

Circuitos Integrados de Aplicación Específica

Método sistemático de Diseño Lógico

Estructura general de un circuito digital

Ejemplo de Layout de una ALU de 32 bits

Especificación RTL

Register Transfer Notation (RTN)

Notation	Intended Operation				
$X \leftarrow Y$	Transfer the contents of register Y to register X				
$REG \leftarrow 0$	Clear the contents of register REG				
$X \leftarrow \text{all 1's}$	Set all bits of register X				
$X \leftarrow 1$	Set the lsb of X and reset all other bits				
$X(31:0) \leftarrow$					
0@X(31:1)	one-bit right shift $(X >> 1)$ with $X(31) \leftarrow 0$				
$X(31:0) \leftarrow X(3:0)$					
@ X (31:4)	four-bit end-around right shift				
$X \leftarrow M[1234H]$	$X \leftarrow$ contents of memory at address 1234H				
$X \leftarrow M[Y]$	$X \leftarrow$ contents of memory pointed to by Y				
$X \leftarrow Y \vee Z$	$X \leftarrow Y$ "OR" Z (bitwise operation)				
$X \leftarrow Y \wedge Z$	$X \leftarrow Y$ "AND" Z (bitwise operation)				
$X \leftarrow Y \oplus Z$	$X \leftarrow Y$ "EX-OR" Z (bitwise operation)				
$X \leftarrow \overline{Y}$	$X \leftarrow 1s$ ' complement of Y				
$X \leftarrow -Y$	$X \leftarrow 2$'s complement of Y				
$X \leftarrow Y + Z$	$X \leftarrow \text{addition of } Y \text{ and } Z$				
$X \leftarrow Y - Z$	$X \leftarrow \text{subtraction of } Z \text{ from } Y$				
K++	Shorthand for $K \leftarrow K + 1$				
$* \text{ If } (c = 1)X \leftarrow Y$	equivalent to $X \leftarrow (\overline{c} \wedge X) \vee (c \wedge Y)$				
	(refer to explanation in text)				

Grafo ASM

Especificación de estados

Diagrama de flujo de control ASM

Possible block diagram

Símbolos ASM

Conditionals

Conditional output (unclocked logic)

$$x = input1 - 1$$

 $y = z OR input2$

Ejemplo: Sumador con signo

Grafo ASM en forma de tabla

ESTADO S0	CONDICIÓN CO	ESTADO S1	ESTADO S2	ESTADO S3	CONDICIÓN C2
a input1; b input2;	If ((sign = 00) OR (sign = 11) (goto S1); If (sign = 01) (goto S2); If (sign = 10) (goto S3);	x a+b; (goto C2);	x a-b; (goto C2);	x b-a; (goto C2);	If (x>15) then overflow 1; Else overflow 1; (goto S0);

Grafo ASM en forma de texto

```
S0.
       a input1;
       b input2;
C0.
       If ((sign = 00) OR (sign = 11) (goto S1);
       If (sign = 01) (goto S2);
       If (sign = 10) (goto S3);
       x a+b;
S1.
       (goto C2);
S2.
       x a-b;
       (goto C2);
S3. x a-b;
C2.
    If (x>15) then overflow
       Else overflow 1;
       (goto S0);
```

Ejemplo: Multiplicador de 4 bits

Arquitectura

Práctica nº1 : SUMADOR DE PUNTO FLOTANTE DE PRECISIÓN SIMPLE

Interpretación : $(-1)^S \times 2^{E-127} \times (1.F)$

1. ALGORITMO

$$Z = X + Y$$

$$= (1.F_X) \cdot 2^{E_X - 127} + (1.F_Y) \cdot 2^{E_Y - 127}$$

$$= (1.F_X + 1.F_Y \cdot 2^{-((E_X - 127) - (E_Y - 127))}) \cdot 2^{E_X - 127}$$

$$= (1.F_X + (1.F_Y)(\cdot 2^{-|E_X - E_Y|}) \cdot 2^{E_X - 127}$$

$$= (1.F_Z) \cdot 2^{E_Z - 127}$$

Desplazamiento a la izquierda

```
1. RF_X \leftarrow 1.F_X; RF_Y \leftarrow 1.F_Y;
   RE_{x} \leftarrow E_{x}: RE_{y} \leftarrow E_{y}:
2. E_{diff} \leftarrow RE_X - RE_Y;
   FLAG \leftarrow 0:
3. If (E_{diff} < 0)
       then begin
           E_{diff} \leftarrow -E_{diff}:
           FLAG \leftarrow 1:
           if (E_{diff} < 24)
                then RF_X \leftarrow RF_X >> E_{diff};
                else RF_X \leftarrow 0:
      end:
      else begin
           if (E_{diff} < 24)
               then RF_Y \leftarrow RF_Y >> E_{diff};
               else RF_V \leftarrow 0:
      end:
4. RF_Z \leftarrow RF_X + RF_Y;
5. If (FLAG = 1)
      then RE_Z \leftarrow RE_V:
     else RE_Z \leftarrow RE_Y:
6. If (RF_Z \ge 1)
      then begin
          RE_7 \leftarrow RE_7 + 1:
          RF_7 \leftarrow RF_7 >> 1:
      end:
```

2.- Grafo ASM

Data Path del Sumador

Otro Datapath del sumador

Grafo ASM del Controlador

Realización del controlador: 1- Un Flip Flop por estado

TABLE 4.7 THE INPUT CONDITION STATE TABLE FOR THE FLOATING-POINT ADDER.

Current State	Next State	Input	Outputs				
$C_3C_2C_1C_0$	$N_3N_2N_1N_0$	Conditions	load1	load2	cin		
0 0 0 0	0 0 0 1	1	1	1	0	3230	
0 0 0 1	0 0 1 0	sign	0	0	1	0.515	
0 0 0 1	0 1 0 1	sign - notless24	0	0	1	V-11/1	
0001	0 1 1 0	sign - notless24 - zero	0	0	1		
0 0 0 1	0 1 1 1	sign - notless24 - zero	0	0	1		
0 0 1 0	0 0 1 1	notless24	.0	0	1		
0 0 1 0	0100	notless24 - zero	0	0	1	999	
0 0 1 0	0 1 1 1	notless24 - zero	0	0	1	(4.4)	
	1						

Realización del controlador: 2- Utilización de estructuras PLD

TABLE 4.7 THE INPUT CONDITION STATE TABLE FOR THE FLOATING-POINT ADDER.

Current State $C_3C_2C_1C_0$	Next State N ₃ N ₂ N ₁ N ₀	Input Conditions	load1	Outpu load2	ts cin	***			
0 0 0 0	0 0 0 1	1	1	1	0	5+30+		I	
0 0 0 1	0 0 1 0	sign	0	0	1	116.00		ch	
0 0 0 1	0 1 0 1	sign - notless24	0	0	1	111111		N ₃ D	
0 0 0 1	0 1 1 0	sign · notless24 · zero	0	0	1	***		113	
0 0 0 1	0 1 1 1	sign - notless24 - zero	0.	0	1				
0 0 1 0	0 0 1 1	notless24	0	0	1	2000			_
0010	0100	notless24 - zero	0	0	1	1000		11 5	
0 0 1 0	0 1 1 1	notless24 - zero	0	0	1	30000	Programmable	clr	
	1	7		1				$N_2 \rightarrow D$	
						nc	Logic Device	: - \(\) : : : : : : : : : : : : : : : : : :	
							control signal outputs load1 load3 load2 load4	N ₀ D	