Apuntes de Lenguajes Formales

Incompleto

Leonardo H. Añez Vladimirovna¹

Universidad Autónoma Gabriél René Moreno, Facultad de Ingeniería en Ciencias de la Computación y Telecomunicaciones, Santa Cruz de la Sierra, Bolivia

5 de noviembre de 2019

¹Correo Electrónico: toborochi98@outlook.com

Agradecimiento a marmot

Notas del Autor

Estos apuntes fueron realizados durante mis clases en la materia INF319 (Lenguajes Formales), acompañados de referencias de libros, fuentes y código que use a lo largo del curso, en el período I-2019 en la Facultad de Ingeniería en Ciencias de la Computación y Telecomunicaciones.

Para cualquier cambio, observación y/o sugerencia pueden enviarme un mensaje al siguiente correo:

toborochi98@outlook.com

Índice general

1.		liminares Formales	5
	1.1.	Conjuntos	5
		1.1.1. Conjunto Finito e Infinito	5
	1.2.	Preliminares	5
		1.2.1. Alfabeto	5
		1.2.2. Palabra	5
		1.2.3. Notaciones	6
		1.2.4. Cantidad de Ocurrencias	6
		1.2.5. Concatenación	6
		1.2.6. Inversa	7
		1.2.7. Potencia de una Palabra	7
		1.2.8. Principio de Inducción para Σ^*	7
		1.2.9. Prefijos, Sufijos y Subpalabras	8
		1.2.10. Lenguajes	8
		1.2.11. Orden Lexicográfico	9
		1.2.12. Representación Finita de Lenguajes	9
			10
			11
			12
			12
			14
		21211 Sillocold, 111011010 J. Volling and 1110110 J. Volling and 111	
2.			15
	2.1.	Autómata Finito Determinístico (AFD)	15
			15
		2.1.2. Interretación	15
		2.1.3. Representación	16
		2.1.4. Configuración	16
	2.2.	Autómata Finito no Determinístico (AFN)	17
		2.2.1. Definición	17
		2.2.2. Configuración	17
	2.3.	Equivalencia entre una AFD y un AFN	17
	2.4.	Propiedades de los Lenguajes Aceptados por AF's	18
			20
			22
		2.6.1. Teoría	22
	2.7.	Gramáticas	23
		2.7.1. Definición	23
			23
	2.8.		24
			- 24
			25
			25^{-5}
	2.9.		26

ÍNDICE GENERAL

Capítulo 1

Preliminares Formales

1.1. Conjuntos

1.1.1. Conjunto Finito e Infinito

Equivalencia

Dado A y B (conjuntos) los llamamos equivalentes si existe una biyección: $f:A\to B$

Conjunto Finito

Un conjunto A es finito si es equivalente a $\{1, 2, 3, \dots, n\}$ para algún $n \in \mathbb{N}$.

Conjunto Infinito

Un conjunto es infinito si no es finito. Si no es equivalente a $\{1, 2, 3, ..., n\}$ es decir no hay biyección. Sin embargo no todos los conjuntos finitos son equivalentes.

- Conjunto Contablemente Infinito: Se dice que un conjunto es contablemente infinito si es equivalente con N.
- Conjunto Contable: Es contable si es finito o contablemente infinito.
- Conjunto Incontable: Se dice que es incontable si no es contable.

Principio de las Casillas

Si A y B son conjuntos finitos no vacíos y |A| > |B| entonces no existe una función inyectiva de: $A \to B$.

1.2. Preliminares

1.2.1. Alfabeto

Un alfabeto Σ es cualquier conjunto finito no vacío.

Ejemplo(s)

$$\Sigma_1 = \{Leo, Martha\}$$
 $\Sigma_2 = \{0, 1, 2, 3, \dots, 13\}$
 $\Sigma_3 = \{a, b\}$
 $\Sigma_4 = \{R, G, B, A\}$

1.2.2. Palabra

Una palabra sobre Σ es una sucesión finita de símbolos de Σ . Es decir:

$$(\sigma_1, \sigma_2, \dots, \sigma_n); \sigma \in \Sigma$$
 ó $\sigma_1 \sigma_2 \sigma_3 \dots \sigma_n; \sigma \in \Sigma$

Ejemplo(s)

Sobre Σ_1	$\textbf{Sobre}\Sigma_2$	Sobre Σ_3	$\textbf{Sobre}\Sigma_4$
$w_1 = LeoLeo$	$w_1 = 11111110$	$w_1 = bababababa$	$w_1 = ABGR$
$w_2 = MarthaLeoMartha$	$w_2 = 11235813$	$w_2 = abba$	$w_2 = RRRA$

Denotamos por Σ^* el conjunto de todas las palabras sobre Σ .

Longitud de una Palabra

Sea w una palabra sobre Σ , es decir $w = \sigma_1 \sigma_2 \dots \sigma_n; \sigma \in \Sigma$. La longitud de w es n y se denota por: |w| = n.

Palabra vacía

Es la sucesión vacía de símbolos de Σ y se denota por: $\lambda.$

1.2.3. Notaciones

- $\Sigma^+ = \{ w \in \Sigma^* / |w| > 0 \}$
- $\Sigma^0 = \{ w \in \Sigma^* / |w| = 0 \} = \{ \lambda \}$
- $\bullet \ \Sigma^1 = \{w \in \Sigma^*/|w| = 1\} = \Sigma$

1.2.4. Cantidad de Ocurrencias

Sea $w \in \Sigma^*$, denotamos por $|w|_{\sigma}$ al número de ocurrencias del símbolo σ en la palabra w.

Ejemplo(s)

$$\Sigma = \{a, b\}$$

- $\Sigma^* = \{\lambda, a, b, aa, bb, ab, ba, aaa, \ldots \}$
- $\Sigma_1 = \Sigma = \{a, b\}$

1.2.5. Concatenación

Sea $u, v \in \Sigma^*$ tal que $u = \sigma_1 \sigma_2 \dots \sigma_n, v = \epsilon_1 \epsilon_2 \dots \epsilon_n$. La concatenación de u y v se define por:

$$uv = \sigma_1 \sigma_2 \dots \sigma_n \epsilon_1 \epsilon_2 \dots \epsilon_n$$

Definición de Recurrencia

$$\begin{aligned} | \ | : \Sigma^* \to \mathbb{N} \\ |\lambda| &= 0 \\ |wa| &= |w| + 1 \end{aligned}$$

Ejemplo(s)

$$u = abab$$
$$v = bba$$

$$uv=ababbba$$

vu = bbaabab

Propiedades

- $uv \neq vu$
- (uv)w = u(vw)
- $u\lambda = \lambda u = u$
- |uv| = |u| + |v|
- $|uv|_a = |u|_a + |v|_a$

1.2.6. Inversa

Si $w = \sigma_1, \sigma_2, \dots, \sigma_n \in \Sigma^n$ entonces $w' = \sigma_n, \sigma_{n-1}, \dots, \sigma_1$ se llama inversa o transpuesta de w.

Definición de Recurrencia

$$': \Sigma^* \to \Sigma^*$$

$$\begin{cases} \lambda' = \lambda \\ (wa)' = aw' \end{cases}$$

1.2.7. Potencia de una Palabra

$$w^n = \underbrace{ww \dots w}_{n-veces}$$

Definición de Recurrencia

$$m : \Sigma^* \to \Sigma^*$$

$$w^1 = w$$

$$\begin{cases} w^0 = \lambda \\ w^{n+1} = ww^n \end{cases}$$

Propiedades

- $|w^n| = n|w|$
- $w^m w^n = w^{m+n}$
- $(w^n)^m = w^{mn}$
- $\quad \blacksquare \ \lambda^n = \lambda$

1.2.8. Principio de Inducción para Σ^*

Sea L un conjunto de palabras sobre Σ con las propiedades:

- i.) $\lambda \in L$
- ii.) $w \in L \land a \in \Sigma \Rightarrow wa \in L$

Crecimiento por Izquierda

ii')
$$w \in L \land a \in \Sigma \Rightarrow aw \in L$$

Entonces

 $L = \Sigma^*$, (es decir, todas las palabras sobre Σ están en L.)

1.2.9. Prefijos, Sufijos y Subpalabras

Sean $v, z \in \Sigma^*$:

- Se dice que v es prefijo de z ssi existe $w \in \Sigma^*$ tal que: z = vw. Y se escribe: "v pref z".
- Se dice que v es sufijo de z ssi existe $u \in \Sigma^*$ tal que: z = uv. Y se escribe: "v suf z".
- Se dice que v es subpalabra de z ssi existe $u_1, u_2 \in \Sigma^*$ tal que: $z = u_1 \vee u_2$. Y se escribe: "v subpz".

Sean $x, w \in \Sigma^*$:

- x es **prefijo** de w si w=xy, si $\exists y \in \Sigma^*/w=xy$ x es **sufijo** de w si w=yx, si $\exists y \in \Sigma^*/w=yx$
- x es subcadena de w si w = yx, si $\exists z, y \in \Sigma^*/w = zxy$

Ejemplo(s)

 $\Sigma = \{a, b\}, z = babaab$

Prefijo		Sufij	Subpalabra			
$u_1 = ba$	w = baab	$v_1 = aab$	u=bab	$s_1 = aa$	$u_1 = bab$	$u_2 = b$
$u_2 = bab$	w = aab	$v_2 = abaab$	u=b	$s_2 = baa$	$u_1 = ba$	$u_2 = b$
$u_3 = baba$	w = ab	$v_3 = ab$	u = baba	$s_3 = abaa$	$u_1 = b$	$u_2 = b$
$u_4 = babaa$	w=b	$v_4 = baab$	u=ba	$s_4 = ba$	$u_1 = ba$	$u_2 = ab$
$u_5 = babaab$	$w = \lambda$	$v_5 = b$	u = babaa	$s_5 = b$	$u_1 = \lambda$	$u_2 = abaab$

1.2.10. Lenguajes

Un lenguaje sobre Σ es un subconjunto de Σ^*

Operaciones

Recordemos que ya conocemos otras operaciones (Unión, Intersección, Diferencia y Complemento), para esta materia tenemos las siguientes:

Concatenación

Sea $A, B \subseteq \Sigma^*$

$$AB = \{w \in \Sigma^*/w = xy, x \in A, y \in B\}$$

Transposición

Sea $A \subseteq \Sigma^*$

$$A' = \{ w' \in \Sigma^* / w \in A \}$$

■ Estrella de Kleene

Sea
$$A \subseteq \Sigma^*$$

$$A^* = \{w \in \Sigma^* / w = w_1 w_2 \dots w_n \text{ para algún } k \in \mathbb{N} \text{ y para algunas } w_1, w_2, \dots, w_k \in A\}$$

1.2. PRELIMINARES 9

1.2.11. Orden Lexicográfico

Cualquier lenguaje infinito puede ser ordenado lexicograficamente en consecuencia se puede poner en biyección con el conjunto \mathbb{N} .

- i.) Se presupone un orden en los símbolos del alfabeto.
- ii.) Entre dos palabras de distinta longitud la de menor longitud precede a la de mayor longitud.
- iii.) Entre 2 palabras de la misma longitud se factoriza ambas hasta el primer símbolo diferente exclusivo. La precedencia se decide comparando la segunda parte de ambas factorizaciones, en base al primer símbolo de la segunda parte.

Ejemplo(s)

• $\Sigma = \{a, b, c\}, L = \{a, b, ab, ac, acb, abc, c, aa, cba\}$

1.2.12. Representación Finita de Lenguajes

Necesitamos tener dos consideraciones:

- lacktriangle Cualquier representación, debe ser en si misma una palabra. Es decir una sucesión finita de símbolos de un alfabeto Σ .
- Lenguajes diferentes deben tener representaciones diferentes.

Primer resultado de la Teoría de la Computación

No importa cuán poderosos sean los métodos que conocemos para representar lenguajes, sólo pueden ser representados un número contable de ellos (mientras que las representaciones sean finitas), inevitablemente, un número incontable de ellos quedará sin representación bajo cualquier esquema de representación finita.

1.2.13. Expresiones Regulares

Las expresiones regulares (ER) sobre un alfabeto (Σ) son las palabras sobre el alfabeto $\Sigma \cup \{\}, (\emptyset, \cup, *\}$ tal que cumple lo siguiente:

- 1.) \emptyset y cada símbolo de Σ es una ER.
- **2.)** Si α y β son ER entonces $(\alpha\beta)$ es una ER.
- **3.)** Si α y β son ER entonces $(\alpha \cup \beta)$ es una ER.
- **4.)** Si α es una ER entonces α^* es una ER.
- 5.) Nada mas es una ER a menos que provenga de (1.) a (4.)

Ejemplo(s)

Para $\Sigma = \{a, b\}$ podemos formar:

```
a
b
(ab)
(a \cup b)
((ab) \cup b)
(ba)^*
((ba)^* \cup (a \cup b))^*
```

Lenguaje Regular

Un lenguaje es regular ssi es generado por una expresión regular.

Ejemplo(s)

■ Dado: $\Sigma = \{a, b\}$. Escribir por comprensión los lenguajes generados por las ER:

a)
$$\alpha = ab^*$$

$$L(\alpha) = L(ab^*) = L(a)L(b^*) = L(a)L(b)^*$$
= $\{a\}\{b\}^*$
= $\{a\}\{\lambda, b, bb, bbb, \dots\}$
= $\{a, ab, abb, abb, \dots\}$

$$L(\alpha) = \{w \in \Sigma^*/w = ab^n, n \ge 0\}$$

b) $\alpha = ba^*b$

$$\begin{split} L(\alpha) &= L(ba^*b) \\ &= L(ba^*)L(b) \\ &= L(b)L(a^*)L(b) \\ &= \{b\}\{\lambda, a, aa, aaa, \ldots\}\{b\} \\ &= \{b, bab, baab, baaab, \ldots\} \\ L(\alpha) &= \{w \in \Sigma^*/w = ba^nb, n \ge 0\} \end{split}$$

- c) $\alpha = (a \cup b)^*a$
- d) $\alpha = (a \cup b)^* a (a \cup b)^*$
- e) $\alpha = b^*ab^*$

$$\begin{split} L(\alpha) &= L(b^*ab^*) \\ &= L(b^*)L(a)L(b^*) \\ &= \{b\}^*\{a\}\{b\}^* \\ &= \{\lambda, b, bb, bbb, \ldots\}\{a\}\{\lambda, b, bb, bbb, \ldots\} \\ &= \{a, bab, bbabb, bbbabbb, \ldots\} \\ L(\alpha) &= \{w \in \Sigma^*/w = b^nab^n, n \geq 0\} \end{split}$$

1.2. PRELIMINARES 11

1.2.14. Módulos

Definición

Un módulo es una tripleta $D = (k, \Sigma, f)$ donde:

- k es un conjunto finito no vacío, llamado conjunto de estados
- \blacksquare Σ es un conjunto finito no vacío, llamado~alfabeto
- lacksquare $f: k \times \Sigma \to k$, llamado función de transición

Interpretación

Un módulo se puede interpretar como un dispositivo que en determinados instantes de tiempo recibe señales (símbolos del alfabeto), que producen cambios en su configuración interna.

Representación

■ Tabla de Transición

k Σ	σ_1	σ_1		σ_{j}	 σ_m
s_1				÷	
s_2				÷	
:				:	
s_i		• • •	• • •	s_k	
:					
s_n					

Figura 1.1: $s_k = f(s_i, \sigma_j)$

Grafo

Figura 1.2: ssi: $f(s_i, \sigma) = s_j$

Comportamiento Dinámico

Sea $D=(k,\sigma,f)$ un módulo:

$$t_0$$
 t_1 t_2 \cdots t_k

$$s_0 \xrightarrow{\sigma_0} s_1 \xrightarrow{\sigma_1} s_2 \xrightarrow{\sigma_2} \cdots \xrightarrow{\sigma_{k-1}} s_k$$

$$s_{i+1}=f(s_i,\sigma_i)$$
 Procesa Símbolo
$$s_k=\hat{f}(s_0,\sigma_0\sigma_1\sigma_2\dots\sigma_{k-1})$$
 Procesa Palabras

Función Estado Terminal

Sea $D = (k, \sigma, f)$ un módulo:

Una función de Estado Terminal del módulo D es una única función:

$$\widehat{f}: k \times \Sigma \to k \text{ tal que } \forall s \in k, w \in \Sigma^*, \sigma \in \Sigma$$

$$\begin{cases} \widehat{f}(s,\lambda) = s \\ \widehat{f}(s,\sigma w) = \widehat{f}\left[f(s,\sigma),w\right] \end{cases}$$

♦ Notas

•
$$w = \lambda$$

$$\widehat{f}(s,\sigma) = \widehat{f}(s,\sigma\lambda) = \widehat{f}[f(s,\sigma),\lambda] = f(s,\sigma)$$

 $\quad \blacksquare \ \forall w \in \Sigma^*$

$$f: k \to k$$
 tal que: $f_w(s) = \widehat{f}(s, w)s$

1.2.15. Alcanzabilidad

Sea $D = (k, \Sigma, f)$ un módulo y sean $s, t \in K$.

■ Decimos que t es alcanzable a partir de s ssi existe $w \in \Sigma^*$ tal que:

$$\hat{f}(s, w) = t$$

y se escribe

$$s \longrightarrow t$$

• Sea $k \in \mathbb{N}$. Decimos que t es k-Alcanzable a partir de s ssi existe $w \in \Sigma^*$ tal que

$$|w| = k \wedge \hat{f}(s, w) = t$$

y se escribe:

$$s \xrightarrow{k} t$$

1.2.16. Máquinas

Definición

Una máquina es una quíntupla $M = (k, \Sigma, \Delta, f, g)$ donde:

- lacktriangle es un conjunto finito no vacío, llamado conjunto de estados
- \blacksquare Σ es un conjunto finito no vacío, llamado alfabeto de entrada
- lacksquare Δ es un conjunto finito no vacío, llamado alfabeto de salida
- $f: k \times \Sigma \to k$, llamado función de transición
- $g: k \times \Sigma \to \Delta$, llamado función de salida

Interpretación

Una máquina se puede interpretar como un dispositivo que en determinados instantes de tiempo recibe señales (símbolos de entrada) que producen cambios en su configuración interna y emiten señales (símbolos de salida).

$$\sigma \in \Sigma$$
 $s \in k$ $\delta \in \Delta$

1.2. PRELIMINARES

k Σ	σ_1	σ_1	 σ_{j}	 σ_m
s_1			:	
s_2			:	
:			÷	
s_i		• • •	 s_k/δ_k	
:				
s_n				

Figura 1.3: $s_k = f(s_i, \sigma_j)$ $g(s_1, \sigma_j) = \delta_k$

Representación

- Tabla de Transición
- Grafo

$$\begin{array}{c|c}
\hline
s_i & \sigma/\delta \\
\hline
\end{array}$$

Figura 1.4: ssi: $f(s_i, \sigma) = s_j$ $g(s_i, \sigma) = \delta$

Comportamiento Dinámico

Sea $M=(k,\Sigma,\Delta,f,g)$ una máquina:

$$t_0$$
 t_1 t_2 \cdots t_k

$$s_0 \xrightarrow{\sigma_0/\delta_0} s_1 \xrightarrow{\sigma_1/\delta_1} s_2 \xrightarrow{\sigma_2/\delta_2} \cdots \xrightarrow{\sigma_{k-1}/\delta_{k-1}} s_k$$

$$\hat{f}(s_0, \sigma_0 \sigma_2 \dots \sigma_{k-1}) = s_k$$

$$y(s_i, \sigma_i) = \delta_i$$

$$\overline{y}(s_0, \sigma_0 \sigma_1 \dots \sigma_k) = \delta_0 \delta_1 \dots \delta_{k-1}$$

Función Estado Terminal

Sea $M=(k, \Sigma, \Delta, f, g)$ una máquina.

1.) Una función de Estado Terminal de M es la función de estado terminal:

$$\widehat{f}: k \times \Sigma^* \to k$$
 del módulo (k, Σ, f)

2.) Una función palabra de salida de M es una única función:

$$\overline{g}: k \times \Sigma^* \to \Delta^*$$
tal que $\forall s \in k, \sigma \in \Sigma, w \in \Sigma^*$

$$\begin{cases} \overline{g}(s,\lambda) &= \lambda \\ \overline{g}(s,\sigma w) &= g(s,\sigma)\overline{g}\big[f(s,\sigma),w\big] \end{cases}$$

♦ Notas

$$\quad \blacksquare \ w = \lambda$$

$$\overline{g}(s,\sigma) = \overline{g}(s,\sigma\lambda) = g(s,\sigma) \underbrace{\overline{g}[f(s,\sigma),\lambda]}_{\lambda} = g(s,\sigma)\lambda = g(s,\sigma)$$

$$\quad \blacksquare \ \, \forall s \in k$$

$$g_s: \Sigma^* \to \Delta^*$$
 tal que $g_s(w) = \overline{g}(s, w)$

1.2.17. Síntesis, Análisis y Verificación

	I/0	Máquina
Síntesis	✓	?
Análisis	?	✓
Verificación	√	✓

Capítulo 2

Autómatas

2.1. Autómata Finito Determinístico (AFD)

2.1.1. Definición

Un Autómata Finito Determinístico (AFD) es una quintupla $M=(k, \Sigma, f, s_0, F)$ donde:

- k conjunto finito no vacio, conjunto de estados
- Σ conjunto finito no vacio, Alfabeto
- \bullet $f:k\times\Sigma\to k$, Funcion de transicion
- $s_0 \in k$, Estado inicial
- $F \subseteq k$, Conjunto de estados finales

2.1.2. Interretación

Podemos verlo como una cinta que posee una cabeza lectora, esta se mueve hacia la derecha y con este movimiento los estados q_i cambian.

Figura 2.1: Es importante notar que un Autómata se mueve hacia adelante al contrario de una máquina de Turing 2.9

2.1.3. Representación

Tabla

En esta representación, el estado inicial se apunta con una $flecha(\rightarrow)$, los estados finales se subrayan.

Grafo

2.1.4. Configuración

Sea
$$M = (k, \Sigma, \delta, s_0, F)$$
 un AFD.

Una configuración de M es un elemento de $k \times \Sigma^*$

Relación $\frac{1}{M}$

Sea (q, w) y (q', w') dos configuraciones¹:

$$(q,w) \left| \frac{}{M} \right. (q',w') \Leftrightarrow w = \sigma w'$$
para algun $\sigma \in \Sigma$ y $\delta(q,\sigma) = q'$

Denotamos por $\frac{*}{M}$ a la clausura reflexiva transitiva de $\frac{*}{M}$ y se lee "Conduce a" en cero o mas pasos (varios pasos).

Sea $M=(k,\Sigma,\sigma,s,F)$ un AFD y sea $w\in\Sigma^*.$ Se dice que M acepta w ssi:

$$(s,w) \stackrel{*}{ |_{M}} (q,\lambda) \land q \in F$$

Lenguaje Aceptado por M

$$\begin{split} L(M) = & \{w \in \Sigma^*/M \text{ acepta } w\} \\ L(M) = & \{w \in \Sigma^*/(s,w) \left| \frac{*}{M} \left(q,\lambda\right) \land q \in F\} \right. \end{split}$$

 $^{1 \}longrightarrow \infty$ se lee "conduce a" en un paso.

2.2. Autómata Finito no Determinístico (AFN)

2.2.1. Definición

Un autómata Finito no Deterministico (AFN) es una quintupla $M=(k,\Sigma,\Delta,s,F)$ donde:

- k: conjunto finito no vacio
- Σ : conjunto finito no vacio
- Δ : es un subconjunto finito de $k \times \Sigma^* \times k$
- $s \in k$
- $F \subseteq k$

2.2.2. Configuración

Una configuración es un elemento de $k \times \Sigma^*$.

Relación $\frac{1}{M}$

Sean (q, w) y (q', w') dos configuraciones:

$$(q,w) \left| \frac{1}{M} \left(q',w' \right) \Leftrightarrow w = uw'$$
para algún $u \in \Sigma^*$ y $(q,u,q') \in \Delta$

Denotamos por $\frac{*}{M}$ la clausura reflexiva transitiva de $\frac{*}{M}$ y se lee "Conduce a" en cero o mas pasos. Se dice que M acepta w ssi:

$$(s,w) \stackrel{*}{ |_{M}} (q,\lambda); q \in F$$

Lenguaje Aceptado por M

$$\begin{split} L(M) = & \{ w \in \Sigma^* / M \text{ acepta } w \} \\ L(M) = & \{ w \in \Sigma^* / (s, w) \left| \frac{*}{M} \left(q, \lambda \right) \land q \in F \} \right. \end{split}$$

2.3. Equivalencia entre una AFD y un AFN

Teorema

Para cada AFN existe un AFD equivalente.

★ Prueba

Sea
$$M = (k, \Sigma, \Delta, s, F)$$
 un AFN

i.) Construimos $M' = (k', \Sigma, \Delta', s', F')$ eliminando todas las aristas de M que:

$$(q, u, q') \in \Delta \qquad \land \qquad |u| > 1$$

Si $u = \sigma_1 \sigma_2 \dots \sigma_k, k > 1$ entonces añadimos p_1, p_2, \dots, p_{k-1} estados y las nuevas transiciones:

$$(q, \sigma_1, p_1), (p_1, \sigma_2, p_2), \dots, (p_{k-1}, \sigma_k, q')$$

a Δ para u tal que |u| > 1.

ii.) Construimos $M'' = (k'', \Sigma, \delta'', s'', F'')$

La idea clave es considerar que un AFN en un determinando instante se encuentra en un conjunto de estados:

- $k'' = \Sigma^{k'}$
- $F'' = \{Q \subseteq k'/Q \cap F' \neq \emptyset\}$

Formalmente:

$$E(q) = \{ p \in k'/(q, \lambda) \mid \frac{*}{M'}(p, \lambda) \}$$

Equivalentemente:

$$E(q) = \{ p \in k'/(q, w) \mid \frac{*}{M'} (p, w) \}$$

Donde:

- s'' = E(s')
- $\bullet \ \forall Q \subseteq k' \land \ \text{para cada símbolo} \ \sigma \in \Sigma$

Ademas:

$$\delta''(Q,\sigma) = \bigcup \{ E(p) : p \in k' \land (q,\sigma,p) \in \Delta', \exists q \in Q \}$$

Afirmamos que $\forall w \in \Sigma^* \ y \ \forall p, q \in k'$:

$$(q,w) \stackrel{*}{\underset{M'}{\mid}} (p,\lambda) \Leftrightarrow (E(q),w) \stackrel{*}{\underset{M''}{\mid}} (P,\lambda)$$

p.d.
$$M' \approx M''$$

p.d. $L(M') = L(M'')$

$$w \in L(M') \Leftrightarrow (s', w) \Big|_{M'}^{*} (q, \lambda), q \in F'$$
$$\Leftrightarrow (E(s'), w) \Big|_{M''}^{*} (Q, \lambda)$$
$$\Leftrightarrow (s'', w) \Big|_{M''}^{*} (Q, \lambda), Q \in F''$$
$$\Leftrightarrow w \in L(M'')$$

$$\therefore L(M') = L(M'')$$

2.4. Propiedades de los Lenguajes Aceptados por AF's

Teorema

La clase de Lenguajes aceptados por AF's es cerrada bajo la:

- Unión
- Concatenación
- Estrella de Kleene
- Complementación
- Intersección

Prueba

Sean $L(M_1)$ y $L(M_2)$ lenguajes aceptados por $M_1=(k_1,\Sigma,\Delta_1,s_1,F_1)$ y $M_1=(k_2,\Sigma,\Delta_2,s_2,F_2)$:

a) Unión

Construimos $M = (k, \Sigma, \Delta, s, F)$ tal que: $L(M) = L(M_1) \cup L(M_2)$

Donde:

- $k = k_1 \cup k_2 \cup \{s\}$ donde s es un nuevo estado (inicial).
- lacksquares : nuevo estado añadido
- $F = F_1 \cup F_2$

b) Concatenación

Construimos $M=(k,\Sigma,\Delta,s,F)$ tal que: $L(M)=L(M_1)L(M_2)$

Donde:

- $\bullet \ k = k_1 \cup k_2$
- $\Delta = \Delta_1 \cup \Delta_2 \cup (F_1 \times \{\lambda\} \times \{s_2\})$
- $s = s_1$
- $F = F_2$

c) Estrella de Kleene

Construimos $M = (k, \Sigma, \Delta, s, F)$ tal que: $L(M) = L(M_1)^*$

Donde:

- $k = k_1 \cup \{s'_1\}$ donde s'_1 es un nuevo estado (*inicial y terminal*).
- $s = s_1'$
- $F = F_1 \cup \{s_1'\}$

d) Complementación

Sea $M = (k, \Sigma, \delta, s, F)$ un **AFD**.

Donde:

 $\Sigma^* - L(M)$ es aceptado por $\overline{M} = (k, \Sigma, \delta, s, k - F)$

e) Intersección

Sea:

$$L_1 \cap L_2 = \overline{L_1 \cap L_2}$$

$$= \overline{L_1} \cup \overline{L_2}$$

$$= \Sigma^* - [(\Sigma^* - L_1) \cup (\Sigma^* - L_2)]$$

$$\underbrace{\phantom{L_1 \cap L_2 = \overline{L_1 \cap L_2}}_{1}}_{4}$$

Notese que en 1, 2, 3, 4 se puede ver que en cada operación al aplicarla se obtiene otro AF que puede ser nuevamente usada en la siguiente operación y así sucesivamente.

Teorema

Existen algoritmos para responder las siguientes preguntas acerca de Automatas Finitos:

- **b)** Dado un AF M, es $L(M) = \emptyset$?
- c) Dado un AF M, es $L(M) = \Sigma^*$?
- **d)** Dado 2 AF's M_1 y M_2 , es $L(M_1) \subseteq L(M_2)$?
- e) Dado 2 AF's M_1 y M_2 , es $L(M_1) = L(M_2)$?

Prueba

- a) Esto es lo que ya hemos ido haciendo.
- b) Simplemente nos basta analizar si el automata no acepta ninguna palabra.
- c) $M \to L(\bar{M}) = \emptyset$ (Basta realizar el complemento del AF y ver que el lenguaje aceptado sea \emptyset). (b)
- **d)** $A \subseteq B \Leftrightarrow A \cap B^C = \emptyset$

$$L(M_1) \subseteq L(M_2) \Leftrightarrow L(M_1) \cap [\Sigma^* - L(M_2)] = \emptyset$$

e) Realizamos la doble inclusión:

$$L(M_1) \subseteq L(M_2) \wedge L(M_2) \subseteq L(M_1)$$
 (d)

2.5. Automatas Finitos y Expresiones Regulares

Teorema

Un Lenguaje es regular ssi es aceptado por un Automata Finito.

Prueba

i.) Supongamos que la propiedad se cumple para γ tal que $|\gamma| < n$.

Para
$$|\gamma| = n$$

$$L(\gamma) = L(\alpha \cup \beta) = L(\alpha) \cup L(\beta)$$
$$= L(M_1) \cup L(M_2) = L(M)$$

$$L(\gamma) = L(\alpha\beta) = L(\alpha)L(\beta)$$
$$= L(M_1)L(M_2) = L(M)$$

$$L(\gamma) = L(\alpha^*) = L(\alpha)^*$$
$$= L(M_1)^* = L(M)$$

ii.) Si un lenguaje es aceptado por un AF entonces es un lenguaje regular.

Prueba

$$R = L(M)$$

Representaremos L(M) como la unión de muchos (pero en número finito) lenguajes simples.

Sea
$$k = \{q_1, q_2, q_3, \dots, q_n\}, s = q_1 \text{ para } i, j = 1, 2, \dots, n; k = 1, 2, \dots, n + 1$$

Definimos R(i, j, k) como el conjunto de todas las palabras que nos llevan de q_i a q_j sin pasar por estados con subíndice k o mayores.

Formalmente

$$R(i,j,k) = \{x \in \Sigma^*/(q_i,x) \mid \frac{*}{M}(q_j,\lambda) \land (q_i,x) \mid \frac{*}{M}(q_l,y) \text{ entonces } l < k \lor (y = \lambda \land l = j) \lor (y = x \land l = i)\}$$

Si
$$k = n + 1$$
:2

$$R(i, j, n+1) = \{x \in \Sigma^*/(q_i, x) \mid \frac{*}{M} (q_j, \lambda)\}$$

Esto es:

$$L(M) = \bigcup \{ R(1, j, n+1), q_j \in F \}$$

p.d. R(i, j, k) son regulares (inducción) k = 1

$$R(i, j, 1) = \begin{cases} \{\sigma \in \Sigma / \delta(q_i, \sigma) = q_j\}, i \neq j \\ \\ \{\lambda\} \cup \{\sigma \in \Sigma / \delta(q_i, \sigma) = q_j\}, i \neq j \end{cases}$$

Son regulares ya que R(i, j, 1) son **finitos**.

\mathbf{HI}

Para k = 1, 2, ..., n R(i, j, k) son Regulares.

p.d. Para k+1 es decir R(i, j, k+1) es regular:

 $^{^2}$ Notese que no es posible llegar a n+1 ya que k tiene n estados

$$R(i,j,k+1) = \underbrace{R(i,j,k)}_{Regular} \cup \underbrace{R(i,k,k)}_{Regular} \underbrace{R(k,k,k)^*}_{Regular} \underbrace{R(k,j,k)}_{Regular}$$

R(i, j, k) es regular por la clausura de lenguaje regular respecto a la unión, concatenación y Estrella de Kleene.

2.6. Lenguajes no Regulares

2.6.1. Teoría

Sea L un lenguaje regular infinito. Entonces existen palabras x,y,z tales que $y \neq \lambda$ y $xy^nz \in L$. Para cada $n \geq 0$.

Ejemplo(s)

■ Demostrar que:

$$L = \{a^n b^n : n \ge 0\}$$
 es no regular.

Prueba (RAA)

L es regular infinito.

• Caso 1: Si y consta exclusivamente de "a"s.

$$x = a^p, y = a^q, z = a^r b^s$$

s, q > 0 $p, r \ge 0$

$$xy^nz \in L$$

$$a^p(q^q)a^rb^s \in L$$

$$a^{p+qn+r}b^s \in L$$

$$n = 0 \quad \underbrace{aa}_x \underbrace{abbbbb}_z$$

$$n = 1 \quad \underbrace{aa}_x \underbrace{aaa}_y \underbrace{abbbbbb}_z$$

$$n = 2 \quad \underbrace{aa}_x \underbrace{aaaaaa}_y \underbrace{abbbbbb}_z$$

Solo para n = 1. Tenemos una contradicción. $\Rightarrow \Leftarrow$.

• Caso 2: Si y consta exclusivamente de "b's.

Tendriamos crecimiento de "b's.

• Caso 3: Si y consta de "a"s y "b"s.

Tendriamos intercalado.

2.7. GRAMÁTICAS 23

2.7. Gramáticas

2.7.1. Definición

Una gramática Libre de Contexto es una cuádrupla $G = (V, \Sigma, R, S)$ donde:

- \blacksquare G es un alfabeto.
- ullet Σ es un subconjunto de V (Conjunto de Símbolos Terminales)
- $S \in (V \Sigma)$ (Símbolo Inicial)
- \blacksquare Res un conjunto finito de $(V-\Sigma)\times V^*$ (Reglas)

A los elementos de $V-\Sigma$ se les llama símbolos no terminales.

Notación

Para cada $A \in V - \Sigma$, $w \in \Sigma^*$

$$(A, w) \in R \Leftrightarrow A \xrightarrow{G} w$$

Donde G se refiere a la gramática.

Derivación

Para cada par de palabras $u, v \in V^*$ escribimos $u \Rightarrow v$ ssi existen palabras $x, y, v' \in V^*, A \in (V - \Sigma)$ tales que:

$$u = xAy, \ v = xv'y, \ A \xrightarrow{G} v'$$

Se denota por $u \overset{*}{\underset{G}{\Rightarrow}} v$ la clausura reflexiva transitiva de $\overset{}{\underset{G}{\Rightarrow}}$

Lenguaje Generado por G

$$L(G) = \left\{ w \in \Sigma^* / S \stackrel{*}{\rightleftharpoons} w \right\}$$

Un lenguaje es libre de contexto ssi existe una gramatica libre de contexto que genera el Lenguaje.

2.7.2. Gramáticas Regulares

Definición

Una Gramática Libre de Contexto $G = (V, \Sigma, R, S)$ es regular ssi:

$$R \subseteq (V - \Sigma) \times \Sigma^*((V - \Sigma) \cup \{\lambda\})$$

Teorema

Un lenguaje es Regular ssi es generada por una Gramática Regular:

Prueba

 \Rightarrow

Sea $M = (K, \Sigma, \sigma, s, F)$ construimos $G = (V, \Sigma, R, S)$ donde:

- $\quad \blacksquare \ V = K \cup \Sigma$
- S = s
- $\blacksquare \ R = \{q \to ap : \delta(p, a) = p\} \cup \{q \to \lambda : q \in F\}$

 \Leftarrow

Sea $G = (V, \Sigma, R, S)$ construimos $M = (K, \Sigma, \Delta, s, F)$ donde:

- $K = (V \Sigma) \cup \{f\}$ donde f es un nuevo elemento.
- s = S
- $F = \{f\}$
- $\bullet \ \Delta = \big\{ (A, w, B); A \to wB, A, B \in (V \Sigma), w \in \Sigma^* \big\} \cup \big\{ (A, w, f); A \to w, A \in (V \Sigma), w \in \Sigma^* \big\}$

Ejemplo(s)

 \blacksquare $G = (V, \Sigma, R, S)$ donde:

$$V = \{S, A, B, a, b\} \qquad \Sigma = \{a, b\}$$

$$R = \{R \rightarrow bA, S \rightarrow aB, A \rightarrow abaS, B \rightarrow babS, S \rightarrow A\}$$

Como un pequeño concejo, podemos decir que para que sea *regular*, las mayúsculas deben estar al extremo derecho o estar compuesto de minúscula únicamente.

2.8. Autómata con Pila

Definición

Un autómata con Pila es una sextupla:

$$M = (K, \Sigma, \Gamma, \Delta, s, F)$$

donde:

- k: Conjunto Finito no vacío.
- \blacksquare Σ : Símbolos de Entrada
- Γ : es un conjunto finito no vacío (llamado alfabeto de la Pila).
- $s \in K$
- $F \subseteq K$
- Δ es un subconjunto finito de $(K \times \Sigma^* \times \Gamma^*) \times (K \times \Gamma^*)$ (Relación de Transición)

Significado de una Transición

$$((p, u, \beta), (q, \gamma)) \in \Delta$$

Empujar a

$$((p, u, \lambda), (q, \alpha)) \in \Delta$$

Sacar de

$$((p, u, \alpha), (q, \lambda)) \in \Delta$$

2.8.1. Configuración

Una configuración es un elemento de:

$$K\times \Sigma^*\times \Gamma^*$$

[&]quot;Estando en p leyendo w pasa al estado q y reemplaza β por γ ."

La relación $\frac{1}{M}$

Para cada $((p, u, \beta), (q, \gamma)) \in \Delta$ y para cada $x \in \Sigma^*, \alpha \in \Gamma^*$ definimos:

$$(p, ux, \beta\alpha) \mid_{M} (q, x, \gamma\alpha)$$

Para ilustrar un poco mejor la idea tenemos la siguiente gráfica:

Palabra aceptada por M

Sea $w \in \Sigma^*$:

$$M$$
 acepta $w \Leftrightarrow (s, w, \lambda) \stackrel{*}{\underset{M}{|}} (q, \lambda, \lambda); q \in F$

Lenguaje aceptado por M

$$L(M) = \{w \in \Sigma^*/(s,w,\lambda) \left| \begin{array}{c} * \\ \hline M \end{array} (q,\lambda,\lambda); q \in F\}$$

2.8.2. Autómatas con Pila y Gramáticas Libre de Contexto

Definición

La clase de lenguajes aceptados por autómatas con pila es exactamente la clase de lenguajes libres de contexto:

$Prueba \Leftarrow$

Sea $G = (V, \Sigma, R, S)$ construimos $M = (K, \Sigma, \Gamma, \Delta, s, F)$ tal que L(M) = L(G) donde:

$$M = (\{p, q\}, \Sigma, V, \Delta, p, \{q\})$$

Transiciones

$$((p,\lambda,\lambda),(q,S)) \tag{2.1}$$

$$((q, \lambda, A), (q, x)); \forall A \to x \in R$$
(2.2)

$$((q, \mathbf{a}, \mathbf{a}), (q, \lambda)); \forall \mathbf{a} \in \Sigma$$
 (2.3)

2.8.3. Propiedades de los Lenguajes Libres de Contexto

Teorema

Los lenguajes libres de contexto son cerrados bajo la unión, concatenación y estrella de Kleene.

Prueba

Sean $G_i = (V_i, \Sigma_i, R_i, S_i)$ i = 1, 2 las Gramáticas Libres de Contexto y sin perdida de generalidad asumimos que $(V_1 - \Sigma_1)$ y $(V_2 - \Sigma_2)$ son disjuntos.

Unión

S es un nuevo símbolo

$$G = (V_1 \cup V_2 \cup \{S\}, \Sigma_1 \cup \Sigma_2, R_1 \cup R_2 \cup \{S \to S_1, S \to S_2\}, S)$$

Concatenación

$$G = (V_1 \cup V_2 \cup \{S\}, \Sigma_1 \cup \Sigma_2, R_1 \cup R_2 \cup \{S \rightarrow S_1 S_2\}, S)$$

• Estrella de Kleene

$$G = (V_1, \Sigma_1, R_1 \cup \{S_1 \to \lambda, S_1 \to S_1 S_1\}, S_1)$$

Teorema

La intersección de un L.L.C con un lenguaje regular es un lenguaje libre de Contexto.

Teorema de Pumping

Sea G una G.L.C. entonces existe un número k que depende de G tal que cualquier palabra $w \in L(G)$ de longitud > k, se puede reescribir w = uvxyz de tal manera que ya sea v o y es no vacía y $uv^nxy^nz \in L(G)$. Para cada $n \ge 0$.

Teorema

Los L.L.C. no son cerrados bajo la complementación e intersección.

2.9. Máquinas de Turing

Definición

Una máquina de Turing es una cuadrupla $M = (K, \Sigma, \delta, s)$ donde:

- K: Conjunto Finito no Vacío , $h \notin K$
- \bullet Σ : Conjunto Finito no Vacío , $\# \in \Sigma, L, R \notin \Sigma$
- $s \in K$
- $\delta: K \times \Sigma \to (K \cup \{h\}) \times (\Sigma \cup \{L, R\})$
- i.) Si $b \in \Sigma$ la máquina reescribe b por a.
- ii.) Si b = L la cabeza lectora se mueve a la izquierda.
- iii.) Si b = R la cabeza lectora se mueve a la derecha.

Si la máquina esta en h se dice que la máquina se detiene.

Interpretación

En una Máquina de Turing la cinta es infinita a la derecha.

Teorema

Los siguientes modelos de máquinas de Turing son igualmente poderosos:

- La Máquina de Turing Estándar.
- La Máquina de Turing de varias cabezas.
- La Máquina de Turing de varias pistas.
- La Máquina de Turing de varias cintas.
- La Máquina de Turing Bidimensional.
- \blacksquare Automata con Pila con 2 Pilas
- IBM Mainframe