Home ► My courses ► EEE117-2017S-Tatro ► Homework ► Homework 12 - Chapter 14

Started on	Sunday, 23 April 2017, 10:08 PM
State	Finished
Completed on	Monday, 24 April 2017, 12:42 AM
Time taken	2 hours 33 mins
Grade	100.00 out of 100.00

Correct

Mark 25.00 out of 25.00

P14.12_6ed

For this bandpass filter circuit, find the following values.

a) Find ω_0 .

b) Find f₀.

$$f_0 = \sqrt{\frac{159.155}{\text{kHz (kilo Hz)}}}$$

c) Find Q.

d) Find ω_{c1} .

$$\omega_{c1} = 935.55$$
 \checkmark krad/sec

e) Find ω_{c2} .

$$\omega_{c2} = 1068.88$$
 krad/sec

f) Find β (Beta).

$$\beta = 133.33$$
 krad/sec

- a) $\omega_0 = 1,000 \text{ krad/sec}$
- a) $f_0 = 159.1549 \text{ kHz}$
- c) Q = 7.50
- d) $\omega_{c1} = 935.5531 \text{ krad/sec}$
- e) ω_{c2} = 1,068.8864 krad/sec
- f) β = 133.3333 krad/sec

Correct

Correct

Mark 25.00 out of 25.00

P14.13_6ed

Given:
$$H(s) = \frac{\frac{R_0}{L}s}{s^2 + \left(\frac{R_0 + R_{in}}{L}\right)s + \frac{1}{LC}}$$

Where $R_0^{}=50~k\Omega$ (kilo Ohm) and $R_{in}^{}=12.5~k\Omega$ (kilo Ohm)

a) Find f_0 .

b) Find Q.

c) Find f_{c1}.

$$f_{c1} = 239.409$$
 \checkmark kHz (kilo Hz)

d) Find f_{c2}.

e) Find β (Beta).

$$\beta = (R + R_i)/L = 31.88$$
 \checkmark kHz (kilo Hz)

a)
$$f_0 = 254.8519 \text{ kHz}$$

c)
$$f_{c1} = 239.4089 \text{ kHz}$$

d)
$$f_{c2} = 271.2909 \text{ kHz}$$

e)
$$\beta = 31.8820 \text{ kHz}$$

Correct

Correct

Mark 25.00 out of 25.00

P14.35_9ed

Given:
$$H(s) = \frac{s^2 + \omega_0^2}{s^2 + \beta s + \omega_0^2}$$

For this bandreject filter:

a) Calculate ω_0 .

b) Calculate f₀.

$$f_0 = 159.15$$
 \checkmark kHz (kilo Hz)

c) Find Q.

d) Find ω_{c1} .

$$\omega_{c1} = \boxed{967.22}$$
 krad/sec (kilo rad/sec)

e) Find ω_{c2} .

$$\omega_{c2} = \boxed{1030}$$
 krad/sec (kilo rad/sec)

f) Find β (Beta).

$$\beta = 10.61$$
 \checkmark kHz (kilo Hz)

a)
$$\omega_0 = 1,000 \text{ krad/sec}$$

a)
$$f_0 = 159.1549 \text{ kHz}$$

c)
$$\omega_{c1} = 967.2221 \text{ krad/sec}$$

d)
$$\omega_{c2}$$
 = 1,033.8887 krad/sec

e)
$$\beta = 10.6103 \text{ kHz}$$

Correct

Correct

Mark 25.00 out of 25.00

P14.27_6ed

Given:
$$H(s) = \frac{s^2 + \omega_0^2}{s^2 + \beta s + \omega_0^2}$$

For this bandreject filter:

a) Calculate ω_0 .

b) Calculate f_0 .

c) Find Q.

d) Find ω_{c1} .

$$\omega_{c1} = \boxed{7753}$$
 krad/sec (kilo rad/sec)

e) Find ω_{c2} .

$$\omega_{c2} = \boxed{8253}$$
 krad/sec (kilo rad/sec)

f) Find β (Beta).

$$\beta = \boxed{79.5775}$$
 \checkmark kHz (kilo Hz)

a)
$$\omega_0 = 8,000 \text{ krad/sec}$$

a)
$$f_0 = 1,273.2395 \text{ kHz}$$

c)
$$\omega_{c1} = 7,753.9053 \text{ krad/sec}$$

d)
$$\omega_{c2} = 8,253.9053 \text{ krad/sec}$$

e)
$$\beta = 79.5775 \text{ kHz}$$

Correct