Def. Mówimy, że funkcja f jest klasy C_D^1 jeżeli posiada w każdym punkcie zbioru D wszystkie pochodne cząstkowe ciągłe, czyli jest F- różniczkowalna w każdym punkcie zbioru E.

Pochodne cząstkowe wyższych rzędów.

Rozważmy funkcję rzeczywistą n zmiennych $f: R^n \supset D \to R$ określoną na zbiorze otwartym D. Jeżeli w każdym punkcie zbioru D funkcja f ma pochodną cząstkową $\frac{\partial f}{\partial x_i}$, to mamy określoną funkcją rzeczywistą $\frac{\partial f}{\partial x_i}: D \ni (x_1,...,x_n) \to \frac{\partial f}{\partial x_i}(x_1,...,x_n)$, dla której można w dowolnym ustalonym punkcie $(x_1,...,x_n)$ zdefiniować (o ile istnieje) pochodną cząstkową po zmiennej x_j . W ten sposób określamy drugą pochodną cząstkową funkcji

$$\frac{\partial^2 f}{\partial x_j \partial x_i} = \frac{\partial}{\partial x_j} \left[\frac{\partial f}{\partial x_i} \right]$$

Tw. Schwarza. Jeżeli $f(x_1,...,x_n)$ ma w pewnym obszarze D ciągłe pochodne cząstkowe $\frac{\partial^2 f}{\partial x_j \partial x_i}$ i $\frac{\partial^2 f}{\partial x_i \partial x_j}$, to są one sobie równe w D.

Przykład Funkcja $f(x,y) = \begin{cases} xy \frac{x^2 - y^2}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$ jest ciągła w punkcie (0,0) i jej pochodne cząstkowe są równe $\frac{\partial f}{\partial x}(0,y) = -y$; $\frac{\partial f}{\partial y}(x,0) = x$. Stąd $\frac{\partial^2 f}{\partial y \partial x}(0,0) = -1$ a $\frac{\partial^2 f}{\partial x \partial y}(0,0) = 1$, gdyż $\frac{\partial^2 f}{\partial x_j \partial x_i}$ i $\frac{\partial^2 f}{\partial x_i \partial x_j}$ nie są ciągłe w punkcie

Pochodne cząstkowe funkcji złożonych.

Twierdzenie Jeżeli

- 1. $f(x_1,...,x_n)$ ma w pewnym obszarze $D \subset \mathbb{R}^n$ ciągłe pochodne cząstkowe
- 2. funkcje $x_i = x_i (u_1,...,u_m)$ i=1,...,n mają ciągle pochodne cząstkowe w pewnym obszarze $\Delta \subset \mathbb{R}^m$
- 3. $(x_1(u_1,...,u_m),...,x_n(u_1,...,u_m)) \in D$, gdy $(u_1,...,u_m) \in \Delta$ to funkcja złożona $F(u_1,...,u_m) = f(x_1(u_1,...,u_m),...,x_n(u_1,...,u_m))$ ma ciągłe pochodne cząstkowe w każdym punkcie obszaru Δ i

$$\frac{\partial F}{\partial u_j}(u_1,...,u_m) = \sum_{i=1}^n \frac{\partial f}{\partial x_i}(x_1(u_1,...,u_m),...,x_n(u_1,...,u_m)) \frac{\partial x_i}{\partial u_j}(u_1,...,u_m)$$

Dowód. dla przypadku szczególnego n=2, m=1 F(t)=f(x(t),y(t))

$$F'(t) = \lim_{h \to 0} \frac{F(t+h) - F(t)}{h} = \lim_{h \to 0} \frac{f(x(t+h), y(t+h)) - f(x(t), y(t))}{h} =$$

$$= \lim_{h \to 0} \frac{f(x(t+h), y(t+h)) - f(x(t), y(t+h)) + f(x(t), y(t+h)) - f(x(t), y(t))}{h} = \{\text{tw.Lagrange'a}\} =$$

$$= \lim_{h \to 0} \frac{\partial f(c_1, y(t+h))}{\partial x} \frac{(x(t+h) - x(t))}{h} + \frac{\partial f(x(t), c_2)}{\partial y} \frac{(y(t+h) - y(t))}{h} = \{\text{ciaglość poch. cząstkowych}\} =$$

$$=\frac{\partial f(x(t),y(t))}{\partial x}x'(t)+\frac{\partial f(x(t),y(t))}{\partial y}y'(t)$$

Przykłady

- 1. $f(x,y)=e^x \cos y$, x(u,v)=3u+5v, y(u,v)=2u-v, $F(u,v)=e^{3u+5v}\cos(2u-v)$. Obliczyć pochodne cząstkowe $\frac{\partial^2 F}{\partial u^2}$ i $\frac{\partial^2 F}{\partial v^2}$.
- 2. $F(u_1, u_2) = f(r(u_1, u_2))$ gdzie $r(u_1, u_2) = \sqrt{u_1^2 + u_2^2}$. Wykazać że $\frac{\partial^2 F}{\partial u_1^2} + \frac{\partial^2 F}{\partial u_2^2} = \frac{d^2 f}{dr^2} + \frac{1}{r} \frac{df}{dr}$

Różniczki

Oznaczenia
$$\mathbf{x}^0 = (x_1^0, ..., x_n^0)$$
 $\Delta \mathbf{x} = (\Delta x_1, ..., \Delta x_n)$ $f: Ot(\mathbf{x}^0, \delta) \to R$

Różniczką funkcji f w punkcie \mathbf{x}^0 dla przyrostu $\Delta \mathbf{x}$ nazywamy wyrażenie

$$df(\mathbf{x}^0, \Delta \mathbf{x}) = \sum_{i=1}^n \frac{\partial f}{\partial x_i} (\mathbf{x}^0) \, \Delta x_i$$

Różniczki wyższych rzędów

Jeżeli przy ustalonym $\Delta \mathbf{x}$ funkcja $d(\cdot, \Delta \mathbf{x})$: $Ot(\mathbf{x}^0, \delta) \to R$ ma różniczkę, to nazywamy ją druga różniczką funkcji f w punkcie \mathbf{x}^0 i oznaczamy $d^2 f(\mathbf{x}^0, \Delta \mathbf{x})$.

Przykład. Wyprowadzić wzór na drugą różniczkę funkcji dwóch zmiennych.

$$d((x_1, x_2), (\Delta x_1, \Delta x_2)) = \frac{\partial f}{\partial x_1}(x_1, x_2)\Delta x_1 + \frac{\partial f}{\partial x_2}(x_1, x_2)\Delta x_2$$

$$\begin{split} &d^{2}((x_{1},x_{2}),(\Delta x_{1},\Delta x_{2})) = \\ &= \frac{\partial}{\partial x_{1}} \left[\frac{\partial f}{\partial x_{1}}(x_{1},x_{2}) \Delta x_{1} + \frac{\partial f}{\partial x_{2}}(x_{1},x_{2}) \Delta x_{2} \right] \Delta x_{1} + \frac{\partial}{\partial x_{2}} \left[\frac{\partial f}{\partial x_{1}}(x_{1},x_{2}) \Delta x_{1} + \frac{\partial f}{\partial x_{2}}(x_{1},x_{2}) \Delta x_{2} \right] \Delta x_{2} = \\ &= \frac{\partial^{2} f}{\partial x_{1}^{2}}(x_{1},x_{2}) \Delta x_{1}^{2} + 2 \frac{\partial^{2} f}{\partial x_{2} \partial x_{1}}(x_{1},x_{2}) \Delta x_{1} \Delta x_{2} + \frac{\partial^{2} f}{\partial x_{2}^{2}}(x_{1},x_{2}) \Delta x_{2}^{2} = \left(\frac{\partial}{\partial x_{1}} \Delta x_{1} + \frac{\partial}{\partial x_{2}} \Delta x_{1} \right)^{2} f \end{split}$$

Druga różniczka funkcji wielu zmiennych w danym punkcie jest formą kwadratową przyrostów

$$d^{2} f((x_{1},...,x_{n}),(\Delta x_{1},...,\Delta x_{n})) = \sum_{i=1}^{n} \frac{\partial^{2} f}{\partial x_{i} \partial x_{i}}(\mathbf{x}) \Delta x_{i} \Delta x_{j}$$

Uwagi o zapisie macierzowym drugiej różniczki.

$$d^{2}((x_{1},x_{2}),(\Delta x_{1},\Delta x_{2})) = \begin{bmatrix} \Delta x_{1} & \Delta x_{2} \end{bmatrix} \begin{bmatrix} \frac{\partial^{2} f}{\partial x_{1}^{2}}(x_{1},x_{2}) & \frac{\partial^{2} f}{\partial x_{2}\partial x_{1}}(x_{1},x_{2}) \\ \frac{\partial^{2} f}{\partial x_{1}\partial x_{2}}(x_{1},x_{2}) & \frac{\partial^{2} f}{\partial x_{1}^{2}}(x_{1},x_{2}) \end{bmatrix} \begin{bmatrix} \Delta x_{1} \\ \Delta x_{2} \end{bmatrix}$$

Wzór na m-ta różniczkę funkcji n zmiennych

$$d^m f = \left(\frac{\partial}{\partial x_1} \Delta x_1 +, \dots, + \frac{\partial}{\partial x_n} \Delta x_n\right)^m f$$

Zadanie. Napisać wzór na drugą różniczkę funkcji trzech zmiennych i trzecią różniczkę funkcji dwóch zmiennych

Wzór Taylora

Jeżeli funkcja $f: R^n \supset Ot(\mathbf{x}^0, \delta) \ni \mathbf{x} \to f(\mathbf{x}) \in R$ ma ciągłe pochodne cząstkowe do rzędu $m \le Ot(\mathbf{x}^0, \delta)$, to istnieje $\theta \in (0,1)$ takie, że dla każdego $\mathbf{x} \in Ot(\mathbf{x}^0, \delta)$ prawdziwy jest wzór

$$f(\mathbf{x}) = f(\mathbf{x}^{0}) + \frac{1}{1!} df(\mathbf{x}^{0}, \mathbf{x} - \mathbf{x}^{0}) + \frac{1}{2!} d^{2} f(\mathbf{x}^{0}, \mathbf{x} - \mathbf{x}^{0}) + \dots + \frac{1}{(m-1)!} d^{m-1} f(\mathbf{x}^{0}, \mathbf{x} - \mathbf{x}^{0}) + r_{m}$$
gdzie $r_{m} = \frac{1}{m!} d^{m} f(\mathbf{x}^{0} + \theta(\mathbf{x} - \mathbf{x}^{0}), \mathbf{x} - \mathbf{x}^{0})$

Uwaga: punkt "pośredni" $\mathbf{c} = \mathbf{x}^0 + \theta(\mathbf{x} - \mathbf{x}^0)$ leży wewnątrz odcinka o końcach \mathbf{x}^0 , \mathbf{x}

Dow. Parametryzujemy odcinek $\mathbf{x}(t) = \mathbf{x}^\circ + t(\mathbf{x} - \mathbf{x}^\circ)$; $t \in [0,1]$ i tworzymy funkcję jednej zmiennej $\varphi(t) = f(\mathbf{x}^\circ + t(\mathbf{x} - \mathbf{x}^\circ))$. Mamy więc rzeczywistą funkcję φ określoną na domkniętym odcinku [0,1] spełniającą założenia twierdzenia Taylora dla funkcji jednej zmiennej. Stosując do niej wzór

Maclaurina otrzymujemy
$$\varphi(1) = \varphi(0) + \frac{\varphi'(0)}{1!}(1-0) + ... + \frac{\varphi^{m-1}(0)}{(m-1)!}1^{m-1} + \frac{1}{m!}\varphi^m(\theta)1^m \Leftrightarrow$$

$$\Leftrightarrow \varphi(1) = \varphi(0) + \frac{1}{1!} d\varphi(0,1) + \dots + \frac{1}{(m-1)!} d^{m-1} \varphi(0,1) + \frac{1}{m!} d^m \varphi(\theta,1)$$
Ale $d^k \varphi(t_0,t) = d^k f(\mathbf{x}(t_0), \mathbf{x}(t+t_0) - \mathbf{x}(t_0))$. Stad $d^k \varphi(0,1) = d^k f(\mathbf{x}^0, \mathbf{x} - \mathbf{x}^0)$ itd.

Przykład. Napisać wzór Taylora dla funkcji $f(x,y)=e^x \sin y$ w punkcie (0,0) (wzór Maclaurina) dla m=4. Odp. $e^x \sin y = y + xy + \frac{1}{2}x^2y - \frac{1}{6}y^3 + r_4$

Zastosowanie różniczki w teorii błędów

Dana jest funkcja f wielu zmiennych. Wektorowy argument funkcji nie jest znany lecz dysponujemy jego pomiarem \mathbf{x} obarczonym błędem Niech $\mathbf{x}+\Delta \mathbf{x}$ oznacza prawdziwą nieznaną wartość argumentu a błąd bezwzględny pomiaru (wektorowego) nie przekracza \mathbf{b} ($|\Delta \mathbf{x}| \le \mathbf{b}$ nierówność wektorowa).

Wówczas
$$|f(\mathbf{x} + \Delta \mathbf{x}) - f(\mathbf{x})| \approx |df(\mathbf{x}, \Delta \mathbf{x})| \leq \sum_{i=1}^{n} |\frac{\partial f}{\partial x_i}(\mathbf{x})| b_i$$
.

Wytłumaczenie przybliżenego charakteru wzoru, kiedy to przybliżenie jest "dobre" i jak postąpić gdy przybliżenia nie jest zadowalające.

Przykład. Oszacować metodą różniczki zupełnej błąd jaki popełniamy obliczając objętość prostopadłościanu o krawędziach 4.1, 3.2, 8.4 zmierzonych odpowiednio z dokładnością 0.1, 0.1, 0.2. Odp. (błąd bezwzględny≤ 8.756, błąd względny 8% (wytłumaczyć jak rozumiemy błąd względny)

Ekstrema lokalne

Def. Funkcja $f: R^n \supset Ot(\mathbf{x}^0, \delta) \ni \mathbf{x} \to f(\mathbf{x}) \in R$ ma w punkcie \mathbf{x}^0 maksimum lokalne właściwe jeżeli $\forall \mathbf{x} \in S(\mathbf{x}^0, \delta) \quad f(\mathbf{x}) < f(\mathbf{x}^0)$ (Uwaga $S(\mathbf{x}^0, \delta) = Ot(\mathbf{x}^0, \delta) - \{\mathbf{x}^0\}$)

Podobnie minimum lokalne właściwe.

Warunek konieczny istnienia ekstremum

Jeżeli funkcja $f: R^n \supset Ot(\mathbf{x}^0, \delta) \ni \mathbf{x} \to f(\mathbf{x}) \in R$

- ma w punkcie x⁰ pochodne cząstkowe
- ma w punkcie \mathbf{x}^0 ekstremum

to
$$\frac{\partial f}{\partial x_i}(\mathbf{x}^0) = 0$$
, $i=1,...,n$.

Dowód. Dla prostoty przyjmijmy n=2. Jeżeli funkcja f(x,y) ma w punkcie (x_0,y_0) ekstremum i pochodne cząstkowe, to różniczkowalna funkcja jednej zmiennej $f(x, y_0)$ ma w punkcie x_0 ekstremum.

Stad
$$\frac{\partial f}{\partial x}(x_0, y_0) = 0$$
. Podobnie $\frac{\partial f}{\partial y}(x_0, y_0) = 0$.

Uwaga: punktami krytycznymi są także punkty w których pochodne cząstkowe nie istnieją.

Warunek wystarczający istnienia ekstremum

- Jeżeli $f: R^n \supset Ot(\mathbf{x}^0, \delta) \ni \mathbf{x} \to f(\mathbf{x}) \in R$ jest klasy $C^2(Ot(\mathbf{x}^0, \delta))$ (tzn. ma drugie pochodne cząstkowe ciągłe w $Ot(\mathbf{x}^0, \delta)$)
 - $\frac{\partial f}{\partial x_i}(\mathbf{x}^0) = 0$, i=1,...,n
 - $d^2 f(\mathbf{x}^0, \Delta \mathbf{x}) > 0 (<)$, $\forall \Delta \mathbf{x} \neq \mathbf{0}$

to f ma w punkcie \mathbf{x}^0 minimum (maksimum) lokalne właściwe

Dowód. Z wzoru Taylora dokładnie jak dla funkcji jednej zmiennej mamy

 $f(\mathbf{x}) - f(\mathbf{x}^0) = \frac{1}{2!} d^2 f(\mathbf{x}^0 + \theta(\mathbf{x} - \mathbf{x}^0), \mathbf{x} - \mathbf{x}^0) > 0 \quad \forall \Delta \mathbf{x} \neq \mathbf{0}, \text{ gdy } d^2 f(\mathbf{x}^0, \Delta \mathbf{x}) > 0, \text{ gdyż z ciągłości}$ pochodnych rzędu drugiego, dla ustalonych przyrostów druga różniczka jest funkcją ciągłą w \mathbf{x}^0 więc z twierdzenia o lokalnym zachowaniu znaku $d^2 f(\mathbf{x}^0, \mathbf{x} - \mathbf{x}^0)$ i $d^2 f(\mathbf{x}^0 + \theta(\mathbf{x} - \mathbf{x}^0), \mathbf{x} - \mathbf{x}^0)$ mają ten sam znak dla ∀∆x≠0

Problem. Jak badać warunek $d^2f(\mathbf{x}^0, \Delta \mathbf{x}) > 0$ (<), $\forall \Delta \mathbf{x} \neq \mathbf{0}$. Dla n=2

$$d^{2}((x_{1}, x_{2}), (\Delta x_{1}, \Delta x_{2})) = \begin{bmatrix} \Delta x_{1} & \Delta x_{2} \end{bmatrix} \begin{bmatrix} \frac{\partial^{2} f}{\partial x_{1}^{2}}(x_{1}, x_{2}) & \frac{\partial^{2} f}{\partial x_{2} \partial x_{1}}(x_{1}, x_{2}) \\ \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}}(x_{1}, x_{2}) & \frac{\partial^{2} f}{\partial x_{1}^{2}}(x_{1}, x_{2}) \end{bmatrix} \begin{bmatrix} \Delta x_{1} \\ \Delta x_{2} \end{bmatrix} = \begin{bmatrix} \Delta x_{1} & \Delta x_{2} \end{bmatrix} \begin{bmatrix} A & B \\ B & C \end{bmatrix} \begin{bmatrix} \Delta x_{1} \\ \Delta x_{2} \end{bmatrix} = A\Delta x_{1}^{2} + 2B\Delta x_{1}\Delta x_{2} + C\Delta x_{2}^{2} = \{\text{gdy } A \neq 0\}$$

$$= A\{\Delta x_{1}^{2} + 2\frac{B}{A}\Delta x_{1}\Delta x_{2} + \frac{B^{2}}{A^{2}}\Delta x_{2}^{2}\} - \frac{B^{2}}{A}\Delta x_{2}^{2} + C\Delta x_{2}^{2} = A\left((\Delta x_{1} + \frac{B}{A}\Delta x_{2})^{2} + \frac{AC - B^{2}}{A^{2}}\Delta x_{2}^{2}\right)$$

Widać, że jeśli

• $D_1 = A > 0$ i $D_2 = \det \begin{bmatrix} A & B \\ B & C \end{bmatrix} > 0$ to druga różniczka jest dodatnia

• $D_1 = A < 0$ i $D_2 = \det \begin{bmatrix} A & B \\ B & C \end{bmatrix} > 0$ to druga różniczka jest ujemna

Uzupełnienia z algebry (nieobowiązujące)

• Formą kwadratową *n* zmiennych rzeczywistych nazywamy funkcję

$$\varphi: R^n \ni \mathbf{x} \to \varphi(\mathbf{x}) = \varphi(x_1, ..., x_n) = \sum_{i,j=1}^n a_{ij} x_i x_j$$
 przy czym $a_{ij} = a_{ji}$

• Forma kwadratowa ma przy ustalonej bazie przestrzeni $X=R^n$ ma dokładnie jedną reprezentację macierzową $\varphi(\mathbf{x}) = \mathbf{x}^T \mathbf{A} \mathbf{x} = \langle \mathbf{A} \mathbf{x}, \mathbf{x} \rangle$ gdzie \mathbf{A} jest macierzą symetryczną.

Formę kwadratową φ nazywamy

• nieujemną - gdy $\forall \mathbf{x} \in \mathbb{R}^n \quad \varphi(\mathbf{x}) \ge 0$

• niedodatnią - gdy $\forall \mathbf{x} \in \mathbb{R}^n \quad \varphi(\mathbf{x}) \le 0$

• dodatnią - gdy $\forall \mathbf{x} \in \mathbb{R}^n, \mathbf{x} \neq \mathbf{0} : \varphi(\mathbf{x}) > 0$

• ujemna - gdy $\forall \mathbf{x} \in \mathbb{R}^n, \mathbf{x} \neq \mathbf{0} : \varphi(\mathbf{x}) < 0$

• dodatnio określoną - gdy $\exists c>0 \ \forall \mathbf{x} \in \mathbb{R}^n : \varphi(\mathbf{x}) \ge c \|\mathbf{x}\|^2$

• ujemnie określoną - gdy $\exists c>0 \ \forall x \in \mathbb{R}^n$: $\varphi(x) \le -c ||x||^2$

• nieokreśloną - gdy $\exists \mathbf{x} \in R^n \ \varphi(\mathbf{x}) > 0$ i $\exists \mathbf{v} \in R^n \ \varphi(\mathbf{v}) < 0$

Uwaga. W przypadku definiowania form kwadratowych na nieskończenie wymiarowej przestrzeni liniowej unormowanej należy odróżniać pojęcia.

dodatniość formy i dodatnia określoność formy

ujemność formy i ujemna określoność formy

W przypadku przestrzeni skończenie wymiarowych pojęcia te pokrywają się. Jest to konsekwencją zwartości sfery jednostkowej w przestrzeni skończenie wymiarowej.

Def. Minorami kątowymi (odpowiednich stopni) macierzy $\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n} & a_{n} & \cdots & a_{nn} \end{bmatrix}$ nazywamy

następujące wyznaczniki $D_1 = \begin{vmatrix} a_{11} \\ a_{21} \end{vmatrix}, D_2 = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}, ..., D_n = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}.$

Twierdzenie. (kryterium Sylvestera).

Forma kwadratowa $\varphi(\mathbf{x}) = \mathbf{x}^{\mathrm{T}} \mathbf{A} \mathbf{x}$ jest dodatnia (dodatnio określona) $\Leftrightarrow D_i > 0 \quad \forall i$ Forma kwadratowa $\varphi(\mathbf{x}) = \mathbf{x}^{\mathrm{T}} \mathbf{A} \mathbf{x}$ jest ujemna (ujemnie określona) \Leftrightarrow $(-1)^i D_i > 0 \quad \forall i$ Jeżeli wszystkie minory kątowe D_i są różne od 0 i zmieniają się inaczej niż w powyższych przypadkach, to forma jest nieokreślona

Przykłady Wyznaczyć ekstrema lokalne funkcji

- a) $f(x,y)=x^4+y^4-2x^2+4xy-2y^2$ (punkty krytyczne (0,0), $(\sqrt{2},-\sqrt{2})$, $(-\sqrt{2},\sqrt{2})$. WW nie rozstrzyga w (0,0) ($f(x,x)-f(0,0)=2x^4>0$, $f(x,0)-f(0,0)=x^2(2-x^2)<0$ dla dostatecznie małych $x\neq 0$ \Rightarrow brak ekstremum w (0,0) w pozostałych punktach minimum lokalne (-8))
- b) $f(x,y,z)=x^2-2x-y^3+3y+5z^2$ (nieobowiązkowe)

Ekstrema globalne

Z twierdzenia Weierstrassa funkcja ciągła (wielu zmiennych) na zbiorze domkniętym i ograniczonym (a więc zwartym) *D* osiąga swoje kresy.

Algorytm

- szukamy punktów krytycznych we wnętrzu *int D* (*int D* int=interior= wnętrze)
- szukamy największej i najmniejszej wartości funkcji na brzegu D (to samo zagadnienie ale niższy wymiar)
- obliczamy wartości funkcji w wyznaczonych powyżej punktach i wybieramy (ze skończonej listy) wartość najmniejszą i największą

Przykład. Znaleźć najmniejszą i największą) wartość funkcji $f(x,y)=x^2+y^2-xy+x+y$ w trójkącie domkniętym ograniczonym przez proste x=0, y=0, x+y+3=0.

Odp. Max =
$$f(-3,0)=f(0,-3)=6$$
 Min= $f(-1,-1)=-1$