Teoria de Conjuntos

18/1/2020

Contents

Elementos	1
Notación	2
Enumerativa o Tabular	2
Descriptiva o por Comprensión	2
Subconjuntos	2
Conjuntos especiales	3
· -	3
Par	3
Vacio	3
Conjunto Potencia	3
·	3
Algebra de conjuntos	4
Unión	4
Intersección	4
Diferencia	4
Complemento	4
Diferencia Simétrica	4

Elementos

- Un conjunto es un ente no definido. En el curso se le tratara como una agrupación o colección de elementos.
- $\bullet\,$ Los conjuntos los nombramos con letras mayúsculas latinas. Y no es necesario que todos los elementos tengan algo en común.
- Para indicar que un elemento pertenece a un conjunto usamos: $a \in A$. Ejemplo: $Guatemala \in America$
- Para indicar que no pertenece al conjunto usamos: $a \notin A$. Ejemplo: $8 \notin Alfabeto, a \notin Consonantes.$

- Un conjunto tiene que estar bien determinado. Esto significa que la expresión "el elemento a pertenece al conjunto A" tiene que ser verdadera o falsa, no puede ser ambigua. Por ejemplo, un conjunto que no esta bien definido serian los productos baratos del supermercado. Aquí la ambigüedad esta en que es "barato"?
- En un conjunto los elementos no se repiten. Si aparecen mas de una vez los contamos solo una. Entonces las letras de Galileo serian: $\{G, a, l, i, e, o\}$. Las letras de coco serian: $\{c, o\}$.
- Los elementos no tienen que estar en un orden especifico

Notación

Para separar los conjuntos los separaremos en:

- 1. Finitos: Los que podemos contar
- 2. Infinitos: Los que no podemos contar

Enumerativa o Tabular

Los elementos del un conjunto se ponen entre llaves, separados por comas.

$$A = \{\pi, 1, @, +\}$$

Descriptiva o por Comprensión

En la que se da una descripción de los elementos.

$$A = \{Ciudadanos Guatemaltecos\}$$

Este $B = \{x/x \text{ es letra del alfabeto español}\}$ se lee como: "x tal que x pertenece al alfabeto español".

Subconjuntos

 \subset significa que los elementos de uno están contenidos en el otro.

Ejemplo:

$$A = \{a, b, c, d, e\}$$
$$B = \{a, e\}$$
$$C = \{a, b, c, d, e\}$$

Aquí podemos afirmar que $B \subset A$. De forma equivalente $A \supset B$.

Si nota, todos los elementos de A están en C, por lo que podemos decir que: C esta contenido o es igual a A. O matemáticamente $C \subseteq A$. Se puede afirmar que si $C \subseteq A$ y $C \supseteq A$ entonces A = C.

Conjuntos especiales

Unitario

El que tiene un solo elemento: $A = \{2\}$

Par

El que tiene un dos elementos: $A = \{2, 3\}$

Vacio

El que no tiene elementos: $A = \{\}$ o $A = \Phi$

Conjunto Potencia

Es la cantidad de subconjuntos que se pueden crear de un conjunto.

Se define de la siguiente manera:

$$P(A) = 2^n$$

Donde:

- \bullet A es el conjunto
- ullet n es la cantidad de elementos de A

Diagramas de Venn

Es una representación gráfica de los elementos, conteniendo los elementos en figuras geométricas.

Álgebra de conjuntos

Unión

Son todos los elementos de ambos conjuntos. Símbolo: \cup

Intersección

Son los elementos comunes entre ambos conjuntos. Símbolo: \cap

Diferencia

A-B, son todos los elementos de A que no estén en B.

Complemento

A' o también escrito \overline{A} es lo que le falta a A para ser el conjunto universo (U).

Diferencia Simétrica

 $A \vartriangle B$ son todos los elementos que A y B no comparten. También se puede ver como $(A-B) \cup (B-A)$