

IMD0033 - Probabilidade Aula 16 - Média

Ivanovitch Silva Maio, 2019

Agenda

- Média
- A média como um ponto de equilíbrio
- Definindo a média algebricamente
- Estimando a média da população
- Estimando a média da população a partir de amostras pequenas

Atualizar o repositório

git clone https://github.com/ivanovitchm/imd0033_2019_1.git

Ou

git pull

PREVIOUSLY ON...

Id	Name	Salary		Gender		
1	Mary Ann	\$35 000		Female		
2	Marc Downey	\$55 000		Male		
51	Juliet Ali	\$45 000	••••	Female		
 317	Jane Ace	\$95 000		Female		

Understand how the data is **structured** and **measured**

Frequency tables are not the only way of bringing data to a comprehensible form.

Data source

Visualize the patterns

Gender	Frequency
Male	147
Female	170

Organize the data in comprehensible forms to find patterns

Depending on the particular characteristics of a distribution, we'll see that we can summarize it using the **mean**, the **weighted mean**, the **median**, or the **mode**.

We'll also learn to measure the variability in a distribution

$$A = [3, 3, 3, 3]$$

$$B = [30, 1, 15, 43]$$

We can clearly see that there's much more variability (diversity) in B. We'll learn to quantify variability using measures like variance, standard deviation and z-scores.

The Mean

$$\frac{0+1+4+7+8+10}{6} = \frac{30}{6} = 5$$

The Mean as a Balance Point

[0,2,3,3,3,13]

Values that are below the mean 0 2 3	Distance from the mean			
0	4 units			
2	2 units			
3	1 unit			
3	1 unit			
3	1 unit			
	Total distance:			

9 units

Values that are above the mean

13

Distance from the mean

9 units

Total distance:
9 units


```
for i in range(1000):
       seed(i)
 6
       # generate ten random numbers between 0 and 1000
       distribution = randint(0,1000,10)
 8
       mean = sum(distribution) / len(distribution)
10
       above = []
11
       below = []
12
       for value in distribution:
13
           if value == mean:
               continue # continue with the next iteration because the distance is 0
14
15
           if value < mean:
16
               below.append(mean - value)
17
           if value > mean:
18
               above.append(value - mean)
19
20
       sum above = round(sum(above),1)
21
       sum below = round(sum(below),1)
22
       if (sum above == sum below):
           equal distances += 1
23
24
  print(equal distances)
```

from numpy.random import randint, seed

equal distances = 0

Defining the mean algebraically

	_	
Popul	lation	Mean

	Population	Sample			
Mean	μ	\overline{X} , \overline{X} _n , \overline{X} , M			
Number of values	N	n			

$$\overline{X} = \frac{2+3+4}{3} = \frac{9}{3} = 3$$

Sample Mean

Defining the mean algebraically

$$\mu = \frac{x_1 + x_2 + \ldots + x_N}{N} = \frac{\sum X}{N} = \frac{\sum_{i=1}^{N} x_i}{N}$$
 Population Mean

$$\overline{x} = \frac{x_1 + x_2 + \dots + x_n}{n} = \frac{\sum X}{n} = \frac{\sum_{i=1}^{n} x_i}{n}$$

Sample Mean

Ames, Iowa: Alternative to the Boston Housing Data as an End of Semester Regression Project

Dean De Cock

Truman State University

Journal of Statistics Education Volume 19, Number 3(2011), www.amstat.org/publications/jse/v19n3/decock.pdf

Copyright © 2011 by Dean De Cock all rights reserved. This text may be freely shared among individuals, but it may not be republished in any medium without express written consent from the author and advance notification of the editor.

Key Words: Multiple Regression; Linear Models; Assessed Value; Group Project.

Abstract

This paper presents a data set describing the sale of individual residential property in Ames, Iowa from 2006 to 2010. The data set contains 2930 observations and a large number of explanatory variables (23 nominal, 23 ordinal, 14 discrete, and 20 continuous) involved in assessing home values. I will discuss my previous use of the Boston Housing Data Set and I will suggest methods for incorporating this new data set as a final project in an undergraduate regression course.


```
import pandas as pd
pd.set_option('display.max_columns', 500)

houses = pd.read_csv("AmesHousing_1.txt",sep='\t')
houses.shape
```

_	Order	PID	MS SubClass	MS Zoning	Lot Frontage	Lot Area	Street	Alley	Mo Sold	Yr Sold	Sale Type	Sale Condition	SalePrice
0	1	526301100	20	RL	141.0	131770	Pave	0	5	2010	WD	Normal	215000
1	2	526350040	20	RH	80.0	11622	Pave	0	6	2010	WD	Normal	105000
2	3	526351010	20	RL	81.0	14267	Pave	12500	6	2010	WD	Normal	172000
3	4	526353030	20	RL	93.0	11160	Pave	0	4	2010	WD	Normal	244000
4	5	527105010	60	RL	74.0	13830	Pave	0	3	2010	WD	Normal	189900

Estimating the population mean

In practice, we almost always work with samples. But most of the times we're not interested in answering questions about samples — we want to answer questions about populations.

- What is the mean amount of money our customers spent last year on our website?
- What is the mean amount of time customers spent daily the first week after the promotion we ran?
- What is the mean sale price of a house in Ames, Iowa for the period 2006-2010?

Estimating the population mean

The general tendency for the sampling error is to decrease as the sample size increases.

sampling error =
$$\mu - \overline{x}$$

Estimates from low-sized samples

 $\langle \langle \rangle$

Next Steps

In the next mission, we'll explore a few edge cases where it's either impossible to compute the mean, or it's possible but not theoretically sound.

