Introduzione Modello teorico Implementazione Simulink Analisi Conclusioni

MRAC e I&I

Lorenzo Rossi Matricola: 0301285

July 17, 2022

- Introduzione
- Modello teorico
 - Implementazione Simulink
 - Reference Model
 - Controllo Adattativo I&I
 - ullet β quadratic
 - ullet β logarithmic
 - Controllore MRAC
 - Sistema complessivo

- 4 Analisi
 - MRAC Parametri stazionari
 - MRAC Parametri stazionari + rumore
 - MRAC parametri non stazionari
 - I&I parametri stazionari
 - I&I parametri stazionari + rumore
 - I&I parametri non stazionari
 - I&I parametri non stazionari
- Conclusioni

Assignment 4

Considerato il sistema:

$$\dot{x} = ax + u$$
 a non noto

Effettua le simulazioni con a=1e $a_m=1$ e implementa un controllore adattativo MRAC e l&l per risolvere il problema di regolazione adattativa. Inoltre, confronta le performance dei due controllori in presenza di rumore additivo

$$x+d \quad d(t)=0.1\sin\frac{1}{5}$$

Infine, contronta le performance nel caso in cui il parametro *a* del sistema è del tipo:

$$a = 1 + \frac{1}{10}\sin 10t$$
 $a = 1 + 10\sin \frac{t}{10}$

Modello teorico

- Modello di riferimento: $\dot{x_m} = -a_m x_m$;
- Sistema: $\dot{x} = ax + u$;
- Controllore adattativo I&I:
 - β quadratic: $\dot{x} = -a_m x xz$, $\dot{z} = -x^2 z$, $\dot{\hat{a}} = a_m x^2$, $a_{\text{est}} = \hat{a} + \frac{x^2}{2}$
 - $\beta \ logarithmic: \dot{x} = -a_m x xz, \dot{z} = -\frac{a_m x^2}{1+x^2}z, \dot{\hat{a}} = a_m \frac{x^2}{1+x^2}, a_{est} = \hat{a} + \frac{1}{2} \log (1+x^2)$
- Controllore MRAC: $\dot{\tilde{k}}=\gamma \varepsilon_1 x, u=-\tilde{k}x, \varepsilon_1=x-\hat{x}$

• Reference Model:

Sistema:

• I&I β quadratic:

• I&I β logarithmic:

MRAC:

MRAC Parametri stazionari

$$\gamma = 1$$

$$\gamma = 5$$

Al variare del parametro γ del controllore adattativo MRAC si nota che il tempo di convergenza per stimare lo stato rimane invariato a circa 5s. Per valore di γ maggiori, si nota che l'errore presenta una sottoelongazione e la stima di k una leggera sovraelongazione.

MRAC Parametri stazionari con rumore

$$\gamma = 5$$

L'errore in entrambi i casi rimane limitato, tuttavia a causa del disturbo sinusoidale l'andamento degli stati variano.

MRAC parametri non stazionari

$$\gamma=1$$
 $a=1+rac{1}{10}\sin\left(10t
ight)$ $\gamma=1$ $a=1+10\sin\left(rac{t}{10}
ight)$

$$\gamma=1$$
 $a=1+10\sin\left(rac{t}{10}
ight)$

Le prestazioni dell'algoritmo MRAC peggiorano per variazioni più accentuate del parametro a. Ciò si riflette in un'azione di controllo maggiore ed in un tempo di convergenza di x da 5s a 18s circa. Tuttavia, l'errore rimane in entrambi i casi limitato.

I&I parametri stazionari

β quadratic

β logarithmic

Sia l'algoritmo l&l con β quadratic e logarithmic arrivano a convergenza con prestazioni simili ad eccezione dell'errore che presenza una sovraelongazione leggermente più arcuata.

I&I parametri stazionari con rumore

β quadratic

β logarithmic

In entrambi i casi le stime non convergono ai valori veri a causa del rumore nello stato. Tuttavia, l'errore resta limitato.

I&I parametri non stazionari

$$eta$$
 quadratic $a=1+rac{1}{10}\sin{(10t)}$ eta logarithmic $a=1+rac{1}{10}\sin{(10t)}$

Si ha convergenza per entrambe le scelte di β con tempi, rispettivamente, di 5 e 6s circa. Nel secondo caso, l'errore ha un valore iniziale più alto.

1&1 parametri non stazionari

$$\beta$$
 quadratic $a=1+10\sin\left(\frac{t}{10}\right)$ β logarithmic $a=1+10\sin\left(\frac{t}{10}\right)$

Dato che la variazione di a è maggiore, i tempi di convergenza per la stima e l'errore risulta aumentata a 20s e l'azione di controllo è elevata. Inoltre, l'andamento generale con β logarithmic è più regolare rispetto al β quadratic.

Conclusioni

- Per piccole variazioni del parametro a entrambi i modelli presentano prestazioni simili;
- Per variazioni elevate del parametro a si richiede un'azione di controllo maggiore,ma si giunge a convergenza;
- In presenza di rumore il modello MRAC fornisce prestazioni migliori e con un'azione di controllo più contenuta e una stima più precisa del modello I&I;
- Il modello I&I logarithmic permette di ottenere un andamento più regolare rispetto al quadratic;