Gunrock: A High Performance Graph Processing Library on the GPU

April 27, 2015

Yangzihao Wang University of California, Davis

PROBLEM High-performance large-scale graph analytics

PROBLEM High-performance large-scale graph analytics on GPUs

Why Using GPUs for Graph Analytics?

	Memory Bandwidth	Memory Size	Connection
GPU (NVIDIA K40c)	288GB/s	12GB	PCI-e 3.0*16 bus (16G/s bi-direction bandwidth)
CPU (Intel Xeon E5)	88.6GB/s	Up to TB	N/A

Why Using GPUs for Graph Analytics?

Graphs are ubiquitous

Data size is becoming very large

 Graph analytics systems demand more performance

Large-scale Graph Analytics Is Difficult

 Irregularity of data access and control flow limits performance and scalability

GPU programming is complex

Related Work

- Single-node CPU-based systems
- Distributed CPU-based systems
- Specialized GPU algorithms
- GPU-based systems

IDEA: Performance AND expressiveness

 Performance: Integrating high performance GPU computing primitives and optimizations into the core.

Expressiveness: A data-centric abstraction designed specifically for the GPU

IDEA: Bulk-Synchronous Programming and Data-Centric

- Graph algorithms as iterative convergent processes
 - Operations run a series of steps
 - Large amount of parallelism within each step
- Manipulate frontiers
 - Generating/reorganizing frontier in parallel
 - Computing on frontier in parallel

Expressiveness: Gunrock's Data-Centric Abstraction

Gunrock's Key Abstraction Is FRONTIER

Most graph algorithms have two major operations:

- Traverse: moving in the graph and generating new frontier
- Compute: doing computation on frontier

- Advance: visiting the neighbors of the current frontier
- Filter: choosing a subset of the current frontier

- Advance: visiting the neighbors of the current frontier
- Filter: choosing a subset of the current frontier

- Advance: visiting the neighbors of the current frontier
- Filter: choosing a subset of the current frontier

- Advance: visiting the neighbors of the current frontier
- Filter: choosing a subset of the current frontier

- Advance: visiting the neighbors of the current frontier
- Filter: choosing a subset of the current frontier

Gunrock's Compute Step

Functors that apply to {edges, vertices}

- "cond" functor: returns a boolean value
- "apply" functor: performs a computation

Graph Primitives in Gunrock (In only Three Files)

- Problem: Initialize the graph data and frontier
- Enactor: GPU kernel entry function which defines a series of operations on frontier
- Functor: User-specified per-node/per-edge computation on frontier

Performance: Generalized Optimization Strategies

Graph Data Representation: CSR

Workload Mapping and Load-balancing

- Naive method: Let one thread handle the neighbor list of one vertex
- Problem: Highly uneven distribution of node degrees in scale-free graphs

Need load balancing strategy!

Workload Mapping and Load-balancing

- Tradeoff between extra processing and load balancing
- A worthwhile extra effort: 2x-20x speedup over non-load balancing library (Medusa v1)

Data-Centric Abstraction Enables Optimizations

Idempotent operations (frontier reorganization)

Data-Centric Abstraction Enables Optimizations

Pull vs. push operations (frontier generation)

Data-Centric Abstraction Enables Optimizations

Priority Queue (frontier reorganization)

Results, Conclusion, and Future Work

Performance Against Other Graph Processing Systems

PageRank has better strong scaling due to stable cross-GPU communication overhead.

SSSP and CC have worse weak scaling, need more investigation.

Multi-GPU Performance (BFS)

	C	C 1 1	C C	1 1	C
	ref.	ref. hardware	ref. performance	our hardware	our performance
rmat_n20_128	Merrill et al. [23]	4x Tesla C2050	8.3 GTEPS	4x Tesla K40	11.2 GTEPS
$rmat_n20_16$	Zhong et al. [32]	4x Tesla C2050	15.4 ms	4x Tesla K40	$9.29~\mathrm{ms}$
peak performance	Fu et al. [10]	16x Tesla K20 (cluster)	15 GTEPS	6x Tesla K40	22.3 GTEPS
peak performance	Fu et al. [10]	64x Tesla K20 (cluster)	29.1 GTEPS	6x Tesla K 40	22.3 GTEPS

Table 2: Comparison with previous work on GPU BFS. Merrill et al.'s results on 3-year-old hardware are particularly impressive, though we note their implementation, as is Fu et al.'s, was customized only to BFS. Medusa (Zhong et al.), like Gunrock, is a programmable framework.

Expressiveness and Usability

Currently have over 10 graph primitives

- Traversal-based, Node-ranking, Global (connected component, MST)
- LOC under 300 for each primitive

Working on more graph primitives

- Graph coloring, Maximal Independent Set
- Community Detection
- Subgraph Matching

Future Works

- Dynamic graphs
- Global, neighborhood, and sampling operations
- Kernel fusion
- Scalability
 - GPUDirect for multi-GPU one-node
 - NVLink for multi-GPU multi-node

Conclusions

High-level Abstraction is essential for GPUs to make an impact in graph analytics.

Gunrock's data-centric, frontier-focused abstraction has good balance between expressiveness and performance

Conclusions

High-level Abstraction is essential for GPUs to make an impact in graph analytics.

Gunrock's data-centric, frontier-focused abstraction has good balance between expressiveness and performance

GPUs+Datacenter = Future of Large-Scale Graph Analytics