Epreuve écrite

Examen de fin d'études secondaires 2010

Section: BC

Branche: Physique

Numéro d'ordre du candidat

I Mouvement dans le champ de pesanteur uniforme

1. Etablir l'expression du vecteur accélération dans le cas du mouvement d'une particule de masse m dans le champ de pesanteur uniforme de la Terre.

2. Etablir les équations horaires.

3. Etablir l'expression de l'équation de la trajectoire.

4. Exercice:

a) A partir d'une tour de hauteur h = 20 m quelqu'un lance une balle avec une vitesse horizontale. La balle touche le sol à une distance horizontale de 40 m à partir du point de départ.

On néglige tout frottement; prendre $g = 10 \text{ m/s}^2$. Le sol est horizontal.

Calculer la durée du mouvement. Calculer la vitesse de départ.

b) Calculer la norme de la vitesse au point d'impact avec le sol.

Calculer l'angle que fait le vecteur vitesse avec l'horizontale au point d'impact.

(3+3+2+4)

II Mouvement d'un électron dans le champ magnétique

1. Etablir l'expression de l'accélération centripète dans le cas d'un mouvement circulaire uniforme.

2. Etablir l'expression du rayon de la trajectoire d'une particule chargée se déplaçant dans un champ magnétique uniforme perpendiculaire à la vitesse.

3. Exercice : Des électrons sont émis par une source S avec une vitesse initiale négligeable. Ils sont accélérés par un champ électrique uniforme, entre A et B. La tension électrique entre A et B est 500 V.

Ensuite les électrons entrent dans un champ magnétique uniforme.

A l'entrée du champ le vecteur vitesse est perpendiculaire aux lignes de champ magnétique.

- a) Calculer l'énergie cinétique des électrons en eV et en J.
- b) Calculer l'intensité du champ magnétique si le rayon de la trajectoire circulaire est 5 cm.
- c) Indiquer sur la figure la direction et le sens des vecteurs champ électrique et magnétique.

(4+4+4)

III Oscillateur harmonique mécanique élastique

- 1. Etablir l'équation différentielle d'un oscillateur harmonique mécanique élastique.
- 2. Donner une solution de l'équation différentielle.
- 3. Exercice : Une masse de 3 kg est fixée au bout d'un ressort horizontal et effectue des oscillations horizontales d'amplitude 10 cm.
 - a) Calculer la fréquence des oscillations si l'accélération maximale de la masse vaut 10 m/s².
 - b) Calculer la constante de raideur du ressort.
 - c) Trouver l'équation horaire du mouvement de la masse, si à l'instant initial elle se trouve en un point d'élongation maximale et n'a pas de vitesse.
- 4. Vrai ou faux. Justifier! Pour une même amplitude et une même masse, la vitesse maximale est toujours proportionnelle à la racine carrée de la raideur du ressort.

(6+1+5+2)

Epreu	ve écrite
Examen de fin d'études secondaires 2010	Numéro d'ordre du candidat
Section: BC	
Branche: Physique	
 Etablir la relation entre l'énergie d'une particule, s célérité de la lumière. Exercice : Un électron a une énergie cinétique de 79 keV, par rappa a) Calculer l'énergie totale et la vitesse de cet électron de la vitesse de cet électron en la vites de la vites en la vites de la vites en la v	tron dans le référentiel du laboratoire. emps, mesuré dans le référentiel de l'électron, pour repos dans le référentiel du laboratoire.
 V Décroissance radioactive 1. Etablir la loi de la décroissance radioactive. 2. Définir l'activité d'une source radioactive et indique 3. Exercice : 	
Une chambre contient du gaz radon 222 Rn , radioactif α	x, d'une activité initiale de 32 000 Bq.
La demie-vie du radon est de 3,8 jours.	^

- a) Ecrire la réaction de désintégration du radon Rn-222.
- b) Calculer le nombre initial de noyaux radon radioactifs.
- c) Calculer l'activité restante du radon après 19 jours.
- 4. Vrai ou faux ? Justifier ! Après un temps correspondant à deux demi-vies, l'activité d'une source radioactive a diminué à la moitié de sa valeur initiale.

(4+1+4+2)

Relevé des principales constantes physiques

Grandeur physique	Symbole	Valeur	Unité
	usuel	numérique	
Constante d'Avogadro	N _A (ou L)	$6,022 \cdot 10^{23}$	mol ⁻¹
Constante molaire des gaz parfaits	R	8,314	J K-1 mol-1
Constante de gravitation	K (ou G)	6,673·10 ⁻¹¹	N m ² kg ⁻²
Constante électrique pour le vide	$k = \frac{1}{4\pi\varepsilon_0}$	8,988·10 ⁹	$N m^2 C^{-2}$
Célérité de la lumière dans le vide	С	2,998·10 ⁸	m s ⁻¹
Perméabilité du vide	μο	$4\pi \cdot 10^{-7}$	H m ⁻¹
Permittivité du vide	$\varepsilon_0 = \frac{1}{\mu_0 c^2}$	8,854·10 ⁻¹²	F m ⁻¹
Charge élémentaire	e	1,602·10 ⁻¹⁹	С
Masse au repos de l'électron	m _e	9,1094-10 ⁻³¹	kg
		5,4858.10-4	u
		0,5110	MeV/c ²
Masse au repos du proton	m _p	1,6726·10 ⁻²⁷	kg
		1,0073	u
		938,27	MeV/c ²
Masse au repos du neutron	m _n	1,6749·10 ⁻²⁷	kg
		1,0087	u
		939,57	MeV/c ²
Masse au repos d'une particule α	m_{α}	6,6447·10 ⁻²⁷	kg
		4,0015	u
		3727,4	MeV/c ²
Constante de Planck	h	6,626.10 ⁻³⁴	Js
Constante de Rydberg de l'atome d'hydrogène	R _H	1,097·10 ⁷	m ⁻¹
Rayon de Bohr	r ₁ (ou a ₀)	5,292·10 ⁻¹¹	m
Energie de l'atome d'hydrogène dans l'état fondamental	E_1	-13,59	eV

Grandeurs liées à la Terre et au Soleil		Valeur ut	ilisée sauf
(elles peuvent dépendre du lieu ou du temps)		indication	contraire
Composante horizontale du champ magnétique terrestre	Bh	2.10-5	T
Accélération de la pesanteur à la surface terrestre	g	9,81	m s ⁻²
Rayon moyen de la Terre	R	6370	km
Jour sidéral	T	86164	S
Masse de la Terre	M _T	5,98·10 ²⁴	kg
Masse du Soleil	M _S	$1,99 \cdot 10^{30}$	kg

Conversion d'unités en usage avec le SI

 $\begin{array}{lll} 1 \ angstr\"{o}m & = 1 \ \ \overset{\circ}{A} = 10^{-10} \ m \\ 1 \ \'{e}lectronvolt & = 1 \ eV = 1,602 \cdot 10^{-19} \ J \\ 1 \ unit\'{e} \ de \ masse \ atomique & = 1 \ u = 1,6605 \cdot 10^{-27} \ kg = 931,49 \ MeV/c^2 \end{array}$

	GROUPE				<		7							L		É ÉMENTS		
	1 1		ADLUAC		ノエ			2	<u>ر</u> 5	200	ב	フ 口 り			П	リーア	_	18 VIIIA
OE	1 1.0079									,				http://wwn	ktf-split.hr	http://www.ktf-split.hr/periodni/fr/		2 4.0026
RIOI	Н			Z	NUMÉRO DU GROUPE	ROUPE		NUMÉRO	NUMÉRO DU GROUPE	704								He
ЬĘ	HYDROGÈNE 2	2 114	,	RECOM	RECOMMANDATIONS DE L'IUPAC (1985)	S DE L'IUPAC		CHEMICAL ABSTRACT SERVICE (1986)	BSTRACT SER (1986)	KVICE			13 IIIA	IIIA 14 IVA 15		VA 16 VIA 17 VIIA	17 VIIA	HÉLIUM
	3 6.941 4	4 9.0122				<i>,</i> `	13 IIIA						5 10.811	6 12.011	7 14.007	10.811 6 12.011 7 14.007 8 15.999 9 18.998 10 20.180	9 18.998	10 20.180
2	Li	Be			NOMBRE ATOM	OMIQUE —	- 5 10.811		– MASSE ATOMIQUE RELATIVE (1)	LATIVE (1)			B	C	Z	0	Ţ,	Ne
	LITHIUM	BÉRYLLIUM			S	SYMBOLE —	_ B						BORE	CARBONE	AZOTE	OXYGÈNE	FLUOR	NÉON
	11 22.990	11 22.990 12 24.305	7				BORE —	├ NOM DE L'ÉLÉMENT	LÉLÉMENT				13 26.982	14 28.086	15 30.974	13 26.982 14 28.086 15 30.974 16 32.065 17 35.453 18 39.948	17 35.453	18 39.948
3	Na	Mg											Al	Si	Ь	S	C	Ar
	SODIUM	SODIUM MAGNÉSIUM 3	3 IIIB 4	4 IVB 5	5 VB 6		VIB 7 VIIB	- 8	6	10	11 18	IB 12 IIB	ALUMINIUM		SILICIUM PHOSPHORE	SOUFRE	CHLORE	ARGON
	19 39.098	20 40.078	19 39.098 20 40.078 21 44.956 22 47.867 23 50.942 24	22 47.867	23 50.942		25 54.938	26 55.845	27 58.933	28 58.693	29 63.546	51.996 25 54.938 26 55.845 27 58.933 28 58.693 29 63.546 30 65.39 31 69.723 32 72.64 33 74.922 34 78.96	31 69.723	32 72.64	33 74.922	34 78.96	35 79.904 36 83.80	36 83.80
4	×	Ca	Sc	Ξ	>	Cr	Mn	Fe	ပိ	Z	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	POTASSIUM	CALCIUM	SCANDIUM	TITANE	VANADIUM	CHROME	CHROME MANGANÈSE	FER	COBALT	NICKEL	CUIVRE	ZINC	GALLIUM	GALLIUM GERMANIUM	ARSENIC	SÉLÉNIUM	BROME	KRYPTON
	37 85.468	38 87.62	37 85.468 38 87.62 39 88.906 40 91.224 41 92.906 42	40 91.224	41 92.906	42 95.94	43	44 101.07	45 102.91	(98) 44 101.07 45 102.91 46 106.42 47 107.87	47 107.87	48 112.41	49 114.82	50 118.71	51 121.76	48 112.41 49 114.82 50 118.71 51 121.76 52 127.60	53 126.90 54 131.29	54 131.29
3	Rb	Sr	Y	Zr	Np	Mo	P	Ru	Rh	Pd	Ag	Cq	In	Sn	Sb	Te	_	Xe
	RUBIDIUM	RUBIDIUM STRONTIUM	YTTRIUM	ZIRCONIUM	NIOBIUM	MOLYBDÈNE	TECHNÉTIUM	MOLYBDÈNE TECHNÉTIUM RUTHÉNIUM RHODIUM PALLADIUM	RHODIUM	PALLADIUM	ARGENT	CADMIUM	INDIOM	ETAIN	ANTIMOINE	TELLURE	IODE	XÉNON
	55 132.91	55 132.91 56 137.33	57-71	72 178.49	72 178.49 73 180.95 74		75 186.21	76 190.23	77 192.22	183.84 75 186.21 76 190.23 77 192.22 78 195.08 79 196.97	79 196.97	80 200.59	80 200.59 81 204.38 82 207.2 83 208.98	82 207.2	83 208.98		84 (209) 85 (210)	86 (222)
9	C	Ba	La-Lu	Ht	Ta	3	Re	SO	Ir	Pt	Au	Hg	II	Pb	Bi	Po	At	Rn
	CÉSIUM	BARYUM	Lanthanides	HAFNIUM	TANTALE	TUNGSTÈNE	RHÉNIUM	OSMIUM	IRIDIUM	PLATINE	OR	MERCURE	THALLIUM	PLOMB	BISMUTH	POLONIUM	ASTATE	RADON
	87 (223)	(223) 88 (226)	89-103	104 (261)	89-103 104 (261) 105 (262) 106 (266) 107 (264) 108 (277) 109 (268) 110 (281) 111 (272) 112 (285)	106 (266)	107 (264)	108 (277)	109 (268)	110 (281)	111 (272)	112 (285)		114 (289)				
7	Fr	Ra	Ac-Lr	RE	DIP	M	18 P		MItt	Umm	Umm	Ump		Umd				
	FRANCIUM	RADIUM	_	RUTHERFORDIUM	Actinides RUTHERFORDUM DUBNIUM SEABORGIUM BOHRIUM HASSIUM MEITNERIUM UNUNNILIUM UNUNUNIUM UNUNBIUM	SEABORGIUM	BOHRIUM	HASSIUM	MEITNERIUM	UNUNNILIUM	UNUNUNIUM	UNUNBIUM		UNUNQUADIUM				

(1) Pure Appl. Chem., 73, No. 4, 667-683 (2001)

Actinides 89 (227) LANTHANE La masse atomique relative est donnée avec (6 cinq chiffres significatifs. Pour les éléments qui n'ont pas de nucléides stables, la valeur entre parenthèses indique le nombre de masse de l'isoope de rélément ayant la durée de vie la plus grande. 1 Toutefois, pour les trois éléments Th, Pa et U qui ont une composition isotopique terrestre connue, une masse atomique est indiquée.

Editor: Michel Ditria

Copyright @ 1998-2002 EniG. (eni@ktf-split.hr) 64 157.25 65 158.93 66 162.50 67 164.93 68 167.26 69 168.93 70 173.04 71 174.97 LUTÉTIUM Lu YTTERBIUM THULIUM ERBIUM Er H_0 HOLMIUM DYSPROSIUM TERBIUM GADOLINIUM 57 138.91 58 140.12 59 140.91 60 144.24 61 (145) 62 150.36 63 151.96 EUROPIUM Eu PROMÉTHIUM SAMARIUM Sm Pim NÉODYME Nd PRASÉODYME Pr Ce CÉRIUM Lanthanides La

103 (262) LAWRENCIUM Lir 102 (259) NOBÉLIUM MENDELÉVIUM 100 (257) 101 (258) Mid FERMIUM Fill BERKÉLIUM CALIFORNIUM EINSTEINIUM (252)K 66 (251) 86 97 (247) BIK 96 (247) 国り CURIUM 95 (243) AMÉRICIUM Amm 94 (244) NEPTUNIUM PLUTONIUM Pa 93 (237) 91 231.04 92 238.03 URANIUM PROTACTINIUM Pa 90 232.04 THORIUM ACTINIUM Ac