Using Genetic Algorithms for Pairwise and Multiple Sequence Alignments

Overview

- Introduction
- Methods
- Results
- Discussion

SECTION 0 Sequence Alignment

3

What Is Sequence Alignment?

- Sequence alignment in bioinformatics
 - Compare the sequences of DNA, RNA and protein

- Rows → sequences: DNA/RNA || protein
- chromosome
- Columns → residues: nucleotide || amino acid

Why Sequence Alignment?

- Sequence alignment in bioinformatics
 - Identify regions of similarity
 - → functional, structural, or evolutionary relationships

- Identity: conserved region → structural or functional importance
- Substitution: point mutation
 - Gap: insertion/deletion mutation

5

How To Solve?

- Very short or very similar sequences
 → can be aligned by hand
- Lengthy, highly variable or extremely numerous sequences
 - → cannot be aligned solely by human effort

human construct algorithms to produce high-quality sequence alignments

- Dynamic programming
 - Slow but formally optimizing
- · Heuristic or probabilistic methods
 - Efficient for large scale search

Introduction

- Multiple sequence alignment
 - Simultaneous alignment of many nucleotide or amino acid sequences
 - Line up the characters in a set of strings in the best possible way
 - How to line up?
 - Insert gaps into the strings to make equal length
 - What is best?
 - Score an alignment of multiple sequences

How To Line Up? (1)

• Given a family of sequences S of various length

	1	 <i>n</i> ₁	 j	 ni	 n _k	
s ₁						
1						
s _i			S _{ij}			
i						
s _k						

- Each element $s_{ij} \in A$ For DNA sequences, $A = \left\{A, T, C, G\right\}$

The Multiple Sequence Alignment (MSA) Problemength of alignment How To Line Up? (2) $\max\{n_i\} \le N \le \sum_{i=1}^k n_i$

ullet To compute an alignment of sequence family S'

	1	 n ₁	 j	 n _i	 n _k	 N
s' ₁						
i						
s' _i			s _{ij}			
:						
s' _k						

- Each element $s'_{ij} \in A' = A \cup \{-\}$ Remove all from $s'_i \rightarrow s_i$

What Is Best? (1)

- Score between any two characters
 - $M(a,b) = M(b,a), \forall a,b \in A',$
 - DNA and RNA: scoring matrix
 - Protein: substitution matrix
 - PAM matrices or BLOSUM tables
 - $M(a, -) = G, \forall a \in A,$
 - Linear gap penalty $l \times G$.
 - Affine gap penalty $GOP + l \times GEP$
 - M(-,-)=0.

What Is Best? (2)

 $\bullet\,$ Score between any two sequences

$$M(s'_i, s'_j) = \sum_{p=1}^{N} M(s'_{ip}, s'_{jp}).$$

- Score an alignment of multiple sequences
 - Sum-of-pairs score (SP-score)

$$M(S') = \sum_{1 \leq i < j \leq k} M(s_i', s_j').$$

- The MSA problem
 - To find an alignment that maximizes SP-score

SECTION I Introduction

17

Related works

- Progressive approach (CLUSTAL W, Feng and Doolittle)
 - Advantage
 - Speed, simplicity and sensitivity
 - Disadvantage
 - Local minimum → greedy nature
 - No objective function → quality measure
- Hidden Markov model (HMM)
 - Advantages
 - A sound link with probability analysis
 - Disadvantages
 - Limited to cases with 100+ sequences

Related works (cont.)

- Objective functions (OFs) approach
 - Advantages
 - Quality measure → find the best
 - Disadvantages
 - Astronomical number of possible alignments?

- S1: MSA program
 - Advantages
 - Find the best alignment in a reduced space
 - Disadvantages
 - Still limited to small examples

19

Related works (cont.)

- Objective functions (OFs) approach
 - Advantages
 - Quality measure → find the best
 - Disadvantages
 - Astronomical number of possible alignments?

- S2: Stochastic optimization methods
 - Simulated annealing: very slow → alignment improver
 - Gibbs sampling: non-gapped alignment only
 - Genetic algorithms: dynamic programming/GA hybrid

In this paper...

- SAGA: sequence alignment by genetic algorithm
 - Find globally optimal multiple alignments in reasonable time
 - As good as or better than MSA, CLUSTAL W
 - Measure: OF score, reference alignments
 - Optimize any objective functions (OF) one can invent
 - OF: what is the best in real sense → the key to success

21

SECTION II Methods

Overview

- Use an OF as quality measure, and
- Optimize it using a genetic algorithm

23

Objective function (OF)

• OF: what is best?

ALIGNMENT COST(A) =
$$\sum_{i=2}^{N} \sum_{j=1}^{i-l} \mathbf{W}_{i,j} COST(A_i, A_j)$$

- COST(A_i, A_j): substitution/gap cost
- W_{i,j}: the weight (similarity) of sequence pairs (i,j)
 - MSA: phylogenetic tree
 - CLUSTAL W: a weight → each sequence
- In this study,
 - **OF1:** pam250 substitution + quasi-natural gap + MSA rationale 2 weight
 - OF2: pam250 substitution + natural gap + CLUSTAL W weight

Sequence alignment by genetic algorithm (SAGA)

- Population
 - Made of alignments
- Fitness
 - Measured by the OF
- Operators
 - Each has a probability of being chosen
 → dynamically optimized during the run
 - Help the population to improve by creating the children it needs

25

SAGA: pseudo-code

Initialisation 1. create G₀

Evaluation 2. evaluate the population of generation n (G_n)

3. if the population is stabilised then END

4. select the individuals to replace

5. evaluate the expected offspring (EO)

Breeding 6. select the parent(s) from G_n

7. select the operator

8. generate the new child

9. keep or discard the new child in G_{n+1}

10. goto 6 until all the children have been success-

fully put into G_{n+1}

11. n = n+1

12. goto EVALUATION

End 13. end

SAGA: pseudo-code (cont.)

- Initialization
 - Population size = 100
 - Randomly created
 - Random offset → sequence → move to the right
- Evaluation
 - Fitness (OF) → expected offspring (EO)
 - EO: a probability for each individual to be chosen as a parent (0~2)
- Breeding
 - Overlapping generation
 - 50% (fittest individuals): survive unchanged

27

SAGA: pseudo-code (cont.)

- Breeding 50% (remaining)
- Select parents
 - Weighted wheel selection (EO-based)
 - Modify parents: several operators
 - Each has a specific probability of being used
 - Absence of duplicates
 - Maintain population diversity
- End
 - Stopping criterion: stabilization
 - Unable to improve for some specified number of generations

The operators in SAGA

- Two types of operators
 - Crossover
 - Merge parent alignments
 - Two parents → one child
 - Mutation
 - Modifications
 - One parent → one child

Block searching

Speed up generating more dramatic changes

- Given
 - An initial substring in one of the sequences
 - Random position/length
- To
 - Find the block to which it may belong
 - The best matching substrings in all the remaining sequences
 - Move the sequences to reconstruct the block

35

Local optimal or sub-optimal rearrangement

To overcome the problem of local minimum

- Optimize the pattern of gaps inside a given block
 - By exhaustive examination of all gap arrangements inside the block
 - Require <2000 combinations to examine
 - By a local alignment GA (LAGA)
 - One point crossover + block shuffling
 - Number of generations = 10 × number of sequences
 - Population size = 20

Dynamic scheduling of the operators

- A total of 22 operators
 - 2 crossover + 2 gap insertion + 16 block shuffling +
 1 block searching + 1 local/sub rearrangement
- Each operator has a probability of being used
 - Initialization: all the same = 1/22
 - The probability of an operator is optimized on the run
 - A function of the **efficiency** (improve alignments) it has recently (10 last generations)
 - Credit → shared with the operators that came before
 - Taken as usage probability and remain unchanged until next assessment
 - Minimum probability = 1/44 → to avoid the loss of operators

37

Test cases

- A set of 13 test cases
 - Based on alignments of sequences of known tertiary structure
 - Various length (60-280) and numbers (4-32) of sequences
- Mathematically optimal/sub-optimal
 - Group 1: 9 cases
 - Small alignments (4-8 sequences, 60-280 residues)
 - Can be handled by MSA → Compare MSA with SAGA using OF1
 - Group 2: 4 cases
 - Large alignments (9, 12, 15 and 32 sequences)
 - Cannot be handled by MSA
 - → Compare CLUSTAL W with SAGA using OF2
- Biological relevance
 - Compare SAGA, MSA and CLUSTAL W with reference structural alignments

Self tuning ability (2)

Automatic scheduling of the operators (crossovers, semi-hill climbing/stochastic mutations)

 Semi-hill climbing/stochastic operators behave in a complementary way

Optimization of OF1

Compare SAGA and MSA

41

 SAGA is able to produce a score at least as good as that produced by MSA (optimization + accuracy)

Table 1. The performance of MSA and SAGA on nine test cases

Test case	Nseq	Length	MSA score	MSA versus structure (%)	CPU-time	SAGA score	SAGA versus structure (%)	CPU-time
Cyt c	6	129	1 051 257	74.26	7	1 051 257	74.26	960
Ger	8	60	371 875	75.05	3	371 650	82.00	75
Ac protease	5	183	379 997	80.10	13	379 997	80.10	331
S protease	6	280	574 884	91.00	184	574 884	91.00	3500
Chtp	6	247	111 924	*	4525	111 579	車	3542
Dfr secstr	4	189	171 979	82.03	5	171 975	82.50	411
Sbt	4	296	271 747	80.10	7	271 747	80.10	210
Globin	7	167	659 036	94.40	7	659 036	94.40	330
Plasto	5	132	236 343	54.03	22	236 195	54.05	510

Optimization of OF2 (1)

Compare SAGA and CLUSTAL W

 SAGA performs more accurately than CLUSTAL W on data sets of realistic size

Table 2. The performance of CLUSTAL W and SAGA on four test cases

Test case	Nseq	Length	CLUSTAL W score	CLUSTAL W versus structure (%	CPU-time	SAGA score	SAGA versus structure (%)	CPU-time
Igb	32	144	31 812 824	55.86	60	31 417 736	55.97	41 135
Ac Protease2	10	186	10 514 101	41.02	16	10 393 145	43.50	12 236
S Protease2	12	281	16 354 800	64.37	21	16 282 179	66.18	20 537
Globin2	12	171	5 249 682	94.90	18	5 233 058	94.01	2538

43

Optimization of OF2 (2)

Compare SAGA and CLUSTAL W

- SAGA accurately finds the main features
 - 12 completely conserved positions
 - SAGA: 11
 - CLUSTAL W: 10

1ton ---PCAKPKTPAIYAKLIKFTSMIKKYMKENP
2pka ---PCSAMKPSIYTKLIFYLDMIDDTITENP
2ptn ---gCALPENDEVYTKVCNYVSMIKOTIASN2trm ---gCALPENDEVYTKVCNYVDMIQDTIARN4cba ---StestsTPGVYARVTALUMWQQTLARN1est ---GCNVTEKPFVPFTKVSAYISMIKNYIASN1hme ---GCASGLYPDAFAPVAQFVNMIDSIIQ--3rp2 ----PCAKPFAIFTKVSTYVFMINAVIN-1sgt ---CCARRGYPGVYTEVSTYASAIASARTL2sga ---GKCRTGGTFYQPVTEALVAYGYSVY--3sgb ---GKCRTGGTFYQPVTEALVAYGYSVY--2sql nnogipaSQRSSLFERLQFILSQYGLSLVYG-

SECTION IV Discussion

45

SAGA: a powerful and flexible tool

- Advantages
 - The ability to achieve optimal alignment scores (mathematically)
 - The consistency of alignments with test cases of known tertiary structure (biologically) → the usefulness of OFs
- Disadvantages
 - Still fairly slow for large test cases (>20 sequences)
 - Combine the speed of progressive approach with the accuracy of genetic algorithm (hybrid)

Starting population

- Currently, seed alignments completely randomly
 - Use heuristic alignments generated by CLUSTAL W
 - · Could be trapped in local minima
- SAGA as an alignment improver
 - Starting alignment → close to the optimal solution
 - Generate hybrid alignments for very large test cases

47

Efficiency of GA

- Use a large number of mutational and crossover operators, and automatically schedule them
 - Complicated and cumbersome?
 - MSA is not a simple problem
 - The most useful operators
 - Based on biological reality

 (e.g. moving blocks using the tree as a guide)
 - Automatic scheduling
 - New situation/problem → new operators
 - Usefulness or redundancy at different stages
- Implement and test any OF one can think of
 - A good measure of quality → key to success

Questions after sequence alignment

- Q1: Is the alignment significant with respect to some statistical model?
 - A very difficult problem which has solutions for two sequences under certain conditions
- Q2: How stable is the alignment or which pieces of the alignment are stable?
 - Important to interpret new alignments and there are solutions for just two sequences

49

The End

Thank you for your attention!