Universidad de la República - Facultad de Ingeniería - IMERL: Matemática Discreta 2, semipresencial

Primer parcial - 30 de setiembre de 2015. Duración: 3 horas

N° de parcial	Cédula	Apellido y nombre

Ejercicio 1.

- a. Enunciar el Teorema de Euler.
- b. Calcular las siguientes potencias.
 - i) 3^{100} (mód 104).
 - ii) 10^{97} (mód 101).
 - iii) 6^{66} (mód 99).

Aclaración: cuando pedimos calcular $a^m \pmod n$, nos referimos a hallar $x \in \mathbb{N}$, con $0 \le x < n$ tal que $a^m \equiv x \pmod n$

Ejercicio 2.

a. Sean a, b y c enteros no nulos tales que $mcd(a, b) \mid c$. Consideramos la ecuación diofántica

$$ax + by = c$$

y (x_0, y_0) una solución particular de la misma.

i) Probar que para todo $k \in \mathbb{Z}$ el par

$$\left(x_0 + k \frac{b}{\operatorname{mcd}(a, b)}, y_0 - k \frac{a}{\operatorname{mcd}(a, b)}\right)$$

también es solución de la ecuación.

ii) Probar que todas las soluciones de la ecuación son de la forma

$$\left(x_0 + k \frac{b}{\operatorname{mcd}(a, b)}, y_0 - k \frac{a}{\operatorname{mcd}(a, b)}\right).$$

Es decir, probar que si (x_1, y_1) es solución de la ecuación, entonces existe $k \in \mathbb{Z}$ tal que

$$(x_1, y_1) = \left(x_0 + k \frac{b}{\text{mcd}(a, b)}, y_0 - k \frac{a}{\text{mcd}(a, b)}\right).$$

- **b.** i) Hallar todas las soluciones módulo 41 de la ecuación $4x \equiv 7 \pmod{41}$.
 - ii) Hallar todas las soluciones módulo 80 de la ecuación $25x \equiv 10 \pmod{80}$.

Ejercicio 3. Para cada uno de los siguientes sistemas, investigar si tiene solución, y en caso que tenga solución, hallar todas todas sus soluciones.

a.
$$\begin{cases} x \equiv 7 \pmod{11} \\ x \equiv 13 \pmod{20} \\ x \equiv 14 \pmod{21} \end{cases}$$
b.
$$\begin{cases} x \equiv 7 \pmod{22} \\ x \equiv 21 \pmod{28} \\ x \equiv 23 \pmod{30} \end{cases}$$