Literate programming with Python, R, Julia and Stata**

Miguel Portela

Minho University

16 December, 2019

Abstract

In this presentation I will discuss how we can enhance the workflow by using literate programming to combine key features of different statistical packages, namely Stata, R, Julia and Python, on the one hand, and Latex as the typesetting system on the other. The goal is to demonstrate and share a template aiming at producing a highly automated report, or research paper, within the same framework. The tasks will run from exploratory data analysis to regression analysis, where the output, from summary to regression tables and figures, is seamlessly included in the final document. Furthermore, important elements of Latex editing, such as automatic referencing, will be highlighted. We aim at freeing the researcher form repetitive tasks to focus on critical and creative writing. Efficiency and replicability will be at the core of the discussion. RStudio will be used to edit and compile R Markdown. The focus will be on producing PDF outputs. In the presentation I will make use of packages such as bookdown, knitr, stargazer, dlookr, ggplot2, plotly, Statamarkdown, reticulate, JuliaCall, pandas, numpy, matplotlib or FixedEffectModels. The current code is an adaptation of the Rmd by Paul C. Bauer, Mannheim Centre for European Social Research, mail@paulcbauer.eu..

 $^{{\}bf **} Corresponding \ address: \ miguel.portela@eeg.uminho.pt.$

1 Exploratory data analysis

I start by exploring the data **NLSWORK** (National Longitudinal Survey. Young Women 14-26 years of age in 1968).

```
## ExPanDaR: Explore Panel Data Interactively
library(ExPanDaR)

## type ExPanD() in the Console

setwd("/Users/miguelportela/Dropbox/1.miguel/bdp/4.code_ados/dados_descricao/data_descrilibrary(haven)

nlswork <- read_dta("/Users/miguelportela/Dropbox/1.miguel/bdp/4.code_ados/dados_descricao/data_frame(nlswork)

attach(nlswork)</pre>
```

2 A tibble: 6 x 21

idcode year birth_yr age race msp nev_mar grade collgrad not_smsa <dbl+l> 1 1 70 51 18 2 [bla~ 0 1 12 0 0 2 1 71 51 19 2 [bla~ 1 0 12 0 0 3 1 72 51 20 2 [bla~ 1 0 12 0 0 4 1 73 51 21 2 [bla~ 1 0 12 0 0 5 1 75 51 23 2 [bla~ 1 0 12 0 0 6 1 77 51 25 2 [bla~ 0 0 12 0 0 # ... with 11 more variables: c_city , south , ind_code , # occ_code , union , wks_ue , ttl_exp , tenure , # hours , wks_work , ln_wage

Table 1: Summary statistics

Statistic	N	Mean	St. Dev.	Min	Pctl(25)	Pctl(75)	Max
idcode	28,534	2,601.284	1,487.359	1	1,327	3,881	5,159
year	28,534	77.959	6.384	68	72	83	88
birth_yr	28,534	48.085	3.013	41	46	51	54
age	28,510	29.045	6.701	14.000	23.000	34.000	46.000
race	28,534	1.303	0.482	1	1	2	3
msp	28,518	0.603	0.489	0.000	0.000	1.000	1.000
nev_mar	28,518	0.230	0.421	0.000	0.000	0.000	1.000
grade	28,532	12.533	2.324	0.000	12.000	14.000	18.000
collgrad	28,534	0.168	0.374	0	0	0	1
not_smsa	28,526	0.282	0.450	0.000	0.000	1.000	1.000
c_city	28,526	0.357	0.479	0.000	0.000	1.000	1.000
south	28,526	0.410	0.492	0.000	0.000	1.000	1.000
ind_code	28,193	7.693	2.994	1.000	5.000	11.000	12.000
occ_code	28,413	4.778	3.065	1.000	3.000	6.000	13.000
union	19,238	0.234	0.424	0.000	0.000	0.000	1.000
wks_ue	22,830	2.548	7.294	0.000	0.000	0.000	76.000
ttl_exp	28,534	6.215	4.652	0.000	2.462	9.128	28.885
tenure	28,101	3.124	3.751	0.000	0.500	4.167	25.917
hours	28,467	36.560	9.870	1.000	35.000	40.000	168.000
wks_work	27,831	53.989	29.032	0.000	36.000	72.000	104.000
ln_wage	28,534	1.675	0.478	0.000	1.361	1.964	5.264

Table 2: Summary table with stargazer

Statistic	N	Mean	St. Dev.	Min	Pctl(25)	Pctl(75)	Max
speed	50	15.400	5.288	4	12	19	25
dist	50	42.980	25.769	2	26	56	120

density.default(x = In_wage)


```
num [1:28534] 1.45 1.03 1.59 1.78 1.78 ...
- attr(*, "label")= chr "ln(wage/GNP deflator)"
- attr(*, "format.stata")= chr "%9.0g"
```

3 Tables

Producing good tables and referencing these tables within a R Markdown PDF has been a hassle but got much better. Examples that you may use are shown below. The way you reference tables is slightly different, e.g., for stargazer the label is contained in the function, for kable it's contained in the chunk name.

3.1 stargazer(): Summary and regression tables

Table 3 shows summary stats of your data. I normally use stargazer() (Hlavac 2013) which offers extreme flexibility regarding table output (see ?stargazer).

 $^{^1\}mathrm{To}$ reference the table where you set the identifier in the star gazer function you only need to use the actual label, i.e., $\hat{\mathbf{A}}$ 'tab1 $\hat{\mathbf{A}}$ '.

Table 3: Summary table with stargazer

Statistic	N	Mean	St. Dev.	Min	Pctl(25)	Pctl(75)	Max
speed	50	15.400	5.288	4	12	19	25
dist	50	42.980	25.769	2	26	56	120

Table 4 shows the output for a regression table. Make sure you name all your models and explicitly refer to model names (M1, M2 etc.) in the text.

Table 4: Regression table with stargazer

	Dependent variable:				
	sp	eed	dist		
	M1	M2	М3		
dist	0.166***	0.166***			
	(0.017)	(0.017)			
speed			3.932***		
•			(0.416)		
Constant	8.284***	8.284***	-17.579**		
	(0.874)	(0.874)	(6.758)		
Observations	50	50	50		
\mathbb{R}^2	0.651	0.651	0.651		
Adjusted R^2	0.644	0.644	0.644		
Residual Std. Error $(df = 48)$	3.156	3.156	15.380		
F Statistic ($df = 1; 48$)	89.567***	89.567***	89.567***		
Note:	*n<	0 1· **p<0 0	5· ***n<0.01		

Note:

*p<0.01 'p<0.1; **p<0.05;

4 **Figures**

4.1 R base graphs

Inserting figures can be slightly more complicated. Ideally, we would produce and insert them directly in the .rmd file. It's relatively simple to insert R base graphs as you can see in Figure 1.

plot(cars\$speed, cars\$dist)

Figure 1: Scatterplot of Speed and Distance

But it turns out that it doesn't always work so well.

4.2 ggplot2 graphs

Same is true for ggplot2 as you can see in Figure 2.

Figure 2: Miles per gallon according to the weight

4.3 Plotly graphs

Plotly is a popular graph engine that let's you also produce interactive graphs that you can embed in html webpages or documents (e.g., see here). I am a big fan. For some time there was no easy, automatic way to insert high resolution Plotly graphs into your R Markdown PDF. However, this changed since Plotly provided Orca, a command line application for generating static images from Plotly graphs. The installation is a bit tricky (see here: https://github.com/plotly/orca#installation) but once you get it running you can produce beautiful graphs and include them in your RMarkdown PDF using some simple latex as shown below in Figure 3. Potentially, in case you did not install the command line application this part may fail. If so simply exclude the chunk and the latex code.

Figure 3: An plotly plot that was exported as PDF with orca before

5 Python

5.1 API data download using Python

```
import sys
print(sys.version)

3.8.0 (v3.8.0:fa919fdf25, Oct 14 2019, 10:23:27)
[Clang 6.0 (clang-600.0.57)]

import json
##from json.decoder import JSONDecodeError
import requests
import numpy as np
import pandas as pd
```

```
## INE: https://www.ine.pt/ine/json_indicador/pindica.jsp?
## op=2&varcd=0008074&Dim1=S7A2015&Dim2=200&Dim3=3&lang=PT
# api-endpoint
URL = "https://www.ine.pt/ine/json indicador/pindica.jsp"
# define parameters
OP="2"
VARCD="0008074"
DIM1="S7A2015"
DIM2="200"
DIM3="3"
LANG="PT"
# defining a params dict for the parameters to be sent to the API
PARAMS = {'op':OP,'varcd':VARCD,'Dim1':DIM1,'Dim2':DIM2,'Dim3':DIM3,'lang':LANG}
# sending get request and saving the response as response object
r = requests.get(url = URL,params=PARAMS)
# extracting data in json format
data = r.json()
valor = data[0]['Dados']['2015'][0]['valor']
valor
```

'1.8'

5.2 Import data from PDF files

```
['', 'PORTARIAS 111111111 DE REGULAMENTAGAO DO TRABALHO', 'PORTARIAS de EXTENSAO 4444444
FILE: sample_text_v4
```

match 1
match 4

```
match 1 match 4 match 1 match 4
```

match 3

match 1

match 4

['zzzz', 'PE dasalteragoes do, CCTentre a Assoc. Nacional dos, Opticos e a FETESE -- Fe

FILE: sample_text_v5

-> match 5

PE dasalteragoes do, CCTentre a Assoc. Nacional dos, Opticos e a FETESE -- Feder. dos S 99999

	linha	 source
0	1	 sample_text_v4
1	2	 sample_text_v4
2	3	 sample_text_v4
3	6	 sample_text_v4
4	9	 sample_text_v4
5	1	 sample_text_v5

[6 rows x 4 columns]

And now we use Stata to explore the data.

```
quiet cd "/Users/miguelportela/Documents/GitHub/prjs/logs"
quiet import delimited "/Users/miguelportela/Documents/GitHub/prjs/data/PE.csv", encodin
tab source
```

command window is unrecognized
r(199);

source	Freq.	Percent	Cum.
sample_text_v4 sample_text_v5	5 1	83.33 16.67	83.33 100.00
Total	6	100.00	

6 Julia experiments

6.1 Computations

1.4142135623730951

6.2 Grab results in R

[1] 1.414214

Julia Object of type FixedEffectModel.

Fixed Effect Model

========	========		-==	=====			======	===
Number of obs:		147715		Degi	Degrees of freedom:			180
R2:		0.97	78	R2 /	Adjusted:		0.9	960
F Statisti	c:	23.36	32	p-va	p-value:		0.0	000
R2 within:		0.00)1	Itei	Iterations:			419
Converged:		trı	іе					
			-==	=====				===
	Estimate	Std.Error	t	value	Pr(> t)	Lower 95%	Upper	95%
0440402011		0.000597587		00101		0.000385043	******	
lnsales	0.00622989	0.000987569	6.	30831	0.000	0.00429426	0.00816	552 ===

The estimated return to education is 0.2%. The model has an \mathbb{R}^2 of 0.9782.

6.3 Output Julia's table for HDFE

7 Miguel's tests

7.1 Tasks

Produzir um relatório com base no NLSWORK, desde estatística descritiva, com os valores inseridos automaticamente no texto, gráficos e regressões. Com o Python corremos o EDA, Julia o REGHDFE for speed, com R o RMarkdown + functions & Stata ??? functions???

WORKSHOP: fazer uma acta do evento no formato de um 'package' com a replicabilidade, markdown, . . .

Python: explorar o Pandas e o Numpy

	lnrealwage			
	(1)	(2)		
education	0.006***	0.002**		
	(0.000)	(0.001)		
lnsales	0.013***	0.006***		
	(0.001)	(0.001)		
workerid	Yes	Yes		
year	Yes	Yes		
firmid		Yes		
Estimator	OLS	OLS		
\overline{N}	147,715	147,715		
R^2	0.970	0.978		

7.2 R

Table $6 \dots$ See Section 7.3

Example of an equation

$$\int_0^{2\pi} \sin x \ dx$$

Example of a matrix

$$\mathbf{X} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$

$$f(k) = \binom{n}{k} p^k (1-p)^{n-k} \tag{1}$$

\$\$

See Equation (1).

$$y_{ijt} = \beta x_{ijt} + \eta_i + \gamma_j + \lambda_t + \varepsilon_{ijt} \tag{2}$$

Table 5: Summary table

Statistic	N	Pctl(75)	St. Dev.
idcode	28,534	3,881	1,487.359
year	28,534	83	6.384
birth_yr	28,534	51	3.013
age	28,510	34.000	6.701
race	28,534	2	0.482
msp	28,518	1.000	0.489
nev_mar	28,518	0.000	0.421
grade	$28,\!532$	14.000	2.324
collgrad	28,534	0	0.374
not_smsa	28,526	1.000	0.450
c_city	28,526	1.000	0.479
south	28,526	1.000	0.492
ind_code	28,193	11.000	2.994
occ_code	28,413	6.000	3.065
union	19,238	0.000	0.424
wks_ue	22,830	0.000	7.294
ttl_exp	$28,\!534$	9.128	4.652
tenure	28,101	4.167	3.751
hours	$28,\!467$	40.000	9.870
wks_work	27,831	72.000	29.032
ln_wage	$28,\!534$	1.964	0.478

Table 6: Regression table with stargazer

		$Dependent\ variable:$	
	M1	price M2	M3
mpg	-49.512 (86.156)	-52.217 (83.740)	-63.210 (84.218)
weight	1.747*** (0.641)	2.111*** (0.619)	2.442*** (0.688)
rep78			
Observations	74	69	69
\mathbb{R}^2	0.293	0.365	0.376
Adjusted R^2	0.273	0.335	0.337
Residual Std. Error	2,514.029 (df = 71)	2,374.370 (df = 65)	2,370.832 (df = 64)
F Statistic	$14.740^{***} (df = 2; 71)$	$12.437^{***} (df = 3; 65)$	

Note:

*p<0.1; **p<0.05; ***p<0.01

Table 7: Summary 24

Statistic	N	Mean	St. Dev.	Min	Pctl(25)	Pctl(75)	Max
speed	50	15.400	5.288	4	12	19	25
dist	50	42.980	25.769	2	26	56	120

7.3 Stata

This a Stata example, Arellano (2003). See also Arellano and Bond (1991) and Blundell and Bond (1998). While . . . (check Arellano and Bover 1995).

command window is unrecognized
r(199);

Variable	l Obs	Mean	Std. Dev.	Min	Max
price	I 74	6165.257	2949.496	3291	15906
Repair Record 1978	Freq.	Percent	Cum.		
1 2 3 4 5	2 8 30 18 11	2.90 11.59 43.48 26.09 15.94	2.90 14.49 57.97 84.06 100.00		
 Total	69	100.00			

(file /Users/miguelportela/Documents/GitHub/prjs/logs/density.pdf written in PD
> F format)

Source	SS	df	MS	Number of obs	=	234
				F(7, 226)	=	46.99
Model	145.879747	7	20.8399639	Prob > F	=	0.0000
Residual	100.230749	226	.443498888	R-squared	=	0.5927
				Adj R-squared	=	0.5801
Total	246.110496	233	1.05626822	Root MSE	=	.66596
lngdp	Coef.	Std. Err.	t I	P> t [95% C	onf.	Interval]
+-						
education	.2136664	.0193553	11.04	.000 .17552	65	.2518063
lnk	. 1978085	.0308039	6.42	.000 .13710	89	. 2585082
openk	.0062439	.0011852	5.27	.00390	85	.0085794
year						
1975	0694608	.1387178	-0.50	0.61734280	64	.2038849

1980		177992	.1401702	-1.27	0.205	4541996	.0982156
1985	1	2226975	.1400607	-1.59	0.113	4986894	.0532943
1990	-	34965	. 1425169	-2.45	0.015	6304819	0688182
_cons		3.38917	.7508785	4.51	0.000	1.909552	4.868789

The mean is s \$xx ...

Figure 4: Wage density

Table 8: Regression analysis

	Simple model	Include capital	Full model
Education	0.3169***	0.212***	0.2***
	(0.0093)	(0.020)	(0.0)
Capital		0.125***	0.2***
		(0.029)	(0.0)
Openness degree			0.0***
			(0.0)
R^2	0.58	0.54	0.59
RMSE	0.78	0.70	0.67
N	857	234	234

* p < 0.1; ** p < 0.05; *** p < 0.01

We now export a set of statistics to an Excel file.

command window is unrecognized
r(199);

/Users/miguelportela/Documents/GitHub/prjs/logs

Variable	Obs 1	Unique	Mean	Min	Max	Label
country	839	106				Country name
year	839	9	1980.906	1960	2000	Year of observation
${\tt education}$	839	574	4.794076	.04	12.25	Education
lngdp	839	838	9.308131	5.983335	12.51058	Log Real GDP per Worker
open	839	2	.4982122	0	1	1 = high degree of open
gdp	839	838	20100.66	396.7612	271192.2	GDP level

Note: file will be replaced when the first putexcel command is issued

```
`"a"' `"b"' `"c"' `"d"' `"e"' `"f"' `"g"' `"h"' `"i"' `"j"' `"k"' `"l"' `"m"' `
> "n"' `"p"' `"r"' `"s"' `"t"' `"u"' `"v"' `"z"'
```

Country's first letter: a

Insufficient number of countries; n countries = 5

Country's first letter: b

Number of countries: 11

Country's first letter: Number of countries: Country's first letter: Insufficient number of countries; n countries = 2 Country's first letter: Insufficient number of countries; n countries = 5 Country's first letter: Insufficient number of countries; n countries = 3 Country's first letter: Insufficient number of countries; n countries = 4 Country's first letter:

Insufficient number of countries; n countries = 4

Country's first letter: i Number of countries: 7 Country's first letter: Insufficient number of countries; n countries = 3 Country's first letter: Insufficient number of countries; n countries = 2 Country's first letter: Insufficient number of countries; n countries = 2 Country's first letter: Number of countries:

Country's first letter:

Number of countries:

Country's first letter: p

Number of countries: 7

Country's first letter: r

Insufficient number of countries; n countries = 2

Country's first letter: s

Number of countries: 14

Country's first letter: t

Insufficient number of countries; n countries = 5

Country's first letter: u

Insufficient number of countries; n countries = 4

Country's first letter: v

Insufficient number of countries; n countries = 1

Country's first letter: z

Insufficient number of countries; n countries = 2

x = 5 # radius of a circle

For a circle with the radius 5, its area is 78.5398163. See Figure 5.

Figure 5: Scatterplot test MP

8 Final remarks

9 Appendix

9.1 Software versioning

```
cat(paste("#", capture.output(sessionInfo()), "\n", collapse =""))
# R version 3.6.1 (2019-07-05)
# Platform: x86_64-apple-darwin15.6.0 (64-bit)
# Running under: macOS Catalina 10.15.2
#
# Matrix products: default
          /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRblas.0.dylib
# LAPACK: /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRlapack.dylib
# locale:
# [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
# attached base packages:
# [1] stats
                graphics grDevices utils
                                               datasets methods
                                                                   base
#
# other attached packages:
 [1] JuliaCall_0.17.1
                           plotly_4.9.1
                                                ggplot2_3.2.1
# [4] dlookr_0.3.12
                           mice_3.6.0
                                                lattice_0.20-38
# [7] dplyr 0.8.3
                           naniar 0.4.2
                                                visdat 0.5.3
# [10] haven_2.1.1
                           ExPanDaR_0.4.0
                                                Statamarkdown_0.3.9
# [13] stargazer_5.2.2
                           reticulate_1.13
# loaded via a namespace (and not attached):
    [1] readxl 1.3.1
                                                     Hmisc 4.2-0
#
                              backports 1.1.5
    [4] corrplot_0.84
                              plyr 1.8.4
#
                                                     lazyeval 0.2.2
    [7] splines 3.6.1
                              crosstalk 1.0.0
                                                     digest 0.6.20
  [10] htmltools 0.4.0
                              gdata_2.18.0
                                                     fansi 0.4.0
  [13] memoise 1.1.0
                              magrittr 1.5
                                                     checkmate 1.9.4
  [16] cluster_2.1.0
                              ROCR_1.0-7
                                                     openxlsx_4.1.0.1
  [19] readr_1.3.1
                              xts 0.11-2
                                                     sandwich 2.5-1
  [22] askpass_1.1
                              colorspace_1.4-1
                                                     blob_1.2.0
  [25] rvest_0.3.5
                                                     xfun_0.11
                              pan_1.6
  [28] tcltk_3.6.1
                              libcoin_1.0-5
                                                     crayon_1.3.4
   [31] jsonlite_1.6
                              lme4_1.1-21
                                                     zeallot_0.1.0
```

#	[34]	survival_2.44-1.1	zoo_1.8-6	glue_1.3.1
#	[37]	kableExtra_1.1.0	smbinning_0.9	gtable_0.3.0
#	[40]	webshot_0.5.1	UpSetR_1.4.0	car_3.0-4
#	[43]	quantmod_0.4-15	jomo_2.6-9	abind_1.4-5
#	[46]	scales_1.0.0	mvtnorm_1.0-11	DBI_1.0.0
#	[49]	Rcpp_1.0.3	<pre>viridisLite_0.3.0</pre>	xtable_1.8-4
#	[52]	htmlTable_1.13.2	bit_1.1-14	foreign_0.8-72
#	[55]	Formula_1.2-3	sqldf_0.4-11	DT_0.9
#	[58]	htmlwidgets_1.5.1	httr_1.4.1	gplots_3.0.1.1
#	[61]	RColorBrewer_1.1-2	acepack_1.4.1	ellipsis_0.3.0
#	[64]	pkgconfig_2.0.3	nnet_7.3-12	utf8_1.1.4
#		tidyselect_0.2.5	labeling_0.3	rlang_0.4.0
#		later_1.0.0	munsell_0.5.0	cellranger_1.1.0
#		tools_3.6.1	cli_1.1.0	gsubfn_0.7
#		generics_0.0.2	moments_0.14	RSQLite_2.1.2
#		broom_0.5.2	evaluate_0.14	stringr_1.4.0
#		fastmap_1.0.1	yam1_2.2.0	processx_3.4.1
#		bit64_0.9-7	knitr_1.26	shinycssloaders_0.2.0
#		zip_2.0.4	caTools_1.17.1.2	purrr_0.3.3
#		mitml_0.3-7	nlme_3.1-141	mime_0.7
#		tictoc_1.0	xm12_1.2.2	compiler_3.6.1
#		rstudioapi_0.10	curl_4.2	e1071_1.7-2
#		tibble_2.1.3	stringi_1.4.3	ps_1.3.0
		forcats_0.4.0	Matrix_1.2-17	classInt_0.4-2
		nloptr_1.2.1	vctrs_0.2.0	RcmdrMisc_2.5-1
		pillar_1.4.2	lifecycle_0.1.0	data.table_1.12.6
		bitops_1.0-6	httpuv_1.5.2	R6_2.4.0
		latticeExtra_0.6-28	bookdown_0.16	promises_1.1.0
		KernSmooth_2.23-16	gridExtra_2.3	rio_0.5.16
		boot_1.3-23	MASS_7.3-51.4	gtools_3.8.1
		assertthat_0.2.1	chron_2.3-54	proto_1.0.0
		openssl_1.4.1	withr_2.1.2	nortest_1.0-4
		DMwR_0.4.1	parallel_3.6.1 prettydoc 0.3.0	hms_0.5.1 rpart 4.1-15
		grid_3.6.1 tidyr 1.0.0	class 7.3-15	minqa_1.2.4
		inum_1.0-1	rmarkdown_2.0	carData_3.0-2
		TTR_0.23-5	partykit_1.2-5	shiny_1.4.0
		base64enc_0.1-3	tinytex_0.18	SHIHY_I. I. O
#	[145]	DaseU4eIIC_U.1-3	cinycex_0.10	

9.2 All the code in the paper

To simply attach all the code you used in the PDF file in the appendix see the R chunk in the underlying .rmd file:

```
knitr::opts_chunk$set(cache = FALSE)
# Use chache = TRUE if you want to speed up compilation
# A function to allow for showing some of the inline code
rinline <- function(code){
 html <- '<code class="r">``` `r CODE` ```</code>'
 sub("CODE", code, html)
 ##https://opensource.com/article/19/5/python-3-default-mac
 Sys.setenv(RETICULATE PYTHON = "/usr/local/bin/python3")
##install.packages("reticulate")
library(reticulate)
##use_python("/Library/Frameworks/Python.framework/Versions/3.8/bin/python3")
use_virtualenv("/Users/miguelportela/.pyenv/version")
##knitr::opts chunk$set(python.reticulate=FALSE)
library(JuliaCall)
library(Statamarkdown)
stataexe <- "/Applications/Stata15/StataMP.app/Contents/MacOS//stata-mp"</pre>
knitr::opts_chunk$set(engine.path=list(stata=stataexe))
}
Sys.setenv(RETICULATE_PYTHON = "/usr/local/bin/python3")
library(reticulate)
use_virtualenv("/Users/miguelportela/.pyenv/version")
library(stargazer)
library(Statamarkdown)
```

```
stataexe <- "/Applications/Stata15/StataMP.app/Contents/MacOS//stata-mp"</pre>
knitr::opts_chunk$set(engine.path=list(stata=stataexe))
## ExPanDaR: Explore Panel Data Interactively
  library(ExPanDaR)
    ## type ExPanD() in the Console
setwd("/Users/miguelportela/Dropbox/1.miguel/bdp/4.code_ados/dados_descricao/data_descri
library(haven)
nlswork <- read_dta("/Users/miguelportela/Dropbox/1.miguel/bdp/4.code_ados/dados_descrice</pre>
nls<-data.frame(nlswork)</pre>
attach(nlswork)
head(nlswork)
library(stargazer)
stargazer(nls,
          title = "Summary statistics",
          label="tab:tab1nls",
          table.placement = "ht",
          header=FALSE)
library(stargazer)
stargazer(cars,
          title = "Summary table with stargazer",
          label="tab1",
          table.placement = "H",
          header=FALSE)
library("visdat")
vis_dat(nlswork)
```

```
d <- density(ln_wage)</pre>
plot(d)
## Missing values
library(naniar)
## https://cran.r-project.org/web/packages/naniar/vignettes/naniar-visualisation.html
vis_miss(nlswork)
gg_miss_upset(nlswork)
library("dplyr")
dplyr::glimpse(nlswork$ln_wage)
##########
library(dlookr)
library(dplyr)
##eda_report(nlswork,output_dir = "/Users/miguelportela/Dropbox/1.miguel/bdp/4.code_ad
library(stargazer)
stargazer(cars,
          title = "Summary table with stargazer",
          label="tab1",
          table.placement = "H",
          header=FALSE)
library(stargazer)
model1 <- lm(speed ~ dist, data = cars)</pre>
model2 <- lm(speed ~ dist, data = cars)</pre>
model3 <- lm(dist ~ speed, data = cars)</pre>
stargazer(model1, model2, model3,
          title = "Regression table with stargazer",
          label="tab2",
          table.placement = "H",
          column.labels = c("M1", "M2", "M3"),
```

```
model.numbers = FALSE,
          header=FALSE)
plot(cars$speed, cars$dist)
mtcars$cyl <- as.factor(mtcars$cyl) # Convert cyl to factor</pre>
library(ggplot2)
ggplot(mtcars, aes(x=wt, y=mpg, shape=cyl)) + geom_point() +
  labs(x="Weight (lb/1000)", y = "Miles/(US) gallon",
       shape="Number of \n Cylinders") + theme_classic()
library(plotly)
p <- plot_ly(cars, type = "scatter", mode="markers",</pre>
        x=~speed,
        v=~dist)
Sys.setenv('MAPBOX TOKEN' = '12423423') # set arbitrary token
orca(p, "plotly-plot.pdf")
import sys
print(sys.version)
import json
##from json.decoder import JSONDecodeError
import requests
import numpy as np
import pandas as pd
## INE: https://www.ine.pt/ine/json_indicador/pindica.jsp?
## op=2&varcd=0008074&Dim1=S7A2015&Dim2=200&Dim3=3&lang=PT
# api-endpoint
URL = "https://www.ine.pt/ine/json indicador/pindica.jsp"
# define parameters
OP="2"
VARCD="0008074"
DIM1="S7A2015"
DIM2="200"
DIM3="3"
LANG="PT"
```

```
# defining a params dict for the parameters to be sent to the API
PARAMS = {'op':OP,'varcd':VARCD,'Dim1':DIM1,'Dim2':DIM2,'Dim3':DIM3,'lang':LANG}
# sending get request and saving the response as response object
r = requests.get(url = URL,params=PARAMS)
# extracting data in json format
data = r.json()
valor = data[0]['Dados']['2015'][0]['valor']
valor
import os
import numpy as np
import pandas as pd
import re
## CHECK PyPDF2
## wget -A pdf -m -p -E -k -K -np https://joram.madeira.gov.pt/joram/4serie/
## find . -name '*.pdf' -print0 | xargs -0 -n1 pdfsandwich -gray
## find . -name '*ocr.pdf' -print0 | xargs -0 -n1 pdftotext
# Create list with .txt files for the specified folder
files list = list()
for (dirpath, dirnames, filenames) in os.walk('/Users/miguelportela/Documents/bte/pdfs_t
    files_list += [os.path.join(dirpath, file)
                   for file in filenames if file.endswith('.txt')]
##print("START:FILES -- list")
##print(files list)
##print("END:FILES -- list")
p1 = r'PORTARIA'
p2 = r'EXTENSAO'
p3 = r'Materiais'
```

```
p5 = r'PE das'
linha = []
output = []
other = []
palavra = []
source = []
for file in files_list:
    f = open(file, "r", encoding='latin8')
    data = f.read()
    f.close()
    line = []
    nh = 0
    tmp1 = str(data)
    #print(tmp1)
    tmp2 = tmp1.splitlines()
    #print(tmp2)
    for n,tmp3 in enumerate(tmp2):
        #print(tmp3)
        if (tmp3.find("PE das") == 0):
            tmp4 = tmp3 + tmp2[2]
            line.append(tmp4)
            #print(n)
            nh = 1
        elif (nh == 1):
            nh = 0
            continue
        elif (nh == 0):
            line.append(tmp3)
    print(line)
    print(" ")
    print("FILE: ", file[46:-4])
```

```
for num, word in enumerate(line):
        if num == 0:
            continue
        else:
            match1 = re.search(p1, word)
            match2 = re.search(p2, word)
            match3 = re.search(p3, word)
            match4 = re.search(r'\d{9}', word)
            match5 = re.search(p5, word)
            ##print("
                        ")
            ##print("START: ",num)
            if match1:
                    ##print(" ")
                    print("match 1")
                    if match4:
                        ##print(" ")
                        print("match 4")
                        linha.append(num)
                        output.append(re.search(r'\d{9}', word).group())
                        other.append("vazio")
                        palavra.append(p1)
                        source.append(file[46:-4])
            elif match2:
                        ##print("
                        print("match 2")
                        linha.append(num)
                        output.append(re.search(r'\d{9}', word).group())
                        other.append("vazio")
                        palavra.append(p2)
                        source.append(file[46:-4])
            elif match3:
                        ##print("
                        print("match 3")
                        linha.append(num)
                        output.append(re.search(r'\d{9}', word).group())
                        other.append("vazio")
                        palavra.append(p3)
                        source.append(file[46:-4])
            elif match5:
```

```
##print(" ")
                            print("-> match 5")
                            ##word.sub(" e o ", " e a ",1)
                            print(word)
                            linha.append(num)
                            if (word.find(" e o ") > 0):
                                print("11111")
                                output.append((word.split("re a", 1)[1]).split(" e o ",
                                other.append((word.split("re a", 1)[1]).split(" e o ",
                            elif (word.find(" e a ") > 0):
                                print("99999")
                                output.append((word.split("re a", 1)[1]).split(" e a ",
                                other.append((word.split("re a", 1)[1]).split(" e a ",
                            palavra.append(p5)
                            source.append(file[46:-4])
## o parágrafo tem de estar na mesma linha e temos de ter 'e a' em vez de 'e o'
df = pd.DataFrame({'linha': linha, 'output': output,
                   'outra': other, 'source': source})
print(df)
df.to_csv('data/PE.csv', index=False)
df.to_stata('data/PE.dta', write_index = False)
quiet cd "/Users/miguelportela/Documents/GitHub/prjs/logs"
quiet import delimited "/Users/miguelportela/Documents/GitHub/prjs/data/PE.csv", encodir
tab source
## This is a julia language chunk.
## In julia, the command without ending semicolon will trigger the display
## so is JuliaCall package.
## The julia display will follow immediately after the corresponding command
## just as the R code in R Markdown.
a = sqrt(2);
a = sqrt(2)
using ReadStat
using StatFiles
```

```
using StatsBase
using DataFrames
using FixedEffectModels
@time results_hdfe1 = reg(DataFrame(load("/Users/miguelportela/Documents/GitHub/prjs/data
@time results_hdfe2 = reg(DataFrame(load("/Users/miguelportela/Documents/GitHub/prjs/data
using RegressionTables
regtable(results hdfe1,results hdfe2; renderSettings = latexOutput("hdfe output.tex"))
library(JuliaCall)
julia_eval("a")
  julia_eval("results_hdfe2")
betas <- julia_eval("coef(results_hdfe2)")</pre>
r2 <- julia_eval("r2(results_hdfe2)")</pre>
library(stargazer)
library(Statamarkdown)
stataexe <- "/Applications/Stata15/StataMP.app/Contents/MacOS//stata-mp"</pre>
knitr::opts_chunk$set(engine.path=list(stata=stataexe))
setwd("/Users/miguelportela/Documents/GitHub/prjs/logs")
rm(list = ls())
library(haven)
nlswork <- read_dta("../data/nlswork.dta")</pre>
auto <- read_dta("../data/auto.dta")</pre>
attach(nlswork)
regs1 <- lm(auto$price ~ auto$mpg + auto$weight)</pre>
regs2 <- lm(auto$price ~ auto$mpg + auto$weight + auto$rep78)</pre>
regs3 <- lm(auto$price ~ auto$mpg + auto$weight + auto$rep78 + auto$trunk)
regs4 <- lm(ln_wage ~ union)
```

```
regs5 <- lm(ln wage ~ union + collgrad)</pre>
regs6 <- lm(ln wage ~ union + collgrad + age)</pre>
##summary(auto)
##summary(reqs1)
## https://www.jakeruss.com/cheatsheets/stargazer/
nls<-data.frame(nlswork)</pre>
stargazer(nls, summary.stat = c("n", "p75", "sd"), summary.logical = FALSE,
          title = "Summary table",
          label="tab23",
          table.placement = "ht",
          header=FALSE)
stargazer(regs1, regs2, regs3,
          title = "Regression table with stargazer",
          label="tab3",
          table.placement = "ht",
          column.labels = c("M1", "M2", "M3"),
          model.numbers = FALSE,
          header=FALSE, keep=c(0,1,2,3))
attach(auto)
library(naniar)
vis_miss(nlswork)
# plot(y=price, x=mpq)
library(stargazer)
stargazer(cars,
          title = "Summary 24",
          label="tab24",
          table.placement = "ht",
          header=FALSE)
quiet sysuse auto
```

```
sum price
tab rep78
global xx = r(N)
quiet cd "/Users/miguelportela/Documents/GitHub/prjs/logs"
quiet use ../data/nlswork, clear
twoway (kdensity ln_wage if collgrad == 0) | (kdensity ln_wage if collgrad == 1), schen
graph export "/Users/miguelportela/Documents/GitHub/prjs/logs/density.pdf", replace
use ../data/data_full, clear
        quiet generate lngdp = ln(rgdpwok)
        quiet ge lnk = ln(capital)
        label var rgdpwok "Real GDP per worker"
        label var education "Education (in years)"
        label var capital "Capital"
        label var open "Degree of openness"
// # regression analysis
    quiet reg lngdp education
        estimates store r1
    quiet reg lngdp education lnk
        est store r2
    reg lngdp education lnk openk i.year
        est store r3
outreg, clear
    quiet estimates restore r1
        outreg using growth_analysis_frag, tex fragment replace rtitles("Education" \ "'
                */ drop(_cons) /*
                */ ctitle("","Simple model") /*
                */ nodisplay variabels bdec(4) se starlevels(10 5 1) starloc(1) summsta
```

```
quiet estimates restore r2
        outreg using growth_analysis_frag, tex fragment merge rtitles("Education" \ "" \
                */ drop(_cons) /*
                */ ctitle("","Include capital") /*
                */ nodisplay variabels bdec(3) se starlevels(10 5 1) starloc(1) summsta
    quiet estimates restore r3
        outreg using growth_analysis_frag, tex fragment merge rtitles("Education" \ "" \
                */ drop(_cons 1975.year 1980.year 1985.year 1990.year) /*
                */ ctitle("", "Full model") /*
                */ nodisplay variabels bdec(1) se starlevels(10 5 1) starloc(1) summsta
cd "/Users/miguelportela/Documents/GitHub/prjs/logs"
quiet use ../data/graph_data, clear
    codebook, compact
            putexcel clear
            putexcel set descriptives.xlsx, sheet("Avg. Educ. & desc.") replace
gen first = substr(country,1,1)
    levelsof first,local(ff)
    foreach vv of local ff {
        di _new(3) "Country's first letter: `vv'"
        preserve
        quiet keep if first == "`vv'"
        quiet unique country
            if r(unique) > 5 {
            di _new(2) " Number of countries: " r(unique) _new(1)
            quietly {
                collapse (mean) lngdp education, by (country)
```

```
putexcel set descriptives.xlsx, sheet("FIRST LETTER `vv'") modify
                    regress lngdp education
                            matrix list r(table)
                        matrix results = r(table)
                            mat 1 results
                        mat b = results[1,1...]'
                        mat t = results[3,1...]'
                        putexcel C2="Coef." F2="t"
                        putexcel B3 = matrix(b), rownames nformat(number_d2) right
                        putexcel D3 = matrix(t),nformat("0.00")
                }
            }
            if r(unique) <= 5 {</pre>
                di _new(2) " Insufficient number of countries; n countries = " r(union)
            }
        restore
   }
x = 5 # radius of a circle
plot(x = mpg, y = price,
    pch = 16, frame = FALSE,
    xlab = "wt", ylab = "mpg", col = "#2E9FDF")
cat(paste("#", capture.output(sessionInfo()), "\n", collapse =""))
 # or use message() instead of cat()
```

9.3 Exploratory data analysis report

REPORT SERIES WITH DLOOKR

Exploratory Data Analysis Report

 $\begin{array}{l} Author: \\ {\rm dlookr\ package} \end{array}$

Version: 0.3.12

Contents

1	Intr	roduction	3
	1.1	Information of Dataset	
	1.2	Information of Variables	3
	1.3	About EDA Report	4
2	Uni	ivariate Analysis	5
	2.1	Descriptive Statistics	
	2.2	Normality Test of Numerical Variables	
		2.2.1 Statistics and Visualization of (Sample) Data	
3	Rela	ationship Between Variables	29
		Correlation Coefficient	
		3.1.1 Correlation Coefficient by Variable Combination	
		3.1.2 Correlation Plot of Numerical Variables	
4	Tar	get based Analysis	31
		Grouped Descriptive Statistics	
		4.1.1 Grouped Numerical Variables	
		4.1.2 Grouped Categorical Variables	
	4.2	Grouped Relationship Between Variables	
		4.2.1 Grouped Correlation Coefficient	
		4.2.2 Grouped Correlation Plot of Numerical Variables	

Chapter 1

Introduction

The EDA Report provides exploratory data analysis information on objects that inherit data.frame and data.frame.

1.1 Information of Dataset

The dataset that generated the EDA Report is an 'data.frame' object. It consists of 28,534 observations and 21 variables.

1.2 Information of Variables

Table 1.1: Information of Variables

variables	types	missing_count	missing_percent	unique_count	unique_rate
idcode	numeric	0	0.0000000	4711	0.1651013
year	numeric	0	0.0000000	15	0.0005257
$birth_yr$	numeric	0	0.0000000	14	0.0004906
age	numeric	24	0.0841102	34	0.0011916
race	numeric	0	0.0000000	3	0.0001051
msp	numeric	16	0.0560735	3	0.0001051
nev_mar	numeric	16	0.0560735	3	0.0001051
grade	numeric	2	0.0070092	20	0.0007009
collgrad	numeric	0	0.0000000	2	0.0000701
not_smsa	numeric	8	0.0280367	3	0.0001051
c_city	numeric	8	0.0280367	3	0.0001051
south	numeric	8	0.0280367	3	0.0001051
ind_code	numeric	341	1.1950655	13	0.0004556
occ_code	numeric	121	0.4240555	14	0.0004906
union	numeric	9296	32.5786781	3	0.0001051
wks_ue	numeric	5704	19.9901871	62	0.0021728
ttl_exp	numeric	0	0.0000000	4744	0.1662578
tenure	numeric	433	1.5174879	271	0.0094974
hours	numeric	67	0.2348076	86	0.0030139
wks_work	numeric	703	2.4637275	106	0.0037149
ln_wage	numeric	0	0.0000000	8173	0.2864302

The target variable of the data is 'NULL', and the data type of the variable is NULL(You did not specify a

target variable).

1.3 About EDA Report

EDA reports provide information and visualization results that support the EDA process. In particular, it provides a variety of information to understand the relationship between the target variable and the rest of the variables of interest.

Chapter 2

Univariate Analysis

2.1 Descriptive Statistics

 $\begin{array}{ccc} \textbf{edaData} & \textbf{edaData} \\ \textbf{21 Variables} & \textbf{28534 Observations} \end{array}$

idcode : NLS ID Fo		0-									nd.		louthoodod	hamatilihida	.httlmbatel	dilanta
	distinct 4711	Info M			.05 9.7 5	.10 518.0	.25 1327.0		.50 606.0	3881	75	.90 4656.0		95		
							1021.	, _	000.0	0001		1000.0	1000	0		
lowest: 1 2 3	4 5	highest:	5155 515	6 5157 b	158 518	59										
year : interview year												1111	1 11	1.1	1 1	11
$\begin{array}{cc} & \text{n} & \text{missing} \\ 28534 & & 0 \end{array}$	distinct 15	Info 0.995	Mean 77.96	$\begin{array}{c} Gmd \\ 7.339 \end{array}$.05 69	.10 70	.25 72	.50 78	.75 83	.90 87	.95 88					
Value 68 6 Frequency 1375 123 Proportion 0.048 0.04	2 1686			2141	77 2171 0.076	1964	1847	7 20				87 2164 0.076				
Value 88 Frequency 2272 Proportion 0.080																
birth_yr: birth yea	r Forma	t:%8.0g										1	i I I	111	1.1	Ι.
$ \begin{array}{cc} n & \text{missing} \\ 28534 & 0 \end{array} $	distinct 14	Info 0.991	Mean 48.09	$\frac{\mathrm{Gmd}}{3.455}$	$\frac{.05}{43}$	$^{.10}_{44}$.25 46	.50 48	.75 51	.90 52	.95 53					
Value 41 4 Frequency 26 57	2 43 4 1522	44 2095 23	45 46	3 47	48	49	5()	51 65 2	52 2722	53 1935	54 7				
Frequency 26 57- Proportion 0.001 0.02																
age: age in current												1111	Шш	1111111	Шп	
$ \begin{array}{cc} & \text{m issing} \\ 28510 & 24 \end{array} $	distinct 33	$\frac{\mathrm{Info}}{0.998}$	$\begin{array}{c} Mean \\ 29.05 \end{array}$	$\frac{\mathrm{Gmd}}{7.682}$	$\frac{.05}{19}$	$\frac{.10}{21}$	$\frac{.25}{23}$	$\frac{.50}{28}$	$\frac{.75}{34}$.90 38	.95 41					
lowest : 14 15 16 17	18, high	est: 42 4	13 44 45	46												
race Format:%8.0g		T. C.									- 1		1			
$ \begin{array}{ccc} n & \text{missing} \\ 28534 & 0 \end{array} $	distinct 3	0.624	Mean 1.303	Gmd 0.4351												
Value 1 Frequency 20180 805 Proportion 0.707 0.28	2 3 1 303 2 0.011															
msp: 1 if married,																
$ \begin{array}{cc} & \text{missing} \\ 28518 & 16 \end{array} $	distinct 2	$\frac{\mathrm{Info}}{0.718}$	Sum 17194	Mean 0.6029	G1 0.47	md 788										
nev_mar: 1 if neve				Moon	C	, al										
$ \begin{array}{cc} n & \text{missing} \\ 28518 & 16 \end{array} $	distinct 2	$\frac{\mathrm{Info}}{0.531}$	$\frac{\mathrm{Sum}}{6550}$	$\begin{array}{c} \text{Mean} \\ 0.2297 \end{array}$	Gm 0.353											

grade : current grade completed Format:%8.0g n missing distinct Info Mean Gmd .05 .10 .25 .50 .75 .90 .95 28532 2 19 0.874 12.53 2.374 9 10 12 12 14 16 17
Value 0 1 2 3 4 5 6 7 8 9 10 11 12 13 Frequency 21 6 4 2 36 41 161 262 671 889 1518 1781 14252 1734 Proportion 0.001 0.000 0.000 0.001 0.001 0.001 0.006 0.009 0.024 0.031 0.053 0.062 0.500 0.061
Value 14 15 16 17 18 Frequency 1751 950 2681 851 921 Proportion 0.061 0.033 0.094 0.030 0.032
$ \begin{array}{c} \textbf{collgrad: 1 if college graduate} \\ \begin{array}{ccccccccccccccccccccccccccccccccccc$
not_smsa : 1 if not SMSA Format:%8.0g n missing distinct Info Sum Mean Gmd 28526 8 2 0.608 8057 0.2824 0.4054
c_city: 1 if central city Format:%8.0g n missing distinct Info Sum Mean Gmd 28526 8 2 0.689 10190 0.3572 0.4592
south: 1 if south Format:%8.0g n missing distinct Info Sum Mean Gmd 28526 8 2 0.725 11683 0.4096 0.4837
ind_code: industry of employment Format:%8.0g n missing distinct Info Mean Gmd .05 .10 .25 .50 .75 .90 .95 .28193 341 12 0.957 7.693 3.355 4 4 5 7 11 11 12
Value 1 2 3 4 5 6 7 8 9 10 11 12 Frequency 241 52 252 5845 1420 4952 2427 849 1712 215 8480 1748 Proportion 0.009 0.002 0.009 0.207 0.050 0.176 0.086 0.030 0.061 0.008 0.301 0.062
occ_code : occupation Format:%8.0g
28413 121 13 0.934 4.778 3.225 1 1 3 3 6 8 13 Value 1 2 3 4 5 6 7 8 9 10 11 12 13 Frequency 3008 1494 10974 1323 438 4309 571 4300 6 144 194 7 1645 Proportion 0.106 0.053 0.386 0.047 0.015 0.152 0.020 0.151 0.000 0.005 0.007 0.000 0.058
union: 1 if union Format: %8.0g n missing distinct Info Sum Mean Gmd 19238 9296 2 0.538 4510 0.2344 0.359
wks_ue : weeks unemployed last year Format:%8.0g n missing distinct Info Mean Gmd .05 .10 .25 .50 .75 .90 .95 22830 5704 61 0.558 2.548 4.537 0 0 0 0 0 8 17
lowest: 0 1 2 3 4, highest: 56 62 73 75 76
ttl_exp: total work experience Format:%9.0g
n missing distinct Info Mean Gmd .05 .10 .25 .50 28534 0 4744 1 6.215 5.147 0.6667 1.0385 2.4615 5.0577 .75 .90 .95 9.1282 13.2801 15.3269
lowest: 0.00000000 0.01923077 0.03846154 0.05769231 0.05769231 highest: 26.53846169 26.84615135 27.19230461 27.46153831 28.88461494
tenure: job tenure, in years Format:%9.0g
n missing distinct Info Mean Gmd .05 .10 .25 .50 28101 433 270 1 3.124 3.638 0.08333 0.16667 0.50000 1.66667 .75 .90 .95 4.16667 8.41667 11.41667
lowest: 0.00000000 0.08333334 0.16666667 0.25000000 0.33333334 highest: 23.08333397 23.33333397 24.50000000 24.75000000 25.91666603

2.2 Normality Test of Numerical Variables

2.2.1 Statistics and Visualization of (Sample) Data

idcode

normality test : Shapiro-Wilk normality test statistic : 0.95577, p-value : 1.79068E-36

type	skewness	kurtosis
original log transformation sqrt transformation	-0.0197 -2.3132 -0.6023	$1.8137 \\ 11.3522 \\ 2.4766$

Figure 2.1: idcode

year

 $\begin{array}{l} {\rm normality\ test: Shapiro\text{-}Wilk\ normality\ test} \\ {\rm statistic: 0.93183,\ p\text{-}value: 5.56401E\text{-}43} \end{array}$

type	skewness	kurtosis
original log transformation sqrt transformation	0.0688 -0.0160 0.0264	1.6982 1.6958 1.6950

Figure 2.2: year

$birth_yr$

 $\begin{array}{l} {\rm normality~test: Shapiro\text{-}Wilk~normality~test} \\ {\rm statistic: 0.96165, p\text{-}value: 1.88666E\text{-}34} \end{array}$

type	skewness	kurtosis
original	-0.1206	2.0355
log transformation	-0.2185	2.0924
sqrt transformation	-0.1693	2.0610

Figure 2.3: birth_yr

age

 $\begin{array}{l} {\rm normality\ test:\ Shapiro-Wilk\ normality\ test} \\ {\rm statistic:\ 0.97039,\ p-value:\ 6.19944E-31} \end{array}$

type	skewness	kurtosis
original log transformation sqrt transformation	0.2225 -0.1337 0.0454	$2.0776 \\ 2.0386 \\ 2.0154$

Figure 2.4: age

msp

 $\begin{array}{l} {\rm normality~test: Shapiro\text{-}Wilk~normality~test} \\ {\rm statistic: 0.61745, p\text{-}value: 1.8183E\text{-}74} \end{array}$

type	skewness	kurtosis
original	-0.4683	1.2193
log transformation sqrt transformation	-0.4683	1.2193

Figure 2.5: msp

nev_mar

 $\begin{array}{l} {\rm normality\ test:\ Shapiro-Wilk\ normality\ test} \\ {\rm statistic:\ 0.5197,\ p-value:\ 2.81181E-79} \end{array}$

type	skewness	kurtosis
original	1.2896	2.6630
log transformation sqrt transformation	1.2896	2.6630

Figure 2.6: nev_mar

\mathbf{grade}

 $\begin{array}{l} {\rm normality\ test: Shapiro-Wilk\ normality\ test} \\ {\rm statistic: 0.87934,\ p-value: 2.01112E-52} \end{array}$

type	skewness	kurtosis
original	0.1832	4.4419
log transformation		
sqrt transformation	-0.9099	12.0912

Figure 2.7: grade

collgrad

 $\begin{array}{l} {\rm normality\ test: Shapiro\text{-}Wilk\ normality\ test} \\ {\rm statistic: 0.44481,\ p\text{-}value: 1.98196E\text{-}82} \end{array}$

type	skewness	kurtosis
original	1.8228	4.3225
log transformation sqrt transformation	1.8228	4.3225

Figure 2.8: collgrad

not_smsa

 $\begin{array}{l} {\rm normality\ test: Shapiro\text{-}Wilk\ normality\ test} \\ {\rm statistic: 0.5623,\ p\text{-}value: 2.73849E\text{-}77} \end{array}$

type	skewness	kurtosis
original	0.9782	1.9569
log transformation		
sqrt transformation	0.9782	1.9569

Figure 2.9: not_smsa

$\mathbf{c}_{-}\mathbf{city}$

 $\begin{array}{l} normality~test:~Shapiro-Wilk~normality~test\\ statistic:~0.60303,~p-value:~3.13554E-75 \end{array}$

type	skewness	kurtosis
original log transformation	0.6292	1.3960
sqrt transformation	0.6292	1.3960

Figure 2.10: c_city

south

 $\begin{array}{l} {\rm normality\ test: Shapiro\text{-}Wilk\ normality\ test} \\ {\rm statistic: 0.62199,\ p\text{-}value: 3.32655E\text{-}74} \end{array}$

type	skewness	kurtosis
original log transformation	0.4072	1.1658
sqrt transformation	0.4072	1.1658

Figure 2.11: south

$\mathbf{ind_code}$

 $\begin{array}{l} {\rm normality\ test: Shapiro\text{-}Wilk\ normality\ test} \\ {\rm statistic: 0.86895,\ p\text{-}value: 1.12466E\text{-}53} \end{array}$

type	skewness	kurtosis
original log transformation sqrt transformation	-0.0091 -0.7807 -0.2565	1.5282 4.0123 1.9775

Figure 2.12: ind_code

$\mathbf{occ_code}$

 $\begin{array}{l} {\rm normality~test: Shapiro\text{-}Wilk~normality~test} \\ {\rm statistic:} \ 0.85431, \ p\text{-}value: \ 1.17692E\text{-}55 \end{array}$

type	skewness	kurtosis
original	1.0725	3.6598
log transformation	-0.3061	2.6630
sqrt transformation	0.4364	2.6148

Figure 2.13: occ_code

union

 $\begin{array}{l} {\rm normality\ test:\ Shapiro-Wilk\ normality\ test} \\ {\rm statistic:\ 0.52296,\ p-value:\ 6.61572E-70} \end{array}$

type	skewness	kurtosis
original log transformation	1.2664	2.6038
sqrt transformation	1.2664	2.6038

Figure 2.14: union

wks_ue

 $\begin{array}{l} {\rm normality\ test: Shapiro\text{-}Wilk\ normality\ test} \\ {\rm statistic: 0.42001,\ p\text{-}value: 6.49128E\text{-}78} \end{array}$

type	skewness	kurtosis
original log transformation	3.8091	19.3596
sqrt transformation	2.2365	7.3800

Figure 2.15: wks_ue

$\mathbf{ttl_exp}$

 $\begin{array}{l} {\rm normality\ test:\ Shapiro-Wilk\ normality\ test} \\ {\rm statistic:\ 0.92709,\ p-value:\ 4.83001E-44} \end{array}$

type	skewness	kurtosis
original log transformation sqrt transformation	0.8390 -0.9583 0.1344	3.0262 4.0385 2.2322

Figure 2.16: ttl_exp

tenure

 $\begin{array}{l} {\rm normality\ test: Shapiro-Wilk\ normality\ test} \\ {\rm statistic: 0.77474,\ p-value: 1.54979E-63} \end{array}$

type	skewness	kurtosis
original log transformation	1.8492	6.3967
sqrt transformation	0.7408	2.9651

Figure 2.17: tenure

hours

 $\begin{array}{l} {\rm normality\ test: Shapiro-Wilk\ normality\ test} \\ {\rm statistic: 0.76294,\ p-value: 8.26327E-65} \end{array}$

type	skewness	kurtosis
original log transformation sqrt transformation	-0.5803 -3.2102 -1.9003	12.2148 16.6244 8.6759

Figure 2.18: hours

wks_work

 $\begin{array}{l} {\rm normality\ test: Shapiro-Wilk\ normality\ test} \\ {\rm statistic: 0.93709,\ p-value: 2.52751E-41} \end{array}$

type	skewness	kurtosis
original	0.1956	2.3285
log transformation sqrt transformation	-0.7896	3.5910

Figure 2.19: wks_work

$ln_{-}wage$

 $\begin{array}{l} {\rm normality~test: Shapiro\text{-}Wilk~normality~test} \\ {\rm statistic: 0.98225,~p\text{-}value: 1.45277E\text{-}24} \end{array}$

type	skewness	kurtosis
original log transformation sqrt transformation	0.3349 -3.5202 -0.6646	$4.6155 \\ 35.0785 \\ 6.3659$

Figure 2.20: $ln_{\text{-wage}}$

Chapter 3

Relationship Between Variables

3.1 Correlation Coefficient

3.1.1 Correlation Coefficient by Variable Combination

Table 3.1: The correlation coefficients (0.5 or more)

Variable1	Variable2	Correlation Coefficient
age	year	0.895
ttl_exp	year	0.777
collgrad	grade	0.757
ttl_exp	age	0.756
tenure	ttl_exp	0.674
nev_mar	msp	-0.673
wks_work	ttl_exp	0.630
wks_work	year	0.565
wks_work	age	0.525

3.1.2 Correlation Plot of Numerical Variables

Figure 3.1: The correlation coefficient of numerical variables

Chapter 4

Target based Analysis

4.1 Grouped Descriptive Statistics

4.1.1 Grouped Numerical Variables

There is no target variable.

4.1.2 Grouped Categorical Variables

There is no target variable.

4.2 Grouped Relationship Between Variables

4.2.1 Grouped Correlation Coefficient

There is no target variable.

4.2.2 Grouped Correlation Plot of Numerical Variables

There is no target variable.

References

Arellano, Manuel. 2003. Panel Data Econometrics. Oxford University Press.

Arellano, Manuel and Stephen Bond. 1991. "Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations." The Review of Economic Studies 58(2):277–97.

Arellano, Manuel and Olympia Bover. 1995. "Another Look at the Instrumental Variable Estimation of Error-Components Models." *Journal of Econometrics* 68(1):29–51.

Blundell, Richard and Stephen Bond. 1998. "Initial Conditions and Moment Restrictions in Dynamic Panel Data Models." *Journal of Econometrics* 87(1):115–43.

Hlavac, Marek. 2013. "Stargazer: LaTeX Code and Ascii Text for Well-Formatted Regression and Summary Statistics Tables." $URL: Http://CRAN.\ R-Project.\ Org/Package=Stargazer.$