Szeregowanie zadań Przedmiot fakultatywny 15h wykładu + 15h ćwiczeń

dr Hanna Furmańczyk

25 lutego 2020

Zasady zaliczenia

- ćwiczenia (ocena):
 - kolokwium,
 - zadania dodatkowe (implementacje algorytmów),
 - praca na ćwiczeniach.
- Wykład (zal):
 - zaliczone ćwiczenia,
 - zadanie z wykładu.

Motywacja

Szeregowanie zadań:

- część wielozadaniowego systemu operacyjnego, odpowiedzialna za ustalanie kolejności dostępu zadań do procesora [jak rozdzielić czas procesora i dostęp do innych zasobów pomiędzy zadania, które w praktyce zwykle o te zasoby konkurują]
- serwery baz danych,
- organizacja obliczeń rozproszonych,
- linie produkcyjne,
- plany zajeć szkolnych, konferencji, itp.
- planowanie projektu,
- organizacja pracy.

Historia

- linia produkcyjna Henry'ego Forda (pierwsze lata XX w.),
- algorytm Jacksona 1955 (również dla produkcji przemysłowej),
- ...

Przykłady

• Pięć zadań o czasach wykonania $[p_1, \ldots, p_5] = [6, 9, 4, 1, 4]$ należy uszeregować na trzech identycznych maszynach tak, by zakończyły się one możliwie jak najszybciej.

Przykłady

• Pięć zadań o czasach wykonania $[p_1, \ldots, p_5] = [6, 9, 4, 1, 4]$ należy uszeregować na trzech identycznych maszynach tak, by zakończyły się one możliwie jak najszybciej.

Czy ten harmonogram jest poprawny?

Zasady poprawności harmonogramu - wstęp

 żadne zadanie nie może być jednocześnie wykonywane przez różne maszyny,

Zasady poprawności harmonogramu - wstęp

- żadne zadanie nie może być jednocześnie wykonywane przez różne maszyny,
- żaden procesor nie pracuje równocześnie nad różnymi zadaniami,

Zasady poprawności harmonogramu - wstęp

- żadne zadanie nie może być jednocześnie wykonywane przez różne maszyny,
- żaden procesor nie pracuje równocześnie nad różnymi zadaniami,
- ciąg dalszy nastąpi.

2 Jednodniowy plan zajęć (K_i - klasy, N_i - nauczyciele)

	N_1	N_2	N_3
K_1	3	2	1
<i>K</i> ₂	3	2	2
<i>K</i> ₃	1	1	2

$N_{_{1}}$	K ₂		K ₁		K ₃
$N_{_2}$	$K_{_{1}}$		$K_{_{2}}$	K ₃	
N_3	K ₃	K ₁		K ₂	
0	1 2	3	4 5	6	7

Procesory dedykowane - system otwarty (kolejność operacji dowolna).

3 Taśma produkcyjna (ważna kolejność operacji)

	M_1	M_2	M_3
D_1	3	2	1
D_2	3	2	2
D_3	1	1	2

Procesory dedykowane - system przepływowy (kolejność operacji musi być zgodna z numeracją maszyn).

Dziedzina ta zajmuje się *szeregowaniem* (układaniem harmonogramów) *zadań* (programów, czynności, prac) na *maszynach* (procesorach, obrabiarkach, stanowiskach obsługi).

Dziedzina ta zajmuje się *szeregowaniem* (układaniem harmonogramów) *zadań* (programów, czynności, prac) na *maszynach* (procesorach, obrabiarkach, stanowiskach obsługi). Szukamy harmonogramu wykonania dla danego zbioru zadań w określonych warunkach, tak by zminimalizować przyjęte *kryterium oceny* (koszt) uszeregowania.

Dziedzina ta zajmuje się *szeregowaniem* (układaniem harmonogramów) *zadań* (programów, czynności, prac) na *maszynach* (procesorach, obrabiarkach, stanowiskach obsługi). Szukamy harmonogramu wykonania dla danego zbioru zadań w określonych warunkach, tak by zminimalizować przyjęte *kryterium oceny (koszt) uszeregowania.*

Model deterministyczny: parametry systemu i zadań są od początku znane.

Sposoby obsługi zadań

Procesory równoległe (każdy procesor może obsłużyć każde zadanie):

Sposoby obsługi zadań

- Procesory równoległe (każdy procesor może obsłużyć każde zadanie):
 - procesory identyczne wszystkie są jednakowo szybkie,
 - procesory jednorodne mają różne szybkości, ale stosunki czasów wykonania zadań są niezależne od maszyn,
 - procesory dowolne prędkości zależą od wykonywanych zadań.

 zadania są podzielone na operacje (zadanie Z_j składa się z operacji O_{ij} do wykonania na maszynach M_i, o długościach czasowych p_{ij}); zadanie kończy się wraz z wykonaniem swej najpóźniejszej operacji,

- zadania są podzielone na operacje (zadanie Z_j składa się z operacji O_{ij} do wykonania na maszynach M_i, o długościach czasowych p_{ij}); zadanie kończy się wraz z wykonaniem swej najpóźniejszej operacji,
- dopuszcza się sytuacje, gdy zadanie nie wykorzystuje wszystkich maszyn (operacje puste),

- zadania są podzielone na operacje (zadanie Z_j składa się z operacji O_{ij} do wykonania na maszynach M_i, o długościach czasowych p_{ij}); zadanie kończy się wraz z wykonaniem swej najpóźniejszej operacji,
- dopuszcza się sytuacje, gdy zadanie nie wykorzystuje wszystkich maszyn (operacje puste),
- żadne dwie operacje tego samego zadania nie mogą wykonywać się rownocześnie,

- zadania są podzielone na operacje (zadanie Z_j składa się z operacji O_{ij} do wykonania na maszynach M_i, o długościach czasowych p_{ij}); zadanie kończy się wraz z wykonaniem swej najpóźniejszej operacji,
- dopuszcza się sytuacje, gdy zadanie nie wykorzystuje wszystkich maszyn (operacje puste),
- żadne dwie operacje tego samego zadania nie mogą wykonywać się rownocześnie,
- żaden procesor nie może rownocześnie pracować nad różnymi operacjami.

- zadania są podzielone na operacje (zadanie Z_j składa się z operacji O_{ij} do wykonania na maszynach M_i, o długościach czasowych p_{ij}); zadanie kończy się wraz z wykonaniem swej najpóźniejszej operacji,
- dopuszcza się sytuacje, gdy zadanie nie wykorzystuje wszystkich maszyn (operacje puste),
- żadne dwie operacje tego samego zadania nie mogą wykonywać się rownocześnie,
- żaden procesor nie może rownocześnie pracować nad różnymi operacjami.

Przykład 2 i 3.

Trzy główne typy systemów obsługi dla maszyn dedykowanych:

- system przepływowy (ang. flow shop) operacje każdego zadania są wykonywane przez procesory w tej samej kolejności wyznaczonej przez numery maszyn (przykład 3),
- system otwarty (ang. open shop) kolejność wykonania operacji w obrębie zadań jest dowolna (przykład 2),
- system gniazdowy (ang. job shop) dla każdego zadania mamy dane przyporządkowanie maszyn operacjom oraz wymaganą kolejność.

Dane:

n zadań $Z = \{Z_1, \ldots, Z_n\}$; m maszyn (procesorów) $\{M_1, \ldots, M_m\}$.

Dane:

n zadań $Z = \{Z_1, \dots, Z_n\}$; m maszyn (procesorów) $\{M_1, \dots, M_m\}$.

- Czas wykonywania zadania Z_j
 - Dla procesorów identycznych jest on niezależny od maszyny i wynosi pj.

Dane:

n zadań $Z = \{Z_1, \ldots, Z_n\}$; m maszyn (procesorów) $\{M_1, \ldots, M_m\}$.

- Czas wykonywania zadania Z_j
 - Dla procesorów identycznych jest on niezależny od maszyny i wynosi p_i.
 - Procesory jednorodne M_i charakteryzują się współczynnikami szybkości b_i , wtedy czas dla M_i to p_j/b_i .

Dane:

n zadań $Z = \{Z_1, \dots, Z_n\}$; m maszyn (procesorów) $\{M_1, \dots, M_m\}$.

- Czas wykonywania zadania Z_j
 - Dla procesorów identycznych jest on niezależny od maszyny i wynosi p_j.
 - Procesory jednorodne M_i charakteryzują się współczynnikami szybkości b_i , wtedy czas dla M_i to p_i/b_i .
 - Dla maszyn dowolnych mamy czasy p_{ij} zależne od zadań i procesorów.

Moment przybycia zadania Z_j: r_j (ang. release time).
 Czas, od którego zadanie może zostać podjęte. Wartość domyślna - zero.

Termin zakończenia zadania Z_j: d_j.
 Opcjonalny parametr. Występuje w dwóch wariantach. Może oznaczać czas, od którego nalicza się spóźnienie (ang. due date), lub termin, którego przekroczyć nie wolno (ang. deadline).

• Waga zadania Z_j: w_j.

Opcjonalny parametr, określający ważność zadania przy naliczaniu kosztu harmonogramu. Domyślnie zadania są jednakowej wagi i wtedy $w_i=1$.

- Moment przybycia zadania Z_j: r_j (ang. release time).
 Czas, od którego zadanie może zostać podjęte. Wartość domyślna zero.
- Termin zakończenia zadania Z_j: d_j.
 Opcjonalny parametr. Występuje w dwóch wariantach. Może oznaczać czas, od którego nalicza się spóźnienie (ang. due date), lub termin, którego przekroczyć nie wolno (ang. deadline).
- Waga zadania Z_j : w_j . Opcjonalny parametr, określający ważność zadania przy naliczaniu kosztu harmonogramu. Domyślnie zadania są jednakowej wagi i wtedy $w_j=1$.

Relacja częściowego porządku

W zbiorze zadań Z można wprowadzić ograniczenia kolejnościowe w postaci dowolnej relacji częściowego porządku. Wówczas $Z_i \prec Z_j$ oznacza, że zadanie Z_j może się zacząć wykonywać dopiero po zakończeniu Z_i

Relacja częściowego porządku

W zbiorze zadań Z można wprowadzić ograniczenia kolejnościowe w postaci dowolnej relacji częściowego porządku. Wówczas $Z_i \prec Z_j$ oznacza, że zadanie Z_j może się zacząć wykonywać dopiero po zakończeniu Z_i (czemu?

Relacja częściowego porządku

W zbiorze zadań Z można wprowadzić ograniczenia kolejnościowe w postaci dowolnej relacji częściowego porządku. Wówczas $Z_i \prec Z_j$ oznacza, że zadanie Z_j może się zacząć wykonywać dopiero po zakończeniu Z_i (czemu? np. Z_i korzysta z wyników pracy Z_i).

Relacja częściowego porządku

W zbiorze zadań Z można wprowadzić ograniczenia kolejnościowe w postaci dowolnej relacji częściowego porządku. Wówczas $Z_i \prec Z_j$ oznacza, że zadanie Z_j może się zacząć wykonywać dopiero po zakończeniu Z_i (czemu? np. Z_j korzysta z wyników pracy Z_i).

Jeśli ograniczenia te nie występują, mówimy o zadaniach *niezależnych* (tak się przyjmuje domyślnie), w przeciwnym razie są one *zależne*.

Relacja częściowego porządku

W zbiorze zadań Z można wprowadzić ograniczenia kolejnościowe w postaci dowolnej relacji częściowego porządku. Wówczas $Z_i \prec Z_j$ oznacza, że zadanie Z_j może się zacząć wykonywać dopiero po zakończeniu Z_i (czemu? np. Z_j korzysta z wyników pracy Z_i).

Jeśli ograniczenia te nie występują, mówimy o zadaniach *niezależnych* (tak się przyjmuje domyślnie), w przeciwnym razie są one *zależne*.

acykliczny digraf (diagram Hassego)

To nie jest uszeregowanie optymalne.

To jest uszeregowanie optymalne (ścieżka krytyczna).

Parametry zadań cd.

Zadania mogą być:

 niepodzielne - przerwy w wykonaniu są niedopuszczalne (domyślnie),

Parametry zadań cd.

Zadania mogą być:

- niepodzielne przerwy w wykonaniu są niedopuszczalne (domyślnie),
- podzielne wykonanie można przerwać i podjąć ponownie, w przypadku maszyn równoległych nawet na innym procesorze.

Parametry zadań cd.

Zadania mogą być:

- niepodzielne przerwy w wykonaniu są niedopuszczalne (domyślnie),
- podzielne wykonanie można przerwać i podjąć ponownie, w przypadku maszyn równoległych nawet na innym procesorze.

$M_{_1}$			$Z_{_2}$				
$M_{_2}$	Z ₁		$Z_{_3}$	Z ₁			
M_3	Z_3				Z_3		
0	1 2	3 4	5	6	7	8	9

 w każdej chwili procesor może wykonywać co najwyżej jedno zadanie,

- w każdej chwili procesor może wykonywać co najwyżej jedno zadanie,
- w każdej chwili zadanie może być obsługiwane przez co najwyżej jeden procesor,

- w każdej chwili procesor może wykonywać co najwyżej jedno zadanie,
- w każdej chwili zadanie może być obsługiwane przez co najwyżej jeden procesor,
- ullet zadanie Z_j wykonuje się w całości w przedziale czasu $[r_j,\infty)$,

- w każdej chwili procesor może wykonywać co najwyżej jedno zadanie,
- w każdej chwili zadanie może być obsługiwane przez co najwyżej jeden procesor,
- ullet zadanie Z_j wykonuje się w całości w przedziale czasu $[r_j,\infty)$,
- spełnione są ograniczenia kolejnościowe,

- w każdej chwili procesor może wykonywać co najwyżej jedno zadanie,
- w każdej chwili zadanie może być obsługiwane przez co najwyżej jeden procesor,
- zadanie Z_j wykonuje się w całości w przedziale czasu $[r_j,\infty)$,
- spełnione są ograniczenia kolejnościowe,
- w przypadku zadań niepodzielnych każde zadanie wykonuje się nieprzerwanie w pewnym domknięto-otwartym przedziale czasowym, dla zadań podzielnych czasy wykonania tworzą skończoną sumę rozłącznych przedziałów.

Dla uszeregowanego zadania Z_j możemy określić:

Dla uszeregowanego zadania Z_j możemy określić:

• moment zakończenia Ci (ang. completion time),

Dla uszeregowanego zadania Z_j możemy określić:

- moment zakończenia Ci (ang. completion time),
- czas przepływu przez system $\bar{F}_i = C_i r_i$ (ang. flow time),

Dla uszeregowanego zadania Z_i możemy określić:

- moment zakończenia Ci (ang. completion time),
- czas przepływu przez system $\bar{F}_i = C_i r_i$ (ang. flow time),
- opóźnienie $L_i = C_i d_i$ (ang. lateness),

Dla uszeregowanego zadania Z_j możemy określić:

- moment zakończenia Ci (ang. completion time),
- czas przepływu przez system $\bar{F}_i = C_i r_i$ (ang. flow time),
- opóźnienie $L_i = C_i d_i$ (ang. lateness),
- spóźnienie $T_i = \max\{C_i d_i, 0\}$ (ang. tardiness),

Dla uszeregowanego zadania Z_j możemy określić:

- moment zakończenia Ci (ang. completion time),
- czas przepływu przez system $\bar{F}_i = C_i r_i$ (ang. flow time),
- opóźnienie $L_i = C_i d_i$ (ang. lateness),
- spóźnienie $T_i = \max\{C_i d_i, 0\}$ (ang. tardiness),
- "znacznik spóxnienia" $U_i = w(C_i > d_i)$, a więc odpowiedź (0/1 czyli Nie/Tak) na pytanie "czy zadanie się spóźniło?".

Najczęściej stosowane kryteria:

Najczęściej stosowane kryteria:

• długość uszeregowania $C_{\mathsf{max}} = \mathsf{max}\{C_j : j = 1, \dots, n\}$,

Najczęściej stosowane kryteria:

- długość uszeregowania $C_{\max} = \max\{C_j : j = 1, \dots, n\}$,
- całkowity (łączny) czas zakończenia zadania $\sum C_j = \sum_{i=1}^n C_i$,

Najczęściej stosowane kryteria:

- długość uszeregowania $C_{\mathsf{max}} = \mathsf{max}\{C_j: j=1,\ldots,n\}$,
- całkowity (łączny) czas zakończenia zadania $\sum C_j = \sum_{i=1}^n C_i$,
- średni czas przepływu $\bar{F} = (\sum_{i=1}^n \bar{F}_i)/n$,

Najczęściej stosowane kryteria:

- długość uszeregowania $C_{\mathsf{max}} = \mathsf{max}\{C_j: j=1,\ldots,n\}$,
- całkowity (łączny) czas zakończenia zadania $\sum C_j = \sum_{i=1}^n C_i$,
- średni czas przepływu $\bar{F} = (\sum_{i=1}^n \bar{F}_i)/n$,

Najczęściej stosowane kryteria:

- długość uszeregowania $C_{\mathsf{max}} = \mathsf{max}\{C_j: j=1,\ldots,n\}$,
- całkowity (łączny) czas zakończenia zadania $\sum C_j = \sum_{i=1}^n C_i$,
- średni czas przepływu $\bar{F} = (\sum_{i=1}^n \bar{F}_i)/n$,

$$p_1 = 6, p_2 = 9, p_3 = 4, p_4 = 1, p_5 = 4$$

Najczęściej stosowane kryteria:

- długość uszeregowania $C_{\mathsf{max}} = \mathsf{max}\{C_j: j=1,\ldots,n\}$,
- całkowity (łączny) czas zakończenia zadania $\sum C_j = \sum_{i=1}^n C_i$,
- średni czas przepływu $\bar{F} = (\sum_{i=1}^n \bar{F}_i)/n$,

$$p_1 = 6, p_2 = 9, p_3 = 4, p_4 = 1, p_5 = 4$$

$$C_{\text{max}} = 9$$

Najczęściej stosowane kryteria:

- długość uszeregowania $C_{\mathsf{max}} = \mathsf{max}\{C_j: j=1,\ldots,n\}$,
- całkowity (łączny) czas zakończenia zadania $\sum C_j = \sum_{i=1}^n C_i$,
- średni czas przepływu $\bar{F} = (\sum_{i=1}^n \bar{F}_i)/n$,

$$p_1 = 6, p_2 = 9, p_3 = 4, p_4 = 1, p_5 = 4$$

$$C_{\mathsf{max}} = 9$$

$$\sum C_j = 6 + 9 + 4 + 7 + 8 = 34$$

Kryteria cd.

Można wprowadzać wagi (priorytety) zadań:

$$w_1 = 1, w_2 = 2, w_3 = 3, w_4 = 1, w_5 = 1$$

$M_{_{1}}$					$Z_{_2}$				
M_{2}			Z ₁				$Z_{_{4}}$		
$M_{_3}$		$Z_{_3}$				Z	5		
٥	1	2	3	4	5	6	7	8	9

Kryteria cd.

Można wprowadzać wagi (priorytety) zadań:

$$w_1 = 1, w_2 = 2, w_3 = 3, w_4 = 1, w_5 = 1$$

• całkowity ważony czas zakończenia $\sum w_j C_j = \sum_{i=1}^n w_i C_i$

Kryteria cd.

Można wprowadzać wagi (priorytety) zadań:

$$w_1 = 1, w_2 = 2, w_3 = 3, w_4 = 1, w_5 = 1$$

ullet całkowity ważony czas zakończenia $\sum w_j C_j = \sum_{i=1}^n w_i C_i$

$$\sum w_j C_j = 6 + 18 + 12 + 7 + 8 = 51$$

• maksymalne opóźnienie $L_{\max} = \max\{L_j : j = 1, \dots, n\}$

Zadanie: Z_1 Z_2 Z_3 Z_4 Z_5 d_i 7 7 5 5 8

• maksymalne opóźnienie $L_{\max} = \max\{L_j : j = 1, \dots, n\}$

• maksymalne opóźnienie $L_{\text{max}} = \max\{L_j : j = 1, \dots, n\}$

• maksymalne opóźnienie $L_{\text{max}} = \max\{L_j : j = 1, \dots, n\}$

• maksymalne opóźnienie $L_{\max} = \max\{L_j : j = 1, \dots, n\}$

• maksymalne opóźnienie $L_{\max} = \max\{L_j : j = 1, \dots, n\}$

М		7	Zadanie:	Z_1	Z_2	Z_3	Z_4	Z_5
M ₁		Z ₂	di	7	7	5	5	8
M_{2}	$Z_{_{1}}$	$\mid Z_{_4} \mid$						
$M_{_{3}}$	$Z_{_3}$	Z ₅	L_i :	-1	2	-1	2	
0	1 2 3 4	5 6 7 8 9	1					

• maksymalne opóźnienie $L_{\max} = \max\{L_j : j = 1, \dots, n\}$

м	7		Zadanie:	Z_1	Z_2	Z_3	Z_4	Z_5
M ₁	2		d_i	7	7	5	5	8
M_{2}	Z_{1}	$ Z_4 $						
$M_{_3}$	Z ₃	Z ₅	<u> </u>	-1	2	-1	2	0
0	1 2 3 4 5	5 6 7 8 9	1					

• maksymalne opóźnienie $L_{\text{max}} = \max\{L_j : j = 1, \dots, n\}$

 $L_{\text{max}} = 2$

- maksymalne opóźnienie $L_{\mathsf{max}} = \mathsf{max}\{L_j : j = 1, \dots, n\}$
- maksymalne spóźnienie $T_{\mathsf{max}} = \mathsf{max}\{T_j : j = 1, \dots, n\}$

- maksymalne opóźnienie $L_{\mathsf{max}} = \mathsf{max}\{L_j : j = 1, \dots, n\}$
- maksymalne spóźnienie $T_{\mathsf{max}} = \mathsf{max}\{T_j : j = 1, \dots, n\}$

 $L_{\text{max}} = 2$

- maksymalne opóźnienie $L_{\mathsf{max}} = \mathsf{max}\{L_j : j = 1, \dots, n\}$
- maksymalne spóźnienie $T_{\mathsf{max}} = \mathsf{max}\{T_j : j = 1, \dots, n\}$

 $L_{\text{max}} = 2$

- maksymalne opóźnienie $L_{\mathsf{max}} = \mathsf{max}\{L_j : j = 1, \dots, n\}$
- maksymalne spóźnienie $T_{\mathsf{max}} = \mathsf{max}\{T_j : j = 1, \dots, n\}$

 $L_{\mathsf{max}} = 2$

- maksymalne opóźnienie $L_{\mathsf{max}} = \mathsf{max}\{L_j : j = 1, \dots, n\}$
- maksymalne spóźnienie $T_{\mathsf{max}} = \mathsf{max}\{T_j: j = 1, \dots, n\}$

 $L_{\mathsf{max}} = 2$

- maksymalne opóźnienie $L_{\mathsf{max}} = \mathsf{max}\{L_j : j = 1, \dots, n\}$
- maksymalne spóźnienie $T_{\mathsf{max}} = \mathsf{max}\{T_j : j = 1, \dots, n\}$

 $L_{\mathsf{max}} = 2$

- maksymalne opóźnienie $L_{\mathsf{max}} = \mathsf{max}\{L_j : j = 1, \dots, n\}$
- maksymalne spóźnienie $T_{\mathsf{max}} = \mathsf{max}\{T_j : j = 1, \dots, n\}$

 $L_{\text{max}} = 2$

- maksymalne opóźnienie $L_{\mathsf{max}} = \mathsf{max}\{L_j : j = 1, \dots, n\}$
- maksymalne spóźnienie $T_{\max} = \max\{T_j : j = 1, \dots, n\}$

 $L_{\mathsf{max}} = 2$ $T_{\mathsf{max}} = 2$

- maksymalne opóźnienie $L_{\mathsf{max}} = \mathsf{max}\{L_j : j = 1, \dots, n\}$
- maksymalne spóźnienie $T_{\mathsf{max}} = \mathsf{max}\{T_j : j = 1, \dots, n\}$
- całkowite spóźnienie $\sum T_j = \sum_{i=1}^n T_i$

М					7				7 2	Zadanie:	Z_1	Z_2	Z_3	Z_4	Z_5	
1111			7		2		,		١ ,	d_i	7	7	5	5	8	
M ₂			Z ₁				4	_								
$M_{_3}$		$Z_{_3}$				$Z_{_{5}}$				L_i :	-1	2	-1	2	0	
0	1	2	3	4	5	6	7	8	9	T_i :	0	2	0	2	0	

 $L_{\mathsf{max}} = 2$

 $T_{\mathsf{max}} = 2$

- maksymalne opóźnienie $L_{\mathsf{max}} = \mathsf{max}\{L_j : j = 1, \dots, n\}$
- maksymalne spóźnienie $T_{\mathsf{max}} = \mathsf{max}\{T_j : j = 1, \dots, n\}$
- całkowite spóźnienie $\sum T_j = \sum_{i=1}^n T_i$

<i>M</i> ₁			Z ₂				Zadanie:	<i>Z</i> ₁	<i>Z</i> ₂	<i>Z</i> ₃	<i>Z</i> ₄ 5	Z ₅
M ₂		Z ₁		7	<u>Z</u> 4		- 41					
$M_{_3}$	$Z_{_3}$			$Z_{_{5}}$			L_i :	-1	2	-1	2	0
0	1 2	3	4 5	6	7	8 9	T_i :	0	2	0	2	0

 $L_{\mathsf{max}} = 2$

 $T_{\mathsf{max}} = 2$

 $\sum T_j = 4$

- maksymalne opóźnienie $L_{\mathsf{max}} = \mathsf{max}\{L_j : j = 1, \dots, n\}$
- maksymalne spóźnienie $T_{\mathsf{max}} = \mathsf{max}\{T_j : j = 1, \dots, n\}$
- całkowite spóźnienie $\sum T_j = \sum_{i=1}^n T_i$
- ullet liczba spóźnionych zadań $\sum U_j = \sum_{i=1}^n U_i$

М			7				Zadanie:	Z_1	Z_2	Z_3	Z_4	Z_5
₁ -			- 2	Τ.	7		di	7	7	5	5	8
M ₂		Z ₁		4	4	_						
$M_{_3}$	$Z_{_3}$			$Z_{_{5}}$			L_i :	-1	2	-1	2	0
0	1 2	3	4 5	6	7	8 9	T_i :	0	2	0	2	0

$$L_{\mathsf{max}} = 2$$

$$T_{\text{max}} = 2$$

$$\sum T_j = 4$$

- maksymalne opóźnienie $L_{\mathsf{max}} = \mathsf{max}\{L_j : j = 1, \dots, n\}$
- maksymalne spóźnienie $T_{\mathsf{max}} = \mathsf{max}\{T_j : j = 1, \dots, n\}$
- całkowite spóźnienie $\sum T_j = \sum_{i=1}^n T_i$
- ullet liczba spóźnionych zadań $\sum U_j = \sum_{i=1}^n U_i$

М			7				Zadanie:	Z_1	Z_2	Z_3	Z_4	Z_5
₁ -			- 2	Τ.	7		di	7	7	5	5	8
M ₂		Z ₁		4	4	_						
$M_{_3}$	$Z_{_3}$			$Z_{_{5}}$			L_i :	-1	2	-1	2	0
0	1 2	3	4 5	6	7	8 9	T_i :	0	2	0	2	0

 $L_{\text{max}} = 2$ $\sum T_j = 4 \sum_{\text{max}} U_j = 2$

- maksymalne opóźnienie $L_{\mathsf{max}} = \mathsf{max}\{L_j : j = 1, \dots, n\}$
- maksymalne spóźnienie $T_{\mathsf{max}} = \mathsf{max}\{T_j : j = 1, \dots, n\}$
- całkowite spóźnienie $\sum T_j = \sum_{i=1}^n T_i$
- liczba spóźnionych zadań $\sum U_j = \sum_{i=1}^n U_i$
- można wprowadzać wagi zadań, łączyć kryteria, np. łączne ważone spóźnienie $\sum w_j T_j = \sum_{i=1}^n w_i T_i$.

$$L_{\text{max}} = 2$$

$$\sum T_j = 4$$

Jak to opisać?

Jak to opisać? Notacja trójpolowa

lpha - środowisko maszynowe

lpha - środowisko

maszy nowe

 ${\cal P}$ - procesory identyczne

lpha - środowisko

maszynowe

P - procesory identyczne

Q - proc. jednorodne

lpha - środowisko

maszynowe

P - procesory identyczne

Q - proc. jednorodne

R - proc. dowolne

lpha - środowisko

maszynowe

P - procesory identyczne

Q - proc. jednorodne

R - proc. dowolne

O - system otwarty (ang.

open shop)

lpha - środowisko maszynowe

P - procesory identyczne

Q - proc. jednorodne

R - proc. dowolne

O - system otwarty (ang.

open shop)

F - system przepływowy

(ang. flow shop)

```
\alpha - środowisko
maszynowe
P - procesory identyczne
Q - proc. jednorodne
R - proc. dowolne
O - system otwarty (ang.
open shop)
F - system przepływowy
(ang. flow shop)
J - system ogólny (ang.
job shop)
```

a - środowisko
maszynowe
P - procesory identyczne
Q - proc. jednorodne
R - proc. dowolne
O - system otwarty (ang. open shop)
F - system przepływowy (ang. flow shop)
J - system ogólny (ang.

job shop)

eta - charakterystyka zadań

 α - środowisko maszynowe P - procesory identyczne Q - proc. jednorodne R - proc. dowolne O - system otwarty (ang. open shop) F - system przepływowy (ang. flow shop) J - system ogólny (ang. iob shop)

 β - charakterystyka zadań puste: zadania są niepodzielne, niezależne, z $r_j=0$, czasy wykonania i ewentualne wymagane terminy zakończenia d_j dowolne

 α - środowisko maszynowe P - procesory identyczne Q - proc. jednorodne R - proc. dowolne O - system otwarty (ang. open shop) F - system przepływowy (ang. flow shop) J - system ogólny (ang. iob shop)

 β - charakterystyka zadań puste: zadania są niepodzielne, niezależne, z $r_j=0$, czasy wykonania i ewentualne wymagane terminy zakończenia d_j dowolne pmtn - zadania podzielne (ang. preemption)

 α - środowisko maszynowe P - procesory identyczne Q - proc. jednorodne R - proc. dowolne O - system otwarty (ang. open shop) F - system przepływowy (ang. flow shop) J - system ogólny (ang. iob shop)

 β - charakterystyka zadań puste: zadania są niepodzielne, niezależne, z $r_j=0$, czasy wykonania i ewentualne wymagane terminy zakończenia d_j dowolne pmtn - zadania podzielne (ang. preemption) prec - zadania zależne

 α - środowisko maszynowe P - procesory identyczne Q - proc. jednorodne R - proc. dowolne O - system otwarty (ang. open shop) F - system przepływowy (ang. flow shop) J - system ogólny (ang. iob shop)

 β - charakterystyka zadań puste: zadania są niepodzielne, niezależne, z $r_j = 0$, czasy wykonania i ewentualne wymagane terminy zakończenia d_j dowolne pmtn - zadania podzielne (ang. preemption) prec - zadania zależne r_j - różne wartości momentów przybycia

a - środowisko
maszynowe
P - procesory identyczne
Q - proc. jednorodne
R - proc. dowolne
O - system otwarty (ang. open shop)
F - system przepływowy (ang. flow shop)
J - system ogólny (ang.

iob shop)

 β - charakterystyka zadań puste: zadania są niepodzielne, niezależne, z $r_j=0$, czasy wykonania i ewentualne wymagane terminy zakończenia d_j dowolne pmtn - zadania podzielne (ang. preemption) prec - zadania zależne r_j - różne wartości momentów przybycia $p_j=1$ lub UET - zadania jednostkowe

 α - środowisko maszynowe P - procesory identyczne Q - proc. jednorodne R - proc. dowolne O - system otwarty (ang. open shop) F - system przepływowy (ang. flow shop) J - system ogólny (ang. iob shop)

 β - charakterystyka zadań puste: zadania są niepodzielne, niezależne, z $r_j=0$, czasy wykonania i ewentualne wymagane terminy zakończenia d_j dowolne pmtn - zadania podzielne (ang. preemption) prec - zadania zależne r_j - różne wartości momentów przybycia $p_j=1$ lub UET - zadania jednostkowe $p_{ij}\in\{0,1\}$ lub ZUET - operacje jednostkowe lub puste (procesory dedykowane)

 α - środowisko maszynowe P - procesory identyczne Q - proc. jednorodne R - proc. dowolne O - system otwarty (ang. open shop) F - system przepływowy (ang. flow shop) J - system ogólny (ang. job shop)

 β - charakterystyka zadań puste: zadania są niepodzielne, niezależne, z $r_i = 0$, czasy wykonania i ewentualne wymagane terminy zakończenia d_i dowolne pmtn - zadania podzielne (ang. preemption) prec - zadania zależne r_i - różne wartości momentów przybycia $p_i = 1$ lub *UET* - zadania jednostkowe $p_{ii} \in \{0,1\}$ lub ZUET - operacje jednostkowe lub puste (procesory dedykowane) $C_i \leq d_i$ - istnieją wymagane i nieprzekraczalne terminy zakończenia zadań

γ - kryterium optymalizacji

 α - środowisko maszynowe P - procesory identyczne Q - proc. jednorodne R - proc. dowolne O - system otwarty (ang. open shop) F - system przepływowy (ang. flow shop) J - system ogólny (ang. job shop)

 β - charakterystyka zadań puste: zadania są niepodzielne, niezależne, z $r_i = 0$, czasy wykonania i ewentualne wymagane terminy zakończenia d_i dowolne pmtn - zadania podzielne (ang. preemption) prec - zadania zależne r_i - różne wartości momentów przybycia $p_i = 1$ lub *UET* - zadania jednostkowe $p_{ii} \in \{0,1\}$ lub ZUET - operacje jednostkowe lub puste (procesory dedykowane) $C_i \leq d_i$ - istnieją wymagane i nieprzekraczalne

terminy zakończenia zadań

no-idle - procesory musza pracować w sposób ciagły, bez okienek

no-idle - procesory musza pracować w sposób ciagły, bez okienek no-wait - okienka między operacjami w zadaniach są zabronione (proc. dedykowane)

no-idle - procesory musza pracować w sposób ciagły, bez okienek no-wait - okienka między operacjami w zadaniach są zabronione (proc. dedykowane)

in–tree, out–tree, chains, ... – różne szczególne postaci relacji zależności kolejnościowych (prec).

no-idle - procesory musza pracować w sposób ciagły, bez okienek no-wait - okienka między operacjami w zadaniach są zabronione (proc. dedykowane)

in–tree, out–tree, chains, … – różne szczególne postaci relacji zależności kolejnościowych (prec).

in-tree

out-tree

P3|prec|C_{max}

$P3|prec|C_{max}$

Szeregowanie niepodzielnych zadań zależnych na trzech identycznych maszynach równoległych w celu zminimalizowania długości harmonogramu.

$P3|prec|C_{max}$

Szeregowanie niepodzielnych zadań zależnych na trzech identycznych maszynach równoległych w celu zminimalizowania długości harmonogramu.

 $R|pmtn, prec, r_j| \overline{\sum U_j}$

$P3|prec|C_{max}$

Szeregowanie niepodzielnych zadań zależnych na trzech identycznych maszynach równoległych w celu zminimalizowania długości harmonogramu.

$R|pmtn, prec, r_j| \sum U_j$

Szeregowanie podzielnych zadań zależnych z różnymi czasami przybycia i terminami zakończenia na równoległych dowolnych maszynach (liczba procesorów jest częścią danych) w celu minimalizacji liczby zadań spóźnionych.

$P3|prec|C_{max}$

Szeregowanie niepodzielnych zadań zależnych na trzech identycznych maszynach równoległych w celu zminimalizowania długości harmonogramu.

$R|pmtn, prec, r_j| \sum U_j$

Szeregowanie podzielnych zadań zależnych z różnymi czasami przybycia i terminami zakończenia na równoległych dowolnych maszynach (liczba procesorów jest częścią danych) w celu minimalizacji liczby zadań spóźnionych.

$$1|r_j, C_j \leq d_j|$$

$P3|prec|C_{max}$

Szeregowanie niepodzielnych zadań zależnych na trzech identycznych maszynach równoległych w celu zminimalizowania długości harmonogramu.

$R|pmtn, prec, r_j| \sum U_j$

Szeregowanie podzielnych zadań zależnych z różnymi czasami przybycia i terminami zakończenia na równoległych dowolnych maszynach (liczba procesorów jest częścią danych) w celu minimalizacji liczby zadań spóźnionych.

$1|r_i, C_i \leq d_i|$

Pytanie o istnienie (brak kryterium kosztu, więc nic nie optymalizujemy!) uszeregowania zadań niepodzielnych i niezależnych o różnych momentach przybycia na jednej maszynie, tak by żadne zadanie nie było spóźnione.