CensusPay.R

rharidas

2021-12-02

```
# Note: This script will take a while to run. In particular the knn and random forest algorithms with tuning grids will take
# more time. please be patient if you happen to execute it. The execution report is available in the github location as well
# Execute the given source code for the project
source("DatasetProcessingCode.R")
## Loading required package: tidyverse
## -- Attaching packages ----- tidyverse 1.3.1 --
## v ggplot2 3.3.5
                  v purrr 0.3.4
## v tibble 3.1.2 v dplyr 1.0.7
## v tidyr 1.1.3 v stringr 1.4.0
## v readr 1.4.0 v forcats 0.5.1
## -- Conflicts ----- tidyverse conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
## Loading required package: caret
## Loading required package: lattice
## Attaching package: 'caret'
```

```
## The following object is masked from 'package:purrr':
##
##
       lift
## Loading required package: data.table
## Attaching package: 'data.table'
## The following objects are masked from 'package:dplyr':
##
       between, first, last
##
## The following object is masked from 'package:purrr':
##
##
       transpose
## Loading required package: gridExtra
## Attaching package: 'gridExtra'
## The following object is masked from 'package:dplyr':
##
##
       combine
## Loading required package: kableExtra
## Attaching package: 'kableExtra'
```

```
## The following object is masked from 'package:dplyr':
##
##
       group_rows
## Loading required package: epiDisplay
## Loading required package: foreign
## Loading required package: survival
##
## Attaching package: 'survival'
## The following object is masked from 'package:caret':
##
##
       cluster
## Loading required package: MASS
## Attaching package: 'MASS'
## The following object is masked from 'package:dplyr':
##
##
       select
## Loading required package: nnet
## Attaching package: 'epiDisplay'
```

```
## The following object is masked from 'package:lattice':
##
## dotplot

## The following object is masked from 'package:ggplot2':
##
## alpha

## Warning in set.seed(1, sample.kind = "Rounding"): non-uniform 'Rounding' sampler
## used
```

```
## Rows: 32,561
## Columns: 15
## $ age
                                     <int> 90, 82, 66, 54, 41, 34, 38, 74, 68, 41, 45, 38, 52, 32,~
## $ workclass
                                     <chr> "?", "Private", "?", "Private", "Private", "Private", "~
## $ fnlwgt
                                     <int> 77053, 132870, 186061, 140359, 264663, 216864, 150601, ~
## $ education
                                     <chr> "HS-grad", "HS-grad", "Some-college", "7th-8th", "Some-~
## $ education.num
                                   <int> 9, 9, 10, 4, 10, 9, 6, 16, 9, 10, 16, 15, 13, 14, 16, 1~
## $ marital.status <chr> "Widowed", "Widowed", "Widowed", "Divorced", "Separated~
## $ occupation
                                     <chr> "?", "Exec-managerial", "?", "Machine-op-inspct", "Prof~
                                     <chr> "Not-in-family", "Not-in-family", "Unmarried", "Unmarri~
## $ relationship
## $ race
                                     <chr> "White", "White", "Black", "White", "White", "White", "~
## $ sex
                                     <chr> "Female", "Female", "Female", "Female", "Female", "Fema-
## $ capital.gain
                                     ## $ capital.loss
                                     <int> 4356, 4356, 4356, 3900, 3900, 3770, 3770, 3683, 3683, 3~
## $ hours.per.week <int> 40, 18, 40, 40, 40, 45, 40, 20, 40, 60, 35, 45, 20, 55,~
## $ native.country <chr> "United-States", "United-States
                                     <chr> "<=50K", "<=50K", "<=50K", "<=50K", "<=50K", "<=50K", "<
## $ income
## Rows: 29,170
## Columns: 13
## $ age
                                   <int> 90, 82, 66, 54, 41, 34, 38, 74, 68, 45, 38, 52, 32, 51, ~
                                   <int> 77053, 132870, 186061, 140359, 264663, 216864, 150601, 8~
## $ fnlwgt
## $ education
                                   <fct> HSgrad, HSgrad, Somecollege, 7th8th, Somecollege, HSgrad~
## $ eduyears
                                   <int> 9, 9, 10, 4, 10, 9, 6, 16, 9, 16, 15, 13, 14, 16, 15, 7,~
## $ maritalstatus <fct> Widowed, Widowed, Widowed, Divorced, Separated, Divorced~
## $ occupation
                                   <fct> Prof-specialty, Execmanagerial, Prof-specialty, Machineo~
## $ relationship
                                   <fct> Notinfamily, Notinfamily, Unmarried, Unmarried, Ownchild~
## $ race
                                   <fct> White, White, Black, White, White, White, White, ~
## $ sex
                                   <fct> Female, Female, Female, Female, Female, Female, Male, Fe~
## $ hoursperweek <int> 40, 18, 40, 40, 40, 45, 40, 20, 40, 35, 45, 20, 55, 40, ~
## $ native
                                   <chr> "UnitedStates", "UnitedStates", "UnitedStates", "UnitedS~
## $ income
                                   <fct> AtBelow50K, AtBelow50K, AtBelow50K, AtBelow50K, AtBelow5~
## $ class
                                   <fct> Private, Private, Private, Private, Private, Private, Pr~
```

Distribution of adultpayclean\$education

Distribution of adultpayclean\$race

Distribution of adultpayclean\$maritalstatus

Distribution of adultpayclean\$sex

Distribution of adultpayclean\$relationship

Distribution of adultpayclean\$class

Distribution of adultpayclean\$income


```
if (!require(randomForest))
  install.packages("randomForest", repos = "http://cran.us.r-project.org")

## Loading required package: randomForest

## randomForest 4.6-14

## Type rfNews() to see new features/changes/bug fixes.
```

```
##
## Attaching package: 'randomForest'
## The following object is masked from 'package:gridExtra':
##
##
       combine
## The following object is masked from 'package:dplyr':
##
##
       combine
## The following object is masked from 'package:ggplot2':
##
##
       margin
if (!require(purrr))
 install.packages("purrr", repos = "http://cran.us.r-project.org")
if (!require(e1071))
 install.packages("e1071")
## Loading required package: e1071
if (!require(pROC))
 install.packages("pRoc")
## Loading required package: pROC
## Type 'citation("pROC")' for a citation.
## Attaching package: 'pROC'
```

```
## The following object is masked from 'package:epiDisplay':
##
##
       сi
## The following objects are masked from 'package:stats':
##
##
       cov, smooth, var
if (!require(ROCit))
 install.packages("ROCit")
## Loading required package: ROCit
## Warning: package 'ROCit' was built under R version 4.1.2
library(caret)
library(gridExtra)
library(kableExtra)
library(randomForest)
library(purrr)
library(e1071)
library(caTools)
library(pROC)
library(ROCit)
#set the seed for reproducible results
set.seed(2008, sample.kind = "Rounding")
## Warning in set.seed(2008, sample.kind = "Rounding"): non-uniform 'Rounding'
## sampler used
```

```
# the simplest possible machine algorithm: quessing the outcome
seat of the pants <-
 sample(c("Above50K", "AtBelow50K"), length(test index), replace = TRUE) %>% factor(levels = levels(adultpayclean validatio
n$income))
# calculate the accuracy of this sampling
accuracy_guess <-
  mean(seat of the pants == adultpayclean validation$income)
# build a confusion matrix for this simple model
table(predicted = seat of the pants, actual = adultpayclean validation$income)
##
               actual
## predicted
                Above50K AtBelow50K
    Above50K
                     361
                               1078
    AtBelow50K
##
                     357
                               1122
# tabulate accuracy by income levels
adultpayclean validation %>%
 mutate(y hat = seat of the pants) %>%
 group_by(income) %>%
 summarize(accuracy = mean(y hat == income))
## # A tibble: 2 x 2
    income
                accuracy
    <fct>
                   <dbl>
## 1 Above50K
                   0.503
## 2 AtBelow50K
                   0.51
# confusion matrix using R function
cm <-
  confusionMatrix(data = seat of the pants , reference = adultpayclean validation$income)
# display the confusion matrix
cm
```

```
## Confusion Matrix and Statistics
##
##
               Reference
               Above50K AtBelow50K
## Prediction
    Above50K
##
                     361
                               1078
##
    AtBelow50K
                     357
                               1122
##
##
                  Accuracy : 0.5082
                    95% CI: (0.4899, 0.5265)
##
##
       No Information Rate: 0.7539
##
       P-Value [Acc > NIR] : 1
##
##
                     Kappa : 0.0096
##
   Mcnemar's Test P-Value : <2e-16
##
##
               Sensitivity: 0.5028
##
               Specificity: 0.5100
##
            Pos Pred Value: 0.2509
##
##
            Neg Pred Value : 0.7586
##
                Prevalence : 0.2461
            Detection Rate: 0.1237
##
      Detection Prevalence: 0.4931
##
##
         Balanced Accuracy: 0.5064
##
##
          'Positive' Class : Above50K
##
```

```
#record the sensitivity, specificity, and prevalence
sensitivity_guess <- cm$byClass[["Sensitivity"]]
specificity_guess <- cm$byClass[["Specificity"]]
prevalence_guess <- cm$byClass[["Prevalence"]]
f1_guess <- cm$byClass[["F1"]]

#find the area under the curve/ROC
auc(ifelse(adultpayclean_validation$income == "Above50K",1,0), ifelse(seat_of_the_pants == "Above50K",1,0))</pre>
```

```
## Setting levels: control = 0, case = 1
## Setting direction: controls < cases
## Area under the curve: 0.5064
set.seed(2008)
#logistic linear model
# create the model
lm fit <- adultpayclean train %>%
  mutate(y = as.numeric(income == "Above50K")) %>%
  lm(y ~ age + eduyears + sex + race + hoursperweek + maritalstatus + relationship + education,
     data = .)
# predict using test set
p hat logit <- predict(lm fit, newdata = adultpayclean validation)</pre>
## Warning in predict.lm(lm fit, newdata = adultpayclean validation): prediction
## from a rank-deficient fit may be misleading
#translate predicted data into factor
y hat logit <-
  ifelse(p hat logit > 0.5, "Above50K", "AtBelow50K") %>% factor
#compare the predicted vs observed values and use confusionMatrix to get the accuracy and other metrics
cm lm <-
 confusionMatrix(y hat logit, adultpayclean validation$income)
accuracy lm <-
  confusionMatrix(y_hat_logit, adultpayclean_validation$income)$overall[["Accuracy"]]
cm_lm
```

```
## Confusion Matrix and Statistics
##
##
              Reference
## Prediction Above50K AtBelow50K
##
    Above50K
                    318
                               139
##
    AtBelow50K
                    400
                              2061
##
##
                 Accuracy : 0.8153
##
                   95% CI: (0.8007, 0.8292)
##
      No Information Rate: 0.7539
##
      P-Value [Acc > NIR] : 1.243e-15
##
##
                    Kappa : 0.4327
##
##
   Mcnemar's Test P-Value : < 2.2e-16
##
##
              Sensitivity: 0.4429
              Specificity: 0.9368
##
           Pos Pred Value : 0.6958
##
##
           Neg Pred Value : 0.8375
##
               Prevalence : 0.2461
           Detection Rate: 0.1090
##
##
      Detection Prevalence: 0.1566
##
        Balanced Accuracy: 0.6899
##
         'Positive' Class : Above50K
##
##
```

```
#record the sensitivity, specificity, and prevalence
sensitivity_lm <- cm_lm$byClass[["Sensitivity"]]
specificity_lm <- cm_lm$byClass[["Specificity"]]
prevalence_lm <- cm_lm$byClass[["Prevalence"]]
f1_lm <- cm_lm$byClass[["F1"]]

#Find the ROC and plot it. Show the AUC as well
pROC_bin <- ROCit::rocit(ifelse(adultpayclean_validation$income == "Above50K",1,0), ifelse(unname(y_hat_logit) == "Above50K",1,0),method="bin")
ciROC_bin95 <- ROCit::ciROC(pROC_bin,level = 0.95)
plot(ciROC_bin95, col = 1, values=TRUE)
lines(ciROC_bin95$TPR~ciROC_bin95$FPR, col = 2, lwd = 2)</pre>
```



```
ROCit::ciAUC(pROC_bin)
```

```
##
## estimated AUC : 0.81709434414188
## AUC estimation method : binormal
##
## CI of AUC
## confidence level = 95%
## lower = 0.792575444461593 upper = 0.841613243822167
```

```
## Warning in predict.lm(object, newdata, se.fit, scale = 1, type = if (type == :
## prediction from a rank-deficient fit may be misleading
```

```
# translate the predicted data into factor
y_hat_logit <-
    ifelse(p_hat_logit > 0.5, "Above50K", "AtBelow50K") %>% factor

# compare the predicted vs observed values and use confusionMatrix to get the accuracy and other metrics for the glm model
cm_glm <-
    confusionMatrix(y_hat_logit, adultpayclean_validation$income)
accuracy_glm <-
    confusionMatrix(y_hat_logit, adultpayclean_validation$income)$overall[["Accuracy"]]

cm_glm</pre>
```

```
## Confusion Matrix and Statistics
##
##
              Reference
## Prediction Above50K AtBelow50K
##
    Above50K
                    278
                               113
##
    AtBelow50K
                    440
                              2087
##
##
                 Accuracy : 0.8105
##
                   95% CI: (0.7958, 0.8246)
##
      No Information Rate: 0.7539
##
      P-Value [Acc > NIR] : 1.758e-13
##
##
                    Kappa: 0.3967
##
##
   Mcnemar's Test P-Value : < 2.2e-16
##
##
              Sensitivity: 0.38719
              Specificity: 0.94864
##
##
           Pos Pred Value : 0.71100
##
           Neg Pred Value: 0.82588
               Prevalence: 0.24606
##
           Detection Rate: 0.09527
##
     Detection Prevalence : 0.13400
##
##
        Balanced Accuracy : 0.66791
##
         'Positive' Class : Above50K
##
##
```

```
#record the sensitivity, specificity, and prevalence
sensitivity_glm <- cm_glm$byClass[["Sensitivity"]]
specificity_glm <- cm_glm$byClass[["Specificity"]]
prevalence_glm <- cm_glm$byClass[["Prevalence"]]
f1_glm <- cm_glm$byClass[["F1"]]

#Find the ROC and plot it. Show the AUC as well
pROC_bin <- ROCit::rocit(ifelse(adultpayclean_validation$income == "Above50K",1,0), ifelse(unname(y_hat_logit) == "Above50K",1,0),method="bin")
ciROC_bin95 <- ROCit::ciROC(pROC_bin,level = 0.95)
plot(ciROC_bin95, col = 1, values=TRUE)
lines(ciROC_bin95$TPR~ciROC_bin95$FPR, col = 2, lwd = 2)</pre>
```



```
ROCit::ciAUC(pROC_bin)
```

```
## estimated AUC : 0.818172245714073

## AUC estimation method : binormal

##

## CI of AUC

## confidence level = 95%

## lower = 0.791852436696456 upper = 0.844492054731691
```

```
#Naive bayes
set.seed(2008)
#create the naive bayes model
train_nb <- adultpayclean_train %>%
    mutate(y = as.factor(income == "Above50K")) %>%
    naiveBayes(y ~ age + eduyears + sex + race + hoursperweek + maritalstatus + relationship+education,data = .)

#predict using the validation dataset
y_hat_nb <- predict(train_nb, newdata = adultpayclean_validation)
#create the confusion matrix
cm_tab <- table(adultpayclean_validation$income == "Above50K", y_hat_nb)
cm_nb <- confusionMatrix(cm_tab)
cm_nb</pre>
```

```
## Confusion Matrix and Statistics
##
##
         y_hat_nb
          FALSE TRUE
##
##
    FALSE 1794 406
##
    TRUE
           175 543
##
##
                 Accuracy : 0.8009
##
                   95% CI: (0.7859, 0.8152)
##
      No Information Rate: 0.6748
##
      P-Value [Acc > NIR] : < 2.2e-16
##
##
                    Kappa : 0.5158
##
##
   Mcnemar's Test P-Value : < 2.2e-16
##
##
              Sensitivity: 0.9111
##
              Specificity: 0.5722
           Pos Pred Value : 0.8155
##
##
           Neg Pred Value : 0.7563
##
               Prevalence : 0.6748
           Detection Rate: 0.6148
##
##
      Detection Prevalence: 0.7539
##
         Balanced Accuracy : 0.7417
##
          'Positive' Class : FALSE
##
##
```

```
#get the accuracy, sensitivity, specificity, prevalence and, F1 score
accuracy_nb <- cm_nb$overall[["Accuracy"]]
sensitivity_nb <- cm_nb$byClass[["Sensitivity"]]
specificity_nb <- cm_nb$byClass[["Specificity"]]
prevalence_nb <- cm_nb$byClass[["Prevalence"]]
f1_nb <- cm_nb$byClass[["F1"]]

#Find the ROC and plot it. Show the AUC as well
pROC_bin <- ROCit::rocit(ifelse(adultpayclean_validation$income == "Above50K",1,0), ifelse(unname(y_hat_nb) == "TRUE",1,0),m
ethod="bin")
ciROC_bin95 <- ROCit::ciROC(pROC_bin,level = 0.95)
plot(ciROC_bin95, col = 1, values=TRUE)
lines(ciROC_bin95$TPR~ciROC_bin95$FPR, col = 2, lwd = 2)</pre>
```


ROCit::ciAUC(pROC_bin)

```
##
## estimated AUC : 0.801438459045964
## AUC estimation method : binormal
##
## CI of AUC
## confidence level = 95%
## lower = 0.783049833697349 upper = 0.819827084394579
```

```
# translate income factor into binary outcome
temp <- adultpayclean_train %>%
    mutate(y = as.factor(income == "Above50K"))

#k-nearest neighbors with a train control and tuning
set.seed(2008)
# train control to use 10% of the observations each to speed up computations
control <- trainControl(method = "cv", number = 10, p = .9)
# train the model using knn. choose the best k value using tuning algorithm
train_knn <-
train(
    y ~ age + eduyears + sex + race + hoursperweek + maritalstatus + relationship + education,
    method = "knn",
    data = temp,
    tuneGrid = data.frame(k = seq(3, 71, 2)),
    trControl = control
)</pre>
```

```
## Warning in (function (kind = NULL, normal.kind = NULL, sample.kind = NULL) :
## non-uniform 'Rounding' sampler used
```

```
#plot the resulting model
ggplot(train_knn, highlight = TRUE)
```


#verify which k value was used
train_knn\$bestTune

k ## 16 33

train_knn\$finalModel

```
## 33-nearest neighbor model
## Training set outcome distribution:
##
## FALSE TRUE
## 19799 6453
```

```
## Confusion Matrix and Statistics
##
##
            Reference
## Prediction FALSE TRUE
       FALSE 1992 360
##
       TRUE
##
               208 358
##
##
                 Accuracy : 0.8053
##
                   95% CI: (0.7905, 0.8196)
##
      No Information Rate: 0.7539
##
      P-Value [Acc > NIR] : 2.195e-11
##
##
                    Kappa : 0.4351
##
##
   Mcnemar's Test P-Value : 2.361e-10
##
##
              Sensitivity: 0.9055
              Specificity: 0.4986
##
           Pos Pred Value : 0.8469
##
##
           Neg Pred Value : 0.6325
##
               Prevalence : 0.7539
           Detection Rate: 0.6827
##
     Detection Prevalence: 0.8060
##
##
        Balanced Accuracy: 0.7020
##
         'Positive' Class : FALSE
##
##
```

```
#record the sensitivity, specificity, and prevalence
sensitivity_knn <- cm_knn$byClass[["Sensitivity"]]
specificity_knn <- cm_knn$byClass[["Specificity"]]
prevalence_knn <- cm_knn$byClass[["Prevalence"]]
f1_knn <- cm_knn$byClass[["F1"]]

#Find the ROC and plot it. Show the AUC as well
pROC_bin <- ROCit::rocit(ifelse(adultpayclean_validation$income == "Above50K",1,0), ifelse(unname(y_hat_knn) == "TRUE",1,0),
method="bin")
ciROC_bin95 <- ROCit::ciROC(pROC_bin,level = 0.95)
plot(ciROC_bin95, col = 1, values=TRUE)
lines(ciROC_bin95$TPR~ciROC_bin95$FPR, col = 2, lwd = 2)</pre>
```


ROCit::ciAUC(pROC_bin)

```
##
## estimated AUC : 0.787212472866943
## AUC estimation method : binormal
##
## CI of AUC
## confidence level = 95%
## lower = 0.763782743778267 upper = 0.810642201955618
```

```
#k-nearest classification using tuning function
set.seed(2008)
#train the model using knn3 classification
ks \leftarrow seq(3, 251, 2)
knntune <- map_df(ks, function(k) {</pre>
  temp <- adultpayclean train %>%
    mutate(y = as.factor(income == "Above50K"))
  temp test <- adultpayclean validation %>%
    mutate(y = as.factor(income == "Above50K"))
  #create the kkn3 model
  knn fit <-
    knn3(
      y ~ age + eduyears + sex + race + hoursperweek + maritalstatus + relationship+education,
      data = temp,
      k = k
  #predict the model for the current k
  y hat <- predict(knn fit, temp, type = "class")</pre>
  #get the confusionmatrix for the current k
  cm train <- confusionMatrix(y hat, temp$y)</pre>
  train_error <- cm_train$overall["Accuracy"]</pre>
  #do the same for test model
  y hat <- predict(knn fit, temp test, type = "class")</pre>
  cm test <- confusionMatrix(y hat, temp test$y)</pre>
  test error <- cm test$overall["Accuracy"]</pre>
  tibble(train = train error, test = test error)
})
#qet the accuracy for the k with maximum accuracy
accuracy knntune <- max(knntune$test)</pre>
#get the confusion matrix for that k
knn fit <-
  knn3(
    y ~ age + eduyears + sex + race + hoursperweek + maritalstatus + relationship+education,
    data = temp,
    k = ks[which.max(knntune$test)]
#predict the knn tune using the model for the k neighbor
```

```
y_hat_knntune <- predict(knn_fit, adultpayclean_validation, type = "class")
cm_knntune <- confusionMatrix(y_hat_knntune, as.factor(adultpayclean_validation$income == "Above50K"))
cm_knntune</pre>
```

```
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction FALSE TRUE
##
        FALSE 1994 351
        TRUE
                206 367
##
##
##
                 Accuracy : 0.8091
                   95% CI: (0.7944, 0.8232)
##
##
      No Information Rate: 0.7539
      P-Value [Acc > NIR] : 6.680e-13
##
##
##
                    Kappa : 0.448
##
##
   Mcnemar's Test P-Value : 1.051e-09
##
              Sensitivity: 0.9064
##
              Specificity: 0.5111
##
##
            Pos Pred Value : 0.8503
##
            Neg Pred Value : 0.6405
##
                Prevalence: 0.7539
##
            Detection Rate: 0.6833
##
      Detection Prevalence : 0.8036
##
         Balanced Accuracy : 0.7088
##
          'Positive' Class : FALSE
##
##
```

```
#record the sensitivity, specificity, and prevalence
sensitivity_knntune <- cm_knntune$byClass[["Sensitivity"]]
specificity_knntune <- cm_knntune$byClass[["Specificity"]]
prevalence_knntune <- cm_knntune$byClass[["Prevalence"]]
f1_knntune <- cm_knntune$byClass[["F1"]]

#Find the ROC and plot it. Show the AUC as well
pROC_bin <- ROCit::rocit(ifelse(adultpayclean_validation$income == "Above50K",1,0), ifelse(unname(y_hat_knntune) == "TRUE",1
,0),method="bin")
ciROC_bin95 <- ROCit::ciROC(pROC_bin,level = 0.95)
plot(ciROC_bin95, col = 1, values=TRUE)
lines(ciROC_bin95$TPR~ciROC_bin95$FPR, col = 2, lwd = 2)</pre>
```



```
ROCit::ciAUC(pROC_bin)
```

```
## estimated AUC: 0.794126916519226

## AUC estimation method: binormal

##

## CI of AUC

## confidence level = 95%

## lower = 0.771082499427732 upper = 0.81717133361072
```

```
#recursive partitioning using rpart
set.seed(2008)
#train the model with the recursive partitioning
train_rpart <-
    train(
    y ~ age + eduyears + sex + race + hoursperweek + maritalstatus + relationship+education,
    method = "rpart",
    tuneGrid = data.frame(cp = seq(0.0, 0.1, len = 25)),
    data = temp
)</pre>
```

```
## Warning in (function (kind = NULL, normal.kind = NULL, sample.kind = NULL) :
## non-uniform 'Rounding' sampler used
```

```
## Confusion Matrix and Statistics
##
##
            Reference
## Prediction FALSE TRUE
       FALSE 2002 324
##
       TRUE
               198 394
##
##
##
                 Accuracy : 0.8211
##
                   95% CI: (0.8067, 0.8349)
##
      No Information Rate: 0.7539
##
      P-Value [Acc > NIR] : < 2.2e-16
##
##
                    Kappa : 0.4876
##
##
   Mcnemar's Test P-Value : 4.472e-08
##
##
              Sensitivity: 0.9100
              Specificity: 0.5487
##
           Pos Pred Value : 0.8607
##
##
           Neg Pred Value : 0.6655
##
               Prevalence : 0.7539
           Detection Rate : 0.6861
##
     Detection Prevalence : 0.7971
##
##
        Balanced Accuracy: 0.7294
##
         'Positive' Class : FALSE
##
##
```

```
#record the sensitivity, specificity, and prevalence
sensitivity_rpart <- cm_rpart$byClass[["Sensitivity"]]
specificity_rpart <- cm_rpart$byClass[["Specificity"]]
prevalence_rpart <- cm_rpart$byClass[["Prevalence"]]
f1_rpart <- cm_rpart$byClass[["F1"]]

#Find the ROC and plot it. Show the AUC as well
pROC_bin <- ROCit::rocit(ifelse(adultpayclean_validation$income == "Above50K",1,0), ifelse(unname(y_hat_rpart) == "TRUE",1,0"),method="bin")
ciROC_bin95 <- ROCit::ciROC(pROC_bin,level = 0.95)
plot(ciROC_bin95, col = 1, values=TRUE)
lines(ciROC_bin95$TPR~ciROC_bin95$FPR, col = 2, lwd = 2)</pre>
```



```
ROCit::ciAUC(pROC_bin)
```

```
##
## estimated AUC: 0.815732110644685
## AUC estimation method: binormal
##
## CI of AUC
## confidence level = 95%
## lower = 0.793892076612227 upper = 0.837572144677144
```

```
#random forest
set.seed(2008)
#train the vanilla random forest model
train_rf <-
  randomForest(y ~ age + eduyears + sex + race + hoursperweek + maritalstatus + relationship+education,
               data = temp)
y_hat_rf <- predict(train_rf, adultpayclean_validation)</pre>
#create the confusionMatrix
cm_rf <-
 confusionMatrix(
   y_hat_rf,
    as.factor(adultpayclean_validation$income == "Above50K")
#get the accuracy
accuracy rf <-
 confusionMatrix(
   y_hat_rf,
   as.factor(adultpayclean_validation$income == "Above50K")
  )$overall["Accuracy"]
cm_rf
```

```
## Confusion Matrix and Statistics
##
##
            Reference
## Prediction FALSE TRUE
       FALSE 2012 332
##
       TRUE
##
               188 386
##
##
                 Accuracy : 0.8218
##
                   95% CI: (0.8074, 0.8355)
##
      No Information Rate: 0.7539
##
      P-Value [Acc > NIR] : < 2.2e-16
##
##
                    Kappa : 0.4849
##
##
   Mcnemar's Test P-Value : 3.588e-10
##
##
              Sensitivity: 0.9145
              Specificity: 0.5376
##
           Pos Pred Value : 0.8584
##
##
           Neg Pred Value : 0.6725
##
               Prevalence : 0.7539
           Detection Rate: 0.6895
##
     Detection Prevalence: 0.8033
##
##
        Balanced Accuracy: 0.7261
##
         'Positive' Class : FALSE
##
##
```

```
#record the sensitivity, specificity, and prevalence
sensitivity_rf <- cm_rf$byClass[["Sensitivity"]]
specificity_rf <- cm_rf$byClass[["Specificity"]]
prevalence_rf <- cm_rf$byClass[["Prevalence"]]
f1_rf <- cm_rf$byClass[["F1"]]

#Find the ROC and plot it. Show the AUC as well
pROC_bin <- ROCit::rocit(ifelse(adultpayclean_validation$income == "Above50K",1,0), ifelse(unname(y_hat_rf) == "TRUE",1,0),m
ethod="bin")
ciROC_bin95 <- ROCit::ciROC(pROC_bin,level = 0.95)
plot(ciROC_bin95, col = 1, values=TRUE)
lines(ciROC_bin95$TPR~ciROC_bin95$FPR, col = 2, lwd = 2)</pre>
```



```
ROCit::ciAUC(pROC_bin)
```

```
##
## estimated AUC : 0.818043983830059
## AUC estimation method : binormal
##
## CI of AUC
## confidence level = 95%
## lower = 0.795999705923417 upper = 0.840088261736701
```

```
# Plot the error rate chart for the random forest
plot(train_rf)
legend("center", ifelse (colnames(train_rf$err.rate) == "FALSE","AtBelow50K",ifelse (colnames(train_rf$err.rate) == "TRUE",
"Above50K","00B")),col=1:4,cex=0.8,fill=1:4)
```



```
set.seed(2008)
#random forest with tuning
nodesize <- seq(1, 90, 10)
acc <- sapply(nodesize, function(ns) {
    #train the model with tuning
    train(
        y ~ age + eduyears + sex + race + hoursperweek + maritalstatus + relationship + education + occupation + class,
        method = "rf",
        data = temp,
        tuneGrid = data.frame(mtry = 2),
        nodesize = ns
)$results$Accuracy
})</pre>
```

```
## Warning in (function (kind = NULL, normal.kind = NULL, sample.kind = NULL) :
## non-uniform 'Rounding' sampler used
```

```
## Warning in (function (kind = NULL, normal.kind = NULL, sample.kind = NULL) :
## non-uniform 'Rounding' sampler used
## Warning in (function (kind = NULL, normal.kind = NULL, sample.kind = NULL) :
## non-uniform 'Rounding' sampler used
## Warning in (function (kind = NULL, normal.kind = NULL, sample.kind = NULL) :
## non-uniform 'Rounding' sampler used
## Warning in (function (kind = NULL, normal.kind = NULL, sample.kind = NULL) :
## non-uniform 'Rounding' sampler used
## Warning in (function (kind = NULL, normal.kind = NULL, sample.kind = NULL) :
## non-uniform 'Rounding' sampler used
## Warning in (function (kind = NULL, normal.kind = NULL, sample.kind = NULL) :
## non-uniform 'Rounding' sampler used
## Warning in (function (kind = NULL, normal.kind = NULL, sample.kind = NULL) :
## non-uniform 'Rounding' sampler used
## Warning in (function (kind = NULL, normal.kind = NULL, sample.kind = NULL) :
## non-uniform 'Rounding' sampler used
```

qplot(nodesize, acc)


```
set.seed(2008)
#get the trained model for the max node size
train_rf_2 <-
 randomForest(
   y ~ age + eduyears + sex + race + hoursperweek + maritalstatus + relationship + education + occupation + class,
    data = temp,
   nodesize = nodesize[which.max(acc)]
#predict the outcomes
y hat rf2 <- predict(train rf 2, adultpayclean validation)</pre>
#get the confusion matrix for random forest model
cm rf2 <-
 confusionMatrix(
   y_hat_rf2,
    as.factor(adultpayclean_validation$income == "Above50K")
  )
#get the accuracy
accuracy_rftune <-
 confusionMatrix(
   y_hat_rf2,
    as.factor(adultpayclean validation$income == "Above50K")
  )$overall["Accuracy"]
cm rf2
```

```
## Confusion Matrix and Statistics
##
##
            Reference
## Prediction FALSE TRUE
       FALSE 2024 291
##
       TRUE
               176 427
##
##
##
                 Accuracy: 0.84
##
                   95% CI: (0.8261, 0.8531)
##
      No Information Rate: 0.7539
##
      P-Value [Acc > NIR] : < 2.2e-16
##
##
                    Kappa : 0.5441
##
##
   Mcnemar's Test P-Value : 1.325e-07
##
##
              Sensitivity: 0.9200
              Specificity: 0.5947
##
           Pos Pred Value : 0.8743
##
##
           Neg Pred Value : 0.7081
##
               Prevalence : 0.7539
           Detection Rate: 0.6936
##
     Detection Prevalence: 0.7934
##
##
        Balanced Accuracy: 0.7574
##
         'Positive' Class : FALSE
##
##
```

```
#record the sensitivity, specificity, and prevalence
sensitivity_rf2 <- cm_rf2$byClass[["Sensitivity"]]
specificity_rf2 <- cm_rf2$byClass[["Specificity"]]
prevalence_rf2 <- cm_rf2$byClass[["Prevalence"]]
f1_rf2 <- cm_rf2$byClass[["F1"]]

#Find the ROC and plot it. Show the AUC as well
pROC_bin <- ROCit::rocit(ifelse(adultpayclean_validation$income == "Above50K",1,0), ifelse(unname(y_hat_rf2) == "TRUE",1,0),
method="bin")
ciROC_bin95 <- ROCit::ciROC(pROC_bin,level = 0.95)
plot(ciROC_bin95$, col = 1, values=TRUE)
lines(ciROC_bin95$TPR~ciROC_bin95$FPR, col = 2, lwd = 2)</pre>
```



```
ROCit::ciAUC(pROC_bin)
```

```
## estimated AUC: 0.849695675408264
## AUC estimation method: binormal
##

## CI of AUC
## confidence level = 95%
## lower = 0.829656180065837 upper = 0.869735170750691
```

```
# Plot the error rate chart for the random forest
plot(train_rf_2)
legend("center", ifelse (colnames(train_rf_2$err.rate) == "FALSE","AtBelow50K",ifelse (colnames(train_rf_2$err.rate) == "TRU
E","Above50K","00B")),col=1:4,cex=0.8,fill=1:4)
```

train_rf_2


```
# tabulate all the accuracy results with sensitivity and specificity
accuracy results <-
  matrix(
    c(
      "Plain old guess",
      round(accuracy_guess, 5),
      round(sensitivity guess, 5),
      round(specificity_guess, 5),
      round(prevalence guess, 5),
      round(f1 guess, 5),
      "linear model",
      round(accuracy lm, 5),
      round(sensitivity lm, 5),
      round(specificity_lm, 5),
      round(prevalence_lm, 5),
      round(f1 lm, 5),
      "General linear model",
      round(accuracy_glm, 5),
      round(sensitivity glm, 5),
      round(specificity_glm, 5),
      round(prevalence glm, 5),
      round(f1_glm, 5),
      "naive bayes",
      round(accuracy nb, 5),
      round(sensitivity_nb, 5),
      round(specificity_nb, 5),
      round(prevalence_nb, 5),
      round(f1 nb, 5),
      "knn",
      round(accuracy knn, 5),
      round(sensitivity knn, 5),
      round(specificity knn, 5),
      round(prevalence knn, 5),
      round(f1_knn, 5),
      "knn tune",
      round(accuracy knntune, 5),
      round(sensitivity_knntune, 5),
      round(specificity_knntune, 5),
      round(prevalence knntune, 5),
```

```
round(f1_knntune, 5),
      "rpart",
      round(accuracy_rpart, 5),
      round(sensitivity_rpart, 5),
      round(specificity_rpart, 5),
      round(prevalence_rpart, 5),
      round(f1_rpart, 5),
      "rf",
      round(accuracy rf, 5),
      round(sensitivity_rf, 5),
      round(specificity_rf, 5),
      round(prevalence_rf, 5),
      round(f1_rf, 5),
      "rf tune",
      round(accuracy_rftune, 5),
      round(sensitivity_rf2, 5),
     round(specificity_rf2, 5),
      round(prevalence rf2, 5),
     round(f1 rf2, 5)
    ),
    nrow = 9,
    ncol = 6,
    byrow = TRUE,
    dimnames = list(
      c("1.", "2.", "3.", "4.", "5.", "6.", "7.", "8.", "9."),
      c(
        "Method",
        "Accuracy",
        "Sensitivity",
        "Specificity",
        "Prevalence",
        "F1"
#style the table with knitr
accuracy_results %>% knitr::kable() %>%
  kable styling(bootstrap options = c("striped", "hover", "condensed"))
```

	Method	Accuracy	Sensitivity	Specificity	Prevalence	F1
1.	Plain old guess	0.50822	0.50279	0.51	0.24606	0.33472
2.	linear model	0.81528	0.4429	0.93682	0.24606	0.54128
3.	General linear model	0.81049	0.38719	0.94864	0.24606	0.50135
4.	naive bayes	0.80089	0.91112	0.57218	0.67478	0.86064
5.	knn	0.80535	0.90545	0.49861	0.75394	0.87522
6.	knn tune	0.8098	0.90636	0.51114	0.75394	0.87745
7.	rpart	0.82111	0.91	0.54875	0.75394	0.88467
8.	rf	0.8218	0.91455	0.5376	0.75394	0.88556
9.	rf tune	0.83996	0.92	0.59471	0.75394	0.89657