The following is a compiled review for the second exam according to the study guide.

2 Groups

A Definitions

Exercise 2.72 (Normalizer N(S)). Let G be a group and let $S \subseteq G$ be nonempty. The normalizer of S in G is $N(S) = N_G(S) = \{g \in G \mid gSg^{-1} = S\}...$

Exercise 2.73 (Commutator). Suppose G is a group and let G' be the subgroup generated by $\{g_1g_2g_1^{-1}g_2^{-1} \mid g_i \in G\}$, called the commutator subgroup of G...

Definition 2.1 (Torsion). Let G be an abelian group and let T be the set of all elements of G with finite order; T is a subgroup called the torsion subgroup.

Definition 2.20 (Homomorphism, Isomorphism, Automorphism). Let G and H be groups and let $\varphi: G \to H$ be a function.

- 1. If $\varphi(g_1g_2) = \varphi(g_1)\varphi(g_2)$ for all $g_1, g_2 \in G$, then φ is a homomorphism.
- 2. A bijective (one-to-one and onto) homomorphism is called an <u>isomorphism</u>. In that case, G amd H are said to be isomorphic and we write $G \cong H$.
- 3. If G = H, an isomorphism is also called an automorphism.

Definition 2.22 (Conjugation Map). Let G be a group and let $g, h \in G$. The <u>conjugation</u> $\underline{map}\ c_g: G \to G$ is defined by $c_g(h) = ghg^{-1}$.

Definition 2.24 (Image and Kernel). Let $\varphi: G \to H$ be a homomorphism between groups.

- 1. The <u>image</u> of φ is $\operatorname{Im} \varphi = \{ \varphi(g) \mid g \in G \}$.
- 2. The kernel of φ is $\ker \varphi = \{g \in G \mid \varphi(g) = e_H\}$.

Definition 2.27 (Cosets). Let G be a group and let H be a subgroup of G. Let $g \in G$.

- 1. The left coset of g with respect to H is $gH = \{gh \mid h \in H\}$.
- 2. If C is a left coset with respect to H and C = gH, then g is called a <u>representative</u> of C.
- 3. The set of left cosets is denoted G/H and is called the <u>quotient</u> of G by H.
- 4. The <u>index</u> of H in G is |G/H| and is denoted [G:H].

Definition 2.30 (Normality). Let G be a group, let H be a subgroup of G, and let $g \in G$.

- 1. The <u>right coset</u> of g with respect to H is $Hg = \{hg \mid h \in H\}$.
- 2. H is called normal if $gHg^{-1} \subseteq H$ for all $g \in G$ where $gHg^{-1} = \{ghg^{-1} \mid h \in H\}$.

Theorem 2.31 (Normality T.F.A.E.s). The following are equivalent:

- 1. H is normal.
- 2. $gHg^{-1} = H$ for all $g \in G$.
- 3. Left cosets are right cosets; i.e., gH = Hg for all $g \in G$.
- 4. $gH \subseteq Hg$ for each $g \in G$.
- 5. $Hg \subseteq gH$ for each $g \in G$.
- 6. The equation $(g_1H)(g_2H) = (g_1g_2)H$ gives a well-defined binary operation on G/H where $g_1, g_2 \in G$.
- 7. $ghg^{-1} \in H$ for all $g \in G, h \in H$.

Definition 2.32. Let G be a group and let H be a normal subgroup of G. Under the bilinear operation $(g_1H)(g_2H) = (g_1g_2)H$ for $g_1, g_2 \in G$, G/H is a group and is called the <u>quotient</u> group or factor group.

Exercise 2.151. Let N and H be groups along with a homomorphism $\varphi: H \to \operatorname{Aut}(N)$. For $n \in N$ and $h \in H$, write $\varphi_h(n)$ for $(\varphi(h))(n)$. Define the <u>semidirect product</u> of N and H as

$$N \rtimes H = \{(n,h) \mid n \in N, h \in H\}$$

with a group law given by

$$(n_1, h_1)(n_2, h_2) = (n_1\varphi_{h_1}(n_2), h_1h_2)\dots$$

- **B** Book Proofs
- C Homework Exercises
- D Homework Proofs
- E New Exercises