are three different cases. Before we state the general result (Thm.4.4) we give some typical examples.

Examples 4.3.(a) Consider on $K = [0,\infty]$ the semiflow defined by $\phi(t,x) := x + t$ ($\infty + t = \infty$). Then we have $K_t = [t,\infty]$ and $K_\infty = \{\infty\}$. The spectrum of the corresponding semigroup $T(t) f = f \circ \phi_t$ is given by $\sigma(A) = A\sigma(A) = \{\lambda \in \mathbb{C} : \text{Re } \lambda \leq 0\}$.

(b) Consider again $K = [0, \infty]$ and define a semiflow by

$$\phi(t,x) := \left\{ \begin{array}{ccc} x-t & \text{if } x \ge t \\ & & \\ 0 & \text{if } x \le t \end{array} \right. \quad (\circ -t = \circ) .$$

Then we have $K_t = K$ for all t, hence $K_\infty = K$ and $\sigma(A) = \{\lambda \in \mathbb{C} : \text{Re } \lambda \le 0\}$, $R\sigma(A) = \{\lambda \in \mathbb{C} : \text{Re } \lambda \le 0\} \cup \{0\}$.

- (c) Consider on $K_1:=[-1,\infty)$ the equivalence relation $^\sim$ defined by " $x \sim y$ if ond only if $x,y \geq 0$ and $x-y \in \mathbb{Z}$ ". The semiflow ϕ_1 on K_1 given by $\phi_1(t,x)=x+t$ induces a semiflow ϕ on the quotient space $K:=K_{1/\sim}$. We have for $0 \leq t \leq 1$: $K \not\equiv K_t \not\equiv K_\infty$ $(K_\infty=[0,1]/_\infty\cong\Gamma)$. The spectrum of the corresponding semigroup on K is given by $\sigma(A)=2\pi i\mathbb{Z}$.
- (d) Consider on K = [-1,1] the flow ϕ given by $\phi(t,x) := \left\{ \begin{array}{ccc} -1 & \text{if } x < 0 \text{ and } t > -\frac{x+1}{x} \\ \frac{x}{1+tx} & \text{otherwise} \end{array} \right.$

Then we have $K_t = [-1, \frac{1}{1+t}]$, $K_{\infty} = [-1, 0]$ and

 $\sigma(A) = \{\lambda \in \mathbb{C} : \text{Re } \lambda \le 0\}$, $\{\lambda \in \mathbb{C} : \text{Re } \lambda < 0\} \not\subseteq A_{\sigma}(A) \cap R_{\sigma}(A)$.

Further examples related to ordinary differential equations on \mathbb{R}^n will be given after we have stated and proved the general result:

Theorem 4.4. Suppose T is a semigroup of lattice homomorphisms given by (4.1) with generator A . Considering $H := \{\lambda \in \mathbb{C} : \text{Re } \lambda < \underline{\mathbf{c}}(h,\phi)\}$, where $\underline{\mathbf{c}}(h,\phi)$ is given by (4.4), we have:

- (a) If $K_{+} \neq K_{\infty}$ for every t < ∞ , then H \subseteq A σ (A) .
- (b) If ${}^{\phi}|_{K_{\infty}}$ is not injective, then $H\subseteq R_{\sigma}(A)$.
- (c) If $K_S = K_\infty$ for some $s < \infty$ and ${}^{\phi} \mid K_\infty$ is injective, then $H_{\Pi \sigma}(A) = \emptyset$.

<u>Proof.</u> For $\epsilon>0$ we define $H_{\epsilon}=\{\lambda\in\mathbb{C}: \text{Re }\lambda<\underline{c}(h,\phi)-\epsilon\}$. Obviously it is enough to prove assertion (a),(b) and (c) respectively for $H_{2\epsilon}$, ϵ arbitrary, instead of H.