jhTAlib

Joost Hoeks

2019-03-21

Contents

jhTAlib	2
Depends only on	2
Docs	2
Install	3
Update	3
Examples	3
Example 1	3
Example 2	3
Example 3	4
Example 4	4
Example 5	4
Example 6	4
Example 7	5
Example 8	5
Example 9	5
Example 10	5
Test	5
Reference	6
Behavioral Techniques	6
Candlestick	8
Cycle Indicators	10
Data	11
Event Driven	12
Experimental	12
General	14
Information	15
Math Functions	16
Momentum Indicators	20
Overlap Studies	24
Pattern Recognition	27
Price Transform	31
Statistic Functions	31

Uncategorised
jhTAlib
Technical Analysis Library Time-Series
You can use and import it for your:
Technical Analysis Software
• Charting Software
Backtest Software
• Trading Robot Software
• Trading Software in general
Work in progress
Depends only on • The Python Standard Library
Docs
• .html
• .epub
• .json
• .odt
• .pdf
• .rst
• .rtf
• .xml

Install

```
From PyPI:
$ [sudo] pip3 install jhtalib
From source:
$ git clone https://github.com/joosthoeks/jhTAlib.git
$ cd jhTAlib
$ [sudo] pip3 install -e .
Update
From PyPI:
$ [sudo] pip3 install --upgrade jhtalib
From source:
$ cd jhTAlib
$ git pull [upstream master]
Examples
$ cd example/
Example 1
$ python3 example-1-plot.py
https://colab.research.google.com/github/joosthoeks/jhTAlib/blob/master/\\
example/example-1-plot.ipynb
```

Example 2

\$ python3 example-2-plot.py

or

https://colab.research.google.com/github/joosthoeks/jhTAlib/blob/master/example/example-2-plot.ipynb

Example 3

\$ python3 example-3-plot.py

or

https://colab.research.google.com/github/joosthoeks/jhTAlib/blob/master/example/example-3-plot.ipynb

Example 4

\$ python3 example-4-plot-quandl.py

or

https://colab.research.google.com/github/joosthoeks/jhTAlib/blob/master/example/example-4-plot-quandl.ipynb

Example 5

\$ python3 example-5-plot-quandl.py

or

https://colab.research.google.com/github/joosthoeks/jhTAlib/blob/master/example/example-5-plot-quandl.ipynb

Example 6

\$ python3 example-6-plot-quandl.py

or

https://colab.research.google.com/github/joosthoeks/jhTAlib/blob/master/example/example-6-plot-quandl.ipynb

<pre>\$ python3 example-7-quand1-2-df.py</pre>
or
https://colab.research.google.com/github/joosthoeks/jhTAlib/blob/master/example/example-7-quandl-2-df.ipynb
Example 8
<pre>\$ python3 example-8-alphavantage-2-df.py</pre>
or
$https://colab.research.google.com/github/joosthoeks/jhTAlib/blob/master/example/example-8-alphavantage-2-df.ipynb \\ \underline{\hspace{2cm}}$
Example 9
<pre>\$ python3 example-9-cryptocompare-2-df.py</pre>
or
$https://colab.research.google.com/github/joosthoeks/jhTAlib/blob/master/example/example-9-cryptocompare-2-df.ipynb \\ ___$
Example 10
DF NumPy Pandas
https://colab.research.google.com/github/joosthoeks/jhTAlib/blob/master/example/example-10-df-numpy-pandas.ipynb
Test
<pre>\$ cd test/ \$ python3 test.py</pre>

Example 7

import jhtalib as jhta Behavioral Techniques ATH | All Time High | DONE • dict of lists = jhta.ATH(df, price='High') LMC | Last Major Correction | DONE • dict of lists = jhta.LMC(df, price='Low') PP | Pivot Point | DONE • dict of lists = jhta.PP(df) • https://en.wikipedia.org/wiki/Pivot_point_(technical_analysis) FIBOPR | Fibonacci Price Retracements | DONE • dict of lists = jhta.FIBOPR(df, price='Close') FIBTR | Fibonacci Time Retracements | GANNPR | W. D. Gann Price Retracements | DONE • dict of lists = jhta.GANNPR(df, price='Close') GANNTR | W. D. Gann Time Retracements |

Reference

JDN Julian Day Number DONE	
• jdn = jhta.JDN(utc_year, utc_month, utc_day)	
• https://en.wikipedia.org/wiki/Julian_day	
JD Julian Date DONE	
 jd = jhta.JD(utc_year, utc_month, utc_day, ut utc_second) 	c_hour, utc_minute,
$\bullet \ \ https://en.wikipedia.org/wiki/Julian_day$	
SUNC Sun Cycle	
MERCURYC Mercury Cycle •	
VENUSC Venus Cycle •	
EARTHC Earth Cycle	
MARSC Mars Cycle	

JUPITERC Jupiter Cycle •	
SATURNC Saturn Cycle •	
URANUSC Uranus Cycle •	
NEPTUNEC Neptune Cycle •	
PLUTOC Pluto Cycle •	-
MOONC Moon Cycle •	
Candlestick	
CDLBODYS Candle Body Size DONE	
• list = jhta.CDLBODYS(df)	
• https://www.tradeciety.com/understand-candlesticks-	-patterns/
	r 50001115/

CDLWICKS | Candle Wick Size | DONE

- list = jhta.CDLWICKS(df)
- $\bullet \ \ https://www.tradeciety.com/understand-candlesticks-patterns/$

CDLUPPSHAS | Candle Upper Shadow Size | DONE

- list = jhta.CDLUPPSHAS(df)
- $\bullet \ \, {\rm https://www.tradeciety.com/understand\text{-}candlesticks\text{-}patterns/}$

-

CDLLOWSHAS | Candle Lower Shadow Size | DONE

- list = jhta.CDLLOWSHAS(df)
- $\bullet \ \ https://www.tradeciety.com/understand-candlesticks-patterns/$

QSTICK | Qstick | DONE

- list = jhta.QSTICK(df, n)
- https://www.fmlabs.com/reference/default.htm?url=Qstick.htm

SHADOWT | Shadow Trends | DONE

- dict of lists = jhta.SHADOWT(df, n)
- book: The New Technical Trader

IMI | Intraday Momentum Index | DONE

- list = jhta.IMI(df)
- $\bullet \ \ https://www.fmlabs.com/reference/default.htm?url=IMI.htm$

Cycle Indicators
HT_DCPERIOD Hilbert Transform - Dominant Cycle Period •
HT_DCPHASE Hilbert Transform - Dominant Cycle Phase •
HT_PHASOR Hilbert Transform - Phasor Components •
HT_SINE Hilbert Transform - SineWave •
HT_TRENDLINE Hilbert Transform - Instantaneous Trendline •
HT_TRENDMODE Hilbert Transform - Trend vs Cycle Mode •
TS Trend Score DONE • list = jhta.TS(df, n, price='Close') • https://www.fmlabs.com/reference/default.htm?url=TrendScore.htm

Data

CSV2DF | CSV file 2 DataFeed | DONE • dict of tuples = jhta.CSV2DF(csv_file_path) CSVURL2DF | CSV file url 2 DataFeed | DONE • dict of tuples = jhta.CSVURL2DF(csv_file_url) DF2CSV | DataFeed 2 CSV file | DONE • csv file = jhta.DF2CSV(df, csv_file_path) DF2DFREV | DataFeed 2 DataFeed Reversed | DONE • dict of tuples = jhta.DF2DFREV(df) DF2DFWIN | DataFeed 2 DataFeed Window | DONE • dict of tuples = jhta.DF2DFWIN(df, start=0, end=10) $DF_HEAD \mid DataFeed \mid HEAD \mid DONE$ • dict of tuples = jhta.DF_HEAD(df, n=5) DF_TAIL | DataFeed TAIL | DONE • dict of tuples = jhta.DF_TAIL(df, n=5) DF2HEIKIN_ASHI | DataFeed 2 Heikin-Ashi DataFeed | DONE • dict of tuples = jhta.DF2HEIKIN_ASHI(df)

Event Driven

ASI Accumulation Swing Index (J. Welles Wilder) DONE	
• list = jhta.ASI(df, L)	
• book: New Concepts in Technical Trading Systems	
SI Swing Index (J. Welles Wilder) DONE	
• list = jhta.SI(df, L)	
• book: New Concepts in Technical Trading Systems	
Francisco and all	
Experimental	
JH_SAVGP Swing Average Price - previous Average Price DON	E
• list = jhta.JH_SAVGP(df)	
JH_SAVGPS Swing Average Price - previous Average Price Summation DONE	1-
• list = jhta.JH_SAVGPS(df)	
JH_SCO Swing Close - Open DONE	
• list = jhta.JH_SCO(df)	
	
JH_SCOS Swing Close - Open Summation DONE	
• list = jhta.JH_SCOS(df)	

JH_SMEDP Sw	ving Median Price - previous Median Price \mid DONE
• list = jhta.	JH_SMEDP(df)
jh_SMEDPS Sv tion DONE	ving Median Price - previous Median Price Summa-
• list = jhta.	JH_SMEDPS(df)
JH_SPP Swing	Price - previous Price DONE
• list = jhta.	<pre>JH_SPP(df, price='Close')</pre>
·	g Price - previous Price Summation DONE JH_SPPS(df, price='Close')
JH_STYPP Sw	ing Typical Price - previous Typical Price DONE
• list = jhta.	JH_STYPP(df)
tion DONE	wing Typical Price - previous Typical Price Summa-
• list = jhta.	JH_S11PPS(df)
JH_SWCLP Sw Price DONE	ing Weighted Close Price - previous Weighted Close JH SWCLP(df)

JH_SWCLPS | Swing Weighted Close Price - previous Weighted Close Price Summation | DONE

• list = jhta.JH_SWCLPS(df)

General

NORMALIZE | Normalize | DONE

- list = jhta.NORMALIZE(df, price_max='High', price_min='Low', price='Close')
- $\bullet \ \ https://machinelearning mastery.com/normalize-standardize-time-series-data-python/$

STANDARDIZE | Standardize | DONE

- list = jhta.STANDARDIZE(df, price='Close')
- $\bullet \ \ https://machinelearningmastery.com/normalize-standardize-time-series-data-python/normalize-standardize-time-series-data-python/normalize-standardize-time-series-data-python/normalize-standardize-time-series-data-python/normalize-standardize-time-series-data-python/normalize-standardize-time-series-data-python/normalize-standardize-time-series-data-python/normalize-standardize-time-series-data-python/normalize-standardize-time-series-data-python/normalize-standardize-time-series-data-python/normalize-standardize-time-series-data-python/normalize-standardize-time-series-data-python/normalize-standardize-time-series-data-python/normalize-standardize-time-series-data-python/normalize-standardize-time-series-data-python/normalize-standardize-time-series-data-python/normalize-standardize-time-series-data-python/normalize-standardize$

SPREAD | Spread | DONE

• list = jhta.SPREAD(df1, df2, price1='Close', price2='Close')

CP | Comparative Performance | DONE

- list = jhta.CP(df1, df2, price1='Close', price2='Close')
- https://www.fmlabs.com/reference/default.htm?url=CompPerformance.htm

CRSI | Comparative Relative Strength Index | DONE

- list = jhta.CRSI(df1, df2, n, price1='Close', price2='Close')
- $\bullet \ \, https://www.fmlabs.com/reference/default.htm?url=RSIC.htm$

CS | Comparative Strength | DONE

- list = jhta.CS(df1, df2, price1='Close', price2='Close')
- $\bullet \ \ https://www.fmlabs.com/reference/default.htm?url=CompStrength.htm$

HR | Hit Rate / Win Rate | DONE

- float = jhta.HR(hit_trades_int, total_trades_int)
- http://traderskillset.com/hit-rate-stock-trading/

PLR | Profit/Loss Ratio | DONE

- float = jhta.PLR(mean_trade_profit_float, mean_trade_loss_float)
- $\bullet \ \, https://www.investopedia.com/terms/p/profit_loss_ratio.asp$

EV | Expected Value | DONE

- float = jhta.EV(hitrade_float, mean_trade_profit_float, mean_trade_loss_float)
- https://en.wikipedia.org/wiki/Expected_value

POR | Probability of Ruin (Table of Lucas and LeBeau) | DONE

- int = jhta.POR(hitrade_float, profit_loss_ratio_float)
- book: Computer Analysis of the Futures Markets

Information

INFO | Print df Information | DONE

• print = jhta.INFO(df, price='Close')

INFO_TRADES | Print Trades Information | DONE • print = jhta.INFO_TRADES(profit_trades_list, loss_trades_list) **Math Functions** EXP | Exponential | DONE • list = jhta.EXP(df, price='Close') LOG | Logarithm | DONE • list = jhta.LOG(df, price='Close') LOG10 | Base-10 Logarithm | DONE • list = jhta.LOG10(df, price='Close') SQRT | Square Root | DONE • list = jhta.SQRT(df, price='Close') ACOS | Arc Cosine | DONE • list = jhta.ACOS(df, price='Close') ASIN | Arc Sine | DONE • list = jhta.ASIN(df, price='Close') ATAN | Arc Tangent | DONE • list = jhta.ATAN(df, price='Close')

```
COS | Cosine | DONE
  • list = jhta.COS(df, price='Close')
SIN | Sine | DONE
  • list = jhta.SIN(df, price='Close')
TAN | Tangent | DONE
  • list = jhta.TAN(df, price='Close')
ACOSH | Inverse Hyperbolic Cosine | DONE
  • list = jhta.ACOSH(df, price='Close')
ASINH | Inverse Hyperbolic Sine | DONE
  • list = jhta.ASINH(df, price='Close')
ATANH | Inverse Hyperbolic Tangent | DONE
  • list = jhta.ATANH(df, price='Close')
COSH | Hyperbolic Cosine | DONE
  • list = jhta.COSH(df, price='Close')
SINH | Hyperbolic Sine | DONE
  • list = jhta.SINH(df, price='Close')
```

TANH | Hyperbolic Tangent | DONE • list = jhta.TANH(df, price='Close') PI | Mathematical constant PI | DONE • float = jhta.PI() $\mathbf{E} \mid \mathbf{Mathematical}$ constant $\mathbf{E} \mid \mathbf{DONE}$ • float = jhta.E() TAU | Mathematical constant TAU | DONE • float = jhta.TAU() PHI | Mathematical constant PHI | DONE • float = jhta.PHI() CEIL | Ceiling | DONE • list = jhta.CEIL(df, price='Close') FLOOR | Floor | DONE • list = jhta.FLOOR(df, price='Close') **DEGREES** | Radians to Degrees | **DONE** • list = jhta.DEGREES(df, price='Close')

RADIANS Degrees to Radians	DONE
• list = jhta.RADIANS(df, pri	.ce='Close')
ADD Addition High + Low D • list = jhta.ADD(df)	ONE
DIV Division High / Low DO • list = jhta.DIV(df)	NE
MAX Highest value over a spec	-
$\overline{ ext{MAXINDEX}} \mid ext{Index of highest}$	value over a specified period
MIN Lowest value over a specif • list = jhta.MIN(df, n, price	
MININDEX Index of lowest va	lue over a specified period
$\begin{array}{c} \overline{}\\ \overline{}\\ \overline{}\\ \bullet \\ \end{array}$	values over a specified period

AINMAXINDEX Indexes of lowest and highest values over a spec- fied period •
MULT Multiply High * Low DONE • list = jhta.MULT(df)
UB Subtraction High - Low DONE • list = jhta.SUB(df)
UM Summation DONE
• list = jhta.SUM(df, n, price='Close') ———————————————————————————————————
ADX Average Directional Movement Index •
ADXR Average Directional Movement Index Rating •
APO Absolute Price Oscillator DONE • list = jhta.APO(df, n_fast, n_slow, price='Close') • https://www.fmlabs.com/reference/default.htm?url=PriceOscillator.htm

AROON Aroon •
AROONOSC Aroon Oscillator •
BOP Balance Of Power •
CCI Commodity Channel Index •
CMO Chande Momentum Oscillator •
DX Directional Movement Index
MACD Moving Average Convergence/Divergence •
$\begin{array}{c} \mathbf{MACDEXT} \mid \mathbf{MACD} \text{ with controllable MA type} \mid \\ \bullet \end{array}$

MACDFIX Moving Average Convergence/Divergence Fix $12/26$
MFI Money Flow Index
MINUS_DI Minus Directional Indicator •
MINUS_DM Minus Directional Movement •
<pre>MOM Momentum DONE • list = jhta.MOM(df, n, price='Close') • https://www.fmlabs.com/reference/default.htm?url=Momentum.htm</pre>
PLUS_DI Plus Directional Indicator •
PLUS_DM Plus Directional Movement •
PPO Percentage Price Oscillator •

RMI | Relative Momentum Index | DONE

- list = jhta.RMI(df, n, price='Close')
- https://www.fmlabs.com/reference/default.htm?url=RMI.htm

ROC | Rate of Change | DONE

• list = jhta.ROC(df, n, price='Close')

ROCP | Rate of Change Percentage | DONE

• list = jhta.ROCP(df, n, price='Close')

ROCR | Rate of Change Ratio | DONE

• list = jhta.ROCR(df, n, price='Close')

ROCR100 | Rate of Change Ratio 100 scale | DONE

- list = jhta.ROCR100(df, n, price='Close')
- $\bullet \ \ https://www.fmlabs.com/reference/default.htm?url=RateOfChange.htm$

RSI | Relative Strength Index | DONE

- list = jhta.RSI(df, n, price='Close')
- https://www.fmlabs.com/reference/default.htm?url=rsi.htm

STOCH | Stochastic | DONE

- list = jhta.STOCH(df, n, price='Close')
- https://www.fmlabs.com/reference/default.htm?url=Stochastic.htm

-

STOCHF Stochastic Fast •
STOCHRSI Stochastic Relative Strength Index •
TRIX 1-day Rate-Of-Change (ROC) of a Triple Smooth EMA •
ULTOSC Ultimate Oscillator •
WILLR Williams' %R DONE • list = jhta.WILLR(df, n) • https://www.fmlabs.com/reference/default.htm?url=WilliamsR.htm
Overlap Studies
BBANDS Bollinger Bands DONE
 dict of lists = jhta.BBANDS(df, n, f=2) https://www.fmlabs.com/reference/default.htm?url=Bollinger.htm
BBANDW Bollinger Band Width DONE
• list = jhta.BBANDW(df, n, f=2)
• https://www.fmlabs.com/reference/default.htm?url=BollingerWidth.htm

DEMA Double Exponential Moving Average • ——————————————————————————————————
EMA Exponential Moving Average •
ENVP Envelope Percent DONE
 dict of lists = jhta.ENVP(df, pct=.01, price='Close') https://www.fmlabs.com/reference/default.htm?url=EnvelopePct.htm
KAMA Kaufman Adaptive Moving Average •
MA Moving Average •
MAMA MESA Adaptive Moving Average •
MAVP Moving Average with Variable Period

MIDPOINT | MidPoint over period | DONE • list = jhta.MIDPOINT(df, n, price='Close') • http://www.tadoc.org/indicator/MIDPOINT.htm MIDPRICE | MidPoint Price over period | DONE • list = jhta.MIDPRICE(df, n) • http://www.tadoc.org/indicator/MIDPRICE.htm MMR | Mayer Multiple Ratio | DONE • list = jhta.MMR(df, n=200, price='Close') • https://www.theinvestorspodcast.com/bitcoin-mayer-multiple/ SAR | Parabolic SAR | DONE • list = jhta.SAR(df, af_step=.02, af_max=.2) • book: New Concepts in Technical Trading Systems SAREXT | Parabolic SAR - Extended | SMA | Simple Moving Average | DONE • list = jhta.SMA(df, n, price='Close') • https://www.fmlabs.com/reference/default.htm?url=SimpleMA.htm

T3 | Triple Exponential Moving Average (T3) |

TEMA | Triple Exponential Moving Average | TRIMA | Triangular Moving Average | DONE • list = jhta.TRIMA(df, n, price='Close') $\bullet \ \ https://www.fmlabs.com/reference/default.htm?url=TriangularMA.htm$ WMA | Weighted Moving Average Pattern Recognition CDL2CROWS | Two Crows | CDL3BLACKCROWS | Three Black Crows | CDL3INSIDE | Three Inside Up/Down | CDL3LINESTRIKE | Three-Line Strike | CDL3OUTSIDE | Three Outside Up/Down | CDL3STARSINSOUTH | Three Stars In The South | CDL3WHITESOLDIERS | Three Advancing White Soldiers | CDLABANDONEDBABY | Abandoned Baby | CDLADVANCEBLOCK | Advance Block | CDLBELTHOLD | Belt-hold |

```
CDLBREAKAWAY | Breakaway |
CDLCLOSINGMARUBOZU | Closing Marubozu |
CDLCONSEALBABYSWALL | Concealing Baby Swallow |
CDLCOUNTERATTACK | Counterattack |
CDLDARKCLOUDCOVER | Dark Cloud Cover |
CDLDOJI | Doji |
CDLDOJISTAR | Doji Star |
CDLDRAGONFLYDOJI | Dragonfly Doji |
CDLENGULFING | Engulfing Pattern |
CDLEVENINGDOJISTAR | Evening Doji Star |
CDLEVENINGSTAR | Evening Star |
CDLGAPSIDESIDEWHITE | Up/Down-gap side-by-side white lines
CDLGRAVESTONEDOJI | Gravestone Doji |
CDLHAMMER | Hammer |
CDLHANGINGMAN | Hanging Man |
CDLHARAMI | Harami Pattern |
CDLHARAMICROSS | Harami Cross Pattern |
```

```
CDLHIGHWAVE | High-Wave Candle |
CDLHIKKAKE | Hikkake Pattern |
{\bf CDLHIKKAKEMOD} \mid {\bf Modified\ Hikkake\ Pattern} \mid
CDLHOMINGPIGEON | Homing Pigeon |
CDLIDENTICAL3CROWS | Identical Three Crows |
CDLINNECK | In-Neck Pattern |
CDLINVERTEDHAMMER | Inverted Hammer |
CDLKICKING | Kicking |
CDLKICKINGBYLENGTH | Kicking - bull/bear determined by the
longer marubozu |
CDLLADDERBOTTOM | Ladder Bottom |
CDLLONGLEGGEDDOJI | Long Legged Doji |
CDLLONGLINE | Long Line Candle |
CDLMARUBOZU | Marubozu |
CDLMATCHINGLOW | Matching Low |
CDLMATHOLD | Mat Hold |
CDLMORNINGDOJISTAR | Morning Doji Star |
CDLMORNINGSTAR | Morning Star |
```

```
CDLONNECK | On-Neck Pattern |
CDLPIERCING | Piercing Pattern |
CDLRICKSHAWMAN | Rickshaw Man |
CDLRISEFALL3METHODS | Rising/Falling Three Methods |
CDLSEPARATINGLINES | Separating Lines |
CDLSHOOTINGSTAR | Shooting Star |
CDLSHORTLINE | Short Line Candle |
CDLSPINNINGTOP | Spinning Top |
CDLSTALLEDPATTERN | Stalled Pattern |
CDLSTICKSANDWICH | Stick Sandwich |
CDLTAKURI | Takuri (Dragonfly Doji with very long lower shadow)
CDLTASUKIGAP | Tasuki Gap |
CDLTHRUSTING | Thrusting Pattern |
CDLTRISTAR | Tristar Pattern |
CDLUNIQUE3RIVER | Unique 3 River |
CDLUPSIDEGAP2CROWS | Upside Gap Two Crows |
CDLXSIDEGAP3METHODS | Upside/Downside Gap Three Meth-
ods |
```

Price Transform

AVGPRICE | Average Price | DONE

- list = jhta.AVGPRICE(df)
- $\bullet \ \ https://www.fmlabs.com/reference/default.htm?url=AvgPrices.htm$

MEDPRICE | Median Price | DONE

- list = jhta.MEDPRICE(df)
- $\bullet \quad \text{https://www.fmlabs.com/reference/default.htm?url=MedianPrices.htm}$

TYPPRICE | Typical Price | DONE

- list = jhta.TYPPRICE(df)
- $\bullet \ \ https://www.fmlabs.com/reference/default.htm?url=TypicalPrices.htm$

WCLPRICE | Weighted Close Price | DONE

- list = jhta.WCLPRICE(df)

Statistic Functions

MEAN | Arithmetic mean (average) of data | DONE

• list = jhta.MEAN(df, n, price='Close')

HARMONIC_MEAN | Harmonic mean of data | DONE

• list = jhta.HARMONIC_MEAN(df, n, price='Close')

MEDIAN | Median (middle value) of data | DONE • list = jhta.MEDIAN(df, n, price='Close') MEDIAN_LOW | Low median of data | DONE • list = jhta.MEDIAN_LOW(df, n, price='Close') MEDIAN_HIGH | High median of data | DONE • list = jhta.MEDIAN_HIGH(df, n, price='Close') MEDIAN_GROUPED | Median, or 50th percentile, of grouped data | DONE • list = jhta.MEDIAN_GROUPED(df, n, price='Close', interval=1) MODE | Mode (most common value) of discrete data | DONE • list = jhta.MODE(df, n, price='Close') PSTDEV | Population standard deviation of data | DONE • list = jhta.PSTDEV(df, n, price='Close', mu=None) PVARIANCE | Population variance of data | DONE • list = jhta.PVARIANCE(df, n, price='Close', mu=None) STDEV | Sample standard deviation of data | DONE • list = jhta.STDEV(df, n, price='Close', xbar=None)

VARIANCE | Sample variance of data | DONE • list = jhta.VARIANCE(df, n, price='Close', xbar=None) COV | Covariance | DONE • float = jhta.COV(list1, list2) • https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance# Covariance ${\bf COVARIANCE} \mid {\bf Covariance} \mid {\bf DONE}$ • list = jhta.COVARIANCE(df1, df2, n, price1='Close', price2='Close') • https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance# Covariance COR | Correlation | DONE • float = jhta.COR(list1, list2) CORRELATION | Correlation | DONE • list = jhta.CORRELATION(df1, df2, n, price1='Close', price2='Close') PCOR | Population Correlation | DONE • float = jhta.PCOR(list1, list2)

PCORRELATION | Population Correlation | DONE

• list = jhta.PCORRELATION(df1, df2, n, price1='Close', price2='Close')

BETA | Beta | DONE

- float = jhta.BETA(list1, list2)
- https://en.wikipedia.org/wiki/Beta_(finance)

BETAS | Betas | DONE

- list = jhta.BETAS(df1, df2, n, price1='Close', price2='Close')
- https://en.wikipedia.org/wiki/Beta_(finance)

LSR | Least Squares Regression | DONE

- list = jhta.LSR(df, price='Close', predictions_int=0)
- $\bullet \quad \text{https://www.mathsisfun.com/data/least-squares-regression.html} \\$

SLR | Simple Linear Regression | DONE

- list = jhta.SLR(df, price='Close', predictions_int=0)
- https://machinelearningmastery.com/implement-simple-linear-regression-scratch-python/

Uncategorised

Volatility Indicators

ATR | Average True Range | DONE

- list = jhta.ATR(df, n)
- https://www.fmlabs.com/reference/default.htm?url=ATR.htm

NATR | Normalized Average True Range |

RVI Relative Volatility Index DONE
• list = jhta.RVI(df, n)
$\bullet \ \text{https://www.fmlabs.com/reference/default.htm?url=RVI.htm} \\ \underline{\hspace{1cm}}$
INERTIA Inertia
TRANGE True Range DONE
• list = jhta.TRANGE(df)
$\bullet \ \ https://www.fmlabs.com/reference/default.htm?url=TR.htm$
Volume Indicators
AD Chaikin A/D Line DONE
• list = jhta.AD(df)
• https://www.fmlabs.com/reference/default.htm?url=AccumDist.htm
ADOSC Chaikin A/D Oscillator •
OBV On Balance Volume DONE
• list = jhta.OBV(df)
• https://www.fmlabs.com/reference/default.htm?url=OBV.htm