MATH3018 Assignment 1, due on Jan 22

(1) Given the following data matrix \mathbf{X} with 4 observations and 2 variables

$$\mathbf{X} = \begin{pmatrix} 1 & 3 \\ 7 & 6 \\ 5 & 4 \\ 7 & 3 \end{pmatrix}$$

Find the following:

- (a) Sample mean vector $\overline{\mathbf{x}}$.
- (b) Sample covariance matrix **S**.
- (c) S^{-1} .
- (d) Sample correlation matrix R.
- (2) Prove the following statements:
 - (a) The determinant of a $p \times p$ orthogonal matrix **Q** is either 1 or -1. (can use properties listed on page 24 of Chapter 2 slides directly)
 - (b) **A** is a symmetric matrix, and λ_i and λ_j are two distinct eigenvalues of **A**, then the corresponding eigenvectors \mathbf{u}_i and \mathbf{u}_j must be orthogonal, i.e. $\mathbf{u}_i^T \mathbf{u}_j = 0$. (Hint: start from the definition of eigenvalue/eigenvector)
 - (c) For any matrix \mathbf{A} , $\mathbf{A}^{\mathsf{T}}\mathbf{A}$ is positive semi-definite.
 - (d) Sample covariance matrix is positive semi-definite.
 - (e) For any $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{B} \in \mathbb{R}^{n \times m}$, $tr(\mathbf{AB}) = tr(\mathbf{BA})$.
 - (f) The trace of a symmetric $p \times p$ matrix **A** can be expressed as the sum of its eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_p$.

(3)

$$A = \left(\begin{array}{cc} 4 & -\sqrt{2} \\ -\sqrt{2} & 3 \end{array}\right)$$

- (a) Calculate the eigenvalues λ_1 and λ_2 as well as the eigenvectors \mathbf{u}_1 and \mathbf{u}_2 of A (ensure that \mathbf{u}_1 and \mathbf{u}_2 both of unit length). Write down the eigenvector matrix U (of A) and calculate the inverse U^{-1} using the property of orthogonality.
 - (b) Use the eigenvalue decomposition (EVD) to find A^5 .
 - (c) Use the EVD to find $A^{1/2}$.