FORMULÁRIO - NÚMEROS COMPLEXOS

$$e^{j\alpha} = \cos(\alpha) + j\sin(\alpha)$$

$$e^{-j\alpha} = \cos(\alpha) - j\sin(\alpha)$$

arco	0°	30°	45°	60°	90°	180°	270°	360°
rad	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π	$\frac{2\pi}{3}$	2π
seno	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	0	- 1	0
cosseno	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	1 2	0	- 1	0	1

Espectro de Potência

Se
$$F(u) = DFT[f(x)] \Longrightarrow$$

F(u) é complexo, ou seja, pode ser escrito em termos de suas partes Real e Imaginária:

$$F(u) = Re[F(u)] + j Im[F(u)]$$

F(u) também pode ser expresso em termos de seu módulo, |F(u)|, e fase, $\emptyset[F(u)]$, em que:

$$|F(u)| = \sqrt{Re[F(u)]^2 + Im[F(u)]^2}$$

O espectro de potência de f(x) é igual a $|F(u)|^2 = Re[F(u)]^2 + Im[F(u)]^2$

Exemplo:

Suponha:

$$F(0) = 10$$

$$F(1) = 4+j2$$

$$F(2) = -3 + j2$$

$$F(3) = 1 - j$$

Podemos calcular o espectro de potência, $|F(u)|^2$:

$$|F(0)|^2 = 10^2 = 100$$

|
$$F(0)$$
|² = 10² = 100
| $F(1)$ |² = 4² + 2² = 16 + 4 = 20
| $F(2)$ |² = (-3)² + 2² = 9 + 4 = 13
| $F(3)$ |² = 1² + (-1)² = 1 + 1 = 2

$$|F(2)|^2 = (-3)^2 + 2^2 = 9 + 4 = 13$$

$$|F(3)|^2 = 1^2 + (-1)^2 = 1 + 1 = 2$$

