Stereo Vision and Visual Odometry

A naïve implementation from scratch in C++

M.Sc. Wang, Yu

- Introduction
- Stereo from 2D to 3D
- Tracking via Optimisation
- Results
- Appendix

- Introduction
- Stereo from 2D to 3D
- Tracking via Optimisation
- Results
- Appendix

Introduction - Problem

Inputs(known): Images

Estimate(unknown):

- 3D structure X
- Camera Motion [R|t]

Math Model (photo-consistency):

$$I_1(x) \triangleq I_2(x')$$

$$I_1(x) \triangleq I_2(\pi(\mathbf{R}\pi^{-1}(x, \mathbf{d}_x, K) + \mathbf{t}))$$

Solution (stereo & optimisation)

- d_x solved via stereo
- [R|t] solved via non-linear Opt.:

$$\widehat{R}$$
, $\widehat{t} = \arg\min_{R,t} \sum_{x} [I_2(\phi(x)) - I_1(x)]^2$

Introduction - Pipeline

Calibration

Disparith/Depth

Tracking/Motion

- Introduction
- Stereo from 2D to 3D
- Tracking via Optimisation
- Results
- Appendix

Stereo - from 2D to 3D

$$d = \frac{f \cdot t}{x_l - x_r}$$

Stereo - from 2D to 3D

Template centered at *x*

Best match centered at x'

Left Image^[2]

Right Image^[2]

Implementation Consideration

Window pattern^[7]

- Robust pattern
- 8 x 32 = 256 bit fit to SSE register

$$SSD(x, x') = \sum_{u \in window} [I_l(x - u) - I_r(x' - u)]^2$$

- Introduction
- Stereo from 2D to 3D
- Tracking via Optimisation
- Results
- Appendix

Tracking via Optimisation

$$\widehat{R}$$
, $\widehat{t} = \arg\min_{R,t} \sum_{x} [I_2(\phi(x)) - I_1(x)]^2$

-Pixel to 3d Camera Coord in O₁

$$\pi^{-1}(x,d_x,K)$$

- From Camera Coord in O^1 to O^2

$$R\pi^{-1}(x,d_x,K)+t$$

- From Camera Coord in O² to Pixel

$$\pi(\mathbf{R}\pi^{-1}(x,d_x,K)+\mathbf{t},K)$$

- Get Pixel value in I₂

$$I_2(\pi(\mathbf{R}\pi^{-1}(x,d_x,K)+\mathbf{t},K))$$

$$\min_{R,t} \sum_{x} \left[I_2 \left(\pi(R\pi^{-1}(x, d_x, K) + t, K) \right) - I_1(x) \right]^2$$

Tracking via Optimisation

Implementation Consideration:

- [R|t] parameterized with Lie-Group and Lie-Algebra
- Levenberg-Marquart algorithm
- Initial value of [R|t] must be close to true solution
- Computationally expensive for Jacobians:

$$J_F = \begin{bmatrix} \frac{\partial f_1}{\partial \omega_1} & \cdots & \frac{\partial f_1}{\partial \omega_6} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial \omega_1} & \cdots & \frac{\partial f_n}{\partial \omega_6} \end{bmatrix}, \text{ where }$$

$$f_i = I_2\left(\pi(R\pi^{-1}(x^i, d_{x^i}, K) + t, K)\right) - I_1(x^i), i = 1, 2, ..., n$$
 the number of pixels $\omega_i, i = 1, 2, 3, 4, 5, 6$ are parameterized $[R|t]$ in lie-algebra

- Image pyramid for faster convergence
- 20-30ms/frame

- Introduction
- Stereo from 2D to 3D
- Tracking via Optimisation
- Results
- Appendix

Results

Thank you!

Q & A

Appendix – Techincal Discussions

- Pin-hole camera model
- Disparity & depth
- Direct (photometric) v.s. In-direct(geometric, feature-based)
- Dense v.s. Semi-dense v.s. Sparse
- Non-linear Least Squares & Optimisation
- Code review: https://github.com/WangYuTum/odometry
- Deep Learning (Tracking, Segmentation)

- ...

Appendix - Citations

- [1]. Paul Furgale, Joern Rehder, Roland Siegwart (2013). Unified Temporal and Spatial Calibration for Multi-Sensor Systems. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Tokyo, Japan. (https://github.com/ethz-asl/kalibr)
- [2]. D. Scharstein and R. Szeliski. <u>A taxonomy and evaluation of dense two-frame stereo correspondence algorithms</u>. International Journal of Computer Vision, 47(1/2/3):7-42, April-June 2002. (http://vision.middlebury.edu/stereo/)
- [3]. https://software.intel.com/sites/landingpage/IntrinsicsGuide/
- [4]. https://opencv.org/
- [5]. http://eigen.tuxfamily.org/index.php?title=Main_Page
- [6]. https://strasdat.github.io/Sophus/