

EXAMENUL DE BACALAUREAT - 2024 Simulare județeană Proba E. d)

′roba **⊑. d)** Fizică

Filiera teoretică – profilul real, Filiera vocațională – profilul militar

- Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ, B. ELEMENTE DE TERMODINAMICĂ, C. PRODUCEREA ŞI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ
- Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

A. MECANICĂ

Se consideră acceleratia gravitatională g=10m/s2.

I. Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului corect. (15 puncte)

- 1. Să se indice forţa cu caracter disipativ:
- a. forța de frecare b. forța elastică c. forța de greutate d. forța de apăsare normală (3p)
- 2. Un corp alunecă pe o suprafață orizontală. Rezultanta forțelor cu care suprafața acționează asupra corpului formează unghiul φ cu orizontala. Coeficientul de frecare la alunecare dintre corp și suprafața orizontală este:
- a. $\mu = ctg\varphi$ b. $\mu = tg\varphi$ c. $\mu = \sin\varphi$ d. $\mu = \cos\varphi$ (3p)
- 3. Un tren coboară pe o cale ferată șerpuită și înclinată, menținând o viteză constantă. În această situație:
- a. energia cinetică va creşte;
 b. energia potenţială va scădea;
 c. energia totală va creşte;
 d. energia totală va rămâne constantă.

 (3p)
- **4.** Unitatea de măsură în S.I. a mărimii fizice egale cu produsul energie timp este aceeași cu a mărimii egale cu produsul:
- a. putere mecanică masă viteză;
 b. lucru mecanic viteză;
 c. deplasare masă viteză;
 d. putere mecanică
 viteză.
- 5. Un resort are constanta de elasticitate k=10N/cm. Resortul, iniţial nedeformat, este alungit cu 4 cm. Lucrul mecanic efectuat de forţa elastică este egal cu:

a. -0.4 J **b.** 0.4 J **c.** -0.8 J **d.** 0.8 J **(3p)**

II. Rezolvaţi următoarea problemă:

(15 puncte)

Pe un plan orizontal cu frecare, se află un corp de masă m=1kg. Se variază înclinarea planului şi se constată că atunci când planul face cu orizontala unghiul ϕ =30°, corpul alunecă uniform spre baza planului.

- a. Reprezentați toate forțele care acționează asupra corpului aflat pe planul înclinat.
- b. Calculați coeficientul de frecare la alunecare pe plan, valoarea sa fiind constantă, de-a lungul planului.
- c. Se aduce, din nou, planul, în poziție orizontală și asupra corpului începe să acționeze o forță \vec{F} , sub un unghi α față de orizontală, valoarea forței fiind F=15N (corpul este tras, sub acțiunea acestei forțe). Calculați valoarea minimă a sinusului unghiului α , pentru care corpul se desprinde de pe plan.

Probă scrisă - Fizică A. Mecanică

d. În condițiile în care unghiul sub care acționează forța \vec{F} (F'=10N) este $\beta=30^{\circ}$, calculați accelerația corpului tras sub acțiunea forței \vec{F} , pe planul orizontal.

III.Rezolvaţi următoarea problemă:

(15 puncte)

Un mobil având masa m=1,6t se deplasează pe un drum orizontal, astfel încât viteza acestuia creşte liniar, în timp. La momentul t_1 , viteza este $v_1=18\frac{km}{h}$, iar la un moment ulterior t_2 , valoarea vitezei devine $v_2=20\frac{m}{s}$. În intervalul de timp $\Delta t=t_2-t_1$, forța de tracțiune produsă de motor, efectuează un lucru mecanic L=375kJ, dezvoltând o putere medie $P_{\rm m}$ = 75kW. Determinați:

- **a.** valoarea vitezei la momentul t_1 , exprimată în unitatea de măsură din S.I.;
- **b.** lucrul mecanic efectuat de forțele de rezistență în intervalul de timp Δt ;
- **c.** distanța parcursă de mobil, în intervalul de timp Δt ;
- d. valoarea forței de tracțiune dezvoltată de motor.

EXAMENUL DE BACALAUREAT - 2024 Simulare judeteană Proba E. d)

Fizică

Filiera teoretică – profilul real, Filiera vocațională – profilul militar

- Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ, B. ELEMENTE DE TERMODINAMICĂ, C. PRODUCEREA ȘI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ
- Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

B. ELEMENTE DE TERMODINAMICĂ

Se consideră: numărul lui Avogadro $N_A=6,02\cdot10^{23}$ mol⁻¹, constanta gazelor ideale $R=8,31\frac{J}{m_0J_-V_-}$. Între parametrii de stare ai gazului ideal într-o stare dată există relația: pV = vRT.

- I. Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului corect (15 puncte)
- **1.** Masele molare ale unor substanțe biatomice sunt μ_1 și μ_2 . Masa molară a substanței a cărei moleculă este formată din trei atomi de tipul celor care formează molecula primei substanțe și un atom de tipul celor care formează molecula celei de a doua substanțe va fi dată de relația:

a.
$$\frac{\mu_1 + \mu_2}{2}$$
 b. $\frac{\mu_1 + 2\mu_2}{2}$ c. $\frac{3\mu_1 + \mu_2}{2}$ d. $\frac{2\mu_1 + 3\mu_2}{2}$ (3p)

- 2. Un mol de gaz ideal, care se încălzeşte cu 1°C, suferă o transformare reprezentată în coordonate (p, V) printr-o dreaptă a cărei prelungire trece prin origine. Lucrul mecanic efectuat de gaz are valoarea:
- **a.** 8.31J **b.** 4.155 J **c.** 12.465J **d.** 16.62J (3p)
- 3. Unitatea de măsură a mărimii fizice a cărei expresie este $\frac{Q-\Delta U}{\Delta V}$, exprimată în funcție de unități de măsură fundamentale din S.I. este:

a.
$$kgm^{-1}s^{-2}$$
 b. N/m^2 **c.** $kgm^{-2}s^{-2}$ **d.** $kgm^{-3}s^{-2}$ (3p)

4. Două butelii identice conțin mase egale de heliu ($\mu_1 = 4g/mol$), respectiv metan ($\mu_2 = 16g/mol$), la aceeaşi temperatură. Căldurile molare izocore ale celor două gaze au valorile $C_{V_1} = \frac{3}{2}R$, respectiv $C_{V_2} = 3R$. Raportul energiilor interne ale celor două gaze este egal cu:

- 5. O transformare a unei mase de gaz ideal se reprezintă în coordonate (p, T) printr-un cerc. Punctele corespunzătoare valorilor extreme V_{max} și V_{min} , ale gazului, se află:
- a. în punctele de tangență ale cercului cu două hiperbole echilatere raportate la axe;
- b. în punctele de tangență ale cercului cu două drepte a căror prelungiri trec prin origine;
- c. la capetele diametrului paralel cu axa presiunii;
- d. la capetele diametrului paralel cu axa temperaturii. (3p)

II. Rezolvaţi următoarea problemă:

(15 puncte)

Într-o incintă se află mase egale m=154g de monoxid de carbon (CO) și dioxid de carbon (CO₂) la presiunea de 10^5 Pa și la temperatura t=0°C. Masele atomice relative ale carbonului și oxigenului sunt A_C=12, respectiv A₀=16, iar căldurile molare sunt C_V(CO)= $\frac{5}{2}$ R și C_V(CO₂)=3R. Determinați:

- a. numărul de molecule din incintă;
- b. masa molară a amestecului de gaze;
- c. densitatea amestecului;
- d. energia internă a amestecului.

III. Rezolvaţi următoarea problemă:

(15 puncte)

O cantitate dată de gaz ideal monoatomic, având masa m=1,61 kg este închisă într-un cilindru cu piston. Presiunea gazului la temperatura $T_1=300$ K este $p_1=5\cdot 10^5$ Pa. Gazul este comprimat la temperatură constantă până la o presiune de două ori mai mare, iar lucrul mecanic în acest proces este $L=-0,693\cdot 10^6$ J. Pistonul este apoi

blocat, iar gazul este răcit până când presiunea devine egală cu presiunea iniţială. Se cunoaşte $C_V = \frac{3}{2}R$ şi ln2=0.693.

- a. Reprezentați succesiunea de transformări suferite de gazul ideal în coordonate P-V.
- b. Calculaţi masa molară a gazului.
- **c.** Calculaţi variaţia energiei interne a gazului în transformarea 2→3.
- **d.** Determinaţi valoarea căldurii schimbate de gaz cu mediul exterior în timpul procesului 1→2→3 precizând dacă este primită sau cedată.

EXAMENUL DE BACALAUREAT - 2024 Simulare judeteană

Proba E. d)

Fizică

Filiera teoretică - profilul real, Filiera vocațională - profilul militar

Suntobligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ, B. ELEMENTE DE TERMODINAMICĂ, C. PRODUCEREA ŞI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ

Se acordă 10 puncte din oficiu.

Timpul de lucru efectiv este de 3 ore.

	C.	PRODUCEREA S	31 UTILIZAREA	CURENTULUI CONTINUU
--	----	--------------	---------------	----------------------------

I. Pentru itemii 1	 5 scrieţi pe foaia de ră 	spuns litera corespunz	ătoare răspunsului (corect.	(15 puncte)
1. Voltul este echi	valent cu:				
a. JA ⁻¹ s ⁻³	b. kgmA ⁻¹ s ⁻²	c. Kgm ² A ⁻¹ s ⁻³	d. JmA ⁻¹	(3p)	

- 2. Expresia energiei disipate de o sursă la scurtcircuit, în timpul t, este:
- a. I^2Rt b. $\frac{E^2}{r}t$ c. $\frac{E^2}{R+r}t$ d. $\frac{E^2}{R}t$ (3p)
- **3.** Într-un circuit electric sunt montate trei becuri, având fiecare rezistenţa constantă R. Rezistenţa echivalentă a celor trei becuri nu poate avea valoarea:
- **a.** 3R **b.** 4R/3 **c.** 3R/2 **d.** R/3 **(3p)**
- **4.** Două surse au t.e.m. identice. Puterea maximă pe care o poate furniza prima sursă, unui circuit exterior, este P₁, iar puterea maximă pe care o poate furniza cea de-a doua sursă este P₂. Gruparea serie a celor două surse va putea furniza în circuitul exterior o putere maximă:
- **a.** $P_1 + P_2$ **b.** $\frac{P_1 + P_2}{2}$ **c.** $\frac{2P_1P_2}{P_1 + P_2}$ **d.** $\frac{4P_1P_2}{P_1 + P_2}$ (3p)
- **5.** Se realizează un montaj mixt format din m grupări serie de câte n rezistoare identice, de rezistență electrică R fiecare, legate în paralel. Rezistența electrică echivalentă a montajului este:
- a. mR b. $\frac{mR}{n}$ c. $\frac{mn}{R}$ d. $\frac{nR}{m}$ (3p)

II. Rezolvaţi următoarea problemă: (15 puncte)

Pe trei consumatori sunt înscrise valorile: P₁=40W, P₂=60W, P₃=100W și aceeași tensiune U=110V. Determinați:

- **a.** care dintre cei trei consumatori este străbătut de curentul cu intensitatea cea mai mare, în timpul funcționării sale normale (calculați valoarea respectivă);
- **b.** lungimea firului metalic din care ar putea fi confecționat cel de-al doilea consumator dacă firul are, la temperatura de funcționare, aria secțiunii transversale S=0,3mm² și rezistivitatea electrică ρ =36,3•10⁻⁷ Ω m;
- **c.** modul în care ar trebui grupați cei trei consumatori, astfel încât ei să funcționeze normal, când la bornele grupării este aplicată tensiunea de 220V; justificați răspunsul indicând şi schema electrică aferentă.

III. Rezolvaţi următoarea problemă:

(15 puncte)

O sursă cu tensiunea electromotoare E şi rezistenţa internă $r=1\Omega$ alimentează un circuit exterior având rezistenţa electrică R. Determinaţi:

- **a.** valorile lui R pentru care puterea disipată în circuitul exterior este egală cu jumătate din puterea maximă pe care o poate dezvolta sursa în exterior;
- b. valoarea lui R, pentru care tensiunea la borne este E/5;
- c. valoarea randamentului transferului de putere în circuitul exterior (în condițiile punctului b).

EXAMENUL DE BACALAUREAT - 2024 Simulare județeană Proba E. d)

Fizică

Filiera teoretică –	profilul real, Fili	era vocaţională –	profilul militar

• Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică:

A. MECANICĂ, B. ELEMENTE DE TERMODINAMICĂ, C. PRODUCEREA ȘI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ

• Se acordă 1	0 puncte din oficiu.			
• Timpul efec	tiv de lucru este de 3	ore.		
D. OPTICĂ				
I. Pentru item	nii 1-5 scrieți pe foaia	de răspuns litera core	espunzătoare răspunsului cor	ect. (15 puncte)
_	ul dintre direcţia razei za reflectată este:	incidente şi suprafaţa p	e care se reflectă aceasta este	30°, unghiul dintre raza
a. 30°	b. 60°	c. 90°	d. 120°	(3p)
			efracţie absolut n are converge n, convergenţa sa devine:	nţa C. Atunci când este
a. C	b. –C	c. 0	d. ∞	(3p)
una faţă de a	lta, incident pe una di id că distanţa focală a	ntre ele, iese din sister	unui ansamblu de două lentile n tot paralel cu axa optică prin mare decât distanţa dintre lentil	cipală, dar cu diametru
a. două lentile	convergente cu f ₁ <f<sub>2;</f<sub>			
b. o lentilă cor	nvergentă și una diverç	gentă;		
c. două lentile	divergente cu $ f_1 $ > $ f_2 $	c ;		
d. două lentile	convergente cu f ₁ >f ₂ .			(3p)
4. În dispozitiv	ul de interferență al lu	i Young, interfranja nu d	epinde de:	
a. distanţa din	tre fantele dispozitivulu	ui;		
b. lungimea de	e undă a radiației;			
c. distanța de	la planul fantelor la ec	ranul de observație;		
d. distanța de	la planul fantelor la su	rsă.		(3p)
				
Probă scris	a - Fizicā			D Ontică

- 5. Adâncimea unui pârâu cu apa limpede pare:
- a. dependentă de înălțimea de la care se face observația;
- b. întotdeauna mai mare decât în realitate;
- c. întotdeauna aceeași, ca și în realitate;
- d. întotdeauna mai mică decât în realitate.

(3p)

II. Rezolvaţi următoarea problemă:

(15 puncte)

Două lentile subţiri din sticlă, plan-convexe, identice, având fiecare convergenţa C=8 dioptrii, sunt aşezate coaxial, la distanţa d=62,1cm.

- **a.** Calculați distanțele focale ale lentilelor și razele lor de curbură, dacă indicele de refracție al sticlei este $n = \frac{3}{2}$.
- **b.** La distanţa x₁=-16cm (în stânga primei lentile) se poziţionează un obiect luminos liniar; calculaţi distanţa D dintre centrul optic al primei lentile şi imaginea finală dată de sistemul optic centrat.
- c. Construiți imaginea finală dată de sistemul optic, indicând mersul razelor de lumină, prin sistem.
- **d.** Determinați măririle liniare transversale date de fiecare lentilă, precum și mărirea liniară transversală a acestui sistem optic centrat.

III. Rezolvaţi următoarea problemă:

(15 puncte)

O sursă de lumină S este așezată pe axa de simetrie a unui dispozitiv Young. Sursa emite radiație monocromatică având lungimea de undă $\lambda=500nm$. Distanța dintre cele două fante este $2\ell=0,5mm$, iar figura de interferență se observă pe un ecran așezat paralel cu planul fantelor, la distanța D=1m de acesta.

- a. Calculați valoarea interfranjei.
- b. Determinați valoarea distanței ce separă franja centrală de franja întunecoasă de ordinul 4.
- c. În faţa uneia dintre fante se plasează o lamă din sticlă având grosimea $e = 6 \mu m$. Se observă că franja centrală s-a deplasat în poziţia ocupată iniţial de franja luminoasă de ordinul 6. Determinaţi valoarea indicelui de refracţie al sticlei din care este confecţionată lama.
- **d.** Se îndepărtează lama, iar sursa S este înlocuită cu sursa S' care emite simultan două radiații având lungimile de undă $\lambda_1=500nm$ și $\lambda_2=600nm$. Calculați distanța minimă, față de franja centrală, la care se suprapun maximele celor două radiații.
