WHITENING THE BLACKBOX : WHY AND HOW TO EXPLAIN MACHINE LEARNING PREDICTIONS ?

PyData 2015 / Paris

Christophe Bourguignat (@chris_bour)

Marcin Detyniecki

Bora Eang

DISCLAIMER - WHO ARE WE?

- We are a new Data team
- We are Python & scikit-learn heavy users and hopefully contributors
- We like tricky problems, doubts, questions
- And love to share with data geeks about that!

Explain why a given loan application did not meet credit underwriting policy

Explain why a given transaction is suspicious

Explain why a given loan application did not meet credit underwriting policy

Explain why a given transaction is suspicious

Explain why a given job is recommended for an unemployed

French « Conseil d'Etat » recommendation

Impose to algorithm-based decisions a transparency requirement, on personal data used by the algorithm, and the general reasoning it followed. Give the person subject to the decision the possibility of submitting its observations.

> Proposition n° 24 : Imposer aux auteurs de décisions s'appuyant sur la mise en œuvre d'algorithmes une obligation de transparence sur les données personnelles utilisées par l'algorithme et le raisonnement général suivi par celui-ci. Donner à la personne faisant l'objet de la décision la possibilité de faire valoir ses observations.

Vecteur : loi ou règlement de l'Union européenne.

We don't ask for a "typical profile" of the selected population

We want a reason why an observation got selected by our algorithm

This reason must be simple and understandable (actionable), but can be specific to it

Observation A, next to observation B on our selected population, can be selected for a completely different reason

Toy Example: Titanic Dataset (1/2)

```
train = pd.read_csv('train.csv')
train.head(5)
```

	Passengerid	Survived	Pclass	Name		Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22	1	0	A/5 21171	7.2500	NaN	s
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38	1	0	PC 17599	71.2833	C85	С
2	3	1	3	Heikkinen, Miss. Laina	female	26	0	0	STON/O2. 3101282	7.9250	NaN	s
3	3 4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35	1	0	113803	53.1000	C123	s
4	5	0	3	Allen, Mr. William Henry	male	35	0	0	373450	8.0500	NaN	s

```
print train.shape
(891, 12)
```

Identify most important features. There are 3 of them: Age, Fare, Sex

```
print ['%.2f' % v for v in clf.feature_importances_]
['0.08', '0.29', '0.04', '0.04', '0.27', '0.25', '0.04']
```

Indeed, surviving rate highly depends on sex

```
print "Male surviving rate : %.2f" % (train[train['Sex'] == 'male']['Survived'].mean())
print "Female surviving rate : %.2f" % (train[train['Sex'] == 'female']['Survived'].mean())
```

```
Male surviving rate : 0.19 Female surviving rate : 0.74
```

Toy Example: Titanic Dataset (2/2)

Xpreds[Xpreds['Sex'] == 0].sort(columns='pred', ascending=False).head(5)

	Pclass	Age	SibSp	Parch	Fare	Sex	Embarked	truth	pred
8	3	0.75	2	1	19.2583	0	1	1	1
171	1	30.00	0	0	106.4250	0	1	1	1
10	2	32.50	0	0	13.0000	0	3	1	1
81	1	19.00	0	2	26.2833	0	3	1	1
66	2	44.00	1	0	26.0000	0	3	0	1

These women were predicted with a high confidence as « survived »

Toy Example: Titanic Dataset (2/2)

Xpreds[Xpreds['Sex'] == 0].sort(columns='pred', ascending=False).head(5)

	Pclass	Age	SibSp	Parch	Fare	Sex	Embarked	truth	pred
8	3	0.75	2	1	19.2583	0	1	1	1
171	1	30.00	0	0	106.4250	0	1	1	1
10	2	32.50	0	0	13.0000	0	3	1	1
81	1	19.00	0	2	26.2833	0	3	1	1
66	2	44.00	1	0	26.0000	0	3	0	1

These women were predicted with as high confidence as « not survived »

	Pclass	Age	SibSp	Parch	Fare	Sex	Embarked	truth	pred
111	3	31	0	0	8.6833	0	3	1	0.06
107	3	63	0	0	9.5875	0	3	1	0.06
164	3	15	1	0	14.4542	0	1	1	0.12
162	3	21	2	2	34.3750	0	3	0	0.12
137	3	16	5	2	46.9000	0	3	0	0.14

Toy Example: Titanic Dataset (2/2)

Xpreds[Xpreds['Sex'] == 0].sort(columns='pred', ascending=False).head(5)

	Pclass	Age	SibSp	Parch	Fare	Sex	Embarked	truth	pred
8	3	0.75	2	1	19.2583	0	1	1	1
171	1	30.00	0	0	106.4250	0	1	1	1
10	2	32.50	0	0	13.0000	0	3	1	1
81	1	19.00	0	2	26.2833	0	3	1	1
66	2	44.00	1	0	26.0000	0	3	0	1

These women were predicted with as high confidence as « not survived »

	Pclass	Age	SibSp	Parch	Fare	Sex	Embarked	truth	pred
111	3	31	0	0	8.6833	0	3	1	0.06
107	3	63	0	0	9.5875	0	3	1	0.06
164	3	15	1	0	14.4542	0	1	1	0.12
162	3	21	2	2	34.3750	0	3	0	0.12
137	3	16	5	2	46.9000	0	3	0	0.14

We are looking for a method saying : why?

A simple case: linear models

$$y_i = \beta_1 x_{i1} + \dots + \beta_p x_{ip} + \varepsilon_i = \mathbf{x}_i^{\mathrm{T}} \boldsymbol{\beta} + \varepsilon_i, \qquad i = 1, \dots, n,$$

Observation 1

Observation 2

A complicated case: Random Forests

- scikit-learn includes the .feature_importances_ attribute ...
 - → Implementation from Breiman, Friedman, "Classification and regression trees", 1984 ("Gini Importance" or "Mean Decrease Impurity")
 - → Louppe, 2014 "Understanding Random Forests", PhD dissertation
 - → R package also implements "Mean Decrease Accuracy"
- ... but has nothing to show features contribution for a given observation

How to interpret a forest?

- « What if » explanation
- Sensitivity of the variable (i.e. derivative)
- Feature contribution
 - → « path approach »

How to interpret a forest?

- « What if » explanation
- Sensitivity of the variable (i.e. derivative)
- Feature contribution
 - → « path approach »

http://arxiv.org/abs/1312.1121

Interpreting random forest classification models using a feature contribution method

Anna Palczewska*1 and Jan Palczewski† 2 Richard Marchese Robinson‡3 Daniel Neagu§1

¹Department of Computing, University of Bradford, BD7 1DP Bradford, UK ²School of Mathematics, University of Leeds, LS2 9JT Leeds, UK ³School of Pharmacy and Biomolecular Sciences, , Liverpool John Moores University, L3 3AF Liverpool, UK

State Of The Art

http://blog.datadive.net/interpreting-random-forests/

Prediction: 23.03 ≈ 22.60 (trainset mean) - 2.64(loss from RM) + 3.52(gain from LSTAT) -0.44(loss from DIS)

Scikit-Learn IPython demo

Playing with Titanic Data

- Traversing the trees and using a trivial metric:
 - → +1 when a feature is crossed
 - → + impurity when a feature is crossed

- Limitations : Scikit learn stores :
 - → The number of samples for each node (tree_.n_node_samples)
 - → The breakdown by class (tree_.value), but only for leaves

- Ideally, we would need easy access to all nodes attributes:
 - → Average_score
 - → Node_size (absolute or %)
 - → Number of class 0 samples (absolute or %)
 - → Number of class 1 samples (absolute or %)
 - $\rightarrow \dots$
- For each tree
 - → For each node
 - Metric += F(parent_node, node, left_child_node, right_child_node, brother_node)
 - E.g: F = parent_node.average_score node.average_score

Thank You

and join us, we have many other problems to crack!

Christophe Bourguignat (@chris_bour)

Marcin Detyniecki

Bora Eang