Un **flot** est une fonction  $f: \overrightarrow{E} \longrightarrow \mathbb{R}^+$  telle que : •  $\forall \vec{e} \in \vec{E} : 0 < f(\vec{e}) < c(\vec{e})$ 

 $f(\vec{B}) = \sum_{\vec{e} \in B} f(\vec{e})$ 

La valeur d'un flot f est définie par  $|f| = f(s^+)$ . L'objectif de cet exercice est de trouver un flot de valeur maximum dans  $\vec{G}$ . 1. Dans le graphe ci-dessous, on a représenté la capacité sur chaque arc. Donner le flot de de plus grande valeur que vous réussissez à trouver dans ce graphe, en explicitant la

•  $\forall v \in V - \{s, t\} : f(v^-) = f(v^+)$  (la somme des flots rentrants dans un sommet est égal à la somme des flots sortants).

quantité de flot sur chaque arc. On ne demande aucune justification.



Dans cet exercice, on considère un graphe orienté  $\vec{G} = (V, \vec{E})$ , des sommets  $s, t \in V$  et une capacité  $c : \vec{E} \longrightarrow \mathbb{R}^+$ .

Si  $A \subseteq V$ , on définit :

•  $\overrightarrow{A}^+ = \{(u, v) \in \overrightarrow{E} \mid u \in A, v \notin A\}$  (« arcs sortants de A »)

•  $A^- = \{(u,v) \in \overrightarrow{E} \mid u \notin A, v \in A\}$  (« arcs rentrants dans A») Si  $v \in V$ , on définit  $v^+ = \{v\}^+$  et  $v^- = \{v\}^-$ . Si  $f : \overrightarrow{E} \longrightarrow \mathbb{R}^+$  et  $\overrightarrow{B} \subseteq \overrightarrow{E}$ , on définit :

Algorithme: Ford-Fulkerson

 $c \leftarrow$  minimum des capacités de  $\vec{P}$ 

 $f \leftarrow \text{flot nul}$ 

- 3. Soit  $\vec{P}$  un chemin de s à t et c la capacité minimum des arcs de  $\vec{P}$ . On définit  $f: \vec{E} \longmapsto \mathbb{R}^*$  qui vaut c sur chaque arc de  $\vec{P}$  et 0 partout ailleurs. Justifier que f est un flot.
- 4. L'algorithme suivant permet de construire un flot en ajoutant itérativement un chemin de s à t:

## Diminuer de c la capacité des arcs de $\vec{P}$ Augmenter le flot f de c, le long des arcs de $\vec{P}$

Tant que  $\exists$  un chemin  $\overrightarrow{P}$  de s à t, dont les arcs sont tous de capacité > 0:

Appliquer l'algorithme de Ford-Fulkerson sur le graphe de la 1ère question.

- 5. On suppose que toutes les capacités sont entières. Montrer que l'algorithme de Ford-Fulkerson termine et donner la complexité dans le pire cas. Une **coupe** de  $\vec{G}$  est un ensemble  $S \subseteq V$  contenant s mais pas t. La capacité d'une coupe S est la somme  $c(S^+)$  des capacités des arcs sortants de S.
  - 6. Soit S une coupe. Montrer que  $f(S^+) < c(S^+)$  et  $f(S^+) = |f|$ .
  - 7. Soit f un flot et S une coupe vérifiant  $f(S^+) = c(S^+)$ . Montrer que : • f est un flot de valeur maximum
    - S une coupe de capacité minimum
  - 8. Montrer que si l'algorithme de Ford-Fulkerson termine, le flot obtenu est un flot maximum

9. Quelle méthode connaissez-vous pour trouver un chemin dans l'algorithme de Ford-Fulkerson? Implémenter l'algorithme de Ford-Fulkerson en OCaml, avec l'une de ces méthodes.