MTH215 ** 2017-18 ** ASSIGNMENT - 2

- 1. Let $E_n = \{i \in \mathbb{N} \mid 1 \le i \le n, \gcd(i, n) = 1\}$. Then for $n \ge 2$, $\sum_{i \in E_n} i = n\varphi(n)/2$.
- 2. For $n \geq 3$, $\varphi(n)$ is even.
- 3. For every odd integer $n \in \mathbb{N}$, $\varphi(n) \geq \sqrt{n}$.
- 4. For every $n \in \mathbb{N}$, $\varphi(n) \geq \sqrt{n}/2$.
- 5. For $m, n \in \mathbb{N}$, $\varphi(m)|\varphi(n)$ whenever m|n.
- 6. Let $m, n \in \mathbb{N}$ such that every prime deviser of m is also a prime divisor of n. Then $\varphi(mn) = m\varphi(n)$.
- 7. For $m, n \in \mathbb{N}$, $\varphi(m)\varphi(n) = \varphi(mn)\varphi(d)/d$ where $d = \gcd(m, n)$. Moreover, $\varphi(m)\varphi(n) = \varphi(l)\varphi(d)$, where $l = \operatorname{lcm}(m, n)$.
- 8. For $n \in \mathbb{N}$ show that $\tau(n) < 2\sqrt{n}$.
- 9. Let $n \in \mathbb{N}$. Show that $\tau(n)$ is odd iff n is a perfect square.
- 10. Let $n \in \mathbb{N}$. Show that $\sigma(n)$ is odd iff n is a perfect square or 2 times a perfect square.
- 11. An integer n is called **square free** if n not divisible by a perfect square other than 1. For a square free integer n show that $\tau(n) = 2^r$, where r denotes the number of prime divisors of n.
- 12. Show that there are infinitely many pairs of positive integers m and n such that $\sigma(n) = \sigma(m)$. (Hint: $\sigma(16) = 31 = \sigma(25)$.)
- 13. Let $k \in \mathbb{N}$ such that $2^k 1$ is prime. Show that $\sigma(2^{k-1}(2^k 1)) = 2^k(2^k 1)$.
- 14. Let f and g be multiplicative functions such that $f(p^r) = g(p^r)$ for every prime p and $r \in \mathbb{N}$ and f(1) = g(1). Show that f = g.
- 15. If f and g are multiplicative then so is fg. Moreover, if f(n) is never zero then 1/f is multiplicative.
- 16. Let $\omega(n)$ denote the number of distinct prime divisors of n for n>1 and let $\omega(1)=0$. Show that $2^{\omega(n)}$ is multiplicative. Further show that $\tau(n^2)=\sum_{d\mid n}2^{\omega(d)}$.
- 17. Show that $\sum_{d|n} \tau(d)^3 = (\sum_{d|n} \tau(d))^2$.
- 18. Show that $\sum_{d|n} \sigma(d) = \sum_{d|n} (n/d)\tau(d)$ and $\sum_{d|n} (n/d)\sigma(d) = \sum_{d|n} d\tau(d)$ for all $n \in \mathbb{N}$.
- 19. Let $n \in \mathbb{N}$. Note that $(n+1)! + 2, (n+1)! + 3, \dots, (n+1)! + n, (n+1)! + (n+1)$ are n successive conjugates.
- 20. Find p if p and $p^2 + 8$ are both primes.
- 21. Find all primes p such that q = p + 2 and pq 2 are also primes.
- 22. Find all primes p which divide $n^2 + 3$ for two successive values of n.
- 23. Let x, y be real numbers and n be an integer. Show that

(a)
$$[x+n] = [x] + n$$
.

- (b) [x+y] = [x] + [y] or [x] + [y] + 1.
- (c) [x] [-x] = 0 or 1 according as x is an integer or not.
- (d) [x/n] = [[x]/n], where n is a positive integer.
- (e) $[x] + [y] + [x + y] \le [2x] + [2y]$.
- 24. For all nonnegative integers n, $\lfloor n/2 \rfloor \lfloor -n/2 \rfloor = n$.
- 25. Show that $\binom{2n}{n}$ is an even integer for every $n \in \mathbb{N}$.
- 26. Find smallest integer n such that 12^{1000} divides n!.
- 27. Let f be a number theoretic function and let $\tilde{f}(n) = \sum_{d|n} f(d)$. Prove that $\sum_{k=1}^{n} \tilde{f}(k) = \sum_{k=1}^{n} f(k)[n/k]$.
- 28. Show that $\sum_{k=1}^{n} \mu(k)[n/k] = 1$.
- 29. Show that $\tau(n) = \sum_{k=1}^{n} \{ [n/k] [(n-1)/k] \}.$
- 30. Show that $\sum_{k=1}^{n} \gcd(k,n) = \sum_{d|n} d\varphi(n/d) = n \sum_{d|n} \varphi(d)/d$.
- 31. Show that there are infinitely values of n satisfying $\varphi(n) = n/3$.
- 32. Let $k \in \mathbb{N}$. If there exists a unique integer n such that $\varphi(n) = k$ then show that $4 \mid n$.
- 33. Let p be an odd prime. Show that there exist unique positive integers a and b such that $p = a^2 b^2$.
- 34. Let $n \neq 1$ be an odd integer, which is neither a prime nor a square of a prime. Show that n can be written as a difference of two squares in two different ways.
- 35. Let $n \in \mathbb{N}$ be an odd integer such that $\tau(n) \geq 4$. Show that n can be written as a difference of two squares in two different ways.
- 36. Let (x, y, z) be a primitive Pythagorean triple. Show that $x \pm y \equiv \pm 1 \pmod{8}$. Further show that $xy \equiv 0 \pmod{12}$ and $xyz \equiv 0 \pmod{60}$.
- 37. Let (x, y, z) be a Pythagorean triple such that x, y, z are in arithmetic progression. Show that (x, y, z) = (3k, 4k, 5k) for some positive integer n.
- 38. Find all $n \in \mathbb{N}$ such that (n, y, n + 1) form a Pythagorean triple for some y.
- 39. Determine all solutions of
 - (a) 7x + 9y = 6.
 - (b) 4x + 23y = 3.
 - (c) 18x + 5y = 48.
 - (d) 10x 3y = 17.
- 40. Let p be a prime and let $n \in \mathbb{N}$. Let $a \in \mathbb{Z}$ be a primitive element for p^{n+1} then show that a is also a primitive element for p^n . Hence show that a is a primitive element for p^k for all $k \in \mathbb{N}$.