ICT Logic Gate Pretest

Draw the logic diagram of the following boolean expressions (be neat and use a template):

1.
$$(A + B)(C + D) = Y$$

2.
$$\overline{N \bullet X} + (A \bullet B) = Y$$

3.
$$(\overline{C} \bullet \overline{W} \bullet \overline{P}) + (V + W) = Y$$

4.
$$\overline{(A \oplus B)} + (C \bullet D) = L$$

Write the boolean expression for each of the following logic diagrams:

- 9) A NOR gate can be constructed by inverting a(n) _____ gate.
- 10) A XNOR gate can be constructed by inverting a(n) _____ gate.
- 11) LED is an acronym for ______ ___ ____

12)	DIP is an acronym for		

- 15) IC is an acronym for ______.
- 16) A _____ gate has a unique output of low (or 0) when both inputs are high (or 1).
- 17) A _____ gate has a unique output of low (or 0) when both inputs are low (or 0).
- 18) A NOR gate has a unique output of ______ when both inputs are _____.
- 19) The _____ and ____ gates have no unique outputs.

For questions 20-22 choose from the following gates (AND, OR, XOR, NAND, NOT)

- 20) The "either but not both gate" is the _____ gate.
- 21) The "all or nothing gate" is the _____ gate.
- 22) The "any or all gate" is the _____ gate.
- 23) Complete the following truth table:

A	В	$A \oplus B$	\overline{AB}	AB	A + B
0	0				
0	1				
1	0				
1	1				

24) Complete the truth table for the following:

- 26) The output of gate 1 is _____.
- 27) The output of gate 2 is _____.
- 28) The output of gate 3 is _____.
- 29) A NOR gate performs the logic function ______
 - a) A + B
- b) $\overline{A+B}$
- c) \overline{AB}
- d) $\overline{A} \overline{B}$
- e) $A \oplus B$
- 30) A NAND gate performs the logic function _____.
 - a) A + B
- b) $\overline{A+B}$
- c) \overline{AB}
- d) $\overline{A} \overline{B}$
- e) $A \oplus B$

Name each of the following gates (choose from: NOT, OR, XNOR, XOR, NAND, AND, NOR)

Simplify the following bit-wise expressions:

- 31) $10101 \bullet 11011 \oplus 10011 =$
- 32) 11000 + 10101 01010 =
- 33) $\overline{00110 \oplus 10011} \bullet 11101 + 00100 =$