Information Theory WEDNESDAY

Mathias Winther Madsen
mathias@gmail.com
github.com/mathias-madsen/nasslli2025/

NASSLLI, June 2025

Entropy Rates: Intuition

X_1, X_2, \ldots, X_{40}					
SO_SHE_BEGAN_VERY_CAUTIOUSLY:_'BUT_I_DON	4.489				
U'VE_HAD!'_'OH,_I'VE_HAD_SUCH_A_CURIOUS_	4.532				
F_YOU_PROVIDE_ACCESS_TO_OR_DISTRIBUTE_CO	4.325				
'I_DIDN'T_KNOW_THAT_CHESHIRE_CATS_ALWAYS	4.286				
LY_ONE_A-PIECE_ALL_ROUND'BUT_SHE_MUST_	4.369				
TS_EYES_WERE_GETTING_EXTREMELY_SMALL_FOR	4.321				
ERMS_OF_THE_FULL_PROJECT_GUTENBERG-TM_LI	4.579				
W_LARGER,_I_CAN_REACH_THE_KEY;_AND_IF_IT	4.269				

Entropy Rates: Intuition

X_1, X_2, \ldots, X_{40}	\hat{H}_{40}
TFIRE_GRTTUOAEUANPR_KAOO_SA'T_H_TW!O_OI_	4.265
SAIU_R,ETDMEI!_SNATLA_'ADESHOMRT_AODE	4.185
ERAEAKO,Y_THSEI'OP_ETSST_'E_YHCSOSWEON	4.233
ETEF_OOHRCNEVSNGSLOE_CTOTSINIB_L_ILID	4.190
OEESGE_EUGNA_ES_AUREO_AOTTD_TIARRHAABTTF	4.081
JOE_OAFYNIFTOAOOESOFNNATDHOOEETW_IOQPR	4.464
TX_IOWALHALEY_EF_OI_LDDO*_KGHEU_O_FTHEST	4.492
A_TSTSS_WT_LDNER,_SDSUR_U_NTTHEOSRAREDHO	4.113

Entropy Rates: Definition

Definition

The **entropy rate** of a random sequence $X_1, X_2, X_3, ...$ is

$$\lim_{n\to\infty}\frac{H(X_1,X_2,\ldots,X_n)}{n}$$

whenever this limit exists.

Entropy Rates: Examples

Fixed-Length Repetitions

Repeatedly pick a letter at random and print it three times:

LLL EEE HHH QQQ MMM QQQ 000 TTT EEE YYY XXX GGG $\,\ldots\,$

Indefinite Repetition

Pick a letter at random and print it forever:

Geometric-Length Repetitions

Repatedly print a (new) random letter as long as a fair coin comes up heads:

SSS P MMMMM D HHH K Z T D U C AAA I D TTT Y HHHH . . .

Entropy Rates: Examples

A Non-Stationary Process

2 00 2222 11000111 22222222222222 . . .

A Non-Ergodic Process

Random Processes: Definition

Definition

A **discrete-time random process** is a countably infinite collection of random variables

$$X_1, X_2, X_3, X_4, \dots$$

A random process is thus a distribution over **sample paths** $x_1, x_2, x_3, ...$

Definition

A random process *P* is a **Markov chain** if

$$P(X_{n+1} | X_1, X_2, \dots, X_n) = P(X_{n+1} | X_n)$$

for all *n*. We call $P(X_{n+1} | X_n)$ its **transition probabilities**.

Markov: "On Trials Connected in a Chain of Unobservable Events," Bulletin of the Imperial Saint Petersburg Academy of Sciences, 1912.

T_ATE_T_HE_TE_THE_THE_THAT_T_TE_ ATHE_AT_ATHE_T_ATHE_TE_ATH_TH_A_ A_THE_THE_THATEA_THE_HE_A_T_...

Steady-State Distributions

Definition

The marginal distribution of X_t is a **steady-state distribution** with respect to the transition probabilities $P(X_{t+1} | X_t)$ if X_{t+1} follows the same marginal distribution as X_t .

$$\mathbf{v} = \begin{pmatrix} .3 \\ .4 \\ .3 \end{pmatrix}, \quad \mathbf{T} = \begin{pmatrix} .1 & .3 & .5 \\ .7 & .4 & .1 \\ .2 & .3 & .4 \end{pmatrix}, \quad \mathbf{Tv} = \begin{pmatrix} .3 \\ .4 \\ .3 \end{pmatrix}$$

Steady-State Distributions

Theorem

In a finite-state Markov chain, the relative visiting frequencies converges to a steady-state distribution.

1		1			1			1
	1		1			1		
				1			1	
1/1	1/2	1/3	1/4	1/5	2/6	2/7	2/8	
0	1/2	1/3	2/4	2/5	2/6	3/7	3/8	
0	0	0	0	1/5	1/6	1/7	2/8	• • •

Corollary

If a Markov chain has a unique steady-state distribution P^* , its entropy rate is the average of conditional transition entropies,

$$H = \sum_{x} P^{*}(X = x) H(X_{t+1} | X_{t} = x)$$

$$X$$
 A B $P^*(X=x)$ $1/3$ $2/3$ $H(X_{t+t} | X_t = x)$ 0 1

$$H = \frac{1}{3} \cdot 0 + \frac{2}{3} \cdot 1 = \frac{2}{3}.$$

Exercise

Compute the entropy rates of a Markov chain with the transition matrix

1.
$$T = \begin{pmatrix} .6 & .9 \\ .4 & .1 \end{pmatrix}$$
 2. $T = \begin{pmatrix} .7 & .2 \\ .3 & .8 \end{pmatrix}$

x	.1	.2	.3	.4	.5	.6	.7	.8	.9
$-\log_2 x$	3.3	2.3	1.7	1.3	1.0	0.7	0.5	0.3	0.2

Point Selection

Point Selection

$$c = \sum_{x<1} p(x) + p(1) \sum_{x<2} p(x|1) + p(1,2) \sum_{x<2} p(x|1,2) + \cdots$$

Point Selection

Shannon-Fano-Elias Coding

Shannon-Fano-Elias Code

- 1. Compute lengths $w_i = \lceil -\log p(x_i) \rceil + 1$
- 2. Compute cumulatives $c(x) = \sum_{x < x_i} p(x)$
- 3. Pick nearest binary fraction $b_i/2^{w_i} \ge c(x_i)$

Exercises

- 1. (.4, .6)
- **2.** (.9, .1)
- **3.** (.3, .4, .3)

Fano: "The Transmission of Information." Technical Report 65, Research Laboratory of Electronics, MIT (1949).

Arithmetic Coding

Cumulative Probability Below x_1, x_2, \dots, x_n

1. Initialize

$$c_0 \leftarrow 0$$
 $s_0 \leftarrow 1$

2. For x_i in $x_1, x_2, ..., x_n$:

$$c_i \leftarrow c_{i-1} + s_{i-1} \sum_{x < x_i} p(x | x_1, x_2, \dots, x_{i-1})$$

 $s_i \leftarrow s_{i-1} p(x_i | x_1, x_2, \dots, x_{i-1})$

3. Return c_n