POLITECHNIKA WROCŁAWSKA

Inteligencja Obliczeniowa i jej zastosowania

Ćwiczenie 1 Metody redukcji wymiarowości Analiza składowych głównych

Autorzy: Paweł Andziul 200648 Robert Chojnacki 200685 Marcin Słowiński 200638

Prowadzący: dr hab. inż. Rafał ZDUNEK

Spis treści

1	Zadanie 1			
	1.1	Opis metody		
	1.2	Algorytm		
	1.3	Realizacja		
	1.4	Wyniki		
2	Zadanie 2			
	2.1	Wczytanie obrazów twarzy		
	2.2	Wyznaczenie cech holistycznych (twarzy własnych)		
	2.3	Grupowanie metodą k-średnich		
	2.4	Klasyfikacja za pomocą klasyfikatora k-NN		
3	Zadanie 3			
	3.1	Algorytm Powera		
	3.2	Algorytm Lanczosa		
	3.3	Wyniki		
4	Pod	lsumowanie		

1 Zadanie 1

Dla danych:

```
X = [2.50.52.21.93.12.3211.51.1; 2.40.72.92.232.71.61.11.60.9];
```

- a. Zaimplementować metodę PCA w Matlabie. Do wyznaczenia par własnych macierzy kowariancji można zastosować wbudowaną funkcję eig(.) lub eigs(.).
- b. Wyznaczyć składowe główne i wektory cech.
- c. Pokazać na rysunku punkty obserwacji oraz wyznaczone wielkości.

1.1 Opis metody

Metoda PCA (ang. Principal Component Analysis) jest jedną ze statystycznych metod analizy czynnikowej, która pozwala na odnajdywanie pewnych struktur w zbiorze zmiennych losowych. Wielowymiarowe dane z reguły nie są równomiernie rozrzucone wzdłuż wszystkich kierunków układu współrzędnych, ale koncentrują się w pewnych podprzestrzeniach oryginalnej przestrzeni. Analiza składowych głównych oparta jest na wykorzystaniu pojęć ze statystyki, jakimi są m.in. korelacja i wariancja. Celem PCA jest znalezienie tych podprzestrzeni w postaci składowych głównych, tzn. kierunków przy których wartość wariancji (lub korelacji) jest zmaksymalizowana. Analiza może być oparta albo na macierzy korelacji, albo macierzy kowariancji utworzonej ze zbioru wejściowego.

Metoda PCA jest zazwyczaj używana do redukcji rozmiaru danych statystycznych, poprzez odrzucenie ostatnich czynników, tzn. takich, których wariancja jest najniższa. Oznacza to, że n-wymiarowy zbiór danych możemy ograniczyć wyznaczając n-wektorów własnych, z których wybieramy tylko k-wektorów, tak aby kn. Zrzutowanie danych na przestrzeń rozpiętą przez k-wybranych wektorów pozwala zredukować wymiarowość danych.

1.2 Algorytm

1.3 Realizacja

Rozwiazanie zadania polega kolejno na...

Listing 1: Skrypt w Matlabie

```
x = [2.5 \ 0.5 \ 2.2 \ 1.9 \ 3.1 \ 2.3 \ 2 \ 1 \ 1.5 \ 1.1; \ 2.4 \ 0.7 \ 2.9 \ 2.2 \ 3 \ 2.7 \ 1.6 \ 1.1 \ 1.6
2
       0.9];
   s = cov(x');
   [eigenvectors, eigenvalues] = eigs(s, 2);
   pcs = (x') * eigenvectors;
   figure;
6
   hold on
   plot(x(1:1,:), x(2:2,:), 'or', pcs(:,1:1), pcs(:,2:2), 'ob')
   plotv(eigenvectors(:,1), '-r');
   plotv(eigenvectors(:,2), '-b');
10
   legend('dane oryginalne','składowe główne','wektor cechy 1','wektor cechy
11
       2', 'Location', 'northwest', 'Orientation', 'vertical')
  hold off
```

Powyższy kod przedstawia zaimplementowaną metodę PCA dla zadanego zbioru danych.

W celu obliczenia par własnych macierzy kowariancji zastosowana została dwuargumentowa metoda eigs, w której pierwszym argumentem jest macierz danych, drugim ilość wektorów (wierszy macierzy).

1.4 Wyniki

Rysunek 1: Ilustracja punktów obserwacji i składowych głównych

Na wykresie można zauważyć poprawne działanie funkcji PCA. Dane rozkładają się wzdłuż oznaczonych wektorów.

2 Zadanie 2

Dla obrazów twarzy z bazy ORL (lub podobnej) wyznaczyć cechy holistyczne (twarze własne) dla różnej liczby estymowanych komponentów głównych (J=4,10,20,30). Pogrupować obrazy stosując metodę k-średnich, do obrazów oryginalnych oraz redukowanych. Badania przeprowadzić dla różnej liczby grup. Porównać dokładność i czas grupowania. Następnie dokonać klasyfikacji obrazów w obu przestrzeniach (oryginalnej i zredukowanej) za pomocą klasyfikatora k-NN. Porównać efekty klasyfikacji z efektami grupowania.

2.1 Wczytanie obrazów twarzy

Rysunek 2: Ilustracja twarzy wejściowych...

2.2 Wyznaczenie cech holistycznych (twarzy własnych)

Rysunek 3: Ilustracja ejgenfejsów...

2.3 Grupowanie metodą k-średnich

2.4 Klasyfikacja za pomocą klasyfikatora k-NN

Zgodnie z dokumentacją metody knnclassify [3] umożliwia ona klasyfikację pewnej próbki danych na podstawie danych dla których klasyfikacja jest znana.

$$Class = knnclassify(Sample, Training, Group)$$
 (1)

, parametry Training oraz Group zawierają informację o podziałe danych na grupy natomiast Sample jest zbiorem którego klasyfikację pragniemy przeprowadzić. Wynikiem jest Class będący tego samego typu co Group tzn. dziedzina klasyfikacji jest taka sama. Poniżej zamieszczono..

Listing 2: Fragment skryptu w Matlabie obejmujący klasyfikację k-NN

```
clc;
clear;
close all;
```

```
load('yalefaces.mat');
   load('FaceData_56_46.mat');
   %imagesc(yalefaces(:,:,1))
   % -- FRAGMENT Z WIKIPEDII --
10
11
   % J = 30;
12
   % [h,w,n] = size(yalefaces);
13
   % d = h*w;
14
   % % vectorize images
   % x = reshape(yalefaces,[d n]);
   % x = double(x);
   % %subtract mean
18
   % x=bsxfun(@minus, x, mean(x,2));
19
   % % calculate covariance
   % s = cov(x');
   % % obtain eigenvalue & eigenvector
   % [V,D] = eigs(s,J);
  % eigval = diag(D);
  | % % sort eigenvalues in descending order
  % eigval = eigval(end:-1:1);
  |% V = fliplr(V);
   % % show 0th through 15th principal eigenvectors
   \% eig0 = reshape(mean(x,2), [h,w]);
   % figure, subplot(6,6,1)
30
   % imagesc(eig0)
31
   % colormap gray
   % for i = 1:J
33
   % subplot(6,6,i+1)
34
   % imagesc(reshape(V(:,i),h,w))
35
   % end
36
37
38
   % -- NASZ KOD --
39
   Persons = 3;
41
   ImagesPerPerson = 10;
42
   J = 10;
43
45
   Group = [];
   M = [];
46
   for p=(1:Persons)
47
       for i=(1:ImagesPerPerson)
48
           x = FaceData(p, i).Image;
49
           [irow, icol] = size(x);
50
           x = double(x);
           temp = reshape(x', irow * icol, 1);
           M = [M \text{ temp}];
           Group = [Group p];
54
       end
56
   end
57
   %[eigenvectors, eigenvalues] = eigs(M*(M'), J);
   %V = eigenvectors;
```

```
61
62
    %subtract mean
63
   x=bsxfun(@minus, M, mean(M,2));
64
   % calculate covariance
   s = cov(x');
66
   % obtain eigenvalue & eigenvector
67
   [V,D] = eigs(s,J);
    Z = (x') * V;
69
70
71
    figure; %oryginalne
72
    nOfImages = Persons*ImagesPerPerson;
    for i=(1:nOfImages)
74
       C = M(:,i);
75
       CC = reshape(C, [46, 56]);
76
       subplot(round(sqrt(nOfImages)), round(sqrt(nOfImages)) + 1, i);
77
        imagesc(CC');
78
       title(i)
79
       colormap gray;
80
    end
81
82
    figure; %eigenfaces
83
    for i=(1:J)
       C = V(:,i);
85
       CC = reshape(C, [46, 56]);
86
        subplot(round(sqrt(J)), round(sqrt(J)) + 1, i);
87
        imagesc(CC');
       title(i)
89
        colormap gray;
90
    end
91
    id = (1:J);
93
94
    kmeans_result = kmeans(Z', Persons);
95
    groups = sortrows([id', kmeans_result], 2);
97
    known_groups = [1 2 3 2 1 2 3 2 3 1];
98
100
    confusionmat_result = confusionmat(known_groups, kmeans_result);
    figure;
    plotconfusion(known_groups, kmeans_result')
103
104
    [acc_eigen, rand_index_eigen, match_eigen] = AccMeasure(known_groups,
        kmeans_result);
    kmeans_result_original = kmeans(M', Persons);
    [acc_orig, rand_index_orig, match_orig] = AccMeasure(Group,
108
        kmeans_result_original);
109
110
    Class = knnclassify(V', M', Group);
111
    figure;
112
    plotconfusion(known_groups, Class')
```

Poniżej confusion matrix..

2	0	1		
3	1	0		
3	0	0		

Rysunek 4: Tzw. confusion matrix...

3 Zadanie 3

Wyznaczyć pary własne macierzy kowariancji za pomocą algorytmów: Powera oraz Lanczosa. Zaimplementować algorytmy i zastosować je do rozwiązania powyższych zadań. Porównać wyniki.

3.1 Algorytm Powera

Listing 3: Fragment skryptu w Matlabie

```
1
2
A=[1 1 -2;-1 2 1; 0 1 -1]
3 x=[1 1 1];
4 x=x';
6 [m,y_final]=power_method(A,x)
```

3.2 Algorytm Lanczosa

3.3 Wyniki

4 Podsumowanie

Podczas zajęć laboratoryjnych... Z przeprowadzonych badań wynika...

Literatura

- $[1] \ \mathtt{https://www.mathworks.com/help/nnet/ref/plotconfusion.html}$
- [2] https://www.mathworks.com/help/stats/confusionmat.html
- [3] https://www.mathworks.com/help/bioinfo/ref/knnclassify.html
- [4] http://www.kmg.zut.edu.pl/opt/wyklad/bezgrad/powell.html
- [5] https://en.wikipedia.org/wiki/Lanczos_algorithm