

Structure Recognition with Graph Neural Networks

A project for the lab-course Advanced Projects in Computational Physics 2

Table of contents

1. Theoretical Background

- 1.1 A Few More Words on Message Passing
- 1.2 Percolation

2. Goals

- 3. Results
- 3.1 Classification of Bravais Lattices
- 3.2 On the Problem of Percolation

4. Conclusion and Outlook

Overview:

Message passing consists of three steps:

- 1. Computing messages (ϕ_{mes})
- 2. Aggregating messages (ϕ_{agg})
- 3. Updating node values (ϕ_{upd})

Step 1: Compute Messages

For $i \in \{x, y, z\}$ calculate:

$$m_i \coloneqq \phi_{mes}(v_c, v_i, e_{i,c})$$

Step 2: Aggregate Messages

Calculate total message:

$$m_{x+y+z} \coloneqq \phi_{agg}(m_x, m_y, m_z)$$

Step 3: Update node value

Calculate new node value:

$$v_c' \coloneqq \phi_{upd}(v_c, m_{x+y+z})$$

Question: What exactly are ϕ_{mes} , ϕ_{agg} , ϕ_{upd} ?

Common example for $\phi_{mes}, \phi_{agg}, \phi_{upd}$: GIN-Layer [4] given by:

$$\phi_{mes}(v_c, v_i, e_{i,c}) = v_i$$

$$\phi_{agg}(m_1, ..., m_n) = \sum_{i=1}^n m_i$$

$$\phi_{upd}(v_c, m_{agg}) = h_{\theta} ((1 + \epsilon)v_c + m_{agg})$$

Common example for $\phi_{mes}, \phi_{agg}, \phi_{upd}$: GIN-Layer [4] given by:

$$\begin{split} \phi_{mes}(v_c,v_i,e_{i,c}) &= v_i \rightarrow \mathsf{ReLU}(v_i + e_{i,c}) \quad \mathsf{GINE} \text{ [3]} \\ \phi_{agg}(m_1,...,m_n) &= \sum_{i=1}^n m_i \\ \phi_{upd}(v_c,m_{agg}) &= h_\theta \left((1+\epsilon)v_c + m_{agg} \right) \end{split}$$

In general, $\phi_{mes}, \phi_{agg}, \phi_{upd}$ can be (almost) anything \implies in particular: arbitrary feed forward neural networks

Theoretical Background - Percolation

Given are

- ▶ graph G = (V, E)
- $lackbox{ one position } (n_x,n_y) \text{ inside unit square for each node } n\in V$
- small stripes at the edges of the unit square

G is called percolating, if there are nodes $n,m\in V$ such that

- 1. there is a cycle containing n and m
- 2. n are connected by an edge
- 3. n and m lie in opposite stripes

(a) non-percolating

(b) percolating

Goals

Experiment 1

Input: Bravais lattice (in 2D, 3D), e.g.:

Expected output: Bravais class, e.g. square **Question:** What are

suitable choices for ϕ 's?

Experiment 2

Goals

Experiment 1

Input: Bravais lattice (in 2D, 3D), e.g.:

Expected output: Bravais class, e.g. square

Question: What are suitable choices for ϕ 's?

Experiment 2

Input: Graph inside unit-square, e.g.:

Expected output:

percolating or not

Question: Can this problem

be solved by a GNN?

Input data:

with node features = 1, edge features = direction **Expected output:** Bravais class

parameters varied: w_u, w_m, d_u, d_m

 $\phi_{mes}, \phi_{upd} =$ general feed forward neural network with certain width $w_{m,u}$, depth $d_{m,u}$

$$d_m \in \{1, 2, 3\}, \quad w_m \in \{10, 20, 30\},$$

 $d_u \in \{1, 2\}, \quad w_u \in \{5, 10\}$

Averaged performance (over all 36 models):

Question: Do different models lead to different accuracies?

Best and worst performing models:

(a) Best performing model $((d_m, w_m, d_u, w_u) = (2, 30, 1, 10)).$

(b) Worst performing model
$$((d_m, w_m, d_u, w_u) = (3, 30, 2, 5))$$

Training of best and worst performing models on 3D dataset:

(b) Worst performing model
$$((d_m, w_m, d_u, w_u) = (3, 30, 2, 5))$$

Input data:

with node features = position, edge features = 1 **Expected output:** percolating or not

Observation: GNN can solve percolation problem ⇒ GNN can solve connection problem

Question: Can a GNN solve the connection problem? Assumption: there is a GNN with 1 layer capable of solving the connection problem

After one message passing step:

Observation: GNN can solve percolation problem \implies GNN can solve connection problem

Question: Can a GNN solve the connection problem? Assumption: there is a GNN with l layers capable of solving the connection problem

Answer: No!

Problem: size of graph, too many nodes

 \Rightarrow pooling might help ([2])

Example: Top K Pooling ([1])

 $X^l = {\sf node}$ features, $A^l = {\sf adjacency}$ matrix

Why Top K Pooling might not help:

- ► deletion of nodes/edges
- connected components not preserved

Training results:

(a) Without Pooling

(b) With Pooling

Conclusion and Outlook

What we have learned:

- ► GNN capable of classifying Bravais lattices
- ► Correlation between width, depth and accuracies rather complicated
- ► Connection problem can not be solved ⇒ percolation problem can not be solved

What can be done next:

- ► Bravais lattices: vary node, edge features
- ► Percolation Problem: experiment with layers that preserve topological properties

Time for Discussion and Questions

References

- [1] Hongyang Gao and Shuiwang Ji. "Graph U-Nets". In: CoRR abs/1905.05178 (2019). arXiv: 1905.05178. URL: http://arxiv.org/abs/1905.05178.
- [2] Daniele Grattarola et al. "Understanding Pooling in Graph Neural Networks". In: CoRR abs/2110.05292 (2021). arXiv: 2110.05292. URL: https://arxiv.org/abs/2110.05292.
- [3] Weihua Hu et al. Strategies for Pre-training Graph Neural Networks. 2020. arXiv: 1905.12265 [cs.LG]. URL: https://arxiv.org/abs/1905.12265.
- [4] Keyulu Xu et al. "How Powerful are Graph Neural Networks?" In: CoRR abs/1810.00826 (2018). arXiv: 1810.00826. URL: http://arxiv.org/abs/1810.00826.

Correlation between w_m and w_u :

Observation: GNN can solve percolation problem ⇒ GNN can solve connection problem

Question: Can a GNN solve the connection problem?

Answer: No!

Assumption: there is a GNN with **2** layers capable of solving the connection problem

After one message passing steps:

After two message passing step:

Claim: GNN can solve percolation problem \implies GNN can solve connection problem massiv kuerzen

Procedure:

1. Start with arbitrary Graph G, select two nodes n, m

Claim: GNN can solve percolation problem \implies GNN can solve connection problem

Procedure:

- 1. Start with arbitrary Graph G, select two nodes $n,\ m$
- 2. Place G inside unit square, move n, m to edges, add edge (n, m) \Longrightarrow new graph \tilde{G}

Claim: GNN can solve percolation problem \implies GNN can solve connection problem

Procedure:

- 1. Start with arbitrary Graph G, select two nodes n, m
- 2. Place G inside unit square, move n,m to edges, add edge (n,m) \Longrightarrow new graph \tilde{G}
- 3. Run GNN on G \Longrightarrow either \tilde{G} is percolating (i.e. there is a cycle containing n,m and the new edge) or not

Claim: GNN can solve percolation problem \implies GNN can solve connection problem

Procedure:

- 1. Start with arbitrary Graph G, select two nodes n, m
- 2. Place G inside unit square, move n,m to edges, add edge (n,m) \Longrightarrow new graph \tilde{G}
- 3. Run GNN on \tilde{G}
- 4. \tilde{G} percolating $\iff n, m$ connected in G

