

SEQUENCE LISTING

<110> GENFIT SA

<120> Method for the identification of compounds modulating reverse cholesterol transport.

<130> B0219WO

<140>

<141>

<160> 26

<170> PatentIn Ver. 2.1

<210> 1

<211> 13

<212> DNA

<213> Artificial Sequence

<220>

<223> LRH-1 response element of the human apo A1 gene promoter.

<400> 1

ctgatccttg aac

13

<210> 2

<211> 13

<212> DNA

<213> Artificial Sequence

<220>

<223> Mutated LRH-1 response element of the human apo A1 gene promoter.

<400> 2

ctgattgttg aac

13

<210> 3

<211> 65

<212> DNA

<213> Artificial Sequence

<220>

<223> Region B of the human apo A1 gene promoter.

<400> 3

gcagccccc cagcttgctg tttgccact ctattgcc agccccagg acagagctga 60
tcctt 65

<210> 4

<211> 87

<212> DNA

<213> Artificial Sequence

<220>

<223> Region C of the human apo A1 gene promoter.

<400> 4

gaactcttaa gttccacatt gccaggacca gtgagcagca acagggccgg ggctggcctt 60
atcagcctcc cagcccagac cctggct 87

<210> 5
<211> 349
<212> DNA
<213> Artificial Sequence

<220>
<223> Apo AI promotor - j04066 (Apo AI gene) 1819-2167.

<400> 5
gggagacctg caaggctgca gcactccccct cccgcggcc ctgaaccctt gaccctgcc 60
ctcgagcccc cgtagctgc tggttgccca ctctatttgc ccagccccag ggacagagct 120
gatcctgaa ctcttaagtt ccacattgcc aggaccatgt agcagcaaca gggccggggc 180
tgggcttatac agcctcccaag cccagaccct ggctgcagac ataaatagc cctgcaagag 240
ctggctgtttt agagactgcg agaaggaggt gctgcctgtt gcctgcccc gtcactctgg 300
ctccccagct caaggttcaag gccttgcggcc aggccggcc tctgggtac 349

<210> 6
<211> 166
<212> DNA
<213> Artificial Sequence

<220>
<223> Tk promotor - M80483 (pBLCAT5) 38-204; J02224 (Herpes simplex) 302-462.

<400> 6
tgcccccggcc agcgtcttgt cattggcgaa ttcaacacg cagatgcagt cggggcgccg 60
cggtccagggt ccacttcgca tattaagggtg acgcgtgtgg cctcgaacac cgagcgaccc 120
tgcaagcgacc cgcttaacacg cgtcaacacg tgccgcagat cacgag 166

<210> 7
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Sense sequence of hCyp7a wt.

<400> 7
gatctcttag ttcaaggcca gtttag 25

<210> 8
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Sequence of hCyp7a wt.

<400> 8
gatcctaact ggccttgaac taaga 25

<210> 9

<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Sense Sequence of hCyp 7 a mut.

<400> 9
gatctcttag ttcaattcca gttag 25

<210> 10
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense Sequence of hCyp 7a mut.

<400> 10
gatcctaact ggaattgaac taaga 25

<210> 11
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Sense sequence of LHRE_ApoA1_h_5.

<400> 11
gatccgcagc ccccgcaagct tgctgtta 27

<210> 12
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense sequence of LHRE_ApoAI_h_5.

<400> 12
gatctacagc aagctgcggg ggctgcg 27

<210> 13
<211> 32
<212> DNA
<213> Artificial Sequence

<220>
<223> Sense sequence of LHRE_ApoA1_h_6.

<400> 13
gatccttgcc cactctattt gcccagcccc aa 32

<210> 14
<211> 32

<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense sequence of LHRE_ApoAI_h_6.

<400> 14
gatcttgggg ctgggcaa at agagtgggca ag 32

<210> 15
<211> 29
<212> DNA
<213> Artificial Sequence

<220>
<223> Sense sequence of LHRE_ApoAI_h_7.

<400> 15
gatccgggac agagctgatc cttgaacta 29

<210> 16
<211> 29
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense sequence of LHRE_ApoAI_h_7.

<400> 16
gatctagttc aaggatcagc tctgtcccg 29

<210> 17
<211> 29
<212> DNA
<213> Artificial Sequence

<220>
<223> Sense sequence of LHRE_ApoAI_h_8.

<400> 17
gatccagtt gctgttgcc cactctata 29

<210> 18
<211> 29
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense sequence of LHRE_ApoAI_h_8.

<400> 18
gatctataga gtgggcaa ac agcaagctg 29

<210> 19
<211> 40
<212> DNA

<213> Artificial Sequence

<220>

<223> Sense sequence used for mutagenesis of ABCmutLuc+.

<400> 19
ggacagagct gattgttcaa ctcttaagtt ccacattgcc 40

<210> 20

<211> 38

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense sequence used for mutagenesis of ABCmutLuc+.

<400> 20
cttaagagtt caacaatcag ctctgtccct ggggctgg 38

<210> 21

<211> 27

<212> DNA

<213> Artificial Sequence

<220>

<223> Sense sequence of FXRRE_ApoA1_h_1.

<400> 21
cagagctgat ccttgaactc ttaagtt 27

<210> 22

<211> 27

<212> DNA

<213> Artificial Sequence

<220>

<223> Antisense sequence of FXRRE_ApoA1_h_1.

<400> 22
aacttaagag ttcaaggatc agctctg 27

<210> 23

<211> 27

<212> DNA

<213> Artificial sequence

<220>

<223> Sense sequence of FXRRE_ApoA1_h_1_mut.

<400> 23
cagagctgat ccttgaagtg ttaagtt 27

<210> 24

<211> 27

<212> DNA

<213> Artificial sequence
<220>
<223> Antisense sequence of FXRRE_ApoA1_h_1_mut.

<400> 24
aacttaacac ttcaaggatc agctctg

27

<210> 25
<211> 29
<212> DNA
<213> Artificial sequence

<220>
<223> Sense sequence of LRHRE-ApoA1 mut.

<400> 25
gatccgggac agagctgatt gttgaacta

29

<210> 26
<211> 29
<212> DNA
<213> Artificial sequence

<220>
<223> Antisense sequence of LRHRE-ApoA1 mut.

<400> 26
gatctagttcaacaatcagctctgtccccg

29