# Лекция 2. Постановка задачи оптимального управления

## Д.А. Притыкин

### 14 февраля 2022

| Содержание |                                                                                                                                                                     |                  |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 1          | Задача оптимального управления    1.1 Модель системы управления    1.2 Начальное и терминальное многообразия    1.3 Цель управления                                 | 2<br>2<br>2<br>2 |
| 2          | Пример задачи отимального управления    2.1 Условие и постановка задачи     2.2 Геометрическое решение     2.3 Пример     2.4 Сравнение с другим законом управления | 3<br>3<br>6<br>7 |

#### Обозначения

 $\mathbf{x} \in \mathbb{R}^n$  – вектор состояния.

 $\mathbf{u} \in \mathbb{R}^m$  – вектор управляющих параметров.

 $\mathbb{U} \in \mathbb{R}^m$  – множество допустимых управлений.

 $t \in [t_0, t_{ ext{ iny K}}]$  – интервал времени.

А – начальное многообразие (множество начальных состояний).

В – терминальное многообразие (граничные условия на правом конце траектории).

 $J = \Phi(\mathbf{x}(t_{\kappa}), t_{\kappa})$  – терминальный функционал задачи оптимального управления.

# 1 Задача оптимального управления

Для корректной постановки задачи необходимы:

#### 1.1 Модель системы управления

Модель представляет собой дифференциальное уравнение вида:

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \mathbf{u}, t),\tag{1}$$

где

- $\mathbf{x} \in \mathbb{R}^n$  вектор состояния (вектор фазовых переменных)
- $\mathbf{u} \in \mathbb{U} \in \mathbb{R}^m$  вектор управляющих параметров,  $\mathbb{U}$  область допустимых управлений.

Если зафиксировать  $\mathbf{u}(t) = \tilde{\mathbf{u}}(t)$ , то (1) превращается в  $\dot{\mathbf{x}} = \tilde{\mathbf{f}}(\mathbf{x}, t)$ , и при выборе начальных условий на  $\mathbf{x}$ :  $\mathbf{x}(0) = \mathbf{x}_0$ , получаем задачу Коши, для которой мы знаем о существовании её решения - траектории  $\tilde{\mathbf{x}}(t)$  и при том единственной.

Так как мы можем выбирать различные управления  $\mathbf{u}(t)$ , существует много различных траекторий  $\mathbf{x}(t)$ ., удовлетворяющих уравнению (1).

#### 1.2 Начальное и терминальное многообразия

Определение 1.1. Начальное и терминальное многообразия —  $\mathbb{A}$  и  $\mathbb{B}$  — определяют граничные условия для модели (1) на левом и правом концах соответственно. Многообразия  $\mathbb{A}$  и  $\mathbb{B}$  задаются системами ограничений на переменные вектора состояния и время:

$$\mathbb{A} = \begin{cases} a_1(\mathbf{x}, t) = 0; \\ a_2(\mathbf{x}, t) = 0; \\ \dots \\ a_{\alpha}(\mathbf{x}, t) = 0; \end{cases} \qquad \mathbb{B} = \begin{cases} b_1(\mathbf{x}, t) = 0; \\ b_2(\mathbf{x}, t) = 0; \\ \dots \\ b_{\beta}(\mathbf{x}, t) = 0; \end{cases}$$

#### 1.3 Цель управления

Необходимо знать ответ на вопрос: Зачем мы управляем системой? Целью управления является выбор такой функции  $\mathbf{u}(t)$  (или  $\mathbf{u}(\mathbf{x},t)$ ), которое обеспечивает системе (1) требуемые свойства (например, устойчивость некоторого движения или оптимальность по некоторому показателю качества).

Пример. Можно потребовать, чтобы траектория системы управления  $\mathbf{x}(t)$  повторяла некоторую наперед заданную кривую  $\mathbf{r}(t)$  в пространстве состояний или была максимально близка к ней.

Постановка задачи оптимального управления подразумевает наличие оптимизируемого показателя качества или функционала.

#### Определение 1.2. Функционалом $\Phi$ будем называть отображение $\Phi: \mathbb{C} \to \mathbb{R}$ .

Здесь и далее, если не оговорено иначе задачи оптимального управления будут включать терминальный функционал (вычисляемый на терминальном многообразии), причём целью задачи будет выбор управления  $\mathbf{u}$ , доставляющего функционалу

$$J = \Phi(\mathbf{x}(t_{\kappa}), t_{\kappa}) \longrightarrow \max_{u \in U}$$
 (2)

# 2 Пример задачи отимального управления

Рассмотрим простейшую задачу о движениии материальной точки по горизонтальной гладкой прямой под действием горизонтальной управляющей силы. Эта задача, несмотря на её простоту иллюстрирует довольно часто встречающийся закон управления, называемыйв англоязычной литературе Bang-bang control.

#### 2.1 Условие и постановка задачи

Материальная точка массы m может двигаться по гладкой горизонтальной оси под действием управляющей силы  $\mathbf{F}: |F| \leq F^*$ . Пусть в начальный момент времени t=0 известны координата  $x_0$  и скорость  $v_0$  точки. Требуется за наименьшее время привести точку в состояние покоя в начале координат.

Приведем задачу к виду задачи теории управления.

Модель задачи составим с помощью 2 закона Ньютона:

$$\ddot{x} = F \quad \Rightarrow \quad \begin{cases} \dot{x} = v \\ \dot{v} = \frac{F}{m} \end{cases} \quad \Rightarrow \quad \begin{cases} \dot{x} = v \\ \dot{v} = u \end{cases},$$

где  $|u| \leq u^*$  - управляющий параметр, абсолютная величина которого ограничена значением  $u^*$ .

Начальное многообразие - фиксированная точка начальных условий  $(x_0, v_0)$ :

$$\mathbb{A}: \forall x_0, v_0.$$

Терминальное многообразие - начало координат фазовой плоскости:

$$\mathbb{B}: x = 0, v = 0.$$

Функционал задачи - время, за которое система достигает терминального многообразия:

$$\Phi(x(t_{\text{\tiny K}}), t_{\text{\tiny K}}) = -t_{\text{\tiny K}} \longrightarrow \max$$

#### 2.2 Геометрическое решение

В качестве рабочей гипотезы предположим, что искомое управление u(t) будет всегда принадлежать границе области допустимых управлений, то есть либо  $u(t) = u^*$ , либо  $u(t) = -u^*$ .

Случай 1 Пусть на некотором интервале  $u(t)=u^*,$  тогда уравнения движения системы:

$$\begin{cases} \dot{x} = v \\ \dot{v} = u^* \end{cases}$$

имеют решение

$$\begin{cases} x(t) = \frac{u^*t^2}{2} + v_0t + x_0, \\ v(t) = u^*t + v_0. \end{cases}$$

Исключая из системы время, получим уравнение семейства траекторий в фазовой плоскости:

$$x = \frac{(v - v_0)^2}{2u^*} + \frac{(v - v_0)v_0}{u^*} + x_0 = \frac{v^2}{2u^*} + \left(x_0 - \frac{v_0^2}{2u^*}\right).$$

Таким образом при  $u(t) = u^*$  система движется по одной из семейства парабол, графики которых приведены ниже.



Рис. 1: Фазовые траектории при  $u(t) = u^*$ 



Рис. 2: Фазовые траектории при  $u(t) = -u^*$ 

Случай 2 Пусть на некотором интервале  $u(t) = -u^*$ , тогда решение уравнений движения системы запишется так же как и для Случая 1, однако на фазовой плоскости

их изображение будет представлено семейством парабол, ветви которых направлены в обратную сторону (поскольку коэффициент при  $v^2$  меняет знак).

Таким образом, движение системы происходит по траекториям одного из двух семесйств парабол. Параболы, ветви которых направлены вправо, соответствуют  $u = +u^*$ . Параболы, ветви которых направлены влево, соответствуют  $u = -u^*$ .



Рис. 3: Разбиение фазовой плоскости на области выбора начального управления

Если нам повезёт, точка начальных условий сразу попадёт на параболу, ведущую в начало координат (синяя ветвь с отрицательным управлением  $x=-\frac{v^2}{2u^*}$  или красная ветвь с положительным управлением  $x=\frac{v^2}{2u^*}$ ).

В противном случае, мы всегда можем выбрать начальную траекторию, пересекающуюся с одной из ветвей, ведущих в начало координат и переключить управление

в точке пересечения.

Объединение синей и красной ветвей дели всю фазовую плоскость на две области. В верхней области любая точка начальных условий требует выбора  $u(t) = -u^*$  на первом участке траектории, в нижней области -  $u(t) = u^*$ . При пересечении границы между областями, знак управления следует изменить, что приведёт к движению по ветви параболы, ведущей в начало координат.

Таким образом, закон управления строится объединением двух участков, на которых управление идёт по границе разрешённых значений и при смене участка меняет знак. Такой алгоритм управления в англоязычной лдитературе получил название "bang-bang-control"

Замечание. Отметим, что для задач оптимального управления с терминальным функционалом, не зависящим от управляющих параметров, и моделью линейной по u, "bang-bang" управление довольно распространённый вид решения.

## 2.3 Пример



Рис. 4: Пример динамики управляемой системы

Проиллюстрируем изложенное выше геометрическое решение поставленной задачи. Для этого проинтегрируем систему (1) с начальными условиями  $x_0 = -1$  м,  $v_0 = -1$ 

 $2~{\rm M/c}$ . В качестве ограничения на управляющее воздействие примем  $u^*=0.5~{\rm M/c^2}$ . Графики, демонстриующие движение системы и закон управления приведены на рисунке 2.3.

## 2.4 Сравнение с другим законом управления

Для сравнения, попробуем применить к задаче ещё один распространенный подход к построению закона управления - управление по ошибке.



Рис. 5: Сравнение двух законов управления

Будем вычислять управление в каждый момент времени как сумму двух слагаемых:

- слагаемое пропорциональное ошибке положения точки  $-k_p \cdot x$ , где  $k_p$  некоторый настраиваемый коэффициент;
- слагаемое пропорциональное ошибке скорости  $-k_d \cdot v$ , где  $k_d$  некоторый настраиваемый коэффициент.

Таким образом, закон управления (так называемый ПД-регулятор,  $\Pi$  - управление пропорциональное ошибке положения,  $\Pi$  - управление пропорциональное производной ошибки положения):

$$u(t) = -k_p \cdot x - k_d \cdot v. \tag{3}$$

Для примера, проиллюстрированного на рисунке ниже значения коэффициентов выбраны равными:  $k_p = 1, k_d = 2.$ 

На рисунке 2.4 жёлтой линией показана фазовая траектория, соответствующая найденному аналитическому управлению, а составной (синей и красной) линией показана траектория соотвествующая управлению (3). Синяя линия заканчивается в тот момент времени  $t^*$ , когда оптимальная по быстродействию траектория достигает начала координат. Траектория, соответствующая управлению (3) продолжается (красная линия), чтобы продемонстрировать, что закон управления (3) также приводит систему на терминальное многообразие.