Autoduality of WQSym, the Hopf algebra on packed words

Hugo Mlodecki

Supervisors :

Florent Hivert

Viviane Pons

22 Octobre 2018

Table of contents

FQSym / permutations

- 2 WQSym / packed words
- 3 Contributions

Permutations

Definition

A permutation of size n is a word on the alphabet $\{1, 2, ..., n\}$ where each letter appears exactly one time.

Permutations

Definition

A permutation of size n is a word on the alphabet $\{1, 2, ..., n\}$ where each letter appears exactly one time.

A representation:

Permutations

Definition

A permutation of size n is a word on the alphabet $\{1, 2, ..., n\}$ where each letter appears exactly one time.

A representation :

$$\rightarrow {\sf transposition} \rightarrow$$

3/19

5/19

$$\mathbb{F}_{\epsilon}\otimes\mathbb{F}_{2413}$$
 + $\mathbb{F}_{1}\otimes\mathbb{F}_{312}$ + $\mathbb{F}_{1}\otimes\mathbb{F}_{312}$ + $\mathbb{F}_{1}\otimes\mathbb{F}_{312}$ + $\mathbb{F}_{2}\otimes\mathbb{F}_{313}$

 \mathbb{F}_{2413}

$$\mathbb{F}_{\epsilon}\otimes\mathbb{F}_{2413}$$
 $\mathbb{F}_{1}\otimes\mathbb{F}_{312}$ $\mathbb{F}_{12}\otimes\mathbb{F}_{12}$ $\mathbb{F}_{12}\otimes\mathbb{F}_{12}$ \mathbb{F}_{2413} $\stackrel{\Delta}{ o}$ $\mathbb{F}_{231}\otimes\mathbb{F}_{1}$ $\mathbb{F}_{2413}\otimes\mathbb{F}_{\epsilon}$

3

2

Horizontal disassembly

2

Horizontal disassembly

+

3

2

40.40.45.45. 5 000

3

Horizontal disassembly

$$\mathbb{G}_{\epsilon} \otimes \mathbb{G}_{2413} \quad \mathbb{G}_{1} \otimes \mathbb{G}_{132} \quad \mathbb{G}_{21} \otimes \mathbb{G}_{21}$$

$$\mathbb{G}_{2413} \quad \stackrel{\Delta}{\rightarrow} \quad \mathbb{G}_{213} \otimes \mathbb{G}_{1} + \mathbb{G}_{2413} \otimes \mathbb{G}_{\epsilon}$$

Duality of FQSym

Duality

If H is a Hopf algebra,

$$<\Delta(z), x \otimes y> = < z, x.y> \qquad \forall x, y \in H, z \in H^*, < y.z, x> = < y \otimes z, \Delta(x)> \qquad \forall x \in H, y, z \in H^*$$

Packed words

Definition

A word w with letters in $\{1, ..., n\}$ is a packed word if for each number k > 1 appearing in w, the number k - 1 appears in w too.

Packed words

Definition

A word w with letters in $\{1, ..., n\}$ is a packed word if for each number k > 1 appearing in w, the number k - 1 appears in w too.

With the same representation : #lines < #columns

Packed words

Definition

A word w with letters in $\{1,...,n\}$ is a packed word if for each number k>1 appearing in w, the number k-1 appears in w too.

With the same representation : #lines $\leq \#$ columns

Quasi shuffle product on values

Quasi shuffle product on values

Quasi shuffle product on values

Shuffle product on values

Poset

Poset: Reflexivity, Transitivity, Antisymmetrie.

111

212

From \mathbb{M} to \mathbb{S} in **WQSym**

Some matrices

	123	132	213	231	312	321	122	212	221	112	121	211	111
123						1							
132		-1	1	1									
213		1	-1		1								
231		1											
312			1										
321	1												
122							1	1	1	-1			
212							1	1					
221							1						
112							-1			1	1	1	
121										1	1		
211										1			
111					-							-	1

Figure: Transformation matrix from the basis $\mathbb L$ to $\mathbb R$ over packed words of size 3.

Some matrices

	123	132	213	231	312	321	122	212	221	112	121	211	111
123	0	0	0	0	0	1	0	0	1/2	0	0	1/2	1/6
132	0	0	0	1	0	0	0	0	1/2	0	1/2	0	1/6
213	0	0	0	0	1	0	0	1/2	0	0	0	1/2	1/6
231	0	1	0	1	-1	0	1/2	-1/2	1/2	0	1	-1/2	1/6
312	0	0	1	-1	1	0	0	1	-1/2	1/2	-1/2	1/2	1/6
321	1	0	0	0	0	0	1/2	0	0	1/2	0	0	1/6
122	0	0	0	1/2	0	1/2	0	0	3/2	0	1/4	1/4	2/3
212	0	0	1/2	-1/2	1	0	0	7/4	-5/4	1/4	-1/4	1/2	1/6
221	1/2	1/2	0	1/2	-1/2	0	3/2	-5/4	1/4	1/4	1/2	3/4	2/3
112	0	0	0	0	1/2	1/2	0	1/4	1/4	0	0	3/2	2/3
121	0	1/2	0	1	-1/2	0	1/4	-1/4	1/2	0	7/4	-5/4	1/6
211	1/2	0	1/2	-1/2	1/2	0	1/4	1/2	3/4	3/2	-5/4	1/4	2/3
111	1/6	1/6	1/6	1/6	1/6	1/6	2/3	1/6	2/3	2/3	1/6	2/3	13/6

Figure: Transformation matrix from the basis S to M over packed words of size 3.

18/19

• Implementing packed words in Sage, #25916 implement Packed Words.

- Implementing packed words in Sage, #25916 implement Packed Words.
- Implementing of WQSym in Sage with its 8 bases, #25930 implementation of different basis of WQSym.

- Implementing packed words in Sage, #25916 implement Packed Words.
- Implementing of WQSym in Sage with its 8 bases, #25930 implementation of different basis of WQSym.
- Large scale tests.

- Implementing packed words in Sage, #25916 implement Packed Words.
- Implementing of WQSym in Sage with its 8 bases, #25930 implementation of different basis of WQSym.
- Large scale tests.
- Study of the combinatorics of these basis changes thanks to the display of matrices and graphs obtained in Sage.

- Implementing packed words in Sage, #25916 implement Packed Words.
- Implementing of WQSym in Sage with its 8 bases, #25930 implementation of different basis of WQSym.
- Large scale tests.
- Study of the combinatorics of these basis changes thanks to the display of matrices and graphs obtained in Sage.
- Some conjecures

- Implementing packed words in Sage, #25916 implement Packed Words.
- Implementing of WQSym in Sage with its 8 bases, #25930 implementation of different basis of WQSym.
- Large scale tests.
- Study of the combinatorics of these basis changes thanks to the display of matrices and graphs obtained in Sage.
- Some conjecures
 - This describe an infinity of automorphisme of WQSym.
 - Generalization to **PQSym** (on parking functions).