

	1	Instructions: RV32			RV Privileged					
Category Name	Fmt	RV32I Base	+RV64I		Category Name	Fmt	RV mnemonic			
Shifts Shift Left Logical	R	SLL rd,rs1,rs2	SLLW rd,rs1,rs2		Trap Mach-mode trap return	R	MRET			
Shift Left Log. Imm.	I	SLLI rd, rs1, shamt	SLLIW rd,rs1,sha	mt	Supervisor-mode trap return	R	SRET			
Shift Right Logical	R	SRL rd,rs1,rs2	SRLW rd,rs1,rs2		Interrupt Wait for Interrupt	R	WFI			
Shift Right Log. Imm.	I	SRLI rd,rs1,shamt	SRLIW rd,rs1,sha	mt.	MMU Virtual Memory FENCE	R	SFENCE.VMA rs1,rs2			
Shift Right Arithmetic	R	SRA rd,rs1,rs2	SRAW rd,rs1,rs2		Evamples of the 60 B	RV Pseudoinstructions				
_				1						
Shift Right Arith. Imm.	I	SRAI rd,rs1,shamt	SRAIW rd,rs1,sha	mt	Branch = 0 (BEQ rs, x0, imm)	J	BEQZ rs,imm			
Arithmetic ADD	R	ADD rd,rs1,rs2	ADDW rd,rs1,rs2		Jump (uses JAL x0,imm)	J	J imm			
ADD Immediate	I	ADDI rd,rs1,imm	ADDIW rd,rs1,imm		MoVe (uses ADDI rd,rs,0)	R	MV rd,rs			
SUBtract	R	SUB rd,rs1,rs2	SUBW rd,rs1,rs2		RETurn (uses JALR x0,0,ra)	I RET				
Load Upper Imm	U	LUI rd,imm	•		sed (16-bit) Instruction					
Add Upper Imm to PC	U	AUIPC rd,imm	Category Name	Fmt	RVC		RISC-V equivalent			
Logical XOR	R	XOR rd,rs1,rs2	Loads Load Word	I CL	C.LW rd',rs1',imm	LW	rd',rs1',imm*4			
XOR Immediate	I	XORI rd,rs1,imm	Load Word S	P CI	C.LWSP rd,imm	LW	rd,sp,imm*4			
OR	R	OR rd,rs1,rs2	Float Load Word S	P CL	C.FLW rd',rs1',imm	FLW	rd',rs1',imm*8			
OR Immediate	I	ORI rd,rs1,imm	Float Load Wor	d CI	C.FLWSP rd,imm	FLW	rd,sp,imm*8			
AND	R	AND rd,rs1,rs2	Float Load Doubl		C.FLD rd',rs1',imm	FLD	rd',rs1',imm*16			
AND Immediate	I	ANDI rd,rs1,imm	Float Load Double S		C.FLDSP rd,imm	FLD	rd,sp,imm*16			
Compare Set <	R	SLT rd,rs1,rs2	Stores Store Word		C.SW rs1',rs2',imm	SW	rs1',rs2',imm*4			
Set < Immediate	I	SLTI rd,rs1,imm	Store Word S		C.SWSP rs2,imm	SW	rs2,sp,imm*4			
	R				•	FSW				
Set < Unsigned		SLTU rd,rs1,rs2	Float Store Word S		C.FSW rs1',rs2',imm		rs1',rs2',imm*8			
Set < Imm Unsigned	I	SLTIU rd,rs1,imm	Float Store Word S		C.FSWSP rs2,imm	FSW	rs2,sp,imm*8			
Branches Branch =	В	BEQ rs1,rs2,imm	Float Store Doubl	e CS	C.FSD rs1',rs2',imm	FSD	rs1',rs2',imm*16			
Branch ≠	В	BNE rs1,rs2,imm	Float Store Double S	P CSS	C.FSDSP rs2,imm	FSD	rs2,sp,imm*16			
Branch <	В	BLT rs1,rs2,imm	Arithmetic ADI	CR	C.ADD rd,rs1	ADD	rd,rd,rs1			
Branch ≥	В	BGE rs1,rs2,imm	ADD Immediat	e CI	C.ADDI rd,imm	ADDI	rd,rd,imm			
Branch < Unsigned	В	BLTU rs1,rs2,imm	ADD SP Imm * 1	6 CI	C.ADDI16SP x0,imm	ADDI	sp,sp,imm*16			
Branch ≥ Unsigned	В	BGEU rs1,rs2,imm	ADD SP Imm *		C.ADDI4SPN rd',imm	ADDI	rd',sp,imm*4			
Jump & Link J&L	J	JAL rd,imm	SU	I	C.SUB rd,rs1	SUB	rd,rd,rs1			
Jump & Link Register	Ī	JALR rd,rs1,imm	ANI		C.AND rd,rs1	AND	rd,rd,rs1			
	I	FENCE			C.ANDI rd,imm	ANDI	rd,rd,imm			
Synch Synch thread			AND Immediat							
Synch Instr & Data	I	FENCE.I	0	_	C.OR rd,rs1	OR	rd,rd,rs1			
Environment CALL	I	ECALL	eXclusive O		C.XOR rd,rs1	AND	rd,rd,rs1			
BREAK	I	EBREAK	MoV		C.MV rd,rs1	ADD	rd,rs1,x0			
			Load Immediat	e CI	C.LI rd, imm	ADDI	rd,x0,imm			
Control Status Regis	ster (CSR)	Load Upper Imr		C.LUI rd,imm	LUI	rd,imm			
Read/Write	I	CSRRW rd,csr,rs1	Shifts Shift Left Imn	n CI	C.SLLI rd, imm	SLLI	rd,rd,imm			
Read & Set Bit	I	CSRRS rd,csr,rs1	Shift Right Ari. Imm	. CI	C.SRAI rd,imm	SRAI	rd,rd,imm			
Read & Clear Bit	I	CSRRC rd,csr,rs1	Shift Right Log. Imm	. CI	C.SRLI rd,imm	SRLI	rd,rd,imm			
Read/Write Imm	I	CSRRWI rd,csr,imm	Branches Branch=		C.BEQZ rs1',imm	BEO	rs1',x0,imm			
Read & Set Bit Imm	Ī	CSRRSI rd,csr,imm	Branch≠		C.BNEZ rs1',imm	BNE	rs1',x0,imm			
Read & Clear Bit Imm	Ī	CSRRCI rd,csr,imm	Jump Jump		C.J imm	JAL	x0,imm			
Acad & Clear Dit IIIIII		COMMOT TO, COT, THUN	Jump Registe				•			
			Jump & Link J&I		C.JR rd,rs1	JALR	x0,rs1,0			
Loade Load Ditta	т	TD and and imm	<u> </u>		C.JAL imm	JAL	ra,imm			
Loads Load Byte	I	LB rd,rs1,imm	Jump & Link Registe	_	C.JALR rs1	JALR	ra,rs1,0			
Load Halfword	I	LH rd,rs1,imm	System Env. BREA	< CI	C.EBREAK	EBREA	.K			
Load Byte Unsigned	I	LBU rd,rs1,imm	+RV64I		Optional Compresse	ed Ex	tention: RV64C			
Load Half Unsigned	I	LHU rd,rs1,imm	LWU rd,rs1,imm		All RV32C (except C.JAL, 4 wo					
Load Word	Ī	LW rd,rs1,imm	LD rd,rs1,imm		ADD Word (C.ADDW)		d Doubleword (C.LD)			
Stores Store Byte	1				` ′		Doubleword SP (C.LDSP)			
•	S	SB rs1,rs2,imm			` ′		` ,			
Store Halfword	S	SH rs1,rs2,imm			SUBtract Word (C.SUBW)	Sto	re Doubleword (C.SD)			
Store Word	S	SW rs1,rs2,imm	SD rs1,rs2,im	m		Store I	Doubleword SP (C.SDSP)			
	32-bit Instruction Formats 16-bit (RVC) Instruction Formats									
R 31 27 26 25	24	20 19 15 14 12	11 7 6	0	CP 15 14 13 12 11 10 9	8 7 6 5 4 3 2 1 0				
runcti	rs			ode	runct4 rd/r	s1	rs2 op			
I imm[11:0]		rs1 funct3		ode	ci funct3 imm rd/r	s1_	imm op			
s imm[11:5]	rs			ode	css funct3 imm		rs2 op			
B imm[12 10:5]	rs		imm[4:1 11] ope	ode	CIW funct3 imm	n	rd' op			
imm[31:12]			rd ope	ode	CL funct3 imm	rs1'	imm rd' op			
	[20 10:	1 11 19:12]	rd ope	ode	funct3 imm	rs1'	imm rs2' op			
J					funct3 offset	rs1'	offset op			
					CB funct3 ju	mp tar				
					CJ					

RV64I (x0=0). RV64I adds 12 instructions for the wider data. Every 16-bit RVC instruction maps to an existing 32-bit RISC-V instruction.

Reference Card

Ontid	onal	Mill	tinly-Divide 1	Instruction Ext	tension: DVI	M		Ontional	Vect	or Evter	nsion: RVV
		Fmt		instruction Ext iltiply-Divide)		n RV64M		Name	Fmt		/32V/R64V
	Ltiply	R	MUL	rd,rs1,rs2	MULW	rd,rs1	l.rs2	SET Vector Len.	R	SETVL	rd,rs1
MULtiply		R	MULH	rd,rs1,rs2	1102	14,15	-,-52	MULtiply High	R	VMULH	rd,rs1,rs2
MULtiply High Sign		R	MULHSU	rd,rs1,rs2				REMainder	R	VREM	rd,rs1,rs2
MULtiply High		R	MULHU	rd,rs1,rs2				Shift Left Log.	R	VSLL	rd,rs1,rs2
. , .	IVide	R	DIV	rd,rs1,rs2	DIVW	rd,rs1	1.rs2	Shift Right Log.	R	VSRL	rd,rs1,rs2
DIVide Unsi		R	DIVU	rd,rs1,rs2	J11111	14/151	1,152	Shift R. Arith.	R	VSRA	rd,rs1,rs2
Remainder REMa	_	R	REM	rd, rs1, rs2	REMW	rd,rs1	1.rs2	LoaD	I	VLD	rd,rs1,imm
REMainder Unsi		R	REMU	rd,rs1,rs2	REMUW	rd,rs1	-	LoaD Strided	R	VLDS	rd,rs1,rs2
					•	ru,rsi	I,ISZ	1	R	VLDS	rd,rs1,rs2
Optional Atomic Instruction Extension: RVA						LoaD indeXed			10,151,152		
•		Fmt		(Atomic)		RV64A		STore	S	VST	rd,rs1,imm
Load Load Rese		R	LR.W	rd,rs1	LR.D	rd,rs1		STore Strided	R	VSTS	rd,rs1,rs2
Store Store Condit		R	SC.W	rd,rs1,rs2	SC.D	rd,rs1		STore indeXed	R	VSTX	rd,rs1,rs2
· ·	SWAP	R	AMOSWAP.W	rd,rs1,rs2	AMOSWAP.D	rd,rs1		AMO ADD	R		rd,rs1,rs2
	ADD XOR	R R	AMOVOD W	rd,rs1,rs2	AMOADD.D AMOXOR.D	rd,rs1		AMO ADD AMO XOR	R R	AMOADD AMOXOR	rd,rs1,rs2
Logical	AND	R	AMOXOR.W AMOAND.W	rd,rs1,rs2	AMOAND.D	rd,rs1		AMO AND	R	AMOAND	rd,rs1,rs2 rd,rs1,rs2
	OR	R	AMOOR.W	rd,rs1,rs2 rd,rs1,rs2	AMOOR.D	rd,rs1		AMO OR	R	AMOOR	rd,rs1,rs2
Min/Max MINii		R	AMOOR.W AMOMIN.W	rd,rs1,rs2	AMOOK.D AMOMIN.D	rd,rs1		AMO MINimum	R	AMOOR	rd,rs1,rs2
MAXi		R	AMOMIN.W AMOMAX.W	rd,rs1,rs2	AMOMAX.D	rd,rs1		AMO MAXimum	R	AMOMIN	rd,rs1,rs2
MINimum Unsi		R	AMOMINU.W	rd,rs1,rs2	AMOMINU.D	rd,rs1	•	Predicate =	R	VPEQ	rd,rs1,rs2
MAXimum Unsi	-	R	AMOMAXU.W	rd,rs1,rs2	AMOMAXU.D	rd,rs1		Predicate ≠	R	VPNE	rd,rs1,rs2
				struction Exte			-,-52	Predicate <	R	VPLT	rd,rs1,rs2
		Fmt		(SP,DP Fl. Pt.)		64{F D}		Predicate ≥	R	VPGE	rd,rs1,rs2
Move Move from In		R	FMV.W.X	rd,rs1	FMV.D.X	rd,rs1	1	Predicate AND	R	VPAND	rd,rs1,rs2
Move to In	- 1	R	FMV.X.W	rd,rs1	FMV.X.D	rd,rs1		Pred. AND NOT	R	VPANDN	rd,rs1,rs2
Convert ConVerT from			FCVT.{S D}.W	rd,rs1	FCVT.{S D}.I			Predicate OR	R	VPOR	rd,rs1,rs2
ConVerT from Int Unsi		R	FCVT. {S D} .WU	J rd,rsl	FCVT. {S D}.I	LU rd,rs1	1	Predicate XOR	R	VPXOR	rd,rs1,rs2
ConVerT t	-	R	FCVT.W.{S D}	rd,rs1	FCVT.L.{S D}	rd,rs1	1	Predicate NOT	R	VPNOT	rd,rs1
ConVerT to Int Unsi			FCVT.WU.{S D}	rd,rs1	FCVT.LU.{S I) rd,rs1	1	Pred. SWAP	R	VPSWAP	rd,rs1
Load	Load	I	FL{W,D}	rd,rs1,imm	Calling (Conventi	ion	MOVe	R	VMOV	rd,rs1
Store	Store	S	FS{W,D}	rs1,rs2,imm	Register	ABI Name		ConVerT	R	VCVT	rd,rs1
Arithmetic	ADD	R	FADD. {S D}	rd,rs1,rs2	x0	zero		ADD	R	VADD	rd,rs1,rs2
SUB	Btract	R	$FSUB. \{S \mid D\}$	rd,rs1,rs2	x1	ra	Caller	SUBtract	R	VSUB	rd,rs1,rs2
MUI	Ltiply	R	FMUL. {S D}	rd,rs1,rs2	x2	sp	Callee	MULtiply	R	VMUL	rd,rs1,rs2
D:	IVide	R	FDIV. {S D}	rd,rs1,rs2	x3	gp		DIVide	R	VDIV	rd,rs1,rs2
SQuare		R	FSQRT. {S D}	rd,rs1	x4	tp		SQuare RooT	R	VSQRT	rd,rs1,rs2
Mul-Add Multiply			$FMADD.{S D}$	rd,rs1,rs2,rs3	x5-7	t0-2	Caller	Multiply-ADD	R	VFMADD	rd,rs1,rs2,rs3
Multiply-SUB			FMSUB. {S D}	rd,rs1,rs2,rs3		s0/fp	Callee	' '	R	VFMSUB	rd,rs1,rs2,rs3
Negative Multiply-SUB		R		rd,rs1,rs2,rs3		s1	Callee	_	R		rd,rs1,rs2,rs3
Negative Multiply- Sign Inject SiGN so				rd,rs1,rs2,rs3	11	a0-1	Caller	Neg. MulADD	R		rd,rs1,rs2,rs3
			FSGNJ.{S D}	rd,rs1,rs2	x12-17	a2-7	Caller			VSGNJ	rd,rs1,rs2
Negative SiGN so Xor SiGN so			FSGNJN.{S D} FSGNJX.{S D}		x18-27	s2-11		Neg SiGN inJect Xor SiGN inJect	R R	VSGNJN VSGNJX	rd,rs1,rs2
	imum		FMIN. {S D}	rd,rs1,rs2 rd,rs1,rs2	x28-31 f0-7	t3-t6 ft0-7	Caller	MINimum	R	VSGNJX VMIN	rd,rs1,rs2 rd,rs1,rs2
_			•								
MAXII		R	FMAX.{S D}	rd,rs1,rs2	f8-9	fs0-1	Callee		R	VMAX	rd,rs1,rs2
Compare compare Fl		R	FEQ. (S D)	rd,rs1,rs2	f10-11	fa0-1	Caller		R	VXOR	rd,rs1,rs2
compare Flo compare Flo		R R	FLT.{S D} FLE.{S D}	rd,rs1,rs2	f12-17	fa2-7 fs2-11	Caller Callee		R R	VOR VAND	rd,rs1,rs2
-				rd,rs1,rs2	f18-27						rd,rs1,rs2
Categorize CLASSify				rd,rs1	f28-31	ft8-11		CLASS	R	VCLASS	rd,rs1
Configure Read St		R	FRCSR	rd	zero	Hardwire		SET Data Conf.	R	VSETDCF	•
Read Rounding I		R	FRRM	rd	ra	Return a		EXTRACT	R		rd,rs1,rs2
Read I	Flags	R	FRFLAGS	rd	sp	Stack po		MERGE	R	VMERGE	rd,rs1,rs2
Swap Status	s Reg	R	FSCSR	rd,rs1	gp	Global po	ointer	SELECT	R	VSELECT	rd,rs1,rs2
Swap Rounding I	Mode	R	FSRM	rd,rs1	tp	Thread p	ointer				. <u></u>
Swap I	Flags	R	FSFLAGS	rd,rs1	t0-6,ft0-11	Tempora	ries				
Swap Rounding Mode	_	I	FSRMI	rd,imm	II .	Saved re					
Swap Rounding Flode Swap Flags		I	FSFLAGSI	rd,imm	a0-7,fa0-7	Function	-				
Swap i iays	¥1111111	1	TOTITIODI	T 0 1 THUM	au 1,1au-1	i unction	urys	Ц			

RISC-V calling convention and five optional extensions: 8 RV32M; 11 RV32A; 34 floating-point instructions each for 32- and 64-bit data (RV32F, RV32D); and 53 RV32V. Using regex notation, $\{\}$ means set, so FADD. $\{F \mid D\}$ is both FADD. F and FADD. D. RV32 $\{F \mid D\}$ adds registers f0-f31, whose width matches the widest precision, and a floating-point control and status register fcsr. RV32V adds vector registers v0-v31, vector predicate registers vp0-vp7, and vector length register v1. RV64 adds a few instructions: RVM gets 4, RVA 11, RVF 6, RVD 6, and RVV 0.