中級統計学:第3回中間試験

村澤 康友

2022年12月16日

注意:3問とも解答すること. 結果より思考過程を重視するので,途中計算等も必ず書くこと(部分点は大いに与えるが,結果のみの解答は0点とする). 教科書のみ参照してよい(他の講義資料・ノートは持込不可).

- 1. (20点)以下で定義される統計学の専門用語をそれぞれ書きなさい.
 - (a) 確率分布の特性を表す定数
 - (b) 確率的な標本抽出にともなう統計量の分布
 - (c) 標本を用いて 2 つの母集団を比較する問題
 - (d) 大標本における推定量の近似的な分布
- 2. (30点) 分布表を用いて以下の問いに答えなさい.
 - (a) $X \sim \chi^2(11)$ とする. $\Pr[a \le X \le b] = .98$ となる a, b を求めなさい.
 - (b) $Y \sim t(13)$ とする. $\Pr[|Y| \le c] = .9$ となる c を求めなさい.
 - (c) $Z\sim {\rm F}(4,9)$ とする. $\Pr[d\leq Z\leq e]=.95$ となる d,e を求めなさい. なお $a{\sim}e$ はすべて正の実数($0,\infty$ は含まない)とする.
- 3. (50 点) K 大生の(1 日平均)睡眠時間の分布を調べたい. 母集団分布を N (μ, σ^2) と仮定する(μ, σ^2 は未知). 無作為に選んだ K 大生 5 人に睡眠時間を尋ねたところ,5 時間・7 時間・8 時間・9 時間・11 時間という回答が得られた.
 - (a) 標本平均 \bar{X} と標本分散 s^2 を求めなさい.
 - (b) \bar{X} と s^2 はどのような分布をもつか? (証明不要)
 - (c) \bar{X} の分散の推定値を求めなさい.
 - (d) μ の 95 %信頼区間を求めなさい.
 - (e) σ^2 の 95 %信頼区間を求めなさい.

解答例

- 1. 統計学の基本用語
 - (a) 母数 (パラメーター)
 - (b) 標本分布
 - (c) 2 標本問題
 - (d) 漸近分布
- 2. 分布表の読み方

(a)

$$Pr[a \le X \le b] = Pr[X \ge a] - Pr[X > b]$$
$$= .98$$

これを満たす例は

$$Pr[X \ge a] = .99$$
$$Pr[X > b] = .01$$

 χ^2 分布表より $X \sim \chi^2(11)$ なら a = 3.05348, b = 24.7250.

- 各5点.
- (b) t 分布の対称性より

$$\begin{aligned} \Pr[|Y| \leq c] &= \Pr[-c \leq Y \leq c] \\ &= 1 - 2\Pr[Y > c] \\ &= .9 \end{aligned}$$

すなわち

$$\Pr[Y > c] = .05$$

t 分布表より $Y \sim t(13)$ なら c = 1.771.

(c)

$$\Pr[d \le Z \le e] = 1 - \Pr[Z < d] - \Pr[Z > e]$$
$$= .95$$

これを満たす例は

$$\Pr[Z < d] = \Pr\left[\frac{1}{Z} > \frac{1}{d}\right]$$
$$= .025$$
$$\Pr[Z > e] = .025$$

 $Z\sim {\rm F}(4,9)$ なら $1/Z\sim {\rm F}(9,4)$ なので F 分布表より 1/d=8.905, すなわち d=1/8.905. 同じく F 分布表より $Z\sim {\rm F}(4,9)$ なら e=4.718.

- 各 5 点.
- 3. 母平均・母分散の区間推定

(a)

$$\bar{X} = \frac{5+7+8+9+11}{5}$$
= 8
$$s^2 = \frac{(5-8)^2 + (7-8)^2 + (8-8)^2 + (9-8)^2 + (11-8)^2}{5-1}$$
= $\frac{9+1+0+1+9}{4}$
= 5

- 各5点.
- (b) \bar{X}, s^2 の標本分布は

$$\bar{X} \sim N\left(\mu, \frac{\sigma^2}{5}\right)$$

$$\frac{4s^2}{\sigma^2} \sim \chi^2(4)$$

- 各5点.
- n=5 を代入しなければ 1 点減.
- 左辺の $4s^2/\sigma^2$ がなければダメ.
- (c) \bar{X} の分散 σ^2/n の推定値は

$$\frac{s^2}{n} = \frac{5}{5}$$
$$= 1$$

- $n = 5, s^2 = 5$ を代入しなければダメ.
- (a) の s^2 と整合的なら OK.
- (d) \bar{X} を標準化すると

$$\frac{\bar{X} - \mu}{\sqrt{\sigma^2 / 5}} \sim N(0, 1)$$

 σ^2 を s^2 に置き換えると

$$\frac{\bar{X} - \mu}{\sqrt{s^2/5}} \sim t(4)$$

t 分布表より

$$\Pr\left[-2.776 \le \frac{\bar{X} - \mu}{\sqrt{s^2/5}} \le 2.776\right] = .95$$

すなわち

$$\Pr\left[\bar{X} - 2.776\sqrt{\frac{s^2}{5}} \le \mu \le \bar{X} + 2.776\sqrt{\frac{s^2}{5}}\right] = .95$$

 $\bar{X}=8,\ s^2=5$ より μ の 95 %信頼区間は [5.224, 10.776].

- 標準化で2点.
- t(4) までは4点.
- t 分布表の読み取りまでは 6 点.

• $\bar{X} = 8$, $s^2 = 5$ を代入しなければ 2 点減.

(e) $4s^2/\sigma^2 \sim \chi^2(4)$ なので χ^2 分布表より

$$\Pr\left[.484419 \le \frac{4s^2}{\sigma^2} \le 11.1433\right] = .95$$

すなわち

$$\Pr\left[\frac{4s^2}{11.1433} \le \sigma^2 \le \frac{4s^2}{.484419}\right] = .95$$

 $s^2=5$ より σ^2 の 95 %信頼区間は [1.79,41.29].

- χ^2 分布表の読み取りまでは5点.
- $s^2 = 5$ を代入しなければ 2 点減.