(10-1) Efficiency of Algorithms D & D Chapter 20

Instructor - Andrew S. O'Fallon CptS 122 (March 22, 2021) Washington State University

Analysis of Algorithms (1)

- In general, we want...
 - to determine central unit of work by considering the operations applied in the algorithm
 - to express unit of work as function of size of input data: How quickly does amount of work grow as size of input grows?
 - classify algorithms according to how their running time and/or space requirements grow as input size grows
- For example, recall Sequential Search algorithm
 - Get list of n names to search, and target name to search for
 - Examine each name in sequence
 - If all names have been examined, set found to false and stop
 - If name equals target, set found to true and stop
 - If name not equal to target, advance to next name
 - Main unit of work: comparisons
 - Analysis
 - In best case, one comparison must be made (target is first item in list)
 - In worst case, *n* comparisons must be made (target not found; all items examined)
 - In average case n/2 comparisons must be made

Analysis of Algorithms (2)

- Order of magnitude analysis ("Big-O")
 - Constant factors do not change shape of graph!

Analysis of Algorithms (3)

- Order of magnitude ("Big-O") (cont.)
 - Any algorithm whose work can be expressed as c
 * n where c is a constant and n is the input size is said to be "order of magnitude n", or O(n)
 - Likewise, any algorithm whose work varies as a constant times the square of the input size is said to be "order of magnitude n-squared", or O(n²)

Analysis of Algorithms (4)

- Order of magnitude ("Big-O") (cont.)
 - O(n²) always gets bigger than O(n) eventually!

Analysis of Algorithms (5)

- Big-O Analysis of Sequential Search
 - Best case: O(1)
 - Worst case: O(n)
 - Average case: O(n/2) = O(n)

Analysis of Algorithms (6)

- Recall Selection Sort...
 - Input: a list of numbers
 - Output: a list of the same numbers in ascending order
 - Method:
 - Set marker that divides "unsorted" and "sorted" sections of list to the end of the list
 - While the unsorted section of the list is not empty
 - Find largest value in "unsorted" section of list
 - Swap with last value in "unsorted" section of list
 - Move marker left one position

Analysis of Algorithms (7)

- Selection Sort (cont.)
 - Big-O Analysis
 - Units of work: comparisons and exchanges
 - In all cases, we need n + (n 1) + ... + 1 comparisons = [n * (n 1)]/2 comparisons = $1/2n^2 1/2n$ comparisons = $O(n^2)$ comparisons
 - In best case, items are already in order, so 0 exchanges needed: $O(n^2)$ comparisons + 0 exchanges = $O(n^2)$
 - In worst case, items are in reverse order, so n
 exchanges needed: O(n²) comparisons + n exchanges =
 O(n²)

Analysis of Algorithms (8)

- Selection Sort (cont.)
 - Space Analysis
 - Major space requirement is list of numbers (n)
 - Other space requirements:
 - Extra memory location needed for marker between sorted and unsorted list
 - Extra memory location needed to store LargestSoFar used to find largest item in unsorted list
 - Extra memory location needed to exchange two values (why?)
 - Overall, space requirement is proportional to n.

Analysis of Algorithms (9)

- Recall Binary Search...
 - Input: a list of n sorted values and a target value
 - Output: True if target value exists in list and location of target value, false otherwise
 - Method:
 - Set startindex to 1 and endindex to n
 - Set found to false
 - While found is false and startindex is less than or equal to endindex
 - Set mid to midpoint between startindex and endindex
 - If target = item at mid then set found to true
 - If target < item then set endindex to mid 1
 - If target > item then set to startindex to mid + 1 pointSet marker that divides "unsorted" and "sorted" sections of list to the end of the list
 - If found = true then print "Target found at location mid"
 - Else print "Sorry, target value could not be found."

Analysis of Algorithms (10)

- Binary Search (cont.)
 - Big-O Analysis
 - Unit of work: comparisons
 - Best case
 - target value is at first midpoint
 - O(1) comparisons
 - Worst case
 - target value is not found
 - list is cut in half until it is reduced to a list of size 0 (startindex is greater than or equal to endindex)
 - How many times can the list be cut in half? The number of times a number n is divisible by another number m is defined to be the logb(a), so the answer is log₂(n) =
 O(lg n)

Analysis of Algorithms (11)

n					
Order		10	50	100	1000
lg n		0.0003 sec	0.0006 sec	0.0007 sec	0.001 sec
n		0.001 sec	0.005 sec	0.01 sec	0.1 sec
n ²		0.01 sec	0.25 sec	1 sec	1.67 min
2 ⁿ		0.1024 sec	3570 yrs	4 * 1016 centuries	Too big to compute

Summary of Orders of Magnitude

- $O(\lg n) = flying$
- O(n) = driving
- $O(n^2)$ = walking
- $O(n^3) = crawling$
- O(n⁴) = barely moving
- $O(n^5)$ = no visible progress
- O(2ⁿ) = forget it, it will never happen

References

- P.J. Deitel & H.M. Deitel, C++ How to Program (9th Ed.), Pearson Education, Inc., 2014.
- J.R. Hanly & E.B. Koffman, Problem Solving and Program Design in C (7th Ed.), Addison-Wesley, 2013

Collaborators

• Chris Hundhausen

