Algebre de boole

soit $\mathbb B$ un enssemble munit d'une structure algebrique, on l'appelle algebre de boole.

Définition 1: on appelle booleen toute variable defini sur un ensemble a deux elements

Pour simplifier l'ecriture des expressions logique, l'operande \neg peut etre ecrit de cette facon: \bar{x} . et on a

x	0	1
\bar{x}	1	0

dans le cadre de l'algebre de Boole, un litterale designe la aussi une variable x (litteral positif) ou sa negation \bar{x} (litteral negatif)

Proprietes de calcul

on dispose des nombreuses proprietess suivantes heritees du calcul propositionnel:

- 1. associativite: (a + b) + C = a + (b + c) = a + b + c
- 2. commutativite a + b = b + a
- 3. distributivite a(b+c) = ab + (ac)
- 4. idempotence: a + a + a + a = a et aaa = a
- 5. element neutre: a + 0 = 0 + a = a et a1 = 1a = a
- 6. absorption 0a = a et 1 + a = 1
- 7. simplification: $a + \bar{a}b = a + b$ et $a(\bar{a} + b) = ab$
- 8. redondance: $ab + \bar{a}c = ab + \bar{a}c + bc$ et $(a+b)(\bar{a}+c) = (a+b)(\tilde{a}+c)(b+c)$
- 9. DeMorgan: $\bar{ab} = \bar{a} + \bar{b}$
- 10. Involution: $\bar{a} = a$
- 11. tiers exclu: $\bar{a} + a = 1$
- 12. non contradiction: $a\bar{a} = 0$

on retrouve les cinq autres operateur binaire, implication, equifvvalence, disjonction exclusive, non conjenction et non disjonction:

$$a \Rightarrow b = \tilde{a} + b,$$

$$a \Leftrightarrow b = (\tilde{a} + b) \left(a + \tilde{b} \right)$$

$$a \oplus b = (a + b) \left(\tilde{a} + \tilde{b} \right)$$

$$a \uparrow b = \widetilde{ab}$$

$$a \downarrow b = \widetilde{a + b}$$

qui ont les tables de verite:

\Rightarrow	0	1
0	1	1
1	0	1

\Leftrightarrow	0	1
	_	_

0	1	0
1	0	1

\oplus	0	1
0	0	1
1	1	0

\uparrow	0	1
0	1	1
1	1	0

\rightarrow	0	1
0	1	0
1	0	0