Portfolio Performance Attribution Analysis

In this example, we show how simple and powerful it is to use Matlab (especailly table operation) to perform Performance Attribution analysis.

Single Period Brinson Model

<u>Brinson model:</u> value added return can be segmented into the impact of assigning the asset weight of the portfolio to various economic sectors and the impact of selecting securities within those sectors.

$$\begin{split} R_{\text{ValueAdded}} &= \sum_{i=1}^{N_s} R_{\text{Pi}} W_{\text{Pi}} - \sum_{i=1}^{N_s} R_{\text{Bi}} W_{\text{Bi}} \\ &= \sum_{i=1}^{N_s} R_{\text{Bi}} (W_{\text{Pi}} - W_{\text{Bi}}) \qquad \text{Pure sector allocation, portfolio managers' responsibility} \\ &+ \sum_{i=1}^{N_s} (R_{\text{Pi}} - R_{\text{Bi}}) \, W_{\text{Bi}} \qquad \qquad \text{Within-sector selection, security analysts' responsibility} \\ &+ \sum_{i=1}^{N_s} (R_{\text{Pi}} - R_{\text{Bi}}) (W_{\text{Pi}} - W_{\text{Bi}}) \qquad \qquad \text{Allocation/selection interaction, joint effect} \end{split}$$

where

 N_s is the total number of sectors

 $R_{\rm Pi}$ is the return of sector i in the portfolio

 $W_{\rm Pi}$ is the allocated weight for sector i in the portfolio

 $R_{\rm Bi}$ is the return of sector i in the benchmark

 $W_{\rm Bi}$ is the allocated weight for sector i in the benchmark

 R_B is the overall benchmark return.

 $R_{\rm Pi}$, $W_{\rm Pi}$, $R_{\rm Bi}$, $W_{\rm Bi}$ are computed by aggregating all asset weights and returns in the given portfolio and benchmark as follows:

$$W_{\mathrm{Pi}} = \sum_{j} w_{\mathrm{pj}}, \ R_{\mathrm{Pi}} = \frac{\sum_{j} r_{\mathrm{Pj}} w_{\mathrm{Pj}}}{\sum_{j} w_{\mathrm{pj}}}, \ W_{\mathrm{Bi}} = \sum_{j} w_{\mathrm{Bj}}, \ R_{\mathrm{Bi}} = \frac{\sum_{j} r_{\mathrm{Bj}} w_{\mathrm{Bj}}}{\sum_{j} w_{\mathrm{Bj}}}$$

where

 $r_{\rm Pj}$, $w_{\rm Pj}$ are the return and weight of asset j that belongs to sector i in the portfolio

 $r_{\rm Bi}$, $w_{\rm Bi}$ are the return and weight of asset j that belongs to sector i in the benchmark.

Factor-based Performance Attribution

Factor models decompose asset returns into a systematic component that is explained by factors and a residual component that is not. One big advantage of this approach is that it allows one to define their own attribution model by easily incorporating multiple variables (factors).

$$r_i = \sum_k X_{ik} f_k + u_i$$

where X_{ik} is the exposure of stock i to factor k (or factor loadings), f_k is the return for factor k, u_i is the residual return of the stock. It is assumed that the stock exposures are known at the start of the evaluation period, and the factor returns are estimated by cross-sectional regression at the end of the evaluation period. Active return can be attributed by aggregating asset returns to the factor level.

$$R_{\rm ValueAdded} = \sum_k X_k^A f_k + \sum_i w_i^A u_i \ ,$$

$$X_k^A = \sum_i w_i^A X_{ik} = \sum_i (w_{Pi} - w_{Bi}) X_{ik}$$

Where w_i^A is the active weight of asset i, X_k^A is the active exposure to factor k for all assets in the portfolio.

Load data

The dataset is simulated and used for demonstration purposes in this example.

```
load('demo_data.mat');
portData(1:7, :)
```

ans = 7×5 table

	AssetTicker	AssetWgt	AssetRetn	Sector	Security
1	A	0.0100	-0.0031	Health Care	'Agilent Te
2	ALGN	0.0100	0.0911	Health Care	'Align Tech
3	AON	0.0100	-0.0667	Financials	'Aon plc'
4	APC	0.0100	-0.4817	Energy	'Anadarko P
5	AXP	0.0100	-0.1115	Financials	'American E
6	BK	0.0100	-0.0476	Financials	'The Bank o
7	BSX	0.0100	0.0313	Health Care	'Boston Sci

benchmarkData(1:7, :)

ans = 7×5 table

	AssetTicker	AssetWgt	AssetRetn	Sector	Security
1	A	0.0022	-0.0031	Health Care	'Agilent Te
2	AAP	0.0022	0.0348	Consumer Di	'Advance Au

	AssetTicker	AssetWgt	AssetRetn	Sector	Security
3	AAPL	0.0022	-0.1821	Information	'Apple Inc.'
4	ABBV	0.0022	-0.0841	Health Care	'AbbVie Inc.'
5	ABC	0.0022	-0.1001	Health Care	'Amerisourc
6	ABT	0.0022	-0.0445	Health Care	'Abbott Lab
7	ACN	0.0022	0.1065	Information	'Accenture

Some analysis and visualization

Use the above data which is on the asset level, and group them to the sector level, and conduct the performance analysis.

unique(portData.Sector)

```
ans = 11×1 categorical array
    Communication Services
    Consumer Discretionary
    Consumer Staples
    Energy
    Financials
    Health Care
    Industrials
    Information Technology
    Materials
    Real Estate
    Utilities
```

format compact summary(portData)

```
Variables:
   AssetTicker: 70×1 categorical
       Properties:
           Description: Original column heading: 'Ticker symbol'
       Values:
                        1
           ALGN
                       1
           AON
                        1
           APC
                        1
           AXP
                        1
           BK
                        1
           BSX
                        1
           CA
                        1
           CBOE
                       1
           CI
                       1
           CLX
                       1
           CMA
                       1
           COF
                       1
           COST
                       1
           CVS
                       1
           DIS
           EMR
                       1
           EQT
                       1
           FL
                       1
           FOXA
```

```
GD
                 1
      GM
                 1
      HAS
                1
      HCP
                1
      IDXX
                1
      IPG
                1
      IR
                1
      JCI
      K
               1
      KLAC
      LEN
               1
      LNT
               1
               1
      LRCX
               1
      LUV
               1
      LYB
               1
      Μ
                1
      MA
               1
      MDT
                1
      MMC
      NEE
                1
      NFLX
      NI
                1
      NOV
                1
      NWS
                1
      PGR
                1
      PKI
                1
      PNW
                1
      PRGO
                1
      PX
                1
      RJF
      ROST
      SBAC
                1
      SEE
                1
      SJM
                1
      SLG
                1
      SPG
                1
      STT
                1
               1
      SWK
                1
      Т
      TDG
                1
      TMO
                1
      TRIP
      TRV
                 1
                1
      TSC0
      UAA
                1
      VAR
                1
                1
      VTR
               1
      XLNX
      XRX
                1
      XYL
AssetWgt: 70×1 double
  Values:
               0.01
      Min
      Median
               0.01
      Max
              0.157
AssetRetn: 70×1 double
   Values:
              -0.4817
      Min
      Median -0.0032875
             0.4429
      Max
Sector: 70×1 categorical
   Properties:
      Description: Original column heading: 'GICS Sector'
   Values:
      Communication Services
```

```
Consumer Discretionary
Consumer Staples
                           4
Energy
                           3
Financials
                          11
Health Care
                          11
Industrials
                           8
Information Technology
                           6
                           3
Materials
Real Estate
Utilities
```

Security: 70×1 cell array of character vectors

summary(benchmarkData)

APTV

1

Variables: AssetTicker: 460×1 categorical Properties: Description: Original column heading: 'Ticker symbol' Values: Α 1 AAP 1 AAPL 1 ABBV 1 ABC 1 ABT 1 ACN 1 1 ADBE ADI ADM 1 ADP 1 ADS 1 1 ADSK 1 AEE 1 AEP AES 1 AET 1 AFL 1 AGN AIG AIV AIZ 1 AJG 1 AKAM 1 ALB 1 ALGN 1 ALK 1 ALL 1 ALXN 1 1 AMAT AME AMG AMGN 1 AMP 1 1 AMT 1 AMZN ANSS 1 1 ANTM 1 AON AOS 1 APA APC APD 1 APH 1

ARE ATVI AVB	1 1 1
AVGO AVY AWK	1 1 1
AXP AZO BA	1 1 1
BAC BAX BBT	1 1 1
BBY BDX BEN	1 1 1
BHGE BIIB BK	1 1 1
BKNG BLK BLL	1 1 1
BMY BSX BWA	1 1 1
BXP C CA	1 1 1
CAG CAH CAT	1 1 1
CB CBOE CBS	1 1 1
CCI CCL CDNS	1 1 1
CELG CERN CF CHD	1 1 1
CHRW CHTR	1 1 1
CINF CL CLX	1 1 1
CMA CMCSA CME	1 1 1
CMG CMI CMS	1 1 1
CNC CNP COF	1 1 1
COG COL COO	1 1 1
COP COST COTY CPB	1 1 1
CRM CSCO CTAS	1 1 1

CTL	1
CTSH CTXS	1 1
CVS CVX	1 1
CX0	1
D DAL	1 1
DE	1
DFS DG	1 1
DGX	1
DHI DHR	1 1
DIS	1
DISCA DISCK	1 1
DISH	1
DLR DLTR	1
DOV	1
DRE DRI	1 1
DTE	1
DUK DVA	1 1
DVN	1
DWDP EA	1
EBAY	1
ECL ED	1 1
EFX	1
EIX EL	1
EMN	1
EMR EOG	1 1
EQIX	1
EQR EQT	1 1
ES	1
ESRX ESS	1 1
ETFC	1
ETN ETR	1 1
EW	1
EXC EXPD	1
EXPE	1
EXR F	1 1
FAST	1
FB FBHS	1 1
FCX	1
FDX FE	1
FFIV	1
FIS FISV	1 1
FITB	1
FL FLIR	1 1
	•

FLR FLS	1
FMC	1
FOX FOXA	1
FRT	1
FTI GD	1
GE	1
GILD GIS	1 1
GLW	1
GM GOOGL	1
GPC	1
GPN GPS	1
GRMN	1 1
GS GT	1
GWW HAL	1 1
HAS	1
HBAN HBI	1 1
HCA	1
HCP HD	1
HES	1
HIG HII	1 1
HOG	1
HOLX HON	1
HP	1
HPQ HRB	1 1
HRL HRS	1 1
HSIC	1
HST HSY	1
HUM	1
IBM ICE	1 1
IDXX	1
IFF ILMN	1
INCY	1
INTC INTU	1 1
IP	1
IPG IQV	1 1
IR IRM	1 1
ISRG	1
IT ITW	1 1
IVZ	1
JBHT JCI	1 1
JEC	1
JNJ JNPR	1

JPM JWN K KEY KIM KLAC	1 1 1 1 1
KMB KMI KMX KO KORS KR	1 1 1 1 1
KSS KSU L	1 1 1
LB LEG LEN LH	1 1 1
LH LKQ LLL LLY	1 1 1
LMT LNC LNT	1 1 1
LOW LRCX LUV LYB	1 1 1
M MA MAA	1 1 1
MAC MAR MAS MAT	1 1 1
MCD MCHP MCK	1 1 1
MCO MDLZ MDT MET	1 1 1
MGM MHK MKC MLM	1 1 1
MMC MMM MNST	1 1 1
MO MOS MPC MRK	1 1 1
MRO MS MSFT MSI	1 1 1
MTB MTD MU	1 1 1
MYL NBL NDAQ NEE	1 1 1

NEM NFLX NFX NI	1 1 1
NKE NLSN NOC NOV	1 1 1 1
NRG NSC NTAP NTRS	1 1 1 1
NUE NVDA NWL	1 1 1
NWS NWSA O OKE	1 1 1
OMC ORCL ORLY OXY	1 1 1
PAYX PBCT PCAR PCG	1 1 1
PEG PFE PG PGR	1 1 1
PH PHM PKG PKI	1 1 1
PLD PM PNC PNR	1 1 1
PNW PPG PPL PRGO	1 1 1
PRU PSA PSX PVH	1 1 1
PWR PX PXD QCOM	1 1 1
RCL RE REG REGN	1 1 1
RF RHI RHT RJF	1 1 1
RL RMD ROK ROP	1 1 1
ROST RSG	1

RTN SBAC SBUX SCG SCHW SEE SHW SJM SLB	1 1 1 1 1 1 1 1
SLG SNA SNPS SO SPG SPGI SRCL SRE STI STT	1 1 1 1 1 1 1 1 1
STX STZ SWK SWKS SYK SYMC SYY T	1 1 1 1 1 1 1 1
TDG TEL TGT TIF TJX TMK TMO TPR TRIP	1 1 1 1 1 1 1 1
TROW TRV TSCO TSN TSS TXN TXT UAA UAL	1 1 1 1 1 1 1 1
UDR UHS ULTA UNH UNM UNP UPS URI USB UTX	1 1 1 1 1 1 1 1
V VAR VFC VIAB VLO VMC VNO VRSK VRSN	1 1 1 1 1 1 1 1

```
VRTX
                     1
       VTR
                     1
       VZ
                     1
       WAT
                     1
       WDC
                     1
       WEC
                     1
       WELL
                     1
       WFC
       WHR
       WM
       WMT
                     1
       WU
                     1
       WY
                     1
       WYNN
                     1
       XEC
                     1
       XLNX
                     1
       MOX
                     1
       XRAY
       XRX
       XYL
       YUM
                     1
       ZBH
                     1
       ZION
                     1
       ZTS
AssetWgt: 460×1 double
   Values:
               0.0021739
       Min
       Median 0.0021739
       Max 0.0021739
AssetRetn: 460×1 double
   Values:
                -0.71056
       Min
       Median -0.02248
                 0.66925
       Max
Sector: 460×1 categorical
   Properties:
       Description: Original column heading: 'GICS Sector'
   Values:
       Communication Services
                                   23
                                   62
       Consumer Discretionary
       Consumer Staples
                                   28
       Energy
                                   29
       Financials
       Health Care
                                   60
       Industrials
                                   63
       Information Technology
                                   56
                                   23
       Materials
       Real Estate
                                   31
                                   27
       Utilities
Security: 460×1 cell array of character vectors
```

Very easy to query from the table, e.g. find me the assets with Sector in 'Engery', or sort by 'AssetRetn':

```
rows = portData.Sector=='Energy';
portData(rows, :)
```

ans = 3×5 table

	AssetTicker	AssetWgt	AssetRetn	Sector	Security
1	APC	0.0100	-0.4817	Energy	'Anadarko P
2	EQT	0.0100	-0.4188	Energy	'EQT Corpor

	AssetTicker	AssetWgt	AssetRetn	Sector	Security
3	NOV	0.0100	-0.3882	Energy	'National O

sortrows(portData, 'Sector')

ans = 70×5 table

a113 -	/ UND CUDIC				
	AssetTicker	AssetWgt	AssetRetn	Sector	Security
1	DIS	0.0100	-0.0536	Communicati	'The Walt D
2	FOXA	0.0100	-0.2121	Communicati	'Twenty-Fir
3	IPG	0.0100	0.1049	Communicati	'Interpubli
4	NFLX	0.0100	0.4429	Communicati	'Netflix Inc.'
5	NWS	0.0100	-0.1313	Communicati	'News Corp
6	Т	0.0449	-0.0035	Communicati	'AT&T Inc.'
7	TRIP	0.0100	0.0668	Communicati	'TripAdvisor'
8	FL	0.0100	0.0744	Consumer Di	'Foot Locke
9	GM	0.0100	-0.0393	Consumer Di	'General Mo
10	HAS	0.0100	-0.0539	Consumer Di	'Hasbro Inc.'
11	LEN	0.0100	0.0543	Consumer Di	'Lennar Corp.'
12	M	0.0100	-0.4642	Consumer Di	'Macy's Inc.'
13	ROST	0.0100	0.0626	Consumer Di	'Ross Stores'
14	TSCO	0.0100	-0.0210	Consumer Di	'Tractor Su
15	UAA	0.0100	0.0454	Consumer Di	'Under Armo
16	CLX	0.1281	0.1908	Consumer St	'The Clorox
17	COST	0.0100	0.1081	Consumer St	'Costco Who
18	K	0.1570	0.1269	Consumer St	'Kellogg Co.'
19	SJM	0.0100	0.0420	Consumer St	'JM Smucker'
20	APC	0.0100	-0.4817	Energy	'Anadarko P
21	EQT	0.0100	-0.4188	Energy	'EQT Corpor
22	NOV	0.0100	-0.3882	Energy	'National O
23	AON	0.0100	-0.0667	Financials	'Aon plc'
24	AXP	0.0100	-0.1115	Financials	'American E
25	ВК	0.0100	-0.0476	Financials	'The Bank o
26	CBOE	0.0100	0.1687	Financials	'Cboe Globa
27	CMA	0.0100	-0.1332	Financials	'Comerica I
28	COF	0.0100	-0.1225	Financials	'Capital On
29	MMC	0.0100	-0.0280	Financials	'Marsh & Mc

	AssetTicker	AssetWgt	AssetRetn	Sector	Security
30	PGR	0.0100	0.1717	Financials	'Progressiv
31	RJF	0.0100	0.0061	Financials	'Raymond Ja
32	STT	0.0100	-0.1572	Financials	'State Stre
33	TRV	0.0100	0.1046	Financials	'The Travel
34	А	0.0100	-0.0031	Health Care	'Agilent Te
35	ALGN	0.0100	0.0911	Health Care	'Align Tech
36	BSX	0.0100	0.0313	Health Care	'Boston Sci
37	CI	0.0100	0.1547	Health Care	'CIGNA Corp.'
38	CVS	0.0100	-0.0239	Health Care	'CVS Health'
39	IDXX	0.0100	0.1174	Health Care	'IDEXX Labo
40	MDT	0.0100	0.0134	Health Care	'Medtronic
41	PKI	0.0100	0.0290	Health Care	'PerkinElmer'
42	PRGO	0.0100	-0.2301	Health Care	'Perrigo'
43	TMO	0.0100	0.1101	Health Care	'Thermo Fis
44	VAR	0.0100	-0.0859	Health Care	'Varian Med
45	EMR	0.0100	-0.1960	Industrials	'Emerson El
46	GD	0.0100	-0.0230	Industrials	'General Dy
47	IR	0.0100	-0.1734	Industrials	'Ingersoll
48	JCI	0.0100	-0.2001	Industrials	'Johnson Co
49	LUV	0.0100	0.0294	Industrials	'Southwest
50	SWK	0.0100	0.0615	Industrials	'Stanley Bl
51	TDG	0.0100	0.0371	Industrials	'TransDigm
52	XYL	0.0100	-0.0108	Industrials	'Xylem Inc.'
53	CA	0.0100	-0.1019	Information	'CA, Inc.'
54	KLAC	0.0100	0.1504	Information	'KLA-Tencor
55	LRCX	0.0100	0.0329	Information	'Lam Research'
56	MA	0.0100	0.0678	Information	'Mastercard
57	XLNX	0.0100	0.0613	Information	'Xilinx'
58	XRX	0.0100	-0.0969	Information	'Xerox'
59	LYB	0.0100	-0.1634	Materials	'LyondellBa
60	PX	0.0100	-0.1625	Materials	'Praxair Inc.'
61	SEE	0.0100	-0.0595	Materials	'Sealed Air'
62	HCP	0.0100	-0.0616	Real Estate	'HCP Inc.'
63	SBAC	0.0100	-0.0968	Real Estate	'SBA Commun

	AssetTicker	AssetWgt	AssetRetn	Sector	Security
64	SLG	0.0100	-0.0863	Real Estate	'SL Green R
65	SPG	0.0100	0.0604	Real Estate	'Simon Prop
66	VTR	0.0100	-0.0632	Real Estate	'Ventas Inc'
67	LNT	0.0100	0.0094	Utilities	'Alliant En
68	NEE	0.0100	0.0110	Utilities	'NextEra En
69	NI	0.0100	0.1248	Utilities	'NiSource I
70	PNW	0.0100	0.0557	Utilities	'Pinnacle W

Brinson attribution analysis

Let's analyze the performance by sector: need to group assets by sector for both the given portfolio and benchmark, and compute the sector weghts and returns. This can be easily done using *findgroups* for table operations. 'pa_brinson' function implements the single period brinson model.

results = pa_brinson(portData, benchmarkData)

results = 12×9 table

. . .

	Sector	PortRetn	BenchRetn	PortWgt	BenchWgt	PureSectorA
1	Communicati	1.9253	-1.1249	10.4938	5.0000	0.1503
2	Consumer Di	-4.2695	-2.2786	8.0000	13.4783	-0.0867
3	Consumer St	15.0331	9.2173	30.5062	6.0870	3.1936
4	Energy	-42.9559	-30.5781	3.0000	6.3043	0.8828
5	Financials	-1.9611	-3.0001	11.0000	12.6087	-0.0138
6	Health Care	1.8558	0.2137	11.0000	13.0435	-0.0833
7	Industrials	-5.9437	-5.3316	8.0000	13.6957	0.0838
8	Information	1.8943	-2.3853	6.0000	12.1739	-0.0911
9	Materials	-12.8452	-15.0496	3.0000	5.0000	0.2238
10	Real Estate	-4.9497	3.4787	5.0000	6.7391	-0.1276
11	Utilities	5.0211	-4.1217	4.0000	5.8696	0.0049
12	Summary	2.3524	-3.8610	100.0000	100.0000	4.1366

The last row shows the total portfolio return and benchmark return, also the total effects of sector allocation and stock selection.

results(end, :)

ans = 1×9 table

. .

	Sector	PortRetn	BenchRetn	PortWgt	BenchWgt	PureSectorA
1	Summary	2.3524	-3.8610	100.0000	100.0000	4.1366

We can also plot the active returns resulting from allocation/selection/interaction effects for each sector.

```
f=figure;
f.Position(3)= 3*f.Position(3);
subplot(1,3,1);
bar(results.Sector, results.PureSectorAllocation);
title('Pure Sector Allocation');
subplot(1,3,2);
bar(results.Sector, results.WithinSectorSelection);
title('Within Sector Selection');
subplot(1,3,3);
bar(results.Sector, results.AllocSelecInteraction);
title('Allocation Selection Interaction');
```


Factor-based Analysis

We can acutally think of the Brinson sector-based attribution analysis as a special case of factor-based analysis. This is done by considering the different sectors as different factors driving the active portfolio returns. Our assumption is that the factor loadings X_{ik} are known at the beginning; here in our case X_{ik} is 1, if stock i belongs to sector k. So, we need to run regression to get the factor returns.

To replicate the results from the Brinson model, we note that the factor returns are different between the portfolio and benchmark, due to the difference in the underlying strategies.

```
% formulate active weight for each asset from the given dataset.
assetTable = outerjoin(portData, benchmarkData, 'MergeKeys',true,'type', 'right', ...
    'LeftKey', 'AssetTicker', 'RightKey', 'AssetTicker', ...
    'LeftVariables', {'AssetTicker', 'AssetWgt'}, 'RightVariables', {'AssetWgt', 'AssetRetn',
assetTable = fillmissing(assetTable, 'constant', 0, 'DataVariables', {'AssetWgt_portData'});
assetTable.ActiveWgt = assetTable.AssetWgt_portData - assetTable.AssetWgt_benchmarkData;
sectors = unique(assetTable.Sector);
assetTable(1:7,:)
```

	AssetTicker	AssetWgt_po	AssetWgt_be	AssetRetn	Sector	ActiveWgt
1	A	0.0100	0.0022	-0.0031	Health Care	0.0078
2	ALGN	0.0100	0.0022	0.0911	Health Care	0.0078
3	AON	0.0100	0.0022	-0.0667	Financials	0.0078
4	APC	0.0100	0.0022	-0.4817	Energy	0.0078
5	AXP	0.0100	0.0022	-0.1115	Financials	0.0078
6	BK	0.0100	0.0022	-0.0476	Financials	0.0078
7	BSX	0.0100	0.0022	0.0313	Health Care	0.0078

<u>Sector Allocation effect:</u> we can use factor-based analysis to compute the allocation effect in the Brinson model. In this case, we would like to use weighted regression to find benchmark factor return and active exposure for each factor.

1) Formulate asset exposure to factors, should usually be predefined. We see that the entry in Xik is 1 if asset i belongs to sector k.

```
Xik_B = (benchmarkData.Sector==sectors');
Xik_B(1:5,:);
                                      0
   0
          0
             0
                        0
                           0
                               0
                                  0
                     1
   0
      1
          0
             0
                0
                    0
                        0
                           0
                               0
                                  0
                                      0
   0
             0
                    0
                        0
                           1
                                  0
                                      0
                    1
                                  0
```

2) Run weighted regression to get the benchmark factor return fk: r_i = Xik * f_k.

```
warning('off');
mdl = fitlm(Xik_B, benchmarkData.AssetRetn, 'Intercept', false, 'Weights', benchmarkData.Asset
mdl =
Linear regression model:
    y ~ x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 + x11
```

Estimated Coefficients:

	Estimate	SE	tStat	pValue
x1	-0.011249	0.034321	-0.32774	0.74326
x2	-0.022786	0.020904	-1.09	0.27629
х3	0.092173	0.031106	2.9632	0.0032068
х4	-0.30578	0.030565	-10.004	2.0962e-21
x5	-0.030001	0.021613	-1.3881	0.16579
х6	0.0021366	0.02125	0.10055	0.91995
x7	-0.053316	0.020738	-2.571	0.010462
x8	-0.023853	0.021996	-1.0844	0.27875
х9	-0.1505	0.034321	-4.3849	1.4469e-05
x10	0.034787	0.029563	1.1767	0.23993
x11	-0.041217	0.031677	-1.3011	0.19388

Number of observations: 460, Error degrees of freedom: 449

Root Mean Squared Error: 0.00767

The factor returns are the coefficents from the trained model. We can see that they exactly match the benchmark sector returns obtained from Brinson model.

```
fk_B = mdl.Coefficients.Estimate(1:end);
[fk_B*100, results.BenchRetn(1:end-1)]
```

```
ans = 11×2
-1.1249 -1.1249
-2.2786 -2.2786
9.2173 9.2173
-30.5781 -30.5781
-3.0001 -3.0001
0.2137 0.2137
-5.3316 -5.3316
-2.3853 -2.3853
-15.0496 -15.0496
3.4787 3.4787
:
```

3) Compute the factor contribution for allocation effects:

$$R_{\text{Allocation}} = \sum_{k} X_{k}^{A} f_{k}$$

```
X_act_exposure = assetTable.ActiveWgt'*(assetTable.Sector==sectors');
R_allc = X_act_exposure*fk_B;
```

We can see that R_allc matches the total 'pure sector allocation effect' from Brinson model, by comparing the values below:

```
R_allc*100
```

```
ans = 4.1366
```

```
results.PureSectorAllocation(end)
```

```
ans = 4.1366
```

<u>Within-Sector Selection effect</u>: We can use factor-based regression analysis to replicate the within-sector selection effects in Brinson model. In this case, both portfolio factor returns and benchmark factor returns are needed.

```
Xik_P = (portData.Sector==sectors');
mdl_P = fitlm(Xik_P, portData.AssetRetn, 'Intercept', false, 'Weights', portData.AssetWgt);
fk_P = mdl_P.Coefficients.Estimate;
[fk_P*100 results.PortRetn(1:end-1)]
```

```
1.8558 1.8558

-5.9437 -5.9437

1.8943 1.8943

-12.8452 -12.8452

-4.9497 -4.9497

...
```

We have already found the benchmark factor returns fk_B. It is shown that R_wss matches the within-sector selection effect in the Brinsion model.

$$R_{\text{Selection}} = \sum_{k} X_{k}^{B} \left(f_{k}^{P} - f_{k}^{B} \right)$$

```
R_wss = (benchmarkData.AssetWgt'*Xik_B)*(fk_P - fk_B);
R_wss*100
```

ans = 0.3191

```
results.WithinSectorSelection(end)
```

ans = 0.3191

In summary, We have shown how to conduct Brinson and factor-based analysis for performance attribution. We also showed that Brinson model is a special case of factor-based performance analysis, using sectors as the factors. To perform factor-based attribution analysis, we need to have predefined factor loading Xik and asset return ri, so that we can extract the factor return fk. Together with the portfolio and benchmark specifications, we can then find how the portfolio returns are actively driven by the underlying factors.

Supporting function:

```
function resultsPort = pa_brinson(portData, benchmarkData)
overallBenchRetn = benchmarkData.AssetRetn'*benchmarkData.AssetWgt*100; % a scalar
% aggregate Benchmark asset data up to sector level (group)
[G, resultsBench] = findgroups(benchmarkData(:,'Sector'));
resultsBench.SectorRetn = splitapply(@(x, y) x'*y*100/sum(y), benchmarkData.AssetRetn, benchmarkData.AssetRetn
resultsBench.SectorWgt = splitapply(@(y) sum(y)*100, benchmarkData.AssetWgt, G);
% aggregate Portfolio asset data up to sector level (group)
[G, resultsPort] = findgroups(portData(:,'Sector'));
resultsPort.SectorRetn = splitapply(@(x, y) x'*y*100/sum(y), portData.AssetRetn, portData.Asset
resultsPort.SectorWgt = splitapply(@(y) sum(y)*100, portData.AssetWgt, G);
% fill in 0 for categories not invested in Portfolio
resultsPort = outerjoin(resultsPort, resultsBench, 'key', 'Sector', 'MergeKeys', true, ...
    'RightVariables', {}, 'LeftVariables', {'Sector', 'SectorRetn', 'SectorWgt'});
resultsPort.SectorRetn(isnan(resultsPort.SectorRetn)) = 0.0;
resultsPort.SectorWgt(isnan(resultsPort.SectorWgt)) = 0.0;
% compute the three terms in value-added return
resultsPort.PureSectorAllocation = (resultsPort.SectorWgt - resultsBench.SectorWgt).*...
```

```
(resultsBench.SectorRetn - overallBenchRetn)/100;
resultsPort.WithinSectorSelection = (resultsBench.SectorWgt).*...
          (resultsPort.SectorRetn - resultsBench.SectorRetn)/100;
resultsPort.AllocSelecInteraction = (resultsPort.SectorWgt - resultsBench.SectorWgt).*...
           (resultsPort.SectorRetn - resultsBench.SectorRetn)/100;
resultsPort.Properties.VariableNames{'SectorRetn'} = 'PortRetn';
resultsPort.Properties.VariableNames{'SectorWgt'} = 'PortWgt';
resultsBench.Properties.VariableNames{'SectorRetn'} = 'BenchRetn';
resultsBench.Properties.VariableNames{'SectorWgt'} = 'BenchWgt';
resultsPort = [resultsPort(:, 1:2), resultsBench(:, 2), resultsPort(:, 3), resultsBench(:, 3),
          resultsPort(:, end-2: end)];
% adding the conclusion row: total portfolio
resultsPort.TotalValueAdded = resultsPort.PureSectorAllocation + resultsPort.WithinSectorSelectorAllocation + resultsPort.WithinSectorAllocation + resultsPort.WithinSectorAllocation + resultsPort.Withi
           resultsPort.AllocSelecInteraction;
totalPortRetn = resultsPort.PortRetn'*resultsPort.PortWgt/100;
totalBenchRetn = resultsPort.BenchRetn'*resultsPort.BenchWgt/100;
total = array2table([totalPortRetn, totalBenchRetn, sum(resultsPort{:,4:end})], ...
           'VariableNames', resultsPort.Properties.VariableNames(2:end));
totalPort = [table({'Summary'}, 'VariableNames', resultsPort.Properties.VariableNames(1)), total
resultsPort = [resultsPort; totalPort];
end
```

References:

- https://cran.r-project.org/web/packages/pa/vignettes/pa.pdf
- http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.170.7676&rep=rep1&type=pdf