Accesso Multiplo al Canale Condiviso

Il sottolivello MAC ha la responsabilità fondamentale di gestire l'accesso a un canale di comunicazione condiviso, evitando errori dovuti alle collisioni (interferenze tra trasmissioni simultanee). Questa gestione si basa su regole specifiche definite nei protocolli di accesso al canale.

Classificazione dei Protocolli di Accesso

I protocolli di accesso si dividono in due categorie principali:

1. Accesso Ordinato

- Il diritto di trasmissione viene assegnato a una stazione alla volta
- Basato su criteri predefiniti
- Elimina completamente le collisioni
- Esempio: Token Ring

2. Accesso Casuale

- Le stazioni trasmettono quando necessario
- Possibilità di collisioni che devono essere gestite
- Si suddivide ulteriormente in:
 - Protocolli senza rivelazione del canale (es. ALOHA)
 - Protocolli con rivelazione del canale (es. CSMA)

ALOHA e Varianti

ALOHA Puro

- Primo protocollo ad accesso casuale (Università delle Hawaii)
- Caratteristiche:
 - Trasmissione immediata quando necessario
 - Nessun controllo preventivo del canale
 - In caso di collisione: ritrasmissione dopo tempo casuale
- Performance:
 - Throughput massimo: Ge^(-2G) frame/tempo
 - G = numero medio trasmissioni per unità di tempo
 - Utilizzo massimo del canale: 18.4%
- Meccanismo di backoff:
 - Tempo di attesa: casuale tra [0, (K-1)T]
 - T = tempo trasmissione frame
 - K = parametro configurabile (può dipendere dal numero di collisioni)

Slotted ALOHA

- Evoluzione dell'ALOHA puro
- Modifiche principali:
 - Tempo diviso in slot discreti
 - Trasmissioni permesse solo all'inizio degli slot
 - Sincronizzazione tramite stazione centrale
- Vantaggi:
 - Dimezza la vulnerabilità alle collisioni
 - Raddoppia l'utilizzo massimo del canale (36.8%)
 - Collisioni possibili solo tra frame nello stesso slot

CSMA (Carrier Sense Multiple Access)

Il CSMA introduce il concetto di "ascolto del canale" prima della trasmissione. Esistono tre varianti principali:

1. CSMA 1-persistente

- Funzionamento:
 - Ascolto continuo del canale
 - Se libero: trasmissione immediata (probabilità 1)
 - Se occupato: attesa e ricontrollo continuo
- Caratteristiche:
 - Data rate superiore al 50%
 - Problemi:
 - Non considera ritardo di propagazione
 - Rischio elevato di collisioni dopo liberazione del canale

2. CSMA non-persistente

- Approccio più conservativo:
 - Se canale occupato: attesa tempo casuale prima di ricontrollare
 - Non monitora continuamente il canale
- Vantaggi:
 - Riduce probabilità di collisioni
 - Migliore utilizzo del canale
- Svantaggi:
 - Latenza maggiore
 - Possibile sottoutilizzo del canale

3. CSMA p-persistente

- Utilizzato su canali slotted
- Algoritmo:
 - Se canale libero: trasmette con probabilità p
 - Se non trasmette: attende prossimo slot (prob. 1-p)
 - Ripete processo fino a trasmissione o rilevazione occupazione
- Caratteristiche:
 - Buon compromesso tra prestazioni e collisioni
 - Richiede sincronizzazione degli slot

CSMA/CD (Collision Detection)

Il CSMA/CD è l'evoluzione del CSMA che include la rilevazione delle collisioni durante la trasmissione.

- Caratteristiche principali:
 - Ascolta durante la trasmissione (listen while talking)
 - Rilevazione analogica delle collisioni
 - Interruzione immediata in caso di collisione
 - Invio jamming signal per notifica
 - Utilizzo di exponential backoff per ritrasmissione
- Gestione collisioni:
 - 1. Rilevazione differenza tra segnale trasmesso e letto
 - 2. Interruzione immediata trasmissione
 - 3. Invio jamming sequence
 - 4. Calcolo tempo attesa con exponential backoff
 - 5. Ritentativo trasmissione

Ethernet (IEEE 802.3)

Caratteristiche Fondamentali

- Standard dominante per reti LAN
- Topologia logica: bus
- Mezzo condiviso tra le stazioni
- Protocollo di accesso: CSMA/CD

Comunicazioni Wireless e Satellitari

Spettro Elettromagnetico e Bande

Bande di Frequenza Wireless

1. ISM (Industrial, Scientific, Medical)

- 2.4 GHz: Wi-Fi, Bluetooth
- 5 GHz: Wi-Fi ad alta velocità
- Caratteristiche:
 - Uso libero senza licenza
 - Soggette a interferenze
 - Portata limitata

2. Telefonia Mobile

- GSM (900/1800 MHz)
- UMTS (2100 MHz)
- LTE (700-2600 MHz)
- 5G (Sub-6GHz e mmWave 24-47 GHz)
- Caratteristiche:
 - Uso con licenza
 - Copertura estesa
 - Gestione interferenze

Propagazione Segnali Wireless

- Path Loss: attenuazione proporzionale a d²/d⁴
- Multipath: riflessioni multiple del segnale
- Shadowing: ostacoli nel percorso
- Fading: variazioni di potenza nel tempo

Reti Infrarossi

Caratteristiche Principali

1. Frequenze: 300 GHz - 430 THz

2. Vantaggi:

- Immunità interferenze RF
- Sicurezza intrinseca (no attraversamento muri)
- Costo contenuto

3. Limitazioni:

- Necessità line-of-sight
- Portata limitata (1-10m)
- Sensibilità a luce ambiente

Modalità Operative

4. Direct IR

LOS diretto tra dispositivi

Massima efficienza energetica

5. Diffuse IR

- Riflessione su superfici
- Maggiore flessibilità
- Minore efficienza

Reti Cellulari

Concetti Base

- 1. Cella: area geografica servita da una BTS
- 2. Frequency Reuse: riutilizzo frequenze tra celle non adiacenti
- 3. Cell Splitting: divisione celle per aumentare capacità
- 4. Processo di Handoff
 - Misurazione continua segnale
 - Decisione basata su threshold
 - Esecuzione cambio cella
 - Aggiornamento routing

Reti Satellitari

Orbite Satellitari

1. LEO (Low Earth Orbit)

Altitudine: 500-2000 km

Latenza: 1-4 ms

Caratteristiche:

- Costellazioni numerose
- Handoff frequenti
- Copertura non continua
- Applicazioni:
 - Internet satellitare (Starlink)
 - Osservazione terrestre

2. MEO (Medium Earth Orbit)

Altitudine: 2000-35786 km

Latenza: 50-150 ms

- Caratteristiche:
 - Orbite semi-sincrone
 - Copertura regionale
 - Handoff moderati
- Applicazioni:

- GPS/Galileo
- Comunicazioni regionali

3. GEO (Geostationary Earth Orbit)

- Altitudine: 35786 km
- Latenza: ~250 ms
- Caratteristiche:
 - Posizione fissa rispetto Terra
 - Copertura 1/3 superficie
 - No handoff
- Applicazioni:
 - Broadcasting TV
 - Telecomunicazioni fisse
 - Meteo

Parametri Tecnici Satelliti

1. Problematiche

- Ritardo propagazione
- Attenuazione atmosferica
- Effetto Doppler
- Interferenze terrestri

2. Tecniche di Accesso

- FDMA (Frequency Division)
- TDMA (Time Division)
- CDMA (Code Division)