Homework 10

Naman Mishra (22223)

24 October, 2024

Problem 1. Let X_1, X_2, \ldots be i.i.d from μ . For each n, define the random probability measure $\mu_n = \frac{1}{n}(\delta_{X_1} + \cdots + \delta_{X_n})$. If F_n, F are the cumulative distribution functions of μ_n and μ , show that for any $x \in \mathbb{R}$, we have $F_n(x) \xrightarrow{\text{a.s.}} F(x)$.

Solution. Fix $x \in \mathbb{R}$. Then $F_n(x) = \frac{1}{n} \sum_{i=1}^n \mathbf{1}_{\{X_i \leq x\}}$. $\mathbf{P}\{X_i \leq x\} = F(x)$ and X_i 's are i.i.d, so $\mathbf{1}_{\{X_i \leq x\}}$ are i.i.d $\mathrm{Ber}(F(x))$ random variables. By the strong law, $F_n(x) \xrightarrow{\mathrm{a.s.}} \mathbf{E}[\mathbf{1}_{\{X_1 \leq x\}}] = F(x)$.

Problem 2. Let X_n be a sequence of random variables with zero means, unit variances. Assume that $|\operatorname{Cov}(X_n,X_m)| \leq \delta(|n-m|)$ where $\delta(k) \to 0$ as $k \to \infty$. Show that $\frac{1}{n}S_n \stackrel{\mathsf{P}}{\to} 0$.

Solution. Compute the variance of S_n .

$$\operatorname{Var}(S_n) = \sum_{i=1}^n \operatorname{Var}(X_i) + \sum_{i \neq j} \operatorname{Cov}(X_i, X_j)$$

$$\leq n + 2[(n-1)\delta(1) + (n-2)\delta(2) + \dots + \delta(n-1)]$$

$$\implies \operatorname{Var}\left(\frac{1}{n}S_n\right) \leq \frac{1}{n} + \frac{2}{n}\sum_{k=1}^{n-1} \delta(k).$$

Claim. Let $T_n = \sum_{k=1}^n \delta(k)$. Then $\frac{1}{n}T_n \to 0$ as $n \to \infty$.

Proof of Claim. Let $\varepsilon > 0$, and choose N such that $\delta(n) < \frac{\varepsilon}{2}$ for all $n \ge N$. Then for $n \ge N$,

$$\frac{1}{n}T_n = \frac{1}{n}T_N + \frac{1}{n}\sum_{k=N+1}^n \delta(k) \le \frac{1}{n}T_N + \frac{\varepsilon}{2}.$$

For large enough n, we have $\frac{1}{n}T_N < \frac{\varepsilon}{2}$, so $\frac{1}{n}T_n < \varepsilon$.

Thus $\operatorname{Var}(\frac{1}{n}S_n) \to 0$ as $n \to \infty$. By Chebyshev's inequality, we have $\frac{1}{n}S_n \stackrel{\mathsf{P}}{\to} 0$.