WTF is an Arduino?

George Brindeiro

NÃO LEMBRO DE MAIS NADA DA SEMANA PASSADA...

ENTRADA
E SAÍDA
DE VEÍCULOS

Circuitos básicos: LED e Resistor

Botão "Pushbutton"

- Pares de pinos conectados (lados opostos)
- Normalmente aberto
- Apertar botão fecha circuito (conecta pinos eletricamente)

Truque: Pull-up ou Pull-down

Programando: Entrada/Saída Digital

Funções

pinMode(pin, mode)

digitalWrite(pin, level)

digitalRead(pin)

Argumentos

pin: 0-13 (analog: A0-A7)

mode:

- INPUT para digitalRead
- INPUT_PULLUP para digitalRead com pull-up interno (> Arduino 1.0.5)
- OUTPUT para digitalWrite

level: HIGH (5V) ou LOW (GND)

Variáveis

- Às vezes você quer guardar um dado: número, texto, etc.
- Variáveis são "caixinhas" pra fazer isso

- char
- byte
- <u>int</u>
- unsigned int
- long
- unsigned long
- float
- double

IF CONDIÇÃO

IF/ELSE

SWITCH/CASE

OPERADORES

ARDUINO REFERENCE

http://arduino.cc/en/Reference/HomePage

Atualizando o sketchbook

- Arquivos do curso:
 https://github.com/georgebrindeiro/wtf-is-an-arduino
- Download ZIP e extrair em seguida
- File -> Preferences -> Sketchbook location
- Colocar a pasta extraída wtf-is-an-arduino/sketchbook

3

Entrada e Saída Analógica: Superando a dicotomia HIGH/LOW

Vamos montar!

- 6 resistores 330R
- 6 LEDs
- 2 botões
- 1 potenciômetro
- Fios jumper
- Protoboard
- Arduino

Lesson3_1_AnalogInput

- Dêem upload no código e observem o comportamento
- Passo-a-passo do código: analogRead
- Modificação para olhar valores lidos na serial:
 - Adicionar no setup(): Serial.begin(9600);
 - Adicionar no loop(): Serial.println(sensorValue);
- Abram o Serial Monitor (lupa no canto superior direito)

Potenciômetro

- Resistor ajustável
- Kit: 2 × 100 kΩ

Símbolo em esquemas:

Fonte:

Potenciômetro: como usar

- Ligar pinos laterais na alimentação
- Ligar pino central
 V_{out} em um pino
 de entrada
 analógico

Fonte:

Divisor de tensão

OPEN CIRCUIT BEHAVIOR

BEHAVIOR UNDER LOAD

$$V_{out} = V_1 \frac{IR_2}{I(R_1 + R_2)} = \frac{V_1 R_2}{(R_1 + R_2)} \qquad \text{OUTPUT VOLTAGE UND "NO LOAD" CONDITION (open circuit)}$$

OUTPUT VOLTAGE UNDER

$$V_{out} = V_1 \frac{IR_2}{I(R_1 + R_2)} = \frac{V_1(R_2 \parallel R_L)}{(R_1 + R_2 \parallel R_L)}$$

Divisor de tensão

UNDER LOAD

Resistores em Paralelo

PARALELO = DIVIDE CORRENTE, MESMA TENSÃO

Resistores em Série

$$\begin{array}{c} \text{S\'erie} \\ R_{eq} = R_a + R_b \end{array}$$

SÉRIE = DIVIDE TENSÃO, MESMA CORRENTE

Divisor de tensão: Potenciômetro

Using a potentiometer as a variable voltage divider

ADC: Conversor Digital-Analógico

- VREF: máximo do ADC
- Resolução: tamanho da variável inteira (digital) usada pra representar sinal (analógico)
- # de Canais: quanto sinais dá pra ler com o mesmo circuito ADC

Lesson3_2_AnalogInOutSerial

- Dêem upload no código e observem o comportamento
- Passo-a-passo do código: analogWrite, map, const
- Abram o Serial Monitor e vejam o map funcionar!

PWM: Modulação por Largura de Pulso

Pulse Width Modulation Duty Cycles

- Contador de 8 bits: ciclos de 0 -> 255
- Circuitos "lentos": só respondem ao valor médio!
- Outros casos pedem um capacitor... mas não vem ao caso

Lesson3_3_PotBar

- Dêem upload no código e observem o comportamento
- Passo-a-passo do código: map em outro contexto, switch/case
- Funcionou como esperado? Se não, o que faltou?
- Mais um comando: break

Lesson3_4_PotLoopBar

- Dêem upload no código e observem o comportamento
- 0 que mudou pro exemplo anterior?
- Passo-a-passo do código: vetor, while, for

Vetores

- Às vezes você quer guardar vários dados de forma fácil...
- Vetores permitem você fazer isso, acessando com índices
- Tamanho fixo, determinado quando você declara!

while

Enquanto condição for verdadeira, executa bloco de código

```
int sensorValue = 0;
while(sensorValue < 300)
{
    // código que vai ser executado se sensorValue < 300
    sensorValue = analogRead(A0);
}</pre>
```

do/while

 Igual ao while, só que testa condição no final. Ou seja: executa pelo menos uma vez, independente da condição.

```
int sensorValue;
do
{
    sensorValue = analogRead(A0);
} while(sensorValue > 300);
```

for

 Executa initialização e então repete bloco de código enquanto condição for verdadeira. Antes de testar a condição, executa a expressão de fim de ciclo (e.g. incremento/decremento)

```
for(int i = 0; i < 6; i++)
{
    // Imprime 0, 1, 2, 3, 4, 5 na porta serial
    Serial.println(i);
}</pre>
```

break

- Sai imediatamente do laço de repetição mais interno
- Sai imediatamente do switch/case

```
while(true)
{
    if(digitalRead(3))
        break;
}
```

continue

 Pula direto para a próxima execução do for, sem terminar o restante do bloco de código

```
for(int i = 0; i < 6; i++)
    Serial.println(i);
    if(i > 2) // Imprime 0, !, 1, !, 2, 3, 4, 5 na porta serial
        continue:
    Serial.println("!");
```

Lesson3_5_Fading

- Dêem upload no código e observem o comportamento
- Passo-a-passo do código
- Como fazer ficar mais rápido/devagar?

Desafios

- Lesson2_5_UpDownBar + Lesson_3_2_AnalogInOutSerial
 - Quero que o potenciômetro mude o brilho dos LEDs
 - E os botões digam quantos estão ligados/desligados!
- Árvore de natal
 - Quero três padrões diferentes de pisca
 - O potenciômetro deve mudar a velocidade de todos padrões
 - Os botões devem permitir escolher qual padrão é executado

Entradas

Botões: pinos A1 e A2

Potenciômetro: pino A0

Saídas

LEDs: pinos 11, 10, 9, 6, 5, 3