

Google Cloud Platform for Data Science teams

Barton Rhodes [@bmorphism]

Senior Data Scientist at Pandata [pandata.co]

Why Cloud?

Be it AWS, GCP, or Azure, having a well-integrated 'productionizing' workflow brings these benefits to data scientists:

- escape limitations of a single machine
- reproducible infrastructure (e.g. Terraform)
- scale up on demand
- use highly specialized products and workflows (no need to set up full systems)
- lessen DevOps / data engineering burden
- leaner than a packaged product (e.g. Domino Data Lab, databricks)

Why Google Cloud?

Our reasons:

- relatively good UX and clean APIs
- embraces community tools (e.g. Apache Beam, Jupyter)
- integrates with Google tools (TensorFlow, Kubernetes)
- price (especially storage) and per-minute billing
- HIPAA-compliant infrastructure and ISO security certifications (important for a consultancy)

Google Cloud Platform for Data Science

Focus of this talk - Data Engineering

GCP Documentation

Documentation available at:

https://cloud.google.com/docs/

Active certification program:

Certified Professional

Data Engineer

Coursera specialization:

GCP Console

Google Cloud SDK

A set of command line tools to manage GCP:

gcloud - general API interaction, auth, configuration

gsutil - manage Google Storage

bq - BigQuery queries and management

kubectl - manage containers in Kubernetes

Client libraries for **Python**, **Java**, **NodeJS**, and others!

Datalab (aka Jupyter)

- interactive data science in modified Jupyter
- runs inside of a Docker container
- integrates with the rest of GCP
- alas, single user
- alas, only Python by default

BigQuery

Massively parallel query engine with SQL-like query language compatible with SQL 2011 standard.

- acts as a data warehouse at Google scale
- columnar data storage
- lower cost than other forms of storage
- BigQuery Slots to guarantee resources
- availability of public datasets
- no UPDATE / DELETE on existing data

Tableau can tap directly into BigQuery, making it easy to perform BI-type tasks over large datasets quickly.

BigQuery example

In this example, one can use the publicly available StackOverflow data (~150GiB) to calculate % answered questions over the years:

```
SELECT
   EXTRACT(YEAR FROM creation_date) AS Year,
   COUNT(*) AS Number_of_Questions,
   ROUND(100 * SUM(IF(answer_count > 0, 1, 0)) / COUNT(*), 1) AS Percent_Questions_with_Answers
FROM
   `bigquery-public-data.stackoverflow.posts_questions`
GROUP BY
   Year
HAVING
   Year > 2008 AND Year < 2016
ORDER BY
   Year</pre>
```

BigQuery example (continued)

Output:

++	-++
Year Number_of_Questions	Percent_Questions_with_Answers
+	-++
2009 345864	99.5
2010 702964	98.1
2011 1213146	96.3
2012 1664204	93.6
2013 2076336	90.9
2014 2179015	87.6
2015 2388670	79.5
+	-++

Dataproc

Run Apache Hadoop and Apache Spark clusters in the Cloud.

- fully managed solution (removes configuration headaches)
- easy to scale quickly through a Web UI / CLI
- can substitute a much faster Google Cloud Storage for HDFS
- can start with a job and provision a cluster appropriately
- cannot customize initial components trivially like one would with Amazon EMR (can use init actions through scripts)
- Apache Zeppelin does not come pre-installed

For sample init actions, see the following repository:

https://github.com/GoogleCloudPlatform/dataproc-initialization-actions

Dataflow (aka Apache Beam)

A runner for Apache Beam (also donated by Google).

Beam model allows for unified semantics for batch & streaming systems, enabling the coveted write once run everywhere* approach to building data pipelines.

The Dataflow Model: A Practical Approach to Balancing Correctness, Latency, and Cost in Massive-Scale, Unbounded, Out-of-Order Data Processing

Tyler Akidau, Robert Bradshaw, Craig Chambers, Slava Chernyak, Rafael J. Fernández-Moctezuma, Reuven Lax, Sam McVeety, Daniel Mills, Frances Perry, Eric Schmidt, Sam Whittle Google

{takidau, robertwb, chambers, chernyak, rfernand, relax, sgmc, millsd, fjp, cloude, samuelw}@google.com

Machine Learning

- integrates TensorFlow for training and prediction
- automatically provisions training and prediction instances (purpose-built compute instances)
- built-in into Datalab
- operates in batch mode only, streaming support experimental
- still on Python 2.7 (boo!)

Some sample projects:

https://github.com/GoogleCloudPlatform/cloudml-samples

Cloud TPUs (alpha)

Google-designed integrated circuits highly optimized for reduced precision operations, integration with TensorFlow.

Accelerates AI inference and now also training.

Bringing it all together (demo)

Adapted from:

https://cloud.google.com/dataproc/docs/tutorials/bigquery-sparkml

In this demo, we will predict birth weight using Linear Regression in Apache Spark (Dataproc) using the publicly available BigQuery <u>natality</u> dataset.