Randonization Shared Chennel Quick Select

Shared Channel

A deferministic Lucy are wants to sept

a message, but if >1 at a film brice, all fail.

no feed back each client executes the same algerithm

n clients

at each time t, a client can either by to send or not

algorithm never

rends a message

Shared Channel

at each time t, a client can either by to send or not 7 9 0 no feed back A deterministic tvey one wants to sept each client executes the same algorithm a message, but if >1 at a blue bries, all bail. algorithm never sends a massage

A randomized algorithm; each client souds their message at each timestep with prob p.

How long before every client sends their message? hunt is the possibility that client i snaceds at time t?

SLight is the event that client; snaceds at time to
$$AL[j,t] \text{ is the event that client } S \text{ souls at time } t.$$

$$SL[j,t] = AL[j,t] \cap \left(\bigcap_{j\neq i} \overline{AL[j,t]}\right)$$

$$p(SL[j,t]) = p(AL[j,t]) \cdot \prod_{j\neq i} p(\overline{AL[j,t]}) = p(1-p)^{n-1}$$

Maximize
$$\rho(1-\rho)^{n-1}$$

$$\frac{d}{d\rho} p(1-\rho)^{n-1} = l \cdot (1-\rho)^{n-1} - \rho (n-1) (1-\rho)^{n-2} = 0$$
Solve for ρ : $(1-\rho)^{n-1} = \rho(n-1)(1-\rho)^{n-2}$

$$1-\rho = \rho(n-1) = \rho(n-\rho)$$

$$1-\rho = \frac{1}{\rho}$$

Best clure for
$$\rho$$
 is $\frac{1}{n}$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} (1-\frac{1}{n})^{n-1}$$

Best clure for
$$\rho$$
 is an $(1-t)^{n-1}$.

Fact

[$(1-t)^{n-1}$ can be get a monotonically from $t=t$ to $t=t$.

2. $(1-t)^{n-1}$ can verse $t=t$ monotonically from $t=t$ to $t=t$.

 $t=t$
 t

2.
$$(1-\frac{1}{7})^n$$
 can verses monotonically from $\frac{1}{4}$ $\frac{1}{$

Define
$$F\Sigma_i$$
, t to be the probability that client been 4
succeed in any round from $1, 2, ..., +$.

$$F\Sigma_i, t = 0 \quad \Sigma_i, \beta$$

$$F(F\Sigma_i, t) = 0 \quad \Sigma_i, \beta$$

$$S(I - en) \quad Want this to book (1 - 1)^n$$

$$\rho(F\Sigma,\epsilon) = \prod_{i=1}^{n} \rho(S\Sigma,r^{2})$$

$$\leq (1-\frac{1}{2})^{n}$$

$$= (1-\frac{1}{2})^{n}$$

$$\leq (1-\frac{1}{2})^{n}$$

$$\leq (1-\frac{1}{2})^{n}$$

$$\leq (1-\frac{1}{2})^{n}$$

$$\leq (1-\frac{1}{2})^{n}$$

FEi,
$$\epsilon$$
3 \leq $(1-\epsilon_n)^{\pm}$ Want ϵ f

If $t=xen$

$$= (1-\frac{1}{4})^{x} \cdot en$$
Set $x=\ln(\frac{1}{4})^{x}$
Succeed w prob
$$\geq 1-\epsilon$$

$$\geq 1-\epsilon$$

Apply Union Bound:
$$p(F_t) \in \sum_{i=1}^{n} p(F_i, t)$$

= hp(F(1, e3) IP we want this to be less than f, wond p(F[1,c]) < f Set $f' = \frac{f}{n}$ on last side =) $T^2 t = \ln(\frac{f}{r}) en$, $\lim_{r \to \infty} \rho(F(r, t)) \left(\frac{f}{r} = \frac{f}{r}\right) \rho(F_c) \left(\frac{f}{r}\right)$ If we went cay particular $\Theta(1)$ success, go $O(n\log n)$ thu steps.

Selection

Input: array of n ynnbers, x1,..., xn Ontput: the kth smallest.

Simple algorith i sort, then return kth index O(n logar)

Ruick Select is a roudomized algorithm w/
expected O(n) runtum
worst case O(n) runtum.

Idea: Chosse a random pivost.
Use divide and congrer.
Only going to recurse on one side. rearrange

Random Variables / Expectation Probability Space S.

A RV associates - value to each ortione.

If X is a RV, it's expected value is:

