UNIDAD 3: BÚSQUEDA DE PARES SIMILARES

RESÚMENES DE CONJUNTOS CON PRESERVACIÓN DE SIMILITUD

Gibran Fuentes Pineda Marzo 2020

EL PROBLEMA DEL VECINO MÁS CERCANO APROXIMADO

• Dado un conjunto de puntos $\mathcal{X} = \{\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(n)}\}$ y un punto de consulta **q**, los cuales residen en un espacio de d dimensiones $\mathbf{x}^{(k)} \in \mathbb{R}^d, i = 1, \dots, n$ bajo una norma ·, encontrar los puntos en \mathcal{X} que:

$$q - x^{(k)} \le (1 + \epsilon) \cdot \min_{\mathbf{x}^{(j)} \in \mathcal{X}} q - \mathbf{x}^{(j)}$$

donde $\epsilon > 0$ y $\mathbf{x}^{(j)}$ es el verdadero vecino más cercano de $\mathbf{q}.$

FUNCIONES DE HASH SENSIBLES A LA LOCALIDAD (LSH)

PARTICIONES ALEATORIAS

BÚSQUEDA DE PARES SIMILARES

Min-Hashing – Broder 1997

- · Genera permutación aleatoria del conjunto universo $\mathbb U$
- Asigna a cada conjunto su 1er elemento bajo la permutación

$$h(\mathcal{C}^{(1)}) = min(\pi(\mathcal{C}^{(1)}))$$

· Ejemplo:

$$\pi_1 = \{2, 4, 5, 3, 1\} \longrightarrow (h_1(\mathcal{C}^{(1)}) = 2, h_1(\mathcal{C}^{(2)}) = 4)$$
 $\pi_2 = \{4, 3, 1, 5, 2\} \longrightarrow (h_2(\mathcal{C}^{(1)}) = 3, h_2(\mathcal{C}^{(2)}) = 4)$
 $\pi_3 = \{3, 1, 4, 2, 5\} \longrightarrow (h_3(\mathcal{C}^{(1)}) = 3, h_3(\mathcal{C}^{(2)}) = 3)$
 $\pi_4 = \{3, 4, 1, 5, 2\} \longrightarrow (h_4(\mathcal{C}^{(1)}) = 3, h_4(\mathcal{C}^{(2)}) = 3)$

 Probabilidad de colisión de 2 conjuntos es igual a su similitud de Jaccard:

$$P[h(C^{(1)}) = h(C^{(2)})] = \frac{|C^{(1)} \cap C^{(2)}|}{|C^{(1)} \cup C^{(2)}|} \in [0, 1]$$

EJEMPLO

- Considera los conjuntos $\mathcal{C}^{(1)} = \{1,2,5,7,9\}, \mathcal{C}^{(2)} = \{3,4,5,8,9\}, \mathcal{C}^{(3)} = \{2,5,7,8\} \text{ y}$ las permutationes $, \pi_1 = \{5,6,9,2,3,4,8,0,7,1\}, \pi_2 = \{3,6,0,1,8,2,7,5,4,9\}, \pi_3 = \{3,6,0,1,8,2,7,5,4,9\}, \pi_4 = \{3,6,0,1,8,2,7,5,4,9\}$
- Encuentre los valores MinHash para $\mathcal{C}^{(1)}$, $\mathcal{C}^{(2)}$ y $\mathcal{X}^{(3)}$

MIN-HASHING PARA BÚSQUEDA DE CONJUTOS SIMILARES

· Tuplas de valores MinHash

$$g_{1}(\mathcal{C}^{(1)}) = (h_{1}(\mathcal{C}^{(1)}), h_{2}(\mathcal{C}^{(1)}), \dots, h_{r}(\mathcal{C}^{(1)}))$$

$$g_{2}(\mathcal{C}^{(1)}) = (h_{r+1}(\mathcal{C}^{(1)}), h_{r+2}(\mathcal{C}^{(1)}), \dots, h_{2 \cdot r}(\mathcal{C}^{(1)}))$$

$$\dots$$

$$g_{l}(\mathcal{C}^{(1)}) = (h_{(l-1) \cdot r+1}(\mathcal{C}^{(1)}), h_{(l-1) \cdot r+2}(\mathcal{C}^{(1)}), \dots, h_{l \cdot r}(\mathcal{C}^{(1)}))$$

 Conjuntos con tupla idéntica se almacenan en el mismo registro

PROBABILIDAD DE COLISIÓN

 La probabilidad de que los valores MinHash de 2 conjuntos sean idénticos es

$$P[g_k(\mathcal{C}^{(1)}) = g_k(\mathcal{C}^{(2)})] = sim(\mathcal{C}^{(1)}, \mathcal{C}^{(2)})^r$$

 La probabilidad de que no tengan ninguna tupla idéntica de l posibles es

$$P[g_k(C^{(1)}) \neq g_k(C^{(2)})] = (1 - sim(C^{(1)}, C^{(2)})^r)^l, \forall k$$

 Por lo tanto la probabilidad de que 2 conjuntos tengan al menos una tupla idéntica es

$$P_{colisin}[\mathcal{C}^{(1)}, \mathcal{C}^{(2)}] = 1 - (1 - sim(\mathcal{C}^{(1)}, \mathcal{C}^{(2)})^r)^l$$

PROBABILIDAD DE COLISIÓN

• Dado r y un umbral de similitud η , el número de tuplas para aproximar un escalón unitario es

$$l = \frac{log(0.5)}{log(1 - \eta^r)}$$

$$0.8$$

$$0.6$$

$$0.2$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.$$

EXTENSIÓN A BOLSAS CON MULTIPLICIDADES ENTERAS

- Cada bolsa $\mathcal{B}^{(i)}$ se convierte a un conjunto $\hat{\mathcal{C}}^{(i)}$, reemplazando cada multiplicidad con un elemento distinto
- · El conjunto universal extentido sería

$$U_{ext} = \{1, \dots, F_1, \dots, F_1 + \dots + F_{D-1} + 1, \dots, F_1 + \dots + F_D\}$$

donde F_1, \dots, F_D son las multiplicidades máximas de los elementos $1, \dots, D$

· Si aplicamos el esquema de MinHash a los conjuntos $\hat{\mathcal{C}}^{(i)} \subseteq U_{ext}$ se cumple

$$P[h(\hat{C}^{(i)}) = h(\hat{C}^{(i)})] = \frac{\sum_{w=1}^{D} \min(\mathcal{B}_{w}^{(i)}, \mathcal{B}_{w}^{(i)})}{\sum_{w=1}^{D} \max(\mathcal{B}_{w}^{(i)}, \mathcal{B}_{w}^{(i)})} = J_{\mathcal{B}}(\mathcal{B}_{w}^{(i)}, \mathcal{B}_{w}^{(i)})$$

MUESTREO CONSISTENTE

- 1. Uniformidad: Cada muestra (w, z_w) debe ser sacada aleatoriamente de forma uniforme de $\bigcup_{w=1}^{D} \{\{w\} \times [0, \mathcal{B}_w^{(i)}]\}$, es decir, la probabilidad de sacar w de $\mathcal{B}^{(i)}$ es proporcional a $\mathcal{B}_w^{(i)}$ y z_w está distribuido uniformemente.
- 2. Consistencia: Si $B_w^{(j)} \leq \mathcal{B}_w^{(i)}$, $\forall w$, entonces cualquier muestra (w, z_w) sacada de $\mathcal{B}^{(i)}$ que satisface $z_w \leq \mathcal{B}_w^{(j)}$ también será una muestra de $\mathcal{B}^{(j)}$.

MIN-HASHING PARA BÚSQUEDA DE RELACIONES DE ORDEN MAYOR

 Particiones inducidas por Min-Hashing preservan relaciones de orden mayor dadas por el coeficiente de co-ocurrencia de Jaccard

$$JCC(\mathcal{C}^{(1)},\ldots,\mathcal{C}^{(k)}) = \frac{|\mathcal{C}^{(1)} \cap \mathcal{C}^{(2)} \cap \cdots \cap \mathcal{C}^{(k)}|}{|\mathcal{C}^{(1)} \cup \mathcal{C}^{(2)} \cup \cdots \cup \mathcal{C}^{(k)}|}$$

MIN-HASHING PARA BÚSQUEDA DE RELACIONES DE ORDEN MAYOR

 Particiones inducidas por Min-Hashing preservan relaciones de orden mayor dadas por el coeficiente de co-ocurrencia de Jaccard

$$JCC(\mathcal{C}^{(1)},\ldots,\mathcal{C}^{(k)}) = \frac{|\mathcal{C}^{(1)} \cap \mathcal{C}^{(2)} \cap \cdots \cap \mathcal{C}^{(k)}|}{|\mathcal{C}^{(1)} \cup \mathcal{C}^{(2)} \cup \cdots \cup \mathcal{C}^{(k)}|}$$

 Una tupla de hash se puede ver como una partición del diccionario basada en la co-occurrencia de sus términos

