Ministerul Educației, Cercetării, Tineretului și Sportului Societatea de Științe Matematice din România

Olimpiada Națională de Matematică

Etapa Județeană și a Municipiului București, 10 Martie 2012

CLASA a VII-a

Problema 1. Se consideră numere naturale impare $a_1, a_2, \ldots, a_{2012}$. Demonstrați că numărul $A = \sqrt{a_1^2 + a_2^2 + \cdots + a_{2012}^2 - 1}$ este irațional. Gazeta Matematică

Problema 2. Se consideră numerele reale strict pozitive a, b și c cu proprietatea că $a^2 + ab + ac - bc = 0$.

- a) Arătați că dacă două dintre numerele a, b și c sunt egale, atunci cel puțin unul dintre cele trei numere este irațional.
- b) Arătați că există o infinitate de triplete de numere naturale nenule (m, n, p) cu proprietatea că $m^2 + mn + mp np = 0$.

Problema 3. Fie ABC un triunghi ascuţitunghic. Se consideră punctele $M,N\in(BC)$, $Q\in(AB)$ şi $P\in(AC)$ astfel încât MNPQ este dreptunghi. Demonstrați că dacă centrul dreptunghiului MNPQ coincide cu centrul de greutate al triunghiului ABC atunci AB=AC=3AP.

Problema 4. Se consideră pătratul ABCD şi punctul E pe latura AB. Dreapta DE intersectează dreapta BC în punctul F, iar dreapta CE intersectează dreapta AF în punctul G. Demonstrați că dreptele BG şi DF sunt perpendiculare.