Лекция 2

Алгоритм Шенхаге-Штрассена для умножения чисел

(Конспект: А. Бережной)

Пусть нужно перемножить два числа, a_1 и a_2 : каждое длиной n бит. Обычный алгоритм умножения "в столбик" имеет сложность $O(n^2)$. Посмотрим, как это можно улучшить.

2.1 Простой алгоритм.

Во-первых, построим простой рекурсивный алгоритм, разделяя числа на "половинки" и рекурсивно перемножая эти "половинки". Считаем, что $n=2^k$. Тогда

$$a_1 = u_1 + u_2 2^{k-1}$$
 ; $a_2 = v_1 + v_2 2^{k-1}$ \downarrow $a_1 a_2 = u_1 v_1 + 2^{k-1} (u_1 v_2 + u_2 v_1) + 2^k u_2 v_2$.

Итого 4 умножения (умножение на степень двойки — это не умножение, а сдвиг). Но пусть:

$$x = u_1 v_1$$
; $y = (u_1 + u - 2)(v_1 + v_2)$; $z = u_2 v_2$.

Тогда:

$$a_1 a_2 = x + 2^{k-1}(y - x - z) + 2^k z$$

Это уже только 3 умножения. Теперь посчитаем сложность алгоритма. Очевидно, $T(n) = 3T(\frac{n}{2}) + cn$. Отсюда, аналогично теореме 1.2 из первой лекции, имеем

$$T(n) = O(n^{\log_2 3}).$$

Это лучше, чем $O(n^2)$, но есть еще более быстрый способ. Для него понадобится понятие Дискретного Преобразования Φ урье $(Д\Pi\Phi)$.

2.2 Дискретное преобразование Фурье и его вычисление.

Определение 2.1. Пусть ω — первообразный корень степени b. Рассмотрим какой-нибудь вектор $(a_{b-1},...,a_0)$. Его ДП Φ — это вектор, состоящий из значений полинома $a_{b-1}x^{b-1}+\ldots+a_1x+a_0$ в точках $1,\omega,\omega^2,\ldots$

Быстрое вычисление ДПФ. Пусть f(x) — это тот самый полином, вычисляющий ДПФ. По теореме Безу, $f(x) \mod (x-\omega^i) = f(\omega^i)$. Все, что нам нужно — это быстро находить остатки. Построим двоичное дерево; его узлы будут помечены полиномами. Листья дерева помечены полиномами $x-\omega^i$. Полином в любом узле является произведением полиномов в потомках. Упорядочим листья так, чтобы каждый узел был помечен полиномом вида $x^m - \omega^k$. Это делается так: в качестве k-го листа берем полином $x-\omega^{rev(k)}$, где rev — операция переворачивания битов числа; например, если у нас всего 32 листа (т.е. 5 битов), то rev(2) = 8: в двоичной системе, rev(00010) = 01000. Очевидно, что $x:2 \Longrightarrow rev_n(\frac{x}{2}) = 2rev_n(x)$. Пользуясь этим, можно доказать (индукцией), что дерево получилось такое, как предполагалось. Легко проверить, что

$$\sum_{i=0}^{2t-1} a_i x^i \mod (x^t - \omega^s) = \sum_{j=0}^{t-1} (a_j + \omega^s a_{j+t}) x^j.$$

Так мы можем быстро вычислить остаток любого полинома по модулю $x^t - w^s$. Спускаясь по дереву, мы будем заменять имеющийся полином на остаток, пока не спустимся до листьев. Так мы получим ДПФ, ведь

$$f(x)\mod(x-\omega^i)=f(x)\mod q_1\mod q_2\mod\ldots\mod x-\omega^i,$$
где q_1 : q_2 : \ldots : $x-\omega^i$.

2.3 Умножение при помощи ДПФ.

Вернемся к умножению. Пусть опять $n=2^k$. На этот раз разобьем оба числа не на два блока, а на b: каждый длиной l бит, причем так, что $b \approx l$,

т.е., либо b=l, либо $b=\frac{l}{2}$ і (это зависит от четности k, ибо $b\times l=n$). Тогда

$$a_{1} = u_{0} + u_{1}2^{l} + \dots + u_{b-1}2^{l(b-1)},$$

$$a_{2} = v_{0} + v_{1}2^{l} + \dots + v_{b-1}2^{l(b-1)},$$

$$a_{1} \times a_{2} = w_{0} + w_{1}2^{l} + \dots + w_{2b-2}2^{l(2b-2)},$$

где

$$w_i = y_i + y_{b+i}, \ y_i = \sum_{j=0}^{b-1} u_j v_{i-j} \ (a \ y_{b+i} = \sum_{j=0}^{b-1} u_j v_{b+i-j})$$

(если какой-то блок под суммой не существует, считаем его нулем). Вычислять w_i будем так: сначала найдем

$$w'_i = w_i \mod b$$
 и $w''_i = w_i \mod (2^{2l} + 1)$.

После этого, очевидно, w_i находится по формуле:

$$w_i = w_i'(2^{2l} + 1) - w_i''2^{2l}.$$

Сначала получим w_i' . Построим два числа следующим образом. Эти числа состоят из b блоков длиной $3 \log b$ каждый. Блок, занимающий в 1-м числе i-ю позицию (справа) состоит из $2 \log b$ нулей и числа u_i . Во втором числе то же самое, но вместо u_i всюду v_i . Перемножить эти два числа можно нашим первым простым алгоритмом за $O((3b \log b)^{\log 3}) = O(b^2) = O(n)$; при этом мы получим число, состоящее из блоков $y_i \mod b$, а стало быть и w_i' .

Как найти w_i'' ? Тут поможет ДПФ. У нас есть два вектора: $(u_{b-1}\psi^{b-1},...,u_0\psi)$ и $(v_{b-1}\psi^{b-1},...,v_0\psi)$, где $\psi^2=\omega$ (в нашем случае $\psi=2^{2l/b}$; легко проверить, что ψ^2 — действительно первообразный корень b-ой степени в $\mathbb{Z}_{2^{2l+1}}$). Мы вычислим от них ДПФ и почленно перемножим. Утверждается, что результатом будет ДПФ от вектора $(w_{b-1}\psi^{b-1},...,w_0\psi)$. Это утверждение называется Teopemoù об отрицательно обернутой свертке. Докажем ее:

$$(\Pi \Pi \Phi(w_i \psi^i))_j = \sum_i \omega^{ij} w_i \psi^i = \sum_s \omega^{sj} (\sum_m u_m v_{s-m} - \sum_m u_m v_{b+s-m}) \psi^s,$$

$$(\sum_{i} \omega^{ij} u_i \psi^i)(\sum_{k} \omega^{kj} v_i \psi^k) = \sum_{i} (\omega^{(i+k)j} \psi^{i+k} \sum_{m} u_m v_{i+k-m}).$$

Правые части равны: (i+j) во втором равенстве играют роль s в первом. Осталось посчитать сложность. Докажем сначала, что ДПФ вычисляется за время $O(n\log n)$. Дерево имеет высоту $\log b$. Пусть на уровне вычисляется s остатков. На каждый остаток выполняется $\frac{b}{s}$ операций: каждая сложностью 2l. Итого $O(b\log b2l) = O(n\log n)$. Теперь общее время на вычисление свертки:

$$T(bl) = bT(2l) + cn \log n.$$

Остается решить это рекуррентное уравнение ...

$$T'(s) = \frac{T(s)}{s},$$

$$T'(n) = 2T'(2l) + c \log n,$$

$$T'(n) = 2T'(2\sqrt{n}) + c \log n,$$

$$T''(s) = T'(2^s),$$

$$T''(\log n) = 2T''(\frac{\log n + 1}{2}) + c \log n,$$

$$T''(s) = 2T''(\frac{s}{2} + 1) + cs.$$

Итого,

$$T(n) = n \log n \log \log n.$$