

An ensemble penalized regression method for multi-ancestry polygenic risk prediction

Jingning Zhang*, Jianan Zhan, Jin Jin, Cheng Ma, Ruzhang Zhao, Jared O' Connell,

Yunxuan Jiang, 23andMe Research Team, Bertram L. Koelsch, Haoyu Zhang, Nilanjan Chatterjee*

*Correspondence to: Jingning Zhang (jzhan218@jhu.edu) and Nilanjan Chatterjee (nilanjan@jhu.edu)

Penalized regression for PRS construction

- ▶ We propose to solve the PRS coefficients in a penalized regression
- \triangleright If we have individual-level data, estimate of β can be obtained by minimizing

$$\frac{1}{N}\|\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta}\|^2 + \text{penalty}(\boldsymbol{\beta})$$

- ► However, we usually don't have individual-level data
 - ▶ By approximating X^TX by LD, D, in a separate reference data, and X^Ty by summary statistics, $\widehat{\beta}$, it is equivalent to minimizing

$$\boldsymbol{\beta}^T \mathbf{D} \boldsymbol{\beta} - 2 \boldsymbol{\beta}^T \widehat{\boldsymbol{\beta}} + \text{penalty}(\boldsymbol{\beta})$$

Polygenic Risk scOres based on enSemble of PEnalized Regression models (PROSPER)

Solution of PRS coefficient for K populations, β_i , i = 1, ..., K, can be obtained using coordinate decent algorithm by minimizing

$$\sum_{i=1}^{K} \boldsymbol{\beta}_{i}^{T} \boldsymbol{D}_{i} \boldsymbol{\beta}_{i} - 2 \boldsymbol{\beta}_{i}^{T} \widehat{\boldsymbol{\beta}}_{i} + \sum_{\substack{i=1 \\ \text{Tuning parameter}}}^{K} \lambda_{i} |\boldsymbol{\beta}_{i}| + \sum_{\substack{1 \leq i_{1} < i_{2} \leq K \\ \text{for sparsity}}}^{K} c_{i_{1}i_{2}} (\boldsymbol{\beta}_{i_{1}} - \boldsymbol{\beta}_{i_{2}})$$

Tuning parameter

- $\qquad \qquad c_{i_1 i_2}, \, i_1 < i_2 = 1, \dots, K$

How to reduce the number of grid search when *K* is large?

- Let $\lambda_i = \lambda \lambda_{i_0}$ where λ_{i_0} is the value used in lassosum (single-ancestry)
- $\blacktriangleright \quad \text{Let } c_{i_1 i_2} = c$

Super learning

- Weighted combine PRS generated from all tuning parameter settings for all ancestries
- # PRS combined

 $(\# candidate \ values)^{(\# tuning \ parameters)} \times (\# \ ancestries)$

E.g. 5-ancestry analysis

- \triangleright 2 tuning parameters: λ and c; 5 candidate values each
- \blacktriangleright # PRS combined by super learning: $5^2 \times 5 = 125$

Flowchart

Objective function to minimize with respect to β_i , i = 1,...,M $\left| \sum_{1 \le i \le M} \boldsymbol{\beta}_i^T (\boldsymbol{R}_i + \underline{\boldsymbol{\delta}_i^0} \boldsymbol{I}) \boldsymbol{\beta}_i - 2 \boldsymbol{\beta}_i^T \boldsymbol{r}_i + 2 \underline{\boldsymbol{\lambda}_i^0} \| \boldsymbol{\beta}_i \|_1^1 + \sum_{1 \le i, \le i, \le M} c \| \boldsymbol{\beta}_{i_1}^{s_{i_1 i_2}} - \boldsymbol{\beta}_{i_2}^{s_{i_1 i_2}} \|_2^2 \right|$ Step 1: Separate single-ancestry analysis for all populations where λ and c are tuning parameters **GWAS** summary Train lassosum2 Tune the Underlying values of optimal Train penalized regression models using parameters in statistics from models using training GWAS tuning parameters, $(\delta_1^0, \lambda_1^0)$ training GWAS tuning data population 1 Get solution $[\beta_{\lambda c,i}]$ for each λ and c varying Objective function to from their parameter paths, and i = 1,...,Mminimize with respect to β Underlying values of optimal **GWAS** summary $\boldsymbol{\beta}^T (\boldsymbol{R} + \delta \boldsymbol{I}) \boldsymbol{\beta} - 2 \boldsymbol{\beta}^T \boldsymbol{r} + 2 \lambda \|\boldsymbol{\beta}\|_1^1$ tuning parameters, $(\delta_i^0, \lambda_i^0)$ statistics from where λ and δ are tuning Step 3: Ensemble regression population i parameters Train ensemble Underlying values of optimal Train the super learning model on regression **GWAS** summary tuning parameters, $(\delta_M^0, \lambda_M^0)$ model using samples in tuning dataset to combine all Final PROSPER model: tuning data statistics from PRSs computed from the solutions in the population M previous step, $PRS_{\lambda,c,i} = X\beta_{\lambda,c,i}$, and obtain the weights in the super learning model, $W_{\lambda,c,i}$

Step 2: Joint analysis across populations using penalized regression

Results on data from All of US (AoU)

Results on data from Global Lipids Genetics Consortium (GLGC)

Results on data from 23andMe Inc. (23andMe) continuous traits

Results on data from 23andMe Inc. (23andMe) binary traits

- Averaged sample size
 - \triangleright EUR (N = 2370K)
 - \blacktriangleright African American (N = 109K)
 - ▶ Latino (N = 401K)
 - ► East Asian (N = 86K)
 - South Asian (N = 24K)
- Improvement of PROSPER over alternative methods (average across traits and ancestries) in logit-scale variance
 - ► 12.3% over PRS-CSx
 - 7.8% over CT-SLEB

Computational and memory usage

► Chromosome 22

two ancestries: AFR, and EUR

five ancestries: AFR, AMR, EAS, EUR, and SAS

Computational time and memory usage

Method	Computational time (minutes)	Memory (Gb)
PROSPER (two ancestries)	3.0	2.24
PROSPER (five ancestries)	6.8	2.35
PRS-CSx (two ancestries)	111.1	0.78
PRS-CSx (five ancestries)	595.8	0.84

Conclusion

- PROSPER has substantial improvement over alternative methods and can deal with traits with a variety of genetic architectures
- ▶ PROSPER is not only more powerful for complex traits with high polygenicity, but also robust to biomarker traits with large-effect loci. In addition, PROSPER developed based on penalized regression is an order of magnitude faster compared to alternative Bayesian methods.