PATENT ABSTRACTS OF JAPAN

(11)Publication number:

05-184910

(43) Date of publication of application: 27.07.1993

(51)Int.CI.

B01J 13/18 G03F 7/004

(21)Application number : 04-019396

(71)Applicant: FUJI PHOTO FILM CO LTD

(22) Date of filing:

09.01.1992

(72)Inventor: YAMANOUCHI JUNICHI

ITO YOJI

(54) PRODUCTION OF MICROCAPSULE AND PHOTOSENSITIVE MATERIAL USING MICROCAPSULE

(57)Abstract:

PURPOSE: To prepare a microcapsule excellent in core substance retentivity in low liquid viscosity. CONSTITUTION: A core substance containing at least a polymerizable compd. is dispersed in an aqueous medium containing a water-soluble polymer having at least a repeating unit having sulfinic acid or a salt thereof, a repeating unit having active hydrogen and a repeating unit of a hydrophobic monomer forming a polymer insoluble in water by at least each one kind in an oil droplet state and a resin wall composed of an aminoaldehyde resin is formed on the periphery of an oil droplet.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application

converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of

rejection]

[Date of requesting appeal against examiner's

decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平5-184910

(43)公開日 平成5年(1993)7月27日

(51)Int.Cl.⁵

識別記号

庁内整理番号

技術表示箇所

B 0 1 J 13/18

G03F 7/004

5 1 4

8317-4G

B 0 1 J 13/02

FΙ

С

審査請求 未請求 請求項の数 2(全 27 頁)

(21)出願番号

(22)出願日

特願平4-19396

平成4年(1992)1月9日

(71)出願人 000005201

富士写真フイルム株式会社

神奈川県南足柄市中沼210番地

(72)発明者 山之内 淳一

神奈川県南足柄市中沼210番地 富士写真

フイルム株式会社内

(72)発明者 伊藤 洋士

神奈川県南足柄市中沼210番地 富士写真

フイルム株式会社内

(54)【発明の名称】 マイクロカブセルの調製法およびマイクロカブセルを用いた感光材料

(57)【要約】

【目的】芯物質保持性に優れたマイクロカプセルを低い 液粘度で調製することを目的とする。

【構成】スルフィン酸またはその塩を有する繰返し単位、および活性水素を有する繰返し単位および水に不溶である重合体を形成する疎水性単量体の繰返し単位を少くとも1種ずつ有することを特徴とする水溶性ポリマーを含む水性媒体中に少くとも重合性の化合物を含む芯物質を油滴状に分散させ、該油滴の周囲にアミノアルデヒド樹脂よりなる樹脂壁を形成させるマイクロカプセルの調製法である。

【特許請求の範囲】

【請求項1】 スルフィン酸またはその塩を有する繰返 し単位、および活性水素を有する繰返し単位および水に 不溶である重合体を形成する疎水性単量体の繰返し単位 を少くとも1種ずつ有することを特徴とする水溶性ポリ マーを含む水性媒体中に、少くとも重合性の化合物を含 む芯物質を油滴状に分散させ該油滴の周囲にアミノアル デヒド樹脂よりなる樹脂壁を形成させるマイクロカプセ ルの調製法。

【請求項2】 支持体上に少なくともハロゲン化銀、還元剤、および重合性化合物を含む芯物質の油滴がマイクロカプセル化された状態で含まれている感光材料において、上記芯物質の油滴が請求項1記載の方法でマイクロカプセル化されることを特徴とする感光材料。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、マイクロカプセルの調製法、および該マイクロカプセルを用いた感光材料に関するものである。

[0002]

【従来の技術】ハロゲン化銀の潜像が形成された部分において、還元剤の作用により重合性化合物を重合させて画像を形成する方法に利用される感光材料が、特公昭45-11149号、同47-20741号、同49-10697号、特開昭57-138632号、および同58-169143号等の各公報に記載されている画像形成方法において開示されている。

【0003】また、上記改良として、乾式処理で高分子化合物を形成することができる方法が提案されている(特開昭61-69062号、あるいは同61-73145号公報)。これらの方法は、感光性銀塩(ハロゲン化銀)、還元剤、架橋性化合物(重合性化合物)に、更にバインダーあるいは色画像形成物質が構成成分に含まれてなる感光層を支持体上に担持してなる記録材料(感光材料)を像様露光して潜像を形成させたのち、これを加熱することにより、潜像が形成された部分に重合物(重合性化合物)を重合させる方法である。

【0004】なお、ハロゲン化銀の潜像が形成されない部分の重合性化合物を重合させることができる方法も既に知られている(特開昭62-70836号公報)。この方法は、ハロゲン化銀の潜像が形成された部分の重合を抑制すると同時に、他の部分(潜像が形成されていない領域)にて重合を促進させる方法である。

【0005】上記構成の感光材料を利用する画像形成方法においては、上述のように感光材料上に高分子化合物を像様に形成させた後、更に該感光材料を受像層を有する受像材料に重ね合せ、この状態で加圧し、未重合の重合性化合物を受像材料に転写し、受像材料上に転写画像を得るという方法が一般に利用される。また、上記画像形成方法においてはハロゲン化銀および重合性化合物が

マイクロカプセル(感光性マイクロカプセル)に収容されてなる感光材料(特開昭 61-275742号及び同61-278849号公報)が好ましく用いられ、マイクロカプセルの導入により良好な画像が得られる。

【0006】このマイクロカプセル化の技術を改良する方法として、スルフィン酸基を有する水溶性ポリマーによる油滴およびマイクロカプセルの調製法が特開平2~152543号公報に述べられている。また該調製法で得られたマイクロカプセルを用いた感光材料が特開平2~216151公報に述べられている。上記方法により粒子径が5~15 μ mの比較的大きな油滴粒子を調製し、その周囲に高分子化合物の重合体よりなる樹脂壁を形成させることが可能となった。

【0007】しかし、上記方法により調製されたマイクロカプセル壁の緻密性(芯物質保持性)は十分ではなく、上述の感光材料においては芯物質がカプセル壁よりしみだして画像上に斑点状の模様を生じさせるという問題を有していた。また、上述の特許記載の水溶性ポリマーを用いた場合、目的とする粒子径の油滴粒子を調製するための液の粘度が著しく増大するため、目的とする分散物を得るためにより多くのエネルギーを必要とするという問題があった。

[0008]

【発明が解決しようとする課題】本発明は、5~15μmの粒子径であって、かつ芯物質保持性に優れたマイクロカプセルを低い液粘度で効率よく調製する方法および該マイクロカプセルを用いて優れた画像を提供することのできる感光材料を提供することを目的とする。

[0009]

【課題を解決するための手段】上記の課題は、

- (1) スルフィン酸またはその塩を有する繰返し単位、 および活性水素を有する繰返し単位および水に不溶である重合体を形成する疎水性単量体の繰返し単位を少くと も1種ずつ有することを特徴とする水溶性ポリマーを含む水性媒体中に、少くとも重合性の化合物を含む芯物質 を油滴状に分散させ該油滴の周囲にアミノアルデヒド樹 脂よりなる樹脂壁を形成させるマイクロカプセルの調製 法
- (2) 支持体上に少くともハロゲン化銀、還元剤、および重合性化合物を含む芯物質の油滴がマイクロカプセル化された状態で含まれている感光材料において、上記芯物質の油滴が上記(1)の方法でマイクロカプセル化されることを特徴とする感光材料

を提供することにより達成された。

【0010】本発明のマイクロカプセルの調製法は、具体的には、下記一般式(1)で表される繰返し単位を有する共重合体を含む水性媒体中に、エチレン性不飽和結合を有する重合性化合物を含む疎水性物質を導入し、乳化分散させ、さらにその油滴表面にアミノアルデヒド樹脂よりなる樹脂壁を形成することにより調製することが

できる。 一般式(1) 【0011】 【化1】

【001分式中、保まスルラウン酸基を有する単量体から誘導される繰返し単位を表す。 Bは活性水素を有する単量体から誘導される繰返し単位を表す。 Dは水に不溶である重合体を形成する疎水性単量体(すなわち、疎水性単量体を単独に重合して得られる重合体が水に不溶である)から誘導される繰返し単位を表し、EはA、B、D以外の単量体から誘導される繰返し単位を表す。w、x、y、zは、各成分の重量百分率比を表し、wは5~80%、xは5~90%、yは5~70%、zは0~50%である。ここでw+x+y+z=100を表す。

【0013】一般式(1)で表される水溶性共重合体について、さらに詳細に説明する。上記Aで表されるスルフィン酸基を有するエチレン性不飽和モノマーの例としては、ビニルベンゼンスルフィン酸ナトリウム、ビニルベンゼンスルフィン酸ナトリウム、アリルスルフィン酸ナトリウムおよび、ビニルベンゼンスルフィン酸アンモニウムを挙げることが出来る。本発明においては、ビニルベンゼンスルフィン酸カリウムおよび、ビニルベンゼンスルフィン酸カリウムおよび、ビニルベンゼンスルフィン酸アンモニウムが好ましい。上記Bで表される活性水素を有する繰返し単位は好ましくは下記一般式で表されるモノマーの共重合により得られる。

【0014】 【化2】

$$CH_2 = C$$

$$(L^1 \rightarrow L^2 \rightarrow L^2$$

【0015】式中、 R^1 は水素原子、炭素数 $1\sim 4$ の低級アルキル基(例えば、メチル基、エチル基、n-ブチル基)、ハロゲン原子(例えば塩素原子、臭素原子)を表し、水素原子、メチル基が特に好ましい。Gは-CO NH $_2$ 、-OCONH $_2$ 、-NHCON+0 を表す。 【0016】 L^1 は-CON (R^2) -(R^2 は水素原子、炭素数 $1\sim 4$ のアルキル基または炭素数 $1\sim 6$ の置換アルキル基を表わす)、-COO-、-NHCO-、-OCO-

【0017】 【化3】

【0018】 $(R^3 \ R^4$ はそれぞれ独立に、水素原子、ヒドロキシル基、ハロゲン原子または置換もしくは無置換の、アルキル基、アルコキシ基、アシルオキシ基もしくはアリールオキシ基を表わす)、

【0019】 【化4】

 $(R^2 \ R^3 \ R^4 \ d$ 上記に同じ) [0020] を表わし、 L^2 は L^1 とGを結ぶ連結基を表わし、mは0または1を表わしnは0または1を表わす。

【0021】L²で表される連結基は具体的には、 【0022】 【化5】

(はは2分)で表わるはり2丁×3 カマナリアかは静して も異なっていてもよく、-CO-、-SO。-、-CO N (R⁵) - (R⁵ は水素原子、アルキル基 (炭素数 1 ~6)、置換アルキル基(炭素数1~6)、-SO。N (R⁵) - (R⁵ は上記と同義)、-N(R⁵) - R⁶ - (R⁵ は上記と同義)、R⁶ は炭素数1~約4のアル キレン基)、 $-N(R^5)-R^6-N(R^7)-$ (R⁵、R⁶ は上記と同義、R⁷ は水素原子、アルキル 基(炭素数1~6)、置換アルキル基(炭素数1~6) を表わす。)、-O-、-S-、-N(R⁵)-CO- $N(R^7) - (R^5 \setminus R^7$ は上記と同義) 、-N(R⁵) - SO₂ - N(R⁷) - (R⁵、R⁷ は上記と同義)、-COO-、-OCO-、-N(R⁵) CO。 - (R⁵ は上記と同義)等を挙げることができる。 【0024】 X^1 、 X^2 、 X^3 は同じでも異なっていて もよく、アルキレン基、置換アルキレン基、アリーレン 基、置換アリーレン基、アラルキレン基、置換アラルキ レン基を表わす。アルキレン基としては例えばメチレ ン、メチルメチレン、ジメチル、メチレン、ジメチレ ン、トリメチレン、テトラメチレン、ペンタメチレン、 ヘキサメチレン、デシルメチレン、アラルキレン基とし ては例えばベンジリデン、フェニレン基としては例えば p-フェニレン、m-フェニレン、メチルフェニレンな どを挙げることができる。

【0025】このような上記一般式で表される活性水素

を有するエチレン性不飽和モノマーとしては、アクリル アミド、メタクリルアミド、 [0026] 【化6】

$$CH_{2} = CH_{2}$$

$$CH_{2} = CH_{2} + CH_{2} + CH_{2} + CONH_{2}$$

$$CONH + CH_{2} + CONH_{2}$$

$$CH_{2} = CH$$

$$COOCH_{2}CONH_{2}$$

[0027]

$$CH_{z} = CH_{z} = CH_{z} + C$$

[0028]

$$CH_2 = C$$

$$CH_2 = C$$

$$COOCH_2CH_2NHCONH$$

$$NHCONH_2$$

【0029】等を挙げることができる。

【0030】Dで表される単位体としては、たとえばア クリル酸エステル類、メタクリル酸エステル類、アクリ ルアミド類、メタクリルアミド類、ビニルエステル類、 ピニルケトン類、アリル化合物、オレフィン類、ピニル エーテル類、N-ビニルアミド類、ビニル異節環化合 物、マレイン酸エステル類、イタコン酸エステル類、フ マル酸エステル類、クロトン酸エステル類などがある。 更に具体的に挙げるならばたとえば次の様なものが挙げ られる。メチルアクリレート、エチルアクリレート、n ープロピルアクリレート、nープチルアクリレート、se c ープチルアクリレート、オクチルアクリレート、ジエ チレングリコールモノアクリレート、トリメチロールエ タンモノアクリレート、ωーメトキシポリエチレングリ コールアクリレート(付加モル数n=9)、1ープロモ -2-メトキシエチルアクリレート、p-クロルフェニ ルアクリレート、メチルメタクリレート、エチルメタク リレート、nープチルメタクリレート、2-エチルヘキ シルメタクリレート、2-ヒドロキシエチルメタクリレ ート、テトラヒドロフリルメタクリレート、

【0031】Nーtertーブチルアクリルアミド、ヘキシルアクリルアミド、オクチルアクリルアミド、メチルビニルエーテル、プロピルビニルエーテル、ブチルビニルエーテル、2-エチルブチルビニルエーテル、ビニルアセテート、ビニルプロピオネート、エチレン、プロピレン、1-ブテン、1-オクテン、イタコン酸ジオクチル、マレイン酸ジヘキシル、ス

チレン、メチルスチレン、ジメチルスチレン、ベンジルスチレン、クロルメチルスチレン、クロルスチレン、ピニル安息香酸メチル、ピニルクロルベンゾエート、アクリロニトリル、メタクリロニトリル、塩化ビニルなど。【0032】Eで表されるA、B、D以外の単量体としては、その単独食合体が水溶性である以下の様な単量体を挙げることができる。N、Nージメチルアクリルアミド、Nーアクリロイルモルホリン、Nーアクリロイルピペリジン、Nーメタクリロイルモルホリン、Nービニルピロリドン、Nービニルアセトアミド、Nービニルイミダゾール、アクリル酸、メタクリル酸、イタコン酸、2ーアクリルアミドー2ーメチルプロバンスルホン酸、等。

【0033】w、x、y、zは各成分の重量百分率比を表し、wは5~80%、好ましくは5~70%、xは5~90%、好ましくは10~70%、yは5~70%好ましくは10~50%、zは0~50%好ましくは0~20%である。本発明のA、B、Dで表される繰返し単位を与える単量体は、それぞれ1種ずつ用いてもよいし、2種以上でも構わない。

【0034】本発明における好ましい水溶性ポリマーの 具体的化合物を以下に例示するが本発明がこれに限定さ れるものではない。各成分の共重合比率は重量百分率比 を表す。

【0035】 【化9】

$$P-1\sim3$$

$$\begin{array}{c} CH_{3} \\ \leftarrow CH_{2}CH \xrightarrow{}_{w} \leftarrow CH_{2}CH \xrightarrow{}_{x} \leftarrow CH_{2}C \xrightarrow{}_{y} \\ \hline CONH_{z} & COOCH_{2}CH_{2}OH \\ \\ SO_{z}K \\ \hline \\ P-1 & w/x/y = 2 0/6 0/2 0 \\ P-2 & w/x/y = 3 0/5 0/2 0 \\ \hline \\ P-3 & w/x/y = 5 0/2 5/2 5 \end{array}$$

$P-4\sim7$

[0036]

 $P - 8 \sim 9$

CH₂CH
$$\rightarrow$$
 CH₂CH \rightarrow CH₂CH \rightarrow CH₂CH \rightarrow CONH₂

$$P-8$$
 w/x/y=65/20/15
 $P-9$ w/x/y=50/25/25

P - 10

$$\begin{array}{c} \text{CH}_{3} \\ \leftarrow \text{CH}_{2}\text{CH} \xrightarrow{\searrow} \leftarrow \text{CH}_{2}\text{CH} \xrightarrow{\searrow} \leftarrow \text{CH}_{2}\text{C} \xrightarrow{\searrow} \\ \text{CONH}_{2} & \text{COOC}_{2}\text{H}_{5} \\ \text{SO}_{2}\text{K} \end{array}$$

w/x/y = 4.0/3.0/3.0

P - 11

$$\begin{array}{cccc} & \text{CH}_3 & \text{CH}_3 \\ + & \text{CH}_2\text{CH} \xrightarrow{\downarrow_W} & + & \text{CH}_2\text{C} \xrightarrow{\downarrow_X} & + & \text{CH}_2\text{C} \xrightarrow{\downarrow_Y} \\ & & \text{CONH}_2 & & \text{COOCH}_3 \end{array}$$

w/x/y = 40/35/25

P - 12

$$\begin{array}{c} \text{CH}_3 & \text{CH}_3 \\ + \text{CH}_2\text{CH} \xrightarrow{\longrightarrow} + \text{CH}_2\text{C} \xrightarrow{\longrightarrow} \\ \text{CONH}_2 & \text{COOCH}_2\text{CH}_2\text{OH} \\ \text{SO}_2\text{K} \end{array}$$

[0037]

$$(4 \times 1)^{2} \times / y = 25/50/25$$

$$P - 13$$

$$\begin{array}{c} \text{CH}_3 \\ \leftarrow \text{CH}_2\text{CH} \xrightarrow{\searrow} \leftarrow \text{CH}_2\text{CH} \xrightarrow{\searrow} \leftarrow \text{CH}_2\text{CH} \xrightarrow{\searrow} \\ \text{CONH}_2 & \text{COOCH}_2\text{CH}_2\text{OH} & \text{CON} \xrightarrow{\text{CH}_3} \\ \text{SO}_2\text{K} & \text{W/x/y/z} = 30/40/20/10 \end{array}$$

P - 14

$$\begin{array}{c} \text{CH}_3 \\ \leftarrow \text{CH}_2\text{CH} \xrightarrow{}_{\text{w}} \leftarrow \text{CH}_2\text{CH} \xrightarrow{}_{\text{x}} \leftarrow \text{CH}_2\text{C} \xrightarrow{}_{\text{y}} \leftarrow \text{CH}_2\text{CH} \xrightarrow{}_{\text{z}} \\ \text{CONH}_2 & \text{COOCH}_3 & \text{CON} \\ \text{SO}_2\text{K} \\ \text{w/x/y/z} = 5 \text{ 0/2 0/1 5/1 5} \end{array}$$

P - 15

$$\begin{array}{c} \text{CH}_{3} & \text{CH}_{3} \\ \leftarrow \text{CH}_{2}\text{CH} \xrightarrow{\downarrow_{W}} \leftarrow \text{CH}_{2}\text{CH} \xrightarrow{\downarrow_{Z}} \leftarrow \text{CH}_{2}\text{C} \xrightarrow{\downarrow_{Z}} \leftarrow \text{CH}_{2}\text{C} \xrightarrow{\downarrow_{Z}} \leftarrow \text{COOC}_{4}\text{H}_{9} \\ \text{SO}_{2}\text{Na} \end{array}$$

w/x/x'/y = 50/15/15/20

【化12】

[0038]

【0039】本発明のスルフィン酸基を有する繰返し単位、活性水素を有する繰返し単位、および疎水性単量体の繰返し単位より成る共重合体ポリマーは0.1-20%程度の水溶液として用いる事が好ましい。従って、ポリマーの分子量としては2万-200万の範囲が好ましく、3-100万の範囲が更に好ましい。また、本発明

のスルフィン酸基を有する繰返し単位、活性水素を有する繰返し単位、および疎水性単量体の繰返し単位より成る共重合体ポリマーは水性媒体中に、スルフィン酸基として、疎水性物質中に含まれるエチレン性不飽和基を有する化合物中のエチレン性不飽和基に対して、0.01-100モル%の割合で含まれていることが好ましく、

w/x/y = 50/30/20

0.05-20モル%の割合で含まれることが好ましい。

【0040】上記スルフィン酸基を有する繰返し単位、 活性水素を有する繰返し単位、および疎水性単量体の繰 返し単位より成る共重合体ポリマーは単独で、あるいは 2種以上を組み合わせて使用することができる。 さら に、本発明のスルフィン酸基を有する繰返し単位、活性 水素を有する繰返し単位、および疎水性単量体の繰返し 単位より成る共重合体ポリマーと他の水溶性ポリマーと を併用して分散物を調整することも出来る。上記の併用 できる水溶性ポリマーの好ましい例としては、ポリビニ ルアルコール、アニオン変性ポリビニルアルコール、ヒ ドロキシエチルセルロース、メチルセルロース、カルボ キシメチルセルロース、ポリビニルピロリドン、ポリア クリル酸ナトリウム、スルフォン化ポリスチレン、エチ レン/マレイン酸ナトリウム共重合体、イソプチレン/ マレイン酸ナトリウム共重合体、ポリアクリルアミド、 ポリビニルベンゼンスルフィン酸ナトリウム、ペクチン およびゼラチンを挙げることができる。

【0041】本発明において、水性媒体中に分散される 重合性化合物には、アクリル酸およびその塩、アクリル 酸エステル類、アクリルアミド類、メタクリル酸および その塩、メタクリル酸エステル類、メタクリルアミド 類、無水マレイン酸、マレイン酸エステル類、イタコン 酸エステル類、スチレン類、ビニルエーテル類、ビニル エステル類、Nービニル複素環類、アリルエーテル類、 アリルエステル類およびそれらの誘導体等がある。

【0042】本発明に使用することができる好ましい重合性化合物の具体例としては、アクリル酸エステル類に関し、nープチルアクリレート、シクロヘキシルアクリレート、2ーエチルヘキシルアクリレート、ベンジルアクリレート、フルフリルアクリレート、エトキシエトキシエチルアクリレート、トリシクロデカニルオキシアクリレート、ノニルフェニルオキシエチルアクリレート、1、3ージオキソランアクリレート、ヘキサンジオールジアクリレート、ブタンジオールジアクリレート、ネオペンチルグリコールジアクリレート、トリシクロデカンジメチロールジアクリレート、

【0043】トリメチロールプロバントリアクリレート、ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールへキサアクリレート、ポリオキシエチレン化ビスフェノールAのジアクリレート、2ー(2ーヒドロキシー1,1ージメチルエチル)ー5ーヒドロキシメチルー5ーエチルー1,3ージオキサンジアクリレート、2ー(2ーヒドロキシメチルー1,3ージメチルエチル)ー5,5ージヒドロキシメチルー1,3ージオキサントリアクリレート、トリメチロールプロバンのプロピレンオキサイド付加物のトリアクリレート、ジペンタエリスリトールのカプロラクトン付加物のヘキサアクリレート、ヒド

ロキシポリエーテルのポリアクリレート、ポリエステル アクリレートおよびポリウレタンアクリレート等を挙げ ることができる。

【0044】また他の具体例としては、メタクリル酸エステル類に関し、メチルメタクリレート、プチルメタクリレート、プチルメタクリレート、プタレート、エチレングリコールジメタクリレート、プタンジオールジメタクリレート、トリメチロールプロパントリメタクリレート、ペンタエリスリトールトリメタクリレートおよびポリオキシアルキレン化ピスフェノールAのジメタクリレート等を挙げることができ。

【0045】上記重合性化合物は、単独で使用しても二種以上で併用してもよい。二種以上の重合性化合物を併用した感光材料については、特開昭62-210445号公報に記載がある。なお、還元剤の化学構造にビニル共重合体やビニリデン基等の重合性官能基を導入した物質も重合性化合物として使用できる。

【0046】重合性化合物を共に下記のエチレン性不飽 和基を有しない疎水性物質が含まれていてもよい。その 場合、重合性化合物の0~50%の割合で疎水性物質が 含まれていることが好ましい。

【0047】エチレン性不飽和基を有しない疎水性物質 の例としては、天然鉱物油、動物油、植物油および合成 油等を挙げることができる。鉱物油の例としては、石油 およびその留分、たとえば、ケロシン、ガソリン、ナフ サおよびパラフィン油がある。動物油の例としては、魚 油およびラード油などがある。植物油の例としては、落 花生油、亜麻仁油、大豆油、ひまし油およびとうもろこ し油等がある。合成油の例としては、ビフェニル化合物 (例えば、イソプロピルビフェニル、イソアミルビフェ ニルなど)、ターフェニル化合物(西独公開特許2,1 53,635号公報参照)、リン酸化合物(例えば、ト リフェニルホスフェートなど)、ナフタレン化合物(例 えば、西独公開特許2,141,194号公報参照)、 メタン化合物 (例えば、西独公開特許 2, 153, 63 4号公報参照)、フタル酸化合物(例えば、ジエチルフ タレート、ジプチルフタレート、ジオクチルフタレート など)、サリチル酸化合物(例えば、エチルサリチレー ト)等がある。

【0048】なお、これらのエチレン性不飽和基を有する化合物および天然鉱物油、動物油、植物油、および合成油からなるエチレン性不飽和基を有しない疎水性物質の混合物中には、農薬、医薬、香料、化成品、接着剤、液晶、洗剤、染料、染料プレカーサー、顕色剤、触媒および防錆剤などを使用目的に応じて適宜混合することができる。

【0049】本発明のマイクロカプセルの壁材は、アミノーアルデヒド樹脂壁であり、特に、メラミンーホルムアルデヒド樹脂壁が好ましい。この場合、特開昭63-

32535号公報記載の感光材料のように、残留アルデヒド量を一定値以下とすることが好ましい。その方法は特開昭63-142343号等に記載されている。マイクロカプセルの平均粒子径は、 $1\sim50\mu$ m、好ましくは $3\sim20\mu$ mである。マイクロカプセルの粒子径の分布は、特開昭63-5334号公報記載の感光材料のように、一定値以上に均一に分布していることが好ましい。また、マイクロカプセルの膜厚は、特開昭63-81336号公報記載の感光材料のように、粒子径に対して一定の値の範囲内にあることが好ましい。

【0050】また、マイクロカブセルにハロゲン化銀を収容する場合は、ハロゲン化銀粒子の平均粒子サイズをマイクロカプセルの平均サイズの5分の1以下とすることが好ましく、10分の1以下とすることがさらに好ましい。ハロゲン化銀粒子の平均粒子サイズをマイクロカプセルの平均サイズの5分の1以下とすることによって、均一でなめらかな画像を得ることができる。

【0051】マイクロカプセルにハロゲン化銀を収容する場合は、マイクロカプセルの外殻を構成する壁材中にハロゲン化銀を存在させることが好ましい。マイクロカプセルの壁材中にハロゲン化銀を含む感光材料については特開昭62-169147号公報に記載がある。

【0052】以下に本発明の熱現像感光材料(以下、単に感光材料)に用いるハロゲン化銀、還元剤、支持体、色画像形成物質、塩基プレカーサーについて説明する。 【0053】本発明の感光材料には、ハロゲン化銀とし

て、塩化銀、臭化銀、沃化銀あるいは塩臭化銀、塩沃化 銀、沃臭化銀、塩沃臭化銀のいずれの粒子も用いること ができる。写真乳剤中のハロゲン化銀粒子は、立方体、 八面体、十二面体、十四面体のような規則的な結晶を有 するもの、球状、板状のような変則的な結晶系を有する もの、双晶面などの結晶欠陥を有するもの、あるいはそ れらの複合形でもよい。

【0054】ハロゲン化銀の粒径は、約0.01ミクロン以下の微粒子でも投影面積直径が約10ミクロンに至るまでの大サイズ粒子でもよく、多分散乳剤でもまた米国特許第3,574,628号、同3,655,394号および英国特許第1,413,748号などに記載された単分散乳剤でもよい。

【0055】また、アスペクト比が約5以上であるような平板状粒子も本発明に使用できる。平板状粒子は、ガトフ著、フォトグラフィック・サイエンス・アンド・エンジニアリング(Gutoff, Photographic Science and Engineering)、第14巻248~257頁(1970年);米国特許第4,434,226号、同4,414,310号、同4,433,048号、同4,439,520号および英国特許第2,112,157号などに記載の方法により簡単に調製することができる。

【0056】結晶構造は一様なものでも、内部と外部とが異質なハロゲン組成からなるものでもよく、層状構造

をなしていてもよい。また、エピタキシャル接合によって組成の異なるハロゲン化銀が接合されていてもよく、また例えばロダン銀、酸化鉛などのハロゲン化銀以外の化合物と接合されていてもよい。また、ハロゲン組成、晶癖、粒子サイズ等が異なった二種以上のハロゲン化銀粒子を併用することもできる。

【0057】本発明に使用できるハロゲン化銀写真乳剤は、例えばリサーチ・ディスクロージャー (RD) No17643 (1978年12月)、22~23頁、"I. 乳剤製造 (Emulsion preparation and types)"、および同No18716 (1979年11月)、648頁、などに記載された方法を用いて調製することができる。

【0058】ハロゲン化銀乳剤は、通常、物理熟成、化学熟成および分光増感を行ったものを使用する。このような工程で使用される添加剤はリサーチ・ディスクロージャーNo17643および同No18716に記載されており、その該当箇所を後掲の表にまとめた。本発明に使用できる公知の写真用添加剤も上記の2つのリサーチ・ディスクロージャーに記載されており、下記の表に関連する記載箇所を示した。

[0059]

添加剤種類	R D 17643	R D 18716
化学增感剤	23頁	648頁右欄
感度上昇剤		同上
分光増感剤	23~24頁	648頁右欄~
強色增感剤		649頁右欄
かぶり防止剤	24~25頁	649頁右欄~
および安定剤		

【0060】なお、上記ハロゲン化銀乳剤および写真用添加剤についての詳細は「公知技術第5号」(アズテック有限会社、1991年3月22日発行)2頁~17頁に記載されている。ハロゲン化銀の使用量は感光材料1 \mathbf{n}^2 当り銀換算で0.001~10g、好ましくは0.05~2gである。また、本発明においてはハロゲン化銀に共に有機銀塩を用いることができる。有機銀塩については前記「公知技術第5号」17頁~18頁に記載されている。

【0061】本発明の感光材料に使用することができる 還元剤は、ハロゲン化銀を還元する機能および/または 重合性化合物の重合を促進 (または抑制) する機能を有する。上記機能を有する還元剤としては、ハイドロキノン類、カテコール類、pーアミノフェノール類、3ーアミノ ピラゾール類、4ーアミノー5ーピラゾロン類、5ーアミノウラシル類、4,5ージヒドロキシー6ーアミノピリミジン類、レダクトン類、アミノレダクトン類、ローまたはpースルホンアミドフェノール類、ローまたはpースルホンアミドナフトール類、2,4ージスルホンアミドフェノール類、2ール類、ローまたはpーアシルアミノフェノール類、2ール類、ローまたはpーアシルアミノフェノール類、2ー

スルホンアミドインダノン類、4ースルホンアミドー5ーピラゾロン類、3ースルホンアミドインドール類、スルホンアミドピラゾロベンズイミダゾール類、スルホンアミドピラゾロトリアゾール類、αースルホンアミドケトン類、ヒドラジン類等がある。

【0062】なお、上記各種還元剤については、前記公知技術第5号18頁~35頁に詳細に記載されている。還元剤の添加量は巾広く変えることが出来るが一般に銀塩に対して0.1~1500モル%、好ましくは10~300モル%である。

【0063】支持体に用いることができる材料としては、ガラス、紙、上質紙、バライタ紙、コート紙、キャストコート紙、合成紙、金属およびその類似体、ポリエステル、ポリエチレン、ポリプロピレン、アセチルセルロース、セルロースエステル、ポリビニルアセタール、ポリスチレン、ポリカーボネート、ポリエチレンテレフタレート、ポリイミド等のフィルム、および樹脂材料やポリエチレン等のポリマーによってラミネートされた紙等を挙げることができる。詳細は前記「公知技術第5号」144頁~149頁に記載されている。この中で本発明の好ましい支持体はポリマーフィルムであり、前に述べた熱伝導性から、50μ以下のポリマーフィルムである事が特に好ましい。

【0064】さらに感光層を支持体に塗設するために、特開昭61-113058号公報記載の下塗り層をポリマーフィルム上に設ける、あるいはアルミニウム等の金属蒸着膜をポリマーフィルム上に設ける事が好ましい。したがって本発明の感光材料の支持体としては、50μ以下の厚みのポリマーフィルムで、アルミ蒸着膜を有するものが特に好ましい。

【0065】本発明のマイクロカプセルには、更に色画像形成物質を含ませることができる。使用できる色画像形成物質には特に制限はなく、様々な種類のものを用いることができる。すなわち、それ自身が着色している物質(染料や顔料)や、それ自身は無色あるいは淡色であるが外部よりのエネルギー(加熱、加圧、光照射等)や別の成分(顕色剤)との接触により発色する物質(発色剤)も色画像形成物質に含まれる。色画像形成物質としては、特開昭62-187346号公報に述べられているように、画像の安定性に優れそれ自身が着色している染料や顔料が好ましい。

【0066】染料や顔料としては、市販のものの他、各種文献等に記載されている公知のものが利用できる。文献に関しては、カラーインデックス(C. I.)便覧、「最新顔料便覧」日本顔料技術協会編(1977年刊)、「最新顔料応用技術」CMC出版(1986年刊)、「印刷インキ技術」(CMC出版、1984年刊)等がある。本発明に使用しうる色画像形成物質およびその使用技術についての詳細は前記「公知技術第5号」35頁~50頁に記載されている。特に顔料は光堅

年性に優れ、転写時に画像のボケが少ないので好ましい。顔料は、蛋合性化合物100重量部に対して5~60重量部の割合で用いることが好ましい。

【0067】また、本発明の感光材料には、鮮明な画像を得るため、塩基プレカーサーを使用できる。塩基プレカーサーとしては、無機の塩基および有機の塩基の塩基プレカーサー(脱炭酸型、熱分解型、反応型および錯塩形成型など)が使用できる。これらの塩基プレカーサーおよびその使用技術についての詳細は前記「公知技術第5号」55頁~86頁に記載されている。

【0068】好ましい塩基プレカーサーとしては、特開 昭59-180549号、同59-180537号、同 59-195237号、同61-32844号、同61 -36743号、同61-51140号、同61-52 638号、同61-52639号、同61-53631 号、同61-53634号、同61-53635号、同 61-53636号、同61-53637号、同61-53638号、同61-53639号、同61-536 40号、同61-55644号、同61-55645 号、同61-55646号、同61-84640号、同 61-107240号、同61-219950号、同6 1-251840号、同61-252544号、同61 -313431号、同63-316740号、同64-68746号および特願平1-54452号各公報に記 載されている加熱により脱炭酸する有機酸と塩基の塩、 また、特開昭59-157637号、同59-1669 43号、同63-96159号各公報記載の加熱により 塩基を脱離する化合物が挙げられる。

【0069】本発明の塩基プレカーサーとしては、50℃ないし200℃で塩基を放出する事が好ましく、80℃ないし180℃で放出する事がさらに好ましい。本発明の感光材料に使用する塩基プレカーサーは、マイクロカプセル中に収容されている事が好ましく、その場合、特願平2-270159号に記載のように25℃での水および重合性化合物に対する溶解度が1%以下の次のようなカルボン酸と有機塩基の塩からなる塩基プレカーサー特に好ましい。

【0070】本発明において塩基プレカーサーをマイクロカプセルに収容させる場合は、塩基プレカーサーを重合性化合物中に直接固体分散させた感光性組成物を用いてもよいが(特開昭64-32251号、特開平1-263641号各公報記載)、塩基プレカーサーを水中に分散させた状態で重合性化合物中に乳化させた感光性組成物を用いることが特に好ましい。(特開昭63-218964号、特願平1-182245号、特願平1-160148号各公報および明細書記載)ここで、塩基プレカーサーの水への分散に際しては、非イオン性あるいは、両性の水溶性ポリマーを使用することが好ましい。

【0071】非イオン性の水溶性ポリマーの例としては、ポリビニルアルコール、ポリビニルピロリドン、ポ

リアクリルアミド、ポリメチルビニルエーテル、ポリア クリロイルモルホリン、ポリヒドロキシエチルメタクリ レートーコーアクリルアミド、ヒドロキシエチルセルロ ース、ヒドロキシプロピルセルロース及びメチルセルロ ースなどを挙げることができる。また、両性の水溶性ポ リマーとしては、ゼラチンを挙げることができる。

【0072】上記の水溶性ポリマーは、塩基プレカーサーに対して0.1~100重量%の割合で含まれていることが好ましく、1~50重量%の割合で含まれていることがさらに好ましい。また、塩基プレカーサーは分散液に対して5~60重量%含まれていることが好ましく、10~50重量%で含まれていることがさらに好ましい。また、塩基プレカーサーは重合性化合物に対して2~50重量%の割合で含まれていることがおましく、5~30重量%の割合で含まれていることがさらに好ましい。

【0073】また、塩基プレカーサーの重合性化合物に対する溶解度を低下させるため、重合性化合物中に、ポリエチレングリコール、ポリプロピレングリコール、安息香酸アミド、シクロヘキシルウレア、オクチルアルコール、ドデシルアルコール、ステアリルアルコール、ステアロアミド等の一〇日、一S〇2 NH2、一〇〇NH2、一NHCONH2 などの親水性基を有する化合物を添加する事もできる。

【0074】本発明においては前記還元剤の他に重合性 化合物の酸化劣化防止用として、また熱現像中の酸素酸 化防止用として公知の酸化防止剤を重合性化合物と共に 使用できる。このような酸化防止剤としては、2,2' ーメチレンービスー (4-メチルー6-t-ブチルフェ ノール)、2,6-ジーt-プチルフェノール、2, 2' ープチリデンービスー (4ーメチルー6ーtープチ ルフェノール)、2-t-プチルー6-(3'-t-プチルー5'ーメチルー2'ーヒドロキシベンジル)ー4 ーメチルフェニルアクリレート、4、4′ーチオービス - (3 - メチル- 6 - t -プチルフェノール)等のフェ ノール系酸化防止剤;ジフェニルデシルホスファイト、 トリフェニルホスファイト、トリスー (2, 4 - ジー t ープチルフェニル)ホスファイト、トリスー(2ーエチ ルヘキシル) ホスファイト等のホスファイト系酸化防止 剤;ジラウリルー3,3'ーチオージプロピオン酸エス テル、ペンタエリスリトールーテトラキスー (βーラウ リルーチオープロピオン酸エステル)、チオージプロピ オン酸等のイオウ系酸化防止剤;フェニルー1ーナフチ ルアミン、6-エトキシ-2, 2, 4-トリメチルー 1, 2-ジヒドロキノリン、ジオクチルイミノジベンジ ル等のアミン系酸化防止剤が挙げられる。

【0075】以下に本発明の感光材料に用いる事のできる他の成分について説明する。これらの成分の詳細は前記「公知技術第5号」98頁~144頁および86頁~88頁に記載されている。感光材料に用いることができ

るバインダーは、単独であるいは組合せて感光層に含有させることができる。このバインダーには主に親水性のものを用いることが好ましい。親水性パインダーとしては透明か半透明の親水性バインダーが代表的であり、例えばゼラチン、ゼラチン誘導体、セルロース誘導体、デンプン、アラビアゴム等のような天然物質と、ポリビニルアルコール、ポリビニルピロリドン、アクリルアミド重合体等の水溶性のポリビニル化合物のような合成重合物質を含む。他の合成重合物質には、ラテックスの形で、とくに写真材料の寸度安定性を増加させる分散状ポリビニル化合物がある。なお、バインダーを用いた感光材料については、特開昭61-69062号公報に記載がある。また、マイクロカプセルと共にバインダーを使用した感光材料については、特開昭62-209525号公報に記載がある。

【0076】感光材料に用いるスマッジ防止剤としては、常温で固体の粒子状物が好ましい。具体例としては、英国特許第1232347号明細書記載のでんぷん粒子、米国特許第3625736号明細書等記載の重合体微粉末、英国特許第1235991号明細書等記載の発色剤を含まないマイクロカプセル粒子、米国特許第2711375号明細書記載のセルロース微粉末、タルク、カオリン、ベントナイト、ろう石、酸化亜鉛、をかしたカオリン、ベントナイト、ろう石、酸化亜鉛、酸化チタン、アルミナ等の無機物粒子等を挙げることができる。上記粒子の平均粒子サイズとしては、体積平均直径で3乃至50μmの範囲が好ましく、5乃至40μmの範囲がさらに好ましい。前述したように重合性化合物の油滴がマイクロカプセルの状態にある場合には、上記粒子はマイクロカプセルより大きい方が効果的である。感光材料には種々の画像形成促進剤を用いることができる。

【0077】画像形成促進剤には①塩基又は、塩基プレカーサーの移動の促進②還元剤と銀塩との反応の促進③重合による色素供与性物質の不動化の促進などの機能が有り物理化学的な機能からは前記の塩基または塩基プレカーサー、求核性化合物、オイル、熱溶剤、界面活性剤、銀又は銀塩と相互作用をもつ化合物、酸素除去機能を有する化合物等に分類される。ただしこれらの物質群は一般に複合機能を有しており上記の促進効果のいくつかを合わせ持つのが普通である。これらの詳細については、米国特許4,678,739号第38~40欄、特開昭62-209443号等の明細書および公報に記載がある。また特願平2-272878号記載の六価の金風化合物も効果的である。

【0078】感光材料には、ハロゲン化銀の潜像が形成されない部分の重合性化合物を重合させる系において、 重合を開始させることあるいは、画像転写後、未重合の 重合性化合物の重合化処理することを目的として熱ある いは光重合開始剤を用いることができる。熱重合開始剤 の例としてはアゾ化合物、有機過酸化物、無機過酸化 物、スルフィン酸類等を挙げることができる。これらの 詳細については高分子学会、高分子実験学編集委員会編 「付加重合・開環重合」(1983年、共立出版)の第 6頁~第18頁等に記載されている。

【0079】光重合開始剤の例としては、ベンゾフェノン類、アセトフェノン類、ベンゾイン類、チオキサントン類等を挙げることができる。これらの詳細について「紫外線硬化システム」(1989年、総合技術センター)第63頁~第147頁等に記載されている。感光材料には、塗布助剤、剥離性改良、スベリ性改良、帯電防止、現像促進等の目的で種々の面活性剤を使用することができる。界面活性剤の具体例は、特開昭62-173463号、同62-183457号等に記載されている。

【0080】感光材料には帯電防止の目的で帯電防止剤を使用することができる。帯電防止剤としてリサーチディスクロージャー誌1978年11月の第17643号(27頁)等に記載されている。感光材料の感光層に、ハレーションまたはイラジエーションの防止を目的として、染料または顔料を添加してもよい。感光層に白色顔料を添加した感光材料について特開昭63-29748号公報に記載がある。

【0081】感光材料のマイクロカプセル中に加熱または光照射により脱色する性質を有する色素を含ませてもよい。上記加熱または光照射により脱色する性質を有する色素は、コンベンショナルな銀塩写真系におけるイエローフィルターに相当するものとして機能させることができる。上記のように加熱または光照射により脱色する性質を有する色素を用いた感光材料については、特開昭63-974940号公報に記載がある。

【0082】感光材料に重合性化合物の溶剤を用いる場合は、重合性化合物を含むマイクロカプセルとは別のマイクロカプセル内に封入して使用することが好ましい。なお、マイクロカプセルに封入された重合性化合物と混和性の有機溶媒を用いた感光材料については、特開昭62-209524号公報に記載がある。

【0083】本発明において種々のカプリ防止剤または 写真安定剤を使用することができる。その例としては、 RD17643(1978年)24~25頁に記載のア ゾール類やアザインデン類、特開昭59-168442 号記載の窒素を含むカルボン酸類およびリン酸類、ある いは特開昭59-111636号公報記載のメルカプト 化合物およびその金属塩、特開昭62-87957号公 報に記載されているアセチレン化合物類などが用いられ る。

【0084】感光材料には現像時の処理温度および処理 時間に対し、常に一定の画像を得る目的で種々の現像停止剤を用いることができる。ここでいう現像停止剤と は、適正現像後、速やかに塩基を中和または塩基と反応 して膜中の塩基濃度を下げ現像を停止する化合物または 銀および銀塩と相互作用して現像を抑制する化合物である。具体的には、加熱により酸を放出する酸プレカーサー、加熱により共存する塩基を置換反応を起す親電子化合物、または含窒素へテロ環化合物、メルカプト化合物およびその前駆体等が挙げられる。更に詳しくは特開昭62-253159号(31)~(32)頁、特開平1-72479号、同1-3471号公報等に記載されている。

【0085】以上述べた以外に感光層中に含ませることができる任意の成分の例およびその使用態様についても、上述した一連の感光材料に関する出願明細書、およびリサーチ・ディスクロージャー誌Vol.170、1978年6月の第17029号(9~15頁)に記載がある。感光材料に任意に設けることができる層としては、受像層、発熱体層、帯電防止層、カール防止層、はくり層、カバーシートまたは保護層、ハレーション防止層(着色層)等を挙げることができる。

【0086】なお、発熱体層を用いた感光材料については特開昭61-294434号公報に、カバーシートまたは保護層を設けた感光材料については特開昭62-210447号公報に、ハレーション防止層として着色層を設けた感光材料については特開昭63-101842号公報に、それぞれ記載されている。更に、他の補助層の例およびその使用態様についても、上述した一連の感光材料に関する出願明細書中に記載がある。

【0087】本発明の感光材料を用いる画像形成方法においては感光材料とともに受像材料を用いるのが一般的である。以下に受像材料について説明する。なお詳細は前記「公知技術第5号」149頁~178頁に記載されている。受像材料は支持体のみでも良いが、支持体上に受像層を設ける事が好ましい。受像材料の支持体としては、特に制限はないが、感光材料の支持体と同じようにガラス、紙、上質紙、バライタ紙、コート紙、キャストコート紙、合成紙、布、金属およびその類似体、ポリエステル、ポリエチレン、ポリアセタール、ポリスチレン、ポリカーボネート、ポリエチレンフタレート等のフィルム、および樹脂材料やポリエチレンタレート等のフィルム、および樹脂材料やポリエチレン等のポリマーによってラミネートされた紙等を挙げることができる。

【0088】なお、受像材料の支持体として、紙等の多 孔性の材料を用いる場合には、特開昭62-20953 0号公報記載の受像材料のように一定の平滑度を有して いることが好ましい。また、透明な支持体を用いた受像 材料については、特開昭62-209531号公報に記 載がある。受像材料の受像層は、白色顔料、バインダ 一、およびその他の添加剤より構成され白色顔料自身あ るいは白色顔料の粒子間の空隙が重合性化合物の受容性 を増す。

【0089】受像層に用いる白色顔料としては、無機の白色顔料として、例えば、酸化ケイ素、酸化チタン、酸

化亜鉛、酸化マグネシウム、酸化アルミニウム、等の酸化物、硫酸マグネシウム、硫酸パリウム、硫酸カルシウム、炭酸マグネシウム、炭酸パリウム、炭酸カルシウム、ケイ酸カルシウム、水酸化マグネシウム、リン酸水素マグネシウム等のアルカリ土類金属塩、そのほか、ケイ酸アルミニウム、水酸化アルミニウム、硫化亜鉛、各糖クレー、タルク、カオリン、ゼオライト、酸性白土、活性白土、ガラス等が挙げられる。有機の白色顔料としては、ポリエチレン、ポリスチレン、ベンゾグァナミン樹脂、尿素ーホルマリン樹脂、メラミンーホルマリン樹脂、ポリアミド樹脂等が挙げられる。これら白色顔料は単独でまたは併用して用いても良いが、重合性化合物に対する吸油量の高いものが好ましい。

【0090】また、本発明の受像層に用いるバインダーとしては、水溶性ポリマー、ポリマーラテックス、有機溶剤に可溶なポリマーなどが使用できる。水溶性ポリマーとしては、例えば、カルボキシメチルセルロース等のセルロース等り体、ゼラチン、フタル化ゼラチン、カゼイン、卵白アルブミン等の蛋白質、デキストリン、エーテル化デンプン等のデンプン類、ポリビニルアルコール、ポリビニルアルコールのデンプン類、ポリビニルアルコール、ポリビニルアルコール、ポリビニルアルコールが、ポリビニルアルコールが、ポリビニルアルコールでは、ポリンのサーバーが、ポリアクリルアミド、ポリビニルイミダゾール、ポリビニルピラゾール、ポリスチレンスルホン酸等の合成高分子、その他、ローカストビーンガム、プルラン、アラビアゴム、アルギン酸ソーダ等が挙げられる。

【0091】ポリマーラテックスとして、例えば、スチレンーブタジェン共重合体ラテツクス、メチルメタクリレート・ブタジェン共重合体ラテックス、アクリル酸エステルおよび/またはメタクリル酸エステルの重合体または、共重合体ラテックス、エチレン・酢酸ビニル共重合体ラテックス等が挙げられる。有機溶剤に可溶なポリマーとして、例えば、ポリエステル樹脂、ポリウレタン樹脂、ポリ塩化ビニル樹脂、ポリアクリロニトリル樹脂等が挙げられる。

【0092】上記バインダーの使用法としては、二種以上を併用することができ、さらに、二種のバインダーが相分離を起こすような割合で併用することもできる。このような使用法の例としては、特開平1-154789号公報に記述がある。白色顔料の平均粒子サイズは0.1~20 μ 、好ましくは0.1~10 μ であり、塗布量は、0.1g~60g、好ましくは、0.5g~30gの範囲である。白色顔料とバインダーの重量比は、顔料1に対しバインダー0.01~0.4の範囲が好ましく、0.03~0.3の範囲がさらに好ましい。

【0093】受像層には、バインダー、白色顔料以外に も、以下に述べるようなさまざまな添加剤を含ませるこ とができる。例えば、発色剤と顕色剤よりなる発色シス テムを用いる場合には、受像層に顕色剤を含ませることができる。顕色剤の代表的なものとしては、フェノール類、有機酸またはその塩、もしくはエステル等があるが、色画像形成物質としてロイコ色素を用いた場合には、サリチル酸の誘導体の亜鉛塩が好ましく、中でも、3、5ージーαーメチルベンジルサリチル酸亜鉛が好ましい。上記顕色剤は受像層に、0.1乃至50g/m²の範囲の塗布量で含まれていることが好ましい。更に好ましくは、0.5乃至20g/m²の範囲である。

【0094】受像層に熱可塑性化合物を含ませてもよい。受像層に熱可塑性化合物を含ませる場合は、受像層そのものを熱塑性化合物微粒子の凝集体として構成することが好ましい。上記のような構成の受像層は、転写画像の形成が容易であり、かつ画像形成後、加熱することにより光沢のある画像が得られるという利点を有する。上記熱可塑性化合物については特に制限はなく、公知の可塑性樹脂(プラスチック)およびワックス等から任意に選択して用いることができる。ただし、熱可塑性樹脂のガラス転移点およびワックスの融点は、200℃以下であることが好ましい。上記のような熱可塑性化合物微粒子を含む受像層を有する受像材料については、特開昭62-280071号、同62-280739号各公報に記載がある。

【0095】受像層には、光重合開始剤または熱重合開始剤を含ませておいてもよい。受像材料を用いる画像形成において、色画像形成物質は、未重合の重合性化合物と共に転写される。このため、未重合の重合性化合物の硬化処理(定着処理)を目的として、受像層に光重合開始剤または熱重合開始剤を添加することができる。なお、光重合開始剤を含む受像層を有する受像材料については特開昭62-161149号公報に、熱重合開始剤を含む受像層を有する受像材料については特開昭62-210444号公報にそれぞれ記載がある。

【0096】以下に本発明の画像形成方法における像様に露光する工程、像様露光と同時、あるいは像様露光 後、該感光材料を、感光層を塗設していない支持体の面から加熱する工程、および該感光材料の感光層を塗設した面と受像材料とを重ね合わせて加圧する工程等の一連の工程について述べる。

【0097】上記像様に露光する工程における露光方法としては、様々な露光手段を用いる事ができるが、一般に可視光を含む輻射線の画像様露光によりハロゲン化銀の潜像を得る。光源の種類や露光量は、ハロゲン化銀の感光波長(色素増感を施した場合は、増感した波長)や、感度に応じて選択することができる。

【0098】代表的な光源としては、低エネルギー輻射 線源として、自然光、紫外線、可視光、赤外線、蛍光 灯、タングステンランプ、水銀灯、ハロゲンランプ、キ セノンフラッシュランプ、レーザー光源(ガスレーザ ー、固体レーザー、化学レーザー、半導体レーザーな ど)、発光ダイオード、プラズマ発光管、FOTなどを 挙げることができる。特殊な場合には、高エネルギー線 源であるX線、y線、電子線などを用いることもでき る。

【0099】本発明における感光材料は、特にフルカラーの感光材料の場合には、複数のスペクトル領域に感光性をもつマイクロカプセルより構成されているため対応する複数のスペクトル線により画像露光することが必要である。そのため上記光源は1種類でもよいし2種以上を組み合わせて用いてもよい。光源の選択に際しては、感光材料の感光波長に適した光源を選ぶことはもちろんであるが、画像情報が電気信号を経由するかどうか、システム全体の処理速度、コンパクトネス、消費電力などを考慮して選ぶことができる。

【0100】画像情報が電気信号を経由しない場合、例えば風景や人物などの直接撮影、原画の直接的な複写、リバーサルフィルム等のポジを通しての露光などの場合には、カメラ、プリンターや引伸機のようなプリント用の露光装置、複写機の露光装置などを利用することができる。この場合、二次元画像をいわゆる1ショットで同時露光することもできるし、スリットなどを通して走査露光することもできる。原画に対して、引き伸ばしたり縮小することもできる。この場合の光源はレーザーのような単色の光源ではなくタングステンランプ、蛍光灯のような光源を用いるか、複数の単色光源の組み合わせを用いるのが通常である。

【0101】画像情報を電気信号を経由して記録する場合には、画像露光装置としては、発光ダイオード、各種レーザーを熱現像カラー感光材料の感色性に合わせて組み合わせて用いてもよいし、画像表示装置として知られている各種デバイス(CRT、液晶ディスプレイ、エレクトロルミネッセンスディスプレイ、エレクトロクロミックディスプレイ、プラズマディスプレイなど)を用いることもできる。この場合、画像情報は、ビデオカメラや電子スチルカメラかち得られる画像信号、日本テレビジョン信号規格(NTSC)に代表されるテレビ信号、原画をスキャナーなどで多数の画素に分割して得た画像信号、磁気テープ、ディスク等の記録材料に蓄えられた画像信号が利用できる。

【0102】カラー画像の露光に際しては、LED、レーザー、蛍光管などを感材の感色性に合わせて組み合わせて用いるが、同じものを複数組み合わせ用いてもよい。感光材料の感色性は写真分野ではR(赤)、G(緑)、B(青)感光性が通常であるが、近年はUV、IRなどの組み合わせで用いることも多く、光源の利用範囲が広がってきている。たとえば感光材料の感色性が(G、R、IR)であったり、(R、IR(短波)、IR(長波))、(UV(短波)、UV(中波)、UV(長波))、(UV、B、G)などのスペクトル領域が利用される。光源

もLED 2色とレーザーの組み合せなど別種のものを組み合わせてもよい。上記発光管あるいは秦子は1色毎に単管あるいは秦子を用いて走査露光してもよいし、露光速度を速めるためにアレイになったものを用いてもよい。利用できるアレイとしては、LEDアレイ、液晶シャッターアレイ、磁気光学秦子シャッターアレイなどが挙げられる。

【0103】先に記した画像表示装置としては、CRT のようにカラー表示のものとモノクロ表示のものがあるが、モノクロ表示のものをカラーフィルターと組み合わせて数回の露光を行う方式を採用してもよい。既存の2次元の画像表示装置は、FOTのように1次元化して利用してもよいし1画面を数個に分割して走査と組み合せて利用してもよい。

【0104】上記の像様に露光する工程によって、マイクロカプセルに収容されたハロゲン化銀に潜像が得られる。本発明の画像形成方法においては、像様露光と同時、あるいは像様露光後、該感光材料を熱現像するために、加熱する工程が含まれる。好ましくは感光材料の感光層が塗設されていない支持体の面から加熱する事で熱現像が行なわれる。

【0105】この加熱手段としては、特開昭61-294434号公報記載の感光材料のように、感光材料の感光層が塗設されていない支持体上の面に発熱体層を設けて加熱してもよい。さらに特開昭61-147244号公報記載のように熱板、アイロン、熱ローラーを用いたり、特開昭62-144166号公報記載のように、熱ローラーとベルトの間に感光材料をはさんで加熱する方法を用いてもよい。

【0106】すなわち該感光材料を、感光材料の面積以上の表面積を有する発熱体と接触させて、全面を同時に加熱しても良いし、より小さな表面積の発熱体(熱板、熱ローラー、熱ドラムなど)と接触させ、それを走査させて時間を追って全面が加熱されるようにしても良い。また上記のように発熱体と感光材料とを直接接触する加熱方法以外にも、電磁波、赤外線、熱風などを感光材料にあてて非接触の状態で加熱する事もできる。

【0107】本発明の画像形成方法においては、該感光材料の、感光層を塗設していない支持体上の面から加熱することで熱現像が行なわれるが、この時、感光層の塗設してある面の方は直接空気に接触していても良いが、熱を逃がさないように保温するために、断熱材などでカバーしても良い。この場合感光層中に含まれているマイクロカプセルを破壊しないように、感光層には強い圧力(10kg/cm²以上)をかけない様にする事が好ましい。

【0108】また加熱による熱現像は、像様露光と同時または像様露光後行なわれるが、像様露光後 0. 1秒以上経過してから加熱する事が好ましい。加熱温度は一般に60℃から250℃、好ましくは80℃から180℃

であり、加熱時間は0.1秒から20秒の間好ましくは 0.5秒から5秒である。

【0109】感光材料は、上記のようにして熱現像を行い、ハロゲン化銀の潜像が形成された部分またはハロゲン化銀の潜像が形成されない部分の重合性化合物を重合させることができる。またハロゲン化銀の潜像形成された部分に、還元剤との反応で重合禁止剤が生成する場合には、あらかじめ感光層中に、好ましくはマイクロカプセル中に添加してある熱あるいは光重合開始剤を加熱または光照射する事により分解させ、一様にラジカルを発生させ、ハロゲン化銀の潜像が形成されない部分の重合性化合物を重合させることもできる。この場合前に述べた像様露光工程、熱現像工程の他に、必要により全面加熱あるいは全面露光する工程が必要となるが、その方法は像様露光工程あるいは熱現像工程と同様である。

【0110】本発明の画像形成方法においては、感光層上にポリマー画像を得た感光材料と受像材料を重ね合せた状態で加圧する工程により、未重合の重合性化合物を受像材料に転写し、受像材料上に色画像を得ることができる。上記の加圧方法としては、従来公知の方法を用いることができる。

【0111】例えば、プレッサーなどのプレス板の間に感光材料と受像材料を挟んだり、ニップロールなどの圧力ローラーを用いて搬送しながら加圧してもよい。ドットインパクト装置などにより断続的に加圧してもよい。また、高圧に加圧した空気をエアガン等によりふきつけたり、超音波発生装置、圧電素子などにより加圧することもできる。加圧に必要な圧力は $500 \, {\rm kg/cm^2}$ 以上、好ましくは $800 \, {\rm kg/cm^2}$ 以上である。ただし、加圧時 $40^\circ \sim 120 \, {\rm Ccn}$ 2以下でもよい。

【0112】本発明の感光材料は、カラーの撮影およびプリント用感材、印刷感材、コンピューターグラフィックハードコピー感材、複写機用感材等の数多くの用途があり、本発明の画像形成方法によってコンパクトで安価な複写機、プリンター、簡易印刷機等の画像形成システムを作り上げる事ができる。

[0113]

【実施例】

実施例1

ハロゲン化銀乳剤 (EB-1) の調製

石灰処理イナートゼラチン24gを蒸留水に添加し、4 0℃で1時間かけて溶解後KBr1gを加え、これに1 N硫酸を加えてpH3.2に調節した。

【0114】この液に(AGS-1)を10 mg加えたのち I 液およびII液を、 $75 \text{ ℃ にて同時に } 15 \text{ 分かけて添加した。さらに、III 液およびIV液を、<math>75 \text{ ℃ にて同時に } 15 \text{ 分かけて添加した。添加終了後、pHを<math>1 \text{ NN a}$ OHで6. 0 にまた KBremion chock pAge 9. 4に調節し、(AZ-1) 1. 9 mgおよび (AZ-2) 2. 3

職を加えて75℃で60分熟成した。熟成後(SB-1)480職を添加し、更に添加後20分で温度を35℃にしたのち5分かけてKI4.1gを含む水溶液200gを等流量で添加した。

【0115】この乳剤に(CK-1)1. 1gを加えて 沈降させ水洗して脱塩したのち石灰処理ゼラチン6gを 加えて溶解し、さらに(ATR-3)の3.5%水溶液 1.5ccを加えpHを6.2に調節した。平均粒子サイ ズ 0.35μ m、変動係数15%の単分散沃臭化銀乳剤 (EB-1)550gを調製した。

[0116]

I液	
AgNO3	40 g
蒸留水	3 O O cc
II液	
KBr	36.4g
蒸留水	3 O O cc
III 液	
AgNO ₃	80 g
蒸留水	3 0 0 cc
IV液	
KBr	72.8g
蒸留水	5 5 0 cc

【0117】ハロゲン化銀乳剤(EG-1)の調製石灰処理イナートゼラチン24gを蒸留水に添加し、40℃で1時間かけて溶解後KBr1gを加え、これに1N硫酸を加えてpH3.2に調節した。

【0118】この液に (AGS-1) を10mg加えたのち I 液およびII液を、75℃にて同時に15分かけて添加した。添加終了後、pHを1NNaOHで6.0にまたKBrを加えてpAgを9.4に調節し、(AZ-1)2.5mgおよび (AZ-2)3.3mgを加えて75℃で60分熟成した。熟成後 (SG-1)480mgを添加し、更に添加後20分で温度を35℃にしたのち5分かけてKI4.1gを含む水溶液200gを等流量で添加した。

【0119】この乳剤に(CK-1)1. 1gを加えて 沈降させ水洗して脱塩したのち石灰処理ゼラチン6gを 加えて溶解し、さらに(ATR-3)の3. 5%水溶液 1. 5ccを加えpHを6. 2に調節した。平均粒子サイ ズ0. 20μ m、変動係数19%の単分散沃臭化銀乳剤 (EG-1)550gを調製した。

[0120]

I液

 AgNO3
 80g

 蒸留水
 600cc

 II液
 72.8g

 蒸留水
 600cc

 【0121】ハロゲン化銀乳剤(ER-1)の調製

脱イオンゼラチン24gを蒸留水に添加し、40℃で1時間かけて溶解後KBr1gを加え、これに1N硫酸を加えてpH3.2に調節した。

【0122】この液に (AGS-1) を10mg加えたのちI液およびII液を、75℃にて同時に15分かけて添加した。添加終了後、pHを1NNaOHで6.0にまたKBrを加えてpAgを9.4に調節し、(AZ-1)5.0mgおよび (AZ-2)6.5mgを加えて75℃で60分熟成した。熟成後 (SR-1)120mg、

(SR-6) 120mg、および(SR-2) 300mgを 添加し、更に添加後20分で温度を35℃にしたのち5 分かけてKI 4.1gを含む水溶液200gを等流量 で添加した。

【0123】この乳剤に (CK-1) 1. 1gを加えて

(AGS-1)

沈降させ水洗して脱塩したのち脱イオンゼラチン6gを加えて溶解し、さらに(ATR-3)の3.5%水溶液1.5ccを加えpHを6.2に調節した。平均粒子サイズ0.21 μ m、変動係数20%の単分散沃臭化銀乳剤(ER-1)550gを調製した。

[0124]

I液

AgNO₃ 80g 蒸留水 600cc

II液

 KBr
 72.8g

 蒸留水
 600cc

【0125】 【化13】

(AZ-1)

Na2S2O3 · 5 H2O

(AZ-2)

HAuCl4 · 4HzO

(ATR-1)

(SB-1)

$$CI \xrightarrow{(CH_z), 4SO_3 \Theta} CH \xrightarrow{S} CI \xrightarrow{CI} CI_{2H_3}, 3$$

【化14】

[0126]

$$(SG-1)$$

$$C_{zH_{S}}$$

$$CH=C-CH$$

$$CH_{z})_{z}SO_{3}\Theta$$

$$(CH_{z})_{z}SO_{3}H-N$$

$$(SR-1)$$

$$C_{2}H_{5}$$

$$CH=C-CH$$

$$C_{1}$$

$$(CH_{2})_{3}SO_{3}\Theta$$

$$(CH_{2})_{3}SO_{3}H\cdot N$$

$$(SR-2)$$

$$\begin{array}{c} C_2H_5 \\ C_1 - C_2H_5 \\ C_2 + C_3H_5 \\ C_3 + C_3H_$$

$$(SR-6)$$

$$\begin{array}{c} C_2H_5 \\ O \\ \oplus \\ CH=C-CH \\ \hline \\ (CH_2)_3SO_3\Theta \end{array}$$

$$\begin{array}{c} C_2H_5 \\ O \\ CH_2 \\ ASO_3Na \\ CH_2 \\ ASO_3Na \\ CH_3 \\ CH_3$$

【0127】 (CK-1) ポリ (イソプチレンーコーマレイン酸モノナトリウム)

【0128】固体分散物 (KB-1) の調製 300mlの分散コンテナ中に石灰処理ゼラチンの5.4 %水溶液110g、ポリエチレングリコール (平均分子 母2000) の5%水溶液20g、塩基プレカーサー (BG-1) 70gおよび直径0.5~0.75mmのガ

ラスピーズ200mlを加え、ダイノミルを用いて300 0r.p.m.にて30分間分散し、2N硫酸でpHを6.5 に調整して粒径1.0μm以下の塩基プレカーサー(B G-1)の固体分散(KB-1)を得た。

[0129] [化15]

 $\begin{array}{c|c} & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & \\ & & \\ & \\ & & \\ &$

【0130】顔料分散物 (GY-1) 調製 重合性化合物 (MN-1) 255gに、クロモファイン エロー5900 (商品名、大日精化 (株) 製) 45gを 混ぜ、アイガー・モーターミル (アイガー・エンジニア リング社製) を使用して毎分5000回転で1時間攪拌 し、分散物 (GY-1) を得た。

重合性化合物 (MN-1)

特開昭64-68339号合成実施例1記載の化合物 (日本化薬(株)製)

【0131】顔料分散物 (GM-1) の調製 重合性化合物 (MN-1) 270gに、ルビンF6B (商品名、ヘキスト社製) 30gを混ぜ、アイガー・モーターミル (アイガー・エンジニアリング社製) を使用 して毎分5000回転で1時間攪拌し、分散物 (GM-1) を得た。

【0132】顔料分散物 (GC-1) の調製 重合性化合物 (MN-1) 255gに、銅フタロシアニン (Cl Pigment 15) 45g、ソルスパース500 0 (ICI社製) 1.13g、ソルスパース24000 (ICI社製) 3.37gを混ぜ、アイガー・モーター ミル (アイガー・エンジニアリング社製) を使用して毎 分5000回転で1時間攪拌し、分散物 (GC-1) を 得た。

【0133】感光性組成物(PB-1)の調製 顔料分散物(GY-1)45gに(1P-4)の(SV -1)10%(重量%)溶液を9g、(RD-1)2. 3g、(RD-3)3.1g、(FF-3)の(SV-1)0.5%(重量%)溶液を2gおよび(ST-1) 0.5gを加え、溶解させて油性溶液を調製した。この 溶液にハロゲン化銀乳剤 【見B-1) 7.6 gと、固体分散物 (KB-1) 24 gを加え、60℃に保温しなが 5、40 φのディゾルバーを用いて毎分1000回転で5分間攪拌し、W/Oエマルジョンの感光性組成物 (PB-1) を得た。

【0134】感光性組成物 (PG-1) 調製 顔料分散物 (GM-1) 45gに (1P-4) の (SV-1) 10% (重量%)溶液を9g、 (RD-1) 2. 3g、 (RD-3) 3.1g、 (FF-3) の (SV-1) 0.5% (重量%)溶液を2gおよび (ST-1) 0.5gを加え、溶解させて油性溶液を調製した。この溶液にハロゲン化銀乳剤 (EG-1) 7.6gと、固体分散物 (KB-1) 24gを加え、60℃に保温しなが5、40φディゾルバーを用いて毎分10000回転で5分間攪拌し、W/Oエマルジョンの感光性組成物 (PG-1) を得た。

【0135】感光性組成物 (PR-1) 調製 類料分散物 (GC-1) 45gに、 (1P-4) の (S V-1) 10% (重量%) 溶液を9g、 (RD-1) 2.3g、 (RD-2) 3.1g、 (FF-3) の (S V-1) 0.5% (重量%) 溶液を2gおよび (ST-1) 0.5gを加え、溶解させて油性溶液を調製した。 【0136】この溶液にハロゲン化銀乳剤 (ER-1) 7.6gと、固体分散物 (KB-1) 24gを加え、5 0℃に保温しながら、40φディゾルバーを用いて毎分 1000回転で5分間攪拌し、W/Oエマルジョンの 感光性組成物 (PR-1) を得た。

【0137】 【化16】

【0140】感光性マイクロカプセル分散液(CB-1)の調製

本発明のポリマー(P-4)の10%水溶液2gに水を48g加え、混合した液を2N硫酸でpH5.0に調製した。この液にポリマー(2P-2)の10%水溶液50gを加え、60℃で30分間混合した。この混合液(2W-1)を上記感光性組成物(PB-1)に加え、40φディゾルバーを用いて60℃で毎分6000回転で20分間攪拌し、W/O/Wエマルジョンの状態の乳化物を得た。別に、メラミン31.5gにホルムアルデヒド37%水溶液を52.2gおよび水170.3gを加え、60℃に加熱し、30分間攪拌して透明なメラミン・ホルムアルデヒド初期縮合物の水溶液を得た。

【0141】この初期縮合物25gを、40℃に冷却した上記W/O/Wエマルジョンの状態の乳化物に加え、プロペラ羽根で1200rpm で攪拌しながら2N硫酸を用いてpH5.0に調整した。次いで、この液を30分

間で70℃になるよう昇温し、更に30分間攪拌した。これに尿素の40%水溶液を10.3g加え、2N硫酸でpHを3.5に合わせ、更に40分間、70℃での攪拌を続けた。この液を40℃に冷却後 κーカラギーナンの3%水溶液9gを加え、10分間攪拌し、2Nの水酸化ナトリウム水溶液を用いてpH6.5に調整して、感光性マイクロカプセル分散液(CB-1)を調製した。【0142】感光性マイクロカプセル分散液(CG-

1) 及び (CR-1) の調製

混合液(2W-1)に上記感光性組成物(PG-1)に加え、 40ϕ ディゾルバーを用いて60%で毎分6000回転で20分間攪拌し、W/O/Wエマルジョンの状態の乳化物を得た。次いで(CB-1)と同様にメラミンーホルムアルデヒド初期縮合物を用いることにより感光性マイクロカプセル分散液(CG-1)を調整した。【0143】次いで(CB-1)の調製において、(PB-1)の代わりに(PR-1)を用いる以外は同様に

して感光性マイクロカプセル分散液 (CR-1) を調製した。

ポリマー (2 P - 2) ポリビニルピロリドンK - 9 0 ポリマー (P C - 3) PVA KL318 (クラレ製、カルボ キシ変性 PVA)

【0144】髙沸点有機化合物分散物(HB-1)の調 ^配

60℃に保った、ポリマー(PC-3)の10%水溶液50gにドデシルベンゼンスルフォン酸ソーダの5%水溶液15gを混合し、更にMN-1を50g加えホモジェナイザー(日本精機製)で8000rpmで10分間分散した。

【0145】高沸点有機化合物カプセル(HC-1)の 謡製

高沸点有機化合物として (MN-1) 45gに、(1P-4)の(SV-1)10%(重量%)溶液を9g、(RD-1)1.6g、(RD-2)1.2g、(FF-3)の(SV-1)0.5%(重量%)溶液を2gを加え、溶解させて油性溶液(YU-1)を調製した。ポリマー(P-4)の15%水溶液4gに水を36g加え、混合した液を2N硫酸でpH5.0に調整した。こ

の液にポリマー(2P-2)の10%水溶液60gを加え、60℃で30分間混合した。この混合液に油性溶液性組成物(YU-1)に加え、40ヶディゾルバーを用いて60℃で毎分6000回転で20分間攪拌し、エマルジョンの状態の乳化物を得た。次いで感光性マイクロカプセル分散物(CB-1)の調製と同様にメラミンーホルムアルデヒド初期縮合物を用いて高沸点有機化合物カプセル分散液(HC-1)を調製した。

【0146】感光材料101の作成

本発明の感光性マイクロカプセル(CB-1)を15 g、(CG-1)を15 g、(CR-1)を15 gを取り出し、各々攪拌せずに40℃に加熱して溶解させた後混合し、界面活性剤(WW-1)の5%水溶液6.5 g、界面活性剤(WW-2)の1%水溶液8 g、(HB-1)分散物を7.5 g および(HC-1)分散物を7.5 g と加水15 ccを加え、40℃で10分間攪拌して混合した。この液を 44μ mメッシュの濾布で濾過してカプセル塗布液101を調製した。

【0147】 【化19】

(WW-1)

(WW-2)

$CH_2COOCH_2CH(C_2H_5)C_2H_5$ I $NaO_3S-CHCOOCH_2CH(C_2H_5)C_2H_5$

【0148】この塗布液を厚さ12μのポリエチレンテレフタレートフィルムにアルミニウムを蒸着した支持体のアルミニウム蒸着面に、エクストルージョン法により、塗布量100cc/m²となるよう塗布し、60℃で乾燥後、25℃、65%の条件で塗布面が内側になるよう巻き取り、感光材料101を作成した。

【0149】実施例2

ポリマー混合液 (2W-2) の調製

(CB-1) において、ポリマー (P-4) の代わりに (P-8) を用いる以外は同様にして混合液 (2W-2) を調製した。

【0150】感光性マイクロカプセル分散液(CB-2)、(CG-2)、及び(CR-2)の調製

(CB-1)、(CG-1)、(CR-1) において、 混合液(2W-1)の代わりに(2W-2)を用いる以 外は同様にして感光性マイクロカプセル分散液(CB-2)、(CG-2)、及び(CR-2)を調製した。 感光材料102の作成

感光材料101の作成おいて(CB-1)、(CG-1)、及び(CR-1)の代わりに(CB-2)、(C

G-2)、及び (CR-2) を用いる以外は同様にして 感光材料 102 を調製した。

【0151】実施例3

ポリマー混合液 (2W-3) の調製

(CB-1) において、ポリマー (P-4) の代わりに (P-15) を用いること以外は同様にして混合液 (2 W-3) を調製した。

【0152】感光性マイクロカプセル分散液 (CB-3)、(CG-3)、及び (CR-3) の調製 (CR-1) Rび (CR-1) にお

(CB-1)、(CG-1)、及び(CR-1)において、混合液(2W-1)の代わりに(2W-3)を用いる以外は同様にして感光性マイクロカプセル分散液(CB-3)、(CG-3)、及び(CR-3)を調製した。

感光材料103の作成

感光材料101の作成において(CB-1)、(CG-1)、及び(CR-1)の代わりに(CB-3)、(CG-3)、及び(CR-3)を用いる以外は同様にして感光材料103を調製した。

【0153】比較例1

ポリマー混合液 (2W-4) の調製

(CB-1) において、ポリマー (P-4) の代わりに (2P-5) を用いること以外は同様にして混合液 (2W-4) を調製した。

感光性マイクロカプセル分散液(CB-4)、(CG-4)、及び(CR-4)の調製

(CB-1)、(CG-1)、及び(CR-1) において、(P-4) の代わりに(2P-5) を用いる以外は同様にして感光性マイクロカプセル分散液(CB-4)、(CG-4)、及び(CR-4) を調製した。

(2P-5) ポリビニルベンゼンスルフィン酸カリウム 感光材料104の作成

感光材料101の作成において(CB-1)、(CG-1)、及び(CR-1)の代わりに(CB-4)、(CG-4)、及び(CR-4)を用いる以外は同様にして感光材料104を調製した。

比較例2

ポリマー混合液 (2W-5) の調製

(CB−1)において、ポリマー(P−4)の代わりに (2P−6)を用いること以外は同様にして混合液(2 W−5)を調製した。

感光性マイクロカプセル分散液 (CB-5)、(CG-

5) 、及び (CR-5) の調製

(CB-1)、(CG-1)、及び(CR-1)において、(P-4)の代わりに(2P-6)を用いる以外は同様にして感光性マイクロカプセル分散液(CB-5)、(CG-5)、及び(CR-5)を調製した。(2P-6)ポリ(ベンゼンスルフィン酸カリウムーコーアクリルアミドーコーNービニルピロリドン)

感光材料105の作成

感光材料101の作成において(CB-1)、(CG-1)、及び(CR-1)の代わりに(CB-5)、(CG-5)、及び(CR-5)を用いる以外は同様にして感光材料105を調製した。

【0154】ポリマー混合液の粘度と乳化分散物の平均 粒径の評価

表1に示すように本発明である疎水性基を有する繰返し 単位を有するポリマーで構成される実施例1、2、3、 はポリマー鎖中に前述の疎水性基を有する繰返し単位を 有しない比較例1、2に比べて低い液粘度で目的とする 粒径にすることができ、乳化工程において機械的エネル ギーが小さくてすむことがわかる。

[0155]

【表1】

表 1

混合液	*液粘度 (cp)	乳化物粒径 (μm)	本願との関係
ZW-1	4 8	9. 0	本発明
ZW-2	6 0	9. 5	"
zw-3	5 2	8. 9	"
ZW-4	150	13.4	比較例
zw-5	1 4 0	14.0	"

*B型粘度計使用 液温度60℃

【0156】画像評価

受像材料 (RS-1) の作製

界面活性剤(ポイズ520、花王(株)製)5.6g、および水354.4mlを攪拌混合したのち、分散機(商品名:ウルトラディスパーザー(LK-41型、ヤマト科学製)を用いて毎分8000回転で3分間分散した。この分散液52gと、10%ポリピニルアルコール(PVA-117、(株)クラレ製)水溶液40gとを混合し、さらに界面活性剤(WW-3)の1%水溶液4mlおよび水22mlを加え、受像層形成用塗布液を調製した。

【0157】この塗布液を秤量80g/m²の紙支持体

(JIS-P-8207により規定される繊維長分布として24メッシュ残分の重量%と42メッシュ残分の重量%と07によりな繊維長分布を量%との和が30万至60%であるような繊維長分布を有する原紙を用いて紙支持体 [特開昭63-186239号公報参照])上に65g/ m^2 となるように均一に塗布した後、60℃乾燥して受像材料 (RS-1)を作成した。

[0158]

【化20】

(WW - 3)

CH2COOCH2CH(C4H9)C2H5

NaO3S-CHCOOCH2CH(C4H9)C2H5

【0159】画像形成

色温度3100° Kに調節したハロゲンランプを用い、

黒色の銀像で濃度を連続的に0~4.0まで透過濃度が変化しているウェッジを通し5000lux、1秒の露光条件にて露光した。露光後すぐに、該感光材料の塗布された面の反対側を150℃に加熱したドラムに密着させて1.0秒間熱現像した。8秒後、受像材料(RS-1)と塗布面同士を重ね合わせて3.2cm/秒の速度で、径3cm、200kg/cm²(表面温度 65℃)の加圧ローラーに通し、通過後すぐに感光材料から受像材料

を剝離した。

【0160】表2に示すように感光材料104、及び105に比べ感光材料101、102、及び103で得られた画像は最低濃度部が非常に低く、又、斑点状の発色のない非常に優れた画像が得られた。

[0161]

【表2】

表 2

感光材料	乳化ポリマー	最髙濃度部	最低濃度部	本願との関係
101	P - 4	1. 40	0.08	本発明
102	P - 8	1. 39	0.07	"
103	P-15	1.41	0.09	"
104	2 P - 5	1. 42	0.40	比較例
105	2 P - 6	1.40	0.10	"

【0162】実施例4 感光性組成物 (PB-2) の調製

顧料分散物 (GY-1) 45gに (1P-1) の (SV-1) 10% (重量%) 溶液を9g、 (RD-3) 3.1g、 (FF-3) の (SV-1) 0.5% (重量%) 溶液を2gおよび (ST-1) 0.5gを加え、溶解させて油性溶液を調製した。この溶液にハロゲン化銀乳剤 (EB-1) 7.6gと、固体分散物 (KB-1) 24gを加え、60℃に保温しながら、40φのディゾルバーを用いて毎分10000回転で5分間攪拌し、W/Oエマルジョンの感光性組成物 (PB-2) を得た。

【0163】感光性マイクロカプセル分散液 (CB-7) の調製

ポリマー (P-4) の10%水溶液2gに水を48g加え、混合した液を2N硫酸でpH5.0に調製した。この液にポリマー (2P-2) の10%水溶液50gを加え、60℃で30分間混合した。この混合液を上記感光性組成物 (PB-2) に加え、40φディゾルバーを用いて60℃で毎分600回転で20分間攪拌し、W/O/Wエマルジョンの状態の乳化物を得た。別に、メラミン31.5gにホルムアルデヒド37%水溶液を52.2gおよび水170.3gを加え、60℃に加熱し、30分間攪拌して透明なメラミン・ホルムアルデヒド初期縮合物の水溶液を得た。

【0164】この初期縮合物25gを、40℃に冷却した上記W/O/Wエマルジョンの状態の乳化物に加え、プロペラ羽根で1200rpmで攪拌しながら2N硫酸を用いてpH5.0に調整した。次いで、この液を30分間で70℃になるよう昇温し、更に30分間攪拌した。これに尿素の40%水溶液を10.3g加え、2N

硫酸でpHを3.5に合わせ、更に40分間、70℃での攪拌を続けた。この液を40℃に冷却後κーカラギーナンの3%水溶液9gを加え、10分間攪拌し、2Nの水酸化ナトリウム水溶液を用いてpH6.5に調整して、感光性マイクロカプセル分散液(CB-7)を調製した。

【0165】還元剤固体分散物(KB-2)の調製300mlの分散コンテナ中に石灰処理ゼラチンの1%水溶液181g界面活性剤(WW-2)の1%水溶液18.8cc、還元剤(RD-1)30.2gおよび、直径0.5-0.75mmのガラスピーズ200mlを加え、ダイノミルをもちいて2000rpmにて20分間分散し、還元剤固体分散物(KB-2)を調製した。

【0166】感光材料107の作成

本発明の感光性マイクロカプセル(CB-7)を45gを取り出し、各々攪拌せずに40℃に加熱して溶解させた後混合し、界面活性剤(WW-1)の5%水溶液6.5g、界面活性剤(WW-2)の1%水溶液8g、(KB-2)分散物を3.5gと加水15ccを加え、40℃で10分間攪拌して混合した。この液を44μmメッシュの遮布で濾過してカプセル塗布液107を調製した。【0167】この塗布液を厚さ12μのポリエチレンテレフタレートフィルムにアルミニウムを蒸着した支持体のアルミニウム蒸着面に、エクストルージョン法により、塗布量100cc/m²となるよう塗布し、60℃で乾燥後、25℃、65%の条件で塗布面が内側になるよう巻き取り、感光材料107を作成した。

【0168】実施例5

感光性マイクロカプセル分散液(CB-8)の調製 (CB-5)の調整において、(P-4)の代わりに (P-8)を用いる以外は同様にして感光性マイクロカプセル分散液(CB-8)を調製した。

【0169】感光材料108の作成

感光材料107の作成において(CB-7)の代わりに(CB-8)を用いる以外は同様にして感光材料108を調製した。

比較例3

感光性マイクロカプセル分散液 (CB-9) の調製 (CB-7) において、 (P-4) の代わりに (2P-5) を用いる以外は同様にして感光性マイクロカプセル 分散液 (CB-9) を調製した。

【0170】感光材料109の作成

感光材料107の作成において(CB-7)の代わりに(CB-9)を用いる以外は同様にして感光材料109を調製した。

比較例4

感光性マイクロカプセル分散液(CB-10)の調製 (CB-7)において、(P-4)の代わりに(2P-6)を用いる以外は同様にして感光性マイクロカプセル 分散液(CB-10)を調製した。

【0171】感光材料110の作成

感光材料 107の作成において(CB-7)の代わりに(CB-10)を用いる以外は同様にし感光材料 110 を調製した。

【0172】画像形成

色温度 3100° Kに調節したハロゲンランプを用い、 黒色の銀像で濃度を連続的に $0\sim4$. 0まで透過濃度が 変化しいてるウェッジを通し5000 lux 、1秒の露光 条件にて露光した。 露光後すぐに、 該感光材料の塗布さ れた面の反対側を 150° に加熱したドラムに密着させ て1.00 では熱現像した。 80 を、受像材料(100 RS 100

と塗布面同士を重ね合わせて3.2 cm/秒の速度で、径3 cm、200 kg/cm² (表面温度 65℃)の加圧ローラーに通し、通過後すぐに感光材料から受像材料を剥離した。転写された受像紙にはポジ画像が得られ、X-lite 310で濃測した結果を表3に示す。

[0173]

【表3】

表3

感光材料	乳化ポリマー	最高濃度部	最低濃度部	本願との関係
107	P - 4	1.40	1. 32	本発明
108	P - 8	1. 39	1. 33	II.
109	2 P - 5	1. 42	0.40	比較例
110	2 P – 6	1.40	1.01	"

【0174】この場合、受像材料への着色はマイクロカプセル中の重合性化合物が重合していない場合に起こる。従って、上記評価法の場合、カプセルの緻密性が高い場合にはマイクロカプセル中にバインダー中に存在する還元剤が入ることがないので、重合が起こらず転写

後、受像紙上に高濃度を与え、一方緻密性が低い場合に は重合が進み受像紙上の着色は低濃度となる。表3の結 果から、本発明の乳化ポリマーが良好な緻密性を与える ことが明らかである。

【手続補正書】

【提出日】平成4年5月18日

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】0030

【補正方法】変更

【補正内容】

【0030】Dで表される単量体としては、たとえばアクリル酸エステル類、メタクリル酸エステル類、アクリルアミド類、ビニルエステル類、ビニルケトン類、アリル化合物、オレフィン類、ビニルエーテル類、Nービニルアミド類、ビニル異節環化合物、マレイン酸エステル類、イタコン酸エステル類、フ

マル酸エステル類、クロトン酸エステル類などがある。 更に具体的に挙げるならばたとえば次の様なものが挙げられる。メチルアクリレート、エチルアクリレート、ロープロピルアクリレート、nープチルアクリレート、secープチルアクリレート、ジエチレングリコールモノアクリレート、トリメチロールエタンモノアクリレート、1ープロモー2ーメトキシエチルアクリレート、pークロルフェニルアクリレート、メチルメタクリレート、エチルメタクリレート、nープチルメタクリレート、2ーヒドロキシエチルメタクリレート、テトラヒドロフリルメタクリレート、

【手続補正2】

【補正対象暬類名】明細叴

【補正対象項目名】0031

【補正方法】変更

【補正内容】

【0031】N-tert-ブチルアクリルアミド、ヘキシルアクリルアミド、オクチルアクリルアミド、エチルビニルエーテル、プロピルビニルエーテル、ブチルビニルエーテル、ピニルアセテート、ビニルプロピオネート、エチレン、プロピレン、1-ブテン、1-オクテン、イタコン酸ジオクチル、マレイン酸ジヘキシル、スチレン、メチルスチレ

ン、ジメチルスチレン、ベンジルスチレン、クロルメチルスチレン、クロルスチレン、ビニル安息香酸メチル、 ビニルクロルベンゾエート、アクリロニトリル、メタク リロニトリル、塩化ビニルなど。

【手続補正3】

【補正対象啓類名】明細啓

【補正対象項目名】0125

【補正方法】変更

【補正内容】

[0125]

【化13】

(AGS-1)

(AZ-1)

Na2S2O3 · 5H2O

(AZ-2)

(ATR-3)

HAuCl4 · 4 H2O

(SB-1)

$$CH = S$$

$$CH = S$$

$$CH = S$$

$$C1$$

$$C1$$

$$CH_2)_4SO_3 \Leftrightarrow (CH_2)_4SO_3H \cdot N(C_2H_5)_3$$

【手続補正4】

【補正対象書類名】明細書

【補正対象項目名】 0 1 5 5

【補正方法】変更

【補正内容】 【0155】 【表1】

表 1

混合液	*液粘度 (cp)	乳化物粒径(μm)	本願との関係
2 W - 1	4 8	9.0	本発明
2 W - 2	6 0	9.5	n,
2 W - 3	5 2	8. 9	"
2 W - 4	150	13.4	比較例
2 W - 5	1 4 0	14.0	<i>"</i>

*B型粘度計使用 液温度60℃

【手続補正5】
【補正対象皆類名】明細書
【補正対象項目名】0162
【補正方法】変更
【補正内容】
【0162】実施例4
感光性組成物(PB-2)の調製
額料分散物(GY-1)45gに(1P-4)の(SV

-1) 10% (重量%) 溶液を9g、(RD-3) 3. 1g、(FF-3)の(SV-1)0.5% (重量%) 溶液を2gおよび(ST-1)0.5gを加え、溶解させて油性溶液を調製した。この溶液にハロゲン化銀乳剤 (EB-1)7.6gと、固体分散物(KB-1)24 gを加え、60℃に保温しながら、40φのディゾルバーを用いて毎分1000回転で5分間攪拌し、W/Oエマルジョンの感光性組成物(PB-2)を得。