第一節、資料預處理

一、挑選欄位

我們經過對資料集欄位做敘述統計分析,初步窺探資料分布情形並將極端值 刪除後,與小組成員將所有變項逐一理解與討論,將資料分析較無關的欄位刪 除,刪除後的剩餘的欄位數量共23個欄位。

二、空值資料處理

1.確認資料是否有 NA 值

2.刪除空值

```
item_count False
total_item_price False
total_payment_value False
total_freight_value False
review_score False
review_answer_waiting_hours False
```

三、特徵轉換-共新增3個欄位

1.[seller_level]將賣家產品銷售量以Q3、Q1為分界點,將Q3以上的賣家重新編碼為高銷售量賣家[1];Q1以下的賣家重新編碼為低銷售量賣家[0],並將其餘Q1-Q3之間的資料刪除,剩餘資料48040筆。

2.將olist平台產品利用單價、交易量進行潛在類別分析(LCA),參照分析結果將相近的產品進行歸類,產品類型分類由71類別從新分為六大類,分別為時尚配件[1]、3C用品及小型家電[2]、藝文書籍音樂[3]、居家生活及辦公[4]、嬰幼童用品與休閒保健及食品[5]、五金工具及其他[6]。

- 3.利用RFM分析,R(最近的一次消費),F(消費頻率),M(消費金額)來評量客戶潛在價值:
- (1) 最近消費日較近,消費頻率高、總消費金額皆高: 4級客戶

- (2) 最近消費日較遠,消費頻率低,總消費金額高: 3級客戶
- (3) 最近消費日較近,消費頻率高,總消費金額低: 2級客戶
- (4) 最近消費日較遠,消費頻率低,總消費金額低: 1級客戶
- 4. 利用交易量高低、產品單價高低生成出四大商品型態:
 - (1) 交易量大、單價高:獲利商品:4級商品
 - (2) 交易量大、單價低:薄利多銷商品:3級商品
 - (3) 交易量小、單價高:奢侈商品::2級商品
 - (4) 交易量小、單價低:淘汰商品:1級商品

四、集群分析-共新增2欄位

- 1 將[total_item_price]、[total_payment_value]、[total_freight_value] 進行集群 處理成新變項[Kmean_value]:
- (1)透過Elbow Method 匯出如下圖,發現其值於第4類後的差異趨緩,故選擇分四群。

- (2) 透過Kmean集群分析進行非監督式學習獲得新變項[Kmean_value]。
- 2 將[total_freight_value]、[total_package_volume]、
 [total_package_weight_g]、[geo_distance] 進行集群處理成新變項
 [Kmean_package]:
- (1)透過Elbow Method 匯出如下圖,發現其值於第4類後的差異趨緩,故選擇分四群。

(2) 透過Kmean集群分析進行非監督式學習獲得新變項[Kmean_ package]。

五、資料變數說明

依照欄位內容將資料分為類別型及數值型資料共30個欄位,其變項名稱如下表所示:

類別型資料	數值型資料		
item_count	total_item_price		
order_purchase_time_day	total_payment_value		
is_shipping_delayed	total_freight_value		
is_delivered_delayed	review_score		
customer_state_region_type	order_purchase_year		
seller_state_region_type	order_purchase_month		
review_type	order_purchase_day		
RFM_type	order_purchase_dayofweek		
seller_level	order_purchase_hour		
product_type4	until_shipped_waiting_hours		
product_category6	until_delivered_waiting_hours		
	total_package_volume		
	total_package_weight_g		
	delivery_efficiency		
	total_delivered_waiting_day		
	geo_distance		
	total_logistics_using_hours		
	estimated_logistics_using_hours		
	logistics_delay_hours		
	+		

第二節、機器學習BOOSTING

一、原始模型:

一開始將所有的30個欄位轉成類別變項放入模型,得出結果餘下表,模型於XGBOOST與 CatBOOST準確率皆有不錯表現,分別為0.799、0.726。但由於變項、資料多導致跑模型測試及訓練需要多一點時間,因此,我們進行特徵工程已減少欄位。

機器學習方法	C4.5 - CART	ExtraTrees	XGBOOST	CatBOOST
測試準確率	0.688	0.702	0.799	0.726

二、特徵篩選

我們藉由「相關係數」將與「賣家評比欄位」[seller_level] 高度相關(>0.7)與完全不相關(<0.1)的欄位剔除,剔除後的欄位從原本的30個欄位縮減成10個欄位,詳細的欄位如下表所示。

▼經特徵工程後剩餘的10個欄位名稱

total_item_price	total_payment_	total_freight_	until_shipped_	total_package_we
	value	value	waiting_hours	ight_g
total_delivered_ waiting_day	seller_state_ region_type	RFM_type	product_type4	product_ category6

在經特徵工程挑選後,我們將結果出現的10個欄位訓練,最後進行機器學習 BOOSTING方法發現準確率略微降低。

機器學習方法	CART	ExtraTrees	XGBOOST	CatBOOST
測試準確率	0.689	0.699	0.774	0.72

三、集群分析-新增兩欄位

1 將[total_item_price]、[total_payment_value]、[total_freight_value] 進行集群處理成新變項[Kmean_value]:

(1)透過Elbow Method 匯出如下圖,發現其值於第4類後的差異趨緩,故選擇分四群。

- (2) 透過Kmean集群分析進行非監督式學習獲得新變項[Kmean_value]。
- 2 將[total_freight_value]、[total_package_volume]、[total_package_weight_g]、[geo_distance] 進行集群處理成新變項[Kmean_package]:
- (1)透過Elbow Method 匯出如下圖,發現其值於第4類後的差異趨緩,故選擇分四群。

(2) 透過Kmean集群分析進行非監督式學習獲得新變項[Kmean_ package]。

三、集群分析後之機器學習

我們透過Elbow Method建議分群、並利用Kmean集群分析產生兩個新欄位,分別為[Kmean_price]、[Kmean_package],並與特徵工程後剩餘的10個欄位一同進行機器學習,其結果如下表。

機器學習方法	CART	ExtraTrees	XGBOOST	CatBOOST
測試準確率	0.682	0.709	0.792	0.728

四、比較:

我們透過將原始模型與調整欄位後發現,<mark>欄位縮減後,不但可以提升機器學習的</mark> 分析效率,且準確率也會有上升。

機器學習 方法 模型	CART	ExtraTrees	XGBOOST	CatBOOST
原始模型 準確率	0.688	0.702	0.799	0.726
調整欄位後 模型準確率	0.682	0.709	0.792	0.728