Electromagnetism

JSW

CONTENTS

	Vector Analysis1.1Vector Algebras	3
2	Gallery of Electromagnetism	7
Pr	oof Index	11

????

- Vector Analysis
 - **-** ????
 - ????
 - ?????
- Electrostatics
- Electrostatics in Matter
- Methods for Boundary Value Problems
- Magnetostatics
- · Electrodynamics

Vectors do matter ?????!!

Life is accumulation. Your height h is determined by not only your talent (velocity \mathbf{v}) but also the path you walk along.

$$h = \int_{\text{now}}^{\text{future}} \mathbf{v} \cdot (\nabla h) dt = \int_{Path} \nabla h \cdot d\mathbf{l}$$

?????????????????

2???????dl 2?????? ∇h 2?

???????????

CONTENTS 1

2 CONTENTS

CHAPTER

ONE

VECTOR ANALYSIS

- ????
 - inner product
 - cross product
- ????
 - gradient
 - divergence
 - curl
- ????
 - line integral
 - surface integral
 - volume integral
 - fumdamental theorom of calculus
 - Helmholtz theorem

1.1 Vector Algebras

1.1.1 Notations for Vectors

- ?????: $\mathbf{A} = A_x \hat{i} + A_y \hat{j} + A_z \hat{k}$
- \hat{i} 22 x 2222222 \hat{j} 22 y 2222222 \hat{k} 22 z 2222222 22222 $\hat{x},\,\hat{y},\,\hat{z}$ 2 $\hat{e}_x,\,\hat{e}_y,\,\hat{e}_z$ 2222222
- The amplitude of A is

$$|\mathbf{A}| = A = \sqrt{A_x^2 + A_y^2 + A_z^2}$$

1.1.2 Tensors

22222 index 2222 $\mu, \nu, i, j, k, l, m, n, \alpha, \beta$ 2 22222222222

Table 1.1: Tensor

	number of indice	example	name
????	0	a	scalar ???
????	1	A_{μ}	vector ???
????	2	$B_{\mu\nu}$??
????	3	C_{ijk}	??

 $2222222 A_{\mu} 2222222222222222 \mu = x, \ y, \ z \ 222222$

Einstein conventions

$$\sum_{i} A_{ij} B_{jk}$$

$$\sum_{j}A_{ij}B_{jk}$$

$$\sum_{j}\sum_{k}A_{ij}B_{jk}C_{km}$$

Definition 1.1 (Einstein convention)

222222222 index 222222222 summation 2222

$$A_{ij}B_{jk} = \sum_{j} A_{ij}B_{jk}$$

$$A_{ij}B_{jk}C_{km} = \sum_{j}\sum_{k}A_{ij}B_{jk}C_{km}$$

Exercise 1.1

1.
$$\mathbf{A} = (1, 2, 3) \mathbf{B} = (6, 2, 5)$$

$$A_{\mu}B_{\mu}=?$$

2.

$$C_{ij} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & -1 \\ 1 & 0 & 0 \end{pmatrix}$$

$$B_i C_{ij} A_j = ?$$

Solution to Exercise 1.1

1.

$$A_{\mu}B_{\mu} = \sum_{\mu=x,y,z} A_{\mu}B_{\mu} = A_{x}B_{x} + A_{y}B_{y} + A_{z}B_{z} = 25$$

2.

$$B_i C_{ij} A_j = \sum_i \sum_j B_i C_{ij} A_j = 11$$

1.1.3 Free index, contraction

GALLERY OF ELECTROMAGNETISM

v-dipole

Fig. 2.1: Vertical dipole radition.

v-dipole SPP

Fig. 2.2: Vertical dipole radition excites SPPs.

c-dipole

c-dipole SPP

Fig. 2.3: Circular dipole radition.

Fig. 2.4: Circular dipole radition excites SPPs.

PROOF INDEX

definition-0

definition-0 (va/vec_alge), 4