- 1. Sea (V,<,>) e.v.p.i finito dimensional. Dado $T\in\mathcal{L}(V)$ normal, demostrar que T es autoadjunto $\leftrightarrow TT^*=T^*T$ i.e. T es normal
 - $\rightarrow)$ por hipótesis $TT=TT^*$ y también $TT=T^*T,$ por lo que $TT^*=T^*T$ i.e. por definición T es normal
 - ←) Supongamos que $T^2 = T$ y $TT^* = T^*T$, entonces

$$(T - T^*T)^*(T - T^*T) = (T^* - T^{**}T^*)(T - T^*T)$$

$$(T^* - TT^*)(T - T^*T) = T^*T - T^*T^*T - TT^*T + TT^*T^*T$$

$$T^*T - T^{*2}T - TT^*T + TT^{*2}T$$

y por hipótesis $T^{2*} = T^* \rightarrow T^{*2} = T^*$

$$T^*T - T^{*2}T - TT^*T + TT^{*2}T = T^*T - T^*T - TT^*T + TT^*T = 0$$

por lo tanto $T-T^*T=0$ o bien, $T=T^*T$ y también $T^*=T^{**}T^*=TT^*=T^*T$

$$T = T^*$$

- 2. Sea (V,<,>) e.v.p.i finito dimensional. Dado $T\in\mathcal{L}(V)$ normal. Probar que:
 - $a) \operatorname{Ker}(T) = \operatorname{Ker}(T^*)$
 - \subseteq) Sea $v \in \text{Ker}(T)$, entonces $T(v) = 0_V$, que en su representación matricial

$$Tv = 0_V$$

$$T^*Tv = T^*0_V = 0_V$$

y como T es normal, entonces por definición $TT^* = T^*T$

$$TT^*v = 0_V$$

$$(T^{-1}T)T^*v = T^{-1}0_V = 0_V$$

$$IT^*v = T^*v = 0_V$$

$$T^*(v) = 0_V$$

entonces

$$v \in \operatorname{Ker}(T^*) : \operatorname{Ker}(T) \subset \operatorname{Ker}(T^*)$$

 \supseteq) Sea $v \in \text{Ker}(T^*)$, entonces $T^*(v) = 0_V$, que en su representación matricial

$$T^*v = 0_V$$

$$TT^*v = T0_V = 0_V$$

y como T es normal

$$T^*Tv = 0_V$$

$$((T^*)^{-1}T^*)T^v = (T^*)^{-1}0_V = 0_V$$

$$ITv = Tv = 0_V$$

$$T(v) = 0_V$$

entonces

$$v \in \operatorname{Ker}(T) :: \operatorname{Ker}(T^*) \subset \operatorname{Ker}(T)$$

y así, $Ker(T) = Ker(T^*)$

b) $R(T) = R(T^*)$

Por el teorema 2.5 y como $T:V\to V,\,T^*:V\to V,$

$$N(T) + R(T) = \dim(V) = N(T^*) + R(T^*)$$

pero por el inciso anterior

$$\operatorname{Ker}(T) = \operatorname{Ker}(T^*) \to N(T) = N(T^*)$$

$$\therefore R(T) = R(T^*)$$