Thain Rule

Given
$$f(z) = log(1+z)$$
 where $z = \alpha^T x$, $\alpha \in \mathbb{R}^d$

$$If \propto = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Then
$$\alpha^T = \left[\alpha_1 \alpha_2 \dots \alpha_d \right]$$

$$\alpha^T \alpha = \left[\alpha_1^1 + \alpha_2^1 + \dots + \alpha_d^2 \right]$$

Applying Chain Rule :

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial z} \cdot \frac{dz}{dx}$$

$$= \frac{\partial}{\partial z} \left(\log \left(1 + \frac{z}{z} \right) \right) \cdot \frac{\partial}{\partial x} \left(x^{T} \cdot x \right)$$

$$= \frac{1}{1+z} \cdot \frac{\partial}{\partial z} \left(z \right) \frac{\partial}{\partial x} \left(x_{1}^{T} + x_{2}^{T} + \dots + x_{d}^{T} \right)$$

$$= \frac{1}{1+z} \left(2x_{1} + 2x_{2} + \dots + 2x_{d} \right)$$

$$= \frac{1}{1+z} \cdot 2 \left(x_{1} + x_{2} + \dots + x_{d} \right)$$

$$= \frac{1}{1+z} \cdot 2 \left(x_{1} + x_{2} + \dots + x_{d} \right)$$

$$= \frac{2}{1+z} \quad \stackrel{d}{\geq} x_{i}$$

878 + 3 94 hs!)

1/2+2/2 = (124+12) = (12+2/2)

CS CamScanner

2.
$$f(z) = e^{-\frac{\pi}{2}}$$
; where $z = g(x)$, $f(y) = y^{7} \cdot 5^{-1}y$, $y = h(x)$
 $h(x) = a - M$

$$\frac{\partial f}{\partial z} = \frac{\partial f}{\partial z} \cdot \frac{\partial z}{\partial \eta} \cdot \frac{\partial y}{\partial \alpha}$$

there,
$$\frac{\partial f}{\partial z} = \frac{\partial}{\partial z} \left(e^{-\frac{z}{2}/2} \right) = \frac{e^{-\frac{z}{2}/2}}{2}$$

$$\frac{\partial z}{\partial y} = \frac{\partial}{\partial y} \left(y^T s^{-1} y \right)$$

=
$$\lim_{h\to 0} \frac{\varphi(y+h) - \varphi(y)}{h}$$

= lim
$$\frac{(y^T + h)5'(y+h) - y^T5'y}{h \rightarrow 0}$$

$$= \lim_{R\to0} \frac{(y^{T}s^{-1} + hs^{-1})(y+h) - y^{T}s^{-1}y}{h}$$

$$\frac{\partial \eta}{\partial x} = \frac{\partial (n-\mu)}{\partial x} = 1$$

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial x} \cdot \frac{\partial x}{\partial y} \cdot \frac{\partial y}{\partial x}$$

$$= -\frac{e^{-2/2}}{2} \cdot (y^T + y^T) \cdot 1$$

$$= -\frac{e^{-2/2}}{2} \cdot \frac{1}{3} \cdot (y^T + y^T) \cdot (Ans.)$$