CSCI 301, Winter 2017 Math Exercises # 5

Andrew Nguyen

Due date:

Construct a context-free grammar for each of the languages in questions 1 to 7.

1. $\{0^{2n}1^n : n \ge 0\}$

$$S \to \epsilon \mid 00S1$$

2. $\{w: w \text{ contains at least three 1s}\}$

$$S \rightarrow A1A1A1A$$

$$A \to \epsilon \mid 0A \mid 1A$$

3. $\{w : \text{the length of } w \text{ is odd and its middle symbol is } 0\}$

$$S \rightarrow 0S0 \mid 1S1 \mid 0S1 \mid 1S0 \mid 0$$

4. $\{w : w \text{ is a palindrome}\}$

$$S \rightarrow 0S0 \mid 1S1 \mid 0 \mid 1 \mid \epsilon$$

5. $\{w : w \text{ starts and ends with the same symbol}\}$

$$S \rightarrow 0A0 \mid 1A1$$

$$A \rightarrow \epsilon \mid 0A \mid 1A$$

6. $\{w: w \text{ starts and ends with different symbols}\}$

$$S \rightarrow 0A1 \mid 1A0$$

$$A \to \epsilon \mid 0A \mid 1A$$

7. $\{a^m b^n : 0 \le m \le n \le 2m\}$

$$S \rightarrow \epsilon \mid ab \mid Sb \mid aaSb$$

Because of the conditions set on n and m: $0 \le m \le n \le 2m$; the number of b's ranges from the number of a's to double the number of a's, and cannot be outside of that range. eg: if there are 5 a's, aaaaa, then we must have at least 5 b's but not more than 10 b's.

aaaaabbbbb fulfills the requisites along with aaaaabbbbbb, and aaaaabbbbbbb.

So then, for every a we input, we must input at least one b as well.

8. Let G be the grammar:

$$S \rightarrow aB \mid bA$$

$$A \rightarrow a \mid aS \mid bAA$$

$$B \rightarrow b \mid bS \mid aBB$$

For the string *aaabbabba*, find a

- (a) leftmost derivation, $S \rightarrow aB$ $aB \rightarrow aaBB$ $aaBB \rightarrow aaaBBB$ $aaaBBB \rightarrow aaabBB$ $aaabBB \rightarrow aaabbB$ $aaabbB \rightarrow aaabbB$ $aaabbB \rightarrow aaabbaBB$ $aaabbaBB \rightarrow aaabbabB$ $aaabbabB \rightarrow aaabbabB$ $aaabbabB \rightarrow aaabbabbA$ $aaabbabbA \rightarrow aaabbabbA$
- (b) rightmost derivation, $S \rightarrow aB$ $aB \rightarrow aaBB$ $aaBB \rightarrow aaBaBB$ $aaBaBB \rightarrow aaBaBbS$ $aaBaBbS \rightarrow aaBaBbS$ $aaBaBbS \rightarrow aaBaBbA$ $aaBaBbA \rightarrow aaBaBbb$ $aaBabba \rightarrow aaBabbb$ $aaBabbba \rightarrow aaBbbb$ $aaBbbba \rightarrow aaBbbb$ $aaBbbba \rightarrow aaBbbb$ $aaBbbba \rightarrow aaaBbabbb$ $aaBbbbba \rightarrow aaabbabbb$
- (c) parse tree.

9. Convert the following grammar to Chomsky normal form:

$$S \rightarrow bA \mid aB$$

$$A \quad \rightarrow \quad bAA \mid aS \mid a$$

 $B \rightarrow aBB \mid bS \mid b$

Follow the steps documented in my notes and the text, and show the resulting grammar after each step.

- Step 1 Eliminate the start variable from the right-hand side of rules.
- Step 2 Eliminate ϵ -rules.
- Step 3 Eliminate unit-rules.
- Step 4 Eliminate all rules having more than two symbols on the right-hand side.
- **Step 5** Eliminate all rules of the form $A \to u_1u_2$ where u_1 and u_2 are not both variables.

$$S_0 \to S$$

$$S \rightarrow bA \mid aB$$

$$A \rightarrow bAA \mid aS \mid a$$

$$B \rightarrow aBB \mid bS \mid b$$

$$S_0 \to bA \mid aB$$

$$S \rightarrow bA \mid aB$$

$$A \rightarrow bAA \mid abA \mid aaB \mid a$$

$$B \rightarrow aBB \mid bbA \mid bAB \mid b$$

$$S_0 \to S$$

$$S \rightarrow bA \mid aB$$

$$A \rightarrow bAA \mid abA \mid aaB \mid a$$

$$B \rightarrow aBB' \mid bbA' \mid bAB' \mid b$$

Introduce new vars

$$C \to AA$$

$$D \to BB$$

$$E \to a$$

$$F \rightarrow b$$

$$G \to ab$$

$$H \rightarrow ba$$

$$I \rightarrow aa$$

$$J \to b \bar{b}$$

$$S_0 \to S$$

$$S \to FA \mid EB$$

$$A \rightarrow FC \mid GA \mid IB \mid a$$

$$B \to ED \mid JA \mid HB \mid b$$

 $C \to AA$

$$E \to a$$

$$F \rightarrow b$$

$$G \to ab$$

$$H \rightarrow ba$$

$$I \rightarrow aa$$

$$J \to b \bar{b}$$