#### In [1]:

#In this notebook, the focus is on providing a basic recommendation system by suggesting items that are most similar

#to a particular item, in this case, movies. This is not a true robust recommendation s ystem,

#to describe it more accurately, it just tells you what movies/items are most similar to your movie choice.

#### In [2]:

```
import numpy as np
import pandas as pd
```

#### In [3]:

```
col_names=['user_id','item_id','rating','timestamp']
```

#### In [4]:

```
df=pd.read_csv('u.data',sep='\t',names=col_names)
```

#### In [6]:

```
df.head() #The MovieLens dataset
```

# Out[6]:

|   | user_id | item_id | rating | timestamp |
|---|---------|---------|--------|-----------|
| 0 | 0       | 50      | 5      | 881250949 |
| 1 | 0       | 172     | 5      | 881250949 |
| 2 | 0       | 133     | 1      | 881250949 |
| 3 | 196     | 242     | 3      | 881250949 |
| 4 | 186     | 302     | 3      | 891717742 |

#### In [7]:

```
movie_titles=pd.read_csv('Movie_Id_Titles')
```

### In [8]:

```
movie_titles.head()
```

#### Out[8]:

|   | item_id | title             |
|---|---------|-------------------|
| 0 | 1       | Toy Story (1995)  |
| 1 | 2       | GoldenEye (1995)  |
| 2 | 3       | Four Rooms (1995) |
| 3 | 4       | Get Shorty (1995) |
| 4 | 5       | Copycat (1995)    |

### In [9]:

df=pd.merge(df,movie\_titles,on='item\_id') #To have a connection between item id and tit

# In [10]:

df.head() #Much better, now the id atleast gives the title of the movie now.

#### Out[10]:

|   | user_id | item_id | rating | timestamp | title            |
|---|---------|---------|--------|-----------|------------------|
| 0 | 0       | 50      | 5      | 881250949 | Star Wars (1977) |
| 1 | 290     | 50      | 5      | 880473582 | Star Wars (1977) |
| 2 | 79      | 50      | 4      | 891271545 | Star Wars (1977) |
| 3 | 2       | 50      | 5      | 888552084 | Star Wars (1977) |
| 4 | 8       | 50      | 5      | 879362124 | Star Wars (1977) |

#### In [11]:

#Lets explore and get a feel of the data

### In [12]:

```
import matplotlib.pyplot
import seaborn as sns
%matplotlib inline
```

#### In [13]:

```
sns.set_style('white')
```

#### In [14]:

#Dataframe for average rating and number of ratings

```
In [16]:
df.groupby('title')['rating'].mean() #I have the average of mean rating of every movie
Out[16]:
title
'Til There Was You (1997)
                                          2.333333
1-900 (1994)
                                          2.600000
101 Dalmatians (1996)
                                          2.908257
12 Angry Men (1957)
                                          4.344000
187 (1997)
                                          3.024390
Young Guns II (1990)
                                          2.772727
Young Poisoner's Handbook, The (1995)
                                          3.341463
Zeus and Roxanne (1997)
                                          2.166667
unknown
                                          3.444444
Á köldum klaka (Cold Fever) (1994)
                                          3.000000
Name: rating, Length: 1664, dtype: float64
In [17]:
df.groupby('title')['rating'].mean().sort_values(ascending=False).head() #Gives out th
e top rated movies
Out[17]:
title
Marlene Dietrich: Shadow and Light (1996)
                                               5.0
Prefontaine (1997)
                                               5.0
Santa with Muscles (1996)
                                               5.0
Star Kid (1997)
                                               5.0
Someone Else's America (1995)
                                               5.0
Name: rating, dtype: float64
In [18]:
#Now its possible that only a few people saw it and gave high ratings
In [19]:
df.groupby('title')['rating'].count().sort_values(ascending=False).head()
Out[19]:
title
Star Wars (1977)
                              584
Contact (1997)
                              509
Fargo (1996)
                              508
Return of the Jedi (1983)
                              507
Liar Liar (1997)
                              485
```

# In [20]:

Name: rating, dtype: int64

#So these are rated the most number of times , kinda famous

#### In [22]:

```
ratings=pd.DataFrame(df.groupby('title')['rating'].mean())
```

```
In [23]:
```

```
ratings.head()
```

### Out[23]:

#### rating

| title                     |          |
|---------------------------|----------|
| 'Til There Was You (1997) | 2.333333 |
| 1-900 (1994)              | 2.600000 |
| 101 Dalmatians (1996)     | 2.908257 |
| 12 Angry Men (1957)       | 4.344000 |
| 187 (1997)                | 3.024390 |

# In [24]:

#BUt we saw that raiting kind of depends on how many people rated it

# In [25]:

```
ratings['Count of Ratings']=pd.DataFrame(df.groupby('title')['rating'].count())
```

# In [26]:

ratings.head()

# Out[26]:

# rating Count of Ratings

| title                     |          |     |
|---------------------------|----------|-----|
| 'Til There Was You (1997) | 2.333333 | 9   |
| 1-900 (1994)              | 2.600000 | 5   |
| 101 Dalmatians (1996)     | 2.908257 | 109 |
| 12 Angry Men (1957)       | 4.344000 | 125 |
| 187 (1997)                | 3.024390 | 41  |

# In [27]:

ratings['Count of Ratings'].hist(bins=55) #Okay so most people dont rate

# Out[27]:

<matplotlib.axes.\_subplots.AxesSubplot at 0x22e53815d48>



# In [28]:

ratings['rating'].hist(bins=55) #Okay so ratings are maximum around 3

# Out[28]:

<matplotlib.axes.\_subplots.AxesSubplot at 0x22e53b3b1c8>



#### In [29]:

sns.jointplot(x='rating',y='Count of Ratings',data=ratings,alpha=0.5)

#### Out[29]:

<seaborn.axisgrid.JointGrid at 0x22e53a41dc8>



### In [30]:

#So kind of signifies if we have more ratings , more likely to have a higher rating #kinda makes sense, more people watch better movies and raters

### In [31]:

#Okay so we have a basic idea about the data, Let's look at a simple recommender system #based of item similarity

#### In [32]:

#Matrix for userId of one axis and movie title on other axis, each cell then contains #the rating the user gave to that movie

#### In [33]:

moviematrix=df.pivot\_table(index='user\_id',columns='title',values='rating')

# In [34]:

moviematrix.head()

# Out[34]:

| title   | 'Til<br>There<br>Was<br>You<br>(1997) | 1-900<br>(1994) | 101<br>Dalmatians<br>(1996) | 12<br>Angry<br>Men<br>(1957) | 187<br>(1997) | Days<br>in the<br>Valley<br>(1996) | 20,000<br>Leagues<br>Under<br>the Sea<br>(1954) | 2001: A<br>Space<br>Odyssey<br>(1968) | 3 Ninjas:<br>High<br>Noon At<br>Mega<br>Mountain<br>(1998) | Ste<br>7<br>(19 |
|---------|---------------------------------------|-----------------|-----------------------------|------------------------------|---------------|------------------------------------|-------------------------------------------------|---------------------------------------|------------------------------------------------------------|-----------------|
| user_id |                                       |                 |                             |                              |               |                                    |                                                 |                                       |                                                            |                 |
| 0       | NaN                                   | NaN             | NaN                         | NaN                          | NaN           | NaN                                | NaN                                             | NaN                                   | NaN                                                        | N               |
| 1       | NaN                                   | NaN             | 2.0                         | 5.0                          | NaN           | NaN                                | 3.0                                             | 4.0                                   | NaN                                                        | Ν               |
| 2       | NaN                                   | NaN             | NaN                         | NaN                          | NaN           | NaN                                | NaN                                             | NaN                                   | 1.0                                                        | Ν               |
| 3       | NaN                                   | NaN             | NaN                         | NaN                          | 2.0           | NaN                                | NaN                                             | NaN                                   | NaN                                                        | Ν               |
| 4       | NaN                                   | NaN             | NaN                         | NaN                          | NaN           | NaN                                | NaN                                             | NaN                                   | NaN                                                        | Ν               |

5 rows × 1664 columns

**→** 

# In [35]:

#lot of null values make sense as most people have not seen most of the movies

# In [36]:

ratings.sort\_values('Count of Ratings',ascending=False)

# Out[36]:

# rating Count of Ratings

| title                              |          |     |
|------------------------------------|----------|-----|
| Star Wars (1977)                   | 4.359589 | 584 |
| Contact (1997)                     | 3.803536 | 509 |
| Fargo (1996)                       | 4.155512 | 508 |
| Return of the Jedi (1983)          | 4.007890 | 507 |
| Liar Liar (1997)                   | 3.156701 | 485 |
|                                    |          |     |
| Great Day in Harlem, A (1994)      | 5.000000 | 1   |
| Other Voices, Other Rooms (1997)   | 3.000000 | 1   |
| Good Morning (1971)                | 1.000000 | 1   |
| Girls Town (1996)                  | 3.000000 | 1   |
| Á köldum klaka (Cold Fever) (1994) | 3.000000 | 1   |

1664 rows × 2 columns

```
In [62]:
```

```
fargo_user_ratings=moviematrix['Fargo (1996)']
starwars user ratings=moviematrix['Star Wars (1977)']
```

#### In [63]:

```
fargo_user_ratings.head()
```

#### Out[63]:

user\_id NaN 1 5.0 2 5.0

3 NaN NaN

Name: Fargo (1996), dtype: float64

#### In [39]:

#Using corr with as a method to get a correlation between to pandas series #Corr with will compute the pair wise correlation between rows and colums of two df obj ects instead #of just index or colums of df

#### In [45]:

moviematrix.corrwith(fargo user ratings) #I asking for the correlation of every other movie to that specific user behavior #on the fargo movie

C:\Users\anike\anaconda3\lib\site-packages\numpy\lib\function\_base.py:252

6: RuntimeWarning: Degrees of freedom <= 0 for slice

c = cov(x, y, rowvar)

C:\Users\anike\anaconda3\lib\site-packages\numpy\lib\function base.py:245

5: RuntimeWarning: divide by zero encountered in true\_divide

c \*= np.true divide(1, fact)

#### Out[45]:

```
title
'Til There Was You (1997)
                                          0.100000
1-900 (1994)
                                          0.866025
101 Dalmatians (1996)
                                          -0.245368
12 Angry Men (1957)
                                          0.098676
187 (1997)
                                           0.142509
                                             . . .
Young Guns II (1990)
                                          -0.018688
Young Poisoner's Handbook, The (1995)
                                          -0.034345
Zeus and Roxanne (1997)
                                          -0.353553
unknown
                                          -0.101768
Á köldum klaka (Cold Fever) (1994)
                                                NaN
Length: 1664, dtype: float64
```

#### In [64]:

```
similar_to_fargo=moviematrix.corrwith(fargo_user_ratings)
similar_to_starwars=moviematrix.corrwith(starwars_user_ratings)
```

- C:\Users\anike\anaconda3\lib\site-packages\numpy\lib\function\_base.py:252
- 6: RuntimeWarning: Degrees of freedom <= 0 for slice
   c = cov(x, y, rowvar)</pre>
- C:\Users\anike\anaconda3\lib\site-packages\numpy\lib\function\_base.py:245
- 5: RuntimeWarning: divide by zero encountered in true\_divide
  - c \*= np.true\_divide(1, fact)

### In [48]:

```
#cleaning by removing null values
corr_fargo=pd.DataFrame(similar_to_fargo,columns=['Correlations'])
corr_fargo.dropna(inplace=True)
```

#### In [51]:

corr\_fargo.head() #How correlated is the movie ratings of these movies in comparison to fargo

#### Out[51]:

#### Correlations

| title                     |           |
|---------------------------|-----------|
| 'Til There Was You (1997) | 0.100000  |
| 1-900 (1994)              | 0.866025  |
| 101 Dalmatians (1996)     | -0.245368 |
| 12 Angry Men (1957)       | 0.098676  |
| 187 (1997)                | 0.142509  |

### In [55]:

```
#So basically if we sort it , we will get similar movies
# However some results dont make sense
corr_fargo.sort_values('Correlations',ascending=False).head(10)
```

### Out[55]:

#### Correlations

| title                                   |     |
|-----------------------------------------|-----|
| Open Season (1996)                      | 1.0 |
| Maya Lin: A Strong Clear Vision (1994)  | 1.0 |
| Captives (1994)                         | 1.0 |
| City of Industry (1997)                 | 1.0 |
| Convent, The (Convento, O) (1995)       | 1.0 |
| Fargo (1996)                            | 1.0 |
| Smile Like Yours, A (1997)              | 1.0 |
| Journey of August King, The (1995)      | 1.0 |
| King of the Hill (1993)                 | 1.0 |
| Wooden Man's Bride, The (Wu Kui) (1994) | 1.0 |

#### In [56]:

#Funny how smile like yours is perfectly correlated to fargo #Probably cuz of that one rater who has rated both #Lets fix this by filtering out movies having less than a certain number of views

#### In [57]:

corr\_fargo=corr\_fargo.join(ratings['Count of Ratings']) #joining the data frame

### In [58]:

corr\_fargo.head()

#### Out[58]:

#### **Correlations Count of Ratings**

| title                     |           |     |
|---------------------------|-----------|-----|
| 'Til There Was You (1997) | 0.100000  | 9   |
| 1-900 (1994)              | 0.866025  | 5   |
| 101 Dalmatians (1996)     | -0.245368 | 109 |
| 12 Angry Men (1957)       | 0.098676  | 125 |
| 187 (1997)                | 0.142509  | 41  |

### In [59]:

#Join insted of merge as i have title as the index of the data frame

# In [60]:

corr\_fargo=corr\_fargo['Count of Ratings']>100].sort\_values('Correlations',as
cending=False)

### In [61]:

corr\_fargo.head()

### Out[61]:

### **Correlations Count of Ratings**

| Fargo (1996)              | 1.000000 | 508 |
|---------------------------|----------|-----|
| Sling Blade (1996)        | 0.381159 | 136 |
| Lone Star (1996)          | 0.370915 | 187 |
| <b>Quiz Show (1994)</b>   | 0.355031 | 175 |
| Lawrence of Arabia (1962) | 0.353408 | 173 |

#### In [66]:

corr\_starwars=pd.DataFrame(similar\_to\_starwars,columns=['Correlations'])

#### In [67]:

corr\_starwars

### Out[67]:

#### Correlations

| title                                 |           |
|---------------------------------------|-----------|
| 'Til There Was You (1997)             | 0.872872  |
| 1-900 (1994)                          | -0.645497 |
| 101 Dalmatians (1996)                 | 0.211132  |
| 12 Angry Men (1957)                   | 0.184289  |
| 187 (1997)                            | 0.027398  |
|                                       |           |
| Young Guns II (1990)                  | 0.228615  |
| Young Poisoner's Handbook, The (1995) | -0.007374 |
| Zeus and Roxanne (1997)               | 0.818182  |
| unknown                               | 0.723123  |
| Á köldum klaka (Cold Fever) (1994)    | NaN       |

### In [68]:

corr\_starwars.dropna(inplace=True)

### In [69]:

corr\_starwars=corr\_starwars.join(ratings['Count of Ratings'])

### In [73]:

corr\_starwars[corr\_starwars['Count of Ratings']>150].sort\_values('Correlations',ascendi
ng=False).head()

### Out[73]:

#### **Correlations Count of Ratings**

#### title

| Star Wars (1977)                | 1.000000 | 584 |
|---------------------------------|----------|-----|
| Empire Strikes Back, The (1980) | 0.748353 | 368 |
| Return of the Jedi (1983)       | 0.672556 | 507 |
| Raiders of the Lost Ark (1981)  | 0.536117 | 420 |
| Sting, The (1973)               | 0.367538 | 241 |

### In [74]:

#Similar movies to star wars #Well we were able to filter out some similar movies #Thank you

# In [ ]: