Appunti di Analisi I

Analisi Matematica - Informatica - 23/24

Federico Zotti

2023-10-20

Indice

Insiemi	4
Notazione	4
Prodotto cartesiano	4
Esempio	5
Insieme delle parti	5
Esempio	5
Funzioni	5
Funzioni Iniettive e Suriettive	6
Immagine e controimmagine	7
Numeri Reali	7
Insiemi numerici	7
Proprietà dei numeri reali	7
Algebriche	8
Di Ordinamento	8
Assioma di Continuità	9
Sottoinsiemi dei reali	9

Indice

Interiore, Superiore, Massimo e Minimo	9
Estremo superiore ed Estremo inferiore	10
Caratterizzazione di inf e sup	11
Funzioni reali	12
Grafici, Iniettività e Suriettività	12
Funzioni elementari	13
Potenze pari	13
Potenze dispari	14
Esponenziali	14
Funzioni trigonometriche	15
Seno	15
Coseno	15
Tangente	16
Trasformazione di grafici	16
Successioni	16
Terminologia	16
Succesioni a valori reali	17
Limite di una successione	17
Teorema di unicità del limite	18
Limitatezza delle successioni convergenti	18
Teorema di permanenza del segno	19
Retta reale estesa	19
Teoremi algebrici	20
Teoremi di confronto	20
Tecniche di calcolo dei limiti	21
Disuguaglianza di Bernoulli	22
Dimostrazione teorema del confronto a 2	22

Indice

Criterio del rapporto & Criterio della radice	23
Criterio del rapporto	23
Criterio della radice	23
Fattoriale	24
Gerarchia degli infiniti	24
Criterio del rapporto-radice	25
Dimostrazione del criterio della radice	27
Principio di induzione	27
Disuguaglianza di Bernoulli (dimostrazione)	28
Coeff. binomiali	29
Successioni monotone	29
Successioni per ricorrenza	31
Serie numeriche	33
Definizione SBAGLIATA	33
Definizione CORRETTA	34
Carattere di una serie (comportamento)	34
Serie telescopiche	34
Serie geometriche	35
Strumenti per lo studio delle serie	36
Teoremi algebrici	36
Condizione necessaria	37
Serie note	37
Serie a termini di segno costante	37

Insiemi

Insiemi

Notazione

Per elenco: Prima operazione, poi insieme di partenza

$$A = \{ 1, 2, 3, 4, 5 \}$$

$$B = \{ n^2 \mid n \text{ naturale } \}$$

Per proprietà: Prima insieme che scelgo, poi la proprietà che verifico

$$C = \{ n \text{ naturale } | n \text{ è un quadrato } \}$$

Altri simboli:

$$\label{eq:appartiene} \begin{split} \operatorname{appartiene} &\to a \in A \\ \operatorname{non appartiene} &\to a \notin A \\ \grave{\operatorname{e}} \text{ sottoinsieme} &\to A \subseteq B \\ \grave{\operatorname{e}} \text{ sottoinsieme stretto} &\to A \subset B \\ & \operatorname{insieme vuoto} &\to \varnothing \\ & \operatorname{unione} &\to A \cup B \mid \vee \\ & \operatorname{intersezione} &\to A \cap B \mid \wedge \\ & \operatorname{sottrazione} &\to A \setminus B \\ & \operatorname{cardinalita} &\to |A| \end{split}$$

Prodotto cartesiano

Dati due insiemi A e B, il loro **prodotto cartesiano** è l'insieme delle coppie (a,b) con $a \in A, b \in B$.

Si indica con $A \times B$.

Funzioni

$$|A \times B| = |A| \cdot |B|$$

Esempio

$$A = \{ 1, 2, 3 \}$$

$$A \times A = \{ (1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3) \}$$

Insieme delle parti

Dato A, $\mathcal{P}(A)$ è l'insieme di tutti i sottoinsiemi di A.

$$|\mathcal{P}(A)| = 2^{|A|}$$

Esempio

$$A = \{ 1, 2 \}$$

$$\mathcal{P}(A) = \{ \varnothing, A, \{ 0 \}, \{ 1 \} \}$$

Funzioni

Come si descrive una funzione:

- 1. Un insieme di partenza (A) (dominio);
- 2. Un insieme di arrivo (B) (codominio);
- 3. Una serie di regole che ad ogni elemento di A associa un **unico** elemento di $f(a) \in B$.

$$f:A\to B$$

Il grafico di una funzione è:

Funzioni

$$g = \{ (a, f(a)) \in A \times B \mid a \in A \}$$
$$= \{ (a, b) \in A \times B \mid b = f(a) \}$$

Funzioni Iniettive e Suriettive

Sia $f:A\to B$ una funzione.

• f si dice **iniettiva** se manda elementi distinti di A in elementi distinti di B.

$$a_1 \in A, a_2 \in A, a_1 \neq a_2 \Rightarrow f(a_1) \neq f(a_2)$$

ovvero se

$$f(a_1) = f(a_2) \Rightarrow a_1 = a_2$$

• f si dice **suriettiva** se ogni elemento di B è ottenuto da almeno un elemento di A tramite f.

$$\forall b \in B \,\exists \, a \in A \text{ t.c. } f(a) = b$$

Una funzione si dice **biunivoca** se è sia iniettiva che suriettiva.

Teorema: Una funzione $f:A\to B$ è biunivoca se e solo se è invertibile, cioè se e solo se esiste una funzione $g:B\to A$ t.c. :

$$g(f(a)) = a \, \forall \, a \in A$$

$$f(g(b)) = b \,\forall\, b \in B$$

Osservazione:

$$f:A\to B$$

Numeri Reali

- è iniettiva se ogni elemento di B è ottenuto da al più un elemento di A tramite f;
- ullet è suriettiva se ogni elemento di B è ottenuto da almeno un elemento di A tramite f.

Immagine e controimmagine

Sia $f: A \rightarrow B$ una funzione.

- Se b = f(a) con $a \in A, b \in B$, si dice che b è immagine di a tramite f;
- Sia $C \subseteq A$ un sottoinsieme, si dice *immagine di* C tramite f l'insieme degli elementi di B che sono imamgine di elementi di C. $f(c) = \{ f(a) : a \in C \} \subseteq B$
- Immagine di A: $f(A) = \{ f(a) : a \in A \}$
- Sia $D \subseteq B$ un sottoinsieme, si dice **controimmagine di** D tramite f l'insieme di tutti gli elementi di A che hanno immagine contenuta in D.
- Controlmmagine di D: $f^{-1}(D) = \{ a \in A : f(a) \in D \}$ (definita anche se f non è invertibile).

Numeri Reali

Insiemi numerici

• Naturali: $\mathbb{N} = \{0, 1, 2, 3, \dots\}$

• Razionali: $\mathbb{Z}=\{\, \frac{m}{n}: m\in\mathbb{Z}, n\in\mathbb{N}\setminus\{\,0\,\}\,\}$

lacktriangle Reali: $\mathbb R$

■ Irrazionali: Q

■ Complessi: ℂ

$$\mathbb{N}\subset\mathbb{Z}\subset\mathbb{R}\subset\mathbb{Q}\subset\mathbb{C}$$

Proprietà dei numeri reali

Sono di tre tipi:

Numeri Reali

- Algebriche;
- Di Ordinamento;
- Assioma di Continuità.

Algebriche

Sui numeri reali sono definite due operazioni + e \cdot , dette somma e prodotto, con le seguenti proprietà:

- Relative alla somma:
 - Commutativa: $a+b=b+a \ \forall \, a,b \in \mathbb{R} \ \textit{(n,z,q,r,c)}$
 - Asociativa: $(a+b)+c=a+(b+c)\ \forall\ a,b,c\in\mathbb{R}$ (n,z,q,r,c)
 - Elemento neutro somma: $\exists 0 \in R \text{ t.c. } a+0=a \ \forall a \in \mathbb{R} \ (\textit{n,z,q,r,c})$
 - Esistenza dell'inverso: $\forall a \in \mathbb{R} \ \exists b \in \mathbb{R} \ \text{t.c.} \ a+b=0 \ (z,q,r,c)$
- Relative al prodotto:
 - Commutativa: $a \cdot b = b \cdot a \ \forall \ a,b \in \mathbb{R} \ (\textit{n,z,q,r,c})$
 - Associativa: $(a \cdot b) \cdot c = a \cdot (b \cdot c) \ \forall \ a,b,c \in \mathbb{R} \ (\textit{n,z,q,r,c})$
 - Elemento neutro prodotto: $\exists 1 \in \mathbb{R} \text{ t.c. } a \cdot 1 = a \ \forall \ a \in \mathbb{R} \ (\textit{n,z,q,r,c})$
 - Esistenza dell'inverso: $\forall a \in \mathbb{R} \ \exists b \in \mathbb{R} \ \text{t.c.} \ a \cdot b = 1 \ \textit{(q,r,c)}$
- Distributiva: $a \cdot (b+c) = ab + ac \ \forall \ a,b,c \in \mathbb{R} \ (\textit{n,z,q,r,c})$

Di Ordinamento

Dati due numeri reali x e y, si ah sempre che $x \ge y$ oppure $x \le y$. Tale ordinamento ha le proprietà:

- Riflessiva: $x \ge x \ \forall \ x \in \mathbb{R}$
- Antisimmetrica: se $x \ge y \land y \ge x$, allora x = y
- Transitiva: se $x \ge y \land y \ge z$, allora $x \ge z$
- se $x \geq y$, allora $x + z \geq y + z \ \forall \ z \in \mathbb{R}$
- se $x \geq y$, allora $x \cdot z \geq y \cdot z \ \forall z \in \mathbb{R}$ con $z \geq 0$

Queste valgono in \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} , ma non in \mathbb{C} .

Inferiore, Superiore, Massimo e Minimo

Assioma di Continuità

Dati $A,B\subseteq\mathbb{R}$ sottoinsiemi diversi da \varnothing . Diciamo che A sta tutto a sinistra di B se $a\leq b\ \forall\ a\in A,\ \forall\ b\in B.$

L'assioma di continuità dice che se A sta tutto a sinstra di B allora esiste almeno un $c \in \mathbb{R}$ t.c. $c \geq a \ \forall \ a \in A; c \leq b \ \forall \ b \in B.$

c non è obbligato ad essere unico; c può appartenere ad A, a B o anche a entrambi (in questo caso è unico elemento "separatore").

Esempio

$$A = \{ x \in Q : x \ge 0 \land x^2 < 2 \}$$

$$B = \{ x \in Q : x \ge 0 \land x^2 > 2 \}$$
 se $a \in A, b \in B \rightarrow a > b$
$$c^2 = 2$$

Questo è impossibile in Q, quindi l'assioma di continuità non vale in Q.

Conclusione: sui numeri reali, $\sqrt{2}$ è l'elemento separatore tra A e B e si può dimostrare che è unico.

Sottoinsiemi dei reali

 $(a,b) \subseteq \mathbb{R}$ è l'intervallo separato da estremi $a,b \in \mathbb{R}$ (con a < b).

- $[a, b] = \{a, b\} = \{x \in \mathbb{R} \text{ t.c. } a < x < b\}$
- $[a,b] = \{ x \in \mathbb{R} \text{ t.c. } a \leq x \leq b \}$

Inferiore, Superiore, Massimo e Minimo

Sia $A \subseteq \mathbb{R}$ un sottoinsieme *non vuoto*.

 $M \in \mathbb{R}$ si dice **maggiorante** di A se $M \ge a \ \forall \ a \in A$

Inferiore, Superiore, Massimo e Minimo

 $m \in \mathbb{R}$ si dice **minorante** di A se $m \leq a \ \forall \ a \in A$

Minoranti e maggioranti non sono obbligati ad esistere. Ad esempio $A=\mathbb{N}$ ha minoranti ma non ha maggioranti.

Se esiste un maggiorante invece, ne esistono infiniti. Se M è un maggiorante, anche M+1 lo è. Lo stesso vale per i minoranti.

 $A\subseteq\mathbb{R}, A\neq\varnothing$ si dice **superiormente limitato** se ammette un maggiorante e **inferiormente limitato** se ammette un minorante. Si dice **limitato** se è contemporaneamente superiormente e inferiormente limitato.

Esempi:

- $A=(0,+\inf)$ è inferiormente limitato ma non superiormente
- $B = \{\frac{1-n}{2} : n \in \mathbb{N}\}$ è superiormente limitato, ma non inferiormente
- C = (1,7] è limitato

 $M\in\mathbb{N}$ si dice **massimo** di A (e si scrive $M=\max A$) se $M\in A\wedge M\geq a\ \forall\ a\in A$

 $m\in\mathbb{N}$ si dice **minimo** di A (e si scrive $m=\min A$) se $m\in A\wedge m\leq a\; \forall\, a\in A$

max e min non sono obbligati ad esistere, nemmeno per insiemi limitati.

Esempio:

• A = (0,1) non ha nè \max , nè \min

max e min, se esistono, sono unici.

Estremo superiore ed Estremo inferiore

Sia $A \subseteq \mathbb{R}, A \neq \emptyset$.

Si dice che $\sup A = +\inf$ se A non è superiormente limitato o $\sup A = L \in \mathbb{R}$ se lo è e L è il minimo dei maggioranti.

Inferiore, Superiore, Massimo e Minimo

Si dice che $\inf A = -\inf$ se A non è inferiormente limitato o $\inf A = l \in \mathbb{R}$ se lo è e l è il massimo dei minoranti.

Esempi:

- $\sup \mathbb{N} = +\inf$
- $\inf \mathbb{N} = 0$
- $\sup (0,1) = 1$

Teo: Se $A \subseteq \mathbb{R}, A \neq \emptyset$ è superiormente limitato, allora il minimo dei maggioranti esiste.

Dimostrazione: Sia $B = \{ x \in \mathbb{R} \mid x \geq a \ \forall \ a \in A \}$ l'insieme dei maggioranti. Allora A sta tutto a sinistra di B. Per l'assioma di continuità c'è un elemento separatore $c \in \mathbb{R}$, ovvero $c \leq b \ \forall \ b \in B$ e $c \geq a \ \forall \ a \in A \implies c \in B$. Quindi $c = \min B$.

Esercizio per casa #todo/compito: Enunciare e dimostrare il teorema analogo per il massimo dei minoranti.

Caratterizzazione di inf e sup

- $\sup A = +\inf$ se $\forall M \in \mathbb{R} \ \exists \ a \in A \ \text{t.c.} \ a \geq M$ (ovvero se posso trovare elementi di A grandi quanto voglio)
- $\inf A = -\inf \text{ se } \forall M \in \mathbb{R} \ \exists \ a \in A \text{ t.c. } a \leq M$
- $\quad \bullet \quad \sup A = L \in \mathbb{R} \text{ se}$

 - $\ \forall \, \varepsilon > 0 \ \exists \, a \in A \ \text{t.c.} \ a \geq L \varepsilon$
- $\bullet \ \inf A = L \in \mathbb{R} \ \mathrm{se}$
 - $-a \ge l \ \forall a \in A \ (l \ \text{è un minorante})$
 - $\ \forall \varepsilon > 0 \ \exists a \in A \ \text{t.c.} \ a \leq l + \varepsilon$

Se esiste $M = \max A$ allora $\sup A = M$. Se esiste $m = \min A$ allora $\inf A = m$. $\sup A$ non è obbligato ad appartenere ad A, ma se vi appartiene è il **massimo**. Stessa cosa per $\inf A$.

Funzioni reali

Funzioni reali

 $f: \mathbb{R} \to \mathbb{R}$ oppure $f: A \to \mathbb{R}$.

Grafico di $f = \{(x, y) \in \mathbb{R}^2 : y = f(x)\}$ ($\mathbb{R}^2 = \mathbb{R} \times \mathbb{R}$).

Proprietà di simmetria:

- f si dice **pari** se $f(x) = f(-x) \ \forall x \in \mathbb{R}$ (simmetrica rispetto all'asse y)
- f si dice **dispari** se $f(x) = -f(-x) \ \forall x \in \mathbb{R}$ (simmetrica rispetto all'origine)
- f si dice **periodica** se $\exists T > 0$ t.c. $f(x+T) = f(x) \ \forall x \in \mathbb{R}$ (il grafico si ottiene traslando il pezzo [0,T] in [T,2T], [T,3T], ...)

Se $f: \mathbb{R} \to \mathbb{R}$ è dispari, allora f(0) = 0.

Se T è un periodo, anche $2T, 3T, 4T, \ldots$ lo sono. Il **minimo periodo** è il più piccolo T (se esiste) per cui vale $f(x+T)=f(x)\ \forall\ T\in\mathbb{R}$.

Proprietà di monotonia:

- *f* si dice **monotona**:
 - f si dice strettamente crescente se $x>y \implies f(x)>f(y) \ \forall \, x,y\in \mathbb{R}$
 - f si dice strettamente decrescente se $x > y \implies f(x) < f(y) \ \forall \ x, y \in \mathbb{R}$
- f si dice **debolmente crescente** se $x > y \implies f(x) \ge f(y) \ \forall \ x, y \in \mathbb{R}$
- f si dice debolmente decrescente se $x>y \implies f(x) \leq f(y) \ \forall \ x,y \in \mathbb{R}$

Se f è strettamente crescente allora è anche debolmente crescente. Se f è strettamente decrescente allora è anche debolmente decrescente.

Se f è sia deb. crescente che deb. decrescente allora è **costante**.

Grafici, Iniettività e Suriettività

- Suriettiva ⇔ in ogni elemento dell'insieme di arrivo termina *almeno* una freccia (tutto l'asse y è "coperto")
- Iniettiva \iff in ogni elemento dell'insieme di arrivo termina al più (0|1) una freccia (*l'asse y* è "coperto" solo una volta)

Funzioni elementari

• Retta orizzontale: $y = \lambda$

• Grafico di f: y = f(x)

• Intersezioni: $f(x) = \lambda$

$$f \text{ iniettiva} \iff f(x) = \lambda \text{ ha al più una soluz. } \forall \, \lambda \in \mathbb{R}$$

$$f \text{ suriettiva} \iff f(x) = \lambda \text{ ha almeno una soluz. } \forall \, \lambda \in \mathbb{R}$$

Se f è pari o periodica non è iniettiva. Se f è strettamente crescente o strettamente decrescente allora è iniettiva.

Funzioni elementari

Potenze pari

$$f(x) = x^{2k}$$
 $k \in \mathbb{N} \setminus \{0\}$

- Con $\mathbb{R} \to \mathbb{R}$ (non iniettiva o suriettiva).
- Con $\mathbb{R}_{\geq 0} \to \mathbb{R}$ (iniettiva ma non suriettiva)
- Con $\mathbb{R} o \mathbb{R}_{\geq 0}$ (non iniettiva ma suriettiva)
- $\bullet \ \ \mathsf{Con} \ \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0} \ (\mathit{biunivoca})$

Quindi l'inverso è

$$g: \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$$
$$g(x) = \sqrt{x^{2k}}$$

Oss: $f(x)=x^{2k}$ è una funzione *pari*, strettamente crescente su $[0,+\infty)$ e strettamente decrescente su $[-\infty,0)$.

Oss: la funzione f(x) = |x| ha le stesse proprietà.

Funzioni elementari

Potenze dispari

$$f(x) = x^{2k+1} \qquad k \in \mathbb{N}$$

È una funzione dispari.

• $\mathbb{R} \to \mathbb{R}$ (biunivoca)

L'inverso è definito come

$$g: \mathbb{R} \to \mathbb{R}$$

$$g(x) = \sqrt{x^{2k+1}}$$

Vale lo stesso per $f(x) = \frac{1}{x^k}$

[!warning] Confermare la funzione

Oss: $f(x) = x^{2k+1}$ è strettamente crescente su \mathbb{R} .

Esponenziali

$$f(x) = a^x \qquad \text{con } a > 1$$

- $\mathbb{R} o \mathbb{R}$ (inietiva)
- $\mathbb{R} o \mathbb{R}_{>0}$ (biunivoca)

L'inversa è

$$g: \mathbb{R}_{>0} \to \mathbb{R}$$

$$g(x) = \log_a x$$

Ese: fate lo stesso per $f(x) = a^x \operatorname{con} 0 < a < 1$

Oss: se $a \in (0,1)$ allora $b = \frac{1}{a} \in (1,+\infty).$

Funzioni elementari

Funzioni trigonometriche

Seno

$$f(x) = \sin x$$

 $f:\mathbb{R} \to \mathbb{R}$ è periodica di periodo minimo 2π ed è dispari $(\sin(-x) = -\sin x)$.

- $\mathbb{R} o \mathbb{R}$ (non iniettiva e non suriettiva)
- $\left[-\frac{\pi}{2},\frac{\pi}{2}\right] \rightarrow \left[-1,1\right]$ (biunivoca)

L'inversa è

$$g: [-1,1] \to \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$$

 $g(x) = \arcsin x$

Oss: $\arcsin(\sin(\frac{3}{4}\pi)) = \frac{\pi}{4} \neq \frac{3}{4}\pi$

Coseno

$$f(x) = \cos x$$

 $f:\mathbb{R} o \mathbb{R}$ è periodica di periodo minimo 2π ed è pari $(\cos x = \cos(-x))$.

- $\mathbb{R} o \mathbb{R}$ (non iniettiva e non suriettiva)
- $[0,\pi] \rightarrow [-1,1]$ (biunivoca)

L'inversa è

$$g: [-1,1] \to [0,\pi]$$

 $g(x) = \arccos x$

Oss: $\arccos(\cos(\frac{3}{2}\pi)) \neq \frac{3}{2}\pi$

Trasformazione di grafici

Tangente

$$f(x) = \tan x = \frac{\sin x}{\cos x}$$

- $\mathbb{R}\setminus\{\frac{\pi}{2}+k\pi,\,k\in\mathbb{Z}\}\to\mathbb{R}$ è periodica di periodo minimo π ed è dispari (solo suriettiva)
- $\mathbb{R}\setminus\{\,rac{\pi}{2}+k\pi,\,k\in\mathbb{Z}\,\} o \left(-rac{\pi}{2},rac{\pi}{2}
 ight)$ è dispari (*biunivoca*)

L'inversa è

$$g: \mathbb{R} \to \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$

 $g(x) = \arctan x$

Trasformazione di grafici

Dato $f: \mathbb{R} \to \mathbb{R}$.

- Simmetria assiale rispetto all'asse x: y = -f(x)
- Simmetria assiale rispetto all'asse y: y = f(-x)
- Traslazione del vettore (0,c) (verso l'alto se c>0): y=f(x)+c
- \bullet $\mbox{\it Traslazione}$ del vettore (-c,0) (verso sinistra se c>0): y=f(x+c)
- Compressione verso l'asse x (dilatazione se c>1): $y=f(x)\cdot c$
- Dilatazione verso l'asse y (compressione se c > 1): $y = f(x \cdot c)$
- Ribaltamento sull'asse x: y = |f(x)|
- Ribaltamento sull'asse y: y = f(|x|)

Successioni

Terminologia

Sia $\mathcal{P}(n)$ una affermazione a proposito del numero $n \in \mathbb{N}$. Sarà vera o falsa a seconda del valore di n.

Diciamo che:

- $\mathcal{P}(n)$ è vera frequentemente se è vera per infiniti $n \in \mathbb{N}$
- $\mathcal{P}(n)$ è vera definitivamente se è vera "da un certo punto in poi", cioè se $\exists n_0 \in \mathbb{N}$ t.c. $\mathcal{P}(n)$ è vera $\forall n \geq n_0$

Oss: Definitivamente \implies Frequentemente.

Es:

- 1. $n^2 \ge 1000$ è vera definitivamente
- 2. n^3 è multiplo di 8 è vera frequentemente, ma non definitivamente
- 3. $n+1 \ge 3^n$ è falsa definitivamente

Succesioni a valori reali

Def rigida: una successione a valori reali è una funzione $a : \mathbb{N} \to \mathbb{R}$.

Di solito, invece di scrivere a(n), si scrive a_n .

Oss: così non è possibile considerare $a_n = \frac{1}{n}$.

Def più elastica: una successione a valori reali è una funzione $a:A\to\mathbb{R}$ con $A\subseteq\mathbb{N}$, tale che $\exists\,n_0\in\mathbb{N}$ per cui $\forall\,n\geq n_0,n\in A$ (tale che $n\in A$ definitivamente).

Limite di una successione

Sia a_n una successione. Abbiamo 4 possibili comportamenti:

- 1. $\lim_{n\to+\infty} a_n = \ell \ (a_n \to \ell; \ \ell \in \mathbb{R})$
- 2. $\lim a_n = +\infty \ (a_n \to +\infty)$
- 3. $\lim a_n = -\infty \ (a_n \to -\infty)$
- 4. $\lim a_n$ non esiste $(a_n \in indeterminata)$

Def:

- Una successione è di tipo 4. se non è di nessun degli altri tipi
- Una successione è di tipo 2. se $\forall M \in \mathbb{R}, a_n \geq M$ definitivamente ($\forall M \in \mathbb{R}, \exists n_0 \in \mathbb{N} \text{ t.c. } a_n \geq M \ \forall n \geq n_0$)

- Una successione è di tipo 3. se $\forall m \in \mathbb{R}, a_n \leq m$ definitivamente ($\forall m \in \mathbb{R}, \exists n_0 \in \mathbb{R}$ t.c. $a_n \leq m \ \forall n \geq n_0$)
- Una successione è di tipo 1. se
 - $\forall \varepsilon > 0, a_n \in [\ell \varepsilon, \ell + \varepsilon]$ definitivamente \vee
 - $\forall \varepsilon > 0, \ell \varepsilon \leq a_n \leq \ell + \varepsilon$ definitivamente \vee
 - $\forall \varepsilon > 0, |a_n \ell| \le \varepsilon$ definitivamente

Varianti di 1.:

- $a_n \to \ell^+$ tende a ℓ da destra se $\forall \, \varepsilon > 0, \ell < a_n \le \ell + \varepsilon$ definitivamente
- $a_n \to \ell^-$ tende a ℓ da sinistra se $\forall \, \varepsilon > 0, \ell \varepsilon \leq a_n < \varepsilon$ definitivamente

Teorema di unicità del limite

Una successione ricade sempre in uno e uno solo dei quattro tipi di comportamento. Se poi ricade nel tipo 1. ($\ell \in \mathbb{R}$), il valore ℓ è unico.

Dim: se a_n è di tipo 1. cioè $a_n \to \ell$, allora definitivamente $\ell - 1 \le a_n \le \ell + 1$. $l - 1 \le a_n$ implica che non può essere di tipo 3.. $a_n \le \ell + 1$ implica che non può essere di tipo 2..

Inoltre se è di tipo 2., definitivamente si avrà $a_n \ge 1$. Se è di tipo 3., definitivamente si avrà $a_n \le -1$. Queste condizioni non possono accadere insieme.

Infine, se $a_n \to \ell_1, \ a_n \to \ell_2 \ \text{con} \ \ell_1 \neq \ell_2$, allora fisso $\varepsilon = \frac{|\ell_1 - \ell_2|}{4}$. Quindi a_n si ritrova in due intervalli contemporaneamente: $\ell_1 - \varepsilon \leq a_n \leq \ell_1 + \varepsilon$ e $\ell_2 - \varepsilon \leq a_n \leq \ell_2 + \varepsilon$. Se $\ell_1 < \ell_2$ allora $\ell_1 + \varepsilon < \ell_2 - \varepsilon$. Dunque $a_n \leq \ell_1 + \varepsilon < \ell_2 - \varepsilon \leq a_n$ definitivamente. Questo è assurdo!

Limitatezza delle successioni convergenti

- Se $a_n \to \ell \in \mathbb{R}$ allora $\{a_n \mid n \in \mathbb{N}\}$ è limitato
- Se $a_n \to +\infty$ allora $\{a_n \mid n \in \mathbb{N}\}$ è inferiormente limitato
- Se $a_n \to -\infty$ allora $\{a_n \mid n \in \mathbb{N}\}$ è superiormente limitato

Dimostrazione nelle slide. #view-slide

Teorema di permanenza del segno

- Se $a_n \to \ell \in (0,+\infty)$ o se $a_n \to +\infty$ allora $a_n > 0$ definitivamente
- Se $a_n \geq 0$ definitivamente e se $a_n \to \ell$ allora $\ell \geq 0$ oppure $\ell = +\infty$

Dimostrazione nelle slide #view-slide

Oss: vale lo stesso risultato con i negativi.

- \bullet Se $a_n \to \ell \in (-\infty,0)$ o se $a_n \to -\infty$ allora $a_n < 0$ definitivamente
- Se $a_n \leq 0$ definitivamente e se $a_n \to \ell$ allora $\ell \leq 0$ oppure $\ell = -\infty$

Retta reale estesa

$$\overline{\mathbb{R}} = \mathbb{R} \cup \{+\infty, -\infty\}$$

- Posso scrivere $a_n \to \ell \in \overline{\mathbb{R}}$ per unificare i tipi 1., 2., 3.
- Le operazioni di $\mathbb R$ si estendono a $\overline{\mathbb R}$ quasi bene:

$$+x \cdot (\pm \infty) = \pm \infty$$
$$-x \cdot (\pm \infty) = \mp \infty$$
$$x + (\pm \infty) = \pm \infty$$
$$(+\infty) \cdot (+\infty) = +\infty$$
$$(-\infty) \cdot (-\infty) = +\infty$$
$$(-\infty) \cdot (-\infty) = +\infty$$
$$\frac{x}{+\infty} = 0$$

- Ci sono 2 eccezioni:
 - 1. Le 7 forme indeterminate:

$$(+\infty) + (-\infty)$$

$$0 \cdot (\pm \infty)$$

$$\frac{\pm \infty}{\pm \infty}$$

$$0$$

$$0$$

$$0^{0}$$

$$1^{\pm \infty}$$

$$(\pm \infty)^{0}$$

2. Le divisioni per 0

Teoremi algebrici

Siano a_n , b_n successioni, $a_n \to \ell_1 \in \overline{\mathbb{R}}$, $b_n \to \ell_2 \in \overline{\mathbb{R}}$, allora:

$$a_n + b_n \to l_1 + l_2$$

$$a_n - b_n \to l_1 - l_2$$

$$a_n \cdot b_n \to l_1 \cdot l_2$$

$$\frac{a_n}{b_n} \to \frac{l_1}{l_2}$$

$$a_n^{b_n} \to l_1^{l_2}$$

Con le dovute eccezioni di ∞ .

Teoremi di confronto

Se $a_n \leq b_n$ definitivamente, allora:

- 1. Se $a_n \to a$ e $b_n \to b$, allora $a \le b$
- 2. Se $a_n \to +\infty$, allora $b_n \to +\infty$
- 3. Se $b_n \to -\infty$, allora $a_n \to -\infty$

Tecniche di calcolo dei limiti

Se a_n, b_n, c_n sono tali che $a_n \leq b_n \leq c_n$ definitivamente e $a_n \to \ell$, $c_n \to \ell$ (lo stesso $\ell \in \overline{\mathbb{R}}$) allora $b_n \to \ell$. (teorema del carabiniere).

Es: $\lim_{n\to+\infty} n + \cos n$.

$$\forall n \in \mathbb{N}, \cos n \ge -1 \implies n + \cos n \ge n - 1$$

Per il teorema del confronto a 2, visto che $\lim_{n\to+\infty}n-1=[+\infty-1]=+\infty$, ho che $\lim_{n\to+\infty}n+\cos n=+\infty$

Es: $\lim_{n\to+\infty} \frac{\sin n}{n}$.

$$\forall n \in \mathbb{N}, -1 \le \sin n \le 1 \implies -\frac{1}{n} \le \sin n \le \frac{1}{n}$$

E poichè $\lim_{n\to+\infty}-\frac{1}{n}=\lim_{n\to+\infty}\frac{1}{n}=0$, per il teorema del confronto a 3 $\frac{\sin n}{n}\to 0$.

Tecniche di calcolo dei limiti

Fatto N.1

$$\lim_{n \to +\infty} n^a = +\infty \qquad \forall \, a > 0$$

Fatto N.2

$$\lim_{n \to +\infty} n^a = 0^+ \qquad \forall \, a < 0$$

Oss:
$$n^a = \frac{1}{n^{-a}} \Rightarrow \lim_{n \to +\infty} n^a = \lim_{n \to +\infty} \frac{1}{n^{-a}} = \left[\frac{1}{+\infty}\right] = 0^+$$

[!note] Ricordare negli esercizi di scrivere teoremi algebrici dove vengono usati.

Disuguaglianza di Bernoulli

$$\forall n \in \mathbb{N}, \ \forall x \ge -1$$
 si ha $(1+x)^n \ge 1 + nx$

Fatto N.3

$$\lim_{n \to +\infty} a^n = +\infty \qquad \forall \, a > 1$$

Fatto N.4

$$\lim_{n \to +\infty} a^n = 0 \qquad \forall \, 0 < a < 1$$

 $\mbox{\bf Dim:} \ a = \tfrac{1}{b} \ \mbox{con} \ b > 1 \ \mbox{e} \ b^n \to +\infty \ \mbox{quindi} \ a^n = \tfrac{1}{b^n} \to 0^+.$

Fatto N.5

$$\lim_{n \to +\infty} a^{\frac{1}{n}} = 1 \qquad \forall \, a > 1$$

 $\mathbf{Dim} \colon \, a^{\frac{1}{n}} \geq 1 \ \forall \, n \in \mathbb{N}$

[!warning] Finire la dim dalle slide.

Dimostrazione teorema del confronto a 2

Sappiamo che $a_n \leq b_n$ definitivamente

1. Se $a_n \to a$, $b_n \to b$, vogliamo dimostrare che $a \le b$

Per assurdo, se b < a, posso scegliere $\varepsilon > 0$ tale che $\varepsilon < \frac{a-b}{2} \Rightarrow b + \varepsilon < a - \varepsilon$.

Allora definitivamente $a_n \geq a - \varepsilon$ e $b_n \leq b + \varepsilon$, quindi $b_n \leq b + \varepsilon < a - \varepsilon \leq a_n$ definitivamente.

Ciò significa che $b_n < a_n$, il che è assurdo.

- 2. Se $a_n \to +\infty$, $\forall M \in \mathbb{R}$, ho $a_n \geq M$ definitivamente \Rightarrow ho $b_n \geq a_n \geq M$ definitivamente $\forall M \in \mathbb{R} \Rightarrow b_n \to +\infty$.
- 3. Uguale a 2..

Criterio del rapporto & Criterio della radice

Criterio del rapporto

Sia a_n una successione definitivamente positiva (> 0). Supponiamo che

$$\lim_{n\to +\infty}\frac{a_{n+1}}{a_n}=\ell\in [0,+\infty]$$

allora

- 1. se $\ell < 1$, $a_n \to 0$
- 2. se $\ell > 1$, $a_n \to +\infty$
- 3. se $\ell = 1$, ??

Criterio della radice

Sia a_n una successione definitivamente ≥ 0 . Supponiamo che

$$\lim_{n \to +\infty} \sqrt[n]{a_n} = \ell \in [0, +\infty]$$

allora

1. se
$$\ell < 1$$
, $a_n \to 0$

2. se
$$\ell > 1$$
, $a_n \to +\infty$

3. se
$$\ell = 1$$
, ??

Es: $a_n=rac{n^3}{2^n}$ con i teo. alg. ottengo $[rac{+\infty}{+\infty}]$, quindi

$$\frac{a_n+1}{a_n} = \frac{\frac{(n+1)^3}{2^{n+1}}}{\frac{n^3}{2^n}} = \frac{1}{2} \left(\frac{n+1}{n}\right)^3 \to \frac{1}{2}$$

per il criterio del rapporto $a_n \to 0$.

Fatto N.6 (Esponenziale batte potenza)

$$\lim_{n \to +\infty} \frac{n^a}{b^n} = 0 \qquad \forall \, b > 1, \; \forall \, a \in \mathbb{R}$$

Fattoriale

$$\lim_{n\to +\infty} n! = +\infty$$

Fatto N.7 (Il fattoriale batte l'esponenziale)

$$\lim_{n\to +\infty} \frac{b^n}{n!} = 0 \qquad \forall b>0$$

 n^n batte il fattoriale.

$$\lim_{n\to +\infty} \frac{n!}{n^n} = 0$$

Gerarchia degli infiniti

1.
$$n^n$$

3.
$$b^{n}$$

4.
$$n^a$$

5. *n*

Attenzione: nella gerarchia degli infiniti, dovete rispettare religiosamente le espressioni date. n! batte 2^n , ma non so cosa fa con $2^{(n^2)}$.

Criterio del rapporto-radice

Supponiamo $a_n > 0$ definitivamente e che

$$\lim_{n\to +\infty}\frac{a_{n+1}}{a_n}=\ell\in [0,+\infty]$$

allora

$$\lim_{n \to +\infty} \sqrt[n]{a_n} = \ell \quad (\mathsf{stesso} \ \ell)$$

Es: $\lim_{n\to+\infty} \sqrt[n]{n} = ?$

Applico il criterio rapporto-radice con $a_n = n$, che è definitivamente > 0. Ho che

$$\lim_{n\to +\infty}\frac{a_{n+1}}{a_n}=\lim_{n\to +\infty}\frac{n+1}{n}=\lim_{n\to +\infty}1+\frac{1}{n}=1\implies \lim_{n\to +\infty}\sqrt[n]{n}=\lim_{n\to +\infty}\sqrt[n]{a_n}=1$$

Es: $\lim_{n\to+\infty} \sqrt[n]{n^a} = ?$

$$\lim_{n \to +\infty} \sqrt[n]{n^a} = \lim_{n \to +\infty} n^{\frac{a}{n}} = \lim_{n \to +\infty} (n^{\frac{1}{n}})^a = 1$$

Es: $\lim_{n \to +\infty} \sqrt[n]{n^7 - n^2 + 1} = ?$

Ha senso perchè $n^7-n^2+1\to +\infty \implies$ è definitivamente positiva per il teorema di permanenza del segno.

$$\lim_{n \to +\infty} \sqrt[n]{n^7} \cdot \sqrt[n]{1 - \frac{1}{n^5} - \frac{1}{n^7}} = 1 \cdot 1 = 1$$

Fatto N.8

$$\lim_{n \to +\infty} \sqrt[n]{\text{polinomio}} = 1 \qquad \forall \text{ polinomio}$$

Fatto N.9

$$\lim_{n \to +\infty} \left(1 + \frac{1}{n}\right)^n = e$$

Es: $\lim_{n\to+\infty} \sqrt[n]{n!} = ?$

Metodo 1: $\forall b>1$ ho che $n!>b^n$ (per il teo di permanenza del segno: $\frac{b^n}{n!}\to 0 \Longrightarrow$ definitivamente $\frac{b^n}{n!}<1 \Longrightarrow b^n< n!$ definitivamente) $\Longrightarrow \sqrt[n]{n!}>b$ definitivamente $\forall b>1n \Longrightarrow \sqrt[n]{n!}\to +\infty.$

Metodo 2:

$$\lim_{n \to +\infty} \sqrt[n]{n!} = \lim_{n \to +\infty} \frac{(n+1)!}{n!} = \lim_{n \to +\infty} n + 1 = +\infty$$

Es: $\lim_{n\to+\infty} \frac{\sqrt[n]{n!}}{n} = \lim_{n\to+\infty} \sqrt[n]{\frac{n!}{n^n}} = ?$

$$= \frac{1}{\left(\frac{n+1}{n}\right)^n} \to \frac{1}{e}$$

Oss: per n molto grandi, n! assomiglia a $\left(\frac{n}{e}\right)^n$.

Es:
$$\lim_{n\to+\infty}\frac{2^{n^2}}{n!}=?$$

Applico il criterio della radice.

$$\sqrt[n]{a_n} = \sqrt[n]{\frac{2^{n^2}}{n!}} = \frac{(2^{n^2})^{\frac{1}{n}}}{(n!)^{\frac{1}{n}}} = \dots$$

Dimostrazione del criterio della radice

Supponiamo che $\sqrt[n]{a_n} o \ell > 1$, allora la media sarà un numero tra 1 e ℓ

$$1 < \frac{ell+1}{2} < \ell \implies \text{ definitivamente } \sqrt[n]{a_n} \ge \frac{\ell+1}{2} \implies a_n \ge \left(\frac{\ell+1}{2}\right)^n$$

e poichè $\frac{\ell+1}{2}>1$, $\left(\frac{\ell+1}{2}\right)^n\to +\infty$. Quindi per il confronto a 2, ho che $a_n\to +\infty$.

Se invece $0 \leq \ell < 1$, allora $0 \leq \frac{\ell+1}{2} < 1 \implies$ definitivamente $\sqrt[n]{a_n} \leq \frac{\ell+1}{2}$, inoltre $0 \leq \sqrt[n]{a_n} \leq \frac{\ell+1}{2} \implies 0 \leq a_n \leq \left(\frac{\ell+1}{2}\right)^n$ definitivamente e $0 < \frac{\ell+1}{2} < 1 \implies \left(\frac{\ell+1}{2}\right)^n \to 0$, dunque, per il teo del confronto a 3, $a_n \to 0$.

Principio di induzione

$$\mathbb{N} = \{0, 1, 2, 3, \dots\}$$

 $\mathcal{P}(n)=$ affermazione a prop. di n che può essere vera o falsa

Es: $n^2 = n + 6$ (definitivamente vera)

- n=0: falsa
- n=1: falsa
- n=2: falsa
- n=3: vera!
- n=4: falsa
- n=5: falsa

Es: se l'insieme A ha n elementi, allora $\mathscr{P}(A)$ ha 2^n elementi (definitivamente vera).

Principio di induzione: supponiamo di sapere che

- 1. $\mathcal{P}(0)$ è vera (passo base)
- 2. $\mathcal{P}(n) \implies \mathcal{P}(n+1) \ \forall \ n \geq 0 \ \text{(passo induttivo)}$

allora $\mathcal{P}(n)$ è vera per ogni $n \in \mathbb{N}$.

Es: dimostrare che $0+1+\cdots+n=\frac{n(n+1)}{2}$.

Dimostrazione per induzione:

1.
$$n = 0: 0 = \frac{0(0+1)}{2} = 0 \longrightarrow \text{ vero}$$

$$2. \ \ \mathsf{Ipotesi}(\mathsf{passo} \ n) \ : \ 0+1+\dots+n=\frac{n(n+1)}{2}. \ \ \mathsf{Voglio} \ \mathsf{dire} \ \mathsf{che} \ 0+1+\dots+n+(n+1) = \frac{(n+1)(n+2)}{2}. \ \ 0+1+\dots+(n+1) = 0+1+\dots+n+(n+1) = \frac{n(n+1)}{2}+(n+1) = (n+1)(\frac{n}{2}+1) = \frac{(n+1)(n+2)}{2}.$$

Es: da fare a casa #todo/compito

1.
$$0^2 + 1^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$$

2.
$$0^3 + 1^3 + \dots + n^3 = \frac{n^2(n+1)^2}{4}$$

Disuguaglianza di Bernoulli (dimostrazione)

$$\forall n \in \mathbb{N}, \ \forall x \ge -1 \text{ si ha } (1+x)^n \ge 1 + nx$$

Dimostrazione per induzione su n

1. Passo base:

$$n = 0$$
 $(1+x)^0 \ge 1$ $\forall x > -1$
 $n = 1$ $(1+x)^1 \ge 1+x$ $\forall x \ge -1$

2. Passo induttivo:

Ipotesi(passo
$$n$$
): $(1+x)^n \geq 1+nx$
$$\text{Tesi(passo } n+1) \colon (1+x)^{n+1} \geq 1+(n+1)x$$

$$(1+x)^{n+1} = (1+x)^n \cdot (1+x) \geq (1+nx)(1+x) =$$

$$= 1+nx+x+nx^2 =$$

$$= 1+(n+1)^x+nx^2 \geq 1+(n+1)x \longrightarrow \text{Vero!} \Rightarrow$$
 La disug è dimostrata $\forall \, n \in \mathbb{N}, \, \forall \, x \geq -1$

Successioni monotone

Coeff. binomiali

$$\binom{n}{k} = \frac{n!}{k! \cdot (n-k)!}$$

 $\binom{n}{k}$ è l'elemento in posizione k nella riga n del **triangolo di Tartaglia** (si conta da 0).

Sviluppo del binomio:

$$(a+b)^n = \sum_{j=0}^n \binom{n}{j} \cdot a^{n-j} \cdot b^j$$

Successioni monotone

Sia a_n una successione. Diciamo che a_n è

- 1. strettamente crescente se $a_{n+1} > a_n \ \forall \ n \in \mathbb{N}$
- 2. strettamente decrescente se $a_{n+1} < a_n \ \forall \ n \in \mathbb{N}$
- 3. debolmente crescente se $a_{n+1} \ge a_n \ \forall \ n \in \mathbb{N}$
- 4. debolmente decrescente se $a_{n+1} \leq a_n \ \forall \ n \in \mathbb{N}$

Oss: similmente si definiscono i corrispondenti concetti per successioni definitivamente monotone.

Teo delle successioni monotone: sia a_n una successione debolmente crescente, allora a_n ha limite $\ell \in \mathbb{R} \cup \{+\infty\}$. Più precisamente $a_n \to \sup\{a_n \mid n \in \mathbb{N}\}$. Lo stesso vale per le successioni debolmente decrescenti $(a_n \to \inf\{a_n \mid n \in \mathbb{N}\})$.

Dim (caso crescente):

Primo caso: $\sup \{ a_n \mid n \in \mathbb{N} \} = +\infty \implies \forall M \in \mathbb{R} \ \exists \ n_0 \in \mathbb{N} \ \text{t.c.} \ a_{n_0} \geq M.$ Ma se la succ. è debolmente crescente $\implies \forall \ n \geq n_0 \ , \ a_n \geq a_{n_0} \geq M \implies a_n \to \infty.$

Secondo caso: $\sup \{ a_n \mid n \in \mathbb{N} \} = \ell \in \mathbb{R} \implies$

Successioni monotone

• $\forall n \in \mathbb{N}, a_n \leq \ell \ (\ell \ \text{è un maggiroante})$

• $\forall \varepsilon > 0 \; \exists \; n_0 \in \mathbb{N} \; \text{t.c.} \; \ell - \varepsilon \leq a_{n_0} \; (\ell \; \text{è il minimo tra i maggioranti})$

Ma a_n è debolmente crescente \implies $\forall\, n\,\geq\, n_0$ ho che $\ell-\varepsilon\leq a_{n_0}\leq a_n\leq \ell$ $\implies a_n\to\ell^-$

Caso decrescente: #todo/compito

Oss:

1. Se a_n è debolmente crescente e superiormente limitata, allroa $a_n \to \ell \in \mathbb{R}$

2. Se a_n è definitivamente debolmente crescente (o decrescente) allora $a_n \to \ell \in \mathbb{R} \cup \{+\infty\}$ (o $\mathbb{R} \cup \{-\infty\}$), ma non posso dire che $\ell = \sup\{a_n \mid n \in \mathbb{N}\}$

Applicazione: Sia $a_n = \left(1 + \frac{1}{n}\right)^n$. Allora

1. $2 \le a_n \quad \forall n \in \mathbb{N}$

2. $a_n \leq 3 \quad \forall n \in \mathbb{N}$

3. $a_n \leq a_{n+1} \quad \forall n \in \mathbb{N}$

Per il teo sulle successioni monotone, $a_n \to \ell \in \mathbb{R}$ e $2 \le \ell \le 3$.

Dim:

1. Per Bernoulli: $\left(1+\frac{1}{n}\right)^n \ge 1+n\cdot\frac{1}{n}=2 \quad \forall\, n\in\mathbb{N}\setminus\{\,0\,\}$

2.
$$\left(1+\frac{1}{n}\right)^n = \sum_{j=0}^n \binom{n}{j} \cdot 1^{n-j} \cdot \frac{1}{n^j} \longrightarrow \text{guardare le slide}$$

3. $\left(1+\frac{1}{n+1}\right)^{n+1} \geq \left(1+\frac{1}{n}\right)^n \Rightarrow a_n \text{ è decrescente} \longrightarrow \textit{guardare le slide}$

$$\lim_{n \to +\infty} \left(1 + \frac{1}{n}\right)^n = e$$

Es:

$$\lim_{n\to +\infty} \left(1-\frac{1}{n}\right)^n = \lim_{n\to +\infty} \left(\frac{n-1}{n}\right)^n = \lim_{n\to +\infty} \frac{1}{\left(1+\frac{1}{n-1}\right)^{n-1}\cdot \left(\frac{n}{n-1}\right)} = \frac{1}{e}$$

Es:

Successioni per ricorrenza

$$\lim_{n \to +\infty} \left(1 + \frac{1}{2n} \right)^n = \lim_{n \to +\infty} \left(\left(1 + \frac{1}{2n} \right)^{2n} \right)^{\frac{1}{2}} = \sqrt{e}$$

Successioni per ricorrenza

Una successione per ricorrenza si presenta così:

- Un punto di partenza: $a_0 = 2$
- Una regola per calcolare il valore di un elemento dati i precedenti: $a_n = a_{n-1}^2 + \frac{1}{n+2}$

Possono essere dimostrate per induzione.

Es 1:

$$\begin{cases} a_0 = 1 & (I) \\ a_n = n \cdot a_{n-1} & (II) \end{cases}$$

Se voglio calcolare $a_4=4\cdot a_3=4\cdot 3\cdot a_2=4\cdot 3\cdot 2\cdot a_1=4\cdot 4\cdot 2\cdot 1\cdot a_0=4\cdot 3\cdot 2\cdot 1\cdot 1=24.$ In questo caso si ha $a_n=n!.$

Es 2:

$$\begin{cases} a_0 = 3 & (I) \\ a_n = 2a_{n-1} - 1 & (II) \end{cases}$$

Calcolando un po' di valori trovo guess: $a_n = 2^{n+1} + 1$. Si può dimostrare per induzione:

- **P.B.:** n = 0 per (I), $a_0 = 3 = 2^{0+1} + 1$ (Ok!)
- **P.I.:** se $a_n = 2^{n+1} + 1$ allora $a_{n+1} = 2 \cdot a_n 1 = 2(2^{n+1} + 1) 1 = 2^{(n+1)+1} + 1$ (Ok!)

Attenzione: Poter trovare una formula esplicita per le successioni per ricorrenza è *rarissimo*!

Successioni per ricorrenza

Terminologia: una successione per ricorrenza che dipende dai k termini precedenti si dice di **ordine** k. Una successione per ricorrenza senza una dipendenza esplicita da n si dice **autonoma**.

Tratteremo quasi esclusivamente successioni per ricorrenza di ordine 1, autonome.

$$\begin{cases} a_0 = a \\ a_n = f(a_{n-1}) & n \ge 1 \end{cases}$$

Es 3:

$$\begin{cases} a_0 = 2 \\ a_n = a_{n-1}^2 - 1 \quad n \ge 1 \end{cases}$$
$$a_n = f(a_{n-1})$$
$$f(x) = x^2 - 1$$

Intersezioni con la bisettrice y=x: $x=\frac{1\pm\sqrt{5}}{2}.$

Guess: la successione è crescente e tende a $+\infty$.

Strategia:

1. $a_n \ge 2 \quad \forall n \ge 0$

 $2. \ a_n \leq a_{n+1} \quad \forall \, n$

3. $a_n \to \ell \in \mathbb{R} \cup \{+\infty\}$

4. $\ell = +\infty$

Dim 3.: segue dal punto 2. per il teo sulle successioni monotone.

Dim 4.: Se $\ell \in \mathbb{R}$, allora posso passare al limite la relazione ricorsiva:

$$\lim_{n \to +\infty} a_{n+1} = \lim_{n \to +\infty} f(a_n) = \lim_{n \to +\infty} a_n^2 - 1$$

$$\implies \ell = \ell^2 - 1$$

$$\implies \ell = \frac{1 + \sqrt{5}}{2} \text{ oppure } \frac{1 - \sqrt{5}}{2}$$

Ma $a_n \geq 2 \ \forall \ n \ (\text{per } 1.) \implies \ell \geq 2 \ (\text{permanenza del segno}) \implies \text{nessuno dei valori trovati è accettabile} \implies \ell = +\infty.$

Dim 1.: $a_n \ge 2 \ \forall n$. Per induzione:

- P.B.: $a_n = 2 \ge 2$ (Ok!)
- **P.I.**: se $a_n \ge 2$, allora $a_{n+1} = a_n^2 1 \ge 4 1 = 3 \ge 2$ (*Ok!*)

Dim 2.: $a_n \leq a_{n+1} \ \forall \ n$. Per induzione:

- P.B.: $a_1 = a_0^2 1 = 4 1 = 3 \ge a_0$ (Ok!)
- P.I.: se $a_n \leq a_{n+1}$, allora $f(a_n) \leq f(a_{n+1})$ perchè $f(x) = X^2 1$ è crescente su $[0, +\infty)$.

Quindi $a_n \to +\infty$.

Serie numeriche

Definizione SBAGLIATA

Data una successione a_n , indico con

$$\sum_{n=0}^{\infty} a_n$$

la somma di tutti i termini della successione (che sono infiniti).

Questo non ha senso

Definizione CORRETTA

Def: data una successione a_n , dato $k \in \mathbb{N}$, la **somma parziale** k-esima di a_n è

$$S_k = a_0 + a_1 + \dots + a_k = \sum_{n=0}^k a_n$$

Def: Una serie numerica $\sum_{n=0}^{\infty} a_n$ $(\sum a_n)$ è il limite della successione S_k , per $k \to \infty$. Cioè

$$\sum_{n=0}^{\infty} a_n = \lim_{k \to +\infty} S_k = \lim_{k \to +\infty} (a_0 + a_1 + \dots + a_n)$$

Carattere di una serie (comportamento)

Essento un limite, $\sum_{n=0}^{\infty} a_n$ ha 4 possibili comportamenti:

- 1. Converge a $\ell \in \mathbb{R}$ se $S_k \to \ell$
- 2. Diverge a $+\infty$ se $S_k \to +\infty$
- 3. Diverge a $-\infty$ se $S_k \to -\infty$
- 4. È **indeterminata** se S_k non ha limite

Serie telescopiche

Es:

$$\sum_{n=2}^{\infty} \frac{1}{n^2 - n} = \sum_{n=2}^{\infty} \frac{1}{n - 1} - \frac{1}{n}$$

- $S_2 = a_2 = 1 \frac{1}{2} = \frac{1}{2}$
- $S_3 = a_2 + a_3 = \left(1 \frac{1}{2}\right) + \left(\frac{1}{2} \frac{1}{3}\right) = 1 \frac{1}{3}$
- $S_4 = a_2 + a_3 + a_4 = \left(1 \frac{1}{2}\right) + \left(\frac{1}{2} \frac{1}{3}\right) + \left(\frac{1}{3} \frac{1}{4}\right) = 1 \frac{1}{4}$
- $S_k = 1 \frac{1}{k}$ (dimostrato per induzione)

$$\lim_{k \to +\infty} S_k = 1 \implies \sum_{n=2}^{\infty} \frac{1}{n^2 - n}$$
 converge a 1

Serie geometriche

La serie geometrica di ragione $a \in \mathbb{R}$ è

$$\sum_{n=0}^{\infty} a^n$$

Lemma: $a^0 + a^1 + \dots + a^k = \frac{a^{k+1}-1}{a-1}$ se $a \neq 1$

Dim:

$$(a^{0} + a^{1} + \dots + a^{k}) \cdot a = a^{1} + a^{2} + \dots + a^{k+1} + (a^{0} + a^{1} + \dots + a^{k})(-1) = -a^{0} - a^{1} - \dots - a^{k} = (a^{0} + a^{1} + \dots + a^{k})(a - 1) = -a^{0} + a^{k+1}$$

Poichè $a \neq 1$, posso dividere ed ottengo il teo.

Oss: se a = 1, $a^0 + \dots + a^k = k + 1$.

Dunque si ha

$$S_k = \begin{cases} k+1 & \text{se } a=1\\ \frac{a^{k+1}-1}{a-1} & \text{se } a \neq 1 \end{cases}$$

 $\lim_{k\to+\infty} S_k = ?$

- 1. Se -1 < a < 1 la serie converge a $\frac{1}{1-a}$
- 2. Se a=1 vedere esempio 2.
- 3. Se a>1 diverge a $+\infty$
- 4. Se a<-1 non ha limite
- 5. Se a=-1 vedere esempio stupido 4

Dimostrazioni nelle slide #view-slide

Strumenti per lo studio delle serie

Il problema è determinare il carattere di una serie senza poter ricavare un'espressione esplicita per le somme parziali. Per farlo abbiamo:

- Teoremi algebrici
- Condizione necessaria alla convergenza
- Serie "note"
- Criteri di convergenza
 - Serie a termini di segno costante ($a_n \leq 0$ def. o $a_n \leq 0$ def.)
 - * Radice
 - * Rapporto
 - * Confronto
 - * Confronto asintotico
 - * Condensazione di Cauchy
 - Serie a termini di segno alterno
 - * Leibniz
 - Serie a termini di segno qualunque
 - * Assoluta convergenza

Teoremi algebrici

1. Sia a_n una successione e sia $\lambda \in \mathbb{R}, \lambda \neq 0$. Allora (come operazione in $\overline{\mathbb{R}}$)

$$\sum_{n=0}^{\infty} (\lambda \cdot a_n) = \lambda \cdot \sum_{n=0}^{\infty} a_n \text{ (come operazione in } \overline{\mathbb{R}}\text{)}$$

2. Se a_n, b_n sono successioni, allora (con tutte le attenzioni delle operazioni nella retta reale estesa)

$$\sum_{n=0}^{\infty} (a_n + b_n) = \lambda \cdot \sum_{n=0}^{\infty} a_n + \sum_{n=0}^{\infty} b_n$$

3. Attenzione!

$$\sum_{n=0}^{\infty} a_n \cdot b_n \neq \sum_{n=0}^{\infty} a_n \cdot \sum_{n=0}^{\infty} b_n$$

Condizione necessaria

$$\sum_{n=0}^{\infty} a_n \text{ converge } \Longrightarrow a_n \to 0$$

Dim: $a_n = S_n - S_{n-1}$. Se $\sum_{n=0}^{\infty} a_n$ converge, allora $S_n \to \ell \in \mathbb{R}$. Quindi $\lim_{n \to +\infty} a_n = \lim_{n \to +\infty} (S_n - S_{n-1}) = \lim_{n \to +\infty} S_n - \lim_{n \to +\infty} S_{n-1} = \ell - \ell = 0$.

Dunque se a_n non tende a 0, la serie non può convergere (può divergere o essere indeterminata). Se $a_n \to 0$, potrebbe convergere.

Serie note

- 1. Serie geometriche
- 2. Serie armoniche generalizzate

$$\sum_{n=1}^{\infty} \frac{1}{n^a} = \begin{cases} \text{diverge a } +\infty & \text{se } a \leq 1 \\ \text{converge} & \text{se } a > 1 \end{cases}$$

3. Parenti dell'armonica

$$\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^a} = \begin{cases} \text{diverge a } +\infty & \text{se } a \leq 1 \\ \text{converge} & \text{se } a > 1 \end{cases}$$

Serie a termini di segno costante

Lemma: sia a_n una successione def. ≥ 0 . Allora la succesione $S_k = (a_0 + \cdots + a_k)$ delle somme parziali è def. debolmente crescente.

Dim:

$$\exists n_0 \in \mathbb{N} \text{ t.c. } \forall n \geq n_0, \ a_n \geq 0 \implies$$
 $\forall n \geq n_0, \ S_n = a_n + S_n \geq S_{n-1}$

Teo: Se a_n è una succ. def. ≥ 0 , allora $\sum_{n=0}^{\infty} a_n$ ha due comportamenti possibli: converge o diverge a $+\infty$.

Dim: teo sulle successioni monotone applicato a S_k .

Oss: Vale lo stesso risultato se $a_n \leq 0$ def. In quel caso $\sum_{n=0}^{\infty} a_n$ converge oppure diverge a $-\infty$.

Criterio della radice Sia $a_n \geq 0$ def. Supponiamo che $\sqrt[n]{a_n} \to \ell \in \overline{\mathbb{R}}$. Allora:

- 1. Se $\ell > 1$ la serie diverge a $+\infty$
- 2. Se $\ell < 1$ la serie converge
- 3. Se $\ell = 1$???

Criterio del rapporto Sia $a_n>0$ def. Supponiamo che $\frac{a_{n+1}}{a_n} \to \ell \in \overline{\mathbb{R}}.$ Allora:

- 1. Se $\ell > 1$ la serie diverge a $+\infty$
- 2. Se $\ell < 1$ la serie converge
- 3. Se $\ell = 1$???