## When to change development/test sets and metrics

Example: Cat vs Non-cat

A cat classifier tries to find a great amount of cat images to show to cat loving users. The evaluation metric used is a classification error.

| Algorithm | Classification error [%] |
|-----------|--------------------------|
| Α         | 3%                       |
| В         | 5%                       |

It seems that Algorithm A is better than Algorithm B since there is only a 3% error, however for some reason, Algorithm A is letting through a lot of the pornographic images.

Algorithm B has 5% error thus it classifies fewer images but it doesn't have pornographic images. From a company's point of view, as well as from a user acceptance point of view, Algorithm B is actually a better algorithm. The evaluation metric fails to correctly rank order preferences between algorithms. The evaluation metric or the development set or test set should be changed.

The misclassification error metric can be written as a function as follow:

$$Error: \frac{1}{m_{dev}} \sum_{i=1}^{m_{dev}} \mathcal{L} \{ (\hat{y}^{(i)} \neq y^{(i)}) \}$$

This function counts up the number of misclassified examples.

The problem with this evaluation metric is that it treats pornographic vs non-pornographic images equally. One way to change this evaluation metric is to add the weight term  $w^{(t)}$ .

$$w^{(i)} = \begin{cases} 1 & \text{if } x^{(i)} \text{ is non-pornographic} \\ 10 & \text{if } x^{(i)} \text{ is pornographic} \end{cases}$$

The function becomes:

Error: 
$$\frac{1}{\sum w^{(i)}} \sum_{i=1}^{m_{dev}} w^{(i)} \mathcal{L} \{ (\hat{y}^{(i)} \neq y^{(i)} ) \}$$

L here is the indicator function.

Guideline

- 1. Define correctly an evaluation metric that helps better rank order classifiers
- 2. Optimize the evaluation metric