1. 머신러닝과 딥러닝

1.1 인공지능, 머신러닝과 딥러닝

• 인공지능: 인간의 지능을 모방해 사람이 하는 일을 컴퓨터가 하게 하는 기술

인공지능 > 머신러닝 > 딥러닝

머신러닝과 딥러닝의 차이점?

: 전처리, 즉 주어진 데이터를 컴퓨터가 이해하고 그 안에서 해답을 찾을 수 있도 록 인간이 데이터를 가공하는 작업을 하는지 안 하는지에 따라

전처리 O → 머신러닝

전처리 X → 딥러닝

구분	머신러닝	딥러닝
동작 원리	입력 데이터에 알고리즘을 적용 해 예측 수행	정보 전달 신경망을 사용해 데이 터 특징 및 관계 해석
재사용	데이터를 분석하기 위해 다양한 알고리즘 사용, 재사용 불가	재사용 O
필요한 데이터 수	수천 개	수백만 개
훈련 시간	단시간	장시간
결과	점수나 분류 등 숫자값	어떤 것이든 가능

1.2 머신러닝

1.2.1 학습 과정

^{*} 레이블은 지도 학습에서 정답을 의미

• 머신러닝의 주요 구성 요소: 데이터, 모델

1.2.2 학습 알고리즘

구분	설명	유형	알고리즘
지도 학습 (supervised learning)	정답(라벨)을 알려주고 학습 시킴.	분류, 회귀	KNN, SVM, decision tree, logistic regression / linear regression
비지도 학습 (unsupervised learning)	정답을 알려주지 않고 범주 화하여 예측	군집, 차원 축소	K-평균 군집화, DBSCAN / PCA
강화 학습 (reinforcement learning)	행동에 대한 보상을 받으며 스스로 학습	-	마르코프 결정 과정

1.3 딥러닝

1.3.1 학습 과정

✔ 그림 1-11 딥러닝 모델의 학습 과정

과정	설명
데이터 준비	파이토치나 케라스 제공 데이터셋 사용하거나 캐글 같은 플랫폼에 제공된 데이터를 사용
모델 정의	신경망 생성, 은닉층 개수가 많을수록 성능 Good but 과적합
모델 컴파일	활성화 함수, 손실 함수, 옵티마이저 선택 훈련 데이터셋이 연속형 → MSE, 이진 분류 → cross entropy
모델 훈련	한 번에 처리할 데이터양 지정 (배치, 에포크)
모델 예측	검증 데이터셋을 적용해 예측 진행

• 딥러닝의 핵심 구성 요소: 신경망, 역전파

1.3.2 학습 알고리즘

▼ 1) 지도 학습

- 1. 합성곱 신경망 (CNN)
- 컴퓨터 비전에서 가장 많이 사용됨.
- 이미지 분류, 이미지 인식, 이미지 분할
- 2. 순환 신경망 (RNN)
- 시계열 데이터 분류 시 사용
- 역전파 과정에서 기울기 소멸 문제가 발생하는 단점

→ LTSM : 망각/입력/출력 세 개의 게이트를 도입해 위의 문제점을 개선

▼ 2) 비지도 학습

- 1. 워드 임베딩
- 자연어를 컴퓨터가 이해하고 처리하도록 단어를 벡터로 표현
- Word2Vec, GloVe
- 번역, 음성 인식 서비스
- 2. 군집
- 정보가 없는 상태에서 데이터를 분류하는 방법

▼ 3) 전이 학습

- 사전에 학습이 완료된 모델을 미세 조정 기법을 이용하여 학습
- 사전 학습 모델: 풀고자 하는 문제와 비슷하면서 많은 데이터로 이미 학습이 되어있는 모델