CatBoost Hyper-parameter. In [1]: # Generic Libraries import warnings warnings.filterwarnings('ignore') import pandas as pd from sklearn.model_selection import train_test_split from sklearn.preprocessing import RobustScaler import numpy as np In [2]: # Model Libraries. # Cross validation from sklearn.model_selection import cross_val_score from xgboost import XGBClassifier import xgboost as xgb #-----/ AdaBoost /----from sklearn.ensemble import AdaBoostClassifier #----/ CatBoost /----from catboost import CatBoostClassifier In [3]: # Metric Libraries from sklearn.metrics import roc_auc_score, accuracy_score, precision_score, recall_score, fl_score, fbeta_score, confusion_matrix from sklearn.model_selection import GridSearchCV In [4]: # Load dataset. df = pd.read_csv('creditcard.csv') df = df.drop("Time", axis = 1) y= df["Class"] X = df.drop("Class", axis = 1) y.shape, X.shape ((284807,), (284807, 29)) In [5]: # Separation of the dataset X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state = 42, stratify=y) X_train.shape, X_test.shape, y_train.shape, y_test.shape ((227845, 29), (56962, 29), (227845,), (56962,)) In [6]: # Check dataset composition print(" Fraudulent Count for Full data : ",np.sum(y)) print(" Fraudulent Count for Train data : ",np.sum(y_train)) print(" Fraudulent Count for Test data : ",np.sum(y_test)) Fraudulent Count for Full data: 492 Fraudulent Count for Train data: 394 Fraudulent Count for Test data: 98 In [7]: # Save the testing set for evaluation X_test_saved = X_test.copy() y_test_saved = y_test.copy() print("Saved X_test & y_test") Saved X_test & y_test In [8]: # As PCA is already performed on the dataset from V1 to V28 features, we are scaling only Amount field # Scaling the train data X_train[["Amount"]] = scaler.fit_transform(X_train[["Amount"]]) # Transforming the test data X_test[["Amount"]] = scaler.transform(X_test[["Amount"]]) 1.- Transformaciones de datos. **Dataset Original** Smote In [9]: # Import of specific libraries from collections import Counter from imblearn.over_sampling import SMOTE # Initial situation print('Original dataset shape %s' % Counter(y_train)) # Calculate OverSampling model smote = SMOTE(random_state=42) X_train_smote, y_train_smote = smote.fit_resample(X_train, y_train) print('Resampled dataset shape %s' % Counter(y_train_smote)) Original dataset shape Counter({0: 227451, 1: 394}) Resampled dataset shape Counter({0: 227451, 1: 227451}) Adasyn In [10]: # Import of specific libraries from imblearn.over_sampling import ADASYN # Initial situation print('Original dataset shape %s' % Counter(y_train)) # Calculate OverSampling model adasyn = ADASYN(random_state=42) X_train_adasyn, y_train_adasyn = adasyn.fit_resample(X_train, y_train) print('Resampled dataset shape %s' % Counter(y_train_adasyn)) Original dataset shape Counter({0: 227451, 1: 394}) Resampled dataset shape Counter({1: 227458, 0: 227451}) In [11]: # LOAD OF MODELS. # perfom cross validation on the X_train & y_train from sklearn.model_selection import StratifiedKFold # Initialize StratifiedKFold cross-validator # perform cross validation skf = StratifiedKFold(n_splits=3, random_state=None, shuffle=False) # Shuffle is False because we need a constant best model when we use GridSearchCV **Power Transformation** Original In [12]: # - Apply : preprocessing.PowerTransformer(copy=False) to fit & transform the train & test data from sklearn import metrics from sklearn import preprocessing from sklearn.preprocessing import PowerTransformer pt= preprocessing.PowerTransformer(method='yeo-johnson', copy=True) # creates an instance of the PowerTransformer class. pt.fit(X_train) X_train_pt = pt.transform(X_train) X_test_pt = pt.transform(X_test) y_train_pt = y_train y_test_pt = y_test Smote In [13]: # Import of specific libraries from collections import Counter from imblearn.over_sampling import SMOTE # Initial situation print('Original dataset shape %s' % Counter(y_train_pt)) # Calculate OverSampling model smote = SMOTE(random_state=42) X_train_smote_pt, y_train_smote_pt = smote.fit_resample(X_train_pt, y_train_pt) print('Resampled dataset shape %s' % Counter(y_train_smote_pt)) Original dataset shape Counter({0: 227451, 1: 394}) Resampled dataset shape Counter({0: 227451, 1: 227451}) Adasyn In [14]: # Import of specific libraries from imblearn.over_sampling import ADASYN # Initial situation print('Original dataset shape %s' % Counter(y_train)) # Calculate OverSampling model adasyn = ADASYN(random state=42) X_train_adasyn_pt, y_train_adasyn_pt = adasyn.fit_resample(X_train_pt, y_train_pt) print('Resampled dataset shape %s' % Counter(y_train_adasyn_pt)) Original dataset shape Counter({0: 227451, 1: 394}) Resampled dataset shape Counter({1: 227459, 0: 227451}) In [15]: # Original distribution OR_origin = ['OR origin', X_train, y_train, X_test, y_test] OR_smote = ['OR smote', X_train_smote, y_train_smote, X_test, y_test] OR_adasyn = ['OR adasyn', X_train_adasyn, y_train_adasyn, X_test, y_test] # Power Transformation PT_origin = ['PT origin', X_train_pt, y_train_pt, X_test_pt, y_test_pt] PT_smote = ['PT smote', X_train_smote_pt, y_train_smote_pt, X_test_pt, y_test_pt] PT_adasyn = ['PT adasyn', X_train_adasyn_pt, y_train_adasyn_pt, X_test_pt, y_test_pt] Preparacion carga de modelos: librerias y funciones In [16]: # LOAD OF MODELS. # perfom cross validation on the X_train & y_train from sklearn.model_selection import StratifiedKFold # Initialize StratifiedKFold cross-validator # perform cross validation skf = StratifiedKFold(n_splits=3, random_state=None, shuffle=False) # Shuffle is False because we need a constant best model when we use GridSearchCV In [17]: **from** sklearn.model_selection **import** cross_val_score from sklearn.metrics import confusion_matrix from sklearn.model_selection import cross_val_predict In [49]: **def** evaluate_catboost(data_list, params_to_show=**None**, threshold=0.5, **cat_params): This function trains an XGBoost model and evaluates it with a custom classification threshold. Parameters: - data_list: List containing [name, X_train, y_train, X_val, y_val]. - params_to_show: Dictionary with parameters to display (optional). - threshold: The classification threshold (default = 0.3). - **xgb_params: Additional XGBoost parameters to be passed dynamically. - A DataFrame with evaluation metrics (Accuracy, Precision, Recall, F1, F2, ROC-AUC, Confusion Matrix). # Diccionario de abreviaturas param_abbreviations = { 'n_estimators': 'n_est', 'learning_rate': 'lr', 'max_depth': 'md', 'threshold': 'th' # Unpack the data list name = data_list[0] X_train, y_train, X_val, y_val = data_list[1:] # Define the model, passing ***ada_params dynamically cat_model = CatBoostClassifier(verbose=0,random_state=42, **cat_params) # Train the model cat_model.fit(X_train, y_train) # Predict probabilities y_prob = cat_model.predict_proba(X_val)[:, 1] # Probabilities for the positive class (fraud) # Adjust predictions based on the threshold y_pred = (y_prob > threshold).astype(int) # Calculate metrics cm = confusion_matrix(y_val, y_pred) roc_auc = roc_auc_score(y_val, y_prob) # Use probabilities to calculate ROC-AUC accuracy = accuracy_score(y_val, y_pred) precision = precision_score(y_val, y_pred) recall = recall_score(y_val, y_pred) f1 = f1_score(y_val, y_pred) f2 = fbeta_score(y_val, y_pred, beta=2) # Create a string with the parameters to show # If params_to_show is not provided, show all XGBoost parameters used if params_to_show is None: params_to_show = {'threshold': threshold} params_to_show.update(cat_params) # Add dynamic XGBoost params to show # Crear una versión con abreviaturas params_with_abbreviations = { param_abbreviations.get(key, key): value for key, value in params_to_show.items() # Build the parameter string dynamically #params_str = " ".join([f"{key}={value}" for key, value in params_with_abbreviations.items()]) params_str =[f"{key}={value}" for key, value in params_with_abbreviations.items()] # Store the results in a DataFrame results_df = pd.DataFrame({ 'Model': ['Catboost'], 'Description': [data_list[0]], 'Parameter': [params_str], # Show abbreviated parameters here 'ROC-AUC': [roc_auc], 'Accuracy': [accuracy], 'Precision': [precision], 'Recall': [recall], 'F1 Score': [f1], 'F2 Score': [f2], Confusion Matrix': [cm] # Ajustar para que las celdas no se trunquen pd.set_option('display.max_colwidth', None) # Mostrar el DataFrame con estilo respetando los saltos de línea results_df.style.set_properties(**{'white-space': 'pre-wrap'}) return results_df In [50]: # Parámetros para el XGBoost valores_learning_rate = [0.01, 0.05, 0.1] valores_n_estimators = [100, 150, 200, 250, 300] $valores_max_depth = [3, 5, 7]$ total_results = [] # Iterar sobre los parámetros para hacer pruebas combinadas for learning_rate in valores_learning_rate: for n_estimators in valores_n_estimators: for max_depth in valores_max_depth: # Ejecutar la función con diferentes combinaciones de hiperparámetros results = evaluate_catboost(OR_origin, #thresold = 0.5,n_estimators=n_estimators, learning_rate=learning_rate, max_depth=max_depth total_results.append(results) # Combinar todos los resultados en un único DataFrame para visualizarlo total_results_df = pd.concat(total_results, ignore_index=True) In [51]: total_results_df Parameter ROC-AUC Accuracy Precision **Model Description** Recall F1 Score F2 Score **Confusion Matrix** OR origin [th=0.5, n_est=100, lr=0.01, md=3] 0.966223 0.999280 0.843373 0.714286 0.773481 0.736842 [[56851, 13], [28, 70]] 0 Catboost 1 Catboost OR origin [th=0.5, n_est=100, lr=0.01, md=5] 0.980782 0.999350 0.850575 0.755102 0.800000 0.772443 [[56851, 13], [24, 74]] 2 Catboost OR origin [th=0.5, n_est=100, lr=0.01, md=7] 0.974358 0.999508 0.960526 0.744898 0.839080 0.779915 [[56861, 3], [25, 73]] OR origin [th=0.5, n_est=150, lr=0.01, md=3] 0.967933 0.999333 0.848837 0.744898 0.793478 0.763598 [[56851, 13], [25, 73]] 3 Cathoost OR origin [th=0.5, n_est=150, lr=0.01, md=5] 0.979097 0.999596 0.962963 0.795918 0.871508 0.824524 [[56861, 3], [20, 78]] 4 Catboost OR origin [th=0.5, n_est=150, lr=0.01, md=7] 0.974191 0.999614 0.963415 0.806122 0.877778 0.833333 [[56861, 3], [19, 79]] 5 Catboost 6 Catboost OR origin [th=0.5, n_est=200, lr=0.01, md=3] 0.974775 0.999368 0.852273 0.765306 0.806452 0.781250 [[56851, 13], [23, 75]] OR origin [th=0.5, n_est=200, lr=0.01, md=5] 0.977959 0.999614 0.963415 0.806122 0.877778 0.833333 [[56861, 3], [19, 79]] 7 Catboost OR origin [th=0.5, n_est=200, lr=0.01, md=7] 0.974749 0.999614 0.963415 0.806122 0.877778 0.833333 [[56861, 3], [19, 79]] 8 Catboost OR origin [th=0.5, n_est=250, lr=0.01, md=3] 0.976978 0.999403 0.855556 0.785714 0.819149 0.798755 [[56851, 13], [21, 77]] 9 Catboost 10 Catboost OR origin [th=0.5, n_est=250, lr=0.01, md=5] 0.976264 0.999579 0.962500 0.785714 0.865169 0.815678 [[56861, 3], [21, 77]] OR origin [th=0.5, n_est=250, lr=0.01, md=7] 0.974579 0.999596 0.951807 0.806122 0.872928 0.831579 [[56860, 4], [19, 79]] 11 Catboost OR origin [th=0.5, n_est=300, lr=0.01, md=3] 0.975439 0.999421 0.857143 0.795918 0.825397 0.807453 [[56851, 13], [20, 78]] **12** Catboost OR origin [th=0.5, n_est=300, lr=0.01, md=5] 0.974549 0.999579 0.962500 0.785714 0.865169 0.815678 [[56861, 3], [21, 77]] **13** Catboost OR origin [th=0.5, n_est=300, lr=0.01, md=7] 0.973757 0.999614 0.952381 0.816327 0.879121 0.840336 **14** Catboost [[56860, 4], [18, 80]] 15 Catboost OR origin [th=0.5, n_est=100, lr=0.05, md=3] 0.974219 0.999508 0.897727 0.806122 0.849462 0.822917 [[56855, 9], [19, 79]] **16** Catboost OR origin [th=0.5, n_est=100, lr=0.05, md=5] 0.970847 0.999614 0.952381 0.816327 0.879121 0.840336 [[56860, 4], [18, 80]] **17** Catboost OR origin [th=0.5, n_est=100, lr=0.05, md=7] 0.975176 0.999579 0.951220 0.795918 0.866667 0.822785 [[56860, 4], [20, 78]] OR origin [th=0.5, n est=150, lr=0.05, md=3] 0.973948 0.999526 0.908046 0.806122 0.854054 0.824635 18 Catboost [[56856, 8], [19, 79]] OR origin [th=0.5, n_est=150, lr=0.05, md=5] 0.973888 0.999579 0.930233 0.816327 0.869565 0.836820 19 Cathoost [[56858, 6], [18, 80]] OR origin [th=0.5, n_est=150, lr=0.05, md=7] 0.975540 0.999561 0.939759 0.795918 0.861878 0.821053 20 Catboost OR origin [th=0.5, n_est=200, lr=0.05, md=3] 0.971873 0.999526 0.908046 0.806122 0.854054 0.824635 **21** Catboost [[56856, 8], [19, 79]] OR origin [th=0.5, n est=200, lr=0.05, md=5] 0.975000 0.999579 0.940476 0.806122 0.868132 0.829832 22 Catboost 23 Catboost OR origin [th=0.5, n_est=200, lr=0.05, md=7] 0.975257 0.999579 0.940476 0.806122 0.868132 0.829832 [[56859, 5], [19, 79]] 24 Catboost OR origin [th=0.5, n_est=250, lr=0.05, md=3] 0.973511 0.999561 0.919540 0.816327 0.864865 0.835073 OR origin [th=0.5, n_est=250, lr=0.05, md=5] 0.975727 0.999579 0.940476 0.806122 0.868132 0.829832 [[56859, 5], [19, 79]] **25** Catboost 26 Catboost OR origin [th=0.5, n est=250, lr=0.05, md=7] 0.977370 0.999614 0.952381 0.816327 0.879121 0.840336 27 Catboost OR origin [th=0.5, n est=300, lr=0.05, md=3] 0.975944 0.999579 0.920455 0.826531 0.870968 0.843750 [[56857, 7], [17, 81]] 28 Catboost OR origin [th=0.5, n_est=300, lr=0.05, md=5] 0.975663 0.999596 0.951807 0.806122 0.872928 0.831579 OR origin [th=0.5, n_est=300, lr=0.05, md=7] 0.978204 0.999596 0.941176 0.816327 0.874317 0.838574 [[56859, 5], [18, 80]] 29 Catboost **30** Catboost [th=0.5, n_est=100, lr=0.1, md=3] 0.977833 0.999579 0.930233 0.816327 0.869565 0.836820 31 Catboost OR origin [th=0.5, n_est=100, lr=0.1, md=5] 0.975536 0.999649 0.953488 0.836735 0.891304 0.857741 [[56860, 4], [16, 82]] **32** Catboost [th=0.5, n_est=100, lr=0.1, md=7] 0.977616 0.999544 0.950000 0.775510 0.853933 0.805085 33 Catboost OR origin [th=0.5, n est=150, lr=0.1, md=3] 0.978390 0.999579 0.930233 0.816327 0.869565 0.836820 [[56858, 6], [18, 80]] **34** Catboost OR origin [th=0.5, n_est=150, lr=0.1, md=5] 0.975121 0.999631 0.952941 0.826531 0.885246 0.849057 [th=0.5, n_est=150, lr=0.1, md=7] 0.978382 0.999561 0.962025 0.775510 0.858757 0.806794 **35** Catboost OR origin [[56861, 3], [22, 76]] **36** Catboost OR origin [th=0.5, n_est=200, lr=0.1, md=3] 0.977572 0.999596 0.931034 0.826531 0.875676 0.845511 37 Catboost [th=0.5, n_est=200, lr=0.1, md=5] 0.977246 0.999614 0.952381 0.816327 0.879121 0.840336 OR origin [[56860, 4], [18, 80]] **38** Catboost [th=0.5, n_est=200, lr=0.1, md=7] 0.979530 0.999561 0.962025 0.775510 0.858757 0.806794 OR origin 39 Catboost [th=0.5, n_est=250, lr=0.1, md=3] 0.978278 0.999579 0.920455 0.826531 0.870968 0.843750 [[56857, 7], [17, 81]] 40 Catboost [th=0.5, n_est=250, lr=0.1, md=5] 0.977892 0.999614 0.952381 0.816327 0.879121 0.840336 [th=0.5, n_est=250, lr=0.1, md=7] 0.980459 0.999579 0.962500 0.785714 0.865169 0.815678 41 Catboost OR origin [[56861, 3], [21, 77]] 42 Catboost [th=0.5, n_est=300, lr=0.1, md=3] 0.977500 0.999561 0.910112 0.826531 0.866310 0.841996 43 Catboost [th=0.5, n est=300, lr=0.1, md=5] 0.980207 0.999614 0.952381 0.816327 0.879121 0.840336 OR origin 44 Catboost [th=0.5, n_est=300, lr=0.1, md=7] 0.981271 0.999579 0.962500 0.785714 0.865169 0.815678 [[56861, 3], [21, 77]] total_results_df_sorted = total_results_df.sort_values(by='F2 Score', ascending=False).reset_index(drop=True) In [61]: total_results_df_sorted Parameter ROC-AUC Accuracy Precision Recall F1 Score F2 Score **Model Description Confusion Matrix** 0 Catboost OR origin [th=0.5, n_est=100, lr=0.1, md=5] 0.975536 0.999649 0.953488 0.836735 0.891304 0.857741 [[56860, 4], [17, 81]] 1 Catboost OR origin [th=0.5, n_est=150, lr=0.1, md=5] 0.975121 0.999631 0.952941 0.826531 0.885246 0.849057 2 Catboost [th=0.5, n_est=200, lr=0.1, md=3] 0.977572 0.999596 0.931034 0.826531 0.875676 0.845511 [th=0.5, n est=250, lr=0.1, md=3] 0.978278 0.999579 0.920455 0.826531 0.870968 0.843750 3 Catboost OR origin [[56857, 7], [17, 81]] 4 Catboost OR origin [th=0.5, n_est=300, lr=0.05, md=3] 0.975944 0.999579 0.920455 0.826531 0.870968 0.843750 [th=0.5, n_est=300, lr=0.1, md=3] 0.977500 0.999561 0.910112 0.826531 0.866310 0.841996 5 Catboost [[56856, 8], [17, 81]] 6 Catboost OR origin [th=0.5, n_est=250, lr=0.05, md=7] 0.977370 0.999614 0.952381 0.816327 0.879121 0.840336 OR origin [th=0.5, n_est=300, lr=0.01, md=7] 0.973757 0.999614 0.952381 0.816327 0.879121 0.840336 7 Catboost [[56860, 4], [18, 80]] 8 Catboost [th=0.5, n_est=200, lr=0.1, md=5] 0.977246 0.999614 0.952381 0.816327 0.879121 0.840336 [[56860, 4], [18, 80]] 9 Catboost OR origin [th=0.5, n est=100, lr=0.05, md=5] 0.970847 0.999614 0.952381 0.816327 0.879121 0.840336 **10** Catboost [th=0.5, n_est=250, lr=0.1, md=5] 0.977892 0.999614 0.952381 0.816327 0.879121 0.840336 11 Catboost [th=0.5, n_est=300, lr=0.1, md=5] 0.980207 0.999614 0.952381 0.816327 0.879121 0.840336 [[56860, 4], [18, 80]] **12** Catboost OR origin [th=0.5, n_est=300, lr=0.05, md=7] 0.978204 0.999596 0.941176 0.816327 0.874317 0.838574 [th=0.5, n est=100, lr=0.1, md=3] 0.977833 0.999579 0.930233 0.816327 0.869565 0.836820 13 Catboost [[56858, 6], [18, 80]] **14** Catboost [th=0.5, n_est=150, lr=0.1, md=3] 0.978390 0.999579 0.930233 0.816327 0.869565 0.836820 **15** Catboost OR origin [th=0.5, n est=150, lr=0.05, md=5] 0.973888 0.999579 0.930233 0.816327 0.869565 0.836820 **16** Catboost OR origin [th=0.5, n_est=250, lr=0.05, md=3] 0.973511 0.999561 0.919540 0.816327 0.864865 0.835073 [[56857, 7], [18, 80]] OR origin [th=0.5, n_est=200, lr=0.01, md=7] 0.974749 0.999614 0.963415 0.806122 0.877778 0.833333 [[56861, 3], [19, 79]] 17 Cathoost **18** Catboost OR origin [th=0.5, n_est=200, lr=0.01, md=5] 0.977959 0.999614 0.963415 0.806122 0.877778 0.833333 [[56861, 3], [19, 79]] **19** Catboost OR origin [th=0.5, n_est=150, lr=0.01, md=7] 0.974191 0.999614 0.963415 0.806122 0.877778 0.833333 20 Catboost OR origin [th=0.5, n_est=300, lr=0.05, md=5] 0.975663 0.999596 0.951807 0.806122 0.872928 0.831579 OR origin [th=0.5, n_est=250, lr=0.01, md=7] 0.974579 0.999596 0.951807 0.806122 0.872928 0.831579 [[56860, 4], [19, 79]] 21 Catboost 22 Catboost OR origin [th=0.5, n_est=250, lr=0.05, md=5] 0.975727 0.999579 0.940476 0.806122 0.868132 0.829832 OR origin [th=0.5, n_est=200, lr=0.05, md=5] 0.975000 0.999579 0.940476 0.806122 0.868132 0.829832 23 Catboost [[56859, 5], [19, 79]] 24 Catboost OR origin [th=0.5, n_est=200, lr=0.05, md=7] 0.975257 0.999579 0.940476 0.806122 0.868132 0.829832 OR origin [th=0.5, n_est=150, lr=0.05, md=3] 0.973948 0.999526 0.908046 0.806122 0.854054 0.824635 **25** Catboost [[56856, 8], [19, 79]] **26** Catboost OR origin [th=0.5, n_est=200, lr=0.05, md=3] 0.971873 0.999526 0.908046 0.806122 0.854054 0.824635 OR origin [th=0.5, n_est=150, lr=0.01, md=5] 0.979097 0.999596 0.962963 0.795918 0.871508 0.824524 27 Catboost [[56861, 3], [20, 78]] 28 Catboost OR origin [th=0.5, n_est=100, lr=0.05, md=3] 0.974219 0.999508 0.897727 0.806122 0.849462 0.822917 29 Catboost OR origin [th=0.5, n_est=100, lr=0.05, md=7] 0.975176 0.999579 0.951220 0.795918 0.866667 0.822785 [[56860, 4], [20, 78]] **30** Catboost OR origin [th=0.5, n_est=150, lr=0.05, md=7] 0.975540 0.999561 0.939759 0.795918 0.861878 0.821053 OR origin [th=0.5, n_est=250, lr=0.1, md=7] 0.980459 0.999579 0.962500 0.785714 0.865169 0.815678 [[56861, 3], [21, 77]] **31** Catboost 32 Catboost OR origin [th=0.5, n_est=300, lr=0.1, md=7] 0.981271 0.999579 0.962500 0.785714 0.865169 0.815678 OR origin [th=0.5, n_est=300, lr=0.01, md=5] 0.974549 0.999579 0.962500 0.785714 0.865169 0.815678 [[56861, 3], [21, 77]] 33 Catboost **34** Catboost OR origin [th=0.5, n_est=250, lr=0.01, md=5] 0.976264 0.999579 0.962500 0.785714 0.865169 0.815678 [[56861, 3], [21, 77]] OR origin [th=0.5, n_est=300, lr=0.01, md=3] 0.975439 0.999421 0.857143 0.795918 0.825397 0.807453 [[56851, 13], [20, 78]] **35** Catboost **36** Catboost [th=0.5, n_est=150, lr=0.1, md=7] 0.978382 0.999561 0.962025 0.775510 0.858757 0.806794 [[56861, 3], [22, 76]] OR origin [th=0.5, n_est=200, lr=0.1, md=7] 0.979530 0.999561 0.962025 0.775510 0.858757 0.806794 [[56861, 3], [22, 76]] 37 Catboost **38** Catboost [th=0.5, n_est=100, lr=0.1, md=7] 0.977616 0.999544 0.950000 0.775510 0.853933 0.805085 [[56860, 4], [22, 76]] **39** Catboost OR origin [th=0.5, n_est=250, lr=0.01, md=3] 0.976978 0.999403 0.855556 0.785714 0.819149 0.798755 [[56851, 13], [21, 77]] 40 Catboost OR origin [th=0.5, n_est=200, lr=0.01, md=3] 0.974775 0.999368 0.852273 0.765306 0.806452 0.781250 [[56851, 13], [23, 75]] OR origin [th=0.5, n_est=100, lr=0.01, md=7] 0.974358 0.999508 0.960526 0.744898 0.839080 0.779915 [[56861, 3], [25, 73]] **41** Catboost 42 Catboost OR origin [th=0.5, n_est=100, lr=0.01, md=5] 0.980782 0.999350 0.850575 0.755102 0.800000 0.772443 [[56851, 13], [24, 74]] OR origin [th=0.5, n_est=150, lr=0.01, md=3] 0.967933 0.999333 0.848837 0.744898 0.793478 0.763598 [[56851, 13], [25, 73]] 43 Catboost **44** Catboost OR origin [th=0.5, n_est=100, lr=0.01, md=3] 0.966223 0.999280 0.843373 0.714286 0.773481 0.736842 [[56851, 13], [28, 70]] In [62]: catboost_hyperparameters = total_results_df_sorted[total_results_df_sorted['F2 Score']>= .85].reset_index(drop=True) In [63]: | catboost_hyperparameters Out[63]: **Model Description** Parameter ROC-AUC Accuracy Precision Recall F1 Score F2 Score Confusion Matrix **0** Catboost OR origin [th=0.5, n_est=100, lr=0.1, md=5] 0.975536 0.999649 0.953488 0.836735 0.891304 0.857741 [[56860, 4], [16, 82]]

In [64]: catboost_hyperparameters.to_csv(r'C:\TFM\06_hyperparameter\catboost.csv', index=False)