ABMS Final Presentation

Agenda

- 1. Introduction
- 2. Literature Review
- 3. Hypotheses
- 4. Model Description
- 5. Parameter Description
- 6. Results
- 7. Limitations
- 8. Conclusion

Introduction

Shared Space

An urban design approach that minimises segregation between road users

Background

Idea is to remove reliance on traffic lights and have roundabouts instead.

The pedestrian walkway and roads are merged.

Rationale

This way, pedestrians and drivers are more cautious.

Saves time on waiting for traffic lights and it is actually more safe.

Stressed

Higher Accident Rate

Why ABMS?

- 1. Experiments done in real life are dangerous.
- 2. Allows planner to understand the effects of traffic in the shared space design from a bottom-up approach

Why ABMS?

3. Each agent has its own sensors and perceptors. This allows the planner to create an agent-model, where each agent can react according to their perceptions in the environment.

2. Literature Review

Shared Space

Examples of past findings

 High traffic flow discouraged pedestrians from using the carriageway ("roads")

mvaconsultancy

2. 56% of pedestrians chose to travel around the perimeter for the scheme

3. Pedestrians find it hard to cross the road and stay stuck on the side of the road

How our project contributes

mvaconsultancy

Survey

Despite the different methodologies, all of us hope to improve society's understanding of Shared Spaces

3.Hypotheses

Shared Space

Hypotheses

A lower speed within shared spaces lead to lower accidents and stress levels.

Shared Space

1. Initialise agents

2. Move agents

3. Calculate measurements

1. Initialise agents

- a. Create x and y number of cars and pedestrians every 16 ticks
- b. Each agent will spawn at a random spawn point with a designated goal

2. Move agents (Both)

- a. Disappear once they reach their goal
- b. Die if involved in an accident

2. Move agents (Pedestrians)

- a. Stop moving / step back if cars are too close to themselves
- b. Move towards a patch that is closest to their goal within their walking distance

2. Move agents (Car)

- a. Move towards a patch that is closest to their goal within their current speed
- b. Slow down speed if another car is within their jam break radius

3. Calculate Measurements

- a. Average stress level
- b. Total number of accidents (accident rate)
- c. Average time taken to reach destination

5.

Parameter Description

Shared Space

Parameter Description

1. The following definition defines our whole model:

1 patch length = 1m

- 2. Parameters:
 - a. Size
 - b. Speed
 - c. Visibility Range
 - d. Accident avoidance
 - e. Footfall / Throughput rate

Size

Dimension

Supporting

World

80p x 80p

Similar to Elwick Square, UK

Car

 $4.5p \times 2p$

	SALOON	A B
А	2 815	65
В	1 054	
С	910	
D	4 779	B A
E	1 586	▼ D
F	2 096	
G	1 557	
н	1 860	
I*	1 451	(A)
hout roof t	bars.	

Pedestrian

 $1.2p \times 1.2p$

Calculated in relation to size of car

1 patch length = 1m

*p = patch

Our model is quite small, so agents will exit too fast if we model 1 tick = 1s, so we scaled down our model:

1 tick = 0.25s

0.25s = human reaction time

Allows for easy future modelling: Delay 1 tick = agents' reaction time

Speed

Car

Dimension

8.9p/s 2.2p/ticks

Pedestrian

1.3p/s 0.35p/tick

Supporting

Visibility

Visibility

Dimension

Supporting

Angle

114 deg (depth perception) Binocular Vision and Stereopsis

Range

Key Limitation

Humans can actually faintly see a car 3km away (if unobstructed vision)

It is hard to model 'Vision Obstruction' or 'Line-of-Sight' in Netlogo

Accident Avoidance

Action

Dimension

Supporting

Car Jam Break

½ Length of car* Cautiousness

Pedestrian Stop Length of car *
Cautiousness

Pedestrian Step Back ½ Length of car* Cautiousness

Length of Car

Values estimated from own driving experiences & our consideration that this is a low-speed driving environment (8.9 m/s = 32 km/hr)

Sensitivity Analysis also done to ensure that the model runs smoothly at those values

Cautiousness

(default = 1)

>1 : Drivers more cautious and react earlier

<1 : Drivers less cautious and react later

Footfall / throughput

Visibility

Dimension

Supporting

Cars

1 car / 4s 1 car / 16 ticks LTA Statistics In Brief 2015

Pedestrian

1 pedestrian / 4s 1 pedestrian / 16 ticks Pedestrian flow in urban areas (Kaparias et al, 2015) (Nakamura, 2016) 6.
Results

Shared Space

66

Vehicle Speed Comparison

→ Above 2 and below 8 patch/t: Low number of accidents

→ Below 6 patch/t: Low stress level for pedestrian & cars
 → Spike at 6.5 p/t? Stress level for car >> Pedestrain

→ Spike at 2.2 p/t? Stress level for car < < Pedestrain Conclusion: At 3.2 p/t - lowest stress level

7. Limitations

Shared Space

Limitations (Modelling)

- Hard to quantify the visibility range of pedestrian
- Cautiousness of pedestrian is dependent on a variety of factors, like alertness, past accident history. It varies on individual's road knowledge

Limitations (Modelling)

- Detection of collision limited by 4 times per "second"
- Unable to model the reality that fast cars are scary and stress-inducing

Limitations (Shared Space)

- Pedestrian users, like elderly and children, require supervision when using shared space
 - Children: Parent's concern about safety
 - "Elderly and disabled are too scared to cross as they can't move fast enough" (Holmes, 2015)

8.

Conclusion

Shared Space

66

A lower speed within shared spaces DOES NOT ALWAYS lead to lower accidents and stress levels. (i.e. 3.2 patch/tick)

However, implementation of shared space still **requires more survey on the ground**, since traffic condition and road users' behaviour varies across towns, cities and countries.

THANKS!

Any questions?

Aaron Poh Shing Hei Zack Tan

References

- Binocular Vision and Stereopsis. (n.d.). Retrieved from
 https://books.google.com.sg/books?id=l8vqlTdETe0C&lpg=PA32&ots=Jhal-4lnNv&pg=PA32&redir_esc=y#v=onepage&q&f=false
- Edquist, J., & Corben, B. (2012, March). Potential application of Shared Space principles in urban road design: effects on safety and amenity. Retrieved from http://acrs.org.au/files/roadsafetytrust/1339632202.pdf
- Holmes, L. (2015, July). Accidents by Design: The Holmes Report on "shared space" in the United Kingdom. Retrieved from https://www.theihe.org/wp-content/uploads/2013/08/Holmes-Report-on-Shared-Space-.pdf
- Land Transport Authority. (2015). [Brochure]. Author. Retrieved from https://www.lta.gov.sg/content/dam/ltaweb/corp/PublicationsResearch/files/Factsan dFigures/Statistics in Brief 2015 FINAL.pdf
- Moody, S. and Melia, S. (2014) Shared space: Research, policy and problems.
 Proceedings of the Institution of Civil Engineers Transport, 167 (6). pp. 384-392.
 ISSN 0965-092X Available from: http://eprints.uwe.ac.uk/17937
- MVA Consultancy. (2010, October). Designing the Future Shared Space:
 Operational Assessment. Retrieved from
 https://nacto.org/docs/usdg/shared_space_operational_assessment_shore.pdf
- Transportation Research Part F: Traffic Psychology and Behaviour. (n.d.). Retrieved April 12, 2018, from http://www.journals.elsevier.com/transportation-research-part-f-traffic-psychology-and-behaviour

Appendix

Visibility Range (Sensitivity Analysis)