

Today's Agenda

Structured linear system

- Tridiagonal
- Diagonally dominant
- Banded

Tridiagonal system

Tridiagonal system

- A tridiagonal matrix is characterized by $a_{ij} = 0$ if $|i j| \ge 2$.
- Memory friendly: $n \times n$ tridiagonal matrix only requires 3n-2 memory locations.
- Naïve Gaussian elimination is used; no need for pivoting!
- Similarly, there is a penta-diagonal system $a_{ij}=0$ if $|i-j|\geq 3$.

Tridiagonal system

$$\begin{bmatrix} d_1 & c_1 & & & & & & \\ a_1 & d_2 & c_2 & & & & \\ & a_2 & d_3 & c_3 & & & & \\ & & \ddots & \ddots & \ddots & & \\ & & & a_{i-1} & d_i & c_i & & \\ & & & & \ddots & \ddots & \\ & & & & a_{n-2} & d_{n-1} & c_{n-1} \\ & & & & & a_{n-1} & d_n \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_i \\ \vdots \\ x_{n-1} \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ \vdots \\ b_i \\ \vdots \\ b_{n-1} \\ b_n \end{bmatrix}$$

$$\begin{cases} d_{i} \leftarrow d_{i} - (a_{i-1}/d_{i-1}) c_{i-1} \\ b_{i} \leftarrow b_{i} - (a_{i-1}/d_{i-1}) b_{i-1} \end{cases} \begin{cases} d_{2} \leftarrow d_{2} - (a_{1}/d_{1}) c_{1} \\ b_{2} \leftarrow b_{2} - (a_{1}/d_{1}) b_{1} \end{cases}$$

After forward elimination

We get an upper-triagonal matrix

$\begin{bmatrix} d_1 & c_1 \\ & d_2 \end{bmatrix}$	c_2 c_2 c_3 c_3		$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \end{bmatrix}$	$\begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ \vdots \end{bmatrix}$
	di	Ci	Xi	$= b_i$
		1. 1.	:	:
		d_{n-1} c_{n-1}	X_{n-1}	b_{n-1}
L		d_n	$\int [x_n]$	$\begin{bmatrix} b_n \end{bmatrix}$

- Note that b, d are changed, but c's are the same.
- Back substitution: $x_n \leftarrow b_n/d_n$

$$x_i \leftarrow (b_i - c_i x_{i+1})/d_i$$
 $(i = n-1, n-2, ..., 1)$

Pseudocode

Function x = Tri(a, d, c, b)

$$\begin{cases} d_i \leftarrow d_i - (a_{i-1}/d_{i-1}) c_{i-1} \\ b_i \leftarrow b_i - (a_{i-1}/d_{i-1}) b_{i-1} \end{cases} (2 \le i \le n)$$

$$x_n \leftarrow b_n/d_n$$

$$x_i \leftarrow (b_i - c_i x_{i+1})/d_i$$
 $(i = n-1, n-2, ..., 1)$

Strictly diagonal dominance

Strictly diagonal matrix

- Since Tri does not involve pivoting, will it fail?
- It is possible to encounter division by zero.
- If the matrix is diagonally dominant, then Tri will succeed.

A general matrix $A = (a_{ij})_{n \times n}$ is strictly diagonally dominant if

$$|a_{ii}| > \sum_{\substack{j=1\\j\neq i}}^{n} |a_{ij}| \qquad (1 \le i \le n)$$

Strictly dominant tridiagonal

For a tridiagonal matrix, strict diagonal dominance means

No need for pivoting

We'll verify that Tri preserves strictly diagonal dominance.

$$\begin{cases} \hat{d}_{1} = d_{1} \\ \hat{d}_{i} = d_{i} - (a_{i-1}/\hat{d}_{i-1})c_{i-1} \end{cases} (2 \le i \le n)$$

If
$$|d_i| > |a_{i-1}| + |c_i|$$
 $(1 \le i \le n)$
then $|\widehat{d}_i| > |c_i|$.

Case study

DALLAS Symmetric tridiagonal system

$$\begin{bmatrix} d_1 & c_1 & & & & & & & \\ c_1 & d_2 & c_2 & & & & & \\ & c_2 & d_3 & c_3 & & & & & \\ & & \ddots & \ddots & \ddots & & & \\ & & c_{i-1} & d_i & c_i & & & \\ & & & \ddots & \ddots & \ddots & \\ & & & c_{n-2} & d_{n-1} & c_{n-1} \\ & & & & c_{n-1} & d_n \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_i \\ \vdots \\ x_{n-1} \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ \vdots \\ b_i \\ \vdots \\ b_{n-1} \\ b_n \end{bmatrix}$$

Penta-diagonal system

```
d_1 c_1 f_1
a_1 d_2 c_2 f_2
e_1 a_2 d_3 c_3 f_3
  e_2 a_3 d_4 c_4 f_4
      e_{i-2} a_{i-1} d_i c_i f_i
              e_{n-2} a_{n-1} d_n
```


Banded system

Poisson equation

u(x,y) = 0 if (x,y) is on the boundary of Omega

Discretization

$$4*U(ij) - U(i-1j) - U(i+1j) - U(ij-1) - U(ij+1) = b(ij)$$

Small-scale example

