Bayes Nets: Approximate Inference

AIMA Chapter 14.5, PRML Chapter 11

Sampling

- Goal: probability P
- Basic idea
 - Draw N samples from a sampling distribution S
 - Compute some quantity from the samples
 - Show this converges to the true probability P

- Why sample?
 - Often very fast to get a decent approximate answer
 - The algorithms are very simple and general (easy to apply to fancy models)
 - They require very little memory (O(n))

Sampling from a discrete distribution

- Sampling from given distribution
 - Step 1: Get sample u from uniform distribution over [0, 1)
 - Random() in many programing languages
 - Step 2: Convert this sample u into an outcome for the given distribution by associating each outcome x with a P(x)-sized subinterval of [0,1)

Example

С	P(C)
red	0.6
green	0.1
blue	0.3

$$0 \leq u < 0.6, \rightarrow C = red$$

$$0.6 \leq u < 0.7, \rightarrow C = green$$

$$0.7 \leq u < 1, \rightarrow C = blue$$

- If random() returns u = 0.83, then our sample is C =blue
- E.g, after sampling 8 times:

Sampling in Bayes Nets

- Prior Sampling
- Rejection Sampling
- Likelihood Weighting
- Gibbs Sampling

- For i=1, 2, ..., n (in topological order)
 - Sample X_i from $P(X_i | parents(X_i))$
- Return $(x_1, x_2, ..., x_n)$

Using samples

We'll get a bunch of samples from the BN:

- If we want to know P(W)
 - We have counts $\langle w:4, \neg w:1 \rangle$
 - Normalize to get $P(W) = \langle w:0.8, \neg w:0.2 \rangle$
 - This will get closer to the true distribution with more samples
- If we want to know P(C | r, w)
 - Count (c, r, w) and $(\neg c, r, w)$
 - Normalize to get $P(C|r, w) = \langle c:0.67, \neg c:0.33 \rangle$

This process generates samples with probability:

$$S_{PS}(x_1 \dots x_n) = \prod_{i=1}^n P(x_i | \mathsf{Parents}(X_i)) = P(x_1 \dots x_n)$$

...i.e. the BN's joint probability

- Let the number of samples of an assignment be $N_{PS}(x_1 \dots x_n)$
- So $\hat{P}(x_1, ..., x_n) = N_{PS}(x_1, ..., x_n)/N$

Then
$$\lim_{N\to\infty} \widehat{P}(x_1,\ldots,x_n) = \lim_{N\to\infty} N_{PS}(x_1,\ldots,x_n)/N$$

= $S_{PS}(x_1,\ldots,x_n)$
= $P(x_1\ldots x_n)$

I.e., the sampling procedure is consistent

Rejection Sampling

Rejection Sampling

- A simple modification of prior sampling for conditional probabilities
- Let's say we want P(C | r, w)
- When generating a sample, reject it immediately if not R=true, W=true
- It is consistent for conditional probabilities (i.e., correct in the limit)

Rejection Sampling

- Input: evidence $e_1,...,e_k$
- For i=1, 2, ..., n
 - Sample X_i from $P(X_i | parents(X_i))$
 - If x_i not consistent with evidence
 - Reject: Return, and no sample is generated in this cycle
- Return $(x_1, x_2, ..., x_n)$

- Problem with rejection sampling:
 - If evidence is unlikely, rejects lots of samples
 - Evidence not exploited as you sample
 - Consider P(Shape | Color=blue)

pyramid, green
pyramid, red
sphere, blue
cube, red
sphere, greer

- Idea: fix evidence variables, sample the rest
 - Problem: sample distribution not consistent!
 - Solution: weight each sample by probability of evidence variables given parents

- Input: evidence $e_1,...,e_k$
- w = 1.0
- for i=1, 2, ..., n
 - if X_i is an evidence variable
 - x_i = observed value_i for X_i
 - Set $w = w * P(x_i | Parents(X_i))$
 - else
 - Sample x_i from P(X_i | Parents(X_i))
- return (x₁, x₂, ..., x_n), w

Using samples

We'll get a bunch of weighted samples from the BN:

c, ¬s, r, w	0.1
c, s, r, w	0.2
¬c, s, r, w	0.3
c, ¬s, r, w	0.1
¬c, ¬s, r, w	0.5

- If we want to know P(C| r, w)
 - We have weight sums <(c, r, w): 0.4, $(\neg c, r, w)$: 0.8>
 - Normalize to get $P(C | r, w) = \langle c : 0.33, \neg c : 0.67 \rangle$
 - This will get closer to the true distribution with more samples