

Choose certainty.
Add value.

Report On

RF Exposure Assessment of the VECTRONIC Aerospace GmbH 60105 Survey VERTEX PLUS

FCC ID: XZ5VERTEXPLUS IC: 8020A-13604SURVEY

Document 75934743 Report 02 Issue 2

August 2016

Product Service

TÜV SÜD Product Service, Octagon House, Concorde Way, Segensworth North, Fareham, Hampshire, United Kingdom, PO15 5RL Tel: +44 (0) 1489 558100. Website: www.tuv-sud.co.uk

REPORT ON RF Exposure Assessment of the

VECTRONIC Aerospace GmbH 60105 Survey VERTEX PLUS

Document 75934743 Report 02 Issue 2

August 2016

PREPARED FOR VECTRONIC Aerospace GmbH

Carl-Scheele-Str. 12

Berlin 12489 Germany

PREPARED BY Kyn Merly

Ryan Henley Project Manager

APPROVED BY

Simon Bennett Authorised Signatory

DATED 31 August 2016

This report has been up-issued to Issue 2 to include the FCC and Industry Canada ID's.

CONTENTS

Section	n	Page No
1	REPORT SUMMARY	3
1.1	Introduction	4
1.2	Regional Requirements	5
1.3	Product Information	6
1.3.1	Technical Description	6
1.3.2	Supported Features	6
1.3.3	Antennas	6
1.4	Brief Summary of Results	
2	TEST DETAILS	g
2.1	Rationale for Assessment of the RF Exposure	10
2.2	Test Result Details	11
3	DISCLAIMERS AND COPYRIGHT	12
3.1	Disclaimers and Copyright	13

SECTION 1

REPORT SUMMARY

RF Exposure Assessment of the VECTRONIC Aerospace GmbH 60105 Survey VERTEX PLUS

1.1 INTRODUCTION

The information contained in this report is intended to show verification of the RF Exposure Assessment of the VECTRONIC Aerospace GmbH 60105 Survey VERTEX PLUS to the requirements of the applied test specifications.

Objective To perform RF Exposure Assessment to determine the

Equipment Under Test's (EUT's) compliance of the applied

rules.

Applicant VECTRONIC Aerospace GmbH

Manufacturer VECTRONIC Aerospace GmbH

Manufacturing Description Survey VERTEX PLUS

Model Number(s) 60105

Test Specification/Issue/Date CFR 47 Pt1.1310

Health Canada Safety Code 6

1.2 REGIONAL REQUIREMENTS

The table below shows the regional requirements that are referenced in this test report. A full list of the requirements is shown in Annex A.

Report Reference	Regional Requirement
FCC	CFR 47 Pt1.1310
IC	Health Canada Safety Code 6

1.3 PRODUCT INFORMATION

1.3.1 Technical Description

The Equipment under test was a VECTRONIC Aerospace GmbH 60105 Survey VERTEX PLUS. A full technical description can be found in the manufacturer's documentation.

All reported calculations were carried out on the relevant information supplied for the 60105 Survey VERTEX PLUS to demonstrate compliance with the applied test specification(s). The sample assessed was found to comply with the requirements of the applied rules.

1.3.2 Supported Features

The following radio access technologies and frequency bands are supported by the equipment under test.

Radio Access Technology	Satellite
Frequency Band	1611.25 MHz to 1618.75 MHz

1.3.3 Antennas

The following antennas are supported by the equipment under test.

No.	Model	Gain (dBi)
1	Ceramic Patch	3.51

1.4 BRIEF SUMMARY OF RESULTS

The wireless device described within this report has been shown to be capable of compliance with the basic restrictions related to human exposure to electromagnetic fields for both General Public and Occupational. The calculations shown in this report were made in accordance the procedures specified in the applied test specification(s).

Required Compliance Boundary (m)				
Occupational	General Population			
0.01	0.01			

Table 1 - Compliance Boundary Results

Product Service

Regional	Calculated I	Calculated RF exposure level at compliance boundary of 0.01 m							
Requirement	S Field (W/r	S Field (W/m²)		E Field (V/m)		H Field (A/m)			
	Result	Limit	Result	Limit	Result	Limit			
FCC*	0.0893	5.0000	N/A	N/A	N/A	N/A			
IC	0.8928	25.9106	18.3462	98.8360	0.0487	0.2622			

^{*} Requirement and Result in mW/cm²

Table 2 – Occupational Results

The calculations show that the EUT complies with the occupational exposure levels described in CFR 47 Pt1.1310 and Health Canada Safety Code 6 at the point of investigation, 0.01 m.

Regional	Calculated R	Calculated RF exposure level at compliance boundary of 0.01 m							
Requirement	S Field (W/m²)		E Field (V/m	E Field (V/m)		H Field (A/m)			
	Result	Limit	Result	Limit	Result	Limit			
FCC*	0.0893	1.0000	N/A	N/A	N/A	N/A			
IC	0.8928	4.0730	18.3462	39.1826	0.0487	0.1039			

^{*} Requirement and Result in mW/cm²

Table 3 – General Population Results

The calculations show that the EUT complies with the occupational exposure levels described in CFR 47 Pt1.1310 and Health Canada Safety Code 6 at the point of investigation, 0.01 m.

SECTION 2

TEST DETAILS

2.1 RATIONALE FOR ASSESSMENT OF THE RF EXPOSURE

The aim of the assessment report is to evaluate the compliance boundary for a set of given input power(s) according to the basic restrictions (directly or indirectly via compliance with reference levels) related to human exposure to radio frequency electromagnetic fields. The chosen assessment method to establish the compliance boundary in the far-field region is the reference method as defined in the relevant specifications.

The RF exposure assessment is based upon the following criteria:

The 60105 Survey VERTEX PLUS operates with the following transmitters active on the antenna ports shown in Section 1.3.3. For each transmitter, the Radio Access Technology (RAT), EIRP inclusive of antenna gain and duty cycle, gain of the antenna and lowest frequency of operation are shown as they contribute to the calculation of S Field, E field and H field values according to the following formulas.

The power flux (S Field):

$$S = \frac{PG_{(\theta,\phi)}}{4\pi r^2}$$

The electric field strength (E Field):

$$E = \frac{\sqrt{30PG}(\theta,\phi)}{r}$$

The magnetic field strength (H Field):

$$H = \frac{E}{\eta_o}$$

Where:

P = Average Power (W)

G = Antenna Gain (dBi)

r = Distance (cm) or (m)

 $\eta_{o} = 377$

2.2 TEST RESULT DETAILS

The frequencies shown in the tables below have been chosen based on the lowest possible frequency that the EUT can transmit.

Antenna Port	Tx No.	Ant No.	RAT	EIRP (W)	Duty Cycle (%)	Gain (dBi)	Frequency (MHz)	RF Exposure Level at compliance boundary of 0.01 m		pliance
								S Field (W/m²)	E Field (V/m)	H Field (A/m)
1	1	1	Satellite	0.001	0.5	3.51	1611.25	0.8928	18.3462	0.0487

Table 4 – Occupational Transmitter Summary

Antenna	Tx	Ant	RAT	EIRP	Duty Cycle	Gain	Frequency	RF Exposure	Level at com	npliance
Port	No.	No.		(W)	(%)	(dBi)	(MHz)	boundary of 0.01 m		
								S Field	E Field	H Field
								(W/m ²)	(V/m)	(A/m)
1	1	1	Satellite	0.001	0.5	3.51	1611.25	0.8928	18.3462	0.0487

Table 5 – General Population Transmitter Summary

SECTION 3

DISCLAIMERS AND COPYRIGHT

3.1 DISCLAIMERS AND COPYRIGHT

This report relates only to the actual item/items tested.

This report must not be reproduced, except in its entirety, without the written permission of TÜV SÜD Product Service

© 2016 TÜV SÜD Product Service

ANNEX A

REGIONAL REQUIREMENTS

Frequency Range (MHz)	S Field (mW/cm²)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)
0 - 0.3	-	-	-
0.3 - 3	100	614	1.63
3 - 30	900/f^2	1842/f	4.89/f
30 - 300	1	61.4	0.163
300 - 1500	f/300	-	-
1500 - 100000	5	-	-

Table A.1 – CFR 47 Pt1.1310 Occupational Limits

Frequency Range (MHz)	S Field (mW/cm²)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)
0 - 0.3	-	-	-
0.3 - 3	100	614	1.63
3 - 30	180/f^2	824/f	2.19/f
30 - 300	0.2	27.5	0.073
300 - 1500	f/1500	-	-
1500 - 100000	1	-	-

Table A.2 – CFR 47 Pt1.1310 General Population Limits

Frequency Range (MHz)	Power Density (W/m²)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)
10 - 20	10	61.4	0.163
20 - 48	44.72/f^0.5	129.8/f^0.25	0.3444/f^0.25
48 - 100	6.455	49.33	0.1309
100 - 6000	0.6455*f^0.5	15.60*f^0.25	0.04138*f^0.25
6000 - 150000	50	137	0.364

Table A.3 – Health Canada Safety Code 6 Occupational Limits

Frequency Range (MHz)	Power Density (W/m²)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)
10 - 20	2	27.46	0.0728
20 - 48	8.944/f^0.5	58.07/f^0.25	0.1540/f^0.25
48 - 300	1.291	22.06	0.05852
300 - 6000	0.02619*f^0.6834	3.142*f^0.3417	0.008335*f^0.3417
6000 - 15000	10	61.4	0.163

Table A.4 – Health Canada Safety Code 6 General Population Limits