Задача А. Города и дороги

 Имя входного файла:
 cities.in

 Имя выходного файла:
 cities.out

 Ограничение по времени:
 1 секунда

 Ограничение по памяти:
 64 мегабайта

Формат входного файла

Во входном файле записано число N ($0 \le N \le 100$). В следующих N строках записано по N чисел, каждое из которых является единичкой или ноликом. Причем, если в позиции (i,j) квадратной матрицы стоит единичка, то i-й и j-й города соединены дорогами, а если нолик, то не соединены.

Формат выходного файла

В выходной файл выведите одно число — количество дорог в этой стране.

Примеры

cities.in	cities.out
CIUICD.III	C101CD.040
5	3
0 1 0 0 0	
1 0 1 1 0	
0 1 0 0 0	
0 1 0 0 0	
0 0 0 0 0	

Задача В. Светофоры

 Имя входного файла:
 lights.in

 Имя выходного файла:
 lights.out

 Ограничение по времени:
 1 секунда

 Ограничение по памяти:
 64 мегабайта

В подземелье M тоннелей и N перекрестков, каждый тоннель соединяет какие-то два перекрестка. Мышиный король решил поставить по светофору в каждом тоннеле перед каждым перекрестком. Напишите программу, которая посчитает, сколько светофоров должно быть установлено на каждом из перекрестков. Перекрестки пронумерованы числами от 1 до N.

Формат входного файла

Во входном файле записано два числа N и M (0 $< N \leqslant 100$, 0 $\leqslant M \leqslant \frac{N(N-1)}{2}$). В следующих M строках записаны по два числа i и j (1 $\leqslant i,j \leqslant N$), которые означают, что перекрестки i и j соединены тоннелем.

Формат выходного файла

В выходной файл вывести N чисел: k-е число означает количество светофоров на k-м перекрестке.

Примеры

lights.in	lights.out
7 10	3 3 2 2 5 2 3
5 1	
3 2	
7 1	
5 2	
7 4	
6 5	
6 4	
7 5	
2 1	
5 3	

Задача С. Компоненты связности

 Имя входного файла:
 matrix.in

 Имя выходного файла:
 matrix.out

 Ограничение по времени:
 1 секунда

 Ограничение по памяти:
 64 мегабайта

Дан неориентированный невзвешенный граф. Необходимо посчитать количество его компонент связности.

Формат входного файла

В первой строке входного файла содержится одно натуральное число N ($N\leqslant 100$) — количество вершин в графе. Далее в N строках по N чисел — матрица смежности графа: в i-й строке на j-м месте стоит 1, если вершины i и j соединены ребром, и 0, если ребра между ними нет. На главной диагонали матрицы стоят нули. Матрица симметрична относительно главной диагонали.

Формат выходного файла

Вывести одно целое число — искомое количество компонент связности графа.

Примеры

• •	
matrix.in	matrix.out
6	3
0 1 1 0 0 0	
1 0 1 0 0 0	
1 1 0 0 0 0	
0 0 0 0 1 0	
0 0 0 1 0 0	
0 0 0 0 0 0	

Задача D. Компоненты связности - 2

 Имя входного файла:
 matrix2.in

 Имя выходного файла:
 matrix2.out

 Ограничение по времени:
 2 секунды

 Ограничение по памяти:
 64 мегабайта

Дан неориентированный невзвешенный граф. Необходимо посчитать количество его компонент связности и вывести их.

Формат входного файла

Во входном файле записано два числа N и M (0 < $N \le 100\,000$), $0 \le M \le 100\,000$). В следующих M строках записаны по два числа i и j ($1 \le i, j \le N$), которые означают, что вершины i и j соединены ребром.

Формат выходного файла

В первой строчке выходного файла выведите количество компонент связности. Далее выведите сами компоненты связности в следующем формате: в первой строке количество вершин в компоненте, во второй — сами вершины в произвольном порядке.

Примеры

matrix2.in	matrix2.out
matinz.in	matiixz.out
6 4	3
3 1	3
1 2	1 2 3
5 4	2
2 3	4 5
	1
	6

Задача Е. Списки смежности

 Имя входного файла:
 lists.in

 Имя выходного файла:
 lists.out

 Ограничение по времени:
 2 секунды

 Ограничение по памяти:
 64 мегабайта

Ориентированный граф задан списком ребер. Напишите программу, переводящую список ребер в списки смежности.

Формат входного файла

В первой строке входного файла даны числа N и M (0 <N,М \le 100 000) - число вершин и ребер в графе. Далее идут M строк по два числа в каждой - список ребер исходного графа.

Формат выходного файла

Выходной файл должен содержать списки смежности вершин графа в порядке возрастания их номеров. Для каждой вершины v графа выведите две строки: в первой строке число смежных с v вершин, во второй - сами вершины в любом порядке.

Примеры

lists.in	lists.out
3 3	1
1 2	2
2 3	1
3 1	3
	1
	1

Задача F. Лесопосадки

 Имя входного файла:
 tree.in

 Имя выходного файла:
 tree.out

 Ограничение по времени:
 1 секунда

 Ограничение по памяти:
 64 мегабайта

Дан неориентированный невзвешенный граф. Необходимо определить, является ли он деревом.

Формат входного файла

В первой строке входного файла содержится одно натуральное число N ($N\leqslant 100$) — количество вершин в графе. Далее в N строках по N чисел — матрица смежности графа: в i-ой строке на j-ом месте стоит 1, если вершины i и j соединены ребром, и 0, если ребра между ними нет. На главной диагонали матрицы стоят нули. Матрица симметрична относительно главной диагонали.

Формат выходного файла

Вывести «YES», если граф является деревом, «NO» иначе.

Примеры

tree.in	tree.out
6	NO
0 1 1 0 0 0	
1 0 1 0 0 0	
1 1 0 0 0 0	
0 0 0 0 1 0	
0 0 0 1 0 0	
00000	
3	YES
0 1 0	
1 0 1	
0 1 0	