Numeric certified algorithm for the topology of resultant and discriminant curves

Rémi Imbach, Guillaume Moroz and Marc Pouget

Resultant curves

$$\begin{cases} p(x, y, z) = 0 \\ q(x, y, z) = 0 \end{cases}$$

Smooth curves of \mathbb{R}^3

$$Res_z(p,q)=0$$

Singular curves of \mathbb{R}^2

Resultant curves

$$\begin{cases} p(x, y, z) = 0 \\ q(x, y, z) = 0 \end{cases}$$

Smooth curves of \mathbb{R}^3

$$Res_z(p,q)=0$$

Singular curves of \mathbb{R}^2 Singularities are:

nodes,

Introduction

Resultant curves

$$\begin{cases} p(x, y, z) = 0 \\ q(x, y, z) = 0 \end{cases}$$

Smooth curves of \mathbb{R}^3

$$Res_{z}(p,q)=0$$

- nodes,
- stable.

Resultant curves

Resultant and discriminant curves

$$\begin{cases} p(x, y, z) = 0 \\ q(x, y, z) = 0 \end{cases}$$

Smooth curves of \mathbb{R}^3

$$Res_z(p,q)=0$$

- nodes,
- stable.

Discriminant curves

$$\{ p(x,y,z) = 0$$

Smooth surfaces of \mathbb{R}^3

$$Res_z(p, \frac{\partial p}{\partial z}) = 0$$

- nodes, cusps,
- stable.

Discriminant curves

$$\{ p(x,y,z) = 0$$

Smooth surfaces of \mathbb{R}^3

$$Res_z(p, \frac{\partial p}{\partial z}) = 0$$

- nodes, cusps,
- stable.

Computing topology of $\mathcal C$

$$C = \{(x, y) \in \mathbb{R}^2 | f(x, y) = 0\}$$

- Purely numerical methods fails near singularities
- Purely symbolic methods
 - Cylindrical Algebraic Decomposition requires : computing with algebraic numbers

Computing topology of $\mathcal C$

$$C = \{(x, y) \in \mathbb{R}^2 | f(x, y) = 0\}$$

$$f(x,y) = 0$$

$$\frac{\partial f}{\partial y}(x,y) = 0$$

- Purely numerical methods fails near singularities
- Purely symbolic methods
 - Cylindrical Algebraic Decomposition requires : computing with algebraic numbers

Computing topology of ${\mathcal C}$

$$C = \{(x, y) \in \mathbb{R}^2 | f(x, y) = 0\}$$

- Purely numerical methods fails near singularities
- Purely symbolic methods
 - Cylindrical Algebraic Decomposition requires : computing with algebraic numbers

- 1 Isolating singularities and critical points in boxes
 - \rightarrow x-critical points system: $f = \frac{\partial f}{\partial v} = 0$
 - \rightarrow Singularities are x-critical points s.t $\frac{\partial f}{\partial x} = 0$

- 1 Isolating singularities and critical points in boxes
- 2 Computing topology around singularities
 - \rightarrow number of branches

- 1 Isolating singularities and critical points in boxes
- 2 Computing topology around singularities
- 3 Connecting the boxes by segments

1 Isolating singularities and critical points in boxes

2 Computing topology around singularities

3 Connecting the boxes by segments

ISOTOP

Gröbner basis and RUR

Sweeping algorithm

When \mathcal{C} is a resultant or a discriminant curve

- Isolating singularities and critical points in boxes
- 2 Computing topology around singularities
- 3 Connecting the boxes by segments

When C is a resultant or a discriminant curve

- Isolating singularities and critical points in boxes
 →squared deflation system
- 2 Computing topology around singularities
- 3 Connecting the boxes by segments

When \mathcal{C} is a resultant or a discriminant curve

- Isolating singularities and critical points in boxes
 →squared deflation system
- ② Computing topology around singularities →interval based numerical criterion
- 3 Connecting the boxes by segments

Approach implemented with a certified numerical algorithm (branch and bound algorithm)

Interval arithmetic

	floating point arithmetic	interval arithmetic
		$\mathcal{I} = [1.9, 2.1]$
$f(x) = x^2$	f(2) = 4	$\Box f(\mathcal{I}) = [3.61, 4.41]$

- interval extension of usual operators $+,-,*,/,pow,sqrt,\dots$
- interval evaluation $\Box f$ of $f \colon \forall \mathcal{I}, \forall x \in \mathcal{I}, f(x) \in \Box f(\mathcal{I})$

Interval arithmetic

	floating point arithmetic	interval arithmetic
		$\mathcal{I} = [1.9, 2.1]$
$f(x) = x^2$	f(2) = 4	$\Box f(\mathcal{I}) = [3.60, 4.42]$

- interval extension of usual operators $+, -, *, /, pow, sqrt, \dots$
- interval evaluation $\Box f$ of $f: \forall \mathcal{I}, \forall x \in \mathcal{I}, f(x) \in \Box f(\mathcal{I})$

	floating point arithmetic	interval arithmetic
		$\mathcal{I} = [1.9, 2.1]$
$f(x) = x^2$	f(2) = 4	$\Box f(\mathcal{I}) = [3.60, 4.42]$
		$\mathcal{I} = [2^{24}, 2^{24} + 2]$
$f(x) = (x - 2^{24}) - 1/2$	$f(2^{24}+1/2)=-0.5$	$\Box f(\mathcal{I}) = [-0.5, 3.5]$

- interval extension of usual operators +, -, *, /, pow, sqrt, . . .
- interval evaluation $\Box f$ of $f: \forall \mathcal{I}, \forall x \in \mathcal{I}, f(x) \in \Box f(\mathcal{I})$
- certification of non-vanishing:
 - $0 \notin \Box f(\mathcal{I}) \Rightarrow \forall x \in \mathcal{I}, f(x) \neq 0$

Interval arithmetic

	floating point arithmetic	interval arithmetic
		$\mathcal{I} = [1.9, 2.1]$
$f(x) = x^2$	f(2) = 4	$\Box f(\mathcal{I}) = [3.60, 4.42]$
		$\mathcal{I} = [2^{24}, 2^{24} + 2]$
$f(x) = (x - 2^{24}) - 1/2$	$f(2^{24}+1/2)=-0.5$	$\Box f(\mathcal{I}) = [-0.5, 3.5]$

- interval extension of usual operators $+, -, *, /, pow, sqrt, \dots$
- interval evaluation $\Box f$ of $f \colon \forall \mathcal{I}, \forall x \in \mathcal{I}, f(x) \in \Box f(\mathcal{I})$
- certification of non-vanishing:
 - $0 \notin \Box f(\mathcal{I}) \Rightarrow \forall x \in \mathcal{I}, f(x) \neq 0$
- existence of a unique zero in \mathcal{I} :
 - newton operator N
 - $N(\mathcal{I}) \subset \mathcal{I} \Rightarrow \mathcal{I}$ contains a unique zero of f

Interval arithmetic: bivariate extension

- box extension of usual operators $+, -, ., ^{-1}, ...$
- interval evaluation $\Box f$ of $f: \forall \mathcal{I}, \forall x \in \mathcal{I}, f(x) \in \Box f(\mathcal{I})$
- certification of non-vanishing:
 - $0 \notin \Box f(\mathcal{I}) \Rightarrow \forall x \in \mathcal{I}, f(x) \neq 0$
- existence of a unique zero in \mathcal{I} :
 - newton operator N
 - $N(\mathcal{I}) \subset \mathcal{I} \Rightarrow \mathcal{I}$ contains a unique zero of f

Interval arithmetic: bivariate extension

Krawczik operator:

$$N(\mathcal{I}) = y - (Yf(y) + (Id - Y \Box f(\mathcal{I}))(\mathcal{I} - y)$$

where $y = center(\mathcal{I})$
and $Y \simeq (J_f(y))^{-1}$

- box extension of usual operators $+, -, ., ^{-1}, ...$
- interval evaluation $\Box f$ of $f : \forall \mathcal{I}, \forall x \in \mathcal{I}, f(x) \in \Box f(\mathcal{I})$
- certification of non-vanishing:
 - $0 \notin \Box f(\mathcal{I}) \Rightarrow \forall x \in \mathcal{I}, f(x) \neq 0$
- existence of a unique zero in \mathcal{I} :
 - newton operator N
 - $N(\mathcal{I}) \subset \mathcal{I} \Rightarrow \mathcal{I}$ contains a unique zero of f
 - requires the inversion of the interval jacobian matrix
 → classical operators as Krawczik, Hansen-Sengputa, . . .

Interval arithmetic: bivariate extension

Krawczik operator: $f: \mathbb{R}^2 \to \mathbb{R}^2$

$$N(\mathcal{I}) = y - (Yf(y) + (Id - Y \Box f(\mathcal{I}))(\mathcal{I} - y)$$

where $y = center(\mathcal{I})$
and $Y \simeq (J_f(y))^{-1}$

- box extension of usual operators $+, -, ., ^{-1}, ...$
- interval evaluation $\Box f$ of $f \colon \forall \mathcal{I}, \forall x \in \mathcal{I}, f(x) \in \Box f(\mathcal{I})$
- certification of non-vanishing:
 - $0 \notin \Box f(\mathcal{I}) \Rightarrow \forall x \in \mathcal{I}, f(x) \neq 0$
- existence of a unique zero of multiplicity 1 in \mathcal{I} :
 - newton operator N
 - $N(\mathcal{I}) \subset \mathcal{I} \Rightarrow \mathcal{I}$ contains a unique zero of f
 - requires the inversion of the interval jacobian matrix
 → classical operators as Krawczik, Hansen-Sengputa, . . .

$$f \in \mathbb{Q}[x, y]$$

Singularities of
$$f$$
 are the solutions of

Singularities of
$$f$$
 are the solutions of
$$\begin{cases} f(x,y) = 0 \\ f_x(x,y) = 0 \\ f_y(x,y) = 0 \end{cases}$$

$$f \in \mathbb{Q}[x, y]$$

Singularities of f are the solutions of $\begin{cases} f(x,y) = 0 \\ f_x(x,y) = 0 \\ f(x,y) = 0 \end{cases}$

... that is over-determined.

Singularities of f are the solutions of $\begin{cases} f_x(x,y) = 0 \\ f_y(x,y) = 0 \end{cases}$

$$f_X(x,y) = 0$$

$$f \in \mathbb{Q}[x, y]$$

Singularities of f are the solutions of $\begin{cases} f(x,y) = 0 \\ f_x(x,y) = 0 \\ f_y(x,y) = 0 \end{cases}$

... that is over-determined.

... that has spurious solutions,

Singularities of
$$f$$
 are the solutions of
$$\begin{cases} f_x(x,y) &= 0 \\ f_y(x,y) &= 0 \end{cases}$$
 s.t $f(x,y) = 0$

$$f \in \mathbb{Q}[x, y]$$

Singularities of
$$f$$
 are the solutions of
$$\begin{cases} f(x,y) &= 0 \\ f_x(x,y) &= 0 \\ f_y(x,y) &= 0 \end{cases}$$

... that is over-determined.

Singularities of f are the solutions of $\begin{cases} f_x(x,y) &= 0 \\ f_y(x,y) &= 0 \end{cases}$ s.t f(x,y) = 0

- ... that has spurious solutions,
- ... that has solutions of multiplicity 2.

Deflation system using sub-resultant chain

$$p, q \in \mathbb{Q}[x, y, z]$$

Sub-resultant chain of p, q:

$$S_z^0 = (Res_z(p,q))(x,y)$$

 $S_z^1 = s_{11}(x,y)z + s_{10}(x,y)$
 $S_z^2 = s_{22}(x,y)z^2 + s_{21}(x,y)z + s_{20}(x,y)$
... = ...

$$S_z^i$$
 are

reminders of pseudo-divisions of p, q

Deflation system using sub-resultant chain

$$p, q \in \mathbb{Q}[x, y, z]$$

Sub-resultant chain of p, q:

$$S_z^0 = (Res_z(p,q))(x,y)$$

 $S_z^1 = s_{11}(x,y)z + s_{10}(x,y)$
 $S_z^2 = s_{22}(x,y)z^2 + s_{21}(x,y)z + s_{20}(x,y)$
... = ...

 S_z^i are

- reminders of pseudo-divisions of p, q
- strongly related to gcd(p, q), in particular:

Proposition: p and q have a gcd of degree 2 iff $s_{22} \neq 0$ and $s_{11} = s_{10} = 0$.

Deflation system using sub-resultant chain

$$p, q \in \mathbb{Q}[x, y, z]$$

Sub-resultant chain of p, q:

$$S_z^0 = (Res_z(p,q))(x,y)$$

 $S_z^1 = s_{11}(x,y)z + s_{10}(x,y)$
 $S_z^2 = s_{22}(x,y)z^2 + s_{21}(x,y)z + s_{20}(x,y)$
... = ...

Theorem: Assuming regularity conditions on p, q, the singularities of $Res_z(p, q) = 0$ are exactly the solutions (x, y) of

(S)
$$\begin{cases} s_{10}(x, y) = 0 \\ s_{11}(x, y) = 0 \\ s_{22}(x, y) \neq 0 \end{cases}$$

Moreover, solutions of (S) have multiplicity 1.

Subdivision based isolation of singularities using (S)

Input: A box $\mathcal{I}_0 \subset \mathbb{R}^2$, $p, q \in \mathbb{Q}[x, y, z]$ **Output:** A list R of boxes containing singularities

 \rightarrow each box of R contains a singularity of $Res_z(p,q)$,

 \rightarrow each singularity of $Res_z(p,q)$ in \mathcal{I}_0 is in a box of R.

(S)
$$\begin{cases} s_{10}(x, y) = 0 \\ s_{11}(x, y) = 0 \\ s_{22}(x, y) \neq 0 \end{cases}$$

Subdivision based isolation of singularities using (S)

Input: A box $\mathcal{I}_0 \subset \mathbb{R}^2$, $p, q \in \mathbb{Q}[x, y, z]$ **Output:** A list R of boxes containing singularities

$$(S) \begin{cases} s_{10}(x, y) = 0 \\ s_{11}(x, y) = 0 \\ s_{22}(x, y) \neq 0 \end{cases}$$

$\underline{L} := \{\mathcal{I}_0\}$

Repeat:

- 1. $\mathcal{I} := L.pop$
- 2. If $0 \notin s_{10}(\mathcal{I})$ or $0 \notin s_{11}(\mathcal{I})$ or $0 \notin Res_z(p,q)(\mathcal{I})$ then
- **2.1.** discard \mathcal{I}
- 3. Else
- **3.1.** If $N(\mathcal{I}) \subset int(\mathcal{I})$ and $0 \notin s_{22}(\mathcal{I})$ then
- **3.1.1.** insert \mathcal{I} in R
- 3.2. Else
- **3.2.1.** subdivide \mathcal{I} and insert its children in L
- 3.3. End if
- 4. End if

Until $L = \emptyset$

Input: A box $\mathcal{I}_0 \subset \mathbb{R}^2$, $p, q \in \mathbb{Q}[x, y, z]$ **Output:** A list R of boxes containing singularities

$$L := \{\mathcal{I}_0\}$$

Repeat:

- 1. $\mathcal{I} := L.pop$
- **2.** If $0 \notin s_{10}(\mathcal{I})$ or $0 \notin s_{11}(\mathcal{I})$ or $0 \notin Res_z(p,q)(\mathcal{I})$ then
- **2.1.** discard \mathcal{I}
- 3. Else
- **3.1.** If $N(\mathcal{I}) \subset int(\mathcal{I})$ and $0 \notin s_{22}(\mathcal{I})$ then
- **3.1.1.** insert \mathcal{I} in R
- 3.2. Else
- **3.2.1.** subdivide \mathcal{I} and insert its children in L
- 3.3. End if
- 4. End if

Until $L = \emptyset$

Input: A box $\mathcal{I}_0 \subset \mathbb{R}^2$, $p, q \in \mathbb{Q}[x, y, z]$ **Output:** A list R of boxes containing singularities

$$L := \{ \mathcal{I}_0 \}$$

Repeat:

- 1. $\mathcal{I} := L.pop$
- 2. If $0 \notin s_{10}(\mathcal{I})$ or $0 \notin s_{11}(\mathcal{I})$ or $0 \notin Res_z(p,q)(\mathcal{I})$ then
- **2.1.** discard \mathcal{I}
- 3. Else
- **3.1.** If $N(\mathcal{I}) \subset int(\mathcal{I})$ and $0 \notin s_{22}(\mathcal{I})$ then
- **3.1.1.** insert \mathcal{I} in R
- 3.2. Else
- **3.2.1.** subdivide \mathcal{I} and insert its children in L
- 3.3. End if
- 4. End if

Until $L = \emptyset$

Subdivision based isolation of singularities using (S)

Input: A box $\mathcal{I}_0 \subset \mathbb{R}^2$, $p, q \in \mathbb{Q}[x, y, z]$ **Output:** A list R of boxes containing singularities

$$(S) \begin{cases} s_{10}(x, y) = 0 \\ s_{11}(x, y) = 0 \\ s_{22}(x, y) \neq 0 \end{cases}$$

$L := \{ \mathcal{I}_0 \}$

Repeat:

- 1. $\mathcal{I} := L.pop$
- 2. If $0 \notin s_{10}(\mathcal{I})$ or $0 \notin s_{11}(\mathcal{I})$ or $0 \notin Res_z(p,q)(\mathcal{I})$ then
- 2.1. discard \mathcal{I}
- 3. Else
- **3.1.** If $N(\mathcal{I}) \subset int(\mathcal{I})$ and $0 \notin s_{22}(\mathcal{I})$ then
- **3.1.1.** insert \mathcal{I} in R
- 3.2. Else
- 3.2.1. subdivide \mathcal{T} and insert its children in I
- 3.3. End if
- 4. End if

Until $L = \emptyset$

Subdivision based isolation of singularities using (S)

Input: A box $\mathcal{I}_0 \subset \mathbb{R}^2$, $p, q \in \mathbb{Q}[x, y, z]$ **Output:** A list R of boxes containing singularities

$$(S) \begin{cases} s_{10}(x, y) = 0 \\ s_{11}(x, y) = 0 \\ s_{22}(x, y) \neq 0 \end{cases}$$

$L := \{\mathcal{I}_0\}$ Repeat:

Tepeat.

- 1. $\mathcal{I} := L.pop$
- **2.** If $0 \notin s_{10}(\mathcal{I})$ or $0 \notin s_{11}(\mathcal{I})$ or $0 \notin Res_z(p,q)(\mathcal{I})$ then
- **2.1.** discard \mathcal{I}
- 3. Else
- **3.1.** If $N(\mathcal{I}) \subset int(\mathcal{I})$ and $0 \notin s_{22}(\mathcal{I})$ then
- **3.1.1.** insert \mathcal{I} in R
- 3.2. Else
- **3.2.1.** subdivide \mathcal{I} and insert its children in L
- 3.3. End if
- 4. End if

Until $L = \emptyset$

Input: A box $\mathcal{I}_0 \subset \mathbb{R}^2$, $p, q \in \mathbb{Q}[x, y, z]$ **Output:** A list R of boxes containing singularities

$$L := \{ \mathcal{I}_0 \}$$

Repeat:

- 1. $\mathcal{I} := L.pop$
- **2.** If $0 \notin s_{10}(\mathcal{I})$ or $0 \notin s_{11}(\mathcal{I})$ or $0 \notin Res_z(p,q)(\mathcal{I})$ then
- **2.1.** discard \mathcal{I}
- 3. Else
- **3.1.** If $N(\mathcal{I}) \subset int(\mathcal{I})$ and $0 \notin s_{22}(\mathcal{I})$ then
- **3.1.1.** insert \mathcal{I} in R
- 3.2. Else
- **3.2.1.** subdivide \mathcal{I} and insert its children in L
- 3.3. End if
- 4. End if

Until $L = \emptyset$

Subdivision based isolation of singularities using (S)

Input: A box $\mathcal{I}_0 \subset \mathbb{R}^2$, $p, q \in \mathbb{Q}[x, y, z]$ **Output:** A list R of boxes containing singularities

(S)
$$\begin{cases} s_{10}(x, y) = 0 \\ s_{11}(x, y) = 0 \\ s_{22}(x, y) \neq 0 \end{cases}$$

$L := \{\mathcal{I}_0\}$

Repeat:

- 1. $\mathcal{I} := L.pop$
- **2.** If $0 \notin s_{10}(\mathcal{I})$ or $0 \notin s_{11}(\mathcal{I})$ or $0 \notin Res_z(p,q)(\mathcal{I})$ then
- **2.1.** discard \mathcal{I}
- 3. Else
- **3.1.** If $N(\mathcal{I}) \subset int(\mathcal{I})$ and $0 \notin s_{22}(\mathcal{I})$ then
- **3.1.1.** insert \mathcal{I} in R
- 3.2. Else
- **3.2.1.** subdivide \mathcal{I} and insert its children in L
- 3.3. End if
- 4. End if

Until $L = \emptyset$

Input: A box $\mathcal{I}_0 \subset \mathbb{R}^2$, $p, q \in \mathbb{Q}[x, y, z]$ **Output:** A list R of boxes containing singularities

$$s, q \in \mathbb{Q}[x, y, z]$$
 es containing singularities
$$(S) \begin{cases} s_{10}(x, y) = 0 \\ s_{11}(x, y) = 0 \\ s_{22}(x, y) \neq 0 \end{cases}$$

$L := \{\mathcal{I}_0\}$ Repeat:

- 1. $\mathcal{I} := L.pop$
- **2.** If $0 \notin s_{10}(\mathcal{I})$ or $0 \notin s_{11}(\mathcal{I})$ or $0 \notin Res_z(p,q)(\mathcal{I})$ then
- **2.1.** discard \mathcal{I}
- 3. Else
- **3.1.** If $N(\mathcal{I}) \subset int(\mathcal{I})$ and $0 \notin s_{22}(\mathcal{I})$ then
- **3.1.1.** insert \mathcal{I} in R
- 3.2. Else
- **3.2.1.** subdivide \mathcal{I} and insert its children in L
- 3.3. End if
- 4. End if

Until $L = \emptyset$

Subdivision based isolation of singularities using (S)

Input: A box $\mathcal{I}_0 \subset \mathbb{R}^2$, $p, q \in \mathbb{Q}[x, y, z]$ **Output:** A list R of boxes containing singularities

(S)
$$\begin{cases} s_{10}(x, y) = 0 \\ s_{11}(x, y) = 0 \\ s_{22}(x, y) \neq 0 \end{cases}$$

$L := \{\mathcal{I}_0\}$ Repeat:

1 *τ* ,

- 1. $\mathcal{I} := L.pop$
- **2.** If $0 \notin s_{10}(\mathcal{I})$ or $0 \notin s_{11}(\mathcal{I})$ or $0 \notin Res_z(p,q)(\mathcal{I})$ then
- **2.1.** discard \mathcal{I}
- 3. Else
- **3.1.** If $N(\mathcal{I}) \subset int(\mathcal{I})$ and $0 \notin s_{22}(\mathcal{I})$ then
- **3.1.1.** insert \mathcal{I} in R
- 3.2. Else
- **3.2.1.** subdivide \mathcal{I} and insert its children in L
- 3.3. End if
- 4. End if

Until $L = \emptyset$

Subdivision based isolation of singularities using (S)

Input: A box $\mathcal{I}_0 \subset \mathbb{R}^2$, $p, q \in \mathbb{Q}[x, y, z]$ **Output:** A list R of boxes containing singularities

$$(S) \begin{cases} s_{10}(x, y) = 0 \\ s_{11}(x, y) = 0 \\ s_{22}(x, y) \neq 0 \end{cases}$$

$L := \{ \mathcal{I}_0 \}$

Repeat:

- 1. $\mathcal{I} := L.pop$
- 2. If $0 \notin s_{10}(\mathcal{I})$ or $0 \notin s_{11}(\mathcal{I})$ or $0 \notin Res_z(p,q)(\mathcal{I})$ then
- 2.1. discard \mathcal{I}
- 3. Else
- **3.1.** If $N(\mathcal{I}) \subset int(\mathcal{I})$ and $0 \notin s_{22}(\mathcal{I})$ then
- **3.1.1.** insert \mathcal{I} in R
- 3.2. Else
- 3.2.1. subdivide \mathcal{T} and insert its children in I
- 3.3. End if
- 4. End if

Until $L = \emptyset$

 $p \in \mathbb{Q}[x, y, z]$, degree 6, bit-size 8, nb of monomials 84

$$p = 158x^6 - 186x^5y + 205x^5z - 160x^4y^2 + 105x^4yz + 116x^4z^2 - 69x^3y^3 - 161x^3y^2z - 8x^3yz^2 + 107x^3z^3 + 144x^2y^4 - 193x^2y^3z + 130x^2y^2z^2 + x^2yz^3 + 47x^2z^4 + 165xy^5 - 220xy^4z - 21xy^3z^2 + 50xy^2z^3 - 130xyz^4 - 77xz^5 + 66y^6 - 55y^5z + 219y^4z^2 - 30y^3z^3 - 162y^2z^4 - 182yz^5 - 145z^6 + 105x^5 + 241x^4y - 177x^4z - 127x^3y^2 - 97x^3yz + 223x^3z^2 - 46x^2y^3 - 213x^2y^2z + 39x^2yz^2 + 191x^2z^3 + 65xy^4 - 105xy^3z - 248xy^2z^2 + 158xyz^3 - 183xz^4 + 48y^5 - 240y^4z + 235y^3z^2 + 194y^2z^3 - 45yz^4 + 159z^5 - 81x^4 - 230x^3y - 247x^3z - 38x^2y^2 + 106x^2yz + 184x^2z^2 + 49xy^3 - 197xy^2z - 182xyz^2 - 223xz^3 - 205y^4 - 225y^3z - 14y^2z^2 - 17yz^3 + 73z^4 - 234x^3 - 82x^2y + 179x^2z + 46xy^2 - 222xyz - 95xz^2 + 139y^3 + 168y^2z + 8yz^2 + 156z^3 + 159x^2 - 147xy - 22xz - 104y^2 + 181yz + 26z^2 - 90x + 250y + 19z + 19z$$

 $p \in \mathbb{Q}[x, y, z]$, degree 6, bit-size 8, nb of monomials 84 $Res_z(p, \frac{\partial p}{\partial z}) \in \mathbb{Q}[x, y]$, degree 30, bit-size 111, nb of monomials 496

 $p \in \mathbb{Q}[x,y,z]$, degree 6, bit-size 8, nb of monomials 84 $Res_z(p,\frac{\partial p}{\partial z}) \in \mathbb{Q}[x,y]$, degree 30, bit-size 111, nb of monomials 496

```
Res_{z}(p, \frac{\partial p}{\partial x}) = 25378517513821930985374726185 x^{30} - 195028956698484982176266264460 x^{29}y +
669460660893860813921604554100\,{x}^{28}{y}^{2}-631323116304152251056202148000\,{x}^{27}{y}^{3}-\\
1028704563680432990245022354280\,{x}^{26}{y}^{4}+45977970156051179086240080820\,{x}^{25}{y}^{5}+\\
3554469553406371293751987742270 \times^{24} y^6 + 3711031010928440039666656612920 \times^{23} y^7 -
5634442800184514383998916600260\,{x}^{22}{y}^{8}\,-\,11658591855069381144706595841060\,{x}^{21}{y}^{9}\,-\,
4387874939266072948066332459470\,{x}^{20}{y}^{10}+16408843461038228420223023180230\,{x}^{19}{y}^{11}+\\
23700165794251777062304009772915\,{x}^{18}{y}^{12}+4316324180997748865901800201620\,{x}^{17}{y}^{13}\,-
24929137305247653219088728498740\,{x}^{16}{v}^{14}\,-\,33372908351021778030492119654810\,{x}^{15}{v}^{15}\,-\,
9633448028150975870147511674570 \times^{14} v^{16} + 20500155431790235158403374001190 \times^{13} v^{17} +
31668089060759309350684716458350\,{x}^{12}{v}^{18}\,+\,16544278550218652616250018398520\,{x}^{11}{v}^{19}\,-\,
5014730522275651771719575652535 \times^{10} v^{20} - 16590111614945163714073974823320 \times^{9} v^{21} -
13546083341149182083464535866425 \times^8 y^{22} - 4754759946941791724566012110130 \times^7 y^{23} +
```

 $p \in \mathbb{Q}[x,y,z]$, degree 6, bit-size 8, nb of monomials 84 $Res_z(p,\frac{\partial p}{\partial z}) \in \mathbb{Q}[x,y]$, degree 30, bit-size 111, nb of monomials 496 $s11 \in \mathbb{Q}[x,y]$, degree 20, bit-size 89, nb of monomials 231

```
\mathfrak{s}11 = -140117848627008812531220\,x^{20} - 610153133593349354171040\,x^{19}\,y + 39516518923021733844070\,x^{18}\,y^2 + 3951651892302173384070\,x^{18}\,y^2 + 3951651892302173340\,x^{18}\,y^2 + 3951651892302173340\,x^{18}\,y^2 + 395165189230217340\,x^{18}\,y^2 + 395165189230217340\,x^{18}\,y^2 + 395165189230217340\,x^{18}\,y^2 + 3951651892302173340\,x^{18}\,y^2 + 395165189230217340\,x^{18}\,y^2 + 395165189230217340\,x^{18}\,y^2 + 395165189230217340\,x^{18}\,y^2 + 395165189230217340\,x^{18}\,y^2 + 395165180\,x^{18}\,y^2 
334288372703346620154170\,{x}^{17}{y}^{3}+2891274355142589403901890\,{x}^{16}{y}^{4}+112794729750527524649840\,{x}^{15}{y}^{5}-
11340692490521298700125220\,{x^{14}}{y^{6}} - 11062911106388945165447000\,{x^{13}}{y^{7}} -
2946445042372334921153850 \times^{12} y^8 + 12890641493062475757808370 \times^{11} y^9 +
20482823881470123106468370 \times x^{10} y^{10} + 11024860229216130931420010 \times x^{9} y^{11} - x^{10} y^{10} + x^{
1126962434297495978162860 \times^{8} v^{12} - 12884485324685747664432680 \times^{7} v^{13} -
9059725287074848327234580\,{x}^{6}{y}^{14}-4941320817429025658253850\,{x}^{5}{y}^{15}+2122391146412348698406760\,{x}^{4}{y}^{16}+212391146412348698406760\,{x}^{4}{y}^{16}+212391146412348698406760\,{x}^{4}{y}^{16}+212391146412348698406760\,{x}^{4}{y}^{16}+212391146412348698406760\,{x}^{4}{y}^{16}+212391146412348698406760\,{x}^{4}{y}^{16}+212391146412348698406760\,{x}^{4}{y}^{16}+212391146412348698406760\,{x}^{4}{y}^{16}+212391146412348698406760\,{x}^{4}{y}^{16}+212391146412348698406760\,{x}^{4}{y}^{16}+212391146412348698406760\,{x}^{4}{y}^{16}+212391146412348698406760\,{x}^{4}{y}^{16}+212391146412348698406760\,{x}^{4}{y}^{16}+212391146412348698406760\,{x}^{4}{y}^{16}+212391146412348698406760\,{x}^{4}{y}^{16}+212391146412348698406760\,{x}^{4}{y}^{16}+212391146412348698406760\,{x}^{4}{y}^{16}+212391146412348698406760\,{x}^{4}{y}^{16}+212391146412348698406760\,{x}^{4}{y}^{16}+212391146412348698406760\,{x}^{4}{y}^{16}+212391146412348698406760\,{x}^{4}{y}^{16}+212391146412348698406760\,{x}^{4}{y}^{16}+212391146412348698406760\,{x}^{4}{y}^{16}+212391146412348698406760\,{x}^{4}{y}^{16}+212391146412348698406760\,{x}^{4}{y}^{16}+212391146412348698406760\,{x}^{4}{y}^{16}+212391146412348698406760\,{x}^{4}{y}^{16}+212391146412348698406760\,{x}^{4}{y}^{16}+212391146412348698406760\,{x}^{4}{y}^{16}+212391146412348698406760\,{x}^{4}{y}^{16}+212391146412348698406760\,{x}^{4}{y}^{16}+212391146412348698406760\,{x}^{4}{y}^{16}+212391146412348698406760\,{x}^{4}{y}^{16}+212391146412348698406760\,{x}^{4}{y}^{16}+212391146412348698406760\,{x}^{4}{y}^{16}+212391146412348698406760\,{x}^{4}{y}^{2}+212391146412348698406760\,{x}^{4}{y}^{2}+212391146412348698406760\,{x}^{4}{y}^{2}+212391146412348698406760\,{x}^{2}{y}^{2}+212391146412348698406760\,{x}^{2}{y}^{2}+212391146412348698406760\,{x}^{2}{y}^{2}+212391146412348698406760\,{x}^{2}{y}^{2}+212391146412348698406760\,{x}^{2}{y}^{2}+212391146412348698406760\,{x}^{2}{y}^{2}+212391146412348698406760\,{x}^{2}{y}^{2}+212391146412348698406760\,{x}^{2}{y}^{2}+212391146412348698406760\,{x}^{2}+212391146412368698406760\,{x}^{2}+212391146412368698
293011939904302120871210\,{v}^{20}+693411445688541987909840\,{x}^{19}+4819667434476299196422270\,{x}^{18}v-
854531603999857310010090 \times ^{17} v^2 - 4588903065796097271527060 \times ^{16} v^3 - 12454540077632985887041990 \times ^{15} v^4 - 12454540077632985800 \times ^{15} v^4 - 12454540077632985800 \times ^{15} v^4 - 12454540077632985800 \times ^{15} v^4 - 124545400 \times ^{15} v^4 - 1245400 \times ^{15} v^
19038809918580772113933260 \times^{14} v^5 - 5255594134400598288192960 \times^{13} v^6 + 1174005266404773044076220 \times^{12} v^7 + 11740052664047730407620 \times^{12} v^7 + 11740052664047700 \times^{12} v^7 + 1174005266404770 \times^{12} v^7 + 1174005266404770 \times^{12} v^7 + 1174005266404070 \times^{12} v^7 + 1174005266400 \times^{12} v^7 + 1174005266400 \times^{12} v^7 + 1174005266400 \times^{12} v^7 + 117400500 \times^{12} v^7 + 1174000 \times^{12} v^7 + 117400 \times^{12} v^7 + 117400 \times^{12} v^7 + 117400 \times^{12} v^7 + 1174000 \times^{12} v^7 + 117400 \times^{12} v^7 + 117400 \times^{12} v^7 + 117400 \times^{
39658021585466235582243720 x^{11}y^8 + 49141822061980186469013340 x^{10}y^9 +
```

 $p \in \mathbb{Q}[x,y,z]$, degree 6, bit-size 8, nb of monomials 84 $Res_z(p,\frac{\partial p}{\partial z}) \in \mathbb{Q}[x,y]$, degree 30, bit-size 111, nb of monomials 496 $s11 \in \mathbb{Q}[x,y]$, degree 20, bit-size 89, nb of monomials 231

Polynomials are evaluated:

- at least once for each box
- in order to discard or validate boxes

 $p \in \mathbb{Q}[x,y,z]$, degree 6, bit-size 8, nb of monomials 84 $Res_z(p,\frac{\partial p}{\partial z}) \in \mathbb{Q}[x,y]$, degree 30, bit-size 111, nb of monomials 496 $s11 \in \mathbb{Q}[x,y]$, degree 20, bit-size 89, nb of monomials 231

Polynomials are evaluated:

Evaluation has to be:

• at least once for each box

quick

• in order to discard or validate boxes

sharp

 $p \in \mathbb{Q}[x,y,z]$, degree 6, bit-size 8, nb of monomials 84 $Res_z(p,\frac{\partial p}{\partial z}) \in \mathbb{Q}[x,y]$, degree 30, bit-size 111, nb of monomials 496 $s11 \in \mathbb{Q}[x,y]$, degree 20, bit-size 89, nb of monomials 231

Polynomials are evaluated:

Evaluation has to be:

at least once for each box

quick

horner form

• in order to discard or validate boxes

sharp

second order evaluation

$$\Box f(\mathcal{I}) = f(y) + J_f(y)(\mathcal{I} - y) + \frac{1}{2}\Box H_f(\mathcal{I})(\mathcal{I} - y)^2$$
 where $y = center(\mathcal{I})$, $J_f(y) =$ jacobian matrix of f at y and $\Box H_f(\mathcal{I}) =$ interval evaluation of hessian of f at \mathcal{I} .

Results: isolating singularities of a resultant curve

	\mathbb{R}^{2}	HOM4PS		Bertini \mathbb{C}^2	Subdivision $[-1,1] imes [-1,1] \mid \mathbb{R}^2$	
d, σ	t	t	nsol/deg	t	t t	t
4,8	0.214	0.078	98.6%	3.2	0.4	1.0
5,8	2.845	1.543	96.3%	124	0.6	2.6
6,8	23.90	15.18	90.3%	1604	3.0	9.6
7,8	137.9	97.95	75.5%	83120	8.4	27
8,8	725.7	-	-	382200*	43	82
9,8	2720	-	-	2766400*	47	273

^{*} interpolated times

	\mathbb{R}^{2}	HOM4PS \mathbb{C}^2		Bertini \mathbb{C}^2	Subdivision $[-1,1] imes[-1,1]$	\mathbb{R}^2
$oldsymbol{d},\sigma$	t	t	nsol/deg	t	t	t
4,8	0.214	0.078	98.6%	3.2	0.4	1.0
5,8	2.845	1.543	96.3%	124	0.6	2.6
6,8	23.90	15.18	90.3%	1604	3.0	9.6
7,8	137.9	97.95	75.5%	83120	8.4	27
8,8	725.7	-	-	382200*	43	82
9,8	2720	-	-	2766400*	47	273

^{*} interpolated times

Results: isolating singularities of a resultant curve

	$\begin{array}{c} \mathtt{RS4} \\ \mathbb{R}^2 \end{array}$	HOM4PS \mathbb{C}^2		Bertini \mathbb{C}^2	Subdivision $[-1,1] imes[-1,1]$	\mathbb{R}^2
d, σ	t	t	nsol/deg	t	t	t
4,8	0.214	0.078	98.6%	3.2	0.4	1.0
5,8	2.845	1.543	96.3%	124	0.6	2.6
6,8	23.90	15.18	90.3%	1604	3.0	9.6
7,8	137.9	97.95	75.5%	83120	8.4	27
8,8	725.7	_	-	382200*	43	82
9,8	2720	-	-	2766400*	47	273

^{*} interpolated times

	$\begin{array}{c} \mathtt{RS4} \\ \mathbb{R}^2 \end{array}$	HOM4PS \mathbb{C}^2		$\begin{array}{c} \texttt{Bertini} \\ \mathbb{C}^2 \end{array}$	Subdivision $[-1,1] imes[-1,1]$	\mathbb{R}^2
$oldsymbol{d}, \sigma$	t	t	nsol/deg	t	t	t
4,8	0.214	0.078	98.6%	3.2	0.4	1.0
5,8	2.845	1.543	96.3%	124	0.6	2.6
6,8	23.90	15.18	90.3%	1604	3.0	9.6
7,8	137.9	97.95	75.5%	83120	8.4	27
8,8	725.7	-	-	382200*	43	82
9,8	2720	-	-	2766400*	47	273

^{*} interpolated times

Results: isolating singularities of a resultant curve

	$\begin{array}{c} \mathtt{RS4} \\ \mathbb{R}^2 \end{array}$	HOM4PS \mathbb{C}^2		Bertini \mathbb{C}^2	Subdivision $[-1,1] imes[-1,1]$	\mathbb{R}^2
d, σ	t	t	nsol/deg	t	t	t
4,8	0.214	0.078	98.6%	3.2	0.4	1.0
5,8	2.845	1.543	96.3%	124	0.6	2.6
6,8	23.90	15.18	90.3%	1604	3.0	9.6
7,8	137.9	97.95	75.5%	83120	8.4	27
8,8	725.7	-	-	382200*	43	82
9,8	2720	-	-	2766400*	47	273

^{*} interpolated times

Results: isolating singularities of a resultant curve

	\mathbb{R}^{2}	HOM4PS ℂ²		Bertini \mathbb{C}^2	Subdivision $[-1,1] imes[-1,1] \mid \mathbb{R}^2$	
d, σ	t	t	nsol/deg	t	t	t
4,8	0.214	0.078	98.6%	3.2	0.4	1.0
5,8	2.845	1.543	96.3%	124	0.6	2.6
6,8	23.90	15.18	90.3%	1604	3.0	9.6
7,8	137.9	97.95	75.5%	83120	8.4	27
8,8	725.7	-	-	382200*	43	82
9,8	2720	-	-	2766400*	47	273

- \rightarrow faster than state of the art methods when $d \ge 6$
- → results come with a certification

^{*} interpolated times

- What about projections of curves of \mathbb{R}^n , with n > 3?
- What about projections of curves defined by non-polynomials functions?

Questions?

Resultant curve: $f = Res_{z}(p, q)$

Nodes are singularities such that $det(H_f) \neq 0$

- Nodes such that $det(H_f) < 0$: 4 real branches
- Nodes such that $det(H_f) > 0$: 0 real branches

$$x^2 - y^2 = 0$$

$$x^2 + y^2 = 0$$

Discriminant curve: $f = Res_z(p, \frac{\partial p}{\partial z})$

Nodes are singularities such that $det(H_f) \neq 0$

- Nodes such that $det(H_f) < 0$: 4 real branches
- Nodes such that $det(H_f) > 0$: 0 real branches

• Nodes such that
$$det(H_f) > 0$$
: 0 real branches

Cusps are singularities such that
$$\begin{cases} det(H_f) = 0 \\ p = \frac{\partial p}{\partial z} = \frac{\partial^2 p}{\partial z^2} = 0(S') \end{cases}$$

$$x^2 + y^2 = 0$$

$$x^3 + y^2 = 0$$

Discriminant curve: $f = Res_z(p, \frac{\partial p}{\partial z})$

Nodes are singularities such that $det(H_f) \neq 0$

- Nodes such that $det(H_f) < 0$: 4 real branches
- Nodes such that $det(H_f) > 0$: 0 real branches

Cusps are singularities such that
$$\begin{cases} & \det(H_f) = 0 \\ p = \frac{\partial p}{\partial z} = \frac{\partial^2 p}{\partial z^2} = 0(S') \end{cases}$$

real branches
$$det(H_f) = 0$$

$$\partial P \quad \partial^2 P \quad O(S)$$

Algorithm: Computing topology at a singularity

Input: A box \mathcal{I} containing a singularity Output: its type and number of branches

While True do:

- 1. If $0 \notin det(H_f(\mathcal{I}))$ then
- 1.1. If $det(H_f(\mathcal{I})) < 0$ Return node, 4
- 1.2. Else Return node, 0
- 2. Else estimate \mathcal{I}_{z}
- **2.1.** If $\mathcal{I} \times I_z$ contains a unique roots of (S') then
- **2.1.1. Return** cusp, 2
- 3. $\mathcal{I} \leftarrow \text{reduce } \mathcal{I}$

$$x^3 + y^2 = 0$$

Discriminant curve: $f = Res_z(p, \frac{\partial p}{\partial z})$

Nodes are singularities such that $det(H_f) \neq 0$

- Nodes such that $det(H_f) < 0$: 4 real branches
- Nodes such that $det(H_f) > 0$: 0 real branches

Cusps are singularities such that
$$\begin{cases} det(H_f) = 0 \\ p = \frac{\partial p}{\partial z} = \frac{\partial^2 p}{\partial z^2} = 0(S') \end{cases}$$

$$x^2 - y^2 = 0$$

$$x^2 + y^2 = 0$$

$$x^3 + y^2 = 0$$