Line Clipping in 2D

18 December 2021

Why would we clip?

We clip objects to our view before rasterization. Why?

To avoid unnecessary work: pixel coordinate calculations parameter interpolation

Any other reasons?

2D Viewing

What do we want out of clipping?

What are the basic steps?

- Determine if the line needs clipping
 May be able to trivially accept or reject some lines
- 2. Find intersections of line with viewport We can use y = mx + b to do this

We want to determine which edges of the viewport to test lines against and avoid unnecessary tests.

We'll start by categorizing the regions around the display.

Cohen-Sutherland line clipping

Top-Left	Тор	Top-Right
Left	Inside	Right
Bottom-Left	Bottom	Bottom-Right
'	TBRL	

18 December 2021

Cohen-Sutherland line clipping

Region codes TBRL Bit 1 2 3 4				
•	1001	1000	1010	
	0001	0000	0010	
	0101	0100	0110	

Region coding

How would you decide which region an endpoint is in? e.g

2- IF
$$(x < xw_{min}) && ((y < yw_{max}) && (y > yw_{min}))$$

→ the point is at the Left

3- IF
$$(x < xw_{min}) && (y < yw_{min})$$

→ Point is at Bottom-Left

4- IF ((x >
$$xw_{min}$$
) && (x < xw_{max})) && (y > yw_{max})

→ Point is at Top

5- IF
$$((x > xw_{min}) \&\& (x < xw_{max})) \&\& ((y > yw_{min}) \&\& ((y < yw_{max}))$$

→ Point is at Inside

6- IF
$$((x > xw_{min}) && (x < xw_{max})) && (y < yw_{min})$$

→ Point is at Bottom

Region coding

```
7- IF (x > xw<sub>max</sub>) && (y > yw<sub>max</sub>)

→ Point is at Top-Right

8- IF (x > xw<sub>max</sub>) && ((y > yw<sub>min</sub>) && (y < yw<sub>max</sub>)

→ Point is at Right

9- IF (x > xw<sub>max</sub>) && (y < yw<sub>min</sub>)

→ Point is at Bottom-Right
```

Are there cases we can trivially accept or reject?

How would you test for those?

algorithm

- 1. Assign a region code for each endpoints.
- 2. If both endpoints have a region code 0000 → trivially accept this line.
- 3. Else, perform the logical AND operation for both region codes.
 - 3.1 if the result is not $0000 \rightarrow$ trivially reject the line.
 - 3.2 else (result = 0000, need clipping)
 - 3.2.1. Choose an endpoint of the line that is outside the window.
 - 3.2.2. Find the intersection point at the window boundary (base on region code).
 - 3.2.3. Replace endpoint with the intersection point and update the region code.
 - 3.2.4. Repeat step 2 until we find a clipped line either trivially accepted or trivially rejected.
- 4. Repeat step 1 for other lines.

How to check for intersection?

if bit $1 = 1 \rightarrow$ there is intersection on TOP boundary.

How to find intersection point?

use line equation

intersection with LEFT or RIGHT boundary.

$$x = xw_{min}$$
 (LEFT) $x = xw_{max}$ (RIGHT)

$$y = y1 + m(x - x1)$$

intersection with BOTTOM or TOP boundary.

$$y = yw_{min}$$
 (BOTTOM) $y = yw_{max}$ (TOP)

$$x = x1 + (y - y1)/m$$

1001	1000		algorithm 1. B1=1001,B2=1010 2. (both 0000) – No
0001	A1 0000	0010	3. AND Operation B1 → 1001 B2 → 1010 Result 1000 3.1 (not 0000) – Yes → reject 3.2 3.2.1 - 3.2.2
0101	0100	0110	3.2.3 3.2.4

18 December 2021

16

	(150, 100)
(10, 10)	

Diberi tetingkap ketipan seperti di atas. Sekiranya titik P1 ialah (0, 120) dan titik P2(130, 5) . Dapatkan titik-titik persilangan yang membentuk garisan selepas proses ketipan. Gunakan algoritma Cohen-Sutherland

answer

```
1. P1=1001, P2=0100
2. (both 0000) – New \rightarrow ACCEPT & DRAW
3. AND Operation
End Bain's after clipping
P1"B223, 10000 P2" = 124, 10)
    Result 0000
 3.1 \text{ (not } 0000) - \text{no}
 3.2 (0000) yes
   3.2.1choose P1'
   3.2.2 intersection with BOPEOMdalaynydary
       m = (5-120)/(130-0) = -0.8846
      y = x/11 + (yn(y1)/x1) where y = 1000;
            x = 180 + (100 - 5)/(1)/(1.882) - 643 1 - 2223 - 54 - 14 242
        P2''=((1224,11100))
   3.2.3 update region code P2"=\( \text{TOP} \)
   3.2.4 repeat step 2
```

The good and the bad

What's the maximum number of clips for an accepted line?

What's the maximum number of clips for a rejected line?

Good:

Easy to implement

Early accept/reject tests

Bad:

Slow for many clipped lines

Liang-Barsky Line Clipping

Based on parametric equation of a line:

$$x = x_1 + u.\triangle x$$

$$y = y_1 + u.\triangle y$$

$$0 \le u \le 1$$

Similarly, the clipping window is represented by:

$$xw_{min} \leq x_1 + u.\triangle x \leq xw_{max}$$

$$yw_{min} \leq y_1 + u.\triangle y \leq yw_{max}$$
i.e. $-u.\triangle x \leq x1 - xw_{min}$

$$u.\triangle x \leq xw_{max} - x1$$

$$-u.\triangle y \leq y1 - yw_{min}$$

$$u.\triangle y \leq yw_{max} - y1$$
... or,
$$up_k \leq q_k \qquad k = 1, 2, 3, 4$$

$$where, \qquad p_1 = -\triangle x, \qquad q_1 = x_1 - xw_{min}$$

$$p_2 = \triangle x, \qquad p_2 = \triangle x, \qquad q_2 = xw_{max} - x_1$$

$$p_3 = -\triangle y, \qquad q_4 = yw_{max} - y_1$$

Liang-Barsky (continued)

Clipped line will be:

$$x_1' = x_1 + u_1$$
. $\triangle x$; $u_1 \ge 0$
 $y_1' = y_1 + u_1$. $\triangle y$;
 $x_2' = x_1 + u_2$. $\triangle x$; $u_2 \le 1$
 $y_2' = y_1 + u_2$. $\triangle y$;

- Reject line with p_k = 0 and q_k < 0. (p_k=0 i.e. line is parallel to clip boundary & q_k<0 i.e. completely outside the clip window)
- Calculate u_k

$$u_k = q_k/p_k$$

Liang-Barsky (continued)

- u₁: maximum value between 0 and u (for p_k < 0), where starting value for u₁ is 0 (u₁ = 0)
- u₂: minimum value between u and 1 (for p_k > 0), where starting value for u₂ is 1 (u₂ = 1)
- Consider our previous example where:

$$xw_{min} = 0,$$
 $xw_{max} = 100$
 $yw_{min} = 0,$ $yw_{max} = 50$

And the line we want to clip connects $P_1(10, 10)$ and $P_2(110, 40)$

Lets construct a table:

k	p _k	q_k	u _k
1	-△x = -(110-10) = -100	x ₁ - xw _{min} = 10-0 = 10	
2	△x =110-10=100	$xw_{max} - x_1$ = 100 - 10 = 90	
3	-∆y = -(40-10) =-30	y ₁ - yw _{min} = 10-0 = 10	
4	△y = 40-10=30	$yw_{max} - y_1$ = 50 - 10 = 40	

Lets construct a table:

	k	p_k	q_k	u_k
u ₁	1	-△x = -(110-10) = -100	x ₁ - xw _{min} = 10-0 = 10	
	2	△x =110-10=100	$xw_{max} - x_1$ = 100 - 10 = 90	
u ₁	3	-∆y = -(40-10) =-30	y ₁ - yw _{min} = 10-0 = 10	_
	4	△y = 40-10=30	$yw_{max} - y_1$ = 50 - 10 = 40	

Since

 $\mathbf{p_k} < 0$

u₁: maximum value between 0 and u (for p_k < 0)!

	k	P _k	q_k	u _k
u ₁	1	-△x = -(110-10) = -100	x ₁ - xw _{min} = 10-0 = 10	u=10/(-100) =-1/10
	2	△x =110-10=100	$xw_{max}^{-} x_{1}$ = 100 - 10 = 90	
u ₁	3	-△y = -(40-10) =-30	y ₁ - yw _{min} = 10-0 = 10	u=10/(-30) =-1/3
	4	△y = 40-10=30	$yw_{max} - y_1$ = 50 - 10 = 40	

We opt u₁ =0,

u₂ : minimum value between u (for p_k > 0) and 1

	k	p _k	q _k	u _k
	1	-△x = -(110-10) = -100	x ₁ - xw _{min} = 10-0 = 10	u=10/(-100) =-1/10
u ₂	2	△x =110-10=100	xw_{max} - x_1 = 100 - 10 = 90	
	3	-△y = -(40-10) =-30	y ₁ - yw _{min} = 10-0 = 10	u=10/(-30) =-1/3
u ₂	4	△y = 40-10=30	$yw_{max} - y_1$ = 50 - 10 = 40	

We opt u₁ =0,

Since $\mathbf{p_k} > 0$

 u_2 : minimum value between u (for $p_k > 0$) and 1

	k	p _k	q_k	$\mathbf{u}_{\mathbf{k}}$
	1	-△x = -(110-10) = -100	x ₁ - xw _{min} = 10-0 = 10	u=10/(-100) =-1/10
u ₂	2	△x =110-10=100	$xw_{max} - x_1$ = 100 - 10 = 90	u=90/100 =9/10
	3	-△y = -(40-10) =-30	y ₁ - yw _{min} = 10-0 = 10	u=10/(-30) =-1/3
u ₂	4	△y = 40-10=30	$yw_{max} - y_1$ = 50 - 10 = 40	u=40/30) =4/3

We opt

We opt

- If u₁ > u₂ then reject line (completely outside clipping window!)
- Clipped line will be:

$$x_1' = x_1 + u_1$$
. $\triangle x$ $(u_1 = 0)$
 $= 10 + 0.(100) = 10$
 $y_1' = y_1 + u_1$. $\triangle y$
 $= 10 + 0.(30) = 10$
 $x_2' = x_1 + u_2$. $\triangle x$ $(u_2 = 9/10)$
 $= 10 + 0.9(100) = 100$
 $y_2' = y_1 + u_2$. $\triangle y$
 $= 10 + 0.9(30) = 37$

**Homework: Use different values of xw_{min} , xw_{max} , yw_{min} , yw_{max} , P_1 and P_2 for exercise.

18 December 2021

Algorithm

- Initial value: u1 = 0, u2 = 1
 For k = 1, 2, 3, 4;
 2.1 calculate P_k and q_k
 2.2 calculate r_k = q_k/ P_k
 2.2 if (P_k < 0) → find u1 (if (r_k>u1), u1=r_k)
 2.3 if (P_k > 0) → find u2 (if (r_k<u2), u2=r_k)
 2.4 if (P_k = 0) and (q_k<0);
 reject the line; goto step 5
- 3. If (u1> u2); reject the line; goto step 5
- 4. Find the clipped line

$$x1' = x1 + u1. \Delta x$$

 $y1' = y1 + u1. \Delta y$

$$x2' = x1 + u2. \Delta x$$

 $y2' = y1 + u2. \Delta y$

5. Repeat step 1 – 4 for other lines.