cisco live!

Simplifying Network Service Chaining and Load-balancing with Nexus Elastic Services Redirection

Krithika Krishna Moorthy, Lead Technical Marketing Engineer kritkris@cisco.com
BRKDCN-2879

Cisco Webex App

Questions?

Use Cisco Webex App to chat with the speaker after the session

How

- 1 Find this session in the Cisco Live Mobile App
- 2 Click "Join the Discussion"
- 3 Install the Webex App or go directly to the Webex space
- 4 Enter messages/questions in the Webex space

Webex spaces will be moderated by the speaker until June 17, 2022.

https://ciscolive.ciscoevents.com/ciscolivebot/#BRKDCN-2879

Session abstract

In today's Virtualized Data center across Enterprise and Service Provider networks, there is need to deploy services such as firewall, load-balancers, proxies, TCP optimizers for security, compliance and optimization reasons. This introduces an evolving requirement for service chaining, selective traffic redirection and load-balancing amongst these service nodes.

This session aims at providing an overview of two powerful Cisco Nexus 9000 features namely Intelligent Traffic Director (ITD) and enhanced Policy Based Redirect (ePBR) that can be leveraged to meet these requirements. This session includes discussions around various use cases and deployment models that ITD and ePBR supports across the data center deployments.

Participants will learn how Elastic Services Redirection(ESR) features - ITD and ePBR can be used to seamlessly integrate these service nodes within their data center and accomplish service chaining and load-balancing functionalities at line rate switching

Agenda

- Introduction to ESR
- Intelligent Traffic Director(ITD) Overview
- ITD Use cases
- Enhanced Policy-based Redirect(ePBR)
 Overview
- ePBR Use cases
- Conclusion

Introduction to ESR

Current Industry Trends

What is Elastic Services Redirection (ESR)?

Intelligent Traffic Director (ITD)
Overview

ITD ?

 Hardware based Multi-terabit L3/L4 network load-balancing solution at wirespeed

 Addresses growing demand for High-Capacity Traffic Distribution

 ITD eliminates the need to provision and manage another external expensive load-balancer (L3/L4)

ITD: Intelligent Traffic Director

- Maintains IP stickiness & Flow symmetry
- IPv4,IPV6 and VRF Aware
- Health Monitoring
- Resilient and supports failure handling
- High availability, standby support
- Flexible deployment options
- Appliance agnostic

ITD Capabilities

- ✓ Supports load-balancing using Src/Dst ip and L4 port
- ✓ Supports Selective traffic load-balancing
 - VIP based SLB (VIP/Protocol/Port)
 - ACL based
- ✓ Supports NAT & PAT (non-DSR mode)
- ✓ Weighted load-balancing
- ✓ Flexible Probe options (ICMP/TCP/UDP/HTTP/DNS/Custom)
- ✓ Non-disruptively add and delete service nodes + ACL selection
- ✓ Sub second Convergence

ITD Deployments

Server farms, Application servers, Web Servers

Firewall, IDS, IPS, WAF, L4-L7 Load balancers, Sandwich Deployment

Web Acceleration Engine (WAE), Web Caches, WCCP replacement

ITD Solution details

Device group Definition

- Service Nodes / Service Appliances IP
- Probes
- Weights
- Standby (backup nodes)

Service Definition

- Attach device-group
- Ingress-interface
- Virtual IP Address
- Traffic Filtering / selection ACL
- Load-balancing options
- Failover options

Service Bring up

Bring up the ITD service with 'no shut' for the policy to be applied on the interface

ITD config example

Device-group

Defines server IP

ITD service Defines instances

Load-balance Src/Dst/L4 port feature sla sender feature pbr feature itd Probe itd device-group server farm Node failure probe icmpdetection node ip 10.1.1.2 node ip 20.1.1.2 node ip 30.1.1.2 **VIP** node ip 40.1.1.2 Traffic selection itd service device-group server farm Ingress interface virtual ip 6.6.6.1 255.255.255.255 L3 interface receiving failaction node per-bucket traffic ingress interface Eth1/1 -load-balance method src ip buckets 32 least-bit no shut.

ITD Use cases

Server Load Balancing(SLB)

- Packets from client redirected and loadbalanced across servers using ITD
- All servers configured with a VIP as loopback address
- Server returns the packet to client using Direct Server Return(DSR)

Server Load Balancing(SLB)

Configuration Example


```
feature itd
feature pbr
feature sla sender
itd device-group server farm
probe tcp port 80
  node ip 10.10.1.1
  node ip 10.10.1.2
  node ip 10.10.1.3
  node ip 10.10.1.4
itd Service-1-TPv4
  device-group server farm
  virtual ip 156.10.1.1 255.255.255.255 tcp 80
  ingress interface po5
  ingress interface po6
  failaction node per-bucket
  load-balance method src ip buckets 16
  no shut
```

Inter-VRF Load Balancing with ITD

- Traffic from tenant belonging to one VRF can be load-balanced across service appliances present on a different VRF
- Support available starting NXOS 10.2(1)

SLB with Destination NAT & PAT

Step	dst-mac	src-mac	src-ip	dst-ip
1	N9K MAC	Router MAC	10.1.1.10	20.1.1.10:80
2	Server MAC	N9K MAC	10.1.1.10	30.1.1.10:8080
3	N9K MAC	Server MAC	30.1.1.10:8080	10.1.1.10
4	Router MAC	N9K MAC	20.1.1.10:80	10.1.1.10

- ITD NAT eliminates the need to configure a loopback on server for DSR
- In forward flow from Client to server, the N9k translates the DIP and port from VIP to real IP/Port of the server
- In reverse flow from Server back to client, N9k translates the SIP from server IP/Port to VIP/Port

SLB with Destination NAT & PAT

Configuration Example

ITD NAT requires NAT tcam and feature "NAT" to be enabled

```
hardware access-list tcam region nat 2048
feature nat
feature itd
feature sla sender
interface eth1/1-2
ip nat outside
interface e1/3-4
ip nat inside
itd device-group DG1
 probe icmp frequency 2 timeout 1
node ip 8.8.1.2
node ip 9.9.1.2
port 1000
itd device-group DG2
probe icmp
node ip 10.10.1.2
port 1000
node ip 11.11.1.3
port 2000
```

itd SER1
virtual ip 6.6.1.1 255.255.255.255 tcp 80 advertise enable devicegroup DG1
virtual ip 6.6.1.2 255.255.255.255 tcp 90 advertise enable devicegroup DG2
ingress interface e1/1
Ingress interface e1/2
nat destination
failaction node per-bucket
load-balance method src ip buckets 32
no shut

Web-Proxy Deployment

ITD redirects using Include-ACL and load-balances the packets across the Web-Proxy servers

BRKDCN-2879

Web-Proxy Deployment (cont.)

Packets are being forwarded normally(no redirection) on the Nexus Switches.

BRKDCN-2879

Web-Proxy Deployment

Configuration Example

```
Clients N9k load balances + Web-server selectively redirects (Internet)

Servers
```

```
itd device-group Web Proxy Servers
feature itd
                                                         probe icmp
feature pbr
                                                         node ip 10.1.50.1
feature sla sender
                                                         node ip 10.1.50.2
ip access-list itd exclude ACL
                                                       itd Web proxy SERVICE
  ! Exclude private IP address
                                                         device-group Web Proxy Servers
  10 permit ip any 10.0.0.0/8
                                                         exclude access-list itd exclude ACL
  20 permit ip any 192.168.0.0/16
                                                         access-list internet-acl
  30 permit ip any 172.16.0.0/12
                                                         ingress interface Vlan 10
                                                         failaction bucket distribute
ip access-list internet-acl
                                                         load-balance method src ip
  10 permit ip anv anv tcp 80
                                                         no shutdown
  20 permit ip any any tcp 443
```


Sandwich Mode Deployment

- The sandwich deployment mode provides Symmetric handling of traffic.
- Forward and reverse traffic between the client and the server flows through the same appliance.
- Appliance clustering capability

Sandwich Deployment

Configuration Example

```
itd device-group FW-INSPECT
probe icmp
node ip 20.20.20.2
cluster 1
node ip 20.20.20.3
cluster 1
node ip 20.20.20.4
cluster 2
node ip 20.20.20.5
cluster 2
```

itd WebTraffic
Device-group FW-INSPECT
ingress interface po1
failaction bucket distribute
load-balance method src ip buckets
64
no shut

itd device-group FW-INSPECT probe icmp
node ip 20.20.20.2
cluster 1
node ip 20.20.20.3
cluster 1
node ip 20.20.20.4
cluster 2
node ip 20.20.20.5
cluster 2

itd WebTraffic
Device-group FW-INSPECT
ingress interface po2
failaction bucket distribute
load-balance method dst ip buckets
64
no shut

Enhanced Policy-based Redirect (ePBR) Overview

How is Service Chaining Done today?

Routing rules reflect path via service devices

Selective Traffic Redirect using Policy Based Routing

What are the challenges with existing options?

- Service nodes becoming bottlenecks
- Static PBR policies complex to maintain
- Service redirection across multiple service nodes is complex to configure
- Options to load-balance and redirect missing
- Limited ability to monitor device health and configuring fail action based on device availability is missing
- Need to account for forward and return traffic to maintain symmetry

Enhanced Policy-based Redirect(ePBR)

Service chaining, Selective traffic redirection & Load-balancing

Simplified service appliance onboarding & Health Monitoring

Service chaining across Multisite fabrics

Flexible deployments

ePBR Capabilities

Simplified service chain creation

- Simplified device onboarding
- Granular multi-level service policy creation

Health monitoring & flexible failover

- Probes -ICMP/TCP/UDP/HTTP/ DNS/Custom
- Failover Forward / Bypass / Drop

Optimized utilization of service node

- Selective traffic redirection
- L3/L4 redirect, exclude and drop options

Ability to scale

 Through symmetric load-balancing along with chaining

Simplified expansion

Add/delete/modify service, policy and match ACL selection

Line Rate traffic forwarding

- No impact to throughput & performance
- No increased latency

ePBR Solution details

Onboard Service Appliance

- Service IP address
- Forward and reverse attached interface (single/dual arm)
- Probes
- > VRF membership
- Additional service end-points for creating appliance cluster

Define traffic redirect Policy

- Traffic Filtering or selection ACL
- Service-chain creation
- Load-balancing options(src/dst and buckets)
- Failover options (forward/bypass/drop)

Apply the ePBR Policy on relevant interfaces

- Apply policy on ingress interface where chaining needs to start
- VXLAN Apply on L3 VNI interfaces on service leaf
- Apply policy with "reverse" keyword to maintain flow symmetry

ePBR config example

Step 1: Onboard the appliances

epbr service FIREWALL_CLUSTER

epbr service TCP Optimizer

Step 2: Create traffic selection rules

ip access-list WEB

10 permit tcp any any eq 80

20 permit tcp any any eq 443

ip access-list APP-A

10 permit tcp 172.16.10.0/24 any eg 7800

20 permit tcp 192.168.20.0/24 any eq 7800

cisco life!

Step 3: Define ePBR traffic redirect policy

epbr policy Tenant A-Redirect

match ip address WEB
load-balance method src-ip
10 set service FIREWALL_CLUSTER fail-action drop
20 set service TCP_Optimizer fail-action bypass
match ip address APP-A
load-balance method src-ip
10 set service FIREWALL fail-action drop

Step 4: Apply the ePBR Policy on relevant ingress interfaces - Tenant SVI / L3VNI SVI / L3 interfaces interface vlan 2010

!L3 VNI SVI

epbr ip policy Tenant_A-Redirect
epbr ip policy Tenant_A-Redirect reverse

ePBR Use cases

Service chaining in Traditional deployments

- App1 traffic : firewall → IPS → Proxy
- App2 traffic: Load-balanced directly among the caching servers

Service chaining in Traditional deployments

Configuration Example

Step 1: Onboard the appliances

```
epbr service firewall
  service-end-point ip 111.1.1.4 interface Vlan111
     probe icmp source-interface loopback0
    reverse ip 151.1.1.4 interface Vlan151
       probe icmp source-interface loopback1
epbr service ips
  service-end-point ip 70.1.1.2 interface Vlan70
    probe udp 45000
    reverse ip 170.1.1.2 interface Vlan170
      probe udp 45001
epbr service proxy
  service-interface Vlan20
  probe http get index.html
  service-end-point ip 20.1.1.2
    reverse ip 20.1.1.3
```

```
epbr service caching_servers
! traffic will be load-balanced between the
servers
! server1
service-end-point ip 110.1.1.2 interface Vlan110
probe icmp source-interface loopback0
reverse ip 150.1.1.2 interface Vlan150
probe icmp source-interface loopback1
! server2
service-end-point ip 110.1.1.3 interface Vlan110
probe icmp source-interface loopback0
reverse ip 150.1.1.3 interface Vlan150
probe icmp source-interface loopback1
```

Service chaining in Traditional deployments

Configuration Example(cont.)

Step 2: Create traffic selection rules

```
ip access-list app1
       10 permit tcp 172.16.10.0/24 eq 7800 any
        20 permit tcp 192.168.20.0/24 eq 7800 any
ip access-list app2
       10 permit tcp 172.16.10.0/24 any eq www
        20 permit tcp 192.168.20.0/24 any eg www
```

Step 3: Define ePBR traffic redirect policy

```
epbr policy redirect and loadbalance
  statistics
 match ip address app1
    ! Traffic matching appl takes FW→IPS→Proxy chain
    10 set service firewall fail-action drop
    20 set service ips fail-action bypass
    30 set service proxy fail-action forward
 match ip address app2
    ! Traffic matching app2 is load-balanced across
caching servers
    load-balance buckets 8 method src-ip
   10 set service caching servers
```

Step 4: Apply the ePBR Policy on relevant interfaces

```
interface Vlan30
  !forward policy applied to ingress interface facing
clients
 no shutdown
  ip address 30.1.1.1/24
  ipv6 address 2030::1/24
  epbr ip policy redirect and loadbalance
interface Vlan40
! Reverse policy applied to egress interface facing
server farm for reverse flow
 no shutdown
 ip address 40.1.1.1/24
  ipv6 address 2040::1/24
   epbr ip policy redirect and loadbalance reverse
```


Service chaining in VXLAN fabrics

LB in VLAN 20 FW_inside in VLAN 111 , FW_outside in VLAN 151

Chain : WAN \rightarrow FW \rightarrow LB \rightarrow Host

- Supports Intra and Inter VRF service chaining Models of deployment
- Flexible service appliance deployment
- Service appliance mobility

BRKDCN-2879

Configuration Example

Step 1: Onboard the appliances

epbr service firewall

vrf firewall

service-end-point ip 111.1.1.4 interface Vlan111

probe icmp source-interface loopback0
reverse ip 151.1.1.4 interface Vlan151
 probe icmp source-interface loopback1

epbr service load_balancer

vrf load balancer

service-interface Vlan20 probe http get index.html service-end-point ip 20.1.1.2 reverse ip 20.1.1.3

Step 2: Create traffic selection rules

Step 3: Define ePBR traffic redirect policy

epbr policy chain1

statistics

! Firewall → proxy → load_balancer match ip address app1

10 set service firewall fail-action drop

20 set service load_balancer fail-action forward

Configuration Example (contd)

Step 4: Apply the ePBR Policy on relevant ingress interfaces

interface eth1/49
Vrf member tenant1

! Forward policy applied to ingress interface facing WAN in border leaf

ip address 30.1.1.1/24
epbr ip policy chain1

interface Vlan100
Vrf member firewall

! Forward policy applied to L3vni of firewall in service leaf

ip forward
no ip redirect
epbr ip policy chain1

interface Vlan102
vrf member load balancer

! Forward policy applied to L3vni of load_balancer in service leaf

ip forward
no ip redirect
epbr ip policy chain1

Notel: Step1, step2 and step3 needs to be defined on all service leafs and border leaf from which traffic is ingressing onto the fabric

Note2: Leak tenant routes onto all the service VRFs in the service leafs to route packet towards destination

Selective traffic Load-balancing across cluster of firewalls

- Use case: Firewall as default gateway with certain flows excluded from redirection
- Load-balancing across the cluster of firewalls
- Fabric as a load-balancer
- Symmetric PBR

Service chaining across VXLAN Multi-site

Fwd flow: HostA -> Firewall -> TCP_optimizer cluster -> HostB Multisite **BGW** BGW **BGW BGW** /XXI TO THE REPORT OF THE PARTY OF T **1 1** VXLAN **VXI AN EVPN** EVRN Site 1 Site 2 Standy Active Cluster of TCP HostA HostB firewall firewall Optimizers #Ciscol ive © 2022 Cisco and/or its affiliates. All rights reserved

Symmetric PBR across Multisite

Configuration Example

Step 1: Onboard the appliances

epbr service firewall

vrf firewall

service-end-point ip 111.1.1.4 interface Vlan111
 probe icmp source-interface loopback0
 reverse ip 151.1.1.4 interface Vlan151
 probe icmp source-interface loopback1

epbr service tcp optimizers

vrf tcp_optimizer

!tcp_optimizer1
 service-end-point ip 110.1.1.2 interface Vlan110
 probe icmp source-interface loopback10
 reverse ip 150.1.1.2 interface Vlan150
 probe icmp source-interface loopback11
!tcp_optimizer2
 service-end-point ip 110.1.1.3 interface Vlan110
 probe icmp source-interface loopback20
 reverse ip 150.1.1.3 interface Vlan150
 probe icmp source-interface loopback21

Step 2: Create traffic selection rules

Step 3: Define ePBR traffic redirect policy

epbr policy service_chain
 statistics
! Firewall → tcp_optimizer
match ip address hostA_hostB
 10 set service firewall fail-action drop
 20 set service tcp_optimizer fail-action forward

Step 4: Apply the ePBR Policy on relevant ingress interfaces

interface Vlan30
Vrf member tenant1

! Forward policy applied to ingress interface facing hostA

ip address 30.1.1.1/24 epbr ip policy service chain

interface Vlan100 Vrf member firewall

! Forward policy applied to L3vni of firewall in service leaf

ip forward
no ip redirect
epbr ip policy service_chain
epbr ip policy service chain reverse

interface Vlan101
Vrf member proxy

! Forward policy applied to L3vni of tcp optimizer in service leaf

ip forward
no ip redirect
epbr ip policy service_chain
epbr ip policy service chain reverse

Notel: All the ePBR policy config should be enabled on service leaf hosting appliances, border leaf or border gateway acting as transit to multisite and on host leaf where traffic originates

Note2: Leak tenant routes onto all the service VRFs in the service leafs to route packet towards destination

ePBR for 5G deployments!!

Service chaining & load-balancing across Telco DC

BRKDCN-2879

Bypass failed service node

Fwd flow1: Packet Core -> DPI -> CG-NAT Rev flow 1: CGNAT→ DPI -> Packet Core **Packet Packet** Core Core Cluster of TCP Deep Packet Subscriber Pool **CG-NAT** Inspection **Optimizers** Gi-LAN Internet

BRKDCN-2879

Simplified expansion

✓ New Services and end-point can be added anywhere in fabric

ePBR for 5G deployments

Configuration Example

Step 1: Onboard the appliances

reverse ip 20.1.1.3

```
epbr service DPI
service-end-point ip 111.1.1.4 interface Vlan111
probe icmp source-interface loopback0
reverse ip 151.1.1.4 interface Vlan151
probe icmp source-interface loopback1

epbr service cg_nat
service-interface Vlan20
probe http get index.html
service-end-point ip 20.1.1.2
```

```
epbr service tcp_optimizers
! traffic will be load-balanced between the
optimizers
! optimizer1
  service-end-point ip 110.1.1.2 interface Vlan110
     probe icmp source-interface loopback0
  reverse ip 150.1.1.2 interface Vlan150
     probe icmp source-interface loopback1
! optimizer2
  service-end-point ip 110.1.1.3 interface Vlan110
     probe icmp source-interface loopback0
  reverse ip 150.1.1.3 interface Vlan150
     probe icmp source-interface loopback1
```

ePBR for 5G deployments

Configuration Example(cont.)

Step 2: Create traffic selection rules

Step 3: Define ePBR traffic redirect policy

```
epbr policy servicechain_and_loadbalance
statistics
match ip address app1
! TCP optimizer >DPI > cg_nat chain
10 set service tcp_optimizers fail-action bypass
20 set service DPI fail-action drop
30 set service cg_nat fail-action drop
```

Step 4: Apply the ePBR Policy on relevant interfaces

```
interface Vlan30
  !forward policy applied to ingress interface facing
classifier
  no shutdown
  ip address 30.1.1.1/24
  ipv6 address 2030::1/24
  epbr ip policy servicechain and loadbalance
interface Vlan40
! Reverse policy applied to egress interface facing WAN
for reverse flow
  no shut.down
  ip address 40.1.1.1/24
  ipv6 address 2040::1/24
   epbr ip policy servicechain and loadbalance reverse
interface vlan100
! L3vni interface on service leafs
ip forward
no ip redirect
epbr ip policy servicechain and loadbalance
epbr ip policy servicechain and loadbalance reverse
```


ePBR L2 for Inline redirection

- Transparently insert Nexus 9k on path of traffic and selectively load-balance flows towards different L1/L2 DPI devices.
- Enables Inline / Bump in the wire deployments

Conclusion

ESR Hardware Support

Nexus 9500 Series with EX, FX and GX line cards**

Nexus 9300 EX/FX/FX2/FX3/GX/GX2 Series

Nexus 3600 & 9500 R Series*

From Cisco's Data Center Portfolio

**ePBR L2 not supported, *ePBR not supported

ESR Software and Licensing requirements

BRKDCN-2879

ESR Benefits

Scalability

Multi-Terabits Line
Rate solutions

No CPU overhead

Scales to large number of Service Nodes

High Availability

Health Monitoring of servers/appliances

Automatic Failure Handling

N + M redundancy

OPEX Savings

Simplified provisioning & Ease of deployment

Significant reduction of Configuration

Complexity

Programmable (REST, Netconf)

CAPEX Savings

Moving away from specialized, dedicated, expensive HW

Additional Cost savings from Wiring, Power,
Rackspace

Key takeaways

- Innovative Multi-terabit line rate solutions from Nexus
- Enables high-capacity traffic distribution and selective redirection of traffic

Technical Session Surveys

- Attendees who fill out a minimum of four session surveys and the overall event survey will get Cisco Live branded socks!
- Attendees will also earn 100 points in the Cisco Live Game for every survey completed.
- These points help you get on the leaderboard and increase your chances of winning daily and grand prizes.

Cisco Learning and Certifications

From technology training and team development to Cisco certifications and learning plans, let us help you empower your business and career. www.cisco.com/go/certs

(CLCs) are prepaid training vouchers redeemed directly with Cisco.

Learn

Train

Certify

Cisco U.

IT learning hub that guides teams and learners toward their goals

Cisco Digital Learning

Subscription-based product, technology, and certification training

Cisco Modeling Labs

Network simulation platform for design, testing, and troubleshooting

Cisco Learning Network

Resource community portal for certifications and learning

Cisco Training Bootcamps

Intensive team & individual automation and technology training programs

Cisco Learning Partner Program

Authorized training partners supporting Cisco technology and career certifications

Cisco Instructor-led and Virtual Instructor-led training

Accelerated curriculum of product, technology, and certification courses

Cisco Certifications and Specialist Certifications

Award-winning certification program empowers students and IT Professionals to advance their technical careers

Cisco Guided Study Groups

180-day certification prep program with learning and support

Cisco Continuing Education Program

Recertification training options for Cisco certified individuals

Here at the event? Visit us at The Learning and Certifications lounge at the World of Solutions

Continue your education

- Visit the Cisco Showcase for related demos
- Book your one-on-one Meet the Engineer meeting
- Attend the interactive education with DevNet, Capture the Flag, and Walk-in Labs
- Visit the On-Demand Library for more sessions at <u>www.CiscoLive.com/on-demand</u>

References

- ePBR config guide https://www.cisco.com/c/en/us/td/docs/dcn/nx-os/nexus9000/102x/configuration/epbr/cisco-nexus-9000-series-nx-os-epbr-configuration-guide-102x/m-configuring-epbr.html
- ITD config guide https://www.cisco.com/c/en/us/td/docs/dcn/nx-os/nexus9000/102x/configuration/itd/b cisco nexus 9000 series nx-os intelligent traffic director configuration guide 102 x/m-configuring-itd.html
- Verified scalability Guide https://www.cisco.com/c/en/us/td/docs/dcn/nx-os/nexus9000/102x/configuration/scalability/cisco-nexus-9000-series-nx-os-verified-scalability-guide-1022.html
- ePBR White Paper https://www.cisco.com/c/en/us/products/collateral/switches/nexus-9000-series-switches/layer4-layer7-service-redir-ply-based-redir-wp.html
- Blogs https://blogs.cisco.com/datacenter/dynamic-service-chaining-in-a-data-center-with-nexus-infrastructure
- https://blogs.cisco.com/datacenter/continuing-our-innovations-in-service-chaining-with-nexus-enhanced-policy-based-redirect?pstdnc027110

Thank you

cisco live!

