LOSS

The **loss function** $L(y, f(\mathbf{x}))$ quantifies the "quality" of the prediction $f(\mathbf{x})$ of a single observation \mathbf{x} :

$$L: \mathcal{Y} \times \mathbb{R}^g \to \mathbb{R}$$
.

In regression, we could use the absolute loss $L(y, f(\mathbf{x})) = |f(\mathbf{x}) - y|$;

or the L2-loss $L(y, f(\mathbf{x})) = (y - f(\mathbf{x}))^2$:

RISK OF A MODEL /2

Problem: Minimizing $\mathcal{R}(f)$ over f is not feasible:

- P_{xy} is unknown (otherwise we could use it to construct optimal predictions).
- We could estimate P_{xy} in non-parametric fashion from the data D, e.g., by kernel density estimation, but this really does not scale to higher dimensions (see "curse of dimensionality").
- We can efficiently estimate P_{xy}, if we place rigorous assumptions on its distributional form, and methods like discriminant analysis work exactly this way.

But as we have n i.i.d. data points from \mathbb{P}_{xy} available we can simply approximate the expected risk by computing it on \mathcal{D} .

EMPIRICAL RISK /2

The risk can also be defined as an average loss

$$\bar{\mathcal{R}}_{emp}(f) = \frac{1}{n} \sum_{i=1}^{n} L\left(y^{(i)}, f\left(\mathbf{x}^{(i)}\right)\right).$$

The factor $\frac{1}{n}$ does not make a difference in optimization, so we will consider $\mathcal{R}_{emp}(f)$ most of the time.

Since f is usually defined by parameters θ, this becomes:

$$\mathcal{R}: \mathbb{R}^d \to \mathbb{R}$$

$$\mathcal{R}_{emp}(\theta) = \sum_{i=1}^{n} L\left(y^{(i)}, f\left(\mathbf{x}^{(i)} \mid \theta\right)\right) \\
\mathcal{R}_{emp}(\theta) = \sum_{i=1}^{n} L\left(y^{(i)}, f\left(\mathbf{x}^{(i)} \mid \theta\right)\right)$$

EMPIRICAL RISK MINIMIZATION

But usually \mathcal{H} is infinitely large.

Instead we can consider the risk surface w.r.t. the parameters θ . (By this I simply mean the visualization of $\mathcal{R}_{\text{emp}}(\theta)$)

\mathcal{R}_{emp}	(θ)	:	\mathbb{R}^d	\rightarrow	R.
/ vemp	(0)	•	110		T.C.

Model	$\theta_{intercept}$	$\theta_{ m slope}$	$\mathcal{R}_{emp}(\theta)$
f_{11}^{c}	22	38	194.62
f_{2}	38	22	127.12
f_{30}	66	-11	95.81
f <u>ä</u>	11	11.55	57.96

EMPIRICAL RISK MINIMIZATION /2

Minimizing this surface is called empirical risk minimization (ERM).

$$\hat{\theta} = \operatorname*{arg\,min}_{oldsymbol{ heta} \in \Theta} \mathcal{R}_{\mathrm{emp}}(oldsymbol{ heta}).$$

Usually we do this by numerical optimization.

$\mathcal{R}: \mathbb{R}^{a} \to \mathbb{R}$.				600
Model	$\theta_{intercept}$	θ _{siope}	$\mathcal{R}_{emp}(\theta)$	
ffi	22	38	194.62	400
f_{22}	38	22	127.12	
f ₃₀	66	-11	95.81	200
f <u>4</u> 4	11	11.55	57.96	
f ₅₅	11.25	0.90	23.40	-5 (staloo+)

In a certain sense, we have now reduced the problem of learning to numerical parameter optimization.

