Decomposition of a Vector into Given Vectors

Two Dimensional Case

Theorem 1 Any vector in a plane can be decomposed into two given non-collinear vectors in the same plane. The coefficients of the decomposition are unique.

Proof

Let \vec{a} and \vec{b} be the given non-collinear vectors First lets prove that any vector \vec{p} can be decomposed into vectors \vec{a} and \vec{b} (Figure 1). There are two possible cases:

1)

Vector \vec{p} is collinear to either \vec{a} and \vec{b} (Let's take \vec{b} as an example). In this case, we can express vector \vec{p} in the form $\vec{p} = y\vec{b}$, where y is some number. Hence: $\vec{p} = 0 \cdot \vec{a} + y \cdot \vec{b}$. Vector p is decomposed into \vec{a} and \vec{b} .

2) Vector \vec{p} is not collinear to \vec{a} or \vec{b} . Let's mark some point O and draw the following vectors from it: $\overrightarrow{OA} = \vec{a}$, $\overrightarrow{OB} = \vec{b}$, $\overrightarrow{OP} = \vec{p}$ (Figure 2). Through point P draw a line parallel to line OB, and label the intersection of this line with line OA as A_1 . From here we get: $\vec{p} = \overrightarrow{OA_1} + \overrightarrow{A_1P}$. Vectors $\overrightarrow{OA_1}$ and $\overrightarrow{A_1P}$ are respectively collinear to vectors \vec{a} and \vec{b} . This means that there exist numbers x and y such that: $\overrightarrow{OA_1} = x\vec{a}$, $\overrightarrow{A_1P} = y\vec{b}$. Hence: $\vec{p} = x\vec{a} + y\vec{b}$. This means that \vec{p} was decomposed into \vec{a} and \vec{b} .

Suppose that along with the decomposition $\vec{p} = x\vec{a} + y\vec{b}$ there is some other decomposition: $\vec{p} = x_1\vec{a} + y_1\vec{b}$. Subtracting one equation from the other we get:

$$\vec{0} = (x - x_1)\vec{a} + (y - y_1)\vec{b}$$

This is equality is true only in the case where coefficients: $x - x_1$ and $y - y_1$ are equal to zero.

If we suppose that $x - x_1 \neq 0$ then from the derived equality we get:

$$\vec{a} = \vec{a} = -\frac{y - y_1}{x - x_1} \vec{b}$$

This means that \vec{a} is collinear to \vec{b} , which contradicts our initial conditions. Hence: $x - x_1 = 0$ and $y - y_1 = 0$. From here we get: $x = x_1$ and $y = y_1$. This means that the coefficients of decomposition of \vec{p} are determined in a unique way.

Figure 1

Figure 2

Three Dimensional Case

Theorem 2 Any vector can be decomposed into three given non-coplanar vectors. The coefficients of the decomposition are determined in a unique way.

Proof

Let \vec{a} , \vec{b} and \vec{c} be the given non-coplanar vectors. First let's prove that any vector \vec{p} can be expressed in the following form:

$$\vec{p} = x\vec{a} + y\vec{b} + z\vec{c}$$

Let's mark an arbitrary point O and draw the following vectors starting from it (Figure 3):

$$\overrightarrow{OA} = \overrightarrow{a}, \overrightarrow{OB} = \overrightarrow{b}, \overrightarrow{OC} = \overrightarrow{c}, \overrightarrow{OP} = \overrightarrow{p}.$$

Through point P draw a line parallel to line OC and mark the intersection of this line with plan AOB as P_1 . If $P \in OC$, then choose O as P_1). From P_1 draw a line parallel to line OB. Label the point of intersection of this line with line OA as P_2 (if $P_1 \in OB$ then choose point O as point P_2). We get:

$$\overrightarrow{OP} = \overrightarrow{OP_2} + \overrightarrow{P_2P_1} + \overrightarrow{P_1P}$$

Vectors: $\overrightarrow{OP_2}$ and \overrightarrow{OA} , $\overrightarrow{P_2P_1}$ and \overrightarrow{OB} , $\overrightarrow{P_1P}$ and \overrightarrow{OC} are collinear which means that there exist numbers x,y,z such that: $\overrightarrow{OP_2}=x\cdot\overrightarrow{OA}$, $\overrightarrow{P_2P_1}=y\cdot\overrightarrow{OB}+z\cdot\overrightarrow{OC}$.

Recalling that $\overrightarrow{OA} = \vec{a}$, $\overrightarrow{OB} = \vec{b}$, $\overrightarrow{OC} = \vec{c}$, $\overrightarrow{OP} = \vec{p}$, we get the above equation is of the required form:

$$\vec{p} = x \cdot \vec{a} + y \cdot \vec{b} + z \cdot \vec{c}$$

Now let's prove that the coefficients of this decomposition are unique.

Suppose that with the decomposition above there is some other decomposition:

$$\vec{p} = x_1 \vec{a} + y_1 \vec{b} + z_1 \vec{c}$$

Subtracting these two decompositions we get: $\vec{0} = (x - x_1)\vec{a} + (y - y_1)\vec{b} + (z - z_1)\vec{c}$

This equality is true only if:

$$x - x_1 = 0$$
, $y - y_1 = 0$; $z - z_1 = 0$.

If we suppose that for example: $z - z_1 \neq 0$ then from the above equality we get that:

$$(z - z_1)\vec{c} = -(x - x_1)\vec{a} - (y - y_1)\vec{b}$$
$$\vec{c} = -\frac{x - x_1}{z - z_1}\vec{a} - \frac{y - y_1}{z - z_1}\vec{b}$$

This would mean that \vec{a} , \vec{b} and \vec{c} are coplanar, but this contradicts our original suppositions. Meaning that the assumption that $z - z_1 \neq 0$ is incorrect. We get:

$$x = x_1, y = y_1, z = z_1$$

Hence the coefficients are unique.

Figure 3