Part VIII

Query Processing and Optimization

Query Processing and Optimization

- Overview
- Star-Join
- Optimization of the GROUP BY
- Calculation of the CUBE

Overview

Overview

Overview

Phases of Query Processing

- Translation and View Expansion
 - Simplify arithmetic expressions in the query plan
 - Resolve subqueries
 - Insert the view definition
- 2 Logical or algebraic optimization
 - Transform query plan irrespective of the specific storage form; and pulling in of selections in other operations
- Physical or Internal optimization
 - Take into account concrete storage techniques (indexes, clusters)
 - Select algorithms
 - Several alternative internal plans

Phases of Query Processing (2)

- Cost-Based Selection
 - Use statistic information (size of tables, selectivity of attributes) for the selection of a specific internal plan
- Plan Parametrization
 - For Pre-compiled queries: (e.g., Embedded-SQL): Replace placeholders with values
- Code Generation
 - Convert the access plan into executable code

Phases of Query Processing (3)

- Representation of requests during the processing
 - ▶ Algebra expressions → Operator Tree
 - ⋆ Operators as Nodes
 - ★ Edges represent data flow
 - Later phases → Access or query plan (query execution plan QEP)
 - ★ Concrete algorithms as operators

Logical vs. physical Operators

- R, S Relations
- A Attribute Set
- F Condition
- G Grouping Elements

Star-Join

Star-Join

Optimization of Star-Joins

- Star-Joins are a typical pattern for Data Warehouse queries
- Typical properties by the Star-Schema:
 - Very large fact table
 - Clearly smaller, independent dimension tables
- ⇒ Heuristics of classical relational optimizers often fail in this regard!

Optimization of Star-Joins (2)

- Example: Join over fact table Sales and the three dimension tables Product, Time und Geography:
 - 4-Way Join
 - In RDBMS usually only pairwise join: Sequence of pairwise joins required
 - 4! possible join orders
 - Heuristic to reduce the number of combinations to check: Joins between relations that are not connected by a join condition in the query will not be considered

Optimization of Star-Joins (3)

• Heuristic gives for example the following query plan (Plan A):

Optimization of Star-Joins (4)

• The following query plan (Plan B) is usually not considered (with cross product of the dimension tables):

Star-Join: Calculation example

Annahmen:

- ► Table Sales: 10.000.000 Tuples
- ▶ 10 Shops in Thuringia (out of 1000 in Germany)
- 20 days of sale in January 2010 (out of 1000 stored days)
- ▶ 50 products in the product category "Beer" (out of 1000)
- Uniform distribution / same selectivity of the individual attribute values

Plan	Operation	Number of Resulting Tuples
Α	1. Join	100.000
	2. Join	20.000
	3. Join	1.000
В	1. Cross Product	200
	2. Cross Product	10.000
	3. Join	1.000

Semi-Join of Dimension Tables

- Calculation of the Cross product for the dimension tables only for sufficiently restictive selection conditions for dimensions useful
- Avoidance of the complete calculation of the cross product
 Use of the Semi-Join

Semi-Join of Dimension Tables (2)

- On the fact table a simple B+-Tree is used for each dimension as an index
- Through Semi-Joins with the dimension tables the sets of tuple identifiers (TID) of the potentially relevant tuples is determined
- The intersection of those TID sets is computed (e.g., by using efficient main memory methods):
 - Contains all TIDs of the tuples that fulfill all restrictions for all dimensions
- After that a "normal" pairwise Join is performed

Not the whole fact table goes into the join, but instead only the relevant tuples! (in the example: 1.000 instead of 10.000.000 tuples)

Semi-Join of Dimension Tables (3)

Optimization of the GROUP BY

Optimization of the GROUP BY

- Special treatment of grouping and aggregation operations during the optimization
- Logical/Algebraic Optimization: "Push-down" of groupings
 reduction of intermediate result cardinality
 - Invariant Grouping
 - Early Pre-Grouping
- Physical/Internal Optimization
 - Special implementation for GROUP BY, CUBE and other OLAP-Functions

Invariant Grouping

- Idea: Shifting a grouping operation "down" (Invariance w.r.t. position)
- Usable if
 - Join partner does not directly contribute to the result (implicit selection)
 - Grouping attributes have the role of a foreign key in the join
- Example:

```
SELECT S_Time_ID, S_Location_ID, SUM(Turnover)
FROM Sales, Time, Location
WHERE S_Time_ID=T_ID AND
    S_Location_ID=L_ID
    AND Year < 2010 AND State <> "THUR"
GROUP BY S_Time_ID, S_Location_ID
```

Invariant Grouping (2)

Early Pre-Grouping

- Invariant Grouping: restriktive precondition → seldom used
- Idea: Insertion of an additional grouping operator before the join (similar to a projection)
- Usable if
 - Grouping condition contains the join attributes
 - Aggregated attributes do not depend on the attributes of the join partner

Early Pre-Grouping (2)

Example:

```
SELECT Year, L_City, SUM(Turnover), COUNT(Turnover)
FROM Sales, Time, Location
WHERE S_Time_ID = T_ID AND
    S_L_ID = L_ID
GROUP BY Year, L_City
```

Early Pre-Grouping (3)

Early Pre-Grouping (4)

Also required: Adjustment of the aggregation function

Implementation of the grouping operator

- Implementation of GROUP BY
- Implementation of OLAP-Functions
- Computation of the CUBE
- Iceberg-Cubes

GROUP BY-Implementations

Sort-based

- Pre-sorting the relation or sorting read (Index-Scan)
- Process
 - Sortinge
 - Iteration over tuples
 - Aggregation of the values and output of the aggregated value in case of a group change

Hash-based

- ▶ Hashfunction over grouping attributes $h(G_1, ..., G_n)$
- Process
 - 1 Insertion of tuples in hash tables using $h(G_1, \ldots, G_n)$
 - Iteration through hash table
 - Application of aggregation functions

Implementation of OLAP-Functions

- Sequential evaluation
- For each OLAP-Function:
 - Input data sorted according to OVER()-clause
 - Apply aggregation functions
- Sorting by
 - Attributes of the global grouping
 - Attributes of the OVER()-clause (PARTITION BY and ORDER BY)
- In case of multiple OLAP-Functions in a query
 - Sequential evaluation, i.e., possibly repeated sorting for usage of shared sorting prefixes

Implementation of OLAP-Functions (2)

```
global grouping attributes G_1 \dots G_n,
locale sorting attributes of OVER(): O_1 \dots O_p
aggregation function AGG(),
locale partitioning attributed (opt.) P_1 \dots P_m,
lower and upper window border (opt.) W_u \dots W_o
sort (G_1, \ldots, G_n, P_1, \ldots, P_m, O_1, \ldots, O_n);
while (t = next_tuple()) {
    if (t has equal values w.r.t. G_1 \dots G_n, P_1 \dots P_m like last tuple)
        aggrlist := concat(aggrlist, t);
    else
        // Partition switch
        for i := 1 to length(aggrlist)
            // Compute absolute window borders low, high
            aggrval := AGG({aggrlist[low]...aggrlist[high]});
            output (G_1, \ldots, G_n, P_1, \ldots, P_m, O_1, \ldots, O_p, \text{aggrval});
        aggrlist := ();
```

Calculation of the CUBE

Calculation of the CUBE: naive Approach

- Separate calculation of all grouping combinations
- Final unification

CUBE and Aggregation functions

- Algebraic functions enable
 - Calculation of less detailed aggegates from more detailed aggregates (more dimensions)
 - Partial order ("grid") of the GROUP BY operations of the CUBE
 - ⋆ Data Cube Lattice
 - ► GROUP BY is a child of another GROUP BY if the parent operation can be used to calculate the child operation → Derivability

Derivability

- Derivability of grouping combinations G_i
- Direct Derivability:
 - G₂ is derivable from G₁ if
 - G_2 has exactly one attribute less than G_1 : $G_2 \subset G_1$ and $|G_2| = |G_1| 1$
 - ▶ or in G_1 exactly one attribute A_i is replaced by B_i where the following holds true: $A_i \rightarrow B_i$
 - ⇒ Data Cube Lattice
- Derivability:
 - ▶ Grouping combinations: G_2 is within a data cube lattice derivable from G_1 when there is a path from G_1 to G_2

Data Cube Lattice

Computation of the CUBE

- Idea:
 - Using of the grid view (Derivability)
 - ► GROUP-BYs with common grouping attributes can share partitions, sorted parts etc.
- Approach
 - Based on sorting: PipeSort
 - Based on hashing: PipeHash

Optimized Computation: Principle

Optimization Potential

- Smallest-parent
 - Computation of a GROUP-BY based on the minimal previously computed Parent-GROUP-BY
- Cache-results
 - ▶ Temporary storage of the results (in the main memory) of a GROUP-BY for subsequent GROUP-BYs (Example.: $ABC \rightarrow AB$)
- Amortize-scans
 - Joint calcukation of multiple GROUP-BYs in a scan (Example: ABC, ACD, ABD, BCD aus ABCD)
- Share-sorts
 - For sort-based approaches: Temporary storage and shared use of sorted parts
- Share-partitions
 - For hash-based approaches: Temporary storage and joint use of partitions

Meaning of the Sorting Order

- Assumption: Grouping based on sorting
 - potentially requires re-sorting
- Example:

Product	Year	State	Sales
RedWine	2009	SANH	230
RedWine	2009	THUR	210
RedWine	2010	SANH	200
Beer	2009	SANH	568

- ► Re-sorting for the grouping (Product, State)
- Consideration of the sort costs in a cost model

Cost Model

- Cost Types
 - S-Costs (Still to sort): Calculation of GROUP-BY j from GROUP-BY i, if i not sorted yet
 - A-Costs (Already sorted): Calculation of GROUP-BY j from GROUP-BY i, if ialready sorted
- Estimation based on data distribution, system parameters, etc.

PipeSort

- Input: Search grid
 - Graph with nodes to represent GROUP-BY (Data Cube Lattice)
 - Directed edge connects GROUP-BY i with GROUP-BY j
 - ★ i is parent node of j
 - \star j can be generated from i
 - ★ j has exactly one attribute less than i
 - Level k refers to all GROUP-BYs with k attributes
- Annotations of edges e_{ij} with A- and S-Costs
- Output: Subgraph of the search grid
 - Each node is connected to a single parent node
 - Determines sorting order while preserving pipelining
 - Special expanded tree
- Goal: Subgraph with minimal summe of edge costs

PipeSort: Example

PipeSort: Algorithm

- Can be traced back to a known Graph-Algorithm
- Level-wise approach: k = 0..N 1 (N: Number of attributes)
- Transformation of level k + 1 by k copies of each node
- Each copied node has connections with the same node as the original
- Edge costs for original node: $A(e_{ij})$, otherwise: $S(e_{ij})$
- Search for graph with minimal costs
 - Forming of pairs and minimization of the total costs ("hungarian" method – weighted bipartite matching problem)

PipeSort: Sorting Order

- Each node h in level k is connected to a node g in level k+1
- $h \rightarrow g$ over A()-edge: h determines attribute order for sorting g
- $h \rightarrow g$ over S()-edge: g is re-sorted for the calculation of h

PipeSort: Sort Plan

Relation

Iceberg Cubes

Idea: Exploitation of the monotony of aggregations

If an aggregation group does not fulfill the **COUNT**-condition, then this condition is also not fulfilled by groups with additional attributes.

 Approach: Bottom-Up-Construction of a cube and Minimal-Support-Pruning (similar to Apriori)

Iceberg Cube bottom up

Iceberg-Cube: Computation

```
BottomUpCube (input, dim):
   aggregate (input);
   write (outputRec);
   for (d:=dim; d<numDims; d++) {</pre>
      C := cardinality[d]; /* Cardinality of the dimension */
      Partition(input, d, C, dataCount[d]);
      k := 0;
      for (i:=0; i < C; i++) {
         c := dataCount[d][i]; /* Size of Partition */
         if (c >= minsup)
            outputRec.dim[d] := input[k].dim[d];
            BottomUpCube (input [k...k+c], d+1);
         k += c;
      outputRec.dim[d] = ALL;
```

Summary

- Special charakterics of DW queries require specific optimization methods
- Rewriting techniques:
 - Join order for Star-Join
 - Push-down of groupings
- Operator implementation
 - CUBE and Iceberg-CUBE
 - OLAP-Functions