7.1.2 正项级数的收敛性

定义 1 当通项 $a_n \geqslant 0$ 时, 称级数 $\sum_{n=1}^{\infty} a_n$ 为正项级数.

正项级数的部分和 $\{S_n\}$ 是单调增加的: $S_{n+1} = S_n + a_{n+1} \geqslant S_n$.

(1) 基本结论

- (i)正项级数 $\sum_{n=1}^{\infty} a_n$ 收敛的充分必要条件是它的部分和数列 $\{S_n\}$ 有界.
- (ii) 正项级数如果发散, 一定发散到无穷.
- (iii)收敛的正项级数,任意调换求和次序后所得到的级数也收敛,并且其和不变.

例 1 证明
$$\sum_{n=0}^{\infty} \frac{1}{n!}$$
 收敛.

比较判别法

证明 这是一个正项级数, 所以只须证明它的部分和有界. 事实上, 我们 有

$$egin{align} S_{n+1} &= 1+1+rac{1}{2!}+rac{1}{3!} \cdot \dots +rac{1}{n!} \ &\leqslant 2+rac{1}{1 \cdot 2}+rac{1}{2 \cdot 3}+\dots +rac{1}{n(n-1)} \ &= 2+\left(1-rac{1}{2}
ight)+\left(rac{1}{2}-rac{1}{3}
ight)+\dots +\left(rac{1}{n-1}-rac{1}{n}
ight) \ &= 3-rac{1}{n} < 3. \end{split}$$

因此, 级数是收敛的. 后面将证明的收敛的值是 e.

例 2 设
$$a_n > 0$$
, $S_n = a_1 + a_2 + \cdots + a_n$, 则

- $(1) \sum_{n=1}^{\infty} \frac{a_n}{S_n^2} 收敛.$
- (2) 若 $\sum_{n=1}^{\infty} a_n$ 收敛, 则 $\sum_{n=1}^{\infty} \frac{a_n}{S_n}$ 也收敛.
- (3) 若 $\sum_{n=1}^{\infty} a_n$ 发散, 则 $\sum_{n=1}^{\infty} \frac{a_n}{S_n}$ 也发散.

证明 因为 $S_{k-1} < S_k$, 所以

$$egin{aligned} \sum_{k=1}^n rac{a_k}{S_k^2} &< rac{a_1}{S_1^2} + \sum_{k=2}^n rac{S_k - S_{k-1}}{S_k S_{k-1}} \ &= rac{1}{a_1} + \sum_{k=2}^n \left(rac{1}{S_{k-1}} - rac{1}{S_k}
ight) \ &= rac{2}{a_1} - rac{1}{S_n} < rac{2}{a_1}, \end{aligned}$$

由此知 $\sum_{n=1}^{\infty} \frac{a_n}{S_n^2}$ 收敛.

问题 $\sum_{n=1}^{\infty} \frac{a_n}{S_n^{\alpha}} (\alpha > 1)$ 的收敛性如何?

若
$$\sum_{n=1}^{\infty} a_n$$
 收敛, 则易知 $\sum_{n=1}^{\infty} \frac{a_n}{S_n}$ 也收敛.

若 $\sum_{n=1}^{\infty} a_n$ 发散,则 S_n 单调递增且 $S_n \to +\infty$,所以

$$\sum_{k=1}^n rac{a_k}{S_k} \geqslant \sum_{k=1}^n rac{a_k}{S_n} = rac{1}{S_n} \sum_{k=1}^n a_k = 1.$$

对于 $k_1\geqslant 1$, 存在 $k_2>k_1$ 使得 $\frac{S_{k_1}}{S_{k_2}}<\frac{1}{2}$,

对上面的 k_2 , 存在 $k_3 > k_2$ 使得 $\frac{S_{k_2}}{S_{k_2}} < \frac{1}{2}$,

.

对 k_i 存在 $k_{i+1} > k_i$ 使得 $\frac{S_{k_i}}{S_{k_{i+1}}} < \frac{1}{2}$,

.

总之, 存在递增自然数列 $\{k_i\}$ 使得 $\frac{S_{k_i}}{S_{k_{i+1}}} < \frac{1}{2}$,

因而

$$\sum_{n=k_i+1}^{k_{i+1}} rac{a_n}{S_n} > rac{1}{S_{k_{i+1}}} \sum_{n=k_i+1}^{k_{i+1}} a_n = rac{1}{S_{k_{i+1}}} (S_{k_{i+1}} - S_{k_i}) \ = 1 - rac{S_{k_i}}{S_{k_{i+1}}} > rac{1}{2}.$$

由此,

$$egin{align} \sum_{n=1}^{k_m} rac{a_n}{S_n} &= \sum_{n=1}^{k_1} rac{a_n}{S_n} + \sum_{n=k_1+1}^{k_2} rac{a_n}{S_n} + \cdots + \sum_{n=k_{m-1}+1}^{k_m} rac{a_n}{S_n} \ &> rac{1}{2} + rac{1}{2} + \cdots + rac{1}{2} \ &= rac{m}{2}
ightarrow + \infty, \; (m
ightarrow \infty), \end{aligned}$$

因而 $\sum_{n=1}^{\infty} \frac{a_n}{S_n}$ 发散.

(2) 正项级数收敛判别法

定理 1 (比较判别法) 设 $\sum_{n=1}^{\infty} a_n$ 和 $\sum_{n=1}^{\infty} b_n$ 是两个正项级数, 从某项开 始有 $a_n \leqslant b_n$, 则

$$1^{\circ} \sum_{n=1}^{\infty} b_n$$
 收敛 $\Longrightarrow \sum_{n=1}^{\infty} a_n$ 收敛;

$$2^{\circ} \sum_{n=1}^{\infty} a_n$$
 发散 $\Longrightarrow \sum_{n=1}^{\infty} b_n$ 发散.

不妨假定 $a_n \leq b_n$ 对所有的 n 都成立. 于是

$$\sum_{k=1}^n a_k \leqslant \sum_{k=1}^n b_k.$$

- 1° 若 $\sum_{n=1}^{\infty} b_n$ 收敛,则 $\sum_{k=1}^{n} b_k$ 有界,因而 $\sum_{k=1}^{n} a_k$ 也有界,所以 $\sum_{n=1}^{\infty} a_n$ 收敛;
- 2° 若 $\sum_{n=1}^{\infty} a_n$ 发散,则 $\sum_{k=1}^{n} a_k$ 无界,因而 $\sum_{k=1}^{n} b_k$ 无界,所以 $\sum_{n=1}^{\infty} b_n$ 发散. 证毕.

例 3 $\sum_{n=1}^{\infty} \frac{1}{n^p}$ 称为 p 级数, 讨论它的敛散性.

解 当 $p \leq 1$ 时, 因为

$$rac{1}{n^p}\geqslant rac{1}{n},$$

故在此情况下, p 级数发散.

当 p>1时, 命 $p=1+\alpha$ $(\alpha>0)$. 对函数 $f(x)=\frac{1}{x^{\alpha}}$ 利用微分中值定理可得

$$rac{1}{(n-1)^{lpha}}-rac{1}{n^{lpha}}=rac{lpha}{(n- heta)^{lpha+1}}>rac{lpha}{n^p},$$

其中 $0 < \theta < 1$, 由于

$$\sum_{n=2}^{\infty} \left(\frac{1}{(n-1)^{\alpha}} - \frac{1}{n^{\alpha}} \right) = 1,$$

故由比较判别法可知, 当 p > 1 时, p 级数收敛.

推论 1 (比较判别法的极限形式) 设 $\sum_{n=1}^{\infty} a_n$ 和 $\sum_{n=1}^{\infty} b_n$ 是正项级数,

$$\lim rac{a_n}{b_n} = A$$
. 则

$$1^{\circ}$$
 若 $0 < A < +\infty$, 则 $\sum_{n=1}^{\infty} a_n$ 与 $\sum_{n=1}^{\infty} b_n$ 同敛散;

$$2^{\circ}$$
 若 $A = 0$, 则当 $\sum_{n=1}^{\infty} b_n$ 收敛时, $\sum_{n=1}^{\infty} a_n$ 也收敛;

$$3^{\circ}$$
 若 $A = +\infty$, 则当 $\sum_{n=1}^{\infty} b_n$ 发散时, $\sum_{n=1}^{\infty} a_n$ 也发散.

例 4 求证
$$\sum_{n=1}^{\infty} \frac{n+3}{\sqrt{(n^2+1)(n^3+2)}}$$
 收敛.

证明 由

$$rac{n+3}{\sqrt{(n^2+1)(n^3+2)}} \sim rac{1}{n^{3/2}}$$

及

$$\sum_{n=1}^{\infty} \frac{1}{n^{3/2}}$$

的收敛性,可知原级数收敛.

定理 2 (Cauchy 判别法) 设 $\sum_{n=1}^{\infty} a_n$ 是正项级数.

- (i) 如果从某项起有 $\sqrt[n]{a_n} \leqslant q < 1$, 则级数收敛;
- (ii) 如果有无穷多个 n, 使 $\sqrt[n]{a_n} \ge 1$, 则级数发散;
- (iii) 如果 $\lim_{n\to\infty} \sqrt[n]{a_n} = q$, 则当 q < 1 时, 则级数收敛, 当 q > 1 时, 级数发散, 当 q = 1 时, 还无法判断级数收敛还是发散.

证明 不妨设对所有的 n 都有 $\sqrt[n]{a_n} \le q < 1$, 也就是有 $a_n \le q^n$. 故由 $\sum_{n=1}^{\infty} q^n$ 的收敛性及比较判别法, 可知 $\sum_{n=1}^{\infty} a_n$ 收敛.

如果有无穷多个 n 使 $\sqrt[n]{a_n} \ge 1$, 故 $\{a_n\}$ 不以零为极限, 所以 $\sum_{n=1}^{\infty} a_n$ 发散.

对于极限形式, 只要注意到一定存在一个正数 ε , 使得对于充分大的 n, 有 $\sqrt[n]{a_n} < q + \varepsilon < 1$ 或者 $\sqrt[n]{a_n} > q - \varepsilon > 1$. 大家可自行完成证明.

定理 3 (D'Alembert 判别法) 设 $\sum_{n=1}^{\infty} a_n$ 是正项级数.

- (i) 如果从某项起有 $\frac{a_{n+1}}{a_n} \leqslant q < 1$, 则级数收敛;
- (ii) 如果从某项起有 $\frac{a_{n+1}}{a_n} \geqslant 1$, 则级数发散;
- (iii) 如果前后项之比具有极限 $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = q$, 则当 q < 1 时, 级数收敛, 而当 q > 1 时, 级数发散, 当 q = 1 时, 还不能判断.

证明 不妨设对所有的 n 都有 $\frac{a_{n+1}}{a_n} \leqslant q < 1$, 故有

$$rac{a_2}{a_1}\leqslant q, \ rac{a_3}{a_2}\leqslant q, \ \cdots, \ rac{a_n}{a_{n-1}}\leqslant q,$$

把这些不等式两端相乘,就得到

$$a_n\leqslant rac{a_1}{q}q^n$$
 .

由于 $\frac{a_1}{q}$ 是一个常数,而 $\sum_{n=1}^{\infty} q^n$ 收敛,所以 $\sum_{n=1}^{\infty} a_n$ 收敛.

如果 $\frac{a_{n+1}}{a_n} \geqslant 1$, 则 $a_{n+1} \geqslant a_n$, 即 $a_1 \leqslant a_2 \leqslant \cdots \leqslant a_n \leqslant \cdots$, 此时级数的 通项 a_n 不会趋于零, 因此级数发散.

例 5 求证
$$\sum_{n=1}^{\infty} \frac{1}{2^n} \left(1 + \frac{1}{n}\right)^{n^2}$$
 发散.

证明 因为

$$\lim \sqrt[n]{rac{1}{2^n}\left(1+rac{1}{n}
ight)^{n^2}} = \lim rac{1}{2}\left(1+rac{1}{n}
ight)^n = rac{e}{2} > 1.$$

故由 Cauchy 判别法知该级数发散.

例 6 讨论
$$\sum_{n=1}^{\infty} n! \left(\frac{x}{n}\right)^n (x \ge 0)$$
 的敛散性.

解 因为

$$rac{a_{n+1}}{a_n}=rac{(n+1)!\left(rac{x}{n+1}
ight)^{n+1}}{n!\left(rac{x}{n}
ight)^n}=rac{x}{\left(1+rac{1}{n}
ight)^n}
ightarrow rac{x}{e},\;(n
ightarrow\infty).$$

故由 D'Alembert 判别法知当 x > e 时级数发散, 而当 $0 \le x < e$ 时级数收敛.

定理 4 (Cauchy 积分判别法) 如果 f(x) 在 $[1,+\infty)$ 上有定义的非负且单调 减少函数, 那么级数 $\sum_{n=1}^{\infty} f(n)$ 与积分 $\int_{1}^{+\infty} f(x) dx$ 同敛散.

由 f(x) 的单调性可知, 当 $k \leq x \leq k+1$ 时有

$$f(k+1)\leqslant f(x)\leqslant f(k),$$

于是

$$f(k+1)\leqslant \int_k^{k+1}f(x)dx\leqslant f(k).$$

将上述不等式对 $k=1,2,\cdots,n$ 相加, 就得知, 对任何 $n\in\mathbb{N}$ 有

$$\sum_{k=2}^{n+1}f(k)\leqslant \int_1^{n+1}f(x)dx\leqslant \sum_{k=1}^nf(k).$$

若 $\int_{1}^{+\infty} f(x) dx$ 收敛,则由上式左半可知 $\sum_{k=2}^{n+1} f(k)$ 有界,因而 $\sum_{n=1}^{\infty} f(n)$ 收 敛. 若 $\int_{1}^{+\infty} f(x) dx$ 发散,则由上式右半可知 $\sum_{k=1}^{n} f(k)$ 无界,故 $\sum_{n=1}^{\infty} f(n)$ 发散.证毕.

例 7 证明级数 $\sum_{n=2}^{\infty} \frac{1}{n \ln^{\alpha} n}$ 当 $\alpha > 1$ 时收敛, 当 $\alpha \leqslant 1$ 时发散.

证明 级数与积分 $\int_2^{+\infty} \frac{dx}{x \ln^{\alpha} x}$ 同敛散. 而

$$\int_{2}^{+\infty}rac{dx}{x\ln^{lpha}x}=egin{cases} rac{(\ln2)^{1-lpha}}{lpha-1}, & lpha>1;\ +\infty, & lpha\leqslant1. \end{cases}$$

故原级数当 $\alpha > 1$ 时收敛, 而当 $\alpha \leq 1$ 时发散.

注意 无论是 Cauchy 判别法, 还是 D'Alembert 判别法, 都是和几何级数进行比较. 我们不能说这两个判别法哪一个更强. 当这两种判别法都失效时, 就需要建立新的判别法.

引理 1 设 $\{a_n\}$, $\{b_n\}$ 是两个正数列. 如果当 $n \ge n_0$ 时, 有

$$rac{a_{n+1}}{a_n}\leqslant rac{b_{n+1}}{b_n},$$

那么当 $\sum_{n=1}^{\infty} b_n$ 收敛时, $\sum_{n=1}^{\infty} a_n$ 也收敛.

证明 根据条件有

$$rac{a_{n_0+1}}{a_{n_0}} \cdot rac{a_{n_0+2}}{a_{n_0+1}} \cdots rac{a_{n_0+p}}{a_{n_0+p-1}} \leqslant rac{b_{n_0+1}}{b_{n_0}} \cdot rac{b_{n_0+2}}{b_{n_0+1}} \cdots rac{b_{n_0+p}}{b_{n_0+p-1}}.$$

因而

$$rac{a_{n_0+p}}{a_{n_0}}\leqslant rac{b_{n_0+p}}{b_{n_0}}.$$

这说明存在常数 M>0 使得当 $n>n_0$ 时, 有

$$a_n\leqslant Mb_n$$
.

由比较判别法,即知结论成立。

定理 5 (Raabe 判别法) 设 $\{a_n\}$ 是正数列.

1° 如果存在 r > 1 和自然数 n_0 , 使得当 $n \ge n_0$ 时, 有

$$n\left(rac{a_n}{a_{n+1}}-1
ight)\geqslant r,$$

那么 $\sum_{n=1}^{\infty} a_n$ 收敛.

 2° 如果存在自然数 n_0 使得当 $n \geq n_0$ 时, 有

$$n\left(rac{a_n}{a_{n+1}}-1
ight)\leqslant 1,$$

那么 $\sum_{n=1}^{\infty} a_n$ 发散.

 3° 如果 $\lim_{n\to\infty} n\left(\frac{a_n}{a_{n+1}}-1\right)=\alpha$,那么当 $\alpha>1$ 时, $\sum_{n=1}^{\infty}a_n$ 收敛;当 $\alpha<1$ 时,

$$\sum_{n=1}^{\infty} a_n$$
 发散.

证明 1° 取 $\sigma \in (1,r)$, 由 $\lim_{n\to\infty} \frac{(1+\frac{1}{n})^{\sigma}-1}{\frac{1}{n}} = \sigma < r$, 知, 存在自然数 n_1 使得当 $n \geqslant n_1$ 时, 有

$$n\left((1+\frac{1}{n})^{\sigma}-1\right) < r.$$

因此当 $n \geqslant \max(n_0, n_1)$ 时, 有

$$n\left((1+rac{1}{n})^{\sigma}-1
ight)< n\left(rac{a_n}{a_{n+1}}-1
ight),$$

即

$$rac{a_{n+1}}{a_n} < rac{rac{1}{(n+1)^\sigma}}{rac{1}{n^\sigma}}.$$

因为 $\sum_{n\to\infty}^{\infty} \frac{1}{n^{\sigma}}$ 收敛, 根据引理即知 $\sum_{n=1}^{\infty} a_n$ 收敛.

2°和3°也可容易证明.

问题 定理中 $\alpha = 1$ 时, 结论如何?

例 8 设 α, β, γ 都是正数. 称

$$F(lpha,eta,\gamma;x)=1+\sum_{n=1}^{\infty}rac{lpha(lpha+1)\cdots(lpha+n-1)eta(eta+1)\cdots(eta+n-1)}{n!\gamma(\gamma+1)\cdots(\gamma+n-1)}x^n$$

为超几何级数.

因为

$$\lim_{n o\infty}rac{a_{n+1}}{a_n}=\lim_{n o\infty}rac{(lpha+n)(eta+n)}{(n+1)(\gamma+n)}x=x,$$

所以, 由 D'Alembert 判别法知该级数当 x < 1 时收敛, 当 x > 1 时发散.

当
$$x=1$$
 时,

$$\lim_{n o\infty} n\left(rac{a_n}{a_{n+1}}-1
ight) = \lim_{n o\infty} rac{n^2(1+\gamma-lpha-eta)+(\gamma-lphaeta)n}{(lpha+n)(eta+n)} = 1+\gamma-lpha-eta.$$

故,对于x = 1,根据 Raabe 判别法,该级数当 $\gamma > \alpha + \beta$ 时收敛,当 $\gamma < \alpha + \beta$ 时发散.

还有比 Raabe 判别法更精细的判别法,如 Gauss 判别法等等. 但是并不存在一种判别法能够判别一切正项级数是否收敛. 事实上,对于给定的一个收敛的正项级数,总可以构造一个收敛的更慢的正项级数.

定义 2 设 $\sum_{n=1}^{\infty} a_n$ 和 $\sum_{n=1}^{\infty} b_n$ 是两个收敛的正项级数. 如果 $\lim_{n\to\infty} \frac{a_n}{b_n} = 0$, 则称 $\sum_{n=1}^{\infty} a_n$ 比 $\sum_{n=1}^{\infty} b_n$ 收敛的快, 或称 $\sum_{n=1}^{\infty} b_n$ 比 $\sum_{n=1}^{\infty} a_n$ 收敛的慢.

习题 设 $\{a_n\}$ 是正数列, 级数 $\sum\limits_{n=1}^\infty a_n$ 收敛, 记 $r_n=\sum\limits_{k=n}^\infty a_k$. 则对于 0< p<1 级数 $\sum\limits_{n=1}^\infty \frac{a_n}{r_n^p}$ 收敛, 而且有

$$\sum_{n=1}^{\infty}rac{a_n}{r_n^p}<rac{1}{1-p}\left(\sum_{n=1}^{\infty}a_n
ight)^{1-p}.$$