SDRAM Workbook (Lab #D)

SoC Design Laboratory

Lab #D – lab-sdram

- Refer to lab-exmem, but replace the BRAM with SDRAM (SDRAM controller + SDRAM)
 - SDRAM device convert SDRAM model to hardware implement, memory array using BRAM
 - SDRAM controller support page mode
- The combined SDRAM Controller + SDRAM device is to replace a Wishbone BRAM
- Reference:
 - https://github.com/bol-edu/caravel-soc_fpga-lab/tree/main/lab-sdram

SDRAM in Caravel User Project

SDRAM Device

- sdram_cle, sdram_cs, sdram_cas, sdram_ras, sdram_we
- sdram_dqm, sdram_ba, sdram_a
- sdram_dqi, sdram_dqo

User interface

- user_addr
- o rw
- o data in, data out
- busy
- in_valid, out_valid

- User interface
 - user_addr
 - address to read or write
 - \circ rw
 - 1 for write command, 0 for read command
 - data_in
 - data from a read
 - data_out
 - data from a write

- User interface
 - busy
 - 1 for controller is busy, 0 for controller can get next command
 - in_valid
 - pulse high to initiate a read or write command
 - out_valid
 - pulse high when the data from read is valid

- Controller state
 - INIT, WAIT, IDLE, REFRESH, ACTIVATE, READ, READ_RES, WRITE, PRECHARGE
- CAS Latency, Precharge Latency, Activate Latency
 - 3T
- Refresh Latency
 - o 7T
- Refresh cycle
 - 750T

- INIT→IDLE
- IDLE→ACTIVATE→WRITE→IDLE
- IDLE→ACTIVATE→READ→READ_RES
 →IDLE
- IDLE→WRITE→IDLE
- IDLE→READ→READ_RES→IDLE
- IDLE→PRECHARE→ACTIVATE→WRITE
 →IDLE
- IDLE→PRECHARE→ACTIVATE→READ
 →READ_RES→IDLE
- IDLE→PRECHARE→REFRESH→IDLE

Reference: https://alchitry.com/sdram-mojo

- User address remapping
- User address [22:0]
 - o Bank address [9:8]
 - Row address [22:10]
 - Column address [7:0]
- Remap user address to create more off-page/on-page cases.

SDRAM Device

- Single Data Rate Synchrnous DRAM (SDR-SDRAM)
 - It need consider activate, precharge and refresh, when accessing device
- The behavior model is non-synthesable
 - parameter is defined in sdr_parameter.vh
 - FPGA doesn't has inout port for interconnection
- Replace storage element by BRAM
 - Must fit the SDRAM behavior model
 - Column Address Strobe (CAS)
 - CAS Latency (CL)
 - Activate
 - Precharge
 - Refresh

SDRAM Device - Behavior Model

- The behavior model refer to Micron MT48LC64M4A2
 - 16 Meg x 4 x 4 banks

SDRAM Device - Mode Register Definition

Config mode register to specify operation of device

SDRAM Device - Block Diagram on FPGA

Separate inout port with input and output port

Controller-Wishbone Signal Converter

```
assign valid = wbs_stb_i && wbs_cyc_i;
assign ctrl in valid = wbs we i ? valid : ~ctrl in valid q && valid;
assign wbs ack o = (wbs we i) ? ~ctrl busy && valid : ctrl out valid;
assign bram mask = wbs sel i & {4{wbs we i}};
assign ctrl addr = wbs adr i[22:0];
assign io out = d2c data;
assign io oeb = {(`MPRJ IO PADS-1){rst}};
assign irq = 3'b000; // Unused
assign la data out = {{(127-BITS){1'b0}}, d2c data};
// Assuming LA probes [65:64] are for controlling the count clk & reset
assign clk = (~la_oenb[64]) ? la_data_in[64]: wb_clk_i;
assign rst = (~la oenb[65]) ? la data in[65]: wb rst i;
assign rst n = ~rst;
always @(posedge clk) begin
    if (rst) begin
       ctrl in valid q <= 1'b0;
    else begin
        if (~wbs we i && valid && ~ctrl busy && ctrl in valid q == 1'b0)
            ctrl in valid q <= 1'b1;
        else if (ctrl out valid)
            ctrl in valid q <= 1'b0;
end
```

Controller-Wishbone Signal Converter

The controller has two output signals, **busy** and **out_valid**, for receiving a new command and telling the user interface that the output is ready from the read command.

The Wishbone interface only has one output signal wbs_ack_o.

We need to convert two signals into one signal in this user project SDRAM.

Waveform - Write

Waveform - Read

Implementation

- Firmware matmul executed in SDRAM (provide matmul.hex)
- Add prefetch in SDRAM controller
 - Prefetch buffer serves as cache
 - Observe address access pattern, determine # of prefetch buffers, and prefetch scheme
- Adjust linear address map below, so that code execution and data fetch are from two different banks
 - O Bank address [9:8]
 - Row address [22:10]
 - O Column address [7:0]
- For the bank interleave, you may also change linker so that address of code, and data can take advantage of concurrent bank access. So is the prefetch.

Observe and write report on

- the SDRAM controller design, SDRAM bus protocol ...
- Introduce the prefetch schme
- Introduce the bank interleave for code and data
- Introduce how to modify the linker to load address/data in two different bank
- Observe SDRAM access conflicts with SDRAM refresh (reduce the refresh period)
- others

Submission

- GitHub link
- Report