ENGG 201 - Winter 2013 - Chapter 3 Examples and Problems

Winter 2007 Final Exam

Question Number V (15 Marks ~ 27 minutes)

Iron atoms (M= 55.85 kg/kmol, molecular diameter = 2.5 Å) are arranged in a face-centered cubic lattice (FCC) above 1180 K, and a different structure below 1180 K (density below 1180K = 7.71 g/cm 3).

- i. Calculate the density of iron above 1180 K. (/2)
- ii. What is the length of a side of the unit cell above 1180 K? (/1)
- iii. Determine the structure of iron below 1180 K. (/2)
- iv. What would be the change in length for a cubic block of iron with a mass of 1000 kg transitioning from below 1180 to above 1180 K? (/2)

Question Number VI (Continued)

Nitrogen freezes at -210°C, and the Lennard Jones parameters for nitrogen are $\epsilon/k=96.3$ K and $b_o=0.0636~m^3/kmol$.

- i) Determine the separation distance where the potential energy between two nitrogen molecules will be a minimum. (/2)
- ii) What are the values of the potential energy and the force between 2 nitrogen molecules at the distance in i)? (/2)
- iii) What is the value of the force between two nitrogen molecules at a separation distance equal to 2.5x the minimum potential energy distance? (/4)

Winter 2008 Final Exam

Question Number V (13 Marks ~ 23 minutes)

Aluminum (M=26.98 kg/kmol, = 2.62 Å) is known to exist in an FCC structure at 25° C and 1 atm, has a Young's modulus 69 GPa, Poisson's ratio 0.33, coefficient of thermal expansion $22.68 \times 10^{-6} \text{ K}^{-1}$, and thermal conductivity 190 W/mK.

- a) For a solid sphere of metallic aluminum at 25° C and 1 atm with a volume of 10^{-3} cm³, calculate values of the following quantities:
 - i. The specific volume of aluminum (m³/kg) (/2)
 - ii. The mass of the sphere. (/1)
 - iii. The total volume of void space in the sphere. (/2)

Winter 2009 Final Exam

Question Number V (15 Marks ~ 27 minutes)

<u>PART 1</u>: You have been asked to design a system to pack oranges into boxes. Each orange can be thought of as a rigid 8 cm diameter sphere with density 900 kg/m³. If the oranges are packed with a simple cubic pattern, then 350 can fit in a box (5 wide, 10 deep, and 7 high). That's a lot of oranges.

- a) Calculate the fraction of empty space in the box when the oranges are packed in a simple cubic arrangement. Show your work. (/2)
- b) Determine the mass of oranges in a box when the oranges are packed in a simple cubic arrangement. (/1)
- c) Determine the effective density of the orange-filled box. The empty box weighs 2 kg. (/2)

d) Using the limit of an infinitely large box, what percentage more oranges can fit in a box if the arrangement is face-centered cubic packing compared to simple cubic packing? (/2)

Question Number VI (Continued)

<u>PART 2</u>: Use the parameters below to answer the following questions:

	M, kg/kmol	∨ /k, K	†=1 Å
Oxygen	32	154	2.33
Nitrogen	28	78	2.94

- a) Assuming ideal gas behavior, calculate the diffusivity of nitrogen gas at 50°C and 3 atm. (/2)
- b) Assuming ideal gas behavior, calculate the value of the Prandtl number ($C_p\mu/k$) for nitrogen at 50°C and 3 atm. (/2)
- c) Determine the net force between two molecules of oxygen separated by a distance of 3 times the minimum potential distance. (/2)
- d) What is the minimum potential energy that occurs between two molecules of oxygen? (/2)

Winter 2010 Final Exam

Question Number V (15 Marks ~ 27 minutes)

PART 1:

The density of silver (M = 107.88 g/mol) at 20°C is 10520 kg/m^3 , and the closest interatomic distance is 2.888 Angstroms.

- a) Determine the structure of silver at 20°C. (/2)
- b) A 10 kg bar of silver is 4 cm wide by 4 cm high. Estimate the length of the bar at 20°C. (/3)
- c) Calculate the fraction of void space in the bar of silver at 20°C. (/2)

Question Number VI (15 Marks ~ 36 minutes)

PART 1:

The Lennard-Jones parameters for a substance (M=28) are: ε =133x10⁻²³J, b₀=0.064m³/kmol.

- a) Calculate the separation distance at which the net force between two adjacent molecules is zero. (/2)
- b) What is the potential energy between two adjacent molecules when the net force is zero? (/2)
- c) Calculate the net force between two adjacent molecules when the separation distance is 3 times the molecular diameter. (/3)