### A VERY quick and dirty PoC for the IWD Use Case

# Andrew Lowe 9 February 2018

#### Business challenge

- Quantify the impact of various drivers on the share performance of a specific brand across a selected market.
- Predict the share performance of brands for future periods.

In the following, we will prove that we have achieved both objectives.

#### Configure setup and load the data

The easiest way to import the data into R is to first export it from Spotfire as an Excel spreadsheet. (Unfortunately, exporting the data as a tab-delimited text file results in weird encoding issues that cause errors like "embedded nul in string" when using read.table or fread to read the data in R.):

```
suppressPackageStartupMessages( # Tidyverse is verbose on startup
  require(tidyverse) # We'll need tools from this library
## Warning: package 'tidyverse' was built under R version 3.4.2
## Warning: package 'tibble' was built under R version 3.4.2
## Warning: package 'tidyr' was built under R version 3.4.2
## Warning: package 'purrr' was built under R version 3.4.2
## Warning: package 'dplyr' was built under R version 3.4.2
## Warning: package 'forcats' was built under R version 3.4.2
set.seed(42) # Set random number seed for the sake of reproducibility
require(readxl) # For reading Excel files
## Loading required package: readxl
dat.xls <- read xls("Data Table.xls") # Read in data
names(dat.xls) # Print column names
    [1] "Column 1"
##
                                     "TimeName"
   [3] "PeriodType"
                                     "PeriodEndDate"
   [5] "Region"
                                      "Country"
##
   [7] "Area"
                                      "AreaHierarchy"
  [9] "Category"
                                     "Company"
##
## [11] "Brand"
                                      "Form"
## [13] "Concentration"
                                      "SecondBenefit"
        "NumberOfJobs"
                                      "BasicSize"
## [15]
## [17] "Item"
                                     "ValueSalesMLC"
                                     "UnitSalesx1000"
## [19] "VolumeSalesMSU"
## [21] "WeightedDistribution"
                                      "WDDisplay"
## [23] "WDAnyPromo"
                                      "WDFeature"
```

```
## [25] "WDPriceCut" "NumSize"
## [27] "PPU" "PPSU"

## [29] "PricePerScoop" "PromoPerDistribution (2)"
## [31] "ScoopsSold (2)" "Fitted"

## [33] "Resid" "Filtered out at 5:38:00 PM"

## [35] "ValidPpuCount" "Date"

## [37] "PromoPerDistribution" "ScoopsSold"

## [39] "PriceCutPerDistribution"
```

#### Data cleaning

We subset the data to contain just the columns that we believe we need for buildig a predictive model:

```
# Select the columns we need (according to Tamas Sarkadi <Tamas_Sarkadi@epam.com>):
dat <- dat.xls[, names(dat.xls) %in% c(</pre>
  "Category",
  "Company",
  "Brand",
 "Form",
  "Concentration",
  "BasicSize",
  "SecondBenefit",
  "NumberOfJobs",
  "Item",
  "ValueSalesMLC", # Target
  "Date", # Timestamp
  "WeightedDistribution", # Feature
  "WDFeature", # Feature
  "WDDisplay", # Feature
  "WDPriceCut", # Feature
  "PPSU" # Feature
)]
names(dat)
                                                         "Brand"
   [1] "Category"
                                "Company"
   [4] "Form"
                                "Concentration"
                                                         "SecondBenefit"
##
## [7] "NumberOfJobs"
                                "BasicSize"
                                                         "Item"
## [10] "ValueSalesMLC"
                                "WeightedDistribution" "WDDisplay"
## [13] "WDFeature"
                                "WDPriceCut"
                                                         "PPSU"
## [16] "Date"
Some columns are single valued and therefore have no predictive value; they are removed:
strip.single.valued <- function(df) {</pre>
  only.one.value <- sapply(df, function(x) length(unique(x)) == 1) # Count unique values
  str(df[1, only.one.value]) # These columns only have one unique value! Print them
  df <- df[, !only.one.value] # Remove those columns</pre>
  return(df)
}
dat <- strip.single.valued(dat) # Do it</pre>
## Classes 'tbl_df', 'tbl' and 'data.frame':
                                                  1 obs. of 3 variables:
## $ Category : chr "LAUNDRY DETERGENTS V2 CATEGORY"
## $ WDDisplay: logi NA
```

```
## $ WDFeature: logi NA
The date information (in POSIXct format) is transformed into Date format:
require(lubridate)
## Loading required package: lubridate
## Warning: package 'lubridate' was built under R version 3.4.2
## Attaching package: 'lubridate'
## The following object is masked from 'package:base':
##
##
       date
dat$Date <- ymd(dat$Date) # Transform into Date object</pre>
We remove any duplicated columns, if present:
# Remove columns with duplicate entries by fast comparison of hashes:
require(digest)
## Loading required package: digest
duplicate.columns <- names(dat)[duplicated(lapply(dat, digest))]</pre>
if(length(duplicate.columns) == 0) {# Are there any duplicate columns?
  print("No duplicated columns")
} else {
  print(duplicate.columns)
## [1] "No duplicated columns"
dat <- dat[, !names(dat) %in% duplicate.columns]</pre>
names(dat)
   [1] "Company"
                                 "Brand"
                                                         "Form"
##
   [4] "Concentration"
                                 "SecondBenefit"
                                                         "NumberOfJobs"
   [7] "BasicSize"
                                 "Item"
                                                         "ValueSalesMLC"
## [10] "WeightedDistribution" "WDPriceCut"
                                                         "PPSU"
## [13] "Date"
We transform character strings to categorical variables:
dat <- dat %>% mutate_if(is.character, as.factor)
Now we do the drill-down to get the products/SKUs. How many do we have?
dat %>% group_by(Company,
                  Brand,
                  Form,
                  Concentration,
                  SecondBenefit,
                  NumberOfJobs,
                  BasicSize,
                  Item) %>%
  mutate(SKU = paste( # Add SKU id
    Company,
    Brand,
    Form.
```

```
Concentration,
    SecondBenefit,
    NumberOfJobs,
    BasicSize,
    Item,
    sep = " | ")
  ) %>%
  arrange(SKU, Date) %>% # Order by SKU then Date
  mutate(count = n()) -> products
products %>% count() %>% nrow() # How many products?
## [1] 691
length(unique(products$SKU)) # Check maths: wow many SKUs? Should be identical.
## [1] 691
Some products have data reported for many time points, while others have little data:
products %>% pull(count) %>% summary() # Print summary of counts
##
      Min. 1st Qu. Median
                               Mean 3rd Qu.
                                                Max.
##
       1.0
              78.0
                    113.0
                              125.7
                                      181.0
                                               258.0
What's the maximum size of the reporting period?
range(products$Date)
## [1] "2010-11-07" "2015-10-18"
Measurements appear to be taken weekly:
head(sort(unique(products$Date)))
## [1] "2010-11-07" "2010-11-14" "2010-11-21" "2010-11-28" "2010-12-05"
## [6] "2010-12-12"
We plot a quick glimpse of the data for the SKUs with more than the mean number of measurements.
products %>% filter(count > 125) %>%
  ggplot(aes(x = Date, y = ValueSalesMLC, group = SKU)) +
  facet_wrap(~SKU, scales = "free_y", ncol = 6) +
  geom line() +
  theme_bw() +
  theme(
    strip.background = element_blank(),
    strip.text.x = element_blank(),
    axis.title.x = element_blank(),
    axis.title.y = element_blank(),
    axis.ticks.x = element_blank(),
    axis.ticks.y = element_blank(),
    axis.text.x = element_blank(),
    axis.text.y = element_blank()
```



Figure 1: Data for a selection of SKUs.

#### Forecasting

We'll limit forecasts for SKUs for which we have at least 52 measurements:

```
products %>% filter(count >= 52) -> products
```

Make a list of SKUs:

```
sort(unique(products$SKU)) -> SKUs
```

Select an SKU in list:

```
products %>% filter(SKU == SKUs[2]) -> product
```

There is missing data that is invisibly missing; the rows themselves are missing. Therefore we left-join to a column of dates covering the period such that the original data is padded with missing values:

```
begin <- range(product$Date)[1]
end <- range(product$Date)[2]
dates <- data.frame(Date = seq(from = begin, to = end, by = "week"))

left_join(dates, product, by = "Date") %>%
  mutate( # Expand-out data information
    year = as.numeric(format(Date, format = "%Y")),
    week = week(Date) # Week number
) -> product
```

Partition the data into training and test data:

```
require(caret)
```

```
## Loading required package: caret
## Warning: package 'caret' was built under R version 3.4.2
## Loading required package: lattice
##
## Attaching package: 'caret'
## The following object is masked from 'package:purrr':
##
## lift
split.percent <- 0.85 # 15% holdout
p <- floor(split.percent * nrow(product))
q <- nrow(product) - p
print(c(p+q, p, q)) # Total number of data points and number in each partition
## [1] 203 172 31
in.train <- createTimeSlices(1:nrow(product), p, q)

df <- as.data.frame(product)</pre>
```

Start of reporting periods (both partitions):

train <- df[unlist(in.train\$train),]
test <- df[unlist(in.train\$test),]</pre>

```
start.train <- c(train$year[1], train$week[1])
start.test <- c(test$year[1], test$week[1])</pre>
```

```
require(forecast)
## Loading required package: forecast
## Warning: package 'forecast' was built under R version 3.4.3
train.ts <- na.interp(</pre>
  ts(train$ValueSalesMLC, frequency = 52, start = start.train)
train.WeightedDistribution <- na.interp(</pre>
  ts(train$WeightedDistribution, frequency = 52, start = start.train)
train.PPSU <- na.interp(</pre>
  ts(train$PPSU, frequency = 52, start = start.train)
train.WDPriceCut <- na.interp(</pre>
  ts(train$WDPriceCut, frequency = 52, start = start.train)
xregs <- cbind(train.WeightedDistribution, train.PPSU, train.WDPriceCut)</pre>
arima.fit <- auto.arima(train.ts, trace = TRUE, xreg = xregs)</pre>
##
##
  Fitting models using approximations to speed things up...
##
## Regression with ARIMA(2,1,2)(1,0,1)[52] errors : Inf
## Regression with ARIMA(0,1,0)
                                             errors: 284.8334
## Regression with ARIMA(1,1,0)(1,0,0)[52] errors: 35.43219
## Regression with ARIMA(0,1,1)(0,0,1)[52] errors: 267.5977
## ARIMA(0,1,0)
                                                : 282.7907
## Regression with ARIMA(1,1,0)
                                             errors: 280.3644
## Regression with ARIMA(1,1,0)(1,0,1)[52] errors : Inf
## Regression with ARIMA(0,1,0)(1,0,0)[52] errors : 48.25668
## Regression with ARIMA(2,1,0)(1,0,0)[52] errors : 30.85524
   Regression with ARIMA(2,1,1)(1,0,0)[52] errors : 30.22139
## Regression with ARIMA(3,1,2)(1,0,0)[52] errors: 27.65443
## ARIMA(3,1,2)(1,0,0)[52]
                                                : 26.66312
## ARIMA(3,1,2)
                                                : 248.8354
## ARIMA(3,1,2)(1,0,1)[52]
                                                : Inf
                                               : Inf
## ARIMA(2,1,2)(1,0,0)[52]
## ARIMA(4,1,2)(1,0,0)[52]
                                               : 26.29973
## ARIMA(4,1,1)(1,0,0)[52]
                                               : 30.72992
## ARIMA(4,1,3)(1,0,0)[52]
                                               : Inf
## ARIMA(3,1,1)(1,0,0)[52]
                                               : 27.65614
## ARIMA(5,1,3)(1,0,0)[52]
                                               : 30.02482
## Regression with ARIMA(4,1,2)(1,0,0)[52] errors : 26.47301
## ARIMA(4,1,2)
                                               : 251.4496
## ARIMA(4,1,2)(1,0,1)[52]
                                                : Inf
##
   ARIMA(5,1,2)(1,0,0)[52]
                                                : 34.14361
##
## Now re-fitting the best model(s) without approximations...
##
## ARIMA(4,1,2)(1,0,0)[52]
                                                : Inf
## ARIMA(4,1,2)(1,0,0)[52] with drift
                                                : Inf
```

```
## ARIMA(3,1,2)(1,0,0)[52]
                                                  : 243.6902
##
## Best model: Regression with ARIMA(3,1,2)(1,0,0)[52] errors
summary(arima.fit)
## Series: train.ts
## Regression with ARIMA(3,1,2)(1,0,0)[52] errors
##
## Coefficients:
##
                       ar2
                                ar3
                                         ma1
                                                  ma2
                                                          sar1
##
         -0.5235 -0.0541 -0.2565 0.1593 -0.5349 0.3540
## s.e. 0.4693 0.1988 0.1477 0.4663
                                              0.3237 0.1035
##
         train.WeightedDistribution train.PPSU train.WDPriceCut
##
                               0.1511
                                          11.3662
                                                              0.7948
## s.e.
                              0.0253
                                           2.3237
                                                              0.1368
##
## sigma^2 estimated as 0.2169: log likelihood=-111.16
               AICc=243.69
## AIC=242.32
                              BIC=273.73
##
## Training set error measures:
                                                      MPE
                                                              MAPE
                                                                         MASE
                         ME
                                  RMSE
                                           MAF.
## Training set -0.0204126 0.4519815 0.30161 -1.014428 9.109642 0.1724312
##
                        ACF1
## Training set -0.01421554
Forecast ahead for the next 12 weeks:
test.ts <- ts(test$ValueSalesMLC, frequency = 52, start = start.test)
test.WeightedDistribution <- na.interp(</pre>
  ts(test$WeightedDistribution, frequency = 52, start = start.test)
test.PPSU <- na.interp(</pre>
  ts(test$PPSU, frequency = 52, start = start.test)
test.WDPriceCut <- na.interp(</pre>
  ts(test$WDPriceCut, frequency = 52, start = start.test)
)
xregs <- cbind(test.WeightedDistribution, test.PPSU, test.WDPriceCut)</pre>
arima.forecast <- forecast(arima.fit, h = q, xreg = xregs)
Plot the forecast:
train.df <- as.data.frame(time(train.ts))</pre>
names(train.df) <- "x"</pre>
train.df$y <- as.vector(train.ts)</pre>
train.df$Partition <- "Train"</pre>
test.df <- as.data.frame(time(test.ts))</pre>
names(test.df) <- "x"</pre>
test.df$y <- as.vector(test.ts)</pre>
test.df$Partition <- "Test"</pre>
points.dat <- suppressWarnings(bind_rows(test.df, train.df))</pre>
```

```
autoplot(arima.forecast) +
  ylab("ValueSalesMLC") +
  geom_point(data = points.dat, aes(x = x, y = y, colour = Partition)) +
  scale_color_manual(values = c("Train" = 'Black', 'Test' = 'Red'))
```

## Warning: Removed 23 rows containing missing values (geom\_point).

#### Forecasts from Regression with ARIMA(3,1,2)(1,0,0)[52] errors



#### accuracy(arima.forecast)

```
## Training set -0.0204126 0.4519815 0.30161 -1.014428 9.109642 0.1724312 ## ACF1 ## Training set -0.01421554
```

We perform a statistical significant test of the coefficients of the fitted model; if the p-value is less than 5% we take this as evidence that the coefficient is statistically significant. The size of the coefficient provides a measure of the corresponding variable's importance in the model. This addresses the challenge of determining the performance drivers for a specific product:

```
require(lmtest)
```

```
## Loading required package: lmtest
## Warning: package 'lmtest' was built under R version 3.4.3
## Loading required package: zoo
## Warning: package 'zoo' was built under R version 3.4.2
```

```
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
      as.Date, as.Date.numeric
coeftest(arima.fit)
##
## z test of coefficients:
##
                           Estimate Std. Error z value Pr(>|z|)
## ar1
                           ## ar2
                           ## ar3
## ma1
                            ## ma2
                           ## sar1
                            ## train.WeightedDistribution 0.151135 0.025329 5.9669 2.418e-09 ***
## train.PPSU
                         11.366212
                                     2.323672 4.8915 1.001e-06 ***
## train.WDPriceCut
                           0.794781
                                     0.136822 5.8089 6.289e-09 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
print(arima.fit$aic) # Print Akaike information criterion (AIC)
## [1] 242.3152
Wrap up everything we've just done for one SKU in a crystal ball function that we can run for any SKU:
crystal.ball <- function(SKU.num, split.percent, verbose = FALSE) {</pre>
 products %>% filter(SKU == SKUs[SKU.num]) -> product
 begin <- range(product$Date)[1]</pre>
 end <- range(product$Date)[2]</pre>
 dates <- data.frame(Date = seq(from = begin, to = end, by = "week"))
 left_join(dates, product, by = "Date") %>%
   mutate( # Expand-out data information
     year = as.numeric(format(Date, format = "%Y")),
     week = week(Date) # Week number
   ) -> product
 p <- floor(split.percent * nrow(product))</pre>
 q <- nrow(product) - p</pre>
 in.train <- createTimeSlices(1:nrow(product), p, q)</pre>
 df <- as.data.frame(product)</pre>
 train <- df[unlist(in.train$train),]</pre>
 test <- df[unlist(in.train$test),]</pre>
 start.train <- c(train$year[1], train$week[1])</pre>
 start.test <- c(test$year[1], test$week[1])
 train.ts <- na.interp(</pre>
```

```
ts(train$ValueSalesMLC, frequency = 52, start = start.train)
  )
  train.WeightedDistribution <- na.interp(</pre>
    ts(train$WeightedDistribution, frequency = 52, start = start.train)
  )
  train.PPSU <- na.interp(</pre>
    ts(train$PPSU, frequency = 52, start = start.train)
  train.WDPriceCut <- na.interp(</pre>
    ts(train$WDPriceCut, frequency = 52, start = start.train)
  train.xregs <- cbind(train.WeightedDistribution, train.PPSU, train.WDPriceCut)</pre>
  test.ts <- ts(test$ValueSalesMLC, frequency = 52, start = start.test)
  test.WeightedDistribution <- na.interp(</pre>
    ts(test$WeightedDistribution, frequency = 52, start = start.test)
  test.PPSU <- na.interp(</pre>
    ts(test$PPSU, frequency = 52, start = start.test)
  test.WDPriceCut <- na.interp(</pre>
   ts(test$WDPriceCut, frequency = 52, start = start.test)
  test.xregs <- cbind(test.WeightedDistribution, test.PPSU, test.WDPriceCut)</pre>
  arima.fit <- auto.arima(train.ts, trace = FALSE, xreg = train.xregs)
  if(verbose) {
    print(coeftest(arima.fit))
    print(arima.fit$aic) # Print Akaike information criterion (AIC)
  arima.forecast <- forecast(arima.fit, h = q, xreg = test.xregs)</pre>
  train.df <- as.data.frame(time(train.ts))</pre>
  names(train.df) <- "x"</pre>
  train.df$y <- as.vector(train.ts)</pre>
  train.df$Partition <- "Train"</pre>
  test.df <- as.data.frame(time(test.ts))</pre>
  names(test.df) <- "x"</pre>
  test.df$y <- as.vector(test.ts)</pre>
  test.df$Partition <- "Test"
  points.dat <- suppressWarnings(bind_rows(test.df, train.df))</pre>
  autoplot(arima.forecast) +
    ylab("ValueSalesMLC") +
    geom_point(data = points.dat, aes(x = x, y = y, colour = Partition)) +
    scale_color_manual(values = c("Train" = 'Black', 'Test' = 'Red'))
}
```

#### crystal.ball(5, 0.85, verbose = TRUE)

```
##
## z test of coefficients:
##
                             Estimate Std. Error z value Pr(>|z|)
##
## ar1
                            ## ma1
                           -1.2867231 0.1119447 -11.4943 < 2.2e-16 ***
## ma2
                            0.3049328
                                      0.1043563
                                                 2.9220 0.003478 **
## train.WeightedDistribution 0.0720436
                                      0.0041545
                                               17.3412 < 2.2e-16 ***
## train.PPSU
                            0.0145742 0.0113041
                                                 1.2893 0.197302
## train.WDPriceCut
                            0.0148697 0.0033346
                                                 4.4592 8.227e-06 ***
##
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## [1] 24.98226
```

### ## Warning: Removed 19 rows containing missing values (geom\_point).

### Forecasts from Regression with ARIMA(1,1,2) errors



Let's test our crystal ball function on some randomly-selected SKUs:

```
random.SKUs <- sample(length(SKUs), size = 6, replace = FALSE)
lapply(random.SKUs, function(N) crystal.ball(N, 0.85))</pre>
```

## [[1]]

# Forecasts from Regression with ARIMA(0,0,1)(0,0,1)[52] errors



## ## [[2]]

## Warning: Removed 5 rows containing missing values (geom\_point).

# Forecasts from Regression with ARIMA(0,0,1)(0,0,1)[52] errors



## ## [[3]]

## Warning: Removed 16 rows containing missing values (geom\_point).





## ## [[4]]

### Forecasts from Regression with ARIMA(0,0,0) errors



## ## [[5]]

## Warning: Removed 10 rows containing missing values (geom\_point).

### Forecasts from Regression with ARIMA(1,0,0)(1,0,0)[52] errors



## ## [[6]]

## Warning: Removed 13 rows containing missing values (geom\_point).





#### What could have been done better

We could introduce lagged versions of the explanatory variables into the model, and we could select the best model using AIC – we didn't do this here, but it would be reasonably trivial to implement with more time.