

<u>Course</u> > <u>Section 7: Final Ass...</u> > <u>7.1 Final Assessme</u>... > Breast Cancer Proje...

Breast Cancer Project Part 4

Question 14: K-nearest neighbors model

2.0/2.0 points (graded)

Set the seed to 7, then train a k-nearest neighbors model on the training set using the caret package. Try odd values of k from 3 to 21. Use the final model to generate predictions on the test set.

What is the final value of k used in the model?

Explanation

The value of k can be determined using the following code:

What is the accuracy of the kNN model on the test set?

```
0.948 ✓ Answer: 0.974 or 0.948
```

Explanation

The accuracy can be determined using the following code:

```
knn_preds <- predict(train_knn, test_x)
mean(knn_preds == test_y)</pre>
```

Submit

You have used 1 of 10 attempts

1 Answers are displayed within the problem

Question 15a: Random forest model

3.0/3.0 points (graded)

Set the seed to 9, then train a random forest model on the training set using the <code>caret</code> package. Test <code>mtry</code> values of 3, 5, 7 and 9. Use the argument <code>importance=TRUE</code> so that feature importance can be extracted. Generate predictions on the test set.

What value of mtry gives the highest accuracy?

Explanation

The value can be found using the following code:

What is the accuracy of the random forest model on the test set?

```
0.974 ✓ Answer: 0.948 or 0.974
```

Explanation

The accuracy can be found using the following code:

```
rf_preds <- predict(train_rf, test_x)
mean(rf_preds == test_y)</pre>
```

What is the most important variable in the random forest model? Be sure to enter the variable name exactly as it appears in the dataset.

Explanation The most important variable can be found using the following code: varImp(train_rf) You have used 1 of 10 attempts Submit Answers are displayed within the problem Question 15b: Random forest model 1.0/1.0 point (graded) Consider the top 10 most important variables in the random forest model. Which set of features is most important for determining tumor type? mean values standard errors 💿 worst values **Explanation** varImp(train_rf) gives the importance of the various variables. When looking at the top 10 most important features, 6 of the top 10 (including the top 4!) are worst values. You have used 1 of 1 attempt Submit Answers are displayed within the problem

Question 16a: Creating an ensemble

1.0/1.0 point (graded)

Create an ensemble using the predictions from the 7 models created in the previous exercises: k-means, logistic regression, LDA, QDA, loess, k-nearest neighbors, and random forest. Use the ensemble to generate a majority prediction of the tumor type (if most models suggest the tumor is malignant, predict malignant).

What is the accuracy of the ensemble prediction?

0.983	✓ Answer: 0.965 or 0.983
0.983	

Explanation

The ensemble accuracy can be calculated using the following code:

```
ensemble <- cbind(glm = glm_preds == "B", lda = lda_preds == "B", qda = qda_preds ==
"B", loess = loess_preds == "B", rf = rf_preds == "B", knn = knn_preds == "B", kmeans =
kmeans_preds == "B")
ensemble_preds <- ifelse(rowMeans(ensemble) > 0.5, "B", "M")
mean(ensemble_preds == test_y)
```

Submit

You have used 1 of 10 attempts

1 Answers are displayed within the problem

Question 16b: Creating an ensemble

1.0/1.0 point (graded)

Make a table of the accuracies of the 7 models and the accuracy of the ensemble model.

Which of these models has the highest accuracy?

Logistic regression
• LDA
○ Loess
Random forest
○ Ensemble

Explanation

The table can be generated using the following code:

Submit

You have used 1 of 2 attempts

1 Answers are displayed within the problem

© All Rights Reserved