Homework set #7Based on lectures 11 - 12

- 1. (a) Let X_1, \ldots, X_n be i.i.d. $N(\mu, \sigma^2)$. Find c > 0, possibly depending on n, that minimizes $MSE(cS_n^2)$.
 - (b) What implications does this have for sample variance?
- 2. Let X_1, \ldots, X_n be i.i.d. Exponential(λ), i.e., $f(x|\lambda) = \lambda e^{-\lambda x} I_{(0,\infty)}(x)$. Find the UMVUE for estimating $e^{-10\lambda}$.
- 3. Let us assume that X_1, X_2, \ldots, X_{2n} be i.i.d. from some distribution with parameter θ and $S(X_1, \ldots, X_{2n})$ is minimal sufficient complete statistics. Further assume that $T(X_1, \ldots, X_n)$ is an unbiased estimator of $q(\theta)$. Is there a UMVUE of $q(\theta)^2$? Justify!
- 4. Let X_1, \ldots, X_n be an i.i.d. sample from geometric (p) distribution. (i.e. $f(x,p) = p(1-p)^{x-1}I_{\{1,2...\}}$, where $p \in (0,1)$.)
 - (a) Argue exponential family and deduce complete sufficient statistics.
 - (b) Is there UMVUE of $\tau(p) = E_p X_1$? If so, find it.
 - (c) Find the UMVUE of $1/p^2$.
 - (d) Is there UMVUE of p? If so, find it.
- 5. Let X_1, \ldots, X_n be an i.i.d. sample from Pareto distribution. (i.e. $f(x;\theta) = \frac{\theta}{(1+x)^{\theta+1}} I_{(0,\infty)}(x)$).
 - (a) Argue exponential family and find complete sufficient statistics.
 - (b) Is there UMVUE of θ ? If so, find it.
 - (c) Is there UMVUE of $\tau(\theta) = 2^{-\theta}$? If so, find it.
- 6. From the book 7.50.