Объединенный институт ядерных исследований Осенняя Школа по информационным технологиям

Математическое моделирование джозефсоновского перехода сверхпроводник / ферромагнетик / сверхпроводник на поверхности трехмерного топологического изолятора

Рахмонов Илхом Рауфович

Лаборатория теоретической физики им. Н.Н. Боголюбова, Дубна, Россия

07-11 октября 2024 Дубна

Содержание

I. Введение

Эффект Джозефсона

Типы джозефсоновских переходов

Аномальный эффект Джозефсона

II. Основные физические свойства

RCSJ-модель и BAX

Влияние внешнего излучения

Влияние геометрических характеристик

III. Исследование динамики Фи-0 перехода (SFS переход)

Теоретическая модель и система уравнений

Прецессия намагниченности и ферромагнитный резонанс

Приближение линейного осциллятора

Приближение нелинейного осциллятора. Осциллятор Даффинга

Переворот намагниченности под воздействием импульса тока

III. Исследование динамики SFS перехода на поверхности топологического изолятора

Теоретическая модель и система уравнений

Вырожденные стабильные состояния

Введение

Эффект Джозефсона

Джозефсонский переход и эффекты Джозефсона

Сверхпроводник
$$S_1$$
 $\Psi_1 = |\Psi_1| \exp(i\theta_1)$

Тунельный переход

Сверхпроводник
$$S_2$$
 $\Psi_2 = |\Psi_2| \exp(i\theta_2)$

 Ψ_1 и Ψ_2 волновые функции сверхпроводящих электродов.

 $heta_1$ и $heta_2$ фазы волновых функций.

$$I < I_C$$
, $V=0$

Стационарный эффект Джозефсона: $I_s(\varphi) = I_c \sin \varphi$

$$I_s(\varphi) = I_c \sin \varphi$$

Нестационарный эффект Джозефсона:

$$\frac{d\varphi}{dt} = \frac{2e}{\hbar}V$$

$$\varphi = \theta_2 - \theta_1$$
 разность фаз

$$I > I_C$$
, $V > 0$

Получен Б. Джозефсоном 1962 г.

$$1 \mu V \leftrightarrow 483.59767 \text{ MHz}$$

Типы джозефсоновских переходов

Аномальный эффект Джозефсона

Аномальный эффект Джозефсона заключается в возникновении фазового сдвига Фи-0 в ток фазовом соотношении гибридного джозефсоновского перехода состоящего из сверхпроводников и магнетиков.

Основные физические свойства

RCSJ – модель для описании динамики джозефсоновского перехода

RCSJ - модель

RCSJ = "resistive-capacitive shunted junction"

$$I_{qp} = \frac{V}{R}$$
-quasiparticle, $I_{disp} = C \frac{dV}{dt}$ -displacement

 $I_s = I_c \sin \varphi$ -supercomducting

$$I = C\frac{dV}{dt} + I_c \sin \varphi + \frac{V}{R}$$

$$\begin{cases} \frac{\partial \varphi}{\partial t} = V \\ \frac{dV}{dt} = I - \sin \varphi - \beta \frac{\partial \varphi}{\partial t} \end{cases}$$

$$R$$
 I_c
 C

$$V_0 = \frac{\hbar \omega_p}{2e}; \qquad \omega_p = \sqrt{\frac{2eI_c}{C\hbar}} \qquad \beta = \frac{1}{R} \sqrt{\frac{\hbar}{2eI_cC}} \qquad \frac{I}{I_c} \to I; \frac{V}{V_0} \to V$$

Особенности одиночного короткого ДП

$$\begin{cases} \frac{\partial \varphi}{\partial t} = V \\ \frac{dV}{dt} = I - \sin \varphi - \beta \frac{\partial \varphi}{\partial t} \end{cases}$$

Особенности одиночного короткого ДП

Влияние внешнего излучения

Влияние внешнего излучения и ступеньки Шапиро

$$\begin{cases} \frac{\partial \varphi}{\partial t} = V \\ \frac{dV}{dt} = I - \sin \varphi - \beta \frac{\partial \varphi}{\partial t} + A \sin \omega t \end{cases}$$

$$I_{s} = I_{c} \sum_{n=0}^{\infty} (-1)^{n} J_{n}(\frac{V_{1}}{\Phi_{0}f_{1}}) \sin[\varphi_{0} + \frac{2\pi}{\Phi_{0}} V_{0}t - 2\pi n f_{1}t]$$

$$\Delta I = 2|J_n(f)|, \qquad f = \frac{A}{\omega} \frac{1}{\sqrt{\beta^2 + \omega^2}}$$

Влияние внешнего излучения и ступеньки Шапиро

Влияние геометрических характеристик

Длинный и короткий джозефсоновский переход

Особенности одиночного длинного ДП

$$\begin{cases} \frac{\partial \varphi}{\partial t} = V \\ \frac{\partial V}{\partial t} = \frac{\partial^2 \varphi}{\partial x^2} - \sin \varphi - \beta V + I \end{cases}$$

Исследование динамики фи-0 перехода (SFS - переход)

Фи-0 джозефсоновский переход

▶ В SFS джозефсоновском переходе, спин-орбитальная связь в ферромагнитном слое, приводит к механизму прямой связи магнитного момента и сверхпроводящего тока

$$I_s = I_c(\sin\varphi - \varphi_0)$$

A. Buzdin, Phys. Rev. Lett. 101, 107005 (2008).

F. Konschelle and A. Buzdin, Phys. Rev. Lett. 102, 017001 (2009)

Вывод системы уравнений для описания Фи-0 перехода

Вывод уравнений

Уравнение Ландау-Лифшитц-Гильберта для намагниченности

$$\frac{d\mathbf{M}}{dt} = -\gamma [\mathbf{M} \times \mathbf{H}_{eff}] + \frac{\alpha}{M_0} \left[\mathbf{M} \times \frac{d\mathbf{M}}{dt} \right]$$

▶ Эффективное магнитное поле

$$\mathbf{H_{eff}} = -\frac{1}{V} \frac{\delta E_t}{\delta \mathbf{M}}$$

$$E_t = -\frac{\Phi_0}{2\pi} I \varphi + E_s(\varphi, \varphi_0) + E_M(\mathbf{M})$$

$$E_{s} = (\varphi, \varphi_{0}) = E_{J} [1 - \cos(\varphi - \varphi_{0})] \qquad E_{M}(\mathbf{M}) = -\frac{KV}{2} \left(\frac{M_{z}}{M_{0}}\right)^{2}$$

$$\mathbf{H}_{eff} = \frac{K}{M_{0}} \left[Gr \sin(\varphi - r\frac{M_{y}}{M_{0}}) \mathbf{e}_{\mathbf{y}} + \frac{M_{z}}{M_{0}} \mathbf{e}_{\mathbf{z}} \right]$$

$$G = \frac{E_J}{KV} \qquad \varphi_0 = r \frac{M_y}{M_0}$$

Вывод уравнений

▶ Уравнение RCSJ-модели для разности фаз

$$I = C\frac{dV}{dt} + \frac{I_c}{\omega_c} \left[\frac{d\varphi}{dt} - r \frac{d}{dt} \left(\frac{M_y}{M_0} \right) \right] + I_c \sin \left(\varphi - r \frac{M_y}{M_0} \right)$$

$$\omega_c = \frac{2eRI_c}{\hbar}$$

$$\frac{d\mathbf{M}}{dt} = -\frac{\Omega_F}{[1 + (\alpha \mathbf{M}/M_0)^2]} \left\{ \frac{M_0}{K} [\mathbf{M} \times \mathbf{H}_{eff}] + \frac{\alpha}{K} [\mathbf{M}(\mathbf{M}\mathbf{H}_{eff}) - \mathbf{H}_{eff}\mathbf{M}^2] \right\}$$

$$C \frac{dV}{dt} = I - \frac{I_c}{\omega_c} \left[\frac{d\varphi}{dt} - r \frac{d}{dt} \left(\frac{M_y}{M_0} \right) \right] - I_c \sin \left(\varphi - r \frac{M_y}{M_0} \right)$$

$$\frac{\hbar}{2e} \frac{d\varphi}{dt} = V$$

$$\mathbf{m} = \frac{\mathbf{M}}{M_0}; \quad \mathbf{h}_{eff} = \frac{\mathbf{H}_{eff}}{H_0}; \quad \tau = t\omega_c; \quad V = \frac{V}{I_c R}; \quad \omega_F = \frac{\Omega_F}{\omega_c}; \quad I = \frac{I}{I_c} \quad H_0 = \frac{K}{M_0}$$

Система уравнений для описания динамики Фи-0 перехода

$$\frac{dm_x}{d\tau} = -\frac{\omega_F}{1 + (\alpha m)^2} \left\{ (m_y h_z - m_z h_y) + \alpha [m_x (m_x h_x + m_y h_y + m_z h_z) - h_x m^2)] \right\}$$

$$\frac{dm_y}{d\tau} = -\frac{\omega_F}{1 + (\alpha m)^2} \left\{ (m_z h_x - m_x h_z) + \alpha [m_y (m_x h_x + m_y h_y + m_z h_z) - h_y m^2)] \right\}$$

$$\frac{dm_z}{d\tau} = -\frac{\omega_F}{1 + (\alpha m)^2} \left\{ (m_x h_y - m_y h_x) + \alpha [m_z (m_x h_x + m_y h_y + m_z h_z) - h_y m^2)] \right\}$$

$$\frac{dV}{d\tau} = \frac{1}{\beta_c} \left[I - \frac{d\varphi}{dt} + r \frac{dm_y}{d\tau} - \sin(\varphi - r m_y) \right]$$

$$\frac{d\varphi}{d\tau} = V$$

 $\beta_c = C\omega_c R$

 $h_y = rG\sin(\varphi - rm_y)$

 $h_z = m_z$

Прецессия намагниченности и ферромагнитный резонанс

Динамика Фи-0 перехода

ВАХ Фи-0 перехода

Линейное приближение уравнение ЛЛГ

$$m_x, m_y, G, r, \alpha \ll 1$$
 $Gr \ll 1, m_z \approx 1$
 $\ddot{m}_y + 2\alpha\omega_F \dot{m}_y + \omega_F^2 m_y = \omega_F^2 Gr \sin \omega_J t.$

В рамках данной приближении уравнение ЛЛГ сводится к уравнение для линейного осциллятора с затуханием

Приближение нелинейного осциллятора. Осциллятор Даффинга

Нелинейное приближение уравнение ЛЛГ

$$\alpha \ll G, r \ll 1$$

$$\ddot{m}_y + 2\omega_F \alpha \dot{m}_y + \omega_F^2 m_y - \omega_F^2 m_y^3 = \omega_F^2 Gr \sin \varphi.$$

В этом приближении уравнение ЛЛГ сводится к нелинейному уравнение для осциллятора Даффинга

Переворот магнитного момента в Фи-0 переходе под воздействием импульса тока

Переворот магнитного момента импульсом тока

$$I_{pulse} = w \frac{d\varphi}{dt} + \sin(\varphi - rm_y)$$
$$w = \frac{V_F}{I_c R} = \frac{\omega_F}{\omega_R}$$

Yu. M. Shukrinov, I. R. Rahmonov, K. Sengupta and A. Buzdin Appl. Phys. Lett. 110, 182407 (2017).

Влияние параметров на переворот магнитного момента

Demonstration of periodicity of magnetization reversal intervals in (G, α) -plane.

Demonstration of periodicity of magnetization reversal intervals in (G, r)-plane.

$$\begin{cases} \dot{m}_x = Grm_z \sin(\Phi) & w = \omega_F/\omega_R \ll 1\\ \dot{m}_y = m_x m_z.\\ \dot{m}_z = -Grm_x \sin(\Phi) & I_p(t) < 1 \end{cases}$$

$$m_z = \cos(GrI_p)$$
 $\cos(GrI\delta t) < 0$
$$\frac{\pi}{2} + 2\pi n \le GrI_p \delta t \le \frac{3\pi}{2} + 2\pi n$$

C. Guarcello and F.S. Bergeret, A cryogenic memory element based on an anomalous Josephson junction, arXiv:1907.08454v1 [cond-mat.supr-con] 19 Jul 2019

FIG. 1. S/F/S Josephson junction driven by a rectangular bias current pulses, I_{bias} , with amplitude Imax. The z-component of the magnetization, M_z , is the observable used to define the logic memory states 0 and 1.

FIG. 10. SQUID-based memory readout and cartoon showing the critical current interference pattern of the SQUID, in the cases of both positive and negative orientation along the z-axis of the magnetic moment, see panel (a) and (b), respectively.

Исследование динамики SFS перехода на поверхности топологического изолятора

SFS переход на поверхности топологического изолятора

PHYSICAL REVIEW B **100**, 054506 (2019)

Electrical control of magnetization in superconductor/ferromagnet/superconductor junctions on a three-dimensional topological insulator

M. Nashaat, ^{1,2} I. V. Bobkova, ^{3,4} A. M. Bobkov, ³ Yu. M. Shukrinov, ^{1,5} I. R. Rahmonov, ^{1,6} and K. Sengupta, ⁷

▶ В этой системе ток фазовое соотношение имеет фазовый сдвиг Фи-0 и критический ток зависит от компоненты намагниченности

Ток фазовое – соотношение и динамика намагниченности

Ток фазовое соотношение

$$j_s = j_c \sin(\varphi - \varphi_0)$$

Критический ток зависит от компоненты намагниченности

$$j_c = j_b \int_{-\pi/2}^{\pi/2} \cos \phi \exp\left(-\frac{\tilde{d}}{\cos \phi}\right) \cos(rm_x t g \phi) d\phi$$

Динамика намагниченности описывается уравнением Ландау-Лифщиц-Гильберта

$$\frac{d\mathbf{M}}{dt} = -\gamma \mathbf{M} \times \mathbf{H}_{\mathbf{eff}} + \frac{\alpha}{M_s} \mathbf{M} \times \frac{d\mathbf{M}}{dt}$$

Эффективное поле определяется вариацией полной энергии по намагниченности

$$H_{eff} = -\frac{1}{V_F} \frac{\delta E_t}{\delta \mathbf{M}}$$

$$E_{\mathbf{M}} = -\frac{KV_F}{2} \left(\frac{M_{\mathcal{Y}}}{M_s}\right)^2$$

$$E_J = \frac{\Phi_0 j_c S}{2\pi} \left[1 - \cos(\varphi - rm_y) \right]$$

Энергия магнитной анизотропии

Энергия джозефсоновского перехода

Система уравнений

$$\begin{split} \frac{dm_x}{dt} &= -\frac{\omega_F}{1 + \alpha^2} \Big((m_y h_z - m_z h_y) + \alpha \Big[m_x (m_x h_x + m_y h_y + m_z h_z) - h_x m^2 \Big] \Big) \\ \frac{dm_y}{dt} &= -\frac{\omega_F}{1 + \alpha^2} \Big((m_z h_x - m_x h_z) + \alpha \Big[m_y (m_x h_x + m_y h_y + m_z h_z) - h_y m^2 \Big] \Big) \\ \frac{dm_z}{dt} &= -\frac{\omega_F}{1 + \alpha^2} \Big((m_x h_y - m_y h_x) + \alpha \Big[m_z (m_x h_x + m_y h_y + m_z h_z) - h_z m^2 \Big] \Big) \end{split}$$

$$h_x = \frac{GrI_x}{j_{c0}} [1 - \cos(Vt - rm_y)],$$

$$h_y = \frac{GrI_y}{j_{c0}} \sin(Vt - rm_y) + m_y,$$

$$h_z = 0.$$

$$I_{x} = \int_{-\pi/2}^{\pi/2} \sin \phi \exp\left(-\frac{\tilde{d}}{\cos \phi}\right) \sin(rm_{x}tg\phi) d\phi$$

$$I_{y} = \int_{-\pi/2}^{\pi/2} \cos \phi \exp\left(-\frac{\tilde{d}}{\cos \phi}\right) \cos(rm_{x}tg\phi) d\phi$$

$$j_{c0} = \int_{-\pi/2}^{\pi/2} \cos \phi \exp\left(-\frac{\tilde{d}}{\cos \phi}\right) d\phi$$

Вырожденные стабильные состояния

1.
$$m_x > 0, m_y > 0$$
;

2.
$$m_x < 0, m_y > 0$$
;

3.
$$m_x > 0, m_y < 0$$
;

4.
$$m_x < 0, m_y < 0$$
.

Спасибо за внимание