

Probability and Statistics

Lecture: Conditional probability

Alice and Bob toss two fair coins separately. Denote the event that Alice gets a H by E_A and the event that Bob gets a H by E_B .

We know that $P(E_A) = P(E_B) = 1/2$.

Example

Alice and Bob toss two fair coins separately. Denote the event that Alice gets a H by E_A and the event that Bob gets a H by E_B .

- $P(E_A \cup E_B) = P(E_A) + P(E_B) = 1.$
- > Soits certain that at least one of them will get a head.

Alice and Bob toss two fair coins separately. Denote the event that Alice gets a H by E_A and the event that Bob gets a H by E_B .

- $P(E_A \cup E_B) = P(E_A) + P(E_B) = 1.$
- > Soits certain that at least one of them will get a head.
- What's wrong with this argument?

Alice and Bob toss two fair coins separately. Denote the event that Alice gets a H by E_A and the event that Bob gets a H by E_B .

- $P(E_A \cup E_B) = P(E_A) + P(E_B) = 1$. So its certain that at least one of them will get a head.
- What's wrong with this argument?
- ➤ But both could get tails!

Alice and Bob toss two fair coins separately. Denote the event that Alice gets a H by E_A and the event that Bob gets a H by E_B .

- \triangleright $P(E_A \cup E_B) = P(E_A) + P(E_B) = 1$. So its certain that at least one of them will get a head.
- ➤ What's wrong with this argument?
- But both could get tails!
- \triangleright Are E_A and E_B disjoint?

Alice and Bob toss two fair coins separately. Denote the event that Alice gets a H by E_A and the event that Bob gets a H by E_B .

- $P(E_A \cup E_B) = P(E_A) + P(E_B) = 1$. So its certain that at least one of them will get a head.
- Whats wrong with this argument?
- But both could get tails!
- \triangleright Are E_A and E_B disjoint?
- Not quite.
- \triangleright The sample space you are considering is: HT, TH, TT, HH.

So
$$E_A = \{HT, HH\}$$
 and $E_B = \{TH, HH\}$.

Alice and Bob toss two fair coins separately. Denote the event that Alice gets a H by E_A and the event that Bob gets a H by E_B .

We know that $P(E_A) = P(E_B) = 1/2$.

- $P(E_A \cup E_B) = P(E_A) + P(E_B) = 1$. So its certain that at least one of them will get a head.
- What's wrong with this argument?
- But both could get tails!
- \triangleright Are E_A and E_B disjoint?
- Not quite.
- \triangleright The sample space you are considering is: HT, TH, TT, HH.

So
$$E_A = \{HT, HH\}$$
 and $E_B = \{TH, HH\}$.

So the union is really

$$P(E_A \cup E_B) = P(E_A) + P(E_B) - P(E_A \cap E_B) = 3/4.$$

Alice and Bob toss two fair coins separately. Denote the event that Alice gets a H by E_A and the event that Bob gets a H by E_B .

- $P(E_A \cup E_B) = P(E_A) + P(E_B) = 1$. So its certain that at least one of them will get a head.
- ➤ What's wrong with this argument? But both could get tails!
- Are E_A and E_B disjoint? Not quite. The sample space you are considering is: HT, TH, TT, HH.

So
$$E_A = \{HT, HH\}$$
 and $E_B = \{TH, HH\}$.

- So the union is really $P(E_A \cup E_B) = P(E_A) + P(E_B) P(E_A \cap E_B) = 3/4.$
- May be what you are really thinking about is independent and not disjoint events.

- So far, we have assumed we know nothing about the outcome of our experiment, except for the information encoded in the probability law.
- Sometimes, however, we have **partial information** that may affect the likelihood of a given event.
 - The experiment involves rolling a die. You are told that the number is odd.
 - The experiment involves the weather tomorrow. You know that the weather today is rainy.
 - The experiment involves the presence or absence of a disease. A blood test comes back positive.
- In each case, knowing about some event B (e.g., "it is raining today") changes our beliefs about event A ("Will it rain tomorrow?").
- We want to update our probability law to incorporate this new knowledge.

Original problem:

- ➤ What is the probability of some event *A*.

 e.g. What is the probability that we roll a number less than 4?
- \triangleright In other words, what is P(A)?
- ➤ This is given by our probability law.

Original problem:

- ➤ What is the probability of some event *A*.
 - e.g., What is the probability that we roll a number less than 4?
- \triangleright In other words, what is P(A)?
- This is given by our probability law.

New problem:

- Assuming event B (equivalently given event B), what is the probability of event A?
 - e.g., Given that the number rolled is an odd number, what is the probability that it is less than 4?
- \triangleright We call this the **conditional distribution** of A given B.
- \triangleright We write this as P(A|B)
- ➤ Read | as "given" or "conditioned on the fact that".
- Our conditional probability is still describing "the probability of something", so we expect it to behave like a probability distribution.

- Consider rolling a fair 6-sided die (uniform, discrete probability distribution).
- \triangleright Let A be the event "outcome is equal to 1".
 - \triangleright What is P(A)?
- Let's now assume that the number rolled is an odd number.
 - ➤ What is the set, B, that we are conditioning on?
- \triangleright What do you think P(A|B) should be?

You are conditioning on event B. So your new sample space is $\{1,3,5\}$ instead of $\{1,2,3,4,5,6\}$.

- You are conditioning on event B. So your new sample space is $\{1,3,5\}$ instead of $\{1,2,3,4,5,6\}$.
- Each of these are equally likely. So P(A|B) = 1/3.

- You are conditioning on event B. So your new sample space is $\{1,3,5\}$ instead of $\{1,2,3,4,5,6\}$.
- Fach of these are equally likely. So P(A|B) = 1/3. Formally, if all outcomes are equally likely, we have

$$P(A|B) = \frac{\text{\# elements in } A \cap B}{\text{\# elements in } B}$$

- You are conditioning on event B. So your new sample space is $\{1,3,5\}$ instead of $\{1,2,3,4,5,6\}$.
- Fach of these are equally likely. So P(A|B) = 1/3. Formally, if all outcomes are equally likely, we have

$$P(A|B) = \frac{\text{\# elements in } A \cap B}{\text{\# elements in } B}$$

More generally,
$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$
.

- You are conditioning on event B. So your new sample space is $\{1,3,5\}$ instead of $\{1,2,3,4,5,6\}$.
- Fach of these are equally likely. So P(A|B) = 1/3. Formally, if all outcomes are equally likely, we have

$$P(A|B) = \frac{\text{\# elements in } A \cap B}{\text{\# elements in } B}$$

More generally,
$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$
.

A conditional probability is only defined if P(B) > 0.

- ➤ Nonnegativity Check.
- > Normalization –
- \triangleright Additivity –

- ➤ Nonnegativity Check.
- Normalization Your new universe is now B, and we know that P(B|B) = 1.
- \triangleright Additivity –

- ➤ Nonnegativity Check.
- Normalization Your new universe is now B, and we know that P(B|B) = 1.
- Additivity $P(A_1 \cup A_2|B) = P(A_1|B) + P(A_2|B)$ for two disjoint sets, A_1 and A_2 .

- ➤ Nonnegativity Check.
- ➤ Normalization Your new universe is now B, and we know that P(B|B) = 1.
- Additivity $P(A_1 \cup A_2|B) = P(A_1|B) + P(A_2|B)$ for two disjoint sets, A_1 and A_2 .

Conditioning on B

- Nonnegativity Check.
- Normalization Your new universe is now B, and we know that P(B|B) = 1.
- Additivity $P(A_1 \cup A_2|B) = P(A_1|B) + P(A_2|B)$ for two disjoint sets, A_1 and A_2 .

Conditioning on B

Using additivity, $P((A_1 \cup A_2) \cap B) = P(A_1 \cap B) + P(A_2 \cap B)$, so

$$P(A_1 \cup A_2|B) = \frac{P(A_1 \cap B) + P(A_2 \cap B)}{P(B)} = P(A_1|B) + P(A_2|B)$$

If
$$P(B) > 0$$
,

If A_i for $i \in \{1,...,n\}$ are all pairwise disjoint, then

$$P\bigcup_{i=1}^{n} A_i | B = \sum_{i=1}^{n} P(A_i | B)$$

If
$$P(B) > 0$$
,

If A_i for $i \in \{1,...,n\}$ are all pairwise disjoint, then

$$P\bigcup_{i=1}^{n} A_i | B = \sum_{i=1}^{n} P(A_i | B)$$

If $A_1 \subseteq A_2$, then $P(A_1|B) \le P(A_2|B)$.

If
$$P(B) > 0$$
,

If A_i for $i \in \{1,...,n\}$ are all pairwise disjoint, then

$$P\bigcup_{i=1}^{n} A_i | B = \sum_{i=1}^{n} P(A_i | B)$$

If $A_1 \subseteq A_2$, then $P(A_1|B) \le P(A_2|B)$.

$$P(A_1 \cup A_2 | B) = P(A_1 | B) + P(A_2 | B) - P(A_1 \cap A_2 | B)$$

If
$$P(B) > 0$$
,

If A_i for $i \in \{1,...,n\}$ are all pairwise disjoint, then

$$P\bigcup_{i=1}^{n}A_{i}|B=\sum_{i=1}^{n}P(A_{i}|B)$$

If $A_1 \subseteq A_2$, then $P(A_1|B) \le P(A_2|B)$.

$$P(A_1 \cup A_2 | B) = P(A_1 | B) + P(A_2 | B) - P(A_1 \cap A_2 | B)$$

Union bound: $P(A_1 \cup A_2 | B) \le P(A_1 | B) + P(A_2 | B)$

If
$$P(B) > 0$$
,

If A_i for $i \in \{1,...,n\}$ are all pairwise disjoint, then

$$P\bigcup_{i=1}^{n} A_i | B = \sum_{i=1}^{n} P(A_i | B)$$

If $A_1 \subseteq A_2$, then $P(A_1|B) \le P(A_2|B)$.

$$P(A_1 \cup A_2 | B) = P(A_1 | B) + P(A_2 | B) - P(A_1 \cap A_2 | B)$$

Union bound:
$$P(A_1 \cup A_2 | B) \le P(A_1 | B) + P(A_2 | B)$$

 $P \bigcup_{i=1}^{n} A_i | B \le \sum_{i=1}^{n} P(A_i | B)$

- ➤ Notation: Let *A* := {Tosses yield alternating tails and heads} and *B* := {The first toss is a head}.
- \triangleright We want P(A|B).
- ➤ What if you wanted to follow the formula?

- Notation: Let A := {Tosses yield alternating tails and heads} and B := {The first toss is a head}.
- \triangleright We want P(A|B).
- ➤ What if you wanted to follow the formula?
 - Sample space for three coin tosses { HHH, HHT, HTH, HTT, THH, THT, TTH, TTT } .

- Notation: Let A := {Tosses yield alternating tails and heads} and B := {The first toss is a head}.
- \triangleright We want P(A|B).
- ➤ What if you wanted to follow the formula?
 - Sample space for three coin tosses { HHH,HHT,HTH,HTT,THH,THT,TTH,TTT } .
 - $ightharpoonup A = \{ HTH, THT \} \text{ and } A \cap B = \{ HTH \}.$

- Notation: Let A := {Tosses yield alternating tails and heads} and B := {The first toss is a head}.
- \triangleright We want P(A|B).
- ➤ What if you wanted to follow the formula?
 - Sample space for three coin tosses { HHH, HHT, HTH, HTT, THH, THT, TTH, TTT } .
 - $ightharpoonup A = \{HTH, THT\} \text{ and } A \cap B = \{HTH\}.$
 - ➤ We have P(B) = 4/8 and $P(A \cap B) = 1/8$ and so P(A|B) = 1/4.

- ➤ Notation: Let *A* := {Tosses yield alternating tails and heads} and *B* := {The first toss is a head}.
- \triangleright We want P(A|B).
- ➤ What if you wanted to follow the formula?
 - Sample space for three coin tosses { HHH,HHT,HTH,HTT,THH,THT,TTH,TTT } .
 - $A = \{HTH, THT\} \text{ and } A \cap B = \{HTH\}.$ We have P(B) = 4/8 and $P(A \cap B) = 1/8$ and so P(A|B) = 1/4.
 - Your new world/sample space when you condition is B = {HHT, HTH, HTT, HHH}. Each of these are equally likely. Out of these 1 event satisfies alternating heads and tails.

- ➤ Notation: Let *A* := {Tosses yield alternating tails and heads} and *B* := {The first toss is a head}.
- \triangleright We want P(A|B).
- ➤ What if you wanted to follow the formula?
 - Sample space for three coin tosses $\{HHH,HHT,HTH,HTT,THH,THT,TTH,TTT\}$. $A = \{HTH,THT\}$ and $A \cap B = \{HTH\}$.
 - ➤ We have P(B) = 4/8 and $P(A \cap B) = 1/8$ and so P(A|B) = 1/4.
 - Your new world/sample space when you condition is
 B = {HHT, HTH, HTT, HHH}. Each of these are equally likely. Out of these 1 event satisfies alternating heads and tails.
 - So, P(A|B) = 1/4.