

Série C - session 2009 : problème 2 - corrigé

Partie A Etude de la fonction f

- 1. a) Tableau de variation de $q: x \mapsto q(x) = 1 (x^2 2x + 2)e^{-x}$
- •Ensemble de définition de g : g est définie sur }-∞;+∞[
- •Limites de q

On a
$$\lim_{-\infty} g = \lim_{-\infty} (-x^2 e^{-x}) = -\infty$$
 et $\lim_{+\infty} g = 1 - 0 = 1$

- Dérivée q' de q : On vérifie que $q'(x) = (x-2)^2 \cdot e^{-x}$,
- q'(x) positive ou nulle sur R
- Tableau de variation

b) Existence et unicité de la solution de l'équation g(x) = 0

•g est continue et strictement croissante sur $]-\infty,+\infty[$, donc c'est une bijection de $-\infty,+\infty$ sur $q(-\infty,+\infty) = -\infty$; 1.

Comme $0 \in]-\infty$; 1 [., il existe un réel unique α dans $-\infty,+\infty$ tel que $q(\alpha) = 0$.

•Encadrement de α

On a g(0,35) = -0,0024 et g (0,36) = 0,0166
 Comme
$$[0,35;0,36] \subset R$$
 et $g(0,35) \times g(0,36) < 0$, alors $\alpha \in]0,35;0,36[$

c) Signe de q(x)

Sur $[-\infty, \alpha]$, la fonction g est continue et strictement croissante donc $g(x) \le g(\alpha)$.

Comme $q(\alpha) = 0$, il s'ensuit que g(x) < 0 sur $]-\infty, \alpha[$

Sur $|\alpha_i + \infty|$, g continue strictement croissante donc $g(x) \ge g(\alpha) = 0$ alors g(x) > 0

2. a) Expression de f'(x)

•On a
$$f(x) = x - 1 + (x^2 + 2)e^{-x}$$
, f est définie sur R

•On a
$$f'(x) = 1 + 2xe^{-x} + (x^2 + 2)(-e^{-x})$$

Alors
$$f'(x) = 1 - (x^2 - 2x + 2)e^{-x} = g(x)$$

D'où
$$sg[f'(x)] = sg[g(x)]$$

b) Tableau de variation de f

$$\bullet \text{On a} \lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \ x^2 e^{-x} = +\infty \text{ et } \lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left[\ x - 1 + (x^2 + 2) e^{-x} \right] = +\infty$$

×	-∞		α		+∞
f '(x)		-	0	+	
f (x)	+∞	\	f (α)	/	* +∞

c) Droite asymptote

On a
$$\lim_{x \to +\infty} f = +\infty$$
 et $\lim_{x \to +\infty} \left[f(x) - (x-1) \right] = \lim_{x \to +\infty} (x^2 + 2) e^{-x} = 0$

D'où la courbe C de f admet une asymptote oblique d'équation y = x - 1

d) Courbe (unité graphique : 2 cm)

B. Etude d'une suite

1. a) Variation de h sur l'intervalle I = [1;2]

•On a
$$h(x) = f(x) - x = -1 + (x^2 + 2)e^{-x}$$

La dérivée de h est :
$$x \mapsto h'(x) = (-x^2 + 2x - 2)e^{-x}$$

$$\label{eq:comme} \textit{C} \text{omme } e^{-x} > 0 \quad \text{pour tout } x \in I \text{, on a } sg[h'(x)] = sg\left[-x^2 + 2x - 2\right]$$

2

On vérifie que
$$-x^2 + 2x - 2 < 0$$
 pour $x \in I$

D'où h'(x) < 0, donc h strictement décroissante sur I

• Tableau de variation de h.

$$h(1) \approx 0.104$$
 et $h(2) \approx -0.188$

×	1 2
h'(x)	-
h(x)	0,104

b) Solution de f(x) = x (existence et unicité)

L'équation f(x) = x équivaut à f(x)-x = 0 ie. h(x) = 0, donc les équations f(x) = x et h(x) = 0 ont le même ensemble de solutions.

La fonction h est continue strictement décroissante sur I = [1;2] et $h(1) \times h(2) < 0$ (h(1) et h(2) sont de signes contraires), alors il existe un unique réel β , $\beta \in]1;2[$ tel que $h(\beta) = 0$ On a $h(\beta) = 0$ équivaut à $f(\beta) = \beta$ donc β est solution unique de f(x) = x

2. Encadrement de f '(x) sur I

On a f'(x) =
$$q(x) = 1 - (x^2 - 2x + 2)e^{-x}$$
.

La fonction g est continue strictement croissante sur I. (question A.1-a) alors pour tout x, $(1 \le x \le 2)$, on $a : g(1) \le g(x) \le g(2)$.

On a
$$g(1) \approx 0.632$$
 et $g(2) \approx 0.729$

D'où
$$0.632 \le g(x) \le 0.729$$
 i.e $|g(x)| \le 0.75$

Donc
$$|f'(x)| \le 0.729 \le \frac{3}{4}$$
 sur l'intervalle I

3. a) Montrons, par récurrence, que pour tout $n\in N$; $U_n\in I$

$$(U_n)$$
 est définie par $U_0 = 1$ et $U_{n+1} = f(U_n)$

$$\bullet U_O = 1$$
 alors $U_0 \in I$

$$\bullet$$
 Supposons que $U_n \in I \ \ \text{est montrons que } U_{n+1} \in I$

D'abord, montrons que pour tout
$$x \in I$$
, $f(x) \in I$

La fonction
$$f$$
 est croissante sur I donc $f(I) = [f(1); f(2)]$

On a
$$f(1) = 1,104$$
 et $f(2) = 1,812$

$$\text{Donc } f(1) \in I \quad \text{ et } f(2) \in I \ \text{ d'où } \left[f(1); f(2)\right] \subset I \text{ , D'où pour tout } \ x \in I \ \text{ , } f(x) \in I \text{ .}$$

Alors
$$U_n \in I$$
 implique $U_{n+1} = f(U_n) \in I$ d'où $U_{n+1} \in I$

Remarque: on peut conclure que (U_n) existe pour tout n.

b) Montrons que, pour tout entier n, $\left| U_{n+1} - \beta \right| \le \frac{3}{4} \left| U_n - \beta \right|$

Utilisons le théorème des inégalités des accroissements finis.

On a
$$|f'(x)| \le \frac{3}{4}$$
 sur I, alors pour tous réels a, $b \in I$, $|f(b) - f(a)| \le \frac{3}{4}|b - a|$

Prenons
$$b = U_n$$
 et $a = \beta$, alors $| f(U_n) - f(\beta) | \le \frac{3}{4} | U_n - \beta |$

$$\textit{C} \text{omme } f(\beta) = \beta \text{ et } f(U_n) = U_{n+1} \text{ , on } \alpha \mid U_{n+1} - \beta \mid \leq \frac{3}{4} \mid U_n - \beta \mid$$

On a successivement

$$\left| U_1 - \beta \right| \le \frac{3}{4} \left| U_0 - \beta \right|$$
$$\left| U_2 - \beta \right| \le \frac{3}{4} \left| U_1 - \beta \right|$$

. . .

$$\left| \left| U_{n} - \beta \right| \leq \frac{3}{4} \left| \left| U_{n-1} - \beta \right| \right|$$

En multipliant membre à membre et après simplification, on a : $\left|U_n - \beta\right| \leq (\frac{3}{4})^n \left|U_0 - \beta\right|$

c) Limite de U_{n}

$$0 \le \lim_{n \to +\infty} \left| U_n - \beta \right| \le \lim_{n \to +\infty} \left(\frac{3}{4} \right)^n \left| U_0 - \beta \right|$$

Comme
$$\lim \left(\frac{3}{4}\right)^n = 0$$

Comme
$$\lim \left(\frac{3}{4}\right)^n = 0$$
 alors $\lim_{n \to +\infty} \left| U_n - \beta \right| = 0$

$$\lim_{n \to \infty} U_n = \beta$$

4. Valeur de p, telle que $\left|U_n - \beta\right| \le 10^{-2}$

Pour que
$$\left|\,U_n-\beta\,\right|\leq 10^{-2}$$
 , il suffit que $\left(\frac{3}{4}\right)^n\left|\,U_0-\beta\,\right|\leq 10^{-2}$

Comme
$$U_0$$
 et $\beta \in \left[1;2\right]$ alors $\left| U_0 - \beta \right| \leq \left| 2 - 1 \right| = 1$

$$\left| U_n - \beta \right| \le 10^{-2}$$
 lorsque $\left(\frac{3}{4} \right)^n \le 10^{-2}$

$$\ln\left(\frac{3}{4}\right)^n \le \ln(10^{-2})$$
 i.e $\ln\left(\frac{3}{4}\right) \le \ln 10^{-2}$

$$n \ge \frac{\ln 10^{-2}}{\ln\left(\frac{3}{4}\right)} = 16,008 \quad (p = 17)$$

D'où

$$n \ge \frac{\ln 10^{-2}}{\ln \left(\frac{3}{4}\right)} = 16,008$$
 $(p = 17)$

Pour $n \ge 17$, $\left| U_n - \beta \right| \le 10^{-2}$