Relazione di Laboratorio 2 Esperienza A4 A.A. 2023/2024

Luciano Leotta Matricola 556372

05/12/2023

1 Cenni teorici

Lo scopo dell'esperienza è quello di verificale le relazioni funzionali di carica e scarica di un condensatore in un circuito RC in corrente continua. Per la carica si consideri il seguente circuito:

Figure 1: Circuito carica condensatore

Per la seconda legge di Kirchhoff si ha:

$$V_0 = V_R + V_C = Ri(t) + \frac{q(t)}{C}; i(t) = \frac{dq(t)}{dt}$$
(1.1)

$$R\frac{dq}{dt} = V_0 - \frac{q}{C} \tag{1.2}$$

$$\frac{dq}{q - CV_0} = -\frac{dt}{RC} \tag{1.3}$$

Risolvendo l'equazione differenziale a variabili separabili 1.3 si ottiene

$$q(t) = CV_0(1 - e^{-\frac{t}{RC}}) (1.4)$$

Figure 2: Circuito scarica condensatore

Dalla quale si calcola:

$$V_C(t) = \frac{q(t)}{C} = V_0(1 - e^{-\frac{t}{RC}})$$
(1.5)

Per la scarica si consideri il seguente circuito: Si ha:

$$V_C = \frac{q}{C} = V_R = Ri; i = -\frac{dq}{dt}$$

$$\tag{1.6}$$

$$\frac{dq}{dt} = -\frac{q}{RC} \tag{1.7}$$

Risolvendo l'equazione differenziale a variabili separabili 1.7 risulta:

$$q(t) = q_0 e^{-\frac{t}{RC}} \tag{1.8}$$

Ergo:

$$V_C(t) = \frac{q}{C} = \frac{q_0}{C} e^{-\frac{t}{RC}} = V_0 e^{-\frac{t}{RC}}$$
(1.9)

Dunque le relazioni 1.5 e 1.9 descrivono la dipendenza funzionale della differenza di potenziale tra le armature del condensatore dal tempo, rispettivamente per la carica e la scarica. La quantità $\tau=RC$ è chiamato tempo caratteristico.

2 Strumenti e metodo di misura

Per eseguire l'esperimento sono stati utilizzati i seguenti strumenti di misura:

- Resistenze dal valore nominale di 560Ω e 1200Ω
- Condensatore da capacità nominale di $0.2\mu F$
- Oscilloscopio Rigol DS1102e
- Multimetro Proster BM4070
- Generatore di segnali Rigol DG1022
- Diodo
- Sonda

- Cavo BNC-Coccodrillo
- Cavo BNC-BNC
- T-BNC

Si è costruito il seguente circuito:

Figure 3: Circuito realizzato

Si è applicato un segnale ad onda quadra, con frequenza nominale di 50Hz, all'ingresso del circuito e si è utilizzato un diodo al fine di non far passare la semi-onda negativa del segnale. Il circuito cosiffatto permette la carica del condensatore durante la semi-onda positiva del segnale e la scarica durante la negativa. Analizzando tale circuito si osserva che:

$$V_o = V_i \frac{Z_{R_2}||Z_C}{R_1 + Z_{R_2}||Z_C}$$
(2.1)

$$Z_{R_2}||Z_C = \frac{\frac{R_2}{sC}}{R_2 + \frac{1}{sC}} = \frac{R_2}{sCR_2 + 1}; jw \to s$$
 (2.2)

$$\frac{V_o}{V_i} = \frac{\frac{R_2}{sCR_2+1}}{R_1 + \frac{R_2}{sCR_2+1}} = \frac{R_2}{sCR_1R_2 + R_1 + R_2} = \frac{\frac{R_2}{R_1 + R_2}}{sC(R_1||R_2) + 1}$$
(2.3)

$$V_o = \frac{V_i'}{1 + sC(R_1||R_2)}; conV_i' = V_i \frac{R_2}{R_1 + R_2}$$
(2.4)

Dunque per la fase di carica è come se si applicasse il segnale "partizionato" V_i^\prime al circuito serie:

Figure 4: Circuito equivalente in fase di carica

Ergo la costante di tempo di carica risulta:

$$\tau_c = \frac{R_1 R_2}{R_1 + R_2} C \tag{2.5}$$

Per la fase di scarica, poiché il diodo polarizzato inversamente si comporta come un circuito aperto, si ha:

Figure 5: Circuito equivalente scarica

Per cui la costante di tempo di scarica è:

$$\tau_{sc} = R_2 C \tag{2.6}$$

Poiché si è voluto costruire un circuito con $\tau_{sc} \simeq 3\tau_c$, per 2.5 e 2.6, deve aversi $R_2 = 2R_1$. Per effettuare la misura senza alterare le condizioni del circuito si è collegata una sonda ai capi del condensatore. Tramite la sonda si trasferisce il segnale all'oscilloscopio collegando la sonda al canale 2 dell'oscilloscopio, così da poter visualizzare l'andamento di carica e scarica del circuito. Per verificare il corretto funzionamento del circuito è stata sdoppiata l'uscita del generatore di funzioni tramite una T-BNC: Un segnale è stato trasmesso al circuito ed l'altro è stato collegato con un cavo BNC-BNC direttamente al canale 1 dell'oscilloscopio. Al fine di visualizzare correttamente i tempi di carica e scarica è stato impostato un duty cycle dell'onda quadra al 20%. Infine si sono esportati i dati visualizzati dall'oscilloscopio in formato csv. Tale procedimento è stato ripetuto anche per un'onda quadra con frequenza nominale di 90Hz

3 Analisi Dati

Le resistenze utilizzate hanno valori: $R_1 = (551 \pm 4.8)\Omega$ ed $R_2 = (1182.0 \pm 9.7)\Omega$.

Il condensatore utilizzato ha una capacità: $C=(2.110\pm0.073)10^{-7}F$. Le incertezze sulle resistenze e sulla capacità sono state determinate utilizzando le indicazioni fornite dal costruttore del multimetro digitale Proster BM4070 .

Dunque da 2.5 e 2.6 si ha: $\tau_c = (7.93 \pm 0.29)10^{-5}s$; $\tau_{sc} = (2.494 \pm 0.088)10^{-4}s$. Le incertezze sono state calcolate tramite:

$$\Delta \tau_c = \sqrt{\left(\frac{\partial \tau_c}{\partial R_1} \Delta R_1\right)^2 + \left(\frac{\partial \tau_c}{\partial R_2} \Delta R_2\right)^2 + \left(\frac{\partial \tau_c}{\partial C} \Delta C\right)^2}$$
(3.1)

$$\Delta \tau_{sc} = \sqrt{\left(\frac{\partial \tau_{sc}}{\partial R_2} \Delta R_2\right)^2 + \left(\frac{\partial \tau_{sc}}{\partial C} \Delta C\right)^2} = \sqrt{(C\Delta R_2)^2 + (R_2\Delta C)^2}$$
(3.2)

I valori misurati dall'oscilloscopio Rigol ds1102e sono riportati in appendice A. I seguenti grafici sono i rispettivi plot dei dati in A

Grafico

Figure 6: Plot dati con segnale a 50Hz

Figure 7: Plot dati con segnale a 90Hz

Le incertezze sulle misure effettuate dall'oscilloscopio sono state determinate utilizzando le indicazioni fornite dal costruttore nel manuale dello strumento.

Come si può vedere dai grafici 6 e 7, all'inizio V_c aumenta molto rapidamente (fase di carica), successivamente rimane costante (condensatore carico), per poi diminuire (fase di scarica) fino ad arrivare a 0 (condensatore scarico). Poiché la 1.5 vale soltanto durante la carica, si sono considerati solo i valori appartenenti al "ramo" ascendente dei grafici. Tali valori sono:

Carica $50Hz$				
$V_c(V)$	$\Delta V_c(v)$	t(s)	$\Delta t(s)$	
0.004	0.021	0.0000000	0.0000016	
0.052	0.023	0.0000100	0.0000016	
0.060	0.023	0.0000200	0.0000016	
0.104	0.024	0.0000300	0.0000016	
0.108	0.024	0.0000400	0.0000016	
0.144	0.025	0.0000500	0.0000016	
0.152	0.026	0.0000600	0.0000016	
0.176	0.026	0.0000700	0.0000016	
0.176	0.026	0.0000800	0.0000016	
0.200	0.027	0.0000900	0.0000016	
0.204	0.027	0.0001000	0.0000016	
0.220	0.028	0.0001100	0.0000016	
0.224	0.028	0.0001200	0.0000016	
0.240	0.028	0.0001300	0.0000016	
0.240	0.028	0.0001400	0.0000016	
0.252	0.029	0.0001500	0.0000016	
0.252	0.029	0.0001600	0.0000016	
0.264	0.029	0.0001700	0.0000016	
0.264	0.029	0.0001800	0.0000016	
0.272	0.029	0.0001900	0.0000016	
0.276	0.029	0.0002000	0.0000016	
0.280	0.029	0.0002100	0.0000016	
0.280	0.029	0.0002200	0.0000016	
0.288	0.030	0.0002300	0.0000016	
0.288	0.030	0.0002400	0.0000016	
0.292	0.030	0.0002500	0.0000016	
0.292	0.030	0.0002600	0.0000016	
0.296	0.030	0.0002700	0.0000016	
0.296	0.030	0.0002800	0.0000016	
0.300	0.030	0.0002900	0.0000016	
0.300	0.030	0.0003000	0.0000016	
0.304	0.030	0.0003100	0.0000016	
0.300	0.030	0.0003200	0.0000016	
0.304	0.030	0.0003300	0.0000016	
0.304	0.030	0.0003400	0.0000016	
0.308	0.030	0.0003500	0.0000016	
0.304	0.030	0.0003600	0.0000016	
0.308	0.030	0.0003700	0.0000016	
0.308	0.030	0.0003800	0.0000016	
0.304	0.030	0.0003900	0.0000016	

Carica 50Hz				
$V_c(V)$	$\Delta V_c(v)$	t(s)	$\Delta t(s)$	
0.308	0.030	0.0004000	0.0000016	
0.312	0.030	0.0004100	0.0000016	
0.308	0.030	0.0004200	0.0000016	
0.312	0.030	0.0004300	0.0000016	
0.308	0.030	0.0004400	0.0000016	
0.312	0.030	0.0004500	0.0000016	
0.312	0.030	0.0004600	0.0000016	
0.308	0.030	0.0004700	0.0000016	
0.312	0.030	0.0004800	0.0000016	
0.312	0.030	0.0004900	0.0000016	
0.312	0.030	0.0005000	0.0000016	
0.308	0.030	0.0005100	0.0000016	
0.312	0.030	0.0005200	0.0000016	
0.308	0.030	0.0005300	0.0000016	
0.312	0.030	0.0005400	0.0000016	
0.316	0.030	0.0005500	0.0000016	
0.312	0.030	0.0005600	0.0000016	
0.316	0.030	0.0005700	0.0000016	
0.312	0.030	0.0005800	0.0000016	
0.312	0.030	0.0005900	0.0000016	
0.312	0.030	0.0006000	0.0000016	
0.316	0.030	0.0006100	0.0000016	
0.316	0.030	0.0006200	0.0000016	
0.312	0.030	0.0006300	0.0000016	
0.312	0.030	0.0006400	0.0000016	
0.316	0.030	0.0006500	0.0000016	

Figure 8: Plot dati carica con segnale a 50 Hz

Carica 90Hz				
$V_c(V)$	$\Delta V_c(v)$	t(s)	$\Delta t(s)$	
0.004	0.021	0.0000000	0.0000016	
0.052	0.023	0.0000100	0.0000016	
0.056	0.023	0.0000200	0.0000016	
0.104	0.024	0.0000300	0.0000016	
0.104	0.024	0.0000400	0.0000016	
0.144	0.025	0.0000500	0.0000016	
0.148	0.025	0.0000600	0.0000016	
0.176	0.026	0.0000700	0.0000016	
0.176	0.026	0.0000800	0.0000016	
0.200	0.027	0.0000900	0.0000016	
0.200	0.027	0.0001000	0.0000016	
0.220	0.028	0.0001100	0.0000016	
0.224	0.028	0.0001200	0.0000016	
0.240	0.028	0.0001300	0.0000016	
0.240	0.028	0.0001400	0.0000016	
0.252	0.029	0.0001500	0.0000016	
0.252	0.029	0.0001600	0.0000016	
0.260	0.029	0.0001700	0.0000016	
0.264	0.029	0.0001800	0.0000016	
0.272	0.029	0.0001900	0.0000016	
0.272	0.029	0.0002000	0.0000016	
0.280	0.029	0.0002100	0.0000016	
0.276	0.029	0.0002200	0.0000016	
0.288	0.030	0.0002300	0.0000016	
0.288	0.030	0.0002400	0.0000016	
0.292	0.030	0.0002500	0.0000016	
0.292	0.030	0.0002600	0.0000016	
0.296	0.030	0.0002700	0.0000016	
0.296	0.030	0.0002800	0.0000016	
0.300	0.030	0.0002900	0.0000016	
0.300	0.030	0.0003000	0.0000016	
0.304	0.030	0.0003100	0.0000016	
0.300	0.030	0.0003200	0.0000016	
0.304	0.030	0.0003300	0.0000016	
0.304	0.030	0.0003400	0.0000016	
0.308	0.030	0.0003500	0.0000016	
0.304	0.030	0.0003600	0.0000016	
0.308	0.030	0.0003700	0.0000016	
0.308	0.030	0.0003800	0.0000016	
0.308	0.030	0.0003900	0.0000016	

Carica $90Hz$					
$V_c(V)$	$\Delta V_c(v)$	t(s)	$\Delta t(s)$		
0.308	0.030	0.0004000	0.0000016		
0.312 0.030 0.0004100 0.0000016					

Figure 9: Plot dati carica con segnale a 90Hz

Per la scarica sono stati considerati, quindi, solo i valori appartenenti al "ramo" discendente dei grafici, i quali sono:

Scarica $50Hz$				Scar	ica 50 <i>H</i>	z	
$V_c(V)$	$\Delta V_c(v)$	t(s)	$\Delta t(s)$	$V_c(V)$	$\Delta V_c(v)$	t(s)	$\Delta t(s)$
0.3160	0.0305	0.0039600	0.0000017	0.0720	0.0232	0.0043600	0.0000018
0.3120	0.0304	0.0039700	0.0000017	0.0680	0.0230	0.0043700	0.0000018
0.3160	0.0305	0.0039800	0.0000017	0.0680	0.0230	0.0043800	0.0000018
0.3120	0.0304	0.0039900	0.0000017	0.0640	0.0229	0.0043900	0.0000018
0.3160	0.0305	0.0040000	0.0000018	0.0640	0.0229	0.0044000	0.0000018
0.2760	0.0293	0.0040100	0.0000018	0.0560	0.0227	0.0044100	0.0000018
0.2720	0.0292	0.0040200	0.0000018	0.0560	0.0227	0.0044200	0.0000018
0.2560	0.0287	0.0040300	0.0000018	0.0520	0.0226	0.0044300	0.0000018
0.2520	0.0286	0.0040400	0.0000018	0.0520	0.0226	0.0044400	0.0000018
0.2360	0.0281	0.0040500	0.0000018	0.0520	0.0226	0.0044500	0.0000018
0.2320	0.0280	0.0040600	0.0000018	0.0520	0.0226	0.0044600	0.0000018
0.2160	0.0275	0.0040700	0.0000018	0.0440	0.0223	0.0044700	0.0000018
0.2120	0.0274	0.0040800	0.0000018	0.0480	0.0224	0.0044800	0.0000018
0.2000	0.0270	0.0040900	0.0000018	0.0400	0.0222	0.0044900	0.0000018
0.2000	0.0270	0.0041000	0.0000018	0.0440	0.0223	0.0045000	0.0000018
0.1800	0.0264	0.0041100	0.0000018	0.0400	0.0222	0.0045100	0.0000018
0.1800	0.0264	0.0041200	0.0000018	0.0400	0.0222	0.0045200	0.0000018
0.1760	0.0263	0.0041300	0.0000018	0.0360	0.0221	0.0045300	0.0000018
0.1720	0.0262	0.0041400	0.0000018	0.0360	0.0221	0.0045400	0.0000018
0.1600	0.0258	0.0041500	0.0000018	0.0320	0.0220	0.0045500	0.0000018
0.1600	0.0258	0.0041600	0.0000018	0.0360	0.0221	0.0045600	0.0000018
0.1480	0.0254	0.0041700	0.0000018	0.0320	0.0220	0.0045700	0.0000018
0.1480	0.0254	0.0041800	0.0000018	0.0320	0.0220	0.0045800	0.0000018
0.1360	0.0251	0.0041900	0.0000018	0.0280	0.0218	0.0045900	0.0000018
0.1360	0.0251	0.0042000	0.0000018	0.0320	0.0220	0.0046000	0.0000018
0.1240	0.0247	0.0042100	0.0000018	0.0240	0.0217	0.0046100	0.0000018
0.1240	0.0247	0.0042200	0.0000018	0.0280	0.0218	0.0046200	0.0000018
0.1160	0.0245	0.0042300	0.0000018	0.0240	0.0217	0.0046300	0.0000018
0.1160	0.0245	0.0042400	0.0000018	0.0280	0.0218	0.0046400	0.0000018
0.1080	0.0242	0.0042500	0.0000018	0.0240	0.0217	0.0046500	0.0000018
0.1080	0.0242	0.0042600	0.0000018	0.0240	0.0217	0.0046600	0.0000018
0.1000	0.0240	0.0042700	0.0000018	0.0240	0.0217	0.0046700	0.0000018
0.1000	0.0240	0.0042800	0.0000018	0.0240	0.0217	0.0046800	0.0000018
0.0880	0.0236	0.0042900	0.0000018	0.0200	0.0216	0.0046900	0.0000018
0.0920	0.0238	0.0043000	0.0000018	0.0200	0.0216	0.0047000	0.0000018
0.0840	0.0235	0.0043100	0.0000018	0.0200	0.0216	0.0047100	0.0000018
0.0840	0.0235	0.0043200	0.0000018	0.0200	0.0216	0.0047200	0.0000018
0.0800	0.0234	0.0043300	0.0000018	0.0160	0.0215	0.0047300	0.0000018
0.0800	0.0234	0.0043400	0.0000018	0.0160	0.0215	0.0047400	0.0000018
0.0720	0.0232	0.0043500	0.0000018	0.0200	0.0216	0.0047500	0.0000018

Scarica $50Hz$				
$V_c(V)$	$\Delta V_c(v)$	t(s)	$\Delta t(s)$	
0.0200	0.0216	0.0047600	0.0000018	
0.0160	0.0215	0.0047700	0.0000018	
0.0160	0.0215	0.0047800	0.0000018	
0.0120	0.0214	0.0047900	0.0000018	
0.0120	0.0214	0.0048000	0.0000018	
0.0160	0.0215	0.0048100	0.0000018	
0.0120	0.0214	0.0048200	0.0000018	
0.0080	0.0212	0.0048300	0.0000018	
0.0120	0.0214	0.0048400	0.0000018	
0.0080	0.0212	0.0048500	0.0000018	
0.0120	0.0214	0.0048600	0.0000018	
0.0080	0.0212	0.0048700	0.0000018	
0.0120	0.0214	0.0048800	0.0000018	
0.0080	0.0212	0.0048900	0.0000018	
0.0120	0.0214	0.0049000	0.0000018	
0.0080	0.0212	0.0049100	0.0000018	
0.0080	0.0212	0.0049200	0.0000018	
0.0080	0.0212	0.0049300	0.0000018	
0.0080	0.0212	0.0049400	0.0000018	
0.0080	0.0212	0.0049500	0.0000018	
0.0080	0.0212	0.0049600	0.0000018	

Figure 10: Plot dati scarica con segnale a 50 Hz

Scarica 90Hz		Scarica 90Hz					
$V_c(V)$	$\Delta V_c(v)$	t(s)	$\Delta t(s)$	$V_c(V)$	$\Delta V_c(v)$	t(s)	$\Delta t(s)$
0.316	0.030	0.0022100	0.0000017	0.060	0.023	0.0026100	0.0000017
0.316	0.030	0.0022200	0.0000017	0.064	0.023	0.0026200	0.0000017
0.280	0.029	0.0022300	0.0000017	0.056	0.023	0.0026300	0.0000017
0.276	0.029	0.0022400	0.0000017	0.052	0.023	0.0026400	0.0000017
0.256	0.029	0.0022500	0.0000017	0.056	0.023	0.0026500	0.0000017
0.256	0.029	0.0022600	0.0000017	0.052	0.023	0.0026600	0.0000017
0.236	0.028	0.0022700	0.0000017	0.052	0.023	0.0026700	0.0000017
0.236	0.028	0.0022800	0.0000017	0.052	0.023	0.0026800	0.0000017
0.220	0.028	0.0022900	0.0000017	0.044	0.022	0.0026900	0.0000017
0.220	0.028	0.0023000	0.0000017	0.048	0.022	0.0027000	0.0000017
0.204	0.027	0.0023100	0.0000017	0.040	0.022	0.0027100	0.0000017
0.200	0.027	0.0023200	0.0000017	0.044	0.022	0.0027200	0.0000017
0.184	0.027	0.0023300	0.0000017	0.040	0.022	0.0027300	0.0000017
0.184	0.027	0.0023400	0.0000017	0.040	0.022	0.0027400	0.0000017
0.176	0.026	0.0023500	0.0000017	0.036	0.022	0.0027500	0.0000017
0.176	0.026	0.0023600	0.0000017	0.040	0.022	0.0027600	0.0000017
0.164	0.026	0.0023700	0.0000017	0.036	0.022	0.0027700	0.0000017
0.164	0.026	0.0023800	0.0000017	0.036	0.022	0.0027800	0.0000017
0.152	0.026	0.0023900	0.0000017	0.036	0.022	0.0027900	0.0000017
0.152	0.026	0.0024000	0.0000017	0.032	0.022	0.0028000	0.0000017
0.140	0.025	0.0024100	0.0000017	0.028	0.022	0.0028100	0.0000017
0.136	0.025	0.0024200	0.0000017	0.028	0.022	0.0028200	0.0000017
0.128	0.025	0.0024300	0.0000017	0.032	0.022	0.0028300	0.0000017
0.128	0.025	0.0024400	0.0000017	0.028	0.022	0.0028400	0.0000017
0.116	0.024	0.0024500	0.0000017	0.024	0.022	0.0028500	0.0000017
0.116	0.024	0.0024600	0.0000017	0.028	0.022	0.0028600	0.0000017
0.112	0.024	0.0024700	0.0000017	0.024	0.022	0.0028700	0.0000017
0.112	0.024	0.0024800	0.0000017	0.024	0.022	0.0028800	0.0000017
0.100	0.024	0.0024900	0.0000017	0.020	0.022	0.0028900	0.0000017
0.100	0.024	0.0025000	0.0000017	0.024	0.022	0.0029000	0.0000017
0.096	0.024	0.0025100	0.0000017	0.020	0.022	0.0029100	0.0000017
0.092	0.024	0.0025200	0.0000017	0.020	0.022	0.0029200	0.0000017
0.088	0.024	0.0025300	0.0000017	0.020	0.022	0.0029300	0.0000017
0.088	0.024	0.0025400	0.0000017	0.020	0.022	0.0029400	0.0000017
0.080	0.023	0.0025500	0.0000017	0.016	0.021	0.0029500	0.0000017
0.080	0.023	0.0025600	0.0000017	0.020	0.022	0.0029600	0.0000017
0.076	0.023	0.0025700	0.0000017	0.016	0.021	0.0029700	0.0000017
0.076	0.023	0.0025800	0.0000017	0.020	0.022	0.0029800	0.0000017
0.068	0.023	0.0025900	0.0000017	0.016	0.021	0.0029900	0.0000017
0.072	0.023	0.0026000	0.0000017	0.016	0.021	0.0030000	0.0000017

Figure 11: Plot dati scarica con segnale a 90Hz

3.1 Best fit

La procedura di best fit che è stata utilizzata per l'analisi dei dati è basata sulla minimizzazione del χ^2 così definito:

$$\chi^{2} = \sum_{i=1}^{N} \frac{(y_{i} - F(x_{i}))^{2}}{\sigma_{y_{i}}^{2} + (\frac{\partial F(x_{i})}{\partial x} \sigma_{x_{i}})^{2}}$$
(3.3)

dove gli y_i sono i valori della variabile dipendente misurata, gli $F(x_i)$ sono i valori previsti dal modello nella sua forma funzionale (cioè dipendenti dai parametri che si desidera trovare), gli x_i sono i valori misurati della variabile indipendente, i σ_{y_i} sono gli errori associati alla variabile dipendente, i σ_{x_i} sono gli errori associati alla variabile indipendente ed N il numero di valori su cui si sta effettuando la procedura di best fit.

Per la verifica della relazione 1.5 è stata effettuata una procedura di best fit sul seguente

modello:

$$Y = e^{MX} (3.4)$$

con $Y = \frac{V_0 - V_C}{V_0}$; X = t ed $M = -\frac{1}{RC}$. Le incertezze su Y sono state determinate tramite:

$$\Delta Y = \sqrt{\left(\frac{\partial Y}{\partial V_C} \Delta V_C\right)^2 + \left(\frac{\partial Y}{\partial V_0} \Delta V_0\right)^2} = \sqrt{\left(\frac{\Delta V_C}{V_0}\right)^2 + \left(\frac{V_C \Delta V_0}{V_0^2}\right)^2}$$
(3.5)

T	T • .	\sim .	$rac{r}{}$
I)atı	H'11.	Carica	501 <i>H 2</i>

Y	ΔY	X(s)	$\Delta X(s)$
0.987	0.067	0.0000000	0.0000016
0.835	0.007	0.0000100	0.0000016
0.810	0.074	0.0000200	0.0000016
0.671	0.083	0.0000300	0.0000016
0.658	0.083	0.0000400	0.0000016
0.544	0.091	0.0000500	0.0000016
0.519	0.093	0.0000600	0.0000016
0.443	0.099	0.0000700	0.0000016
0.443	0.099	0.0000800	0.0000016
0.367	0.105	0.0000900	0.0000016
0.354	0.106	0.0001000	0.0000016
0.304	0.110	0.0001100	0.0000016
0.291	0.111	0.0001200	0.0000016
0.241	0.115	0.0001300	0.0000016
0.241	0.115	0.0001400	0.0000016
0.203	0.119	0.0001500	0.0000016
0.203	0.119	0.0001600	0.0000016
0.165	0.122	0.0001700	0.0000016
0.165	0.122	0.0001800	0.0000016
0.139	0.124	0.0001900	0.0000016
0.127	0.125	0.0002000	0.0000016
0.114	0.126	0.0002100	0.0000016
0.114	0.126	0.0002200	0.0000016
0.089	0.129	0.0002300	0.0000016
0.089	0.129	0.0002400	0.0000016
0.076	0.130	0.0002500	0.0000016
0.076	0.130	0.0002600	0.0000016
0.063	0.131	0.0002700	0.0000016
0.063	0.131	0.0002800	0.0000016
0.051	0.132	0.0002900	0.0000016
0.051	0.132	0.0003000	0.0000016
0.038	0.133	0.0003100	0.0000016
0.051	0.132	0.0003200	0.0000016
0.038	0.133	0.0003300	0.0000016
0.038	0.133	0.0003400	0.0000016
0.025	0.134	0.0003500	0.0000016
0.038	0.133	0.0003600	0.0000016
0.025	0.134	0.0003700	0.0000016
0.025	0.134	0.0003800	0.0000016
0.038	0.133	0.0003900	0.0000016

Dati Fit Carica 50Hz

Y	ΔY	X(s)	$\Delta X(s)$
0.025	0.134	0.0004000	0.0000016
0.013	0.135	0.0004100	0.0000016
0.025	0.134	0.0004200	0.0000016
0.013	0.135	0.0004300	0.0000016
0.025	0.134	0.0004400	0.0000016
0.013	0.135	0.0004500	0.0000016
0.013	0.135	0.0004600	0.0000016
0.025	0.134	0.0004700	0.0000016
0.013	0.135	0.0004800	0.0000016
0.013	0.135	0.0004900	0.0000016
0.013	0.135	0.0005000	0.0000016
0.025	0.134	0.0005100	0.0000016
0.013	0.135	0.0005200	0.0000016
0.025	0.134	0.0005300	0.0000016
0.013	0.135	0.0005400	0.0000016
0.000	0.136	0.0005500	0.0000016
0.013	0.135	0.0005600	0.0000016
0.000	0.136	0.0005700	0.0000016
0.013	0.135	0.0005800	0.0000016
0.013	0.135	0.0005900	0.0000016
0.013	0.135	0.0006000	0.0000016
0.000	0.136	0.0006100	0.0000016
0.000	0.136	0.0006200	0.0000016
0.013	0.135	0.0006300	0.0000016
0.013	0.135	0.0006400	0.0000016
0.000	0.136	0.0006500	0.0000016

Fit Carica 50 hz

Figure 12: Plot dati fit carica 50 Hz

Fit Carica 50 hz

Figure 13: Best fit carica 50 Hz

Da	ti Fit	Carica	90Hz
Y	ΔY	X(s)	$\Delta X(s)$
0.9872	0.0677	0.0000000	0.0000016
0.8333	0.0723	0.0000100	0.0000016
0.8205	0.0727	0.0000200	0.0000016
0.6667	0.0773	0.0000300	0.0000016
0.6667	0.0773	0.0000400	0.0000016
0.5385	0.0812	0.0000500	0.0000016
0.5256	0.0815	0.0000600	0.0000016
0.4359	0.0842	0.0000700	0.0000016
0.4359	0.0842	0.0000800	0.0000016
0.3590	0.0865	0.0000900	0.0000016
0.3590	0.0865	0.0001000	0.0000016
0.2949	0.0885	0.0001100	0.0000016
0.2821	0.0888	0.0001200	0.0000016
0.2308	0.0904	0.0001300	0.0000016
0.2308	0.0904	0.0001400	0.0000016
0.1923	0.0915	0.0001500	0.0000016
0.1923	0.0915	0.0001600	0.0000016
0.1667	0.0923	0.0001700	0.0000016
0.1538	0.0927	0.0001800	0.0000016
0.1282	0.0935	0.0001900	0.0000016
0.1282	0.0935	0.0002000	0.0000016
0.1026	0.0942	0.0002100	0.0000016
0.1154	0.0938	0.0002200	0.0000016
0.0769	0.0950	0.0002300	0.0000016
0.0769	0.0950	0.0002400	0.0000016
0.0641	0.0954	0.0002500	0.0000016
0.0641	0.0954	0.0002600	0.0000016
0.0513	0.0958	0.0002700	0.0000016
0.0513	0.0958	0.0002800	0.0000016
0.0385	0.0962	0.0002900	0.0000016
0.0385	0.0962	0.0003000	0.0000016
0.0256	0.0965	0.0003100	0.0000016
0.0385	0.0962	0.0003200	0.0000016
0.0256	0.0965	0.0003300	0.0000016
0.0256	0.0965	0.0003400	0.0000016
0.0128	0.0969	0.0003500	0.0000016
0.0256	0.0965	0.0003600	0.0000016
0.0128	0.0969	0.0003700	0.0000016
0.0128	0.0969	0.0003800	0.0000016
0.0128	0.0969	0.0003900	0.0000016

Dati Fit Carica $90Hz$				
Y	ΔY	X(s)	$\Delta X(s)$	
0.0128	0.0969	0.0004000	0.0000016	
0.0000	0.0973	0.0004100	0.0000016	

Fit Carica 90 hz

Figure 14: Plot dati fit carica 90Hz

Fit Carica 90 hz

Figure 15: Best fit carica 90Hz

La procedura di best fit ha prodotto:

- $M=(-1.080\pm0.078)10^4s^{-1}$; per la carica a 50Hz
- $M = (-1.090 \pm 0.065)10^4 s^{-1}$; per la carica 90Hz

Per la verifica di 1.9 è stato utilizzato il modello:

$$Y = e^{MX} (3.6)$$

con $Y = \frac{V_C}{V_0}$; X = t ed $M = -\frac{1}{RC}$. Gli errori associati a Y sono stati calcolati tramite 3.5. Inoltre è stata eseguita una traslazione sui valori delle X al fine di "far iniziare" la scarica al tempo t = 0. Tale operazione, essendo una semplice elaborazione numerica, non collegata al processo di misura, non è stata considerata per la propagazione dell'errore.

Dat	ti Fit	Scarica	a 50 <i>Hz</i>	Dat	ti Fit	Scarica	a 50Hz
\overline{Y}	ΔY	X(s)	$\Delta X(s)$	Y	ΔY	X(s)	$\Delta X(s)$
1.000	0.136	0.0000000	0.0000017	0.228	0.077	0.0004000	0.0000018
0.987	0.135	0.0000100	0.0000017	0.215	0.076	0.0004100	0.0000018
1.000	0.136	0.0000200	0.0000017	0.215	0.076	0.0004200	0.0000018
0.987	0.135	0.0000300	0.0000017	0.203	0.075	0.0004300	0.0000018
1.000	0.136	0.0000400	0.0000018	0.203	0.075	0.0004400	0.0000018
0.873	0.125	0.0000500	0.0000018	0.177	0.074	0.0004500	0.0000018
0.861	0.124	0.0000600	0.0000018	0.177	0.074	0.0004600	0.0000018
0.810	0.120	0.0000700	0.0000018	0.165	0.073	0.0004700	0.0000018
0.797	0.119	0.0000800	0.0000018	0.165	0.073	0.0004800	0.0000018
0.747	0.114	0.0000900	0.0000018	0.165	0.073	0.0004900	0.0000018
0.734	0.113	0.0001000	0.0000018	0.165	0.073	0.0005000	0.0000018
0.684	0.109	0.0001100	0.0000018	0.139	0.072	0.0005100	0.0000018
0.671	0.108	0.0001200	0.0000018	0.152	0.073	0.0005200	0.0000018
0.633	0.105	0.0001300	0.0000018	0.127	0.071	0.0005300	0.0000018
0.633	0.105	0.0001400	0.0000018	0.139	0.072	0.0005400	0.0000018
0.570	0.100	0.0001500	0.0000018	0.127	0.071	0.0005500	0.0000018
0.570	0.100	0.0001600	0.0000018	0.127	0.071	0.0005600	0.0000018
0.557	0.099	0.0001700	0.0000018	0.114	0.071	0.0005700	0.0000018
0.544	0.098	0.0001800	0.0000018	0.114	0.071	0.0005800	0.0000018
0.506	0.095	0.0001900	0.0000018	0.101	0.070	0.0005900	0.0000018
0.506	0.095	0.0002000	0.0000018	0.114	0.071	0.0006000	0.0000018
0.468	0.092	0.0002100	0.0000018	0.101	0.070	0.0006100	0.0000018
0.468	0.092	0.0002200	0.0000018	0.101	0.070	0.0006200	0.0000018
0.430	0.090	0.0002300	0.0000018	0.089	0.070	0.0006300	0.0000018
0.430	0.090	0.0002400	0.0000018	0.101	0.070	0.0006400	0.0000018
0.392	0.087	0.0002500	0.0000018	0.076	0.069	0.0006500	0.0000018
0.392	0.087	0.0002600	0.0000018	0.089	0.070	0.0006600	0.0000018
0.367	0.085	0.0002700	0.0000018	0.076	0.069	0.0006700	0.0000018
0.367	0.085	0.0002800	0.0000018	0.089	0.070	0.0006800	0.0000018
0.342	0.083	0.0002900	0.0000018	0.076	0.069	0.0006900	0.0000018
0.342	0.083	0.0003000	0.0000018	0.076	0.069	0.0007000	0.0000018
0.316	0.082	0.0003100	0.0000018	0.076	0.069	0.0007100	0.0000018
0.316	0.082	0.0003200	0.0000018	0.076	0.069	0.0007200	0.0000018
0.278	0.079	0.0003300	0.0000018	0.063	0.069	0.0007300	0.0000018
0.291	0.080	0.0003400	0.0000018	0.063	0.069	0.0007400	0.0000018
0.266	0.079	0.0003500	0.0000018	0.063	0.069	0.0007500	0.0000018
0.266	0.079	0.0003600	0.0000018	0.063	0.069	0.0007600	0.0000018
0.253	0.078	0.0003700	0.0000018	0.051	0.068	0.0007700	0.0000018
0.253	0.078	0.0003800	0.0000018	0.051	0.068	0.0007800	0.0000018
0.228	0.077	0.0003900	0.0000018	0.063	0.069	0.0007900	0.0000018

Dati Fit Scarica $50Hz$									
Y	ΔY	X(s)	$\Delta X(s)$						
0.063	0.069	0.0008000	0.0000018						
0.051	0.068	0.0008100	0.0000018						
0.051	0.068	0.0008200	0.0000018						
0.038	0.068	0.0008300	0.0000018						
0.038	0.068	0.0008400	0.0000018						
0.051	0.068	0.0008500	0.0000018						
0.038	0.068	0.0008600	0.0000018						
0.025	0.067	0.0008700	0.0000018						
0.038	0.068	0.0008800	0.0000018						
0.025	0.067	0.0008900	0.0000018						
0.038	0.068	0.0009000	0.0000018						
0.025	0.067	0.0009100	0.0000018						
0.038	0.068	0.0009200	0.0000018						
0.025	0.067	0.0009300	0.0000018						
0.038	0.068	0.0009400	0.0000018						
0.025	0.067	0.0009500	0.0000018						
0.025	0.067	0.0009600	0.0000018						
0.025	0.067	0.0009700	0.0000018						
0.025	0.067	0.0009800	0.0000018						
0.025	0.067	0.0009900	0.0000018						
0.025	0.067	0.0010000	0.0000018						

Fit Scarica 50 hz

Figure 16: Plot dati fit scarica 50 Hz

Fit Scarica 50 hz

Figure 17: Best fit scarica 50Hz

Dat	ti Fit	Scarica	90 <i>Hz</i>	Dat	ti Fit	Scarica	90Hz
Y	ΔY	X(s)	$\Delta X(s)$	Y	ΔY	X(s)	$\Delta X(s)$
1.0000	0.1364	0.0000000	0.0000017	0.1899	0.0744	0.0004000	0.0000017
1.0000	0.1364	0.0000100	0.0000017	0.2025	0.0751	0.0004100	0.0000017
0.8861	0.1263	0.0000200	0.0000017	0.1772	0.0738	0.0004200	0.0000017
0.8734	0.1252	0.0000300	0.0000017	0.1646	0.0731	0.0004300	0.0000017
0.8101	0.1198	0.0000400	0.0000017	0.1772	0.0738	0.0004400	0.0000017
0.8101	0.1198	0.0000500	0.0000017	0.1646	0.0731	0.0004500	0.0000017
0.7468	0.1144	0.0000600	0.0000017	0.1646	0.0731	0.0004600	0.0000017
0.7468	0.1144	0.0000700	0.0000017	0.1646	0.0731	0.0004700	0.0000017
0.6962	0.1102	0.0000800	0.0000017	0.1392	0.0719	0.0004800	0.0000017
0.6962	0.1102	0.0000900	0.0000017	0.1519	0.0725	0.0004900	0.0000017
0.6456	0.1060	0.0001000	0.0000017	0.1266	0.0713	0.0005000	0.0000017
0.6329	0.1050	0.0001100	0.0000017	0.1392	0.0719	0.0005100	0.0000017
0.5823	0.1010	0.0001200	0.0000017	0.1266	0.0713	0.0005200	0.0000017
0.5823	0.1010	0.0001300	0.0000017	0.1266	0.0713	0.0005300	0.0000017
0.5570	0.0990	0.0001400	0.0000017	0.1139	0.0707	0.0005400	0.0000017
0.5570	0.0990	0.0001500	0.0000017	0.1266	0.0713	0.0005500	0.0000017
0.5190	0.0961	0.0001600	0.0000017	0.1139	0.0707	0.0005600	0.0000017
0.5190	0.0961	0.0001700	0.0000017	0.1139	0.0707	0.0005700	0.0000017
0.4810	0.0932	0.0001800	0.0000017	0.1139	0.0707	0.0005800	0.0000017
0.4810	0.0932	0.0001900	0.0000017	0.1013	0.0702	0.0005900	0.0000017
0.4430	0.0905	0.0002000	0.0000017	0.0886	0.0696	0.0006000	0.0000017
0.4304	0.0896	0.0002100	0.0000017	0.0886	0.0696	0.0006100	0.0000017
0.4051	0.0878	0.0002200	0.0000017	0.1013	0.0702	0.0006200	0.0000017
0.4051	0.0878	0.0002300	0.0000017	0.0886	0.0696	0.0006300	0.0000017
0.3671	0.0852	0.0002400	0.0000017	0.0759	0.0691	0.0006400	0.0000017
0.3671	0.0852	0.0002500	0.0000017	0.0886	0.0696	0.0006500	0.0000017
0.3544	0.0843	0.0002600	0.0000017	0.0759	0.0691	0.0006600	0.0000017
0.3544	0.0843	0.0002700	0.0000017	0.0759	0.0691	0.0006700	0.0000017
0.3165	0.0819	0.0002800	0.0000017	0.0633	0.0686	0.0006800	0.0000017
0.3165	0.0819	0.0002900	0.0000017	0.0759	0.0691	0.0006900	0.0000017
0.3038	0.0811	0.0003000	0.0000017	0.0633	0.0686	0.0007000	0.0000017
0.2911	0.0803	0.0003100	0.0000017	0.0633	0.0686	0.0007100	0.0000017
0.2785	0.0795	0.0003200	0.0000017	0.0633	0.0686	0.0007200	0.0000017
0.2785	0.0795	0.0003300	0.0000017	0.0633	0.0686	0.0007300	0.0000017
0.2532	0.0780	0.0003400	0.0000017	0.0506	0.0681	0.0007400	0.0000017
0.2532	0.0780	0.0003500	0.0000017	0.0633	0.0686	0.0007500	0.0000017
0.2405	0.0772	0.0003600	0.0000017	0.0506	0.0681	0.0007600	0.0000017
0.2405	0.0772	0.0003700	0.0000017	0.0633	0.0686	0.0007700	0.0000017
0.2152	0.0758	0.0003800	0.0000017	0.0506	0.0681	0.0007800	0.0000017
0.2278	0.0765	0.0003900	0.0000017	0.0506	0.0681	0.0007900	0.0000017

Fit Scarica 90 hz

Figure 18: Plot dati fit scarica 90 Hz

Fit Scarica 90 hz

Figure 19: Best fit scarica 90Hz

La procedura di best fit ha prodotto:

- $M = (-3.66 \pm 0.11)10^3 s^{-1}$; scarica a 50 Hz
- $M = (-3.98 \pm 0.13)10^2 s^{-1}$; scarica a 90Hz

4 Conclusioni

Dai valori dei coefficienti M ottenuti dal best fit è possibile ricavare τ tramite:

$$\tau_{fit} = -\frac{1}{M} \tag{4.1}$$

La cui incertezza è:

$$\Delta \tau_{fit} = \sqrt{\left(\frac{\partial \tau_{fit}}{\partial M} \Delta M\right)^2} = \frac{\Delta M}{M^2} \tag{4.2}$$

Dunque si ha:

- Per la carica a 50Hz; $\tau_{fit} = (9.28 \pm 0.67)10^{-5}s$
- Per la scarica a 50Hz; $\tau_{fit} = (2.731 \pm 0.084)10^{-4}s$
- Per la carica a 90Hz; $\tau_{fit}(9.14 \pm 0.54)10^{-5}s$
- Per la scarica a 90Hz; $\tau_{fit} = (2.514 \pm 0.083)10^{-4}s$

Considerando i τ attesi $(7.93\pm0.29)10^{-5}s$ e $\tau_{sc}=(2.494\pm0.088)10^{-4}s$, si evince che i valori di τ di scarica, ottenuti tramite best fit, risultano conformi al valore teorico atteso. I valori di τ di carica, calcolati con il best fit, risultano conformi tra di loro ma differenti dal valore previsto. Vi è uno scarto minimo (calcolato considerando il massimo errore possibile per il τ teorico e il minimo errore possibile per i τ ottenuti dal best fit) di circa $9.62*10^{-6}s$. Tale discrepanza, non essendo presente per la fase di scarica, è plausibile che possa essere stata causata da una resistenza spuria dovuta ai contatti non ottimali tra il generatore di segnale e il circuito usato per eseguire l'esperimento.

Appendix A Dati Oscilloscopio

Le incertezze sulle misure effettuate dall'oscilloscopio sono state determinate utilizzando le indicazioni fornite dal costruttore nel manuale dello strumento.

	Dati segnale $50Hz$					Dati segnale $50Hz$				
N.	$V_c(V)$	$\Delta V_c(v)$	t(s)	$\Delta t(s)$	N.	$V_c(V)$	$\Delta V_c(v)$	t(s)	$\Delta t(s)$	
1	0.0040	0.0211	-0.0007600	0.0000015	41	0.0040	0.0211	-0.0003600	0.0000016	
2	0.0000	0.0210	-0.0007500	0.0000015	42	0.0000	0.0210	-0.0003500	0.0000016	
3	0.0040	0.0211	-0.0007400	0.0000015	43	0.0040	0.0211	-0.0003400	0.0000016	
4	0.0000	0.0210	-0.0007300	0.0000015	44	0.0000	0.0210	-0.0003300	0.0000016	
5	0.0040	0.0211	-0.0007200	0.0000015	45	0.0040	0.0211	-0.0003200	0.0000016	
6	0.0000	0.0210	-0.0007100	0.0000015	46	0.0000	0.0210	-0.0003100	0.0000016	
7	0.0000	0.0210	-0.0007000	0.0000015	47	0.0040	0.0211	-0.0003000	0.0000016	
8	0.0040	0.0211	-0.0006900	0.0000015	48	0.0040	0.0211	-0.0002900	0.0000016	
9	0.0040	0.0211	-0.0006800	0.0000015	49	0.0040	0.0211	-0.0002800	0.0000016	
10	0.0000	0.0210	-0.0006700	0.0000015	50	0.0000	0.0210	-0.0002700	0.0000016	
11	0.0000	0.0210	-0.0006600	0.0000015	51	0.0040	0.0211	-0.0002600	0.0000016	
12	0.0040	0.0211	-0.0006500	0.0000015	52	0.0000	0.0210	-0.0002500	0.0000016	
13	0.0040	0.0211	-0.0006400	0.0000015	53	0.0040	0.0211	-0.0002400	0.0000016	
14	0.0000	0.0210	-0.0006300	0.0000015	54	0.0000	0.0210	-0.0002300	0.0000016	
15	0.0040	0.0211	-0.0006200	0.0000015	55	0.0040	0.0211	-0.0002200	0.0000016	
16	0.0000	0.0210	-0.0006100	0.0000015	56	0.0040	0.0211	-0.0002100	0.0000016	
17	0.0040	0.0211	-0.0006000	0.0000015	57	0.0040	0.0211	-0.0002000	0.0000016	
18	0.0000	0.0210	-0.0005900	0.0000015	58	0.0000	0.0210	-0.0001900	0.0000016	
19	0.0040	0.0211	-0.0005800	0.0000015	59	0.0040	0.0211	-0.0001800	0.0000016	
20	0.0000	0.0210	-0.0005700	0.0000015	60	0.0000	0.0210	-0.0001700	0.0000016	
21	0.0000	0.0210	-0.0005600	0.0000015	61	0.0000	0.0210	-0.0001600	0.0000016	
22	0.0040	0.0211	-0.0005500	0.0000015	62	0.0040	0.0211	-0.0001500	0.0000016	
23	0.0040	0.0211	-0.0005400	0.0000015	63	0.0040	0.0211	-0.0001400	0.0000016	
24	0.0000	0.0210	-0.0005300	0.0000015	64	0.0000	0.0210	-0.0001300	0.0000016	
25	0.0040	0.0211	-0.0005200	0.0000015	65	0.0040	0.0211	-0.0001200	0.0000016	
26	0.0040	0.0211	-0.0005100	0.0000015	66	0.0000	0.0210	-0.0001100	0.0000016	
27	0.0040	0.0211	-0.0005000	0.0000015	67	0.0040	0.0211	-0.0001000	0.0000016	
28	0.0000	0.0210	-0.0004900	0.0000015	68	0.0000	0.0210	-0.0000900	0.0000016	
29	0.0040	0.0211	-0.0004800	0.0000015	69	0.0040	0.0211	-0.0000800	0.0000016	
30	0.0000	0.0210	-0.0004700	0.0000015	70	0.0040	0.0211	-0.0000700	0.0000016	
31	0.0040	0.0211	-0.0004600	0.0000015	71	0.0040	0.0211	-0.0000600	0.0000016	
32	0.0000	0.0210	-0.0004500	0.0000015	72	0.0000	0.0210	-0.0000500	0.0000016	
33	0.0040	0.0211	-0.0004400	0.0000015	73	0.0040	0.0211	-0.0000400	0.0000016	
34	0.0000	0.0210	-0.0004300	0.0000015	74	0.0000	0.0210	-0.0000300	0.0000016	
35	0.0040	0.0211	-0.0004200	0.0000015	75	0.0000	0.0210	-0.0000200	0.0000016	
36	0.0000	0.0210	-0.0004100	0.0000015	76	0.0040	0.0211	-0.0000100	0.0000016	
37	0.0000	0.0210	-0.0004000	0.0000016	77	0.0040	0.0211	0.0000000	0.0000016	
38	0.0040	0.0211	-0.0003900	0.0000016	78	0.0520	0.0226	0.0000100	0.0000016	
39	0.0040	0.0211	-0.0003800	0.0000016	79	0.0600	0.0228	0.0000200	0.0000016	
40	0.0040	0.0211	-0.0003700	0.0000016	80	0.1040	0.0241	0.0000300	0.0000016	

	Dat	ti segı	nale 50 <i>E</i>	Iz	Dati segnale $50Hz$				
N.	$V_c(V)$	$\Delta V_c(v)$	t(s)	$\Delta t(s)$	N.	$V_c(V)$	$\Delta V_c(v)$	t(s)	$\Delta t(s)$
81	0.1080	0.0242	0.0000400	0.0000016	121	0.3080	0.0302	0.0004400	0.0000016
82	0.1440	0.0253	0.0000500	0.0000016	122	0.3120	0.0304	0.0004500	0.0000016
83	0.1520	0.0256	0.0000600	0.0000016	123	0.3120	0.0304	0.0004600	0.0000016
84	0.1760	0.0263	0.0000700	0.0000016	124	0.3080	0.0302	0.0004700	0.0000016
85	0.1760	0.0263	0.0000800	0.0000016	125	0.3120	0.0304	0.0004800	0.0000016
86	0.2000	0.0270	0.0000900	0.0000016	126	0.3120	0.0304	0.0004900	0.0000016
87	0.2040	0.0271	0.0001000	0.0000016	127	0.3120	0.0304	0.0005000	0.0000016
88	0.2200	0.0276	0.0001100	0.0000016	128	0.3080	0.0302	0.0005100	0.0000016
89	0.2240	0.0277	0.0001200	0.0000016	129	0.3120	0.0304	0.0005200	0.0000016
90	0.2400	0.0282	0.0001300	0.0000016	130	0.3080	0.0302	0.0005300	0.0000016
91	0.2400	0.0282	0.0001400	0.0000016	131	0.3120	0.0304	0.0005400	0.0000016
92	0.2520	0.0286	0.0001500	0.0000016	132	0.3160	0.0305	0.0005500	0.0000016
93	0.2520	0.0286	0.0001600	0.0000016	133	0.3120	0.0304	0.0005600	0.0000016
94	0.2640	0.0289	0.0001700	0.0000016	134	0.3160	0.0305	0.0005700	0.0000016
95	0.2640	0.0289	0.0001800	0.0000016	135	0.3120	0.0304	0.0005800	0.0000016
96	0.2720	0.0292	0.0001900	0.0000016	136	0.3120	0.0304	0.0005900	0.0000016
97	0.2760	0.0293	0.0002000	0.0000016	137	0.3120	0.0304	0.0006000	0.0000016
98	0.2800	0.0294	0.0002100	0.0000016	138	0.3160	0.0305	0.0006100	0.0000016
99	0.2800	0.0294	0.0002200	0.0000016	139	0.3160	0.0305	0.0006200	0.0000016
100	0.2880	0.0296	0.0002300	0.0000016	140	0.3120	0.0304	0.0006300	0.0000016
101	0.2880	0.0296	0.0002400	0.0000016	141	0.3120	0.0304	0.0006400	0.0000016
102	0.2920	0.0298	0.0002500	0.0000016	142	0.3160	0.0305	0.0006500	0.0000016
103	0.2920	0.0298	0.0002600	0.0000016	143	0.3120	0.0304	0.0006600	0.0000016
104	0.2960	0.0299	0.0002700	0.0000016	144	0.3160	0.0305	0.0006700	0.0000016
105	0.2960	0.0299	0.0002800	0.0000016	145	0.3160	0.0305	0.0006800	0.0000016
106	0.3000	0.0300	0.0002900	0.0000016	146	0.3120	0.0304	0.0006900	0.0000016
107	0.3000	0.0300	0.0003000	0.0000016	147	0.3080	0.0302	0.0007000	0.0000016
108	0.3040	0.0301	0.0003100	0.0000016	148	0.3160	0.0305	0.0007100	0.0000016
109	0.3000	0.0300	0.0003200	0.0000016	149	0.3160	0.0305	0.0007200	0.0000016
110	0.3040	0.0301	0.0003300	0.0000016	150	0.3120	0.0304	0.0007300	0.0000016
111	0.3040	0.0301	0.0003400	0.0000016	151	0.3120	0.0304	0.0007400	0.0000016
112	0.3080	0.0302	0.0003500	0.0000016	152	0.3160	0.0305	0.0007500	0.0000016
113	0.3040	0.0301	0.0003600	0.0000016	153	0.3160	0.0305	0.0007600	0.0000016
114	0.3080	0.0302	0.0003700	0.0000016	154	0.3120	0.0304	0.0007700	0.0000016
115	0.3080	0.0302	0.0003800	0.0000016	155	0.3120	0.0304	0.0007800	0.0000016
116	0.3040	0.0301	0.0003900	0.0000016	156	0.3160	0.0305	0.0007900	0.0000016
117	0.3080	0.0302	0.0004000	0.0000016	157	0.3160	0.0305	0.0008000	0.0000016
118	0.3120	0.0304	0.0004100	0.0000016	158	0.3120	0.0304	0.0008100	0.0000016
119	0.3080	0.0302	0.0004200	0.0000016	159	0.3120	0.0304	0.0008200	0.0000016
120	0.3120	0.0304	0.0004300	0.0000016	160	0.3160	0.0305	0.0008300	0.0000016

	Dat	ti segı	nale 50 <i>E</i>	Iz	Dati segnale $50Hz$				
N.	$V_c(V)$	$\Delta V_c(v)$	t(s)	$\Delta t(s)$	N.	$V_c(V)$	$\Delta V_c(v)$	t(s)	$\Delta t(s)$
161	0.3120	0.0304	0.0008400	0.0000016	201	0.3160	0.0305	0.0012400	0.0000016
162	0.3200	0.0306	0.0008500	0.0000016	202	0.3120	0.0304	0.0012500	0.0000016
163	0.3160	0.0305	0.0008600	0.0000016	203	0.3160	0.0305	0.0012600	0.0000016
164	0.3120	0.0304	0.0008700	0.0000016	204	0.3120	0.0304	0.0012700	0.0000016
165	0.3160	0.0305	0.0008800	0.0000016	205	0.3160	0.0305	0.0012800	0.0000016
166	0.3120	0.0304	0.0008900	0.0000016	206	0.3120	0.0304	0.0012900	0.0000016
167	0.3120	0.0304	0.0009000	0.0000016	207	0.3160	0.0305	0.0013000	0.0000016
168	0.3160	0.0305	0.0009100	0.0000016	208	0.3120	0.0304	0.0013100	0.0000016
169	0.3160	0.0305	0.0009200	0.0000016	209	0.3160	0.0305	0.0013200	0.0000016
170	0.3120	0.0304	0.0009300	0.0000016	210	0.3080	0.0302	0.0013300	0.0000016
171	0.3160	0.0305	0.0009400	0.0000016	211	0.3160	0.0305	0.0013400	0.0000016
172	0.3200	0.0306	0.0009500	0.0000016	212	0.3160	0.0305	0.0013500	0.0000016
173	0.3160	0.0305	0.0009600	0.0000016	213	0.3120	0.0304	0.0013600	0.0000016
174	0.3120	0.0304	0.0009700	0.0000016	214	0.3200	0.0306	0.0013700	0.0000016
175	0.3120	0.0304	0.0009800	0.0000016	215	0.3160	0.0305	0.0013800	0.0000016
176	0.3200	0.0306	0.0009900	0.0000016	216	0.3120	0.0304	0.0013900	0.0000016
177	0.3160	0.0305	0.0010000	0.0000016	217	0.3200	0.0306	0.0014000	0.0000016
178	0.3120	0.0304	0.0010100	0.0000016	218	0.3120	0.0304	0.0014100	0.0000016
179	0.3160	0.0305	0.0010200	0.0000016	219	0.3160	0.0305	0.0014200	0.0000016
180	0.3160	0.0305	0.0010300	0.0000016	220	0.3120	0.0304	0.0014300	0.0000016
181	0.3120	0.0304	0.0010400	0.0000016	221	0.3160	0.0305	0.0014400	0.0000016
182	0.3160	0.0305	0.0010500	0.0000016	222	0.3200	0.0306	0.0014500	0.0000016
183	0.3160	0.0305	0.0010600	0.0000016	223	0.3120	0.0304	0.0014600	0.0000016
184	0.3120	0.0304	0.0010700	0.0000016	224	0.3200	0.0306	0.0014700	0.0000016
185	0.3160	0.0305	0.0010800	0.0000016	225	0.3160	0.0305	0.0014800	0.0000016
186	0.3120	0.0304	0.0010900	0.0000016	226	0.3120	0.0304	0.0014900	0.0000016
187	0.3160	0.0305	0.0011000	0.0000016	227	0.3160	0.0305	0.0015000	0.0000016
188	0.3120	0.0304	0.0011100	0.0000016	228	0.3160	0.0305	0.0015100	0.0000016
189	0.3120	0.0304	0.0011200	0.0000016	229	0.3120	0.0304	0.0015200	0.0000016
190	0.3160	0.0305	0.0011300	0.0000016	230	0.3200	0.0306	0.0015300	0.0000016
191	0.3120	0.0304	0.0011400	0.0000016	231	0.3160	0.0305	0.0015400	0.0000016
192	0.3160	0.0305	0.0011500	0.0000016	232	0.3160	0.0305	0.0015500	0.0000016
193	0.3160	0.0305	0.0011600	0.0000016	233	0.3120	0.0304	0.0015600	0.0000016
194	0.3120	0.0304	0.0011700	0.0000016	234	0.3160	0.0305	0.0015700	0.0000016
195	0.3160	0.0305	0.0011800	0.0000016	235	0.3160	0.0305	0.0015800	0.0000016
196	0.3120	0.0304	0.0011900	0.0000016	236	0.3120	0.0304	0.0015900	0.0000016
197	0.3160	0.0305	0.0012000	0.0000016	237	0.3160	0.0305	0.0016000	0.0000016
198	0.3120	0.0304	0.0012100	0.0000016	238	0.3120	0.0304	0.0016100	0.0000016
199	0.3120	0.0304	0.0012200	0.0000016	239	0.3160	0.0305	0.0016200	0.0000016
200	0.3160	0.0305	0.0012300	0.0000016	240	0.3120	0.0304	0.0016300	0.0000016

	Dat	ti segı	nale 50 <i>E</i>	Iz	Dati segnale $50Hz$				
N.	$V_c(V)$	$\Delta V_c(v)$	t(s)	$\Delta t(s)$	N.	$V_c(V)$	$\Delta V_c(v)$	t(s)	$\Delta t(s)$
241	0.3160	0.0305	0.0016400	0.0000016	281	0.3160	0.0305	0.0020400	0.0000016
242	0.3120	0.0304	0.0016500	0.0000016	282	0.3160	0.0305	0.0020500	0.0000016
243	0.3160	0.0305	0.0016600	0.0000016	283	0.3160	0.0305	0.0020600	0.0000016
244	0.3160	0.0305	0.0016700	0.0000016	284	0.3160	0.0305	0.0020700	0.0000016
245	0.3120	0.0304	0.0016800	0.0000016	285	0.3160	0.0305	0.0020800	0.0000016
246	0.3160	0.0305	0.0016900	0.0000016	286	0.3160	0.0305	0.0020900	0.0000016
247	0.3160	0.0305	0.0017000	0.0000016	287	0.3160	0.0305	0.0021000	0.0000016
248	0.3120	0.0304	0.0017100	0.0000016	288	0.3160	0.0305	0.0021100	0.0000016
249	0.3200	0.0306	0.0017200	0.0000016	289	0.3160	0.0305	0.0021200	0.0000016
250	0.3120	0.0304	0.0017300	0.0000016	290	0.3120	0.0304	0.0021300	0.0000016
251	0.3120	0.0304	0.0017400	0.0000016	291	0.3160	0.0305	0.0021400	0.0000016
252	0.3160	0.0305	0.0017500	0.0000016	292	0.3200	0.0306	0.0021500	0.0000016
253	0.3160	0.0305	0.0017600	0.0000016	293	0.3160	0.0305	0.0021600	0.0000016
254	0.3120	0.0304	0.0017700	0.0000016	294	0.3120	0.0304	0.0021700	0.0000016
255	0.3160	0.0305	0.0017800	0.0000016	295	0.3160	0.0305	0.0021800	0.0000016
256	0.3160	0.0305	0.0017900	0.0000016	296	0.3120	0.0304	0.0021900	0.0000016
257	0.3160	0.0305	0.0018000	0.0000016	297	0.3160	0.0305	0.0022000	0.0000016
258	0.3160	0.0305	0.0018100	0.0000016	298	0.3160	0.0305	0.0022100	0.0000016
259	0.3160	0.0305	0.0018200	0.0000016	299	0.3120	0.0304	0.0022200	0.0000016
260	0.3120	0.0304	0.0018300	0.0000016	300	0.3160	0.0305	0.0022300	0.0000016
261	0.3160	0.0305	0.0018400	0.0000016	301	0.3160	0.0305	0.0022400	0.0000016
262	0.3120	0.0304	0.0018500	0.0000016	302	0.3160	0.0305	0.0022500	0.0000016
263	0.3160	0.0305	0.0018600	0.0000016	303	0.3160	0.0305	0.0022600	0.0000016
264	0.3160	0.0305	0.0018700	0.0000016	304	0.3160	0.0305	0.0022700	0.0000016
265	0.3160	0.0305	0.0018800	0.0000016	305	0.3160	0.0305	0.0022800	0.0000016
266	0.3160	0.0305	0.0018900	0.0000016	306	0.3160	0.0305	0.0022900	0.0000016
267	0.3120	0.0304	0.0019000	0.0000016	307	0.3160	0.0305	0.0023000	0.0000016
268	0.3200	0.0306	0.0019100	0.0000016	308	0.3120	0.0304	0.0023100	0.0000016
269	0.3120	0.0304	0.0019200	0.0000016	309	0.3160	0.0305	0.0023200	0.0000016
270	0.3200	0.0306	0.0019300	0.0000016	310	0.3160	0.0305	0.0023300	0.0000016
271	0.3160	0.0305	0.0019400	0.0000016	311	0.3160	0.0305	0.0023400	0.0000016
272	0.3120	0.0304	0.0019500	0.0000016	312	0.3160	0.0305	0.0023500	0.0000016
273	0.3160	0.0305	0.0019600	0.0000016	313	0.3160	0.0305	0.0023600	0.0000016
274	0.3160	0.0305	0.0019700	0.0000016	314	0.3120	0.0304	0.0023700	0.0000016
275	0.3160	0.0305	0.0019800	0.0000016	315	0.3120	0.0304	0.0023800	0.0000016
276	0.3120	0.0304	0.0019900	0.0000016	316	0.3200	0.0306	0.0023900	0.0000016
277	0.3160	0.0305	0.0020000	0.0000016	317	0.3160	0.0305	0.0024000	0.0000016
278	0.3120	0.0304	0.0020100	0.0000016	318	0.3160	0.0305	0.0024100	0.0000016
279	0.3160	0.0305	0.0020200	0.0000016	319	0.3160	0.0305	0.0024200	0.0000016
280	0.3160	0.0305	0.0020300	0.0000016	320	0.3160	0.0305	0.0024300	0.0000016

	Dat	ti segı	nale 50 <i>E</i>	Iz	Dati segnale $50Hz$				
N.	$V_c(V)$	$\Delta V_c(v)$	t(s)	$\Delta t(s)$	N.	$V_c(V)$	$\Delta V_c(v)$	t(s)	$\Delta t(s)$
321	0.3160	0.0305	0.0024400	0.0000016	361	0.3160	0.0305	0.0028400	0.0000016
322	0.3160	0.0305	0.0024500	0.0000016	362	0.3200	0.0306	0.0028500	0.0000016
323	0.3160	0.0305	0.0024600	0.0000016	363	0.3160	0.0305	0.0028600	0.0000016
324	0.3200	0.0306	0.0024700	0.0000016	364	0.3160	0.0305	0.0028700	0.0000016
325	0.3160	0.0305	0.0024800	0.0000016	365	0.3160	0.0305	0.0028800	0.0000016
326	0.3160	0.0305	0.0024900	0.0000016	366	0.3160	0.0305	0.0028900	0.0000016
327	0.3160	0.0305	0.0025000	0.0000016	367	0.3160	0.0305	0.0029000	0.0000016
328	0.3160	0.0305	0.0025100	0.0000016	368	0.3120	0.0304	0.0029100	0.0000016
329	0.3120	0.0304	0.0025200	0.0000016	369	0.3200	0.0306	0.0029200	0.0000016
330	0.3200	0.0306	0.0025300	0.0000016	370	0.3120	0.0304	0.0029300	0.0000016
331	0.3160	0.0305	0.0025400	0.0000016	371	0.3200	0.0306	0.0029400	0.0000016
332	0.3160	0.0305	0.0025500	0.0000016	372	0.3120	0.0304	0.0029500	0.0000016
333	0.3120	0.0304	0.0025600	0.0000016	373	0.3160	0.0305	0.0029600	0.0000016
334	0.3200	0.0306	0.0025700	0.0000016	374	0.3160	0.0305	0.0029700	0.0000016
335	0.3160	0.0305	0.0025800	0.0000016	375	0.3120	0.0304	0.0029800	0.0000016
336	0.3120	0.0304	0.0025900	0.0000016	376	0.3200	0.0306	0.0029900	0.0000016
337	0.3160	0.0305	0.0026000	0.0000016	377	0.3160	0.0305	0.0030000	0.0000016
338	0.3200	0.0306	0.0026100	0.0000016	378	0.3160	0.0305	0.0030100	0.0000016
339	0.3160	0.0305	0.0026200	0.0000016	379	0.3160	0.0305	0.0030200	0.0000016
340	0.3160	0.0305	0.0026300	0.0000016	380	0.3120	0.0304	0.0030300	0.0000016
341	0.3120	0.0304	0.0026400	0.0000016	381	0.3160	0.0305	0.0030400	0.0000016
342	0.3200	0.0306	0.0026500	0.0000016	382	0.3160	0.0305	0.0030500	0.0000016
343	0.3160	0.0305	0.0026600	0.0000016	383	0.3160	0.0305	0.0030600	0.0000016
344	0.3120	0.0304	0.0026700	0.0000016	384	0.3160	0.0305	0.0030700	0.0000016
345	0.3160	0.0305	0.0026800	0.0000016	385	0.3160	0.0305	0.0030800	0.0000016
346	0.3160	0.0305	0.0026900	0.0000016	386	0.3160	0.0305	0.0030900	0.0000016
347	0.3160	0.0305	0.0027000	0.0000016	387	0.3200	0.0306	0.0031000	0.0000016
348	0.3160	0.0305	0.0027100	0.0000016	388	0.3160	0.0305	0.0031100	0.0000016
349	0.3160	0.0305	0.0027200	0.0000016	389	0.3160	0.0305	0.0031200	0.0000016
350	0.3160	0.0305	0.0027300	0.0000016	390	0.3120	0.0304	0.0031300	0.0000016
351	0.3160	0.0305	0.0027400	0.0000016	391	0.3160	0.0305	0.0031400	0.0000016
352	0.3120	0.0304	0.0027500	0.0000016	392	0.3200	0.0306	0.0031500	0.0000016
353	0.3160	0.0305	0.0027600	0.0000016	393	0.3160	0.0305	0.0031600	0.0000016
354	0.3120	0.0304	0.0027700	0.0000016	394	0.3200	0.0306	0.0031700	0.0000016
355	0.3160	0.0305	0.0027800	0.0000016	395	0.3160	0.0305	0.0031800	0.0000016
356	0.3120	0.0304	0.0027900	0.0000016	396	0.3160	0.0305	0.0031900	0.0000016
357	0.3120	0.0304	0.0028000	0.0000016	397	0.3200	0.0306	0.0032000	0.0000016
358	0.3200	0.0306	0.0028100	0.0000016	398	0.3120	0.0304	0.0032100	0.0000016
359	0.3200	0.0306	0.0028200	0.0000016	399	0.3160	0.0305	0.0032200	0.0000016
360	0.3120	0.0304	0.0028300	0.0000016	400	0.3200	0.0306	0.0032300	0.0000016

	Dat	ti segı	nale 50 <i>E</i>	Iz	Dati segnale $50Hz$				
N.	$V_c(V)$	$\Delta V_c(v)$	t(s)	$\Delta t(s)$	N.	$V_c(V)$	$\Delta V_c(v)$	t(s)	$\Delta t(s)$
401	0.3160	0.0305	0.0032400	0.0000016	441	0.3160	0.0305	0.0036400	0.0000016
402	0.3160	0.0305	0.0032500	0.0000016	442	0.3200	0.0306	0.0036500	0.0000016
403	0.3160	0.0305	0.0032600	0.0000016	443	0.3160	0.0305	0.0036600	0.0000016
404	0.3160	0.0305	0.0032700	0.0000016	444	0.3200	0.0306	0.0036700	0.0000016
405	0.3200	0.0306	0.0032800	0.0000016	445	0.3160	0.0305	0.0036800	0.0000016
406	0.3120	0.0304	0.0032900	0.0000016	446	0.3160	0.0305	0.0036900	0.0000016
407	0.3160	0.0305	0.0033000	0.0000016	447	0.3120	0.0304	0.0037000	0.0000016
408	0.3160	0.0305	0.0033100	0.0000016	448	0.3160	0.0305	0.0037100	0.0000016
409	0.3160	0.0305	0.0033200	0.0000016	449	0.3160	0.0305	0.0037200	0.0000016
410	0.3160	0.0305	0.0033300	0.0000016	450	0.3160	0.0305	0.0037300	0.0000016
411	0.3160	0.0305	0.0033400	0.0000016	451	0.3160	0.0305	0.0037400	0.0000016
412	0.3120	0.0304	0.0033500	0.0000016	452	0.3120	0.0304	0.0037500	0.0000016
413	0.3160	0.0305	0.0033600	0.0000016	453	0.3120	0.0304	0.0037600	0.0000016
414	0.3160	0.0305	0.0033700	0.0000016	454	0.3200	0.0306	0.0037700	0.0000016
415	0.3160	0.0305	0.0033800	0.0000016	455	0.3200	0.0306	0.0037800	0.0000016
416	0.3120	0.0304	0.0033900	0.0000016	456	0.3120	0.0304	0.0037900	0.0000016
417	0.3160	0.0305	0.0034000	0.0000016	457	0.3160	0.0305	0.0038000	0.0000016
418	0.3120	0.0304	0.0034100	0.0000016	458	0.3120	0.0304	0.0038100	0.0000016
419	0.3160	0.0305	0.0034200	0.0000016	459	0.3160	0.0305	0.0038200	0.0000016
420	0.3120	0.0304	0.0034300	0.0000016	460	0.3160	0.0305	0.0038300	0.0000016
421	0.3200	0.0306	0.0034400	0.0000016	461	0.3160	0.0305	0.0038400	0.0000016
422	0.3120	0.0304	0.0034500	0.0000016	462	0.3120	0.0304	0.0038500	0.0000016
423	0.3120	0.0304	0.0034600	0.0000016	463	0.3160	0.0305	0.0038600	0.0000016
424	0.3160	0.0305	0.0034700	0.0000016	464	0.3120	0.0304	0.0038700	0.0000016
425	0.3200	0.0306	0.0034800	0.0000016	465	0.3160	0.0305	0.0038800	0.0000016
426	0.3160	0.0305	0.0034900	0.0000016	466	0.3160	0.0305	0.0038900	0.0000016
427	0.3160	0.0305	0.0035000	0.0000016	467	0.3160	0.0305	0.0039000	0.0000016
428	0.3120	0.0304	0.0035100	0.0000016	468	0.3160	0.0305	0.0039100	0.0000016
429	0.3160	0.0305	0.0035200	0.0000016	469	0.3160	0.0305	0.0039200	0.0000016
430	0.3200	0.0306	0.0035300	0.0000016	470	0.3120	0.0304	0.0039300	0.0000016
431	0.3160	0.0305	0.0035400	0.0000016	471	0.3160	0.0305	0.0039400	0.0000016
432	0.3120	0.0304	0.0035500	0.0000016	472	0.3160	0.0305	0.0039500	0.0000016
433	0.3200	0.0306	0.0035600	0.0000016	473	0.3160	0.0305	0.0039600	0.0000016
434	0.3120	0.0304	0.0035700	0.0000016	474	0.3120	0.0304	0.0039700	0.0000016
435	0.3160	0.0305	0.0035800	0.0000016	475	0.3160	0.0305	0.0039800	0.0000016
436	0.3120	0.0304	0.0035900	0.0000016	476	0.3120	0.0304	0.0039900	0.0000016
437	0.3160	0.0305	0.0036000	0.0000016	477	0.3160	0.0305	0.0040000	0.0000016
438	0.3160	0.0305	0.0036100	0.0000016	478	0.2760	0.0293	0.0040100	0.0000016
439	0.3160	0.0305	0.0036200	0.0000016	479	0.2720	0.0292	0.0040200	0.0000016
440	0.3160	0.0305	0.0036300	0.0000016	480	0.2560	0.0287	0.0040300	0.0000016

	Dat	ti segı	nale 50 <i>E</i>	Iz	Dati segnale $50Hz$				
N.	$V_c(V)$	$\Delta V_c(v)$	t(s)	$\Delta t(s)$	N.	$V_c(V)$	$\Delta V_c(v)$	t(s)	$\Delta t(s)$
481	0.2520	0.0286	0.0040400	0.0000016	521	0.0520	0.0226	0.0044400	0.0000016
482	0.2360	0.0281	0.0040500	0.0000016	522	0.0520	0.0226	0.0044500	0.0000016
483	0.2320	0.0280	0.0040600	0.0000016	523	0.0520	0.0226	0.0044600	0.0000016
484	0.2160	0.0275	0.0040700	0.0000016	524	0.0440	0.0223	0.0044700	0.0000016
485	0.2120	0.0274	0.0040800	0.0000016	525	0.0480	0.0224	0.0044800	0.0000016
486	0.2000	0.0270	0.0040900	0.0000016	526	0.0400	0.0222	0.0044900	0.0000016
487	0.2000	0.0270	0.0041000	0.0000016	527	0.0440	0.0223	0.0045000	0.0000016
488	0.1800	0.0264	0.0041100	0.0000016	528	0.0400	0.0222	0.0045100	0.0000016
489	0.1800	0.0264	0.0041200	0.0000016	529	0.0400	0.0222	0.0045200	0.0000016
490	0.1760	0.0263	0.0041300	0.0000016	530	0.0360	0.0221	0.0045300	0.0000016
491	0.1720	0.0262	0.0041400	0.0000016	531	0.0360	0.0221	0.0045400	0.0000016
492	0.1600	0.0258	0.0041500	0.0000016	532	0.0320	0.0220	0.0045500	0.0000016
493	0.1600	0.0258	0.0041600	0.0000016	533	0.0360	0.0221	0.0045600	0.0000016
494	0.1480	0.0254	0.0041700	0.0000016	534	0.0320	0.0220	0.0045700	0.0000016
495	0.1480	0.0254	0.0041800	0.0000016	535	0.0320	0.0220	0.0045800	0.0000016
496	0.1360	0.0251	0.0041900	0.0000016	536	0.0280	0.0218	0.0045900	0.0000016
497	0.1360	0.0251	0.0042000	0.0000016	537	0.0320	0.0220	0.0046000	0.0000016
498	0.1240	0.0247	0.0042100	0.0000016	538	0.0240	0.0217	0.0046100	0.0000016
499	0.1240	0.0247	0.0042200	0.0000016	539	0.0280	0.0218	0.0046200	0.0000016
500	0.1160	0.0245	0.0042300	0.0000016	540	0.0240	0.0217	0.0046300	0.0000016
501	0.1160	0.0245	0.0042400	0.0000016	541	0.0280	0.0218	0.0046400	0.0000016
502	0.1080	0.0242	0.0042500	0.0000016	542	0.0240	0.0217	0.0046500	0.0000016
503	0.1080	0.0242	0.0042600	0.0000016	543	0.0240	0.0217	0.0046600	0.0000016
504	0.1000	0.0240	0.0042700	0.0000016	544	0.0240	0.0217	0.0046700	0.0000016
505	0.1000	0.0240	0.0042800	0.0000016	545	0.0240	0.0217	0.0046800	0.0000016
506	0.0880	0.0236	0.0042900	0.0000016	546	0.0200	0.0216	0.0046900	0.0000016
507	0.0920	0.0238	0.0043000	0.0000016	547	0.0200	0.0216	0.0047000	0.0000016
508	0.0840	0.0235	0.0043100	0.0000016	548	0.0200	0.0216	0.0047100	0.0000016
509	0.0840	0.0235	0.0043200	0.0000016	549	0.0200	0.0216	0.0047200	0.0000016
510	0.0800	0.0234	0.0043300	0.0000016	550	0.0160	0.0215	0.0047300	0.0000016
511	0.0800	0.0234	0.0043400	0.0000016	551	0.0160	0.0215	0.0047400	0.0000016
512	0.0720	0.0232	0.0043500	0.0000016	552	0.0200	0.0216	0.0047500	0.0000016
513	0.0720	0.0232	0.0043600	0.0000016	553	0.0200	0.0216	0.0047600	0.0000016
514	0.0680	0.0230	0.0043700	0.0000016	554	0.0160	0.0215	0.0047700	0.0000016
515	0.0680	0.0230	0.0043800	0.0000016	555	0.0160	0.0215	0.0047800	0.0000016
516	0.0640	0.0229	0.0043900	0.0000016	556	0.0120	0.0214	0.0047900	0.0000016
517	0.0640	0.0229	0.0044000	0.0000016	557	0.0120	0.0214	0.0048000	0.0000016
518	0.0560	0.0227	0.0044100	0.0000016	558	0.0160	0.0215	0.0048100	0.0000016
519	0.0560	0.0227	0.0044200	0.0000016	559	0.0120	0.0214	0.0048200	0.0000016
520	0.0520	0.0226	0.0044300	0.0000016	560	0.0080	0.0212	0.0048300	0.0000016

Dati segnale !	50Hz
----------------	------

N.	$V_c(V)$	$\Delta V_c(v)$	t(s)	$\Delta t(s)$
561	0.0120	0.0214	0.0048400	0.0000016
562	0.0080	0.0212	0.0048500	0.0000016
563	0.0120	0.0214	0.0048600	0.0000016
564	0.0080	0.0212	0.0048700	0.0000016
565	0.0120	0.0214	0.0048800	0.0000016
566	0.0080	0.0212	0.0048900	0.0000016
567	0.0120	0.0214	0.0049000	0.0000016
568	0.0080	0.0212	0.0049100	0.0000016
569	0.0080	0.0212	0.0049200	0.0000016
570	0.0080	0.0212	0.0049300	0.0000016
571	0.0080	0.0212	0.0049400	0.0000016
572	0.0080	0.0212	0.0049500	0.0000016
573	0.0080	0.0212	0.0049600	0.0000016
574	0.0080	0.0212	0.0049700	0.0000016
575	0.0080	0.0212	0.0049800	0.0000016
576	0.0080	0.0212	0.0049900	0.0000016
577	0.0080	0.0212	0.0050000	0.0000016
578	0.0040	0.0211	0.0050100	0.0000016
579	0.0080	0.0212	0.0050200	0.0000016
580	0.0040	0.0211	0.0050300	0.0000016
581	0.0040	0.0211	0.0050400	0.0000016
582	0.0080	0.0212	0.0050500	0.0000016
583	0.0080	0.0212	0.0050600	0.0000016
584	0.0040	0.0211	0.0050700	0.0000016
585	0.0080	0.0212	0.0050800	0.0000016
586	0.0040	0.0211	0.0050900	0.0000016
587	0.0080	0.0212	0.0051000	0.0000016
588	0.0040	0.0211	0.0051100	0.0000016
589	0.0040	0.0211	0.0051200	0.0000016
590	0.0080	0.0212	0.0051300	0.0000016
591	0.0080	0.0212	0.0051400	0.0000016
592	0.0040	0.0211	0.0051500	0.0000016
593	0.0040	0.0211	0.0051600	0.0000016
594	0.0040	0.0211	0.0051700	0.0000016
595	0.0040	0.0211	0.0051800	0.0000016
596	0.0080	0.0212	0.0051900	0.0000016
597	0.0040	0.0211	0.0052000	0.0000016
598	0.0040	0.0211	0.0052100	0.0000016
599	0.0040	0.0211	0.0052200	0.0000016
600	0.0040	0.0211	0.0052300	0.0000016

	Dati segnale 90Hz					Dati segnale 90Hz					
N.	$V_c(V)$	$\Delta V_c(v)$	t(s)	$\Delta t(s)$	N.	$V_c(V)$	$\Delta V_c(v)$	t(s)	$\Delta t(s)$		
1	0.0040	0.0211	-0.0007600	0.0000015	41	0.0040	0.0211	-0.0003600	0.0000015		
2	0.0000	0.0210	-0.0007500	0.0000015	42	0.0000	0.0210	-0.0003500	0.0000015		
3	0.0000	0.0210	-0.0007400	0.0000015	43	0.0040	0.0211	-0.0003400	0.0000015		
4	0.0040	0.0211	-0.0007300	0.0000015	44	0.0000	0.0210	-0.0003300	0.0000015		
5	0.0040	0.0211	-0.0007200	0.0000015	45	0.0040	0.0211	-0.0003200	0.0000015		
6	0.0000	0.0210	-0.0007100	0.0000015	46	0.0000	0.0210	-0.0003100	0.0000015		
7	0.0040	0.0211	-0.0007000	0.0000015	47	0.0040	0.0211	-0.0003000	0.0000015		
8	0.0000	0.0210	-0.0006900	0.0000015	48	0.0040	0.0211	-0.0002900	0.0000015		
9	0.0000	0.0210	-0.0006800	0.0000015	49	0.0000	0.0210	-0.0002800	0.0000015		
10	0.0040	0.0211	-0.0006700	0.0000015	50	0.0040	0.0211	-0.0002700	0.0000015		
11	0.0040	0.0211	-0.0006600	0.0000015	51	0.0040	0.0211	-0.0002600	0.0000015		
12	0.0000	0.0210	-0.0006500	0.0000015	52	0.0000	0.0210	-0.0002500	0.0000015		
13	0.0040	0.0211	-0.0006400	0.0000015	53	0.0000	0.0210	-0.0002400	0.0000015		
14	0.0000	0.0210	-0.0006300	0.0000015	54	0.0040	0.0211	-0.0002300	0.0000015		
15	0.0040	0.0211	-0.0006200	0.0000015	55	0.0000	0.0210	-0.0002200	0.0000015		
16	0.0000	0.0210	-0.0006100	0.0000015	56	0.0040	0.0211	-0.0002100	0.0000015		
17	0.0040	0.0211	-0.0006000	0.0000015	57	0.0040	0.0211	-0.0002000	0.0000015		
18	0.0040	0.0211	-0.0005900	0.0000015	58	0.0000	0.0210	-0.0001900	0.0000015		
19	0.0040	0.0211	-0.0005800	0.0000015	59	0.0040	0.0211	-0.0001800	0.0000015		
20	0.0000	0.0210	-0.0005700	0.0000015	60	0.0000	0.0210	-0.0001700	0.0000015		
21	0.0040	0.0211	-0.0005600	0.0000015	61	0.0040	0.0211	-0.0001600	0.0000015		
22	0.0000	0.0210	-0.0005500	0.0000015	62	0.0000	0.0210	-0.0001500	0.0000015		
23	0.0040	0.0211	-0.0005400	0.0000015	63	0.0040	0.0211	-0.0001400	0.0000015		
24	0.0000	0.0210	-0.0005300	0.0000015	64	0.0000	0.0210	-0.0001300	0.0000015		
25	0.0040	0.0211	-0.0005200	0.0000015	65	0.0040	0.0211	-0.0001200	0.0000015		
26	0.0000	0.0210	-0.0005100	0.0000015	66	0.0000	0.0210	-0.0001100	0.0000015		
27	0.0040	0.0211	-0.0005000	0.0000015	67	0.0040	0.0211	-0.0001000	0.0000015		
28	0.0000	0.0210	-0.0004900	0.0000015	68	0.0040	0.0211	-0.0000900	0.0000015		
29	0.0040	0.0211	-0.0004800	0.0000015	69	0.0040	0.0211	-0.0000800	0.0000015		
30	0.0000	0.0210	-0.0004700	0.0000015	70	0.0000	0.0210	-0.0000700	0.0000015		
31	0.0000	0.0210	-0.0004600	0.0000015	71	0.0040	0.0211	-0.0000600	0.0000015		
32	0.0040	0.0211	-0.0004500	0.0000015	72	0.0040	0.0211	-0.0000500	0.0000015		
33	0.0040	0.0211	-0.0004400	0.0000015	73	0.0040	0.0211	-0.0000400	0.0000015		
34	0.0000	0.0210	-0.0004300	0.0000015	74	0.0000	0.0210	-0.0000300	0.0000015		
35	0.0000	0.0210	-0.0004200	0.0000015	75	0.0040	0.0211	-0.0000200	0.0000015		
36	0.0040	0.0211	-0.0004100	0.0000015	76	0.0000	0.0210	-0.0000100	0.0000015		
37	0.0040	0.0211	-0.0004000	0.0000015	77	0.0040	0.0211	0.0000000	0.0000016		
38	0.0000	0.0210	-0.0003900	0.0000015	78	0.0520	0.0226	0.0000100	0.0000016		
39	0.0040	0.0211	-0.0003800	0.0000015	79	0.0560	0.0227	0.0000200	0.0000016		
40	0.0000	0.0210	-0.0003700	0.0000015	80	0.1040	0.0241	0.0000300	0.0000016		

	Dati segnale 90Hz					Dati segnale 90Hz				
N.	$V_c(V)$	$\Delta V_c(v)$	t(s)	$\Delta t(s)$	N.	$V_c(V)$	$\Delta V_c(v)$	t(s)	$\Delta t(s)$	
81	0.1040	0.0241	0.0000400	0.0000016	121	0.3080	0.0302	0.0004400	0.0000016	
82	0.1440	0.0253	0.0000500	0.0000016	122	0.3120	0.0304	0.0004500	0.0000016	
83	0.1480	0.0254	0.0000600	0.0000016	123	0.3080	0.0302	0.0004600	0.0000016	
84	0.1760	0.0263	0.0000700	0.0000016	124	0.3120	0.0304	0.0004700	0.0000016	
85	0.1760	0.0263	0.0000800	0.0000016	125	0.3120	0.0304	0.0004800	0.0000016	
86	0.2000	0.0270	0.0000900	0.0000016	126	0.3080	0.0302	0.0004900	0.0000016	
87	0.2000	0.0270	0.0001000	0.0000016	127	0.3120	0.0304	0.0005000	0.0000016	
88	0.2200	0.0276	0.0001100	0.0000016	128	0.3120	0.0304	0.0005100	0.0000016	
89	0.2240	0.0277	0.0001200	0.0000016	129	0.3120	0.0304	0.0005200	0.0000016	
90	0.2400	0.0282	0.0001300	0.0000016	130	0.3160	0.0305	0.0005300	0.0000016	
91	0.2400	0.0282	0.0001400	0.0000016	131	0.3120	0.0304	0.0005400	0.0000016	
92	0.2520	0.0286	0.0001500	0.0000016	132	0.3120	0.0304	0.0005500	0.0000016	
93	0.2520	0.0286	0.0001600	0.0000016	133	0.3120	0.0304	0.0005600	0.0000016	
94	0.2600	0.0288	0.0001700	0.0000016	134	0.3160	0.0305	0.0005700	0.0000016	
95	0.2640	0.0289	0.0001800	0.0000016	135	0.3120	0.0304	0.0005800	0.0000016	
96	0.2720	0.0292	0.0001900	0.0000016	136	0.3160	0.0305	0.0005900	0.0000016	
97	0.2720	0.0292	0.0002000	0.0000016	137	0.3160	0.0305	0.0006000	0.0000016	
98	0.2800	0.0294	0.0002100	0.0000016	138	0.3120	0.0304	0.0006100	0.0000016	
99	0.2760	0.0293	0.0002200	0.0000016	139	0.3120	0.0304	0.0006200	0.0000016	
100	0.2880	0.0296	0.0002300	0.0000016	140	0.3160	0.0305	0.0006300	0.0000016	
101	0.2880	0.0296	0.0002400	0.0000016	141	0.3160	0.0305	0.0006400	0.0000016	
102	0.2920	0.0298	0.0002500	0.0000016	142	0.3120	0.0304	0.0006500	0.0000016	
103	0.2920	0.0298	0.0002600	0.0000016	143	0.3120	0.0304	0.0006600	0.0000016	
104	0.2960	0.0299	0.0002700	0.0000016	144	0.3160	0.0305	0.0006700	0.0000016	
105	0.2960	0.0299	0.0002800	0.0000016	145	0.3160	0.0305	0.0006800	0.0000016	
106	0.3000	0.0300	0.0002900	0.0000016	146	0.3120	0.0304	0.0006900	0.0000016	
107	0.3000	0.0300	0.0003000	0.0000016	147	0.3160	0.0305	0.0007000	0.0000016	
108	0.3040	0.0301	0.0003100	0.0000016	148	0.3120	0.0304	0.0007100	0.0000016	
109	0.3000	0.0300	0.0003200	0.0000016	149	0.3160	0.0305	0.0007200	0.0000016	
110	0.3040	0.0301	0.0003300	0.0000016	150	0.3120	0.0304	0.0007300	0.0000016	
111	0.3040	0.0301	0.0003400	0.0000016	151	0.3120	0.0304	0.0007400	0.0000016	
112	0.3080	0.0302	0.0003500	0.0000016	152	0.3160	0.0305	0.0007500	0.0000016	
113	0.3040	0.0301	0.0003600	0.0000016	153	0.3120	0.0304	0.0007600	0.0000016	
114	0.3080	0.0302	0.0003700	0.0000016	154	0.3160	0.0305	0.0007700	0.0000016	
115	0.3080	0.0302	0.0003800	0.0000016	155	0.3160	0.0305	0.0007800	0.0000016	
116	0.3080	0.0302	0.0003900	0.0000016	156	0.3120	0.0304	0.0007900	0.0000016	
117	0.3080	0.0302	0.0004000	0.0000016	157	0.3160	0.0305	0.0008000	0.0000016	
118	0.3120	0.0304	0.0004100	0.0000016	158	0.3120	0.0304	0.0008100	0.0000016	
119	0.3080	0.0302	0.0004200	0.0000016	159	0.3160	0.0305	0.0008200	0.0000016	
120	0.3120	0.0304	0.0004300	0.0000016	160	0.3120	0.0304	0.0008300	0.0000016	

	Dati segnale 90Hz					Dati segnale 90Hz				
N.	$V_c(V)$	$\Delta V_c(v)$	t(s)	$\Delta t(s)$	N.	$V_c(V)$	$\Delta V_c(v)$	t(s)	$\Delta t(s)$	
161	0.3120	0.0304	0.0008400	0.0000016	201	0.3120	0.0304	0.0012400	0.0000016	
162	0.3160	0.0305	0.0008500	0.0000016	202	0.3160	0.0305	0.0012500	0.0000016	
163	0.3160	0.0305	0.0008600	0.0000016	203	0.3160	0.0305	0.0012600	0.0000016	
164	0.3120	0.0304	0.0008700	0.0000016	204	0.3160	0.0305	0.0012700	0.0000016	
165	0.3160	0.0305	0.0008800	0.0000016	205	0.3160	0.0305	0.0012800	0.0000016	
166	0.3120	0.0304	0.0008900	0.0000016	206	0.3120	0.0304	0.0012900	0.0000016	
167	0.3120	0.0304	0.0009000	0.0000016	207	0.3120	0.0304	0.0013000	0.0000016	
168	0.3160	0.0305	0.0009100	0.0000016	208	0.3160	0.0305	0.0013100	0.0000016	
169	0.3200	0.0306	0.0009200	0.0000016	209	0.3160	0.0305	0.0013200	0.0000016	
170	0.3120	0.0304	0.0009300	0.0000016	210	0.3120	0.0304	0.0013300	0.0000016	
171	0.3120	0.0304	0.0009400	0.0000016	211	0.3160	0.0305	0.0013400	0.0000016	
172	0.3160	0.0305	0.0009500	0.0000016	212	0.3160	0.0305	0.0013500	0.0000016	
173	0.3120	0.0304	0.0009600	0.0000016	213	0.3160	0.0305	0.0013600	0.0000016	
174	0.3160	0.0305	0.0009700	0.0000016	214	0.3120	0.0304	0.0013700	0.0000016	
175	0.3160	0.0305	0.0009800	0.0000016	215	0.3160	0.0305	0.0013800	0.0000016	
176	0.3120	0.0304	0.0009900	0.0000016	216	0.3120	0.0304	0.0013900	0.0000016	
177	0.3120	0.0304	0.0010000	0.0000016	217	0.3160	0.0305	0.0014000	0.0000016	
178	0.3160	0.0305	0.0010100	0.0000016	218	0.3120	0.0304	0.0014100	0.0000016	
179	0.3160	0.0305	0.0010200	0.0000016	219	0.3160	0.0305	0.0014200	0.0000016	
180	0.3120	0.0304	0.0010300	0.0000016	220	0.3120	0.0304	0.0014300	0.0000016	
181	0.3160	0.0305	0.0010400	0.0000016	221	0.3120	0.0304	0.0014400	0.0000016	
182	0.3120	0.0304	0.0010500	0.0000016	222	0.3160	0.0305	0.0014500	0.0000016	
183	0.3120	0.0304	0.0010600	0.0000016	223	0.3160	0.0305	0.0014600	0.0000016	
184	0.3160	0.0305	0.0010700	0.0000016	224	0.3120	0.0304	0.0014700	0.0000016	
185	0.3120	0.0304	0.0010800	0.0000016	225	0.3160	0.0305	0.0014800	0.0000016	
186	0.3160	0.0305	0.0010900	0.0000016	226	0.3120	0.0304	0.0014900	0.0000016	
187	0.3160	0.0305	0.0011000	0.0000016	227	0.3120	0.0304	0.0015000	0.0000016	
188	0.3120	0.0304	0.0011100	0.0000016	228	0.3200	0.0306	0.0015100	0.0000016	
189	0.3160	0.0305	0.0011200	0.0000016	229	0.3160	0.0305	0.0015200	0.0000016	
190	0.3120	0.0304	0.0011300	0.0000016	230	0.3120	0.0304	0.0015300	0.0000016	
191	0.3120	0.0304	0.0011400	0.0000016	231	0.3160	0.0305	0.0015400	0.0000016	
192	0.3160	0.0305	0.0011500	0.0000016	232	0.3160	0.0305	0.0015500	0.0000016	
193	0.3160	0.0305	0.0011600	0.0000016	233	0.3160	0.0305	0.0015600	0.0000016	
194	0.3120	0.0304	0.0011700	0.0000016	234	0.3120	0.0304	0.0015700	0.0000016	
195	0.3160	0.0305	0.0011800	0.0000016	235	0.3160	0.0305	0.0015800	0.0000016	
196	0.3160	0.0305	0.0011900	0.0000016	236	0.3160	0.0305	0.0015900	0.0000016	
197	0.3160	0.0305	0.0012000	0.0000016	237	0.3160	0.0305	0.0016000	0.0000016	
198	0.3120	0.0304	0.0012100	0.0000016	238	0.3120	0.0304	0.0016100	0.0000016	
199	0.3160	0.0305	0.0012200	0.0000016	239	0.3160	0.0305	0.0016200	0.0000016	
200	0.3120	0.0304	0.0012300	0.0000016	240	0.3160	0.0305	0.0016300	0.0000016	

	Dati segnale $90Hz$					Dati segnale 90Hz				
N.	$V_c(V)$	$\Delta V_c(v)$	t(s)	$\Delta t(s)$	N.	$V_c(V)$	$\Delta V_c(v)$	t(s)	$\Delta t(s)$	
241	0.3160	0.0305	0.0016400	0.0000016	281	0.3120	0.0304	0.0020400	0.0000017	
242	0.3120	0.0304	0.0016500	0.0000016	282	0.3160	0.0305	0.0020500	0.0000017	
243	0.3160	0.0305	0.0016600	0.0000016	283	0.3160	0.0305	0.0020600	0.0000017	
244	0.3120	0.0304	0.0016700	0.0000016	284	0.3160	0.0305	0.0020700	0.0000017	
245	0.3160	0.0305	0.0016800	0.0000016	285	0.3160	0.0305	0.0020800	0.0000017	
246	0.3120	0.0304	0.0016900	0.0000016	286	0.3120	0.0304	0.0020900	0.0000017	
247	0.3160	0.0305	0.0017000	0.0000016	287	0.3160	0.0305	0.0021000	0.0000017	
248	0.3120	0.0304	0.0017100	0.0000016	288	0.3160	0.0305	0.0021100	0.0000017	
249	0.3160	0.0305	0.0017200	0.0000016	289	0.3120	0.0304	0.0021200	0.0000017	
250	0.3120	0.0304	0.0017300	0.0000016	290	0.3200	0.0306	0.0021300	0.0000017	
251	0.3120	0.0304	0.0017400	0.0000016	291	0.3120	0.0304	0.0021400	0.0000017	
252	0.3160	0.0305	0.0017500	0.0000016	292	0.3200	0.0306	0.0021500	0.0000017	
253	0.3160	0.0305	0.0017600	0.0000016	293	0.3160	0.0305	0.0021600	0.0000017	
254	0.3120	0.0304	0.0017700	0.0000016	294	0.3120	0.0304	0.0021700	0.0000017	
255	0.3160	0.0305	0.0017800	0.0000016	295	0.3160	0.0305	0.0021800	0.0000017	
256	0.3120	0.0304	0.0017900	0.0000016	296	0.3160	0.0305	0.0021900	0.0000017	
257	0.3160	0.0305	0.0018000	0.0000016	297	0.3160	0.0305	0.0022000	0.0000017	
258	0.3160	0.0305	0.0018100	0.0000016	298	0.3160	0.0305	0.0022100	0.0000017	
259	0.3160	0.0305	0.0018200	0.0000016	299	0.3160	0.0305	0.0022200	0.0000017	
260	0.3120	0.0304	0.0018300	0.0000016	300	0.2800	0.0294	0.0022300	0.0000017	
261	0.3160	0.0305	0.0018400	0.0000016	301	0.2760	0.0293	0.0022400	0.0000017	
262	0.3160	0.0305	0.0018500	0.0000016	302	0.2560	0.0287	0.0022500	0.0000017	
263	0.3160	0.0305	0.0018600	0.0000016	303	0.2560	0.0287	0.0022600	0.0000017	
264	0.3120	0.0304	0.0018700	0.0000016	304	0.2360	0.0281	0.0022700	0.0000017	
265	0.3160	0.0305	0.0018800	0.0000016	305	0.2360	0.0281	0.0022800	0.0000017	
266	0.3120	0.0304	0.0018900	0.0000016	306	0.2200	0.0276	0.0022900	0.0000017	
267	0.3160	0.0305	0.0019000	0.0000016	307	0.2200	0.0276	0.0023000	0.0000017	
268	0.3160	0.0305	0.0019100	0.0000016	308	0.2040	0.0271	0.0023100	0.0000017	
269	0.3160	0.0305	0.0019200	0.0000016	309	0.2000	0.0270	0.0023200	0.0000017	
270	0.3160	0.0305	0.0019300	0.0000016	310	0.1840	0.0265	0.0023300	0.0000017	
271	0.3120	0.0304	0.0019400	0.0000016	311	0.1840	0.0265	0.0023400	0.0000017	
272	0.3160	0.0305	0.0019500	0.0000016	312	0.1760	0.0263	0.0023500	0.0000017	
273	0.3160	0.0305	0.0019600	0.0000016	313	0.1760	0.0263	0.0023600	0.0000017	
274	0.3120	0.0304	0.0019700	0.0000016	314	0.1640	0.0259	0.0023700	0.0000017	
275	0.3160	0.0305	0.0019800	0.0000016	315	0.1640	0.0259	0.0023800	0.0000017	
276	0.3160	0.0305	0.0019900	0.0000016	316	0.1520	0.0256	0.0023900	0.0000017	
277	0.3160	0.0305	0.0020000	0.0000017	317	0.1520	0.0256	0.0024000	0.0000017	
278	0.3120	0.0304	0.0020100	0.0000017	318	0.1400	0.0252	0.0024100	0.0000017	
279	0.3160	0.0305	0.0020200	0.0000017	319	0.1360	0.0251	0.0024200	0.0000017	
280	0.3120	0.0304	0.0020300	0.0000017	320	0.1280	0.0248	0.0024300	0.0000017	

	Dati segnale 90Hz					Dati segnale 90Hz				
N.	$V_c(V)$	$\Delta V_c(v)$	t(s)	$\Delta t(s)$	N.	$V_c(V)$	$\Delta V_c(v)$	t(s)	$\Delta t(s)$	
321	0.1280	0.0248	0.0024400	0.0000017	361	0.0280	0.0218	0.0028400	0.0000017	
322	0.1160	0.0245	0.0024500	0.0000017	362	0.0240	0.0217	0.0028500	0.0000017	
323	0.1160	0.0245	0.0024600	0.0000017	363	0.0280	0.0218	0.0028600	0.0000017	
324	0.1120	0.0244	0.0024700	0.0000017	364	0.0240	0.0217	0.0028700	0.0000017	
325	0.1120	0.0244	0.0024800	0.0000017	365	0.0240	0.0217	0.0028800	0.0000017	
326	0.1000	0.0240	0.0024900	0.0000017	366	0.0200	0.0216	0.0028900	0.0000017	
327	0.1000	0.0240	0.0025000	0.0000017	367	0.0240	0.0217	0.0029000	0.0000017	
328	0.0960	0.0239	0.0025100	0.0000017	368	0.0200	0.0216	0.0029100	0.0000017	
329	0.0920	0.0238	0.0025200	0.0000017	369	0.0200	0.0216	0.0029200	0.0000017	
330	0.0880	0.0236	0.0025300	0.0000017	370	0.0200	0.0216	0.0029300	0.0000017	
331	0.0880	0.0236	0.0025400	0.0000017	371	0.0200	0.0216	0.0029400	0.0000017	
332	0.0800	0.0234	0.0025500	0.0000017	372	0.0160	0.0215	0.0029500	0.0000017	
333	0.0800	0.0234	0.0025600	0.0000017	373	0.0200	0.0216	0.0029600	0.0000017	
334	0.0760	0.0233	0.0025700	0.0000017	374	0.0160	0.0215	0.0029700	0.0000017	
335	0.0760	0.0233	0.0025800	0.0000017	375	0.0200	0.0216	0.0029800	0.0000017	
336	0.0680	0.0230	0.0025900	0.0000017	376	0.0160	0.0215	0.0029900	0.0000017	
337	0.0720	0.0232	0.0026000	0.0000017	377	0.0160	0.0215	0.0030000	0.0000017	
338	0.0600	0.0228	0.0026100	0.0000017	378	0.0120	0.0214	0.0030100	0.0000017	
339	0.0640	0.0229	0.0026200	0.0000017	379	0.0160	0.0215	0.0030200	0.0000017	
340	0.0560	0.0227	0.0026300	0.0000017	380	0.0120	0.0214	0.0030300	0.0000017	
341	0.0520	0.0226	0.0026400	0.0000017	381	0.0120	0.0214	0.0030400	0.0000017	
342	0.0560	0.0227	0.0026500	0.0000017	382	0.0160	0.0215	0.0030500	0.0000017	
343	0.0520	0.0226	0.0026600	0.0000017	383	0.0120	0.0214	0.0030600	0.0000017	
344	0.0520	0.0226	0.0026700	0.0000017	384	0.0120	0.0214	0.0030700	0.0000017	
345	0.0520	0.0226	0.0026800	0.0000017	385	0.0120	0.0214	0.0030800	0.0000017	
346	0.0440	0.0223	0.0026900	0.0000017	386	0.0080	0.0212	0.0030900	0.0000017	
347	0.0480	0.0224	0.0027000	0.0000017	387	0.0120	0.0214	0.0031000	0.0000017	
348	0.0400	0.0222	0.0027100	0.0000017	388	0.0080	0.0212	0.0031100	0.0000017	
349	0.0440	0.0223	0.0027200	0.0000017	389	0.0120	0.0214	0.0031200	0.0000017	
350	0.0400	0.0222	0.0027300	0.0000017	390	0.0080	0.0212	0.0031300	0.0000017	
351	0.0400	0.0222	0.0027400	0.0000017	391	0.0080	0.0212	0.0031400	0.0000017	
352	0.0360	0.0221	0.0027500	0.0000017	392	0.0080	0.0212	0.0031500	0.0000017	
353	0.0400	0.0222	0.0027600	0.0000017	393	0.0080	0.0212	0.0031600	0.0000017	
354	0.0360	0.0221	0.0027700	0.0000017	394	0.0080	0.0212	0.0031700	0.0000017	
355	0.0360	0.0221	0.0027800	0.0000017	395	0.0080	0.0212	0.0031800	0.0000017	
356	0.0360	0.0221	0.0027900	0.0000017	396	0.0080	0.0212	0.0031900	0.0000017	
357	0.0320	0.0220	0.0028000	0.0000017	397	0.0080	0.0212	0.0032000	0.0000017	
358	0.0280	0.0218	0.0028100	0.0000017	398	0.0040	0.0211	0.0032100	0.0000017	
359	0.0280	0.0218	0.0028200	0.0000017	399	0.0080	0.0212	0.0032200	0.0000017	
360	0.0320	0.0220	0.0028300	0.0000017	400	0.0040	0.0211	0.0032300	0.0000017	

	Dati segnale 90Hz					Dati segnale 90Hz				
N.	$V_c(V)$	$\Delta V_c(v)$	t(s)	$\Delta t(s)$	N.	$V_c(V)$	$\Delta V_c(v)$	t(s)	$\Delta t(s)$	
401	0.0040	0.0211	0.0032400	0.0000017	441	0.0040	0.0211	0.0036400	0.0000017	
402	0.0080	0.0212	0.0032500	0.0000017	442	0.0040	0.0211	0.0036500	0.0000017	
403	0.0080	0.0212	0.0032600	0.0000017	443	0.0040	0.0211	0.0036600	0.0000017	
404	0.0040	0.0211	0.0032700	0.0000017	444	0.0040	0.0211	0.0036700	0.0000017	
405	0.0080	0.0212	0.0032800	0.0000017	445	0.0040	0.0211	0.0036800	0.0000017	
406	0.0040	0.0211	0.0032900	0.0000017	446	0.0040	0.0211	0.0036900	0.0000017	
407	0.0080	0.0212	0.0033000	0.0000017	447	0.0040	0.0211	0.0037000	0.0000017	
408	0.0040	0.0211	0.0033100	0.0000017	448	0.0040	0.0211	0.0037100	0.0000017	
409	0.0080	0.0212	0.0033200	0.0000017	449	0.0040	0.0211	0.0037200	0.0000017	
410	0.0040	0.0211	0.0033300	0.0000017	450	0.0040	0.0211	0.0037300	0.0000017	
411	0.0040	0.0211	0.0033400	0.0000017	451	0.0040	0.0211	0.0037400	0.0000017	
412	0.0080	0.0212	0.0033500	0.0000017	452	0.0040	0.0211	0.0037500	0.0000017	
413	0.0080	0.0212	0.0033600	0.0000017	453	0.0040	0.0211	0.0037600	0.0000017	
414	0.0040	0.0211	0.0033700	0.0000017	454	0.0000	0.0210	0.0037700	0.0000017	
415	0.0040	0.0211	0.0033800	0.0000017	455	0.0040	0.0211	0.0037800	0.0000017	
416	0.0080	0.0212	0.0033900	0.0000017	456	0.0000	0.0210	0.0037900	0.0000017	
417	0.0040	0.0211	0.0034000	0.0000017	457	0.0040	0.0211	0.0038000	0.0000017	
418	0.0080	0.0212	0.0034100	0.0000017	458	0.0040	0.0211	0.0038100	0.0000017	
419	0.0040	0.0211	0.0034200	0.0000017	459	0.0040	0.0211	0.0038200	0.0000017	
420	0.0080	0.0212	0.0034300	0.0000017	460	0.0040	0.0211	0.0038300	0.0000017	
421	0.0040	0.0211	0.0034400	0.0000017	461	0.0040	0.0211	0.0038400	0.0000017	
422	0.0040	0.0211	0.0034500	0.0000017	462	0.0000	0.0210	0.0038500	0.0000017	
423	0.0040	0.0211	0.0034600	0.0000017	463	0.0040	0.0211	0.0038600	0.0000017	
424	0.0040	0.0211	0.0034700	0.0000017	464	0.0000	0.0210	0.0038700	0.0000017	
425	0.0040	0.0211	0.0034800	0.0000017	465	0.0040	0.0211	0.0038800	0.0000017	
426	0.0040	0.0211	0.0034900	0.0000017	466	0.0040	0.0211	0.0038900	0.0000017	
427	0.0040	0.0211	0.0035000	0.0000017	467	0.0040	0.0211	0.0039000	0.0000017	
428	0.0040	0.0211	0.0035100	0.0000017	468	0.0000	0.0210	0.0039100	0.0000017	
429	0.0040	0.0211	0.0035200	0.0000017	469	0.0040	0.0211	0.0039200	0.0000017	
430	0.0040	0.0211	0.0035300	0.0000017	470	0.0000	0.0210	0.0039300	0.0000017	
431	0.0040	0.0211	0.0035400	0.0000017	471	0.0000	0.0210	0.0039400	0.0000017	
432	0.0040	0.0211	0.0035500	0.0000017	472	0.0040	0.0211	0.0039500	0.0000017	
433	0.0040	0.0211	0.0035600	0.0000017	473	0.0040	0.0211	0.0039600	0.0000017	
434	0.0040	0.0211	0.0035700	0.0000017	474	0.0000	0.0210	0.0039700	0.0000017	
435	0.0040	0.0211	0.0035800	0.0000017	475	0.0040	0.0211	0.0039800	0.0000017	
436	0.0040	0.0211	0.0035900	0.0000017	476	0.0040	0.0211	0.0039900	0.0000017	
437	0.0040	0.0211	0.0036000	0.0000017	477	0.0040	0.0211	0.0040000	0.0000018	
438	0.0000	0.0210	0.0036100	0.0000017	478	0.0040	0.0211	0.0040100	0.0000018	
439	0.0040	0.0211	0.0036200	0.0000017	479	0.0000	0.0210	0.0040200	0.0000018	
440	0.0040	0.0211	0.0036300	0.0000017	480	0.0040	0.0211	0.0040300	0.0000018	

	Dati segnale 90Hz					Dati segnale 90Hz				
N.	$V_c(V)$	$\Delta V_c(v)$	t(s)	$\Delta t(s)$	N.	$V_c(V)$	$\Delta V_c(v)$	t(s)	$\Delta t(s)$	
481	0.0040	0.0211	0.0040400	0.0000018	521	0.0040	0.0211	0.0044400	0.0000018	
482	0.0000	0.0210	0.0040500	0.0000018	522	0.0000	0.0210	0.0044500	0.0000018	
483	0.0000	0.0210	0.0040600	0.0000018	523	0.0040	0.0211	0.0044600	0.0000018	
484	0.0040	0.0211	0.0040700	0.0000018	524	0.0000	0.0210	0.0044700	0.0000018	
485	0.0040	0.0211	0.0040800	0.0000018	525	0.0000	0.0210	0.0044800	0.0000018	
486	0.0000	0.0210	0.0040900	0.0000018	526	0.0040	0.0211	0.0044900	0.0000018	
487	0.0000	0.0210	0.0041000	0.0000018	527	0.0040	0.0211	0.0045000	0.0000018	
488	0.0040	0.0211	0.0041100	0.0000018	528	0.0000	0.0210	0.0045100	0.0000018	
489	0.0040	0.0211	0.0041200	0.0000018	529	0.0040	0.0211	0.0045200	0.0000018	
490	0.0000	0.0210	0.0041300	0.0000018	530	0.0000	0.0210	0.0045300	0.0000018	
491	0.0040	0.0211	0.0041400	0.0000018	531	0.0000	0.0210	0.0045400	0.0000018	
492	0.0000	0.0210	0.0041500	0.0000018	532	0.0040	0.0211	0.0045500	0.0000018	
493	0.0000	0.0210	0.0041600	0.0000018	533	0.0040	0.0211	0.0045600	0.0000018	
494	0.0040	0.0211	0.0041700	0.0000018	534	0.0000	0.0210	0.0045700	0.0000018	
495	0.0040	0.0211	0.0041800	0.0000018	535	0.0040	0.0211	0.0045800	0.0000018	
496	0.0040	0.0211	0.0041900	0.0000018	536	0.0000	0.0210	0.0045900	0.0000018	
497	0.0000	0.0210	0.0042000	0.0000018	537	0.0040	0.0211	0.0046000	0.0000018	
498	0.0040	0.0211	0.0042100	0.0000018	538	0.0000	0.0210	0.0046100	0.0000018	
499	0.0040	0.0211	0.0042200	0.0000018	539	0.0040	0.0211	0.0046200	0.0000018	
500	0.0000	0.0210	0.0042300	0.0000018	540	0.0000	0.0210	0.0046300	0.0000018	
501	0.0040	0.0211	0.0042400	0.0000018	541	0.0040	0.0211	0.0046400	0.0000018	
502	0.0000	0.0210	0.0042500	0.0000018	542	0.0040	0.0211	0.0046500	0.0000018	
503	0.0040	0.0211	0.0042600	0.0000018	543	0.0000	0.0210	0.0046600	0.0000018	
504	0.0000	0.0210	0.0042700	0.0000018	544	0.0040	0.0211	0.0046700	0.0000018	
505	0.0040	0.0211	0.0042800	0.0000018	545	0.0040	0.0211	0.0046800	0.0000018	
506	0.0000	0.0210	0.0042900	0.0000018	546	0.0000	0.0210	0.0046900	0.0000018	
507	0.0040	0.0211	0.0043000	0.0000018	547	0.0000	0.0210	0.0047000	0.0000018	
508	0.0040	0.0211	0.0043100	0.0000018	548	0.0040	0.0211	0.0047100	0.0000018	
509	0.0040	0.0211	0.0043200	0.0000018	549	0.0040	0.0211	0.0047200	0.0000018	
510	0.0000	0.0210	0.0043300	0.0000018	550	0.0000	0.0210	0.0047300	0.0000018	
511	0.0040	0.0211	0.0043400	0.0000018	551	0.0040	0.0211	0.0047400	0.0000018	
512	0.0000	0.0210	0.0043500	0.0000018	552	0.0000	0.0210	0.0047500	0.0000018	
513	0.0040	0.0211	0.0043600	0.0000018	553	0.0040	0.0211	0.0047600	0.0000018	
514	0.0000	0.0210	0.0043700	0.0000018	554	0.0000	0.0210	0.0047700	0.0000018	
515	0.0040	0.0211	0.0043800	0.0000018	555	0.0000	0.0210	0.0047800	0.0000018	
516	0.0040	0.0211	0.0043900	0.0000018	556	0.0040	0.0211	0.0047900	0.0000018	
517	0.0040	0.0211	0.0044000	0.0000018	557	0.0040	0.0211	0.0048000	0.0000018	
518	0.0000	0.0210	0.0044100	0.0000018	558	0.0000	0.0210	0.0048100	0.0000018	
519	0.0040	0.0211	0.0044200	0.0000018	559	0.0040	0.0211	0.0048200	0.0000018	
520	0.0000	0.0210	0.0044300	0.0000018	560	0.0000	0.0210	0.0048300	0.0000018	

$I(V) \setminus \Lambda V(a) = I(a)$	Da	ti segr	nale 90 <i>H</i>	Iz
$c(V) \mid \Delta V_c(U) \mid t(S)$	e(V)	$\Delta V_c(v)$	t(s)	

N.	$V_c(V)$	$\Delta V_c(v)$	t(s)	$\Delta t(s)$
561	0.0040	0.0211	0.0048400	0.0000018
562	0.0000	0.0210	0.0048500	0.0000018
563	0.0040	0.0211	0.0048600	0.0000018
564	0.0000	0.0210	0.0048700	0.0000018
565	0.0040	0.0211	0.0048800	0.0000018
566	0.0000	0.0210	0.0048900	0.0000018
567	0.0000	0.0210	0.0049000	0.0000018
568	0.0040	0.0211	0.0049100	0.0000018
569	0.0040	0.0211	0.0049200	0.0000018
570	0.0000	0.0210	0.0049300	0.0000018
571	0.0040	0.0211	0.0049400	0.0000018
572	0.0000	0.0210	0.0049500	0.0000018
573	0.0000	0.0210	0.0049600	0.0000018
574	0.0040	0.0211	0.0049700	0.0000018
575	0.0000	0.0210	0.0049800	0.0000018
576	0.0040	0.0211	0.0049900	0.0000018
577	0.0040	0.0211	0.0050000	0.0000018
578	0.0000	0.0210	0.0050100	0.0000018
579	0.0040	0.0211	0.0050200	0.0000018
580	0.0000	0.0210	0.0050300	0.0000018
581	0.0000	0.0210	0.0050400	0.0000018
582	0.0040	0.0211	0.0050500	0.0000018
583	0.0000	0.0210	0.0050600	0.0000018
584	0.0040	0.0211	0.0050700	0.0000018
585	0.0040	0.0211	0.0050800	0.0000018
586	0.0000	0.0210	0.0050900	0.0000018
587	0.0040	0.0211	0.0051000	0.0000018
588	0.0000	0.0210	0.0051100	0.0000018
589	0.0000	0.0210	0.0051200	0.0000018
590	0.0040	0.0211	0.0051300	0.0000018
591	0.0040	0.0211	0.0051400	0.0000018
592	0.0000	0.0210	0.0051500	0.0000018
593	0.0000	0.0210	0.0051600	0.0000018
594	0.0040	0.0211	0.0051700	0.0000018
595	0.0000	0.0210	0.0051800	0.0000018
596	0.0040	0.0211	0.0051900	0.0000018
597	0.0000	0.0210	0.0052000	0.0000018
598	0.0040	0.0211	0.0052100	0.0000018
599	0.0000	0.0210	0.0052200	0.0000018
600	0.0040	0.0211	0.0052300	0.0000018

5 Bibliografia

- $\bullet\,$ Slide A.A. 2023/2024, Professore F. Neri, Università degli Studi di Messina
- Mazzoldi; Nigro; Voci, Fisica 2, EdiSES
- Documentazione root: https://root.cern/doc/v628/