Assignment 3

- 1. When we search for human mitochondrial β barrel membrane, we get three VDAC proteins, the amino acid sequence and its function is given below:
 - i. VDAC1:

a. Amino acid sequence:

MAVPPTYADLGKSARDVFTKGYGFGLIKLDLKTKSENGLEFTSSGSANTETTKVTGS LETKYRWTEYGLTFTEKWNTDNTLGTEITVEDQLARGLKLTFDSSFSPNTGKKNAKI KTGYKREHINLGCDMDFDIAGPSIRGALVLGYEGWLAGYQMNFETAKSRVTQSNFAV GYKTDEFQLHTNVNDGTEFGGSIYQKVNKKLETAVNLAWTAGNSNTRFGIAAKYQID PDACFSAKVNNSSLIGLGYTQTLKPGIKLTLSALLDGKNVNAGGHKLGLGLEFQA

b. Function:

Forms a channel through the mitochondrial outer membrane and also the plasma membrane. The channel at the outer mitochondrial membrane allows diffusion of small hydrophilic molecules; in the plasma membrane it is involved in cell volume regulation and apoptosis. It adopts an open conformation at low or zero membrane potential and a closed conformation at potentials above 30-40 mV. The open state has a weak anion selectivity whereas the closed state is cation-selective (PubMed:11845315, PubMed:18755977, PubMed:20230784, PubMed:8420959).

Binds various signaling molecules, including the sphingolipid ceramide, the phospholipid phosphatidylcholine, and the sterol cholesterol (PubMed:31015432).

In depolarized mitochondria, acts downstream of PRKN and PINK1 to promote mitophagy or prevent apoptosis; polyubiquitination by PRKN promotes mitophagy, while monoubiquitination by PRKN decreases mitochondrial calcium influx which ultimately inhibits apoptosis (PubMed: 32047033).

May participate in the formation of the permeability transition pore complex (PTPC) responsible for the release of mitochondrial products that triggers apoptosis (PubMed:15033708, PubMed:25296756).

May mediate ATP export from cells (PubMed: 30061676).

c. Transmembrane segments:

19

ii. VDAC2:

a. Amino acid sequence:

MATHGQTCARPMCIPPSYADLGKAARDIFNKGFGFGLVKLDVKTKSCSGVEFST SGSSNTDTGKVTGTLETKYKWCEYGLTFTEKWNTDNTLGTEIAIEDQICQGLKL TFDTTFSPNTGKKSGKIKSSYKRECINLGCDVDFDFAGPAIHGSAVFGYEGWLA GYQMTFDSAKSKLTRNNFAVGYRTGDFQLHTNVNDGTEFGGSIYQKVCEDLDTS VNLAWTSGTNCTRFGIAAKYQLDPTASISAKVNNSSLIGVGYTQTLRPGVKLTL SALVDGKSINAGGHKVGLALELEA

b. Function:

Forms a channel through the mitochondrial outer membrane that allows diffusion of small hydrophilic molecules (By similarity).

The channel adopts an open conformation at low or zero membrane potential and a closed conformation at potentials above 30-40 mV (By similarity).

The open state has a weak anion selectivity whereas the closed state is cation-selective (By similarity).

Binds various lipids, including the sphingolipid ceramide, the phospholipid phosphatidylcholine, and the sterol cholesterol (PubMed:31015432).

Binding of ceramide promotes the mitochondrial outer membrane permeabilization (MOMP) apoptotic pathway (PubMed:31015432).

iii. VDAC3:

a. Amino acid sequence:

MCNTPTYCDLGKAAKDVFNKGYGFGMVKIDLKTKSCSGVEFSTSGHAYTDTGKA SGNLETKYKVCNYGLTFTQKWNTDNTLGTEISWENKLAEGLKLTLDTIFVPNTG KKSGKLKASYKRDCFSVGSNVDIDFSGPTIYGWAVLAFEGWLAGYQMSFDTAKS KLSQNNFALGYKAADFQLHTHVNDGTEFGGSIYQKVNEKIETSINLAWTAGSNN TRFGIAAKYMLDCRTSLSAKVNNASLIGLGYTQTLRPGVKLTLSALIDGKNFSA GGHKVGLGFELEA

b. Function:

Forms a channel through the mitochondrial outer membrane that allows diffusion of small hydrophilic molecules.

2. The obtained sequences of "transcription factors" with 50% sequence identity in FASTA format:

```
SIGNALFS, ANAMONISTE Uncharacterized protein mejs Tawarroteobacteria TaxID-1224 RepID-ADAMONISTE DALTE
SIGNALFSCHLINDI.

John Hart, SSAGLITDI.

John Hart, SSAGL
```

The count of sequences is 11,019,551 and the count of clusters is 31,057

- 3. When searched in UniProt, the total number of Homo Sapiens protein sequences found are which 406,431 have 100%, 2,216,520 have 90%, 9,258,839 have 50% sequence identity.
- 4. In UniProt, 17,090 mouse (Mus Musculus) protein sequences are manually annotated. In this manually annotated sequences, 2,062 protein sequences are associated with PDB (3D structures).
- 5. When mapped the UniProt IDs with 3D structures to STRING database, we get 1,957 STRING IDs mapped.
- 6. Using UniProt Statistics data, we can obtain the following points:
 - a. From the distribution of sequence length. We infer that it indicates the number of amino acids in the canonical sequence displayed by default in the entry's Sequence section.
 - b. There are two protein sequences with the shortest sequence length of 2 units. They are:

i. Protein: T cell receptor delta diversity 1

Gene: TRDD1

Organism: Homo sapiens

More data: TRDD1 - T cell receptor delta diversity 1 - Homo sapiens (Human) -

TRDD1 gene & protein (uniprot.org)

ii. Protein: Neuropeptide GWa

Gene: N/A

Organism: Sepia Officinalis

More data: Neuropeptide GWa - Sepia officinalis (Common cuttlefish)

(uniprot.org)

And one protein sequence with the longest length of 45,354 units. Details of that protein are provided below:

i. Protein: Peptidylprolyl isomerase

Gene: E1301 Tti010109

Organism: Triplophysa tibetana

More data: E1301_Tti010109 - Peptidylprolyl isomerase - Triplophysa tibetana -

E1301_Tti010109 gene & protein (uniprot.org)

c. Amino acid composition for the complete database in percentage:

For Swiss-Prot:

Ala	(A)	8.25	Gln	(Q)	3.93	Leu	(L)	9.65	Ser	(S)	6.64
Arg	(R)	5.53	Glu	(E)	6.72	Lys	(K)	5.80	Thr	(T)	5.35
Asn	(N)	4.06	Gly	(G)	7.07	Met	(M)	2.41	Trp	(W)	1.10
Asp	(D)	5.46	His	(H)	2.27	Phe	(F)	3.86	Tyr	(Y)	2.92
Cys	(C)	1.38	Ile	(I)	5.91	Pro	(P)	4.74	Val	(V)	6.86
Amino acid composition											

For TrEMBL:

Ala	a (A)	9.13	Gln	(Q)	3.77]	Leu	(L)	9.88		Ser	(S)	6.71
Arg	g (R)	5.80	Glu	(E)	6.18]	Jys	(K)	4.91	1	Thr	(T)	5.57
Asr	n (N)	3.80	Gly	(G)	7.30	1	1et	(M)	2.34	1	Trp	(W)	1.30
Asp	(D)	5.47	His	(H)	2.20	Ι	Phe	(F)	3.90	1	Tyr	(Y)	2.90
Cys	s (C)	1.27	Ile	(I)	5.56	Ι	Pro	(P)	4.92	,	Val	(V)	6.93

