Esperienza VI

Alberini Giacomo Bassini Luigi Michele Pedrotti Trevisson Nicola

1 Scopo dell'esperienza

Lo scopo di questa esperienza è quello di misurare la conduttanza di vari tubi con diametri e lunghezze diversi in regimi di flusso differenti.

2 Misura della Conduttanza

Per calcolare la conduttanza si è reso necessario l'uso di una pompa da vuoto, due pirani (con relativa strumentazione di misura), una vlavola a spillo (già tarata in precedenza) e vari tubi con lunghezze e diametri differenti.

Nello schema soprastante, per semplicità, i vari tubi sono indicati dalla linea retta verticale tra i due T che collegano i pirani. Per ottenre il valore di conduttanza a differenti regimi di flusso, opportunamente creati tramite la manipolazione della valvola a spillo, si sono utilizzati i due pirani. Essi ci hanno permesso di rilevare i valori di pressione in testa e in coda al tubo sotto analisi. L'andamento della

pressione è stato monitorato tramite un software che ha reso osservabile il momento in cui la pressione si stabilizzava dopo i cambiamenti di flusso passanti per la spillo. Una volta stabilizzata la pressione si è proceduto all'annotazione del valore di pressione corrispondente al numero di tacche di apertura della valvola a spillo (dal vuoto nel tubo per poi crescereda 4 a 8 giri e ritorno). Una volta ottenuti tutti i dati relativi ad ogni tubo a nostra disposizione si passa al calcolo della conduttanza. Per fare questo è necessario utilizzare i dati di flusso delle precedenti esperienze relativi alla valvola a spillo. Noto il flusso Q della valvola a spillo e nota la differenza di pressione fra testa e coda δp si può ricavare la conduttanza C tramite l'ugualianza $C = \frac{Q}{\sqrt{P}}$.

Apertura valvola a spillo	Conduttanza	Regime di flusso	Conduttanza teorica
4	$0.0015 \cdot 10^{-4} \pm 0.0006 \cdot 10^{-4}$	transitorio	$0.0046 \cdot 10^{-3} \pm 0.0003 \cdot 10^{-3}$
5	$0.010 \cdot 10^{-4} \pm 0.007 \cdot 10^{-4}$	transitorio	$0.0055 \cdot 10^{-3} \pm 0.0006 \cdot 10^{-3}$
6	$0.06 \cdot 10^{-4} \pm 0.01 \cdot 10^{-4}$	transitorio	$0.011 \cdot 10^{-3} \pm 0.001 \cdot 10^{-3}$
7	$0.24 \cdot 10^{-4} \pm 0.05 \cdot 10^{-4}$	laminare 10.4 ± 0.1	$0.045 \cdot 10^{-3} \pm 0.003 \cdot 10^{-3}$
8	$0.68 \cdot 10^{-4} \pm 0.09 \cdot 10^{-4}$	laminare 63±1	$0.10 \cdot 10^{-3} \pm 0.01 \cdot 10^{-3}$

Tubo di lunghezza 8m e diametro 4mm .

Apertura valvola a spillo	Conduttanza	Regime di flusso	Conduttanza teorica
4	$0.0011 \cdot 10^{-3} \pm 0.0001 \cdot 10^{-3}$	transitorio	$0.0070 \cdot 10^{-3} \pm 0.0008 \cdot 10^{-3}$
5	$0.0059 \cdot 10^{-3} \pm 0.0006 \cdot 10^{-3}$	transitorio	$0.0086 \cdot 10^{-3} \pm 0.0007 \cdot 10^{-3}$
6	$0.023 \cdot 10^{-3} \pm 0.0002 \cdot 10^{-3}$	transitorio	$0.032 \cdot 10^{-3} \pm 0.0004 \cdot 10^{-3}$
7	$0.095 \cdot 10^{-3} \pm 0.008 \cdot 10^{-3}$	laminare 10.4 ± 0.1	$0.13 \cdot 10^{-3} \pm 0.01 \cdot 10^{-3}$
8	$0.24 \cdot 10^{-3} \pm 0.02 \cdot 10^{-3}$	laminare 63±1	$0.40 \cdot 10^{-3} \pm 0.05 \cdot 10^{-3}$

Tubo di lunghezza 80cm e diametro 4mm.

Apertura valvola a spillo	Conduttanza	Regime di flusso	Conduttanza teorica
4	$0.0070 \cdot 10^{-4} \pm 0.0006 \cdot 10^{-4}$	transitorio	$0.0014 \cdot 10^{-3} \pm 0.0001 \cdot 10^{-3}$
5	$0.027 \cdot 10^{-4} \pm 0.003 \cdot 10^{-4}$	transitorio	$0.0026 \cdot 10^{-3} \pm 0.0002 \cdot 10^{-3}$
6	$0.095 \cdot 10^{-4} \pm 0.009 \cdot 10^{-4}$	laminare 1.1±0.1	$0.011 \cdot 10^{-3} \pm 0.001 \cdot 10^{-3}$
7	$0.35 \cdot 10^{-4} \pm 0.03 \cdot 10^{-4}$	lamianre 16±1	$0.049 \cdot 10^{-3} \pm 0.005 \cdot 10^{-3}$
8	$0.94 \cdot 10^{-4} \pm 0.09 \cdot 10^{-4}$	laminare 102±9	$0.12 \cdot 10^{-3} \pm 0.01 \cdot 10^{-3}$

Tubo di lunghezza 80cm e diametro 2.5mm.

Apertura valvola a spillo	Conduttanza	Regime di flusso	Conduttanza teorica
4	$0.0007 \cdot 10^{-4} \pm 0.0001 \cdot 10^{-4}$	transitorio	$0.012 \cdot 10^{-4} \pm 0.001 \cdot 10^{-4}$
5	$0.0046 \cdot 10^{-4} \pm 0.0004 \cdot 10^{-4}$	transitorio	$0.014 \cdot 10^{-4} \pm 0.001 \cdot 10^{-4}$
6	$0.024 \cdot 10^{-4} \pm 0.002 \cdot 10^{-4}$	laminare 1.1±0.1	$0.042 \cdot 10^{-4} \pm 0.004 \cdot 10^{-4}$
7	$0.10 \cdot 10^{-4} \pm 0.01 \cdot 10^{-4}$	laminare 16±1	$0.15 \cdot 10^{-4} \pm 0.01 \cdot 10^{-4}$
8	$0.10 \cdot 10^{-4} \pm 0.01 \cdot 10^{-4}$	laminare 102±9	$0.96 \cdot 10^{-4} \pm 0.09 \cdot 10^{-4}$

Tubo di lunghezza 8m e diametro 2.5mm.

Apertura valvola a spillo	Conduttanza	Regime di flusso	Conduttanza teorica
4	$1.2 \cdot 10^6 \pm 0.1 \cdot 10^6$	transitorio	$0.035 \cdot 10^{-3} \pm 0.003 \cdot 10^{-3}$
5	$0.20 \cdot 10^6 \pm 0.02 \cdot 10^6$	transitorio	$0.042 \cdot 10^{-3} \pm 0.004 \cdot 10^{-3}$
6	$0.026 \cdot 10^6 \pm 0.002 \cdot 10^6$	transitorio	$0.091 \cdot 10^{-3} \pm 0.009 \cdot 10^{-3}$
7	$0.0043 \cdot 10^6 \pm 0.0004 \cdot 10^6$	laminare 5.2 ± 0.5	$0.32 \cdot 10^{-3} \pm 0.03 \cdot 10^{-3}$
8	$0.0011 \cdot 10^6 \pm 0.0001 \cdot 10^6$	laminare 31±3	$0.92 \cdot 10^{-3} \pm 0.09 \cdot 10^{-3}$

Composizione di due tubi di acciaio in serie con tre vacuometri in tre punti dell'impianto, uno in testa, uno in coda e uno in posizione intermedia fra i due tubi.

Nei conti si è tenuto in considerazione per la viscosità dinamica e per la fomula M/RT la temperatura ambientale di $20^{\circ}C$.

Si può notare inoltre che i valori di conduttanza teorica sono molto maggiori dei valori calcolati. Questo è dovuto al fatto che il tubo utilizzato non è un tubo ideale ma al suo interno presenta delle imperfezioni. Inoltre i valori sono legati anche alla posizione del pirani rispetto al flusso di aria entrante nell'impianto poichè la velocità di flusso passante varia nel raccordo a t per via della presenza di un angolo retto.

Nella tabella relativa ai tubi in metallo collegati in serie abbiamo inserito l'impedenza al posto della conduttanza poichè questa è stata calcolata per i singoli tubi e quindi era necessario utilizzare la seguente formula $z = \frac{1}{c_1} + \frac{1}{c_2}$ per sommarne il risultato.