Is Syntactic Binding Rational?

Thomas Graf

Natasha Abner

UCLA tgraf@ucla.edu tgraf.bol.ucla.edu UCLA/University of Chicago nabner@ucla.edu nabner.bol.ucla.edu

tag+ 2012

Constraints in TAG and MGs

Rational Constraints

A constraint is rational

- iff it can be defined by an MSO formula
- iff it is computed by a bottom-up tree automaton
- iff it defines a regular tree language.
- Most powerful class of constraints that can be added to TAGs and MGs without increasing strong generative capacity
- How much of syntax can be expressed in terms of rational constraints (and thus in vanilla TAGs and MGs)?
 Binding is known to be one of the hardest problems...

Constraints in TAG and MGs

Rational Constraints

A constraint is rational

- iff it can be defined by an MSO formula
- iff it is computed by a bottom-up tree automaton
- iff it defines a regular tree language.
- Most powerful class of constraints that can be added to TAGs and MGs without increasing strong generative capacity
- How much of syntax can be expressed in terms of rational constraints (and thus in vanilla TAGs and MGs)? Binding is known to be one of the hardest problems...

Necessary Restrictions

A rational theory of binding can at most

- verify the existence of some grammatical reading (but not specific readings; cf. Rogers 1998), and
- handle syntactic binding (but not discourse binding; cf. Ristad 1993).

Given these restrictions, reflexives (Principle A) are easy. Only bound pronouns that need to be disjoint in reference (Principle B) are problematic.

Computing the Satisfiability of Principle B

The Checkbook Version of Principle B (Simplified)

- There are obviation domains and possible antecedents.
- Obviation domains incur one point of debt for each syntactically bound pronoun satisfying certain conditions.
- The entire debt must be "paid off" by antecedents.

Example

- (1) a. * Every patient said that he should sedate him.
 - Every patient told some doctor that he should sedate him in front of him.

Computing the Satisfiability of Principle B

The Checkbook Version of Principle B (Simplified)

- There are obviation domains and possible antecedents.
- Obviation domains incur one point of debt for each syntactically bound pronoun satisfying certain conditions.
- The entire debt must be "paid off" by antecedents.

Example

- (1) a. * Every patient said that he should sedate him.
 - Every patient told some doctor that he should sedate him in front of him.

Limited Obviation

The checkbook algorithm is rational iff **Limited Obviation** holds:

Limited Obviation

There is some k such that no obviation domain's debt exceeds $k \Rightarrow$ only a bounded number of pronouns per obviation domain are mututally disjoint in reference.

No counterexamples to Limited Obviation in

- English,
- German,
- American Sign Language
- ⇒ syntactic binding is rational

Limited Obviation

The checkbook algorithm is rational iff Limited Obviation holds:

Limited Obviation

There is some k such that no obviation domain's debt exceeds $k \Rightarrow$ only a bounded number of pronouns per obviation domain are mututally disjoint in reference.

No counterexamples to Limited Obviation in

- English,
- German,
- American Sign Language
- ⇒ syntactic binding is rational

References

Ristad, Eric Sven. 1993. *The language complexity game*. Cambridge, Mass.: MIT Press.

Rogers, James. 1998. A descriptive approach to language-theoretic complexity. Stanford: CSLI.