САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Факультет прикладной математики-процессов управления

Программа бакалавриата "Большие данные и распределенная цифровая платформа"

ОТЧЕТ

по лабораторной работе №2
по дисциплине «Алгоритмы и структуры данных»
на тему «Обезличивание датасета»

Вариант – 2

Студент гр. 23Б15-пу Сериков К.Г.

Преподаватель Дик А.Г.

Санкт-Петербург 2024 г.

Оглавление

1.	Цель работы	3
2.	Описание задачи (формализация задачи)	3
3.	Теоретическая часть	4
4.	Основные шаги программы	5
5.	Блок схема программы	6
6.	Описание программы	7
7.	Рекомендации пользователя	8
8.	Рекомендации программиста	8
9.	Исходный код программы	8
10	. Контрольный пример	9
11	. Вывод	11
12	Источники	11

Цель работы

Целью лабораторной работы является разработка системы обезличивания датасета для списка визитов к врачу. При работе с такими данными необходимо учитывать требования по защите персональной информации и возможности восстановления исходных данных.

Теоретическая часть

Основные методы обезличивания данных

Для обезличивания медицинских данных в данной работе используются следующие методы обезличивания:

1. Маскирование данных

Маскирование данных — это метод, при котором часть информации скрывается, оставляя только обобщенные или частичные значения. Этот метод подходит для полей, таких как паспорт и СНИЛС, где важно сохранить структуру данных, но не позволить восстановить точные значения.

2. Локальное обобщение

Локальное обобщение заключается в замене детализированных значений данных на более общие категории или диапазоны. Например, вместо точного стоимости анализов можно указать диапазон (например, 0-3500 руб.).

3. Локальное подавление

Локальное подавление применяется к отдельным строкам данных, где существует риск утечки информации. В этом случае, данные в этих строках могут быть полностью скрыты или удалены, если они представляют угрозу для конфиденциальности.

Оценка уровня анонимности данных

K-анонимность — это метрика, используемая для оценки уровня защиты данных. Её суть заключается в том, что каждый набор данных должен содержать по крайней мере K записей, которые невозможно различить по заданным квази-идентификаторам. Чем больше значение K, тем выше уровень анонимности.

Квази-идентификаторы представляют собой поля, которые по отдельности не уникальны, но в комбинации могут позволить идентифицировать конкретного человека.

Расчёт К-анонимности осуществляется путём группировки данных по квазиидентификаторам и подсчёта количества записей в каждой группе. Если для каких-либо комбинаций квази-идентификаторов количество записей меньше установленного порога K, такие записи считаются недостаточно анонимными.

Основные шаги программы

- 1. Запуск программы: Запуск основного файла (main.py).
- 2. **Ввод пользователя**: Пользователь поочерёдно выбирает, какие данные необходимо обезличить, отвечая на вопросы (y/n).
- 3. Обезличивание ФИО: Поле ФИО заменяется на пол пациента.
- 4. **Обезличивание паспортных данных**: Поле СНИЛС маскируется под формат **** ******.
- 5. **Обезличивание СНИЛС**: Поле СНИЛС маскируется под формат ***-****** **
- 6. Обезличивание симптомов: Симптомы классифицируются как внутренние, внешние или смешанные (при наличии и тех, и других).
- 7. Обезличивание врачей: Врачи распределяются по медицинским отделениям.
- 8. Обезличивание анализов: Остаётся только первый анализ из списка, который классифицируется по категориям.
- 9. Обезличивание стоимости: Стоимость преобразуется в диапазон вместо точного значения.
- 10. Обезличивание банковских карт: Сохраняется только название банка.
- 11. Расчёт К-анонимности: Выполняется группировка данных и расчёт К-анонимности для оценки уровня обезличенности.
- 12. **Локальное подавление**: Удаляются строки, где К-анонимность ниже 5, если таких строк не более 5% от общего числа записей.
- 13. Вывод результата: Отображаются 5 минимальных значений Канонимности и процентное соотношение этих записей от общего количества.
- 14. **Сохранение данных**: Обезличенный набор данных сохраняется в файл anon dataset.csv.

Блок схема программы

Рис 1. Блок-схема основной программы

Описание программы

Программная реализация написана на языке Python 3.13.0 с использованием библиотеки pandas [1]. Программа нацелена на обезличивания данных для списка визитов к врачу. В процессе разработки программы использовались 2 файла и 13 функций, каждая из которых имеет чётко определённое назначение:

Таблица 1. functions.py

Функция	Описание	Возвращаемое значение
anonymize_fullname	Замена ФИО на пол.	str
anonymize_passport	Маскировка паспорта. Остаётся .	str
anonymize_snils	Обезличивание СНИЛС. Остаётся	str
anonymize_symptoms	Обезличивание симптомов	str
anonymize_doctor	Обезличивание врача. Распределение по отделениям.	str
anonymize_analyses	Обезличивание анализов. Распределение первого по категориям.	str
anonymize_cost	Обезличивание стоимости. Распределение на диапазоны	str
anonymize_card	Обезличивание банковской карты. Остаётся только банк.	str

Таблица 2. main.py

Функция	Описание	Возвращаемое значение
input_quasi_identifiers	Ввод квази-идентификаторов.	str
anonymize_data	Вызов всех функция для обезличивания.	str
calculate_k_anonymity	Подсчёт К-anonymity	str
remove_bad_k_anonymity_rec ords	Локальное подавление	str
print_k_values	Ввывод K-anonymity и их процента	str

Рекомендации пользователя

Для запуска программы убедитесь, что у вас установлен Python. Код можно запустить в среде разработки или через командную строку, используя консоль для выбора квази-идентификаторов. Также убедитесь, что все файлы программы находятся в одной директории для корректного выполнения. Запуск программы производится через файл main.py. Важно периодически проверять корректность данных перед генерацией походов. Перед запуском убедитесь, что ваш файл dataset.xml правильно отформатирован и содержит минимум 50000 строк.

Рекомендации программиста

Поддерживайте актуальную версию Python для обеспечения работоспособности программы на современных системах. Уделяйте внимание четкому именованию переменных и функций. Регулярно проводите тестирование программы на различных входных данных, чтобы убедиться в её надежности и корректности.

Исходный код программы

https://github.com/romplle/spbu-algorithms-and-data-structures/

Контрольный пример

1. Запуск программы.

Для запуска программы используйте файл main.py.

2. Выбора квази-идентификаторов.

После запуска программы пользователю предложено выбрать какие квази-идентификаторы нужно обезличить ("ФИО", "Паспортные данные", "СНИЛС", "Симптомы", "Выбор врача", "Дата посещения врача", "Анализы", "Дата получения анализов", "Стоимость анализов", "Карта оплаты") (Рис. 2).

```
Нужно ли обезличивать ФИО? у/п: у
Нужно ли обезличивать Паспортные данные? у/п: у
Нужно ли обезличивать СНИЛС? у/п: у
Нужно ли обезличивать Симптомы? у/п: у
Нужно ли обезличивать Выбор врача? у/п: у
Нужно ли обезличивать Дата посещения врача? у/п: у
Нужно ли обезличивать Анализы? у/п: у
Нужно ли обезличивать Дата получения анализов? у/п: у
Нужно ли обезличивать Стоимость анализов? у/п: у
Нужно ли обезличивать Карта оплаты? у/п: у
```

Рис 2. пример выбора квази-идентификаторов

3. Локальное подавление

Если в таблице остались уникальные значения и их меньше 5 процентов, то запустится функция локального подавления (Рис. 3)

Удалено записей: 4522, что составляет 1.77% от общего количества Рис 3. пример ввода количества билетов

4. Вывод результатов

Программа рассчитывает значения К-анонимности и выводит их на экран, чтобы пользователь мог оценить уровень анонимизации данных (Рис. 4).

```
K-anonymity: 5 (0.0863)
K-anonymity: 6 (0.0899)
K-anonymity: 7 (0.0736)
K-anonymity: 8 (0.0692)
K-anonymity: 9 (0.0700)
```

Рис 4. пример вывода К-анонимности и их процента

5. Запись данных

- *** Неизвестные

Внутренние

_ *** Неизвестные Терапевтическое

__*** **

Травматологическое

Гериатрическое

ФИО Паспортные данные

**** *****

**** *****

**** *****

**** *****

**** *****

**** *****

В самом конце программа сохраняет обезличенный датасет и anon dataset.csv (Рис. 5 и Рис. 6).

Данные успешно сохранены в файл 'anon dataset.csv'.

СНИЛС Симптомы ***-**** *** Смешанные Выбор врача Дата посещения врача Анализы Дата получения анализов Стоимость анализов Карта оплаты Терапевтическое 2023 Клинические анализы 2023 0-3500 руб. Альфа-Банк ***_***_*** Внутренние 2024 Другие анализы 2024 0-3500 pv6. Сбербанк Инфекционное 2024 3501-7000 руб. *** *** *** ** Смешанные Терапевтическое 2024 Инструментальные исследования Сбербанк ***_*** ** Внутренние Инфекционное 2024 Клинические тесты на жидкости 2024 3501-7000 руб BIE ***_*** ** 2023 3501-7000 руб. Альфа-Банк Смешанные 2023 Клинические анализы Хирургическое *** *** *** ** Внутренние Приёмное 2024 Функциональные исследования 2024 7001+ руб. Т-банк

2024 Инструментальные исследования

2024 Инструментальные исследования

2024 3501-7000 руб

2024 0-3500 руб.

2023 0-3500 руб.

Сбербанк

Т-банк

Т-банк

Рис 5. пример сохранения данных

Рис 6. пример обезличенных данных

Вывод

В рамках данной работы были исследованы принципы генерации синтетических данных, применительно к моделированию посещений людей к врачу. Разработан алгоритм, который учитывает особенности врачей, симптомов и анализов. Было реализовано программное обеспечение для автоматической генерации датасета, включающего такие данные, как личные данные пассажиров, информация о симптомах, анализах и платежных системах. Программа позволяет настраивать параметры генерации банковских карт оплаты, обеспечивая соответствие заданным требованиям и реалистичность получаемого датасета.

Источники

1. Pandas documentation // Pandas URL: https://pandas.pydata.org/docs/ (дата обращения: 10.10.2024).