Adarsh Solanki As5nr 2/13/12 floatingpoint.pdf

Magic 32-bit floating point number: -38.875

- Sign bit = 1 because number is negative
- Whole number part = 38
 - 38/2 = 19 remainder 0
 19/2 = 9 remainder 1
 9/2 = 4 remainder 1
 4/2 = 2 remainder 0
 2/2 = 1 remainder 0
 1/2 = 0 remainder 1
 - o Result = 100110
- Decimal part = .875

Number =
$$100110.111$$

= 1.00110111×2^5

1-bit sign bit = 1 8-bit exponent = 5 + bias of 127 = 132 = 1000 0100 23-bit Mantissa = 00110111000000000000000

Other number is 0x00401f41 little-endian

Convert to big endian: 411f4000

Sign-bit = 0

8-bit exponent = $1000\ 0010$ – bias of $127 = 0000\ 0011_2 = 3_{10}$

23-bit mantissa = 0011 1110 1000 0000 0000 000 1.001111101 x 2^3 = 1001.111101 $1*2^3 + 0*2^2 + 0*2^1 + 1*2^0 + 1*2^{-1} + 1*2^{-2} + 1*2^{-3} + 1*2^{-4} + 0*2^{-5} + 1*2^{-6}$ $8 + 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{64}$ 9.953125