Let
$$A_n = (0, \frac{1}{n})$$
, then $A_{n+1} = (0, \frac{1}{n+1})$. As $\frac{1}{n+1} < \frac{1}{n}$ then $A_{n+1} \subset A_n$.

Suppose there is some x that is part of every A_n and it's the smallest such element.

$$0 < x < \frac{1}{n}$$

x would be in form $\frac{1}{k}$, where $k \in (0, n)$. But we could find a number $\frac{1}{2k}$ that is smaller.

$$\frac{1}{2k} < \frac{1}{k}$$

In other words we could find an interval $(0, \frac{1}{2k})$, where x is not a member. But this is contradiction. Hence $\bigcap_{n=1}^{\infty} A_n = \emptyset$. QED.