Introduction to Analysis IHomework 3 Monday, September 11, 2017

Instructions: This and all subsequent homeworks must be submitted written in LaTeX. If you use results from books, Royden or others, please be explicit about what results you are using.

Homework 3 is due by midnight, Friday, September 22.

1. (Problem 34, Page 53) Show that there is a continuous, strictly increasing function on the interval [0, 1] that maps a set of positive measure onto a set of measure zero.

Collaborators:

Solution: Let C be the Cantor set on [0,1], and $\varphi(x)$ be the Cantor function. Define

$$\phi(x) = \varphi(x) + x, \ x \in C.$$

We now show $\phi^{-1}(x)$, the inverse of $\phi(x)$, satisfies the properties in the problem. First, since $\phi(x)$ is a continuous, strictly increasing function on [0, 1], thus is continuous and strictly increasing on $C \subset [0, 1]$.

Denote $D = \phi(C)$, then according to theorems in the book, m(D) = 1. $\forall x_1 < x_2 \in D$, if $\phi^{-1}(x_1) \ge \phi^{-1}(x_2)$, then since ϕ is strictly increasing, $\phi(\phi^{-1}(x_1)) = x_1 + \phi^{-1}(x_1) \ge \phi(\phi^{-1}(x_2)) = x_2 + \phi^{-1}(x_2)$, which means $\phi^{-1}(x_1) < \phi^{-1}(x_2)$, leading to a contradictory. Thus ϕ^{-1} is strictly increasing.

On the other hand, $\forall x_0 \in D, \forall \epsilon > 0$, we need to show that $\exists \delta > 0$, $\forall x_1 \in D, |x_1 - x_0| < \delta$, then $|\phi^{-1}(x_1) - \phi^{-1}(x)| < \epsilon$. Denote $y_1 = \phi(\min\{(\phi^{-1}(x_0) - \epsilon, \phi^{-1}(x_0) + \epsilon) \cap C\}), y_2 = \phi(\max\{(\phi^{-1}(x_0) - \epsilon, \phi^{-1}(x_0) + \epsilon) \cap C\})$, then let $\delta = \min y_1 - x_0, y_2 - x_0$, we have $\forall |x - x_0| < \delta, |\phi^{-1}(x) - \phi^{-1}(x_0)| < \epsilon$. Thus ϕ^{-1} is continuous on D.

Since C is measure zero, we get a function satisfying the properties in the problem.

2. (Problem 37, Page 53) Let f be a continuous function defined on E. Is it true that $f^{-1}(A)$ is always measurable if A is measurable?

Collaborators:

Solution: It is not true.

We may consider the function $\psi(x)$ defined by Proposition 21 on Page 52. It is a strictly increasing continuous function, and it maps a measurable set $A \subset C$, onto a nonmeasurable set. Thus if we consider $\psi^{-1}(x)$, it has been proved as a strictly increasing continuous function in Problem 1. Then $\psi^{-1}(A)$ is nonmeasurable.

3. (Problem 39, Page 53) Let F be the subset of [0,1] constructed in the same manner as the Cantor set except that each of the intervals removed at the nth deletion stage has length $\alpha 3^{-n}$ with 0 < a < 1. Show that F is a closed set, $[0,1] \sim F$ dense in [0,1], and m(F) = 1 - a. Such a set F is called a generalized Cantor set.

Collaborators:

Solution: First, we denote $F_1 = \left[0, \frac{3-\alpha}{6}\right] \cup \left[1 - \frac{3-\alpha}{6}, 1\right]$. With the same process of constructing the Cantor set, we have a collection of F_n . We define the generalized Cantor set as

$$F = \bigcap_{k=1}^{\infty} F_n.$$

Since each F_n is a closed set, we have F as well closed. Then F_n is the disjoint of union of 2^n intervals, each of length $(1-\alpha)\frac{1}{2^n}+\frac{\alpha}{3^n}$. By the finite additivity of Lebesgue measure,

$$m(F_k) = 1 - \alpha + \left(\frac{2}{3}\right)^n \alpha.$$

According to the continuity of measure, we have $m(F) = \lim_{k \to \infty} m(F_k) = 1 - \alpha$.

Let $x < y \in [0,1]$. If $y \notin F_k$ for one of the k, then since $[0,1] \setminus F$ is open, there exists t < y in N(y), s.t. $t \in [0,1] \setminus F$. If $x \notin F_k$, it is the same case. Now we assume that $x, y \in F$. If x, y are not in the same subset of F_k , then $\exists t \in [0,1] \setminus F$. Then we can assume that x, y always belong to the same subset. However, the subsets make a nested set with the limit of lower bound and the upper bound be the same. According to Nested Set Theorem, we have x = y. Then we have proved that $[0,1] \setminus F$ is dense.

- 4. Let C be the Cantor set and let φ be the Cantor-Lebesgue function.
 - (a) Show that C consists of all $x \in [0,1]$ whose ternary expansion has coefficients equal to 0 or 2, i.e., if $x = \sum_{k>1} c_k 3^{-k}$, where each $c_k = 0, 1, \text{ or } 2$, then $x \in C$ if and only if $c_k = 0$ or 2.
 - (b) Show that if $x \in C$ and $x = \sum_{k \ge 1} c_k 3^{-k}$, where each $c_k = 0$ or 2, then $\varphi(x) = \sum_{k \ge 1} (\frac{1}{2}c_k)2^{-k}$.

Collaborators:

Solution: (a). We show by induction that a number belongs to the intervals we removed in each step iff its ternary expasion has a coefficient 1. First, the interval removed at the first step can be represented as (0.1, 0.2). Thus $0.1 \notin F$, and $0.0, 0.2 \in F$. Assume it holds in the first n steps, then the intervals removed at the n+1 step has the representation $(0.a_1a_2\cdots a_n1, 0.a_1a_2\cdots a_n2)$, in which $a_i \in \{0,2\}$. Then each number in this interval has an expansion like

$$0.a_1a_2\cdots a_n1a_{n+1}\cdots$$

Thus each number in F has a coefficient 1 in its expansion. According to the construction process, we can also know that the reverse also holds. Thus the proposition holds.

(b). First, assume $x \in O$. According to the construction of Cantor function, if $x = \sum_k c_k 3^{-k}$ is the ternary expansion of x, and the first 1 in the ternary expansion is in the n_{th} place, then $\varphi(x) = \frac{1}{2^n} + \sum_{k < n} \frac{1}{2} c_k 2^{-k}$.

If $x = \sum_k c_k 3^{-k} \in C$, according to the extension of $\varphi(x)$, $\varphi(x) = \sup\{\varphi(t) \mid t \in O \cap [0, x)\}$. We can construct a sequence $\{t_i\} = \{\sum_k d_k 3^{-k}\}$, s.t. $d_i = c_i, \forall i < m_{i+1}$, where m_i is the position of i_{th} 2 in c_k , and $d_{m_{i+1}} = 1$. Then $\{t_i\}$ is a strictly increasing sequence, and $\lim_{i \to \infty} t_i = x$.

Since $\varphi(x)$ is a strictly increasing function in O, we know that

$$\varphi(x) = \sup\{\varphi(t) \mid t \in O \cap [0, x)\} \ge \varphi(t_i) = \frac{1}{2^i} + \sum_{k < i} \frac{1}{2} d_k 2^{-k}.$$

Thus

$$\varphi(x) \ge \sum_{k} \frac{1}{2} c_k 2^{-k}$$

when we let $i \to \infty$. On the other hand, $\forall \epsilon > 0, \exists i > 0, \frac{1}{2^i} < \epsilon$. Thus

$$\varphi(t_i) > \sum_k \frac{1}{2} c_k 2^{-k} - \epsilon.$$

So

$$\varphi(x) = \sup{\{\varphi(t) \mid t \in O \cap [0, x)\}} = \frac{1}{2^i} + \sum_{k < i} \frac{1}{2} d_k 2^{-k}.$$

5. Construct a Cantor-type subset of [0,1] by removing from each interval remaining at the k^{th} stage, a subinterval of relative length θ_k , $0 < \theta_k < 1$. Show that the remainder has measure zero if and only if $\sum_{k\geq 1} \theta_k = \infty$. (Use the fact that for $a_k > 0$, the product $\prod_{k=1}^{\infty} a_k$ converges, in the sense that $\lim_{n\to\infty} \prod_{k=1}^N a_k$ exists and is not zero, if and only if $\sum_{k=1}^{\infty} \ln a_k$ converges.)

Collaborators:

Solution: Denote F_n as the remained set after n steps. Then according to the construction, we have

$$m(F_n) = \prod_{i=1}^n (1 - \theta_i).$$

First we have $\sum_{n=1}^{\infty} -\theta_n$ and $\sum_{n=1}^{\infty} \ln(1-\theta_n)$ be both negative-term series, and the necessity of their convergence is $\lim_{n\to\infty} \theta_n = 0$. On the other hand, when $\lim_{n\to\infty} \theta_n = 0$,

$$\lim_{n \to \infty} \frac{\ln(1 - \theta_n)}{-\theta_n} = 1,$$

thus that $\sum \ln(1-\theta_n)$ converges is equivalent to the convergence of $\sum -\theta_n$.

Then according to the continuity of measure,

$$m(F) > 0 \Leftrightarrow m(\lim_{n \to \infty} F_n) > 0 \Leftrightarrow \prod_{i=1}^{\infty} (1 - \theta_i) \text{ converges} \Leftrightarrow \sum_{i=1}^{\infty} \ln(1 - \theta_i) \text{ converges}$$

 $\Leftrightarrow \sum_{i=1}^{\infty} \theta_i \text{ converges}.$

Thus m(F) = 0 iff $\sum \theta_i = \infty$.

6. Let Z be a set of measure zero in \mathbb{R} . What is the measure of $\{x^2 \mid x \in Z\}$?

Collaborators:

Solution: $X = \{x^2 \mid x \in Z\}$ is also measure 0.

First, if the set Z is bounded, which means $Z \in [0,M]$. Since $m(Z)=0, \forall \epsilon>0$, there exists an open cover $\{O_i\}=\{(a_i,b_i)\}$, s.t. $m^*(\cup\{O_i\}\setminus Z)<\epsilon$. Thus $\{(a_i^2,b_i^2)\}$ is an open cover of X, and $m^*(\cup(a_i^2,b_i^2)\setminus X)\leq M\sum (b_i-a_i)< M\epsilon$. Thus now X is a measure-zero set. When $Z\in [-M,0]$, with the same process above, we can know that X is a measure-zero set. Then when $Z\in [-M,M]$, we know X is also measure zero.

Since Z is measure zero, for $\forall \epsilon > 0$ and integer n > 0, we have $m(Z \cap [-n, n]) < 2^{-n}\epsilon$. Thus from the discussion above we have $m(X \cap [-n^2, n^2]) < 2^{-n}\epsilon$. Since

$$X=\bigcup_{n=1}^{\infty}X\cap [-n,n],$$

with the addivity of measure,

$$m(X) < \sum_{n=1}^{\infty} 2^{-n} \epsilon = \epsilon.$$

With the arbitrariness of ϵ , we have m(X) = 0.

7. Let $0.\alpha_1\alpha_2\cdots$ be the dyadic development of any $x\in[0,1]$. Let k_1,k_2,k_3,\ldots be a fixed permutation of the positive integers $1,2,\ldots$, and consider the transformation T which sends $x=\alpha_1\alpha_2\alpha_3\cdots$ to $Tx:=\alpha_{k_1}\alpha_{k_2}\alpha_{k_3}\cdots$. Show that if E is a measurable subset of [0,1] then its image under T, T(E), is also measurable and that m(T(E))=m(E). That is, show that T is a measure preserving transformation of [0,1]. [Consider first the special case where E is a dyadic interval of the form $(s2^{-k},(s+1)2^{-k})$ and $s=0,1,\ldots,2k-1$. Then think about open sets and note that each open set can be written as a countable union of non-overlapping half-open dyadic intervals.]

Collaborators:

Solution: Consider the intervals $E_k^i = [i \cdot 2^- k, (i+1)2^{-k})$. Then

$$T[E_k] = \bigcap_{i=1}^{2^k} F_{k_i},$$

where

$$F_{k_i} = \begin{cases} [F_{k_{i-1}}.\text{left}, \ F_{k_{i-1}}.\text{mid}), \ \text{if} \ k_i = 0\\ [F_{k_{i-1}}.\text{mid}, \ F_{k_{i-1}}.\text{right}), \ \text{if} \ k_i = 1. \end{cases}$$

Then since the finite intersection of closed sets is measurable, we know that $T[E_k]$ is measurable, and we have $m(T(E_k)) = m(E_k)$ since the probability of the numbers with infinite length be separated into the intervals. Then since each open interval can be written as a countable union of non-overlapping half-open dyadic intervals, we know from the discussion above that T(E) is measurable, and m(T(E)) = m(E).