Lecture 3: Collective communication

Jack Poulson and Rob Schreiber

CME 194 Stanford University

April 8, 2013

Outline

Cost model

Broadcast

Reduce

Distributed vector norms

Homework 1

Recall $\alpha + \beta n$ model:

- Can only send one message at a time
- ► Cost depends on *latency*, α , message length, n, and bandwidth, $1/\beta$

Will assume network is fully-connected,

but, in practice, topology is usually fat-tree

or multi-dimensional torus

Recall $\alpha + \beta n$ model:

- Can only send one message at a time
- ► Cost depends on *latency*, α , message length, n, and bandwidth, $1/\beta$

Will assume network is fully-connected,

but, in practice, topology is usually fat-tree

or multi-dimensional torus

Recall $\alpha + \beta n$ model:

- Can only send one message at a time
- Cost depends on *latency*, α, message length, n, and bandwidth, 1/β

Will assume network is fully-connected,

but, in practice, topology is usually fat-tree

Recall $\alpha + \beta n$ model:

- Can only send one message at a time
- Cost depends on *latency*, α, message length, n, and bandwidth, 1/β

Will assume network is fully-connected,

but, in practice, topology is usually fat-tree

There are log₂ p stages

Total cost is $(\alpha + \beta n) \log_2 p$

There are log₂ p stages

Total cost is $(\alpha + \beta n) \log_2 p$

There are $\log_2 p$ stages

Total cost is $(\alpha + \beta n) \log_2 p$

There are $\log_2 p$ stages

Total cost is $(\alpha + \beta n) \log_2 p$

There are log₂ p stages

Total cost is $(\alpha + \beta n) \log_2 p$

There are $\log_2 p$ stages

Total cost is $(\alpha + \beta n) \log_2 p$

There are $\log_2 p$ stages

Total cost is $(\alpha + \beta n) \log_2 p$

There are $\log_2 p$ stages

Total cost is $(\alpha + \beta n) \log_2 p$

Scatter $(\alpha \log_2 p + \beta n \frac{p-1}{p})$ then AllGather $(\alpha \log_2 p + \beta n \frac{p-1}{p})$

Scatter $(\alpha \log_2 p + \beta n \frac{p-1}{p})$ then AllGather $(\alpha \log_2 p + \beta n \frac{p-1}{p})$

Scatter $(\alpha \log_2 p + \beta n \frac{p-1}{p})$ then AllGather $(\alpha \log_2 p + \beta n \frac{p-1}{p})$

Scatter $(\alpha \log_2 p + \beta n \frac{p-1}{p})$ then AllGather $(\alpha \log_2 p + \beta n \frac{p-1}{p})$

Scatter $(\alpha \log_2 p + \beta n \frac{p-1}{p})$ then AllGather $(\alpha \log_2 p + \beta n \frac{p-1}{p})$

Scatter $(\alpha \log_2 p + \beta n \frac{p-1}{p})$ then AllGather $(\alpha \log_2 p + \beta n \frac{p-1}{p})$

Scatter $(\alpha \log_2 p + \beta n \frac{p-1}{p})$ then AllGather $(\alpha \log_2 p + \beta n \frac{p-1}{p})$

Scatter $(\alpha \log_2 p + \beta n \frac{p-1}{p})$ then AllGather $(\alpha \log_2 p + \beta n \frac{p-1}{p})$

Scatter $(\alpha \log_2 p + \beta n \frac{p-1}{p})$ then AllGather $(\alpha \log_2 p + \beta n \frac{p-1}{p})$

Scatter $(\alpha \log_2 p + \beta n \frac{p-1}{p})$ then AllGather $(\alpha \log_2 p + \beta n \frac{p-1}{p})$

Scatter $(\alpha \log_2 p + \beta n \frac{p-1}{p})$ then AllGather $(\alpha \log_2 p + \beta n \frac{p-1}{p})$

Scatter $(\alpha \log_2 p + \beta n \frac{p-1}{p})$ then AllGather $(\alpha \log_2 p + \beta n \frac{p-1}{p})$

Scatter $(\alpha \log_2 p + \beta n \frac{p-1}{p})$ then AllGather $(\alpha \log_2 p + \beta n \frac{p-1}{p})$

Scatter $(\alpha \log_2 p + \beta n \frac{p-1}{p})$ then AllGather $(\alpha \log_2 p + \beta n \frac{p-1}{p})$

MPI_Bcast

```
MPI_Bcast( void* buffer, int n, MPI_Datatype
type, int root, MPI_Comm comm )
```

Broadcasts n items of type type from process with rank root with respect to communicator comm.

Typically switches from binomial to Fox/vdG algorithm when n is sufficiently large.

MPI_Bcast

```
MPI_Bcast( void* buffer, int n, MPI_Datatype
type, int root, MPI_Comm comm )
```

Broadcasts n items of type type from process with rank root with respect to communicator comm.

Typically switches from binomial to Fox/vdG algorithm when n is sufficiently large.

MPI_Bcast

```
MPI_Bcast( void* buffer, int n, MPI_Datatype
type, int root, MPI_Comm comm )
```

Broadcasts n items of type type from process with rank root with respect to communicator comm.

Typically switches from binomial to Fox/vdG algorithm when n is sufficiently large.

Each process has vector of same length and we would like to give sum to single process:

$$x = \sum_{i=0}^{p-1} \hat{x}_i$$

Can run Broadcast algorithms in reverse (with summation).

Therefore, same communication costs

Each process has vector of same length and we would like to give sum to single process:

$$x = \sum_{i=0}^{p-1} \hat{x}_i$$

Can run Broadcast algorithms in reverse (with summation).

Therefore, same communication costs

Each process has vector of same length and we would like to give sum to single process:

$$x = \sum_{i=0}^{p-1} \hat{x}_i$$

Can run Broadcast algorithms in reverse (with summation).

Therefore, same communication costs!

Each process has vector of same length and we would like to give sum to single process:

$$x = \sum_{i=0}^{p-1} \hat{x}_i$$

Can run Broadcast algorithms in reverse (with summation).

Therefore, same communication costs!

MPI_Reduce

```
MPI_Reduce( void* sendBuf, void* recvBuf, int
n, MPI_Datatype type, MPI_Op op, int root,
MPI_Comm comm )
```

Reduces each process in communicator comm's *n* items from sendBuf into process root's recvBuf using binary operation implied by op, e.g., MPI_SUM or MPI_MAX.

Related routines are MPI_Allreduce (give every process the result) and MPI_Reduce_scatter (give every process a subset of the result)

MPI_Reduce

```
MPI_Reduce( void* sendBuf, void* recvBuf, int
n, MPI_Datatype type, MPI_Op op, int root,
MPI_Comm comm )
```

Reduces each process in communicator comm's n items from sendBuf into process root's recvBuf using binary operation implied by op, e.g., MPI_SUM or MPI_MAX.

Related routines are MPI_Allreduce (give every process the result) and MPI_Reduce_scatter (give every process a subset of the result)

MPI_Reduce

```
MPI_Reduce( void* sendBuf, void* recvBuf, int
n, MPI_Datatype type, MPI_Op op, int root,
MPI_Comm comm )
```

Reduces each process in communicator comm's n items from sendBuf into process root's recvBuf using binary operation implied by op, e.g., MPI_SUM or MPI_MAX.

Related routines are $MPI_Allreduce$ (give every process the result) and $MPI_Reduce_scatter$ (give every process a subset of the result)

$$\alpha := \mathbf{y}^H \mathbf{x}$$

- ► Each process gets subset of *x* and *y*, e.g., *x_i* and *y_i*
- ► Then $\alpha = \sum_{i=0}^{p-1} y_i^H x_i = \sum_{i=0}^{p-1} \hat{\alpha}_i$
- ▶ Have each process form $\hat{\alpha}_i := y_i^H x_i$ then Reduce
- Work is $2\frac{n}{p} + (\alpha + \beta) \log_2 p$ with binomial Reduce

Setting y = x yields parallel $||x||_2$.

Setting y = ones(n, 1) yields parallel $||x||_1$

$$\alpha := \mathbf{y}^H \mathbf{x}$$

- ► Each process gets subset of x and y, e.g., x_i and y_i
- ▶ Then $\alpha = \sum_{i=0}^{p-1} y_i^H x_i = \sum_{i=0}^{p-1} \hat{\alpha}_i$
- ▶ Have each process form $\hat{\alpha}_i := y_i^H x_i$ then Reduce
- ▶ Work is $2\frac{n}{p} + (\alpha + \beta) \log_2 p$ with binomial Reduce

Setting y = x yields parallel $||x||_2$

Setting y = ones(n, 1) yields parallel $||x||_1$

$$\alpha := \mathbf{y}^H \mathbf{x}$$

- ► Each process gets subset of x and y, e.g., x_i and y_i
- ► Then $\alpha = \sum_{i=0}^{p-1} y_i^H x_i = \sum_{i=0}^{p-1} \hat{\alpha}_i$
- ▶ Have each process form $\hat{\alpha}_i := y_i^H x_i$ then Reduce
- ▶ Work is $2\frac{n}{p} + (\alpha + \beta) \log_2 p$ with binomial Reduce

Setting y = x yields parallel $||x||_2$

Setting y = ones(n, 1) yields parallel $||x||_1$

$$\alpha := \mathbf{y}^H \mathbf{x}$$

- ► Each process gets subset of x and y, e.g., x_i and y_i
- ► Then $\alpha = \sum_{i=0}^{p-1} y_i^H x_i = \sum_{i=0}^{p-1} \hat{\alpha}_i$
- ▶ Have each process form $\hat{\alpha}_i := y_i^H x_i$ then Reduce
- Work is $2\frac{n}{p} + (\alpha + \beta) \log_2 p$ with binomial Reduce

Setting y = x yields parallel $||x||_2$

Setting y = ones(n, 1) yields parallel $||x||_1$.

$$\alpha := \mathbf{y}^H \mathbf{x}$$

- ► Each process gets subset of x and y, e.g., x_i and y_i
- ► Then $\alpha = \sum_{i=0}^{p-1} y_i^H x_i = \sum_{i=0}^{p-1} \hat{\alpha}_i$
- ▶ Have each process form $\hat{\alpha}_i := y_i^H x_i$ then Reduce
- ▶ Work is $2\frac{n}{p} + (\alpha + \beta) \log_2 p$ with binomial Reduce

Setting y = x yields parallel $||x||_2$

Setting y = ones(n, 1) yields parallel $||x||_1$

$$\alpha := \mathbf{y}^H \mathbf{x}$$

- ► Each process gets subset of x and y, e.g., x_i and y_i
- ► Then $\alpha = \sum_{i=0}^{p-1} y_i^H x_i = \sum_{i=0}^{p-1} \hat{\alpha}_i$
- ▶ Have each process form $\hat{\alpha}_i := y_i^H x_i$ then Reduce
- ▶ Work is $2\frac{n}{p} + (\alpha + \beta) \log_2 p$ with binomial Reduce

Setting y = x yields parallel $||x||_2$.

Setting y = ones(n, 1) yields parallel $||x||_1$

$$\alpha := \mathbf{y}^H \mathbf{x}$$

- ► Each process gets subset of x and y, e.g., x_i and y_i
- ► Then $\alpha = \sum_{i=0}^{p-1} y_i^H x_i = \sum_{i=0}^{p-1} \hat{\alpha}_i$
- ▶ Have each process form $\hat{\alpha}_i := y_i^H x_i$ then Reduce
- ▶ Work is $2\frac{n}{p} + (\alpha + \beta) \log_2 p$ with binomial Reduce

Setting y = x yields parallel $||x||_2$.

Setting y = ones(n, 1) yields parallel $||x||_1$.

Example: distributed $\|\cdot\|_{\infty}$

$$\|x\|_{\infty} = \max_{j} \chi_{j}$$

If we give each process subset of x, say x_i , then

$$||x||_{\infty} = \max_{i} ||x_{i}||_{\infty}$$

Just like distributed $||x||_1$, but using max instead of + for the reduction operation.

Example: distributed $\|\cdot\|_{\infty}$

$$\|x\|_{\infty} = \max_{j} \chi_{j}$$

If we give each process subset of x, say x_i , then

$$||x||_{\infty} = \max_{i} ||x_{i}||_{\infty}$$

Just like distributed $||x||_1$, but using max instead of + for the reduction operation.

Example: distributed $\|\cdot\|_{\infty}$

$$\|x\|_{\infty} = \max_{j} \chi_{j}$$

If we give each process subset of x, say x_i , then

$$||x||_{\infty} = \max_{i} ||x_{i}||_{\infty}$$

Just like distributed $||x||_1$, but using max instead of + for the reduction operation.

Homework 1: Due Friday, April 12

- Write binomial Reduce which works for power-of-two numbers of processes
- Generate random distributed vector x and compute its two-norm
- ▶ BONUS: Use MPI_Reduce with custom MPI_Op to efficiently compute sum of maximum k absolute values of entries of x

Homework 1: Due Friday, April 12

- Write binomial Reduce which works for power-of-two numbers of processes
- Generate random distributed vector x and compute its two-norm
- ▶ BONUS: Use MPI_Reduce with custom MPI_Op to efficiently compute sum of maximum k absolute values of entries of x

Homework 1: Due Friday, April 12

- Write binomial Reduce which works for power-of-two numbers of processes
- Generate random distributed vector x and compute its two-norm
- ▶ BONUS: Use MPI_Reduce with custom MPI_Op to efficiently compute sum of maximum k absolute values of entries of x