Теория вероятностей Домашняя работа

Кулаков Никита Р3230

2022

Содержание

1	Вероятностное пространство.	2
2	Простейшие вероятностные схемы и их обобщения	4
3	Условные вероятности. Независимость событий.	7
4	Последовательности испытаний.	10
5	Случайные величины.	14
6	Математическое ожидание.	19

1 Вероятностное пространство.

Задание 1. Проверить следующие соотношения между событиями:

Пункт 1. $A \setminus B = A\overline{B}$

Решение. Пусть $\omega \in A \setminus B$. Тогда $\omega \in A$, $\omega \notin B$, $\omega \in \overline{B}$. Это означает, что $\omega \in A\overline{B}$. В обратную сторону, $\omega \in A\overline{B} \Rightarrow \omega \in A$, $\omega \in \overline{B}$, $\omega \notin B \Rightarrow \omega \in A \setminus B$.

Пункт 2. $A \setminus B = A \setminus AB = (A + B) \setminus B$.

Решение. а) Пусть $\omega \in A \setminus B \Rightarrow \omega \in A$, $\omega \notin AB$, так как $\omega \notin B \Rightarrow \omega \in A \setminus AB$. b) Пусть $\omega \in A, \omega \notin AB$. Из второго $\omega \notin$ или A или B, но поскольку $\omega \in A$, то $\omega \notin B$. А тогда получаем $\omega \in A \setminus B$, а это тоже самое, что и $\omega \in (A+B) \setminus B$, так как $(A+B) \setminus B = (A \setminus B) + (B \setminus B) = A \setminus B + \emptyset = A \setminus B$. c) Пусть $\omega \in (A+B) \setminus B$, по уже проделанному выше получаем $\omega \in A \setminus B$.

Пункт 3. $\overline{(A+B)} = \overline{A} \ \overline{B}, \ \overline{AB} = \overline{A} + \overline{B}$

Решение. a) Пусть $\omega \in \overline{A+B} \Rightarrow \omega \not\in A$, $\omega \not\in B \Leftrightarrow \omega \in \overline{A}, \omega \in \overline{B} \Rightarrow \omega \in \overline{A}$ \overline{B} . Обратное доказывается аналогично. b) Пусть $\omega \in \overline{AB} \Leftrightarrow \omega \not\in AB$. Тогда $\omega \not\in A$ или $\omega \not\in B$ или в обоих сразу. НУО считаем, что $\omega \not\in A \Rightarrow \omega \in \overline{A}$, а значит что $\omega \in \overline{A+B}$. Для остальных случаев доказывается аналогично. В обратную сторону, пусть $\omega \in \overline{A+B}$. НУО считаем, что $\omega \in \overline{A} \Rightarrow \omega \not\in A$, а тогда $\omega \not\in AB \Leftrightarrow \omega \in \overline{AB}$.

Пункт 4. $A(B \setminus C) = AB \setminus AC$

Решение. a) Пусть $\omega \in A$, $\omega \in (B \setminus C) \Leftrightarrow \omega \in A$, $\omega \in (B \setminus C)$. Из второго $\omega \in B$, $\omega \in \overline{C}$. Тогда $\omega \in AB$ и $\omega \in A\overline{C} \Rightarrow \omega \notin AC$, поскольку ω должен лежать в A и C. Получаем $\omega \in AB(A\overline{C})$, а это по первому пункту есть $\omega \in AB \setminus AC$. b) Обратно по первому пункту получаем $\omega \in AB(A\overline{C}) \Rightarrow \omega \in AB$, $\omega \notin AC$. Поскольку $\omega \in AB \Rightarrow \omega \in A$, $\omega \in B$ и $\omega \notin AC \Rightarrow \omega \notin C \Rightarrow \omega \in A$, $\omega \in B\overline{C} \Rightarrow \omega \in A$ ($B \setminus C$).

Задание 2. Установить, какие из следующих соотношений правильные:

Пункт 1. $A \setminus (B \setminus C) = (A \setminus B) + C$

Решение. С левой стороны $A \setminus (B \setminus C) = A \overline{(B\overline{C})} = A \overline{(B+C)} = A \setminus B + AC$. Неверно.

Пункт 2. $A \setminus (B \setminus C) = (A \setminus B) + AC$

Решение. Верно и доказано в пункте 1.

Пункт 3. $(A+B) \setminus C = (A \setminus C) + (B \setminus C)$

Решение. $(A+B)\setminus C \Leftrightarrow \omega \in (A+B), \omega \in \overline{C} \Leftrightarrow \omega \in A\overline{C}$ или $\omega \in B\overline{C}$, а это тоже самое что и $\omega \in (A\setminus C)+(B\setminus C)$. Верно

Пункт 4. $(A+B) \setminus C = A + (B \setminus C)$

Решение. Неверно, доказано обратное в пункте выше.

Пункт 5. $A\overline{B}C \subset A + B$

Решение. Множество, получающееся справа как минимум не меньше, чем A, а значит оно является подмножеством A+B.

Пункт 6. $(A \setminus B)(C \setminus D) = AC \setminus BD$

Решение. $(A \setminus B)(C \setminus D) = A\overline{B}C\overline{D} = (AC)(\overline{B}\overline{D}) = (AC)(\overline{B+D}) = (AC) \setminus (B+D)$. Неверно.

Ответ: неверно: 1), 4), 6); верно: 2), 3), 5)

Задание 3. Упростить следующие выражения:

Решение.

1)
$$A + AB = A$$

2)
$$(A+B)(A+\overline{B}) = A(B+\overline{B}) = A$$

3)
$$(A \setminus C) (B \setminus \overline{C}) = (A\overline{C}) (BC) = A\overline{C}BC = \emptyset$$

4)
$$(A+B)(\overline{A}+B)(A+\overline{B}) = (A+\overline{A})B(A+\overline{B}) = B(A+\overline{B}) = BA+B\overline{B} = BA$$

Ответ: 1) A, 2) A, 3) \emptyset , 4) BA

Задание 4. Пусть

$$A_n = \left\{ x : a \le x < a + \frac{1}{n} \right\}.$$
$$B_n = \left\{ x : a \le x \le b - \frac{1}{n} \right\}.$$

Для событий найти более простые выражения.

$$A = \bigcap_{n=1}^{\infty} A_n; \quad B = \bigcup_{n=1}^{\infty} B_n.$$

Решение.

- а) При $n \to \infty$ x для A_n стремится к a, поскольку он ограничен сверху выражением, которое стремится к a ($\lim_{n\to\infty} a + \frac{1}{n} = a$). Поэтому A = a, если мы рассматриваем всюду плотное множество.
- b) При $n \to \infty$ для $B_n \ x: a \le x \le b$, поскольку $\lim_{n \to \infty} b \frac{1}{n} = b$. Поэтому $B = \{x: a \le x \le b\}$.

Ответ: a) A = a, b) $B = \{x : a \le x \le b\}$

Задание 5. Какие подмножества множества Ω в примере 3 из пар.1 при n=3 соответствуют событиям:

Решение.

- 1) При первом подбрасывании выпал герб: $A = \{\Gamma PP, \Gamma P\Gamma, \Gamma \Gamma P, \Gamma \Gamma \Gamma \}$
- 2) Всего выпало ровно 2 герба: $A = \{P\Gamma\Gamma, \Gamma P\Gamma, \Gamma \Gamma P\}$
- 3) Выпало не более одного герба: $A = \{PPP, PP\Gamma, P\GammaP, \Gamma PP\}$

Otbet: 1) $\{\Gamma PP, \Gamma P\Gamma, \Gamma \Gamma P, \Gamma \Gamma \Gamma\}$, 2) $\{P\Gamma \Gamma, \Gamma P\Gamma, \Gamma \Gamma P\}$, 3) $\{PPP, PP\Gamma, P\Gamma P, \Gamma PP\}$

Задание 6. Пусть A, B, C – три произвольных события. Найти выражения для событий, состоящих в том, что из A, B, C:

Решение.

- 1) $A\overline{BC}$
- 2) $AB\overline{C}$
- 3) *ABC*
- 4) $\Omega \overline{ABC} = A + B + C$
- 5) $A\overline{BC} + \overline{A}B\overline{C} + \overline{AB}C$
- 6) \overline{ABC}

7)
$$\Omega - ABC = \overline{A} + \overline{B} + \overline{C}$$

Задание 7. Пусть в примере 3 из пар.1 n=3. Является ли алгеброй следующая система подмножеств:

Решение.

 \emptyset , Ω входят точно, так как если $\Omega \in U$, то $\emptyset = \Omega \setminus \Omega \in U$, также если $\{\Gamma\Gamma\Gamma, \Gamma\Gamma\Gamma, \Gamma\Gamma\Gamma, \Gamma\Gamma\Gamma\} \in U$, то и $\Omega \setminus \{\Gamma\Gamma\Gamma, \Gamma\Gamma\Gamma, \Gamma\Gamma\Gamma, \Gamma\Gamma\Gamma\} = \{\Gamma\Gamma\Gamma, \Gamma\Gamma\Gamma, \Gamma\Gamma\Gamma, \Gamma\Gamma\Gamma\} \in U$. Верно.

Ответ: Да.

2 Простейшие вероятностные схемы и их обобщения

Задание 1. Брошено 2 игральные кости. Предполагается, что элементарные события равновероятны, найти вероятность события, что:

Решение.

- 1) $A = \{$ на первой кости выпала $1 \} = \frac{1}{6}$
- $2) \ \overline{A} = \frac{5}{6}$
- 3) $B = \{$ выпала хотя бы одна $6\} = \frac{11}{36}$ всего возможных исходов 36, из которых удовлятворяющих условию 11 = (1,6), (2,6), (3,6), (4,6), (5,6), (6,6), (6,5), (6,4), (6,3), (6,2), (6,1).
- 4) $A\overline{B}$ на первой кости выпала 1 и не выпала 6. Результат: $\frac{1}{6} \cdot \frac{5}{6} = \frac{5}{36}$.

Ответ: 1) $\frac{1}{6}$, 2) $\frac{5}{6}$, 3) $\frac{5}{36}$

Задание 2. Очередная задача про книжные полки.

Решение. Давайте вместо того, чтобы считать все вероятности книг, а оттуда выбирать количество, нам удовлетворяющих, возьмем 2 книги, которые нам нужны и скрутим их скотчем. Теперь у нас не n книг, а n-1 книга, кроме того, мы можем взять сначала первую книгу со второй, а можем и наоборот, поэтому итоговая вероятность: $\frac{(n-1)!\cdot 2}{n!} = \frac{2}{n}$.

Ответ: $\frac{2}{n}$

Задание 3. Числа 1,2,..., п расставлены случайным образом. Предполагая, что различные расположения чисел равновероятны, найти вероятность того, что числа 1,2,3 расположены в порядке возрастания, но не обязательно рядом.

Решение. $P(\Omega) = 1$, при расставлении чисел от 1, ..., n случайным образом возможны такие конфигурации: 123, 132, 312, 321, 213, 231, где между цифрами или до, или после может что-то

стоять, а может и не стоять. Так как каждое из этих событий равновероятно, а нам подходит лишь 1 событие из 6, то искомая вероятность равна $\frac{1}{6}$.

Ответ: $\frac{1}{6}$

Задание 6. Сравнить вероятности событий:

Пункт 1. $A = \{$ при одновременном бросании четырех костей выпала хотя бы одна $1\}$.

Решение. Вероятность того, что на всех костях не выпадет $1:\frac{5}{6}\cdot\frac{5}{6}\cdot\frac{5}{6}\cdot\frac{5}{6}\cdot\frac{5}{6}$. Значит вероятность того, что хотя бы на одном выпадет: $1-\frac{5^4}{6^4}\approx 0.51774691$

Пункт 2. $B = \{\Pi$ ри 24 бросаниях двух костей выпали хотя бы 1 раз две 1 $\}$.

Решение. Аналогично тому, что выше: вероятность, что не выпадет: $\left(\frac{35}{36}\right)^{24}$, значит искомая вероятность: $1-\left(\frac{35}{36}\right)^{24}\approx 0.491403876$. Результат: вероятность 1) больше.

Ответ: первая вероятность больше.

Задание 7. В чулане n пар ботинок. Из них случайно выбирается 2r ботинок. Найти вероятность того, что среди выбранных ботинок.

Пункт а). Нет парных. Всего вероятность выбрать 2r ботинок из n пар - C_{2n}^{2r} . Количество событий, которые удовлетворяют: необходимо выбрать 2r ботинок из n, чтобы каждый из них был либо левым, либо правым (2r < n), что составляет C_n^{2r} . Кроме того, ботинок может быть либо левым, либо правые, то есть возможно для 2r ботинок 2^{2r} возможных вариантов. Таким образом, результат: $\frac{4^r \cdot C_n^{2r}}{C_n^{2r}}$.

Пункт b). Одна пара. Знаменатель остается тем же, в числителе будет $2^{2r-2} \cdot C_{n-1}^{2r-2}$ - вариантов выбрать n-1 одиночный сапог, умноженное на n - вариантов выбрать полноценную пару. Результат: $\frac{n2^{2r-2}C_{n-1}^{2r-2}}{C_{2n}^{2r}}$.

Ответ: a) $\frac{4^r \cdot C_n^{2r}}{C_{2n}^{2r}}$, b) $\frac{n2^{2r-2}C_{n-1}^{2r-2}}{C_{2n}^{2r}}$.

Задание 8. В партии изделий 90 исправных и 10 бракованных. Найти вероятность того, что среди 10 проданных изделий.

Пункт а). Ровно одно бракованное.

Решение. 10 изделий из 100 можно взять C_{100}^{10} способами. Теперь количество вариантов, которые удовлетворяют условию равно C_{10}^{1} - выбираем 1 бракованное изделие из 10, C_{90}^{9} - выбираем 9 исправных изделий из 90 всех исправных. Итого: $\frac{10 \cdot C_{90}^{9}}{C_{100}^{10}} \approx 0.40799532$.

 Π ункт b). Нет бракованных.

Решение. Рассуждаем аналогично, только в числителе теперь C_{90}^{10} - кол-во способов выбрать 10 небракованных изделий. Результат: $\frac{C_{90}^{10}}{C_{100}^{10}} \approx 0.330476211$.

Ответ: a) 0.40799532, b) 0.330476211

Задание 11. Из множества чисел по схеме выбора с возвращением найти вероятность попадания в круг радиуса n

Решение. Рассмотрим круг радиуса n, его площадь равна $\pi*n^2$. Площадь квадрата, в которой располагается этот круг равна $4*n^2$, а значит отношение площадей, которое занимает круг в квадрате, составляет $\frac{\pi*n^2}{4*n^2} = \frac{\pi}{4}$. Это и есть ответ, поскольку выбор координат не имеет приоритетов (равновероятный).

Otbet: $\frac{\pi}{4}$

Задание 13. Найти вероятность размещения частиц по ячейкам

Решение.

- а) Вероятность того, что займутся все ячейки равна $\frac{n!}{n^n}$, где в знаменателе сколько всего различных вариантов, а в числителе количество вариантов, которые нам подходят (сначала кладем частицу в какую-то из n ячеек, затем в какую-то из n-1, и так далее). Значит вероятность того, что в какой-то из ячеек не будет частицы равна $1-\frac{n!}{n^n}$.
- b) Всего количество событий также равняется n^n . Сначала разложим n-1 частицу по n ячейкам, количество вариантов это сделать n!, теперь положим в какую-то из n-1 заполненных ячеек вторую частицу, вероятность это сделать: n-1. Поскольку нам не важно, сначала мы положили і частицу в ячейку k, а потом j частицу или наоборот, j частицу сначала, а потом i, то следует разделить количество этих вариантов на 2. Кроме того, нам еще не важно, под каким номером эта частица, она не обязательно последняя, значит еще n вариантов. Тогда итоговое количество вариантов: $n! \cdot (n-1)/2$. Результат: $\frac{n! \cdot n \cdot (n-1)/2}{n^n}$.

Ответ: $\frac{n! \cdot n \cdot (n-1)/2}{n^n}$

Задание 14. Найти вероятность того, что на две карточки «Спортлото» с отмеченными номерами (4,12,38,20,41,46) и (4,12,38,20,41,49) будет получено по одному минимальному выигрышу (угадано по 3 числа)

Решение. Общее количество возможных исходов: C_{49}^6 . Случаи, которые нам удовлетворяют: из первых 5 чисел в лото было угадано ровно 3, поскольку они совпадают на обеих карточках, из первых 5 чисел в лото было угадано ровно 2, а также на каждой карточке было угадано последнее число. Рассчитаем количество исходов: $C_5^3 \cdot C_{42}^3 + C_5^2 \cdot C_{42}^2$, где первый множитель в каждом слагаемом - количество вариантов, полученных из угаданных цифр, второй - количество вариантов из неугаданных. В результате получим: $\frac{C_5^3 \cdot C_{42}^3 + C_5^2 \cdot C_{42}^2}{C_{49}^6} \approx 0.008825201$

Ответ: ≈ 0.008825201

Задание 15. На отрезок [a,b] наудачу брошена точка

Решение. Так как сама F является линейной, то ее производная есть константа. В данном случае, так как мы рассматриваем отрезок [a,b] = [0,1], то F'(x) = 1 на отрезке [a,b].

Ответ: $F'(x) = 1, x \in [a, b]$

3 Условные вероятности. Независимость событий.

Задание 1. Брошено две игральные кости. Какова вероятность того, что выпало две «3», если известно, что сумма выпавших очков делится на три?

Решение. Пусть P(A) - вероятность того, что сумма выпавших очков делится на три, P(B) - вероятность выпадения двух «3». Тогда $P(A) = \frac{12}{36}$, так как Ω состоит из 36 элементарных событий, а кол-во событий выпадения суммы, делящейся на 3: $A = \{(1,2),(1,5),(2,1),(2,4),(3,3)\,(3,6),(4,2),(4,5),(5,1),(5,4),(6,3),(6,6)\}$, а мощность данного множества равна 12. $P(B) = P(AB) = \frac{1}{36}$, а значит $P(B|A) = \frac{P(AB)}{P(A)} = \frac{1}{12}$.

Ответ: $\frac{1}{12}$.

Задание 2. Известно, что при бросании 10 игральных костей появилась по крайне мере одна «1». Какова вероятность того, что появилось две «1» или более?

Решение. По формуле условной вероятности $P(B|A) = \frac{P(AB)}{P(A)}$, где P(A) - вероятность выпадения по крайней мере одной «1», P(AB) - вероятность выпадения двух «1» или более.

$$P(A) = \sum_{i=1}^{10} C_{10}^{i}(\frac{5}{6})^{10-i}(\frac{1}{6})^{i}, \quad P(AB) = \sum_{i=2}^{10} C_{10}^{i}(\frac{5}{6})^{10-i}(\frac{1}{6})^{i}, \quad \frac{P(AB)}{P(A)} \approx 0.6147724$$

#!/usr/bin/python

```
p_a = sum([c_n_k(10, i) * (5/6)**(10 - i) * (1/6) ** i for i in range(1, 11)])

p_ab = sum([c_n_k(10, i) * (5/6)**(10 - i) * (1/6) ** i for i in range(2, 11)])

print(p_ab/p_a)
```

Ответ: ≈ 0.6147724

Задание 3. Из множества $\{1,2,\ldots,N\}$ по схеме случайного выбора без возвращения выбираются три числа. Найти условную вероятность того, что третье число попадет в интервал, образованный первыми двумя, если известно, что первое число меньше второго.

Решение. Есть несколько вариантов решения: напрямую посчитать вероятность по формуле условной вероятности или воспользоваться здравым смыслом и сразу же назвать ответ.

Если воспользоваться вторым вариантом, то так как по условию первое число должно быть меньше второго, то возможны следующие конфигурации: $\{(i_1,i_2,i_3),(i_1,i_3,i_2),(i_3,i_1,i_2)\}$, где $i_k,\ k\in 1,2,3$ - число, которое мы выбрали первым, вторым, третьим (между числами могут лежать или не лежать другие числа). Нам подходит только вторая конфигурация из 3, а значит вероятность $\frac{1}{3}$.

Если считать напрямую, то тогда вероятность выбрать 2 числа так, чтобы первое было меньше второго: $P(A) = \frac{C_n^2}{n \cdot (n-1)}$, а вероятность, что в таком случае третье число окажется между вторым:

$$P(AB) = \frac{\sum_{i=1}^{n} \sum_{j=i+1}^{n} (j-i-1)}{n \cdot (n-1) \cdot (n-2)}.$$

Если посчитать, то скорее всего окажется то, что нам требуется.

Otbet: $\frac{1}{3}$

Задание 4. Из урны, содержащей 3 белых и 5 черных шаров, последовательно без возвращения извлекают 8 шаров. Пусть $A_0^{(i)}(A_1^{(i)}$ - событие, состоящее в том, что і-й шар был черный (белый). Найти условные вероятности:

Пункт 1. $P(A_1^{(5)}|A_1^{(1)}A_0^{(2)}A_0^{(3)}A_1^{(4)})$

Решение.

$$P(A_1^{(5)}|A_1^{(1)}A_0^{(2)}A_0^{(3)}A_1^{(4)}) = \frac{P\left(A_1^{(5)}A_1^{(1)}A_0^{(2)}A_0^{(3)}A_1^{(4)}\right)}{P\left(A_1^{(1)}A_0^{(2)}A_0^{(3)}A_1^{(4)}\right)} = \frac{\frac{3}{8} \cdot \frac{5}{7} \cdot \frac{4}{6} \cdot \frac{2}{5} \cdot \frac{1}{4}}{\frac{3}{8} \cdot \frac{5}{7} \cdot \frac{4}{6} \cdot \frac{2}{5} \cdot \frac{1}{4}} = \frac{1}{4}$$

Пункт 2. $P(A_0^{(4)}|A_{\alpha_1}^{(1)}A_{\alpha_2}^{(2)}A_{\alpha_3}^{(3)}), (\alpha_1,\alpha_2,\alpha_3) = (0,0,1), (0,1,0), (1,0,0)$

Решение. Поскольку на момент появления события $A_0^{(4)}$ в урне остается лежать всегда 3 черных и 2 белых шара, то вероятность выпадения черного шара равна $\frac{3}{5}$.

Если считать напрямую:
$$P_1(\alpha_1,\alpha_2,\alpha_3) = \frac{5}{8} \cdot \frac{4}{7} \cdot \frac{3}{6}, P_2(\alpha_1,\alpha_2,\alpha_3) = \frac{5}{8} \cdot \frac{3}{7} \cdot \frac{4}{6}, P_3(\alpha_1,\alpha_2,\alpha_3) = \frac{3}{8} \cdot \frac{5}{7} \cdot \frac{4}{6}.$$
 $P(A) = \sum_{i=1}^3 = \frac{60+60+60}{336}. \ P(AB) = \sum_{i=1}^3 P_i(A) * P(A_0^{(4)}) = \frac{3}{5} \cdot \frac{60+60+60}{336}. \ P(B|A) = \frac{3}{5}$

Ответ: 1) $\frac{1}{4}$, 2) $\frac{3}{5}$.

Задание 5. Доказать, что события A, \overline{B} независимы, если независимы события A и B.

Решение.

- Пусть A, B независимы, тогда $P(AB) = P(A) \cdot P(B)$.
- $P(\overline{B}) = 1 P(B)$.
- $P(AB) = P(A) \cdot P(B) = P(A) \cdot (1 P(\overline{B})) = P(A) P(A) \cdot P(\overline{B}) = P(A) P(A) \setminus P(B) = P(A) P(A\overline{B})$. Последнее равенство получено из упражнения 1.1.1.

• Тогда
$$P(A) - P(A) \cdot P(\overline{B}) = P(A) - P(A\overline{B}) \Leftrightarrow P(A) \cdot P(\overline{B}) = P(A\overline{B}).$$

Задание 6. Случайная точка (ξ_1, ξ_2) имеет равномерное распределение в квадрате $\{(x_1, x_2): 0 \leq x_1 \leq 1, \ 0 \leq x_2 \leq 1\}$. При каких значениях r независимы события

$$A_r = \{ |\xi_1 - \xi_2| \ge r \}, \quad B_r = \{ \xi_1 + \xi_2 \le 3r \}.$$

Решение. Найдем «объем» вероятности, для этого построим функции вероятности на основании имеющихся данных:

$$P_r(A) = F_A(x) = \begin{cases} 1, & r \le 0 \\ (1-r)^2, & 0 < r \le 1 \\ 0, & r > 1 \end{cases}, \quad P_r(B) = F_B(x) = \begin{cases} 0, & r \le 0 \\ \frac{1}{2}(3r)^2, & 0 < r \le \frac{1}{3} \\ 1 - \frac{1}{2}(2 - 3r)^2, & \frac{1}{3} < r \le \frac{2}{3} \\ 1, & r > \frac{2}{3} \end{cases}.$$

Так как события называются независимыми тогда, когда выполняются какие-либо из равенств $P(A|B)=P(A),\ P(B|A)=P(B),\ P(AB)=P(A)\cdot P(B),$ то воспользовавшись ими увидим, что события независимы, когда $r\geq \frac{2}{3},$ так как тогда $P(AB)=1\cdot P(A)=P(A|B),$ когда $r\leq 0,$ так как $P(AB)=P(B)\cdot 1=P(B|A).$

Теперь найдем при каких r графически P(A) * P(B) = P(AB):

При
$$0 < r \le \frac{1}{3}$$
: $P_r(A) \cdot P_r(B) = (1-r)^2 \cdot \frac{1}{2} \cdot (3r)^2$.

Графически объем равен: $2 \cdot r^2$. Приравняем то, с тем, что написано выше: $(1-r)^2 \cdot \frac{1}{2} \cdot (3r)^2 = 2 \cdot r^2$. Решая уравнение, найдем, что $r = \frac{1}{3}$.

Для остальных интервалов равенства не возникает.

Ответ: $r \le 0, r \ge \frac{2}{3}, r = \frac{1}{3}$

Задание 8. События A_1,A_2,A_3,A_4 взаимно независимы. Доказать взаимную независимость событий $\overline{A_1}A_2$ и A_3A_4 .

Решение. Так как все события взаимно независимы, то независимы и события A_3, A_4 , также A_1, A_2 тоже независимы, а тогда и $\overline{A_1}A_2$, поскольку это было доказано ранее в задании 5.

- $P(\overline{A_1}A_2) = P(\overline{A_1}) \cdot P(A_2), P(A_3A_4) = P(A_3) \cdot P(A_4)$
- $P(\overline{A_1}A_2) \cdot P(A_3A_4) = P(\overline{A_1}) \cdot P(A_2) \cdot P(A_3) \cdot P(A_4)$
- Так как независимы A_1, A_2, A_3, A_4 , то также будут независимы и $\overline{A_1}, A_2, A_3, A_4$ (можно доказать по индукции), а значит $P(\overline{A_1}) \cdot P(A_2) \cdot P(A_3) \cdot P(A_4) = P(\overline{A_1}A_2A_3A_4)$, то есть $P(\overline{A_1}A_2) \cdot P(A_3A_4) = P(\overline{A_1}A_2A_3A_4)$, ч.т.д.

Задание 9. События A_1, A_2, A_3, A_4 взаимно независимы: $P(A_k) = p_k, k = 1, 2, 3, 4$. Найти вероятность событий:

Пункт 1. $A_1\overline{A_3}A_4$. $P(A_1\overline{A_3}A_4) = P(A_1) \cdot P(A_3)P(A_4) = p_1(1-p_3)p_4$.

Пункт 2. $A_1 + A_2$. $P(A_1 + A_2) = P(A_1) + P(A_2) - P(A_1) \cdot P(A_2) = p_1 + p_2 - p_1 \cdot p_2$.

Пункт 3. $(A_1 + A_2)(A_3 + A_4)$. $P((A_1 + A_2)(A_3 + A_4)) = P(A_1 + A_2) \cdot P(A_3 + A_4) = (P(A_1) + P(A_2) - P(A_1) \cdot P(A_2))(P(A_3) + P(A_4) - P(A_3) \cdot P(A_4)) = (p_1 + p_2 - p_1 \cdot p_2)(p_3 + p_4 - p_3 \cdot p_4)$, так как события независимы.

Ответ: 1) $p_1(1-p_3)p_4$, 2) $p_1+p_2-p_1\cdot p_2$, 3) $(p_1+p_2-p_1\cdot p_2)(p_3+p_4-p_3\cdot p_4)$

Задание 11. Из урны, содержащей 3 белых и 5 черных шаров, два игрока по очереди вытащили по одному шару. Положим $A_k = \{ k$ -ый игрок вытащил белый шар $\}$. Найти вероятность событий:

Пункт 1. Вероятность A_1 . $P(A_1) = a_1 = \frac{3}{8}$.

Пункт 2. Вероятность A_2 . $P(A_2) = P(A_2|A_1) + P(A_2|\overline{A_1}) = a_{11} \cdot a_1 + a_{12} \cdot (1-a_1) = \frac{2}{7} \cdot \frac{3}{8} + \frac{3}{7} \cdot (1-\frac{3}{8}) = \frac{6}{56} + \frac{15}{56} = \frac{21}{56} = \frac{3}{8}$.

Пункт 3. Вероятность A_1A_2 . $P(A_1A_2) = a_1 + a_{11} = \frac{3}{8} \cdot \frac{2}{7} = \frac{3}{28}$.

Ответ: 1) $\frac{3}{8}$, 2) $\frac{3}{8}$, 3) $\frac{3}{28}$.

Задание 15. Предположим, что 5% всех мужчин и 0.25% всех женщин – дальтоники. Наугад выбранное лицо оказалось дальтоником. Какова вероятность того, что это мужчина? (Считать, что количество мужчин и женщин одинаково.)

Решение. Расчитаем по формуле Байеса:
$$P(B_m|A) = \frac{P(AB_m)}{P(A)} = \frac{P(AB_m)}{P(B_w) \cdot P(A|B_w) + P(B_m) \cdot P(A|B_m)} = \frac{0.05 \cdot \frac{1}{2}}{0.05 \cdot \frac{1}{2} + 0.0025 \cdot \frac{1}{2}} = \frac{0.025}{0.02625} = \frac{20}{21}.$$

Ответ: $\frac{20}{21}$.

4 Последовательности испытаний.

Задание 1. Два игрока поочередно извлекают шары (без возвращения) из урны, содержащей 2 белых и 4 черных шара. Выигрывает тот, кто первым вынет белый шар. Найти вероятность выигрыша участника, начавшего игру.

Решение. Для победы первого участника необходимо, чтобы белый шар был вынут им. Для этого белый шар следует достать на 1, на 3 или на 5 ходу. Посчитаем сумму вероятностей:

$$P(A) = P_1(A) + P_3(A) + P_5(A) = P(W) + P(BBW) + P(BBBW) = \frac{2}{6} + \frac{4}{6} \cdot \frac{3}{5} \cdot \frac{2}{4} + \frac{4}{6} \cdot \frac{3}{5} \cdot \frac{2}{4} + \frac{1}{3} \cdot \frac{2}{2} = \frac{2}{6} + \frac{24}{120} + \frac{24}{360} = \frac{120 + 72 + 24}{360} = \frac{3}{5}$$

Ответ: $\frac{3}{5}$.

Задание 2. Два игрока поочередно извлекают шары (без возвращения) из урны, содержащей 2 белых, 4 черных и 1 красный. Выигрывает тот, кто первым вынет белый шар. Если появляется красный шар, то объявляется ничья. Пусть $A_1 = \{$ выигрывает игрок, начавший игру $\}, A_2 = \{$ выигрывает второй участник $\}, B = \{$ игра закончится вничью $\}.$ Найти $P(A_1), P(A_2), P(B).$

Решение. По аналогии с задачей 1:

$$P(A_1) = \frac{2}{7} + \frac{4}{7} \cdot \frac{3}{6} \cdot \frac{2}{5} + \frac{4}{7} \cdot \frac{3}{6} \cdot \frac{2}{5} \cdot \frac{1}{4} \cdot \frac{2}{3} = \frac{2}{7} + \frac{24}{210} + \frac{48}{2520} = \frac{720 + 288 + 48}{2520} = \frac{1056}{2520} = \frac{44}{105}$$

$$P(A_2) = \frac{4}{7} \cdot \frac{2}{6} + \frac{4}{7} \cdot \frac{3}{6} \cdot \frac{2}{5} \cdot \frac{2}{4} = \frac{8}{42} + \frac{48}{840} = \frac{160 + 48}{840} = \frac{28}{105}$$

$$P(B) = \frac{1}{7} + \frac{4}{7} \cdot \frac{1}{6} + \frac{4}{7} \cdot \frac{3}{6} \cdot \frac{1}{5} + \frac{4}{7} \cdot \frac{3}{6} \cdot \frac{2}{5} \cdot \frac{1}{4} + \frac{4}{7} \cdot \frac{3}{6} \cdot \frac{2}{5} \cdot \frac{1}{4} \cdot \frac{1}{3} = \frac{1}{7} + \frac{4}{42} + \frac{12}{210} + \frac{24}{840} + \frac{24}{2520} = \frac{840}{2520} = \frac{1}{3}$$

Ответ: $P(A_1) = \frac{44}{105}$, $P(A_2) = \frac{28}{105}$, $P(B) = \frac{1}{3}$.

Задание 3. Из урны, содержащей M белых и N-M черных шаров, по одному без возвращения извлекают все шары. Найти вероятности событий:

 $A_k = \{k$ -й шар белый $\}$, $B_{k,l} = \{k$ -й и l-й шары белые $\}$, $C_{k,l} = \{k$ -й шар черный, а l-й - белый $\}$.

Решение. Вероятность того, что случайно взятый шар является белым (шары равномерно распределены, т.е M позиций белые, N-M позиций черные) равна $\frac{M}{N}=A_k$.

Событию $B_{k,l}$ удовлетворяет последовательность исходов: сначала возьмем из N шаров белый, затем возьмем из оставшихся шаров еще один белый (порядок выбора не важен). Таким образом, вероятность данного события $\frac{M}{N} \cdot \frac{M-1}{N-1} = B_{k,l}$.

Событию $C_{k,l}$ удовлетворяет последовательность исходов: сначала возьмем k-й шар, при этом он черный, затем возьмем из оставшихся N-1 шаров l-й шар, он должен быть белым. Вероятность события $\frac{N-M}{N}\cdot\frac{M}{N-1}=C_{k,l}$

Ответ: $A_k = \frac{M}{N}, \ B_{k,l} = \frac{M \cdot (M-1)}{N \cdot (N-1)}, \ C_{k,l} = \frac{(N-M) \cdot M}{N \cdot (N-1)}$

Задание 4. Проведено 10 независимых испытаний, каждое из которых заключается в одновременном подбрасывании трех игральных костей. Найти вероятность того, что в четырех испытаниях появятся в точности по две «6».

Решение. Вероятность события в i испытании выпало 2 «6» из 3 кубиков равно $C_3^2\left(\frac{1}{6}\right)^2\cdot\left(\frac{5}{6}\right)^1=3\cdot\frac{5}{216}=\frac{15}{216}$. Воспользуемся схемой Бернулли: $P(m=4)=C_{10}^4\left(\frac{15}{216}\right)^4\left(\frac{201}{216}\right)^6\approx 0.0031712$

Ответ: ≈ 0.0031712 .

Задание 6. Сколько нужно взять случайных чисел, чтобы число «6» появилось хотя бы один раз с вероятностью, не меньшей а) 0.7 b) 0.9?

Решение. Вероятность события «на кубике выпала 1 шестерка» равна $\frac{1}{10}$. Тогда по распределению Бернулли вероятность того, что шестерка выпала на k-м шаге равна $\frac{9}{10}^{(k-1)} \cdot \frac{1}{10}$, а вероятность, что шестерка выпала до или на k-м шаге: $\sum_{i=0}^k \frac{9}{10}^{(i-1)} \cdot \frac{1}{10}$, что является геометрической прогрессией. Тогда необходимо найти такое k, при котором вероятность события не меньше 0.7 и 0.9.

По формуле геометрической прогрессии:

$$\frac{\frac{1}{6} \cdot \left(\left(\frac{9}{10} \right)^k - 1 \right)}{\frac{9}{10} - 1} = \left(1 - \left(\frac{9}{10} \right)^k \right) \ge a.$$

, где a=0.7,0.9. Решим данное уравнение при заданных a и найдем, что при a=0.7 $k\geq 11.4272,$ a=0.9 $k\geq 21.8543.$. Ответ округляем до ближайших целых.

Ответ: a = 0.7, k = 12, a = 0.9, k = 22.

Задание 8. Среди 5M билетов M выйгрышных. Найти вероятность Q(n) того, что среди n купленных билетов есть хотя бы один выигрышный. Вычислить Q(n) при 1) M=3; 2) M=10 для n, определенных в задаче 7 в случаях а) 0.65, б) 0.9, в) 0.99.

Решение. Воспользуемся гиперболическим распределением. Вероятность случая, когда из 5M билетов выбирается n и при этом ни один из них не выйграл: $P_n(A) = \frac{C_M^0 \cdot C_{4M}^n}{C_{5M}^n}$. Тогда вероятность того, что хотя бы один билет выйграл:

$$Q(n) = 1 - P_n(A) = 1 - \frac{C_M^0 \cdot C_{4M}^n}{C_{5M}^n}.$$

Пункт 1. Подставим для а), б), в) при M = 3:

- a) n = 5, $Q(n) = \frac{67}{91} \approx 0.736263$
- б) $n = 11, Q(n) = \frac{451}{455} \approx 0.991208$
- B) n = 21, Q(n) = 1

Пункт 2. Подставим для а), б), в) при M = 10:

- a) n = 5, $Q(n) = \frac{182594}{264845} \approx 0.689437$
- б) $n = 11, Q(n) = \frac{438024217}{466921735} \approx 0.938111$
- B) $n = 21, Q(n) = \frac{578896}{580027} \approx 0.998050$

Задание 9. Найти вероятность того, что в n испытаниях схемы Бернулли с вероятностью успеха p появятся m+l успехов, причем l успехов появлятся в l последних испытаниях.

Решение. Найдем вероятность события как произведения двух независимых событий: в первых n-l испытаниях появится m успехов, в последних l испытаниях появится l успехов.

$$P(AB) = P(A) \cdot P(B) = \left(C_{n-l}^m \cdot p^m \cdot (1-p)^{n-l-m} \right) \cdot \left(1 \cdot p^l \right) = C_{n-l}^m \cdot p^{m+l} \cdot (1-p)^{n-l-m}.$$

Ответ: $C_{n-l}^m \cdot p^{m+l} \cdot (1-p)^{n-l-m}$.

Задание 10. Двое бросают монету по n раз. Найти вероятность того, что у них выпадет одинаковое число гербов.

Решение. Решим несколькими способами, в первом получим ответ в виде суммы n+1 слагаемых, во втором простое выражение.

Пусть монету просают 2n раз, причем в первом случае выпало k гербов и во втором случае столько же. Тогда

$$\sum_{k=0}^{n} C_n^k \cdot \left(\frac{1}{2}\right)^k \cdot \left(\frac{1}{2}\right)^{n-k} \cdot C_n^k \cdot \left(\frac{1}{2}\right)^k \cdot \left(\frac{1}{2}\right)^{n-k} = \sum_{k=0}^{n} \left(C_n^k\right)^2 \cdot \left(\frac{1}{2}\right)^{2n} = \left(\frac{1}{2}\right)^{2n} \sum_{k=0}^{n} \left(C_n^k\right)^2.$$

Второй способ: пусть один игрок выбросил k гербов из n бросков и второй выбросил столько же. Давайте инвертируем результаты испытаний второго игрока и будем считать герб за решку

и наоборот. Тогда всего должно быть выброшено n гербов из 2n испытаний. Найдем чему это равно

$$C_{2n}^n \left(\frac{1}{2}\right)^n \left(\frac{1}{2}\right)^n = \left(\frac{1}{2}\right)^{2n} C_{2n}^n.$$

Ответ: $(\frac{1}{2})^{2n} C_{2n}^n$.

Задание 11. Из множества $S = \{1, 2, ..., n\}$ выбирается подмножество A_1 так, что каждый элемент из S независимо от остальных с вероятностью p включается в множество A_1 и с вероятностью q = 1 - p не включается. Аналогичным образом независимо от A_1 выбирается подмножество A_2 . Найти вероятности событий: а) $A_1 \cap A_2 = \emptyset$; б) множество $A_1 \cap A_2$ состоит из k = (k = 0, 1, 2, ..., n) элементов; в) $|A_1| > |A_2|$, $q = p = \frac{1}{2}$.

Пункт а). Выбираем множество $A_1: \sum_{k=0}^n C_n^k p^k q^{n-k}$. Теперь выберем второе множество так, чтобы те элементы, которые были выбраны для первого множества, они не были выбраны для второго множества, остальные элементы можно выбирать любым образом. Тогда общая вероятность:

$$\sum_{k=0}^{n} C_n^k p^k q^{n-k} q^k = \sum_{k=0}^{n} C_n^k p^k q^n = q^n \sum_{k=0}^{n} C_n^k p^k = q^n (1+p)^n = (1-p)^n \cdot (1+p)^n = (1-p^2)^n.$$

Пункт б). Воспользуемся пунктом а). Для того, чтобы пересечение первого и второго множество было равно k (его мощность), необходимо чтобы в n-k местах множества не пересекались, а в k местах пересекались. Воспользовавшись результатом из пункта а) получим:

$$\left(1-p^2\right)^{n-k}\cdot p^{2k}\cdot C_n^k.$$

Другими словами, мы выбрали подмножество множества S, состоящее из n-k элементов, которое является пустым, и оставшееся множество, которое полностью состоит из взятых элементов первым и вторым множеством. Данное множество можно выбрать C_n^k способами.

Пункт в). Также воспользуемся пунктом а). Из задачи 10 мы выяснили, что вероятность того, что 2 множества равны по мощности (выпало одинакое количество гербов) есть $\left(\frac{1}{2}\right)^{2n}C_{2n}^{n}$. Тогда вероятность того, что множества не равны - $1-\left(\frac{1}{2}\right)^{2n}C_{2n}^{n}$. Теперь поскольку требуется, чтобы первое множество было по мощности больше чем второе, то поделим данный результат на 2, поскольку по способу набора элементов данные два множества эквивалентны. Результат:

$$P(|A_1| > |A_2|) = \frac{1 - (\frac{1}{2})^{2n} C_{2n}^n}{2}.$$

Ответ: a)
$$(1-p^2)^n$$
 б) $(1-p^2)^{n-k} \cdot p^{2k} \cdot C_n^k$ в) $\frac{1-\left(\frac{1}{2}\right)^{2n}C_{2n}^n}{2}$.

Задание 19. Вероятность попадания в цель при каждом выстреле равна 0.001. Найти вероятность попадания в цель двумя и более выстрелами при залпе в 5000 выстрелов.

Решение. Воспользуемся методом Пуассона, так как $\lambda = np = 5, p << 1$. Вычислим вероятность попадания двух и более выстрелов как $1 - P(m \in \{0, 1\})$

$$P(\mu_n) \approx \frac{\lambda_n^m}{m!} e^{-\lambda_n}, \ P(\mu_n \ge 2) \approx 1 - (\frac{5^0}{0!}) e^{-5} - (\frac{5^1}{1!}) e^{-5} = 0.9595723....$$

Ответ: 0.9595723....

5 Случайные величины.

Задание 1. Плотность распределения ξ задана формулами

$$p_{\xi}(x) = \frac{C}{x^4}(x \ge 1), \ p_{\xi}(x) = 0(x < 1).$$

Найти постоянную C, плотность распределения величины $\eta = \ln \xi$, $P(0.5 < \eta < 0.75)$.

Решение.

$$\int_{1}^{\infty} \frac{c}{x^{4}} dx = -\frac{x^{-3}c}{3} \Big|_{1}^{\infty} = \frac{c}{3} = 1 \implies c = 3.$$

$$p_{\eta}(x) = \frac{\partial P(\eta < x)}{\partial x} = \frac{\partial P(\xi < e^{x})}{\partial x} = p_{\xi}(e^{x})e^{x}.$$

Тогда

$$p_{\eta}(x) = 3e^{-3x}.$$

$$P(0.5 < \eta < 0.75) = \int_{0.5}^{0.75} 3e^{(-3x} dx = -e^{-3x} \Big|_{0.5}^{0.75} = -e^{-2.25} + e^{-1.5} \approx 0.11773.$$

Ответ: C = 3, $p_{\eta} = 3e^{-3x}$, 0.11773.

Задание 2. Случайная величина ξ равномерно распределена на отрезке [0,1]. Найти плотности распределенения величин: а) $\eta_1 = 2\xi + 1$; б) $\eta_2 = -\ln(1-\xi)$.

Пункт а).

$$p_{\eta_1}(x) = \frac{\partial P(\eta_1 < x)}{\partial x} = \frac{\partial P(2\xi + 1 < x)}{\partial x} = p_{\xi}(\frac{x - 1}{2}) \cdot \frac{1}{2} = \frac{1}{2}.$$
$$\frac{x - 1}{2} \in [0, 1] \implies x \in [1, 3].$$

Пункт б).

$$p_{\eta_2} = \frac{\partial P(\eta_2 < x)}{\partial x} = \frac{\partial P(-\ln(1-\xi) < x)}{\partial x} = \frac{\partial P(\xi < 1 - e^{-x})}{\partial x} = p_{\xi}(1 - e^{-x})e^{-x} = e^{-x}.$$
$$1 - e^{-x} \in [0, 1] \iff -e^{-x} \in [-1, 0] \iff e^{-x} \in [0, 1] \iff x \in [0, +\infty].$$

Решение. a) $\frac{1}{2}$, $x \in [1,3]$, б) e^{-x} , $x \in [0,+\infty]$.

Задание 3. Случайная величина ξ имеет показательное распределение с плотностью распределения $p_{\xi}(x) = \alpha e^{-\alpha x}(x>0)$. Найти плотности распределения случайных величин: а) $\eta_1 = \sqrt{\xi}$; $\delta)\eta_2 = \xi^2$; в) $\eta_3 = \frac{1}{\alpha} \ln \xi$; г) $\eta_4 = 1 - e^{-\alpha \xi}$.

Пункт а).

$$p_{\eta_1}(x) = \frac{\partial P(\sqrt{\xi} < x)}{\partial x} = p_{\xi}(x^2) \cdot 2x = 2x\alpha \cdot e^{-\alpha x^2}, x > 0.$$

С учетом вышенаписанного

$$x^2 \in (0, +\infty) \iff x \in (0, +\infty).$$

Пункт б).

$$p_{\eta_2}(x) = \frac{\partial P(\xi^2 < x)}{\partial x} = p_{\xi}(\sqrt{x}) \cdot \frac{1}{2\sqrt{x}} = \alpha e^{-\alpha\sqrt{x}} \cdot \frac{1}{2\sqrt{x}} = \frac{\alpha e^{-\alpha\sqrt{x}}}{2\sqrt{x}}, x > 0.$$

Пункт в).

$$p_{\eta_3}(x) = \frac{\partial P(\frac{1}{\alpha} \ln \xi < x)}{\partial x} = \frac{\partial P(\ln \xi < \alpha x)}{\partial x} = \frac{\partial P(\xi < e^{\alpha x})}{\partial x} = p_{\xi}(e^{\alpha x})e^{\alpha x} = \alpha^2 e^{-\alpha(e^{\alpha x} - x)}.$$
$$e^{\alpha x} \in (0, +\infty) \iff x \in (-\infty, +\infty).$$

Пункт г).

$$p_{\eta_4} = \frac{\partial P(1 - e^{-\alpha\xi} < x)}{\partial x} = \frac{\partial P(e^{-\alpha\xi} > 1 - x)}{\partial x} = \frac{\partial P(e^{-\alpha\xi} > e^{\ln(1 - x)})}{\partial x} = \frac{\partial P(-\alpha\xi > \ln(1 - x))}{\partial x} = \frac{\partial P(-\alpha\xi > \ln(1 - x))}{\partial x} = \frac{\partial P(\xi < \ln(1 - x)^{-\frac{1}{\alpha}})}{\partial x} = p_{\xi}(\ln(1 - x)^{-\frac{1}{\alpha}}) \cdot (\frac{1}{\alpha} \cdot \frac{1}{1 - x}) = e^{\ln(1 - x)} \cdot \frac{1}{1 - x} = 1$$

$$\ln(1 - x)^{-\frac{1}{\alpha}} \in (0, +\infty) = \ln(1 - x) \in (-\infty, 0) = x \in (0, 1).$$

Other: a) $2x\alpha e^{-\alpha x^2}$, $x \in (0, +\infty)$, б) $\frac{\alpha e^{-\alpha\sqrt{x}}}{2\sqrt{x}}$, $x \in (0, +\infty)$, в) $\alpha^2 e^{-\alpha(e^{\alpha x} - x)}$, $x \in (-\infty, +\infty)$, г) 1, $x \in (0, 1)$.

Задание 4. Случайная величина ξ распределена нормально с параметрами $a=0,\,\sigma^2=1.$ Найти плотности распределения величин: а) $\eta_1=\xi^2;\,$ б) $\eta_2=e^\xi$ (логарифмически нормальное распределение).

$$p_{\xi}(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{\frac{-(x-a)^2}{2\sigma^2}} = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}.$$

Пункт а).

$$p_{\eta_1}(x) = \frac{\partial P(\xi^2 < x)}{\partial x} = \frac{\partial P(\xi < \sqrt{x})}{\partial x} = p(\sqrt{x}) \frac{1}{2\sqrt{x}} = \frac{1}{2\sqrt{2\pi x}} e^{-\frac{x}{2}}.$$

Пункт б).

$$p_{\eta_2}(x) = \frac{\partial P(e^{\xi} < x)}{\partial x} = \frac{\partial P(\xi < \ln x)}{\partial x} = p_{\xi}(\ln x) \cdot \frac{1}{x} = \frac{1}{\sqrt{2\pi}x} e^{\frac{-\ln(x)^2}{2}}.$$

Ответ: a) $\frac{1}{2\sqrt{2\pi x}}e^{-\frac{x}{2}}$, 6) $\frac{1}{\sqrt{2\pi x}}e^{\frac{-\ln(x)^2}{2}}$.

Задание 5. Точка P равномерно распределена на единичном квадрате ABCD. Найти плотность распределения площади ξ прямоугольника AB'PD', где B' и D' – основания перпендикуляров, опущенных из точки P на стороны AB и AD соответственно.

Решение.

$$F(x) = x + \int_{x}^{1} \frac{x}{t} dt = x + x \cdot \ln|x| \Big|_{x}^{1} = x - x \cdot \ln x.$$

Тогда

$$p_{\xi}(x) = F'(x) = 1 - \ln|x| - \frac{x}{x} = -\ln|x|.$$

Ответ: $-\ln(x)$.

Задание 7. Случайные величины ξ_1 и ξ_2 независимы и имеют равномерное распределение на отрезке [0,1]. Найти плотности распределения величин: а) $\xi_1 + \xi_2$; б) $\xi_1 - \xi_2$; в) $\frac{\xi_1}{\xi_2}$.

Пункт а). Как уже было доказано в к параграфе, $p_{\xi_1+\xi_2}(x) = \int_{-\infty}^{+\infty} p_{\xi_1}(x-u) p_{\xi_2}(u) du$

$$p_{\xi_1+\xi_2}(x) = \int_{-\infty}^{+\infty} p_{\xi_1}(x-u)p_{\xi_2}(u)du = \int_{0}^{1} p_{\xi_1}(x-u)du.$$

Рассмотрим промежутки $x \in [0,1], x \in [1,2]$. На первом промежутке:

$$p_{\xi_1+\xi_2}(x) = \int_0^x p_{\xi_1}(x-u)du = x.$$

На втором промежутке:

$$p_{\xi_1+\xi_2}(x) = \int_{x-1}^1 p_{\xi_1}(x-u)du = 1 - x + 1 = 2 - x.$$

А это ни что иное как:

$$p_{\xi_1+\xi_2}(x) = 1 - |x-1|, \ x \in [0,2].$$

Пункт б).

$$F_{\xi_1 - \xi_2}(x) = \int_{-\infty}^{+\infty} du \int_{u - v}^{+\infty} p_{\xi_1}(u) p_{\xi_2}(v) dv.$$

Произведем замену переменных $v=z+u,\ z=v-u$

$$F_{\xi_1 - \xi_2}(x) = \int_{-\infty}^{+\infty} du \int_{-x}^{+\infty} p_{\xi_1}(u) p_{\xi_2}(z+u) dz = \int_{-x}^{+\infty} dz \int_{-\infty}^{+\infty} p_{\xi_1}(u) p_{\xi_2}(z+u) du = \int_{-\infty}^{x} dt - \int_{-\infty}^{+\infty} p_{\xi_1}(u) p_{\xi_2}(u-t) du$$

$$p_{\xi_1-\xi_2}(x) = -\int_{-\infty}^{+\infty} p_{\xi_1}(u)p_{\xi_2}(u-x)du = -\int_{0}^{1} p_{\xi_2}(u-x)du.$$

Рассмотрим отрезки, на которых $p_{\xi_2} \neq 0$:

$$p_{\xi_2}(u-x) \neq 0 \iff 0 \leq u-x \leq 1 \implies x \leq u, \ x \geq u-1, \ x \leq 1.$$

Тогда на первом промежутке:

$$p_{\xi_1-\xi_2}(x) = \int_x^1 p_{\xi_1}(u-x)du = 1-x.$$

На втором промежутке:

$$p_{\xi_1 - \xi_2}(x) = \int_0^{x+1} p_{\xi_1}(u - x) du = x + 1.$$

Тогде через модуль: $p_{\xi_1-\xi_2}(x) = 1 - |x|$

Пункт в).

$$F_{\xi_1/\xi_2}(x) = \begin{cases} x < 0, & \int_{-\infty}^0 du \int_0^{\frac{u}{x}} p_{\xi_1}(u) p_{\xi_2}(v) dv + \int_0^{+\infty} du \int_{\frac{u}{x}}^0 p_{\xi_1}(u) p_{\xi_2}(v) dv \\ x \ge 0, & \int_{-\infty}^0 du \int_{-\infty}^{\frac{u}{x}} p_{\xi_1}(u) p_{\xi_2}(v) dv + \int_{-\infty}^0 du \int_0^{+\infty} p_{\xi_1}(u) p_{\xi_2}(v) dv + \int_0^{+\infty} du \int_{-\infty}^0 p_{\xi_1} p_{\xi_2} dv \end{cases}$$

Считать все это как-то не хочется.

Ответ: a) 1 - |x - 1|, $x \in [0, 2]$, б) 1 - |x|, $x \le 1$, в) -

Задание 11. Совместное распределение случайных величин $\xi_1,\,\xi_2$ задано таблицей

$\xi_1 \setminus \xi_2$	-1	0	1
-1	1/8	1/12	7/24
1	5/24	1/6	1/8

в которой на пересечении i-й строки и j-го столбца (i=-1,1,j=-1,0,1) приведена вероятность $p_{ij}=P\left\{\xi_1=i,\xi_2=j\right\}$. Найти: а) одномерные законы распределения ξ_1 и ξ_2 ; б) закон распределения $\eta_1=\xi_1+\xi_2$; в) закон распределения $\eta_2=\xi_2^2$; г) $P\left(\eta_1=0,\eta_2=1\right)$.

Пункт а).

- $P(\xi_1 = -1) = \frac{1}{8} + \frac{1}{12} + \frac{7}{24} = \frac{1}{2}$
- $P(\xi_1 = 1) = \frac{5}{24} + \frac{1}{6} + \frac{1}{8} = \frac{1}{2}$,
- $P(\xi_2 = -1) = \frac{1}{8} + \frac{5}{24} = \frac{1}{3}$,
- $P(\xi_2 = 0) = \frac{1}{12} + \frac{1}{6} = \frac{1}{4}$,
- $P(\xi_2 = 1) = \frac{7}{24} + \frac{1}{8} = \frac{5}{12}$

Пункт б).

- $P(\eta_1 = -2) = \frac{1}{8}$,
- $P(\eta_1 = -1) = \frac{1}{12}$,
- $P(\eta_1 = 0) = \frac{7}{24} + \frac{5}{24} = \frac{1}{2}$,
- $P(\eta_1 = 1) = \frac{1}{6}$,
- $P(\eta_1 = 2) = \frac{1}{8}$

Пункт в).

• $P(\eta_2 = 0) = \frac{1}{12} + \frac{1}{6} = \frac{1}{4}$,

•
$$P(\eta_2 = 1) = \frac{1}{8} + \frac{5}{24} + \frac{7}{24} + \frac{1}{8} = \frac{18}{24} = \frac{3}{4}$$

Пункт г). •
$$P(\eta_1 = 0, \eta_2 = 1) = \frac{1}{2}$$

Задание 14. Обозначим τ число испытаний в схеме Бернулли до появления первого успеха включительно. Найти закон распределения τ .

Решение. Пусть на k-ом испытании произошел успех. Тогда вероятность данного события расчитывается по формуле:

$$P(n = k) = (1 - p)^{k-1}p.$$

, где p — вероятность успеха.

Данное выражение - то, что нам и надо, поскольку в таком случае проводится k испытаний, и на последнем происходит успех. Значит закон распределения τ :

$$P(\tau = k) = (1 - p)^{k-1}p.$$

Ответ: $P(\tau = k) = (1 - p)^{k-1}p$

Задание 15. Величина $\tau^{(1)}$ равна числу испытаний в схеме Бернулли до первого успеха включительно, $\tau^{(2)}$ — число испытаний, прошедших после первого успеха до второго успеха. Найти совместное распределение $\tau^{(1)}, \tau^{(2)}$. Являются ли $\tau^{(1)}$ и $\tau^{(2)}$ независимыми?

Решение. По уже рассмотренному выше:

$$P(\tau_1 = k) = (1 - p)^{k-1}p, \quad P(\tau_2 = l) = (1 - p)^{l-1}p.$$

$$P(\tau_1 = k, \tau_2 = l) = (1 - p)^{k-1}p \cdot (1 - p)^{l-1}p = P(\tau_1 = k) \cdot P(\tau_2 = l).$$

Поскольку для выполнения второго события не важно, когда произошло первое, а только необходимо знать, какой промежуток времени произошел между первым и вторым успехом, то данные события являются независимыми.

Ответ: $(1-p)^{k-1}p \cdot (1-p)^{l-1}p$, случайные величины независимы.

Задание 20. Машина состоит из 10000 деталей. Каждая деталь независимо от других оказывается неисправной с вероятностью p_i , причем для $n_1=1000$ деталей $p_1=0.0003$; для $n_2=2000$ деталей $p_2=0.0005$ и для $n_3=7000$ деталей $p_3=0.0001$. Машина не работает, если в ней неисправны хотя бы две детали. Найти приближенное значение вероятности того, что машина не будет работать.

Решение. В среднем какая-либо деталь сломается с вероятностью $\tau=1000\cdot 0.0003+2000\cdot 0.0005+7000\cdot 0.0001=0.3+1+0.7=2$. Для нахождения вероятности воспользуемся формулой Пуассона:

$$P(k=2,3,4,\dots) = 1 - \overline{P(k=2,3,4,\dots)} = 1 - P(k=0,1) = 1 - \sum_{k=0}^{1} \frac{\tau^k}{k!} e^{-\tau} = 1 - e^{-2} - 2e^{-2} \approx 0.594.$$

Ответ: 0.594

Задание 22. Случайная величина ξ с равномерным распределением на [0,1] записывается в виде бесконечной десятичной дроби: $\xi = \sum_{n=1}^{\infty} \xi_n(10)^{-n}, \ 0 \le \xi_n \le 9$. Найти совместные и одномерные распределения величин ξ_1, ξ_2 . Являются ли ξ_1, ξ_2 независимыми.

Решение.

$$P(\xi_1 = i) = \frac{1}{10}, \ i \in \{0, 1, \dots, 9\}.$$

$$P(\xi_2 = j) = \frac{1}{10}, \ j \in \{0, 1, \dots, 9\}.$$

$$P(\xi_1 = i, \xi_2 = j) = \frac{1}{100} = P(\xi_1 = i)P(\xi_2 = j).$$

Значит независимы.

6 Математическое ожидание.

Задание 1. Найти математическое ожидание величины τ , определенной в задаче 14 гл. 5.

Решение. Полученный результат в задаче 14:

$$p_{\tau}(k) = P(\tau = k) = (1 - p)^{k-1}p.$$

$$M\tau = \sum_{n=1}^{\infty} n(1 - p)^{n-1}p = p\sum_{n=0}^{\infty} (n+1)(1-p)^n.$$

Вычислим, что пригодится для нахождения суммы ряда:

$$S_0 = \sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + \dots$$
$$xS_0 = x \sum_{n=p}^{\infty} x^n = x + x^2 + x^3 + x^4 + \dots$$
$$S_0 - xS_0 = 1 \implies S_0 = \frac{1}{1 - x}.$$

Найдем сумму ряда $M\tau$:

$$(1-p)M\tau = p\sum_{n=0}^{\infty} (n+1)(1-p)^{n+1}.$$

$$M\tau - (1-p)M\tau = p\sum_{n=0}^{\infty} (n+1)(1-p)^n - p\sum_{n=0}^{\infty} (n+1)(1-p)^{n+1} = p\left(1 + (1-p) + (1-p)^2 + \dots\right) = 1.$$

$$M\tau = \frac{1}{p}.$$

Ответ: $\frac{1}{p}$.

Задание 2. Обозначим ξ номер испытания, в котором появился нужный ключ (см. пример 3 из пар. 1 гл. 2). Найти $M\xi$.

Решение. Из примера мы знаем, что вероятность того, что на k испытании появился нужный ключ, равна $\frac{(n-1)!}{n} = \frac{1}{n}$, так как на k месте лежит требуемый ключ, а остальные n-1 позиции заполняются случайным образом. Тогда

$$M\xi = \sum_{k=1}^{n} \frac{k}{n} = \frac{1+2+\dots+n}{n} = \frac{(1+n)n}{2n} = \frac{1+n}{2}.$$

Ответ: $\frac{1+n}{2}$.

Задание 3. Решить задачу 2 в случае с возвращением ключей.

Решение. Данное распределение подчиняется геометрическому:

$$P(\tau = k) = \frac{1}{n} \left(\frac{n-1}{n} \right)^{k-1}.$$

Тогда матожидание данной величины:

$$M\tau = \sum_{k=1}^{\infty} k \frac{1}{n} \left(\frac{n-1}{n}\right)^{k-1} = \frac{1}{n} \sum_{k=0}^{\infty} k \left(\frac{n-1}{n}\right)^k = \frac{1}{\left(\frac{1}{n}\right)} = n$$

Последнее равенство получено из задачи 1.

Ответ: n.

Задание 6. Найти $M(\xi_1 + \xi_2)$ и $D(\xi_1 + \xi_2)$, где ξ_1, ξ_2 определены в задаче 22 гл. 5.

Решение.

$$M(\xi_1 + \xi_2) = \sum_{i,j=0}^{9} (i+j) P(\xi_1 = i, \xi_2 = j) = \sum_{i,j=0}^{9} \frac{i+j}{100} = \frac{900}{100} = 9.$$
$$D(\xi_1 + \xi_2) = M((\xi_1 + \xi_2)^2) - (M(\xi_1 + \xi_2))^2 = 97.5 - 81 = 16.5.$$

Ответ: $M(\xi) = 9$, $D(\xi) = 16.5$.

Задание 7. Пусть ξ – число комбинаций НУ в n+1 испытаниях схемы Бернулли. Найти $M\tau, D\tau$.

Решение. Рассмотрим τ как сумму ξ_i , $P(\xi_i = 1) = p$, $P(\xi_i = 0) = q$:

$$\tau = \xi_1 + \xi_2 + \dots + \xi_n.$$

Тогда матожидание данной величины:

$$M(\tau) = M(\xi_1) + M(\xi_2) + \dots + M(\xi_n) = n(p \cdot (1-p)) = npq.$$

$$D(\tau)?.$$

Ответ: $M(\tau) = npq, D(\tau) = ?$

Задание 8. Из 100 карточек с числами $00,01,02,\ldots,98,99$ наудачу вынимается одна. Пусть η_1,η_2 – соответственно сумма и произведение цифр на вынутой карточке. Найти $M\eta_1,D\eta_1,M\eta_2,D\eta_2$.

Решение. В задании 1 было найдено для η_1 :

$$M(\eta_1) = 9, \ D(\eta_1) = 16.25.$$

$$M(\eta_2) = 20.25, \ D(\eta_2) = M(\eta_2)^2 - (M(\eta_2))^2 = 402.1875.$$

Ответ: $M(\eta_1) = 9$, $D(\eta_1) = 16.25$, $M(\eta_2) = 20.25$, $D(\eta_2) = 402.1875$.

Задание 9. Для величин ξ_1, ξ_2 , определенных в задаче 11 гл. 5, найти $M\xi_1, M\xi_2, D\xi_1, D\xi_2, cov(\xi_1, \xi_2)$.

Решение.

$$M(\xi_1) = -1 \cdot \frac{1}{2} + 1 \cdot \frac{1}{2} = 0.$$

$$M(\xi_2) = -1 \cdot \frac{1}{3} + 1 \cdot \frac{5}{12} = \frac{1}{12}.$$

$$D(\xi_1) = M(\xi_1)^2 - (M(\xi_1))^2 = 1 - 0 = 1.$$

$$D(\xi_2) = M(\xi_2)^2 - (M(\xi_2))^2 = \frac{9}{12} - \frac{1}{144} = \frac{107}{144}.$$

$$cov(\xi_1, \xi_2) = M\xi_1\xi_2 - M(\xi_1) \cdot M(\xi_2) = -\frac{1}{4} - 0 = -\frac{1}{4}.$$

Ответ: $M(\xi_1) = 0$, $M(\xi_2) = \frac{1}{12}$, $D(\xi_1) = 1$, $D(\xi_2) = \frac{107}{144}$, $cov(\xi_1, \xi_2) = -\frac{1}{4}$

Задание 10. Совместное распределение величин ξ_1, ξ_2 определяется формулами $P\left(\xi_1=0,\xi_2=1\right)=P(\xi_1=0,\xi_2=-1)=P(\xi_1=1,\xi_2=0)=P(\xi_1=-1,\xi_2=0)=\frac{1}{4}.$ Найти $M\xi_1, M\xi_2, D\xi_1, D\xi_2, cov(\xi_1,\xi_2).$ Являются ли ξ_1, ξ_2 независимыми величинами?

Решение.

$\xi_2 \setminus \xi_1$	-1	0	1
-1	0	1/4	0
0	1/4	0	1/4
1	0	1/4	0

$$M(\xi_1) = -\frac{1}{4} + \frac{1}{4} = 0.$$

$$M(\xi_2) = -\frac{1}{4} + \frac{1}{4} = 0.$$

$$D(\xi_1) = \frac{1}{4} + \frac{1}{4} = \frac{1}{2}.$$

$$D(\xi_2) = \frac{1}{4} + \frac{1}{4} = \frac{1}{2}.$$

$$cov(\xi_1, \xi_2) = 0.$$

Ответ: $M(\xi_1)=0,\,M(\xi_2)=0$, $D(\xi_1)=\frac{1}{2},\,D(\xi_2)=\frac{1}{2},$ величины зависимы.

Задание 11. Случайные величины $\xi_1, \xi_2, \xi_3, \xi_4, \xi_5$ независимы; $D\xi_i = \sigma^2$. Найти коэффициент корелляции величин а) $\xi_1 + \xi_2, \ \xi_3 + \xi_4 + \xi_5$ б) $\xi_1 + \xi_2 + \xi_3, \ \xi_3 + \xi_4 + \xi_5$.

Пункт а). Пусть $\eta_1 = \xi_1 + \xi_2$, $\eta_2 = \xi_3 + \xi_4 + \xi_5$. Тогда

$$D(\eta_1 + \eta_2) = D(\eta_1) + D(\eta_2) + 2cov(\eta_1, \eta_2).$$

$$D(\eta_1 + \eta_2) = D(\xi_1 + \xi_2 + \xi_3 + \xi_4 + \xi_5) = 5\sigma^2.$$

$$D(\eta_1) = 2\sigma^2, \ D(\eta_2) = 3\sigma^2.$$

$$cov(\eta_1, \eta_2) = \frac{1}{2} \left(D(\eta_1 + \eta_2) - D(\eta_1) - D(\eta_2) \right) = 0 \implies \rho(\eta_1, \eta_2) = 0.$$

Пункт б). Пусть
$$\eta_1 = \xi_1 + \xi_2 + \xi_3$$
, $\eta_2 = \xi_3 + \xi_4 + \xi_5$.

$$D(\eta_1 + \eta_2) = D(\eta_1) + D(\eta_2) + 2cov(\eta_1, \eta_2).$$

$$D(\eta_1 + \eta_2) = D(\xi_1) + D(\xi_2) + 4D(\xi_3) + D(\xi_4) + D(\xi_5) = 8\sigma^2.$$

$$D(\eta_1) = 3\sigma^2.$$

$$D(\eta_2) = 3\sigma^2.$$

$$cov(\eta_1, \eta_2) = \frac{1}{2}2\sigma^2 = \sigma^2.$$

$$\rho(\eta_1, \eta_2) = \frac{cov(\eta_1, \eta_2)}{\sqrt{D(\eta_1)D(\eta_2)}} = \frac{\sigma^2}{3\sigma^2} = \frac{1}{3}.$$

Ответ: a) 0, б) $\frac{1}{3}$.

Задание 16. По n конвертам случайно разложили n писем различным адресатам. Найти вероятность того, что хотя бы одно письмо попадет своему адресату. Найти предел этой вероятности при $n \to \infty$.

Решение. Задача на включения-исключения. Сначала найдем вероятность, что хотя бы одно письмо дошло. Если не исключать пересечения событий, то получаем, что для каждого k письма вероятность события k письмо дошло до адресата равна (n-1)!, так как мы фиксируем одно письмо, а все остальные раскладываем как хотим. В сумме $n \cdot (n-1)! = n!$. Теперь исключим такие события, например как 1-ое письмо дошло до адресата и 2-ое письмо дошло до адресата, так как первоначально для k=1 и k=2 точно входит этот дубликат.

Когда мы выбирали множество, в которое точно входит один необходимый элемент, то количество способов выбрать такое множество было равно n. Теперь когда необходимо выбрать как минимум 2 элемента, при этом повторяющиеся события P(AB), P(BA), то количество способов выбрать такое подмножество из n элементов равно C_n^2 .

И так далее включая-исключая пересечения-удаления получим, что кол-во способов выбрать события, что хотя бы одному дошло письмо, равняется:

$$P(A) = n \cdot \frac{1}{n} - C_n^2 \frac{1}{n(n-1)} + C_n^3 \frac{1}{n(n-1)(n-2)} - \dots + (-1)^{n-1} \frac{1}{n!} = 1 - \frac{1}{2!} + \frac{1}{3!} - \dots + (-1)^{n-1} \frac{1}{n!}.$$

По формуле Тейлора:

$$P(A) \to 1 - e^{-1} \approx 0.63212.$$

Ответ: 0.63212.

Задание 17. В задаче 16 найти математическое ожидание и дисперсию числа ξ писем, попавших своему адресату.

Решение. Воспользуемся индикаторами:

$$\xi = \xi_1 + \xi_2 + \xi_3 + \dots + \xi_n$$
.

В i конверт требуемое письмо попадает в среднем с вероятностью $\frac{1}{n}$. Тогда математическое ожидание:

$$M(\xi) = M(\xi_1) + M(\xi_2) + \dots + M(\xi_n) = n \cdot \frac{1}{n} = 1.$$

Так как $\xi_k^2(w) = \xi_k(w)$, то

$$\xi^{2} = \sum_{i=1}^{\infty} \xi_{i}^{2} + \sum_{i \neq j} \xi_{i} \xi_{j} = \sum_{i=1}^{\infty} \xi_{i} + \sum_{i \neq j} \xi_{i} \xi_{j} = \xi + \sum_{i \neq j} \xi_{i} \xi_{j}.$$

Таким образом,

$$D(\xi) = M\xi^2 - (M\xi)^2 = \sum_{i \neq j} M\xi_i \xi_j + M\xi - (M\xi)^2 = \frac{n \cdot (n-1)}{n \cdot (n-1)} + 1 - 1 = 1.$$

Ответ: $M(\xi) = 1, D(\xi) = 1.$