1 Vocabulaire

Sensibilité	Changement de la sortie par rapport au changement sur le mesurande	
Linéarité	Erreur relative maximale entre la	
	droite de régression et la carac-	
	téristique réelle	
Résolution	Plus petite variation du	
	mesurande qu'on est capa-	
	ble de mesurer (ne pas confondre	
	avec précision)	
Rapidité	Bande de fréquence jusqu'à une	
	perte de 3dB	

Pour la rapidité

$$T_{
m réponse} pprox 3 au = rac{3}{2\pi f_c}$$

1.1 Justesse / Fidélité

2 Sensibilité

Sensibilité d'un système

$$Y = f(X)$$

$$S = \frac{dY}{dX}$$

On peut également écrire

$$S = \frac{\Delta Y}{\Delta X}$$

Avec X la valeur d'entrée du système et Y la sortie

$$Y = f(X) \Longrightarrow \frac{dY}{dX} = \frac{df(X)}{dX} = S$$

3 Types de capteurs

3.1 Potentiomètre

-	+
Usure	Coût réduit
Frottements	
Vitesse limitée	
Impact de la température	
bruit	
résolution limitée	

3.2 Écrans tactiles

3.2.1 Capacitifs

3.2.2 Résistifs

3.3 Sondes de température

$$\alpha = 0.385 \cdot 10^{-2} \left[{^{\circ}C^{-1}} \right]$$
$$R(t) = R_0 (1 + \alpha T)$$

Type de capteur		Caractéristiques	
Sondes	platines	-sensible mais +linéaire	
(−200 °C650 °C)			
PT100		100Ω à $0^{\circ}\mathrm{C}$	
PT1000		1000Ω à $0{}^{\circ}\mathrm{C}$	
Sondes à semi-conducteurs		+sensible mais -linéaire	
(−55 °C150 °C)			
CTN / NTC		Coef. de température négatif	
PTC / CTP		Coef. de température positif	
RTC / CTR		Coef. de température à seuil	

3.4 Jauge de contrainte

$$\sigma = \frac{F}{A}$$

$$\frac{\Delta l}{l} = \frac{1}{E} \frac{F}{A} = \frac{\sigma}{E}$$

$$\frac{\Delta R}{R} = \frac{\Delta \rho}{\rho} + \frac{\Delta l}{l} - \frac{\Delta A}{A}$$

$$\frac{\Delta A}{A} = -2\nu \frac{\Delta l}{l}$$

$$\frac{\Delta R}{R} = \frac{\Delta l}{l} k$$

Avec k le facteur de jauge

$$k = 1 + 2\nu + C - 2C\nu$$

La zone élastique est typiquement de $2\,\%$ pour les métaux

	métallique	semiconducteur
Plage de mesure	$1 \times 10^{-7}0.04$	$1 \times 10^{-9} 0.003$
Facteur de jauge	1.82.35	50200
Résistance	$120\Omega5000\Omega$	$1000 \Omega5000 \Omega$
Tolérance de la résistance	0.1%0.2%	1 % 2 %
Taille	$0.4\mathrm{mm}150\mathrm{mm}$	

3.5 Accéléromètre

On recherche la fonction de transfert entre le mesurande (l'entrée) et le déplacement relatif.

$$x_a(t) = x_b(t) - x_r(t)$$
$$\ddot{x}_a = a_b - \ddot{x}_r$$

On utilise la loi de Newton $(ma = \sum F)$

$$m\ddot{x}_a = kx_r + d\dot{x}_r$$

$$ma_b = m\ddot{x}_r + d\dot{x}_r + kx_r$$

On applique la transformée de Laplace

$$X_r(s) \left(ms^2 + ds + k \right) = mA_b(s)$$

On cherche à connaître X_r , on divise par la parenthèse

$$X_r = \frac{m}{ms^2 + ds + k} A_b$$

$$G(s) = \frac{X_r(s)}{A_b(s)} = \frac{m}{ms^2 + ds + k}$$

on écrit sous forme de Bode $\left(\frac{K}{1+2\zeta\frac{j\omega}{\omega_0}+\frac{(j\omega)^2}{\omega_0^2}}\right)$

$$G(j\omega) = \frac{m}{1 + \frac{d}{k}j\omega + \frac{m}{k}(j\omega)^2}$$

Avec $K=\frac{m}{k},\;\omega_0=\sqrt{\frac{k}{m}},\;\zeta=\frac{d}{2}\sqrt{\frac{1}{km}}$ Diagramme de Bode de la fonction de transfert

Si on cherche à avoir un ω_0 élevé, alors on doit diminuer la masse et augmenter la valeur de k. La sensibilité est diminuée. L'inverse est également valable.

$$\omega_0 \uparrow \Longrightarrow K \downarrow$$

$$K \uparrow \Longrightarrow \omega_0 \downarrow$$

Dans l'idéal, on va chercher à avoir un ζ entre 0.7 et 1.

3.6 Pont diviseur résistif

La valeur optimale de R_0 (la résistance qui alimente la résistance qui varie R(x)) est

$$R_o = R_{nom}$$

Avec $R(x) = R_{nom}(1 + ax)$. C'est la même règle que pour dissiper le maximum de puissance.

3.7 Pont de Wheatstone

Pont équilibré lorsque

$$R_1R_4 = R_2R_3 \Longleftrightarrow u_m = 0$$

-	+
faible bande passante	Indépendant de la tension
	d'alimentation U_0
Uniquement pour des	Indépendant de la préci-
mesures statiques	sion de mesure U_m , il faut
	juste pouvoir détecter pré-
	cisément "zéro"
	Indépendant du courant

3.7.1 Mode 1/4

Une des résistances varie (toutes les valeurs sont R_0 a part celle qui varie autour de R_0)

$$R = R_0 + \Delta R$$

$$u_m(\Delta R) = \frac{\Delta R}{4R_0 + 2\Delta R} U_0$$

Expression non-linéaire!

$$S_{\rm cond} = \frac{U_0}{4R_0}$$

Mode 2/4 "Push-pull"

Un résistance augmente, une résistance diminue

$$R_1 = R_0 + \Delta R$$

$$R_2 = R_0 - \Delta R$$

$$u_m(\Delta R) = \frac{U_0}{2R_0} \Delta R$$

L'expression est linéaire!

$$S_{\rm cond} = \frac{U_0}{2R_0}$$

La sensibilité est doublée comparé au mode 1/4

3.7.3Mode 4/4

$$R_1 = R_0 - \Delta R$$

$$R_2 = R_0 + \Delta R$$

$$R_3 = R_0 + \Delta R$$

$$R_4 = R_0 - \Delta R$$

Le conditionneur est linéaire et la sensibilité est encore doublée comparé au mode 2/4

4 Amplificateurs

Amplificateur différentiel simple 4.1

$$G_d = \frac{R_2}{R_1}$$

$$G_c = 0$$

4.1.1 CMRR

$$\mathrm{CMRR} = \frac{G_d}{G_c}$$

$$\mathrm{CMRR}\Big|_{\mathrm{dB}} = 20\log_{10}\left(\mathrm{CMRR}\right)$$

Pour obtenir le **pire** CMRR, on va chercher à avoir

$$\frac{R_2}{R_1} \max \frac{R_4}{R_3} \min$$

Amplificateur à instrumentation

- 1. Résistances découpées au laser (très précises)
- 2. CMRR élevé ($> 80 \, dB$)
- 3. Gain différentiel programmable
- 4. Impédance d'entrée très élevée

$$G_d = \left(1 + rac{2R_1}{R_{
m gain}}
ight)rac{R_3}{R_2}$$
 a vérifier

5 LVDT

(d) différence entre les deux secondaires

Il faut regarder l'amplitude et la phase du signal pour déterminer ou se trouve le système.

6 RVDT

7 Bobine de résonance

Couplage:

$$k = \sqrt{\frac{L_{12}^2}{L_1 L_2}}$$

Effet lorsque la cible **s'approche** (fréquence faible)

Type de cible Effet

Cible conductrice $R_b \uparrow$ Foucault

Cible ferromagnétique $L_b \uparrow$ Réluctance

Cible non ferromagnétique $L_b \downarrow$

Effet lorsque la fréquence **augmente**Type de cible Effet

Cible conductrice $R_b \uparrow \text{ et } L_b \downarrow$ Foucault

7.1 Circuit

$$\omega_{res} = \sqrt{\frac{1}{L_b C} - \frac{R_b^2}{L_b^2}}$$

$$Z_{//} = \frac{(R_b + j\omega L_b)\frac{1}{j\omega C}}{(R_b + j\omega L_b) + \frac{1}{j\omega C}} = \frac{R_b + j\omega L_b}{(R_b + j\omega L_b)j\omega C + 1}$$
$$Z_{//} = \frac{R_b + j\omega L_b}{1 + j\omega R_b C + (j\omega)^2 L_b C}$$
$$\underline{H} = \frac{\underline{Z}_{//}}{\underline{Z}_{//} + R_0}$$

Si $R_0 \uparrow$ alors $\zeta \downarrow$

$$\zeta = \frac{L_b}{2R_0\sqrt{L_bC}}$$

 ω_r à ne pas confondre avec la résonance.

$$\omega_r = \frac{1}{\sqrt{L_b C}}$$

Avec k = 1, on a un transformateur idéal

Lorsque $\omega \ll \omega_r$:

Asymptote +20 dB/dec et $+90^{\circ}$

Lorsque $\omega = \omega_r$:

 $\underline{H} = 1$

Lorsque $\omega \gg \omega_r$:

Asymptote -20dB/dec et -90°

Valeur optimale de R_0

$$R_{0,opt} = R_{//_{res}} = \frac{L_b}{R_b C}$$

Lorsqu'on varie R_b , on varie l'amplitude du pic de résonance

7.1.1 Möbius

$$\underline{H}_{\text{M\"obius}}\left(\underline{Z}_{b}\right) = \frac{a\underline{Z}_{b} + b}{c\underline{Z}_{b} + d}$$

$$\begin{cases} a = 1 \\ b = 0 \\ c = 1 + j\omega R_0 C \\ d = R_0 \end{cases}$$

8 Démodulateur synchrone

$$u_{in}(t) = A\sin(\omega t + \varphi(t))$$
$$u_s(t) = \sin(\omega t + \varphi_s)$$

Démodulation avec un sinus

$$u_{out}(t) = \frac{1}{2} \operatorname{Re} \left(\underline{u}_{in}(t) e^{-j\varphi_s} \right) = \frac{1}{2} A(t) \cos(\varphi(t) - \varphi_s)$$

Démodulation avec un carré

$$u_{out}(t) = \frac{1}{2} \frac{4}{\pi} \operatorname{Re} \left(\underline{u}_{in}(t) e^{-j\varphi_s} \right) = \frac{1}{2} \frac{4}{\pi} A(t) \cos(\varphi(t) - \varphi_s)$$

Lorsqu'on fait une démodulation, la fréquence double!

- 1. Signal modulé uniquement en amplitude : angle de démodulation de 0°
- 2. Signal modulé uniquement en phase : angle de démodulation de 90°

8.1 Rappel trigo

$$\sin \alpha \sin \beta = \frac{1}{2} (\cos(\alpha - \beta) - \cos(\alpha + \beta))$$

$$\sin \alpha \cos \beta = \frac{1}{2} \left(\sin(\alpha - \beta) + \sin(\alpha + \beta) \right)$$

8.2 Démodulateur capacitif

- 1. Compensation de l'offset
- 2. Plus dynamique
- 3. Augmentation de la résolution A/D (sur-échantillonnage)

9 Capteur capacitif

$$C = \frac{\varepsilon_0 \varepsilon_r A}{d} = \frac{\varepsilon A}{d}$$

Avec A la surface des plaques et d la distance qui les sépare

$$E = \frac{1}{2}CU^2$$

En réalité, la valeur de capacité sera souvent plus élevée à cause des effets de bords et des capacités parasites.

9.1 Circuit 1

Linéaire en C(x) mais pas en x

9.2 Circuit 2

Linéaire en x

$$G = -rac{C_{ref}}{C(x)}$$

9.3 Conditionneur

Suiveur capacitif et démodulateur à échantillonnage synchrone

Générateur

Electrical conductor

Indépendant des propriétés électriques / magnétiques de la cible

Insulator

Dépend de la constante diélectrique de la cible

10 Autres

10.1 Diviseur de courant

$$I_1 = \frac{R_2}{R_1 + R_2} I$$

9.4 Spot

Zone de la cible qui influence la mesure. Un spot size plus petit permet d'améliorer la précision de la mesure.

L'anneau de garde permet de réduire la taille du spot. L'anneau de garde va absorber les effets de bords.

L'anneau de garde doit être connecté au même potentiel que l'électrode mais ne doit pas être connecté directement.

L'électrode doit avoir un pré-amplificateur pour la rendre insensible au câble utilisé