(Due: Oct. 20, 2022)

- 1. (20') 求 $X(z) = \frac{(1 e^{-aT})z}{(z 1)(z e^{-aT})}$ 的 z 逆变换 x(kT) 以及 $x^*(t)$, 其中 T 是采样周期, a 是常数。
- 2. (10'+10') 试分别求系统 A 和 B 的脉冲传递函数 $G(z) = \frac{Y(z)}{R(z)}$ 和 $\Phi(z) = \frac{C(z)}{R(z)}$ 。请写出详细步骤。

图 1. 系统 A 的方框图

图 2. 系统 B 的方框图

3. (20') 设有二阶系统,其方框图如图 2(a)所示。图中符号"+""-"分别表示正负反馈,"0"代表无反馈; K_1 和 K_2 为正的常值增益。图 2(b)-2(d)所示为该系统可能出现的单位阶跃响应。试确定与每种单位阶跃响应相对应的主反馈和内反馈的极性(即:应为正反馈、负反馈或无反馈),并说明理由。

图 3 二阶系统的方框图即其阶跃响应

- 4. (20') 如图 3 所示单位负反馈系统,其开环传递函数为 $G(s) = \frac{as+1}{s(s+b)}$,式中 a = 0.4,b = 0.5,要求:
 - (1) 给出系统的开环零极点和闭环零极点;
 - (3) 确定系统阻尼比 ξ 及无阻尼振荡频率 ω_n ;
 - (4) 求出系统单位阶跃响应的 σ %, T_r, T_p, T_s ;
 - (5) 求 a = 0 时系统的动态性能指标 σ %, T_r , T_p , T_s .

图 4 系统方框图

- 5. (20') 如图 3 所示单位负反馈系统, $G(s) = \frac{k_2}{s^2 + k_1 k_2 s}$ 。
 - (1) 要保证该系统单位阶跃响应的超调量为 16%,峰值时间为 2s,则参数 k_1 、 k_2 应取多大?
 - (2) 要保证该系统在单位斜坡输入的稳态误差为 0.5,已知参数 $k_2=5$,则参数 k_1 应取多大?