Типы в языках программирования Лекция 3. Простые расширения

Денис Николаевич Москвин

СП6АУ РАН

01.03.2018

План лекции

- 1 Соответствие Карри-Говарда
- 2 Простейшие расширения
- Простые расширения
- Ф Рекурсия общего вида

План лекции

- 1 Соответствие Карри-Говарда
- 2 Простейшие расширения
- Простые расширения
- 4 Рекурсия общего вида

Правила введения и удаления

Типизация

$$\begin{array}{ll} \frac{x:T\in\Gamma}{\Gamma\vdash x:T} & T-\mathrm{Var} \\ \\ \frac{\Gamma,x:T\vdash t:S}{\Gamma\vdash\lambda x:T,t:T\to S} & T-\mathrm{Abs} \\ \\ \frac{\Gamma\vdash t_1:T\to S}{\Gamma\vdash t_1\,t_2:S} & T-\mathrm{App} \end{array}$$

- Сравним дерево вывода типа для $\lambda xy.\,x$ и доказательство $P \to Q \to P^1.$
- Правила введения и удаления полезно осознавать для типов, с которыми мы имеем дело. Каковы они для Bool? Nat?

 $^{^1\}mathrm{P}$ и Q можно рассматривать как неинтерпретируемые базовые типы. $_{\equiv}$

Соответствие Карри-Говарда

 Взгляд на правила типизации, как на правила введения и удаления, дает связь с конструктивной логикой:

ЛОГИКА	ТЕОРИЯ ТИПОВ
утверждение	тип
импликация $P o Q$	тип функции $ extsf{P} o extsf{Q}$
доказательство утверждения Р	терм t типа Р
утверждения Р доказуемо	тип Р обитаем

- Вычисление на термах соответствует правилу устранения сечений, то есть упрощению доказательств.
- Соответствие Карри-Говарда имеет место не только для импликационного фрагмента пропозициональной логики.

План лекции

- Соответствие Карри-Говарда
- 2 Простейшие расширения
- Простые расширения
- 4 Рекурсия общего вида

Единичный тип

Новые синтаксические формы

Новые правила типизации

```
\Gamma \vdash \mathtt{unit} : \mathtt{Unit} \quad (T - \mathtt{Unit})
```

- unit единственный возможный результат вычисления выражения типа Unit.
- В рамках соответствия Карри-Говарда Unit рассматривается как заведомо истинное утверждение.

Последовательные вычисления

Можно ввести синтаксический сахар (производные формы):

Новые производные формы

$$t_1; t_2 \equiv (\lambda x : Unit. \ t_2)t_1$$

 $x \notin FV(t_2)$

- Оператор последовательного исполнения (sequencing notation) используется для описания последовательных вычислений при наличии встроенных эффектов.
- Семантика должна быть, конечно, энергичной.
- Чтобы не делать оговорку $x \not\in FV(t_2)$ для неиспользуемой переменной x, вводят еще одну производную форму связывание-пустышку: λ : Unit. t_2 .

Последовательные вычисления как примитивы

Последовательные вычисления можно было бы ввести и через примитивы

Возможные правила вычисления

$$\frac{t_1 \longrightarrow t_1'}{t_1;t_2 \longrightarrow t_1';t_2} \quad (\mathrm{E} - \mathrm{Seq})$$

$$v; t_2 \longrightarrow t_2$$
 (E – SeqNext)

Возможные правила типизации

$$\frac{\Gamma \vdash t_1 : \mathtt{Unit} \quad \Gamma \vdash t_2 : \mathtt{T}}{\Gamma \vdash t_1; t_2 : \mathtt{T}} \quad (\mathrm{T-Seq})$$

Несложно доказать эквивалентность: и вычисление, и типизацию можно менять местами с раскрытием сокращения.

Пустой тип

Новые синтаксические формы

```
T ::= ...
Bot
```

- Тип Bot не населен: нет выражений, имеющих такой тип.
- В рамках соответствия Карри-Говарда Вот рассматривается как заведомо ложное утверждение.
- В конструктивных логиках естественно определять отрицание через Bot:

Новые производные формы

$$\neg \mathtt{T} \ \equiv \ \mathtt{T} \to \mathtt{Bot}$$

Явное приписывание типов

Новые синтаксические формы

```
t ::= ...
t as T
```

Новые правила вычисления и типизации

$$\nu \text{ as } T \longrightarrow \nu$$

$$\frac{t \longrightarrow t'}{t \text{ as } T \longrightarrow t' \text{ as } T} \quad (E - Ascribe1)$$

$$\frac{\Gamma \vdash t : T}{\Gamma \vdash t \text{ as } T : T} \quad (T - Ascribe)$$

 Служит для целей документации, обслуживания механизма синонимов типов и конкретизации в системах, в которых у терма может быть несколько типов.

Явное приписывание типов как синтаксический сахар

• Можно ли реализовать явное приписывание типов, как синтаксический сахар?

Явное приписывание типов как синтаксический сахар

 Можно ли реализовать явное приписывание типов, как синтаксический сахар? Да:

Новые производные формы

$$t \text{ as } T \equiv (\lambda x : T. x)t$$

- При этом вычислительные правила (E Ascribe) и (E Ascribe1) выполняются (для энергичной семантики).
- А можно ли «засахарить» «энергичное» стирание:

Альтернативное правило вычисления

$$\frac{t \longrightarrow t'}{t \text{ as } T \longrightarrow t'} \quad (E - Ascribe1A)$$

• Самостоятельно.

Связывание let

Новые синтаксические формы

Новые правила вычисления и типизации

let
$$x = v$$
 in $t \longrightarrow [x \mapsto v]t$ (E-LetV)

$$\frac{t_1 \longrightarrow t_1'}{\text{let } x = t_1 \text{ in } t_2 \ \longrightarrow \ \text{let } x = t_1' \text{ in } t_2} \quad (\text{E-Let})$$

$$\frac{\Gamma \vdash t_1 : T \quad \Gamma, x : T \vdash t_2 : S}{\Gamma \vdash \text{let } x = t_1 \text{ in } t_2 : S}$$
 (T-Let)

Связывание let как синтаксический сахар

Связывание 1et можно определить как производную форму:

let
$$x = t_1$$
 in $t_2 \equiv (\lambda x : T_1 . t_2)t_1$

- Однако это потребует реконструкции типа при трансляции.
- В простых полиморфных системах это позволяет несколько увеличить «мощность» полиморфизма, поэтому let часто вводят как примитив.
- А почему бы не ввести вычислительное правило: let $x = t_1$ in $t_2 \longrightarrow [x \mapsto t_1]t_2$?

План лекции

- 1 Соответствие Карри-Говарда
- 2 Простейшие расширения
- ③ Простые расширения
- 4 Рекурсия общего вида

Пары: синтаксис

Новые синтаксические формы

Пары: вычисления

Новые правила вычисления

$$\{\nu_1,\nu_2\}.1 \ \longrightarrow \ \nu_1 \qquad (\mathrm{E-PairBeta1})$$

$$\{\nu_1,\nu_2\}.2 \ \longrightarrow \ \nu_2 \qquad (\mathrm{E-PairBeta2})$$

$$\frac{t\longrightarrow t'}{t.1\longrightarrow t'.1} \hspace{1cm} (\text{E-Proj1})$$

$$\frac{\mathsf{t} \longrightarrow \mathsf{t}'}{\mathsf{t}.2 \longrightarrow \mathsf{t}'.2} \tag{E-Proj2}$$

$$\frac{t_1 \longrightarrow t_1'}{\{t_1,t_2\} \longrightarrow \{t_1',t_2\}} \quad (\mathrm{E-Pair1})$$

$$\frac{t_2 \longrightarrow t_2'}{\{\nu_1, t_2\} \longrightarrow \{\nu_1, t_2'\}} \quad (\mathrm{E-Pair2})$$

Пары: типизация

Новые правила типизации

$$\begin{split} &\frac{\Gamma \vdash t : T \quad \Gamma \vdash s : S}{\Gamma \vdash \{t, s\} : T \times S} \quad (T - Pair) \\ &\frac{\Gamma \vdash t : T \times S}{\Gamma \vdash t . 1 : T} \qquad (T - Proj1) \\ &\frac{\Gamma \vdash t : T \times S}{\Gamma \vdash t . 2 : S} \qquad (T - Proj2) \end{split}$$

- Какой логической связке соответствует тип пары по Карри-Говарду?
- Синтаксис пар легко обобщается до кортежей и далее до записей. В последнем случае нужно лишь добавить синтаксис для меток полей и договориться о том, учитывать или не учитывать порядок.

Пары: сопоставление с образцом

Новые синтаксические формы и категории

Правила сопоставления

$$match(x, v) = [x \mapsto v]$$
 (M – Var)

$$\frac{\text{match}(\textbf{p}_1, \textbf{v}_1) = \sigma_1 \quad \text{match}(\textbf{p}_2, \textbf{v}_2) = \sigma_2}{\text{match}(\{\textbf{p}_1, \textbf{p}_2\}, \{\textbf{v}_1, \textbf{v}_2\}) = \sigma_1 \circ \sigma_2} \quad (M - Pair)$$

Сопоставление с переменной всегда успешно, в противном случае возможна неудача: $match(\{x,y\},5)$.

A match(x,{5,true})? match({x,x},{5,true})?

Пары: сопоставление с образцом (2)

Новые правила вычисления

$$\texttt{let} \ p = \nu \ \texttt{in} \ t \ \longrightarrow \ \texttt{match}(p,\nu)t \tag{$E-$Let$V}$$

$$\frac{t_1 \longrightarrow t_1'}{\text{let } p = t_1 \text{ in } t_2 \ \longrightarrow \ \text{let } p = t_1' \text{ in } t_2} \quad (\text{E-Let})$$

Ясно, что сопоставление с образцом тоже легко расширяется на кортежи и записи.

Пары: сопоставление с образцом: типизация

Отношение типизации для образцов (\Rightarrow) порождает контекст.

Правила типизации для образцов

$$\vdash x: T \ \Rightarrow \ x: T \tag{P-Var}$$

$$\frac{\vdash p_1: T_1 \Rightarrow \Gamma_1 \quad \vdash p_2: T_2 \Rightarrow \Gamma_2}{\vdash \{p_1, p_2\}: T_1 \times T_2 \Rightarrow \Gamma_1, \Gamma_2} \quad (P - Pair)$$

Новое правило типизации

$$\frac{\Gamma \vdash t_1 : T_1 \quad \vdash p : T_1 \ \Rightarrow \Delta \quad \Gamma, \Delta \vdash t_2 : T_2}{\Gamma \vdash \texttt{let} \ p = t_1 \ \texttt{in} \ t_2 : T_2} \quad (T - Let)$$

Суммы: синтаксис

Новые синтаксические формы

```
\begin{array}{c} t ::= \dots \\ & \text{inl } t \\ & \text{inr } t \\ & \text{case } t \text{ of inl } x \Rightarrow t \text{ | inr } x \Rightarrow t \\ v ::= \dots \\ & \text{inl } v \\ & \text{inr } v \\ T ::= \dots \\ & T + T \end{array}
```

Суммы: вычисления

Новые правила вычисления

case (inl
$$\nu$$
) of inl $x_1 \Rightarrow t_1$
 $\mid \text{inr } x_2 \Rightarrow t_2 \longrightarrow [x_1 \mapsto \nu]t_1 \quad (E-CaseInl)$

case (inr
$$\nu$$
) of inl $x_1 \Rightarrow t_1$
| inr $x_2 \Rightarrow t_2$ $\longrightarrow [x_2 \mapsto \nu]t_2$ (E-CaseInr)

$$\frac{\mathsf{t} \longrightarrow \mathsf{t}'}{\mathsf{inl} \ \mathsf{t} \longrightarrow \mathsf{inl} \ \mathsf{t}'} \tag{E-Inl}$$

$$\frac{t \longrightarrow t'}{\text{inr } t \longrightarrow \text{inr } t'}$$
 (E-Inr)

Суммы: типизация

Новые правила типизации

$$\begin{split} &\frac{\Gamma \vdash t : T}{\Gamma \vdash \text{inl } t : T + S} & (T - Inl) \\ &\frac{\Gamma \vdash t : S}{\Gamma \vdash \text{inr } t : T + S} & (T - Inr) \\ &\frac{\Gamma \vdash t : T + S}{\Gamma \vdash \text{case } t \text{ of inl } x_1 \Rightarrow t_1 \mid \text{inr } x_2 \Rightarrow t_2 : R} & (T - Case) \end{split}$$

- Какой логической связке соответствует тип суммы по Карри-Говарду?
- Синтаксис суммы легко обобщается до типов-вариантов: метки полей заменяют теги inl и inr. Другое название непересекающиеся объединения (disjoint union).

Суммы: единственность типизации

- Суммы нарушают единственность типизации, которая до сих пор имела место: inl true: Bool + Nat и inl true: Bool + Bool.
- Простейшее решение обязать программиста писать конструкцию as в этом случае.
- Альтернативы оставлять другое слагаемое в типе неопределенным или описывать все допустимые для него типы единообразно.

План лекции

- 1 Соответствие Карри-Говарда
- 2 Простейшие расширения
- ③ Простые расширения
- Ф Рекурсия общего вида

Рекурсия общего вида

- Рекурсия общего вида в бестиповом исчислении определяется с помощью комбинатора неподвижной точки.
- Наиболее известен комбинатор Карри $Y = \lambda f. (\lambda x. f(x x))(\lambda x. f(x x)).$
- Однако он не годится для семантики с вызовом по значению. (Почему?)
- Для нее подходит комбинатор Плоткина $Z = \lambda f. (\lambda x. f(\lambda y. x x y))(\lambda x. f(\lambda y. x x y)).$
- Проверьте, что это (1) комбинатор неподвижной точки, (2) годный для стратегии вызова по значению.

Комбинатор fix как примитив

• Комбинатор неподвижной точки невозможно определить так, чтобы он имел допустимый тип в нашей системе. Введем его как примитив:

Новые синтаксические формы

Новые правила вычисления

$$\mathtt{fix}\ (\lambda x:\mathtt{T.}\ t) \longrightarrow [x \mapsto \mathtt{fix}\ (\lambda x:\mathtt{T.}\ t)]\ t \quad (\mathrm{E-FixBeta})$$

$$\frac{t \longrightarrow t'}{\text{fix } t \longrightarrow \text{fix } t'}$$
 (E-Fix)

Использование комбинатора fix

Пример использования fix

```
ff = \lambda ie: Nat. \rightarrow Bool.
     λx:Nat.
       if iszero x then true
       else if iszero (pred x) then false
       else ie (pred (pred x));
	riangleright ff : (Nat 	o Bool) 	o Nat 	o Bool
  iseven = fix ff;
\triangleright iseven : Nat \rightarrow Bool
  iseven 7;
▷ false : Bool
```

Типизация fix

Новое правило типизации

$$\frac{\Gamma \vdash t : T \to T}{\Gamma \vdash \text{fix } t : T} \quad (T - Fix)$$

- Тип fix: $(T \to T) \to T$ не является тавтологией пропозициональной логики; его добавление делает систему логически неконсистентной.
- Каждый тип становится населенным. Например, расходящимся термом diverge unit:

Семейство функций diverge (своя для каждого T)

```
diverge = \lambda:Unit. fix (\lambdax:T.x); \triangleright diverge : Unit \rightarrow T
```


Производная форма letrec

 Для связывания переменной с результатом рекурсивного вызова удобен синтаксический сахар:

Новая производная форма

```
letrec x:T=t_1 in t_2 \equiv let x = fix (\lambda x:T.t_1) in t_2
```

Пример использования letrec

```
letrec iseven : Nat → Bool = $\lambda x:\text{Nat.}$
if iszero x then true else if iszero (pred x) then false else iseven (pred (pred x)) in iseven 7;
$\rightarrow$ false : Bool
```