第二节

第十一章

常数项级数的审敛法

- 一、正项级数及其审敛法
- 二、交错级数及其审敛法
- 三、绝对收敛与条件收敛

一、正项级数及其审敛法

定理 1. 正项级数 $\sum_{n=1}^{\infty} u_n$ 收敛 \longrightarrow 部分和序列 S_n $|(n=1,2,\cdots)$ 有界 .

证: " \Longrightarrow " 若 $\sum_{n=1}^{\infty} u_n$ 收敛,则 $\{S_n\}$ 收敛,故有界.

" \Longleftrightarrow " $: u_n \geq 0$, \therefore 部分和数列 $\{S_n\}$ 单调递增,

又已知 $\{S_n\}$ 有界,故 $\{S_n\}$ 收敛,从而 $\sum_{n=1}^{\infty} u_n$ 也收敛.

定理2 (比较审敛法) 设 $\sum_{n=1}^{\infty} u_n$, $\sum_{n=1}^{\infty} v_n$ 是两个正项级数,

且存在 $N \in \mathbb{Z}^+$, 对一切 n > N , 有 $u_n \le k v_n$ (常数 k > 0), 则有

- (1) 若强级数 $\sum_{n=1}^{\infty} v_n$ 收敛,则弱级数 $\sum_{n=1}^{\infty} u_n$ 也收敛;
- (2) 若弱级数 $\sum_{n=1}^{\infty} u_n$ 发散,则强级数 $\sum_{n=1}^{\infty} v_n$ 也发散.

 \overline{u} : 因在级数前加、减有限项不改变其敛散性, 故不妨设对一切 $n \in \mathbb{Z}^+$, 都有 $u_n \le k v_n$,

令 S_n 和 σ_n 分别表示弱级数和强级数的部分和,则有

$$S_n \leq k \sigma_n$$

(1) 若强级数 $\sum_{n=1}^{\infty} v_n$ 收敛, 则有 $\sigma = \lim_{n \to \infty} \sigma_n$

因此对一切 $n \in \mathbb{Z}^+$, 有 $S_n \leq k \sigma$

由定理 1 可知, 弱级数 $\sum_{n=1}^{\infty} u_n$ 也收敛.

(2) 若弱级数 $\sum_{n=1}^{\infty} u_n$ 发散, 则有 $\lim_{n\to\infty} S_n = \infty$,

因此 $\lim_{n\to\infty} \sigma_n = \infty$, 这说明强级数 $\sum_{n=1}^{\infty} v_n$ 也发散.

例1. 讨论
$$p$$
 级数 $1 + \frac{1}{2^p} + \frac{1}{3^p} + \dots + \frac{1}{n^p} + \dots$ (常数 $p > 0$) 的敛散性.

解: 1) 若 $p \le 1$, 因为对一切 $n \in \mathbb{Z}^+$,

$$\frac{1}{n^p} \ge \frac{1}{n}$$

而调和级数 $\sum_{n=1}^{\infty} \frac{1}{n}$ 发散,由比较审敛法可知 p 级数 $\sum_{n=1}^{\infty} \frac{1}{n^p}$ 发散.

2) 若
$$p > 1$$
,因为当 $n - 1 \le x \le n$ 时, $\frac{1}{n^p} \le \frac{1}{x^p}$, 故
$$\frac{1}{n^p} = \int_{n-1}^n \frac{1}{n^p} dx$$
$$\le \int_{n-1}^n \frac{1}{x^p} dx = \frac{1}{p-1} \left[\frac{1}{(n-1)^{p-1}} - \frac{1}{n^{p-1}} \right]$$
$$\left[1 - \frac{1}{2^{p-1}} \right] + \left[\frac{1}{2^{p-1}} - \frac{1}{3^{p-1}} \right] + \dots + \left[\frac{1}{n^{p-1}} - \frac{1}{(n+1)^{p-1}} \right]$$
$$\sigma_n = \sum_{k=1}^n \left[\frac{1}{k^{p-1}} - \frac{1}{(k+1)^{p-1}} \right] = 1 - \frac{1}{(n+1)^{p-1}} \xrightarrow{n \to \infty} 1$$
故强级数收敛,由比较审敛法知 p 级数收敛.

1

调和级数与 p 级数是两个常用的比较级数.

若存在
$$N \in \mathbb{Z}^+$$
, 对一切 $n \ge N$,

(1)
$$u_n \ge \frac{1}{n}$$
, 则 $\sum_{n=1}^{\infty} u_n$ 发散;

(2)
$$u_n \le \frac{1}{n^p} \ (p > 1)$$
, 则 $\sum_{n=1}^{\infty} u_n$ 收敛.

例2. 证明级数
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n(n+1)}}$$
 发散.

$$\frac{1}{\sqrt{n(n+1)}} \ge \frac{1}{\sqrt{(n+1)^2}} = \frac{1}{n+1} (n=1,2,\dots)$$

而级数
$$\sum_{n=1}^{\infty} \frac{1}{n+1} = \sum_{k=2}^{\infty} \frac{1}{k}$$
 发散

根据比较审敛法可知, 所给级数发散.

定理3. (比较审敛法的极限形式) 设两正项级数

(2) 当
$$l = 0$$
 且 $\sum_{n=1}^{\infty} v_n$ 收敛时, $\sum_{n=1}^{\infty} u_n$ 也收敛;

(3) 当
$$l = \infty$$
 且 $\sum_{n=1}^{\infty} v_n$ 发散时, $\sum_{n=1}^{\infty} u_n$ 也发散.

证: 据极限定义, 对 $\varepsilon > 0$, 存在 $N \in \mathbb{Z}^+$, 当n > N 时, $\left|\frac{u_n}{v}-l\right|<\varepsilon \quad (l\neq\infty)$

$$(l-\varepsilon)v_n \le u_n \le (l+\varepsilon)v_n$$
 $(n>N)$

(1) 当 $0 < l < \infty$ 时,取 $\varepsilon < l$,由定理 2 可知 $\sum_{n=1}^{\infty} u_n$ 与 $\sum_{n=1}^{\infty} v_n$ 同时收敛或同时发散;

(2) 当l=0时, 利用 $u_n<(l+\varepsilon)v_n\ (n>N)$, 由定理2 知

若
$$\sum_{n=1}^{\infty} v_n$$
收敛,则 $\sum_{n=1}^{\infty} u_n$ 也收敛

若
$$\sum_{n=1}^{\infty} v_n$$
 收敛,则 $\sum_{n=1}^{\infty} u_n$ 也收敛;
(3) 当 $l = \infty$ 时, 存任 $N \in \mathbb{Z}^+$,当 $n > N$ 时, $\frac{u_n}{v_n} > 1$,即 $u_n > v_n$

由定理2可知, 若 $\sum_{n=1}^{\infty} v_n$ 发散, 则 $\sum_{n=1}^{\infty} u_n$ 也发散.

$\sum u_n$, $\sum v_n$ 是两个**正项级数**, $\lim_{n\to\infty} \frac{u_n}{v_n} = l$,

(1) 当0 < 1 < ∞时,两个级数同时收敛或发散;

(2) 当
$$l = 0$$
 且 $\sum v_n$ 收敛时, $\sum u_n$ 也收敛;

(3) 当 $l = \infty$ 且 $\sum v_n$ 发散时, $\sum u_n$ 也发散.

特别取 $v_n = \frac{1}{n^p}$, 对正项级数 $\sum u_n$, 可得如下结论:

$$\lim_{n\to\infty} n^p u_n = l \begin{cases} p \le 1, \ 0 < l \le \infty \Longrightarrow \sum u_n$$
 发散
$$p > 1, \ 0 \le l < \infty \Longrightarrow \sum u_n$$
 收敛

例3. 判别级数
$$\sum_{n=1}^{\infty} \sin \frac{1}{n}$$
 的敛散性.

$$\frac{1}{n-1} \quad n$$

$$\mathbf{R}: : \lim_{n \to \infty} n \sin \frac{1}{n} = \lim_{n \to \infty} n \cdot \frac{1}{n} = 1$$

$$\sin\frac{1}{n} \sim \frac{1}{n}$$

根据比较审敛法的极限形式知 $\sum_{n=1}^{\infty} \sin \frac{1}{n}$ 发散.

例4. 判别级数 $\sum_{n=1}^{\infty} \ln\left[1 + \frac{1}{n^2}\right]$ 的敛散性. $\ln(1 + \frac{1}{n^2}) \sim \frac{1}{n^2}$

#:
$$\because \lim_{n \to \infty} n^2 \ln \left[1 + \frac{1}{n^2} \right] = \lim_{n \to \infty} n^2 \cdot \frac{1}{n^2} = 1$$

根据比较审敛法的极限形式知 $\sum_{n=1}^{\infty} \ln\left[1 + \frac{1}{n^2}\right]$ 收敛.

定理4. 比值审敛法 (D'alembert 判别法)

设
$$\sum u_n$$
 为正项级数, 且 $\lim_{n\to\infty} \frac{u_{n+1}}{u_n} = \rho$, 则

- (1) 当 ρ < 1 时, 级数收敛;
- (2) 当 ρ >1 或 ρ =∞ 时, 级数发散.

证: (1) 当 ρ <1 时,取 ε 使 ρ + ε <1, 由 $\lim_{n\to\infty} \frac{u_{n+1}}{u_n} = \rho$ 知存在 $N \in Z^+$, 当n > N 时, $\frac{u_{n+1}}{u_n} < \rho + \varepsilon < 1$

$$\therefore u_{n+1} < (\rho + \varepsilon) u_n < (\rho + \varepsilon)^2 u_{n-1} < \cdots$$
$$< (\rho + \varepsilon)^{n-N} u_{N+1}$$

 $\sum (\rho + \varepsilon)^k$ 收敛,由比较审敛法可知 $\sum u_n$ 收敛.

(2) 当
$$\rho > 1$$
或 $\rho = \infty$ 时,必存在 $N \in Z_+$, $u_N \neq 0$,当 $n \geq N$ 时 $u_{n+1} > 1$,从而
$$u_n = u_n > u_{n+1} > u_n > u_{n-1} > \cdots > u_N$$

因此
$$\lim u_n \ge u_N \ne 0$$
, 所以级数发散.

 $\overset{n\to\infty}{\overset{u}{\overset{u}{\overset{n+1}{\cup}}}} = 1 \text{ 时, } 级数可能收敛也可能发散.}$

例如,
$$p-$$
级数 $\sum_{n=1}^{\infty} \frac{1}{n^p}$: $\lim_{n \to \infty} \frac{u_{n+1}}{u_n} = \lim_{n \to \infty} \frac{\frac{1}{(n+1)^p}}{\frac{1}{n^p}} = 1$

但
$$\begin{cases} p > 1, 级数收敛; \\ p \le 1, 级数发散. \end{cases}$$

例5. 讨论级数 $\sum_{n=1}^{\infty} n x^{n-1} (x > 0)$ 的敛散性.

$$\mathbf{\cancel{F}}: \quad \because \lim_{n \to \infty} \frac{u_{n+1}}{u_n} = \lim_{n \to \infty} \frac{(n+1)x^n}{nx^{n-1}} = x$$

根据定理4可知:

当0 < x < 1时,级数收敛;

当x > 1时,级数发散;

当x = 1时,级数 $\sum_{n=1}^{\infty} n$ 发散.

定理5. 根值审敛法 (Cauchy判别法) 设 $\sum_{n=1}^{\infty} u_n$ 为正项级数, 且 $\lim \sqrt[n]{u_n} = \rho$, 则

 $\alpha_n \rightarrow \beta_n$ (1)当 ρ <1时,级数收敛;

(2)当ρ>1时,级数发散.

证明提示: $\lim_{n\to\infty} \sqrt[n]{u_n} = \rho$, ∴对任意给定的正数 ε

 $(\varepsilon < 1-\rho)$,存在 $N \in \mathbb{Z}^+$, 当n > N时,有

$$\begin{array}{ccc} \rho - \varepsilon < \sqrt[n]{u_n} < \rho + \varepsilon & \rho < 1 \Longrightarrow \rho + \varepsilon < 1 \\ & (\rho - \varepsilon)^n < u_n < (\rho + \varepsilon)^n & \rho > 1 \Longrightarrow \rho - \varepsilon > 1 \end{array}$$

分别利用上述不等式的左,右部分,可推出结论正确.

 $\ddot{\mathbf{U}}$ 明: $\rho=1$ 时,级数可能收敛也可能发散.

例如,
$$\frac{p}{p}$$
 级数 $\sum_{n=1}^{\infty} \frac{1}{n^p}$:

$$u_n = \frac{1}{n^p}, \ \sqrt[n]{u_n} = \left(\frac{1}{\sqrt[n]{n}}\right)^p \to 1 \ (n \to \infty)$$

但
$$\begin{cases} p > 1, 级数收敛; \\ p \le 1, 级数发散. \end{cases}$$

例6. 证明级数 $\sum_{n=1}^{\infty} \frac{1}{n^n}$ 收敛于S, 并估计以部分和 S_n 近似代替和 S 时所产生的误差.

$$\mathbf{\mathscr{H}} : :: \sqrt[n]{u_n} = \sqrt[n]{\frac{1}{n^n}} = \frac{1}{n} \to 0 \ (n \to \infty)$$

由定理5可知该级数收敛. 令 $r_n = S - S_n$,则所求误差为

$$0 < r_n = \frac{1}{(n+1)^{n+1}} + \frac{1}{(n+2)^{n+2}} + \cdots$$

$$< \frac{1}{(n+1)^{n+1}} + \frac{1}{(n+1)^{n+2}} + \cdots$$

$$= \frac{1}{(n+1)^{n+1}} \cdot \frac{1}{1 - \frac{1}{n+1}} = \frac{1}{n(n+1)^n}$$

二、交错级数及其审敛法

设 $u_n > 0$, $n = 1, 2, \cdots$,则各项符号正负相间的级数 $u_1 - u_2 + u_3 - \dots + (-1)^{n-1}u_n + \dots$

称为交错级数.

定理6.(Leibnitz 判别法)若交错级数满足条件:

1)
$$u_n \ge u_{n+1} \ (n=1,2,\cdots);$$

$$\lim_{n\to\infty}u_n=0,$$

则级数 $\sum (-1)^{n-1}u_n$ 收敛, 且其和 $S \leq u_1$, 其余项满足 $|r_n| \leq u_{n+1}$.

$$\mathbf{E:} \quad : S_{2n} = (u_1 - u_2) + (u_3 - u_4) + \dots + (u_{2n-1} - u_{2n}) \ge 0
S_{2n} = u_1 - (u_2 - u_3) - (u_4 - u_5) - \dots - (u_{2n-2} - u_{2n-1})
- u_{2n} \le u_1$$

 $:: S_{2n}$ 是单调递增有界数列,故 $\lim S_{2n} = S \le u_1$

$$\mathbb{X}$$
 $\lim_{n\to\infty} S_{2n+1} = \lim_{n\to\infty} (S_{2n} + u_{2n+1}) = \lim_{n\to\infty} S_{2n} = S$

故级数收敛于S, 且 $S \leq u_1$, S_n 的余项:

$$r_n = S - S_n = \pm (u_{n+1} - u_{n+2} + \cdots)$$

$$|r_n| = u_{n+1} - u_{n+2} + \cdots \le u_{n+1}$$

用Leibnitz 判别法判别下列级数的敛散性:

1)
$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots + \frac{u_{n+1}}{2} = \frac{\frac{n+1}{10^{n+1}}}{\frac{n}{10^n}} = \frac{1}{10} \cdot \frac{n+1}{n}$$

3)
$$\frac{1}{10} - \frac{2}{10^2} + \frac{3}{10^3} - \frac{4}{10^4} + \dots + (-1)^{n-1} \frac{n}{10^n} + \dots$$
 \(\psi\)

上述级数各项取绝对值后所成的级数是否收敛?

1)
$$\sum_{n=1}^{\infty} \frac{1}{n}$$
; 2) $\sum_{n=1}^{\infty} \frac{1}{n!}$; 3) $\sum_{n=1}^{\infty} \frac{n}{10^n}$. 发散 收敛

三、绝对收敛与条件收敛

定义: 对任意项级数 $\sum_{n=1}^{\infty} u_n$,若 $\sum_{n=1}^{\infty} |u_n|$ 收敛 , 则称原级 数 $\sum_{n=1}^{\infty} u_n$ 绝对收敛 ;

若原级数收敛, 但取绝对值以后的级数发散, 则称原级

数 $\sum_{n=0}^{\infty} u_n$ 条件收敛.

例如: $\sum_{n=0}^{\infty} (-1)^{n-1} \frac{1}{n}$ 为条件收敛.

 $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{(n-1)!}, \sum_{n=1}^{\infty} (-1)^{n-1} \frac{n}{10^n} 均为绝对收敛.$

定理7. 绝对收敛的级数一定收敛.

证: 设
$$\sum_{n=1}^{\infty} u_n$$
 收敛,令
$$v_n = \frac{1}{2}(u_n + \big| u_n \big|) \quad (n=1,2,\cdots)$$

显然 $v_n \ge 0$, 且 $v_n \le |u_n|$, 根据比较审敛法 $\sum_{n=0}^{\infty} v_n$ 收敛, $u_n = 2v_n - |u_n|$

例7. 证明下列级数绝对收敛:

(1)
$$\sum_{n=1}^{\infty} \frac{\sin n\alpha}{n^4}$$
; (2) $\sum_{n=1}^{\infty} (-1)^n \frac{n^2}{e^n}$.

因此
$$\sum_{n=1}^{\infty} \frac{\sin n\alpha}{n^4}$$
绝对收敛.

绝对收敛级数与条件收敛级数具有完全不同的性质.

*定理8. 绝对收敛级数不因改变项的位置而改变其和. (P203 定理9)

*定理9.(绝对收敛级数的乘法)

设级数 $\sum_{n=1}^{\infty} u_n = \sum_{n=1}^{\infty} v_n$ 都绝对收敛, 其和分别为 S, σ ,

则对所有乘积 $u_i v_j$ 按任意顺序排列得到的级数 $\sum_{n=1}^{\infty} w_n$

也绝对收敛, 其和为 $S\sigma$. (P205 定理10)

说明: 证明参考 P203~P206, 这里从略.

但需注意条件收敛级数不具有这两条性质.

则
$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{b_n}{b_{n-1}} = a$$
. 由上题得 $\lim_{n \to \infty} \sqrt[n]{b_n} = \lim_{n \to \infty} \sqrt[n]{a_1 a_2 \cdots a_n} = a$

若
$$\lim_{n\to\infty} \frac{u_{n+1}}{u_n} = q,$$
 则必有
$$\lim_{n\to\infty} \sqrt[n]{u_n} = q.$$

这说明凡能由比式判别法鉴别收敛性的级数, 它也能由根式判别法来判断,而且可以说,根式 判别法较之比式判别法更有效.

例如,级数
$$\sum_{n\to\infty}^{2+(-1)^n}$$
.由于
$$\lim_{n\to\infty}\sqrt[n]{u_n} = \lim_{n\to\infty}\frac{\sqrt[n]{2+(-1)^n}}{2} = \frac{1}{2},$$
所以级数是收敛的.

例如,级数
$$\sum \frac{2+(-1)^n}{2^n}$$
. 由于
$$\lim_{m\to\infty} \frac{u_{2m}}{u_{2m-1}} = \lim_{m\to\infty} \frac{\frac{3}{2^{2m}}}{\frac{1}{2^{2m-1}}} = \frac{3}{2},$$

$$\lim_{m\to\infty} \frac{u_{2m+1}}{u_{2m}} = \lim_{m\to\infty} \frac{\frac{1}{2^{2m+1}}}{\frac{3}{2^{2m}}} = \frac{1}{6},$$

故由比式判别法无法鉴别此级数的收敛性. 但应用根式判别法来考察这个级数,可知此级 数是收敛的.

3. 任意项级数审敛法 概念: 设
$$\sum_{n=1}^{\infty} u_n$$
 为收敛级数
$$\begin{cases} \ddot{a} \sum_{n=1}^{\infty} |u_n| \psi \otimes_{\lambda}, & \text{称} \sum_{n=1}^{\infty} u_n \text{ 绝对收敛} \\ \ddot{a} \sum_{n=1}^{\infty} |u_n| \psi \otimes_{\lambda}, & \text{称} \sum_{n=1}^{\infty} u_n \text{ 条件收敛} \end{cases}$$
 Leibniz判别法:
$$u_n \geq u_{n+1} > 0$$
 $\lim_{n \to \infty} u_n = 0$ 则交错级数 $\sum_{n=1}^{\infty} (-1)^n u_n \psi \otimes_{\lambda}$

思考与练习

设正项级数 $\sum_{n=1}^{\infty} u_n$ 收敛,能否推出 $\sum_{n=1}^{\infty} u_n^2$ 收敛?

提示:
$$\lim_{n\to\infty}\frac{u_n^2}{u_n}=\lim_{n\to\infty}u_n=0$$

由比较判敛法可知 $\sum_{n=1}^{\infty} u_n^2$ 收敛.

注意: 反之不成立. 例如,

$$\sum_{n=1}^{\infty} \frac{1}{n^2} 收敛 , \sum_{n=1}^{\infty} \frac{1}{n} 发散 .$$

1. 判别级数的敛散性:

解:
$$(1)$$
 :: $\ln(n+1) < n$, :: $\frac{1}{\ln(n+1)} > \frac{1}{n}$

$$\sum_{n=1}^{\infty} \frac{1}{n}$$
 发散,故原级数发散.

2. 设
$$u_n \neq 0$$
 $(n = 1, 2, 3, \cdots)$, 且 $\lim_{n \to \infty} \frac{n}{u_n} = 1$, 则级数
$$\sum_{n=1}^{\infty} (-1)^{n+1} \left(\frac{1}{u_n} + \frac{1}{u_{n+1}}\right) \quad (C).$$

(A) 发散; (B) 绝对收敛;

(C)条件收敛; (D)收敛性根据条件不能确定.

(C) 条件收敛; (D) 收敛性根据条件不能确分析: 由
$$\lim_{n\to\infty}\frac{n}{u_n}=1,$$
 知 $\lim_{n\to\infty}\frac{n}{u_n}=1$, 知 $\lim_{n\to\infty}\frac{1}{u_n}\sim \frac{1}{n}$,
$$\left|(-1)^{n+1}\frac{1}{u_n}+\frac{1}{u_{n+1}}\right|=\frac{1}{u_n}+\frac{1}{u_{n+1}}\geq \frac{1}{u_n}$$
 而 $\lim_{n\to\infty}\frac{\frac{1}{u_n}}{\frac{1}{n}}=1$, 因此级数 $\sum_{n=1}^{\infty}\frac{1}{u_n}$ 发散. ∴ (B) 错;

$$\mathbb{Z} \quad S_n = -\left(\frac{1}{u_1} + \frac{1}{u_2}\right) + \left(\frac{1}{u_2} + \frac{1}{u_3}\right) - \left(\frac{1}{u_3} + \frac{1}{u_4}\right) + \left(\frac{1}{u_3} + \frac{1}{u_5}\right) \\
+ \dots + \left(-1\right)^{n+1} \left(\frac{1}{u_{n+1}} + \frac{1}{u_{n+1}}\right) \\
= -\frac{1}{u_1} + \left(-1\right)^{n+1} \frac{1}{u_{n+1}}$$