# 哈夫曼算法 的证明及应用

# 两个引理

引理1:设C是字符集, $\forall c \in C$ , f(c)为频率, $x, y \in C$ , f(x), f(y)频率最小,那么存在最优二元前缀码使得x, y码字等长,且仅在最后一位不同.

引理2 设 T 是二元前缀码所对应的二叉树, $\forall x,y \in T, x,y$ 是树叶兄弟,z 是x,y 的父亲,令 $T'=T-\{x,y\}$ ,且令z 的频率f(z)=f(x)+f(y),T'是对应于二元前缀码  $C'=(C-\{x,y\})\cup\{z\}$ 的二叉树,那么 B(T)=B(T')+f(x)+f(y).

### 算法正确性证明思路

定理 Huffman 算法对任意规模为n ( $n \ge 2$ ) 的字符集C 都得到关于C 的最优前缀码的二叉树.

归纳基础 证明:对于n=2的字符集, Huffman算法得到最优前缀码.

归纳步骤 证明:假设Huffman算法对于规模为k的字符集都得到最优前缀码,那么对于规模为k+1的字符集也得到最优前缀码。

3

### 归纳基础

n=2,字符集  $C=\{x_1, x_2\}$ ,

对任何代码的字符至少都需要1位二进制数字. Huffman算法得到的代码是 0 和 1,是最优前缀码.



# 归纳步骤

假设Huffman算法对于规模为k的字符集都得到最优前缀码.考虑规模为k+1的字符集

$$C = \{x_1, x_2, ..., x_{k+1}\},$$
  
其中  $x_1, x_2 \in C$ 是频率最小的两个字符.

$$\Leftrightarrow C' = (C - \{x_1, x_2\}) \cup \{z\}, 
f(z) = f(x_1) + f(x_2)$$

根据归纳假设,算法得到一棵关于字符集 C',频率f(z)和 $f(x_i)$  (i=3,4,...,k+1)的最优前缀码的二叉树T'.

### 归纳步骤(续)

把  $x_1, x_2$ 作为 z 的儿子附到 T'上,得到 树 T,那么 T是关于  $C=(C'-\{z\})\cup\{x_1,x_2\}$  的最优前缀码的二叉树.



### 归纳步骤(续)

如若不然,存在更优树  $T^*$ ,  $B(T^*) < B(T)$ , 且由引理1,其树叶兄弟是  $x_1$ 和  $x_2$ .

去掉  $T^*$ 中  $x_1$ 和  $x_2$ ,得到 $T^*$ '. 根据引理2

$$B(T^{*'}) = B(T^{*}) - (\underline{f(x_1) + f(x_2)})$$

$$< B(T) - (\underline{f(x_1) + f(x_2)})$$

$$= B(T')$$

与 T'是一棵关于 C'的最优前缀码的二 Q树矛盾.

#### 应用:文件归并

问题: 给定一组不同长度的排好序文件构成的集合  $S = \{f_1, \ldots, f_n\}$ ,其中  $f_i$ 表示第 i 个文件含有的项数. 使用二分归并将这些文件归并成一个有序文件.

#### 归并过程对应于二叉树:

文件为树叶.  $f_i$ 与 $f_j$ 归并的文件是它们的父结点.

# 两两顺序归并

**实例:** *S* = { 21,10,32,41,18,70 }



# 归并代价



(1) 
$$(21+10-1)+(32+41-1)+(18+70-1)+$$
  
 $(31+73-1)+(104+88-1)=483$ 

$$(2) (21+10+32+41)\times 3+(18+70)\times 2-5=483$$

代价计算公式 
$$\sum_{i \in S} d(i) f_i - (n-1)$$
 10

# 实例: Huffman树归并

输入: *S*={21,10,32,41,18,70}



代价: (10+18)×4+21×3+(70+41+32)×2-5=456

#### 小结

- 哈夫曼算法的正确性证明: 对规模归纳
- 哈夫曼算法的应用: 文件归并