MBA em Ciência de Dados

Aprendizado Dinâmico

Avaliação Final

Aluno: Benicio Ramos Magalhães

Material Produzido por Cibele Russo Cemeai - ICMC/USP São Carlos

Para esta avaliação, você deve entregar três arquivos:

- um arquivo de dados em .csv com a base resultante das análises
- um relatório em .ipynb com suas análises comentadas
- um arquivo .pdf gerado a partir do .ipynb

Os dados de casos confirmados e mortes diárias por COVID-19 nos Estados Unidos estão disponíveis no arquivo covid19USA.csv.

In [31]:

```
#bibliotecas
import six
import sys
import numpy as np
import pandas as pd
from pylab import rcParams
from keras.layers import LSTM
from keras.layers import Dense
import matplotlib.pyplot as plt
from pmdarima import auto arima
from keras.models import Sequential
sys.modules['sklearn.externals.six'] = six
from sklearn.preprocessing import MinMaxScaler
from statsmodels.tsa.stattools import adfuller
import warnings; warnings.simplefilter('ignore')
from statsmodels.tsa.api import ExponentialSmoothing
from statsmodels.tsa.statespace.sarimax import SARIMAX
from statsmodels.tsa.seasonal import seasonal decompose
from keras.preprocessing.sequence import TimeseriesGenerator
from statsmodels.graphics.tsaplots import plot acf, plot pacf
from sklearn.metrics import mean squared error, mean absolute error
```

Exercício 1

Você deve fazer a leitura dos dados, estabelecer um índice por datas, verificar se os dados estão corretos e realizar algum procedimento necessário caso haja dados faltantes.

In [2]:

```
#leitura dos dados estabelecendo um índice por datas
data = pd.read_csv('.\covid19USA.csv',index_col='date',parse_dates=True)
data.head()
```

Out[2]:

	confirmed	deaths
date		
2020-01-01	0	0
2020-01-02	0	0
2020-01-03	0	0
2020-01-04	0	0
2020-01-05	0	0

In [3]:

```
#verificando se os dados estão corretos
#checando intervalos de datas e tamanho do da base:
print('
print('
                         Verificação de dados
print('
print('|Início:------|',data.index.min(),'--|')
print('|Fim:-----|',data.index.max(),'--|')
print('|Tipo de dado do índice:-----|',data.index.dtype,'-----|')
print('|Tamanho da base original:-----|',len(data),'-----|')
print('|Tamanho esperado para o intervalo:-|',len(pd.date_range(start=data.index.min(),
end=data.index.max(), freq='D')),'-----')
#verifcando se temos dados faltantes:
print('|Dados Faltantes em confirmed:-----|',len(data[data['confirmed'].isnull()]),'--
-----|')
print('|Dados Faltantes em deaths:-----|',len(data[data['deaths'].isnull()]),'-----
print('|Dados Zerados em deaths:-----|',len(data[data['deaths']==0]),'-----
----|')
print('|Dados Zerados em deaths > 29-02:---|',len(data[data['deaths']==0].iloc[60:]),'-
----|')
print('|___
print()
print('Verificando dados zerados com data maior que 29-02:')
print(data[data['deaths']==0]['deaths'].iloc[60:])
#printando os dados:
rcParams['figure.figsize'] = 16, 6
data[data['confirmed']>0].plot();
```

Verificação de d	lados
Início:	2020-01-01 00:00:00
Fim:	2020-09-03 00:00:00
Tipo de dado do índice:	datetime64[ns]
Tamanho da base original:	247
Tamanho esperado para o intervalo:-	247
Dados Faltantes em confirmed:	0
Dados Faltantes em deaths:	0
Dados Zerados em deaths:	61
Dados Zerados em deaths > 29-02:	1

Verificando dados zerados com data maior que 29-02:

date

2020-03-20 0

Name: deaths, dtype: int64

Conforme observamos na base de dados, não tivemos ocorrências de valores faltant es (NaN). Temos um base de mortes com valores zerados até o dia 29-02, na qual t ratando-se de um registro global desde o surgimento da pandemia, possivelmente não tivemos ocorrências de mortes nos EUA nesse período. Após essa data, temos apenas uma ocorrência de mortes zeradas na base, que ocorreu no dia 20-03-202 0. Os valores zerados não permitem gerarmos um modelo com sazonalidade multiplic ativa, então temos que considerar essa informação na modelagem.

Possivelmente o valor de 20-03-2020 trata-se de um erro de registro, porém, temo s que levar em consideração a possibilidade de que esses registros possam ter s ido compensados em outro dia, como, por exemplo, em 21-03-2020, que apresenta um número bem maior de ocorrências do que os dias anteriores.

Como estratégia de análise, decidimos por não inserir dados nessa data, logo, no momento da modelagem, iremos filtrar as ocorrências como mortes zeradas, ciente de que esse dia não será contabilizado na modelagem final para uma previsão com sazonalidade multiplicativa.

Exercício 2

Proponha uma decomposição dos dados de mortes em tendência e sazonalidade. Obtenha os gráficos de autocorrelação e autocorrelação parcial. Comente brevemente os resultados.

In [4]:

```
#decomposição dos dados de mortes em tendência e sazonalidade:
decomposicao = seasonal_decompose(data[data['deaths']>0]['deaths'],model='multiplicativ
e', period=7) #filtrando mortes > 0
fig = decomposicao.plot()
```


In [5]:

```
#testando a estacionariedade com Dickey-Fuller
result = adfuller(data['deaths'], autolag='AIC')
print('ADF Statistic: %f' % result[0])
print('p-value: %f' % result[1])
print('Critical Values:')
for key, value in result[4].items():
    print('\t%s: %.3f' % (key, value))
```

ADF Statistic: -2.389673

10%: -2.574

p-value: 0.144672 Critical Values: 1%: -3.459 5%: -2.874

Análise de tendência:

É possível observar uma tendência crescente no período de abril. A curva seg ue depois com uma tendência decrescente até meados de junho. No final de junho, temos um pequeno período de elevação, seguido logo de queda. Depois desse perí odo a tendência fica muito menos evidente, praticamente sugerindo uma estacionar idade, porém, os testes de Dickey-Fuller realizados anteriormente com p-valor ma ior que 0.05, sugere que rejeitemos a hipótese de estacionariedade na série.

Análise de sazonalidade:

Podemos observar ciclos semanais que provavelmente são explicadas pela siste mática de notificações, onde os dados ficam acumulados para cálculo no ínicio da semana e são sumarizados e apresentados mais para o meio da semana. Com relação ao tipo de sazonalidade, o gráfico apresenta algumas variações ao longo da séri e temporal, principalmente nos períodos de tendência crescente, portanto, consid eramos mais adequada representarmos a sazonalidade como sendo do tipo multiplic ativa.

In [6]:

```
#gráficos de autocorrelação e autocorrelação parcial
fig = plot_acf(data['deaths'],title='Autocorrelação: Deaths',lags=50)
fig = plot_pacf(data['deaths'],title='Autocorrelação Parcial: Deaths',lags=50)
```


Análise de autocorrelação:

Podemos observar que a correlação entre a série original até a série com atr aso lag=16 são bastante significativas pois encontram-se maiores que o interval o de confiança (área azul), portanto, precisamos levá-las em consideração duran te a modelagem. Notamos também que há presença de sazonalidade nos dados, aprese ntando vales/picos em ciclos de 7 dias.

Análise de autocorrelação parcial:

Podemos verificar que a partir do lag=3 a correlação cai bastante, apresenta ndo valores por volta 0.4. Mesmo as correlações não sendo tão altas, elas ainda são importantes para o modelo, pois apresentam-se fora do intervalo de confiança.

Exercício 3

Divida a base em treino e teste, com 21 observações na base de teste. Você deverá apresentar em distintas colunas na mesma base de dados que será entregue:

- Os dados originais de casos confirmados e mortes.
- As previsões de Holt e Holt Winters para a variável mortes.
- As previsões obtidas pelo melhor modelo SARIMA, com ordens selecionadas segundo critério preestabelecido para a variável mortes. Identifique as compone ntes desse melhor modelo (por exemplo, "o modelo tem uma componente autorregress iva não sazonal de ordem.., uma componente de médias móveis não-sazonal de orde m.., etc).
- As previsões obtidas por um modelo de redes dinâmicas para a variável mo rtes.

In [7]:

```
#definindo uma semente (42! - the answer to everything)
np.random.seed(42)

#dividindo a base em treino e teste:
train = data.iloc[:226]
test = data.iloc[226:]

print('Base de treino:',len(train),'observações.')
print('Base de teste:',len(test),'observações.')
```

Base de treino: 226 observações. Base de teste: 21 observações.

In [8]:

In [9]:

In [10]:

```
#imprimindo dados com a predição realizada pelo método de holt e holt-winters
test['holt'] = predictH
test['holt-winters'] = predictHW

train['deaths'].plot(legend=True,label='Treino',title='Predição do modelo pelo método d
e Holt e Holt-Winters')
test['deaths'].plot(legend=True,label='Teste',figsize=(16,6))
predictH.plot(legend=True,label='Previsão Holt')
fig = predictHW.plot(legend=True,label='Previsão Holt-Winters')
```


In [11]:

```
Fit ARIMA: order=(0, 1, 0) seasonal order=(1, 0, 1, 7); AIC=3418.337, BIC=
3432.001, Fit time=0.149 seconds
Fit ARIMA: order=(0, 1, 0) seasonal_order=(0, 0, 0, 7); AIC=3418.463, BIC=
3425.295, Fit time=0.012 seconds
Fit ARIMA: order=(1, 1, 0) seasonal_order=(1, 0, 0, 7); AIC=3353.998, BIC=
3367.663, Fit time=0.248 seconds
Fit ARIMA: order=(0, 1, 1) seasonal_order=(0, 0, 1, 7); AIC=3349.966, BIC=
3363.630, Fit time=0.372 seconds
Fit ARIMA: order=(0, 1, 1) seasonal_order=(1, 0, 1, 7); AIC=3306.510, BIC=
3323.591, Fit time=0.762 seconds
Fit ARIMA: order=(0, 1, 1) seasonal_order=(1, 0, 0, 7); AIC=3340.881, BIC=
3354.546, Fit time=0.304 seconds
Fit ARIMA: order=(0, 1, 1) seasonal_order=(1, 0, 2, 7); AIC=3304.675, BIC=
3325.171, Fit time=1.279 seconds
Fit ARIMA: order=(1, 1, 1) seasonal_order=(1, 0, 2, 7); AIC=3300.207, BIC=
3324.120, Fit time=1.461 seconds
Fit ARIMA: order=(1, 1, 0) seasonal_order=(1, 0, 2, 7); AIC=3306.376, BIC=
3326.873, Fit time=1.192 seconds
Fit ARIMA: order=(1, 1, 2) seasonal_order=(1, 0, 2, 7); AIC=3302.720, BIC=
3330.049, Fit time=2.039 seconds
Fit ARIMA: order=(0, 1, 0) seasonal_order=(1, 0, 2, 7); AIC=3390.498, BIC=
3407.578, Fit time=0.963 seconds
Fit ARIMA: order=(2, 1, 2) seasonal_order=(1, 0, 2, 7); AIC=3298.943, BIC=
3329.688, Fit time=2.068 seconds
Fit ARIMA: order=(2, 1, 2) seasonal_order=(0, 0, 2, 7); AIC=3326.583, BIC=
3353.911, Fit time=1.838 seconds
Fit ARIMA: order=(2, 1, 2) seasonal_order=(2, 0, 2, 7); AIC=3301.074, BIC=
3335.235, Fit time=2.160 seconds
Fit ARIMA: order=(2, 1, 2) seasonal_order=(1, 0, 1, 7); AIC=3298.872, BIC=
3326.201, Fit time=1.270 seconds
Fit ARIMA: order=(2, 1, 2) seasonal order=(0, 0, 0, 7); AIC=3349.425, BIC=
3369.922, Fit time=0.542 seconds
Fit ARIMA: order=(1, 1, 2) seasonal_order=(1, 0, 1, 7); AIC=3302.089, BIC=
3326.002, Fit time=1.180 seconds
Fit ARIMA: order=(3, 1, 2) seasonal_order=(1, 0, 1, 7); AIC=3294.834, BIC=
3325.579, Fit time=1.353 seconds
Fit ARIMA: order=(3, 1, 1) seasonal_order=(1, 0, 1, 7); AIC=3305.105, BIC=
3332.434, Fit time=1.222 seconds
Fit ARIMA: order=(3, 1, 3) seasonal_order=(1, 0, 1, 7); AIC=3292.338, BIC=
3326.499, Fit time=1.368 seconds
Fit ARIMA: order=(3, 1, 3) seasonal_order=(0, 0, 1, 7); AIC=3289.039, BIC=
3319.784, Fit time=1.267 seconds
Fit ARIMA: order=(3, 1, 3) seasonal order=(0, 0, 0, 7); AIC=3286.250, BIC=
3313.578, Fit time=0.684 seconds
Fit ARIMA: order=(2, 1, 3) seasonal_order=(0, 0, 0, 7); AIC=3307.214, BIC=
3331.127, Fit time=0.677 seconds
Fit ARIMA: order=(4, 1, 3) seasonal_order=(0, 0, 0, 7); AIC=3294.471, BIC=
3325.216, Fit time=0.747 seconds
Fit ARIMA: order=(3, 1, 2) seasonal order=(0, 0, 0, 7); AIC=3291.182, BIC=
3315.094, Fit time=0.597 seconds
Fit ARIMA: order=(3, 1, 3) seasonal_order=(1, 0, 0, 7); AIC=3284.239, BIC=
3314.984, Fit time=1.216 seconds
Fit ARIMA: order=(3, 1, 3) seasonal_order=(2, 0, 1, 7); AIC=3293.654, BIC=
3331.231, Fit time=2.330 seconds
Fit ARIMA: order=(2, 1, 3) seasonal order=(1, 0, 0, 7); AIC=3313.276, BIC=
3340.605, Fit time=1.115 seconds
Fit ARIMA: order=(4, 1, 3) seasonal_order=(1, 0, 0, 7); AIC=3296.055, BIC=
3330.216, Fit time=1.381 seconds
Fit ARIMA: order=(3, 1, 2) seasonal_order=(1, 0, 0, 7); AIC=3292.260, BIC=
3319.589, Fit time=1.193 seconds
Fit ARIMA: order=(2, 1, 2) seasonal_order=(1, 0, 0, 7); AIC=3328.512, BIC=
```

3352.425, Fit time=0.831 seconds

Fit ARIMA: order=(3, 1, 3) seasonal_order=(2, 0, 0, 7); AIC=3289.464, BIC=

3323.625, Fit time=2.094 seconds Total fit time: 35.938 seconds

Out[11]:

SARIMAX Results

226 Dep. Variable: y No. Observations: Log Likelihood -1633.119 **Model:** SARIMAX(3, 1, 3)x(1, 0, [], 7) Date: Wed, 16 Sep 2020 AIC 3284.239 Time: 13:53:32 BIC 3314.984 Sample: 0 HQIC 3296.648

- 226

Covariance Type: opg

	coef	std err	z	P> z	[0.025	0.975]
intercept	-5.6011	14.299	-0.392	0.695	-33.626	22.424
ar.L1	0.8173	0.071	11.520	0.000	0.678	0.956
ar.L2	-0.4568	0.089	-5.133	0.000	-0.631	-0.282
ar.L3	-0.4185	0.064	-6.533	0.000	-0.544	-0.293
ma.L1	-1.5598	0.080	-19.531	0.000	-1.716	-1.403
ma.L2	1.2980	0.113	11.448	0.000	1.076	1.520
ma.L3	-0.3483	0.074	-4.689	0.000	-0.494	-0.203
ar.S.L7	-0.0497	0.056	-0.881	0.378	-0.160	0.061
sigma2	1.318e+05	5703.856	23.108	0.000	1.21e+05	1.43e+05

Ljung-Box (Q): 51.68 Jarque-Bera (JB): 6750.13

Prob(Q): 0.10 **Prob(JB):** 0.00

Heteroskedasticity (H): 464.93 Skew: 2.99

Prob(H) (two-sided): 0.00 **Kurtosis:** 29.16

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

Descrição do modelo selecionado: SARIMAX(3, 1, 3)x(1, 0, 0, 7)

- Componente não sazonal autorregressiva de ordem 3
- Componente não sazonal integrado de ordem 1
- Componente não sazonal de médias móveis de ordem 3
- Componente sazonal autorregressiva de primeira ordem com período 7
- Sem componente sazonal integrada
- Sem componente sazonal de média móvel

In [12]:

```
#treinamento utilizando o modelo SARIMA identificado pelo stepwise
adjustSARIMA = SARIMAX(train['deaths'],order=(3,1,3),seasonal_order=(1,0,0,7)).fit()
adjustSARIMA.summary()
```

Out[12]:

SARIMAX Results

Dep. Variable:	deaths	No. Observations:	226
Model:	SARIMAX(3, 1, 3)x(1, 0, [], 7)	Log Likelihood	-1631.614
Date:	Wed, 16 Sep 2020	AIC	3279.228
Time:	13:53:33	BIC	3306.557
Sample:	01-01-2020	HQIC	3290.258
	09 12 2020		

- 08-13-2020

Covariance Type: opg

	coef	std err	z	P> z	[0.025	0.975]
ar.L1	0.8179	0.063	63 13.040 0		0.695	0.941
ar.L2	-0.4578	0.079	-5.788	0.000	-0.613	-0.303
ar.L3	-0.4142	0.056	-7.403	0.000	-0.524	-0.305
ma.L1	-1.5655	0.071	-22.156	0.000	-1.704	-1.427
ma.L2	1.2993	0.102	12.737	0.000	1.099	1.499
ma.L3	-0.3508	0.066	-5.313	0.000	-0.480	-0.221
ar.S.L7	-0.0502	0.045	-1.126	0.260	-0.138	0.037
sigma2	1.151e+05	3894.620	29.560	0.000	1.07e+05	1.23e+05

 Ljung-Box (Q):
 51.51
 Jarque-Bera (JB):
 6746.95

 Prob(Q):
 0.10
 Prob(JB):
 0.00

 Heteroskedasticity (H):
 54463.55
 Skew:
 3.00

Prob(H) (two-sided): 0.00 **Kurtosis:** 29.15

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

In [13]:

In [14]:

```
#imprimindo dados com a predição realizada pelo SARIMA
train['sarima'] = adjustSARIMA.fittedvalues
test['sarima'] = predict_SARIMA

train['deaths'].plot(legend=True,label='Treino',title='Predição do modelo SARIMA(3, 1, 3)x(1, 0, 0, 7)')
test['deaths'].plot(legend=True,label='Teste',figsize=(16,6))
fig = predict_SARIMA.plot(legend=True,label='Previsão SARIMA(3, 1, 3)x(1, 0, 0, 7)')
```


In [15]:

In [16]:

```
#definindo o gerador
generator = TimeseriesGenerator(scaled_train, scaled_train, length=7, batch_size=1) #lo
te de tamanho 7 devido a sazonalidade

print('Tamanho das amostras de treino:',len(scaled_train))
print('Tamanho do gerador dividido por lotes:',len(generator))

X,y = generator[0] #aparência do primeiro Lote

print()
print('Dados do primeiro lote:',X.flatten())
print('Predição do primeiro lote:',y.flatten())
```

Tamanho das amostras de treino: 226
Tamanho do gerador dividido por lotes: 219

Dados do primeiro lote: [0. 0. 0. 0. 0. 0.]

Predição do primeiro lote: [0.]

In [17]:

```
#modelo de redes dinâmicas LSTM (Long Short-Term Memory)
model = Sequential()
model.add(LSTM(100, activation='relu',input_shape=(7,1))) #camada LSTM com 100 neurônio
s
model.add(Dense(1)) #camada de saída com 1 output
model.compile(optimizer='adam',loss='mse') #função de perda de erro quadrático médio
model.summary()
```

Model: "sequential"

Layer (type)	Output Shape	Param #
lstm (LSTM)	(None, 100)	40800
dense (Dense)	(None, 1)	101

Total params: 40,901 Trainable params: 40,901 Non-trainable params: 0

In [18]:

#ajustando o modelo
model.fit_generator(generator, epochs=100) #com 100 interações

WARNING:tensorflow:From <ipython-input-18-9d44b54d59eb>:2: Model.fit_gener ator (from tensorflow.python.keras.engine.training) is deprecated and will be removed in a future version.

Instructions for updating:

Please use Model.fit, which supports generators.

Epoch 1/100

219/219 [==========] - 1s 3ms/step - loss: 0.0107

Epoch 2/100

219/219 [============] - 1s 3ms/step - loss: 0.0083

Epoch 3/100

219/219 [============] - 1s 3ms/step - loss: 0.0082

Epoch 4/100

219/219 [============] - 1s 3ms/step - loss: 0.0087

Epoch 5/100

219/219 [============] - 1s 3ms/step - loss: 0.0076

Epoch 6/100

219/219 [============] - 1s 3ms/step - loss: 0.0071

Epoch 7/100

219/219 [============] - 1s 3ms/step - loss: 0.0079

Epoch 8/100

219/219 [=============] - 1s 3ms/step - loss: 0.0074

Epoch 9/100

219/219 [============] - 1s 3ms/step - loss: 0.0074

Epoch 10/100

219/219 [=============] - 1s 3ms/step - loss: 0.0074

Epoch 11/100

219/219 [=============] - 1s 3ms/step - loss: 0.0069

Epoch 12/100

219/219 [===============] - 1s 3ms/step - loss: 0.0074

Epoch 13/100

219/219 [===========] - 1s 3ms/step - loss: 0.0074

Epoch 14/100

219/219 [===========] - 1s 3ms/step - loss: 0.0074

Epoch 15/100

219/219 [=============] - 1s 3ms/step - loss: 0.0075

Epoch 16/100

Epoch 17/100

219/219 [===========] - 1s 3ms/step - loss: 0.0071

Epoch 18/100

Epoch 19/100

219/219 [=========] - 1s 3ms/step - loss: 0.0067

Epoch 20/100

219/219 [============] - 1s 3ms/step - loss: 0.0070

Epoch 21/100

Epoch 22/100

Epoch 23/100

219/219 [=============] - 1s 3ms/step - loss: 0.0066

Epoch 24/100

Epoch 25/100

Epoch 26/100

Epoch 27/100

Epoch 28/100

file:///C:/Users/Beni/MBA-USP-DS/06.Dinamico-DS/AvaliacaoFinal/Avaliacao Aprendizado Dinamico - Final.html

Epoch 29,	/100						
	/ 100 [==========]	_	1s	4ms/sten	_	loss:	0.0064
Epoch 30	-			э, э сер			
219/219	[=========]	-	1s	4ms/step	-	loss:	0.0062
Epoch 31,							
	[=========]	-	1s	4ms/step	-	loss:	0.0063
Epoch 32,				4 / 1		,	0.0060
	[==========]	-	15	4ms/step	-	loss:	0.0060
Epoch 33,	/ 100 [==========]	_	1 c	Ams/sten	_	1055.	0 0058
Epoch 34	=			-13, эсср		1033.	0.0030
•	[========]	-	1s	4ms/step	-	loss:	0.0059
Epoch 35,							
	[========]	-	1s	4ms/step	-	loss:	0.0055
Epoch 36,	/ 100 [==========]		1.	Ams/ston		1055	0 0050
Epoch 37,	=	_	12	41115/3CEP	_	1055.	0.0055
	[==========]	_	1s	4ms/step	_	loss:	0.0058
Epoch 38	-			, ,			
	[=========]	-	1 s	4ms/step	-	loss:	0.0058
Epoch 39,			_			-	
219/219 Epoch 40/	[==========]	-	1s	3ms/step	-	loss:	0.0060
	/ 100 [==========]	_	1s	4ms/sten	_	loss:	0.0056
Epoch 41	=			э, эсер		1033.	0.0050
219/219	[=========]	-	1 s	3ms/step	-	loss:	0.0055
Epoch 42,				_		_	
	[==========]	-	1s	4ms/step	-	loss:	0.0055
Epoch 43,	/ 100 [==========]	_	1 c	1ms/stan	_	1000	0 0051
Epoch 44,			13	-1 11137 3 ССР		1033.	0.0054
•	[=========]	-	1s	4ms/step	-	loss:	0.0051
Epoch 45,							
	[========]	-	1s	4ms/step	-	loss:	0.0056
Epoch 46,	/ 100 [==========]		1 c	1mc/cton		1000	0 0053
Epoch 47,			13	41113/3СЕР	_	1033.	0.0055
	[=========]	-	1s	4ms/step	-	loss:	0.0052
Epoch 48,							
	[========]	-	1s	4ms/step	-	loss:	0.0055
Epoch 49,	/ 100 [==========]		1 c	Ams/ston		1000	0 0019
Epoch 50,	=		13	41113/3CEP		1033.	0.0048
	[==========]	-	1s	4ms/step	-	loss:	0.0054
Epoch 51,							
	[========]	-	1s	4ms/step	-	loss:	0.0052
Epoch 52,	/100 [=========]		1 c	2mc/ston		1055	0 0051
Epoch 53,	=	_	13	Jiis/scep	_	1055.	0.0031
	[==========]	-	1 s	4ms/step	-	loss:	0.0046
Epoch 54,							
	[========]	-	1 s	4ms/step	-	loss:	0.0055
Epoch 55,	/100 [=========]		1.	Ams/ston		1000	0 0050
Epoch 56,	=	-	12	4IIIS/Step	-	1055.	0.0050
	[============]	_	1s	4ms/step	_	loss:	0.0050
Epoch 57	/100						
	[=======]	-	1 s	4ms/step	-	loss:	0.0052
Epoch 58,	/100 [=========]		1 ~	Emc / 5 + 5 =		100-	0.0040
Epoch 59,	-	-	12	oms/step	-	1022;	w.w049
_pocii 55/	-00						

```
219/219 [============= ] - 1s 4ms/step - loss: 0.0048
Epoch 60/100
219/219 [============ ] - 1s 4ms/step - loss: 0.0047
Epoch 61/100
219/219 [============= ] - 1s 4ms/step - loss: 0.0045
Epoch 62/100
219/219 [=============== ] - 1s 4ms/step - loss: 0.0048
Epoch 63/100
219/219 [============= ] - 1s 4ms/step - loss: 0.0046
Epoch 64/100
219/219 [============= ] - 1s 4ms/step - loss: 0.0044
Epoch 65/100
219/219 [============= ] - 1s 4ms/step - loss: 0.0047
Epoch 66/100
219/219 [============= ] - 1s 4ms/step - loss: 0.0045
Epoch 67/100
219/219 [============ ] - 1s 4ms/step - loss: 0.0042
Epoch 68/100
219/219 [============= ] - 1s 4ms/step - loss: 0.0044
Epoch 69/100
219/219 [============ ] - 1s 4ms/step - loss: 0.0039
Epoch 70/100
219/219 [============ ] - 1s 4ms/step - loss: 0.0038
Epoch 71/100
219/219 [=============== ] - 1s 4ms/step - loss: 0.0039
Epoch 72/100
219/219 [============ ] - 1s 4ms/step - loss: 0.0046
Epoch 73/100
Epoch 74/100
Epoch 75/100
219/219 [============= ] - 1s 5ms/step - loss: 0.0037
Epoch 76/100
219/219 [============= ] - 1s 4ms/step - loss: 0.0033
Epoch 77/100
219/219 [=========== ] - 1s 4ms/step - loss: 0.0038
Epoch 78/100
219/219 [============= ] - 1s 4ms/step - loss: 0.0036
Epoch 79/100
219/219 [============ ] - 1s 4ms/step - loss: 0.0033- ET
A: 0
Epoch 80/100
219/219 [============ ] - 1s 4ms/step - loss: 0.0038
Epoch 81/100
219/219 [============ ] - 1s 4ms/step - loss: 0.0035
Epoch 82/100
219/219 [============= ] - 1s 4ms/step - loss: 0.0040
Epoch 83/100
Epoch 84/100
219/219 [============ ] - 1s 4ms/step - loss: 0.0035
Epoch 85/100
219/219 [============= ] - 1s 4ms/step - loss: 0.0033
Epoch 86/100
219/219 [================ ] - 1s 4ms/step - loss: 0.0033
Epoch 87/100
219/219 [============ ] - 1s 4ms/step - loss: 0.0037
Epoch 88/100
219/219 [============= ] - 1s 4ms/step - loss: 0.0031
Epoch 89/100
```

```
Epoch 90/100
219/219 [============= ] - 1s 4ms/step - loss: 0.0034
Epoch 91/100
219/219 [============= ] - 1s 4ms/step - loss: 0.0030
Epoch 92/100
219/219 [=============== ] - 1s 4ms/step - loss: 0.0035
Epoch 93/100
219/219 [============= ] - 1s 4ms/step - loss: 0.0032
Epoch 94/100
219/219 [============= ] - 1s 4ms/step - loss: 0.0030
Epoch 95/100
219/219 [============ ] - 1s 4ms/step - loss: 0.0032
Epoch 96/100
219/219 [============= ] - 1s 4ms/step - loss: 0.0028
Epoch 97/100
219/219 [============== ] - 1s 4ms/step - loss: 0.0028
Epoch 98/100
219/219 [============== ] - 1s 4ms/step - loss: 0.0031
Epoch 99/100
219/219 [============= - - 1s 4ms/step - loss: 0.0032
Epoch 100/100
219/219 [============= ] - 1s 4ms/step - loss: 0.0029
```

Out[18]:

<tensorflow.python.keras.callbacks.History at 0x1a1e755b608>

In [19]:

```
#salvando o modelo gerado
model.save('modelo_rnn_lstm.h5')
model.history.keys()
```

Out[19]:

dict_keys(['loss'])

In [20]:

```
#plotando um gráfico de perda, resultante das iterações do ajuste do modelo
loss_per_epoch = model.history.history['loss']
fig = plt.plot(range(len(loss_per_epoch)),loss_per_epoch)
```


In [21]:

```
#realizando a previsão com os dados de teste
test_predictions = []
first_batch = scaled_train[-7:]
current_batch = first_batch.reshape((1,7,1))

for i in range(len(test)):
    current_prediction = model.predict(current_batch)[0]
    test_predictions.append(current_prediction)
    current_batch = np.append(current_batch[:,1:,:],[[current_prediction]],axis=1)
```

In [22]:

```
#voltando a padronização dos dados para treino e para as predições dos testes
train_model = scaler.inverse_transform(scaled_train)
true_predictions = scaler.inverse_transform(test_predictions)
```

In [23]:

```
#imprimindo dados com a predição realizada pelas redes dinâmicas Lstm
train['lstm'] = train_model #copiando a mesma base de treino na previsão LSTM para evit
ar deixar tudo vazio.
test['lstm'] = true_predictions
train['deaths'].plot(legend=True,label='Treino',title='Predição do modelo de Redes Neur
ais Long Short-Term Memory')
test['deaths'].plot(legend=True,label='Teste',figsize=(16,6))
fig = test['lstm'].plot(legend=True,label='Previsão Long Short-Term Memory')
```


Exercício 4

Utilize o erro quadrático médio e erro absoluto médio para comparar as previsões obtidas com as observações da base de teste.

In [30]:

```
#utilizando erro quadrático médio e erro absoluto médio para comparação
#comparação entre modelos usando MSE
print('
print('
                       Avalição MSE
print('
print(' | HOLT:
                                            '%.2f' % mean_squared_error(test['deaths'
],test['holt']),'|')
print(' | HOLT-WINTERS:
                                        ','%.2f' % mean_squared_error(test['deaths'
],test['holt-winters']),' |')
print(' | SARIMA(3, 1, 3)x(1, 0, 0, 7):
                                        ','%.2f' % mean squared error(test['deaths'
],test['sarima']),' |')
print(' | LSTM:
                                        ','%.2f' % mean_squared_error(test['deaths'
],test['lstm']),'|')
print('
                                       _|___|')
print()
print()
#comparação entre modelos usando MAE
print('
print(' |
                      Avalição MAE
print('
print(' | HOLT:
                                        ','%.2f' % mean absolute error(test['deaths'
],test['holt']),' |')
print(' | HOLT-WINTERS:
                                        ','%.2f' % mean_absolute_error(test['deaths'
'','%.2f' % mean_absolute_error(test['deaths'
print(' | SARIMA(3, 1, 3)x(1, 0, 0, 7):
],test['sarima']),' |')
print(' | LSTM:
                                        ','%.2f' % mean absolute error(test['deaths'
],test['lstm']),' |')
print(' |_
                                        | | ')
```

Avalição MSE	
HOLT:	139513.11
HOLT-WINTERS:	27429.52
SARIMA(3, 1, 3)x(1, 0, 0, 7):	61597.01
LSTM:	105252.02

Avalição MAE	
HOLT: HOLT-WINTERS: SARIMA(3, 1, 3)x(1, 0, 0, 7): LSTM:	266.21 144.38 211.41 265.77

Temos as seguintes definições para MSE e MAE:

MSE (Mean Square Error):

$$MSE = rac{1}{N}\sum_{i=1}^{N}{(y_i - \hat{y_i})^2}$$

MAE (Mean Absolute Error):

$$MAE = rac{1}{N} \sum_{i=1}^N |y_i - \hat{y_i}|$$

onde

 y_i = valor real da variável dependente

 $\hat{y_i}$ = valor previsto

N = tamanho da amostra

Essas medidas são bem diretas, sendo basicamente uma somatória da diferença entre o valor real e o valor previsto. Isso mostra o quanto nossos resultados previstos divergem do valor real. Um MSE mais alto significa que os valores estão muito dispersos, portanto, quanto menor o valor desta métrica, melhor, refletindo assim em um bom ajuste do modelo. Um ponto de atenção que devemos ter é que valores muito pequenos para MSE podem indicar um overfitting dos dados, mas esse não aparenta ser o caso da nossa análise.

Neste caso, para avaliarmos o melhor modelo, estamos comparando os valores obtidos e dando preferência para a avaliação onde tivemos o menor valor, tanto no MSE quanto no MAE. Assim, o modelo com a melhor previsão foi de **Holt-Winters**.

Exercício 5

Considere o método que produziu a melhor previsão para os dados de teste e faça a previsão para mais 14 dias (além das observações da base de dados). Essa previsão pode ser apresentada com um gráfico nos arquivos .ipynb e .pdf.

In [25]:

```
#treinamento e predição pelo método de Holt-Winters utilizando toda a base de dados
adjustHW_final = ExponentialSmoothing(data[data['deaths']>0]['deaths'],trend='mul',seas
onal='mul',seasonal_periods=7).fit()
predictHW_final = adjustHW_final.forecast(14).rename('Holt-Winters Forecast')
```

In [26]:

```
#unificando as bases de dados em uma única
data forecast = data
#inserindo dados de treino e teste das previsões anteriores
data_forecast['Holt'] = train['holt']
data_forecast['Holt'].loc[226:247] = test['holt']
data_forecast['Holt-Winters'] = train['holt-winters']
data_forecast['Holt-Winters'].loc[226:247] = test['holt-winters']
data_forecast['SARIMA'] = train['sarima']
data_forecast['SARIMA'].loc[226:247] = test['sarima']
data_forecast['Long Short-Term Memory'] = train['lstm']
data forecast['Long Short-Term Memory'].loc[226:247] = test['lstm']
#inserindo índices novos para o forecast de 14 dias
idx = pd.date_range(data_forecast.index[-1], periods=15, freq='1d')[1:]
predictHW final.index = idx
predictHW_final = pd.DataFrame(predictHW_final)
data forecast = data forecast.append(predictHW final)
data_forecast['Holt-Winters Forecast'].iloc[:247] = adjustHW_final.fittedvalues
```

In [27]:

In [28]:

```
#printando os resultados da análise em um arquivo csv
data_forecast.to_csv('Benicio-avaliacao-ad-resultados-analises.csv')
data_forecast.iloc[220:]
```

Out[28]:

	confirmed	deaths	Holt	Holt- Winters	SARIMA	Long Short- Term Memory	Holt- Winters Forecast
2020- 08-08	58150.0	1252.0	1366.650765	1326.721106	1352.487553	1252.000000	1326.721106
2020- 08-09	56221.0	1069.0	1332.275704	1012.093751	1073.541851	1069.000000	1012.093751
2020- 08-10	46847.0	513.0	1251.526256	537.116406	826.008751	513.000000	537.116406
2020- 08-11	49530.0	523.0	1022.524152	732.100044	877.059363	523.000000	732.100044
2020- 08-12	46813.0	1076.0	867.790211	1415.459159	991.725796	1076.000000	1415.459159
2020- 08-13	55941.0	1490.0	933.534854	1201.557220	1316.812681	1490.000000	1201.557220
2020- 08-14	51094.0	1083.0	1107.925242	1438.009011	1493.331715	1321.673788	1438.009011
2020- 08-15	64838.0	1336.0	1109.017561	1125.912189	1300.243922	1339.709354	1024.503956
2020- 08-16	48085.0	1035.0	1110.110956	873.035486	883.135011	1020.582578	867.578198
2020- 08-17	42104.0	571.0	1111.205430	434.121146	654.833988	653.260085	464.606771
2020- 08-18	35056.0	445.0	1112.300982	555.528573	732.306818	576.756308	658.851693
2020- 08-19	44091.0	1324.0	1113.397615	1181.678592	1062.184527	1057.593138	1285.353670
2020- 08-20	47426.0	1356.0	1114.495329	1156.532830	1404.345771	1329.980814	1351.073470
2020- 08-21	44005.0	1078.0	1115.594125	1294.660415	1505.002674	1428.791714	1388.012445
2020- 08-22	49880.0	1151.0	1116.694005	1013.675109	1282.858615	1407.711765	1134.682195
2020- 08-23	44378.0	956.0	1117.794969	786.006538	917.690880	1180.301681	861.641081
2020- 08-24	34506.0	444.0	1118.897018	390.845578	677.732190	857.362707	447.794752
2020- 08-25	38298.0	473.0	1120.000154	500.150449	740.999872	706.340559	511.559720
2020- 08-26	38119.0	1207.0	1121.104378	1063.882412	1054.396339	994.518737	1147.452780
2020- 08-27	42848.0	1228.0	1122.209690	1041.243318	1380.482444	1430.366703	1194.013709
2020- 08-28	45909.0	1110.0	1123.316092	1165.601590	1477.307962	1516.204796	1166.920397
2020- 08-29	49654.0	949.0	1124.423584	912.626435	1277.967760	1500.006962	1063.428137
2020- 08-30	44143.0	1006.0	1125.532169	707.653111	935.317604	1318.926222	791.241704

	confirmed	deaths	Holt	Holt- Winters	SARIMA	Long Short- Term Memory	Holt- Winters Forecast
2020- 08-31	35581.0	290.0	1126.641846	351.883955	706.285730	1050.210706	423.245111
2020- 09-01	33850.0	529.0	1127.752618	450.292719	758.380900	839.335586	427.388376
2020- 09-02	44639.0	1091.0	1128.864485	957.828800	1047.741882	1017.406898	1084.769099
2020- 09-03	38754.0	1055.0	1129.977448	937.446494	1355.458007	1565.359913	1114.363571
2020- 09-04	NaN	NaN	NaN	NaN	NaN	NaN	1044.985008
2020- 09-05	NaN	NaN	NaN	NaN	NaN	NaN	956.251496
2020- 09-06	NaN	NaN	NaN	NaN	NaN	NaN	802.436404
2020- 09-07	NaN	NaN	NaN	NaN	NaN	NaN	348.427498
2020- 09-08	NaN	NaN	NaN	NaN	NaN	NaN	441.225454
2020- 09-09	NaN	NaN	NaN	NaN	NaN	NaN	996.082077
2020- 09-10	NaN	NaN	NaN	NaN	NaN	NaN	1015.846561
2020- 09-11	NaN	NaN	NaN	NaN	NaN	NaN	967.436691
2020- 09-12	NaN	NaN	NaN	NaN	NaN	NaN	885.288091
2020- 09-13	NaN	NaN	NaN	NaN	NaN	NaN	742.887615
2020- 09-14	NaN	NaN	NaN	NaN	NaN	NaN	322.570700
2020- 09-15	NaN	NaN	NaN	NaN	NaN	NaN	408.482122
2020- 09-16	NaN	NaN	NaN	NaN	NaN	NaN	922.162846
2020- 09-17	NaN	NaN	NaN	NaN	NaN	NaN	940.460608