Mathematical Foundations of AI (Aug'24-Dec'24)

Problem Sheet-2

- 1. Let $f: \mathbb{R}^n \to \mathbb{R}$ be a function. Prove that f is both convex and concave if and only if $f(x) = a^T x + b$ for some $c \in \mathbb{R}^n$ and $b \in \mathbb{R}$.
- 2. If f_1, \ldots, f_d are convex functions defined over R^n , then any convex combination $h = \sum_{j=1}^d \lambda_j f_j$ (where $\lambda_j \geq 0$, $\forall j$ and $\sum_j \lambda_j = 1$) defined as $h(x) = \sum_j \lambda_j f_j(x)$ for each x, is also a convex function.
- 3. Let f_1, \ldots, f_m be convex functions on \mathbb{R}^n . Prove that the set $S = \{x \in \mathbb{R}^n : f_j(x) \leq 0, \ \forall j\}$ is convex.
- 4. Determine if $f(x,y) = 2x^2 3xy + 5y^2 2x + 6y$ is convex, concave, both or neither for $(x,y) \in \mathbb{R}^2$.
- 5. Determine if $f(x,y) = 4x^2 + 12xy + 9y^2$ is convex, concave, both or neither for $(x,y) \in \mathbb{R}^2$.
- 6. Consider $f(x) = 15 2x 25x^2 + 2x^3$. Determine all local minima, local maxima of f. Does f have any global minimum or global maximum? If so, find them.
- 7. Consider $f(x,y) = 8x^2 + 3xy + 7y^2 25x + 31y 29$. Determine all local minima and local maxima (if any). Does f(x,y) have any global minimum or global maximum?
- 8. Consider: Minimize $f(x,y) = (x-2y)^2 + x^4$. Find a minimizer of f. Is it a strict local minimizer? Is it a global minimizer?
- 9. Consider the problem: Minimize $f(x) = x^4 1$. Solve this problem by Newton's method. Start from $x_0 = 4$ and perform three iterations. Prove that the iterates converge to the solution. What is the rate of convergence?
- 10. Consider Minimize $f(x,y) = x^2 + 2y^2$. Starting with initial guess $\vec{x}_0 = (2,1)$, show that the sequence of points generated by the steepest-descent algorithm (with exact line search $\min_{\alpha} f(\vec{x}_k + \alpha \vec{p})$ to determine step-size α , \vec{p} is the direction of steepest descent), is given by $\vec{x}_k = \frac{1}{3}^k (2, (-1)^k)$. Show that $f(x_{k+1}) = f(x_k)/9$.