

IoT Starter Kit – Part 3a: How to connect to Amazon Web Services

IoT Starter Kit is designed in the way to be connectable to different clouds via bidirectional MQTT channel. So, you can collect, store, process and visualize data in a cloud or you can send your commands to the IQRF network remotely. In this part, we will configure the UP board to communicate with the Amazon Web Services (AWS) through the MQTT channel.

Local network

Connect your UP board to your local network so it can obtain an IP address using DHCP. In the following steps, you will enter this address into your web browser and configure your gateway through the IQRF Daemon web application.

AWS account

First, create an Amazon Web Services account (<u>aws.amazon.com</u>). You have to fill in your personal or company data and add your credit card details. Your credit card will be used for payments in a case you exceed limits of the selected services.

Setup the connection to AWS

In Services, in the Internet of Things section, find AWS IoT.

Click on **Get started** in the **Onboard** section. You will register your device, download the connection kit, and configure and test the connection with your device.

Set up how you will be connected to the AWS IoT. Select the **Linux** operating system and **Node.js** as the AWS IoT Device SDK.

Enter the name of your connected device.

Download the connection kit to get a certificate and keys for a secure MQTT connection.

Save and unzip this file. Store the certificate and the keys for further use.

After saving process go to the documentation.

Here, look up the **Download root CA** string. Search in the **Entire site** to be sure to find it.

In the search results, find the article **Using the AWS IoT Embedded C SDK**. The number of records in a search result can exceed the page limit so you need to go through more pages.

Here you can find the root certificate.

Copy the string to a text file and save it as **rootCA.pem** to the directory with other certificates.

Note: You can choose your own name but in later steps, you need to use the given name.

Next, click Done.

In the **Settings**, note the name of your **endpoint** because you will need it for the UP board configuration.

Files **rootCA.pem** (root certificate), **IQRF_Gateway.private.key** (private key file), and **IQRF_Gateway.cert.pem** (certificate file) should be already unzipped. We will transfer them to the UP board through the IQRF Gateway Daemon web application.

Go to the IQRF Gateway Daemon web application and in the Clouds menu click on the Amazon AWS item.

Enter the name of the **Endpoint** (find it in Settings of your AWS IoT). Select **rootCA.pem** as a Root CA certificate, **IQRF_Gateway.cert.pem** as a Certificate and **IQRF_Gateway.private.key** as a Private key file. Save the configuration.

Note: If you named your virtual device in AWS with another name, names of files contain this name instead of IQRF_Gateway.

Inspect the new MQTT interface.

Address of the **endpoint** goes after the **SSL** protocol and at the end of Broker address is the port number **8883**. **Iqrf/DpaRequest** is set as the topic for commands, and **Iqrf/DpaResponse** is set as the topic for responses.

There are the **timeout**, the **minimum**, and **maximum** connections set, and the path to the uploaded files that set up a secure connection between the gateway and the cloud. Check the **Enable server certificate authentication** item.

Restart IQRF Gateway Daemon. After restarting, check the status of the UP board if the selected services are running.

Test the connection

In the web browser, click **Test**. Enter the **Iqrf/DpaResponse** to the Response topic to retrieve the gateway responses and click on **Subscribe to topic**.

To send commands from the cloud to the gateway, set the **lqrf/DpaRequest** as the topic for requests. Gateway will expect commands in this topic.

Insert a DPA packet in the JSON format into the text box and click on **Publish to topic**. In our example, we sent a command to turn on the red LED on the coordinator.

```
{
"ctype": "dpa",
"type": "raw",
"msgid": "1510754980",
"request": "00.00.06.01.FF.FF",
"request_ts": "",
"confirmation": "",
"confirmation_ts": "",
"response": "",
"response_ts": ""
}
```


We can see that the gateway picked up and executed the command, and sent a confirmation with "No Error" into the **Iqrf/DpaResponse** topic.

We can visually double check the result of this command. The red LED turned on.

Summary

The bidirectional communication between IQRF network and the Amazon Web Services is up and running. Now it's just up to you to use it for your own IoT solution.