

Cifrado simétrico con mochilas y asimétrico con mochila trampa.

• Dada $(a_1, a_2, ..., a_n)$ una mochila supercreciente y $m \in \mathbb{N}$. ¿Cómo encontrar x_i para que $m = \sum_{i=1}^n x_i a_i$?

• Dada $(a_1,a_2,...,a_n)$ una mochila supercreciente y $m\in\mathbb{N}$. ¿Cómo encontrar x_i para que $m=\sum_{i=1}^n x_i a_i$?

$$* j = n$$

• Dada $(a_1, a_2, ..., a_n)$ una mochila supercreciente y $m \in \mathbb{N}$. ¿Cómo encontrar x_i para que $m = \sum_{i=1}^n x_i a_i$?

$$* j = n$$

$$* x_j = \begin{cases} 1 & \text{si} & m \ge a_j \\ 0 & \text{si} & m < a_j \end{cases}$$

• Dada $(a_1, a_2, ..., a_n)$ una mochila supercreciente y $m \in \mathbb{N}$. ¿Cómo encontrar x_i para que $m = \sum_{i=1}^n x_i a_i$?

$$* j = n$$

$$* x_j = \begin{cases} 1 & \text{si} & m \ge a_j \\ 0 & \text{si} & m < a_j \end{cases}$$

$$* m = m - x_i a_i$$

• Dada $(a_1, a_2, ..., a_n)$ una mochila supercreciente y $m \in \mathbb{N}$. ¿Cómo encontrar x_i para que $m = \sum_{i=1}^n x_i a_i$?

$$* j = n$$

$$* x_j = \begin{cases} 1 & \text{si} & m \ge a_j \\ 0 & \text{si} & m < a_j \end{cases}$$

$$* m = m - x_j a_j$$

*
$$j = j - 1$$

• Dada $(a_1, a_2, ..., a_n)$ una mochila supercreciente y $m \in \mathbb{N}$. ¿Cómo encontrar x_i para que $m = \sum_{i=1}^n x_i a_i$?

$$* j = n$$

$$* x_j = \begin{cases} 1 & \text{si} & m \ge a_j \\ 0 & \text{si} & m < a_j \end{cases}$$

$$* m = m - x_j a_j$$

$$* j = j - 1$$

• Dada $(a_1, a_2, ..., a_n)$ una mochila supercreciente y $m \in \mathbb{N}$. ¿Cómo encontrar x_i para que $m = \sum_{i=1}^n x_i a_i$?

$$* j = n$$

$$* x_j = \begin{cases} 1 & \text{si} \quad m \ge a_j \\ 0 & \text{si} \quad m < a_j \end{cases}$$

*
$$m = m - x_j a_j$$

*
$$j = j - 1$$

- * ...
- * Si llegamos a m=0 hemos acabado y encontrado la solución.

• Dada $(a_1, a_2, ..., a_n)$ una mochila supercreciente y $m \in \mathbb{N}$. ¿Cómo encontrar x_i para que $m = \sum_{i=1}^n x_i a_i$?

Algoritmo:

$$* j = n$$

$$* x_j = \begin{cases} 1 & \text{si} & m \ge a_j \\ 0 & \text{si} & m < a_j \end{cases}$$

$$* m = m - x_j a_j$$

* ...

* i = i - 1

- * Si llegamos a m = 0 hemos acabado y encontrado la solución.
- * En caso contrario la solución no existe.

Código ASCII (extendido)

Α	65	0100 0001
В	66	0100 0010
С	67	0100 0011
D	68	0100 0100
Ε	69	0100 0101
F	70	0100 0110
G	71	0100 0111
Н	72	0100 1000
1	73	0100 1001
J	74	0100 1010
K	75	0100 1011
L	76	0100 1100
М	77	0100 1101

Ν	78	0100 1110
0	79	0100 1111
Р	80	0101 0000
Q	81	0101 0001
R	82	0101 0010
S	83	0101 0011
T	84	0101 0100
U	85	0101 0101
V	86	0101 0110
W	87	0101 0111
X	88	0101 1000
Y	89	0101 1001
Z	90	0101 1010

Cifrado

• Clave: Mochila de longitud *n*.

- Clave: Mochila de longitud n.
- Texto llano: En código ASCII en binario, utilizando 8 bits por caracter.

- Clave: Mochila de longitud *n*.
- Texto llano: En código ASCII en binario, utilizando 8 bits por caracter.
- Juntamos todos los bloques de 8 bits y volvemos a dividir en bloques de longitud n.

- Clave: Mochila de longitud *n*.
- Texto llano: En código ASCII en binario, utilizando 8 bits por caracter.
- Juntamos todos los bloques de 8 bits y volvemos a dividir en bloques de longitud *n*. Si es necesario añadimos 1s.

- Clave: Mochila de longitud *n*.
- Texto llano: En código ASCII en binario, utilizando 8 bits por caracter.
- Juntamos todos los bloques de 8 bits y volvemos a dividir en bloques de longitud *n*. Si es necesario añadimos 1s.
- Cada bloque implica una selección de elementos de la mochila, y por tanto un objetivo (valor) que se satisface con dichos elementos.

- Clave: Mochila de longitud *n*.
- Texto llano: En código ASCII en binario, utilizando 8 bits por caracter.
- Juntamos todos los bloques de 8 bits y volvemos a dividir en bloques de longitud *n*. Si es necesario añadimos 1s.
- Cada bloque implica una selección de elementos de la mochila, y por tanto un objetivo (valor) que se satisface con dichos elementos.
- Texto cifrado: Los distintos objetivos que se alcanzan con los bloques anteriores.

- Clave: Mochila de longitud n.
- Texto llano: En código ASCII en binario, utilizando 8 bits por caracter.
- Juntamos todos los bloques de 8 bits y volvemos a dividir en bloques de longitud n. Si es necesario añadimos 1s.
- Cada bloque implica una selección de elementos de la mochila, y por tanto un objetivo (valor) que se satisface con dichos elementos.
- Texto cifrado: Los distintos objetivos que se alcanzan con los bloques anteriores.
- Para realizar el proceso anterior la mochila no tiene porqué ser supercreciente.

Descifrado

• Clave: Mochila supercreciente de longitud n.

- Clave: Mochila supercreciente de longitud *n*.
- Texto cifrado: Una sucesión de objetivos alcanzables de la mochila anterior.

- Clave: Mochila supercreciente de longitud *n*.
- Texto cifrado: Una sucesión de objetivos alcanzables de la mochila anterior.
- Resolvemos la mochila para cada uno de los objetivos, obteniendo sucesiones de dígitos binarios de longitud n.

- Clave: Mochila supercreciente de longitud *n*.
- Texto cifrado: Una sucesión de objetivos alcanzables de la mochila anterior.
- Resolvemos la mochila para cada uno de los objetivos, obteniendo sucesiones de dígitos binarios de longitud n.
- Reestructuramos en bloques de longitud 8, eliminando caracteres extra si es que sobran.

- Clave: Mochila supercreciente de longitud *n*.
- Texto cifrado: Una sucesión de objetivos alcanzables de la mochila anterior.
- Resolvemos la mochila para cada uno de los objetivos, obteniendo sucesiones de dígitos binarios de longitud n.
- Reestructuramos en bloques de longitud 8, eliminando caracteres extra si es que sobran.
- Texto llano: Lo obtenemos mediante el código ASCII.

- Clave: Mochila supercreciente de longitud *n*.
- Texto cifrado: Una sucesión de objetivos alcanzables de la mochila anterior.
- Resolvemos la mochila para cada uno de los objetivos, obteniendo sucesiones de dígitos binarios de longitud n.
- Reestructuramos en bloques de longitud 8, eliminando caracteres extra si es que sobran.
- Texto llano: Lo obtenemos mediante el código ASCII.
- * Si la mochila no fuera supercreciente no podríamos asegurar unicidad, y por tanto el descifrado podría no ser posible.

- Clave: Mochila supercreciente de longitud *n*.
- Texto cifrado: Una sucesión de objetivos alcanzables de la mochila anterior.
- Resolvemos la mochila para cada uno de los objetivos, obteniendo sucesiones de dígitos binarios de longitud n.
- Reestructuramos en bloques de longitud 8, eliminando caracteres extra si es que sobran.
- Texto llano: Lo obtenemos mediante el código ASCII.
- * Si la mochila no fuera supercreciente no podríamos asegurar unicidad, y por tanto el descifrado podría no ser posible.
- Las mochilas supercrecientes son fáciles de revertir: no son funciones matemáticas de doble sentido.

Clave: (1, 4, 6, 13, 25)

Texto llano: HOLA

Clave: (1, 4, 6, 13, 25) Texto Ilano: HOLA

* Convertimos el texto llano a 8 bits mediante ASCII:

Clave: (1, 4, 6, 13, 25) Texto Ilano: HOLA

* Convertimos el texto llano a 8 bits mediante ASCII:

 $H
ightarrow 0100\,1000,\; O
ightarrow 0100\,1111,\; L
ightarrow 0100\,1100,\; A
ightarrow 0100\,0001$

Clave: (1, 4, 6, 13, 25) Texto Ilano: HOLA

* Convertimos el texto llano a 8 bits mediante ASCII: $H o 0100\,1000,\ O o 0100\,1111,\ L o 0100\,1100,\ A o 0100\,0001$

* Reagrupamos en bloques de 5 dígitos, añadiendo 1s si es necesario:

Clave: (1, 4, 6, 13, 25) Texto Ilano: HOLA

- * Convertimos el texto llano a 8 bits mediante ASCII: $H o 0100\,1000,\ O o 0100\,1111,\ L o 0100\,1100,\ A o 0100\,0001$
- * Reagrupamos en bloques de 5 dígitos, añadiendo 1s si es necesario: 01001 00001 00111 10100 11000 10000 01111

Clave: (1, 4, 6, 13, 25) Texto llano: HOLA

- * Convertimos el texto llano a 8 bits mediante ASCII: $H o 0100\,1000,\ O o 0100\,1111,\ L o 0100\,1100,\ A o 0100\,0001$
- * Reagrupamos en bloques de 5 dígitos, añadiendo 1s si es necesario: 01001 00001 00111 10100 11000 10000 01111
- * Sustituimos en la mochila

Clave: (1, 4, 6, 13, 25) Texto Ilano: HOLA

* Convertimos el texto llano a 8 bits mediante ASCII:

$$H
ightarrow 0100\,1000,\; O
ightarrow 0100\,1111,\; L
ightarrow 0100\,1100,\; A
ightarrow 0100\,0001$$

- * Reagrupamos en bloques de 5 dígitos, añadiendo 1s si es necesario: 01001 00001 00111 10100 11000 10000 01111
- * Sustituimos en la mochila

$$01001 \rightarrow 4 + 25 = 29$$

 $00001 \rightarrow 25$
 $00111 \rightarrow 6 + 13 + 25 = 44$
 $10100 \rightarrow 1 + 6 = 7$

$$\begin{array}{c} 11000 \rightarrow 1+4=5 \\ 10000 \rightarrow 1 \\ 01111 \rightarrow 4+6+13+25=48 \end{array}$$

Clave: (1, 4, 6, 13, 25) Texto Ilano: HOLA

* Convertimos el texto llano a 8 bits mediante ASCII:

$$H
ightarrow 0100\,1000,\; O
ightarrow 0100\,1111,\; L
ightarrow 0100\,1100,\; A
ightarrow 0100\,0001$$

- * Reagrupamos en bloques de 5 dígitos, añadiendo 1s si es necesario: 01001 00001 00111 10100 11000 10000 01111
- * Sustituimos en la mochila

$$\begin{array}{l} 01001 \rightarrow 4+25=29 \\ 00001 \rightarrow 25 \\ 00111 \rightarrow 6+13+25=44 \\ 10100 \rightarrow 1+6=7 \end{array}$$

$$\begin{array}{l} 11000 \rightarrow 1+4=5 \\ 10000 \rightarrow 1 \\ 01111 \rightarrow 4+6+13+25=48 \end{array}$$

Texto cifrado: 29 25 44 7 5 1 48

Texto cifrado: 29 25 44 7 5 1 48

Clave: (1, 4, 6, 13, 25)

Texto cifrado: 29 25 44 7 5 1 48

Clave: (1, 4, 6, 13, 25)

• Comprobamos que la mochila es supercreciente.

Texto cifrado: 29 25 44 7 5 1 48

Clave: (1, 4, 6, 13, 25)

- Comprobamos que la mochila es supercreciente.
- Para cada valor de la clave hallamos los elementos de la mochila que lo satisfacen:

$$29 \rightarrow 25 + 4 \rightarrow 01001$$

 $25 \rightarrow 25 \rightarrow 00001$
 $44 \rightarrow 25 + 13 + 6 \rightarrow 00111$
 $7 \rightarrow 6 + 1 \rightarrow 10100$

$$\begin{array}{c} 5 \to 4 + 1 \to 11000 \\ 1 \to 1 \to 10000 \\ 48 \to 25 + 13 + 6 + 4 \to 01111 \end{array}$$

Texto cifrado: 29 25 44 7 5 1 48 Clave: (1, 4, 6, 13, 25)

- Comprobamos que la mochila es supercreciente.
- Para cada valor de la clave hallamos los elementos de la mochila que lo satisfacen:

$$\begin{array}{l} 29 \to 25 + 4 \to 01001 \\ 25 \to 25 \to 00001 \\ 44 \to 25 + 13 + 6 \to 00111 \\ 7 \to 6 + 1 \to 10100 \end{array} \qquad \begin{array}{l} 5 \to 4 + 1 \to 11000 \\ 1 \to 1 \to 10000 \\ 48 \to 25 + 13 + 6 + 4 \to 01111 \end{array}$$

 Agrupamos en bloques de 8 dígitos (eliminando los que sobren en su caso):

0100 1000 0100 1111 0100 1100 0100 0001 111

Texto cifrado: 29 25 44 7 5 1 48 Clave: (1, 4, 6, 13, 25)

- Comprobamos que la mochila es supercreciente.
- Para cada valor de la clave hallamos los elementos de la mochila que lo satisfacen:

$$\begin{array}{l} 29 \to 25 + 4 \to 01001 \\ 25 \to 25 \to 00001 \\ 44 \to 25 + 13 + 6 \to 00111 \\ 7 \to 6 + 1 \to 10100 \end{array} \qquad \begin{array}{l} 5 \to 4 + 1 \to 11000 \\ 1 \to 1 \to 10000 \\ 48 \to 25 + 13 + 6 + 4 \to 01111 \end{array}$$

 Agrupamos en bloques de 8 dígitos (eliminando los que sobren en su caso):

0100 1000 0100 1111 0100 1100 0100 0001 111

Convertimos en caracteres según el código ASCII:

 $0100\,1000 \to H \quad 0100\,1111 \to O \quad 0100\,1100 \to L \quad 0100\,0001 \to A$

Texto cifrado: 29 25 44 7 5 1 48 Clave: (1, 4, 6, 13, 25)

- Comprobamos que la mochila es supercreciente.
- Para cada valor de la clave hallamos los elementos de la mochila que lo satisfacen:

$$\begin{array}{l} 29 \to 25 + 4 \to 01001 \\ 25 \to 25 \to 00001 \\ 44 \to 25 + 13 + 6 \to 00111 \\ 7 \to 6 + 1 \to 10100 \end{array} \qquad \begin{array}{l} 5 \to 4 + 1 \to 11000 \\ 1 \to 1 \to 10000 \\ 48 \to 25 + 13 + 6 + 4 \to 01111 \end{array}$$

 Agrupamos en bloques de 8 dígitos (eliminando los que sobren en su caso):

0100 1000 0100 1111 0100 1100 0100 0001 111

Convertimos en caracteres según el código ASCII:

 $0100\,1000 \to H$ $0100\,1111 \to O$ $0100\,1100 \to L$ $0100\,0001 \to A$

 En 1978 Ralph Merkle y Martin Hellman proponen un sistema de cifrado de clave pública o asimétrico denominado Mochila con Trampa.

- En 1978 Ralph Merkle y Martin Hellman proponen un sistema de cifrado de clave pública o asimétrico denominado Mochila con Trampa.
- Se basa en crear una mochila difícil a partir de una mochila supercreciente de forma que el cifrado se haga con la primera y el descifrado con la segunda.

- En 1978 Ralph Merkle y Martin Hellman proponen un sistema de cifrado de clave pública o asimétrico denominado Mochila con Trampa.
- Se basa en crear una mochila difícil a partir de una mochila supercreciente de forma que el cifrado se haga con la primera y el descifrado con la segunda.
- Se puede pasar de una mochila a la otra, y viceversa, usando una trampa.

- En 1978 Ralph Merkle y Martin Hellman proponen un sistema de cifrado de clave pública o asimétrico denominado Mochila con Trampa.
- Se basa en crear una mochila difícil a partir de una mochila supercreciente de forma que el cifrado se haga con la primera y el descifrado con la segunda.
- Se puede pasar de una mochila a la otra, y viceversa, usando una trampa.
- La trampa y la mochila supercreciente serán la clave secreta o privada y la mochila difícil la clave pública.

• Se necesita:

• Se necesita: una mochila supercreciente $(a_1, a_2, ..., a_n)$

• Se necesita: una mochila supercreciente $(a_1, a_2, ..., a_n)$, un número m mayor que la suma de los elementos de la mochila (para ello basta con que $m \ge 2a_n$)

• Se necesita: una mochila supercreciente $(a_1, a_2, ..., a_n)$, un número m mayor que la suma de los elementos de la mochila (para ello basta con que $m \ge 2a_n$), y un número natural w de modo que M.C.D.(m, w) = 1.

- Se necesita: una mochila supercreciente $(a_1, a_2, ..., a_n)$, un número m mayor que la suma de los elementos de la mochila (para ello basta con que $m \ge 2a_n$), y un número natural w de modo que M.C.D.(m, w) = 1.
- Se construye la nueva mochila $(b_1, b_2, ..., b_n)$ con $b_i = w a_i$ módulo m.

- Se necesita: una mochila supercreciente $(a_1, a_2, ..., a_n)$, un número m mayor que la suma de los elementos de la mochila (para ello basta con que $m \ge 2a_n$), y un número natural w de modo que M.C.D.(m, w) = 1.
- Se construye la nueva mochila $(b_1, b_2, ..., b_n)$ con $b_i = w a_i$ módulo m.
- Por ser M.C.D.(m, w) = 1, existe el inverso modular de w y se puede revertir el proceso.

Datos secretos: una mochila supercreciente $(a_1, a_2, ..., a_n)$, y dos números m y w con $m > \sum_{i=1}^n a_i$ y M.C.D.(m, w) = 1.

Datos secretos: una mochila supercreciente $(a_1, a_2, ..., a_n)$, y dos números m y w con $m > \sum_{i=1}^n a_i$ y M.C.D.(m, w) = 1.

Datos públicos: la nueva mochila $(b_1, b_2, ..., b_n)$ tal que $b_i = w a_i$ módulo m.

Datos secretos: una mochila supercreciente $(a_1, a_2, ..., a_n)$, y dos números m y w con $m > \sum_{i=1}^n a_i$ y M.C.D.(m, w) = 1.

Datos públicos: la nueva mochila $(b_1, b_2, ..., b_n)$ tal que $b_i = w a_i$ módulo m.

Datos secretos: una mochila supercreciente $(a_1, a_2, ..., a_n)$, y dos números m y w con $m > \sum_{i=1}^n a_i$ y M.C.D.(m, w) = 1.

Datos públicos: la nueva mochila $(b_1, b_2, ..., b_n)$ tal que $b_i = w a_i$ módulo m.

Cifrado

El cifrado se realiza con la mochila $(b_1, b_2, ..., b_n)$ del modo que se ha descrito antes.

Datos secretos: una mochila supercreciente $(a_1, a_2, ..., a_n)$, y dos números m y w con $m > \sum_{i=1}^n a_i$ y M.C.D.(m, w) = 1.

Datos públicos: la nueva mochila $(b_1, b_2, ..., b_n)$ tal que $b_i = w a_i$ módulo m.

Cifrado

El cifrado se realiza con la mochila $(b_1, b_2, ..., b_n)$ del modo que se ha descrito antes.

Descifrado

• El texto cifrado es un vector de objetivos de $(b_1, b_2, ..., b_n)$.

Datos secretos: una mochila supercreciente $(a_1, a_2, ..., a_n)$, y dos números m y w con $m > \sum_{i=1}^n a_i$ y M.C.D.(m, w) = 1.

Datos públicos: la nueva mochila $(b_1, b_2, ..., b_n)$ tal que $b_i = w a_i$ módulo m.

Cifrado

El cifrado se realiza con la mochila $(b_1, b_2, ..., b_n)$ del modo que se ha descrito antes.

Descifrado

- El texto cifrado es un vector de objetivos de $(b_1, b_2, ..., b_n)$.
- Se multiplican los elementos del vector por w^{-1} mod m.

Datos secretos: una mochila supercreciente $(a_1, a_2, ..., a_n)$, y dos números m y w con $m > \sum_{i=1}^n a_i$ y M.C.D.(m, w) = 1.

Datos públicos: la nueva mochila $(b_1, b_2, ..., b_n)$ tal que $b_i = w a_i$ módulo m.

Cifrado

El cifrado se realiza con la mochila $(b_1, b_2, ..., b_n)$ del modo que se ha descrito antes.

Descifrado

- El texto cifrado es un vector de objetivos de $(b_1, b_2, ..., b_n)$.
- Se multiplican los elementos del vector por w^{-1} mod m.
- Obtenemos un vector de objetivos de la mochila supercreciente $(a_1, a_2, ..., a_n)$.

Datos secretos: una mochila supercreciente $(a_1, a_2, ..., a_n)$, y dos números m y w con $m > \sum_{i=1}^n a_i$ y M.C.D.(m, w) = 1.

Datos públicos: la nueva mochila $(b_1, b_2, ..., b_n)$ tal que $b_i = w a_i$ módulo m.

Cifrado

El cifrado se realiza con la mochila $(b_1, b_2, ..., b_n)$ del modo que se ha descrito antes.

Descifrado

- El texto cifrado es un vector de objetivos de $(b_1, b_2, ..., b_n)$.
- Se multiplican los elementos del vector por w^{-1} mod m.
- Obtenemos un vector de objetivos de la mochila supercreciente $(a_1, a_2, ..., a_n)$.
- Se descifra con la mochila supercreciente y los objetivos nuevos.

Mochila supercreciente: (3, 5, 11, 21)

Módulo: m = 49, elemento multiplicativo: w = 32

```
Mochila supercreciente: (3,5,11,21)
Módulo: m=49, elemento multiplicativo: w=32
Mochila difícil: (47,13,9,35)
```

```
Mochila supercreciente: (3,5,11,21)
```

Módulo: m = 49, elemento multiplicativo: w = 32

Mochila difícil: (47, 13, 9, 35)

Texto llano: SOL

```
Mochila supercreciente: (3,5,11,21)

Módulo: m = 49, elemento multiplicativo: w = 32

Mochila difícil: (47,13,9,35)

Texto llano: SOL
```

Escribimos el texto llano en código ASCII:

```
S \rightarrow 0101\,0011 \quad O \rightarrow 0110\,1111 \quad L \rightarrow 0110\,1100
```

```
Mochila supercreciente: (3,5,11,21)
Módulo: m=49, elemento multiplicativo: w=32
Mochila difícil: (47,13,9,35)
Texto llano: SOL
```

Escribimos el texto llano en código ASCII:

$$S \to 0101\,0011 \quad O \to 0110\,1111 \quad L \to 0110\,1100$$

• Agrupamos en bloques de tamaño 4:

```
0101 0011 0110 1111 0110 1100
```

Mochila supercreciente: (3,5,11,21)Módulo: m = 49, elemento multiplicativo: w = 32Mochila difícil: (47,13,9,35)Texto llano: SOI

• Escribimos el texto llano en código ASCII:

$$S \rightarrow 0101\,0011 \quad O \rightarrow 0110\,1111 \quad L \rightarrow 0110\,1100$$

• Agrupamos en bloques de tamaño 4:

Evaluamos cada bloque en la mochila difícil:

$$0101 \rightarrow 13 + 35 = 48$$
 $1111 \rightarrow 47 + 13 + 9 + 35 = 104$ $0011 \rightarrow 9 + 35 = 44$ $0110 \rightarrow 13 + 9 = 22$ $1100 \rightarrow 47 + 13 = 60$

Mochila supercreciente: (3,5,11,21)

Módulo: m = 49, elemento multiplicativo: w = 32

Mochila difícil: (47, 13, 9, 35)

Texto llano: SOL

Escribimos el texto llano en código ASCII:

$$S \rightarrow 0101\,0011 \quad O \rightarrow 0110\,1111 \quad L \rightarrow 0110\,1100$$

• Agrupamos en bloques de tamaño 4:

Evaluamos cada bloque en la mochila difícil:

$$0101 \rightarrow 13 + 35 = 48$$
 $1111 \rightarrow 47 + 13 + 9 + 35 = 104$ $0011 \rightarrow 9 + 35 = 44$ $0110 \rightarrow 13 + 9 = 22$ $1100 \rightarrow 47 + 13 = 60$

Texto cifrado: 48 44 22 104 22 60


```
Mochila supercreciente: (3,5,11,21)
Módulo: m=49, elemento multiplicativo: w=32
```

Mochila difícil: (47, 13, 9, 35)

```
Mochila supercreciente: (3, 5, 11, 21)
```

Módulo: m = 49, elemento multiplicativo: w = 32

Mochila difícil: (47, 13, 9, 35) Texto cifrado: 48 44 22 104 22 60

```
Mochila supercreciente: (3, 5, 11, 21)
```

Módulo: m = 49, elemento multiplicativo: w = 32

Mochila difícil: (47, 13, 9, 35) Texto cifrado: 48 44 22 104 22 60

• Calculamos el inverso de w = 32 módulo m = 49

Mochila supercreciente: (3,5,11,21)Módulo: m=49, elemento multiplicativo: w=32Mochila difícil: (47,13,9,35)Texto cifrado: 48,44,22,104,22,60

• Calculamos el inverso de w = 32 módulo m = 49: $w^{-1} = 23$.

```
Mochila supercreciente: (3,5,11,21)

Módulo: m=49, elemento multiplicativo: w=32

Mochila difícil: (47,13,9,35)

Texto cifrado: 48 44 22 104 22 60
```

- Calculamos el inverso de w = 32 módulo m = 49: $w^{-1} = 23$.
- Multiplicamos el texto cifrado por $w^{-1} = 23$ módulo m = 49:

```
Mochila supercreciente: (3,5,11,21)
Módulo: m=49, elemento multiplicativo: w=32
Mochila difícil: (47,13,9,35)
Texto cifrado: 48 44 22 104 22 60
```

- Calculamos el inverso de w = 32 módulo m = 49: $w^{-1} = 23$.
- Multiplicamos el texto cifrado por $w^{-1} = 23$ módulo m = 49:

```
Mochila supercreciente: (3,5,11,21)
Módulo: m=49, elemento multiplicativo: w=32
Mochila difícil: (47,13,9,35)
Texto cifrado: 48 44 22 104 22 60
```

- Calculamos el inverso de w = 32 módulo m = 49: $w^{-1} = 23$.
- Multiplicamos el texto cifrado por $w^{-1} = 23$ módulo m = 49: 26 32 16 40 16 8.
- Resolvemos para cada uno de estos valores el problema de la mochila supercreciente:

Mochila supercreciente: (3,5,11,21)Módulo: m = 49, elemento multiplicativo: w = 32Mochila difícil: (47,13,9,35)Texto cifrado: 48,44,22,104,22,60

- Calculamos el inverso de w = 32 módulo m = 49: $w^{-1} = 23$.
- Multiplicamos el texto cifrado por $w^{-1} = 23$ módulo m = 49: 26.32 16.40 16.8

 Resolvemos para cada uno de estos valores el problema de la mochila supercreciente:

Mochila supercreciente: (3,5,11,21)Módulo: m=49, elemento multiplicativo: w=32Mochila difícil: (47,13,9,35)Texto cifrado: 48 44 22 104 22 60

- Calculamos el inverso de w = 32 módulo m = 49: $w^{-1} = 23$.
- Multiplicamos el texto cifrado por $w^{-1} = 23$ módulo m = 49: 26 32 16 40 16 8
- Resolvemos para cada uno de estos valores el problema de la mochila supercreciente:

$$\begin{array}{lll} 26 \to 21 + 5 \to 0101 & 40 \to 21 + 11 + 5 + 3 \to 1111 \\ 32 \to 21 + 11 \to 0011 & 16 \to 11 + 5 \to 0110 \\ 16 \to 11 + 5 \to 0110 & 8 \to 3 + 5 \to 1100 \end{array}$$

• Agrupamos en bloques de 8 bits y aplicamos el código ASCII:

Ejemplo: descifrado

Mochila supercreciente: (3,5,11,21)Módulo: m=49, elemento multiplicativo: w=32Mochila difícil: (47,13,9,35)Texto cifrado: 48,44,22,104,22,60

- Calculamos el inverso de w = 32 módulo m = 49: $w^{-1} = 23$.
- Multiplicamos el texto cifrado por $w^{-1} = 23$ módulo m = 49: 26 32 16 40 16 8

 Resolvemos para cada uno de estos valores el problema de la mochila supercreciente:

$$\begin{array}{lll} 26 \to 21 + 5 \to 0101 & 40 \to 21 + 11 + 5 + 3 \to 1111 \\ 32 \to 21 + 11 \to 0011 & 16 \to 11 + 5 \to 0110 \\ 16 \to 11 + 5 \to 0110 & 8 \to 3 + 5 \to 1100 \end{array}$$

• Agrupamos en bloques de 8 bits y aplicamos el código ASCII:

$$0101\,0011 \rightarrow S$$
 $0110\,11111 \rightarrow O$ $0110\,1100 \rightarrow L$

Ejemplo: descifrado

Mochila supercreciente: (3,5,11,21)

Módulo: m = 49, elemento multiplicativo: w = 32

Mochila difícil: (47, 13, 9, 35) Texto cifrado: 48 44 22 104 22 60

- Calculamos el inverso de w = 32 módulo m = 49: $w^{-1} = 23$.
- Multiplicamos el texto cifrado por $w^{-1} = 23$ módulo m = 49:

26 32 16 40 16 8.

 Resolvemos para cada uno de estos valores el problema de la mochila supercreciente:

$$\begin{array}{lll} 26 \to 21 + 5 \to 0101 & 40 \to 21 + 11 + 5 + 3 \to 1111 \\ 32 \to 21 + 11 \to 0011 & 16 \to 11 + 5 \to 0110 \\ 16 \to 11 + 5 \to 0110 & 8 \to 3 + 5 \to 1100 \end{array}$$

• Agrupamos en bloques de 8 bits y aplicamos el código ASCII:

$$0101\,0011 \rightarrow 5$$
 $0110\,11111 \rightarrow 0$ $0110\,1100 \rightarrow L$

Texto llano: SOL

 Merkle y Hellman propusieron los siguientes parámetros en la elección de la mochila:

- Merkle y Hellman propusieron los siguientes parámetros en la elección de la mochila:
- * Tamaño de la mochila: $n \ge 100$.

- Merkle y Hellman propusieron los siguientes parámetros en la elección de la mochila:
- * Tamaño de la mochila: $n \ge 100$.
- * Módulo: $m \in [2^{2n+1} + 1, 2^{2n+2} 1]$. (m tiene (2n+2) bits).

- Merkle y Hellman propusieron los siguientes parámetros en la elección de la mochila:
- * Tamaño de la mochila: $n \ge 100$.
- * Módulo: $m \in [2^{2n+1} + 1, 2^{2n+2} 1]$. (m tiene (2n + 2) bits).
- * Mochila supercreciente: $a_i \in [(2^{i-1} 1)2^n + 1, 2^{i-1}2^n].$

- Merkle y Hellman propusieron los siguientes parámetros en la elección de la mochila:
- * Tamaño de la mochila: $n \ge 100$.
- * Módulo: $m \in [2^{2n+1} + 1, 2^{2n+2} 1]$. (m tiene (2n + 2) bits).
- * Mochila supercreciente: $a_i \in [(2^{i-1} 1)2^n + 1, 2^{i-1}2^n].$
- * Elegimos $x \in [2, m-2]$ y tomamos $w = \frac{x}{\text{M.C.D.}(m, x)}$.

 En 1982 Adi Shamir y Richard Zippel encontraron debilidades en el método de la Mochila Trampa siempre y cuando:

- En 1982 Adi Shamir y Richard Zippel encontraron debilidades en el método de la Mochila Trampa siempre y cuando:
 - 1. Se conozca el módulo *m* (o se pueda deducir).

- En 1982 Adi Shamir y Richard Zippel encontraron debilidades en el método de la Mochila Trampa siempre y cuando:
 - 1. Se conozca el módulo *m* (o se pueda deducir).
 - Los dos primeros elementos b₁ y b₂ de la mochila difícil se correspondan con los primeros de la mochila supercreciente a₁ y a₂ y sean primos con m.

- En 1982 Adi Shamir y Richard Zippel encontraron debilidades en el método de la Mochila Trampa siempre y cuando:
 - 1. Se conozca el módulo *m* (o se pueda deducir).
 - Los dos primeros elementos b₁ y b₂ de la mochila difícil se correspondan con los primeros de la mochila supercreciente a₁ y a₂ y sean primos con m.
- En este caso podremos encontrar w^{-1} y por tanto generar la mochila supercreciente a partir de la difícil.

- Es necesario que:
- 1. Se conozca el módulo *m*.
- 2. b_1 y b_2 se correspondan con a_1 y a_2 (y sean primos con m).

- Es necesario que:
- 1. Se conozca el módulo *m*.
- 2. b_1 y b_2 se correspondan con a_1 y a_2 (y sean primos con m).
- 3. Los dos primeros elementos deben ser mucho más pequeños que el módulo. Por ejemplo de 100 y 101 bits, teniendo *m* 202 bits.

- Es necesario que:
- 1. Se conozca el módulo *m*.
- 2. b_1 y b_2 se correspondan con a_1 y a_2 (y sean primos con m).
- 3. Los dos primeros elementos deben ser mucho más pequeños que el módulo. Por ejemplo de 100 y 101 bits, teniendo *m* 202 bits.
 - * Esto se cumple, por ejemplo, con los valores de diseño.

- Es necesario que:
- 1. Se conozca el módulo *m*.
- 2. b_1 y b_2 se correspondan con a_1 y a_2 (y sean primos con m).
- 3. Los dos primeros elementos deben ser mucho más pequeños que el módulo. Por ejemplo de 100 y 101 bits, teniendo *m* 202 bits.
 - * Esto se cumple, por ejemplo, con los valores de diseño.
- El objetivo es hallar w para poder generar la mochila supercreciente.

- Es necesario que:
- 1. Se conozca el módulo m.
- 2. b_1 y b_2 se correspondan con a_1 y a_2 (y sean primos con m).
- 3. Los dos primeros elementos deben ser mucho más pequeños que el módulo. Por ejemplo de 100 y 101 bits, teniendo *m* 202 bits.
 - * Esto se cumple, por ejemplo, con los valores de diseño.
- El objetivo es hallar w para poder generar la mochila supercreciente.

Criptoanálisis

* Calculamos $q = b_1 * b_2^{-1} \mod m$.

- Es necesario que:
- 1. Se conozca el módulo *m*.
- 2. b_1 y b_2 se correspondan con a_1 y a_2 (y sean primos con m).
- 3. Los dos primeros elementos deben ser mucho más pequeños que el módulo. Por ejemplo de 100 y 101 bits, teniendo *m* 202 bits.
 - * Esto se cumple, por ejemplo, con los valores de diseño.
- El objetivo es hallar w para poder generar la mochila supercreciente.

Criptoanálisis

* Calculamos $q = b_1 * b_2^{-1} \mod m$. Para esto es importante que M.C.D. $(b_2, m) = 1$.

- Es necesario que:
- 1. Se conozca el módulo *m*.
- 2. b_1 y b_2 se correspondan con a_1 y a_2 (y sean primos con m).
- 3. Los dos primeros elementos deben ser mucho más pequeños que el módulo. Por ejemplo de 100 y 101 bits, teniendo *m* 202 bits.
 - * Esto se cumple, por ejemplo, con los valores de diseño.
 - El objetivo es hallar w para poder generar la mochila supercreciente.

- * Calculamos $q = b_1 * b_2^{-1} \mod m$. Para esto es importante que M.C.D. $(b_2, m) = 1$.
- * Como $b_i = w \, a_i$, si M.C.D. $(a_2, m) = 1$ se tiene $b_1 * b_2^{-1} = a_1 * a_2^{-1}$. Luego $a_1 = q \, a_2 \mod m$ es un múltiplo de q.

- Es necesario que:
- 1. Se conozca el módulo *m*.
- 2. b_1 y b_2 se correspondan con a_1 y a_2 (y sean primos con m).
- 3. Los dos primeros elementos deben ser mucho más pequeños que el módulo. Por ejemplo de 100 y 101 bits, teniendo *m* 202 bits.
 - * Esto se cumple, por ejemplo, con los valores de diseño.
 - El objetivo es hallar w para poder generar la mochila supercreciente.

- * Calculamos $q = b_1 * b_2^{-1} \mod m$. Para esto es importante que M.C.D. $(b_2, m) = 1$.
- * Como $b_i = w \, a_i$, si M.C.D. $(a_2, m) = 1$ se tiene $b_1 * b_2^{-1} = a_1 * a_2^{-1}$. Luego $a_1 = q \, a_2 \mod m$ es un múltiplo de q.
- * Calculamos los primeros 2^{n+1} múltiplos modulares de q, (con n el número de elementos de la mochila).

Criptoanálisis

* El candidato para a₁ será el valor más pequeño de la lista anterior.

- * El candidato para a₁ será el valor más pequeño de la lista anterior.
- * Calculamos $w = b_1 * a_1^{-1} \mod m$.

- * El candidato para a_1 será el valor más pequeño de la lista anterior.
- * Calculamos $w = b_1 * a_1^{-1} \mod m$. Para ello es necesario que M.C.D. $(a_1, m) = 1$.

- * El candidato para a₁ será el valor más pequeño de la lista anterior.
- * Calculamos $w = b_1 * a_1^{-1} \mod m$. Para ello es necesario que M.C.D. $(a_1, m) = 1$.
- * Calculamos w^{-1} como el inverso de w mod m y calculamos los elementos $a_i = w^{-1} b_i \mod m$.

- * El candidato para a₁ será el valor más pequeño de la lista anterior.
- * Calculamos $w = b_1 * a_1^{-1} \mod m$. Para ello es necesario que M.C.D. $(a_1, m) = 1$.
- * Calculamos w^{-1} como el inverso de w mod m y calculamos los elementos $a_i = w^{-1} b_i \mod m$.
- * Si el resultado es una mochila supercreciente hemos acabado.

- * El candidato para a₁ será el valor más pequeño de la lista anterior.
- * Calculamos $w = b_1 * a_1^{-1} \mod m$. Para ello es necesario que M.C.D. $(a_1, m) = 1$.
- * Calculamos w^{-1} como el inverso de w mod m y calculamos los elementos $a_i = w^{-1} b_i \mod m$.
- * Si el resultado es una mochila supercreciente hemos acabado.
- * Si no, probamos con el siguiente valor más pequeño.

- * El candidato para a₁ será el valor más pequeño de la lista anterior.
- * Calculamos $w = b_1 * a_1^{-1} \mod m$. Para ello es necesario que M.C.D. $(a_1, m) = 1$.
- * Calculamos w^{-1} como el inverso de w mod m y calculamos los elementos $a_i = w^{-1} b_i \mod m$.
- * Si el resultado es una mochila supercreciente hemos acabado.
- * Si no, probamos con el siguiente valor más pequeño.
- * Si recorremos toda la lista y no obtenemos ninguna mochila supercreciente volvemos a calcular los siguientes 2ⁿ⁺¹ múltiplos de q módulo m, y así sucesivamente...

- * El candidato para a₁ será el valor más pequeño de la lista anterior.
- * Calculamos $w = b_1 * a_1^{-1} \mod m$. Para ello es necesario que M.C.D. $(a_1, m) = 1$.
- * Calculamos w^{-1} como el inverso de w mod m y calculamos los elementos $a_i = w^{-1} b_i \mod m$.
- * Si el resultado es una mochila supercreciente hemos acabado.
- * Si no, probamos con el siguiente valor más pequeño.
- Si recorremos toda la lista y no obtenemos ninguna mochila supercreciente volvemos a calcular los siguientes 2ⁿ⁺¹ múltiplos de q módulo m, y así sucesivamente...
- Normalmente el ataque prospera con pocos pasos.


```
Clave pública (mochila difícil): (b_1, b_2, b_3, b_4, b_5) = (3241, 572, 2163, 1256, 3531)

Módulo: m = 4089
```

```
Clave pública (mochila difícil): (b_1, b_2, b_3, b_4, b_5) = (3241, 572, 2163, 1256, 3531)

Módulo: m = 4089
```

• Hallamos el inverso de $b_2 \mod m$ y $q = b_1 b_2^{-1} \mod m$:

Clave pública (mochila difícil):
$$(b_1, b_2, b_3, b_4, b_5) = (3241, 572, 2163, 1256, 3531)$$

Módulo: $m = 4089$

• Hallamos el inverso de $b_2 \mod m$ y $q = b_1 b_2^{-1} \mod m$:

$$b_2^{-1} = 2309, \qquad q = 599.$$

Clave pública (mochila difícil):
$$(b_1, b_2, b_3, b_4, b_5) = (3241, 572, 2163, 1256, 3531)$$

Módulo: $m = 4089$

• Hallamos el inverso de $b_2 \mod m$ y $q = b_1 b_2^{-1} \mod m$:

$$b_2^{-1} = 2309, \qquad q = 599.$$

• Como n = 5, hallamos $\{q, 2q, ..., 2^{5+1}q\}$ mod m:

Clave pública (mochila difícil): $(b_1, b_2, b_3, b_4, b_5) = (3241, 572, 2163, 1256, 3531)$ Módulo: m = 4089

• Hallamos el inverso de b_2 mod m y $q = b_1b_2^{-1}$ mod m:

$$b_2^{-1} = 2309, \qquad q = 599.$$

• Como n = 5, hallamos {q, 2q, ..., 2⁵⁺¹q} mod m: {599, 1198, 1797, 2396, 2995, 3594, 104, 703, 1302, 1901, 2500, 3099, 3698, 208, 807, 1406, 2005, 2604, 3203, 3802, 312, 911, 1510, 2109, 2708, 3307, 3906, 416, 1015, 1614, 2213, 2812, 3411, 4010, 520, 1119, 1718, 2317, 2916, 3515, 25, 624, 1223, 1822, 2421, 3020, 3619, 129, 728, 1327, 1926, 2525, 3124, 3723, 233, 832, 1431, 2030, 2629, 3228, 3827, 337, 936, 1535}

```
Clave pública (mochila difícil): (b_1, b_2, b_3, b_4, b_5) = (3241, 572, 2163, 1256, 3531)

Módulo: m = 4089
```

• Hallamos el inverso de $b_2 \mod m$ y $q = b_1 b_2^{-1} \mod m$:

$$b_2^{-1} = 2309, \qquad q = 599.$$

• Como n = 5, hallamos {q, 2q, ..., 2⁵⁺¹q} mod m: {599, 1198, 1797, 2396, 2995, 3594, 104, 703, 1302, 1901, 2500, 3099, 3698, 208, 807, 1406, 2005, 2604, 3203, 3802, 312, 911, 1510, 2109, 2708, 3307, 3906, 416, 1015, 1614, 2213, 2812, 3411, 4010, 520, 1119, 1718, 2317, 2916, 3515, 25, 624, 1223, 1822, 2421, 3020, 3619, 129, 728, 1327, 1926, 2525, 3124, 3723, 233, 832, 1431, 2030, 2629, 3228, 3827, 337, 936, 1535}

```
Clave pública (mochila difícil): (b_1, b_2, b_3, b_4, b_5) = (3241, 572, 2163, 1256, 3531)

Módulo: m = 4089
```

• Tomamos como candidato $a_1 = 25$.

```
Clave pública (mochila difícil): (b_1, b_2, b_3, b_4, b_5) = (3241, 572, 2163, 1256, 3531)

Módulo: m = 4089
```

- Tomamos como candidato $a_1 = 25$.
- El factor de multiplicación sería $w = b_1 a_1^{-1} \mod m$:

Clave pública (mochila difícil):
$$(b_1, b_2, b_3, b_4, b_5) = (3241, 572, 2163, 1256, 3531)$$

Módulo: $m = 4089$

- Tomamos como candidato $a_1 = 25$.
- El factor de multiplicación sería $w = b_1 a_1^{-1} \mod m$:

$$a_1^{-1} = 2617$$
, $w = 3241 \cdot 2617 \mod 4089 = 1111$.

Clave pública (mochila difícil):
$$(b_1, b_2, b_3, b_4, b_5) = (3241, 572, 2163, 1256, 3531)$$

Módulo: $m = 4089$

- Tomamos como candidato $a_1 = 25$.
- El factor de multiplicación sería $w = b_1 a_1^{-1} \mod m$:

$$a_1^{-1} = 2617, \qquad w = 3241 \cdot 2617 \mod 4089 = 1111.$$

• Por tanto, $w^{-1} = 622 \mod 4089$.

Clave pública (mochila difícil):
$$(b_1, b_2, b_3, b_4, b_5) = (3241, 572, 2163, 1256, 3531)$$

Módulo: $m = 4089$

- Tomamos como candidato $a_1 = 25$.
- El factor de multiplicación sería $w = b_1 a_1^{-1} \mod m$:

$$a_1^{-1} = 2617, \qquad w = 3241 \cdot 2617 \mod 4089 = 1111.$$

- Por tanto, $w^{-1} = 622 \mod 4089$.
- Hallamos el resto de valores a ver si obtenemos una mochila supercreciente, $a_i = w^{-1}b_i \mod m$:

$$a_2 = 622 \cdot 572 \mod 4089 = 41$$

 $a_3 = 622 \cdot 2163 \mod 4089 = 105$
 $a_4 = 622 \cdot 1256 \mod 4089 = 233$
 $a_5 = 622 \cdot 3531 \mod 4089 = 489$

Clave pública (mochila difícil):
$$(b_1, b_2, b_3, b_4, b_5) = (3241, 572, 2163, 1256, 3531)$$

Módulo: $m = 4089$

- Tomamos como candidato $a_1 = 25$.
- El factor de multiplicación sería $w = b_1 a_1^{-1} \mod m$:

$$a_1^{-1} = 2617, \qquad w = 3241 \cdot 2617 \mod 4089 = 1111.$$

- Por tanto, $w^{-1} = 622 \mod 4089$.
- Hallamos el resto de valores a ver si obtenemos una mochila supercreciente, $a_i = w^{-1}b_i$ mod m:

$$a_2 = 622 \cdot 572 \mod 4089 = 41$$

 $a_3 = 622 \cdot 2163 \mod 4089 = 105$
 $a_4 = 622 \cdot 1256 \mod 4089 = 233$
 $a_5 = 622 \cdot 3531 \mod 4089 = 489$

• Comprobamos que es supercreciente (se puede hacer paso a paso).

Clave pública (mochila difícil):
$$(b_1, b_2, b_3, b_4, b_5) = (3241, 572, 2163, 1256, 3531)$$

Módulo: $m = 4089$

- Tomamos como candidato $a_1 = 25$.
- El factor de multiplicación sería $w = b_1 a_1^{-1} \mod m$:

$$a_1^{-1} = 2617, \qquad w = 3241 \cdot 2617 \mod 4089 = 1111.$$

- Por tanto, $w^{-1} = 622 \mod 4089$.
- Hallamos el resto de valores a ver si obtenemos una mochila supercreciente, $a_i = w^{-1}b_i$ mod m:

$$a_2 = 622 \cdot 572 \mod 4089 = 41$$

 $a_3 = 622 \cdot 2163 \mod 4089 = 105$
 $a_4 = 622 \cdot 1256 \mod 4089 = 233$
 $a_5 = 622 \cdot 3531 \mod 4089 = 489$

• Comprobamos que es supercreciente (se puede hacer paso a paso).

Clave privada (mochila supercreciente):

$$(a_1, a_2, a_3, a_4, a_5) = (25, 41, 105, 233, 489)$$