Лекция 5

Знакочередующиеся ряды.

Определение. Знакочередующимся рядом называется ряд вида

$$\sum_{i=1}^{\infty} (-1)^{n+1} U_n = U_1 - U_2 + U_3 - U_4 + \dots$$
 (1)

где $U_n > 0 \quad \forall n \in N$

Достаточный признак сходимости. Признак Лейбница

Знакочередующийся ряд сходится, если

1) Последовательность абсолютных величин членов ряда монотонно убывает

$$U_1 > U_2 > U_3 > U_4 > \dots$$

2) Общий член ряда по абсолютной величине стремится к нулю $\underset{n \to \infty}{\it Lim}\, U_n = o \quad 0 < S < U_1$

Пример 1. Исследовать сходимость ряда
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n}$$

Решение. Это знакочередующийся ряд. Абсолютные величины его членов убывают:

$$1 > \frac{1}{2} > \frac{1}{3} > \frac{1}{4} > \dots$$
 а предел общего члена $\lim_{n \to \infty} \frac{1}{n} = o$

Оба условия признака Лейбница выполнены, поэтому ряд сходится

Пример 2. Исследовать сходимость ряда
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{n}{6n-5}$$

Решение. Это знакочередующийся ряд. Абсолютные величины его членов убывают:

$$1 > \frac{2}{7} \approx 0.28 > \frac{3}{13} \approx 0.23 > \frac{4}{19} \approx 0.21...$$
 а предел общего члена $\lim_{n \to \infty} \frac{n}{6n-5} = \frac{1}{6} \neq 0$

Второе условие признака Лейбница не выполняется, поэтому ряд расходится

Замечания.

1. Теорема Лейбница справедлива, если неравенства выполняются, начиная с некоторого N.

Пример 3. Исследовать сходимость ряда
$$\sum_{n=0}^{\infty} \frac{3n-1}{(-5)^n} = \sum_{n=0}^{\infty} (-1)^n \frac{3n-1}{5^n}$$

Решение. Это знакочередующийся ряд. Абсолютные величины его членов убывают:

$$-1$$
 $\frac{2}{5} = 0.4 > \frac{5}{25} == 0.2 > \frac{8}{125} > \dots$ а предел общего члена $\lim_{n \to \infty} \frac{3n-1}{5^n} = \left[\frac{\infty}{\infty}\right] = \lim_{n \to \infty} \frac{3}{5^n Ln5} = 0$

Оба условия признака Лейбница выполнены, поэтому ряд сходится

- 2. Исследование знакочередующегося ряда вида (с отрицательным первым членом) сводится путем умножения всех его членов на (-1) к исследованию ряда (1)
- 3. Погрешность при приближенном вычислении суммы сходящегося знакочередующегося ряда, удовлетворяющего условиям теоремы Лейбница, по абсолютной величине не превышает абсолютной величины первого отброшенного члена. Т.е.

$$S_n < U_{n+1}$$

Пример 4.

Вычислить приблизительно сумму ряда $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n^n}$

По признаку Лейбница ряд сходится. Можно записать $1 - \frac{1}{2^2} + \frac{1}{3^3} - ... = S$

Взяв пять членов, т.е. заменив S на $S_5 = 1 - \frac{1}{2^2} + \frac{1}{3^3} - \frac{1}{4^4} + \frac{1}{5^5} \approx 0,7834$

Сделаем ошибку, меньшую чем $\frac{1}{6^6} = \frac{1}{46656} < 0,00003$

Пример 5.

Какое число членов ряда $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n^2}$ надо взять, чтобы вычислить его с точностью до $0{,}001$?

По условию $S_n < 0{,}001$. Учитывая замечание 3, запишем более сильное неравенство $\mid U_{n+1} \mid \leq 0{,}001$ или $\frac{1}{(n+1)^2} \leq 0{,}001$, откуда $(n+1)^2 \geq 1000$ и $n \geq \sqrt{1000} - 1$ или $n \geq 30{,}6$, т.е. необходимо взять не менее 31 члена ряда.

Знакопеременные ряды.

Знакочередующийся ряд является частным случаем знакопеременного ряда.

Определение. Числовой ряд, содержащий бесконечное множество положительных и бесконечное множество отрицательных членов, называется *знакопеременным*.

Общий достаточный признак сходимости

Пусть дан знакопеременный ряд $U_1 + U_2 + U_3 + U_4 + ...$

Если сходится ряд $|U_1|+|U_2|+|U_3|+|U_4|+...$, составленный из модулей данного ряда, то и сходится и сам знакопеременный ряд.

Определение. Если ряд, составленный из модулей членов знакопеременного ряда, сходится, то исходный ряд *сходится абсолютно*.

Знакопеременный ряд называется условно сходящимся, если сам ряд сходится, а ряд, составленный из модулей, расходится.

$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n}$$
 - условно сходящийся ряд $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n^2}$ - абсолютно сходящийся ряд

Свойства абсолютно сходящихся рядов.

- 1) **Теорема 1**. (Теорема Дирихле) Если ряд сходится абсолютно, то он остается абсолютно сходящимся при любой перестановке его членов. При этом сумма ряда не зависит от порядка его членов.
- 2) Абсолютно сходящиеся ряды с суммами S_1 и S_2 можно почленно складывать (вычитать). В результате получается абсолютно сходящийся ряд, сумма которого равна $S_1 + S_2$
- 3) Под произведением двух рядов понимают ряд вида. Произведение 2-х абсолютно сходящихся рядов с суммами S_1 и S_2 есть абсолютно сходящийся ряд, сумма которого равна S_1 S_2
- **Теорема 2**. Если ряд сходится условно, то, какое бы мы ни задали число A, можно так переставить члены этого ряда, чтобы его сумма оказалась в точности равной A. Более того, можно так переставить члены условно сходящегося ряда, что ряд, полученный после перестановки, окажется расходящимся.

$$S = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n}$$

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \frac{1}{7} - \dots = (1 - \frac{1}{2} - \frac{1}{4}) + (\frac{1}{3} - \frac{1}{6} - \frac{1}{8}) + (\frac{1}{5} - \frac{1}{10} - \frac{1}{12}) + \dots = (\frac{1}{2} - \frac{1}{4}) + (\frac{1}{6} - \frac{1}{8}) + (\frac{1}{10} - \frac{1}{12}) + \dots = \frac{1}{2}(1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \frac{1}{7} - \dots) = \frac{1}{2}S$$

Примеры. Исследовать сходимость ряда

1)
$$\sum_{n=1}^{\infty} (-1)^n \frac{\cos \frac{\pi n}{3}}{n^2 + 1}$$

Ряд, составленный из абсолютных величин членов данного ряда, сходится, так как его член меньше членов сходящегося ряда $|(-1)^n\frac{\cos\frac{\pi n}{3}}{n^2+1}|\leq \frac{1}{n^2+1}<\frac{1}{n^2}$, следовательно данный ряд сходится и притом абсолютно.

2) $\sum_{n=1}^{\infty} \sin \frac{\pi n}{3}$ Для данного знакопеременного ряда не выполняется необходимое условие сходимости. $\lim_{n\to\infty} \sin \frac{\pi n}{3}$ не существует. Следовательно, ряд расходится