

Hydrogenation of Nd-Fe-B magnet powder under a high pressure of hydrogen

Y. Kataoka¹, Y. Kawamoto¹, T. Ono², M. Tsubota², J. Kitagawa¹

¹ Department of Electrical Engineering, Faculty of Engineering, Fukuoka Institute of Technology, 3-30-1 Wajiro-higashi, Higashi-ku, Fukuoka 811-0295, Japan

² Physonit Inc., 6-10 Minami-Horikawa, Kaita Aki, Hiroshima 736-0044, Japan

Abstract

The hydrogenation of $\text{Nd}_2\text{Fe}_{14}\text{B}$ under a high pressure of hydrogen has been investigated for the first time. At the heat-treatment temperature of 600°C, the almost complete decomposition of $\text{Nd}_2\text{Fe}_{14}\text{B}$ into NdH_{2+x} and $\alpha\text{-Fe}$ is observed, although a rather long heat-treatment time is necessary to achieve the sufficient hydrogenation. The desorption of hydrogen from NdH_{2+x} does not occur in the furnace-cooling process.

Keywords: hydrogenation, Nd-Fe-B magnet, HDDR process

Email address: j-kitagawa@fit.ac.jp (J. Kitagawa¹)

1. Introduction

Toward the improved magnetic-properties of the Nd-Fe-B permanent magnet, one of important technologies is the hydrogenation of $\text{Nd}_2\text{Fe}_{14}\text{B}$, which is employed in the so-called HDDR (hydrogenation, disproportionation, desorption, recombination) process[1]. The HDDR-processed magnet possesses a submicron grain-size, contributing a higher coercivity. H_2 atmosphere with rather low pressure (~ 1 atm) is introduced in the hydrogenation process. After the heat-treatment at $750 \sim 900$ °C for 30 min ~ 3 h, the magnet disproportionates into Nd hydride (NdH_{2+x}), α -Fe and Fe_2B .

Several groups have reported the reactive milling of Nd-Fe-B powder under hydrogen at room temperature[2, 3, 4]. The mechanical activation of Nd-Fe-B powder leads to the decomposion into NdH_{2+x} and α -Fe, although we need high pressure of H_2 gas (~ 1 MPa). These studies motivated us to investigate the conventional hydrogenation of Nd-Fe-B under a high pressure of H_2 gas, which has not been reported. In this study, we have studied the hydrogenation of Nd-Fe-B under a high pressure of hydrogen.

2. Experimental method

We used a commercial Nd-Fe-B magnet. The ground magnet powder, after demagnetization, weighting approximately 0.45 g were placed in a home-made cell with the volume of about 7.5 cc. After evacuating the cell, we introduced H_2 gas of 0.45 MPa. The cell was heated to the temperature ranging from 500 °C to 600°C, taking 2 h, by an electric furnace, and kept at that temperature for 6 to 84 h, followed by a furnace-cooling. The heat-treated samples were evaluated using the powder X-ray diffraction (XRD)

pattern (Cu-K α radiation). We also hydrogenated Nd-Fe-B powder in a continuous H₂ gas flow at 600°C for 12 h, in which the heating and cooling rates are the same as those in the above-mentioned hydrogenation process.

3. Results and discussion

Figure 1: XRD patterns of samples after heat-treatment at 500 or 550°C . The XRD pattern of Nd-Fe-B ingot is also shown.

The XRD patterns of samples heat-treated at 500°C for 12 and 24 h are shown in Fig. 1, where the pattern of Nd-Fe-B ingot is also exhibited. The pattern of Nd-Fe-B ingot is mainly composed of Nd₂Fe₁₄B in addition to the minor phase of NdFe₄B₄. The peaks of Nd₂Fe₁₄B in the samples heat-treated at 500°C are shifted to lower 2 θ values compared to those of the

starting ingot. This implies the lattice expansion of $\text{Nd}_2\text{Fe}_{14}\text{B}$ due to the insertion of hydrogen[5]. The decomposition of $\text{Nd}_2\text{Fe}_{14}\text{B}$ does not occur because of no appearance of α -Fe, which is confirmed by further extending the heat-treatment time to 84 h. The NdH_{2+x} phase denoted by triangles would be generated from a Nd-rich phase[6].

Figure 2: XRD patterns of samples after heat-treatment at 575°C .

Fig. 1 also shows the XRD patterns of samples heat-treated at 550°C for 12 and 36 h. The shift of peaks of $\text{Nd}_2\text{Fe}_{14}\text{B}$ does not occur in each sample, indicating no insertion of hydrogen in $\text{Nd}_2\text{Fe}_{14}\text{B}$. Although $\text{Nd}_2\text{Fe}_{14}\text{B}$ is not completely decomposed, the simultaneous appearance of NdH_{2+x} and α -Fe means the partial hydrogenation of $\text{Nd}_2\text{Fe}_{14}\text{B}$.

As shown in Fig. 2, the hydrogenation of $\text{Nd}_2\text{Fe}_{14}\text{B}$ proceeds by increasing the heat-treatment temperature to 575°C. The peaks of NdH_{2+x} and α -Fe phases dominate over those of unreacted $\text{Nd}_2\text{Fe}_{14}\text{B}$ and NdFe_4B_4 , which is observed throughout the heat-treatment time of interest.

Figure 3: XRD patterns of samples after heat-treatment at 600°C .

At the heat-treatment temperature of 600°C for longer than 12 h, the almost complete decomposition of $\text{Nd}_2\text{Fe}_{14}\text{B}$ is observed (see Fig. 3). We cannot say whether the Fe_2B phase, which is detected after the disproportionation in the HDDR process, exists or not. To investigate the effect of high-pressure H_2 gas, we have carried out the hydrogenation of Nd-Fe-B in a continuous H_2 gas flow. The XRD pattern of the sample is shown at the

top of Fig. 3. We have found that, even at the heat-treatment temperature lower than that in typical HDDR process, the complete decomposition of $\text{Nd}_2\text{Fe}_{14}\text{B}$ into NdH_{2+x} and α -Fe can be achieved for the prolonged heat-treatment time. However the peak intensity of NdH_{2+x} is very weak compared to that in samples hydrogenated under high H_2 -pressure. In addition, Nd_2O_3 phase is detected (see arrows in Fig. 3). During the furnace-cooling, some hydrogen might desorb from NdH_{2+x} transforming into Nd_2O_3 . On the other hand, the samples hydrogenated under high H_2 -pressure do not show the desorption of hydrogen after the furnace-cooling.

4. Summary

We have investigated the hydrogenation of Nd-Fe-B powder under the high pressure of hydrogen. The hydrogenation of $\text{Nd}_2\text{Fe}_{14}\text{B}$ proceeds almost completely at the heat-treatment temperature of 600°C, although the prolonged heat-treatment time is necessary for the sufficient decomposition of $\text{Nd}_2\text{Fe}_{14}\text{B}$.

References

- [1] R. Nakayama, T. Takeshita, M. Itakura, N. Kuwano, and K. Oki: J. Appl. Phys. **70** (1991) 3770.
- [2] G. Khélifati, J. M. Le Breton, L. Aymard, and J. Teillet: J. Magn. Magn. Mater. **218** (2000) 42.
- [3] S. Gang, Hu. Lianxi, and W. Erde: J. Magn. Magn. Mater. **301** (2006) 319.

- [4] H. Lianxi, L. Yuping, Y. Yuan, and S. Gang: *J. Mater. Res.* **23** (2008) 427.
- [5] O. Isnard, W. B. Yelon, S. Miraglia, and D. Fruchart: *J. Appl. Phys.* **78** (1995) 1892.
- [6] C. E. Rogríguez Torres, F. D. Saccone, and F. H. Sánchez: *Materials Science and Engineering A* **292** (2000) 104.