Das Beispiel $Spec\mathbb{C}[X,Y]$

Stellt man ein Primideal $\mathfrak p$ als die gemeinsamen Nullstellen aller in $\mathfrak p$ enthaltenen Polynome dar, so ist die Darstellung eines Primideals $\mathfrak q\supseteq\mathfrak p$ eine Teilmenge der Darstellung von $\mathfrak p$.

Zu $f \in A$, $\mathfrak{p} \in \operatorname{Spec} A$ nennt man $[f] \in A/\mathfrak{p}$ Wert von f bei \mathfrak{p} . Denn z.B. für $A := \mathbb{C}[X,Y]$ und $\mathfrak{p} = (X-a,Y-b)$ gilt:

$$\mathbb{C}[X,Y] \to \mathbb{C}[X,Y]/\mathfrak{p} \cong \mathbb{C}$$
$$f(X,Y) \mapsto [f(X,Y)] \mapsto f(a,b)$$

Gilt $g \in \mathfrak{p}$, so sagt man g verschwindet an \mathfrak{p} , denn es ist:

$$A \to A/\mathfrak{p}$$
$$g \mapsto [g] = [0]$$

Wie zeichnet man Spec?

Zeichnet man $\operatorname{Spec} A$, so zeichnet man jedes Primideal $\mathfrak p$ als seinen topologischen Abschluss $\overline{\mathfrak p}$, also dessen Verschwindungsmenge $V(\mathfrak p)$:

$$\overline{\mathfrak{p}} = \underbrace{\text{kleinste}}_{\text{gr\"{o}Btes }\mathfrak{q}} \in \operatorname{Spec} A \underbrace{\text{abgeschlossene Menge}}_{V(\mathfrak{q})}, \underbrace{\text{die }\mathfrak{p} \text{ enth\"{a}lt}}_{\text{mit }\mathfrak{q}} = V(\mathfrak{p})$$

p nennt man dann generischen Punkt zu \overline{p}.

Insbesondere enthält die Darstellung eines Primideals $\mathfrak p$ damit alle Primideale $\mathfrak q\supseteq \mathfrak p$ und für maximale Ideale $\mathfrak m$ gilt:

$$\overline{\mathfrak{m}} = V(\mathfrak{m}) = \{ \mathfrak{p} \in \operatorname{Spec} A \mid \mathfrak{m} \subseteq \mathfrak{p} \} \stackrel{\mathfrak{m}}{=} \stackrel{\mathsf{max.}}{=} \{ \mathfrak{m} \}$$

Also werden genau die maximalen Ideale als (geometrische) Punkte gezeichnet.

Die algebraische Dimension eines Primideals $\mathfrak p$ (die Länge der längsten darin enthaltenen aufsteigenden Kette von Primidealen) passt so zur geometrischen Dimension der gezeichneten Representation.

Bsp.: $\mathfrak{p} := (X^2 - Y) \in \operatorname{Spec}\mathbb{C}[X,Y]$ (nicht maximal - denn $\mathbb{C}[X,Y]/\mathfrak{p} \cong \mathbb{C}[X]$ ist kein Körper)

Um $\mathfrak p$ zu zeichnen muss man sich überlegen, in welchen maximalen Idealen es enthalten ist (also welche geometrischen Punkte das Bild von $\mathfrak p$ enthalten soll).

Man sieht $(X-a,Y-b)\supseteq (X^2-Y)=\mathfrak{p}\iff a^2-b=0$. Zeichnet man nun das (maximale) Ideal (X-a,Y-b) als Punkt an den Koordinaten (a,b), so erscheint \mathfrak{p} gerade als Parabel:

