Московский Физико-Технический Институт (государственный университет)

Лабораторная работа по курсу общей физики № 5.1.2

Эффект Комптона

Автор:

Филиппенко Павел Б01-009

Долгопрудный, 2022

Рис. 1: Схема эксперементальной установки

Цель работы

С помощью сцинтилляционного спектрометра исследуется энергетический спектр γ -квантов, рассеянных на графите. Определяется энергия рассеянных γ -квантов в зависимости от угла рассеяния, а также энергия покоя частиц, на которых происходит комптоновское рассеяние.

Теоретическая чать

Эксперементальная установка

Источником излучения служит $^{137}\mathrm{Cs}$, испускающий γ -лучи с энергией 662 кэВ. Он помещен в свинцовый контейнер с коллиматором. Сформированный коллиматором узкий пучок γ -квантов попадает на графитовую мишень.

Кванты, испытавшие комптоновское рассеяние в мишени, регистрируются сцинтилляционным счетчиком. Счетчик состоит из фотоэлектронного умножителя 3 (далее ФЭУ) и сцинтиллятора 4. Сцинтиллятором служит кристалл NaI(Tl) цилиндрической формы диаметром 40 мм и высотой 40 мм, его выходное окно находится в оптическом контакте с фотокатодом ФЭУ. Сигналы, возникающие на ФЭУ, подаются на ЭВМ для амплитудного анализа. Кристалл и ФЭУ расположены в светонепроницаемом блоке, укрепленном на горизонтальной штанге. Штанга вместе с этим блоком может вращаться относительно мишени, угол поворота отсчитывается по лимбу 6.

Обработка эксперементальных данных

В формуле для эффекта Комптона

$$\Delta \lambda = \frac{h}{mc} (1 - \cos \theta) \tag{1}$$

перейдем от длин волн к энергиям фотонов

$$\frac{1}{\varepsilon(\theta)} - \frac{1}{\varepsilon_0} = 1 - \cos\theta \tag{2}$$

где $\varepsilon(\theta) = \frac{E(\theta)}{mc}$ — приведенная энергия фотона. При этом m — масса электрона, соответственно $\varepsilon(0) = \varepsilon_0$ — энергия фотонов, падающих на рассеиватель.

Теперь заменим в последней формуле приведенную энергию фотона на номер канала N, соответсвующего вершине фотопика при указанном угле θ .

$$\frac{1}{N(\theta)} - \frac{1}{N(0)} = 1 - \cos\theta \tag{3}$$

θ^o	θ	N	σ_N	$1-\cos\theta$	$\sigma_{1-\cos\theta}$	1/N	$\sigma_{1/N} \cdot 10^{-5}$
0	0,000	968	9,68	0,000	0,000	0,0010	1,03
10	0,175	843	8,43	0,015	0,003	0,0012	1,19
20	0,349	852	8,52	0,060	0,006	0,0012	1,17
30	0,524	742	7,42	0,134	0,009	0,0013	1,35
40	0,698	664	6,64	0,234	0,011	0,0015	1,51
50	0,873	583	5,83	0,357	0,013	0,0017	1,72
60	1,047	518	5,18	0,500	0,015	0,0019	1,93
70	1,222	459	4,59	0,658	0,016	0,0022	2,18
80	1,396	414	4,14	0,826	0,017	0,0024	2,42
90	1,571	366	3,66	1,000	0,017	0,0027	2,73
100	1,745	332	3,32	1,174	0,017	0,0030	3,01
110	1,920	303	3,03	1,342	0,016	0,0033	3,30
120	2,094	288	2,88	1,500	0,015	0,0035	3,47

Таблица 1: Таблица эксперементальных данных

Погрешность угла θ считаем равным 1^o , погрешность определения канала 1%. В таком случае, если σ_{θ} и σ_N – абсолютные погрешности измерения угла и канала соответсвенно, то справедливо

$$\sigma_{1-\cos\theta} = \sin\theta \cdot \sigma_{\theta}$$
$$\sigma_{1/N} = \frac{\sigma_{N}}{N^{2}}$$

По эксперементальным данным построим график зависимости $\frac{1}{N}(1-\cos\theta)$. Как видно из формулы, график должен получиться линейным.

Как видно, эксперементальный график и правда линейный. Пересечение этого графика с осью ординат есть наилучшее приближение канала при $\theta=0$, пересечение графика с прямой $1-\cos\theta=1$ есть наилучшее приближение канала при $\theta=90^{\circ}$.

$$N_{best}(0) = 898 \quad N_{best}(90) = 368$$

Возвращаясь обратно к формуле, содержащей энергии фотонов получем при $\theta = 90^{\circ}$

$$mc^2 \left(\frac{1}{E(90^o)} - \frac{1}{E(0)} \right) = 1$$
 (4)

С учетом, что $E(0) = E_{\gamma} = 662$ кэВ можем получить энергию покоя электрона

Рис. 2: График зависимости $\frac{1}{N}(1-\cos\theta)$

$$mc^2 = E_\gamma \frac{N(90^\circ)}{N(0) - N(90^\circ)} \tag{5}$$

Полученное значение энергии покоя электрона $mc^2=459.65$ кэВ. Как мы знаем, табличное значение энергии покоя электрона $mc^2=511$ кэВ, так что, полученное нами значение несколько отличается от табличного.