Interpretability, Explainability, and Fairness in Machine Learning Models

Gonzalo Rivero

September, 24 2020

Goals for today

- Discuss general concepts with Rudin (2019) as starting point
- Explore two/two-and-a-half core ideas:
 - 1. Interpretability
 - 2. Explainability
 - 3. Fairness (+ causality!)
- Question: Should we use ML for high-stakes decisions?
- Follow-up: How to make sure it is not doing a bad thing?
- ▶ Goal is to raise awareness of this literature.
- No technical details or how-to.

Context

► Two standard types of cases have brought back the literature:

COMPAS:

- ► A "decision support tool" used to predict recidivism.
- Scores can be considered by judges during sentences.
- Proprietary software which cannot be examined by the public.
- Evaluation by ProPublica showed that it depended on race.
- "Blacks are almost twice as likely to be labelled as higher risk"

2. Algorithmic hiring:

- ML models through all the pipeline
 - Who sees the ads
 - Expected performance of the applicant
 - Which applicants will receive more screening
 - Forecast salary
- Evidence of reproduction of human biases
- "Right to explanation" in the GDPR

Interpretability vs. explainability

- ► The tentative definitions are:
 - ► "High stakes" → "Impact on society"
 - The bad thing" → "automation of discrimination"
- ▶ Problem is that models are "black boxes"
- This suggests two/three approaches:
 - 1. Simplify (constraint) the model to make it easier to interpret
 - 2. Build tools to make a complicated models easier to explain
 - 3. (Maybe) develop criteria to assess the model predictions
- ▶ Rudin (2019) suggests that 1. is strictly superior and feasible

Why explainability

- We want intepretability because it:
 - 1. Engenders trust
 - 2. May uncover causal relations
 - 3. It addresses the right to explanation
- An interpretable model is
 - 1. Open (as opposed to proprietary)
 - 2. Intelligible
- Not what ML optimizes for!
 - ▶ Performance metrics do not sufficiently characterize the model
- ► Alternative is to do post-hoc interpretation

Why not explainability?

- 1. There is no trade-off between accuracy and interpretability
 - ► At least not with structured data and meaningful features
 - Lasso performs as well as RF/GBM in many domains
 - Interpretability allows us to improve feature construction
- 2. Explanations are not faithful to the model
 - By construction (otherwise, the explanation is the model)
 - ▶ No guarantee that the explanation is correct
 - Should we trust the explanation or the model?
 - ▶ Does COMPAS really base the predictions on race?
- 3. Ripe for procedural error
 - Models are hard to troubleshoot

Why not interpretable models?

- ▶ Why haven't we seen more interpretable models?
- 1. Companies cannot benefit from them
 - ► Transparency is a property of them *and the ownership*
 - Disconnect between profits and responsibility for predictions
- 2. Interpretable models are harder
 - Unlike off-the-shelf ML approach
 - May require domain expertise
- 3. Black box lead to discovery
 - Reverse direction from data to theory

Why are interpretable models harder?

- We associate interpretability with
 - 1. Linear models
 - Weighted combinations are nice
 - ► Integer combinations are even nicer
 - Very easy as scoring
 - NP-complete
 - 2. If-then rules
 - Current trees use greedy heuristics
 - We would like globally optimal trees
 - ► That also minimize complexity (f.i. leaves)
 - NP-complete
 - 3. Case-based reasoning
 - Interpretability is domain specific
 - Not clear what it means in general
 - We may have different heuristics for different problems
 - Interpretability is like performance

But what is interpretability?

- We could have several goals all of them challenging.
 - ▶ Trust. We want models that we can trust. But is that...
 - ... confidence in performance? How often is right
 - ... willingness to relinquish control? When is it right
 - Causality. We want relations to have causal meaning
 - Impossible without a theoretical model
 - ► Transferability. Models should not depend on the environment
 - Possibility of gaming
 - Limited generalizability beyond train distribution
 - Informativeness
 - Provide insights to decision makers
 - Learn the structure of the data
 - Isn't a explainable model better?
 - Fair and ethical decision making
 - Not the metric we use

Is interpretability undesirable?

- ▶ Let's consider the properties of interpretable models
 - Simulatability
 - ► The model can be contemplated at once (i.e., simplicity)
 - "Lasso is more interpretable than an NN"
 - ▶ Is that about model size or computation for inference?
 - ► A subjective statement about limits of cognition
 - ▶ How many dimensions before a tree is not interpretable?
 - Decomposability
 - Input, parameters and calculations are interpretable
 - ▶ Manual feature is more interpretable than automatic ones
 - ▶ But they are much less robust
 - Transparency
 - Are models less transparent than humans?
 - Any model is replicable
- Interpretability is a subjective goal

Fairness

Fairness in Machine Learning

- Ignore the model, think about the predictions
 - ► The predictions should be "fair"
 - Standard question since the 1960s in education research
- ▶ Related to the notion of non-discrimination
 - Procedural fairness
 - Outcome equalization
 - ► These two principles may enter in conflict
 - See Ricci vs. DeStefano
- "No fairness through unawareness"
 - Removing the protected attribute is not enough
 - Formal vs. intentional disparate treatment
 - Ignore biases in data vs. Induce biases in data

Advantages of fairness as a concept

- Suitable for a operational definition
 - Covariates/features
 - A protected attribute
 - A decision rule
- ► Suitable for guiding model corrections
 - In pre-processing (uncorrelate feature space)
 - ► In training (customize loss function)
 - In post-processing (adjust the predictions)

But what is fairness?

Standard formal criteria (attribute A, score R, target Y)

- ▶ Independence: $R \perp A$
 - Acceptance rate should be equal across groups
 - Condition can be met without fairness
 - Accept at same rate but use different procedures
 - Easy to satisfy and verify
- ▶ Separation: $R \perp A | Y$
 - Correlation between R and A is justified by Y
 - Equalization of FPR and FNR across groups
 - FPR = $Pr\{R = 1 | Y = 1\}$; FNR = $Pr\{R = 1 | Y = 0\}$
 - You can choose which one to relax
 - Dealt with in ROC
- ▶ Sufficiency: $Y \perp A \mid R$
 - Parity of positive/negative predicted values
 - ► The score is calibrated by group
 - Usually does not require intervention

Challenges

- Impossibility theorems
 - No two criteria can be simultaneously satisfied
 - COMPAS debate between Northpointe and ProPublica
 - ► ProPublica: COMPAS violates separation
 - Northpointe: COMPAS satisfies sufficiency
 - Guidance cannot come only from data
- Observability and inference
 - All the criteria are observational (no what-if)
 - Depends on a causal graph
 - Can build identical joint distributions with different fairness
 - Observational definition cannot distinguish them
 - Answers cannot depend only on observational data

Conclusions

Conclusions

- "New" fields that have grown considerably
 - Complicated to navigate
 - Sometimes very technical and inaccessible
 - Disparate languages across fields
- Many new available tools
 - Will discuss some in the third session
- Clear business impact
 - Increasing application of ML for social outcomes
 - Performing ML or auditing ML
 - Leverage the company's SME
- More practical motivation
 - What is your model capturing?
 - Does it do what you think it does?
 - Intepretation/explanation matters for validity

References

- Rudin, C. (2019). Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nature Machine Intelligence, 1(5), 206-215.
- Dwork, C., Hardt, M., Pitassi, T., Reingold, O., & Zemel, R. (2012, January). Fairness through awareness. In Proceedings of the 3rd Innovations in Theoretical Computer Science Conference (pp. 214-226).
- Chouldechova, A. (2017). Fair prediction with disparate impact: A study of bias in recidivism prediction instruments. Big data, 5(2), 153-163.
- ▶ Lipton, Z. C. (2018). The mythos of model interpretability. Queue, 16(3), 31-57.
- ▶ Kleinberg, J., Mullainathan, S., & Raghavan, M. (2016). Inherent trade-offs in the fair determination of risk scores. arXiv preprint arXiv:1609.05807.