Matrix Norm Essentials

- Matrix norms have vector norm properties:
 - $\circ \|A\| \ge 0$ and $\|A\| = 0 \implies A = 0$
 - $\circ \|A + B\| \le \|A\| + \|B\|$
 - $\circ \|\alpha A\| = |\alpha| \|A\|$
- Induced matrix norms arise from vector norms. For $A \in \mathbb{C}^{m \times n}$,

$$||A|| = \sup_{\substack{x \in \mathbb{C}^n \\ x \neq 0}} \frac{||Ax||_{(m)}}{||x||_{(n)}} = \max_{||x||_{(n)} = 1} ||Ax||_{(m)}$$

• There are really only four matrix norms to know:

$$\|\cdot\|_1, \|\cdot\|_2, \|\cdot\|_{\infty}, \|\cdot\|_{\operatorname{Fro}}$$

- \circ 3 are induced from vector norms: $1, 2, \infty$
- \circ 3 have easy-to-compute formulas: $1, \infty, \text{Fro}$
- o...so norm(A,1|"inf"|"fro") are fast in Matlab, while norm(A,2) is slow
- Induced norms (and Frobenius) have an additional multiplicative property:
 - $\circ \|AB\| \le \|A\| \|B\|$
- Induced norms (and Frobenius) satisfy $\rho(A) \leq ||A||$.
 - Recall $\rho(A) = \max |\lambda|$ where λ is an eigenvalue.
 - However, $\rho(A) \ll ||A||$ is common. The norm can be a very conservative estimate of $\rho(A)$.
- The $\|\cdot\|_2$ norm is best for Euclidean ideas and hermitian/normal matrices. Reasons:
 - $|QA|_2 = ||A||_2$ if Q is unitary ($Q^*Q = I$).
 - Largest singular value: $\sigma_1(A) = ||A||_2$.
 - \circ If $A^* = A$ then $\rho(A) = ||A||_2$.
- Iteration fact:

$$v, Av, A^2v, \dots$$
 converges for all v if and only if $\rho(A) < 1$.

- \circ Thus if ||A|| < 1 then convergence.
- But not conversely!