Algorithms 6

Divij Singh

22/02/18

1

Consider $\lim_{n\to\infty} \frac{n^b}{a^n}$

We can apply L'Hopital's rule, we get $\lim_{n\to\infty} \frac{bn^{b-1}}{a^n \ln |a|}$

Applying the rule b-1 times: $\frac{b!}{ln^ba}lim_{n\to\infty}\frac{1}{a^n}$ Applying the limit: $\frac{b!}{ln^ba}*\frac{1}{a^\infty}=\frac{b!}{ln^ba}*0=0$

Thus, using the definition of o, we can conclude that since $\lim_{n\to\infty}\frac{n^b}{a^n}=0$, $n^b = o(a^n)$

2

To prove: $\lim_{n\to\infty}\frac{lg^an}{n^b}=0$ Using L'Hopital's a+1 times, we get: $\frac{a!}{b^a}lim_{n\to\infty}\frac{1}{n^b}$

Applying limits, we get: $\frac{a!}{b^a} * 0 = 0$

Q.E.D

3

To prove: $\lim_{n\to\infty} \frac{n!}{n^n} = 0$

Via Sterling's approximation of n!, we know that: $n! = \sqrt{2\pi} * n^{1/2} * (\frac{n}{c})^n * (1 + \frac{c}{n})$

Applying that to our equetion, we get: $\lim_{n\to\infty} \frac{n!}{n^n} = \sqrt{2\pi} (\lim_{n\to\infty} \frac{n^{1/2}}{c^n})$ We know from Q1 that $\lim_{n\to\infty} \frac{n^{1/2}}{c^n} = 0$, leaving us with $\sqrt{2\pi} * 0 = 0$

 $\mathrm{Q.E.D}$

4

To prove:
$$\lim_{n\to\infty}\frac{n!}{2^n}=\infty$$

Again we use Sterling's approximation, getting:
$$\lim_{n\to\infty}\frac{n!}{2^n}=\sqrt{2\pi}lim_{n\to\infty}\frac{n^n}{(2e)^n}*\sqrt{n}+\theta*lim_{n\to\infty}\frac{n^{n-0.5}}{(2e)^{n-0.5}}*2e^{0.5}$$

Applying limits, we get: $\sqrt{2\pi}*\infty+\infty=\infty$ Q.E.D

The order is as follows: $\frac{n}{logn}; 2^{\sqrt{lg(n)}}; 2^{lg(n)}; \frac{n}{lg(n)}; n^n$