PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification	7 :		(11) International Publication Number: WO 00/24932
C12Q 1/68, C07K 14/22, 14/2 1/19, 1/36, C12N 15/10, C12Q	45, C12R 2 1/18	A1	(43) International Publication Date: 4 May 2000 (04.05.00)
(30) Priority Data:	PANY [US/US/950 (US). DUNHAM, Steve, Ann Arbor, May Glendale Cir	23.09.9 [CR, CU, CZ, DM, EE, GD, GE, HR, HU, ID, IL, IN, IS, JP, KP, KR, LC, LK, LR, LT, LV, MG, MK, MN, MX, NO, NZ, PL, RO, SG, SI, SK, SL, TR, TT, TZ, UA, US, UZ, VN, YU, ZA, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG). Published With international search report. With an indication in relation to deposited biological material furnished under Rule 13bis separately from the description.
(57) Abstract			ZING MUTATIONS WITHIN BACTERIAL DNA GYRASE AND FABI
The instant invention allows for the and identification, or identification of mutance to antibacterial compounds.			PRIMER A1 PRIMER B1 PRIMER B2 PRIMER B3 PRIMER
-			COMBINE 5' AND 3' FRAGMENTS WITH OUTSIDE PRIMERS AND PCR TO CREATE FULL LENGTH PRODUCT TRANSFORMATION PCR PRODUCT CHROMOSOME SELECTION BY RESISTANCE TO ANTIBACTERIAL OR IDENTIFY NON-SELECTABLE MUTANTS BY RESTRICTION ENZYME MODIFICATION

INTERNALONAL SEARCH REPORT

Int. .ional Application No PCT/US 99/22118

		 	
	ation) DOCUMENTS CONSIDERED TO BE RELEVANT		-
Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.	
Y	MCMURRY L M ET AL: "Triclosan targets lipid synthesis" NATURE,GB,MACMILLAN JOURNALS LTD. LONDON, vol. 394, no. 394, 6 August 1998 (1998-08-06), pages 531-532-532, XP002108567 ISSN: 0028-0836 cited in the application the whole document	5,6,8,9, 14,15, 20-22, 24,36	
Α .	DEGUCHI T ET AL.: "DNA gyrase mutations in quinolone-resistant clinical isolates of Neisseria gonorrhoeae" ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, vol. 39, no. 2, 1995, pages 561-563, XP000870151 cited in the application the whole document		
Α	WEIGEL L ET AL: "GyrA mutations associated with fluoroquinolone resistance in eight species of enterobacteriaceae" ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, US, AMERICAN SOCIETY FOR MICROBIOLOGY, WASHINGTON, DC, vol. 42, no. 10, October 1998 (1998-10), pages 2661-2667-67, XP002118443 ISSN: 0066-4804 the whole document		
Α	EP 0 688 873 A (BAYER AG) 27 December 1995 (1995-12-27) the whole document		1.4
P,X	HEATH R J: "Broad spectrum antimicrobial biocides target the FabI component of fatty acid synthesis" JOURNAL OF BIOLOGICAL CHEMISTRY,US,AMERICAN SOCIETY OF BIOLOGICAL CHEMISTS, BALTIMORE, MD, vol. 273, no. 46, 13 November 1998 (1998-11-13), pages 30316-30320-30320, XP002108571 ISSN: 0021-9258	31,34	
P,Y	* see especially page 30318, column 2, paragraph 2 * the whole document/	5,6,9, 13-15, 20,35	i.
	AZ10 (continuation of second sheet) (Linu 1992)		

METHODS OF IDENTIFYING AND CHARACTERIZING MUTATIONS WITHIN BACTERIAL DNA GYRASE AND FABI

BACKGROUND OF THE INVENTION

Discovery and development of an antibacterial agent is aided by the knowledge by which the compound inhibits cell growth. A common technique in elucidating this information is to isolate mutants that alter the susceptibility of the organism to the compound and identify what mutation is responsible for the phenotype. By identifying what gene the mutation lies in, or affects the expression of, one can often learn what cellular pathway the compound inhibits, what the compounds binds to to affect growth, and obtain information about how the compound binds to the target molecule.

10

15

5

Random mutagenesis followed by phenotypic selection, such as resistance to an antibacterial agent, has been shown to be an effective technique to establish structure-function relationships for proteins in yeasts, viruses and bacteria (Kwan T., Gros P., *Biochemistry*, 1998;37:3337-3350; Loeb D.D. et al., *Nature*, 1989;340(6232):397-400; Rolli V. et al., *Biochemistry*, 1997;36:12147-12154). The success of such experiments is determined, in part, by the randomness of the mutagenic procedure, the ability to select for mutants of interest, the numbers of mutant cells that can be generated, and the ability to identify the mutation that is responsible for the phenotype of a selected mutant. This procedure has been used to isolate mutants of genes that are cloned into plasmids or other extrachromosomal elements. While this can work in some instances, the technique is labor intensive and is complicated in cases where the strain is diploid for the gene of interest or toxic when the gene of interest is expressed from a multicopy plasmid.

25

20

Recently, Kok et al have shown that combining mutagenesis of a defined fragment by PCR with natural transformation is a way to identify mutations which abolish the function of PobR in *Acinetobacter* region (Kok R., D'Argenio D., and Ornston L.N., Combining localized PCR mutagenesis and natural transformation in direct genetic analysis of a transcriptional regulator gene, *pobR. J. Bac.*, 1997;179:4270-4276). This technique exploits the ability of *Acinetobacter* to take

INTERNA. DNAL SEARCH REPORT

information on patent family members

Inte Jonal Application No PCT/US 99/22118

				<u> </u>				99/22118
		tent document in search report		Publication date		Patent family member(s)		Publication date
	US	5686590	Α	11-11-1997	AU	690121	В	23-04-1998
					AU	6912194	Α	12-12-1994
			-		AU	6949694	Α	12-12-1994
					CA	2162868	Α	24-11-1994
					EP	0707496		24-04-1996
					JP	9501823		25-02-1997
					WO	9426312		24-11-1994
					WO	9426765	A 	24-11-1994
	EP	0826774	Α	04-03-1998	JP	10174590	A	30-06-1998
	EP	0081078	Α	15-06-1983	US	4446230	Α	01-05-1984
					AT	44547		15-07-1989
•					AU	566865		05-11-1987
					AU	8987782		05-05-1983
					CA	1188239		04-06-1985
					DK	480282		01-05-1983
					ES	516958		01-10-1983
					GR	77698		25-09-1984
					ΙE	54856		28-02-1990
					IL	67061		29-11-1985
					JP	3055104		22-08-1991
					JP	58126784		28-07-1983
					PT	75745	A,B	01-11-1982
	EP	0688873	Α	27-12-1995	DE	4421901		04-01-1996
					CA	2152218		24-12-1995
					HU	71861		28-02-1996
					JP	8000298	3 A	09-01-1996
-		-		•				.s. ,

resistance in spontaneous mutants and mutants generated using DNA damaging agents.

SUMMARY OF THE INVENTION

5

This instant invention is a method for identifying molecular targets in bacteria treated with an antibacterial compound. The method is based on creating and identifying mutations in bacteria that confer altered susceptibility to an antibacterial compound. The mutations provide valuable information about the molecular target of the compound and how the compound and target interact. The bacterial strains generated can be used to provide information that could be useful in identifying and characterizing compounds that could be used or developed for treating bacterial infections of humans, other animals and plants.

10

Using Neisseria gonorrhoeae, we subjected gyrA or fabl to site-specific and random nucleotide mutagenesis to identify mutations that conferred resistance to ciprofloxacin or diphenyl ethers, respectively. These experiments identified previously described and novel mutations associated with resistance to these

15

20

compounds. These experiments also demonstrate the ability to create and identify mutations in Neisseria gonorrhoeae associated with resistance to antibacterial compounds by combining random mutagenesis with phenotypic selection.

The instant invention is a system that allows for the simultaneous creation and identification of mutations that confer resistance to antibacterial

compounds.

25

This technology is for the identification, or isolation and identification, of mutations responsible for altered susceptibility of several bacteria to chemicals (or any other selectable phenotype). This invention can be used in any bacteria that can be transformed with DNA, can carryout homologous recombination and for which the genome sequence can be determined. Examples of these include, but are not limited to: Neisseria gonorrhoeae, Haemophilus influenzae, Streptococcus pneumoniae, Acinetobacter, Escherichia coli, Staphylococcus aureus,

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

	7		XXIO 000 4022
(51) International Patent Classification	!		(11) International Publication Number: WO 00/24932
C12Q 1/68, C07K 14/22, 14/ 1/19, 1/36, C12N 15/10, C12		A1	(43) International Publication Date: 4 May 2000 (04.05.00)
(30) Priority Data: 60/105,965 28 Octobe (71) Applicant (for all designated)	September 1999 (2 r 1998 (28.10.98) f States excep PANY [US/US 7950 (US). : DUNHAM, Steve, Ann Arbor, N 534 Glendale Cir er-Lambert Comp	23.09.9 (b) (c) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d	CR, CU, CZ, DM, EE, GD, GE, HR, HU, ID, IL, IN, IS, JP, KP, KR, LC, LK, LR, LT, LV, MG, MK, MN, MX, NO, NZ, PL, RO, SG, SI, SK, SL, TR, TT, TZ, UA, US, UZ, VN, YU, ZA, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG). Published With international search report. With an indication in relation to deposited biological material furnished under Rule 13bis separately from the description.
(54) Title: METHODS OF IDENTIFY! (57) Abstract The instant invention allows for			ZING MUTATIONS WITHIN BACTERIAL DNA GYRASE AND FABI RAPID GENERATION OF SITE- SPECIFIC CHROMOSOMAL MUTANTS
and identification, or identification of m tance to antibacterial compounds.	utations that conf	er resis	PRIMER A1 PRIMER B1 PRIMER B2 PRIMER B2 * = SITE SPECIFIC MUTATION(S)
			5' FRAGMENT 3' FRAGMENT 5' FRAGMENT 5' FRAGMENT 5' FRAGMENT
			COMBINE 5' AND 3' FRAGMENTS WITH OUTSIDE PRIMERS AND PCR TO CREATE FULL LENGTH PRODUCT TRANSFORMATION
			PCR PRODUCT CHROMOSOME CHROMOSOME
			SELECTION BY RESISTANCE TO ANTIBACTERIAL OR IDENTIFY NON-SELECTABLE MUTANTS BY RESTRICTION ENZYME MODIFICATION

kilobasepairs for each PCR product) and use to amplify chromosomal DNA from the strain isolated in 'd'.

- f) Transforming N400 with the PCR products from 'e' to define the approximately 2 kilobasepair or smaller region of the chromosome that has the mutation or mutations responsible for the altered susceptibility;
- g) Sequencing the DNA from the approximately 2 kilobasepair or smaller region defined in 'f'.
- h) Comparing the DNA sequence with DNA sequence from the same region from N400. If a single change in the order of the nucleotides is found, this change is defined as a mutation which confers altered susceptibility to the compound. If more than one change is observed, additional rounds of primer design, PCR amplification, transformation and selections are executed so that the contribution of each mutation to the phenotype can be determined.

This invention can also be used to identify mutations that confer altered susceptibility to a chemical in strains of *Neisseria gonorrhoeae* that have previously been isolated using other methods. In this case, Step 'a' above would be:

a) Generating a defined set of overlapping PCR products (about 10 kilobasepairs per product) using chromosomal DNA from a mutant strain of *Neisseria gonorrhoeae* as a template that had previously been generated and demonstrated to be more or less susceptible to a chemical than N400. The PCR products, taken together, comprise the complete DNA composition of the chromosome of the mutant organism.

Steps b-h would be identical to that described above.

Further, the invention is a process for identifying and characterizing drugtarget interactions using Neisseria gonorrhoeae comprising:

a) mutagenizing randomly a defined region of the chromosome that may alter susceptibility to chemical compounds. This region can

10

5

15

20

25

METHODS OF IDENTIFYING AND CHARACTERIZING MUTATIONS WITHIN BACTERIAL DNA GYRASE AND FABI

BACKGROUND OF THE INVENTION

Discovery and development of an antibacterial agent is aided by the knowledge by which the compound inhibits cell growth. A common technique in elucidating this information is to isolate mutants that alter the susceptibility of the organism to the compound and identify what mutation is responsible for the phenotype. By identifying what gene the mutation lies in, or affects the expression of, one can often learn what cellular pathway the compound inhibits, what the compounds binds to to affect growth, and obtain information about how the compound binds to the target molecule.

10

15

5

Random mutagenesis followed by phenotypic selection, such as resistance to an antibacterial agent, has been shown to be an effective technique to establish structure-function relationships for proteins in yeasts, viruses and bacteria (Kwan T., Gros P., *Biochemistry*, 1998;37:3337-3350; Loeb D.D. et al., *Nature*, 1989;340(6232):397-400; Rolli V. et al., *Biochemistry*, 1997;36:12147-12154). The success of such experiments is determined, in part, by the randomness of the mutagenic procedure, the ability to select for mutants of interest, the numbers of mutant cells that can be generated, and the ability to identify the mutation that is responsible for the phenotype of a selected mutant. This procedure has been used to isolate mutants of genes that are cloned into plasmids or other extrachromosomal elements. While this can work in some instances, the technique is labor intensive and is complicated in cases where the strain is diploid for the gene of interest or toxic when the gene of interest is expressed from a multicopy plasmid.

25

20

Recently, Kok et al have shown that combining mutagenesis of a defined fragment by PCR with natural transformation is a way to identify mutations which abolish the function of PobR in *Acinetobacter* region (Kok R., D'Argenio D., and Ornston L.N., Combining localized PCR mutagenesis and natural transformation in direct genetic analysis of a transcriptional regulator gene, *pobR. J. Bac.*, 1997;179:4270-4276). This technique exploits the ability of *Acinetobacter* to take

10

15

20

25

- (a) generating DNA fragments by polymerase chain reaction
 amplification of the bacterial chromosome corresponding to
 regions of the bacterial chromosome which may contain a mutation;
- (b) allowing one or more of the DNA fragments to be incorporated into the chromosome of a bacteria that does not display the identifiable phenotype by homologous recombination;
- (c) isolating bacteria that demonstrate the identifiable phenotype; and

repeating steps a through c until a single DNA fragment less than about 10 kilobases in length is identified as being responsible for the mutation; and identifying the mutation contained in the DNA fragment.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 shows the generation of site-specific mutants using splicing by overlapping extension.

Figure 2 shows the generation of *Neisseria gonorrhoeae* with quinolone resistant mutations in *gyrA*.

Figure 3 shows transformation efficiencies and genotypes isolated from PCR-mediated mutagenesis of gyrA.

Figure 4 illustrates an overview of rapid antimicrobial target elucidation.

DETAILED DESCRIPTION OF THE INVENTION

Understanding the mechanism of inhibition of antibacterial compounds is beneficial to the discovery and development of an effective antibiotic. Natural-competence and the highly recombinant nature of *Neisseria gonorrhoeae* make this organism ideal for identifying and characterizing drug-target interactions. We use *Neisseria gonorrhoeae* to demonstrate the utility of this invention, however

resistance in spontaneous mutants and mutants generated using DNA damaging agents.

SUMMARY OF THE INVENTION

5

This instant invention is a method for identifying molecular targets in bacteria treated with an antibacterial compound. The method is based on creating and identifying mutations in bacteria that confer altered susceptibility to an antibacterial compound. The mutations provide valuable information about the molecular target of the compound and how the compound and target interact. The bacterial strains generated can be used to provide information that could be useful in identifying and characterizing compounds that could be used or developed for treating bacterial infections of humans, other animals and plants.

10

Using Neisseria gonorrhoeae, we subjected gyrA or fabI to site-specific and random nucleotide mutagenesis to identify mutations that conferred resistance to ciprofloxacin or diphenyl ethers, respectively. These experiments identified previously described and novel mutations associated with resistance to these compounds. These experiments also demonstrate the ability to create and identify mutations in Neisseria gonorrhoeae associated with resistance to antibacterial compounds by combining random mutagenesis with phenotypic selection.

15

The instant invention is a system that allows for the simultaneous creation and identification of mutations that confer resistance to antibacterial compounds.

20

This technology is for the identification, or isolation and identification, of mutations responsible for altered susceptibility of several bacteria to chemicals (or any other selectable phenotype). This invention can be used in any bacteria that can be transformed with DNA, can carryout homologous recombination and for which the genome sequence can be determined. Examples of these include, but are not limited to: Neisseria gonorrhoeae, Haemophilus influenzae, Streptococcus pneumoniae, Acinetobacter, Escherichia coli, Staphylococcus aureus,

shown in Table 1. Strains generated as a result of these experiments are NG-2691, NG-2698, GC 156 and GC 158.

TABLE 1. gyrA Ciprofloxacin Resistant Mutations
Identified by QRDR Random Mutagenesis
with a Degenerate Oligonucleotide

	Quino	lone resista	nt genotypes	
H G D		YDTI G N H E A	VRMAQ	N (Seq.1)

To identify other mutations leading to ciprofloxacin resistance that may not be located between residues 88 and 103 of gyrA, PCR of an 8.8 kilobasepair fragment containing gyrA was performed to create a pool of PCR products with random nucleotide substitutions distributed across the entire region (Kok R. et al, 1997). This pool was subsequently introduced into N400 by transformation and strains with mutations leading to ciprofloxacin resistance were isolated (Figure 3). Ciprofloxacin resistant colonies were observed at a frequency of 10-2 for bacteria transformed with the PCR generated library. This frequency was at least 4 orders of magnitude higher than that observed for cells that were not transformed indicating that the mutations were likely generated as a result of the PCR amplification and in the region of chromosome corresponding to the 8.8 kilobasepair PCR product used in the transformation.

15

10

5

To identify where in the 8.8 kilobasepair fragment the mutation responsible for the resistance was located, oligonucleotide primer pairs were designed to PCR amplify an 800 base pair product of the 5' portion of gyrA containing the QRDR. Each PCR product was then used to transform ciprofloxacin sensitive strains and, in all cases, was able to generate ciprofloxacin resistant colonies at high frequencies. Therefore, all ciprofloxacin resistant strains generated using an 8.8 kilobasepair random library contained a mutation in the 800 base pair region containing the 5' region of gyrA.

kilobasepairs for each PCR product) and use to amplify chromosomal DNA from the strain isolated in 'd'.

- f) Transforming N400 with the PCR products from 'e' to define the approximately 2 kilobasepair or smaller region of the chromosome that has the mutation or mutations responsible for the altered susceptibility;
- g) Sequencing the DNA from the approximately 2 kilobasepair or smaller region defined in 'f'.
- h) Comparing the DNA sequence with DNA sequence from the same region from N400. If a single change in the order of the nucleotides is found, this change is defined as a mutation which confers altered susceptibility to the compound. If more than one change is observed, additional rounds of primer design, PCR amplification, transformation and selections are executed so that the contribution of each mutation to the phenotype can be determined.

This invention can also be used to identify mutations that confer altered susceptibility to a chemical in strains of *Neisseria gonorrhoeae* that have previously been isolated using other methods. In this case, Step 'a' above would be:

a) Generating a defined set of overlapping PCR products (about 10 kilobasepairs per product) using chromosomal DNA from a mutant strain of *Neisseria gonorrhoeae* as a template that had previously been generated and demonstrated to be more or less susceptible to a chemical than N400. The PCR products, taken together, comprise the complete DNA composition of the chromosome of the mutant organism.

Steps b-h would be identical to that described above.

Further, the invention is a process for identifying and characterizing drugtarget interactions using *Neisseria gonorrhoeae* comprising:

a) mutagenizing randomly a defined region of the chromosome that may alter susceptibility to chemical compounds. This region can

10

5

15

20

25

Amino Acid Sequence of N400 GyrA and Quinolone Resistant Mutants

ENSDOCID: <WO__0024932A1_i_>

10

15

20

25

- (a) generating DNA fragments by polymerase chain reaction amplification of the bacterial chromosome corresponding to regions of the bacterial chromosome which may contain a mutation;
- (b) allowing one or more of the DNA fragments to be incorporated into the chromosome of a bacteria that does not display the identifiable phenotype by homologous recombination;
- (c) isolating bacteria that demonstrate the identifiable phenotype; and

repeating steps a through c until a single DNA fragment less than about 10 kilobases in length is identified as being responsible for the mutation; and identifying the mutation contained in the DNA fragment.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 shows the generation of site-specific mutants using splicing by overlapping extension.

Figure 2 shows the generation of *Neisseria gonorrhoeae* with quinolone resistant mutations in *gyrA*.

Figure 3 shows transformation efficiencies and genotypes isolated from PCR-mediated mutagenesis of gyrA.

Figure 4 illustrates an overview of rapid antimicrobial target elucidation.

DETAILED DESCRIPTION OF THE INVENTION

Understanding the mechanism of inhibition of antibacterial compounds is beneficial to the discovery and development of an effective antibiotic. Natural-competence and the highly recombinant nature of *Neisseria gonorrhoeae* make this organism ideal for identifying and characterizing drug-target interactions. We use *Neisseria gonorrhoeae* to demonstrate the utility of this invention, however

Table 2: Neisseria gonorrhoeae strains

Strain Name	Parent	Genotype	Codon alteration	Phenotype for selection
NG-2707	N400	gyrA E62K	GAG-AAG	Clinafloxacin resistant
GC318	N400	gyrA 1.63Q	CTG-CAG	Clinafloxacin resistant
NG-2721	N400	gyrA L63R	CTG-CGG	Clinafloxacin resistant
NG-2711	N400	gyrA N65H	AAT-CAT	Clinafloxacin resistant
NG-2706	N400	gyrA D80G	GAC-GGC	Clinafloxacin resistant
NG-2717	N400	gyrA D80A	GAC-GCC	Clinafloxacin resistant
NG-2687	N400	gyrA S91F	TCC-TTC	Clinafloxacin resistant
GC158	N400	gyrA S91C	TCC-TGC	Clinafloxacin resistant
NG-2690	N400	gyrA S91A	TCC-GCC	Clinafloxacin resistant
GC219	N400	<i>gутА</i> А92Р	GCA-TCA	Clinafloxacin resistant
GC291	· N400	gyrA D95G	GAC-GGC	Clinafloxacin resistant
NG-2691	N400	gyrA D95A	GAC-GCC	Clinafloxacin resistant
NG-2720	N400	gyrA D95V	GAC-GGC	Clinafloxacin resistant
NG-2723	N400	gyrA D95Y	GAC-TAC	Clinafloxacin resistant
GC156	N400	gytA D95E	GAC-GAG	Clinafloxacin resistant
NG-2698	N400	gyrA D95H	GAC-CAC	Clinafloxacin resistant
NG-2709	N400	gyrA S91F,D95G	TCC-TTC, GAC-GGC	Clinafloxacin resistant
NG-2716	N400	gyrA Q114H	CAG-CAT	Clinafloxacin resistant
NG-2719	N400	gyrA M135V	ATG-GTG	Clinafloxacin resistant
NG-2712	N400	gyrA E161G	GAA-GGA	Clinafloxacin resistant
NG-2669	N400	fabl 115V	ATT-GTT	DHDPE resistant
NG-2654	N400	fabl 120T	ATC-ACC	DHDPE resistant
NG-2651	N400	fabl G23S	GGC-AGC	DHDPE resistant
NG-2670	N400	fabI A25V	GCC-GTC	DHDPE resistant
NG-2660	N400	fabl M51T	ATG-ACG	DHDPE resistant
NG-2641	N400	fabl S91T	TCC-ATC	DHDPE resistant
NG-2639	N400	fabl D86D, G93A	GAC-GAT, GGC-GCG	DHDPE resistant
NG-2638	N400	fabl G93S	GGC-AGC	DHDPE resistant
NG-2640	N400	fabl G93C	GGC-TGC	DHDPE resistant
NG-2648	N400	fabl G93V	GGC-GTC	DHDPE resistant
NG-2657	N400	fabi A95T	GCG-ACG	DHDPE resistant
NG-2656	N400	fabl A99G	GCC-GGC	DHDPE resistant
NG-2653	N400	fabl F104V	TTC-GTC	DHDPE resistant
NG-2658	N400	fabl L105H	CTC-CAC	DHDPE resistant
NG-2663	N400	fabl A144V	GCC-GTC	DHDPE resistant
NG-2642	N400	fabl Y147H	TAC-CAC	DHDPE resistant
NG-2671	N400	fabl G149A	GGC-GCC	DHDPE resistant
NG-2652	N400	fabl V159A	GTG-GCG	DHDPE resistant
NG-2661	N400	fabl M160I	ATG-ATA	DHDPE resistant
NG-2644	N400	fabl M162V	ATG-GTG	DHDPE resistant
NG-2667	N400	fabl 1193V, Q5Q	CAA-CAG, ATC-GTC	DHDPE resistant
NG-2665	N400	fabl 1193N	ATC-AAC	DHDPE resistant
NG-2655	N400	fabl T195S	ACG-TCG	DHDPE resistant
NG-2643	N400	fabl 1201V	ATC-GTC	DHDPE resistant
NG-2666	N400	fabl D203V	GAT-GTT	DHDPE resistant
NG-2664	N400	fabl D203Y	GAT-TAT	DHDPE resistant
NG-2647	N400	fabl F204A	TTC-GCG	DHDPE resistant
NG-2646	N400	fabl F204L	TTC-TTG	DHDPE resistant
NG-2650	N400	fabl F204S	TTC-TCC	DHDPE resistant
NG-2649	1400	fabl F2041	TTC-ATC	DHDPE resistant
NG-2645	N400	fabl F204H	TTC-CAC	DHDPE resistant
NG-2659	N400	fabl A212T	GCC-ACC	DHDPE resistant
NG-2662	N400	fabl A212V	GCC-GTC	DHDPE resistant

shown in Table 1. Strains generated as a result of these experiments are NG-2691, NG-2698, GC 156 and GC 158.

TABLE 1. gyrA Ciprofloxacin Resistant Mutations
Identified by QRDR Random Mutagenesis
with a Degenerate Oligonucleotide

		Qu	inc	lo	ne r	esi	sta	nt g	gen	oty	pes			
H	G D E	A	V	Y	D G N H E A	T	I	V	R	M	A	Q	N	(Seq.1)

To identify other mutations leading to ciprofloxacin resistance that may not be located between residues 88 and 103 of gyrA, PCR of an 8.8 kilobasepair fragment containing gyrA was performed to create a pool of PCR products with random nucleotide substitutions distributed across the entire region (Kok R. et al, 1997). This pool was subsequently introduced into N400 by transformation and strains with mutations leading to ciprofloxacin resistance were isolated (Figure 3). Ciprofloxacin resistant colonies were observed at a frequency of 10-2 for bacteria transformed with the PCR generated library. This frequency was at least 4 orders of magnitude higher than that observed for cells that were not transformed indicating that the mutations were likely generated as a result of the PCR amplification and in the region of chromosome corresponding to the 8.8 kilobasepair PCR product used in the transformation.

15

10

5

To identify where in the 8.8 kilobasepair fragment the mutation responsible for the resistance was located, oligonucleotide primer pairs were designed to PCR amplify an 800 base pair product of the 5' portion of gyrA containing the QRDR. Each PCR product was then used to transform ciprofloxacin sensitive strains and, in all cases, was able to generate ciprofloxacin resistant colonies at high frequencies. Therefore, all ciprofloxacin resistant strains generated using an 8.8 kilobasepair random library contained a mutation in the 800 base pair region containing the 5' region of gyrA.

Table 3. Susceptibilities of N. gonorrhoeae gyrA and parC mutants to a panel of quinolones

					Minimum Inhibitory Concentration '(µg/ml)	centration '(µg/ml)	- nisexoffenil	Frathromycin
			Ciprofloxacin	Trovafloxacın	Oiloxacm	Choxacui	Cultationacui	Tri demonitaria
			0:	0=	IIÒ Ö	НО	- O	
			~\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			<u></u>		
					- - - - - - -			
-			 > 		>-< >-< >-<	zz	7	
			✓	— •-			1	
Strain	gyrA genotype	parC genotype		200.0	0.008	06-12	0.001	4
N400		IM	700.0	0.002	0.008	4	0.03	2
30 5		I M	90.0	CO.O) •	49	0.25	4
GC19		S88P,E91K	4 6	ָרָט ָּט	0 008	06-12	0.001	2
GC23		S88P,E91K	700.0	0.000	0.03	-	0.004	2
GC10		_ × .	0.008	0.00	0.12	~~	0.008	2
GC158	S91F	A E	0.03	0.013	0,015	.255	0.002	4
GC155		1 A	0.00	0.00	0.03	-	0.004	4
GCII		⊒ £	0.000	0.00	0.00	7	0.008	2
GCS6		 * :	0.013	0.00	90.0	2	0.008	2
6C29			0.015	0.00	0.00	06-12	0.002	2-4
GC85		1.4	0.00	00.00	\$10.0	210	0.002	₩
GC87		MI	0.002	*007-700°	270.0			
		. T. C	•					
As determined using microdilubon susceptionity tests	acrodubbon sus	cepananty tests						

Amino Acid Sequence of N400 GyrA and Quinolone Resistant Mutants

114 120 I DGQ|GNFGSV H 30 60 MTDATIRHDHKFALETLPVSLEDEMRKSYLDYAMSVIVRRALPDVRDGLKPVHRRVLYAM DGLAAAAMRYTEIRMAKISHEMLADIEEETVNFGPNYDGSEHEPLVLPTRFPT_(Seq. 2)
Q
G
K I VRMAON FAMR GDSAV N F P E Y 91 VGDVI Q D HELKNNWNAAYKKS<u>AR</u> KR H Q

v

Amino Acid Sequence of Fabl and DHDPE or Triclosan Resistant Mutations

30 MGFLQGKKILITGMISERSIAYGIAKACREQGAELAFTYVVDKLEERVRKMAAELDSELV V T S V

20 S	150 LGAVRAIPNYNVMGMAKASLEAGIRFTAACLGK AIV
	~ 0
æ æ	
X	0
+	4
z	È.
ĹL.	įz,
A F N T A	∞.
S R E	-
~	9
S	∢
-	-3
0	2
FLDS LH	⋖
<u>ы </u>	34
Ω	⋖
O	∑>
W	9
<u>.,</u>	≥-
Ψ υ	> <
×	- -
A P K E A L S G D L V G	z
∢ >	Δ.
i.	-
ს ს ശ >	∢
-	~
o ⊢	>
90 A T C C T S T C S S T C S S S T S S S S S	150 G A
_	٠.
KHWDGLDG	≻ ⊐
Ω	S
٦	_
Ö	< >
_	>
5	
5	. 4
<u>-</u>	z
ت ـ	æ
Ω	Ö
∢	∞
. LL.	Σ
>	Σ
0	<u> </u>
_	~
CDVASDDEINQVFADLGI	SLPALAKAARPMMRGRNSAIVALSY
_	×
_ _	~ ~
S	نہ
∢	<
>	۵.
Ω	ب
U	S

(Seq. 3) 261 I T G E I T Y V D G G Y S I N A L S T E G N

Table 2: Neisseria gonorrhoeae strains

Strain Name	Parent	Genotype	Codon alteration	Phenotype for selection
NG-2707	N400	gyrA E62K	GAG-AAG	Clinafloxacin resistant
GC318	N400	gyrA L63Q	CTG-CAG	Clinafloxacin resistant
NG-2721	N400	gyrA L63R	CTG-CGG	Clinafloxacin resistant
NG-2711	N400	gyrA N65H	AAT-CAT	Clinafloxacin resistant
NG-2706	N400	gyrA D80G	GAC-GGC	Clinafloxacin resistant
NG-2717	N400	gyrA D80A	GAC-GCC	Clinafloxacin resistant
NG-2687	N400	gyrA S91F	TCC-TTC	Clinafloxacin resistant
GC158	N400	gytA S91C	TCC-TGC	Clinafloxacin resistant
NG-2690	N400	gyrA S91A	TCC-GCC	Clinafloxacin resistant
GC219	N400	gyrA A92P	GCA-TCA	Clinafloxacin resistant
GC291	N400	gyrA D95G	GAC-GGC	Clinafloxacin resistant
NG-2691	N400	gvrA D95A	GAC-GCC	Clinafloxacin resistant
NG-2720	N400	gyrA D95V	GAC-GGC	Clinafloxacin resistant
NG-2723	N400	gyrA D95Y	GAC-TAC	Clinafloxacin resistant
GC156	N400	gyrA D95E	GAC-GAG	Clinafloxacin resistant
NG-2698	N400	gyrA D95H	GAC-CAC	Clinafloxacin resistant
NG-2709	N400	gyrA S91F,D95G	TCC-TTC, GAC-GGC	Clinafloxacin resistant
NG-2716	N400	gyrA Q114H	CAG-CAT	Clinafloxacin resistant
NG-2719	N400	gyrA M135V	ATG-GTG	Clinafloxacin resistant
NG-2712	N400	gyrA E161G	GAA-GGA	Clinafloxacin resistant
NG-2669	N400	fabl I15V	ATT-GTT	DHDPE resistant
NG-2654	N400	fabl 120T	ATC-ACC	DHDPE resistant
NG-2651	N400	fabl G23\$	GGC-AGC	DHDPE resistant
NG-2670	N400	fabl A25V	GCC-GTC	DHDPE resistant
NG-2660	N400	fabl M51T	ATG-ACG	DHDPE resistant
NG-2641	N400	fabl S91T	TCC-ATC	DHDPE resistant
NG-2639	N400	fabl D86D, G93A	GAC-GAT, GGC-GCG	DHDPE resistant
NG-2638	N400	fabl G93S	GGC-AGC	DHDPE resistant
NG-2640	N400	fabl G93C	GGC-TGC	DHDPE resistant
NG-2648	N400	fabl G93V	GGC-GTC	DHDPE resistant
NG-2657	N400	fabl A95T	GCG-ACG	DHDPE resistant
NG-2656	N400	fabl A99G	GCC-GGC	DHDPE resistant
NG-2653	N400	fabl F104V	TTC-GTC	DHDPE resistant
NG-2658	N400	fabl L105H	CTC-CAC	DHDPE resistant
NG-2663	N400	fabl A144V	GCC-GTC	DHDPE resistant
NG-2642	N400	fabl Y147H	TAC-CAC	DHDPE resistant
NG-2671	N400	fabl G149A	GGC-GCC	DHDPE resistant
NG-2652	N400	fabl V159A	GTG-GCG	DHDPE resistant
NG-2661	N400	fabl M160I	ATG-ATA	DHDPE resistant
NG-2644	N400	fabl M162V	ATG-GTG	DHDPE resistant
NG-2667	N400	fabl 1193V, Q5Q	CAA-CAG, ATC-GTC	DHDPE resistant
NG-2665	N400	fabl 1193N	ATC-AAC	DHDPE resistant
NG-2655	N400	fabl T195S	ACG-TCG	DHDPE resistant
NG-2643	N400	fabl 1201V	ATC-GTC	DHDPE resistant
NG-2666	N400	fabl D203V	GAT-GTT	DHDPE resistant
NG-2664	N400	fabl D203Y	GAT-TAT	DHDPE resistant
NG-2647	N400	fabl F204A	TTC-GCG	DHDPE resistant
NG-2646	N400	fabl F204L	TTC-TTG	DHDPE resistant
NG-2650	N400	fabl F204S	TTC-TCC	DHDPE resistant
NG-2649	N400	fabl F2041	TTC-ATC	DHDPE resistant
NG-2645	N400	fabl F204H	TTC-CAC	DHDPE resistant
NG-2659	N400	fabl A212T	GCC-ACC	DHDPE resistant
NG-2662	N400	fabl A212V	GCC-GTC	DHDPE resistant
NG-2672	N400	fabl Y247N	TAT-AAT	Triclosan resistant

generate the library of DNA fragments used in the transformation that created mutant strain. Once the mutation has been mapped to a reasonable sized portion of the chromosome, for example less than 3 kilobasepairs, using an iterative process of primer design, PCR amplification, transformation and selection of bacteria with altered susceptibility to the chemical, the DNA from the region of the mutant that carries the mutation can be sequenced. In this manner the mutation responsible for the altered susceptibility can be identified. From this the gene or genes involved in the mechanism by which the chemical affects the growth of the bacteria are identified.

10

15

20

5

This system can also be used to identify mutations in a bacterial chromosome that have been generated by other means and result in a phenotypic alteration. Examples of this are 1) strains carrying extra-chromosomal elements that result in a detectable phenotype, such as loss of virulence, fluorescence via green fluorescence protein (GFP) or resistance to an antibacterial compound; or 2) mutant strains containing point mutations that result in resistance to antibacterial compounds with known or unknown targets. In the former case, PCR products containing the entire genome can be systematically subjected to in vitro mutagenesis where any external fragment of DNA can be randomly inserted into the PCR product using the GPS system of New England Biolabs. The resulting PCR products can then be transformed into the wild-type strain, the extrachromosomal material recombined onto the chromosome, and mutants containing the desired phenotype identified and isolated. In the latter case, resistant mutants can be generated using chemical means such as ethylenemethane sulfonate, DNAdamaging agents such as UV irradiation, or simply by isolating spontaneous mutants that grow on plates containing a concentration of the chemical compound that prevents growth of the parent strain. Once a strain carrying the detectable phenotype has been generated, PCR of the entire chromosome of the mutant organism in defined regions can be performed and the location of the mutation

30

identified as described above.

25

This invention allows one to identify genes and gene products that can be mutated and result in an altered phenotype such as changing an organism's susceptibility to a particular chemical. This can be done without any prior information about where in the chromosome such mutations would have to occur

Table 3. Susceptibilities of N. gonorrhoeae gyrA and parC mutants to a panel of quinolones

					Minimum Inhibitory Concentration '(µg/ml)	ncentration '(µg/ml)	l nizevoltenil	Forthromycin
-			Ciprofloxacin	Trovafloxacin	Oiloxacm	Enoxacu	CENTATIONACEIL	ביו את היווי אינוי
			0 0	0=	110 0	HÓ Ö	но о	
			~ ~ ~ <u>~</u>	**************************************	₹	- K	**************************************	
			• }_ }_	へ く く く く く く く く く と と と と と と と と と と		;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	- - - -	
					\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	7 2 2	- - - - - - - - - - - - - - - - - - -	
-			~ ~ -z	>- -	~ ~ ~ ~		- ∇ 5	
	400000	and genotine	7					
	4 genotype	part gellotype	2000	6000	0.008	.0612	0.001	4
	WI	- ×	0.002	200.0	30.0		0.03	2
8S SU	91F,D95G	S91F,D95G WT	90.0	0.03	67.0	73	20:0	4
	91F, D95G	S88P,E91K	4	4	× ;	***	67:0	
		S88P F91K	0.002	0.002	0.008	7100.	0.001	۷ (
	7100	TA A	0 008	0.008	0.03		0.004	7
	2714	1/11	0.03	0.015	0.12	7	0.008	2
	591F	- t	6.60	0000	0.015	.255	0.002	4
	Selc	I M	0.004	0000	0.03	_	0.004	4
	D95A	M	0.008	0.000	50.0	٠, ٢	8000	2
	D95G	L _M	0.015	0.008	900	4 (8000	,
	D95H	M	0.015	0.008	0.00	7	800.0	, ,
	1/07	L/A	0 00	0.004	800.0	.0612	0.002	. -7
	756	: :	2000	002-004	0.015	0.12	0.002	•
	MIOUA	W.I.	0.002	100-200				
		of March and						
'As determined using microdilution susceptibility tests	duthon susc	ephonary tests						

Generation of the PCR Product Containing site-specific gyrA Mutations

A 480 bp gyrA PCR product was generated using primers A (5'-GTCCGCCATGGCAGGTTTCTCGACAAAC-3') (Seq. 4) and B (5'-CATACGGACGATGGTGCCGTAAACTGCGAAATCGCCGTGGGGGTG-3') (Seq. 5) (altered restriction sites underlined). A 570 bp gyrA PCR product that overlaps the other gyrA product was generated using primers C (5'-CACCCCACGGCGATTTCGCAGTTTACGGCACCATCGTCCGTATG-3') (Seq. 6) and D (5-CAACTTGAATTCGTTGACCTGATAGGG-3') (Seq. 7). The resulting PCR products were purified and combined with primers A and D in a PCR reaction to produce a 1050 bp fragment (called the gyrA SD-FG PCR product) containing the desired gyrA mutations.

Generation of Quinolone Resistance Determining Region Random Library

A 800 bp PCR product containing the first 600 bp of gyrA from N. gonorrhoeae was amplified using the oligonucleotides GC gyrA 5' NcoI (5'-GTCCGCCATGGCAGGTTTCTCGACAAAC -3') (Seq. 8) and GC gyrA 3' HindIII (5-CCCAAGCTTGATGGTGTCGGTGAGGTTG-3') (Seq. 9) (mutant residues in bold, restriction enzymes sites underlined). The resulting fragment and pAlterEX-2 (Promega) were digested with NcoI and HindIII, and ligated to create pAlt-gyrA.

20

25

15

5

10.

To generate a pool of random insertions isolated to the *gyrA* QRDR (coding for residues 88-103), the oligonucletide GC gyrA-random (5'-cacggcgattccgcagtttacgacacAatcgtccgtatggcgcaaaatTTCGC-3') (Seq. 10) was synthesized by Integrated DNA Technologies (lower case nucleotides were synthesized using phosphoramidite stock solutions contaminated with 0.7% of each non-wild type phosphoramdite, underlined is destroyed XcmI site). The resulting pool of oligonucleotides contained an average of one random mutation per oligonucleotide. This 53-mer was used for site-specific mutagenesis of pAltgyrA per manufacturer's protocol (Altered Sites, Promega). To ensure all colonies resulting from the mutagenesis were not wild-type, a silent C to A mutation was generated in the primer (shown in bold) which destroyed a unique XcmI site. This allowed for all plasmids to be digested with XcmI to eliminate non-recombinant plasmids. All colonies (~4000) isolated from the mutagenesis reactions were pooled together to generate a collection of plasmids containing random single

Amino Acid Sequence of Fabl and DHDPE or Triclosan Resistant Mutations

30 MGFLQGKKILITGMISERSIAYGIAKACREQGAELAFTYVVDKLEERVRKMAAELDSELV V T S V

S S	780 X	240
# _	= 0	~
in in	<u> </u>	
4	₹	
H	∢	
Z	- .	
±- 4*	1 <u>1.</u>	
ш	=	
e £	Ð	
6	₹	
. s	7	
Ω	ω	
7 T T H	∢.	
F 7	×	
9	∑>	
w	Ö	
L	Σ	
E & D	~ ~	
×	>-	
Δ,	Z	
∢ >	<u>~</u>	
_ o o ∞ >	∢	
_	æ	
4 S T	>	c
96 H >	150 G A	210
1	<u>۔</u>	
0	⊁ #	
1	<u></u>	
Ö	<>	
٥/	>	
× =	- ∢	
×	S	
Ö	z	
7 (ez 15	
A I	~	
tr.	Σ	
>	Σ	
z	<u>κ</u>	
_	∢	
in .	∢	
0 0	×	
S I	1	
∢	<	
>	٩	
ر 1	S L	
90 FRCDVASDDEINQVFADLGKHWDGLDGLVHSIGFAPKEALSGDFLDSISREAFNTAHEIS T C V G LH S V	180 AYSLPALAKAARPMMRGRNSAIVALSYLGAVRAIPNYNYMGMAKASLEAGIRFTAACLGK AI V	
124	∢	

210
EGIRCNGISAGPIKTLAASGIADFGKLLGHVAAHNPLRRNVTIEEVGNTAAFLLSDLSSG
N S V YS T
V VL (Seq. 3) 261 I T G E I T Y V D G G Y S I N A L S T E G N Generation of DHDPE resistant Fabl mutants

Random mutations in *fabI* were generated as described previously (Kok et al.) using the PCR product generated with Gc7 (5'-GGAATTCCATATGCGTAT TTGAAACGTCCAATGCC-3') (Seq. 13) and Gc8 (5'-

GCACCTGCAGCAATGCGG TAC-3') (Seq. 14) using 10 ng N400 genomic DNA as template. PCR reactions were performed with either Taq polymerase (GIBCO-BRL) or the XL PCR kit (Perkin-Elmer). Ten independent PCR reactions were performed using each polymerase with the following reaction mixtures: 10µl 10x buffer (supplied with enzyme), 10 ng N400 genomic DNA as template, 20 pmoles primers, 200 µM dNTP, and either 1.5 mM MgCl₂ (for Taq) or 2.0 mM Mg(OAc)₂ (for XL PCR) (100µl final volume). The 20 reactions were pooled following 35 cycles of 95°C for 15 sec, 58°C for 30 seconds and 72°C for 1 minute. The resulting PCR products were ethanol precipitated and resuspended to 0.5 µg/ml in H₂0 for subsequent transformation of gonococcal strains.

15

5

10

N400 was transformed with mutant PCR products using either the spot transformation technique on solid media or liquid transformation as described previously. The cells were than plated on GC solid media containing 0.5, 2 or 10 µg DHDPE per ml to select for DHDPE-resistant bacteria. Isolated colonies were passaged 2 times on GC solid media to ensure homogeneity. The *fabl* alleles were PCR amplified directly from colonies using Gc7 and Gc8 and sequenced. All PCR products containing *fabl* mutations were used to transform N400 and the selection process was repeated. If the frequency of obtaining resistant mutants was at least 100-times higher than when using a PCR product generated using N400 DNA as the template it was concluded that the mutation responsible for the resistant phenotype was in *fabl*.

25

20

Generation of random library via mutagenic PCR of large regions of the chromosome

PCR primers were designed using in-house software, PRIMER, in conjunction with BIGPRIME (a modification by the Genetics Computer Group of their PRIME program to allow for products up to 25 kb). PRIMER uses the BIGPRIME program to interactively design a list of oligonucleotide pairs to

generate the library of DNA fragments used in the transformation that created mutant strain. Once the mutation has been mapped to a reasonable sized portion of the chromosome, for example less than 3 kilobasepairs, using an iterative process of primer design, PCR amplification, transformation and selection of bacteria with altered susceptibility to the chemical, the DNA from the region of the mutant that carries the mutation can be sequenced. In this manner the mutation responsible for the altered susceptibility can be identified. From this the gene or genes involved in the mechanism by which the chemical affects the growth of the bacteria are identified.

10

15

20

5

This system can also be used to identify mutations in a bacterial chromosome that have been generated by other means and result in a phenotypic alteration. Examples of this are 1) strains carrying extra-chromosomal elements that result in a detectable phenotype, such as loss of virulence, fluorescence via green fluorescence protein (GFP) or resistance to an antibacterial compound; or 2) mutant strains containing point mutations that result in resistance to antibacterial compounds with known or unknown targets. In the former case, PCR products containing the entire genome can be systematically subjected to in vitro mutagenesis where any external fragment of DNA can be randomly inserted into the PCR product using the GPS system of New England Biolabs. The resulting PCR products can then be transformed into the wild-type strain, the extrachromosomal material recombined onto the chromosome, and mutants containing the desired phenotype identified and isolated. In the latter case, resistant mutants can be generated using chemical means such as ethylenemethane sulfonate, DNAdamaging agents such as UV irradiation, or simply by isolating spontaneous mutants that grow on plates containing a concentration of the chemical compound that prevents growth of the parent strain. Once a strain carrying the detectable phenotype has been generated, PCR of the entire chromosome of the mutant organism in defined regions can be performed and the location of the mutation identified as described above.

30

25

This invention allows one to identify genes and gene products that can be mutated and result in an altered phenotype such as changing an organism's susceptibility to a particular chemical. This can be done without any prior information about where in the chromosome such mutations would have to occur

10

15

20

and the cells incubated overnight to allow for uptake and recombination of the mutant PCR products. Cells from each spot were then resuspended in 150 µL GC media and 5 µL of 10⁻¹, 10⁻², and 10⁻³ dilutions were used to inoculate 96-well plates containing 100 µL of GC-media supplemented with Isovitalex and an inhibitory concentration of the antibacterial agent. Following 2-4 days of incubation at 37°C with 5% CO₂, wells containing viable bacteria were streaked onto plain plates and individual colonies isolated.

Identification of Mutations Conferring Resistance

To identify the mutation responsible for the resistance phenotype, DNA from the resistant mutant was amplified in 12 independent reactions using primer pairs corresponding to the region containing the resistance mutation. These products were then used as donor DNAs in transformation experiments as described above, and the PCR product containing the resistance mutation was identified by its ability restore the resistance phenotype. By generating smaller PCR products (1-4 kb) which span the 8-12 kb PCR product conferring resistance, the transformation and selection process was repeated and the mutation mapped to a 1-2 kb fragment of DNA. The DNA sequence of this fragment was determined using fluorescence-dye sequencing on an ABI 377 and analyzed using the SEQUENCHER program (Genecodes). The resulting sequence was compared to the analogous region of wild-type DNA to identify any mutation(s).

Generation of the PCR Product Containing site-specific gyrA Mutations

A 480 bp gyrA PCR product was generated using primers A (5'-GTCCGCCATGGCAGGTTTCTCGACAAAC-3') (Seq. 4) and B (5'-CATACGGACGATGGCGGTAAACTGCGAAATCGCCGTGGGGGTG-3') (Seq. 5) (altered restriction sites underlined). A 570 bp gyrA PCR product that overlaps the other gyrA product was generated using primers C (5'-CACCCCACGGCGATTTCGCAGTTTACGGCACCATCGTCCGTATG-3') (Seq. 6) and D (5-CAACTTGAATTCGTTGACCTGATAGGG-3') (Seq. 7). The resulting PCR products were purified and combined with primers A and D in a PCR reaction to produce a 1050 bp fragment (called the gyrA SD-FG PCR product) containing the desired gyrA mutations.

Generation of Quinolone Resistance Determining Region Random Library

A 800 bp PCR product containing the first 600 bp of gyrA from N. gonorrhoeae was amplified using the oligonucleotides GC gyrA 5' NcoI (5'-GTCCGCCATGGCAGGTTTCTCGACAAAC -3') (Seq. 8) and GC gyrA 3' HindIII (5-CCCAAGCTTGATGGTGTGGTGAGGTTG-3') (Seq. 9) (mutant residues in bold, restriction enzymes sites underlined). The resulting fragment and pAlterEX-2 (Promega) were digested with NcoI and HindIII, and ligated to create pAlt-gyrA.

20

25

30

15

5

10.

To generate a pool of random insertions isolated to the gyrA QRDR (coding for residues 88-103), the oligonucletide GC gyrA-random (5'-cacggcgattccgcagtttacgacacAatcgtccgtatggcgcaaaatTTCGC-3') (Seq. 10) was synthesized by Integrated DNA Technologies (lower case nucleotides were synthesized using phosphoramidite stock solutions contaminated with 0.7% of each non-wild type phosphoramdite, underlined is destroyed XcmI site). The resulting pool of oligonucleotides contained an average of one random mutation per oligonucleotide. This 53-mer was used for site-specific mutagenesis of pAlt-gyrA per manufacturer's protocol (Altered Sites, Promega). To ensure all colonies resulting from the mutagenesis were not wild-type, a silent C to A mutation was generated in the primer (shown in bold) which destroyed a unique XcmI site. This allowed for all plasmids to be digested with XcmI to eliminate non-recombinant plasmids. All colonies (~4000) isolated from the mutagenesis reactions were pooled together to generate a collection of plasmids containing random single

- to His, Glu161 to Gly, Glu161 to Lys, Asn65 to His, Asp80 to Gly, and Glu62 to Lys; and
- f) using these mutants to help to understand the mechanism of action of quinolones, and other type IV topoisomerase inhibitors.
- Mutations in Neisseria gonorrhoeae GyrA associated with quinolone resistance selected from: Asp90 to Glu, Ser91 to Cys, Asp95 to His, Glu161 to Gly, Glu161 to Lys, Asn65 to His, Asp80 to Gly, and Glu62 to Lys.
 - 4. The process according to Claim 1 for identifying and characterizing drugtarget interactions.
 - 5. A process for identifying and characterizing a mechanism of action of an antibacterial compound comprising:
 - generating DNA fragments by polymerase chain reaction amplification of DNA from bacteria under conditions that allow for mutation of the fragments;
 - allowing one or more of the generated DNA fragments to be incorporated into the chromosome of a bacteria by homologous recombination; isolating the bacteria that demonstrate resistance to an antibacterial compound; and
 - identifying the mutation contained in the DNA fragment.
 - 6. A process for identifying mutations contained in the chromosome of a bacteria that results in an identifiable phenotype comprising:
 - a) generating DNA fragments by polymerase chain reaction amplification of the bacterial chromosome corresponding to regions of the bacterial chromosome which may contain a mutation;
 - b) allowing one or more of the DNA fragments to be incorporated into the chromosome of a bacteria that does not display the identifiable phenotype by homologous recombination;

20

25

Generation of DHDPE resistant Fabl mutants

Random mutations in *fabI* were generated as described previously (Kok et al.) using the PCR product generated with Gc7 (5'-GGAATTCCATATGCGTAT TTGAAACGTCCAATGCC-3') (Seq. 13) and Gc8 (5'-

GCACCTGCAGCAATGCGG TAC-3') (Seq. 14) using 10 ng N400 genomic DNA as template. PCR reactions were performed with either Taq polymerase (GIBCO-BRL) or the XL PCR kit (Perkin-Elmer). Ten independent PCR reactions were performed using each polymerase with the following reaction mixtures: 10µl 10x buffer (supplied with enzyme), 10 ng N400 genomic DNA as template, 20 pmoles primers, 200 µM dNTP, and either 1.5 mM MgCl₂ (for Taq) or 2.0 mM Mg(OAc)₂ (for XL PCR) (100µl final volume). The 20 reactions were pooled following 35 cycles of 95°C for 15 sec, 58°C for 30 seconds and 72°C for 1 minute. The resulting PCR products were ethanol precipitated and resuspended to 0.5 µg/ml in H₂0 for subsequent transformation of gonococcal strains.

15

10

5

N400 was transformed with mutant PCR products using either the spot transformation technique on solid media or liquid transformation as described previously. The cells were than plated on GC solid media containing 0.5, 2 or 10 µg DHDPE per ml to select for DHDPE-resistant bacteria. Isolated colonies were passaged 2 times on GC solid media to ensure homogeneity. The *fabl* alleles were PCR amplified directly from colonies using Gc7 and Gc8 and sequenced. All PCR products containing *fabl* mutations were used to transform N400 and the selection process was repeated. If the frequency of obtaining resistant mutants was at least 100-times higher than when using a PCR product generated using N400 DNA as the template it was concluded that the mutation responsible for the resistant phenotype was in *fabl*.

25

20

Generation of random library via mutagenic PCR of large regions of the chromosome

PCR primers were designed using in-house software, PRIMER, in conjunction with BIGPRIME (a modification by the Genetics Computer Group of their PRIME program to allow for products up to 25 kb). PRIMER uses the BIGPRIME program to interactively design a list of oligonucleotide pairs to

- 16. The process of claims 1 or 2 in which the antibacterial compound inhibits the growth or survival of the bacteria under any condition.
- 17. The process of claims 1 or 2 in which the antibacterial compound inhibits the growth or survival of the bacteria in culture.
- 18. The process of claims 1 or 2 in which the antibacterial compound inhibits the growth or survival of the bacteria in an animal host.
- 19. The process of claims 1 or 2 in which the antibacterial compound is an inhibitor of type II topoisomerases.
 - 20. The process of claims 1 or 2 in which the antibacterial compound is an inhibitor of Fabl.
 - 21. The process of claims 1 or 2 in which the antibacterial compound is an inhibitor of enzymes involved in fatty acid biosynthesis.
- The process of claim 6 in which a strain of bacteria carrying the mutation was isolated from a culture that had been treated with a chemical mutagen.
 - 23. The process of claim 6 in which a strain of bacteria carrying the mutation was isolated from a culture that had been treated with ultraviolet light.
- 24. The process of claim 6 in which a strain of bacteria carrying the mutation was isolated from a culture in which the bacteria had been subjected to a mutagenic protocol that consisted of insertion of DNA into the chromosome of the bacteria.
- 30 25. Bacteria comprising a protein in which a continguous stretch of 40 amino acids is at least 30% identical to residues 75 to 114 of the Neisseria gonorrrhoeae GyrA and the residue analogous to:

 62 is lysine or

10

15

20

and the cells incubated overnight to allow for uptake and recombination of the mutant PCR products. Cells from each spot were then resuspended in 150 µL GC media and 5 µL of 10⁻¹, 10⁻², and 10⁻³ dilutions were used to inoculate 96-well plates containing 100 µL of GC-media supplemented with Isovitalex and an inhibitory concentration of the antibacterial agent. Following 2-4 days of incubation at 37°C with 5% CO₂, wells containing viable bacteria were streaked onto plain plates and individual colonies isolated.

Identification of Mutations Conferring Resistance

To identify the mutation responsible for the resistance phenotype, DNA from the resistant mutant was amplified in 12 independent reactions using primer pairs corresponding to the region containing the resistance mutation. These products were then used as donor DNAs in transformation experiments as described above, and the PCR product containing the resistance mutation was identified by its ability restore the resistance phenotype. By generating smaller PCR products (1-4 kb) which span the 8-12 kb PCR product conferring resistance, the transformation and selection process was repeated and the mutation mapped to a 1-2 kb fragment of DNA. The DNA sequence of this fragment was determined using fluorescence-dye sequencing on an ABI 377 and analyzed using the SEQUENCHER program (Genecodes). The resulting sequence was compared to the analogous region of wild-type DNA to identify any mutation(s).

29. A protein comprising in which a contiguous stretch of 40 amino acids is at least 30% identical to residues 75 to 114 of the *Neisseria gonorrrhoeae*GyrA and the residue analogous to:

62 is lysine or

63 is arginine or glutamic acid or

65 is histidine or

135 is valine or

161 is glutamic acid or lysine or glycine.

10 30. Neisseria gonorrheae GyrA protein comprising amino acid substitutions when residue

62 is lysine, or

63 is arginine or glutamic acid, or

65 is histidine, or

15 80 is alanine or glycine, or

90 is arginine or glutamic acid, or

91 is tyrosine or alanine or cysteine, or

92 is proline, or

95 is arginine or alanine or valine or tyrosine or histidine or glycine, or

20 114 is histidine, or

135 is valine, or

161 is glutamic acid or lysine or glycine.

31. Bacteria comprising a protein that is at least 30% identical to the sequence of the Neisseria gonorrhoeae Fabl protein in which the amino acid residue corresponding to

15 is valine, or

20 is threonine, or

23 is glycine, or

30 25 is valine, or

51 is threonine, or

91 is threonine, or

93 is cysteine or serine, or

to His, Glu161 to Gly, Glu161 to Lys, Asn65 to His, Asp80 to Gly, and Glu62 to Lys; and

- f) using these mutants to help to understand the mechanism of action of quinolones, and other type IV topoisomerase inhibitors.
- Mutations in Neisseria gonorrhoeae GyrA associated with quinolone resistance selected from: Asp90 to Glu, Ser91 to Cys, Asp95 to His, Glu161 to Gly, Glu161 to Lys, Asn65 to His, Asp80 to Gly, and Glu62 to Lys.
 - 4. The process according to Claim 1 for identifying and characterizing drugtarget interactions.
 - 5. A process for identifying and characterizing a mechanism of action of an antibacterial compound comprising:

generating DNA fragments by polymerase chain reaction amplification of DNA from bacteria under conditions that allow for mutation of the fragments;

allowing one or more of the generated DNA fragments to be incorporated into the chromosome of a bacteria by homologous recombination; isolating the bacteria that demonstrate resistance to an antibacterial compound; and

identifying the mutation contained in the DNA fragment.

- 6. A process for identifying mutations contained in the chromosome of a bacteria that results in an identifiable phenotype comprising:
 - a) generating DNA fragments by polymerase chain reaction amplification of the bacterial chromosome corresponding to regions of the bacterial chromosome which may contain a mutation;
- b) allowing one or more of the DNA fragments to be incorporated into the chromosome of a bacteria that does not display the identifiable phenotype by homologous recombination:

10

15

20

		23 is glycine, or
		25 is valine, or
		51 is threonine, or
		91 is threonine, or
5		93 is cysteine or serine, or
		95 is valine, or
		104 is leucine, or
		105 is histidine, or
		144 is valine, or
10		147 is histidine, or
		159 is alanine, or
		160 is isoleucine, or
		162 is valine, or
		193 is asparagine or valine, or
15		201 is valine, or
		203 is tyrosine or valine, or
		204 is serine or leucine or isoleucine or valine, or
		212 is threonine or valine, or
		247 is asparagine.
20		
	35.	A Neisseria gonorrhoeae FabI protein comprising the amino acid
		corresponding to residue:
		15 is valine, or
		20 is threonine, or
25		23 is glycine, or
		25 is valine, or
		51 is threonine, or
		91 is threonine, or
		93 is cysteine or serine, or
30		95 is valine, or
		104 is leucine, or
		105 is histidine, or

144 is valine, or

15

- 16. The process of claims 1 or 2 in which the antibacterial compound inhibits the growth or survival of the bacteria under any condition.
- 17. The process of claims 1 or 2 in which the antibacterial compound inhibits the growth or survival of the bacteria in culture.
- 18. The process of claims 1 or 2 in which the antibacterial compound inhibits the growth or survival of the bacteria in an animal host.
- 19. The process of claims 1 or 2 in which the antibacterial compound is an inhibitor of type II topoisomerases.
 - 20. The process of claims 1 or 2 in which the antibacterial compound is an inhibitor of Fabl.
 - 21. The process of claims 1 or 2 in which the antibacterial compound is an inhibitor of enzymes involved in fatty acid biosynthesis.
 - 22. The process of claim 6 in which a strain of bacteria carrying the mutation was isolated from a culture that had been treated with a chemical mutagen.
 - 23. The process of claim 6 in which a strain of bacteria carrying the mutation was isolated from a culture that had been treated with ultraviolet light.
- 24. The process of claim 6 in which a strain of bacteria carrying the mutation was isolated from a culture in which the bacteria had been subjected to a mutagenic protocol that consisted of insertion of DNA into the chromosome of the bacteria.
- 30 25. Bacteria comprising a protein in which a continguous stretch of 40 amino acids is at least 30% identical to residues 75 to 114 of the Neisseria gonorrrhoeae GyrA and the residue analogous to:

 62 is lysine or

- 29. A protein comprising in which a contiguous stretch of 40 amino acids is at least 30% identical to residues 75 to 114 of the *Neisseria gonorrrhoeae*GyrA and the residue analogous to:
 - 62 is lysine or
- 5 63 is arginine or glutamic acid or
 - 65 is histidine or
 - 135 is valine or
 - 161 is glutamic acid or lysine or glycine.
- 10 30. Neisseria gonorrheae GyrA protein comprising amino acid substitutions when residue
 - 62 is lysine, or
 - 63 is arginine or glutamic acid, or
 - 65 is histidine, or
- 15 80 is alanine or glycine, or
 - 90 is arginine or glutamic acid, or
 - 91 is tyrosine or alanine or cysteine, or
 - 92 is proline, or
 - 95 is arginine or alanine or valine or tyrosine or histidine or glycine, or
- 20 114 is histidine, or
 - 135 is valine, or
 - 161 is glutamic acid or lysine or glycine.
- Bacteria comprising a protein that is at least 30% identical to the sequence of the *Neisseria gonorrhoeae* FabI protein in which the amino acid residue corresponding to
 - 15 is valine, or
 - 20 is threonine, or
 - 23 is glycine, or
- 30 25 is valine, or
 - 51 is threonine, or
 - 91 is threonine, or
 - 93 is cysteine or serine, or

FIG-3

		23 is glycine, or
		25 is valine, or
		51 is threonine, or
		91 is threonine, or
5		93 is cysteine or serine, or
		95 is valine, or
		104 is leucine, or
		105 is histidine, or
		144 is valine, or
10		147 is histidine, or
		159 is alanine, or
		160 is isoleucine, or
		162 is valine, or
		193 is asparagine or valine, or
15		201 is valine, or
		203 is tyrosine or valine, or
		204 is serine or leucine or isoleucine or valine, or
		212 is threonine or valine, or
		247 is asparagine.
20		
	35.	A Neisseria gonorrhoeae Fabl protein comprising the amino acid
		corresponding to residue:
		15 is valine, or
		20 is threonine, or
25		23 is glycine, or
		25 is valine, or
		51 is threonine, or
		91 is threonine, or
		93 is cysteine or serine, or
30		95 is valine, or
		104 is leucine, or
		105 is histidine, or

144 is valine, or

-1-

SEQUENCE LISTING

<110> Dunham, Steven Olson, Eric 5 <120> A MODEL SYSTEM FOR DRUG DELIVERY <130> PR.3021.001 60/105,965 DRUG DISCOVERY 10 <140> 60/105,965 <141> 1998-10-28 <160> 14 15 <170> PatentIn Ver. 2.0 <210> 1 <211> 16 <212> PRT 20 <213> Neisseria gonorrhoeae <400> 1 His Gly Asp Ser Ala Val Tyr Asp Thr Ile Val Arg Met Ala Gln Asn 25 1 5 10 15 <210> 2... 30 <211> 173 <212> PRT <213> Neisseria gonorrhoeae

FIG-1 RAPID GENERATION OF SITE-SPECIFIC CHROMOSOMAL MUTANTS

-3-

Ala Met 115 120 125 Arg Tyr Thr Glu Ile Arg Met Ala Lys Ile Ser His Glu M Leu Ala 130 135 140 10 Asp Ile Glu Glu Glu Thr Val Asn Phe Gly Pro Asn Tyr A Gly Ser 145 150 155 160 15 Glu His Glu Pro Leu Val Leu Pro Thr Arg Phe Pro Thr 165 170 <210> 3 20 <211> 261 <212> PRT <213> Neisseria gonorrhoeae	
Arg Tyr Thr Glu Ile Arg Met Ala Lys Ile Ser His Glu M Leu Ala 130 135 140 140 140 140 150 155 160 155 160 165 165 170	
Leu Ala	
130 135 140 10 Asp Ile Glu Glu Glu Thr Val Asn Phe Gly Pro Asn Tyr A Gly Ser 145 150 155 160 155 160 165 170 170 165 170	.sp
10 Asp Ile Glu Glu Glu Thr Val Asn Phe Gly Pro Asn Tyr A Gly Ser 145 160 15 Glu His Glu Pro Leu Val Leu Pro Thr Arg Phe Pro Thr 165 160 210> 3 20 <211> 261 <212> PRT	.sp
Gly Ser 145 160 15 Glu His Glu Pro Leu Val Leu Pro Thr Arg Phe Pro Thr 165 170 <210> 3 20 <211> 261 <212> PRT	.sp
145 160 15 Glu His Glu Pro Leu Val Leu Pro Thr Arg Phe Pro Thr 165 170 <210> 3 20 <211> 261 <212> PRT	
160 15 Glu His Glu Pro Leu Val Leu Pro Thr Arg Phe Pro Thr 165 170 <210> 3 20 <211> 261	
15 Glu His Glu Pro Leu Val Leu Pro Thr Arg Phe Pro Thr 165 170 <210> 3 20 <211> 261	
165 170 <210> 3 20 <211> 261	
165 170 <210> 3 20 <211> 261	
<210> 3 20 <211> 261 <212> PRT	
20 <211> 261 <212> PRT	
<212> PRT	
·	
<213> Neisseria gonorrhoeae	
<400> 3	
25 Met Gly Phe Leu Gln Gly Lys Lys Ile Leu Ile Thr Gly M	et
Ile Ser	
1 5 10	
15	
30 Glu Arg Ser Ile Ala Tyr Gly Ile Ala Lys Ala Cys Arg G	
Gln Gly	lu
20 25	lu

FIG-3

	Leu	Ser	Tyr	Leu	Gly	Ala	Val	Arg	Ala	Ile	Pro	Asn	Tyr	Asn
	Val	Met	-											
	145					150					155			
	160													
5														
	Gly	Met	Ala	Lys	Ala	Ser	Leu	Glu	Ala	Gly	Ile	Arg	Phe	Thr
	Ala	Ala												
-					165					170				
	175													
10														
	Cys	Leu	Gly	Lys	Glu	Gly	Ile	Arg	Cys	Asn	Gly	Ile	Ser	Ala
	Gly	Pro												
			:	180					185					190
15			Thr	Leu	Ala	Ala	Ser	Gly	Ile	Ala	Asp	Phe	Gly	Lys
	Leu	Leu												
			195	 				200					205	
	6 1		** 3	- 3			_	_						
20			Val	Ala	Ala	His	Asn	Pro	Leu	Arg	Arg	Asn	Val	Thr
20	тте	Glu					015							
		210					215					220		
	Glu	Val	Glv	Asn	Thr	Ala	Ala	Phe	Leu	Len	Ser	Asn	T.em	Ser
		Gly	•							200		1100	Deu	501
25	225	-				230					235			
	240													
							-							
	Ile	Thr	Gly	Glu	Ile	Thr	Tyr	Val	Asp	Gly	Gly	Tyr	Ser	Ile
		Ala					-		•	_		_	_ _	
30			•		245					250				
	255													

-1-

SEQUENCE LISTING

```
<110> Dunham, Steven
             Olson, Eric
5
      <120> A MODEL SYSTEM FOR DRUG DELIVERY
      <130> PR.3021.001 60/105,965 DRUG DISCOVERY
10
     <140> 60/105,965
      <141> 1998-10-28
      <160> 14
15
     <170> PatentIn Ver. 2.0
      <210> 1
      <211> 16
      <212> PRT
20
      <213> Neisseria gonorrhoeae
      <400> 1
      His Gly Asp Ser Ala Val Tyr Asp Thr Ile Val Arg Met Ala
      Gln Asn
25
        1
                         5
                                             10
       15
      <210> 2.
30
      <211> 173
      <212> PRT
      <213> Neisseria gonorrhoeae
```

```
<211> 27
       <212> DNA
       <213> Neisseria gonorrhoeae
5
      <400> 7
      caacttgaat tcgttgacct gataggg
      27
      <210> 8
10
      <211> 28
      <212> DNA
      <213> Neisseria gonorrhoeae
      <400> 8
15
      gtccgccatg gcaggtttct cgacaaac
      28
      <210> 9
      <211> 28
20
      <212> DNA
      <213> Neisseria gonorrhoeae
      <400> 9
      cccaagcttg atggtgtcgg tgaggttg
25
      28
      <210> 10
      <211> 53
      <212> DNA
30
      <213> Neisseria gonorrhoeae
      <400> 10
```

	Gly	Gln	Gly	Asn	Phe	Gly	Ser	Val	Asp	Gly	Leu	Ala	Ala	Ala
	Ala													
			115					120					125	
5				 										
	Arg	Tyr	Thr	Ģlu	Ile	Arg	Met	Ala	Lys	Ile	Ser	His	Glu	Met
	Leu	Ala												
		130					135					140		
				<u> </u> 										
10	Asp	Ile	Glu	Glu	Glu	Thr	Val	Asn	Phe	Gly	Pro	Asn	Tyr	Asp
	Gly	Ser												
	145			 		150					155			
	160													
				 - 					•	,				
15	Glu	His	Glu	Pro		Val	Leu	Pro	Thr	Arg	Phe	Pro	Thr	
				i 	165					170				
	~21 0													
20	<210		5 1	i 					•					
20		.> 26 ?> PF		 										
			ci eisse	 	~~~	, anah a								
	\212	> 146	:1226	 Tra	gone	OT T.IIC	oeae							
	<400)> 3		! 										
25			Phe	Leu	Gln	Glv	T.VS	T.vc	Tle	Lou	Tlo	Thr	C1	Met
	Ile			. .	31 11	Cry	цуз	цуз	116	пеп	TIE	1111	GIY	Met
	1				5					10				
	15			 -						10				
30	Glu	Arg	Ser	Ile	Ala	Tyr	Gly	Ile	Ala	Lvs	Ala	Cvs	Ara	Glu
	Gln			 		_	-		_			- 1 0	9	
				20					25					30

-9-

<212> DNA

<213> Neisseria gonorrhoeae

<400> 14

5 gcacctgcag caatgcggta c

	T 011	Sor	Ф	Ton	C1	70.7	17- 7	7)	7 . 7	T 3.	5	_	_	_
			ıyı	теп	GIĀ	Ala	vai	Arg	Ala	TTE	Pro	Asn	Tyr	Asn
	Val	мег	1	0.		150								
	145					150					155			
	160													
5														
	Gly	Met	Ala	Lys	Ala	Ser	Leu	Glu	Ala	Gly	Ile	Arg	Phe	Thr
	Ala	Ala	!											
					165					170				
	175													
10			1											
	Cys	Leu	Gly	Lys	Glu	Gly	Ile	Arg	Cys	Asn	Gly	Ile	Ser	Ala
	Gly	Pro												
				180					185					190
15	Ile	Lys	Thr	Leu	Ala	Ala	Ser	Gly	Ile	Ala	Asp	Phe	Gly	Lys
	Leu													
			195					200					205	
	Gly	His	Val	Ala	Ala	His	Asn	Pro	Leu	Arg	Arg	Asn	Val	Thr
20	Ile		ļ								_			
		210					215					220		
			ļ											
	Glu	Val	Gly	Asn	Thr	Ala	Ala	Phe	Leu	Len	Ser	Asp	T.e.ii	Ser
	Ser											-101	Dea	001
25	225	_	İ			230					235			
	240										233			
			į											
	Ile	Thr	G] v	Glu	Tle	Thr	ጥ _ህ ۍ	V≥1	Aen	Gl v	Gl v	П∽	C ~ ~	T1-
	Asn		2 - 2	- 210		T 11T	* A T	vaı	voh	GTĀ	отХ	ıyr	ser	тте
30					245					250				
- •	255				275					250				
	200													

INTERNATIONAL SEARCH REPORT

Int. ional Application No PCT/US 99/22118

			· · · · · · · · · · · · · · · · · · ·				
A. CLASSI IPC 7	FICATION OF SUBJECT MATTER C1201/68 C07K14/22 C12N15/10 C12Q1/18	C07K14/245 C12R1/19	C12R1/36				
According to	International Patent Classification (IPC) or to both r	ational classification and IPC					
	SEARCHED -	and a decomposition and a					
Minimum do IPC 7	cumentation searched (classification system follows C120 C07K C12N C12R	d by classification symbols)					
Documentat	ion searched other than minimum documentation to	he extent that such documents are included i	n the fields searched				
Electronic d	ata base consulted during the international search (arne of data base and, where practical, search	ch terms used)				
			2				
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT						
Category °	Citation of document, with indication, where appro	priate, of the relevant passages	Relevant to claim No.				
Х	DEGUCHI T ET AL.: "Quine Neisseria gonorrhoeae: Calterations in the gyrA gyrase and the parC subutopoisomerase IV with an susceptibility profiles" ANTIMICROBIAL AGENTS AND vol. 40, no. 4, 1996, par XP000870143	orrelation of subunit of DNA nit of cimicrobial CHEMOTHERAPY.	27,28, 30,32				
Y	cited in the application * see especially table 1 the whole document 	and fig. 1 * -/	1,2,4-6, 8-11,15, 22,36				
X Furt	her documents are listed in the continuation of box (Σ Patent family memb	pers are listed in annex.				
"A" docum consider "E" earlier of filing of "L" docume which citatio "O" docume other "P" docume later ti	ent which may throw doubts on priority claim(s) or is cited to establish the publication date of another n or other special reason (as specified) ent referring to an oral disclosure, use, exhibition or means ent published prior to the international filling date but an the priority date claimed	or priority date and not a cited to understand the priorition. "X" document of particular recannot be considered in involve an inventive step. "Y" document of particular recannot be considered to document is combined to ments, such combinatio in the art.	"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination beigg obvious to a person skilled				
	February 2000	Date of mailing of the int	ternational search report				
	mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL ~ 2280 HV Rijswijk	Authorized officer					
	Tel. (+31-70) 340-2040, Tx 31 651 epo nl, Fax: (+31-70) 340-3016	Knehr, M					

```
<211> 27
       <212> DNA
       <213> Neisseria gonorrhoeae
 5
      <400> 7
       caacttgaat tcgttgacct gataggg
       27
      <210> 8
10
      <211> 28
      <212> DNA
       <213> Neisseria gonorrhoeae
      <400> 8
15
      gtccgccatg gcaggtttct cgacaaac
       28
      <210> 9
      <211> 28
20
      <212> DNA
       <213> Neisseria gonorrhoeae
      <400> 9
       cccaagcttg atggtgtcgg tgaggttg
25
      28
       <210> 10
      <211> 53
      <212> DNA
30
      <213> Neisseria gonorrhoeae
       <400> 10
```

INTERNALIONAL SEARCH REPORT

Inte .ional Application No PCT/US 99/22118

	ation) DOCUMENTS CONSIDERED TO BE RELEVANT		<u> </u>
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.	•
Y	MCMURRY L M ET AL: "Triclosan targets lipid synthesis" NATURE,GB,MACMILLAN JOURNALS LTD. LONDON, vol. 394, no. 394, 6 August 1998 (1998-08-06), pages 531-532-532, XP002108567 ISSN: 0028-0836 cited in the application the whole document	5,6,8,9, 14,15, 20-22, 24,36	
A .	DEGUCHI T ET AL.: "DNA gyrase mutations in quinolone-resistant clinical isolates of Neisseria gonorrhoeae" ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, vol. 39, no. 2, 1995, pages 561-563, XP000870151 cited in the application the whole document		
A	WEIGEL L ET AL: "GyrA mutations associated with fluoroquinolone resistance in eight species of enterobacteriaceae" ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, US, AMERICAN SOCIETY FOR MICROBIOLOGY, WASHINGTON, DC, vol. 42, no. 10, October 1998 (1998-10), pages 2661-2667-67, XP002118443 ISSN: 0066-4804 the whole document		
A	EP 0 688 873 A (BAYER AG) 27 December 1995 (1995-12-27) the whole document		
Ρ,Χ	HEATH R J: "Broad spectrum antimicrobial biocides target the FabI component of fatty acid synthesis" JOURNAL OF BIOLOGICAL CHEMISTRY, US, AMERICAN SOCIETY OF BIOLOGICAL CHEMISTS, BALTIMORE, MD, vol. 273, no. 46, 13 November 1998 (1998-11-13), pages 30316-30320-30320, XP002108571 ISSN: 0021-9258	31,34	
Ρ,Υ	* see especially page 30318, column 2, paragraph 2 * the whole document/	5,6,9, 13-15, 20,35	6

WO 00/24932 PCT/US99/22118

-9-

<400> 14

5 gcacctgcag caatgcggta c

INTERNA JNAL SEARCH REPORT

Information on patent family members

Inte jonal Application No PCT/US 99/22118

	atent document d in search repor	t	Publication date		Patent family member(s)		Publication date
US	5686590	Α	11-11-1997	AU	690121	В	23-04-1998
				AU	6912194	Α	12-12-1994
			<u> </u>	AU	6949694	Α	12-12-1994
				CA	2162868	Α	24-11-1994
				EP	0707496	Α	24-04-1996
				JP	9501823	T	25-02-1997
				WO	9426312	Α	24-11-1994
				WO	9426765	Α	24-11-1994
EP	0826774	Α	.04-03-1998	JP	10174590	Α	30-06-1998
EP	0081078	Α	15-06-1983	US	4446230	Α	01-05-1984
				AT	44547	T	15-07-1989
				AU	566865	В	05-11-1987
				AU	8987782	Α	05-05-1983
				CA	1188239	Α	04-06-1985
		•		DK	480282	Α	01-05-1983
				ES	516958	Α	01-10-1983
				GR	77698	Α	25-09-1984
				IE	54856	В	28-02-1990
				IL	67061	Α	29-11-1985
				JP	3055104	В	22-08-1991
				JP	58126784	Α	28-07-1983
				PT	75745 	A,B	01-11-1982
ΕP	0688873	Α	27-12-1995	DE	4421901	Α	04-01-1996
				CA	2152218	Α	24-12-1995
				HU	71861	Α	28-02-1996
			1	JP	8000298	Α	09-01-1996

INTERNA'I ONAL SEARCH REPORT

Int. ional Application No PCT/US 99/22118

		i		, ,			
A. CLASSII IPC 7		7K14/22 C07K14/2 2Q1/18	45 C12R1/19	C12R1/36			
According to	International Patent Classification	in (IPC) or to both national classificat	ion and IPC				
_	SEARCHED						
Minimum do IPC 7	cumentation searched (classific C12Q C07K C12	ation system followed by classification N C12R	n symbols)				
Documentat	on searched other than minimun	n documentation to the extent that su	ch documents are included in	n the fields searched			
Electronic d	ata base consulted during the ini	ernational search (name of data bas	e and, where practical, searc	h terms used)			
	ENTS CONSIDERED TO BE RE		*				
Category ^a	Citation of document, with indic	ation, where appropriate, of the rele	vant passages	Relevant to claim No.			
X	DEGUCHI T ET A Neisseria gono alterations in gyrase and the topoisomerase susceptibility ANTIMICROBIAL vol. 40, no. 4	27,28, 30,32					
Y	XP000870143 cited in the a * see especial the whole docu	1,2,4-6, 8-11,15, 22,36					
X Furt	her documents are listed in the		/ Patent family memb	vers are listed in annex.			
° Special ca	ategories of cited documents :						
"A" docum consu "E" earlier filing "L" docum which citatic "O" docum other	ent defining the general state of t dered to be of particular relevanc document but published on or af	e ler the international riority claim(s) or on date of another ecified) a, use, exhibition or	"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention. "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone. "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination beigg obvious to a person skilled in the art.				
	actual completion of the internat	onal search	"&" document member of the	ternational search report			
	Prebruary 2000		15/02/2000				
Name and	mailing address of the ISA European Patent Office, P. NL – 2280 HV Rijswijk Tel. (+31-70) 340-2040, T Fax: (+31-70) 340-3016		Authorized officer Knehr, M				

Form PCT/ISA/210 (second sheet) (July 1992)