Fundamentals of Quantum Technology Homework Sheet 1

- 1. We have defined a coherent state $|\alpha\rangle$ of a quantized harmonic oscillation mode as a right eigenstate of the annihilation operator, $\hat{a} |\alpha\rangle = \alpha |\alpha\rangle$.
 - (a) Show that the expansion of $|\alpha\rangle$ in the basis of number states $|n\rangle$ is given by

$$|\alpha\rangle = e^{-|\alpha|^2/2} \sum_{n=0}^{\infty} \frac{\alpha^n}{\sqrt{n!}} |n\rangle.$$

Note that this implies in particular that a coherent state $|\alpha\rangle$ exists for any complex α .

- (b) Show that $\langle \alpha | \hat{n} | \alpha \rangle = |\alpha|^2$, where $\hat{n} = \hat{a}^{\dagger} \hat{a}$.
- (c) Show that, with respect to a coherent state $|\alpha\rangle$, the number fluctuation defined as $\Delta n \equiv \sqrt{\langle \hat{n}^2 \rangle \langle \hat{n} \rangle^2}$ is given by $\Delta n = |\alpha|$.
- 2. The displacement operator $\hat{D}(\alpha)$ was defined in class as $\hat{D}(\alpha) = \exp(\alpha \hat{a}^{\dagger} \alpha^* \hat{a})$, for any complex number α .
 - (a) Show that $\hat{D}(\alpha)|0\rangle = |\alpha\rangle$, where $|0\rangle$ is the vacuum state. Hint: Recall that for two operators \hat{A} and \hat{B} such that $\left[\hat{A}, \left[\hat{A}, \hat{B}\right]\right] = \left[\hat{B}, \left[\hat{B}, \hat{A}\right]\right] = 0$, the following identity applies: $e^{\hat{A}+\hat{B}} = e^{\hat{A}}e^{\hat{B}}e^{-\frac{1}{2}\left[\hat{A},\hat{B}\right]}$
 - (b) Show that $\hat{D}(\alpha)$ is a unitary operator,

$$\hat{D}(\alpha)\,\hat{D}^{\dagger}(\alpha) = \hat{D}^{\dagger}(\alpha)\,\hat{D}(\alpha) = 1.$$

- (c) Show that $\hat{D}(\alpha)\hat{D}(\beta) = e^{i\operatorname{Im}(\alpha\beta^*)}\hat{D}(\alpha + \beta)$.
- 3. The operation of the quantum beam splitter can be thought of as the evolution in the Heisenberg picture of the mode operators \hat{a}_i . That is, we can define a unitary \hat{U} such that

$$\hat{a}_2 = \hat{U}^{\dagger} \hat{a}_0 \hat{U}, \quad \hat{a}_3 = \hat{U}^{\dagger} \hat{a}_1 \hat{U}.$$

(a) Consider the operator

$$\hat{U}\left(\theta\right) = \exp\left[i\frac{\theta}{2}\left(\hat{a}_{0}^{\dagger}\hat{a}_{1} + \hat{a}_{1}^{\dagger}\hat{a}_{0}\right)\right].$$

Obtain the transformation of the operators, and relate θ to the parameters r, r', t, t'. What choice of θ will give us the 50:50 beam splitter?

 $\textit{Hint: Recall the Baker-Hausdorff lemma, } e^{i\hat{G}}\hat{A}e^{-i\hat{G}} = \hat{A} + i\left[\hat{G},\hat{A}\right] + \frac{i^2}{2!}\left[\hat{G},\left[\hat{G},\hat{A}\right]\right] + \ldots$

(b) Explain why this formulation of the operator transformation is equivalent to a Heisenberg picture evolution.

1

4. Recall the setup presented in class of a Mach-Zehnder interferometer (MZI) with a relative phase shift of θ in the clockwise arm. You saw that in the event of a single incident photon, the operation of the MZI is given by

$$\left|0\right\rangle_{0}\left|1\right\rangle_{1}\overset{\mathrm{MZI}}{\longrightarrow}\frac{1}{2}\left[\left(e^{i\theta}-1\right)\left|0\right\rangle_{D_{1}}\left|1\right\rangle_{D_{2}}+i\left(e^{i\theta}+1\right)\left|1\right\rangle_{D_{1}}\left|0\right\rangle_{D_{2}}\right].$$

- (a) Suppose that a classical light wave with an amplitude \mathcal{E} is incident upon the MZI. What would be the output amplitude at each detector?
- (b) Obtain the output state given a coherent input state $|0\rangle_0 |\alpha\rangle_1$ (note that, in the quantum mechanical description, the phase shift is given by the action of the operator $\exp\left[i\theta\hat{a}^{\dagger}\hat{a}\right]$). Compare this with the results for a single photon and for classical light.