Homework #1

Selected Solutions

- 2.1 For the first tree, $V = \{a, b, u, v, c, d\}$ and $E = \{\{a, u\}, \{b, u\}, \{u, v\}, \{v, c\}, \{v, d\}\}\}$. For the second tree, $V = \{\rho, a, b, c, d, u, v\}$, and $E = \{(\rho, a), (\rho, u), (u, b), (u, v), (v, c), (v, d)\}$. The edge $\{a, u\}$ was subdivided to create the rooted tree.
- 2.2 [Lander]

Answer:

Figure 1: A naïve drawing of the graph specified in Exercise 2.2.

Figure 2: A more informed drawing of the graph in Exercise 2.2.

2.3 Answer: By counting the number of edges each vertex appears in, we obtain the following degrees: $d(v_1) = 3$, $d(v_2) = 3$, $d(v_3) = 1$, $d(v_4) = 1$, $d(v_5) = 1$, $d(v_6) = 1$, $d(v_7) = 1$, $d(v_8) = 1$, and $d(v_9) = 4$. The leaves are those vertices of degree 1, so in this case, v_3, v_4, v_5, v_6, v_7 , and v_8 are leaves. The tree is not binary, as v_9 has degree 4. The tree is shown in Figure 3.

Figure 3: The tree specified in Exercise 2.3.

- 2.4 a. T_2 , T_3 .
 - b. T_2 , T_3 , T_5 .
 - c. $\{T_2, T_3, T_5\}$ and $\{T_1, T_6\}$.
 - d. All six.
 - e. T_4, T_6 .
- 2.5 The three rooted trees are shown in Figure 4.

Figure 4: The three rooted trees on 3 taxa.

These three trees relate to the three trees in Figure 2.4 in that we are essentially taking one of those 4 elements (say, element 4) and treating it as an outgroup to root our tree.

2.7

n	b(n)
2	0!! = 1
3	1!! = 1
4	3!! = 3
5	5!! = 15
6	7!! = 105
7	9!! = 945
8	11!! = 10,395
9	13!! = 135, 135
10	15!! = 2,027,025

2.8 Show that
$$b(n) = \frac{(2n-5)!}{2^{n-3}(n-3)!}$$
.

Proof. We have already established that b(n) = (2n-5)!!, the product of all odd numbers less than or equal to 2n-5. We can, however, write this as $\frac{(2n-5)!}{(2n-6)!!}$, where we multiply all numbers less than or equal to 2n-5, then divide out by the even numbers strictly less than 2n-5. By cancellation, these are equivalent. However, (2n-6)!! = (2(n-3))!!. This suggests that (2n-6)!! is in fact the product of all numbers less than or equal to n-3, where each number in that product is multiplied by 2. Because there are n-3 numbers in that list, we can represent (2n-6)!! as $2^{n-3}(n-3)!$. This gives us the final formula

$$b(n) = \frac{(2n-5)!}{2^{n-3}(n-3)!}.$$

2.9 In this case, n = 147, and given that this is an ancestry question, it makes sense to talk about rooted trees. Thus, we will compute b(n+1) = b(148), and using the statement in Problem 8, we can say that

$$b(148) = \frac{(2(148) - 5)!}{2^{148 - 3}(148 - 3)!} = \frac{291!}{2^{145}(145!)}.$$

Using Stirling's formula (and canceling the $\sqrt{2\pi}$ from the top and bottom)

$$b(n) \sim \frac{291^{291.5}e^{-291}}{2^{145}145^{145.5}e^{-145}} = e^{-146} \frac{\sqrt{291291291}}{2^{145}145^{145}\sqrt{145}} = e^{-146} \sqrt{\frac{291}{145}} \frac{291^{291}}{290^{145}}$$

A numerical approximation of this from Wolfram Alpha gives that it is approximately 4.89×10^{296} .

2.13 a. The correct unrooted phylogenetic tree is shown in Figure 5.

Figure 5: The metric tree (to scale) corresponding to the distance table in Exercise 2.13.

- b. This tree is not ultrametric, as the longest path from A is .8, while the longest path from B is only .5. In an ultrametric tree, all those longest paths would have equal length. Thus, an objectively "best" root cannot be determined from the distance table.
- c. Most *ad hoc* methods only work well for these quite small trees, and would likely not work out if the numbers were only approximately correct. Thus, better tools are needed.
- 2.14 The term 'ultrametric' originally was not applied to trees, but rather to a function $d: V \times V \to \mathbb{R}^{\geq 0}$ that satisfied not only the properties of a metric listed in Proposition 5, but also a strong form of the triangle inequality:

$$d(v_1, v_3) \le \max(d(v_1, v_2), d(v_2, v_3))$$
 for all v_1, v_2, v_3 .

- a. Show that this property implies the usual triangle inquality (iii) of Proposition 5.
- b. Show that for a tree metric arising from an ultrametric tree, the strong triangle inequality holds when v_1, v_2, v_3 are leaves.
- c. Show by a 3-leaf example that the strong triangle inequality on leaves does not hold for all tree metrics.
- d. Show that if the strong triangle inequality holds, then for all choices of v_1, v_2, v_3 the two largest of the numbers $d(v_1, v_2), d(v_1, v_3)$ and $d(v_2, v_3)$ are the same. (This is sometimes stated as: An ultrametric implies all triangles are isoceles.)
- e. Show that if a tree metric from an unrooted 3-leaf tree satisfies the strong triangle inequality on leaves, then there is a placement of a root for which

the underlying tree is ultrametric. (This holds more generally for n-leaf tree metrics satisfying the strong triangle inequality on leaves; with proper placement of a root, they all arise from ultrametric trees.)

Answer:

- a. Proof. Observe that $\max(d(v_1, v_2), d(v_2, v_3)) \leq d(v_1, v_2) + d(v_2, v_3)$, because distance functions are non-negative. Thus, if $d(v_1, v_3) \leq \max(d(v_1, v_2), d(v_2, v_3))$, it follows from the transitivity of \leq that $d(v_1, v_3) \leq d(v_1, v_2) + d(v_2, v_3)$. \square
- b. Proof. First, it is easy to see that in any rooted ultrametric tree, any subtree induced by some subset of the leaves (so no internal node becomes a leaf) is also ultrametric. If this were not the case, then there would be two leaves v_1 and v_2 that have different distances from the root ρ' of this subtree. But ρ' is an internal vertex of the original tree, so it lies on the unique path from v_1 to ρ and v_2 to ρ , and there is a fixed distance from ρ' to ρ . Thus, v_1 and v_2 cannot have both different distances from ρ' and the same distance from ρ .

So, choose v_1, v_2 and v_3 from the leaves in some ultrametric tree T, and let ρ' be the root of the minimal subtree T' defined by v_1, v_2 , and v_3 . Let us define α as the distance from ρ' to any leaf, which is constant because T' is ultrametric. Observe that in all situations, $d(v_1, v_3) \leq 2\alpha$. First suppose the path from v_1 to v_3 does not pass through ρ' . Then at least one of the paths from v_1 to v_2 or from v_3 to v_2 must pass through ρ' , or there would be a more recent internal vertex that could have been the root of our subtree. Thus, $\max(d(v_1, v_2), d(v_2, v_3)) = 2\alpha$, and as already established $d(v_1, v_3) \leq 2\alpha$.

Next, suppose the shortest path from v_1 to v_3 passes through ρ' , and thus $d(v_1, v_3) = 2\alpha$. Note that one of three cases occurs: our tree is not binary, and v_1, v_2 , and v_3 are all descended directly ρ' ; v_1 and v_2 are sisters; or v_2 and v_3 are neighbors. In case 1, $d(v_1, v_3) = d(v_1, v_2) = d(v_2, v_3) = 2\alpha$. If v_1 and v_2 are sisters, then the shortest path from v_2 to v_3 must pass through ρ' , and $d(v_2, v_3) = 2\alpha$, and if v_2 and v_3 are sisters, then the shortest path from v_1 to v_2 must pass through ρ' and $d(v_1, v_2) = 2\alpha$. In any of these cases, $\max(d(v_1, v_2), d(v_2, v_3)) = 2\alpha$.

c. Proof. Consider the tree shown in Figure 6. This tree has the property that $d(v_2, v_3) = .5$, while $d(v_1, v_2) = .3$ and $d(v_2, v_3) = .4$. Thus, this tree is not ultrametric.

Figure 6: An example showing not all metric trees are ultrametric.

- d. *Proof.* Suppose to the contrary that all three distances are distinct. Then there exists a largest; suppose without loss of generality that $d(v_1, v_2)$ is the largest. That is, $d(v_1, v_2) > d(v_1, v_3)$ and $d(v_1, v_2) > d(v_2, v_3)$. But then $d(v_1, v_2) > \max(d(v_1, v_3), d(v_2, v_3))$, which contradicts our assumption that the strong triangle inequality holds (which would imply that $d(v_1, v_2) \leq \max(d(v_1, v_3), d(v_2, v_3))$).
- e. Proof. From part (d), we know that the largest two of $d(v_1, v_2)$, $d(v_1, v_3)$, and $d(v_2, v_3)$ are equal. Suppose without loss of generality that $d(v_1, v_2) = d(v_1, v_2)$, a distance which we will call α , and that both are greater than or equal to $d(v_2, v_3)$. Any two of those three sets must have some vertex in common; in this case it is v_1 .

Furthermore, the edge from v_1 to the single internal vertex (let us call it C) in a 3-taxon tree must be greater than or equal to the other two edges. To see this, suppose to the contrary that some other edge is strictly greater than the v_1C edge. Then, because the distances from v_1 to each of v_2 and v_3 are equal, $|v_2C| = |v_3C| > |v_1C|$. But then $d(v_2, v_3) > \max(d(v_1, v_2), d(v_1, v_3))$, which contradicts our assumption that the tree is ultrametric.

Thus, if we place a vertex ρ a distance $\alpha/2$ from v_1 on the path from v_1 to v_2 , it must fall somewhere on the v_1C edge (possibly at C itself). In either case, it also lies on the path from v_1 to v_3 . Thus, ρ is distance $\alpha/2$ from v_1 and v_2 (as it is the midpoint of that path) and distance $\alpha/2$ from v_1 and v_3 . Therefore, ρ is the root of an ultrametric rooted tree with leaves v_1, v_2 , and v_3 .