一、填空 20% (每小题 2 分)

- 1. 设 $A = \{x \mid (x \in N) \perp (x < 5)\}, B = \{x \mid x \in E^+ \perp x < 7\}$ (N: 自然数集, E^+ 正偶数) 则 $A \cup B =$
- 2. A, B, C表示三个集合, 文图中阴影部分的集合表达式为

3. 设 P, Q 的真值为 0, R, S 的真值为 1, 则

4. 公式 $(P \land R) \lor (S \land R) \lor \neg P$ 的主合取范式为

5. 若解释 I 的论域 D 仅包含一个元素,则 $\exists x P(x) \rightarrow \forall x P(x)$ 在 I 下真值为

6. 设 A={1, 2, 3, 4}, A 上关系图为

则 $R^2 =$

7. 设 A={a, b, c, d}, 其上偏序关系 R 的哈斯图为

则 R= _____

- 8. 图 **c** 的补图为 _____
- 9. 设 A={a, b, c, d} , A 上二元运算如下:

*	a	b	c	d
a	a	b	c	d
b	b	c	d	a
c	c	d	a	b
d	d	a	b	c

那么代数系统<A,*>的幺元是 _____,有逆元的元素为_____,它们的

逆元分别为 ____

10. 下图所示的偏序集中,是格的为 _____

二、选择 20% (每小题 2分)

- 1、下列是真命题的有()
- Α.
- $\{a\} \subseteq \{\{a\}\}\ :$ B. $\{\{\Phi\}\} \in \{\Phi, \{\Phi\}\}\ :$
- C. $\Phi \in \{\{\Phi\}, \Phi\}$.
- $D. \{\Phi\} \in \{\{\Phi\}\}$
- 2、下列集合中相等的有(
 - A. $\{4, 3\} \cup \Phi$; B. $\{\Phi, 3, 4\}$; C. $\{4, \Phi, 3, 3\}$; D. $\{3, 4\}$.
- 3、设 A={1, 2, 3},则 A 上的二元关系有())个。

- A. 2^3 ; B. 3^2 ; C. $2^{3\times3}$; D. $3^{2\times2}$.
- 4、设 R, S 是集合 A 上的关系,则下列说法正确的是()
 - A. 若 R, S 是自反的, 则 $R \circ S$ 是自反的;
 - B. 若 R, S 是反自反的, 则 $R \circ S$ 是反自反的;
 - C. 若 R, S 是对称的, 则 $R \circ S$ 是对称的;
 - D. 若 R, S 是传递的, 则 $R \circ S$ 是传递的。
- 5、设 A={1, 2, 3, 4}, P(A)(A的幂集)上规定二元系如下

$$R = \{ \langle s, t \rangle | s, t \in p(A) \land (|s| | t|) \text{ for } P \land A \land A = (A) \land B = ($$

- A. A; B. P(A); C. $\{\{\{1\}\}, \{\{1, 2\}\}, \{\{1, 2, 3\}\}, \{\{1, 2, 3, 4\}\}\}\};$
- D. $\{\{\Phi\}, \{2\}, \{2, 3\}, \{\{2, 3, 4\}\}, \{A\}\}$
- 6、设 A={ Φ , {1}, {1, 3}, {1, 2, 3}}则 A 上包含关系"⊆"的哈斯图为(

- 7、下列函数是双射的为()
- A. $f: I \rightarrow E$, f(x) = 2x; B. $f: N \rightarrow N \times N$, $f(n) = \langle n, n+1 \rangle$;
- C. $f: R \rightarrow I$, f(x) = [x]; D. $f: I \rightarrow N$, f(x) = |x|

(注: I—整数集, E—偶数集, N—自然数集, R—实数集)

8、图 中 从 v_1 到 v_3 长度为 3 的通路有 ()条。

- A. 0; B. 1; C. 2; D. 3_o
- 9、下图中既不是 Eular 图,也不是 Hamilton 图的图是()

- 10、在一棵树中有7片树叶,3个3度结点,其余都是4度结点则该树有()个4度结点。
 - A. 1; B. 2; C. 3; D. 4 。

三、证明 26%

1、R 是集合 X 上的一个自反关系, 求证: R 是对称和传递的, 当且仅当 < a, b> 和 < a, c> 在 R 中有 < .b, c> 在 R 中。(8 分)

- 2、f和g都是群< G_1 ,★>到< G_2 ,*>的同态映射,证明<C,★>是< G_1 ,★>的一个子 群。其中 $C=\{x \mid x \in G_1$ 且 $f(x)=g(x)\}$ (8分)
- 3、G=<V, E> (|V| = v,|E| = e)是每一个面至少由 k(k \geq 3)条边围成的连通平面 $e \leq \frac{k(v-2)}{k-2}$, 由此证明彼得森图(Peterson)图是非平面图。(11 分)

四、逻辑推演 16%

用 CP 规则证明下题 (每小题 8分)

- $A \lor B \to C \land D, D \lor E \to F \Rightarrow A \to F$
- $2 \forall x (P(x) \to Q(x)) \Rightarrow \forall x P(x) \to \forall x Q(x)$

五、计算 18%

- 1、设集合 A={a, b, c, d}上的关系 R={<a,b>,<b,c>,<c,d>}用矩阵运算 求出 R 的传递闭包 t (R)。 (9分)
- 2、如下图所示的赋权图表示某七个城市 $\nu_1, \nu_2, \dots, \nu_7$ 及预先算出它们之间的一些直接通信线路造价,试给出一个设计方案,使得各城市之间能够通信而且总造价最小。 (9分)

试卷一答案:

一、填空 20% (每小题 2 分)

1, $\{0, 1, 2, 3, 4, 6\}$; 2, $(B \oplus C) - A$; 3, 1; 4, $(\neg P \lor S \lor R) \land (\neg P \lor \neg S \lor R)$; 5, 1; 6, $\{<1,1>,<1,3>,<2,2>,<2,4>\}$; 7, $\{<a.b>,<a,c>,<a,d>,<b,d>,<c,d>\}$ \bigcup I_A ; 8,

9, a; a, b, c, d; a, d, c, d; 10, c;

二、选择 20% (每小题 2分)

题目	1	2	3	4	5	6	7	8	9	10
答案	C D	B, C	С	A	D	С	A	D	В	A

三、证明 26%

1、证:

" ⇒ " $\forall a,b,c\in X$ 若 < a,b >,< a,c > \in R 由 R 对 称 性 知 < b,a >,< c,a > \in R . 由 R 传递性得 < b,c > \in R

2、证
$$\forall a,b \in C$$
 , 有 $f(a) = g(a), f(b) = g(b)$, 又
$$f(b^{-1}) = f^{-1}(b), \quad g(b^{-1}) = g^{-1}(b) \therefore f(b^{-1}) = f^{-1}(b) = g^{-1}(b) = g(b^{-1})$$

$$\therefore f(a \star b^{-1}) = f(a) * f^{-1}(b) = g(a) * g(b^{-1}) = g(a \star b^{-1})$$

3、证:

①设 G 有 r 个面,则
$$2e = \sum_{i=1}^r d(F_i) \ge rk \quad \text{,即} \quad r \le \frac{2e}{k} \quad \text{。而} \quad v - e + r = 2 \text{ 故}$$

$$2 = v - e + r \le v - e + \frac{2e}{k} \quad \text{則得} \quad e \le \frac{k(v-2)}{k-2} \quad \text{(8分)}$$

②彼得森图为
$$k = 5, e = 15, v = 10$$
, 这样 $e \le \frac{k(v-2)}{k-2}$ 不成立,

所以彼得森图非平面图。(3分)

二、逻辑推演 16%

1、证明:

$$\widehat{1}$$
 A

P (附加前提)

$$\bigcirc A \lor B$$

T $\boxed{1}$ $\boxed{1}$

P

$$\textcircled{4}$$
 $C \wedge D$

T231

$$\bigcirc D$$

T4I

$$\bigcirc D \lor E$$

T⑤I

$$(7) D \vee E \rightarrow F$$

P

$$\otimes F$$

T(6)(7)I

$$\tiny{\textcircled{9}} A \rightarrow F$$

CP

2、证明

$$\bigcirc$$
 $\forall x P(x)$

P (附加前提)

$$\bigcirc P(c)$$

US(1)

$$_{\scriptsize \textcircled{3}} \forall x (P(x) \rightarrow Q(x))$$

P

$$_{\textcircled{4}}P(c) \to Q(c)$$

US(3)

$$\odot Q(c)$$

T(2)(4)I

$$_{\bigcirc} \forall x Q(x)$$

UG(5)

$$\bigcirc \forall x P(x) \rightarrow \forall x Q(x)$$

CP

三、计算 18%

1、解:

$$\boldsymbol{M}_{R} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \quad \boldsymbol{M}_{R^{2}} = \boldsymbol{M}_{R} \circ \boldsymbol{M}_{R} = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$M_{R^3} = M_{R^2} \circ M_R = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$M_{R^4} = M_{R^3} \circ M_R = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\boldsymbol{M}_{t(R)} = \boldsymbol{M}_R + \boldsymbol{M}_{R^2} + \boldsymbol{M}_{R^3} + \boldsymbol{M}_{R^4} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

 $\begin{tabular}{ll} $:$ & t(R) = \{ < a \ , \ a > , < a \ , \ b > , < a \ , \ c > , < a \ , \ d > , < b \ , b > , < b \ , \ c \ . > , \\ & < b \ , \ d > , < c \ , \ d > \} \end{tabular}$

2、解: 用库斯克(Kruskal)算法求产生的最优树。算法略。结果如图:

树权 C(T)=23+1+4+9+3+17=57 即为总造价。

试卷二试题与答案

一、填空 20% (每小题 2分)

- 1、P: 你努力,Q: 你失败。"除非你努力,否则你将失败"的翻译为_____;"虽然你努力了,但还是失败了"的翻译为
- 2、论域 D={1, 2}, 指定谓词 P

P(1,1)	P (1,2)	P(2,1)	P (2,2)
Т	Т	F	F

则公式 $\forall x \exists y P(y,x)$ 真值为 ______。

- 2、设 $S=\{a_1, a_2, \cdots, a_8\}$, B_i 是 S 的子集,则由 B_{31} 所表达的子集是
- 3、设 A={2, 3, 4, 5, 6}上的二元关系 $R = \{ \langle x, y \rangle | x \langle y \rangle x$ 是质数}, 则 R=

_____ (列举法)。

R 的关系矩阵 M_R=

5、设 A={1, 2, 3},则 A 上既不是对称的又不是反对称的关系 R= _________; A 上既是对称的又是反对称的关系 R= 。 6、设代数系统<A, *>, 其中 A={a, b, c},

*	a	b	c	
a	a	b	c	
b	b	b	c	则幺元是; 是否有幂等
c	c	c	b	性; 是否有对称性。

8、下面偏序格是分配格的是 _____。

9、n 个结点的无向完全图 K_n 的边数为 ______, 欧拉图的充要条件是

10、公式 $(P \lor (\neg P \land Q)) \land ((\neg P \lor Q) \land \neg R)$ 的根树表示为

二、选择 20% (每小题 2 分)

1、在下述公式中是重言式为()

$$\text{A.} \quad (P \land Q) \to (P \lor Q) \; ; \; \; \text{B.} \quad (P \leftrightarrow Q) \leftrightarrow ((P \to Q) \land (Q \to P)) \; ;$$

 $\text{C.} \ \neg (P \to Q) \land Q \; ; \qquad \text{D.} \ P \to (P \lor Q) \; .$

2、命题公式 $(\neg P \to Q) \to (\neg Q \lor P)$ 中极小项的个数为 (),成真赋值的个数 为 ()。

A. 0; B. 1; C. 2; D. 3 .

 $_3$ 、设 $_S = \{\Phi, \{1\}, \{1,2\}\}$,则 $_2$ $_s$ 有 () 个元素。

A. 3; B. 6; C. 7; D. 8 .

4、设 $S = \{1, 2, 3\}$,定义 $S \times S$ 上的等价关系

 $R = \{ << a,b>, < c,d> | < a,b> \in S \times S, < c,d> \in S \times S, a+d=b+c \}$ 则由 R 产 生 的 $S \times S$ 上一个划分共有() 个分块。

- A. 4; B. 5; C. 6; D. 9 .
- 5、设 $S = \{1, 2, 3\}$, S上关系R的关系图为

B. 反自反性、反对称性;

D. $S = \{x \mid x \in Z \land x \ge 0\} = N$

则 R 具有 () 性质。

- A. 自反性、对称性、传递性;
- C. 反自反性、反对称性、传递性; D. 自反性。
- 6、设 $^{+,\circ}$ 为普通加法和乘法,则() $< S, +, \circ >$ 是域。
 - A. $S = \{x \mid x = a + b\sqrt{3}, a, b \in Q\}$ B. $S = \{x \mid x = 2n, a, b \in Z\}$
 - C. $S = \{x \mid x = 2n + 1, n \in Z\}$
- 7、下面偏序集()能构成格。

[A]

8、在如下的有向图中,从 V_1 到 V_4 长度为3的道路有() 条。

- A. 1;
- B. 2;
- C. 3;
- D. 4 。
- 9、在如下各图中()欧拉图。

10、

设 R 是实数集合,"×"为普通乘法,则代数系统<R , ≫ 是(

- A. 群; B. 独异点; C. 半群。

三、证明 46%

1、设R是A上一个二元关系,

 $S = \{ \langle a,b \rangle | (a,b \in A) \land (对于某一个<math>c \in A, \ f < a,c > \in R \\ \exists \langle c,b \rangle \in R \} \}$ 试 证 明若 R 是 A 上一个等价关系,则 S 也是 A 上的一个等价关系。(9 分)

2、用逻辑推理证明:

所有的舞蹈者都很有风度,王华是个学生且是个舞蹈者。因此有些学生很有风度。 (11 分)

- 3、若 $f: A \to B$ 是从 A 到 B 的函数,定义一个函数 $g: B \to 2^A$ 对任意 $b \in B$ 有 $g(b) = \{x \mid (x \in A) \land (f(x) = b)\}$,证明: 若 f 是 A 到 B 的满射,则 g 是从 B 到 2^A 的单射。(10分)
- 4、 若无向图 G 中只有两个奇数度结点,则这两个结点一定连通。(8分)
- $m = \frac{1}{2}(n-1)(n-2) + 2$ 5、设 G 是具有 n 个结点的无向简单图,其边数 $m = \frac{1}{2}(n-1)(n-2) + 2$,则 G 是 Hamilton 图(8 分)

四、计算 14%

- 1、设<Z₆,+₆>是一个群,这里+₆是模 6 加法,Z₆={[0],[1],[2],[3],[4],[5]}, 试求出<Z₆,+₆>的所有子群及其相应左陪集。(7 分)
- 2、 权数 1, 4, 9, 16, 25, 36, 49, 64, 81, 100 构造一棵最优二叉树。(7分) 试卷二答案:

一、 填空 20% (每小题 2 分)

$$\begin{pmatrix}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix}$$

3>,<5,4>,<5,5>,<5,6>}; (0 0 0 0 0) 5 、 R={<1,2>,<1,3>,<2,1>}; R={<1,1>,<2,2>,<3,3>} 6、a;否;有 7、Klein 四元群;循环群 8、 B 9、

 $\frac{1}{2}$ n(n-1); 图中无奇度结点且连通 10、

二、 选择 20% (每小题 2分)

<u> </u>	题目	1	2	3	4	5	6	7	8	9	10
	答案	B, D	D; D	D	В	D	A	В	В	В	B, C

三、 证明 46%

1、(9分)

(1) S 自反的

 $\forall a \in A, \exists R \not \exists \not \sqsubseteq, \therefore (\langle a, a \rangle \in R) \land (\langle a, a \rangle \in R), \therefore \langle a, a \rangle \in S$

(2) S 对称的

 $\forall a,b \in A$

(3) S 传递的

 $\forall a,b,c \in A$

$$< a, b > \in S \land < b, c > \in S$$

$$\Rightarrow$$
 $(\langle a, d \rangle \in R) \land (\langle d, b \rangle \in R) \land (\langle b, e \rangle \in R) \land (\langle e, c \rangle \in R)$

$$\Rightarrow$$
 ($\langle a, b \rangle \in R$) \land ($\langle b, c \rangle \in R$)

$$\Rightarrow < a, c > \in S$$

由(1)、(2)、(3)得; S是等价关系。

2、11分

证明:设 P(x): x 是个舞蹈者; Q(x): x 很有风度; S(x): x 是个学生; a: 王华上述句子符号化为:

前提: $\forall x (P(x) \to Q(x))$ 、 $S(a) \land P(a)$ 结论: $\exists x (S(x) \land Q(x))$ 3 分

$$\bigcirc S(a) \wedge P(a)$$

$$\bigcirc \forall x (P(x) \to Q(x))$$

$$_{ \textcircled{\tiny 3} }P(a) \rightarrow Q(a)$$

$$\bigcirc P(a)$$

$$\bigcirc Q(a)$$
.

$$_{\bigcirc}S(a)$$

$$_{\widehat{7}}S(a) \wedge Q(a)$$

$$\odot$$
 $\exists x(S(x) \land Q(x))$

3、10分

证明: $\forall b_1, b_2 \in B$, $(b_1 \neq b_2)$: f 满射 : $\exists a_1, a_2 \in A$ 使 $f(a_1) = b_1$, $f(a_2) = b_2$, 且 $f(a_1) \neq f(a_2)$, 由于 f 是函数 , : $a_1 \neq a_2$ 又 $g(b_1) = \{x \mid (x \in A) \land (f(x) = b_1)\}$, $g(b_2) = \{x \mid (x \in A) \land (f(x) = b_2)\}$: $a_1 \in g(b_1)$, $a_2 \in g(b_2)$ 但 $a_1 \notin g(b_2)$, $a_2 \notin g(b_1)$: $g(b_1) \neq g(b_2)$ 由 b_1, b_2 任意性知 , g 为单射 。

 4×8 分 证明: 设 G 中两奇数度结点分别为 u 和 v,若 u,v 不连通,则 G 至少有两个连通分支 G_1 、 G_2 ,使得 u 和 v 分别属于 G_1 和 G_2 ,于是 G_1 和 G_2 中各含有 1 个奇数度结

5、8分

证明: 证G中任何两结点之和不小于n。

点,这与图论基本定理矛盾,因而u,v一定连通。

反证法: 若存在两结点 u, v 不相邻且 $d(u) + d(v) \le n - 1$, 令 $V_1 = \{u, v\}$, 则 $G-V_1$

是具有 n-2 个结点的简单图,它的边数 $m \ge \frac{1}{2}(n-1)(n-2)+2-(n-1)$,可得 $m \ge \frac{1}{2}(n-2)(n-3)+1$,这与 G_1 =G- V_1 为 n-2 个结点为简单图的题设矛盾,因而 G中任何两个相邻的结点度数和不少于 n。

所以 G 为 Hamilton 图.

四、 计算 14%

1、7分

解: 子群有<{[0]},+6>; <{[0],[3]},+6>; <{[0],[2],[4]},+6>; <{ Z_6 },+6>{[0]}的左陪集: {[0]},{[1]}; {[2]},{[3]}; {[4]},{[5]} {[0], [3]}的左陪集: {[0], [3]}; {[1], [4]}; {[2], [5]} {[0], [2], [4]}的左陪集: {[0], [2], [4]}; {[1], [3], [5]} Z_6 的左陪集: Z_6 。

2、7分

试卷三试题与答案

一、 填空 20% (每空 2分)

1,	设 f, g 是自然数集 N 上的函数 $\forall x \in N$, $f(x) = x + 1$, $g(x) = 2x$,
	则 $f \circ g(x) =$ 。
2,	设 A={a, b, c}, A 上二元关系 R={ <a,a>,<a,b>,<a,c>,<c,c>} , 则 s (R) =。</c,c></a,c></a,b></a,a>
3.	$A=\{1, 2, 3, 4, 5, 6\}$,A 上二元关系 $T=\{\langle x,y\rangle x \div y$ 是素数 $\}$,则用列举
31	法
	T= ;
	T的关系图为
	T 具有 ;
4、	集 合 $A = \{\{\Phi, 2\}, \{2\}\}\}$ 的 幂 集
	$2^A = $ \circ
5、	P, Q 真值为 0; R, S 真值为 1。则 $wff(P \land (R \lor S)) \rightarrow ((P \lor Q) \land (R \land S))$ 的
	真值为。
6、	$wff \neg ((P \land Q) \lor R) \rightarrow R$ 的 主 合 取 范 式
	为。
7、	设 P(x): x 是素数, E(x): x 是偶数, O(x): x 是奇数 N(x,y): x 可以整数 y。
	则谓词 $wff \forall x(P(x) \rightarrow \exists y(O(y) \land N(y,x)))$ 的自然语言是
8、	谓词 $wff \ \forall x \forall y (\exists z (P(x,z) \land P(y,z)) \rightarrow \exists u Q(x,y,u))$ 的前東范式为
o	
)を収 200/ (年 J 年 2 /))
•	选择 20% (每小题 2分)
1,	下述命题公式中,是重言式的为()。
A、	$(p \land q) \rightarrow (p \lor q)$; $B \land (p \leftrightarrow q) \leftrightarrow ((p \rightarrow q)) \land (q \rightarrow p))$;
C,	$\neg (p \rightarrow q) \land q$; $p \land \neg p) \leftrightarrow q$
2,	$wff \neg (p \land q) \rightarrow r$ 的主析取范式中含极小项的个数为 ()。
	A 、 2; B、 3; C、 5; D、 0; E、 8。
3、	给定推理

推理过程中错在()。

A, (1)-(2); B, (2)-(3); C, (3)-(4); D, (4)-(5); E, (5)-(6)

4、 \mathcal{C} $S_1=\{1, 2, \dots, 8, 9\}$, $S_2=\{2, 4, 6, 8\}$, $S_3=\{1, 3, 5, 7, 9\}$, $S_4=\{3, 4, 5\}$, $S_{s=\{3, 5\}}$, 在条件 $X \subseteq S_1$ 且 $X \not\subset S_3 \vdash X \vdash ($)集合相等。

A、 $X=S_2$ 或 S_5 ; B、 $X=S_4$ 或 S_5 ;

 $C \times X=S_1$, S_2 或 S_4 ; $D \times X 与 S_1$, …, S_5 中任何集合都不等。

5、设 R 和 S 是 P 上 的 关 系 , P 是 所 有 人 的 集 合 , 则 $S^{-1} \circ R$ 表示关系 ()。

A、 $\{\langle x, y \rangle | x, y \in P \land x$ 是y的丈夫 $\}$.

 $_{\mathbf{R}}$ { $< x, y > | x, y \in P \land x$ 是y的孙子或孙女}.

C、 Φ : D、 $\{ \langle x, y \rangle | x, y \in P \land x \in Y \}$ 的祖父或祖母 $\}$

6、下面函数()是单射而非满射。

A,
$$f: R \to R$$
, $f(x) = -x^2 + 2x - 1$,

 $f: Z^+ \to R$, $f(x) = \ln x$.

C $f: R \to Z$, f(x) = [x], [x]表示不大于x的最大整数.

D. $f: R \to R$, f(x) = 2x + 1

其中R为实数集,Z为整数集, R^+ , Z^+ 分别表示正实数与正整数集。

7、设 $S=\{1, 2, 3\}$, R 为 S 上的关系, 其关系图为

则 R 具有 () 的性质。

- A、 自反、对称、传递: B、什么性质也没有:
- C、反自反、反对称、传递; D、自反、对称、反对称、传递。
- 8、设 $S = \{\Phi, \{1\}, \{1, 2\}\}$,则有() $\subseteq S$ 。
 - A, $\{\{1,2\}\}\$; B, $\{1,2\}$; C, $\{1\}$; D, $\{2\}$.
- 9、设 A={1,2,3},则 A 上有() 个二元关系。
 - $A_{\lambda} 2^3 : B_{\lambda} 3^2 : C_{\lambda} 2^{2^3} : D_{\lambda} 2^{3^2}$
- 10、全体小项合取式为()。
 - A、可满足式; B、矛盾式; C、永真式; D、A, B, C 都有可能。

用 CP 规则证明 16% (每小题 8分) 三、

- $A \lor B \to C \land D, D \lor E \to F \implies A \to F$
- $\gamma \forall x (P(x) \lor Q(x)) \Rightarrow \forall x P(x) \lor \exists x Q(x)$

四、(14%)

集合 X={<1,2>, <3,4>, <5,6>, … }, R={<< $x_1,y_1>$, < $x_2,y_2>>|x_1+y_2=x_2+y_1\}$ 。

- 1、证明 R 是 X 上的等价关系。 (10 分)
- 2、 求出 X 关于 R 的商集。(4 分)

五、(10%)

设集合 $A=\{a,b,c,d\}$ 上关系 $R=\{\langle a,b\rangle,\langle b,a\rangle,\langle b,c\rangle,\langle c,d\rangle\}$

- 要求 1、写出 R 的关系矩阵和关系图。(4分)
 - 2、用矩阵运算求出 R 的传递闭包。(6分)

六、(20%)

- 1、(10 分) 设 f 和 g 是函数,证明 $f \cap g$ 也是函数。
- 2、(10 分) 设函数 $g:S \to T$ $f:T \to S$, 证明 $f:T \to S$ 有一方逆函数当目仅当 f 是 入射函数。

答案:

五、填空 20% (每空 2分)

 $1 > 2(x+1) : 2 > \{ < a, a >, < a, b >, < a, c >, < c, c >, < b, a >, < c, a > \} : 3 >$ $\{<2,1>,<3,1>,<5,1>,<4,2>,<6,2>,<6,3>\}$

4、

反对称性、反自反性; 4、 $\{\Phi,\{\{\Phi,2\}\},\{\{\Phi,2\},\{2\}\}\}$; 5、1:

6、 $(P\lor\neg Q\lor R)\land (\neg P\lor Q\lor R)\land (P\lor Q\lor R)$; 7、任意 x,如果 x 是素数则存在一个 y,y 是奇数且 y 整除 x ;8、 $\forall x\forall y\forall z\exists u(\neg P(x,z)\lor\neg P(y,z)\lor Q(x,y,u))$ 。

六、选择 20% (每小题 2分)

题目	1	2	3	4	5	6	7	8	9	10
答案	С	С	С	С	A	В	D	A	D	C

七、证明 16%(每小题 8 分)

1、

① *A* P (附加前提)

 $\bigcirc A \lor B$ TÛI

 $(4) C \wedge D$ T2(3)I

⑤ *D* T④I

 $\textcircled{6} D \vee E$ T5I

 $\bigcirc D \lor E \to F$ P

® *F* T6⑦I

2,

 $\therefore \forall x P(x) \lor \exists x Q(x) \Leftrightarrow \neg(\forall x) P(x) \to \exists x Q(x)$

本题可证 $\forall x (P(x) \lor Q(x)) \Rightarrow \neg(\forall x P(x) \to \exists x Q(x))$

① $\neg(\forall x P(x))$ P (附加前提)

② $\exists x(\neg P(x))$ T①E

 $\bigcirc \neg P(a)$ ES②

 $\textcircled{4} \forall x (P(x) \lor Q(x))$

 $\bigcirc P(a) \lor Q(a)$ US④

 $\bigcirc Q(a)$ T3(5)I

 $?\exists x Q(x)$ EG®

$$\exists x Q(x) \rightarrow \exists x Q(x)$$
 CP

八、14%

(1) 证明:

1、 自反性: $\forall < x, y > \in X$, 由于x + y = x + y

$$\therefore$$
 << $x, y >$, < $x, y >$ > $\in R$ ····R自反

2、 对称性: $\forall < x_1, y_1 > \in X$, $\forall < x_2, y_2 > \in X$

当 $<< x_1, y_1>, < x_2, y_2>> \in R$ 时 即 $x_1+y_2=x_2+y_1$ 也即 $x_2+y_1=x_1+y_2$ 故 $<< x_2, y_2>, < x_1, y_1>> \in R$ … R有对称性

3、 传递性: $\forall < x_1, y_1 > \in X$, $\forall < x_2, y_2 > \in X$ $\forall < x_3, y_3 > \in X$

当 $<< x_1, y_1>, < x_2, y_2>> \in R$ 且 $<< x_2, y_2>, < x_3, y_3> > \in R$ 时

(1) + (2)
$$x_1 + y_2 + x_2 + y_3 = x_2 + y_1 + x_3 + y_2$$

$$\text{RII} x_1 + y_3 = x_3 + y_1$$

故 $<< x_1, y_1 >, < x_3, y_3 >> \in R$ … R有传递性

由(1)(2)(3)知: R是X上的先等价关系。

$$_{2, X/R=}\{[<1,2>]_{R}\}$$

九、10%

2、

$$M_R = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix};$$

关系图

$$M_{R^2} = M_R \circ M_R = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$M_{R^3} = M_{R^2} \circ M_R = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\begin{split} \boldsymbol{M}_{R^4} &= \boldsymbol{M}_{R^3} \circ \boldsymbol{M}_R = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} = \boldsymbol{M}_{R^2} \\ & \boldsymbol{M}_{R^5} &= \boldsymbol{M}_{R^3} , \boldsymbol{M}_{R^6} = \boldsymbol{M}_{R^4} , \cdots \\ \boldsymbol{M}_{t(R)} &= \boldsymbol{M}_R + \boldsymbol{M}_{R^2} + \boldsymbol{M}_{R^3} + \boldsymbol{M}_{R^4} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \end{split}$$

 $\therefore \quad t \; (R) = \{ < a \; , \; a > , < a \; , \; b > , < a \; , \; c > , < a \; , \; d > , < b \; , a > , < b \; , b > , < b \; , c \; . > , < b \; , d > , < c \; , \\ d > \}_{\circ}$

六、20%

$$f \cap g = \{ \langle x, y \rangle | x \in domf \land x \in domg \land y = f(x) \land y = g(x) \}$$

$$= \{ \langle x, y \rangle | x \in domf \cap domg \land y = f(x) = g(x) \}$$

 $\diamondsuit h = f \cap g$

$$\therefore domf \cap g = domh = \{x \mid x \in domf \cap domg, f(x) = g(x)\}\$$

(2)
$$h = \{ \langle x, y \rangle | x \in domf \cap domg \land y = h(x) = f(x) = g(x) \}$$

对 $x \in domh$ 若有 y_1, y_2 使得

$$y_1 = h(x) = f(x) = g(x)$$
, $y_2 = h(x) = f(x) = g(x)$

由于 $f(\vec{u}g)$ 是函数, f(y) = y, 即 $\forall x \in domh$ 有唯一y使得y = h(x)

 $\therefore f \cap g$ 也是函数

2、证明:

"⇒"若f 有一左逆g,则对 $\forall t \in T$ $g \circ f(t) = t$ 故 $g \circ f$ 是入射,所以 f 是入射。

"⇐"f 是入射, $f:T \to S$ 定义如下: $\forall s \in f(T), \text{由 } f$ 入射, $\exists | t \in T, \text{使} f(t) = s$ 此时令 $g(s) = t, \exists s \notin f(T)$ 令 $g(s) = c \in T$ 则对 $\forall s \in S, g(s)$ 只有一个值 t 或 c且若f(t) = s 则 $g \circ f(t) = g(s) = t$,故g 是f 的左逆元 即若f入射,必能构造函数g,使g为f左逆函数

试卷四试题与答案

一、 填空 10% (每小题 2分)

1、若 P, Q, 为二命题, $P \to Q$ 真值为 0 当且仅当 _______

7、"人总是要死的"谓词公式表示为()。 (论域为全总个体域) M(x): x 是人; Mortal(x): x 是要死的。 $A: M(x) \to Mortal(x)$. $B: M(x) \wedge Mortal(x)$ $C_{\searrow} \forall x (M(x) \rightarrow Mortal(x)) : D_{\searrow} \exists x (M(x) \land Mortal(x))$ 8、公式 $A = \exists x (P(x) \to Q(x))$ 的解释 I 为: 个体域 D={2}, P(x): x>3, Q(x): x=4 则 A 的真值为()。 $A_{\lambda} 1; B_{\lambda} 0;$ C、可满足式; D、无法判定。 9、下列等价关系正确的是()。 $A : \forall x (P(x) \lor Q(x)) \Leftrightarrow \forall x P(x) \lor \forall x Q(x)$. $\exists x (P(x) \lor Q(x)) \Leftrightarrow \exists x P(x) \lor \exists x Q(x)$. $C \Rightarrow \forall x (P(x) \to Q) \Leftrightarrow \forall x P(x) \to Q$. $D_{\lambda} \exists x (P(x) \to Q) \Leftrightarrow \exists x P(x) \to Q$ 10、下列推理步骤错在(\bigcirc $\forall x (F(x) \rightarrow G(x))$ P $_{\bigcirc}F(y) \rightarrow G(y)$ US(1) $\exists x F(x)$ P $\bigcirc F(y)$ ES3

三、 逻辑判断 30%

 $\mathfrak{S}G(y)$

 $\bigcirc \exists x G(x)$

1、用等值演算法和真值表法判断公式 $A = ((P \to Q) \land (Q \to P)) \leftrightarrow (P \leftrightarrow Q)$ 的类型。 $(10 \ \%)$

T241

EG(5)

- 2、下列问题, 若成立请证明, 若不成立请举出反例: (10分)
 - (1) 已知 $A \lor C \Leftrightarrow B \lor C$, 问 $A \Leftrightarrow B$ 成立吗?
 - (2) 已知 $\neg A \Leftrightarrow \neg B$, 问 $A \Leftrightarrow B$ 成立吗?

A, 2; B, 4; C, 5; D, 6

3、如果厂方拒绝增加工资,那么罢工就不会停止,除非罢工超过一年并且工厂撤换了 厂长。问:若厂方拒绝增加工资,面罢工刚开始,罢工是否能够停止。(10分)

四、计算 10%

- 1、设命题 A_1 , A_2 的真值为 1, A_3 , A_4 真值为 0, 求命题 $(A_1 \lor (A_2 \to (A_3 \land \neg A_1))) \leftrightarrow (A_2 \lor \neg A_4)$ 的真值。(5 分)
- 2、利用主析取范式, 求公式 $\neg(P \rightarrow Q) \land Q \land R$ 的类型。(5分)

五、谓词逻辑推理 15%

符号化语句:"有些人喜欢所有的花,但是人们不喜欢杂草,那么花不是杂草"。并推证其结论。

六、证明: (10%)

设论域 D={a,b,c}, 求证: $\forall xA(x) \lor \forall xB(x) \Rightarrow \forall x(A(x) \lor B(x))$ 。

答案:

十、 填空 10% (每小题 2分)

1、P 真值为 1, Q 的真值为 0; 2、 $\forall x(F(x) \land L(x,0) \rightarrow \exists y(F(y) \land L(y,x))$; 3、 $\exists x(\neg P(x) \lor Q(x))$; 4、约束变元; 5、 $\exists xA(x) \Rightarrow A(y)$, y为 D 的某些元素。

十一、 选择 25% (每小题 2.5 分)

题目	1	2	3	4	5	6	7	8	9	10
答案	A,C	A,D	C,D	A,D	В,С	A,B,C,D,E	С	A	В	(4)

十二、 逻辑判断 30%

1、(1) 等值演算法

$$A = ((P \to Q) \land (Q \to P)) \leftrightarrow (P \leftrightarrow Q) \Leftrightarrow (P \leftrightarrow Q) \leftrightarrow (P \leftrightarrow Q) \Leftrightarrow T$$

(2) 真值表法

P Q	$P \rightarrow Q$	$Q \to P$	$(P \to Q) \land (Q \to P)$	$P \leftrightarrow Q$	A
1 1	1	1	1	1	1
1 0	0	1	0	0	1
0 1	1	0	0	0	1
0 0	1	1	1	1	1

所以 A 为重言式。

2、(1) 不成立。

(2) 成立。

$$_{\text{证明}}$$
: $\neg A \Leftrightarrow \neg B$ 充要条件 $\neg A \leftrightarrow \neg B \Leftrightarrow T$

$$T\Leftrightarrow (\neg A\to \neg B)\wedge (\neg B\to \neg A)\Leftrightarrow (A\vee \neg B)\wedge (B\vee \neg A)$$

即: $\Leftrightarrow (\neg B\vee A)\wedge (\neg A\vee B)\Leftrightarrow (A\to B)\wedge (B\to A)\Leftrightarrow A\leftrightarrow B$
所以 $A\leftrightarrow B\Leftrightarrow T$ 故 $A\Leftrightarrow B$ 。

P

② **P**

Р

$$_{\scriptsize{\textcircled{3}}} \neg (R \land S) \rightarrow \neg Q$$

T(1)(2)I

 $\textcircled{4} \neg R$

P

$$(5) \neg R \lor \neg S$$

T(4)I

$$\bigcirc \neg (R \land S)$$

T⑤E

$$\bigcirc \neg Q$$

T36I

罢工不会停止是有效结论。

四、计算 10%

$$(1 \lor (1 \rightarrow 0 \land 0))) \leftrightarrow (1 \lor 1) = (1 \lor (1 \rightarrow 0) \leftrightarrow 1)$$

(1)
$$mathrew{H}: = (1 \lor 0) \leftrightarrow 1 = 1 \leftrightarrow 1 = 1$$

$$\neg (P \to Q) \land Q \land R \Leftrightarrow \neg (\neg P \lor Q) \land (Q \land R)$$

(2) \Leftrightarrow $(P \land \neg Q) \land (Q \land R) \Leftrightarrow P \land \neg Q \land Q \land R \Leftrightarrow F$ 它无成真赋值,所以为矛盾式。

五、谓词逻辑推理 15%

解: M(x): x是人; F(x): x是花; G(x): x是杂草; H(x,y): x喜欢y $\exists x (M(x) \land \forall y (F(y) \to H(x,y))) \quad \forall x (M(x) \to \forall y (G(y) \to \neg H(x,y)))$ $\Rightarrow \forall x (F(x) \to \neg G(x))$ 证明:

$$(1) \exists x (M(x) \land \forall y (F(y) \rightarrow H(x, y)))$$

$$(2)$$
 $M(a) \land \forall y (F(y) \rightarrow H(a, y))$ ES(1)

$$(3)M(a)$$
 T(2)I

$$(4) \forall y (F(y) \to H(a, y))$$
 T(2)I

$$(5) \forall x (M(x) \to \forall y (G(y) \to \neg H(x, y)))$$
P

$$(6)M(a) \rightarrow \forall y(G(y) \rightarrow \neg H(a, y))$$
 US(5)

$$(7) \forall y (G(y) \rightarrow \neg H(a, y))$$
 T(3)(6)I

$$(8) \forall y (H(a, y) \rightarrow \neg G(y))$$
 T(7)E

$$(9) F(z) \to H(a, z)$$
 US(4)

$$(10) H(a,z) \rightarrow \neg G(z)$$
 US(8)

$$(1) F(z) \rightarrow \neg G(z)$$
 T(9)(10)I

$$(12) \forall x (F(x) \to \neg G(x))$$
 UG(11)

十三、 证明 10%

$$\forall x A(x) \lor \forall x B(x) \Leftrightarrow (A(a) \land A(b) \land A(c) \lor (B(a) \land B(b) \land B(c))$$

$$\Leftrightarrow$$
 $(A(a) \lor B(a)) \land (A(a) \lor B(b)) \land (A(a) \lor B(c))$

$$\wedge (A(b) \vee B(a)) \wedge (A(b) \vee B(b)) \wedge (A(b) \vee B(c))$$

$$\land (A(c) \lor B(a)) \land (A(c) \lor B(b)) \land (A(c) \lor B(c))$$

$$\Rightarrow$$
 $(A(a) \lor B(a)) \land (A(b) \lor B(b)) \land (A(c) \lor B(c))$

 $\Leftrightarrow \forall x (A(x) \lor B(x))$

试卷五试题与答案

一、填空 15% (每空 3 分)

- 1、设 G 为 9 阶无向图,每个结点度数不是 5 就是 6,则 G 中至少有 ______ 个 5 度结点。
- 2、n 阶完全图, K_n 的点数 X (K_n) = _______。

3、有向图

中从 v_1 到 v_2 长度为 2 的通路有 _____ 条。

4、设[R, +, •]是代数系统,如果①[R, +]是交换群 ②[R, •]是半群

5、设 $[L,\otimes,\oplus]$ 是代数系统,则 $[L,\otimes,\oplus]$ 满足幂等律,即对 $\forall a\in L$ 有 ______。

二、选择 15% (每小题 3 分)

1、下面四组数能构成无向简单图的度数列的有()。)。

 A_{2} (2, 2, 2, 2);

B, (1, 1, 2, 2, 3);

 $C_{s}(1, 1, 2, 2, 2);$ $D_{s}(0, 1, 3, 3, 3).$

2、下图中是哈密顿图的为()。

[A]

3、如果一个有向图 D 是强连通图,则 D 是欧拉图,这个命题的真值为(

A、真; B、假。

4、下列偏序集()能构成格。

 $s = \{1, \frac{1}{2}, 2, \frac{1}{3}, 3, \frac{1}{4}, 4\}$, *为普通乘法,则[S, *]是()。

A、代数系统; B、半群; C、群; D、都不是。

三、证明 48%

- 1、(10%) 在至少有2个人的人群中,至少有2个人,他们有相同的朋友数。
- 2、(8%) 若图 G 中恰有两个奇数度顶点,则这两个顶点是连通的。
- 3、(8%)证明在6个结点12条边的连通平面简单图中,每个面的面数都是3。
- 4、(10%)证明循环群的同态像必是循环群。
- 5、(12%) 设[B,×,+, \bar{a} ,0,1]是布尔代数,定义运算*为 $a*b=(a\times \bar{b})+(\bar{a}\times b)$, 求证[B,*]是阿贝尔群。

四、计算 22%

1、在二叉树中

- 1) 求带权为 2, 3, 5, 7, 8 的最优二叉树 T。(5 分)
- 2) 求 T 对应的二元前缀码。(5分)
- 2、下图所示带权图中最优投递路线并求出投递路线长度(邮局在 D 点)。

答案:

一、填空(15%)每空3分

1、 6; 2、n; 3、2; 4、+对•分配且•对+分配均成立; 5、 $a \otimes a = a$ 且 $a \oplus a = a$ 。

二、选择(15%)每小题3分

题目	1	2	3	4	5
答案	A,B	B,D	В	С	D

三、证明(48%)

1、(10 分) 证明: 用 n 个顶点 v_1 , …, v_n 表示 n 个人,构成顶点集 $V=\{v_1,$ …, $v_{n}\}$,设 $E=\{uv\mid u,v\in V, 且\quad u,v \\ \ \, E =\{uv\mid u,v\in V, \\ \, E =\{uv\mid$

现证 G 中至少有两个结点度数相同。

理矛盾。因而u,v必连通。

事实上,(1)若G中孤立点个数大于等于2,结论成立。

- (2) 若 G 中有一个孤立点,则 G 中的至少有 3 个顶点,既不考虑孤立点。设 G 中每个结点度数均大于等于 1,又因为 G 为简单图,所以每个顶点度数都小于等于 n-1,由于 G 中 n 顶点其度数取值只能是 1,2,…,n-1,由鸽巢原理,必然至少有两个结点度数是相同的。 2、(8 分)证:设 G 中两个奇数度结点分别为 u,v。若 u,v 不连通则至少有两个连通分支 G_1 、 G_2 ,使得 u,v 分别属于 G_1 和 G_2 。于是 G_1 与 G_2 中各含有一个奇数度结点,与握手定
- 3 (8分) 证: n=6.m=12 欧拉公式 n-m+f=2 知 f=2-n+m=2-6-12=8

由图论基本定理知: $\sum \deg(F) = 2 \times m = 24$, 而 $\deg(F_i) \ge 3$, 所以必有 $\deg(F_i) = 3$, 即 每个面用 3 条边围成。

4(10 分) 证:设循环群[A,•]的生成元为 a,同态映射为 f,同态像为[f(A),*],于是 $\forall a^n, a^m \in A$ 都有 $f(a^n \cdot a^m) = f(a^n) * f(a^m)$

对 n=1 有 f(a) = f(a)

$$n=2$$
. $f(a^2) = f(a \cdot a) = f(a) * f(a) = (f(a))^2$

若 n=k-1 时 有 $f(a^{k-1}) = (f(a))^{k-1}$

$$\exists t \in \mathbb{R}, f(a^k) = f(a^{k-1} \cdot a) = f(a^{k-1}) * f(a) = (f(a))^{k-1} * f(a) = (f(a))^k$$

这表明,f(A)中每一个元素均可表示为 $(f(a))^n$,所以[f(A),*]为f(a) 生成的循环群。 5、证:

(1) 交換律:
$$\forall a,b \in B$$
 有 $a*b = (a \times \overline{b}) + (\overline{a} \times b) = (b \times \overline{a}) + (\overline{b} \times a) = b*a$

(2) 结合律: $\forall a,b,c \in B$ 有

$$(a*b)*c = ((a\times\overline{b}) + (\overline{a}\times b))*c = (((a\times\overline{b}) + (\overline{a}\times b))\times\overline{c}) + \overline{((a\times\overline{b}) + (\overline{a}\times b))}\times c$$

$$= (a\times\overline{b}\times\overline{c} + \overline{a}\times b\times\overline{c}) + ((\overline{a}+b)\times(a+\overline{b}))\times c$$

$$= a\times\overline{b}\times\overline{c} + \overline{a}\times b\times\overline{c} + (\overline{a}\times a + \overline{a}\times\overline{b} + b\times a + b\times\overline{b})\times c$$

$$= a\times\overline{b}\times\overline{c} + \overline{a}\times b\times\overline{c} + b\times a\times c + \overline{a}\times\overline{b}\times c$$

$$= a\times b\times c + a\times\overline{b}\times\overline{c} + \overline{a}\times b\times\overline{c} + \overline{a}\times b\times\overline{c} + \overline{a}\times\overline{b}\times c$$

$$= a\times b\times c + a\times\overline{b}\times\overline{c} + \overline{a}\times b\times\overline{c} + \overline{a}\times b\times\overline{c} + \overline{a}\times\overline{b}\times c$$

$$= a\times b\times c + a\times\overline{b}\times\overline{c} + \overline{a}\times b\times\overline{c} + \overline{a}\times b\times\overline{c} + \overline{a}\times\overline{b}\times c$$

$$= a\times b\times c + a\times\overline{b}\times\overline{c} + \overline{a}\times b\times\overline{c} + \overline{a}\times b\times\overline{c} + \overline{a}\times\overline{b}\times c$$

$$a*(b*c) = a*((b\times \overline{c}) + (\overline{b}\times c)) = (a\times \overline{(b\times \overline{c}) + (\overline{b}\times c)}) + ((\overline{a}\times (b\times \overline{c}) + (\overline{b}\times c)))$$

$$= a\times (\overline{b} + c)\times (b + \overline{c}) + \overline{a}\times b\times \overline{c} + \overline{a}\times \overline{b}\times c$$

$$= a\times b\times c + a\times \overline{b}\times \overline{c} + \overline{a}\times b\times \overline{c} + \overline{a}\times \overline{b}\times c$$

 $\therefore (a*b)*c = a*(b*c)$

(3) $4: \forall a \in B$ 有

 $a*0 = (a \times 0) + (a \times 0) = a + 0 = a$ $0*a = (0 \times a) + (0 \times a) = 0 + a = a$ ∴ 0是[B,*]公元。

(4)
$$\text{i.i.} \forall a \in B \quad a * a = (a \times a) + (a \times a) = 0 + 0 = 0$$

:. a是a的逆元。

综上所述: [B,*]是阿贝尔群。

四、计算(22%)

1、(10分)

(1)(5分)由 Huffman 方法,得最佳二叉树为:

(2)(5分)最佳前缀码为:000,001,01,10,11

2、(12分)

图中奇数点为 E、F , d(E)=3,d(F)=3,d(E,F)=28 p=EGF 复制道路 EG、GF,得图 G ',则 G '是欧拉图。

由 D 开始找一条欧拉回路: DEGFGEBACBDCFD。 道路长度为:

35+8+20+20+8+40+30+50+19+6+12+10+23=281.

试卷六试题与答案

一、 填空 15% (每小题 3分)

- 1、n 阶完全图结点 v 的度数 d(v) = ______。
- 2、设 n 阶图 G 中有 m 条边,每个结点的度数不是 k 的是 k+1,若 G 中有 N_k 个 k 度顶点, N_{k+1} 个 k+1 度顶点,则 N_k = _______。
- 3、 算式 $((a+(b*c)*d)\div(e*f)$ 的二叉树表示为

5、一组学生,用二二扱腕子比赛法来测定臂力的大小,则幺元

二、选择 15% (每小题 3分)

1、设 S={0,1,2,3},≤为小于等于关系,则{S,≤}是()。 A、群; B、环; C、域; D、格。

2、设[{a,b,c},*]为代数系统,*运算如下:

*	a	b	c
a	a	b	c
b	b	a	c
С	С	c	c

则零元为()。

A、a; B、b; C、c; D、没有。

3、如右图

相对于完全图 K_5 的补图为 ()。

[A]

[B]

[C]

4、一棵无向树 T 有 7 片树叶, 3 个 3 度顶点, 其余顶点均为 4 度。则 T 有 () 4 度结点。

A, 1; B, 2; C, 3; D, 4_o

5、设[A, +, •]是代数系统, 其中+, • 为普通加法和乘法, 则 A= ()时, [A, +, •]是整环。

A, $\{x \mid x = 2n, n \in Z\}$; B, $\{x \mid x = 2n+1, n \in Z\}$;

C, $\{x \mid x \ge 0, \exists x \in Z\}$, D, $\{x \mid x = a + b\sqrt[4]{5}, a, b \in R\}$

三、证明 50%

$$1$$
、设 G 是 (n,m) 简单二部图,则 $m \le \frac{n^2}{4}$ 。 $(10 分)$

- $m > \frac{1}{2}(n-1)(n-2)$ 2、设 G 为具有 n 个结点的简单图,且 ,则 G 是连通图。(10 分)
- 3、记"开"为 1,"关"为 0,反映电路规律的代数系统[$\{0,1\}$, +,•]的加法运算和乘法运算。如下:

+	0	1
0	0	1
1	1	0

•	0	1
0	0	0
1	0	1

证明它是一个环,并且是一个域。(14分)

4、[L,⊗,⊕]是一代数格,"≤"为自然偏序,则[L,≤]是偏序格。(16分)

四、10%

设 $E(x_1, x_2, x_3) = (x_1 \wedge x_2) \vee (x_2 \wedge x_3) \vee (x_2 \wedge x_3)$ 是布尔代数 [{0,1}, \vee , \wedge , \neg] 上的 一个布尔表达式,试写出 $E(x_1, x_2, x_3)$ 的析取范式和合取范式(10 分)

五、10%

如下图所示的赋权图表示某七个城市 v_1, v_2, \dots, v_7 及预先算出它们之间的一些直接通信成路造价(单位:万元),试给出一个设计方案,使得各城市之间既能够通信又使总造价最小。

答案:

一、填空 15% (每小题 3分)

1、n-1; 2、n(k+1)-2m; 3、如右图; 4、0; 5、臂力小者

二、选择 15% (每小题 3分)

题目	1	2	3	4	5
答案	D	C	A	A	D

三、证明 50%

(1) 证: 设 G= (V, E)
$$V = X \cup Y$$
, $|X| = n_1$, $|Y| = n_2$, $n_1 + n_2 = n_1$

对完全二部图有
$$m=n_1\cdot n_2=n_1(n-n_1)=-n_1^2+n_1n=-(n_1-\frac{n}{2})^2+\frac{n^2}{4}$$

故对任意简单二部图(n,m)有 $m \le \frac{n^2}{4}$ 。

(2) 证:反证法: 若 G 不连通,不妨设 G 可分成两个连通分支 G_1 、 G_2 ,假设 G_1 和 G_2 的顶点数分别为 n_1 和 n_2 ,显然 $n_1 + n_2 = n$

$$n_1 \ge 1$$
 $n_2 \ge 1$ $n_1 \le n-1$ $n_2 \le n-1$

$$\therefore m \le \frac{n_1(n_1 - 1)}{2} + \frac{n_2(n_2 - 1)}{2} \le \frac{(n - 1)(n_1 + n_2 - 2)}{2} = \frac{(n - 1)(n - 2)}{2}$$

与假设矛盾。所以G连通。

①[{0,1},+]是交换群

乘:由"+"运算表知其封闭性。由于运算表的对称性知:+运算可交换。

群:
$$(0+0) +0=0+ (0+0) = 0$$
; $(0+0) +1=0+ (0+1) = 1$; $(0+1) +0=0+ (1+0) = 1$; $(0+1) +1=0+ (1+1) = 0$; $(1+1) +1=1+ (1+1) = 0$ ……

结合律成立。

幺: 幺元为0。

逆: 0, 1 逆元均为其本身。

②[{0,1},•]是半群

乘:由"•"运算表知封闭

群:
$$(0 \cdot 0) \cdot 0 = 0 \cdot (0 \cdot 0) = 0$$
; $(0 \cdot 0) \cdot 1 = 0 \cdot (0 \cdot 1) = 0$; $(0 \cdot 1) \cdot 0 = 0 \cdot (1 \cdot 0) = 0$; $(0 \cdot 1) \cdot 1 = 0 \cdot (1 \cdot 1) = 0$; $(1 \cdot 1) \cdot 1 = 1 \cdot (1 \cdot 1) = 0$ 。

③ • 对+的分配律 $\forall x, y \in \{0,1\}$

I $0 \cdot (x+y) = 0 = 0 + 0 = (0 \cdot x) + (0 \cdot y);$

 $II \quad 1 \cdot (x+y)$

当 x=y (x+y)=0 则

$$1 \cdot (x+y) = 1 \cdot 0 = 0 = \begin{cases} 0+0 \\ 1+1 \end{cases} = \begin{cases} (1 \cdot 0) + (1 \cdot 0) \\ (1 \cdot 1) + (1 \cdot 1) \end{cases} = (1 \cdot x) + (1 \cdot y)$$

$$1 \cdot (x+y) = 1 \cdot 1 = 1 = \begin{cases} 1+0 \\ 0+1 \end{cases} = \begin{cases} (1 \cdot 1) + (1 \cdot 0) \\ (1 \cdot 0) + (1 \cdot 1) \end{cases} = (1 \cdot x) + (1 \cdot y)$$

所以 $\forall x, y, z \in \{0,1\}$ 均有 $z \cdot (x + y) = (z \cdot x) + (z \cdot y)$

同理可证: $(x+y)\cdot z = (x\cdot z) + (y\cdot z)$

所以•对+是可分配的。

由①②③得, [{0, 1}, +, •]是环。

(2) [{0, 1}, +, •]是域

因为[{0,1},+,•]是有限环,故只需证明是整环即可。

- ①乘交环: 由乘法运算表的对称性知,乘法可交换。
- ②含幺环:乘法的幺元是1
- ③无零因子: 1 1=1≠0

因此[{0, 1}, +, •]是整环,故它是域。

- 4、证: (1) " \leq " 是偏序关系, \leq 自然偏序 $\forall a,b \in L$ $a \otimes b = a$
 - ①反自反性: 由代数格幂等关系: $a \otimes a = a : a \leq a$ 。
 - ②反对称性: $\forall a,b \in L$ 若 $a \le b,b \le a$ 即: $a \otimes b = a$, $b \otimes a = b$,

$$\exists a = a \otimes b = b \otimes a = b \qquad b \leq a$$

③传递性: $a \le b$, $b \le c$ 则:

$$a \otimes c = (a \otimes b) \otimes c$$
 $a \leq b$ 即 $a \otimes b = a$
 $= a \otimes (b \otimes c)$ 结合律
 $= a \otimes b$ $b \leq c$ 即 $b \otimes c = b$
 $= a$ $a \leq b$ 即 $a \otimes b = a$

 $\therefore a \leq c$

(2) $\forall x, y \in L$ 在 L 中存在 $\{x,y\}$ 的下(上)确界

$$\mathcal{L}_{X} x, y \in L_{\mathbb{H}}: x \otimes y = \inf\{x, y\}$$

事实上:
$$x \otimes (x \otimes y) = (x \otimes x) \otimes y = x \otimes y$$

 $\therefore x \otimes y \leq x$ 同理可证: $x \otimes y \leq y$

若 $\{x,y\}$ 有另一下界c,则 $c\otimes(x\otimes y)=(c\otimes x)\otimes y=c\otimes y=c$ ∴ $c\leq x\otimes y$ ∴ $x\otimes y$ 是 $\{x,y\}$ 最大下界,即 $x\otimes y=\inf\{x,y\}$ 同理可证上确界情况。

四、14%

解:函数表为:

x_1	x_2	<i>x</i> ₃	$E(x_1, x_2, x_3)$
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

$$E(x_{1}, x_{2}, x_{3}) = (x_{1} \wedge x_{2} \wedge x_{3}) \vee (x_{1} \wedge x_{2} \wedge x_{3})$$

析取范式:

合取范式:
$$E(x_1, x_2, x_3) = (x_1 \lor x \lor_2 \lor x_3) \land (x_1 \lor x_2 \lor x_3) \land (x_1 \lor x_2 \lor x_3)$$

五、10%

解: 用库斯克(Kruskal)算法求产生的最优树。算法为:

结果如图:

树权 C(T)=23+1+4+9+3+17=57 (万元) 即为总造价 试卷七试题与答案

一、填空 15% (每小题 3分)

4	HH / \	FIG (II D)	나 나고 난짜하기 것 뭐	
1.	1十1吋(n,m)	$\Re (G = (V, E))$,边与顶点数的关系是	0

- 2. 当 n 为 时, 非平凡无向完全图 K_n是欧拉图。
- 3. 已知一棵无向树 T 有三个 3 顶点, 一个 2 度顶点, 其余的都是 1 度顶点,

______个1度顶点。 则 T 中有_____

- 4. n 阶完全图 K_n的点色数 X (K_N) = ______
- 5. 一组学生,用两两扳腕子比赛来测定臂力大小,则幺元

选择 15% (每小题 3分)

- 1、下面四组数能构成无向图的度数列的有()。
 - A, 2, 3, 4, 5, 6, 7; B, 1, 2, 2, 3, 4;
 - C, 2, 1, 1, 1, 2;
- D_{s} 3, 3, 5, 6, 0.

- 3、下列几个图是简单图的有(
 - A. $G_1=(V_1, E_1)$, $\sharp P$ $V_1=\{a, b, c, d, e\}$, $E_1=\{ab, be, eb, ae, de\}$;
 - B. $G_2=(V_2, E_2) \sharp \psi V_2=V_1, E_2=\{\langle a, b \rangle, \langle b, c \rangle, \langle c, a \rangle, \langle a, d \rangle, \langle d, a \rangle, \langle d, e \rangle\};$
 - C. $G=(V_3, E_3)$, $\not\equiv V_1, E_3 = \{ab, be, ed, cc\}$;
 - D. $G=(V_4, E_4), \sharp P_4=V_1, E_4=\{(a, a), (a, b), (b, c), (e, c), (e, d)\}$.
- 4、下列图中是欧拉图的有()。

5、 $G = (2^s, \oplus)$, 其中 $S = \{1,2,3\}$, \oplus 为集合对称差运算,

则方程 $\{1,2\} \oplus x = \{1,3\}$ 的解为()。

- A_{s} {2,3}; B_{s} {1,2,3}; C_{s} {1,3}; D_{s} Φ_{s}

三、 证明 34%

- 1、证明:在至少有2个人的人群中,至少有2个人,他的有相同的朋友数。(8分)
- 2、 若图 G 中恰有两个奇数顶点,则这两个顶点是连通的。(8分)
- 3、证明:在6个结点12条边的连通平面简单图中,每个面的面度都是3。(8分)
- 4、证明循环群的同态像必是循环群。(10分)

四、 中国邮递员问题 13% v_2 求带权图 G 中的最优投递路线。邮局在 v_1 点。 五、 根树的应用 13%

在通讯中,八进制数字出现的频率如下:

0: 30%、1: 20%、2: 15% 、3: 10%、4: 10%、5: 5%、6: 5%、7: 5% 求传输它们最佳前缀码(写出求解过程)。

六、 10%

设 B₄={e,a,b,ab}, 运算*如下表,

* e	а	b	ab
-----	---	---	----

e	e	а	b	ab
a	a	e	ab	b
b	b	ab	e	а
ab	ab	b	а	e

则<B₄,*>是一个群(称作 Klein 四元群

答案:

十四、 填空 15% (每小题 3分)

$$\sum_{v \in V} d(v) = 2m$$
1、 $v \in V$; 2、奇数; 3、5; 4、n; 5、臂力小者

十五、 选择 15% (每小题 3分)

题目	1	2	3	4	5
答案	В	C	В	В	A

十六、 证明 34%

1、(10 分) 证明:用 n 个顶点 v_1 , …, v_n 表示 n 个人,构成顶点集 $V=\{v_1, …, v_{n}\}$, 设 $E=\{uv \mid u,v \in V, 且 u,v 是朋友 (u \neq v)\}$, 无向图 G=(V,E)

现证 G 中至少有两个结点度数相同。

事实上,(1) 若 G 中孤立点个数大于等于 2,结论成立。

- (2) 若 G 中有一个孤立点,则 G 中的至少有 3 个顶点,现不考虑孤立点。设 G 中每个结点度数均大于等于 1,又因为 G 为简单图,所以每个顶点度数都小于等于 n-1,由于 G 中顶点数到值只能是 1,2,…,n-1 这 n-1 个数,因而取 n-1 个值的 n 个顶点的度数至少有两个结点度数是相同的。
- 2、(8分)证:设 G 中两个奇数度结点分别为 u, v。若 u, v 不连通,即它们中无任何通路,则至少有两个连通分支 G_1 、 G_2 ,使得 u, v 分别属于 G_1 和 G_2 。于是 G_1 与 G_2 中各含有一个奇数度结点,与握手定理矛盾。因而 u, v 必连通。
 - 3、(8分) 证: n=6,m=12 欧拉公式 n-m+f=2 知 f=2-n+m=2-6-12=8

由图论基本定理知: $\sum \deg(F) = 2 \times m = 24$, $\mod \deg(F_i) \ge 3$, 所以必有 $\deg(F_i) = 3$, 即每个面用 3 条边围成。

4、(10 分) 证:设循环群 $[A, \bullet]$ 的生成元为 a,同态映射为 f,同态像为< f(A),

*>, 于是
$$\forall a^n, a^m \in A \text{ and } f(a^n \cdot a^m) = f(a^n) * f(a^m)$$

对
$$n=1$$
 有 $f(a) = f(a)$

n=2. 有
$$f(a^2) = f(a \cdot a) = f(a) * f(a) = (f(a))^2$$

若 n=k-1 时 有
$$f(a^{k-1}) = (f(a))^{k-1}$$

对
$$n=k$$
 时, $f(a^k) = f(a^{k-1} \cdot a) = f(a^{k-1}) * f(a) = (f(a))^{k-1} * f(a) = (f(a))^k$

这表明,f(A)中每一个元素均可表示为 $(f(a))^n$,所以< f(A),*>是以 f(a) 生成元的循环群。

十七、 中国邮递员问题 14%

解: 图中有 4 个奇数结点,
$$d(v_1) = 3$$
, $d(v_2) = 5$, $d(v_3) = 3$, $d(v_5) = 5$

(1) 求 v_1, v_2, v_3, v_5 任两结点的最短路

$$d(v_1v_2)=3$$
, $d(v_2v_3)=5$, $d(v_1v_5)=4$, $d(v_2v_3)=2$, $d(v_2v_5)=3$, $d(v_3v_5)=4$ $p_1=v_1v_2$, $p_2=v_1v_2v_3$, $p_3=v_1v_7v_5$, $p_4=v_2v_3$, $p_5=v_2v_6v_5$, $p_6=v_3v_7v_5$ 再找两条道路使得它们没有相同的起点和终点,且长度总

和最短: $p_3 = v_1 v_7 v_5$, $p_4 = v_2 v_3$,

(2) 在原图中复制出 p_3 , p_4 , 设图 G ,则图 G 中每个结点度数均为偶数的图 G 存在欧拉回路 $C = v_1 v_7 v_3 v_2 v_4 v_5 v_6 v_2 v_7 v_5 v_3 v_2 v_1 v_7 v_5 v_1$,欧拉回路 C 权长为 43。

十八、 根树的应用 13%

解:用 100 乘各频率并由小到大排列得权数

$$w_1 = 5, w_2 = 5, w_3 = 5, w_4 = 10, w_5 = 10, w_6 = 15, w_7 = 20, w_8 = 30$$

(1) 用 Huffman 算法求最优二叉树:

(2) 前缀码

用 00000 传送 5; 00001 传送 6; 0001 传送 7; 100 传送 3; 101 传送 4; 001 传送 2; 11 传送 1; 01 传送 0 (频率越高传送的前缀码越短)。

十九、 10%

证明:

- (1) 乘:由运算表可知运算*是封闭的。
- (2) 群: 即要证明(x*y)*z = x*(y*z), 这里有 4^3 =64 个等式需要验证 但: ① e 是幺元,含 e 的等式一定成立。
 - ②ab=a*b=b*a,如果对含a,b的等式成立,则对含a、b、ab的等式也都成立。
 - ③剩下只需验证含 $a \times b$ 等式, 共有 $2^3 = 8$ 个等式。即:
 - (a*b)*a=ab*a=b=a*(b*a)=a*ab=b; (a*b)*b=ab*b=a=a*(b*b)=a*e=a;
 - (a*a)*a=e*a=a=a*(a*a)=a*e=a; (a*a)*b=e*b=b=a*(a*b)=a*ab=b;
 - (b*b)*a=e*a=a=b*(b*a)=b*ab=a; (b*b)*b=e*b=b*(b*b)=b*e=b;
 - (b*a)*a=ab*a=b=b*(a*a)=b*e=b; (b*a)*b=ab*b=a=b*(a*b)=b*ab=a.
- (3) 幺: e 为幺元
- (4) 逆: $e^{-1}e$; $a^{-1}a$; $b^{-1}b$; $(ab)^{-1}ab$ 。

所以<B₄,*>为群。

试卷八试题与答案

一、 填空 15% (每小题 3分)

1、n 阶完全图 K_n 的边数为 ______。

2、右图的邻接矩阵

A= ...

3、	图	的	对	偶	图
	为 _		o		

4、完全二叉树中,叶数为 n_t ,则边数 m= ______。

5、 设< {a,b,c}, *>为代数系统, * 运算如下:

第3题

*	a	b	c
a	a	b	c

b	b	a	c
c	c	c	c

则它的幺元为 ________; 零元为 ______;

a、b、c 的逆元分别为

选择 15% (每小题 3分)

1、图

相对于完全图的补图为(

[A]

[B]

[C]

[D]

2、对图 G

k(G), $\lambda(G)$, $\delta(G)$ 分别为 ()。

则

A, 2, 2, 2; B, 1, 1, 2; C, 2, 1, 2; D, 1, 2, 2 ...

3、一棵无向树 T 有 8 个顶点, 4 度、3 度、2 度的分枝点各 1 个, 其余顶点均为树叶, 则 T 中有() 片树叶。

 A_{5} 3; B_{5} 4; C_{5} 5;

D, 6

4、设<A,+,•>是代数系统,其中+,•为普通的加法和乘法,则 A=()时<A, +, • >是整环。

A,
$$\{x \mid x = 2n, n \in Z\}$$
, B, $\{x \mid x = 2n + 1, n \in Z\}$,

$$C_{s} \{x \mid x \ge 0, \exists x \in Z\}, \quad D_{s} \{x \mid x = a + b\sqrt[4]{5}, \quad a, b \in R\}_{s}$$

- 5、设 A={1, 2, …, 10}, 则下面定义的运算*关于 A 封闭的有(

 - A、x*y=max(x,y); B、x*y=质数p的个数使得 $x \le p \le y$;

)。

- $C \times x^*y = \gcd(x, y); (\gcd(x, y) 表示 x 和 y 的最大公约数);$
- $D \times x^*y = lcm(x,y)$ (lcm(x,y) 表示 x 和 y 的最小公倍数)。

三、 证明 45%

- $m \le \frac{n^2}{4}$ 1、设 G 是(n,m)简单二部图,则 $m \le \frac{n^2}{4}$ 。(8 分)
- $m > \frac{1}{2}(n-1)(n-2)$ 2、设 G 为具有 n 个结点的简单图,且 则 G 是连通图。(8 分)
- 3、设G是阶数不小于 11 的简单图,则G或 \overline{G} 中至少有一个是非平图。(14 分)
- 4、记"开"为 1, "关"为 0, 反映电路规律的代数系统[{0, 1}, +, •]的加法运算和 乘法运算。如下:

+	0	1
0	0	1
1	1	0

•	0	1
0	0	0
1	0	1

证明它是一个环,并且是一个域。(15分)

生成树及应用 10% 四、

1、(10 分)如下图所示的赋权图表示某七个城市 ν₁,ν₂,…,ν₇ 及预先测算出它们之间的一些直接通信线路 造价, 试给出一个设计方案, 使得各城市之间既能够通信 而且总造价最小。

2、(10分)构造H、A、P、N、E、W、R、对应的前缀码,

并画出与该前缀码对应的二叉树,写出英文短语 HAPPY NEW YEAR 的编码信息。

五、5%

对于实数集合R,在下表所列的二元远算是否具有左边一列中的性质,请在相应位上填写"Y" 或 "N"。

	Max	Min	+
--	-----	-----	---

可结合性		
可交换性		
存在幺元		
存在零元		

答案:

二十、 填空 15% (每小题 3 分)

$$\frac{1}{1}, \frac{1}{2}n(n-1); 2, \begin{pmatrix}
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 \\
0 & 1 & 1 & 0
\end{pmatrix}; 3; 4, 2(n_t-1); 5, a, c, a,$$

b、没有

二十一、选择 15% (每小题 3分)

题目	1	2	3	4	5
答案	A	A	C	D	A, C

二十二、证明 45%

1、 (8分): 设 G= (V, E),
$$V = X \cup Y$$
, $|X| = n_1$, $|Y| = n_2$, 则 $n_1 + n_2 = n_2$

对完全二部图有
$$m = n_1 \cdot n_2 = n_1 (n - n_1) = -n_1^2 + n_1 n = -(n_1 - \frac{n}{2})^2 + \frac{n^2}{4}$$

故对任意简单二部图(n,m)有 $m \le \frac{n^2}{4}$ 。

2、(8 分)反证法: 若 G 不连通,不妨设 G 可分成两个连通分支 G_1 、 G_2 ,假设 G_1 和 G_2 的顶点数分别为 n_1 和 n_2 ,显然 $n_1 + n_2 = n$ 。

$$\because n_1 \ge 1 \quad n_2 \ge 1 \quad \therefore n_1 \le n-1 \quad n_2 \le n-1$$

$$\therefore m \le \frac{n_1(n_1 - 1)}{2} + \frac{n_2(n_2 - 1)}{2} \le \frac{(n - 1)(n_1 + n_2 - 2)}{2} = \frac{(n - 1)(n - 2)}{2}$$

与假设矛盾。所以G连通。

3、(14 分) (1) 当 n=11 时, $G \cup \overline{G} = K_{11} K_{11}$ 边数 $m' = \frac{11 \times 10}{2} = 55$ 条,因而必有 G 或 \overline{G} 的边数大于等于 28,不妨设 G 的边数 $m \ge 28$,设 G 有 k 个连通分支,则 G 中必

有回路。(否则 G 为 k 棵树构成的森林,每棵树的顶点数为 ni, 边数 mi, 则

$$m_i = n_i - 1, i = 1 \cdots k$$
, $\sum_{i=1}^k n_i = n = 11, \sum_{i=1}^k m_i = m$
 $\therefore 28 \le m = \sum_{i=1}^k m_i = \sum_{i=1}^k (n_i - 1) = n - k = 11 - k$

下面用反证法证明 G 为非平面图。

假设 G 为平面图,由于 G 中有回路且 G 为简单图,因而回路长大于等于 3 。于是 G

矛盾)

的每个面至少由 g ($g \ge 3$)条边围成,由点、边、面数的关系 $m \le \frac{g}{g-2}(n-k-1)$,得:

$$28 \le m \le \frac{g}{g-2}(11-k-1) \le \frac{3}{3-1}(11-(k+1)) \le 3(11-(1+1)) = 3 \times 11 - 3 \times 2 = 27$$

而 28 ≤ 27 矛盾, 所以 G 为非平面图。

(2) 当 n>11 时,考虑 G 的具有 11 个顶点的子图 G ,则 G 或 \overline{G} 必为非平面图。

如果G'为非平面图,则G为非平面图。

如果 \overline{G} 为非平面图,则 \overline{G} 为非平面图。

4、(15分)

- 1) [{0, 1}, +, •]是环
 - ①[{0, 1}, +]是交换群

乘:由"+"运算表知其封闭性。由于运算表的对称性知:+运算可交换。

群:
$$(0+0) +0=0+ (0+0) = 0$$
; $(0+0) +1=0+ (0+1) = 1$; $(0+1) +0=0+ (1+0) = 1$; $(0+1) +1=0+ (1+1) = 0$; $(1+1) +1=1+ (1+1) = 0$ ······

结合律成立。

幺: 幺元为 0。

逆: 0, 1 逆元均为其本身。所以, <{0, 1}, +>是 Abel 群。

②<{0, 1}, •>是半群

乘:由"•"运算表知封闭

群:
$$(0 \cdot 0) \cdot 0 = 0 \cdot (0 \cdot 0) = 0$$
; $(0 \cdot 0) \cdot 1 = 0 \cdot (0 \cdot 1) = 1$; $(0 \cdot 1) \cdot 0 = 0 \cdot (1 \cdot 0) = 1$; $(0 \cdot 1) \cdot 1 = 0 \cdot (1 \cdot 1) = 0$; $(1 \cdot 1) \cdot 1 = 1 \cdot (1 \cdot 1) = 0$;

③•对+的分配律

 $\forall x, y \in \{0,1\}$

I
$$0 \cdot (x+y) = 0 = 0 + 0 = (0 \cdot x) + (0 \cdot y)$$

 $II \quad 1 \cdot (x+y)$

当 x=y (x+y)=0 则

$$1 \cdot (x+y) = 1 \cdot 0 = 0 = \begin{cases} 0+0 \\ 1+1 \end{cases} = \begin{cases} (1 \cdot 0) + (1 \cdot 0) \\ (1 \cdot 1) + (1 \cdot 1) \end{cases} = (1 \cdot x) + (1 \cdot y)$$

$$1 \cdot (x+y) = 1 \cdot 1 = 1 = \begin{cases} 1+0 \\ 0+1 \end{cases} = \begin{cases} (1 \cdot 1) + (1 \cdot 0) \\ (1 \cdot 0) + (1 \cdot 1) \end{cases} = (1 \cdot x) + (1 \cdot y)$$

所以 $\forall x, y, z \in \{0,1\}$ 均有 $z \cdot (x + y) = (z \cdot x) + (z \cdot y)$

同理可证: $(x+y)\cdot z = (x\cdot z) + (y\cdot z)$

所以•对+是可分配的。

由①②③得, <{0, 1}, +, •>是环。

(2) <{0, 1}, +, •>是域

因为<{0,1},+,•>是有限环,故只需证明是整环即可。

- ①乘交环: 由乘法运算表的对称性知,乘法可交换。
- ②含幺环:乘法的幺元是1
- ③无零因子: 1 1=1≠0

因此[{0, 1}, +, •]是整环, 故它是域。

二十三、 树的应用 20%

1、(10分)解: 用库斯克(Kruskal)算法求产生的最优树。算法略。结果如图:

树权 C(T)=23+1+4+9+3+17=57 即为总造价

五、(10分)

由二叉树知

H、A、P、Y、N、E、W、R 对应的

编码分别为

000, 001, 010, 011, 100, 101, 110, 111.

显然{000,001,010,011,100,101,110,111}为前缀码。

英文短语 HAPPY NEW YEAR 的编码信息为

000 001 010 010 011 100 101 001 001 101 001 111

六、5%

	Max	Min	+
可结合性	Y	Y	Y
可交换性	Y	Y	Y
存在幺元	N	N	Y
存在零元	N	N	N

试卷九试题与答案

一、 填空 30% (每空 3分)

1、	选择合适的论域和谓词表达集合	A="直角坐标系中,	单位元	(不包括单位圆周)
	的点集"则 A=			

2、集合 A={ Φ ,{ Φ }}的幂集 \mathcal{P} (A) = ______ 。

3、设 A={1, 2, 3, 4}, A 上二元关系 R={<1, 2>, <2, 1>, <2, 3>, <3, 4>}画出 R 的关系图

4、设 A={<1,2>,<2 , 4 >,<3 , 3 >} , B={<1,3>,<2,4>,<4,2>},

则 $A \cup B$ = ______。

 $A \circ B =$ ________

5、设|A|=3,则 A 上有 ______ 个二元关系。

6、A={1, 2, 3}上关系 R= ______ 时, R 既是对称的又是反对称的。

7、偏序集 < A, R_≤ > 的哈斯图为

则

> - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	则(1)从X到Y有	ī	_ 个不同的函数。	
(2) 当 n, m 满	足 日	时,存在双射有	·个不	「同的双射。
、 $\sqrt{2}$ 是有理数的真	其值为			_
	上海,R: 我有时间			
自	然		语	言
、 公式 $(Q \to A)$		_		
主	合	取	范	式
_	S_{2} ,, S_{m} } $_{$ 是集 $_{c}$			
	它		, <u></u>	满
<u>.</u>				_ •
$A = \{x \mid x$ 是偶数	放或奇数 };		$\exists y(y \in I \land x = 2y)$,
、 $A = \{x \mid x$ 是偶数 、 $C = \{x \mid \exists y (y \in A)\}$		$D, D = \{x \mid$,
	放或奇数 $\}_{;}$ $I \wedge x = 2y + 1)\}_{;}$,下列命题正确的	D、D={x 是($\exists y(y \in I \land x = 2y)$ $0,1,-1,2,-2,3,-3,4,-3$,
、 $A = \{x \mid x$ 是偶数 、 $C = \{x \mid \exists y (y \in X)\}$ 、设 $S = \{N, Q, R\}$ 、 $2 \in N, N \in S$ 贝	放或奇数 $\}_{;}$ $I \wedge x = 2y + 1)\}_{;}$,下列命题正确的。 $\mathbb{N} 2 \in S_{;}$ $\mathbb{N} $	$_{\mathrm{D}}$ 、 $D = \{x \mid$ 是($V \subset Q, Q \in S$ \emptyset	∃ $y(y ∈ I ∧ x = 2y)$ 0,1,-1,2,-2,3,-3,4,-)。 ℕ $N ⊂ S$;	,
、 $A = \{x \mid x$ 是偶数 、 $C = \{x \mid \exists y (y \in X) \}$ 、设 $S = \{N, Q, R\}$ 、 $2 \in N, N \in S$ 贝 、 $N \subset Q, Q \subset R$ 贝	$\{ y$ 或奇数 $\}$, $\{ I \land x = 2y + 1 \}$, $\{ I $	D 、 $D = \{x \mid$ 是($N \subset Q, Q \in S$ 》 $\Phi \subset N, \Phi \subset S$	∃ $y(y ∈ I ∧ x = 2y)$ 0,1,-1,2,-2,3,-3,4,-)。 ℕ $N ⊂ S$;	,
、 $A = \{x \mid x$ 是偶数 、 $C = \{x \mid \exists y (y \in X)\}$ 、设 $S = \{N, Q, R\}$ 、 $2 \in N, N \in S$ 贝 、 $N \subset Q, Q \subset R$ 贝 、 设 $C = \{\{a\}, \{b\}, \{a, A\}\}$	$\{ y$ 或奇数 $\}$, $\{ I \land x = 2y + 1 \}$, $\{ I $	D 、 $D = \{x \mid$ 是($N \subset Q, Q \in S $ 》 $\Phi \subset N, \Phi \subset S$ S 分别为(日 $y(y \in I \land x = 2y)$ 0,1,-1,2,-2,3,-3,4,-1 $N \subset S$, 列 $\Phi \subset N \cap S$ 。	,
、 $A = \{x \mid x$ 是偶数 、 $C = \{x \mid \exists y (y \in A)\}$ 设 $S = \{N, Q, R\}$ 、 $2 \in N, N \in S$ 贝 、 $N \subset Q, Q \subset R$ 贝 、 设 $C = \{\{a\}, \{b\}, \{a, A\}, C \in A\}$	放或奇数 $\}$, $I \wedge x = 2y + 1)\}$, F , 下列命题正确的。 \emptyset $2 \in S$, B、 N 则 $N \subset R$, D、 0 。	D 、 $D = \{x \mid$ 是($N \subset Q, Q \in S $ 》 $\Phi \subset N, \Phi \subset S$ S 分别为(日 $y(y \in I \land x = 2y)$ 0,1,-1,2,-2,3,-3,4,-1 $N \subset S$, 列 $\Phi \subset N \cap S$ 。	,
$A = \{x \mid x$ 是偶数 $C = \{x \mid \exists y (y \in X) \}$ 设 $S = \{N, Q, R\}$ $2 \in N, N \in S$ 贝 $N \subset Q, Q \subset R$ 贝 设 $C = \{\{a\}, \{b\}, \{a, A, C \}\}$ 下列语句不是命是 $A \in X = 13$; B、	$\{x \in S \}$ $\{x \in S \in $	D 、 $D = \{x \mid$ 是($N \subset Q, Q \in S$ $\Phi \subset N, \Phi \subset S$ 分别为($\{a,b\}$ 与 $\{a,b\}$;。	$\exists \ y(y \in I \land x = 2y)$ $0,1,-1,2,-2,3,-3,4,-1$ $)。$ $\cup N \subset S$ $\cup D \oplus C \cap S$ $\cup D \oplus C \oplus C$ 、 双有三只脚;	-4,…}。
$A = \{x \mid x$ 是偶数 $C = \{x \mid \exists y (y \in X) \}$ 设 $S = \{N, Q, R\}$ $2 \in N, N \in S$ 贝 $N \subset Q, Q \subset R$ 贝 设 $C = \{\{a\}, \{b\}, \{a, A, C \in A\}\}$ 下列语句不是命是 $A \in X = 13$; B、 D、太阳系以外的	放或奇数 $\}$; $I \wedge x = 2y + 1)\}$; , F 列命题正确的; $U \geq S$; $B > N$ $U > S \Rightarrow S$	D 、 $D = \{x \mid$ 是($V \subset Q, Q \in S$, $\Phi \subset N, \Phi \subset S$ 分别为($\{a,b\}$ 与 $\{a,b\}$;)。 系的一门必修说 E、你打算考证	$\exists \ y(y \in I \land x = 2y)$ $0,1,-1,2,-2,3,-3,4,-1$ $)。$ $\cup N \subset S$ $\cup D \oplus C \cap S$ $\cup D \oplus C \oplus C$ 、 双有三只脚;	-4,…}。
、 $A = \{x \mid x \in \mathbb{Z}\}$ 、 $C = \{x \mid \exists y \mid y \in \mathbb{Z}\}$ 、设 $S = \{N, Q, R\}$ 、2 $\in N, N \in S$ 贝 、 $N \subset Q, Q \subset R$ 贝 、设 $C = \{\{a\}, \{b\}, \{a, A, C \in A\{a,b\}\}\}$ E 、下列语句不是命是 A、 $x = 13$; B、 D、太阳系以外的	文或奇数 $\}$; $I \wedge x = 2y + 1)\}$; , F 列命题正确的 ; $U \geq S$; $B \wedge M = N \cap M = N $	D 、 $D = \{x \mid$ 是($V \subset Q, Q \in S$, $\Phi \subset N, \Phi \subset S$ 分别为($\{a,b\}$ 与 $\{a,b\}$;)。 系的一门必修说 E、你打算考证)。	$\exists y(y \in I \land x = 2y)$ $0,1,-1,2,-2,3,-3,4,)。$ $\cup N \subset S$ $\cup D \subset N \cap S$ $\cup D$ $\cup C = C$ $\cup C$	-4,…}。
、 $A = \{x \mid x \in \mathbb{A}\}$ 、 $C = \{x \mid \exists y (y \in X) \in X \in \mathbb{N}\}$ 、设 $S = \{N, Q, R\}$ 、2 $\in N, N \in S$ 贝 、 $N \subset Q, Q \subset R$ 贝 、设 $C = \{\{a\}, \{b\}, \{a, A, C \in A \in A, B\}\}$ E 、下列语句不是命是 A、 $x = 13$; B、 D、太阳系以外的 、 $(P \to Q) \to R$ 的	放或奇数 $\}$; $I \wedge x = 2y + 1)\}$; , F 列命题正确的; $U \geq S$; $B > N$ $U > S \Rightarrow S$	D 、 $D = \{x \mid$ 是($V \subset Q, Q \in S$, $\Phi \subset N, \Phi \subset S$ 分别为($\{a,b\}$ 与 $\{a,b\}$;)。 系的一门必修说 E、你打算考证)。	$\exists y(y \in I \land x = 2y)$ $0,1,-1,2,-2,3,-3,4,)。$ $\cup N \subset S$ $\cup D \subset N \cap S$ $\cup D$ $\cup C = C$ $\cup C$	-4,…}。

D、 $(P \lor Q \lor R) \land (P \lor \neg Q \lor R) \land (P \lor \neg Q \lor R) \land (\neg P \lor \neg Q \lor R)$ 。 6、设|A|=n,则 A 上有()二元关系。 $X_1 \longrightarrow X_2 \longrightarrow X_3 \longrightarrow X_4 \longrightarrow$

A,
$$\{x_1, x_2, x_3, x_4, x_5\}$$
, B, $\{\{x_1, x_2\}, \{x_1, x_2, x_3\}, \{x_4, x_5\}\}$, C, $\{\{x_1, x_2, x_3\}, \{x_2, x_4, x_5\}\}$, D, $\{\{x_1, x_2\}, \{x_3\}, \{x_4, x_5\}\}$

8、集合 A={1, 2, 3, 4}上的偏序关系图为

9、下列关系中能构成函数的是()。

A、
$$\{\langle x, y \rangle | (x, y \in N) \land (x + y < 10)\}$$
; B、 $\{\langle x, y \rangle | (x, y \in R) \land (y = x^2)\}$; C、 $\{\langle x, y \rangle | (x, y \in R) \land (y^2 = x)\}$; D、 $\{\langle x, y \rangle | (x, y \in I) \land (x \equiv y \mod 3)\}$ 。
10、N 是自然数集,定义 $f: N \to N$, $f(x) = (x) \mod 3$ (即 x 除以 3 的余数),则 f 是 ()。

A、满射不是单射; B、单射不是满射; C、双射; D、不是单射也不是满射。

三、 简答题 15%

1、(10分)设 S={1,2,3,4,6,8,12,24},"≤"为 S 上整除关系,问:(1)偏序集< S , \leq

的 Hass 图如何? (2) 偏序集 $\{S, \leq\}$ 的极小元、最小元、极大元、最大元是什么?

2、(5 分)设解释 R 如下: D_R 是实数集, D_R 中特定元素 a=0, D_R 中特定函数 f(x,y)=x-y , 特 定 谓 词 F(x,y):x< y , 问 公 式 $A=\forall x\forall y\forall z (F(x,y)\to F(f(x,z),f(y,z)))$ 的涵义如何?真值如何?

四、 逻辑推理 10%

或者逻辑难学,或者有少数学生不喜欢它;如果数学容易学,那么逻辑并不难学。因此,如果许多学生喜欢逻辑,那么数学并不难学。

五、10%

答案

设 X={1,2,3,4,5}, X 上的关系 R={<1,1>,<1,2>,<2,4>,<3,5>,<4,2>}, 用 Warshall 方法, 求 R 的传递闭包 t (R)。

六、证明 15%

- 1、每一有限全序集必是良序集。(7分)
- 2、设 $g\circ f$ 是复合函数,如果 $g\circ f$ 满射,则g 也是满射。($g\circ f$)

二十四、 填空 20% (每小题 2 分)

- 1、 ;
 2、 ;
 3、见右图;
 4、{<1,2>,<2,4>,<3,3>,<1,3>,<2,4>,<4,2>}、{<1,4>,<2,
 2>};
 5、2⁹; 6、{<1,1>,<2,2>,<3,3>;
 7、{<a,b>,<a,d>,<a,e>,<b,d>,<b,e>,<a,c>,<a,f>,<a,g>,<c,f>,<c,g>} ;
 8、mⁿ、n=m、n!; 9、假; 10、我将去上海当且仅当我有空;
 11、 ;
- 12、
 - 二十五、选择 20% (每小题 2分)

题目	1	2	3	4	5	6	7	8	9	10
答案	A, D	C	В	A, E	B、D	C	B, D; C	A	В	D

二十六、 简答题 15%

1、(10分)

 $(1) \leqslant = \{<1,2>,<1,3>,<1,4>,<1,6>,<1,8>,<1,12>,<1,24>,<2,4>,<2,6>,<2,8> , <2,12>,<2,24>,<3,6>,<3,12>,<3,24>,<4,8>,<4,12>,<4,24>,<6,12>,<6,24>,<8,24>,<8,24>,<12,24>\}$

covS={<1,2>,<1,3>,<2,4>,<2,6>,<3,6>,<4,8>,<4,12>,<6,12>,<8,24>,<12,24>} Hass 图为

(2) 极小元、最小元是 1, 极大元、最大元是 24。

2、(5分)

解:公式 A 涵义为:对任意的实数 x,y,z,如果 x < y 则 (x-z) < (y-z) A 的真值为: 真 (T)。

二十七、 **逻辑推理 10%**

解:设P:逻辑难学;Q:有少数学生不喜欢逻辑学;R:数学容易学符号化:

E: 1)	P
2	T1E
3	P
4	T23I
(5)	T4E

二十八、 (10分)

解:

1时, [1,1]=1, A = 2时, A[1,2]=A[4,2]=1

A=

3 时, A 的第三列全为 0, 故 A 不变 4 时 A[1,4]=A[2,4]=A[4,4]=1

A=

5时,A的第五行全为0,故A不变。

所以 t (R)={<1,1>, <1,2>,<1,4>,<2,2>,<2,4>,<3,5>,<4,2>,<4,4>}。

二十九、证明 15%

1、(7分)

证明:设 , 全序集。

若 不是良序集,那么必有一子集 ,在 B 中不存在最小元素,由 于 B 是一有限集合,故一定可找出两元素 x, y 是无关的,由于 是全序集。

所以 x , y 必有关系, 矛盾。故 必是良序集。

2、(8分)

证明:设 , 由于 满

射,故必有 使得 ,由复合函数定义知,存在 使得 ,

又因为 g 是函数,必对任 , 必 使 , 任每个 z 在 g 作用下都是 Y 中元素的一个映象,由 Z 的任意性,所以 g 是满射。

试卷十试题与答案

一、 填空 10% (每小题 2分)

	1,	若 P,Q 为二命题, $P\leftrightarrow Q$ 真值为 1,当且仅当。
	2,	对公式 $(\forall y P(x,y) \land \exists z Q(x,z)) \lor \forall x R(x,y)$ 中自由变元进行代入的
		公
	为	•
	3、	$\forall x F(x) \land \neg(\exists x G(x))$ 的 前 東 范 式
		为。
	4、	设 x 是谓词合式公式 A 的一个客体变元, A 的论域为 D, A(x) 关于 y 的自由的,
		则
	_	
US 。		
	5、	与非门的逻辑网络为
	0	
<u> </u>		选择 30% (每小题 3分)
<u> </u>	`	を計 20/0 (中小阪 3 川)
	1,	下列各符号串,不是合式公式的有()。)。
		$A : (P \wedge Q) \wedge \neg R : B : ((P \rightarrow Q) \rightarrow (R \wedge S) :$
		$C \setminus P \vee Q \vee \wedge R$, $D \setminus (\neg (P \vee Q) \wedge R) \vee S$.
	2	
	۷,	下列语句是命题的有()。 A、2 是素数; B、x+5 > 6; C、地球外的星球上也有人; D、这朵花多好看呀!。
	3、	下列公式是重言式的有()。
		A, $\neg (P \leftrightarrow Q)$; B, $(P \land Q) \rightarrow Q$; C, $\neg (Q \rightarrow P) \land P$; D, $(P \rightarrow Q) \leftrightarrow P$
	4	下列问题成立的有()。
	7,	A、 若 $A \lor C \Leftrightarrow B \lor C$,则 $A \Leftrightarrow B$; B、若 $A \land C \Leftrightarrow B \land C$,则 $A \Leftrightarrow B$;
	_	C 、若 $\neg A \Leftrightarrow \neg B$,则 $A \Leftrightarrow B$, D 、若 $A \Leftrightarrow B$,则 $\neg A \Leftrightarrow \neg B$ 。
	5、	命题逻辑演绎的 CP 规则为 ()。
		A、在推演过程中可随便使用前提; P. 在推演过程中可随便使用前提;
		B、在推演过程中可随便使用前面演绎出的某些公式的逻辑结果;
		C 、如果要演绎出的公式为 $B \to C$ 形式,那么将 B 作为前提,设法演绎出 C ;
		D、设 $\Phi(A)$ 是含公式 A 的命题公式, $B \Leftrightarrow A$,则可用 B 替换 $\Phi(A)$ 中的 A。

```
6、命题"有的人喜欢所有的花"的逻辑符号化为()。
```

设 D: 全总个体域, F(x): x 是花, M(x): x 是人, H(x,y): x 喜欢 y

$$A \to \forall x (M(x) \to \forall y (F(y) \to H(x, y))) : B \to \forall x (M(x) \land \forall y (F(y) \to H(x, y))) :$$

$$C_{\downarrow} \exists x (M(x) \to \forall y (F(y) \to H(x, y))) ; D_{\downarrow} \exists x (M(x) \land \forall y (F(y) \to H(x, y)))$$

7、 公式
$$\forall x \forall y (P(x,y) \lor Q(y,z)) \land \exists x P(x,y)$$
 换名 ()。

$$A \setminus \forall x \forall u (P(x,u) \vee Q(u,z)) \wedge \exists x P(x,y) : B \setminus \forall x \forall y (P(x,u) \vee Q(u,z)) \wedge \exists x P(x,u) :$$

$$C_{\lambda} \forall x \forall y (P(x,y) \lor Q(y,z)) \land \exists x P(x,u) : D_{\lambda} \forall u \forall y (P(u,y) \lor Q(y,z)) \land \exists u P(u,y)$$

8、给定公式
$$\exists x P(x) \to \forall x P(x)$$
, 当 D={a,b}时,解释 () 使该公式真值 为 0。

A, P(a)=0, P(b)=0; B, P(a)=0, P(b)=1; C, P(a)=1, P(b)=0; D, P(a)=1, P(b)=1

$$A_{\lambda} \forall x P(x) \land \forall x Q(x) \Rightarrow \forall x (P(x) \lor Q(x)) :$$

$$B \to \exists x P(x) \to \forall x Q(x) \Rightarrow \forall x (P(x) \to Q(x))$$
:

$$C \Rightarrow \forall x P(x) \rightarrow \forall x Q(x) \Rightarrow \forall x (P(x) \rightarrow Q(x))$$
.

$$D \Rightarrow \forall y A(x, y) \Rightarrow \forall y \exists x A(x, y)$$

 $\bigcirc \exists y F(z, y)$ US(1)

 $\mathfrak{F}(z,c)$ ES②

 $\textcircled{4} \forall x F(x,c)$ UG③

A, $1\rightarrow 2$; B, $2\rightarrow 3$; C, $3\rightarrow 4$; D, $4\rightarrow 5$.

三、 逻辑判断 28%

- 1、(8分)下列命题相容吗? $A \rightarrow B$, $\neg (B \lor C)$, A
- 2、(10分) 用范式方法判断公式 $(P \to Q) \land (P \to R)$, $P \to Q \land R$ 是否等价。
- 3、(10分)下列前提下结论是否有效?

今天或者天晴或者下雨。如果天晴,我去看电影;若我去看电影,我就不看书。故我在 看书时,说明今天下雨。

四、 计算 12%

1、(5分) 给定 3 个命题: P: 北京比天津人口多; Q: 2 大于 1; R: 15 是素数。 求复合命题: $(Q \to R) \leftrightarrow (P \land \neg R)$ 的真信。

2、(7分) 给定解释 I: D={2,3}, L(x,y) 为 L(2,2)=L(3,3)=1, L(2,3)=L(3,2)=0, 求谓词合式公式 $\exists y \forall x L(x,y)$ 的真值。

五、 逻辑推理 20%

- 1、(10分)所有有理数是实数,某些有理数是整数,因此某些实数是整数。
- 2、(10分)符号化语句:"有些病人相信所有的医生,但是病人都不相信骗子,所以医生都不是骗子"。并推证其结论。

答案

三十、 填空 15% (每小题 3分)

1、P,O的真值相同: 2、 $(\forall y P(u,y) \land \exists z Q(u,z)) \lor \forall x R(x,v)$; 3、 $\forall x (F(x) \land \neg G(x))$;

$$_{4\text{, }}\forall xA(x) \Rightarrow A(y) \; ; \; 5\text{, } \mathsf{Q} \qquad \qquad \qquad ^{\mathtt{P}} \qquad \qquad ^{\mathtt{P}\uparrow \varrho} \quad .$$

三十一、选择 30% (每小题 3分)

题目	1	2	3	4	5	6	7	8	9	10
答案	B, C	A, C	В	C, D	С	D	A	B, C	B, D	С

三十二、逻辑判断 28%

1、(8分)

 $(1) A \rightarrow B$

②A P

3B T(1)2I

 $_{\textcircled{4}} \neg (B \lor C)$ P

 $\bigcirc \neg B \land \neg C$ $\boxed{\text{T4}E}$

⑥ ¬*B* T⑤I

7F T36I

所以 $A \rightarrow B$, $\neg (B \lor C)$, $A \land A$

2、(10分)

$$(P \to Q) \land (P \to R) \Leftrightarrow (\neg P \lor Q) \land (\neg P \lor R)$$

$$\Leftrightarrow ((\neg P \lor Q) \lor (R \land \neg R)) \land ((\neg P \lor R) \lor (Q \land \neg Q))$$

$$\Leftrightarrow (\neg P \lor Q \lor R) \land (\neg P \lor Q \lor \neg R) \land (\neg P \lor \neg Q \lor R)$$

$$= M_{100} \wedge M_{101} \wedge M_{110}$$

$$P \to Q \land R \Leftrightarrow \neg P \lor (Q \land R) \Leftrightarrow (\neg P \lor Q) \land (\neg P \lor R)$$

$$\Leftrightarrow ((\neg P \lor Q) \lor (R \land \neg R)) \land ((\neg P \lor R) \lor (Q \land \neg Q))$$

$$\Leftrightarrow (\neg P \lor Q \lor R) \land (\neg P \lor Q \lor \neg R) \land (\neg P \lor \neg Q \lor R)$$

$$\Leftrightarrow (\neg P \lor Q \lor R) \land (\neg P \lor Q \lor \neg R) \land (\neg P \lor Q \lor R)$$

$$= M_{100} \wedge M_{101} \wedge M_{110}$$

所以两式等价。

3、设 P: 今天天晴, Q: 今天下雨, R: 我不看书, S: 我看电影

符号化为: $P \lor Q$, $P \to S$, $S \to R \Rightarrow \neg R \to Q$

$$\bigcirc P \rightarrow S$$

P

$$\bigcirc S \rightarrow R$$

P

$$\tiny{\textcircled{3}}\,P\to R$$

T(1)(2)I

$$\bigcirc A \rightarrow \neg P$$

T3I

$$_{\text{(5)}}P\vee Q$$

P

$$_{\bigcirc} \neg P \rightarrow Q$$

T(5)E

$$_{\tiny{(7)}} \neg R \rightarrow Q$$

T(4)(6)I

结论有效。

三十三、计算 12%

1、(5分)解: P, Q是真命题, R是假命题。

$$(Q \rightarrow R) \leftrightarrow (P \land \neg R) = (1 \rightarrow 0) \leftrightarrow (1 \land 1) = 0 \leftrightarrow 1 = 0$$

2、(7分)

 $\exists y \forall x L(x, y) \Leftrightarrow \exists y (L(2, y) \land L(3, y)) \Leftrightarrow (L(2, 2) \land L(3, 2)) \lor (L(2, 3) \land L(3, 3))$ $\Leftrightarrow (1 \land 0) \lor (0 \land 1) = 0 \lor 0 = 0$

三十四、 逻辑推理 20%

1、(10 分)解:设R(x):x是实数,Q(x):x是有理数,I(x):x是整数

符号化: 前提: $\forall x(Q(x) \to R(x))$, $\exists x(Q(x) \land I(x))$ 结论: $\exists x(R(x) \land I(x))$

$$\Box \exists x (Q(x) \land I(x))$$

	P						
$\bigcirc Q(c) \to R(c)$	US③						
$\odot Q(c)$	T@I						
$_{\bigcirc}R(c)$	T45I						
$\bigcirc I(c)$	T@I						
\otimes $R(c) \wedge I(c)$	T67I						
$ \exists x (R(x) \wedge I(x)) $	EG®						
2、解: F(x): x 是病人, G(x): x 是医生, H(x): x 是骗子, L(x,y): x 相信 y							
符号化: 前提: $\exists x (F(x) \land \forall y) (G(y))$	(x,y) (x,y) $\forall x (F(x) \to \forall y (H(y) \to \neg L(x,y)))$)					
结论: $\forall x (G(x) \rightarrow \neg H(x))$							
$_{(1)}\exists x(F(x)\wedge\forall y(G(y)\rightarrow L(x,y)))$	P						
$_{(2)}F(a) \land \forall y(G(y) \rightarrow L(a,y))$	ES(1)						
$_{(3)}F(a)$	T(2)I						
$_{(4)} \forall y (G(y) \rightarrow L(a, y))$	T(2)I						
$(5) \forall x (F(x) \to \forall y (H(y) \to \neg L(x, y)))$	y))) P						
$_{(6)}F(a) \rightarrow \forall y (H(y) \rightarrow \neg L(a, y))$	US (5)						
$_{(7)}\forall y(H(y)\rightarrow \neg L(a,y))$	T(3)(6)I						
$_{(8)} \forall y (L(a,y) \rightarrow \neg H(y))$	T(7)E						
$_{(9)}G(z) \rightarrow L(a,z)$	US(4)						
$(10) L(a,z) \to \neg H(z)$	US(8)						
$_{\text{(II)}}G(z) \to H(z)$	T(9)(10)I						
$(12) \forall x (G(x) \to \neg H(x))$	UG(l1)						
卷十一试题与答案							
一、 填空 20% (每小	>题 2分)						
1,		0					
2、命题 P→Q 的真值为 0, 当且仅当		0					
3、一个命题含有4个原子命题,则对	对其所有可能赋值有 和	₽.					

ES1

 $_{\textcircled{2}}Q(c)\wedge I(c)$

- °	(. 1.	.) जित्र	c 65.45	人士二	ч.								
攻 5=	{a,b,	C} 则	S ₆ 的集	(合衣不)	为 (P (Φ)		_
											_ •		
													,
$\oplus B$													
YAL D	上住人	1. 44.4	4万 回	l . (n)									
	为集合 / 若					的 偏	序		系		则	R	_ }
`	74	K X	- /	Н	л <u>т</u>	ניווע גם	/1	7	<i>A</i> N	,	7.1	TC .	1
	下列命 A、 若 C、若	题正确 g , f 是 $g\circ f$ 是	的有(是满射, 是单射,	则 $g \circ .$	f _{是满身} 。 · 都是单	寸; B、 老 射; D、ā							† ;
2,	下列命, A、若 C、若 设f, g	题正确 g , f 是 g 。 f 是函数	的有(是满射, 是单射, :,当(则 g。. 则 g,f)。 f _{是满身} 都是单	寸; B、 差 射; D、 ^素 寸, f=g 。	与 8°.	f _{单射}	计,则	f _是	:单射。		† ;
2, A,	下列命, A、若 C、若 设f, g	题正确的 g,f 是函数 f 是函数 f	的有(是满射, 是单射, :,当(都有 <i>f</i> (则 $g\circ$,则 g,f)。 f 是满身 · 都是单) Fr (x);	寸; B、 老 射; D、ā	告8°。 lg ⊆ a	f _{单射}	t,则 且 <i>f</i>	f _是	·单射。	0	† ;
2, A, C,	下列命 A、若 C、若 设 f , g	题正确 g , f 是 g 。 f 是函数 f	的有(是满射, 是单射, (,当 f () 就有 f	则 $g\circ $,则 g,f $(x)=g$)。 f 是满身 · 都是单) Fr (x);	村; B、着 射; D、着 村, f=g。 B、dom D、dom	告8°。 lg ⊆ a	f _{单射}	t,则 且 <i>f</i>	f _是	·单射。	0	† ;
2, A, C,	下列命, A 、若 C 、若 G 设 G	题正确(s g o f 是 y 是 y o mf 者 J 表 , (的有(是满射, 是单射, (), (), (), (), (), (), (), (), (), (),	则 $g\circ$,则 g,f $(x)=g$)。 f 是满身 · 都是单) F (x);	村; B、着 射; D、着 村, f=g。 B、dom D、dom	$g \in S$ 。 $g = d$	f _{单射}	t,则 且 <i>f</i>	f _是	·单射。	0	† ;
2, A, C,	下列命 A、若 C、若 设 f, g ∀x ∈ a f与g的 下列关 A、f	题正确 g , f 是 g 。 f 是函数者 g 0 mf 者 g 0	的有(是满射, 是单射, 1,当 f 式相同 1,x ₂ >	则 $g\circ x$, $g\circ f$ ($g\circ f$), $g\circ f$ ($g\circ f$ 0), $g\circ f$ 0)。 f 是满身 · 都是单) F (x);		$g \in S$ 。 $g = d$	f _{单射}	t,则 且 <i>f</i>	f _是	·单射。	0	† ;
2, A, C,	下列命。 A、若 C、炭 f, g ∀x ∈ a f 与 g 的 下 A、 f B、	题正确 $g, f \in g \circ g$	的有(是满射, 是单射, 1,者 f l l l l l l l l l l l l l l l l l l	则 $g\circ .$ 则 g,f $(x)=g$; $x_1,x_2\in$ $x_1,x_2\in$)。 f 是满身 不都是单 (x);) 能构质 E N且x ₁ = E R, x ₁ =		$dg \subseteq a$ $dg = dg$	f 单射 lomf ,	f,则 且 f range	f 是 ⊆ 8	·单射。	0	†;
2, A, C,	下列命 A、若 $g\forall x \in af下 A、 ffffffff$	题正确 g g f g g f g g f g g f g	的有(是满射, 是,有有 是,有有同 。 。 ,x ₂ > , x ₂ >	则 $g\circ .$ 则 g,f $(x)=g$; $x_1,x_2\in$ $x_1,x_2\in$)。 f 是满身 f 都是单 (x); 能构 f	f; B 、表射; D 、表射; D 、表射, $f=g$ 。 B 、 dom D 、 dom dom dom dom dom dom	$dg \subseteq a$ $dg = dg$	f 单射 lomf ,	f,则 且 f range	f 是 ⊆ 8	·单射。	0	† ;

 $f: N \to \{0,1\}, \quad f(x) = \begin{cases} 1 & x \in \text{偶数集} \\ 0 & x \in \text{奇数集} \end{cases}, \quad f: R \to R, \quad f(x) = 2x - 5.$

5、集合 $A=\{1,2,3,4\}$ 上的偏序关系为 3

,则它的 Hass 图为()。

6、 设集合 A={1, 2, 3, 4, 5}上偏序关系的 Hass 图为

则子集 B={2,3,4}的最大元(); 最小元(); 极大元();

极小元(); 上界(); 上确界(); 下界(); 下确界

().

A、 无, 4, 2、3, 4, 1, 1, 4, 4; B、 无, 4、5, 2、3, 4、5, 1, 1, 4, 4; C、无, 4, 2、3, 4、5, 1, 1, 4, 4; D、无, 4, 2、3, 4, 1, 1, 4, 无。

7、设 R, S 是集合 A 上的关系,则下列()断言是正确的。

A、 R, S 自反的,则 $R \circ S$ 是自反的,B、若 R, S 对称的,则 $R \circ S$ 是对称的, C、若 R , S 传递的,则 R $^{\circ}$ S 是传递的,D、若 R , S 反对称的,则 R $^{\circ}$ S 是反对称的 8、设 X 为集合, |X|=n, 在 X 上有()种不同的关系。

 $A \cdot n^2$; $B \cdot 2^n$; $C \cdot 2^{2^n}$; $D \cdot 2^{n^2}$.

9、下列推导错在(

)。

 \bigcirc $\forall x \exists y (x > y)$

 \bigcirc $\exists y(z > y)$

US(1)

$$\mathfrak{J}(z > C_z)$$
 ES②

$$\bigcirc$$
 $\forall x(x > x)$

UG(3)

B、③; C、④; D、无。 A, ②:

10、"没有不犯错误的人"的逻辑符号化为()。

设 H(x): x 是人, P(x): x 犯错误。

$$\Delta \exists x (H(x) \to P(x))$$
.

A,
$$\exists x (H(x) \to P(x))$$
: B, $\neg (\exists x (H(x) \land \neg P(x)))$:

$$C_{\lambda} \neg (\exists x (H(x) \rightarrow \neg P(x))) : D_{\lambda} \forall x (H(x) \rightarrow P(x))$$

三、 命题演绎 28%

- 1、(10分)用反证法证明 $(P \lor Q) \land (P \to R) \land (Q \to S) \Rightarrow S \lor R$
- 2、(8分) 用 CP 规则证明 $P \to (Q \to R)$, $R \to (Q \to S) \Rightarrow P \to (Q \to S)$ 。
- 3、(10 分)演绎推理: 所有的有理数都是实数, 所有的无理数也是实数, 虚数不是实数。 因此,虚数既不是有理数,也不是无理数。

四、8%

将 wff $\exists x(\neg(\exists yP(x,y)) \rightarrow (\exists zQ(z) \rightarrow R(x)))$ 化为与其等价的前束范式。

五、8%

 $A=\{a,b,c,d\}$, $R=\{\langle a,b\rangle,\langle b,c\rangle,\langle b,d\rangle,\langle c,b\rangle\}$ 为 A 上的关系,利用矩阵乘法求 R 的传递闭包, 并画出 t(R)的关系图。

六、证明 16%

1、(8分)设A= $\{1, 2, 3, 4\}$,在P(A)上规定二元关系如下:

$$R = \{ \langle s, t \rangle | s, t \in _{\mathcal{P}(A)} \land (|s|=|t|) \}$$

证明 R 是 $\mathcal{P}(A)$ 上的等价关系并写出商集 $\mathcal{P}(A)$ /R。

2、 (8分) 设 f 是 A 到 A 的满射,且 $f \circ f = f$,证明 f=I_A。

答案

一、 填空 20% (每小题 2 分)

- 1、能够断真假的阵述句; $2 \times P$ 的真值为 1, Q 的真值为 0; $3 \times 2^4 = 16$; $4 \times \lambda$ 真式;
- 5、任意两数 x、y,如果 x 是偶数且能除尽 y,则 y 一定是偶数; 6、 $S_{110}=\{a,b\}$;

_	_	_	
7	; 8,	; 9,	
	; 0,	; フヽ	•

10、自反性、反对称性、传递性

二、选择 20% (每小题 2分)

题目	1	2	3	4	5	6	7	8	9	10
答案	A, D	В	C, D	C, D; A, D; D; B	С	A	A	D	С	B, D

三、命题演绎 28%

1、(10分)证明:

(1) P (附加前提)

T(1)E

(3) P

T(3)E

(5) P

(6) T(4)(5)E

T(6)E

T(7)I

(9) T(2)(8)I

(10) P

T(10)E

(12) T(11)E

(13) T(9)(12)I

2、(8分)

① **P**(附加前提)

② P

③ T①②I

4 P

5 T34I

⑥ T⑤E

⑦ CP

3、证明	: 设 Q	(x):	x 是有理数,	R(x):	x 是实数,	N(x):	x 是无理数,	C(x):	x 是虚数。
前提:									
结论:									
(1)						P			
(2)						US (1)			
(3)						P			
(4)						US (3)			
(5)						P			
(6)						US (5)			
(7)						T(6)E			
(8)						T(2)(7)I			
(9)						T(4)(7)I			
(10)						T(8)(9)I			
(11)						T(10)E			
(12)						UG(11)			
	mi c	007							
解:	四、8	3%							

五、8%

解:

关系图为

六、证明 16%

1、(8分)

证明: (1) $\mathcal{P}(A)$,由于 ,所以 ,即R自反的。

(2) (2) , (2)

(3) P(A), 若: ,即:

所以 R 是传递的。

由(1)(2)(3)知, R 是等价关系。

 $\mathcal{P}(A) / R = \{[\]_R, [\{1\}]_R, [\{1, 2\}]_R, [\{1, 2, 3\}]_R, [\{1, 2, 3, 4\}]_R\}$

2、(8分)

证明: 因为 f 是满射, 所以 , 存在 使得 , 又因为 f 是函数, 所以

即由

所以 ,又 ,所以 由 a 的任意性知: $f=I_A$ 。

卷十二试题与答案

五、 填空 20% (每空 2分)

1,							A 上的二元关系"≤"为
	x ≤ y=	x y,则 ⁾	$x \vee y = $				
2,	设 $A = \{x$	$ x=2^n$	$, n \in N$,定义	A 上的二	元运算为	普通乘法、除法和加法,则
	数系统 <a< th=""><th>,*>中运算</th><th>拿*关于</th><th></th><th></th><th></th><th> 运算具有封闭性。</th></a<>	,*>中运算	拿*关于				运算具有封闭性。
3、	设集合 S=	{α,β	, γ, δ	, ζ},	S上的运	章*定义	为
	*	α	β	γ	δ	ζ	
	α	α	β	γ	δ	ζ	
	β	β	δ	α	γ	δ	
	γ	γ	α	β	α	β	
	δ	δ	α	γ	δ	γ	
	ζ	ζ	δ	α	γ	ζ	
							逆元是,
	无左逆元						
4,							满足消去律。
5、	设 <g,*>是</g,*>				•	·	
6,							。 建立 G 中的等价关系
01						H17 77.13	
7、	设f是由郡	¥< G ,☆>	到群 $<$ G'	,*>的同	态映射,	e'是 G'	中的幺元,
	则f的同	态核 Ker((f)=				0
١.) 바 나 나	• • • • • • • • • • • • • • • • • • • •	<i>(⊨</i> .	ि संदर्भ ।	. 11		
六、	选择	20%	(母く	小 趔 2	2分)		
1	ул с Е да	#¥ . C . A	$\Delta H \sim C$	1 w 44 🖂	1 ★ □ 由 台上	Fil 1 //	5 FL /
1	、设 f 是由:						
							D、包含 G。
2							-"的逆元是() -
-						; D, a	
3-	、饭 <a ,-<="" td=""><td>⊦ ,•>走</td><td>一代剱矛</td><td>×纸且<a< td=""><td>,+>定</td><td>Abel 群,</td><th>如果还满足(</th></a<></td>	⊦ ,•>走	一代剱矛	×纸且 <a< td=""><td>,+>定</td><td>Abel 群,</td><th>如果还满足(</th></a<>	,+>定	Abel 群,	如果还满足(

<A , + , • >是域。 A、<A, •>是独异点且•对+可分配; $B < A < \theta$, • >是独异点,无零因子目•对+可分配: $C \setminus \{A - \{\theta\}\}$, •>是 Abel 群且无零因子; D、<A-{ θ }, $\cdot >$ 是 Abel 目 \cdot 对+可分配。 4、设<A,+,•>是一代数系统,+、•为普通加法和乘法运算,当A为(时, <A,+,•>是域。 A、 $\{x \mid x = a + b\sqrt{5}, a, b$ 均为有理数 $\}$. B. $\{x \mid x = a + b\sqrt[3]{5}, a, b$ 均为有理数 $\}$. $\{x \mid x = \frac{a}{b}, a, b \in I_+, \exists a \neq kb\}$; $D, \{x \mid x \ge 0, x \in I\}$ 5、设<A, ≤>是一个格,由格诱导的代数系统为<A, ∨, \wedge >,则() 成 $A < A, \lor, \land >$ 满足 \lor 对 \land 的分配律 $A, b \in A, a \le b \Leftrightarrow a \lor b = b$. C、 $\forall a,b,c \in A$, 若 $a \lor b = a \lor c$ 则b = c. D. $\forall a,b \in A$,有 $a \lor (a \land b) = b$ 且. $a \land (a \lor b) = b$ 6、设<A, ≤>是偏序集, "≤"定义为: $\forall a,b \in A, a \le b \Leftrightarrow a \mid b$, 则当 A= (时, <A, ≤>是格。 A, $\{1,2,3,4,6,12\}$; B, $\{1,2,3,4,6,8,12,14\}$; C, $\{1,2,3,\cdots,12\}$; D, $\{1,2,3,4\}$. 7、设< A, \lor , \land >是由格< A. $\le >$ 诱导的代数系统, 若对 $\forall a,b,c \in A$, 当 $b \le a$ 时,) <A, ≤>是模格。 有(A, $a \wedge (b \vee c) = b \vee (a \wedge c)$; B, $c \wedge (a \vee c) = a \vee (b \wedge c)$; $c \cdot a \lor (b \land c) = b \land (a \lor c)$. $c \lor (a \land c) = b \land (a \lor c)$)中,补元是唯一的。 8、在(

A、有界格; B、有补格; C、分配格; D、有补分配格。

)。

) .

9、在布尔代数< A, \vee , \wedge ,->中, $b \wedge c = 0$ 当目仅当(

D、若f是布尔函数,它一定能表示成析(合)取范式。

A, $b \le \overline{c}$. B, $\overline{c} \le b$. C, $b \le c$. D, $c \le b$.

10、设< A, \lor , \land ,->是布尔代数, f是从 Aⁿ到 A 的函数,则(

A、f是布尔代数; B、f能表示成析取范式, 也能表示成合取范式;

C、若 $A=\{0,1\}$,则 f一定能表示成析取范式,也能表示成合取范式;

立。

设 $A=\{1,2\}$,A 上所有函数的集合记为 A^A ,。是函数的复合运算,试给出 A^A 上运算。的运算表,并指出 A^A 中是否有幺元,哪些元素有逆元。

四、证明 42%

- 1、设<R,*>是一个代数系统,*是 R 上二元运算, $\forall a,b \in R$ $a*b=a+b+a\cdot b$,则 0 是幺元且<R,*>是独异点。(8 分)
- 2、设<G,*>是 n 阶循环群,G=(a),设 b=a^k, $k \in I_+$ 则 元素 b 的阶为 \overline{d} ,这里 d=GCD (n , k)。(10 分)
- 3、证明如果 f 是由<A,⇔>到<B,*>的同态映射,g 是由<math><B,*>到<C,△>的同态映射,则 g ∘ f 是由<A,⇔>到<math><C,△>的同态映射。(6分)
- 4、设<A , + , >是一个含幺环,且任意 $a \in A$ 都有 $a \cdot a = a$,若 $|A| \ge 3$ 则<A , + , >不 可能是整环。(8分)
- 5、 K={ 1, 2, 5, 10, 11, 22, 55, 110 }是 110 的所有整因子的集合,证明: 具有全上界 110 和全下界 1 的代数系统< K, LCM, GCD, $\dot{}$ >是一个布尔代数。($\forall x \in K, x' = \frac{110}{x}$)。 (10 分)

五、布尔表达式 10%

 $_{\ddot{\psi}}E(x_1,x_2,x_3)=(x_1\wedge x_2)\vee (x_2\wedge x_3)\vee (x_1\wedge x_3)$ 是布尔代数 $<\{0,1\},\vee,\wedge,$ $^->$ 上的一个布尔表达式,试写出其析取范式和合取范式。(10 分)

答案:

一、填空 20% (每空 2 分)

1、LCM (x,y); 2、乘法; 3、 α 、 δ , γ 、 ζ ; 4、群; 5、 $G = \{a, a^2, \dots a^{n-1}, a^n = e\}$; $\{ \langle a,b \rangle | a \in G, b \in G, a^{-1} * b \in H \}$ 、m/n : 7、 $\{ x \mid x \in G \ \exists \ f(x) = e' \}$

二、选择 20% (每小题 2分)

•	V217	20/0 (A.1.10	= /3 /							
	题目	1	2	3	4	5	6	7	8	9	10
	答案	В	В, С	D	A	В	A	A	D	C	C, D

= 8%

解: 因为|A|=2,所以 A 上共有 $2^2=4$ 个不同函数。令 $A^A=\{f_1,f_2,f_3,f_4\}$,其中:

$f_1(1) = 1, f_1(1)$	$f_1(2) = 2$;	$f_2(1) = 1,$	$f_2(2) = 1;$	$f_3(1) = 2$	$f_3(2) = 2$;	$f_4(1) = 2, f_4(2) = 1$
	0	f_1	f_2	f_3	f_4	
	f_1	f_1	f_2	f_3	f_4	
	f_2	f_2	f_2	f_2	f_2	
	f_3	f_3	f_3	f_3	f_3	
	f_4	f_3	f_3	f_2	f_1	
					<u> </u>	

 f_1 为 A^A 中的幺元, f_1 和 f_4 有逆元。

四、证明 42%

1、(8分)

证明:

[幺]
$$\forall a \in R$$
 , $0*a = 0 + a + 0 \cdot a = a$, $a*0 = a + 0 + a \cdot 0$
即 $0*a = a*0 = a$ ∴ 0 为幺元

[乘] $\forall a,b \in R$, 由于+, • 在 R 封闭。所以 $a*b=a+b+a\cdot b \in R$ 即*在 R 上封闭。

[群] $\forall a,b,c \in R$

$$(a*b)*c = (a+b+a\cdot b)*c = a+b+a\cdot b+c+(a+b+a\cdot b)\cdot c$$

$$= a + b + c + a \cdot b + a \cdot c + b \cdot c + a \cdot b \cdot c$$

$$a*(b*c) = a+b+c+a\cdot b+a\cdot c+b\cdot c+a\cdot b\cdot c$$

所以
$$(a*b)*c = a*(b*c)$$

因此 , 〈R,*〉是独异点。

2、(10分)

证明: (1) $\because d = GCD(n,k)$, 设 $n = d \cdot n_1, k = d \cdot k_1$

$$\therefore e = a^{n k_1} = a^{d n_1 k_1} = a^{k n_1} = b^{n_1}$$

(2) 若 b 的阶不为 \mathbf{n}_1 , 则 b 阶 $\mathbf{m} < \mathbf{n}_1$, 且有 $\mathbf{n}_1 = l \cdot \mathbf{m}$ (l > 1), 则有 $b^m = e$, 即

$$a^{km} = e, a^{d \, k_1 \frac{n_1}{e}} = e$$
,即 $a^{d \, n_1 \frac{k_1}{e}} = a^{n \frac{k_1}{e}} = e$, $\therefore k_1$ 有因子 l ,这与 $d = GCD(n,k)$ 矛盾。

n

由(1)、(2) 知,元素b的阶为d

3、(6分)

$$\forall a,b \in A, g \circ f(a \not \succsim b) = g(f(a \not \succsim b)) = g(f(a) * f(b))$$

$$= g(f(a)) \triangle g(f(b)) = g \circ f(a) \triangle g \circ f(b)$$

所以 $g \circ f$ 是由 $\langle A, \diamondsuit \rangle$ 到 $\langle c, \triangle \rangle$ 的同态映射。

4、(8分)

证明: 反证法: 如果<A ,+ , $\bullet>$ 是整环,且 $|A| \ge 3$,则 $\exists a \in A, a \ne \theta, a \ne 1$ 且 $a \cdot a = a$ 即有 $a \ne \theta, a - 1 \ne \theta$ 且 $a \cdot (a - 1) = a \cdot a - a = a - a = \theta$,这 与整环中无零因子矛盾。

所以<A,+,*>不可能是整环。

5、(10分)

(1) 代数系统<K,LCM,GCD, ´> 是由格<K, |> 诱导的,其 Hasst 图为

Hass 图中不存在与五元素格 所以<K,|>格是分配格。

(2) $\forall x \in K, \exists x' = 100 / x$ 使得: LCM(x, x') = 110, GCD(x, x') = 1

即任元素都有补元,所以<K,|>有补格。

<K, LCM, GCD,'>是布尔代数。

五、布尔表达式 10%

解: 函数表为:

x_1	x_2	x_3	$E(x_1, x_2, x_3)$
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

 $E(x_1, x_2, x_3) = (\overline{x_1} \wedge \overline{x_2} \wedge x_3) \vee (\overline{x_1} \wedge x_2 \wedge \overline{x_3}) \vee (\overline{x_1} \wedge x_2 \wedge x_3)$ $\vee (x_1 \wedge \overline{x_2} \wedge \overline{x_3}) \vee (x_1 \wedge \overline{x_2} \wedge x_3) \vee (x_1 \wedge x_2 \wedge \overline{x_3})$

析取范式:

合取范式: $E(x_1, x_2, x_3) = (x_1 \lor x \lor_2 x_3) \land (x_1 \lor x_2 \lor x_3)$

试卷十三试题与答案

七、 填空 10% (每小题 2分)

- $Z^+ = \{x \mid x \in Z \land x > 0\}$,*表示求两数的最小公倍数的运算(Z 表示整数集合),对于*运算的幺元是 ______,零元是 _____。
- 2、代数系统<A,*>中,|A|>1,如果e和 θ 分别为<A,*>的幺元和零元,

则e和heta的关系为 _____。

3 、 设 <G,*> 是 一 个 群 , <G,*> 是 阿 贝 尔 群 的 充 要 条 件 是

全 4 、 图 的 完 关 联 矩 阵 冬 平 是 面 冬 的 充 件

八、 选择 10% (每小题 2分)

- 1、下面各集合都是 N 的子集,(闭的。
 - A、 $\{x \mid x$ 的幂可以被 16 整除 $\}$; B、 $\{x \mid x = 5 \subseteq 5 \subseteq 5\}$;

 - $C \setminus \{x \mid x \in 30 \text{ 的因子}\};$ $D \setminus \{x \mid x \in 30 \text{ 的倍数}\}.$

)集合在普通加法运算下是封

2、设 $G_1 = <\{0,1,2\}, \circ>$, $G_2 = <\{0,1\}, ^*>$,其中。表示模 3 加法,*表示模 2 乘法,

则积代数 $G_1 \times G_2$ 的幺元是(

 $A_{,} <0,0>; B_{,} <0,1>; C_{,} <1,0>; D_{,} <1,1>$

- 3、设集合 $S={1,2,3,6}$, "≤"为整除关系,则代数系统<S, ≤ >是()。 A、域: B、格, 但不是布尔代数: C、布尔代数: D、不是代数系统。
- 4、设n阶图 G 有 m 条边,每个结点度数不是 k 就是 k+1,若 G 中有 N_k 个 k 度结点, 则 N_k=()。

A, $n \cdot k$; B, n(k+1); C, n(k+1)-m; D, n(k+1)-2m

5、一棵树有7片树叶,3个3度结点,其余全是4度结点,

) 个 4 度结点。 则该树有(

A, 1; B, 2; C, 3; D, 4 ...

三、判断 10% (每小题 2分)

- 1、() 设 $S=\{1,2\}$,则 S 在普通加法和乘法运算下都不封闭。
- 2、()在布尔格<A,<>>中,对 A 中任意原子 a,和另一非零元 b,在 $a \le b$ 或 $a \le \bar{b}$ 中 有且仅有一个成立。
-) 设 $S = \{x \mid x \in Z \land x \ge 0\} = N$, +, 为普通加法和乘法,则<S, +, >是域。 3、(

- 4、()一条回路和任何一棵生成树至少有一条公共边。
- 5、() 没 T 是一棵 m 叉树, 它有 t 片树叶, i 个分枝点,则(m-1)i = t-1。

四、证明 38%

1、(8分)对代数系统<A,*>,*是A上二元运算,e为A中幺元,如果*是可结合的且每个元素都有右逆元,则(1)<A,*>中的每个元素在右逆元必定也是左逆元。

- (2) 每个元素的逆元是唯一的。
- 2、(12 分)设 < A , \lor , \land ,-> 是一个布尔代数,如果在 A 上定义二元运算 \diamondsuit ,为 $a \diamondsuit b = (a \land \overline{b}) \lor (\overline{a} \land b)$,则< A , \diamondsuit > 是一阿贝尔群。
- 3、(10分)证明任一环的同态象也是一环。
- 4、(8 分) 若 G = < V, E > (|V| = v, |E| = e) 是每一个面至少由 $k(k \ge 3)$ 条边围成的连通

平面图,则
$$e \le \frac{k(v-2)}{k-2}$$
。

五、应用 32%

1、(8分)某年级共有9门选修课程,期 末考试前必须提前将这9门课程考完, 每人每天只在下午考一门课,若以课 程表示结点,有一人同时选两门课程, 则这两点间有边(其图如右),问至少 需几天?

- 2、用 washall 方法求图 $^{
 u_2}$
- ν_{3} 的可达矩阵,并判断图的连通性。(8分)
- 3、设有 a、b、c、d、e、f、g 七个人,他们分别会讲的语言如下: a: 英,b: 汉、英,c: 英、西班牙、俄,d: 日、汉,e: 德、西班牙,f: 法、日、俄,g: 法、德,能否将这七个人的座位安排在圆桌旁,使得每个人均能与他旁边的人交谈?(8分)
- 4、用 Huffman 算法求出带权为 2, 3, 5, 7, 8, 9 的最优二叉树 T, 并求 W (T)。 若传递 a, b, c, d, e, f 的频率分别为 2%, 3%, 5%, 7%, 8%, 9%求传输它的最佳前缀码。(8分)

答案:

三十五、 填空 10% (每小题 2分)

1、1, 不存在; 2、 $e \neq \theta$; 3、 $\forall a,b \in G_{\widehat{A}}(a*b)*(a*b) = (a*a)*(b*b)$; 4、

	e_1	e_2	e_3	e_4	e_5
v_1	1	1	1	0	0
v_2	-1	0	0	0	1
v_3	0	-1	0	1	-1
v_4	0	0	-1	-1	0

5、它不包含与 $K_{3,3}$ 或 K_5 在 2 度结点内同构的子图。

三十六、选择 10% (每小题 2分)

题目	1	2	3	4	5
答案	A, D	В	C	D	A

三十七、判断 10%

题目	1	2	3	4	5
答案	Y	Y	N	N	N

三十八、 证明 38%

1、(8分)证明:

(1) 设 $a,b,c \in A$, b 是 a 的右逆元,c 是 b 的右逆元,由于b*(a*b)=b*e=b,e=b*c=b*(a*b)*c=(b*a)*(b*c)=(b*a)*e=b*a 所以 b 是 a 的左逆元。

(2)设元素 a 有两个逆元 b、c,那么

$$b = b * e = b * (a * c) = (b * a) * c = e * c = c$$

a 的逆元是唯一的。

2、(12分)证明:

[乘]∵∨, ∧, -在A上封闭, ∴ 运算☆在A上也封闭。

[群] $\forall a,b,c \in A$

$$(a \stackrel{\wedge}{\bowtie} b) \stackrel{\wedge}{\bowtie} c = ((a \wedge \overline{b}) \vee (\overline{a} \wedge b)) \stackrel{\wedge}{\bowtie} c$$

$$=(((a\wedge \overline{b})\vee (\overline{a}\wedge b))\wedge \overline{c})\vee (\overline{(a\wedge \overline{b})\vee (\overline{a}\wedge b)}\wedge c)$$

$$= (a \wedge \overline{b} \wedge \overline{c}) \vee (\overline{a} \wedge b \wedge \overline{c}) \vee ((\overline{a} \vee \overline{b}) \wedge (a \vee \overline{b}) \wedge c)$$

$$= (a \wedge \overline{b} \wedge \overline{c}) \vee (\overline{a} \wedge b \wedge \overline{c}) \vee (((a \wedge b) \vee (\overline{a} \wedge \overline{b})) \wedge c)$$

$$= (a \wedge \overline{b} \wedge \overline{c}) \vee (\overline{a} \wedge b \wedge \overline{c}) \vee (a \wedge b \wedge c) \vee (\overline{a} \wedge \overline{b} \wedge c)$$

同理可得: $a \diamondsuit (b \diamondsuit c) = (a \land \overline{b} \land \overline{c}) \lor (\overline{a} \land b \land \overline{c}) \lor (a \land b \land c) \lor (\overline{a} \land \overline{b} \land c)$

$$∴ (a \diamondsuit b) \diamondsuit c = a \diamondsuit (b \diamondsuit c)$$
 即☆满足结合性。

[幺]
$$\forall a \in A, a \Leftrightarrow 0 = 0 \Leftrightarrow a = (0 \land a) \lor (\overline{0} \land a) = 0 \lor (1 \land a) = 0 \lor a = a$$
 故全下界 0 是 A 中关于运算 \Leftrightarrow 的幺元。

[逆]
$$\forall a \in A \cdot (a \stackrel{\wedge}{\bowtie} a) = (a \wedge a) \vee (a \wedge a) = 0 \vee 0 = 0$$

即A中的每一个元素以其自身为逆元。

$$[\overline{\chi}] \quad a \stackrel{\wedge}{\bowtie} b = (a \wedge \overline{b}) \vee (\overline{a} \wedge b) = (b \wedge \overline{a}) \vee (\overline{b} \wedge a) = b \stackrel{\wedge}{\bowtie} a$$

即运算☆具有可交换性。

所以<A, ☆>是 Abel 群。

3、(10分)证明:

设
$$< A, +, •$$
>是 $-$ 环,且 $< f(A), ⊕, ⊗$ >是关于同态映射 f 的同态象。

由<A,+>是 Abel 群,易证 $< f(A),\oplus>$ 也是 Abel 群。

现只需证: ⊗对⊕是可分配的。

$$\forall b_1, b_2, b_3 \in f(A)$$
, 则必有相应的 a_1, a_2, a_3 使得: $f(a_i) = b_i, i = 1,2,3$ 于是

$$b_1 \otimes (b_2 \oplus b_3) = f(a_1) \otimes (f(a_2) \oplus f(a_3)) = f(a_1) \otimes (f(a_2 + a_3))$$

$$= f(a_1 \cdot (a_2 + a_3)) = f((a_1 \cdot a_2) + (a_1 \cdot a_3)) = f(a_1 \cdot a_2) \oplus f(a_1 \cdot a_3)$$

$$= (f(a_1) \otimes f(a_2)) \oplus (f(a_1) \otimes f(a_3))$$

$$= (b_1 \otimes b_2) \oplus (b_1 \otimes b_3)$$

同理可证 $(b_2 \oplus b_3) \otimes b_1 = (b_2 \otimes b_1) \oplus (b_3 \otimes b_1)$

因此< f(A), \oplus , \otimes >也是环。

5、(8分)证明:

设G有r个面,

$$\because \sum_{i=1}^{r} \deg(r_i) = 2e, \quad \overrightarrow{\text{fill}} \deg(r_i) \ge k \quad (1 \le i \le r) \quad \therefore 2e \ge kr \quad \mathbb{P} r \quad \le \frac{2e}{k}$$

$$\overline{m}v - e + r = 2$$
, 故 $v - e + \frac{2r}{k} \ge 2$ 即 $e \le \frac{k(v-2)}{k-2}$

三十九、 应用 32%

1、(8分)

解: $\chi(G)$ 即为最少考试天数。

用 Welch-Powell 方法対 G 着色: ^V₉V₃V₇V₁V₂V₄V₅V₈V₆

第一种颜色的点 $v_9v_1v_4v_6$, 剩余点 $v_3v_7v_2v_5v_8$

第二种颜色的点 $v_3v_7v_5$, 剩余点 v_2v_8

第三种颜色的点 v_2v_8

所以 $\chi(G) \leq 3$

任 $v_2v_3v_9$ 构成一圈,所以 $\chi(G) \ge 3$

故 $\chi(G)_{=3}$

所以三天下午即可考完全部九门课程。

2、(8分)

$$A(G) = \begin{pmatrix} 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

$$A = \begin{pmatrix} 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix}; \quad i = 2: \quad A[4, \ 2] = 1, \quad A = \begin{pmatrix} 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix}$$

i = 1: A[2, 1]=1,

$$A = \begin{pmatrix} 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix}$$

i = 3: A[1, 3]=A[2, 3]=A[4, 3]=1,

i = 4: A[k, 4]=1, k=1, 2, 3, 4,

p中的各元素全为1,所以G是强连通图,当然是单向连通 和弱连通。

3、(8分)

解:用 a,b,c,d,e,f,g 7 个结点表示 7 个人,若两人能交谈可用一条无向边连结,所得无向图为此图中的 Hamilton 回路即是圆桌安排座位的顺序。

Hamilton 回路为abdfgeca。

4、(8分)

解: (1)

 $W(T) = 2 \times 4 + 3 \times 4 + 5 \times 3 + 9 \times 2 + 7 \times 2 + 8 \times 2 = 83$

(1) 用 0000 传输 a、0001 传输 b、001 传输 c、01 传输 f、10 传输 d、11 传输 e 传输它们的最优前缀码为{0000,0001,001,01,10,11}。

试卷十四试题与答案

九、 填空 10% (每小题 2分)

- 1、设<A,V,A,->是由有限布尔格<A,<> 诱导的代数系统,S 是布尔格 <A,<> , 中 所 有 原 子 的 集 合 , 则 <A,V,A,-> \sim ______。
- 2、集合 $S={\alpha, \beta, \gamma, \delta}$ 上的二元运算*为

*	α	β	γ	δ
α	δ	α	β	γ
β	α	β	γ	δ
γ	β	γ	γ	γ
δ	α	δ	γ	δ

那么,代数系统<S,*>中的幺元是 _____, α的逆元是 _____。

3、设 I 是整数集合, Z_3 是由模 3 的同余类组成的同余类集,在 Z_3 上定义 $+_3$ 如下:

[i]	$+_3[j] = [(i+j) \mod 3]$,则 $+_3$ 的运算表	为		_ ;
<	·Z ₊ ,+3>是否构成群	o		
4、	设G是n阶完全图,则G的边数m=			
5	加里有一台计管机 它有一条加注指令	可计管皿数的和	现有 28 个粉雲更	计省

次这个加法指令。

十、 选择 20% (每小题 2分)

1、在有理数集 Q 上定义的二元运算*, $\forall x, y \in Q$ 有 x * y = x + y - xy,

)。

则 Q 中满足(

和,它至少要执行

- A、所有元素都有逆元;
- B、只有唯一逆元;
- C、 $\forall x \in Q, x \neq 1$ 时有逆元 x^{-1} ; D、所有元素都无逆元。
- 2、设 S={0, 1}, *为普通乘法,则<S,*>是()。)。
 - A、 半群, 但不是独异点; B、只是独异点, 但不是群;
 - C、群;
- D、环,但不是群。

3、图

A、分配格; B、有补格; C、布尔格; D、 A,B,C 都不对。

3、有向图 D=<V,E>

条。

 $A_{\lambda} 0; B_{\lambda} 1; C_{\lambda} 2; D_{\lambda} 3$

4、在 Peterson 图

中,至少填加()条边才能构成 Euler

图。

A, 1; B, 2; C, 4; D, 5 \circ

判断 10% (每小题 2分)

1、在代数系统 $\langle A.* \rangle$ 中如果元素 $a \in A$ 的左逆元 a_e^{-1} 存在,

则它一定唯一且 $a^{-1} = a_e^{-1}$ 。(

- 2、 设<S,*>是群<G,*>的子群,则<G,*>中幺元 e 是<S,*>中幺元。(
- 3、设 $A = \{x \mid x = a + b\sqrt{3}, a, b$ 均为有理数 $\}_{x \in A}$,为普通加法和乘法,则代数系 统<A, +, •>是域。()
- 4、设 G=<V .E>是平面图, |V|=v, |E|=e, r 为其面数,则 v-e+r=2。()
- 5、如果一个有向图 D 是欧拉图,则 D 是强连通图。()

四、证明 46%

- 1、 设<A.*>, 是半群, e 是左幺元且 $\forall x \in A$, $\exists \hat{x} \in A$, 使得 $\hat{x}^* x = e$, 则<A,*>是群。(10分)
- 2、 循环群的任何非平凡子群也是循环群。(10分)
- 3、 设 aH 和 bH 是子群 H 在群 G 中的两个左陪集,证明:要末 $aH \cap bH = \Phi$,要末 aH = bH (8 \(\frac{1}{2}\))
- 4、 设<A,+, $\bullet>$,是一个含幺环,|A|>3,且对任意 $\forall a \in A$,都有 $a \cdot a = a$,则<A,+, $\bullet>$ 不可能是整环(这时称<A,+,•>是布尔环)。(8分)
- 5、 若图 G 不连通,则 G 的补图 \overline{G} 是连通的。(10 分)

五、布尔表达式 8%

设 $E(x_1, x_2, x_3) = (x_1 \wedge x_2) \vee (x_2 \wedge x_3) \vee (x_2 \wedge x_3)$ 是 布 尔 代 数

六、图的应用 16%

- 1、构造一个结点 v 与边数 e 奇偶性相反的欧拉图。(6分)
- 2、假设英文字母, a, e, h, n, p, r, w, y 出现的频率分别为 12%, 8%, 15%, 7%, 6%, 10%, 5%, 10%, 求传输它们的最佳前缀码, 并给出 happy new year 的编码信息。(10 分)

答案

四十、 填空 10% (每小题 2 分)

+3	[0]	[1]	[2]
[0]	[0]	[1]	[2]
[1]	[1]	[2]	[0]
[2]	[2]	[0]	[1]

$$\frac{1}{2}n(n-1)$$
; 5, 9

四十一、选择 10% (每小题 2分)

题目	1	2	3	4	5
答案	C	В	D	В	D

四十二、判断 10% (每小题 2 分)

题目	1	2	3	4	5
答案	N	Y	Y	N	Y

四十三、证明 46%

1、(10分)证明:

 $\forall a,b,c \in A$,若a*b=a*c则b=c

事实上:::a*b = a*c:: $\exists \hat{a} \notin \hat{a}*(a*b) = \hat{a}*(a*c)$

$$(\hat{a} * a) * b = (\hat{a} * a) * c, : e * b = e * c$$

即:b = c

(2) e 是<A, *>之幺元。

事实上:由于 e 是左幺元,现证 e 是右幺元。

 $\forall x \in A, x^*e \in A, \exists \hat{x} \ (x^*e) = (\hat{x}^*x)^*e = e^*e = e = \hat{x}^*x$ 由(1)即x*e=x, :: e为右幺元

(3) $\forall x \in A$, $⋈ x^{-1} \in A$

事实上: $\forall x \in A \ (x * \hat{x}) * x = x * (\hat{x} * x) = x * e = x = e * x$ $x * \hat{x} = e$ 故有 $\hat{x} * x = x * \hat{x} = e$ ∴ x有逆元 \hat{x}

由(2),(3)知: <A,*>为群。

2、(10分)证明:

设<G,*>是循环群,G=(a),设<S,*>是<G,*>的子群。且 $S \neq \{e\}$, $S \neq G$,则存在最小正整数 m,使得: $a^m \in S$,对任意 $a^l \in S$,必有 l = tm + r , $0 \le r < m$, t > 0 ,

$$\forall i : a^r = a^{l-tm} = a^l * a^{-tm} = a^l * (a^m)^{-t} \in S$$
 $\exists i : a^l = a^r * (a^m)^t \in S$

所以 $a^r \in S$ 但 m 是使 $a^m \in S$ 的最小正整数,且 $0 \le r < m$,所以r=0即: $a^l = (a^m)^t$

这说明 S 中任意元素是 a^m 的乘幂。 所以< G, *>是以 a^m 为生成元的循环群。

3、(8分)证明:

对集合 aH 和 bH , 只有下列两种情况:

(1) $aH \cap bH \neq \Phi$: (2) $aH \cap bH = \Phi$

对于 $aH \cap bH \neq \Phi$,则至少存在 $h_1, h_2 \in H$,使得 $ah_1 = bh_2$,即有 $a = bh_2h_1^{-1}$,这时任意 $ah \in aH$,有 $ah = bh_2h_1^{-1}h \in bH$,故有 $aH \subseteq bH$

同理可证: $bH \subseteq aH$ 所以 aH = bH

4、(8分)证明:

反证法: 如果<A, +, •>, 是整环, 且有三个以上元素, 则存在 $a \in A, a \neq \theta, a \neq 1$ 且 $a \cdot a = a$ 即有: $a \neq \theta, a - 1 \neq \theta$ 但 $a \cdot (a - 1) = a \cdot a - a = a - a = \theta$ 这与整环中无零因子条件矛盾。因此<A, +, •>不可能是整环。

5、(10分)证明:

因为 G=< V, E> 不连通,设其连通分支是 $G(V_1), \cdots, G(V_k)$ $(k \ge 2)$, $\forall u, v \in V$,则有两种情况:

- (1) \mathbf{u} , \mathbf{v} , 分别属于两个不同结点子集 $\mathbf{V}_{\mathbf{i}}$, $\mathbf{V}_{\mathbf{j}}$, 由于 $\mathbf{G}(\mathbf{V}_{\mathbf{i}})$, $\mathbf{G}(\mathbf{V}_{\mathbf{j}})$ 是两连通分支,故 $(\mathbf{u}$, $\mathbf{v})$ 在不 \mathbf{G} 中,故 \mathbf{u} , \mathbf{v} 在 $\overline{\mathbf{G}}$ 中连通。
- (2) u,v,属于同一个结点子集 V_i ,可在另一结点子集 V_j 中任取一点 w,故(u,w),(w,v) 均在 \overline{G} 中,故邻接边(u,w)(w,v) 组成的路连接结点 u 和 v,即 u,v 在 \overline{G} 中也是连通的。

五、布尔表达式 8%

函数表为:

x_1	x_2	<i>x</i> ₃	$E(x_1, x_2, x_3)$
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

$$E(x_1, x_2, x_3) = (\bar{x}_1 \wedge \bar{x}_2 \wedge x_3) \vee (\bar{x}_1 \wedge x_2 \wedge x_3) \vee (\bar{x}_1 \wedge \bar{x}_2 \wedge x_3)$$

析取范式:

$$\vee (x_1 \wedge x_2 \wedge x_3) \vee (x_1 \wedge x_2 \wedge x_3)$$

合取范式: $E(x_1, x_2, x_3) = (x_1 \lor x \lor_2 x_3) \land (x_1 \lor x_2 \lor x_3) \land (x_1 \lor x_2 \lor x_3)$

六、 树的应用 16%

1、(6分)解:

结点数5,边数6,每个结点度数均为偶数,所以它是欧拉图。

结点数6,边数7,每个 结点度数均为偶数,所 以它是欧拉图。

2、(10分)解:

根据权数构造最优二叉树:

传输它们的最佳前缀码如上图所示, happy new year 的编码信息为:
10 011 0101 0101 001 110 111

附: 最优二叉树求解过程如下:

5	6	7	8	10	10	12	15
	11	7	8	10	10	12	15
	11		15	10	10	12	15
		11	15		20	12	15
			15		20	23	15
					20	23	30
						43	30
							73

试卷十五试题与答案

十二、 填空 20% (每空 2分)

1、如果有限集合 A 有 n 个元素,则[2 ^A =。
2、某集合有 101 个元素,则有 个子集的元素为奇数。
3、设 S={a ₁ , a ₂ ,···, a ₈ }, B _i 是 S 的子集, 由 B ₁₇ 表达的子集为
子集{a ₂ ,a ₆ ,a ₇ }规定为。
4 、由 A_1 , A_2 ,…, A_n ,生成的最小集的形式为,它们的并为
集,它们的交为集。
5、某人有三个儿子,组成集合 $A=\{S_1,S_2,S_3\}$,在 A 上的兄弟关系
具有
质。
6、每一个良序集必为全序集,而全序集必为良序集。
7、若 $f:A \to B$ 是函数,则当 f 是 $A \to B$ 的, $f^c:B \to A$ 是 f 的边
函数。
一二 洗择 15% (每小题 3分)

$$B_{s} \{\Phi, \{\Phi\}, \{\{\Phi\}\}, \{\{\Phi, \{\Phi\}\}\}, \{\Phi, \{\Phi\}\}\}, \{\Phi, \{\Phi, \{\Phi\}\}\}, \{\{\Phi\}, \{\Phi, \{\Phi\}\}\}\}, B\}$$

$$C_{\searrow} \{\Phi, \{\Phi\}, \{\{\Phi\}\}, \{\Phi, \{\Phi\}\}\}, \{\Phi, \{\Phi\}\}\}, \{\{\Phi\}, \{\Phi, \{\Phi\}\}\}\}, B\}$$

$$D \in \{\{\Phi\}\{\Phi,\{\Phi\}\},\{\Phi,\{\Phi,\{\Phi\}\}\},\{\{\Phi\},\{\Phi,\{\Phi\}\}\}\},\Phi,B\}$$

2、下列结果正确的是()。

A,
$$(A \cup B) - A = B$$
; B, $(A \cap B) - A = \Phi$; C, $(A - B) \cup B = A$;

$$D_{\searrow} \Phi \cup \{\Phi\} = \Phi_{; E_{\searrow}} \Phi \cap \{\Phi\} = \Phi_{; F_{\searrow}} A \oplus A = A_{\Rightarrow}$$

3、集合 $A \cup \overline{B}$ 的最小集范式为 () (由 A、B、C 生成)。

$$(A \cap B \cap C) \cup (A \cap B \cap \overline{C}) \cup (A \cap \overline{B} \cap C) \cup$$

A
$$(A \cap \overline{B} \cap \overline{C}) \cup (\overline{A} \cap \overline{B} \cap C) \cup (\overline{A} \cap \overline{B} \cap \overline{C})$$
 ; B

 $(A \cap B) \cup (A \cap \overline{B}) \cup (\overline{A} \cap \overline{B})$.

 $(\overline{A} \cup \overline{B} \cup \overline{C}) \cap (\overline{A} \cup \overline{B} \cup C) \cap (\overline{A} \cup B \cup \overline{C}) \cap$

$$C_{\searrow}(\overline{A} \cup B \cup C) \cap (A \cup B \cup \overline{C}) \cap (A \cup B \cup C) \qquad ; \quad D_{\searrow}(\overline{A} \cup \overline{B}) \cap (\overline{A} \cup B) \cap (A \cup B) \cap (A$$

4、在 () 下有
$$A \times B \subseteq A$$
。

A,
$$A = B$$
; B, $B \subseteq A$; C, $A \subseteq B$; D, $A = \Phi \vec{\boxtimes} B = \Phi$

5、下列二元关系中是函数的有()

A.
$$R = \{ \langle x, y \rangle | x \in N \land y \in N \land x + y < 10 \}$$
.

B,
$$R = \{ \langle x, y \rangle | x \in R \land y \in R \land y = x^2 \}$$
:

$$R = \{ \langle x, y \rangle | x \in R \land y \in R \land x = y^2 \}$$

三、15%

用 Warshall 算法,对集合 A={1, 2, 3, 4, 5}上二元关系 R={<1,1>,<1,2>,<2,4>,<3,5>,<4,2>}求 t (R)。

四、15%

集合 $C^* = \{a + bi \mid i^2 = -1, a, b$ 是任意实数, $a \neq 0\}$, C^* 上定义关系

 $R = \{ < a + bi, c + di > | ac > 0 \}$,则 R 是 C*上的一个等价关系,并给出 R 等价类的几何说明。

五、计算 15%

1、设 A={1, 2, 3, 4}, S={{1}, {2, 3}, {4}}, 为 A 的一个分划, 求由 S 导出的等价关系。

(4分)

2、设 Z 为整数集,关系 $R = \{ \langle a,b \rangle | a,b \in Z \land a \equiv b \pmod{k} \}$ 为 Z 上等价关系,求 R 的模 K 等价关系的商集 Z/R,并指出 R 有秩。(5 分)

求 A 的子集{3, 4, 5}和{1, 2, 3},的上界,下界,上确界

和下确界。(6分)

六、证明 20%

1、假定 $f:A\to B,g:B\to C$,且 $g\circ f$ 是一个满射,g 是个入射,则 f 是满射。(10 分) 2、设 f,g 是 A 到 B 的函数, $f\subseteq g$ 且 $domg\subseteq domf$,证明 f=g 。(10 分)

答案

一、填空 20% (每空 2分)

1、 2^n ; 2、 2^{100} ; 3、 $\{a_4, a_8\}$, $B_{01000110}$ (B_{70}) ; 4、 $\hat{A}_1 \cap \hat{A}_2 \cap \cdots \cap \hat{A}_n (\hat{A}_i = A_i 或 \overline{A_i})$, 全集, Φ ; 5、反自反性、对称性、传递性;6、有限;7、双射。

二、选择 15% (每小题 3分)

题目	1	2	3	4	5
答案	В	В, Е	A	D	В

三、Warshall 算法 15%

$$M_R = \begin{pmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

$$i = 1 \text{ pt}, M_{R[1,1]=1, A=M_R}$$

i = 2 时,M[1,2]=M[4,2]=1

$$\mathbf{A} = \begin{pmatrix} 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

i=3时,A的第三列全为0,故A不变

i = 4 ps, M[1,4]=M[2,4]=M[4,4]=1

$$A = \begin{pmatrix} 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$
 $i = 5$ 时, $M[3,5] = 1$,这时
$$\begin{pmatrix} 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

所以 t (R)={<1,1>, <1,2>,<1,4>,<2,2>,<2,4>,<3,5>,<4,2>,<4,4>}。

四、5%

证明:

对称性: $\forall a+bi \in C^*, c+di \in C^*$ 且 $< a+bi, c+di > \in R, ac > 0$ $\Rightarrow ca > 0, \therefore < c+di, a+bi > \in R$

自反性: $\forall a+bi \in C^* (a \neq 0)$, aa > 0 $\therefore \langle a+bi, a+bi \rangle \in R$

传递性: 若 $\forall a+bi \in C^*$, $c+di \in C^*$, $e+fi \in C^*$

R 两等价类:
$$\pi_1 = \{z \mid z = a + bi, a > 0\}$$
 右半平面; $\pi_2 = \{z \mid z = a + bi, a < 0\}$ 左半平面

五、计算 15%

1、
$$(4 分)$$
 R={ $<1,1>,<2,2>,<2,3>,<3,2>,<3,3><4,4>}。$

- 2、(5分) Z/R={[0], [1], ···, [k-1]}, 所以 R 秩为 k。
- 3、(6分) {3, 4, 5}: 上界: 1, 3; 上确界: 3; 下界: 无; 下确界: 无; {1, 2, 3}: 上界: 1; 上确界: 1; 下界: 4; 下确界: 4。

六、证明 20%

1、(10 分) 证明: $\forall b \in B$, 由于 g 是入射, 所以存在唯一 $c \in C$ 使 g(b) = c, 又 $g \circ f$ 满射, 对上述 c 存在 $a \in A$, 使得 $g \circ f(a) = c$, 也即 g(f(a)) = c, 由 g 单射, 所以 f(a) = b 即: $\forall b \in B$ 均存在 $a \in A$ 使得 f(a) = b, 所以 f 满射。

2、(10分)证明:

 $\forall < x, y > \in g$ 则 $x \in domg$ 且 $y \in rangeg \Rightarrow x \in domf$ 且 $y \in rangeg$ 对上述 $x \in domf$ 则 $\exists | y' \in rangef$ 即 $< x, y' > \in f$ 而 $f \subseteq g$ $\therefore < x, y' > \in g$ 但 $< x, y > \in g$ 由g是函数知 y' = y $\therefore x \in domf$ 且 $y \in rangef$ 即 $< x, y > \in f$ $\therefore f = g$