Understanding and Modeling Organizational Systems CSE 4407

Md. Bakhtiar Hasan

Assistant Professor Department of Computer Science and Engineering Islamic University of Technology

May 14, 2025

What is an Organization... as a System?

- Core Idea: Organizations are systems designed to achieve goals using resources (people, tech, etc.)
- Structure: Composed of smaller, interrelated **subsystems** (departments, units)
 - Example: Accounting, Marketing, Production, IT, Operations, Legal
- Integration: Subsystems work together to form the whole organization
- Key Benefit: Systems principles help us understand how organizations really work

The Web of Connections: Interrelatedness

- Fundamental Truth: All systems and subsystems are interrelated and interdependent
- Ripple Effect: Changing one element affects the entire system
 - Removing admin assistants and replacing them with PCs impacts
 - The assistants (obviously!)
 - Managers (new tasks?)
 - Anyone who relied on the assistants' informal communication networks
- The takeaway for analysts: Always consider the wider impact of system changes

System Mechanics: Inputs, Processes, Outputs, and Boundaries

- Input: Resources from the environment (people, materials, information)
- Process: Transformation of inputs (verifying, updating, calculating, manufacturing)
 - o Is something being changed? If not, it might not be a process
- Output: Results returned to the environments (products, services, information)
- Boundaries: Separate the system from its environment
 - Can be **permeable** (open, easy exchange) or **impermeable** (closed, restricted exchange)
 - o Organizations need some permeability to survive (import resources, export products)

Staying on Course: Feedback and Environment

- System Control: Organizations use planning and control
- Feedback: Output is compared to goals to guide future inputs/actions
 - Example: Poor sales of red, white, and blue weight sets (output) leads to producing fewer (planning/control)

- Ideal System: Self-correcting/self-regulating
 - Inventory system automatically adjusts production/dyeing based on real-time sales data (Italian knitwear co.)
- Environment: Everything outside the boundary. Crucial influences:
 - Community (demographics, location)
 - Economic (markets, competition)

- Political (government regulations)
- Legal (laws, guidelines)

Open vs. Closed and The Rise of Virtual

- Openness/Closedness: Exists on a continuum internally too
 - o Refers to flow of information/interaction within the organization
 - No system is completely open or closed
- Virtual Organizations/Teams
 - Not tied to a single physical location
 - Use technology (networks, communication tools) to connect people
 - o Can adapt quickly to changing needs
 - Benefits: Reduced facility costs, rapid response, work-life balance [1]
 - o Challenges: Maintaining culture, social connection (e.g, the need for university swag!)
 - Many System Analysis/Design teams work virtually

The Power of Perspective

- Systems Perspective: Allows analysts to understand the whole business
- Crucial Insight: Subsystems rely on each other. Their work is interrelated
- The Danger: Managers often see the organization through the lens of their own department

@2024 Pearson Education, Inc

Warped Views: Managerial Perspectives

- The Problem: Managers may overemphasize their own function's importance
- Implication: If these managers rise to strategic levels, their biased view can lead to poor decisions for the overall organization

@2024 Pearson Education, Inc.

Integrating the Organization: ERP Systems

- Concept: Enterprise Resource Planning (ERP) systems aim to integrate information flow across function areas
 - Example: SAP, Oracle Cloud
- Goal: Provide a unified view of the organization's data and processes
- Approach: Usually purchased software, then customized
- Key Difference: Often requires changing business processes to fit the software (unlike traditional analysis which designs processes first)
- Analyst Role: Managing interfaces between ERP and existing ('legacy') systems

ERP: The Game Changer

- Complexity: ERP implementations are massive projects impacting everything
- Key Hurdles
 - User acceptance (getting people to use it correctly)
 - Integrating with legacy systems and supply chain partners
 - Upgrading complex modules
 - Reorganizing work and decision-making
 - Expanded reach (connecting multiple organizations)
- Impact: Changes job design, required skills, and even company strategy
- Long-term View: Can make employees more effective, but requires careful planning, especially regarding user experience

Visualizing the System: Graphical Models

- Why: To understand and communicate:
 - System boundaries (what's in, what's out)
 - Information flow and usage
 - Relationships between system components
- Think: Blueprints and Maps for the System
- Two Key Early Models
 - Context-Level Data Flow Diagram (DFD)
 - Entity-Relationship (E-R) Model

Zooming Out: The Context-Level DFD

- Purpose: Shows the system's context how it interacts with the outside world
- Think: A higher-level "bird's-eye view"
- Focus: Data flowing IN and OUT, and the overall system process
- Key Components: Only 3 Symbols!
 - Process: The entire system (rounded rectangle).
 Transforms data.
 - External Entity: Sends/Receives data (shaded square).
 Outside the system.
 - Data Flow: Movement of data (arrow)

Context-Level DFD Example: Airline Reservations

- Shows the system boundary and interactions clearly
- Example
 - Before Online Booking:
 Passenger and Travel Agent interact with the System;
 System interacts with Airline
 - After Online Booking: Travel Agent entity removed;
 Passenger interacts directly
- Illustrates how context changes affect the diagram

Context-Level DFD: Scope and What It Doesn't Show

- Strengths
 - Excellent for defining scope (what's included vs. excluded)
 - Shows key external interactions
 - Easy to understand and create
- Limitations
 - Shows no internal details (the "how")
 - Doesn't show data storage
 - o Data flows are high-level (e.g., "Passenger Reservation" details hidden)
- Use: The very first step in understanding system boundaries. A prerequisite for more detailed diagrams

Modeling Data Structures: Entity-Relationship (E-R) Models

- Alternative View: Focuses on the data the system needs, not the processes
- Core Components
 - Entities (Rectangles): People, places, objects, events, or concepts about which data is stored (e.g., CUSTOMER, PRODUCT, ORDER)
 - Relationships (Lines connecting entities): How entities are associated or interact (e.g., a CUSTOMER places an ORDER)
- Purpose
 - o Defines the structure of the data required by the organization/system
 - Foundation of database design

E-R Basics: Reading Relationships (1:1)

- Cardinality: Specifies how many instances of one entity relate to how many instances of another
- Example: One-to-One (1:1)
 - One EMPLOYEE is assigned to exactly one PHONE EXTENSION
 - One PHONE EXTENSION is listed for exactly one EMPLOYEE
 - | (two short parallel marks) often means 'exactly one'

E-R Relationships: One-to-Many (1:M)

- Example: One-to-Many (1:M)
 - Many EMPLOYEEs are members of one DEPARTMENT (Many side)
 - One DEPARTMENT contains many EMPLOYEEs (One side)
- Notation
 - > | (Crow's foot) often means 'many' (zero, one, or more)
 - | still means 'exactly one'
- Read the relationship name towards the entity you're going to

E-R Notation: Cardinality and Optionality

Common Crow's Foot Symbols

- ||: Exactly One
- > |: One or More (Many)
- ∘ o|: Zero or One (Optional)
- > 0: Zero, One, or More (Optional Many)

Types of Entities

- Fundamental Entity (Standard Rectangle)
 - Represents a basic object or concept (person, place, thing)
 - Example: STUDENT, DEPARTMENT, COURSE
- Associative Entity (Rectangle with diamond inside corners)
 - Links two or more other entities, often representing an event or transaction that depends on them
 - Used especially for M:M relationships
 - Example: An REGISTRATION links a COURSE and a STUDENT.
- Attributive Entity (Rectangle with curved corners)
 - Describes attributes, especially for repeating groups, of another entity
 - Dependent on a fundamental entity
 - Example: OFFERING might be an attributive entity holding specific semester and/or year for a COURSE

Fundamental Entity

Associative Entity

Attributive Entity

E-R Example: Concert Reservations

- Evolution of Understanding
 - o Initial: Too simple?
 - Adding Associative: Better, Reservation links them
 - Adding Attributive: Handles multiple performances
- Shows how E-R models evolve as understanding deepens
- Attributes listed for each entity.
 Underlined = Key/Searchable

Why Use E-R Diagrams Early?

- Critical Analyst Task: Start drawing E-R diagrams early in the project
- Benefits
 - Defines the scope and key entities of the problem
 - Helps understand the **business** itself (What are the key things they deal with?)
 - Helps ensure the **right problem** is being addressed
 - Provides a foundation for data gathering (interviews, observations, etc.)
 - Needs to be confirmed and revised as you learn more
- Don't wait for database design! It's an analysis tool first.

A Different Perspective: Use Case Modeling

- What: A way to describe what a system does from the user's perspective, without detailing how
- Focus: System requirements and user interactions
- Origin: Unified Modeling Language (UML), but now widely used (SDLC, Agile)
- Think: Describing user goals and how the system helps achieve them

Use Case Basics: Actors and Use Cases

- Actor: Represents a role played by a user (human, another system, device) interacting with the system
 - Exists outside the system boundary
 - Can initiate or participate in a use case
 - Same person can be multiple actors (e.g., Employee, Customer)
 - Symbol: Typically a stick figure
 - Primary Actors: Initiate use cases, main users (e.g., Student)
 - Supporting Actors: Help maintain the system (e.g., Help Desk Staff)
- Use Case: Represents a specific goal or task an actor wants to achieve with the system
 - Describes a sequence of interactions
 - Should provide something of value to the actor
 - Named with Strong Verb-Noun (e.g., "Enroll in Course", "Submit Order")
 - o Symbol: Typically an oval

²³/50

How They Connect: Use Case Relationships

- Behavioral Relationships: Show how actors and use cases interact or relate to each other
- Four Main Types

Relationship	Symbol	Purpose
Communicates		Actor and Use Case interaction
Includes	< <include>> <</include>	One use case uses <i>another</i> common use case
Extends	<extend>></extend>	One use case handles exceptions/variations for another
Generalizes	→	One actor/use case is more general version of another

USE CASE MODELING (24/50)

Use Case Relationships Explained

Communicates Relationship

Developing Use Case Diagrams

- Purpose: Define system scope (actors are outside, use cases inside, communicates lines are boundaries)
- Starting Point
 - \circ User interviews, JAD sessions, Agile stories \to Ask "What should the system do for vou?"
 - Existing Context-Level DFD
 - External Entities → Potential Actors
 - Data Flows → Potential Use Cases
- Steps
 - Identify Actors (review roles)
 - o Identify high-level **Events** and **Primary Use Cases** initiated by actors
 - Determine Variations/Alternative Paths (these might become «extend» relationships or separate scenarios)
- Goal: Capture significant user interactions and goals. Keep it manageable (20-50 use cases for large systems)

²⁶/50

Use Case Diagram Example: Conference Planning

- Scenario: System to help plan an academic conference
- Actors
 - Conference Chair
 - Participant
 - Speaker
 - Keynote Speaker
 - Hotel Reservations (Systems?)
 - Caterer

Beyond the Diagram: Use Case Scenarios

- Need More Detail: Diagrams show what happens, scenarios describe how (step-by-step)
- Use Case Scenario: A textual description detailing the sequence of steps within a specific use case
 - Primary Path (Standard Flow/"Happy Path"): Normal successful completion
 - o Alternative Paths: Variations, error conditions, exceptions
- Purpose: Elaborate on the use case oval, providing necessary detail for design and development
- Format: Often uses a standardized organizational template

Use Case Levels (Cockburn's Altitude Metaphor)

- Different Levels of Detail: Not all use cases need the same granularity
- Altitude Metaphor [2]
 - White (like clouds): Highest level, enterprise-wide (4-5 total). E.g., "Manage Supply Chain"
 - o Kite: High-level summary, business unit/dept. E.g., "Manage Reservations"
 - Blue (Sea Level): User goal level, most common. E.g., "Register Continuing Student" (takes 2-20 mins)
 - o Indigo (Fish): Functional/Subfunctional detail. E.g., "Choose a Class", "Pay Fees"
 - Black (Clam): Most detailed, subfunction/implementation. E.g., "Validate Secure Logon"
- Choose Level Appropriately: Focus often on Blue level for user interaction understanding

²⁹/50

Use Case Scenario Structure (Template)

- Common Sections
 - Header
 - Use Case Name and ID
 - System/Application Area
 - Actor(s)

- Stakeholders (Interested parties, non-actors)
- Level (Blue, Kite, etc.)
- Description (Brief goal)

 Trigger (Event starting the use case - external or temporal)

- Steps Performed
 - Numbered sequence for the primary path
- Footer
 - Preconditions (What must be true before starting)
 - Postconditions (What is true after successful completion)

- Assumptions (About environment, user, tech)
- Minimal Guarantee (Worst acceptable outcome)
- Success Guarantee

Alternative paths/extensions

Information required/used for each step

- (Desired outcome)
- Outstanding Issues/Questions
- Optional: Priority, Risk, Requirements Met

Demo: Use Case Scenario - Conference Registration

Use Case Scenario Example Details

- Example (Conference Registration)
 - Shows detailed steps for the main path
 - o Includes conditional logic within steps (e.g., "IF multiple airports...")
 - Can reference alternative scenarios/extensions (Flight selection, Seat selection)
 - May include looping/iterative steps
- Key: Captures the flow and necessary logic clearly for developers

Demo: Use Case Scenario - Airline Reservation

Why Use Cases are Helpful

- Communication: Simple diagrams and stories are easy for non-technical users and stakeholders to understand
- Requirements Focus: Keeps focus on what the system needs to do for the user
- Boundary Definition: Clearly shows system scope and interactions
- Traceability: Links user needs to design elements and test cases
- Versatility: Useful across different development methodologies (SDLC, Agile, O-O)
- Foundation: Scenarios provide detailed steps for process modeling and test planning

USE CASE MODELING

Changing Perspectives: Levels of Management

- Organizations aren't flat: Management exists at different levels
- ullet Why does this matter for Systems Analysis? o Different levels have different
 - Responsibilities and Goals
 - Decision-making styles
 - Information Needs
- Understanding these levels helps us design systems that serve everyone effectively
- Think: Different altitudes give different views of the landscape

The Three Tiers of Management

- Typical Structure: A three-tiered hierarchy
 - Top: Looking Outward and Forward
 - Middle: Bridging Strategy and Operations
 - Bottom: Managing Daily Activities
- Think: The Captain, Officers, and Crew of the ship

Level 1: Operational Control

- Focus: Direct supervision of daily operations and transactions
- Decisions
 - Based on predetermined rules
 - Predictable outcomes
 - Short-term horizon
 - Examples: Work scheduling, inventory control, shipping/receiving process control
- Problem Type: Structured, well-defined problems. Easy to identify
- Alternatives: Usually clear and easy to list
- Decision Frequency: Repetitive

Level 2: Middle Management

- Focus
 - Short-term planning and control
 - Allocating resources to meet objectives
- Decisions
 - How to best use resources (people, budget, equipment)
 - Monitoring performance against plans/standards
 - More variety than operational level
 - Examples: Developing departmental budgets, deciding on staffing levels, scheduling production for the next quarter
- Problem Type: Mix of structured and semi-structured problems
- Alternatives: May require more analysis than operational level
- Decision Frequency: Less repetitive than operational

 $(^{36}/_{50})$

Level 3: Strategic Management

- Focus: Long-term direction, looking outward at environment, setting overall goals
- Decisions
 - Define organizational mission and goals
 - Shape the organization's future (years ahead)
 - High uncertainty, broad scope
 - Examples: Entering new markets, developing new product lines, acquiring other companies, setting corporate policy
- Problem Type: Unstructured or semi-structured, often ambiguous. Difficult to identify.
- Alternatives: Often unclear, difficult to articulate or evaluate.
- · Decision Frequency: Often unique, one-time decisions

LEVELS OF MANAGEMENT (37/50)

Information Needs: Operational Control

- Primary Need: Internal, current performance data
 - o Highly dependent on real-time or near real-time information
 - o Repetitive, low-level detail
- Moderate Need
 - Past performance (for immediate comparison)
 - Period reports (daily/weekly summaries)
- Example Systems: Transaction Processing Systems (TPS), real-time dashboards showing production status, inventory levels

³⁸/50

Information Needs: Middle Management

- Primary Need: Mix of internal information current and historical
 - High need for **real-time** info (troubleshooting, control)
 - $\circ~$ High need for ${\color{red} \textbf{current performance}}$ vs. ${\color{red} \textbf{standards}}$
 - High need for historical information (trend analysis)
 - Need for predictive information and "what-if" scenarios (short-term planning)
- Moderate Need: Some external information (departmental competitors, industry trends)
- Example Systems: Management Information Systems (MIS), Decision Support Systems (DSS) providing summaries, exception reports, budget tracking, forecasting tools

³⁹/50

Information Needs: Strategic Management

- Primary Need: External and Internal; Future-oriented
 - High dependence on external information (market trends, competitors, economy, regulations)
 - High need for predictive information and "what-if" scenarios (long-term strategy)
 - High need for **summarized**, **periodic information** (tracking overall progress)
 - Need for risk assessment (including security)
- Moderate Need: Summarized internal performance (the big picture)
- Low Need: Detailed, real-time internal operational data
- Example Systems: Executive Information Systems (EIS), DSS, Business Intelligence (BI) tools providing high-level dashboards, market analysis, long-range forecasting, risk modeling

⁴⁰/50

Implications for IS Development

- No Single System Fits All: Information systems must be tailored to the target management level
- Operational Level Needs: Systems emphasizing transaction processing, accuracy, real-time monitoring, detailed reporting
- Middle Management Needs: Systems providing summaries, exception reporting, trend analysis, short/medium-term forecasting, DSS capabilities
- Strategic Level Needs: Systems integrating external data, supporting long-range planning, complex scenario modeling, high-level summarization (EIS/BI)
- Analyst's Job: Understand the user's level and specific decision-making context to determine appropriate system features and information presentation

LEVELS OF MANAGEMENT

Collaborative Design Across Levels

- Concept: Involving stakeholders from different levels (operational, middle, strategic) and departments in the system design process [3], [4]
- Goal: Create systems that meet diverse needs and gain buy-in
- Challenges
 - Power dynamics based on hierarchy
 - Differing perspectives and priorities
 - Ensuring relevant information flows to all participants
- Opportunity: Leveraging expertise from all levels (e.g., operational users know workflows, middle managers know constraints, strategic users know goals)
- Key
 - Structure collaboration carefully
 - Value diverse expertise
 - Manage information flow

LEVELS OF MANAGEMENT 42/50

Beyond Structure: Organizational Culture

- What: The shared values, beliefs, attitudes, and norms that shape behavior within an organization
 - The organization's "personality"
 - o Often unwritten, but powerful
- Why Care: Culture significantly influences
 - How people work together
 - How decisions are really made
 - How readily new ideas (and systems!) are accepted
- Think: The invisible forces guiding how things get done

Not Just One Culture: Subcultures

- Reality: Organizations rarely have a single, uniform culture
- Subcultures: Smaller groups within the organization with their own distinct norms, values, and ways of communicating
 - o Can form around departments, teams, roles, projects, even virtual teams
 - May align with, or sometimes conflict with, the "official" culture
 - Can compete for influence ("Our way is better!")
- Challenge: Identifying and understanding these often overlapping and dynamic subcultures

Reading the Signs: Cultural Symbolism

- How to Perceive Culture/Subcultures? Look for symbols
 - Verbal Symbolism
 - Shared language, jargon, acronyms
 - Myths and stories about company history/heroes
 - Metaphors used ("We're a family," "We're a war machine")
 - · Humor and inside jokes
 - Nonverbal Symbolism
 - Artifacts (awards, posters, logos)
 - Rites and ceremonies (parties, award events, retirement rituals)
 - Dress code (formal vs. casual)
 - Office layout and decoration (open plan vs. private offices, fancy vs. functional)

Culture's Influence on Information Systems

- Major Impact: Subcultures strongly influence IS requirements, adoption, and use
- Potential Issues
 - Resistance to Change: If a new system clashes with a subculture's values, workflow, or status
 - Information Hoarding: Subcultures might restrict information flow perceived as empowering rivals
 - System Acceptance: May be embraced by one group but rejected by another
 - Determining Requirements: Different subcultures may have conflicting needs or priorities for a system
- Analyst Goal: Understand subcultures to anticipate challenges and tailor implementation (e.g., targeted training)

Technology Shaping Culture: The Slack Example

- Technology isn't neutral: Tools can influence and shape organizational culture
- Example: Slack (Workplace Messaging App)
 - Less Formal: Than email, encourages quicker, more casual communication [5]
 - Channel Structure: Public (archived, searchable by team), Private (invitation-only),
 Direct Messages
 - Potential Impacts
 - Fosters collaboration and quicker communication
 - Can flatten hierarchy (easier access across levels?)
 - May create its own etiquette and norms (emoji use, response times)
 - Can potentially blur work/life boundaries
 - Shapes how colleagues interact and build relationships
- Other Tools: Similar impacts from collaborative platforms (Teams, Discord, etc.), project management software, video conferencing

Leveraging Culture Understanding

- Be Observant: Pay attention to verbal and nonverbal cues
- Listen Actively: Understand the stories, concerns, and perspectives of different groups
- Identify Influencers: Who are the key people respected within different subcultures?
- Anticipate Resistance: Where might clashes occur between the system and existing culture?
- Tailor Approach
 - Communication: Frame benefits relevant to specific subcultures
 - Training: Address specific concerns and workflows
 - o Implementation: Consider pilot groups or phased rollouts based on cultural readiness
- Goal: Work with the culture(s) where possible, mitigate conflicts, and facilitate smoother system adoption

⁴⁸/50

References I

- [1] T. Henderson, "In-Person Workers Are Slow to Return to Jobs, Data Shows," Published by Stateline, a project of The Pew Charitable Trusts. (2021), [Online]. Available: https://www.pewtrusts.org/en/research-and-analysis/blogs/stateline/2021/09/09/in-person-workers-are-slow-to-return-to-jobs-data-shows (cit. on pp. 16–19).
- [2] A. Cockburn, Writing Effective Use Cases, 1st. Boston, MA: Addison-Wesley Professional, 2000 (cit. on pp. 93–99).
- [3] N. Levina, "Collaborating on Multiparty Information Systems Development Projects: A Collective Reflection-in-Action View," Information Systems Research, vol. 16, no. 2, pp. 109–130, 2005. DOI: 10.1287/isre.1050.0055. [Online]. Available: https://pubsonline.informs.org/doi/abs/10.1287/isre.1050.0055 (cit. on pp. 140–143).
- [4] A. F. Phelps, The Collective Potential: A Holistic Approach to Managing Information Flow in Collaborative Design and Construction Environments, 1st. North Bend, WA: Turning Point Press, 2012 (cit. on pp. 140–143).

⁴⁹/50

References II

[5] Akumina, "2022 State of the Digital Workplace & Modern Intranet Report," Akumina, Nashua, NH, Tech. Rep., 2022, White paper. [Online]. Available: https://www.akumina.com/resources/2022-state-of-digital-workplace-report (cit. on pp. 156-159).