# Chapter 1: Introduction – Part 1

Instructor: Zhuozhao Li

Lab: Qing Wang

Department of Computer Science and Engineering

# **Chapter 1: introduction**

### Chapter goal:

- Get "feel," "big picture," introduction to terminology
  - more depth, detail *later* in course
- Approach:
  - use Internet as example



### Overview/roadmap:

- What is the Internet?
- What is a protocol?
- Protocol layers, service models
- Network edge: hosts, access network, physical media
- Network core: packet/circuit switching, internet structure
- Performance: loss, delay, throughput
- Security
- History

### The Internet: a "nuts and bolts" view



# Billions of connected computing *devices*:

- hosts = end systems
- running network apps at Internet's "edge"





routers, switches



#### Communication links

- fiber, copper, radio, satellite
- transmission rate: bandwidth



#### **Networks**

collection of devices, routers, links: managed by an organization



### "Fun" Internet-connected devices











Pacemaker & Monitor



Tweet-a-watt: monitor energy use





**Security Camera** 



Slingbox: remote control cable TV

Web-enabled toaster + weather forecaster











sensorized, bed mattress



Others?

### The Internet: a "nuts and bolts" view

- Internet: "network of networks"
  - Interconnected ISPs
- protocols are everywhere
  - control sending, receiving of messages
  - e.g., HTTP (Web), streaming video, Skype, TCP, IP, WiFi, 4G, Ethernet
- Internet standards
  - RFC: Request for Comments
  - IETF: Internet Engineering Task
     Force



### The Internet: a "service" view

- Infrastructure that provides services to applications:
  - Web, streaming video, multimedia teleconferencing, email, games, ecommerce, social media, interconnected appliances, ...
- provides programming interface to distributed applications:
  - "hooks" allowing sending/receiving apps to "connect" to, use Internet transport service
  - provides service options, analogous to postal service



# What's a protocol?

### Human protocols:

- "what's the time?"
- "I have a question"
- introductions
- ... specific messages sent
- ... specific actions taken when message received, or other events

### *Network protocols:*

- computers (devices) rather than humans
- all communication activity in Internet governed by protocols

Protocols define the format, order of messages sent and received among network entities, and actions taken on msg transmission, receipt

# What's a protocol?

A human protocol and a computer network protocol:



Q: other human protocols?

# Chapter 1: roadmap

- What is the Internet?
- What is a protocol?
- Protocol layers, service models
- Network edge: hosts, access network, physical media
- Network core: packet/circuit switching, internet structure
- Performance: loss, delay, throughput
- Security
- History



# Protocol "layers" and reference models

Networks are complex, with many "pieces":

- hosts
- routers
- links of various media
- applications
- protocols
- hardware, software

#### **Question:**

is there any hope of organizing structure of network?

# Example: organization of air travel

ticket (purchase)

baggage (check)

gates (load)

runway takeoff

airplane routing

ticket (complain)

baggage (claim)

gates (unload)

runway landing

airplane routing

airplane routing

airline travel: a series of steps, involving many services

# Example: organization of air travel

| ticket (purchase) | ticketing service | ticket (complain) |  |
|-------------------|-------------------|-------------------|--|
| baggage (check)   | baggage service   | baggage (claim)   |  |
| gates (load)      | gate service      | gates (unload)    |  |
| runway takeoff    | runway service    | runway landing    |  |
| airplane routing  | routing service   | airplane routing  |  |

layers: each layer implements a service

- via its own internal-layer actions
- relying on services provided by layer below

Q: describe in words the service provided in each layer above

# Why layering?

### dealing with complex systems:

- explicit structure allows identification, relationship of complex system's pieces
  - layered reference model for discussion
- modularization eases maintenance, updating of system
  - change in layer's service implementation: transparent to rest of system
  - e.g., change in gate procedure doesn't affect rest of system

# Internet protocol stack

- application: supporting network applications
  - IMAP, SMTP, HTTP
- transport: process-process data transfer
  - TCP, UDP
- network: routing of datagrams from source to destination
  - IP, routing protocols
- link: data transfer between neighboring network elements
  - Ethernet, 802.11 (WiFi), PPP
- physical: bits "on the wire"



Source: **低并**发编程 WeChat Channel

https://mp.weixin.qq.com/s/jiPMUk6zUdOY6eKxAjNDbQ

Use this example to understand why the layers are designed in this way!











### Hub (集线器)

- Broadcast
- Signal amplification and signal regeneration

#### Summary of physical layer

• Bits "on the wire"

源mac: aa-aa-aa-aa-aa 目标mac: bb-bb-bb-bb-bb

 Media Access Control (MAC) address

 Each network interface has a MAC address









| MAC Address    | Port |
|----------------|------|
| bb-bb-bb-bb-bb | 1    |
| CC-CC-CC-CC-CC | 3    |
| aa-aa-aa-aa-aa | 4    |
| dd-dd-dd-dd-dd | 5    |
| ee-ee-ee-ee    | 6    |
| ff-ff-ff-ff-ff | 6    |
| gg-gg-gg-gg-gg | 6    |
| hh-hh-hh-hh-hh | 6    |

#### Summary of link layer

 Data communication with neighbor

What if there are more local networks to interconnect?

Question: how does a host know when it should send a packet to the router?



How about routing packets with the same MAC prefix the router?

For example:

C's MAC add. : FF FFF-CCCC

D's MAC add : FFF-DDDD

It is hard and not quite practical



A new type of address

- Internet Protocol address (IP address)
- 192.168.0.1
- 0.0.0.0 255.255.255.255



#### A to B:





### A to 路由器:



### 路由器 to C:





子网1: 192.168.0.x





#### Subnet

- 192.168.0.1 and 192.168.0.2: same subnet
- 192.168.0.1 and 192.168.1.1: different subnet

#### Subnet mask to find the same subnet

- A: 192.168.0.1 & 255.255.255.0 = 192.168.0.0
- **B**: 192.168.0.2 & 255.255.255.0 = 192.168.0.0
- C: 192.168.1.1 & 255.255.255.0 = 192.168.1.0
- **D**: 192.168.1.2 & 255.255.255.0 = 192.168.1.0

PS: 255 in binary: 11111111



### Gateway

• 192.168.0.254 is the router

### Summary of network layer

Route datagram from source to destination





# Transport and application layers

- Build on top of the bottom three layers
  - Use the functionalities of the bottom layers to provide services
- Transport layer
  - sender: breaks application messages into segments, passes to network layer
  - receiver: reassembles segments into messages, passes to application layer
  - E.g., TCP and UDP protocols
- Application layer
  - supporting network applications

# Transport and application layers

 Transport layer: provide logical communication between application processes running on different hosts (e.g., TCP and UDP)



# Notes on the example

- A high-level brief overview of the main functionalities of each layer
  - The example still misses many other functionalities
  - More details on other functionalities later in the course
  - E.g., how to create the MAC table and routing table

- Please keep this example in mind when you study the course later in this semester
  - Have a big picture on why we need to design the network like this



# Chapter 1: roadmap

- What is the Internet?
- What is a protocol?
- Protocol layers, service models
- Network edge: hosts, access network, physical media
- Network core: packet/circuit switching, internet structure
- Performance: loss, delay, throughput
- Security
- History



## A closer look at Internet structure

### Network edge:

- hosts: clients and servers
- servers often in data centers



## A closer look at Internet structure

### Network edge:

- hosts: clients and servers
- servers often in data centers

### Access networks, physical media:

wired, wireless communication links



## A closer look at Internet structure

### Network edge:

- hosts: clients and servers
- servers often in data centers

### Access networks, physical media:

wired, wireless communication links

### Network core:

- interconnected routers
- network of networks



# Access networks and physical media

# Q: How to connect end systems to edge router?

- residential access nets
- institutional access networks (school, company)
- mobile access networks (WiFi, 4G/5G)

### What to look for:

- transmission rate (bits per second) of access network?
- shared or dedicated access among users?



### Access networks: cable-based access



frequency division multiplexing (FDM): different channels transmitted in different frequency bands

### Access networks: cable-based access



- HFC: hybrid fiber coax
  - *asymmetric*: up to 40 Mbps 1.2 Gbps downstream transmission rate, 30-100 Mbps upstream transmission rate
- network of cable, fiber attaches homes to ISP router
  - homes share access network to cable headend

# Access networks: digital subscriber line (DSL)



- use existing telephone line to central office DSLAM
  - data over DSL phone line goes to Internet
  - voice over DSL phone line goes to telephone net
- 24-52 Mbps dedicated downstream transmission rate
- 3.5-16 Mbps dedicated upstream transmission rate

## Access networks: home networks



## Wireless access networks

Shared wireless access network connects end system to router

via base station aka "access point"

# Wireless local area networks (WLANs)

- typically within or around building (~100 ft)
- 802.11b/g/n (WiFi): 11, 54, 450Mbps transmission rate



#### Wide-area cellular access networks

- provided by mobile, cellular network operator (10's km)
- 10's Mbps
- 4G cellular networks (5G coming)



# Access networks: enterprise networks



- companies, universities, etc.
- mix of wired, wireless link technologies, connecting a mix of switches and routers (we'll cover differences shortly)
  - Ethernet: wired access at 100Mbps, 1Gbps, 10Gbps
  - WiFi: wireless access points at 11, 54, 450 Mbps