Power BI - Tree Map

Expenditure by Category

Power BI - Area Chart

Power BI - Stacked Area Chart

US Population by Year and Age

Campbell640Week5-6

October 6, 2023

```
[39]: # Load libraries
     import pandas as pd
     import numpy as np
     # import data visualization libraries
     import seaborn as sns
     import matplotlib
     import matplotlib.pyplot as plt
     import squarify
[76]: # Read csv files
     expenditures = pd.read csv('data sources/expenditures.txt', sep="\t")
     population = pd.read_excel('data sources/us-population-by-age.xls')
 [6]: # Print shape
     expenditures.shape
 [6]: (350, 4)
[77]: # Print shape
     population.shape
[77]: (19, 6)
        Python - Treemap
[63]: # Group expenditures by category
     cat_expend = expenditures.groupby('category', as_index=False)['expenditure'].
       ⇒sum()
[64]: # Shorten values
     cat_expend.category = cat_expend.category.replace(['Cash Contributions',_
       [66]: squarify.plot(sizes = cat_expend.expenditure, label = cat_expend.category,
                   alpha = 0.7, color = sns.color_palette("Spectral", len(cat_expend.
       ⇔expenditure)),
                   text_kwargs={'fontsize':8, 'wrap':True})
```

```
plt.axis('off')
plt.show()
```


2 Python - Area Chart

```
[67]: # Group expenditures by year
    year_expend = expenditures.groupby('year', as_index=False)['expenditure'].sum()

[72]: plt.stackplot(year_expend.year, year_expend.expenditure)
    plt.title("Expenditure by Year")
    plt.xlabel("Year")
    plt.ylabel("Expenditure")
    plt.show()
```


3 Python - Stacked Area Chart

```
plt.xlabel("Year")
plt.ylabel("Population")
plt.show()
```


Campbell640Week5-6

2023-10-06

R - Treemap

Expenditures by Category

Transportation 160694 Housing 280256	Apparel 41833	Personal Car 11123	re	Reading 3636 Tobacco Products 6936
	Entertainment 44273	Miscellaneous 18327		Education 14498
		Cash Contributions 27987		
	Personal Insurance 84269		Healthcare 47383	
	Food 119297			

R - Area Chart

Expenditures by Year

R - Stacked Area Chart

Population by Year and Age

Code Repository

```
## Set the working directory to the root of your DSC 640 directory
setwd("C:/Users/jcamp/Documents/DSC640/Assignments/data sources")
# Load libraries
library(ggplot2)
library(treemapify)
library(dplyr)
library(readxl)
library(reshape2)
library(tidyr)
# Load files
expenditures_df <- read.table("expenditures.txt", header=T, sep="\t")</pre>
population_df <- read_excel("us-population-by-age.xls")</pre>
# Treemap
# Group expenditures by category
cat_expend = expenditures_df %>%
                group_by(category) %>%
                summarise(count = sum(expenditure))
# Create treemap
ggplot(cat_expend, aes(area = count, fill = count,
```

```
label = paste(category, count, sep = "\n"))) +
  geom_treemap() +
  geom_treemap_text(colour = "white",
                    place = "centre",
                    size = 15) +
  theme(legend.position = "none") +
  ggtitle("Expenditures by Category")
# Area Chart
# Group expenditures by year
year_expend = expenditures_df %>%
                group_by(year) %>%
                summarise(count = sum(expenditure))
# Plot Area Chart
ggplot(year_expend, aes(x=year, y=count)) +
 geom_area(fill = "#2bab53") +
  ggtitle("Expenditures by Year") +
 xlab("Year") +
 ylab("Expenditures")
# Stacked Area Chart
# Rename first column to year
population_df <- population_df %>% rename_at(1, ~'year')
# Convert year to numeric
population_df$year = suppressWarnings(as.numeric(population_df$year))
# Drop empty rows
population_df = drop_na(population_df)
# Melt to get rows with age category
age_pop = melt(population_df, id = c("year"))
age_pop <- age_pop %>% rename_at(2, ~'age')
# Plot stacked area chart
ggplot(age_pop, aes(x=year, y=value, fill=age)) +
  geom_area() +
  ggtitle("Population by Year and Age") +
 xlab("Year") +
 ylab("Population")
```