PART 2 The Tate Profile

Definition 4. Assume $E[m] \subseteq E(\mathbb{F}_q)$ and let (P_1, P_2) be a basis for E[m]. Then, the m-Tate profile is the map

$$t_{[m]}: E(\mathbb{F}_q) \to \mu_{m'}^2 \qquad Q \mapsto (t_2(P_1, Q), t_2(P_2, Q)).$$

For $Q \in E(\mathbb{F}_q)$, we say that $t_{[m]}(Q)$ is the *m-profile* of Q. When $t_{[m]}(Q) = (1,1)$, we say the profile is *trivial*.

If the Tate pairing t_m is bilinear, then the Tate profile $t_{\lceil m \rceil}$ is linear.

If the Tate pairing t_m is non-degenerate, then $\ker t_{[m]} = [m]E(\mathbb{F}_q)$. Thus, $t_{[m]}(Q)$ is trivial if and only if there is an $R \in E(\mathbb{F}_q)$ with [m]R = Q.

Together, $t_{[m]}$ gives us isomorphisms

$$E[m] \cong E(\mathbb{F}_q)/[m]E(\mathbb{F}_q) \cong \mu_m^2.$$

Thus, the basis (P_1, P_2) together with $t_{\lceil m \rceil}$ gives us coordinates.

Example 4 ----

Theorem 6. Let E be an elliptic curve over \mathbb{F}_q of order $h\cdot r$, with r a large prime, and h a small cofactor. For $P\in E(\mathbb{F}_q)$, we may verify $P\in E[r](\mathbb{F}_q)$ either by

a.)
$$[r]P = \mathcal{O}_E$$
, or,

b.) when the h-Tate pairing t_h is non-degenerate by triviality of $t_{[h]}(P)$.

La Siesta (1982)

The agenda for today

PART 3
Generalisations

