Support Vector Machines (Dual formulation and Kernels)

Aarti Singh

Co-instructor: Pradeep Ravikumar

Machine Learning 10-701 Feb 22, 2017

n training points
$$(\mathbf{x}_1,...,\mathbf{x}_n)$$
 \mathbf{x}_j is a d-dimensional vector \mathbf{x}_j \mathbf

w - weights on features (d-dim problem)

- Convex quadratic program quadratic objective, linear constraints
- But expensive to solve if d is very large
- Often solved in dual form (n-dim problem)

Constrained Optimization

$$\min_x x^2$$

s.t. $x \ge b$

$$x^* = \max(b, 0)$$

Constraint active and tight 28

Constrained Optimization – Dual Problem

 α = 0 constraint is inactive α > 0 constraint is active

Primal problem:

$$\min_{x} x^2$$
 s.t. $x > b$

Moving the constraint to objective function Lagrangian:

$$L(x, \alpha) = x^2 - \alpha(x - b)$$

s.t. $\alpha \ge 0$

Dual problem:

$$\max_{\alpha} d(\alpha) \longrightarrow \min_{x} L(x, \alpha)$$
 s.t. $\alpha \ge 0$

Connection between Primal and Dual

Primal problem:
$$p^* = \min_x x^2$$

s.t. $x \ge b$

Dual problem:
$$d^* = \max_{\alpha} d(\alpha)$$
 s.t. $\alpha > 0$

Weak duality: The dual solution d^* lower bounds the primal solution p^* i.e. $d^* \le p^*$

To see this, recall
$$L(x, \alpha) = x^2 - \alpha(x - b)$$

For every feasible x (i.e. $x \ge b$) and feasible α (i.e. $\alpha \ge 0$), notice that

$$d(\alpha) = \min_{x} L(x, \alpha) \leq p^*$$

Dual problem (maximization) is always concave even if primal is not convex

Connection between Primal and Dual

Primal problem: p* =
$$\min_x x^2$$
 Dual problem: d* = $\max_\alpha d(\alpha)$ s.t. $x \ge b$ s.t. $\alpha > 0$

- Weak duality: The dual solution d^* lower bounds the primal solution p^* i.e. $d^* \le p^*$
- > Strong duality: d* = p* holds often for many problems of interest e.g. if the primal is a feasible convex objective with linear constraints

Solving the dual

Solving:

$$L(x, \alpha)$$
 $\max_{\alpha} \min_{x} x^2 - \alpha(x - b)$ s.t. $\alpha \geq 0$

Optimization over x is unconstrained.

$$\frac{\partial L}{\partial x} = 2x - \alpha = 0 \Rightarrow x^* = \frac{\alpha}{2}$$

$$L(x^*, \alpha) = \frac{\alpha^2}{4} - \alpha \left(\frac{\alpha}{2} - b\right)$$
$$= -\frac{\alpha^2}{4} + b\alpha$$

Now need to maximize $L(x^*,\alpha)$ over $\alpha \ge 0$ Solve unconstrained problem to get α' and then take max(α' ,0)

$$\frac{\partial}{\partial \alpha} L(x^*, \alpha) = -\frac{\alpha}{2} + b \implies \alpha' = 2b$$

$$\Rightarrow \alpha^* = \max(2b, 0)$$
 $\Rightarrow x^* = \frac{\alpha^*}{2} = \max(b, 0)$

 α = 0 constraint is inactive, α > 0 constraint is active and tight 32

n training points, d features $(\mathbf{x}_1, ..., \mathbf{x}_n)$ where \mathbf{x}_i is a d-dimensional vector

• <u>Primal problem</u>: minimize_{w,b} $\frac{1}{2}$ w.w $\left(\mathbf{w}.\mathbf{x}_j + b\right)y_j \geq 1, \ \forall j$

w - weights on features (d-dim problem)

• <u>Dual problem</u> (derivation):

$$L(\mathbf{w}, b, \alpha) = \frac{1}{2}\mathbf{w}.\mathbf{w} - \sum_{j} \alpha_{j} \left[\left(\mathbf{w}.\mathbf{x}_{j} + b \right) y_{j} - 1 \right]$$

 $\alpha_{j} \ge 0, \ \forall j$

 α - weights on training pts (n-dim problem)

Dual problem:

$$\max_{\alpha} \min_{\mathbf{w}, b} L(\mathbf{w}, b, \alpha) = \frac{1}{2} \mathbf{w} \cdot \mathbf{w} - \sum_{j} \alpha_{j} \left[\left(\mathbf{w} \cdot \mathbf{x}_{j} + b \right) y_{j} - 1 \right]$$

$$\alpha_{j} \geq 0, \ \forall j$$

$$\frac{\partial L}{\partial \mathbf{w}} = 0 \qquad \Rightarrow \mathbf{w} = \sum_{j} \alpha_{j} y_{j} \mathbf{x}_{j}$$

$$\frac{\partial L}{\partial b} = 0 \qquad \Rightarrow \sum_{j} \alpha_{j} y_{j} = 0$$

If we can solve for as (dual problem), then we have a solution for **w**,b (primal problem)

maximize
$$_{\alpha}$$
 $\sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i} \cdot \mathbf{x}_{j}$ $\sum_{i} \alpha_{i} y_{i} = 0$ $\alpha_{i} \geq 0$

Dual problem is also QP Solution gives $\alpha_{j}s$

$$\mathbf{w} = \sum_{i} \alpha_i y_i \mathbf{x}_i$$

What about b?

Dual SVM: Sparsity of dual solution

$$\mathbf{w} = \sum_{j} \alpha_{j} y_{j} \mathbf{x}_{j}$$

Only few α_j s can be non-zero : where constraint is active and tight

$$(\mathbf{w}.\mathbf{x}_j + \mathbf{b})\mathbf{y}_j = \mathbf{1}$$

Support vectors – training points j whose $\alpha_{\rm j}$ s are non-zero

maximize
$$_{\alpha}$$
 $\sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i} \cdot \mathbf{x}_{j}$ $\sum_{i} \alpha_{i} y_{i} = 0$ $\alpha_{i} \geq 0$

Dual problem is also QP Solution gives α_{j} s

Use support vectors with $\alpha_k>0$ to compute b since constraint is tight $(w.x_k + b)y_k = 1$

$$\mathbf{w} = \sum_{i} \alpha_i y_i \mathbf{x}_i$$

$$b = y_k - \mathbf{w}.\mathbf{x}_k$$

for any k where $\alpha_k > 0$

Dual SVM – non-separable case

Primal problem:

minimize_{w,b}
$$\frac{1}{2}$$
w.w + $C \sum_{j} \xi_{j}$ $\left(\mathbf{w}.\mathbf{x}_{j} + b\right) y_{j} \geq 1 - \xi_{j}, \ \forall j$ $\xi_{j} \geq 0, \ \forall j$

 $\begin{bmatrix} \alpha_j \\ \mu_j \end{bmatrix}$

• Dual problem:

$$\begin{aligned} \max_{\alpha,\mu} \min_{\mathbf{w},b} L(\mathbf{w},b,\alpha,\mu) \\ s.t.\alpha_j &\geq 0 \quad \forall j \\ \mu_j &\geq 0 \quad \forall j \end{aligned}$$

Lagrange Multipliers

Dual SVM – non-separable case

$$\begin{aligned} \text{maximize}_{\alpha} \quad & \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i}. \mathbf{x}_{j} \\ & \sum_{i} \alpha_{i} y_{i} = \mathbf{0} \\ & C \geq \alpha_{i} \geq \mathbf{0} \end{aligned}$$

$$\text{comes from } \frac{\partial L}{\partial \mu} = \mathbf{0} \qquad \begin{aligned} & \underbrace{\begin{array}{c} \text{Intuition:} \\ \text{Earlier - If constraint violated, } \alpha_{i} \neq \infty \\ \text{Now - If constraint violated, } \alpha_{i} \leq \mathbf{C} \end{aligned}}$$

Dual problem is also QP Solution gives α_i s

$$\mathbf{w} = \sum_i \alpha_i y_i \mathbf{x}_i$$

$$b = y_k - \mathbf{w}.\mathbf{x}_k$$
 for any k where $C > \alpha_k > 0$

So why solve the dual SVM?

 There are some quadratic programming algorithms that can solve the dual faster than the primal, (specially in high dimensions d>>n)

But, more importantly, the "kernel trick"!!!

Separable using higher-order features

What if data is not linearly separable?

Use features of features of features of features....

$$\Phi(\mathbf{x}) = (x_1^2, x_2^2, x_1x_2,, \exp(x_1))$$

Feature space becomes really large very quickly!

Higher Order Polynomials

m – input features

d – degree of polynomial

num. terms
$$= \begin{pmatrix} d+m-1 \\ d \end{pmatrix} = \frac{(d+m-1)!}{d!(m-1)!} \sim m^d$$

grows fast! d = 6, m = 100 about 1.6 billion terms

Dual formulation only depends on dot-products, not on w!

$$\begin{aligned} \text{maximize}_{\alpha} & \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i}. \mathbf{x}_{j} \\ & \sum_{i} \alpha_{i} y_{i} = 0 \\ & C \geq \alpha_{i} \geq 0 \end{aligned}$$

$$\text{maximize}_{\alpha} & \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} K(\mathbf{x}_{i}, \mathbf{x}_{j}) \\ & K(\mathbf{x}_{i}, \mathbf{x}_{j}) = \Phi(\mathbf{x}_{i}) \cdot \Phi(\mathbf{x}_{j}) \\ & \sum_{i} \alpha_{i} y_{i} = 0 \\ & C > \alpha_{i} > 0 \end{aligned}$$

 $\Phi(\mathbf{x})$ – High-dimensional feature space, but never need it explicitly as long as we can compute the dot product fast using some Kernel K

Dot Product of Polynomials

 $\Phi(x)$ = polynomials of degree exactly d

$$\mathbf{x} = \left[\begin{array}{c} x_1 \\ x_2 \end{array} \right] \quad \mathbf{z} = \left[\begin{array}{c} z_1 \\ z_2 \end{array} \right]$$

d=1
$$\Phi(\mathbf{x}) \cdot \Phi(\mathbf{z}) = \begin{vmatrix} x_1 \\ x_2 \end{vmatrix} \cdot \begin{vmatrix} z_1 \\ z_2 \end{vmatrix} = x_1 z_1 + x_2 z_2 = \mathbf{x} \cdot \mathbf{z}$$

$$d=2 \Phi(\mathbf{x}) \cdot \Phi(\mathbf{z}) = \begin{bmatrix} x_1^2 \\ \sqrt{2}x_1x_2 \\ x_2^2 \end{bmatrix} \cdot \begin{bmatrix} z_1^2 \\ \sqrt{2}z_1z_2 \\ z_2^2 \end{bmatrix} = x_1^2z_1^2 + x_2^2z_2^2 + 2x_1x_2z_1z_2$$
$$= (x_1z_1 + x_2z_2)^2$$
$$= (\mathbf{x} \cdot \mathbf{z})^2$$

d
$$\Phi(\mathbf{x}) \cdot \Phi(\mathbf{z}) = K(\mathbf{x}, \mathbf{z}) = (\mathbf{x} \cdot \mathbf{z})^d$$

Finally: The Kernel Trick!

maximize_{$$\alpha$$} $\sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} K(\mathbf{x}_{i}, \mathbf{x}_{j})$

$$K(\mathbf{x}_{i}, \mathbf{x}_{j}) = \Phi(\mathbf{x}_{i}) \cdot \Phi(\mathbf{x}_{j})$$

$$\sum_{i} \alpha_{i} y_{i} = 0$$

$$C > \alpha_{i} > 0$$

- Never represent features explicitly
 - Compute dot products in closed form
- Constant-time high-dimensional dotproducts for many classes of features

$$\mathbf{w} = \sum_i lpha_i y_i \Phi(\mathbf{x}_i)$$
 $b = y_k - \mathbf{w}.\Phi(\mathbf{x}_k)$ for any k where $C > lpha_k > 0$

$$b = y_k - \mathbf{w}.\Phi(\mathbf{x}_k)$$

Common Kernels

Polynomials of degree d

$$K(\mathbf{u}, \mathbf{v}) = (\mathbf{u} \cdot \mathbf{v})^d$$

Polynomials of degree up to d

$$K(\mathbf{u}, \mathbf{v}) = (\mathbf{u} \cdot \mathbf{v} + 1)^d$$

 Gaussian/Radial kernels (polynomials of all orders – recall series expansion of exp)

$$K(\mathbf{u}, \mathbf{v}) = \exp\left(-\frac{||\mathbf{u} - \mathbf{v}||^2}{2\sigma^2}\right)$$

Sigmoid

$$K(\mathbf{u}, \mathbf{v}) = \tanh(\eta \mathbf{u} \cdot \mathbf{v} + \nu)$$

Mercer Kernels

What functions are valid kernels that correspond to feature vectors $\varphi(\mathbf{x})$?

Answer: Mercer kernels K

- K is continuous
- K is symmetric
- K is positive semi-definite $\mathbf{x}^T \mathbf{K} \mathbf{x} \ge 0$ for all \mathbf{x}

Overfitting

- Huge feature space with kernels, what about overfitting???
 - Maximizing margin leads to sparse set of support vectors
 - Some interesting theory says that SVMs search for simple hypothesis with large margin
 - Often robust to overfitting

What about classification time?

- For a new input **x**, if we need to represent $\Phi(\mathbf{x})$, we are in trouble!
- Recall classifier: sign($\mathbf{w}.\Phi(\mathbf{x})$ +b)

$$\mathbf{w} = \sum_i lpha_i y_i \Phi(\mathbf{x}_i)$$
 $b = y_k - \mathbf{w}.\Phi(\mathbf{x}_k)$ for any k where $C > lpha_k > 0$

Using kernels we are cool!

$$K(\mathbf{u}, \mathbf{v}) = \Phi(\mathbf{u}) \cdot \Phi(\mathbf{v})$$

SVMs with Kernels

- Choose a set of features and kernel function
- Solve dual problem to obtain support vectors $\alpha_{\rm i}$
- At classification time, compute:

$$\begin{aligned} \mathbf{w} \cdot \Phi(\mathbf{x}) &= \sum_{i} \alpha_{i} y_{i} K(\mathbf{x}, \mathbf{x}_{i}) \\ b &= y_{k} - \sum_{i} \alpha_{i} y_{i} K(\mathbf{x}_{k}, \mathbf{x}_{i}) \\ \text{for any } k \text{ where } C > \alpha_{k} > 0 \end{aligned} \qquad \text{Classify as} \qquad sign\left(\mathbf{w} \cdot \Phi(\mathbf{x}) + b\right)$$

	SVMs	Logistic Regression
		Regression
Loss function	Hinge loss	Log-loss

SVM: **Hinge loss**

$$loss(f(x_j), y_j) = (1 - (\mathbf{w} \cdot x_j + b)y_j))_+$$

Logistic Regression: Log loss (-ve log conditional likelihood)

$$loss(f(x_j), y_j) = -\log P(y_j \mid x_j, \mathbf{w}, b) = \log(1 + e^{-(\mathbf{w} \cdot x_j + b)y_j})$$

	SVMs	Logistic Regression
Loss function	Hinge loss	Log-loss
High dimensional features with kernels	Yes!	Yes!

Kernels in Logistic Regression

$$P(Y = 1 \mid x, \mathbf{w}) = \frac{1}{1 + e^{-(\mathbf{w} \cdot \Phi(\mathbf{x}) + b)}}$$

Define weights in terms of features:

$$\mathbf{w} = \sum_{i} \alpha_{i} \Phi(\mathbf{x}_{i})$$

$$P(Y = 1 \mid x, \mathbf{w}) = \frac{1}{1 + e^{-(\sum_{i} \alpha_{i} \Phi(\mathbf{x}_{i}) \cdot \Phi(\mathbf{x}) + b)}}$$

$$= \frac{1}{1 + e^{-(\sum_{i} \alpha_{i} K(\mathbf{x}, \mathbf{x}_{i}) + b)}}$$

• Derive simple gradient descent rule on $\alpha_{\rm i}$

	SVMs	Logistic Regression
Loss function	Hinge loss	Log-loss
High dimensional features with kernels	Yes!	Yes!

	SVMs	Logistic Regression
Loss function	Hinge loss	Log-loss
High dimensional features with kernels	Yes!	Yes!
Solution sparse	Often yes!	Almost always no!

	SVMs	Logistic Regression
Loss function	Hinge loss	Log-loss
High dimensional features with kernels	Yes!	Yes!
Solution sparse	Often yes!	Almost always no!
Semantics of output	"Margin"	Real probabilities

What you need to know

- Maximizing margin
- Derivation of SVM formulation
- Slack variables and hinge loss
- Relationship between SVMs and logistic regression
 - 0/1 loss
 - Hinge loss
 - Log loss
- Tackling multiple class
 - One against All
 - Multiclass SVMs
- Dual SVM formulation
 - Easier to solve when dimension high d > n
 - Kernel Trick

Can we use kernels in regression?

Ridge regression

$$\min_{\beta} \sum_{i=1}^{n} (Y_i - X_i \beta)^2 + \lambda \|\beta\|_2^2 \qquad \widehat{\beta} = (\mathbf{A}^T \mathbf{A} + \lambda \mathbf{I})^{-1} \mathbf{A}^T \mathbf{Y}$$

$$\widehat{\boldsymbol{\beta}} = (\mathbf{A}^T \mathbf{A} + \lambda \mathbf{I})^{-1} \mathbf{A}^T \mathbf{Y}$$

Similarity with SVMs

Primal problem:

$$\min_{\beta, z_i} \sum_{i=1}^n z_i^2 + \lambda \|\beta\|_2^2$$

s.t.
$$z_i = Y_i - X_i \beta$$

SVM Primal problem:

$$\min_{w,\xi_i} C \sum_{i=1}^n \xi_i + \frac{1}{2} ||w||_2^2$$

s.t. $\xi_i = \max(1 - Y_i X_i w, 0)$

Lagrangian:

$$\sum_{i=1}^{n} z_i^2 + \lambda \|\beta\|^2 + \sum_{i=1}^{n} \alpha_i (z_i - Y_i + X_i \beta)$$

 α_i – Lagrange parameter, one per training point

Ridge regression (dual)

$$\min_{\beta} \sum_{i=1}^{n} (Y_i - X_i \beta)^2 + \lambda \|\beta\|_2^2 \qquad \widehat{\beta} = (\mathbf{A}^T \mathbf{A} + \lambda \mathbf{I})^{-1} \mathbf{A}^T \mathbf{Y}$$

Dual problem:

$$\max_{\alpha} \min_{\beta, z_i} \sum_{i=1}^{n} z_i^2 + \lambda \|\beta\|^2 + \sum_{i=1}^{n} \alpha_i (z_i - Y_i + X_i \beta)$$

 $\alpha = {\alpha_i}$ for i = 1,..., n

Taking derivatives of Lagrangian wrt β and z_i we get:

$$\beta = -\frac{1}{2\lambda} \mathbf{A}^{\top} \alpha \qquad z_i = -\frac{\alpha_i}{2}$$

Dual problem:
$$\max_{\alpha} \ -\frac{\alpha^{\top}\alpha}{4} - \frac{1}{4\lambda}\alpha^{\top}\mathbf{A}\mathbf{A}^{\top}\alpha - \alpha^{\top}\mathbf{Y}$$

n-dimensional optimization problem

Ridge regression (dual)

$$\min_{\beta} \sum_{i=1}^{n} (Y_i - X_i \beta)^2 + \lambda \|\beta\|_2^2 \qquad \widehat{\beta} = (\mathbf{A}^T \mathbf{A} + \lambda \mathbf{I})^{-1} \mathbf{A}^T \mathbf{Y}$$
$$= \mathbf{A}^T (\mathbf{A} \mathbf{A}^T + \lambda \mathbf{I})^{-1} \mathbf{Y}$$

Dual problem:

$$\max_{\alpha} \ -\frac{\alpha^{\top} \alpha}{4} - \frac{1}{4\lambda} \alpha^{\top} \mathbf{A} \mathbf{A}^{\top} \alpha - \alpha^{\top} \mathbf{Y} \qquad \Rightarrow \widehat{\alpha} = -\left(\frac{\mathbf{A} \mathbf{A}^{\top}}{\lambda} + \mathbf{I}\right)^{-1} \mathbf{Y}$$

can get back
$$\hat{\beta} = -\frac{1}{2\lambda} \mathbf{A}^\top \hat{\alpha} = \mathbf{A}^\top (\mathbf{A} \mathbf{A}^\top + \lambda \mathbf{I})^{-1} \mathbf{Y}$$

Weighted average of training points

Weight of each training point (but typically not sparse)

Kernelized ridge regression

$$\widehat{\boldsymbol{\beta}} = (\mathbf{A}^T \mathbf{A} + \lambda \mathbf{I})^{-1} \mathbf{A}^T \mathbf{Y}$$

$$\widehat{f}_n(X) = \mathbf{X}\widehat{\beta}$$

Using dual, can re-write solution as:

$$\widehat{\beta} = \mathbf{A}^T (\mathbf{A} \mathbf{A}^T + \lambda \mathbf{I})^{-1} \mathbf{Y}$$

How does this help?

- Only need to invert n x n matrix (instead of p x p or m x m)
- More importantly, kernel trick!

$$\widehat{f}_n(X) = \mathbf{K}_X(\mathbf{K} + \lambda \mathbf{I})^{-1}\mathbf{Y}$$
 where $\mathbf{K}_X(i) = \phi(X) \cdot \phi(X_i)$
 $\mathbf{K}(i,j) = \phi(X_i) \cdot \phi(X_j)$

Work with kernels, never need to write out the high-dim vectors

Kernelized ridge regression

$$\widehat{f}_n(X) = \mathbf{K}_X (\mathbf{K} + \lambda \mathbf{I})^{-1} \mathbf{Y}$$
 where $\mathbf{K}_X(i) = \phi(X) \cdot \phi(X_i)$
 $\mathbf{K}(i, j) = \phi(X_i) \cdot \phi(X_j)$

Work with kernels, never need to write out the high-dim vectors

Examples of kernels:

Polynomials of degree exactly d
$$K(\mathbf{u}, \mathbf{v}) = (\mathbf{u} \cdot \mathbf{v})^d$$

Polynomials of degree up to d
$$K(\mathbf{u},\mathbf{v})=(\mathbf{u}\cdot\mathbf{v}+\mathbf{1})^d$$

Gaussian/Radial kernels
$$K(\mathbf{u}, \mathbf{v}) = \exp\left(-\frac{||\mathbf{u} - \mathbf{v}||^2}{2\sigma^2}\right)$$

Ridge Regression with (implicit) nonlinear features $\phi(X)$! $f(X) = \phi(X) eta$