2012-2013 学年第一学期 高等数学 (2-1) (工科类) 期末试卷(A) 参考答案

一. 填空题(共6小题,每小题3分,共计18分)

1. 极限
$$\lim_{x\to 0^{-}} \frac{\sqrt{1-\cos x}}{x} = \underline{\qquad}$$

- 2. 设 f(x) 的一个原函数为 $\ln^2 x$,则 $\int x f'(x) dx =$ ______
- 3. 定积分 $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (\sin^7 x + \cos^6 x) dx =$ ______.
- 4. 微分方程 $y' \frac{y}{x} x^2 = 0$ 的通解是______.
- 5. 极限 $\lim_{x\to 0} \frac{\int_0^{x^2} \operatorname{arctan} t dt}{x(1-\cos x)} = \underline{\hspace{1cm}}.$
- 6. 心形线 $r = a(1 + \cos \theta)$, (a > 0) 的周长为_____.
- 二. 选择题(共4小题,每小题3分,共计12分)
- 1. 设函数 f(x) 在 $(-\infty, +\infty)$ 上连续,则下列说法中不正确的有()

A.若 f(x) 是奇函数,则其原函数是偶函数;

B.若 f(x) 是偶函数,则其原函数是奇函数;

C.若 f(x) 是周期函数,则其原函数是周期函数;

D.若 f(x) 是有界函数,则其原函数是有界函数.

- 2. 若 a,b,c,d 成等比数列,则函数 $y = \frac{1}{3}ax^3 + bx^2 + cx + d$ ().
 - A.有极大值, 而无极小值
- B. 无极大值,而有极小值
- C.有极大值,也有极小值
- D. 无极大值, 也无极小值
- 3. 设函数 $f(x) = \begin{cases} x^2 1, & x > 2, \\ ax + b, & x \le 2, \end{cases}$ 在 x = 2 处可导, 其中 a ,b 为常数,则必有()
 - A. a = 2, b = 1;

B. a = -1, b = 5;

- C. a = 4, b = -5;
- D. a = 3, b = -3.
- 4. 广义积分 $\int_{-\infty}^{+\infty} \frac{2x}{1+x^2} dx = ($).
 - A.0;
- B. ln 2;
- C. ln3;
- D.发散.

三. 计算题 (共5小题,每小题7分,共计35分)

1. 求极限
$$\lim_{n\to\infty} \left(\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{n+n}\right)$$
.

2. 求不定积分 $\int \tan^4 x dx$.

3. 方程
$$\begin{cases} x = \arctan t, \\ y = \frac{1}{2}\ln(1+t^2), \text{ 确定 } y = y(x), \text{ 求} \frac{dy}{dx}, \frac{d^2y}{dx^2}. \end{cases}$$

4. 设函数 $f(x) = \lim_{t \to x} \left(\frac{\sin t}{\sin x} \right)^{\frac{x}{\sin t - \sin x}}$, 求其间断点并判断其类型.

5. 求微分方程 $y'' - 5y' + 6y = xe^{2x}$ 的通解.

四. 应用题(共3小题,每小题10分,共计30分)

1. 曲线 $y = \sin x$ $(0 \le x \le \frac{\pi}{2})$ 与直线 $x = \frac{\pi}{2}$, y = 0 围成一个平面图形, 求此平面图形绕 y 轴旋转所得旋转体的体积.

2. 在区间[0,1]上给定函数 $y=x^2$,问当t为何值时,图中的阴影部分 S_1 与 S_2 的面积之和最小?

- 3. 某人以2m/s的速度通过一座桥,桥面高出水面20m,在此人的正下方有一个小船以
- $\frac{4}{3}$ m/s 的速度与桥垂直的方向航行, 求经5s 后, 人与船相分离的速度.

五. 证明题 (5分) 设函数 f(x) 在[0,1]上连续,在(0,1)内可导,

且
$$3\int_{\frac{2}{3}}^{1} f(x)dx = f(0)$$
, 证明: 存在 $\xi \in (0,1)$, 使 $f'(\xi) = 0$.