# Kapitel 7.

# Kovariante Ableitungen

**Frage:** Was ist eine "gute" Differentialrechnung für Vektorfelder? Das gewöhnliche Differential im  $\mathbb{R}^n$  für  $Y \colon \mathbb{R}^n \to \mathbb{R}^n$  ist gerade die lineare Abbildung  $\mathrm{D}\,Y|_p \cdot v = \lim \frac{1}{t} \left( Y(p+tv) - Y(p) \right) = \left. \frac{\mathrm{d}}{\mathrm{d}t} \right|_{t=0} Y(p+tr)$ . Betrachte im euklidischen Fall einen Punkt p, sowie einen Tangentialvektor  $Y_p$ .



Nun gehe zur Betrachtung von Vektorfeldern  $X: \mathbb{R}^n \to \mathbb{R}^n$  über und setze  $D_X Y|_p = DY|_p \cdot X_p$ . Hierfür gilt:

- D ist  $\mathbb{R}$ -linear in  $Y: D(Y + \tilde{Y}) = DY + D\tilde{Y}$ .
- Es gilt die Leibnizregel:  $D(fY) = D f \cdot Y + f D Y$ .
- D ist  $C^{\infty}(\mathbb{R}^n)$ -linear in X:

$$D_{fX} Y|_p = DY|_p \cdot (fX)_p = DY|_p \cdot f(p)X_p = f(p)DY|_p \cdot X_p = (fD_X Y)(p).$$

Erinnerung: Die Lieableitung  $\mathcal{L}_{(\cdot)}Y$  ist nicht  $C^{\infty}(M)$ -linear.

**Definition 7.1** Es seien M eine glatte Mannigfaltigkeit und E ein Vektorbündel über M. Eine **kovariante Ableitung** (oder **Zusammenhang** ([engl.] "connection")) auf E ist eine Abbildung

$$\nabla \colon \mathcal{V}(M) \times \Gamma(E) \to \Gamma(E), \quad \nabla(X,S) = \nabla_X S$$

mit den folgenden Eigenschaften:

(i)  $\nabla S$  ist  $C^{\infty}(M)$ -linear, das heißt

$$\nabla_{X+Y}S = \nabla_X S + \nabla_Y S \text{ und } \nabla_{fX}S = f\nabla_X S$$

für alle  $X, Y \in \mathcal{V}(M)$  und  $f \in C^{\infty}(M)$ .

(ii)  $\nabla_X$  ist  $\mathbb{R}$ -linear, das heißt für alle  $\mu, \nu \in \mathbb{R}$  gilt:

$$\nabla_X(\mu S + \nu T) = \mu \nabla_X S + \nu \nabla_X T.$$

(iii)  $\nabla_X$  erfüllt die folgende Leibnizregel:

$$\nabla_X(fS) = \mathrm{d}f(X) \cdot S + f \cdot \nabla_X S = X(f) \cdot S + f \cdot \nabla_X S.$$

Kurzform:  $\nabla \colon \Gamma(E) \to \Gamma(T^*M \otimes E), S \mapsto \nabla_{(.)}S$  ist eine  $C^{\infty}(M)$ -Modulderivation.

Beispiel (1) Das gewöhnliche Differential D definiert in kanonischer Weise eine kovariante Ableitung auf  $T \mathbb{R}^n$ .

$$X \in \mathcal{V}(\mathbb{R}^n), X \colon \mathbb{R}^n \to T \mathbb{R}^n \cong \mathbb{R}^n \times \mathbb{R}^n \text{ via } \mathcal{I} \colon X_p \mapsto (p, \underbrace{\mathcal{I}_p(X_p)}).$$

Nun ist wie folgt eine kovariante Ableitung gegeben:  $(\nabla_X Y)_p = \mathcal{I}^{-1}(p, D_{\overline{X}_p} \overline{Y}).$ 

(2)  $E = M \times \mathbb{R}^n$ , ein Schnitt S von E ist von der Form  $S_p = (p, s(p)), s \colon M \to \mathbb{R}^n$ glatt.

Hier definiert man die kovariante Ableitung:

$$\nabla_X S = (p, \mathcal{I}_{s(p)}^{-1}(s_{*p}, X_p))$$

$$s_{*p} \colon \operatorname{T}_{*p} M \to \operatorname{T}_{*p} \mathbb{R}^n, s_{*p} \colon X_p \in \operatorname{T}_{*p} \mathbb{R}^n \xrightarrow{\mathcal{I}_{s(p)}} \mathbb{R}^n.$$

(3) Sei  $E = M \times \mathbb{R}^n$ , ein Schnitt  $S = (\mathrm{id}, \sigma), \ \sigma : M \to \mathbb{R}^n$ . Dann ist  $(\nabla_X S)_p =$  $(p, \mathcal{I}_p(\sigma_{*p}(X_p)), \ \sigma_{*p} : \mathrm{T}_p M \to \mathrm{T}_{\sigma(p)} \mathbb{R}^n$ . Sei  $\omega = (\omega_j^k)_{j,k \leq n}$  eine  $(n \times n)$ -Matrix von 1-Formen auf M, das heißt  $\omega(X)|_p \in \mathfrak{M}^{n \times n}(\mathbb{R})$ . Für einen Schnitt S = $(id, \sigma)$  und sei dann

$$(\nabla_X S)_p = (\mathrm{id}, \mathcal{I}_p(\sigma_{*p}(X_p)) + \omega(X)|_p \cdot \sigma(p).$$

Dies definiert eine kovariante Ableitung auf  $E = M \times \mathbb{R}^n$ .

Dies definiert eine kovariante Ableitung auf 
$$E = M \times \mathbb{R}^n$$
.  
(4) d:  $\Omega^0(M) = C^{\infty}(M) = \Gamma(M \times \mathbb{R}) \to \Omega^1(M) = \Gamma(T^*M) = \Gamma(\underbrace{T^*M \otimes (M \times \mathbb{R})}_{\text{Fasern: } T_p^*M \otimes \mathbb{R} \cong T_p^*M}$ 

 $mit f \mapsto [df : X \mapsto df(X) = X(f)].$ 

Dann ist

d: 
$$\mathcal{V}(M) \times C^{\infty}(M) \to C^{\infty}(M)$$
,  
 $\nabla_X f = d(X, f) \mapsto X(f)$ 

eine kovariante Ableitung auf  $C^{\infty}(M)$ .

(5) Es sei  $M \subseteq \mathbb{R}^k$  eine glatte Untermannigfaltigkeit und  $\nabla$  die kanonische kovariante Ableitung auf  $T \mathbb{R}^k$ .

Erster Ansatz für eine kovariante Ableitung:

$$\tilde{\nabla}_X Y = \nabla_{\tilde{X}} \tilde{Y}|_M$$
 das funktioniert noch nicht.

Für  $X, Y \in \mathcal{V}(M)$  seien  $\tilde{X}, \tilde{Y}$  Fortsetzungen, das heißt  $\tilde{X}|_{M} = X$  und  $\tilde{Y}|_{M} = Y$ .

$$(\nabla_{\tilde{X}}\tilde{Y})_p \in \mathrm{T}_p \,\mathbb{R}^k \supseteq \mathrm{T}_p \,M.$$

Nächster Ansatz, der tasächlich eine kovariante Ableitung definiert.

$$\tilde{\nabla}_X Y = (\nabla_{\tilde{X}} \tilde{Y}|_M)^{\operatorname{proj} T_p M},$$

wobei  $X^{\operatorname{proj} T_p M}$  die orthogonale Projektion von X auf den Tangentialraum  $T_p M$  bzgl. des Standardskalarproduktes ist.

Schreibt man in Beispiel 3)  $\sigma = (\sigma^1, \dots, \sigma^n)$ , so kann man  $d\sigma = (d\sigma^1, \dots, d\sigma^n)$  als 1-Form auf M mit Werten in  $\mathbb{R}^n$  auffassen:

$$d\sigma(X)_p = (d\sigma^1(X)_p, \dots, d\sigma^n(X)_p)$$
$$= (X(\sigma^1)_p, \dots, X(\sigma^n)_p)$$
$$= \mathcal{I}_p(\sum X(\sigma^i)\partial_i),$$

wobei  $\partial_i$  das *i*-te Koordinatenfeld in der Karte (id,  $\mathbb{R}^n$ ) ist. Identifiziert man  $E = M \times \mathbb{R}^n$  mit  $C^{\infty}(M, \mathbb{R}^n)$ , so gilt  $\nabla_X S = d\sigma(X)\omega(X)\sigma$  (Kurzschreibweise für die zweite Komponente von S). Lokal ist *jede* kovariante Ableitung von dieser Form.

**Lemma 7.2** Die kovariante Ableitung  $(\nabla_X S)_p$  hängt nur von den Werten von X und S in einer Umgebung von p ab.

Beweis Es seien  $p \in M$  und  $X_1, X_2 \in \mathcal{V}(M)$  sowie  $S_1, S_2 \in \Gamma(E)$  und U eine Umgebung von p mit  $X_1|_U = X_2|_U$  und  $S_1|_U = S_2|_U$ . Wähle nun ein  $\sigma \in C^{\infty}(M)$  mit dem Träger supp  $\sigma \subseteq U$  und  $\sigma|_V \equiv 1$  auf einer Umgebung V von p. Dann gilt:  $\sigma X_1 = \sigma X_2$  und  $\sigma S_1 = \sigma S_2$ . Für  $q \in V$  folgt dann:

$$(\nabla_{\sigma X_i} \sigma S_i)_q = \sigma(q)(\nabla_{X_i} \sigma S_i)|_q$$

$$= \sigma(q)(\underbrace{X_i(\sigma)|_q}_{=0} S_i + \underbrace{\sigma(q)}_{=1} \nabla_{X_i} S_i|_q)$$

$$= \nabla_{X_i} S_i|_q$$

Damit folgt  $\nabla_{X_1} S_1 = \nabla_{X_2} S_2$ 

### 1. Lokale Koordinaten

Es sei  $(\varphi, U)$  eine Karte von M um  $p \in M$  und  $E|_U \xrightarrow{\tau} U \times \mathbb{R}^n$ . Dann ist  $s_i(p) = \tau^{-1}(p, e_i)$  eine lokale Basis. Jeder Schnitt S ist also lokal von der Form  $S|_U = \sum_i \sigma^i s_i$ . Somit existieren glatte Funktionen  $\Gamma_{ij}^k$ , die sogenannten **Christoffelsymbole** mit

$$\nabla_{\frac{\partial}{\partial x^i}} s^j = \sum_k \Gamma_{ij}^k s^k.$$

Für  $S = \sum \sigma^j s_j$  und  $X = \sum \xi^i \frac{\partial}{\partial x^i}$  folgt dann:

$$\begin{split} (\nabla_X S)_p &= \sum_{i,j} \xi_p^i \nabla_{\frac{\partial}{\partial x^i}} \left( \sigma^j s_j \right) \\ &= \sum_{i,j} \xi_p^i \left( \frac{\partial \sigma^j}{\partial x^i} \cdot s_j(p) \nabla_{\frac{\partial}{\partial x^i}} s_j|_p \right) \\ &= \sum_{i,j} \xi_p^i \left( \frac{\partial \sigma^j}{\partial x^i} \bigg|_p s_j(p) + \sigma^j(p) \sum_k \Gamma_{ij}^k(p) s_k(p) \right) \\ &= \sum_k \left( \sum_i \xi_p^i \left. \frac{\partial \sigma^k}{\partial x^i} \right|_p + \sum_{i,j} \xi_p^i \sigma^j(p) \Gamma_{ij}^k(p) \right) s_k(p) \\ &= X(\sigma^k)|_p = \frac{\mathrm{d}}{\mathrm{d}t}|_{t=0} (\sigma^k \circ \gamma) \text{ mit } \dot{\gamma}(0) = X_p \end{split}$$

**Bemerkung** (1)  $X \mapsto (\nabla_X S)_p$  hängt nur von dem Wert  $X_p$  von X in p ab, Schreibweise  $(\nabla_X S)_p = \nabla_{X_p} S$ .

(2)  $S \mapsto \nabla_{X_p} S$  hängt nur von den Werten von S entlang einer Kurve  $\gamma$  mit  $\dot{\gamma}(0) = X_p$  ab. Es gilt

$$\nabla_X S = \sum_k X(\sigma^k) S_k + \sum_k \sum_j \left( \left( \sum_i \Gamma_{ij}^k \xi^i \right) \sigma^j \right) s_k.$$

Schreibt man  $\sigma = (\sigma^1, \dots, \sigma^n)$  und fasst  $d\sigma = (d\sigma^1, \dots, d\sigma^n)$  als lokale 1-Form mit Werten in  $\mathbb{R}^n$  auf, so ist für  $s = (s_1, \dots, s_n)$   $d\sigma \cdot s = \sum d\sigma^j s^j$  eine lokale 1-Form mit Werten in E. Es gilt:  $d\sigma \cdot s(X) = D_X \sigma \cdot s$ . Analog definiert  $\omega(X) = (\omega_j^k(X))_{k,j}$  eine lokale 1-Form mit Werten in den reellen  $(n \times n)$ -Matrizen. Dann ist

$$\omega \sigma : X \mapsto \omega(X) \sigma = \left( \sum_{i,j} \Gamma_{ij}^k \xi^i \sigma^j \right)^k$$

eine lokale 1-Form mit Werten in  $\mathbb{R}^n$  und  $\omega \sigma \cdot s$  eine lokale 1-Form mit Werten in E. Damit gilt

$$\nabla_X S = (\mathrm{d}\sigma(X) + \omega(X)\sigma) \cdot s$$

oder kurz

$$\nabla = d + \omega$$
.

### 2. Transformationsverhalten

Es seien  $E|_{U_{\alpha}} \xrightarrow{\tau_{\alpha}} U_{\alpha} \times \mathbb{R}^{n}$  und  $E|_{U_{\beta}} \xrightarrow{\tau_{\beta}} U_{\beta} \times \mathbb{R}^{n}$  lokale Trivialisierungen. Die Übergangsfunktion

$$\psi = \psi_{\beta\alpha} : U_{\alpha} \cap U_{\beta} \to \mathrm{GL}_n(\mathbb{R})$$

war durch

$$\tau_{\beta} \circ \tau_{\alpha}^{-1}(p, x) = (p, \psi x)$$

definiert. Für die lokalen Darstellungen  $S = \sum \sigma^j s_j = \sum \tilde{\sigma}^j s_j$  in  $\tau_{\alpha}$  beziehungsweise  $\tau_{\beta}$  gilt damit  $\tilde{\sigma}^i = \sum_k \psi_k^i \sigma^k$ , kurz  $\tilde{\sigma} = \psi \sigma$ . Es folgt daraus:

$$(d\sigma(X) + \omega(X)\sigma)S = \nabla_X S = (d\tilde{\sigma}(X) + \tilde{\omega}(X)\tilde{\sigma})\tilde{S}$$

also

$$d\sigma(X) + \omega(X)\sigma = \psi^{-1}(d\tilde{\sigma}(X) + \tilde{\omega}(X)\tilde{\sigma})$$

$$= \psi^{-1}(d(\psi\sigma)(X) + \tilde{\omega}(X)\psi\sigma)$$

$$= \psi^{-1}((D_X f)\sigma + \psi d\sigma(X) + \tilde{\omega}(X)\psi\sigma)$$

$$= d\sigma(X) + (\underbrace{\psi^{-1}(D_X \psi) + \psi^{-1}\tilde{\omega}(X)\psi}_{=\omega(X)})\sigma.$$

Damit gilt

$$\tilde{\omega}(X) = \psi \omega(X) \psi^{-1} - D_X \psi \cdot \psi^{-1}. \tag{7.1}$$

Daher definiert  $\omega(X)$  keinen Schnitt in  $\operatorname{Hom}(E, E)$ , denn in Kapitel 5 wurde gezeigt, dass die Übergangsfunktion von  $\operatorname{Hom}(E, E)$  gegeben ist durch

$$(p,\eta) \to (p,\psi \circ \eta \circ \psi^{-1}).$$

**Bemerkung** Der zweite Summand in (7.1) hängt nur von der Übergangsfunktion  $\psi$  und X ab, und somit nicht von  $\nabla$ . Das heißt sind  $\nabla$  und  $\tilde{\nabla}$  kovariante Ableitungen auf E, so ist ihre Differenz  $\nabla - \tilde{\nabla}$  eine globale 1-Form mit Werten in Hom(E, E).

Durch eine kovariante Ableitung auf einem Vektorbündel E erhalten wir kovariante Ableitungen auf dem dualen Vektorbündel  $E^*$  und Tensorprodukte von Vektorbündeln wie folgt:

**Proposition 7.3** Die für  $X \in \mathcal{V}(M)$ ,  $S^* \in \Gamma(E^*)$  und  $v \in E_p$  sowie eine Fortsetzung  $\tilde{v} \in \Gamma(E)$  von  $v_p$  durch

$$(\nabla_X^* S^*)_p(v) = X_p(S^*(\tilde{v})) - S^*|_p(\nabla_X \tilde{v})$$

definierte Abbildung ist eine kovariante Ableitung auf  $E^*$ . Dass  $S^*(\tilde{v}) = (S^*, \tilde{v})$  ist führt zu  $X_p(S^*, \tilde{v}) = (\nabla_X^* S^*, \tilde{v}) + (S^*, \nabla_X \tilde{v})$ .

Der Beweis sei zur Übung überlassen.

**Proposition 7.4** Es seien  $E_1$  und  $E_2$  Vektorbündel mit kovarianten Ableitungen  $\nabla^1$  und  $\nabla^2$  über M. Dann definiert für  $X \in \mathcal{V}(M)$ ,  $S_i \in \Gamma(E_i)$ 

$$\nabla_X(S_1 \otimes S_2) = \nabla_X^1 S_1 \otimes S_2 + \nabla_X^2 S_1 \otimes S_2$$

durch lineare Fortsetzungen eine kovariante Ableitung auf  $E_1 \otimes E_2$ .

**Definition 7.5** Die Abbildung

$$R^{\nabla} = R : \mathcal{V}(M) \times \mathcal{V}(M) \times \Gamma(E) \to \Gamma(E)$$
$$R(X, Y)S = \nabla_X \nabla_Y S - \nabla_Y \nabla_X S - \nabla_{[X, Y]} S$$

heißt der Krümmungstensor der Abbildung  $\nabla$ .

Bemerkung Für alle  $X, Y \in \mathcal{V}(M)$  gilt R(Y, X) = -R(X, Y).

**Proposition 7.6** R ist  $C^{\infty}(M)$ -linear in allen Argumenten.

Der Beweis sei zur Übung überlassen.

#### 3. Schnitte entlang von Ableitungen



**Definition 7.7** Es seien E ein Vektorbündel über M mit kovarianter Ableitung  $\nabla$  und  $\Phi: N \to M$ . Ein **Schnitt** entlang  $\Phi$  ist eine glatte Abbildung  $S: N \to E$ , so dass  $S(p) \in E_{\Phi(p)}$  gilt, dies entspricht genau dem Schnitt in das längs  $\Phi$  zurückgezogene Bündel  $\Phi^*$ .



Für einen Schnitt S in E längs  $\Phi$  und  $X_p \in T_p N$  ist die kovariante Abbildung  $\nabla_{X_p} S$  von S in Richtung  $X_p$  wie folgt definiert:

Es sei  $s_1, \ldots, s_n$  eine lokale Basis über einer Trivialisierungsumgebung  $U \subseteq M$ . Dann ist S lokal gegeben durch

$$S_p = \sum_j \sigma^j(p) s_j(\Phi(p))$$

für  $p \in V = \Phi^{-1}(U) \subseteq N$ , und damit

$$\nabla_{X_n} S = (d\sigma(X_n) + \omega(\Phi_{*n} X_n) \sigma(p)) S(\Phi(p)).$$

Dies hängt nicht von der Wahl der Trivialisierung ab, denn ist U' ein weiteres Trivialisierungsgebiet mit lokaler Basis  $\tilde{s}_1, \ldots, \tilde{s}_n$  und Übergangsfunktion  $\psi : C \cap U' \to \operatorname{GL}_n(\mathbb{R})$ , so gilt

$$\tilde{\sigma} = (\psi \circ \Phi)\sigma \quad \text{und}$$
  
$$\tilde{\omega} = (\psi \circ \Phi)\omega(\psi \circ \Phi)^{-1} - d(\psi \circ \Phi)(\psi \circ \Phi)^{-1}$$

damit folgt

$$d\tilde{\sigma}(X_p) + \tilde{\omega}(\Phi_{*p}X_p)\tilde{\sigma}(p) - d((\psi \circ \Phi)\sigma)(X_p)$$

$$+ (\psi \circ \Phi)\omega(\Phi_{*p}X_p)(\psi \circ \Phi)^{-1}(\psi \circ \Phi)\sigma$$

$$- d(\psi \circ \Phi)(X_p)(\psi \circ \Phi)^{-1}(\psi \circ \Phi)\sigma$$

$$= d(\psi \circ \Phi)(X_p)\sigma + (\psi \circ \Phi)\omega(\Phi_{*p}X_p)\sigma - d(\psi \circ \Phi)(X_p)\sigma$$
$$= (\psi \circ \Phi)(d\sigma(X_p) + \omega(\Phi_{*p}X_p)\sigma)$$

Damit ist  $p \mapsto \nabla_{X_p} S$  als Schnitt entlang  $\Phi$  wohldefiniert.

**Bemerkung** Dies definiert eine kovariante Ableitung auf  $\Phi^*E \subseteq N \times E$ . Sind umgekehrt  $S \in \Gamma(E)$  und  $X_p \in T_p N$ , so ist  $S \circ \Phi$  ein Schnitt entlang  $\Phi$  und es gilt

$$\nabla_{X_p}(S \circ \Phi) = \nabla_{\Phi_{*p}X_p}S$$

**Spezialfall:** Sei  $\Phi = c : \mathcal{I} = [a, b] \to M$ . Ein Schnitt in E entlang c ist eine glatte Abbildung  $S : \mathcal{I} \to E$  mit  $S(t) \in E_{c(t)}$ . Die kovariante Abbildung  $\nabla_{\frac{\partial}{\partial t}|_t} S$  wird kurz als  $\nabla_t S$  oder S'(t) geschrieben. In lokalen Koordinaten gilt

$$S' = \left( d\sigma \left( \frac{\partial}{\partial t} \right) + \omega \left( c_* \left( \frac{\partial}{\partial t} \right) \right) \sigma \right) S \circ c$$
$$= \left( \sigma' + \omega(\dot{c})\sigma \right) S \circ c$$

**Definition 7.8** Ein Schnitt  $S \in \Gamma(E)$  heißt **parallel** (oder **konstant**), wenn  $\nabla S \equiv 0$ . Ein Schnitt S entlang c heißt **parallel**, wenn  $S' \equiv 0$  gilt.

**Proposition 7.9** Es sei  $c: \mathcal{I} \to M$  eine (stückweise) glatte Kurve und  $\xi \in E_{c(s)}$ . Dann existiert genau ein entlang c paralleler Schnitt  $S_{\xi}$  in E mit  $S_{\xi}(s) = \xi$ .

Beweis in lokalen Koordinaten definiert

$$0 = S'_{\xi}(t) = (\sigma'(t) + \omega(\dot{c}(t)\sigma(t))S(\mathrm{d}t))$$

ein lineares Differentialgleichungssystem:

$$\sigma'(t) = A(t) \cdot \sigma(t)$$

wobei  $A(t) = -\omega(\dot{c}(t))$ . Ist [t,T] ein kompaktes Teilintervall in  $\mathcal{I}$  mit  $s \in [t,T]$ , so existiert eine Partition  $t = t_0 < \ldots < t_k = T$ , so dass  $c([t_i,t_{i+1}])$  in einer Trivialisierungsumgebung liegt. Man findet so sukzessive eindeutige Lösungen auf den Teilintervallen (lineares System), welche durch Fortsetzungen eine eindeutige Lösung auf [t,T] definieren. Erneut folgt aus der Eindeutigkeit, dass ein für alle Zeiten definierter paralleler Schnitt  $S_{\xi}$  existiert.

**Definition 7.10** Es sei c eine glatte Kurve in M. Die lineare Abbildung

$$P_{s,t}^c: E_{c(s)} \rightarrow E_{c(t)}$$
  
 $\xi \mapsto S_{\xi}(t),$ 

wobei  $S_{\xi}$  den nach Proposition 7.9 eindeutigen parallelen Schnitt entlang c mit  $S_{\xi}(s) = \xi$  bezeichnet, heißt **Paralleltransport** entlang c.

**Bemerkung** (1)  $P_{s,t}^c$  ist invertierbar mit Inversen  $(P_{s,t}^c)^{-1} = P_{t,s}^c = P_{s,t}^{\bar{c}}$ , wobei  $\bar{c} = (s + t - \tau)$ .

(2) Die Abbildung  $P_{s,t}^c$  ist im Allgemeinen nicht unabhängig von der Wahl von c.

**Beispiel** In  $\mathbb{R}^n$  ist ein Vektorfeld X genau dann parallel, wenn X (beziehungsweise  $\overline{X}_p \in \mathcal{I}_p(X_p)$ ) konstant im "üblichen" Sinne ist: Paralleltransport entlang einer Kurve entspricht der gewählten Parallelverschiebung.



Es seien  $S \in \Gamma(E)$  und  $X_p \in T_p M$ . Ist c eine Integralkurve von  $X_p$ , das heißt c(0) = p und  $\dot{c}(0) = X_p$ , so ist  $\tilde{S} = S \circ c$  ein Schnitt entlang c und es gilt  $\tilde{S}'(0) = \nabla_{X_p} S$ .

Nun sei ferner  $\xi_1, \ldots, \xi_n$  eine Basis von  $E_p$  und es bezeichnen  $s_1, \ldots, s_n$  die parallelen Schnitte entlang c mit  $s_i(0) = \xi_i$ . Dann gilt  $\tilde{S}(t) = \sum \sigma^j(t) s_j(t)$  und es folgt

$$\begin{split} \nabla_{X_p} S &= \tilde{S}'(0) = \nabla_t \Big(\sum_j \sigma^j s_j\Big)(0) \\ &= \sum_j \Big( (\sigma^j)' s_j + \sigma^j \underbrace{\nabla_t s_j} \Big)(0) \\ &= \sum_j \lim_{t \to 0} \left( \frac{\sigma^j(t) - \sigma^j(0)}{t} \right) s_j(0) \\ &= \lim_{t \to 0} \frac{1}{t} \left( \sum_j \sigma^j(t) s_j(0) - \sigma^j(0) s_j(0) \right) \\ &= \lim_{t \to 0} \frac{1}{t} \left( \sum_j \sigma^j \big( P_{t,0}^c(s_j(t)) - \sigma^j(0) s_j(0) \right) \\ &= \lim_{t \to 0} \frac{1}{t} \left( P_{t,0}^c(\sum \sigma^j s_j(t)) - \sum \sigma^j s_j(0) \right) \\ &= \lim_{t \to 0} \frac{1}{t} \left( P_{t,0}^c(\tilde{S}(t) - \tilde{S}(0)) \right) \end{split}$$

## 4. Der Levi-Civita Zusammenhang

Für das "gewöhnliche" Differential auf  $\mathbb{R}^k$  gilt:

$$DY(X) - DX(Y) = \sum_{i=1}^{k} \frac{\partial y^{j}}{\partial x^{i}} X^{i} - \frac{\partial x^{j}}{\partial x^{i}} Y^{i} = [X, Y].$$

**Definition 7.11** Es sei  $\nabla$  eine kovariante Ableitung auf T M. Das (1,2)-Tensorfeld

$$T(X,Y) = \nabla_X Y - \nabla_Y X - [X,Y]$$

heißt **Torsion** oder der **Torsionstensor** von  $\nabla$ . Die kovariante Ableitung heißt **torsionslos**, wenn  $T \equiv 0$  gilt.

Betrachtet man die Standardmetrik  $g^{\text{std}} = \langle \cdot, \cdot \rangle$  des  $\mathbb{R}^k$  in den Koordinaten (id,  $\mathbb{R}^k$ ), so gilt:

$$g^{\text{std}} = \sum_{i,j} g_{ij} dx^i \otimes dx^j = \sum_{i,j} \delta_{ij} dx^i \otimes x^j$$
$$= \sum_i dx^i \otimes dx^i.$$

Das heißt die Metrik  $g^{\text{std}}$  (das heißt die  $g_{ij}$ ) ist konstant.

Satz 7.12 (Levi-Civita, 1961) Auf einer Riemannschen Mannigfaltigkeit existiert genau ein torsionsloser Zusammenhang bezüglich dessen kovarianter Ableitung die Metrik parallel ist ( $\nabla g \equiv 0$ ).

Zur Parallelität: Die Metrik g einer Riemannschen Mannigfaltigkeit ist ein (0,2)Tensorfeld, das heißt lokal ist g endliche Summe von Elementen der Form  $\omega \otimes \eta$ ,
wobei  $\omega, \eta \in \Omega^1(M)$ .

Für  $X, Y, Z \in \mathcal{V}(M)$  gilt:

$$\nabla_{Z}(\omega \otimes \eta)(X,Y) = ((\nabla_{Z}^{*}\omega) \otimes \eta + \omega \otimes (\nabla_{Z}^{*}\eta))(X,Y)$$

$$= (\nabla_{Z}^{*}\omega)(X)\eta(Y) + \omega(X)(\nabla_{Z}^{*}\eta)(Y)$$

$$= (Z(\omega(X)) - \omega(\nabla_{Z}X))\eta(Y) + \omega(X)(Z(\eta(Y) - \eta(\nabla_{Z}Y)))$$

$$= Z(\omega(X))\eta(Y) + \omega(X)Z(\eta(Y)) - (\omega(\nabla_{Z}X)\eta(Y) + \omega(X)\eta(\nabla_{Z}Y))$$

$$= Z((\omega \otimes \eta)(X,Y)) - (\omega \otimes \eta)(\nabla_{Z}X,Y) - (\omega \otimes \eta)(X,\nabla_{Z}Y)$$

Somit ist g genau dann parallel, wenn für  $X, Y, Z \in \mathcal{V}(M)$  gilt:

$$0 = (\nabla_Z g)(X, Y) = Z(g(X, Y)) - g(\nabla_Z X, Y) - g(X, \nabla_Z Y)$$

beziehungsweise

$$Z\langle X, Y \rangle = \langle \nabla_Z X, Y \rangle + \langle X, \nabla_Z Y \rangle$$
.

Dies ist genau dann der Fall, wenn der Paralleltransport entlang von Kurven eine lineare Isometrie ist (vgl. Aufgabe 3 auf dem Übungsblatt 8). Ist c eine glatte Kurve,  $P_t \colon T_{c(0)} M \to T_{c(t)} M$  eine Isometrie, so gilt für alle  $X, Y \in T_{c(0)} M$ :

$$g_{c(0)}(X,Y) = g_{c(t)}(P_tX, P_tY) = (P_t^*g_{c(t)})(X,Y).$$

Also gilt  $P_t^* g_{c(t)} = g_{c(0)}$  und es folgt:

$$\nabla_t g = \lim_{t \to 0} \frac{1}{t} \left( (P_t^* g_{c(t)}) - g_{c(0)} \right) = 0.$$

Beweis (von Satz 7.12) Ist  $\nabla$  eine kovariante Ableitung mit den geforderten Eigenschaften, so gilt für  $X, Y, Z \in \mathcal{V}(M)$ :

$$\begin{split} X \left\langle Y, Z \right\rangle &= \left\langle \nabla_X Y, Z \right\rangle + \left\langle Y, \nabla_X Z \right\rangle \\ Y \left\langle Z, X \right\rangle &= \left\langle \nabla_Y Z, X \right\rangle + \left\langle Z, \nabla_Y X \right\rangle \\ &= \left\langle \nabla_Y Z, X \right\rangle + \overline{\left\langle Z, \nabla_X Y \right\rangle} - \left\langle Z, [X, Y] \right\rangle \\ Z \left\langle X, Y \right\rangle &= \left\langle \nabla_Z X, Y \right\rangle + \left\langle X, \nabla_Z Y \right\rangle \end{split}$$

Indem man die ersten beiden Gleichungen addiert und die Dritte abzieht erhält man:

Koszul-Formel

$$\begin{split} 2\left\langle \nabla_{X}Y,Z\right\rangle &=X\left\langle Y,Z\right\rangle +Y\left\langle Z,X\right\rangle -Z\left\langle X,Y\right\rangle \\ &-\left\langle X,\nabla_{Y}Z-\nabla_{Z}Y\right\rangle \\ &-\left\langle Y,\nabla_{X}Z-\nabla_{Z}X\right\rangle +\left\langle Z,\left[X,Y\right]\right\rangle \\ &=X\left\langle Y,Z\right\rangle +Y\left\langle Z,X\right\rangle -Z\left\langle X,Y\right\rangle -\left\langle X,\left[Y,Z\right]\right\rangle -\left\langle Y,\left[X,Z\right]\right\rangle +\left\langle Z,\left[X,Y\right]\right\rangle . \end{split}$$

Die rechte Seite der Gleichung ist  $C^{\infty}(M)$ -linear in Z, definiert also für alle  $X,Y \in \mathcal{V}(M)$  eine 1-Form  $\omega_{(X,Y)}$ . Da die Metrik  $\langle \cdot, \cdot \rangle$  positiv definit ist, existiert ein Vektorfeld  $A_{(X,Y)} \in \mathcal{V}(M)$  mit  $\omega_{(X,Y)} = \left\langle A_{(X,Y)}, \cdot \right\rangle$ , das, wie man leicht nachrechnet,  $A_{(X,Y)}$ -linear und derivativ in Y und  $C^{\infty}(M)$ -linear in X ist und durch

$$\nabla \colon \quad \mathcal{V}(M) \times \mathcal{V}(M) \quad \to \quad \mathcal{V}(M)$$
$$(X,Y) \quad \mapsto \quad A_{(X,Y)}$$

wird eine eindeutige kovariante Ableitung definert, die die geforderten Eigenschaften erfüllt.  $\hfill\Box$ 

Bemerkung Die zur Definition des Levi-Civita Zusammenhangs verwendete Formel bezeichnet man als Koszul-Formel.

Definition 7.13 Die nach obigem Satz eindeutig bestimmte, torsionsfreie Zusammenhang bezüglich dessen die Metrik parallel ist, heißt Levi-Civita Zusammenhang.

**Beispiel** (1) Der Levi-Civita Zusammenhang des  $\mathbb{R}^k$  mit der Standardmetrik ist die gewöhnliche Ableitung D.

(2) Ist  $M \subseteq \mathbb{R}^k$  eine Untermannigfaltigkeit mit der induzierten Metrik, so ist durch

$$(\nabla_X Y)_p = (D_X Y|_p)^T = D_X Y|_p - (D_X Y|_p)^{\perp}$$

ein Zusammenhang definiert, der gerade der Levi-Civita Zusammenhang ist, denn  $\nabla$  ist torsionslos, da D torsionslos ist und für Vektorfelder  $X,Y,Z\in\mathcal{V}(M)$  gilt:

$$Z \langle X, Y \rangle = \langle \mathbf{D}_Z Y, Y \rangle + \langle X, \mathbf{D}_Z Y \rangle$$

$$= \langle (D_Z X)^T + (\mathbf{D}_Z X)^{\perp}, Y \rangle + \langle X, (\mathbf{D}_Z Y)^T + (\mathbf{D}_Z Y)^{\perp} \rangle$$

$$= \langle (\mathbf{D}_Z X)^T, Y \rangle + \langle X, (\mathbf{D}_Z Y)^T \rangle$$

$$= \langle \nabla_Z X, Y \rangle + \langle X, \nabla_Z Y \rangle.$$

**Lokale Koordinaten** Es sei (M, g) eine Riemmannsche Mannigfaltigkeit mit Levi-Civita Zusammenhang  $\nabla$ . In einer Karte gilt:

$$\nabla_{\frac{\partial}{\partial x^i}} \frac{\partial}{\partial x^j} = \sum_{ij} \Gamma_{ij}^k \frac{\partial}{\partial x^k}.$$

Es sei

$$g_{ij} = \left\langle \frac{\partial}{\partial x^i}, \frac{\partial}{\partial x^j} \right\rangle \text{ und } g = \langle \cdot, \cdot \rangle = \sum g_{ij} dx^i \otimes dx^j.$$

Es gilt  $\Gamma_{ij}^k = \Gamma_{ji}^k$ , denn

$$\nabla_{\frac{\partial}{\partial x^i}} \frac{\partial}{\partial x^j} - \nabla_{\frac{\partial}{\partial x^j}} \frac{\partial}{\partial x^i} = \left[ \frac{\partial}{\partial x^i}, \frac{\partial}{\partial x^j} \right] = 0.$$

Dann ist

$$\Gamma_{ij}^{k} = \sum_{l,m} g^{kl} g_{lm} \Gamma_{ij}^{m}$$

$$= \sum_{l,m} g^{kl} \left\langle \Gamma_{ij}^{m} \frac{\partial}{\partial x^{m}}, \frac{\partial}{\partial x^{l}} \right\rangle$$

$$= \sum_{l} g^{kl} \left\langle \nabla_{\frac{\partial}{\partial x^{i}}} \frac{\partial}{\partial x^{j}}, \frac{\partial}{\partial x^{l}} \right\rangle$$

$$= \frac{1}{2} \sum_{l} g^{kl} \left( \frac{\partial g_{jl}}{\partial x^{i}} + \frac{\partial g_{li}}{\partial x^{j}} - \frac{\partial g_{ij}}{\partial x^{l}} \right).$$

## 5. Krümmungen

Man definiert die zweite kovariante Ableitung als

$$\nabla_{X,Y}^2 Z = \nabla_X \nabla_Y Z - \nabla_{\nabla_X Y} Z.$$

(Formale Produktregel:  $\nabla_X(\nabla_Y Z) = \nabla_X(\nabla Z(Y)) = (\nabla_X(\nabla Z))(Y) + (\nabla Z)(\nabla_X Y) = \nabla_{X,Y}^2 Z + \nabla_{\nabla_X Y} Z$ .)

$$\begin{split} R(X,Y)Z &= \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]} Z \\ &= \nabla_X \nabla_Y Z - \nabla_{\nabla_X Y} Z - (\nabla_Y \nabla_X Z - \nabla_{\nabla_Y X} Z) \\ &= \nabla_{X,Y}^2 Z - \nabla_{Y,Z}^2 Z. \end{split}$$

**Proposition 7.14** Für  $X, Y, Z, W \in \mathcal{V}(M)$  gilt:

- (i) R(X,Y)Z + R(Y,Z)X + R(Z,X)Y = 0,
- (ii)  $\langle R(X,Y)Z,W\rangle = -\langle R(Y,X)Z,W\rangle = -\langle R(X,Y)W,Z\rangle$ ,
- (iii)  $\langle R(X,Y)Z,W\rangle = \langle R(Z,W)X,Y\rangle$ .

Der Beweis sei als Übung überlassen.

Es seien  $X, Y \in T_p M$  linear unabhängig. Dann hängt

$$\frac{\langle R(X,Y)Y,X\rangle}{\|X\|^2 \|Y\|^2 - \langle X,Y\rangle^2}$$

nur von der von X und Y aufgespannten Ebene ab. Um das zu zeigen seien  $Z=aX+bY,\ W=cX+dY$  und ohne Einschränkung seien X,Y orthonormal. Dann gilt:

$$||Z||^2 ||W||^2 - \langle Z, W \rangle^2 = ||aX + bY||^2 ||cX + dY||^2 - \langle aX + bY, cX + dY \rangle^2$$
$$= (a^2 + b^2)(c^2 + d^2) - (ac + bd)^2 = a^2d^2 + b^2c^2 - 2abcd$$
$$= (ad - bc)^2$$

Also

$$\frac{\langle R(aX+bY,cX+dY)(cX+dY),(aX+bY)\rangle}{\|aX+bY\|^2\|cX+dY\|^2-\langle aX+bY,cX+dY\rangle^2} = \frac{(ad-bc)^2\,\langle R(X,Y)Y,X\rangle}{(ad-bc)^2}$$
$$=\langle R(X,Y)Y,X\rangle\,.$$

**Definition 7.15** Es sei  $\sigma$  eine von  $X,Y \in \mathcal{V}(M)$  aufgespannte Ebene in  $T_pM$ . Dann heißt

$$\sec_p(\sigma) = \sec_p(X, Y) = \frac{\langle R(X, Y)Y, X \rangle}{\|X\|^2 \|Y\|^2 - \langle X, Y \rangle^2}$$

die Schnittkrümmung der Ebene  $\sigma$ .

Es sei  $e_1, \ldots, e_m \in \mathcal{T}_p M$  eine Orthonormalbasis bezüglich g(p). Die für  $X, Y \in \mathcal{T}_p M$  durch Spurbildung definierte Abbildung

$$\operatorname{ric}_p(X,Y) = \operatorname{spur} R(\cdot,X)Y = \sum_i \langle R(e_i,X)Y, e_i \rangle$$

heißt Ricci-Tensor in p. Aus den Symmetrien von R folgt, dass  $\mathrm{ric}_p$  symmetrisch ist. Es existiert ein (1,1)-Tensorfeld Ric, so dass

$$\operatorname{ric}_p(X,Y) = \langle \operatorname{Ric}(X), Y \rangle$$

für alle  $p \in M, X, Y \in T_p M$  gilt.

**Definition 7.16** Für  $X \in T_p M$ ,  $X \neq 0$  heißt

$$\frac{\operatorname{ric}_p(X, X)}{\|X\|^2} = \left\langle \operatorname{Ric}\left(\frac{X}{\|X\|}\right), \frac{X}{\|X\|} \right\rangle$$

die Ricci-Krümmung in p in Richtung X. Die Spur von Ric

$$\operatorname{scal}(p) = \operatorname{spur}\operatorname{Ric}_p(\cdot) = \sum_i \operatorname{ric}_p(e_i, e_i) = \sum_{i,j} \left\langle R(e_i, e_j) e_j, e_i \right\rangle$$

 $hei\beta t die Skalarkrümmung von M in p.$