What is claimed is

A compound of the formula I

$$Ar - C - P M$$
 R_6
(I), in which

Ar is a group R_3 ; or Ar is cyclopentyl, cyclohexyl, naphthyl, anthracyl,

biphenylyl or an O-, S- or N-containing 5- or 6-membered heterocyclic ring, where the radicals cyclopentyl, cyclohexyl, naphthyl, anthracyl, biphenylyl and 5- or 6-membered heterocyclic ring are unsubstituted or substituted by halogen, C₁-C₄alkyl and/or C₁-C₄alkoxy; R₁ and R₂ independently of one another are C₁-C₂₀alkyl, OR₁₁, CF₃ or halogen; R₃, R₄ and R₅ independently of one another are hydrogen, C₁-C₂₀alkyl, OR₁₁ or halogen; or in each case two of the radicals R₁, R₂, R₃, R₄ and R₅ together form C₁-C₂₀alkylene, which can be interrupted by O, S or NR₁₄;

$$\begin{split} &\textbf{R}_6 \quad \text{is } C_{1}\text{-}C_{24}\text{alkyl, unsubstituted or substituted by cycloalkenyl, phenyl, CN, C(O)R_{11}, \\ &C(O)OR_{11}, \quad C(O)N(R_{14})_2, \quad OC(O)R_{11}, \quad OC(O)OR_{11}, \quad N(R_{14})C(O)N(R_{14}), \quad OC(O)NR_{14}, \\ &N(R_{14})C(O)OR_{11}, \text{ cycloalkyl, halogen, } OR_{11}, \text{SR}_{11}, N(R_{12})(R_{13}) \text{ or } \frac{O}{C}CH_2 \ ; \end{split}$$

 C_2 - C_{24} alkyl which is interrupted once or more than once by nonconsecutive O, S or NR₁₄ and which is unsubstituted or substituted by phenyl, OR₁₁, SR₁₁, N(R₁₂)(R₁₃), CN, C(O)R₁₁,

$$C(O)OR_{11}$$
, $C(O)N(R_{14})_2$ and/or $-CH_2$;

 C_2 - C_{24} alkenyl which is uninterrupted or interrupted once or more than once by nonconsecutive O, S or NR₁₄ and which is unsubstituted or substituted by OR₁₁, SR₁₁ or N(R₁₂)(R₁₃);

 C_{5} - C_{24} cycloalkenyl which is uninterrupted or interrupted once or more than once by non-consecutive O, S or NR₁₄ and which is unsubstituted or substituted by OR₁₁, SR₁₁ or N(R₁₂)(R₁₃);

The state of the s

 C_7 - C_{24} arylalkyl which is unsubstituted or substituted on the aryl group by C_1 - C_{12} alkyl, C_1 - C_{12} alkoxy or halogen;

 C_4 - C_{24} cycloalkyl which is uninterrupted or interrupted once or more than once by O, S and/or NR₁₄ and which is unsubstituted or substituted by OR₁₁, SR₁₁ or N(R₁₂)(R₁₃); or C₈-C₂₄arylcycloalkyl or C₈-C₂₄arylcycloalkenyl;

R₁₁ is H, C₁-C₂₀alkyl, C₂-C₂₀alkenyl, C₃-C₈cycloalkyl, phenyl, benzyl or C₂-C₂₀alkyl, which is interrupted once or more than once by O or S and which is unsubstituted or is substituted by OH and/or SH;

 R_{12} and R_{13} independently of one another are hydrogen, C_1 - C_{20} alkyl, C_3 - C_8 cycloalkyl, phenyl, benzyl or C_2 - C_{20} alkyl which is interrupted once or more than once by nonconsecutive O atoms and which is unsubstituted or substituted by OH and/or SH; or R_{12} and R_{13} together are C_3 - C_5 alkylene which is uninterrupted or interrupted by O, S or NR_{14} ;

R₁₄ is hydrogen, phenyl, C₁-C₁₂alkyl or C₂-C₁₂alkyl which is interrupted once or more than once by O or S and which is unsubstituted or substituted by OH and/or SH; and

M is hydrogen, Li, Na or K.

2. A compound of the formula II

$$Ar - C - P - C - Y_1 \qquad (II), in which$$

$$R_6$$

A is O or S;

x is 0 or 1;

Ar is a group
$$R_3$$
; or Ar is cyclopentyl, cyclohexyl, naphthyl, anthracyl,

biphenylyl or an O-, S- or N-containing 5- or 6-membered heterocyclic ring, where the radicals cyclopentyl, cyclohexyl, naphthyl, anthracyl, biphenylyl and 5- or 6-membered heterocyclic ring are unsubstituted or substituted by halogen, C_1 - C_4 alkyl and/or C_1 - C_4 alkoxy; R_1 and R_2 independently of one another are C_1 - C_2 0alkyl, OR_{11} , CF_3 or halogen;

 R_3 , R_4 and R_5 independently of one another are hydrogen, C_1 - C_{20} alkyl, OR_{11} or halogen;

or in each case two of the radicals R_1 , R_2 , R_3 , R_4 and R_5 together form C_1 - C_{20} alkylene which can be interrupted by O_1 , S_2 or S_3 , S_4 and S_5 together form S_4 - S_5

 C_2 - C_{24} alkyl which is interrupted once or more than once by nonconsecutive O, S or NR₁₄ and which is unsubstituted or substituted by phenyl, OR₁₁, SR₁₁, N(R₁₂)(R₁₃), CN, C(O)R₁₁,

$$C(O)OR_{11}$$
, $C(O)N(R_{14})_2$ and/or $-C \leftarrow CH_2$;

 C_2 - C_{24} alkenyl which is uninterrupted or interrupted once or more than once by non-consecutive O, S or NR₁₄ and which is unsubstituted or substituted by OR₁₁, SR₁₁ or N(R₁₂)(R₁₃);

 C_5 - C_{24} cycloalkenyl which is uninterrupted or interrupted once or more than once by non-consecutive O, S or NR₁₄ and which is unsubstituted or substituted by OR₁₁, SR₁₁ or N(R₁₂)(R₁₃);

 C_7 - C_{24} arylalkyl which is unsubstituted or substituted on the aryl group by C_1 - C_{12} alkyl, C_1 - C_{12} alkoxy or halogen;

 C_4 - C_{24} cycloalkyl which is uninterrupted or interrupted once or more than once by O, S and/or NR₁₄ and which is unsubstituted or substituted by OR₁₁, SR₁₁ or N(R₁₂)(R₁₃); or C_8 - C_{24} arylcycloalkyl or C_8 - C_{24} arylcycloalkenyl;

 R_{11} is H, C_1 - C_{20} alkyl, C_2 - C_{20} alkenyl, C_3 - C_8 cycloalkyl, phenyl, benzyl or C_2 - C_{20} alkyl which is interrupted once or more than once by nonconsecutive O atoms and which is unsubstituted or substituted by OH and/or SH;

 R_{12} and R_{13} independently of one another are hydrogen, C_1 - C_{20} alkyl, C_3 - C_8 cycloalkyl, phenyl, benzyl or C_2 - C_{20} alkyl which is interrupted once or more than once by O or S and which is unsubstituted or substituted by OH and/or SH; or R_{12} and R_{13} together are C_3 - C_5 alkylene which is uninterrupted or interrupted by O, S or NR_{14} ;

 Y_1 is C_1 - C_{18} alkyl which is unsubstituted or substituted by one or more phenyl; C_1 - C_{18} -halogenoalkyl; C_2 - C_{18} alkyl which is interrupted once or more than once by O or S and which can be substituted by OH and/or SH; unsubstituted C_3 - C_{18} cycloalkyl or C_3 - C_{18} cycloalkyl substituted by C_1 - C_{20} alkyl, OR_{11} , CF_3 or halogen; C_2 - C_{18} alkenyl; or Y_1 is OR_{11} , $N(R_{12})(R_{13})$ or one of the radicals

or Y₁ is cyclopentyl, cyclohexyl, naphthyl, anthracyl, biphenylyl or an O-, S- or N-containing 5- or 6-membered heterocyclic ring, where the radicals cyclopentyl, cyclohexyl, naphthyl, anthracyl, biphenylyl and 5- or 6-membered heterocyclic ring are unsubstituted or substituted by halogen, C₁-C₄alkyl and/or C₁-C₄alkoxy;

 Y_2 is a direct bond; unsubstituted or phenyl-substituted C_1 - C_{18} alkylene; unsubstituted C_4 - C_{18} -cycloalkylene or C_4 - C_{18} cycloalkylene substituted by C_1 - C_{12} alkyl, OR_{11} , halogen and/or phenyl; unsubstituted C_5 - C_{18} cycloalkenylene or C_5 - C_{18} cycloalkenylene substituted by C_1 - C_{12} alkyl, OR_{11} , halogen and/or phenyl; unsubstituted phenylene or phenylene substituted one to four times by C_1 - C_{12} alkyl, OR_{11} , halogen, -(CO) OR_{14} , -(CO) OR_{14}) and/or phenyl;

or
$$Y_2$$
 is a radical Y_3 or Y_4 , where these radicals are

unsubstituted or are substituted one to four times on one or both aromatic ring(s) by C_1 - C_{12} alkyl, OR_{11} , halogen and/or phenyl;

 Y_3 is O, S, SO, SO₂, CH₂, C(CH₃)₂, CHCH₃, C(CF₃)₂, CO or a direct bond;

R₁₄ is hydrogen, phenyl, C₁-C₁₂alkyl or C₂-C₁₂alkyl which is interrupted once or more than once by O or S and which can be substituted by OH and/or SH;

 R_1 ' and R_2 ' independently of one another have the same meanings as given for R_1 and R_2 ; and

 R_3 ', R_4 ' and R_5 ' independently of one another have the same meanings as given for R_3 , R_4 and R_5 :

or in each case two of the radicals R_1 ', R_2 ', R_3 ', R_4 ' and R_5 ' together form C_1 - C_{20} alkylene which may be interrupted by O, S or -NR₁₄;

with the proviso that Y₁ is not identical to Ar.

3. A compound of the formula III

A is O or S;

x is 0 or 1;

Ar is a group
$$R_3$$
; or Ar is cyclopentyl, cyclohexyl, naphthyl, anthracyl,

biphenylyl or an O-, S- or N-containing 5- or 6-membered heterocyclic ring, where the radicals cyclopentyl, cyclohexyl, naphthyl, anthracyl, biphenylyl and 5- or 6-membered heterocyclic ring are unsubstituted or substituted by halogen, C₁-C₄alkyl and/or C₁-C₄alkoxy; R₁ and R₂ independently of one another are C₁-C₂₀alkyl, OR₁₁, CF₃ or halogen;

 $m extbf{R}_3$, $m extbf{R}_4$ and $m extbf{R}_5$ independently of one another are hydrogen, $m C_1$ - $m C_{20}$ alkyl, $m OR_{11}$ or halogen; or in each case two of the radicals $m R_1$, $m R_2$, $m R_3$, $m R_4$ and $m R_5$ together form $m C_1$ - $m C_{20}$ alkylene which

can be interrupted by O, S or -NR₁₄;

 R_6 is C_1 - C_{24} alkyl, unsubstituted or substituted by C_5 - C_{24} cycloalkenyl, phenyl, CN, C(O)R₁₁, C(O)OR₁₁, C(O)N(R₁₄)₂, OC(O)R₁₁, OC(O)OR₁₁, N(R₁₄)C(O)N(R₁₄), OC(O)NR₁₄,

$$N(R_{14})C(O)OR_{11}$$
, cycloalkyl, halogen, OR_{11} , SR_{11} , $N(R_{12})(R_{13})$ or $CC = CH_2$;

 C_2 - C_{24} alkyl which is interrupted once or more than once by nonconsecutive O, S or NR₁₄ and which is unsubstituted or substituted by phenyl, OR₁₁, SR₁₁, N(R₁₂)(R₁₃), CN, C(O)R₁₁,

$$C(O)OR_{11}$$
, $C(O)N(R_{14})_2$ and/or $-CH_2$;

 C_2 - C_{24} alkenyl which is uninterrupted or interrupted once or more than once by non-consecutive O, S or NR₁₄ and which is unsubstituted or substituted by OR₁₁, SR₁₁ or N(R₁₂)(R₁₃);

 C_5 - C_{24} cycloalkenyl which is uninterrupted or interrupted once or more than once by non-consecutive O, S or NR₁₄ and which is unsubstituted or substituted by OR₁₁, SR₁₁ or N(R₁₂)(R₁₃);

 C_7 - C_{24} arylalkyl which is unsubstituted or substituted on the aryl group by C_1 - C_{12} alkyl, C_1 - C_{12} alkoxy or halogen;

 C_4 - C_{24} cycloalkyl which is uninterrupted or interrupted once or more than once by O, S and/or NR₁₄ and which is unsubstituted or substituted by OR₁₁, SR₁₁ or N(R₁₂)(R₁₃); or C_8 - C_{24} arylcycloalkyl or C_8 - C_{24} arylcycloalkenyl;

half with the state with the state of the st

 \mathbf{R}_{11} is H, C_1 - C_{20} alkyl, C_2 - C_{20} alkenyl, C_3 - C_8 cycloalkyl, phenyl, benzyl or C_2 - C_{20} alkyl which is interrupted once or more than once by nonconsecutive O atoms and which is unsubstituted or substituted by OH and/or SH;

 R_{12} and R_{13} independently of one another are hydrogen, C_1 - C_{20} alkyl, C_3 - C_8 cycloalkyl, phenyl, benzyl or C_2 - C_{20} alkyl, which is interrupted once or more than once by O or S and which is unsubstituted or substituted by OH and/or SH; or R_{12} and R_{13} together are C_3 - C_5 alkylene which is uninterrupted or interrupted by O, S or NR_{14} ;

Z₁ is C₁-C₂₄alkyl, which is unsubstituted or substituted once or more than once by OR₁₅,

$$SR_{15}$$
, $N(R_{16})(R_{17})$, phenyl, halogen, CN , $-N=C=A$, $-C$ CH_2 , $-C$ CH_{18} , $-C$ CH_{18} , $-C$ CH_{18}

and/or $C = N(R_{18})_2$ or Z_1 is $C_2 - C_{24}$ alkyl which is interrupted once or more than once by O, S or NR_{14} and which can be substituted by OR_{15} , SR_{15} , $N(R_{16})(R_{17})$, phenyl, halogen,

which is substituted once or more than once by phenyl, CN, -N=C=A, -CH₂,

 C_3 - C_{24} cycloalkyl or C_3 - C_{24} cycloalkyl substituted by C_1 - C_{20} alkyl, OR_{11} , CF_3 or halogen; unsubstituted C_2 - C_{24} alkenyl or C_2 - C_{24} alkenyl substituted by C_6 - C_{12} aryl, CN, $(CO)OR_{15}$ or

(CO)N(R₁₈)₂; or Z₁ is C₃-C₂₄cycloalkenyl or is one of the radicals R_{19} R_{21} (f),

$$-Z_{3} \xrightarrow{R_{23}} R_{21} \quad (g), \qquad N \xrightarrow{R_{19}} R_{20} \quad (h), \qquad N \xrightarrow{R_{19}} R_{20} \quad (i), \qquad N \xrightarrow{R_{19}} R_{19} \quad (k),$$

$$G = \begin{bmatrix} E \\ Si \\ G_3 \end{bmatrix} \begin{bmatrix} G \\ Si \\ G \end{bmatrix} \begin{bmatrix} G \\ Si \\ G \end{bmatrix} \begin{bmatrix} E \\ Si \\ G$$

$$R_3$$
 R_4 R_2 R_4 R_4 R_2 R_4 R_4 R_2 R_4 R_2 R_4 R_2 R_4 R_2 R_3 R_4 R_2 R_4 R_2 R_3 R_4 R_3 R_4 R_3 R_4 R_3 R_4 R_5 R_4 R_5 R_4 R_5 R_5

alkyl radical is uninterrupted or interrupted once or more than once by nonconsecutive O or S, and is unsubstituted or substituted by OR_{15} , SR_{15} and/or halogen; with the proviso that Z_1 and R_6 are not identical;

 A_1 is O, S or NR_{18a} ;

 \mathbf{Z}_2 is C_1 - C_{24} alkylene; C_2 - C_{24} alkylene interrupted once or more than once by O, S or NR₁₄; C_2 - C_{24} alkenylene; C_2 - C_{24} alkenylene interrupted once or more than once by O, S or NR₁₄; C_3 - C_{24} cycloalkylene; C_3 - C_{24} cycloalkylene interrupted once or more than once by O, S or NR₁₄; C_3 - C_{24} cycloalkylene; C_3 - C_{24} cycloalkenylene interrupted once or more than once by O, S or NR₁₄;

where the radicals C_1 - C_{24} alkylene, C_2 - C_{24} alkylene, C_2 - C_{24} alkenylene, C_3 - C_{24} cycloalkylene and C_3 - C_{24} cycloalkenylene are unsubstituted or are substituted by OR_{11} , SR_{11} , $N(R_{12})(R_{13})$

and/or halogen; or
$$Z_2$$
 is one of the radicals , Z_5

or $-Z_{\epsilon}$, where these radicals are unsubstituted or are substituted on the

aromatic by C_1 - C_{20} alkyl; C_2 - C_{20} alkyl which is interrupted once or more than once by nonconsecutive O atoms and which is unsubstituted or substituted by OH and/or SH; OR_{11} , SR_{11} , $N(R_{12})(R_{13})$, phenyl, halogen, NO_2 , CN, (CO)- OR_{11} , (CO)- R_{11} , (CO)- $N(R_{12})(R_{13})$, SO_2R_{24} , OSO_2R_{24} , CF_3 and/or CCI_3 ;

$$\begin{array}{c|c}
 & E \\
 & G \\
 & G \\
 & G
\end{array}$$

$$\begin{array}{c|c}
 & E \\
 & G \\
 & G
\end{array}$$

$$\begin{array}{c|c}
 & CH_{2-r} \\
 & G \\
 & G
\end{array}$$

$$\begin{array}{c|c}
 & CH_{2-r} \\
 & G \\
 & G
\end{array}$$

$$\begin{array}{c|c}
 & CH_{3-r} \\
 & G
\end{array}$$

$$\begin{array}{c|c}
 & G
\end{array}$$

 \mathbf{Z}_3 is CH_2 , CH(OH), $CH(CH_3)$ or $C(CH_3)_2$;

Z₄ is S, O, CH₂, C=O, NR₁₄ or a direct bond;

 Z_5 is S, O, CH₂, CHCH₃, C(CH₃)₂, C(CF₃)₂, SO, SO₂, CO;

 Z_6 and Z_7 independently of one another are CH_2 , $CHCH_3$ or $C(CH_3)_2$;

r is 0, 1 or 2;

s is a number from 1 to 12:

q is a number from 0 to 50;

t and p are each a number from 0 to 20;

E, **G**, **G**₃ and **G**₄ independently of one another are unsubstituted C_1 - C_{12} alkyl or C_1 - C_{12} alkyl substituted by halogen, or are unsubstituted phenyl or phenyl substituted by one or more C_1 - C_4 alkyl; or are C_2 - C_{12} alkenyl;

 R_{11a} is C_1 - C_{20} alkyl substituted once or more than once by OR_{15} or C_1 - CH_2 ; or is

 C_2 - C_{20} alkyl which is interrupted once or more than once by nonconsecutive O atoms and is unsubstituted or substituted once or more than once by OR_{15} , halogen or C_1 - C_2 - C_1 - C_2 - C_2 is C_2 - C_{20} alkenyl, C_3 - C_{12} alkynyl; or R_{11a} is C_3 - C_{12} cycloalkenyl which is substituted once or

In pass were down down from the first of the reper to the fact that the

more than once by halogen, NO₂, C₁-C₆alkyl, OR₁₁ or C(O)OR₁₈; or C₇-C₁₆arylalkyl or C₈-C₁₆arylcycloalkyl;

R₁₄ is hydrogen, phenyl, C₁-C₁₂alkoxy, C₁-C₁₂alkyl or C₂-C₁₂alkyl which is interrupted once or more than once by O or S and which is unsubstituted or substituted by OH and/or SH;

 R_{15} has one of the meanings given for R_{11} or is a radical $-C - R_{18}$, $-C - OR_{18}$ or $-C - OR_{18}$ or $-C - OR_{18}$:

 R_{16} and R_{17} independently of one another have one of the meanings given for R_{12} or are a radical A_{17} independently of one another have one of the meanings given for R_{12} or are a radical A_{17} independently of one another have one of the meanings given for R_{12} or are a radical A_{17} independently of one another have one of the meanings given for R_{12} or are a radical A_{17} independently of one another have one of the meanings given for R_{12} or are a radical A_{17} independently of one another have one of the meanings given for R_{12} or are a radical A_{17} independently of one another have one of the meanings given for R_{12} or are a radical A_{17} independently of one another have one of the meanings given for R_{12} or are a radical A_{17} independently of one another have one of the meanings given for R_{12} or are a radical A_{17} independently of one another have one of the meanings given for R_{12} or are a radical A_{17} independently of one another have one of the meanings given for R_{12} or R_{13} independently of R_{12} or R_{13} independently of R_{12} independently of R_{12}

 R_{18} is hydrogen, C_1 - C_{24} alkyl, C_2 - C_{12} alkenyl, C_3 - C_8 cycloalkyl, phenyl, benzyl; C_2 - C_{20} alkyl which is interrupted once or more than once by O or S and which is unsubstituted or substituted by OH;

 R_{18a} and R_{18b} independently of one another are hydrogen; C_1 - C_{20} alkyl, which is substituted once or more than once by OR_{15} , halogen, styryl, methylstyryl, -N=C=A or $-\overset{O}{C}$ - $\overset{O}{C}$ - $\overset{O}{C$

C₂-C₂₀alkyl, which is interrupted once or more than once by nonconsecutive O atoms and which is unsubstituted or substituted once or more than once by OR₁₅, halogen, styryl,

methylstyryl or $-C_{12}$; or R_{18a} and R_{18b} are C_{2} - C_{12} alkenyl; C_{5} - C_{12} cycloalkyl, which is

substituted by -N=C=A or -CH₂-N=C=A and is additionally unsubstituted or substituted by one or more C_1 - C_4 alkyl; or R_{18a} and R_{18b} are C_6 - C_{12} aryl, unsubstituted or substituted once or more than once by halogen, NO₂, C_1 - C_6 alkyl, C_2 - C_4 alkenyl, OR_{11} , -N=C=A, -CH₂-N=C=A or $C(O)OR_{18}$; or R_{18a} and R_{18b} are C_7 - C_{16} arylalkyl; or R_{18a} and R_{18b} together are C_8 - C_{16} arylcycloalkyl; or R_{18a} and R_{18b} independently of one another are

$$Y_3$$
 $N=C=A$ or Y_3 $N=C=A$;

 Y_3 is O, S, SO, SO₂, CH₂, C(CH₃)₂, CHCH₃, C(CF₃)₂, (CO), or a direct bond; R_{19} , R_{20} , R_{21} , R_{22} and R_{23} independently of one another are hydrogen, C₁-C₂₀alkyl; C₂-C₂₀alkyl, which is interrupted once or more than once by nonconsecutive O atoms and

which is unsubstituted or substituted by OH and/or SH; or R₁₉, R₂₀, R₂₁, R₂₂ and R₂₃ are

m freely the day of the freely first freely freely first freely freely freely first freely fre

OR₁₁, SR₁₁, N(R₁₂)(R₁₃), NO₂, CN, SO₂R₂₄, OSO₂R₂₄, CF₃, CCl₃, halogen; or phenyl which is unsubstituted or substituted once or more than once by C₁-C₄alkyl or C₁-C₄alkoxy; or in each case two of the radicals R₁₉, R₂₀, R₂₁, R₂₂ and R₂₃ together form C₁-C₂₀alkylene which is uninterrupted or interrupted by O, S or -NR₁₄;

 R_{24} is C_1 - C_{12} alkyl, halogen-substituted C_1 - C_{12} alkyl, phenyl, or phenyl substituted by OR_{11} and/or SR_{11} ;

with the proviso that R_6 and Z_1 are not identical.

4. A compound of the formula I, II or III

$$Ar = \begin{matrix} O & (A)_x & O \\ I & II \\ R_6 & R_6 \end{matrix} \qquad Ar = \begin{matrix} O & (A)_x & O \\ II & II \\ R_6 & R_6 \end{matrix} \qquad Ar = \begin{matrix} O & (A)_x \\ II & II \\ R_6 & R_6 \end{matrix} \qquad Ar = \begin{matrix} O & (A)_x \\ II & II \\ R_6 & R_6 \end{matrix} \qquad , \text{ in which }$$

Ar is a group
$$R_3$$
 R_4 R_2

 R_1 and R_2 independently of one another are C_1 - C_8 alkyl or OR_{11} ;

R₃, R₄ and R₅ independently of one another are hydrogen or C₁-C₈alkyl;

 R_6 is C_1 - C_{12} alkyl;

 \mathbf{R}_{11} is H or C_1 - C_8 alkyl;

 R_{12} and R_{13} independently of one another are hydrogen or C_1 - C_8 alkyl;

M is hydrogen or Li;

A is O;

x is 1;

$$\mathbf{Y}_1$$
 is OR_{11} , $N(R_{12})(R_{13})$ or a radical R_1 , R_2 , R_3 , R_4 ,

 R_1 ' and R_2 ' independently of one another have the same meanings given for R_1 and R_2 ; and

The plant and the control of the con

 R_3 ', R_4 ' and R_5 ' independently of one another have the same meanings as given for R_3 , R_4 and R_5 ;

with the proviso that Y₁ is not identical to Ar;

 Z_1 is C_1 - C_{12} alkyl which is unsubstituted or substituted once or more than once by OR_{15} , A phenyl and/or C_1 - C_2 - C_3 is unsubstituted or C_3 - C_4 -cycloalkyl; or C_1 is one of the radicals

 \mathbb{Z}_3 is CH_2 or CH(OH);

r is 0;

s is 1;

E, G and G₃ independently of one another are unsubstituted C₁-C₄alkyl;

R₁₅ has one of the meanings given for R₁₁;

R₁₈ is C₁-C₁₂alkyl; and

 R_{19} , R_{20} , R_{21} , R_{22} and R_{23} independently of one another are hydrogen or halogen; and with the proviso that R_6 and Z_1 are not identical.

- 5. A process for the selective preparation of compounds of the formula I according to claim 1, by
- (1) reaction of an acyl halide of the formula IV

Ar is as defined in claim 1, and

X is Cl or Br;

with a dimetalated organophosphine of the formula V

$$R_6 - P \begin{pmatrix} M_1 \\ M_1 \end{pmatrix}$$
 (V), in which

R₆ is as defined in claim 1; and

M₁ is Na, Li or K;

in the molar ratio 1:1; and

- (2) where appropriate, subsequent hydrolysis if compounds of the formula I in which M is hydrogen are to be obtained.
- 6. The use of compounds of the formula I as starting materials for the preparation of mono- or bisacylphosphines, mono- or bisacylphosphine oxides or mono- or bisacylphosphine sulfides.
- 7. A process for the preparation of compounds of the formula II according to claim 2 by
- (1) reaction of an acyl halide of the formula IV

Ar is as defined in claim 2, and

X is Cl or Br;

with a dimetalated organophosphine of the formula V

$$R_6 - P < M_1$$
 (V), in which

R₆ is as defined in claim 2; and

M₁ is Na, Li or K;

in the molar ratio of approximately 1:1;

(2) subsequent reaction of the product with an acyl halide of the formula IVa

$$Y_{1}$$
 C X Y_{1} C X Y_{2} Y_{3} Y_{4} Y_{5} Y_{7} Y_{7

Y₁ is as defined in claim 2; and

X is as defined above;

with the proviso that the acyl halide of the formula IV is not identical to the acyl halide of the formula IVa;

in the molar ratio of approximately 1:1; and,

(3) if compounds of the formula II, in which A is oxygen or sulfur are to be obtained, subsequent oxidation or sulfurization of the phosphine compounds.

the second secon

- 8. A process for the preparation of compounds of the formula II according to claim 2, in which $\bf A$ is oxygen and $\bf x$ is 1, by
- (1) reaction of a compound of the formula (I), according to claim 1

$$Ar - C - P M$$

$$R_6$$
 (I), in which

Ar, M and R_6 are as defined in claim 1, with phospene to give the corresponding phosphine chloride (Ii)

(2) subsequent reaction with an alcohol to give the compound of the formula (Iii)

$$Ar - C - P - OR$$

$$R_6$$
 (lii), in which

R is the radical of an alcohol, in particular C₁-C₁₂alkyl, C₅-C₈cycloalkyl or benzyl; and (3) reaction of the resulting compound of the formula (lii) with an acyl halide

$$Y_1$$
— $C-X$, in which

Y₁ is as defined in claim 2, and

X is Cl or Br,

to give the compound of the formula II but in which Ar and Y1 are not necessarily different.

- A process for the preparation of compounds of the formula III
- (1) by reaction of an acyl halide of the formula IV

Ar is as defined in claim 3, and

X is Cl or Br;

with a dimetalated organophosphine of the formula V

$$R_6 - P = M_1$$
 (V), in which

R₆ is as defined in claim 3; and

M₁ is Na, Li or K;

in the molar ratio of approximately 1:1;

(2) subsequent reaction of the product with a compound of the formula VI or VI'

$$Z_{1}-X$$
 (VI)

Z₁-X' (VI'), in which

Z₁ is as defined in claim 3; and

X is as defined above; and

$$\mathbf{X}'$$
 is -N=C=A, -N=C=N=Z₁, $-\overset{O}{\underset{H}{\text{C-CH}_2}}$ or -CHO;

with the proviso that, Z_1 is not identical to R_6 ;

in the molar ratio of approximately 1:1; and, in the case where Z_1 is not a group (v), (w) or C_1 - C_{12} alkylthio, and

- (3) compounds of the formula III, in which A is oxygen or sulfur are to be obtained, subsequent oxidation or sulfurization of the resulting phosphine compounds.
- 10. A process for the preparation of compounds of the formula III, according to claim 3,
- (1) by reaction of an acyl halide of the formula IV

$$Ar - C - X$$
 (IV), in which

Ar is as defined in claim 1, and

X is Cl or Br;

with an unsymmetrical phosphine of the formula VII

$$R_6 - P - H$$
 (VII), in which Z_1

R₆ is as defined in claim 1, and

 Z_1 is as defined in claim 3 with the proviso that R_6 and Z_1 are not identical; in the molar ratio of approximately 1:1, in in the presence of a base or an organolithium compound, to give the corresponding acylphosphine; and

- (2) subsequent oxidation or sulfurization of the thus obtained acylphosphine.
- 11. A process for the preparation of compounds of the formula III according to claim 3, in which $\bf A$ is oxygen and $\bf x$ is 1, by
- (1) reaction of the compound of the formula (I), according to claim 1

 $\mbox{Ar, M and R_6 is as defined in claim 1,} \\ \mbox{with phosgene to give the corresponding phosphine chloride (li)}$

$$Ar - C - P - (Ii);$$

$$R_6$$

(2) subsequent reaction with an alcohol to give the compound of the formula (lii)

$$Ar - C - P - OR$$
 R_6 (lii), in which

 $\bf R$ is the radical of an alcohol, in particular C_1 - C_{12} alkyl, C_5 - C_8 cycloalkyl or benzyl; and (3) reaction of the resulting compound of the formula (lii) with an organoylhalide

 \mathbf{Z}_1 is as defined in claim 3, but is not identical to \mathbf{R}_6 from the formula (I) ist, and \mathbf{X} is CI or Br,

to give the compound of the formula III.

- 12. A photocurable composition comprising
- (a) at least one ethylenically unsaturated photopolymerizable compound and
- (b) at least one compound of the formula II or III as photoinitiator.
- 13. A photocurable composition according to claim 12, comprising, in addition to components (a) and (b), further photoinitiators (c) and/or further additives (d).

14. A photocurable composition as claimed in claim 13, comprising, as further photoinitiator (c), at least one compound of the formula VIII, IX, X, XI

$$R_{25} = \begin{array}{c} O & R_{26} \\ C - C - R_{27} \\ R_{28} \end{array}$$
 (VIII),

$$R_{31} = \left(\begin{array}{c} R_{30} \\ C \\ C \end{array}\right)$$
 (IX),

$$R_{39} = T_{1} - R_{37}$$
 (XI), in which R_{38}

R₂₅ is hydrogen, C₁-C₁₈alkyl, C₁-C₁₈alkoxy, -OCH₂CH₂-OR₂₉, morpholino, SCH₃,

a group
$$H_2C=C$$
— or a group G_1 — CH_2 — CH_3 — G_2 ;

n has a value from 2 to 10;

G₁ and **G**₂ independently of one another are end groups of the polymeric unit, in particular hydrogen or CH₃;

 R_{26} is hydroxyl, C_1 - C_{16} alkoxy, morpholino, dimethylamino or -O(CH₂CH₂O)_m- C_1 - C_{16} alkyl; R_{27} and R_{28} independently of one another are hydrogen, C_1 - C_6 alkyl, phenyl, benzyl, C_1 - C_{16} alkoxy or -O(CH₂CH₂O)_m- C_1 - C_{16} alkyl, or R_{27} and R_{28} together with the carbon atom to which they are bonded form a cyclohexyl ring;

m is a number from 1-20;

where R_{26} , R_{27} and R_{28} are not all C_1 - C_{16} alkoxy or -O(CH₂CH₂O)_m- C_1 - C_{16} alkyl at the same time, and

$$\mathbf{R_{29}}$$
 is hydrogen, $\begin{array}{ccc} \mathbf{O} & \mathbf{O} & \mathbf{CH_3} \\ \mathbf{II} & \mathbf{I} & \mathbf{I} \\ \mathbf{C-CH=CH_2} & \text{or} & \mathbf{-C-C=CH_2} \end{array}$;

 R_{30} and R_{32} independently of one another are hydrogen or methyl;

 R_{31} is hydrogen, methyl or phenylthio, where the phenyl ring of the phenylthio radical is unsubstituted or substituted by C_1 - C_4 alkyl in the 4-, 2-, 2,4- or 2,4,6-position;

 R_{33} and R_{34} independently of one another are C_1 - C_{20} alkyl, cyclohexyl, cyclopentyl, phenyl, naphthyl or biphenyl, where these radicals are unsubstituted or are substituted by halogen, C_1 - C_{12} alkyl and/or C_1 - C_{12} alkoxy, or R_{33} is an S- or N-containing 5- or 6-membered

heterocyclic ring, or are
$$-\frac{O}{C} - R_{35}$$
;

R₃₅ is cyclohexyl, cyclopentyl, phenyl, naphthyl or biphenyl, these radicals being unsubstituted or substituted by halogen, C₁-C₄alkyl and/or C₁-C₄alkoxy, or R₃₅ is an S- or N-containing 5- or 6-membered heterocyclic ring;

 R_{36} and R_{37} independently of one another are unsubstituted cyclopentadienyl or cyclopentadienyl substituted once, twice or three times by C_1 - C_{18} alkyl, C_1 - C_{18} alkoxy, cyclopentyl, cyclohexyl or halogen; and

 R_{38} and R_{39} independently of one another are phenyl which is substituted in at least one of the two ortho positions relative to the titanium-carbon bond by fluorine atoms or CF_3 , and which on the aromatic ring may contain, as further substituents, unsubstituted pyrrolinyl or pyrrolinyl substituted by one or two C_1 - C_{12} alkyl, di(C_1 - C_{12} alkyl)aminomethyl, morpholinomethyl, C_2 - C_4 alkenyl, methoxymethyl, ethoxymethyl, trimethylsilyl, formyl, methoxy or phenyl; or polyoxaalkyl,

or
$$R_{38}$$
 and R_{39} are
$$\begin{array}{c} R_{40} \\ \\ \\ \\ R_{42} \end{array}$$

$$\begin{array}{c} R_{41} \\ \\ \\ \\ R_{42} \end{array}$$

$$\begin{array}{c} R_{40} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array}$$

 R_{40} , R_{41} and R_{42} independently of one another are hydrogen, halogen, C_2 - C_{12} alkenyl, C_1 - C_{12} alkoxy, C_2 - C_{12} alkoxy interrupted by one to four O atoms, cyclohexyloxy, cyclopentyloxy, phenoxy, benzyloxy, unsubstituted phenyl or phenyl substituted by C_1 - C_4 -alkylthio; or biphenyl,

where R_{40} and R_{42} are not both hydrogen at the same time and in the radical

$$R_{40}$$
 N R_{41} at least one radical R_{40} or R_{42} is C_1 - C_{12} alkoxy, C_2 - C_{12} alkoxy interrupted R_{42}

by one to four O atoms, cyclohexyloxy, cyclopentyloxy, phenoxy or benzyloxy;

 E_1 is O, S or NR₄₃; and

R₄₃ is C₁-C₈alkyl, phenyl or cyclohexyl.

- 15. A process for the photopolymerization of nonvolatile monomeric, oligomeric or polymeric compounds having at least one ethylenically unsaturated double bond, which comprises irradiating a composition according to claim 12 with light in the range from 200 to 600 nm.
- 16. A process according to claim 15 for the preparation of pigmented and nonpigmented surface coatings, printing inks, screen printing inks, offset printing inks, flexographic printing inks, powder coatings, printing plates, adhesives, dental materials, optical waveguides, optical switches, colour testing systems, composite materials, gel coats, glass-fibre cable coatings, screen printing stencils, resist materials, colour filters, for the encapsulation of electrical and electronic components, for the preparation of magnetic recording materials, of three-dimensional objects by means of stereolithography, of photographic reproductions, image recording material, for holographic recordings, for the preparation of decolouring materials, for the preparation of image recording materials using microcapsules.
- 17. A coated substrate which has been coated on at least one surface with a composition according to claim 12.
- 18. A process for the photographic production of relief images in which a coated substrate according to claim 17 is subjected to imagewise exposure and then the unexposed portions are removed with a solvent.