

Continuous-Wave Terahertz Systems

Operation Principle, System Configurations & Accessories

TOPTICA Photonics AG

- 1 THz \leftrightarrow 33 cm⁻¹ \leftrightarrow 300 μ m \leftrightarrow 4.1 meV
- Plastic, paper, cardboard, ... transparent to THz waves → Imaging
- Many gases and organic solids show THz "fingerprints" → Spectroscopy
- Non-ionizing no health hazards

Frequency-domain platforms

TopSeller: TeraScan

- Tunable DFB lasers
- Fiber-coupled terahertz antennas
- < 10 MHz resolution
- up to 100 dB dynamic range

Time-domain platforms

TopSellers: TeraFlash pro & smart

- Robust ultrafast fiber lasers
- Fiber-coupled terahertz antennas
- TF pro: 6 THz bandwidth, 95 dB PDR
- TF smart: > 4 THz, 1600 pulse traces/s

Superfast screening platform

TopSeller: TeraSpeed

- Robust ultrafast fiber lasers
- Photoconductive emitter + high-bandwidth Schottky receiver
- 500 kS/s (digital),
 100 MS/s (analog)

Frequency-Domain (FD) vs. Time-Domain (TD) THz Spectroscopy				
	FD-THz	TD-THz		
Bandwidth	0.05 – 2.7 THz, limited by laser 0.1 – 6 THz			
Peak dynamic range	~ 100 dB	~ 100 dB		
Frequency resolution	10 MHz	10 GHz typ.		
Acquisition time (complete spectrum)	Minutes to hours, depends on resolution and lock-in time	Milliseconds to 1 min., depends on pulse trace length and # averages		
Spectral selectivity	Yes	No		

Frequency-domain terahertz generation & detection

- Two lasers @ adjacent frequencies illuminate photomixer
- Applied bias → Photocurrent, modulated at beat frequency
- Surrounding antenna emits THz wave
- Terahertz beam is monochromatic
- Tuning the lasers changes THz wavelength

- Second unbiased photomixer serves as THz receiver
- THz wave generates time-varying voltage signal U(t)
- Laser beat modulates the photoconductance G(t)
- Photocurrent $\propto U(t) \times G(t)$

Proportional to THz electric field

And: depends on phase between U(t) and G(t)

Lock-in detection:

- Short integration time ⇔ high measurement speed
 (~ 30 s / spectrum)
- Long integration time ⇔ lower noise floor

Michelson interferometer Screen (1) + (2)Laser Mirror 2 (M2) (2)Beam Splitter (BS) Mirror 1 (M1)

Changing the arm length or the laser frequency "moves" fringes.

Fiber-optic splitter creates two beam paths.

RX is reference plane.

- No moving parts → cost-effective
- Detection of THz amplitude and phase
- Highly efficient: Dynamic range ~ 100 dB even though $P_{THz} \sim 100 \mu W$

• Detected photocurrent:

$$I_{RX}(v) \propto E_{THz}(v) \cdot \cos(2\pi \Delta L v / c)$$

- With:
 - I_{RX} = receiver photocurrent
 - $E_{THz} = THz$ electric field
 - ΔL = path length difference to RX= | $L_1 L_2$ |
 - v = THz frequency
 - c =Speed of light
- L₁ begins at beam splitter, continues to TX,
 includes THz path and terminates at RX
- L₂ begins at beam splitter and terminates at RX

• Amplitude of the terahertz electric field is the envelope of detected photocurrent:

$$I_{RX}(v) \propto E_{THz}(v) \cdot \cos(2\pi \cdot \Delta L \cdot v/c)$$

Determination of the envelope with TeraScan Software:

Maxima and minima are evaluated and adjacent values averaged.

$$Envelope\left(\frac{1}{2}|v_{Max}-v_{Min}|\right) = \frac{1}{2}(|E_{THz}(v_{Max})| + |E_{THz}(v_{Min})|)$$

with:

• $v_{Max/Min}$ = THz frequency at photocurrent max. / min.

• Fringe spacing is inversely proportional to terahertz path length:

$$\Delta v = c/\Delta L$$

- Δv Fringe spacing (interval between two phase maxima)
- c Speed of light
- ΔL Path length difference to RX
- RX fiber is 30 cm longer than TX fiber → extra optical path ~ 43 cm
- Consequently, terahertz path length of ~ 43 cm corresponds to $\Delta L = 0$

Note: Path length is measured from/to virtual focus point, i.e. includes sections within the photomixers (see "back focus distance" in datasheet).

Dynamic range (DR):

$$DR(v) = 20 \cdot \log(I_{signal}/I_{noise})$$

I_{signal} – Photocurrent in THz receiver:

- depends on frequency
- independent of lock-in integration time
- I_{noise} Noise level:
 - intrinsic property of the photomixer,
 depends on optical power on the receiver
 - Lock-In-Detection: $I_{noise} \propto 1/\sqrt{integration\ time}$
 - RMS measurement without terahertz radiation

- ...corresponds to temperature intervals of 40 μK
- Step size approaches linewidth of DFB lasers

- A. Deninger et al., J. Infrared Milli Terahz Waves 36:3 (2015) 269
- D. Vogt et al., J. Infrared Milli Terahz Waves 40:5 (2019) 524

TeraScan 780

TeraBeam

Tuning Range Extension

Phase Modulation Extension

GaAs and InGaAs Photomixers

- State-of-the-art GaAs or InGaAs photomixers
- Highest bandwidth: TeraScan 780
- Highest dynamic range: TeraScan 1550

- A. Roggenbuck et al., New J. Phys. 12 (2010) 43017
- D. Stanze et al., J. Infrared Milli Terahz Waves 32 (2011) 225
- A. Deninger et al., J. Infrared Milli Terahz Waves 36 (2015) 269

- 1 DFB diode lasers: $\lambda \sim 0.8 \mu m$ or $\lambda \sim 1.5 \mu m$
- 2 GaAs or InGaAs photomixers: up to 100 μW output power, peak dynamic range ~ 100 dB
- 3 High-precision electronics: computerized frequency control, single-MHz frequency steps possible

Tunable DFB pro lasers

- 2 DFB diodes: $\lambda \sim 0.8 \ \mu m$ or $\lambda \sim 1.5 \ \mu m$
- Computerized frequency control via precise calibration
- Bandwidth 0 2 THz (@ 780 nm)
- Fiber-optic beam combination

DFB pro advantages

- Compact, stable lasers
- Temperature accuracy < 50 µK ↔
 excellent frequency resolution
- Customized frequency ranges u.r.

Photomixer = Fast semiconductor + antenna

- GaAs: 0.8 µm → widest tuning range of DFBs
- InGaAs: 1.5 µm → maximum dynamic range
- Max. power ~ 100 μW (InGaAs @ 100 GHz)
- Peak dynamic range > 90 dB (> 100 dB typ.)

Advantages of TOPTICA's photomixers

- Long-standing partnerships with worldleading manufacturers
- Highest dynamic range of any commercial cw-THz system
- Packaged, fiber-pigtailed modules

Control unit: DLC smart

- Digital control electronics with Ethernet interface
- 75% smaller footprint, 50% less weight, compared to previous version
- Improved frequency accuracy due to real-time temperature measurement
- Control unit "recognizes" laser heads connected
- System can be part of a computer network ->
 convenient remote control

- Wavelength coverage from DC to 2.75 THz
- Excellent agreement between measured spectra and HITRAN data

A. Deninger et al., *J. Infrared Milli Terahz Waves* **36:3** (2015) 269.

"Resolution Booster": Phase and amplitude information @ <10 MHz resolution

- Standard configuration: Spectral resolution depends on phase "fringes", typical resolution ~ 1 GHz (black symbols in figure)
- Phase modulation extension measures envelope of fringes (yellow trace in fig.)
- Technology: 2 fiber stretchers for path length modulation (up to 3 mm @ 1 kHz)
- Twin fiber concept provides enhanced thermal stability

A. Roggenbuck et al., J. Opt. Soc. Am. B 29 (2012) 614

	TeraScan 780	TeraScan 1550	
"In a nutshell"	Wide scan range	High power	
Optical wavelength	780 nm 1550 nm		
Semiconductor material	GaAs InGaAs on InP		
Emitter/Receiver (Article codes)	2 x photomixer		
Scan range	0 – 1.8 THz (typ. > 2 THz), without changing lasers	0 – 1.2 THz Up to 2.7 THz with 3 lasers	
THz power	Typ. 2 μW @ 100 GHz, 0.3 μW @ 500 GHz	100 μW @ 100 GHz, 10 μW @ 10 GHz	
Dynamic range @ 300 ms integr. time	> 80 dB @ 100 GHz > 70 dB (typ. 80 dB) @ 500 GHz Typ. 70 dB @ 1000 GHz	> 90 dB (typ. 100 dB) @ 100 GHz > 70 dB (typ. 80 dB) @ 500 GHz Typ. 70 dB @ 1000 GHz	
Polarization	Circular, ~ 30 dB PER	Linear, ~ 10 dB PER	
Frequency accuracy	< 2 GHz		
Minimum step size	< 10 MHz		

Schottky Diodes

Accessories

#BG-002653: Compact rail setup

#OE-000888: Reflection head

- Compact + robust setups
- Rail with 2 mirrors for transmission measurements
- Reflection head with 4 mirrors → beam focus at sample location

#BG-001481: Two mirrors, collimated beam

#BG-001784: Four mirrors, additional focus

- Flexible solutions for transmission measurements
- Precise 3-axis-stages for THz antennas
- Two mirrors: Collimated beam
- Four mirrors: Additional beam focus

Optomechanics: Specifications					
	#BG-002653 (compact rail)	#BG-001481 (2-mirror setup)	#BG-001784 (4-mirror setup)	#OE-000888 (Reflection head)	
User mode	Transmission	Transmission	Transmission	Reflection	
Collimating mirrors	∅ 1", focal length 2"	Ø 2", focal length 3"	Ø 2", focal length 3"	Ø 1", focal length 2"	
Focussing mirrors			Ø 2", focal length 2"	Ø 1", focal length 4"	
Focus size			~ 2 mm	~ 3 mm	

"High-responsivity" model #EK-000933: Broadband spectrum with GaAs emitter

Schottky receiver: Incoherent detection scheme

- Output signal proportional to THz power, no phase relation with transmitter
- Suitable for spectroscopy, ideal for THz imaging
- Two versions with different amplifier bandwidth available

"High-bandwidth" model #EK-000961: Detection of individual THz pulses

- F. Rettich et al., J. Infrared Milli THz Waves 36:7 (2015) 607
- M. Yahyapour et al., *IEEE Trans. THz Science Technol.* **6:5** (2016) 670
- S. Brinkmann et al., J. Infrared Milli THz Waves 38 (2017) 339

Schottky diodes: Specifications				
	#EK-000933	#EK-000961		
	("High Responsivity")	("High Bandwidth")		
Concept	Zero-bias Schottky diode			
Terahertz bandwidth	50 – 1500 GHz			
Noise-equivalent power	7 pW/sqrt(Hz) @ 100 GHz	70 pW/sqrt(Hz) @ 100 GHz		
	100 pW/sqrt(Hz) @ 1000 GHz	1000 pW/sqrt(Hz) @ 1000 GHz		
Typ. responsivity	22000 V/W @ 100 GHz	230 V/W @ 100 GHz		
Typ. responsivity	1100 V/W @ 1000 GHz	17 V/W @ 1000 GHz		
Amplifier bandwidth	10 Hz – 1 MHz	10 MHz – 4 GHz		
Applications	Imaging, Spectroscopy	Imaging, THz-based communication,		
		ultrafast dynamic processes		

