

Features from Accelerated Segment Test*

ISL Lab Seminar
Jin-Hyung Kim

Contents

Features

A **feature** is a piece of information which is relevant for solving the computational task related to a certain application. Features may be specific structures in the image such as points, edges or objects. Features may also be the result of a general neighborhood operation or feature detection applied to the image.*

Feature detectors

L Image System Laboratory

Harris, Shi-Tomasi

Harris corner detector

Harris build an approximation to the second derivative of the SSD w.r.t the shift.

$$\mathbf{H} = \begin{bmatrix} \left\langle I_x^2 \right\rangle & \left\langle I_x I_y \right\rangle \\ \left\langle I_x I_y \right\rangle & \left\langle I_y^2 \right\rangle \end{bmatrix}$$

➤ Define the corner response : $C = |\mathbf{H}| - k(trace \mathbf{H})^2$

Shi-Tomasi : Good Feature To Track

• Based on the assumption of affine image deformation, a mathematical analysis led Shi & Tomasi conclude that it is better to use the smallest eigen value of **H** as the corner strength function

$$C = \min(\lambda_1, \lambda_2)$$

SUSAN

Smallest Univalue Segment Assimilating Nucleus

- Assumes that a corner resembles a blurred wedge, and finds the characteristics of the wedge(amplitude, angle, blur) by fitting it to the local image.
- Calculating the corner strength
 - ➤ Computes self similarity by looking at the proportion of pixels inside a disc whose intensity is within some threshold of the center(nucleus) value.
 - 1 Place a circular mask around the pixel(the nucleus)
 - Calculate the number of pixels within the circular mask which have similar brightness to the nucleus(USAN)

$$n(M) = \sum_{\vec{m} \in M} c(\vec{m}) \quad c(\vec{m}) = e^{-\left(\frac{I(\vec{m}) - I(\vec{m}_0)}{t}\right)^6}$$

3 Subtract the USAN size from the geometric threshold to produce a corner strength image

$$R(M) = \begin{cases} g - n(M) & \text{if } n(M) < g \\ 0 & \text{otherwise,} \end{cases}$$

4 Test for false positives by finding the USAN's centroid and its contiguity

FAST

The Segment-Test algorithm

• If $\geq N$ contiguous pixels in a Bresenham circle of radius r around a center pixel p are all brighter than p by some threshold or all darker than p by some threshold, then there is a feature at p

FAST

Features from Accelerated Segment Test

 p_0 is a feature

Computationally efficient

- For N=12, at least 12 pixels to be tested to tell if p is a feature,
 but only 2 tests may be required to tell that p is not a feature.
- Problems
 - (1) N=12 is not the best choice
 - 2 The ordering of questions is not optimal (Machine learning)
 - Multiple features are detected adjacent to one another (Non-maximum suppression)

Pixel position						
			p_I	p_2		
	p_{15}				p_3	
<i>p</i> ₁₄						p_4
p_{13}			p_0			p_5
p_{12}						p_6
	p_{II}				p_7	
		p_{10}	p_9	p_8		

- 1. Select a set of images for training
- 2. Run FAST algorithm in every images to find feature points
- 3. For every feature point, store the 16 pixels around it as a vector. Do it for all the images to get feature vector P
 - P: the set of all pixels in all training images
- 4. Depending on the states, the feature vector \mathbf{P} is subdivided into 3 subsets, \mathbf{P}_d , \mathbf{P}_s , \mathbf{P}_b

$$S_{p \to x} = \begin{cases} d, & I_{p \to x} \le I_p - t & \text{(darker)} \\ s, & I_p - t < I_{p \to x} < I_p + t & \text{(similar)} \\ b, & I_p + t \le I_{p \to x} & \text{(brighter)} \end{cases}$$

$$p \in \mathbf{P}$$

$$x \in \{1..16\}$$

- 1. Define a new boolean variable, K_p , which is true if **P** is a corner and false otherwise
- 2. Use the **ID3** algorithm(decision tree classifier) to query each subset using the variable K_p for the knowledge about the true class. It selects the x which yields the most information about whether the candidate pixel is a corner, measured by the entropy of K_p
 - The entropy of K for the set \mathbf{P} is: $H(\mathbf{P}) = (c + \overline{c}) \log_2(c + \overline{c}) c \log_2 c \overline{c} \log_2 \overline{c}$ where $c = \left| \left\{ p \mid K_p \text{ is true} \right\} \right| \text{ (number of non-corners)}$ and $\overline{c} = \left| \left\{ p \mid K_p \text{ is false} \right\} \right| \text{ (number of non-corners)}$
- 3. This is recursively applied to all the subsets until its entropy is zero
- 4. The decision tree so created is used for fast detection in other images

Ex) a total of 4235 lines of code are generated for N=9

For N=9 and r=3, only **2.26 questions** are required on average to classify a pixel

Non-maximal suppression

Score function V

- Since the segment test <u>does not compute</u> a corner response function, a score function is required.
- Several intuitive definitions for V:
 - 1 The maximum value of n for which p is still a corner
 - 2 The maximum value of t for which p is still a corner
 - 3 The SAD btw. the pixels in the contiguous arc and the center pixel

$$V = \max \left(\sum_{x \in S_{bright}} \left| I_{p \to x} - I_{p} \right| - t, \sum_{x \in S_{dark}} \left| I_{p \to x} - I_{p} \right| - t \right)$$

$$S_{bright} = \left\{ x \mid I_{p \to x} \ge I_p + t \right\}$$
$$S_{dark} = \left\{ x \mid I_{p \to x} < I_p - t \right\}$$

Timing results

■ Opteron 2.6GHz ■ Pentium III 850MHz

768 ×	288 PA	L image set
-------	--------	-------------

/			`
(n	าร	.)

700 × 200 1 AL Illiage Set				
Detector	Opteron 2.6GHz	Pentium III 850MHz		
FAST 9 non-max sup.	1.33	5.29		
FAST 9	1.08	4.34		
FAST 12 non-max sup.	1.34	4.60		
FAST 12	1.17	4.31		
Old FAST 12 non-max sup.	1.59	9.60		
Old FAST 12	1.49	9.25		
Harris	24.0	166		
DoG	60.1	345		
SUSAN	7.58	27.5		

Repeatability evaluation

Repeatability is measured as the percentage of features detected from view 1 which are also detected in view 2

Repeatability evaluation

Noise performance evaluation

Image System Laborator

Conclusion

The author has used machine learning to derive a very fast, high quality corner detector.

- Faster
- High levels of repeatability under large aspect changes and for different kinds of feature

Disadvantages

- Not robust to high levels noise
- Can respond to 1px wide lines at certain angles
- Depends on a threshold