Advanced Calculus II: Assignment 1 Chapter 2 - A Taste of Topology

Chris Hayduk

September 19, 2019

Problem 12 on p. 126.

(a) The limit of a sequence is unaffected by rearrangement when f is a bijective function. Since f is bijective, each term from (p_n) must be included one and only one time in the new sequence (q_k) .

We know that, if $(p_n) \to \ell$, this means that $\forall \epsilon > 0, \exists N \in \mathbb{N}$ such that $n \geq N \implies d(p_n, \ell) < \epsilon$.

Thus, for each choice of $\epsilon > 0$ there are only finitely many terms for which $d(p_n, \ell) \ge \epsilon$, while there are infinitely many terms for which $d(p_n, \ell) < \epsilon$.

As a result, the rearrangement (q_k) will eventually exhaust all of the terms that have a distance from ℓ that is greater than or equal to ϵ , and thus will have infinitely many terms left for which $d(q_k, \ell) < \epsilon$.

Hence, $(q_k) \to \ell$ as well.

(b) A rearrangement of (p_n) where f is an injective function does not necessarily preserve the limit of (p_n) . For example, take $(p_n) = (-1)^n$. This sequence alternates between 1 and -1, and thus never converges.

Now let f(n) = 2n. This injective function maps the natural numbers to the evens. We can see that $\forall m$ where m is even, we have that $p_m = 1$.

Thus, $q_k = p_{f(k)} = 1 \ \forall k \in \mathbb{N}$. Clearly, $(q_k) \to 1$ while (p_n) does not converge.

(c) A rearrangement of (p_n) where f is a surjective function does not necessarily preserve the limit of (p_n) . For example, take $(p_n) = \frac{1}{n}$. This sequence converges to 0.

Now let
$$f(n) = \begin{cases} 1 & \text{n is odd} \\ 2 & \text{n} = 2 \\ f(n-2) + 1 & \text{n is even and n} > 2 \end{cases}$$

Call this new sequence $q_k = p_{f(k)}$. Then we have that (q_k) contains all terms in the original sequence (p_n) and, for every odd term m, $q_m = 1$. Thus, the even terms of (q_k) converge to 0 while the odd terms converge to 1. Since we have two subsequences in (q_k) that converge to different limits, (q_k) does not converge.

Problem 44 on p. 128.

- (a) Yes, prove from definitions.
- (b) Graph is the image of $(I, f): X \to X \times \mathbb{R}$ where I is the identity function. Flesh out this proof.
- (c) Graph is compact, so it has a limit point in the graph (Bolzano-Weierstrass). The limit point must be a limit point in each coordinate, so f must approach this limit point. Thus, f is continuous. FLESH THIS OUT MORE.
- (d) Counterexample:

$$f:[0,1]\to\mathbb{R}$$

$$f(x) = \begin{cases} \frac{1}{x} & x \neq 0\\ 0 & x = 0 \end{cases}$$

f is discontinuous because if you have a sequence $(x_n) \to 0$, $f(x_n) \not\to f(0)$ since f(0) is undefined.

Problem 76 on p. 131.

- (a) Give counterexample.
- (b) Let $S_n = \{x : x \ge n\}$. Then each S_n is connected and closed, and we have $S_1 \supset S_2 \supset \dots$

However, we have $\cap S_n = \emptyset$.

- (c) Intersection is connected. Prove this.
- (d) Connected but not path connected. Prove this.

Problem 1 on p. 147.

From assumptions, f is continuous.

$$x_n \to x_0$$
 have to prove $f(x_n) \to f(x_0)$

Suffice to prove x_i are distinct and $x_m = \{x_m, x_{m+1}, \dots \} \cup x_0$

FLESH THIS OUT.