

ISOM 5280: Cryptography

Prof. Weiyin Hong

Department of ISOM, HKUST Business School

Fall 2024

Reading

• [WM] Chapter 10

Table of Contents

- What is cryptography
- Cipher Methods
 - Substitution (1-2)
 - Transposition (3-4)
 - User-generated key (5-6)
- Hash

Cryptology

- Cryptology the science of encryption
 - Cryptography the process to keep a message secret from unintended audiences
 - Cryptanalysis the process to obtain original text from encrypted message without knowing the methods/keys

Cipher Methods

Cipher Methods Overview

Cipher Methods (1)

- By substitution
 - e.g., Caesar cipher (shift each character position by 3 places to the right)

Initial alphabet: ABCDEFGHIJKLMNOPQRSTUVWXYZ

Encryption alphabet: **DEFGHIJKLMNOPQRSTUVWXYZABC**

Mono-alphabetic substitution

- Key: positions to shift (K = 3)
- Mono-alphabetic vs. poly-alphabetic (one vs. multiple alphabet sets)

10

How to crack?

- Use frequency chart to improve efficiency of decryption

Cipher Methods (2)

- By substitution
 - Poly-alphabetic

Original: ABCDEFGHIJKLMNOPQRSTUVWXYZ

Cipher 1: DEFGHIJKLMNOPQRSTUVWXYZABC

Cipher 2: GHIJKLMNOPQRSTUVWXYZABCDEF

Cipher 3: JKLMNOPQRSTUVWXYZAB¢DEFGHI

Cipher 4: MNOPQRSTUVWXYZABCDEFGHIJKL

TEXT

Poly-alphabetic substitution

Cipher Methods (3)

- By transposition
 - Caesar block: fit the text to a number square (e.g., 5 by 5)

```
Plaintext: SACK GAUL SPARE NO ONE

Caesar block: S G S _ N

A A P N E

C U A O _

K L R _ _
```

Ciphered: SGS_NAAPNECUAO_KLR____EO

How to crack?

(Are bigger squares harder to crack?)

- Block size does not directly affect the security of the cipher. However, if block size is too small, it is not effective.

ASCII Code (Binary Code)

Character	Binary Code								
Α	01000001	Q	01010001	g	01100111	w	01110111	-	00101101
В	01000010	R	01010010	h	01101000	×	01111000		00101110
С	01000011	S	01010011	i	01101001	У	01111001		00101111
D	01000100	Т	01010100	j	01101010	z	01111010	0	00110000
E	01000101	U	01010101	k	01101011	į.	00100001	1	00110001
F	01000110	V	01010110	ı	01101100	"	00100010	2	00110010
G	01000111	W	01010111	m	01101101	#	00100011	3	00110011
н	01001000	X	01011000	n	01101110	\$	00100100	4	00110100
I	01001001	Y	01011001	0	01101111	%	00100101	5	00110101
J	01001010	Z	01011010	р	01110000	&	00100110	6	00110110
K	01001011	a	01100001	q	01110001	•	00100111	7	00110111
L	01001100	b	01100010	r	01110010	(00101000	8	00111000
М	01001101	С	01100011	s	01110011)	00101001	9	00111001
N	01001110	d	01100100	t	01110100	*	00101010	?	00111111
0	01001111	e	01100101	u	01110101	+	00101011	@	01000000
P	01010000	f	01100110	V	01110110	,	00101100		01011111

Cipher Methods (4)

- By transposition
 - Shift the values within a block of text (with specified lengths, say, 8-bit blocks)
 to create the cipher text

```
E.g., key: 1 \rightarrow 4, 2 \rightarrow 8, 3 \rightarrow 1, 4 \rightarrow 5, 5 \rightarrow 7, 6 \rightarrow 2, 7 \rightarrow 6, 8 \rightarrow 3
```

Bit locations: 87654321 | 87654321 | 87654321

Plaintext: % 00100101 | 01101011 | 10010101

Ciphertext: k 00001011 | 10111010 | 01001101

Do you think 8-bit blocks are strong enough? - No

Cipher Methods (5)

The Vigenère Square

 Powerful when combined with a user-chosen encryption key

Original: SACK GAUL SPARE NO ONE

Original: SACKGAULSPARENOONE

Key : ITALYITALYITA

Ciphered: ATCVEINLDNIKEYMWGE

Which letter shall not be used as part of the key?

Cipher Methods (6)

- Exclusive OR (XOR)
 - Substitution by the XOR function with a user-chosen key
 - The key can be of different lengths

Bit stream: 011100000110010110000000

Key: 100001011000010110000101

Cipher: 11110101111000000000101

First bit	Second bit	Result
0	0	0
0	1	1
1	0	1
1	1	0

Review Questions

Cipher Methods Review

- Review questions:
 - What's the key for each method?
 - For mono-alphabetic, the key is ...
 - For poly-alphabetic, the key is ...
 - For Caesar block, the key is ...
 - For transposition, the key is ...
 - For the other two methods, the keys are ...
 - What do you need to pass on to the recipient in order for him or her to decipher?

Fun Time...

- 1. Find a partner in your class.
- 2. Use the one of the cipher method learned today to encrypt a short secret message (e.g., "iloveu") into a ciphered text.
- 3. Give the other party:
 - a. The ciphered text (not the original!!)
 - b. The cipher method (i.e., the algorithm)
 - c. The key
- 4. The other party shall try to decipher and find the original text.
- 5. After decipher, please exchange answers to see if your answer is correct!

Cipher Methods Review

Encryption Algorithm

Key Size

Which is more important and why? - Size

Robustness

Table 10-5 Encryption Key Power

It is estimated that to crack an encryption key using a brute force attack, a computer needs to perform a maximum of 2^k operations (2^k guesses), where k is the number of bits in the key. The average estimated time to crack is approximately half that time.

Key Length (Bits)	Maximum Number of Operations (Guesses)	Maximum Time to Crack	Estimated Average Time to Crack
16	65,536	0.000000112 seconds	0.000000056 seconds
24	16,777,216	0.0000287 seconds	0.0000143 seconds
32	4,294,967,296	0.00734 seconds	0.00367 seconds
56	72,057,594,037,927,900	34.2 hours	17.1 hours
64	18,446,744,073,709,600,000	364.7 days	182.35 days
128	3.40E+38	18,431,695,314,143,700,000 years	9,215,847,657,071,860,000 years
256	1.16E+77	6,271,980,907,862,400,000, 000,000,000,000,000,000,000, 000,000,000,000,000,000, years	3,135,990,453,931,200,000, 000,000,000,000,000,000, 000,000,000,000,000,000,000 years
512	1.34E+154	7.26E+134 years	3.63E+134 years

Note: Estimated Time to Crack is based on a 2020-era Intel i9-10900X 10 Core CPU performing 585 Dhrystone GFLOPS (giga/billion floating point operations per second) at 5.2 GHz (overclocked). Modern workstations are capable of using multiple CPUs, further decreasing time to crack, or simply splitting the workload among multiple systems.

Note: The authors acknowledge that this benchmark is based on a very specific application test and that the results are not generalizable. However, these calculations are shown to illustrate the relative difference between key length and resulting strength rather than to accurately depict time to crack.

What does encryption ensure?

Hash

- Hash functions are mathematical algorithms used to confirm the identity of a specific message and confirm that the content has not been changed.
- It does not create cipher text, instead generates a hash value or message digest.

Hash Calculator Online

Hash Function

Which one looks like a hash to you?

Plain Text

A long time ago, in a galaxy far, far away... It is a dark time for the Rebellion. Although the Death Star has been destroyed, Imperial troops have driven the Rebel forces from their hidden base and pursued them across the galaxy.

C SDJA ZLUK CAD, LJ C ACSCGH OCX, OCX CPCH... LZ LW C QCXT ZLUK ODX ZVK XKIKSSLDJ. CSZVDMAV ZVK QKCZV WZCX VCW IKKJ QKWZXDHKQ, LUEKXLCS ZXDDEW VCRK QXLRKJ ZVK XKIKS ODXNKW OXDU ZVKLX VLQQKJ ICWK CJQ EMXWMKQ ZVKU CNXDWW ZVK ACSCGH.

a446277f2bebe3a799b653485d63d2fc556d602b

Hash characteristics

- 1. One way and irreversible
- 2. Same data -> Same hash!
- 3. A small change in data -> A big change in hash values
- Uniqueness -> impossible to find two messages with the same hash values (hash collision)

Collision Attack

Image Source: PrivacyCanada

For example, if the attacker was offering a file download and showed the hash to prove the file's integrity, he could switch out the file download for a different file that had the same hash, and the person downloading it would be unable to know the difference. The file would appear valid as it has the same hash as the supposed real file.

SHA1 Hash Results

A long time ago, in a galaxy far, far away... It is a dark time for the Rebellion. Although the Death Star has been destroyed, Imperial troops have driven the Rebel forces from their hidden base and pursued them across the galaxy.

B long time away... It is Rebellion. has been dhave driver their hidde across the

r far, far the ath Star ial troops s from ued them

a446277f2bebe3a799b653485d63d2fc556d602b

23a8c00c702d89849e5185111d9c9eff232fedb3

Is it possible to reverse engineer hash value to pain text? - No

a446277f2bebe3a799b653485d63d2fc556d602b

Hash Collision

(1) Hash for Password Protection

 Instead of storing pain-text passwords, their hash values are stored on Web servers. So intruders can't see the original password or

reverse it.

User	Password	User	Password Hash
Stephen auhsoJ		Stephen	39e717cd3f5c4be78d97090c69f4e655
Lisa	hsifdrowS	Lisa	f567c40623df407ba980bfad6dff5982
James	1010NO1Z	James	711f1f88006a48859616c3a5cbcc0377
Harry	sinocarD tupaC	Harry	fb74376102a049b9a7c5529784763c53
Sarah	auhsoJ	Sarah	39e717cd3f5c4be78d97090c69f4e655

Inputted password's hash value will be compared with the stored

hash value to verify.

Would longer or more complex pw still be useful?

– not from a pure technical perspective, but still helpful as it will cost the hackers more to include longer passwords in a lookup table.

Rainbow Table

 Rainbow Tables are a compromise between a lookup table and low memory usage. The magic in Rainbow Tables is a basically a reduction function.

Hash with salt: The salt is typically stored right next to the salted and hashed password. Additionally, the salt should be unique per password.

\$pwd=hash(hash(\$password) + salt)

(2) Hash as Message Digest

