# EBIO 5460 Fundamentals of Data Science for Ecology & Evolution

Dr Brett Melbourne Professor, EBIO

brett.melbourne@colorado.edu

Office hours: Any time by appointment

Office: Ramaley N336 and Zoom

Pronouns: he, him, his

## Git & GitHub

- Class Github organization
- Bookmark this:
- https://github.com/EBIO5460Fall2025
- Organization, syllabus, timetable
- Slides, code, homework
- You'll also submit your work here

# Slides for today

- github.com/EBIO5460Fall2025
- Go to repositories
- Open class-materials
- 01\_1\_slides\_thu\_intro\_welcome

# Today

- What is data science?
- Introductions
- Syllabus & how we'll do the class

## What is data science?

- Workflows and algorithms to learn from data
- Learning goal
  - Confident to use a range of skills and concepts to plan for, acquire, manage, analyze, infer or predict from, and report about datasets of any size in your area of biological research
  - Become awesome quantitative scientists!

## Data science cultures



f can mean different things in different cultures

Breiman (2001) Denoho (2017)

## Data science cultures



## Model

Definition: a representation of nature

My philosophy

What analysis should I run on my data?
What package should I run my data through?

How can I best model nature?

# **Algorithm**

- Procedure for solving a problem in terms of actions to execute and order to execute them
- Code

## Algorithms in data science

- Model algorithm
- Training algorithm
- Inference (reliability) algorithm

# Modeling with data

#### Algorithm classes

|                                      | Model                                               | Training                                       | Inference                                 |                                                                                                                 |
|--------------------------------------|-----------------------------------------------------|------------------------------------------------|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| Natural process "science"            | HiFi process<br>(e.g. predator<br>-prey, C cycle)   | Frequentist:<br>Optimization<br>(e.g. max lik) | Sampling                                  | Confidence intervals Prediction intervals                                                                       |
| Data<br>generative<br>"statistics"   | Generic<br>functions<br>(e.g. linear,<br>normal)    | Bayesian:<br>Integration<br>(e.g. MCMC)        | Posterior<br>sample<br>Cross-validation - | <ul> <li>Credible intervals</li> <li>→ Posterior prediction intervals</li> <li>→ CV, AIC, BIC, LOOIC</li> </ul> |
| Algorithmic<br>"machine<br>learning" | Generic<br>algorithms<br>(map inputs<br>to outputs) | Optimization<br>Other                          | Cross-validation                          |                                                                                                                 |

## Data generating processes

- How will/did my data come to be?
- Simulating data
  - explore the biology (alternative models)
  - design studies
  - check understanding & methods
- Key to great science IMO

## Introductions

- Name (and pronouns)
- Masters or PhD (what year)?
- Advisor
- Department
- What fascinates you (your research)?
- Hopes for the course

## Algorithms and models

- Understand the broad classes
- Frequentist, Bayesian, likelihood, information theory, machine learning
- Ecol/evo, generative (generic), algorithmic
- We'll start with
  - 1) learn how to program algorithms
  - 2) consider simple models from each perspective above

# Learning format

- Flipped, often. Short video lectures.
   Sometimes short live lectures.
- Collaborative learning. Work in small groups or share in small groups.
- Piazza: collaboratively discuss the homework. Collaborative learning is not only allowed but encouraged in this class! FERPA compliant.

# Staying healthy

- If you're sick, consider joining via Zoom
- I'll record lectures
- Let's all stay well!

# Languages

- C for fundamentals of programming
- R and Python for data science

### Al tools

- Use them to help you learn to code
- Not code for you! (vibe coding)
- Examples
  - ChatGPT (OpenAI)
  - Copilot (Microsoft/OpenAI, var ChatGPT) CU
  - Gemini (Google) CU
  - Claude (Anthropic)
  - Others: open source, ...

# Grading

- GitHub portfolio
- 65% continuous Github code commits
- 35% individual assignment
  - 15% presentation in exam week
  - 20% submitted materials

## Homework this week

- Posted to GitHub
  - -e.g. "hw4tue"
- Set up GitHub
- Set up Positron IDE
- Set up C tooling
- Update R
- Intro to programming