MANUAL TÉCNICO

MONTAGEM E INSTALAÇÃO MONITOR DE ROTAÇÃO – CTS100

CONTROLTECH AUTOMAÇÃO INDUSTRIAL

Revisão 1.001 Rio Verde, Julho de 2022

Sumário

1.	Lista de figuras	3
	Introdução	
	1.1 Características técnicas:	
	Diagrama PCB I/O CTI008 Rer. 1.6	
	2.1 Principais componentes PCB I/O CTI008 Rer. 1.6	
4.	Sensor de rotação CTS100 Rer. 1.0	8
5.	Diagrama PCB REDE CTU-ETH Rer. 1.3	10
6.	Diagrama de instalação do conjunto placa I/O fonte de alimentação e placa de rede	12

1. Lista de figuras

Figura 1: Vista superior e inferior PCB I/O Ver. 1.6	4
Figura 2: Diagrama simplificado PCB I/O Ver. 1.6	5
Figura 3: diagrama simplificado PCB I/O Ver. 1.6	6
Figura 4: Detalhe conectores PCB I/O Ver. 1.6	6
Figura 5: Conectores PCB	6
Figura 6: Detalhe componente 4N25 PCB I/O Ver. 1.6	7
Figura 7: Detalhe PCB I/O Ver. 1.6	7
Figura 8: Detalhe PCB I/O Ver. 1.6 e detalhe conector entrada sensor	7
Figura 9: Detalhe PCB I/O Ver. 1.6	8
Figura 10: Sensor de rotação, pontos de fixação do sensor ao suporte	8
Figura 11: Sensor de rotação, haste de apoio com fixador magnético	9
Figura 12: Sensor de rotação, detalhe para rosca no fixador magnético	9
Figura 13: Sensor de rotação, detalhe para eixo do sensor e fixador magnético	S
Figura 14: Sensor de rotação, detalhe da fixação do suporte e a fixação do prensa cabo	10
Figura 15: Sensor de rotação, detalhe para ponto de fixação final	
Figura 16: Vista superior e inferior PCB REDE Ver. 1.3	
Figura 17: Vista superior e inferior PCB REDE Ver. 1.3 (versão para testes)	
Figura 18: Diagrama simplificado PCB REDE Ver. 1.3	
Figura 19: Diagrama de conexão rede R\$485	12
Figura 20: Diagrama de conexão endereçamento das placas I/O	
Figura 21: Diagrama de conexão endereçamento das placas I/O	12
Figura 22: Diagrama de conexão alimentação das placas	12
Figura 23: diagrama de conexão sensores de rotação	13
Figura 24: Exemplo de conexão sensores de rotação endereço A	13
Figura 25: Diagrama de resposta sinais do sensor de rotação	13

2. Introdução

Este é um sistema composto por uma fonte de alimentação dedicada, placa conversora de sinais mistos, placa de comunicação conversora de protocolos de comunicação e sensor de rotação. Funciona monitorando a rotação de motores a fim de detectar rotações excessivas ou baixas. Isso é feito por monitores de rotação no qual geram pulsos proporcionais ao giro do motor.

Devido à sua construção mecânica, possui fácil acoplamento magnético ao eixo. É uma solução prática para problemas com monitoramento de rotação em qualquer equipamento de eixo rotativo. Aplicado em diversos lugares como por exemplo: transportadores de correia, elevadores, roscas transportadoras e transportadores de arraste, entre outros...

1.1 Características técnicas:

- Leituras velocidade de 0-100 rpm;
- Possui protocolo de comunicação aberto RS485 ou Ethernet TCP/IP;
- Grau de Proteção IP65 (a prova de poeira e protegido contra jatos de água);
- Fornece informações sobre a velocidade ou rotação do eixo;
- Principais aplicações: transportadores, elevadores, misturadores, ventiladores, bombas, trituradores e outros;

3. Diagrama PCB I/O CTI008 Rer. 1.6

Diagrama de montagem dos componentes da PCB I/O revisão 1.6

Figura 1: Vista superior e inferior PCB I/O Ver. 1.6

Figura 2: Diagrama simplificado PCB I/O Ver. 1.6

Figura 3: diagrama simplificado PCB I/O Ver. 1.6

2.1 Principais componentes PCB I/O CTI008 Rer. 1.6

Os conectores identificados na PCB são os bornes modelo 2EDGVC e 2EDGVC com seus respectivos conectores.

Figura 4: Detalhe conectores PCB I/O Ver. 1.6

Figura 5: Conectores PCB

Os componentes identificados na PCB são os acopladores ópticos 4N25

Figura 6: Detalhe componente 4N25 PCB I/O Ver. 1.6

Os componentes identificados na PCB com a seta verde são a matriz de jumpers, a seta azul é o cristal de 16 MHz, a seta vermelha são os resistores de 10k, a seta cinza são barras de Pinos Fêmea para conectar o modulo de comunicação RS485 e por fim a seta amarela representa o microcontrolador 328p.

Figura 7: Detalhe PCB I/O Ver. 1.6

Os componentes identificados na PCB são os terminais de 3.81mm com camada dupla

Figura 8: Detalhe PCB I/O Ver. 1.6 e detalhe conector entrada sensor

Figura 9: Detalhe PCB I/O Ver. 1.6

Os componentes identificados na PCB com a seta amarela é o diodo 1N4007 componente polarizado atenção ao montar. Componente identificado com a senta azul são os controladores de tensão. Componentes com a senta vermelha são capacitores.

4. Sensor de rotação CTS100 Rer. 1.0

Segue abaixo detalhes de montagem do sensor

Figura 10: Sensor de rotação, pontos de fixação do sensor ao suporte

Figura 11: Sensor de rotação, haste de apoio com fixador magnético

Figura 12: Sensor de rotação, detalhe para rosca no fixador magnético

Figura 13: Sensor de rotação, detalhe para eixo do sensor e fixador magnético

Figura 14: Sensor de rotação, detalhe da fixação do suporte e a fixação do prensa cabo

Figura 15: Sensor de rotação, detalhe para ponto de fixação final

5. Diagrama PCB REDE CTU-ETH Rer. 1.3

Diagrama de montagem dos componentes da PCB rede

Figura 16: Vista superior e inferior PCB REDE Ver. 1.3

Figura 17: Vista superior e inferior PCB REDE Ver. 1.3 (versão para testes)

Figura 18: Diagrama simplificado PCB REDE Ver. 1.3

6. Diagrama de instalação do conjunto placa I/O fonte de alimentação e placa de rede.

Figura 19: Diagrama de conexão rede R\$485

Figura 20: Diagrama de conexão endereçamento das placas I/O

Figura 21: Diagrama de conexão endereçamento das placas I/O

Figura 22: Diagrama de conexão alimentação das placas

Figura 23: diagrama de conexão sensores de rotação

Figura 24: Exemplo de conexão sensores de rotação endereço A

Figura 25: Diagrama de resposta sinais do sensor de rotação

Existe uma defasagem entre os sinais das fases A e B. Para conectar o sinal da fase "A", (fio preto). Para conectar o sinal da fase "B", (fio branco). A fase Z não foi utilizada no projeto.