Zajęcia 16 stycznia 2024 r. Zaliczenie list 12a i 12b: od 6 pkt. łącznie.

Uwaga! Z list 12a i 12b nie można zdobyć łącznie więcej niż 11 punktów

2/112 mex do abbycio

punkt] Jak już wiadomo, język programowania P40++ ma obszerną bibliotekę funkcji procedur numerycznych. Wśród nich zasjduje się procedura Integral (f) zasjdująca dużą dokładnością wartość calif $\hat{f}_{-20}^2 f(x)$ dz, gdzie $f \in C[-20,24]$. W jaki sposób tyć procedury Integral do obliozenia calić

$$\int_{a}^{b} g(x) dx$$
 $(a < b; g \in C[a, b])$?

(1)
$$Q_n(f) := \sum_{k=0}^{n} A_k f(x_k).$$

ma rząd $\geq n+1$ wtedy i tylko wtedy, gdy jest kwadraturą interpolacyjną.

L12.3. [2 punkty] Załóżmy, że dane są: funkcja ciągla f, liczby a < b oraz parami różne węzby x_0, x_1, \dots, x_n . Niech $Q_n(f)$ będzie kwadraturą interpolacyjną z wędami x_0, x_1, \dots, x_n przybliżającą wartość całki

$$I(f) := \int_{a}^{b} f(x) dx$$

Jak wiadomo, współczynniki $A_k \ (0 \le k \le n)$ kwadratury $Q_n,$

$$Q_n(f) := \sum_{k=0}^{n} A_k f(x_k),$$

wyrażają się wzorem:

$$A_k = \int_a^b \left(\prod_{i=a}^n \frac{x - x_i}{x_k - x_i} \right) dx$$
 $(k = 0, 1, ..., n).$

Podaj efektywny algorytm obliczania współczynników A_0,A_1,\ldots,A_n i określ jego złożoność.

L12.4.
$$[1 \text{ punkt}]$$
 Sprawdź, że współczynniki kwadratury Newtona-Cotesa n

$$Q_n^{NC}(f) := \sum_{k=0}^n A_k f(a+k \cdot h_n) \qquad \left(h_n := \frac{b-a}{n}\right)$$

są takie, że $A_k = A_{n-k} \ (k=0,\,1,\ldots,n).$

L12.6. [Włącz komputer!] 1 punkt] Wykorzystując własną implementację algorytmu, o którym mowa w zadaniu L12.5, oblicz $Q_n^{NC}(f)$ $(2 \le n \le 24)$ dla calki

$$\int_{-1}^{1} \frac{dx}{1 + 25x^{2}}.$$

Skomentuj wyniki.

Lista nr 12b

Zajęcia 16 stycznia 2024 r. Zaliczenie list 12a i 12b: od 6 pkt. łącznie,

Uwagał Z list 12a i 12b nie można zdobyć łącznie więcej niż 12 punktów **(L12.7.** I punkt] O funkcji ciągłej f wiadomo, że $\max_{x \in \mathbb{R}} |f''(x)| < 2024$. Zalóżmy, że dla dowolnego $x \in \mathbb{R}$ potrafimy z dużą dokładnością obliczać f(x). Opracuj algorytm wyznaczania

przybliżonej wartości całki $\int_a^b f(x) \mathrm{d}x$ z błędem bezwzględnym nie przekraczającym ε , gdzie $a,b \in \mathbb{R}$ (a < b) oraz $\varepsilon > 0$ są dane.

 ${\bf L12.8.}$ $\fbox{1}$ punkt $\fbox{1}$ Jak należy dobrać n,aby stosując złożony wzór Simpsona S_n obliczyć przybliżoną wartość całki $\int\limits_{-\pi}^{\pi/6} \sin(5x-\pi/3)\,\mathrm{d}x$ z błędem względnym $\leq 10^{-10}?$

 ${\bf L12.9.}$ $\boxed{1~{\rm punkt}}$ Sprawdź, że ciąg złożonych wzorów trapczów spełnia związek

$$T_{2n}(f) = \frac{1}{2} [T_n(f) + M_n(f)]$$
 $(n = 1, 2, ...),$

$$M_n(f):=h_n\sum_{i=1}^n f\left(a+\frac{1}{2}(2i-1)h_n\right), \qquad h_n:=\frac{b-a}{n}$$

L12.10. [Włącz komputer!] punkt] Stosując metodę Romberga znajdź przybliżenia $T_{m,k}$ $\{0 \le m \le 20; 0 \le k \le 20 - m\}$ mastępujących całek:

a)
$$\int_{-3}^{2} (2024x^8 - 1977x^4 - 1981) \, dx$$
, b) $\int_{-3}^{3} \frac{dx}{1 + x^2}$, c) $\int_{-3\pi}^{\pi/6} \sin(5x - \pi/3) \, dx$. Skomentuj wyniki.

L12.11. [2 punkty] Wykaź, że ciąg elementów dowolnej kolumny tablicy Rombergo, utworzonej dla funkcji $f \in C[a,b]$, jest zbieżny do calki $\int_a^b f(x) \, \mathrm{d}x$.

L12.12. [1 punkt] Korzystając z faktu podanego na wykładzie, tzn. bez konieczności rozwiązywania układu równań nieliniowych, dobierz węzły x_0,x_1,x_2 oraz współczynnki A_0,A_1,A_2 kwadratury

$$Q_2(f) := A_0 f(x_0) + A_1 f(x_1) + A_2 f(x_2) \\$$

L12.13. 2 punkty.] W języku PW0++ procedum Legendre/Zeros(m) znajduje z dnią dokładnością wszystkie miejsca zerowe m-tego wielomianu Legendre/a. Używając tej procedury, opracuj efsktywny algorytm znajdowania takich wgzłów zajnoże zwymków Ajnoże zwymków Ajnoże zwymków Ajnoże zakodzie zakodzie zakodzie zakodzie zakodzie z zakodzie.

$$\int_{-\pi}^{1} w(x) dx = Q_n(w),$$

gdzie
$$Q_n(f) := \sum_{k=0}^{n} A_k^{(n)} f(x_k^{(n)}).$$