# **Sprint -4**

| Date         | 5 November 2022                                                 |
|--------------|-----------------------------------------------------------------|
| Team ID      | PNT2022TMID13870                                                |
| Project Name | Project - Al-Powered Nutrition Analyzer for Fitness Enthusiasts |

#### **Model Creation**

## **Importing libraries**

import numpy as np

import tensorflow as tf

from tensorflow.keras.models import Sequential

from tensorflow.keras import layers

from tensorflow.keras.layers import Dense,Flatten

from tensorflow.keras.layers import Conv2D,MaxPooling2D,Dropout

from keras.preprocessing.image import ImageDataGenerator

### **Initializing the Model**

model = Sequential()

#### **Adding CNN Layers**

classifier = Sequential()

# First convolution layer and pooling

classifier.add(Conv2D(32, (3, 3), input\_shape=(64, 64, 3), activation='relu'))

classifier.add(MaxPooling2D(pool\_size=(2, 2)))

# Second convolution layer and pooling

classifier.add(Conv2D(32, (3, 3), activation='relu'))

```
# input_shape is going to be the pooled feature maps from the previous convolution layer classifier.add(MaxPooling2D(pool_size=(2, 2)))

# Flattening the layers

classifier.add(Flatten())
```

## **Adding Dense Layers**

```
classifier.add(Dense(units=128, activation='relu'))
classifier.add(Dense(units=5, activation='softmax'))
```

classifier.summary()

# 

| Layer (type)                               | Output Shape       | Param # |
|--------------------------------------------|--------------------|---------|
| conv2d (Conv2D)                            | (None, 62, 62, 32) | 896     |
| <pre>max_pooling2d (MaxPooling2D )</pre>   | (None, 31, 31, 32) | 0       |
| conv2d_1 (Conv2D)                          | (None, 29, 29, 32) | 9248    |
| <pre>max_pooling2d_1 (MaxPooling 2D)</pre> | (None, 14, 14, 32) | 0       |
| flatten (Flatten)                          | (None, 6272)       | 0       |
| dense (Dense)                              | (None, 128)        | 802944  |
| dense_1 (Dense)                            | (None, 5)          | 645     |

Total params: 813,733 Trainable params: 813,733 Non-trainable params: 0

#### **Configure the Learning Process**

# Compiling the CNN

# categorical\_crossentropy for more than 2

classifier.compile(optimizer='adam', loss='sparse\_categorical\_crossentropy', metrics=['accuracy'])

#### **Train The Model**

classifier.fit\_generator(generator=x\_train,steps\_per\_epoch = len(x\_train),epochs=20, validation\_data=x\_test,validation\_steps = len(x\_test))



#### Save the Model

classifier.save('ainutrition.h5')

#### **Test the Model**

#Predict the results

from tensorflow.keras.models import load\_model

from keras.preprocessing import image

from keras\_preprocessing.image import load\_img

model = load\_model("ainutrition.h5")

from tensorflow.keras.utils import img\_to\_array

```
#loading of the image
img = load_img(r'/content/drive/MyDrive/DataSet-IBM/TEST_SET/ORANGE/n07749192_1251.jpg', grayscale=False,
target_size= (64,64))
#image to array
x = img_to_array(img)
#changing the shape
x = np.expand_dims(x,axis = 0)
predict_x=model.predict(x)
classes_x=np.argmax(predict_x,axis=-1)
classes_x
```

1/1 [======= ] - 0s 107ms/step

array([2])

index=['APPLES', 'BANANA', 'ORANGE','PINEAPPLE','WATERMELON']

result=str(index[classes\_x[0]])

result



print(result)

if result == 'APPLES':

print("One serving, or one medium apple, provides about 95 calories, 0 gram fat, 1 gram protein, 25 grams carbohydrate, 19 grams sugar (naturally occurring), and 3 grams fiber.")

elif result == 'BANANA':

print("One serving, or one medium ripe banana, provides about 110 calories, 0 gram fat, 1 gram protein, 28 grams carbohydrate, 15 grams sugar (naturally occurring), 3 grams fiber, and 450 mg potassium.")

elif result == 'ORANGE':

print("60 calories, No fat or sodium, 3 grams of fiber, 12 grams of sugar, 1 gram of protein, 14 micrograms of vitamin A, 70 milligrams of vitamin C, 6% of your daily recommended amount of calcium.")

elif result == 'PINEAPPLE':

print("Calories: 83, Fat: 1.7 grams, Protein: 1 gram, Carbs: 21.6 grams, Fiber: 2.3 grams, Vitamin C: 88% of the Daily Value (DV), Manganese: 109% of the DV, Vitamin B6: 11% of the DV.")

elif result == 'WATERMELON':

print("Calories: 46, Carbs: 11.5 grams, Fiber: 0.6 grams, Sugar: 9.4 grams, Protein: 0.9 grams, Fat: 0.2 grams, Vitamin A: 5% of the Daily Value (DV), Vitamin C: 14% of the DV.")

ORANGE

60 calories, No fat or sodium, 3 grams of fiber, 12 grams of sugar, 1 gram of protein, 14 micrograms of vitamin A, 70 milligrams of vitamin C, 6% of your daily recommended amount

>

## **Model Building**



## Webpage





Fruit: ORANGE

Nutrition: 60 calories, No fat or sodium, 3 grams of fiber, 12 grams of sugar, 1 gram of protein, 14 micrograms of vitamin A, 70 milligrams of vitamin C, 6% of your daily recommended amount of calcium.