Predicting Telecom Churn

By: Vandana Jain

Database Used: TELECOM CHURN DATABASE

	customerID	gender	SeniorCitizen	Partner	Dependents	tenure	PhoneService	MultipleLines	InternetService	OnlineSecurity	 DeviceProtection
0	7590- VHVEG	Female	0	Yes	No	1	No	No phone service	DSL	No	 No
1	5575- GNVDE	Male	0	No	No	34	Yes	No	DSL	Yes	 Yes
2	3668- QPYBK	Male	0	No	No	2	Yes	No	DSL	Yes	 No
3	7795- CFOCW	Male	0	No	No	45	No	No phone service	DSL	Yes	 Yes
4	9237- HQITU	Female	0	No	No	2	Yes	No	Fiber optic	No	 No

Data Exploration:

Shape (7043,21)

No of Columns: 21

No of rows : 7043

Data Cleaning:

dataset.isnull().sum()

customerID 0 gender 0

OnlineSecurity 0 SeniorCitizen 0

Partner 0

Dependents 0

OnlineBackup 0

DeviceProtection 0

Data which i took was clean.

Converting some categorical columns to numeric values using label encoder

```
# Import label encoder
from sklearn import preprocessing
label encoder = preprocessing.LabelEncoder()
dataset['MultipleLines'] = label encoder.fit transform(dataset['MultipleLines'])
dataset['MultipleLines'].unique()
dataset['InternetService'] = label encoder.fit transform(dataset['InternetService'])
dataset['InternetService'].unique()
dataset['gender']= label encoder.fit transform(dataset['gender'])
dataset['gender'].unique()
dataset['Partner']= label encoder.fit transform(dataset['Partner'])
dataset['Partner'].unique()
dataset['Dependents'] = label encoder.fit transform(dataset['Dependents'])
dataset['Dependents'].unique()
dataset['StreamingMovies'] = label encoder.fit transform(dataset['StreamingMovies'])
dataset['StreamingMovies'].unique()
dataset['Churn']= label encoder.fit transform(dataset['Churn'])
dataset['Churn'].unique()
```

Model Creation:

Data Split:

Train data: 75%

Test data: 25%

Finding best hyper parameter value using grid_search_KNN.best_params_ For both KNN & Random forest:

KNN

- 0.7614507181560162 {'n_neighbors': 3}
- 0.7731879461598005 {'n_neighbors': 5}
- 0.7868196510994524 {'n_neighbors': 10}
- 0.7875774060376709 {'n_neighbors': 15}

Winner = {'n_neighbors': 15}

Random Forest

- 0.7593666681001119 {'n_estimators': 4}
- 0.7516029500301025 {'n_estimators': 5}
- 0.7544451133855107 {'n_estimators': 10}
- 0.7567174822969525 {'n_estimators': 20}
- 0.7563383360568791 {'n_estimators': 50}

Winner = {'n_estimators': 4}

Model Evaluation:

Bar Graph between the accuracy of algorithms When took 7 column values :

Winner here is:

KNN

Bar Graph between the accuracy of algorithms When took 2 column values :

Winner here is : Decision Tree

Note: Many features have a strong correlation with the 'Churn' variable. For example, the customers that have a 'Month to Month' contract are more likely to churn as it gives customers a lot of flexibility and allows them to leave the given operator at any time.

So I decided to take "monthly charges "column & "Tenure "column to see some improvement in accuracy of the model & I found the improvement but surprisingly very little.

Comparison of algorithms:

Algorithms	Accuracy When Column taken=7	Accuracy When Column taken=2			
KNN	0.7677455990914254 (winner)	0.7626348665530949			
Random Forest	0.7410562180579217	0.7632027257240205			
SVM	0.7490062464508802	0.7370812038614424			
Decision Tree	0.7365133446905168	0.7660420215786485			
Naive Bayes	0.7626348665530949	0.7444633730834753			

Thank You