Materials, estructures i mecanismes

Exemple garrafa d'aigua

https://www.youtube.com/watch?v=DeMH7uPs2Sw

Apunts unitat 3, pàg. 2 –

Apunts unitat 3, pàg. 5 –

Exercici 3.1-1

Cerca 3 exemples d'aplicació per cada un dels següents grups de materials Per a cada aplicació explica quines són les característiques per les quals s'utilitza el material.

- · Fustes
- · Ceràmiques
- · Vidres
- · Metalls
- · Tèxtils
- · Plàstics

Apunts unitat 3, pàg. 5 -

Exercici 3.1-1

Materials	Exemples d'aplicació	Característiques/ propietats
Fustes		
Ceràmiques		
•		
Vidres		
110100		
Metalls		
Wetans		
Tèxtils		
Plàstics		

3.2 Algunes propietats dels materials

Mecàniques	Físiques	Altres
Elasticitat	Densitat	Resistència a la corrosió
Plasticitat	Conductivitat tèrmica i elèctrica	Resistència a la radiació solar
Resistència a la tracció, compressió, flexió i torsió		Toxicitat
•	,	Recilabilitat
Fragilitat i tenacitat		
Duresa		

3.2.1.1 Elasticitat

L'elasticitat és la propi forma original quan l'e	sota un esforç	i tornar a la seva		
Exemple:				
Goma essi aquest no ha estat e	amb un esforç de excessiu.	_ i torna a la seva_		en acabar l'esforç

3.2.1.2 Plasticitat

La plasticitat és la propietat que indica que sota un esforç, el m	naterial es, mantenint la

Exemple:

Per protegir els passatgers en cas de xoc, el cotxe s'ha de poder deformar de forma controlada. La deformació del frontal absorbeix l'energia del xoc. És una deformació plàstica ja que es manté quan ha passat l'esforç (xoc).

Apunts unitat 3, pàg. 8 –

3.2.1.3 Esforços de tracció, flexió, compressió i torsió

L'esforç de tracció _____ un material.

Exemple cables de pont penjant.

3.2.1.3 Esforços de tracció, flexió, compressió i torsió

L'esforç de compressió _____ un material.

Exemple pilars d'un pont que ha de suportar el pes del pont i del transit que carrega el pont.

3.2.1.3 Esforços de tracció, flexió, compressió i torsió

Entre els punts de suport (pilars) d'un pont, es produeix un esforç de

L'esforç de flexió tendeix a _____ el material.

3.2.1.3 Esforços de tracció, flexió, compressió i torsió

L'**esforç de** _____ es produeix quan feim ____ un objecte, per exemple una vareta, sobre tot, si un costat de la vareta està fixada o ofereix resistència al ____.

La ____ d'un trempant està sota un esforç de torsió.

AUST

3.2.1.4 Fragilitat i tenacitat

Un material fràgil es _____ en rebre un ____.

Exemples:

, , ,

La propietat contraria a la fragilitat és la _____. Els objectes tenaços es poden deformar amb cops, però no es rompen en pedaços.

3.2.1.5 Duresa

La duresa mesura la resistència que oposa una substància a ser _____.

Quant més dur és un material, més difícil és _____ o _____.

El vidre per exemple, és un material molt _____, però al mateix temps molt _____.

Les puntes de les broques per perforar pedra han de ser molt dures, però ______ fràgils.

Apunts unitat 3, pàg. 11 -

3.2.1.6 Densitat

La densitat és la relació entre la massa i el _____ d'un material. La unitat de la massa són els ___ i la unitat del volum els___ .

Si omplim un metre cúbic d'aigua i el pesem, el resultat són _____.

La densitat d'un material es calcula dividint la seva _____ entre el seu _____.

En el cas de l'aigua, la densitat és

Conversió de superfície

 $1 \text{ dm}^2 = 100 \text{ cm}^2$

Conversió de volumen

Apunts unitat 3, pàg. 20 –

Experiment per averiguar la densitat d'una pedra			

Apunts unitat 3, pàg. 20 –		

Apunts unitat 3, pàg. 21 –	

Apunts unitat 3, pàg. 22 –	

Apunts unitat 3, pàg. 17 –

Els recipients pesen	grams menys que aba	ns de ficar la pedra.
grams d'aigua	a tenen un volum de	cm³, que és el volum de la pedra.
Ara podem calcular la densitat	de la pedra.	

$$m_{pedra} / V_{pedra} =$$

Apunts unitat 3, pàg. 12 –

• Exercicis 3.2.6-1

Calcula les densitats dels següents materials.

Material	Massa	Volumen	Densitat en kg/l
Ferro	26 kg	3,31	
Coure	4450 kg	0,5 m ³	
Alumini	3 kg	1111cm ³	
Plom	11,34 kg	11	
Pedra	1,25 kg	0,5 dm ³	
Aigua	300 g	0,31	
PVC	4170 kg	3 m ³	

Apunts unitat 3, pàg. 14 –

• Exercicis 3.2.6-2

Completa la taula.

Material	Massa	Volumen	Densitat
Fusta de pi	100 kg		500 kg/m³
Fusta de balsa		1 m³	160 g/l
Oli d'oliva		2000 cm ³	0,87 kg/l

3.2.7 Conductivitat tèrmica i elèctrica

La conductivitat tèrmica d'un material indica si aquest és un bon o mal	de la calor. Pe
exemple un cassó o una paella de cuina han de conduir bé la calor del	als aliments que estem
cuinant. Tots els útils de cuina estan fets de, perquè els metalls, a	a més de conduir bé la
calor, són	
Per contra, el mànec d'una paella, sovint està fet de o	, perquè la i els
i no s', enca	ra que la part metàl·lica de
la paella estigui molt calenta.	
Anomenem aïllants tèrmics als materials que condueixen la calor	La conductivitat
tèrmica dels aïllants és	
La conductivitat elèctrica indica si un material és bon o mal conductor de l'_	Dels
grups de materials que hem comentat, els són els únics bons o	conductors de l'electricitat.
La resta dels materials es consideren elèctrics.	

3.2.7 Conductivitat tèrmica i elèctrica

On necessitem conduir calor i electricitat?

Calefacció -> radiadors.

Diposits aigua calenta sanitària (ACS) -> serpentí.

Cuina -> paella.

Aigua a 80°C

Aïllament elèctric plàstic

3.2.8 Resistència a la corrosió

En el que respecta a la corrosió, nosaltres e	ns limitare	em a considerar l'oxidació de metalls, c	om per	
exemple la del,,	0 _	L'oxidació dels metalls és	s una	
reacció electroquímica entre un	_ i	·		
En el cas dels metalls fèrrics com el	i l'	, l'oxidació provoca una	que	
debilita el metall. El contacte d'un metall am	b	_ accelera la corrosió, sobretot si l'aigu	ua és	
s'ev	ita utilitzar	metalls fèrrics.		
Per evitar la corrosió es poden tractar les		amb productes que les		
protegeixen, com per exemple dipòsits d'aig	ua amb sı	perfície interior vitrificada.		
També es fabriquen acers anomenats inoxid	lables, per	ò la resistència a la corrosió d'un acer		
inoxidable depèn molt de la seva	<u>_</u> .			
L'alumini i el coure, que no són metalls fèrric	cs, només	s'oxiden, sens	se arribar	
a una corrosió que trenqui peces fetes amb	aquests m	etalls.		

Apunts unitat 3, pàg. 24 –

3.2.8 Resistència a la corrosió

Alumini

Coure

La corrosió de l'alumini i el coure només és superficial.

La corrosió de ferro i acer arriba a perforar les peces i debilita la seva resistència mecànica.

Superficies metàl·liques se esmalten o vitrifiquen per protegir-les contra la corrosió.

3.2.9 Resistència a la radiació solar

La radiació sola	ar deteriora	,	i, sobretot,	molts tipus de ma	terials
	. Per protegir un ı	material de la radiac	ió solar, se sol tr	actar la seva supe	erfície, per
exemple amb	,	0			

3.2.10 Toxicitat

Moltes de les substàncies i mate	rials utilitzats en els processos tecnològics són	tòxics, per,
0	i a més contaminen el	si no es
manipulen adequadament.		
La majoria de les	, o conte	enen dissolvents
per ingestió, in	nhalació i contacte amb la pell.	
Tots els produeixen	en cremar-se fums extraordinàriament tòxics.	Mai s'ha de cremar un
•	ncia o un material, és necessari informar-se de salut i contaminar el medi ambient.	les seves propietats
3.2.11 Reciclabilitat		
Els materials reciclables es pode i alguns	en, com per exemple el, el	molts

Exercici 3.3-1Completa l'escala de conversió per a unitats de llargària.

Exercici 3.3-3

Completa l'escala de conversió per a unitats de superfície.

Conversió de superfície

 $\,mm^2\,$

Exercici 3.3-5

Completa l'escala de conversió per a unitats de volum.

Exercici 3.3-2

Fes la conversión de les següents llargàries.

 145dm = ______m = _____km

 0,321km = _____mm = ____km

 21m = _____mm = ____km

 dm = _____cm

Exercici 3.3-4

Fes la conversión de les següents superfícies.

Exercici 3.3-6

Fes la conversión dels següents volums.

541dm³ = _____ mm³ = ____ mm³
0,321mm³ = ____ cm³
21m³ = ____ dm³ = ____ cm³