Université Chouaib Doukkali

Année Universitaire 2023/24

Faculté des Sciences - EL JADIDA

Niveau : Algèbre 2 (MIP et IA)

Département de Mathématiques

Fiche d'exercices N°1 - Chapitre 1

Exercice 1. On considère les deux familles de vecteurs de \mathbb{R}^4 suivantes :

$$A = \{w_1, w_2, w_3, w_4, w_5\}$$
 où

$$w_1 = (1, 1, 1, 3), w_2 = (1, 2, -1, 2), w_3 = (3, 4, 1, 8), w_4 = (3, 5, -1, 7), w_5 = (1, -1, 2, -2)$$

et
$$C = \{u_1, u_2, u_3\}$$
 où

$$u_1 = (2, 1, 4, 7), u_2 = (2, 2, 0, 2), u_3 = (3, 2, 2, 3), u_4 = (3, 3, -2, -2).$$

Posons $F = \text{sev}\langle A \rangle$ et $G = \text{sev}\langle C \rangle$.

- 1. Déterminer une base du $sev\langle A\rangle$.
- 2. Déterminer une base du $sev\langle A\rangle$ extraite de A.
- 3. Trouver une base de F + G et une base de $F \cap G$.
- 4. En déduire que $F + G = \mathbb{R}^4$.
- 5. A-t-on $F \oplus G = \mathbb{R}^4$?

Exercice 2. Soit $G = \{u_1, \dots, u_n\}$ une famille génératrice d'un K-ev E et soit $L = \{v_1, \dots, v_m\}$ une famille libre de E.

- 1. Posons $L_m = L \setminus \{v_m\}$ et soit H une partie quelconque de E. Montrer que si $v_m \in F = \text{sev}\langle L_m \cup H \rangle$ alors $\exists u \in H$ tel que $F = \text{sev}\langle L \cup (H \setminus \{u\}) \rangle$.
- 2. En particulier, Montrer que si $v \neq 0$ et si $v \in F = \text{sev}\langle H \rangle$ alors $\exists u \in H$ tel que $F = \text{sev}\langle \{v\} \cup (H \setminus \{u\})\rangle$.
- 3. On suppose que $m \geq n$. Soit S une sous-famille quelconque de L de cradinale n. Montrer que $E = \text{sev}\langle S \rangle$.
- 4. En déduire le résultat suivant (vu dans le cours) : soit D une famille de vecteur de E. Alors on a

$$\operatorname{card}(D) > n \Rightarrow D$$
 est liée.

Exercice 3. Montrer que si E et F sont deux K-ev de bases respectives (u_1, \ldots, u_n) et (v_1, \ldots, v_m) , alors $((u_1, 0_F), \ldots, (u_n, 0_F), (0_E, v_1), \ldots, (0_E, v_m))$ est une base du K-ev $E \times F$. En déduire que $\dim(E \times F) = \dim(E) + \dim(F)$.

Exercice 4. Dans de \mathbb{C} -ev $\mathbb{C}_4[X]$ on considère l'ensemble $F = \{P \in \mathbb{C}_4[X]/P(0) = P'(0) = P'(1) = 0\}.$

1. Montrer que F est un \mathbb{C} -sev de $\mathbb{C}_4[X]$, et donner une base de F. Montrer que le sev $G = \text{sev}\langle 1, X, 1 + X + X^2 \rangle$ est un supplémentaire de F dans $\mathbb{C}_4[X]$.

Exercice 5. Soient F_1, \ldots, F_n des sev d'un K-ev E. Montrer que les conditions suivantes sont équivalentes :

- 1. La somme $F_1 + \cdots + F_n$ est directe.
- 2. $\forall p \in \{2, \dots, n\}, (F_1 + \dots + F_{p-1}) \cap F_p = \{0\}.$
- 3. $\forall u_1 \in F_1, \dots, \forall u_n \in F_n : u_1 + \dots + u_n = 0 \Longrightarrow u_1 = \dots = u_n = 0.$

Exercice 6. Soient les vecteurs $u_1 = (1, -1, i)$, $u_2 = (-1, i, 1)$ et $u_3 = (i, 1, -1)$ de \mathbb{C}^3 .

- 1. Montrer que $B = (u_1, u_2, u_3)$ est une base du \mathbb{C} -ev \mathbb{C}^3 .
- 2. Déterminer les coordonnées du vecteur u = (i, 2+3i, 1-i) dans la base B.

Exercice 7. On cosidèrere la famille $P = \{p \in \mathbb{N}/p \text{ est premier}\}$ et on pose $H = \{\ln(p)/p \in P\}$.

- 1. Montrer que H est une famille libre du \mathbb{Q} -ev \mathbb{R} .
- 2. En déduire que $\mathbb R$ est un $\mathbb Q$ -ev de dimension infinie.

Exercice 8. Soit E un K-ev de dimension p et B une base de E. Soient $A = \{u_1, \ldots, u_n\}$ une famille de vecteurs de E et $v = (m_1, \ldots, m_n)$ un vecteur quelconque de E. Considérons le système d'équations linéaires suivant

$$(A|v): x_1u_{1B} + \dots + x_nu_{nB} = v_B$$

à p équations et n inconnues.

1. Montrer que

$$u \in \text{sev}\langle A \rangle \iff (A|u) \text{ est compatible}$$

2. Montrer que

A est une famille libre \iff (A|0) admet une seule solution

3. Montrer que

A est une famille liée \iff (A|0) admet au moins deux solutions

4. Montrer que

A est une famille génératrice de $E \iff (A|v)$ est compatible quelque soit les paramètres m_1, \ldots, m_n

5. Montrer que

A est une base de $E \iff (A|v)$ admet une seule solution quelque soit les paramètres m_1, \ldots, m_n

6. On appelle équations cartésiennes d'un sev F de E dans la base B la donné d'un système (S) d'équations linéaires (nécessairement homogène) tel que

$$F = \{ v \in E / v_B \in S \},$$

c'est-à-dire:

 $v \in F \iff v_B \text{ est une solution de (S)}.$

- (i) On Suppose que $F = \text{sev}\langle A \rangle$ est un sev de E. Par la méthode de Gauss on cherche un système échelonné (T) qui est équivalent à (A|v).
- Soit (S) le système d'équations linéaires dont les équations sont les conditions de compatibilités du système échelonnée (T).
- (i) Dire pour quoi (S) est un système d'équations cartésiennes de ${\cal F}$ dans la

base B.

(ii) Montrer qu'il existe des vecteurs w_1, \ldots, w_d de E tels que

$$F = \{m_{i_1}w_1 + \dots + m_{i_d}w_d/m_{i_1}, \dots, m_{i_d} \in K\}$$

où les scalaires m_{i_1}, \ldots, m_{i_d} sont les inconnues secondaires du système (T).

- (iii) Montrer que (w_1, \ldots, w_d) est une base de F. En particulier, on a dim $F = \dim(E) rg(T)$ qui est égal au nombre d'inconnues secondaires de T.
- (iv) Que peut-on dire si aucune inconnue n'est secondaire?

Exercice 9. On considères les vecteurs u = (1, 0, -1, 2) et v = (2, 1, 1, 0) de \mathbb{R}^4 . Déterminer des équations cartésiennes de $F = \text{sev}\langle u, v \rangle$.

Exercice 10. On considère le \mathbb{R} -sev F de \mathbb{R}^4 suivant :

$$F = \{(a+b-c, 2a+b, a-c+d, b+3c)/a, b, c, d \in \mathbb{R}\}\$$

- 1. Déterminer une base de F.
- 2. En déduire que $F = \mathbb{R}^4$.

Exercice 11. On considère les \mathbb{R} -sev de \mathbb{R}^3 suivants :

$$F = \text{sev}\langle u, v \rangle$$
 et $G = \text{sev}\langle w, z \rangle$ où

$$u = (1, 1, 1), v = (2, -1, 0), w = (1, 0, 1), z = (-1, 2, 1, 1)$$

Déterminer une base de F + G.

Exercice 12. On considère le corps $K = \mathbb{Z}/5\mathbb{Z}$ et soit $B = (v_1, v_2, v_3, v_4)$ une base quelconque du K-ev $E = K^4$. Soit F le K-sev de E d'équations cartésiennes dans la base E le système suivant

$$\begin{cases} x - y + z + 2t = 0 \\ 2x + y + 3z - t = 0 \end{cases}$$

- 1. Déterminer tous les vecteurs de F.
- 2. Déterminer une base C de F, $\dim(F)$ et le cardinal de F.
- 3. Compléter C par des vecteurs de B en une base de E.

Exercice 13. Dans $E = \mathbb{R}_2[X]$ on considère les vecteurs P_1, P_2 et P_3 tels que $P_1 = X^2, P_2 = (X - 1)^2$ et $P_3(X) = (X + 1)^2$.

- 1. Déterminer les coordonnées de P_1 et P_2 dans la base canonique $C=(1,X,X^2)$ de E.
- 2. Calculer $rg(P_1, P_2)$ et endéduire que la famille $\{P_1, P_2\}$ est libre.
- 3. Montrer qu'on peut compléter la famille $\{P_1, P_2\}$ en une base de E en ajoutant le vecteur P_3 .
- 4. Déterminer les coordonnées des vecteurs Q(X) = -3 et $P(X) = 3X^2 + 1$ dans la base $B = (P_1, P_2, P_3)$.

Exercice 14. Soit $E = \mathbb{R}_4[X]$ et soit $F = \{(\alpha X^2 \beta X + \gamma)(aX^2 + bX + c)/a, b, c \in \mathbb{R}\}$ où α, β, γ sont des réels donnés.

- 1. Montrer que F est un \mathbb{R} -sev de E.
- 2. Déterminer suivant les valeurs de α, β, γ la dimension ainsi qu'une base de F.
- 3. On pose $H = \{(X-1)^2(aX^2+bX+c)/a, b, c \in \mathbb{R}\}$ et $G = \{(X+1)^2(aX^2+bX+c)/a, b, c \in \mathbb{R}\}$.
- (i) Déterminer une base de H et une base de G.
- (ii) Déterminer une base de H + G.
- (iii) Déterminer une base de $H \cap G$.

Exercice 15. Soit $E = \mathbb{R}_3[X]$ et soit $F = \{(\alpha X^2 + \beta X + \gamma)(aX + b)/a, b \in \mathbb{R}\}$ où α, β, γ sont des réels donnés.

- 1. Montrer que F est un \mathbb{R} -sev de E.
- 2. Déterminer suivant les valeurs de α,β,γ la dimension ainsi qu'une base de F.
- 3. On pose $H = \{(X-1)^2(aX+b)/a, b \in \mathbb{R}\}\ \text{et } G = \{(X+1)^2(aX+b)/a, b \in \mathbb{R}\}.$
- (i) Déterminer une base de H et une base de G.
- (ii) Montrer que $E = H \oplus G$.

Exercice 16. Dans le \mathbb{R} -ev $\mathbb{R}^{\mathbb{R}}$ des fonctions de \mathbb{R} dans \mathbb{R} :

1. la fonction $\sin(2x)$ est-t-elle une combinaison linéaire des fonction $\sin(x)$

et cos(x)?

2. la fonction $\operatorname{arctan}(x)$ est-t-elle une combinaison linéaire des fonction e^{x^2} , e^{-x} et $\sin(x)$?

Exercice 17. Dans le \mathbb{R} -ev $\mathbb{R}^{\mathbb{R}}$ des fonctions de \mathbb{R} dans \mathbb{R} :

- 1. Étudier l'indépendance linéaire des vecteurs $\sin(x)$ et $\cos(x)$.
- 2. Étudier l'indépendance linéaire des vecteurs x, e^x , et $\sin(x)$.
- 3. Étudier l'indépendance linéaire des vecteurs $\sin(x)$, $\cos(x)$ et $\sin(2x)$.
- 4. Montrer que la famille $A = \{e^{ax}/a \in \mathbb{R}\}$ est libre.
- 5. Montrer que la famille $B = \{|x a|/a \in \mathbb{R}\}$ est libre.