Homework Assignment 4

Due in class, Monday March 26th

SDS 384-11 Theoretical Statistics

- 1. Let \mathcal{P} be the set of all distributions on the real line with finite first moment. Show that there does not exist a function f(x) such that $Ef(X) = \mu^2$ for all $P \in \mathcal{P}$ where μ is the mean of P, and X is a random variable with distribution P.
- 2. Let g_1 and g_2 be estimable parameters within \mathcal{P} with respective degrees m_1 and m_2 .
 - (a) Show $g_1 + g_2$ is an estimable parameter with degree $\leq \max(m_1, m_2)$.
 - (b) Show g_1g_2 is an estimable parameter with degree at most $m_1 + m_2$.
- 3. A continuous distribution with CDF F(x), on the real line is symmetric about the origin if, and only if, 1 F(x) = F(-x) for all real x. This suggests using the parameter,

$$\theta(F) = \int (1 - F(x) - F(-x))^2 dF(x)$$

$$= \int ((1 - F(-x))^2 dF(x) - 2 \int (1 - F(-x))F(x)dF(x) + \int F(x)^2 dF(x)$$
(2)

as a nonparametric measure of how asymmetric the distribution is. Find a kernel h, of degree 3, such that $E_F h(X_1, X_2, X_3) = \theta(F)$ for all continuous F. Find the corresponding U statistic.

- 4. Suppose the distribution of X is symmetric about the origin, with variance $\sigma^2 > 0$ and $EX^4 < \infty$. Consider the kernel, $h(x,y) = xy + (x^2 \sigma^2)(y^2 \sigma^2)$.
 - (a) Show that the corresponding U statistic is degenerate of order 1, i.e. $\xi_1=0$, but $\xi_2>0$.
 - (b) Find the asymptotic distribution of nU.
- 5. Look at the seminar paper "Probability Inequalities for Sums of Bounded Random Variables" by Wassily Hoeffding. It should be available via ${\tt lib.utexas.edu}$. Read and reproduce the proof of equation 5.7 for large sample deviation of order r U statistics.