FORMULÁRIO

Algumas fórmulas de derivação

$\boxed{(fg)' = f'g + fg'}$	$\left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2}$
$(kf)' = kf' \qquad (k \in \mathbb{R})$	$(f^{\alpha})' = \alpha f^{\alpha - 1} f' \qquad (\alpha \in \mathbb{R})$
$(a^f)' = f' a^f \ln a \qquad (a \in \mathbb{R}^+)$	$\left(\log_a f\right)' = \frac{f'}{f \ln a} \qquad (a \in \mathbb{R}^+ \setminus \{1\})$
$(\operatorname{sen} f)' = f' \cos f$	$(\cos f)' = -f' \operatorname{sen} f$
$(\operatorname{tg} f)' = f' \sec^2 f = \frac{f'}{\cos^2 f}$	$(\cot g f)' = -f' \csc^2 f = -\frac{f'}{\sec^2 f}$
$(\operatorname{arcsen} f)' = \frac{f'}{\sqrt{1 - f^2}}$	$(\arccos f)' = -\frac{f'}{\sqrt{1-f^2}}$
$\left(\operatorname{arctg} f\right)' = \frac{f'}{1+f^2}$	$\left(\operatorname{arccotg} f\right)' = -\frac{f'}{1+f^2}$

Integração por partes: $\int f'g = fg - \int fg'$

Alguns desenvolvimentos em série de MacLaurin

•
$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n = 1 + x + x^2 + \dots + x^n + \dots, \quad x \in]-1,1[$$

•
$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + \dots, \quad x \in \mathbb{R}$$

•
$$\operatorname{sen} x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} = x - \frac{x^3}{3!} + \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + \dots, \quad x \in \mathbb{R}$$

•
$$\cos x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!} = 1 - \frac{x^2}{2!} + \dots + (-1)^n \frac{x^{2n}}{(2n)!} + \dots, \quad x \in \mathbb{R}.$$

Algumas transformadas de Laplace

$$F(s) = \mathcal{L}\{f(t)\}(s), \quad s > s_f$$

função	transformada
$t^n \ (n \in \mathbb{N}_0)$	$\frac{n!}{s^{n+1}}, \ s > 0$
$e^{at} \ (a \in \mathbb{R})$	$\frac{1}{s-a} , \ s > a$
	$\frac{a}{s^2 + a^2}, \ s > 0$
$\cos(at) \ (a \in \mathbb{R})$	$\frac{s}{s^2 + a^2}, \ s > 0$
$senh(at) \ (a \in \mathbb{R})$	$\frac{a}{s^2 - a^2}, \ s > a $
$\cosh(at) \ (a \in \mathbb{R})$	$\frac{s}{s^2 - a^2}, \ s > a $

função	transformada
$e^{\lambda t} f(t) \ (\lambda \in \mathbb{R})$	$F(s-\lambda)$
$H_a(t)f(t-a) \ (a>0)$	$e^{-as}F(s)$
$f(at) \ (a > 0)$	$\frac{1}{a} F\left(\frac{s}{a}\right)$
$t^n f(t) \ (n \in \mathbb{N})$	$(-1)^n F^{(n)}(s)$
$f'(t) \ (n \in \mathbb{N})$	sF(s) - f(0)
$f''(t) \ (n \in \mathbb{N})$	$s^2 F(s) - sf(0) - f'(0)$
$f^{(n)}(t) \ (n \in \mathbb{N})$	$s^{n}F(s) - \sum_{k=1}^{n} s^{n-k}f^{(k-1)}(0)$