What's the goal?

Design	EDET DCD	CoRDIA	pre-Helena	Helena
ADC resolution	8-bit	10-bit	8-bit	10-bit
Conversion rate	10 MHz	2.5MHz	5 MHz	10 MHz
Area of one ADC	100x200 μm²	80x330 μm²	60x800 μm²	20x100 μm²
Power of one ADC	1800 μW	30 μW	700 μW	100 μW
FOM_csa (conv/sec/area)	500 Hz/μm²	95 Hz/μm²	105 Hz/μm²	5000 Hz/μm²
FOM_epc (energy/conv)	180 pJ	12 pJ	155 pJ	10 pJ
FOM_ppa (power/area)	9.0 W/cm ²	0.11 W/cm ²	1.45 W/cm ²	5.0 W/cm ²
ADC qty Mpix @ 100 KHz	10000	40000	20000	10000
ADCs total pixel rate	100 Gpx/s	100 Gpx/s	100 Gpx/s	100 Gpx/s
ADCs total data rate	800 Gb/s	1 Tb/s	800 Gb/s	1 Tb/s
ADCs total area	2.0 cm ²	10.5 cm ²	9.6 cm ²	0.2 cm ²
ADCs total power	35.0 W	1.2 W	14 W	1.0 W

What should we try tuning?

- capacitor array radix ratio & repetitions
- capacitor array unit & repetitions total values
- capacitor array switching scheme? (monotonic is simple)
- comparator architecture and strength
- ✓ total ADC nominal resolution
- ✓ total comparisons & time per comparison

Schematic setup: Principles


```
params = {
   "ADC": {
        "bit_size": 8,
                                             # nominal resolution of the ADC (switching between netlists)
        "sampling frequency": 10.0e6.
                                             # sampling rate in Hz, used to driver clock sources
       "iitter": 0.0e-12.
                                             # aperture iitter in seconds (TBD)
        "device noise": False.
                                             # enables basic gaussian noise in behavioral, and tran noise in SPICE
   "TESTBENCH": {
        "positive_input_voltages": [0.2, 1.2, 20e-6],
                                                         # start, end (incl.), and step voltage
        "negative_input_voltages": [1.2, 0.2, 20e-6],
        "use calibration": False,
                                            # account for cap error when calculating Dout (re-analog)
        "pdk file": "\"~/helena/tech/tsmc65/default testbench header 55ulp linux.lib\" tt",
        "spicedir": None,
                                            # Use this to write netlist from template
        "rawdir": None.
                                            # Use this to set SPICE output dir, and to read for parsing
    "SWITCH": {
        "offset voltage": 0.0e-3.
                                            # offset voltage in Volts
        "common mode dependent offset gain": 0.0, # common mode voltage gain
       "threshold voltage noise": True,
       "type": "passive",
                                            # supports active, passive, or ideal
       "strength": 4.
    "COMP": {
        "offset voltage": 0.0e-3,
                                            # offset voltage in Volts
        "common_mode_dependent_offset_gain": 0.0, # common mode voltage gain
        "threshold voltage noise": True.
       "strength": 4,
                                            # used to size some active devices (SPICE only)
    "CDAC": {
        "positive reference voltage": 1.2,
                                            # reference voltage in Volts
        "negative reference voltage": 0.0.
                                            # reference voltage in Volts
                                            # reference voltage noise in Volts (CDAC)
        "reference_voltage_noise": 0.0e-3,
        "switching_strat": "monotonic",
                                            # {monotonic, bss} used to determined initial starting voltages
        "unit capacitance": 1e-15,
                                             # unit capacitance
        "target capacitance": None,
                                            # Used for alternative
       "array size": 8,
                                            # number of capacitor stages
        "array N M expansion": False.
                                            # Sizing strategy where
        "multiple conversions": None.
                                            # List bit positions in C array, with number of repetitions at each
        "use_rdac": False,
                                            # Set bit position which should
        "use_offset_cap": False,
                                            # set to 0 farads, if disabled
        "use split cap": True,
                                            # set to 0 farads, if disabled
        "parasitic capacitance": 5.00e-14, # estimate of capacitance at output (added to SPICE and ideal)
        "settling time": 0.0e-9.
                                            # individual settling errors per capacitor?
   },
```

Model parameters

Work in progress

CDAC model parameters: Switching scheme

CDAC model parameters: Capacitor calculation

where
$$i=0,1,2,\ldots$$
 , $(N_{CDAC}-1)$
$$w_i=\beta^i \qquad \qquad \text{weights}$$

$$C_i=C_{unit}\cdot w_i \qquad \qquad \text{capacitor values}$$

where
$$i=0,1,2,\ldots$$
, $(N_{CDAC}-1)$
$$C_i=\frac{C_{total}}{2\cdot\beta^{(N_{CDAC}-1-i)}} \quad \text{capacitor values}$$

$$w_i=\frac{C_i}{C_0} \qquad \qquad \text{weights}$$

Approach #3: If we care about allowable input signal swing, account for split offset and parasitic caps

CDAC model parameters: Input voltage swings

 \times The differential input range is limited by the CDAC and additional + parasitic caps

In this 9-bit 1.2V ref case: $\Delta V_{in} \approx \frac{C_{\rm dac}}{C_{\rm total}} \cdot V_{\rm ref} = \frac{136}{61+136} \cdot 1.2 = 0.826$

X Also note, non-ideal comparator has common-mode input limitation

CDAC model parameters: Settling error

Monotonic switching ameliorates RC delay, but it will still manifest as voltage error when:

- X Clock periods are short
- X Differential input voltage is large

settling_time_error =
$$e^{-\frac{1}{\tau_s \cdot f_s \cdot (N+1)}}$$

Workflow: SPICE & behavioral models use same params

Testbench parameters: Syncing input voltages and clocks

Does the behavioral model work?

Testbench: Output value calculation (i.e. 're-analog')

Testbench: Output value calculation (i.e. 're-analog')

$$R = \sum_{i=0}^{N_{CDAC}-1} b_i \cdot w_i$$

$$\begin{aligned} & \text{cycles} = 1, 2, 3, 4, 5, 6, 7, 8 \\ & \text{weights} = w_i = w_7, w_6, w_5, w_4, w_3, w_2, w_1, w_0 \\ & \text{SA register} = r_i = r_7, r_6, r_5, r_4, r_3, r_2, r_1, r_0 \\ & \text{data out} = b_i = b_7, b_6, b_5, b_4, b_3, b_2, b_1, b_0 \end{aligned}$$

$$w_i = \beta^i$$
 where $i = 0, 1, 2, \dots, (N_{CDAC} - 1)$
$$R = \sum_{i=1}^{N_{CDAC}} (2 \cdot b_i - 1) \cdot w_{i-1} + b_0 - 1$$

Can we use the trailing comparator output as an ADC bit?

8-capacitor CDAC/ADC 8-cap CDAC 9-bit ADC

cycles = 1, 2, 3, 4, 5, 6, 7, 8, 9
weights =
$$w_i = w_7, w_6, w_5, w_4, w_3, w_2, w_1, w_0$$

SA register = $r_i = r_7, r_6, r_5, r_4, r_3, r_2, r_1, r_0$
data out = $b_i = b_8, b_7, b_6, b_5, b_4, b_3, b_2, b_1, b_0$

Behavioral vs SPICE: Linearity comparison

Behavioral vs SPICE: Linearity comparison

X 1 LSB errors exist

Is rounding applied at different stages?

Perhaps parasitic capacitance is throwing us off? I calculated ~50 fF for the parasitics plus

		aframe	
	Vin	Dout	Dout_rounded
0		-98.2403072	-98.0
1	-0.59996000		-98.0
2	-0.59992667	-98.2403072	-98.6
3	-0.59989333	-98.2403072	-98.0
4	-0.59986000	-98.2403072	-98.0
35995	0.59986000	99.2403072	99.0
35996	0.59989333	99.2403072	99.0
35997	0.59992667	99.2403072	99.0
35998	0.59996000	99.2403072	99.0
35999	0.59999333	99.2403072	99.0
9	PICE datafram	e	
	PICE datafram Vin	e Dout	Dout rounder
S		-	Dout_rounded
	Vin	Dout	
0	Vin -0.59994	Dout -98.7403072	- -99.0
0 1 2	Vin -0.59994 -0.59991	Dout -98.7403072 -98.7403072	- -99.0 -99.0
0 1 2 3	Vin -0.59994 -0.59991 -0.59988	Dout -98.7403072 -98.7403072 -98.7403072	-99.0 -99.0 -99.0
0	Vin -0.59994 -0.59991 -0.59988 -0.59985	Dout -98.7403072 -98.7403072 -98.7403072 -98.7403072	-99.0
0 1 2 3 4	Vin -0.59994 -0.59991 -0.59988 -0.59985 -0.59982	Dout -98.7403072 -98.7403072 -98.7403072 -98.7403072	-99.(-99.(-99.(-99.(
0 1 2 3 4	Vin -0.59994 -0.59991 -0.59988 -0.59985 -0.59982	Dout -98.7403072 -98.7403072 -98.7403072 -98.7403072 -98.7403072	-99.(-99.(-99.(-99.(
0 1 2 3 4 39991 39992	Vin -0.59994 -0.59991 -0.59988 -0.59985 -0.59982	Dout -98.7403072 -98.7403072 -98.7403072 -98.7403072 -98.7403072 98.7403072	-99.(-99.(-99.(-99.(-99.(99.(
0 1 2 3 4 	Vin -0.59994 -0.59991 -0.59988 -0.59985 -0.59982 0.59982	Dout -98.7403072 -98.7403072 -98.7403072 -98.7403072 -98.7403072 -98.7403072 98.7403072	-99.(-99.(-99.(-99.(-99.(

Behavioral vs SPICE: Linearity comparison

How are non-binary redundant codes distributed?

What about double conversions?

The repeated conversion steps need an offset of half their weight to account for the 'bias' they introduce

```
params = {
   "ADC": {
        "bit_size": 8,
                                             # nominal resolution of the ADC (switching between netlists)
        "sampling frequency": 10.0e6.
                                             # sampling rate in Hz, used to driver clock sources
                                             # aperture jitter in seconds (TBD)
       "iitter": 0.0e-12.
        "device noise": False.
                                             # enables basic gaussian noise in behavioral, and tran noise in SPICE
   "TESTBENCH": {
        "positive_input_voltages": [0.2, 1.2, 20e-6],
                                                        # start, end (incl.), and step voltage
        "negative_input_voltages": [1.2, 0.2, 20e-6],
        "use calibration": False.
                                            # account for cap error when calculating Dout (re-analog)
        "bdk file": "\"~/helena/tech/tsmc65/default testbench header 55ulp linux.lib\" tt".
        "spicedir": None,
                                            # Use this to write netlist from template
       "rawdir": None.
                                            # Use this to set SPICE output dir, and to read for parsing
    "SWITCH": {
        "offset voltage": 0.0e-3.
                                            # offset voltage in Volts
        "common mode dependent offset gain": 0.0, # common mode voltage gain
       "threshold voltage noise": True,
       "type": "passive",
                                            # supports active, passive, or ideal
       "strength": 4.
    "COMP": {
        "offset voltage": 0.0e-3,
                                            # offset voltage in Volts
        "common_mode_dependent_offset_gain": 0.0, # common mode voltage gain
        "threshold voltage noise": True.
       "strength": 4.
                                            # used to size some active devices (SPICE only)
   },
    "CDAC": {
        "positive reference voltage": 1.2,
                                            # reference voltage in Volts
        "negative reference voltage": 0.0.
                                            # reference voltage in Volts
        "reference_voltage_noise": 0.0e-3,
                                            # reference voltage noise in Volts (CDAC)
        "switching_strat": "monotonic",
                                            # {monotonic, bss} used to determined initial starting voltages
        "unit capacitance": 1e-15,
                                            # unit capacitance
        "target capacitance": None,
                                            # Used for alternative
       "array size": 8,
                                            # number of capacitor stages
        "array N M expansion": False.
                                            # Sizing strategy where
                                            # List bit positions in C array, with number of repetitions at each
        "multiple conversions": None.
        "use_rdac": False,
                                            # Set bit position which should
        "use offset cap": False,
                                            # set to 0 farads, if disabled
        "use split cap": True,
                                            # set to 0 farads, if disabled
        "parasitic capacitance": 5.00e-14, # estimate of capacitance at output (added to SPICE and ideal)
        "settling time": 0.0e-9.
                                            # individual settling errors per capacitor?
   },
```

Next steps?