

P: the class of problems that can be decided by deterministic Turing machines in polynomial time

P-Complete: the subclass of P problems to which all P problems reduce in logarithmic space.

NC: the class of problems that can be decided by circuits of polynomial number of gates and poly-logarithmic $O(\log^k n)$ depth

NL: the class of problems that can be decided by nondeterministic Turing machines in

logarithmic space

NL-Complete: the subclass of NL problems to which all NL problems reduce in logarithmic space.

L: the class of problems that can be decided by deterministic Turing machines in logarithmic space

In the following, $X \subseteq Y$ means X is a proper subset of Y, i.e., $X \subseteq Y$ but $X \neq Y$.

Proven Facts

 $L\subseteq NL\subseteq NC\subseteq P$

Conjectures

 $L \subset NL \subset NC \subset P$

 $L \cap NL$ -Complete = \emptyset

 $NC \cap P$ -Complete = \emptyset