

Technische Universität München Lehrstuhl für Datenverarbeitung Prof. Dr.-Ing. Klaus Diepold

High Performance Computing for Machine Intelligence: Gruppe 3

Authors: Till Hülder, Tobias Klama, Tobias Krug

Zusammenfassung-Verloren in Raum und Zeit? Nicht mehr! Für alle die regelmäßig eine Ausfahrt auf dem Weg von Terra nach Alpha Centauri verpassen und unterwegs mit leerem Tank auf einem leeren Planeten landen, haben wir eine optimale Lösung entwickelt: skalierbare asynchrone Value Iteration per Open MPI. Ziel dieser Ausarbeitung ist die Einführung in die relevanten Hintergründe zu Open MPI und darauf aufbauend die Motivation eines Projektaufbaus, der die Beurteilung verschiedener Kommunikationsschemata und Parametrierungen erlaubt. Mittels dieses Frameworks können wir aus drei MPI Schemata, sechs Ausführungsumgebungen und diversen Parameterkombinationen je nach Größe des Problems und zur Verfügung stehender Rechenumgebung eine zielführende Kombination ableiten. Die Kernergebnisse sind die Identifikation verschiedener Zusammenhänge zwischen MPI Kommunikationsschema, Rechenumgebung und Parametrierung und Qualitätsmetriken wie Rechenzeit, Speicherbedarf und Lösungsqualität. Diese erlauben eine optimale Anpassung des Projekts an die jeweiligen Rahmenbedingungen.

Keywords—Parallel Processing, Reinforcement Learning, Machine Intelligence, High Performance Computing

I. Introduction

PARALLEL Processing - *** State of the Art *** -> cite related papers

- wesentliche Ziele
- Struktur des Reports
- Wesentliche Abgrenzum zum Stand der Technik
- Projektplan, Schritte der Umsetzung
- Struktur der Umsetzung

II. METHODIK, @TOBIAS KRUG

- A. Schemata
- B. Automatisierung
- C. Ausführungsumgebungen für Tests
 - III. ANALYSE & DISKUSSION, @TILL HUELDER
- A. Vergleich der Schemata
- B. Vergleich der Ausführungsumgebungen
 - IV. THESEN, @TOBIAS KLAMA
- A. Es besteht eine Korrelation RAM mit world_size, nach einer Kurzgeschichte von Hans Mueller

blabla, siehe Figure 3 bis 17

- B. Es besteht eine Korrelation runtime mit com_interval blabla
- C. Es besteht eine inverse Korrelation zwischen world_size und runtime

blabla

V. BEITRÄGE

- Testumgebung für automatisierte Analyse von Open MPI Kommunikationsschemata für asynchrone Value Iteration auf verschiedenen Ausführungsumgebungen

VI. ERKENNTNISSE

wir konnten zeigen, dass: - automatisiertes ist tauglich/realisierbar - der Einfluss von Targets und Parametern auf die Performance von Open MPI für ein VI Problem konnte gezeigt werden

LITERATUR ANHANG A APPENDIX

A Plots small

Hier sind die wunderbaren Plots unserer Messungen

B. Plots normal

(a) HPC class A, runtime vs. world_size

(b) HPC class B, runtime vs. world_size

(c) HPC class mixed, runtime vs. world_size

(d) HPC class A runtime vs. com_interval

(e) HPC class B runtime vs. com_interval

(f) HPC class mixed runtime vs. com_interval

(g) HPC class A max rss rank_0 vs. world_size

(h) HPC class B max rss rank_0 vs. world_size (i) HPC class mixed max rss rank_0 vs. world_size

(j) HPC class A rss-sum vs. world_size

(k) HPC class B rss-sum vs. world_size

(l) HPC class mixed rss-sum vs. world_size

Abb. 1. Comparison between HPC classes with dataset small

Abb. 2. Comparison between NUC, RPi and Local with dataset small

(j) HPC class A J-diff maxnorm vs. com_interval (k) HPC class B J-diff maxnorm vs. com_interval (l) HPC class mixed J-diff maxnorm vs. com_interval

0.00

32

0.00

Abb. 3. Comparison between HPC classes with dataset small

Abb. 4. Comparison between NUC, RPi and Local with dataset small

- (j) HPC class A rss-sum vs. world_size
- (k) HPC class B rss-sum vs. world_size

world_size

MpiViSchema03

(l) HPC class mixed rss-sum vs. world_size

56

MpiViSchema03

16

Abb. 6. Comparison between NUC, RPi and Local with dataset normal

(j) HPC class A J-diff maxnorm vs. com_interval (k) HPC class B J-diff maxnorm vs. com_interval (l) HPC class mixed J-diff maxnorm vs. com_interval

com_interval

Abb. 7. Comparison between HPC classes with dataset normal

Abb. 8. Comparison between NUC, RPi and Local with dataset normal