円周率

Tam

円周率とは?

円周の長さ / 円の直径 = 円周率 としています.

数学の日

今日3月14日は「数学の日」とのことですが、

これは、アインシュタインの誕生日が3月14日であることと,

円周率の近似値から

公益財団法人・日本数学検定協会が1997年(平成9年)に制定しました.

円周率の日

- 3月14日
 円周率の近似値より
- 2. 7月22日 22/7=3.14...
- 3. 12月21日 12月21日が1月1日から数えて355日目であり、 355/133 = 3.14159292...

どうやって求めるの?

計測

古代エジプトなどでは実際に長さを測って近似値を求めていました.

当時は近似値なのか正しい値なのかも分からず.

正多角形 (アルキメデス)

アルキメデス (紀元前287~212年) が正96角形

 $3 + 10/71 < \pi < 3 + 1/7$

 $3.14084507 < \pi < 3.142857142$

正多角形(Zu Chongzi)

紀元後429~500年に中国の数学者Zu Chongziが

355 / 113 = 3.14159292...

ただし、求め方は現在不明。

正多角形(コーレン)

1600年にルドルフ・ファン・コーレンというドイツの数学者

正2^62角形 = 約50京角形

小数点第35桁まで正しい値を求める。

確率論(ビュフォン)

フランスの数学者ビュフォンの「ビュフォンの実験」

平行な線に線の間隔の半分の長さの針を投げ、投げた回数を線に交わった回数で割る と円周率が求まる

- 1. 一定の間隔の平行線を何本か引く.
- 2. 平行線の間隔の半分の長さの針を用意する.
- 3. 平行線に向かって針を何回か投げる.
- 4. 「投げた回数」を「平行線に交わった回数」で割る.

円周率 = 投げた回数 / 針が平行線に交わった回数

確率論(モンテカルロ法)

- 1. 正方形と、それに内接する円を描く.
- 2. 正方形の内部のランダムな位置に点を何個か打つ.
- 3. 「円の内部の点の数」/「打った点の数」= π/4

円周率は本当に無限に続くの?

証明法:

π = q/p として矛盾を導く.

1761年、ドイツの数学者ヨハン・ハインリッヒ・ランベルトによりほぼ証明される.

その後, フランスのアドリアン=マリ・ルジャンドルが 1794年に厳密な証明を与え, 円周率π は有限小数でも循環小数でもないことが分かった.

無限桁の数

√2 なんかも無限に続く.

ただし, πは代数的数(多項式の解となる数)でもない.

このような数を「超越数」と呼んでいます.

超越数

πだけではなく, e(ネイピア数)も超越数です.

e と π は別々の定義から出てきた超越数ですが,

 $e^{\pi i} = -1$ (オイラーの公式)

などで知られるように、とても関係の深い数です.

πの不思議

πの性質はだいぶ分かってきているものの, 未解決問題も多く,まだまだ謎に包まれています.

ex) π^{π} , e + π は超越数なのか?(現在でもまだ分かってない.)など.

円周率の計算法

 $tan(\pi/4) = 1 \text{ x}$ $tan^{-1}(1) = \pi/4$ が求まります. グレゴリ・ライプニッツ級数: $tan^{-1}(x) = 1 - 1/3 x^3 + 1/5 x^5 - 1/7 x^7 + 1/9 x^9 -+ ...$ より, $tan^{-1}(1) = 1 - 1/3 + 1/5 - 1/7 + 1/9 - 1/11 + - ...$