Biologicky motivované výpočtové modely

Mgr. Michal Kováč Školiteľ: doc. RNDr. Damas Gruska, PhD.

FMFI UK

17.1.2018

- Prehľad problematiky
 - Prehľad modelov
 - P systémy
- Skúmané varianty P systémov
 - Sekvenčné P systémy s inhibítormi
 - Sekvenčné P systémy s aktívnymi membránami
 - Sekvenčné P systémy s množinami namiesto multimnožín
 - Detekcia prázdnosti membrán

Biologicky motivované výpočtové modely

Dvojaké uplatnenie:

- reálne modely živých systémov
 - virtuálne biologické experimenty
 - verifikácia správnosti chápania ich činností
- modely na popis iných systémov

Biologicky motivované výpočtové modely

- Neurónové siete (od 1943)
- Celulárne automaty (od 1968)
- Evolučné algoritmy (od 1954)
- L systémy (od 1968)
- Swarm Intelligence (od 1989)
- P systémy (od 1998) [Păun, 1998]
- . . .

Membránová štruktúra

Membránová štruktúra

Multimnožiny

Membránová štruktúra

- Multimnožiny
- Pravidlá

Prepisovacie pravidlá

 $u \rightarrow v$, where

• $u \in \mathbb{N}^{\Sigma}$

Prepisovacie pravidlá

 $u \rightarrow v$, where

- $u \in \mathbb{N}^{\Sigma}$
- v = v' or $v = v'\delta$, where $\delta \notin \Sigma$
- $\bullet \ v' \in \mathbb{N}^{\Sigma \times (\{\textit{here},\textit{out}\} \cup \{\textit{in}_j | 1 \leq \textit{j} \leq \textit{m}\})}$

$$u \rightarrow v$$

ullet Kooperatívne ($u \in \mathbb{N}^{\Sigma}$) (PsRE [Păun, 1998])

 $u \rightarrow v$

- Kooperatívne $(u \in \mathbb{N}^{\Sigma})$ (PsRE [Păun, 1998])
- Nekooperatívne $(u \in \Sigma)$ (PsCF [Sburlan, 2005])

```
u \rightarrow v
```

- Kooperatívne $(u \in \mathbb{N}^{\Sigma})$ (PsRE [Păun, 1998])
- Nekooperatívne $(u \in \Sigma)$ (PsCF [Sburlan, 2005])
- Nekooperatívne s inhibítormi ($u \to v \mid_{\neg Inh}, Inh \subseteq \Sigma$) (PsET0L [lonescu and Sburlan, 2004])

```
u \rightarrow v
```

- Kooperatívne $(u \in \mathbb{N}^{\Sigma})$ (PsRE [Păun, 1998])
- Nekooperatívne $(u \in \Sigma)$ (PsCF [Sburlan, 2005])
- Nekooperatívne s inhibítormi ($u o v \mid_{\neg Inh}, Inh \subseteq \Sigma$) (PsET0L [lonescu and Sburlan, 2004])
- Katalytické ($cu \rightarrow cv, u \in \Sigma, c \in C \subseteq \Sigma$)
 - s 2 katalyzátormi (PsRE [Freund et al., 2005])
 - s 1 katalyzátorom (otvorený problém)
 - s 1 katalyzátorom a inhibítormi (PsRE [lonescu and Sburlan, 2004])

Výpočet a jazyk

- Krok výpočtu
 - Sekvenčný
 - Paralelný
 - Maximálne paralelný

Výpočet a jazyk

- Krok výpočtu
 - Sekvenčný
 - Paralelný
 - Maximálne paralelný
- Jazyk
 - Generatívny mód: postupnosť objektov vypustených do okolitého prostredia

Výpočet a jazyk

- Krok výpočtu
 - Sekvenčný
 - Paralelný
 - Maximálne paralelný
- Jazyk
 - Generatívny mód: postupnosť objektov vypustených do okolitého prostredia
 - Akceptačný mód: daná konfigurácia je akceptovaná, ak sa systém vie dostať do stavu, kde sa už nedá použiť žiadne pravidlo

Sekvenčné P systémy

Maximálny paralelizmus vs. sekvenčný mód

Sekvenčné P systémy

- Maximálny paralelizmus vs. sekvenčný mód
- Sekvenčné P systémy s kooperatívnymi pravidlami (VASS [Ibarra et al., 2005])

Sekvenčné P systémy

- Maximálny paralelizmus vs. sekvenčný mód
- Sekvenčné P systémy s kooperatívnymi pravidlami (VASS [Ibarra et al., 2005])
 - s prioritami (PsRE [Ibarra et al., 2005])
 - s aktívnymi membránami (PsRE [Ibarra et al., 2005])
 - s inhibítormi (PsRE [Kováč, 2014])

Sekvenčné P systémy s inhibítormi

 Kováč (2014). Using Inhibitors to Achieve Universality of Sequential P Systems.

In Electronic Proceedings of CiE 2014

Sekvenčné P systémy s inhibítormi Sekvenčné P systémy s aktívnymi membránami Sekvenčné P systémy s množinami namiesto multimnožín Detekcia prázdností membrán

Prehľad simulácie pre akceptačný mód

• Simulácia registrového stroja

Sekvenčné P systémy s inhibítormi Sekvenčné P systémy s aktívnymi membránami Sekvenčné P systémy s množinami namiesto multimnožín Detekcia prázdností membrán

Prehľad simulácie pre akceptačný mód

- Simulácia registrového stroja
- Obsah registra x sa reprezentuje početnosťou objektu x
- Objekt pre každú inštrukciu

Prehľad simulácie pre akceptačný mód

- Simulácia registrového stroja
- Obsah registra x sa reprezentuje početnosťou objektu x
- Objekt pre každú inštrukciu
- SUB inštrukcia sa simuluje pomocou inhibítora
 - i : SUB(x, j, k)
 - $ix \rightarrow j$
 - $i \rightarrow k|_{\neg x}$

Sekvenčné P systémy s inhibítormi Sekvenčné P systémy s aktívnymi membránami Sekvenčné P systémy s množinami namiesto multimnožín Detekcia prázdnosti membrán

Prehľad simulácie pre generatívny mód

 Simulácia maximálne paralelného P systému Π₁ pomocou sekvenčného P systému s inhibítormi Π₂.

Prehľad simulácie pre generatívny mód

- Simulácia maximálne paralelného P systému Π_1 pomocou sekvenčného P systému s inhibítormi Π_2 .
- Každý maximálne paralelný krok Π₁ simulujeme sekvenčnými krokmi Π₂.

Prehľad simulácie pre generatívny mód

- Simulácia maximálne paralelného P systému Π₁ pomocou sekvenčného P systému s inhibítormi Π₂.
- Každý maximálne paralelný krok Π₁ simulujeme sekvenčnými krokmi Π₂.
- Produkty si označujeme, aby neboli použité, kým neskončí daný maximálne paralelný krok.

Prehľad simulácie pre generatívny mód

- Simulácia maximálne paralelného P systému Π₁ pomocou sekvenčného P systému s inhibítormi Π₂.
- Každý maximálne paralelný krok Π₁ simulujeme sekvenčnými krokmi Π₂.
- Produkty si označujeme, aby neboli použité, kým neskončí daný maximálne paralelný krok.
- Pomocou inhibítorov zistíme moment, kedy sa už v Π₂ nedá aplikovať žiadne pravidlo, aby sa mohol simulovať ďalší maximálne paralelný krok.

Sekvenčné P systémy s aktívnymi membránami

 Bez limitu počtu aplikovaní pravidla na vytvorenie membrány (RE [Ibarra, 2005])

Sekvenčné P systémy s aktívnymi membránami

- Bez limitu počtu aplikovaní pravidla na vytvorenie membrány (RE [Ibarra, 2005])
- Kováč, M. (2015). Decidability of termination problems for sequential p systems with active membranes.
 In Beckmann, A., Mitrana, V., and Soskova, M., editors, Evolving Computability, volume 9136 of Lecture Notes in Computer Science, pages 236–245. Springer International Publishing

Sekvenčné P systémy s inhibitormi Sekvenčné P systémy s aktívnymi membránami Sekvenčné P systémy s množinami namiesto multimnožín Detekcia prázdností membrán

Problém zastavenia

Problém zastavenia je definovaný pre deterministické modely

Problém zastavenia

- Problém zastavenia je definovaný pre deterministické modely
- Zovšeobecnenie: Existencia (ne)konečného výpočtu

Sekvenčné P systémy s inhibitormi
Sekvenčné P systémy s aktívnymi membránami
Sekvenčné P systémy s množinami namiesto multimnožín
Detekcia prázdnosti membrán

Existencia nekonečného výpočtu

Graf dosiahnuteľnosti

Existencia nekonečného výpočtu

- Graf dosiahnuteľnosti
- Čiastočné usporiadanie ≤:
 - $C_1 \leq C_2 \Rightarrow$ každé pravidlo v C_1 je aplikovateľné v C_2 .

Existencia nekonečného výpočtu

- Graf dosiahnuteľnosti
- Čiastočné usporiadanie ≤:
 - $C_1 \leq C_2 \Rightarrow$ každé pravidlo v C_1 je aplikovateľné v C_2 .
 - Pre každú nekonečnú postupnosť konfigurácií existuje C_1, C_2 : $C_1 \to^* C_2$ a $C_1 \le C_2$.

Existencia nekonečného výpočtu

- Graf dosiahnuteľnosti
- Čiastočné usporiadanie ≤:
 - $C_1 \leq C_2 \Rightarrow$ každé pravidlo v C_1 je aplikovateľné v C_2 .
 - Pre každú nekonečnú postupnosť konfigurácií existuje C_1, C_2 : $C_1 \to^* C_2$ a $C_1 \le C_2$.
- Dicksonova lemma: Pre každú nekonečnú postupnosť n-tíc nad \mathbb{N} $\{a_i\}_{i=0}^{\infty}$ existujú i < j: $a_i \le a_j$

Algoritmus rozhodujúci existenciu nekonečného výpočtu

- Traverzuj graf dosiahnuteľnosti
- Dosiahnutá konfigurácia C₂, taká, že na ceste z počiatočnej konfigurácie existuje C₁ ≤ C₂ ⇒ YES.
- Ak traverzovanie skončilo ⇒ NO.

Existencia konečného výpočtu

 Pre daný P systém Π a danú konfiguráciu C vieme zostrojiť P systém Π' : ∃ konečný výpočet Π' ⇔ C je dosiahnuteľná v Π.

Sekvenčné P systémy s množinami namiesto multimnožín

 Kováč and Gruska (2015). Sequential p systems with active membranes working on sets.

In Zbigniew Suraj, L. C., editor, *Proceedings of the 24th International Workshop on Concurrency, Specification and Programming*, pages 247–257

Nevýhody používania multimnožín

- Nakoľko realistické je reprezentovať presný počet objektov?
- Nepraktická analýza kvôli veľkosti stavového priestoru

Sekvenčné P systémy s inhibitormi Sekvenčné P systémy s aktívnymi membránami Sekvenčné P systémy s množinami namiesto multimnožín Detekcia prázdnosti membrán

P systémy s množinami objektov

• Alhazov [Alhazov, 2006]: počty objektov sa ignorujú

- Alhazov [Alhazov, 2006]: počty objektov sa ignorujú
 - Maximálny paralelizmus ⇒ determinizmus.

- Alhazov [Alhazov, 2006]: počty objektov sa ignorujú
 - Maximálny paralelizmus ⇒ determinizmus.
 - Ekvivalencia s konečnostavovými automatmi.

- Alhazov [Alhazov, 2006]: počty objektov sa ignorujú
 - Maximálny paralelizmus ⇒ determinizmus.
 - Ekvivalencia s konečnostavovými automatmi.
 - S aktívnymi membránami je model univerzálny.

- Alhazov [Alhazov, 2006]: počty objektov sa ignorujú
 - Maximálny paralelizmus ⇒ determinizmus.
 - Ekvivalencia s konečnostavovými automatmi.
 - S aktívnymi membránami je model univerzálny.
- Kleijn, Koutny [Kleijn and Koutny, 2011]: "min-enabled" computational step (= sekvenčný mód)

- Alhazov [Alhazov, 2006]: počty objektov sa ignorujú
 - Maximálny paralelizmus ⇒ determinizmus.
 - Ekvivalencia s konečnostavovými automatmi.
 - S aktívnymi membránami je model univerzálny.
- Kleijn, Koutny [Kleijn and Koutny, 2011]: "min-enabled" computational step (= sekvenčný mód)
 - Ekvivalencia s konečnostavovými automatmi.

- Alhazov [Alhazov, 2006]: počty objektov sa ignorujú
 - Maximálny paralelizmus ⇒ determinizmus.
 - Ekvivalencia s konečnostavovými automatmi.
 - S aktívnymi membránami je model univerzálny.
- Kleijn, Koutny [Kleijn and Koutny, 2011]: "min-enabled" computational step (= sekvenčný mód)
 - Ekvivalencia s konečnostavovými automatmi.
- Vlastnosti:
 - Pravidlá bez konfliktu (objekty sa môžu zúčastniť ako reaktanty súčasne vo viacerých pravidlách).
 - Ak je objekt použitý aspoň v jednom pravidle ako reaktant, bude spotrebovaný.

Sekvenčné P systémy s množinami objektov a aktívnymi membránami

•
$$\Pi = (\Sigma, C_0, R_1, \dots R_m)$$

Sekvenčné P systémy s množinami objektov a aktívnymi membránami

•
$$\Pi = (\Sigma, C_0, R_1, \dots R_m)$$

•
$$C = (T, I, c)$$

•
$$I:V(T) \rightarrow \{1,\ldots,m\}$$

•
$$c:V(T)\to 2^{\Sigma}$$

Sekvenčné P systémy s množinami objektov a aktívnymi membránami

- $\bullet \ \Pi = (\Sigma, C_0, R_1, \dots R_m)$
- C = (T, I, c)• $I : V(T) \to \{1, ..., m\}$
 - $c:V(T)\to 2^{\Sigma}$
- Pravidlá
 - $u \rightarrow w$
 - $u \rightarrow w\delta$
 - $u \to [jv_1]_j v_2$, kde $u \in \Sigma, |u| \ge 1, v_1, v_2 \in \mathbb{N}$ a $w \in (\Sigma \times \{\cdot, \uparrow, \downarrow_j\})$

Iné spôsoby vytvárania membrány

- Problémy pôvodnej definície:
 - Vytváranie membrány, ktorá už existuje
 - Posielanie objektu do neexistujúcej membrány

Iné spôsoby vytvárania membrány

- Problémy pôvodnej definície:
 - Vytváranie membrány, ktorá už existuje
 - Posielanie objektu do neexistujúcej membrány
- Inject-or-create

Iné spôsoby vytvárania membrány

- Problémy pôvodnej definície:
 - Vytváranie membrány, ktorá už existuje
 - Posielanie objektu do neexistujúcej membrány
- Inject-or-create
- Wrap-or-create

	membrány	čas
original	<i>O</i> (<i>n</i>)	O(n)

	membrány	čas
original	O(n)	O(n)
original	O(log(n))	O(log(n))

	membrány	čas
original	O(n)	O(n)
original	O(log(n))	O(log(n))
inject-or-create	O(log(n))	O(log(n))

	membrány	čas
original	O(n)	O(n)
original	O(log(n))	O(log(n))
inject-or-create	O(log(n))	O(log(n))
wrap-or-create	O(n)	O(1)

Sekvenčne P systemy s innibitormi Sekvenčné P systémy s aktívnymi membránami Sekvenčné P systémy s množinami namiesto multimnožín Detekcia prázdnosti membrán

Detekcia prázdnosti membrán

Objekty vyhýbajúce sa prázdnym membránam

Sekvenčné P systémy s aktívnyma membránami Sekvenčné P systémy s množinami namiesto multimnožín Detekcia prázdnosti membrán

Detekcia prázdnosti membrán

- Objekty vyhýbajúce sa prázdnym membránam
- Mutovanie objektov pri poslaní do prázdnej membrány

Sekvenčné P systemy s innibitormi Sekvenčné P systémy s aktívnymi membránami Sekvenčné P systémy s množinami namiesto multimnožín Detekcja prázdnosti membrán

Detekcia prázdnosti membrán

- Objekty vyhýbajúce sa prázdnym membránam
- Mutovanie objektov pri poslaní do prázdnej membrány
- Objekt reprezetujúci vákuum

Ďakujem za pozornosť

Vyjadrenia k posudkom

 Štandardnou motiváciou pre skúmanie týchto modelov je potenciál vysokého paralelizmu. Práca je príliš zameraná na sekvenčný mód, ktorý úplne eliminuje potenciál tohto modelu.

Vyjadrenia k posudkom

- Štandardnou motiváciou pre skúmanie týchto modelov je potenciál vysokého paralelizmu. Práca je príliš zameraná na sekvenčný mód, ktorý úplne eliminuje potenciál tohto modelu.
- V práci sa hovorí o slabých rozšíreniach sekvenčných P systémov s čiastočnými výsledkami. Aký je v uvedenom smere pokrok od podania dizertácie?