Homework 9

Yuki Joyama

2024-04-23

1

h(x)=	(1+x2)																
Let H(x) be	cumulative	hazard	functi	6n, S	(x) be	Surv	nval	fun	· ction ·	. and	fix	be.	dens	ity f	พทร	tion,	
H(z)=)	$\int_{0}^{\pi} h(t) dt$																
	J. 2 1+t2	dt =	[log(1: log(1+2	f t²)]?	e .												
	p {- H(x)} =																
$h(x) = \frac{1}{x}$	$\frac{f(x)}{S(x)} \Rightarrow$	f(x) =	h(x):	×S(x)) =	/ 2X +ス゚)	- × -	 	•								
					= -			-									

1 10 1 0 $\frac{1}{10}$ 1 $\frac{1}{10}$ 2 $\frac{1}{10}$ 2 $\frac{1}{10}$ 2 $\frac{1}{10}$ 2 $\frac{1}{10}$ 3 $\frac{1}{10}$ 4 0 1 $\frac{1}{10}$ 4 0 1 $\frac{1}{10}$ 4 $\frac{1}{10}$ 6 $\frac{1}{10}$ 6 $\frac{1}{10}$ 6 $\frac{1}{10}$ 6 $\frac{1}{10}$ 6 $\frac{1}{10}$ 6 $\frac{1}{10}$ 7 $\frac{1}{10}$ 6 $\frac{1}{10}$ 7 $\frac{1}{10}$ 6 $\frac{1}{10}$ 8 $\frac{1}{10}$ 6 $\frac{1}{10}$ 8 $\frac{1}{10}$ 8 $\frac{1}{10}$ 9	ti	Νi	di	Ci	$\hat{\lambda}_i = \frac{di}{ni}$	Ŝ(t)	
4 7 0 $9/7$ $7/10 \times (1-9/7) = 7/10$ di. number of events at ti. 5 6 0 $9/6$ $7/10 \times (1-9/6) = 7/10$ Ci. number of censored observations at ti. 6 5 0 $1/5$ $7/10 \times (1-9/6) = 19/25$ $\hat{\lambda}i$: Conditional probability of event at ti. given 7 4 0 $9/4$ $19/25 \times (1-9/4) = 19/25$ that the individual is Still alive at ti. 8 3 0 $9/3$ $19/25 \times (1-9/3) = 19/25$ $\hat{S}(t)$: Kaplan-Meier estimator of survival function 9 2 0 $9/2$ $19/25 \times (1-9/2) = 19/25$	1	10		0	1/10	1 x(1-1/10)=9/10	ti: time to event
4 7 0 $9/7$ $7/10 \times (1-9/7) = 7/10$ di. number of events at ti. 5 6 0 $9/6$ $7/10 \times (1-9/6) = 7/10$ Ci. number of censored observations at ti. 6 5 0 $1/5$ $7/10 \times (1-9/6) = 19/25$ $\hat{\lambda}i$: Conditional probability of event at ti. given 7 4 0 $9/4$ $19/25 \times (1-9/4) = 19/25$ that the individual is Still alive at ti. 8 3 0 $9/3$ $19/25 \times (1-9/3) = 19/25$ $\hat{S}(t)$: Kaplan-Meier estimator of survival function 9 2 0 $9/2$ $19/25 \times (1-9/2) = 19/25$	2	9	2	D	2/9	9/10×(1-2/9)=7/10	ni: number of observations at ti
b 5 0 $\frac{1}{5}$ $\frac{7}{10} \times (1-\frac{1}{5}) = \frac{14}{25}$ $\hat{\lambda}_{i}$: Conditional probability of event at t.; given 7 4 0 $\frac{9}{4}$ $\frac{14}{25} \times (1-\frac{9}{4}) = \frac{14}{25}$ that the individual is Still alive at t.; 8 3 0 $\frac{9}{3}$ $\frac{14}{25} \times (1-\frac{9}{3}) = \frac{14}{25}$ \hat{S} tt): Kaplan-Meier estimator of survival function 9 2 0 $\frac{9}{25} \times (1-\frac{9}{25}) = \frac{14}{25}$	4	7	D	l	0/7	7/10×(1-0/7)=7/10	
6 5 0 $\frac{1}{5}$ $\frac{7}{10} \times (1-\frac{1}{5}) = \frac{14}{25}$ $\hat{\lambda}_{i}$: Conditional probability of event at t.; given 7 4 0 $\frac{9}{4}$ $\frac{14}{25} \times (1-\frac{9}{4}) = \frac{14}{25}$ that the individual is Still alive at t.; 8 3 0 $\frac{9}{3}$ $\frac{14}{25} \times (1-\frac{9}{3}) = \frac{14}{25}$ $\hat{S}tt$): Kaplan-Meier estimator of survival function 9 2 0 $\frac{9}{25} \times (1-\frac{9}{25}) = \frac{14}{25}$	5	6	0	. 1	%6	7/10×(1-0/6)=7/10	Ci: Number of censored observations at ti
7 4 0 $\frac{9}{4}$ $\frac{9}{25}$ \times $(1-\frac{9}{4})=\frac{9}{25}$ that the individual is Still alive at the second structure of Survival function 9 2 0 $\frac{9}{25}$ \times $(1-\frac{9}{25})=\frac{19}{25}$ Set.) Kuplan-Meier estimator of Survival function 9 2 0 $\frac{9}{25}$ \times $(1-\frac{9}{25})=\frac{19}{25}$	Ь	5	1	D	1/5	7/10 × (1-1/5) = 14/25	
8 3 0 $\frac{9}{25} \times (1-\frac{9}{3}) = \frac{14}{25} \times (1-\frac{9}{25}) \times \text{Kaplan-Mejer estimator of survival function}$ 9 2 0 $\frac{9}{25} \times (1-\frac{9}{25}) = \frac{14}{25} \times$	7	4	0	. 1	0/4	14/25 × (1-9/4) = 19/25	
9 2 0 1 %25 × (1-%2)= 14/25	8	3	D	1	%3	19/25 × (1-9/3)=14/25	
10 1 0 1 % 14/25 × (1-%)=14/25	9	2	0	1	0/2	14/25 × (1-0/2)= 14/25	
	10	. 1	0	1	%1	14/25 × (1-0/1)=14/25	

(a) Kaplan-Mejer estimate of the survival function

$$\hat{S}(t) = \prod_{i=1}^{k} (1 - \hat{A}_i) = \prod_{i=1}^{k} (1 - d_i/n_i), t_k \leq t < t_{k+1}$$

The values for each thetethen (k=1,2,...,10) are stated in the above table.

(b) Nelson-Aalen estimate of the cumulative hazard function

		•			•	•		•		•		•			ti	dimi	H(t)
		ĤU	t)=	0			05	t<	t,			<u>.</u>			1	1/10	1/10= 0.1
	·			ک tic-	di,	ni	t	.2t		•		7			2	2/9	1/10+2/9=0.32
•	٠	•	. (•	•	•	•	•	•	•	•	•	•	4	9/7	0.32
•	•	•	•		•	•	•	•	•	•	•	•	•		5	0/6	0.32
•	٠	٠	٠	•	•	•	•	•	٠	•	٠	•	•	•	6	1/5	0.32+1/5=0.52
•	٠	٠	•	•	•	•	•	•	•	٠	٠	•	•	•	7	9/4	0.52
•	•	٠	•	•	٠	•	•	•	٠	•	•	٠	•		8	0/3	0.52
•	•	٠	٠	•	•	•	•	•	٠	•	٠	•	•	•	9.	0/2	0.52
•	٠	٠	•	•	•	٠	•	٠	٠	٠	٠	٠	٠		10	· %	0.52

(C) Fleming - Harrington estimate of the survival function

							ti	. 6	xp (- Ĥ (+	١))														
							1		0.905															
	•	•	•	•	•	•	2	•	0.726	•	•	•	•		•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	4	•	0.726	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	٠٤٠	•	0.726	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	٠		•	•	•	•	. 6.	•	0.595	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	٠	•	•	•	•	•	. 7	•	0.595	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	٠	•	•	•	•	•	8	•	0.595	•	٠	•	٠	•	•	•	•	•	•	•	•	•	•	•
•	٠	•	•	•	•	•	· q	•	0.595	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•
•	٠	•	•	٠	•	•	10	•	0.595	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•

tongue data contains the following columns:

- type Tumor DNA profile (1 = Aneuploid Tumor, 2 = Diploid Tumor)

```
- time Time to death or on-study time, weeks
- delta Death indicator (0 = alive, 1 = dead)
Here we consider individuals with delta = 0 as right censored ones.
# data import
data("tongue")
str(tongue)
                     80 obs. of 3 variables:
## 'data.frame':
    $ type : int
                   1 1 1 1 1 1 1 1 1 1 ...
    $ time : int 1 3 3 4 10 13 13 16 16 24 ...
## $ delta: int 1 1 1 1 1 1 1 1 1 ...
# check censored
Surv(tongue$time, tongue$delta, type = "right")
   [1]
          1
               3
                     3
                          4
                               10
                                    13
                                          13
                                               16
                                                    16
                                                          24
                                                               26
                                                                    27
                                                                          28
                                                                               30
                                                                                     30
## [16]
                                    70
                                          72
                                                    77
         32
               41
                    51
                         65
                               67
                                               73
                                                          91
                                                               93
                                                                    96
                                                                         100
                                                                              104
                                                                                   157
   [31] 167
                    74+
                         79+
                               80+
                                    81+
                                         87+
                                               87+
                                                    88+
                                                          89+
                                                               93+
                                                                    97+ 101+ 104+ 108+
              61+
  [46]
       109+ 120+ 131+ 150+ 231+ 240+ 400+
                                               1
                                                     3
                                                           4
                                                                5
                                                                     5
                                                                           8
                                                                               12
                                                                                     13
## [61]
         18
               23
                    26
                         27
                               30
                                    42
                                         56
                                               62
                                                    69
                                                         104
                                                              104
                                                                   112
                                                                         129
                                                                              181
                                                                                      8+
## [76]
         67+
              76+ 104+ 176+ 231+
# plot Kaplan-Meier curve of survival function
```

ggsurvplot(survfit(Surv(time, delta) ~ type, data = tongue, conf.type = "log"), conf.int = TRUE, xlab =

The Kaplan-Meier curve of survival function and its pointwise 95% CI using the log transformation is shown above.

```
# estimated 1-year (52 weeks) survival rate and 95% CI
KM <- survfit(Surv(time, delta) ~ type, data = tongue, conf.type = "log")
summary(KM, times = 52)</pre>
```

```
Call: survfit(formula = Surv(time, delta) ~ type, data = tongue, conf.type = "log")
##
##
                    type=1
##
           time
                       n.risk
                                    n.event
                                                 survival
                                                                std.err lower 95% CI
         52.000
                       34.000
                                     18.000
                                                    0.654
                                                                  0.066
                                                                                0.537
##
   upper 95% CI
##
##
          0.797
##
##
                    type=2
##
                                                 survival
                                                                std.err lower 95% CI
           time
                       n.risk
                                    n.event
                      13.0000
        52.0000
                                    14.0000
                                                   0.4864
                                                                 0.0961
                                                                               0.3302
##
  upper 95% CI
##
         0.7164
##
```

Given the output, individuals with Aneuploid Tumor (type = 1) have an estimated 1-year (52 weeks) survival rate of 0.654 (95% CI: 0.537 - 0.797) and individuals with Diploid Tumor (type = 2) have that of 0.4864 (95% CI: 0.3302 - 0.7164).