Bike Rental Prediction using Python and Data Science

A case study on predicting bike rentals with historical data

Name: Sarah Moin

Date: 19/09/2024

Objective & Dataset Overview

Objective: Predict future bike rentals using historical data from a bike-sharing system.

hour.csv - 17,379 hourly records

day.csv - 731 daily records

	instant	dteday	season	yr	mnth	holiday	weekday	workingday	weathersit	temp	atemp	hum	windspeed	casual	registered	cnt
0	1	01/01/2011	1	0	1	0	6	0	2	0.344167	0.363625	0.805833	0.160446	331	654	985
1	2	02/01/2011	1	0	1	0	0	0	2	0.363478	0.353739	0.696087	0.248539	131	670	801
2	3	03/01/2011	1	0	1	0	1	1	1	0.196364	0.189405	0.437273	0.248309	120	1229	1349
3	4	04/01/2011	1	0	1	0	2	1	1	0.200000	0.212122	0.590435	0.160296	108	1454	1562
4	5	05/01/2011	1	0	1	0	3	1	1	0.226957	0.229270	0.436957	0.186900	82	1518	1600
5	6	06/01/2011	1	0	1	0	4	1	1	0.204348	0.233209	0.518261	0.089565	88	1518	1606
6	7	07/01/2011	1	0	1	0	5	1	2	0.196522	0.208839	0.498696	0.168726	148	1362	1510
7	8	08/01/2011	1	0	1	0	6	0	2	0.165000	0.162254	0.535833	0.266804	68	891	959
8	9	09/01/2011	1	0	1	0	0	0	1	0.138333	0.116175	0.434167	0.361950	54	768	822
9	10	10/01/2011	1	0	1	0	1	1	1	0.150833	0.150888	0.482917	0.223267	41	1280	1321

Features Overview:

Features include: season, yr, mnth, hr, weekday, weathersit, temp, atemp, hum, windspeed, and bike counts (casual, registered, cnt).

Data Preprocessing & Exploration

Cleaning

- Renamed columns to improve readability and make the dataset easier to work with.
- Checked for missing data across all columns.
- Removed any rows with null values to ensure data integrity.
- Identified and deleted duplicate rows to avoid redundant data that could skew the analysis.

Feature Engineering

- Handled categorical features like season, year, month, holiday, weekday etc. using label encoding.
- Created lags in data in interval of 7 days.

Data Preprocessing & Exploration

Exploratory Data
Analysis (EDA)

• Explored dataset by plotting different graphs and tables.

Modeling Approach

Train-Test Split

Split the data 80-20 for training and testing.

Algorithms

Regression Algorithms are used like

- Linear Regression
- Random Forest
- Gradient Boosting Regressor

Feature Selection Features: Removed humidity and windspeed as they were not making any impact which can be seen in corelation matrix.

Model Evaluation & Results

Evaluation Metrics

MSE, R2 Score

Results

Linear Regression:

Mean Squared Error (One-Hot):

8.263703816779052e-25

R² Score (One-Hot): 1.0

Random Forest:

rf: Mean Squared Error:

111814.21645379311

R-squared: 0.9683311835688072

Gradient Forest:

gbr Mean Squared Error:

44104.11061910983

R-squared: 0.9875085205857093

Model Evaluation & Results

Results

Predection fo next 30 days

Best Model Selection

Linear Regression

Conclusion & Next Steps

Conclusion

By using historical data, we successfully predicted future bike rentals. Our best model achieved an RMSE and R².

Next Steps

01

Further optimization of the model (e.g., hyperparameter tuning).

02

Deploying the model for real-time predictions.

03

Integrating external data like weather forecasts.

THANK YOU!

