## 样题(二)

说明:

- 1. 样题仅供学生熟悉考试形式。因教学进度等方面的差异,样题对实际考试内容、考试难度等无任何指导。
- 题1 (8分). 判断以下矩阵是否可以相似对角化,并简单说明理由。

$$(a) \begin{bmatrix} 3 & 4 \\ 0 & 5 \end{bmatrix} \qquad (b) \begin{bmatrix} 100 & 200 \\ 0 & 100 \end{bmatrix} \qquad (c) \begin{bmatrix} 23 & 69 & 188 \\ 69 & 45 & 202 \\ 188 & 202 & 68 \end{bmatrix} \qquad (d) \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 4 & 8 & 12 \end{bmatrix}$$

题2 (8分). 判断以下实对称阵是否正定,并简单说明理由。

$$(a) \begin{bmatrix} 1 & 2 \\ 2 & 6 \end{bmatrix}$$

$$(b) \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \end{bmatrix}$$

$$(c) \begin{bmatrix} 1 & 0 & 0 \\ -2 & -2 & 0 \\ 3 & 3 & 3 \end{bmatrix} \begin{bmatrix} 1 & -2 & 3 \\ 0 & -2 & 3 \\ 0 & 0 & 3 \end{bmatrix}$$

$$(d) \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 4 & 1 \end{bmatrix} \begin{bmatrix} 5 & 0 & 0 \\ 0 & -6 & 0 \\ 0 & 0 & 7 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 4 \\ 0 & 0 & 1 \end{bmatrix}$$

題3 (10分). 设 $A = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 3 & 0 \\ 4 & 5 & 6 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}$ ,分别找出N(A), $N(A^T)$ ,C(A), $C(A^T)$ 的一组基。

**题4** (5分). 设 $P = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 2 & 3 \end{bmatrix} \begin{pmatrix} \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 3 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 2 & 3 \end{bmatrix} \end{pmatrix}^{-1} \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 3 \end{bmatrix}$ . 求P 的特征多项式,并说明理由。

题5 (16分). 设

$$A = \begin{bmatrix} \frac{1}{\sqrt{2}} & 0 & \frac{1}{2} \\ 0 & \frac{1}{\sqrt{2}} & \frac{1}{2} \\ 0 & -\frac{1}{\sqrt{2}} & \frac{1}{2} \\ \frac{1}{\sqrt{2}} & 0 & -\frac{1}{2} \end{bmatrix} \begin{bmatrix} 1 & 2 & 0 \\ 0 & 2 & 2 \\ 0 & 0 & 1 \end{bmatrix}.$$

等号右边的第一个矩阵记为Q,第二个矩阵记为R.

- (1) (2分) 验证 $Q^TQ = I$ .
- (2) (6分) 求到C(A) 的投影矩阵。

$$(3) (8分) 设b = \begin{bmatrix} 4 \\ 0 \\ 0 \\ 0 \end{bmatrix}. 求Ax = b 的最小二乘解。$$

**题6** (6分). 已知:整数1653,2581,3451,4582可以被29整除.证明下面的四阶行列式值被29整除.

题7 (6分). 解关于x的方程

$$\begin{vmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 4 & 8 \\ 1 & -2 & 4 & -8 \\ 1 & x & x^2 & x^3 \end{vmatrix} = 0.$$

**题8** (6分). 定义 $M_2(\mathbb{R})$ 上线性变换 $T: M_2(\mathbb{R}) \to M_2(\mathbb{R})$  满足

$$T(A) = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} A \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}.$$

求
$$T$$
在基 $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ ,  $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ ,  $\begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$ ,  $\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$  下的矩阵。

题**9** (20分). 设
$$A = \begin{bmatrix} 2 & 0 \\ 1 & 1 \\ 0 & 2 \end{bmatrix}$$
.

- (a) (10分) 求A的奇异值分解 $A = U\Sigma V^T$ , 其中U 是3阶正交阵, V 是2阶正交阵。
- (b) (2分) 应用(a)写出A的四个基本子空间的一组标准正交基。
- (c) (8分) 设 $M = \begin{bmatrix} 0 & A \\ A^T & 0 \end{bmatrix}$ . 若 $Av = \sigma u$ , 其中u, v是奇异向量(singular vector),  $\sigma$ 是奇异值(singular value), 证明  $\begin{bmatrix} u \\ v \end{bmatrix}$  是M的特征向量,并由此应用A的奇异向量给出5阶正交阵Q,使得 $Q^TMQ$ 是对角阵.

题10 (10分). 在以下两题中选且仅选一道题完成。

(1)  $C: 3x_1^2 + 4x_1x_2 + 6x_2^2 = 1$  是实平面上哪种二次曲线,椭圆、双曲还是抛物线? 若C 是椭圆,请算出它的长、短轴长,以及长、短轴所在的直线方程;若C 是双曲线,请算出它的虚、实轴长以及虚、实轴所在的直线方阵,以及两条渐近线方程;若C 是抛物线,请算出它的顶点以及对称轴方程。

**题11** (5分). 设 $A \in M_{m \times n}(\mathbb{R})$ , A 的算子范数(operator norm) 是

$$||A|| = \max_{\substack{v \in \mathbb{R}^n \\ ||v|| = 1}} ||Av|| = \max_{\substack{v \in \mathbb{R}^n \\ v \neq 0}} \frac{||Av||}{||v||}.$$

试证:

$$||A|| = \max_{\substack{\boldsymbol{u} \in \mathbb{R}^m, \boldsymbol{v} \in \mathbb{R}^n \\ ||\boldsymbol{u}|| = ||\boldsymbol{v}|| = 1}} \boldsymbol{u}^T A \boldsymbol{v}.$$