Metody obliczeniowe w nauce i technice

Sprawozdanie z zadania 5 Interpolacja

Bartosz Pietrzyk

Spis treści

1	Interpolacja wielomianem interpolacyjnym	
	Lagrange'a	2
	1.1 Wzory	2
	1.2 Przykładowa implementacja w języku Scala	2
	1.3 Wylosowane punkty przeznaczone do przykładowych	
	interpolacji	3
	1.4 Interpolacja wygenerowana wielomianem interpolacyjnym La-	
	grange'a dla punktów z rysunku 1	4
2	Interpolacja wielomianem interpolacyjnym	
	Newtona	5
	2.1 Wzory	5
	2.2 Przykładowa implementacja w języku Scala	5
	2.3 Interpolacja wygenerowana wielomianem interpolacyjny La-	
	grange'a dla punktów z rysunku 1	6
3	Interpolacja wielomianowa z pakietu Polynomials z języka Julia	7
	3.1 Przykładowe użycie	7
	3.2 Interpolacja wygenerowana przy pomocy pakietu	
	Polynomials dla punktów z rysunku 1	7
4	Porównanie interpolacji Newtona, Lagrange'a i z pakietu Polyno-	
	mials	8
	4.1 Wszystkie trzy interpolacje na jednym wykresie	8
5	Porównanie czasu obliczania interpolacji dla	
	róznych algorytmów	9
	5.1 Wyniki pomiarów	Ĝ
6	Interpolacja funkcją sklejaną pierwszego stopnia	10
	6.1 Wykres	10
7	Efekt Runge'go	11

1 Interpolacja wielomianem interpolacyjnym Lagrange'a

1.1 Wzory

$$L_k(x) = \prod_{i=0, i \neq k}^{n} \frac{x - x_i}{x_k - x_i}$$
 $P_n(x) = \sum_{k=0}^{n} y_k L_k(x)$

1.2 Przykładowa implementacja w języku Scala

```
object Interpolation {
type Factor = List[Double => Double]
type Interpolation = List[Factor]
def lagrange(listX: List[Double], listY: List[Double]):
   Interpolation = {
  val n = listX.size
  def computeLi(i: Int, j: Int, first: Boolean): Factor = {
   (i, j) match {
     case _ if i == j =>
      computeLi(i, j + 1, first)
     case (\_, a) if a == n =>
      List()
     case _ if first => ((x: Double) =>
      listY(i) * (x - listX(j)) / (listX(i) - listX(j)))
        :: computeLi(i, j + 1, !first)
     case _ => ((x: Double) =>
       (x - listX(j)) / (listX(i) - listX(j))) ::
       computeLi(i, j + 1, first)
   }
  }
  def recLagrange(i: Int): Interpolation = {
   i match {
     case _ if i == n => List()
     case _ => computeLi(i, 0, true) :: recLagrange(i + 1)
   }
  recLagrange(0)
}
}
```

```
def evalInterpolation(interpolation: Interpolation, x: Double):
    Double = {
    interpolation.map(yIlI => yIlI.map(subFun => subFun(x))
        .reduce(_ * _)).sum
}
```

1.3 Wylosowane punkty przeznaczone do przykładowych interpolacji

Rysunek 1: Wylosowane punkty

1.4 Interpolacja wygenerowana wielomianem interpolacyjnym Lagrange'a dla punktów z rysunku 1

Rysunek 2: Interpolacja wielomianem Lagrange'a

2 Interpolacja wielomianem interpolacyjnym Newtona

2.1 Wzory

```
P_k(x) = P_{k-1}(x) + c_k(x - x_0)(x - x_1)...(x - x_{k-1}) \qquad P_0(x) = c_0 = y_0
```

2.2 Przykładowa implementacja w języku Scala

```
object Interpolation {
type Factor = List[Double => Double]
type Interpolation = List[Factor]
def evalInterpolation(interpolation: Interpolation, x: Double):
   Double = {
  interpolation.map(yIlI => yIlI.map(subFun => subFun(x))
.reduce(_* * _)).sum
def newton(listX: List[Double], listY: List[Double]):
    Interpolation = {
  val n = listX.size
  val p0: Interpolation = List(List((_: Double) => listY.head))
  def computePk(k: Int, cK: Double): Factor = {
    (listX.take(1).map(x \Rightarrow ((x: Double) \Rightarrow cK * x)
compose ((k: Double) \Rightarrow k - x)
    ++ listX.slice(1,k).map(x \Rightarrow (l: Double) \Rightarrow l - x))
  }
  @tailrec
  def recNewton(k: Int, acc: Interpolation): Interpolation = {
   if (k == n) acc
   else {
     val denominator: Double = listX.take(k)
    .map(x \Rightarrow listX(k) - x).reduce(_ * _)
val cK: Double =
    (listY(k) - evalInterpolation(acc, listX(k))) / denominator
     recNewton(k+1, computePk(k,cK) :: acc)
   }
  recNewton(1, p0)
}
```

2.3 Interpolacja wygenerowana wielomianem interpolacyjny Lagrange'a dla punktów z rysunku 1

Rysunek 3: Interpolacja metodą Newtona

3 Interpolacja wielomianowa z pakietu Polynomials z języka Julia

3.1 Przykładowe użycie

```
using DataFrames
using CSV
dfl=CSV.read("example_points.csv", delim=",")
xs = dfl[:x]
A = dfl[:y]
xsf=minimum(xs):0.01:maximum(xs)
using Polynomials
fit1=polyfit(xs, A)
B=[fit1(x) for x in xsf]
```

3.2 Interpolacja wygenerowana przy pomocy pakietu Polynomials dla punktów z rysunku 1.

Rysunek 4: Interpolacja z pakietu Polynomials

4 Porównanie interpolacji Newtona, Lagrange'a i z pakietu Polynomials

4.1 Wszystkie trzy interpolacje na jednym wykresie

Rysunek 5: Interpolacja Lagrange'a, Newtona i z pakietu Polynomials na jednym wykresie

Jak można zauważyć wszystkie trzy interpolacje wygenerowały ten sam wielomian interpolujący dla punktów z rysunku 1. Taki wynik wyjaśnia Jednoznaczność interpolacji wielomianowej. Twierdzenie to dowodzi, że przez wybrane punkty można przeprowadzić tylko jeden wielomian interpolujący n-tego stopnia.

5 Porównanie czasu obliczania interpolacji dla róznych algorytmów

5.1 Wyniki pomiarów

Rysunek 6: Porównanie metod

Wyniki ukazane na rysunku 6 jednoznacznie pokazują przewage algorytmu Lagrange'a i funkcji z pakietu Polynomials nad algorytmem Newtona. Interpolacja Newtona była nawet 700-krotnie wolniejsza od pozostałych interpolacji.

6 Interpolacja funkcją sklejaną pierwszego stopnia

6.1 Wykres

Rysunek 7: Interpolacja linear spline

Można zauważyć ze linear spline wygenerowal wykres znacznie mniej zmienny niż intepolacja z pakietu Polynomials.

7 Efekt Runge'go

Pogorszenie jakości interpolacji wielomianowej, mimo zwiększenia liczby jej węzłów. Początkowo ze wzrostem liczby węzłów n przybliżenie poprawia się, jednak po dalszym wzroście n, zaczyna się pogarszać. Widoczne na przykład na rysunku 2 na środku wykresu