

普通高中课程标准实验教科书

人民教育出版社 课程教材研究所 中学数学教材实验研究组

本册导引

欢迎同学们进入数学3的学习, 本模块将学习三部分内容; 算法、统计和概率,

"算法"在数学 1 就已进入你的视野, 你已看到用数学语言描述过的算法, 你可能会觉得算法比较机械、剩板甚至有点枯燥, 这一章我们将校系统地学习 算法, 通过这一章的学习, 你一定会体会到学习算法的重要作用, 而且你也一 定能感受到学习算法的乐趣. 算法一章主要是要求同学们掌握算法的基本思想, 能写出或用程序框图画出简单数学问题的算法, 希望有条件使用计算机的 同学能用程序设计语言编写程序, 通过上机运算来体会算法思想的重要性和有 效性,

本模块的第二章和第三章内容是统计和概率.

在义务教育阶段,同学们初步接触到统计,获得了一些统计知识,在此基础上本模块介绍若干抽样方法,通过实例,学习用样本估计总体的思想,进一步体会统计思想与统计方法,收集、整理、分析数据是统计学的基本内容,通过收集大量的数据,从中提取有价值的信息,经过数据分析,对现象作出判断,以对"行为"作出合理的建议或决策,这就是统计学的任务。

概率与统计都是研究随机现象的,它们有着深刻的内在联系、概率为人们 认识随机现象和解决这类实际问题提供了有效的方法,同时为统计学的发展提 供了理论基础,这一章将通过对实际现象的观察与研究,了解概率的基本性质 和几种概率模型,从中体会、理解概率的意义和在现实生活中的重要作用。

在统计与概率的学习中, 教材力求将算法融入统计与概率的学习之中, 一方面让同学们知道, 如何应用统计与概率思想设计好的算法, 另一方面可以进一步体会算法的精要, 帮助我们解决实际的统计与概率问题.

算法、统计、概率的基础知识,已经成为未来公民的必备常识,它们的共同特点是富于实践性。同学们可以通过实践领会它们的精要,反过来,可以应用它们的思想与方法去解决实际问题。虽然同学们对它们的内容比较生疏,但它们的可实践性将帮助大家度过难关。我们相信,同学们会怀着强烈的求知欲望和浓厚的兴趣投入本模块的学习活动。

精品教学网www.itvb.net

全力打造全国最新最全的免

费视频教学网站,现有内容已经覆盖学前,小学,初中高中,大学,职业等各学段欢迎各位爱学人士前来学习交流。

QQ309000116

第一章 算法初步	1
1.1 算法与程序框图	
♦ 1.1.1 算法的概念	
♦ 1.1.2 程序框图	8
♦ 1.1.3 算法的三种基本逻辑结构和框图表示 ····································	
1.2 基本算法语句	
◆ 1.2.1 赋值、输入和输出语句 ····································	
♦ 1.2.2 条件语句	
◆ 1.2.3 循环语句 ·····	27
1.3 中国古代数学中的算法案例	
本章小结	40
阅读与欣赏	
我国古代数学家秦九韶	
东方数学的使命	
附录 参考程序	44
第二章 统计	47
2.1 随机抽样	49
◆ 2.1.1 简单随机抽样 ····································	
◆ 2.1.2 系统抽样 ······	
◆ 2.1.3 分层抽样 ······	
◆ 2.1.4 数据的收集 ····································	
2.2 用样本估计总体	60
◆ 2.2.1 用样本的频率分布估计总体的分布 ····································	60
◆ 2.2.2 用样本的数字特征估计总体的数字特征 ····································	68
2.3 变量的相关性	
◆ 2. 3. 1 变量间的相关关系 ···································	76
◆ 2.3.2 两个变量的线性相关 ····································	78

	实习作业	86
	本章小结	89
	阅读与欣赏	
	蚂蚁和大象谁的力气更大	92
	附录 随机数表	93
Ä	三章 概率	95
	3.1 事件与概率	97
	◆ 3. 1. 1 随机现象 ······	97
	◆ 3. 1. 2 事件与基本事件空间 ····································	99
	♦ 3.1.3 頻率与概率	102
	♦ 3.1.4 概率的加法公式	105
	3.2 古典概型	110
	◆ 3.2.1 古典概型	110
	◆ 3.2.2 概率的一般加法公式(选学)	115
	3.3 随机数的含义与应用	118
	♦ 3.3.1 几何概型	118
	◆ 3. 3. 2 随机数的含义与应用	119
	3.4 概率的应用	125
	本章小结	129
	阅读与欣赏	
	概率论的起源	131
43	₹	

第一章 算法初步

在数学 1 中,我们学习过水函数零点的二分法算法,在数学 2 的解析几何初步中,我们又把利用公式计算的几何问题进行分步求解.这些计算方法都有一个共同的特点,就是对一类问题 (不是个别问题)都有效,计算可以一步一步地进行,每一步都能得到惟一的结果.通常我们把这一类问题的求解过程,叫做解决这一类问题的算法,算法一般是机械的,有时要进行大量重复的计算,它的优点是一种通法,只要接部就班地去做,总能算出结果.通常把算法过程称为"数学机械化".数学机械化最大的优点,是它可以让计算机来完成。

.

在数学发展的历程中,寻求对一类问题的算法一直是数学发展的一个重要特点. 在现代,"算法"已是数学及其应用科学中的重要组成部分,并成为计算科学的重要基础,随着现代信息技术的飞速发展,算法在科学技术和社会发展中发挥着越来越大的作用,并日益融入社会生活的许多方面,算法思想也逐渐成为每个现代人应具有的数学素素。

我们还要特别向同学们指出,我国古代数学发展的主导思想,就是构造"算法"解决实际问题,在这种思想的主导下,我国古代直到宋、元时期,数学的发展一直处于世界的领先地位,这一章的最后一节,我们要举例说明我国古代数学中蕴含的丰富的算法思想,以此引导同学们能沿着中国数学机械化的道路,学习数学,研究数学,

在用数学方法求解问题的过程中,提出问题、构造算法和使用计算工具,这三项工作始终紧密的联系在一起,从结绳计数、算筹到计算机的产生、计算工具的发展大大加快了研究算法的进程,现在我国高级中学大都拥有计算机,为学习算法提供了有力的工具,在这一章,我们将通过数学语言叙述、画程序框图和使用程序语言,学习基本算法语句的结构,

我们选用 Scilab 语言来实现算法,这种语言简单,容易学习,我们相信 Scilab 会成为同学们学习数值算法的好帮手,同学们可以使用 Scilab,将自己设计的算法在计算机上运行,你一定能获得成功的喜悦,做许多你用笔和纸不敢做的数学问题,为你今后在数学的学习中使用计算机技术打下良好的基础。

1.1.1

算法的概念

在前面的学习中,同学们已经接触到算法的概念,这一章我们专门来学习算法的知识.算法可以理解为由基本运算及规定的运算顺序所构成的完整的解题步骤,或者看成按照要求设计好的有限的确切的计算序列,并且这样的步骤或序列能够解决一类问题.

描述算法可以有不同的方式.例如,可以用自然语言和数学语言加以叙述,也可以借助形式语言(算法语言)给出精确的说明,也可以用框图直观地显示算法的全貌.

怎样才能设计出一个名副其实的算法呢?下面先从大家耳熟能 详的鸡兔同笼问题谈起.

例 "一群小兔一群鸡,两群合到一群里,要数腿共 48、 要数脑袋整 17、多少小兔多少鸡?"

求解这个问题的算术方法是: 若没有小兔,则小鸡应为 17 只,总的腿数应为 2×17=34. 但现在有 48 条腿,造成腿的数目不够是由于假定小兔的数目为 0,每有一只小兔便会增加 2 条腿,故应该有

$$\frac{48-17\times2}{2} = 7$$

貝小兔, 相应地, 小鸡则应有 10 只,

求解鸡鱼同箬问题的上述方法简单直观, 却又句含着深刻的算 法思想 同学们都学过解二元一次方程组,现在让我们用解二元一 次方程组的方法来重新求解鸡兔同笼问题:

设有 x 只小鸡, y 只小兔, 则有

(1)
$$\begin{cases} x+y=17 \\ 2x+4y=48 \end{cases}$$

将方程组(Ⅰ)中的第一个方程的两边同乘以一2加到第二个方程中 去,得到

$$(\parallel)$$
 $\begin{cases} x+y=17 \\ (4-2)y=48-17\times 2 \end{cases}$

解方程组(II)中的第二个方程, 得 $y = \frac{48-17\times2}{4-2} = 7$,

将ν代入第一个方程,得

$$x=17-y=17-7=10$$

前面解决鸡兔同笼问题的算术方法,本质上是利用方程组(I) 中的第一个方程来消去第二个方程中的未知数 x, 从而使该方程组 (Ⅰ)化为与其等价的方程组(Ⅱ),进而通过(Ⅱ)的第二个方程确定 v, 再通过第一个方程确定 x, 这种求解方程组的方法称为高斯消 去法.

这个方法显然可以用来解一般的二元一次方程组, 现在我们给 出用高斯消去法解一般的二元一次方程组

$$\begin{cases}
a_{11}x_1 + a_{12}x_2 = b_1 & \bigcirc \\
a_{21}x_1 + a_{22}x_2 = b_2 & \bigcirc
\end{cases}$$

$$a_{21}x_1 + a_{22}x_2 = b_2$$
 (2)

的算法描述.

因为是二元一次方程组,所以方程组中 a11, a21不能同时为 0. 第一步: 假定 $a_{11}\neq 0$ (如果 $a_{11}=0$,可将第一个方程与第二个 方程互换), ①× $\left(-\frac{a_{21}}{a_{11}}\right)$ +②, 得到

$$\left(a_{22} - \frac{a_{21}a_{12}}{a_{11}}\right)x_2 = b_2 - \frac{a_{21}b_1}{a_{11}}$$

即方程组可化为 $\begin{cases} a_{11}x_1 + a_{12}x_2 = b_1 \\ (a_{11}a_{22} - a_{21}a_{12})x_2 = a_{11}b_2 - a_{21}b_1 \end{cases}$ (3) (4)

第二步: 如果 $a_{11}a_{22}-a_{21}a_{12}\neq 0$,解方程④得到

$$x_2 = \frac{a_{11}b_2 - a_{21}b_1}{a_{11}a_{22} - a_{21}a_{12}}$$

第三步, 将⑤代入③, 整理得到

这里方程组的 写法与以前学到的 不同, 方程组的未 知数用工和工表 示, a. 表示方程组 中的第一个方程第 一个未知数 工 的系 数, ..., an表示第 二个方程中第二个 未知数 12 的系数, b. 表示第一个方程 的常数项, 6. 表示 第二个方程的常 数项.

$$x_1 = \frac{a_{22}b_1 - a_{12}b_2}{a_{11}a_{22} - a_{21}a_{12}} \tag{6}$$

第四步:输出结果 x1, x2,

如果 $a_{11}a_{22}-a_{21}a_{12}=0$,则从①可以看出,方程组无解或有无 穷多组解。

以后,我们在描述算法时,用英文 Stepl, Step2, …,来表示第一步,第二步,…,也可以简写为,S1,S2,….

从以上计算可以看出, $a_{11}a_{22}-a_{21}a_{12}$ 是一个很重要的值,它决定了方程组是否有惟一解。

上面得到的结果⑤、⑥,叫做求解二元一次方程组两个未知数的公式,利用这组公式,我们可写出解二元一次方程组的另一算法,算法步骤如下;

S1 计算 $D=a_{11}a_{22}-a_{21}a_{12}$.

S2 如果 D=0,则原方程组无解或者有无穷多组解;否则 $(D\neq 0)$,

$$x_1 = \frac{b_1 a_{22} - b_2 a_{12}}{D},$$

$$x_2 = \frac{b_2 a_{11} - b_1 a_{21}}{D}.$$

S3 输出计算的结果 x_1 , x_2 或者无法求解信息.

从解二元一次方程组的算法可以知道,求解某个问题的算法不一定是惟一的. 我们现在学习的算法不同于求解一个具体问题的方法,它有如下的要求:

- (1) 写出的算法,必须能解决一类问题(例如解任意一个二元 一次方程组),并且能重复使用;
- (2) 算法过程要能一步一步执行,每一步执行的操作,必须确切,不能含混不清,而且经过有限步后能得出结果.

通过求解二元一次方程组的算法,我们大家已初步理解了算法 的含义和要求,与你开始时的理解是否有些不同了.下面再举个例 子加以说明.

例2 写出一个求有限整数序列中的最大值的算法.

分析:这个例子对你理解算法会有很好的帮助. 你可能会觉得,求一个整数序列的最大值是很简单的事,事实上也并非简单. 如果从10个、8个整数中找出最大值,你一眼就能看出结果. 如果从100个整数中找出最大值,你花点时间也能够找出,如果你要从一个1000000人的年龄序列表中找出年龄最大的一

个,要是没有算法那可就是一件困难的事了。如果在你的计算机 内已有了100万人口的年龄登记表,用计算软件转瞬间就可找出 最大值, 计算机能快速找出是靠软件(程序)支持, 编写程序要依 赖算法, 如何对这个问题写出一个算法呢?

解, 为了便干理解, 算法步骤用自然语言叙述,

S1 先假定序列中的第一个整数为"最大值"。

S2 将序列中的下一个整数值与"最大值"比较,如果它大干 此"最大值"。这时你就假定"最大值"是这个整数。

S3 如果序列中还有其他整数, 重复 S2.

S4 在序列中一直到没有可比的数为止, 这时假定的"最大 值"就是这个序列中的最大值。

如果让你去找,你可能不会这样做,可能认为,这样太机械。 太枯燥, 不要忘了, 我们写的是算法, 算法要求"按部就班地做", 每做一步都有惟一的结果,又要求写出的算法对任意整数序列都活 用,并且在有限步之后,总能得出结果,所以上面写的,符合算法 要求。

下面,我们用数学语言,写出对任意 3 个整数 a、b、c 求出最 大值的算法,再帮助你理解算法概念.

S1 max = a.

(max 表示最大值,这个式子的意思是, 假定最大值是第一个整数)

S2 如果 b>mar, 则 mar=b

S3 如果 c > max, 则 max = c.

S4 max 就是a、b、c中的最大值.

有了算法,就可编写程序,同学们现在可能还不会编程序, 没关系,大部分数学计算都已由科学家编制成应用程序,大家 不妨先来感受一下这些应用程序的威力,并加深对算法作用的 理解.

例 3 应用 Scilab 计算指令解方程组:

$$\begin{cases} 3x - 2y = 14 \\ x + y = -2 \end{cases}$$

解: 用 Scilab 程序:

打开 Scilab 程序, 在界面上按下图中的格式输入两个未知数的 系数和常数项:

得到这个方程组的解是 x=2, y=-4.

不论给出的是多少个未知数的线性方程组,只要按上面的格式,在Scilab界面上输入给定的数据,转瞬间就会输出解答.

在计算机上能够求解方程组,是由于计算机安装有计算软件,而软件的核心是算法,只要有了解决问题的算法,不管借助的工具是纸笔、计算器,还是计算机,都能按照算法步骤求得相同的结果,

第 ? 图 思考与讨论

说出你过去和现在对"算法"一词的理解, 做一做本小节的练习,看看你是否能对算法有 较正确的理解?

- 1. 写出你在家里烧开水过程的一个算法.
- 2. 写出一个能找出 a、b、c、d 四个数中最大值的算法.
 - 3. 写出用高斯消去法解二元一次方程组的一个算法.
 - 4. 用高斯消去法解下列二元一次方程组:

(1)
$$\begin{cases} 3x - 2y = -2 \\ 7x - y = 18 \end{cases}$$
 (2)
$$\begin{cases} 2x + 3y = 3 \\ 6x + 12y = 1 \end{cases}$$

○ 第一章 算法初步

- 1. 写出一个能找出 a、b、c 三个数中最小值的算法.
- 2. 写出一个解一元一次方程的算法.
- 3. 写出在下面的数字序列中,搜索数 18 的一个算法:

2 5 7 8 15 32 18 12 8 52

- 4. 写出两个分数乘法的算法,
- 5. 用 Scilab 计算指令解下列方程组:

(1)
$$\begin{cases} 3x-2y+z=-4\\ 5x+2y-3z=12\\ x+3x+5y=-1 \end{cases}$$
 (2)
$$\begin{cases} x+y+z=12\\ 3x-3y-z=16\\ x-y-z=-2 \end{cases}$$

1.1.2

程序框图

1. 程序框图的概念

通常用一些通用图形符号构成一张图来表示算法,这种图称做程序框图(简称框图),上一小节中,用公式法解二元一次方程组的算法可用框图形象地描述如图 1-1.

由此我们可以看到用框图表示算法直观、形象,容易理解.通 常说"一图胜万言",就是说用框图能够清楚地展现算法的逻辑 结构.

在图 1-1 的框图中有许多图形符号和连结线,这些符号表示特定的含义,被大家普遍采用.下面列表给出一些常用的表示算法步骤的图形符号.

图形符号	名称	符号表示的意义
	起、止框	框图的开始或结束
	输入、输出框	数据的输入或者结果的输出
	处理框	赋值、执行计算语句、 结果的传送
\Leftrightarrow	判断框	根据给定条件判断
1 7	流程线	流程进行的方向
	循环框	程序做重复运算
0	连结点	连结另一页或 另一部分的框图
	注释框	帮助理解框图

下面对图形符号再作一些说明:

起、止框是任何流程不可少的,表明程序开始和结束.输入和输出可用在算法中任何需要输入、输出的位置.例如求解方程组的框图(图1-1)中,算法开始后第一步需要输入(给定)未知数的系数和常数项,就可把给定的数值写在输入框内,最后要给出运算的结果,

把算出的两个未知数的值,写在输出框内.算法中间要处理数据或计算,可分别写在不同的处理框内,例如此例的计算 D 可写在处理框内.当算法要求你对两个不同的结果进行判断时,例如此题的判断条件为 D=0,要写在判断框内.一个算法步骤到另一个算法步骤用流程线连结.如果一个框图需要分开来画.要在断开处画上连结点,并标出连结的号码(图 1-2).

图 1-2

2. 画程序框图的规则

为了使大家彼此之间能够读懂各自画出的框图,必须遵守一些 共同的规则,下面对一些常用的规则作一简单的介绍.

- (1) 使用标准的框图的符号.
- (2) 框图一般按从上到下、从左到右的方向画.
- (3) 除判断框外,大多数框图符号只有一个进入点和一个退出 点.判断框是具有超过一个退出点的惟一符号.
- (4) 一种判断框是"是"与"不是"两分支的判断,而且有且 仅有两个结果;另一种是多分支判断,有几种不同的结果.
 - (5) 在图形符号内描述的语言要非常简练清楚.

- 1. 什么是程序框图? 说出图形符号的意义.
 - 2. 画出计算 1+2+3+4+5 的程序框图,
 - 3. (1) 画出求一个数的百分之几的程序框图;
 - (2) 画出已知一个数的百分率,求这个数的程序框图.

- 1. 画出你每天起床过程的程序框图
- 2. 画出解方程组 $\begin{cases} 3x-y=5 \\ 2x+5y=8 \end{cases}$ 的程序框图

算法的三种基本逻辑结构和框图表示

我们写出的算法或画出的程序框图,一定要使大家一步步地看得清楚、明白,容易阅读.不然,写的算法乱无头绪,就很难让人阅读和理解.这就要求算法或程序框图有一个良好的结构.通过对各种各样的算法和框图进行分析和研究,证明只须用顺序结构、条件分支结构和循环结构就可表示任何一个算法.用这三种基本结构表述的算法和画出的框图,整齐美观,容易阅读和理解.下面我们分别介绍这三种基本逻辑结构.

1. 顺序结构

顺序结构描述的是最简单的算法结构,语句与语句之间,框与框之间是按从上到下的顺序进行,下面举例说明。

例 已知点 $P_0(x_0, y_0)$ 和直线 l: Ax + By + C = 0, 求点 $P_0(x_0, y_0)$ 到直线 l 的距离 d.

解:(1)用数学语言来描述算法:

S1 输入点的坐标 x₀, y₀, 输入直线方程的系数和常数 A,

B. C:

S2 计算 $z_1 = Ax_0 + By_0 + C$;

S3 计算 $z_2 = A^2 + B^2$;

S4 计算 $d=\frac{|z_1|}{\sqrt{z_2}}$;

S5 输出 d.

(2) 用框图来描述算法,如图 1-3 所示.

2. 条件分支结构

从上面的介绍来看,一些简单的算法可以用顺序结构来表示, 但是这种结构无法描述要求进行逻辑判断,并根据判断结果进行不 同处理的情况,因此,需要另一种逻辑结构来处理这类问题,这种 结构叫做条件分支结构,它是依据指定条件选择执行不同指令的控 制结构,下面举例说明,

例 2 用数学语言和程序框图描述求一元二次方程 $ax^2 + bx + c = 0$ 的根的过程.

解:(1)用数学语言来描述算法:

S1 计算 $\Delta = b^2 - 4ac$.

S2 如果 $\Delta < 0$,则原方程无实数解;

否则(Δ≥0),

$$x_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$
, $x_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$

S3 输出解 x_1 , x_2 或无实数解信息.

(2) 用框图来描述算法,如图 1-4 所示.

图 1-4

例3 设火车托运重量为 P(kg)行李时,每千米的费用(单位:元)标准为

画出行李托运费用的程序框图.

解:先输入托运的重量 P 和里程 D,再分别用各自条件下的计算式子来进行计算处理,然后将结果与托运路程 D 相乘,最后输出托运行李的费用 M. 程序框图如图 1-5 所示.

图 1-5 .

- 1. 画出由直角三角形的两条直角边 a、b, 求斜边长的程序框图.
- 2. 画出由梯形两底 a、b和高h, 求梯形面积的程序框图。
- 3. 画出求两个实数相加的程序框图.
 - 4. 画出求两个整数相除 $(a \div b)$ 的商 q 及余数 r 的程序框图.
- 5. 设汽车托运重量为 P(kg)货物时,每千米的费用(单位:元) 标准为

$$y = \begin{cases} 0.2 P & \text{ $\#$} P \leqslant 20 \text{ kg 时} \\ 0.3 \times 20 + 1.1 (P - 20) & \text{ $\#$} P > 20 \text{ kg} \text{ 时} \end{cases}$$

画出行李托运费用的程序框图.

- 1. 画出求一个数的绝对值的程序框图.
- 2. 画出由两点的距离公式求两点距离的程序框图.
- 3. 画出在 a、b、c 三数中找出最大数的程序框图.
- 4. 在国内投寄平信, 每封信重量 x(g)不超过 60 g 的邮费 (单位: 分) 标准为

$$y = \begin{cases} 80, & x \in (0, 20] \\ 160, & x \in (20, 40] \\ 240, & x \in (40, 60]. \end{cases}$$

画出计算邮费的程序框图.

3. 循环结构

在科学计算中,会遇到许多有规律的重复运算,例如:人口预测,已经知道现有的人口总数是P,人口的年增长率是R,预测T年后人口总数将是多少?

问题的分析:

- (1) 第二年的人口总数是 $P+P\times R=P(1+R)$,
- (2) 第三年的人口总数是 $P(1+R)+P(1+R)\times R=P(1+R)^2$,以此类推,得第 T 年的人口总数是 $P(1+R)^{T-1}$.

这就是说,如果要计算 10 年后的人口总数,乘(1+R)的运算要重复 9 次.如果一个计算过程,要重复一系列的计算步骤若干次,每次计算步骤完全相同,则这种算法过程称为循环过程.循环过程非常适合计算机处理,因为计算机的运算速度非常快,执行成千上万次的重复计算,只不过是一瞬间的事,且能保证每次的结果都正确.由此引出算法的第三种结构;

根据指定条件决定是否重复执行—条或多条指令的控制结构称 为**循环结构**

通过以上的分析,预测人口的算法中包含循环结构,它可用图 1-6 中的程序框图来描述.

画出这张框图的关键,是要理解"计算增量"和"用P+I代替P"这两个处理框的工作。P和I是两个变量,每重复(循环)一次,P和I都发生变化。这两步要重复计算T-1次,它是如何工作的,大家一定要清楚。在计算增量这个处理框中,第一次算出的

图 1-7

是第一年的人口增量,第二年人口计算的基数发生了变化,它已 不是初始值 P, 它应是 P+I, 因此在下一个处理框中, 田 P+I代替P,这时输出的应是P+I,可输出框中仍写的是P,这可能 使你有点糊涂,但只要你想到 P 是一个变化着的量也就容易理解 了. 开始是初始值, 每年后都用新的人口值替代上一年的人口值, 再送回"计算增量"的处理框, 计算新的一年的人口增量 你不 妨把"用P+I代替P"这个处理框看成一个储存数据的单元、新 的数据进入就把旧的数据"赶走"。对这张框图,同学们可能还会 问,"是否到时间 T"如何控制呢?问得非常好! 在图中我们把这 个控制省略了, 等到学完例 4, 同学们再想想如何在框图中表示这 个"控制".

例 已知 n 个正整数排成一行如下:

$$a_1$$
, a_2 , a_3 , \cdots , a_{n-1} , a_n

其中下脚码表示 n 个数的排列位置, 这一行数满足条件:

$$a_1=1$$
, $a_2=1$, $a_n=a_{n-2}+a_{n-1}$. $(n\geqslant 3, n\in \mathbb{N})$

画出计算第 n 项的程序框图.

分析:表达式 $a_n=a_{n-2}+a_{n-1}$ 的意义是表示在这个数序列中的 第n个数,可由它前面的两个数计算出来,如果给出这个数序列的 第一和第二个数,则这个数序列的所有项都可计算出来。即

由
$$a_1=1$$
, $a_2=1$, 可求出

$$a_3 = a_1 + a_2 = 1 + 1 = 2$$

 $a_4 = a_2 + a_3 = 1 + 2 = 3$
 $a_5 = a_3 + a_4 = 2 + 3 = 5$

$$a_k = a_{k-2} + a_{k-1} \tag{*}$$

解:由(*)式,我们可看到, a_k 、 a_{k-2} 、 a_{k-1} 都是k的函数,数 值随 k 而变, (*)式中的计算要反复进行, 因此在框图中要引入三 个变量,分别用C、A、B表示 a_k 、 a_{k-2} 、 a_{k-1} . 框图中首先要输入 正整数 $n(n \ge 3)$ 及给 A 与 B 分别输入值 1, 1, 然后循环计算。它的程序框图如图 1-7 所示.

大家看到,在这张框图中,除引入变量 A. B. C. M. 又引入 了一个变量" k", 在进行循环操作前, 用这个变量控制是否达到 给定的正整数 n.

下面我们再举一例,帮助同学们进一步理解算法和框图结构。

写出解如下三元一次方程组的算法、框图和程序分析:

$$(I) \begin{cases} 2x_1 + x_2 - 4x_3 = 8 \\ 4x_1 - x_2 + 2x_3 = 4 \\ x_1 + 2x_2 + x_3 = 1 \end{cases}$$

分析:我们用高斯消去法来解这个三元一次方程组,先用第一个方程消去第二个、第三个方程中的未知数 x_1 ,具体做法是:把第一个方程乘以-2加到第二个方程上,把第一个方程乘以 $-\frac{1}{2}$ 加到第三个方程上,得到

$$(\parallel) \begin{cases} 2x_1 + x_2 - 4x_3 = 8 \\ -3x_2 + 10x_3 = -12 \\ \frac{3}{2}x_2 + 3x_3 = -3 \end{cases}$$

接着用(\parallel)中第二个方程消去第三个方程的未知数 x_2 ,具体做法是: 把第二个方程乘以 $\frac{1}{2}$ 加到第三个方程上, 得到

$$(\parallel)$$
 $\begin{cases} 2x_1 + & x_2 - 4x_3 = 8 \\ & -3x_2 + 10x_3 = -12 \\ & 8x_3 = -9 \end{cases}$

现在可以很容易求出方程组的解. 做法是:由(III)中第三个方程求出 $x_3 = -\frac{9}{8}$,把 $x_3 = -\frac{9}{8}$ 代入第二个方程得到 $x_2 = \frac{1}{4}$,把 x_3 , x_2 的值代入第一个方程得到 $x_1 = \frac{13}{8}$.

由方程组(I)→(||)和(||))→(||)的过程叫做<mark>消元过程</mark>,求方程组解的过程叫做回代过程</mark>,消元过程实质是对方程组的系数和常数项作运算。我们把上面的方程组(I)、(||)、(||)的系数和常数项分别排成一个表,上面的消元过程就可以表示为:

$$\begin{bmatrix} 2 & 1 & -4 & 8 \\ 4 & -1 & 2 & 4 \\ 1 & 2 & 1 & 1 \end{bmatrix} \xrightarrow{\Re - f_{1} \times (-2)}$$
 加到第三行
$$\begin{bmatrix} 2 & 1 & -4 & 8 \\ 0 & -3 & 10 & -12 \\ 0 & \frac{3}{2} & 3 & -3 \end{bmatrix}$$

$$\frac{\Re - f_{7} \times \left(\frac{1}{2}\right)}{2}$$
 加到第三行
$$\begin{bmatrix} 2 & 1 & -4 & 8 \\ 0 & -3 & 10 & -12 \\ 0 & 0 & 8 & -9 \end{bmatrix}$$

对于一般的三元一次方程组

1.1 算法与程序框图 5

$$(N) \begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1 \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2 \\ a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = b_3 \end{cases}$$

的消元过程,可以表示为:

上面的消元过程要求 a_{11} , \overline{a}_{22} , \overline{a}_{33} 均不为零. 然后通过回代过程即可求得 x_3 , x_2 , x_1 , 把上面的消元过程和回代过程描述为算法,就可以根据算法编出程序在计算机上求解一般的三元一次方程组,下面是用高斯消去法求解三元一次方程组的算法描述:

0

0

 \bar{a}_{33} \bar{b}_{3}

S1 \hat{m} $\bigwedge a_{11}$, a_{12} , a_{13} , b_1 , a_{21} , a_{22} , a_{23} , b_2 , a_{31} , a_{32} , a_{33} , b_2

消元过程.

S2 对于变量 k=1, 2 循环

判断 a_{k} 是否为 0,如果 $a_{k} \neq 0$ 则继续程序,如果 $a_{k} = 0$,情况比较复杂,这里不作具体分析,直接结束程序

对于变量 $i=k+1, k+2, \dots, 3$ 循环

- (1) $c = -a_{+}/a_{+}$
- (2) 对于变量 $j=k+1, k+2, \dots, 3$ $a_{ii}=a_{ii}+c \cdot a_{ki}$
- (3) $b_i = b_i + c \cdot b_k$

回代过程:

S3 如果 $a_{33} \neq 0$ 则 $x_3 = b_3/a_{33}$, 否则结束程序

S4 对于变量 l=2, 1 循环

- (1) S=0
- (2) 对于变量 m=l+1, …, 3 循环 $S=S+a_{lm} \cdot x_m$

(3)
$$x_l = (b_l - S) /a_{ll}$$

S5 输出 x1, x2, x3 的值

算法框图如图 1-8 所示. 为了使初学者更好地理解程序语句的作用,这里只给出了算法的主体部分,对于方程组无解或有无穷多解的情况未做讨论. 章末附录给出了求解一般三元一次联立方程组的程序,供有兴趣的同学参考. 上面的算法可以很方便地修改为对 n 元一次线性方程组都适用的算法,这正体现了算法的要求——程序化并且能够解决一类问题. 想想看,你能否把附录中的程序改为能够求解任意元的线性方程组.

练习A

- 1. 在本节人口预测的引例中,如果令 $P=10\ 000$,R=0.1,T=5. 画出计算的程序框图.
- 2. 画出求 1+2+3+…+10 的算法的程序框图.
- 3. 画出对 x=1, 2, 3, …, 9, 10, 求 x^2 的算法的程序框图.

- 1. 画出计算 $1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{9}+\frac{1}{10}$ 值的一个算法的程序框图.
- 2. 写出计算 $1^2+2^2+\cdots+50^2$ 的算法的程序框图.
- 3. 已知函数 $f(x)=x^2$, 把区间[-3, 3]10等分,画出求等分点函数值算法的程序框图.

习题1-1 A

- 1. 已知摄氏温度 C 与华氏温度 F 的关系是 $F=C\times\frac{9}{5}+32$,写出由摄氏温度求华氏温度的算法并画出程序框图。
- 2. 写出一位班长组织全班同学进行一次春游活动的算法并画出程序框图.
- 3. 一城市在法定工作时间内,每小时的工资为8元,加班工资每小时为10元,如果某人一周内工作60 h,其中加班20 h,税金是10%,写出这个人净得工资的算法,并画出算法的程序框图.
- 画出任给一个有两位小数的实数,对末位用"四舍五入法",求精确到一位小数的程序 框图。
- 5. 画出 x=-3, -2.9, -2.8, \cdots , 2.9, 3, 计算函数 $y=x^2-3x+1$ 对应值的程序框图.
- 6. 画出计算 1²+2²+3²+···+99²+100² 的算法的程序框图.

习题1-1 B

- 1. 写出分数 $\frac{b}{a}$ 除以分数 $\frac{d}{a}$ 的算法,并画出程序框图.
- 2. 画出用高斯消去法解二元一次方程组算法的程序框图.
- 3. 写出对任意自变量 x, 求函数值 y 的算法, 并画出计算的程序框图.
 - (1) $y=\sqrt{x}$;

(2) $y = 3\ln(x+3)$:

(3) $y=2^{x}$;

- (4) $y=a\sin x+\cos x$.
- 4.分别标有1、2、3、4、5、6六个号码的小球,有一个最重,写出挑出此重球的算法并画出程序框图。

在上一节,我们学习算法和程序框图时,就已经指出,用顺序结构、条件分支结构和循环结构就可表示任何算法.如何将算法的这些控制结构,转变成计算机能够理解的程序语言和能在计算机上实现的程序呢?现在计算机能够直接或间接理解的程序语言有很多种,这些程序语言都包含一些基本的语句结构:

输入语句 输出语句 赋值语句 条件语句 循环语句

本节我们将用"算法"的观点对这些基本语句进行分析,然后再结合"Scilab"的程序语言,帮助大家更好地理解这些语句的结构以及在解数学问题中的应用.数学应用软件"Scilab",在必修模块数学1中,我们就作了介绍,它的界面已是我们的演算板。它是完全免费自由使用的数学软件,同学们可以在我们介绍的网站上下载。在"Scilab"中,你可以进行各种数值计算,这是因为"台后"有强大的程序在支持它。你想知道如何编出如此强大的程序吗?你想把自己的"算法"也编成程序,在计算机上运行吗?那就请你认真学习这一节的内容。这里,我们通过"Scilab"自带的编程语言,来演示实现算法的三种基本结构。这个编程语言不仅简单易用而且功能还很强。当然,你也可结合你在信息技术课上学到的任一种程序语言来学习。

下面分两个小节介绍基本算法语句结构.

赋值、输入和输出语句

1. 赋值语句

在表述一个算法时,经常要引入变量,并赋给该变量一个值. 用来表明赋给某一个变量一个具体的确定值的语句叫做赋值语句. 在算法语句中,赋值语句是最基本的语句.

赋值语句的一般格式为:变量名=表达式.

赋值语句中的"="号,称做赋值号.赋值语句的作用是先计算出赋值号右边表达式的值,然后把该值赋给赋值号左边的变量,使该变量的值等于表达式的值.例如

$$a=3;$$
 $b=4;$ $c=5;$
 $s=(a+b+c)/2;$
 $A=SQRT(s*(s-a)*(s-b)*(s-c));$

都是赋值语句. 关于赋值语句, 有以下几点需要注意:

- (1) 赋值号左边只能是变量名字,而不是表达式。例如3.6=X 是错误的。
- (2) 赋值号左右不能对换. 赋值语句是将赋值号右边的表达式的值赋给赋值号左边的变量,例如 Y = X ,表示用 X 的值替代变量 Y 原先的取值,不能改写为X = Y. 因为后者表示用 Y 的值替代变量 X 的值.
- (3) 不能利用赋值语句进行代数式(或符号)的演算(如化 简、因式分解等),如

$$y=x^2-1=(x+1)(x-1)$$
.

这是不能实现的,在赋值语句中的赋值号右边的表达式中的每一个 "变量"都必须事先赋给确定的值,在一个赋值语句中只能给一个 变量赋值,不能出现两个或多个"=".

(4) 赋值号与数学中的等号的意义不同. 赋值号左边的变量如果原来没有值,则在执行赋值语句后,获得一个值. 如果原已有值,则执行该语句后,以赋值号右边表达式的值代替该变量的原值,即将原值"冲掉". 如;

$$N=N+1$$

在数学中是不成立的,但在赋值语句中,意思是将N的原值加1

再赋给 N, 即 N 的值增加 1.

在一些应用程序中,可以在界面窗口中直接赋值. 如在 Scilab 窗口界面内赋值并计算三个数的平均数,可在窗口中输入;

-->
$$a=5$$
; $b=7$; $c=9$;

$$--> aver = (a+b+c)/3$$

aver=

7

这个语句系列一共 4 行,前 2 行都是给变量赋值.后面两行显示了变量 aver 的值.

2. 输入语句

在某些算法中,变量的初值要根据情况经常地改变.一般我们把程序和初始数据分开,每次算题时,即使初始数据改变,也不必改变程序部分,只要每次程序运行时,输入相应的数据即可.这个过程在程序语言中,用"输入语句"来控制.不同的程序语言都有自己的输入指令和方法.下面主要介绍键盘输入语句,并看看在Scilab 中用什么语句来控制输入.

在 Scilab2. 7 中的输入语句之一是"input". 下面介绍它的使用方法.

先看一个例子.

假如我们要计算任一个学生的语文、数学、外语三门课的平均 成绩,就要输入这个学生三门课的成绩. 在 "Scilab"程序中是用 "input"输入语句来控制在屏幕上输入. 在 "Scilab2.7"的文本编 辑器中写出如下程序:

"//"后面是 注释内容,对程序 运行不起作用.

把程序保存在一个文件中,例如 "c: \ gaobook \ aver. sci". 点击 Scilab2. 7 的文本编辑器界面内菜单按钮 "Load into Scilab", 立即会在 Scilab 界面内运行;

--> exec('c:\gaobook\aver. sci')

chinese -->

这时, 你可从键盘输入一个学生的语文成绩(分), 例如, 90. 再按 "Enter" 键, 程序继续运行, 界面出现

math -->

这时, 你可从键盘输入一个学生的数学成绩(分), 例如, 80. 再按 "Enter"键, 程序继续运行, 界面出现

foreign language -->

这时,你可从键盘输入一个学生的外语成绩(分),例如,79. 再按"Enter"键,程序继续运行,界面出现

aver=83

"input" 在计算机程序中,通常称为键盘输入语句,从这个例 子我们可以体会到"输入语句"在程序中的作用。

Scilab 的输入语句 "input",不仅可输入数值,也可输入单个或多个字符,如

x=input ("What is your name?", "string")

//输入你的名字,

//string 代表输入字符型变量.

下面再来看我国古算术中的鸡兔同笼问题,我们写出它的算法、框图和程序,从中体会一下"算法"的意义以及"输入语句"的作用。

解: 算法:

S1 输入鸡和兔的总数量 M:

S2 输入鸡兔腿的总数量 N;

S3 鸡的数量
$$A = \frac{4M - N}{2}$$
;

S4 兔的数量 B=M-A.

程序框图如图 1-9 所示.

在 Scilab2. 7 的文本编辑器中编写如下程序:

图 1-9

把上述程序保存成一个文件,然后在 Scilab2.7 界面内执行该程序,屏幕出现以下提示;

How many heads --> (键入头数,例如9)

M=9

How many legs --> (键入腿数,例如 26)

N = 26

结果:

A=5.

B=4.

在 Scilab2. 7 中,还有其它输入语句,如 "read"输入语句。在 其它各种程序语言中,一般都有自己的输入控制语句,它们的作用 是相同的,只是每种程序语言的控制代码和表现形式不同。这里, 我们只是帮你理解程序语句的含义,减少你今后深入学习程序设计 的困难.

3. 输出语句

任何求解问题的算法,都要把求解的结果"输出".由此可知,任何程序语言也必须有"输出语句"来控制输出.不同的程序语言都有自己的输出语句和表现形式,但功能是一样的,就是以某种形式把求解结果"输出"出来.下面,我们以 Scilab 为例,主要介绍屏幕显示输出.

在 Scilab 中,有各种输出语句,如 print, write, format, printf, disp. 下面我们仅对"print"语句举例加以说明。

→ 个算法是,用 Scilab 中的 rand() 函数,首先生成一个 0~1 之间的随机数并把它赋值给变量 a,再把数值 3 赋值给变量 b,把 a+b 赋值给变量 c,最后把它们都输出到屏幕上。这个算法用 Scilab 程序写出,并用 print(%io(2), a, b, c)语句控制输出。在 Scilab 界面内直接写出程序并运行如下:

```
a=rand(); b=3; c=a+b; print(%io(2), a, b, c)
c=
3.7560439
b=
3.
a=
.7560439
```

程序中的 print(%io(2), a, b, c)的参数%io(2)表示在屏幕上输出。

本节的练习只要求写出计算程序或结果,有条件的同学可使用带有储存功能的 计算器计算或在计算机上运算.

- 1. 下列 Scilab 程序运行后, a, b, c 各等于多少?
 - (1) a=3; b=-5; c=8; a=b; b=c; print(%io(2), a, b, c)
 - (2) a=3; b=-5; c=8; a=b; b=c; c=a; print(%io(2), a, b, c)
- 2. 已知函数 $f(x)=x^3$, 求 f(13).
- 3. 写出求平行四边形面积公式的程序:

S=ah, (a 为一边的长, h 为其上的高).

并写出每步程序语句的作用.

4. 任给三个正数, 求它们的算术平均数, 并写出每步程序语句的作用.

- 1. 用公式法求方程 $x^2 3x + 2 = 0$ 的两个根.
- 2. 用公式法解方程组 $\begin{cases} x+y=-1 \\ 3x-y=13 \end{cases}$.
- 3. 任给一个三角形的底和高, 求这个三角形的面积.
- 4. 任给两点的坐标, 求这两点的距离.

1.2.2 条件语句

处理条件分支逻辑结构的算法语句,叫做条件语句。我们仍以 Scilab 自带的程序设计语言,对条件语句加以说明。

计算机通常是按照程序中语句出现的先后顺序依次往下执行

的. 但有时需要根据某个给定条件是否满足而决定所要执行的语句,这时就需要条件语句. Scilab 语言中的条件语句分为 if 语句和 select—case 语句. 下面我们只举例说明 if 语句的用法.

在 1.1.3 节,我们写出了求一元二次方程 $ax^2+bx+c=0$ 根的 算法和程序框图,这里用 Scilab 程序语言写出如下程序.

```
a=input(" a=")
                             // 输入 a, b, c 的值
b=input(" b=")
c=input(" c=")
                             // 计算
d=b * b-4 * a * c
if d<0
                             // 如果 d<0
  disp("no solution")
                             // 输出无解信息
else t=sart (d):
 xl = (-b+t)/(2 * a)
                             // 计算
 x^2 = (-b-t)/(2 * a)
                             // 计算
end
```

disp 也是 Scilab 的輸出語句, 运行 后在界面窗口上显 示双引号中间的 文字.

这个程序运行后,第一步:要求你输入方程中的常数 a、b、c. 第二步: 计算 d. 第三步:用 if 语句对 d 进行判断,如果 d<0,用 语句 disp 输出方程无解信息。第四步:否则(else)也就是 d>0,则 计算并输出 x1 和 x2。

从这个程序可以看到, 证语句的一般格式是:

if 表达式 语句序列 1; else 语句序列 2; end

该语句的功能为,如果表达式结果为真,则执行表达式后面的语句序列1;如果表达式结果为假,则执行 else 后面的语句序列2. 其实, 证语句最简单的格式是;

> if 表达式 语句序列 1; end

这就是说,如果表达式结果为真,则执行表达式后面的语句序列1,否则跳过语句序列1.

从上例我们可知道"条件语句"在程序语句中的作用。Scilab 中 的 if 语句很简单,不妨用它编点程序,解决你学过的一些需要条件 判断的数学问题,从中体会"条件语句"的作用和使用方法。

- 1. 任给一个实数, 求它的绝对值.
- 2. 任意给三个数, 求它们中的最大数.
- 用生成随机数命令 rand() 生成一些随机数,如果生成的数大于等于 0.5,输出数 1,否则输出数 0.

- 1. 任给一个正数, 求它的自然对数.
- 2. 已知三个实数, 求它们中的最小数.
- 某商店对顾客购买貨物款数满500元,減价3%,不足500元不予优惠.輸入一顾客购物的款數,计算出这个顾客实交的貸款。
- 4. 已知函数 $y = \begin{cases} 1 & x < -1 \\ 0 & -1 \le x \le 1, \text{ 给出 } x \text{ 的值}, \text{ 计算出 } y \text{ 的值}. \end{cases}$

1.2.3 循环语句

在算法程序语言中一般通过循环语句来处理算法中的循环结构。我们知道,在实际问题中会遇到许多有规律的重复运算,或者在程序中需要对某些语句进行重复的执行,这样就需要用到循环语句进行控制。Scilab 程序语言中提供了两种循环语句: for 循环和while 循环,下面我们举例说明这两种循环语句的作用。

分析:相信大家已不会从1开始一次一次地做999次加法,把

这道题算出来. 大家肯定知道它的巧妙算法. 这道题如果要一步步地加, 即要重复做 999 次加法计算, 但计算机可不怕这样的重复计算, 使用循环语句来做完这样的计算, 只是瞬间的事. 下面用"for"循环语句写出计算程序, 然后我们再对它的结构进行分析.

解:在 Scilab 中的文本编辑器中写出如下程序:

S=0 for i=1:1:1000 S=S+i; end

这个程序一共四步:

第一步是选择一个变量 S 表示和, 并赋给初值 0.

第二步开始进入 for 循环语句,首先设i 为循环变量,分别设定其初值、步长、终值.这里初值为1,步长为1(步长是指循环变量i每次增加的值.步长为1,可以省略不写,若为其它值,则不可省略),终值为1000.

第三步为循环表达式 (循环体).

第四步用 "end" 控制结束一次循环, 开始一次新的循环.

理解 "for" 循环的关键是理解第三步 "S=S+i" 计算机是如何执行的,下面写出几步循环,大家可能就会理解.

i=1 S=S+i 是 S=S+1,并把 0+1 赋值给 S,第一次循环结束 S 为 1,此时 S 记录了第一个数的值,遇到"end"开始第二次循环;

i=2 S=S+i 是 S=S+2,并把 1+2 赋值给 S,第二次循环结束 S 为1+2=3,此时 S 记录了前两个数的和,遇到"end"开始第三次循环;

i=3 S=S+i 是 S=S+3,并把(1+2)+3 赋值给 S,第三 次循环结束 S 变为 1+2+3=6,此时 S 记录的是前 3 个数的和,遇到 "end" 开始第四次循环;

..........

把上述程序存到一个文件中("C:/gao/intsum. sci"), 点击菜单中的"Load into Scilab"就会在 Scilab 中执行你写的程序:

--> exec ("C: /gao/intsum. sci");

S=

0.

再在提示符下,键入S,立即输出:

S=

500500.

如果在程序的第三行语句后,去掉分号,再运行程序,可在屏幕上显示每一步循环输出的结果,如前5步的循环的结果为;

S=

1. S=

3.

S=

6.

S=

10.

S=

15.

for 循环的格式为

for 循环变量=初值: 步长: 终值 循环体

end

Scilab 中的第二种循环语句是 while 语句. 它的格式为

while 表达式 循环体

end

这种循环结构,首先要求对表达式进行判断,如果表达式为 真,则执行循环体部分,每次开始执行循环体前,都要判断表达式 是否为真,这样重复执行,一直到表达式值为假时,就跳过循环体 部分,结束循环,

例2 求平方值小于1000的最大整数.

解:在 Scilab 界面内,可直接输入程序,for(while)循环语句可以写在同一行,但在循环条件后面一定要用","号分开,也可以分行写,但要记住加 end.下面直接在 Scilab 界面内,用 while循环语句求解这道题.

在输入完程序的第二行后,击 Enter 键,再在提示符下输入j,击 Enter 键后,输出最大的j值.

例3 一球从100 m高度落下,每次落地后反跳回原高度的一半,再落下,在第10次落地时,共经过多少路程?第10次下落多高? 解,算法分析;

第 1 次下落的高度 $H_1 = 100$;

第 2 次下落的高度 $H_2 = \frac{100}{2} = 50$;

•••••

第 10 次下落的高度 $H_{10} = \frac{H_9}{2}$. 得到递推公式为

$$H_1=100, H_{n+1}=\frac{H_n}{2}, n=1, 2, \dots, 9,$$

到第 10 次落地时,共经过了 $H_1+2H_2+\cdots+2H_{10}$ (m). 由以上分析,可写出 Scilab 程序如下:

$$s=0;$$

 $H=100;$
 $s=s+H;$
for $i=2;$ 10, $H=H/2$, $s=s+2*H$, end

运行该程序,输出:

H =

. 1953125

- 1. 求 1+2+3+…+10, 并显示每次循环结果, 并写出程序中每一步的作用。
- 2. 求小于100的所有偶数的和.
- 3. 计算 300×(1+0.05)8.
- 4. 求 0.1+0.2+0.3+…+0.9+1.

- 1. 求小于100的所有奇数的和, 求出一共进行了多少次循环, 并显示前 5次循环 结果.
- 2. 求所有立方小于10000的正整数.
- 3. $\cancel{x} \ 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{9} + \frac{1}{10}$
- 4. 计算 1+2+22+23+…+263.

习题1-2 A

- 任给三个变量 a, b, c 赋值, 求下列算式的值。
 - (1) a+b+c:

(2) 4a+b+3c:

(3) $b^2 - 4ac$:

- (4) $(a+b) \div c$.
- 2. 任给一个自变量的值, 求下列函数值:
 - (1) $f(x) = 3x^4 5x^3 + 1$; (2) $f(x) = x^5 x^2$.
- 3. 已知圆半径为10.945, 求圆的面积.
- 4. 求平方后小于1000的所有正整数.
- 5. 已知m、n是两个正整数, 求 m+n < 10的所有正整数对m、n.

习题1-2 B

- 1. 任给一个圆锥的底面半径r和高h, 求圆锥的体积 V.
- 2. 设个人收入在5000以内的所得税的档次为(单位,元)。

第二章 算法初步

 $0 < x \le 1000$ 0 % $1000 < x \le 3000$ 10 % $3000 < x \le 5000$ 25 %

设某人收入为 x 元, 计算他应交的个人收入所得税.

- 4. 已知函数 $f(x)=x^2$, 把区间 [0,1] 分为 10 等份, 求该函数在各分点和区间端点的值.
- 5. 打印从 0°~180°, 间隔为 10°的正弦函数表(循环输出).

1.3 中国古代数学中的算法案例

同学们是否知道,我们在小学、中学学到的算术、代数,从记数到多元一次联立方程组以及方程的求根方法,都是我国古代数学家最先创造的,有的比其他国家早几百年甚至上千年.我国人民在长期的生活、生产和劳动过程中,创造了整数、分数、小数、正负数及其计算,以及无限逼近任一实数的方法.在代数学、几何学方面,我国在宋、元之前也都处于世界的前列.更为重要的是我国古代数学的发展有着自己鲜明的特色,走着与西方完全不同的道路,在今天看来这条道路仍然有很大的优越性.这条道路的一个重要特色就是"寓理于算",也就是本节中所讲的要把解决的问题"算法化".下面我们举一些我国古代数学中算法的例子,让同学们更进一步体会"算法"的概念,看一看中国古代数学的伟大成就和显著特色.

1. 求两个正整数最大公约数的算法

我们知道,如果整数 a 能被整数 b 整除,则 b 称为 a 的一个约数. 一个整数可能有好几个约数. 例如,12 能被1,2,3,4,6,12 整除,这 6 个数都是12 的约数. 16 有1,2,4,8,16 这 5 个约数. 我们看到2 和 4, 既是12 的约数又是16 的约数,2 和 4 叫做12 和 16 的公约数,公约数2 和 4 中,4 最大,4 称做12 和 16 的最大公约数. 如何找到一种算法,对任意两个正整数都能求出它们的最大公约数呢?下面给出我国古代数学家的一个算法,这个算法被称做"更相减损之术",我们以求16,12 这两个数的最大公约数为

例加以说明. 用两数中较大的数减去较小的数,即 16-12=4,用 差数 4 和较小的数 12 构成新的一对数,对这一对数再用大数减小 数,以同样的操作一直做下去,直到产生一对相等的数,这个数就 是最大公约数,整个操作如下:

$$(16, 12) \rightarrow (4, 12) \rightarrow (4, 8) \rightarrow (4, 4)$$

4 是 12 和 16 的最大公约数.

这种算法的道理何在呢?不难看出,对任意两个数,每次操作 后所得的两数与前两数具有相同的最大公约数,而两数的值逐渐减 小,经过有限步地操作后,总能得到相等的两个数,即求得两数的 最大公约数.

例如,求78和36的最大公约数,操作如下:

$$(78, 36) \rightarrow (42, 36) \rightarrow (6, 36) \rightarrow (6, 30) \rightarrow (6, 24) \rightarrow (6, 18) \rightarrow (6, 12) \rightarrow (6, 6)$$

这种算法,只做简单的减法,操作方便、易懂,也完全符合算法的要求,它完全是机械的运算,据此很容易编出程序,在计算机上运算.把这个算法与我们下面探索与研究中介绍的欧几里得算法比较,看看这个算法的优越性.下面是我们用 Scilab 编出的程序,供大家参考.实际上,你可用你在信息技术课上学到的任一种程序设计语言编出程序,从中体会一下这个算法的优越性.为了方便叙述,我们称这种算法为"等值算法".

用"等值算法"求最大公约数的程序:

把这个程序保存成文件,可随时调入 Scilab 界面运行,求任意 两个正整数的最大公约数.

古希腊求两个正整数的最大公约数的方法是辗转相除法 (即欧几里得算法): 用较大的数除以较小的数所得的余数和较小的数构成新的一对数,继续做上面的除法,直到大数被小数除尽,这个较小的数就是最大公约数. 以求 288 和 123 的最大公约数为例,操作如下:

$$(288, 123) \rightarrow (42, 123) \rightarrow (42, 39) \rightarrow (3, 39)$$

想一想这种算法的道理, 试着编写程序在计算机上实现,

2. 割圆术

我国魏晋时期的数学家刘徽,他在注《九章算术》中采用正多 边形面积逐渐逼近圆面积的算法计算圆周率π,用刘徽自己的原话 就是"割之弥细,所失弥少,割之又割,以至于不可割,则与圆合 体而无所失矣."他的思想后来又得到祖冲之的推进和发展,计算 出圆周率的近似值在世界上很长时间里处于领先地位。

刘徽从圆内接正六边形开始,让边数逐次加倍,逐个算出这些 圆内接正多边形的面积,从而得到一系列逐渐递增的数值,来一步 一步地逼近圆面积,最后求出圆周率的近似值.可以想象,在当时 需要付出多么艰辛的劳动.现在让我们用刘徽的思想,使用计算机 求圆周率的近似值.计算机最大的特点是运算速度快,只要我们将 运算规律告诉计算机,计算机会迅速得到所求的答案.

如图 1-10 所示. 假设圆的半径为 1, 面积为 S, 圆内接正 n 边形面积为 S_n , 边长为 x_n , 边心距为 h_n . 根据勾股定理, $h_n = \sqrt{1 - \left(\frac{x_n}{2}\right)^2}$.

$$S_{2n} = S_n + n \cdot \frac{1}{2} \cdot x_n (1 - h_n).$$
 (1)

正 2n 边形的边长为 $x_{2n} = \sqrt{\left(\frac{x_n}{2}\right)^2 + (1-h_n)^2}$.

刘徽割圆术还注意到,如果在内接n边形的每一边上,作一高为CD的矩形,就可得到

$$S_{2n} < S < S_{2n} + (S_{2n} - S_n)$$
 (2)

刘徽割圆的弧田图

图 1-10

这样,我们就不仅可计算出圆周率的不足近似值,还可计算出 圆周率的讨剩近似值。

从正六边形的面积开始计算,即 n=6,则正六边形的面积 $S_0=6\times\frac{\sqrt{3}}{4}$. 用上面的公式(1)重复计算,就可得到正十二边形、正二十四边形、……的面积。因为圆的半径为 1,所以随着 n 的增大, S_o 的值不断趋近于圆周率,这样不断计算下去,就可以得到越来越精密的圆周率近似值。下面我们用 Scilab 语言写出求 π 的不足近似值的程序:

运行以上的程序,当边数为192时,就可以得到刘徽求得的圆周率的近似值3.14,当边数为24576时,就得到了祖冲之计算的结果3.1415926.由于是用圆内接正多边形逼近圆,因而得到的圆周率总是小于π的实际值,作为练习,请同学编出程序求

$$S_{2n} + (S_{2n} - S_n)$$
 $(n=6, 12, \cdots),$

作为π的过剩近似值.

同学们可以用同样的思想用圆外切正多边形的周长逼近圆的周长的方法求出圆周率的近 似值,请你试着写出程序,并想一想怎样来给出π的一个较准确的范围.

3. 秦九韶算法

已知一个一元 n 次多项式函数

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

当 $x=x_0$,我们可按顺序一项一项地计算,然后相加,求得 $P(x_0)$.

下面看看我国古代大数学家秦九韶是如何计算多项式函数值的.

让我们以5次多项式函数为例加以说明. 设

$$f(x) = a_5 x^5 + a_4 x^4 + a_3 x^3 + a_2 x^2 + a_1 x + a_0$$

首先,我们把这个多项式一步步地进行改写:

$$f(x) = (a_5x^4 + a_4x^3 + a_3x^2 + a_2x + a_1)x + a_0$$

$$= ((a_5x^3 + a_4x^2 + a_3x + a_2)x + a_1)x + a_0$$

$$= (((a_5x^2 + a_4x + a_3)x + a_2)x + a_1)x + a_0$$

$$= ((((a_5x^2 + a_4x + a_3)x + a_2)x + a_1)x + a_0)x + a_1)x + a_0$$

上面的分层计算,只用了小括号,计算时,首先计算最内层的括号, 然后由内向外逐层计算,直到最外层的一个括号,然后加上常数项。

这种算法与直接计算比较,有什么优越性呢?首先,这种算法—共做了5次乘法,5次加法,与直接计算相比大大节省了乘法的次数,使计算量减少,并且逻辑结构简单,大家是否知道,在计算机上做一次乘法所需要的时间是做加法、减法的几倍到十几倍,减少做乘法的次数也就加快了计算的速度,另外这种算法还避免了对自变量 x 单独做幂的计算,而是与系数一起逐次增长幂次,从而可提高计算的精度。

对任意一元 n 次多项式, 类似地叙述如下:

首先将多项式改写为

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

$$= (a_n x^{n-1} + a_{n-1} x^{n-2} + \dots + a_1) x + a_0$$

$$= ((a_n x^{n-2} + a_{n-1} x^{n-3} + \dots + a_2) x + a_1) x + a_0$$

$$= (\dots ((a_n x + a_{n-1}) x + a_{n-2}) x + \dots + a_1) x + a_0$$

$$\Rightarrow v_k = (\cdots(a_n x + a_{n-1})x + \cdots + a_{n-(k-1)})x + a_{n-k}$$

则递推公式为:

$$\begin{cases} v_0 = a_n \\ v_k = v_{k-1} x + a_{n-k} \end{cases} \quad \sharp + k = 1, 2, \dots, n$$

所谓递推,就是在一系列数中已知第一个数,则其后的每一个 数都可由前面的数求出.根据上面的递推公式,我们可由 v₀ 依次 求出所有的 v₄:

$$v_1 = v_0 x + a_{n-1}$$
 $v_2 = v_1 x + a_{n-2}$ $v_3 = v_2 x + a_{n-3}$

 $v_k = v_{k-1} x + a_{n-k}$

 $v_r = v_{r-1} x + a_0$.

上面的方法,现在大家称它为秦九韶方法,直到今天,这种算

法仍是世界上多项式求值的最先进的算法,

这种方法的计算量仅为:乘法n次、加法n次、我们看看其它 算法的计算量.

用直接求和法,直接计算多项式 $a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$ 各项的值,然后把它们相加,可知乘法的次数为

$$1+2+3+\cdots+n=\frac{n(n+1)}{2}$$
,

加法次数为 n.

逐项求和法在直接求和法的基础上作了改进,先把多项式写成

$$a_n \cdot x^n + a_{n-1} \cdot x^{n-1} + \cdots + a_1 \cdot x^1 + a_0$$

的形式. 这样多项式的每一含x的幂的项都是 a_k 与 x^k 的乘积($k=1,2,\cdots,n$). 在计算 a_k ・ x^k 项时把 x^k 的值保存在变量c中. 求 a_{k+1} ・ x^{k+1} 项时只须计算 a_{k+1} ・x・c,同时把x・ $c=x^{k+1}$ 的值存人c中,继续下一项的运算,然后把这n+1项的值相加.

容易看出逐项求和法所用乘法的次数为 2n-1,加法次数为 n. 当 $n \ge 3$ 时, $n < 2n-1 < \frac{n(n+1)}{2}$.

通过上面的比较,我们可看到秦九韶算法比其它算法优越得多.

怎样根据上面逐项求和法的算法描述写出算法步骤.

例 用秦九韶方法求多项式

f(x) = 1 + x + 0, $5x^2 + 0$, $16667x^3 + 0$, $04167x^4 + 0$, $00833x^5$ 在 x = -0. 2 的情点

解:
$$x = -0.2$$

$$a_5 = 0.00833$$
 $v_0 = a_5$ = 0.00833
 $a_1 = 0.04167$ $v_1 = v_0.x + a_4$ = 0.04
 $a_3 = 0.16667$ $v_2 = v_1.x + a_3$ = 0.15867
 $a_2 = 0.5$ $v_3 = v_2.x + a_2$ = 0.46827
 $a_1 = 1$ $v_1 = v_3.x + a_1$ = 0.90635
 $a_0 = 1$ $v_5 = v_1.x + a_0$ = 0.81873

秦九韶用上述多项式求值的算法,并通过减根变换,给出了求

图 1-11

高次代数方程根的完整算法. 这一成就要比西方同样的算法早五、六百年. 这样的算法很容易在计算器或计算机上实现.

下面介绍依据我国古代算法思想在计算机上求函数 (图 1-11)

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

的近似根 (设根的精确度为 d).

这里我们用数学语言写出算法:

- S1 给定自变量的一个初值 x_0 , 给定自变量的初始增量c(c>0).
 - S2 用秦九韶方法计算出 $f(x_0)$.
 - S3 若 $f(x_0) < 0$.

计算 $f(x_i+c)$, i=0, 1, 2, …;

- (1) 若 $f(x_i+c)$ <0,则 $x_{i+1}=x_i+c$;
- (2) 若 $f(x_i+c)>0$, 则 c=0.1c; 直到 $f(x_i+c)=0$ 或 c< d. 汶时

$$x=x_i+c$$

为方程的一个根.

-4 # b

章末附录在 Scilab 环境中给出求 三次方程的根的程 序,供有兴趣的同 学研究参考。

图 ? 图 思考与讨论

如果初值使 $f(x_0)>0$, 那么上面的算法应做怎样的修改? 试着给出不同的初值,看看得到的根是否相同.

习 题 1 −3 A

- 1. 用"等值算法", 求下列两数的最大公约数:
 - (1) 80. 36:
- (2) 294, 84:
- (3) 176, 88,
- 2. 用框图和程序语句两种方法表示用"等值算法"计算两个正整数的最大公约数.
- 3. 用框图和程序语句两种方法表示秦九韶的多项式求值算法.
- 4. 已知函数 $f(x)=x^3-2x^2-5x+6$, 用秦九韶方法计算:
 - (1) 当x=-10, -9, ..., 10 时相应的函数值 f(x);
 - (2) 函数 f(x)的图象与x轴交点的坐标.

习题1-3 B

写一篇学习中国古代数学算法案例的体会.

本章小结

I 知识结构

II思考与交流

- 1. 举一个简单的例子,说明什么是算法,并用框图和程序语言表达,
- 算法的三种基本逻辑结构是什么?它们用来描述什么样的 过程?试举例说明。
 - 3. 试举一个例子,可以用具有三种逻辑结构的算法来描述.
 - 4. 什么是赋值语句? 写赋值语句应该注意什么?
 - 5. 输入语句和输出语句的功能是什么?
 - 6. 条件语句处理什么样的逻辑结构? 举例说明.
 - 7. 用什么语句处理循环结构? 有几种方式? 各举一例说明.
- 8. 中国古代数学发展的特色是什么?请同学们从图书馆、互 联网上查找资料,写一篇综述.

Ⅲ,巩固与提高

以下各题要求写出算法分析和程序.

- 1. 计算下列函数值:
 - (1) 已知函数 $f(x)=x^2+3x-7$, 求 f(64):
 - (2) 已知函数 $f(x)=x^3-x+1$, 求 f(12).
- 2. 求方程 $r^2 7r + 12 = 0$ 的两根 r_1 和 r_2
- 3. 给定 x 的任一个值, 求函数 $f(x)=x^2-2x+3$ 的值.
- 已知直角三角形的一条直角边和这条边所对的角,求另一直角 边和斜边。
- 5. 给定任一 x 值, 求 v 的值:

(1)
$$y = \begin{cases} x & x \leq 0 \\ x^2 + 1 & x > 0; \end{cases}$$

(2) $y = \begin{cases} (x-1)^2 & x \leq 0 \\ (x+1)^2 & x > 0. \end{cases}$

6. 求 100 以内的所有勾股数 (三个整数 a, b, c, 满足 $a^2+b^2=c^2$),

IV 自测与评估

- 1. (1) 给定 x 的任一个值, 求函数 $f(x) = \sin x$ 的值, 并求 f(0.5), f(1), f(7);
 - (2) 给定x的任一个值(单位:度),求函数 $f(x) = \cos x$ 的值.
- 2. 求任意四个正数的平均数.
- 3. 根据下面的公式写出求梯形面积的程序:

$$S = \frac{1}{2}(a+b)h$$
, (a, b) 为上、下底, b 为高).

- 4. 写出已知一直角三角形的斜边和一锐角,求两条直角边的计算程序,
- 5. 任给三个数,按大、小顺序排列这三个数.
- 6. 把区间[-2, 2]分成 10 等份,求函数 $f(x)=x^3$ 在各分点的值.
- 7. 百钱买百鸡问题;用100元买100只鸡,其中公鸡每只5元,母鸡每只3元,小鸡3只1元,问能买多少只公鸡?多少只母鸡?多少只小鸡?

(提示: 设买 x 只公鸡, y 只母鸡, 则买小鸡的只数 z=100-x-y. 100 元买公鸡最多买 20 只, 买母鸡最多买 33 只,)

我国古代数学家秦九韶

秦九韶、现四川省安岳人。他生活的年代大约在1202—1261年,处于南宋时代。他自幼聪敏、多才多艺、喜爱数学、天文、文学和工程问题。他擅长骑马、射箭、青年时期当过军官。他的父亲是南宋管理"工程"的官员。这使他有机公亲是南宋管理"工程"的官员。这使他有机公亲是南宋管理"工程"的官员。这使他有机公亲是南宋管理"工程"的官员。这使他有机公亲是有一个人员。从中学习天文和数学知识。他勤奋好学。在数学研究方面,取得了巨大的成绩。他的代表作《数书九章》是我国13世纪数学成就的代表作之一。书中的一次同余式(大衔求一术)和高次方程的解法(正负开方术)比西方欧拉和霍纳等数学家的解法便表现。使我国数学在当时对于世界领东场位。他是中国人的骄傲。

《数书九章》是一部有二十多万字的科学巨著,书中共分九大类,列出 81 道题,有趣的是,从作者的名字、书名到题目共四个"九",即他都有"木"。即都有解题的原理和解题步骤,一处都有了我国数学发展的突出特色;算法化,改部书的另一重要特色是理论联系实际,书中大和生产。 中中人生产和发展的多种问题进行了深刻的思考,并将它们抽象对问题和是来自实际。 泰九韶对当时的生产和生活的各种问题,研究这些问题的算法,这部书凝聚中的数学问题,研究这些问题的算法,这部书凝聚中中都占有重要的地位。最值得称赞的是,秦九韶创造的一些算法(例如,多项式求值的方法)至今仍是世界上最好的算法。

东方数学的使命

中国科学院院士 吴文俊*

一提到科学或者数学, 脑子里想到的就是以 欧美为代表的西方科学和数学, 我要讲的是,除 了以西方为代表的科学和数学之外,事实上还有 跟它们完全不同的所谓东方科学与数学,这个意 见也不是我第一次这样讲,在《中国科学技术 史》这一宏篇巨著里面就已经介绍了这一点,李 约瑟在著作里讲,东方不仅有科学和数学,而且 跟西方走的是完全不同的道路,有不同的思想方

吴文俊,1919年生于上海,1940年毕业于上海交通大学数学系。1946年在法国获博士学位。1957年被选为中国科学院学部委员(院士)。1990年被第三世界科学院选为院士。

法, 究竟怎么不一样呢?

所谓东方数学, 就是中国的古代数学及印度 的古代数学,东西方数学的异同,也就是现在欧 差的数学照东方数学 (主要是古代的中国数学) 有什么异同,我们学现代数学(也就是西方数 学),主要内容是证明定理;而中国的古代数学 根本不考虑定理不定理,没有这个概念,它的主 要内容是解方程, 我们着重解方程, 解决各式各 样的问题,着重计算,要把计算的过程、方法、 步骤说出来, 这个方法步骤, 用现在的话来讲, 就相当于所谓算法, 美国一位计算机数学大师 说, 计算机数学即是算法的数学, 中国的古代数 学是一种算法的数学, 也就是一种计算机的数 学, 进入到计算机时代, 这种计算机数学或者是 算法的数学, 刚巧是符合时代要求, 符合时代精 神的。从这个意义上来讲,我们最古老的数学也 是计算机时代最适合、最现代的数学。 这是我个 人的一种看法,

我们再来说一下东方数学,也就是中国古代 数学的精神实质是什么,我们古代数学的精髓就 是从问题出发的精神,和西方的从公理出发完全 不一样,为了从问题出发,解决各式各样的问 题,就带动了理论和方法的发展,从问题出发, 以问题带动学科的发展,这是整个数学发展的总 的面貌。

为什么解决问题要解方程呢? 原因很简单,一个问题有原始的数据,要求解决这个问题得出答案,这个答案也应是以某种数据的形式来表示的,在原始数据和要求数据之间,有某种形式的关系,这种由已知数和未知数建立起来的关系就是一种方程。为了解决形形色色的问题,就要解决形形色色的方程。因此,解方程变成中国两千多年历史发展中主要的目标所在。

我想特别提到一点,就是我们经常跟着外国人的脚步走,我们往往花很大的力气从事某种猜测的研究,希望能够解决或者至少推进一步,可是不管你对这个猜测证明也好,推进也好,提出也好,就好比老师出了一个题目做出来,还是低人一等。出题目的老师还是高你一等,出处是低人一等。出题目的老师还是高你一等。并算机时代,这个问题值得思考。当然,不管谁提出来这样的问题,我们都应想办法对其有所贡献,可是不能止步于此,我们应该出题目给人家做,这个性质是完全不一样的。

我们正在进入计算机时代,计算机只能处理有限的问题,所以相应的数学应该是一种处理有限事物的数学,在数学上叫"组合数学".历史则上,组合数学创始于中国,以贾宪为首,一系则的成就绝不断涌现,我们在数学方面得到许多这样的成就绝不是偶然的,东方的数学有一定的思考方法,是有计划、有步骤、有思想地进行的。思考体地讲,它有一个基本的模式,就是从实际问题发,形成一些新的概念,产生一些新的方法,再提高到理论上,建立一般的原理(就像牛辆有关的定理),用这样的原理解决形形色色更复新,更重要、更艰深的实际问题,这样数学就不断地上升和发展。这就是古代数学发展的大致理论体系

我们现在拥有计算机这样的便捷武器,又拥有 切合计算机时代使用的古代数学,怎样进行工作, 才能对得起古代的前辈,建立起我们新时代的新数 学,并在不远的将来,使东方的数学超过西方的数 学,不断地出题目给西方做,我想,这是值得我们 大家思考和需要努力的方面。

(本文摘编自中国科学家人文论坛)

附 录

参考程序

```
1. 解三元一次联立方程组的程序。
write(%io(2), "please input the data at this format !");
write(%io(2),"--> all al2 al3");
write(%io(2)," --> a21 a22 a23");
write(%io(2)." -- a31 a32 a33");
write(%io(2),"--> b1 b2 b3");
[a] = read(\%io(1), 3, 3);
[b]=read(%io(1), 1, 3);
for k=1:2
   t = abs(a(k,k)):
   m=k:
   for i=k+1.3
       if abs(a(i,k))>t then t=abs(a(i,k)); m=i; end:
   end:
   if t<1e-6 then print(%io(2). "no solution or ununique solution".t); abort; end;
   if m<>k
   for i = k:3
       c=a(m,i);a(m,i)=a(k,i);a(k,i)=c;
   end
   c = b(m) : b(m) = b(k) : b(k) = c
   end
   for i=k+1:3
      c = -a(i,k)/a(k,k);
      for i=(k+1):3
         a(i,j) = a(i,j) + c * a(k,j);
      end
      b(i) = b(i) + c * b(k);
   end
end
if a(3,3)<1e-6 then print (%io(2), "no solution or ununique solution");
```

```
abort: end:
        x(3) = b(3)/a(3.3);
        for k=2:-1:1
          s=0:
           for i=(k+1):3
                  s=s+a(k,i)*x(i):
              end
        x(k) = (b(k) - s)/a(k,k);
        end
        print(%io(2).x);
        2. 求一元三次方程 x3+5x2-4x-20=0 根的程序.
        a(4)=1; a(3)=5; a(2)=-4; a(1)=-20;
        c=1: d=1e-10:
        x=input("chuzhi");
        v = a(4):
        for i=3: -1: 1
0 0 0
         y=y * x+a(i);
        end:
        vl=v:
        while abs(y)>1e-10
         y = a(4):
         for i=3; -1; 1
0
           y = y * (x+c)+a(i);
         end:
       if abs(y)>1e-10
         write(%io(2), "yichu");
           break:
         end:
         if c<d
           break:
         end:
         if y1 * y>0 | abs(y)<1e-10
         x=x+c:
         else
         c = c/10:
         end:
       end:
       print(%io(2), x);
```


第二章统计

同学们在小学和初中已经学习过统计知识,知道它的一些应用,这一章我们要进一步学习统计的有关内容,为了让大家了解统计在科学研究中的应用,我们先讲一个统计学用于二次世界大战时期军事情报的一个例子。

当时盟军情报作战机构根据间谍活动收集的情报估计出德军坦克的数目大约有 18 000柄. 德军真的有这么多的坦克吗? 盟军的科学家不太相信这个数字,他们从统计学知识的角度来考虑这个问题. 从微获的德军坦克知道,德军的每一辆坦克都有编号,而且这些编号是从 1 开始连续编排的,这样,编号就指出了制造坦克的顺序. 如何从微获坦克的编号来估计德军生产坦克的总数 N 呢? 在这个问题中,我们考虑的总体是: 1 号坦克, 2 号坦克, ……, N 号坦克, 样本是被微获的坦克,例如,可设为5 号坦克, 13 号坦克, 95 号坦克, ……, n 号坦克, 在统计学中一个估计总数的办法是求被缴获坦克编号的平均数,并认为这个值是全部编号的中点. 因此样本平均数乘以2 就是总数的一个估计, 用类似的统计方法估计出的结果是, 1942 年德军的坦克生产量约为 3 400 辆,后来知道这个估计与实际生产量相去不远, 显然情报机构估计的数字大大超过了实际生产量.

从这个侧子,我们可以看到统计学在军事科学研究中的巨大作用。统计学不光用 于军事领域,还大量用于生产、生活领域,事实上,在我们日常生活中也经常要用到 统计知识。例如、学期考试后,你帮助老师计算各科成绩的平均分。从平均分你能得 到什么信息,平均分的信息对你有什么用处?在看电视的时候,电视节目的收视率代 表什么含义?在街头,你有没有被邀请过填写一份调查表?在日常生活与学习中我们 常常要知道这样、那样的数据,供我们推断与决策。怎样收集和整理你需要的数据? 如何从这些数据中得到有用的信息?说到这里,你大概知道我们要学习统计知识的作 用和意义了吧!

统计学是用科学方法收集、整理、描述和分析所得数据资料,并由此进行推断或 决策的学科,如何收集数据,根据所获得的数据提取有用的信息,作出合理的决策, 这就是本章所要学习的主要内容。

测量同学的身高

测试灯泡的寿命

让我们研究下面的具体问题,

问题 某校高中学生有 900 人,校医务室想对全校高中学生的 身高情况作一次调查,为了不影响正常教学活动,准备抽取 50 名 学生作为调查对象. 你能帮助医务室设计一个抽取方案吗?

这个问题涉及调查对象的总体是某校全体高中学生,其中每一 名学生是个体.问题要求从总体中抽取容量为50的样本来做调查.

由问题可知,要统计的变量是某校全体高中学生的身高,变量的一个取值就是某一特定学生的身高.在具体问题中,我们往往研究总体的某项数值指标,如上面某校全体高中学生的身高.因此,我们一般把所考察对象的某一数值指标的全体构成的集合看作总体,构成总体的每一个元素作为个体.从总体中抽出若干个体所组成的集合叫做样本,

在这个问题中,要得到全校高中学生的身高情况,最好的办法是对全校高中学生的身高逐一进行测量、记录. 但这样做费时费力,还有可能干扰正常的教学活动. 在更多的情况下,很难做到对所有考察的对象作全面的观测,有时根本无法施行. 例如测试灯泡的寿命,了解中央电视台春节文艺晚会的收视率,判断山东省的成年人平均身高是否为全国之最等,这些试验有的是破坏性的,有的由于测试的总体包含的成员数量很大,如果逐一测试,要消耗大量的时间、人力、物力,得不偿失. 一个行之有效的方法是从总体中选取部分个体(这部分个体就是总体的一个样本),并记录下来,并从这组数据来推断总体的情况.

在上述问题中,应当如何选出50名学生的身高作为样本呢,能否从高一年级选出50名学生的身高,作为样本来估计全校高中学生的身高呢?由于学生的身高会随着年龄的增长而增高,这样的抽样方案有很大的局限性.我们希望从样本的身高值去推断全体高中学生的身高状况,使样本能充分地代表总体.如何抽取样本,直接关系到对总体估计的准确程度,因此在抽样时要保证每一个个体都可能被抽到,每一个个体被抽到的机会是均等的,满足这样的条件的抽样是随机抽样.在进行抽样时,如何做才能满足抽样的随机性和个体被抽取机会的均等性,统计工作者设计了许多方法.下面介绍几种经常采用的随机抽样方法.

2.1.

简单随机抽样

一种最简单、最基本的抽样方法是简单随机抽样,简单随机抽样有两种选取个体的方法:放回和不放回,我们在抽样调查中用的是不放回抽样,也就是每次从总体中抽取元素后不再将这个元素放回总体,

我们先来看一个例子,一个布袋中有 6 个同样质地的小球,从中不放回地抽取 3 个小球,第 1 次抽取时,6 个小球中的每一个被抽到的机会是均等的,所以每个小球都有 $\frac{1}{6}$ 的可能性被抽到,第 2 次抽取时,余下的 5 个小球中的每一个都有 $\frac{1}{5}$ 的可能性被抽到,第 3 次抽取时,余下的 4 个小球中的每一个都有 $\frac{1}{4}$ 的可能性被抽到,也就是说,每次抽取时各个小球有相同的可能性被抽到,

一般地,从元素个数为 N 的总体中不放回地抽取容量为 n 的 样本,如果每一次抽取时总体中的各个个体有相同的可能性被抽 到,这种抽样方法叫做简单随机抽样,这样抽取的样本,叫做简单 随机样本.

常用的简单随机抽样办法有抽签法和随机数表法,下面我们分 别介绍用这两种办法如何抽出简单随机样本.

1. 抽签法

从一个 100 支日光灯管寿命的总体中,用不放回的方法抽取 10 支日光灯管寿命构成一个简单随机样本. 我们可以给这 100 支日光 灯管寿命编号,每一支日光灯管寿命对应1到100中的惟一一个数,再把这100个号分别写在相同的100张纸片(或小球、竹块)上,然后把它们放在一个容器里搅拌均匀,就可以抽样了.抽出一张纸片,记下上面的号码,然后再搅拌均匀,继续抽取第2张纸片,记下号码.重复这个过程直到取得10个号码时终止.于是,和这10个号码对应的日光灯管寿命就构成了一个简单随机样本,

第 ? 最 思考与讨论

如果从有 3 000 个元素的总体中抽取 100 个元素 的样本,用抽签法有没有困难?

抽签法的优点是简单易行. 缺点是, 当总体的容量非常大时, 费时、费力又不方便. 况且, 如果标号的纸片或小球搅拌得不均匀, 可能导致抽样的不公平.

2. 随机数表法

随机数表是由 0, 1, 2, …, 9 这 10 个数字组成的数表, 并且表中的每一位置出现各个数字的可能性相同. 通过随机数生成器, 例如使用计算器或计算机的应用程序生成随机数的功能, 可以生成一张随机数表 (表 2-1), 通常根据实际需要和方便使用的原则, 将几个数组合成一组, 如 5 个数一组, 然后通过随机数表抽取样本.

要考查某种品牌的 850 颗种子的发芽率,从中抽取 50 颗种子进行实验。用随机数表抽取的步骤如下;

- (1) 对 850 颗种子进行编号,可编为 001,002, ..., 850.
- (2) 给出的随机数表中是 5 个数一组,使用各个 5 位数组的前 3 位,从各组数中任选一个前 3 位小于或等于 850 的数作为起始号码。例如从第 1 行第 7 组数开始,取出 530 作为抽取的 50 颗种子中的第 1 个的代号。
- (3) 继续向右读,由于 987 大于 850,跳过这组数不取,继续向右读,得到 415 作为第 2 个的代号.数组的前 3 位数不大于 850 且不与前面取出的数重复,就把它取出,否则就跳过不取,取到一行未尾时转到下一行从左到右继续读数,如此下去直到得出在 001

到 850 之间的 50 个三位数.

表 2-1 随机数表

 48628
 50089
 38155
 69882
 27761
 73903
 53014
 98720
 1571
 74913

 53666
 68912
 48395
 32616
 34905
 63640
 57931
 72328
 49195
 17699

 00620
 79613
 29901
 92364
 38659
 64526
 20236
 29793
 9063
 93988

 98246
 18957
 91965
 13529
 97168
 97299
 68402
 68378
 89201
 67871

 01114
 19048
 80859
 9170
 9593
 31491
 72529
 3980
 4575
 14153

 41410
 51595
 8983
 8233
 9680
 9387
 9281
 84275
 4593
 4490

 3009
 18573
 5894
 35285
 1464
 3526
 44253
 64517
 66128
 1458

 64687
 84711
 97114
 9396
 5570
 3392
 15393
 3126
 56349
 82615

 78379
 70304
 75649</

上面我们是从左到右读数,也可以用从上到下读数或其他有 规则的读数方法.

目前, 计算器和许多计算机数学软件都能很方便地生成随机数 序列, 大家可使用它们抽取随机样本.

使用科学计算器或 Scilab 软件的随机数生成功能生成 3 位数字一组的随机数表,并用你 生成的随机数表给出本节开头问题的一个简单随机抽样方案。

- 1. 什么是简单随机抽样?
- 2. 在一般"调查"时,为什么要进行抽样调查?
 - 如果想了解你所在班上同学喜欢听数学老师讲课的比例,计划抽取8名同学做调查,请你用抽签法抽取一个样本.

- 某种福利彩票有1000个有机会中奖的号码(设号码为000~999),有关机构按 随机抽取的方式确定最后两位数为36的号码为中奖号码。 试分别写出10个中 奖号码。
- 2. 某居民区有730户居民,居委会计划从中抽取25户调查其家庭收入状况,你能帮助居委会抽出一个简单随机样本吗?
- 3. 使用计算器或计算机制作一张1000个一位数的随机数表,并检查0~9这10个数在表中出现的可能性是否相同?

系统抽样

实际抽样中往往要考察容量很大的总体,例如某省农村家庭的 年平均收入状况,某电视机厂生产的某种型号的电视机的质量是否 合格. 这时样本容量越大越能更好地反映总体特征,但工作量也随 之增大, 当总体元素个数很大时,样本容量就不宜太小,采用简单 随机抽样,就显得费事. 这时,可将总体分成均衡的若干部分,然 后按照预先制定的规则,从每一部分抽取一个个体,得到所需要的 样本,这种抽样的方法叫做系统抽样.

为了了解某地区今年高一学生期末考试数学科的成绩,拟从参加考试的15 000名学生的数学成绩中抽取容量为 150 的样本. 对全体学生的数学成绩进行编号,号码为从 1 到15 000. 样本容量与总体容量的比为150:15 000=1:100,我们可将总体平均分为 150个部分,其中每一部分包含 100个个体,然后从 1 到 100 号进行简单随机抽样,抽取一个号码,比如说是 56,接下来顺次取出号码为 156,256,…,14 956 的学生. 这样就可得到容量为 150 的一个样本.

从元素个数为N的总体中抽取容量为n的样本,如果总体容量能被样本容量整除,设 $k=\frac{N}{n}$,可先由数字1到k中随机地抽取一个数s作为起始数,然后顺次抽取第s+k,s+2k,…,s+(n-1)k个数,这样就得到容量为n的样本,如果总体容量不能被样本容量

整除,可随机地从总体中剔除余数,然后再按系统抽样方法进行抽样.

在进行大规模的抽样调查时,系统抽样比简单随机抽样要方便 很多,因而应用的范围很广,由于抽样的间隔相等,因此系统抽样 也被称作等距抽样。

- 1. 什么是系统抽样? 系统抽样有什么优点?
- 2. 从编号为1到900的总体中用系统抽样的办法抽取9个样本。

- 某批产品共有1563件,产品按出厂顺序编号,号码为从1到1563. 检测员要从中抽取15件产品作检测,请你给出一个系统抽样方案。
- 2. 要考察某商场 2003 年的日销售额,从一年时间中抽取 52 天的销售额作为样本, 请给出你的系统抽样方案. 并说说你的抽样方案的优点和不足.

2.1.3

分层抽样

当总体由有明显差别的几部分组成时,为了使抽取的样本更好 地反映总体的情况,常采用分层抽样. 将总体中各个个体按某种特 征分成若干个互不重叠的几部分,每一部分叫做层,在各层中按层 在总体中所占比例进行简单随机抽样,这种抽样方法叫做分层抽样.

例如,某中学高中学生有 900 名. 为了考查他们的体重状况,打算抽取容量为 45 的一个样本. 已知高一有 400 名学生,高二有 300 名学生,高三有 200 名学生. 采用分层抽样,样本容量与总体容量的比为 45:900=1:20,所以在高一、高二、高三 3 个层面上取的学生数分别为 $\frac{300}{20}$, $\frac{300}{20}$, 即分别抽取 20, 15, 10 名学生.

在3个层面上抽样时,采用简单随机抽样方法,

分层抽样的优点是,使样本具有较强的代表性,而且在各层抽样时,又可灵活地选用不同的抽样法. 因此,分层抽样应用比较广泛.

- 某校高一学生共500名,经调查,喜欢数学的学生占全体学生的30%,不喜欢 数学的人数占40%,介于两者之间的学生占30%.为了考查学生的期中考试的 数学成绩,如何用分层抽样抽取一个容量为50的样本。
- 2. 某公司有员工 500 人,其中不到 35 岁的有 125 人,35~49 岁的有 280 人,50 岁以上的有 95 人,为了调查员工的身体健康状况,从中抽取 100 名员工,用分层抽样应当怎样抽取?
- 3. 某大学就餐中心为了了解新生的饮食习惯,以分层抽样的方式从1500名新生中抽取200名进行调查,新生中的南方学生有500名,北方学生有800名,西部地区的学生有200名,应如何抽取?

某市电视台在因特网上征集电视节目现场参与观众,报名的总人数为 12 000 人,分别来自 4 个城区,其中东城区 2 400 人,西城区 4 605 人,南城区 3 795 人, 北城区 1 200 人,用分层抽样的方式从中抽取 60 人参加现场节目,应当如何抽取?

2.1.4 数据的收集

在实际统计调查时,一般先要确定调查的目的、对象,也就是 统计调查要解决的问题和需要调查的总体;还要确定好调查的项 目,也就是要统计的变量.接下来就可以开始收集数据了.收集数 据通常有下面一些方式.

1. 做试验

根据调查项目的要求来设计一些合适的试验,能够直接地获得 样本数据. 例如要统计一颗骰子各个点数出现的频率,就可做抛掷 骰子的试验,记下每次抛掷骰子出现的点数,得到样本数据. 试验 时要注意准备好试验的用具(或组织好观测的对象)、指定专门的 记录人员等. 做试验通常能得到可靠的数据资料,但需花费的人 力、物力、时间较多.

2. 查阅资料

有些数据资料不容易直接调查得到,这时可以通过查阅统计年 签、图书馆文献等办法获得所需或相关的数据,比如全国历次人口 普查的数据都可以在统计年鉴中查阅到.还可以通过因特网上的资 源得到数据资料.

在因特网上查找需要的数据

3. 设计调查问卷

做实际调查时往往要设计调查问卷.调查问卷一般由一组有目的、有系统、有顺序的题目组成.问题由调查人员根据调查的目的、项目进行设计.设计题目时要注意符合下面的要求:

(1) 问题要具体,有针对性,使受调查者能够容易作答.

问卷中要避免一般性或不具体的问题。例如,调查消费者对某型号电视机满意程度应包含外观、功能、价格三个方面,如果问题设计成为:

您对某型号电视机是否满意?	
□ 1. 满意	
□ 2. 一般	
□ 3. 不满意	

则可能有消费者对外观满意而对功能不满意而不知怎样去选择. 应 将问题细化为三个方面:

	满意	一般	不满意
您对某型号电视机的外观是否满意?			
您对某型号电视机的功能是否满意?			
您对某型号电视机的价格是否满意?			

这样才能了解消费者的直正想法, 达到调查的目的,

(2) 语言简单、准确,含义清楚,避免出现有歧义或意思含混的句子.

所问内容的定义要明确,便于受调查者能够准确地回答。例如 了解家庭情况时提问"您家里有几个孩子"、对于"孩子"的界定, 不同年龄的受调查者可能会有不同的理解,提问时就应明确孩子的 定义,

(3) 题目不能出现引导受调查者答题倾向的语句.

不应出现对答题选项有倾向性的话语。例如调查问题是"大家都认为国家足球队肯定能小组出线,您的意见为_____?"这种问法可能导致答卷者选择小组出线的答案。

调查问卷可以通过邮寄、打电话、派专人调查、网络调查等方 式得到答卷.

实际调查时会遇到很多具体问题, 收集数据的方式也要灵活使 用. 通过这几种方式收集的数据,还要经过汇总,最后写成调查分析报告.

- 1. 想一想怎样可以得到你所在班级同学的身高数据.
- 2. 你还能想到哪些可以得到数据资料的途径?

设计一份中学生消费状况的调查问卷,实际调查后写出调查分析报告.

习题2-1 A

- 要从编号为1到100的100道选择题中随机抽取20道题组成一份考卷,请你用抽签法给出考题的编号。
- 某商店有590件货物,要从中选出50件货物做质量检查,请你用随机数表法给出一个抽样方案。
- 4. 北京放官博物院某天接待游客 10 000 人 (假设把他们编号为 0~9 999),如果要从这些游客中随机选出 10 名幸运游客,请你用系统抽样的方式给出幸运游客的编号。
- 一个田径队中有男运动员56人,女运动员42人,用分层抽样的方式从全队中抽取 28名运动员。
- 6. 某市有210家百货商店,其中大型商店有20家,中型商店有40家,小型商店有150家,为了了解商店的销售情况,要从中抽取21家商店进行调查,请你用分层抽样的方式进行抽取。
- 7. 请你设计一份关于中学生课余活动的调查问卷.

习题2-1 B

- 1. 某公园为了考察每天游览的人数,从一年中要抽取 30 天进行统计,请你分别用随机数表法、系统抽样法、分层抽样法给出样本,并根据样本比较这 3 种抽样方式.
- 2. 随着互联网络的发展与普及,网络调查方式的使用越来越多. 你能比较一下传统的调查方式与网络调查方式的优劣吗?

用随机抽样的方法在总体中抽取样本,我们就得到一组数据。在初中学过的统计知识基础上,还可以画出这些数据的频率分布直方图,可以算出这些数据的平均数和标准差。这些信息和原来的总体有什么关系呢?理论研究表明,我们可以用样本的频率分布估计总体的分布,可以用样本的数字特征(如平均数、标准差)估计总体的数字特征.

2.2.1

用样本的频率分布估计总体的分布

从一个总体得到一个包含大量数据的样本时,我们很难从一个个数字中直接看出样本所包含的信息.如果把这些数据形成频数分布或频率分布,就可以比较清楚地看出样本数据的特征,从而估计总体的分布情况。

看下面的例子.

某钢铁加工厂生产内径为 25.40 mm 的钢管,为了掌握产品的生产状况,需要定期对产品进行检测。又由于产品的数量巨大,不可能——检测所有的钢管,因而通常采用随机抽样的办法。如果把这些钢管的内径看成总体,我们可以从中随机抽取 100 件钢管进行检测,把这 100 件钢管的质量分布情况作为总体的质量分布情况来看待。根据规定,钢管内径的尺寸在区间 25.325~25.475 内为优等品,我们特别希望知道所有生产的钢管中优等品所占的比例,这

时就可以用样本的分布情况估计总体的分布情况。

下面的数据是一次抽样中的 100 件钢管的内径尺寸,

25. 39 25. 36 25. 34 25. 42 25. 45 25. 38 25. 39 25. 42 25. 47 25. 35 25. 41 25. 43 25. 44 25. 48 25. 45 25. 43 25. 46 25. 40 25. 51 25. 45 25. 40 25. 39 25. 41 25. 36 25. 38 25. 31 25. 56 25. 43 25. 40 25. 38 25. 37 25. 44 25. 33 25. 46 25. 40 25. 37 25. 45 25. 35 25. 32 25. 45 25. 40 25. 27 25. 43 25. 54 25. 39 25. 45 25. 43 25. 40 25. 37 25. 44 25. 39 25. 45 25. 40 25. 27 25. 43 25. 54 25. 39 25. 45 25. 43 25. 40 25. 35 25. 37 25. 38 25. 24 25. 44 25. 40 25. 36 25. 42 25. 39 25. 46 25. 38 25. 37 25. 31 25. 34 25. 40 25. 36 25. 41 25. 32 25. 38 25. 42 25. 40 25. 35 25. 41 25. 32 25. 38 25. 42 25. 40 25. 35 25. 41 25. 32 25. 38 25. 42 25. 49 25. 35 25. 41 25. 32 25. 38 25. 42 25. 40 25. 38 25. 42 25. 40 25. 35 25. 41 25. 32 25. 38 25. 42 25. 40 25. 39 25. 46 25. 29 25. 40 25. 37 25. 33 25. 40 25. 35 25. 41 25. 37 25. 41 25. 37 25. 41 25. 39 25. 47 25. 38 25. 49 25. 39 25. 47 25. 38 25. 41 25. 37 25. 47 25. 39 25. 47 25. 38 25. 39

上面的 100 个数据有点散乱,从中很难看出产品质量的分布情况,必须对样本数据用统计的方法加以概括和整理. 我们在初中已经学习过把样本数据表示成频数分布表和频数分布直方图这样的图、表形式. 从图、表中可以直观地看出样本数据的分布情况. 下面我们进一步列出这组样本数据的频率分布表、频率分布直方图,步骤如下:

(1) 计算极差

计算极差时,需要找出这组数据的最大值和最小值.当数据很多时,怎样求出一组数据的最大值呢?

找出这组数据最大值的算法:

S1 把这 100 个数据命名为 A(1)、A(2)、A(3)、…、A(100).

S2 设变量 x=A(1).

S3 把 $A(i)(i=2, \dots, 100)$ 逐个与x比较,如果A(i)>x,则 x=A(i).

想一想,怎样求出这组数据的最小值?

运用上面的算法得出这组样本数据的最大值是 25.56, 用类似的算法可以得出最小值是 25.24, 它们的£=25.56-25.24=0.32, 所以极差等于 0.32.

(2) 决定组距与组数

样本数据有100个,由上面算得极差为0.32,取组距为0.03.

$$\frac{\text{极差}}{\text{组距}} = \frac{0.32}{0.03} = 10\frac{2}{3}$$

于是应将样本数据分成11组.

(3) 决定分点

○ 第二章 统 计

将第一组的起点定为 25. 235. 组距为 0. 03. 这样所分的 11 个 组县,

第1组, 25, 235~25, 265

第2组: 25.265~25.295

第3组:25,295~25,325

第4组: 25.325~25.355

第5组:25.355~25.385

第6组:25.385~25.415

第7组: 25.415~25.445

第8组: 25.445~25.475 第10组: 25.505~25.535

第9组: 25.475~25.505 第11组: 25.535~25.565

(4) 列频率分布表

通过下面的算法,对落在各个小组内数据的个数进行累计,这 个累计数叫做各个小组的频数,各小组的频数除以样本容量,得各 小组的频率,

求各个小组频数的算法:

S1 设 B(j) 为落在第 j 个小组内的数据个数,且 B(j) = 0 $(j = 1, 2, \dots, 11)$.

S2 逐一判断 A(i) $(i=1, 2, \cdots, 100)$ 落人哪一个小组,若落人第j 个小组,则 B(j)=B(j)+1.

表 2-2 频率分布表

分组	个数累计	频数	频率
25. 235~25. 265	1	1	0.01
25. 265~25. 295	2	2	0.02
25. 295~25. 325	5	5	0.05
25. 325~25. 355	12	12	0.12
25. 355~25. 385	18	18	0.18
25. 385~25. 415	25	25	0. 25
25. 415~25. 445	16	16	0.16
25. 445~25. 475	13	13	0.13
25. 475~25. 505	4	4	0.04
25. 505~25. 535	2	2	0.02
25. 535~25. 565	2	2	0.02
合计	100	100	1.00

(5) 绘制频率分布直方图

在直角坐标系中,用横轴表示产品内径尺寸,纵轴表示频率与 组距的比值,得到频率分布直方图(图 2-1).

图 2-1

容易看出.

小长方形面积=组距×<u>频率</u>=频率

这就是说,各个小长方形的面积等于相应各组的频率,显然,所有长方形面积之和等于1.

为了了解全部产品中优等品所占比例,可以统计出内径尺寸在区间 25.325~25.475 内的个体数在样本容量中所占的比例,也就是它的频率.从表 2-2 或图 2-1 容易看出,这个频率值等于0.12+0.18+0.25+0.16+0.13=0.84.于是可以估计出所有生产的钢管中有 84%的优等品.工厂可以根据质量规范,看看是否达到优等品率的要求,如果没有达到,就需要进一步分析原因,解决问题.

当然,用样本的频率分布估计总体的分布时,要使样本能够很好的反映总体的特性,必须随机抽取样本。由于抽样的随机性,可以想到(参考本节练习A第3题),如果随机抽取另外一个容量为100的样本,所形成的样本频率分布一般会与前一个样本频率分布有所不同。但是,它们都可以近似地看作总体的分布。

从频率分布直方图可以清楚的看出数据分布的总体态势,但是 从直方图本身得不出原始的数据内容,所以,把数据表示成直方图 后,原有的具体数据信息就被抹掉了.

把频率分布直方图各个长方形上边的中点用线段连接起来,就得到频率分布折线图(图 2-2). 为了方便看图,一般习惯于把频率分布折线图画成与横轴相连,所以横轴上的左右两端点没有实际的意义.

国 2-2

图 2-1 中各个小长方形的面积,表明了所抽取的 100 件产品内径尺寸落在各个小组内的产品个数与 100 的比值的大小. 如果样本容量越大,所分组数越多,图中表示的频率分布就越接近于总体在各个小组内所取值的个数与总数比值的大小. 设想如果样本容量不断增大,分组的组距不断缩小,则频率分布直方图实际上越来越接近于总体的分布,它可以用一条光滑曲线 y=f(x)来描绘,这条光滑曲线就叫做总体密度曲线. 总体密度曲线精确地反映了一个总体在各个区域内取值的规律. 产品尺寸落在(a,b)内的百分率就是图中带斜线部分的面积(图 2-3). 对本例来说,总体密度曲线呈中间高两边低的"钟"形分布,总体的数据大致呈对称分布,并且大部分数据都集中在靠近中间的区间内.

图 2-3

抽样后的样本数据汇总,还可以借助计算机来准确、迅速地作出. 图 2-4 就是运用前面所讲的画直方图的步骤,在工作表中对样本数据汇总得出的结果.

常用的统计图表还有茎叶图,下面我们通过一个例子来学习用 茎叶图表示数据。

例 某赛季甲、乙两名篮球运动员每场比赛的得分情况 如下:

工作表是(Den Office 軟件的一个组 件。它是一种开放源 码并可以免费自由使 用的软件。

图 2-4

甲的得分: 12, 15, 24, 25, 31, 31, 36, 36, 37, 39, 44, 49, 50.

乙的得分: 8, 13, 14, 16, 23, 26, 28, 33, 38, 39, 51,

上面的数据可以用图 2-5 来表示,它的中间部分像一棵植物的 茎,两边部分像这棵植物茎上生长出来的叶子,用中间的数字表示 两位运动员得分的十位数,两边的数字分别表示两个人各场比赛得

分的个位数. 例如,用 3 | 389 就表示了 33、38、39 这 3 个数据, 通常把这样的图叫做茎叶图. 根据上图可以对两名运动员的成绩进行比较.

从上面这个茎叶图上可以看出,甲运动员的得分情况是大致对称的,中位数是 36; 乙运动员的得分情况除一个特殊得分外,也 大致对称,中位数是 26. 因此甲运动员的发挥比较稳定,总体得 分情况比乙运动员好.

用茎叶图表示数据有两个突出的优点,一是从统计图上没有原始信息的损失,所有的数据信息都可以从茎叶图中得到;二是茎叶图可以在比赛时随时记录,方便记录与表示。但茎叶图只便于表示两位有效数字的数据,虽然可以表示两个人以上的比赛结果(或两个以上的记录),但没有表示两个记录那么宜观、清晰。

1. 从一批灯泡中抽取 50 只灯泡作使用寿命的测试, 所得数据如下 (单位: h):

886	928	999	946	950	864	1 050	927	949	852	
1 027	928	978	816	1 000	918	1 040	854	1 100	900	
866	905	954	890	1 006	926	900	999	886	1 120	
893	900	800	938	864	919	863	981	916	818	
946	926	895	967	921	978	821	924	651	850	

根据上面的数据列出频率分布表,画出频率分布直方图、频率分布折线图,并估计寿命在1000~1150 h的灯泡在这批灯泡中所占的百分比.

2. 从某中学高三年级随机抽取 80 名男生的身高如下 (单位: cm);

168	184	175	182	168	190	170	188	176	193	
173	179	170	173	171	193	171	159	186	175	
161	165	175	187	174	162	173	178	163	172	
166	178	182	175	194	177	169	174	168	170	
180	178	189	161	175	173	160	179	183	171	
179	162	167	166	178	185	176	165	171	175	
165	180	173	157	188	178	162	176	153	174	
175	167	173	181	172	163	176	175	168	177	

根据上面的数据列出频率分布表,画出频率分布直方图、频率分布折线图并估计这所学校高三年级男生身高在165~175 cm 之间的比例.

3. 下面是某钢铁加工厂所生产钢管内径尺寸的另一个容量为 100 的随机抽样样本.

25. 39 25. 41 25. 40 25. 37 25. 35 25. 40 25. 36 25. 41 25. 47 25. 40

25. 38 25. 45 25. 41 25. 46 25. 34 25. 45 25. 44 25. 34 25. 36 25. 37

25, 34 25, 44 25, 41 25, 33 25, 45 25, 44 25, 39 25, 38 25, 30 25, 41 25, 44 25, 50 25, 38 25, 48 25, 42 25, 43 25, 48 25, 44 25, 41 25, 39

25. 39 25. 41 25. 40 25. 37 25. 35 25. 40 25. 36 25. 41 25. 47 25. 40

25. 40 25. 45 25. 33 25. 51 25. 45 25. 39 25. 37 25. 35 25. 48 25. 41

25. 39 25. 46 25. 56 25. 34 25. 54 25. 38 25. 31 25. 37 25. 29 25. 42 25. 44 25. 42 25. 45 25. 44 25. 41 25. 26 25. 36 25. 43 25. 42 25. 49 25. 51 25. 40 25. 50 25. 45 25. 44 25. 40 25. 49 25. 37 25. 38 25. 37 25. 47 25. 40 25. 40 25. 49 25. 37 25. 38 25. 37 25. 47 25. 40 25. 49 25. 37 25. 41 25. 40 25. 49 25. 37 25. 45 25. 47 25. 48 25. 48 25. 37 25. 35 25. 41

根据样本数据列出频率分布表、画出频率分布直方图, 并与书中的频率直方图 比较, 你能得到什么结论?

 某市对上、下班交通情况做抽样调查,上下班时间各抽取了12辆机动车行驶时 读如下(单位 km/h)。

上班时间: 30 33 18 27 32 40 26 28 21 28 35 20 下班时间: 27 19 32 29 36 29 30 22 25 16 17 30 用茎叶图表示上面的样本数据,并求出样本数据的中位数.

1. 从一批洗衣粉中随机抽查 50 袋洗衣粉,测得的质量数据如下 (单位: g):

 494
 498
 493
 505
 496
 492
 490
 490
 500
 499

 494
 495
 483
 485
 502
 493
 505
 485
 501
 491

 493
 500
 509
 512
 484
 509
 510
 495
 497
 498

 504
 498
 483
 510
 503
 497
 502
 498
 497
 500

 493
 499
 505
 493
 491
 497
 515
 503
 498
 518

列出頻率分布表并画出頻率分布直方图,这个频率分布能不能代表这批洗衣粉 盾量的分布情况呢?

2. 从总体中抽取容量为 100 的样本,数据分组及各组的频数如下:

分组	頻数
[22.7, 25.7]	6
[25.7, 28.7]	16
[28.7, 31.7]	18
[31.7, 34.7]	22
[34.7, 37.7]	20
[37.7, 40.7]	10
[40.7, 43.7]	8

(1) 列出样本的频率分布表;

- (2) 画出频率分布直方图:
- (3) 根据频率分布直方图,估计小于35的数据所占总体的百分比.
- 3. 甲、乙两个小组各 10 名学生的英语口语测试成绩如下 (单位:分):

甲组 76 90 84 86 81 87 86 82 85 83

乙組 82 84 85 89 79 80 91 89 79 74

用茎叶图表示两个小组的成绩,判断哪个小组的成绩更整齐一些?

用样本的数字特征估计总体的数字特征

在日常生活的很多情况下,我们往往并不需要了解总体的分布 形态,而是更关心总体的某一数字特征,比如购买灯泡时,消费者 希望知道的是这批灯泡的(平均)使用寿命,我们怎样来了解这批 灯泡的使用寿命呢?当然不可能把所有灯泡逐一测试,因为测试后 灯泡就报废了,于是,需要通过随机抽样,把这批灯泡的寿命看作 总体,从中随机取出若干个个体作为样本,算出样本的数字特征, 用样本的数字特征(如平均数等)来估计总体的数字特征.

1. 用样本平均数估计总体平均数

我们在初中学过,平均数描述了数据的平均水平,定量地反映 了数据的集中趋势所处的水平,那么,怎样用样本的平均数估计总 体的平均数呢?

Ø 从某大型企业全体员工某月的月工资表中随机抽取 50 名员工的月工资资料如下(单位,元)。

 800
 800
 800
 800
 800
 1 000
 1 000
 1 000
 1 000
 1 000
 1 000
 1 000
 1 000
 1 200
 1 200
 1 200
 1 200
 1 200
 1 200
 1 200
 1 200
 1 200
 1 200
 1 200
 1 200
 1 200
 1 200
 1 200
 1 200
 1 200
 1 200
 1 200
 1 200
 1 200
 1 200
 1 200
 1 200
 1 200
 1 200
 1 200
 1 200
 1 200
 1 200
 1 200
 1 200
 2 000
 2 000
 2 000
 2 000
 2 000
 2 000
 2 000
 2 000
 2 000
 2 000
 2 000
 2 000
 2 000
 2 000
 2 000
 2 000
 2 000
 2 000
 2 000
 2 000
 2 000
 2 000
 2 000
 2 000
 2 000
 2 000
 2 000
 2 000
 2 000
 2 000
 2 000
 2 000
 2 000
 2 000
 2 000
 2 000
 2 000
 2 000
 2 000
 2 000
 2 000
 2 000
 2 000
 2 000
 2 000
 2 000
 2 000
 2 000
 2 000
 2 000
 2 000
 2 000
 2 000
 2 000
 2 000
 2 000
 2 000
 2 000
 2 000
 2 000
 2 000
 2 000
 2 000<

试计算这 50 名员工的月工资平均数,并估计这个企业员工的 平均工资。

解:月平均工资=800+800+···+2500=1320元.由此可以

估计议家大型企业员工的月平均工资为1320元。

假设你去这家企业应聘职位,月平均工资水平应是你要考虑的 重要因素,一般来讲,月平均工资水平可以用来与同类企业的工资 待遇作比较.

同样,再随机抽取50名员工的工资,计算所得的样本平均数 一般会与例1中的样本平均数不同,所以,用样本的平均数估计总 体的平均数时,样本的平均数只是总体的平均数的近似,

下面我们来看样本平均数和样本颗率分布直方图的联系.

用前面学习的方法画出例1中月工资的频率分布直方图(图2-6(1)),并标出样本平均数。

图 2-6

我们知道,n个样本数据 x_1 , x_2 , …, x_n 的平均数 $x = \frac{x_1 + x_2 + \dots + x_n}{n}$, 则有 $n\overline{x} = x_1 + x_2 + \dots + x_n$. 也就是把每个 x_i (i = 1, 2, …, n) 都用x代替后,数据总和保持不变,所以平均数x 对数据有"取齐"的作用,代表了一组数据的数值平均水平。在频率分布直方图中,平均数是直方图的平衡点。假设横轴是一块放置直方图的路路板,则支点取在平均数处时跷路板达到平衡(图 2-6(2))。

2. 用样本标准差估计总体标准差

数据的离散程度可以用极差、方差或标准差来描述。极差又叫做全距,是一组数据的最大值和最小值的差,它反映了一组数据变化的幅度。我们知道,样本方差描述了一组数据围绕平均数波动的大小。为了得到以样本数据的单位表示的波动幅度,通常要求出样本方差的算术平方根。一般地,设样本的元素为 x_1 , x_2 , \cdots , x_n ,样本的平均数为x,定义

$$s^{2} = \frac{(x_{1} - \bar{x})^{2} + (x_{2} - \bar{x})^{2} + \dots + (x_{n} - \bar{x})^{2}}{n},$$

$$s = \sqrt{\frac{(x_{1} - \bar{x})^{2} + (x_{2} - \bar{x})^{2} + \dots + (x_{n} - \bar{x})^{2}}{n}}.$$

其中 s²表示样本方差, s 表示样本标准差.

计算样本数据 x_1 , x_2 , …, x_n 的标准差的算法是:

S1 算出样本数据的平均数 \bar{x} ;

S2 算出每个样本数据与样本平均数的差

$$x_i - \bar{x} \ (i=1, 2, \dots, n)$$
:

S3 算出 S2 中 $x_i - \bar{x}$ ($i=1, 2, \dots, n$)的平方:

S4 算出 S3 中 n 个平方数的平均数,即为样本方差:

S5 算出 S4 中平均数的算术平方根,即为样本标准差,

例2 计算数据 5, 7, 7, 8, 10, 11 的标准差.

M: S1
$$\bar{x} = \frac{5+7+7+8+10+11}{6} = 8$$
;

数据 x,	S1 ₹	$\begin{array}{c c} S2 \\ x_i - \bar{x} \end{array}$	S3 $(x_i - \bar{x})^2$
5	8	-3	9
7	8	-1	1
-7	8	-1	1
8	8	0	0
10	8	2	4
11	8	3	9

S4
$$s^2 = \frac{9+1+1+0+4+9}{6} = 4$$
;

S5
$$s = \sqrt{4} = 2$$
.

所以这组数据的标准差为 2.

例3 从某灯泡厂生产的一批灯泡中随机地抽取 10 只进行寿命测试,得数据如下(单位, b):

使用函数型计算器求样本平均数 〒和样本标准差 s.

解: 按键

MODE 2 (进入统计计算状态)

SHIFT Scl = (将计算器存储器设置成初始状态)

1458 DT 1395 DT 1562 DT 1614 DT 1351 DT

1490 DT 1478 DT 1382 DT 1536 DT 1496 DT (键入数据

继续按下表按键

按键	显示结果
SHIFT $\bar{x} =$	1476. 2
SHIFT xon =	78. 7309342

即 样本平均数 x=1 476.2, 样本标准差 s=78.730 934 2.

这里,我们更关心的是这批灯泡寿命的情况. 我们可以用算出的样本标准差 s=78.730 934 2 来估计这批灯泡寿命的变化幅度的大小,也就是说用样本的标准差可以估计总体的标准差. 如果再抽取 10 只,算得的标准差一般会与例 3 的标准差不同. 这就表明样本标准差具有随机性.

当数据很多时,用工作表软件和 Scilab 软件可以更方便、快捷地求出一组数据的标准 差,你可以尝试使用这些软件来计算样本的数字特征。

> 解:求出样本数据的平均数 = 25.401;样本标准差 s=0.056. 用样本标准差可以估计出这批产品内径尺寸的总体标准差为 0.056,也就是产品内径尺寸对于平均数的平均波动幅度是 0.056 左右.

> 平均数和标准差是工业生产中监测产品质量的重要指标,当样本的平均数或标准差超过了规定界限的时候,说明这批产品的质量可能距生产要求有较大的偏离,应该进行检查,找出原因,从而及时解决问题.

例 5 从甲、乙两名学生中选拔一人参加射击比赛,对他们的 射击水平进行了测试,两人在相同条件下各射击 10 次,命中的环数 如下:

甲 7 8 6 8 6 5 9 10 7 4

7. 9 5 7 8 7 6 8 6 7 7

- (1) 计算甲、乙两人射击命中环数的平均数和标准差;
- (2) 比较两人的成绩, 然后决定选择哪一人参赛.
- 解: (1) 计算得 $\bar{x}_{\parallel} = 7$, $\bar{x}_{\ell} = 7$; $s_{\parallel} = 1.73$, $s_{\ell} = 1.10$.
- (2)由(1)可知,甲、乙两人的平均成绩相等,但 s_Z < s_平,这 表明乙的成绩比甲的成绩稳定一些,从成绩的稳定性考虑,可以选 择Z 参赛.

样本标准差和频率分布直方图有什么关系呢? 从标准差的定义 可知,如果样本各数据值都相等,则标准差得 0,表明数据没有波 动幅度,数据没有离散性;若个体的值与平均数的差较大,则标准 差也较大,表明数据的波动幅度也很大,数据离散程度很高. 因此 标准差描述了数据对平均数的离散程度(表 2-3).

B A 3 3 3 1 1 3 5 样本数据 3 3 样本平均数 3 3 1.79 样本标准差 0 1.2 1.2 1.0 1.0 0.8 0.8 0.6 0.6 颗率分布 0.4 0.4 直方图 0.2 0.2 数据没有密散性 数据离散程度很高

表 2-3

再来看钢管内径尺寸的例子,它的样本平均数为 25.401,样本标准差为 0.056. 在直方图中用虚线标出平均数所在的位置,并画出距平均数两侧各一倍标准差和两倍标准差的区间.可以看到有大约 70%的钢管内径尺寸落在距平均数两侧各一倍标准差的区间内,即区间(x-s,x+s),大约有 95%的钢管内径尺寸落在距平均数两侧各两倍标准差的区间内,即区间(x-2s,x+2s).由此我们估计总体中也有大致比率的产品尺寸落入到相应的区间内.实际生产、生活中有大量的例子符合这样的统计规律,比如同一年龄段的人群的身高、体重,同一生产线生产的发装洗衣粉的质量等.

练习A

用自动包装机包糖,现从包装好的一批糖中任取9包,称得净质量数据如下(单位:kg):

99.2 98.6 100.3 101.3 98.3 99.8 99.4 101.9 100.5 求出这9包糖的平均质量和质量的标准差,并估计包装好的这批糖的平均质量和标准差。

- 2. 随机抽取某种节日彩灯5只、测得使用寿命如下(单位: h): 1502 1453 1067 1156 1196 计算这5只节日彩灯的平均使用寿命及使用寿命的标准差,并估计这种节日彩灯的平均使用寿命及使用寿命的标准差。
- 计算2.2.1节练习A第3题中样本数据的平均数和标准差,并与本节例4的结果相比较,你有什么体会。

- 某工厂生产滚珠,从某批产品中随机抽取8粒,量得直径分别为(单位:mm):
 14.8 14.6 15.1 15.0 14.9 15.1 15.0 14.9
 诚估计该厂生产的滚珠直径的平均数和标准差。
- 从 1 000 个零件中抽取 10 件,每件长度如下(单位:mm):
 22.36 22.35 22.33 22.35 22.37 22.34 22.38 22.36 22.32 22.35
 使用函数型计算器计算样本的平均数和标准差,并估计总体的平均数和标准差。

习题2-2 A

 为了解中学生的身体发育情况,对某一中学同年龄的50名男生的身高进行了测量, 结果如下(单位; cm);

> 175 168 170 176 167 181 162 173 171 177 179 172 165 157 172 173 166 177 169 181 160 163 166 177 175 174 173 174 171 171 158 170 165 175 165 174 169 163 166 166 174 172 166 172 167 172 175 161 173 167

- (1) 列出样本的频率分布表, 画出频率分布直方图:
- (2) 计算样本的平均数和标准差;
- (3) 由样本数据估计总体中有多少数据落入区间 (x-s, x+s).
- 2. 在一批棉花中抽测了 60 根棉花的纤维长度,结果如下 (单位: mm):

82 202 352 321 25 293 293 86 28 206 323 355 357 33 325 113 233 294 296 50 115 236 357 326 52 301 140 328 238 358 58 255 143 360 340 302 370 343 260 303 59 146 60 263 170 305 380 346 61 305 175 348 264 383 62 306 195 350 265 385

- (1) 列出样本的频率分布表, 画出频率分布直方图;
- (2) 计算样本的平均数和标准差;
- (3) 由样本数据估计总体中有多少数据落入区间 $(\bar{x}-2s, \bar{x}+2s)$.
- 在同等条件下,对30辆同一型号的汽车进行耗油1升所行走路程的试验,得到如下数据(单位,km).

14.1 12.3 13.7 14.0 12.8 12.9 13.1 13.6 14.4 13.8

12.6 13.8 12.6 13.2 13.3 14.2 13.9 12.7 13.0 13.2

13. 5 13. 6 13. 4 13. 6 12. 1 12. 5 13. 1 13. 5 13. 2 13. 4

以前两位数为茎画出上面数据的茎叶图 (只有单侧有数据),并找出中位数.

4. 在一次中学生田径运动会上,参加男子跳高的17名运动员的成绩如下表所示(单位:m);

成绩	1.50	1.60	1. 65	1.70	1. 75	1.80	1. 85	1. 90
人数	2	3	2	3	4	1	1	1

计算这些运动员成绩的平均数 (计算结果保留到小数点后两位).

5. 两名跳远运动员在 10 次测试中的成绩分别如下 (单位: m):

甲: 5.85 5.93 6.07 5.91 5.99 6.13 5.89 6.05 6.00 6.19 乙: 6.11 6.08 5.83 5.92 5.84 5.81 6.18 6.17 5.85 6.21 分别计算两个样本标准差,并根据计算结果估计哪位运动员的成绩比较稳定。 6. 计算下列样本的方差与标准差:

28 24 25 23 27 24 22 24 25 28

习题2-2 B

- 1. 请你班上的每一位同学估计一下自己每天看电视花费的时间 (单位: min), 然后:
 - (1) 列出频数分布表, 画出频率分布直方图:
 - (2) 计算平均数 r、标准差 s:
 - (3) 数出有多少数落在区间 $(\bar{x}-2s, \bar{x}+2s)$ 内.
- 如果两组数 x₁, x₂, ····, x_n 和 y₁, y₂, ····, y_n 的平均数分别是 x 和 y, 那么一组数 x₁+y₁, x₂+y₂, ····, x_n+y_n 的平均数是什么? 为什么?

变量间的相关关系

变量与变量之间的关系常见的有两类: —类是确定性的函数关系, 像正方形的边长 α 和面积 S 的关系, 另一类是变量间确实存在关系, 但又不具备函数关系所要求的确定性, 它们的关系是带有随机性的. 例如, 人的身高并不能确定体重, 但一般说来"身高者, 体也重", 我们说身高与体重这两个变量具有相关关系.

怎样判断两个变量有没有相关关系,我们来看下面的例子.

下表:

设某地 10 户家庭的年收人和年饮食支出的统计资料如

年收入 x(万元)	2	4	4	6	6	6	7	7	8	10
年饮食支出 y(万元)	0.9	1.4	1.6	2.0	2.1	1.9	1.8	2. 1	2.2	2.3

由表中数据可以看出,y有随x增加而增加的趋势,并且增加的趋势变缓,为了更清楚地看出x与y是否有相关关系,我们以年收入x的取值作横坐标,把年饮食支出y的相应取值作为纵坐标,在直角坐标系中描点 (x_i,y_i) ($i=1,2,\cdots,10$),如图 2-8 所示。这样的图形叫做散点图。从图中可以直观地看出家庭年收入和年饮食支出之间具有相关关系,并且当年收入的值由小变大时,年支出

的值也在由小变大,这种相关称为正相关,反之,如果一个变量的 值由小变大时另一个变量的值由大变小,这种相关称为负相关,

图 2-9

如果关于两个变量统计数据的散点图呈现图 2-9 的形状,则这两个变量之间不具有相关关系。例如,学生的身高与学生的数学成绩没有相关关系。借助工作表软件可以很快作出统计数据的散点图,同学们可以把收集到的统计数据用纸笔或计算机画出散点图,然后判断变量之间有无相关关系。

1. 5 个学生的教学和物理成绩如下表。

学生 学科	A	В	С	D	Е
数学	80	75	70	65	60
物理	70	66	68	64	62

画出散点图,并判断它们是否有相关关系.

 下面是某校12名高一学生的身高(单位; cm)与体重(单位; kg)之间的 关系;

身高 (cm)	151	152	153	154	156	157	158	160	160	162	163	164
体重 (kg)	40	41	41	41.5	42	42.5	43	44	45	45	46	45. 5

画出散点图,并判断它们是否有相关关系.

某农场经过观测得到水稻产量和施化肥量的统计数据如下:

施化肥量 (x)	15	20	25	30	35	40	45
水稻产量 (y)	330	345	365	405	445	450	455

画出散点图,判断它们是否有相关关系,并考虑水稻的产量会不会随着化肥施 用量的增加而一直增长.

两个变量的线性相关

看下面的例子.

例 下表是某小卖部 6 天卖出的热茶的杯数与当天气温的对比表.

气温 x (℃)	26	18	13	10	4	-1
杯数Y	20	24	34	38	50	64

- (1) 将表中的数据画成散点图;
- (2) 你能从散点图中发现温度与饮料杯数近似成什么关系吗?
- (3) 如果近似成线性关系的话,请画出一条直线来近似地表示 这种线性关系。
 - 解: (1) 画出的散点图如图 2-10.
- (2) 从图中可以发现气温和杯数具有相关关系. 当气温的值由小到大变化时, 杯数的值由大变小, 所以气温和杯数成负相关. 图中的数据点大致分布在一条直线的附近, 因此气温和杯数近似成线性相关关系.
- (3) 根据不同的标准,可以画出不同的直线来近似表示这种线性相关关系.比如可以连接最左侧点和最右侧点得到一条直线(图 2-11),或者让画出的直线上方的点和下方的点数目相等(图2-12).

图 2-10

图 2-11

图 2-12

同学们也可以自己尝试制定标准来画出近似直线,关键在于这 一标准是否合理,是否能够得到最佳的近似直线(最优拟合直线)。

第 ? 图 思考与讨论

图 2-11 和图 2-12 中画出直线的标准合理吗? 怎样判别拟合的优劣程度呢?

由图 2-12 可见,所有数据点都分布在一条直线附近.显然这样的直线还可以画出许多条,而我们希望找出其中的一条,它能最好地反映 x 与 Y 之间的关系.换言之,我们要找出一条直线,使这条直线"最贴近"已知的数据点,记此直线方程为

$$\hat{y}=a+bx$$
.

这里在 y 的上方加记号 "一",是为了区分 Y 的实际值 y,表示当 x 取值 x_i (i=1, 2, …, 6) 时,Y 相应的观察值为 y,而直线上对应于 x_i 的纵坐标是 $\hat{y}_i=a+bx_i$. ①式叫做 Y 对 x_i 的回归直线方程。a,b 叫做回归系数。要确定回归直线方程①,只要确定回归系数 a, b.

下面我们来研究回归直线方程的求法,设x,Y的一组观察值为

$$(\hat{x_i}, y_i)$$
 $i=1, 2, \dots, n$

且回归直线方程为

图 2-13

$$\hat{v} = a + bx$$

当x取值 x_i (i=1, 2, …, n) 时,Y的观察值为 y_i , 差 y_i 一 \hat{y}_i (i=1, 2, …, n)刻画了实际观察值 y_i 与回归直线上相应点纵坐标之间的偏离程度(图 2-13),我们希望这n个离差构成的总离差越小越好,才能使所找的直线很贴近已知点。

一个自然的想法是把各个离差加起来作为总离差. 可是,由于离差有正有负,直接相加会相互抵消,这样就无法反映这些数据点的贴近程度,即这个总离差不能用n个离差之和 $\sum_{i=1}^{n}(y_{i}-\hat{y}_{i})$ 来表示,通常是用离差的平方和,即

$$Q = \sum_{i=1}^{n} (y_i - a - bx_i)^2$$

作为总离差,并使之达到最小.这样,回归直线就是所有直线中Q取最小值的那一条.由于平方又叫二乘方,所以这种使"离差平方和为最小"的方法,叫做最小二乘法.

用最小二乘法求回归直线系数 a, b 有下面的公式:

$$\hat{b} = \frac{\sum_{i=1}^{n} x_{i} y_{i} - n \bar{x} \bar{y}}{\sum_{i=1}^{n} x_{i}^{2} - n \bar{x}^{2}} .$$

 $\hat{a} = \bar{y} - \hat{b}\bar{x}$.

其中a,b的上方加"",表示是由观察值按最小二乘法求得的估计值,也叫回归系数. \hat{a} 、 \hat{b} 求出后,回归直线方程就建立起来了.

如何得到离差平方和为"最小"呢?我们将离差平方和式展开,同时为了书写方便,一律省去" Σ "号的上、下标,这样得

$$\begin{split} Q &= \sum \left[(y_i - a) - b x_i \right]^2 \\ &= \sum y_i^2 - 2a \sum y_i + n a^2 - 2b \sum x_i y_i + 2ab \sum x_i + b^2 \sum x_i^2 \\ &= n a^2 + 2a(b \sum x_i - \sum y_i) + b^2 \sum x_i^2 - 2b \sum x_i y_i + \sum y_i^2. \end{split}$$
 把上式看成 a 的二次函数, a^2 的系数 $n > 0$,因此,当

$$a = -\frac{2(b\sum x_i - \sum y_i)}{-2n} = \frac{\sum y_i - b\sum x_i}{n} = \bar{y} - b\bar{x}$$

时取最小值. 其中 $\bar{y} = \frac{1}{n} \sum y_i, \bar{x} = \frac{1}{n} \sum x_i$ 是样本平均数.

同理,把Q的展开式重新按b的降幂排列,看作b的二次函数,当

$$b = \frac{\sum x_i y_i - a \sum x_i}{\sum x_i^2}$$

时取最小值,于是,

$$\begin{cases} a = \frac{\sum y_i - b \sum x_i}{n} \\ b = \frac{\sum x_i y_i - a \sum x_i}{\sum x_i^2} \end{cases}$$

从而解得回归系数

$$b = \frac{\sum x_i y_i - n\overline{x}\overline{y}}{\sum x_i^2 - n\overline{x}^2} = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{\sum (x_i - \overline{x})^2} \Re a = \overline{y} - b\overline{x}.$$

例2 在某种产品表面进行腐蚀刻线试验,得到腐蚀深度 *Y* 与腐蚀时间 *x* 之间相应的一组观察值如下表:

x(s)	5	10	15	20	30	40	50	60	70	90	120
Y(μm)	6	10	10	13	16	17	19	23	25	29	46

- (1) 画出表中数据的散点图:
- (2) 求 Y 对 x 的回归直线方程;
- (3) 试预测腐蚀时间为 100 s 时腐蚀深度是多少。
- 解: (1) 散点图如图 2-14.
- (2) 根据公式②求腐蚀深度 Y 对腐蚀时间 x 的回归直线方程的 步骤如下:

T 朱押数据列成支	

序号	x	Y	x^2	y²	xy
1	5	6	25	36	30
2	10	10	100	100	100
3	15	10	225	100	150
4	20	13	400	169	260
5	30	16	900	256	480
6	40	17	1 600	289	680
7	50	19	2 500	361	950

图 2-14

序号	x	Y	x ²	y²	xy
8	60	23	3 600	529	1 380
9	70	25	4 900	625	1 750
10	90	29	8 100	841	2 610
11	120	46	14 400	2 116	5 520
Σ	510	214	36 750	5 422	13 910

Ⅱ 计算â、b的值。

由上表分别计算 x, y 的平均数得 $\bar{x} = \frac{510}{11}$, $\bar{y} = \frac{214}{11}$. 代入公式②得(注意: 不必把 \bar{x} , \bar{y} 化为小数,以减小误差).

$$\begin{split} &\delta \! = \! \frac{13\ 910 \! - \! 11 \! \times \! \frac{510}{11} \! \times \! \frac{214}{11}}{36\ 750 \! - \! 11 \! \times \! \left(\frac{510}{11} \right)^2} \! = \! 0.\ 304\ 336. \\ &\hat{a} \! = \! \frac{214}{11} \! - \! 0.\ 304\ 336 \! \times \! \frac{510}{11} \! = \! 5.\ 36. \end{split}$$

Ⅲ 写出回归直线方程.

腐蚀深度 Y 对腐蚀时间 x 的回归直线方程为

$$\hat{y} = 0.304x + 5.36.$$

这里的回归系数 \hat{b} =0.304,它的意义是:腐蚀时间x每增加一个单位(s),深度Y平均增加0.304个单位 (μm) .

(3) 根据上面求得的回归直线方程,当腐蚀时间为 100(s)时 $\hat{y}=0.304\times 100+5.36=35.76$ (μm),即腐蚀深度大约是 35.76 μm ,

例 3 设对变量 x、Y 有如下观察数据:

x	151	152	153	154	156	157	158	160	160	162	163	164
Y	40	41	41	41.5	42	42.5	43	44	45	45	46	45. 5

使用函数型计算器求Y对x的回归直线方程. (结果保留 4 位 小数)

解: 按键

MODE 3 1 (进入线性回归计算状态)
SHIFT Scl = (将计算器存储器设置成初始状态)

151 . 40 DT 152 . 41 DT 153 . 41 DT 154 . 41.5 DT

156 . 42 $\boxed{\text{DT}}$ 157 . 42.5 $\boxed{\text{DT}}$ 158 . 43 $\boxed{\text{DT}}$ 160 . 44 $\boxed{\text{DT}}$

160 , 45 $\overline{\text{DT}}$ 162 , 45 $\overline{\text{DT}}$ 163 , 46 $\overline{\text{DT}}$ 164 , 45.5 $\overline{\text{DT}}$

继续按下表按键

按键	显示结果
SHIFT A =	-27. 75938967
SHIFT B =	0. 449530516

即 $\hat{a}=-27.7594$, $\hat{b}=0.4495$. 所以 Y 对x 的回归百线方程为

 $\hat{y} = 0.4495 \ x - 27.7594.$

探索与研究

学习使用工作表软件计算回归直线方程.

练习A

- 1. 什么是最小二乘法,回归直线方程中的 b 的含义是什么?
- 用最小二乘法求出例1的回归直线方程,如果某天的气温是5℃,预测这天小卖部卖出热茶的杯数。

练习B

1. 设对变量 x、Y 有如下观察数据:

x	-2.0	0.6	1.4	1.3	0.1	-1.6	-1.7	0.7	-1.8
Y	-6.1	-0.5	7.2	6.9	-0.2	-2.1	-3.9	3.8	-7.5

试求 Y 对 x 的回归直线方程,

2. 1971 年至 1980 年, 某城市居民的年收入金额与皮鞋销售额如下表:

年度	年收入 x (亿元)	皮鞋销售额 Y (万元)
1971	32. 2	25. 0
1972	31. 1	30.0
1973	32. 9	34.0
1974	35.8	37.0
1975	37.1	39.0
1976	38. 0	41.0
1977	39.0	42.0
1978	43. 0	44.0
1979	44.6	48.0
1980	46.0	51.0

求 Y 对 x 的回归直线方程,

习题2-3 A

1. 某工厂在一年中月总成本 Y(万元) 与该月总产量 x(万件) 有如下一组数据:

x(万件)												
Y (万元)	2.65	2.37	2.40	2.55	2.64	2.75	2.92	3.03	3. 14	3. 26	3.36	3.50

- (1) 画出散点图:
- (2) 求月总成本 Y 对月总产量 x 的回归直线方程.
- 2. 某 5 名学生的数学和化学成绩如下表:

学生	A	В	С	D	E
数学成绩(x)	88	76	73	66	63
化学成绩 (Y)	78	65	71	64	61

- (1) 画出散点图;
- (2) 求化学成绩(Y)对数学成绩(x)的回归直线方程.

习题2-3 B

1. 某公司 1985 年至 1997 年所付利息 (单位: 万元) 资料如下:

HE GOLD THE	1985				TO 15 10 10 10 10 10 10 10 10 10 10 10 10 10	1000000		N 17/7/	N. ORDER	10 10	1000000	110000	100000
利息	3. 10	2.95	3.00	2.79	2. 75	2.60	2.40	2.41	2.30	2. 15	2. 14	2.00	1.95

试确定利息对年份的回归直线方程,

2. 某矿山采煤的单位成本 Y 与采煤量 x 有关, 其数据如下:

采煤量 (千吨)	289	298	316	322	327	329	329	331	350
单位成本 (元)	43.5	42.9	42.1	39.6	39. 1	38. 5	38.0	38	37

- (1) 作出散点图;
- (2) 求出 Y 对 x 的回归直线方程.

实习作业

前面我们学习了统计学的一些基本知识,怎样把理论知识运用到实践中呢?为了研究、解决某些实际问题,通常要去调查情况,收集数据,然后根据统计知识对所得的数据进行整理、分析和计算,得出一定的结论。

例 实习作业:了解某校高一年级学生的身高情况.

做调查之前首先要做好计划,想好需要做哪些准备工作,比如了解某校高一学生的总人数,确定选取样本的容量,列样本的频率分布表,绘制频率分布直方图和 频率分布折线图,计算样本的平均数和标准差,由此估计学校高一学生的身高和身 高波动情况.

- 解:按下面的步骤完成实习作业:
- (1) 确定总体和样本容量,

总体是某校高一年级全体 400 名学生,从总体中抽取 80 名学生作为样本.

(2) 确定抽样的方法,并抽取样本,

采用随机数表法,把 400 名学生依次编号为 001,002, …,400. 从随机数表中抽取 80 个满足要求的号码,再查阅相应的 80 名同学的体检表,记录其身高数据.

(3) 计算和分析数据,写出实习报告.

实习报告

年 月 日

題目				了解某	表校高	一年组	及学生	的身	高情况	:		
具体要求	绘制频		直方图	和频	率分布	近折线	图, i					分布表, 能差,并
抽样方法	数表中		个满	足要求	的号							从随机 名同学
	100	163	179	170	177	163	185	165	183	171	188	
		168	174	165	168	166	188	166	154	181	170	
		156	160	170	182	169	157	168	173	158	167	
		100										
样本数据	and the	161	173	177	170	189	172	164	169	163	165	
样本数据 单位:cm			173 173	177 184	170 156	189 170	172 168	164 155	169 174	163 178	165 166	
		161					200					
		161 175	173	184	156	170	168 180	155	174	178	166	

題目	了解某校高一年级学生的身高情况								
		2,7300	频率分布表	A 50 -1					
	分组	个数累计	頻数	100	频率				
	147.5~151.5	1	1		0.0125				
	151.5~155.5	3	3		0.0375				
100	155.5~159.5	7	7		0.0875				
	159.5~163.5	11	11		0. 1375				
	163.5~167.5	10	10		0. 125				
	167.5~171.5	21	21		0. 2625				
	171.5~175.5	12	12		0.15				
数据处理图表	175.5~179.5	5	5		0.0625				
	179.5~183.5	5	5		0.0625				
	183.5∼187.5	2	2		0.025				
	187.5~191.5	3	3		0.0375				
	根据频率	8分布表可以画b	出頻率分布了	直方图和频率	率分布折线图				
	频率 ↑		频率 组距	t					
	SHIPS		31140	1000	\wedge				
					\ _				
	0	ПППН	計高 (身高				
样本的数字特征		样本平均数 x=	168.91,样2	・ 本标准差 s=	=8. 63				
结论	168.91(cm), 5	女和标准差可以 計高围绕平均数源 一学生身高数据	支动的大小为	9 8. 63(cm).					

【练习】

了解本校高一年级学生的某项数量指标(如体重、视力、某种考试成绩、某项体育运动的成绩、每天课外学习的时间等),要求用适当的方法抽取一个容量为

- 50 的样本,写出实习报告。
- 2. 了解周围社会生活中的某项数量指标(如工厂某种零件的尺寸、某农作物的单株产量、某商店的日营业额、某路段的车流量等).并要求用适当方法抽取一个容量为40的样本,写出实习报告。

本章小结

I)知识结构

II思考与交流

- 1. 统计学有两方面的工作,一方面是收集数据,另一方面是 分析数据, 学完这一章, 你对统计应该有了基本的认识, 试结合生 活实际提出并解决一个统计问题,
- 样本数据的取得要求有随机性,通过观察一些统计案例, 说明随机抽样的必要性与作用。
- 随机抽样方法有简单随机抽样、系统抽样和分层抽样等等。
 这几种抽样方法有什么联系,它们分别适用于哪些场合。
- 4. 做实验、查阅资料、设计调查问卷等是收集数据的常用方法,除此之外你还能想到别的方法吗?使用这些办法时要注意符合哪些要求?
- 统计的一个特征是通过部分的数据来推测全体数据的性质. 由样本数据可以
 - (1) 列出频率分布表、画出频率分布直方图、频率折线图;
 - (2) 求出样本数据的平均数、标准差等数字特征.

通过样本数据的统计图表和数字特征我们能够估计总体哪些有 用的信息?当样本数据变化时,总体的这些信息也会变化吗?应怎 样理解样本频率分布和数字特征的随机性, 把你的理解与同学们进 行交流,

6. 借助散点图可以直观地看出两个变量之间是否有相关关系. 用最小二乘法思想建立的线性回归方程。能定量的描述两个变量的 关系. 接受高等教育能得到更多的收入吗?一个人的身高和体重有 怎样的关系?用你学到的知识来解释这样一些有趣的问题。

III 巩 固 与 提 高 /

从某片森林中随机抽取35株树木,观测这35株树高,得到下列数据(单位,m);

 22.3
 21.2
 19.2
 16.6
 23.1
 23.9
 24.8
 25.1
 25.2

 24.8
 23.9
 23.2
 23.3
 21.4
 19.8
 18.3
 20.0
 21.5

 18.7
 22.4
 26.6
 23.9
 24.8
 18.8
 27.1
 20.6
 25.0

 22.5
 23.5
 23.9
 25.3
 23.5
 22.6
 21.5
 20.6

说出总体、个体、样本、样本容量, 计算样本平均数和样本标准差.

- 2. 在一篇英语文章中,从正文的第1个单词开始,每隔3个单词取 1个单词,共取100个单词,数出各个单词所含字母个数,并就 字母个数列出频率分布表、画出频率分布直方图。
- 用一标准尺测量某一零件长度,量了20次,其结果如下(单位: mm);

4. 某服装店一年中每月销售额 (单位: 万元) 如下表:

月份	1	2	3	4	5	6	7	8	9	10	11	12
销售额	583	1016	378	438	484	512	470	465	459	517	461	508

试估计该商店月销售额的平均数和标准差.

5. 现对x、Y有如下观测数据:

x	18	25	30	39	41	42	49	52
Y	3	5	6	7	8	8	9	10

- (1) 作出散点图:
- (2) 试束 Y 对 x 的线性回归方程,

IV 自测与评估

为了了解中学生的身体发育情况,从同龄的女中学生中随机抽取60名测量身高,结果如下(单位;cm);

167	154	159	166	169	159	156	166	162	158
159	156	166	160	164	160	157	156	157	161
158	158	153	158	164	158	163	158	153	157
162	162	159	154	165	166	157	151	146	151
158	160	165	158	163	163	162	161	154	165

162 162 159 157 159 149 164 168 159 153

- (1) 列出样本的频率分布表, 画出频率分布直方图:
- (2) 计算样本的平均数和标准差:
- (3) 由样本数据估计总体中有多少数据落入区间(京-2s,京+ 2s)。
- 从一批炮弹中,随机抽取 10 发进行射击,射程数据 (单位; m) 为,

- (1) 指出总体、个体、样本、样本容量;
- (2) 计算样本的平均数和标准差.
- 現对 x、Y 有如下观测数据:

x	7.0	4.0	8.5	9.5	3.0	1.0	8.0	5.0
Y	11.0	8.5	13.5	15.5	4.5	3.5	13.0	7.0

- (1) 作出散点图;
- (2) 试求 Y 对 x 的线性回归方程.

蚂蚁和大象谁的力气更大

在小时候你可能听过关于蚂蚁和大象谁的力 气更大的故事,论撒起的物体的重量,蚂蚁与大 象的力气不可同日而语,但是这样比较显然对蚂 蚁并不合理. 换个标准来比,如果按概起自身重量的倍数的大小来比较,则蚂蚁的力气远远超过 大象.

在统计中也常常会遇到这样不同变量之间的 比较。这时就需要有一个"合理的标准"。我们 知道、标准差是样本数据相对于平均数的平均波 动幅度的度量。它能够描述样本数据中各数据同 平均数的离差的大小。有时也可用作比较的标 准。拿同一科目的不同次的考试来说。由于试卷 的难易程度很难一般。我们还可以用"标准分 数"来考查学习的成绩。假设一次考试中、全班平均分 x=80、标准差 s=10、小明的成绩 X=70 分,说明小明的成绩比平均分低一个标准差,如果定义标准分数为样本数据比平均数高多少个标准差,则小明的标准分数 $=\frac{X-x}{s}=\frac{70-80}{10}=-1$. 如果另外一次考试中小明的成绩 X=80 分,而全班平均分x=85、标准差 s=5、可算出小明的标准分数仍然为一1. 这样,与通常的考试分数相比,小明的标准分数更能反映出 他与全班平均太平的差别大小。

随机数表

0

ı									
l	78226	85384	40527	48987	60602	16085	29971	61279	
ı	43021	92980	27768	26916	27783	84572	78483	39820	
ı	61459	39073	79242	20372	21048	87088	34600	74636	
	63171	58247	12907	50303	28814	40422	97895	61421	
	42372	53183	51546	90385	12120	64042	51320	22983	
	81500	13219	57941	74927	32798	98600	55225	42059	
ľ	59408	66368	36016	26247	25965	49487	26968	86021	
	77681	83458	21540	62651	69424	78197	20643	67297	
	76413	66306	51671	54964	87683	30372	39469	97434	
	48306	32560	19098	13843	70490	19383	21278	90912	
	40402	60831	15596	95509	23567	78961	46509	33267	
	82724	32555	52400	15020	12760	47439	67841	10546	
	20997	81462	41620	77512	39978	60900	60167	62088	
	37711	26727	62908	75539	99292	13361	99768	97579	
	24492	20561	77964	72344	43000	33786	90807	22267	
	69944	91085	47328	58466	95651	75217	86800	88815	
	55325	76970	30496	88609	31008	76317	90818	34144	
	33719	89319	76617	67400	85326	95814	52133	91900	
	56291	41537	67848	74976	60677	35455	11769	38484	
	64109	59218	13519	36121	64311	81138	13814	50213	
	89568	86620	31868	62342	89855	31148	97530	72827	
	16639	71496	82986	66859	81878	77144	20930	10519	
	89821	55359	94168	85859	22203	90515	31903	39726	
	10829	74291	86950	26957	66987	83572	63950	44605	
	48018	90777	89102	10970	18592	87121	92613	23810	
	33021	44709	79262	33116	80907	77689	69696	48420	
	77713	32822	64679	94095	95735	84535	74703	82890	
	25853	30963	76729	87613	65538	68978	13157	78834	
	64145	71516	11716	58309	89501	59717	56086	37459	
	68585	22783	22621	54263	41128	12663	82362	61855	

第三章 概 率

3.1事件与概率

3.2 古典概型

3.3 随机数的含义与应用

3.4

概率的应

用

北京: 降水概率 55%

五千万幸运儿"横空出世"

0 0 0 0 0 0 0 0 0 0 0

■ 记者梁红英报道

本报讯 2月3日晚6点19分,一彩民购买的"江游沪大乐造"彩票,同时投中 10注一等款, 独揽48571620元巨额装金,创下中国彩票史上个人一次性奖额之最。

······据有关人士介绍, 该彩民当时花了 200 元买下 100 注 "江渐沪大乐透" 彩票, 分成 10 组, 每组 10 注, 每组的自选号码相同, 结果, 其中 1 组所选号码与前晚"江 浙沪大乐透" 2004015 期开奖号码完全一致.

■ 记者江世亮报道

本报讯 ……对这种似乎不可能发生事件的发生,从数学概率论上将作何解释? 为此记者于昨日 午夜电话连线采访了本市一位数学建模专家……博士说,以他现在不完全掌握的情况来分析,像这位 幸运者同时获得10个大奖的概率,可称得上一次万 亿分之一的事件,通俗讲就是接近于零. ……国外

的中奖者完全是基于运气。很多人往往是因为找不出零钱,而在加油站等处随手买一 张而中的奖。

上面是文汇报 2004 年 2 月 5 日登載的两条消息,对其中提到的"一次万亿分之一的事件",我们该作何理解呢?

天气预报说"明天降雨的概率是80%",我们明天出门要不要带伞?收音机里广播报道今冬某地"流行性感冒的发病率为10%",我们这里要不要采取预防措施?……对这些在传播媒体上出现的数字80%、10%等,我们该作何理解呢?

本章介绍概率的概念和计算概率的一些初步知识, 学过本章以后, 可以较好地把 握上述概率 10⁻¹² (万亿分之一)、80%、10%的含义, 从而正确对待现实生活中遇到 的"买彩票中大奖"、"出门带不带伞"、"要不要预防流感"等问题。

3.1.1 随机现象

在自然界和人类社会里,经常会遇到两类不同的现象:必然 现象和随机现象.

我们知道,把一石块抛向空中,它会掉到地面上来;我们生活的地球,每天都在绕太阳转动;一个人随着岁月的消逝,一定会衰老、死亡……这类现象称为必然现象,必然现象是在一定条件下必然发生某种结果的现象。

另一类现象称为随机现象,它们具有这样的特点:当在相同的条件下多次观察同一现象,每次观察到的结果不一定相同,事先很难预料哪一种结果会出现.

下面举4个例子.

例 我们通常把硬币上刻有国徽的一面称为正面,现在任意掷一枚质地均匀的硬币,那么可能出现"正面朝上",也可能出现"反面朝上",究竟得到哪一种结果,不可能事先确定,这是一种随机现象.

例2 一名中学生在篮球场的罚球线练习投篮、对于每次投篮、他可能投进球、也可能投不进球、即使他打篮球的技术很好、 我们最多只能说,他投进球的可能性很大,并不能保证每投必进, 所以这也是一种随机现象。

- 例3 在城市中,当我们走到装有交通信号灯的十字路口时,可能遇到绿灯,这时可以快速穿过马路,也可能遇到红灯或黄灯,这时就应该停步不前.一般来说,行人在十字路口看到的交通信号灯颜色,可以认为是一种随机现象.

为了探索随机现象的规律性,需要对随机现象进行观察,我们把观察随机现象或为了某种目的而进行的实验统称为试验,把观察结果或实验结果称为试验的结果.为了讨论问题方便,在本章中我们赋予"试验"这一词较广泛的含义。例1的掷硬币,例2的中学生投篮,例3的观察交通信号灯颜色,例4的产品抽样检验等都是试验.此外,像战士打靶,明天会不会下雨,本地的足球队明天比赛会不会进球,甚至小孩在做掷骰子游戏……都可以看成试验.

判断以下现象是否是随机现象:

- (1) 基路口单位时间内发生交通事故的次数:
 - (2) 冰水混合物的温度是0℃;
 - (3) 三角形的内角和为 180°:
 - (4) 一个射击运动员每次射击的命中环数.

请举出你遇到的三个随机现象的例子.

3.1.2

事件与基本事件空间

当我们在同样的条件下重复进行试验时,有的结果始终不会发生,它称为不可能事件;有的结果在每次试验中一定会发生,它称 为必然事件,在试验中可能发生,也可能不发生的结果称为随机 事件.

如果某个练习投篮的中学生决定投篮5次,那么"他投进6次"是不可能事件,"他投进的次数比6小"是必然事件,"他投进3次"是随机事件。

在上一小节例 4 中, 也可以列出一些不可能事件、必然事件、 随机事件, 例如, "抽到 3 个次品"是不可能事件, "至少抽到 1 个 正品"是必然事件, "没有抽到次品"是随机事件……

通常用大写英文字母 A, B, C, ····来表示随机事件,随机事件可以简称为事件。为了叙述起来文字简洁些,我们有时讲到事件时,其中可能包含不可能事件和必然事件的意思,一般都不另作说明了。

在一次试验中,我们常常要关心的是所有可能发生的基本结果,它们是试验中不能再分的最简单的随机事件,其他事件可以用它们来描绘,这样的事件称为基本事件,所有基本事件构成的集合称为基本事件空间,基本事件空间常用大写希腊字母 Ω 表示.

例如, 掷一枚硬币, 观察硬币落地后哪一面向上, 这个试验的 基本事件空间就是集合《正面向上, 反面向上》, 即

 $\Omega = \{ 正面向上, 反面向上 \}$,

或简记为 Ω ={正,反}.这个试验有两个基本事件:"正面向上"和"反面向上"。

掷一颗骰子,观察掷出的点数,这个试验的基本事件空间 $\Omega = \{1, 2, 3, 4, 5, 6\}$,

其中1,2,3,4,5,6分别代表骰子出现1点,2点,3点,4点, 5点,6点向上这6个基本事件.

一先一后掷两枚硬币,观察正反面出现的情况,基本事件空间 $\Omega = \{(E, E), (E, E), (E, E), (E, E)\}$

它有4个基本事件.(正,正)代表第1和第2枚硬币都出现正面,(正,反)代表第1枚硬币出现正面而第2枚硬币出现反

面,(反,正)代表第1枚硬币出现反面而第2枚硬币出现正面,(反,反)代表第1和第2枚硬币都出现反面.

对于有些问题,除了要知道试验可能出现的每一个结果外,我们还要了解与这些可能出现的结果有关的一些事件.例如,在一先一后掷两次硬币的试验中,我们要了解"至少有一次出现正面"这个事件.通过观察,我们不难发现"至少有一次出现正面"这个事件可以看成是由基本事件

(正,正),(正,反),(反,正)

组成的集合, 若设事件 A= "至少有一次出现正面", 那么

 $A = \{ (\mathbb{E}, \mathbb{E}), (\mathbb{E}, \mathbb{Q}), (\mathbb{Q}, \mathbb{E}) \}.$

假如掷出了(正,正),显然可以说,"至少有一次出现正面"发生了,或者说事件 A 发生了;假如掷出了(反,反),就说事件 A 没有发生.一般地说,如果在一次试验中,出现的结果是集合 A 中的某个基本事件,我们就说事件 A 发生了,否则就说事件 A 没有发生.

我们可以把随机事件理解为基本事件空间的子集. 例如,在上面掷一颗骰子观察掷出点数的试验中,基本事件空间

 $\Omega = \{1, 2, 3, 4, 5, 6\}.$

如果设 $A = \{2, 4, 6\}$, 那么 $A \subseteq \Omega$, $A \not \in \Omega$ 的一个子集, 事件 A 就是表示"掷出偶数点"这一结果. 如果再设 $B = \{5, 6\}$, 那么 $B \subseteq \Omega$, B 也是 Ω 的一个子集, 事件 B 表示"掷出点数大于 4".

例 一个盒子中装有 10 个完全相同的球,分别标以号码 1,2,…,10,从中任取一球,观察球的号码,写出这个试验的基本事件和基本事件空间。

解: 这个试验的基本事件是取得号码为i的球,i = 1, 2, ..., 10.

基本事件空间: $\Omega = \{1, 2, \dots, 10\}$.

- 例2 连续掷3枚硬币,观察落地后这3枚硬币出现正面还是反面。
 - (1) 写出这个试验的基本事件空间;
 - (2) 求这个试验的基本事件的总数;
 - (3) "恰有两枚正面向上"这一事件包含哪几个基本事件?
- 解:(1)用类似上面一先一后掷两枚硬币时基本事件的记法, 这个试验的基本事件空间

 $\Omega = \{(E, E, E), (E, E, E), (E, E, E), (E, E), (E, E), (E, E, E)$

反,反),(反,正,正),(反,正,反),(反,反,正),(反, 反,反):

- (2) 基本事件的总数是 8:
- (3) "恰有两枚正面向上"包含以下3个基本事件: (正, 正, 反), (正, 反, 正), (反, 正, 正).

- 1. 做投掷一颗骰子试验, 观察骰子出现的点数, 用基本事件空间的子集写出下列 事件.
- (1) "出现奇数点"; (2) "点数大于 3".
- 2. 作投擲2颗骰子试验,用(x, v)表示结果,其中x表示第1颗骰子出现的点 数, v表示第2颗骰子出现的点数, 写出:
- (1) 试验的基本事件空间: (2) 事件"出现点数之和大于8";

 - (3) 事件"出现点数相等"; (4) 事件"出现点数之和大于10".
- 3. 做试验"从0,1,2这3个数字中,不放回地取两次,每次取一个,构成有序 数对 (x, y), x 为第 1 次取到的数字, y 为第 2 次取到的数字":
 - (1) 写出这个试验的基本事件空间:
 - (2) 求这个试验基本事件的总数:
 - (3) 写出"第1次取出的数字是2"这一事件。

- 1. 写出下列试验的基本事件空间:
 - (1) 种下一粒种子, 观察发芽情况;
 - (2) 甲、乙两队进行一场足球比赛,观察甲队的比赛结果(包括平局);
 - (3) 从含有 15 件次品的 100 件产品中任取 5 件, 观察其中次品数,
- 2. 投擲一颗骰子, 观察擲出的点数, $\diamondsuit A = \{2, 4, 6\}, B = \{1, 2\}, 把 A, B 看$ 成数的集合, 试用语言叙述下列表达式对应事件的意义:
 - (1) A∩B;

(2) AUB.

频率与概率

随机事件在试验中可能发生,自然产生发生的可能性有多大的问题,我们还是从最简单的试验——掷硬币谈起,虽然我们不能预先判断出现正面向上,还是反面向上,但是假如硬币均匀,直观上可以认为出现正面与反面的机会相等,即在大量试验中出现正面的 颗率应接近于 0.5.

例) 我们一起来掷硬币.

把全班分成十几个小组,每个小组 4~5 人,各小组把一枚均 匀硬币至少掷 100 次,观察掷出正面向上的次数,然后把试验结果 及计算结果填入下表:

小组编号	抛掷次数(n)	正面向上次数(m)	正面向上頻率 $\left(\frac{m}{n}\right)$

当全班做完这一试验后,把试验结果公布在黑板上,请大家谈谈事件"正面向上"的发生有没有什么规律可循?

历史上有些学者还做了成千上万次掷硬币的试验,结果如下表 所示:

试验者	抛掷次数(n)	正面向上次数(m)	正面向上頻率 $\left(\frac{m}{n}\right)$
棣莫佛	2 048	1 061	0.518 1
蒲 丰	4 040	2 048	0.506 9
费勒	10 000	4 979	0.497 9
皮尔逊	12 000	6 019	0. 501 6
皮尔逊	24 000	12 012	0.500 5

我们可以设想有 1 000 个人投掷硬币,如果每人投 5 次,计算每个人投出正面的频率,在这 1 000 个频率中,一般说,0,0.2,0.4,0.6,0.8,1 都会有,而且会有不少是 0 或 1;如果要求每个人投 20 次,这时频率为 0,0.05,0.95,1 的将会变少,多数频率在 0.35 到 0.65 之间,甚至比较集中在 0.4 到 0.6 之间;如果要求

每个人投掷1000次,这时绝大多数的频率会集中在0.5的附近,和0.5有较大差距的频率值也会有,但这样的频率值很少.而且随着投掷次数的增多,频率越来越明显地集中在0.5附近.当然,即使投掷的次数再多,也不能绝对排除出现与0.5差距较大的频率值,只不过这种情形极少.

人们经过大量试验和实际经验的积累逐渐认识到:在多次重复试验中,同一事件发生的频率在某一个数值附近摆动,而且随着试验次数的增加,一般摆动幅度越小,而且观察到的大偏差也越少,频率呈现一定的稳定性.频率的稳定性揭示出随机事件发生的可能性有一定的大小,事件的频率稳定在某一数值附近,我们就用这一数值表示事件发生的可能性大小,

一般地,在n次重复进行的试验中,事件A发生的频率 $\frac{m}{n}$,当n很大时,总是在某个常数附近摆动,随着n的增加,摆动幅度越来越小,这时就把这个常数叫做事件A的概率,记作P(A).

从概率的定义中,我们可以看出随机事件 A 的概率 P(A) 满足

 $0 \le P(A) \le 1$.

这是因为在n次试验中,事件A发生的频数m满足 $0 \le m \le n$,所以 $0 \le \frac{m}{n} \le 1$. 当A是必然事件时,P(A) = 1,当A是不可能事件时,P(A) = 0.

从定义中,我们还可以看出,概率是可以通过频率来"测量"的,或者说频率是概率的一个近似。在前述掷硬币的例子中,经过前人的反复多次试验,出现正面的频率逐渐稳定到0.5,那么我们就得到出现正面的概率是0.5.这件事情其实质与测量长度一样平常,给定一根木棒,谁都不怀疑它有"客观"的长度,长度是多少?我们可以用尺或仪器去测量,不论尺或仪器多么精确,测得的数值总是稳定在木棒真实的"长度"值的附近,事实上,人们也是把测量所得的值当作真实的"长度"值,这个类比有助于我们理解概率和频率之间的内在关系。

概率的这种定义叫做概率的统计定义. 在实践中很多时候采用 这种方法求事件的概率.

有了概率的统计定义,我们就可以比较不同事件发生的可能性 大小了.

例2 为了确定某类种子的发芽率,从一大批种子中抽出若

| 一 第三章 概 率

干批做发芽试验, 其结果如下:

种子粒数	25	70	130	700	2 000	3 000
发芽粒数	24	60	116	639	1 806	2 713
发芽率	0.96	0.857	0.892	0.913	0.903	0.904

从以上的数据可以看出,这类种子的发芽率约为 0.9.

比较例1和例2的结果,我们可以说,这类种子的发芽率比掷 一枚硬币掷出正面向上的概率要大得多.

19 ? 最惠与讨论

"某彩票的中奖概率为 1 000 % 是否意味着买 1 000 张 彩票就一定能中奖?

从概率的统计定义出发,我们先来考虑此题的简化情形。在投 掷一枚均匀硬币的随机试验中,正面出现的概率是 $\frac{1}{2}$,这是否意味 着投据 2 次硬币就会出现一次正面呢?

根据经验,我们投掷2次硬币有可能一次正面也不出现,即出现2次反面的情形,但是在大量重复掷硬币的试验中,比如掷10000次硬币,则出现正面的次数约为5000次,

要 $1\,000$ 张彩票相当于做 $1\,000$ 次试验,结果可能是一次奖也没中,或者中一次奖,或者多次中奖.所以"彩票中奖概率为 $\frac{1}{1\,000}$ "并不意味着买 $1\,000$ 张彩票就一定能中奖.只有当所买彩票的数量 n 非常大时,我们可以看成大量重复买彩票这个试验、中奖的次数约为 $\frac{n}{1\,000}$ (比如说买 $1\,000\,000$ 张彩票,则中奖的次数约为 $1\,000$),并且 n 越大,中奖次数越接近于 $\frac{n}{1\,000}$.

- 学生甲在求事件 A 的概率时,算得事件 A 的概率 P(A)=1.2,学生乙看了后说 "你一定算错了."试问乙的根据是什么?
- 2. 某射击手在同一条件下进行射击,结果如下:

射击次数(n)	10	20	50	100	200	500
击中靶心次数(m)	8	19	44	92	178	455
击中靶心頻率 $\left(\frac{m}{n}\right)$					1	4

- (1) 计算表中击中靶心的各个频率:
- (2) 这个射手射击一次,击中靶心的概率约是多少?

- 1. 用事件出现的频率与事件的概率之间的关系说明:
 - (1) 不可能事件的概率是 0;
 - (2) 必然事件的概率是1.
- 2. 一个盒子里装有许多围棋子,黑白各若干.从中任意摸出一颗棋子,记下棋子 颜色,然后放回盒中,混合均匀,再摸一子,记下颜色.如此重复多次,统计 摸得白子的次数,计算摸得白子的频率,推算摸得白子的概率.然后倒出全部 棋子,数一数黑白棋子的个数.看你得到的概率与白子在所有棋子中所占比例 有什么关系?

3.1.4 概率的加法公式

概率的加法公式是计算概率的一个最基本的公式,根据它可以 计算一些较为复杂事件的概率,我们先通过实例引入两个关于事件 的概念, 互斥事件与事件的并,

这里的事件 A 和事件 B 不可能同时发生. 这种不可能同时发生的两个事件叫做互斥事件(或称互不相容事件).

设事件 C 为"出现奇数点或 2 点",它也是一个随机事件。事件 C 与事件 A 、B 的关系是,若事件 A 和事件 B 中至少有一个发生,则 C 发生;若 C 发生,则 A 、B 中至少有一个发生。我们称事件 C 为 A 与 B 的 H (或和)。

一般地,由事件 A 和 B 至少有一个发生(即 A 发生,或 B 发生,或 A、B 都发生)所构成的事件 C,称为事件 A 与 B 的 H(或 H0),记作 H0 事件 H1 以 H2 是由事件 H3 或 H4 所包含的基本事件组成的集合。

如图 3-1 中阴影部分所表示的就是 AUB.

图 3-1

假定 A、B 是互斥事件,在 n 次试验中,事件 A 出现的频数是 n_1 ,事件 B 出现的频数是 n_2 ,则事件 $A \cup B$ 出现的频数正好是 $n_1 + n_2$,所以事件 $A \cup B$ 的频率为

$$\frac{n_1+n_2}{n}=\frac{n_1}{n}+\frac{n_2}{n}$$
.

而 $\frac{n_1}{n}$ 是事件A 出现的频率, $\frac{n_2}{n}$ 是事件B 出现的频率,因此,如果 用 μ 。表示在n 次试验中事件出现的频率,则总有

$$\mu_n(A \cup B) = \mu_n(A) + \mu_n(B)$$
.

由概率的统计定义,可知

$$P(A \cup B) = P(A) + P(B). \tag{1}$$

一般地,如果事件 A_1 , A_2 , …, A_n 两两互斥(彼此互斥),那 么事件" $A_1 \cup A_2 \cup \dots \cup A_n$ "发生(是指事件 A_1 , A_2 , …, A_n 中至 少有一个发生)的概率,等于这n个事件分别发生的概率和,即 $P(A_1 \cup A_2 \cup \cdots \cup A_n) = P(A_1) + P(A_2) + \cdots + P(A_n).$ (1') 公式 (1) 或公式 (1') 叫做互斥事件的概率加法公式.

例 1 中事件 C: "出现奇数点或 2 点"的概率是事件 A: "出现奇数点"的概率与事件 B: "出现 2 点"的概率之和,即

$$P(C) = P(A) + P(B) = \frac{1}{2} + \frac{1}{6} = \frac{2}{3}$$

例2 在数学考试中,小明的成绩在90分以上的概率是0.18,在80~89分的概率是0.51,在70~79分的概率是0.15,在60~69分的概率是0.09. 计算小明在数学考试中取得80分以上成绩的概率和小明考试及格的概率?

解: 分别记小明的考试成绩在 90 分以上, 在 80~89 分, 在 70~79分, 在 60~69 分为事件 B、C、D、E、这 4 个事件是彼此 互斥的。根据公式(1) 小明的考试成绩在 80 分以上的概率是

$$P(B|C) = P(B) + P(C) = 0.18 + 0.51 = 0.69$$
:

小明考试及格的概率,即成绩在 60 分以上的概率,由公式 (1') $P(B \cup C \cup D \cup E) = P(B) + P(C) + P(D) + P(E)$

$$=0.18\pm0.51\pm0.15\pm0.09=0.93$$

在这个例题中, 今

A= "小明考试及格", $\overline{A}=$ "小明考试不及格", 显然 A 与 \overline{A} 是互斥事件,且 A 或 \overline{A} 必有一个发生,即 $A \cup \overline{A} = \Omega$.

像这样不能同时发生且必有一个发生的两个事件叫做<mark>互为对立事件</mark>。事件 A 的对立事件记作 \overline{A} 。图 3-2 中的阴影部分表示事件 A 的对立事件。由于 A 与 \overline{A} 是互斥事件,所以 $P(\Omega) = P(A \cup \overline{A}) = P(A) + P(\overline{A})$,又由 Ω 是必然事件得到 $P(\Omega) = 1$,所以, $P(A) + P(\overline{A}) = 1$,即

图 3-2

$$P(\overline{A}) = 1 - P(A). \tag{2}$$

这个公式为我们求出 P(A) 提供了一种方法。当我们直接求 P(A)有困难时,常可以转化为求 $P(\overline{A})$.

在例 2 中,如果求"小明考试不及格"的概率,则由公式(2)得

$$P(\overline{A}) = 1 - P(A) = 1 - 0.93 = 0.07$$

即小明考试不及格的概率为 0,07.

- 1. 互斥事件是不是对立事件? 对立事件一定是互斥事件吗? 举例说明,
- 2. 从一堆产品(其中正品与次品都多于2件)中任取2件,观察正品件数和次品件数,判断下列每对事件是不是互斥事件,如果是,再判断它们是不是对立事件:
 - (1) 恰好有1件次品和恰好有两件次品:
 - (2) 至少有1件次品和全是次品;
 - (3) 至少有1件正品和至少有1件次品:
 - (4) 至少有1件次品和全是正品.

1. 在某一时期内, 一条河流某处的年最高水位在各个范围内的概率如下:

年最高水位	低于 10 m	10∼12 m	12~14 m	14~16 m	不低于 16 m
概率	0.1	0.28	0.38	0.16	0.08

计算在同一时期内,河流这一处的年最高水位在下列范围内的概率:

- (1) 10~16 m; (2) 低于 12 m; (3) 不低于 14 m.
- 2. 甲、乙两射手在同样条件下击中目标的概率分别为 0.6、0.7,则 "至少有一人 击中目标的概率 P=0.6+0.7=1.3" 这句话对不对? 为什么?

习题3-1 A

- 1. 判断题:
 - (1) 必然事件是基本事件空间的某一真子集;

()

(2) 概率是随机事件发生的可能性大小的一种度量:

(

- (3) 在一个试验中, 两个事件的并的概率可以大于1.
- 2. 同时掷出两枚骰子,观察掷得的点数和,写出这个试验的基本事件空间.
- 3. 气象台预报"本市明天降雨概率是70%",如下理解正确吗?

- (1) 本市明天将有70%的地区降雨;
- (2) 本市明天将有70%的时间降雨;
- (3) 明天出行不带雨具肯定要淋雨;
- (4) 明天出行不带雨具淋雨的可能性很大.

习题3-1 B

- 根据以往甲、乙两人在乒乓球比赛中较量的记录,甲取胜的概率是 0.6,那么乙取胜的概率是多少?
- 2. 收集一些资料, 谈谈你对随机现象的认识.

3.2.1

古典概型

前面我们用随机事件发生的频率来近似概率.对于一些特殊 类型的随机试验,我们并不需要去做大量重复的试验就可以得到 随机事件的概率.先看下面的例子.

1. 掷一枚均匀的硬币, 观察硬币落地后哪一面朝上. 这个试 验的基本事件空间

它只有两个基本事件。由于硬币的质地是均匀的,因而直观上可以 认为出现"正面向上"与"反面向上"的机会是均等的,所以掷得 "正面向上"和"反面向上"的可能性都是 $\frac{1}{9}$.

2. 掷—颗骰子, 观察出现的点数. 这个试验的基本事件空间 Q={1, 2, 3, 4, 5, 6}.

它有 6 个基本事件。由于骰子的构造是均匀的,因而出现这 6 种结果的机会是均等的,于是我们可以断言:掷一颗骰子,每种结果出现的可能性都是 $\frac{1}{6}$.

3. 一先一后掷两枚硬币,观察正反面出现的情况,这个试验的基本事件空间

 $\Omega = \{(\mathbf{E}, \mathbf{E}), (\mathbf{E}, \mathbf{E}), (\mathbf{E}, \mathbf{E}), (\mathbf{E}, \mathbf{E})\},$ 它有 4 个基本事件。因为每一枚硬币"出现正面"与"出现反面"机会是均等的,所以可以认为这 4 个基本事件的出现是等可能的。因而我们说每一个基本事件发生的可能性都是 $\frac{1}{2}$.

以上3个试验有两个共同的特征:

- (1) 有限性 在一次试验中,可能出现的结果只有有限个,即 只有有限个不同的基本事件;
- (2) 等可能性 每个基本事件发生的可能性是均等的. 我们称这样的试验为古典概型. 上述 3 个例子均为古典概型.
- 一个试验是否为古典概型,在于这个试验是否具有古典概型的两个特征——有限性和等可能性,并不是所有的试验都是古典概型.例如,在适宜的条件下"种下一粒种子观察它是否发芽",这个试验的基本事件空间为《发芽,不发芽》,而"发芽"或"不发芽"这两种结果出现的机会一般是不均等的.又如,从规格直径为300 mm±0.6 mm的一批合格产品中任意抽一根,测量其直径 d、测量值可能是从299.4 mm到300.6 mm之间的任何一个值,所有可能的结果有无限名个,这两个试验都不属于古典概型.
- 一般地,对于古典概型,如果试验的n个基本事件为 A_1 , A_2 , ..., A_n ,由于基本事件是两两互斥的,则由互斥事件的概率加法公式得

 $P(A_1) + P(A_2) + \cdots + P(A_n) = P(A_1 \bigcup A_2 \bigcup \cdots \bigcup A_n) = P(\Omega) = 1.$ 又因为每个基本事件发生的可能性相等,即 $P(A_1) = P(A_2) = \cdots = P(A_n)$,代人上式得

$$n \cdot P(A_1) = 1$$
, $\text{EP } P(A_1) = \frac{1}{n}$.

所以在基本事件总数为n的古典概型中、每个基本事件发生的概率为 $\frac{1}{n}$.

如果随机事件 A 包含的基本事件数为m,同样地,由互斥事件的概率加法公式可得 $P(A)=\frac{m}{n}$. 所以在古典概型中,

$P(A) = \frac{\text{事件}A 包含的基本事件数}{$ 试验的基本事件总数.

这一定义称为概率的古典定义.

解: 这个试验的基本事件空间为

$$\Omega = \{1, 2, 3, 4, 5, 6\}$$

基本事件总数 n=6. 事件 A= "掷得奇数点" = $\{1, 3, 5\}$,其包含的基本事件数 m=3,所以

$$P(A) = \frac{3}{6} = \frac{1}{2} = 0.5.$$

例2 从含有两件正品 a₁, a₂和一件次品 b₁的 3 件产品中每 次任取 1 件,每次取出后不放回,连续取两次,求取出的两件产品 中恰有一件次品的概率。

解:每次取一个,取后不放回地连续取两次,其一切可能的结果组成的基本事件空间为

 $\Omega = \{(a_1, a_2), (a_1, b_1), (a_2, a_1), (a_2, b_1), (b_1, a_1), (b_1, a_2)\}$, 其中小括号内左边的字母表示第 1 次取出的产品,右边的字母表示 第 2 次取出的产品。 Ω 由 6 个基本事件组成,而且可以认为这些基本事件的出现是等可能的。用 A 表示"取出的两件中,恰好有一件次品"这一事件,则

$$A = \{(a_1, b_1), (a_2, b_1), (b_1, a_1), (b_1, a_2)\}.$$

事件 A 由 4 个基本事件组成。因而

$$P(A) = \frac{4}{6} = \frac{2}{3}$$
.

(例3) 在例2中,把"每次取出后不放回"这一条件换成 "每次取出后放回",其余不变,求取出的两件中恰好有一件次品的 概率。

解:有放回地连续取出两件,其一切可能的结果组成的基本事件空间

$$\Omega = \{(a_1, a_1), (a_1, a_2), (a_1, b_1), (a_2, a_1), (a_2, a_2), (a_2, b_1), (b_1, a_1), (b_1, a_2), (b_1, b_1)\}$$

由9个基本事件组成,由于每一件产品被取到的机会均等,因此可以认为这些基本事件的出现是等可能的,用 B 表示"恰有一件次品"这一事件,则

$$B=\{(a_1, b_1), (a_2, b_1), (b_1, a_1), (b_1, a_2)\}.$$

事件 B 由 4 个基本事件组成,因而

$$P(B) = \frac{4}{9}.$$

- 例 1 甲、乙两人做出拳游戏 (锤子、剪刀、布), 求:
- (1) 平局的概率;
- (2) 甲蠃的概率;
- (3) Z. 贏的概率.

解: 甲有3种不同的出拳方法,每一种出法是等可能的,乙同样有等可能的3种不同出法.

一次出拳游戏共有 $3\times3=9$ 种不同的结果,可以认为这 9 种结果是等可能的。所以一次游戏(试验)是古典概型。它的基本事件总数为 9.

平局的含义是两人出法相同,例如都出了锤,甲赢的含义是甲出锤且乙出剪,甲出剪且乙出布,甲出布且乙出锤这3种情况,乙赢的含义是乙出锤且甲出剪,乙出剪且甲出布,乙出布且甲出锤这3种情况.

设平局为事件 A,甲蠃为事件 B,乙蠃为事件 C. 由图 3-3 容易得到:

- (1) 平局含3个基本事件(图中的△);
- (2) 甲蠃含3个基本事件(图中的⊙);
- (3) 乙赢含 3 个基本事件(图中的※). 由古典概率的计算公式,可得。

$$P(A) = \frac{3}{9} = \frac{1}{3};$$

$$P(B) = \frac{3}{9} = \frac{1}{3};$$

$$P(C) = \frac{3}{9} = \frac{1}{3}.$$

Z

0

图 3-3

图 3-4

- 例 5 抛掷两颗骰子,求
- (1) 点数之和出现7点的概率;
- (2) 出现两个 4点的概率,

解:作图 3-4,从图中容易看出基本事件空间与点集

$$S = \{(x, y) \mid x \in \mathbb{N}, y \in \mathbb{N}, 1 \le x \le 6, 1 \le y \le 6\}$$

中的元素——对应. 因为 S 中点的总数是 $6\times 6=36$ (个), 所以基本事件总数 n=36.

(1) 记"点数之和出现7点"的事件为A.从图中可看到事件 A 包含的基本事件数共6个:

(6, 1), (5, 2), (4, 3), (3, 4), (2, 5), (1, 6),

所以

$$P(A) = \frac{6}{36} = \frac{1}{6}$$
.

(2) 记"出现两个4点"的事件为B,则从图中可看到事件B包含的基本事件数只有1个;(4,4).所以

$$P(B) = \frac{1}{36}$$
.

像例 4、例 5 这样,在求概率时常常可以把全体基本事件用直 角坐标系中的点表示,以便我们准确地找出某事件所包含的基本事 件数.

例 6 每个人的基因都有两份,一份来自父亲,另一份来自 母亲. 同样地,他的父亲和母亲的基因也有两份. 在生殖的过程 中,父亲和母亲各自随机地提供一份基因给他们的后代.

以褐色颜色的眼睛为例. 每个人都有一份基因显示他的眼睛颜色:

- (1) 眼睛为褐色;
- (2) 眼睛不为褐色.

如果孩子得到的父母的基因都为"眼睛为褐色"的基因,则孩子的眼睛也为褐色。如果孩子得到的父母的基因都为"眼睛不为褐色"的基因,则孩子眼睛不为褐色(是什么颜色取决于其他的基因)。如果孩子得到的基因中一份为"眼睛为褐色"的,另一份为"眼睛不为褐色"的,则孩子的眼睛不会出现两种可能,而只会出现眼睛颜色为褐色的情况。生物学家把"眼睛为褐色"的基因叫做显性基因。

方便起见,我们用字母 B 代表"眼睛为褐色"这个显性基因,用 b 代表"眼睛不为褐色"这个基因。每个人都有两份基因,控制一个人眼睛颜色的基因有 BB,Bb (表示父亲提供基因 B,母亲提供基因 b),bB,bb,注意在 BB,Bb,bB和 bb 这 4 种基因中只有bb 基因显示为眼睛颜色不为褐色,其他的基因都显示眼睛颜色为褐色。

Let o o

假设父亲和母亲控制眼睛颜色的基因都为 Bb,则孩子眼睛不 为褐色的概率有多大?

解:由于父亲和母亲控制眼睛颜色的基因都为 Bb,从而孩子有可能产生的基因有 4 种,即 Bb, Bb, bb, bb (图3-5).又因为父亲或母亲提供给孩子基因 B 或 b 的概率是一样的,所以可以认为孩子的基因是这 4 种中的任何一种的可能性是一样的.因此,这是一个古典概型问题.只有当孩子的基因为 bb 时,眼睛才不为

褐色,所以,"孩子眼睛不为褐色"这个随机事件发生的概率为 $\frac{1}{4}$ = 0.25 (有兴趣的同学可以自己推导一下其他情况).

3.2.2

概率的一般加法公式(选学)

在概率的加法公式中,如果 A、B 不是互斥事件,那么公式是 否成立呢?我们看下面的例子.

显然,事件 A 与 B 不是互斥的。例如,蓝骰子出现 4 点时,红骰子也可能出现 4 点。我们把由事件 A 和 B 同时发生所构成的事件 D,称为事件 A 与 B 的交(或积),记作 $D=A\cap B$ (或 D=AB)。

本例中, $A \cap B$ 为

$$\{ (4, 4), (4, 5), (4, 6), (5, 4), (5, 5), (5, 6), (6, 4), (6, 5), (6, 6) \}.$$

其中小括号内的左、右两个数分别表示红、蓝两颗骰子出现的 点数。

 $\Omega = \{(x, y) \mid x \in \mathbb{N}, y \in \mathbb{N}, 1 \le x \le 6, 1 \le y \le 6\}$ ($\Sigma = \mathbb{N}$

在点的坐标(x, y) 中, x 表示红骰子出现的点数, y 表示蓝骰子出现的点数, 则 Ω 就表示试验可能出现的结果的全体构成的集合。因为

 Ω 中元素的总个数=6×6=36,

A 中元素的个数=18,

B中元素的个数=18.

 $A \cup B$ 中元素的个数=27,

所以
$$P(A \cup B) = \frac{27}{36} = \frac{3}{4}$$
.

在本例中,因为 $A \cap B \neq \emptyset$,所以 $P(A \cup B) \neq P(A) + P(B)$.

图 3-6

图 3-8

我们在古典概型的情况下推导概率的一般加法公式.

设 A、B $\in \Omega$ 的两个事件 (图 3-8). 容易看出,A $\cup B$ 中基本事件的个数等于 A 中基本事件的个数加上 B 中基本事件的个数减 $\in A$ $\cap B$ 中基本事件的个数。所以

$P(A \cup B) = \frac{A \cup B + 0}{O \cap B}$ 的基本事件数

= $\frac{A + \overline{4} + \overline{4}$

 $=P(A)+P(B)-P(A\cap B)$.

即 $P(A \cup B) = P(A) + P(B) - P(A \cap B)$. 这就是概率的一般加法公式.

例2 一个电路板上装有甲、乙两根熔丝,甲熔断的概率 为0.85,乙熔断的概率为0.74,两根同时熔断的概率为0.63, 问至少有一根熔断的概率是多少?

解:设 A = "甲熔丝熔断",B = "乙熔丝熔断",则"甲、乙两根熔丝中至少有一根熔断"为事件 $A \cup B$. 所以

 $P(A \cup B) = P(A) + P(B) - P(A \cap B)$

= 0.85 + 0.74 - 0.63 = 0.96

习题3-2 A

- 从含有三件正品和一件次品的4件产品中不放回地任取两件,求取出的两件中恰有 一件次品的概率。
- 2. 从 1, 2, 3, 4, 5 这 5 个数字中, 不放回地任取两数, 求两数都是奇数的概率.
- 3. 在一次问题抢答的游戏中,要求答题者在问题所列出的4个答案中找出惟一正确的答案。某抢答者不知道正确答案便随意说出了其中的一个答案,求这个答案恰好是正确答案的概率。
- 4. 同时抛掷 2 分和 5 分的两枚硬币, 计算:
 - (1) 两枚都出现正面的概率;
 - (2) 一枚出现正面,一枚出现反面的概率.
- 5. 在10支铅笔中,有8支正品和2支次品。从中不放回地任取2支,恰好都取到正品的概率是多少?
- 6. 在40根纤维中,有12根的长度超过30 mm,从中任取1根,取到长度超过30 mm 的纤维的概率是多少?
- 7.* 从1, 2, 3, …, 30 中任意选一个数, 求下列事件的概率:
 - (1) 它是偶数;

- (2) 它能被3整除:
- (3) 它是偶数且能被3整除的数;
- (4) 它是偶数或能被3整除的数.
- 8.* 榔红、蓝两颗骰子,观察出现的点数,求至少一颗骰子出现偶数点的概率,

习题3-2 B

- 1. 抛掷两颗骰子, 计算:
 - (1) 事件"两颗骰子点数相同"的概率;
 - (2) 事件"点数之和小于7"的概率:
 - (3) 事件"点数之和等于或大于11"的概率;
 - (4) 在点数和里最容易出现的数是几?
- 2. 从分别写上数字 1, 2, 3, ..., 9 的 9 张卡片中, 任意取出 2 张, 观察上面的数字, 试求下列事件的概率:
 - (1)"两数和为偶数":
- (2)"两数积是完全平方数"。
- 3. 抛掷3颗骰子,分别求下列事件的概率:

 - (1) "点数之和等于9": (2) "点数之和等于10".
- 4. 若以连续掷两次骰子分别得到的点数 m, n 作为点 P 的坐标, 求点 P 落在圆 $x^2 + y^2 = 16$ 内的概率.

3.3.1 几何概型

在古典概型中利用等可能性的概念,成功地计算了某一类问题 的概率,不过,古典概型要求可能结果的总数必须有限,人们希望 能把这种做法推广到无限多结果而又有某种等可能性的场合,得到 随机事件的概率.

2 mL水样放到显微镜下观察, 求发现草履虫的概率,

以上2个试验的可能结果个数无限, 所以它们都不是古典 概刑.

我们先来分析例 1、根据日常生活经验、不难理解事件 A. "指 针落在阴影部分"的概率可以用阴影部分面积与总面积之比来衡 量,即 $P(A) = \frac{4}{9} = 0.5$.

同样地,例2中由于取水样的随机性,所求事件A:"在取出的 2 mL水样中有草履虫"的概率等于水样的体积与总体积之比 = 00 =0.004.

19 3-9

图 3-10

总之,这两个试验的共同占是,

事件 A 理解为区域 Ω 的某一子区域 A (如图 3-10),A 的概率只与子区域 A 的几何度量 (长度、面积或体积)成正比,而与 A 的位置和形状无关。满足以上条件的试验称为几何概型。在几何概型中,事件 A 的概率定义为。

$$P(A) = \frac{\mu_A}{\mu_A}$$
,

其中 μ_0 表示区域 Ω 的几何度量、 μ_A 表示子区域 A 的几何度量。

例3 一海豚在水池中自由游弋. 水池为长30 m、宽20 m的 长方形. 求此刻海豚嘴尖离岸边不超过2 m的概率.

解: 对于几何概型,关键是要构造出随机事件对应的几何图形,利用图形的几何度量来求随机事件的概率。如图 3-11 所示,区域 Ω 是长 30 m、宽 20 m的长 方形。图中阴影部分表示事件 A: "海豚嘴尖离岸边不超过2 m"。问题可以理解求海豚嘴尖出现在图 3-11 中阴影部分的概率,于是 μ_0 = 30 × 20 = 600 (m²), μ_A = 30 × 20 = 6×16 = 184 (m²)。

$$P(A) = \frac{\mu_A}{\mu_B} = \frac{184}{600} = \frac{23}{75} \approx 0.31.$$

例 平面上画了一些彼此相距 2a 的平行线,把一枚半径 r<a的硬币任意掷在这平面上,求硬币不与任一条平行线相碰的 概率.

$$P(A) = \frac{(r, a] \text{ 的长度}}{[0, a] \text{ 的长度}} = \frac{a-r}{a}.$$

2a

图 3-12

3.3.2 随机数的含义与应用

随机数就是在一定范围内随机产生的数,并且得到这个范围内的每一个数的机会一样. 它有很广阔的应用,可以帮助我们安排和模拟一些试验,这样可以代替我们自己做大量重复的试验.

很自然的一个问题是如何产生随机数呢? 下面我们介绍一下如何使用计算器和计算机产生随机数.

现在大部分计算器都能产生 0~1 之间的均匀随机数 (实数), 例如,用函数型计算器产生随机数的方法如下;

每次按SHIFT RAN # 键都会产生一个 0~1 之间的随机数, 而且出现 0~1 内任何一个数的可能性是相同的.

也可以使用计算软件来产生随机数,这里介绍 Scilab 中产生随机数的方法。

Scilab 中用 rand()函数来产生 0~1 的均匀随机数. 每调用一次 rand()函数,就产生一个随机数.

如果要产生 $a\sim b$ 之间的随机数,可以使用变换 rand()*(b-a)+a 得到,请同学们想一想其中的道理。

在 2.1.1 中,我们已经介绍过利用随机数表从 850 颗种子中抽取 50 颗种子做试验的例子。这里再举一个利用随机模拟掷硬币的试验。

例 随机模拟掷硬币的试验,估计掷得正面的概率.

解:用计算器产生随机数的方法模拟掷硬币试验.

首先用计算器产生一个 0~1 之间的随机数,如果这个随机数 在 0~0.5 之间,则认为硬币正面朝上;如果这个随机数在 0.5~1 之间,则认为硬币正面朝下.记下正面朝上的频数及试验总次数,就可以得到正面朝上的频率了.

计算器模拟掷硬币的试验结果:

试验次数	正面朝上频数	正面朝上频率
5	2	0. 4
10	3	0.3
15	6	0.4
20	9	0.45
25	12	0.48
30	12	0.4
35	16	0. 457
40	20	0.5
45	21	0.467
50	23	0.46

续表

试验次数	正面朝上频数	正面朝上频率
55	27	0.491
60	29	0. 483
65	31	0.477
70	32	0. 457
75	35	0.467
80	38	0. 475
85	43	0.506
90	47	0.522
95	50	0. 526
100	54	0.54

从这个结果我们也可以看出硬币出现正面的频率在 0.5 附近. 因此,我们可以认为硬币出现正面的概率为 0.5. 我们还可以用刚才提到的用计算机产生随机数的方法来模拟这个试验. 试验的方法 是类似的,有兴趣的同学可以自己动手做一下.

现在很多城市的中考或高考都采取产生随机数的方法把考生分配到各个考场中. 有条件的学生,可以实际调查一下本城市的中考或高考用什么办法产生随机数,又是如何应用随机数把考生分配到各考场去的。

● 随机模拟 3.3.1 中例 3 海豚在水池中自由游弋的试验, 并且估计事件 A: "海豚嘴尖离岸边不超过2 m"的概率。

我们利用计算机产生随机数 x 和 y 用它们来表示海豚嘴尖的横 坐标与纵坐标. 如果 (x, y) 出现在图 3-11 的阴影部分中,我们 就认为事件 A 发生了.

下面我们设计一个算法使得计算机或计算器能模拟这个试验, 并且估计事件 A 发生的概率.

S1 用计数器 n 记录做了多少次试验,用计数器 m 记录其中有多少次 (x, y) 出现在阴影部分中,首先置 n=0, m=0.

S2 用变换 rand() * 30-15 产生-15~15 之间的随机数 x 作

为海豚嘴尖的横坐标;用变换 rand() * 20-10 产生-10~10 之间 的随机数 v 作为海豚嘴尖的纵坐标。

S4 表示随机试验次数的计数器 n 值加 1,即 n=n+1,如果 还需要继续试验,则返回步骤 S2 继续执行,否则,程序结束,

程序结束后事件 A 发生的频率 $\frac{m}{n}$ 作为 A 的概率的近似值.

本书用 Scilab 编制了一个模拟程序,模拟的结果如下,供大家 参考。

试验次数n	事件A頻数m	事件 A 頻率 m/n
100	35	0.35
1 000	324	0. 324
10 000	2 997	0. 299 7
100 000	30 506	0. 305 06

同学们用这个表中的数据与 3. 3. 1 中例 3 算出的事件 A 的概率 比较, 你发现了什么?

例3 利用随机数和几何概型求π的近似值.

在图 3-13 所示的边长为 2 的正方形中随机撒一大把豆子, 计 算落在正方形的内切圆中的豆子数与落在正方形中的豆子数之比, 并以此估计圆周率 n 的值.

如果我们把"在正方形中撒豆子"看成试验,把"豆子落在圆中"看成随机事件 A. 则落在圆中的豆子数与落在正方形中的豆子数的比值就是事件 A 发生的频率。当我们撒一大把豆子时,这时频率可以近似地看成事件 A 的概率,可以认为这是一个几何概型问题。由几何概型的计算公式,我们可以计算出

$$P(A) = \frac{圆面积}{\mathbb{E} 方形面积}$$

= $\frac{\pi}{4}$.

所以, $\pi=4\times P(A)$.

我们在正方形中撒了n颗豆子,其中有m颗豆子落在圆中,则圆周率的值 π 近似等于 $\frac{4m}{n}$.

类似例 2 的方法,我们现在来设计一个算法使得用计算机或计

PM 3-13

算器能模拟这个撒豆子试验.

S1 用计数器 n 记录做了多少次撒豆子试验,用计数器 m 记录其中有多少颗豆子落入圆中,首先置 n=0, m=0.

S2 用变换 rand()*2-1产生两个 $-1\sim1$ 之间的随机数x和y,用它们来表示豆子的横坐标与纵坐标。

S3 判断豆子(x, y)是否落在圆中,即是否满足 $x^2 + y^2 \le 1$. 如果是,则计数器 m 的值加 1,即 m=m+1. 如果不是,m 的值保 持不变.

S4 表示随机试验次数的计数器 n 值加 1,即 n=n+1. 如果还需要继续试验,则返回步骤 S2 继续执行,否则,程序结束。

程序结束后算出 $\frac{4m}{n}$ 作为 π 的近似值.

本书用 Scilab 编制了一个模拟程序,模拟的结果如下,供大家 参考。

试验次数 n	豆子落在圆内次数 m	π的近似值 4m/n
100	77	3.08
1 000	773	3. 092
10 000	7 905	3. 162
100 000	78 426	3. 137 04
1 000 000	785 200	3. 140 8

通过试验,我们可以看出随着试验次数的增加,得到的圆周率 π的近似值精度越来越高。

∢注》

可结合 scilab 样例演示菜单中的 撒豆子程序,自己 动手通过随机模拟 的方法估计圆周 率元 例 2 和例 3 采用的基本方法是:建立一个概率模型,它与某些我们感兴趣的量(如例 2 的概率值、例 3 的常数 π)有关,然后设计适当的试验,并通过这个试验的结果来确定这些量.按照以上思路建立起来的方法称为**计算机随机模拟法或蒙特卡罗(Monte-Carlo)方法**.现在,随着计算机科学与技术的飞速发展,用计算机来模拟所设计的试验已经变得越来越普遍.特别是对于一些费用品贵或耗时很长的试验,计算机模拟法的优势就更加明显.

习题3-3 A

- 1. 在长为12 cm 的线段 AB 上任取一点 M, 并以线段 AM 为边作正方形. 试求这正方形的面积介于36 cm²与81 cm²之间的概率. 有条件的同学可以用计算机或计算器模拟这个试验,并且估计所求随机事件的概率,把你得到的结果与用几何概型计算公式得到的结果比较,你能得出什么结论?
- 2. 向面积为 S 的△ABC 内任投一点 P, 求△PBC 的面积小于 S 的概率. 有条件的同学可以用计算机或计算器模拟这个试验,并且估计所求随机事件的概率,把你得到的结果与用几何概型计算公式得到的结果比较,你能得出什么结论?
- 3. 画出 3.3.2 中例 2 中算法的框图.
- 4. 现向图 3-14 中所示正方形內隨机地投擲飞标,求飞标落在阴影部分的概率。有条件的同学可以用计算机或计算器模拟这个试验,并且估计所求随机事件的概率。把你得到的结果与用几何概型计算公式得到的结果比较,你能得出什么结论?

图 3-14

习题3-3 B

- 1. 设A为圆周上一定点,在圆周上等可能地任取一点与A连结,求弦长超过半径的概率.
- 2. 在区间 [-1, 1] 上任取两数 $a, b, 求二次方程 <math>x^2 + ax + b = 0$ 的两根:
 - (1) 都是实数的概率;
- (2) 都是正数的概率.
- 3. 有兴趣的同学可尝试用计算器或计算机模拟掷骰子的试验,并且计算出现1点的频率,

概率在我们的现实生活中有很多应用. 比如说,利用投硬币出现正面和反面的概率一样来决定足球比赛两队谁先开球或谁先选场地,用摇号的方法决定中奖号码等等. 实际上, 概率的应用已经涉及很多领域,本节将介绍下面 4 个例子.

例 在英语中某些字母出现的概率远远高于另外一些字母. 在进行了更深人的研究之后,人们还发现各个字母被使用的频率相 当稳定,例如,下面就是英文字母使用频率的一份统计表.

字母	空格	Е	T	0	A	N	I	R	S
頻率	0.2	0. 105	0.071	0.0644	0.063	0.059	0.054	0.053	0.052
字母	Н	D	L	С	F	U	M	P	Y
頻率	0.047	0. 035	0.029	0.023	0. 0221	0. 0225	0. 021	0. 0175	0.012
字母	w	G	В	v	K	X	J	Q	Z
頻率	0.012	0.011	0. 0105	0.008	0.003	0.002	0.001	0.001	0.001

从表中我们可以看出,空格的使用频率最高.有鉴于此,人们 在设计键盘时,空格键不仅最大,而且放在使用方便的位置.

近年来对汉语的统计研究有了很大的发展. 关于汉字的使用频率已有初步统计资料,对汉语常用词也作了一些统计研究. 这些信息对汉字输入方案等的研制有很大帮助. 使用过汉字拼音输入法的同学可能有体会. 如图 3-15,当输入拼音 "shu",

则提示有以下几种可供选择"1.数、2.书、3.树、4.属、5.署、……". 这个显示顺序基本上就是按照拼音为"shu"的汉字出现频率从大到小排列的.

数

▼1数 2书 3树 4属 5署 6输 7級 8木 9舒 ◆▶

图 3-15

在密码的编制和破译中,概率论起着重要的作用.要使敌人不能破译电文而又能使盟友容易译出电文,一直是外交官和将军们关心的问题.为了保密,通讯双方事先有一个秘密约定,称为密钥.发送信息方要把发出的真实信息——明文,按密钥规定,变成密文.接收方将密文按密钥还原成明文.例如,古罗马伟大的军事和政治家凯撒大帝把明文中的每个字母按拉丁字母次序后移三位之后的字母来代替,形成密文.接收方收到密文后,将每个字母前移三位后便得到明文.这是一种原始的编制密码方法,很容易破译.

在书面语言中单个的字母不是以同样的频率出现的. 从例 1 中英文字母出现频率的统计表中我们可以看出, 在英文常用文章中, 平均说来出现字母 "E"的频率约为 10.5%, "T"约为7.1%, 而"J"的出现远小于 1%. 例如像凯撒大帝用过的简单密码, 用 FRGHV 来代替 CODES, 容易通过对电文中字母的频率分析来破译. 出现频率最高的字母大概表示"E", 出现频率次高的字母大概是"T", 等等.

现代保密系统采用了能确保每个字母出现在密文中的概率都相等的技术。一种理论上不可被译的密码是"一次性密码本"(用后立即销毁). 这种密码本是一长串的随机数、每个都在1和26之间。这样一种密码本可能从以下数开始:19,7,12,1,3,8,…,如"ELEVEN"这个词,用按字母表顺序排在E后面第19个字母表示 E,而用 L 后面第7个字母表示 L,等等。因此、ELEVEN变成了 XSQWHV. 注意,尽管在明文中"E"出现3次,但是在密文 XSQWHV 中却是用三个不同的字母来替换的。

例3 社会调查人员希望从人群的随机抽样调查中得到对他们所提问题诚实的回答.但是被采访者常常不愿意如实地作出应答.

1965 年 Stanley L. Warner 发明了一种应用概率知识来消除这

种不愿意情绪的方法, Warner 的随机化应答方法要求人们随机地 回答所提两个问题中的一个, 而不必告诉采访者回答的是哪个问 题, 两个问题中有一个是敏感的或者是令人为难的; 另一个问题是 无关紧要的, 这样应答者将乐意如实地回答问题, 因为只有他知道 自己回答的是哪个问题.

例如在调查运动员服用兴奋剂的时候,无关紧要的问题是:"你的 身份证号码的尾数是奇数吗?"敏感的问题是:"你服用过兴奋剂吗?" 然后要求被调查的运动员掷一枚硬币.如果出现正面,就回答第一 个问题,否则回答第二个问题.

假如我们把这种方法用于 200 个被调查的运动员,得到 54 个 "是"的回答。因为掷硬币出现正面的概率为 $\frac{1}{2}$,我们期望大约有 100 人回答了第一个问题。因为身份证号码尾数是奇数或偶数的可能性是同样的,因而在回答第一个问题的 100 人中大约有一半人,即 50 人,回答了"是",其余 4 个回答"是"的人服用过兴奋剂。由此 我们估计议群人中大约有 4%的人服用过兴奋剂。

∅ 为了估计水库中的鱼的尾数,可以使用以下的方法;
先从水库中捕出一定数量的鱼,例如 2 000 尾,给每尾鱼作上记号,不影响其存活,然后放回水库,经过适当的时间,让其和水库中其余的鱼充分混合,再从水库中捕出一定数量的鱼,例如 500 尾,查看其中有记号的鱼,设有 40 尾,试根据上述数据,估计水库内鱼的尾数。

设水库中鱼的尾数为n. n 是未知的,现在要估计n的值,将n的估计值记作 \hat{n} (读作"n'估"或"n'尖").

假定每尾鱼被捕的可能性是相等的,从库中任捕一尾,设事件 $A = {\# \overline{q}}$ 证号的鱼 ${}$,

则由古典概型可知

$$P(A) = \frac{2\ 000}{n}$$
.

第二次从水库中捕出 500 尾,观察每尾鱼上是否有记号,共需 观察 500 次,其中带有记号的鱼有 40 尾,即事件 A 发生的频率 m=40,由概率的统计定义可知

$$P(A) \approx \frac{40}{500}$$
.

由(1)、(2)两式,得

$$\frac{2000}{n} \approx \frac{40}{500}$$
.

プライン 10 mm コ 第三章 概 率

解得 *n*≈25 000, 即*n*=25 000. 所以,估计水库中约有鱼 25 000 厚.

习题3-4

- 某水产试验厂实行某种鱼的人工孵化,10000个鱼卵能孵出8513尾鱼苗。根据概率的统计定义解答下列问题:
 - (1) 求这种鱼卵的孵化概率 (孵化率):
 - (2) 30 000 个鱼卵大约能孵化多少星鱼苗?
 - (3) 要孵化5000尾鱼苗,大概得备多少鱼卵? (精确到百位)
- 2. 举出一些现实生活中应用概率的例子。

本章小结

I 知识结构

II 思考与交流

- 随机事件的发生具有不确定性。想一想,你的周围哪些事情的发生具有不确定性。
- 4. 椰一颗骰子得到6点的概率是¹/₆,是否意味着把它鄉6次能得到一次6点?用概率的统计定义来说明你的观点。
- 把一枚图钉扔在地上,它可能针尖朝上,也可能针尖朝下, 这是不是古典概型?古典概型有哪些特征?
- 4. 有人说,求单位正方形里任何小块的面积近似值都可以用 撒豆子的方法来解决,这种说法对不对?理由是什么?具体应该怎样做?
- 5. 找一个实际生活中应用随机数的例子,如找不到,就编一 道应用随机数的习题。

Ⅲ 巩固与提高

- 1. 判断下列命题的真假:
 - (1) 必然事件的概率等于1;
 - (2) 某事件的概率等于1.1;

- (3) 互斥事件一定是对立事件:
- (4) 对立事件一定是互斥事件;
- (5) 在适宜的条件下种下一粒种子, 观察它是否发芽, 这个试 验为古典概型.

2. 填空:

- (1) 掷一颗骰子,出现3点或5点的概率等于____;
- (2) 榔两颗骰子,出现点数之和等于8的概率等于
- (3) 掷三枚硬币,至少出现一个正面的概率等于____
- (4) 抛掷一颗骰子, A= ⟨点数是奇数点⟩, B= ⟨点数是偶数 点⟩, 则 A∪B=_____, A∩B=____, B=____, Ā∩B=
- (5) 已知 $P(A) = \frac{2}{5}$,则 $P(\overline{A}) = ________;$
- (6)从至少含有5件次品的10件产品中,任取3件,事件"所取3件都是正品"的对立事件为______,事件"所取3件至多有一件是正品"的对立事件为
- 3. 某台电话,打进的电话响第1声时,被接的概率0.2,响第2声时,被接的概率0.3,响第3声时,被接的概率0.3,响第4声时,被接的概率0.1,那么电话在响前4声内被接的概率是多少?

IV 自测与评估

- 有五条线段,长度分别为1、3、5、7、9. 从这五条线段中任取 三条,求所取三条线段能构成一个三角形的概率。
- 2. 在面积为S的 $\triangle ABC$ 的边AB 上任取一点P,求 $\triangle PBC$ 的面积 大于 $\frac{S}{3}$ 的概率.
- 3. 把一颗骰子投掷 2 次,观察出现的点数,并记第一次出现的点数为 a、第二次出现的点数为 b、试就方程组 $\begin{cases} ax+by=3\\ x+2y=2 \end{cases}$ 解答下列各颗.
 - (1) 求方程组只有一个解的概率;
 - (2) 求方程组只有正数解的概率.
- 4. 从一副扑克 (没有大小王) 的52 张牌中取出 3 张, 求:
 - (1) 3张是不同花色牌的概率;
 - (2) 至少有一张是红心的概率.

概率论的起源

公元1494年,意大利的帕奇欧里在一本有关 计算技术的教科书中,提出了一个问题是,一场 赌赛,胜六局才算赢,当两个赌徒一个胜五局, 另一个胜两局时,中止赌赛,赌金该怎样分配才 合理?帕奇欧里给出的答案是按5:2分,后来人 们一直对这种分配原则表示怀疑,但没有一个人 提得出更合适的办法来。

时间过去了半个世纪,另一名意大利数学家卡当(1501-1576),港心研究赌博不输的方法,出版了一本《赌博之书》,在书里提出了这样一个问题; 掷两颗骰子,以两颗骰子的点数和作赌赛,那么押几点最有利?卡当认为7最好,卡当还对帕奇欧里提出的问题进行过研究,提出过疑义,指出需要分析的不是已经赌过的次数,而是剩下的次数。卡当对问题的解决,虽然在了正确的思路,但没有得到正确的答案,

时间又过了一个世纪,公元1651年法国著名数学家帕斯卡 (1623—1662) 收到了法国大贵族德,美黑的一封信,在信中向帕斯卡请教分赌金的问题;"两个赌徒规定谁先赢 s 局飲算贏了.如果一个人赢 a (a~s)局,另一人赢 b (b~s)局时,赌博中止,应该怎样分配赌本才算公平会理?"

这个问题把帕斯卡给难住了. 帕斯卡苦思冥

想了3年才悟出了满意的解法.于1654年7月29日把这个问题连同解答寄给了法国数学家费马(1601-1665).不久.费马在回信中给出另一解法.他们两人频繁通信,深入探讨这类问题,这个信息,后来被荷兰数学家惠更斯获悉,惠更斯对这类问题倍感兴趣,很快地加入了对这类问题的探讨,并把对这类问题的探讨的结果载入1657年出版的《论骰子游戏中的推理》一书中.这本书引入了数学期望的概念,是概率论的第一步。这本书引入了数学期望的概念,是概率论的第一些证人分睹全的疑难问题,在概率论的诞生与发展中得到解决.

賭博历来是各民族不齿的行为,但它又是 很典型的随机试验,其数学模型干净利落,极 具代表性.数学家们从中获取数学思想与方 法,用以解决其他实际问题。

18世纪至19世纪,随着社会的进步,人口理论、保险业、误差理论等方面的发展,不仅使概率论得到了实际应用,而且剌藏了概率论的发展。20世纪初,俄罗斯数学家科尔莫戈罗夫建立了严谨的概率论理论体系。由此,概率论不仅成为一门重要的数学学科,而且已渗透到自然科学、社会科学、人文科学等各个领域,发挥着越来越重要的作用。

附 录

部分中英文词汇对照表

算法 algorithm 框图 输入语句 输出语句 赋值语句 条件语句 循环语句 抽样方法 简单随机抽样 系统抽样 分层抽样 总体 样本 必然事件 不可能事件 试验 随机事件 频率 等可能事件 基本事件 概率 互斥事件 对立事件 平均数 中位数

flow chart input statement output statement assignment statement conditional statement loop statement sampling method simple random sampling systematic sampling stratified sampling population sample certain event impossible event trial random event frequency equiprobability event elementary event probability exclusive events complementary events mean median variance

方差

标准差 standard deviation 相关 correlation 散点图 scatter diagram 直方图 histogram regression straight line 回归直线 相关系数 correlation coefficient

后记

根据教育部制订的普通高中各学科课程标准(实验),人民教育出版社课程教材研究所编写的各学科普通高中课程标准实验教科书。得到了诸多教育界前辈和各学科专家学者的热情帮助和大力支持。在各学科教科书终于同课程改革实验区的师生见面时,我们特别感谢担任教科书总顾问的丁石孙、许嘉璐、叶至善、顾明远、吕型伟、王梓坤、梁衡、金冲及、白春礼、陶西平同志,感谢担任教科书编写指导委员会主任委员的柳斌同志和编写指导委员会委员的江蓝生、李吉林、杨焕明、顾泠沅、袁行儒等同志。

本套高中數学实验教科书由丁尔陞教授、李建才教授、陈宏伯编审等组成编写指导委员会,负责指导教科书的编写工作。教科书编写的总指导为丁尔陞教授,主编为高存明编审。参加本套教科书编写的其他成员有:罗声雄、万庆炎、邱万作、郭鸿、韩际清、罗才忠、房艮孙、江守礼、王殿军、黄铎、陈研、高尚华、张爱和、张增喜、张润琦、朱铉道、范登晨、段发善、魏榕彬、徐望根、邵光砚、王人伟、曹惠中、秦静、许玉铭、李迈岸、杨静、刘长明、闫燕南、王旭刚、陈亦飞等。山东省的尹玉柱、秦玉波、王文清、颜长安、杨冠夏、于善胜、田明泉、邵丽云、韩相和,广东省的郭伟才、刘会金、梁锡堤、郑其中、何冽、罗建中和上海市的阴洪生等第一线教师审读了书稿。提出了许多宝贵意见。这套教科书是众多专家、学者和教师集体智慧的结晶。在此、特向参与、帮助、支持这套教科书编写的专家、学者和教师深表谢意。

我们还要感谢使用本套教科书的实验区的师生们。希望你们在使用本套 教科书的过程中,能够及时把意见和建议反馈给我们,对此,我们将深表谢 意。让我们携起手来,共同完成教材建设工作。我们的联系方式如下;

电话: 010-64016633 转 6656 或 6231

E-mail: jcfk@pep.com.cn

人民教育出版社 课程教材研究所

中学数学教材实验研究组

