	1	2 1
) e	ction	۲۰۱

Have seen we can represent linear transformations
by metrices.
What if we are dealing with a very
complicated transformation like:
T rotates points The realisms counterelockwise
(3) A then flips across line x,=xz
3 + then relation clackwise #3
Figuring out a single metrix may be difficult
but there :s another approach.
If we know how to multiply notrices
we can find matrix for each transformation
then neltiply them all together!
Just one of reasons we need to learn
how to work with metrices
Matrix Info
Recall how we number entries of a
metrix.
a is je column

Then dragonal enteres of a matrix
en of the form aic
The main are
A deagonal metrix is square metrix whose
nonzero entries are on main dragonal, zero
every where else.
[a ₁₁]
Ex The ideality medeix Inxn is a
diagonal matrix [100]
Zero motion is the metrix of all O's.
Two medicies are equal if they have same dimensions (MXN) and all entries are equal
Metrix Acith metre
Sum: If A, B have some dimensions (mxn)
can add them tage that by just adding their
entries. [10], [27] = [32]

 $(A+B)_{ij} = a_{ij} + b_{ij}$ Scalar multiple: 3 [10] = [30] CER (cA); = cais (j-st multiple every Theorem: (Proporties of metrix arithmetre) C A+B=B+A communitivity of addition @ (A+B)+(=A+(B+C). + associalisity (3) A + Omen = A @ c(A+B) = cA+cB for cell @ (c+d) A = c A + dA @ c(dA) = (ed)A Matrix multiplications Have already given some motivation. Straight to mechanics. Know how to do (natrix) (vector) be in dot product of it row as Recall have requirements. If A man, it must be nxl mxa axD = mxD

Red numbers must metch

(Matrix) (metrix) is similar, besidely just repeat above precess

1st celumn of (AB) is (A)(1st column of B)

mxn mxp

In general, $(AB)_{ij} = (i^{th} cow A) \cdot (j^{th} column B)$

 $\begin{bmatrix} -1 & 2 \\ 5 & 4 \\ 2 & -3 \end{bmatrix} \begin{bmatrix} 3 & -4 \\ -2 & 1 \end{bmatrix} =$

Theorem: (Properties of Motion Multiplication)

(Assume sizes of metrices are all appropriate so preducts defined)

C 4 (BC) = (AB)C

@ A (B+C) = AB+AC

 $\mathcal{E}(\mathcal{B}+\mathcal{C})A = \mathcal{B}A + \mathcal{C}A$

* Note: A Very important!

In general AB does NOT equal BA
AB + BA

Property 5 above is an exception

In feel even if AB is defined, BA may not be.

Other warnings:

Do not have a simple guaranteed was to concell

A from both sides, so can't get this conclusion

& AB= Onep does NOT imply either A or B is the zone medick

We may have A, B both non-zero, but product
75 zero matrix.

Powers of matrix: If A is square, can multiply A by riself. Why square?

Let A be man

A A

1 1

max

max

n=m

So A must be nan (or nam)

Con multiply A by itself arbitrary number of times

 $A^{k} = A \cdot A \cdot A \dots A$ k - limes

Transpose of metrix: Essentially flapping a metrix on its side. Turn rows into columns, columns in to 1000

Ex:

$$A = \begin{bmatrix} 1 & 0 & 5 & 6 \\ 2 & 3 & 1 & 9 \end{bmatrix}$$

In general (AT)in = Ani

Theorem: A, B matrices of appropriate sizes

Generalizing ebove,
$$(A, A, A, ... A_R)^T$$

= $A_R^T A_{R-1}^T ... A_r^T$