DM N°1 (pour le 14/09/2010)

<u>Définition 1</u>: Soit $(a_i)_{0 \le i \le n}$ $(n \in \mathbb{N})$ une suite finie de nombres réels. On note $V(a_0, a_1, \ldots, a_n)$ le nombre de changements de signes effectif dans cette suite, en convenant d'omettre les éléments égaux à 0, tout en conservant l'ordre des éléments (et $V(0,0,\ldots,0)=0$).

Une définition plus formelle est la suivante :

- Pour tout $a \in \mathbb{R}$, on pose V(a) = 0.
- Si (a_0, a_1, \dots, a_n) est une suite de réels *tous non nuls* avec $n \ge 1$, on définit une suite $(\epsilon_0, \dots, \epsilon_n)$ par $\epsilon_i = \begin{cases} 1 & \text{si } a_i > 0 \\ -1 & \text{si } a_i < 0 \end{cases}$ puis on pose $V(a_0, a_1, \dots, a_n) = \frac{1}{2} \sum_{i=1}^n \left| \epsilon_i \epsilon_{i-1} \right|$.
- Si $(a_0, a_1, ..., a_n)$ est une suite de réels non tous nuls avec $n \ge 1$, on forme la suite $(a'_0, ..., a'_m)$ obtenue à partir de la précédente en supprimant tous les termes nuls, puis on pose $V(a_0, a_1, ..., a_n) = V(a'_0, a'_1, ..., a'_m)$

Par exemple: V(-1, 1, -2) = 2, V(-1, 0, 0, 1) = 1, V(1, 0, 1) = 0.

<u>Définition 2</u>: Si $P(X) = \sum_{i=0}^{n} a_i X^i$ désigne un polynôme à coefficients réels de degré n $(n \in \mathbb{N}, a_n \neq 0)$, et

I un intervalle de \mathbb{R} , on notera $\mathcal{R}(P,I)$ le nombre de racines réelles de P dans I, chacune d'entre elles étant comptée avec son ordre de multiplicité.

PARTIE A : Nombre de racines réelles d'un polynôme

- **1.** Soit $(a_i)_{0 \le i \le n}$ $(n \in \mathbb{N}^*)$ une suite finie de nombres réels.
 - a) Soit $(\lambda_i)_{0 \le i \le n}$ $(n \in \mathbb{N}^*)$ une suite de nombres réels, tous strictement positifs. Comparer $V(a_0, a_1, \dots, a_n)$ et $V(\lambda_0 a_0, \lambda_1 a_1, \dots, \lambda_n a_n)$.

Même question si l'on suppose les λ_i tous strictement négatifs.

b) Si $a_r \neq 0$, vérifier que :

$$V(a_0, a_1, ..., a_n) = V(a_0, a_1, ..., a_r) + V(a_r, a_{r+1}, ..., a_n)$$

- c) Prouver que $V(a_0, a_1, ..., a_n)$ est pair si $a_0 a_n > 0$ et impair si $a_0 a_n < 0$.
- **2.** P désigne ici un polynôme à coefficients réels de degré n, $P(X) = \sum_{i=0}^{n} a_i X^i$, $(n \in \mathbb{N}, a_n \neq 0)$.
 - a) On rappelle que la *valuation* du polynôme P désigne l'entier $\min \{k, 0 \le k \le n, a_k \ne 0\}$. Si r est la valuation de P, montrer que $\mathcal{R}(P, \mathbb{R}_+^*)$ est pair si $a_r a_n > 0$, et impair si $a_r a_n < 0$. En déduire que $V(a_0, a_1, \dots, a_n)$ et $\mathcal{R}(P, \mathbb{R}_+^*)$ ont même parité.
 - b) On désigne par P' le polynôme dérivé de P. Démontrer que :

$$\mathscr{R}(P',\mathbb{R}_+^*) \geqslant \mathscr{R}(P,\mathbb{R}_+^*) - 1$$

- c) En déduire que : $\Re(P, \mathbb{R}_+^*) \leq V(a_0, a_1, \dots, a_n)$ (on pourra faire une démonstration par récurrence en utilisant le résultat de la question précédente). ¹
- **d)** Montrer que : $\Re(P, \mathbb{R}_{-}^*) \leq V(a_0, -a_1, ..., (-1)^n a_n)$
- 1. Résultat obtenu par Descartes, 1637

e) Démontrer que :

$$V(a_0, a_1, ..., a_n) + V(a_0, -a_1, ..., (-1)^n a_n) \le n$$

et en déduire que, si toutes les racines de P sont réelles non nulles, alors :

$$\mathscr{R}(P,\mathbb{R}_+^*) = V(a_0,a_1,\ldots,a_n)$$

et :
$$\mathcal{R}(P, \mathbb{R}_{-}^{*}) = V(a_0, -a_1, \dots, (-1)^n a_n)$$

PARTIE B : Suites de Sturm

Définition 3 : Soit $(f_0, ..., f_m)$ une suite de polynômes à coefficients réels $(m \ge 3)$. On dira que c'est une suite de Sturm 2 pour l'intervalle [a, b] ssi :

- $\begin{cases} \alpha) & f_0(a) \neq 0 \ , f_0(b) \neq 0 \\ \beta) & \forall x \in [a,b], \ f_m(x) \neq 0 \\ \gamma) & \text{s'il existe } c \in [a,b] \ \text{tq } f_0(c) = 0, \ \text{alors } f_1(c) f_0'(c) > 0 \\ \delta) & \text{s'il existe } c \in [a,b] \ \text{et } k \in [1,m-1] \ \text{tels que } f_k(c) = 0, \ \text{alors } f_{k-1}(c) f_{k+1}(c) < 0 \end{cases}$
- 1. Montrer que, si $(f_0, ..., f_m)$ est une suite de Sturm pour un intervalle [a, b], et si $(\lambda_0, ..., \lambda_m)$ est une suite de réels strictement positifs, alors $(\lambda_0 f_0, \dots, \lambda_m f_m)$ est encore une suite de Sturm pour l'intervalle [a,b].

Définition 4: Si A et B sont deux polynômes à coefficients réels, on notera Reste(A, B) le reste de la division euclidienne de A par B.

Soit P un polynôme à coefficients réels. On définit alors la suite de polynômes (P_k) par :

$$P_0 = P$$
 , $P_1 = P'$, $P_{k+1} = -\text{Reste}(P_{k-1}, P_k) \ (k \geqslant 1)$

2. Démontrer qu'il existe un entier $m \ge 1$ tel que $P_{m+1} = 0$.

On choisira par la suite pour m le plus petit entier vérifiant cette propriété. Montrer que P_m divise tous les polynômes P_k pour $0 \le k \le m$, et que si un polynôme divise P et P', il divise P_m .

- **3.** On définit alors la suite de polynômes $f_k = \frac{P_k}{P_m}$ $(0 \le k \le m)$.
 - a) Montrer que le polynôme f_0 n'a que des racines simples.
 - **b)** Montrer que, pour tout $k \in [1, m]$, f_{k-1} et f_k n'ont pas de racine commune.
 - c) Démontrer que la suite (f_0, \ldots, f_m) est une suite de Sturm pour tout intervalle [a, b] tel que $P(a)P(b) \neq 0$.
- **4.** Soit P un polynôme à coefficients réels, et [a, b] un intervalle tel que $P(a)P(b) \neq 0$. En utilisant les notations de la partie A et de la question précédente, on se propose ici d'étudier la fonction :

$$h(x) = V(f_0(x), \dots, f_m(x))$$

pour $x \in [a, b]$.

- a) Soit $c \in [a, b]$. A quelle condition la fonction h peut-elle éventuellement varier au voisinage de c? Montrer que, si c est racine de l'un des polynômes f_i avec $j \ge 1$, h est constante au voisinage de c. Que peut-on dire de h au voisinage de c lorsque c est racine de f_0 ?
- **b)** En déduire que le nombre de racines distinctes de P sur [a, b] est égal à h(a) h(b).

^{2.} Charles Sturm (1803-1855)

^{3.} Résultat démontré par Sturm en 1829.

- c) Généraliser ce résultat lorsque $a=-\infty$ ou $b=+\infty$, en donnant un sens à $h(-\infty)$ et à $h(+\infty)$.
- **5.** Application numérique : Déterminer une suite de Sturm associée au polynôme $P = X^4 2X^3 X^2 + 4X 2$, et en déduire le nombre de racines de P sur \mathbb{R}_+ et sur \mathbb{R}_+ .

PARTIE C: Localisation des racines d'un polynôme

Soit
$$P = \sum_{i=0}^{n} a_i X^i$$
 un polynôme à coefficients complexes de degré $n \ (n \in \mathbb{N}, \ a_n \neq 0)$.

On notera
$$m(P) = \max \{ |a_i|, 0 \le i \le n-1 \}.$$

1. Si ξ est une racine complexe de P, majorer $|a_n| |\xi|^n$ en fonction de m(P). En déduire que :

$$|\xi| \leqslant 1 + \frac{m(P)}{\left|a_n\right|}$$

2. Si ξ est une racine complexe de P, démontrer l'inégalité :

$$|\xi| \leq 2 \max \left(\frac{\left| a_{n-1} \right|}{\left| a_n \right|}, \sqrt{\frac{\left| a_{n-2} \right|}{\left| a_n \right|}}, \dots, \sqrt[n-1]{\frac{\left| a_1 \right|}{\left| a_n \right|}}, \sqrt[n]{\frac{\left| a_0 \right|}{\left| a_n \right|}} \right)$$

3. Décrire le *principe* d'un algorithme qui, étant donné un polynôme P à coefficients réels, permet de construire une suite d'intervalles contenant chacun une et une seule racine de P (on se contentera d'énoncer les diverses procédures à écrire, sans entrer dans les détails de celles-ci).

En déduire le principe d'un algorithme permettant de calculer toutes les racines réelles d'un polynôme à coefficients réels à une précision donnée.

