Chapter X: Dirac Fermions in Condensed Matter

A Concise Introduction for Harry

May 2, 2025

1 Introduction: Dirac Physics in Solids

The Dirac equation, fundamental to relativistic quantum mechanics, describes spin-1/2 particles and predicts the energy-momentum relation:

$$E^{2} = (|\mathbf{p}|c)^{2} + (m_{0}c^{2})^{2}. \tag{1}$$

Remarkably, its mathematical structure also governs the behavior of electron quasiparticles in certain solids, known as **Dirac materials**. In these systems, the speed of light c is replaced by a Fermi velocity $v \ll c$, and the rest mass m_0 by an effective mass m. These quasiparticles often possess a pseudospin degree of freedom alongside their momentum. This chapter introduces the Hamiltonians describing these quasiparticles and explores their key properties relevant to your project. We set $\hbar = 1$.

2 Dirac Hamiltonians in Low Dimensions

Dirac Hamiltonians are characterized by being linear in momentum. They act on multi-component spinors.

2.1 One Dimension (1D)

A typical 1D Dirac Hamiltonian is:

$$\mathcal{H}_{1D} = v\hat{p}_x \sigma_x + m\sigma_z. \tag{2}$$

Here, $\hat{p}_x = -i\partial/\partial x$, and $\sigma_{x,z}$ are Pauli matrices acting on a 2-component spinor. In momentum space $(\hat{p}_x \to p)$, the Hamiltonian becomes $\mathcal{H}_{1D}(p) = \begin{pmatrix} m & vp \\ vp & -m \end{pmatrix}$. Its eigenvalues yield the dispersion relation:

$$E_{\pm}(p) = \pm \sqrt{m^2 + (vp)^2}.$$
 (3)

This shows two energy bands separated by a gap 2|m| at p=0. If m=0, the gap closes, forming a **Dirac point**. (*Project: Find eigenstates and plot dispersion*).

2.2 Two Dimensions (2D)

In 2D, relevant for graphene or topological insulator surfaces, a common form is:

$$\mathcal{H}_{2D} = v(\hat{p}_x \sigma_x + \hat{p}_y \sigma_y) + m\sigma_z. \tag{4}$$

In momentum space $(\hat{\mathbf{p}} \to \mathbf{p} = (p_x, p_y))$, the Hamiltonian matrix is $\mathcal{H}_{2D}(\mathbf{p}) = \begin{pmatrix} m & v(p_x - ip_y) \\ v(p_x + ip_y) & -m \end{pmatrix}$. The eigenvalues give a similar dispersion:

$$E_{\pm}(\mathbf{p}) = \pm \sqrt{m^2 + v^2 |\mathbf{p}|^2}.\tag{5}$$

Again, a gap 2|m| exists at $\mathbf{p} = 0$ unless m = 0, which leads to **Dirac cones**. (*Project: Find eigenstates and plot dispersion*).

2.3 Three Dimensions (3D)

In 3D, the Hamiltonian typically involves 4×4 matrices (α_i, β) satisfying the Clifford algebra:

$$\mathcal{H}_{3D} = v \sum_{i=x,y,z} \hat{p}_i \alpha_i + m\beta. \tag{6}$$

This yields the dispersion $E_{\pm}(\mathbf{p}) = \pm \sqrt{m^2 + v^2 |\mathbf{p}|^2}$. (Project: Clarify the specific 3D Hamiltonian form given and find its eigenstates/values).

3 Momentum Space Geometry: Berry Phase Concepts

Eigenstates $|\psi(\mathbf{p})\rangle$ contain geometric information revealed as \mathbf{p} varies. The **Berry connection** measures the infinitesimal phase shift:

$$\mathcal{A}_i(\mathbf{p}) = i \left\langle \psi(\mathbf{p}) \middle| \frac{\partial}{\partial p_i} \middle| \psi(\mathbf{p}) \right\rangle. \tag{7}$$

It acts like a vector potential in momentum space. Its curl gives the **Berry curvature**. In 2D:

$$\Omega(\mathbf{p}) = \frac{\partial \mathcal{A}_y}{\partial p_x} - \frac{\partial \mathcal{A}_x}{\partial p_y}.$$
 (8)

 $\Omega(\mathbf{p})$ acts like a momentum-space magnetic field. Its integral over the 2D Brillouin zone, for a gapped band, gives a topological invariant, the integer **Chern number** C:

$$C = \frac{1}{2\pi} \int d^2 p \,\Omega(\mathbf{p}). \tag{9}$$

A non-zero Chern number signals non-trivial topology. (Project: Calculate A_i and Ω for \mathcal{H}_{2D}).

4 Bulk-Boundary Correspondence

A profound principle connects the bulk topology (like C) to the existence of protected boundary states.

- 1D: A domain wall where the mass m(x) changes sign in \mathcal{H}_{1D} binds a zero-energy state (Jackiw-Rebbi mechanism), potentially carrying fractional fermion number. (*Project: Yufei's task*).
- 2D: A non-zero Chern number C implies |C| gapless, chiral **edge states** propagating along the boundary. These are robust against disorder and underpin the Quantum Hall Effect (QHE). (*Project: Yufei's task*).

5 Landau Levels for 2D Dirac Fermions

Applying a perpendicular magnetic field $\mathbf{B} = B\hat{\mathbf{z}}$ to the 2D system (4) leads to quantization into **Landau Levels (LLs)**. We replace $\hat{\mathbf{p}}$ with the canonical momentum $\hat{\mathbf{\Pi}} = \hat{\mathbf{p}} - q\mathbf{A}$, where q is the charge (e.g., q = -e for electrons) and $\mathbf{B} = \nabla \times \mathbf{A}$. The components satisfy $[\hat{\Pi}_x, \hat{\Pi}_y] = iqB$.

Following your professor's notes (Section A.3), ladder operators b, b^{\dagger} are defined based on $\hat{\Pi}_{\pm} = \hat{\Pi}_x \pm i \hat{\Pi}_y$, satisfying $[b, b^{\dagger}] = 1$. The definitions depend on the sign of qB. Let $M = mv_0^2$ (using v_0 for velocity as in notes) be the mass term and $\Omega_c = \sqrt{2|qB|}v_0$. The notes provide the Hamiltonian in terms of these operators.

Case 1: qB < 0 (e.g., electrons, B > 0)

$$\mathcal{H} = \begin{pmatrix} M & -\Omega_c b \\ -\Omega_c b^{\dagger} & -M \end{pmatrix}. \tag{10}$$

Case 2: qB > 0 (e.g., electrons, B < 0)

$$\mathcal{H} = \begin{pmatrix} M & -\Omega_c b^{\dagger} \\ -\Omega_c b & -M \end{pmatrix}. \tag{11}$$

Note: These specific forms might differ slightly from standard textbook derivations; we proceed assuming these are correct for the intended system.

The resulting energy spectrum is indexed by $n \in \mathbb{Z}$:

$$E_n = \operatorname{sgn}(n)\sqrt{M^2 + \Omega_c^2|n|} \quad \text{for } n \neq 0,$$
(12)

and a unique zeroth level:

$$E_0 = \operatorname{sgn}(qB)M. \tag{13}$$

This spectrum features $\pm E$ symmetry and a characteristic $\sqrt{|n|B}$ dependence. The n=0 level's energy depends crucially on the signs of qB and M.

Each level n has a degeneracy $N_{deg} = |qB|A/(2\pi) = BA/\Phi_0$, where $\Phi_0 = 2\pi/|q|$ is the flux quantum (with $\hbar = 1$). The eigenstates $|n,k\rangle_D$ (given in the notes) involve specific combinations of the standard oscillator states $||n|\rangle$ and $||n|-1\rangle$. The n=0 eigenstate is particularly simple: it's fully polarized in the pseudospin basis, aligned with σ_z if qB>0 ($E_0=M$) and anti-aligned if qB<0 ($E_0=-M$).

The notes also provide the average particle density at zero chemical potential (half-filling), obtained by summing over negative energy states:

$$\bar{n}_0 = -\operatorname{sgn}(qBm)\frac{1}{2}\frac{|qB|}{2\pi} = -\operatorname{sgn}(qBm)\frac{1}{2}\frac{B}{\Phi_0}.$$
 (14)

The factor of 1/2 and the sign dependence arise from the unique nature of the n=0 LL relative to the Fermi level. (*Project: Solve for the spectrum (confirming* (12), (13)), calculate degeneracy, discuss spectrum vs M, calculate \bar{n}_0 and $d\bar{n}_0/dB$).

6 Outlook

The concepts covered – Dirac Hamiltonians, Berry curvature, bulk-boundary correspondence, and Landau levels – are essential tools for understanding modern condensed matter phenomena like the QHE in graphene, topological insulators, Chern insulators, and Weyl semimetals. This project provides practical experience with these foundational calculations.