

Интелигентен агент

Агенти и среди

Агент е всичко, което:

• може да се види като възприемане на околната среда чрез сензори и

• действа върху тази средо продисте при при механизми

• Агентът работи по следният начин: 1) Възприема, 2) Мисли, 3)₂ Лейства

Агенти и среди

- Човешки агент:
 - Сензори: очи, уши и др.
 - Изпълнителни механизми : ръце, крака, уста и др.
- Робот
 - Сензори: Камера, инфрачервени датчици
 - Изпълнителни механизми : Различни мотори

Примери: Смартфони, автономни автомобили, термостат и др.

Видове агенти за изкуствен интелект

Агентите могат да бъдат групирани в пет класа въз основа на тяхната степен на възприемана интелигентност и способности. Всички тези агенти могат да подобрят своята ефективност и да генерират по-добри действия с течение на времето:

- Прости рефлекторни агенти
- Рефлекторни агенти, основани на модели на света
- Агенти, основани на цели
- Агенти, основани на полезност
- Обучаващи се агенти

Видове агенти: прости рефлекторни агенти (Simple reflex agents)

Модифицирана от [1]

- Вземат решения въз основа на текущите възприятия и игнорират останалата част от историята на възприятията.
- Успяват само в напълно наблюдавана среда
- Не разглеждат никоя част от историята на възприятията по време на процеса на вземане на решения и действия.
- Работят върху правилото за условиедействие, което означава, че съпоставят текущото състояние с действие.

(пр: Като агент за почистване на стаи. Той работи само ако в стаята има мръсотия).

Видове агенти: прости рефлекторни агенти (Simple reflex agents)

Модифицирана от [1]

Проблеми:

- •Имат много ограничен интелект.
- Нямат познания за невъзприеманите части на текущото състояниею.
- •Предимно твърде големи за да се генерират и съхраняват.
- Не са адаптивни към промените в околната среда.

Видове агенти: агенти, основани на модели на света (Model-based reflex agents)

Модифицирана от [2]

- Работи в частично наблюдавана среда и проследява ситуацията.
- Два важни фактора:
 - Модел: знание за "как се случват нещата в света"
 - Вътрешно състояние: представяне на текущото състояние въз основа на историята на възприятията
- Притежава модел "който е познание за света" и въз основа на модела извършва действия.
- Актуализира състоянието на агента като изисква информация за:
 - Как се развива светът
 - Как действието на агента влияе върху света

Видове агенти: агенти, основани на цели (Goal-based agents)

Модифицирана от [3].

- Познанието за текущата среда не винаги е достатъчно, за може агентът да реши какво да прави.
- Агентът трябва да знае целта си, която описва желаните ситуации.
- Агентите, базирани на цели, разширяват възможностите на агента, базиран на модела, като разполагат с информация за "целта".
- Те избират действие за да могат да постигнат целта.
- На агентите може да се наложи да обмислят дълга последователност от възможни действия преди да решат дали целта е постигната или не. Такива съображения на различен сценарий се наричат търсене и планиране, което прави

Видове агенти: агенти, основани на полезност (Utility-based agents)

Модифицирана от [4].

- Подобни на предходният агент, но осигуряват допълнителен компонент на измерване на полезността като предоставят мярка за успех в дадено състояние.
- Действат не само на целите, но и на най-добрия начин за тяхното постигане.
- Полезни, когато има множество възможни алтернативи и агентът трябва да избере и извърши найдоброто действие.
- Помощната функция картографира всяко състояние в реално число за да провери колко ефективно всяко действие постига заложените целите.

Видове агенти: обучаващи се агенти (Learning agents)

Модифицирана от [5].

- Могат да се учат от миналия си опит или имат възможности за обучение.
- Започват да действат с основни знания и след това може да действат и да се адаптират автоматично чрез учене.
- Имат предимно четири концептуални компонента:
 - Обучаващ елемент: отговаря за подобряването чрез учене от околната среда.
 - Критик: Елементът за обучение получава обратна връзка от критик, който описва колко добре се справя агентът по отношение на фиксиран стандарт за изпълнение.
 - Елемент на изпълнението: отговаря за избора на външно действие.
 - Генератор на задачи: отговаря за предлагането на действия, които ще доведат до нов и информативен опит.
- Обучаващите се агенти са в състояние да учат, анализират изпълнението и да търсят нови начини за подобряване на представянето.

Добре възпитани агенти

Това са рационални агенти, които са дефинирани според Ръсел и Норвиг: "За всяка възможна възприемана последователност, рационалният агент трябва да избере действие, което се очаква да увеличи максимално своята мярка за ефективност, като се имат предвид доказателствата, предоставени от възприеманата последователност и каквито и да са предишни знания или познания за способностите, които агентът има. "

PEAS

Групираме тези свойства под съкращението PEAS:

☐ Performance (производителност, мярка за ефективност)

Environment (среда)

□ Actuators (изпълнителни механизми)

□ Sensors (сензори)

Което всъщност е спецификацията на проблема за работната среда, която рационалният агент е предназначен да реши.

Примери:

Агентна среда	Мярка за ефективност	Среда	Изпълнителни механизми	Сензори
Медицинска диагноза	Здрав пациентМинимални разходи	ПациентБолницаБолничен персонал	ТестовеЛечения	Клавиатура (въвеждане на симптомите)
Прахосмукачка	ЧистотаЕфективностЖивот на батериятаСигурност	СтаяДървен подКилимРазлични препятствия	КолелаЧеткиВакуум екстрактор	 Камера Сензор за откриване на мръсотия Сензор за сила на всмукване Инфрачервен сензор за стена

Видове агентни среди:

- Напълно / частично обозрими среди (Fully / partially observable)
- Детерминирани / стохастични среди (Deterministic / stochastic)
- Епизодични / серийни среди (Episodic / sequential)
- Статични / динамични среди (Static / dynamic)
- Дискретни / непрекъснати среди (Discrete / continuous)
- Едноагентни / многоагентни среди (Single-agent / multiagent)

Напълно / частично обозрими среди

- Ако сензорът на агента може да усети или да осъществи достъп до пълното състояние на околната среда във всеки момент от времето, тогава това е напълно наблюдаема среда, в противен случай е частично наблюдаема.
- Напълно наблюдаема среда е лесна, тъй като не е необходимо да се поддържа вътрешното състояние за да се следи историята на света.
- Агент без сензори във всяка една среда: ненаблюдаема.

Детерминирани / стохастични среди

- Ако текущото състояние и избраното действие на агента могат напълно да определят следващото състояние на средата, тогава такава среда се нарича детерминирана среда.
- Стохастичната среда има произволен характер и не може да бъде определена напълно от агент.
- •В детерминистична, напълно наблюдаема среда, агентът не трябва да се тревожи за несигурност.

Епизодични / серийни среди

- В епизодична среда има поредица от еднократни действия и за действието се изисква само текущото възприятие.
- Въпреки това, в последователна (серийна) среда, агентът изисква памет за минали действия за да определи следващите най-добри действия.

Статични / динамични среди

- Ако средата може да се промени докато агенът мисли, тогава такава среда се нарича динамична среда, в противен случай се нарича статична среда.
- Статичните среди са лесни за работа, тъй като агентът не трябва да продължава да гледа света докато решава за взимането на решение за действие.
- •За динамичната среда обаче агентите трябва да продължават да гледат света при всяко действие.
- Шофирането на такси е пример за динамична среда, докато кръстословиците са пример за статична среда.

Дискретни / непрекъснати среди

- Ако в една среда има ограничен брой възприятия и действия, които могат да бъдат извършени в нея, тогава такава среда се нарича дискретна среда, иначе тя се нарича непрекъсната среда.
- Играта на шах се получава в дискретна среда, тъй като има ограничен брой ходове, които могат да бъдат изпълнени.
- •Самоуправляващата се кола е пример за непрекъсната среда.

Едноагентни / многоагентни среди

- Ако само един агент участва в среда и работи сам по себе си, тогава такава среда се нарича среда с единичен агент.
- Ако обаче в среда работят множество агенти, тогава такава среда се нарича среда с много агенти.
- Проблемите с дизайна на агента в многоагентната среда се различават от едноагентната среда.

Тест на Тюринг: "Може ли машината да мисли?"

Човек (С) взаимодейства с двама събеседници– компютър и човек (А, В); на база на писменните отговори на зададените въпросите, тестовият човек (С) е длъжен да определи с кого разговаря – с машина или с жив човек (А, В). Задачата на компютърната програма е да въведе човека в заблуда, с цел да направи грешен избор.

Обобщение

- Агентът е нещо, което възприема и действа в заобикалящата го среда. Функцията на даден агент указва действието, предприето от агента в отговор на всяка възприемана последователност.
- Мярката за ефективност оценява поведението на агента в средата. Рационалният агент действа така, че да максимизира очакваната стойност на измервателната способност, като се има предвид възприеманата последователност, която е виждал до момента.
- Спецификацията на средата включва мярка за ефективност, външна среда, изпълнителни механизми и сензори. При проектирането на агент първата стъпка винаги трябва да бъде да се уточни възможно най-пълно средата за конкретната задача.
- Средата варира в няколко значителни измерения.
- Простите рефлекторни агенти реагират директно на възприятията, докато базираните на модели рефлекторни агенти поддържат вътрешно състояние за да проследяват аспекти на света, които не са очевидни в настоящото възприятие. Агентите основани на цели действат за да постигнат целите си, а агентите, основани на полезност, се опитват да максимизират собствената си очаквана цел.
- Всички агенти могат да подобрят представянето си чрез обучение.

Библиография

[1]

https://bg.wikipedia.org/wiki/%D0%98%D0%BD%D1%82%D0%B5%D0%B8%D0%B8%D0%B3%D0%B5%D0%BD%D1%82%D0%BD_%D0%B0%D0%B3%D0%B5%D0%BD%D1%82#/media/%D0%A4%D0%B0%D0%B9%D0%BB:Simple-reflex-intelligent-agent-bg.png

[2]

https://bg.wikipedia.org/wiki/%D0%98%D0%BD%D1%82%D0%B5%D0%B8%D0%B8%D0%B3%D0%B5%D0%BD%D1%82%D0%B5%D0%BD_%D0%B0%D0%B3%D0%B5%D0%BD%D1%82#/media/%D0%A4%D0%B0%D0%B9%D0%BB:Model-based-reflex-intelligent-agent-bg.png

[3]

https://bg.wikipedia.org/wiki/%D0%98%D0%BD%D1%82%D0%B5%D0%BB%D0%B8%D0%B8%D0%B5%D0%BD%D1%82%D0%B5%D0%BD_%D0%B0%D0%B3%D0%B5%D0%BD%D1%82#/media/%D0%A4%D0%B0%D0%B9%D0%BB:Goal-based-intelligent-agent-bg.png

[4]

https://bg.wikipedia.org/wiki/%D0%98%D0%BD%D1%82%D0%B5%D0%BB%D0%B8%D0%B3%D0%B5%D0%BD%D1%82%D0%B5%D0%BD_%D0%B0%D0%B3%D0%B5%D0%BD%D1%82#/media/%D0%A4%D0%B0%D0%B9%D0%BB:Utility-based-intelligent-agent-bg.png

[5]

https://bg.wikipedia.org/wiki/%D0%98%D0%BD%D1%82%D0%B5%D0%BB%D0%B8%D0%B8%D0%B5%D0%BD%D1%82%D0%B5%D0%BD %D0 %B0%D0%B3%D0%B5%D0%BD%D1%82#/media/%D0%A4%D0%B0%D0%B9%D0%BB:Learning-intelligent-agent-bg.png

- [6] https://en.wikipedia.org/wiki/Turing_test#/media/File:Turing_test_diagram.png.
- [7] Stuart Russell, Peter Norvig, "Artificial Intelligence: A Modern Approach, 4th Edition", Pearson, 2020