Lecture 24. MLE

Wednesday, December 6, 2017 8:52 AM

Bug in HW8 Solutions for (d) corrected $f'(x) = \frac{f(x+2a_n) - f(x)}{2a_n} + o(a_n) \quad \text{analysis}$ $f'(x) = \frac{f(x+a_n) - f(x-a_n)}{2a_n} + o(a_n^2)$

The asymptotic IN of 2-estimators framework of Lecture 23 does not work for the median 6/c y' does not always exists (sign is not differentiable everywhere)

- DF) a function f is called Lipschitz if $|f(x_1) f(x_2)| \le C \cdot ||x_1 x_2||$
- (TH) Relaxing differentiability requirements
- I $M_{\theta}(x)$ is measurable as a function of x and differentiable at θ^* , P-a.s. wit x
 - m (x) is Lipschitz wrt 0, i.e. I (i= m (x)
 - m (x) is measurable and Pm² < B
 - Pm has a 2nd order Taylor expansion at 0*
 with the 2nd derivative matrix Vp*

 Pmo and 1st derivative Pmo*

$$M\theta = P_{m_{\theta}} = \int |x-\theta| dF(x) = \int |x-\theta| dF(x)| = \int |x-\theta| dF(x)| + \int |x-\theta| dF(x)| = \int |x-\theta| dF(x)| + \int |x-\theta| dF(x)| = \int |x-\theta| dF(x)| + \int |x-\theta| dF(x)| + \int |x-\theta| dF(x)| dx + \int |x-\theta| dx +$$

LLN
$$\Rightarrow$$
 M_n(θ) \Rightarrow P ($eg \frac{f_{\theta}}{f_{\theta}}$:= M _{θ}

densen inequality

P ($eg \frac{f_{\theta}}{f_{\theta}}$ \leq log P $eg \frac{f_{\theta}}{f_{\theta}}$ = log $eg \frac{f_{\theta}}{f_{\theta}}$ of $eg \frac{f_{\theta}}{f_{\theta}}$ $eg \frac{f_{\theta}}{f_$

$$= 2 \int \sqrt{f_{\theta} \cdot f_{\theta}^{*}} - 2 = \frac{11}{\int (\sqrt{f_{\theta}})^{2} dx} + \int (\sqrt{f_{\theta}^{*}})^{2} dx$$

$$= -\int (\sqrt{f_{\theta}} - \sqrt{f_{\theta}^{*}})^{2} dx \le 0 = 2$$

$$= -\int (\sqrt{f_{\theta}} - \sqrt{f_{\theta}^{*}})^{2} dx \le 0 = 2$$

$$= -\int (\sqrt{f_{\theta}} - \sqrt{f_{\theta}^{*}})^{2} dx \le 0 = 2$$

$$= -\int (\sqrt{f_{\theta}} - \sqrt{f_{\theta}^{*}})^{2} dx \le 0 = 2$$

$$= -\int (\sqrt{f_{\theta}} - \sqrt{f_{\theta}^{*}})^{2} dx \le 0 = 2$$

$$= -\int (\sqrt{f_{\theta}} - \sqrt{f_{\theta}^{*}})^{2} dx \le 0 = 2$$

$$= -\int (\sqrt{f_{\theta}} - \sqrt{f_{\theta}^{*}})^{2} dx \le 0 = 2$$

$$= -\int (\sqrt{f_{\theta}} - \sqrt{f_{\theta}^{*}})^{2} dx \le 0 = 2$$

$$= -\int (\sqrt{f_{\theta}} - \sqrt{f_{\theta}^{*}})^{2} dx \le 0 = 2$$

$$= -\int (\sqrt{f_{\theta}} - \sqrt{f_{\theta}^{*}})^{2} dx \le 0 = 2$$

$$= -\int (\sqrt{f_{\theta}} - \sqrt{f_{\theta}^{*}})^{2} dx \le 0 = 2$$

$$= -\int (\sqrt{f_{\theta}} - \sqrt{f_{\theta}^{*}})^{2} dx \le 0 = 2$$

$$= -\int (\sqrt{f_{\theta}} - \sqrt{f_{\theta}^{*}})^{2} dx \le 0 = 2$$

$$= -\int (\sqrt{f_{\theta}} - \sqrt{f_{\theta}^{*}})^{2} dx \le 0 = 2$$

$$= -\int (\sqrt{f_{\theta}} - \sqrt{f_{\theta}^{*}})^{2} dx \le 0 = 2$$

$$= -\int (\sqrt{f_{\theta}} - \sqrt{f_{\theta}^{*}})^{2} dx \le 0 = 2$$

$$= -\int (\sqrt{f_{\theta}} - \sqrt{f_{\theta}^{*}})^{2} dx \le 0 = 2$$

$$= -\int (\sqrt{f_{\theta}} - \sqrt{f_{\theta}^{*}})^{2} dx \le 0 = 2$$

$$= -\int (\sqrt{f_{\theta}} - \sqrt{f_{\theta}^{*}})^{2} dx \le 0 = 2$$

$$= -\int (\sqrt{f_{\theta}} - \sqrt{f_{\theta}^{*}})^{2} dx \le 0 = 2$$

$$= -\int (\sqrt{f_{\theta}} - \sqrt{f_{\theta}^{*}})^{2} dx \le 0 = 2$$

$$= -\int (\sqrt{f_{\theta}} - \sqrt{f_{\theta}^{*}})^{2} dx \le 0 = 2$$

$$= -\int (\sqrt{f_{\theta}} - \sqrt{f_{\theta}^{*}})^{2} dx \le 0 = 2$$

$$= -\int (\sqrt{f_{\theta}} - \sqrt{f_{\theta}^{*}})^{2} dx \le 0 = 2$$

$$= -\int (\sqrt{f_{\theta}} - \sqrt{f_{\theta}^{*}})^{2} dx \le 0 = 2$$

$$= -\int (\sqrt{f_{\theta}} - \sqrt{f_{\theta}^{*}})^{2} dx \le 0 = 2$$

$$= -\int (\sqrt{f_{\theta}} - \sqrt{f_{\theta}^{*}})^{2} dx \le 0 = 2$$

$$= -\int (\sqrt{f_{\theta}} - \sqrt{f_{\theta}^{*}})^{2} dx \le 0 = 2$$

$$= -\int (\sqrt{f_{\theta}} - \sqrt{f_{\theta}^{*}})^{2} dx \le 0 = 2$$

$$= -\int (\sqrt{f_{\theta}} - \sqrt{f_{\theta}^{*}})^{2} dx \le 0 = 2$$

$$= -\int (\sqrt{f_{\theta}} - \sqrt{f_{\theta}^{*}})^{2} dx \le 0 = 2$$

$$= -\int (\sqrt{f_{\theta}} - \sqrt{f_{\theta}^{*}})^{2} dx \le 0 = 2$$

$$= -\int (\sqrt{f_{\theta}} - \sqrt{f_{\theta}^{*}})^{2} dx \le 0 = 2$$

$$= -\int (\sqrt{f_{\theta}} - \sqrt{f_{\theta}^{*}})^{2} dx \le 0 = 2$$

$$= -\int (\sqrt{f_{\theta}} - \sqrt{f_{\theta}^{*}})^{2} dx \le 0 = 2$$

$$= -\int (\sqrt{f_{\theta}} - \sqrt{f_{\theta}^{*}})^{2} dx \le 0 = 2$$

$$= -\int (\sqrt{f_{\theta}} - \sqrt{f_{\theta}^{*}})^{2} dx \le 0 = 2$$

$$= -\int (\sqrt{f_{\theta}} - \sqrt{f_{\theta}^{*}})^{2} dx \le 0 = 2$$

$$= -\int (\sqrt{f_{\theta}} - \sqrt{f_{\theta}^{*}})^{2} dx \le 0 = 2$$

$$= -\int (\sqrt{f_{\theta}} - \sqrt{f_{\theta}^{*}})^{2} dx \le 0 = 2$$

$$= -\int (\sqrt{f_{\theta}} - \sqrt{f_{\theta}^{*}})^{2} d$$