QUARTO TESTE

Universidade Federal de Goiás (UFG) - Regional Jataí Bacharelado em Ciência da Computação Teoria da Computação Esdras Lins Bispo Jr.

02 de agosto de 2016

ORIENTAÇÕES PARA A RESOLUÇÃO

- A avaliação é individual, sem consulta;
- A pontuação máxima desta avaliação é 10,0 (dez) pontos, sendo uma das 06 (seis) componentes que formarão a média final da disciplina: quatro testes, uma prova e exercícios;
- $\bullet\,$ A média final (MF) será calculada assim como se segue

$$MF = MIN(10, S)$$

 $S = (\sum_{i=1}^{4} 0, 2.T_i) + 0, 2.P + 0, 1.E$

em que

- -S é o somatório da pontuação de todas as avaliações,
- $-T_i$ é a pontuação obtida no teste i,
- -P é a pontuação obtida na prova, e
- E é a pontuação total dos exercícios.
- O conteúdo exigido desta avaliação compreende o seguinte ponto apresentado no Plano de Ensino da disciplina: (5) Complexidade de Tempo e (6) NP-Completude.

Nome:		
Assinatura:		

Quarto Teste

1. (5,0 pt) Mostre que **NP** é fechada sob a operação de concatenação.

Prova: Sejam A e B duas linguagens decidíveis em NP. Sejam M_A e M_B duas máquinas de Turing não-determinísticas que decidem as linguagens A e B, respectivamente (pois se uma linguagem é decidível, então uma máquina de Turing a decide). Como A e B são decidíveis em tempo polinomial não-determinístico, A e B pertencem a NTIME (n^k) e NTIME (n^l) respectivamente (em que k e l são números naturais). Iremos construir a máquina de Turing não-determinística M_{aux} , a partir de M_A e M_B , que decide $A \circ B$ em tempo polinomial não-determinístico. A descrição de M_{aux} é dada a seguir:

 M_{aux} = "Sobre a entrada ω , faça:

- (a) Não-deterministicamente selecione um corte de ω , de forma que $\omega = \omega_A \circ \omega_B$:
 - i. Rode M_A sobre ω_A .
 - ii. Rode M_B sobre ω_B .
 - iii. Se M_A e M_B aceitam, aceite.
 - iv. Caso contrário, rejeite".

O tempo de execução t de M_{aux} é igual a soma do tempo de execução dos passos (a), (i), (ii), (iii) e (iv). Logo, $t = O(n) + O(n^k) + O(n^l) + O(1) + O(1) = O(n^{\max(k,l)})$.

Seja c = max(k, l). Temos assim, $t = O(n^c)$. Como c é um número natural, $A \circ B \in \text{NTIME}(n^c)$ e, consequentemente, $A \circ B \in NP$. Logo, podemos afirmar que NP é fechada sob a operação de concatenação

2. (5,0 pt) Um triângulo em um grafo não-direcionado é um 3-clique. Mostre que TRIANGULO $\in \mathbf{P}$, em que

TRIANGULO =
$$\{\langle G \rangle \mid G \text{ contém um triângulo } \}$$
.

Prova: Se TRIANGULO \in **P**, então é possível construir uma máquina de Turing simples que a decide em tempo polinomial. Construiremos M que decide TRIANGULO:

M = "Sobre a entrada $\langle G \rangle$, em que G é um grafo não-direcionado, faça:

- (a) Para cada conjunto distinto C com três vértices de G, faça:
 - i. Verifique se C forma um 3-clique em G.
 - ii. Se sim, aceite.
- (b) Rejeite".

O tempo de execução t de M é igual a soma do tempo de execução dos passos (a) e (b). Logo, $t = O(n^3)(O(n^2) + O(1)) + O(1) = O(n^5)$.

5 é um número natural e TRIANGULO \in TIME($n^5)$. Logo, podemos afirmar que TRIANGULO \in ${\bf P}$