River.

### Chemical Analyses of Surface Waters in the Fraser River Drainage Basin-Continued

(In parts per million)

|           |        | alis      |        | on<br>Te) |                    |          |                    |          |       |                     |                    | Sil<br>(Si       | ica<br>O <sub>2</sub> ) | Hardi<br>Ca            | ness as |                        | a               | dex           | Ī   |
|-----------|--------|-----------|--------|-----------|--------------------|----------|--------------------|----------|-------|---------------------|--------------------|------------------|-------------------------|------------------------|---------|------------------------|-----------------|---------------|-----|
| Magnesium | Sodium | Potassium | Totale | Dissolved | Sulphate           | Chloride | Nitrate            | Fluoride | Boron | Bicarbonate         | Carbonate          | Gravi-<br>metric | Colori-<br>metric       | Non-<br>car-<br>bonate | Totalb  | Sum of<br>Constituents | Per cent sodiun | Saturation in | No. |
| (Mg)      | (INa)  | (K)       |        |           | (SO <sub>4</sub> ) | (CI)     | (NO <sub>3</sub> ) | (F)      | (B)   | (HCO <sub>3</sub> ) | (CO <sub>2</sub> ) |                  |                         |                        |         |                        |                 | + 1 -         |     |

HIGHWAY BRIDGE NEAR SAVONA—Drainage area at Walhachin, 15,600 square miles

| 1-4 | 1.6 | 0.9 | <br> | 4-9 | 0 | <br> |                    | 0 | <br>5.2 | 1.3 | 33.3 | 44.2 | 9-2 | <br>1.5 | 1 |
|-----|-----|-----|------|-----|---|------|--------------------|---|---------|-----|------|------|-----|---------|---|
| 1.4 | 1.2 | 0.8 | <br> | 6.8 | 0 | <br> | <br>38·1<br>(34·2) | 0 | <br>5.4 | 3.5 | 34.7 | 46.0 | 6.8 | <br>1.2 | 2 |

AT BRIDGE BELOW KAMLOOPS-Drainage area, 14,400 square miles

|     |      |     |     |      |      |      |     |      |      |      |   |      |      |     |      | <br> | <br> |    |
|-----|------|-----|-----|------|------|------|-----|------|------|------|---|------|------|-----|------|------|------|----|
| 2.6 | 18.8 | 1.2 |     | 0.27 | 11.4 | 25.8 | 0.4 | 0.10 | 0    | 51.0 | 0 | 12.4 | 9.9  | 1.1 | 42.9 | <br> | <br> | 3  |
| 2.3 | 2.4  | 1.0 |     | 0.02 | 13.0 | 0    | 0.6 | 0.10 |      | 46.6 | 0 | 7.4  | 6.2  | 4-3 | 42.5 | <br> | <br> | 4  |
| 2.5 | 2.0  | 0-9 |     | 0.04 | 12.8 | 0    | 0.4 | 0.10 |      | 45.9 | 0 | 7-2  | 6.3  | 5.1 | 42.7 | <br> | <br> | 5  |
| 2.5 | 2.4  | 0.9 |     | 0.03 | 16.0 | 0    | 0.4 | 0.10 |      | 46-6 | 0 | 7.6  | 7.3  | 5.6 | 44.0 | <br> | <br> | 6  |
| 2.5 | 2.3  | 0.9 |     | 0.03 | 17.3 | 0    | 0.7 | 0.10 | 0    | 47-3 | 0 | 5.6  | 6.8  | 6-9 | 45.7 | <br> | <br> | 7  |
| 2.7 | 2-4  | 1.0 |     | 0.07 | 14.0 | 0    | 0.6 | 0.15 |      | 48-8 | 0 | 8-2  | 7-6  | 7.5 | 47.5 | <br> | <br> | 8  |
| 2 0 | 2-4  | 1.0 |     | 0.17 | 18.0 | 0    | 0.8 | 0.10 | 0.01 | 47.6 | 0 | 9-4  | 7.0  | 9-7 | 48.7 | <br> | <br> | 9  |
| 2.3 | 3.2  | 0.9 |     | 0.05 | 12.8 | 0    | 0.8 | 0.10 |      | 50.0 | 0 | 6.4  | 6.8  | 2.9 | 43.9 | <br> | <br> | 10 |
| 2.2 | 2.4  | 1.1 |     | 0.06 | 7-4  | 0    | 0.7 | 0.10 |      | 46.4 | 0 | 6.4  | 6.7  | 3.5 | 41.5 | <br> | <br> | 11 |
| 1-9 | 2.1  | 0.9 |     | 0.12 | 9.5  | 0    | 1.3 | 0.10 |      | 45.9 | 0 | 7.8  | 7.0  | 3.6 | 41.2 | <br> | <br> | 12 |
| 2.1 | 1.8  | 1.0 |     | 0.22 | 7.1  | 0    | 0.9 | 0.10 |      | 47.8 | 0 | 11.0 | 7.3  | 5.4 | 44-6 | <br> | <br> | 13 |
| 1.9 | 1.6  | 0.9 |     | 0.17 | 8.1  | 0    | 0.8 | 0.10 |      | 44.9 | 0 | 11-4 | 5.6  | 1.2 | 38-0 | <br> | <br> | 14 |
| 1.8 | 2.0  | 1.0 | 0.8 | 0.12 | 8.9  | 0    | 0.5 | 0.05 | 0    | 42.2 | 0 |      | 6.4  | 4.7 | 39-3 | <br> | <br> | 15 |
| 1.9 | 1.8  | 0.9 |     | 0.13 | 8.4  | 0    | 1.2 | 0.08 |      | 43.9 | 0 |      | 9-4  | 3.7 | 39.7 | <br> | <br> | 16 |
| 1.7 | 2.0  | 0.9 |     | 0.25 | 10.4 | 0    | 1.3 | 0.08 |      | 41.5 | 0 |      | 8.6  | 5.9 | 39.9 | <br> | <br> | 17 |
| 1.5 | 1.8  | 0.9 |     | 0.16 | 8.6  | 0    | 0.5 | 0.10 |      | 42.7 | 0 |      | 8.8  | 5-1 | 40.1 | <br> | <br> | 18 |
| 1.7 | 1.8  | 0.8 |     | 0.19 | 6.4  | 0    | 0.9 | 0.10 |      | 42.0 | 0 |      | 10.0 | 3.0 | 37-4 | <br> | <br> | 19 |
| 1.5 | 1.8  | 0.9 |     | 0.17 | 4.9  | 0    | 0.8 |      |      | 43.9 | 0 |      | 7.2  | 0   | 33.6 | <br> | <br> | 20 |
|     |      |     |     |      |      | Į.   | 1   | l    | L    | l .  | 1 | b    | 1    |     |      |      | <br> |    |

### Chemical Analyses of Surface Waters in the Fraser River Drainage Basin—Continued

(In parts per million)

|                    | Stre           | am discharges<br>Second-feet) |                                | gen            |                |    |        |           |             | ended<br>tter | Specific         | dri    | ed at 10<br>solved s         |                                     | Loss                      |         |
|--------------------|----------------|-------------------------------|--------------------------------|----------------|----------------|----|--------|-----------|-------------|---------------|------------------|--------|------------------------------|-------------------------------------|---------------------------|---------|
| Date of collection | On sampli date | g Monthly mean                | Water<br>tem-<br>pera-<br>ture | Dissolved oxyg | Sarbon dioxide | Ηď | Colour | Turbidity | Dried<br>at | Ignited at    | conduct-<br>ance | P.P.M. | Tons<br>per<br>acre-<br>foot | Thou-<br>sand<br>tons<br>per<br>day | on<br>igni-<br>tion<br>at | Calcium |

STATION No. 32-THOMPSON RIVER AT

| _  |        |             |     | 1            |         | 1      |           |              |     |                  |     |     |        |        |       |          |      |
|----|--------|-------------|-----|--------------|---------|--------|-----------|--------------|-----|------------------|-----|-----|--------|--------|-------|----------|------|
|    |        |             |     | Gauge height | in feet |        |           |              |     |                  |     |     |        | }      |       |          |      |
| 1  | Aug.   | 1-10        | 90  | 6.80         |         | 63     | <br>      | 7.5          | 3   | 3                |     |     | 79-8   | 60.8   | 0.083 | <br>11-8 | 10.7 |
| 2  | Aug.   | 8/50*       | 120 | 6 · 15       |         | 61     | <br>(2.0) | 7.6          | 6   | 3                |     |     | 80.0   |        |       | <br>     | 11-6 |
| 3  | Aug.   | 8/50**      | 84  | 6 · 15       | 5-74    | 61     | <br>      | 7-6          | (7) | (5)<br>15        |     |     | 88.3   |        |       | <br>     | 12.5 |
| 4  | Aug.   | 11-20       | 92  | 5-47         |         | 64     | <br>(1·1) | (7·7)<br>7·4 | (8) | (15)<br><b>5</b> |     |     | 78-6   | 56.2   | 0.076 | <br>8.8  | 11-4 |
| 5  | Aug.   | 21-31       | 93  | 5.03         |         | 63     | <br>      | 7-6          | 10  | 3                |     |     | 79-0   | 60.0   | 0.082 | <br>7-4  | 11.7 |
| 6  | Sept.  | 1-10        | 97  | 4-21         |         | 63     | <br>      | 7.2          | 4   | 5                | 7-4 | 3.2 | 80.8   | 55.0   | 0.075 | <br>8.0  | 11.0 |
| 7  | Sept.  | 11-20       | 81  | 3 - 05       | 3.34    | 64     | <br>      | 7.9          | 10  | 0.8              |     |     | 77.3   | 56-6   | 0.077 | <br>9-6  | 11-4 |
| 8  | Sept.  | 21-30       | 63  | 2-75         |         | 61     | <br>      | 7.6          | 0   | 3                |     |     | 80-1   | 59-4   | 0.081 | <br>8.8  | 11.7 |
| 9  | Oet.   | 1-10        | 67  | 2.11         |         | 54     | <br>      | 7-2          | 1   | 5                | 9.8 | 5-6 | 83 · 8 | 57-4   | 0.078 | <br>8.8  | 12-0 |
| 10 | Oct.   | 11-20       | 110 | 2.74         | 2 · 24  | 52     | <br>      | 7-5          | 7   | 0.4              |     |     | 82.8   | 63 - 2 | 0.086 | <br>9.0  | 12-1 |
| 11 | Oct.   | 21-31       | 100 | 1-90         |         | 48     | <br>      | 7.3          | 5   | 0.6              |     |     | 86-2   | 58-4   | 0.079 | <br>10.8 | 11-8 |
| 12 | Nov.   | 1–10        | 109 | 2.04         |         | 44     | <br>      | 7.4          | 5   | 0-7              |     |     | 84.3   | 60.8   | 0.083 | <br>12.8 | 13.0 |
| 13 | Nov.   | 11-20       | 89  | 1.72         | 1.68    | 39     | <br>      | 7.6          | 5   | 0.5              |     |     | 82.9   | 59-6   | 0.081 | <br>6.8  | 12.4 |
| 14 | Nov.   | 21-30       | 73  | 1.29         |         | 38     | <br>. ,   | 7.3          | 5   | 3                |     |     | 86-6   | 63.0   | 0.086 | <br>11.0 | 12.5 |
| 15 | Dec.   | 1-10,       | 53  | 1.35)        |         | 36     | <br>      | 7.2          | 7   | 3                |     |     | 92.3   | 62.0   | 0.084 | 13.8     | 12.7 |
| 16 | Dec.   | 11-20       | 59  | 1.11         | 1.15    | 37     | <br>      | 7.0          | 3   | 1                |     |     | 90.8   | 60.8   | 0.083 | 13.2     | 12.5 |
| 17 | Dec.   | 21-31       | 59  | 0.99         |         | 38     | <br>      | 7-8          | 6   | 0.6              |     |     | 69-4   | 63 · 6 | 0.087 | <br>9.0  | 13.9 |
| 18 | Jan.   | 1-10/51.    | 52  | 0.99)        |         | 36     | <br>      | 7.3          | 5   | 0.5              |     |     | 95.8   | 66.4   | 0-090 | 11-4     | 13.1 |
| 19 | Jan.   | 11-20       | 42  | 0-85         | 0.96    | 33 - 5 | <br>, .   | 7.2          | 5   | 0-5              |     |     | 99-2   | 69-4   | 0.090 | <br>14.2 | 13.7 |
| 20 | Jan.   | 21-31       | 43  | 1-05         |         | 33     | <br>      | 7.2          | 10  | 0.3              |     |     | 97-6   | 64.0   | 0.094 | <br>12.4 |      |
| 21 |        | ge, 12 mos. | 56  | 3-95         | 3.90    | 46-7   |           | 7.5          | 4   | 5                |     |     | 92.8   | 67.0   | 0.087 | <br>11.1 | 12.8 |
|    | (36 88 | mples)      |     |              | 1       |        |           |              |     |                  |     |     | 32.0   | 01.0   | 0-091 | <br>11.1 | 12.8 |

<sup>•</sup> Left bank—South Thompson River •• Right bank—North Thompson River

| STATION | No | 22. | NOPTH | THOMPSON |
|---------|----|-----|-------|----------|

| 22 Aug. 27/49 |    |  |    |         |    |    |     |      |      |  |      |  |
|---------------|----|--|----|---------|----|----|-----|------|------|--|------|--|
|               | 75 |  |    |         |    |    |     |      |      |  |      |  |
|               |    |  |    |         |    |    |     |      |      |  |      |  |
|               |    |  | 62 |         |    |    |     |      |      |  |      |  |
|               |    |  |    |         |    |    |     |      |      |  |      |  |
|               |    |  |    |         |    |    | 177 |      |      |  |      |  |
|               |    |  |    | <br>7-6 | 15 |    |     |      |      |  |      |  |
|               |    |  |    |         |    | 20 |     | 82.3 | 47.0 |  | 22.0 |  |
|               |    |  |    |         |    |    |     |      |      |  |      |  |
|               |    |  |    |         |    |    |     |      |      |  |      |  |
|               |    |  |    |         |    |    |     |      |      |  |      |  |
|               |    |  |    |         |    |    |     |      |      |  |      |  |
|               |    |  |    |         |    |    |     |      |      |  |      |  |
|               |    |  |    | (0.8)   |    |    |     |      |      |  |      |  |
|               |    |  |    |         |    |    |     |      |      |  |      |  |
|               |    |  |    |         |    |    |     |      |      |  |      |  |

### Chemical Analyses of Surface Waters in the Fraser River Drainage Basin-Continued

(In parts per million)

|           |        | alis      | (F     | ,         |                    |          |                    |          |       |                     |                    | Sil<br>(Si       | ica<br>O <sub>2</sub> ) | Hardr<br>Ca(           | ness as |                        | д               | dex           |     |
|-----------|--------|-----------|--------|-----------|--------------------|----------|--------------------|----------|-------|---------------------|--------------------|------------------|-------------------------|------------------------|---------|------------------------|-----------------|---------------|-----|
| Magnesium | Sodium | Potassium | Totale | Dissolved | Sulphate           | Chloride | Nitrate            | Fluoride | Boron | Bicarbonate         | Carbonate          | Gravi-<br>metric | Colori-<br>metric       | Non-<br>car-<br>bonate | Totalb  | Sum of<br>Constituents | Per cent sodiur | Saturation in | No. |
| (Mg)      | (Na)   | (K)       |        |           | (SO <sub>4</sub> ) | (CD)     | (NO <sub>3</sub> ) | (F)      | (B)   | (HCO <sub>3</sub> ) | (CO <sub>3</sub> ) |                  |                         |                        |         |                        |                 | + 1 -         |     |

BRIDGE BELOW KAMLOOPS-Continued

|     |     |     |      |      |        |     |      |        |      |                |              |     |      |           |                |      |      | ,       |      |
|-----|-----|-----|------|------|--------|-----|------|--------|------|----------------|--------------|-----|------|-----------|----------------|------|------|---------|------|
|     |     |     |      |      |        |     |      |        |      |                |              |     |      |           |                |      |      |         |      |
| 1.7 | 1.9 | 0.8 |      | 0.16 | 5.8    | 0   | 0.4  |        | 0.01 | 39.5           | 0            |     | 6.7  | 1.3       | 33.7           |      |      | <br>    | 1    |
| 1.4 | 1.2 | 0.8 |      |      | 6.8    | 0   |      |        |      | 38·1<br>(34·2) | <b>0</b> (0) |     | 5.4  | 3.5       | 34.7           |      |      | <br>    | 2    |
| 1.5 | 1.3 | 0.8 |      |      | 6.6    | 0   |      |        |      | 43.9           | 0            |     | 3.4  | 1.4 (6.0) | 37·4<br>(38·0) |      |      | <br>    | 3    |
| 1.6 | 1.8 | 0.6 | 0.46 | 0.03 | 6.9    | 0   | 0.5  | 0.10   |      | 39.8           | 0            |     | 8.3  | 2.4       | 35.0           |      |      | <br>    | 4    |
| 1.4 | 2.0 | 0.9 |      | 0.08 | 6.6    | 0   | 0.5  | 0.05   |      | 41.0           | 0            |     | 10.6 | 1.4       | 35.0           |      |      | <br>    | 5    |
| 1.8 | 0.7 | 1.2 | 0.4  | 0.02 | 6.6    | 0   | 1.3  | 0      |      | 38.6           | 0            |     | 7.6  | 3.2       | 34.8           |      |      | <br>    | 6    |
| 1.6 | 2.0 | 0.9 |      | 0.07 | 9.5    | 0.5 | 0.9  | 0.10   |      | 39.3           | 0            | 5.2 | 7.5  | 2.8       | 35.0           |      |      | <br>    | 7    |
| 1.7 | 1.9 | 0.9 |      | 0.12 | 7.4    | 0   | 0.5  | 0.10   |      | 41.0           | 0            |     | 9.0  | 2.6       | 36-2           |      |      | <br>    | 8    |
| 2.0 | 1.7 | 1.2 | 0.6  | 0.02 | 9-1    | 0   | 1.1  | 0.10   |      | 40.7           | 0            |     | 6.3  | 4.8       | 38.2           |      |      | <br>    | 9    |
| 1.9 | 2.2 | 0.7 |      | 0.12 | 7.9    | 0   | 0.7  | 0 · 10 |      | 39.8           | 0            |     | 7.2  | 5.4       | 38.0           |      |      | <br>    | 10   |
| 1.9 | 2.1 | 0.7 |      | 0.16 | 6.6    | 0   | 1.3  | 0.10   |      | 43.4           | 0            |     | 6.4  | 1.7       | 37.3           |      |      | <br>    | 11   |
| 1-8 | 1.9 | 1.0 |      | 0.01 | 6.6    | 0   | 0    |        | 0.05 | 43-4           | 0            |     | 3.2  | 4.3       | 39.9           |      |      | <br>    | 12   |
| 2.0 | 1.3 | 0.8 |      | 0.14 | 8.9    | 0   | 0.6  | 0 · 10 |      | 43.7           | 0            |     | 8.0  | 3.4       | 39.2           |      |      | <br>    | 13   |
| 2-1 | 2.5 | 1.1 |      | 0.10 | 8.2    | 0   | 1.8  | 0.05   |      | 43.9           | 0            |     | 8.0  | 3.8       | 39.8           |      |      | <br>    | 14   |
| 2.1 | 2.2 | 0-9 |      | 0.12 | 6.4    | 0   | 1.3  | 0.10   |      | 46.4           | 0            |     | 5.8  | 2.3       | 40.3           |      |      | <br>    | 15   |
| 2.1 | 2.0 | 0-9 |      | 0.08 | 9.5    | 0   | 0.9  | 0.10   |      | 43.9           | 0            |     | 6.2  | 3.8       | 39-8           |      | , ,  | <br>    | 16   |
| 2.5 | 2.0 | 1.0 |      | 0.02 | 13 · 2 | 0   | 0.9  |        |      | 46-4           | 0            |     | 3.6  | 7.0       | 45.0           |      |      | <br>    | 17   |
| 2.1 | 1.9 | 0.9 |      | 0-07 | 7.0    | 0   | 2-2  | 0.10   |      | 46-1           | 0            | 6.6 | 4.3  | 3.5       | 41.3           |      |      | <br>    | 18   |
| 2.1 | 1.9 | 0.8 |      | 0.06 | 8.6    | 0   | 1.3  | 0.10   |      | 46.1           | 0            | 6-2 | 5.0  | 5.0       | 42.8           |      |      | <br>    | 19   |
| 2.3 | 2.1 | 0-8 |      | 0.08 | 10.2   | 0   | 1.3  | 0      |      | 45.9           | 0            | 8-2 | 6.4  | 5.1       | 42.7           |      |      | <br>    | . 20 |
| 2.0 | 2.5 | 0.7 |      | 0.10 | 9.4    | 0   | 0.86 | 0.08   |      | 44.2           | 0            |     | 7-1  | 4.0       | 40.2           | 50.1 | 11.7 | <br>1.2 | 21   |
|     |     |     | 1    | 1    | 1      |     | 1    | l      | l    | 1              | <u> </u>     | 1   | 1    |           |                | 1    |      |         | -    |

RIVER AT RAYLEIGH

|     | 1   |     |      |     |     |     | 0.05 | 38.2       | n   | 2.6 | 2.4 | 5.0 | 36-3 | 44-1 | 7.0 | 1.3 | 22 |
|-----|-----|-----|------|-----|-----|-----|------|------------|-----|-----|-----|-----|------|------|-----|-----|----|
| 1.8 | 1.0 | 1.2 | 0.01 | 6.3 | (0) | 0.9 | 0.05 | <br>(37.8) | (0) | 2.6 | 2.4 | 8.0 | 90.0 | 33.1 | 1.0 |     | _  |

# Chemical Analyses of Surface Waters in the Fraser River Drainage Basin-Continued

(In parts per million)

|                    |                | Stream (Secon          | lischarge <sup>a</sup><br>id-feet) |                                | gen           |                |    |        |           | Suspe    | ended<br>tter     | Specific         | dri    | e on Eva<br>ed at 10<br>solved so | poration<br>5°C.<br>blids) | Loss                      |          |
|--------------------|----------------|------------------------|------------------------------------|--------------------------------|---------------|----------------|----|--------|-----------|----------|-------------------|------------------|--------|-----------------------------------|----------------------------|---------------------------|----------|
| Date of collection | Storage period | On<br>sampling<br>date | Monthly<br>mean                    | Water<br>tem-<br>pera-<br>ture | Dissolved oxy | Carbon dioxide | рН | Colour | Turbidity | Dried at | Ignited at 550°C. | conduct-<br>ance | P.P.M. | Tons<br>per<br>acre-<br>foot      | Thousand tons per day      | on<br>igni-<br>tion<br>at | (calcium |

#### STATION No. 34: NORTH THOMPSON RIVER AT

|    |       |       |    | Gauge heig | tht in feet |      |   |       |              |          |           |    |    |      |        |       |       |      |      |
|----|-------|-------|----|------------|-------------|------|---|-------|--------------|----------|-----------|----|----|------|--------|-------|-------|------|------|
| 1  | Feb.  | 20/50 | 12 | 2,760      | 2,620       | 36   |   |       | 7.8          | 5        | 0.5       |    |    | 107  | 71.8   | 0.098 | 0.534 | 10.2 | 15-6 |
| 2  | Mar.  | 20    | 7  | 2,760      | 2,810       | 37   |   |       | 7-7          | 5        | 0.4       |    |    | 116  | 73.0   | 0.099 | 0.544 | 6-4  | 16-8 |
| 3  | Apr.  | 20    | 14 | 3,780      | 3,600       | 46   |   |       | 7.9          | 5        | 3         |    |    | 101  | 71.0   | 0.097 | 0.724 | 13.6 | 14.2 |
| 4  | May   | 20    | 10 | 24,800     | 19,100      | 43   |   |       | 7.8          | 20       | 5         |    |    | 77-4 |        |       |       |      | 12.0 |
| 5  | June  | 20    | 22 | 74,100     | 52,700      | 53   |   |       | 7.2          | 20       | 15        |    |    | 61-7 | 45-4   | 0.062 | 9.08  | 7.4  | 9-0  |
| 6  | July  | 21    | 84 | 33,600     | 35,800      | 51   |   |       | 7.5          | 5        | 25        | 45 | 42 | 68.9 | 46.2   | 0.063 | 4.19  | 10.2 | 11.5 |
| 7  | Aug.  | 7*    | 85 | 18,300     | 17,800      | 62   |   |       | 7.6          | 8        | 10        |    |    | 82-7 |        |       |       |      | 11.4 |
| 8  |       | 19    | 77 | 15,300     | 17,800      | 58   |   | (1.5) | (7·6)<br>7·4 | (5)<br>5 | (10)<br>9 |    |    | 77-2 |        |       |       |      | 12.3 |
| 9  | Sept. | 21    | 64 | 8,000      | 13,500      | 55   |   |       | 7.3          | 2        | 10        |    |    | 86-1 | ,      |       |       |      | 12.4 |
| 10 | Oct.  | 21    | 92 | 6,080      | 7,200       | 48   |   |       | 7.6          | 3        | 5         | 11 | 98 | 90-4 | 62-2   | 0.084 | 1.01  | 10.8 | 13.5 |
| 11 | Nov.  | 22    | 54 | 3,700      | 5,620       | 34   |   |       | 7.2          | 5        | 3         |    |    | 119  |        |       | <br>  |      | 16.3 |
| 12 | Dec.  | 21    | 43 | 3,780      | 4,020       | 36   |   |       | 7.4          | 10       | 15        |    |    | 102  |        |       |       |      | 18-8 |
| 13 | Jan.  | 22/51 | 22 | 2,810      | 3,070       | 37   |   |       | 7.4          | 7        | 0.5       |    |    | 116  | 75.4   | 0.103 | 0.573 | 10-4 | 17.6 |
| 14 | Aver  | age   | 42 | 15,122     | 13, 987     | 44.5 | 5 |       | 7.6          | 8        | 9         |    |    | 93.5 | 63 · 6 | 0.087 |       | 9-8  | 14.2 |

<sup>\*</sup> Field sample, not included in average.

#### STATION No. 35: NORTH THOMPSON RIVER

| 15 Sept. 5/5 | 0 125 | Fast |     |      | .0) (1.5) |       | 20 | 85    | 53 | <b>5</b> 2 | 53.3 | 40-4 | 0.055 |   | 4.0 | 7.0 |
|--------------|-------|------|-----|------|-----------|-------|----|-------|----|------------|------|------|-------|---|-----|-----|
| 1            | 1     |      | l l | [(12 | (0,1)     | (('0) |    | (4.0) |    |            | 1    |      |       | 1 |     |     |

#### STATION No. 36: CLEARWATER RIVER AT

| 1 | 6 Sept. | 5/50 | 106 | Fast | <br>59 - | <br>(2.0) | 7·6<br>(8·0) |  | <br> | 89.8 | 56-4 | 0.077 | <br>7-4 | 16-2 |
|---|---------|------|-----|------|----------|-----------|--------------|--|------|------|------|-------|---------|------|

#### STATION No. 37: RAFT RIVER AT

| 17 Sept | t. 5/50 | 106 | <br> | 57 | (2.0) |  | 3 | <br> | 56-4 | 0.077 | <br>7-4 12 | 2-2 |
|---------|---------|-----|------|----|-------|--|---|------|------|-------|------------|-----|

#### Chemical Analyses of Surface Waters in the Fraser River Drainage Basin-Continued

(In parts per million)

|           | Alk    | alis        | Ir<br>(F | on<br>e)  |            |          |         |            |     |       |           | Sil<br>(Si       | ica<br>O <sub>2</sub> ) | Hardi<br>Ca            | ness as<br>COs |                        | d               | index           |
|-----------|--------|-------------|----------|-----------|------------|----------|---------|------------|-----|-------|-----------|------------------|-------------------------|------------------------|----------------|------------------------|-----------------|-----------------|
| Magnesium | Sodium | E Potassium | Total    | Dissolved | S Sulphate | Chloride | Nitrate | E Fluoride | (B) | ©OOH) | Carbonate | Gravi-<br>metric | Colori-<br>metric       | Non-<br>car-<br>bonate | Totalb         | Sum of<br>Constituents | Per cent sodiun | - Saturation in |

#### HIGHWAY BRIDGE, BARRIERE—Drainage area, 7,040 square miles

|     |     |     |     |      |      |   |     |      |      |       |   |     |     |      |      | 1    |     | 1 |     |      |
|-----|-----|-----|-----|------|------|---|-----|------|------|-------|---|-----|-----|------|------|------|-----|---|-----|------|
|     |     |     |     |      |      |   |     |      |      |       |   |     |     |      |      |      |     |   |     |      |
| 2.6 | 2.0 | 1.1 |     | 0.03 | 10.0 | 0 | 0.7 | 0.05 | 0.06 | 53.7  | 0 | 6.6 | 7.0 | 5.6  | 49-6 |      |     |   |     | 1    |
| 3.3 | 2.4 | 1.1 |     | 0.15 | 15.3 | 0 | 0.5 | 0.05 |      | 58.8  | 0 | 7.2 | 6.7 | 7.3  | 55-5 |      |     |   |     | 2    |
| 2.3 | 2.2 | 1.4 |     | 0.25 | 12.2 | 0 | 0   | 0.05 |      | 51.2  | 0 | 8-8 | 6.0 | 2.9  | 44.9 |      |     |   |     | 3    |
| 1.8 | 0.9 | 0.7 |     |      | 10.5 | 0 |     |      | 0    | 41.5  | 0 |     | 5.2 | 3.3  | 37.3 |      |     |   |     | 4    |
| 1.0 | 1.3 | 0.8 | 2.0 | 0.07 | 5.8  | 0 | 0.9 | 0.01 |      | 31-7  | 0 |     | 3.7 | 0.6  | 26.6 |      |     |   |     | . 5  |
| 1.0 | 0.9 | 1.0 | 2.3 | 0.12 | 6-1  | 0 | 0.8 |      |      | 36.6  | 0 |     | 4.2 | 2.8  | 32.8 |      |     |   |     | 6    |
| 1.2 | 1.3 | 0.8 |     |      | 6.2  | 0 |     |      |      | 39.3  | 0 |     | 3.1 | 1.1  | 33.3 |      |     |   |     | 7    |
| 1.2 | 0.9 | 0.8 |     |      | 8-6  | 0 |     |      | 0.01 | 36.8  | 0 |     | 5.2 | 5.4  | 35-6 |      |     |   |     | . 8  |
| 1.7 | 0.9 | 0-9 |     |      | 8-6  | 0 |     |      |      | 42.0  | 0 |     | 4.1 | 3.5  | 37.9 |      |     |   |     | 9    |
| 1.9 | 1.3 | 1.0 | 0.6 | 0.05 | 8.2  | 0 | 0.5 | 0.05 |      | 47-1  | 0 |     | 5.6 | 2.9  | 41.5 |      |     |   |     | . 10 |
| 2.1 | 1.8 | 1.2 |     |      | 9-1  | 0 |     |      | 0.02 | 53.7  | 0 |     | 3.2 | 5-5  | 49.5 |      |     |   |     | . 11 |
| 2.5 | 1.8 | 1-1 |     |      | 15-6 | 0 |     |      |      | 52.7  | 0 |     | 4.0 | 13.8 | 57-0 |      |     |   |     | . 12 |
| 2.7 | 1.8 | 1-1 |     | 0.09 | 9.7  | 0 | 0.8 | 0.10 |      | 61.0  | 0 | 6.6 | 6-4 | 5.0  | 55.0 |      |     |   |     | . 13 |
| 2.0 | 1.6 | 1.0 |     | 0.11 | 10.0 | 0 | 0.6 | 0.05 |      | .47-1 | 0 |     | 5.1 | 5.1  | 43.7 | 57.9 | 4-4 |   | 1.0 | 14   |
|     |     |     |     |      |      |   |     | 1    | l    | 1     | 1 |     |     | 1    |      |      |     |   |     | _    |

#### AT HIGHWAY BRIDGE, CLEARWATER

|     |     |     |      |     |     |      |   |        |     |     |     |        |      |  | 1.7 |  |
|-----|-----|-----|------|-----|-----|------|---|--------|-----|-----|-----|--------|------|--|-----|--|
|     |     |     |      |     |     |      |   |        |     |     | 4.0 | 23 - 6 | 36.7 |  |     |  |
|     |     |     |      |     |     |      |   | 23.9   |     | 4.8 |     |        |      |  |     |  |
| 1.8 | 1.6 | 5.1 | 0.44 | 7.4 | 0.5 | 0.05 | 1 |        |     |     |     |        |      |  |     |  |
|     |     |     |      |     |     |      |   |        |     |     |     |        |      |  |     |  |
|     |     |     |      |     |     |      |   |        |     |     |     |        |      |  |     |  |
|     |     |     |      |     |     |      |   |        |     |     |     |        |      |  |     |  |
|     |     |     |      |     |     |      |   | (22.0) | (0) |     |     |        |      |  |     |  |
|     |     |     |      |     |     |      |   |        |     |     |     |        |      |  |     |  |
|     |     |     |      |     |     |      |   |        |     |     |     |        |      |  |     |  |
|     |     |     |      |     |     |      |   |        |     |     |     |        |      |  |     |  |
|     |     |     |      |     |     |      |   |        |     |     |     |        |      |  |     |  |

#### HIGHWAY BRIDGE, CLEARWATER

| 1.9 0.9 0.7 |       |  |  |  |
|-------------|-------|--|--|--|
|             |       |  |  |  |
|             |       |  |  |  |
|             |       |  |  |  |
|             |       |  |  |  |
|             |       |  |  |  |
|             |       |  |  |  |
|             |       |  |  |  |
|             |       |  |  |  |
|             |       |  |  |  |
|             |       |  |  |  |
|             |       |  |  |  |
|             |       |  |  |  |
|             |       |  |  |  |
|             |       |  |  |  |
|             |       |  |  |  |
| 1.9 0.9 0.7 |       |  |  |  |
|             |       |  |  |  |
|             |       |  |  |  |
|             | 1-2 0 |  |  |  |
|             |       |  |  |  |

### HIGHWAY BRIDGE NEAR CLEARWATER

| 1.9 | 0.9 | 0.7 | 0.08 | 5.0 | 0 | 0.7 | 0.05 | <br>48-8 | 0 | 6-4 | 9.6 | 0 | 38-2 | 55-1 | 4.6 |     | 1.2 | 17 |
|-----|-----|-----|------|-----|---|-----|------|----------|---|-----|-----|---|------|------|-----|-----|-----|----|
| 1.9 | 0.9 | 0.7 | 0.00 |     |   |     | l    |          |   |     | 1   |   |      |      |     | - 1 | - I |    |

# Chemical Analyses of Surface Waters in the Fraser River Drainage Basin-Continued

|     |                       | 71        | Stream d<br>(Secon     | ischarge*<br>d-feet) | Water                 | len en           |                |              |        |           | Suspe           | ended<br>tter     | Specific         | Residue<br>drie<br>(Dis | e on Evap<br>ed at 105<br>solved so | oration<br>°C.<br>lids)             | Loss                      |          |
|-----|-----------------------|-----------|------------------------|----------------------|-----------------------|------------------|----------------|--------------|--------|-----------|-----------------|-------------------|------------------|-------------------------|-------------------------------------|-------------------------------------|---------------------------|----------|
| No. | Date of<br>collection | (Days)    | On<br>sampling<br>date | Monthly<br>mean      | tem-<br>pera-<br>ture | Dissolved oxygen | Carbon dioxide | Hď           | Colour | Turbidity | Dried at 105°C. | Ignited at 550°C. | K x 106 at 25°C. | P.P.M.                  | Tons<br>per<br>acre-<br>foot        | Thou-<br>sand<br>tons<br>per<br>day | on<br>igni-<br>tion<br>at | (Calcium |
|     |                       |           |                        |                      |                       |                  |                |              |        |           |                 | S                 | TATION           | No. 38:                 | SOUTH                               | тном                                | PSON R                    | IVER     |
| T   |                       |           | Gauge hei              | ght in feet          |                       |                  |                |              |        |           |                 |                   |                  |                         |                                     |                                     |                           |          |
| 1   | Feb. 20/50            | 12        | 3,350                  | 3,560                | 33                    |                  |                | 7-7          | 5      | 0.4       |                 |                   | 82 · 4           | 56.0                    | 0-077                               | 0.510                               | 8-2                       | 13-0     |
| 2   | Mar. 20               | 7         | 3,000                  | 3,040                | 39                    |                  |                | 7.7          | 5      | 0.3       |                 |                   | 83 · 7           | 55-6                    | 0.076                               | 0.450                               | 6.6                       | 12-5     |
| 3   | Apr. 20               | 7         | 3,620                  | 3,490                | 43                    |                  |                | 7.8          | 5      | 0.5       |                 |                   | 78-8             | 54.0                    | 0-0735                              | 0-528                               | 9.0                       | 13-4     |
| 4   | May 20                | 10        | 11,700                 | 9,540                | 49                    |                  |                | 7.8          | 5      | 0.4       |                 |                   | 85-5             |                         |                                     |                                     |                           | 12.8     |
| 5   | June 20               | 16        | 34,000                 | 28,200               | 49                    |                  |                | 7-5          | 5      | 0.5       |                 |                   | 79-2             |                         |                                     |                                     |                           | 11.0     |
| 6   | June 26†              | 28        | 39,500                 | 28,200               | 58                    |                  |                | 7.5          | 8      | 0.9       |                 |                   | 79.9             | 59-4                    | 0.081                               | 6-24                                | 12.0                      | 13.2     |
| 7   | July 20               | 53        | 25,800                 | 29,300               | 63                    |                  |                | 7.5          | 8      | 0.5       |                 |                   | 80.8             | 54-6                    | 0.074                               | 3-80                                | 6.4                       | 11.8     |
| 8   | Aug. 7*               | 85        | 15,000                 | 12,500               | 63                    |                  | (4 8)          | 7.7          | 8      | 0.3       |                 |                   | 81.3             |                         |                                     |                                     |                           | 10.8     |
| 9   | Aug. 31               | 65        | 9,140                  | 12,500               | 65                    |                  | (1.5)          | (7·8)<br>7·6 | (5)    | 0.2       |                 |                   | 74.0             |                         |                                     |                                     |                           | 11.2     |
| 10  | Sept. 20              | 161       | 8,560                  | 9,900                | 67                    |                  |                | 7.9          | 2      | 0.4       |                 |                   | 70-6             |                         |                                     |                                     |                           | 10.3     |
| 11  | Oct. 20               | 46        | 4,990                  | 5,060                | 47                    |                  |                | 7.6          | 2      | 4         |                 |                   | 71.3             | 50-6                    | 0.069                               | 0-682                               | 8.8                       | 11.2     |
| 12  | Nov. 20               | 70        | 4,510                  | 4,660                | 40                    |                  |                | 7.5          | 5      | 0.5       |                 |                   | 73-2             |                         |                                     |                                     |                           | 11-2     |
| 13  | Dec. 20               | 44        | 4,050                  | 4,110                | 38                    |                  |                | 7.5          | 6      | 15        |                 |                   | 79-8             |                         |                                     |                                     |                           | 12-8     |
| 14  | Jan. 20/51            | 24        | 3,940                  | 4,030                | 34                    |                  |                | 7.2          | 5      | 0.4       |                 |                   | 79-5             | 54.0                    | 0.735                               | 0.574                               | 8.8                       | 12.5     |
| 15  | Average               | 43        | 4,560                  | 9,782                | 47                    |                  |                | 7-6          | 5      | 0.6       |                 |                   | 78-2             | 54-1                    | 0.074                               |                                     | 7-9                       | 11-9     |
|     | † Flood sample        |           | ided in average.       |                      | 1                     |                  |                |              |        |           |                 |                   |                  |                         |                                     |                                     |                           | ·        |
|     | * Field sample        | not inclu | ded in average.        |                      |                       |                  |                |              |        |           |                 |                   | \$               | STATIO                  | N No. 39                            | : ADAI                              | MS RIVI                   | ER AT    |
| 16  | Aug. 5/50             | 122       | 3,960                  | 2,350                | 61                    |                  | (0)            | 7.5          |        | 0.7       |                 |                   | 61.2             | 46.0                    | 0.064                               | 0.491                               | 8.2                       | 9.2      |
|     |                       |           |                        |                      |                       |                  |                |              |        |           |                 |                   |                  |                         | STATIO                              | ON No.                              | 40: SHU                   | JSWAP    |
| 17  | Aug. 5/50             | . 67      |                        |                      | . 61.                 | 5                |                | 8-1          | 7      | 6         |                 | 1                 | . 128            | 82.8                    | 0.113                               | 1                                   | 11.0                      | 24-6     |
| -   | Aug. 0/00             |           |                        |                      | 1 01.                 |                  | (0)            | (8.5         |        |           | 1               | 1                 | 120              | 02.0                    | 0.119                               | -                                   | - 11.0                    | 24.0     |
|     |                       |           |                        |                      |                       |                  |                |              |        |           |                 |                   |                  |                         | STATI                               | ON No.                              | 41: SH (                  | JSWAP    |
| 18  | Aug. 4/50             | . 52      |                        |                      | . 67                  | 1                |                | 7-7          | 40     | 1         |                 |                   | . 86.2           | 63.4                    | 0.086                               |                                     | 11.2                      | 14-2     |
| _   |                       |           | 1                      |                      |                       |                  | (1.5           |              | )      | . (< 5)   |                 |                   |                  | 1 7                     | 500                                 |                                     | 1                         | 1        |

### Chemical Analyses of Surface Waters in the Fraser River Drainage Basin-Continued

|            | Alk      | alis      | Iro<br>(Fe | n<br>e)   |                    |            |                    |            |           |                 |           | Sili<br>(Si      | ica<br>O <sub>2</sub> ) | Hardn<br>Ca(             | ess as       |                        | g               | dex                |      |     |
|------------|----------|-----------|------------|-----------|--------------------|------------|--------------------|------------|-----------|-----------------|-----------|------------------|-------------------------|--------------------------|--------------|------------------------|-----------------|--------------------|------|-----|
| Magnesium  | Sodium   | Potassium | Totale     | Dissolved | Sulphate           | Chloride   | Nitrate            | E Fluoride | (B) Boron | ©OO Bicarbonate | Carbonate | Gravi-<br>metric | Colori-<br>metric       | Non-<br> car-<br> bonate | Totalb       | Sum of<br>Constituents | Per cent sodium | + Saturation index |      | No. |
| (Mg)       | (Na)     | (K)       | 1 1        | 1         | (SO <sub>4</sub> ) | (CI)       | (NO <sub>3</sub> ) | (F)        | (B)       | (HCOs)          | (CO3)     |                  |                         |                          | 1            |                        |                 |                    |      | _   |
| AT HI      | GHWAY    | BRID      | GE, CH     | ASE-D     | rainage a          | rea, 6,066 | ) square           | miles      |           |                 |           |                  |                         |                          |              |                        |                 |                    |      |     |
|            |          |           |            | 1         |                    |            |                    |            |           |                 |           |                  |                         |                          |              |                        |                 |                    |      | _   |
| 1.7        | 1.4      | 0.9       |            | .0.03     | 8-7                | 0          | 0.4                | 0          | 0.02      | 41.5            | 0         | 5.8              | 6.8                     | 5.4                      | 39-4         |                        |                 |                    |      | 1   |
| 2.0        | 1.3      | 0.8       |            | 0.03      | 7.4                | 0          | 0.4                | 0-10       |           | 45.9            | 0         | 6.4              | 6.0                     | 1.8                      | 39-4         |                        |                 |                    |      | 2   |
| 2.1        | 1.2      | 0.8       |            | 0-05      | 16-6               | 0 .        | .0                 | 0.10       |           | 39.0            | 0         | 7-4              | 6-2                     | 10.0                     | 42.0         |                        |                 |                    |      | 3   |
| 1.8        | 1.1      | 0.7       |            |           | 11-5               | 0          |                    |            | 0.02      | 43.7            | 0         |                  | 6-1                     | 3.5                      | 39.3         |                        |                 |                    |      | 4   |
| 0.8        | 1.6      | 0.9       |            |           | 6.6                | 0          |                    |            |           | 41.0            | 0         |                  | 6.4                     | 0                        | 30.7         |                        |                 |                    |      | 5   |
| 1.6        | 1.6      | 0.9       |            | 0.11      | 12.0               | 0          | 0.98               | 0.05       |           | 39.3            | 0         |                  | 7.8                     | 7-3                      | 39.5         |                        |                 |                    |      | 6   |
| 1.8        | 1.6      | 0.9       |            | 0.05      | 6-4                | 0.2        | 1.0                | 0.10       |           | 39.0            | 0         | 8-2              | 5-8                     | 4.8                      | 36.8         |                        |                 |                    |      | 7   |
| 1.2        | 1.4      | 0.8       |            |           | 3.5                | 0          |                    |            |           | 42.9            | 0         |                  | 5.8                     | (0)                      | 31.8         |                        | . ,             |                    |      | 8   |
| 1-2        | 1.3      | 0.8       |            |           | 6.2                | 0          |                    |            | 0.02      | 36.6            | 0         |                  | 7·1<br>6·7              | 2.8                      | 32·8<br>32·5 |                        |                 |                    |      | 10  |
| 1.6        | 1.7      | 0.9       |            |           | 5.3                | 0          | 0.4                | 0          |           | 36-4            | 0         | 4.2              | 5.7                     | 2.6                      | 33.2         |                        |                 |                    |      | 11  |
| 1.3        | 1.2      | 0.7       |            | 0.05      | 7·1<br>6·2         | 0          | 0.4                | "          | 0         | 41.5            | 0         | 1                | 5.7                     | 2.0                      | 36-0         |                        |                 |                    |      | 12  |
| 2·0<br>1·9 | 1.7      | 1.1       |            |           | 12.1               | 0          |                    |            |           | 42.5            | 0         |                  | 5-4                     | 5.2                      | 40.0         |                        |                 |                    |      | 13  |
| 1.8        | 0.8      | 0.6       |            | 0.04      | 5.9                | 0          | < .4               | 0.10       |           | 42.0            | 0         | 5.2              | 6-2                     | 4.2                      | 38.6         |                        |                 |                    |      | 14  |
| 1.7        | 1.4      | 0.9       |            | 0.05      | 8.3                | 0          | 0.4                | 0.07       |           | 40.5            | 0         |                  | 6-2                     | 3.5                      | 36.7         | 51.0                   | 7.6             |                    | 1.2  | 15  |
|            | <u> </u> |           | 1          |           |                    |            | 1                  |            | 1         | 1               |           | 1                | 1                       |                          | 1            | 1                      | 1               |                    |      | _   |
|            |          |           | NEAR       | COTIL A   | V Duo              | 2000 000   | a 1 600 s          | anere m    | iles      |                 |           |                  |                         |                          |              |                        |                 |                    |      |     |
| HIGE       | IWAY B   | RIDGE     | NEAR       | BQUILA    | l A—Dra            | liage are  | 1                  | 1          | 1         | 1               | 1         | 1                | 1                       |                          | 1            | T                      |                 | 1                  |      | 1.0 |
| 1.1        | 1.4      | 0.6       |            | 0.06      | 6.6                | 0          | 0.5                | 0          |           | 30.5            | 0         | 4.8              | 6.4                     | 2.5                      | 27.5         | 40.8                   | 9.7             |                    | 1.5  | 116 |
|            |          |           |            |           |                    |            |                    |            |           |                 |           |                  |                         |                          |              |                        |                 |                    |      |     |
| LAKI       | E AT SA  | LMON      | ARM        |           |                    |            |                    |            |           |                 |           |                  |                         |                          |              | 1                      | 1               | 1                  | 1    | 1   |
| 3.0        | 2.7      | 1.1       | 0.42       | 0.07      | 9.7                | 0          | 0.3                | 0.10       |           | 67.1            |           | )                | 9.3                     | 18-7                     | 73.7         | 84.0                   | 9.0             |                    | 0.18 | 17  |
| -          |          |           |            |           |                    |            |                    |            |           |                 |           |                  |                         |                          |              |                        |                 |                    |      |     |
| RIVE       | R NEA    | R END     | ERBY-      | Drainage  | area nea           | r Lumb;    | y, B.C.–           | -650 squa  | re miles  | 1               | 1         | 1                | 1                       | 1                        | 1            | 1                      | 1               | 1                  |      | 1   |
| 1.4        | 0.8      | 0-7       |            | 0.09      | 6-6                | 0          | 0.4                | 0          |           | 46.4            |           |                  | . 7-2                   | 3·2<br>(5·0              |              |                        | 4.0             |                    | 0.9  | 18  |

# Chemical Analyses of Surface Waters in the Fraser River Drainage Basin—Continued

|     |                    | q                  | Stream d<br>(Secon     | ischarge*<br>d-feet) | Water                 | gen              | 0              |              |          |           | Suspe    | ended<br>tter     | Specific                                   | Residue<br>drie<br>(Dis | e on Evap<br>ed at 105<br>solved so | ooration<br>°C.<br>lida)            | Loss                                |       |
|-----|--------------------|--------------------|------------------------|----------------------|-----------------------|------------------|----------------|--------------|----------|-----------|----------|-------------------|--------------------------------------------|-------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------|
| No. | Date of collection | (sk Storage period | On<br>sampling<br>date | Monthly<br>mean      | tem-<br>pera-<br>ture | Dissolved oxygen | Carbon dioxide | Hď           | Colour   | Turbidity | Dried at | Ignited at 550°C. | conduct-<br>ance<br>K x 10s<br>at<br>25°C. | P.P.M.                  | Tons<br>per<br>acre-<br>foot        | Thou-<br>sand<br>tons<br>per<br>day | on<br>igni-<br>tion<br>at<br>550°C. | (Ca)  |
| -   |                    |                    |                        |                      |                       |                  |                |              |          |           |          |                   |                                            |                         | STA                                 | TION 1                              | No. 42: 1                           | IARA  |
| 1   | Aug. 28/49         | 12                 |                        |                      | 70                    |                  | (2.0)          | 7·7<br>(8·2) | 5<br>(5) | 6         |          |                   | 96-0                                       |                         |                                     |                                     |                                     | 16.0  |
|     |                    |                    |                        |                      |                       |                  |                |              |          |           |          |                   |                                            |                         | STA                                 | ATION :                             | No. 43: I                           | MARA  |
| 2   | Aug. 4/50          | 27                 |                        |                      | 70                    |                  | (2.0)          | 7·7<br>(8·0) | 8 (5)    | 1 (<5)    |          |                   | 89-1                                       | 59-0                    | 0.080                               |                                     | 9-4                                 | 16-4  |
|     |                    |                    |                        |                      | -                     |                  |                |              |          |           |          |                   | STAT                                       | ION No.                 | 44: SA                              | LMON I                              | RIVER I                             | FROM  |
| 3   | Aug. 5/50          | 103                |                        |                      | 62                    |                  | (0)            | 8·1<br>(8·0) | 9 (6)    | 4         | 7-0      | 5-7               | 359                                        | 23-9                    | 0.325                               |                                     | 19-4                                | 43.9  |
|     |                    |                    |                        |                      |                       |                  |                |              |          |           |          | ST                | 'ATION N                                   | Io. 45: E               | AST CA                              | NOE C                               | REEK 1                              | NEAR  |
| 4   | Aug. 5/50          | 67                 |                        |                      | 59                    |                  | (3.0)          | 8·0<br>(7·9) | 5<br>(5) | 0.7       |          |                   | 362*                                       | 213*                    | 0-290                               |                                     | 9-8                                 | 67.7* |
|     | * Calcium corre    | cted for l         | oss on storage; o      | onductivity and      | l resid               | ne ou e          | vaporai        | tion lov     | ₹,       |           |          |                   |                                            |                         | STA                                 | TION N                              | o. 46: E.                           | AGLE  |
| 5   | Aug. 4/50          | 104                |                        |                      | 49                    |                  |                | 7·4<br>(7·6) | 6 (5)    | 6 (5)     |          |                   | 49-4                                       |                         | ,                                   |                                     |                                     | 6.7   |
|     |                    |                    |                        |                      |                       |                  |                |              |          |           |          |                   |                                            |                         | STAT                                | rion n                              | o. 47: E                            | AGLE  |
| 6   | Aug. 29/49         | 32                 |                        |                      | <b>5</b> 9            |                  |                | 7.2          | 10       | 5         | 10.0     | 7.2               | 49-2                                       | 53.6                    | 0.073                               |                                     | 21.8                                | 9.2   |
|     |                    |                    |                        |                      |                       |                  |                |              |          |           |          |                   | STAT                                       | ION No                  | o. 48: NO                           | ORTH F                              | ORK E                               | AGLE  |
| 7   | Aug. 4/50          | 104                |                        |                      | 49                    |                  | (1.0)          | 7·5<br>(7·6) | 5 (5)    | 6 (5)     | 8-2      | 6.6               | 33.6                                       | 26.0                    | 0.035                               |                                     | 5-6                                 | 5.0   |
|     |                    |                    |                        |                      |                       |                  |                |              |          |           |          |                   | S'.                                        | TATION                  | No. 49:                             | NICOL                               | A RIVE                              | RAT   |
| 8   | Aug. 8/50          | 23                 |                        |                      | 67                    |                  | (5.0)          | 8.5          | 10       | 3         |          |                   | 249                                        | 147                     | 0 - 200                             |                                     | 17-0                                | 30-8  |
| 8   | Aug. 8/00          | 23                 |                        |                      | 67                    |                  | (5.0)          |              |          | 3         | ,        |                   | 249                                        | 147                     | 0.200                               |                                     | 17-0                                | 30-8  |

### Chemical Analyses of Surface Waters in the Fraser River Drainage Basin—Continued

|           | Alk            | alis          | Iro:<br>(Fe | n<br>e)   | }        |          |          |          |           |                |               | Sil<br>(Si       | ica<br>O <sub>2</sub> ) | Hardn<br>Ca(           | iess as       |                        | д               | dex                |       |
|-----------|----------------|---------------|-------------|-----------|----------|----------|----------|----------|-----------|----------------|---------------|------------------|-------------------------|------------------------|---------------|------------------------|-----------------|--------------------|-------|
| Magnesium | mnipog<br>(Na) | (X) Potassium | Totale      | Dissolved | Sulphate | Chloride | (NO3)    | Fluoride | (B) Boron | ©OOH)          | (cO Carbonate | Gravi-<br>metric | Colori-<br>metric       | Non-<br>car-<br>bonate | Totalb        | Sum of<br>Constituents | Per cent sodium | + Saturation index | No.   |
| LAKE      | NEAR           | MARA          |             |           |          |          |          |          |           |                |               |                  |                         |                        |               |                        |                 |                    |       |
| 1.5       | 1.4            | 1.0           |             |           | 9.8      | 0        |          |          |           | 48·6<br>(51·3) | 0 (0)         |                  | 6.8                     | 6.3                    | 46.1          | 60.4                   | 6.0             |                    | 0.9 1 |
| LAKE      | NEAR           | SICAM         | ous         |           |          |          |          |          |           |                |               |                  |                         |                        |               |                        |                 |                    |       |
| 1.7       | 1.4            | 0.9           |             | 0.05      | 11.0     | 0        | 0        | 0.05     |           | 48·3<br>(46·5) | 0 (0)         |                  | 3.3                     | 8-3                    | 47.9          | 23.7                   | 5.8             |                    | 0.8 2 |
| HIGH      | WAY B          | RIDGE         | AT SAL      | MON A     | RM       |          |          |          |           |                |               |                  |                         |                        |               |                        |                 |                    |       |
| 12.9      | 13.7           | 2.9           | 0.50        | 0.03      | 31.8     | 0        | 0.4      | 0.20     |           | 194<br>(187)   | 4.8           |                  | 27                      | 0 (13.0)               | 163<br>(174)  | 233                    | 15.2            | 0.5                | 3     |
| SALM      | ON AR          | M—Drai        | nage area   | of Canoe  | Creek, 6 | 2 square | miles    |          |           |                |               |                  |                         |                        |               |                        |                 |                    |       |
| 7.0       | 2-7            | 1.5           |             | 0.06      | 20.9     | 0        | 0        | 0.05     |           | 217            | 0             |                  | 18                      | 19.7                   | 198           | 225                    | 2.9             | 0.65               | 4     |
| RIVE      | R NEA          | R SICA        | Mous        |           |          |          |          |          |           |                |               |                  |                         |                        |               |                        | 1               |                    | 3     |
| 0.8       | 0.7            | 0.8           |             |           | 2.3      | 0        |          |          |           | 26·4<br>(17·1) | 0 (0)         |                  | 4.5                     | 0                      | 20.0          | 28.8                   | 6-7             |                    | 1.8 5 |
| RIVE      | R NEA          | R MAL         | AKWA        |           |          |          |          |          |           |                |               |                  |                         |                        |               |                        |                 |                    |       |
| 0.7       | 1.3            | 1.2           | 0:12        | Trace     | 10.0     | 0        | 0.35     | 0.15     |           | 21.9           | 0             |                  | 5.2                     | 2.9                    | 20.9          | 38-9                   | 9-4             |                    | 2.0   |
| RÎVE      | R (PER         | RY RI         | VER) NE     | EAR CR    | AIGELI   | LACHIE   | <u> </u> |          |           |                |               |                  |                         |                        |               |                        |                 |                    |       |
| 0.6       | 0.5            | 0.5           | 0.64        | 0-06      | 3.5      | 0        | 0.4      | 0.05     |           | 17-1           | 0 (0)         |                  | 4.8                     | 1.0                    | 15·0<br>(14·0 |                        | 6.5             |                    | 2.2 7 |
| MOU'      | rh, ne         | AR SPI        | ENCES B     | RIDGE     |          |          |          |          |           |                |               |                  |                         |                        |               |                        |                 |                    |       |
| 8.6       | 7.8            | T             | 1           | 0.04      | 19-6     | 0        | 0        | 0.05     |           | 112 (110)      | 9.6           |                  | 4-9                     | 4.2                    |               | 138                    | 12.9            | 0.6                |       |

# Chemical Analyses of Surface Waters in the Fraser River Drainage Basin-Continued

|                    | q                   | Stream d<br>(Secon     | ischarge <sup>a</sup><br>d-feet) |                                | neg              |                |              |              |           | Suspe    | ended<br>tter | Specific         | dri     | e on Eva<br>ed at 105<br>solved so | °C.                                 | Loss                                |          |
|--------------------|---------------------|------------------------|----------------------------------|--------------------------------|------------------|----------------|--------------|--------------|-----------|----------|---------------|------------------|---------|------------------------------------|-------------------------------------|-------------------------------------|----------|
| Date of collection | (ska Storage period | On<br>sampling<br>date | Monthly<br>mean                  | Water<br>tem-<br>pera-<br>ture | Dissolved oxygen | Carbon dioxide | Hď           | Colour       | Turbidity | Dried at | Ignited at    | K x 10s at 25°C. | P.P.M.  | Tons<br>per<br>acre-<br>foot       | Thou-<br>sand<br>tons<br>per<br>day | on<br>igni-<br>tion<br>at<br>550°C. | (calcium |
|                    |                     |                        |                                  |                                |                  |                |              |              |           |          |               | S                | TATION  | No. 50:                            | NICOL                               | A RIVE                              | R AT     |
| 1 July 29/49       | 47                  |                        |                                  | 66                             |                  | (0)            | 8-4 (8-8)    | 20 (20)      | 3         |          |               | 228              | 163     | 0.222                              |                                     | 67-2                                | 40-4     |
|                    |                     |                        |                                  |                                |                  |                |              |              |           |          |               |                  | STA     | ATION I                            | No. 51: (                           | COLDW                               | ATER     |
| 2 July 29/49       | 81                  |                        |                                  | 59                             |                  | (5.0)          | 7·5<br>(7·5) | 0 (5)        | 4         |          |               | 113              | 80.6    | 0.111                              |                                     | 7.8                                 | 17.0     |
|                    |                     |                        |                                  |                                |                  |                |              |              |           |          |               |                  | ST      | ATION                              | No. 52:                             | BONAP                               | ARTE     |
| 3 Aug. 8/50        | 160                 |                        |                                  | 62                             |                  | (0)            | 8-2 (8-2)    | 10           | 40 (35)   | 79       | 71            | 494              | 295     | 0.402                              |                                     | 32-4                                | 53-8     |
|                    |                     |                        |                                  |                                |                  |                |              |              |           |          |               |                  | 8       | TATIO                              | N No. 53                            | : DEAI                              | DMAN     |
| 4 Aug. 8/50        | 78                  |                        |                                  | 58                             |                  | (0)            | 8·5<br>(8·5) | <b>5</b> (5) | 0.5       |          |               | 384              | 225     | 0.306                              |                                     | 25.0                                | 39-0     |
|                    |                     |                        |                                  |                                |                  |                |              |              |           |          |               |                  |         | STA                                | rion n                              | o. 54: S                            | ETON     |
| 5 *Aug. 18/50      | 124                 |                        |                                  | 60                             |                  | (1.5)          | 7.6 (7.7)    | 2 (<5)       | 3         |          |               | 105              | 63-8    | 0.087                              |                                     | 9-6                                 | 20-8     |
| * Sample partly    | lost by             | spillage during t      | ransit.                          |                                |                  |                |              |              |           |          | STATIO        | ON No. 5         | 5: BRID | GE RIV                             | ER (NC                              | RTH F                               | ORK)     |
| 6 Apr. 4/51        | 55                  |                        |                                  | 44                             |                  |                | 7-7          |              | 50        | 45       | 40            | 146              | 90-6    | 0.123                              |                                     | 29-0                                | 17-3     |
|                    |                     |                        |                                  |                                |                  |                |              |              |           |          |               |                  | STATIC  | N No. 8                            | 6: SAN                              | josé r                              | IVER     |
| 7 Aug. 19/50**     | 123                 |                        |                                  | 64                             | (9.4)            | (0)            | 8.5 (8.7)    | 5<br>(15)    | 0.9       |          |               | 475              | 301     | 0.410                              |                                     | 77-2                                | 28.0     |
| ** Calcium pre     | cipitated,          | but corrected for      | or loss.                         |                                |                  |                |              |              |           |          |               |                  | STATIO  | ON No.                             | 57: WIL                             | LIAMS                               | LAKE     |
| 8 Aug. 21/50       | 51                  |                        |                                  | 69                             |                  | (0)            | 8.5 (8.8)    | 10 (30)      | 0.6       |          |               | 525              | 345     | 0.470                              |                                     | 91.8                                | 31.3     |
|                    |                     |                        |                                  |                                |                  |                | 4.4          |              |           |          |               |                  |         |                                    |                                     |                                     |          |

### Chemical Analyses of Surface Waters in the Fraser River Drainage Basin—Continued

|           | Alk    | alis          | Irc<br>(F | on<br>e)  |          |           |             |          |           |              |               | Sil<br>(Si       | ica<br>O <sub>2</sub> ) | Hardn<br>Ca(           | ess as       |                        | я               | dex                |       |
|-----------|--------|---------------|-----------|-----------|----------|-----------|-------------|----------|-----------|--------------|---------------|------------------|-------------------------|------------------------|--------------|------------------------|-----------------|--------------------|-------|
| Magnesium | (Na)   | (X) Potassium | Total     | Dissolved | Sulphate | Chloride  | ©ON Nitrate | Huoride  | (B) Boron | (#CO3)       | Carbonate     | Gravi-<br>metric | Colori-<br>metric       | Non-<br>car-<br>bonate | Totalb       | Sum of<br>Constituents | Per cent sodium | + Saturation index | No.   |
|           |        |               | NEAR 1    | NICOLA    |          |           |             |          |           |              |               |                  |                         |                        |              |                        |                 |                    |       |
| 8.9       | 8.0    | 2.8           |           | 0-10      | 22.4     | 0 (0)     | 0.7         | 0        |           | 167<br>(112) | 5·8<br>(9·6)  | 8-4              | 4.0                     | 0                      | 137          | 175                    | 11.0            | 0-7                | 1     |
| RIVE      | R NEAL | R MERI        | RITT      |           |          |           |             |          |           |              |               |                  |                         |                        |              |                        |                 |                    |       |
| 3.4       | 2.9    | 0.6           | 0.08      | 0.04      | 6.3      | 0.1       | Trace       | 0.05     |           | 67.1         | 0 (0)         | 8-2              | 10.2                    | 1.4                    | 56-4         | 73-6                   | 10.0            |                    | 1.0 2 |
| RIVE      | R AT C | CACHE         | CREEK     |           |          |           |             |          |           |              |               |                  |                         |                        |              |                        |                 |                    |       |
| 22.5      | 17-4   | 2.8           | 4.0       | 0.05      | 47.2     | 0         | 0.7         | 0.20     |           | 245 (253)    | 11.5          |                  | . 18                    | 7.0 (11.0)             | 227 (232)    | 295                    | 14.3            | 0.8                | 3     |
| RIVE      | R NEA  | R SAVO        | )NA       |           |          |           |             |          |           |              |               |                  |                         |                        |              |                        |                 | 1                  |       |
| 15.5      | 14.8   | 2.5           | 0 - 10    |           | 19.9     | 0         | 0.4         | 0        |           | 199 (229)    | 14·4<br>(12·2 |                  | 19.8                    | 0                      | 161          | 224                    | 16-4            | 0.9                | 4     |
| LAKI      | E NEAF | R LILLO       | OET       |           |          |           |             |          |           |              |               |                  |                         |                        | 1 1          |                        |                 | 1 1                |       |
| 1.9       | 1.8    | 3 1.1         |           | 0.1       | 9.9      | 0 (0)     | 0           |          |           | 61.0         |               | 8 · 4            | 6.1                     | 9.7                    | 59.7         | 71.7                   | 5.9             |                    | 0.8 5 |
| NEA       | R LILL | 00ET-         | Drainage  | area neai | Bridge l | River, 1, | 350 squar   | re miles |           |              |               |                  |                         |                        |              |                        |                 |                    |       |
| 6 · 4     | 3-8    | 1.8           | 1.8       | 0.09      | 13.6     | 1.6       | 0           | 0 · 10   |           | . 74-9       | 0             |                  | . 7.0                   | 8-1                    | 69.5         | 87-8                   | 9.7             |                    | 0.7 6 |
| (LAC      | LA H   | ACHE)         | NEAR W    | RIGHT     |          |           |             |          |           |              |               |                  |                         |                        |              | 1 1                    |                 | 1 1                |       |
| 32.5      | 26-    | 8 4.          | 8         | . 0-07    | 10.9     | 0         | 1-2         | 0.15     | 5         | 298 (266)    | 16.           |                  | 18                      | 0                      | 204          | 286                    | 21.0            | 0.9                | 7     |
| AT V      | WILLIA | MS LAF        | Œ         |           |          |           |             |          |           |              |               |                  |                         |                        |              |                        |                 |                    |       |
| 37-       | 5 32.  | 5 4.          | 5         | . 0.08    | 15-1     | 0         | 0-7         | 0.2      | 5         | 314 (300)    | 27.           |                  | 11                      | 0 (0)                  | 232<br>(250) | 315                    | 22 - 9          | 1.0                | 8     |

### Chemical Analyses of Surface Waters in the Fraser River Drainage Basin-Continued

(In parts per million)

|     |                    | po     |                                       | discharge <sup>a</sup><br>nd-feet) |                                | ren              |                |     |        |            |                 | ended<br>atter    | Specific         | l dri   | e on Eva<br>ed at 10<br>solved so | 5°С.                  | Loss                      |      |
|-----|--------------------|--------|---------------------------------------|------------------------------------|--------------------------------|------------------|----------------|-----|--------|------------|-----------------|-------------------|------------------|---------|-----------------------------------|-----------------------|---------------------------|------|
| No. | Date of collection | (Days) | On<br>sampling<br>date                | Monthly<br>mean                    | Water<br>tem-<br>pera-<br>ture | Dissolved oxygen | Carbon dioxide | Hď  | Colour | Turbidity  | Dried at 105°C. | Ignited at 550°C. | K x 10° at 25°C. | P.P.M.  | Tons<br>per<br>acre-<br>foot      | Thousand tons per day | on<br>igni-<br>tion<br>at | (Ca) |
|     |                    |        |                                       |                                    |                                |                  |                |     |        |            |                 |                   | STATION          | No. 58: | CHILC                             | OTIN F                | RIVER                     | NEAR |
| 1   | Feb. 19/50         | 18     |                                       |                                    | 33                             |                  |                | 7.7 | 3      | 5          | 9-6             | 5.2               | 108              | 71-4    | 0.097                             |                       | 7-8                       | 10-2 |
| 2   | Mar. 19            | 17     |                                       |                                    | 32.5                           |                  |                | 7.9 | 3      | 5          | 6.2             | 5.2               | 134              | 80.8    | 0.110                             |                       | 8.4                       | 11.3 |
| 3   | Apr. 21            | 18     |                                       |                                    | 38                             |                  |                | 7-9 | 20     | 5          | 14              | 11                | 173              | 112     | 0.1525                            |                       | 20.4                      | 13.0 |
| 4   | May 22             | 45     |                                       |                                    | 42                             |                  |                | 7.9 | 15     | 5          |                 |                   | 138              |         |                                   |                       |                           | 11-1 |
| 5   | June 21            | 33     |                                       |                                    | 53                             |                  |                | 7.7 | 5      | 130        | 154             | 145               | 81.6             | 62-8    | 0.085                             |                       | 5-0                       | 9-2  |
| 6   | July 19            | 86     |                                       |                                    | 58                             |                  |                | 7.8 | 5      | 25         | 28              | 26                | 74.7             | 52.8    | 0.072                             |                       | 16.8                      | 10-8 |
| 7   | Aug. 17            | 63     |                                       |                                    | 57                             |                  |                | 7.7 | 7      | 7          |                 |                   | 82-6             |         |                                   |                       |                           | 10.3 |
| 8   | Aug. 20*           | 110    |                                       |                                    | 60                             | (9.7)            | (1.0)          | 6.9 | 3 (25) | 15         |                 |                   | 73.9             |         |                                   |                       |                           | 10.8 |
| 9   | Sept. 23           | 83     |                                       |                                    | 56                             | (9.1)            | (1.0)          | 7.7 | 4      | (20)<br>25 |                 |                   | 79.7             |         |                                   |                       |                           | 9.0  |
| 10  | Oct. 27            | 87     |                                       |                                    | 40                             |                  |                | 7.8 | 10     | 6          | 5.6             | 5.3               | 102              | 67-4    | 0.092                             |                       | 8-6                       | 9.3  |
| 11  | Nov. 23            | 67     | · · · · · · · · · · · · · · · · · · · |                                    | 33                             |                  |                | 7.6 | 10     | 15         |                 |                   | 87.8             |         |                                   |                       |                           | 10-2 |
| 12  | Dec. 19            | 50     |                                       |                                    | 33                             |                  |                | 7.3 | 7      | 5          |                 |                   | 107              |         |                                   |                       |                           | 10.7 |
| 13  | Jan. 20/51         | 24     |                                       |                                    | 32.5                           |                  |                | 7.6 | 5      | 3          |                 |                   | 126              | 81.8    | 0-111                             |                       | 13.0                      | 11-7 |
| 14  | Average            | 48     |                                       |                                    | 42.3                           |                  |                | 7.6 | 8      | 20         |                 |                   | 107-8            | 75-6    | 0 · 103                           |                       | 11-4                      | 10-6 |

<sup>\*</sup> Field sample, not included in average.

STATION No. 59: CHILKO RIVER NEAR

|    |        |              |    | Gauge hei | ght in feet |      |       |     |    |     |     |     |      |      |        |       |      |      |
|----|--------|--------------|----|-----------|-------------|------|-------|-----|----|-----|-----|-----|------|------|--------|-------|------|------|
| 15 | Feb.   | 19/50        | 18 | 610       | 602         | 32.5 | <br>  | 7.7 | 0  | 5   | 6.6 | 4.2 | 76.8 | 52.4 | 0.071  | 0-086 | 5-2  | 10-6 |
| 16 | Mar.   | 19           | 17 | 640       | 659         | 32.5 | <br>  | 7-7 | 0  | 5   | 7.2 | 6.2 | 86-7 | 50.0 | 0.068  | 0.086 | 4.0  | 10.  |
| 17 | Apr.   | 21           | 18 | 665       | 624         | 36.5 | <br>  | 7.8 | 10 | 5   | 7-4 | 5.4 | 89.7 | 58.8 | 0.080  | 0.105 | 5-8  | 11.8 |
| 18 | May    | 22           | 45 | 2,470     | 1,940       | 45   | <br>  | 7-9 | 5  | 7   |     |     | 86-0 |      |        | . ,   |      | 11-2 |
| 19 | June   | 21           | 49 | 16,700    | 9,760       | 50   | <br>  | 7.6 | 5  | 140 | 137 | 132 | 61.9 | 48-6 | 0.066  | 2.19  | 8-0  | 8-9  |
| 20 | July   | 19           | 86 | 9,630     | 10,300      | 56   | <br>  | 7.4 | 3  | 25  | 24  | 21  | 59-2 | 44-8 | 0.061  | 1.161 | 12-0 | 9.7  |
| 21 | Aug.   | 17           | 63 | 6,070     | 6,930       | 57   | <br>  | 7.4 | 10 | 15  |     |     | 65-2 |      |        |       |      | 9.4  |
| 22 | Sept.  | 23           | 83 | 4,950     | 3,490       | 55   | <br>  | 7.7 | 5  | 25  |     |     | 55.9 |      |        |       |      | 8.8  |
| 23 | Oct.   | 27           | 98 | 2,050     | 2,610       | 40   | <br>  | 7.6 | 7  | 6   | 5.4 | 3.7 | 63-7 | 46.2 | 0.063  | 0.256 | 6.2  | 9.0  |
| 24 | Nov.   | 23           | 67 | 1,940     | 2,180       | 33   | <br>  | 7-4 | 7  | 7   |     |     | 63.0 |      |        |       |      | 10.2 |
| 25 | Dec.   | 19           | 56 | 1,060     | 1,210       | 33   | <br>  | 7-4 | 7  | 5   |     |     | 66-7 |      |        |       |      | 9.2  |
| 26 | Jan.   | 20/51        | 37 | 754       | 839         | 32   | <br>  | 7.6 | 5  | 6   | 3.8 | 2.9 | 80.1 | 49.6 | 0.0625 |       | 4-6  | 11.8 |
| 27 | Averag | ge<br>nples) | 53 | 3,962     | 3,429       | 41.9 | <br>, | 7-6 | 5  | 20  |     |     | 71.2 | 50-1 | 0.000  | 0.101 | 5.5  | 10.1 |

### Chemical Analyses of Surface Waters in the Fraser River Drainage Basin—Continued

|           | Alka   | lis       | Iro<br>(Fe | n<br>e)     |                    |          |                    |          |        |                     |                    | Sili<br>(SiC     | ca<br>(2)         | Hardn<br>CaC           | ess as<br>Os |                        | a               | dex              |       |      |
|-----------|--------|-----------|------------|-------------|--------------------|----------|--------------------|----------|--------|---------------------|--------------------|------------------|-------------------|------------------------|--------------|------------------------|-----------------|------------------|-------|------|
| Magnesium | Sodium | Potassium | Totale     | Dissolved   | Sulphate           | Chloride | Nitrate            | Fluoride | Boron  | Bicarbonate         | Carbonate          | Gravi-<br>metric | Colori-<br>metric | Non-<br>car-<br>bonate | Totalb       | Sum of<br>Constituents | Per cent sodium | Saturation index |       | No.  |
| (Mg)      | (Na)   | (K)       |            |             | (SO <sub>4</sub> ) | (Cl)     | (NO <sub>3</sub> ) | (F)      | (B)    | (HCO <sub>3</sub> ) | (CO <sub>3</sub> ) |                  |                   |                        |              |                        |                 | + 1              |       | -    |
| ALEXI     | S CREE | K-Dra     | inage are  | ea, 2,400 s | quare mi           | les      |                    |          |        |                     |                    | 1 1              |                   |                        |              | 1                      | 1               | 1 1              |       | _    |
| 4-4       | 4.8    | 1.4       | 0.55       | 0.09        | 9.2                | 0        | 0                  | 0.05     |        | 61.5                | 0                  | 10.4             | 10.6              | 0                      | 43.5         |                        |                 |                  |       | 1    |
| 6-1       | 6.0    | 1.7       | 0.66       | 0.03        | 16-5               | 0        | 0                  | 0.05     | 0      | 74-4                | 0                  | 12.6             | 11.9              | 0                      | <b>5</b> 3·3 |                        |                 |                  |       | 2    |
| 8.1       | 10-2   | 3.2       | 0.9        | 0.09        | 6.7                | 0        | 0                  | 0.10     |        | 105                 | 0                  | 18-4             | 15.7              | 0                      | 65-7         |                        |                 |                  |       | 3    |
| }         | 1      | 2.5       | 6.5        |             | 4.7                | 0        |                    |          | 0.01   | 83 · 4              | 0                  |                  | 16.8              | 0                      | 51.6         |                        |                 |                  |       | 4    |
| 5.8       | 7.5    |           |            |             | 1                  |          |                    |          | 0 02   | 43 · 4              | 0                  |                  | 7-4               | 0                      | 32-5         |                        |                 |                  |       | 5    |
| 2.3       | 3.3    | 1.5       | 5.8        | 0.33        | 6.4                | 0        | 0                  |          |        |                     |                    |                  |                   |                        |              |                        |                 |                  |       |      |
| 1.9       | 2.8    | 1.0       | 1.2        | 0.20        | 4.8                | 0        | 0.40               |          |        | 42.0                | 0                  |                  | 6.2               | 0.3                    | 34.7         |                        |                 |                  |       | 6    |
| 2.0       | 3.2    | 1.0       |            |             | 8.2                | 0        |                    |          | 0      | 45.9                | 0                  |                  | 7.1               | 0                      | 33.9         |                        |                 |                  |       | 7    |
| 1.5       | 2.8    | 0.9       |            |             | 8.2                | 0        | 0                  |          |        | 35·4<br>(32·9)      | 0 (0)              |                  | 1.0               | 4·2<br>(13·5)          | 33.2         |                        |                 |                  |       | 8    |
| 2.3       | 3.3    | 1.2       |            |             | 7-4                | (0)      |                    |          |        | 42.7                | 0                  |                  | 5.0               | 0                      | 32.0         |                        |                 |                  |       | 9    |
| 4.3       | 4.8    | 1.5       | 0.6        | 0.10        | 4.6                | 0        | 0                  | 0.10     | , ,    | 61.2                | 0                  |                  | 9.8               | 0                      | 40.9         |                        |                 |                  |       | 10   |
| 3.0       | 3.5    | 1.3       |            |             | 2.5                | 0        |                    |          | 0      | 58.6                | 0                  |                  | 6.4               | 0                      | 38.0         |                        |                 |                  |       | 11   |
|           |        |           |            |             | 7.4                | 0        |                    |          |        | 63 · 4              | 0                  |                  | 9-2               | 0                      | 45-0         |                        |                 |                  |       | 12   |
| 4-4       | 4.8    | 1.5       |            |             |                    |          |                    | 0.05     |        | 76-1                | 0                  | 12-8             | 10.8              | 0                      | 51.4         |                        |                 |                  |       | 13   |
| 5.4       | 5.3    | 1.4       |            | 0.17        | 3.8                | 0        | 0.4                | 0.05     |        |                     | -                  | 12-0             | 9.3               | 0                      | 43.7         | -                      | 18.9            |                  | 1.0   | -    |
| 4.2       | 4.9    | 1.6       |            | 0-14        | 6.9                | 0        | 0.1                | 0.07     |        | 63 - 1              | 0                  |                  | 9.0               | 0                      | 40.1         | 00.9                   | 10.9            |                  | 1.0   | 1.7  |
|           |        |           |            | ,           |                    |          |                    |          |        |                     |                    |                  |                   |                        |              |                        |                 |                  |       |      |
| REDS      | STONE- | -Drainag  | e area, 3  | ,230 squa   | re miles           |          |                    |          | 1      | 1                   |                    | 1                | 1                 | 1                      | 1            | 1                      | 1               | 1                | 1     | 1    |
|           |        |           |            |             |                    |          |                    |          |        |                     |                    |                  |                   |                        |              |                        |                 |                  |       |      |
| 1.9       | 2.2    | 0.7       | 0.18       | 0.09        | 10.5               | 0        | 0                  | 0        | 0.11   | 39.3                | 0                  | 5.2              | 4.8               | 2.0                    | 34.2         |                        |                 |                  |       | . 18 |
| 2.4       | 2.4    | 0.8       | 0.05       | 0.03        | 17.3               | 0        | 0                  | 0        |        | 42.7                | 0                  | 4.4              | 4.6               |                        |              | 1                      |                 | -                |       | . 10 |
| 2.1       | 3.2    | 1.0       | 0.5        | 0.08        | 10.5               | 0        | 0                  | 0.08     |        | 47.6                | 0                  | 6-2              |                   |                        | 38.0         | ļ                      |                 |                  |       | . 17 |
| 1.5       | 3.2    | 0-9       |            |             | 8-4                | 0        |                    |          | 0.05   | 46-4                |                    |                  | . 8.8             |                        | 34.1         |                        |                 |                  |       | . 1  |
| 1.2       | 1.6    | 0.8       | 8-2        | 0.32        | 6.4                | 0        | 0                  | 0        |        | 30-7                |                    |                  | 4.7               |                        |              |                        |                 |                  |       | . 1  |
| 0.8       | 1.6    | 0.8       | 1.4        | 0.32        | 6.4                | 0        | 0.4                |          |        | 31.7                |                    |                  | 4.2               |                        |              |                        |                 |                  |       | . 2  |
| 0.6       | 1.7    | 0.6       |            |             | 6.6                | 0        |                    |          | . 0    | 29-8                |                    |                  |                   |                        |              |                        | -               |                  |       | . 2  |
| 0.8       | 1.5    | 0.7       |            |             | 5-6                | 0        |                    |          |        | 28-1                | }                  |                  |                   |                        |              |                        |                 |                  |       | . 2  |
| 1.3       | 1.8    | 0.7       | 0.5        | 0.12        | 5.6                | 0        | 0-4                | 0.10     |        | 33 - 4              | 0                  |                  | 4-4               |                        | }            | 1                      |                 |                  |       | 2    |
| 1-4       | 1.8    | 0-9       |            |             | . 4.5              | 0        |                    |          | . 0.02 | 41.                 | 1                  |                  |                   |                        | 31.0         |                        |                 |                  |       | . 2  |
| 1.5       | 1.6    | 0.5       |            |             | . 6-7              | 0        |                    |          |        | 34-2                |                    |                  |                   |                        |              |                        |                 |                  |       | 2    |
| 1.7       | 2.1    | 0.6       | 0.23       | 0.04        | 3.9                | 0        | 0.4                | 0        | 0      | 43-                 | 0                  | 4.1              |                   |                        | 35.          | _                      |                 |                  | 4.0   | - -  |
| 1.4       | 2.1    | 0.8       |            | 0.14        | 7.7                | 0        | 0.2                | 0.03     |        | . 37                | 4 0                |                  | 4.                | 6 0.:                  | 31.          | 0 49.                  | 5 12-           | 5                | . 1.2 | 2    |

# Chemical Analyses of Surface Waters in the Fraser River Drainage Basin-Continued

(In parts per million)

|                    | (Secon         | discharge <sup>a</sup><br>nd-feet) |                                | gen           |               |   |       |           | Susp     | ended<br>tter | Specific         | drie<br>(Dis | ed at 10<br>solved so        | poration<br>5°C.<br>olids)          | Loss                      |         |
|--------------------|----------------|------------------------------------|--------------------------------|---------------|---------------|---|-------|-----------|----------|---------------|------------------|--------------|------------------------------|-------------------------------------|---------------------------|---------|
| Date of collection | On<br>sampling | Monthly mean                       | Water<br>tem-<br>pera-<br>ture | issolved oxyg | arbon dioxide | Ħ | olour | Turbidity | Dried at | Ignited<br>at | conduct-<br>ance | P.P.M.       | Tons<br>per<br>acre-<br>foot | Thou-<br>sand<br>tons<br>per<br>day | on<br>igni-<br>tion<br>at | Calcium |

#### STATION No. 60: HORSEFLY RIVER AT

| 1 Aug. 19/50 123 341 411 | 64 | 94.7 61.0 0.083 0.056 8.8 14.0 |
|--------------------------|----|--------------------------------|

#### STATION No. 61: QUESNEL RIVER AT GRAVELLE FERRY,

|    |       |               |     | Gauge hei | ght in feet |    |            |       |    |            |      |     |     |        |         |       |      |        |
|----|-------|---------------|-----|-----------|-------------|----|------------|-------|----|------------|------|-----|-----|--------|---------|-------|------|--------|
| 2  | Feb.  | 19/50         | 13  | 2,820     | 3,000       | 35 |            | . 8-1 | 5  | 5          | 11-2 | 9.0 | 138 | 90-0   | 0.1225  | 0.684 | 12-4 | 23 · 2 |
| 3  | Mar.  | 19            | 17  | 2,390     | 2,440       | 35 |            | . 8.0 | 0  | 0.3        |      |     | 151 | 89-0   | 0.121   | 0.574 | 6.8  | 23.3   |
| 4  | Apr.  | 19            | 20  | 3,440     | 3,150       | 38 |            | . 7.9 | 25 | 55         | 66   | 63  | 158 | 103    | 0.140   | 0.956 | 9-8  | 24.2   |
| 5  | May   | 20            | 10  | 10,400    | 9,740       | 42 |            | . 8.2 | 20 | 25         |      |     | 139 |        |         |       |      | 21.6   |
| 6  | June  | 19            | 24  | 29,700    | 23,100      | 55 |            | . 7-9 | 5  | 200        | 258  | 245 | 121 | 83 · 2 | 0-113   | 6-67  | 7-2  | 20.5   |
| 7  | July  | 19            | 86  | 16,800    | 18,400      | 61 |            | . 7.9 | 3  | 50         | 59   | 55  | 113 | 77-4   | 0 · 105 | 3.51  | 9.2  | 20.4   |
| 8  | Aug.  | 19            | 61  | 8,360     | 9,390       | 58 |            | . 7.8 | 7  | 9          |      |     | 115 |        |         |       |      | 20.7   |
| 9  | Aug.  | 22*           | 106 | 8,080     | 9,390       | 63 | (9.9) (1.0 |       | 3  | 15<br>(10) |      |     | 116 |        |         |       |      | 19.0   |
| 10 | Sept. | 24            | 82  | 5,430     | 7,750       | 58 | (3.8) (1.0 |       | 2  | 15         |      |     | 117 |        |         |       |      | 19.4   |
| 11 | Oct.  | 19            | 94  | 5,590     | 5,520       | 46 |            | . 7-7 | 4  | 10         | 18   | 17  | 117 | 77-2   | 0 · 105 | 1.16  | 6.4  | 19-4   |
| 12 | Nov.  | 19            | 71  | 5,100     | 5,660       | 34 |            | . 7.6 | 5  | 8          |      |     | 122 |        |         |       |      | 20.5   |
| 13 | Dec.  | 19            | 50  | 4,110     | 4,320       | 34 |            | . 7-6 | 6  | 5          |      |     | 174 |        |         |       |      | 28-8   |
| 14 | Jan.  | 19/51         | 25  | 3,630     | 3,730       | 32 |            | . 7.8 | 0  | 3          |      |     | 138 | 88-8   | 0.121   | 0.870 | 9-2  | 23.8   |
| 15 |       | ge<br>imples) | 46  | 8, 148    | 8,017       | 44 |            | 7.9   | 7  | 25         |      |     | 134 | 86.9   | 0-118   |       | 8.7  | 22.1   |

<sup>\*</sup> Field sample, not included in average.

#### STATION No. 62: COTTONWOOD

| -  |            |     |  | <br>  |  |  |    |    |     |      |       |          |      |
|----|------------|-----|--|-------|--|--|----|----|-----|------|-------|----------|------|
| 16 | Aug. 23/50 | 133 |  | (9.7) |  |  | 14 | 12 | 107 | 72.8 | 0.099 | <br>19-2 | 15-6 |

TABLE II

Chemical Analyses of Surface Waters in the Fraser River Drainage Basin—Continued

(In parts per million)

| -     |       |       | 1     |           |                    |       |                    |        |       |                     |                    |            |                         | 1              |                |                   | 1      |       | =   |
|-------|-------|-------|-------|-----------|--------------------|-------|--------------------|--------|-------|---------------------|--------------------|------------|-------------------------|----------------|----------------|-------------------|--------|-------|-----|
|       | Alk   | alis  | (I    | on<br>(e) |                    |       |                    |        |       |                     |                    | Sil<br>(Si | ica<br>O <sub>2</sub> ) | Hardi<br>Ca    | ness as<br>COs |                   |        | M     |     |
| ~     |       |       |       |           |                    |       |                    |        |       | e)                  |                    |            |                         |                | ]              | αņ                | lium   | n ind |     |
| esiun | н     | sium  |       | lved      | ate                | ide   | e                  | ide    |       | oonat               | onate              | Gravi-     | Colori-                 | Non-           |                | tuent             | nt so  | ratio |     |
| Magn  | Sodiu | Potas | Fotal | Disso     | Sulph              | Chlor | Nitra              | Fluori | Вотоп | Bicarl              | Carbo              | metric     | metric                  | car-<br>bonate | Totalb         | Sum of<br>Constit | Per ce | Satu  | To. |
| (Mg)  | (Na)  | (K)   |       |           | (SO <sub>4</sub> ) | (Cl)  | (NO <sub>3</sub> ) | (F)    | (B)   | (HCO <sub>2</sub> ) | (CO <sub>3</sub> ) |            |                         |                |                | 020               |        | + 1 - |     |

| HIGHW | 4 V 1 | BRIDGE | AT F | TORS | EFLY |
|-------|-------|--------|------|------|------|

| _   |     |     |      |     |       |     |   | <br>           |            |     |     |              |                |      |     | <br> | Contraction of the last of the |
|-----|-----|-----|------|-----|-------|-----|---|----------------|------------|-----|-----|--------------|----------------|------|-----|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2.5 | 1.8 | 0.9 | 0.09 | 5.4 | 0 (0) | 1.1 | 0 | 48·8<br>(40·2) | 0<br>(2·4) | 8.2 | 8.7 | 5·2<br>(6·0) | 45·2<br>(44·0) | 58-4 | 7-6 | 0.8  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

NEAR QUESNEL—Drainage area, 3,900 square miles

|     |     |     |      |      |               |     |     |      |      |                |          |     |     | ŕ            |                |      |     |         |     |      |
|-----|-----|-----|------|------|---------------|-----|-----|------|------|----------------|----------|-----|-----|--------------|----------------|------|-----|---------|-----|------|
| 3.2 | 1.1 | 0.3 | 0.28 | 0.08 | 9.6           | 0   | 0.6 | 0    | 0.06 | 73 · 2         | 1.2      | 5.0 | 4.2 | 9.1          | 71-1           |      |     |         |     | 2    |
| 3.8 | 1.8 | 0.5 |      | 0.05 | 15.2          | 0   | 0.5 | 0    |      | 81.3           | 0        | 4.8 | 4.8 | 6.1          | 73.7           |      |     |         |     | 3    |
| 3-7 | 2.6 | 0.7 | 3-7  | 0.23 | 10-7          | 0   | 0.6 | 0-10 |      | 87.1           | 0        | 7.2 | 6-4 | 4.2          | 75-6           |      |     |         |     | . 4  |
| 3.4 | 1.3 | 0.4 |      |      | 9-3           | 0   |     |      | 0    | 70.0           | 3.6      |     | 4.5 | 4.5          | 67-9           |      |     |         |     | . 5  |
| 1.6 | 1.4 | 0.6 | 14.7 | 0.23 | 7.9           | 0   | 0.9 | 0.05 |      | 62.5           | 2.4      |     | 5-0 | 2.5          | 57.7           |      |     |         |     | . 6  |
| 2.4 | 1.6 | 0.4 | 2.2  | 0.09 | 7.1           | 0   | 0.8 | 0    |      | 63 · 0         | 0        |     | 6-2 | 9-2          | 60-8           |      |     |         |     | . 7  |
| 1.6 | 0.9 | 0.3 |      |      | 11-1          | 0   | 0   |      | 0    | 58.6           | 0        |     | 3-8 | 10.2         | 58-2           |      |     |         |     | . 8  |
| 2.3 | 1.1 | 0.3 |      |      | 5.3           | 0   |     |      |      | 66-1           | 0        |     | 3.8 | 2.7          | 56.9           |      |     |         |     | . 9  |
| 2.2 | 1.7 | 0.4 |      |      | (8·0)<br>10·1 | (0) |     |      |      | (61·7)<br>64·7 | (0)<br>0 |     | 3.3 | (8·4)<br>4·5 | (59·0)<br>57·5 |      |     |         |     | . 10 |
| 2.7 | 1.1 | 0.3 | 1.4  | 0.05 | 7.7           | 0   | 0.4 | 0.05 |      | 68.3           | 0        |     | 6-4 | 3.5          | 59.5           |      |     |         |     | . 11 |
| 2.9 | 1.3 | 0.4 |      |      | 6-8           | 0   |     |      | 0.01 | 68-1           | 0        |     | 4.3 | 7.2          | 63-0           |      |     | . , . , |     | . 12 |
| 4.5 | 2.2 | 0.8 |      |      | 10.7          | 0   |     |      |      | 100            | 0        |     | 2.4 | 8.3          | 90.5           |      |     |         |     | . 13 |
|     | 1.0 |     |      | 0.02 | 7-6           | 0   | 0-4 | 0.05 |      | 78-1           | 0        | 5.8 | 3.8 | 8.5          | 72.5           |      |     |         |     | . 14 |
| 3.2 |     | 0-2 |      |      |               | 0   | 0.6 | 0.04 |      | 72.9           | 0.6      |     | 4.6 | 7.4          | 67-1           | 78.3 | 4.5 |         | 0.4 | 15   |
| 2.9 | 1.5 | 0.4 |      | 0.14 | 9.5           | 0   | 0.0 | 0.04 |      | 12.0           |          |     |     |              |                |      |     |         |     |      |

RIVER NEAR QUESNEL

| 3.2 | 1.8 | 0 · 4 | 0.70 | 0.06 | 8.6 | 0 | 0 | 0.10 | <br>59·8<br>(58·6) |  | 7·0<br>(6·0) | 52-1 | 65 · 6 | 6.9 | <br>0.9 | 16 |
|-----|-----|-------|------|------|-----|---|---|------|--------------------|--|--------------|------|--------|-----|---------|----|
|     |     |       |      |      |     |   |   |      |                    |  |              |      |        |     |         |    |

# Chemical Analyses of Surface Waters in the Fraser River Drainage Basin—Continued

(In parts per million)

|     |                             |           | Stream d<br>(Secon     | ischarge <sup>a</sup><br>d-feet) |                                | ue               |                |              |            |              | Suspe           | ended<br>tter     | Specific                                       | Residu<br>drie<br>(Dis | e on Evap<br>ed at 105<br>solved so | poration<br>i°C.                    | Loss                      |          |
|-----|-----------------------------|-----------|------------------------|----------------------------------|--------------------------------|------------------|----------------|--------------|------------|--------------|-----------------|-------------------|------------------------------------------------|------------------------|-------------------------------------|-------------------------------------|---------------------------|----------|
| No. | Date of collection          | (Days)    | On<br>sampling<br>date | Monthly<br>mean                  | Water<br>tem-<br>pera-<br>ture | Dissolved oxygen | Carbon dioxide | pH           | Colour     | Turbidity    | Dried at 105°C. | Ignited at 550°C. | conduct-<br>ance  K x 10 <sup>8</sup> at 25°C. | P.P.M.                 | Tons<br>per<br>acre-<br>foot        | Thou-<br>sand<br>tons<br>per<br>day | on<br>igni-<br>tion<br>at | (Calcium |
|     |                             |           |                        |                                  |                                |                  |                |              |            |              |                 |                   | S                                              | TATIO                  | N No. 68                            | B: NECE                             | IAKO R                    | IVER     |
|     |                             |           | Gauge hei              | ght in feet                      |                                |                  |                |              |            |              |                 |                   |                                                |                        |                                     |                                     |                           |          |
| 1   | Apr. 17/50                  | 15        | †                      | Ť                                | 33                             |                  |                | 7.0          | 20         | 9            | 13              | 11                | 224                                            | 114                    | 0.155                               |                                     | 10.6                      | 27-2     |
| 2   | May-No samp                 | le taken. |                        | 14,800                           |                                |                  |                |              |            |              |                 |                   |                                                |                        |                                     |                                     |                           |          |
| 3   | June 18                     | 39        | 27,700                 | 26,600                           | 65                             |                  |                | 7-6          | 20         | 5            | 19              | 16                | 88.5                                           | 59-6                   | 0.081                               | 4.46                                | 14.8                      | 11.9     |
| 4   | July-No sampl               |           | 1                      | 29,900                           |                                |                  |                |              |            |              |                 |                   | mo 4                                           |                        | 0.070                               | 0.40                                | 10.4                      | 0.4      |
| 5   | Aug. 18                     | 78        | 16,500                 | 17,400                           | 63                             |                  |                | 7-4          | 15         | 0.4          |                 |                   | 76-4<br>81-8                                   | 55.8                   | 0.076                               | 2.49                                | 18.4                      | 9-4      |
| 6   | Sept. 15                    | 70        | 11,000                 | 11,000                           |                                |                  |                | 6.1          | 10         | 2            |                 |                   | 01.0                                           |                        |                                     |                                     |                           | 10.0     |
| _   | † Records at Is             |           | drainage area 1        | 6,200 square m                   | 1                              | 1                |                | 1            | <u> </u>   | 1            | 1               |                   | 1                                              | ON No.                 | 64: CHI                             | LAKO F                              | RIVER I                   | 1        |
| 7   | Aug. 25/50                  | 112       |                        |                                  | 61                             | (9.2)            | (3.0)          | 7·9<br>(8·1) | 20<br>(25) | 6 (5)        |                 |                   | 284                                            |                        |                                     |                                     |                           | 30.0     |
| _   |                             |           | 1                      |                                  |                                |                  |                |              | 1          | 1            |                 |                   | STA                                            | TION N                 | o. 65: N                            | ECHAK                               | O RIVE                    | R AT     |
| 8   | Sept. 18/50                 | 110       |                        |                                  | 62                             | (10-6)           | (1.5)          | 6·8<br>(7·5) | 20<br>(10) | 5<br>(clear) |                 |                   | 55-9                                           |                        |                                     |                                     |                           | 10.8     |
| ~   |                             | I         | 1                      | i                                |                                | 1                |                |              | 1          | 1            | 1               | 1                 | STATION                                        | No. 66                 | : STUA                              | RT RIV                              | ER AT                     | FORT     |
| 9   | Mar. 21/50                  | 15        | 1,430                  | 1,480                            | 34                             |                  |                | 7.9          | 0          | 0.4          |                 |                   | 106                                            | 69-8                   | 0.095                               | 0.269                               | 16.0                      | 13.2     |
| 10  | Apr. 15                     | 12        | 1,180                  | 1,250                            | 39                             |                  |                | 7.9          | 8          | 2            |                 |                   | 99-2                                           | 76-0                   | 0.103                               | 0.242                               | 19.0                      | 15.6     |
| 11  | May 16                      | 14        | 3,080                  | 3,200                            | 34                             |                  |                | 7.7          | 7          | 0.5          |                 |                   | 80.5                                           |                        |                                     |                                     |                           | 10.9     |
| 12  | June 15                     | 27        | 7,630°                 | 7,740                            | 60                             |                  |                | 7.8          | 5          | 2            |                 |                   | 93 - 5                                         | 127                    | 0.173                               | 2.620                               | 54.6                      | 13.2     |
| 13  | July 15                     | 58        | 10,700°                | 10,200                           | 61                             |                  |                | 7.7          | 20         | 0.5          |                 |                   | 92.4                                           | 74-2                   | 0.101                               | 2.144                               | 14.2                      | 13 · 2   |
| 14  | Aug. 15                     | 65        | 7,260°                 | 7,090                            | 58                             |                  |                | 8-0          | 20         | 3            |                 |                   | 90.2                                           |                        |                                     |                                     |                           | 13 - 1   |
| 15  | Aug. 25*                    | 143       | 6,030                  | 7,090                            | 67                             | (9.8)            | (0)            | 7·8<br>(8·2) | 8<br>(20)  | 0.8          |                 |                   | 89.6                                           | 63 - 6                 | 0.087                               | 0.403                               | 16-4                      | 12-8     |
| 16  | Sept. 14                    | 167       | 4,320                  | 4,260                            |                                |                  |                | 7.6          | 20         | 1            |                 |                   | 90-1                                           |                        |                                     |                                     |                           | 12-4     |
| 17  | Oct. 17                     | 49        | 2,590°                 | 2,620                            | 43                             | l                | ļ              | 7.8          | 3          | 2            |                 | l                 | 92-4                                           | 67-0                   | 0.091                               | 0.468                               | 22-4                      | 11.9     |
|     | • estimated • Field sample, | not inclu | ided in average.       |                                  |                                |                  |                |              |            |              |                 |                   |                                                |                        |                                     |                                     |                           |          |

<sup>50</sup> 

# Chemical Analyses of Surface Waters in the Fraser River Drainage Basin—Continued

|        |        |               |            |           |            |          |       | (In p        | aris pe   | er milli       | on )        |                  |                         |                        |              |                        |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |     |
|--------|--------|---------------|------------|-----------|------------|----------|-------|--------------|-----------|----------------|-------------|------------------|-------------------------|------------------------|--------------|------------------------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|
|        | Alk    | alis          | Ir<br>(H   | on<br>(e) |            |          |       |              |           |                |             | Sil<br>(Si       | ica<br>O <sub>2</sub> ) | Hardr<br>Ca(           | iess as      |                        |                 | , b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | *   | =   |
| (Mg)   | (Na)   | (x) Potassium | Totale     | Dissolved | Sulphate   | Chloride | (%ON) | (H) Fluoride | (B) Boron | (#CO*)         | O Carbonate | Gravi-<br>metric | Colori-<br>metric       | Non-<br>car-<br>bonate | Totalb       | Sum of<br>Constituents | Per cent sodium | - Sometime of the state of the |     | No. |
| NEAR   | MOUT   | H AT P        | RINCE      | GEORG     | Æ          |          |       |              |           |                |             |                  |                         |                        |              |                        |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |     |
| 5-7    | 2.0    | 0.7           | 1.1        | 0.10      | 11.7       | 0        | 0.7   | 0.10         |           | 99.8           | 0           | 8-4              | 5-9                     | 9-6                    | 91-4         | 103                    | 4-5             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.1 | 1 2 |
| 2.9    | 2.4    | 0.9           | 0.8        | 0.04      | 4-6        | 0        | 1.3   | 0.10         |           | 49-8           | 0           |                  | 5.4                     | 0.8                    | 41-6         | 54-0                   | 10.5            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.1 | 3   |
| 2.2    | 2.0    | 0.4           |            | 0.12      | 3.0        | 0        | 0.4   |              | 0.001     | 41·5<br>48·8   | 0           |                  | 5·0  <br>4·9            | 0                      | 32·6<br>35·6 | 42-9                   | 11·6<br>9·8     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.5 | 5   |
| MOUT   | H, NEA | R PRI         | NCE GE     | CORGE     |            |          |       | 1            | 1         |                |             | 1                |                         |                        |              | 1                      | 1               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |     |
| 14.5   | 6.8    | 2.5           |            |           | 6.0        | 0 (0)    |       |              |           | 184<br>(181)   | 0 (0)       |                  | 11-2                    | 0                      | 135          | 162                    | 9-7             | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     | 7   |
| нісн   | WAY B  | RIDGE         | AT VA      | NDERH     | OOF        |          |       |              |           |                |             |                  |                         |                        |              |                        |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |     |
| 3.1    | 2.0    | 0.3           |            |           | 15-2       | 0        | 0     |              |           | 34·2<br>(25·6) | 0 (0)       |                  | 2.4                     | 7-2                    | 35-2         | 50-6                   | 9.8             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.2 | 8   |
| ST. JA | MES-I  | )rainage      | area, 5,40 | 00 square | miles      |          |       |              |           |                |             |                  |                         |                        |              |                        |                 | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |     |
| 3-5    | 1.8    | 0.4           |            | 0.05      | 12.3       | 0        | 0     | 0.10         |           | 57-1           | 0           | 5.8              | 4.9                     | 0                      | 47-3         |                        |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     | 9   |
| 3-6    | 2.0    | 0-5           |            | 0.10      | 16-6       | 0        | 0     | 0.15         | 0         | 53.7           | 0           | 8-0              | 5.4                     | 9.7                    | 53.7         |                        |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     | 10  |
| 2.3    | 1.7    | 0.3           |            |           | 5.4        | 0        |       |              |           | 46·8<br>53·4   | 0           |                  | 4.6                     | 1.0                    | 36·7<br>44·8 |                        |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     | 11  |
| 3.2    | 2.0    | 0.4           |            | 0.04      | 6·1<br>4·9 | 0        | 0     | 0.10         | ,         | 52.5           | 0           | 9-6              | 6.1                     | 3.1                    | 46.1         |                        |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     | 13  |
| 2.3    | 2.0    | 0.3           |            |           | 8.8        | 0        |       |              | 0.01      | 51.2           | 0           |                  | 5.7                     | 0.2                    | 42.2         |                        |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     | 14  |
| 2.7    | 1.9    | 0.6           |            | 0.09      | 4.3        | 0        | 0.4   | 0.12         |           | 54·2<br>(50·0) | (0)         | 4-8              | 5.0                     | 0                      | 43.0         |                        |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     | 15  |
| 3.2    | 2.0    | 0.6           |            |           | 4.7        | 0        |       |              |           | 51.2           | 0           |                  | 6.0                     | 2.0                    | 44.0         |                        |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     | 16  |
| 2-8    | 1.8    | 0.4           |            | 0.07      | 5-6        | 0        | . 0.4 | 0            |           | 53.2           | - 0         | 4.2              | 5.4                     | 0 .                    | 41.2         |                        |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ł.· | 17  |

# Chemical Analyses of Surface Waters in the Fraser River Drainage Basin-Continued

|                       | po                  | Stream (Secon          | lischarge*<br>id-feet) |                                | gen                                      | g)                 |                    |                    |                    | Susp               | ended<br>tter      | Specific                      | Residu<br>dri<br>(Dis | e on Evap<br>ed at 105<br>solved so                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ooration<br>°C.<br>lids)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Loss                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-----------------------|---------------------|------------------------|------------------------|--------------------------------|------------------------------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|-------------------------------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Date of<br>collection | (Storage peric      | On<br>sampling<br>date | Monthly<br>mean        | water<br>tem-<br>pera-<br>ture | Dissolved oxyg                           | Carbon dioxide     | Hď                 | Colour             | Turbidity          | Dried at 105°C.    | Ignited at 550°C.  | Conductance  K x 10° at 25°C. | P.P.M.                | Tons<br>per<br>acre-<br>foot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Thousand tons per day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | on<br>igni-<br>tion<br>at<br>550°C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (Ca)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                       |                     |                        |                        |                                |                                          |                    |                    |                    |                    |                    |                    | ST                            | ATION                 | No. 66:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | STUAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | T RIVE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                       |                     | Gauge hei              | oht in feet            |                                |                                          |                    |                    |                    |                    |                    |                    |                               |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Nov. 14               | 58                  | 1,760                  | 1,760                  | 33                             |                                          |                    | 7-6                | 10                 | 4                  |                    |                    | 91.6                          |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 13.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Dec. 14               | 6                   | 1,460°                 | 1,460                  | 34                             |                                          |                    | 7.8                | 15                 | 2                  |                    |                    | 96.2                          |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Jan. 16/51            | 28                  | 1,220                  | 1,220                  | 32                             |                                          |                    | 7-5                | 20                 | 0.4                |                    |                    | 95.3                          | ļ<br>                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 13 · 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Feb. 15               | 33                  | 1,1200                 | 1,110                  | 32                             |                                          |                    | 7.7                | 20                 | 0.3                |                    |                    | 107                           | 68-2                  | 0.093                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.206                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 19-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 14 · 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Average(12 samples)   | 43                  | 3,646                  | 3,615                  | 38                             |                                          |                    | 7-8                | 12                 | 1.5                | •••••              |                    | 94.5                          | 80-4                  | 0.109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 24 · 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 13.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| e-estimated           |                     |                        |                        |                                |                                          |                    |                    |                    |                    |                    | ST                 | ATION 1                       | No. 67: N             | ECHAI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | KO RIVI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ER AT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | FORT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Feb. 15/50            | 17                  |                        | 8,900                  | 36                             |                                          |                    | 7.3                | 5                  | 2                  |                    |                    | 55.8                          | 42.6                  | 0.058                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Mar. 16               | 11                  | *********              |                        | 33                             |                                          |                    | 7-7                | 7                  | 3                  |                    |                    | 58.7                          | 41-6                  | 0.0566                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Apr. 15               | 12                  |                        |                        | 33                             |                                          |                    | 7.5                | 5                  | 3                  |                    | <br>               | 49.7                          | 40.6                  | 0.055                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| May 15/50             | 15                  | 6,570                  | 7,810                  | 48                             |                                          |                    | 7-5                | 25                 | 6                  |                    |                    | 66-4                          |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| June 15               | 27                  | 15,500                 | 15,740                 | 62                             |                                          |                    | 7.3                | 5                  | 5                  | 12-2               | 6.4                | 50-0                          | 80.6                  | 0.110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 47.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| July 15               | 58                  | 16,900                 | 16,260                 | 62                             |                                          |                    | 7.2                | 10                 | 0.9                |                    |                    | 45.0                          | 35-6                  | 0.048                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Aug. 15               | 65                  | 8, 250                 | 8,340                  | 61                             |                                          |                    | 7-4                | 10                 | 3                  |                    |                    | 46.2                          |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Sept. 16              | 165                 | 5,310                  | 5,350                  | 60                             |                                          |                    | 7-4                | 10                 | 0.6                |                    | !                  | 45.8                          |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Oct. 14               | <b>5</b> 2          | 4,220                  | 4,360                  | 45                             |                                          |                    | 7-6                | 2                  | 2                  |                    |                    | 46-4                          | 36.6                  | 0.050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.417                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Nov. 14               | 76                  | 4,370                  | 4,310                  | 35                             |                                          |                    | 7.5                | 7                  | 4                  |                    |                    | 35.7                          |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                       |                     |                        |                        | 33                             |                                          |                    | 7.5                | 7                  | 15                 |                    |                    | 50.3                          |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                       | 48                  |                        |                        | 32<br>                         |                                          |                    | 7.4                | 10                 | 3                  |                    |                    | 47-4                          | 39.8                  | 0.054                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6·4<br>7·5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| (12 samples)          |                     |                        |                        |                                |                                          |                    |                    |                    |                    |                    | <u> </u>           |                               | 1                     | 0 0010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                       |                     |                        |                        |                                |                                          |                    |                    |                    |                    |                    |                    |                               | STA                   | TION 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | No. 68: 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NORTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ERLY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Aug. 26/50            | 60                  |                        |                        | 60                             | (10-4)                                   | (0)                | 7·8<br>(8·2)       | 10<br>(20)         | 0.6                |                    |                    | 88-2                          | 66-4                  | 0.090                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 16-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 13.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                       |                     |                        |                        |                                |                                          |                    |                    |                    |                    |                    |                    |                               | 5                     | STATIO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | N No. 69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | e: STEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | LAKO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Sept. 1/50            | 136                 |                        |                        | 61                             | (10.6)                                   | (0.5)              | 7.8                | 6                  | 1                  |                    |                    | 90.7                          | 71.4                  | 0-097                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 23.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| !                     |                     | 1                      |                        |                                | (10-2)                                   | (2.5)              | (7-8)              |                    |                    |                    | 1                  |                               |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                       | Peb. 15/50  Average | Nov. 14                | Date of collection     | Chays   Gauge height in feet   | Cauge height in feet   Water temperature | Date of collection | Date of callection            | Date of collection    | Date of collection   Date of | Date of collection   Section   Sec | Character   Char | Date of Collection   Collecti |

# Chemical Analyses of Surface Waters in the Fraser River Drainage Basin-Continued

|           |         |           | 1         |           |          |          |         |              |           |                  |           |                  |                         |                        |                            |                        |                 |             |      |          |
|-----------|---------|-----------|-----------|-----------|----------|----------|---------|--------------|-----------|------------------|-----------|------------------|-------------------------|------------------------|----------------------------|------------------------|-----------------|-------------|------|----------|
|           | Alk     | alis      | Ir<br>(H  | on<br>Fe) |          |          |         |              |           |                  |           | Sil<br>(Si       | ica<br>O <sub>2</sub> ) | Hardr<br>Cat           | iess as<br>CO <sub>2</sub> |                        | d               | 1           | 407  |          |
| Magnesium | (Na)    | Potassium | Totale    | Dissolved | Solphate | Chloride | ©ON)    | (F) Fluoride | (B) Boron | (CO) Bicarbonate | Carbonate | Gravi-<br>metric | Colori-<br>metric       | Non-<br>car-<br>bonate | Totalb                     | Sum of<br>Constituents | Per cent sodium | 200         |      | No.      |
|           |         |           |           | 1         | (202)    | (01)     | (21150) | (2)          | (2)       | (42000)          | (008)     | 1                |                         |                        | (                          |                        | 1               | +           |      | _        |
| FORT      | ST. JAI | MES-C     | ontinued  | 1         |          |          |         | 1            | 1         |                  | 1         | 1                | 1                       |                        | ı                          |                        | I               |             | 1    | 1        |
|           |         |           |           |           |          |          |         |              |           |                  |           |                  |                         |                        |                            |                        |                 |             |      |          |
| 4.0       | 2.0     | 0.6       |           |           |          | 0        | 0       |              | 0.03      | 53.2             | 3.5       |                  | 3.2                     | 0.1                    | 50 · 1                     |                        |                 |             |      | 1        |
| 3.5       | 1.8     | 0.3       |           |           |          | 0        | 0       |              |           | 56.1             | 0         |                  | 4.8                     | 6-1                    | 52.1                       |                        |                 |             |      | 2        |
| 3.1       | 0.5     | 0.3       |           |           | 4.6      | 0        |         |              |           | 52.5             | 0         |                  | 5.0                     | 2.5                    | 45.5                       |                        |                 |             |      | 3        |
| 3.2       | 1.7     | 0.4       |           | 0.04      | 5.8      | 0        | 0.7     | 0            |           | 58.3             | 0         | 7.6              | 4.7                     | 0.5                    | 48-3                       |                        |                 |             |      | 4        |
| 3.1       | 1.8     | 0.4       |           | 0.07      | 6.2      | 0        | 0.1     | 0.06         |           | 53.2             | 0         |                  | 5.5                     | 2.1                    | 45.7                       | 56.7                   | 7-8             |             | 0.8  | 5        |
| FRASI     | ER—Dra  | inage ar  | ea, 6,700 | square m  | iles     |          | ì       | 1            | ı         | 1                | 1         | 1                |                         | 1                      |                            | 1                      | 1               | 1           |      | 1        |
| 0.9       | 1.3     | 0.3       |           | 0.06      | 3.5      | 0        | 0       | 0.05         | 0.16      | 31.7             | 0         | 3.6              | 4-4                     | 0                      | 25.7                       |                        |                 |             |      | 6        |
| 1.5       | 1.8     | 0.4       |           | 0.04      | 5.4      | 0        | Trace   | 0.05         |           | 34.2             | 0         | 6.2              | 4.2                     | 0                      | 26-7                       |                        |                 |             |      | 7        |
| 1.5       | 1.2     | 0.5       |           | 0.10      | 11.4     | 0        | 0       | 0.10         |           | 24 · 4           | 0         | 4.2              | 3.4                     | 5.2                    | 25.2                       |                        |                 |             |      | 8        |
| 1.6       | 2.0     | 0.7       |           |           | 8.4      | 0        |         |              | 0         | 41.0             | 0         |                  | 5-8                     | 0                      | 30.5                       |                        |                 |             |      | 9        |
| 1.1       | 1.6     | 0.3       | 0.6       | 0.08      | 3.8      | 0        | 0       | 0.05         |           | 27.3             | 0         |                  | 4.2                     | 0                      | 21.7                       |                        |                 |             |      | 10       |
| 0.8       | 1.3     | 0.3       |           | 0.08      | 3-6      | 0        | 0       | 0            |           | 22.0             | 0         | 5.8              | 3-1                     | 1.3                    | 19.3                       |                        |                 |             |      | 11       |
| 0.8       | 1.5     | 0.2       |           |           | 7.4      | 0        |         |              | 0.01      | 24 · 4           | 0         |                  | 4.6                     | 4.5                    | 24.5                       |                        |                 |             |      | 12       |
| 1.2       | 1.7     | 0-4       |           |           | 3.1      | 0        |         |              |           | 26.8             | 0         |                  | 5.1                     | 0                      | 20.5                       |                        |                 |             |      | 13       |
| 0.9       | 1.4     | 0.2       |           | 0.07      | 5.9      | 0        | 0.4     | 0.10         |           | 24 · 4           | 0         | 4.2              | 4.6                     | 0.4                    | 20.4                       |                        |                 |             |      | 14       |
| 1.3       | 1.5     | 0.5       |           |           | 2.5      | 0        |         |              | 0         | 25.6             | 0         |                  | 4.4                     | 0                      | 20.5                       |                        |                 | + 6 + 6 * 1 |      | 15       |
| 1.4       | 1.2     | 0.3       |           |           | 6.8      | 0        |         |              |           | 29.3             | 0         |                  | 3.8                     | 3.0                    | 27-0                       | ,                      |                 |             |      | 16       |
| 1.2       | 1.2     | 0.7       |           | 0.12      | 3.0      | 0        | 0.4     | 0.10         |           | 26-8             | 0         | 5.2              | 4.7                     | 0                      | 20.9                       |                        |                 |             |      | 17       |
| 1.2       | 1.5     | 0.4       |           | 0.8       | 5.4      | 0        |         | 0.06         | 0.07      | 28-1             | 0         |                  | 4.4                     | 0.6                    | 23 · 6                     | 34 · 4                 | 11.9            |             | 1.7  | 18       |
|           |         |           |           |           |          |          | 1       |              |           | 1                | 1         | 1                | 1                       | Ī                      |                            |                        |                 |             |      | -        |
| RIVE      | R NEAI  | R FORT    | FRASI     | ER        |          |          |         |              | 1         | 4                |           | 1                | I                       |                        |                            | 1                      | 1               |             |      | <u> </u> |
| 2.3       | 3.3     | 0.7       |           | 0.05      | 4.3      | 0 (0)    | 0.4     | 0.15         |           | 56·1<br>(46·4)   | 0 (2.4)   | 6.4              | 4.9                     | (2.0)                  | 43.4 (44.0)                | 57-2                   | 13-9            |             | 0.95 | 19       |
| RIVE      | R NEAF  | R FORT    | FRASI     | ER        |          |          |         |              |           |                  |           |                  |                         |                        |                            |                        |                 | 1           |      |          |
| 2.3       | 3.9     | 1.0       |           | 0.16      | 4.3      | 0        | 0.7     |              |           | 56.6             | (0)       | 7.8              | 5.2                     | 0                      | 38-4                       | 57-1                   | 17-6            |             | 1.0  | 20       |

#### TABLE II—Concluded

### Chemical Analyses of Surface Waters in the Fraser River Drainage Basin—Concluded

|     |                    | r o        | Stream d<br>(Secon     | lischarges<br>d-feet) |                                | en               |                |              |            |           | Suspe    |                   | Specific                                       | drie   | e on Evap<br>ed at 105<br>solved so | °C.                                 | Loss                                |           |
|-----|--------------------|------------|------------------------|-----------------------|--------------------------------|------------------|----------------|--------------|------------|-----------|----------|-------------------|------------------------------------------------|--------|-------------------------------------|-------------------------------------|-------------------------------------|-----------|
| No. | Date of collection | (Days)     | On<br>sampling<br>date | Monthly<br>mean       | Water<br>tem-<br>pera-<br>ture | Dissolved oxygen | Carbon dioxide | Hq           | Colour     | Turbidity | Dried at | Ignited at 550°C. | conduct-<br>ance  K x 10 <sup>6</sup> at 25°C. | P.P.M. | Tons<br>per<br>acre-<br>foot        | Thou-<br>sand<br>tons<br>per<br>day | on<br>igni-<br>tion<br>at<br>550°C. | © Calcium |
|     |                    |            |                        |                       |                                |                  |                |              |            |           |          |                   |                                                | STA    | TION 1                              | No. 70: B                           | URNS                                | LAKE      |
| 1   | Sept. 1/50         | 136        |                        |                       | 59                             | (9.2)            | (4.0)          | 7·5<br>(7·5) | 35<br>(60) | 3         |          |                   | 108                                            | 101    | 0-1375                              |                                     | 44-6                                | 14-1      |
|     |                    |            |                        |                       |                                |                  |                |              |            |           |          |                   |                                                |        | STAT                                | ION No                              | . 71: WI                            | LLOW      |
| 2   | Aug. 23/50         | 133        |                        |                       | 66                             | (9.2)            | (1.5)          | 9-7 (7-9)    | 25<br>(25) | 6 (10)    | 7.6      | 5-2               | 104                                            | 72.0   | 0.098                               |                                     | 17-8                                | 15.0      |
|     |                    |            |                        |                       |                                |                  |                |              |            |           |          |                   |                                                |        | I                                   | DATA S                              | UPPLIE                              | D BY      |
| 3   | Nov. 1944—The      | ompson R   | iver at Aschroft       | , B.C                 |                                |                  |                | 7-7          |            |           |          |                   |                                                | 78-7   |                                     |                                     |                                     |           |
| 4   | Aug. 1940-Mou      | ntain stre | eam near Chase,        | B.C                   |                                |                  |                | 8.0          |            |           |          |                   |                                                | 371.8  |                                     |                                     |                                     |           |
| 5   | Nov. 1944—Coq      | luitlam H  | liver near Port (      | Coquitlam, B.C        | J                              |                  |                | 7.2          |            |           |          |                   |                                                | 42.9   |                                     |                                     |                                     |           |
| 6   | Nov. 1944—Lyt      | ton Creel  | k at Lytton, B.C       | 3                     |                                |                  |                | 6.9          |            |           |          |                   |                                                | 121.6  |                                     |                                     |                                     |           |
| 7   | Nov. 1944—Hal      | lecks Cre  | ek at North Be         | nd, B.C               |                                |                  |                | 3.0          |            |           |          |                   |                                                | 78.7   |                                     |                                     |                                     |           |
| 8   | Nov. 1944—Mur      | rray and   | Waterfall Creek        | s near Spences 1      | Bridge,                        | В.С              |                | 8-4          |            |           |          |                   |                                                | 200-2  |                                     |                                     |                                     |           |

#### TABLE II—Concluded

# Chemical Analyses of Surface Waters in the Fraser River Drainage Basin—Concluded

|                                         | Alk    | alis      | Ire<br>(F | on<br>'e) |                    |          |                    |          |       |                     |                    | Sil<br>(Si       | lica<br>O <sub>2</sub> ) | Hardi<br>Cat           | ness as |                        |                 | l ex             |     |
|-----------------------------------------|--------|-----------|-----------|-----------|--------------------|----------|--------------------|----------|-------|---------------------|--------------------|------------------|--------------------------|------------------------|---------|------------------------|-----------------|------------------|-----|
| Magnesium                               | Sodium | Potassium | Totale    | Dissolved | Sulphate           | Chloride | Nitrate            | Fluoride | Boron | Bicarbonate         | Carbonate          | Gravi-<br>metric | Colori-<br>metric        | Non-<br>car-<br>bonate | Totalb  | Sum of<br>Constituents | Per cent sodium | Saturation index |     |
| (Mg)                                    | (Na)   | (K)       |           |           | (SO <sub>4</sub> ) | (Cl)     | (NO <sub>3</sub> ) | (F)      | (B)   | (HCO <sub>3</sub> ) | (CO <sub>3</sub> ) |                  |                          |                        |         |                        |                 | + 1              | _   |
| NEAR                                    | BURN   | S LAKI    |           | 0.30      | 1.6                | 0        | 2.7                |          |       | 58.6                | 0                  | 9.4              | 7.2                      | 0                      | 49.6    | 70.3                   | 14.7            |                  | 1.1 |
| 0.0                                     | 4.1    | 1.0       |           | 0-30      | 1.0                | · ·      | 2.1                |          |       | (51.0)              |                    | 8.4              | 1.2                      | U                      | 49.6    | 70.3                   | 14.7            |                  | 1.1 |
| 2·7                                     | 1.8    | O·4       | RIVER     | 0-11      | 6-7                | 0        | 0.4                |          |       | 61-0                | 0                  |                  | 7.2                      | 0                      | 48.5    | 64.3                   | 7-4             |                  | 0.9 |
| CANA                                    | DIAN I | PACIFIC   | RAILW     | VAYS      |                    |          | 1                  | 1        |       | 1                   | 1                  | 1                | 1                        |                        | 1       | 1                      | 1               | 1 .              |     |
|                                         |        |           |           |           | 8-7                | 5.2      |                    |          |       | 48-8                | 0                  | 1.4              |                          | 2.9                    | 42.9    |                        |                 |                  |     |
|                                         |        |           |           |           | 8.7                | 2.6      |                    |          |       | 139-6               | 0                  | 14.3             |                          | 0                      | 114.4   |                        |                 |                  |     |
|                                         |        |           |           |           | 5.8                | 0.9      |                    |          |       | 17-4                | 0                  | 10.0             |                          | 2.9                    | 17.2    |                        |                 |                  |     |
|                                         |        |           |           |           | 2.9                | 7.8      |                    |          |       | 87-2                | 0                  | 10.0             |                          | 5-7                    | 77-2    |                        |                 |                  |     |
| • • • • • • • • • • • • • • • • • • • • |        |           |           |           | 7.7                | 5.2      |                    |          |       | 61-1                | 0                  | 10.0             |                          | 0                      | 42-9    |                        |                 |                  |     |
|                                         |        |           |           |           | 9.7                | 3.5      |                    |          |       | 189-8               | 5.7                | 10.0             |                          | 0                      | 160.2   |                        |                 |                  |     |

#### PART II

### MUNICIPAL WATERS WITHIN THE FRASER RIVER DRAINAGE BASIN

When in 1949 survey studies were being carried out in the Columbia River basin a number of municipal water supplies within the lower Fraser River drainage basin were also studied. The remainder were sampled and field-tested in 1950 when almost the entire accessible portion of the basin was travelled with the mobile laboratory. At that time information on the operation of many of the civic water systems was also obtained. Information on others was obtained by co-operation of municipal officials or taken from the Regional Industrial Indices of British Columbia.

Much of the available information on all these systems is condensed below under the headings: population, ownership, source, treatment, storage capacity, water consumption and industrial use.

The chemical quality of the civic water sampled is shown in Table III. Sum of constituents and saturation index have also been reported for each water in Table III.

Appendix B lists the incorporated municipalities and other communities which are known to have organized water systems; their locations are shown in Figure 2 (in pocket) in such a manner that the water hardness of the supplies, when known, is also classified.

Table IV is a summary of the information available regarding basin area studied, total basin population and the population served with water by organized systems.

In Table V the available information on waterworks systems in the basin, such as source, treatment and hardness of the water supply is summarized.

# DESCRIPTION OF MUNICIPAL WATERWORKS SYSTEMS GREATER VANCOUVER WATER DISTRICT

Within the Fraser River delta, in an area about 20 miles wide and extending roughly 60 to 70 miles upriver, a number of incorporated cities and district municipalities have formed a Water District governed by a Board on which each member community is represented. This District Board, which includes waterworks engineers and other trained personnel, owns and operates the supply of water to the entire district but most municipalities own and operate their own distribution system. Some of the municipalities are also served by other systems and from other water sources.

In 1948, metropolitan Vancouver was considered to include 5 cities, 10 district municipalities\* and 2 unorganized districts totalling 563 square miles in area. By 1950 it was expected that 370 square miles of this area would be served by the Greater Vancouver Water District<sup>2</sup>.

This Water District is still expanding as population and industrial development in the delta area grows and other sources of supply become inadequate. In 1947, population served was estimated at 494,100 and in 1949 the Water District reported a population of 610,817. Comparison of the latter figure with population figures based on the 1951 census and with other data indicates close agreement in all cases except Vancouver which is some 77,840 lower by census calculation. Assuming the figures based on the ninth census to be more correct, then about 529,000 persons were served by this District in 1950-51. It is however difficult to determine exact figures owing to rapid expansion within the area and the fact that several municipalities are served with water by other sources than those of the Water District.

The sources of supply for the Water District are from rivers and lakes in the coastal range lying north of the Fraser River and Burrard Inlet. This protected catchment area of, eventually, some 225.7 square miles is either owned or leased by the District Board.

The main sources are:

- 1. Coquitlam River or Lake—capacity 400 m.g.d.
- 2. Seymour River with headwaters in Loch Lomond and Burwell Lake—capacity 220 m.g.d.
- 3. Capilano River with headwaters in Palisades Lake—capacity 200 m.g.d.

These waters flow by gravity to the various systems with no treatment, although chlorination is available on all supplies, if considered necessary owing to work being carried out in the watersheds.

<sup>\*</sup> Incorporated district municipalities in British Columbia are somewhat similar to townships in Eastern Canada and may have within their jurisdiction several relatively large communities.

<sup>1</sup> Regional Index of British Columbia—Regional Development Division, Department of Trade and Industry of British Columbia, 1949 edition and 1952 edition.

<sup>&</sup>lt;sup>2</sup> Water Supply to Rural Areas around Vancouver—W. H. Powell, Water and Sewage, (now Municipal Utilities) June, 1948, p. 21.

Water consumption in 1948 (371 day-period) by the Water District according to the administrative Board was as follows:

| Sor | ıth  | of  | Ru  | rrard   | In   | lot . |
|-----|------|-----|-----|---------|------|-------|
| 200 | 4011 | ()I | 100 | 1121111 | 1111 | певы  |

| From Capilano RiverFrom Seymour River                                    | 10,236 · 670 million gallons 7,844 · 455 " " |                     |           |        |
|--------------------------------------------------------------------------|----------------------------------------------|---------------------|-----------|--------|
| North of Burrard Inlet: From Capilano and Seymour Rivers Coquitlam River | 405·731 m.g.<br>2,066·877 m.g.               | 18,081 · 125 n      | nillion g | allons |
| -                                                                        |                                              | $2,\!472\cdot\!608$ | 66        | "      |
| Total                                                                    |                                              | 20,553.733          | 66        | 66     |

or a daily average of 55.401 m.g.

The north shore area¹ which is included in that portion north of Burrard Inlet is only partially served by the Greater Vancouver Water District. The portion served used in 1948, 476.858 m.g. or 1.285 m.g.d. Except for this north shore portion there is a per capita consumption of 105 gallons within the Water District. Presuming a similar per capita consumption in the north shore area then about 12,240 persons are served within this area.

Storage capacity for the Water District is considerable because the headwaters of the systems are protected lakes and rainfall on the watershed is heavy. (See Vancouver, B.C. page 70.)

Industrial use within the Water District is varied and quite high. (See below under individual communities served.)

Municipalities served in all or part by the Greater Vancouver Water District in 1950 were Vancouver, New Westminster, Port Coquitlam, Port Moody and North Vancouver, District Municipalities of North Vancouver, West Vancouver, Coquitlam, Maple Ridge, Pitt Meadows, Burnaby, Delta, Surrey, Fraser Mills and Richmond. Two unorganized areas were also served.

<sup>1</sup> Presumably the portions of North Vancouver City, North Vancouver District Municipality and West Vancouver District Municipality served.

### (Fraser River Drainage Basin)

| Municipality                                                                                                                                                                                                          | ABBOT<br>(Incorporated                                | SFORD—1<br>l as a village |                  |                                             | ISTRON (<br>orporated a |          |                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|---------------------------|------------------|---------------------------------------------|-------------------------|----------|--------------------------------|
|                                                                                                                                                                                                                       | 1941*                                                 | 1949                      | 1951*            | 1941                                        | 1949                    | 1950     | 1951                           |
| Population served: In municipality Outside municipality                                                                                                                                                               | 562                                                   | 800<br>380                | 785              | 977                                         | 1,100<br>500            | 1,100    | 1,126                          |
| Total                                                                                                                                                                                                                 |                                                       | 1,180                     |                  |                                             | 1,600                   |          |                                |
| Date(s) of survey.<br>Ownership.                                                                                                                                                                                      | August 24, 1950<br>Municipally owned                  | and operate               | i                | July 28, 1949; I<br>Municipally ov          |                         |          |                                |
| Source of supply.  Treatment                                                                                                                                                                                          | Springs nearby No treatment; water lecting reservoirs | er is pumped              | direct from col- | Davis (Fortun<br>No treatment<br>by gravity | ; water fro             | m damme  | ed creek flows                 |
| Storage capacity (thousand gallons)                                                                                                                                                                                   | Reservoirs                                            |                           |                  | 1 reservoir                                 |                         |          |                                |
| Consumption (average in m.g.d.)                                                                                                                                                                                       | 1 tank<br>No record                                   |                           |                  | 1 reservoir (19<br>194                      | 8                       | 19       | 949                            |
|                                                                                                                                                                                                                       |                                                       |                           |                  | 0.48                                        | (est.)                  | (        | 0.48                           |
| Industrial use                                                                                                                                                                                                        | An agricultural and industrial user.                  | d shopping                | centre; no major | Fruit growing panies, a sav oxygen.         |                         |          | packing com-<br>of compressed  |
| Remarks                                                                                                                                                                                                               | *Populations accord<br>of Canada.                     | ling to eightl            | and ninth census |                                             | sin but civ             |          | olumbia River<br>is taken from |
|                                                                                                                                                                                                                       |                                                       |                           |                  |                                             |                         |          |                                |
|                                                                                                                                                                                                                       |                                                       |                           |                  |                                             |                         |          |                                |
|                                                                                                                                                                                                                       |                                                       |                           |                  |                                             |                         |          |                                |
| Municipality                                                                                                                                                                                                          |                                                       | idgepor                   |                  |                                             | BRIGH                   |          |                                |
| Municipality  Population served: In municipality Outside municipality                                                                                                                                                 | (Un                                                   | incorporated              | 1)               |                                             | (Unincorr               | oorated) |                                |
| Population served: In municipality Outside municipality                                                                                                                                                               | (Un                                                   | nincorporated             |                  |                                             | (Unincorp               | porated) |                                |
| Population served: In municipality. Outside municipality.  Total.                                                                                                                                                     | (Un                                                   | incorporated              | 1)               |                                             | (Unincorp               | porated) |                                |
| Population served: In municipality. Outside municipality.  Total.  Date(s) of survey. Ownership.                                                                                                                      | (Un                                                   | incorporated              |                  |                                             | (Unincorp               | porated) |                                |
| Population served: In municipality Outside municipality  Total  Date(s) of survey.                                                                                                                                    | (Un                                                   | incorporate               |                  |                                             | (Unincorp               | porated) |                                |
| Population served: In municipality. Outside municipality.  Total.  Date(s) of survey. Ownership. Source of supply.                                                                                                    | (Un                                                   | incorporate               | l)               |                                             | (Unincorp               | orated)  |                                |
| Population served: In municipality. Outside municipality.  Total.  Date(s) of survey. Ownership. Source of supply. Treatment.                                                                                         | (Un                                                   | incorporated              | l)               | trict Municipali                            | (Unincorp               | orated)  |                                |
| Population served: In municipality. Outside municipality.  Total.  Date(s) of survey. Ownership. Source of supply. Treatment.  Storage capacity (thousand gallons).                                                   | (Un                                                   | incorporate               | l)               | trict Municipali                            | (Unincorp               | orated)  |                                |
| Population served: In municipality. Outside municipality.  Total.  Date(s) of survey. Ownership. Source of supply. Treatment.  Storage capacity (thousand gallons).  Consumption (average in m.g.d.).                 | (Un                                                   | incorporate               | l)               | trict Municipali                            | (Unincorp               | orated)  |                                |
| Population served: In municipality. Outside municipality.  Total.  Date(s) of survey. Ownership. Source of supply. Treatment.  Storage capacity (thousand gallons). Consumption (average in m.g.d.).  Industrial use. | (Un                                                   | incorporate               | l)               | trict Municipali                            | (Unincorp               | orated)  |                                |
| Population served: In municipality. Outside municipality.  Total.  Date(s) of survey. Ownership. Source of supply. Treatment.  Storage capacity (thousand gallons). Consumption (average in m.g.d.).  Industrial use. | (Un                                                   | incorporate               | l)               | trict Municipali                            | (Unincorp               | orated)  |                                |
| Population served: In municipality. Outside municipality.  Total.  Date(s) of survey. Ownership. Source of supply. Treatment.  Storage capacity (thousand gallons). Consumption (average in m.g.d.).  Industrial use. | (Un                                                   | incorporate               | l)               | trict Municipali                            | (Unincorp               | orated)  |                                |
| Population served: In municipality. Outside municipality.  Total.  Date(s) of survey. Ownership. Source of supply. Treatment.  Storage capacity (thousand gallons). Consumption (average in m.g.d.).  Industrial use. | (Un                                                   | incorporate               | l)               | trict Municipali                            | (Unincorp               | orated)  |                                |
| Population served: In municipality. Outside municipality.  Total.  Date(s) of survey. Ownership. Source of supply. Treatment  Storage capacity (thousand gallons).  Consumption (average in m.g.d.).                  | (Un                                                   | incorporate               | l)               | trict Municipali                            | (Unincorp               | orated)  |                                |

# (Fraser River Drainage Basin)

| BEACH GROVE* (Unincorporated)                                                                                                                                                                                                                                                                                | BRALOR NE (Unincorporated)                                                                                                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1951                                                                                                                                                                                                                                                                                                         | 1951                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                              | 1,500                                                                                                                                                           |
| 400†                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                 |
| Beach Grove Water Board                                                                                                                                                                                                                                                                                      | April 20, 1951. Owned and operated by Bralorne Mines Ltd.                                                                                                       |
|                                                                                                                                                                                                                                                                                                              | Blackbird Creek, fed by mountain springs. No treatment; water flows by gravity to reservoirs and system.                                                        |
| No data                                                                                                                                                                                                                                                                                                      | 2 tanks100 total                                                                                                                                                |
| No data                                                                                                                                                                                                                                                                                                      | 1950                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                              | 0.020 (domestic)<br>(201 services)                                                                                                                              |
| No data                                                                                                                                                                                                                                                                                                      | No data; a gold mining community.                                                                                                                               |
| *Lies within Delta District Municipa'ity.<br>†Estimated from 100 services.                                                                                                                                                                                                                                   |                                                                                                                                                                 |
| BURNS LAKE—261 acres (Incorporated as a village, Dec. 1923)  1941 1949 1951                                                                                                                                                                                                                                  | BURNABY—24,788 acres (Incorporated as a District Municipality, Sept. 1892) 1941 1949 1951                                                                       |
| 910                                                                                                                                                                                                                                                                                                          | 30,328 58,376                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                              | 30,328 58,376                                                                                                                                                   |
| 000 ( )                                                                                                                                                                                                                                                                                                      | 48,000                                                                                                                                                          |
| September 1, 1950  Municipally owned and operated  Burns Lake  Chlorination (sodium hypochlorite); water is pumped from lake to reservoir and system.  Elevated tank  100  1949-50  0.025 (approx.)  Main industrial user is C.N.R.; also a distributing centre for cattle-raising and lumbering operations. | August 9, 1949.  Municipally owned and operated. Supplied by Greater Vancouver Water District. See Vancouver and Greater Vancouver Water District. 3 reservoirs |
|                                                                                                                                                                                                                                                                                                              | (Unincorporated)  1951                                                                                                                                          |

### (Fraser River Drainage Basin)

| Municipality                        | BURQUI'<br>(Unincorpo                                           |                       | CANO<br>(Unincorpo                                    |                                         |
|-------------------------------------|-----------------------------------------------------------------|-----------------------|-------------------------------------------------------|-----------------------------------------|
| Population served:                  |                                                                 |                       |                                                       |                                         |
| In municipalityOutside municipality |                                                                 |                       |                                                       |                                         |
| Total                               |                                                                 |                       |                                                       |                                         |
| Date(s) of survey                   |                                                                 |                       |                                                       |                                         |
| Source of supply                    |                                                                 |                       | Part of Canoe is served w<br>Arm District Municipalit |                                         |
|                                     |                                                                 |                       | See Salmon Arm and Sa<br>Municipality.                | almon Arm District                      |
| Treatment                           | A part of Coquitlam Distr                                       | ict Municipality      | Municipanty.                                          |                                         |
| Storage capacity (thousand gallons) |                                                                 |                       |                                                       |                                         |
| Consumption (average in m.g.d.)     |                                                                 |                       |                                                       |                                         |
| Industrial use                      |                                                                 |                       |                                                       |                                         |
| Remarks                             |                                                                 |                       |                                                       |                                         |
| Municipality                        | CLINT<br>(Unincorpo                                             |                       | CLOVERI<br>(Unincorpo                                 |                                         |
| Population served:                  | 1950                                                            | 1951                  | 1948                                                  | 1951                                    |
| In municipality                     |                                                                 |                       |                                                       | 1,100                                   |
| Outside municipality                |                                                                 |                       |                                                       |                                         |
| Total                               | 500 (est.)                                                      | 590 (est.)            | 900 (est.)                                            |                                         |
| Date(s) of surveyOwnership          | August 19, 1950<br>Municipally owned and ope<br>works District. |                       | Cloverdale Water Co., Ltd                             | • • • • • • • • • • • • • • • • • • • • |
| Source of supply                    | A mountain creek                                                |                       | Springs and artesian wells.                           |                                         |
| Treatment                           | No treatment; water flows                                       | by gravity to system. | No data. (presumably no to                            | reatment)                               |
| Storage capacity (thousand gallons) | No data                                                         |                       | No data                                               |                                         |
| Consumption (average in m.g.d.)     | No record (80 services)                                         |                       | No data                                               |                                         |
| Industrial use                      | No major industrial user                                        |                       | No data                                               |                                         |
| Remarks                             |                                                                 |                       | Cloverdale lies within the cipality.                  | Surrey District Muni-                   |
|                                     |                                                                 |                       |                                                       |                                         |

### (Fraser River Drainage Basin)

| (1)                                                            | CHASE (Unincorporated)                         |                                    |                                                                                                                                                                                                               | CHILLIWACK-1,040 acres<br>(Incorporated as a city, Feb. 1908)                                                                                                                                                                                                                                                      |                                      |                                                                                                                                             | CHILLIWHACK DISTRICT<br>MUNICIPALITY*—53,000 acres                                      |                                                         |  |
|----------------------------------------------------------------|------------------------------------------------|------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------|--|
| 1949                                                           | 1                                              | 1951                               | 1941                                                                                                                                                                                                          | 1949                                                                                                                                                                                                                                                                                                               | 1951                                 | 1941                                                                                                                                        | (Incorporated)<br>1949                                                                  | 1951                                                    |  |
|                                                                |                                                |                                    | 3,675                                                                                                                                                                                                         | 5,000<br>6,000*                                                                                                                                                                                                                                                                                                    | 5,663                                | 7,787                                                                                                                                       |                                                                                         | ****                                                    |  |
| 400*                                                           | -                                              | 700*                               |                                                                                                                                                                                                               | 11,000                                                                                                                                                                                                                                                                                                             |                                      |                                                                                                                                             | 6,000                                                                                   | 11,000                                                  |  |
| 1950                                                           |                                                |                                    | August 24, 1949.  Owned and operated by the Elk Creek Waterworks Co., Ltd., Chilliwack.  Elk, Dunville and Nevin Creeks, rising in hills nearby. Famihi and Lihumitson Creeks are also available if required. |                                                                                                                                                                                                                                                                                                                    |                                      | August 24, 1949                                                                                                                             |                                                                                         |                                                         |  |
| No data                                                        | No data                                        |                                    |                                                                                                                                                                                                               | Chlorination begun late in 1949; all three creeks are screened at intakes into small wooden reservoir and the water then flows by gravity to system. Major supply is Elk Creek (2 m.g.d.) Open reservoirs—125, 200 and 100; construction underway to increase reservoir capacity at intakes to 2 m.g. total.  1948 |                                      |                                                                                                                                             |                                                                                         |                                                         |  |
| No data                                                        |                                                |                                    | Main users are a ca<br>and a frozen food<br>tensive agricultu                                                                                                                                                 | l plant. Area:                                                                                                                                                                                                                                                                                                     | egetables, fruit) is a centre of ex- |                                                                                                                                             |                                                                                         |                                                         |  |
| *Estimated from                                                | number of servi                                | ces                                | *Chilliwhack Dist<br>† Includes pumpag                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                    |                                      |                                                                                                                                             | and Yarrow bu                                                                           | ale, Sardis, Ved<br>t not all serve<br>i in 1951—13,592 |  |
| COQUITLAM 1                                                    | DISTRICT MU -37,204 acres* (Incorporated) 1949 | INICIPALITY                        |                                                                                                                                                                                                               | SCENT BEA                                                                                                                                                                                                                                                                                                          |                                      | _                                                                                                                                           | TRICT MUN<br>-80,818 acres<br>rated, Novemb<br>1949                                     | er, 1879)<br>1951                                       |  |
| 7,949                                                          |                                                | 15,697                             |                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                    |                                      | 4,287                                                                                                                                       | *****                                                                                   | 6,700                                                   |  |
| 7,949                                                          |                                                | 13,031                             |                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                    |                                      |                                                                                                                                             | and the second                                                                          |                                                         |  |
|                                                                | 13,000                                         |                                    |                                                                                                                                                                                                               | 400*                                                                                                                                                                                                                                                                                                               |                                      |                                                                                                                                             | 5,000                                                                                   |                                                         |  |
| 13,000                                                         |                                                |                                    | March, 1951<br>Privately owned a<br>Waterworks Ltd                                                                                                                                                            | nd operated by                                                                                                                                                                                                                                                                                                     | Crescent Beach                       | August 8, 1949 Delta Municipal Waterworks. North Waterworks. Beach Grove Water Tswassen Water Board. Springs and wells and from Greater Van |                                                                                         |                                                         |  |
|                                                                |                                                |                                    |                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                    |                                      | Tswassen Wate                                                                                                                               | er Board.<br>Is and from Gi                                                             |                                                         |  |
| Supplied by Gre                                                |                                                |                                    |                                                                                                                                                                                                               | 8                                                                                                                                                                                                                                                                                                                  |                                      | Springs and well                                                                                                                            | ls and from Gi                                                                          | eater Vancouve                                          |  |
| See Vancouver, E                                               | 3.C.`                                          |                                    | No treatment; w                                                                                                                                                                                               | ater is pumpe                                                                                                                                                                                                                                                                                                      | d from wells to                      | Springs and well<br>Water District<br>See Vancouver<br>District, Beac<br>Reservoir                                                          | ls and from Grand Greater Vand Greater Vand Greater Vander                              | reater Vancouver Vancouver Water                        |  |
| See Vancouver, E                                               | 3.C.`                                          |                                    | No treatment; w reservoir and sy tank                                                                                                                                                                         | ater is pumpe<br>stem.                                                                                                                                                                                                                                                                                             | d from wells to                      | Springs and well<br>Water District<br>See Vancouver<br>District, Beac                                                                       | ls and from Grand Greater Vand Greater Vand Greater Vander                              | reater Vancouver Vancouver Water                        |  |
| See Vancouver, E                                               | 3.C`                                           |                                    | No treatment; w                                                                                                                                                                                               | ater is pumpe<br>stem.                                                                                                                                                                                                                                                                                             | d from wells to                      | Springs and well Water District See Vancouver District, Beac Reservoir I tank Main activity in ing and fishing                              | ls and from Gi<br>and Greater V<br>h Grove, etc.<br>1948-49<br>0.85<br>area is agricult | veater Vancouver Vancouver Wate                         |  |
| See Vancouver, E No data No data  * Includes comm lam and Esso | 3.C.`                                          | dville, Burquit-<br>cres served by | No treatment; w<br>reservoir and sy<br>1 tank<br>No record (390 ser<br>No major industri                                                                                                                      | ater is pumperstem.  vices) al user; tourismes within the                                                                                                                                                                                                                                                          | d from wells to                      | Springs and well Water District See Vancouver District, Beac Reservoir I tank.  Main activity in ing and fishing * Includes the             | ls and from Gi<br>and Greater V<br>h Grove, etc.<br>1948-49<br>0.85<br>area is agricult | vancouver Wat  200 18  ure, peat-proce                  |  |

### (Fraser River Drainage Basin)

| Municipality                                                                                                                                                                        | EAST<br>RICHMOND<br>(Unincorporated)                                                                                                       | EBURNE<br>(Unincorporated)                                       |                                                                                                | ERBY—655 a<br>rated as a city                                   |                                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------|
| Population served: In municipality                                                                                                                                                  |                                                                                                                                            |                                                                  | 1941<br><br>538                                                                                | 1949                                                            | 1951<br>888                                          |
| Total                                                                                                                                                                               |                                                                                                                                            |                                                                  |                                                                                                | 1,000                                                           |                                                      |
| Date(s) of survey                                                                                                                                                                   |                                                                                                                                            |                                                                  | August 4, 1950<br>Municipally owned                                                            |                                                                 | *************                                        |
| Source of supply                                                                                                                                                                    | A part of Richmond D<br>included in data given                                                                                             |                                                                  | Brash Creek and<br>Shuswap River.                                                              |                                                                 | deep) alongside                                      |
| Treatment  Storage capacity (thousand gallons)                                                                                                                                      |                                                                                                                                            |                                                                  | No treatment: B<br>after settling in<br>well water, said<br>filtered, is pum<br>Open reservoir | rash Creek fl<br>wooden tanks<br>d to be river<br>ped direct to | to system. The water naturally system.               |
| Consumption (average in m.g.d.)                                                                                                                                                     |                                                                                                                                            |                                                                  |                                                                                                | 1949-50                                                         |                                                      |
| Industrial use                                                                                                                                                                      |                                                                                                                                            |                                                                  | Main users are C.F                                                                             |                                                                 |                                                      |
| Municipality                                                                                                                                                                        | HAN<br>(Unincor                                                                                                                            |                                                                  | HARRIS                                                                                         | ON HOT SP                                                       | PRINCS                                               |
|                                                                                                                                                                                     | 1949                                                                                                                                       |                                                                  |                                                                                                | 1,678 acres<br>l as a village,                                  | May, 1949)                                           |
| Population served: In municipality Outside municipality                                                                                                                             | 1949                                                                                                                                       | 1951<br>2,700                                                    | 1949                                                                                           |                                                                 | May, 1949)  1951  477                                |
| In municipality                                                                                                                                                                     |                                                                                                                                            | 1951                                                             | 1949                                                                                           |                                                                 | May, 1949)                                           |
| In municipalityOutside municipality                                                                                                                                                 |                                                                                                                                            | 1951<br>2,700<br>                                                | 1949  470  August, 1950 No organized syst Privately owned                                      | l as a village,                                                 | May, 1949)  1951  477                                |
| In municipality. Outside municipality.  Total.  Date(s) of survey. Ownership.                                                                                                       | 2,300  December, 1949 Municipally owned and o                                                                                              | 2,700perated                                                     | 1949<br><br>470<br>August, 1950<br>No organized syst                                           | l as a village,                                                 | May, 1949)  1951  477                                |
| In municipality. Outside municipality.  Total.  Date(s) of survey. Ownership. Source of supply.                                                                                     | 2,300  December, 1949  Municipally owned and of Supplied by Greater Va  See Vancouver and Gr                                               | 2,700 perated ncouver Water District.                            | 1949 470 August, 1950 No organized syst Privately owned Harrison Lake.                         | l as a village,                                                 | May, 1949)  1951  477   ttain creek and              |
| In municipality. Outside municipality.  Total.  Date(s) of survey. Ownership. Source of supply.  Treatment.                                                                         | 2,300  December, 1949  Municipally owned and o Supplied by Greater Va  See Vancouver and Gr Board.                                         | 1951 2,700 perated ncouver Water District. eater Vancouver Water | 1949 470 August, 1950 No organized syst Privately owned Harrison Lake.                         | l as a village, em wells, moun                                  | May, 1949)  1951  477                                |
| In municipality. Outside municipality.  Total.  Date(s) of survey. Ownership. Source of supply.  Treatment.  Storage capacity (thousand gallons).                                   | 2,300  December, 1949  Municipally owned and or Supplied by Greater Va  See Vancouver and Gr Board.                                        | 1951 2,700 perated ncouver Water District. eater Vancouver Water | August, 1950 No organized syst Privately owned Harrison Lake.                                  | l as a village, em wells, moun                                  | May, 1949)  1951  477                                |
| In municipality. Outside municipality.  Total.  Date(s) of survey. Ownership. Source of supply.  Treatment.  Storage capacity (thousand gallons).  Consumption (average in m.g.d.). | 2,300  December, 1949 Municipally owned and o Supplied by Greater Va See Vancouver and Gr Board.  None  Mill work (sash and do industries. | perated neouver Water District. eater Vancouver Water            | August, 1950 No organized syst Privately owned Harrison Lake.                                  | emwells, moun                                                   | May, 1949)  1951  477   attain creek and are springs |

### (Fraser River Drainage Basin)

| ESSONDALE<br>(Unincorporated)                                                  |                                |                                  | FRASER MILLS DISTRICT MUNICIPALITY—390 acres (Incorporated)                                                                        |                                         |                  | GOLD BRIDGE<br>(Unincorporated)                                                                                                                   |                             |                             |
|--------------------------------------------------------------------------------|--------------------------------|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-----------------------------|
| 1949                                                                           | 19                             | 51                               | 1941                                                                                                                               | 1949                                    | 1951             | 1949                                                                                                                                              |                             | 1951                        |
|                                                                                |                                |                                  | 552                                                                                                                                | • • • • • • • • • • • • • • • • • • • • | 370              | 140 (6                                                                                                                                            | est.)                       | 150 (est.)                  |
|                                                                                |                                |                                  |                                                                                                                                    | • • • • • •                             |                  | ······`                                                                                                                                           |                             |                             |
| 3,395                                                                          |                                |                                  |                                                                                                                                    | 450 (est                                | .)               |                                                                                                                                                   |                             |                             |
| December, 1949                                                                 |                                |                                  | December, 1949 Privately owned and operated by the Canadian Western Lumber Co., Ltd. Supplied by Greater Vancouver Water District. |                                         |                  | 1948–49.<br>Gold Bridge Waterworks District.<br>No data.                                                                                          |                             |                             |
| Coquitlam District M                                                           |                                |                                  | See Vancouver as<br>District.                                                                                                      | d Greater v                             | ancouver water   | No data.                                                                                                                                          |                             |                             |
| None<br>No data                                                                |                                |                                  | No data<br>No record: include<br>Vancouver Water                                                                                   | led in data g                           | iven for Greater | No data.<br>No record (38 serv                                                                                                                    | rices).                     |                             |
| No data<br>Essondale is a provi<br>Coquitlam District<br>direct from Greater V | incial institu<br>Municipality | ution within<br>but it buys      | Lumbering                                                                                                                          |                                         |                  | No data.                                                                                                                                          |                             |                             |
| HOPE-<br>(Incorporated a                                                       | -1,200 acres<br>as a village,  |                                  | (Unincorporated)                                                                                                                   |                                         |                  | KAMLOOPS—912 acres<br>(Incorporated as a city, July, 1893)                                                                                        |                             |                             |
| 1941 1                                                                         | 950                            | 1951                             | 1949                                                                                                                               |                                         | 1951             | 1941                                                                                                                                              | 1949                        | 1951                        |
| 515                                                                            |                                | 1,668                            |                                                                                                                                    |                                         |                  | 5,959                                                                                                                                             |                             | 8,099                       |
|                                                                                |                                |                                  |                                                                                                                                    |                                         |                  |                                                                                                                                                   |                             |                             |
|                                                                                | 3,000                          |                                  | 350 (                                                                                                                              | est.)                                   | 400 (est.)       | *****                                                                                                                                             | 10,500*                     |                             |
| August 17, 1950<br>Municipally owned and<br>Schkam, Pringle and C              | operated                       |                                  | Owned and operated by Imperial Oil Ltd Municipally owned and operated                                                              |                                         |                  | River.                                                                                                                                            |                             |                             |
| Schkam Creek. No treatment; waters from Schkam Creek system.                   | flow by gr<br>to reservoir     | avity finally<br>in hills and to | No data                                                                                                                            |                                         |                  | voirs and syste                                                                                                                                   | em.                         |                             |
| Open natural reservoir.                                                        |                                | 500                              | No data                                                                                                                            |                                         |                  | . 1 closed reservoir                                                                                                                              |                             |                             |
| No record (480 services                                                        | )                              |                                  |                                                                                                                                    | 1949                                    |                  |                                                                                                                                                   | 1948-49                     |                             |
| Two sawmills; C.P.R. has its own water system.                                 |                                |                                  | No data (93 services) Oil refining and oil storage                                                                                 |                                         |                  | 1.5† (Maximum—4.0)  Irrigation (hop-growing, etc.) may account f 50% of total. C.P.R. shops are a large use 3 canneries, a brewery and lumbering. |                             |                             |
| Two sawmills; C.P.R.                                                           | has its own v                  | vater system.                    | Oil refining and of                                                                                                                | l storage                               |                  | 50% of total.                                                                                                                                     | C.P.R. shops rewery and lui | are a large use<br>nbering. |

### (Fraser River Drainage Basin)

| Municipality                                 | KENNEDY<br>(Unincorporated)                                                  | LADNER<br>(Unincorporated)      |                                                                              | OOET—152 acre<br>ed as a village, De                                                  |                                               |
|----------------------------------------------|------------------------------------------------------------------------------|---------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------------|
|                                              | (Unideorporated)                                                             |                                 |                                                                              |                                                                                       |                                               |
| Population served:                           |                                                                              | 1951                            | 1941                                                                         | 1950                                                                                  | 1951                                          |
| In municipality. Outside municipality.       |                                                                              | 2,000                           |                                                                              |                                                                                       | 469                                           |
|                                              |                                                                              |                                 |                                                                              | 350*                                                                                  |                                               |
| Total                                        |                                                                              | *****                           |                                                                              |                                                                                       |                                               |
| Date(s) of survey Ownership Source of supply |                                                                              |                                 | August 18, 1950 Privately owned a works District. Springs and creek          | and operated by L                                                                     |                                               |
|                                              | Included in data on Delta                                                    |                                 | No treatment; sp                                                             |                                                                                       |                                               |
| Treatment                                    |                                                                              |                                 | flow to concrete<br>Lillooet Distric                                         | e reservoir then<br>et Waterworks sy<br>ing basin at the<br>pir.                      | by gravity to<br>stem. There<br>intake to the |
| Industrial use                               |                                                                              |                                 |                                                                              | No record<br>(95 services)<br>main use. A car<br>nd Cayoos Creek<br>nt on the Pacific | Lillooet is                                   |
| Remarks                                      |                                                                              |                                 | * Total population<br>† Also one area o<br>while another a<br>mountain creek | f town has no org<br>rea is served by g                                               | anized supply                                 |
| Municipality                                 | MATSQUI DISTRIC<br>54,165<br>(Incorpo                                        | acres                           |                                                                              | BRIDE—240 acreated as a village                                                       |                                               |
|                                              | 1941                                                                         | 1951                            | 1941                                                                         | 1949                                                                                  | 1951                                          |
| Population served: In municipality           | 5,601*                                                                       | 10,308*                         | 237                                                                          | 435 (est.)                                                                            | 490                                           |
| Outside municipality                         | *****                                                                        |                                 |                                                                              |                                                                                       |                                               |
| Total                                        |                                                                              |                                 |                                                                              |                                                                                       |                                               |
| Date(s) of survey                            | April 6, 1951 (by question<br>Privately owned and oper<br>Co., Ltd.          | naire)<br>ated by Matsqui Water | 1951<br>Owned and opera                                                      |                                                                                       |                                               |
| Source of supply                             | A mountain lake                                                              |                                 | Dominion Creek.                                                              |                                                                                       |                                               |
| Treatment                                    | No treatment; water ent                                                      | ers system by gravity.          | No data                                                                      |                                                                                       | • • • • • • • • • • • • • • • • • • • •       |
| Storage capacity (thousand gallons)          | No data                                                                      |                                 | No data                                                                      |                                                                                       |                                               |
| Consumption (average in m.g.d.)              | No data                                                                      |                                 | No data (148 serv                                                            | vices)                                                                                |                                               |
| Industrial use                               | No major industrial user.                                                    |                                 | A divisional point centre.                                                   | on the C.N.R. at                                                                      | nd a lumberin                                 |
| Remarks                                      | * Not all served; system<br>farms in area are serv<br>mated population serve | ed (200 services)esti-          |                                                                              |                                                                                       |                                               |

# (Fraser River Drainage Basin)

| LYTTON (Incorporated as a village)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                  | MAILLARDVILLE<br>(Unincorporated)                                                                                                                                                                                     |                                                                                                                                                                                                               |                                         | MAPLE RIDGE DISTRICT MUNICIPALITY—66,000 acres (Incorporated)                           |                                                                            |                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------|
| 1941                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1950                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1951                                                                                                                             |                                                                                                                                                                                                                       |                                                                                                                                                                                                               |                                         | 1941                                                                                    | (Incorporated)<br>1949                                                     | 1951               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | *****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 312                                                                                                                              |                                                                                                                                                                                                                       | • • • • • • • • • • • • • • • • • • • •                                                                                                                                                                       |                                         | 6,476                                                                                   |                                                                            |                    |
| •••••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | *****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                  | •••••                                                                                                                                                                                                                 |                                                                                                                                                                                                               | • • • • • • • • • • • • • • • • • • • • | 0,410                                                                                   |                                                                            | 9,891              |
| *****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 600*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                  |                                                                                                                                                                                                                       |                                                                                                                                                                                                               |                                         |                                                                                         | 10,000*                                                                    |                    |
| August 9, 1950<br>Lytton Water St                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ipply Company†                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | • • • • • • • • • • • • • • • • • • • •                                                                                          |                                                                                                                                                                                                                       |                                                                                                                                                                                                               | • • • • • • • • • • • • • • • • • • • • | December, 1949.                                                                         |                                                                            |                    |
| Lytton Creek                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | • • • • • • • • • • • • • • • • • • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | • • • • • • • • • • • • • • • • • • • •                                                                                          | A part of and inclu                                                                                                                                                                                                   | ided in data gi                                                                                                                                                                                               |                                         |                                                                                         |                                                                            |                    |
| No treatment; v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | vater flows by g<br>ank in nearby hi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ravity direct to                                                                                                                 | lam District Mu                                                                                                                                                                                                       | nicipality.                                                                                                                                                                                                   | • • • • • • • • • • • • • • • • • • • • | See Vancouver<br>District.                                                              |                                                                            |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                  |                                                                                                                                                                                                                       |                                                                                                                                                                                                               |                                         |                                                                                         |                                                                            |                    |
| 1 tank<br>No record (100 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ervices)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | • • • • • • • • • • • • • • • • • • • •                                                                                          |                                                                                                                                                                                                                       |                                                                                                                                                                                                               |                                         | None. 1949                                                                              |                                                                            | 1950               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                  |                                                                                                                                                                                                                       |                                                                                                                                                                                                               |                                         | 0.46                                                                                    |                                                                            | 0.55               |
| C.P.R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | • • • • • • • • • • • • • • • • • • • •                                                                                          |                                                                                                                                                                                                                       |                                                                                                                                                                                                               |                                         |                                                                                         | in activities in d<br>oultry and fur far                                   | istrict are smal   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Il corred                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                  |                                                                                                                                                                                                                       |                                                                                                                                                                                                               |                                         | * Not all served                                                                        | d.                                                                         |                    |
| † C.P.R. mainte<br>in return for w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | tins the water reater rights for rights for reater rights for reater rights for reater rights for rights for reater rights for rights for reater rights for right | nains into town railway use.                                                                                                     |                                                                                                                                                                                                                       | N CITY-821                                                                                                                                                                                                    |                                         |                                                                                         | DISTRICT MU                                                                | NICIPALITY         |
| t C.P.R. maints<br>in return for w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ins the water rater rights for r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nains into town railway use.                                                                                                     |                                                                                                                                                                                                                       |                                                                                                                                                                                                               |                                         |                                                                                         | DISTRICT MU<br>73,000 acres<br>(Incorporated)<br>1949                      | NICIPALITY         |
| MEI (Incorpore                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | tins the water reater rights for reater rights for reater rights for reater 1,679 acted as a city, Ap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nains into town railway use.  cres oril, 1911)                                                                                   | (Incorporated                                                                                                                                                                                                         | N CITY—821<br>l as a village, I                                                                                                                                                                               | Dec. 1922)                              | MISSION I                                                                               | 73,000 acres<br>(Incorporated)<br>1949                                     | 1951               |
| C.P.R. maints<br>in return for w<br>MEI<br>(Incorpora                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | kins the water relater rights for relater rights for related as a city, Aparted as a city | nains into town railway use.  cres oril, 1911)                                                                                   | (Incorporated                                                                                                                                                                                                         | N CITY—821<br>l as a village, I                                                                                                                                                                               | Dec. 1922)                              | MISSION I                                                                               | 73,000 acres<br>(Incorporated)                                             |                    |
| C.P.R. maints in return for w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RRITT—1,679 atted as a city, Ap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mains into town railway use.  cres pril, 1911)  1951  1,251                                                                      | (Incorporated 1941 1,957                                                                                                                                                                                              | N CITY—821<br>l as a village, I<br>1949<br>3,090<br>810*                                                                                                                                                      | 1951<br>2,668                           | MISSION I                                                                               | 73,000 acres (Incorporated) 1949                                           | 1951<br>4,449*     |
| C.P.R. maints in return for w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RRITT—1,679 acted as a city, Ap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nains into town railway use.  cres oril, 1911)  1951  1,251                                                                      | (Incorporated 1941 1,957                                                                                                                                                                                              | N CITY—821<br>las a village, I<br>1949<br>3,090<br>810*<br>3,900                                                                                                                                              | 1951<br>2,668                           | MISSION I  1941 2,718                                                                   | 73,000 acres<br>(Incorporated)<br>1949                                     | 1951               |
| C.P.R. mainter in return for w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RITT—1,679 atted as a city, Ap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | mains into town railway use.  cres pril, 1911)  1951  1,251                                                                      | (Incorporated 1941 1,957                                                                                                                                                                                              | N CITY—821<br>l as a village, I<br>1949<br>3,090<br>810*                                                                                                                                                      | 1951<br>2,668                           | MISSION I                                                                               | 73,000 acres (Incorporated) 1949 810†                                      | 1951<br>4,449*     |
| The following states of the st | RRITT—1,679 acted as a city, Ap  1949  1,500*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nains into town railway use.  cres oril, 1911)  1951  1,251   orite solution); tion gallery and                                  | (Incorporated  1941  1,957   August 23, 1949 Municipally owned  Cannell Lake, Ced dale Creek; print No treatment; was sources to system the higher portio                                                             | N CITY—821 las a village, I  1949 3,090 810* 3,900 and operated ar Valley spri ippally Cannell ter flows by g The springs a                                                                                   | Dec. 1922)  1951  2,668                 | MISSION I  1941 2,718 August 23, 1949.  A portion of Dist Waterworks. See Mission City. | 73,000 acres (Incorporated)  1949  810†  trict is supplied t               | 1951<br>4,449*     |
| MEI (Incorpore 1941 940                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RRITT—1,679 atted as a city, Ap  1,500*  and operated.  odium hypochladerground filtra to reservoir and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nains into town railway use.  cres cres oril, 1911)  1951 1,251  orite solution); tion gallery and d system.                     | (Incorporated  1941  1,957   August 23, 1949  Municipally owned  Cannell Lake, Ced dale Creek; prin No treatment; way sources to system                                                                               | N CITY—821 las a village, I  1949 3,090 810* 3,900 and operated ar Valley spri sipally Cannell ter flows by g The springs in of town. springs in at creek 22,324,000                                          | Dec. 1922)  1951 2,668                  | MISSION I  1941 2,718 August 23, 1949.  A portion of Dist Waterworks.                   | 73,000 acres (Incorporated)  1949   810†  trict is supplied t              | 1951<br>4,449*     |
| Tuly 29, 1949  July 29, 1949  Municipally owner  Coldwater River  Chlorination (see water enters unis then pumped                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RRITT—1,679 atted as a city, Ap  1,500*  and operated.  deground filtra to reservoir an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nains into town railway use.  cres cres oril, 1911)  1951 1,251  orite solution); tion gallery and d system.                     | (Incorporated  1941  1,957   August 23, 1949  Municipally owned  Cannell Lake, Ced dale Creek; princ No treatment; war sources to system the higher portio Open reservoir at Open dam reserv.                         | N CITY—821 las a village, I  1949 3,090 810* 3,900 and operated ar Valley spri ipially Cannell er flows by g The springs a n of town. springs in a torek                                                      | Dec. 1922)  1951 2,668                  | MISSION I  1941 2,718 August 23, 1949.  A portion of Dist Waterworks. See Mission City. | 73,000 acres (Incorporated) 1949                                           | 1951<br>4,449*     |
| Tuly 29, 1949  July 29, 1949  Municipally owner  Coldwater River  Chlorination (see water enters unis then pumped                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RRITT—1,679 atted as a city, Ap  1,500*  and operated.  odium hypochladerground filtra to reservoir and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nains into town railway use.  cres cres oril, 1911)  1951 1,251  orite solution); tion gallery and d system.                     | August 23, 1949  August 23, 1949  Municipally owned  Cannell Lake, Ced dale Creek; prine No treatment; wa sources to system the higher portio Open reservoir at Open dam reserv. Cannell Lake                         | N CITY—821 las a village, I  1949 3,090 810* 3,900 and operated ar Valley spri sipally Cannell ter flows by g The springs in of town. springs in at creek 22,324,000                                          | 1951 2,668                              | MISSION I  1941 2,718 August 23, 1949.  A portion of Dist Waterworks. See Mission City. | 73,000 acres (Incorporated)  1949   810†  trict is supplied t              | 1951<br>4,449*     |
| MEI (Incorpors 1941 940                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RRITT—1,679 acted as a city, April 1,500*  and operated.  dium hypochle derground filtra to reservoir and to reservoir and 1948  1948  0.25 (est.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nains into town railway use.  cres oril, 1911)  1951  1,251   prite solution); tion gallery and d system.  250  raising and lum- | August 23, 1949  August 23, 1949  Municipally owned  Cannell Lake, Ced dale Creek; prin No treatment; was sources to system the higher portio Open reservoir at Open dam reserv. Cannell Lake  In municipa Outside mu | N CITY—821 las a village, I  1949 3,090 810* 3,900 and operated ar Valley spri sipally Cannell ter flows by g The springs of town. springs bir at creek 22,324,000 1948 lity int retail and tenning, fruit at | 1951 2,668                              | MISSION I  1941 2,718 August 23, 1949.  A portion of Dist Waterworks. See Mission City. | 73,000 acres (Incorporated)  1949   810†  trict is supplied to 1948  0-103 | 1951<br>4,449*<br> |

### (Fraser River Drainage Basin)

| Municipality                                                                                                                                                                                                            | NEWTON STATION                                                                                                                                                                                                                                                                                                                                     |                                                                          | MINSTER-4,3                                      |                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------|------------------------------------|
|                                                                                                                                                                                                                         | (Unincorporated)                                                                                                                                                                                                                                                                                                                                   | (Incorporate                                                             | d as a city, Jul                                 | y, 1860)                           |
| 7                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                    | 1941                                                                     | 1949                                             | 1951                               |
| Population served: In municipality Outside municipality                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                    | 21,967                                                                   |                                                  | 27,789<br>850                      |
|                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                    |                                                                          | 34,000                                           | 28,639                             |
|                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                    | <br>December, 1949,                                                      |                                                  |                                    |
| Date(s) of survey                                                                                                                                                                                                       | A part of and included in data given for Surrey<br>District Municipality.                                                                                                                                                                                                                                                                          | Municipally owned<br>Supplied by the G<br>trict mostly from<br>lam Lake. | and operated<br>reater Vancouv<br>a Seymour Rive | er Water Diser and Coquit-         |
| Treatment                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                    | See Vancouver an<br>District.                                            | d Greater Van                                    | couver Water                       |
| Storage capacity (thousand gallons)                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                    | 1 reservoir<br>1 reservoir                                               |                                                  |                                    |
| Consumption (average in m.g.d.)                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                    |                                                                          | 1949<br>                                         |                                    |
| Industrial use                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                    | This is a distribution<br>River valley as                                | ng centre for product                            | ducts of Fraser<br>fied industries |
|                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                    | including salmon<br>ery manufacture                                      | a-canning, lumbe                                 | ering, machin-                     |
| Remarks                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                    |                                                                          |                                                  |                                    |
|                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                    |                                                                          |                                                  |                                    |
|                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                    |                                                                          |                                                  |                                    |
|                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                    |                                                                          |                                                  |                                    |
|                                                                                                                                                                                                                         | I                                                                                                                                                                                                                                                                                                                                                  | 1                                                                        |                                                  |                                    |
|                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                    | 1                                                                        |                                                  |                                    |
| Municipality                                                                                                                                                                                                            | PITT MEADOWS DISTRICT MUNICIPALITY—12,000 acres                                                                                                                                                                                                                                                                                                    |                                                                          | ORT MANN nincorporated)                          |                                    |
|                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                    |                                                                          |                                                  |                                    |
| Population served: In municipality                                                                                                                                                                                      | MUNICIPALITY—12,000 acres<br>(Incorporated)                                                                                                                                                                                                                                                                                                        |                                                                          | nincorporated)                                   |                                    |
| Population served:                                                                                                                                                                                                      | MUNICIPALITY—12,000 acres<br>(Incorporated)<br>1941 1949 1951                                                                                                                                                                                                                                                                                      | (U                                                                       | nincorporated)                                   |                                    |
| Population served: In municipality                                                                                                                                                                                      | MUNICIPALITY—12,000 acres (Incorporated)  1941 1949 1951  1,119 1,434                                                                                                                                                                                                                                                                              | (U                                                                       | nincorporated)                                   |                                    |
| Population served: In municipality. Outside municipality.  Total.  Date(s) of survey.                                                                                                                                   | MUNICIPALITY—12,000 acres (Incorporated)  1941 1949 1951  1,119                                                                                                                                                                                                                                                                                    | (U                                                                       | nincorporated)                                   |                                    |
| Population served: In municipality Outside municipality Total.                                                                                                                                                          | MUNICIPALITY—12,000 acres (Incorporated)  1941 1949 1951  1,119 1,434  840  1949-50.  Municipally owned and operated. Supplied by Greater Vancouver Water District,                                                                                                                                                                                | (U                                                                       | nincorporated)                                   |                                    |
| Population served: In municipality. Outside municipality.  Total.  Date(s) of survey. Ownership.                                                                                                                        | MUNICIPALITY                                                                                                                                                                                                                                                                                                                                       | (U                                                                       | nincorporated)                                   | district Munici-                   |
| Population served: In municipality. Outside municipality.  Total.  Date(s) of survey. Ownership. Source of supply.                                                                                                      | MUNICIPALITY—12,000 acres (Incorporated)  1941 1949 1951  1,119 1,434                                                                                                                                                                                                                                                                              | (U  Included in and populative.                                          | nincorporated)                                   | district Munici-                   |
| Population served: In municipality. Outside municipality.  Total.  Date(s) of survey. Ownership. Source of supply.                                                                                                      | MUNICIPALITY                                                                                                                                                                                                                                                                                                                                       | (U  Included in and populative.                                          | nincorporated)                                   | district Munici-                   |
| Population served: In municipality. Outside municipality.  Total.  Date(s) of survey. Ownership. Source of supply.                                                                                                      | MUNICIPALITY—12,000 acres (Incorporated)  1941 1949 1951  1,119 1,434  840  1949-50.  Municipally owned and operated. Supplied by Greater Vancouver Water District, mostly from Coquitlam Lake.  See Vancouver and Greater Vancouver Water District.                                                                                               | (U  Included in and populative.                                          | nincorporated)                                   | istrict Munici-                    |
| Population served: In municipality Outside municipality  Total  Date(s) of survey Ownership Source of supply.  Treatment                                                                                                | MUNICIPALITY—12,000 acres (Incorporated)  1941 1949 1951  1,119 1,434  840  1949-50.  Municipally owned and operated. Supplied by Greater Vancouver Water District, mostly from Coquitlam Lake.  See Vancouver and Greater Vancouver Water District.                                                                                               | Included in and pality.                                                  | nincorporated)                                   | district Munici-                   |
| Population served: In municipality Outside municipality  Total  Date(s) of survey. Ownership Source of supply.  Treatment  Storage capacity (thousand gallons).                                                         | MUNICIPALITY—12,000 acres (Incorporated)  1941 1949 1951  1,119 1,434  840  1949-50  Municipally owned and operated  Supplied by Greater Vancouver Water District, mostly from Coquitlam Lake.  See Vancouver and Greater Vancouver Water District.  None.                                                                                         | Included in and pality.                                                  | nincorporated)                                   | istrict Munici-                    |
| Population served: In municipality Outside municipality  Total  Date(s) of survey. Ownership Source of supply.  Treatment  Storage capacity (thousand gallons).  Consumption (average in m.g.d.)                        | MUNICIPALITY—12,000 acres (Incorporated)  1941 1949 1951  1,119 1,434  840  1949-50.  Municipally owned and operated. Supplied by Greater Vancouver Water District, mostly from Coquitlam Lake.  See Vancouver and Greater Vancouver Water District.  None.  1949 0.14  Area activity is primarily agriculture and lum-                            | Included in and pality.                                                  | nincorporated)                                   | ristriet Munici-                   |
| Population served: In municipality Outside municipality Total  Date(s) of survey Ownership Source of supply  Treatment  Storage capacity (thousand gallons) Consumption (average in m.g.d.).  Industrial use            | MUNICIPALITY—12,000 acres (Incorporated)  1941 1949 1951  1,119 1,434  840  1949-50.  Municipally owned and operated. Supplied by Greater Vancouver Water District, mostly from Coquitlam Lake.  See Vancouver and Greater Vancouver Water District.  None.  1949  0·14  Area activity is primarily agriculture and lumbering; some manufacturing. | Included in and pality.                                                  | nincorporated)                                   | ristriet Munici-                   |
| Population served: In municipality. Outside municipality.  Total.  Date(s) of survey. Ownership. Source of supply.  Treatment.  Storage capacity (thousand gallons).  Consumption (average in m.g.d.).  Industrial use. | MUNICIPALITY—12,000 acres (Incorporated)  1941 1949 1951  1,119 1,434  840  1949-50.  Municipally owned and operated. Supplied by Greater Vancouver Water District, mostly from Coquitlam Lake.  See Vancouver and Greater Vancouver Water District.  None.  1949  0·14  Area activity is primarily agriculture and lumbering; some manufacturing. | Included in and pality.                                                  | nincorporated)                                   | ristriet Munici-                   |

### (Fraser River Drainage Basin)

|                                                        | TH KAMLO                    | ops                                     | NORTHV                                                           | ANCOUVER                                          | —3,131 acres                                  | NORTH V                                                                                                                       | ANCOUVER                      | DISTRICT                             |
|--------------------------------------------------------|-----------------------------|-----------------------------------------|------------------------------------------------------------------|---------------------------------------------------|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-------------------------------|--------------------------------------|
|                                                        | Incorporated)               |                                         |                                                                  | d as a city, M                                    | larch, 1906)                                  | MUNIC                                                                                                                         | (Incorporated)                | ),818 acres†                         |
| 1941                                                   | 1949                        | 1951                                    | 1941                                                             | 1949                                              | 1951                                          | 1941                                                                                                                          | 1949                          | 1951                                 |
|                                                        | • • • • •                   | 1,979                                   | 8,914                                                            |                                                   | 15,687                                        | 5,931                                                                                                                         |                               | 14,469                               |
|                                                        |                             |                                         |                                                                  |                                                   |                                               |                                                                                                                               |                               |                                      |
| •••••                                                  | 2,000                       |                                         |                                                                  | 11,000                                            |                                               |                                                                                                                               | 11,000                        |                                      |
| July 29, 1949<br>Municipally owned<br>Supplied by Kamb | l and operated              |                                         | August 9, 1949 Municipally owned Lynn Creek, 4 m Vancouver Wate  | d and operated<br>iles distant; a<br>er District. | llso from Greater                             | Lake: supplied<br>Water District.                                                                                             | and Kilmer (<br>l also by Gr  | Creeks; Kennedy<br>eater Vancouver   |
| See Kamloops, B.                                       | C                           | *************************************** | Lynn Creek is use<br>See also Greater<br>Vancouver.<br>Rice Lake | r Vancouver W                                     | ater District and                             | No treatment exc<br>waters: waters<br>booster pumpin<br>No data                                                               | enter system l                | y gravity: some                      |
|                                                        |                             |                                         | 1948-49                                                          |                                                   | 1950                                          | 1949                                                                                                                          |                               | 1950                                 |
|                                                        |                             |                                         | 3.0<br>Fishing and luml<br>building industr                      |                                                   | 3·5<br>substantial ship<br>dustrialized area. | A highly industriction                                                                                                        | rialized area.                | 0.38<br>See North Van-               |
|                                                        |                             |                                         |                                                                  |                                                   |                                               | *Includes comm<br>Deep Cove, De<br>† 11,800 acres se<br>Water District.                                                       | ollarton and L<br>erved by Gr | ynn Creek.                           |
|                                                        | QUITLAM—<br>ed as a city, M |                                         |                                                                  | MOODY—2,9                                         |                                               |                                                                                                                               | GEORGE—1<br>ced as a city, M  |                                      |
| 1941                                                   | 1949                        | 1951                                    | 1941                                                             | 1949                                              | 1951                                          | 1941                                                                                                                          | 1950                          | 1951                                 |
| 1,539                                                  |                             | 3,232                                   | 1,512                                                            |                                                   | 2,246                                         | 2,027                                                                                                                         | 4,500*                        | 4,703                                |
|                                                        |                             |                                         |                                                                  |                                                   |                                               |                                                                                                                               |                               |                                      |
|                                                        | 2,500                       | •••••                                   |                                                                  | 2,500                                             |                                               |                                                                                                                               |                               |                                      |
| August 9, 1949 Municipally owned Supplied by Grea      | d and operated              |                                         | August 9, 1949<br>Municipally owned<br>Supplied by Grea          | d and operated                                    | 1                                             | August 24, 1950.<br>Municipally owne<br>Nechako River.                                                                        | d and operated                |                                      |
| See Vancouver and Greater Vancouver Water District.    |                             |                                         | See Vancouver and Greater Vancouver Water District.              |                                                   |                                               | well then pumped to reservoir on hill, or river water may be pumped direct. Standby source is gravel well, 20 ft. from river. |                               |                                      |
| None                                                   |                             |                                         | 1 reservoir                                                      |                                                   | 1,000                                         | 1 elevated tank<br>A 3 m.g. open r                                                                                            | eservoir is plan              | ned.                                 |
|                                                        | 1949                        |                                         |                                                                  | 1949                                              |                                               | as o saigi opon i                                                                                                             | 1949-50                       |                                      |
| Freight terminus manufacturing a                       | 0.50 (ar<br>of C.P.R.; lu   | mbering; rubber                         | Main activities a oil-refining.                                  | 0.75 (a)<br>are sawmilling                        | pprox.)<br>s, lumbering and                   | ting centre.                                                                                                                  | ace George is                 | y, and a roofing<br>a main distribu- |
| ••••••                                                 |                             |                                         | * Only about 1,98<br>couver Water D                              | 0 acres served<br>listrict.                       | by Greater Van-                               | * Total district                                                                                                              | population-10,                | 000.                                 |
|                                                        |                             |                                         |                                                                  |                                                   |                                               |                                                                                                                               |                               |                                      |

### (Fraser River Drainage Basin)

| Municipality                                                                          |                                                                                                 | COUVER—27,9<br>ated as a city, A                                                                            |                                                                                                              | VEDDER CROSSING<br>(Unincorporated)                    |
|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| Population served: In municipality. Outside municipality.  Total.  Date(s) of survey. | 1941<br>275, 353<br>                                                                            | 1949<br>421,471<br>1,200*<br>422,671†                                                                       | 1951<br>342,728<br>2,105*<br>344,833                                                                         | No data                                                |
| Ownership.                                                                            |                                                                                                 |                                                                                                             | L                                                                                                            | A part of Chilliwhack District Municipality.           |
| Source of supply                                                                      | trict from Ca<br>Coquitlam La                                                                   | pilano River, Se<br>ake. The city is                                                                        | ouver Water Dis-<br>symour Lake and<br>s supplied mainly                                                     | A portion of population including a federal            |
| Treatment                                                                             | Capilano Riv<br>after screenin<br>larly at dams<br>ond, Seymour<br>to system. (<br>gravity to v | water from behi<br>er at Palisades<br>g, by gravity t<br>at Burwell Lak<br>River water is<br>Coquitlam Lake | nd a dam on the Lake is piped, o system. Simie and Loch Lompiped by gravity is also piped by of Greater Van- | except for chlorination. See Table II, Station No. 22. |
| Storage capacity (thousand gallons)                                                   | Tank                                                                                            | Capilano River<br>Seymour River<br>e)                                                                       | 750<br>16,000 acre ft.                                                                                       |                                                        |
| Consumption (average in m.g.d.)                                                       | Total                                                                                           | 1948<br>————————————————————————————————————                                                                |                                                                                                              |                                                        |
| Industrial use                                                                        | many of the l<br>Chlorination av<br>* University En                                             | arger are outsid<br>ailable on all su<br>adowment Land                                                      | in this area; but<br>e the city proper.<br>pplies if required.<br>s.<br>Vancouver Water                      |                                                        |

### (Fraser River Drainage Basin)

| WALHACHIN<br>(Unincorporated) | WELLS<br>(Unincorporated)                                                                                            | WEST VANCOUVER DISTRICT<br>MUNICIPALITY—20,515 acres.*                                                  |
|-------------------------------|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| 1948                          | 1951                                                                                                                 | (Incorporated)<br>1941 1949 1951                                                                        |
|                               |                                                                                                                      | 7,669 13,990                                                                                            |
| •••••                         | ·····                                                                                                                |                                                                                                         |
| 60 (est.)                     | 1,000                                                                                                                | 11,000                                                                                                  |
| 1948-49                       | January, 1951. Privately owned, and operated by the Cariboo Gold Quartz Mining Co., Ltd.; (Wells Townsite Co., Ltd.) | August 9, 1949.<br>Municipally owned and operated.                                                      |
| No data                       | Mosquito Creek and Red Gulch Creek. Jack of Clubs Lake is used for fire protection if necessary.                     | Supplied from Greater Vancouver Water District. Only partly served.                                     |
| No data                       | No treatment; creek waters enter reservoirs and system by gravity.                                                   | See Vancouver and Greater Vancouver Water District.                                                     |
| No data                       | 2 tanks in town, each                                                                                                | 2 tanks, each 100 Eagle Lake 33,000                                                                     |
| No data (13 services)         | 1950                                                                                                                 | 1949                                                                                                    |
|                               | Domestic                                                                                                             | 1.5                                                                                                     |
| No data                       | Total                                                                                                                | Mainly a residential community.  *In 1950 about 7,680 acres served by Greater Vancouver Water District. |

### (Fraser River Drainage Basin)

| Municipality                                                  | WHALLEY<br>(Unincorporated)                                                                  | WHITE ROCK* (Unincorporated)                                                                                                                                                                                                                              |  |  |  |
|---------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Population served: In municipality Outside municipality Total |                                                                                              | 1949                                                                                                                                                                                                                                                      |  |  |  |
| Date(s) of survey. Ownership.  Source of supply. Treatment.   | A part of<br>and included in<br>Surrey<br>District                                           | March 1, 1950  Privately owned and operated by White Rock Waterworks Co., Ltd. Graeine spring and three flowing wells. No treatment; water is pumped to reservoirs and system. Civic supply is mixture of various sources.  3 elevated tanks20, 50 and 50 |  |  |  |
| Storage capacity (thousand gallons)                           | Municipality                                                                                 | 2 ground reservoirs                                                                                                                                                                                                                                       |  |  |  |
| Industrial use                                                |                                                                                              | Mainly a tourist resort                                                                                                                                                                                                                                   |  |  |  |
| Municipality                                                  |                                                                                              | WILLIAMS LAKE—324 acres (Incorporated as a village, March 1929)                                                                                                                                                                                           |  |  |  |
| Population served: In municipality Outside municipality       |                                                                                              | 1941 1950 1951<br>540 913                                                                                                                                                                                                                                 |  |  |  |
| Date(s) of survey                                             | Total  Date(s) of survey  Ownership                                                          |                                                                                                                                                                                                                                                           |  |  |  |
| Source of supply                                              | Chlorination (sodium hypochlorite); water is pumped from near shore to reservoir and system. |                                                                                                                                                                                                                                                           |  |  |  |
| Consumption (average in m.g.d.)                               | Pacific Great Eastern Railway 60                                                             |                                                                                                                                                                                                                                                           |  |  |  |
|                                                               |                                                                                              | Main area activity is cattle raising.                                                                                                                                                                                                                     |  |  |  |



# DESCRIPTION OF MUNICIPAL WATERWORKS SYSTEMS

### (Fraser River Drainage Basin)

#### BRITISH COLUMBIA

| Municipality                                                                                      | WHALLEY<br>(Unincorporated)                                                                                                                                               | WHITE ROCK* (Unincorporated)                                                                                                                                                                                                                   |  |  |  |  |
|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Population served: In municipality. Outside municipality. Total.                                  |                                                                                                                                                                           | 1949                                                                                                                                                                                                                                           |  |  |  |  |
| Date(s) of survey. Ownership.  Source of supply. Treatment.  Storage capacity (thousand gallons). | A part of and included in Surrey District Municipality                                                                                                                    | March 1, 1950.  Privately owned and operated by White Rock Waterworks Co., Ltd. Graeine spring and three flowing wells.  No treatment; water is pumped to reservoirs and system. Civic supply is mixture of various sources.  3 elevated tanks |  |  |  |  |
| Consumption (average in m.g.d.)  Industrial use.  Remarks.                                        |                                                                                                                                                                           | 1949 0·22 (Maximum—0·68) Mainly a tourist resort* * A part of Surrey District Municipality.                                                                                                                                                    |  |  |  |  |
| Municipality                                                                                      |                                                                                                                                                                           | WILLIAMS LAKE—324 acres (Incorporated as a village, March 1929)  1941 1950 1951                                                                                                                                                                |  |  |  |  |
| Outside municipality                                                                              |                                                                                                                                                                           | 540 913                                                                                                                                                                                                                                        |  |  |  |  |
| Date(s) of survey                                                                                 |                                                                                                                                                                           | August 21, 1950. Municipally owned and operated.                                                                                                                                                                                               |  |  |  |  |
| Treatment                                                                                         | we of supply.  Be of supply.  Williams Lake. Chlorination (sodium hypochlorite); pumped from near shore to reser system.  I elevated tank. Pacific Great Eastern Railway. |                                                                                                                                                                                                                                                |  |  |  |  |
| Consumption (average in m.g.d.)                                                                   |                                                                                                                                                                           | 1949                                                                                                                                                                                                                                           |  |  |  |  |
| Industrial use                                                                                    |                                                                                                                                                                           | Main user is Pacific Great Eastern Railway Main area activity is cattle raising.                                                                                                                                                               |  |  |  |  |



#### TABLE III

### Chemical Analyses of Civic Water Supplies

### FRASER RIVER DRAINAGE BASIN

|          | Municipality                                        | Abbotsford                        | Armstrong                    | Ashcroft                     | Beach Grove                                                     | Bralorne                                                                           | BRIDGEPORT  | Brighouse                       | BURKEVILL     |
|----------|-----------------------------------------------------|-----------------------------------|------------------------------|------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------------------------|-------------|---------------------------------|---------------|
| No.      | Source(s)                                           | Springs                           | Fortune Creek                | Thompson River               | Springs and wells                                               | Blackbird Creek                                                                    | Supplied by | Richmond Di                     | strict        |
| -        |                                                     | Raw<br>and finished<br>water      | Raw<br>and finished<br>water | Raw<br>and finished<br>water |                                                                 | Raw<br>and finished<br>water                                                       |             |                                 |               |
|          | Sampling point                                      | Town tap                          | Town tap                     | Direct from river            |                                                                 |                                                                                    |             |                                 |               |
| 1        | Laboratory number                                   | 3520                              | 3489                         | 4619                         |                                                                 |                                                                                    |             |                                 |               |
| 2        | Field number                                        | 505                               | 466                          | 706                          |                                                                 |                                                                                    |             |                                 |               |
| 3        | Date of collection                                  | Aug. 24/49                        | July 28/49                   | Aug. 8/50                    |                                                                 |                                                                                    |             |                                 |               |
| 4        | Storage period (days)                               | 68                                | 82                           | 84                           |                                                                 |                                                                                    |             |                                 |               |
| 5        | Sampling temperature, °C                            | 17-0                              |                              | 16.7                         |                                                                 |                                                                                    |             |                                 |               |
| 6        | Test temperature, °C                                | 20.5                              | 22.0                         | 26.2                         |                                                                 |                                                                                    |             |                                 |               |
| 7        | Dissolved oxygen                                    |                                   |                              |                              |                                                                 |                                                                                    |             |                                 |               |
| 8        | Carbon dioxide (CO <sub>2</sub> )                   | (1.2)                             | (3.0)                        | (2.0)                        |                                                                 |                                                                                    |             |                                 |               |
| 9        | pH                                                  | 7.6 (7.5)                         | 8.1 (8.3)                    | 7.8 (8.0)                    |                                                                 |                                                                                    |             |                                 |               |
| 10       | Colour                                              | 5 (5)                             | 0 (5)                        | 8 (6)                        |                                                                 |                                                                                    |             |                                 |               |
| 11       | Turbidity                                           | 2                                 | 0.5                          | 5.5 (5)                      |                                                                 |                                                                                    |             |                                 |               |
| 12       | Suspended matter, dried at 105°C                    |                                   |                              |                              |                                                                 |                                                                                    |             |                                 |               |
| 13       | Suspended matter, ignited at 550°C                  |                                   |                              |                              |                                                                 |                                                                                    |             |                                 |               |
| 14       | Residue on evaporation, dried at 105°C              | 91.8                              | 124                          |                              |                                                                 |                                                                                    |             |                                 |               |
| 15       | Ignition loss at 550°C                              | 32.8                              | 6-4                          |                              | No data; pre-                                                   | No data.                                                                           | See Richm   | ond District M                  | funicipality. |
| 16       | Specific conductance (micromhos at 25°C.).          | 107                               | 180                          | 86.5                         | sumed to be sim-                                                |                                                                                    |             |                                 |               |
| 17       | Calcium (Ca)                                        | 12.5                              | 32.6                         | 11.5                         | ilar to wells at                                                |                                                                                    |             |                                 |               |
| 18       | Magnesium (Mg)                                      | 3.0                               | 2.3                          | 1.6                          | Crescent Beach                                                  |                                                                                    |             |                                 |               |
| 19       | Iron (Fe) Total                                     |                                   |                              |                              | and White Rock,                                                 |                                                                                    |             |                                 |               |
| 20       | Dissolved                                           | 0.09                              | 0.08                         |                              | B.C.                                                            |                                                                                    |             |                                 |               |
| 21       | Sodium (Na)                                         | 3.7                               | 1.6                          | 1.8                          |                                                                 |                                                                                    |             |                                 |               |
| 22       | Potassium (K)                                       | 0.4                               | 1.6                          | . 0-8                        |                                                                 |                                                                                    |             |                                 |               |
| 23       | Carbonate (CO <sub>3</sub> )                        | 0 (0)                             | 0 (0)                        | 0                            |                                                                 |                                                                                    |             |                                 |               |
| 24       | Bicarbonate (HCO <sub>3</sub> )                     | 43.9 (43.9)                       | 97.6 (97.6)                  | 41.7                         |                                                                 |                                                                                    |             |                                 |               |
| 25       | Sulphate (SO <sub>4</sub> )                         | 5.4                               | 16.5                         | 5.8                          |                                                                 |                                                                                    |             |                                 |               |
| 26       | Chloride (Cl)                                       | 5.8 (6.0)                         | 0 (0)                        | 0                            |                                                                 |                                                                                    |             |                                 |               |
| 27       | Fluoride (F)                                        | 0                                 | 0                            |                              |                                                                 | 0·1 p.p.m.† (1952)                                                                 |             |                                 |               |
| 28       | Nitrate (NO <sub>3</sub> )                          | 15.9                              | Trace                        |                              |                                                                 |                                                                                    |             |                                 |               |
| 29       | Silica (SiO <sub>2</sub> ) Gravimetric              | 15                                | 8-8                          |                              |                                                                 |                                                                                    |             |                                 |               |
| 30       | Colorimetric                                        | 17                                | 11.2                         | 4.2                          |                                                                 |                                                                                    |             |                                 |               |
| 31       | Carbonate hardness as CaCO <sub>3</sub> , p.p.m     | 36.0                              | 80.0                         | 34.2 (32.0)                  |                                                                 |                                                                                    |             |                                 |               |
| 32       | Non-carbonate hardness as CaCO <sub>3</sub> , p.p.m | 7.6                               | 10.8                         | 1.1 (5.0)                    |                                                                 |                                                                                    |             |                                 |               |
| 33       | Total hardness as CaCO <sub>3</sub> , p.p.m         | 43.6                              | 90.8                         | 35.3 (37.0)                  |                                                                 |                                                                                    |             |                                 |               |
| 34<br>35 | Sum of Constituents                                 | 85.4                              | 114                          | 46.2                         |                                                                 |                                                                                    |             |                                 |               |
| 30       | Saturation index                                    | -1.2                              | +0.06                        | -0.9                         |                                                                 |                                                                                    |             |                                 |               |
|          | Remarks:                                            | Note rather high nitrate content. |                              |                              | Beach Grove<br>lies within Delta<br>District Muni-<br>cipality. | †Analysis sup-<br>plied by Depart-<br>ment of National<br>Health and Wel-<br>fare. |             | s lying in an<br>District Munic |               |

# Chemical Analyses of Civic Water Supplies

### FRASER RIVER DRAINAGE BASIN

| BURNS LAKE                                                        | BURNABY                 | BURQUITLAM                   | CANOE                                                      |                                      | CHILLIWACK                                                                                                                                                         |                                 | CHILLIWHACK DISTRICT MUNICIPALITY | CLINTON                                                                                                                                                                            |
|-------------------------------------------------------------------|-------------------------|------------------------------|------------------------------------------------------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Burns Lake                                                        | Supplied by Gr<br>Water | reater Vancouver<br>District | East Canoe Creek;<br>supplied by Salmon<br>Arm Waterworks. | Elk River Nevin Creek Dunville Creek |                                                                                                                                                                    |                                 | Chilliwack<br>Waterworks          | A mountain creek                                                                                                                                                                   |
| Raw<br>and finished<br>water                                      |                         |                              |                                                            | R                                    | aw and finished water                                                                                                                                              | er                              |                                   | Raw<br>and finished<br>water                                                                                                                                                       |
| Direct from lake                                                  |                         |                              |                                                            | At intake At intake At intake        |                                                                                                                                                                    |                                 |                                   | Town tap                                                                                                                                                                           |
| 4813 764 Sept. 1/50 136 15-0 16-8(9-2)(4-0) 7-5 (7-5) 35 (60) 2-5 | See Van                 | couver, B.C.                 | See Salmon Arm and Salmon Arm District Municipality.       | 3437 510 Aug. 25/49 34 11·0 21·0     | 3521 509 Aug. 25/49 67 9 0 20 7  8 1 (8 4) 5 (5) 0 7  158 28 0 243 45 8 4 0  0 05 2 3 0 3 2 2 (0) 127 (129) 28 0 0 8 (0) 0 2 2 4 8 7 4 104 (106) 26 8 131 155 +0 3 | 3436 508 Aug. 25/49 34 9·5 21·0 | See Chilliwack,<br>B.C.           | 4567 728 Aug. 19/50 53 12·2 21·0  8·2 (8·2) 3 (15) 0·7 (clear)  236 27·4 377 51·9 17·5  0·08 5·6 1·1 4·8 (7·2) 252 (239) 11·7 0 (0) 0·1 0  20 202 (208) 0 (4·0) 202 (212) 237 +0·7 |

### Chemical Analyses of Civic Water Supplies

### Fraser River Drainage Basin

| _                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                     |                                                      |                                                                                                                                         |                                                                                                                                                                                                                                |                                                                                       |                                                      |        |
|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------------------|--------|
|                                                                                                                         | Municipality                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CLOVERDALE                                                          | Coquitlam<br>District<br>Municipality                | Crescer                                                                                                                                 | NT BEACH                                                                                                                                                                                                                       | DELTA<br>DISTRICT<br>MUNICIPALITY                                                     | EAST<br>RICHMOND                                     | EBURNE |
| No.                                                                                                                     | Source(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Springs<br>and artesian<br>wells                                    | Supplied from<br>Greater Vancouver<br>Water District | Artesia                                                                                                                                 | an wells                                                                                                                                                                                                                       | Supplied from Greater<br>Vancouver Water Dis-<br>trict and from springs<br>and wells. | Supplied from<br>Greater Vancouver<br>Water District |        |
| 4                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                     |                                                      | Raw and finished water                                                                                                                  |                                                                                                                                                                                                                                |                                                                                       |                                                      |        |
|                                                                                                                         | Sampling Point                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                     |                                                      | Well No. 1                                                                                                                              | Well No. 2                                                                                                                                                                                                                     |                                                                                       |                                                      |        |
| 1 22 3 3 4 4 5 6 6 7 7 8 8 9 100 111 12 13 14 4 15 16 17 18 19 20 21 22 23 24 25 26 6 27 28 29 30 0 31 32 24 33 34 35 — | Suspended matter, dried at 105°C. Suspended matter, ignited at 550°C. Residue on evaporation, dried at 105°C. Ignition loss at 550°C. Specific conductance (micromhos at 25°C.). Calcium (Ca). Magnesium (Mg). Iron (Fe) Total. Dissolved. Sodium (Na). Potassium (K). Carbonate (CO <sub>2</sub> ). Bicarbonate (HCO <sub>3</sub> ). Sulphate (SO <sub>4</sub> ). Chloride (Cl). Fluoride (F). Nitrate (NO <sub>3</sub> ) Silica (SiO <sub>2</sub> ) Gravimetric. Colorimetric. Carbonate hardness as CaCO <sub>3</sub> , p.p.m. Non-carbonate hardness as CaCO <sub>3</sub> , p.p.m. Total hardness as CaCO <sub>3</sub> , p.p.m. Sum of Constituents. Saturation index. | No data.                                                            | See Vancouver, B.C.                                  | 5026 811 Apr. 30/51 30 4·4 22·8  7·8 2 6 1·7 0·9 125 22·8 182 16·9 6·7 0·26 0·03 13·0 2-0 0 91·0 7·0 10·3 0 0 0 23 69·7 0 69·7 124 -0·6 | 5025<br>810<br>Mar. 17/51<br>44<br>5 · 6<br>22 · 8<br>8 · 0<br>0 · 5<br>130<br>21 · 8<br>193<br>17 · 8<br>7 · 2<br>0 · 04<br>10 · 3<br>2 · 1<br>0<br>99 · 6<br>6 · 0<br>10 · 7<br>0<br>0 · 4<br>20<br>74 · 0<br>124<br>- 0 · 3 | See Vancouver, B.C. and Beach Grove, B.C.                                             | See Richmon Municipality, B.                         |        |
|                                                                                                                         | Remarks:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Cloverdale lies with-<br>in Surrey District Mun-<br>icipality, B.C. |                                                      |                                                                                                                                         |                                                                                                                                                                                                                                |                                                                                       |                                                      |        |
|                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | †Analyses supplied by<br>Dept. of National<br>Health and Welfare.   |                                                      |                                                                                                                                         |                                                                                                                                                                                                                                |                                                                                       |                                                      |        |

# Chemical Analyses of Civic Water Supplies

# FRASER RIVER DRAINAGE BASIN

|                                                                                                             |                                                                         |                                                                                                    |                                                      | Paris per introducti                            | <u></u>                                                                                             |                                                  |                                                   |                                                                              |                     |                                                                    |                                                                      |                                                                                                      |                                    |
|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------|---------------------------------------------------|------------------------------------------------------------------------------|---------------------|--------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------|
| End                                                                                                         | ERBY                                                                    | Essondale                                                                                          | FRASER MILLS DISTRICT MUNICIPALITY                   | GREATER<br>VANCOUVER WATER<br>DISTRICT          | Haney                                                                                               | HARRISON<br>HOT<br>Springs*                      | Н                                                 | OPE                                                                          |                     |                                                                    |                                                                      |                                                                                                      |                                    |
| Brash<br>Creek                                                                                              | Well                                                                    | Supplied from Greater<br>Vancouver Water Dis-<br>trict through Coquitlam<br>District Municipality. | Supplied from<br>Greater Vancouver<br>Water District | Capilano,<br>Coquitlam and<br>Seymour<br>Rivers | Supplied from Greater<br>Vancouver Water Dis-<br>trict through Maple Ridge<br>District Municipality | Mineral<br>hot<br>spring                         | Schka                                             | am Creek                                                                     |                     |                                                                    |                                                                      |                                                                                                      |                                    |
| Raw and fin                                                                                                 | ished water                                                             |                                                                                                    |                                                      | Raw<br>and finished<br>water                    |                                                                                                     |                                                  | Raw and fi                                        | nished water                                                                 |                     |                                                                    |                                                                      |                                                                                                      |                                    |
| Town tap                                                                                                    | At pump                                                                 |                                                                                                    |                                                      | Direct from rivers                              |                                                                                                     | Direct<br>from spring                            | Town tap                                          | Town tap                                                                     |                     |                                                                    |                                                                      |                                                                                                      |                                    |
| 4485<br>692<br>Aug. 4/50<br>27<br>15·6<br>25·5 (18·9)                                                       | 4543<br>694<br>Aug. 4/50<br>52<br>25.5                                  |                                                                                                    | See Vancouver, B.C.                                  |                                                 |                                                                                                     | 4808<br>721<br>Aug. 17/50<br>151<br>> 60<br>21·5 | 3532<br>513<br>Aug. 26/49<br>68                   | 4599 1<br>723 2<br>Aug. 17/50 8<br>69 4<br>19·7 2<br>20·5 (22·5) 6           |                     |                                                                    |                                                                      |                                                                                                      |                                    |
| 7·7 (7·8)<br>10 (5)<br>1                                                                                    | 7·4 (7·1) 10                                                            |                                                                                                    |                                                      | See Vancouver, B.C.                             | See Vancouver, B.C.                                                                                 | See Vancouver, B.C.                              | See Vancouver, B.C.                               | See Vancouver, B.C.                                                          |                     |                                                                    | 8·0<br>5<br>0·2                                                      | (3·0)<br>7·5 (7·9)<br>5 (5)<br>0·4                                                                   | 7-2 (7-4) 9<br>3 (<5) 10<br>0 11   |
| 90·0<br>8·8<br>135<br>20·4<br>2·9                                                                           | 457<br>82·0<br>725<br>49·5<br>41·9<br>4·25                              | See Vancouver, B.C.                                                                                |                                                      |                                                 |                                                                                                     |                                                  |                                                   |                                                                              | See Vancouver, B.C. | See Vancouver, B.C.                                                | See Vancouver, B.C.                                                  | 1358<br>38·6<br>1965<br>83·0<br>0                                                                    | 48·4<br>7·4<br>69·8<br>11·6<br>2·3 |
| 0·04<br>2·6<br>1·2<br>0 (0)<br>72·0 (70·8)<br>9·2<br>0<br>0·15<br>0                                         | 0·10<br>50·0<br>2·9<br>0 (0)<br>383 (381)<br>67·7<br>16·5<br>1·0<br>2·7 |                                                                                                    |                                                      |                                                 |                                                                                                     |                                                  |                                                   |                                                                              |                     | 0·03<br>355<br>15·0<br>2·4<br>17·1<br>516<br>283<br>3·0<br>0<br>55 | 0·03<br>1·8<br>1·0<br>0 (0)<br>39·6 (41·5)<br>11·9<br>0<br>0·05<br>0 | 0.05   20 1.2   21 0.8   22 0 (0) (2) 23 37.3 (35.4) 244 4.6   25 0 (0) 26 0   27 <0.4   28 5.4   29 |                                    |
| 6·4<br>59·0 (58·0)<br>3·8 (3·0)<br>62·8 (61·0)<br>78·4<br>-0·6                                              | 28<br>296 (298)<br>0 (0)<br>296 (298)<br>449<br>+0·1                    |                                                                                                    |                                                      |                                                 |                                                                                                     | 64<br>18·0<br>189<br>207<br>1330<br>-0·4         | 7·6<br>32·4 (34·0)<br>6·0<br>38·4<br>55·8<br>-1·4 | 7·0 30<br>28·5 (29·0) 31<br>0 (0) 32<br>28·5 (29·0) 33<br>42·7 34<br>-1·8 35 |                     |                                                                    |                                                                      |                                                                                                      |                                    |
| Fluoride 0.25<br>p.p.m. (1948);<br>analysis sup-<br>plied by Dept.<br>of National<br>Health and<br>Welfare. | $ m H_2S$ present.                                                      |                                                                                                    |                                                      |                                                 |                                                                                                     | *No organized<br>civic supply.                   |                                                   |                                                                              |                     |                                                                    |                                                                      |                                                                                                      |                                    |

### Chemical Analyses of Civic Water Supplies

### FRASER RIVER DRAINAGE BASIN

| Litton Maillandville                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Lytton Creek Supplied from Greater Vancouver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Raw<br>d finished<br>water  Water District<br>through Coquitlam<br>District Municipality                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Fown tap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 000 24 ug. 18/50 68 15-5 21-9 (19-3) (3-0) 7-6 (7-8) 2 (<5) 0-2 87-6 5-4 132 22-3 1-6 0-03 2-6 0-2 0 (0) 79-3 (78-1) 5-3 0 (0) 0 0 0 12 14 15-2 16-10 10-10 12-2 (65-0) 14-9 10-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Raw d finishe water  10 wr taj  10 w taj  11 w taj  12 taj  13 taj  14 taj  15 taj  16 taj  17 taj  18 |

# Chemical Analyses of Civic Water Supplies

# FRASER RIVER DRAINAGE BASIN

| Matsqui<br>District<br>Municipality |                                                                                                                                                                     |                                                                                                           |                                                                          |                                                                  |                                                               |                                                                                             |                                   |                                    |                                     |                   |
|-------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------|------------------------------------|-------------------------------------|-------------------|
| AND OTHER PARTY                     | McBridg                                                                                                                                                             | Merritt                                                                                                   | Mission City                                                             |                                                                  |                                                               | Mission<br>District<br>Municipality                                                         |                                   |                                    |                                     |                   |
| A mountain lake                     | Dominion Creek                                                                                                                                                      | Coldwater River                                                                                           | Cannell Lake                                                             | Silverdale Creek                                                 | Cedar Valley Springs                                          | Supplied by<br>Mission City                                                                 |                                   |                                    |                                     |                   |
|                                     |                                                                                                                                                                     | Raw<br>and finished<br>water                                                                              |                                                                          | Raw and finished water                                           | r                                                             | Waterworks                                                                                  |                                   |                                    |                                     |                   |
|                                     |                                                                                                                                                                     | Town tap                                                                                                  | Town tap                                                                 | At intake                                                        | Direct from springs                                           |                                                                                             |                                   |                                    |                                     |                   |
| No data. No data.                   |                                                                                                                                                                     | 3491<br>469<br>July 29/49<br>81<br>5-0<br>22-0 (21-8)                                                     | 3530<br>504<br>Aug. 23/49<br>71<br>17-8<br>19-0                          | 3528<br>502<br>Aug. 23/49<br>71<br>13-0<br>19-5                  | 3529<br>503<br>Aug. 23/49<br>71<br>13·5<br>19·5               |                                                                                             |                                   |                                    |                                     |                   |
|                                     | 7·5 (7·5)<br>0 (5)<br>4<br>2·0<br>1·0                                                                                                                               | 7·1 (6·4)<br>10 (10)<br>0·4                                                                               | 7·3 (7·3)<br>15 (25)<br>3                                                | 7·3 (7·5)<br>5 (8)<br>0·3                                        |                                                               |                                                                                             |                                   |                                    |                                     |                   |
|                                     | ı. No data.                                                                                                                                                         | 80.6<br>7.8<br>113<br>17.0<br>3.4<br>0.08<br>0.04<br>2.9<br>0.6<br>0 (0)<br>67.1 (69.5)<br>6.3<br>0.1 (0) | 80.6 $7.8$ $113$ $17.0$ $3.4$                                            | 7·8<br>113<br>17·0<br>3·4                                        | 7·8<br>113<br>17·0<br>3·4                                     | 7·8<br>113<br>17·0<br>3·4                                                                   | 20·6<br>8·6<br>27·7<br>3·8<br>0·4 | 47·6<br>13·0<br>42·7<br>7·8<br>0·8 | 73-0<br>16-0<br>76-2<br>11-2<br>2-4 | See Mission City. |
|                                     | $ \begin{array}{cccc} 2 \cdot 9 & & & \\ 0 \cdot 6 & & & \\ 0 & (0) & & \\ 67 \cdot 1 & (69 \cdot 5) & & \\ 6 \cdot 3 & & & \\ 0 \cdot 1 & (0) & & \\ \end{array} $ |                                                                                                           | 0.05<br>1.1<br>0.1<br>0 (0)<br>9.4 (11.0)<br>6.6<br>0 (0)                | 0·21<br>2·4<br>0·5<br>0 (0)<br>24·4 (23·2)<br>9·1                | 0.03<br>3.3<br>0.4<br>0 (0)<br>36.6 (39.1)<br>7.9<br>1.5      | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 |                                   |                                    |                                     |                   |
|                                     |                                                                                                                                                                     | Trace<br>8·2<br>10<br>55·0<br>1·4<br>56·4<br>73·6<br>—1·0                                                 | 0<br>3·4<br>4·2<br>7·7 (9·0)<br>3·4<br>11·1<br>20·9<br>-2·9              | 0.7<br>9.4<br>11.8<br>20.0 (19.0)<br>2.8<br>22.8<br>45.3<br>-2.0 | 8·0<br>14<br>20<br>30·0 (32·0)<br>7·8<br>37·8<br>72·8<br>-1·7 | 2<br>2<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                                         |                                   |                                    |                                     |                   |
|                                     | Fluoride 0·10 p.p.m.<br>(1948); analysis sup-<br>plied by Dept. of<br>National Health and<br>Welfare.                                                               |                                                                                                           |                                                                          |                                                                  |                                                               |                                                                                             |                                   |                                    |                                     |                   |
|                                     |                                                                                                                                                                     | Fluoride 0·10 p.p.m. (1948); analysis supplied by Dept. of National Health and                            | Raw and finished water  Town tap  3491 469 July 29/49 81 5·0 22·0 (21·8) | Raw and finished water   Town tap   Town tap                     | Raw and finished water   Raw and finished water               | Raw and finished water   Raw and finished water                                             |                                   |                                    |                                     |                   |

### Chemical Analyses of Civic Water Supplies

### FRASER RIVER DRAINAGE BASIN

| =                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                    |                                                      |                                                 |                                                                                                                                                                         |                                                      |                                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|
|                                                                                                                                                 | Municipality.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Newton Station                                                                     | New Westminster                                      | North Kamloops                                  | North                                                                                                                                                                   | VANCOUVER                                            | North<br>Vancouver District<br>Municipality          |
| 0.                                                                                                                                              | Source(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Supplied from<br>Greater Vancouver<br>Water District                               | Supplied from<br>Greater Vancouver<br>Water District | Supplied by<br>Kamloops Municipal<br>Waterworks | Lynn River                                                                                                                                                              | Supplied from<br>Greater Vancouver<br>Water District | Supplied from<br>Greater Vancouver<br>Water District |
| No                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | through Surrey District Municipality                                               |                                                      |                                                 | Raw<br>and finished<br>water                                                                                                                                            |                                                      | and North<br>Vancouver city                          |
|                                                                                                                                                 | Sampling Point                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                    |                                                      |                                                 | Direct from river                                                                                                                                                       |                                                      |                                                      |
| 122<br>133<br>144<br>155<br>166<br>177<br>188<br>199<br>200<br>211<br>222<br>233<br>244<br>255<br>266<br>277<br>288<br>299<br>300<br>311<br>322 | Turbidity Suspended matter, dried at 105°C. Suspended matter, ignited at 550°C. Residue on evaporation, dried at 105°C. Ignition loss at 550°C. Specific conductance (micromhos at 25°C.). Calcium (Ca). Magnesium (Mg). Iron (Fe) Total. Dissolved. Sodium (Na). Potassium (K). Carbonate (CO <sub>2</sub> ). Bicarbonate (HCO <sub>2</sub> ). Sulpilate (SO <sub>4</sub> ). Chloride (Cl). Fluoride (F). Nitrate (NO <sub>3</sub> ) Silica (SiO <sub>2</sub> ) Gravimetric. Colorimetric. Carbonate hardness as CaCO <sub>3</sub> , p.p.m. Non-carbonate hardness as CaCO <sub>3</sub> , p.p.m. Total hardness as CaCO <sub>3</sub> , p.p.m. Sum of Constituents. Saturation index. | See Vancouver, B.C.                                                                | See Vancouver, B.C.                                  | See Kamloops, B.C.                              | 3439 476 Aug. 10/49 49 17-0 21-0 (19-0)  7-2 (7-3) 3 (5) 0-3 (clear)  18-8 6-6 21-8 2-8 0-9 0-02 1-3 0-3 0 (0) 11-6 (7-3) 2-6 1-6 0 0-8  5-8 9-5 (6-0) 1-2 10-7 21-82-8 | See Vancouver, B.C.                                  | See Vancouver, B.C. and North Vancouver, B.C.        |
|                                                                                                                                                 | Remarks:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Newton Station is<br>a part of and included<br>in Surrey District<br>Municipality. |                                                      |                                                 | Fluoride — 0.05<br>p.p.m. (1949);<br>analysis supplied<br>by Dept. of Nat-<br>ional Health and<br>Welfare.                                                              |                                                      |                                                      |

### Chemical Analyses of Civic Water Supplies

### FRASER RIVER DRAINAGE BASIN

| PITT MEADOWS DISTRICT MUNICIPALITY                    | PORT MANN                                          | Port Coquitlam                                       | Port Moody                                           | PRINCE                                  | George                                         | Quesnel                                  |
|-------------------------------------------------------|----------------------------------------------------|------------------------------------------------------|------------------------------------------------------|-----------------------------------------|------------------------------------------------|------------------------------------------|
| Supplied from<br>Greater Vancouver<br>Water District, | Included in<br>Surrey District<br>Municipality     | Supplied from<br>Greater Vancouver<br>Water District | Supplied from<br>Greater Vancouver<br>Water District | Necha                                   | ko River                                       | Quesnel River                            |
| mostly from<br>Coquitlam River                        | and supplied from Greater Vancouver Water District | Water District                                       | Water District                                       | Raw and f                               | Raw<br>and finished<br>water                   |                                          |
|                                                       |                                                    |                                                      |                                                      | Plant tap                               | From sump well,<br>after natural<br>filtration | Town tap                                 |
| See Vancouver, B.C.                                   | See Vancouver, B.C.                                | See Vancouver, B.C.                                  | See Vancouver, B.C.                                  | 4570 741 Aug. 24/50 48 17-5 21-0 (22-2) | 4569 740 Aug. 24/50 48 14·2 16·7 (16·3)        | 4785 737 Aug. 22/50 134 16·2 21·0 (21·9) |
|                                                       |                                                    |                                                      |                                                      | 134 -0.5                                | 254<br>0·4                                     | 101<br>-0·7<br>Al=0 p.p.m.               |
|                                                       |                                                    |                                                      |                                                      | Mn=0·1 p.p.m.                           | Mn=0-9 p.p.m.                                  | za-o p.p.m.                              |
|                                                       |                                                    |                                                      |                                                      |                                         |                                                |                                          |

### Chemical Analyses of Civic Water Supplies

### FRASER RIVER DRAINAGE BASIN

| _                                                                                                                     |                                                                |                               |                                       |                                        |                                        |                                  |                               |                                                       |
|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-------------------------------|---------------------------------------|----------------------------------------|----------------------------------------|----------------------------------|-------------------------------|-------------------------------------------------------|
|                                                                                                                       | Municipality                                                   | Rosedale                      | RICHMOND<br>DISTRICT<br>MUNICIPALITY  | Salmo                                  | n Arm                                  | SALMON ARM DISTRICT MUNICIPALITY | Sardis                        | South<br>Westminster                                  |
| No.                                                                                                                   | Source(s)                                                      | Supplied<br>by<br>Chilliwhack | Supplied from<br>Greater<br>Vancouver | Shuswap Lake                           | East Canoe<br>Creek                    | Mostly East Canoe Creek from     | Supplied<br>by<br>Chilliwhack | Supplied by Surrey District Municipality from Greater |
|                                                                                                                       |                                                                | District<br>Municipality      | Water<br>District                     | Raw and fir                            | nished water                           | Salmon Arm<br>Waterworks         | District<br>Municipality      | Vancouver<br>Water<br>District                        |
|                                                                                                                       | Sampling Point                                                 |                               |                                       | Town tap                               | From<br>reservoir<br>intake            |                                  |                               |                                                       |
| 1 2 2 3 4 4 5 6 6 7 7 8 9 100 111 122 131 144 155 166 177 18 19 200 21 22 23 24 25 6 27 28 29 300 301 32 33 34 35 5 — | Residue on evaporation, dried at 105°C  Ignition loss at 550°C | See<br>Chilliwaek,<br>B.C.    | See<br>Vancouver,<br>B.C.             | 4566 696 Aug. 5/50 67 16·5 25·5 (21·7) | 4565 695 Aug. 5/50 67 15·0 25·5 (22·2) | See Salmon Arm, B.C.             | See<br>Chilliwack,<br>B.C.    | See Vancouver, B.C.                                   |
|                                                                                                                       |                                                                |                               |                                       |                                        |                                        |                                  |                               |                                                       |

# Chemical Analyses of Civic Water Supplies

### FRASER RIVER DRAINAGE BASIN

| Steveston                                            | SUNBURY                                                 | SURREY DISTRICT MUNICIPALITY                                                                                                                                 | VANCOUVER                                                             |                                                                       |                                                             | VEDDER CROSSING                                |
|------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------|
| Supplied from<br>Greater Vancouver<br>Water District | Supplied by<br>Delta District                           | Supplied from Greater Vancouver Water District; White Rock Waterworks Co., Ltd., Crescent Beach Waterworks Ltd., City of Blaine, U.S.A. and Cloverdale, B.C. | Seymour Lake Capilano River Coquitlam (River) Lake                    |                                                                       | (River)                                                     | A portion<br>supplied with<br>Chilliwack River |
| through Richmond District Municipality  Municipality |                                                         | City of Blaine, U.S.A. and Cloverdale, B.C.                                                                                                                  | I                                                                     | Raw and finished water                                                | or .                                                        | Raw<br>and finished<br>water                   |
|                                                      |                                                         |                                                                                                                                                              | Spillway<br>at<br>reservoir                                           | Direct from<br>intake in<br>mountains                                 | At lake                                                     |                                                |
|                                                      |                                                         |                                                                                                                                                              | 3391<br>473<br>Aug. 10/49<br>27<br>14·0<br>21·0                       | 3423<br>474<br>Aug. 10/49<br>35<br>12·5<br>24·0 (19·0)                | 3438<br>475<br>Aug. 10/49<br>49<br>17·0<br>21·0             |                                                |
|                                                      | See Vancouver, White Rock, C Beach and Cloverdale, B.C. |                                                                                                                                                              | 7·1 (7·1)<br>5 (8)<br>0·7                                             | 7.5 (7.2)<br>5 (10)<br>0.6                                            | 7·3 (6·9)<br>10 (8)<br>0·9                                  |                                                |
| See Vancouver, B.C.                                  |                                                         | See Vancouver, White Rock, Crescent Beach and Cloverdale, B.C.                                                                                               | 16·4<br>6·4<br>23·9<br>2·2<br>0·2                                     | 19·0<br>7·0<br>21·8<br>4·0<br>0·3                                     | 12·8<br>6·4<br>13·5<br>1·8<br>0·2                           | See Table II.<br>Station No. 22.               |
|                                                      |                                                         |                                                                                                                                                              | 0·15<br>1·0<br>0·4<br>0 (0)<br>9·3 (7·3)<br>2·8<br>0<br>0·05<br>Trace | 0·09<br>0·7<br>0·3<br>0 (0)<br>8·8 (7·3)<br>6·5<br>0<br>0·20<br>Trace | 0.05<br>0.9<br>0.2<br>0 (0)<br>7.6 (7.3)<br>2.0<br>1.4<br>0 |                                                |
| •                                                    |                                                         |                                                                                                                                                              | 4·4<br>6·3<br>0<br>6·3<br>15·8<br>-3·1                                | 4·0<br>7·2 (6·0)<br>4·0<br>11·2<br>20·4<br>-2·4                       | 3·5<br>5·3<br>0<br>5·3<br>13·9<br>-3·0                      |                                                |
|                                                      |                                                         |                                                                                                                                                              | Vancouver supply trict.                                               | is that of Greater V                                                  | ancouver Water Dis-                                         |                                                |

#### TABLE III—Concluded

### Chemical Analyses of Civic Water Supplies

### Fraser River Drainage Basin

| -              |                                                                              |                   |                    |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------|------------------------------------------------------------------------------|-------------------|--------------------|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                | Municipality.                                                                | Wi                | ELLS               | West Vancouver<br>District<br>Municipality           | Whalley                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| No.            | Source(s)                                                                    | Mosquito<br>Creek | Red Gulch<br>Creek | Supplied from<br>Greater Vancouver<br>Water District | Supplied by<br>Surrey District<br>Municipality                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                |                                                                              | Raw and uni       | inished water      |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                | Sampling Point                                                               | From              | intakes            |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1 2            | Laboratory number                                                            | 5023<br>808       | 5024<br>809        |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3 4            | Date of collection Storage period (days). Sampling temperature, °C.          | Apr. 15/51<br>5   | Apr. 15/51<br>5    |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6              | Test temperature, °C. Dissolved oxygen.                                      | 23.5              | 23 · 5             |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 8              | Carbon dioxide (CO2)pH                                                       | 7.4               | 7.4                |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10<br>11<br>12 | Colour. Turbuidity. Suspended matter, dried at 105°C                         | 10<br>0·5         | 5<br>0·5           |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 13<br>14       | Suspended matter, ignited at 550°C.  Residue on evaporation, dried at 105°C. |                   | 69-8               |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 15             | Ignition loss at 550°C                                                       | 11.0              | 5.8                |                                                      | See Surrey District                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 16             | Specific conductance (micromhos at 25°C.)                                    |                   | 120                |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 17             | Calcium (Ca)                                                                 | 8-9               | 17.8               | See Vancouver, B.C.                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 18             | Magnesium (Mg.)                                                              | 2.9               | 3.4                | 200 / 44400 4 102 / 2000                             | Municipality                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 19             | Iron (Fe) Total                                                              |                   |                    |                                                      | and an analysis of the same of |
| 20             | Dissolved                                                                    | 0.03              | 0.01               |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 21             | Sodium (Na)                                                                  | 1.3               | 1.5                |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 22             | Potassium (K)                                                                | 0                 | 0                  |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 23             | Carbonate (CO <sub>8</sub> )                                                 | 0                 | 0                  |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 24             | Bicarbonate (HCO <sub>3</sub> )                                              | 31.7              | 58.6               |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 25             | Sulphate (SO <sub>4</sub> )                                                  | 9-2               | 11.6               |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 26             | Chloride (Cl)                                                                | 0                 | 0                  |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 27             | Fluoride (F)                                                                 | 0                 | 0                  |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 28<br>29       | Nitrate (NO <sub>3</sub> ) Silica (SiO <sub>2</sub> ) Gravimetric            |                   | 0                  |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 30             | Colorimetric.                                                                | 5.9               | 10                 |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 31             | Carbonate hardness as CaCO <sub>3</sub> , p.p.m.                             | 26.0              | 48.0               |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 32             | Non-carbonate hardness as CaCO <sub>3</sub> , p.p.m.                         | 8.2               | 10.5               |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 33             | Total hardness as CaCO <sub>8</sub> , p.p.m                                  | 34.2              | 58.5               |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 34             | Sum of Constituents                                                          | 44.2              | 73 - 4             |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 35             | Saturation index                                                             | -1.6              | -1.1               |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| _              | Remarks:                                                                     |                   |                    | ,                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                |                                                                              |                   |                    |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                |                                                                              |                   |                    |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| _              |                                                                              | 1                 | 1                  |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

#### TABLE III—Concluded

# Chemical Analyses of Civic Water Supplies

# FRASER RIVER DRAINAGE BASIN

|                                                                                         |                                                                                                                    | WHITE ROCK                                                                                                    |                                                                                                                   |                                                                                                                     | WILLIAMS                                                 | LAKE                                                                                                                    |  |  |  |
|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Graeine Spring                                                                          | Civic Mixture                                                                                                      | Well No. 1                                                                                                    | Well No. 2                                                                                                        | Williams Lake                                                                                                       |                                                          |                                                                                                                         |  |  |  |
|                                                                                         |                                                                                                                    | Raw and finished water                                                                                        | r                                                                                                                 |                                                                                                                     | Raw and finis                                            | hed water                                                                                                               |  |  |  |
| Atspring                                                                                | Town tap                                                                                                           | At well                                                                                                       | At well                                                                                                           | At well                                                                                                             | At well Direct a                                         |                                                                                                                         |  |  |  |
| 4089<br>560<br>Mar. 20/50<br>12<br>8·9<br>21·0                                          | 4090<br>561<br>Mar. 20/50<br>12<br>11·1<br>21·0                                                                    | 4091<br>558<br>Mar. 20/50<br>12<br>11-7<br>21-0                                                               | 4092<br>559<br>Mar. 20/50<br>12<br>11 · 7<br>21 · 0                                                               | 4093<br>562<br>Mar. 20/50<br>12                                                                                     | 1949                                                     | 4568<br>733<br>Aug. 21/50<br>51<br>20·6<br>21·2 (22·8)                                                                  |  |  |  |
| 7·7<br>0<br>0·3                                                                         | 8·2<br>0<br>0·2                                                                                                    | 8·2<br>5<br>0·3                                                                                               | 8·2<br>5<br>0·3                                                                                                   | 8·0<br>5<br>0·5                                                                                                     | 8.0<br>15<br>Slight                                      | (0)<br>8.5 (8.8)<br>10 (30)<br>0.6                                                                                      |  |  |  |
| 96·2<br>19·0<br>129<br>10·0                                                             | 159<br>12·2<br>242<br>23·2<br>8·8                                                                                  | 537<br>13·0<br>895<br>14·6<br>9·0                                                                             | 408<br>16·0<br>681<br>16·6<br>9·4                                                                                 | 153<br>12·2<br>242<br>24·4<br>9·0                                                                                   | 424<br>100<br>29·8<br>40·2<br>0·07                       | 346<br>91·8<br>525<br>31·3<br>37·5                                                                                      |  |  |  |
| 3·2  0·04  11·2  1·1  0  26·4  12·7  15·0  0  9·8  12  13  21·6  16·6  38·2  89·0  —1·4 | 0.03<br>16.8<br>2.7<br>2.4<br>113<br>14.0<br>16.0<br>0.05<br>0.35<br>23<br>21<br>94.1<br>0<br>94.1<br>181<br>+0.07 | 0.05<br>175<br>9.2<br>5.3<br>196<br>34.4<br>174<br>0.25<br>0<br>24<br>25<br>73.4<br>0<br>73.4<br>545<br>+0.06 | 0-03<br>123<br>7-0<br>3-6<br>168<br>26-7<br>124<br>0-10<br>Trace<br>23<br>24<br>80-1<br>0<br>80-1<br>418<br>+0-05 | 0·02<br>15·8<br>2·5<br>2·4<br>111<br>11·7<br>16·0<br>0·10<br>0·4<br>21<br>20<br>95·0<br>2·9<br>97·9<br>157<br>-0·12 | as Na                                                    | 0·08<br>32·5<br>4·5<br>27·4 (30·0)<br>314 (300)<br>15·1<br>0 (0)<br>0·25<br>0·7<br>11<br>232<br>0<br>232<br>315<br>+1·0 |  |  |  |
|                                                                                         |                                                                                                                    |                                                                                                               |                                                                                                                   |                                                                                                                     | toria, B.C.  Nitrite—0 p.p.m. Fluoride—0·1 p.p.m. (1950) |                                                                                                                         |  |  |  |

TABLE IV Municipal Water Supplies Within the Fraser River Drainage Basin

Summary of data on area, total population and population served

|                            | Approxim                |                                  | Estimated total population in thousands | Estimated r |       | Per cent<br>population       | Per cent population serve<br>(1951) with |                         |               | ved                   |
|----------------------------|-------------------------|----------------------------------|-----------------------------------------|-------------|-------|------------------------------|------------------------------------------|-------------------------|---------------|-----------------------|
| Region                     | Square<br>miles         | Per cent<br>of total<br>province | 1951b                                   | 1949-50     | 1951ª | served<br>in basin<br>(1951) | Soft<br>water                            | Medium<br>hard<br>water | Hard<br>water | Very<br>hard<br>water |
| Lower Fraser River Basin   | 8,520                   | 2.33                             | 644.76                                  | 644-1       | 564-2 | 87-5                         | 95 • 6                                   | 1-4                     | 3.0           |                       |
| Central Fraser River Basin | 35,530                  | 9.70                             | 43.66                                   | 22.3        | 23.0  | 52.6                         | 66-1                                     | 13.5                    | 10-4          | 10.0                  |
| Upper Fraser River Basin   | 47,390                  | 12.94                            | 32-91                                   | 8-4         | 8.6   | 26-1                         | 26.7                                     | 73 · 3                  |               |                       |
| Total basin in Canada      | 91,440                  | 25·0<br>100·0                    | 721·3<br>1,165·2                        | 674.8       | 595.8 | 82.6                         | 93 · 4                                   | 3.0                     | 3.2           | 0.4                   |
| Total province             | (359, 280<br>land area) | 200*0                            | 2,100.2                                 |             |       |                              |                                          |                         |               |                       |

<sup>·</sup> Includes fresh water.

TABLE V Municipal Water Supplies within the Fraser River Drainage Basin Summary of data on systems, including source, treatment and hardness of waters

| Region                        | Number of<br>municipalities                 | ies Number ni- different sources* | Source         |      |      |               |      |      |      | Per ce | ent of |        | Per cent | Treatment methods, 1950-51 |                            |       |              |                        |
|-------------------------------|---------------------------------------------|-----------------------------------|----------------|------|------|---------------|------|------|------|--------|--------|--------|----------|----------------------------|----------------------------|-------|--------------|------------------------|
|                               | and communities served by organized systems |                                   | Surface waters |      |      | Ground waters |      |      |      | using  |        |        |          | systems                    |                            | Ch    | Chlorination |                        |
|                               |                                             |                                   | Soft           | Med. | Hard | Very<br>hard  | Soft | Med. | Hard | Very   | Soft   | Med.   | Hard     | Very                       | using<br>surface<br>waters | None  | Alone        | Additional treatment • |
| Lower Fraser<br>River Basin   | 47                                          | 13(4)                             | 8(2)           |      | 1    |               |      | 4(2) |      |        | 61.5   | 30.8   | 7.7      |                            | 69-2                       | 11(3) | 2            |                        |
| Central Fraser<br>River Basin | 17                                          | 14(4)                             | 7(4)           | 3    | 1    | 3             |      |      |      |        | 50.0   | 21-4   | 7-2      | 21.4                       | 100                        | 8(3)  | 4            | 2                      |
| Upper Fraser<br>River Basin   | 5                                           | 5(1)                              | 3(1)           | 2    |      |               |      |      |      |        | 60.0   | 40-0   |          |                            | 100                        | 3(1)b | 1            | 1                      |
| Total Basin                   | 69                                          | 32(9)                             | 18(7)          | 5    | 2    | 3             |      | 4(2) |      |        | 56-3   | 28 · 1 | 6.3      | 9.3                        | 87.5                       | 22(7) | 7            | 3                      |

<sup>•</sup> Figures in brackets refer to number of systems not studied in detail.

b Ninth census of Canada.

<sup>•</sup> Estimated from figures supplied by officials, and from other sources.

d Estimated from ninth census of Canada.

b One source is naturally filtered.
• Additional treatment is natural filtration.

#### DISCUSSION

The basin has been divided into three general regions primarily because of the preponderance of population in the lower Fraser River basin or delta area. These regional areas are only rough estimates but do serve to indicate the density of population in each. Continual expansion of the Greater Vancouver Water District, the fact that some communities are only partially served from this District supply, and the shifting and growing population and industrial activity in the area, all tend to outdate statistics in this region.

This is apparent in the rather widely different figures given for population in various communities in 1949 and in the 1951 census. An attempt has been made to arrive at a reasonably accurate estimate using data from several sources, although generally the 1951 census figure, corrected for any known population served outside the incorporated area, has been used in compilation of the tables.

Since most of the data is based on information obtained in 1950 or 1951 no attempt has been made to estimate, by assuming a steady increase from 1941 to 1951, populations for 1949 or 1950; rather, the best data of 1951 have been used. In the preparation of the data of Tables IV and V it has once more been assumed that those systems which were not studied in detail used soft surface water without any treatment. This is a reasonable assumption since these systems are usually very small and creek waters are readily obtained by gravity.

From these tables it is noted that the Fraser River basin which is about 25 per cent of the total area of the province contains about 62 per cent of the provincial population but that about 89 per cent of the basin population or 56 per cent of the provincial population resides in the lower Fraser River basin, mostly concentrated on the delta of the river. Because of the Greater Vancouver Water District, 87.5 per cent of the population in this lower basin region is served with water by organized system, about 96 per cent of those served using soft water. Even though the other portions of the basin have much lower percentage served and generally use harder waters, about 83 per cent of the entire river basin is served with water; 93 per cent of those served using soft water.

The decrease in hardness of surface waters along the Fraser River is indicated somewhat by the data of this Table in that in the upper portion of the basin 73 per cent of those served are served with medium hard water.

The effect of the Greater Vancouver Water District is again noted in Table V in that, while about 47 communities are served in this lower river area, only about 13 systems have different water sources and some of these also use water from the Water District. In this area are the only systems using ground waters, which are medium hard in character. It is estimated that the Greater Vancouver Water District serves about 82 per cent of the population in this region with a soft water.

As in other basins in this province treatment of the water is practically nil, 69 per cent of the systems having no treatment, the remainder being only chlorinated, except for three which have, in addition, natural filtration through gravel beds.

Since the Fraser River itself is not used by any municipality and all other rivers and streams are usually clear, no clarifying treatment other than occasionally coarse screening is required.

#### SUMMARY

Most of this basin which contains such a large percentage of the province's population and industry has available an adequate supply of soft water cheaply distributed with little or no treatment. Even in those areas where the main rivers are such as to require at least some clarifying treatment there is usually readily available by gravity clear, soft to medium hard, mountain streams requiring no treatment.

Pollution of the basin's many water sources is inappreciable as evidenced by the lack of chlorination. Since much of the basin is only sparsely settled, industrial activity is small and water sources are in unsettled mountainmuch of the basin is only sparsely settled, industrial activity is small and water sources are in unsettled mountainous regions, it is not likely that pollution will be at all serious for many years. In the more heavily-populated areas steps have already been taken to protect from pollution the headwaters of the water sources, which are usually in nearby mountainous areas.

Water supply in this basin is adequate for a much larger population and extensive industrial use. For most industrial uses the only treatment required would be clarification of turbid waters or prevention of corrosion by the soft, oyxgen-saturated waters, typical of this province and other mountainous regions.



### APPENDIX A

| SAMPLING | LOCATIONS | OF SURFACE | WATERS |
|----------|-----------|------------|--------|
|----------|-----------|------------|--------|

|            | SAME DATE OF THE SAME OF THE S | PAGE       |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Station    | No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 40         |
| 39.        | Adams River near Squilax                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 26         |
| 17.        | Adams River near Squilax                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 44         |
| 52.        | Bonaparte River at Cache Creek.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 44         |
| 55.        | Bonaparte River at Cache Creek.  Bridge River near Lillooet.  Burns Lake near Burns Lake.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 54         |
| 70.        | Burns Lake near Burns Lake                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 00         |
|            | Cannell Lake near Mission City.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 28<br>50   |
| 20.        | Cannell Lake near Mission City. Chilako River near Prince George.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
| 64.        | Chilako River near Prince George<br>Chilcotin River near Alexis Creek                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 46         |
| 58.        | Chilcotin River near Alexis Creek Chilko River near Redstone.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 28         |
| 59.<br>22. | Chilko River near Redstone<br>Chilliwack River at Vedder Crossing.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 38         |
| 36.        | Clearwater River near Clearwater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 44         |
| 51.        | Coldwater River at Merritt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 90         |
| 26.        | Cogniballa River at Hope                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 40         |
| 62.        | Cottonwood River near Quesnel.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 30         |
| 23.        | Cultus Lake at Cultus Lake                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
|            | Deadman River near Savona                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | . 44       |
| 53.        | Deadman River near Savona                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 42         |
|            | Eagle River near Sicamous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 42         |
| 46.        | Eagle River near Sicamous.  Eagle River near Malakiva.  Eagle River near Selmon Arm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 42         |
| 47.        | Eagle River near Malakiva  East Canoe Creek near Salmon Arm  Chillimeek                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 30         |
| 45.<br>24. | East Canoe Creek near Salmon Arm.  Elk River near Chilliwack                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |
| 24.        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|            | Fraser River (1) at Haney                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 14         |
| 1.         | (1) at Haney (2) at Mission City                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 16         |
| 2.         | (9) at Dogodolo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| 3.         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| 4.         | (F) at Spirgellm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |
| 5.<br>6.   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| 7          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| 8          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| 9          | (O) / Magazintor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |
| 10         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| 11         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| 12         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| 13         | (13) near lete Jaune Cache                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
| 14         | (14) near Would Rossell                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 30         |
| 0.         | . (14) near Mount Robson                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 48         |
| 25<br>60   | Harrison River at Horsefly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 32         |
| 00         | ). Horsefly River at Horseny                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 04         |
| 28         | R Lytton Creek at Lytton                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 42         |
| 20         | 2. Mara Lake near Mara                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 42         |
| 4          | 2. Mara Lake near Mara                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | • •        |
|            | Mara Lake near Sicamous.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |
|            | and the state of t |            |
| C          | Nechako River 3. (1) at Prince George. 5. (2) at Vanderhoof.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $50 \\ 52$ |
| _          | 3. (1) at Prince George. 5. (2) at Vanderhoof. 7. (3) at Fort Fraser.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 42         |
| _          | 7. (3) at Fort Fraser                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 44         |
| _          | 9 Nicola River at mouth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 52         |
|            | 0. Nicola River near Nicola.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 42         |
|            | 9. Nicola River at mouth. 10. Nicola River near Nicola. 18. Northerly River near Fort Fraser. 18. North Fork Eagle River (Perry River) near Craigellachie.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
| 4          | 8. North Fork Eagle River (Felly Liver) have                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |

### APPENDIX A—Concluded

### SAMPLING LOCATIONS OF SURFACE WATERS—Concluded

| Station     | n No.                                                     | PAGE            |
|-------------|-----------------------------------------------------------|-----------------|
|             | North Thompson River                                      |                 |
| 33.         | (1) at Rayleigh.                                          | 36              |
| 34.         | (2) at Barriere                                           | 38              |
| 35.         | (3) at Clearwater                                         | 38              |
| 16.         | Pitt River near mouth                                     | <b>2</b> 6      |
| 61.         | Quesnel River near Quesnel                                | 48              |
| 37.         | Raft River near Clearwater                                | 38              |
| 44.         | Salmon River near Salmon Arm                              | 42              |
| 56.         | San José River (Lac la Hache) near Wright                 | 44              |
| 27.         | Schkam Creek at Hope.                                     | 32              |
| 54.         | Seton Lake near Lillooet.                                 | 44              |
| 40.         | Shuswap Lake at Salmon Arm                                | 40              |
| 41.         | Shuswap River near Enderby.                               | 40              |
| 38.         | South Thompson River at Chase                             | 40              |
| 18.         | Stave River at Stave Falls.                               | $\frac{26}{26}$ |
| 19.<br>69.  | Stave River near Ruskin. Stellako River near Fort Fraser. | $\frac{20}{52}$ |
| 66.         | Stuart River at Fort St. James.                           | 50              |
| 21.         | Sumas River near Kilgard                                  | 28              |
| <b>~</b> 1. | Thompson River                                            | 20              |
| 29.         |                                                           | 32              |
| 30.         | (1) at Spences Bridge(2) at Ashcroft                      | $\frac{32}{32}$ |
| 31.         | (3) near Savona.                                          | 34              |
| 32.         | (4) below Kamloops                                        | 34              |
|             |                                                           |                 |
| 57.         | Williams Lake at Williams Lake                            | 44              |
| 71.         | Willow River at Willow River                              | 54              |
| 15.         | Yellowhead Lake near Lucerne                              | 26              |
|             |                                                           |                 |

APPENDIX B CIVIC WATER SUPPLIES IN THE FRASER RIVER DRAINAGE BASIN

|                                    | DATA<br>PAGE | Analysis<br>Page |                                    | Data<br>Page | Analysis<br>Page |
|------------------------------------|--------------|------------------|------------------------------------|--------------|------------------|
| Abbotsford*                        | 58           | 74               | Maillardville                      | 65           | 78               |
| Armstrong*                         | 58           | 74               | Maple Ridge District Municipality  | 65           | 79               |
| Ashcroft <sup>a</sup>              | 59           | 74               | Matsqui District Municipality*     | 64           | 79               |
| Beach Grove <sup>a</sup>           | 59           | 74               | McBride <sup>a</sup>               | 64           | 79               |
| Bralorne <sup>a</sup>              | 59           | 74               | Merritta                           | 65           | 79               |
| Bridgeport                         | 58           | 74               | Mission City <sup>a</sup>          | 65           | 79               |
| Brighouse                          | 58           | 74               | Mission District Municipality      | 65           | 79               |
| Burkeville                         | 59           | 74               | Newton Station                     | 66           | 80               |
| Burns Lake <sup>a</sup>            | 59           | 75               | New Westminster                    | 66           | 80               |
| Burnaby                            | 59           | 75               | North Kamloops                     | 67           | 80               |
| Burquitlam                         | 60           | 75               | North Vancouvera                   | 67           | 80               |
| Canoe                              | 60           | 75               | North Vancouver Dis. Municipality  | 67           | 80               |
| Chase <sup>a</sup>                 | 61           |                  | Pitt Meadows District Municipality | 66           | 81               |
| Chilliwack <sup>a</sup>            | 61           | 75               | Port Coquitlam                     | 67           | 81               |
| Chilliwhack District Municipality  | 61           | 75               | Port Mann                          | 66           | 81               |
| Clinton*                           | 60           | 75               | Port Moody                         | 67           | 81               |
| Cloverdale <sup>a</sup>            | 60           | 76               | Prince George*                     | 67           | 81               |
| Coquitlam District Municipality    | 61           | 76               | Quesnel <sup>a</sup>               | 68           | 81               |
| Crescent Beach <sup>a</sup>        | 61           | 76               | Richmond District Municipality     | 69           | 82               |
| Delta District Municipality        | 61           | 76               | Rosedale                           | 68           | 82               |
| East Richmond                      | 62           | 76               | Salmon Arm <sup>a</sup>            | 69           | 82               |
| Eburne                             | 62           | 76               | Salmon Arm District Municipality.  | 69           | 82               |
| Enderby <sup>a</sup>               | 62           | 77               | Sardis                             | 68           | 82               |
| Essondale                          | 63           | 77               | South Westminster                  | 68           | 82               |
| Fraser Mills District Municipality | 63           | 77               | Steveston                          | 69           | 83               |
| Gold Bridge*                       | 63           | 77               | Sunbury                            | 69           | 83               |
| Haney                              | 62           | 77               | Surrey District Municipality       | 69           | 83               |
| Harrison Hot Springs*              | 62           | 77               | Vancouver*                         | 70           | 83               |
| Hope <sup>a</sup>                  | 63           | 77               | Vedder Crossing*                   | 70           | 83               |
| Ioco <sup>a</sup>                  | 63           | _                | Walhachin*                         | 71           |                  |
| Kamloops <sup>a</sup>              | 63           | 78               | Wells*                             | 71           | 84               |
| Kennedy                            | 64           | 78               | West Vancouver Dis. Municipality   | 71           | 84               |
| Ladner                             | 64           | 78               | Whalley                            | 72           | 84               |
| Lillooet <sup>a</sup>              | 64           | 78               | White Rock*                        | 72           | 85               |
| Lytton*                            | 65           | 78               | Williams Lake <sup>a</sup>         | 72           | 85               |

<sup>\*</sup>Communities known to have separate or different sources of supply. \*No organized water system.





#### NOTE

THE LIMITS OF THE ARBITRARY SUBDIVISIONS OF THE FRASER RIVER DRAINAGE BASIN AS SHOWN ON THIS MAP ARE INCORRECT.

THE NORTHERN LIMIT OF THE CENTRAL BASIN LIES ALONG LATITUDE 52° 30°: THE SOUTHERN LIMIT FOLLOWS THE HEIGH 10° LAND NORTH OF THE LILLOGET RIVER, CROSSING THE FRANK RIVER SOUTH OF LYTTON AND THENCE TO THE HEADWATERS OF THE COQUIHALLA RIVER.



Author Thomas, J.F.J. (Dept. Mines & Tech. Surveys.)

Author Thomas, J.F.J. (Dept. Mines & Tech. Surveys.)

Title Water Survey Report Ng.6. Fraser River

Title Drainage Basin, 1950-51.

