The Matlab fprintf Command

Gerald W. Recktenwald

Department of Mechanical Engineering

Portland State University

gerry@pdx.edu

Text Output with disp and fprintf

Output to the command window is achieved with either the disp function or the fprintf function. Output to a file requires the fprintf function.

disp Simple to use. Provides limited control

over appearance of output.

fprintf Slightly more complicated than disp.

Provides total control over appearance of output.

The disp function (1)

Syntax:

```
disp(outMatrix)
```

where outMatrix is either a string matrix or a numeric matrix.

Examples: $Numeric\ output$

The disp function (1)

Examples: Numeric output

Note: The last statement shows that the input to disp must be a legal matrix.

The format function

The format function controls the precision of disp output.

Alternatively, a second parameter can be used to control the precision of the output of num2str

```
>> disp(['pi = ',num2str(pi,2)])
pi = 3.1

>> disp(['pi = ',num2str(pi,4)])
pi = 3.142

>> disp(['pi = ',num2str(pi,8)])
pi = 3.1415927
```

The fprintf function (1)

Syntax:

fprintf(textMessage)
fprintf(formatString,listOfVariables)
fprintf(fileHandle,formatString,listOfVariables)

In the first form, textMessage, is a string that is printed to the command window.

In the second form, formatString is used to convert the variables in listOfVariables to a string that is then printed to the command window.

In the third form, formatString is used to convert the variables in listOfVariables to a string that is then printed to a file. Note that fileHandle needs to be defined with a fopen command before the third form of fprintf is used.

Notes to C programmers:

- 1. The MATLAB fprintf function uses single quotes to define the format string.
- 2. The fprintf function is vectorized. (See examples on following slides.)

The fprintf function (2)

The fprintf makes it easy to intermingle labeling text with numeric values.

Example:

```
>> x = 3;
>> fprintf('Square root of %g is %8.6f\n',x,sqrt(x));
The square root of 3 is 1.732051
```

The fprintf function (3)

The outFormat string specifies how the outVariables are converted and displayed. The outFormat string can contain any text characters. It also must contain a conversion code for each of the outVariables. The following table shows the basic conversion codes.

Code	Conversion instruction
%d	format with no fractional part (integer format)
%e	format as a floating-point value in scientific notation
%f	format as a floating-point value
%g	format in the most compact form of either %f or %e
%s	format as a string
\n	insert newline in output string
\t	insert tab in output string

The fprintf function (4)

In addition to specifying the type of conversion (e.g. %d, %f, %e) one can also specify the width and precision of the result of the conversion.

Syntax:

```
%wd
%w.pf
%w.pe
```

where w is the number of characters in the width of the final result, and p is the number of digits to the right of the decimal point to be displayed.

The fprintf function (5)

Example: : Specifying field width and precision

Format String	Meaning
%14.5f	use floating point format $(\%f)$ to convert a numerical value to a string 14 characters wide with 5 digits after the decimal point
%12.3e	use scientific notation format (%e) to convert numerical value to a string 12 characters wide with 3 digits after the decimal point. The 12 characters for the string include the e+00 or e-00 (or e+000 or e-000 on Windows TM)

The fprintf function (6)

More examples of conversion codes

Value	%8.4f	%12.3e	%10g	%8d
2	2.0000	2.000e+00	2	2
sqrt(2)	1.4142	1.414e+00	1.41421	1.414214e+00
sqrt(2e-11)	0.0000	4.472e-06	4.47214e-06	4.472136e-06
sqrt(2e11)	447213.5955	4.472e+05	447214	4.472136e+05

The fprintf function (7)

The fprintf function is vectorized. This enables printing of vectors and matrices with compact expressions. It can also lead to some undesired results.

Examples:

```
>> x = 1:4; y = sqrt(x);
>> fprintf('%9.4f\n',y)
    1.0000
    1.4142
    1.7321
    2.0000
```

The %9.4f format string is reused for each element of y. The recycling of a format string may not always give the intended result.

```
>> x = 1:4; y = sqrt(x);
>> fprintf('y = %9.4f\n',y)
y = 1.0000
y = 1.4142
y = 1.7321
y = 2.0000
```

The fprintf function (8)

Vectorized fprintf cycles through the *outVariables by columns*. This can also lead to unintended results

```
>> A = [1 2 3; 4 5 6; 7 8 9]
A =
    1
          2
                3
                6
>> fprintf('%8.2f %8.2f %8.2f\n',A)
    1.00
             4.00
                       7.00
    2.00
             5.00
                       8.00
    3.00
             6.00
                       9.00
```

How to print a table with fprintf (1)

Many times a tabular display of results is desired.

The boxSizeTable function listed on the next slide, shows how the fprintf function creates column labels and formats numeric data into a tidy tabular display. The for loop construct is discussed later in these slides.

How to print a table with fprintf (2)

```
function boxSizeTable
% boxSizeTable Demonstrate tabular output with fprintf
% --- labels and sizes for shiping containers
label = char('small', 'medium', 'large', 'jumbo');
width = [5; 5; 10; 15];
height = [5; 8; 15; 25];
depth = [15; 15; 20; 35];
vol = width.*height.*depth/10000;  % volume in cubic meters
fprintf('\nSizes of boxes used by ACME Delivery Service\n\n');
fprintf('size
                       width
                                height
                                           depth
                                                   volume\n');
                                                    (m^3)\n');
fprintf('
                        (cm)
                                  (cm)
                                            (cm)
for i=1:length(width)
  fprintf('%-8s %8d %8d %9.5f\n',...
         label(i,:),width(i),height(i),depth(i),vol(i))
end
```

Note: length is a built-in function that returns the number of elements in a vector. width, height, and depth are local variables in the boxSizeTable function.

How to print a table with fprintf (3)

Example: [Running boxSizeTable gives]

>> boxSizeTable

Sizes of boxes used by ACME Delivery Service

size	width	height	depth	volume
	(cm)	(cm)	(cm)	(m^3)
small	5	5	15	0.03750
medium	5	8	15	0.06000
large	10	15	20	0.30000
jumbo	15	25	35	1.31250

The fprintf function (4)

File Output with fprintf requires creating a *file handle* with the fopen function. All aspects of formatting and vectorization discussed for screen output still apply.

Example: [Writing contents of a vector to a file.]