Equivalence of two Finite Automata

Steps to identify equivalence

- 1) For any pair of states $\{q_i^-, q_j^-\}$ the transition for input $a \in \Sigma$ is defined by $\{q_a^-, q_b^-\}$ where $\delta \{q_i^-, a_i^-\} = q_a^-$ and $\delta \{q_j^-, a_i^-\} = q_b^-$ The two automata are not equivalent if for a pair $\{q_a^-, q_b^-\}$ one is INTERMEDIATE State and the other is FINAL State.
- 2) If Initial State is Final State of one automaton, then in second automaton also Initial State must be Final State for them to be equivalent.

A

Staks

$$C$$
 Q_1, Q_4
 Q_1, Q_4
 Q_2, Q_5
 Q_2, Q_5
 Q_3, Q_6
 Q_4, Q_4
 Q_5, Q_6
 Q_6, Q_4
 Q_6, Q_4
 Q_6, Q_6
 Q

Pumping Lemma (For Regular Languages)

- >> Pumping Lemma is used to prove that a Language is NOT REGULAR
- »It cannot be used to prove that a Language is Regular

If A is a Regular Language, then A has a Pumping Length 'P' such that any string 'S' where $|S| \gg P$ may be divided into 3 parts S = x y z such that the following conditions must be true:

- (1) $x y^i z \in A$ for every $i \ge 0$
- (2) |y| > 0
- (3) |xy|∠P

- (1) $\times y^i z \in A$ for every $i \ge 0$
- (2) |y| > 0
- (3) |xy|∠P

To prove that a language is not Regular using PUMPING LEMMA, follow the below steps:

(We prove using Contradiction)

- -> Assume that A is Regular
- -> It has to have a Pumping Length (say P)
- -> All strings longer than P can be pumped $|S| \ge P$
- -> Now find a string 'S' in A such that $|S| \ge P$
- -> Divide S into x y z
- -> Show that x yiz ∉A for some i
- -> Then consider all ways that S can be divided into $x\ y\ z$
- -> Show that none of these can satisfy all the 3 pumping conditions at the same time
- -> S cannot be Pumped == CONTRADICTION

Pumping Lemma (For Regular Languages) - EXAMPLE (Part-1) Using Pumping Lemma prove that the language $A = \{a^n b^n \mid n \geqslant 0\}$ is Not Regular Proof: Assume that A is regular

XY'Z > XYZ case! The Y is in the 'a' part aaaaaa bbbbbbbb aa aaaa aaaa a bbbbbbbb 11 # 7 case 2: The Y is in the 'b' part XY'2 => XYZ X aaaaaa bbbbbbb a a c a c a a a b b b b b b b b b b b b Cabr3: The you in the 'a' and 'b' part $\times y^{1}2 \Rightarrow \times y^{2}2 \qquad \times$ an bn aaaaa aabbaabb bbbbb [XY] 4P p=7

Pumping Lemma (For Regular Languages) EXAMPLE (Part-2)

Using Pumping Lemma prove that the language $A = \{yy \mid y \in \{0,1\}^*\}$ is Not Regular

Proof:

Assume that A is Regular

Then it must have a pumping length = P

5 = 0°10°1

0 - 7

0000000100000001 X Y Z

 $XY^{i}Z \Rightarrow XY^{2}Z$

¢ A

14/50

|Ay| < = 7 A is not Regular