CHAP 3. Les Diodes

la diode = *circuit ouvert*

2.1 Définition

Caractéristique couranttension d'une diode idéale :

sous polarisation "directe" (" $V_d \ge 0$ "), la diode = court-circuit (i.e. conducteur parfait)

☑ Ce type de composant est utile pour réaliser des **fonctions électroniques** telles que le redressement d'une tension, la mise en forme des signaux (écrêtage, ...).

∠ La diode (même idéale) est un composant **non-linéaire**

Aujourd'hui la majorité des diodes sont faites à partir de matériaux semiconducteurs (jonction PN ou diode Schottky, diode qui a un seuil de tension directe très bas et un temps de commutation très court, ceci permet la détection des signaux HF faibles et hyperfréquences)

2.2 Caractéristiques d'une diode réelle à base de Silicium

hyp: régime statique (tension et courant indépendants du temps)

- Pour $V_d < 0$, la diode se comporte comme un **bon isolant** : $I_s \sim l pA l \mu A$,
 - ∠ la diode est dite "bloquée"
 - ∠ dans ce domaine son comportement est approximativement linéaire
 - $\ensuremath{\checkmark}$ le courant "inverse", I_s , augmente avec la température
- Pour $V_d >> \sim 0.7$, le courant augmente rapidement avec une variation à peu près linéaire
 - ∠ la diode est dite "passante"

■ Zone « du coude » : $V_d \in [0, \sim V_o]$: augmentation exponentielle du courant

$$I_d \cong I_s \left[\exp \left(\frac{V_d}{\eta V_T} \right) - 1 \right] \quad \text{avec } 1 \leq \eta \leq 2 \quad \text{(facteur "d'idéalité")}$$

$$V_T = k \cdot T/e$$

$$k = 1,38 \cdot 10^{-23} \text{ J/K} = \text{constante de Boltzmann}$$

$$V_T = k \bullet T/e$$

 $e=1.6\ 10^{-19} Coulomb$, T la température en **Kelvin** $I_s = courant inverse$

- ∠ le comportement est fortement non-linéaire
- ∠ forte variation avec la température

$$\bowtie V_T(300K) = 26 \text{ mV}$$

Limites de fonctionnement :

■ Zone de claquage inverse

Ordre de grandeur:

$$V_{max}$$
 = quelques dizaines de Volts

peut conduire à la destruction pour une diode non conçue pour fonctionner dans cette zone.

 $V_{max} =$ **(Peak Inverse Voltage)** ou (P.R.V » (Peak Reverse Voltage)

Limitation en puissance

Il faut que $V_dI_d=P_{max}$

■ Influence de T: diode bloquée : I_d double tous les 10°C (diode en Si)

diode **passante** : V_d (à I_d constant) diminue de $\sim 2 \text{mV}/^{\circ}\text{C}$

2.3 Diode dans un circuit et droite de charge

2.3.1 Point de fonctionnement

Comment déterminer la tension aux bornes d'une diode insérée dans un circuit et le courant qui la traverse?

- Ψ I_d et V_d respectent les Lois de Kirchhoff
- \bigvee I_d et V_d sont sur la caractéristique I(V) du composant
- ▶ Au point de fonctionnement de la diode, (I_d,V_d) remplissent ces deux conditions

2.3.2 Droite de charge

Loi de Kirchoff: $\cdots \to I_d = \frac{V_{al} - V_d}{R_L}$ = **Droite de charge** de la diode dans le circuit

Caractéristique I(V)

- **V** Connaissant $I_d(V_d)$ on peut **déterminer graphiquement** le point de fonctionnement \bowtie procédure valable quelque soit la caractéristique I(V) du composant !
- ◆ On peut "calculer" le point de fonctionnement en décrivant la diode par un modèle simplifié.

2.4 Modéles Statiques à segments linéaires $\leftrightarrow hyp$: I_d , V_d constants

2.4.1. "Première" approximation: Diode « idéale »

↔ On néglige l'écart entre les caractéristiques réelle et idéale

- pas de tension seuil
- conducteur parfait sous polarisation directe
- V_d <0: circuit ouvert

2.4.2 Seconde approximation

- tension seuil V_o non nulle
- caractéristique directe verticale (pas de "résistance série")
- V_d <0: circuit ouvert

 \bowtie Pour une diode en Si: $V_o \approx 0.6-0.7 \text{ V}$

2.4.3 3ième Approximation

- tension seuil V_{o} non nulle
- résistance directe R_f non nulle (F=Forward, = sens direct)
- V_d <0: résistance R_r finie (R=Reverse, = sens bloqué ou indirecte)

Pour une diode au silicium,

 $V_o = 0.6-0.7V$,

 $\bowtie R_f \sim q.q. \ 10\Omega, \ R_r >> M\Omega,$

Schémas équivalents

schémas équivalents :

Remarques:

$$\blacksquare \qquad R_f \neq \frac{V_d}{I_d}$$

Le choix du modèle dépend de la précision requise.

Les effets **secondaires** (influence de la température, non-linéarité de la caractéristique inverse,) sont pris en compte par des modèles plus évolués (modèles utilisés dans les simulateurs de circuit de type SPICE).

2.4.4 Calcul du point de fonctionnement via l'utilisation des schémas équivalents :

Problème: le schéma dépend de l'état (passante ou bloquée) de la diode.

Démarche:

- a) choisir un schéma (ou état) en vous aidant de la droite de charge
- b) trouver le point de fonctionnement Q de la diode
- c) vérifier la cohérence du résultat avec l'hypothèse de départ

S'il y a **contradiction**, il y a eu erreur sur l'état supposé de la diode. Recommencer le calcul avec l'**autre schéma**.

Démarche pour étudiants confirmés...

Un coup d'œil attentif suffit pour trouver l'état (passant/bloqué) de la diode! Le calcul de Q se fait tout de suite avec le bon schéma équivalent... **Exemple:** Calcul de Q du circuit suivant, en utilisant la **3ième** approximation pour la diode.

En partant de l'hypothèse d'une diode bloquée: $\rightarrow V_d \approx 5V > V_o$...

En utilisant la **2ième approximation**: $(R_f = 0, R_r = \infty) \mid \cdots \rightarrow I_d = 4.4 \text{ mA} \text{ et } V_d = 0.6 \text{ V} \mid$

→ La 2^{ième} approx. est souvent suffisante pour une étude qualitative du fonctionnement d'un circuit

2.6 Quelques diodes spéciales

2.6.1 Diode Zener

☑ Diode conçue pour fonctionner dans la zone de claquage inverse, caractérisée par une tension seuil négative ou « tension Zener » (V₇)

Caractéristiques

 V_Z : tension Zener (par définition: $V_Z > 0$)

 I_{min} : courant minimal (en valeur absolue) au delà duquel commence le domaine linéaire "Zener"

 I_{max} : courant max. supporté par la diode (puissance max: $P_{max} \sim V_Z I_{max}$)

Ordre de grandeur : $V_Z \sim 1-100 \ V$, $I_{min} \sim 0.01-0.1 \ mA$, $P_{max} \leftrightarrow r\acute{e}gime de fonctionnement$

schémas équivalents

hyp: $Q \in \text{domaine Zener}$

$$V_{d} \uparrow \downarrow I_{d} \equiv \begin{cases} R_{z} \\ \vdots \\ R_{z} \\ \vdots \\ + V_{z} \end{cases}$$

V Modèle **dynamique**, basses fréquences, faibles signaux :

2.6.2 Diode électroluminescente (ou LED)

- Principe: La circulation du courant provoque la luminescence
 - **↓** Fonctionnement sous polarisation directe $(V > V_0)$

 - ≥ Ne marche pas avec le Si (cf. cours Capteurs)

$$V_o$$
 ≠ 0.7V! (AsGa: ~1.3V)