GÉPELEMEK I.

Első házi feladat Vakkarimával lezárt csővég tervezése

Fauszt András Ákos V04MEA Dr. Csobán Attila

Tartalomjegyzék

Α	k	İ	a (d o	t	t		f	е	l	а	d	а	t		. 6	ì	Γ	á	S	а																				. 2	2
Α	C	s	óν	/ é	g		ö	s	s	Z	e	á	l	l	í	·	S	i		Γ	a	j	Z	a																		3
Α	f	e	li	a d	a	t		c	é	l	j	a																													. '	4
Εl	ő	t	e i	٠ ٧	e	Z	é	s																																	. •	4
Аг	ı y	a	g١	ڇ	l	a	s	Z	t	á	S																														. !	5
۷a	k	k	аı	·i	m	a		٧	a	s	t	a	g	s	ág	jā	1																								. !	5
Τċ	i m	í	té	śs		e	Γ	ő	k	i	f	e	j	ti	į į	S 6	•																									6
Cs	a	٧	аı	0	k		h	ú	Z	ó	S	Z	i	l	ĺΕ		ls	á	g	i		e	l	l	e	Π	ő	Γ	Z	é	S	e										6
Cs	a	٧	аı	0	k		C	S	a	٧	a	Γ	ó	s :	Z	l	á	Γ	d	S	á	g	i		e	l	l	e	Π	ő	Γ	Z	é	S	e							7
ΚI	e	i	n -	- d	i	a	g	Γ	a	m																																8
Cs	a	٧	аı	0	k		e	g	у	e	Π	é	Γ	ti	í₽	ί	ĺ	f	e	S	Z	ü	l	t	S	é	g	e	i													9
Ri	h	1	i	٦п	г	á	f	i	2																																	q

A dokumentációt és a számolásokat a PTC Mathcad Express alkalmazásban készítettem el. Az alkatrészeket Autodesk inventorban lemodelleztem, és elkészítettem az alkatrész illetve az összeállítási rajzukat.

1. Házi feladat	
	Név:
	Neptun kód:
	Gyakorlatvezető:
1. A feladat bevezetése A megadott adatokkal tervezzen egy csővéget valellenőrizze az elemeket.	kkarimával lezáró csavarkötést és szilárdságilag

A vezeték folyadékot szállít.

2. A feladat értékelése

Az elérhető maximális pontszám 20 pont.

A belső üzemi nyomás, $p_{\bar{u}}$: bar.

A cső névleges átmérője, *DN*: mm.

3. A feladat részletezése

- 1. Rajzolja fel méretarányosan a konstrukció előtervét a szabvány alapján! Jelölje és ismertesse a számításai során használt méreteket!
- 2. Számítsa ki a vakkarima minimálisan szükséges vastagságát!
- 3. Válasszon megfelelő méretű lapos tömítést és számítsa ki a minimálisan szükséges tömítő erőt!
- 4. Számítsa ki az üzemi nyomásból a csavarra jutó terhelést!
- 5. Egy reális biztonsági tényező felvételével határozza meg a csavar előfeszítését és számítsa ki a szükséges meghúzási nyomatékot (két súrlódási tényezővel!)
- 6. Határozza meg a csavarban ébredő egyenértékű feszültséget és válassza ki a csavar megfelelő anyagát!
- 7. Rajzolja fel a Klein-diagrammot a saját adataival!
- 8. Készítse el a kötés összeállítási rajzát! Jelölje rajta a főbb méreteket!

Beadási határidő: a hallgatói tájékoztatóban megadott időpontban

A feladat beadásával kijelentem, hogy ezt a feladatot meg nem engedett segítség nélkül, saját magam készítettem, és abban csak a megadott forrásokat használtam fel. Minden olyan részt, amelyet szó szerint idéztem, vagy azonos tartalomban, de átfogalmazva más tartalomból átvettem, egyértelműen, a forrás megadásával jelöltem. Ennek megszegése TVSZ 135§ alapján kerül szankcionálásra!

A feladat célja

A cél egy csővég megtervezése ismert 8 bar üzemi nyomással és 50 mm-es csőátmérővel. A csővéget egy tömítéses vakkarimával zárjuk le. A kettő közötti kapcsolatot egy átmenő csavarkötéssel biztosítjuk. A feladat a tömítés és a csavarkötés szilárdságtani ellenőrzése, illetve ezek anyagválasztása.

Előtervezés

A szerkezet egy hegtoldatos karimából, egy tömítésből és egy vakkarimából all, valamint az őket összefogó csavarokból.

A hegtoldatos karimából a választás a DIN 2632 PN10-re esett, amely a Zetamec szabványa [1] szerint az alábbi adatokkal rendelkezik:

Ahol:

$$d_1 \!\coloneqq\! 57 \; \textit{mm} \qquad k \!\coloneqq\! 125 \; \textit{mm} \qquad p_{\ddot{u}} \!\coloneqq\! 8 \; \textit{bar} \!=\! 0.8 \; \textit{MPa} \qquad D_N \!\coloneqq\! 50 \; \textit{mm} \qquad s \!\coloneqq\! 2.9 \; \textit{mm}$$
 $d_3 \!\coloneqq\! 72 \; \textit{mm} \qquad d_2 \!\coloneqq\! 18 \; \textit{mm} \qquad D \!\coloneqq\! 165 \; \textit{mm} \qquad d \!\coloneqq\! D_N \qquad d_4 \!\coloneqq\! 102 \; \textit{mm}$

A tömítésnek a méretei, mivel a csővég karimás, ezért a méretei $\not O_N = 50 \ mm$ és $\not O_A = 102 \ mm$ -re választom. A vastagságot nem érdemes túl nagyra választani, mert a csavarokban hajlító erő ébred, ami nagyban növeli a tönkremenetel kockázatát.

4

A tömítést a vakkarimával szorítjuk rá a nyakra. A vakkarimát az MSZ 4582, DIN 2527 P10 [2] szabvány alapján méretezük. A vastagságát később számoljuk ki.

Anyagválasztás:

Mielőtt elkezdhetjük a méretezést, előtte anyagot kell választani. Mivel az üzemi nyomás nem túl maga, ezért eltérhetünk a költséghatékonyság irányába.

A karima anyagának az S235 jelű általános rendeltetésű szerkezeti acélt választom.

A tömítés anyagának legcélszerűbb egy egyszerű gumi lágytömítést választani.

A csavar anyagát a feszültségek kiszámolása után tudjuk megmondani.

Az S235-ös acélnak a folyáshatára $R_{eH} = 290 \ MPa$ A biztonsági tényezőt n = 1.5-re választjuk

Vakkarima vastagsága

Ekkor azt megmondhatjuk, hogy mennyi a megengedhető legnagyobb hajlító feszültség ha biztonsági tényező $n\!=\!1.5$

$$\sigma_{hajl}\!\coloneqq\!\frac{R_{eH}}{n}\!=\!193.333~\textit{MPa}$$

$$d_t = \frac{d_1 - 2 \ s + d_4}{2} = 76.6 \ mm$$

$$b_{min} \coloneqq \frac{d_t}{2} \cdot \sqrt{\frac{3 \ p_{\ddot{u}}}{\sigma_{hail}} \cdot \left(1 - \frac{2 \ d_t}{3 \ k}\right)} = 3.282 \ \textit{mm}$$

A szabványban előírt érték 18~mm lenne, de a költséghatékonyság érdekében egy vékonyabb $b\coloneqq 10~mm$ -es értéket választottam.

5

A tömítés erőkifejtése

A tömítés adatai:

A tömítés szélessége:
$$b_t \coloneqq \frac{d_4 - \left(d_1 - 2 \ s\right)}{2} = 25.4 \ \textit{mm}$$

A tömítéseffektív szélessége: $b'_t = 1.1 \cdot b_t$

Valamint a tömítés anyagát figyelembe vevő tényező: $n_t = 1.5$

$$F_t := n_t \cdot p_{ii} \cdot \boldsymbol{\pi} \cdot d_t \cdot b'_t = 8.068 \ \boldsymbol{kN}$$

A csavar húzószilárdsági ellenőrzése

A csavarokra kétféle igénybevétel hat: egy (σ_N) normál, ami a feszítő erőből származik, illetve egy csavaró feszültség (τ_t) ami a lecsavarodást akadályozza meg.

Az ébredő feszültséget a $\sigma_N = \frac{F_V}{A_e}$ képlettel számolhatjuk.

$$A_d \coloneqq \frac{\left(d_1 - 2 \ s\right)^2 \ \pi}{4} = 2058.874 \ mm^2$$

$$F_{cs\tilde{o}} \coloneqq p_{\ddot{u}} \cdot A_d = 1.647 \ kN$$

A vakkarimát nyomó csőerő a rögzítés révén húza a csavart

 $F_p \coloneqq \frac{p_{\ddot{u}} \cdot \left(d_t^2 - \left(d_1 - 2\ s\right)^2\right) \pi}{4} = 2.04 \ \text{kN} \text{ Az üzemi nyomásból származó erő a tömítés felületén hat}$

$$F_{\ddot{u}} := 1.2 \left(F_{cs\ddot{o}} + F_p + F_t \right) = 14.106 \text{ kN}$$

Mivel N := 4 csavarra méretezünk, így kiszámolhatjuk az előfeszítő erőt

$$F_V = \frac{F_{\ddot{u}}}{N} = 3.527 \text{ kN}$$

A csavarokban feszültsége az egyenértékű keresztmetszeten hat, amely átmérője a csavar magátmérője és a középátmérőjének átlaga. Az értékeket kikereshetjük a szabványból [3] Az értékek: $d_{cs} \coloneqq 16~mm$ esetén

A középátmérő: $d_{2cs}\!\coloneqq\!14.701~\textit{mm}$ A magátmérő: $d_{3cs}\!\coloneqq\!13.546~\textit{mm}$

A menetemelkedés: $P = 2 \, mm$

 $d_e \coloneqq \frac{d_{3cs} + d_{2cs}}{2} = 14.124 \ \textit{mm} \quad \text{ Ahol } d_3 \text{ a magátmérő } d_2 \text{a középátmérő } d_e \text{ pedig az egyenértékű átmérő } d_2 \text{ a középátmérő } d_2 \text{ a középátmér$

$$\begin{split} A_e &\coloneqq \frac{{d_e}^2 \cdot \pi}{4} = 157 \ \textit{mm}^2 \\ \sigma_N &\coloneqq \frac{F_V}{A_e} = 22.51 \ \textit{MPa} \end{split} \quad \text{Ahol } \sigma_N \text{a csavarban \'ebred\'o norm\'al fesz\"ults\'eg, } F_V \text{ pedig az előfesz\'it\'es} \end{split}$$

A csavarok csavarószilárdsági ellenőrzése

A csavarkötés au-igénybevétele a szilárdságtanból ismert képlet alapján: $au_t = \frac{M_t}{I_p} \cdot r$ a keresztmetszetben kifelé haladva a feszültség folyamatosan nő, és a feszültségmaximum $r \coloneqq \frac{d_e}{2} = 7.062 \ \textit{mm}$ -nél van.

A körkeresztmetszet poláris másodrendű nyomatéka $I_p \coloneqq \frac{{d_e}^4 \cdot \pi}{32} = 3906.333 \ \textit{mm}^4$

A csavarónyomaték két részből áll elő. Hat egy része a menetekben, ezt a menetemelkedés és a látszólagos súrlódási félkúpszög tangensével írhatjuk fel. Emellett hatnia kell egy savarónyomatéknak az anya alatt is, amely a becsavaráskor keletkezik, és egy anya alatti súrlódási együtthatóval írhatjuk fel.

$$M_t = F_V \cdot \frac{d_2}{2} \cdot tan(\alpha + \rho') + F_V \cdot \frac{d_a}{2} \cdot \mu_a$$

A menetemelkedés számítható a szabványban található adatokból [3]

$$\alpha \coloneqq \operatorname{atan}\left(\frac{P}{d_{2cs} \cdot \pi}\right) = 2.48 \operatorname{deg}$$

Az anya alatti felfekvő felületet jellemzi a d_a , amelyet felírhatunk az átmérő és a laptávolság távolságából. Az anya (ISO 4032) laptávolságát is megnézhetjök szabványban [4] $s_{anva} \coloneqq 24~mm$

$$d_a \coloneqq \frac{d_{cs} + s_{anya}}{2} = 20 \ \textit{mm}$$

A súrlődási tényezők tapasztalat értékek. Értéküket tapasztalai úton lehet meghatározni eléggé nagy pontatlansággal. A μ_{min} := 0.1 valamint μ_{max} := 0.23 A menetemelkedés szöge metrikus menetre: β := 60°

$$\rho'_{min} := \operatorname{atan}\left(\frac{\mu_{min}}{\cos\left(\frac{\beta}{2}\right)}\right) = 6.58678$$

$$\rho'_{max} := \operatorname{atan}\left(\frac{\mu_{max}}{\cos\left(\frac{\beta}{2}\right)}\right) = 14.87333^{\circ}$$

7

$$M_{tmin} \coloneqq F_{V} \cdot \left(\frac{d_{2cs}}{2} \cdot \tan \left(\alpha + \rho'_{min} \right) + \frac{d_a}{2} \cdot \mu_{min} \right) = 7.663 \ \textbf{N} \cdot \textbf{m}$$

$$M_{tmax}\!\coloneqq\! F_{V}\! \cdot\! \left(\! \frac{d_{2cs}}{2}\! \cdot \tan\left(\alpha\! +\! \rho'_{max}\!\right)\! +\! \frac{d_{a}}{2}\! \cdot\! \mu_{max}\!\right)\! =\! 16.211\; \boldsymbol{N}\! \cdot\! \boldsymbol{m}$$

$$\tau_t \coloneqq \frac{M_{tmax}}{I_n} \cdot \frac{d_e}{2} = 29.306 \; MPa$$

Klein-diagram

Csavarok egyenértékű feszültségei

$$\sigma_{egy}\!\coloneqq\!\sqrt{{\sigma_N}^2+3~{\tau_t}^2}\!=\!55.526~\textit{MPa}$$

Ezt kell összehasonlítani a csavar szakítószilárdságával, és az egyenletet átrendezve megkaphatjuk, hogy mennyire erős csavarra van szükségünk:

$$\sigma_{egy}$$
 $\sigma_{meg} = \frac{R_{eH}}{n} = 193.333 \; \textit{MPa}$

$$R_{eHmin} := \sigma_{eqy} \cdot n = 83.29 \; MPa$$

átható, hogy viszonylag alacsony szakítószilárdsági értékű csavar is megfelelő. gy a csavar anyagának egy 3.6-os acélt választunk, valamint egy hozzá illő 4.6-os anyát.

Bibliográfia

1.	Zetamec szabvány PN10 karimára	
	http: www.zetamec.com din-2632-pn10 eng.htm	(2017.10.18)
2.	A ell ft. szabványa	
	http: www.wellkft.hu karima 17.html	(2017.10.18)
3.	Tribology a metrikus menet ISO 724 részletes adatai	
	http://www.tribology-abc.com/calculators/metric-iso.htm	(2017.10.18)
4.	ISO 4032 anya szabványa	
	http: www.sasovits.hu cnc irodalom gepelemek anya.pdf	(2017.10.18)
5.	A súrlódási tényezők táblázata VDI 2230	
	http: corp.brwtools.hu web4archiv objects objekte tools d	ownloads 1
	reibung reibungszahlen hu.pdf	(2017.10.18)