Дискретная математика: комбинаторика и вероятность

Мощность множества

Определение. Мощностью конечного множества A называется количество элементов в нем. Обозначение: |A|.

Пример 2.1. Среди математиков каждый седьмой – философ, а среди философов каждый девятый – математик. Кого больше: философов или математиков?

Правило суммы: если конечные множества A и B не пересекаются, то мощность их объединения равна сумме мощностей

$$|A \cup B| = |A| + |B|$$
, если $A \cap B = \emptyset$.

Если же пересечение A и B не пусто, то

$$|A \cup B| = |A| + |B| - |A \cap B|.$$

Пример 2.2. Найдем количество не превосходящих 100 натуральных чисел, делящихся на два или три.

Мотивировка определения вероятности

Пример 2.3. При броске кубика может выпасть одна из шести граней. Какова вероятность выпадения $\geqslant 5$ очков?

Пример 2.4. Подбросим монету дважды. Какова вероятность выпадения двух орлов?

Определение классической вероятности

Определение. Пространство элементарных исходов — множество Ω всех исходов случайного эксперимента.

Если все исходы имеют одинаковую вероятность, то такое Ω называется пространством с равновероятными элементарными исходами.

Определение. Всякое подмножество Ω называется событием.

Определение. Если Ω — пространством с равновероятными элементарными исходами, то вероятностью события A называется отношение $P(A)=\frac{|A|}{|\Omega|}$

Пример 2.5. При броске кубика $\Omega = \{1, 2, 3, 4, 5, 6\}.$

Событие A – «на кубике выпало $\geqslant 5$ очков», $A=\{5,6\},$ $P(A)=\frac{2}{6}=\frac{1}{3}.$

Два броска кубика

Пример 2.6. При двукратном броске монетки $\Omega = \{OO, OP, PO, PP\}.$

Событие
$$B$$
 – «выпало два орла», $B = \{OO\}, P(B) = \frac{1}{4}$.

Пример 2.7. Игральный кубик бросают дважды. Какова вероятность, что сумма очков за два броска будет равняться 7?

$$\Omega = \left\{ \begin{array}{llll} (1,1), & (1,2), & (1,3), & (1,4), & (1,5), & (1,6), \\ (2,1), & (2,2), & (2,3), & (2,4), & (2,5), & (2,6), \\ (3,1), & (3,2), & (3,3), & (3,4), & (3,5), & (3,6), \\ (4,1), & (4,2), & (4,3), & (4,4), & (4,5), & (4,6), \\ (5,1), & (5,2), & (5,3), & (5,4), & (5,5), & (5,6), \\ (6,1), & (6,2), & (6,3), & (6,4), & (6,5), & (6,6) \end{array} \right\}$$

Тогда таблица сумм выглядит так:

2	3	4	5	6	7
3	4	5	6	7	8
4	5	6	7	8	9
5	6	7	8	9	10
6	7	8	9	10	11
7	8	9	10	11	12

Два броска кубика

Пусть A — событие «сумма очков за два броска равняется 7».

Тогда
$$P(A) = \frac{|A|}{|\Omega|} = \frac{6}{36} = \boxed{\frac{1}{6}}.$$

Пример 2.8. Чему равняется $|\Omega|$ для 4 или 10 бросков кубика?

Правило произведения

Правило произведения: если объект первого типа можно выбрать n_1 способами, после чего второй объект можно выбрать n_2 способами и т.д. (k-ый объект можно выбрать n_k способами), то выбрать последовательно k объектов можно $n_1 \times n_2 \times \ldots \times n_k$ способами.

Пример 2.9. Найдём количество трехзначных чисел с помощью правила произведения.

Пример 2.10. Сколькими способами можно выбрать командира и его заместителя в отделении из 10 человек?

Определение. Количество способов выбрать упорядоченный набор k элементов из n-элементного множества называется числом размещений из n по k и обозначается

$$A_n^k = n(n-1)\dots(n-(k-1)) = \frac{n!}{(n-k)!}$$

Задача де Мере

Пример 2.11. Игральный кубик бросают четыре раза. Какова вероятность выпадения хотя бы одной шестерки?

$$|\Omega| = 6^4$$
.

Пусть A_6 – событие «хотя бы раз выпала шестерка» =a.

Рассмотрим $\neg a=$ «шестерка ни разу не выпала». Ему соответствует множество $\Omega \setminus A_6$.

Но «шестерка ни разу не выпала» = «выпадали только 1,2,3,4 или 5» \Longrightarrow по правилу произведения, $|\Omega\setminus A_6|=5^4$.

Тогда $|A_6| = |\Omega| - |\Omega \setminus A_6| = 6^4 - 5^4$ (правило суммы).

$$P(A_6) = \frac{|A_6|}{|\Omega|} = \frac{6^4 - 5^4}{6^4} = 1 - \left(\frac{5}{6}\right)^4 \approx \boxed{0,5177...}$$

Вероятность отрицания

Вероятность отрицания к событию: если A – некоторое событие, а $\bar{A}=\Omega\setminus A$ – отрицание к нему, то

$$P(A) = 1 - P(\bar{A})$$

Неравновероятные элементарные исходы

Не все ситуации можно описать равновероятной моделью.

Пусть $\Omega = \{\omega_1, \omega_2, \omega_3, \ldots\}$ — пространство элементарных исходов.

Сопоставим каждому элементарному событию ω_i его вероятность $P(\omega_i)=p_i$, $0\leqslant p_i\leqslant 1$ так, чтобы

$$p_1 + p_2 + p_3 + \ldots = 1.$$

Определение. P называется функцией вероятности.

Определение. Конечное вероятностное пространство — это пространство элементарных событий Ω вместе с функцией вероятности P на нём.

Определение. Вероятность события — сумма вероятностей всех его элементарных исходов.

Дерево событий

Пример 2.12. Для прохождения в следующий тур команде необходимо выиграть два раза подряд в серии из трёх игр.

Вероятность выиграть в первом матче равна $\frac{1}{2}$. Вероятность выигрыша после победы в предыдущем матче возрастает до $\frac{2}{3}$, а после поражения уменьшается до $\frac{1}{3}$.

Каковы шансы у команды пройти в следующий тур?

Когда задача состоит из цепочки событий, но элементарных исходов не так много, для решения удобно использовать **дерево событий**.

Дерево событий

Дерево событий задает Ω .

$$\Omega = \{\mathsf{BBB}, \mathsf{BB\Pi}, \mathsf{B\PiB}, \ldots\}.$$

Сумма всех вероятностей в последнем столбце равняется единице.

Пусть событие A — "команда прошла в следующий тур". Наша задача — найти P(A).

$$P(A) = \frac{2}{9} + \frac{1}{9} + \frac{1}{9} = \boxed{\frac{4}{9}}$$

Пример 2.13. Скольким способами можно из десяти сотрудников выбрать двух для выдачи им премии? А трех?

Определение. Количество способов выбрать k-элементное подмножество из n элементного множества называется числом сочетаний из n по k

$$\binom{n}{k} = C_n^k = \frac{n!}{k!(n-k)!}$$

Симметричная схема Бернулли

Пример 2.14. Вероятность выпадения ровно трех решек при подбрасывании симметричной монеты четыре раза равняется

$$P(X=3) = {4 \choose 3} \cdot \left(\frac{1}{2}\right)^4 = \boxed{\frac{1}{4}}.$$

Пример 2.15. Вероятность выпадения ровно 50 решек при подбрасывании симметричной монеты 100 раз равняется

$$P(X = 50) = {100 \choose 50} \cdot \left(\frac{1}{2}\right)^{100} \approx \boxed{0.0796...}$$

Наивероятнейшее число успехов

Проверим интуицию: чему равняется вероятность выпадения не более 25 решек при подбрасывании монеты 100 раз?

Варианты ответа: $P(X\leqslant 25)$

- больше $\frac{1}{2}$;
- меньше $\frac{1}{2}$, но больше $\frac{1}{10}$;
- меньше $\frac{1}{10}$, но больше $\frac{1}{100}$;
- меньше $\frac{1}{100}$, но больше $\frac{1}{1000}$;
- меньше $\frac{1}{1000}$, но больше $\frac{1}{1000000}$;
- меньше $\frac{1}{1000000}$.

Наивероятнейшее число успехов

Давайте посчитаем:

$$P(X \le 25) =$$

$$= P(X = 0) + P(X = 1) + \dots + P(X = 25) =$$

$$= {100 \choose 0} \left(\frac{1}{2}\right)^{100} + {100 \choose 1} \left(\frac{1}{2}\right)^{100} + \dots + {100 \choose 25} \left(\frac{1}{2}\right)^{100} \approx$$

$$\approx \boxed{2.818 \dots \times 10^{-7}} < \frac{1}{1000000}!$$

Определение. Схемой Бернулли называется последовательность из N независимых испытаний с двумя возможными исходами, которые обычно обозначают 1 и 0 («успех» и «неудача», или «орел» и «решка»). Причем $P(1)=p,\ P(0)=1-p.$

Пространство элементарных событий Ω состоит из всех возможных последовательностей 1 и 0 длины N.

$$\Omega = \{\omega = (\omega_1, \dots, \omega_N) \mid \omega_i = 0 \text{ или } 1, i = 1, \dots, N\}.$$

Вероятность исхода ω , в котором произошло k «успехов» и N-k «неудач» равняется $P(\omega)=p^k(1-p)^{N-k}.$

Случайная величина Дополнительный материал

Определение. (Дискретная) случайная величина — функция из множества Ω в \mathbb{R} .

Пример 2.16. Случайная величина X — количество успехов из N испытаний в схеме Бернулли.

Чему равняется P(X = k)?

Значению X=k соответствует событие A_k , состоящее из всех с исходов k успехами.

Вероятность каждого исхода A_k равняется $p^k(1-p)^{N-k}$.

Всего исходов ровно с k успехами C_N^k (количество способов выбрать места для k единичек).

Тогда

$$P(X = k) = P(A_k) = C_N^k \cdot p^k (1 - p)^{N-k}$$

- 2.1 Есть 3 гвоздики, 4 розы и 5 тюльпанов.
- a) Сколькими способами можно составить букет из цветов одного вида?
- 6) Сколькими способами из них можно составить букет, в котором нечетное количество цветов каждого вида?
- в) Сколькими способами можно составить букет, используя любые из имеющихся цветов?
- (Цветы одного сорта считаем одинаковыми, количество цветов в букете не ограничено, но не равно 0.)
- [2.2] На плоскости отмечено 10 точек так, что никакие три из них не лежат на одной прямой. Сколько существует треугольников с вершинами в этих точках?

- 2.3 Найдите вероятность события «при броске двух кубиков выпало не менее 8 очков».
- 2.4 Найдите вероятность события «при бросании 6 монет выпало хотя бы 3 орла».
- [2.5] Найдите вероятность того, что в случайном 4-буквенном слове в русском алфавите, есть хотя бы одна гласная? (Всего 33 буквы, 10 из них гласные.)

- 2.6 В коробке лежит 6 белых и 6 черных шаров. Из нее по очереди достают три шара.
- а) Какова вероятность вынуть ровно 1 черный шар?
- б) А хотя бы по одному черному и белому?
- **2.7** Готовясь к экзамену, студент должен подготовить ответы на две серии вопросов по 10 вопросов в каждой. Он знает ответы на 9 вопросов первой серии и на 8 из второй. Надо ответить на три вопроса, два из которых выбираются экзаменатором из первой серии, а третий из второй. Найти вероятность, что студент ответит на все три вопроса.

Дополнительный материал

2.8* Работу портала онлайн магазина поддерживают 10 серверов. В день акции нагрузка на сервера будет пиковой, и прогнозируется, что каждый сервер может выйти из строя с вероятностью 1/5. При этом нагрузка на оставшиеся сервера остается пиковой, и вероятность их выхода из строя не повышается. Какова вероятность, что после акции хотя бы два сервера останутся в строю?

Парадокс Монти Холла

Дополнительный материал

Перед Вами три двери: за одной автомобиль, за двумя другими — козы.

Вы выбираете одну из дверей, но ведущий не говорит Вам, что за ней находится, а открывает другую дверь, за которой находится коза.

После этого он задает Вам вопрос: «Измените ли Вы свой выбор?»

Парадокс Монти Холла

Дополнительный материал

Рассмотрим этот вопрос с точки зрения вероятности:

- 2.9 С какой вероятностью Вы выиграете автомобиль, если
- 1) не будете менять выбор;
- 2) измените выбор случайным образом;
- 3) измените свой выбор?

Мы будем решать задачу в предположении, что:

- автомобиль размещён за любой из дверей с одинаковой вероятностью;
- ведущий знает, где находится автомобиль;
- ведущий в любом случае открывает дверь с козой (но не ту, которую выбрал игрок) и предлагает игроку изменить выбор;
- если у ведущего есть выбор, то он выбирает любую из двух дверей с одинаковой вероятностью.

Парадокс Монти Холла

Дополнительный материал

• Если не менять выбор, то выиграть можно только в том случае, если с самого начала была выбрана дверь с автомобилем.

Победа обеспечена в 1/3 случаев.

- Если изменить выбор случайным образом, то придется выбирать из двух дверей.
 Победа обеспечена в половине случаев.
- Если всегда менять свой выбор, то проиграть можно только в том случае, если в начале была выбрана дверь с автомобилем.
 Победа обеспечена в 2/3 случаев.

Невероятно, но всегда стоит менять свой выбор!