

TEORÍA LOCAL DE CURVAS PARAMETRIZADAS

Alan Reyes-Figueroa Geometría Diferencial

(AULA 04) 20.ENERO.2022

Sea $\alpha:I\subseteq\mathbb{R}\to\mathbb{R}^2$ una curva regular ($\alpha'\neq 0$), parametrizada por longitud de arco. Denotamos al vector tangente como

$$\mathbf{t}(\mathbf{s}) = \alpha'(\mathbf{s}), \ \forall \mathbf{s} \in I.$$

Sea $\alpha:I\subseteq\mathbb{R}\to\mathbb{R}^2$ una curva regular ($\alpha'\neq 0$), parametrizada por longitud de arco. Denotamos al vector tangente como

$$\mathbf{t}(\mathbf{s}) = \alpha'(\mathbf{s}), \ \forall \mathbf{s} \in I.$$

Definimos un vector normal unitario $\mathbf{n}(s) \in \mathbb{R}^2$ de modo que las bases ortonormales $\{\mathbf{t}(s), \mathbf{n}(s)\}$ y $\{\mathbf{e}_1, \mathbf{e}_2\}$ tengan la misma orientación.

Sea $\alpha:I\subseteq\mathbb{R}\to\mathbb{R}^2$ una curva regular ($\alpha'\neq 0$), parametrizada por longitud de arco. Denotamos al vector tangente como

$$\mathbf{t}(\mathbf{s}) = \alpha'(\mathbf{s}), \ \forall \mathbf{s} \in I.$$

Definimos un vector normal unitario $\mathbf{n}(s) \in \mathbb{R}^2$ de modo que las bases ortonormales $\{\mathbf{t}(s), \mathbf{n}(s)\}$ y $\{\mathbf{e}_1, \mathbf{e}_2\}$ tengan la misma orientación.

Como
$$t(s) \cdot t(s) = |t(s)|^2 = 1$$
,

Sea $\alpha:I\subseteq\mathbb{R}\to\mathbb{R}^2$ una curva regular ($\alpha'\neq 0$), parametrizada por longitud de arco. Denotamos al vector tangente como

$$\mathbf{t}(\mathbf{s}) = \alpha'(\mathbf{s}), \ \forall \mathbf{s} \in I.$$

Definimos un vector normal unitario $\mathbf{n}(s) \in \mathbb{R}^2$ de modo que las bases ortonormales $\{\mathbf{t}(s), \mathbf{n}(s)\}$ y $\{\mathbf{e}_1, \mathbf{e}_2\}$ tengan la misma orientación.

Como
$$\mathbf{t}(s) \cdot \mathbf{t}(s) = |\mathbf{t}(s)|^2 = 1$$
, diferenciando respecto de s

$$2 \boldsymbol{t}'(s) \cdot \boldsymbol{t}(s) = \boldsymbol{t}'(s) \cdot \boldsymbol{t}(s) + \boldsymbol{t}(s) \cdot \boldsymbol{t}'(s) = o.$$

Sea $\alpha:I\subseteq\mathbb{R}\to\mathbb{R}^2$ una curva regular ($\alpha'\neq 0$), parametrizada por longitud de arco. Denotamos al vector tangente como

$$\mathbf{t}(\mathbf{s}) = \alpha'(\mathbf{s}), \ \forall \mathbf{s} \in I.$$

Definimos un vector normal unitario $\mathbf{n}(s) \in \mathbb{R}^2$ de modo que las bases ortonormales $\{\mathbf{t}(s), \mathbf{n}(s)\}$ y $\{\mathbf{e}_1, \mathbf{e}_2\}$ tengan la misma orientación.

Como $\mathbf{t}(s) \cdot \mathbf{t}(s) = |\mathbf{t}(s)|^2 = 1$, diferenciando respecto de s

$$2\mathbf{t}'(s) \cdot \mathbf{t}(s) = \mathbf{t}'(s) \cdot \mathbf{t}(s) + \mathbf{t}(s) \cdot \mathbf{t}'(s) = 0.$$

Luego, $\mathbf{t}(s)$ y $\mathbf{t}'(s)$ son ortogonales, y se tiene que

$$\alpha''(s) = \mathbf{t}'(s) = \kappa(s)\mathbf{n}(s).$$

Definición

El número $\kappa(s)$ se llama la **curvatura** de α en el punto s.

Definición

El número $\kappa(s)$ se llama la **curvatura** de α en el punto s.

El signo de $\kappa(s)$ indica la dirección en la cual rota la curva α (o su tangente). $\kappa(s) > o$ indica que la curva rota a la izquierda, $\kappa < o$ indica que rota hacia la derecha.

Definición

El número $\kappa(s)$ se llama la **curvatura** de α en el punto s.

El signo de $\kappa(s)$ indica la dirección en la cual rota la curva α (o su tangente). $\kappa(s) > o$ indica que la curva rota a la izquierda, $\kappa < o$ indica que rota hacia la derecha.

A la recta generada por el vector $\mathbf{n}(s)$ se le llama la recta normal.

Definición

Los puntos donde $\alpha''(s) = 0$ se llaman **puntos de inflexión**, y corresponden a aquellos puntos donde la curvatura κ cambia de signo.

Definición

Los puntos donde $\alpha''(s) = 0$ se llaman **puntos de inflexión**, y corresponden a aquellos puntos donde la curvatura κ cambia de signo. Se tiene el siguiente sistema de EDOs

$$\mathbf{t}'(\mathbf{s}) = \kappa(\mathbf{s})\mathbf{n}(\mathbf{s}), \quad \mathbf{n}'(\mathbf{s}) = -\kappa(\mathbf{s})\mathbf{t}(\mathbf{s}),$$

Definición

Los puntos donde $\alpha''(s) = 0$ se llaman **puntos de inflexión**, y corresponden a aquellos puntos donde la curvatura κ cambia de signo. Se tiene el siguiente sistema de EDOs

$$\mathbf{t}'(s) = \kappa(s)\mathbf{n}(s), \quad \mathbf{n}'(s) = -\kappa(s)\mathbf{t}(s),$$

o en notación matricial

$$egin{pmatrix} \mathbf{t}'(\mathbf{s}) \\ \mathbf{n}'(\mathbf{s}) \end{pmatrix} = egin{pmatrix} \mathbf{0} & \kappa(\mathbf{s}) \\ -\kappa(\mathbf{s}) & \mathbf{0} \end{pmatrix} egin{pmatrix} \mathbf{t}(\mathbf{s}) \\ \mathbf{n}(\mathbf{s}) \end{pmatrix}.$$

Definición

Los puntos donde $\alpha''(s) = 0$ se llaman **puntos de inflexión**, y corresponden a aquellos puntos donde la curvatura κ cambia de signo. Se tiene el siguiente sistema de EDOs

$$\mathbf{t}'(\mathbf{s}) = \kappa(\mathbf{s})\mathbf{n}(\mathbf{s}), \quad \mathbf{n}'(\mathbf{s}) = -\kappa(\mathbf{s})\mathbf{t}(\mathbf{s}),$$

o en notación matricial

$$\begin{pmatrix} \mathbf{t}'(\mathbf{s}) \\ \mathbf{n}'(\mathbf{s}) \end{pmatrix} = \begin{pmatrix} \mathbf{0} & \kappa(\mathbf{s}) \\ -\kappa(\mathbf{s}) & \mathbf{0} \end{pmatrix} \begin{pmatrix} \mathbf{t}(\mathbf{s}) \\ \mathbf{n}(\mathbf{s}) \end{pmatrix}.$$

Estas ecuaciones son llamadas las **fórmulas de Frenet**.

Fijemos $s \in I$, y sea $P = \alpha(s)$, y sea ℓ la recta normal a α en P. Tomemos otro punto de la curva $Q = \alpha(s + h)$. Consideremos la recta normal m a α en Q. Y sea C el punto de intersección de las rectas ℓ y m.

Fijemos $s \in I$, y sea $P = \alpha(s)$, y sea ℓ la recta normal a α en P. Tomemos otro punto de la curva $Q = \alpha(s+h)$. Consideremos la recta normal m a α en Q. Y sea C el punto de intersección de las rectas ℓ y m.

Es posible mostrar que al tomar $h \to o$, el punto C se estabiliza. Este punto resulta ser el centro de un círculo, que es tangencial a la curva en el punto P,

Fijemos $s \in I$, y sea $P = \alpha(s)$, y sea ℓ la recta normal a α en P. Tomemos otro punto de la curva $Q = \alpha(s+h)$. Consideremos la recta normal m a α en Q. Y sea C el punto de intersección de las rectas ℓ y m.

Es posible mostrar que al tomar $h \to o$, el punto C se estabiliza. Este punto resulta ser el centro de un círculo, que es tangencial a la curva en el punto P,

Definición

Este círculo con centro C tangente a la cuva α en el punto $\alpha(s) = P$ se llama el **círculo osculador** a α en s.

Ejemplo:

$$\alpha(s) = (r \cos \frac{s}{r}, r \sin \frac{s}{r}), \quad s \in \mathbb{R}.$$

Ejemplo:

$$\alpha(s) = (r \cos \frac{s}{r}, r \sin \frac{s}{r}), \quad s \in \mathbb{R}.$$

Luego,
$$\mathbf{t}(s) = \alpha'(s) = (-\sin\frac{s}{r}, \cos\frac{s}{r}), \mathbf{n}(s) = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \mathbf{t}(s) = (-\cos\frac{s}{r}, -\sin\frac{s}{r})$$

Ejemplo:

$$\alpha(s) = (r \cos \frac{s}{r}, r \sin \frac{s}{r}), \quad s \in \mathbb{R}.$$

Luego,
$$\mathbf{t}(s) = \alpha'(s) = (-\sin\frac{s}{r}, \cos\frac{s}{r}), \mathbf{n}(s) = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \mathbf{t}(s) = (-\cos\frac{s}{r}, -\sin\frac{s}{r})$$

y $\alpha''(s) = (-\frac{1}{r}\cos\frac{s}{r}, -\frac{1}{r}\sin\frac{s}{r}).$

Ejemplo:

$$\alpha(s) = (r \cos \frac{s}{r}, r \sin \frac{s}{r}), \quad s \in \mathbb{R}.$$

Luego,
$$\mathbf{t}(s) = \alpha'(s) = (-\sin\frac{s}{r}, \cos\frac{s}{r})$$
, $\mathbf{n}(s) = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \mathbf{t}(s) = (-\cos\frac{s}{r}, -\sin\frac{s}{r})$.
 $\mathbf{v} \alpha''(s) = (-\frac{1}{r}\cos\frac{s}{r}, -\frac{1}{r}\sin\frac{s}{r})$. De ahí que

$$\mathbf{t}' = \frac{1}{r}\mathbf{n} \Rightarrow \kappa(\mathbf{s}) = \frac{1}{r}, \ \ \forall \mathbf{s}.$$

Ejemplo:

Consideremos un círculo de radio r> o en \mathbb{R}^2 . Su parametrización por longitud de arco es

$$\alpha(s) = (r \cos \frac{s}{r}, r \sin \frac{s}{r}), \quad s \in \mathbb{R}.$$

Luego,
$$\mathbf{t}(s) = \alpha'(s) = (-\sin\frac{s}{r}, \cos\frac{s}{r})$$
, $\mathbf{n}(s) = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \mathbf{t}(s) = (-\cos\frac{s}{r}, -\sin\frac{s}{r})$
y $\alpha''(s) = (-\frac{1}{r}\cos\frac{s}{r}, -\frac{1}{r}\sin\frac{s}{r})$.
De ahí que

$$\mathbf{t}' = \frac{1}{r}\mathbf{n} \Rightarrow \kappa(\mathbf{s}) = \frac{1}{r}, \ \forall \mathbf{s}.$$

• Si α es un círculo, su curvatura $\kappa(s)$ es constante.

Teorema

Teorema: Una curva plana regular α tiene curvatura constante si, y sólo si, α es un trazo de círcunferencia, o α es un segmento de recta.

Teorema

Teorema: Una curva plana regular α tiene curvatura constante si, y sólo si, α es un trazo de círcunferencia, o α es un segmento de recta.

Prueba:

Teorema

Teorema: Una curva plana regular α tiene curvatura constante si, y sólo si, α es un trazo de círcunferencia, o α es un segmento de recta.

Prueba:

• Caso $\kappa = 0$: $\kappa(s) = 0 \Leftrightarrow \alpha''(s) = 0 \Leftrightarrow \alpha(s) = u + vs$ es una recta.

Teorema

Teorema: Una curva plana regular α tiene curvatura constante si, y sólo si, α es un trazo de círcunferencia, o α es un segmento de recta.

Prueba:

- Caso $\kappa = o$: $\kappa(s) = o \Leftrightarrow \alpha''(s) = o \Leftrightarrow \alpha(s) = o + vs$ es una recta.
- Caso $\kappa >$ 0: (\Leftarrow) Acabamos de mostrar que un círculo tiene curvatura constante.

Teorema

Teorema: Una curva plana regular α tiene curvatura constante si, y sólo si, α es un trazo de círcunferencia, o α es un segmento de recta.

Prueba:

- Caso $\kappa = o$: $\kappa(s) = o \Leftrightarrow \alpha''(s) = o \Leftrightarrow \alpha(s) = o + v$ s es una recta.
- Caso $\kappa >$ 0: (\Leftarrow) Acabamos de mostrar que un círculo tiene curvatura constante.

$$(\Rightarrow)$$
 Considere la cantidad $\alpha(s) + \frac{1}{\kappa} \mathbf{n}(s)$.

Teorema

Teorema: Una curva plana regular α tiene curvatura constante si, y sólo si, α es un trazo de círcunferencia, o α es un segmento de recta.

Prueba:

- Caso $\kappa = o$: $\kappa(s) = o \Leftrightarrow \alpha''(s) = o \Leftrightarrow \alpha(s) = o + vs$ es una recta.
- Caso $\kappa >$ 0: (\Leftarrow) Acabamos de mostrar que un círculo tiene curvatura constante.

 (\Rightarrow) Considere la cantidad $\alpha(s) + \frac{1}{\kappa} \mathbf{n}(s)$. Observe que al derivar

$$\left(\alpha(s) + \frac{1}{\kappa}\mathbf{n}(s)\right)' = \mathbf{t}(s) - \frac{1}{\kappa}\kappa\mathbf{t}(s) = \mathbf{t}(s) - \mathbf{t}(s) = \mathbf{0},$$

Teorema

Teorema: Una curva plana regular α tiene curvatura constante si, y sólo si, α es un trazo de círcunferencia, o α es un segmento de recta.

Prueba:

- Caso $\kappa = o$: $\kappa(s) = o \Leftrightarrow \alpha''(s) = o \Leftrightarrow \alpha(s) = o + vs$ es una recta.
- Caso $\kappa >$ 0: (\Leftarrow) Acabamos de mostrar que un círculo tiene curvatura constante.

 (\Rightarrow) Considere la cantidad $\alpha(s) + \frac{1}{\kappa} \mathbf{n}(s)$. Observe que al derivar

$$\left(\alpha(s) + \frac{1}{\kappa}\mathbf{n}(s)\right)' = \mathbf{t}(s) - \frac{1}{\kappa}\kappa\mathbf{t}(s) = \mathbf{t}(s) - \mathbf{t}(s) = \mathbf{0},$$

de modo que $\alpha(s) + \frac{1}{\kappa} \mathbf{n}(s) = C$ es constante. Esto muestra que α es un trazo de circunferencia con centro en C.

• Toda curva plana regular α , con curvatura no nula en el punto s, posee un círculo centrado en C(s):

$$C(s) + \frac{1}{\kappa(s)}\mathbf{n}(s),$$

su círculo osculador.

• Toda curva plana regular α , con curvatura no nula en el punto s, posee un círculo centrado en C(s):

$$C(s) + \frac{1}{\kappa(s)}\mathbf{n}(s),$$

su círculo osculador.

• Este círculo es tangente a α en el punto s (punto de contacto de orden 2).

• Toda curva plana regular α , con curvatura no nula en el punto s, posee un círculo centrado en C(s):

$$C(s) + \frac{1}{\kappa(s)}\mathbf{n}(s),$$

su círculo osculador.

- Este círculo es tangente a α en el punto s (punto de contacto de orden 2).
- La curva C(s) formada por todos los centros de estos círculos osculadores a α , $s \mapsto C(s) + \frac{1}{\kappa(s)} \mathbf{n}(s)$, se llama la **evoluta** o **curva focal** de α .

• Toda curva plana regular α , con curvatura no nula en el punto s, posee un círculo centrado en C(s):

$$C(s) + \frac{1}{\kappa(s)}\mathbf{n}(s),$$

su círculo osculador.

- Este círculo es tangente a α en el punto s (punto de contacto de orden 2).
- La curva C(s) formada por todos los centros de estos círculos osculadores a α , $s \mapsto C(s) + \frac{1}{\kappa(s)} \mathbf{n}(s)$, se llama la **evoluta** o **curva focal** de α .

Proposición

Sea α una curva plana regular. El radio de círculo osculador de α en s está dado por $\rho(s) = 1/\kappa(s)$.

Teoría local de curvas en \mathbb{R}^3

Sea $\alpha: I \subseteq \mathbb{R} \to \mathbb{R}^3$ una curva diferenciable, parametrizada por longitud de arco (α es clase C^3 y regular). Entonces $|\alpha'(s)| = 1$, para todo $s \in I$.

Teoría local de curvas en \mathbb{R}^3

Sea $\alpha: I \subseteq \mathbb{R} \to \mathbb{R}^3$ una curva diferenciable, parametrizada por longitud de arco (α es clase C^3 y regular). Entonces $|\alpha'(s)| = 1$, para todo $s \in I$.

Como $|\alpha'(s)|$ es constante, la segunda derivada $|\alpha''(s)|$ mide la tasa de variación de la dirección de $\alpha'(s)$.

Teoría local de curvas en \mathbb{R}^3

Sea $\alpha: I \subseteq \mathbb{R} \to \mathbb{R}^3$ una curva diferenciable, parametrizada por longitud de arco (α es clase C^3 y regular). Entonces $|\alpha'(s)| = 1$, para todo $s \in I$.

Como $|\alpha'(s)|$ es constante, la segunda derivada $|\alpha''(s)|$ mide la tasa de variación de la dirección de $\alpha'(s)$.

Así, $|\alpha''(s)|$ proporciona una medida de cuán rápido la curva α se aleja de la recta tangente:

Definición

Sea $\alpha:I\subseteq\mathbb{R}\to\mathbb{R}^3$ una curva diferenciable, parametrizada por longitud de arco. Definimos la **curvatura** de α en el punto s por

$$\kappa(\mathbf{s}) = |\alpha''(\mathbf{s})|.$$

Definición

Sea $\alpha:I\subseteq\mathbb{R}\to\mathbb{R}^3$ una curva diferenciable, parametrizada por longitud de arco. Definimos la **curvatura** de α en el punto s por

$$\kappa(\mathbf{s}) = |\alpha''(\mathbf{s})|.$$

• $\kappa(s) \ge o$, ya que corresponde a la norma de un vector.

Definición

Sea $\alpha: \mathbf{I} \subseteq \mathbb{R} \to \mathbb{R}^3$ una curva diferenciable, parametrizada por longitud de arco. Definimos la **curvatura** de α en el punto s por

$$\kappa(\mathbf{s}) = |\alpha''(\mathbf{s})|.$$

- $\kappa(s) \ge 0$, ya que corresponde a la norma de un vector.
- Si $\alpha(s) = \mathbf{u} + \mathbf{v}s$ es una recta en \mathbb{R}^3 , $\mathbf{u}, \mathbf{v} \in \mathbb{R}^3$, $\mathbf{v} \neq \mathbf{0}$, entonces

$$\alpha'(s) = \mathbf{v}, \ \alpha''(s) = \mathbf{o}, \ \forall s \Rightarrow \ \kappa(s) = \mathbf{o}, \ \forall s.$$

Definición

Sea $\alpha: \mathbf{I} \subseteq \mathbb{R} \to \mathbb{R}^3$ una curva diferenciable, parametrizada por longitud de arco. Definimos la **curvatura** de α en el punto s por

$$\kappa(\mathbf{s}) = |\alpha''(\mathbf{s})|.$$

- $\kappa(s) \ge 0$, ya que corresponde a la norma de un vector.
- Si $\alpha(\mathbf{s})=\mathbf{u}+\mathbf{v}\mathbf{s}$ es una recta en \mathbb{R}^3 , $\mathbf{u},\mathbf{v}\in\mathbb{R}^3$, $\mathbf{v}\neq\mathbf{0}$, entonces

$$\alpha'(s) = \mathbf{v}, \ \alpha''(s) = \mathbf{o}, \ \forall s \Rightarrow \kappa(s) = \mathbf{o}, \ \forall s.$$

• Recíprocamente, si α es una curva tal que $\kappa(s) = 0$, $\forall s$, entonces $\alpha''(s) = 0$

Definición

Sea $\alpha: \mathbf{I} \subseteq \mathbb{R} \to \mathbb{R}^3$ una curva diferenciable, parametrizada por longitud de arco. Definimos la **curvatura** de α en el punto s por

$$\kappa(s) = |\alpha''(s)|.$$

- $\kappa(s) \ge 0$, ya que corresponde a la norma de un vector.
- Si $\alpha(s)=\mathbf{u}+\mathbf{v}s$ es una recta en \mathbb{R}^3 , $\mathbf{u},\mathbf{v}\in\mathbb{R}^3$, $\mathbf{v}\neq\mathbf{0}$, entonces

$$\alpha'(s) = \mathbf{v}, \ \alpha''(s) = \mathbf{o}, \ \forall s \Rightarrow \kappa(s) = \mathbf{o}, \ \forall s.$$

• Recíprocamente, si α es una curva tal que $\kappa(s) = 0$, $\forall s$, entonces $\alpha''(s) = 0$ y por integración, $\alpha(s) = \mathbf{u} + \mathbf{v}s$ es una recta.

Observe que $\alpha'(s) \cdot \alpha'(s) = |\alpha'(s)|^2 = 1$.

Observe que $\alpha'(s) \cdot \alpha'(s) = |\alpha'(s)|^2 = 1$. Diferenciando respecto de s

$$2\alpha''(s) \cdot \alpha'(s) = \alpha''(s) \cdot \alpha'(s) + \alpha'(s) \cdot \alpha''(s) = 0.$$

Observe que $\alpha'(s) \cdot \alpha'(s) = |\alpha'(s)|^2 = 1$. Diferenciando respecto de s $2\alpha''(s) \cdot \alpha'(s) = \alpha''(s) \cdot \alpha'(s) + \alpha'(s) \cdot \alpha''(s) = 0$.

Luego, $\alpha''(s)$ y $\alpha'(s)$ son ortogonales.

Observe que
$$\alpha'(s) \cdot \alpha'(s) = |\alpha'(s)|^2 = 1$$
. Diferenciando respecto de s
$$2\alpha''(s) \cdot \alpha'(s) = \alpha''(s) \cdot \alpha'(s) + \alpha'(s) \cdot \alpha''(s) = 0.$$

Luego, $\alpha''(s)$ y $\alpha'(s)$ son ortogonales.

Si $\alpha''(s) \neq \mathbf{0}$, podemos definir un vector unitario $\mathbf{n}(s)$ en la dirección de $\alpha''(s)$ por

$$\alpha''(s) = \kappa(s)\mathbf{n}(s).$$

Observe que $\alpha'(s) \cdot \alpha'(s) = |\alpha'(s)|^2 = 1$. Diferenciando respecto de s $2\alpha''(s) \cdot \alpha'(s) = \alpha''(s) \cdot \alpha'(s) + \alpha'(s) \cdot \alpha''(s) = 0$.

Luego, $\alpha''(s)$ y $\alpha'(s)$ son ortogonales.

Si $\alpha''(s) \neq \mathbf{0}$, podemos definir un vector unitario $\mathbf{n}(s)$ en la dirección de $\alpha''(s)$ por

$$\alpha''(s) = \kappa(s)\mathbf{n}(s).$$

Además, denotamos $\mathbf{t}(\mathbf{s}) = \alpha'(\mathbf{s})$.

Tenemos entonces

$$\mathbf{n}(\mathbf{s}) \perp \mathbf{t}(\mathbf{s}), \ \ \forall \mathbf{s} \ \mathsf{donde} \ \kappa(\mathbf{s}) \neq \mathbf{o}.$$

Tenemos entonces

$$\mathbf{n}(s) \perp \mathbf{t}(s), \ \ \forall s \ \text{donde} \ \kappa(s) \neq o.$$

El vector $\mathbf{t}(s)$ es el vector tangente a α en s. El vector $\mathbf{n}(s)$ se llama el vector normal a α en s. El plano generado por $\langle \mathbf{t}(s), \mathbf{n}(s) \rangle$ se llama el **plano osculador** o **plano osculante** a α en s.

Tenemos entonces

$$\mathbf{n}(s) \perp \mathbf{t}(s), \ \ \forall s \ \text{donde} \ \kappa(s) \neq o.$$

El vector $\mathbf{t}(s)$ es el vector tangente a α en s. El vector $\mathbf{n}(s)$ se llama el vector normal a α en s. El plano generado por $\langle \mathbf{t}(s), \mathbf{n}(s) \rangle$ se llama el **plano osculador** o **plano osculante** a α en s.

Obs: Si $\alpha''(s) = \mathbf{o}$, el vector $\mathbf{n}(s) = \mathbf{o}$ y el plano osculador no está definido. Los puntos donde $\alpha''(s) = \mathbf{o}$ se llaman puntos singulares de orden 1 (los puntos donde $\alpha'(s)$ se llaman puntos singulares de orden o).

En lo que sigue, nos restringimos a curvas sin puntos singulares de orden o ó 1.

En lo que sigue, nos restringimos a curvas sin puntos singulares de orden o ó 1.

El vector unitario

$$\mathbf{b}(\mathbf{s}) = \mathbf{t}(\mathbf{s}) \times \mathbf{n}(\mathbf{s})$$

es normal al plano osculador y se llama el **vector** binormal a α en s.

En lo que sigue, nos restringimos a curvas sin puntos singulares de orden o ó 1.

El vector unitario

$$\boldsymbol{b}(s) = \boldsymbol{t}(s) \times \boldsymbol{n}(s)$$

es normal al plano osculador y se llama el **vector binormal** a α en s.

Como $|\mathbf{b}(s)| = |\mathbf{t}(s)| \cdot |\mathbf{n}(s)| = 1$, entonces $|\mathbf{b}(s)|$ mide la tasa de variación del ángulo del plano osculador en una vecindad de s.

Tenemos varias relaciones entre $\mathbf{t}(s)$, $\mathbf{n}(s)$ y $\mathbf{b}(s)$:

Tenemos varias relaciones entre $\mathbf{t}(s)$, $\mathbf{n}(s)$ y $\mathbf{b}(s)$:

•
$$\mathbf{t}'(\mathbf{s}) = \alpha''(\mathbf{s}) = \kappa(\mathbf{s})\mathbf{n}(\mathbf{s}).$$

Tenemos varias relaciones entre $\mathbf{t}(s)$, $\mathbf{n}(s)$ y $\mathbf{b}(s)$:

•
$$\mathbf{t}'(\mathbf{s}) = \alpha''(\mathbf{s}) = \kappa(\mathbf{s})\mathbf{n}(\mathbf{s}).$$

•
$$\mathbf{b}'(s) = (\mathbf{t}(s) \times \mathbf{n}(s))' = \mathbf{t}'(s) \times \mathbf{n}(s) + \mathbf{t}(s) \times \mathbf{n}'(s)$$

$$= (\kappa(s)\mathbf{n}(s) \times \mathbf{n}(s)) + \mathbf{t}(s) \times \mathbf{n}'(s)$$

$$= \mathbf{t}(s) \times \mathbf{n}'(s)$$

Tenemos varias relaciones entre $\mathbf{t}(s)$, $\mathbf{n}(s)$ y $\mathbf{b}(s)$:

•
$$\mathbf{t}'(\mathbf{s}) = \alpha''(\mathbf{s}) = \kappa(\mathbf{s})\mathbf{n}(\mathbf{s}).$$

•
$$\mathbf{b}'(s) = (\mathbf{t}(s) \times \mathbf{n}(s))' = \mathbf{t}'(s) \times \mathbf{n}(s) + \mathbf{t}(s) \times \mathbf{n}'(s)$$

$$= (\kappa(s)\mathbf{n}(s) \times \mathbf{n}(s)) + \mathbf{t}(s) \times \mathbf{n}'(s)$$

$$= \mathbf{t}(s) \times \mathbf{n}'(s)$$

Luego, $\mathbf{b}'(s) \perp \mathbf{t}(s)$, y como $\mathbf{b}'(s) \perp \mathbf{b}(s)$ (¿por qué?), entonces $\mathbf{b}'(s)$ es paralelo a $\mathbf{n}(s)$.

Tenemos varias relaciones entre $\mathbf{t}(s)$, $\mathbf{n}(s)$ y $\mathbf{b}(s)$:

•
$$\mathbf{t}'(\mathbf{s}) = \alpha''(\mathbf{s}) = \kappa(\mathbf{s})\mathbf{n}(\mathbf{s}).$$

•
$$\mathbf{b}'(s) = (\mathbf{t}(s) \times \mathbf{n}(s))' = \mathbf{t}'(s) \times \mathbf{n}(s) + \mathbf{t}(s) \times \mathbf{n}'(s)$$

$$= (\kappa(s)\mathbf{n}(s) \times \mathbf{n}(s)) + \mathbf{t}(s) \times \mathbf{n}'(s)$$

$$= \mathbf{t}(s) \times \mathbf{n}'(s)$$

Luego, $\mathbf{b}'(s) \perp \mathbf{t}(s)$, y como $\mathbf{b}'(s) \perp \mathbf{b}(s)$ (¿por qué?), entonces $\mathbf{b}'(s)$ es paralelo a $\mathbf{n}(s)$.

De ahí que podemos escribir $\mathbf{b}'(s) = \tau(s)\mathbf{n}(s)$.

Definición

Definición

El número $\tau(s)$ se llama la **torsión** de α en el punto s

• Contrario a la curvatura, $\tau(s)$ puede ser positiva o negativa, ó cero.

Definición

- Contrario a la curvatura, $\tau(s)$ puede ser positiva o negativa, ó cero.
- Si α(s) es una curva plana, entonces α(I) está contenida en un plano, el cual coincide con el plano osculador ⟨t(s), n(s)⟩, ∀s.
 Consecuentemente, τ(s) = 0, ∀s.

Definición

- Contrario a la curvatura, $\tau(s)$ puede ser positiva o negativa, ó cero.
- Si α(s) es una curva plana, entonces α(I) está contenida en un plano, el cual coincide con el plano osculador ⟨t(s), n(s)⟩, ∀s.
 Consecuentemente, τ(s) = 0, ∀s.
- Reciprocamente, si $\tau(s) = 0$, $\forall s$, entonces $\mathbf{b}'(s) = 0 \cdot \mathbf{n}(s) = \mathbf{0} \Rightarrow \mathbf{b}(s)$ es constante, digamos $\mathbf{b}(s) = \mathbf{b}_0 \in \mathbb{R}^3$. Luego,

Definición

- Contrario a la curvatura, $\tau(s)$ puede ser positiva o negativa, ó cero.
- Si α(s) es una curva plana, entonces α(I) está contenida en un plano, el cual coincide con el plano osculador ⟨t(s), n(s)⟩, ∀s.
 Consecuentemente, τ(s) = 0, ∀s.
- Reciprocamente, si $\tau(s) = 0$, $\forall s$, entonces $\mathbf{b}'(s) = 0 \cdot \mathbf{n}(s) = \mathbf{0} \Rightarrow \mathbf{b}(s)$ es constante, digamos $\mathbf{b}(s) = \mathbf{b}_0 \in \mathbb{R}^3$. Luego,

$$(\alpha(\mathbf{s}) \cdot \mathbf{b}_{\mathbf{o}})' = \alpha'(\mathbf{s}) \cdot \mathbf{b}_{\mathbf{o}} = \mathbf{t}(\mathbf{s}) \cdot \mathbf{b}_{\mathbf{o}} = \mathbf{o}.$$

Definición

El número τ (s) se llama la **torsión** de α en el punto s

- Contrario a la curvatura, $\tau(s)$ puede ser positiva o negativa, ó cero.
- Si α(s) es una curva plana, entonces α(I) está contenida en un plano, el cual coincide con el plano osculador ⟨t(s), n(s)⟩, ∀s.
 Consecuentemente, τ(s) = 0, ∀s.
- Reciprocamente, si $\tau(s) = 0$, $\forall s$, entonces $\mathbf{b}'(s) = 0 \cdot \mathbf{n}(s) = \mathbf{0} \Rightarrow \mathbf{b}(s)$ es constante, digamos $\mathbf{b}(s) = \mathbf{b}_0 \in \mathbb{R}^3$. Luego,

$$(\alpha(\mathbf{s}) \cdot \mathbf{b}_{\mathbf{o}})' = \alpha'(\mathbf{s}) \cdot \mathbf{b}_{\mathbf{o}} = \mathbf{t}(\mathbf{s}) \cdot \mathbf{b}_{\mathbf{o}} = \mathbf{o}.$$

Luego $\alpha(s) \cdot \mathbf{b}_o$ es constante = $\mathbf{o} \Rightarrow \alpha$ es una curva contenida en un plano normal a \mathbf{b}_o , y α es una curva plana.