CSC165H1S Exercise2

Yizhou Sheng, Student# 999362602

Rui Qiu, Student# 999292509

Jan 29th, 2012

Question 1:

Solution:

- (a) $\forall x \in D(x), T(x) \Rightarrow \neg L(x)$
- (b) Some exam question is long.
- (c) $\exists x \in D, T(x) \land \forall y \in D, E(y) \Rightarrow H(x, y)$
- (d) No exam question is harder than every test question.

Question 2:

Solution:

- (a) Every prime number except 2 is odd.
- (b) Some prime number is larger than or equal to every prime number.

Question 3:

Solution:

(a) This pair of statements are equivalent.

Proof:

When the statement $\forall x \in D, (P(x) \land Q(x))$ is true,

for every x in D, x is in P and x is in Q.

So, for every x in D, x is in P and for every x in D, x is in Q.

Thus the statement $(\forall x \in D, P(x)) \land (\forall x \in D, Q(x))$ is true.

When the statement $(\forall x \in D, P(x)) \land (\forall x \in D, Q(x))$ is true,

for every x in D, x is in P and for every x in D, x is in Q. So for every x in D, x is P and x is in Q.

Thus the statement $\forall x \in D, (P(x) \land Q(x))$ is true.

Therefore, $\forall x \in D, (P(x) \land Q(x))$ and $(\forall x \in D, P(x)) \land (\forall x \in D, Q(x))$ are equivalent.

(b) This pair of statements are not equivalent.

Counterexample:

Suppose D=R, P(x):x is positive, and Q(x):x is non-positive. Then $\forall x \in R, x > 0 \lor x \le 0$ is true $\Rightarrow \forall x \in D, (P(x) \lor Q(x))$ is true.

But both $\forall x \in R, x > 0$ and $\forall x \in R, x \le 0$ are false $\Rightarrow (\forall x \in D, P(x)) \lor (\forall x \in D, Q(x))$ is false.

Therefore, the two statements are not equivalent.

(c) This pair of statements are equivalent.

Proof:

When the statement $\exists x \in D, (P(x) \lor Q(x))$ is true, for some x in D, x is in P or x is in Q.

So for some x in D, x is in P or for some x in D, x is in Q.

Thus the statement $(\exists x \in D, P(x)) \lor (\exists x \in D, Q(x))$ is true.

When the statement $(\exists x \in D, P(x)) \lor (\exists x \in D, Q(x))$ is true, for some x in D, x is in P or for some x in D, x is in Q.

So for some x in D, x is in P or x is in Q.

Thus the statement $\exists x \in D, (P(x) \lor Q(x))$ is true,

Therefore, $\exists x \in D, (P(x) \lor Q(x))$ and $(\exists x \in D, P(x)) \lor (\exists x \in D, Q(x))$ are equivalent.

(d) This pair of statements are not equivalent.
Counterexample:

Suppose D=R, P(x):x>1, and Q(x):x>2.

Both $(\forall x \in R, x > 1)$ and $(\forall x \in R, x > 2)$ are false, then $(\forall x \in R, x > 1) \Rightarrow (\forall x \in R, x > 2)$ is true. so $(\forall x \in D, P(x)) \Rightarrow (\forall x \in D, Q(x))$ is true.

But $\forall x \in R, x > 1 \Rightarrow x > 2$ is false, so the statement $\forall x \in D, P(x) \Rightarrow Q(x)$ is false.

Therefore the two statements are not equivalent.

Question 4:

Solution:

$$\neg (\forall \varepsilon \in R^+, \exists \delta \in R^+, \forall x \in R, 0 < |x - a| < \delta \Rightarrow |f(x) - L| < \varepsilon)$$

$$\Leftrightarrow \exists \varepsilon \in R^+, \forall \delta \in R^+, \exists x \in R, \quad \neg (0 < |x - a| < \delta \Rightarrow |f(x) - L| < \varepsilon)$$

$$\Leftrightarrow \exists \varepsilon \in R^+, \forall \delta \in R^+, \exists x \in R, \quad 0 < |x - a| < \delta \land |f(x) - L| \ge \varepsilon$$