

Fig 1A (ICP27 plasmid)

Fig 1B (PJV7630)

BEST AVAILABLE COPY

Fig 2A

Fig 2B.

Fig 2C

Figure 3A**BEST AVAILABLE COPY**

Figure 3B

BEST AVAILABLE COPY

Figure 3C**Antibody Titer for sAg cluster****BEST AVAILABLE COPY**

Figure 4A

Figure 4B

BEST AVAILABLE COPY

Figure 5A

Figure 5B

Figure 5C

Figure 6A

BEST AVAILABLE COPY

Figure 6B

BEST AVAILABLE COPY

Figure 7

BEST AVAILABLE COPY

Figure 8

Figure 9

1 10 20 30 40 50 65

H3 Panarr HA Natural Sequence (I) —MKTIIIAALSYILCLVFAQKLPGNDNSTATLCLGHIAVSNGLVKTITNDQIEVTNATELVQSSS

H3 Panarr HA Encoded by pJMV1671 (I) MASKTIIIAALSYILCLVFAQKLPGNDNSTATLCLGHIAVSNGLVKTITNDQIEVTNATELVQSSS

Consensus (I) KTIILALSYILCLVFAQKLPGNDNSTATLCLGHIAVSNGLVKTITNDQIEVTNATELVQSSS

Figure 10

Figure 11

Figure 12

Figure 13
Flowchart Derivitization of Plasmids PJV7563

Figure 14 (i) – (viii)

Feature Maps of Key Plasmids in Construction of pPJV7563

24/50

Figure 15
Flowchart Derivation of Plasmids WRG7074 and WRG7128

Figure 16 (i) to (v): Key Plasmid Features

pUC 19

WRG7012

WRG7013

WRG7012

WRG7014

pUC4K

WRG7072

Figure 17

Figure 18

Sequence of p55 gag insert in pGagOptprpr2

5

ATGGGTGCCGAGCTCGGTACTGTCTGGTGGAGAGCTGGACAGATGGGAGAAATTAGGCT
GCGCCCGGGAGGCAAAAAGAAATACAAGCTCAAGCATATCGTGTGGGCCTCGAGGGAGCTTG
AACGGTTGCCGTGAACCCAGGCCTGCTGGAAACATCTGAGGGATGTCGCCAGATCCTGGGG
CAATTGCAGCCATCCCTCCAGACCGGGAGTGAAGAGCTGAGGTCTTGTATAACACAGTGGC

10

TACCCCTACTGCGTACACCAGAGGATCGAGATTAAGGATACCAAGGAGGCCTGGACAAAAA
TTGAGGAGGAGCAAAACAAGAGCAAGAAGAAGGCCAGCAGGCAGCTGCTGACACTGGGCAT
AGCAACCAGGTATCACAGAACTATCCTATTGTCCAAAACATTAGGGCCAGATGGTCATCA
GGCCATCAGCCCCCGGACGCTCAATGCCTGGGTGAAGGTTGTCGAAGAGAAGGCCTTCTC
CTGAGGTTATCCCCATGTTCTCGCTTGAGTGAGGGGGCCACTCCTCAGGACCTCAATACA

15

ATGCTTAATACCGTGGCGGCCATCAGGCCGCATGCAAATGTTGAAGGAGACTATCAACGA
GGAGGCAGCCGAGTGGGACAGAGTGCATCCCGTCCACGCTGGCCAATCGCGCCCGGACAGA
TGCAGGGAGCCTCGCGGCTCTGACATTGCCGGCACACCTCTACACTGCAAGAGCAAATCGGA
TGGATGACCAACAATCCTCCCATCCAGTTGGAGAAATCTATAAACGGTGGATCATTCTCGG
TCTCAATAAAATTGTTAGAATGTTACTCTCCGACATCCATCCTGACATTAGACAGGGACCCA

20

AAGAGCCTTTAGGGATTACGTCGACCGGTTTATAAGACCCCTGCGAGCAGAGCAGGCCTCT
CAGGAGGTCAAAACTGGATGACGGAGACACTCCTGGTACAGAACGCTAACCCGACTGCAA
AACAACTTGAAGGCACTAGGCCGGCTGCCACCCTGGAAGAGATGATGACCGCCTGTCAGG
GAGTAGGCGGACCCGGACACAAAGCCAGAGTGTGGCCGAAGCCATGCCAGGTGACGAAC
TCCGCAACCATCATGATGCAGAGAGGGAACTCCGCAATCAGCGGAAGATCGTGAAGTGT

25

CAATTGCGGAAGGAGGGTCATACCGCCCGCAACTGTCGGGCCCTAGGAAGAAAGGGTGT
GGAAGTGCAGGCAAGGAGGGACACCAGATGAAAGACTGTACAGAACGACAGGCCAATTTCTT
GGAAAGATTGGCGAGCTACAAGGGGAGACCTGGTAATTCTGCAAAGCAGGCCAGGCC
CACCGCCCCCCTGAGGAATCTCAGGTCCGGAGTGGAGACCACAACGCCCTCCCCAAAAAC
AGGAACCAATGACAAGGAGCTGTACCCCTTAACCTCTCGTTCTCTGGCAACGAC

30

CCGTCGTCTCAATAA

MGARASVLSG GELDRWEKIR LRPGGKKKYK LKHIVWASRE LERFAVNPL
LETSEGCRQI LGQLQPSLQT GSEELRSLYN TVATLYCVHQ RIEIKDTKEA
LDKIEEEQNK SKKKAQQAAA DTGHSNQVSQ NYPIVQNIQG QMVHQAISPR
35 TLNAWVKVVE EKAFSPEVIP MFSALSEGAT PQDLNTMLNT VGGHQAAMQM
LKETINEEAAA EWDRVHPVHA GPIAPGQMRE PRGSDIAGTT STLQEIQIGWM
TNNPPIPVGE IYKRWIILGL NKIVRMYSPT SILDIRQGPK EPFRDYVDRF
YKTLRAEQAS QEVKNWMTET LLVQNaNPDC KTILKALGPA ATLEEMMTAC
QGVGGPGHKA RVLAEAMSVQ TNSATIMMQR GNFRNQRKIV KCFNCGKEGH
40 TARNCRAPRK KGCWKCGKEG HQMKD

CTERQ ANFLGKIQWPS YKGRPGNFLQ

SRPEPTAPPE ESFRSGVETT TPPQKQEPID KELYPLTSLR SLFGNDPSSQ

*

5

Figure 19

Sequence of the p17/24trNEF insert in p17/24trNEF1

10 ATGGGTGCGAGAGCGTCAGTATTAAGCGGGGGAGAATTAGATCGATGGAAAAAAATCGGTT
AAGGCCAGGGGGAAAGAAAAAAATAAATTAAAACATATAGTATGGCAAGCAGGAGCTAG
AACGATTGCGAGTTAATCCTGGCCTGTTAGAAACATCAGAAGGCTGTAGACAAATACTGGGA
CAGCTACAAACCATCCCTTCAGACAGGATCAGAAGAACTTAGATCATTATATAATACAGTAGC
AACCTCTATTGTGTGCATCAAAGGATAGAGATAAAAGACACCAAGGAAGCTTAGACAAGA
15 TAGAGGAAGAGCAAACAAAAGTAAGAAAAAAAGCACAGCAAGCAGCAGCTGACACAGGACAC
AGCAATCAGGTCAGCCAAAATTACCCCTATAGTGCAGAACATCCAGGGCAAATGGTACATCA
GGCCATATCACCTAGAACTTTAAATGCATGGTAAAAGTAGTAGAGAGAAGGCTTCAGCC
CAGAAGTGTACACCCATGTTTCAGCATTATCAGAAGGAGCCACCCACAAGATTAAACACC
ATGCTAAACACAGTGGGGGACATCAAGCAGCCATGCAAATGTTAAAAGAGACCATCAATGA
20 GGAAGCTGCAGAATGGGATAGAGTGCATCCAGTGCATGCAGGGCTATTGCACCAGGCCAGA
TGAGAGAACCAAGGGGAAGTGCACATAGCAGGAACACTACTAGTACCCCTCAGGAACAAATAGGA
TGGATGACAAATAATCCACCTATCCCAGTAGGAGAAATTATAAAAGATGGATAATCCTGGG
ATTTAAATAAAATAGTAAGAATGTATAGCCCTACCAGCATTCTGGACATAAGACAAGGACAA
AAGAACCTTGTAGAGACTATGTAGACCGGTTCTATAAAACTCTAAGAGCCGAGCAAGCTTCA
25 CAGGAGGTAAAAATTGGATGACAGAACCTTGTGGTCCAAAATCGGAACCCAGATTGTA
GACTATTTAAAAGCATTGGGACCAAGCGGCTACACTAGAAGAAATGATGACAGCATGTCAGG
GAGTAGGAGGACCCGCCATAAGGCAAGAGTTTGGTGGGTTTCAGTCACACCTCAGGTA
CCTTTAAGACCAATGACTTACAAGGCAGCTGTAGATCTTAGCCACTTTAAAAGAAAAGGG
GGGACTGGAAGGGCTAATTCACTCCAAAGAAGACAAGATATCCTGATCTGTGGATCTACC
30 ACACACAAGGCTACTTCCCTGATTGGCAGAACTACACACCAGGGCCAGGGGTAGATATCCA
CTGACCTTGGATGGTGTACAAGCTAGTACCAAGCTGTAGGAGCTGAGCAGATAAGGTAGAAGAGGCCAA
TAAAGGAGAGAACACCAGCTGTTACACCTGTGAGCCTGATGGATGGATGACCCGGAGA
GAGAAGTGTAGAGTGGAGGTTGACAGCCACCTAGCATTTCATCACGTGGCCGAGAGCTG
CATCCGGAGTACTTCAAGAACGTGCTGA
35 MGARASVLSG GELDRWEKIR LRPGGKKKYK LKHIVWASRE LERFAVNPGL
LETSEGRQI LGQLQPSLQT GSEELRSLYN TVATLYCVHQ RIEIKDTKEA
LDKIEEEQNK SKKKAQQAAA DTGHSNQVSQ NYPIVQNIQG QMVHQAIISPR
TLNAWVKVVE EKAFSPEVIP MFSALSEGAT PQDLNTMLNT VGGHQAAMQM
40 LKETINEEAA EWDRVHPVHA GPIAPGQMRE PRGSDIAGTT STLQEIQGWM

TNNPPIPVGE IYKRWIILGL

NK

IVRMYSPT SILDIRQGPK EPFRDYVDRF

YKTLRAEQAS QEVKNWMTET LLVQANPDC KTILKALGPA ATLEEMMTAC

5 QGVGGPGHKA RVLVGFVTP QVPLRPMTYK AAVDLSHFLK EKGGLEGLIH
SQRRQDILDL WIYHTQGYFP DWQNYTPGPG VRYPLTFGWC YKLVPVEPDK
VEEANKGENT SLLHPVSLHG MDDPEREVLE WRFDSHLAFH HVARELHPEY
FKNC*

10

Figure 20

Sequence of the p17/24opt/trNef insert in p17/24opt/trNef1

ATGGGTGCCGAGCTCGGTACTGTCTGGAGAGCTGGACAGATGGAGAAAATTAGGCT
15 GCGCCCGGGAGGCAAAAAGAAATACAAGCTCAAGCATATCGTGTGGGCCTCGAGGGAGCTTG
AACGGTTGCCGTGAACCCAGGCCTGCTGGAAACATCTGAGGGATGTCGCCAGATCCTGGGG
CAATTGCAGCCATCCCTCCAGACCGGGAGTGAAGAGCTGAGGTCTTGATAACACAGTGGC
TACCCCTACTGCGTACACCAGAGGATCGAGATTAAAGGATACCAAGGAGGCCTGGACAAAA
TTGAGGAGGAGCAAAACAAGAGCAAGAAGAAGGCCAGCAGGCAGCTGCTGACACTGGCAT
20 AGCAACCAGGTATCACAGAACTATCCTATTGTCCAAAACATTAGGCCAGATGGTCATCA
GGCCATCAGCCCCCGACGCTCAATGCCTGGGTGAAGGTTGTCGAAGAGAAGGCCTTTCTC
CTGAGGTTATCCCCATGTTCTCGCTTGAGTGAAGGGGCCACTCCTCAGGACCTCAATACA
ATGCTTAATACCGTGGCGGCCATCAGGCCCATGCAAATGTTGAAGGAGACTATCAACGA
GGAGGCAGCCGAGTGGGACAGAGTGCATCCGTCCACGCTGGCCAATCGGCCGGACAGA
25 TGGGGAGCCTCGCGCTCTGACATTGCCGGCACCACTCTACACTGCAAGAGCAAATCGGA
TGGATGACCAACAATCCTCCCATCCCAGTTGGAGAAATCTATAAACGGTGGATCATTCTCGG
TCTCAATAAAATTGTTAGAATGTAATCTCCGACATCCATCCTTGACATTAGACAGGGACCCA
AAGAGCCTTTAGGGATTACGTCGACGGGTTTATAAGACCTGCGAGCAGAGCAGGCCCT
CAGGAGGTCAAAAACGGATGACGGAGACACTCCTGGTACAGAACGCTAACCCGACTGCAA
30 AACAACTTGAAGGCACTAGGCCGGCTGCCACCCCTGGAAGAGATGATGCCCTGTCAGG
GAGTAGGCGGACCCGGACACAAAGCCAGAGTGTGATGGGGTTTCCAGTCACACCTCAG
GTACCTTAAGACCAATGACTTACAAGGCAGCTGTAGATCTTAGCCACTTTAAAAGAAAA
GGGGGGACTGGAAGGGCTAATTCACTCCAAAGAAGACAAGATATCCTTGATCTGTGGATCT
ACCACACACAAGGCTACTTCCCTGATTGGCAGAACTACACACCAGGGCCAGGGGTAGATAT
35 CCACTGACCTTGGATGGTGCTACAAGCTAGTACCGAGTGGAGCCAGATAAGGTAGAAGAGGC
CAATAAAGGAGAGAACACCAGCTTACACCCCTGTGAGCCTGCATGGGATGGATGACCCGG
AGAGAGAAGTGTAGAGTGGAGGTTGACAGCCACCTAGCATTCACTCACGTGGCCGGAGAG
CTGCATCCGGAGTACTTCAAGAACTGCTGA

40 MGARASVLSG GELDRWEKIR LRPGKKKYK LKHIVWASRE LERFAVNPL

LETSEGCRQI LGQLQPSLQT GSEELRSLYN TVATLYCVHQ RIEIKDTKEA
LDKIEEEQNK SKKKAQ
QAAA DTG
HSNQVSQ NYPIVQNIQG QMVHQAISSPR
5 TLNAWVKVVE EKAFSPEVIP MFSALSEGAT PQDLNTMLNT VGGHQAAQM
LKETINEEAA EWDRVHPVHA GPIAPGQMRE PRGSDIAGTT STLQEIQIGWM
TNNPPIPVGE IYKRWIIILGL NKIVRMYSPY SILDIRQGPK EPFRDYVDRF
YKTLRAEQAS QEVKNWMTET LLVQMANPDC KTILKALGPA ATLEEMMTAC
QGVGGPGHKA RVLMVGFPT PQVPLRPMTY KAAVDLSHFL KEKGGLEGLI
10 HSQRQRQDILD LWIYHTQGYF PDWQNYTPGP GVRYPLTFGW CYKLVPVEPD
KVEEANKGEN TSLLHPVSLH GMDDPEREVL EWRFDSHLAF HHVARELHPE
YFKNC*

15

Figure 21

Sequence of RT insert of p7077-RT3:

ATGGGCCCATCAGTCCCATCGAGACCGTGCCGGTGAAGCTGAAACCCGGATGGACGGCCC
 CAAGGTCAAGCAGTGCCACTCACCAGGGAGAAGATCAAGGCCCTGGTGGAGATCTGCACCG
 5 AGATGGAGAAAGAGGGCAAGATCAGCAAGATCGGCCCTGAGAACCCATACAAACACCCCGTG
 TTTGCCATCAAGAAGAAGGACAGCACCAAGTGGCGCAAGCTGGTGGATTCGGGAGCTGAA
 TAAGCGGACCCAGGATTCTGGGAGGTCCAGCTGGCATTCCCCATCCGGCCGGCTGAAGA
 AGAAGAAGAGCGTGACCGTGCTGGACGTGGCGACGCTTACTTCAGCGTCCCTCTGGACGAG
 10 GACTTAGAAAGTACACCGCCTTACCATCCATCTATCAACAAACGAGACCCCTGGCATTCA
 ATATCAGTACAACGTCCTCCCCCAGGGCTGGAAGGGCTCTCCGCCATTTCAGAGCTCCA
 TGACCAAGATCCTGGAGCCGTTCGGAAGCAGAACCCGATATCGTCATCTACCAAGTACATG
 GACGACCTGTACGTGGCTCTGACCTGGAAATCGGCAGCATCGCACGAAGATTGAGGAGCT
 GAGGCAGCATTGCTGAGATGGGCCT
 GACCAC
 15 TCCGGACAAGAACATCAGAAGGAGGCCATTCTGTGGATGGCTACGAGCTCCATCCG
 ACAAGTGGACCCTGCAGCCTATCGTCCTCCCCGAGAACGGACAGCTGGACCGTGAAAC
 GACATCCAGAACAGCTGGTGGCAAGCTCAACTGGCTAGCCAGATCTATCCGGGATCAAGG
 GCGCCAGCTCTGCAAGCTGCTGCGCCACCAAGGCCCTGACCGAGGTGATTCCCTCACGG
 AGGAAGCCGAGCTCGAGCTGGCTGAGAACCCGGAGATCCTGAAGGAGCCGTGCACGGCGTG
 20 TACTATGACCCCTCCAAGGACCTGATGCCGAAATCCAGAACAGCAGGCCAGGGCAGTGGAC
 ATACCAAGATTACCAAGGAGCCTTCAAGAACCTCAAGACCGCAAGTACGCCCGATGAGGG
 GCGCCACACCAACGATGTCAAGCAGCTGACCGAGGCCGTCAGAACAGATCACGACCGAGTCC
 ATCGTATCTGGGGAAAGACACCCAAAGTTCAAGCTGCCATTCCAGAACGGAGACCTGGGAGAC
 GTGGTGGACCGAATATTGGCAGGCCACCTGGATTCCGAGTGGAGTTCGTGAATACACCTC
 25 CTCTGGTGAAGCTGTTTACCAAGCTGAGAACAGGCCATCGTGGCGCGAGACATTCTAC
 GTGGACGGCGCGGCCAACCGCAAACAAAGCTGGAAAGGCCGGTACGTACCAACCGGG
 CCGCCAGAACGTCGTACCCCTGACCGACACCACCAACCAGAACAGCAGCTGCAGGCCATCT
 ATCTCGCTCTCCAGGACTCCGGCTGGAGGTGAACATCGTACGGACAGCCAGTACCGCGCTG
 GGCATTATTCAAGGCCAGCCGGACCAAGTCCGAGAGCGAACCTGGTGAACCAGATTATCGAGCA
 30 GCTGATCAAGAAAGAGAACGGTCTACCTCGCCTGGTCCCGCCATAAGGGCATTGGCGCA
 ACGAGCAGGTCGACAAGCTGGTGAGTGCAGGGATTAGAAAGGTGCTGTAA

MGPISPIETV SVKLKPGMDG PKVKQWPLTE EKIKALVEIC TEMEKEGKIS
 KIGPENPYNT PVFAIKKKDS TKWRKLVDFR ELNKRTQDFW EVQLGIPHPA
 35 GLKKKKSVTV LDVGDAYFSV PLDEDFRKYT AFTIPSINNE TPGIRYQYNV
 LPQGWKGSPA IFQSSMTKIL EPFRKQNPDI VIYQYMDLY VGSDELIGQH
 RTKIEELRQH LLRWGLTPD KKHKKEPPFL WMGYELHPDK WTVQPIVLPE
 KDSWTVNDIQ KLVGKLNWAS QIYPGIKVRQ LCKLLRGTKA LTEVIPLTEE
 AELELAENRE ILKEPVHGKVY YDPSKDLIAE IOKQGQGQWT YQIYQEPFKN
 40 LKTGKYARMR GAHTNDVKQL TEAVQKITTE SIVIWGKTPK FKLPIQKETW
 ETWWTEYWQA TWIPEWEFVN TPPLVKLWYQ LEKEPIVGAE TFYVDGAANR

ETKLKGAGYV TNRGRQKVVT LTDTTNQKTE LQAIYLAQD SGLEVNVITD
SQYALGIIQA QPDQSESELV NQIIEQLIKK EKVYLAWVPA HKGIGGNEQV
DKLVSAGIRK VL*

5

Figure 22

Sequence of the coding insert in p73i-RT3:

10 ATGGGGCCCCATCAGTCCCATCGAGACCGTGCCGGTGAAGCTGAAACCCGGGATGGACGGCCC
CAAGGTCAAGCAGTGGCCACTCACCGAGGAGAAGATCAAGGCCCTGGTGGAGATCTGCACCG
AGATGGAGAAAGAGGGCAAGATCAGCAAGATCGGGCCTGAGAACCCATACAACACCCCCGTG
TTGCCATCAAGAAGAAGGACAGCACCAAGTGGCGCAAGCTGGTGGATTCCGGGAGCTGAA
TAAGCGGACCCAGGATTCTGGGAGGTCCAGCTGGCATCCCCCATCCGGCCGGCTGAAGA
AGAAGAAGAGCGTGACCGTGCTGGACGTGGCGACGCTTACTTCAGCGTCCCTCTGGACGAG
15 GACTTTAGAAAGTACACCGCCTTACCATCCCCTATCAACAAACGAGACCCCTGGCATCAG
ATATCAGTACAACGTCCCTCCCCCAGGGCTGGAAGGGCTCTCCGCCATTTCCAGAGCTCCA
TGACCAAGATCCTGGAGGCCGTTTCGGAAGCAGAACCCGATATCGTCATCTACCAGTACATG

GACCGACCTGTACGTGGCTCTGACCTGGAAATCGGGCAGCATCGCACGAAGATTGAGGAGCT
GAGGCAGCATCTGCTGAGATGGGCCTGACCACTCCGGACAAGAAGCATCAGAAGGAGCCGC
CATTCCTGTGGATGGCTACGAGCTCCATCCCGACAAGTGGACCGTGCAGCCTATCGTCCTC
CCCAGAGAAGGACAGCTGGACCGTGAACGACATCCAGAAGCTGGTGGCAAGCTCAACTGGC
5 TAGCCAGATCTATCCGGATCAAGGTGCCAGCTCTGCAAGCTGCTGCCGGCACCAAGG
CCCTGACCGAGGTGATTCCCTCACGGAGGAAGCCGAGCTCGAGCTGGCTGAGAACCGGGAG
ATCCTGAAGGAGCCCGTGCACG
GCGTGTACTATGACCCCTCCAAGGACCTGATGCCGAAATCCAGAAGCAGGGCAGGGCAG
TGGACATACCAGATTACCAAGGAGCCTTCAAGAACCTCAAGACCGCAAGTACGCCCGCAT
10 GAGGGGCGCCCACACCAACCGATGTCAAGCAGCTGACCGAGGCCGTCCAGAAGATCACGACCG
AGTCCATCGTGATCTGGGGAAGACACCCAAGTTCAAGCTGCCTATCCAGAAGGAGACCTGG
GAGACGTGGTGGACCGAATATTGGCAGGCCACCTGGATTCCCGAGTGGAGTTCGTGAATAC
ACCTCCTCTGGTGAAGCTGTGGTACCAAGCTCGAGAAGGAGCCCATCGTGGCGCGGAGACAT
TCTACGTGGACGGCGGCCAACCGCAAACAAAGCTGGAA
15 GGCCGGGTACGTCACCAACCGGGGCCAGAAGTCGTACCCCTGACCGACACCACCAACC
AGAAGACGGAGCTGCAGGCCATCTATCTCGCTCTCCAGGACTCCGGCCTGGAGGTGAACATC
GTGACGGACAGCCAGTACCGCTGGCATTATTCAAGGCCAGCCGACCAGTCGAGAGCGA
ACTGGTGAACCAGATTATCGAGCAGCTGATCAAGAAAGAGAAGGTCTACCTCGCCTGGTCC
CGGCCATAAGGGATTGGCGCAACGAGCAGGTCGACAAGCTGGTGAAGTGGGGATTAGA
20 AAGGTGCTGTAA

MGPISPIETV SVKLKPGMDG PKVKQWPLTE EKIKALVEIC TEMEKEGKIS
KIGPENPYNT PVFAIKKKDS TKWRKLVDFR ELNKRTQDFW EVQLGIPHPA
GLKKKKSVTV LDVGDAYFSV PLDEDFRKYT AFTIPSINNE TPGIRYQYNV
25 LPQGWKGSPA IFQSSMTKIL EPFRKQNPDI VIYQYMDDLY VGSdleIGQH
RTKIEELRQH LLRWGLTPD KKHQKEPPFL WMGYELHPDK WTVQPIVLPE
KDSWTVNDIQ KLGVKLNWAS QIYPGIKVRQ LCKLLRGTKA LTEVIPLTEE
AELELAENRE ILKEPVHGKVY YDPSKDLIAE IOKQGQGQWT YQIYQEPFKN
LKTGKYARMR GAHTNDVKQL TEAVQKITTE SIVIWGKTPK FKLPIQKETW
30 ETWWTEYWQA TWIPEWEFVN TPPLVKLWYQ LEKEPIVGAE TFYVDGAANR
ETKLGKAGYV TNRGRQKVVT LTDTTNQKTE LQAIYLALQD SGLEVNIITD
SQYALGIIQQA QPDQSESELV NQIIEQLIKK EKVYLAWVPA HKGIGGNEQV
DKLVSAGIRK VL*

Figure 23

CD8, Interferon Gamma ELISPOT Results, from Day 14 C57BL/6 Mice Vaccinated with Plasmid DNA Encoded with the HPV16 E7 Oncogene.

Figure 24

**CD4 Peptide, IFNg ELISPOT
E7 DNA Vaccine with and without TC-1 Cells (TC-1#7)**

BEST AVAILABLE COPY

Figure 25

Figure 26

Tumor Measurements In C57BL/6 Mice Injected with HPV16 Tumor Cells and Vaccinated with an HPV16 E6 DNA Plasmid

BEST AVAILABLE COPY

Figure 27

Tumor Measurements in C57Bl/6 Mice, TC-1 cell Re-Challenge Experiment, (TC-1#9)

Figure 28

**TC-1 Tumor Suppression Study
(5x10e4) TC-1 Cell Groups (TC-1#14)**

Figure 29

ICP27

Figure 30

BEST AVAILABLE COPY

Figure 31

Figure 32

Immune responses in domestic pigs following cluster dosings

BEST AVAILABLE COPY

Figure 33

BEST AVAILABLE COPY

Figure 34

Comparison of conventional "pulse" with "modified cluster" immunisation

Figure 35

BEST AVAILABLE COPY

Figure 36

Figure 37

Figure 38

Cluster02