PATTERN RECOGNITION AND MACHINE LEARNING

CS5691 (JUL-NOV 2018)

Indian Institute of Technology, Madras

M. Tech (2018-19) Computer Science and Engineering

SUBMITTED TO
Prof. C. Chandra Sekhar (CSE Dept, IITM)

TEAM 8

Neha Sah (CS18M033) Avani Shukla (CS18M052) Aarti Tapdiya (CS18M055)

Dataset 2: 2-dimensional artificial data

(a) Linearly separable data set for static pattern classification

Classifier 1: Multi-class logistic regression based classifier using polynomial basis functions

M	Learning rate (<mark>η</mark>)	Training Accuracy (%)	Validatio n Accuracy (%)
1	0.0001	100	100
1	0.00001	95.3333	96.2222
2	0.00001	98.9333	98.4444

Table 1.1 classification accuracies for different values of hyperparameter

- Best Configuration model is when M=1
- and η = 0.0001
 Test accuracy : 100%

Figure 1.1 plot for best performing model of training data N=750 for M=1 and $\frac{1}{\eta} = 0.0001$

	Class 1	Class 2	Class 3
Class 1	250	0	0
Class 2	0	250	0
Class 3	0	0	250

Table 1.2 Confusion matrix for training data

	Class 1	Class 2	Class 3
Class 1	100	0	0
Class 2	0	100	0
Class 3	0	0	100

Tabel 1.3 Confusion matrix for test data

Classifier 2: Multi-class logistic regression based classifier using Gaussian basis functions

k	<mark>σ</mark>	Training Accuracy (%)	Validation Accuracy (%)
3	5	100	100
4	5	100	100
3	9	78.5333	78.8889
5	6	100	100

Table 1.4 classification accuracies for different values of hyperparameter

- Best Configuration model is when k=3 and σ=5
- Test accuracy : 100%

Figure 1.2 plot for best performing model of training data N=750 for k=3 and $\sigma=5$

	Class 1	Class 2	Class 3
Class 1	250	0	0
Class 2	0	250	0
Class 3	0	0	250

Table 1.5 Confusion matrix for training data

	Class 1	Class 2	Class 3
Class 1	100	0	0
Class 2	0	100	0
Class 3	0	0	100

Table 1.6 Confusion matrix for test data

Classifier 3: Perceptron

Hyperparameter: Number of epochs E

E	Training Accuracy (%)	Validation Accuracy (%)
1	68.93	69.55
3	91.20	93.11
4	95.60	97.55
5	100	100

Table 1.7 classification accuracies for different values of hyperparameter

- Best configuration of the model when E=5
- Testing Accuracy 99.66%

Figure 1.3 plot for best performing model of training data N=750 for epochs = 5

	Class 1	Class 2	Class 3
Class 1	250	0	0
Class 2	0	250	0
Class 3	0	0	250

Table 1.8 Confusion matrix for training data

	Class 1	Class 2	Class 3
Class 1	100	0	0
Class 2	0	100	0
Class 3	1	0	99

Table 1.9 Confusion matrix for test data

Classifier 4: Multilayer feedforward neural network (MLFFNN) with 2 hidden layers

Hyperparameter: Number of epochs E, number of nodes in hidden layer 1 and 2, J1 and J2 respectively

E	J1	J2	Training Accuracy (%)	Validation Accuracy (%)
3000	2	3	66.40	66.44
9000	2	3	100	99.77
2000	3	4	90.26	90
3000	3	4	99.86	99.77
2000	4	4	99.86	99.77

Table 1.10 classification accuracies for different values of hyperparameter

- Best configuration of the model when E=9000, J1=2, J2=3,
- Testing Accuracy 99.66%

Figure 1.4 plot for best performing model of training data N=750 for E=9000, J1=2 and J2=3

	Class 1	Class 2	Class 3
Class 1	250	0	0
Class 2	0	250	0
Class 3	0	0	250

Table 1.11 Confusion matrix for training data

	Class 1	Class 2	Class 3
Class 1	99	0	1
Class 2	0	100	0
Class 3	1	0	99

Table 1.12 Confusion matrix for test data

C-SVM:

Objective Function:

$$min \frac{1}{2} \| w \|^2 + C \sum_i \xi_i$$

Subject to

$$y_i(w x_i + b) \ge 1 - \xi_i, \forall x_i$$

$$\xi_i \ge 0$$

Kernel Function:

Linear: u'*v

Polynomial: (gamma*u'*v + coef0)^degree

Radial basis function(Gaussian): exp(-gamma*|u-v|^2)

-d degree : set degree in kernel function
 -g gamma : set gamma in kernel function
 -r coef0 : set coef0 in kernel function
 -c cost : set the parameter C of C-SVC

Classifier 5: Linear kernel based C-SVM

Hyperparameter: Cost C

С	Training Accuracy (%)	Validation Accuracy (%)
0.01	100	100
1	100	100

Table 1.13 classification accuracies for different values of hyperparameter

- Best configuration of the model when C=1
- Testing Accuracy 100%

Figure 1.5 plot for best performing model of training data N=750 for C=1

	Class 1	Class 2	Class 3
Class 1	250	0	0
Class 2	0	250	0
Class 3	0	0	250

Table 1.14 Confusion matrix for training data

	Class 1	Class 2	Class 3
Class 1	100	0	0
Class 2	0	100	0
Class 3	0	0	100

Table 1.15 Confusion matrix for test data

Classifier 6 : Nonlinear kernel based C-SVM using polynomial kernel

Hyperparameter: Cost C, degree d, gamma g

С	d	g	Training Accuracy (%)	Validation Accuracy (%)
0.01	2	0.01	99.86	100
1	2	0.01	100	100
10	2	0.01	100	100
1	3	0.01	100	100

Table 1.16 classification accuracies for different values of hyperparameter

- Best configuration of the model when C=1, d=2, g=0.01
- Testing Accuracy 100%

Figure 1.6 plot for best performing model of training data N=750 for C=1, d=2 and g=0.01

	Class 1	Class 2	Class 3
Class 1	250	0	0
Class 2	0	250	0
Class 3	0	0	250

Table 1 1	17 Confusion	matrix for tra	inina data
I auto I	17 (2011)113(01)	IIIAIIIX IVII IIAI	iiiiilu uala

	Class 1	Class 2	Class 3
Class 1	100	0	0
Class 2	0	100	0
Class 3	0	0	100

Table 1.18 Confusion matrix for test data

Classifier 7: Nonlinear kernel based C-SVM using Gaussian kernel.

Hyperparameter: Cost C, gamma g

С	g	Training Accuracy (%)	Validation Accuracy (%)
0.01	0.01	100	100
1	0.01	100	100
10	0.01	100	100

Table 1.19 classification accuracies for different values of hyperparameter

- Best configuration of the model when C=10, g=0.01
- Testing Accuracy 100%

Figure 1.7 plot for best performing model of training data N=750 for C=10 and g=0.01

	Class 1	Class 2	Class 3
Class 1	250	0	0
Class 2	0	250	0
Class 3	0	0	250

Table 1.20 Confusion matrix for training data

	Class 1	Class 2	Class 3
Class 1	100	0	0
Class 2	0	100	0
Class 3	0	0	100

Table 1.21 Confusion matrix for test data

(b) NonLinearly separable data set for static pattern classification

Classifier 1: Multi-class logistic regression based classifier using polynomial basis functions

M	η	Training Accuracy (%)	Validation Accuracy (%)
2	0.00001	92.60	95
1	0.00001	91.40	93
2	0.0001	94.20	96.67
1	0.0001	91.40	94
2	0.000001	84.20	88
1	0.000001	86	88.33

Table 2.1 classification accuracies for different values of hyperparameter

Best model has test accuracy: 92.5%

with M = 2 and $\eta = 0.0001$

Figure 2.1 plot for best performing model of training data N=750 for M=2 and η =0.0001

	Class 1	Class 2
Class 1	236	14
Class 2	15	235

Table 2.2 Confusion matrix for training data

	Class 1	Class 2
Class 1	90	10
Class 2	5	95

Table 2.3 Confusion matrix for test data

Classifier 2 : Multi-class logistic regression based classifier using polynomial basis functions Gaussian basis functions

k	σ	η	Training Accuracy (%)	Validation Accuracy (%)
4	5	0.00001	93.2000	95
4	6	0.0001	91.6000	93
2	6	0.0001	82.6000	80.3333
5	6	0.0001	83.8000	89.6667

Table 2.4 classification accuracies for different values of hyperparameter

• Best model has test accuracy : 92.5000 When k=4, σ = 5 and η = 0.00001

Figure 2.2 plot for best performing model of training

	Class 1	Class 2
Class 1	250	0
Class 2	34	216

Tahla	25	Confusion	matriv	for training data	,
ı avıc	Z. Ü	Comusion	IIIauix	ioi iiaiiiiiu uala	ı

	Class 1	Class 2
Class 1	96	4
Class 2	11	89

Table 2.6 Confusion matrix for test data

Classifier 3: Multilayer feedforward neural network (MLFFNN) with 2 hidden layers

Hyperparameter: Number of epochs E, number of nodes in hidden layer 1 and 2, J1 and J2 respectively

E	J1	J2	Training Accurac y (%)	Validatio n Accurac y (%)
1000	3	4	83	86
1000	5	5	93.80	95.33
2000	3	4	90	92
5000	7	6	97.80	99.33
10000	5	5	99.20	99.66
10000	8	7	100	100

Table 2.7 classification accuracies for different values of hyperparameter

- Best configuration of the model when E=10000, J1=8, J2=7
- Testing Accuracy 100%

Figure 2.3 plot for best performing model of training data N=750 for E=10000, J1=8 and J2=7

	Class 1	Class 2
Class 1	250	0
Class 2	0	250

Table 2.8 Conf			

	Class 1	Class 2
Class 1	100	0
Class 2	0	100

Table 2.9 Confusion matrix for test data

Classifier 4: Nonlinear kernel based C-SVM using polynomial kernel

Hyperparameter: Cost C, degree d, gamma g

С	d	g	Training Accuracy (%)	Validation Accuracy (%)
0.01	3	1	96.6	97.33
1	3	0.2	90.20	91.66
1	3	2	97.6	98
10	3	2	97.6	98
100	4	0.5	77.8	78

Table 2.10 classification accuracies for different values of hyperparameter

- Best configuration of the model when C=10, d=3, g=2
- Testing Accuracy 98.50%

Figure 2.4 plot for best performing model of training data N=750 for C=10, d=3 and g=2

	Class 1	Class 2
Class 1	250	0
Class 2	12	238

	Table 2.11	Confusion	matrix fo	r training	data
--	------------	-----------	-----------	------------	------

	Class 1	Class 2
Class 1	100	0
Class 2	3	97

Table 2.12 Confusion matrix for test data

Classifier 5: Nonlinear kernel based C-SVM using Gaussian kernel.

Hyperparameter: Cost C, gamma g

С	g	Training Accuracy (%)	Validation Accuracy (%)
1	0.5	100	100
10	0.5	100	100
10	0.01	94	95.66

Table 2.13 classification accuracies for different values of hyperparameter

- Best configuration of the model when C=10, g=0.5
- Testing Accuracy 100%

Figure 2.5 plot for best performing model of training data N=750 for C=10, g=0.5

	Class 1	Class 2
Class 1	250	0
Class 2	0	250

Table 2.14 Confusion matrix for training data

	Class 1	Class 2
Class 1	100	0
Class 2	0	100

Table 2.15 Confusion matrix for test data

Dataset 3: Image data set

Classifier 1: Multi-class logistic regression based classifier using polynomial basis functions

М	σ	ŋ	Training Accuracy (%)	Validation Accuracy (%)
2	9	0.00001	43.7795	38.89
6	9	0.00001	60.7874	42.43

Table 3.1 classification accuracies for different values of hyperparameter

Best Model has Test accuracy: 34.44%
 With M= 6, σ = 9 and η = 0.00001

	Class 1	Class 2	Class 3
Class 1	182	0	0
Class 2	249	0	0
Class 3	0	0	204

Table 3.2 Confusion matrix for training data

	Class 1	Class 2	Class 3
Class 1	12	13	1
Class 2	25	10	0
Class 3	13	7	9

Table 3.3 Confusion matrix for test data

Classifier 2: Multi-class logistic regression based classifier using gaussian basis functions

k	σ	ŋ	Trainin g Accura cy (%)	Validati on Accura cy (%)
30	7	0.00001	62.04	60.43
50	15	0.00005	50.55	51.11

Table 3.4 classification accuracies for different values of hyperparameter

- Best Model has Test accuracy :38.79 %
 k = 30 , σ= 7 and η = 0.00001
- Model with k=50 , σ = 15 and η = 0.00005 has test accuracy : 51.91%

	Class 1	Class 2	Class 3
Class 1	152	20	10
Class 2	85	126	38
Class 3	60	28	116

Table 3.5 Confusion matrix for training data

	Class 1	Class 2	Class 3
Class 1	33	19	0
Class 2	34	38	0
Class 3	42	17	0

Table 3.6 Confusion matrix for test data

Classifier 3: Multilayer feedforward neural network (MLFFNN) with 2 hidden layers

Hyperparameter: Number of epochs E, number of nodes in hidden layer 1 and 2, J1 and J2 respectively

E	J1	J2	Training Accurac y (%)	Validatio n Accurac y (%)
5000	20	15	80.31	92.22
10000	20	15	82.51	92.86
10000	25	23	84.72	93.33
10000	35	40	86.45	92.22
10000	60	70	85.35	93.33

Table 3.7 classification accuracies for different values of hyperparameter

- Best configuration of the model when E=10000, J1=25, J2=23
- Testing Accuracy 67.21%

	Class 1	Class 2	Class 3
Class 1	229	2	18
Class 2	21	152	9
Class 3	31	5	168

Table 3.8 Confusion matrix for training data

	Class 1	Class 2	Class 3
Class 1	62	1	9
Class 2	10	21	21
Class 3	18	1	40

Table 3.9 Confusion matrix for test data

Classifier 4 : Nonlinear kernel based C-SVM using polynomial kernel

Hyperparameter : Cost C, degree d, gamma g

С	d	g	Training Accuracy (%)	Validation Accuracy (%)
10	3	0.043	80	92.22
10	5	0.043	83.77	93.33

Table 3.10 classification accuracies for different values of hyperparameter

- Best configuration of the model when C=10, d=5, g=0.0435
- Testing Accuracy 62.30%

	Class 1	Class 2	Class 3
Class 1	231	0	18
Class 2	30	137	15
Class 3	39	1	164

Table 3.11 Confusion matrix for training data

	Class 1	Class 2	Class 3
Class 1	63	1	8
Class 2	18	11	23
Class 3	18	1	40

Table 3.12 Confusion matrix for test data

Classifier 5 : Nonlinear kernel based C-SVM using Gaussian kernel.

Hyperparameter : Cost C, gamma g

С	g	Training Accuracy (%)	Validation Accuracy (%)
1	0.0435	79.37	86.66
10	0.0435	81.41	93.33
100	0.0435	85.66	94.44

Table 3.13 classification accuracies for different values of hyperparameter

- Best configuration of the model when C=100, g=0.0435
- Testing Accuracy 61.74%

	Class 1	Class 2	Class 3
Class 1	236	0	13
Class 2	29	141	12
Class 3	34	3	167

Table 3.14 Confusion matrix for training data

	Class 1	Class 2	Class 3
Class 1	62	0	10
Class 2	20	11	21
Class 3	18	1	40

Table 3.15 Confusion matrix for test data

Dataset 1 : Data for sequential pattern classification

(a) On-line handwritten character data

Classifier 1:: Discrete HMM

k	No. of states	Test Accuracy (%)
20	5	93.33
25	5	94.44
20	4	93.33

Table 4.1 classification accuracies for different values of hyperparameter

Best Model has test Accuracy 94.44% with k=25 and no. of states = 5

	Class 1	Class 2	Class 3
Class 1	12	0	0
Class 2	1	11	0
Class 3	1	0	11

Table 4.2 Confusion matrix for test data

Classifier 2: Linear kernel based C-SVM

Hyperparameter: Cost C

С	Training Accuracy (%)	Validation Accuracy (%)
1	91.82	100
10	98.55	93.10
50	100	86.20

Table 4.3 classification accuracies for different values of hyperparameter

- Best configuration of the model when C=1
- Testing Accuracy 95.08%

	Class 1	Class 2	Class 3
Class 1	65	1	4
Class 2	4	63	3
Class 3	5	0	63

Table 4.4 Confusion matrix for training data

	Class 1	Class 2	Class 3
Class 1	19	0	1
Class 2	0	20	0
Class 3	2	0	19

Table 4.5 Confusion matrix for test data

Observation:

- On linear dataset all the classifiers give the best results .
- On non linear Multilayer feedforward neural network and C-SVM with Gaussian kernel give the best result.
- On image data set Multilayer feedforward neural network give the best result.