§2.1: Matrix Operations

We have several ways to combine functions to make new functions:

- Addition: if f, g have the same domains and codomains, then we can set $(f+g)\mathbf{x} = f(\mathbf{x}) + g(\mathbf{x})$,
- Composition: if the codomain of f is the domain of g, then we can set $(g \circ f)\mathbf{x} = g(f(\mathbf{x}))$,
- Inverse (§2.2): if f is one-to-one and onto, then we can set $f^{-1}(\mathbf{y})$ to be the unique solution to $f(\mathbf{x}) = \mathbf{y}$.

It turns out that the sum, composition and inverse of linear transformations are also linear (exercise: prove it!), and we can ask how the standard matrix of the new function is related to the standard matrices of the old functions.

Notation:

The (i, j)-entry of a matrix A is the entry in row i, column j, and is written a_{ij} or $(A)_{ij}$.

The diagonal entries of A are the entries a_{11}, a_{22}, \ldots

A square matrix has the same number of rows as columns. The associated linear transformation has the same domain and codomain.

A diagonal matrix is a square matrix whose nondiagonal entries are 0.

The identity matrix I_n is the $n \times n$ matrix whose diagonal entries are 1 and whose nondiagonal entries are 0. It is the standard matrix for the identity transformation $T: \mathbb{R}^n \to \mathbb{R}^n$ given by $T(\mathbf{x}) = \mathbf{x}$.

e.g.
$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ a_{41} & a_{42} & a_{43} \end{bmatrix}$$

e.g.
$$\begin{bmatrix} 2 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

e.g.
$$I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Addition:

If A, B are the standard matrices for some linear transformations $S, T : \mathbb{R}^n \to \mathbb{R}^m$, then what is A + B, the standard matrix of S + T?

Proceed column by column:

First column of the standard matrix of S+T

$$= (S+T)(\mathbf{e_1})$$

$$= S(\mathbf{e_1}) + T(\mathbf{e_1})$$

= first column of A + first column of B.

i.e.
$$(i, 1)$$
-entry of $A + B = a_{i1} + b_{i1}$.

The same is true of all the other columns, so $(A+B)_{ij}=a_{ij}+b_{ij}$.

Example:
$$A = \begin{bmatrix} 4 & 0 & 5 \\ -1 & 3 & 2 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 1 & 1 \\ 3 & 5 & 7 \end{bmatrix}, \quad A + B = \begin{bmatrix} 5 & 1 & 6 \\ 2 & 8 & 9 \end{bmatrix}.$$

Scalar multiplication:

If A is the standard matrix for a linear transformation $S: \mathbb{R}^n \to \mathbb{R}^m$, and c is a scalar, then $(cS)\mathbf{x} = c(S\mathbf{x})$ is a linear transformation. What is its standard matrix cA?

Proceed column by column:

First column of the standard matrix of cS

- $= (cS)(\mathbf{e_1})$
- $=c(Se_1)$
- = first column of A multiplied by c.
- i.e. (i, 1)-entry of $cA = ca_{i1}$.

The same is true of all the other columns, so $(cA)_{ij} = ca_{ij}$.

Example:
$$A = \begin{bmatrix} 4 & 0 & 5 \\ -1 & 3 & 2 \end{bmatrix}, \quad c = -3, \quad cA = \begin{bmatrix} -12 & 0 & -15 \\ 3 & -9 & -6 \end{bmatrix}.$$

Addition and scalar multiplication satisfy some familiar rules of arithmetic:

Let A, B, and C be matrices of the same size, and let r and s be scalars. Then

a.
$$A + B = B + A$$

$$d. r(A+B) = rA + rB$$

a.
$$A + B = B + A$$
 d. $r(A + B) = rA + rB$
b. $(A + B) + C = A + (B + C)$ e. $(r + s)A = rA + sA$

e.
$$(r+s)A = rA + sA$$

c.
$$A + 0 = A$$

$$f. r(sA) = (rs)A$$

0 denotes the zero matrix:

$$0 = \begin{bmatrix} 0 & \cdots & 0 & \cdots & 0 \\ \vdots & & & \vdots \\ 0 & \cdots & 0 & \cdots & 0 \\ \vdots & & \vdots & & \vdots \\ 0 & \cdots & 0 & \cdots & 0 \end{bmatrix}$$

Composition:

If A is the standard matrix for a linear transformation $S: \mathbb{R}^n \to \mathbb{R}^m$ and B is the standard matrix for a linear transformation $T: \mathbb{R}^p \to \mathbb{R}^n$ then the composition $S \circ T$ (T first, then S) is linear. What is its standard matrix AB?

A is a $m \times n$ matrix, B is a $n \times p$ matrix,

AB is a $m \times p$ matrix - so the (i, j)-entry of AB cannot simply be $a_{ij}b_{ij}$.

Composition:

Proceed column by column:

First column of the standard matrix of $S \circ T$

- $= (S \circ T)(\mathbf{e_1})$
- $=S(T(\mathbf{e_1}))$
- $= S(\mathbf{b_1})$ (writing \mathbf{b}_j for column j of B)
- $= A\mathbf{b_1}$, and similarly for the other columns.

So
$$AB = A \begin{bmatrix} | & | & | \\ \mathbf{b}_1 & \dots & \mathbf{b}_p \\ | & | & | \end{bmatrix} = \begin{bmatrix} | & | & | \\ A\mathbf{b}_1 & \dots & A\mathbf{b}_p \\ | & | & | \end{bmatrix}.$$

The jth column of AB is a linear combination of the columns of A using weights from the jth column of B.

Another view is the row-column method: the (i, j)-entry of AB is $a_{i1}b_{1j} + a_{i2}b_{2j} + \cdots + a_{in}b_{nj}$.

$$AB = A \begin{bmatrix} | & | & | \\ \mathbf{b}_1 & \dots & \mathbf{b}_p \\ | & | & | \end{bmatrix} = \begin{bmatrix} | & | & | \\ A\mathbf{b}_1 & \dots & A\mathbf{b}_p \\ | & | & | \end{bmatrix}.$$

The jth column of AB is a linear combination of the columns of A using weights from the jth column of B.

EXAMPLE: Compute
$$AB$$
 where $A = \begin{bmatrix} 4 & -2 \\ 3 & -5 \\ 0 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 2 & -3 \\ 6 & -7 \end{bmatrix}$.

Some familiar rules of arithmetic hold for matrix multiplication...

Let A be $m \times n$ and let B and C have sizes for which the indicated sums and products are defined (different sizes for each statement).

a.
$$A(BC) = (AB)C$$
 (associative law of multiplication)

b.
$$A(B+C) = AB + AC$$
 (left - distributive law)

c.
$$(B+C)A = BA + CA$$
 (right-distributive law)

d.
$$r(AB) = (rA)B = A(rB)$$

for any scalar r

e.
$$I_m A = A = AI_n$$
 (identity for matrix multiplication)

... but not all of them:

- Usually, $AB \neq BA$ (because order matters for function composition: $S \circ T \neq T \circ S$);
- It is possible for AB=0 even if $A\neq 0$ and $B\neq 0$.

A fun application of matrix multiplication:

Consider rotations counterclockwise about the origin.

Rotation through $(\theta + \varphi) = (\text{rotation through } \theta) \circ (\text{rotation through } \varphi)$.

$$\begin{bmatrix} \cos(\theta + \varphi) & -\sin(\theta + \varphi) \\ \sin(\theta + \varphi) & \cos(\theta + \varphi) \end{bmatrix} = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} \cos\varphi & -\sin\varphi \\ \sin\varphi & \cos\varphi \end{bmatrix}$$

$$= \begin{bmatrix} \cos\theta\cos\varphi - \sin\theta\sin\varphi & -\cos\theta\sin\varphi - \sin\theta\cos\varphi \\ \sin\theta\cos\varphi + \cos\theta\sin\varphi & -\sin\theta\sin\varphi + \cos\theta\cos\varphi \end{bmatrix}$$

So, equating the entries in the first column:

$$\cos(\theta + \varphi) = \cos\theta\cos\varphi - \sin\theta\sin\varphi$$
$$\sin(\theta + \varphi) = \cos\theta\sin\varphi + \sin\theta\cos\varphi$$

Powers:

For a square matrix A, the kth power of A is $A^k = \underbrace{A \dots A}_k$.

If A is the standard matrix for a linear transformation T, then A^k is the standard matrix for T^k , the function that "applies T k times".

Examples:

$$\begin{bmatrix} 1 & 2 \\ 3 & 0 \end{bmatrix}^3 = \begin{bmatrix} 1 & 2 \\ 3 & 0 \end{bmatrix} \left(\begin{bmatrix} 1 & 2 \\ 3 & 0 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 0 \end{bmatrix} \right) = \begin{bmatrix} 1 & 2 \\ 3 & 0 \end{bmatrix} \begin{bmatrix} 7 & 2 \\ 3 & 6 \end{bmatrix} = \begin{bmatrix} 13 & 14 \\ 21 & 6 \end{bmatrix}.$$

$$\begin{bmatrix} 3 & 0 \\ 0 & -2 \end{bmatrix}^3 = \begin{bmatrix} 3 & 0 \\ 0 & -2 \end{bmatrix} \begin{pmatrix} \begin{bmatrix} 3 & 0 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} 3 & 0 \\ 0 & -2 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 3 & 0 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} 9 & 0 \\ 0 & 4 \end{bmatrix} = \begin{bmatrix} 27 & 0 \\ 0 & -8 \end{bmatrix} = \begin{bmatrix} 3^3 & 0 \\ 0 & (-2)^3 \end{bmatrix}.$$

Exercise: show that $\begin{bmatrix} a_{11} & 0 \\ 0 & a_{22} \end{bmatrix}^{\kappa} = \begin{bmatrix} a_{11}^{k} & 0 \\ 0 & a_{22}^{k} \end{bmatrix}$, and similarly for larger diagonal matrices.

We can consider polynomials involving square matrices:

Example: Let
$$p(x)=x^3-2x^2+x$$
 (2) and $A=\begin{bmatrix}1&2\\3&0\end{bmatrix}$, $D=\begin{bmatrix}3&0\\0&-2\end{bmatrix}$ as on the

previous page. Then use the identity matrix instead of constants

$$p(A) = A^{3} - 2A^{2} + A - 2I_{2} = \begin{bmatrix} 13 & 14 \\ 21 & 6 \end{bmatrix} - \begin{bmatrix} 14 & 4 \\ 6 & 12 \end{bmatrix} + \begin{bmatrix} 1 & 2 \\ 3 & 0 \end{bmatrix} - \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} -2 & 12 \\ 18 & -8 \end{bmatrix}.$$

$$p(D) = D^{3} - 2D^{2} + D - 2I_{2} = \begin{bmatrix} 27 & 0 \\ 0 & -8 \end{bmatrix} - \begin{bmatrix} 18 & 0 \\ 0 & 8 \end{bmatrix} + \begin{bmatrix} 3 & 0 \\ 0 & -2 \end{bmatrix} - \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} 10 & 0 \\ 0 & -20 \end{bmatrix} = \begin{bmatrix} p(3) & 0 \\ 0 & p(2) \end{bmatrix}.$$

For a polynomial involving a single matrix, we can factorise and expand as usual:

Example:
$$x^3 - 2x^2 + x - 2 = (x^2 + 1)(x - 2)$$
, and

$$(A^{2} + I_{2})(A - 2I_{2}) = \begin{bmatrix} 8 & 2 \\ 3 & 7 \end{bmatrix} \begin{bmatrix} -1 & 2 \\ 3 & -2 \end{bmatrix} = \begin{bmatrix} -2 & 12 \\ 18 & -8 \end{bmatrix}.$$

But be careful with the order when there are two or more matrices:

Example:
$$x^2 - y^2 = (x + y)(x - y)$$
, but $(A + D)(A - D) = A^2 - AD + DA - D^2 \neq A^2 + D^2$. HKBU Math 2207 Linear Algebra

Transpose:

The transpose of A is the matrix A^T whose (i, j)-entry is a_{ji} .
i.e. we obtain A^T by "flipping A through the main diagonal".

Example:
$$A = \begin{bmatrix} 4 & 0 & 5 \\ -1 & 3 & 2 \end{bmatrix}, \quad A^T = \begin{bmatrix} 4 & -1 \\ 0 & 3 \\ 5 & 2 \end{bmatrix}.$$

We will be interested in square matrices A such that $A = A^T$ (symmetric matrix, self-adjoint linear transformation, $\S 7.1$), or $A = -A^T$ (skew-symmetric matrix), or $A^{-1} = A^T$ (orthogonal matrix, or isometric linear transformation, $\S 6.2$).

Properties of the transpose:

Let A and B denote matrices whose sizes are appropriate for the following sums and products (different sizes for each statement).

- a. $(A^T)^T = A$ (I.e., the transpose of A^T is A)
- b. $(A + B)^T = A^T + B^T$
- c. For any scalar r, $(rA)^T = rA^T$
- d. $(AB)^T = B^T A^T$ (I.e. the transpose of a product of matrices equals the product of their transposes in reverse order.)

Proof:
$$(i, j)$$
-entry of $(AB)^T = (j, i)$ -entry of AB

$$= a_{j1}b_{1i} + a_{j2}b_{2i} \cdots + a_{jn}b_{ni}$$

$$= (A^T)_{1j}(B^T)_{i1} + (A^T)_{2j}(B^T)_{i2} \cdots + (A^T)_{nj}(B^T)_{in}$$

$$= (i, j)$$
-entry of B^TA^T .

§2.2: The Inverse of a Matrix

Remember from calculus that the inverse of a function $f:D\to C$ is the function $f^{-1}:C\to D$ such that $f^{-1}\circ f=$ identity map on D and $f\circ f^{-1}=$ identity map on C.

Equivalently, $f^{-1}(y)$ is the unique solution to f(x) = y. So f^{-1} exists if and only if f is one-to-one and onto. Then we say f is invertible.

Let T be a linear transformation whose standard matrix is A. From last week:

- ullet T is one-to-one if and only if $\operatorname{rref}(A)$ has a pivot in every column.
- T is onto if and only if rref(A) has a pivot in every row.

So if T is invertible, then A must be a square matrix.

Warning: not all square matrices come from invertible linear transformations,

e.g.
$$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$
.

Remember from calculus that the inverse of a function $f:D\to C$ is the function $f^{-1}:C\to D$ such that $f^{-1}\circ f=$ identity map on D and $f\circ f^{-1}=$ identity map on C.

Definition: A $n \times n$ matrix A is *invertible* if there is a $n \times n$ matrix C satisfying $CA = AC = I_n$.

Fact: A matrix C with this property is unique: if $BA = AC = I_n$, then $BAC = BI_n = B$ and $BAC = I_nC = C$ so B = C.

The matrix C is called the inverse of A, and is written A^{-1} . So

$$A^{-1}A = AA^{-1} = I_n.$$

A matrix that is not invertible is sometimes called singular.

Remember from calculus that the inverse of a function $f:D\to C$ is the function $f^{-1}:C\to D$ such that $f^{-1}\circ f=$ identity map on D and $f\circ f^{-1}=$ identity map on C.

Equivalently, $f^{-1}(y)$ is the unique solution to f(x) = y.

Theorem 5: Solving linear systems with the inverse: If A is an invertible $n \times n$ matrix, then, for each \mathbf{b} in \mathbb{R}^n , the unique solution to $A\mathbf{x} = \mathbf{b}$ is $\mathbf{x} = A^{-1}\mathbf{b}$.

Proof: For any $\mathbf b$ in $\mathbb R^n$, we have $A(A^{-1}\mathbf b) = \mathbf b$, so $\mathbf x = A^{-1}\mathbf b$ is a solution. And, if $\mathbf u$ is any solution, then $\mathbf u = A^{-1}(A\mathbf u) = A^{-1}\mathbf b$, so $A^{-1}\mathbf b$ is the unique solution.

In particular, if A is an invertible $n \times n$ matrix, then rref(A) = ?

Properties of the inverse:

Suppose *A* and *B* are invertible. Then the following results hold:

- a. A^{-1} is invertible and $(A^{-1})^{-1} = A$ (i.e. A is the inverse of A^{-1}).
- b. AB is invertible and $(AB)^{-1} = B^{-1}A^{-1}$
- c. A^T is invertible and $(A^T)^{-1} = (A^{-1})^T$

Inverse of a 2×2 matrix:

Fact: Let
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
.

- i) if $ad bc \neq 0$, then A is invertible and $A^{-1} = \frac{1}{ad bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$,
- ii) if ad bc = 0, then A is not invertible.

Proof of i):

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{pmatrix} \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} \end{pmatrix} = \frac{1}{ad - bc} \begin{bmatrix} ad - bc & -ab + ba \\ cd - dc & -cb + da \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$$

$$\left(\frac{1}{ad-bc}\begin{bmatrix} d & -b \\ -c & a \end{bmatrix}\right)\begin{bmatrix} a & b \\ c & d \end{bmatrix} = \frac{1}{ad-bc}\begin{bmatrix} da-bc & db-bd \\ -ca+ac & -cb+ad \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$$

Proof of ii): next week.

Inverse of a 2×2 matrix:

Example: Let $A = \begin{bmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{bmatrix}$, the standard matrix of rotation about the origin through an angle ϕ counterclockwise.

 $\cos \varphi \cos \varphi - (-\sin \varphi) \sin \varphi = \cos^2 \varphi + \sin^2 \varphi = 1$ so A is invertible, and

$$A^{-1} = \frac{1}{1} \begin{bmatrix} \cos \phi & \sin \phi \\ -\sin \phi & \cos \phi \end{bmatrix} = \begin{bmatrix} \cos(-\phi) & -\sin(-\phi) \\ \sin(-\phi) & \cos(-\phi) \end{bmatrix}, \text{ the standard matrix of rotation about the origin through an angle ϕ clockwise.}$$

Example: Let $B=\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$, the standard matrix of projection to the x_1 -axis.

 $1 \cdot 0 - 0 \cdot 0 = 0$ so B is not invertible.

Exercise: choose a matrix C that is the standard matrix of a reflection, and check that C is invertible and $C^{-1}=C$.

Inverse of a $n \times n$ matrix:

If A is the standard matrix of an invertible linear transformation T, then A^{-1} is the standard matrix of T^{-1} . So

$$A^{-1} = \begin{bmatrix} | & | & | & | \\ T^{-1}(\mathbf{e}_1) & \dots & T^{-1}(\mathbf{e}_n) & | \\ | & | & | & | \end{bmatrix}.$$

 $T^{-1}(\mathbf{e}_i)$ is the unique solution to the equation $T(\mathbf{x}) = \mathbf{e_i}$, or equivalently $A\mathbf{x} = \mathbf{e_i}$. So if we row-reduce the augmented matrix $[A|\mathbf{e_i}]$, we should get $[I_n|T^{-1}(\mathbf{e}_i)]$. (Remember $\mathrm{rref}(A) = I_n$.)

We carry out this row-reduction for all $\mathbf{e_i}$ at the same time:

$$[A|I_n] = \begin{bmatrix} A & \mathbf{e}_1 & \dots & \mathbf{e}_n \\ \mathbf{e}_1 & \dots & \mathbf{e}_n \end{bmatrix} \xrightarrow{\text{row reduction}} \begin{bmatrix} I_n & \mathbf{e}_1 & \dots & T^{-1}(\mathbf{e}_1) & \dots & T^{-1}(\mathbf{e}_n) \\ \mathbf{e}_1 & \dots & \mathbf{e}_n \end{bmatrix} = [I_n|A^{-1}].$$

If A is an invertible matrix, then

$$[A|I_n] \xrightarrow{\mathsf{row} \ \mathsf{reduction}} [I_n|A^{-1}].$$

EXAMPLE: Find the inverse of $\begin{bmatrix} 1 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & 0 & 4 \end{bmatrix}$.

$$\left[\begin{array}{ccc|cccc}
1 & 0 & 1 & 1 & 0 & 0 \\
2 & 1 & 3 & 0 & 1 & 0 \\
1 & 0 & 4 & 0 & 0 & 1
\end{array}\right]$$

$$\left[\begin{array}{ccc|ccc|c}
1 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & 1 & -2 & 1 & 0 \\
0 & 0 & 3 & -1 & 0 & 1
\end{array}\right]$$

$$\left[
\begin{array}{c|ccc|c}
1 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & 1 & -2 & 1 & 0 \\
0 & 0 & 1 & -1/3 & 0 & 1/3
\end{array}
\right]$$

$$\begin{bmatrix}
1 & 0 & 0 & 4/3 & 0 & -1/3 \\
0 & 1 & 0 & -5/3 & 1 & -1/3 \\
0 & 0 & 1 & -1/3 & 0 & 1/3
\end{bmatrix}$$

We showed that, if A is invertible, then $[A|I_n]$ row-reduces to $[I_n|A^{-1}]$. In other words, if we already knew that A was invertible, then we can find its inverse by row-reducing $[A|I_n]$.

It would be useful if we could apply this without first knowing that A is invertible.

Indeed, we can:

Fact: If $[A|I_n]$ row-reduces to $[I_n|C]$, then A is invertible and $C=A^{-1}$.

Proof: (different from textbook, not too important)

If $[A|I_n]$ row-reduces to $[I_n|C]$, then c_i is the unique solution to $A\mathbf{x}=\mathbf{e}_i$, so $AC\mathbf{e}_i = A\mathbf{c}_i = \mathbf{e}_i$ for all i, so $AC = I_n$.

Also, by switching the left and right sides, and reading the process backwards, $[C|I_n]$ row-reduces to $[I_n|A]$. So \mathbf{a}_i is the unique solution to $C\mathbf{x}=\mathbf{e}_i$, so $CA\mathbf{e}_i = C\mathbf{a}_i = \mathbf{e}_i$ for all i, so $CA = I_n$.

In particular: an $n \times n$ matrix A is invertible if and only if $rref(A) = I_n$. Also equivalent: rref(A) has a pivot in every row and column.

For a square matrix, having a pivot in each row is the same as having a pivot in

§2.3: Characterisations of Invertible Matrices

For a square $n \times n$ matrix A, the following are equivalent:

- A is invertible.
- $\operatorname{rref}(A) = I_n$.
- rref(A) has a pivot in every row.
- rref(A) has a pivot in every column.

Theorem 8 (The Invertible Matrix Theorem)

Let A be a square $n \times n$ matrix. The the following statements are equivalent (i.e., for a given A, they are either all true or all false).

- a. A is an invertible matrix.
- b. A is row equivalent to I_n .
- c. A has n pivot positions.
- d. The equation Ax = 0 has only the trivial solution.
- e. The columns of A form a linearly independent set.
- f. The linear transformation $\mathbf{x} \rightarrow A\mathbf{x}$ is one-to-one.
- g. The equation Ax = b has at least one solution for each b in \mathbb{R}^n .
- h. The columns of A span \mathbb{R}^n .
- i. The linear transformation $\mathbf{x} \to A\mathbf{x}$ maps \mathbf{R}^n onto \mathbf{R}^n .
- j. There is an $n \times n$ matrix C such that $CA = I_n$.
- k. There is an $n \times n$ matrix D such that $AD = I_n$.
- I. A^T is an invertible matrix.

follows from ex. 1a from Monday

ex. 1b from Monday

Important consequences:

- A set of n vectors in \mathbb{R}^n span \mathbb{R}^n if and only if the set is linearly independent $(h \Leftrightarrow e)$.
- If A is a $n \times n$ matrix and $A\mathbf{x} = \mathbf{b}$ has a unique solution for some \mathbf{b} , then $A\mathbf{x} = \mathbf{c}$ has a unique solution for all \mathbf{c} in \mathbb{R}^n ($\sim d \Longrightarrow \sim g$).
- If A is a $n \times n$ matrix and $A\mathbf{x} = \mathbf{0}$ has a non-trivial solution, then there is a \mathbf{b} in \mathbb{R}^n for which $A\mathbf{x} = \mathbf{b}$ has no solution (not $\mathbf{d} \implies$ not \mathbf{g}).
- A linear transformation $T: \mathbb{R}^n \to \mathbb{R}^n$ is one-to-one if and only if it is onto (f \Leftrightarrow i).

Other applications:

Example: Is the matrix
$$\begin{bmatrix} 1 & -1 & 4 \\ 2 & 0 & 8 \\ 3 & 8 & 12 \end{bmatrix}$$
 invertible?

Answer: No: the third column is 4 times the first column, so the columns are not linearly independent. So the matrix is not invertible (not $e \implies$ not a).

a. A is invertible \Leftrightarrow I. A^T is invertible. (Proof: Check that $(A^T)^{-1} = (A^{-1})^T$.)

This means that the statements in the Invertible Matrix Theorem are equivalent to the corresponding statements with "row" instead of "column", for example:

- The columns of an $n \times n$ matrix are linearly independent if and only if its rows span \mathbb{R}^n (e \Leftrightarrow h^T). (This is in fact also true for rectangular matrices.)
- If A is a square matrix and $A\mathbf{x} = \mathbf{b}$ has a unique solution for some \mathbf{b} , then the rows of A are linearly independent ($\sim d \implies e^T$).

Advanced application (important for probability):

Let A be a square matrix. If the entries in each column of A sum to 1, then there is a nonzero vector \mathbf{v} such that $A\mathbf{v} = \mathbf{v}$.

Hint:
$$(A-I)^T \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix} = \mathbf{0}.$$