Lecture 3 – DNS, Network Configurations

COMP1002 (Cybersecurity and Networks)

Outline

- Part 1: Application Layer DNS
- Part 2: Network Configurations based on CISCO devices

Part 1: Applications Layer - DNS

(Chapter 2 of the Textbook)

DNS: Domain Name System

people: many identifiers:

- SSN, name, passport # Internet hosts, routers:
 - IP address (32 bit) used for addressing datagrams
 - "name", e.g.,
 www.yahoo.com used by humans
- Q: how to map between IP address and name, and vice versa?

Domain Name System:

- distributed database implemented in hierarchy of many name servers
- application-layer protocol: hosts, name servers communicate to resolve names (address/name translation)

DNS: services, structure

DNS services

- hostname to IP address translation
- host aliasing
 - canonical, alias names
- mail server aliasing
- load distribution
 - replicated Web servers: many IP addresses correspond to one name

why not centralize DNS?

- single point of failure
- traffic volume
- distant centralized database
- maintenance

A: doesn't scale!

DNS: a distributed, hierarchical database

client wants IP for **www.amazon.com**; Ist approximation:

- client queries root server to find com DNS server
- client queries .com DNS server to get amazon.com DNS server
- client queries amazon.com DNS server to get IP address for www.amazon.com

DNS: root name servers

- contacted by local name server that can not resolve name
- root name server:
 - contacts authoritative name server if name mapping not known
 - gets mapping
 - returns mapping to local name server

TLD, authoritative servers

top-level domain (TLD) servers:

- responsible for com, org, net, edu, etc. and all top-level country domains, e.g.: uk, fr, ca, jp
- Network Solutions maintains servers for .com TLD
- Educause (sole registrar) for .edu TLD

authoritative DNS servers:

- organization's own DNS server(s), providing authoritative hostname to IP mappings for organization's named hosts
- can be maintained by organization or service provider

Local DNS name server

- does not strictly belong to hierarchy
- each ISP (residential ISP, company, university) has one
 - also called "default name server"
- when host makes DNS query, query is sent to its local DNS server
 - has local cache of recent name-to-address translation pairs (but may be out of date!)
 - acts as proxy, forwards query into hierarchy

DNS name resolution example

 host at cis.poly.edu wants IP address for gaia.cs.umass.edu

iterated query:

- contacted server replies with name of server to contact
- "I don't know this name, but ask this server"

root DNS server

DNS name resolution example

recursive query:

- puts burden of name resolution on contacted name server
- heavy load at upper levels of hierarchy?

root DNS server

DNS: caching, updating records

- once (any) name server learns mapping, it caches mapping
 - cache entries timeout (disappear) after some time (TTL)
 - TLD servers typically cached in local name servers
 - thus root name servers not often visited
- cached entries may be out-of-date (best effort name-to-address translation!)
 - if name host changes IP address, may not be known Internet-wide until all TTLs expire

NSLOOKUP - I

- Nslookup uses "resolver" software
- Allows you to make DNS queries and see responses

```
U:\>nslookup www.google.co.uk
Server: ils022.uopnet.plymouth.ac.uk
Address: 141.163.201.222
Non-authoritative answer:
        www.google.co.uk
Name:
Addresses:
           2a00:1450:4009:80e::2003
          216.58.212.99
U:\>nslookup -type=NS google.co.uk
Server: ils022.uopnet.plymouth.ac.uk
Address: 141.163.201.222
Non-authoritative answer:
google.co.uk
               nameserver = ns1.google.com
google.co.uk
                nameserver = ns2.google.com
google.co.uk
               nameserver = ns4.google.com
google.co.uk
                nameserver = ns3.google.com
ns1.google.com internet address = 216.239.32.10
               AAAA IPv6 address = 2001:4860:4802:32::a
ns1.google.com
ns2.google.com
               internet address = 216.239.34.10
ns2.google.com AAAA IPv6 address = 2001:4860:4802:34::a
ns4.google.com internet address = 216.239.38.10
ns4.google.com
               AAAA IPv6 address = 2001:4860:4802:38::a
ns3.google.com
               internet address = 216.239.36.10
               AAAA IPv6 address = 2001:4860:4802:36::a
ns3.google.com
```

NSLOOKUP-2

```
C:\Users\lsun>nslookup www.plymouth.ac.uk
Server: CENT-0-007.uopnet.plymouth.ac.uk
Address: 10.7.4.7
Non-authoritative answer:
        www.plymouth.ac.uk
Name:
Address: 37.128.134.101
C:\Users\lsun>ping www.plymouth.ac.uk
Pinging www.plymouth.ac.uk [37.128.134.101] with 32 bytes of data:
Reply from 37.128.134.101: bytes=32 time=8ms TTL=52
Ping statistics for 37.128.134.101:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 8ms, Maximum = 8ms, Average = 8ms
C:\Users\lsun>nslookup 37.128.134.101
Server: CENT-0-007.uopnet.plymouth.ac.uk
Address: 10.7.4.7
Name: www.plymouth.ac.uk
Address: 37.128.134.101
```

NSLOOKUP - 3

```
PS C:\Users\lsun> nslookup microsoft.com
Server: bthub
Address: 192.168.1.254
Non-authoritative answer:
Name: microsoft.com
Addresses: 20.103.85.33
         20.53.203.50
         20.112.52.29
         20.84.181.62
         20.81.111.85
PS C:\Users\lsun> nslookup -type=NS microsoft.com
Server: bthub
Address: 192.168.1.254
Non-authoritative answer:
microsoft.com nameserver = ns2-39.azure-dns.net
microsoft.com nameserver = ns3-39.azure-dns.org
microsoft.com nameserver = ns4-39.azure-dns.info
microsoft.com
               nameserver = ns1-39.azure-dns.com
PS C:\Users\lsun>
PS C:\Users\lsun> nslookup -type=mx microsoft.com
Server: bthub
Address: 192.168.1.254
Non-authoritative answer:
microsoft.com MX preference = 10, mail exchanger = microsoft-com.mail.protection.outlook.com
PS C:\Users\lsun>
```

NSLOOKUP - 4

```
PS C:\Users\lsun> nslookup microsoft.com
Server:
         bthub
Address: 192.168.1.254
Non-authoritative answer:
        microsoft.com
Name:
Addresses: 20.84.181.62
          20.53.203.50
          20.103.85.33
          20.112.52.29
          20.81.111.85
PS C:\Users\lsun> nslookup microsoft.com 8.8.8.8
Server: dns.google
Address: 8.8.8.8
Non-authoritative answer:
Name:
         microsoft.com
Addresses: 20.112.52.29
          20.81.111.85
          20.84.181.62
          20.103.85.33
          20.53.203.50
PS C:\Users\lsun>
```

Query a public DNS server (e.g. 8.8.8.8) to get the answer

DNS records

DNS: distributed database storing resource records (RR)

RR format: (name, value, type, ttl)

type=A

- name is hostname
- value is IP address

type=NS

- name is domain (e.g., foo.com)
- value is hostname of authoritative name server for this domain

type=CNAME

- name is alias name for some "canonical" (the real) name
- www.ibm.com is really servereast.backup2.ibm.com
- value is canonical name

<u>type=MX</u>

 value is name of mailserver associated with name

DNS protocol, messages

query and reply messages, both with same message format

message header

- identification: I 6 bit # for query, reply to query uses same #
- flags:
 - query or reply
 - recursion desired
 - recursion available
 - reply is authoritative

,				
flags				
# answer RRs				
# additional RRs				
le # of questions)				
able # of RRs)				
authority (variable # of RRs)				
ariable # of RRs)				

DNS protocol, messages

Question

You click on a link to obtain a web page. To obtain the IP address of the server, two DNS servers are visited. Given that RTT₀=Ims; $RTT_1 = 16ms$; RTT_{HTTP}=23ms. How long does it take from when the client clicks on the link until the client receives the object?

Part 2: Network Configurations based on Cisco Devices

Network Configurations

- Some Network Background (CCNA1 Chapter 1)
 - Network Components
 - Network Topology
 - LANs and WANs
 - internet and the Internet
- Basic Switch and End Devices Configuration (Chapter 2)
 - Cisco IOS
 - IOS configuration
 - Addressing

Network components

Network components

Topology - physical/logical

LANs and WANs

internet and the Internet

- internet a collection of interconnected networks, providing a range of communication services
- (the) Internet the largest internet in place, spanning over the entire globe
- a worldwide collection of interconnected networks (internetworks or internet for short), cooperating with each other to exchange information using common standards

Cisco IOS

- Provides devices with network services
 - Basic routing and switching functions
 - Reliable and secure access to resources
 - Network scalability
- Typically accessed through a Command Line Interface (CLI)
- IOS (Internetworking Operating System) single file (few MB in size)
 - stored in the semi-permanent memory flash
 - Content maintained when rebooted
 - May be erased
- IOS loaded into RAM at each reboot

IOS functions

- Providing network security
- IP addressing of virtual and physical interfaces
- Enabling interface-specific configurations to optimize connectivity of the respective media
- Routing
- Enabling quality of service (QoS) technologies
- Supporting network management technologies

Accessing IOS

- Console (CTY line)
 - Using a low speed serial connection
 - initial configuration, disaster recovery, troubleshooting, password recovery
 - Physical security may not require a password to connect
- Telnet or SSH (VTY line)
 - Require active networking services
 - Avoid telnet no encryption, password in clear
- AUX port
 - Used via a telephone connection
 - Can be used locally, similar to CTY
 - Used only when CTY fails

IOS modes

```
User EXEC Command-Router>
ping
show (limited)
enable
etc...
Privileged EXEC Commands-Router#
all User EXEC Commands
debug commands
reload
                  Global Configuration Commands-Router(config)#
configure
                  hostname
etc..
                  enable secret
                  ip route
                                                 Interface Commands-Router(config-if)#
                  interface ethernet
                             serial
                                                 ip address
                             bri
                                                 ipx network
                                                 encapsulation
                             etc.
                                                 shutdown/ no shutdown
                                                 etc..
                                                 Routing Engine Commands-Router(config-router)#
                  router
                             rip
                                                 network
                             ospf
                                                 version
                             eigrp
                                                 etc...
                  line
                             vty
                                                 Line Commands-Router(config-line)#
                             console
                                                 password
                                                 login
                             etc.
                                                 modem commands
                                                 etc..
```

IOS primary modes

User EXEC Mode

Limited examination of router. Remote access.

Switch>
Router>

Privileged EXEC Mode

Detailed examination of router,
Debugging and testing. File
manipulation. Remote access.
Switch#
Router#

Global Configuration Mode

Global configuration commands.

Switch(config)# Router(config)#

Other Configuration Modes

Specific service or interface configurations.

Switch(config-)# Router(config-)#

Navigating configuration modes

IOS commands

When describing the	use of commands,	we generally use these
conventions.		

Convention	Description
boldface	Boldface text indicates commands and keywords that you enter literally as shown.
italics	Italic text indicates arguments for which you supply values.
[x]	Square brackets indicate an optional element (keyword or argument).
{x}	Braces indicate a required element (keyword or argument).
[x {y z}]	Braces and vertical lines within square brackets indicate a required choice within an optional element.

Context-sensitive help

Command syntax help

Switch#>clock set
% Incomplete command.
Switch#clock set 19:50:00
% Incomplete command.

The IOS returns a help message indicating that required keywords or arguments were left off the end of the command.

```
Switch#c % Ambiguous command: 'c'
```

The IOS returns a help message to indicate that there were not enough characters entered for the command interpreter to recognize the command.

```
Switch#clock set 19:50:00 25 6
% Invalid input detected at '^'
marker.
```

The IOS returns a "^" to indicate where the command interpreter can not decipher the command.

IOS examination commands

Getting basic

Hostnames

Limiting access

Saving configurations

Hostnames

Configure the switch hostname to be 'Sw-Floor-1'.

Switch# configure terminal Enter configuration commands, one per line. End with CNTL/Z. Switch(config)# hostname Sw-Floor-1 Sw-Floor-1(config)#

You successfully configured the switch hostname.

Passwords

Console password - console connection

```
Switch(config) #line console 0
Switch(config-line) #password password
Switch(config-line) #login
```

Enable password - privileged EXEC mode

Router(config) #enable password password

Enable secret - privileged EXEC mode (encrypted)

Router (config) #enable secret password

VTY password – telnet access

```
Router(config) #line vty 0 4
Router(config-line) #password password
Router(config-line) #login
```

- Service password-encryption
 - Encrypt the password stored in the config file

Router(config) #service password-encryption

MOTD banner

Managing configuration files

```
copy running-config startup-config
copy running-config tftp
erase startup-config
```

 Copy-paste using the terminal show running-config copy-paste

Addressing a device

Configuring router interfaces

Ethernet

```
Router(config)#interface FastEthernet 0/0
Router(config-if)#ip address ip_address netmask
Router(config-if)#no shutdown
```

Serial

```
Router(config) #interface Serial 0/0/0
Router(config-if) #ip address ip_address netmask
Router(config-if) #clock rate 56000
Router(config-if) #no shutdown
```

Testing configuration

- Ping loopback, local, remote interfaces
- Traceroute remote interfaces

S1# show ip inter	face brief				
Interface	IP-Address	OK?	Method	Status	Protocol
FastEthernet0/1	unassigned	YES	manual	up	up
FastEthernet0/2	unassigned	YES	manual	up	up
<output omitted=""></output>					
Vlan1	192.168.10.2	YES	manual	up	up
You are now on S2. E	inter the command	to veri	ry the inte	mace config	uration on 52
		to veri	ry the inte	rrace config	uration on 52
S2# show ip inter		OK?		Status	
S2# show ip inter Interface	face brief IP-Address		Method	250 IIIIII	
S2# show ip inter Interface FastEthernet0/1	face brief IP-Address unassigned	OK?	Method manual	Status	Protocol
S2# show ip inter Interface FastEthernet0/1 FastEthernet0/2	face brief IP-Address unassigned	OK? YES	Method manual	Status up	Protocol up
You are now on S2. E S2# show ip inter Interface FastEthernet0/1 FastEthernet0/2 <output omitted=""> Vlan1</output>	face brief IP-Address unassigned	OK? YES YES	Method manual	Status up	Protocol up

Configure SVI

 Switch Virtual Interface – used for accessing the switch for configuration

```
Switch#configure terminal
Switch(config)#interface vlan 1
Switch(config-if)#ip address 192.168.1.10 255.255.255.0
Switch(config-if)#no shutdown
Switch(config-if)#exit
Switch(config)#ip default-gateway 192.168.1.1
```

Labs

- 2.9.1 Basic switch and end device configuration Packet tracer
 - Login onto <u>www.netacad.com</u>
 - Download packet tracer https://www.netacad.com/portal/resources/packet-tracer