Compendio di Teoria

Patrizio Frederic

2022-05-27

Introduzione

Il seguente materiale non è sostitutivo all'ascolto delle lezioni, qui elenco solo i punti sui quali potrò fare domande. Le domande all'esame potranno essere dirette, per esempio:

Elencare le proprietà della frequenza relativa, f_j .

Risposta

$$0 \le f_j \le 1, \forall j = 1, ..., K,$$

$$\sum_{j=1}^{K} f_j = 1.$$

oppure indirette

Se h è uno stimatore per θ tale che $E(h) = \theta$ di quale proprietà gode h?

Risposta

Se h è uno stimatore tale che $E(h) = \theta$, allora h è corretto per θ

Questo materiale è diviso in due parti. Nella prima parte si riassumono i punti principali di teoria da tenere a mente. Nella seconda parte seguirà una carrellata di potenziali domande che **non** è esaustiva, ma solo esemplificativa.

RAPPRESENTAZIONI DELLA DISTRIBUZIONE UNITARIA

Quali sono i vantaggi del campionamento, rispetto al censimento?

- Risparmio di costi perché si deve intervistare un numero inferiore di unità statistiche sicché occorre un numero inferiore di intervistatori.
- Risparmio di tempo perché intervistando un numero inferiore di unità statistiche si impiega un tempo
- Maggiore quantità di informazioni perché c'è più tempo da dedicare agli intervistati.
- Maggiore qualità dell'informazione perché si può dedicare più cura nella raccolta dei dati.
- Controllo degli intervistatori per verificare l'esecuzione corretta delle procedure.

Elencare le proprietà della frequenza relativa, f_i .

Le proprietà della frequenza relativa f_j sono:

•
$$0 \le f_j \le 1, \forall j = 1, ..., K,$$

• $\sum_{j=1}^{K} f_j = 1.$

•
$$\sum_{i=1}^{K} f_i = 1$$
.

Elencare le proprietà della frequenza percentuale, $f_{\%,j}$.

Le proprietà della frequenza relativa (f_i) sono:

$$\bullet \ 0 \le f_{\%,\,j} \le 100, \forall j=1,...,K, \\ \bullet \ \sum_{j=1}^K f_{\%,\,j} = 100.$$

•
$$\sum_{j=1}^{K} f_{\%,j} = 100$$

Elencare le proprietà della frequenza assoluta, n_i .

Le proprietà della frequenza relativa (f_j) sono:

$$\bullet \quad 0 \le n_j \le n, \forall j = 1, ..., K,$$

$$\bullet \quad \sum_{j=1}^K n_j = n.$$

$$\bullet \quad \sum_{j=1}^K n_j = n.$$

Elencare le proprietà della media aritmetica con una descrizione sintetica.

La media aritmetica è data da

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i.$$

- 0. Internalità: $x_{\min} = x_{(1)} \le \bar{x} \le x_{(n)} = x_{\max}$
- 1. Invarianza della somma:

$$n\bar{x} = \sum_{i=1}^{n} x_i$$

2

2. Somma degli scarti dalla media è nulla: $\sum_{i=1}^n (x_i - \bar{x}) = 0$

3. Minimizza la somma degli scarti al quadrato:

$$\sum_{i=1}^{n} (x_i - \bar{x})^2 < \sum_{i=1}^{n} (x_i - d)^2 \quad \forall d \neq \bar{x}$$

- 4. Invarianza per trasformazioni lineari: se $y_i = a + bx_i$ allora $\bar{y} = a + b\bar{x}$
- 5. Associatività. Sia una popolazione, \mathcal{P} , formata da K gruppi con medie e numerosità: $(\bar{x}_1; n_1), (\bar{x}_2; n_2), \ldots, (\bar{x}_K; n_K)$. Allora, la media totale \bar{x}_T di $\mathcal{P} = \grave{e}$ data da

$$\bar{x}_T = \frac{\operatorname{Tot}\{\mathcal{P}_1\} + \dots + \operatorname{Tot}\{\mathcal{P}_K\}}{n_1 + \dots + n_K} = \frac{n_1 \ \bar{x}_1 + \dots + n_K \ \bar{x}_K}{n_1 + \dots + n_K}$$

Definire la mediana, $x_{0.5}$, e elencare le sue proprietà, specificando anche la sua relazione con la media.

La mediana di una distribuzione, $x_{0.5}$, è quel valore della per X il quale si ha $F(x_{0.5}) = 0.5$. Le proprietà della mediana $(x_{0.5})$ sono:

- $x_{\min} \le x_{0.5} \le x_{\max}$,
- $\sum_{i=1}^{n} |x_i x_{0.5}|$ è un minimo.
- Relazione Media-Mediana:
- Distribuzione simmetrica $\rightarrow x_{0.5} = \bar{x}$
- Distribuzione con coda lunga a destra $\rightarrow x_{0.5} < \bar{x}$
- Distribuzione con coda lunga a sinistra $\rightarrow x_{0.5} > \bar{x}$

Elencare le proprietà della varianza (σ^2) .

Le proprietà della varianza (σ^2) sono:

- $\sigma^2(X) > 0$
- $\sigma^2(\text{costante}) = 0$
- se $y_i = a + bx_i$ allora allora $\sigma_Y^2 = b^2 \sigma_X^2$

Elencare le proprietà della deviazione standard (σ) .

Le proprietà della deviazione standard (σ) sono:

- $\sigma \geq 0$
- $\sigma = 0$
- se $y_i = a + bx_i$ allora allora $\sigma_Y = |b|\sigma_X$

Si definisca il percentile p-esimo

Il p-esimo percentile, x_p , è quel valore tale che $F(x_p) = p$.

PROBABILITÀ

Sia dato uno spazio di probabilità Ω . Sia A un evento in Ω . Indicare le proprietà della funzione di probabilità, P(A).

• $0 \le P(A) \le 1$.

• $P(\emptyset) = 0$, $P(\Omega) = 1$.

Enunciare il postulato empirico del caso.

In un gruppo di prove ripetute più volte *nelle stesse condizioni*, ciascuno degli eventi possibili si presenta con una frequenza relativa che tende alla probabilità all'aumentare del numero di prove; ossia

$$P(A) = \frac{n_A}{n} + \epsilon_n$$
 dove $\epsilon_n \to 0$ per $n \to \infty$.

Elencare i postulati del calcolo delle probabilità.

Sia dato un spazio di probabilità $\{\Omega, \mathcal{A}, P\}$

• $P(A) \ge 0 \quad \forall A \in \mathcal{A}$,

• $P(\Omega) = 1$,

• $\forall A, B \in \mathcal{A} : A \cap B = \emptyset$ allora $P(A \cup B) = P(A) + P(B)$

Definire le principali proprietà della probabilità

• $0 \le P(A) \le 1 \ \forall A$,

• $P(\emptyset) = 0$,

• $P(A \cup B) = P(A) + P(B) - P(A \cap B)$

• $P(\overline{A}) = 1 - P(A)$

Quando due eventi si dicono incompatibili?

Due eventi A e B si dicono incompatibili se e solo se

$$A \cap B = \emptyset$$

Definire la probabilità condiziona di A dato B

la probabilità condizionata di A dato B è data da

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

Definire il concetto di indipendenza tra due eventi

Due eventi A e B si dicono indipendenti se

$$P(A|B) = P(A),$$
 e $P(B|A) = P(B)$

ne consegue che se A e B sono indipendenti, allora

$$P(A \cap B) = P(A)P(B)$$

Scrivere la chain rule (o regola del prodotto) per due eventi

Dati due eventi A e B la $chain \ rule$ è

$$P(A \cap B) = P(A)P(B|A) = P(B)P(A|B)$$

scrivere la chain rule (o regola del prodotto) per tre eventi

Dati tre eventi A, B e C la chain rule è

$$P(A \cap B \cap C) = P(A)P(B|A)P(C|A \cap B)$$

Enunciare il teorema delle probabilità totali per due eventi

Dati due eventi A e B il teorema delle probabilità totali afferma che

$$P(A) = P(B)P(A|B) + P(\overline{B})P(A|\overline{B})$$

VARIABILI CASUALI

Definire in generale il supporto di una variabile casuale X

• Il supporto S_X è l'insieme dei possibili valori che può assumere la VC X.

Definire in generale il valore atteso di una variabile casuale X

In generale il valore atteso è dato da

$$E(X) = \sum_{\forall x \in S_X} x P(X = x)$$

Elencare le proprietà del valore atteso, E(X).

Le proprietà del valore atteso, E(X) sono:

- $x_{\min} \le E(X) \le x_{\max}$, x_{\min} , $x_{\max} \in S_X$,
- E(X E(X)) = 0, $E(X E(X))^2 < E(X d)^2 \quad \forall \ d \neq E(X)$, $E(a + bX) = a + b \ E(X)$.

Definire in generale la varianza di una variabile casuale X

La varianza è data da

$$V(X) = E((X - E(X))^{2}) = \sum_{\forall x \in S_X} (x - E(x))^{2} P(X = x)$$

Elencare le proprietà della varianza, V(X).

Le proprietà della varianza, V(X), sono:

- $V(X) \ge 0$,
- V(X) = 0 se e solo se P(X = x) = 1
- Se X e Y sono **indipendenti**, allora

$$V(aX + bY) = V(aX - bY) = a^2V(X) + b^2V(Y), \forall a, b \in \mathbb{R}$$

nota: se a = 1 e b = 1 allora

$$V(X+Y) = V(X-Y) = V(X) + V(Y)$$

Elencare le proprietà della funzione di probabilità, f(x).

Le proprietà della funzione di probabilità, f(x) sono:

- $0 \le f(x) \le 1, \forall x \in S_X,$
- $\sum_{\forall x \in S_X} f(x) = 1.$

Elencare le proprietà della funzione di ripartizione

La funzione di ripartizione F di una VC X è, per definizione:

$$F(x) = P(X \le x)$$

F gode delle seguenti proprietà:

- Non decrescente, ossia $x_1 < x_2 \Rightarrow F(x_1) \leq F(x_2)$
- $\lim_{x\to-\infty} F(x) = 0$, $\lim_{x\to\infty} F(x) = 1$.
- Continua a destra, ossia $\lim_{x\to x_0^+} F(x) = F(x_0)$.
- $P(a < X \le b) = F(b) F(a)$.

Definire la variabile casuale X di Bernoulli, riportando anche la funzione di probabilità e tutte le sue proprietà.

Sia $X \sim \text{Ber}(\pi)$, allora X può assumere solo i valori 1 in caso di successo e 0 in caso di insuccesso.

$$S_X = \{0, 1\}$$

 $f(x) = \pi^x (1 - \pi)^{1-x}$
 $\Theta = \pi \in [0, 1] \subset \mathbb{R}^+$
 $E(X) = \pi$
 $V(X) = \pi (1 - \pi)$.

Definire la variabile casuale Binomiale, riportando tutte le sue proprietà.

La variabile binomiale conta il numero di successi in n esperimenti e può essere interpretata come al somma di n Bernoulli IID di parametro π . La funzione di probabilità, il valore atteso e la varianza sono:

$$S_X = \{0, 1, 2, ..., n\}$$

$$f(x) = \binom{n}{x} \pi^x (1 - \pi)^{n - x}$$

$$\Theta = \pi \in [0, 1] \subset \mathbb{R}^+ , n \in \{1, 2, 3, ...\}$$

$$E(X) = n \pi$$

$$V(X) = n \pi (1 - \pi)$$

Gode della proprietà riproduttiva: siano X_1, \ldots, X_K , n variabili casuali indipendenti distribuite secondo una $Bin(n_i, \pi)$, per $i = 1, \ldots, K$. Allora, la loro somma, $S_K = X_1 + \cdots + X_K$, si distribuisce secondo una $Bin(n_1 + \ldots + n_K, \pi)$.

Definire la variabile casuale X distribuita secondo una Poisson (λ) , riportando tutte le sue proprietà.

Le seguenti risposte valgono in tutto 1.

$$S_X = \{0, 1, 2, \ldots\}$$

$$P(X = x) = \frac{\lambda^x e^{-\lambda}}{x!}$$

$$\Theta = \lambda \in (0, \infty) \equiv \mathbb{R}^+$$

$$E(X) = \lambda$$

$$V(X) = \lambda$$

Gode della proprietà riproduttiva: siano X_1, \ldots, X_K K variabili casuali indipendenti distribuite secondo una $Poisson(\lambda_k)$, per $k = 1, \ldots, K$. Allora, la loro somma, $S_K = X_1 + \cdots + X_K$, si distribuisce secondo una $Poisson(\lambda_1 + \cdots + \lambda_K)$.

Definire la variabile casuale X distribuita riportando tutte le sue proprietà.

Sia $X \sim N(\mu, \sigma^2)$ un variabile casuale, allora la distribuzione è simmetrica rispetto al parametro μ ,

$$-\infty < X < \infty$$
 oppure $x \in \mathbb{R}$ una descrizione verbale completa della forma
$$\Theta: \, \mu \in (-\infty, \infty) \quad , \quad \sigma^2 \in (0, \infty)$$

$$E(X) = \mu$$

$$V(X) = \sigma^2 \, .$$

Sia $X \sim N(\mu_X, \sigma_X^2)$ un variabile casuale normale, allora

- Ogni trasformazione lineare della X, sia Y=a+bX, si distribuisce secondo una normale: $Y\sim N(a+b\mu_X,\ b^2\sigma_X^2)$
- La somma di due variabili casuali normali, siano $X \sim N(\mu_X, \sigma_X^2)$ e $Y \sim N(\mu_Y, \sigma_Y^2)$ si distribuisce secondo una normale $X + Y \sim N(\mu_X + \mu_Y, \sigma_X^2 + \sigma_Y^2)$.

Definire la variabile casuale chi-quadrata, χ^2 ,

Siano $Z_1,...,Z_n,$ n variabili casuali IID, to $Z_i \sim N(0,1);$ allora, la variabile casuale chi-quadrata, χ^2 , è definita come

$$\chi_n^2 = \sum_{i=1}^n Z_i^2$$

- Supporto: χ_n^2 assume valori tra 0 e ∞ ;ossia, $0 \le \chi_n^2 < \infty$.
- La funzione di densità ha una coda lunga a destra e dipende da n.
- $\Theta: n \in \{1, 2, \dots, \}$; i gdl non sono oggetto di stima.
- $E(\chi_n^2) = n$
- $V(\chi_n^2) = 2 n$.

Definire la variabile casuale t di Student

Sia $Z \sim N(0,\,1)$ e sia $Y \sim \chi_n^2$. Allora, la t di Student è data dal rapporto

- $T_n = \frac{Z}{\sqrt{Y/n}}$
- Supporto: t_n assume valori tra $-\infty$ e ∞ ; ossia, $-\infty < t_n < \infty$.
- La funzione di densità è simmetrica rispetto allo zero, le aree esterne sono più alte di quelle della normale, le aree interne sono più basse di quelle della normale, e l'andamento di ogni curva dipende da n
- Θ : $n \in \{1,\,2,\,\dots,\,\};$ i gdl non sono oggetto di stima.
- $E(t_n) = 0$
- $V(t_n) = \frac{n}{n-2}$ per $n \ge 3$

TEOREMA CENTRALE DEL LIMITE

Enunciare il Teorema centrale del limite per la Somma

Siano $X_1, ..., X_n$, n Variabili Casuali (VC) Indipendenti e Identicamente Distribuite (IID), tali che $E(X_i) = \mu$, $V(X_i) = \sigma^2$, $\forall i = 1, ..., n$. Posto

$$S_n = X_1 + \dots + X_n,$$

allora

$$S_n \sim N\left(n\mu, n\sigma^2\right)$$

Enunciare il Teorema centrale del limite per la Media

Siano $X_1,...,X_n,$ n Variabili Casuali (VC) Indipendenti e Identicamente Distribuite (IID), tali che $E(X_i) = \mu$, $V(X_i) = \sigma^2$, $\forall i = 1,...,n$. Posto

$$\bar{X} = \frac{S_n}{n} = \frac{X_1 + \dots + X_n}{n},$$

allora

$$\bar{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$

Enunciare il Teorema centrale del limite per la Proporzione

Siano $X_1, ..., X_n, n$ Variabili Casuali (VC) Indipendenti e Identicamente Distribuite (IID), tali che $X_i \sim \text{Ber}(\pi)$, $\forall i = 1, ..., n$. Posto

$$\hat{\pi} = \frac{S_n}{n} = \frac{X_1 + \dots + X_n}{n},$$

allora

$$\hat{\pi} \sim N\left(\pi, \frac{\pi(1-\pi)}{n}\right)$$

INFERENZA

Definire le proprietà desiderabili degli stimatori per una dimensione campionaria fissata (n fissato).

• La correttezza:

Lo stimatore h si dice **corretto** se

$$E(h) = \theta \quad \forall \theta \in \Theta$$

• l'efficienza: L'efficienza di uno stimatore è misurata con il **Errore Quadratico Medio** (Mean Squared Error):

$$MSE(h) = E((h - \theta)^{2}) = V(h) + B^{2}(h)$$

dove

$$B(h) = |E(h) - \theta|$$

- se h è corretto allora

$$MSE(h) = V(h)$$

se h_1 e h_2 sono due stimatori per θ , si dice che h_1 è **più efficiente** di h_2 se e solo se

$$MSE(h_1) < MSE(h_2)$$

h è detto lo stimatore più efficiente se e solo se

$$MSE(h) \leq MSE(h^*), \forall h^* \neq h$$

Definire le proprietà desiderabili degli stimatori per la dimensione campionaria che diverge $(n \to \infty)$.

• Lo stimatore h si dice asintoticamente corretto se

$$\lim_{n \to \infty} E(h(X_1, ..., X_n)) = E(h) = \theta$$

• Lo stimatore h si dice **consistente** (in media quadratica) se e solo se

$$\lim_{n \to \infty} MSE(h(X_1, ..., X_n)) = \lim_{n \to \infty} MSE(h) = 0$$

• Essendo

$$MSE(h) = V(h) + B^2(h)$$

allora

$$\lim_{n\to\infty} MSE(h) = 0, \text{ se e solo se } \lim_{n\to\infty} V(h) = 0 \text{ e } \lim_{n\to\infty} B^2(h) = 0$$

Descrivere la differenza tra $standard\ deviation$ di popolazione, $standard\ error$ e $standard\ deviation\ stimata$

• La standard deviation (SD) σ , rappresenta la dispersione degli individui dalla media, è un indicatore di variabilità della popolazione, per esempio in una popolazione finita di N individui:

$$\sigma = \sqrt{\sigma^2} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2}$$

- La deviazione standard σ è la radice della varianza della popolazione σ^2 .
- Lo standard error SE(h) di uno stimatore h per θ è un indicatore della variabilità dello stimatore nello spazio dei parametri

$$SE(h) = \sqrt{V(h)}$$

- Lo standard error SE(h) di uno stimatore h per θ è la radice della varianza della VC h.
- La standard deviation stimata $\hat{\sigma}$, rappresenta la dispersione degli individui del campione dalla media del campione, è un indicatore di variabilità del campione:

$$\hat{\sigma} = \sqrt{\hat{\sigma}^2} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \hat{\mu})^2}$$

– La deviazione standard stimata $\hat{\sigma}$ è la radice della varianza del campione $\hat{\sigma}^2$.

Definire la funzione di verosimiglianza, di log-verosimiglianza e lo stimatore di massima verosimiglianza in generale

• Siano $x_1,...,x_n$ n osservazioni di $X \sim \mathcal{L}(\theta), \theta \in \Theta$, si definisce la verosimiglianza L di θ la funzione:

$$L(\theta; x_1, ..., x_n) = L(\theta) \propto P(X_1 = x_1, ..., X_n = x_n; \theta)$$

• Se $x_1, ..., x_n$ sono osservazioni IID otteniamo

$$L(\theta) \propto P(X_1 = x_1; \theta) \cdot \dots \cdot P(X_n = x_n; \theta)$$

 $\propto \prod_{i=1}^{n} f(x_i; \theta)$

• Si definisce $\ell(\theta)$ la log-verosimiglianza

$$\ell(\theta) = \log L(\theta)$$

• Lo stimatore di massima verosimiqlianza per θ è quel valore $\hat{\theta}$ che rende massima la verosimiglianza:

$$\hat{\theta} = \underset{\theta \in \Theta}{\operatorname{argmax}} L(\theta)$$

$$= \underset{\theta \in \Theta}{\operatorname{argmax}} \ell(\theta)$$

Scrivere la funzione di verosimiglianza per una Bernoulli, la sua log-verosimiglianza, individuare gli stimatori di massima verosimiglianza e le loro proprietà

• La verosimiglianza è

$$L(\pi) \propto \prod_{i=1}^{n} \pi^{x_i} (1-\pi)^{1-x_i}$$

$$= \pi^{s_n} (1-\pi)^{n-s_n}, \qquad s_n = \sum_{i=1}^{n} x_i$$

• La log-verosimiglianza è

$$\ell(\pi) = \log L(\pi)$$

= $s_n \log \pi + (n - s_n) \log(1 - \pi)$

• Lo stimatore di massima verosimiglianza

$$\hat{\pi} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

• $\hat{\pi}$ è corretto per π , infatti

$$E(\hat{\pi}) = E\left(\frac{1}{n}\sum_{i=1}^{n} X_i\right) = \frac{1}{n}\sum_{i=1}^{n} E(X_i) = \frac{\pi + \dots + \pi}{n} = \frac{n}{n}\pi = \pi$$

• Mean Squared Error:

$$MSE(\hat{\pi}) = V(\hat{\pi}) = \frac{\pi(1-\pi)}{n}$$

• Lo stimatore $\hat{\pi}$ per π è consistente

$$\lim_{n \to +\infty} MSE(\hat{\pi}) = \lim_{n \to +\infty} \frac{\pi(1-\pi)}{n} = 0$$

Scrivere la funzione di verosimiglianza per una Poisson, la sua log-verosimiglianza, individuare gli stimatori di massima verosimiglianza e le loro proprietà

• La verosimiglianza è

$$L(\lambda) = \prod_{i=1}^{n} \frac{\lambda^{x_i}}{x_i!} e^{-\lambda}$$

$$\propto \lambda^{s_n} e^{-n\lambda}, \quad s_n = \sum_{i=1}^{n} x_i$$

• La log-verosimiglianza è

$$\ell(\lambda) = \log \lambda^{s_n} e^{-n\lambda}$$

$$= \log \lambda^{s_n} + \log e^{-n\lambda}$$

$$= s_n \log \lambda - n\lambda, \quad \text{in quanto } \log e^a = a$$

• Lo stimatore di massima verosimiglianza

$$\hat{\lambda} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

13

• Correttezza:

$$E(\hat{\lambda}) = E\left(\frac{1}{n}\sum_{i=1}^{n} X_i\right) = \frac{1}{n}\sum_{i=1}^{n} E(X_i) = \frac{1}{n}\sum_{i=1}^{n} \lambda = \lambda$$

• Mean Squared Error:

$$MSE(\hat{\lambda}) = V(\hat{\lambda}) = V\left(\frac{1}{n}\sum_{i=1}^{n} X_i\right) = \frac{1}{n^2}\sum_{i=1}^{n} V(X_i) = \frac{n}{n^2}\lambda = \frac{\lambda}{n}$$

• Consistenza:

$$\lim_{n\to +\infty} MSE(\hat{\lambda}) = \lim_{n\to +\infty} \frac{\lambda}{n} = 0$$

Scrivere la funzione di verosimiglianza per una Normale,individuare gli stimatori di massima verosimiglianza e le loro proprietà

• Siano $X_1,...,X_n$ n VC IID, replicazioni della stessa $X \sim N(\mu,\sigma^2)$, e dunque con funzione di probabilità:

$$f(x_i; \mu, \sigma^2)$$

• Gli stimatori sono

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \hat{\mu})^2$$

$$= \frac{1}{n} \sum_{i=1}^{n} x_i^2 - \hat{\mu}^2$$

• Correttezza per μ :

$$E(\hat{\mu}) = E\left(\frac{1}{n}\sum_{i=1}^{n}X_i\right) = \frac{1}{n}\sum_{i=1}^{n}E(X_i) = \frac{1}{n}\sum_{i=1}^{n}\mu = \mu$$

• Mean Squared Error per μ :

$$MSE(\hat{\mu}) = V(\hat{\mu}) = \frac{\sigma^2}{n}$$

• Consistenza per μ :

$$\lim_{n \to +\infty} MSE(\hat{\mu}) = \lim_{n \to +\infty} \frac{\sigma^2}{n} = 0$$

• Correttezza per $\hat{\sigma}^2$:

$$E(\hat{\sigma}^2) = \frac{n-1}{n} \sigma^2$$

 $\hat{\sigma}^2$ non è stimatore corretto per σ^2 .

• Correzione di $\hat{\sigma}^2$

$$S^{2} = \frac{n}{n-1}\hat{\sigma}^{2} = \frac{n}{n-1}\frac{1}{n}\sum_{i=1}^{n}(X_{i} - \hat{\mu})^{2} = \frac{1}{n-1}\sum_{i=1}^{n}(X_{i} - \hat{\mu})^{2}$$

Indicare le proprietà degli stimatori di massima verosimiglianza

- Siano $X_1, ..., X_n$ n VC IID, replicazioni di $X \sim \mathcal{L}(\theta)$ e sia $\hat{\theta}$ lo stimatore di massima verosimiglianza per per θ , allora
- $\hat{\theta}$ non è sempre stimatore corretto ma è sempre corretto as intoticamente:

$$E(\hat{\theta}) \xrightarrow{n \to \infty} \theta$$

• $\hat{\theta}$ non è sempre stimatore a massima efficienza ma lo è sempre asintoticamente:

$$V(\hat{\theta}) \xrightarrow{n \to \infty} I^{-1}(\theta)$$

- $-I^{-1}(\theta)$ è un risultato teorico ed un limite sotto al quale nessuno stimatore può scendere.
- Se esiste lo stimatore più efficiente allora è quello di massima verosimiglianza.
- $\hat{\theta}$ è asintoticamente distribuito normalmente

$$\hat{\theta} \sim N(\theta, I^{-1}(\theta))$$

• Lo stimatore di massima verosimiglianza è invariante alle trasformazioni monotone invertibili g: se $\psi = g(\theta)$, allora $\hat{\psi} = g(\hat{\theta})$.

Definire un intervallo di confidenza

• Un intervallo di confidenza per θ al livello $(1-\alpha) \times 100\%$ è costruito su quella coppia di statistiche L_1 e L_2 tali che

$$P(L_1 < \theta < L_2) = 1 - \alpha$$

• Un intervallo di confidenza per θ al livello $(1 - \alpha) \times 100\%$ è l'intervallo $[L_1, L_2]$ calcolato sui dati del campione.

Definire il livello di confidenza

• Un intervallo di confidenza per θ al livello $(1-\alpha) \times 100\%$ è costruito in modo tale che l'intervallo copre il vero θ con probabilità $(1-\alpha)$, quindi il livello di confidenza è la probabilità di coprire, nel long run, il vero parametro.

Cos'è un test statistico?

Un Test Statistico è la scelta tra due ipotesi diverse su θ alla luce dei dati che osserveremo:

$$\begin{cases} H_0: \theta \in \Theta_0, & \Theta_0 \subset \Theta \\ H_1: \theta \in \Theta_1, & \Theta_1 \subset \Theta \end{cases}$$

- Se $\Theta_0 = \{\theta_0\}$ è un solo punto si dice che H_0 è un'ipotesi **semplice**, altrimenti è **composta** - Se $\Theta_1 = \{\theta_1\}$ è un solo punto si dice che H_1 è un'ipotesi **semplice**, altrimenti è **composta**

Descrivere la tavola della verità

	Decisione	
Stato di natura	Decido H_0	Decido H_1
è vera H_0	corretta	errore di I tipo
	$1-\alpha$	α
è vera H_1	errore di II tipo	corretta
	β	$1-\beta$

• Dove

$$\alpha = P(\text{Errore I tipo}) = P(\text{Decidere } H_1; H_0)$$

 α è il livello di **significatività** del test

- α è la probabilità di scegliere H_1 quando invece è vera H_0

• e

$$\beta = P(\text{Errore II tipo}) = P(\text{Decidere } H_0; H_1)$$

• Infine

$$1 - \beta = P(\text{Decidere } H_1; H_1)$$

 $1 - \beta$ è la potenza del test

• $1-\beta$ è la probabilità di scegliere H_1 quando H_1 è vera.

Definire la probabilità di significatività osservata $p_{\rm value}$

La probabilità di significatività $p_{\rm value}$ è

$$p_{\text{value}} = P(|T| > |t_{\text{obs}}|; H_0)$$

La probabilità di significatività osservata p_{value} esprime la probabilità, se fosse vera H_0 , di trovare un campione ancora più in favore di H_1 di quello disponile

REGRESSIONE

Elencare gli assunti del modello di regressione

0. Dati $(x_1, y_1), ..., (x_n, y_n), n$ coppie di punti, si assume che

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i \ \forall i$$

1. Il valore atteso dell'errore è nullo

$$E(\varepsilon_i) = 0 \ \forall i$$

2. Omoschedasticità

$$V(\varepsilon_i) = \sigma_{\varepsilon}^2$$
, costante $\forall i$

3. Indipendenza dei residui

$$\varepsilon_i$$
 è indipendente da $\varepsilon_j \ \forall i \neq j$

4. Indipendenza tra i residui e la X

$$X_i$$
 è indipendente da $\varepsilon_i \ \forall i$

- 5. Esogeneità della X: la distribuzione su X non è oggetto di inferenza
- 6. Normalità dei residui

$$\varepsilon_i \sim N(0, \sigma_{\varepsilon}^2) \ \forall i$$

• Normalità delle Y

$$Y_i \sim N(\beta_0 + \beta_1 x_i, \sigma_{\varepsilon}^2) \ \forall i$$

Proprietà della covarianza

- se la covarianza è positiva, c'è associazione lineare diretta tra X ed Y
- \bullet se la covarianza è negativa, c'è associazione lineare inversa tra X ed Y
- $\bullet\,$ se la covarianza è prossima a zero, non c'è associazione lineare tra X ed Y
- Simmetria

$$cov(x, y) = cov(y, x)$$

• Campo di variazione

$$-\hat{\sigma}_X\hat{\sigma}_Y \leq \text{cov}(x,y) \leq +\hat{\sigma}_X\hat{\sigma}_Y$$

Definire la previsione

• La previsione è

$$\hat{Y}_{(X=x)} = \hat{\beta}_0 + \hat{\beta}_1 x$$

- Se $\min\{x\} \le x \le \max\{x\}$ si parla di interpolazione.
- Se $x < \min\{x\}$ oppure $x > \max\{x\}$ si parla di estrapolazione.
- L'errore di previsione cresce al crescere di $(x \bar{x})^2$.

Definire le previsioni osservate e i residui osservati

• Le previsioni, sulle x osservate

$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$$

• Le stime degli errori

$$\hat{\varepsilon}_i = y_i - \hat{y}_i$$

Elencare le proprietà della retta dei minimi quadrati

• Valgono le seguenti proprietà:

$$\bar{y} = \hat{\beta}_0 + \hat{\beta}_1 \bar{x},$$
 la retta passa nel punto delle medie (1)

$$\bar{y} = \frac{1}{n} \sum_{i=1}^{n} \hat{y}_{i},$$
 la media delle previsioni coincide con quella degli y (2)

$$0 = \frac{1}{n} \sum_{i=1}^{n} \hat{\varepsilon}_{i},$$
 la media dei residui osservati è zero (3)

Proprietà del coefficiente di correlazione

1. $-1 \le r \le 1$

1.1 Il SEGNO indica la direzione della relazione

1.2 r > 0, al crescere di X, in media, cresce Y

 $1.3 \ r < 0$, al crescere di X, in media, decresce Y

1.4 r = 1, associazione perfetta diretta

1.5 r = -1, associazione perfetta indiretta

 $2. \ r$ è un numero puro, ovvero è privo di unità di misura

3. è simmetrico: $r_{XY} = r_{YX} = r$

4. è invariante per cambiamenti di scala:

se
$$W = a + bY$$
, allora $r_{X,W} = \text{sign}(b)r_{XY}$, dove la funzione $\text{sign}(b) = \begin{cases} +1, & \text{se } b > 0 \\ -1, & \text{se } b < 0 \end{cases}$

5. r misura l'associazione lineare:

5.1~r misura come i punti si addensano intorno alla retta.

5.2 f(x) non lineare r è parzialmente inutile

5.3 il valore di r, da solo, non è in grado di descrivere tutte le possibili relazioni che si possono realizzare tra due variabili.

6. r è più elevato se i dati sono aggregati in medie o percentuali

Riportare la scomposizione della varianza

• variabilità totale di y è scomponibile nella somma di due parti

$$\sum_{i=1}^{n} (y_i - \bar{y})^2 = \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2 + \sum_{i=1}^{n} \hat{\varepsilon}_i^2$$

$$TSS = ESS + RSS$$

- TSS Total Sum of Squares
- ESS Explained Sum of Squares
- RSS Residual Sum of Squares
- La variabilità totale di y è scomponibile nella somma di due parti

$$\left\{\begin{array}{c} \text{varibilità di } y \\ \text{intorno alla sua media} \end{array}\right\} = \left\{\begin{array}{c} \text{varibilità della retta} \\ \text{intorno alla media} \end{array}\right\} + \left\{\begin{array}{c} \text{varibilità delle } y \\ \text{intorno alla retta} \end{array}\right\}$$

Definire il coefficiente di determinazione lineare \mathbb{R}^2

• l'indice di determinazione lineare è il quadrato dell'indice di correlazione

$$R^2 = \left(\frac{ESS}{TSS}\right) = r^2 = \left(\frac{\text{cov}(x,y)}{\hat{\sigma}_x \hat{\sigma}_y}\right)^2$$

rappresenta la quota di varianza spiegata dal modello

 $0 \le R^2 \le 1$

- Se $R^2 = 1$, allora r = -1 oppure r = +1, associazione lineare perfetta, 100% della variabilità spiegata
- Se $R^2 = 0$, allora r = 0 associazione lineare nulla, 0% della variabilità spiegata
- Se $R^2 > 0.75$, allora considereremo l'associazione lineare soddisfacente.

Enunciare il Teorema di Gauss-Markov

1. Gli stimatori dei minimi quadrati sono corretti

$$E(\hat{\beta}_1) = \beta_1, \qquad E(\hat{\beta}_0) = \beta_0$$

2. Gli stimatori $\hat{\beta}_0$ e $\hat{\beta}_1$ di β_0 e β_1 sono, tra tutti gli stimatori lineari corretti per β_0 e β_1 , BLUE (Best Linear Unbiased Estimators Best: i più efficienti; Unbiased: corretti; Linear Estimators: stimatori lineari).

Spiegare brevemente cos'è l'analisi dei residui

- La **analisi dei residui** è una serie di procedure diagnostiche per controllare che gli assunti del modello di regressione siano rispettati.
- Le procedure consistono nel produrre statistiche e grafici sui residui osservati $\hat{\varepsilon}_i$.

Definire il diagramma dei residui e la retta dei residui

- il diagramma dei residui consiste nel mettere in ordinata le x_i e in ascissa i residui $\hat{\varepsilon}_i$
- la retta dei residui, che è la retta di regressione tra x e $\hat{\varepsilon}$ è parallela all'asse delle x e coincide con esso.

Definire il Normal QQ plot

- Si tratta di un grafico che mette sull'asse delle x i quantile (percentili in inglese) teorici della normale e in ordinata i quantile osservati dei residui sul campione.
- Se i percentili teorici e quelli osservati giacciono su una retta, allora gli errori si possono assumere normali, tanto più i punti si allontanano tanto più l'ipotesi è violata.

Definire i Punti di leva, Outliers e punti influenti

- Outlier: osservazione con residuo anomale (sulle y)
- Leverage: (punto di leva), valore anomalo (sulle x)
- Influence Points: (punti influenti) osservazioni con comportamento anomalo che influenzano notevolmente i risultati

Definire i residui Studentizzati

• I residui studentizzati sono dati da:

$$\tilde{\varepsilon}_i = \frac{\hat{\varepsilon}_i}{S_{\varepsilon}\sqrt{1 - h_i}} \sim t_{n-2}$$

- Si preferiscono i residui studentizzati perché incorporano le leve e sono più confrontabili.
- Tanto più alto è $|\tilde{\varepsilon}_i|$ tanto più il punto i è influente

Scrivere la relazione tra gli α_1 , β_1 ed r

•

$$\hat{\beta}_1 = \frac{\operatorname{cov}(x, y)}{\hat{\sigma}_X^2}$$

$$\hat{\beta}_1 = \frac{\hat{\sigma}_Y}{\hat{\sigma}_X} r$$

•

$$\hat{\alpha}_1 = \frac{\text{cov}(x, y)}{\hat{\sigma}_Y^2}$$

$$\hat{\alpha}_1 = \frac{\hat{\sigma}_X}{\hat{\sigma}_Y} r$$

• Quindi

$$\hat{\beta}_1 = \hat{\alpha}_1 = r$$
, se e solo se $\hat{\sigma}_X = \hat{\sigma}_Y$

Scrivere i coefficienti della regressione tra variabili standardizzate

• I coefficienti sono dati da

$$\hat{\beta}_{1Z} = r \qquad \qquad \hat{\alpha}_{1Z} = r \tag{4}$$

$$\hat{\beta}_{0Z} = 0 \qquad \qquad \hat{\alpha}_{0Z} = 0 \tag{5}$$

(6)

Possibili Domande

RAPPRESENTAZIONI DELLA DISTRIBUZIONE UNITARIA

1. qual è il campo di variazione della media aritmetica? $x_{(1)} \leq \bar{x} \leq x_{(n)},$ la media varia tra il minimo e il massimo dei dati

2.
qual è la proprietà di internalità della media aritmetica?
 $x_{(1)} \leq \bar{x} \leq x_{(n)},$ la media varia tra il minimo e il massimo dei dati

3. \bar{x} può essere maggiore di $x_{(n)}$? No, $x_{(1)} \leq \bar{x} \leq x_{(n)}$, la media varia tra il minimo e il massimo dei dati

4. \bar{x} può essere minore di $x_{(1)}$? No, $x_{(1)} \leq \bar{x} \leq x_{(n)}$, la media varia tra il minimo e il massimo dei dati

- 5. a quanto sommano gli scarti dalla media aritmetica? la somma degli scarti dalla media è nulla: $\sum_{i=1}^n (x_i \bar{x}) = 0$
- 6. cosa vuol dire che la somma degli scarti dalla medie è nulla? vuol dire che: $\sum_{i=1}^n (x_i \bar{x}) = 0$
- 7. qual è la media degli scarti dalla media? la somma degli scarti dalla media è nulla, e quindi anche la sua media
- 8. la media aritmetica minimizza la somma degli scarti al quadrato sì,

$$\sum_{i=1}^{n} (x_i - \bar{x})^2 < \sum_{i=1}^{n} (x_i - d)^2 \quad \forall d \neq \bar{x}$$

9. la media aritmetica minimizza la somma del valore assoluto degli scarti NO, la media aritmetica minimizza la somma degli scarti al quadrato ,

$$\sum_{i=1}^{n} (x_i - \bar{x})^2 < \sum_{i=1}^{n} (x_i - d)^2 \quad \forall d \neq \bar{x}$$

10. la media aritmetica massimizza la somma degli scarti al quadrato

NO, la media aritmetica minimizza la somma degli scarti al quadrato,

$$\sum_{i=1}^{n} (x_i - \bar{x})^2 < \sum_{i=1}^{n} (x_i - d)^2 \quad \forall d \neq \bar{x}$$

11. cosa vuol dire che la media è invariante alle trasformazioni lineari? che se $y_i=a+bx_i$ allora $\bar{y}=a+b\bar{x}$

12. se
$$y_i = a - bx_i$$
 allora $\bar{y} = b^2 \bar{x}$

no, la media è invariante alle trasformazioni lineari $y_i = a - bx_i$ allora $\bar{y} = a + (-b)\bar{x}$

13. se
$$y_i = a - bx_i$$
 allora $\bar{y} = a + b\bar{x}$

no, la media è invariante alle trasformazioni lineari $y_i = a - bx_i$ allora $\bar{y} = a + (-b)\bar{x}$

14. se
$$y_i = a - bx_i$$
 allora $\bar{y} = a - b\bar{x}$

sì, la media è invariante alle trasformazioni lineari $y_i = a - bx_i$ allora $\bar{y} = a + (-b)\bar{x}$

15. se
$$y_i = x_i^2$$
 allora $\bar{y} = \bar{x}^2$

no, la media è invariante solo alle trasformazioni lineari

16. Cos'è la proprietà di associatività della media?

Associatività. Sia una popolazione, \mathcal{P} , formata da K gruppi con medie e numerosità: $(\bar{x}_1; n_1), (\bar{x}_2; n_2), \ldots, (\bar{x}_K; n_K)$. Allora, la media totale \bar{x}_T di $\mathcal{P} = \grave{e}$ data da

$$\bar{x}_T = \frac{\operatorname{Tot}\{\mathcal{P}_1\} + \dots + \operatorname{Tot}\{\mathcal{P}_K\}}{n_1 + \dots + n_K} = \frac{n_1 \ \bar{x}_1 + \dots + n_K \ \bar{x}_K}{n_1 + \dots + n_K}$$

17. Una popolazione di n gruppi e divisa in due gruppi, uno con media \bar{x}_1 di numerosità n_1 , l'altro di media x_2 e numerosità n_2 . Qual è la media della popolazione?

la media totale di popolazione \bar{x}_T è data da:

$$\bar{x}_T = \frac{n_1 \bar{x}_1 + n_2 \bar{x}_2}{n_1 + n_2}$$

18. Definire la mediana, $x_{0.5}$,

La mediana di una distribuzione, $x_{0.5}$, è quel valore della X per il quale si ha $F(x_{0.5}) = 0.5$.

19. qual è il campo di variazione della mediana?

la mediana varia tra il minimo e il massimo dei dati $x_{\min} \le x_{0.5} \le x_{\max}$,

20. qual è la proprietà di internalità della mediana?

la mediana varia tra il minimo e il massimo dei dati $x_{\min} \leq x_{0.5} \leq x_{\max}$,
21. $x_{0.5}$ può essere maggiore di $x_{(n)}$? no, la mediana varia tra il minimo e il massimo dei dati $x_{\min} \le x_{0.5} \le x_{\max}$,
22. $x_{0.5}$ può essere minore di $x_{(1)}$? no, la mediana varia tra il minimo e il massimo dei dati $x_{\min} \le x_{0.5} \le x_{\max}$,
23. la mediana minimizza la somma degli scarti al quadrato no, minimizza il valore assoluto degli scarti $\sum_{j=1}^{n} x_i - x_{0.5} $ è un minimo.
24. la mediana minimizza la somma del valore assoluto degli scarti sì, minimizza il valore assoluto degli scarti $\sum_{j=1}^{n} x_i - x_{0.5} $ è un minimo.
25. la mediana massimizza la somma degli scarti al quadrato no, minimizza il valore assoluto degli scarti $\sum_{j=1}^{n} x_i-x_{0.5} $ è un minimo.
26. \bar{x} può essere maggiore di $x_{0.5}$? Sì, se la distribuzione ha una coda lunga a destra
27. \bar{x} può essere minore di $x_{0.5}$? Sì, se la distribuzione ha una coda lunga a sinistra
28. \bar{x} può essere uguale a $x_{0.5}$? Sì, se la distribuzione è simmetrica
29. la varianza può essere maggiore di zero? Sì, la varianza è sempre maggiore o uguale zero $\sigma_X^2 \geq 0$
30. la varianza può essere minore di zero? No, la varianza è sempre maggiore o uguale zero $\sigma_X^2 \geq 0$
31. qual è il campo di variazione della varianza? La varianza è sempre maggiore o uguale zero $\sigma_X^2 \geq 0$
32. la varianza può essere uguale a zero?

Sì, la varianza è sempre maggiore o uguale zero $\sigma_X^2 \geq 0$ è uguale a zero solo se $x_i = \text{costante}, \forall i$

33. se $y_i=a+bx_i, \ \forall i,$ qual è la varianza di Y? la varianza di Y è $\sigma_Y^2=b^2\ \sigma_X^2$

34. se $y_i=a-bx_i, \ \forall i,$ qual è la varianza di Y? la varianza di Y è $\sigma_Y^2=b^2\ \sigma_X^2$

35. se $y_i=a+bx_i,\ \forall i,$ la varianza di Y è $\sigma_Y^2=a+b\sigma_X^2$ no, la varianza di Y è $\sigma_Y^2=b^2$ σ_X^2

36. se $y_i=a-bx_i,\ \forall i,$ la varianza di Y è $\sigma_Y^2=-(b^2)\sigma_X^2$ no, la varianza di Y è $\sigma_Y^2=b^2$ σ_X^2

37. se $y_i=a+bx_i,\ \forall i,$ la varianza di Y è $\sigma_Y^2=(a+b)^2\sigma_X^2$ no, la varianza di Y è $\sigma_Y^2=b^2$ σ_X^2

- 38. la deviazione standard può essere maggiore di zero? la deviazione standard è sempre maggiore o uguale zero $\sigma_X \geq 0$
- 39. la deviazione standard può essere minore di zero? no, la deviazione standard è sempre maggiore o uguale zero $\sigma_X \geq 0$
- 40. qual è il campo di variazione della deviazione standard la deviazione standard è sempre maggiore o uguale zero $\sigma_X \geq 0$
- 41. la deviazione standard può essere uguale a zero? la deviazione standard è sempre maggiore o uguale zero $\sigma_X \geq 0$ è uguale a zero solo se i dati sono costanti

42. se $y_i = a + bx_i$, $\forall i$ qual è la deviazione standard di Y? la sd di Y è

$$\sigma_Y = |b|\sigma_X$$

43. se $y_i = a - bx_i$, $\forall i$ qual è la deviazione standard di Y?

la s
d di Yè

$$\sigma_Y = |b|\sigma_X$$

44. se $y_i=a+bx_i,\ \forall i$ la deviazione standard di Y è $\sigma_Y=a+b\sigma_X.$ No, la sd di Y è

$$\sigma_Y = |b|\sigma_X$$

45. se $y_i=a-bx_i, \ \forall i$ la deviazione standard di Y è $\sigma_Y=-b\sigma_X$ No, la sd di Y è

$$\sigma_Y = |b|\sigma_X$$

46. se $y_i = a + bx_i, \ \forall i$ la deviazione standard di Y è $\sigma_Y = (a+b)\sigma_X$ No, la sd di Y è

$$\sigma_Y = |b|\sigma_X$$

è sempre vero

PROBABILITA
47. la probabilità varia tra 0 e 100. No,
$0 \le P(A) \le 1 \forall A$
48. la probabilità varia tra 0 e 1.
Sì, $0 \le P(A) \le 1 \forall A$
49. la probabilità varia tra -1 e 1
No, $0 \le P(A) \le 1 \forall A$
50. qual è la probabilità dell'evento nullo?
La probabilità dell'evento nullo è zero
$P(\emptyset) = 0$
51. qual è la probabilità dell'evento impossibile?
La probabilità dell'evento nullo è zero
$P(\emptyset) = 0$
52. la probabilità può essere zero?
Sì, se $A = \emptyset$, allora
$P(A) = P(\emptyset) = 0$
53. Sia $\{\Omega, \mathscr{A}, P\}$ uno spazio di probabilità, quando è vero che
$P(A \cup B) = P(A) + P(B) ?$
$P(A \cup B) = P(A) + P(B)$
se e solo se A e B sono incompatibili: $A\cap B=\emptyset$
54. Quando è vero che $P(\overline{A}) = 1 - P(A)$?

55. cosa vuol dire che A è B sono due eventi incompatibili? vuol dire che A e B hanno intersezione nulla: $A \cap B = \emptyset$

56. Qual è la probabilità dell'intersezione di due eventi incompatibili? se A e B sono due eventi incompatibili, allora

$$P(A \cap B) = P(\emptyset) = 0$$

57. Se A e B sono due eventi incompatibili allora $P(A \cap B) = P(A)P(B)$ No, se A e B sono due eventi incompatibili, allora

$$P(A \cap B) = P(\emptyset) = 0$$

58. Se A e B sono due eventi incompatibili allora $P(A \cup B) = P(A) + P(B)$ sì, A e B sono due eventi incompatibili, allora

$$P(A \cup B) = P(A) + P(B) - P(A \cap B) = P(A) + P(B)$$

essendo $P(A \cap B) = 0$

59. Se A e B sono due eventi incompatibili allora $P(A \cap B) = 1$ No, se A e B sono due eventi incompatibili, allora

$$P(A \cap B) = P(\emptyset) = 0$$

60. Se A e B sono due eventi incompatibili allora $P(A \cap B) = 0$ Sì, se A e B sono due eventi incompatibili, allora

$$P(A \cap B) = P(\emptyset) = 0$$

61. se A e B sono eventi incompatibili allora P(A|B) = P(A)

No, se Ae Bsono due eventi incompatibili, allora

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{P(\emptyset)}{P(B)} = \frac{0}{P(B)} = 0$$

62. se A e B sono eventi incompatibili allora P(A|B)=1

No, se A e B sono due eventi incompatibili, allora

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{P(\emptyset)}{P(B)} = \frac{0}{P(B)} = 0$$

63. se A e B sono eventi incompatibili allora P(A|B)=0

Sì, se A e B sono due eventi incompatibili, allora

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{P(\emptyset)}{P(B)} = \frac{0}{P(B)} = 0$$

64. se A e B sono eventi incompatibili allora P(A|B) = P(B)

No, se A e B sono due eventi incompatibili, allora

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{P(\emptyset)}{P(B)} = \frac{0}{P(B)} = 0$$

65. se A e B sono due eventi incompatibili allora sono indipendenti No, se A e B sono due eventi incompatibili, allora

$$P(A \cap B) = P(\emptyset) = 0$$

Se A e B sono indipendenti

$$P(A \cap B) = P(A)P(B)$$

66. se A e B sono due eventi incompatibili allora possono essere indipendenti No, mai, se A e B sono due eventi incompatibili, allora

$$P(A \cap B) = P(\emptyset) = 0$$

Se A e B sono indipendenti

$$P(A \cap B) = P(A)P(B)$$

67. se A e B sono due eventi incompatibili allora non possono essere indipendenti Sì, se A e B sono due eventi incompatibili, allora

$$P(A \cap B) = P(\emptyset) = 0$$

Se A e B sono indipendenti

$$P(A \cap B) = P(A)P(B)$$

68. se A e B sono eventi indipendenti allora P(A|B) = P(A)

Sì, se A e B sono indipendenti, allora

$$P(A|B) = P(A),$$
 e $P(B|A) = P(B)$

69. se A e B sono eventi indipendenti allora P(A|B) = 1

No, se A e B sono indipendenti, allora

$$P(A|B) = P(A),$$
 e $P(B|A) = P(B)$

70. se Ae Bsono eventi indipendenti allora P(A|B)=0

No, se A e B sono indipendenti, allora

$$P(A|B) = P(A),$$
 e $P(B|A) = P(B)$

71. se A e B sono eventi indipendenti allora P(A|B) = P(B)

No, se A e B sono indipendenti, allora

$$P(A|B) = P(A),$$
 e $P(B|A) = P(B)$

72. Dati due eventi A e B tali che $P(A \cap B) = P(A)P(B)$, in che relazione sono A e B? A e B sono indipendenti.

73. dati due eventi A e B quando $P(A \cap B) = P(A)P(B)$?

 $P(A\cap B)=P(A)P(B)$ se e solo se A e B sono indipendenti.

74. dati due eventi $A \in B$ allora $P(A \cap B) = P(A|B)P(B|A)$

No, se A e B sono indipendenti, allora

$$P(A|B) = P(A),$$
 e $P(B|A) = P(B)$

75. dati tre eventi A, B e C quando $P(A \cap B \cap C) = P(A)P(B)P(C)$? $P(A \cap B \cap C) = P(A)P(B)P(C)$ se e solo se A, B e C sono indipendenti.

Variabili Casuali

76. Una VC X è tale che

$$P(X = 0) = 1/3$$
, $P(X = 1) = 1/3$, $P(X = 2) = 1/3$

quale è il supporto di X?

Il supporto S_X è l'insieme dei possibili valori che può assumere la VC X. In questo caso

$$S_X = \{0, 1, 2\}$$

77. Una VC X è tale che

$$P(X = 0) = 1/3$$
, $P(X = 1) = 1/3$, $P(X = 2) = 1/3$

quale è valore atteso di X?

In generale il valore atteso è dato da

$$E(X) = \sum_{\forall x \in S_X} x P(X = x)$$

, in questo caso

$$E(X) = 0\frac{1}{3} + 1\frac{1}{3} + 2\frac{1}{3} = 1$$

- 78. Per il valore atteso stesse domande che per la media aritmetica
- 79. Per la varianza di una VC stesse domande della varianza descrittiva
- 80. Qual è la varianza di 2X Y?

$$V(2X - Y) = 2^{2}V(X) + (-1)^{2}V(Y) = 4V(X) + V(Y)$$

81. Qual è la varianza di -X?

$$V(-X) = (-1)^2 V(X) = V(X)$$

- 82. Se X e Y sono due VC qualunque è vero che $V(aX+bY)=a^2V(X)+b^2V(Y)$? No, è vero solo se X e Y sono indipendenti
- 83. Se X e Y sono due VC indipendenti è vero che V(aX+bY)=aV(X)+bV(Y)? No, se X è Y sono indipendenti

$$V(aX + bY) = a^2V(X) + b^2V(Y)$$

84. Se X e Y sono due VC indipendenti è vero che $V(aX-bY)=a^2V(X)-b^2V(Y)$? No, se X è Y sono indipendenti

$$V(aX - bY) = a^2V(X) + (-b)^2V(Y) = a^2V(X) + b^2V(Y)$$

85. Se X e Y sono due VC indipendenti è vero che V(X-Y)=V(X)-V(Y)? No, se X è Y sono indipendenti

$$V(X - Y) = 1^{2}V(X) + (-1)^{2}V(Y) = V(X) + V(Y)$$

86. Se X e Y sono due VC qualunque è vero che V(X-Y)=V(X)-V(Y)? No, se X è Y sono indipendenti

$$V(X - Y) = 1^{2}V(X) + (-1)^{2}V(Y) = V(X) + V(Y)$$

87. Se X e Y sono due VC indipendenti è vero che V(X - Y) = V(X) + V(Y)?

Sì, vale solo se X è Y sono indipendenti

$$V(X - Y) = 1^{2}V(X) + (-1)^{2}V(Y) = V(X) + V(Y)$$

88. Qual è il sopporto della Bernoulli?

La Bernoulli assume due soli valori 0 e 1. Il suo supporto è

$$S_X = \{0, 1\}$$

89. Qual è il valore atteso della Bernoulli?

Se $X \sim \text{Ber}(\pi)$, allora

$$E(X) = \pi$$

90. Qual è la varianza della Bernoulli?

Se $X \sim \text{Ber}(\pi)$, allora

$$V(X) = \pi(1 - \pi)$$

91. Qual è il parametro della Bernoulli e quale lo spazio del parametro?

Se $X \sim \text{Ber}(\pi)$, allora pi è il parametro e

$$\pi \in [0,1]$$

92. Qual è la VC che conta il numero di successi in n esperimenti IID?

È la variabile binomiale $X \sim \text{Bin}(n; \pi)$ dove n è il numero di prove e π è la probabilità di successo nella singola prova

93. Qual è il sopporto della Binomiale?

la VC Binomiale, che conta il numero di successi in n esperimenti IID, può assumere i valori da 0 ad n:

$$S_X = \{0, 1, ..., n\}$$

94. Qual è il valore atteso della Binomiale?

Se $X \sim \text{Bin}(n; \pi)$, allora

$$E(X) = n\pi$$

95. Qual è la varianza della Binomiale?

Se $X \sim \text{Bin}(n; \pi)$, allora

$$V(X) = n\pi(1 - \pi)$$

96. Quali	sono i	parametri	della	Binomiale	e quale	lo spazio	dei	parametri?
-----------	--------	-----------	-------	-----------	---------	-----------	-----	------------

È la variabile binomiale $X \sim \text{Bin}(n; \pi)$ dove n è il numero di prove e π è la probabilità di successo nella singola prova

$$\pi \in [0,1]$$

 \mathbf{e}

$$n \in \{1, 2, 3, \ldots\}$$

97. Se $X \sim \text{Bin}(5, 0.4)$ e $Y \sim \text{Bin}(7, 0.4)$ come si distribuisce X + Y?

Se X e Y sono indipendenti allora

$$X + Y \sim Bin(7 + 7, 0.4)$$

se non sono indipendenti non sappiamo dirlo

98. Se
$$X \sim \text{Bin}(7, 0.4)$$
 e $Y \sim \text{Bin}(7, 0.5)$ è vero che $X + Y \sim \text{Bin}(7 + 7, 0.5 + 0.4)$?

No, hanno due π diversi, non sappiamo scrivere la distribuzione

99. Se
$$X_1 \sim \text{Ber}(0.5)$$
, $X_2 \sim \text{Ber}(0.5)$, $X_3 \sim \text{Ber}(0.5)$, indipendenti, come si distribuisce $X_1 + X_2 + X_3$?

La somma di Bernoulli IID è binomiale e quindi

$$X_1 + X_2 + X_3 = Bin(3; 0.5)$$

100. Se $X_1 \sim \text{Bin}(n_1, \pi)$, $X_2 \sim \text{Bin}(n_2, \pi)$, indipendenti, come si distribuisce $X_1 + X_2$?

Se X e Y sono indipendenti allora

$$X + Y \sim Bin(n_1 + n_2, \pi)$$

se non sono indipendenti non sappiamo dirlo

101. Qual è il sopporto della Poisson?

La Poisson assume valori su tutti i numeri naturali

$$S_X = \{0, 1, 2, ...\} = \mathbb{N}$$

102. Qual lo spazio dei parametri della Poisson?

Se $X \sim \text{Pois}(\lambda)$, allora

$$\lambda > 0$$
, ovvero $\lambda \in \mathbb{R}^+$

103. Qual è il valore atteso della Poisson?

Se
$$X \sim \text{Pois}(\lambda)$$
, allora

$$E(X) = \lambda$$

- 104. Qual è la varianza della Poisson?
- Se $X \sim \text{Pois}(\lambda)$, allora

$$V(X) = \lambda$$

105. Qual è la proprietà di riproduttività della Poisson?

siano X_1, \ldots, X_K , K variabili casuali indipendenti distribuite secondo una $Poisson(\lambda_k)$, per $k = 1, \ldots, K$. Allora, la loro somma, $S_K = X_1 + \cdots + X_K$, si distribuisce secondo una $Poisson(\lambda_1 + \cdots + \lambda_K)$.

106. Se $X_1 \sim \text{Pois}(\lambda_1)$ e $X_2 \sim \text{Pois}(\lambda_2)$ è vero che $X_1 + X_2 \sim \text{Pois}(\lambda_1 + \lambda_2)$?

Sì, ma solo se X_1 e X_2 sono indipendenti

107. Se $X \sim \text{Bin}(n;\pi), \, n \to +\infty$ e $\pi \to 0$, t
c $n\pi = \lambda$, come si distribuisce X?

Se n tende a divergere si crea la Poisson

$$X \to \operatorname{Pois}(\lambda)$$

108. Se $X \sim \text{Pois}(\lambda)$ e $Y \sim \text{Pois}(\lambda)$, come si distribuisce X + Y?

Se $x \to y$ sono indipendenti, allora

$$X + Y \sim \text{Pois}(\lambda + \lambda)$$

- 109. Sia $X \sim N(\mu, \sigma^2)$, descrivere la distribuzione di X.
 - X ha una distribuzione simmetrica rispetto a μ ,
 - è a forma campanulare, il suo massimo è in μ
 - presenta due flessi, uno in $\mu \sigma$, l'altro in $\mu + \sigma$.
- 110. Qual è il supporto della normale?

La normale assume valori sull'intera retta reale, quindi

$$S_X = \{-\infty < X < +\infty\} = \mathbb{R}$$

111. Quali sono il valore atteso e la varianza della normale standard?

Se $Z \sim N(0,1)$, allora

$$E(Z) = 0 \qquad V(Z) = 1$$

112. Qual è lo spazio dei parametri della normale?

Se $X \sim N(\mu, \sigma^2)$, parametri μ e σ^2 sono tc

$$\mu \in \mathbb{R}, \ (-\infty < \mu < +\infty) \qquad \sigma^2 \in \mathbb{R}^+, \ (\sigma^2 > 0)$$

113. Qual è la proprietà di linearità della normale?

Se $X \sim N(\mu, \sigma^2)$, allora

$$a + bX \sim N(a + b\mu, b^2\sigma^2)$$

114. Se $X_1 \sim N(\mu, \sigma^2)$ e $X_2 \sim N(\mu, \sigma^2)$, come si distribuisce

$$\frac{X_1 + X_2}{2} \quad ?$$

Se $X_1 \sim N(\mu, \sigma^2)$ e $X_2 \sim N(\mu, \sigma^2)$, allora

$$\begin{split} \frac{X_1+X_2}{2} \sim N\Big(\frac{\mu+\mu}{2}, \frac{1}{4}(\sigma^2+\sigma^2)\Big) \\ \frac{X_1+X_2}{2} \sim N\Big(\mu, \frac{\sigma^2}{2}\Big) \end{split}$$

115. Qual è la proprietà di riproduttività della normale?

Se $X \sim N(\mu_X, \sigma_X^2)$ e $Y \sim N(\mu_Y, \sigma_Y^2)$ sono indipendenti, allora $X + Y \sim N(\mu_X + \mu_Y, \sigma_X^2 + \sigma_Y^2)$.

116. Se $X_1 \sim N(\mu, \sigma^2)$ e $X_2 \sim N(\mu, \sigma^2)$, è vero che $X_1 \cdot X_2 \sim N(\mu_1 \cdot \mu_2, \sigma_1^2 \cdot \sigma_2^2)$?

No, la normale è chiusa rispetto alla somma, non al prodotto

117. Siano $Z_1, ..., Z_n, n$ variabili casuali IID, to $Z_i \sim N(0, 1)$, come si distribuisce $Z_1^2 + ... Z_n^2$?

La somma di normali standard indipendenti al quadrato è un chi quadro con n gradi di libertà

$$Z_1^2+...Z_n^2\sim\chi_n^2$$

118. Se $X_1 \sim N(0,1)$ e $X_2 \sim N(0,1)$, è vero che $X_1^2 + X_2^2 \sim \chi_2^2$?

Sì, la somma di normali standard indipendenti al quadrato è un chi quadro con n gradi di libertà, ma solo se X_1 e X_2 sono indipendenti.

119. Sia $Y \sim \chi_n^2$, descrivere la distribuzione di Y.

La funzione di densità ha una coda lunga a destra e dipende da n.

120. Qual è il supporto della VC χ_n^2 ?

La VC chi-quadro è la somma di variabili al quadrato e quindi assume solo valori positivi

$$S_{\chi^2} = \mathbb{R}^+, \qquad (\chi^2 > 0)$$

121. Sia $T \sim t_n$, descrivere la distribuzione di T.

La funzione di densità è simmetrica rispetto allo zero, le aree esterne sono più alte di quelle della normale, le aree interne sono più basse di quelle della normale, e l'andamento di ogni curva dipende da n.

122. Qual è il supporto della VC t_n ?

La VC t può assumere ogni valore reale

$$S_T = \mathbb{R}, \qquad (-\infty < T < +\infty)$$

123. Sia
$$Z \sim N(0,1)$$
 e $Y \sim \chi_n^2$, è vero che

$$\frac{Z}{\sqrt{Y/n}} \sim t_n ?$$

Sì, ma solo se Z e Y sono indipendenti.

124. Sia $T \sim t_n$ come si distribuisce T per $n \to +\infty$?

La t_n per n che diverge tende alla normale standard

$$t_n \to N(0,1)$$
, per $n \to \infty$

125. Enunciare il Teorema centrale del limite per la Somma

Siano $X_1,...,X_n,n$ Variabili Casuali (VC) Indipendenti e Identicamente Distribuite (IID), tali che $E(X_i)=\mu$, $V(X_i)=\sigma^2, \forall i=1,...,n$. Posto

$$S_n = X_1 + \dots + X_n,$$

allora

$$S_n \sim N\left(n\mu, n\sigma^2\right)$$

126. Enunciare il Teorema centrale del limite per la Media

Siano $X_1, ..., X_n, n$ Variabili Casuali (VC) Indipendenti e Identicamente Distribuite (IID), tali che $E(X_i) = \mu$, $V(X_i) = \sigma^2, \forall i = 1, ..., n$. Posto

$$\bar{X} = \frac{S_n}{n} = \frac{X_1 + \dots + X_n}{n},$$

allora

$$\bar{X} \underset{a}{\sim} N\left(\mu, \frac{\sigma^2}{n}\right)$$

127. Enunciare il Teorema centrale del limite per la Proporzione

Siano $X_1, ..., X_n, n$ Variabili Casuali (VC) Indipendenti e Identicamente Distribuite (IID), tali che $X_i \sim \text{Ber}(\pi)$, $\forall i = 1, ..., n$. Posto

$$\hat{\pi} = \frac{S_n}{n} = \frac{X_1 + \dots + X_n}{n},$$

allora

$$\hat{\pi} \underset{a}{\sim} N\left(\pi, \frac{\pi(1-\pi)}{n}\right)$$

INFERENZA

128. Quando un stimatore si dice corretto?

Lo stimatore h si dice **corretto** se

$$E(h) = \theta \qquad \forall \theta \in \Theta$$

129. Sia h uno stimatore per θ , tale che:

$$E(h) = \theta$$

di quale proprietà gode h?

Lo stimatore h è **corretto**

$$E(h) = \theta \qquad \forall \theta \in \Theta$$

130. Come si misura l'efficienza di uno stimatore?

L'efficienza di uno stimatore è misurata con il Errore Quadratico Medio (Mean Squared Error):

$$MSE(h) = E((h - \theta)^2) = V(h) + B^2(h)$$

dove

$$B(h) = |E(h) - \theta|$$

+ se h è corretto allora

$$MSE(h) = V(h)$$

131. Definire il Mean Squared Error di uno stimatore

L'efficienza di uno stimatore è misurata con il Errore Quadratico Medio (Mean Squared Error):

$$MSE(h) = E((h - \theta)^2) = V(h) + B^2(h)$$

dove

$$B(h) = |E(h) - \theta|$$

+se hè corretto allora

$$MSE(h) = V(h)$$

132. Se h_1 e h_2 sono due stimatori per θ , cosa significa dire che h_1 è più efficiente di h_2 ? se h_1 e h_2 sono due stimatori per θ , si dice che h_1 è **più efficiente** di h_2 se e solo se

$$MSE(h_1) < MSE(h_2)$$

133. Se h_1 e h_2 sono due stimatori corretti per θ , cosa significa dire che h_1 è più efficiente di h_2 ? se h_1 e h_2 sono due stimatori per θ , si dice che h_1 è **più efficiente** di h_2 se e solo se

$$MSE(h_1) < MSE(h_2)$$

essendo h_1 e h_2 corretti, allora

$$V(h_1) < V(h_2)$$

134. Sia h uno stimatore per θ , definire la correttezza asintotica di h.

Lo stimatore h si dice asintoticamente corretto se

$$\lim_{n \to \infty} E(h(X_1, ..., X_n)) = E(h) = \theta$$

135. Sia h uno stimatore per θ , definire la consistenza di h.

• Lo stimatore h si dice **consistente** (in media quadratica) se e solo se

$$\lim_{n \to \infty} MSE(h(X_1, ..., X_n)) = \lim_{n \to \infty} MSE(h) = 0$$

• Essendo

$$MSE(h) = V(h) + B^2(h)$$

allora

$$\lim_{n \to \infty} MSE(h) = 0, \text{ se e solo se } \lim_{n \to \infty} V(h) = 0 \text{ e } \lim_{n \to \infty} B^2(h) = 0$$

136. Sia h uno stimatore per θ , to

$$\lim_{n \to \infty} MSE(h(X_1, ..., X_n)) = \lim_{n \to \infty} MSE(h) = 0,$$

h è asintoticamente corretto?

Sì, essendo h consistente (in media quadratica), il suo MSE va a zero all'aumentare di n, ed essendo:

$$MSE(h) = V(h) + B^2(h)$$

allora

$$\lim_{n\to\infty} MSE(h) = 0, \text{ se e solo se} \lim_{n\to\infty} V(h) = 0 \text{ e } \lim_{n\to\infty} B^2(h) = 0$$

- 137. Descrivere la differenza tra standard deviation di popolazione, standard error e standard deviation stimata
 - La standard deviation (SD) σ , rappresenta la dispersione degli individui dalla media, è un indicatore di variabilità della popolazione, per esempio in una popolazione finita di N individui:

$$\sigma = \sqrt{\sigma^2} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2}$$

- La deviazione standard σ è la radice della varianza della popolazione σ^2 .
- Lo standard error SE(h) di uno stimatore h per θ , è un indicatore della variabilità dello stimatore nello spazio dei parametri

$$SE(h) = \sqrt{V(h)}$$

- Lo standard error SE(h) di uno stimatore h per θ , è la radice della varianza della VC h.
- La standard deviation stimata $\hat{\sigma}$, rappresenta la dispersione degli individui del campione dalla media del campione, è un indicatore di variabilità del campione:

$$\hat{\sigma} = \sqrt{\hat{\sigma}^2} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \hat{\mu})^2}$$

- La deviazione standard stimata $\hat{\sigma}$ è la radice della varianza del campione $\hat{\sigma}^2$.
- 138. Definire la funzione di verosimiglianza in generale
 - Siano $x_1,...,x_n$ n osservazioni di $X\sim \mathcal{L}(\theta),\,\theta\in\Theta,$ si definisce la verosimiglianza L di θ la funzione:

$$L(\theta; x_1, ..., x_n) = L(\theta) \propto P(X_1 = x_1, ..., X_n = x_n; \theta)$$

• Se $x_1,..,x_n$ sono osservazioni IID otteniamo

$$L(\theta) \propto P(X_1 = x_1; \theta) \cdot \dots \cdot P(X_n = x_n; \theta)$$

 $\propto \prod_{i=1}^n f(x_i; \theta)$

- 139. Definire la funzione log-verosimiglianza in generale
- Si L la funzione di verosimiglianza per θ , si definisce $\ell(\theta)$ la log-verosimiglianza

$$\ell(\theta) = \log L(\theta)$$

- 140. Lo stimatore di massima verosimiglianza in generale
- Si L la funzione di verosimiglianza per $\theta,$ e $\ell(\theta)$ la log-verosimiglianza

Lo stimatore di massima verosimiglianza per θ , è quel valore $\hat{\theta}$ che rende massima la verosimiglianza:

$$\begin{array}{ll} \hat{\theta} & = & \mathop{\mathrm{argmax}}_{\theta \in \Theta} L(\theta) \\ & = & \mathop{\mathrm{argmax}}_{\theta \in \Theta} \ell(\theta) \end{array}$$

- 141. Scrivere la funzione di verosimiglianza per una Bernoulli, la sua log-verosimiglianza, individuare gli stimatori di massima verosimiglianza e le loro proprietà
 - La verosimiglianza è

$$L(\pi) \propto \prod_{i=1}^{n} \pi^{x_i} (1-\pi)^{1-x_i}$$

$$= \pi^{s_n} (1-\pi)^{n-s_n}, \qquad s_n = \sum_{i=1}^{n} x_i$$

142. Scrivere la funzione di verosimiglianza per una Bernoulli, la sua log-verosimiglianza, individuare gli stimatori di massima verosimiglianza e le loro proprietà

La log-verosimiglianza è

$$\ell(\pi) = \log L(\pi)$$

= $s_n \log \pi + (n - s_n) \log(1 - \pi)$

143. Individuare lo stimatore di massima verosimiglianza e le sue proprietà per una Bernoulli,

Lo stimatore di massima verosimiglianza

$$\hat{\pi} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

• $\hat{\pi}$ è corretto per π , infatti

$$E(\hat{\pi}) = E\left(\frac{1}{n}\sum_{i=1}^{n} X_i\right) = \frac{1}{n}\sum_{i=1}^{n} E(X_i) = \frac{\pi + \dots + \pi}{n} = \frac{n}{n}\pi = \pi$$

• Mean Squared Error:

$$MSE(\hat{\pi}) = V(\hat{\pi}) = \frac{\pi(1-\pi)}{n}$$

• Lo stimatore $\hat{\pi}$ per π è consistente

$$\lim_{n \to +\infty} MSE(\hat{\pi}) = \lim_{n \to +\infty} \frac{\pi(1-\pi)}{n} = 0$$

144. Possion: vedi Bernoulli

145. Normale: vedi Bernoulli

- 146. Siano $X_1, ..., X_n$ n VC IID, replicazioni di $X \sim \mathcal{L}(\theta)$ e sia $\hat{\theta}$ lo stimatore di massima verosimiglianza per θ , $\hat{\theta}$ è corretto?
 - $\hat{\theta}$ non è sempre stimatore corretto ma è sempre corretto as intoticamente:

$$E(\hat{\theta}) \xrightarrow{n \to \infty} \theta$$

- 147. Siano $X_1, ..., X_n$ n VC IID, replicazioni di $X \sim \mathcal{L}(\theta)$ e sia $\hat{\theta}$ lo stimatore di massima verosimiglianza per θ , $\hat{\theta}$ è a massima efficienza?
 - $\hat{\theta}$ non è sempre stimatore a massima efficienza ma lo è sempre asintoticamente:

$$V(\hat{\theta}) \xrightarrow{n \to \infty} I^{-1}(\theta)$$

- $-\ I^{-1}(\theta)$ è un risultato teorico ed un limite sotto al quale nessuno stimatore può scendere.
- Se esiste lo stimatore più efficiente allora è quello di massima verosimiglianza.
- 148. Siano $X_1, ..., X_n$ n VC IID, replicazioni di $X \sim \mathcal{L}(\theta)$ e sia $\hat{\theta}$ lo stimatore di massima verosimiglianza per θ , com'è distribuito $\hat{\theta}$?
 - $\hat{\theta}$ è asintoticamente distribuito normalmente

$$\hat{\theta} \sim N(\theta, I^{-1}(\theta))$$

- 149. Siano $X_1, ..., X_n$ n VC IID, replicazioni di $X \sim \mathcal{L}(\theta)$ e sia $\hat{\theta}$ lo stimatore di massima verosimiglianza per θ , cosa vuol dire che è invariante alle trasformazioni monotone invertibili g?
 - Lo stimatore di massima verosimiglianza è invariante alle trasformazioni monotone invertibili g: se $\psi = g(\theta)$, allora $\hat{\psi} = g(\hat{\theta})$.
- 150. Siano $X_1, ..., X_n$ n VC IID, replicazioni di $X \sim \mathcal{L}(\theta)$ e sia $\hat{\theta}$ lo stimatore di massima verosimiglianza per θ , qual è la proprietà di invarianza alle trasformazioni lineari?

151. Definire un intervallo di confidenza
• Un intervallo di confidenza per θ , al livello $(1-\alpha) \times 100\%$ è costruito su quella coppia di statistiche L_2 tali che
$P(L_1 < heta < L_2) = 1 - lpha$
• Un intervallo di confidenza per θ , al livello $(1-\alpha) \times 100\%$ è l'intervallo $[L_1, L_2]$ calcolato sui dati de campione.
152. Definire il livello di confidenza
Un intervallo di confidenza per θ , al livello $(1 - \alpha) \times 100\%$ è costruito in modo tale che l'intervallo copre i vero θ con probabilità $(1 - \alpha)$, quindi il livello di confidenza è la probabilità di coprire, nel long run, il vero parametro.
153. Cos'è un test statistico?
Un Test Statistico è la scelta tra due ipotesi diverse su θ alla luce dei dati che osserveremo:
$\begin{cases} H_0: \theta \in \Theta_0, & \Theta_0 \subset \Theta \\ H_1: \theta \in \Theta_1, & \Theta_1 \subset \Theta \end{cases}$
- Se $\Theta_0 = \{\theta_0\}$ è un solo punto si dice che H_0 è un'ipotesi semplice , altrimenti è composta - Se $\Theta_1 = \{\theta_1\}$ è un solo punto si dice che H_1 è un'ipotesi semplice , altrimenti è composta
154. Cos'è l'errore di primo tipo
È l'errore che si commette scegliendo H_1 quando è vera H_0
155. Cos'è l'errore di secondo tipo
È l'errore che si commette scegliendo ${\cal H}_0$ quando è vera ${\cal H}_1$
156. Definire la probabilità di significatività α
$\alpha = P(\text{Errore I tipo}) = P(\text{Decidere } H_1; H_0)$
α è il livello di significatività del test α è la probabilità di scegliere H_1 quando invece è vera H_0 (errore tipo)
157. Definire la probabilità di significatività di errore del secondo tipo
$\beta = P(\text{Errore II tipo}) = P(\text{Decidere } H_0; H_1)$
158. Definire la potenza di un test

• Lo stimatore di massima verosimiglianza è invariante alle trasformazioni monotone invertibili g: se $\psi = g(\theta)$, allora $\hat{\psi} = g(\hat{\theta})$.

$$1 - \beta = P(\text{Decidere } H_1; H_1)$$

 $1 - \beta$ è la potenza del test

 $1-\beta$ è la probabilità di scegliere H_1 quando H_1 è vera.

159. Definire la probabilità di significatività osservata p_{value}

La probabilità di significatività p_{value} è

$$p_{\text{value}} = P(|T| > |t_{\text{obs}}|; H_0)$$

La probabilità di significatività osservata p_{value} esprime la probabilità, se fosse vera H_0 , di trovare un campione ancora più in favore di H_1 di quello disponile

160. Se in un test chi-quadro sull'indipendenza tra due VC $p_{\text{value}} = 0.0341$, cosa possiamo concludere?

Il test è significativo al 5% ma non all'1%. C'è una buona evidenza campionaria che respinge H_0 (le due variabili non sono indipendenti) anche se non fortissima

- 161. Se in un test chi-quadro sull'indipendenza tra due VC $p_{\text{value}} = 0.00002871$, cosa possiamo concludere? Il test è significativo all'1% e oltre. C'è una fortissima evidenza campionaria che respinge H_0 (le due variabili non sono indipendenti).
- 162. Se in un test sull'uguaglianza tra due medie

$$\begin{cases} H_0: \mu_1 = \mu_2 \\ H_1: \mu_1 \neq \mu_2 \end{cases}$$

 $p_{\text{value}} = 0.00002871$, cosa possiamo concludere?

Il test è significativo all'1% e oltre. C'è una fortissima evidenza campionaria che respinge H_0 (le due due medie sono diverse).

REGRESSIONE

163. Scrivere l'assunto di base del modello di regressione

Dati $(x_1, y_1), ..., (x_n, y_n), n$ coppie di punti, si assume che

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i \quad \forall i$$

164. Elencare gli assunti sul valore atteso e la varianza dell'errore nel modello di regressione

Il valore atteso dell'errore è nullo

$$E(\varepsilon_i) = 0 \ \forall i$$

Omoschedasticità: la varianza dell'errore è costante

$$V(\varepsilon_i) = \sigma_{\varepsilon}^2,$$
 costante $\forall i$

165. In che relazione stanno gli errori tra di loro e rispetto alle x? Indipendenza dei residui

 ε_i è indipendente da $\varepsilon_j \ \forall i \neq j$

Indipendenza tra i residui e la X

 X_i è indipendente da $\varepsilon_i \ \forall i$

166. Cosa vuole dire che X è esogena?

Esogeneità della X: la distribuzione su X non è oggetto di inferenza

167. Come si assume si distribuiscano gli errori (o residui) del modello di regressione? Si assume la normalità dei residui

$$\varepsilon_i \sim N(0, \sigma_{\varepsilon}^2) \ \forall i$$

168. Come si assume si distribuiscano le Y del modello di regressione?

Si assume la normalità delle Y

$$Y_i \sim N(\beta_0 + \beta_1 x_i, \sigma_{\varepsilon}^2) \ \forall i$$

169. se la covarianza è positiva, che tipo di associazione mi aspetto tra X e Y se la covarianza è positiva allora c'è associazione lineare diretta tra X ed Y

170. se la covarianza è negativa, che tipo di associazione mi aspetto tra X e Y se la covarianza è positiva allora c'è associazione lineare inversa tra X ed Y

171. se la covarianza è prossima a zero, che tipo di associazione mi aspetto tra X e Y se la covarianza è prossima a zero, non c'è associazione lineare tra X ed Y

172. Cosa vuol dire che la covarianza è simmetrica^ Significa che

$$\mathrm{cov}(x,y) = \mathrm{cov}(y,x)$$

173. Qual è il campo di variazione della covarianza?

• Campo di variazione

$$-\hat{\sigma}_X\hat{\sigma}_Y \le \text{cov}(x,y) \le +\hat{\sigma}_X\hat{\sigma}_Y$$

174. Definire la previsione

• La previsione è

$$\hat{Y}_{(X=x)} = \hat{\beta}_0 + \hat{\beta}_1 x$$

175. Definire l'interpolazione e l'estrapolazione

in un modello di regressione stimato

$$\hat{y}_{(X=x)} = \hat{\beta}_0 + \hat{\beta}_1 x$$

- Se $\min\{x\} \le x \le \max\{x\}$ si parla di interpolazione.
- Se $x < \min\{x\}$ oppure $x > \max\{x\}$ si parla di estrapolazione.
- 176. In che modo la scelta di x incide sull'errore di previsione
 - L'errore di previsione cresce al crescere di $(x \bar{x})^2$.
- 177. Definire le previsioni osservate e i residui osservati
 - Le previsioni, sulle x osservate

$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$$

• Le stime degli errori

$$\hat{\varepsilon}_i = y_i - \hat{y}_i$$

178. Sia dato in modello di regressione stimato

$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$$

quanto vale

$$\hat{\beta}_0 + \hat{\beta}_1 \bar{x}$$
?

 $\bar{y}=\hat{\beta}_0+\hat{\beta}_1\bar{x},$ la retta passa nel punto delle medie

179. Sia dato in modello di regressione stimato

$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$$

qual è la media degli \hat{y}_i ?

$$\bar{y} = \frac{1}{n} \sum_{i=1}^{n} \hat{y}_{i}$$
, la media delle previsioni coincide con quella degli y

180. Siano dati i residui stimati di un modello di regressione

$$\hat{\varepsilon}_i = y - \hat{y}_i$$

quanto vale

$$\sum_{i=1}^{n} \varepsilon_i ?$$

 $0 = \frac{1}{n} \sum_{i=1}^{n} \hat{\varepsilon}_{i}, \quad \text{la media dei residui osservati è zero}$

181. Qual è il campo di variazione del coefficiente di correlazione? il coefficiente di correlazione r varia tra meno uno e uno

$$-1 \le r \le 1$$

- 182. Il coefficiente di correlazione può essere minore di zero?
- Sì, il coefficiente di correlazione r varia tra meno uno e uno

$$-1 \le r \le 1$$

- 183. Il coefficiente di correlazione può essere maggiore di zero?
- Sì, il coefficiente di correlazione r varia tra meno uno e uno

$$-1 \le r \le 1$$

- 184. Il coefficiente di correlazione può essere maggiore uguale a zero?
- Sì, il coefficiente di correlazione r varia tra meno uno e uno

$$-1 \le r \le 1$$

- 185. Il coefficiente di correlazione può essere maggiore di uno?
- No, il coefficiente di correlazione r varia tra meno uno e uno

$$-1 \le r \le 1$$

- 186. stesse domande su segno e associazione e simmetria della covarianza
- 187. cosa vuol dire che r è è invariante per cambiamenti di scala?
- Significa che:

se
$$W = a + bY$$
, allora $r_{X,W} = \text{sign}(b)r_{XY}$, dove la funzione $\text{sign}(b) = \begin{cases} +1, & \text{se } b > 0 \\ -1, & \text{se } b < 0 \end{cases}$

188. cosa misura r?

r misura l'associazione lineare: - r misura come i punti si addensano intorno alla retta. - f(x) non lineare r è parzialmente inutile - il valore di r, da solo, non è in grado di descrivere tutte le possibili relazioni che si possono realizzare tra due variabili.

- 189. cosa succede se r viene misurato se i dati sono aggregati in medie o percentuali??
- r è più elevato se i dati sono aggregati in medie o percentuali

- 190. Riportare la scomposizione della varianza in un modello di regressione
 - \bullet variabilità totale di y è scomponibile nella somma di due parti

$$\sum_{i=1}^{n} (y_i - \bar{y})^2 = \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2 + \sum_{i=1}^{n} \hat{\varepsilon}_i^2$$

$$TSS = ESS + RSS$$

- TSS Total Sum of Squares
- ESS Explained Sum of Squares
- RSS Residual Sum of Squares
- 191. Interpretare la scomposizione della varianza in un modello di regressione
 - ullet La variabilità totale di y è scomponibile nella somma di due parti

$$\left\{\begin{array}{c} \text{varibilità di } y \\ \text{intorno alla sua media} \end{array}\right\} = \left\{\begin{array}{c} \text{varibilità della retta} \\ \text{intorno alla media} \end{array}\right\} + \left\{\begin{array}{c} \text{varibilità delle } y \\ \text{intorno alla retta} \end{array}\right\}$$

- 192. Definire il coefficiente di determinazione lineare R^2
 - l'indice di determinazione lineare è il quadrato dell'indice di correlazione

$$R^2 = \left(\frac{ESS}{TSS}\right) = r^2 = \left(\frac{\text{cov}(x,y)}{\hat{\sigma}_x \hat{\sigma}_y}\right)^2$$

193. Interpretare il coefficiente di determinazione lineare \mathbb{R}^2

 R^2 rappresenta la quota di varianza spiegata dal modello

$$0 < R^2 < 1$$

- Se $\mathbb{R}^2=1$, allora r=-1 oppure r=+1, associazione lineare perfetta, 100% della variabilità spiegata
- $-\operatorname{Se} R^2 = 0$, allora r = 0 associazione lineare nulla, 0% della variabilità spiegata
- Se $R^2 > 0.75$, allora considereremo l'associazione lineare soddisfacente.
- 194. Gli stimatori dei minimi quadrati sono corretti?
- Sì, in base al Teorema di Gauss-Markov, gli stimatori dei minimi quadrati sono corretti

$$E(\hat{\beta}_1) = \beta_1, \qquad E(\hat{\beta}_0) = \beta_0$$

195. Cosa vuol dire che gli stimatori dei minimi quadrati sono BLUE?

Significa che gli stimatori $\hat{\beta}_0$ e $\hat{\beta}_1$ di β_0 e β_1 sono, tra tutti gli stimatori lineari corretti per β_0 e β_1 , BLUE ($Best\ Linear\ Unbiased\ Estimators\ Best: i più efficienti; Unbiased: corretti; Linear\ Estimators: stimatori lineari).$

- 196. Cos'è l'analisi dei residui
 - La **analisi dei residui** è una serie di procedure diagnostiche per controllare che gli assunti del modello di regressione siano rispettati.

- Le procedure consistono nel produrre statistiche e grafici sui residui osservati $\hat{\varepsilon}_i.$

197. Definire il diagramma dei residui e la retta dei residui

- il diagramma dei residui consiste nel mettere in ordinata le x_i e in ascissa i residui $\hat{\varepsilon}_i$

198. Definire la retta dei residui

• la **retta dei residui**, che è la retta di regressione tra x e $\hat{\varepsilon}$ è parallela all'asse delle x e coincide con esso.

199. Definire il Normal QQ plot

• Si tratta di un grafico che mette sull'asse delle x i *quantile* (percentili in inglese) teorici della normale e in ordinata i *quantile* osservati dei residui sul campione.

200. Come si interpreta il Normal QQ plot?

• Se, in un QQ plot, i percentili teorici e quelli osservatati giacciono su una retta, allora gli errori si possono assumere normali, tanto più i punti si allontanano tanto più l'ipotesi è violata.

201. Definire i Punti di leva, Outliers e punti influenti

- Outlier: osservazione con residuo anomale (sulle y)
- Leverage: (punto di leva), valore anomalo (sulle x)
- Influence Points: (punti influenti) osservazioni con comportamento anomalo che influenzano notevolmente i risultati

202. Definire i residui Studentizzati

• I residui studentizzati sono dati da:

$$\tilde{\varepsilon}_i = \frac{\hat{\varepsilon}_i}{S_{\varepsilon}\sqrt{1 - h_i}} \sim t_{n-2}$$

203. Interpretare i residui Studentizzati

- Si preferiscono i residui studentizzati perché incorporano le leve e sono più confrontabili.
- Tanto più alto è $|\tilde{\varepsilon}_i|$ tanto più il punto i è influente

204. Si considerino i due modelli di regressione stimati

$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i, \qquad \hat{x}_i = \hat{\alpha}_0 + \hat{\alpha}_1 y_i$$

Dove si incrociano le due rette $y = \hat{\beta}_0 + \hat{\beta}_1 x$ e $x = \hat{\alpha}_0 + \hat{\alpha}_1 y$?

• Le due rette si incrociano nel luogo delle medie (\bar{x}, \bar{y})

$$\bar{y} = \hat{\beta}_0 + \hat{\beta}_1 \bar{x}
\bar{x} = \hat{\alpha}_0 + \hat{\alpha}_1 \bar{y}$$

205. Si considerino i due modelli di regressione stimati

$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i, \qquad \hat{x}_i = \hat{\alpha}_0 + \hat{\alpha}_1 y_i$$

Se

$$\bar{x} = 0$$
, e $\bar{y} = 0$

Dove si incrociano le due rette $y = \hat{\beta}_0 + \hat{\beta}_1 x$ e $x = \hat{\alpha}_0 + \hat{\alpha}_1 y$?

- Le due rette si incrociano nel luogo delle medie (0,0)

$$0 = 0 + \hat{\beta}_1 0$$

$$0 = 0 + \hat{\alpha}_1 0$$

206. Si considerino i due modelli di regressione stimati

$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i, \qquad \hat{x}_i = \hat{\alpha}_0 + \hat{\alpha}_1 y_i$$

Se x e y sono standardizzate, quanto valgono $\hat{\alpha}_0,\hat{\alpha}_1,\hat{\beta}_0,\hat{\beta}_1$? se x e y sono standardizzate allora

$$\hat{\alpha}_0 = \hat{\beta}_0 = 0$$

 \mathbf{e}

$$\hat{\alpha}_1 = \hat{\beta}_1 = r$$