Uncertain Databases - Motivation & Foundations Databases and Information Systems

Fabian Panse

panse @informatik.uni-hamburg.de

University of Hamburg

Motivation

Motivation Foundations

Motivation - Why can Uncertain Databases be useful?

- Uncertainty is everywhere in our everyday life
- Uncertainty in data/information processing applications
- Conventional data models ignore such uncertainties (in the standard relational data model, the null value is the only concept to deal with uncertainties)

Data Integration

- Large number of autonomous data sources
- Integration system combines the data of the individual sources
- Uncertainty at different points

Data Integration - Uncertainty on Schema Mappings

• Which schema elements (e.g. attributes) match?

- Are 'BID' and 'BNo.' source-specific surrogate keys?
- Which 'ISBN' is modeled by source S1?
- 'press' obviously match with 'publisher', but is more similar to 'price'
- Has source S2 no attribute which matches with 'pages'?

Data Integration - Uncertainty on Relevance

Are these source tuples relevant for the integration result?

```
SELECT *
Intregation
             FROM Books
 System
             WHERE year>=2001
```


Data Integration - Uncertainty on Duplicates

Describe these two tuples the same person?

PNo.	firstname	lastname	DoB	city
P23	William	Schulz	12.10.1987	НН
P14	Bill	Schultz	10.12.1987	St.Pauli

Data Integration - Uncertainty on Merging Result

 Duplicate tuples need to be merged to a single tuple. However, which values describe this person best?

PNo.	firstname	lastname	DoB	city	
P23	William	Schulz	12.10.1987	НН	
P14	Bill	Schultz	10.12.1987	St.Pauli	

Data Integration - Sources of Uncertainty

Using different standards and conventions:

Source: Introduction to Duplicate Detection, Felix Naumann and Melanie Herschel,

Morgan&Claypool

Data Integration - Sources of Uncertainty

- Google reports 593* different spellings of 'Britney Spears'
 - 'Britney Spears' (488941 searches)
 - 'Brittany Spears' (40134 searches)
 - 'Brittney Spears' (36315 searches)
 - 'Britany Spears' (24342 searches)
 - 'Britny Spears' (7331 searches)

- . . .

- How many different spellings exist for more complex names?
 - 'Giannis Antetokounmpo' (Greek basketball player)
 - 'Dharmavarapu Subramanyam' (Indian actor)
 - 'Janice Keihanaikukauakahihuliheekahaunaele' (Hawaiian woman)
 - 'Venkatanarasimharajuvaripeta railway station' (railway station in India)

^{*}Source: http://www.netpaths.net/blog/britney-spears-spelling-variations/

Subjective perceptions

Subjective perceptions

Uncertainty of measurements

- Imprecise techniques
- Observed value is inconstant
- Confounding factors (e.g. wind)

Optical character recognition

- Handwriting unreadable
- Print faded out
- Medium (e.g. paper) weathered

Optical character recognition

Gersdorf, 2.10.57

Ihr Lieben Alle Drei!

Zuerst vielen Dank für Walters langen Brief und Mutters letzten Brief. Nun sind wir wieder einmal von allem unterrichtet. Bei uns hat es auch sehr viel geregnet und der Sturm has das meiste Obst noch abgeworfen. Wie haben aber tüchtig eingekocht, denn an den vielen Regentagen hatten wir Zeit. Spätäpfel haben wir nicht viel. darum mußte man alles verwerten, ich habe auch noch welche getrocknet. Gestern habe ich die letzten Boskop gepflückt. Weil wir dies Jahr nicht liefern brauchen, reicht es ja für uns noch gut zu. Mit der Grummeternte war es ja diesmal schlecht, aber wir hatten ia das Vieh immer draußen, da brauchten wir nur 3 Fuhren zu machen, was wir so leidlich reingekriegt haben. Die Hälfte Kartoffeln haben wir raus, aber welche sind durch den vielen Regen noch zu grün. Die Ablieferungskartoffeln sind raus, das ist ja immer die Hauptsache. Auch waren sie bisher noch gut unds heil. Die anderen behalten wir dann für uns. Da müssen wir eben dämpfen, wenn sie fleckig sind. Gestern und heute war mal schönes Wetter, wenn es nur so bliebe im Oktober, denn die Rüben sollen doch auch gut rauskommen.

Source: http://familie.berger-odenthal.de/Berger/Oma/

Ambiguity in natural languages

Relevant in:

Text mining

Ambiguity in natural languages

Relevant in:

Text mining

Leibesvisitation bei Schülern: Polizei sucht in Unterhosen Fünf-Euro-Schein

Ambiguity in natural languages

Relevant in:

Text mining

Nature of Predictions

- Network load (street/power/data)
- Available resources
- Price/cost
- Weather

Foundations

Uncertain Databases

- Data models that capture uncertainty on data values
- Several concepts for modeling uncertainty (e.g. probability theory, possibility theory, Dempster Shafer theory)
- Several data models as baseline. (e.g. relational, object-oriented, XML)

Idea:

- Modeling uncertainty by a set of alternative database instances (so-called possible worlds)
- All possible worlds are defined on the same schema
- We restrict to finite sets of worlds in this lecture.

Definition: An incomplete database idb is a finite set of possible worlds $\mathbf{W} = \{W_1, \dots, W_k\}$ where each world $W \in \mathbf{W}$ corresponds to a conventional database instance and all these worlds are defined on the same database schema.

Conventional (certain) database:

• Single database instance at a particular time

Person

<u>wĸ</u>	name	age
p1	J.Doe	27
p2	K.Smith	32
р3	J.Ho	28
p4	J.J.Doe	31

Conventional (certain) database:

• Single database instance at a particular time

Incomplete database:

• Several alternative database instances at a particular time

ı	A	1	7
ı	/	v	1
			-

<u>WK</u>	name	age
p1	J.Doe	27
р2	K.Smith	32
р3	J.Ho	28
p4	J.J.Doe	41

W_2

<u>WK</u>	name	age
р1	J.Doe	72
p2	K.Smith	32
р3	J.Ho	28
p4	J.J.Doe	41

$$W_3$$

<u>WK</u>	name	age
p1	J.Doe	27
p2	K.Smith	32
p4	J.J.Doe	41

Conventional (certain) database:

Single database instance at a particular time

Incomplete database:

Several alternative database instances at a particular time

W_1			W_2			W_3			W_4			W_5				W_6		
<u>wĸ</u>	name	age	<u>wĸ</u>	name	age	W	<u>(</u> name	age	<u>wk</u>	name	age	<u>wk</u>	name	age		<u>wĸ</u>	name	age
p1	J.Doe	27	р1	J.Doe	27	p1	J.Doe	27	р1	J.Doe	27	p1	J.Doe	28		p1	J.Doe	28
p2	K.Smith	32	p2	K.Smith	32	p2	K.Smith	32	p2	K.Smith	32	p2	K.Smith	32		p2	K.Smith	32
р3	J.Doe	28	рЗ	J.Doe	29	p3	J.Ho	28	р3	J.Ho	29	р3	J.Doe	28		p3	J.Doe	29
W ₇			W ₈			W			W ₁₀			W ₁₁				W ₁₂		
WK	name	age	WK	name	age	W	<u>(</u> name	age	WK	name	age	<u>wk</u>	name	age		<u>wĸ</u>	name	age
р1	J.Doe	28	р1	J.Doe	28	p2	K.Smith	32	p2	K.Smith	32	p2	K.Smith	32		p2	K.Smith	32
p2	K.Smith	32	p2	K.Smith	32	p3	J.Doe	28	р3	J.Doe	29	р3	J.Ho	28	Ш	р3	J.Ho	29
_	111-	20		LUo	20													

Semantics:

- Worlds are mutually exclusive:
 - "only one of these worlds can be 'true'!"
- Worlds are jointly exhaustive:
 - "one of these worlds is assumed to be 'true'!"

Notation:

- Shared schema of possible worlds: world schema
- Set of possible worlds: possible world space
- Primary key of world schema: world key (short WK)

Differences between worlds:

- Different non-key values are assigned to the same key value
- Specific key values are missing (i.e. no tuple with such key values exists)

W_1

<u>WK</u>	name	age
р1	J.Doe	27
p2	K.Smith	32
р3	J.Ho	28
p4	J.J.Doe	41

W_2

<u>WK</u>	name	age
p1	J.Doe	72
p2	K.Smith	32
р3	J.Ho	28
p4	J.J.Doe	41

W₃

<u>WK</u>	name	age
p1	J.Doe	27
р2	K.Smith	32
p4	J.J.Doe	41

Differences between worlds:

- Different non-key values are assigned to the same key value
- Specific key values are missing (i.e. no tuple with such key values exists)

VV_3		
<u>WK</u>	name	age
р1	J.Doe	27
р2	K.Smith	32
р4	J.J.Doe	41

11/

Differences between worlds:

- Different non-key values are assigned to the same key value
- Specific key values are missing (i.e. no tuple with such key values exists)

W_1		
<u>WK</u>	name	age
р1	J.Doe	27
<i>p2</i>	K.Smith	32
рЗ	J.Ho	28
р4	J.J.Doe	41

W_2		,						
<u>WK</u>	na	Missing key value p3			ie	age		
p1	J.Do	е	/ 12		ρĮ	J.Doe	j	27
p2	K.Sı	nith	32		р2	K.Sm	ith	32
рЗ	J.Ho)	28)	р4	J.J.Q	е	41
p4	J.J.[Оое	41					

Certain-tuple: Tuple that belongs to every possible world Maybe-tuple: Tuple missing in some of the possible worlds

Example:

W.

	••1		
	<u>WK</u>	name	age
t ₁	р1	J.Doe	27
t ₂	p2	K.Smith	32
t₃	р3	J.Ho	28
t ₄	р4	J.J.Doe	41

14/

ge

14/

	VV 3		
	<u>WK</u>	name	age
t ₁	р1	J.Doe	27
t ₂	p2	K.Smith	32
t4	p4	J.J.Doe	41

Certain-tuples: t_2 and t_4

• Maybe-tuples: t_1 , t_3 , and t_5

 Two tuples t_r and t_s are exclusive if they do not coexist in any possible world

$$\nexists W \in \mathbf{W} : \{t_r, t_s\} \subseteq W$$

• A tuple t_s is positively implicated by a **maybe-tuple** t_r if it belongs to every possible world that contains t_r

$$\forall W \in \mathbf{W} : t_r \in W \Rightarrow t_s \in W$$

• A tuple t_s is negatively implicated by a **maybe-tuple** t_r if it belongs to every possible world that does not contain t_r

$$\forall W \in \mathbf{W} : t_r \notin W \Rightarrow t_s \in W$$

 Two tuples t_r and t_s are independent if they are not exclusive and none of them implicates (positively or negatively) the other

Example:

W_1	t _r	t _s
W_2	t _r	Ø
W_3	Ø	t s
W_4	Ø	Ø

• t_r and t_s are independent

W_1		t _s
W_2	t _r	Ø
W_3	Ø	t s
W_4	Ø	Ø

- t_r and t_s are independent
- t_r and t_s are exclusive

Foundations

Incomplete Databases - Tuple Dependencies

W_1	t _r	t _s
W_2	t _r	Ø
W_3	Ø	t _s
W ₄	Ø	Ø

- t_r and t_s are independent
- t_r and t_s are exclusive
- t_r is positively implicated by t_s

W_1	t _r	t _s
W_2	t _r	Ø
W_3	Ø	t s
W_4	Ø	Ø

- t_r and t_s are independent
- t_r and t_s are exclusive
- t_r is positively implicated by t_s
- t_r is negatively implicated by t_s and t_s is negatively implicated by t_r

W_1	t _r	t _s
W_2	t _r	Ø
W_3	Ø	t _s
W_4	Ø	Ø

- t_r and t_s are independent
- t_r and t_s are exclusive
- t_r is positively implicated by t_s
- t_r is negatively implicated by t_s and t_s is negatively implicated by t_r
- t_r is negatively implicated by t_s

Probabilistic Databases

Idea:

- Each possible world is associated with a probability
- We restrict to finite sets of worlds in this lecture.

Definition: A probabilistic database pdb is a probability space (\mathbf{W}, Pr) where \mathbf{W} is a possible world space and Pr is a discrete probability distribution over these worlds, i.e. $Pr: \mathbf{W} \to]0,1]$ is a function so that $\sum_{W \in \mathbf{W}} Pr(W) = 1$.

Probabilistic Databases - Example

W₁, Pr=0.5

	<u>WK</u>	name	age
t ₁	p1	J.Doe	27
t ₂	p2	K.Smith	32
t ₃	р3	J.Ho	28
t ₄	p4	J.J.Doe	41

W₂, Pr=0.4

<u>WK</u>	name	age
р1	J.Doe	72
р2	K.Smith	32
р3	J.Ho	28
p4	J.J.Doe	41
	p1 p2 p3	p1 J.Doep2 K.Smithp3 J.Hop4 J.J.Doe

W₃, Pr=0.1

	<u>WK</u>	name	age
t ₁	р1	J.Doe	27
t ₂	p2	K.Smith	32
t ₄	р4	J.J.Doe	41

Probabilistic Databases - Marginal Probabilities

Let $pdb = (\mathbf{W}, Pr)$ be a probabilistic database.

- A tuple t belongs to pdb (denoted as $t \in pdb$) if it belongs to any $W \in \mathbf{W}$
- Marginal probability of tuple t is the probability that t exists
- Described by probability mass function p
- Corresponds to the overall probability of all possible worlds that contain t, i.e.

$$p(t) = \sum_{W \in \mathbf{W}, t \in W} Pr(W)$$

- **Certain-Tuple:** tuple t is certain if p(t) = 1
- Maybe-Tuple: tuple t is maybe if $p(t) \in]0,1[$

Probabilistic Databases - Marginal Probabilities

Example:

W₁, Pr=0.5

	<u>wk</u>	name	age
t ₁	p1	J.Doe	27
t ₂	p2	K.Smith	32
t₃	р3	J.Ho	28
t4	p4	J.J.Doe	41

 W_2 , Pr=0.4

	<u>WK</u>	name	age	
t ₅	р1	J.Doe	72	
t ₂	p2	K.Smith	32	
t ₃	р3	J.Ho	28	
t ₄	p4	J.J.Doe	41	

	<u>WK</u>	name	age	
t ₁	р1	J.Doe	27	
2	р2	K.Smith	32	
t ₄	р4	J.J.Doe	41	
4	PΨ	J.J.DUE	41	

• Marginal probabilities:
$$p(t_1) = 0.6$$
, $p(t_3) = 0.9$, $p(t_5) = 0.4$, $p(t_2) = p(t_4) = 1.0$

Certain-tuples: t₂ and t₄

• Maybe-tuples: t_1 , t_3 , and t_5

Let $pdb = (\mathbf{W}, Pr)$ be a probabilistic database.

Probability mass function p_{\(\sigma\)}:

"At least one of the tuples in set T exists"

$$p_{\vee}(T) = \sum_{W \in \mathbf{W}, T \cap W \neq \emptyset} Pr(W)$$

Probability mass function p_{\wedge} (joint probability):

"All of the tuples in set T exist"

$$p_{\wedge}(T) = \sum_{W \in \mathbf{W}, T \subset W} Pr(W)$$

Differences to incomplete databases:

- The number of different kinds of dependencies is infinite
- Independence cannot be concluded from the absence of exclusion and implication

Let $pdb = (\mathbf{W}, Pr)$ be a probabilistic database.

• Two tuples t_r and t_s are independent if

$$p_{\wedge}(\lbrace t_r,t_s\rbrace)=p(t_r)\times p(t_s)$$

In this case, it holds that:

$$p_{\vee}(\{t_r, t_s\}) = 1 - (1 - p(t_r)) \times (1 - p(t_s))$$

Independence:

$$p_{\wedge}(\lbrace t_r, t_s \rbrace) = p(t_r) \times p(t_s)$$

$$W_1 \quad t_r \quad t_s \quad p(t_r) \times p(t_s)$$

$$W_2 \quad t_r \quad \varnothing \quad p(t_r) \times (1-p(t_s))$$

$$W_3 \quad \varnothing \quad t_s \quad (1-p(t_r)) \times p(t_s)$$

$$W_4 \quad \varnothing \quad \varnothing \quad (1-p(t_r)) \times (1-p(t_s))$$

$$Pr(W_2) = p(t_r) - Pr(W_1) = p(t_r) - p(t_r) \times p(t_s) = p(t_r) \times (1 - p(t_s))$$

$$Pr(W_3) = p(t_s) - Pr(W_1) = p(t_s) - p(t_r) \times p(t_s) = p(t_s) \times (1 - p(t_r))$$

$$Pr(W_4) = 1 - Pr(W_1) - Pr(W_2) - Pr(W_3)$$

$$= 1 - p(t_r) - p(t_s) + p(t_r) \times p(t_s) = (1 - p(t_r)) \times (1 - p(t_s))$$

$$p_{V}(\{t_r, t_s\}) = 1 - Pr(W_4) = 1 - (1 - p(t_r)) \times (1 - p(t_s))$$

Let $pdb = (\mathbf{W}, Pr)$ be a probabilistic database.

- Exclusion is defined as in incomplete databases
- \Rightarrow Two tuples t_r and t_s are exclusive if

$$\nexists W \in \mathbf{W} : \{t_r, t_s\} \subseteq W$$

In this case, it holds that:

$$p_{\wedge}(\{t_r,t_s\})=0$$

and

$$p_{\vee}(\lbrace t_r,t_s\rbrace)=p(t_r)+p(t_s)$$

Exclusion:

$$\begin{aligned} W_1 & t_r & t_s & 0 \\ W_2 & t_r & \varnothing & p(t_r) \\ W_3 & \varnothing & t_s & p(t_s) \\ W_4 & \varnothing & \varnothing & 1-p(t_r)-p(t_s) \end{aligned}$$

$$Pr(W_2) = p(t_r)$$

$$Pr(W_3) = p(t_s)$$

$$Pr(W_4) = 1 - Pr(W_2) - Pr(W_3) = 1 - p(t_r) - p(t_s)$$

$$p_{\wedge}(\{t_r, t_s\}) = Pr(W_1) = 0$$

$$p_{\vee}(\{t_r, t_s\}) = Pr(W_2) + Pr(W_3) = p(t_r) + p(t_s)$$

Let $pdb = (\mathbf{W}, Pr)$ be a probabilistic database.

- Positive implication is defined as in incomplete databases
- \Rightarrow A tuple t_s is positively implicated by a **maybe-tuple** t_r if

$$\forall W \in \mathbf{W} : t_r \in W \Rightarrow t_s \in W$$

In this case, it holds that:

$$p_{\wedge}(\{t_r,t_s\})=p(t_r)$$

and

$$p_{\vee}(\{t_r,t_s\})=p(t_s)$$

Positive Implication:

$$W_1 \quad t_r \quad t_s \quad p(t_r)$$

$$W_2 \quad t_r \quad \varnothing \quad 0$$

$$W_3 \quad \varnothing \quad t_s \quad p(t_s) - p(t_r)$$

$$W_4 \quad \varnothing \quad \varnothing \quad 1 - p(t_s)$$

$$Pr(W_1) = p(t_r)$$

$$Pr(W_3) = p(t_s) - Pr(W_1) = p(t_s) - p(t_r)$$

$$Pr(W_4) = 1 - p(t_s)$$

$$p_{\wedge}(\{t_r, t_s\}) = Pr(W_1) = p(t_r)$$

$$p_{\vee}(\{t_r, t_s\}) = Pr(W_1) + Pr(W_3) = p(t_s)$$

Let $pdb = (\mathbf{W}, Pr)$ be a probabilistic database.

- Negative implication is defined as in incomplete databases
- \Rightarrow A tuple t_s is negatively implicated by a **maybe-tuple** t_r if

$$\forall W \in \mathbf{W} : t_r \notin W \Rightarrow t_s \in W$$

In this case, it holds that:

$$p_{\wedge}(\lbrace t_r,t_s\rbrace)=p(t_r)+p(t_s)-1$$

and

$$p_{\vee}(\{t_r,t_s\})=1$$

Fabian Panse

Negative Implication:

$$W_1$$
 t_r t_s $p(t_s)+p(t_r)-1$
 W_2 t_r \emptyset $1-p(t_s)$
 W_3 \emptyset t_s $1-p(t_r)$
 W_4 \emptyset \emptyset 0

$$Pr(W_3) = 1 - p(t_r)$$

$$Pr(W_1) = p(t_s) - Pr(W_3) = p(t_s) - (1 - p(t_r)) = p(t_s) + p(t_r) - 1$$

$$Pr(W_2) = p(t_r) - Pr(W_1) = p(t_r) - (p(t_s) + p(t_r) - 1) = 1 - p(t_s)$$

$$p_{\wedge}(\{t_r, t_s\}) = Pr(W_1) = p(t_r) + p(t_s) - 1$$

$$p_{\vee}(\{t_r, t_s\}) = 1 - Pr(W_4) = 1$$

Mutual Exclusion:

• The tuples of a set T are mutually exclusive if they are pairwise exclusive, i.e.

$$\forall T' \subseteq T, |T'| > 1 \colon \nexists W \in \mathbf{W} \colon T' \subseteq W$$

In this case, it holds that:

$$p_{\wedge}(T')=0$$
 and $p_{\vee}(T')=\sum_{t\in T'}p(t)$ for every subset $T'\subseteq T$ with $|T'|>1$.

Mutual Independence:

• The tuples of a set *T* are *mutually independent*, if

$$p_{\wedge}(T') = \prod_{t \in T'} p(t)$$
 for every subset $T' \subseteq T$.

• In this case, it holds that:

$$p_{\lor}(T') = 1 - \prod_{t \in T'} (1 - p(t))$$
 for every subset $T' \subseteq T$.

Mutual independence cannot be concluded from pairwise independence

$$p_{\wedge}(\{t_r, t_s\}) = p(t_r) \times p(t_s)$$

$$p_{\wedge}(\{t_r, t_u\}) = p(t_r) \times p(t_u) \quad \Rightarrow \quad p_{\wedge}(\{t_r, t_s, t_u\}) = p(t_r) \times p(t_s) \times p(t_u)$$

$$p_{\wedge}(\{t_s, t_u\}) = p(t_s) \times p(t_u)$$

Possible Worlds Semantics

Idea:

and

- A query is evaluated in each possible world separately
- Query result is another set of possible worlds
- Identical output worlds are combined (probabilities are summed up)

Definition: Let $pdb = (\mathbf{W}, Pr)$ be a probabilistic database and let Q be a conventional database query, the result of posing Q to pdb under the *possible worlds semantics* is the probabilistic database $Q(pdb) = (\mathbf{W}_Q, Pr_Q)$ where

$$\mathbf{W}_{Q} = \{ Q(W) \mid W \in \mathbf{W} \}$$

$$\forall W \in \mathbf{W}_{Q} \colon Pr_{Q}(W) = \sum_{W' \in \mathbf{W}, Q(W') = W} Pr(W')$$

Possible Worlds Semantics - Query principle

Step 1: Evaluate the query in each world separately

Step 2: Combine identical worlds

 W_{1} , Pr=0.5

<u>WK</u>	name	age
р1	J.Doe	27
p2	K.Smith	32
рЗ	J.Ho	28
р4	J.J.Doe	31

1//. Dr_0 /

VV.	VV ₂ , PI=U.4			
<u>W</u>	<u>K</u>	name	age	
p:	1	J.Doe	27	
p2	2	K.Smith	32	
p:	3	J.Ho	28	
p ₂	1	J.J.Doe	41	

 M_{\circ} Pr=0.1

<u>WK</u>	name	age	
p1	J.Doe	27	
p2	K.Smith	32	
р4	J.J.Doe	41	

Step 1: Evaluate the query in each world separately

Step 2: Combine identical worlds

 W_1 , Pr=0.5

<u>WK</u>	name	age
р1	J.Doe	27
p2	K.Smith	32
рЗ	J.Ho	28
р4	J.J.Doe	31

VV ₂ , Pr=0.4			
<u>WK</u>	name	age	
p1	J.Doe	27	
p2	K.Smith	32	
рЗ	J.Ho	28	
p4	J.J.Doe	41	

 W_{3} , Pr=0.1

<u>WK</u>	name	age
р1	J.Doe	27
p2	K.Smith	32
р4	J.J.Doe	41

Step 1: Evaluate the query in each world separately

Step 2: Combine identical worlds

W₁, Pr=0.5

<u>WK</u>	name	age
р1	J.Doe	27
рЗ	J.Ho	28

W2, Pr=0.4

VV2, 11-0.1		
<u>WK</u>	name	age
р1	J.Doe	27
рЗ	J.Ho	28
	<u>WK</u> p1	WK name p1 J.Doe p3 J.Ho

W₃, Pr=0.1

<u>WK</u>	name	age
р1	J.Doe	27

- **Step 1:** Evaluate the query in each world separately
- **Step 2:** Combine identical worlds

W₁, Pr=0.9

<u>WK</u>	name	age	
р1	J.Doe	27	
рЗ	J.Ho	28	

 W_2' . Pr=0.1

٠,		
<u>WK</u>	name	age
р1	J.Doe	27