Supplement: Derivations, Junctions, and Term Map

Ricardo Maldonado | sales@rank.vegas | Draft v1 (20250811 192837)

A. Action and Junctions

Start from a bulk action S5 = $(1/2 \text{ kappa5}^2) \int d^5x \operatorname{sqrt}(-g5)$ (R5 - 2 Lambda5) + $\int_{-\infty}^{\infty} d^4x \operatorname{sqrt}(-g)$ (-lambda + L_matter). Apply Israel junction conditions across the brane: [K_mu nu] = -kappa5^2 (T_mu nu - (1/3) g_mu nu (T - lambda)).

B. Quadratic Term Pi mu nu

Pi_mu nu = -(1/4) T_mu alpha T^alpha_nu + (1/12) T T_mu nu + (1/8) g_mu nu T_alpha beta T^alpha beta - (1/24) g_mu nu T^2. This generates the high-energy rho^2 correction when reduced to FRW.

C. Projected Weyl E mu nu

E_mu nu = C_ABCD n^A n^C g_mu^B g_nu^D, with E^mu_mu = 0. For FRW, this yields an effective radiation term rho dr = C/a^4 ("dark radiation").

D. Friedmann Reduction

For a flat FRW brane with perfect fluid p = w rho, the modified Friedmann equation becomes $H^2 = (8*pi*G/3)$ rho $(1 + rho/(2 lambda)) + Lambda4/3 + C/a^4$. Early-time solution in radiation era: $a(t) \sim t^{1/4}$.

E. Observable Map

Break frequency f_br(lambda) scales with the crossover energy density \sim lambda; use f_br \sim k0 * lambda^{1/4}. Relate C/a^4 to Delta N_eff via rho_dr/rho_gamma = (7/8) (4/11)^{4/3} * Delta N eff. Provide bounds priors from BBN/CMB.

F. Symbols and Units

lambda: brane tension (energy density). C: dark-radiation constant. M5: 5D Planck mass. k: warp parameter. H: Hubble parameter. a: scale factor. rho: energy density. All c=1 conventions unless otherwise stated.