6.3 Automorfismi del prodotto diretto di due gruppi

Teorema 6.3.1 Siano H e K due gruppi tali che |H| = m e |K| = n con (m, n) = 1. Allora, $Aut(H) \times Aut(K) \cong Aut(H \times K)$.

Nell dimostrazione del teorema useremo il seguente risultato:

Lemma 6.3.2 Siano H e K due gruppi tali che |H| = m e |K| = n con (m, n) = 1. Allora, ogni omomorfismo $\varphi : H \to K$ è banale, cioè $\varphi(h) = 1_k$, per ogni $h \in H$.

Dimostrazione: Essendo m e n coprimi, esistono $u,v\in\mathbb{Z}$ tali che um+vn=1, e quindi

$$h = h^{um+vn} = h^{um}h^{vn} = (h^u)^m h^{vn} = h^{vn}.$$

dove nell'ultima uguaglianza stiamo usando la (ii) del Corollario 3.5.8 del Teorema di Lagrange. Pertanto, ancora per la (ii) del Corollario 3.5.8,

$$\varphi(h) = \varphi(h^{vn}) = (\varphi(h^v))^n = 1_K.$$

Dimostrazione (del Teorema 6.2.2): Definiamo l'applicazione

$$\Phi : \operatorname{Aut}(H) \times \operatorname{Aut}(K) \to \operatorname{Aut}(H \times K), \quad (\alpha, \beta) \mapsto \Phi(\alpha, \beta),$$

dove

$$\Phi(\alpha, \beta)(h, k) = (\alpha(h), \beta(k)), \forall (h, k) \in H \times K.$$

I seguenti fatti si verificano facilmente:

- 1. $\Phi(\alpha, \beta)$ è un omomorfismo, per ogni $\alpha \in Aut(H)$ e $\beta \in Aut(K)$.
- 2. $\Phi(\alpha, \beta) \in \text{Aut}(H \times K)$, per ogni $\alpha \in \text{Aut}(H)$ e $\beta \in \text{Aut}(K)$ (ovvero Φ è ben definita): infatti, se $(h, k) \in H \times K$ è tale che

$$\Phi(\alpha,\beta)(h,k) = (\alpha(h),\beta(k)) = (1_H,1_K),$$

allora, poiché α e β sono iniettive, segue che $(h,k)=(1_H,1_K)$, e quindi $\Phi(\alpha,\beta)$ è iniettiva, e di conseguenza anche suriettiva, essendo $H\times K$ un insieme finito.

3. Φ è un omomorfismo di gruppi:

$$\Phi\left((\alpha_1,\beta_1)(\alpha_2,\beta_2)\right) = \Phi(\alpha_1,\beta_1) \circ \Phi(\alpha_2,\beta_2).$$

4. Φ è iniettivo: $ker(Φ) = (id_H, id_K)$.

Resta da dimostrare la suriettività di Φ , utilizzando l'ipotesi (m,n)=1. Sia $\omega\in \operatorname{Aut}(H\times K)$ e definiamo gli omomorfismi $\omega_1:H\to H$ e $\gamma:H\to K$ come

$$\omega_1(h) = p_1(\omega(h, 1_K)), \quad \forall h \in H,$$

$$\gamma(h) = p_2(\omega(h, 1_K)), \quad \forall h \in H$$
(6.3)

Osserviamo che, per il Lemma 6.3.2, γ è banale, cioè

$$p_2(\omega(h, 1_K)) = 1_K, \forall h \in H.$$

e che quindi

$$\omega(h, 1_K) = (p_1(\omega(h, 1_K)), p_2(\omega(h, 1_K))) = (\omega_1(h), 1_K), \quad \forall h \in H.$$
 (6.4)

Inoltre, se $\omega_1(h) = 1_H$, allora dalla (6.4)

$$\omega(h, 1_K) = (1_H, 1_K).$$

Poiché ω è un automorfismo, segue che $h=1_H$, quindi ω_1 è iniettivo essendo $\ker(\omega_1)=\{1_H\}$. Quindi ω_1 è anche suriettivo perchè H è finito, ossia $\omega_1\in \operatorname{Aut}(H)$.

In modo analogo definiamo gli omomorfismi $\omega_2: K \to K$ e $\delta: K \to H$ come

$$\omega_2(k) = p_2(\omega(1_H, k)), \quad \forall k \in K.$$

$$\delta(k) = p_1(\omega(1_H, k)), \quad \forall k \in K.$$

Sempre per il Lemma 6.3.2, δ è banale e quindi

$$\omega(1_H, k) = (p_1(\omega(1_H, k)), p_2(\omega(1_H, k))) = (1_H, \omega_2(k)), \quad \forall k \in K.$$
 (6.5)

Dalla (6.5), in modo simile a quanto fatto per ω_1 , si dimostra che $\omega_2 \in \operatorname{Aut}(K)$. Verifichiamo che $\Phi(\omega_1, \omega_2) = \omega$ e che quindi Φ è suriettiva. Per ogni $(h, k) \in H \times K$,

$$\Phi(\omega_1, \omega_2)(h, k) = (\omega_1(h), \omega_2(k)),$$

mentre, per le (6.4) e (6.5),

$$\omega(h,k) = \omega(h,1_K)\omega(1_H,k) = (\omega_1(h),1_K)(1_H,\omega_2(k)) = (\omega_1(h),\omega_2(k)).$$
 Quindi $\Phi(\omega_1,\omega_2) = \omega$.

Osservazione 6.3.3 Senza l'ipotesi (m, n) = 1, il teorema non è vero. Ad esempio, $\operatorname{Aut}(\mathbb{Z}_2) \times \operatorname{Aut}(\mathbb{Z}_2)$ è il gruppo banale $\{1\}$, mentre $\operatorname{Aut}(\mathbb{Z}_2 \times \mathbb{Z}_2) \cong S_3$, come si verifica facilmente osservando che è un gruppo non abeliano con 6 elementi, oppure costruendo un isomorfismo esplicito.