Segurança em Computação Trabalho Individual III

João Paulo Taylor Ienczak Zanette 30 de abril de 2019

Parte 1. Introdução a PGP/GPG

- 1. Criar certificado PGP. Obs: salvar a chave privada e não esquecer senha. Faça um backup da sua chave privada; Publicar a chave pública em um repositório GPG. Exemplos:
 - Keyserver da RNP (use o Google para encontrar o site)
 - MIT PGP Public Key Server
 - Keyserver PGP.com

Resultado Esperado:

Certificado do aluno publicado no repositório PGP.

Parte 2. Revogação de Certificado

2. Crie um novo certificado GPG para este trabalho individual (Não use o seu certificado pois este novo será revogado). Coloque esse certificado de testes no servidor GPG. Depois verifique seu status. Então, crie um certificado de revogação e revogue o certificado de testes.

Resultado Esperado:

f Z Faça um relatório do que você fez, incluindo o Key
ID do certificado revogado.

Primeiramente, foi criada a chave GPG exatamente da mesma forma que foi feito para a Parte 1, ou seja, a partir da linha de comando foi executado:

```
$ gpg --full-generate-key # Geração da chave
$ gpg --armor --export 5B1B5A3BD6CEE72D # Mostrar a chave pública no terminal
```

Em seguida, no site do servidor de chaves da RNP foi adicionada, podendo ser buscada em http://keyserver.cais.rnp.br:11371/ utilizando o ID (0x5B1B5A3BD6CEE72D). Em seguida, foi gerado um certificado de revogação, importado e enviado ao servidor de chaves da RNP:

```
$ gpg -o revokee.asc --gen-revoke --armor 5B1B5A3BD6CEE72D
$ gpg --import revokee.asc
$ gpg --keyserver keyserver.cais.rnp.br --send-keys 5B1B5A3BD6CEE72D
```

Depois de feitos todos esses passos, ao se tentar ver sobre as chaves guardadas localmente, é possível ver que a revogação foi satisfeita:

```
$ gpg --list-secret-keys --keyid-format LONG
/home/jptiz/.gnupg/pubring.kbx
     rsa2048/C598C13DF4964793 2019-04-26 [SC]
      48F1744C8CCB4C04A7A6F2B9C598C13DF4964793
uid
                    [ultimate] João Paulo Taylor Ienczak Zanette (For educational
   purposes) <jpaulotiz@gmail.com>
      rsa2048/B11690E2A8DDA995 2019-04-26 [E]
     rsa2048/5B1B5A3BD6CEE72D 2019-04-26 [SC] [revoked: 2019-04-26]
     F6055CCED33CE15CC2A8065A5B1B5A3BD6CEE72D
                    [ revoked] João Paulo Taylor Ienczak Zanette (More educational
nid
→ purpooooooses) <jpaulotiz@gmail.com>
     rsa2048/1DFE185BDCAE898A 2019-04-29 [SC]
sec
      BC50CCDA2D2DBAD0302EFEAD1DFE185BDCAE898A
                    [ultimate] João Paulo Taylor Ienczak Zanette (Forgot last password :P
uid
   For studying purposes.) <jpaulotiz@gmail.com>
      rsa2048/79D4F9460C7144E8 2019-04-29 [E]
ssb
```

Também é possível ver a confirmação acessando http://keyserver.cais.rnp.br:11371/ (Figura 1).

Search results for '0x5b1b5a3bd6cee72d'

Date

```
Type bits/keyID
                                      User ID
pub 2048R/<u>D6CEE72D</u> 2019-04-26 *** KEY REVOKED *** [not verified]
           João Paulo Taylor Ienczak Zanette (More educational purpooooooses) <jpaulotiz@gmail.com>
Fingerprint=F605 5CCE D33C E15C C2A8 065A 5B1B 5A3B D6CE E72D
```

Figura 1: Confirmação da revogação do certificado 5B1B5A3BD6CEE72D.

Parte 3. Assinatura e Revogação de Assinatura

3. Pratique a revogação de assinaturas e certificados GPG. Assine um certificado qualquer GPG (de outra pessoa). E envie esse certificado para o servidor GPG. Depois verifique o status do certificado. E então, revogue a assinatura que você fez. Confira o resultado no servidor GPG. □ Faça um relatório do que você fez, incluindo o KeyID do certificado cuja assinatura você revogou.

- 1. Foi importada a chave de "Adriano Tosetto" pelo servidor do RNP (salva em um arquivo .asc e então importada com gpg --import <arquivo>.asc);
- 2. Em seguida, foram executados os comandos para assinar e gerar um arquivo de assinatura:

```
$ gpg --local-user 1DFE185BDCAE898A --sign-key adriano.rafael10@hotmail.com
$ gpg --output ~/tosetto-signed.key --export --armor adriano.rafael10@hotmail.com
```

- 3. O conteúdo do arquivo tosetto-signed.key foi enviado ao servidor da RNP como uma chave, confirmando a assinatura (Figura 2);
- 4. A assinatura foi revogada localmente utilizando:

5. Após isso, é acessando o site é possível ver que a assinatura foi revogado (Figura 3).

```
        uid
        Adriano
        Tosetto
        <adriano</th>
        rafael100hotmail.com>

        sig
        sig3
        1F0CC988
        2019-04-27
        2021-04-26
        [selfsig]

        sig
        sig
        0FZEFC5D
        2019-04-27
        Gustavo Olegario <gustavo-olegario@hotmail.com>

        sig
        sig
        779FZB26
        2019-04-29
        Theo Regis (Graduando de CCO - UFSC) <theo.regis@grad.ufsc.br>

        sig
        big
        DCAES98A
        2019-04-30
        João Paulo Taylor Ienczak Zanette (Forgot last password :P For studying purposes.) <jpaulotiz@gmail.com</td>

        uat
        [contents omitted]
        sig
        303
        1F0CC988
        2019-04-30
        2021-04-26
        [selfsig]

        sub
        3072N/FC46CCSF
        2019-04-27
        2021-04-26
        []
```

Figura 2: Certificado de Adriano Tosetto assinado.

```
    uid
    Adriano
    Tosetto
    <adriano.rafael10@hotmail.com>

    sig
    sig3
    1F0CC988
    2019-04-27
    2021-04-26
    [selfsig]

    sig
    sig
    0F7EFC5D
    2019-04-27
    Gustavo Olegario < gustavo-olegario@hotmail.com>

    sig
    sig
    779F2826
    2019-04-29
    Theo Regis (Graduando de CCO - UFSC) < theo.regis@grad.ufsc.br>

    sig
    revok
    DCAE898A
    2019-04-30
    João Paulo Taylor Ienczak Zanette (Forgot last password :P For studying purposes.) < jpaulotiz@gmail.com>
```

Figura 3: Certificado de Adriano Tosetto com assinatura revogada.

Parte 4. Anel de Chaves (Keyring)

4. O que é o anel de chaves privadas? Como este está estruturado? Na sua aplicação GPG onde este anel de chaves é armazenado? Quem pode ser acesso a esse porta chaves?

O anel de chaves é quem organiza as chaves guardadas em um servidor (local ou remoto), funcionando como um chaveiro. Esse anel é armazenado como uma lista sequencial de chaves em um arquivo, em que cada chave contém:

Carimbo de tempo: quando o par foi gerado;

ID da chave: 64 bits mais significativos da chave pública;

Chave pública: a parte pública da chave;

Chave privada: a parte privada da chave, criptografada com uma senha;

ID do usuário: geralmente o e-mail do usuário.

O chaveiro padrão fica localizado na pasta \${HOME}/.gnupg. Qualquer um possui acesso ao chaveiro, porém apenas quem tiver a senha pode ter acesso à chave privada.

Parte 5. Sobre assinatura local e remota

5. Qual a diferença entre assinar uma chave local e assinar no servidor?

A disponibilidade da assinatura: uma chave local possui assinatura conhecida apenas localmente, enquanto em um servidor há, geralmente, uma replicação da assinatura em outros servidores.

Parte 6. Banco de dados de confiabilidade

6. O que é e como é organizado o banco de dados de confiabilidade?

O banco de dados de confiabilidade é simplesmente um arquivo (.db) que contém uma lista de quais chaves o usuário dono do chaveiro possui confiança.

Parte 7. Sub-chaves

7. O que são e para que servem as sub-chaves?

São como chaves normais, porém ligadas a um par de chaves mestre. Servem tanto para assinatura quanto criptografia, com a vantagem de poderem ser revogadas independentemente da chave mestre e sendo guardadas separadamente.

Parte 8. Representação própria em um certificado

8. Coloque sua foto (ou uma figura qualquer) que represente você em seu certificado GPG.

OK.

Parte 9. Servidor de chaves

9. O que é preciso para criar e manter um servidor de chaves GPG, sincronizado com os demais servidores existentes?

É preciso utilizar o protocolo SKS. Para sincronizar automaticamente em um servidor, pode-se criar um processo daemon, configurar quais os outros servidores SKS, fazer o download dos arquivos de banco de dados (e importá-los) deles, configurar o servidor web (com NGinx, por exemplo) que irá fazer a sincronização e então iniciar o daemon.

Parte 10. Arquivos sigilosos

10. Dê um exemplo de como tornar sigiloso um arquivo usando o GPG. Envie esse arquivo para um colega e que enviar para você outro arquivo cifrado. Você deve decifrar e recuperar o conteúdo original.

Basta criptografar o arquivo utilizando alguma chave pública válida do destinatário. Ao mandar um arquivo criptografado para o Adriano Tosetto, foi possível que ele descriptografasse o arquivo com uma chave dele e obtivesse o conteúdo original.

Parte 11. Assinatura de arquivos

11. Mostre um exemplo de como assinar um arquivo (assinatura anexada e outro com assinatura separada), usando o GPG. Envie uma mensagem assinada para um colega. Esse colega deve enviar para você outra mensagem assinada. Verifique se a assinatura está correta.

Um arquivo de texto foi enviado a Adriano Tosetto, decriptografado e com a resposta recebida corretamente (Figura 4).

```
tosetto@tosetto-Inspiron-3437:~$ gpg --output Desktop/doc.txt --decrypt Desktop/
for-tosetto-only.gpg
gpg: encrypted with 3072-bit RSA key, ID 97AB19DBFC46CC8F, created 2019-04-27
"Adriano Tosetto <adriano.rafael10@hotmail.com>"
tosetto@tosetto-Inspiron-3437:~$ cat Desktop/doc.txt
Mensagem especial para você. Não divulgar!
```

Figura 4: Arquivo decriptografado.