Universidade da Beira Interior

Departamento de Informática

Projeto de IA

Elaborado por:

Ana Carolina Silva, João Fraga

Orientador:

Professor Doutor Luís Alexandre

2 de Janeiro de 2020

CONTEÚDO CONTEÚDO

Conteúdo

1	Introdução 2			
	1.1	Resun	10	2
	1.2	Motiv	ação	2
	1.3	Objetivos		
2	Imp	olemen	tação	3
	2.1	Introdução		
	2.2	Dependências		
	2.3	Representação da Informação		
	2.4			
		2.4.1	Quantos quartos não estão ocupados?	5
		2.4.2	Quantas suites foram encontradas até agora?	5
		2.4.3	É mais provável encontrar pessoas nos corredores ou dentro	
			dos quartos?	5
		2.4.4	Se quisesse encontrar um computador, a que tipo de quarto	
			me devo dirigir?	5
		2.4.5	Qual o número do quarto single mais próximo?	6
		2.4.6	Como ir do quarto atual até ao elevador?	6
		2.4.7	Quantos livros estima encontrar nos próximos 2 minutos?	6
		2.4.8	Qual a probabilidade de encontrar uma mesa num quarto sem	
			livros e que tem pelo menos uma cadeira?	6
3	Ref	lexao (Critica	7
	3.1	Introdução		
	3.2	Divisão do Trabalho		
	3.3	Problemas Encontrados		
	3.4		se Crítica	8
4	Conclusões e Trabalho Futuro			
	4.1	Concl	usão	9
	4.2		lho Futuro	9

1 Introdução

1.1 Resumo

Este trabalho consistiu no desenvolvimento de um agente robótico inteligente, que navega por um mundo, onde efetua observações. Através destas observações este é capaz de responder a questões que lhe são colocadas.

Para atingir esse objectivo foram utilizados os conhecimentos e algoritmos adquiridos na unidade curricular de Inteligência Artificial [5], nomeadamente: Algoritmos de Grafos e conhecimentos de probabilidades.

1.2 Motivação

Este projeto foi proposto e desenvolvido no âmbito da unidade curricular de Inteligência Artificial, com a finalidade de praticar e consolidar algumas das técnicas e conhecimentos adquiridos ao longo do semestre.

1.3 Objetivos

Este projeto tem como objetivo a implementação de um agente inteligente. Este deverá ser capaz de responder a questões colocadas pelo utilizador através do processamento de informação recolhida do ambiente.

2 Implementação

2.1 Introdução

Neste capítulo são apresentadas as bibliotecas utilizadas, as estruturas de dados escolhidas bem como todos os detalhes de implementação das respostas às questões.

2.2 Dependências

Ao longo da realização do trabalho foram utilizadas algumas bibliotecas built-in e third-party para auxilio à implementação da solução.

- Bibliotecas built-in do Python:
 - 1. math
 - 2. time
- Bibliotecas *third-party*:
 - 1. networkx [1]

2.3 Representação da Informação

Durante a navegação do agente por parte do utilizador é registada informação, recolhida pelos sensores.

Foi necessário escolher estruturas de dados para representar esta informação de forma a facilitar a sua consulta e resposta às questões. As estruturas de dados escolhidas foram as seguintes:

- **Grafo:** Foi utilizado para representar todos os quartos visitados. Uma *edge* entre dois quartos indica uma porta e o seu *weight* corresponde à distância euclidiana entre o centro dos dois quartos.
- Dicionários: Foram utilizados varios dicionários com o objectivo de obter consultas rápidas
 - Dicionário de Objetos Encontrados: devolve uma lista de objectos encontrados num determinado quarto de uma certa categoria.

```
* key: (room, category)
* value: object name
```

Dicionário de Tipos de Quarto: devolve qual o tipo de um determinado quarto

```
* key: room
* value: type of room
```

- Listas: Foram utilizadas várias listas de forma a representar dados mais simples
 - coordenadas centrais dos quartos
 - numero dos corredores

– ...

2.4 Resposta às questões

Nesta secção é explicado de forma sucinta a implementação da solução para cada uma das perguntas sugeridas.

2.4.1 Quantos quartos não estão ocupados?

Fazendo uso do grafo e dicionário de objetos encontrados (secção 2.3), iterou-se sobre todos os quartos visitados e contou-se em quantos destes se tinham observado pessoas.

Subtraindo os dois valores obtem se o número de quartos não visitados.

2.4.2 Quantas suites foram encontradas até agora?

Esta questão foi respondida recorrendo ao dicionário de tipos de quartos (secção 2.3). Um quarto poderia ser classificado como suite em duas situações distintas:

- 1. Se fosse observada uma cama nesse quarto e esse já se encontrasse ligado a outro quarto, que não um corredor, no Grafo.
- 2. Se fosse adicionada uma *edge* entre dois quartos (não corredores) e um desses quartos tivesse uma cama.

2.4.3 É mais provável encontrar pessoas nos corredores ou dentro dos quartos?

Considera-se que seria mais próvavel encontrar pessoas nos corredores se a proporção de corredor com pessoas fosse maior que a proporção de quartos com pessoas, e viceversa.

Para isto efetuou-se a contagem de corredores visitados (visited_corridors), corredores com pessoas (corridors_with_people), quartos visitados (visited_rooms), quartos com pessoas (rooms_with_people).

Se:

$$\frac{people_corridors}{visited_corridors} > \frac{people_rooms}{visited_rooms} \tag{1}$$

Então será mais provável encontrar pessoas em corredores, caso contrário, será mais provável encontrar pessoas em quartos.

2.4.4 Se quisesse encontrar um computador, a que tipo de quarto me devo dirigir?

Fazendo uso do dicionário de tipos de quartos e do dicionário de objetos observados por quarto, contamos o número de quartos de cada tipo e o número de quartos com computador por tipo de quarto.

Calcula-se seguidamente a proporção de quartos com computador para cada tipo de quarto e é apresentado ao utilizador o que apresenta maior proporção.

2.4.5 Qual o número do quarto single mais próximo?

Para responder a esta questão começou-se por obter uma lista com todos os quartos single encontrados até ao momento.

Utilizou-se a função shortest_path_length [3] da biblioteca networkx [1] para calcular a distância da posição atual a cada um destes quartos.

Por fim verificou-se qual destes se encontra a menor distância.

2.4.6 Como ir do quarto atual até ao elevador?

Nesta questão fez-se uso da função *shortest_path* [2] da biblioteca *networkx* [1] para obter uma lista de quartos, desde o quarto atual (origem), até ao elevador (destino).

Por fim, foram apresentadas de forma intuitiva as direções ao utilizador.

2.4.7 Quantos livros estima encontrar nos próximos 2 minutos?

Para responder a esta questão foram tidos em conta dois parâmetros:

- 1. Número de quartos visitados por segundo (rooms sec)
- 2. Número de livros observados por quarto (books room)

Tendo em conta estes dois parâmetros, a estimativa do número de livros a encontrar nos próximos 2 minutos é dada por:

$$prediction = (2 * 60) * rooms_sec * books_room$$
 (2)

É também tido em conta o número de quartos não visitados (remaining_rooms). Caso o número de quartos que é possível visitar em 2 minutos seja superior ao número de quartos não visitados, usa-se a equação:

$$prediction = remaining \ rooms * books \ room$$
 (3)

2.4.8 Qual a probabilidade de encontrar uma mesa num quarto sem livros e que tem pelo menos uma cadeira?

A probabilidade pedida é dada por: [4]

$$P(T|\neg B \cap C) = \frac{P(T \cap \neg B \cap C)}{P(\neg B \cap C)} \tag{4}$$

- \bullet T Ter mesa
- \bullet B Ter livro
- ullet C Ter cadeira

Para efetuar este cálculo contou-se o número de quartos que não tinham livros nem cadeiras, e quantos destes tinham mesas.

3 Reflexao Critica

3.1 Introdução

Neste capítulo é analisado e discutido todo o trabalho realizado, de que forma este foi dividido pelos elementos do grupo e quais os problemas e dificuldades que surgiram.

3.2 Divisão do Trabalho

As decisões relativas à escolha das estruturas de dados utilizadas foi feita em conjunto por ambos os elementos do grupo de forma a evitar a duplicação de informação.

Após ter sido decidido como representar a informação obtida, dividimos as questões em 2 grupos considerados de dificuldade equivalente e cada um dos elementos do grupo implementou o seu conjunto respectivo de questões.

- 1. Set A: Resolvido por João Fraga
 - questão 1 (Secção 2.4.1)
 - questão 3 (Secção 2.4.3)
 - questão 6 (Secção 2.4.6)
 - questão 7 (Secção 2.4.7)
- 2. Set B: Resolvido por Ana Carolina Silva
 - questão 2 (Secção 2.4.2)
 - questão 4 (Secção 2.4.4)
 - questão 5 (Secção 2.4.5)
 - questão 8 (Secção 2.4.8)

Apesar desta divisão, todas as solução foram discutidas por ambos os elementos do grupo de forma a confirmar a sua correção.

3.3 Problemas Encontrados

A navegação do agente era trabalhosa o que dificultava o teste das soluções, para além disso o simulador não era muito estável e requeria várias tentativas antes de funcionar correctamente.

Tendo em conta que o utilizador é responsável pela navegação do agente, por vezes poderá haver objetos que não são observados, levando à má classificação de quartos e erros na resposta às questões em geral.

Também devido à forma como o simulador está implementado, o agente consegue por vezes observar objectos através de paredes o que uma vez mais pode levar à má classificação de quartos e erros na resposta às questões em geral.

3.4 Analise Crítica

Apesar de terem sido atingidos todos os objectivos propostos, não foi feito uso de algumas das técnicas mais sofisticadas de Inteligência Artificial que teriam sido interessantes de explorar.

4 Conclusões e Trabalho Futuro

4.1 Conclusão

Os objetivos estabelecidos foram cumpridos, sendo que foi dada resposta a todas as questões propostas. Este trabalho permitiu a implementação de uma aplicação prática dos conhecimentos adquiridos na unidade curricular de Inteligência Artificial.

4.2 Trabalho Futuro

Futuramente seria interessante desenvolver uma forma de o agente ser movido autonomamente, não controlado pelo utilizador, e continuar a expandir o número de questões ao qual este é capaz de responder.

REFERÊNCIAS REFERÊNCIAS

Referências

[1] Networkx documentation, 2019. "https://networkx.github.io/documentation/latest/". Acedido em 28 de Dezembro de 2019.

- [2] shortest_path() documentation, 2019. "https://networkx.github.io/documentation/stable/reference/algorithms/generated/networkx. algorithms.shortest_paths.generic.shortest_path.html#networkx. algorithms.shortest_paths.generic.shortest_path". Acedido em 28 de Dezembro de 2019.
- [3] shortest_path_lenght() documentation, 2019. "https://networkx.github.io/documentation/stable/reference/algorithms/generated/networkx.algorithms.shortest_paths.generic.shortest_path_length.html# networkx.algorithms.shortest_paths.generic.shortest_path_length". Acedido em 28 de Dezembro de 2019.
- [4] Luís Alexandre. Inteligência artificial. Lecture Notes, 2019.
- [5] Stuart J. Russell and Peter Norvig. Artificial intelligence: a modern approach. Pearson, 2016.