Nimbus & OpenNebula

Nimbus - Intro

- Open source toolkit
- Provides virtual workspace service (Infrastructure as a Service)
- A client uses virtual machines (Xen) on remote resources.
- Virtual machines are configured as user demand
- Uses X.509 certificates

Cloud client: connects to Nimbus and use VMs

EC2 client: connects to the Amazon Elastic Compute Cloud (EC2)

WSRF & EC2 WSDL: protocol implementations

RM API: interface to Virtual Workspace Service

laaS Gateway: connects to EC2 or other cloud services

Workspace service: VM manager, Web Service base, run in GT Java container

Workspace pilot: uses local site manager such as PBS

Workspace control: run VMs, build VM image, connect VMs to network, send contextualization information to the context broker

Context broker: coordinates virtual cluster at its deployment Context agent: runs on each VM to communicate with the context broker

Nimbus – Administration - I

- Setting service container
- Creating new host / user certificates
- Relevant file configuration
- Installing Xen
- Setting DHCP (Dynamic Host Configuration Protocol)
- Each hypervisor needs DHCP server and ebtable

Nimbus Administration II

- Installing Nimbus service packages
 - RM API, workspace service (VM, VMM)
 - WSRF frontend
 - EC2 frontend
- Configuration
 - Service host name
 - VMM (Virtual Machine Manager) names
 - Networks (DNS, subnet, etc.)
 - Authorization

Nimbus Administration III

- Installing workspace-control program
- Configuration
 - sudoers file: set paths to dhcp-config.sh, mount-alter.sh, etc. for the users
 - DHCP (only for delivery): add subnet in dhcpd.conf
 - Kernels: copy kernel images and edit [image] section in worksp.conf file for clients to choose
 - Networks: edit [networking] section in worksp.conf file Example: association_0: private; xenbr0; vif0.0

Nimbus Client Administration

Download and install

Create proxy credential: \$./bin/grid-proxy-init.sh

Select VM

• \$./bin/cloud-client.sh –list

Deploy VM

\$./bin/cloud-client.sh --run --name hello-cloud --hours 1

• Output:

SSH public keyfile contained tilde:

- '~/.ssh/id_rsa.pub' --> '/home/guest/.ssh/id_rsa.pub'

Launching workspace.

Using workspace factory endpoint:

https://cloudurl.edu:8443/wsrf/services/WorkspaceFactoryService Creating workspace "vm-023"... done.

IP address: 123.123.123.123

Hostname: ahostname.cloudurl.edu

Start time: Fri Feb 29 09:36:39 CST 2008

Shutdown time: Fri Feb 29 10:36:39 CST 2008
Termination time: Fri Feb 29 10:46:39 CST 2008

Waiting for updates
.State changed: Running

Running: 'vm-023'

Nimbus Client Commands

- Log on
 - \$ ssh root@ahostname.cloudurl.edu
- Get info about VM
 - \$./bin/cloud-client.sh --status --handle vm-023
- Save changes
 - •\$./bin/cloud-client.sh --save --handle vm-023 --newname custom-1
- Terminate VM
 - •\$./bin/cloud-client.sh --terminate --handle vm-023

Nimbus API Java

- Request authorization: creation process
 - org.globus.workspace.service.binding.GlobalPolicies
 - org.globus.workspace.service.binding.authorization.CreationAuthorizationCal lout
- Initial request intake: handle creation requests
 - o org.globus.workspace.creation.Creation
 - org.globus.workspace.service.binding.Bind*

OpenNebula Intro

- Open source virtual infrastructure engine
- Deploy VMs
- A distributed virtualization layer

OpenNebula: The Open Source Virtual Machine Manager for Cluster Computing, http://www.opennebula.org/lib/exe/fetch.php?id=outreach&cache=cache&media=opennebula-oakland.pd f

OpenNebula Architecture

OpenNebula - Architecture

- Scheduler: deploy VMs in physical hosts
- Request Manager: implements a XML-RPC interface
- SQL Pool: maintains status of VMs, hosts, virtual networks.
- VM (Virtual Machine) Manager: manages
 VM life cycles
- VN (Virtual Network) Manager: generates MAC / IP addresses

Host Manager: maintains information about hosts and communicate with them

OpenNebula - Architecture

- Transfer Driver: interacts with the image operations (cloning, deleting, ...)
- Virtual Machine Driver: interacts with the VM life cycle operations (deploy, shutdown, ...)
- Information Driver: gets information about physical hosts (memory, cpu, ...)

OpenNebula - Architecture

- Set up users & groups by NIS (Network Information Service)
 - server\$ groupadd xen
 - server\$ useradd –G xen oneadmin
 - server\$ cd /var/yp
 - server\$ make
- Create local groups
 - node1\$ echo "rootxen:x:<xen_gid>:root >> /etc/group
 - node2\$ echo "rootxen:x:<xen_gid>:root >> /etc/group
- Configure SSH
 - server\$ ssh-keygen
 - server\$ scp id_rsa.pub node1:
 - node1\$ cd ~/.ssh
 - node1\$ cat id_rsa.pub >> authorized_keys

OpenNebula Admin: Storage

- Image repository (separate or in the front-end)
 - Contains VM images

Image life-cycle

- http://www.opennebula.org/doku.php?id=documentation:rel1.2:ignc
- Preparation: images are in the repository
- Cloning: copy an image from the repository to VM directory
- Save / remove: save and dispose the image
- Physical cluster configuration
 - \$ONE_LOCATION/etc/oned.conf
 - \$ONE_LOCATION/etc/tm_nfs/tm_nfs.conf

OpenNebula – Admin: Networks

2 VM clusters have virtual networks and access to the Internet

OpenNebula – Admin: Networks

- Define a virtual network
 - oned.conf
 - Fixed virtual networks: set specific addresses
 - Ranged virtual networks: set a base address
- Create a virtual network
 - \$ onevnet -v create private_red.net

OpenNebula Admininstrator

Install OpenNebula

• \$./install.sh -d /opt/nebula/ONE

Set up cluster

- \$ onehost create node1 im_xenvmm_xentm_ssh
- \$ onehost create node2 im_xenvmm_xentm_ssh im_xen: reference to information driver vmm_ssh: reference to virtual machine driver tm_ssh: reference to transfer driver

Start OpenNebula

• \$ ONE_LOCATION/bin/one start

OpenNebula – Command Line Interface

- Three commands
 - onevm [<options>] <command> [<parameters>]
 - onehost <command> [<parameters>]
 - onevnet <command> [<parameters>]
- Commands of onevm
 - create, deploy, shutdown, livemigrate, migrate, hold, release, stop, suspend, resume, delete, list, show, top, history
- Commands of onehost
 - o create, show, delete, list, enable, disable, top
- Commands of onevnet
 - o create, show, delete, list

OpenNebula – Client APIs

- XMLrpc methods
- VM allocation: one.vmallocate
- VM deployment: one.vmdeploy
- VM actions: one.vmaction
 - o shutdown, hold, release, stop, suspend, resume
- VM migration: one.vmmigrate
- VM information: one.vmget_info

OpenNebula – Java Example

Invoking one.vmallocate

```
import org.apache.xmlrpc.XmlRpcClient;
import java.util.Vector;
public class XmIRpcTest {
 public static void main( String args[] ) throws Exception {
         XmlRpcClient client = new XmlRpcClient( "http://localhost:2633/RPC2" ):
         Vector params = new Vector();
         params.addElement("SESSION-GOLA&4H910");
         params.addElement("MEMORY=345 CPU=4
DISK=[FILE=\"img\",TYPE=cd]""DISK=[FILE=\"../f\"]");
         Object result = client.execute( "one.vmallocate", params );
         if ( result != null )
             System.out.println( result.toString() );
      http://www.opennebula.org/doku.php?id=documentation:rel1.2:api_examples
```

References

- http://workspace.globus.org/
- http://www.opennebula.org/doku.php
- Open Source Grid and Cluster Software Conference May 12th-16th 2008 San Francisco, USA, OpenNebula: The Open Source Virtual Machine Manager for Cluster Computing,
- http://www.opennebula.org/lib/exe/fetch.php?id=outreach&cache=cache&media=opennebula-oakland.pdf
- Tutorial about Elastic Management of a Grid Computing Service with OpenNebula and Amazon EC2, March 2th, 2009, http://www.opennebula.org/lib/exe/fetch.php?id=outreach&cache=cache&med ia=tutorial_ogf25.pdf http://grid.rit.edu