Gesture Based Tool For Sterile Browsing Of Radiological Images

Team Id:PNT2022TMID48554

Report by:

- A. Shajitha Begam(TL)
- G. Vindhiya(TM)
- B. Sangeetha(TM)
- S. Jeswin Selvaa(TM)

1. INTRODUCTION

- 1.1 Project Overview
- 1.2 Purpose

2. LITERATURE SURVEY

- 2.1 Existing problem
- 2.2 References
- 2.3 Problem Statement Definition

3. IDEATION & PROPOSED SOLUTION

- 3.1 Empathy Map Canvas
- 3.2 Ideation & Brainstorming
- 3.3 Proposed Solution
- 3.4 Problem Solution fit

4. REQUIREMENT ANALYSIS

- 4.1 Functional requirement
- 4.2 Non-Functional requirements

5. PROJECT DESIGN

- 5.1 Data Flow Diagrams
- 5.2 Solution & Technical Architecture
- 5.3 User Stories

6. PROJECT PLANNING & SCHEDULING

- 6.1 Sprint Planning & Estimation
- 6.2 Sprint Delivery Schedule
- 6.3 Reports from JIRA

7. CODING & SOLUTIONING

- 7.1 Feature 1
- 7.2 Feature 2
- 7.3 Database Schema (if Applicable)

8. TESTING

- 8.1 Test Cases
- 8.2 User Acceptance Testing

9. RESULTS

9.1 Performance Metrics

10. ADVANTAGES & DISADVANTAGES

- 11. CONCLUSION
- 12. FUTURE SCOPE

13. APPENDIX

Source Code

GitHub & Project Demo Link

INTRODUCTION

1.1 Project Overview

In this project we use gestures to browse images obtained during radiology. Gestures refer to nonverbal form of communication made using hands.

A major challenge involved in this process is to provide doctors with efficient, intuitive, accurate and safe means of interaction without affecting the quality of their work. Keyboards and pointing devices, such as a mouse, are today's principal method of human—computer interaction. However, the use of computer keyboards and mice by doctors and nurses in intensive care units (ICUs) is a common method for spreading infections. Humans can recognize body and sign language easily. This is possible due to the combination of vision and synaptic interactions that were formed along brain development. In order to replicate this skill in computers, some problems ne ed to be solved: how to separate

objects of interest in images and which image capture technology and classification technique are more appropriate, among others. In this project Gesture based Desktop automation, First the model is trained pre trained on the images of different hand gestures, such as a showing numbers with fingers as 1,2,3,4. This model uses the integrated webcam to capture the video frame. The image of the gesture captured in the video frame is compared with the Pre-trained model and the gesture is identified.

1.2 Purpose

- To know fundamental concepts and techniques of Convolutional Neural Network.
- To gain a broad understanding of image data.
- To know how to pre-process/clean the data using different data preprocessing techniques.
- To know how to build a web application using Flask framework.

LITERATURE SURVEY

2.1 Existing Problem

A doctor needs a way to browse the radiological images during surgery so that he/she does not need to reach main control every time and also maintain sterility.

2.2 References

S.n	Title of	Author	Year of	Implementatio	Pros	Cons
0	the paper	name	Publicati	n		
			on			
1	Gesture	Juan	2008	This paper	(I)ease of use (ii)	(i)visual
	based tools	P.Wachs		presents	rapid reaction	tracking of
	for sterile	PhD		"Gestix," a	(iii) an	both hands
	browsing of	Helman		vision-based	unencumbere d	to provide a
		L.Stern		hand gesture	interface	richer set of

	1:1 : 1	DI D		1		,
	radiological	PhD		capture and		gesture
	images	Y.Edan		recognition		commands.
		PhD M		system that		(ii) addition
		Gillam		interprets in real-		of a body
		MD		time the user's		posture
				gestures for		recognition
				navigation and		system to
				manipulation of		increase the
				images in an		functionality
				electronic		of the
				medical record		system
				(EMR) database.		
2	FAceMOU	N.	October	The proposed	Our system	An vivo
	Se:	Nishikav	2003	human interface	allows	experiment,
		a		is an image-	nonintrusive,	in which the
		T.Hosai		based system	nonverbal, hands	surgeon used
		K.Koaro		which tracks the	off and feet off	the system to
		D.Negor		surgeon's facial	laparoscope	perform a
		0		motions robustly	operations,	Îaparoscopic
		A.Hikita		in real time and	which seem	cholecystect
		S.Nasaro		does not require	more convenient	om y on a
				the use of any	for the surgeon	pig was only
				body-contact		performed.
				devices, such as		1
				headmounted		
				sensing devices.		
3	Bacterial	Maureen	2003	100 keyboards in	100 keyboards in	Computer
	contaminati	Schultz		29 clinical areas	29 clinical areas	equipment
	o n of	J.Gill		for bacterial	for bacterial	must be kept
	computer	S.Zubair		contaminatio n.	contaminatio n.	clean so it
	keyboards	i		Ninety five were	Ninety five were	does not
	in teaching	R.Huber		positive for	positive for	become
	hospital			microorganis ms.	microorganis ms.	another
				Streptococcu s,	Streptococcu s,	vehicle for
				Clostridium	Clostridium	transmission
				perfringens,	perfringens,	of pathogens
				Enterococcus	Enterococcus	to patients.
				(including one	(including one	•
				vancomycinresis	vancomycinresis	
				tant	tant	
				Enterococcus),	Enterococcus),	
				Staphylococc us	Staphylococc us	
				aureus, fungi,	aureus, fungi,	
				and	and	
				gramnegative	gramnegative	
				organisms were	were isolated.	
				isolated.		
4	A non -	Graetzel	2004	2004 A	(i)Avoids	. i)Adding
-	contact	C, Fong		computer vision	unintentional	static hand
1		_		system that	cursor control	posture
	mouse for	1 1 77 .				
	mouse for surgeon -	TW, Grange				•
	surgeon -	Grange		enables surgeons	(by explicitly	recognition
	surgeon - computer	Grange S, Baur		enables surgeons to perform	(by explicitly having to engage	recognition was not felt
	surgeon -	Grange		enables surgeons	(by explicitly	recognition

			hand gestures. The system uses	considered to be an important	nor beneficial,
			color stereo cameras to detect 3D motion in a user-specified workspace and interprets hand gestures as mouse commands design feature.		change. (ii)The possibility of a dynamic workspace, which would follow the surgeon's body, was also not seen as a necessary improvemen t.
5	Intelligent Wheelchair Remotely Controlled by Interactive Gestures.	Kuno Y, Murashi m a T.Shima da Shirai Y	an intelligent wheelchair whose motion can be controlled by the user's face direction. We propose to add intelligence to our wheelchair when the user is not riding. It can recognize the user's face and can move according to the gestures	guess-action observation cycle is repeated until the wheelchair can understand the user's intention	environment s where wheelchairs are used cannot be controlled. This makes gestures recognition difficult.

2.3 Problem Statement Definition

A doctor needs a way to browse the radiological images during surgery so that he/she does not need to reach main control every time and also maintain sterility

3. Ideation and Proposed Solution

3.1 Empathy Map Canvas

3.2 Ideation and Brainstorming

3.3 Proposed solution

S.NO	PARAMETER	DESCRIPTION
1	Problem Statement (Problem to	A doctor needs a way to browse the radiological
	be	images during surgery so that he/she does not need
	solved)	

		to reach main control every time and also maintain sterility.
2	Idea/ Solution description	Doctor can make use of hand gestures to manipulate images.
3	Novelty/ Uniqueness	Unlike other methods of nonverbal communication, gestures do not cause loss of concentration in OT.
4	Social Impact/ Customer Satisfaction	Contributing the corporate social responsibility by providing better solutions to the healthcare and to patients.
5	Business Model (Revenue Model)	(I)It can be collaborated with diagnosis centres and hospitals. (ii)It can be collaborated with government for health awareness camps
6	Scalability of the solution	It can be of great use in most in vivo operations of multiple specialities.

3.4 Problem Solution Fit

4. REQUIREMENT ANALYSIS

FUNCTIONAL REQUIREMENTS:

Following are the functional requirements of the proposed solution

FR NO	Functional Requirement (Epic)	Sub Requirement (Story / Sub-Task)			
FR-1	User Registration	Register through authority ID Register through mail account			
FR-2	User Confirmation	Confirm using password			
FR-3	User data storage	uploads radiological images			
FR-4	Hand gesture recognition	Capture hand gesture of users Recognize the gesture to action to be performed			
FR-5	Image Manipulation	Manipulation with respect to user hand gestures			

Non-functional Requirements:

Following are the non-functional requirements of the proposed solution

NFR NO	NonFunctional Requirements	Description
NFR-1	Usability	User can give direct commands as gestures.
NFR-2	Security	The interface can be accessed only by authorized personnel Checks user ID for additional security purposes
NFR-3	Reliability	the accuracy of manipulation result can be acquired on quality of the image
NFR-4	Performance	Performance can be achieved by preventing the system from overloading data
NFR-5	Availability	Services should be made available within a short time after any upgrades
NFR-6	Scalability	Many users should be able to use the application at real time

5. PROJECT DESIGN

5.1. Dataflow Diagram

5.2 Solution and Technical Architecture

5.3 User Stories

User Stories

Use the below template to list all the user stories for the product.

User Type	Functional Requirement (Epic)	User Story Number	User Story / Task	Acceptance criteria	Priority	Release
Customer (Mobile user)	Registration	USN-1	As a user, I can register for the application by entering my email, password, and confirming my password.	I can access my account / dashboard	High	Sprint-1
		USN-2	As a user, I will receive confirmation email once I have registered for the application	I can receive confirmation email & click confirm	High	Sprint-1
		USN-3	As a user, I can register for the application through Gmail	I can access resources from any of my device having Gmail account	Medium	Sprint-2
	Login	USN-4	As a user, I can log into the application by entering email & password	I can authenticate my account by email	High	Sprint-1
	Dashboard	USN-5	As a user, I will be able to access dashboard with my account	I can access other pages through dashboard	High	Sprint-1
	Hand Gesture recognition	USN-6	As a user, I want to make sure the system accepts certain format of image	I can use any possible formats of images	Medium	Sprint-2
		USN-7	As a user, I want to pass image data and show hand gesture	I can pass the radiological images into the model	High	Sprint-1
		USN-8	As a user, I want to make sure that, I want to make sure that hand gesture is recognized	I can perform correct operation	Medium	Sprint-2

User Type	Functional Requirement (Epic)	User Story Number	User Story / Task	Acceptance criteria	Priority	Release
ANNA -	Image manipulation	USN-9	As a user, I want to pass image data and manipulate image data	The image data are rotated, flipped or zoomed	High	Sprint-1
Customer (Web user)	Data Confirmation	USN-10	As a web user, I need to confirm proper data connection	I can use the product without interruption	Low	Sprint-2
200	-10 COV	USN-11	As a user, I can log into the application by entering email & password	I can authenticate my account by email	High	Sprint-1
Customer Care Executive	Help and Feedback	USN-12	As a customer care executive, I want to prepare an analytics of customer feedback	I can use for providing ways to improve the product	Medium	Sprint-2
		USN-13	As a customer care executive, I want to help with the queries of customers	I can help for improving usability	Medium	Sprint-2
Administrator	Maintenance and Support	USN-14	As an admin, I want to make sure that all the data are maintained properly	I can ensure data consistency	high	Sprint-1
	300000	USN-15	As an admin, I need to update the data of users	I can help in good user experience	Low	Sprint-3
		USN-16	As an admin, I want to assign task to team members	completion of task at the right time	medium	Sprint-2

6.PROJECT PLANNING AND SOLUTIONING

6.1 Sprint Planning and Estimation

Project Planning Phase Project Planning Template (Product Backlog, Sprint Planning, Stories, Story points)

Team ID	PNT2022TMID48554
Project Name	Project – Gesture Based Tool For Sterile
	Browsing of Radiological Images

Product Backlog, Sprint Schedule, and Estimation (4 Marks)

To create product backlog and sprint schedule

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint-2	Registration	USN-1	As a user, I can register for the application by entering my email, password, and confirming my password.	7	High	Shajitha Begam A
Sprint-2		USN-2	As a user, I will receive confirmation email once I have registered for the application	5	High	Vindhiya G
Sprint-1	Testing	USN-3	As admin, I need to perform user acceptance test	5	Low	Sangeetha
Sprint-3		USN-5	As admin, I need to test the web application	8	High	Shajitha Begam A
Sprint-3		USN-6	As a user, I can register for the application through Gmail	6	Medium	Jeswin Selvaa
Sprint-2	Login	USN-7	As a user, I can log into the application by entering email & password	2	High	Jeswin Selvaa
Sprint-3	Dashboard	USN-8	As a user, I will be able to access dashboard with my account	6	Medium	Sangeetha.B
Sprint-1	Hand gesture Recognition	USN-9	As a user, I want to pass image that need to be manipulated	5	High	Shajitha Begam A
Sprint-1	-	USN-10	As a user, I need to show hand gesture to capture in camera for respective actions	5	High	G Vindhiya
Sprint-1		USN-11	As a user, I want to make sure that hand gesture is recognized as a particular action.	5	Medium	Jeswin Selvaa
Sprint-4		USN-12	As a user, I can manipulate the image provided	10	High	Sangeetha.B

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint-4		USN-13	As admin, I need to deploy model in cloud	10	High	Shajitha Begam A

Project Tracker, Velocity & Burndown Chart: (4 Marks)

Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)	
20	6 Days	24 Oct 2022	29 Oct 2022	20	29 Oct 2022	
20	6 Days	31 Oct 2022	05 Nov 2022	20	05 Nov 2022	
20	6 Days	07 Nov 2022	12 Nov 2022	20	12 Nov 2022	
20	6 Days	14 Nov 2022	19 Nov 2022	20	19 Nov 2022	
	20 20 20	20 6 Days 20 6 Days 20 6 Days	20 6 Days 24 Oct 2022 20 6 Days 31 Oct 2022 20 6 Days 07 Nov 2022	20 6 Days 24 Oct 2022 29 Oct 2022 20 6 Days 31 Oct 2022 05 Nov 2022 20 6 Days 07 Nov 2022 12 Nov 2022	Planned End Date 20 6 Days 24 Oct 2022 29 Oct 2022 20 20 6 Days 31 Oct 2022 05 Nov 2022 20 20 6 Days 07 Nov 2022 12 Nov 2022 20	

Velocity:
Imagine we have a 6-day sprint duration, and the velocity of the team is 20 (points per sprint). Let's calculate the team's average velocity (AV) per iteration unit (story points per day)

$$AV = \frac{sprint\ duration}{velocity} = \frac{20}{6} = 3.33$$

6.2 Sprint Delivery Schedule

MILESTONE AND ACTIVITY LIST

TEAM ID	PNT2022TMID48554
PROJECT NAME	Gesture Based Tool for Sterile browsing of radiological images

		1		
S.NO	MILESTONE	ACTIVITIES	DATE	
1	Preparation phase	Prerequisites, Registrations,	22 - 27 Aug	
		Environment Set-up, etc.	2022	
2	Ideation Phase	Literature Survey, Empathize, Defining Problem Statement,	29 Aug - 3rd Sept 2022	
		Empathize, Defining Problem Statement	5 - 10th Sept 2022	
		Ideation	12 - 17 Sept 2022	
3 Project Design Phase -I		Proposed Solution	19 - 24 Sept 2022	
		Problem Solution Fit	26 Sept - 01 Oct	
		Solution Architecture	2022	
4	Project Design Phase -II	Requirement Analysis, Data Flow Diagrams, Technology	3 - 8 Oct 2022	
		Architecture		
		Customer Journey	10 - 15 Oct 2022	
5	Project Planning Phase	Milestones & Tasks, Sprint Schedules	17 - 22 Oct 2022	
6	Project Development	Delivery of sprint 1	24 - 29 Oct 2022	
	Phase	Delivery of sprint 2	31 Oct - 5 Nov 2022	
		Delivery of sprint 3	7 - 12 Nov 2022	
		Delivery of sprint 4	14 - 19 Nov	
			2022	

6.3. Reports From Jira

7. CODING AND SOLUTIONING

7.1 Feature 1

User interacts with the UI (User Interface) to upload the image as input.

Depending on the different gesture inputs different operations are applied to the input image.

Once model analyses the gesture, the prediction with operation applied on image is showcased on the UI. To accomplish this, we have to complete all the activities and tasks listed below:

- Create an HTML file
- Build Python Code Following software, concepts and packages are used in this project
- Data Collection
 - o Collect the dataset or Create the dataset
- Data Pre processing
 - Import the ImageDataGenerator library
 - o Configure ImageDataGenerator class
 - Apply ImageDataGenerator functionality to Trainset and Testset
- Model Building
 - O Import the model building Libraries
 - O Initializing the model O Adding Input Layer
 - O Adding Hidden Layer O Adding Output Layer
 - O Configure the Learning Process O Training and testing the model
 - Save the Model
- Application Building

o Create an HTML file

O Build Python Code software, concepts and packages are used in this project

7.2 Feature 2

8. TESTING

8.1 Test Cases

8.2 User Acceptance Testing

Acceptance Testing UAT Execution & Report Submission

Date	03 November 2022
	PNT2022TMID48554
Project Name	Project - Gesture Based tool for sterile browsing
	of radiological images

1. Purpose of Document

The purpose of this document is to briefly explain the test coverage and open issues of the Gesture Based tool for sterile browsing of radiological images project at the time of the release to User Acceptance Testing (UAT).

2. Defect Analysis

This report shows the number of resolved or closed bugs at each severity level, and how they were resolved

Resolution	Severity 1	Severity 2	Severity 3	Severity 4	Subtotal
By Design	10	4	2	3	20
Duplicate	1	0	3	0	4
External	2	3	0	1	6
Fixed	11	2	4	20	37
Not Reproduced	0	0	1	0	1
Skipped	0	0	1	1	2
Won't Fix	0	5	2	1	8
Totals	24	14	13	26	77

3. Test Case Analysis

This report shows the number of test cases that have passed, failed, and untested

Section	Total Cases	Not Tested	Fail	Pass
Print Engine	7	0	0	7
Client Application	51	0	0	51
Security	2	0	0	2

Outsource Shipping	3	0	0	3
Exception Reporting	9	0	0	9
Final Report Output	4	0	0	4
Version Control	2	0	0	2

9.RESULTS

Final findings (Output) of the project along with screenshots. Through this project we found that we can maintain the sterility of an operation theater, etc by using hand based gesture tools to browse the images obtained.

9.1 Performance Metrics

10.ADVANTAGES AND DISADVANTAGES

Advantages:

Major advantage of this tool is that it helps to maintain the sterility of the environment.

It is also easy to use and is quicker than the existing methods to browse images.

It can also be performed even if the surgeon is a bit far away from the system, this helps to sa ve time.

The tool does not need the person using it to have an apparatus or any devices on them to use it. They can simply move their hands to browse through the images.

Disadvantages:

The tool can be quite expensive as it requires cameras and other expensive devices to capture images and process it.

11. CONCLUSION

In this project we developed a tool which recognises hand gestures and enables doctors to browse through radiology images using these gestures. This enables doctors and surgeons to maintain the sterility as they would not have to touch any mouse or keyboard to go through the images. This tool is also easy to use and is quicker than the regular method of using mouse/keyboard. It can be used regardless of the users location since they don't have to be in contact with any device. It also does not require the user to have any device on them to use it. Further this technology can be extended to other industries like it can be used by presenters, by teachers for show images in the classroom, etc

12. FUTURE SCOPE

The tool can be made quicker by increasing the recognition speed.

More number of gestures can be added thereby increasing this tool's functionality and usabilit y for different purposes.

Tracking of both hands can be added to increase the set of commands.

Voice commands can also be added to further increase the functionality.

13. APPENDIX

Source Code

Model Building

TEAM ID: PNT2022TMID48554

PROJECT NAME: GESTURE BASED TOOL FOR STERILE BROWSING OF RADIOLOGICAL IMAGES

Training the model

IMPORT THE LIBRARIES

```
In [2]: import numpy as np import tensorflow from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense,Flatten,Dropout from tensorflow.keras.layers import Convolution2D,MaxPooling2D from tensorflow.keras.preprocessing.image import ImageDataGenerator
```

DATA AUGMENTATION

- In [3]: #setting parameter for Image Data agumentation to the traing and testing data
 train_pre=ImageDataGenerator(rescale=1./255,shear_range=0.2, zoom_range=0.2,horizor
 test_pre=ImageDataGenerator(rescale=1./255)

Found 594 images belonging to 6 classes. Found 30 images belonging to 6 classes.

In [5]: #checking the number of classes
print(x_train.class_indices)
{'0': 0, '1': 1, '2': 2, '3': 3, '4': 4, '5': 5}

Model Creation

- In [6]: # Initializing the model
 model = Sequential()

 In [7]: # Adding first convolution Layer and pooling
 model.add(Convolution2D(32, (3, 3), input_shape=(64, 64, 1), activation='relu'))

Model: "sequential"

Layer (type) Output Shape Param #

Conv2d (Conv2D) (None, 62, 62, 32) 32e

max_pooling2d (MaxPooling2D (None, 31, 31, 32) 0
)

conv2d_1 (Conv2D) (None, 29, 29, 32) 9248

max_pooling2d_1 (MaxPooling (None, 14, 14, 32) 0
2D)

flatten (Flatten) (None, 6272) 0
dense (Dense) (None, 512) 3211776

dense_1 (Dense) (None, 6) 3878

Total params: 3,224,422
Trainable params: 0

Fitting The Model

In [17]:
It will generate packets of train and test data for training
model.fit(x_train, steps_per_epoch = 594/3 , epochs = 25, validation_data = x_test;

```
=] - 6s 33ms/step - loss: 0.0956 - accuracy:
      val_loss: 1.0061 - val_accuracy: 0.8000
0.9747
Epoch 2/25
9.9697 - val_loss: 0.5038 - val_accuracy: 0.9333
Epoch 3/25
                       198/198 [ ---
      val_loss: 0.7071 - val_accuracy: 0.9333
Epoch 4/25
198/198 [==
                                6s 28ms/step - loss: 0.0123 - accuracy:
      val loss: 0.8982 - val accuracy: 0.9333
0.9966 -
Epoch 5/25
138/198 [------] - 6s 28ns/step - loss: 0.0023 - accuracy: 1.0000 - val_loss: 0.7736 - val_accuracy: 0.9333
Epoch 6/25
                         ====] - 6s 29ms/step - loss: 0.0214 - accuracy:
198/198 [ ==
0.9949 -
      val_loss: 0.7076 - val_accuracy: 0.9333
      val_loss: 0.8367 - val_accuracy: 0.8667
1.0000 - vi
Epoch 8/25
----] - 6s 29ms/step - loss: 0.0017 - accuracy:
198/198 [==
      val_loss: 0.9044 - val_accuracy: 0.9333
198/198 [-----] - 6s 29ms/st
acy: 1.0000 - val_loss: 0.8452 - val_accuracy: 0.9333
Epoch 11/25
                                     /step - loss: 7.8635e-04 - accur
===] - 6s 29ms/step - loss: 2.7762e-04 - accur
                       198/198 [---
acy: 1.0000 - val_loss: 0.8293 - val_accuracy: 0.9333
                      198/198 [-----] - 05 25
0.9899 - val_loss: 1.3631 - val_accuracy: 0.8800
                        -----] - 6s 29ms/step - loss: 0.0305 - accuracy:
198/198 [==
                           ==] - 6s 29ms/step - loss: 0.1051 - accuracy:
      val_loss: 0.5481 - val_accuracy: 0.9667
0.9663 -
6s 29ms/step - loss: 0.0513 - accuracy:
---] - 6s 30ms/step - loss: 0.0233 - accuracy:
198/198 [---
      val_loss: 0.5405 - val_accuracy: 0.9333
0.9865
Epoch 19/25
198/198 [-----] - 6s 29
1.0000 - val_loss: 0.5343 - val_accuracy: 0.9333
Epoch 20/25
                                6s 29ms/step - loss: 0.0024 - accuracy:
```

```
198/198 [==
                                :=======] - 6s 29ms/step - loss: 0.0380 - accuracy:
         0.9848 -
                 val_loss: 0.5883 - val_accuracy: 0.9333
         Epoch 22/25
         198/198 [---
0.9848 - val
                                       -----] - 6s 29ms/step - loss: 0.0684 - accuracy:
                 val_loss: 0.6901 - val_accuracy: 0.9333
         Epoch 23/25
         198/198 [===
                                                 6s 29ms/step - loss: 0.0223 - accuracy:
         0.9899 -
                 val_loss: 0.5443 - val_accuracy: 0.9333
         Epoch 24/25
        --] - 6s 29ms/step - loss: 0.0119 - accuracy:
                                             =] - 6s 29ms/step - loss: 9.0722e-04 - accur
         acy: 1.0000 - val_loss: 0.5869 - val_accuracy: 0.9000
Out[17]: ckeras.callbacks.History at 0x20ef5abf2e0>
```

Saving the model

Testing the model

Importing the Libraries

```
In [2]: from tensorflow.keras.models import load_model
    from tensorflow.keras.preprocessing import image
    #loading the model for testing
    model = load_model("gesture.h5")
    path =r"C:\Users\User\Gestures\Dataset\test\2\0.jpg"
```

Plotting the image

```
In [3]: %pylab inline
   import matplotlib.pyplot as plt
   import matplotlib.image as mping
   imgs = mping.imread(path)
   imgplot = plt.imshow(ings)
   plt.show()
```

%pylab is deprecated, use %matplotlib inline and import the required libraries. Populating the interactive namespace from numpy and matplotlib $\,$


```
In [4]: #loading the image
img = image.load_img(path,color_mode='grayscale',target_size= (64,64))
x = image.img_to_array(img)
x.shape
```

Out[4]: (64, 64, 1)

Application Building

app.py

from flask import Flask,render_template,request import numpy as np

import os

import operator

import cv2

from tensorflow.keras.models import load_model from tensorflow.keras.utils import load_img, img_to_array from werkzeug.utils import secure filename

```
app = Flask(__name__,template_folder="templates")
model=load model('../Cloud Model/gesture.h5')
```

```
print("Model is loaded from local system")
@app.route("/")
def root():
        return render template("home.html")
@app.route("/home")
def home():
        return render template("home.html")
@app.route("/intro")
def intro():
        return render template("intro.html")
@app.route("/launch")
def launch():
        return render template("launch.html")
(a)app.route('/index',methods=['GET','POST'])
def index():
  return render template("launch.html")
@app.route('/predict',methods=['GET','POST'])
def predict():
  #Getting input and storing it
  if request.method == 'POST':
     print('inside launch function')
     f=request.files['image']
     basepath=os.path.dirname( file )
     file path=os.path.join(basepath,'uploads',secure filename(f.filename))
```

```
f.save(file_path)
  print('img saved successfully')
  print(file path)
  # test_image=cv2.imread(file_path,cv2.IMREAD_COLOR)
  # test image=cv2.resize(test image,(64,64))
  # result= model.predict(test_image.reshape(1,64,64,1))
  # img = load_img(file_path, grayscale=True, target_size=(64, 64))
  \# x = img \text{ to array(img)}
  \# x = \text{np.expand dims}(x, axis = 0)
cap=cv2.VideoCapture(0)
image1=cv2.imread(file path)
cv2.imshow("Output",image1)
prev='NULL'
while True:
  _, frame=cap.read()
  frame=cv2.flip(frame,1)
  x1=int(0.5*frame.shape[1])
  y1 = 10
  x2=frame.shape[1]-10
  y2=int(0.5*frame.shape[1])
```

Github:

https://github.com/IBM-EPBL/IBM-Project-42037-1660647835

Demo Video Link:

https://youtu.be/CKg2BBm10ck