STUDYPE

Predicting Financial Time Series using Deep Learning

Module3. Hyperparameter tuning, Regularization and Optimization

Jongho Kim

NICE Pricing & Information Inc.

Winter, 2018

Tuning Process

- One of the painful things about training deepness is the sheer number of hyperparameters you have to deal with
 - Learning rate: alpha
 - Momentum: beta (for Adam Optimization Algorithm beta one, two)
 - Learning rate decay (you don't just use a single learning rate alpha)
 - Number of layers
 - Number of hidden units for the different layers
 - Mini-batch size

Tuning Process

• One of the painful things about training deepness is the sheer number of hyperparameters you have to deal with

Learning Rates

- If we choose small learning rate, our cost will be updated slowly with small steps
- However, if our learning rate is too high, we overshoot and go beyond the minimum and go further away from the minimum

How to select hyperparameters

- Grid search
 - Selecting several points from ranges, then train your network using every combination of parameters and select the combination that performs best
- Random search
 - Instead of picking values from ranges in a methodical manner you instead

How to select hyperparameters

- Bayesian optimization
 - Using the information gained from any given experiment to decide how to adjust the hyper parameters
- Gradient based optimization
 - For specific learning algorithms, it
 is possible to compute the gradient
 with respect to hyperparameters

Going Bayesian: Gaussian Processes (2/4)

How to select hyperparameters

- Panda Approach vs. Caviar Approach
 - Take the caviar approach and try a lot of different hyperparameters and see what works
 - But in some application domains, there's just so much data and the models you want to train are so big that it's difficult to train a lot of models at the same time

Source: https://www.coursera.org/learn/deep-neural-network/lecture/DHNcc/hyperparameters-tuning-in-practice-pandas-vs-caviar-network-lecture/DHNcc/hyperparameters-tuning-in-practice-pandas-vs-caviar-network-lecture-pandas-vs-caviar-network-

Initialization

8

Why Initialization is Important?

- Training your neural network requires specifying an initial value of the weights
- A well chosen initialization can:
 - Speed up the convergence of gradient descent
 - Increase the odds of gradient descent converging to a lower training (and generalization) error
- Poor initialization can lead to vanishing/exploding gradients, which also slows down the optimization algorithm.
- But how do you choose the initialization for a new neural network?

Types of Initialization

- Zero initialization (W: zeros)
 - In general, initializing all the weights to zero results in the network failing to break symmetry, every neuron in each layer will learn the same thing
- Random initialization (W: random)
 - To break symmetry, we can intialize the weights randomly
 - However, if the weights are intialized randomly, but to very large values then vanishing/exploding gradients can happen
- He initialization (W: random + scale factor)
 - Thus we scale the vector with factor : sqrt(2./layers_dims[1-1]).)
 - This is similar to Xavier initialization: sqrt(1./layers_dims[l-1])
 - He initialization recommends for layers with a ReLU activation.

Optimization Algorithms

Optimization Methods

- Update the parameters to minimize the cost
- More advanced optimization methods can speed up learning and even get you to a better final value for the cost function

Minimizing the cost is like finding the lowest point in a hilly landscape

Gradient Descent

- (Batch) Gradient Descent
 - Single update occurs using all training data
 (1 epoch) => Slow estimation
- Stochastic Gradient Descent
 - Single training data point is used to
 estimate gradients => Very noise estimation

Repeat until convergence $\{$

$$\theta_j \leftarrow \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$

}

Stochastic Gradient Descent

Gradient Descent

Gradient Descent

- (Mini Batch) Gradient Descent
 - Split epoch into small groups of data points
 - Compromise between SGD and (Batch) GD
 - Less noise and many updates
 - Ex) 16, 32, 64, 128, 256 etc

Stochastic Gradient Descent

Mini-Batch Gradient Descent

Momentum

- The key is update weights many times + less noise estimation
- To achieve this, SGD has been extended with momentum (or velocity)
 - Avoid jumping, have some trends in updating weights
 - SGD with momentum

Compute gradient estimate:
$$\mathbf{g} \leftarrow \frac{1}{m} \nabla_{\boldsymbol{\theta}} \sum_{i} L(f(\mathbf{x}^{(i)}; \boldsymbol{\theta}), \mathbf{y}^{(i)})$$

Compute velocity update: $\mathbf{v} \leftarrow \alpha \mathbf{v} - \epsilon \mathbf{g}$
Apply update: $\mathbf{\theta} \leftarrow \mathbf{\theta} + \mathbf{v}$

SGD with Nesterov mometum

Apply interim update:
$$\tilde{\boldsymbol{\theta}} \leftarrow \boldsymbol{\theta} + \alpha \boldsymbol{v}$$
 Compute gradient (at interim point): $\boldsymbol{g} \leftarrow \frac{1}{m} \nabla_{\tilde{\boldsymbol{\theta}}} \sum_{i} L(f(\boldsymbol{x}^{(i)}; \tilde{\boldsymbol{\theta}}, \boldsymbol{y}^{(i)})$ Compute velocity update: $\boldsymbol{v} \leftarrow \alpha \boldsymbol{v} - \epsilon \boldsymbol{g}$ Apply update: $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \boldsymbol{v}$

Batch Normalization

Normalizing inputs to speed up learning

- Unnormalized data can lead toward an awkward loss function topology which places more emphasis on certain parameter gradients.
- By normalizing all of our inputs to a standard scale, we're allowing the network to *more quickly* learn the optimal parameters for each input node.

Gradient of larger parameter dominates the update Both parameters can be Source: https://gab41.dab41.org/batch-normalization-what-the-hey-d480039a9e3b

How about deeper model?

- Internal Covariance Shift Problem
 - Covariate shift: change in the distribution of a function's domain
 - The problem is, the output of the first layer feeds the second layer, the second feeds the third, and so on
 - Have you ever played the game telephone with cups and strings?
 - "go water the plants" => "got water in your pants" => "kite bang eat face monkey"
 - We can fix our cups so that we pass messages better.

Source: https://gab41.lab41.org/batch-normalization-what-the-hey-d480039a9e3b

Normalizing deeper model by batch normalization

Batch Normalization

- Normalizing the input of your network is a well-established technique for improving the convergence properties of a network.
- By extending the intuition normalizing these values on each layer will help the network more effectively learn the parameters

Normalizing deeper model by batch normalization

- Batch Normalization for Training
 - We can calculate mean, variance, z norm, Z tilder for each of mini batch
 - This is in fact, taking the batch statistics (not population statistics)

$$\mu = \frac{1}{m} \sum_{i} z^{(i)}$$

$$\sigma^{2} = \frac{1}{m} \sum_{i} (z^{(i)} - \mu)^{2}$$

$$z_{\text{norm}}^{(i)} = \frac{z^{(i)} - \mu}{\sqrt{\sigma^{2} + \varepsilon}}$$

$$\tilde{z}^{(i)} = \gamma z_{\text{norm}}^{(i)} + \beta$$

- Batch Normalization for Inferring
 - For test time we use exponential weighted average across mini batch
 - Estimating the true mean and variance is calculated over the entire population

Overfitting Issues

Overfitting is Easy

When I draw a random curve of Google search trends...

- ➤ "Eureka! I accidently succeed in predicting how people search about 'Hollywood gossip' on Google. Its correlation is 0.78!"
- ➤ ... Really?

Overfitting is Common in Prediction

Overfitting often results from (i) too complex models and (ii) too few data.

Source: https://www.slideshare.net/modulabs/2-cnn-rnn

Occam's Razor

- Occam's razor is still valid (that is, simple is best).
 - For out-of-sample predictions, simpler models are more likely to hold up on future observations than more complex ones, all else being equal (Dhar 2013).
- Sometimes, machine learning algorithms might have poorer performances than a simple logistic regression.
 - ➤ It may be especially when (1) there is relatively simple relationships, or (2) there are too few data to learn about the relationships.
 - Example: Predicting movie success (Lee et al. 2018)

Logistic Regression		Deep NN		Random Forest		Support Vector Machine	
LR		NN (MLP)		RF		SVC	
Bingo	1-Away	Bingo	1-Away	Bingo	1-Away	Bingo	1-Away
36.0 %	85.3 %	48.0 %	86.7 %	46.7 %	84.0 %	26.7 %	64.0 %
45.3 %	93.3 %	40.0 %	88.0 %	56.0 %	90.7 %	30.7 %	62.7 %
61.3 %	88.0 %	38.7 %	84.0 %	53.3 %	90.7 %	26.7 %	56.0 %
54.7 %	86.7 %	50.7 %	88.0 %	56.0 %	86.7 %	26.7 %	48.0 %
56.0 %	90.7 %	42.7 %	81.3 %	62.7 %	89.3 %	26.7 %	61.3 %
54.7 %	89.3 %	36.0 %	82.7 %	49.3 %	88.0 %	41.3 %	74.7 %
50.7 %	90.7 %	49.3 %	85.3 %	57.3 %	81.3 %	29.3 %	44.0 %
45.3 %	86.7 %	34.7 %	75.7 %	49.3 %	86.7 %	28.0 %	65.3 %
42.7 %	89.3 %	45.3 %	86.7 %	50.7 %	90.7 %	25.3 %	53.3 %
50.7 %	82.7 %	38.7 %	81.3 %	49.3 %	76.0 %	25.3 %	60.0 %
49.7 %	88.3 %	42.4 %	84.0 %	53.1 %	86.4 %	28.7 %	58.9 %
7.5 %	3.1 %	5.7 %	3.9 %	4.9 %	4.8 %	4.8 %	8.9 %

Accuracy

Dhar, V., 2013. Data Science and Prediction. *Communications of the ACM*, 56(12), pp.64-73. Lee, K., Park, J., Kim, I. and Choi, Y., 2018. Predicting Movie Success with Machine Learning Techniques: Ways to Improve Accuracy. *Information Systems Frontiers*, 20(3), pp.577-588.

How Does Deep Learning Overcome Overfitting?

- Regularization
 - Dropout regularization
 - Penalizing model complexity
 (e.g., ridge regression)

(b) After applying dropout.

- Allowing white-noise or loose-fit
 - Data augmentation
 - Debiasing autoencoder / Pooling in CNN / Taking noise as input in GAN

Regularization

Why Regularization Reduces Overfitting?

• L2 norm penalty makes weight vector to be sparse => Simpler model

Dropout Regularization

- Dropout regularization
 - During training, dropout samples from an exponential number of different "thinned" networks.
 - Much smaller networks are being trained

- Why does drop-out work?
 - Can't rely on any one feature, so have to spread out weights
 - Very efficient way of performing model averaging
 - Preventing complex co-adaptations on training data

Denoising Techniques

Autoencoder

- Autoencoder is a variant of neural networks whose output is the input.
 - ➤ It is to learn a representation (encoding) for a set of data, typically for the purpose of dimensionality reduction.
 - ➤ Denoising autoencoder is to intentionally introduce noises into the input, allowing the model to encode features robust to noises.

Pre-Training using Unsupervised Learning

- Greedy layer-wise training of deep networks (Hinton 2006; Bengio et al. 2007)
 - Feed-forward, pre-training one layer at a time in a unsupervised way
 - Fine-tuning whole networks using supervised back propagation

Hinton, G.E., Osindero, S. and Teh, Y.W., 2006. A Fast Learning Algorithm for Deep Belief Nets. Neural Computation, 18(7), pp.1527-1554.

Bengio, Y., Lamblin, P., Popovici, D. and Larochelle, H., 2007. Greedy Layer-wise Training of Deep Networks. *In Advances in Neural Information Processing Systems (NIPS)*.

Pre-Training using Unsupervised Learning

- Unsupervised pre-training helps supervised deep learning
 - Many studies suggest that denoising autoencoders performs generally well at pre-training. (Vincent et al. 2008)

Erhan, D., Bengio, Y., Courville, A., Manzagol, P.A., Vincent, P. and Bengio, S., 2010. Why Does Unsupervised Pre-training Help Deep Learning?. *Journal of Machine Learning Research*, 11, pp.625-660.

Vincent, P., Larochelle, H., Bengio, Y. and Manzagol, P.A., 2008. Extracting and Composing Robust Features with Denoising Autoencoders. In Proceedings of the 25th International Conference on Machine Learning (ICML)

Thank you ©

Contact Info: quantic.jh@gmail.com

References

- How to Grid Search Hyperparameters for Deep Learning Models in Python With Keras https://machinelearningmastery.com/grid-search-hyperparameters-deep-learning-models-python-keras/
- Batch Normalization—What the hey? https://gab41.lab41.org/batch-normalization-what-the-hey-d480039a9e3b
- Hyperparameter Optimization with Keras https://towardsdatascience.com/hyperparameter-optimization-with-keras-b82e6364ca53
- Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization <a href="https://www.coursera.org/learn/deep-neural-network/lecture/4ptp2/normalizing-activations-in-a-network/lecture/4ptp2/normalizing-activation
- Jiyong Park (2018), KAIST Summer Session, Retrieved from https://sites.google.com/view/kaist-missession2018/overview?authuser=0