

William Stallings
Computer Organization
and Architecture
9th Edition

+ Chapter 4 Cache Memory

Cache and Main Memory

(a) Single cache

Figure 4.3 Cache and Main Memory

Cache/Main Memory Structure

Figure 4.4 Cache/Main-Memory Structure

Figure 4.5 Cache Read Operation

Typical Cache Organization

Figure 4.6 Typical Cache Organization

Elements of Cache Design

Cache Addresses

Logical

Physical

Cache Size

Mapping Function

Direct

Associative

Set Associative

Replacement Algorithm

Least recently used (LRU)

First in first out (FIFO)

Least frequently used (LFU)

Random

Write Policy

Write through

Write back

Line Size

Number of caches

Single or two level

Unified or split

Cache Addresses Virtual Memory

- Virtual memory
 - Facility that allows programs to address memory from a logical point of view, without regard to the amount of main memory physically available
 - When used, the address fields of machine instructions contain virtual addresses
 - For reads to and writes from main memory, a hardware memory management unit (MMU) translates each virtual address into a physical address in main memory

Logical and Physical Caches

(a) Logical Cache

(b) Physical Cache

Figure 4.7 Logical and Physical Caches

Mapping Function

- Because there are fewer cache lines than main memory blocks, an algorithm is needed for mapping main memory blocks into cache lines
- Three techniques can be used:

Direct

- The simplest technique
- Maps each block of main memory into only one possible cache line

Associative

- Permits each main memory block to be loaded into any line of the cache
- The cache control logic interprets a memory address simply as a Tag and a Word field
- To determine whether a block is in the cache, the cache control logic must simultaneously examine every line's Tag for a match

Set Associative

 A compromise that exhibits the strengths of both the direct and associative approaches while reducing their disadvantages

Direct

Mapping

Figure 4.8 Mapping From Main Memory to Cache:
Direct and Associative

Direct Mapping Cache Organization

Figure 4.9 Direct-Mapping Cache Organization

Direct

Mapping

Example

Figure 4.10 Direct Mapping Example

Direct Mapping Summary

- Address length = (s + w) bits
- Number of addressable units = 2^{s+w} words or bytes
- Block size = line size = 2^w words or bytes
- Number of blocks in main memory = 2^{s+w}/2^w = 2^s
- Number of lines in cache = $m = 2^r$
- Size of tag = (s-r) bits

