State Farm Project Model 2

July 29, 2019

1 State Farm Classification Project: Model 2

```
In [1]: import pandas as pd
        import numpy as np
        from sklearn.model_selection import cross_validate, train_test_split, GridSearchCV
        from sklearn.metrics import accuracy_score, confusion_matrix, classification_report
        %matplotlib inline
        import matplotlib.pyplot as plt
        from sklearn import metrics
In [3]: train = pd.read_csv("exercise_02_train.csv")
In [4]: train.head()
Out [4]:
                                        x2
                                                  xЗ
                                                                         x5
                             x1
                                                              x4
                                67.627745 -3.095111
                                                      -6.822327
                                                                 19.048071 -0.362378
        0
            0.198560
                     74.425320
        1 -29.662621
                      24.320711 -48.205182
                                            1.430339
                                                      -6.552206
                                                                   4.263074 6.551412
          15.493759 -66.160459
                                 50.512903 -2.265792
                                                      14.428578
                                                                   2.509323 -6.707536
        3 -19.837651
                     33.210943
                                 53.405563
                                           1.079462
                                                      11.364251
                                                                  -1.064581 9.308857
           11.896655 -26.717872 -17.758176
                                           1.692017
                                                      21.553537
                                                                 -5.852097 -0.857435
                                       x9 ...
                                                    x91
                                                               x92
                                                                        x93
                                                                                  x94
                  x7
                             x8
                                                                                       \
        0 -10.699174 -22.699791 -1.561262 ...
                                               0.800948
                                                         1.553846
                                                                       asia -1.093926
            4.265483
                       1.245095 2.246814 ...
                                               2.031707
                                                          7.544422
                                                                       asia -3.659541
        2
            3.820842 -11.100833 -1.459825 ... -0.992474
                                                         1.385799
                                                                    america
                                                                            1.299144
                     14.552959 -2.012755 ... -1.157845
            9.266076
                                                          6.036804
                                                                       asia
                                                                             0.521396
          -2.186940
                      18.075272 -1.404618 ... -3.045511 -1.719337
                                                                             1.526071
                                                                       asia
                 x95
                            x96
                                       x97
                                                  x98
                                                             x99
          16.202557
                      26.238591
                                 -2.125570
                                             9.644466
                                                       1.237667
          29.674259 -15.141647 -36.030599
                                             5.820376
                                                       1.952183
          33.018090 -19.914894
                                 26.212736
                                             2.372690
                                                       0.558988
            9.664095 -27.197636
                                 19.221130 13.382712
                                                       0.214462
        4 -25.608326 33.383803 -5.703269 -11.023730 -1.191319
        [5 rows x 101 columns]
```

```
In [5]: def unique(list1):
            # insert the list to the set
            list_set = set(list1)
            # convert the set to the list
            unique_list = (list(list_set))
            for x in unique_list:
                print(x)
        unique(train.dtypes)
int64
float64
object
In [6]: predictCols = list(train)
        predictCols.remove('y')
In [7]: for col in predictCols:
            if train[col].dtype in [np.float64,np.int64]:
                train[col].fillna(train[col].mean(skipna = True), inplace=True)
In [8]: # Ensure no remaining na's
        numericCols = train.select_dtypes(include='number').columns
        naVals = train[numericCols].isna().sum().sort_values()
        naVals.sum()
Out[8]: 0
In [9]: objectCols = train.select_dtypes(include='object').columns
        print(objectCols)
Index(['x34', 'x35', 'x41', 'x45', 'x68', 'x93'], dtype='object')
In [10]: train.x34.fillna(train.x34.mode()[0], inplace=True)
         unique(train['x34'])
tesla
bmw
volkswagon
mercades
Honda
Toyota
ford
chevrolet
chrystler
nissan
```

```
In [11]: train.x35.replace(['thurday', 'thur'], ['thursday', 'thursday'], inplace=True)
         train.x35.replace(['wed'], ['wednesday'], inplace=True)
         train.x35.replace(['fri'], ['friday'], inplace=True)
         train.x35.fillna(train.x35.mode()[0], inplace=True)
         unique(train['x35'])
monday
thursday
tuesday
wednesday
friday
In [12]: # Convert currency column to float, remove nan's
         train['x41'] = train['x41'].astype(str)
         train['x41'] = train['x41'].map(lambda x: x.lstrip('$'))
         train['x41'] = train['x41'].astype(np.float16)
         train['x41'].fillna(0, inplace=True) # probably safer to replace nan's with 0, not me
         print(train['x41'].isna().sum())
0
In [13]: # Convert percentage column to float, remove nan's
         train['x45'] = train['x45'].astype(str)
         train['x45'] = train['x45'].map(lambda x: x.rstrip('%'))
         train['x45'] = train['x45'].astype(np.float16)
         train['x45'].fillna(train['x45'].mean(skipna = True), inplace=True) # since very few
         print(train['x41'].isna().sum())
0
In [14]: # Month Column
         train.x68.replace(['Dev'], ['Dec'], inplace=True) # because I'm OCD
         train.x68.replace(['sept.'], ['Sep'], inplace=True)
         train.x68.replace(['January'], ['Jan'], inplace=True)
        train.x68.replace(['July'], ['Jul'], inplace=True)
         train.x68.fillna(train.x68.mode()[0], inplace=True)
         unique(train['x68'])
Jun
Apr
Aug
Feb
Jul
```

```
Oct
Dec
Jan
Mar
Sep
Nov
May
In [15]: # Region
         train.x93.replace(['euorpe'], ['europe'], inplace=True)
         train = train[pd.isna(train['x93']) == False]
         print(train['x93'].isna().sum())
         # Region seems significant, and there's only 7 NA's, so remove rows with this as NA
0
In [16]: # Check if target has na's
         print(train['y'].isna().sum())
0
In [17]: train = pd.get_dummies(train)
In [18]: # Ensure we converted all non-numeric columns to numeric
         train.select_dtypes(include='object').columns
Out[18]: Index([], dtype='object')
In [19]: train.describe()
Out[19]:
                           x0
                                                         x2
                                                                        xЗ
                                                                                       x4
                                                                                           \
                                          x1
                 39993.000000
                               39993.000000
                                              39993.000000
                                                             39993.000000
                                                                            39993.000000
         count
         mean
                     3.447752
                                   -7.788416
                                                   1.704644
                                                                -0.072832
                                                                                0.121980
                    16.245334
                                   37.012224
                                                  38.382930
                                                                 1.503022
                                                                               16.289301
         std
         min
                   -60.113902
                                 -157.341119
                                               -163.339956
                                                                -6.276969
                                                                              -61.632319
         25%
                    -7.595295
                                  -32.731869
                                                -24.141082
                                                                -1.087780
                                                                              -10.896141
         50%
                     3.446322
                                   -7.987507
                                                   1.959477
                                                                -0.062721
                                                                                0.105307
         75%
                    14.266326
                                   16.848201
                                                  27.511371
                                                                 0.940330
                                                                               11.076726
                    75.311659
                                  153.469221
                                                 154.051060
                                                                               65.949709
         max
                                                                 5.837559
                           x5
                                          x6
                                                         x7
                                                                        8x
                                                                                       x9
                 39993.000000
                               39993.000000
                                              39993.000000
                                                             39993.000000
                                                                            39993.000000
         count
                    -0.607009
                                    0.035852
                                                  -0.052430
                                                                -2.911144
                                                                               -0.024524
         mean
         std
                    15.583132
                                    9.040667
                                                   6.952184
                                                                13.148182
                                                                                2.939696
         min
                   -62.808995
                                  -35.060656
                                                 -26.736717
                                                               -53.735586
                                                                              -11.497395
         25%
                   -11.181510
                                   -6.089227
                                                  -4.746572
                                                               -11.722590
                                                                               -2.003827
```

50%	-0.576660	0.044975	-0.037833	-2.940961	-0.054184	
75%	9.954957	6.100325	4.636585	5.857648	1.954809	
max	63.424046	45.053946	34.267792	66.936936	11.271939	
		x68_Jul	x68_Jun	x68_Mar	x68_May	\
cour	nt	39993.000000	39993.000000	39993.000000	39993.000000	
mear	ı	0.277199	0.231516	0.010777	0.119221	
std		0.447621	0.421806	0.103252	0.324052	
min	• • •	0.000000	0.000000	0.000000	0.000000	
25%	• • •	0.000000	0.000000	0.000000	0.000000	
50%	• • •	0.000000	0.000000	0.000000	0.000000	
75%		1.000000	0.000000	0.000000	0.000000	
max		1.000000	1.000000	1.000000	1.000000	
	x68_Nov	x68_Oct	x68_Sep	x93_america	x93_asia	\
cour	nt 39993.000000	39993.000000	39993.000000	39993.000000	39993.000000	
mear	n 0.003776	0.022604	0.087140	0.078289	0.885555	
std	0.061331	0.148639	0.282044	0.268629	0.318355	
min	0.000000	0.000000	0.000000	0.000000	0.000000	
25%	0.000000	0.000000	0.000000	0.000000	1.000000	
50%	0.000000	0.000000	0.000000	0.000000	1.000000	
75%	0.000000	0.000000	0.000000	0.000000	1.000000	
max	1.000000	1.000000	1.000000	1.000000	1.000000	
	x93_europe					
cour	nt 39993.000000					
mear	n 0.036156					
std	0.186681					
min	0.000000					
25%	0.000000					
50%	0.000000					
75%	0.000000					
max	1.000000					

[8 rows x 127 columns]

1.1 Now check class imbalance

Name: y, dtype: int64

% oF Training Set with Positives: 20%

```
% oF Training Set with Negatives: 80%
```

1.1.1 This class imbalance is not too bad, so we don't need to do resampling...

1.2 Now scale data to normalize

1.4 Clearly, no columns in the data set are highly correlated, so no need to remove.

2 Now can use Support Vector Machine model

2.1 First try linear kernel, although we don't expect this problem to be linear

```
In [93]: svclassifier = svm.SVC(kernel='linear', C = 1.0, max_iter = 10000)
         svclassifier.fit(X_train, y_train)
C:\Python 3.7\lib\site-packages\sklearn\svm\base.py:244: ConvergenceWarning: Solver terminated
 % self.max_iter, ConvergenceWarning)
Out[93]: SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,
           decision_function_shape='ovr', degree=3, gamma='auto_deprecated',
           kernel='linear', max_iter=10000, probability=False, random_state=None,
           shrinking=True, tol=0.001, verbose=False)
In [94]: pred_train = svclassifier.predict(X_train)
        pred_test = svclassifier.predict(X_test)
In [95]: # evaluate predictions
         train_accuracy = accuracy_score(y_train, pred_train)
         print("Train Accuracy: %.2f%%" % (train_accuracy * 100.0))
         test_accuracy = accuracy_score(y_test, pred_test.round())
         print("Test Accuracy: %.2f%%" % (test_accuracy * 100.0))
Train Accuracy: 71.74%
Test Accuracy: 71.32%
In [96]: ## Accuracy is not very good, but at least we're not over-fitting
In [97]: cm = confusion matrix(y test, pred test)
         sns.set(font scale=1.4)#for label size
         sns.heatmap(cm, annot=True,fmt='g',annot_kws={"size": 16})# font size
Out[97]: <matplotlib.axes._subplots.AxesSubplot at 0x19431df2908>
```


2.1.1 Slightly more false negatives than false postives...probably due to the class imbalance 0's to 1's in the training set heavily weighted toward 0's (80%)

2.2 Now try the Radial Basis Function kernel

C:\Python 3.7\lib\site-packages\sklearn\svm\base.py:244: ConvergenceWarning: Solver terminated
% self.max_iter, ConvergenceWarning)

Test Accuracy: 98.35%

2.2.1 Massive improvement by switching to rbf kernel. Increased max_iter beyond 10,000 didn't have much effect on accuracy, but was much slower

2.3 Now use a grid search with 5-fold cross-validation to find the hyperparameters C and gamma

```
In [39]: # Tune the two main hyperparameters
         from sklearn.model_selection import GridSearchCV
         def svc_param_selection(X, y, nfolds):
             Cs = [0.001, 0.01, 0.1, 1, 10]
             gammas = [0.001, 0.01, 0.1, 1]
             param_grid = {'C': Cs, 'gamma' : gammas}
             grid_search = GridSearchCV(svm.SVC(kernel='rbf',max_iter = 1000,gamma = 'auto'), ;
             grid_search.fit(X, y)
             grid_search.best_params_
             return grid_search.best_params_
         svc_param_selection(X_train, y_train, 5)
C:\Python 3.7\lib\site-packages\sklearn\svm\base.py:244: ConvergenceWarning: Solver terminated
  % self.max_iter, ConvergenceWarning)
C:\Python 3.7\lib\site-packages\sklearn\svm\base.py:244: ConvergenceWarning: Solver terminated
 % self.max_iter, ConvergenceWarning)
C:\Python 3.7\lib\site-packages\sklearn\svm\base.py:244: ConvergenceWarning: Solver terminated
  % self.max_iter, ConvergenceWarning)
C:\Python 3.7\lib\site-packages\sklearn\svm\base.py:244: ConvergenceWarning: Solver terminated
  % self.max_iter, ConvergenceWarning)
C:\Python 3.7\lib\site-packages\sklearn\svm\base.py:244: ConvergenceWarning: Solver terminated
  % self.max_iter, ConvergenceWarning)
C:\Python 3.7\lib\site-packages\sklearn\svm\base.py:244: ConvergenceWarning: Solver terminated
  % self.max_iter, ConvergenceWarning)
C:\Python 3.7\lib\site-packages\sklearn\svm\base.py:244: ConvergenceWarning: Solver terminated
  % self.max_iter, ConvergenceWarning)
C:\Python 3.7\lib\site-packages\sklearn\svm\base.py:244: ConvergenceWarning: Solver terminated
  % self.max_iter, ConvergenceWarning)
{\tt C:\Python~3.7\lib\site-packages\sklearn\svm\base.py:244:~Convergence\Warning:~Solver~terminated}
 % self.max_iter, ConvergenceWarning)
C:\Python 3.7\lib\site-packages\sklearn\svm\base.py:244: ConvergenceWarning: Solver terminated
  % self.max_iter, ConvergenceWarning)
```

C:\Python 3.7\lib\site-packages\sklearn\svm\base.py:244: ConvergenceWarning: Solver terminated

- % self.max_iter, ConvergenceWarning)
- C:\Python 3.7\lib\site-packages\sklearn\svm\base.py:244: ConvergenceWarning: Solver terminated
 % self.max_iter, ConvergenceWarning)
- C:\Python 3.7\lib\site-packages\sklearn\svm\base.py:244: ConvergenceWarning: Solver terminated
 % self.max_iter, ConvergenceWarning)
- C:\Python 3.7\lib\site-packages\sklearn\svm\base.py:244: ConvergenceWarning: Solver terminated
 % self.max_iter, ConvergenceWarning)
- C:\Python 3.7\lib\site-packages\sklearn\svm\base.py:244: ConvergenceWarning: Solver terminated
 % self.max_iter, ConvergenceWarning)
- C:\Python 3.7\lib\site-packages\sklearn\svm\base.py:244: ConvergenceWarning: Solver terminated
 % self.max_iter, ConvergenceWarning)
- C:\Python 3.7\lib\site-packages\sklearn\svm\base.py:244: ConvergenceWarning: Solver terminated
 % self.max_iter, ConvergenceWarning)
- C:\Python 3.7\lib\site-packages\sklearn\svm\base.py:244: ConvergenceWarning: Solver terminated
 % self.max_iter, ConvergenceWarning)
- C:\Python 3.7\lib\site-packages\sklearn\svm\base.py:244: ConvergenceWarning: Solver terminated
 % self.max_iter, ConvergenceWarning)
- C:\Python 3.7\lib\site-packages\sklearn\svm\base.py:244: ConvergenceWarning: Solver terminated
 % self.max_iter, ConvergenceWarning)
- C:\Python 3.7\lib\site-packages\sklearn\svm\base.py:244: ConvergenceWarning: Solver terminated
 % self.max_iter, ConvergenceWarning)
- C:\Python 3.7\lib\site-packages\sklearn\svm\base.py:244: ConvergenceWarning: Solver terminated
 % self.max_iter, ConvergenceWarning)
- C:\Python 3.7\lib\site-packages\sklearn\svm\base.py:244: ConvergenceWarning: Solver terminated
 % self.max_iter, ConvergenceWarning)
- C:\Python 3.7\lib\site-packages\sklearn\svm\base.py:244: ConvergenceWarning: Solver terminated
 % self.max_iter, ConvergenceWarning)
- C:\Python 3.7\lib\site-packages\sklearn\svm\base.py:244: ConvergenceWarning: Solver terminated
 % self.max_iter, ConvergenceWarning)
- C:\Python 3.7\lib\site-packages\sklearn\svm\base.py:244: ConvergenceWarning: Solver terminated
 % self.max_iter, ConvergenceWarning)
 C:\Python 3.7\lib\site-packages\sklearn\svm\base.py:244: ConvergenceWarning: Solver terminated
- C:\Python 3.7\lib\site-packages\sklearn\svm\base.py:244: ConvergenceWarning: Solver terminate
 % self.max_iter, ConvergenceWarning)
 C:\Python 3.7\lib\site-packages\sklearn\sym\base.py:244: ConvergenceWarning: Solver terminate
- C:\Python 3.7\lib\site-packages\sklearn\svm\base.py:244: ConvergenceWarning: Solver terminated % self.max_iter, ConvergenceWarning)
- C:\Python 3.7\lib\site-packages\sklearn\svm\base.py:244: ConvergenceWarning: Solver terminated % self.max_iter, ConvergenceWarning)
- C:\Python 3.7\lib\site-packages\sklearn\svm\base.py:244: ConvergenceWarning: Solver terminated
 % self.max_iter, ConvergenceWarning)
- C:\Python 3.7\lib\site-packages\sklearn\svm\base.py:244: ConvergenceWarning: Solver terminated
 % self.max_iter, ConvergenceWarning)
- C:\Python 3.7\lib\site-packages\sklearn\svm\base.py:244: ConvergenceWarning: Solver terminated
 % self.max_iter, ConvergenceWarning)
- C:\Python 3.7\lib\site-packages\sklearn\svm\base.py:244: ConvergenceWarning: Solver terminated
 % self.max_iter, ConvergenceWarning)
- C:\Python 3.7\lib\site-packages\sklearn\svm\base.py:244: ConvergenceWarning: Solver terminated
 % self.max_iter, ConvergenceWarning)
- ${\tt C:\Python~3.7\lib\site-packages\sklearn\svm\base.py:244:~Convergence\Warning:~Solver~terminated}$

- % self.max_iter, ConvergenceWarning)
- C:\Python 3.7\lib\site-packages\sklearn\svm\base.py:244: ConvergenceWarning: Solver terminated
 % self.max_iter, ConvergenceWarning)
- C:\Python 3.7\lib\site-packages\sklearn\svm\base.py:244: ConvergenceWarning: Solver terminated
 % self.max_iter, ConvergenceWarning)
- C:\Python 3.7\lib\site-packages\sklearn\svm\base.py:244: ConvergenceWarning: Solver terminated
 % self.max_iter, ConvergenceWarning)
- C:\Python 3.7\lib\site-packages\sklearn\svm\base.py:244: ConvergenceWarning: Solver terminated
 % self.max_iter, ConvergenceWarning)
- C:\Python 3.7\lib\site-packages\sklearn\svm\base.py:244: ConvergenceWarning: Solver terminated
 % self.max_iter, ConvergenceWarning)
- C:\Python 3.7\lib\site-packages\sklearn\svm\base.py:244: ConvergenceWarning: Solver terminated
 % self.max_iter, ConvergenceWarning)
- C:\Python 3.7\lib\site-packages\sklearn\svm\base.py:244: ConvergenceWarning: Solver terminated
 % self.max_iter, ConvergenceWarning)
- C:\Python 3.7\lib\site-packages\sklearn\svm\base.py:244: ConvergenceWarning: Solver terminated
 % self.max_iter, ConvergenceWarning)
- C:\Python 3.7\lib\site-packages\sklearn\svm\base.py:244: ConvergenceWarning: Solver terminated
 % self.max_iter, ConvergenceWarning)
- C:\Python 3.7\lib\site-packages\sklearn\svm\base.py:244: ConvergenceWarning: Solver terminated
 % self.max_iter, ConvergenceWarning)
- C:\Python 3.7\lib\site-packages\sklearn\svm\base.py:244: ConvergenceWarning: Solver terminated
 % self.max_iter, ConvergenceWarning)
- C:\Python 3.7\lib\site-packages\sklearn\svm\base.py:244: ConvergenceWarning: Solver terminated
 % self.max_iter, ConvergenceWarning)
- C:\Python 3.7\lib\site-packages\sklearn\svm\base.py:244: ConvergenceWarning: Solver terminated
 % self.max_iter, ConvergenceWarning)
- C:\Python 3.7\lib\site-packages\sklearn\svm\base.py:244: ConvergenceWarning: Solver terminated
 % self.max_iter, ConvergenceWarning)
- C:\Python 3.7\lib\site-packages\sklearn\svm\base.py:244: ConvergenceWarning: Solver terminated
 % self.max_iter, ConvergenceWarning)
 C:\Python 3.7\lib\site-packages\sklearn\sym\base.py:244: ConvergenceWarning: Solver terminated
- C:\Python 3.7\lib\site-packages\sklearn\svm\base.py:244: ConvergenceWarning: Solver terminated % self.max_iter, ConvergenceWarning)
- C:\Python 3.7\lib\site-packages\sklearn\svm\base.py:244: ConvergenceWarning: Solver terminated % self.max_iter, ConvergenceWarning)
- C:\Python 3.7\lib\site-packages\sklearn\svm\base.py:244: ConvergenceWarning: Solver terminated
 % self.max_iter, ConvergenceWarning)
- C:\Python 3.7\lib\site-packages\sklearn\svm\base.py:244: ConvergenceWarning: Solver terminated
 % self.max_iter, ConvergenceWarning)
- C:\Python 3.7\lib\site-packages\sklearn\svm\base.py:244: ConvergenceWarning: Solver terminated
 % self.max_iter, ConvergenceWarning)
- C:\Python 3.7\lib\site-packages\sklearn\svm\base.py:244: ConvergenceWarning: Solver terminated
 % self.max_iter, ConvergenceWarning)
- C:\Python 3.7\lib\site-packages\sklearn\svm\base.py:244: ConvergenceWarning: Solver terminated
 % self.max_iter, ConvergenceWarning)
- C:\Python 3.7\lib\site-packages\sklearn\svm\base.py:244: ConvergenceWarning: Solver terminated
 % self.max_iter, ConvergenceWarning)
- C:\Python 3.7\lib\site-packages\sklearn\svm\base.py:244: ConvergenceWarning: Solver terminated

- % self.max_iter, ConvergenceWarning)
- C:\Python 3.7\lib\site-packages\sklearn\svm\base.py:244: ConvergenceWarning: Solver terminated
 % self.max_iter, ConvergenceWarning)
- C:\Python 3.7\lib\site-packages\sklearn\svm\base.py:244: ConvergenceWarning: Solver terminated
 % self.max_iter, ConvergenceWarning)
- C:\Python 3.7\lib\site-packages\sklearn\svm\base.py:244: ConvergenceWarning: Solver terminated
 % self.max_iter, ConvergenceWarning)
- C:\Python 3.7\lib\site-packages\sklearn\svm\base.py:244: ConvergenceWarning: Solver terminated
 % self.max_iter, ConvergenceWarning)
- C:\Python 3.7\lib\site-packages\sklearn\svm\base.py:244: ConvergenceWarning: Solver terminated
 % self.max_iter, ConvergenceWarning)
- C:\Python 3.7\lib\site-packages\sklearn\svm\base.py:244: ConvergenceWarning: Solver terminated
 % self.max_iter, ConvergenceWarning)
- C:\Python 3.7\lib\site-packages\sklearn\svm\base.py:244: ConvergenceWarning: Solver terminated
 % self.max_iter, ConvergenceWarning)
- C:\Python 3.7\lib\site-packages\sklearn\svm\base.py:244: ConvergenceWarning: Solver terminated
 % self.max_iter, ConvergenceWarning)
- C:\Python 3.7\lib\site-packages\sklearn\svm\base.py:244: ConvergenceWarning: Solver terminated
 % self.max_iter, ConvergenceWarning)
- C:\Python 3.7\lib\site-packages\sklearn\svm\base.py:244: ConvergenceWarning: Solver terminated
 % self.max_iter, ConvergenceWarning)
- C:\Python 3.7\lib\site-packages\sklearn\svm\base.py:244: ConvergenceWarning: Solver terminated
 % self.max_iter, ConvergenceWarning)
- C:\Python 3.7\lib\site-packages\sklearn\svm\base.py:244: ConvergenceWarning: Solver terminated
 % self.max_iter, ConvergenceWarning)
- C:\Python 3.7\lib\site-packages\sklearn\svm\base.py:244: ConvergenceWarning: Solver terminated
 % self.max_iter, ConvergenceWarning)
- C:\Python 3.7\lib\site-packages\sklearn\svm\base.py:244: ConvergenceWarning: Solver terminated
 % self.max_iter, ConvergenceWarning)
- C:\Python 3.7\lib\site-packages\sklearn\svm\base.py:244: ConvergenceWarning: Solver terminated
 % self.max_iter, ConvergenceWarning)
 C:\Python 3.7\lib\site-packages\sklearn\sym\base.py:244: ConvergenceWarning: Solver terminated
- C:\Python 3.7\lib\site-packages\sklearn\svm\base.py:244: ConvergenceWarning: Solver terminated % self.max_iter, ConvergenceWarning)
- C:\Python 3.7\lib\site-packages\sklearn\svm\base.py:244: ConvergenceWarning: Solver terminated % self.max_iter, ConvergenceWarning)
- C:\Python 3.7\lib\site-packages\sklearn\svm\base.py:244: ConvergenceWarning: Solver terminated
 % self.max_iter, ConvergenceWarning)
- C:\Python 3.7\lib\site-packages\sklearn\svm\base.py:244: ConvergenceWarning: Solver terminated
 % self.max_iter, ConvergenceWarning)
- C:\Python 3.7\lib\site-packages\sklearn\svm\base.py:244: ConvergenceWarning: Solver terminated
 % self.max_iter, ConvergenceWarning)
- C:\Python 3.7\lib\site-packages\sklearn\svm\base.py:244: ConvergenceWarning: Solver terminated
 % self.max_iter, ConvergenceWarning)
- C:\Python 3.7\lib\site-packages\sklearn\svm\base.py:244: ConvergenceWarning: Solver terminated
 % self.max_iter, ConvergenceWarning)
- C:\Python 3.7\lib\site-packages\sklearn\svm\base.py:244: ConvergenceWarning: Solver terminated
 % self.max_iter, ConvergenceWarning)
- C:\Python 3.7\lib\site-packages\sklearn\svm\base.py:244: ConvergenceWarning: Solver terminated

```
% self.max_iter, ConvergenceWarning)
C:\Python 3.7\lib\site-packages\sklearn\svm\base.py:244: ConvergenceWarning: Solver terminated
  % self.max_iter, ConvergenceWarning)
C:\Python 3.7\lib\site-packages\sklearn\svm\base.py:244: ConvergenceWarning: Solver terminated
 % self.max_iter, ConvergenceWarning)
C:\Python 3.7\lib\site-packages\sklearn\svm\base.py:244: ConvergenceWarning: Solver terminated
  % self.max_iter, ConvergenceWarning)
C:\Python 3.7\lib\site-packages\sklearn\svm\base.py:244: ConvergenceWarning: Solver terminated
 % self.max_iter, ConvergenceWarning)
C:\Python 3.7\lib\site-packages\sklearn\svm\base.py:244: ConvergenceWarning: Solver terminated
  % self.max_iter, ConvergenceWarning)
C:\Python 3.7\lib\site-packages\sklearn\svm\base.py:244: ConvergenceWarning: Solver terminated
  % self.max_iter, ConvergenceWarning)
C:\Python 3.7\lib\site-packages\sklearn\svm\base.py:244: ConvergenceWarning: Solver terminated
  % self.max_iter, ConvergenceWarning)
C:\Python 3.7\lib\site-packages\sklearn\svm\base.py:244: ConvergenceWarning: Solver terminated
  % self.max_iter, ConvergenceWarning)
C:\Python 3.7\lib\site-packages\sklearn\svm\base.py:244: ConvergenceWarning: Solver terminated
 % self.max_iter, ConvergenceWarning)
C:\Python 3.7\lib\site-packages\sklearn\svm\base.py:244: ConvergenceWarning: Solver terminated
  % self.max_iter, ConvergenceWarning)
C:\Python 3.7\lib\site-packages\sklearn\svm\base.py:244: ConvergenceWarning: Solver terminated
  % self.max_iter, ConvergenceWarning)
C:\Python 3.7\lib\site-packages\sklearn\svm\base.py:244: ConvergenceWarning: Solver terminated
  % self.max_iter, ConvergenceWarning)
C:\Python 3.7\lib\site-packages\sklearn\svm\base.py:244: ConvergenceWarning: Solver terminated
  % self.max_iter, ConvergenceWarning)
C:\Python 3.7\lib\site-packages\sklearn\svm\base.py:244: ConvergenceWarning: Solver terminated
  % self.max_iter, ConvergenceWarning)
Out[39]: {'C': 1, 'gamma': 0.01}
In [ ]: # Output: {'C': 1, 'gamma': 0.01}
```

2.3.1 Note, when gamma of 0.01 is used instead of 'auto', the test accuracy decreases slightly. As a result, gamma is set to 'auto' in the final model

In []:

2.4 Finally, pre-process the test set, and calculate the final prediction

```
In [26]: test = pd.read_csv("exercise_02_test.csv")
In [27]: len(test.index)
Out[27]: 10000
```

```
In [28]: predictCols = list(test)
         for col in predictCols:
             if test[col].dtype in [np.float64,np.int64]:
                 #print(col)
                 test[col].fillna(test[col].mean(skipna = True), inplace=True)
In [29]: test.x34.fillna(test.x34.mode()[0], inplace=True)
In [30]: # Day Column
         test.x35.replace(['thurday', 'thur'], ['thursday', 'thursday'], inplace=True)
         test.x35.replace(['wed'], ['wednesday'], inplace=True)
         test.x35.replace(['fri'], ['friday'], inplace=True)
         test.x35.fillna(test.x35.mode()[0], inplace=True)
In [31]: # Convert currency column to float, remove nan's
         test['x41'] = test['x41'].astype(str)
         test['x41'] = test['x41'].map(lambda x: x.lstrip('$'))
         test['x41'] = test['x41'].astype(np.float16)
         test['x41'].fillna(0, inplace=True) # probably safer to replace nan's with 0, not mea
In [32]: # Convert percentage column to float, remove nan's
         test['x45'] = test['x45'].astype(str)
         test['x45'] = test['x45'].map(lambda x: x.rstrip('%'))
         test['x45'] = test['x45'].astype(np.float16)
         test['x45'].fillna(train['x45'].mean(skipna = True), inplace=True) # since very few u
In [33]: # Month Column
         test.x68.replace(['Dev'], ['Dec'], inplace=True) # because I'm OCD
         test.x68.replace(['sept.'], ['Sep'], inplace=True)
         test.x68.replace(['January'], ['Jan'], inplace=True)
         test.x68.replace(['July'], ['Jul'], inplace=True)
         test.x68.fillna(test.x68.mode()[0], inplace=True)
In [34]: # Region
         test.x93.replace(['euorpe'], ['europe'], inplace=True)
         test.x93.fillna(test.x93.mode()[0], inplace=True)
         print(test['x93'].isna().sum())
         # Region seems significant, and there's only 7 NA's, so remove rows with this as NA
0
In [35]: test = pd.get_dummies(test)
In [36]: # Ensure all columns in test are also in train after the one-hot encoding
         any(elem in list(test) for elem in list(train))
Out [36]: True
```

2.5 Now retrain the model with the final hyperparameters using the full training set

2.6 Now generate the final test output

```
In [41]: final_y = svclassifier.predict_proba(test) # return class probabilities
In [43]: final_y = final_y[:,1] # return only the probability of the 1's class
In [44]: np.savetxt("results2.csv", final_y, delimiter = ",")
```