- 13.1 请利用 β = 100, $r_b = 1KΩ$, $r_c \approx \infty$ 的 BJT (微扰模型如图 b 所示) 设计和计算放大电路。
 - ① 在图 a 的偏置电路中, C_1 足够大。请计算 BJT 的静态工作点,即其三端的静态电压和静态电流 V_{BQ} , V_{EQ} , V_{CQ} , I_{EQ} , I_{BQ} , I_{CQ} ;【注意,该偏置电路中 I_B 不能被忽略】
 - ② 若采用电容耦合进行输入和输出,请绘制出三种组态(CE、CC、CB)的放大电路,已知电压源 V_s 内阻 $r_s=100\Omega$,负载 $R_L=100K\Omega$;
 - ③ 请绘制三种组态放大电路的交流通路 (即动态等效电路);
 - ④ 请计算三种组态放大器的电压增益 $A_V = V_{RL}/V_S$,输入电阻 R_i 和 输出电阻 R_o

13.2 CE放大电路设计:已经给定材料:

- ① 请补充偏置和耦合电路,构造一个单 BJT 的共射极放大器,使其电压放大倍数 $A_V = V_{RL} / V_S$ 的绝对值尽可能大。
- ② 计算你所设计的放大器的 R_i , R_o 和 A_V

【注1】设计题主要出现在作业中;

【注2】可以考虑用仿真软件来辅助思考和分析