(NATURAL SCIENCE)

주체104(2015)년 제61권 제12호

Vol. 61 No. 12 JUCHE104(2015).

함수처리의 병렬화를 위한 한가지 방법

배원철, 한용환

위대한 령도자 김정일동지께서는 다음과 같이 교시하시였다.

《나라의 과학기술을 세계적수준에 올려세우자면 발전된 과학기술을 받아들이는것과함께 새로운 과학기술분야를 개척하고 그 성과를 인민경제에 적극 받아들여야 합니다.》 (《김정일선집》 중보판 제11권 138~139폐지)

선행연구[2, 3]에서는 연산준위의 병렬화의 한가지 방법을 제기하고있는데 론문에서는 함수준위의 병렬화에 대한 한가지 방법 즉 원시점화함수를 계산할 때 정보처리의 속도를 고속화하기 위한 병렬처리의 한가지 방법을 제기한다.

정의없이 리용되는 개념은 선행연구[1, 2]에 준하기로 한다.

정의 n 변수부분함수 g, n+2 변수 부분함수 h가 주어졌을 때 다음의 식에 의하여 얻어지는 n+1 변수함수 f 를 원시점화함수라고 부른다.

$$f(x_1, \dots, x_n, 0) = g(x_1, \dots, x_n),$$

$$f(x_1, \dots, x_n, y+1) = h(x_1, \dots, x_n, y, f(x_1, \dots, x_n, y))$$

그리고 이때 진행하는 연산을 원시점화연산이라고 부른다.

이러한 정의에 기초하여 우리는 n 변수함수 $g(x_1, \dots, x_n)$ 이 원시점화함수라고 할 때 더하기연산에 의하여 얻어지는 함수

$$f(x_1, \dots, x_{i-1}, x_i, x_{i+1}, \dots, x_n) = \sum_{r=0}^{x_i} g(x_1, \dots, x_{i-1}, r, x_{i+1}, \dots, x_n)$$
 (1)

과 곱하기연산에 의하여 얻어지는 함수

$$f(x_1, \dots, x_n) = \prod_{r=0}^{x_i} g(x_1, \dots, x_{i-1}, r, x_{i+1}, \dots, x_n)$$
 (2)

합성연산에 의하여 얻어지는 함수

$$f(x_1, \dots, x_n) = \sum_{r=h(x_1, \dots, x_n)}^{k(x_1, \dots, x_n)} g(x_1, \dots, x_{i-1}, r, x_{i+1}, \dots, x_n)$$
(3)

조건식으로 얻어지는 함수

$$f(x_1, \dots, x_{i-1}, y, x_{i+1}, \dots, x_n) = \begin{cases} \sum_{r=y}^{z} g(x_1, \dots, x_{i-1}, r, x_{i+1}, \dots, x_n), & y \le z \end{cases}$$
 (4)

$$0, \qquad y > z \end{cases}$$

의 계산과정에 대한 병렬알고리듬을 제기한다.

정리 1 식 (1)에서 정의된 원시점화함수

$$f(x_1, \dots, x_{i-1}, x_i, x_{i+1}, \dots, x_n)$$

의 계산은 원시점화함수

$$f(x_1, \dots, x_{i-1}, y, x_{i+1}, \dots, x_n)$$

의 계산준위로 병렬화할수 있다.

증명 식 (1)로부터 f를 다음과 같은 점화식으로 쓸수 있다.

$$f(x_{1}, \dots, x_{i-1}, 0, x_{i+1}, \dots, x_{n}) = g(x_{1}, \dots, x_{i-1}, 0, x_{i+1}, \dots, x_{n})$$

$$f(x_{1}, \dots, x_{i-1}, y+1, x_{i+1}, \dots, x_{n}) =$$

$$= f(x_{1}, \dots, x_{i-1}, y, x_{i+1}, \dots, x_{n}) + g(x_{1}, \dots, x_{i-1}, y+1, x_{i+1}, \dots, x_{n})$$
(5)

결국 함수 f는 원시점화함수

$$g(x_1, \dots, x_{i-1}, 0, x_{i+1}, \dots, x_n),$$

$$h(x_1, \dots, x_{i-1}, y, x_{i+1}, \dots, x_n) = z + g(x_1, \dots, x_{i-1}, y+1, x_{i+1}, \dots, x_n)$$

에 원시점화연산을 실시하여 얻어진다는것을 알수 있다.

따라서 식 (5)로부터 함수 f의 계산과정은 원시점화도식형태로 함수

$$g(x_1, \dots, x_{i-1}, r, x_{i+1}, \dots, x_n)$$

들의 준위로 병렬화할수 있다는것을 알수 있다. 다시말하여 처리기가 r 개라고 할 때 함수 f의 계산은 r개 원시점화함수 $g(x_1, \dots, x_{i-1}, r, x_{i+1}, \dots, x_n)$ 들의 동시적인 처리로 진행되다.

정리 2 조건식으로 주어지는 원시점화함수

$$f(x_1, \dots, x_{i-1}, y, x_{i+1}, \dots, x_n)$$

의 계산과정은 원시점화함수

$$g(x_1, \dots, x_{i-1}, r, x_{i+1}, \dots, x_n), 0 \le r \le z$$

들의 준위로 병렬화할수있다.

증명 식 (4)를 원시점화도식형태로 쓰면 다음과 같다.

$$f(x_{1}, \dots, x_{i-1}, y, x_{i+1}, \dots, x_{n}) =$$

$$= \sum_{r=y}^{z} g(x_{1}, \dots, x_{i-1}, r, x_{i+1}, \dots, x_{n}) - \sum_{r=y}^{z} g(x_{1}, \dots, x_{i-1}, r, x_{i+1}, \dots, x_{n}) +$$

$$+ g(x_{1}, \dots, x_{i-1}, r, x_{i+1}, \dots, x_{n}) \overline{S} g(y - z)$$

여기서 : 와 $\overline{Sg}(y-z)$ 는 선행연구[2]에서의 의미와 같다.

여기로부터 원시점화도식형태로 정의되는 함수 f의 계산과정은 원시점화함수

$$g(x_1, \dots, x_{i-1}, r, x_{i+1}, \dots, x_n)$$

의 준위로 병렬화된다.

정리 3 식 (2)에 의하여 정의되는 원시점화함수 f의 계산은 함수 g의 계산준위로 병렬화할수 있다.

증명 식 (2)를 원시점화도식형태로 다음과 같이 쓸수 있다.

$$f(x_{1}, \dots, x_{i-1}, 0, x_{i+1}, \dots, x_{n}) = g(x_{1}, \dots, x_{i-1}, 0, x_{i+1}, \dots, x_{n}),$$

$$f(x_{1}, \dots, x_{i-1}, y+1, x_{i+1}, \dots, x_{n}) =$$

$$= f(x_{1}, \dots, x_{i-1}, y, x_{i+1}, \dots, x_{n}) \times g(x_{1}, \dots, x_{i-1}, y+1, x_{i+1}, \dots, x_{n})$$
(6)

결국 함수 f는 원시점화함수

$$g(x_1, \dots, x_{i-1}, 0, x_{i+1}, \dots, x_n),$$

 $h(x_1, \dots, x_{i-1}, y, x_{i+1}, \dots, x_n, z) = z \times g(x_1, \dots, x_{i-1}, y+1, x_{i+1}, \dots, x_n)$ 에 원시점화연산을 실시하여 얻어진다는것을 알수 있다. 따라서 원시점화연산에 의하여 정의되는 식 (6)의 계산과정은 원시점화함수 g의 계산준위로 병렬화된다는것을 알수 있다.

맺 는 말

우리는 여러처리기체계에서 세가지 형의 원시점화함수 즉 더하기형, 곱하기형, 조건 형의 원시점화함수계산을 진행할 때 병렬로 고속화하기 위한 한가지 방법을 제기하였다. 이것은 실천적으로 다량의 정보처리에서 중요한 의의를 가진다.

참 고 문 헌

- [1] В. Н. Фадеева; Кибернетика, 6, 28, 2007.
- [2] Н. Н. Миренков; Вычисл. системы, 57, 3, 2008.
- [3] P. A. Gilmore; J. Assoc. Comput. Mach., 15, 2, 176, 2003.

주체104(2015)년 8월 5일 원고접수

A Method for Parallelizing Function Processing

Pae Won Chol, Han Yong Hwan

We proposed a method for speeding up in parallel when computing three types of primary recursive functions such as adding, multiplying, and condition in multi-processor systems. This problem is practically important in processing large scale of information.

Key words: function processing, primary recursive function