Glaucoma Detection Using Advanced Image Segmentation Techniques

소속 정보컴퓨터공학부

분과 C

팀명 EPA

Aldo Sigfrido Calderoni Echeverri, Mahboubeh Bagheri, 배민준

지도교수 황원주

Project Introduction

Introduction

- Glaucoma is a progressive eye disease affecting the optic nerve and is a leading cause of blindness.
- Early detection through optic nerve head (ONH) analysis is crucial.
- Cup-to-Disc Ratio (CDR) is an important metric used in diagnosing glaucoma.
- The need for automated segmentation arises from the challenges of manual segmentation.

Objective

Develop a machine learning-based system for automatic segmentation of optic cup and disc to measure the Cup-to-Disc Ratio (CDR) for early glaucoma diagnosis.

Model Architecture

Base Architecture:

DC U-Net: Combines dense connectivity with the U-Net encoder-decoder design, allowing for efficient feature reuse and precise region identification, particularly beneficial for limited datasets.

U-Net

Transformer

CBAM

Encoder Enhancements:

- DC Blocks: Utilize dilated convolutions to expand the receptive field and capture multi-scale information efficiently.
- **CBAM:** An attention mechanism that focuses on informative regions through channel and spatial attention.

Transformer Integration:

- Patch Embedding: Divides feature maps into patches for transformer processing.
- Transformer Blocks: Multi-head attention captures global context, and feed-forward networks improve representation and stability.

Decoder Enhancements:

- **Skip Connections:** Concatenate encoder features with decoder layers to retain spatial information.
- **Up-sampling:** Transposed convolutions progressively restore spatial dimensions.

Output: A final convolutional layer with softmax activation generates pixel-wise class probabilities for segmentation.

2 X 2 Max Pooling Attention and Residual

Application of CBAM and a hybrid of the DC-UNet with a Transformer-based mode

Results and Conclusion

Original Image

Results:

We evaluated our model against U-Net using accuracy, Intersection over Union (IoU), and Dice coefficient, and the results indicated:

Pixel-Accuracy	loU	Dice Coefficient
0.9001	-	-
0.9064	0.8289	0.8812
0.9001	0.7928	0.8722
0.8756	0.7788	0.8467
0.9043	-	-
0.8498	0.7403	0.7765
	0.9001 0.9064 0.9001 0.8756 0.9043	0.9001 - 0.9064 0.8289 0.9001 0.7928 0.8756 0.7788 0.9043 -

Conclusion:

This research presented advanced techniques for glaucoma segmentation but did not achieve accuracy improvements over U-Net. Notable contributions include the integration of CBAM and transformer blocks, which enhance feature attention and capture long-range dependencies.

Future Directions:

- Increase the dataset size, as 2,000 samples were insufficient.
- Explore new preprocessing and data augmentation methods to enhance model performance.

