a. For the circuit below, find the node voltage v_x . You can use any technique. Write your equations symbolically first and only then plug in numbers.

- b. For the circuit below (which is identical to the one above, but with the ground moved to a new location), find the node voltage v_y .
- c. For the circuit below, find the mesh current i_y .

Consider the circuit on the right. The independent sources have the following values: $V_S = X$, $I_{S1} = Y$ and $I_{S2} = Z$, but you are not told what X, Y and Z are.

> Find the Thevenin equivalent resistance between A and B.

b. We now add voltage source V_x to the circuit, as shown below. You are also told:

- If $V_S=0$ V, $I_{S1}=Y$, $I_{S2}=0$ A and $V_x=10$ V, we find $i_x=I_1$. If $V_S=X/2$, $I_{S1}=0$ A, $I_{S2}=Z/2$ and $V_x=0$ V, we find $i_x=I_2$.

Consider $V_S = X$, $I_{S1} = Y$, $I_{S2} = Z$ and $V_x = 10 \text{ V}$. What is i_x in this case?

What is i_x when $V_S = X$, $I_{S1} = Y$, $I_{S2} = Z$ and $V_x = 22 \text{ V}$? (Hint: you can solve this using part a and b)

