Network Structures

October 16-12, 2018

Different CNN structures for image classification

- AlexNet
- Clarifai
- Overfeat
- VGG
- Network-in-network
- GoogLeNet
- ResNet

Model architecture-AlexNet Krizhevsky 2012

- 5 convolutional layers and 2 fully connected layers for learning features.
- Max-pooling layers follow first, second, and fifth convolutional layers
- The number of neurons in each layer is given by 253440, 186624, 64896, 64896, 43264, 4096, 4096, 1000
- 650000 neurons, 60000000 parameters, and 630000000 connections

(Krizhevsky NIPS 2014)

How transferable are features in CNN networks?

- (Yosinski et al. NIPS'14) investigate transferability of features by CNNs
- The transferability of features by CNN is affected by
 - Higher layer neurons are more specific to original tasks
 - Layers within a CNN network might be fragilely co-adapted
- Initializing with transferred features can improve generalization after substantial fine-tuning on a new task

Base tasks

- ImageNet are divied into two groups of 500 classes, A and B
- Two 8-layer AlexNets, baseA and baseB, are trained on the two groups, respectively

Transfer and selffer networks

- A selffer network BnB: the first n layers are copied from baseB and frozen. The other higher layers are initialized randomly and trained on dataset B. This is the control for transfer network
- A transfer network AnB: the first n layers are copied from baseA and frozen. The other higher layers are initialized randomly and trained toward dataset B

Transfer and selffer networks (cont'd)

- A selffer network BnB+: just like BnB, but where all layers learn
- A transfer network AnB+: just like AnB, but where all layers learn

Results

Dissimilar datasets

- Divide ImageNet into man-made objects A (449 classes) and natural objects B (551 classes)
- The transferability of features decreases as the distance between the base task and target task increases

Investigate components of CNNs

- Kernel size
- Kernel (channel) number
- Stride
- Dimensionality of fully connected layers
- Data augmentation
- Model averaging

Investigate components of CNNs (cont'd)

- (Chatfield et al. BMVC'14) pre-train on ImageNet and fine-tune on PASCAL VOC 2007
- Different architectures
 - ▶ mAP: CNN-S > (marginally) CNN-M > (~%2.5) CNN-F
- Different data augmentation
 - No augmentation
 - Flipping (almost no improvement)
 - ▶ Smaller dimension downsized to 256, cropping 224 \times 224 patches from the center and 4 corners, flipping (\sim 3% improvement)

Arch.	conv1	conv2	conv3	conv4	conv5	full6	full7	full8	
	64x11x11	256x5x5	256x3x3	256x3x3	256x3x3	4096	4096	1000	Fast
CNN-F	st. 4, pad 0	st. 1, pad 2	st. 1, pad 1	st. 1, pad 1	st. 1, pad 1	drop-	drop-	soft-	similar to AlexNet
	LRN, x2 pool	LRN, x2 pool	-	-	x2 pool	out	out	max	
	96x7x7	256x5x5	512x3x3	512x3x3	512x3x3	4096	4096	1000	Medium
CNN-M	st. 2, pad 0	st. 2, pad 1	st. 1, pad 1	st. 1, pad 1		drop-	drop-	soft-	similar to Clarifai model
	LRN, x2 pool	LRN, x2 pool	-	-	x2 pool	out	out	max	
	96x7x7	256x5x5	512x3x3	512x3x3	512x3x3	4096	4096	1000	Slow
CNN-S	st. 2, pad 0	st. 1 pad 1	st. 1, pad 1	st. 1, pad 1	st. 1, pad 1	drop-	drop-	soft-	similar to OverFeat
	LRN, x3 pool	x2 pool	-	-	x3 pool	out	out	max	Accurate model

Investigate components of CNNs (cont'd)

- Gray-scale vs. color (∼ 3% drop)
- Decrease the number of nodes in FC7
 - to 2048 (surprisingly, marginally better)
 - ▶ to 1024 (marginally better)
 - ▶ to 128 (~ 2% drop but 32x smaller feature)
- Change the softmax regression loss to ranking hinge loss
 - $w_c\phi(I_{pos}) > w_c\phi(I_{neg}) + 1 \xi$ (ξ is a slack variable)
 - ▶ ~ 2.7% improvement
 - \blacktriangleright Note, \mathcal{L}_2 normalising features account for $\sim 5\%$ of accuracy for VOC 2007
- On ILSVRC-2012, the CNN-S achieved a top-5 error rate of 13.1%
 - CNN-F: 16.7%CNN-M: 13.7%AlexNet: 17%

Model architecture-Clarifai

- Winner of ILSVRC 2013
- Max-pooling layers follow first, second, and fifth convolutional layers
- 11×11 to 7×7, stride 4 to 2 in 1st layer (increasing resolution of feature maps)
- Other settings are the same as AlexNet
- reduce the error by 2%.

	Error %	Val Top-1	Val Top-5	Test Top-5
Ī	(Gunji et al., 2012)	-	-	26.2
Ī	(Krizhevsky et al., 2012), 1 convnet	40.7	18.2	
ĺ	1 convnet for Clarifai	38.4	16.5	

Model architecture-Clarifai further investigation

- More maps in the convolutional layers leads to small improvement.
- Model averaging leads to improvement (random initialization).

Model architecture-Overfeat

• Less pooling and more filters (384 => 512 for conv3 and 384=>1024 for conv4/5).

 top-5 error (%)

 Clarifal
 Overfeat-5
 Overfeat-7

 Without data augmentation
 16.5
 16.97
 14.18

Model architecture-Overfeat

With data augmentation, more complex model has better performance.

-		top-5 error (%)	
_	Clarifai	Overfeat-5	Overfeat-7
With data augmentation	14.76	13.52	11.97
Without data augmentation	16.5	16.97	14.18

Model architecture-the devil of details

- CNN-F: similar to AlexNet, but less channels in conv3-5.
- CNN-S: the most complex one.
- CNN-M 2048: replace the 4096 features in fc7 by 2048 features. Makes little difference.
- Data augmentation. The input image is downsized so that the smallest dimension is equal to 256 pixels. Then 224 × 224 crops are extracted from the four corners and the centre of the image.

ILSVRC-2012	(top-5 error)
(a) Clarifai 1 ConvNet	16.0
(b) CNN F	16.7
(c) CNN M	13.7
(d) CNN M 2048	13.5
(e) CNN S	13.1

Arch.	conv1	conv2	conv3	conv4	conv5	full6	full7	full8
CNN-F	64x11x11 st. 4, pad 0 LRN, x2 pool	256x5x5 st. 1, pad 2 LRN, x2 pool	256x3x3 st. 1, pad 1	256x3x3 st. 1, pad 1	256x3x3 st. 1, pad 1 x2 pool	4096 drop- out	4096 drop- out	1000 soft- max
CNN-M	96x7x7 st. 2, pad 0 LRN, x2 pool	256x5x5 st. 2, pad 1 LRN, x2 pool	512x3x3 st. 1, pad 1	512x3x3 st. 1, pad 1	512x3x3 st. 1, pad 1 x2 pool	4096 drop- out	4096 drop- out	1000 soft- max
CNN-S	96x7x7 st. 2, pad 0 LRN, x3 pool	256x5x5 st. 1, pad 1 x2 pool	512x3x3 st. 1, pad 1	512x3x3 st. 1, pad 1	512x3x3 st. 1, pad 1 x3 pool	4096 drop- out	4096 drop- out	1000 soft- max
Clarifai	96x7x7 st. 2, LRN,x2 pool	256x5x5 st. 2, pad1 LRN,x2 pool	384x3x3 st. 1,pad1	384x3x3 st. 1,pad1		4096 drop	4096 drop	4096 drop

Model architecture-very deep CNN

- The deep model VGG in 2014.
- Apply 3 × 3 filter for all layers.
- 11 layers (A) to 19 layers (E).

			onfiguration							
A	A-LRN	B C		D	E					
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight					
layers	layers	layers	layers	layers	layers					
	i	nput (224 × 2		e)						
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64					
	LRN	conv3-64	conv3-64	conv3-64	conv3-64					
maxpool										
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128					
		conv3-128	conv3-128	conv3-128	conv3-128					
			pool							
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256					
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256					
			conv1-256	conv3-256	conv3-256					
					conv3-256					
	-		pool							
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512					
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512					
			conv1-512	conv3-512	conv3-512					
					conv3-512					
			pool							
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512					
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512					
			conv1-512	conv3-512	conv3-512					
					conv3-512					
			pool							
			4096							
			4096							
			1000							
		soft	-max							

Model architecture- very deep CNN

- The deep model VGG in 2014.
- Better to have deeper layers. 11 layers (A) => 16 layers (D).
- From 16 layers (D) to 19 layers (E), accuracy does not improve.

	ConvNet Configuration									
A	A A-LRN B C D E									
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight					
layers	layers	layers	layers	layers	layers					

ConvNet config. (Table 1)	smallest in	nage side	top-1 val. error (%)	top-5 val. error (%)
	train (S)	test(Q)		_
A	256	256	29.6	10.4
A-LRN	256	256	29.7	10.5
В	256	256	28.7	9.9
	256	256	28.1	9.4
C	384	384	28.1	9.3
	[256;512]	384	27.3	8.8
	256	256	27.0	8.8
D	384	384	26.8	8.7
	[256;512]	384	25.6	8.1
	256	256	27.3	9.0
E	384	384	26.9	8.7
	[256;512]	384	25.5	8.0

Model architecture- very deep CNN

- Scale jittering at the training time.
- The crop size is fixed to 224×224 .
- S: the smallest side of an isotropically-rescaled training image.
- Scale jittering at the training time: [256; 512]: randomly select S to be within [256 512].
- LRN: local response normalisation. A-LRN does not improve on A.

	A	A-L	/KIN		в		C	ע	E	
	11 weight	11 w	eight	13 w	reight	1	6 weight	16 weight	19 weight	
	layers	lay	ers layers			layers	layers	layers		
Convi	Net config. (Ta	ble 1)	smallest image side		e	top-1 val. error (%)		top-5 val. error (%)		
			train	(S)	test (4	5)	1			
A			25	6	256		2	9.6	10.4	
A-LRN		25	6	256		2	9.7	10.5		
В	В		25	66	256		28.7		9.9	
		25	6	256		28.1		9.4		
C			38	384 384			28.1		9.3	
			[256;	512]	384		27.3		8.8	
			25	6	256	256		7.0	8.8	
D			38		384		26.8		8.7	
			[256;	512]	384		2.	5.6	8.1	
			25	6	256		27.3		9.0	
E		384		384		2	6.9	8.7		
			[256;	512]	384		2	5.5	8.0	

ConvNet Configuration

Model architecture- very deep CNN

Multi-scale averaging at the testing time.

It means apply the same scaling factor along width and height, so the image doesn't become distorted along one axis.

19 weight

• The crop size is fixed to 224×224 .

11 weight

• Q: the smallest side of an isotropically-rescaled testing image.

A-LRN

11 weight

 Running a model over several rescaled versions of a test image (corresponding to different Q), followed by averaging the resulting class posteriors. Improves accuracy (25.5 => 24.8).

ConvNet Configuration

16 weight

D

16 weight

 $\overline{\mathbf{R}}$

13 weight

	layers	layers	layers		layers	layers	layers	
ConvNet	ConvNet config. (Table 1)		lest image side	e side top-1 va		l. error (%)	top-5 val. error	(%)
) test (Q)	1			
В		256	224,256,2	288	2	8.2	9.6	
		256	224,256,2	288	2	7.7	9.2	
C	C		352,384,4	116	27.8		9.2	
		[256; 51]	2] 256,384,5	512	2	26.3	9.6 9.2 9.2 8.2 8.6 8.6 7.5 8.7	
		256	224,256,2	288	26.6		8.6	
D		384	352,384,4	116	26.5		8.6	
		[256; 51]	2] 256,384,5	512	2	4.8	9.2 9.2 8.2 8.6 8.6 7.5 8.7	
	E		224,256,2	288	2	26.9	8.7	
E					352,384,4		26.7	
		256;51	2 256,384,5	512	2	4.8	7.5	

Model architecture- Network in Network

Use 1×1 filters after each convolutional layer.

Model architecture- Network in Network

 Remove the two fully connected layers (fc6, fc7) of the AlexNet but add NIN into the AlexNet.

	Parameter Number	Performance	Time to train (GTX Titan)
AlexNet	60 Million (230 Megabytes)	40.7% (Top 1)	8 days
NIN	7.5 Million (29 Megabytes)	39.2% (Top 1)	4 days

Inspired by the good performance of NIN.

- Inception model.
- Variable filter sizes to capture different visual patterns of different sizes. Enforce sparse connection between previous layer and output.
- The 1 x 1 convolutions are used for reducing the number of maps from the previous layer.

- Based on inception model.
- Cascade of inception models.
- Widths of inception modules ranges from 256 filters (in early modules) to 1024 in top inception modules.

Parameters.

type	patch size/ stride	output size	depth	#1×1	#3×3 reduce	#3×3	#5×5 reduce	#5×5	pool proj	params	ops
convolution	7×7/2	112×112×64	1							2.7K	34M
max pool	3×3/2	56×56×64	0								
convolution	3×3/1	56×56×192	2		64	192				112K	360M
max pool	3×3/2	$28 \times 28 \times 192$	0								
inception (3a)		$28 \times 28 \times 256$	2	64	96	128	16	32	32	159K	128M
inception (3b)		$28 \times 28 \times 480$	2	128	128	192	32	96	64	380K	304M
max pool	3×3/2	14×14×480	0								
inception (4a)		14×14×512	2	192	96	208	16	48	64	364K	73M
inception (4b)		$14 \times 14 \times 512$	2	160	112	224	24	64	64	437K	88M
inception (4c)		14×14×512	2	128	128	256	24	64	64	463K	100M
inception (4d)		$14 \times 14 \times 528$	2	112	144	288	32	64	64	580K	119M
inception (4e)		$14 \times 14 \times 832$	2	256	160	320	32	128	128	840K	170M
max pool	3×3/2	$7 \times 7 \times 832$	0								
inception (5a)		$7 \times 7 \times 832$	2	256	160	320	32	128	128	1072K	54M
inception (5b)		$7 \times 7 \times 1024$	2	384	192	384	48	128	128	1388K	71M
avg pool	7×7/1	$1 \times 1 \times 1024$	0								
dropout (40%)		$1 \times 1 \times 1024$	0								
linear		1×1×1000	1							1000K	1M
softmax		1×1×1000	0								

ResNets @ ILSVRC & COCO 2015 Competitions

- 1st places in all five main tracks
 - ImageNet Classification: 'Ultra-deep' 152-layer nets
 - ImageNet Detection: 16% better than 2nd
 - ImageNet Localization: 27% better than 2nd
 - COCO Detection: 11% better than 2nd
 - COCO Segmentation: 12% better than 2nd

Roadmap of Network Depth

ImageNet Classification top-5 error (%)

Going deeper

Bear the following in mind:

• Batch normalization. [Sergey loffe, Christian Szegedy. ICML 2015]

Is learning better networks as simple as stacking more layers?

Simply stacking more layers

- Plain nets: stacking 3x3 conv layers.
- 56-layer net has higher training error and test error than 20-layer net.

Deep Residual Learning

Plain net:

H(x) is any desired mapping. Let these two conv (weight) layers fit H(x).

Deep Residual Learning

Residual net:

H(x) is any desired mapping. Let these two conv (weight) layers fit H(x). Let these two conv (weight) layers fit F(x), where F(x) = H(x) - x.

Deep Residual Learning

Residual net:

F(x) is a residual mapping w.r.t. identity.

- If identity were optimal, easy to set weights as 0
- If optimal mapping is closer to identity, easier to find small fluctuations

Network Structure

Basic design: VGG style

- all 3 × 3 conv
- no FC layer, no dropout

Training details:

- Trained from scratch
- Use batch normalization
- Standard hyper-parameters & augmentation

Figure: Basic residual block.

Network Structure

Detailed ResNet structure (rightmost) for ImageNet 2015 entry: (part1)

Network Structure

Detailed ResNet structure (rightmost) for ImageNet 2015 entry: (part2)

The dotted shortcuts increase channel dimensions.

CIFAR-10 experiments

Deep ResNets can be trained without difficulties.

Deeper ResNets have lower training error, and also lower test error.

ImageNet experiments

Deep ResNets can be trained without difficulties. Deeper ResNets have **lower training error**, and also lower test error.

Extension and Resource

- Residual Networks Behave Like Ensembles of Relatively Shallow Networks, NIPS 2016.
- Comparison among ResNet, Highway Network, DenseNet. A blog post <u>here</u>.
 Another one.
- ResNet code: [Model available] [Torch implementation]

Roadmap of Network Structure

Inception-v4 model

Inception-v4 network

Inception-ResNet-v2 model

Inception-Resnet v2

- 2. Scaling down residuals before adding them to the subsequent layer's activation stabilizes training.

Experiment results

Single model evaluated on ILSVRC CLS 2012 validation set.

Network	Top-1 Error	Top-5 Error	
BN-Inception [6]	25.2%	7.8%	
Inception-v3 [15]	21.2%	5.6%	
Inception-ResNet-v1	21.3%	5.5%	
Inception-v4	20.0%	5.0%	
Inception-ResNet-v2	19.9%	4.9%	

Network	Crops	Top-1 Error	Top-5 Error
ResNet-151 [5]	dense	19.4%	4.5%
Inception-v3 [15]	144	18.9%	4.3%
Inception-ResNet-v1	144	18.8%	4.3%
Inception-v4	144	17.7%	3.8%
Inception-ResNet-v2	144	17.8%	3.7%

https://blog.csdn.net/qq 14845119/article/details/73648100

CNN for pixelwise classification

- Forward and backward propagation algorithms were proposed for whole-image classification: predicting a single label for a whole image
- Pixelwise classification: predicting a label at every pixel (e.g. segmentation, detection, and tracking)
- For pixelwise classification problems, it is generally trained and tested in a
 patch-by-patch manner, i.e. cropping a large patch around every pixel and
 inputting the patch to CNN for prediction (larger patches leading to better
 performance)
- It involves much redundant computation and is extremely inefficient

Fully convolutional neural networks with 1 \times 1 kernels

Reading materials

- A. Krizhevsky, L. Sutskever, and G. E. Hinton, "ImageNet Classification with Deep Convolutional Neural Networks," Proc. NIPS, 2012.
- M. Ranzato, "Neural Networks," tutorial at CVPR 2013.
- K. Chatfield, K. Simonyan, A. Vadaldi, and A. Zisserman, "Return of the Devil in the Details: Delving Deep into Convolutional Networks," BMVC 2014.
- P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun, "Overfeat: Integrated recognition, localization and detection using convolutional networks," In Proc. Int'l Conf. Learning Representations, 2014.
- K. Simonyan and A. Zisserman, "Very deep convolutional networks for large-scale image recognition," arXiv:1409.1556, 2014.
- M. Lin, Q.. Chen, and S. Yan, "Network in network," arXiv:1312.4400v3, 2013.
- C. Szegedy, W. Liu, Y. Jia, P. Sermanet, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich, "Going deeper with convolutions," arXiv:1409.4842, 2014.

Reading materials

- Deep Residual Learning for Image Recognition. K. He, et al. CVPR 2016. Best paper.
 - Highway and Residual Networks learn Unrolled Iterative Estimation, ICLR 2017.
 - Identity Mappings in Deep Residual Networks. K. He, et al. ECCV 2016. Extension discussion of ResNet.
 - ▶ Deep Networks with Stochastic Depth. G. Huang, et al. *ECCV 2016*
 - Unsupervised Domain Adaptation with Residual Transfer Networks. NIPS 2016.
 - Wide Residual Networks. BMVC 2016.
 - Residual LSTM: Design of a Deep Recurrent Architecture for Distant Speech Recognition. https://arxiv.org/abs/1701.03360.
 - **...**

Reading materials

- Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning. https://arxiv.org/abs/1602.07261v2.
 - Rethinking the Inception Architecture for Computer Vision. https://arxiv.org/abs/1512.00567v3.
 - Wide-Residual-Inception Networks for Real-time Object Detection. https://arxiv.org/pdf/1702.01243v1.pdf
 - **•** • •