

Scaling Example																			
seary brangee																			
Workload: sum of 10 scalars, and 10 × 10 matrix sum																			
 Assume the sum of 10 scalars cannot be paralleled 																			
• Calculate the speedup of 10 processors and 40 processors																			
Single processor: Time = (10 + 100) × t_{add}																			
■ 10 processors																			
 Time = 10 × t_{add} + 100/10 × t_{add} = 20 × t_{add} Speedup = 110/20 = 5.5 (5.5/10=55% of potential) 																			
40 processors																			
 Time = 10 × t_{add} + 100/40 × t_{add} = 12.5 × t_{add} 																			
• Speedup = 110/12.5 = 8.8 (8.8/40=22% of potential)																			
 Assumes load can be balanced across processors 																			
■ What if matrix size is 20 × 20?																			
■ Single processor: Time = (10 + 400) × t _{add}																			
■ 10 processors																			
• Time = $10 \times t_{add} + 400/10 \times t_{add} = 50 \times t_{add}$																			
• Speedup = 410/50 = 8.2 (8.2/10=82% of potential)																			
40 processors																			
 Time = 10 × t_{add} + 400/40 × t_{add} = 20 × t_{add} 														-					
Speedup = 410/20 = 20.5 (20.5/40=51% of potential)																			
Assuming load balanced																			
Strong us. Weak Scaling																			
• Speedup:																			
task 10 scaler 10 scaler																			
No. of cores 10*10 matrix 20*20 matrix 10 5.5 (55% of potential) 8.2 (82% of potential)																			
40 8.8 (22% of potential) 20.5 (51% of potential)													.,						
 Strong scaling: keep problem size fixed, time is reverse proportional to number of processors: T(N,P)=T(1,P)/N 	38	3th	7/3] X j	首方	夂:	从处	表	郭沙	可是	RA	R.	模	ア	妥	, 1	村市	A)	5
Weak scaling: constant time cost when problem size is							处保	埋	RM 1	ZX.	P	BY	K	t	'n	.		H.	_
proportional to number of processors: T(N ₁ ,P ₁)=T(N ₂ ,P ₂) • 10 processors (N ₁), 10 × 10 matrix (P ₁)	33	tU	1891	以	自为	文:	休	1	F	7 in	77	少	,	jo,	2	RA		×.	タ
■ Time = 20 × t _{add}							处有	理	器	数	量	BX	正	tť	١.				
 40 processors (N₂), 20 × 20 matrix (P₂) Time = 10 × t_{add} + 400/40 × t_{add} = 20 × t_{add} 																			
• Constant performance in this example																			
Load Balancing																			
In the above example																			
 40 processors are used to achieve 20.5 speedup 																			
 40 processors are assumed to have balanced load (2.5% each) 																			
how about one processor with high load (5%)?																			
 one processor takes 5%*400=20 adds, the others takes the rest 400-20=380 adds 																			
Time = max(380t/39, 20t/1)+10t = 30t																			
speedup = 410t/30t = 14, smaller than 20.5																			
• how about one processor with higher load (12.5%)?																			

Parallel Processing The following techniques can enable parallel processing SIMD, vector (section 6.3) Multithreading (section 6.4) SMPs and clusters (section 6.5) GPUs (section 6.6) SISD, MIMD, SPMD, SIMD and vector SISD: single instruction stream, single data stream Uniprocessor, Intel Pentium 4 MIMD: multiple instruction, multiple data Multi-core processor, Intel Core i7 SPMD: single program, multiple data • Typical way to write program on a multi-core processor One program run on multiple processors Different processors execute on different sections of code SIMD Operate on vectors of data Provide data level parallelism • E.g., MMX (MultiMedia eXtension) and SSE (Streaming SIMD Extension) instructions in x86 Multiple data elements in 128-bit wide registers All processors execute the same instruction at the same time • Each with different data address, etc. Simplifies synchronization Reduced instruction control hardware Works best for highly data-parallel applications Vector Processors Processor unit which is designed for vector operation Pipelined execution units, instead of multiple ALUs Stream data from/to vector registers to units • Data collected from memory into registers Results stored from registers to memory Example: Vector extension to MIPS • 32 × 64-element registers (64-bit elements) Vector instructions 1v, sv: load/store vector addv.d: add vectors of double addvs.d: add scalar to each element of vector of double Significantly reduces instruction-fetch bandwidth

	•	. 1																									
	cP	US																									
•	CPU	: go	od f	or co	ontro	ol, se	eque	entia	al pr	ogra	mm	ning															
	GPU																										
					d arch																						
	TPU	: Ter	nser	pro	cessi	ing ι	unit																				
Proposed by Google, targeting at acceleration for tenserflow platform																											
	Suitable for machine learning model training and testing																										
DPU: deep learning processing unit																											
Proposed by DeePhi Tech, FPGA-based processing unit																											
NPU: neural network processing unit																				-							
IBM TrueNorth BPU: brain processing unit																											
٠	BPU	: bra	ain p	roce	essin	g ur	nit																				
	0		1	1	-		D			1.	,																
Concluding Remarks																											
	Goal: higher performance by using multiple																										
	pro								-,																		
 Difficulties 																											
•	UITT	icul	ities	S																							
	• C	Deve	elop	ing p	paral	llel	soft	war	e																		
	• [Devi	sing	apr	ropi	riate	e ard	chite	ectu	ires																	
From multicore to data centre																											
Performance per dollar and performance per Joule																											
	driv																										
																							+				
																							_				