A very important concept in Physics, Mathematics Symmetry: and art! In the example we just discussed: we solved the eigenvalue problem $(M^{-1}K) \cdot A = W^{2}A$ We get normal mode frequencies, and amplitude ratios. In fact we can find the normal modes much easier by symmetry! This system is invariant under reflection! (Physics is unchanged) $\chi_i \rightarrow -\chi_i$ X2 -> - X, This means that if $\chi(t) = \chi_2(t)$ is a solution $X(t) = \begin{pmatrix} -X_2 \\ -X_1 \end{pmatrix}$ is also a solution To describe it mathematically we define $S = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$ Symmetry matrix

X(t) = SX(t)

Original Equation of Motion:

$$\dot{X}(t) = -M' K X(t)$$

2(t) is a solution

If
$$\chi(t) = S\chi(t)$$
 is also a solution

$$\Rightarrow$$
 $\tilde{\chi}(t) = -MK\tilde{\chi}(t)$

$$\Im \Rightarrow S\chi(t) = -MKS\chi(t)$$

We also know
$$S \times (O)$$
 $S \times (T) = -SMK \times (T)$

Therefore, if
$$SMK = MKS \Rightarrow \tilde{\chi}$$
 is also a solution

or usually we say 'Commute'
$$[A, B] = AB - BA = 0$$

If
$$\chi(t) = A^{(1)}\cos(\omega, t)$$

and Wi + Wz

$$\Rightarrow$$
 $\chi(t) \propto A^{(1)} \cos(\omega,t)$

in any solution oscillating with Wi must be proportioned to A(1)

$$\Rightarrow$$
 $S\chi(t) = SA^{(1)} cos(\omega,t) \propto A^{(1)} cos \omega_i t$

$$\Rightarrow$$
 $SA^{(1)} = \beta_i A^{(1)}$

 \Rightarrow $SA^{(1)} = \beta_i A^{(1)}$ similarly $SA^{(2)} = \beta_i A^{(2)}$

$$A^{(1)}$$
 and $A^{(2)}$ are also eigenvectors of $S^{(1)}$.

(Solutions of eigenvalue problem $SA = BA$)

[1]

Now we can run the logic in the opposite direction: Given SA=BA L> SM'KA = M'KSA = BM'KA (ii) [S, M'K] = 0

> MKA is an eigenvector of 5 with the same eigenvalue as A

If the eigenvalues of S are all different

=> M-1KA ~ A

=> A is also an eigenvector of M'k !!!

NOW Instead of solving

M-1K A (n) = Who) A (n)

We can solve

SA(n) = Bn A(n) which is much easier!

We know 5 = I

$$S^{2}A^{(n)} = \beta_{n}^{2}A^{(n)} = A^{(n)}$$

 \Rightarrow $\beta_n = \pm$

Use $\beta n \Rightarrow Get A^{(n)} \Rightarrow \beta_{i=-1} \Rightarrow A^{(i)} = (1)$ $\beta_2 = 1 \Rightarrow A^{\binom{2}{2}} = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$

$$\Rightarrow$$
 Use $M^{-1}KA^{(n)} = \hat{W}_{(n)}A^{(n)}$

We can again find Win)

What we have learned here:

(1) We can find the normal modes by solving the eigenvalue problem for the symmetry matrix S, instead of M-1k

(Given SM'K = M'KS or [S, M'K] = 0)

commute!

(2) This is a remarkable result:

ALL SYSTEMS SATISFY (two-component system)

5 M-1K = M-1KS

=> Have the same eigenvectors!!!!

Once you solved one you solved all of them!

Lace herenessement

felle chelle greek

All solved!

Learned:	Symmetry	and symmetry mat	rix S
	infinite numbe	r of coupled osc	illators
Now we	would like to Xi Xi	understand this systa Xiti Xitz Xits This systa Xita Xita	em:
Label K	IM IX IX	1mm/m/Km/m/m/K	
The mass	$\frac{1}{a}$	j+1 j+2 j+3 a a a to move only in	×
Ideal sp		g constant. E and	
Equation		if we fours on the	
7	$\mathcal{U}\chi_{j} = -K(j)$	$(ij - \chi_{j-1}) - K(\chi_j - \chi_{j+1})$	
	$=+K\chi_{j}$	- 2KX; + KXj+1	
	$V_j = A_j \cos (a)$	$(t + \phi) = Re(A_i)$	e i(wt+o)
$\Rightarrow M=f$	m 0 00 ··· o m 0 o ··· o o o m o ··· i : : m	$MK = \frac{1}{m} \frac{2k}{m}$ $\frac{2k}{m}$ $\frac{k}{m}$	- K M K M K M M M M M M M M M M M M M M
Λ-	/ i: \ \ A ₅		how to solve
	Aj+1 Aj+2	Use "Symm	etry !!

Symmetry is widely used in theoretical physics A powerful tool: Simplify the problem we discussed Reflection symmetry. Space translation symmetry If we move the system by "a" to the left => the Physics is unchanged 01000-..

00010 - .. Where S matrix is

An infinite matrix with Is along the next-to-diagonal.

We want to find the eigenvalues and eigenvectors of S

B: eigenvalue.

$$A = \begin{pmatrix} A_{j} \\ A_{j+1} \\ A_{j+2} \end{pmatrix}$$

$$SA = \begin{pmatrix} A_{j+1} \\ A_{j+2} \\ A_{j+3} \\ \vdots \end{pmatrix}$$

In this case:

$$Aj' = \beta Aj = Aj+1$$

We don't know yet what is B, but we know

$$A_2 = \beta^2$$
 $A_j = \beta^j$

This works for all nonzero values of B

Make sense? Yes. Because we have infinite ##
of degrees of freedom!

Now we have the normal modes and eigenvectors.

From previous discussion:

If
$$[S, M'K] = 0$$
 and eigenvalues are all different \Rightarrow S and $M'K$ share the same eigenvectors.

To get the corresponding angular frequency:

Use
$$M^{\dagger k}$$

 $matrix$ \Rightarrow $W^{2}A_{j} = -\frac{K}{m}A_{j+1} + \frac{2K}{m}A_{j} - \frac{K}{m}A_{j+1}$
 $= W_{o}^{2}(-A_{j+1}+2A_{j}-A_{j+1})$

Since Aj & B

=)
$$W^{2}\beta^{j} = W^{2}(-\beta^{j-1} + 2\beta^{j} - \beta^{j+1})$$

dispersion relation

B can be any value. Also, $\beta = b$ a $\beta = \frac{1}{b}$ gives the same angular treguency ω !

However if $|\beta| \pm 1 \Rightarrow$ amplitude goes to infinity.

Since $A_j \propto \beta^j$

=> Consider B = | case.

⇒ B= e ika
Aj × e ijka

If we plug that in eg. (1)

$$\Rightarrow \qquad \omega^2 = \omega_0^2 \left(2 - \left(e^{ika} + e^{-ika} \right) \right)$$

 $W^2 = 2W_0^2 (1 - \cos ka)$

Let's take a look at this equation:

(1) There are infinite number of harmal modes:

Each & gives a normal mode

(2) Amplitude: Aj = \frac{1}{2i} (e ijka - e^-ijka) = sin jka

Ex:
$$k = \frac{\pi}{2a}$$

Since both $A^{\beta} = \beta' = e^{ijk\alpha}$ and A^{β} are eigenvector of $M^{i}K$ with eigenvalue $W^{2} = 2W_{0}^{2}(1-\omega s_{k}k\alpha) \implies 1$ hear combinations of

them are also eigenvector of MK! See Georgi P.113

(3) Maxima frequency:

$$\omega^2 = 4\omega_0^2$$

COS (ka) = -1

cos (Ra) = 1

Minimum fraguency: W= 0

(all masses are moving in the same direction)!

All possible motions: linear combination of all normal modes

each normal mode: Standing waves.

MIT OpenCourseWare https://ocw.mit.edu

8.03SC Physics III: Vibrations and Waves Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.