Lecture #3 Recursion (1)

Algorithm
JBNU
Jinhong Jung

In This Lecture

- □ Concept of recursion
 - What is recursion? Why do we need recursion?

- ☐ How to design and analyze recursion
 - Design by divide and conqure
 - Correctness analysis by mathematical induction

- ☐ Recursive complexity
 - How is T(n) of a recursive algorithm represented?

Outline

- □ Recursion
- ☐ How to Design Recursion
- ☐ Correctness Analysis of Recursion
- ☐ Recursive Complexity

Recursion

□ We say "Something is recursive" when it is defined in terms of itself

Recursion In Math & CS

- ☐ Recurrence relation in Mathematics
 - Equation that is recursively defined by itself
- ☐ Recursive function in CS
 - Function that is recursively defined by itself

$$a_n = \begin{cases} n \times a_{n-1}, & n > 1 \\ 1, & n = 1 \end{cases}$$

```
def f(n):
    if n == 1:
        return 1
    else:
        return n * f(n - 1)
```

Recurrence relation

Recursive function

They are the same intrinsically under the concept of recursion

Why Do We Need Recursion?

■ Numerous operations are compactly represented in just a few words (i.e., it improves readability!)

$$n! = \begin{cases} 1 & n = 0 \text{ or } 1\\ n \times (n-1)! & n > 1 \end{cases}$$

Do not misunderstand!

- Not saying recursion is always proper for every problem
 - It's effective when your problem has a recursive property
- Not saying a recursive function is always computationally efficient and optimized

Definition of Recursive Function

☐ A function is recursive when it is defined by

- 1) Simple base case(s)
 - Terminating scenario that doesn't use recursion to produce an answer
 - If there is no base case, the function will run forever, incurring a stack overflow error

2) Recursive step

Rules that reduces all other cases towards the base by calling itself

```
def function(n):
   if n == 1: # base case (example)
      do something
   else: # recursive step
      do something with function(k)
      where k is reduced toward the base case
      (e.g., k = n-1, n/2, etc.)
```

Example: Factorial

- □ Factorial: $n! = 1 \times 2 \times \cdots \times (n-1) \times n$
- \square Recurrence relation of n!

$$n! = egin{cases} 1 & n = 0 \text{ or } 1 & \text{Base case} \\ n imes (n-1)! & n > 1 & \text{Recursion step} \end{cases}$$

 \square Recursive function of n!

```
def factorial(n):
   if n == 0 or n == 1:
      return 1
   else:
      return n * factorial(n-1)
```

Example: Binomial Coefficient

 \square Binomial coefficient of n & k (where $0 \le k \le n$)

$$_{n}\boldsymbol{c}_{k}=\binom{n}{k}=\frac{n!}{k!(n-k)!}$$

□ Recurrence relation

$$\binom{n}{k} = \begin{cases} 1 & k = 0 \text{ or } k = n \\ \binom{n-1}{k-1} + \binom{n-1}{k} & 1 \le k \le n-1 \end{cases}$$

$$k = 0 \text{ or } k = n$$

$$\binom{n}{2} = \begin{cases} \binom{n-1}{2} + \binom{n-1}{k} & 1 \le k \le n-1 \end{cases}$$

☐ Recursive function

```
def bin-coeff(n, k):
   if k == 0 or k == n: return 1
   else: return bin-coeff(n-1, k-1) + bin-coeff(n-1, k)
```

Outline

- □ Recursion
- ☐ How to Design Recursion
- ☐ Correctness Analysis of Recursion
- ☐ Recursive Complexity

How To Design Recursion? (1)

- ☐ Problem: Exponentiation (or power)
 - Input: base number a and exponent n
 - Output: *a*ⁿ
- ☐ Let's design the problem in a recursive way!
 - One strategy is Divide & Conquer
 - Divide the problem into several (smaller) sub-problems
 - Conquer them separately
 - Aggregate the answers of the sub-problems if necessary

$$a^{n} = \underbrace{a \times a \times \cdots \times a \times a}_{n-1} = \underbrace{a^{n-1} \times a^{1}}_{1}$$

How To Design Recursion? (2)

☐ Let's define the recurrence relation for the problem

```
power(a, n) a^1 = power(a, 1)
a^n = \underbrace{a \times a \times \cdots \times a \times a}_{a^{n-1} = power(a, n-1)}
```

- Assume that a function called power (a, n) computes a^n
 - Base case: return 1 if n = 0
 - Recursive step: return power $(a, n-1) \times a$ if n > 0

```
def power(a, n):
   if n == 0: return 1
   else: return power(a, n-1) * a
```

Outline

- ☐ Recursion
- ☐ How to Design Recursion
- □ Correctness Analysis of Recursion
- ☐ Recursive Complexity

How To Prove Its Correctness?

- ☐ Prove the correctness using Mathematical Induction
- ☐ Main idea of mathematical induction
 - If the previous domino falls, show the next domino also falls!
 - All remaining dominoes are expected to be fallen when the above is revealed!

Do not misunderstand!

- Mathematical induction is not inductive reasoning.
 - It is rather deductive reasoning!

Mathematical Induction

- \square Claim. S_n holds for every natural number n.
- ☐ 1) Base case(s)
 - Prove that S_n holds when n is base case(s).
- □ 2) Inductive step
 - Previous case: Assume that S_k is true for n = k.
 - Next case: Does S_{k+1} also hold for n = k + 1?
 - \circ Prove it also holds for k+1 based on the assumption at k.
 - The increment does not need to be 1.
 - Any increment such as +2 and $\times 2$ is possible (it depends on problems).
- \square Then, say " S_n holds for every n by induction!"

Example: Power (1)

 $\square S_n$: power(a, n) correctly computes a^n for all $n \in \mathbb{N}_0$.

```
def power(a, n):
    if n == 0:         return 1
    else:         return power(a, n-1) * a
```

☐ Proof by induction

- 1) Base case
 - The base case is n = 0, and in this case, power(a, n) always returns 1.
 - That is, $a^0 = 1$ is obviously true for any a.
 - \circ Thus, S_0 is true for the base case!

Example: Power (2)

 $\square S_n$: power(a, n) correctly computes a^n for all $n \in \mathbb{N}$.

```
def power(a, n):
    if n == 0:         return 1
    else:         return power(a, n-1) * a
```

☐ Proof by induction

- 2) Inductive step
 - Previous case: assume the claim holds for k (i.e., assume S_k is true).
 - Next case: does S_{k+1} also hold?

 \circ Thus, S_n holds for every n by induction!

Example: Inequality

- $\square S_n: 2^n > n+4 \text{ for } n \geq 3.$
 - Base case: n = 3 and $2^3 = 8 > 3 + 4 = 7$; thus, it holds.
 - Inductive step
 - Previous case: assume S_k holds for n = k (where k > 3).

$$S_k: 2^k > k+4$$
 is true (assumed)

• Next case: Dose S_{k+1} also hold?

$$S_{k+1}: 2^{k+1} > k+5 \Leftrightarrow 2 \times 2^k - k - 5 > 0 \iff \text{Is it really true?}$$

$$2 \times 2^k - k - 5 > 2 \times (k+4) - k - 5 = k+3 > 0 \iff (\because k > 3)$$

• Thus, S_n holds for $n \ge 3$ by induction!

Strong Induction

- ☐ We use strong induction when
 - It is hard to specify a previous case (e.g., not k), or
 - Multiple previous cases are needed for proving.
- \square Claim. S_n holds for every $n \ge a$.

b = # of base cases

- \square 1) Base case: Prove S_a , S_{a+1} , ..., S_{a+b} holds.
- □ 2) Inductive step
 - Previous case: Assume that all S_i hold for $a \le i \le k$
 - Next case: Does S_{k+1} also hold?
 - Prove the claim using one or more assumptions S_i in the range (that's why it's called strong)

Example: Strong Induction

 $\square S_n : a_n = a_{n-2} + 2a_{n-1}$ is odd for every $n \ge 1$ given $a_1 = 1$ and $a_2 = 3$.

☐ 1) Base cases

• S_1 and S_2 are trivially true because a_1 and a_2 are odd.

□ 2) Inductive step

- Previous: Assume S_i holds, i.e., a_i are odd for $1 \le i \le k$
- Next: is S_{k+1} also true? \Rightarrow is $a_{k+1} = a_{k-1} + 2a_k$ odd?
 - Use two assumptions on S_{k-1} and S_k .
 - The sum of odd and even leads to odd, implying a_{k+1} is odd too!
- \square By induction, a_n is odd for $n \ge 1$ [Q.E.D]

Outline

- ☐ Recursion
- ☐ How to Design Recursion
- ☐ Correctness Analysis of Recursion
- ☐ Recursive Complexity

Complexity of Recursive Function

☐ What is the time complexity of the below algorithm?

```
def power(a, n):
    if n == 0:
        return 1
    else:
        return power(a, n-1) * a
```

- T(n) of the recursive algorithm is also described recursively.
- We need to solve the recurrence relation of T(n) to obtain its closed solution.

Example: Power (1)

- \square Let T(n) denote the time complexity of power(a, n)
 - Base case: T(n) = C because it just returns $1 \in O(1)$ time
 - Recursive step: T(n) = T(n-1) + C
 - \circ 1) It recursively calls power(a, n-1) which requires T(n-1) time
 - \circ 2) After then, the result is multiplied by a requiring O(1) time

```
def power(a, n):
    if n == 0:
        return 1
    else:
        return power(a, n-1) * a
```

$$T(n) = \begin{cases} C & n = 0 \\ T(n-1) + C & n > 0 \end{cases}$$

Q. What is its closed solution?

Example: Power (2)

If n is even:

☐ Let's divide the problem as follows:

If
$$n$$
 is odd: $a^n = a \times (a \times a) \times (a \times a) \times \cdots \times (a \times a) = a \times (a^2)^{\frac{n-1}{2}}$

def power(a, n):
 if $n == 0$:
 return 1
 else if n is even:
 return power(a * a, n/2)
 else:
 return a * power(a * a, (n-1)/2)

Q. What is its closed solution?

 $a^n = (a \times a) \times (a \times a) \times \cdots \times (a \times a) = (a^2)^{\frac{n}{2}}$

What You Need To Know

☐ Concept of recursion

Something is recursive when it is defined in terms of itself

☐ How to design and analyze recursion

- Divide & conquer: Divide the problem, conquer its subproblems, and aggregate their answers
- Mathematical induction: if the previous domino falls, show the next domino also falls!

□ Recursive complexity

■ The time complexiy T(n) of a recursive algorithm is also recursive. \Rightarrow How to solve it?

In Next Lecture

- ☐ How to obtain the closed solution of a recursive time complexity?
 - Method 1) Subsitute method
 - Method 2) Mathematical induction
 - Method 3) Master theorem

Thank You