電子學(一) HW3

- 1. Consider a CMOS process for which L_{min} = 0.18 um, t_{ox} = 4 nm, μ_n = 450 $cm^2/V \cdot s$. and V_{tn} = 0.5 V.
- (a) Find C_{ox} and k'_n .
- (b) For an NMOS transistor with W/L = 2.4 μ m/0.18 μ m, calculate the values of V_{OV} , V_{GS} and V_{DSmin} needed to operate the transistor in the saturation region with a current $I_D = 0.1$ mA.
- (c) For the device in (b), find the values of V_{OV} and V_{GS} required to cause the device to operate as a 500- Ω resistor for very small V_{DS} .
- 2. A particular MOSFET for which V_{tn} , = 0.4 V and $k_n'(W/L) = 2\text{mA}/V^2$ is to be operated in the saturation region. If I_D is to be 50 μ A, find the required V_{GS} and the minimum required V_{DS} . Repeat for I_D ,= 200 μ A.
- 3. The table above lists the terminal voltages of a PMOS transistor in six cases, labeled a, b, c, d, e and f. The transistor has $V_{tp} = -1$ V. Complete the table entries.

	V _s	V _G	V _D	V_{sG}	$ V_{ov} $	V_{SD}	Region of operation
a	+2	+2	0	D			
)	+2	+1	0				
c	+2	0	0				
d	+2	0	+1				
e	+2	0	+1.5				
f	+2	0	+2				

- 4. For the circuit in Fig.E5.10, assume that Q_1 and Q_2 are matched except for having different widths, W_1 and W_2 . Let $V_t=0.5V$, $k_n'=0.4mA/V^2$, $L_1=L_2=0.36\mu m$, $W_1=1.8~\mu m$, and $\lambda=0$.
- (a) Find the value of R required to establish a current of $100\mu A$ in Q_1 .
- (b) Find W_2 , and R_2 , so that Q_2 operates at the edge of saturation with a current of 0.5 mA.

Figure E5.10