

RTL8710AF

SINGLE-CHIP 802.11b/g/n 1T1R WLAN SoC

Release DATASHEET

(CONFIDENTIAL: Development Partners Only)

Rev. 0.1

01 Dec. 2015

Track ID: JATR

Realtek Semiconductor Corp.

No. 2, Innovation Road II, Hsinchu Science Park, Hsinchu 300, Taiwan

Tel.: +886-3-578-0211. Fax: +886-3-577-6047

www.realtek.com

COPYRIGHT

©2015 Realtek Semiconductor Corp. All rights reserved. No part of this document may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language in any form or by any means without the written permission of Realtek Semiconductor Corp.

DISCLAIMER

Realtek provides this document "as is", without warranty of any kind. Realtek may make improvements and/or changes in this document or in the product described in this document at any time. This document could include technical inaccuracies or typographical errors.

TRADEMARKS

Realtek is a trademark of Realtek Semiconductor Corporation. Other names mentioned in this document are trademarks/registered trademarks of their respective owners.

USING THIS DOCUMENT

This document is intended for the software engineer's reference and provides detailed programming information.

Though every effort has been made to ensure that this document is current and accurate, more information may have become available subsequent to the production of this guide.

2016-09-08

REVISION HISTORY

Revision	Release Date	Summary			
0.0	2015/12/01	First release.			
1.0	2016/1/7	orrect timer source clock			
1.01	2016/2/16	Correct pin function group table			
1.02	2016/5/13	1. Correct pin assignment figure			
		2. Correct pin function group table			
		3. Correct power on trap table			

Table of Contents

1.	GENERAL DESCRIPTION	1
2.	FEATURES	2
3.	BLOCK DIAGRAM	4
3.1	. FUNCTIONAL BLOCK DIAGRAM	.4
3.2	. WIFI Application Diagram	.5
3.3	. POWER SUPPLY APPLICATION DIAGRAM	.6
4.	MEMORY MAPPING	7
4.1	PROGRAMMING SPACE	.7
4.2	. IO Space	.8
4.3	. Extension Memory Space	.2
5.	PIN ASSIGNMENTS	١3
5.1	PACKAGE IDENTIFICATION	.3
6.	PIN DESCRIPTIONS	.4
6.1	. Power On Trap Pin	.4
6.2	. RF PINS	.5
6.3	. Power Pins	.5
6.4	. CLOCK PINS	.6
6.5	. DIGITAL IO PINS	.6
7.	PIN FUNCTION TABLE	ا9
7.1	. PIN CONFIGURABLE FUNCTION GROUP SUMMARY TABLE	.9
8.	FUNCTIONAL DESCRIPTION	<u>2</u> 0

9.	ELE	CTRICAL CHARACTERISTICS	31
	8.9.1.	Features	30
8	.9.	SECURITY ENGINE	30
	8.8.1.	Features of I2C	29
8	.8.	12C Interface	29
	8.7.1.	Features of SPI	28
8	.7.	SPI Interface	28
	8.6.3.	UART Interface Signal Levels	28
	8.6.2.	High Speed UART Specification	26
	8.6.1.	Features of UART	25
8	.6.	UART Interface Characteristics	25
	8.5.1.	Features of GPIO	25
8	.5.	GPIO Functions	25
	8.4.1.	Features of GTimer	25
8	.4.	GENERAL PURPOSE TIMER	25
	8.3.1.	Features of GDMA	24
8	.3.	GENERAL PURPOSE DMA CONTRLIER.	24
	8.2.4.	SPI NOR Flash	23
	8.2.3.	Internal SRAM	23
	8.2.2.	Internal ROM	22
	8.2.1.	Memory Architecture	22
8	.2.	MEMORY SYSTEM	22
	8.1.2.	Power Mode Description	20
	8.1.1.	Features	20
8	.1.	POWER MANAGEMENT CONTROL UNIT	20

RTL8710AF

Data Sheet

-			50
1	O. OR	DERING INFORMATION	36
	9.5.1	. Electrical Specifications	34
	9.5.	DIGITAL IO PIN DC CHARACTERISTICS	34
	9.4.2.	. Mechanical Dimensions Notes	34
	9.4.1	. Package Specification	33
	9.4.	MECHANICAL DIMENSIONS	33
	9.3.	Power Supply DC Characteristics	
	9.2.	Temperature Characteristics	31
	9.1.	TEMPERATURE LIMIT RATINGS	31

List of Tables

TABLE 1.	Power On Trap Pins	.14
TABLE 2.	RF PINS	.15
TABLE 3.	Power Pins	.15
TABLE 4.	CLOCK PINS	.16
TABLE 5.	PIN FUNCTION GROUP TABLE	.19
TABLE 6. F	LASH BUS DC PARAMETERS	.23
TABLE 7. F	LASH BUS DC PARAMETERS	.24
TABLE 8. U	ART BAUD RATE SPECIFICATIONS	.26
TABLE 9. TI	EMPERATURE LIMIT RATINGS	.31
TABLE 10.	THERMAL PROPERTIES	.31
TABLE 11.	Power Supply DC Characteristics	.31
TABLE 12.	Typical Digital IO DC Parameters (3.3V Case)	.34
TABLE 13.	Typical Digital IO DC Parameters (1.8V Case)	.35
TABLE 14.	Ordering Information	.36

List of Figures

FIGURE 1. BLOCK DIAGRAM	4
FIGURE 2. SINGLE-BAND 11N (1x1) SOLUTION	5
FIGURE 3. POWER SUPPLY ARCHITECTURE	6
FIGURE 4. PIN ASSIGNMENTS	13
FIGURE 5. UART INTERFACE WAVEFORM	28

viii

2016-09-08

1. General Description

Realtek RTL8710AF is a highly integrated single-chip low power 802.11n Wireless LAN (WLAN) network controller. It combines an ARM-CM3 MCU, WLAN MAC, a 1T1R capable WLAN baseband, and RF in a single chip. It also provides a bunch of configurable GPIOs which are configured as digital peripherals for different applications and control usage.

RTL8710AF integrates internal memories for complete WIFI protocol functions. The embedded memory configuration also provides simple application developments.

2. Features

General

- Package QFN48 (6x6mm²)
- CMOS MAC, Baseband PHY, and RF in a single chip for 802.11b/g/n compatible WLAN
- Complete 802.11n solution for 2.4GHz band
- 72.2Mbps receive PHY rate and 72.2Mbps transmit PHY rate using 20MHz bandwidth
- 150Mbps receive PHY rate and 150Mbps transmit PHY rate using 40MHz bandwidth
- Compatible with 802.11n specification
- Backward compatible with 802.11b/g devices while operating in 802.11n mode

Standards Supported

- 802.11b/g/n compatible WLAN
- 802.11e QoS Enhancement (WMM)
- 802.11i (WPA, WPA2). Open, shared key, and pair-wise key authentication services

- WIFI WPS support
- WIFI Direct support
- Light Weight TCP/IP protocol

WLAN MAC Features

- Frame aggregation for increased MAC efficiency (A-MSDU, A-MPDU)
- Low latency immediate High-Throughput Block Acknowledgement (HT-BA)
- Long NAV for media reservation with CF-End for NAV release
- PHY-level spoofing to enhance legacy compatibility
- Power saving mechanism

WLAN PHY Features

- 802.11n OFDM
- One Transmit and one Receive path (1T1R)
- 20MHz bandwidth transmission

- Short Guard Interval (400ns)
- DSSS with DBPSK and DQPSK, CCK modulation with long and short preamble
- OFDM with BPSK, QPSK, 16QAM, and 640QAM modulation. Convolutional Coding Rate: 1/2, 2/3, 3/4, and 5/6
- Maximum data rate 54Mbps in 802.11g and 150Mbps in 802.11n
- Fast receiver Automatic Gain Control (AGC)
- On-chip ADC and DAC

Peripheral Interfaces

- 2 high speed UART interface with baud rate up to 4MHz, and only one of then has flow control
- 1 log UART with standard baud rate support
- 1 I²C interface
- 1 SPI supported with baud rate up to 10.4MHz (master).
- Maximum 17 GPIO pins

3. Block Diagram

3.1. Functional Block Diagram

Figure 1. Block Diagram

3.2. WIFI Application Diagram

Figure 2. Single-Band 11n (1x1) Solution

3.3. Power Supply Application Diagram

Figure 3. Power Supply Architecture

The integrated Power Management Unit (PMU) provides the following features:

- 1.2V power bulk or LDO selectable.
- 3.3V power source integrated power cut controlled by FW.

4. Memory Mapping

4.1. Programming Space

Name	Mode	Physical	Size	IP Function
Code			1MB	Instruction Memory (ROM)
		0x000F_FFFF 0x1000_0000	448KB	Inter SRAM: BD SRAM and Buffer
		0x1006_FFFF		SRAM share total 448KB physical sram
		0x1FFF_0000 0x1FFF_FFFF	64KB	TCM (Tightly-Coupled Memory) SRAM
		UXIFFF_FFFF		

4.2. IO Space

Name	Mode	Physical	Size	IP Function
Peripheral		0x4000_0000	4KB	SYS Control (SYSON)
		0x4000_0FFF		
		0x4000_1000	2KB	GPIO Control
		0x4000_17FF		
		0x4000_1800		RSVD
		0x4000_1FFF		
		0x4000_2000	4KB	Timer Control
		0x4000_2FFF		
		0x4000_3000	1KB	UART for Log
		0x4000_33FF		
		0x4000_3400	1KB	RSVD
		0x4000_37FF		
		0x4000_3800	1KB	I2C_3 Control
		0x4000_3BFF		
		0x4000_3C00		RSVD
		0x4000_4FFF		
		0x4000_5000	4KB	RSVD
		0x4000_5FFF		
		0x4000_6000	4KB	SPI flash controller
		0x4000_6FFF		
		0x4000_7000		RSVD
		0x4000_FFFF		
		0x4001_0000	4KB	RSVD
		0x4001_0FFF		
		0x4001_1000	4KB	RSVD
		0x4001_1FFF		

Name	Mode	Physical	Size	IP Function
Peripheral		0x4004_0000	1KB	UART_0 Control
		0x4004_03FF		
		0x4004_0400	1KB	RSVD
		0x4004_07FF		
		0x4004_0800	1KB	RSVD
		0x4004_0BFF		
		0x4004_0C00		RSVD
		0x4004_1FFF		
		0x4004_2000	1KB	SPI_0 Control
		0x4004_23FF		
		0x4004_2400	1KB	RSVD
		0x4004_27FF		
		0x4004_2800	1KB	RSVD
		0x4004_2BFF		
		0x4004_2C00		RSVD
		0x4004_3FFF		
		0x4004_4000	1KB	RSVD
		0x4004_43FF		
		0x4004_4400	1KB	RSVD
		0x4004_47FF		
		0x4004_4800		RSVD
		0x4004_FFFF		

Name	Mode	Physical	Size	IP Function
Peripheral		0x4005_0000	16KB	RSVD
		0x4005_3FFF		
		0x4005_4000		RSVD
		0x4005_7FFF		
		0x4005_8000	16KB	RSVD
		0x4005_BFFF		
		0x4005_C000		RSVD
		0x4005_FFFF	1	
		0x4006_0000	2KB	GDMA0
		0x4006_07FF	ZKD	ODMA0
		0x4006_0800	2KB	RSVD for other DMA
		0x4006_0FFF		
		0x4006_1000	2KB	GDMA1
		0x4006_17FF	ZKD	ODMAI
		0x4006_1800		RSVD for other DMA
		0x4006_1FFF		

Name	Mode	Physical	Size	IP Function		
Peripheral		0x4006_2000	1KB	RSVD		
		0x4006_23FF				
		0x4006_2400	3KB	RSVD		
		0x4006_2FFF				
		0x4006_3000	1KB	RSVD		
		0x4006_33FF				
		0x4006_3400	3KB	RSVD		
		0x4006_3FFF				
		0x4006_4000	1KB	RSVD		
		0x4006_43FF				
		0x4006_4400		RSVD		
		0x4006_4FFF				
		0x4006_5000	1KB	RSVD		
		0x4006_53FF				
		0x4007_0000	16KB	Security Engine		
				0x4007_3FFF		
		0x4007_4000	48KB	RSVD		
		0x4007_FFFF				
		0x4008_0000	256KB	WIFI REG &		
		0x400B_FFFF		TX/RX FIFO direct map		
		0x400C_0000	256KB	RSVD		
		0x400F_FFFF				
		0x403F_FFFF	1MB	RSVD		

4.3. Extension Memory Space

Name	Mode	Physical	Size	IP Function
T-11-		0x9800_0000	1MB	External flash memory
Flash		0x9810_0000		

5. Pin Assignments

Figure 4. Pin Assignments

5.1. Package Identification

The version is shown in the location marked 'VV' in Figure 4, e.g., A0=Version A0

6. Pin Descriptions

The following signal type codes are used in the tables:

l:	Input	O:	Output
T/S:	Tri-State bi-directional input/output pin	S/T/S:	Sustained Tri-State
O/D:	Open Drain	P:	Power pin

6.1. Power On Trap Pin

Table 1. Power On Trap Pins

Symbol	Туре	Pin No	Description
NORMAL_MODE_SEL	I	2	Shared with GPIOB_2
			1: Normal operation mode
			0: Enter into test/debug mode
BOOT_SCENARIO	I	48	Shared with GPIOB_0
			0: booting from flash
			1: booting from internal memory
EEPROM_SEL	I	25	Shared with GPIOF_5
			0: Internal NV memory select
			1: reserved for internal testing use
ICFG0	I	44	Shared with GPIOC_0
			When NORMAL_MODE_SEL is "0", then ICFG0 is test mode BIT0.

Symbol	Туре	Pin No	Description
ICFG1	I	43	Shared with GPIOC_1
			When NORMAL_MODE_SEL is "0", then ICFG1 is test mode BIT1.
ICFG2	I	42	Shared with GPIOC_2
			When NORMAL_MODE_SEL is "0", then ICFG2 is test mode BIT2.
ICFG3	I	41	Shared with GPIOC_3
			When NORMAL_MODE_SEL is "0", then ICFG3 is test mode BIT3.

6.2. RF Pins

Table 2. RF Pins

Symbol	Туре	Pin No	Description
RF_IO	10	13	WL RF signal

6.3. Power Pins

Table 3. Power Pins

Symbol	Туре	Pin No	Description
SW_LX	Р	37	Switching Regulator Output
SW_HV3	Р	36	Switching Regulator Input
			Or Linear Regulator input from 3.3V to 1.2V
VA33	Р	10, 12, 14, 23	3.3V for Analog Circuit
VD33IO	Р	4, 26, 35, 39	VDD3.3V for Digital IO or digital blocks

Symbol	Туре	Pin No	Description
VDD_IO	Р	16, 45	GPIOE and GPIOC group IO power
VDIO	Р	30	GPIOA group IO power
VD12D	Р	34, 40	VDD 1.2V Digital Circuit
VA12	Р	7, 11, 15, 22	1.2V for analog blocks
SW_GND	Р	38	Switching Regulator Ground

6.4. Clock Pins

Table 4. Clock Pins

Symbol	Туре	Pin No	Description
XI	- 1	9	40MHz OSC Input
			Input of 40MHz Crystal Clock Reference
XO	0	8	Output of 40MHz Crystal Clock Reference

6.5. Digital IO Pins

Please refer to section 6 Pin Function Table for more detailed information.

Symbol	Туре	Pin No	Description
GPIOB_0	Ю	48	GPIO pin. The MUX function can be referred to Pin Function Table.
GPIOB_1	Ю	1	GPIO pin. The MUX function can be referred to Pin Function Table.
GPIOB_2	Ю	2	GPIO pin. The MUX function can be referred to Pin Function Table.
GPIOB_3	Ю	3	GPIO pin. The MUX function can be referred to Pin Function Table.
GPIOE_0	Ю	21	GPIO pin. The MUX function can be referred to Pin Function Table.
GPIOE_1	Ю	20	GPIO pin. The MUX function can be referred to Pin Function Table.
GPIOE_2	Ю	19	GPIO pin. The MUX function can be referred to Pin Function Table.
GPIOE_3	Ю	18	GPIO pin. The MUX function can be referred to Pin Function Table.
GPIOE_4	Ю	17	GPIO pin. The MUX function can be referred to Pin Function Table.
GPIOA_0	Ю	27	GPIO pin. The MUX function can be referred to Pin Function Table.
GPIOA_4	Ю	32	GPIO pin. The MUX function can be referred to Pin Function Table.
GPIOA_5	Ю	33	GPIO pin. The MUX function can be referred to Pin Function Table.
GPIOC_0	Ю	44	GPIO pin. The MUX function can be referred to Pin Function Table.
GPIOC_1	Ю	43	GPIO pin. The MUX function can be referred to Pin Function Table.
GPIOC_2	Ю	42	GPIO pin. The MUX function can be referred to Pin Function Table.

Symbol	Туре	Pin No	Description
GPIOC_3	Ю	41	GPIO pin. The MUX function can be referred to Pin Function Table.
GPIOC_4	Ю	46	GPIO pin. The MUX function can be referred to Pin Function Table.
CHIP_EN	I	24	Enable chip. 1: enable chip; 0: shutdown chip

7. Pin Function Table

7.1. Pin Configurable Function Group Summary Table

Table 5. Pin Function Group Table

PIN name	JTAG	UART Group	I2C Group	SPI Group	WL_LED	WKDT	GPIO INT	Default State	SCHMT
GPIOA_0		UART2_IN					GPIO_INT	PH	0
GPIOA_4		UART2_OUT						PH	
GPIOA_5						D_SBY0		PH	
GPIOB_0		UART_LOG_OUT						HI	
GPIOB_1		UART_LOG_IN			WL_LED0	D_SLP0		PH	
GPIOB_2			I2C3_SCL					HI	0
GPIOB_3			I2C3_SDA				GPIO_INT	PH	
GPIOC_0		UARTO_IN		SPIO_CSO				HI	
GPIOC_1		UARTO_CTS		SPIO_CLK			GPIO_INT	HI	0
GPIOC_2		UARTO_RTS		SPI0_MOSI				HI	
GPIOC_3		UARTO_OUT		SPI0_MISO			GPIO_INT	HI	0
GPIOC_4				SPIO_CS1			GPIO_INT	HI	
GPIOE_0	JTAG_TRST							PH	0
GPIOE_1	JTAG_TDI							PH	0
GPIOE_2	JTAG_TDO							PH	0
GPIOE_3	JTAG_TMS							PH	0
GPIOE 4	JTAG CLK							PH	0

NOTE1: PH = Pull-High, HI = High-impedance

NOTE2: Others' pull control can be done by register setting.

8. Functional Description

8.1. Power Management Control Unit

8.1.1. Features

The PMU provides the following functions:

- Bulk/LDO to output 1.2V
- 2 very Low power clock source with less accuracy: 1K and 500K
- 1 low power 32.768KHz clock source with moderate accuracy
- Wakeup system detector to resume from low power state

8.1.2. Power Mode Description

8.1.2.1 Shutdown Mode

CHIP_EN deasserts to shutdown whole chip without external power cut components required.

8.1.2.2 Deep Sleep Mode

CHIP_EN keeps high. Enter into Deep Sleep mode by API. The trigger timer period can be configured or GPIOB_0 can be used as external trigger event. The DLSP trigger timer can be configured with the range $1 \sim 3600$ sec.

8.1.2.3 Deep Standby Mode

CHIP_EN keeps high. Entering into Deep Sleep mode by API. The trigger timer period can be configured or all GPIO group can be used as external trigger event.

8.2. Memory System

8.2.1. Memory Architecture

RTL8710AF integrates ROM, internal SRAM, extended NOR flash to provide applications with a variety of memory requirements.

8.2.2. Internal ROM

RTL8710AF integrates 1MB ROM to provide high access speed, low leakage memory. The ROM memory clock speed is up to 83MHz. The ROM lib provides the following functions:

2016-09-08 22 Track ID: Rev. 0.1

- Boot Code and MCU initialization
- Default UART driver
- Non-flash booting functions and drivers
- Peripheral libs
- Security function libs

8.2.3. Internal SRAM

448KB SRAM is integrated to provide instruction, data, and buffer usage. The maximum clock speed is up to 83.3MHz.

Additional 64KB fast access data memory (TCM) is provided for FW data section. The range is $0x1FFF-0000 \sim 0x1FFF-FFFF$.

8.2.4. SPI NOR Flash

Features

- Targeted SPI flash frequency: Up to 41.6MHz (when CPU clock is 83.3MHz)
- In addition to a programmed I/O interface, also supports a memory-mapped I/O interface for read operation
- Supports Read and Fast Read in memory-mapped I/O mode

Supported NOR Flash List

Table 6. Flash Bus DC Parameters

Vendor	Part Number	Density	Voltage	Ю	
MXIC	MXIC_MX25L8006E	8M Bits	3.3V	1I/2O	

Electrical Specifications

Table 7. Flash Bus DC Parameters

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units	Notes
V_{IH}	Input-High Voltage	LVTTL	2.0	-	-	V	1
V _{IL}	Input-Low Voltage	LVTTL	-	-	0.8	V	2
V _{OH}	Output-High Voltage	-	2.4	-	=	V	3
V_{OL}	Output-Low Voltage	-	-	-	0.4	V	3
I _{IL}	Input-Leakage Current	V _{IN} =3.3V or 0	-10	±1	10	μΑ	-
l _{oz}	Tri-State Output-Leakage Current	-	-10	±1	10	μА	-
R _{PU}	Input Pull-Up Resistance	-	-	75	-	ΚΩ	4
R _{PD}	Input Pull-Down Resistance	-	=	75	-	ΚΩ	4

Note 1: V_{IH} overshoot: VIH (MAX)=VDDH + 2V for a pulse width \leq 3ns.

Note 2: V_{IL} undershoot: V_{IL} (MIN)=-2V for a pulse width \leq 3ns.

Note 3: The output current buffer is 8mA for the flash address and data bus; and is 8mA for Flash control signals.

Note 4: These values are typical values checked in the manufacturing process and are not tested.

8.3. General Purpose DMA Contrller

8.3.1. Features of GDMA

- Dual port DMA with totally 12 channels
- Configurable endian
- Support memory-memory, memory-peripheral, peripheral-memory, and peripheral-peripheral DMA transfer
- Support block level flow control
- Support address auto-reload, link-listed mode
- Support scatter-gather mode

8.4. General Purpose Timer

8.4.1. Features of GTimer

- 8 Gtimer supported
- Source clock is 32.768KHz
- Support Counter mode and timer mode

8.5. GPIO Functions

8.5.1. Features of GPIO

- GPO and GPI function
- Support interrupt detection with configurable polarity per GPIO
- Internal weak pull up and pull low per GPIO
- Multiplexed with other specific digital functions

8.6. UART Interface Characteristics

8.6.1. Features of UART

- Support 2 HS-UART (max baud rate 4MHz, DMA mode and only one of then has flow control) and 1
 Log UART (IO mode)
- UART (RS232 Standard) Serial Data Format

- Transmit and Receive Data FIFO
- Programmable Asynchronous Clock Support
- Auto Flow Control
- Programmable Receive Data FIFO Trigger Level
- DMA data moving support to save CPU loading

8.6.2. High Speed UART Specification

The RTL8710AF UART interface with flow control is a standard 4-wire interface with RX, TX, CTS, and RTS. The default baud rate is 115.2k baud. In order to support high and low speed baud rate, the RTL8710AF provides multiple UART clocks.

Table 8. UART Baud Rate Specifications

Desired Baud Rate	Actual Baud Rate	Error (%)
300	300	0.00%
600	600	0.00%
900	900	0.00%
1200	1200	0.00%
1800	1800	0.00%
2400	2400	0.00%
3600	3601	0.03%
4800	4798	-0.04%
7200	7198	-0.03%
9600	9603	0.03%
14400	14395	-0.03%
19200	19182	-0.09%
28800	28846	0.16%

Desired Baud Rate	Actual Baud Rate	Error (%)
38400	38462	0.16%
56000	55970	-0.05%
57600	57692	0.16%
76800	76531	-0.35%
115200	115385	0.16%
128000	127119	-0.69%
153600	153061	-0.35%
230400	229167	-0.54%
460800	458333	-0.54%
500000	500000	0.00%
921600	916667	-0.54%
1000000	1000000	0.00%
1382400	1375000	-0.54%

Desired Baud Rate	Actual Baud Rate	Error (%)
1444444	1437500	-0.48%
1500000	1500000	0.00%
1843200	1833333	-0.54%
2000000	2000000	0.00%
2100000	2083333	-0.79%
2764800	2777778	0.47%

Desired Baud Rate	Actual Baud Rate	Error (%)
3000000	3000000	0.00%
3250000	3250000	0.00%
3692300	3703704	0.31%
3750000	3750000	0.00%
4000000	4000000	0.00%

Figure 5. UART Interface Waveform

8.6.3. UART Interface Signal Levels

The UART signal level ranges from 1.8V to 3.3V. The host provides the power source with the targeted power level to the RTL8710AF UART interface via the IO power.

8.7. SPI Interface

8.7.1. Features of SPI

- Support 1 SPI port
- Support Master/Slave mode
- Support DMA to offload CPU bandwidth
- 1 high speed SPI (Master/Slave)

- Support baud rate up to 10.4MHz (Master mode)
- Support baud rate up to 2.6MHz (Slave mode Rx only)
- Support baud rate up to 2MHz (Slave mode TRx)
- Programmable clock bit-rate
- Programmable clock polarity and phase
- Multiple Serial Interface Operations support
 - Motorola SPI
 - Texas Instruments SSI
 - National Semiconductor Microwire

8.8. I2C Interface

8.8.1. Features of I2C

- Support 1 I2C port
- Three speeds:
 - Standard mode (0 to 100 Kb/s)
 - Fast mode (<400 Kb/s)
 - High-speed mode (<3.4 Mb/s) (with appropriate bus loading)
- Master or Slave I2C operation
- 7- or 10-bit addressing
- Transmit and receive buffers
- TX and RX DMA support (I2C 0 and 1 only)

8.9. Security Engine

8.9.1. Features

- Provide low SW computing and high performance encryption
- Supported authentication algorithms:
 - MD5
 - SHA-1
 - SHA-2 (SHA-224 / SHA-256)
 - HMAC-MD5
 - HMAC-SHA1
 - HMAC-SHA2

•

- Supported Encryption / Decryption mechanisms:
 - DES (CBC / ECB)
 - 3DES (CBC / ECB)
 - AES-128 (CBC / ECB / CTR)
 - AES-192 (CBC / ECB / CTR)
 - AES-256 (CBC / ECB / CTR)

9. Electrical Characteristics

9.1. Temperature Limit Ratings

Table 9. Temperature Limit Ratings

Parameter	Minimum	Maximum	Units
Storage Temperature	-55	+125	°C
Ambient Operating Temperature	-20	+85	°C
Junction Temperature	0	+125	°C

9.2. Temperature Characteristics

Table 10. Thermal Properties

Power (w)	PCB (layer)	Theta ja (C/W)	Theta jc (C/W)	Psi jt (C/W)
1	2	38.7	12.4	0.35
1	4	28.1	11.1	0.24

9.3. Power Supply DC Characteristics

Table 11. Power Supply DC Characteristics

Symbol	Parameter	Minimum	Typical	Maximum	Units
VA33, VD33IO, SW_HV3	3.3V Supply Voltage	3.0	3.3	3.6	V
VDD_IO	Digital IO Supply Voltage	1.62	1.8~3.3	3.6	V

Symbol	Parameter	Minimum	Typical	Maximum	Units
VA12_AFE, VA12_SYN, VA12_RF	1.2V Core Supply Voltage	1.08	1.2	1.32	V
IDD33	3.3V Rating Current (with internal regulator and integrated CMOS PA)	-	-	450	mA
IDD_IO	IO Rating Current (including VDD_IO)			200	mA
IDD_IO_33	3.3V IO Rating Current			50	mA

9.4. Mechanical Dimensions

9.4.1. Package Specification

9.4.2. Mechanical Dimensions Notes

Symbol	Dir	nension in mm			Dimension in inch	
Зуппоог	Min	Nom	Max	Min	Nom	Max
А	0.75	0.85	1.00	0.030	0.034	0.039
A ₁	0.00	0.02	0.05	0.000	0.001	0.002
A ₃	0.20 REF			0.008 REF		
b	0.15	0.20	0.25	0.006	0.008	0.010
D/E		6.00BSC		0.236BSC		
D2/E2	4.15	4.4	4.65	0.163	0.173	0.183
е	0.40BSC			0.016BSC		
L	0.30	0.40	0.50	0.012	0.016	0.020

Notes:

1. CONTROLLING DIMENSION: MILLIMETER(mm).

2. REFERENCE DOCUMENTL: JEDEC MO-220.

9.5. Digital IO Pin DC Characteristics

9.5.1. Electrical Specifications

Table 12. Typical Digital IO DC Parameters (3.3V Case)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
V _{IH}	Input-High Voltage	LVTTL	2.0	-	=	V
V _{IL}	Input-Low Voltage	LVTTL	-	-	0.8	V
V _{OH}	Output-High Voltage	LVTTL	2.4	-	-	V
V _{OL}	Output-Low Voltage	LVTTL	-	-	0.4	V
V _{T+}	Schmitt-trigger High Level		1.78	1.87	1.97	V
V _{T-}	Schmitt-trigger Low Level		1.36	1.45	1.56	V

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
I _{IL}	Input-Leakage Current	V _{IN} =3.3V or 0	-10	±1	10	μΑ

Table 13. Typical Digital IO DC Parameters (1.8V Case)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
V _{IH}	Input-High Voltage	CMOS	0.65x V _{CC}	-	-	V
V _{IL}	Input-Low Voltage	CMOS	-	-	0.35x V _{cc}	V
V _{OH}	Output-High Voltage	CMOS	V _{CC} -0.45	-	-	V
V _{OL}	Output-Low Voltage	CMOS	-	-	0.45	V
V _{T+}	Schmitt-trigger High Level		1.02	1.09	1.14	V
V _{T-}	Schmitt-trigger Low Level		0.67	0.73	0.8	V
I _{IL}	Input-Leakage Current	V _{IN} =1.8V or 0	-10	±1	10	μΑ

10. Ordering Information

Table 14. Ordering Information

Part Number	Package	Status
RTL8710AF-VB1-CG	QFN48	MP