Índice

1.	TAD TABLERO	1
2.	TAD PARTIDA	4
3.	Extensiones de otros TADs	9
	3.1. TAD Secuent(α) extiende Secuencia(α)	9
	3.2. TAD MULTICONJEXT (α) extiende MULTICONJUNTO (α)	9

Casillero es Nat

Mov es Nat

CONTINENTE es STRING

Jugador es Nat

1. TAD TABLERO

TAD TABLERO

géneros tablero

exporta tablero, generadores, observadores, continentes, todosLosMovs

usa Bool, Nat, Casillero, Mov, Continente, Multiconj $\text{Ext}(\alpha)$, Conj (α)

igualdad observacional

$$(\forall t, t': \text{tablero}) \left(t =_{\text{obs}} t' \iff \begin{pmatrix} (\#casilleros(t) =_{\text{obs}} \#casilleros(t')) \land_{\text{L}} \\ (\forall (c, c': nat)) 1 \leq c, c' \leq \#casilleros(t) \Rightarrow_{\text{L}} \\ (cont(c, t) =_{\text{obs}} cont(c, t') \land_{\text{movsDesdeHasta}}(c, c', t) =_{\text{obs}} movsDesdeHasta(c, c', t'))) \end{pmatrix} \right)$$

generadores

//crearTablero: crea un tablero con dos casilleros. El 1 es del primer continente, el 2 del segundo; el primer movimiento va desde el primer casillero hasta el segundo y el segundo movimiento hace lo opuesto.

 $crearTablero: continente \times continente \times mov \times mov \longrightarrow tablero$

//agregarCasillero: agrega un casillero del continente k conectado por el movimiento m al casillero c. El movimiento m' conecta c al casillero creado. Las restricciones en k aseguran que se cumpla el agrupamiento de continentes, las restricciones sobre m y m' aseguran que se cumpla la unicidad de movimientos y la necesidad de dos movimientos asegura que se cumpla la simetría. Si n es la cantidad de casilleros en el momento que esta función es llamada, el número del casillero nuevo será n+1.

```
agregar
Casillero : casillero c \times continente k \times mov
 m \times mov m' \times tablero t \longrightarrow tablero  \left\{ 1 \le c \le \# \text{casilleros}(t) \wedge_{\text{L}} \left( k =_{\text{obs}} cont(c,t) \vee ((\forall c': nat) 1 \le c' \le \# \text{casilleros}(t) \Rightarrow_{\text{L}} \right) \right. \\ \left. \left. \left( cont(c',t) \ne k \right) \right) \wedge_{\text{L}} m' \notin \text{todosLosMovs}(c,t) \right\}
```

//conectar: conecta los casilleros pasados como parámetros con el movimiento m del primero al segundo y m' del segundo al primero.

```
conectar : casillero c \times casillero c' \times \text{mov } m \times \text{mov } m' \times \text{tablero } t \longrightarrow \text{tablero}
                                    \{1 \le c, c' \le \# \text{casilleros}(t) \land c \ne c' \land_{\mathsf{L}} m \notin \text{todosLosMovs}(c, t) \land_{\mathsf{L}} m' \notin \text{todosLosMovs}(c', t)\}
//agregarFlecha: agrega un movimiento en un solo sentido. Requiere que los casilleros ya estén conectados para que
                                                                                                                                      no se rompa la simetría.
       agregar
Flecha : casillero c \times casillero c' \times mov
 m \times tablero t \longrightarrow tablero
                                                         \{1 \le c, c' \le \# \text{casilleros}(t) \land_{\text{L}} \text{conectados}?(c, c', t) \land_{\text{L}} m \notin \text{todosLosMovs}(c, t)\}
    observadores básicos
       \#casilleros : tablero \longrightarrow nat
       cont : casillero c \times \text{tab } t \longrightarrow \text{continente}
                                                                                                                                       \{1 \le c \le \# \text{casilleros}(t)\}\
                                                                                                                                  \{1 \le c, c' \le \#\text{casilleros}(t)\}
       movs
Desde<br/>Hasta : casillero c \times casillero c' \times tab<br/> t \longrightarrow conj(mov)
    otras operaciones
    //todosLosMovs: devuelve un conjunto con todos los movimientos que van del casillero c a cualquier casillero del
       todosLosMovs : casillero c \times \text{tab } t \longrightarrow \text{conj}(\text{mov})
                                                                                                                                       \{1 \le c \le \# \text{casilleros}(t)\}\
                                                                                                                                   \{1 \le c, c' \le \#\text{casilleros}(t)\}
       conectados? : casillero c \times casillero c' \times tab t \longrightarrow bool
       continentes : tablero \longrightarrow conj(continente)
                                                                                                                                            \{n \leq \# \operatorname{casilleros}(t)\}\
       dameContinentes : nat n \times \text{tablero } t \longrightarrow \text{conj}(\text{continente})
                        \forall t: tablero, \forall c, c': casillero, \forall k, k': continente, \forall m, m': movimiento, \forall n: nat
    axiomas
       \#casilleros(crearTablero(k, k', m, m')) \equiv 2
       \#casilleros(agregarCasillero(c, k, m, m', t)) \equiv suc(\#casilleros(t))
       \#casilleros(conectar(c, c', m, m', t)) \equiv \#casilleros(t)
       \#casilleros(agregarFlecha(c, c', m, t)) \equiv \#casilleros(t)
       \operatorname{cont}(c,\operatorname{crearTablero}(k,k',m,m')) \equiv \mathbf{if}\ c=1 \ \mathbf{then}\ k \ \mathbf{else}\ k' \ \mathbf{fi}
       \operatorname{cont}(c,\operatorname{agregarCasillero}(\tilde{c},k,m,m',t)) \equiv \operatorname{if} c = \operatorname{suc}(\#\operatorname{casilleros}(t)) \operatorname{then} k \operatorname{else} \operatorname{cont}(c,t) \operatorname{fi}
       \operatorname{cont}(c,\operatorname{conectar}(\tilde{c},\tilde{c}',m,m',t)) \equiv \operatorname{cont}(c,t)
       cont(c, agregarFlecha(\tilde{c}, \tilde{c}', m, t)) \equiv cont(c, t)
       movsDesdeHasta(c, c', \text{crearTablero}(k, k', m, m')) \equiv \text{if } c = 1 \land c' = 2 \text{ then}
                                                                                          \{m\}
                                                                                     else
                                                                                          if c = 2 \wedge c' = 1 then \{m'\} else \emptyset fi
       movsDesdeHasta(c, c', agregarCasillero(\tilde{c}, k, m, m', t)) \equiv if c = suc(\#casilleros(t)) then
                                                                                                 if c' = \tilde{c} then \{m\} else \emptyset fi
                                                                                                 if c = \tilde{c} \wedge c' = \text{suc}(\#\text{casilleros}(t)) then
                                                                                                      \{m'\}
                                                                                                 else
                                                                                                     movsDesdeHasta(c, c', t)
                                                                                                 fi
                                                                                            fi
```

```
movsDesdeHasta(c, c', \text{conectar}(\tilde{c}, \tilde{c}', m, m', t)) \equiv \text{if } c = \tilde{c} \wedge c' = \tilde{c}' \text{ then}
                                                                                \{m\} \cup \text{movsDesdeHasta}(c, c', t)
                                                                           else
                                                                                if c = \tilde{c}' \wedge c' = \tilde{c} then
                                                                                     \{m'\} \cup \text{movsDesdeHasta}(c, c', t)
                                                                                else
                                                                                     movsDesdeHasta(c, c', t)
                                                                                fi
                                                                           fi
movsDesdeHasta(c, c', agregarFlecha(\tilde{c}, \tilde{c}', m, t)) \equiv \mathbf{if} \ c = \tilde{c} \wedge c' = \tilde{c}' \mathbf{then}
                                                                                   \{m\} \cup \text{movsDesdeHasta}(c, c', t)
                                                                                   movsDesdeHasta(c, c', t)
                                                                              fi
todosLosMovs(c, \text{crearTablero}(k, k', m, m')) \equiv \text{if } c = 1 \text{ then } \{m\} \text{ else } \{m'\} \text{ fi}
todosLosMovs(c, agregarCasillero(\tilde{c}, k, m, m', t)) \equiv if c = suc(\#casilleros(t)) then
                                                                                   \{m\}
                                                                              else
                                                                                   if c = \tilde{c} then
                                                                                        \{m'\} \cup \operatorname{todosLosMovs}(c,t)
                                                                                        todosLosMovs(c, t)
                                                                                   fi
                                                                              fi
todosLosMovs(c,conectar(\tilde{c},\tilde{c}',m,m',t)) \equiv if c = \tilde{c} then
                                                                        \{m\} \cup \operatorname{todosLosMovs}(c,t)
                                                                   else
                                                                        if c = \tilde{c}' then
                                                                             \{m'\} \cup \text{todosLosMovs}(c,t)
                                                                        else
                                                                             todosLosMovs(c, t)
                                                                        fi
                                                                   fi
todos
Los<br/>Movs(c, \operatorname{agregarFlecha}(\tilde{c}, \tilde{c}', m, t)) \equiv \mathbf{if} \ c = \tilde{c} \ \mathbf{then}
                                                                           \{m\} \cup \operatorname{todosLosMovs}(c,t)
                                                                           todosLosMovs(c, t)
                                                                     fi
conectados?(c, c', t) \equiv \neg \emptyset?(movsDesdeHasta(c, c', t))
continentes(t) \equiv dameContinentes(\#casilleros(t), t)
dameContinentes(n,t) \equiv \mathbf{if} \ n=0 \ \mathbf{then} \ \emptyset \ \mathbf{else} \ \{\operatorname{cont}(n,t)\} \cup \operatorname{dameContinentes}(n-1,t) \ \mathbf{fi}
```

Fin TAD

2. TAD PARTIDA

TAD PARTIDA

géneros partida

usa Bool, Nat, Casillero, Jugador, Tablero, Mov, Continente, Multiconj $\operatorname{Ext}(\alpha)$, Conj (α) ,

Secuext(α)

exporta partida, generadores, observadores, jugadoresActivos, jugadoresEliminados, terminada?, ganador,

cuántosLeFaltan, casillerosDominados, casillerosDisputados, casillerosVacíos

igualdad observacional

$$(\forall p, p': \text{partida}) \left(p =_{\text{obs}} p' \iff \begin{pmatrix} (\text{tablero}(p) =_{\text{obs}} \text{tablero}(p') \land_{\text{L}} \\ \# \text{jugadores}(p) =_{\text{obs}} \# \text{jugadores}(p') \land_{\text{L}} \\ ((\forall c: nat) 1 \leq c \leq \# \text{casilleros}(\text{tablero}(p)) \Rightarrow_{\text{L}} \\ \text{fichasEnCasillero}(c, p) =_{\text{obs}} \text{fichasEnCasillero}(c, p')) \land \\ ((\forall j: nat) 1 \leq j \leq \# \text{jugadores}(p) \Rightarrow_{\text{L}} \\ (\text{misi\'on}(j, p) =_{\text{obs}} \text{misi\'on}(j, p')) \land \\ \text{fichasPuestas}(j, p) =_{\text{obs}} \text{fichasPuestas}(j, p')) \end{pmatrix} \right)$$

observadores básicos

tablero : partida \longrightarrow tablero #jugadores : partida \longrightarrow nat

//fichasEnCasillero: las fichas de cada jugador están representadas por su cardinal en un multiconjunto. Una aparición de j en fichasEnCasillero representa una ficha de j en el casillero dado. Esta convención con los multiconjuntos se mantendrá durante toda la especificación para representar las fichas en cada casillero.

```
fichas
En<br/>Casillero : casillero c \times \text{partida } p \longrightarrow \text{multiconjExt(jugador)}<br/>
\{1 \le c \le \# \text{casilleros(tablero}(p))\}misión : jugador j \times \text{partida } p \longrightarrow \text{continente}<br/>
\{1 \le j \le \# \text{jugadores}(p)\}
```

//fichasPuestas: devuelve la cantidad de fichas que puso j a lo largo de todo el partido.

fichasPuestas : jugador $j \times \text{partida } p \longrightarrow \text{nat}$ $\{1 \le j \le \# \text{jugadores}(p)\}$

generadores

//crearPartida: crea una nueva partida cuyo tablero es t. La cantidad de jugadores es js y las secuencias cs y ks indican el casillero donde coloca la primera ficha y el continente que cada jugador debe conquistar respectivamente. Al i-ésimo jugador le corresponde la (i-1)-ésima posición de cada secuencia, ya que el primer jugador es el 1 y los índices de las secuencias empiezan en 0.

```
crear
Partida : tablero <br/> t \timesnat js \timessecu
Ext(casillero) <br/> cs \timessecu
Ext(continente) <br/> ks \longrightarrowpartida  \begin{cases} 2 \leq js \wedge \log(cs) = \log(ks) = js \wedge \sin \text{Repetidos}(cs) \wedge ((\forall k:string) \text{est\'a?}(k,ks) \Rightarrow \\ k \in \text{continentes}(t)) \wedge ((\forall c:nat) \text{est\'a?}(c,cs) \Rightarrow 1 \leq c \leq \# \text{casilleros}(t)) \end{cases}
```

//agregarFicha: agrega una ficha del jugador j en el casillero c. Requiere que esté vacío o dominado por j.

```
agregar
Ficha : jugador j \times casillero c \times partida  \begin{cases} 1 \leq j \leq \# \text{jugadores}(p) \wedge_{\text{L}} \text{ est\'aActivo?}(j,p) \wedge \neg \text{terminada?}(p) \wedge \\ 1 \leq c \leq \# \text{casilleros}(\text{tablero}(p)) \wedge_{\text{L}} \text{ (jugadoresEnCasillero}(c,p) = \emptyset \vee \\ \text{jugadoresEnCasillero}(c,p) = \{j\} \end{cases}
```

//mover: el jugador j realiza la acción de movimiento m con n fichas. El funcionamiento se detalla más profundamente en los axiomas.

```
mover : jugador j \times mov m \times nat n \times partida p \longrightarrow partida \{1 \le j \le \# \text{jugadores}(p) \land_{\text{L}} \text{ estáActivo?}(j,p) \land \neg \text{terminada?}(p)\}
```

otras operaciones

Funciones requeridas por la empresa

Funciones auxiliares

//fichasVecinasDeJ: dado un casillero c, devuelve un multiconjunto con todas las fichas de j de todos los casilleros del tablero que con el movimiento m podrían llegar a c si j realiza una acción de movimiento con n fichas. cn sirve para poder hacer recursión en el número del casillero que se examina.

```
fichas
Vecinas
DeJ : jugador j \times nat cn \times mov m \times casiller
o c \times nat n \times partida p \longrightarrow multiconj
Ext(jugador)  \{1 \le c \le \# \text{casilleros}(\text{tablero}(p))\}  está
Activo? : jugador j \times partida p \longrightarrow bool  \{1 \le j \le \# \text{jugadores}(p)\}  tiene
Fichas
EnAlgún
Casillero? : jugador j \times nat n \times partida p \longrightarrow bool  \{1 \le j \le \# \text{jugadores}(p) \land n \le \# \text{casilleros}(\text{tablero}(p))\}  dame
Activos : nat \times partida p \longrightarrow conj(jugador) dame
Eliminados : nat p \rightarrow partida p \rightarrow bool  \{1 \le j \le \# \text{jugadores}(p)\}  completó
LaMisión? : jugador p \rightarrow bool  \{1 \le j \le \# \text{jugadores}(p)\}
```

//contarNoDominadosHasta: esta función sirve de auxiliar para saber si el jugador j completó o no su misión. Al hacer recursión sobre el parámetro n, devuelve la cantidad de casilleros numerados entre 1 y n que pertenecen al continente que j debe conquistar y no son dominados por j.

axiomas \forall p: partida, \forall j: jugador, \forall c: casillero, \forall m: mov, \forall n, cn: nat, \forall secuExt(casillero): cs, \forall secuExt(continente): ks

Observadores

```
tablero(crearPartida(t, js, cs, ks)) \equiv t
tablero(agregarFicha(j, c, p)) \equiv tablero(p)
tablero(mover(j, m, n, p)) \equiv tablero(p)
\#jugadores(crearPartida(t, js, cs, ks)) \equiv js
\#jugadores(agregarFicha(j, c, p)) \equiv \#jugadores(p)
\#jugadores(mover(j, m, n, p)) \equiv \#jugadores(p)
fichasEnCasillero(c, crearPartida(t, js, cs, ks)) \equiv if está?(c, cs) then \{suc(posición(c, cs))\} else \emptyset fi
fichasEnCasillero(c, agregarFicha(j, \tilde{c}, p)) \equiv fichasEnCasillero(c, p) \cup (if c = \tilde{c} then \{j\} else \emptyset fi)
```

//fichasEnCasillero: si el casillero es dominado por el jugador que hizo el movimiento, tendrá n fichas menos de éste, o 0 en caso de que hubiera menos de n fichas. Si el casillero estaba disputado, algún jugador tendrá una ficha menos. En cualquier caso se agregan todas las fichas posibles de j a través de los casilleros dominados por j que se conecten a c con el movimiento m.

```
fichas
En<br/>Casillero(c, mover(j, m, n, p)) \equiv \mathbf{if} está
Dominado?(c, p) then
                                                          if j \in \text{fichasEnCasillero}(c,p) \land m \in \text{todosLosMovs}(c,\text{tablero}(p))
                                                               (fichasEnCasillero(c, p) - agNVeces(j, n, \emptyset)) \cup
                                                               fichas Vecinas DeJ(j, \#casilleros(tablero(p)), m, c, n, p)
                                                          else
                                                               fichasEnCasillero(c, p) \cup
                                                               fichasVecinasDeJ(j, \#casilleros(tablero(p)), m, c, n, p)
                                                      else
                                                          if estáDisputado?(fichasEnCasillero(c, p)) then
                                                               \sin \text{Uno}(\text{fichasEnCasillero}(c, p)) \cup
                                                               fichas Vecinas DeJ(j, \#casilleros(tablero(p)), m, c, n, p)
                                                          else
                                                               {\it fichas Vecinas DeJ}(j,\#{\it casilleros}({\it tablero}(p)),m,c,n,p)
                                                          fi
                                                       fi
  misión(j, crearPartida(t, js, cs, ks)) \equiv ks[j-1]
  \label{eq:mision} \text{mision}(j, \operatorname{agregarFicha}(j, c, p)) \ \equiv \ \operatorname{mision}(j, p)
  misión(j,mover(j,m,n,p)) \equiv misión(j,p)
  fichasPuestas(j,crearPartida(t,js,cs,ks)) \equiv 1
  fichasPuestas(j, agregarFicha(\tilde{j}, c, p)) \equiv fichasPuestas(j, p) + (if <math>j = \tilde{j} then 1 else 0 fi)
  fichasPuestas(j, mover(t, js, cs, ks)) \equiv fichasPuestas(j, p)
Funciones requeridas por la empresa
  jugadoresActivos(p) \equiv dameActivos(\#jugadores(p),p)
```

```
jugadoresEliminados(p) \equiv dameEliminados(\#jugadores(p),p)
terminada?(p) \equiv \#(\text{jugadoresActivos}(p)) = 1 \vee \text{algunoCompletóLaMisión?}(\#\text{jugadores}(p), p)
\operatorname{ganador}(p) \equiv \operatorname{maxiFourcade}(\#\operatorname{jugadores}(p), p)
cuántosLeFaltan(j, p) \equiv \text{contarNoDominadosHasta}(j, \#\text{casilleros}(\text{tablero}(p)), p)
casillerosDominados(p) \equiv dameDominados(\#casilleros(tablero(p)),p)
casillerosDisputados(p) \equiv dameDisputados(\#casilleros(tablero(p)),p)
casillerosVacíos(p) \equiv dameVacíos(\#casilleros(tablero(p)),p)
```

Funciones auxiliares

```
fichasVecinasDeJ(j, cn, m, c, n, p) \equiv \mathbf{if} \ 0 < cn \ \mathbf{then}
                                                 if dominadoPor(j, cn, p) \land m \in \text{movsDesdeHasta}(cn, c, \text{tablero}(p))
                                                     agNVeces(j,min(\#(j,fichasEnCasillero(cn,tablero(p))),n),\emptyset)
                                                     \cup fichasVecinasDeJ(j, cn - 1, m, c, n, p)
                                                     fichasVecinasDeJ(j, cn - 1, m, c, n, p)
                                                 fi
                                             else
                                                 Ø
                                             fi
estáActivo?(j) \equiv tieneFichasEnAlgúnCasillero(j, #casilleros(tablero(p)), p)
tieneFichasEnAlgúnCasillero(j, n, p) \equiv \mathbf{if} \ n = 0 \mathbf{then}
                                                 else
                                                     0 < \#(j, \text{ fichasEnCasillero}(n, p)) \lor
                                                     tieneFichasEnAlgúnCasillero(j, n-1, p)
                                                 fi
dameActivos(p, n) \equiv \mathbf{if} \ n = 0 \mathbf{then}
                           else
                               if estáActivo?(n, p) then
                                   Ag(n, dameActivos(p, n - 1))
                               else
                                   dameActivos(p, n-1)
                               fi
dameEliminados(p, n) \equiv \mathbf{if} \ n = 0 \mathbf{then}
                                    if \neg estáActivo?(n, p) then
                                        Ag(n,dameEliminados(p, n - 1))
                                        dameEliminados(p, n-1)
                                    fi
algunoCompletóLaMisión?(n,p) \equiv \mathbf{if} \ n = 0 \mathbf{then}
                                                false
                                            else
                                                completóLaMisión?(n, p) \vee \text{algunoCompletóLaMisión}?(n - 1, p)
                                            fi
completóLaMisión?(j, p) \equiv \text{cuántosLeFaltan}(j, p) = 0
\operatorname{contarNoDominadosHasta}(j,n,p) \equiv \operatorname{if} \neg \operatorname{dominadoPor}(j,n,p) \wedge \operatorname{cont}(n,\operatorname{tablero}(p)) = \operatorname{mision}(j,p) then
                                                  suc(contarNoDominadosHasta(j, n - 1, p))
                                              else
                                                  contarNoDominadosHasta(j, n - 1, p)
                                              fi
dominadoPor(j, n, p) \equiv estáDominado?(c, p) \land j \in jugadoresEnCasillero(c, p)
estáDominado?(c, p) \equiv \#(\text{jugadoresEnCasillero}(c, p)) = 1
estáDisputado?(c, p) \equiv \#(\text{jugadoresEnCasillero}(c, p)) > 1
jugadoresEnCasillero(c, p) \equiv aConj(fichasEnCasillero(c, p))
```

```
dameDominados(n, p) \equiv \mathbf{if} \ n = 0 \mathbf{then}
                                    Ø
                                else
                                    if estáDominado?(n,p) then
                                        \{\langle n, \mathtt{jugadoresEnCasillero}(n,p)\rangle\} \cup \, \mathtt{dameDominados}(n-1,p)
                                    else
                                        dameDominados(n-1, p)
                                fi
dameDisputados(n, p) \equiv \mathbf{if} \ n = 0 \mathbf{then}
                                else
                                    if estáDisputado?(n,p) then
                                        \{\langle n, \text{jugadoresEnCasillero}(n, p) \rangle\} \cup \text{dameDisputados}(n-1, p)
                                        dameDisputados(n-1,p)
dameVacíos(n, p) \equiv \mathbf{if} \ n = 0 \mathbf{then}
                          else
                              if \emptyset?(jugadoresEnCasillero(n, p)) then
                                  \{n\} \cup \text{dameVacios}(n-1,p)
                              else
                                  dameVacios(n-1, p)
                          fi
                       //La función maxiFourcade te devuelve al más winner de todos. Si no lo conocés, googlealo.
\maxiFourcade(n, p) \equiv \mathbf{if} jugadoresActivos(p) = \{n\} \lor \text{completóLaMisión}?(n, p) then
                             else
                                 maxiFourcade(n-1, p)
                             \mathbf{fi}
```

Fin TAD

3. Extensiones de otros TADs

3.1. TAD SECUEXT(α) extiende SECUENCIA(α)

```
TAD SecuExt(\alpha)

(...)

otras operaciones

•[•] : \sec \operatorname{in}(x) \times \operatorname{nat} \longrightarrow \alpha  \{n < \log(s)\}

\operatorname{sin}(x) \times \operatorname{secuExt}(x) \times \operatorname{nat} \longrightarrow \operatorname{bool}

\operatorname{posición} : \alpha \in \times \operatorname{secuExt}(\alpha) = \operatorname{nat}  \{\operatorname{est\'a?}(e,s)\}

axiomas \forall s : \operatorname{secuExt}(\alpha), \forall e : \alpha, \forall n : \operatorname{nat}

\operatorname{s[n]} \equiv \operatorname{if} n = 0 \operatorname{then} \operatorname{prim}(s) \operatorname{else} \operatorname{fin}(s)[n-1] \operatorname{fi}

\operatorname{sin}(x) \times \operatorname{secuExt}(x) \times \operatorname{secuExt}(x) \times \operatorname{secuExt}(x) \times \operatorname{secuExt}(x)

\operatorname{s[n]} \equiv \operatorname{if} n = 0 \operatorname{then} \operatorname{prim}(s) \operatorname{else} \operatorname{fin}(s)[n-1] \operatorname{fi}

\operatorname{sin}(x) \times \operatorname{sin}(x) \times \operatorname{sin}(x) \times \operatorname{sin}(x) \times \operatorname{sin}(x) \times \operatorname{sin}(x)

\operatorname{posición}(e,s) \equiv \operatorname{if} \operatorname{prim}(s) = e \operatorname{then} 0 \operatorname{else} \operatorname{suc}(\operatorname{posición}(e,\operatorname{fin}(s))) \operatorname{fi}
```

Fin TAD

3.2. TAD MULTICONJEXT(α) extiende MULTICONJUNTO(α)

```
TAD MULTICONJEXT(\alpha)

(...)

otras operaciones

agNVeces: \alpha \times \text{nat} \times \text{multiconjExt}(\alpha) \longrightarrow \text{multiconjExt}(\alpha)

aConj: multiconjExt(\alpha) \longrightarrow \text{conj}(\alpha)

axiomas \forall c: multiconjExt(\alpha), \forall e: \alpha, \forall n: nat

agNVeces(e, n, c) \equiv if c then c else Ag(c, agNVeces(c, c) if aConj(c) \equiv if c?(c) then c0 else Ag(dameUno(c), aConj(sinUno(c))) if
```

Fin TAD