## **Practice with Integration**

1. 
$$\lim_{n\to\infty} \sum_{i=1}^n \left( \left( \frac{3}{n}i - 2 \right)^2 + 1 \right) \cdot \frac{3}{n}$$





$$\triangle \times = \frac{3}{h}$$

2. 
$$\lim_{n\to\infty} \sum_{i=1}^n \cos\left(\frac{\pi}{n}i + \pi\right) \cdot \frac{\pi}{n}$$





3. 
$$\int_{-2}^{1} 4dx =$$







$$4. \quad \int_{\sqrt{2}}^{\sqrt{18}} \sqrt{2} dr =$$









5. 
$$\int_{-2}^{4} \left(\frac{x}{2} + 3\right) dx =$$



$$5\frac{12}{2}.6 = \boxed{21}$$

8. 
$$\int_{-1}^{1} (2 - |x|) dx =$$









It can be shown that  $\int_0^1 x^3 dx = \frac{1}{4}$ . Using this fact and your knowledge of integration and function transformations, make graphs of the following ten functions and use your graph to determine the integral.





