Georg-Simon-Hochschule Nürnberg Fakultät Elektrotechnik Feinwerktechnik Informationstechnik

Niklas Gampl
Hannes Holzmann
Adrian Jäger
Ivan Kozlov
Erik Thüry
4. März 2021

Projektarbeit zum Thema: Entwicklung eines mobilen, uC-gesteuerten EKGs

Semester: Wintersemester 20/21

Abgabedatum: 15.03.2021

Betreuer: Prof. Dr. Chowanetz

Inhaltsverzeichnis

1	Abk	Abkürzungsverzeichnis				
2	2 Einleitung und Motivation					
3	3 Zielsetzung					
4	Star	nd der	Technik			
	4.1	Überb	lick der EKG-Diagnostik			
	4.2	Markt	recherche			
5	Rea	lisierui	ng 1			
	5.1	Konze	otfindung			
		5.1.1	Konzeptionierung			
		5.1.2	Verwendete Software			
		5.1.3	Verwendete Geräte			
		5.1.4	Bauteilbeschaffung und Fertigung			
	5.2	Diskus	sion der Alternativen			
		5.2.1	Digitale Filterung			
	5.3	Akkun	nanagement und Versorgungsspannungen 1			
	5.4	Displa	y und Benutzeroberfläche			
	5.5	Prozes	soreinheit			
		5.5.1	Auswahl und Spezifikationen der Prozessoreinheit			
		5.5.2	Codeentwicklung			
	5.6	Gehäuse				
	5.7	7 Schnittstellen				
		5.7.1	Schnittstelle zum Bluetooth Modul und DMA Transfer			
	5.8	Andro	id-App			
	5.9	SD-Ka	rten-Speicher			
	5.10	Analog	ge Filterschaltung			
5.11 Platinendesign		endesign				
		5.11.1	Erstellung von Libraries			
		5.11.2	Zeichnen des Schaltplans			
		5.11.3	Platzieren der Komponente			
		5.11.4	Routing			
			Fertigung und Bestückung			
			Inbetriebnahme			

6 Ergebnis		ebnis	43	
	6.1	aufgenommene Signale	43	
	6.2	Akkulaufzeit, Bedienung, sonstige Funktionalität	43	
7	Zusa	ammenfassung	44	
8	3 Ausblick			
Li	terat	urverzeichnis	45	
Aı	nhang		45	

1 Abkürzungsverzeichnis

EKG	Elektrokardiogramm
FFT	Fast-Fourier-Transformation
SMD	Surface-mounted device
LDO	Low-Dropout-Regler
BK	Bradykardie
TK	Tachykardie
VHF	Vorhofflimmern
FIR	Finite-Impuls-Response-Filter
IIR	Infinite-Impuls-Response-Filter
PCB	Printed-Circuit-Board
TVS	Transient Voltage Suppressor
FET	Feldeffekttransistor
ADC	Analog-Digital-Converter
UART	Universal Asynchronous Receiver Transmitter
SPI	Serial Peripheral Interface
JTAG	Joint Test Action Group
UI	User Interface

2 Einleitung und Motivation

Seit der Entdeckung der Methode zur Ableitung der elektrischen Potenziale am menschlichen Herzen hat die Diagnostik durch das Elektrokardiogramm (EKG) eine essentielle Bedeutung in Kliniken, Arztpraxen und im Rettungsdienst eingenommen. Für den Anwender ist es eine einfache, schnelle und vor allem nicht invasive Methode sich ein Bild vom Zustand der Erregungsleitung am Herzen des Patienten zu machen. Schwerwiegende Erkrankungen wie Infarkte oder Kammerflimmern können sofort diagnostiziert werden, wodurch die Therapie zeitnah eingeleitet werden kann. Doch auch in der Diagnostik von leichteren oder chronisch verlaufenden Krankheiten ist das EKG ein wichtiges Werkzeug im Repertoire des Arztes, wenn der Patient die Möglichkeit des Arztbesuchs auch wahr nimmt. Die wenigsten Patienten lassen sich ohne Symptome oder Leidensdruck rein prophylaktisch von ihrem Arzt untersuchen. Dabei beginnen die meisten schweren Erkrankungen mit einem symptomlosen Stadium, in welchem eine einfache Behandlung, zum Beispiel mit Medikamenten und ohne bleibende Schäden möglich wäre. So ist es auch im Fall der Volkskrankheit des Vorhofflimmerns von der in Deutschland etwa 300.000 Menschen betroffen sind.

Im gesunden Herzen arbeiten Vorhöfe und Kammern zeitlich genau abgestimmt zusammen. Die Hauptlast der Pumpleistung übernehmen die Kammern, diese können ihr volles Potential jedoch nur ausschöpfen, wenn die Vorhöfe kurz vor der Kammerkontraktion kontrahieren. Dass bewirkt die vollständige Füllung der Kammer und eine optimale Ausnutzung der Schlagkraft. Außerdem fließt das Blut so möglichst laminar, also ohne Verwirbelungen.

Beim Vorhofflimmern kommt es zu einer unvollständigen Kontraktion der Vorhöfe. Durch eine gestörte Erregungsleitung am Herzen arbeiten die Muskelzellen nicht mehr synchron und die Vorhöfe flimmern (manchmal spricht man auch vom "Flattern") nur noch, anstatt koordiniert zu kontrahieren. Die Kammer kann nicht mehr effizient arbeiten und das Blut bildet Turbulenzen. Zum einen führt dies zu einer verminderten Leistungsfähigkeit des Patienten, was in einem Teil der Fälle jedoch nicht bemerkt wird, zum anderen können durch die Verwirbelungen im Blut kleine Thromben entstehen. Diese Thromben, also Blutgerinnsel, werden aus der Kammer in den Blutkreislauf ausgeworfen und können je nach Herzseite im Kapillargebiet der Lunge oder des Gehirns hängen bleiben. So verstopfen sie die Blutzufuhr und das dahinter liegende Gewebe stirbt ab. Geschieht dies im Gehirn spricht man von einem Schlaganfall (Apoplex), der meist irreparable Schäden nach sich zieht.

In unserem Projekt soll ein EKG-Gerät entwickelt werden, dass die Diagnose solcher stiller Herzerkrankungen ermöglicht, ohne dass der Patient dafür die Praxis des Arztes besuchen muss. So kann ein Mediziner im Nachhinein Aufnahmen von verschiedenen Tagen auswer-

ten und mit einander vergleichen. Bei sporadisch auftretenden Symptomen ist die Möglichkeit jederzeit unabhängig ein EKG aufzeichnen zu können, besonders hilfreich für die Diagnose. Langfristig könnte die bessere Verfügbarkeit dieser Untersuchungsmethode zur Senkung der Fallzahlen von Spätfolgen wie Schlaganfällen und Durchblutungsstörungen führen.

3 Zielsetzung

Die Diagnose eines Vorhofflimmerns ist am einfachsten in den Ableitungen Einthoven I und II möglich. Nötig ist jedoch nur eine Ableitung, deshalb soll das EKG-Gerät lediglich ein Ein-Kanal-EKG aufzeichnen. Dieses ist prinzipiell baugleich zu einem 12-Kanal-EKG, dass im klinischen Umfeld verwendet wird, nur verfügt dieses über 12 Kanäle die parallel verschaltet sind. Für die Signalaufnahme werden Klebeelektroden mit Knopfanschluss verwendet. Nachdem das EKG-Signal durch eine analoge Filterschaltung von Störsignalen befreit wurde, wird es mit einem Mikroprozessor der Produktfamilie MSP430 von Texas Instruments, analog-digital gewandelt. Die Daten werden zur späteren Auswertung auf einer SD-Karte gesichert. Zur zusätzlichen Darstellung auf dem Mobiltelefon sollen die EKG-Daten mittels Bluetooth versendet werden. Hierfür wird eine Android-App entwickelt, die das Echtzeitsignal in einem Zeitdiagramm darstellt.

Die Bedienung erfolgt über ein Touch-Display, welches zur Darstellung des Echtzeitsignals, der Herzfrequenz und von Informationen für den Patienten verwendet wird. Ziel ist es die Bedienung so einfach und unmissverständlich wie möglich zu gestalten, um auch Personen ohne Fachkenntnis die Anwendung zu ermöglichen. Für die Benutzung unter mehreren Patienten eines Haushaltes, kann vor der Aufzeichnung ein Benutzerprofil auf dem Display ausgewählt werden. Zur Aufzeichnung wird das Gerät zwei verschiedene Modi bieten. Eine Kurzzeitaufnahme, die für Situationen geplant ist, in denen der Benutzer akut Symptome verspürt. In diesem Fall wird eine EKG-Aufnahme von zwei Minuten erstellt und mit Zeitsignaturen auf der SD-Karte gespeichert. Bei der Langzeitaufnahme wird ein EKG für 24 Stunden aufgezeichnet, um die Herzaktivität über einen längeren Zeitraum analysieren zu können. Während des Langzeitmodus wird das Bluetooth-Modul und Display deaktiviert, um den Akkulaufzeit zu verlängern. Der Energiesparmodus kann auch außerhalb der Langzeitfunktion durch einen Taster am Gehäuse aktiviert werden. Die Energieversorgung erfolgt über eine Lithium-Polymer-Akku-Zelle, deren Ladezustand vom Mikroprozessor gemessen und auf dem Display angezeigt wird. Der Akku kann aus dem Gehäuse entnommen und extern geladen werden. Bei einem Akkustand von weniger als 20% soll das Gerät den Nutzer mit einem akustischen Signal darauf hinweisen.

Für die Filter- und Verarbeitungselektronik wird eine Platine entworfen, deren Herstellung bei einem externen Fertiger erfolgt. Das Gehäuse soll durch 3D-Druck hergestellt werden und besteht aus einem rechteckigen Körper und einem abnehmbaren Deckel.

Das Gesamtbudget für die Herstellung in der Produktion soll maximal 300 Euro betragen.

4 Stand der Technik

Dieses Kapitel gibt einen Überblick über das Angebot an EKG-Geräten sowohl aus dem Heim- als auch aus dem klinischen Bereich. Da das Projektziel die Entwicklung eines Heim-EKG-Gerätes ist, wird im Zuge einer Marktrecherche der aktuelle Stand der Technik wiedergegeben, der in angepasstem Umfang in diesem Projekt erreicht werden soll.

4.1 Überblick der EKG-Diagnostik

Seit der Entdeckung von elektrischen Strömen am Herzen 1843 und ihrer ersten Aufzeichnung 1887 hat sich das EKG zu einem der meistgenutzten Diagnoseverfahren in der klinischen Praxis entwickelt. Während der Etablierung der Technik wurden Konventionen über das Vorgehen getroffen. Sie betreffen die Punkte an der Körperoberfläche an der die Elektroden zur Ableitung der Potenziale befestigt werden. Die wichtigsten sind die Ableitungen nach Einthoven (drei Stück), Goldberger (drei Stück) und Wilson (sechs Stück), sie bilden die Kanäle eines 12-Kanal-EKGs, das heute zur Standarderstdiagnostik von Krankenhäusern oder niedergelassenen Kardiologen gehört. Es ist essentiell für die Diagnostik von Herzrhythmus-, Reizleitungs- und Durchblutungsstörungen, darf jedoch nie unabhängig von anderen Diagnoseverfahren interpretiert werden. In Kliniken kommen hierbei stationäre oder mobile Geräte mit 12 oder 15 (zusätzliche simultane Hinterwandableitung am Rücken) Kanälen zum Einsatz. Meist verfügen sie Über einen Netzanschluss und einen Akku und werden zur Aufzeichnung von Kurzzeit- oder Belastungs-EKGs genutzt. Für ein Langzeit-EKG, über 12 oder 24 Stunden benötigt man ein kompakteres EKG-Gerät, das meist beim Arzt angelegt wird und vom Patienten am nächsten Tag zur Auswertung zurück in die Praxis gebracht wird. Sie verfügen meist über ebenfalls 12 Kanäle und benötigen Fachwissen zur korrekten Anwendung. Davon abseits haben verschiedene Hersteller Modelle entwickelt, die für den alleinigen Heimgebrauch und zur Anwendung durch Laien bestimmt sind. Sie verfügen zwar meist nur über einen bis drei Kanäle, jedoch können sie die Diagnostik sinnvoll ergänzen, wenn ein Patient nur unter sporadisch auftretenden Beschwerden leidet. Durch Software ist es manchen Modellen möglich das aufgezeichnete Signal zu analysieren und eine Handlungsempfehlung abzugeben. Die endgültige Diagnose muss jedoch immer durch einen Arzt gestellt werden muss. Als Ausnahme ist hierbei das System der öffentlichen Defibrilatoren zu nennen. Es zeichnet ein EKG auf, analysiert es und weist einen Laien bei entsprechender Diagnose dazu an eine Defibrilation auszulösen.

4.2 Marktrecherche

Auf dem Markt finden sich bereits verschiedene Geräte zur EKG-Aufzeichnung und auch automatisierten Analyse des Signals. Dabei gibt es große Unterschiede im Umfang der

Hard- und Software.

Das Modell KardioMobile von AliveCor besteht aus einem Elektrodenpad für die linken und rechten Zeigefinger und wird mit einem Smartphone via Bluetooth 4.0 gekoppelt. Über ein separates Display verfügt das EKG-Gerät nicht. Das Smartphone, mit dazugehöriger App, dient zur Anzeige, Analyse und Speicherung des Signals sowie zur Steuerung der Funktion. Kompatibel ist es mit den aktuellen Modellen der gängigen Hersteller mit IOS- und Android-Betriebssystem. Es ermöglicht die Aufnahme eines Ein-Kanal-EKG's über 30 sec bis 5 min, misst die Herzfrequenz und analysiert das Signal danach auf das Vorliegen einer Bradykardie (BK), Tachykardie (TK) oder eines Vorhofflimmerns (VHF). Ein automatisiertes Langzeit-EKG ist nicht möglich. Die Auflösung beträgt 16 Bit bei einer Abtastrate von 300 Hz. Betrieben wird das Gerät mit Knopfbatterien.

Das EKG-Gerät M90 mobile ECG Device vom Hersteller Beurer, verfolgt einen ähnlichen Ansatz. Es verfügt ebenfalls über zwei Elektrodenpads für die Zeigefinger und nimmt damit ein Ein-Kanal-EKG über eine Dauer von 30 sec auf. Danach wird das Signal automatisch auf Vorhofflimmern und Arrhythmien untersucht. Ein Langzeit-EKG wird nicht angeboten. Im Gegensatz zum vorigen Modell verfügt das Gerät von Beurer über ein LC-Display zur Anzeige von Herzfrequenz, Ladezustand und aller weiterer Gerätestatusinformationen. Es kann entweder via Bluetooth mit einem Smartphone oder über USB mit einem Computer verbunden werden, um die aufgezeichneten Daten in der zugehörigen, kostenlosen Software zu visualisieren. Versorgt wird das Gerät mittels Knopfbatterien. Ganz ähnlich dazu bietet Hartmann das Modell Veroval an. Es bietet die gleiche Funktionalität wie das Gerät von Beurer, also ein Ein-Kanal-EKG über 30 sec mit automatisierter Analyse der Herzfrequenz und des Herzrhythmus. Zur Anzeige der Frequenz und der Statusinformationen verfügt es über ein LC-Display, der Kurvenverlauf des Signals wird jedoch auf einem separaten Endgerät angezeigt. Dieses Modell bietet darüber hinaus die Möglichkeit den Blutdruck zu messen. Hierfür verfügt es über eine Blutdruckmanschette in Universalgröße. Die Bandbreite des EKG's ist mit dem Intervall von 0,05 Hz bis 40 Hz angegeben, bei einer Abtastfrequenz von 256 Hz. Betrieben wird es ebenfalls durch Batterien.

Das Modell Active von CardioSecur verfügt im Gegensatz zu allen bisherigen Modellen über Klemmen für Klebeelektroden und ist damit in der Lage verschiedene Ableitungen auf drei Kanälen aufzuzeichnen. Allerdings verfügt das Gerät über keinerlei Anzeigeoder Steuerungsmöglichkeiten. Es wird mittels USB-C an ein Smartphone angeschlossen, welches dann für die Anzeige, Speicherung und Analyse des Signals sowie für die Steuerung verwendet wird. Für die Nutzung der App, ohne die das Gerät nicht verwendet werden kann, ist ein monatliches Abonnement abzuschließen. Die Aufnahmedauer beträgt 10 sec, ein automatisiertes Langzeit-EKG wird nicht angeboten. Die Abtastrate beträgt 250 Hz,

Modell	Kardio-	Beurer ME	Hartmann	Cardio-	EKG-
	Mobile	90	Veroval	Secure	Monitor
				Active	Viatom
Gewicht	41	31 (ohne	_	50	280
(g)		Batterie)			
Energie-	Knopf-	Knopf-	AAA-	Versorgung	integrierter
versorgung	batterie	batterie	Batterie	durch	Akku
				Smartpho-	
				ne	
Sensortyp	Edelstahl-	Edelstahl-	Edelstahl-	Einmal-	Edelstahl-
	elektroden-	elektroden-	elektroden-	klebeelektro-	elektroden-
	pad	pad	pad	den	pad
verfügbare	Kurzzeit	Kurzzeit	Kurzzeit	Kurzzeit	Kurzzeit
EKG-	$(30 \sec -$	$(30 \sec)$	$(30 \sec)$	$(10 \sec)$	$(30 \sec)$
Arten	$5 \min)$				
Display	Smartphone	LC-Display	LC-Display	Smartphone	2,4 Zoll
		(nicht für	(nicht für		Touch-
		Signal-	Signal-		Display
		verlauf)	verlauf)		
Schnitt-	Bluetooth	Bluetooth	USB	USB-C	USB
stellen		und USB			
automati-	BK, TK	BK, TK	BK, TK	BK, TK	BK, TK
sierte	und VHF	und VHF	und VHF	und VHF	und VHF
Diagnose					
von					
Abtastrate	300	-	256	250	-
in Hertz					
Preis	120,00 €	100,00 €	125,00 €	150,00 €	140,00 €

Tabelle 1: Zusammenfassung der Marktrecherche

bei einer Signalbandbreite von 0,05 Hz bis 40 Hz.

Das letzte Gerät der Recherche ist der EKG-Monitor vom Hersteller Viatom. Er verfügt über Elektrodenpads, wie die ersten 3 Modelle, die für den Kontakt an der linken Handfläche und dem rechten Daumen bestimmt sind. Das 2,4 Zoll Touch-Display dient der Anzeige des Signalverlaufes, des Pulses und der Gerätestatusinformationen. Zudem kann es via USB mit dem Rechner verbunden werden und das EKG auf zugehöriger Software angezeigt werden. Der USB-Anschluss dient ebenso dem Aufladen des integrierten Akkus. Die Aufnahmedauer beträgt 30 sec, wonach das Signal auf Vorhofflimmern und Rhythmusstörungen analysiert wird. Ein automatisches Langzeit-EKG ist nicht möglich. Wie aus der Zusammenstellung der Ergebnisse in Tabelle 1 zu erkennen ist bieten alle Modelle die Möglichkeit zur automatisierten Diagnostik des Vorhofflimmerns jedoch keines die Funktion einer kontinuierlichen Langzeit-EKG-Aufnahme. Symptomloses Vorhofflim-

mern, dass zudem noch sporadisch Auftritt könnte bei Kurzzeitaufnahmen übersehen werden. Dies würde das Risiko für Spätfolgen erhöhen. Dieses Projekt hat deshalb die Entwicklung eines Gerätes zur Kurzzeit- und Langzeitaufnahme zum Ziel. Auf die zusätzliche automatisierte Diagnostik des Vorhofflimmerns durch Software wurde aufgrund des Projektfokus (EKG-Messung und eben nicht Auswertung) verzichtet.

[?]

5 Realisierung

Die Realisierung umfasst die gewählten Umsetzungen der Anforderungen an ein mobiles Heim-EKG-Gerät, sowie die getesteten Alternativen und Konzepte die nicht weiter verfolgt wurden.

5.1 Konzeptfindung

Dieses Unterkapitel führt die Anforderungen und die gewählten Lösungen auf, ohne diese im Detail zu erklären. Die genaue Erläuterung der verfolgten und getesteten Umsetzungen sind Inhalt der folgenden Kapitel der Realisierung. Ebenso werden hier die Lösungen aufgeführt, die sich nach dem Test als zu ineffizient oder zu aufwendig für die Anwendung erwiesen haben.

5.1.1 Konzeptionierung

Zur Erstellung eines Konzeptes für das EKG-Gerät wurden zunächst alle Anforderungen die sich aus dem Signal und den Produktvorstellungen ergaben, gesammelt. Hierzu zählen auch Funktionen die über die bloße Aufzeichnung eines EKGs hinausgehen.

- 1. Bandbreite der Filterschaltung: 0,5 Hz 160 Hz
- 2. Abtastfrequenz: 250 Hz 1000 Hz
- 3. Benötigte Verstärkung für das EKG-Signals: 66 dB (= Faktor 2000)
- 4. Für ein Ein-Kanal-EKG muss eine Differenzbildung der Signale zwischen den beiden Ableitungspunkten durchgeführt werden
- 5. Die negativen Signalanteile des EKGs müssen mit einer unipolaren Versorgungsspannung übertragen werden
- 6. Durch Magnetfelder von umgebenden Versorgungsleitungen induzierte Störsignale (sogenanntes Netzbrummen) müssen unterdrückt werden
- 7. Die verwendeten aktiven elektronischen Bauteile müssen mit einer unipolaren Versorgungsspannung betrieben werden können und sollten diesen Spannungsbereich fast vollständig ausnutzen
- 8. Zur Anzeige des Signals soll wahlweise ein integriertes Display oder das eigene Smartphone verwendet werden
- 9. Die Bedienung erfolgt via Touchscreen mit einem intuitiven User-Interface

- 10. Als Aufnahmemodi werden ein Kurzzeit-EKG (2 min) und ein Langzeit-EKG (24 Stunden) angeboten
- 11. Die Betriebslaufzeit muss mindestens 30 Stunden betragen
- 12. Die Energieversorgung erfolgt über einen Lithium-Ionen-Akku
- 13. Die aufgenommenen Daten werden auf einem externen Speichermedium gesichert
- 14. Bei einem niedrigen Akkustatus soll das Gerät den Nutzer durch einen akustischen Warnton darauf hinweisen

Die Bandbreite wurde nach der Analyse eines künstlichen Testsignals (siehe Abbildung 1) mithilfe von Matlab gewählt. Das EKG-Signal wurde aus Kosinus- und linearen Funktionen erstellt und danach durch eine Fast-Fourier-Transformation (FFT) das Frequenzspektrum (siehe Abbildung 2) ermittelt. Die betragsmäßig größten Frequenzanteile reichen von 0 Hz bis etwa 40 Hz. Da jedoch gerade die hochfrequenten Anteile des Signals für die Ausformung der charakteristischen QRS-Zacken verantwortlich sind, wurde die Grenzfrequenz der Tiefpassfilterung auf 160 Hz gesetzt. Der Gleichanteil des Signals wird mit einem Hochpass abgetrennt und das Wechselsignal auf ein DC-Potenzial von etwa 1,5 V überlagert. Dadurch dass die Filterschaltung auf ein Gleichspannungspotenzial von $\frac{V_{cc}}{2}$ angehoben wird, ist es möglich auch negative Signalanteile mit der einseitigen positiven Versorgungsspannung zu übertragen.

Abbildung 1: mit Matlab erstelltes künstliches EKG-Signal

Abbildung 2: Frequenzspektrum des künstlichen EKG-Signals

Da das Störsignal durch Magnetfelder mit der gleichen Frequenz der Versorgungsleitungen schwingt, wird das EKG-Signal durch Kerbfilter mit einer Sperrfrequenz von 50 Hz gefiltert. Zur Differenzbildung der beiden Eingangskanäle wird ein Instrumentenverstärker eingesetzt. Gleichzeitig dient er zur Vorverstärkung des Signals um die Störanfälligkeit gegen elektromagnetische Felder auf dem Weg durch die Schaltung zu reduzieren. Am Ende erfolgt eine Nachverstärkung um den Arbeitsbereich und somit auch die Auflösung des ADC bestmöglich auszunutzen. Abbildung 3 zeigt die einzelnen Stufen der Filterung schematisch.

Abbildung 3: Blockschaltbild der Filterschaltung

Wie aus Abbildung 4 zu erkennen ist, werden zwei Versorgungsspannungen (3 V und 5 V) für die Module benötigt. Sie werden aus dem Spannungsbereich eines Lithium-Ionen-Akkus mithilfe eines LDO für 3 V und eines Aufwärtswandlers für 5 V erzeugt. Die Konzeptfindung der Spannungsversorgung wird im Folgendem erläutert.

Für die Wahl des Akkumulators ist die geforderte Laufzeit von mindestens 30 Stunden sowie die Stromaufnahme der Unterbaugruppen ausschlaggebend. Letztere setzt sich wie folgt zusammen:

Komponente	Nennspannung	Stromverbrauch während Langzeitaufnahme
Display	5 V	10 mA
Bluetooth	5 V	8 mA
Cardreader	5 V	15 mA
MCU	3 V	4 mA
Signalfilterung	3 V	3 mA

Resultierend daraus eribt sich die gesammte Leistungsaufnahme zu:

$$P_{sum} = 5 \text{ V} \cdot (10 \text{ mA} + 8 \text{ mA} + 15 \text{ mA}) + 3 \text{ V} \cdot (4 \text{ mA} + 3 \text{ mA}) = 186 \text{ mW}$$

Die Effizienz der noch unbekannten Spannungswandler wird vorläufig mit 80% angenommen:

$$P_{Akku} = 186 \,\text{mW} \cdot \frac{1}{0.8} = 232.5 \,\text{mW}$$

Multipliziert man den Leistungsbedarf mit der gewünschten Laufzeit, so ergibt sich eine nötige Energiemenge von:

$$E_{Akku} = 232.5 \, \text{mW} \cdot 30 \, h = 6975 \, \text{mWh}$$

Die Nennspannung dieser Zellen beträgt 3,7 V. Dadurch ergibt sich eine nötige Ladungsmenge von:

$$Q_{Akku} = \frac{6975 \, mWh}{3.7 \, V} = 2051 \, mAh$$

Diese Ladungsmenge wird großflächig über die Zellgröße 18560 angeboten, welche Weltweit in Massenfertigung produziert wird und somit keine Finanziellen oder Logistische Probleme darstellt.

Lithium-Ionen Zellen nehmen während ihrer Entladung Spannungen zwischen 4.2 V und 3.2 V abhängig vom Ladezustand an. Da sich aus diesem weiten Bereich die Komponenten des EKG-Gerätes nicht zuverlässig versorgen lassen, müssen stabile Zwischenspannungen erzeugt werden. Die erzeugten Spannungen müssen in der Lage sein den maximalen Strom für ihre Baugruppen zu liefern, welcher sich wie folgt zusammensetzt:

Komponente	Nennspannung	Stromverbrauch maximal
Display	5 V	100 mA
Bluetooth	5 V	40 mA
Cardreader	5 V	100 mA
MCU	3 V	7 mA
Signalfilterung	3 V	3 mA

Dies ergibt eine Stromaufnahme von: $I_{3V}=10\,m{\rm A}$ und $I_{5V}=240\,m{\rm A}$

Für die Erzeugung von 5 V wird ein Aufwärtswandler verwendet. Hierbei handelt es sich um eine integrierte Schaltungen, welche durch zerhacken einer Gleichspannung eine DCDC Wandlung auf höhere Spannungen ermöglicht. Diese ICs sind platzsparend, da sie bereits im SOT23 Package erhältlich sind, und können problemlos Ströme im einstelligen Amperebereich bereitstellen.

Die Generierung von 3V durch einen Abwärtswandler ist möglich, allerdings weist diese Schaltungsart bauartbedingt eine Restwelligkeit auf. Da die komplette Analogschaltung zur Aufnahme es EKG Signals mit 3V versorgt wird, soll hier jede Form von Schwankung vermieden werden. Deshalb fällt die Wahl für die Generierung von 3V auf einen LDO (Low-Dropout-Regler), welcher einen Spannungsabfall über einen internen MOS-FET verursacht und somit die Eingangsspannung auf eine festgelegte Ausgangsspannung herunter regelt. Da in einem LDO keine schaltenden Vorgänge Stattfinden, ist die Restwelligkeit sehr gering.

Die Anzeige und Steuerung erfolgt über ein 3,2 Zoll TFT Touch Display. Es verfügt über eine serielle Schnittstelle und kommuniziert via UART mit dem Input/Ouput-Modul des Prozessors. Zur zusätzlichen Bedienung wurde ein Taster eingeplant, der zum Einund Ausschalten des Energiesparmodus verwendet wird. Der Buzzer dient für akustische Warnsignale bei Fehlfunktion oder einem niedrigen Ladezustand des Akkus.

Die zweite UART-Schnittstelle (Universal Asynchronous Receiver Transmitter) der CPU wird verwendet um Daten an das Bluetooth-Modul zu senden. Dieses kommuniziert dann via Bluetooth mit dem Smartphone des Benutzers, um die EKG-Daten in der App anzuzeigen.

Die Datenspeicherung erfolgt auf einer externen SD-Karte. Das Kartenmodul das zum Schreiben und Lesen der Daten verwendet wird, kommuniziert via SPI (Serial Peripheral Interface) mit dem Input/Output-Modul der CPU.

Zur Programmierung und Fehleranalyse der Prozessoreinheit auf der Platine, wird die JTAG-Schnittstelle (Joint Test Action Group) verwendet.

Abbildung 4: Blockschaltbild des EKG-Geräts

5.1.2 Verwendete Software

Für die Erstellung und Frequenzanalyse eines künstlichen EKG-Signals wurde das numerische Rechentool Matlab verwendet. Damit konnten die Grenzfrequenzen des Signals bereits ohne Labortest abgeschätzt werden. Diese Erkenntnisse wurden bei der Schaltungsentwicklung der analogen Filterschaltung mit LTSpice angewandt. Durch die Einbindung von Herstellermodellen, war die Simulation von Bauteilen möglich, ohne diese physisch zu testen. Für den Entwurf der Leiterplatine kam Altium Designer zur Anwendung. Auch hierfür bieten Hersteller Modelle für die Pinbelegung, den Footprint und 3D-Modelle an. Besonders die 3D-Modelle waren für das Gehäusedesign hilfreich um die korrekte Lage und Maße der Bauteile im Gehäuse auch optisch zu prüfen. Für das Display wurde die Software Nextion-Editor verwendet. Diese Software ist speziell für das Display angefertigt und kann beim gleichnamigen Hersteller heruntergeladen werden. Der Nextion-Editor verfügt über ein weites Spektrum von Tools. Für die jeweiligen Symbole der Benutzeroberfläche wurde mit GIMP gearbeitet. Anhand der Symbole ist die UI in allen Bereichen visuell aufeinander abgestimmt.

5.1.3 Verwendete Geräte

5.1.4 Bauteilbeschaffung und Fertigung

5.2 Diskussion der Alternativen

5.2.1 Digitale Filterung

Für die digitale Filterung des Netzbrummens wurden jeweils ein FIR- (Finite-Impuls-Response) und ein IIR- (Infinite-Impuls-Response) Filter als Bandsperren mit einer Sperrfrequenz von 50 Hz entworfen. Hierfür wurden die Filterkoeffizienten mit Matlab erzeugt und danach in C als eigenständige Module implementiert. Die Testung erfolgte auf dem Launchpad des MSP430 mit harmonischen Schwingungen zwischen 1 Hz und 200 Hz, einem künstlichen EKG-Signal (beides mit einer Signalquelle erzeugt) und einem echtem EKG-Signal.

Der FIR-Filter verfügt zwar über einen linearen Phasenverlauf, erwies sich aber bei den Tests schnell als zu rechenintensiv, für die Anwendung auf dem verwendeten Prozessor. Mit ihm wurde bei einer Abtastfrequenz von 250 Hz lediglich eine Dämpfung von 3 dB bis 6 dB erreicht.

Der IIR-Filter zeigte sich im Test mit verschiedenen harmonischen Schwingungen als sehr effizient mit einer maximalen Dämpfung von 150 dB bei geringem Rechenaufwand. Jedoch führte er in der Anwendung bei einem echten EKG-Signal zu einer Verschlechterung des Ausgangssignals, da er Schwingungen erzeugte, wie aus Abbildung 5 zu erkennen ist.

Eine alternative Möglichkeit zur Erzeugung der Unterspannungen ist die Verwendung eines PMIC (Power Management Integrated Circuit), bei welchem es sich um eine integrierte Schaltung handelt, die alle Anfallenden Aufgaben der Spannungserzeugung übernimmt. Dazu zählen: Battery Management (Überwachung des Ladungszustands der Batterie), Spannungsregulation (Bereitstellen von verschiedenen Unterspannungen), Ladefunktionen. Was auf den ersten Blick als gute Lösung für die gegebenen Anforderungen erscheint, gestaltet sich in der praktischen Umsetzung jedoch schwierig. PMICs kommen idr. im QFN48 Package, welches vergleichsweise groß ist und schwierig zu löten. Somit gestaltet sich das Testen einer Schaltung, welche auf einem PMIC basiert als kompliziert. Hinzu kommen die Vergleichsweise hohen kosten des ICs sowie ein hoher Aufwand an externer Beschaltung. Des weiteren bietet ein PMIC wesentlich mehr Features als für die Projektanforderungen nötig wären, weshalb diese Möglichkeit ausgeschlossen wurde.

Abbildung 5: oben: EKG-Signal mit durch IIR-Filter erzeugtes Störsignal; unten: EKG-Signal ohne IIR-Filterung

5.3 Akkumanagement und Versorgungsspannungen

Dieses Unterkapitel behandelt die Umsetzung der Spannungsversorgung eines mobilen EKG Gerätes.

Bei der Auswahl eines Boost-Konvertes ist vor allem auf eine hohe Effizienz des ICs sowie einen geringen Eigenverbrauch zu achten. Darüber hinaus gibt es Boost-Konverter mit einem integrierten Enable Pin, welcher nicht nur den IC deaktiviert, sondern auch die Last vollständig vom Eingang abkoppelt. Dies ist überaus nützlich um im Standby Strom zu sparen. Ein Konverter der all diese Anforderungen erfüllt, ist der RP402N501F-TR-FE, welcher bereits ab 0,54€ im Falle einer Massefertigung erhältlich wäre, Ströme bis 800 mA sowie eine Effizienz von 90% - 94% unterstützt. Die äußere Beschaltung dieses Wandlers beschränkt sich auf Pufferkondensatoren am Ein- und Ausgang, eine Induktivität zwischen dem Eingang und einem dedizierten Lx Pin und einem Pull-Down Widerstand am Enable Pin, welcher den IC auch im Fall einer deaktivieren MCU ausschaltet.

Betrachtet man den LDO ist zu beachten, dass ein dieser immer eine minimale Dropout Voltage hat, welche mindestens über ihn abfällt. Somit muss die Eingangsspannung größer als die gewünschte Ausgangsspannung plus Dropout Spannung sein. Würde man z.B. eine Ausgangsspannung von 3,3 V anstreben und der LDO eine Dropout Voltage von 0,2V

besitzen, könnte man den Akku nur bis zu einer Spannung von 3,5 V entladen ohne die Ausgangsspannung zu beeinflussen. Dieser Umstand wird in Abbildung 7 verdeutlicht. Deshalb wurde für das EKG-Gerät der LDO TPS79030DBVT mit einer niedrigen Dropout Spannung von 57 mV gewählt. Dieser LDO ist mit einer Restwelligkeit von 56 μ V und einem Ruhestrom von 17 μ A bestens zur Erfüllung der gestellten Ansprüche geeignet.

Abbildung 6: Simulationsaufbau 3V LDO

Abbildung 7: Ausgang 3V LDO mit fallender Eingangsspannung

Die Nutzung von Lithium-Ionen Zellen birgt einige Risiken. Mögliche Gefahren und getroffene Maßnahmen zur Reduktion dieser sind:

1. Kurzschlüsse:

Als erste Maßnahme hierfür ist der Anschluss der Batterie als Pin Header ausgeführt, wodurch sich am PCB seitigem Ende der Zuleitung eine Buchse befindet. Somit sind die Kontakte im inneren der Buchse geschützt und können nicht durch unachtsame Handhabung Kurzgeschlossen werden. Um bei Kurzschlüssen auf dem Board oder an der Peripherie den Akku zu schützen ist unmittelbar nach dem Header eine Sicherung platziert. Hierfür wurde aus der OMNI-BLOCK Serie von Littelfuse eine 1 Ampere Sicherung mit flinker Auslösecharakteristik gewählt (0154001.DRL).

2. Verpolung:

Um eine Beschädigung der Schaltung durch eine verkehrt eingesetzte Batterie zu verhindern, wodurch Plus- und Minuspol vertauscht wären, ist ein Verpolschutz durch einen PMOS vorhanden. Der Drain-Anschluss liegt hierbei an der Batterie

währen der Source-Anschluss dem Rest der Schaltung zugewandt ist. Dadurch ist Bei korrekter Polung der Body-Diode von Drain nach Source leitend. Das Gate ist über einen Widerstand mit dem Ground verbunden, wodurch im Normalbetrieb eine negative Gate-Source Spannung anliegt und den Transistor komplett durchsteuert. Im Fall einer Verpolung ist die Body-Diode nicht leitend und es entsteht keine Potentialdifferenz zwischen Gate und Source. Der FET sperrt und die Schaltung ist geschützt.

3. Überspannung:

Überspannungen z.B. durch eine elektrostatische Entladung (ESD) beim wechseln der Batterie können der Schaltung Schaden zufügen. Zur Prävention ist am Spannungeingang eine Bidirektionale Transient Voltage Suppressor (TVS) Diode verbaut, welche Spannungen über 9V schnell nach Ground ableitet.

4. Tiefenentladung:

Eine Entladung auf Spannungen außerhalb der Spezifikation des Akkus können zu dessen Zerstörung führen. Aus diesem Grund wird fortwährend die aktuelle Akkuspannung des Geräts durch die MCU gemessen und ein Einschalten des Geräts wird nur bei ausreichender Spannung erlaubt. Zusätzlich wird ein Akku mit integrierter Schutzbeschaltung verwendet, welche ebenso einen Tiefentladungsschutz enthält.

5.4 Display und Benutzeroberfläche

Dieses Unterkapitel behandelt die Auswahl des Displays, dessen Spezifikationen und die Programmierung des User Interfaces.

Gesteuert wird das EKG-Gerät durch das NX4024T032. Dabei handelt es sich um ein Touch-Display der Firma Nextion. Das Display ist 3,2 Zoll groß und weist eine Auflösung von 400x240 Pixel auf. Betrieben wird das Display mit 5 V und verbraucht bei maximaler Helligkeit 85mA. Verbunden wird das Display via UART mit einer Baudrate von 115200 bps.

Das User Interface (UI) wurde mithilfe von vergleichbaren Geräten anhand einer Marktrecherche und anhand der Funktionalitäten des Lastenheftes konzeptioniert. Das UI ist mit der Nextion-Editor Software entwickelt und programmiert worden. Diese Software verfügt über eine übersichtliche Benutzerumgebung und einer eigenen Programmiersprache. Die Befehle und Anweisungen der Nextion Programmiersprache sind auf der offiziellen Homepage vorzufinden. Auf der Homepage sind auch allgemeine Regeln und Praktiken im Umgang mit dem Display aufgezeigt.

Der erste Schritt der Displayprogrammierung ist die Initialisierung. In diesem Schritt wird die Baudrate von 115200 bps und die "Tap-to-wake" Funktion integriert. Das Display

schaltet sich je nachdem, auf welcher Seite man sich befindet, nach 30 bis 180 Sekunden in den Sleep-Mode. Durch einmaliges antippen auf das Display wird es wieder aufgeweckt. Der Nextion-Editor verfügt über ein weites Spektrum von Tools. Für das Projekt wurden im wesentlichen folgende Tools verwendet:

1. Text: Für die Beschreibung der Funktionen und Anleitung

2. Number: Variablen für den Timer, Ladestand und Herzfrequenz

3. Button: Zum Seitenwechsel und senden der Interrupts an die MCU

4. Waveform: Für den EKG-Kurvenverlauf

5. Slider: Einstellung der Helligkeit

6. Interne Timer: Befehle, die regelmäßig ausgeführt werden

Aufgebaut ist das UI aus verschiedenen Seiten. Nach dem Einschalten des EKG-Gerätes gelangt man auf die Startseite. Hier ist in der oberen rechten Ecke die Peripherie zu sehen. Der Akkustand wird in Prozent angegeben und die Verbindung zur SD-Karte und zum Bluetooth-Modul überprüft. Bei einem blauen Symbol besteht eine Verbindung und bei einem grauen Symbol ist das Modul getrennt bzw. nicht verbunden. Alle Icons, die auf dem Display vorzufinden sind, wurden aus Vorlagen an das gesamte Theme angepasst. Dabei wurde die Software GIMP verwendet.

Abbildung 8: Startseite des EKG-Gerätes

Die sechs Symbole in der Mitte des Displays sind Buttons, mit denen zwischen den Seiten gewechselt wird. In der Anleitung werden allgemeine Einstellungen erklärt, wie die Elektroden am Patienten anzubringen sind und welche Funktionen ein Kurzzeit- und Langzeit-EKG bietet. Beim Kurzzeit-EKG erfolgt eine zweiminütige Aufzeichnung, welche in Echtzeit auf dem Display nachverfolgt werden kann. Beim Langzeit-EKG erfolgt

die EKG-Aufnahme für 24 Stunden. Die Helligkeit des Displays kann mithilfe eines Schiebereglers eingestellt werden. Optional kann ein Benutzer ausgewählt werden. Dieser Benutzer erscheint dann auf der erstellten CSV Datei der SD-Karte. Der Standby-Modus: Versetzt das Display beim Drücken in den Sleep-Modus.

Während der Nutzung des EKG-Gerätes sind diverse Sicherheitsabfragen auf dem Display vorzufinden, wenn:

- 1. bereits eine Aufnahme läuft und eine Andere gestartet wird.
- 2. eine Aufnahme mit dem Stopp-Befehl abgebrochen wird.
- 3. die SD-Karte entfernt wird oder beim Anschaltvorgang fehlt.
- 4. der Ladestand des Akkus bei einer Langzeit-Aufnahme kleiner als 80 % ist.
- 5. Verdacht auf Bradykardie oder Tachykardie besteht.

Die Herzfrequenz wird während einer Kurzzeit-Aufnahme kontinuierlich berechnet. Da es sich bei diesem Projekt um ein Ruhe-EKG handelt, sollte die Herzfrequenz im Ruhebereich liegen. Im Fall von Bradykardie oder Tachykardie wird der Patient auf dem Display visuell gewarnt.

5.5 Prozessoreinheit

Dieses Kapitel enthält die Beschreibung der MCU, ihre Auswahl und Spezifikationen, sowie Toolchain und Codeentwicklung mit der Erläuterung von essenziellen Codemodulen und deren Funktionalität und Logik.

5.5.1 Auswahl und Spezifikationen der Prozessoreinheit

Das Projekt EKG7 basiert auf dem Prozessor MSP430F5529. Laut der Projektvorgaben muss der Prozessor zur MSP430-Prozessorfamilie der Firma Texas Instruments gehören. Nach der Analyse verschiedener μC fiel die Wahl auf die MSP430F5529. Dieser Mikrocontroller hat alle notwendigen Spezifikationen, um die Anforderungen im Lasten- und Pflichtenheft zu erfüllen. Das Hauptziel der Baugruppe ist eine kontinuierliche und unterbrechungsfreie Bearbeitung und Übertragung des analogen Eingangssignal an verschiedene Module mit einem möglichst niedrigen Stromverbrauch. F5529 MCU verfügt über fünf verschiedene Stromsparmodi. In diesen Modi liegt die Stromaufnahme im μA-Bereich. Der aktive Zustand des Prozessors verbraucht bei maximaler Belastung im "Worst Case" 3,7 mA. Der nächste wichtige Aspekt ist eine ausreichende Taktfrequenz. Die maximale Frequenz der F5529 beträgt 25 MHz. In diesem Projekt sind die Clocks auf eine Frequenz von 20 MHz eingestellt. Die MCU verfügt über 2 UART- und 4 SPI-Schnittstellen.

Beide UART Schnittstellen sind für Bluetooth-Verbindung und Kommunikation mit dem Display ausgelegt. Eine SPI-Schnittstelle ist für die Datenübertragung an das Bluetooth Modul verwendet. Die ADC Schnittstelle hat die Auflösung von 12-bit, was möglich macht die Werte im Bereich von 0 bis 4095 zu empfangen. Das ermöglicht sowohl eine präzise Aufnahme eines EKG-Signals als auch präzises Ablesen der Akku-Werte mit einem gewissen Offset. Ein weiterer Faktor für diese Projektarbeit ist die Anzahl der I/O Pins. Die MCU besitzt insgesamt 63 GPIO Pins inklusive 16 interruptsfähige Pins. Dies erleichtert das Hardwaredesign und gibt mehr Freiheit bei der Codeentwicklung. Die MCU besitzt 8kB RAM. Der Speicher ist genügend, um die temporären Werte intern auf der MCU zu speichern und diverse Features wie z.B. digitale Filterung zu testen. Ein entscheidender Faktor bei der MCU Auswahl ist die Verfügbarkeit von DevKit mit der gleichen MCU. Nach der Codeentwicklung auf dem DevKit ist es möglich die entwickelte Software mit minimalen Codeanpassungen auf das PCB zu portieren.

5.5.2 Codeentwicklung

In diesem Unterkapitel wird eine ausführliche Beschreibung zur Software des Projektes und dessen Entwicklung gegeben. Zuerst wird der Begriff State Machine im Allgemeinen beschrieben, warum eine State Machine sinnvoll zu benutzen ist. Anschließend wird es auf die Implementierung der State Machine im Projekt mit der Beschreibung jedes Zustandes eingegangen.

State Machine: Eine State Machine ist ein sogenannter Verhaltensmodell der Software oder eines Teils der Software mit einer endlichen Anzahl der Zustände. Diese Zustände können gewechselt werden gemäß der Logik des Programms, sowie empfangenen Daten. Motivation und Logik einer State Machine: In einer State Machine ist es immer möglich festzustellen, in welchem Zustand das Programm sich befindet. Dies vereinfacht die Codeentwicklung, erschafft Codeübersichtlichkeit, ermöglicht die Entwicklung verschiedenen Zustände und Bedingungen, unter welchen ein Zustand gewechselt werden kann. Eine State Machine hat in der Regel einen Initialisierungszustand, anhand dessen das Programm initialisiert wird. Ein weiterer Programmablauf ist von dem Initialisierungszustand abhängig. Zum Beispiel nach einer erfolgreichen Initialisierung kann das Programm einen normalen Betrieb anfangen. Sollte in diesem Zustand etwas schiefgehen, kann das Programm einen anderen Zustand nehmen und dementsprechend auf den aufgetretenen Fehler reagieren z.B. mögliche Fehlerursache zeigen. Solche funktionsweise besitzen alle anderen Zustände auch.

Zustände der State Machine: In dem Projekt sind 6 verschiedene Zustände für das EKG Gerät entwickelt, sowie eine regelmäßige Überwachung von globalen Flags, die jede Sekunde stattfindet. Diese Zustände sind:

- Initialisierung SYS_INIT,
- Leerlauf IDLE_STATE,
- Aufnahme des Kurzzeit-EKG ECG_SHORT,
- Aufnahme des Langzeit-EKG ECG_LONG,
- Stromsparmodus ENERGY_SAVING_MODE,
- Aufweckzustand SYS_WAKEUP.

Aus dem Bild ist zum Teil die Funktionsweise der State Machine zu entnehmen. Mehr detailliert wird es bei der Beschreibung einzelnen Zuständen eingegangen.

Abbildung 9: State Machine des EKG7

Globale Flags: Für das Anzeigen diversen Zustände sind in der Software globalen Flags implementiert. Die Flags können folgende Ereignisse widerspiegeln:

- Auftreten eines Interrupts,
- Ankommen von Daten,
- Aktueller Zustand der State Machine,
- Toggeln von der Taste,
- Zustände der Module,
- Timers,
- Bluetooth-Verbindung,

• Verbindung mit SD-Karte.

Interrupts: Ein Interrupt ist ein Signal an die MCU, das hardware- oder softwareseitig auftritt und eine sofortige Antwort bzw. Reaktion der MCU benötigt. Der normale Programmablauf wird dabei gestoppt und es werden Befehle im Interrupt Service Routine erst ausgeführt. Nach dem Ablauf von einem Interrupt kehr die MCU zurück zum normalen Programmablauf. In dem Projekt werden Interrupts für folgende Module verwendet:

- GPIO beim Togglen der Gehäusetaste, Ein- und Ausschalten des Bluetooth Moduls und Einsetzen bzw. Rausnehmen der SD-Karte,
- Timers es treten zwei Interrupts auf mit jeweils 1 Hz und 250 Hz Frequenz,
- UART beim Empfangen von Befehlen vom Display,
- ADC beim Empfangen von EKG Signalen und Akkuspannung.

Initialisierung: Initialisierung oder SYS_INIT ist der Anfangszustand der MCU nach dem Einschalten. Dieser Zustand ruft Initialisierungsfunktionen aller verwendeten Modulen auf und nach dem Initialisierungsvorgang wird verlassen. Hier folgt die Reihenfolge der Module, die im Programm initialisiert werden:

- Watchdog Timer ist dem Totmann-Schalter ähnlich. Die MCU wird zurückgesetzt, wenn das Programm ihn nicht explizit ausschaltet;
- General Purpose Input Output sind alle programmierbare MCU I/O Pins. Sie müssen vorerst initialisiert werden, da auf deren Funktionalität weitere Module basieren können;
- Clocks Grundtaktfrequenz des Mikrocontrollers;
- Timers Interrupts, die taktfrequenzabhängig sind und in gewissen Zeitintervallen auftreten;
- UART Schnittstelle für Display- und Bluetooth-Verbindung;
- ADC Digitalisierung der analogen Signale;
- SPI Schnittstelle für Verbindung mit SD-Kartenmodul;
- FAT File Allocation Table ist die Dateizuordnungstabelle bzw. ein Dateisystem für die Datenübertragung auf SD-Karte;
- UART-BT Kommunikation der MCU mit dem Bluetooth Modul;

- Median Filter Filterung der Artefakte bei der Herzfrequenzberechnung;
- Globle Interrupts Freischalten der globalen Interrupts.

Im Folgenden wird eine detaillierte Beschreibung von den zu initialisierenden Modulen aufgelistet:

- 1. GPIO: General Purpose Input Output ist ein Modul, das die vorhandenen Pins als Inputs oder Outputs initialisiert. Demnächst können diese Pins im Code verwendet werden. In diesem Modul werden folgende Pins initialisiert:
 - LEDs auf dem PCB,
 - Buzzer,
 - 5V DC/DC,
 - Gehäusetaste,
 - Bluetooth State,
 - Card Detect Pin für das SD-Kartenmodul.
- 2. Clocks: Es werden drei Clocks initialisiert. MCLK (Main Clock) und SMCLK (Submain Clock) weisen eine Frequenz von 20 MHz auf. ACLK (Auxiliary Clock) ist mit einer Frequenz von 32 kHz initialisiert. Main Clock wird als Taktquelle für die MCU verwendet. Sub-main Clock ist ein Hochfrequenztakt und wird für Peripheriemodule verwendet, die einen niederfrequenten Takt benötigen.
- 3. Timers: Im Code sind zwei Timers initialisiert. Timer A1 hat ACLK als Taktgeber und wird mit einer Frequenz von 1 Hz aufgerufen. Timer A2 ist an SMCLK gebunden und weist eine Frequenz von 250 Hz auf. Die zwei Timers funktionieren unabhängig voneinander und haben ihr eigenen ISR.
- 4. UART Display: Bei der Initialisierung der UART Verbindung zum Display, werden zunächst die Input- (RX) und Output- (TX) Pins festgelegt. Die Frequenz der MCU beträgt 20 MHz. Als Baudrate wurde 115200 bps gewählt. Damit eine Verbindung der beiden Module besteht, muss die Baudrate sowohl beim Display als auch bei der MCU einprogrammiert werden. Befehle vom Display an die MCU werden mittels Interrupts realisiert. Das Display sendet eine Folge zwischen vier und sieben Byte, welche im Nextion-Editor des Displays einzusehen sind. Für welche Funktionen und Buttons des Displays ein Interrupt geschickt werden soll, wird im Nextion-Editor des Displays programmiert. Sobald die MCU eine gesendete Interrupt-Folge

erkennt, werden Flags gesetzt. Anhand dieser Flags werden im späteren Verlauf gewisse Funktion auf der MCU aufgerufen. Bei Befehlen, die von der MCU an das Display gesendet werden, wird im Wesentlichen mit drei Funktionen gearbeitet. Bei der ersten Funktion wird ein Command mit der entsprechenden Variablen als String (z.B. "page0.akku.val" – Bedeutung siehe Baugruppe Display und Benutzeroberfläche) an das Display gesendet. Mit der zweiten Funktion wird der dazugehörende Wert, z.B. akku_percentage, der Integer Werte in einen String umgewandelt und anschließend an das Display sendet. Um einen Befehl auch als solchen zu, erwartet das Display drei Bytes mit dem Inhalt "0xFF" am Ende. Diese drei Byte werden in der dritten und somit letzten UART-Funktion an das Display gesendet. Anhand dieser drei Funktionen ist die Kommunikation fertiggestellt.

- 5. UART Bluetooth-Modul: Das verwendete Bluetooth Modul HC-05 wird über UART angesprochen, wobei die Baudrate flexibel konfigurierbar ist. Zum Transfer von Daten öffnet das Modul auf dem verbundenem Smartphone oder Laptop einen virtuellen COM-Port, über welchen es alle ihm übergebenen Bytes ausgibt. Seitens der MCU wird das Hardware-Modul USCI A1 verwendet, welches mit Ausnahme der Basisadresse identisch zu USCI_A0 bzw. Display initialisiert wird. Um beim versenden der Nachrichten keine Verzögerung oder zusätzliche CPU Last zu verursachen, wird Direct Memory Acces (DMA) verwendet. Das DMA-Modul kann nach korrekter Initialisierung automatische Daten im Hintergrund in das TX Register des UART Moduls kopieren. Hierfür muss das Modul auf Single Transfer konfiguriert werden. Weitere benötigte Konfigurationen sind Byte-to-Byte Transfer, die Quelladresse, die Zieladresse und die Datengröße. Als Trigger um das nächste Byte zu übertragen ist das Interrupt Flag UCA1TXIFG zu wählen, welches immer dann aktiv ist, wenn das UART Modul bereit ist ein weiteres Byte zu senden. Damit ein ganzer String verschickt werden kann, ist das DMA Modul auf ein Inkrementieren der Quelladresse nach jedem versendetem Byte einzustellen. Somit wird nach Aktivierung des Moduls durch setzen des DMA-Enable-Bits ein kompletter String im Hintergrund Byte für Byte versendet, bis die vorgegebene Datengröße abgearbeitet ist und das Enable-Bit automatisch zurückgesetzt wird. Die CPU selbst wird dabei jeweils nur für zwei Takte durch das DMA Modul unterbrochen und muss nicht auf den Abschluss jedes Sendevorgangs warten.
- 6. ADC: Demnächst wird das ADC Module initialisiert. Als Referenzspannung wird 1,5 V gesetzt. Das ist ein Standardwert. Als nächstes werden zwei Pins für EKG Aufnahme und Akkubeobachtung initialisiert. Als positive Referenzspannungsquelle wird AVCC (3V) für beide ADC Kanäle eingestellt. Negative Referenzspannungs-

quelle ist AVSS, was dem Groundpotential auf dem PCB entspricht. Beide Kanäle werden mit ACLK betrieben. Zum Schluss wird ein Interrupt für dieses Modul und das Modul selbst aktiviert.

- 7. SPI: Die SPI Schnittstelle wird mit einem SMCLK betrieben und kann die maximale Frequenz von 20 MHz erreichen. Nach dem Konfigurieren von Grundfrequenz und gewünschter Frequenz wird das SPI Modul aktiviert, Interrupt freigeschaltet, das Signal Chip Select gesendet und TX Buffer aktiviert. Wenn TX Buffer aktiv ist, wird ein Wert "0x00" an Slave gesendet.
- 8. FAT: FAT ist eine SPI-basierte Schnittstelle und benutzt SPI als Kommunikationsprotokoll. FAT Modul initialisiert SD-Karte. Dafür wird in diesem Projekt eine Open Source Library FatFs der Entwickler elm-chan.org verwendet. Diese Library ist unter "Creative Commons Attribution 3.0 Unported License" lizenziert und daher kann für nichtkommerzielle Zwecke benutzt werden. SD-Karte wird mit einem Timeout initialisiert, was nicht nur das Detektieren der Karte im Kartenmodul ermöglicht, sondern auch das Testen von den Lese- und Schreibvorgängen. Somit kann geprüft werden, ob die SD-Karte funktionsfähig ist.
- 9. Medianfilter: Um Artefakte bei der Herzfrequenzmessung herauszufiltern, dient ein Medianfilter. Bei der Initialisierung werden zwei Strukturen und ein Array der Größe 11 angelegt. Ein Medianfilter gibt immer den Wert zurück, der sich in der Mitte des Arrays befindet. Anders als bei einem Mittelwertfilter, haben größere Artefakte keinen Einfluss auf den Medianwert. Dadurch wird sichergestellt, dass die Herzfrequenzmessung auch beim Aufstehen des Patienten oder großen Störfaktoren richtig berechnet wird. Aufgerufen wird die Median-Funktion unmittelbar nach der Herzfrequenzberechnung. In dem Array werden 11 Werte gespeichert und stets der Medianwert an das Display übermittelt.

IDLE_STATE. Als IDLE_STATE wird der Zustand bezeichnet, in dem sich das EKG-Gerät im Leerlauf befindet. Hier wird kontinuierlich in einer while-Schleife abgefragt, ob der Benutzer/die Benutzerin ein Kurzzeit- oder Langzeit-EKG aufnehmen möchte. Eine erfolgreiche Abfrage wird durch den Start-Befehl des Displays in Form eines Interrupts erreicht. Sobald der Benutzer/die Benutzerin den Befehl gibt, wird eine CSV Datei auf der SD-Karte erstellt und der Case der State Machine wechselt entsprechend der gewünschten Aufnahme Methode.

Kurzzeit-EKG aus Nutzersicht: Im Falle einer Kurzzeit-Aufnahme startet man das EKG auf dem Display im Unterpunk "Kurzzeit EKG". Sobald dieser Befehl ausgeführt wurde,

läuft die Aufnahme samt Speicherung für zwei Minuten automatisch ab. Um das EKG vorzeitig abzubrechen, kann der Stopp-Button des Displays betätigt werden. Dabei ist eine Sicherheitsabfrage vorzufinden, ob der Befehl bewusst oder unbewusst getätigt wurde. Gestoppt wird somit erst nach der Bestätigung auf "Ja". Ansonsten läuft die Aufnahme bis Vollendung der zwei Minuten weiter.

Abbildung 10: Display UI einer Kurzzeit-Aufnahme

Langzeit-EKG aus Nutzersicht: Im Gegensatz zum Kurzzeit-EKG, weist das Schema einer Langzeit-Aufnahme einige Änderungen auf. Gestartet wird ebenfalls durch einen Start-Befehl auf dem Display. Hier ist jedoch zu beachten, dass der Ladestand der Batterie beim Start mindestens 80 % aufweist. Eine Aufnahme ist ansonsten nicht möglich, da es im Falle eines zu leeren Akkus zu Datenverlust kommen kann. Bei der Langzeit-Aufnahme läuft das EKG für 24 Stunden automatisch. Um eine Aufnahme über 24 Stunden gewähr zu leisten, muss der Nutzer/die Nutzerin den Power Button des Geräts einmalig drücken. Dadurch wird der Stromsparmodus aktiviert und das Gerät wechselt automatisch zwischen einem ON- und OFF-Modus. Im OFF-Modus ist die 5 V Peripherie (das Display und das Bluetooth-Modul) vollständig deaktiviert. Der ON-Modus hingegen, aktiviert alle vier Sekunden das SD-Kartenmodul und speichert die gesammelten Werte in der CSV Datei ab. Bei erneutem Betätigen des Power Buttons wird der Stromsparmodus verlassen und der Zugriff auf das Display wieder gewährt. Um die Aufnahme vorzeitig abzubrechen, kann der Stopp-Button auf dem Display betätigt werden. Wie auch beim Kurzzeit-EKG wird durch die Sicherheitsabfrage ein unbewusstes Drücken verhindert.

Energy Saving Mode Nutzersicht: Um ein schnelles Entladen der Batterie entgegenzuwirken und eine möglichst lange Lagerung (Shelf-Time) zu garantieren, verfügt das EKG-Gerät über einen Energiesparmodus. Die MCU befindet sich während diesem Vorgang im ENERGY_SAVING_MODE. Um diesen zu aktivieren, wird im IDLE_STATE der physische Button am Gehäuse gedrückt, der die gesamte 5 V Peripherie abschaltet. Beim Betätigen des Tasters, sind drei akustische Töne eines Buzzers zu hören.

Wakeup Mode Nutzersicht: Um den Energiesparmodus wieder zu verlassen, gibt es den Case SYS_WAKEUP. Aufgerufen wird dieser, wenn während dem Energiesparmodus der Button am Gehäuse gedrückt wird. Die gesamte 5 V Peripherie schaltet sich dabei an und das akustische Signal des Buzzers ist erneut zu hören.

Akku-, BT-, SD-Abfrage: Abgesehen von der State Machine, befindet sich noch eine if-Abfrage in der main Funktion. Dabei handelt es sich um drei Funktionen, die jede Sekunde im IDLE_STATE oder während einer Kurz- / Langzeitaufnahme ausgeführt werden.

- ADC_Akku_Average_Value berechnet alle drei Sekunden den Mittelwert der ADC-Werte, welche am Akku anliegen. Anhand des Mittelwertes wird der Akku in Prozent umgerechnet. Somit ist das Ablesen des Ladestandes auf der Startseite für den Benutzer/die Benutzerin intuitiv und einfach zu verstehen. Der Prozentbetrag wird jede dritte Sekunde auf dem Display aktualisiert.
- Check_BT_Connection und Check_SD_Card_Connection sind zwei Funktionen, die die aktuelle Verbind der Peripherie zum Bluetooth Modul und zum SD-Kartenleser auf dem Display anzeigt. Es werden die State-Pins der Module abgefragt und ein Symbol auf das Display gesetzt. Wenn die Verbindung steht, sind die Symbole auf der Startseite blau. Bei keiner Verbindung werden die Symbole grau.
- Bei der Abfrage für die SD-Karte gibt es außerdem zwei zusätzliche Funktionen. Wenn die SD-Karte herausgezogen wird, erscheint auf dem Display eine Warnmeldung. Die Speicherung bei einem Langzeit-EKG erfordert eine eingelegte SD-Karte. Beim Entfernen und wieder Anschließen einer SD-Karte, wird diese neu initialisiert und die aktuellen Daten bleiben vorhanden.

Aufnahme eines Kurzzeit-EKG: Die Kurzzeit-EKG Aufnahme wird kontinuierlich durchgeführt. D.h. die ADC Werte werden direkt an das Display und SD-Karte übertragen ohne Zwischenspeichern. Nachdem die MCU auf ECG_SHORT Zustand wechselt, wird als erstes ein Timer auf dem Display gestartet. Der Timer zählt, wie lange die EKG Aufnahme durchgeführt wird. Nach zwei Minuten wird die Aufnahme automatisch beendet und der Benutzer wird benachrichtigt. Zunächst wird es auf 250 Hz Flag gewartet und sobald die Flag ungleich Null ist, wird ein ADC Wert aufgenommen und die Flag wird zurückgesetzt. Wenn ein neuer ADC Wert ankommt, wird eine weitere Flag gesetzt und dadurch wird der aufgenommene ADC Wert an das Display gesendet und demnächst auf die SD-Karte gespeichert. Die Flag wird zurückgesetzt. Es wird durchgehend kontrolliert, dass es nur Kurzzeit-EKG aufgenommen wird. Sollte der Benutzer während der Aufnahme versuchen auf Langzeit-EKG zu wechseln, wird eine Warnung gezeigt und der Vorgang verhindert. Nach der Aufnahme wird die Flag für Kurzzeit-EKG zurückgesetzt, die Datei auf der SD-Karte gespeichert, die Timer zurückgesetzt und die MCU geht in Idle Zustand. Das Display wird dementsprechend die Hauptseite anzeigen.

Aufnahme eines Langzeit-EKG: Im Gegensatz zu Kurzzeit-EKG, werden die Daten während der Langzeit-EKG Aufnahme intern auf der MCU gespeichert und blockweise in gewissen Zeitintervallen an SD-Karte gesendet. Da das SD-Kartenmodul an 5V angeschlossen ist und im Stromsparmodus 5V Peripherie komplett abgeschaltet ist, weicht die Logik von Kurzzeit-Aufnahme ab. Beim Wechseln auf Langzeit-EKG Modus wird als erstes die Timer- und ADC-Werte an das Display gesendet. Somit kann der Benutzer den Kurvenverlauf und Dauer der Aufnahme sehen. Weiterhin wird die Stromsparmodus-Logik aufgerufen. Diese Logik enthält eine State Machine mit drei Zuständen. Die State Machine ist mit einer switch-Anweisung realisiert. Die drei Zustände sind: normaler Zustand (MODE_NORMAL), 5V Peripherie an (MODE_5V_ON) und 5V Peripherie aus (MODE_5V_OFF). Die zwei Modi für 5V an und aus sind für Stromsparmodus entwickelt. Das Funktionsprinzip des Stromsparmodus ist auf dem Bild zu sehen. Wenn der Benut-

Abbildung 11: Energy Saving Mode während Langzeit-EKG

zer 24 Stunden Aufnahme macht, ist es sinnvoll Energie zu sparen. Im Stromsparmodus wird die ganze 5V Peripherie komplett abgeschaltet, d.h. das Display, Bluetooth und SD-Karte werden nicht mehr versorgt. Das Stromsparmodus kann aktiviert werden, wobei der Benutze den Power Button auf dem Gehäuse einmal betätigt. Wenn der Benutzer eine Langzeit-EKG Aufnahme gestartet hat, landet das Programm in MODE NORMAL zuerst und bleibt in diesem Zustand solange, bis der Benutzer den Power Button betätigt. Im normalen Zustand bleibt die ganze 5V Peripherie an, das QRS Komplex ist auf dem Display zu sehen und die ADC-Werte werden via Bluetooth gesendet. Der einzige Unterschied ist das Schreiben auf SD-Karte. Dieser Vorgang ist komplett verarbeitet und ist folgendermaßen realisiert. Es sind zwei Arrays mit jeweils 1000 Werten benutzt. Dadurch, dass ADC an 250Hz Timer gebunden ist, wird dieses Array innerhalb von 4 Sekunden aufgefüllt. Um sie zu unterscheiden, werden sie Main Storage und Redundant Storage genannt. Im ADC Interrupt wird jeder neue ADC-Wert in Main Storage gespeichert, und zwar so lange, bis das Array voll wird. Nachdem das Main Storage voll ist, wird das ganze Array in Redundant Storage kopiert. Somit kann Main Storage wieder überschrieben werden und währenddessen bleibt Redundant Storage unverändert. Wenn Main Storage voll ist und in Redundant Storage kopiert, wird eine Flag gesetzt und somit das Senden

an SD-Karte gestartet. Nachdem das Senden fertig ist, wird der ganze Vorgang wiederholt. Wenn der Power Button betätigt wird, geht die MCU aus dem MODE_NORMAL in MODE_5V_OFF. In diesem Zustand wird 5V Peripherie abgeschaltet. Der Zustand kann verlassen werden, wenn entweder Main Storage voll ist und entsprechende Flag gesetzt ist, oder der Power Button nochmal betätigt wird. Wenn die Flag gesetzt wird, geht die MCU in MODE_5V_ON in dem die 5V Peripherie wieder versorgt wird. Demnächst wird die SD-Karte initialisiert und das bereits kopierte Redundant Storage an die SD-Karte geschrieben. Danach geht die MCU in MODE_5V_OFF und der Vorgang wird wiederholt. Wenn der Power Button betätigt wird, geht die MCU in MODE_NORMAL, zeigt die Werte auf dem Display und sendet Daten via Bluetooth bei Bedarf. In diesem Zustand kann der Benutzer entweder die Aufnahme beenden oder das Gerät wieder in Energy Saving Mode senden. Die Aufnahme wird nach 24 Stunden automatisch beendet und die MCU geht wieder in Idle State.

Energy Saving Mode und Wakeup Mode (Code): Das EKG-Gerät verfügt über einen physischen Button, der die 5 V Peripherie steuert. Dadurch wird das Gerät in einen Energiesparmodus versetzt um eine lange Lagerung zu ermöglichen. Beim Drücken des Buttons, wird ein Interrupt im GPIO verursacht. Mithilfe einer Delay-Funktion wird auf das Entprellen der Taste geachtet. Im Interrupt wird eine 5V-Flag gesetzt. Diese Flag ist mit "FALSE" initialisiert. "FALSE" bedeutet demnach, dass die 5 V Peripherie eingeschaltet ist. Beim erstmaligen drücken wird die Flag auf "TRUE" gesetzt. Dabei gelangt man in den Case ENERGY SAVING MODE. In diesem Case wird eine Funktion aufgerufen, die den 5 V DCDC abschaltet. In dieser Funktion wird zunächst die Buzzer-Funktion gestartet. Der Buzzer wird drei Mal mir einer Frequenz von 250 Hz angeregt und generiert dadurch drei akustische Töne. Nachdem der Nutzer das akustische Signal bekommen hat, wird die gesamte 5 V Peripherie abgeschaltet. Da der Pin, der den Status der SD-Karte wiedergibt mit 3 V betrieben wird, wird abgefragt ob sich die SD-Karte im Gerät befindet. Dementsprechend wird eine weitere Flag gesetzt. Bei erneutem Drücken des Buttons wird wieder ein Interrupt ausgelöst, der nun die 5V-Flag zurück auf "FALSE" setzt. Dabei gelangt man in den Case SYS_WAKEUP. In diesem Case wird die Funktion State_sys_Wakeup_Mode ausgeführt. Die gesamte 5V Peripherie wird wieder angeschaltet. Nachdem der Buzzer das akustischen Signale nach dem Anschalten wiedergibt, gelangt die MCU zurück in den IDLE_STATE. Die Flag, welche beim Ausschalten für die SD-Karte gesetzt wurde, wird nun durch Check_SD_Card_Connection in der main Funktion abgefragt. Demnach wird auf dem Display die Verbindung angezeigt.

Abbildung 12: Energy Saving Mode in Idle State

5.6 Gehäuse

5.7 Schnittstellen

5.7.1 Schnittstelle zum Bluetooth Modul und DMA Transfer

5.8 Android-App

5.9 SD-Karten-Speicher

5.10 Analoge Filterschaltung

Dieses Unterkapitel behandelt die Analyse der Anforderungen eines EKG-Signals und wie diese in der analogen Filterschaltung umgesetzt wurden.

Wie bereits im Kapitel Einleitung und Motivation erklärt wurde, soll das EKG-Gerät das Signal über einen Kanal messen. Hierfür wird die Differenz zwischen zwei Klebeelektroden, die der Benutzer an seiner Brust befestigt, gebildet. Für die Differenzbildung wird der Instrumentenverstärker AD8422ARMZ von Analog Devices (AD) verwendet. Dieser Rail-to-Rail-Verstärker erreicht im niedrigen Frequenzbereich bis 60 Hz eine Gleichtaktunterdrückung von etwa 120 dB, was Störsignale die durch externe elektromagnetische Felder in die Messleitungen eingekoppelt werden unterdrückt. Seine Verstärkung wird mittels eines $33\,\Omega$ -Widerstandes auf den Faktor 420 eingestellt, was etwa in 52 dB entspricht. Diese Vorverstärkung sorgt dafür, dass das Signal auf dem Weg durch die Filterschaltung robuster gegen Störungen ist. Da das Endprodukt über einen Akku betrieben wird, ist der Instrumentenverstärker fähig mit einer einseitigen Versorgungsspannung zu arbeiten und benötigt einen geringen Versorgungsstrom von etwa 330 μ A.

Die vor den Eingängen des Differenzverstärkers liegende Eingangstufe ist hochohmig um die Signalquelle, also den Körper nicht zu belasten, da ansonsten die Signalstärke einbre-

chen würde. Die beiden Kanäle sind symmetrisch aufgebaut und bestehen jeweils aus einer bidirektionalen TVS-Diode, einem passiven Hochpass und einem passiven Tiefpass. Die Diode dient dazu Überspannung bei einer elektrostatischen Entladung (ESD) abzuleiten und so die dahinter liegende Schaltung zu schützen. Der Hochpass mit einer Grenzfrequenz von 0,48 Hz trennt den Gleichanteil des Signal ab, welcher durch den Übergang von Ionenzu Elektronenleitung an der Kontaktfläche der Elektroden entsteht. Zudem koppelt er das Kleinsignal des EKGs in das Gleichspannungspotential von 1,5 V der Filterschaltung ein. Die Schaltung wird auf dieses Potenzial angehoben, um auch die negativen Signalanteile (Q- und S-Zacke des EKGs) übertragen zu können, was aufgrund der einseitigen Versorgungsspannung sonst nicht möglich wäre. Der Tiefpass mit einer Grenzfrequenz von 159 Hz dient dazu hochfrequente (>100 kHz) Störungen bereits vor dem Instrumentenverstärker zu unterdrücken.

Um einen Eindruck vom Frequenzspektrum eines EKG-Signals zu erhalten, wurde mit Matlab ein künstliches EKG-Signal (siehe Abbildung 13) aus Kosinusfunktionen und linearen Funktionen erstellt. Aus der im Anschluss durchgeführten Fast-Fourier-Transformation (FFT) (siehe Abbildung 14), lässt sich erkennen, dass die stärksten Frequenzanteile bis etwa 40 Hz gehen. Da jedoch gerade die hochfrequenten Anteile des Signals für die Ausformung der charakteristischen QRS-Zacken verantwortlich sind, wurde die obere Grenzfrequenz der Filterschaltung auf 159 Hz gesetzt.

Abbildung 13: mit Matlab erstelltes künstliches EKG-Signal

Da der Körper eines Menschen aus leitendem Material besteht, können elektromagnetische Wechselfelder, wie die von Stromleitungen in Hauswänden, eine Spannung in ihm induzieren. Diese Wechselspannung, mit einer Amplitude von bis zu 100 mV und einer

Abbildung 14: Frequenzspektrum des künstlichen EKG-Signals

Frequenz von 50 Hz überlagert das EKG-Signal des Herzens. Um dieses Netzrauschen zu unterdrücken, wird ein Doppel-T-Filter verwendet. Bei idealen Bauteilen erreicht diese aktive Bandsperre eine Güte von annähernd 0,5 und eine Dämpfung von 76 dB. Da jedoch die verwendeten SMD-Widerstände und Kondensatoren nur mit gewissen Toleranzen erhältlich sind, fällt die effektive Dämpfung auf 20 dB bis 30 dB. Dies wäre für die Anwendung nicht ausreichend, daher werden in der Schaltung zwei dieser Bandsperren in Reihe geschaltet. Die im Schaltplan vorgesehenen Parallelschaltungen der Widerstände dienen dazu die Widerstandswerte flexibel einzustellen, um auch noch im Nachhinein auf die Toleranzen der Kondensatoren reagieren zu können.

Bei den benötigten Operationsverstärkern wurde ein vier in eins Bauteil von AD gewählt. Zwei der Operationsverstärker werden für die 50 Hz-Filter verwendet, die anderen zwei dienen der Tiefpassfilterung und Nachverstärkung. Der AD8544ARZ ist ein einseitig versorgbarer Rail-to-Rail-Verstärker mit einem geringen Versorgungsstrom von 45 µA. Da das zu filternde Signal im niederfrequenten Bereich liegt, ist er mit seinem Verstärkungs-Bandbreite-Produkt von 1 MHz mehr als ausreichend. Mit dem Analog-Digital-Umsetzer (ADC) wird eine Abtastfrequenz von 1 kHz angestrebt. Das Signal wird daher durch Tiefpässe begrenzt. Die Tiefpassfilterung setzt sich aus vier passiven Tiefpässen erster Ordnung und einem aktiven Tiefpass zweiter Ordnung zusammen. Die passiven Filter sind zwischen die aktiven Stufen der Schaltung eingebettet.

In Abbildung 15 ist der verwendete aktive Tiefpass, realisiert durch eine Sallen-Key-Schaltung abgebildet. Davor und dahinter befinden sich einfache passive Tiefpässe. Die zwei verbleibenden passiven Tiefpassfilter befinden sich in der Eingangsstufe (je einer pro

Abbildung 15: aktiver Tiefpass eingeschlossen von zwei passiven Tiefpässen

Kanal) und zwischen den beiden 50 Hz-Filtern. Insgesamt ergibt sich damit eine Tiefpassfilterung sechster Ordnung, also eine Dämpfung von 120 dB pro Dekade, über die gesamte
Schaltung.

Die Signalamplitude der Quelle beträgt nur etwa 1 mV. Der ADC arbeitet in einem Bereich von 0 V bis 3 V, um diesen Bereich bestmöglich auszunutzen muss das Signal auf eine Amplitude von etwa 2 V verstärkt werden. 1 V des ADC-Intervalls bleibt als Reserve ungenutzt, um bei Schwankungen des Signals nicht sofort die Begrenzung der Spannungsversorgung zu überschreiten, außerdem kann die Amplitude des Eingangssignals je nach Mensch auch leicht variieren. Insgesamt wird also eine Verstärkung etwa um den Faktor 2000 benötigt, was 66 dB entspricht. Wie bereits erwähnt, wird durch den Differenzverstärker am Eingang eine Verstärkung von etwa 52 dB realisiert. Die Filterstufen in der Schaltung bewirken eine Dämpfung des gesamten Signals um etwa 6 dB, somit muss die Nachverstärkung 20 dB betragen um die geforderte Gesamtverstärkung von 66 dB zu erreichen. Dies bewirkt ein nicht-invertierender Spannungsverstärker, mit einem Verstärkungsfaktor von 10, der sein Ausgangssignal direkt auf den Pin des ADCs gibt.

In Abbildung 16 ist die simulierte Gesamtübertragungsfunktion der Filterschaltung in einer doppelt-logarithmischen Darstellung abgebildet. Für Frequenzen kleiner als 0,5 Hz wird das Signal mit 20 dB pro Dekade gedämpft, ab 160 Hz wird es durch die Tiefpässe mit 120 dB pro Dekade unterdrückt. Außerdem gibt es bei 50 Hz eine Dämpfung von 40 dB von den Bandsperren. Hierbei ist zu beachten, dass die Simulation mit idealen Bauteilen durchgeführt wurde. In der realen Schaltung fällt die Dämpfung wesentlich geringen aus,

Abbildung 16: Gesamtübertragungsfunktion der Filterschaltung

sodass die Übertragungsfunktion in diesem Bereich bei zirka 0 dB liegt. Für den übrigen Frequenzbereich wird eine Verstärkung um 67 dB erreicht. Der Gesamtschaltplan der Filterung befindet sich in Anhang (Anhang wurde noch nicht erstellt).

Abbildung 17: Generierung des 1,5 V Bezugspotentials für die Filterschaltung

Um die Schaltung auf ein Gleichspannungspotenzial von 1,5 V anzuheben wurde ein hoch-

ohmiger Spannungsteiler mit einem Operationsverstärker als Spannungsfolger verwendet. Bei dem Operationsverstärker handelt es sich um den AD8541ARTZ-REEL. Es ist der gleiche Verstärker der auch für die Filter zum Einsatz kommt, nur in einem Single-Gehäuse.

5.11 Platinendesign

Für das zeichnen von Schaltplänen sowie dem Layouten des PCBs wird das Programm Altium Designer verwendet. Es beinhaltet eine übersichtliche Benutzeroberfläche und zahlreiche Features wie PCB-Design in nativem 3D, interaktives Routing, hierarchische Designs, einheitliche Bibliothekenverwaltung, integrierte SPICE Simulationen und zahlreiche Export-Möglichkeiten in einem Tool.

5.11.1 Erstellung von Libraries

Da in der integrierten Datenbank von Altium Designer nicht alle benötigten Bauteile enthalten sind, müssen diese zunächst von Hand angelegt werden. Dieser Prozess gliedert sich in drei Schritte:

1. Erstellung des Schaltzeichens:

Hierbei wird mithilfe von geometrischen Formen ein Symbol des Bauteils erstellt, welches möglichst gut seine Funktion widerspiegelt. Idealerweise dient dafür ein Symbol des Herstellers als Vorlage, welches nachgestellt werden kann. Hierbei müssen bereits die Ein- und Ausgangspins des Bauteils festgelegt werden, da nur dort später Leitungen angeschlossen werden können. Den Pins wird eine Nummer zugewiesen, welche später einem Pad des Footprints entspricht.

2. Erstellung des Footprints:

Für jeden Pin des Bauteils muss ein Pad auf dem PCB erstellt werden, auf welchem das Beinchen später aufliegt und verlötet wird. Dabei ist auf eine Ausreichende Größe des Pads zu achten, damit das Beinchen vollständig verbunden werden kann. Es empfiehlt sich, die Pads länger als nötig zu gestalten, wenn im Nachgang noch Bauteile per Hand verlötet werden sollen. Idealerweise verwendet das Bauteil einen Standard-Footprint, welchen es bereits als Vorlage gibt.

3. Hinzufügen eines 3D Modells:

Um die Platine später in 3D zu bearbeiten und vollständig zu exportieren werden jedem Bauteil dreidimensionale Modelle hinzugefügt. Dies ist in Altium durch den import einer .step Datei möglich. Diese muss im Anschluss noch genau auf das Pad ausgerichtet werden.

5.11.2 Zeichnen des Schaltplans

Der Schaltplan wird auf Basis vorhergegangener Versuche durchgeführt. Sobald eine Baugruppe erfolgreich getestet ist, wird sie in den Schaltplan integriert. Vor dem Anlegen der einzelnen Seiten wird ein Template erstellt, was eine einheitliche Form des Schaltplans gewährleistet und Informationen wie Projektname, Ersteller, Revisionsnummer, etc. vermittelt. Der Schaltplan ist auf vier Seite aufgeteilt:

- 1. Power Supply
- 2. MCU
- 3. Filterung
- 4. Peripherie

Die Nummerierung von Seiten und Bauteilen wurde so konfiguriert, dass diese automatische durch Altium erfolgt. Der Schaltplan ist in funktionale Blöcke untergliedert, welche mit einem kurzen Kommentar beschriftet sind. Dies erleichtert die Übersichtlichkeit (Abbildung 18).

Abbildung 18: Schaltplan Seite Power Supply

Weiterhin werden Kondensatoren parallel zu den Versorgungspins sämtlicher ICs eingeplant. Dies verhindert, dass sich Schwankungen in der Versorgungsspannung auf den IC und Lastwechsel des ICs auf die Versorgungsspannung auswirken.

5.11.3 Platzieren der Komponente

Nach dem Abschluss des Schaltplans kann mit dem Layout der Platine begonnen werden. Hierfür wird zunächst in Absprache mit dem Gehäuseverantwortlichen eine Maximalgröße der Platine festgelegt. Die Abmaße werden im Board Planning Mode des neu erstelltem PCB Documents in Altium Designer eingetragen.

Für die Platzierung wird zunächst eine grobe Skizze auf Papier erstellt. Damit wird bereits jeder Baugruppe ein Raum auf der Platine zugesichert, von welchem aus alle Verbindungen zu anderen Baugruppen gut erreichbar sind.

Die MCU rückt dabei in den Mittelpunkt, da von ihr aus Verbindungen zu allen Baugruppen bestehen. Bei ihr ist darauf zu achten, das sämtliche vom Hersteller geforderten
Bypass-Kondensatoren so nah wie möglich an den entsprechenden Pins Platziert werden.
Selbiges gilt für den externen Hochfrequenz-Schwingquarz, dessen Zuleitungen ebenfalls
nur kurze Distanzen überbrücken sollte.

Die Absicherung der Spannungsversorgung ist in unmittelbarer nähe zum Anschluss an die Batterie zu platzieren. Der 3D Modus ist beim Platzieren von Bauteilen hilfreich um die Platzverhältnisse besser einzuschätzen.

5.11.4 Routing

Zum Routen wird das interaktive Routing Tool von Altium Designer verwendet. Dort werden zunächst die Design-Rules anhand der Vorgaben des Herstellers Multi Circuit Boards angepasst.

Als Leiterbahnbreite werden 0.3 mm festgelegt, was nach https://www.4pcb.com/trace-width-calculator.html ausreichend ist um selbst die höchsten zu erwartenden Ströme dauerhaft ohne gefährliche Temperaturerhöhung zu tragen. Diese Breite wird ebenso für unbelastete Signalleitungen verwendet, um bei eventuellen Lötarbeiten mehr Stabilität zu bieten. Als Größe für die Vias kommt einheitlich ein Standardvia (Lochdurchmesser 0,3 mm, Ringdurchmesser 0,65 mm) zum Einsatz. Das Verringert die Tooling-Kosten des Herstellers.

Um höchstmögliche Präzision und Störfreiheit für die Analogmessung zu ermöglichen, wird für deren Versorgung ein Sternpunkt festgelegt, welcher mit Konfigurationswiderständen vom Rest der Schaltung trennbar ist. Von diesem Sternpunkt aus wird auch die Vergleichsspannung des ADCs der MCU bedient. Auf den Leiterbahnen ist somit kein

Spannungsfall oder Rauschen durch Ströme anderer Baugruppen, welche die Messung beeinflussen könnten.

Abschließend werden Ground-Polygone auf Top- und Bottom-Layer gelegt, um die Stabilität der Platine zu verbessern und für eine starke Groundanbindung zu sorgen. Um den Sternpunkt damit nicht zu verändern, wird für den Analogbereich ein separates Polygon verwendet.

5.11.5 Fertigung und Bestückung

Bevor die Platine bestellt werden kann, muss ein Design-Rule-Check (DRC) durchgeführt werden. Hierbei wird überprüft, ob die Platine alle vorgegebenen Design-Rules erfüllt. Nach der Korrektur aller Fehler werden die Gerber-Files automatisch mit Altium generiert und an den Hersteller versendet. Zum Bestücken wird ein Halbautomat verwendet, welcher die Platzierung der Bauteile durch eine manuell bedienbare Saugspitze deutlich erleichtert. Die Platine mit platzierten Bauteilen durchläuft anschließend den Reflow-Ofen und wird unter dem Mikroskop auf eventuell Lötbrücken überprüft.

5.11.6 Inbetriebnahme

Bei der ersten Inbetriebnahme sollte der Strom zunächst durch ein Labornetzteil begrenzt werden. Nach dem Anschluss der EKG Platine wurde festgestellt, dass diese einen Kurzschluss mit Dioden-Charakteristik verursacht. Sobald die Spannung über 0,8 V erhöht wird, steigt der Strom rapide auf über 20 mA an. Nach umfassender Fehlersuche wird festgestellt, das im Schaltplan die Polarität der Versorgungspins am Operationsverstärker ausgeblendet ist. Dadurch ist die Polarität im Schaltplan sowie im Layout vertauscht. Nach Korrektur dieses Fehlers durch hochbiegen der entsprechenden Beinchen am IC und legen eines Kupferlackdrahtes verläuft die Inbetriebnahme erfolgreich. Über das JTAG Interface kann eine Testsoftware auf die MCU gespielt werden.

Ergebnis 6

Dieses Kapitel führt die Funktionen des EKG-Gerätes auf die umgesetzt wurden.

aufgenommene Signale 6.1

Die automatisierte Aufnahmezeit der Kurzzeit-EKG Funktion wurde mithilfe einer Stoppuhr gemessen und beträgt 120 sec. In dieser Zeit wurden 29895 Werte auf der SD-Karte, mit Zeitpunkt und Benutzerkennung gespeichert. Daraus ergibt sich eine durchschnittliche Abtastrate von 249 Hz (= $\frac{29895\,Werte}{120\,sec}$). Die gespeicherten ADC-Werte des EKG-Signals wurden mithilfe von MS Excel in einem Zeitdiagramm visualisiert (siehe Abbildung. Gut zu erkennen sind die P- (Vorhofkontraktion) und die T-Welle (Erregungsrückbildung der Kammern). Zwischen den beiden Wellen befindet sich der QRS-Komplex. Deutlich von einander zu unterscheiden sind die negativen (Q- und S-Zacke) und positiven Anteile (R-Zacke) des Komplexes, der die Kammerkontraktion markiert. Im Signal sind keine störenden 50-Hz Schwingungen mehr enthalten. Aus den ADC-Werten lässt sich nun die Amplitude des Eingangssignals bei der Messung an der Hautoberfläche berechnen. Die Verstärkung der Filterschaltung wurde hierbei zur Vereinfachung als maximal (67 dB) über die gesamte Bandbreite angenommen. $\frac{ADC-Breite}{deltaSignalwerte}*3V \over VerstrkungderFilterschaltung}.$

Es ergibt sich eine Eingangsamplitude von XXX, was der EKG-Amplitude eines gesunden Menschen in der Ableitung Einthoven 2 entspricht.

Der Test der Langzeit-Aufnahme lieferte 21600000 Werte. Dies entspricht einer durchschnittlichen Abtastrate von 250 Hz.

Die Funktion zur Berechnung der Herzfrequenz im Kurzzeit-EKG liefert eine gleichmäßiges Ausgangssignal. Zur Überprüfung wurde der Mittelwert der Herzfrequenz über eine Minute berechnet und mit dem analog gemessenen Puls am Handgelenk verglichen, wobei beide Werte übereinstimmten. Dies gilt jedoch nur für ein Ruhe-EKG, bei dem der Anwender sich möglichst wenig bewegt und gleichmäßig atmet. Bei Störungen von mehr als 6 sec Dauer, führen die Bewegungsartefakte zu einer Verfälschung der Pulsrate.

6.2Akkulaufzeit, Bedienung, sonstige Funktionalität

Für die verschiedenen Energiemodi wurde der Stromverbrauch direkt an der Batterie gemessen. Hierfür wurde ein Multimeter als Shunt zwischen den positiven Pol der Batterie und den positiven Eingangspin der Platine geschaltet.

Nach dem Test der Langzeitaufnahme (Gerät befand sich dafür fast ausschließlich im Energiesparmodus), mit einem anfangs vollen Akku, betrug die Akkuanzeige des Displays

Modus	gemessener Strom
Display an/ volle Helligkeit	220 mA
Display im Sleep-Modus	$107\mathrm{mA}$
5V-DCDC ausgeschaltet	$7.7\mathrm{mA}$

Tabelle 2: Stromverbrauch

61%. Die Spannung der Akkuzelle gemessen mit dem Multimeter betrug 3,83 V. Die maximale Akkulaufzeit im Lagerzustand (5V DCDC ausgeschaltet) bis zur Entladegrenze von 20% berechnet sich zu $\frac{2200\,mAh*0.8}{7.7\,mA}=228,6\,h.$

7 Zusammenfassung

8 Ausblick

Anhang