Application Layer

Overview:

- Applications have been the driving force behind the Internet's success.
- In this chapter, we study the **conceptual** and **implementation** aspects of **network applications**.
- **Key application-layer** concepts, including **network services** required by applications, **clients and servers**, **processes** and **transport-layer interfaces**.
- Web, e-mail, DNS and peer-to-peer (P2P) file distribution.
- Network application development over both TCP and UDP.
- Study of socket API and walk through some simple client-server applications
- **Network application development** is writing programs that run on different end systems and communicate with each other over the network.
- Ex. Web application, P2P file-sharing system

Principles of Network Applications

Communication for a network application takes place between end systems at the application layer

Principles of Network Applications

Addressing Processes:

- To identify the receiving process, **two pieces of information** need to be specified:
 - 1. The address of the host
 - 2. An identifier that specifies the receiving process in the destination host.
- The host is identified by its **IP address**, **32-bit quantity** that we can think of as uniquely identifying the host
- The sending process must also identify the receiving process, A **destination port number** serves this purpose.
- Popular applications have been assigned **specific port numbers**. For example, a Web server is identified by port number 80.

Principles of Network Applications

Application-Layer Protocols

- Defines how an application's processes, running on different end systems, pass messages to each other.
- It defines;
 - The Types of messages exchanged
 - The Syntax of the various message types
 - The **Semantics** of the fields
 - Rules for determining when and how a process sends messages and responds to messages
- An application-layer protocol is only one piece of a network application. Ex.
 Web Application, E-mail Application.
- Few important Network Applications; the Web, File transfer, Electronic mail,
 Directory service

• World Wide Web dramatically changed, and continues to change, how people interact inside and outside their work environments. Web operates on demand.

Overview of HTTP

- The **Hyper Text Transfer Protocol (HTTP)**, the Web's application-layer protocol, is at the heart of the Web.
- HTTP is implemented in two programs: Client program and Server program.
- A Web page (also called a document) consists of objects. An Object is simply a
 file.
- Web pages consist of a base HTML file and several referenced objects.
- Each **URL** has two components: **the hostname of the server** that houses the object and **the object's path name**.

http://www.someSchool.edu/someDepartment/picture.gif

Overview of HTTP

- **Web browsers** implement the client side of HTTP, **Web Servers** implements the server side of HTTP.
- HTTP defines how Web clients request Web pages from Web servers and how servers transfer Web pages to clients.

HTTP requestresponse behaviour

Overview of HTTP

- HTTP uses **TCP** as its underlying transport protocol.
- The browser and the server processes access TCP through their socket interfaces.
- TCP provides a **reliable data transfer** service to HTTP.
- Server sends requested files to clients without storing any **state information** about the client. HTTP is said to be a **stateless protocol**.

Non-Persistent and Persistent Connections

- In many Internet applications, the client and server communicate for an extended period of time.
- Non-persistent connections sends each request/response pair over a separate TCP connection. Persistent connections sends requests and their corresponding responses be over the same TCP connection. HTTP uses persistent connections in its default mode.
- HTTP with Non-Persistent Connections:
 - **Example -** The page consists of a base HTML file and 10 JPEG images.
 - URL: http://www.someSchool.edu/someDepartment/home.index
 - TCP connection transports exactly one request message and one response message. Thus, in this example, when a user requests the Web page, 11 TCP connections are generated.

Non-Persistent and Persistent Connections

Back-of-the-envelope calculation for the time needed to request and receive an HTML file

Total Response Time = Two RTTs + The Transmission Time at the server of the HTML file

Non-Persistent and Persistent Connections

- HTTP with Persistent Connections:
 - Non-persistent connections place a significant burden on the Web server, which may be serving requests from hundreds of different clients simultaneously.
 - Each object suffers a delivery delay of two RTTs.
 - With persistent connections, the server leaves the TCP connection open after sending a response.
 - Subsequent requests and responses between the same client and server can be sent over the same connection.

HTTP Message Format

There are two types of HTTP messages, request messages and response messages.

HTTP Request Message:

GET /somedir/page.html HTTP/1.1

Host: <u>www.someschool.edu</u>

Connection: close

User-agent: Mozilla/5.0

Accept-language: fr

- Request line and header line.
- The request line has three fields: the method field, the URL field, and the HTTP version field.

HTTP Message Format

There are two types of HTTP messages, request messages and response messages.

HTTP Request Message:

General format of an HTTP Request Message

HTTP Message Format

There are two types of HTTP messages, request messages and response messages.

HTTP Request Message:

Different Methods

Get: Used when the browser requests an object, with the requested object identified in the URL field

Post: Used when the user fills out a form

Head: Used for debugging

Put: Used by applications that need to upload objects to Web servers.

Delete: Used to delete an object on a Web server.

HTTP Message Format

HTTP Response Message:

HTTP/1.1 200 OK

Connection: close

Date: Tue, 09 Aug 2011 15:44:04 GMT

Server: Apache/2.2.3 (CentOS)

Last-Modified: Tue, 09 Aug 2011 15:11:03 GMT

Content-Length: 6821

Content-Type: text/html

(data data data data data ...)

- It has three sections: an **initial status line**, **six header lines**, and then the **entity body.**
- The **status line** has three fields: the **protocol version field**, a **status code**, and a **corresponding status message**.

HTTP Message Format

HTTP Response Message:

Header lines:

Connection: close the TCP connection after sending the message.

Date: indicates the time and date when the HTTP response was created.

Server: indicates that the message was generated by an Apache Web server;

User-agent: header line in the HTTP request message.

Last-Modified: indicates the time and date when the object was created or last modified.

Content-Length: Number of bytes in the object being sent.

Content-Type: object in the entity body is HTML text

HTTP Message Format

HTTP Response Message:

Some common status codes:

200 (OK): Request succeeded and the information is returned in the response.

301 (Moved Permanently): Requested object has been permanently moved

400 (Bad Request): This is a generic error code indicating that the request could not be understood by the server.

404 (Not Found): The requested document does not exist on this server.

505 (HTTP Version Not Supported): The requested HTTP protocol version is not supported by the server.

HTTP Message Format

HTTP Response Message:

General format of an HTTP Response Message

File Transfer: FTP

• In a typical **FTP session**, the user is sitting in front of one host (the local host) and wants to **transfer files to or from a remote host**.

FTP moves files between local and remote file systems

File Transfer: FTP

- FTP uses **two parallel TCP connections** to transfer a file, a **control connection** and a **data connection**.
- FTP is said to send its control information out-of-band. HTTP is said to send its control information in-band.
- Data connections are **non-persistent**.
- Throughout a session, the FTP server must maintain state about the user.

Control and Data connections

File Transfer: FTP

FTP Commands

- USER username: Used to send the user identification to the server.
- PASS password: Used to send the user password to the server.
- LIST: Used to ask the server to send back a list of all the files in the current remote directory.
- **RETR filename:** Used to retrieve a file from the current directory of the remote host.
- **STOR filename:** Used to store a file into the current directory of the remote host.

FTP Replies

- 331 Username OK, password required
- 125 Data connection already open; transfer starting
- 425 Can't open data connection
- 452 Error writing file

- Internet's most important and utilized applications.
- E-mail is an asynchronous communication medium.
- three major components: user agents, mail servers, and the Simple Mail Transfer Protocol (SMTP).
- User agents allow users to read, reply to, forward, save, and compose messages.
- **User agent** sends the message to sender's mail server, where the message is placed in the mail server's **outgoing message queue**.
- Receiver's mailbox manages and maintains the messages that have been sent to receiver.
- Sender's mail server must also deal with failures in Receiver's mail server.
- SMTP uses the **reliable data transfer** service of **TCP** to transfer mail from the sender's mail server to the recipient's mail server.
- SMTP has two sides: a client side and a server side.

A high-level view of the Internet e-mail system

SMTP

- Transfers messages from senders' mail servers to the recipients' mail servers.
- SMTP does not normally use intermediate mail servers for sending mail.
- SMTP uses persistent connections.

Alice sends a message to Bob

SMTP

- The client SMTP has TCP establish a connection to port 25 at the server SMTP.
- The server and client perform some application-layer handshaking.

S: 220 hamburger.edu

C: *HELO* crepes.fr

S: 250 Hello crepes.fr, pleased to meet you

C: *MAIL FROM*: <alice@crepes.fr>

S: 250 alice@crepes.fr ... Sender ok

C: *RCPT TO*: <bob@hamburger.edu>

S: 250 bob@hamburger.edu ... Recipient ok

C: DATA

S: 354 Enter mail, end with "." on a line by itself

C: Do you like ketchup?

C: How about pickles?

C: .

S: 250 Message accepted for delivery

C: QUIT

S: 221 hamburger.edu closing connection

Mail Access Protocols

• We have tacitly assumed that Receiver reads his mail by logging onto the server host and then executing a mail reader that runs on that host and receiver.

E-mail protocols and their communicating entities

- User agent can't use SMTP to obtain the messages.
- Popular mail access protocols are Post Office Protocol—Version 3 (POP3), and Internet Mail Access Protocol (IMAP).

POP3

- Extremely simple mail access protocol.
- POP3 begins when the user agent opens a TCP connection to the mail server on port 110.
- Three phases: Authorization, Transaction and Update.
- User agent issues commands, and the server responds to each command with a reply.
- Two possible responses during Transaction phase: +OK and –ERR
- Two important commands during Authorization phase: user <username> and pass <password>.
- A user agent can often be configured to "download and delete" or to "download and keep."

S: +OK POP3 server signing off

POP3

C: list S: 1 498 S: 2 912 S: . C: retr 1 S: (blah blah ... S: S:blah) S: . C: dele 1 C: retr 2 S: (blah blah ... S: S:blah) S: . C: dele 2 C: quit

Download and delete mode

IMAP

- The **POP3 protocol** does not provide any means for a user to create remote folders and assign messages to folders.
- IMAP has many more features than POP3, but it is also significantly more complex.
- An IMAP server will associate each message with a folder.
- INBOX is the first folder.
- Provides commands to allow users to create folders and move messages from one folder to another.
- Unlike POP3, an IMAP server maintains user state information across IMAP sessions.
- It has commands that permit a user agent to obtain components of messages.

- One identifier for a host is its hostname.
- hostnames provide little, if any, information about the location within the Internet of the host.
- They would be difficult to process by **routers.**
- **People** prefer the more mnemonic hostname identifier, while **routers** prefer fixed-length, hierarchically structured IP addresses.
- We need a directory service that translates **hostnames to IP addresses.** This is the main task of the Internet's **domain name system (DNS).**
- The **DNS** is;
 - 1. A Distributed Database implemented in a hierarchy of DNS servers.
 - 2. An **Application-Layer Protocol** that allows hosts to query the distributed database.
- DNS is commonly employed by other application-layer protocols.
- Example: www.someschool.edu/index.html

DNS Services:

- Translating hostnames to IP addresses.
- Host aliasing: Can be invoked by an application to obtain the canonical hostname for a supplied alias hostname as well as the IP address of the host.
- Mail server aliasing: Can be invoked by a mail application to obtain the canonical hostname for a supplied alias hostname as well as the IP address of the host.
- Load distribution: Used to perform load distribution among replicated servers, such as replicated Web servers. A set of IP addresses is thus associated with one canonical hostname.

Overview of How DNS Works:

- The application will invoke the client side of DNS, specifying the hostname that needs to be translated.
- All DNS query and reply messages are sent within UDP datagrams to port 53.
- After a delay, ranging from milliseconds to seconds, DNS in the user's host receives a DNS reply message that provides the desired mapping.
- The problems with a centralized design;
 - A Single point of failure
 - Traffic volume
 - Distant centralized database
 - Maintenance

Overview of How DNS Works

A Distributed, Hierarchical Database:

- No single DNS server has all of the mappings for all of the hosts in the Internet.
- Three classes of DNS servers: Root Servers, Top-level domain (TLD) Servers and Authoritative Servers

Portion of the hierarchy of DNS servers

• Example: www.amazon.com

Overview of How DNS Works

A Distributed, Hierarchical Database:

• **Root DNS servers:** In the Internet there are 13 root DNS servers (labelled A through M), most of which are located in North America. All together, there are 247 root servers as of fall 2011.

DNS root servers in 2012 (name, organization, location)

Overview of How DNS Works

A Distributed, Hierarchical Database:

- Top-level domain (TLD) servers: These servers are responsible for top-level domains such as com, org, net, edu, and gov, and all of the country top-level domains such as uk, fr, ca, and jp.
- Authoritative DNS servers: Every organization with publicly accessible hosts
 on the Internet must provide publicly accessible DNS records that map the
 names of those hosts to IP addresses using organization's authoritative DNS
 server.
- Local DNS server: When a host makes a DNS query, the query is sent to the local DNS server, which acts a proxy, forwarding the query into the DNS server hierarchy.

Overview of How DNS Works

A Distributed, Hierarchical Database:

Interaction of the various DNS servers

Overview of How DNS Works

A Distributed, Hierarchical Database:

- Our previous example assumed that the TLD server knows the authoritative DNS server for the hostname. In general this not always true.
- Recursive Queries and Iterative Queries.
- DNS Caching: DNS extensively exploits DNS caching in order to improve the delay performance and to reduce the number of DNS messages moving around the internet.

Overview of How DNS Works

A Distributed, Hierarchical Database:

Recursive queries in DNS

DNS Records and Messages

- The DNS servers that together implement the **DNS distributed database store** resource records (RRs), including RRs that provide hostname-to-IP address mappings.
- A resource record is a four-tuple that contains the following fields:

(Name, Value, Type, TTL)

- If Type=A, then Name is a hostname and Value is the IP address for the hostname. Example: (relay1.bar.foo.com, 145.37.93.126, A)
- If Type=NS, then Name is a domain (such as foo.com) and Value is the hostname of an authoritative DNS server that knows how to obtain the IP addresses for hosts in the domain. *Example: (foo.com, dns.foo.com, NS)*
- If Type=CNAME, then Value is a canonical hostname for the alias hostname
 Name. Example: (foo.com, relay1.bar.foo.com, CNAME)

DNS Records and Messages

- If Type=MX, then Value is the canonical name of a mail server that has an alias hostname Name. Example: (foo.com, mail.bar.foo.com, MX).
- To obtain the canonical name for the mail server, a DNS client would query for an MX record.
- To obtain the canonical name for the other server, the DNS client would query for the CNAME record.