Exam 1

Nathan Warner

Computer Science Northern Illinois University United States

Contents

1	Axioms	2
2	Definitions	9
3	Theorems	4
4	Propositions	F

Axioms

Axiom of distance: For all points P, Q

- 1. $PQ \geqslant 0$
- 2. $PQ = 0 \iff P = Q$
- 3. PQ = QP

Axioms of incidence

- 1. There are at least two different lines
- 2. Each line contains at least two different points
- 3. Each pair of points are together in at least one line
- 4. Each pair of points P, Q, with $PQ < \omega$ are together in at most one line

Betweenness of points axiom (Ax. BP): If A, B, C are distinct, collinear points, and if $AB + BC \leq \omega$, then there exists a betweenness relation among A, B, C

What this is really saying is that if **any** of AB + BC, BA + AC, AC + CB is $\leq \omega$, then there is a betweenness relation.

Note: If Ax.BP is true for a plane \mathbb{P} , and if $AB + BC \leq \omega$ for distinct collinear A, B, C, then there is a betweenness relation, but not necessarily A-B-C

When $\omega = \infty$, then for any distinct collinear $A, B, C, AB + BC < \infty = \omega$, so there will be a betweenness relation

Quadrichotomy Axiom for Points (Ax.QP): If A, B, C, X are distinct, collinear points, and if A-B-C. Then, at least one of the following must hold

$$X-A-B$$
, $A-X-B$, $B-X-C$, or $B-C-X$

Thus, Ax.QP says that whenever A-B-C (say on line ℓ), then any other point X on line ℓ is in either \overrightarrow{BA} or \overrightarrow{BC} . That is,

$$\ell = \overrightarrow{BA} \cup \overrightarrow{BC}$$

Nontriviality Axiom (Ax.N): For any point A on a line ℓ there exists a point B on ℓ with $0 < AB < \omega$

This axiom is true for the planes in which $\omega = \infty$ (\mathbb{E} , \mathbb{M} , \mathbb{H} , \mathbb{G} , \mathbb{R}^3 , $\hat{\mathbb{E}}$, ws)

This axiom is also true for S and Fano, where $\omega < \infty$

Definitions

Theorems

- Theorem 6.1 (Symmetry of betweenness). For a general plane \mathbb{P} with points, lines, distance, and satisfy the seven axioms, $A B C \iff C B A$
- Theorem 6.2 (UMT): If A B C then B A C and A C B are false.
- Theorem 7.6: For any point A on a line ℓ there exists a point C not on ℓ with $0 < AC < \omega$
- Triangle inequality for the line: If A,B,C are any three distinct, collinear points, then

$$AB + BC \geqslant AC$$

- Rule of insertion:
 - If A-B-C and A-X-B, then A-X-B-C
 - If A-B-C and B-X-C, then A-B-X-C

Propositions

- Proposition 6.3
 - (a) \overline{AB} lies in one line, the line \overleftrightarrow{AB}
 - (b) $\overline{AB} = \overline{BA}$
 - (c) If $x \in \overline{AB}$, with $X \neq B$, then AX < AB
- **Proposition 6.4**: Let A,B,C,D be collinear points with $0 < AB < \omega, \ 0 < CD < \omega,$ and $\overline{AB} = \overline{CD}$, then
 - (a) Either $\{A,B\}=\{C,D\}$ or $\{A,B\}\cap\{C,D\}=\varnothing$
 - (b) AB = CD
- Proposition 7.1: If A-B-C and A-C-D, then A, B, C, D are distinct and collinear
- **Proposition 7.2** If A-B-C-D, then A, B, C, D are distinct and collinear, and D-C-B-A
- **Proposition 7.5**: If $X \neq Y$ are points distinct from A or ray \overrightarrow{AB} , then at least one of A-X-Y or A-Y-X or X, Y in \overline{AB} is true.
- Important fact: Suppose X is a point on a ray \overrightarrow{AB} in a general plane.
 - 1. If A-X-B then AX < AB
 - 2. If A-B-X then AX > AB
 - 3. IF X = B then AX = AB