

SAKE

How to fish variants in a data lake

Pierre Marijon, Sacha Schutz Janvier 9, 2024

Problem: Annotations change over time

ClinVar pathogenic variants found in Seqoia between each release

Problem: Annotations change over time

Clinvar variant classes change per year between 2018 to 2023

Objectif:

Automatic re-analysis the Seqoia data sets

A Big data Challenge

	germinal	somatic	total	
#samples	27,615	5,256	32,871	
vcf (Gb)	vcf (Gb) 5,888		6,189	
#unique variants	363,080,825	340,371,185	603,691,147 ¹	
#genotypes	144,766,772,625	11,529,461,678	156,296,234,303	

 $^{^{1}}$ \approx 15 % of commun variants

A Big data Challenge

	germinal		total	
#samples	27,615	5,256	32,871	
vcf (Gb)	5,888	709	6,189	
#unique variants 363,080,825		340,371,185	603,691,147 ¹	
#genotypes 144,766,772,625		11,529,461,678	156,296,234,303	
#GnomAD	-	-	759,302,267	
#Clinvar	-	-	2,337,929	

¹≈ 15 % of commun variants

A Big data Challenge

	germinal	somatic	total	
#samples	27,615	5,256	32,871	
vcf (Gb)	5,888	709	6,189	
#unique variants	363,080,825	340,371,185	603,691,147 ¹	
#genotypes	144,766,772,625	11,529,461,678	156,296,234,303	
#GnomAD	-	-	759,302,267	
#Clinvar	-	-	2,337,929	
#PanelApp genes	-	-	6,031	
#Omim genes	-	-	18,138	

 $^{^{1}}$ \approx 15 % of commun variants

Need for a sparse matrix to store everything

Only 0.67 % of all possible positions are fill

Solution: A data lake

Advantages over traditional databases

The Sequia datalake is a collection of **parquet files**:

- Compressed files
- Column oriented for fast analytical process
- SQL queryable
- Usable with **Python** or R

Variantplaner

a python package for ingesting VCFs files in a data lake

variantplaner

Python command line tool and library

- Convert vcf into parquet files
- Built for sake but generalizable to other uses
- Open source
- https://github.com/natir/variantplaner

variantplaner: Star schema

variantplaner: variant id

type	real position se	eparat	or ref + alt
1	32	5	26

variantplaner: variant id

type	real position	separator	ref + alt
1	32	5	26

type	hash(real position + ref + alt)
1	63

variantplaner: genotype partition

what variants does a patient carry?

	familyA			familyB			familyZ		
index	mother	father	index	sister	father	index	mother	father	

variantplaner: genotype partition

what variants does a patient carry?

which patients carry one variant?

Canapeche

Extract pathogenic variants from the lake

Canapeche: Characteristic of pathogenic variants

Total: 1374 conclusive pathogen variants

Canapeche: Extraction pipeline

Compute on:

- Intel Xenon 2.5 GHz \times 40
- 190 Gb of ram
- · Disk access time: 10 Gbytes

Canapeche: Dominant strategy

Select all heterozygous pathogenic **clinvar** variants inherited from one parent with **GnomAD allele count < 10** present in **dominant genes** according to **panelapp**.

Canapeche: Dominant strategy


```
SELECT DISTINCT v.id FROM '{VARIANTS}' v

JOIN '{CLINVAR}' c ON c.id = v.id

JOIN '{SNPEFF}' s ON s.id = v.id

LEFT JOIN '{GNOMAD}' g ON g.id = v.id

JOIN '{PANNELAPP}' p ON p.gene_symbol = s.gene

WHERE c.CLNSIG LIKE '%patho%'

AND (g.AC[1] < 10 OR g.AC[1] IS NULL)

AND p.inheritance LIKE 'MONOALLELIC'
```

Canapeche: Dominant strategy

Select all homozygous pathogenic **clinvar** variants inherited from both parents with **GnomAD nhomalt** < 10 present in **recessives genes** according to **panelapp**.

2876 variants

Canapeche: Results for Clinvar strategies

	Canapeche	Human	Common	Recall	Precision
variant recessive	199	160	79	49.7%	39.7%
variant dominant	2876	390	100	25%	3.4%
variant denovo	758	760	309	40.7%	40.8%

Canapeche: Results for Clinvar strategies

False Positive

- · Switch clinvar
- Missing diagnosis
- Mismatched phenotype +++

False negative

- Switch clinvar
- Other strategies
- Absent from clinvar +++

Canapeche: Results for Clinvar strategies

	Project count
variant recessive	220
variant dominant	3672
variant denovo	838

Conclusion

- · Creating a new strategy
- Improve strategy to reach 90% of recall
- · Import CNV data into the lake
- Use Large Model Language (LLM) to use clinical data

Example of LLM usage

