Delft University of Technology

DSE Spring 2023 AE3200

Verification of Simulation

Author:

Matei Dinescu (5260248)
Jasper Geijsberts (5331587)
Ian Maes (5216931)
Serban Nedelcu (5324491)
Andreas Van Parys (5089263)
Lennart van der Peet (5280168)
Nikolaus Oliver Ricker Chong (5274737)
Kyle Scherpenzeel (5310210)
Carl Spichal (5222397)
Mathijs Vereycken (5324661)

May 25, 2023

Contents

1	Introduction	3
2	Streets of Coverage	4
3	Earth Orbit	6
4	Link Budget	8
5	Dynamic Simulation	9
6	Coverage Model	13
7	Sensitivity Analysis for Trade Off	21

Introduction

The following document contains the unit, system and module tests of all the codes performed during the Midterm phase. All the tests will follow a specific template when reporting them. They will be in a table with five columns similar to Table 1.1, which is an example. The first column contains an ID composed of 2 letters which are: MO (Moon Orbits), EO (Earth Orbits), CM (Coverage Model), DS (Dynamic Simulation), LB (Link Budget), ST (Sensitivity analysis Trade-off), UE (User Error) followed by a number: the number of the function in order of appearance in the code and finally a letter which is given if there are multiple unit tests made on the same function. Next to the ID, the name of the function is given. The other columns are self-explanatory and can be seen in Table 1.1.

Table 1.1: Unit Tests Template Table

Function	Function Description	Unit Test Description	Technique Used	Results
MO-1-A transf()	Coordinates transformation from frame A to B	Calculation of the transformation at a specific time	By hand	Same result at that time
MO-1-B	Coordinates transformation	Checking size of	Unit test function	Size it should be
MO-I-B transf()	from frame A to B	the final matrix	in code	Size it

Streets of Coverage

Table 2.2: System tests for the streets of coverage estimation model.

Function	Function Description	Unit Test Description	Technique Used	Results
MO-3-A loop()	Loop through multiple altitudes and street satellite counts with an array output of all combinations	Size check of final array	Unit test function in code	Size it should be
MO-3-B loop()	Loop through multiple altitudes and street satellite counts with an array output of all combinations	Hand calculation of one option of the array	Unit test function in code	Same result as array
MO-3-C loop()	Loop through multiple altitudes and street satellite counts with an array output of all combinations	Check altitude of 0 km to check for 'Fail' output	Unit test function in code	'Fail' output received
MO-3-D loop()	Loop through multiple altitudes and street satellite counts with an array output of all combinations	Check altitude of 1×10^8 km to check for 2 orbit planes output.	Unit test function in code	Two orbital planes as output

Table 2.1: Unit tests for the streets of coverage estimation model.

Function	Function Description	Unit Test Description	Technique Used	Results
MO-1-A incl()	Minimum inclination and coverage angle calculation	Hand calculation of the inclination angle at a specific altitude	Unit test function in code	Same result at that altitude
MO-1-B incl()	Minimum inclination and coverage angle calculation	Hand calculation of the coverage angle at a specific altitude	Unit test function in code	Same result at that altitude
MO-2-A n_sats()	Number of satellites and orbit planes calculation	Hand calculation of the number of orbit planes at a specific altitude and street satellite count	Unit test function in code	Same result at that altitude
MO-2-B n_sats()	Total number of satellites and orbit planes calculation	Hand calculation of the number of satellites at a specific altitude and street satellite count	Unit test function in code	Same result at that altitude

Earth Orbit

Table 3.1: Unit Tests for the Earth Orbits Model

Function	Function Description	Unit Test Description	Technique Used	Results
EO-1-A moon_sat_cart_pos()	Find coordinates in time of the Moon and the six Satellites	Third column (z-position) of all the satellites and Moon position should be zero	Unit test function in code, print if wrong for 20 time steps	Nothing is printed
EO-1-B moon_sat_cart_pos()	Find coordinates in time of the Moon and the six Satellites	LL1, Moon and LL2 should be on a straight line through the origin at all times	Unit test function in code, print if wrong for 20 time steps	Nothing is printed until 10^{-13}
EO-2-A transf()	Find coordinates of S3-S6 in R	Any vector $(x, y, 0)$ in R_r should be $(x\cos(i_r), y, x\sin(i_r))$ after the transformation	Unit test function in code, print if wrong for 20 time steps	Nothing is printed
EO-3-A Dist_req()	Find distance between satellites and Moon at any time	A satellite should not enter the Moon's SOI	Print statement if it does enter it	Nothing is printed

Table 3.2: Module Tests for the Earth Orbits Model

Function	Module Test Description	Technique Used	Results
EO-4	Extreme Value :	Check coordinates	All satellites and
Module Test	$\mu_E = 0$	at 20 time steps	Moon do not move
		Check if the length of the array	
EO-5	Extreme Value:	of the times when the four	Length is 80000
Module Test	$R_{SOI} = 66.1 \times 10^{12} \mathrm{m}$	satellites are in the SOI is	Lengui is 80000
		equal to 80000 (20000 time steps)	
		Check if the coordinates of	
EO-6	Extreme Value:	S3 to S6 are the same to the	They are indeed
Module Test	$\alpha_0 = 0 \deg$	Moon coordinates when the	the same
		orbits intersect (P/4 and 3P/4)	

Table 3.3: System Tests for the Earth Orbits Model

Function	System Test Description	Technique Used	Results
EO-7 System Test	Calculating the three spherical coordinates of S3 at 5 different time periods and comparing it to the values they should be.	Function in code	All angles are what they should be
EO-8 System test	Plotting the Moon and six satellites at 400 time steps to check if everything is correct	Function in code	Orbits are correct

Link Budget

Table 4.1: Link Budget Verification

Function	Function Description	Unit Test Description	Technique Used	Results
LB-1-A Gpeak_	Calculates gain of the	Check value of the	Unit test function in	Same value
helical()	transmitter	gain at the end	code	
LB-2-A	Calculates half-power	Check value of half-	Unit test function in	Same value
alpha1_over_	angle of the helical an-	power angle at the end	code	
2_helical()	tenna			
LB-2-B	Calculates half-power	Check ZeroDivision-	Unit test function in	ZeroDivision
alpha1_over_	angle of the helical an-	Error of half-power	code	Error occurs.
2_helical()	tenna	angle calculation		
LB-3-A Lpr()	Calculates pointing	Check value of point-	Unit test function in	Same value
	loss	ing loss at the end	code	
LB-3-B Lpr()	Calculates pointing	Check ZeroDivision-	Unit test function in	ZeroDivision
		Error of pointing loss	code	Error occurs.
		calculation		
LB-4-A dB()	Transforms value in-	Check value at the end	Unit test function in	Same value
	serted into decibels		code	
LB-5-A snr()	Calculates the total	Check value of SNR at	Unit test function in	Same value
	SNR provided by the	the end	code	
	link			
LB-6-A	Calculates SNR _{margin}	Check value of	Unit test function in	Same value
<pre>snr_margin()</pre>	of the link budget	SNR _{margin} at the end	code	
LB-7-A	Calculates distance	Check value of dis-	Unit test function in	Same value
S_lagrange()	from side of celestial	tance at the end	code	
	body to the lagrange			
	point			
LB-8-AS()	Calculates distance	Check value of dis-	Unit test function in	Same value
	from side of earth to	tance at the end	code	
	the desired point			

Dynamic Simulation

Table 5.1: Unit Test Dynamic Simulation

Function	Function Description	Unit Test Description	Technique Used	Results
DS-1-A	Sets orbital parameters	Checks if the param-	Python Unittest	Passed
orbit_param()	to class	eter updates correctly	Module	1 asscu
DS-2-A	Sets final time for sim-	Checks if the param-	Python Unittest	Passed
final_time()	ulation to class	eter updates correctly	Module	1 asscu
DS-3-A	Sets simulation resolu-	Checks if the param-	Python Unittest	Passed
resolution()	tion to class	eter updates correctly	Module	1 asscu
DS-4-A	Sets satellite masses	Checks if the param-	Python Unittest	Passed
mass_sat()	to class	eter updates correctly	Module	1 asscu
DS-5-A	Sets satellite area	Checks if the param-	Python Unittest	Passed
area_sat()	to class	eter updates correctly	Module	1 asscu
DS-6-A	Sets radiation coefficient	Checks if the param-	Python Unittest	Passed
c_radiation()	to class	eter updates correctly	Module	1 asscu
DS-7-A	Test initialization with	Checks if valueerror	Python Unittest	
inv_orbit_	less than 2 satellites	exception is is raised	Module Module	Passed
param()	ress than 2 saterites	exception is is raised	Wiodule	
DS-8-A	Test initialization with	Checks if valueerror	Python Unittest	
inv_final_	negative final time	exception is is raised	Module Module	Passed
time()	negative imai time	exception is is raised	Wiodule	
DS-9-A	Test initialization with	Checks if valueerror	Python Unittest	
inv_resolution	negative resolution	exception is is raised	Module	Passed
()		•		
DS-10-A	Test initialization with	Checks if valueerror	Python Unittest	Passed
inv_mass()	negative mass	exception is is raised	Module	1 43504
DS-11-A	Test initialization with	Checks if valueerror	Python Unittest	Passed
area_sat()	negative area	exception is is raised	Module	1 assec
DS-12-A	Test initialization with	Checks if valueerror	Python Unittest	Passed
c_radiation()	negative radiation coeff	exception is is raised	Module	1 asscu
DS-13-A	Test if the amount of sat-	Checks if bodies to	Python Unittest	
satellite_count	ellites created is correct	propagate equals le-	Module	Passed
0	cinics created is correct	ngth of orbital param	ivioduic	

DS-14-A central_bodies	Test of the amount of central bodies are created	Checks if the amount of central bodies equal the orbit parameters	Python Unittest Module	Passed
DS-15-A acceleration_ model()	Test if each satellite has 3 perturbing bodies	Check the length of each item in the acceleration model	Python Unittest Module	Passed
DS-16-A	Test if the correct ΔV	Compares ΔV of	Hand Calculation	
Hohmann_de-	is computed for Hohmann	hand calculation	with Unittest	Passed
lta_V()	transfer	and code	Module	
DS-17-A	Test if the correct ΔV	Compares ΔV of	Hand Calculation	
Inclination_de-	is computed for	hand calculation and	with Unittest	Passed
lta_V()	inclinationchange	function	Module	

Table 5.2: Module Tests for Dynamic Simulation

Function	Function Description	Unit Test Description	Technique Used	Results
DS-18-A min_max Kepler()	Tests the type of the average Kepler element range output	Tests if the output is a numpy array	Python Unittest Module	Passed
DS-18-B min_max Kepler()	Tests the type of the max Kepler element range output	Tests if the output is a numpy array	Python Unittest Module	Passed
DS-18-C min_max Kepler()	Tests the type of the SD Kepler element range output	Tests if the output is a numpy array	Python Unittest Module	Passed
DS-18-D min_max Kepler()	Tests the size of the average Kepler element range output	Test if the size is 6 for so that each element is included	Python Unittest Module	Passed
DS-18-E min_max Kepler()	Tests the size of the max Kepler element range output	Test if the size is 6 for so that each element is included	Python Unittest Module	Passed
DS-18-F min_max Kepler()	Tests the size of the SD Kepler element range output	Test if the size is 6 for so that each element is included	Python Unittest Module	Passed
DS-19-A delta_v_or- bit_maint()	Tests if the ΔV calculation is correct at the end of the simulation	Compares ΔV calculation with hand calculation	Hand calculation and Python Unit- test Module	Passed

Table 5.3: Extreme Value Tests Dynamic Simulation

Function	Function Description	Results
DS-20-A	Look at outcome for	Semi-major axis crashed
extreme_	resolution of 10000000	to 0 and simulation did
resolution()	resolution of 1000000	not perform correctly
DS-21-A	Look at outcome for a	Semi-major axis crashed
small_mass	mass of nearly 0	to 0 and simulation did
0	mass of hearty o	not perform correctly
DS-21-B	Look at outcome for a	Simulation still performed
large_mass	mass of $1 \cdot 10^{18}$	as intended with smaller
0	111033 01 1 1 10	perturbations
DS-22-A	Look at simulation for	Simulation has a runtime
large_final	final time of $1 \cdot 10^{20}$	error as time is too large
_time()	11100 11110 01 1 10	-
DS-22-B		Simulation performs one
small final	Look at simulation for	resolution if bigger, or one
time()	final time of 1 second	multiple if resolution is
		smaller
DS-23-A	Look at simulation for	Simulation runs but pertur-
large a()	semi major axis of	bations are too small too
	$20 \cdot 10^{20}$	see
DS-23-B	Look at simulation for	Semi-major axis quickly
small a()	semi major axis of	dropped to 0 and simulation
_ ~	$2 \cdot 10^{6}$	stopped performing
DS-24-A	Look at simulation for	Simulation reset initial con-
extreme_i	inclination above or below	ditions between 0-180 and
0	180	performed normally
DS-25-A	Look at simulation for very	Simulation does not work
large_e()	large values of eccentricity	and breaks
DS-25-B	Look at simulation for negative	Simulation does not work
small_a()	values of eccentricity	and breaks
DS-26-B	Look at simulation for values	Simulation runs nominally
extreme_	above 360 and negative values	and resets AOP between
AOP()	for AOP	0-360

To be able to analyse the sensitivity of the simulation, three situations were considered. These three situations consist out of change in mass, semi-major axis and resolution. These three situations were run with the same 24 satellites as in the chosen model and their range of Kepler elements compared. This range was compared by dividing the larger sensitivity model by the smaller one. As can be seen, a larger mass and resolution improves stability of the elements, which could be desired in the later design.

Table 5.4: Kepler Element Sensitivity Large/Small

	a	e	i	ω	Ω	V
100x mass	0.99985243	0.99995343	0.99989535	0.99995673	0.99999986	1.00001048
2x a	18.46357097	4.5936315	3.75326573	0.98274801	1.08328306	1.0304849
900x resolution	0.99275369	0.99093828	0.9899416	0.99979347	0.99941231	1.00020475

Coverage Model

Table 6.1: Unit tests for Coverage Model

Function	Function Descrip-	Unit Test Descrip-	Technique	Results
	tion	tion	Used	
CM-01-A	Vector from origin	Checks size of vec-	Unit test func-	Passed
r_size()	to satellite	tor	tion in code	
CM-02-A	Maximum distance	Checks that the	Unit test func-	Passed
range()	to Moon surface	range is the same	tion in code	
		as calculated by		
		hand		
CM-03-A	Scenario where	Check standard	Unit test func-	Passed
range_limit()	satellite covers	value is obtained	tion in code	
	more than half the			
	Moon			
CM-04-A	Elevation affects	Tests range is re-	Unit test func-	Passed
range_elevation()		duced by elevation	tion in code	
CM-05-A	Function to check	Confirms point is in	Unit test func-	Passed
isInView()	if two points are	view	tion in code	
	within range			
CM-05-B	Function to check	Confirms point is	Unit test func-	Passed
isInView()	if two points are	not in view	tion in code	
CN 1 O C A	within range		TT :	D 1
CM-06-A	Semimajor Axis of	Checks error raises	Unit test func-	Passed
test_a_sat()	satellite	when small a	tion in code	D 1
CM-06-B	Semimajor Axis of	Checks error raises	Unit test func-	Passed
test_a_sat()	satellite	when orbit going	tion in code	
CM-07-A	Eccentricity of	through surface Check error raises	Unit test func-	Passed
	Eccentricity of satellite		tion in code	Passed
test_e_sat() CM-08-A	Inclination of satel-	with negative e Check error raises	Unit test func-	Passed
				Passed
test_i_sat() CM-08-B	lite Inclination of satel-	with negative i Check error raises	tion in code Unit test func-	Passed
	lite	with +180 angle	tion in code	rasseu
test_i_sat() CM-09-A	Arg. Pericenter of	Check error raises	Unit test func-	Passed
	satellite	with negative w	tion in code	rasseu
test_w_sat()	Satemite	willi negative w	non in code	

CM-09-B	Arg. Pericenter of	Check error raises	Unit test func-	Passed
test_w_sat()	satellite	with +360 angle	tion in code	1 43304
CM-10-A	Ascending node of	Check error raises	Unit test func-	Passed
test_omega_	satellite	with negative	tion in code	1 45504
sat()		omega		
CM-10-B	Ascending node of	Check error raises	Unit test func-	Passed
test_omega_	satellite	with +360 angle	tion in code	
sat()				
CM-11-A	True anomaly of	Check anomaly re-	Unit test func-	Passed
test_nu	satellite	sets after 360°	tion in code	
CM-12-A	Elevation of Moon	Check error raises	Unit test func-	Passed
test_elev		with negative ele-	tion in code	
_sat()		vation		
CM-13-A	Conversion from	Checks correct	Unit test func-	Passed
r_conversion_	Kepler to Cartesian	transformation	tion in code	
kepler()				
CM-13-B	Conversion from	Checks correct	Unit test func-	Passed
r_conversion_	Kepler to Cartesian	transformation	tion in code	
kepler()				
CM-13-C	Conversion from	Checks correct	Unit test func-	Passed
r_conversion_	Kepler to Cartesian	transformation	tion in code	
kepler()				
CM-13-D	Conversion from	Checks correct	Unit test func-	Passed
r_conversion_	Kepler to Cartesian	transformation	tion in code	
kepler()				
CM-14-A	Longitude	Error when smaller	Unit test func-	Passed
test_phi()		than -180°	tion in code	
CM-14-B	Longitude	Error when larger	Unit test func-	Passed
test_phi()		than 180°	tion in code	
CM-15-A	Latitude	Error when smaller	Unit test func-	Passed
test_theta()		than -90°	tion in code	
CM-15-B	Latitude	Error when larger	Unit test func-	Passed
test_theta()		than 90°	tion in code	
CM-16-A	Height from sur-	Error when height	Unit test func-	Passed
test_h()	face	is negative	tion in code	
CM-17-A	Conversion from	Checks that trans-	Unit test func-	Passed
r_conversion_	Polar to Cartesian	formation is done	tion in code	
polar()		correctly		
CM-17-B	Conversion from	Checks that trans-	Unit test func-	Passed
r_conversion_	Polar to Cartesian	formation is done	tion in code	
polar()		correctly	TT • • • • •	D 1
CM-17-C	Conversion from	Checks that trans-	Unit test func-	Passed
r_conversion_	Polar to Cartesian	formation is done	tion in code	
polar()		correctly	TT :	 D
CM-17-D	Conversion from	Checks that trans-	Unit test func-	Passed
r_conversion_	Polar to Cartesian	formation is done	tion in code	
polar()		correctly		

CM-18-A	Type of Lagrange	Checks that valid	Unit test func-	Passed
valid_input_	point	string is given	tion in code	1 45504
lagrange()	pomi		tion in code	
CM-19-A	Measures distance	Tests correct dis-	Unit test func-	Passed
test_r()	from origin to L1	tance from origin	tion in code	- 33223
	<i>S S S S S S S S S S</i>	for L1		
CM-19-B	Measures distance	Tests correct dis-	Unit test func-	Passed
test_r()	from origin to L2	tance from origin	tion in code	
_	C	for L2		
CM-20-A	Set of Cartesian el-	Checks it is a list	Unit test func-	Passed
valid_input_	ements		tion in code	
fix()				
CM-21-A	List of Cartesian el-	Checks size is 3	Unit test func-	Passed
<pre>valid_size()</pre>	ements		tion in code	
CM-22-A	Semimajor Axis of	Error if small a	Unit test func-	Passed
test_a_orbit()	Plane		tion in code	
CM-22-B	Semimajor Axis of	Error is crosses sur-	Unit test func-	Passed
test_a_orbit()	Plane	face	tion in code	
CM-23-A	Eccentricity of	Error if negative e	Unit test func-	Passed
test_e_orbit()	Plane		tion in code	
CM-24-A	Inclination of Plane	Error if negative i	Unit test func-	Passed
test_i_orbit()			tion in code	
CM-24-B	Inclination of Plane	Error if large i	Unit test func-	Passed
test_i_orbit())		tion in code	
CM-25-A	Arg. Pericenter of	Error if negative w	Unit test func-	Passed
test_w_orbit()	Plane		tion in code	
CM-25-B	Arg. Pericenter of	Error if w +360°	Unit test func-	Passed
test_w_orbit()	Plane		tion in code	
CM-26-A	Ascending Node of		Unit test func-	Passed
test_omega_	Plane		tion in code	
orbit()				
CM-26-B	Ascending Node of		Unit test func-	Passed
test_omega_	Plane		tion in code	
orbit()				
CM-27-A	Elevation from sur-		Unit test func-	Passed
test_ elev_	face		tion in code	
orbit()				
CM-28-A	Satellites per plane	Checks satellites	Unit test func-	Passed
nsat()		are positive	tion in code	
CM-29-A	Creation of plane	Count satellites	Unit test func-	Passed
<pre>creation_sat()</pre>			tion in code	
CM-29-B	Creation of plane	Count satellites	Unit test func-	Passed
<pre>creation_sat()</pre>	with satellites		tion in code	
CM-30-A	Creation of a single	Checks the semi-	Unit test func-	Passed
<pre>indiv_sat()</pre>	satellite	major-axis of the	tion in code	
		satellite		

CM-30-B	Creation of a single	Checks the eccen-	Unit test func-	Passed
indiv_sat()	satellite	tricity of the satel-	tion in code	
_		lite		
CM-30-C	Creation of a single	Checks the inclina-	Unit test func-	Passed
<pre>indiv_sat()</pre>	satellite	tion of the satellite	tion in code	
CM-30-D	Creation of a single	Checks the argu-	Unit test func-	Passed
indiv_sat()	satellite	ment of pericenter	tion in code	
		of the satellite		
CM-30-E	Creation of a single	Checks the lon-	Unit test func-	Passed
indiv_sat()	satellite	gitude of the	tion in code	
		ascending node of the satellite		
CM-30-F	Creation of a single	Checks the eleva-	Unit test func-	Passed
indiv_sat()	satellite	tion of the satellite	tion in code	rasseu
CM-31-A	Distributes all the	Checks that satel-	Unit test func-	Passed
sat_distr()	satellites	lite one is placed at	tion in code	1 03500
buo_uibui()	Saternites	a true anomaly of	tion in code	
		zero		
CM-31-B	Distributes all the	Checks that satel-	Unit test func-	Passed
sat_distr()	satellites	lite one is placed at	tion in code	
		a true anomaly of		
		72 degrees		
CM-31-C	Distributes all the	Checks that satel-	Unit test func-	Passed
sat_distr()	satellites	lite one is placed at	tion in code	
		a true anomaly of		
CIV. 24 D	70.11	144 degrees	77.	D 1
CM-31-D	Distributes all the	Checks that satel-	Unit test func-	Passed
sat_distr()	satellites	lite one is placed at	tion in code	
		a true anomaly of 216 degrees		
CM-31-E	Distributes all the	Checks that satel-	Unit test func-	Passed
sat_distr()	satellites	lite one is placed at	tion in code	1 43504
545_41551()	Satomics	a true anomaly of	tion in code	
		288 degrees		
CM-32-A	Distributes the	Checks that the dis-	Unit test func-	Passed
rel_dist_sat()	satellites relative to	tance between two	tion in code	
	each other.	satellites is equal to		
		around $2 \times 10^6 \mathrm{m}$		
CM-33-A	Creates the resolu-	Checks that the res-	Unit test func-	
resolution()	tion	olution is positive.	tion in code	
CM-34-A	Adds an existing	Checks that an	Unit test func-	Passed
addExisting	orbit plane	existing orbit plane	tion in code	
OrbitPlane()		is added correctly		
		by checking if the number of orbit		
		planes is equal to		
		one		
		l one		

CM 24 D	A 11 ' 4'	C1 1 1 1 1	TT ' C	D 1
CM-34-B	Add an existing or-	Checks that plane	Unit test func-	Passed
addExisting	bit plane to model	object is added to	tion in code	
OrbitPlane()		model		
CM-34-C	Add an existing or-	Checks number of	Unit test func-	Passed
addExisting	bit plane to model	satellites is one	tion in code	
OrbitPlane()				
CM-35-A add	Creates an orbit	Checks one plane is	Unit test func-	Passed
OrbitPlane()	plane in the model	added to model	tion in code	
CM-35-B add	Creates an orbit	Checks one satel-	Unit test func-	Passed
OrbitPlane()	plane in the model	lite is added to	tion in code	
	F	model		
CM-36-A	Creates a Moon	Checks no orbit	Unit test func-	Passed
addTower()	tower	plane is created	tion in code	1 45504
CM-36-B	Creates a Moon	Checks one tower	Unit test func-	Passed
		is added to model		rasseu
addTower()	tower		tion in code	D 1
CM-37-A	Creates an orbiting	Checks no orbit	Unit test func-	Passed
addSatellite()		plane is created	tion in code	
CM-37-B	Creates an orbiting	Checks one satel-	Unit test func-	Passed
addSatellite()	satellite	lite is added to	tion in code	
		model		
CM-38-A	Creates a satellite at	Checks one satel-	Unit test func-	Passed
addLagrange()	a Lagrange point	lite is added	tion in code	
CM-38-B	Creates a satellite at	Checks two satel-	Unit test func-	Passed
addLagrange()	a Lagrange point	lites are added	tion in code	
CM-38-C	Creates a satellite at	Checks no orbit	Unit test func-	Passed
addLagrange()	a Lagrange point	plane is created	tion in code	
CM-39-A	Creates a satellite	Checks no orbit	Unit test func-	Passed
addFixPoint()	in a fix point in	plane is created	tion in code	1 45504
addi ixi oilio()	space	plane is created	tion in code	
CM-39-B	Creates a satellite	Counts one element	Unit test func-	Passed
			tion in code	rasseu
addFixPoint()	in a fix point in	is added	tion in code	
CD (40 A	space		TT '	D 1
CM-40-A	Adds an existing el-	Counts one element	Unit test func-	Passed
addExisting	ement to the model	is added	tion in code	
Module()				
CM-40-B	Adds an existing el-	Checks type of	Unit test func-	Passed
addExisting	ement to the model	module is added	tion in code	
Module()		correctly		
CM-41-A add	Creates symmetri-	Tests number of or-	Unit test func-	Passed
Symmetrical	cal orbital planes in	bital planes	tion in code	
Planes()	model	_		
CM-41-B add	Creates symmetri-	Tests number of	Unit test func-	Passed
Symmetrical	cal orbital planes in	satellites created	tion in code	
Planes()	model			
CM-42-A	Creates a discre-	Checks that moon	Unit test func-	Passed
moonCreation()		has enough points	tion in code	1 45504
moonoreacton()	uscu moon	nas chough points	non in couc	

CM-43-A	Function to analyse	Checks that cover-	Unit test func-	Passed
Coverage()	coverage	age is only ran if	tion in code	
		there are modules		
CM-44-A	Plots the coverage	Checks that cover-	Unit test func-	Passed
plotCoverage()		age is plotted only	tion in code	
		if there are modules		

Table 6.2: Module/System Tests for Coverage Model

Function	Function Descrip-	Module/system	Technique	Results
	tion	Test Description	Used	
CM-45-A plot	Plot for different	Checks error reduc-	Module test	Passed
ErrorMesh()	mesh sizes	tion by increasing	function in code	
		mesh size		
CM-46-A	Plot coverage for	Performs a sensi-	Module test	Passed
plotChange	changing semima-	tivity analysis on a	function in code	
InA()	jor axis			
CM-47-A	Plot coverage for	Performs a sensi-	Module test	Passed
plotChange	changing eccentric-	tivity analysis on e	function in code	
InE()	ity			
CM-48-A	Plot coverage for	Performs a sensi-	Module test	Passed
plotChange	changing inclina-	tivity analysis on i	function in code	
InI()	tion			
CM-49-A	Plot coverage for	Performs a sensi-	Module test	Passed
plotChange	changing height	tivity analysis on	function in code	
<pre>InHeight()</pre>		height		
CM-50-A	Coverage from a	Checks error raises	Extreme value	Passed
testLess	satellite	when inside Earth	test function in	
ThanRadius()			code	
CM-51-A	Coverage from a	Checks no cover-	Extreme value	Passed
testCoverage	satellite	age is visible when	test function in	
CloseToMoon()		too close to Moon	code	
CM-52-A	Coverage from a	Checks approx half	Extreme value	Passed
testCoverage	satellite	of the Moon's sur-	test function in	
FarFromMoon()		face is visible when	code	
		far away		
CM-53-A	Creates visual	Checks that folds	System test	Passed
plotFolds()	model of coverage	are performed cor-	function in code	
		rectly when there		
		is superposition by		
		modules		

A set of validation codes are seen below. Specifics on the results from the tests can be seen in the main report. The test perform cross-validation between models.

Table 6.3: Validation table for the coverage model.

Function	Validation Test Descrip-	Technique Used	Results
	tion		
CM-54-A PlotModel	Plot the first model from	Visual validation test	Passed
FromSOC1()	streets of coverage		
CM-54-B PlotModel	Plot the second model	Visual validation test	Passed
FromSOC2()	from streets of coverage		
CM-54-C PlotModel	Plot the third model from	Visual validation test	Passed
FromSOC3()	streets of coverage		
CM-54-D PlotModel	Plot the fourth model from	Visual validation test	Passed
FromSOC5()	streets of coverage		
CM-55-A PlotModel	Plot the first model from	Visual validation test	Passed
FromPaper1()	the optimisation paper		
CM-55-B PlotModel	Plot the second model	Visual validation test	Passed
FromPaper2()	from the optimisation pa-		
	per		

User Error Calculator

Table 6.4: Unit and Module Tests

Function	Function Description	Unit Test Description	Technique Used	Result
UE-1-A pos_dist ()	Checks if the distance from the user to the satellites is positive	Test the sign of the elements in the distance array.	Python Unittest Module	Passed
UE-2-A inv_sat_ input()	Tests initialization with less than 4 satellites	Checks if valueerror is raised	Python Unittest Module	Passed
UE-3-A inv_user_ input()	Tests initialization with less than 2 user coordinates	Checks if valueerror is raised	Python Unittest Module	Passed
UE-4-A inv_error_ input()	Tests initialization with allowable error not being size 6	Checks if valueerror is raised	Python Unittest Module	Passed
UE-5-A inv_pos_ input()	Tests initialization with negative position error	Checks if valueerror is raised	Python Unittest Module	Passed
UE-6-A satellite_ error()	Test if the UERE is a useable value	Checks if value is a float and above 0	Python Unittest Module	Passed
UE-7-A param_co variance()	Test the type for parameter covariance matrices	Checks if the param eter covariance matri ces are arrays	Python Unittest Module	Passed
UE-8-A allowable_ error()	Tests if the allowable errors are valid	Checks the sign of each allowable error which should be +	Python Unittest Module	Passed
		Module Tests		
UE-9-A allowable_ error()	Tests if the allowable errors are valid	Checks the sign of each allowable error which should be +	Python Unittest Module	Passed
UE-10-A allowable_ error()	Tests if the user errors are valid	Checks the sign of each user error which should be +	Python Unittest Module	Passed
UE-11-A allowable_ error()	Test if GDOP is largest out of all DOP	Compares GDOP to each DOP and see which is greater	Python Unittest Module	Passed

Sensitivity Analysis for Trade Off

Table 7.1: Unit tests for Trade Off

Function	Function Descrip-	Unit Test Descrip-	Technique	Results
	tion	tion	Used	
ST-01-A	Weight and Score	Checks size of vec-	Unit test func-	Passed
test_size()	inputs	tors are consistent	tion in code	
ST-02-A	Output of function,	Checks number of	Unit test func-	Passed
test_win()	determining winner	wins by first design	tion in code	
ST-02-B	Output of function,	Checks number of	Unit test func-	Passed
test_win()	determining winner	wins by second de-	tion in code	
		sign		
ST-02-C	Output of function,	Checks number of	Unit test func-	Passed
test_win()	determining winner	draws	tion in code	