Codificação de Fonte

Teoria da Informação - AULA 09 (Parte 2) Prof^a. Verusca Severo

> Universidade de Pernambuco Escola Politécnica de Pernambuco

> > 28 de julho de 2021

• Exemplo 3: Construa a árvore enraizada para cada um dos códigos da tabela abaixo.

Símbolo	Código A	Código B
<i>s</i> ₁	00	1
<i>s</i> ₂	01	01
<i>s</i> ₃	10	001
<i>S</i> ₄	11	0001

• Solução - Exemplo 3:

- Definição: A árvore D-ária completa de comprimento N é a árvore D-ária com D^N folhas, cada uma na profundidade N ramos distante da raiz.
- Todo código D-ário Prefixo pode ser identificado como um conjunto de folhas em uma árvore D-ária.
- A árvore D-ária que representa um dado código D-ário Prefixo de comprimento variável é obtida podando-a em cada nó do qual não emana nenhuma palavra código.

• **Pergunta:** Como identificar se um código é Prefixo a partir do uso da ferramenta árvores enraizadas?

- **Pergunta:** Como identificar se um código é Prefixo a partir do uso da ferramenta árvores enraizadas?
 - TODAS as palavras código de um código Prefixo correspondem (ocupam) as folhas da respectiva árvore enraizada.
 - Ou seja, em códigos que não são do tipo Prefixo, existem palavras código que ocupam a posição de nós na árvore.

• Exemplos de código não prefixo:

Símbolo	Código A	Código B
s_1	0	0
<i>s</i> ₂	1	01
s 3	10	011
<i>S</i> ₄	11	0111

• Exemplos de código não prefixo:

Símbolo	Código A
s_1	0
<i>s</i> ₂	1
<i>s</i> ₃	10
54	11

• Exemplos de código não prefixo:

Consideremos agora o seguinte problema...

• **Problema 1:** Construa um código binário (univocamente decodificável) para uma fonte de informação que emite símbolos de um alfabeto $S = \{s_1, s_2, s_3, s_4, s_5\}$. No código construído o comprimento das palavras código que codifica cada símbolo deve ser $l_1 = l_2 = l_3 = 2$, $l_4 = 3$ e $l_5 = 4$.

Solução - Problema:

- Melhor (mais seguro) optar por código do tipo Prefixo (SEMPRE univocamente decodificável)
- Mas como saber se para a configuração exigida (comprimento de cada palavra código) é possível construir um código prefixo? (VAMOS REFLETIR UM POUCO SOBRE ISSO!!)

- Solução Problema:
 - Uma possível solução seria:

Símbolo	Código Prefixo
<i>s</i> ₁	00
s ₂	01
s ₃	10
<i>S</i> ₄	110
<i>S</i> ₅	1110

• Solução - Problema:

• **Problema 2:** Construa um código binário (univocamente decodificável) para uma fonte de informação que emite símbolos de um alfabeto $S = \{s_1, s_2, s_3, s_4, s_5\}$. No código construído o comprimento das palavras código que codifica cada símbolo deve ser $l_1 = 1$, $l_2 = l_3 = 2$, $l_4 = 3$ e $l_5 = 4$.

Solução - Problema:

- Solução Problema:
 - É IMPOSSÍVEL construir um código prefixo para essa configuração!
- Voltando ao questionamento feito no Problema 1:
 - Como saber se para a configuração exigida (comprimento de cada palavra código) é possível construir um código prefixo? (VAMOS REFLETIR UM POUCO SOBRE ISSO!!)

• Teorema (Desigualdade de Kraft): Existe um código D-ário prefixo cujos comprimentos de palavras código são os números inteiros positivos l_1, l_2, \ldots, l_K se e somente se

$$\sum_{i=1}^K D^{-l_i} \le 1.$$

• PROVA (Desigualdade de Kraft):

Desafio valendo ponto para próxima aula (30/07/2021)!!

Obs.: enviar via classroom