### TIME SERIES ANALYSIS

## Chapter 4 Estimation for nonseasonal Box-Jekins models

#### **Basic Questions:**

- (a) Use R to implement the estimation.
- (b) Estimate ARMA models based on the properties.

#### 1 Estimation of an AR(p) model

Suppose that  $X_t$ :  $t=1,2,\cdots,n$  is a TS (time series), and we want to fit the following regression model

$$X_t = \delta + \phi_1 X_{t-1} + \dots + \phi_k X_{t-k} + Z_t$$

| time | $X_t$     | intercept | $X_{t-1}$ | $X_{t-2}$ | • • • | $X_{t-k}$ |
|------|-----------|-----------|-----------|-----------|-------|-----------|
| 1    | $X_1$     | 1         | _         | _         | • • • | 1         |
| 2    | $X_2$     | 1         | $X_1$     | _         | • • • | _         |
| 3    | $X_3$     | 1         | $X_2$     | $X_1$     | • • • | _         |
| :    | 1         | :         | :         | :         |       | :         |
| k+1  | $X_{k+1}$ | 1         | $X_k$     | $X_{k-1}$ |       | $X_1$     |
| k+2  | $X_{k+2}$ | 1         | $X_{k+1}$ | $X_k$     | • • • | $X_2$     |
| :    | :         | 1         | ÷         | :         |       | :         |
| n    | $X_n$     | 1         | $X_{n-1}$ | $X_{n-2}$ | • • • | $X_{n-k}$ |

what is X and Y?

Using LSE (least-squares estimation) we have

$$\begin{pmatrix} \hat{\delta} \\ \hat{\phi}_1 \\ \vdots \\ \hat{\phi}_p \end{pmatrix} = (X' * X)^{-1} X' * Y.$$

Similarly, we can calculate

a) fitted value (for  $t \le n$ ) and prediction (for t > n)

$$\hat{X}_t = \hat{\delta} + \hat{\phi}_1 X_{t-1} + \dots + \hat{\phi}_p X_{t-p}$$

b) Prediction errors

$$\hat{Z}_t = X_t - (\hat{\delta} + \hat{\phi}_1 X_{t-1} + \dots + \hat{\phi}_p X_{t-p})$$

c) The estimator of  $\sigma^2 = Var(Z_t)$  is

$$\hat{\sigma}^2 = \sum_{t=1}^n \hat{Z}_t^2 / (n-p-1).$$

d) The standard error  $\sqrt{\hat{\sigma}^2 c_{k,k}}$  for  $\delta$  and  $\phi_k$ , where  $c_{k,k}$  is the (k,k) element in  $(X'*X)^{-1}$ .

**EXAMPLE 1** Example (continued)  $X_t$ : 1.0445, -0.1338, 0.6706, 0.3755, -0.5110, -0.2352, 0.1595, 1.6258, -1.6739, 2.4478, -3.1019, 2.6860, -0.9905, 1.2113, -0.0929, 0.9905, 0.5213, -0.1139, -0.4062, 0.5438







| time | $X_t$   | intercept | $X_{t-1}$ |
|------|---------|-----------|-----------|
| 1    | 1.0445  | 1         | -         |
| 2    | -0.1338 | 1         | 1.0445    |
| 3    | 0.6706  | 1         | -0.1338   |
|      | ÷       | 1         | :         |
| 20   | 0.5438  | 1         | -0.4062   |

we have

$$(X' * X)^{-1} = \begin{pmatrix} 0.054303878 & -0.007102646 \\ -0.007102646 & 0.030166596 \end{pmatrix}$$

and

$$X' * Y = \begin{pmatrix} 3.97280 \\ -26.35337 \end{pmatrix}$$

We have

$$\hat{\delta} = 0.4029171, \hat{\phi}_1 = -0.8232089$$

The fitted values are (time: prediction) 2: -0.4569, 3: 0.5130, 4: -0.1491, 5: 0.0938, 6: 0.8235, 7: 0.5965, 8: 0.2716, 9: -0.9354, 10: 1.7809, 11: -1.6121, 12: 2.9564, 13: -1.8082, 14: 1.2183, 15: -0.5942, 16: 0.47939, 17: -0.4124, 18: -0.0262, 19: 0.4966, 20: 0.73730

The estimate of  $\sigma^2 = Var(Z_t)$  is

$$\sum_{t=2}^{20} (X_t - \hat{X}_t)^2 / (19 - 2) = 0.5948365$$

The standard error of  $\delta$  is

$$\sqrt{(0.5948365 * 0.054303878)} = 0.1797274$$

and that of  $\phi_1$  is

$$\sqrt{(0.5948365 * 0.030166596)} = 0.1339559$$

Therefore, our model is estimated as

$$X_t = 0.4029171 - 0.8232089X_{t-1}$$
  
(0.1797274) (0.1339559)  
 $\hat{\sigma}^2 = 0.5948365$ .

 $\mathbb{R}$  code

x = c(1.0445, -0.1338, 0.6706, 0.3755, -0.5110, -0.2352, 0.1595, 1.6258, -1.6739, 2.4478, -3.1019, 2.6860, -0.9905, 1.2113, -0.0929, 0.9905, 0.5213, -0.1139, -0.4062, 0.5438)



est = arima(x, order = c(1,0,0))

est

OUTPUT

Call: arima(x = x, order = c(1, 0, 0))

Coefficients:

**\[** 

\begint{rrr}

s.e. & 0.1153 & 0.0913 $\$ 

\endt

\]

 $sigma^{{}}$  estimated as 0.5181: log likelihood = -22.32, aic = 50.65

-----

Then the estimated model is

$$(X_t - 0.2255) - 0.8040(X_{t-1} - 0.2255) = 0$$

or

$$X_t = 0.406802 - 0.8040X_{t-1}$$

#### 2 Using R to Estimate of ARMA model (continued)

We use R to estimate ARMA(p,q) model

$$X_t = \delta + \phi_1 X_{t-1} + \dots + \phi_p X_{t-p} + Z_t + \theta_1 Z_{t-1} + \dots + \theta_q Z_{t-q}.$$

The formula for the l-step ahead forecast is

$$X_n(l) = E(X_{n+l}|X_n, X_{n-1}, ...).$$

**EXAMPLE 2**  $y_t$ ,  $t = 1, \cdots$ , 50 are observed as: -1.30, -0.18, 0.94, -0.26, -1.05, -0.78, -0.82, 0.43, 0.57, 1.41, -1.47, 0.49, 0.00, -0.15, -0.64, 0.24, -0.79, 0.82, -0.20, -0.80, -0.22, 0.88, -0.75, 0.55, 0.73, -0.82, 0.70, -1.54, 0.04, -0.70, -0.58, -1.38, -1.28, 0.49, -0.76, 1.08, 0.16, 1.11, -0.06, 0.88, 0.89, 0.31, 0.03,-1.19, -0.38, 0.49, 1.02, -0.98, 0.50, -0.57



```
fit = arima(y, order = c(1,0,1)) fit
```

Call: arima(x = y, order = c(1, 0, 1))

Coefficients:

ar1 ma1 intercept -0.7013 0.5768 -0.0946 s.e. 0.3067 0.3377 0.1024

sigma^2 estimated as 0.6086: log likelihood = -58.55, aic = 125.11 predict(fit, n.ahead=10)

\$pred

Time Series:

Start = 51

End = 54

Frequency = 1

[1] 0.06499322 -0.20656294 -0.01612905 -0.14967441 \$se

Time Series:

Start = 51

End = 54

Frequency = 1

[1] 0.7801178 0.7861337 0.7890753 0.7905180

The estimted model is

$$\hat{X}_t = -0.1695 - 0.7013X_{t-1} + Z_t + 0.5768Z_{t-1}$$

$$(0.3067) \qquad (0.3377)$$

where -0.1695 = -0.0946 \* (1 + 0.7913). tsdiag(fit)



# 3 Estimation of ARMA model based on the ACF and PACF: Yule–Walker estimation method

Consider an AR(p) model of the form,

$$X_t - \phi_1 X_{t-1} - \phi_2 X_{t-2} - \dots - \phi_p X_{t-p} = Z_t.$$
 (3.1)

Our aim is to find estimators of the coefficient vector  $\phi = (\phi_1, \dots, \phi_p)$  and the white noise variance  $\sigma^2$  based on the observations  $X_1, \dots, X_N$ .

Recall Yule-Walker equations,

$$\gamma(0) - \phi_1 \gamma(1) - \dots - \phi_p \gamma(p) = \sigma^2,$$
  
$$\gamma(p) - \phi_1 \gamma(p-1) - \dots - \phi_p \gamma(0) = 0; \quad (3.2)$$

or the Yule-Walker equations

$$\begin{cases} \rho(1) = \phi_1 + \phi_2 \rho(1) + \dots + \phi_p \rho(p-1) \\ \rho(2) = \phi_1 \rho(1) + \phi_2 + \dots + \phi_p \rho(p-2) \\ \dots \\ \rho(p) = \phi_1 \rho(p-1) + \phi_2 \rho(p-2) + \dots + \phi_p \end{cases}$$

where  $\rho(k)$  is ACF of the time series. We need to calculate sample ACF. We can solve the above equations to estimate  $\phi_1, \dots, \phi_p$  and  $\sigma^2$ .

Suppose that  $X_1, X_2, \dots, X_n$  are observations.

AR(1) model with mean 0:  $X_t = \phi_1 X_{t-1} + \varepsilon_t$ 

Recall that we have

$$\gamma(1) = \phi_1 \gamma(0)$$

i.e.

$$\phi_1 = \rho(1)$$

We can use sample ACF  $r_1$  to estimate  $\rho(1)$  thus  $\phi_1$ :  $\hat{\phi}_1 = r_1$ .

**EXAMPLE 3** Fit an AR(1):  $X_t = \phi_1 X_{t-1} + Z_t$  to data -0.06, -0.18, 0.06, 0.15, 0.13, -0.02, 0.19, -0.13, -0.26, -0.29, -0.17, -0.10, 0.10, 0.17, 0.04, 0.00, 0.15, 0.11, 0.01, 0.19

Because  $r_1 = 0.4755$ , the estimated model is

$$\hat{X}_t = 0.4755 X_{t-1}.$$

**AR(1) model with nonzero mean:**  $X_t = \delta + \phi_1 X_{t-1} + Z_t$ . Let  $x_t = X_t - \mu$  where  $\mu = EX_t$ . By doing so,  $x_t$  is now  $x_t = \phi_1 x_{t-1} + Z_t$ .

Thus, we need to estimate  $\mu$  first as

$$\hat{\mu} = n^{-1} \sum_{t=1}^{n} X_t$$

Recall that we have

$$\gamma_{\rm r}(1) = \phi_1 \gamma_{\rm r}(0)$$

i.e.

$$\phi_1 = \rho_r(1)$$
.

We can use sample ACF  $r_1$  to estimate  $\rho(1)$  thus  $\phi_1$ :  $\hat{\phi}_1 = r_1$ ; and  $\hat{\delta} = (1 - \hat{\phi}_1)\hat{\mu}$ .

**EXAMPLE 4** Fit an AR(1):  $X_t = \phi_1 X_{t-1} + Z_t$  to data: 5.05, 5.02, 4.78, 4.73, 4.86, 4.81, 4.86, 4.74, 4.89, 5.03, 5.13, 5.16, 5.19, 5.13, 5.16, 5.10, 5.04, 5.07, 4.95, 4.91

We have

$$\hat{\mu} = \bar{X} = n^{-1} \sum_{t=1}^{20} X_t = 4.98$$

and

$$r_1 = \sum_{t=1}^{19} (X_t - \bar{X})(X_{t+1} - \bar{X}) / \sum_{t=1}^{20} (X_t - \bar{X})^2 = 0.7747.$$

Thus

$$\hat{\delta} = (1 - \hat{\phi}_1)\hat{\mu} = 1.1220.$$

Finally the estimated model

$$\hat{X}_t = 1.1220 + 0.7747X_{t-1}.$$

**AR(2) model with mean 0:**  $X_t = \phi_1 X_{t-1} + \phi_2 X_{t-2} + Z_t$  Recall that we have

$$\rho(1) = \phi_1 + \phi_2 \rho(1)$$

$$\rho(2) = \phi_1 \rho(1) + \phi_2.$$

We can then estimate  $\phi_1$  and  $\phi_2$  by solving

$$r_1 = \phi_1 + \phi_2 r_1$$
  
 $r_2 = \phi_1 r_1 + \phi_2$ 

(where  $r_1$ ,  $r_2$  are sample ACF).

**EXAMPLE 5** Fit an AR(2):  $X_t = \phi_1 X_{t-1} + \phi_2 X_{t-2} + Z_t$  to data 0.15, -0.06, -0.39, -0.56, -0.52, -0.26, -0.11, 0.32, 0.31, 0.01, 0.00, 0.17, 0.52, 0.32, -0.08, -0.30, -0.16, 0.32, 0.29, 0.07

Because  $r_1 = 0.64$ ,  $r_2 = 0.04$ , by

$$0.64 = \phi_1 + 0.64\phi_2$$
$$0.04 = 0.64\phi_1 + \phi_2$$

we have

$$\phi_1 = 1.04, \quad \phi_2 = -0.62.$$

The estimated model is

$$\hat{X}_t = 1.04X_{t-1} - 0.62X_{t-2}.$$

AR(2) model with nonzero mean:  $X_t = \delta + \phi_1 X_{t-1} + \phi_2 X_{t-2} + Z_t$ . Let  $x_t = X_t - \mu$  where  $\mu = EX_t$ . By doing so,  $x_t$  is now  $x_t = \phi_1 x_{t-1} + \phi_2 x_{t-2} + Z_t$ . Thus, we need to estimate  $\mu$  first as

$$\hat{\mu} = n^{-1} \sum_{t=1}^{n} X_t$$

We estimate model  $x_t = \phi_1 x_{t-1} + \phi_2 x_{t-2} + Z_t$  first, say

$$\hat{x}_t = \hat{\phi}_1 x_{t-1} + \hat{\phi}_2 x_{t-2}.$$

Then the model for  $X_t$  is

$$\hat{X}_t = \hat{\mu}(1 - \hat{\phi}_1 - \hat{\phi}_2) + \hat{\phi}_1 X_{t-1} + \hat{\phi}_2 X_{t-2}.$$

**EXAMPLE 6** Example: *X<sub>t</sub>*: 1.25, 1.64, 1.78, 1.33, 1.21, 1.04, 1.04, 1.55, 1.31, 0.89, 0.78, 1.28, 1.79, 2.42, 2.09, 1.57, 1.05, 0.97, 1.26, 1.70

Because  $\bar{X} = 1.40$ . Let  $x_t = X_t - 1.40$ . We have, for  $x_t$ 

$$r_1 = 0.57, \quad r_2 = -0.11$$

By solving

$$0.57 = \phi_1 + 0.57\phi_2$$
$$-0.11 = 0.57\phi_1 + \phi_2$$

we have  $\hat{\phi}_1 = 0.94$ ,  $\hat{\phi}_2 = -0.65$ . The estimated model for  $X_t$  is

$$\hat{X}_t = 0.994 + 0.94X_{t-1} - 0.65X_{t-2}$$

where 0.994 = 1.40 \* (1 - 0.94 + 0.65).

Example 7 Generate an AR(2) model of the form:  $X_t = 0.7X_{t-1} - 0.5X_{t-2} + Z_t$  and then estimate  $\phi_1 = 0.7$ ,  $\phi_2 = -0.5$  by  $(\widetilde{\phi}_1, \widetilde{\phi}_2)$  using the following codes:

```
> ar.sim<-arima.sim(list(order=c(2,0,0),
+ ar=c(0.7, -0.5)), n=500)</pre>
```

> ts.yw<-ar.yw(ar.sim, order.max=2)</pre>

> ts.yw

Call:

ar.yw.default(x = ar.sim, order.max = 2)

Coefficients:

Order selected 2 \$\sigma^2\$ estimated as 1.094.

**EXAMPLE 8** We now consider using a real data set 1h available in R: a regular time series giving the luteinizing hormone in blood samples at 10 mins intervals from a human female, 48 samples.

> lh
Time Series:
Start = 1
End = 48

> ts.yw<-ar.yw(lh, order.max=5)</pre>

> ts.yw

Call:

ar.yw.default(x = lh, order.max = 5)

Coefficients:

Order selected 3 \$\sigma^2\$ estimated as 0.1959.

Conclusion: This suggests using an AR(3) for the 1h data.

MA(1) model with mean 0:  $X_t = Z_t + \theta_1 Z_{t-1}$ 

We have

$$\rho_1 = \frac{\theta_1}{1 + \theta_1^2}.$$

Thus

$$\rho_1\theta_1^2-\theta_1+\rho_1=0$$

i.e.

$$r_1 \hat{\theta}_1^2 - \hat{\theta}_1 + r_1 = 0.$$

We can estimate  $\theta_1$  by solving the above equations. (we discard the root with absolute value greater 1).

**MA(1) model with nonzero mean**:  $X_t = \delta + Z_t + \theta_1 Z_{t-1}$ . Because  $EX_t = \delta$ . define  $z_t = X_t - \delta$ . We can estimate MA(1) for  $z_t$  and then  $X_t$ .

Example 9  $X_t$ : -0.89 -0.53 0.54 -0.26 -1.34 -1.97 -0.35 0.46 -0.08 -1.13 0.04 1.64 1.95 0.94 -0.11 0.18 0.72 0.91 -1.09 0.12 1.29 0.79 1.67 -0.60 -1.72 -0.76 -2.60 -1.71 -0.39 -1.18

Fit a MA(1) model

$$\bar{y} = \sum_{t=1}^{30} X_t/30 = -0.182, \quad r_1 = 0.5$$

We have

$$\hat{\theta}_1 = \frac{1 - \sqrt{1 - 4r_1^2}}{2r_1} = 1.00.$$

Thus the estimated model is

$$\hat{X}_t = Z_t + 1.00 Z_{t-1}.$$

MA(q) model with nonzero mean: There is no analytic solution. For some special cases, we still have solutions. For example

$$X_t = \delta + Z_t + \theta_p Z_{t-p}$$

There are no simple methods for  $Estimation\ of\ ARMA\ model\ ARMA(p,q)$  (the details are beyond the scope of the module).