

哈爾濱工業大學

两个正态总体参数的显著性检验

- \rightarrow 设 X_1,\dots,X_n 来自总体 $N(\mu_1,\sigma_1^2)$ 的样本,
- $\succ Y_1, \dots, Y_{n_2}$ 来自总体 $N(\mu_2, \sigma_2^2)$ 的样本,

两个样本相互独立;

 \bar{X} , S_1^2 和 \bar{Y} , S_2^2 分别为样本均值和样本方差.

1. $\sigma_1^2 = \sigma_2^2 = \sigma^2$ 未知,考虑 μ_1, μ_2 的三类检验问题

(1).
$$H_0$$
: $\mu_1 = \mu_2$,

(2).
$$H_0$$
: $\mu_1 \leq \mu_2$,

(3).
$$H_0$$
: $\mu_1 \ge \mu_2$.

(1). 检验 H_0 : $\mu_1 = \mu_2$

选检验统计量

$$t = \frac{\overline{X} - \overline{Y}}{S_W \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t(n_1 + n_2 - 2) \underbrace{\int_{-t_{\underline{\alpha}}(n_1 + n_2 - 2)}^{\frac{\underline{\alpha}}{2}} \int_{-t_{\underline{\alpha}}(n_1 + n_2 - 2)}^{\frac{\underline{\alpha}}{2}}$$

f(t)

$$S_W^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{(n_1 + n_2 - 2)}$$
是 σ^2 的无偏估计量.

对给定的 α , 查临界值 $t_{\alpha/2}(n_1+n_2-1)$,使得

$$P\left(|t| \geq t_{\frac{\alpha}{2}}(n_1 + n_2 - 2)\right) = \alpha,$$

检验的拒绝域为

$$W = \left(|t| \ge t_{\underline{\alpha}} (n_1 + n_2 - 2) \right). \qquad \frac{-t_{\underline{\alpha}} (n_1 + n_2 - 2) \ 0}{2} \qquad \frac{t_{\underline{\alpha}} (n_1 + n_2 - 2) \ t}{2}$$

p值:
$$\mathbf{p} = P(|t| \ge |t_0|) = 2P(t(n_1 + n_2 - 2) \ge |t_0|)$$

其中,
$$t_0 = \frac{\overline{x} - \overline{y}}{s_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$
.

当 $\mathbf{p} \le \alpha$ 时,拒绝 H_0 ,当 $\mathbf{p} > \alpha$ 时,接受 H_0 .

双侧检验.

(2). 检验 H_0 : $\mu_1 \leq \mu_2$

选检验统计量

$$t = \frac{\bar{X} - \bar{Y}}{S_W \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}, \quad S_W = \sqrt{\frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{(n_1 + n_2 - 2)}}$$

检验的拒绝域为 $W = (t \ge t_{\alpha}(n_1 + n_2 - 2)).$

p值:
$$\mathbf{p} = P(t(n_1 + n_2 - 2) \ge t_0)$$
,

当 $\mathbf{p} \le \alpha$ 时,拒绝 H_0 ,当 $\mathbf{p} > \alpha$ 时,接受 H_0 .

在假设检验中

$$H_0: \mu_1 \le \mu_2$$

 $H_0: \mu_1 \le \mu_2, \ H_1: \mu_1 > \mu_2$
 $H_0: \mu_1 = \mu_2, \ H_1: \mu_1 > \mu_2$

以上3种检验的检验法则与检验效果是一致的.

(3). 检验 H_0 : $\mu_1 \geq \mu_2$

选检验统计量

$$t = \frac{\bar{X} - \bar{Y}}{S_W \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}, \quad S_W = \sqrt{\frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{(n_1 + n_2 - 2)}}$$

检验的拒绝域为 $W = (t \le -t_{\alpha}(n_1 + n_2 - 2))$. p值: $\mathbf{p} = P(t(n_1 + n_2 - 2) \le t_0)$,

当 $\mathbf{p} \le \alpha$ 时,拒绝 H_0 ,当 $\mathbf{p} > \alpha$ 时,接受 H_0 .

在假设检验中

$$H_0: \mu_1 \ge \mu_2$$

 $H_0: \mu_1 \ge \mu_2, \ H_1: \mu_1 < \mu_2$
 $H_0: \mu_1 = \mu_2, \ H_1: \mu_1 < \mu_2$

以上3种检验的检验法则与检验效果是一致的.

例1 为了研究一种新化肥对种植小麦的效力,选13块条件相同面积相等的土地进行试验,各块产量(kg)如下:

施肥的: 34, 35, 30, 33, 34, 32.

未施肥的: 29, 27, 32, 28, 32, 31, 31.

问这种化肥对小麦产量是否有显著影响?

解 用X与Y分别表示在一块土地上施肥与不施肥下小麦的产量,设

$$X \sim N(\mu_1, \sigma_1^2), Y \sim N(\mu_2, \sigma_2^2).$$

若已知
$$\sigma_1^2 = \sigma_2^2$$
,

检验:
$$H_0: \mu_1 = \mu_2 (\alpha = 0.05)$$
.

已知
$$n_1 = 6$$
, $n_2 = 7$, $\bar{x} = 33$, $(n_1 - 1)s_1^2 = 16$,

$$\overline{y} = 30, (n_2 - 1)s_2^2 = 24,$$

查表得: $t_{\alpha/2}(n_1+n_2-2)=t_{0.025}(11)=2.201$,

拒绝域 $W = (|t| \ge t_{0.025}(11) = 2.201)$.

$$t = \frac{33 - 30}{\sqrt{\frac{16 + 24}{6 + 7 - 2} \left(\frac{1}{6} + \frac{1}{7}\right)}} = 2.828 > 2.201,$$

拒绝 H_0 ,新化肥对小麦产量的影响是显著的.

p值:
$$p = 2P(t(11) \ge 2.828) = 0.018 < 0.05$$
,

同样拒绝原假设 H_0 .

成对数据 t 检验

2.
$$\sigma_1^2$$
, σ_2^2 未知, $n_1 = n_2 = n$, 检验 $H_0: \mu_1 = \mu_2$

配对的t检验法

$$\Leftrightarrow Z = X_i - Y_i (i = 1, 2, \dots, n),$$

则 Z_1, \dots, Z_n 独立同分布于 $N(d, \sigma^2)$,

其中
$$d = \mu_1 - \mu_2$$
, $\sigma^2 = \sigma_1^2 + \sigma_2^2$.

检验
$$H_0: \mu_1 = \mu_2 \Leftrightarrow H_0: d = 0.(\sigma$$
未知)

成对数据 t 检验

选检验统计量
$$t = \frac{\overline{Z}}{S} \sqrt{n} \sim t(n-1)$$
,

其中
$$Z = \frac{1}{n} \sum_{i=1}^{n} Z_i, S = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (Z_i - \overline{Z})^2},$$

拒绝域为 $W = \{ |t| \ge t_{\alpha/2}(n-1) \}$.

p值:
$$p = P(|t| \ge |t_0|) = 2P(t(n-1) \ge |t_0|)$$
,

其中
$$t_0 = \frac{\overline{z}}{s} \sqrt{n}$$
,

当 $\mathbf{p} \le \alpha$ 时,拒绝 H_0 ,当 $\mathbf{p} > \alpha$ 时,接受 H_0 .

类似方法可得 $H_0: \mu_1 \leq \mu_2$

$$H_0: \mu_1 \leq \mu_2$$

$$H_0: \mu_1 \geq \mu_2$$

的检验法则.

例2 为判断两种工艺方法对产品的某性能指标有无显著差异,将9批材料用两种工艺方法进行生产,得到该指标的9对数据(下表). 问:由数据,能否说明在两种不同工艺方法下产品的该性能指标有显著性差异(α=0.05)?

		0.3							
y_i	0.1	0.21	0.52	0.32	0.78	0.59	0.68	0.77	0.89

解 检验 $H_0: d = 0(\sigma + \pi)$

将9对数据作差 $z_i = x_i - y_i$, 计算 $\overline{z} = 0.06$,

$$s^2 = 0.015$$
, ix $t_0 = \frac{\overline{z}}{s} \sqrt{n} = 1.467$,

拒绝域为 $W = \{ |t| \ge t_{\alpha/2}(n-1) = t_{0.025}(8) = 2.306 \}$

$$t_0$$
=1.467<2.306,接受 H_0 ,

p值: $p = 2P(t(8) \ge 1.467) = 0.18 > 0.05$,接受 H_0 ,

两种方法无差异.

- \rightarrow 设 X_1,\dots,X_n 来自总体 $N(\mu_1,\sigma_1^2)$ 的样本,
- $\succ Y_1, \dots, Y_{n_2}$ 来自总体 $N(\mu_2, \sigma_2^2)$ 的样本,

两个样本相互独立;

 \bar{X} , S_1^2 和 \bar{Y} , S_2^2 分别为样本均值和样本方差.

 μ_1,μ_2 未知,考虑 σ_1^2,σ_2^2 的三类检验问题

(1).
$$H_0$$
: $\sigma_1^2 = \sigma_2^2$,

(2).
$$H_0$$
: $\sigma_1^2 \leq \sigma_2^2$,

(3).
$$H_0$$
: $\sigma_1^2 \ge \sigma_2^2$.

(1). 检验 H_0 : $\sigma_1^2 = \sigma_2^2$

选检验统计量

$$F = \frac{S_1^2}{S_2^2} \sim F(n_1 - 1, n_2 - 1).$$

检验的拒绝域为

$$\begin{array}{c|c}
f(x) \\
\frac{\alpha}{2} \\
0 \\
F_{\alpha/2}(n_1 - 1, n_2 - 1)
\end{array}$$

$$x \\
F_{1-\alpha/2}(n_1 - 1, n_2 - 1)$$

$$W = \left(F \le t_{1-\frac{\alpha}{2}}(n_1 - 1, n_2 - 1) \overrightarrow{\mathbb{E}}F \ge t_{\frac{\alpha}{2}}(n_1 - 1, n_2 - 1) \right).$$

p值:
$$\mathbf{p} = 2\min P(F \ge f_0, F \le f_0)$$

其中,
$$f_0 = \frac{s_1^2}{s_2^2}$$
.

当 $\mathbf{p} \leq \alpha$ 时,拒绝 H_0 ,

当 $\mathbf{p} > \alpha$ 时,接受 H_0 .

双侧检验.

(2). 检验 H_0 : $\sigma_1^2 \leq \sigma_2^2$

选检验统计量
$$F = \frac{S_1^2}{S_1^2}$$
,

$$F = \frac{S_1^2}{S_2^2},$$

检验的拒绝域为

$$W = (F \ge F_{\alpha}(n_1 - 1, n_2 - 1)).$$

p值:
$$\mathbf{p} = P(F(n_1 - 1, n_2 - 1) \ge f_0)$$
,

其中,
$$f_0 = s_1^2/s_2^2$$
.

当
$$\mathbf{p} \le \alpha$$
时,拒绝 H_0 ,当 $\mathbf{p} > \alpha$ 时,接受 H_0 .

在假设检验中

$$H_0: \sigma_1^2 \le \sigma_2^2$$
 $H_0: \sigma_1^2 \le \sigma_2^2, \ H_1: \sigma_1^2 > \sigma_2^2$
 $H_0: \sigma_1^2 = \sigma_2^2, \ H_1: \sigma_1^2 > \sigma_2^2$

以上3种检验的检验法则与检验效果是一致的.

(2). 检验 H_0 : $\sigma_1^2 \geq \sigma_2^2$

选检验统计量
$$F = \frac{S_1^2}{S^2}$$
,

$$F=\frac{S_1^2}{S_2^2},$$

检验的拒绝域为

$$W = (F \leq F_{1-\alpha}(n_1 - 1, n_2 - 1)).$$

p值:
$$p = P(F(n_1-1,n_2-1) \le f_0)$$
,

其中,
$$f_0 = s_1^2/s_2^2$$
.

当
$$\mathbf{p} \le \alpha$$
时,拒绝 H_0 ,当 $\mathbf{p} > \alpha$ 时,接受 H_0 .

在假设检验中

$$H_0: \sigma_1^2 \ge \sigma_2^2$$
 $H_0: \sigma_1^2 \ge \sigma_2^2, \ H_1: \sigma_1^2 < \sigma_2^2$
 $H_0: \sigma_1^2 \ge \sigma_2^2, \ H_1: \sigma_1^2 < \sigma_2^2$

以上3种检验的检验法则与检验效果是一致的.

例1 为了研究一种新化肥对种植小麦的效力,选13块条件相同面积相等的土地进行试验,各块产量(kg)如下:

施肥的: 34, 35, 30, 33, 34, 32.

未施肥的: 29, 27, 32, 28, 32, 31, 31.

问这种化肥对小麦产量是否有显著影响?

解 用X与Y分别表示在一块土地上施肥与不施肥下小麦的产量,设

$$X \sim N(\mu_1, \sigma_1^2), Y \sim N(\mu_2, \sigma_2^2).$$

检验:
$$H_0: \sigma_1^2 = \sigma_2^2 (\alpha = 0.05)$$
.

已知
$$n_1 = 6$$
, $n_2 = 7$, $s_1^2 = 16/5$, $s_2^2 = 24/6$,

查表得: $F_{\alpha/2}(n_1-1,n_2-1)=F_{0.025}(5,6)=5.99$,

$$F_{1-\alpha/2}(n_1-1,n_2-1)=F_{0.975}(5,6)=\frac{1}{F_{0.025}(6.5)}=0.143,$$

拒绝域 $W = (F \ge 5.99$ 或 $F \le 0.143)$.

$$0.143 < f_0 = \frac{16/5}{24/6} = 0.8 < 5.99$$
,接受 H_0 .

p值:
$$p = 2P(F(5,6) \le 0.8) \approx 0.7 > 0.05$$
,

同样接受 H_0 .

谢 谢!