1. Encuentre una parametrización adecuada para las siguientes curvas, indicando el intervalo en el que es válido y orientado positivo:

$$x^2 + y^2 = a^2$$
.

$$x^{2/5} + y^{2/5} = a^{2/5}.$$

- La intersección entre $z = x^2 + y^2$ y 2x + 2y + 14 = z.
- La intersección de las parábolas $z = 2x^2 + y^2$, $z = 9 (x^2 + 2y^2)$.
- 2. Considere un resorte representado por la parametrización $(x,y,z)=(\cos t,\sin t,t), t\in [0,2\pi]$, de densidad linela $\delta(x,y,z)=3(x^2+y^2)\sqrt{z^2+1}$, encuentre la masa del resorte.
- 3. Considere la curva Γ resultante de la intersección de el plano Π : 2x z = 0 y la parábola Ω : $3z = (x 1)^2 + y^2$, parametrice Γ y dibuje sus proyecciones en los planos XY y ZY.
- 4. Sea la curva ε definida por la parametrización $r(t) = e^{-t}(\cos t, \sin t), t > 0$, calcule su longitud para t = a, luego analice la longitud si $a \to \infty$. Para una densidad lineal de la curva $\delta(t) = t^n$, determine $n \in \mathbb{R}$, tal que la masa sea un valor finito.