CS 463/516 Medical Imaging

Lecture 1

Medical Imaging

voxels

- Medical image:
 - typically 3-dimensional digital image composed of volumetric elements called 'voxels'
- Many contrasts exist
 - Contrast between biological tissues
 - Molecular composition contrast
 - Functional (time-varying) contrast
- Extracting info from image:
 - Health of the subject
 - Differences between subjects
 - Differences across time

Applications

- A) Locate and identify tumor (segmentation)
- B) Trace connections between different brain areas (tractography)

Applications

- C) Decode a person's thoughts from blood flow patterns (fMRI)
- D) Localize source of evoked neuronal membrane fluctuations (EEG)

Applications: mind reading

Using deep learning to decode someone's thoughts from functional MRI (fMRI)

http://papers.nips.cc/paper/8879-from-voxels-to-pixels-and-back-self-supervision-in-natural-image-reconstruction-from-fmri

Applications: high resolution imaging of vasculature, skeleton, and tendons

Applications: and more

Big data, big data from small data

- UK biobank https://www.ukbiobank.ac.uk/
 - Images and health data from over 500,000 participants
- Human Connectome Project https://www.humanconnectome.org/
 - Large MRI database with ~8,500 participants, many different studies
- OpenNeuro https://openneuro.org/
 - Collection of brain MRI datasets from across the globe, ~10,000 participants
- Aggregating many small studies (big data from small data)

Machine learning

• A survey on deep learning in medical image analysis: https://arxiv.org/abs/1702.05747

Studies of human

• https://onlinelibrary.wiley.com/doi/full/10.1002/acn3.50927

What we will cover in this course

- All the primary imaging modalities, with a focus on MRI
 - Computed Tomography (CT) and X-ray imaging
 - Magnetic Resonance Imaging (MRI)
 - Ultrasound
 - Positron Emission Tomography (PET)
 - Electroencephalography (EEG) and Magnetoencephalography (MEG)
- Common image processing problems specific to medical imaging
 - Denoising and artifact removal
 - Image registration
- Advanced processing pipelines (applications)
- Visualization of medical images (basic computer graphics)

Magnetic Resonance Imaging (MRI)

- Magnetic Resonance Imaging (MRI)
- Worldwide: around 50,000 machines. 5,000 machines sold every year
 - 366 machines in Canada
- ~14 machines satisfies needs of 1,000,000 people
- Clinical:
 - Brain and spine make >50% of all MRI scans
 - Breast, heart, and interventional make <5%
 - Mostly 3-Tesla and 1.5-Tesla field strength
- Research
 - Trend towards ultra-high field machines (7+ Tesla)
 - Basic neuroscience and psychology research
 - Used in animals and with other modalities (PET, EEG)
 - Development of faster and more robust scans

MRI scan type distribution

MRI captures high resolution soft tissue contrast

- Example: arterial (TOF) and venous (SWI) vasculature in same human participant (myself)
- MRI can be made sensitive to a wide range of biological tissues by simply tweaking the acquisition parameters

TOF

Computed Tomography (CT)

- Computed Tomography (CT) more widely used than MRI (cheaper and faster)
- 561 machines in Canada alone (up from 419 in 2007)
- Over 80 million CT scans per year in the US (despite concerns about radiation)
- Clinical:
 - Trauma patients (CT is fast)
 - Detect tumors and blood clots, edema
 - Detect cancer in chest, abdomen, pelvis, lung, liver, kidney, and other areas
 - Radiotherapy pre-planning
 - Skeletal X-ray, mammography, dental X-ray
- Research:
 - Reduce radiation from scan
 - Higher quality images (increased volume coverage, higher SNR, higher resolution)
 - K-edge imaging, multi-source imaging

Computed tomography (CT) scanner

Ultrasound

- Cheapest and most portable of imaging modalities, ultrasound machine cost \$20,000-\$100,000
- Clinical
 - Can visualize muscles, tendons, and internal organs
 - Emergency ultrasound increasingly used for trauma and surgery
 - Echocardiography, fetal imaging
- Research
 - Low-intensity focused ultrasound stimulation
 - Blood-brain barrier manipulation
 - Modulating brain activity

Ultrasound of fetus in womb at 12 weeks of pregnancy

Positron Emission Tomography (PET)

- Observe metabolic processes using radioactive tracers
- Expensive and requires on-site cyclotron
- Clinic:
 - Oncology (cancer)
 - Detect tumor and metastases
 - Hodgkins lymphoma
 - Lung cancer
- Research
 - Neuroimaging, metabolic brain activity
 - Small animal imaging

Acquisition and Reconstruction

- Magnetic Resonance image acquired in 'k-space'
- K-space transformed to image space using Inverse Fourier Transform (FT)
- Other modalities are acquired in their own space, or directly in image space
 - Radon transform for CT, coincidence detection for PET
 - Course will cover all the main transforms
 - Will also look at advanced MRI acquisition sequences (simultaneous multi-slice echo-planar imaging)

image space

Denoising and artifact removal

- Medical images are often contaminated by noise and artifacts
- Head motion during scan systematically alters image
- High resolution datasets suffer from low signal-to-noise ratio
- Will look at ways to improve image quality and reduce artifacts

Image Registration

- Medical images are acquired in different people and using different modalities
 - MRI, FMRI, CT, PET, etc... all images have different contrast/resolution
- Need a way to analyze all the images in same 'space'
- Will look at how to align images using affine transformations and numerical optimization

Segmentation

- Image segmentation: one of the most useful, and difficult tasks
- Requires expert knowledge and large datasets
- Machine learning leading to rapid advances in segmentation accuracy
- Example: BRATS challenge
 - http://braintumorsegmentation.org/
 - Segment brain tumor from MRI
- We will cover a range of segmentation methods and problems

Advanced processing

• Will cover:

- a) Diffusion tractography (Diffusion MRI)
- b) Inverse/forward modeling (EEG and MEG)
- c) Structural and functional connectivity (fMRI, MRI)
- And more! (deep learning, group analysis, etc.)

b)

c)

Visualization

- Visualizing images is key for both researcher and clinician
- We will use unity to write our own surface and volume rendering software
 - Can then build to multiple platforms including mobile, desktop, AR, and VR

What you will need for this course

- 1) programming ability
 - 4 assignments. 3 in python, 1 in C#. Need to know basic coding.
 - Working with multidimensional arrays in numpy.
- 2) basic maths
 - Most of the math for the course can be learned along the way, however...
 - Need basic understanding of linear algebra and calculus (gradients, vectors, matrices, etc.)
- 3) work ethic
 - Assignments will be challenging, and solutions are not available online
 - My Ph.D. was in medical imaging, so I can design assignments nobody has ever seen ©

What you will gain from this course

- The course is primarily image processing
 - Image reconstruction
 - Image denoising
 - Image registration
 - Image segmentation
- You will become an expert in numpy (python)
 - Will also use matplotlib, nibabel, scikit-learn, scipy and pandas
- Will learn how to apply machine learning to solve problems using realworld datasets
- Will also gain some signal processing and computer graphics experience

My research lineage

Rachid Deriche (Maxime's Ph.D. supervisor)

All	Since 2015
27158	5994
75	34
220	106
	27158 75

Maxime Descoteaux (my Ph.D. supervisor)

	All	Since 2015
Citations	7091	4461
h-index	40	32
i10-index	98	80

Nikos Logothetis (Kevin's Ph.D. supervisor)

	All	Since 2015
Citations	55843	20074
h-index	110	68
i10-index	342	266

Kevin Whittingstall (my Ph.D. supervisor)

	All	Since 2015
Citations	2223	1476
h-index	24	21
i10-index	38	37

What is a 'citation'? Citations are whenever someone publishes in peer-reviewed academic journal or conference, and 'cites' one of your papers (makes a reference to your paper).

Typically, more citation = better researcher, but there are many confounding factors.

	All	Since 2015
Citations	31	31
h-index	4	4
i10-index	0	0

resources

Good overview

More specialized topics