	Recursion tree method
	Key Points
1)	Step by Step draw the returnion tree. find the time Complexity Using recurrence
	Nee.
	Second term in our recurrence rein become
4)	Keep drawing till we find a pattern
\$	The pattern is typically a A.P or G.P sever

	$n^{2} + 2(\frac{h}{2})^{2} + 4(\frac{h}{4})^{2} + 2(\frac{h}{2})^{2} + \cdots$
	to find upper bound lete assume this series will go infinite.
	$n^{2} + 2n^{2} + 4n^{2} + 8n^{2} + \cdots$
- 2	$\frac{n^2+n^2+n^2+n^2+\dots}{2}$
	$n^{2}\left(1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+$
	$n^2\left(\frac{1}{1-\chi}\right) = 2n^2$ $\frac{(5nR_2)}{1-8}$
	Time Complexity = $O(n^2)$ $C = 1, Y = 1$ $C = 1, Y = 1$
1 T(n) 2	$2(T(N_1)+N)$ No of nodes (0.5) $2^{\circ}=1 1: n=n$
	$\frac{n_{12}}{n_{12}} \qquad \frac{2}{2} = 2 \qquad \frac{2}{2} \frac{n_{12}}{n_{12}} = n$
	1/4 1/4 1/4 2° = 4 4(1/4) = n
	$\frac{h}{8}$ $\frac{9^3 = 8}{h}$ $\frac{8(\frac{1}{8}) = h}{1}$
7	$T\left(\frac{h}{2K}\right) = T(1)$

i . time lamplening = O(nlogn)

Put me value in lost K = log, n

T(n) = T(1)

Master Method (in divident form)

T(n) = a T(n/) + O (n (og Pn)

a 21, 671, K20 and Pis real no

1) If a 76", then T(n) = O(n logis)

2) If $a = b^n$ a) if l > -1 then $T(n) = O(n^{\log_2 a} \log n)$ b) if l < -1, then $T(n) = O(n^{\log_2 a} \log \log n)$ c) if l < -1, then $T(n) = O(n^{\log_2 a} \log \log n)$

Scanned with CamScanner

P - 2		
0	$T(n) = 2T(N_2) + h$ Logn	
	$\log 2^{-2} = K=1 , P=-1$	
-		
-	= O(n" log logn) = O(n log logn)	
_		
<u>Q</u>	$T(n) = 2T(n/1) + h$ $\log^2 n$	
	log2 = 1 = K=1 P=-2	
	- O(hK)	
	= Q(n)	
<u> </u>	$T_{(n)} = T_{(n)} + L_{n}^{2}$	
	$T(n) = T(\gamma_2) + n^2$	
	log 1 = 0 2 K = 2	
	$= \mathcal{O}(n^2)$	
		E

			//
39	0	$T(n) = 2t(n/2) + n^2(n/2)$	
N	0	$T(n) = 2 + (n/2) + n^2 (og^2h)$	
34	9	$T(n) = 4T(n/2) + n^3$ $logh$	
10			

		Assignment
	0	T(n) = 2T(n/n) + 1
	0	$T(n) = 2T(n/2) + 1$ 8 $T(n) = 8T(n/2) + n^2$ $T(n) = 2T(n/2) + n^2$ $T(n) = 2T(n/2) + n^2$ $T(n) = 2T(n/2) + (n\log n)^2$ $T(n) = 2T(n/2) + (n\log n)^2$
	9	In = 2T(n/) + n
P		Tow = uT (n) + /nlogn 2 logn
7		
7		
Th.		
7		
107		
P		
<u> </u>		