137. Si $A = \int_{1}^{2} x \ln x \, dx$ et $B = \int_{-2}^{3} |x - 1| \, dx$ alors la quantité -A - Bvaut: 5. $-2 \ln 2 + \frac{29}{4}$ 1. 2 ln 2 - $\frac{29}{4}$ 3. ln 2 + $\frac{1}{4}$

2. $2 \ln 2 + \frac{23}{4}$ 4. $2 \ln 2 - \frac{23}{4}$ (B-2007)138. La valeur moyenne de la fonction f définie par $f(x) = x^2 - 4x + 5$ sur l'intervalle [1,4] vaut:

1. $\frac{1}{3}$ 2. 2 3. $\frac{7}{3}$ 4. $\frac{4}{3}$ 5. 4 (B-2007) 139. $\int_{-2}^{0} x\sqrt{4-x^2} dx = 1. \frac{-8}{3}$ 2. 9 3. -24 4. $\frac{8}{3}$ 5. -9 (M-2007) 140. Le plan est muni d'un repère orthonormal (O, i, j).

La fonction définie par $x \in [0, 4]$ et $f(x) = \sqrt{4-x}$. Le volume du solide engendré par l'ensemble des points M, de coordonnées x et y telles que $0 \le x \le 4$ et $0 \le y \le f(x)$, par rotation autour de l'axe des abscisses vaut :

1. $\frac{9}{2}\pi$ 3. $\frac{23}{2}\pi$ 5. 24 π www.ecoles-rdc.net 4. 16 π (M-2008) 2.8π

141. La valeur exacte de l'intégrale $I = \int_2^3 \left(x + 1 + \frac{1}{x - 1}\right) dx$ est :

141. La valeur exacte de l'intégrale
$$I = \int_{2}^{2} \left(x + 1 + \frac{1}{x - 1} \right) dx$$
 est :
1. 0 2. $\ln \frac{3}{7}$ 3. $\frac{7}{2} + \ln 2$ 4. $2 + \ln \frac{7}{3}$ 5. $3 + 2 \ln 5$ (M-2009)

142. On pose: $I = \int_0^{\ln 16} \frac{e^x + 3}{e^x + 4} dx$ et $J = \int_0^{\ln 16} \frac{1}{e^x + 4} dx$.

En utilisant les propriétés de l'intégrale, on obtient : $5.1 + J = 2 - \ln 3$ 1. $I + J = 3 \ln 2$ 3. $I + J = \ln 4$ 2. $I + J = 2 \ln 3$ 4. $I + J = \ln 16$

(M-2009)