BENÉMERITA UNIVERSIDAD AUTÓNOMA DE PUEBLA FACULTAD DE CIENCIAS DE LA COMPUTACION

MAESTRIA EN CIENCIAS DE LA COMPUTACION

Área: Sistemas Distribuidos

Programa de Asignatura: Programación en Plataformas Multi-Core

Código: MCOM 22216

Tipo: Optativa

Créditos: 9

Fecha: Noviembre 2012

BENÉMERITA UNIVERSIDAD AUTÓNOMA DE PUEBLA **FACULTAD DE CIENCIAS DE LA COMPUTACION**

1. DATOS GENERALES

Nombre del Programa Educativo:	Maestría en Ciencias de la Computación
Modalidad Académica:	Escolarizada
Nombre de la Asignatura:	Programación en Plataformas Multi-Core
Ubicación:	Segundo o tercer semestre (Optativa)

2. REVISIONES Y ACTUALIZACIONES

Autores:	Dra. Bárbara Sánchez Rinza Dr. Luis Carlos Altamirano Robles Dr. Mario Rossainz López Dr. Manuel I. Martín Ortiz
Fecha de diseño:	Noviembre 2012
Fecha de la última actualización:	Marzo 2017
Revisores:	Dr. Mario Rossainz López
Sinopsis de la revisión y/o actualización:	Revisión de contenido

BENÉMERITA UNIVERSIDAD AUTÓNOMA DE PUEBLA FACULTAD DE CIENCIAS DE LA COMPUTACION

3. OBJETIVOS:

General:

Conocer y utilizar la programación en plataformas Multi-Core para desarrollar sistemas de software paralelo como soluciones a problemas reales.

Específicos:

- 1.- Conocer las características y arquitecturas paralelas de las tecnologías Multi-Core de empresas como Intel y Amd
- 2.- Utilizar lenguajes de programación como Java, C++ o C# para utilizar el potencial de éstos como lenguajes implementados frameworks en la implementación del procesamiento paralelo y optimización de ejecución de programas
- 3.- Aprender a programar en forma paralela haciendo uso de los elementos que la distinguen tales como la exclusión mutua, sincronización y comunicación entre procesos
- 4.- Entender, comprender y utilizar los factores de medición de la ejecución de programas paralelos en tecnologías multi-core tales como el speedUp, la ley de Amdahl y los ciclos por instrucción

BENÉMERITA UNIVERSIDAD AUTÓNOMA DE PUEBLA **FACULTAD DE CIENCIAS DE LA COMPUTACION**

4. CONTENIDO

Unidad	Contenido Temático/Actividades de	
Official	aprendizaje	
1. Introducción	1.1. Tipos de procesadores	
	1.2. Arquitecturas Paralelas y Distribuidas	
	(clasificación)	
	1.3. Multi-core(características)	
	1.4. Procesamiento Paralelo (Paralelismo y	
	Concurrencia)	
	1.5. Multiprogramación, Multitarea y Procesos	
2. Paralelismo	2.1 El Procesamiento Paralelo	
	2.2 Objetivo del paralelismo	
	2.3 El Factor del rendimiento Speed-UP	
	2.4 La Ley de Amdahl	
	2.5 Los ciclos por instrucción(CPI)	
	2.6 Características Paralelas en Tecnologías	
	Multi-Core (Intel Core 2-Duo y AMD)	
3. Procesadores	3.1 Procesadores Vectoriales(arquitectura y	
	rendimiento)	
	3.2 RISC(Arquitectura y Rendimiento)	
	3.3 CISC(Arquitectura y Rendimiento)	
	3.4 La Función Generatriz Exponencial	
4. Programación	4.1 Exclusión Mutua	
Paralela	4.2 Comunicación y Sincronización	
	4.3 Corrección de Sistemas Paralelos (Safety,	
	Liveness, Not Lockout, Faimess)	
	4.4 Programación Concurrente y uso de	
	Threads	
	4.5 Memoria Compartida vs Paso de mensajes	
	4.6 Estándares de Treads (LWP Threads de	
	SUN, WinNT Threads de Microsoft, POSIX de	
	ISO/IEE, etc.)	
5. Uso y Análisis de	5.1 TPLM (Task Parallel Library Microsoft)	
Bibliotecas para el	5.2 MPI (Message Passing Interface)	
Procesamiento	5.3 PThread (Posix Thread) de C	
Paralelo en Multi-Core	5.4 openMP (Programación multiproceso de	
	memoria compartida)	

BENÉMERITA UNIVERSIDAD AUTÓNOMA DE PUEBLA **FACULTAD DE CIENCIAS DE LA COMPUTACION**

Bibliografía		
Básica	Complementaria	
1 James Reinders "Intel Threading	1. Gaster, Hower, Kaeli, Mistra , Chaa.	
Building Blocks, Outfitting C++ for Multi-	"Heterogeneous Computing with Open	
Core Processor Parallelism". O'reilly.	CL", 2th Edition, 2013.	
2007	2. Almeida F., Giménez D., Mantas J.M.,	
2 Darryl Gove "Multicore Application	Vidal A. M. "Introducción a la	
Programming: for Windows, Linux, and	Programación Paralela". Editorial	
Oracle Solaris". Addison Wesley. 2011	Paraninfo. 2008. Madrid, España.	
3 Shammem Akhter and Jason Roberts	3. Breshears Clay. "The Art of	
"Multi-Core Programming Increasing	Concurency. A Thread Monkey's Guide to	
Performance through Software Multi-	Writing Parallel Aplications". O'Really.	
threading".Intel PRESS.	2008.	
4 Thomas Rauber. "Parallel	4. Goetz B. et-al. "JAVA. Concurrency in	
Programming: for Multicore and Cluster	Practice". Addison-Wesley. 2006.	
Systems" Springer 2007.	•	

5. CRITERIOS DE EVALUACIÓN

Criterios	Porcentaje
Exámenes	25%
Participación en clase	
Tareas	10%
 Exposiciones 	
Simulaciones	
 Trabajo de investigación y/o de 	20%
intervención	
 Prácticas de laboratorio 	20%
 Visitas guiadas 	
 Reporte de actividades académicas y 	
culturales	
Mapas conceptuales	
Portafolio	
Proyecto final	25%
• Otros	
Total	100%