

INTRODUCTION

DATA SCIENCE CAN HELP

Data Scientists have lots to offer to help the environmental sciences as they struggle with explosion of big data

THIS MODEL

This machine learning model is built to predict which type of trees will thrive in a given area

The Data Set

TOPOGRAPHY

Elevation Slope Aspect Sun

DISTANCES

Vertical and Horizontal
Distances to Water
Distance to Roads
Distance to fire

WILDERNESS

4 Wilderness Areas: Rawah Neota Comanche Cache La Poudre

40 SOIL TYPES

Specific geological attributes: Ex: Cathedral family - Rock outcrop complex, extremely stony.

OUR TARGET VARIABLE

Forest Cover Type:

- 1 Spruce/Fir
- 2 Lodgepole Pine
- 3 Ponderosa Pine
- 4 Cottonwood/Willow
- 5 Aspen
- 6 Douglas-fir
- 7 Krummholz

EXPLORATORY DATA ANALYSIS

VARIABLE DISTRIBUTION

OUTLIERS

Identified small quantity of outliers in 9 out of the 10 continuous variables

Addressed them by using the winzorisation technique

OUR TARGET VARIABLE

Significant class imbalance

Meaningful differences between features

CORRELATION ANALYSIS

Used a function to identify highly correlated features (>90%).

-0.4

Retained all variables

SCALED CONTINUOUS FEATURES

Evaluated for normality using Jarque Bera and Normal tests

Continuous Variables weren't normally distributed

Applied scale

scaled_winsorized_Elevation	scaled_winsorized_Slope	scaled_Aspect	$scaled_winsorized_Horizontal_Distance_To_Hydrology$
-1.375988	-1.531873	-0.935157	-0.036070
-1.398500	-1.671238	-0.890480	-0.266297
-0.595568	-0.695682	-0.148836	0.013979
-0.666856	0.558603	-0.005869	-0.116149
- 1.379740	-1.671238	-0.988770	-0.561587
-1.439772	-1.113777	-0.211385	0.174136
-1.338468	-0.974412	-0.988770	0.023989
-1.342220	-1.392507	-0.953028	-0.156188
-1.297195	-0.695682	-0.988770	-0.126159
-1.315955	-0.556317	-0.863673	-0.091125

APPLIED PCA

Applied PCA to improve the performance of the gradient boosting model

Retained 20 features (98 % of the variance)

MODELING

TESTED AND EVALUATED 10 MODELS

Using different parameters:

Logistic Classifier

KNN

Decision Tree

Random Forest

Gradient Boosting

SUMMARY OF MODEL PERFORMANCE

	Accuracy (Test)	Accuracy (Training)	Run Time (In Seconds)
Logistic Classifier (OVR)	71.5%	71.7%	45
Logistic Classifier (Multinomial)	72.4%	72.6%	22
KNN (k=5)	92.4%	95.3%	219
KNN (K=5, distance)	92.9%	100%	209
KNN (k=7, distance)	92.7%	100%	260
KNN (k=3, distance)	93.1%	100%	143
Decision Tree	87.6%	95.4%	2
Random Forest	94.9%	99.9%	30
Gradient Boosting	80.2%	80.6%	1016
Gradient Boosting with PCA	76.5%	77.2%	1720

Random Forest Model

	Random Forest	Actual
250728	1	1
246788	2	2
407714	2	2
25713	2	2
21820	2	2
251274	3	3
52354	2	2
246168	1	1
477113	2	2
78834	2	2

Cross Validation Mean 94.2%

FEATURE IMPORTANCE

WHAT'S NEXT?

DEVELOPMENTS

Parameter Tuning for Gradien
Boosting Model

Similar Data on other forests of the world

Expand the variables of the dataset

THANKS!

Does anyone have any questions?

ries.nathalie560@gmail.com

CREDITS

- ◀ Jock A. Blackard, Dr. Denis J. Dean, Dr. Charles W. Anderson, of the Colorado State University for the data set
- Presentation template by <u>Slidesgo</u>
- ◀ Icons by <u>Flaticon</u>
- ◀ Images & infographics by <u>Freepik</u>
- Author introduction slide photo created by Freepik
- Text & Image slide photo created by Freepik.com
- Big image slide photo created by Freepik.com