Field kinematics

Basic conventions					
Minkowski metric tensor	Totally antisymmetric tensor	Momentum	Norm	Frame	
$\eta_{_{IIV}}$	$\epsilon \eta_{uvo\sigma}$	k^{μ}	$k^2 == k_{ii} k^{\mu}$	$n^{\mu} == \frac{k^{\mu}}{k}$	

Fundamental fields

Fundamental field	Symmetries	Decomposition in SO(3) irreps	Source
$\Gamma_{lphaeta\chi}$	Symmetry[3, $\Gamma^{\bullet 1 \bullet 2 \bullet 3}$, $\{ \bullet 1 \rightarrow -a, \bullet 2 \rightarrow -b, \bullet 3 \rightarrow -c \}$, StrongGenSet[$\{ \}$, GenSet[]]]	$ \begin{array}{l} -\frac{1}{2} \ \eta_{\alpha\chi} \ \Gamma_{1^{-1}\beta}^{\#1} + \frac{1}{2} \ \eta_{\alpha\beta} \ \Gamma_{1^{-1}\chi}^{\#1} + \frac{4}{3} \ \Gamma_{2^{-1}\beta\chi\alpha}^{\#1} + \frac{1}{2} \ \Gamma_{2^{-2}\alpha\beta\chi}^{\#2} + \frac{1}{2} \ \Gamma_{2^{-2}\alpha\chi\beta}^{\#2} + \Gamma_{3^{-1}\alpha\beta\chi}^{\#1} + \frac{1}{3} \ \eta_{\beta\chi} \ \Gamma_{1^{-\alpha}\alpha}^{\#6} - \frac{1}{6} \ \eta_{\alpha\chi} \ \Gamma_{1^{-\beta}\beta}^{\#6} - \frac{1}{6} \ \eta_{\alpha\beta} \ \Gamma_{1^{-\gamma}\chi}^{\#6} + \frac{1}{15} \ \eta_{\alpha\beta} \ \Gamma_{1^{-\gamma}\chi}^{\#4} + \Gamma_{1^{+2}\beta\chi}^{\#2} \ n_{\alpha} + \frac{1}{9} \ \eta_{\beta\chi} \ \Gamma_{0^{+}}^{\#3} \ n_{\alpha} + \frac{1}{3} \ \Gamma_{2^{+}\beta\chi}^{\#2} \ n_{\alpha} + \frac{2}{3} \ \Gamma_{2^{+}\beta\chi}^{\#3} \ n_{\alpha} + \frac{1}{3} \ \Gamma_{2^{+}\alpha\chi}^{\#3} \ n_{\beta} - \frac{1}{3} \ \Gamma_{2^{+}\alpha\chi}^{\#3} \ n_{\alpha} + \frac{1}{3} \ \Gamma_{2^{+}\alpha\chi}^{\#3} \ n_{\alpha} \ n_{\beta} - \frac{1}{3} \ \Gamma_{2^{+}\alpha\chi}^{\#3} \ n_{\alpha} - \frac{1}{3} \ \Gamma_{2^{+}\alpha\chi}^{\#3} \ n_{\alpha} \ n_{\beta} - \frac{1}{3} \ \Gamma_{2^{+}\alpha\chi}^{\#3} \ n_{\alpha} \ n_{\gamma} - \frac{1}{3} \ \Gamma_{2^{$	$\Delta_{lphaeta\chi}$
SO(3) irreps			

SO(3) irre	eps			
SO(3) irrep	Symmetries	Expansion in terms of the fundamental field	Source	
Γ ₀ ^{#1}	Symmetry[0, $\Gamma_{0^{+}}^{#1}$, {}, StrongGenSet[{}, GenSet[]]]	$-\frac{1}{2} \Gamma^{\alpha \beta}_{\alpha} n_{\beta} + \frac{1}{2} \Gamma^{\alpha \beta}_{\alpha} n_{\beta}$	$\Delta_0^{\#1}$	
Γ ₀ ^{#2}	Symmetry[0, $\Gamma_0^{\#2}$, {}, StrongGenSet[{}, GenSet[]]]	$\Gamma^{\alpha\beta\chi} n_{\alpha} n_{\beta} n_{\chi}$	Δ ₀ ^{#2}	
Γ ₀ ^{#3}	Symmetry[0, $\Gamma_{0}^{#3}$, {}, StrongGenSet[{}, GenSet[]]]	$\Gamma^{\alpha\beta}_{\ \beta} \ n_{\alpha} + \Gamma^{\alpha}_{\ \alpha}^{\ \beta} \ n_{\beta} + \Gamma^{\alpha\beta}_{\ \alpha} \ n_{\beta} - 3 \ \Gamma^{\alpha\beta\chi} \ n_{\alpha} \ n_{\beta} \ n_{\chi}$	Δ ₀ ^{#3}	
${\Gamma_0^{\#4}}$	Symmetry[0, $\Gamma_{0}^{#4}$, {}, StrongGenSet[{}, GenSet[]]]	$\Gamma^{\alpha\beta}_{\beta} n_{\alpha} - \frac{1}{2} \Gamma^{\alpha}_{\alpha}^{\beta} n_{\beta} - \frac{1}{2} \Gamma^{\alpha\beta}_{\alpha} n_{\beta}$	Δ#4	
Γ ₀ [#] -1	Symmetry[0, $\Gamma_0^{\#1}$, {}, StrongGenSet[{}, GenSet[]]]	$\epsilon \eta_{\alpha\beta\chi\delta} \Gamma^{\alpha\beta\chi} n^{\delta}$	Δ#1	
"12	Symmetry[2, $\Gamma_{1+}^{\#1} \bullet 1 \bullet 2$, $\{ \bullet 1 \rightarrow -a, \bullet 2 \rightarrow -b \}$,	$\frac{1}{4} \Gamma_{\alpha\beta}^{\chi} n_{\chi} - \frac{1}{4} \Gamma_{\alpha\beta}^{\chi} n_{\chi} - \frac{1}{4} \Gamma_{\beta\alpha}^{\chi} n_{\chi} + \frac{1}{4} \Gamma_{\beta\alpha}^{\chi} n_{\chi} - \frac{1}{4} \Gamma_{\alpha}^{\chi} n_{\chi} - \frac{1}{4} \Gamma_{\alpha}^$		
$\Gamma^{\#1}_{1}{}^{+}_{\alpha\beta}$	StrongGenSet[$\{1, 2\}$, GenSet[$-(1,2)$]]	$\begin{bmatrix} \frac{1}{4} & \Gamma^{X}_{\beta}^{\delta} & n_{\alpha} & n_{\chi} & n_{\delta} + \frac{1}{4} & \Gamma^{X\delta}_{\beta} & n_{\alpha} & n_{\chi} & n_{\delta} + \frac{1}{4} & \Gamma^{X}_{\alpha}^{\delta} & n_{\beta} & n_{\chi} & n_{\delta} - \frac{1}{4} & \Gamma^{X\delta}_{\alpha} & n_{\beta} & n_{\chi} & n_{\delta} \end{bmatrix}$	$\Delta_{1}^{\#1}{}_{lphaeta}$	
	Symmetry[2, $\Gamma_{1+}^{\#2} \bullet 1 \bullet 2$, $\{ \bullet 1 \rightarrow -a, \bullet 2 \rightarrow -b \}$,		4 2	
$\Gamma_{1}^{\#2}$ $\alpha\beta$	StrongGenSet[{1, 2}, GenSet[-(1,2)]]]	$\frac{1}{2} \Gamma^{X}_{\alpha\beta} n_{\chi} - \frac{1}{2} \Gamma^{X}_{\beta\alpha} n_{\chi} + \frac{1}{2} \Gamma^{X}_{\beta}^{\delta} n_{\alpha} n_{\chi} n_{\delta} - \frac{1}{2} \Gamma^{X\delta}_{\beta} n_{\alpha} n_{\chi} n_{\delta} - \frac{1}{2} \Gamma^{X\delta}_{\alpha} n_{\beta} n_{\chi} n_{\delta} + \frac{1}{2} \Gamma^{X\delta}_{\alpha} n_{\beta} n_{\chi} n_{\delta}$	$\Delta_{1}^{#2}{}_{\alpha\beta}$	
$\Gamma_{1}^{\#3}_{\alpha\beta}$	Symmetry[2, $\Gamma_{1+}^{\#3} \bullet 1 \bullet 2$, $\{ \bullet 1 \rightarrow -a, \bullet 2 \rightarrow -b \}$,	$-\frac{1}{2} \Gamma_{\alpha\beta}^{ X} n_{\chi} - \frac{1}{2} \Gamma_{\alpha\beta}^{ X} n_{\chi} + \frac{1}{2} \Gamma_{\beta\alpha}^{ X} n_{\chi} + \frac{1}{2} \Gamma_{\beta\alpha}^{ X} n_{\chi} - \Gamma_{\beta}^{ X\delta} n_{\alpha} n_{\chi} n_{\delta} +$	$\Delta_{1}^{\#3}{}_{lphaeta}$	
' 1 ⁺ αβ	StrongGenSet[{1, 2}, GenSet[-(1,2)]]]	$\frac{1}{2} \Gamma_{\beta}^{\chi \delta} n_{\alpha} n_{\chi} n_{\delta} + \frac{1}{2} \Gamma_{\beta}^{\chi \delta} n_{\alpha} n_{\chi} n_{\delta} + \Gamma_{\alpha}^{\chi \delta} n_{\beta} n_{\chi} n_{\delta} - \frac{1}{2} \Gamma_{\alpha}^{\chi \delta} n_{\beta} n_{\chi} n_{\delta} - \frac{1}{2} \Gamma_{\alpha}^{\chi \delta} n_{\beta} n_{\chi} n_{\delta} - \frac{1}{2} \Gamma_{\alpha}^{\chi \delta} n_{\beta} n_{\chi} n_{\delta}$	$\Delta_{1}^{+} \alpha \beta$	
$\Gamma_{1}^{\#1}{}_{\alpha}$	Symmetry[1, $\Gamma_1^{\#_1 \bullet 1}$, $\{ \bullet 1 \rightarrow -a \}$, StrongGenSet[$\{ \}$, GenSet[$\} \}$]	$-\frac{1}{2} \Gamma^{\beta}_{\alpha\beta} + \frac{1}{2} \Gamma^{\beta}_{\beta\alpha} - \frac{1}{2} \Gamma^{\beta}_{\beta}^{\chi} n_{\alpha} n_{\chi} + \frac{1}{2} \Gamma^{\beta\chi}_{\beta} n_{\alpha} n_{\chi} + \frac{1}{2} \Gamma^{\beta}_{\alpha}^{\chi} n_{\beta} n_{\chi} - \frac{1}{2} \Gamma^{\beta\chi}_{\alpha} n_{\beta} n_{\chi}$	$\Delta_1^{\#1}{}_{lpha}$	
$\Gamma_{1-\alpha}^{\#2}$	Symmetry[1, $\Gamma_1^{\#2} \bullet 1$, $\{ \bullet 1 \rightarrow -a \}$, StrongGenSet[$\{ \}$, GenSet[]]]	$\frac{1}{2} \Gamma^{\beta}_{\alpha}{}^{\chi} n_{\beta} n_{\chi} - \frac{1}{2} \Gamma^{\beta\chi}_{\alpha} n_{\beta} n_{\chi}$	$\Delta_{1}^{\#2}$	
 Γ ₁ - _α	Symmetry[1, $\Gamma_1^{\#_3 \bullet 1}$, $\{ \bullet 1 \rightarrow -a \}$, StrongGenSet[$\{ \}$, GenSet[]]]		Δ#3 α	
-		$\Gamma^{\beta} + \Gamma^{\beta} + \Gamma^{\beta} - \Gamma^{\beta\chi} n n_{\alpha} - \Gamma^{\beta\chi} n n_{\beta}$		
$\Gamma_{1}^{\#4}$ α	Symmetry[1, $\Gamma_{1}^{\#4} \bullet 1$, $\{ \bullet 1 \rightarrow -a \}$, StrongGenSet[$\{ \}$, GenSet[]]]	$ \begin{bmatrix} \Gamma^{\beta \chi}_{\beta} & n_{\alpha} & n_{\chi} - \Gamma^{\beta \chi}_{\alpha} & n_{\beta} & n_{\chi} - \Gamma^{\beta \chi}_{\alpha} & n_{\beta} & n_{\chi} + 3 \Gamma^{\beta \chi \delta} & n_{\alpha} & n_{\beta} & n_{\chi} & n_{\delta} \end{bmatrix} $	$\Delta_{1}^{\#4}$ α	
$\Gamma_{1}^{\#5}{}_{\alpha}$	Symmetry[1, $\Gamma_1^{\#_5 \bullet 1}$, $\{ \bullet 1 \rightarrow -a \}$, StrongGenSet[$\{ \}$, GenSet[]]]	P X = T X = T X	$\Delta_{1}^{\#5}$ α	
$\frac{\Gamma^{\#6}}{\Gamma^{\#6}_{1}}$		$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\Delta_{1}^{\#6}$	
$\frac{1}{\alpha}$		$\begin{vmatrix} \alpha \beta & 2 & \alpha \beta & 2 & \beta \alpha & \chi & \alpha & \beta & 2 & \beta & \alpha & \chi & 2 & \beta & \alpha & \chi & \alpha & \beta & \chi & 2 & \alpha & \beta & \chi & 2 & \alpha & \beta & \chi & 2 & \alpha & \alpha & \beta & \chi & 2 & \alpha & \alpha & \beta & \chi & 2 & \alpha & \alpha & \beta & \chi & 2 & \alpha & \alpha & \beta & \chi & \chi & 2 & \alpha & \alpha & \alpha & \chi & \chi & \alpha & \alpha & \alpha & \chi & \chi$	$\frac{\Delta_1}{\alpha}$	
$\Gamma^{\#1}_{2}{}^{+}_{lphaeta}$	Symmetry[2, $\Gamma_2^{\#1} \bullet 1 \bullet 2$, $\{ \bullet 1 \rightarrow -a, \bullet 2 \rightarrow -b \}$, StrongGenSet[$\{ 1, 2 \}$, GenSet[$(1, 2)$]]]		$\Delta_{2}^{\#1}{}_{lphaeta}$	
	StrongGenSet[{1, 2}, GenSet[(1,2)]]	$\frac{1}{6} \Gamma^{X\delta}_{X} n_{\alpha} n_{\beta} n_{\delta} + \frac{1}{4} \Gamma^{X}_{\beta}^{\delta} n_{\alpha} n_{\chi} n_{\delta} - \frac{1}{4} \Gamma^{X\delta}_{\beta} n_{\alpha} n_{\chi} n_{\delta} + \frac{1}{4} \Gamma^{X}_{\alpha}^{\delta} n_{\beta} n_{\chi} n_{\delta} - \frac{1}{4} \Gamma^{X\delta}_{\alpha} n_{\beta} n_{\chi} n_{\delta}$		
- #2	Symmetry[2, $\Gamma_{2^+}^{\#2 \bullet 1 \bullet 2}$, $\{ \bullet 1 \rightarrow -a, \bullet 2 \rightarrow -b \}$,	$\begin{bmatrix} \frac{1}{2} \Gamma_{\alpha\beta}^{X} n_{\chi} + \frac{1}{2} \Gamma_{\alpha\beta}^{X} n_{\chi} + \frac{1}{2} \Gamma_{\beta\alpha}^{X} n_{\chi} + \frac{1}{2} \Gamma_{\beta\alpha}^{X} n_{\chi} + \frac{1}{2} \Gamma_{\alpha\beta}^{X} n_{\chi} + \frac{1}{2} \Gamma_{\beta\alpha}^{X} n_{\chi} + \frac{1}{2} \Gamma_{\alpha\beta}^{X} n_{\chi} + \frac{1}{2} \Gamma_{\alpha\beta}^{X$	A #2	
$\Gamma^{\#2}_{2}$	StrongGenSet[{1, 2}, GenSet[(1,2)]]]	$\frac{1}{3} \eta_{\alpha\beta} \Gamma_{\chi}^{\chi \delta} n_{\delta} - \frac{1}{3} \eta_{\alpha\beta} \Gamma_{\chi}^{\chi \delta} n_{\delta} + \frac{1}{3} \Gamma_{\chi}^{\chi \delta} n_{\alpha} n_{\beta} n_{\delta} + \frac{1}{3} \Gamma_{\chi}^{\chi \delta} n_{\alpha} n_{\beta} n_{\delta} - \Gamma_{\beta}^{\chi \delta} n_{\alpha} n_{\chi} n_{\delta} - \Gamma_{\gamma}^{\chi \delta} n_{\alpha} n_{\chi} n_{\delta} - \Gamma_{\gamma}^{\chi \delta} n_{\alpha} n_{\chi} n_{\delta} - \Gamma_{\gamma}^$	$\Delta_{2}^{\#2}{}_{\alpha\beta}$	
		$ \Gamma^{\chi\delta}_{\beta} n_{\alpha} n_{\chi} n_{\delta} - \Gamma^{\chi\delta}_{\alpha} n_{\beta} n_{\chi} n_{\delta} - \Gamma^{\chi}_{\alpha}^{\delta} n_{\beta} n_{\chi} n_{\delta} - \Gamma^{\chi\delta}_{\alpha} n_{\beta} n_{\chi} n_{\delta} + \eta_{\alpha\beta} \Gamma^{\chi\delta\epsilon}_{\alpha} n_{\chi} n_{\delta} n_{\epsilon} + 2 \Gamma^{\chi\delta\epsilon}_{\alpha} n_{\alpha} n_{\beta} n_{\chi} n_{\delta} n_{\epsilon} $		
#2	Symmetry[2, $\Gamma_{2^{+}}^{\#3} \bullet 1 \bullet 2$, $\{ \bullet 1 \rightarrow -a, \bullet 2 \rightarrow -b \}$,		#2	
$\Gamma_{2}^{#3} \alpha \beta$	StrongGenSet[{1, 2}, GenSet[(1,2)]]	$ \frac{1}{6} \eta_{\alpha\beta} \Gamma_{\chi}^{\chi \delta} n_{\delta} + \frac{1}{6} \eta_{\alpha\beta} \Gamma_{\chi}^{\chi \delta} n_{\delta} - \frac{1}{6} \Gamma_{\chi}^{\chi \delta} n_{\alpha} n_{\beta} n_{\delta} - \frac{1}{6} \Gamma_{\chi}^{\chi \delta} n_{\alpha} n_{\beta} n_{\delta} + \frac{1}{2} \Gamma_{\beta}^{\chi \delta} n_{\alpha} n_{\chi} n_{\delta} - \frac{1}{2} \Gamma_{\gamma}^{\chi \delta} n_{\alpha} n_{\chi} n_{\delta} - \frac{1}{2} \Gamma_{\gamma}^{\chi \delta} n_{\alpha} n_{\chi} n_{\delta} - \frac{1}{2} \Gamma_{\gamma}^{\chi \delta} n_{\gamma} n_{\gamma} n_{\delta} - \frac{1}{2} \Gamma_{\gamma}^{\chi \delta} n_{\gamma} n_{\gamma}$	$\Delta_{2}^{\#3}{}_{\alpha\beta}$	
		$\frac{1}{4} \Gamma_{\beta}^{\chi \delta} n_{\alpha} n_{\chi} n_{\delta}^{-\frac{1}{4}} \Gamma_{\beta}^{\chi \delta} n_{\alpha} n_{\chi} n_{\delta}^{+\frac{1}{2}} \Gamma_{\alpha}^{\chi \delta} n_{\beta} n_{\chi} n_{\delta}^{-\frac{1}{4}} \Gamma_{\alpha}^{\chi \delta} n_{\delta}^{-\frac{1}{4}} \Gamma_{\alpha}$		
		$\frac{3}{16} \Gamma^{\delta}_{\beta\delta} n_{\alpha} n_{\chi} + \frac{3}{16} \Gamma^{\delta}_{\delta\beta} n_{\alpha} n_{\chi} + \frac{3}{16} \Gamma^{\delta}_{\alpha\delta} n_{\beta} n_{\chi} - \frac{3}{16} \Gamma^{\delta}_{\delta\alpha} n_{\beta} n_{\chi} + \frac{1}{8} \Gamma^{\delta}_{\beta\chi} n_{\alpha} n_{\delta} - \frac{1}{8} \Gamma^{\delta}_{\beta\chi} n_{\alpha} n_{\delta} +$		
	Symmetry[3, $\Gamma_{2^{-}}^{\#1} \bullet 1 \bullet 2 \bullet 3$, $\{ \bullet 1 \rightarrow -a, \bullet 2 \rightarrow -b, \bullet 3 \rightarrow -c \}$,	$ \frac{1}{4} \Gamma_{\chi\beta}^{\ \delta} n_{\alpha} n_{\delta}^{-\frac{1}{4}} \Gamma_{\chi\beta}^{\ \delta} n_{\alpha} n_{\delta}^{+\frac{1}{8}} \Gamma_{\beta\chi}^{\delta} n_{\alpha} n_{\delta}^{-\frac{1}{8}} \Gamma_{\chi\beta}^{\delta} n_{\alpha} n_{\delta}^{-\frac{1}{8}} \Gamma_{\alpha\chi}^{\ \delta} n_{\beta} n_{\delta}^{+\frac{1}{8}} \Gamma_{\alpha\chi}^{\ \delta} n_{\beta} n_{\delta}^{-\frac{1}{8}} \Gamma_{\alpha\chi}^{\ \delta} n_{\beta}^{\ \delta} n_{\delta}^{-\frac{1}{8}} \Gamma_{\alpha\chi}^{\ \delta} n_{\delta}^{\ \delta$		
Γ ₂ - _{αβχ}	StrongGenSet[$\{1, 2\}$, GenSet[$-(1,2)$]]]	$\frac{1}{4} \Gamma_{\chi\alpha}^{\delta} n_{\beta} n_{\delta} + \frac{1}{4} \Gamma_{\chi\alpha}^{\delta} n_{\beta} n_{\delta} - \frac{1}{8} \Gamma_{\alpha\chi}^{\delta} n_{\beta} n_{\delta} + \frac{1}{8} \Gamma_{\alpha\alpha}^{\delta} n_{\beta} n_{\delta} + \frac{1}{8} \Gamma_{\alpha\beta}^{\delta} n_{\chi} n_{\delta} - \frac{1}{8}$	$\Delta_2^{\#1}{}_{lphaeta\chi}$	
		$\frac{1}{8} \Gamma_{\beta\alpha}^{\delta} n_{\chi} n_{\delta} + \frac{1}{8} \Gamma_{\beta\alpha}^{\alpha} n_{\chi} n_{\delta} - \frac{1}{4} \Gamma_{\alpha\beta}^{\delta} n_{\chi} n_{\delta} + \frac{1}{4} \Gamma_{\beta\alpha}^{\delta} n_{\chi} n_{\delta} - \frac{3}{16} \eta_{\beta\chi} \Gamma_{\delta}^{\epsilon} n_{\alpha} n_{\epsilon} + \frac{3}{16} \eta_{\alpha} n_{\alpha} n_{\alpha} n_{\alpha} n_{\alpha} n_{\epsilon} + \frac{3}{16} \eta_{\alpha} n_{\alpha} n_{\alpha} n_{\alpha} n_{\alpha} n_{\alpha} n_{\alpha} +$		
		$\frac{3}{16} \eta_{\alpha \chi} \Gamma^{\delta}_{\delta} n_{\beta} n_{\epsilon} - \frac{3}{16} \eta_{\alpha \chi} \Gamma^{\delta \epsilon}_{\delta} n_{\beta} n_{\epsilon} + \frac{3}{16} \eta_{\beta \chi} \Gamma^{\delta}_{\alpha} n_{\delta} n_{\epsilon} - \frac{3}{16} \eta_{\alpha \chi} \Gamma^{\delta}_{\beta} n_{\delta} n_{\epsilon} - \frac{3}{16} \eta_{\beta \chi} \Gamma^{\delta \epsilon}_{\alpha} n_{\delta} n_{\epsilon} + \frac{3}{16} \eta_{\delta} n_{\delta} n_{\delta} n_{\epsilon} + \frac{3}{16} \eta_{\delta} n_{\delta} $		
		$\frac{3}{16} \eta_{\alpha\chi} \Gamma^{\delta\epsilon}_{\beta} n_{\delta} n_{\epsilon} - \frac{3}{16} \Gamma^{\delta}_{\beta} n_{\alpha} n_{\chi} n_{\delta} n_{\epsilon} + \frac{3}{16} \Gamma^{\delta\epsilon}_{\beta} n_{\alpha} n_{\chi} n_{\delta} n_{\epsilon} + \frac{3}{16} \Gamma^{\delta\epsilon}_{\alpha} n_{\beta} n_{\chi} n_{\delta} n_{\epsilon} - \frac{3}{16} \Gamma^{\delta\epsilon}_{\alpha} n_{\beta} n_{\chi} n_{\delta} n_{\epsilon}$		
	Symmetry[3, $\Gamma_2^{\#2} \bullet 1 \bullet 2 \bullet 3$, $\{ \bullet 1 \rightarrow -a, \bullet 2 \rightarrow -b, \bullet 3 \rightarrow -c \}$,	$\begin{vmatrix} \frac{1}{3} \Gamma_{\alpha\beta\chi} + \frac{1}{3} \Gamma_{\alpha\chi\beta} - \frac{1}{3} \eta_{\beta\chi} \Gamma_{\alpha\delta}^{} - \frac{1}{3} \Gamma_{\beta\alpha\chi} - \frac{1}{3} \Gamma_{\beta\chi\alpha} + \frac{1}{3} \eta_{\alpha\chi} \Gamma_{\beta\delta}^{} + \frac{1}{6} \eta_{\beta\chi} \Gamma_{\alpha\delta}^{} - \frac{1}{6} \eta_{\alpha\chi} \Gamma_{\beta\delta}^{} + \frac{1}{6} \eta_{\beta\chi} \Gamma_{\delta\alpha}^{} - \frac{1}{6} \eta_{\alpha\chi} \Gamma_{\beta\delta}^{} - \frac{1}{6} \eta_{\alpha\chi} \Gamma_{\beta\delta}^{} - \frac{1}{6} \eta_{\alpha\chi} \Gamma_{\beta\delta}^{} - \frac{1}{6} \eta_{\alpha\chi} \Gamma_{\delta\alpha}^{} - \frac{1}{6} \eta_{\alpha\chi} \Gamma_{\alpha}^{} - \frac{1}{6} \eta_{\alpha\chi} \Gamma_{\alpha}^{} - \frac{1}{6} \eta_{\alpha\chi} \Gamma_{\alpha}^{} - \frac{1}{6} \eta_{\alpha\chi} \Gamma_{\alpha\chi}^{} - \frac{1}{6} \eta_{\alpha\chi} \Gamma_{$		
		$\frac{1}{6} \eta_{\alpha\chi} \Gamma^{\delta}_{\delta\beta} - \frac{1}{3} \Gamma^{\delta}_{\beta\delta} n_{\alpha} n_{\chi} + \frac{1}{6} \Gamma^{\delta}_{\beta\delta} n_{\alpha} n_{\chi} + \frac{1}{6} \Gamma^{\delta}_{\delta\beta} n_{\alpha} n_{\chi} + \frac{1}{3} \Gamma^{\delta}_{\alpha\delta} n_{\beta} n_{\chi} - \frac{1}{6} \Gamma^{\delta}_{\alpha\delta} n_{\gamma} n_{\gamma} - 1$		
		$\frac{1}{6} \Gamma^{\delta}_{\delta\alpha} n_{\beta} n_{\chi} + \frac{1}{3} \Gamma^{\delta}_{\beta\chi} n_{\alpha} n_{\delta} + \frac{1}{3} \Gamma^{\delta}_{\beta\chi} n_{\alpha} n_{\delta} - \frac{1}{3} \Gamma^{\delta}_{\beta\chi} n_{\alpha} n_{\delta} - \frac{1}{3} \Gamma^{\delta}_{\chi\beta} n_{\alpha} n_{\delta} + \frac{1}{3} \eta_{\beta\chi} \Gamma^{\delta\epsilon}_{\epsilon} n_{\alpha} n_{\delta} - \frac{1}{3} \Gamma^{\delta}_{\beta\chi} n_{\alpha} n_{\delta} + \frac{1}{3} \eta_{\beta\chi} \Gamma^{\delta\epsilon}_{\epsilon} n_{\alpha} n_{\delta} - \frac{1}{3} \Gamma^{\delta}_{\beta\chi} n_{\alpha} n_{\delta} + \frac{1}{3} \eta_{\beta\chi} \Gamma^{\delta\epsilon}_{\epsilon} n_{\alpha} n_{\delta} - \frac{1}{3} \Gamma^{\delta}_{\beta\chi} n_{\alpha} n_{\delta} + \frac{1}{3} \eta_{\beta\chi} \Gamma^{\delta\epsilon}_{\epsilon} n_{\alpha} n_{\delta} - \frac{1}{3} \Gamma^{\delta}_{\beta\chi} n_{\alpha} n_{\delta} + \frac{1}{3} \eta_{\beta\chi} \Gamma^{\delta\epsilon}_{\epsilon} n_{\alpha} n_{\delta} - \frac{1}{3} \Gamma^{\delta}_{\beta\chi} n_{\alpha} n_{\delta} + \frac{1}{3} \eta_{\beta\chi} \Gamma^{\delta\epsilon}_{\epsilon} n_{\alpha} n_{\delta} - \frac{1}{3} \Gamma^{\delta}_{\beta\chi} n_{\alpha} n_{\delta} + \frac{1}{3} \eta_{\beta\chi} \Gamma^{\delta\epsilon}_{\epsilon} n_{\alpha} n_{\delta} - \frac{1}{3} \Gamma^{\delta}_{\beta\chi} n_{\alpha} n_{\delta} - \frac{1}{3} \Gamma^{\delta}_{\gamma\lambda} n_{\alpha} n_{\delta} - \frac{1}{3} \Gamma^{\delta}_{$		
Γ ^{#2} αβχ		$\frac{1}{3} \Gamma_{\alpha\chi}^{\delta} n_{\beta} n_{\delta}^{} - \frac{1}{3} \Gamma_{\alpha\chi}^{\delta} n_{\beta} n_{\delta}^{} + \frac{1}{3} \Gamma_{\alpha\chi}^{\delta} n_{\beta} n_{\delta}^{} + \frac{1}{3} \Gamma_{\chi\alpha}^{\delta} n_{\beta} n_{\delta}^{} - \frac{1}{3} \eta_{\alpha\chi} \Gamma_{\epsilon}^{\epsilon} n_{\beta} n_{\delta}^{} - \frac{1}{3} \Gamma_{\alpha\beta}^{\delta} n_{\chi} n_{\delta}^{} - \frac{1}{3} \Gamma_{\alpha\beta}^{\delta} n_{\chi}^{\delta} n_{\delta}^{\delta} - \frac{1}{3} \Gamma_{\alpha\beta}^{\delta} n_{\chi}^{\delta} n_{\zeta}^{\delta} - \frac{1}{3} \Gamma_{\alpha\beta}^{\delta} n_{\zeta}^{\delta} - $	$\Delta_{2^{-} \alpha \beta \chi}^{\#2}$	
΄ 2΄ αβχ	StrongGenSet[{1, 2}, GenSet[-(1,2)]]]	$ \frac{1}{3} \Gamma_{\alpha \beta}^{\delta} n_{\chi} n_{\delta} + \frac{1}{3} \Gamma_{\beta \alpha}^{\delta} n_{\chi} n_{\delta} + \frac{1}{3} \Gamma_{\beta \alpha}^{\delta} n_{\chi} n_{\delta} - \frac{1}{6} \eta_{\beta \chi} \Gamma_{\delta}^{\delta \epsilon} n_{\alpha} n_{\epsilon} - \frac{1}{6} \eta_{\beta \chi} \Gamma_{\delta}^{\delta \epsilon} n_{\alpha} n_{\epsilon} + $	$-2 \alpha \beta \chi$	
		$ \frac{1}{6} \eta_{\alpha\chi} \Gamma^{\delta}_{\delta} n_{\beta} n_{\epsilon} + \frac{1}{6} \eta_{\alpha\chi} \Gamma^{\delta\epsilon}_{\delta} n_{\beta} n_{\epsilon} + \frac{1}{3} \eta_{\beta\chi} \Gamma^{\delta\epsilon}_{\alpha} n_{\delta} n_{\epsilon} - \frac{1}{3} \eta_{\alpha\chi} \Gamma^{\delta\epsilon}_{\beta} n_{\delta} n_{\epsilon} - \frac{1}{6} \eta_{\beta\chi} \Gamma^{\delta}_{\alpha} n_{\delta} n_{\epsilon} + $		
		$\frac{1}{6} \eta_{\alpha\chi} \Gamma^{\delta}_{\beta} n_{\delta} n_{\epsilon} - \frac{1}{6} \eta_{\beta\chi} \Gamma^{\delta\epsilon}_{\alpha} n_{\delta} n_{\epsilon} + \frac{1}{6} \eta_{\alpha\chi} \Gamma^{\delta\epsilon}_{\beta} n_{\delta} n_{\epsilon} - \frac{1}{3} \Gamma^{\delta\epsilon}_{\beta} n_{\alpha} n_{\chi} n_{\delta} n_{\epsilon} + \frac{1}{6} \Gamma^{\delta}_{\beta} n_{\alpha} n_{\chi} n_{\delta} n_{\zeta} $		
		$\frac{1}{6} \Gamma^{\delta\epsilon}_{\beta} n_{\alpha} n_{\chi} n_{\delta} n_{\epsilon} + \frac{1}{3} \Gamma^{\delta\epsilon}_{\alpha} n_{\beta} n_{\chi} n_{\delta} n_{\epsilon} - \frac{1}{6} \Gamma^{\delta\epsilon}_{\alpha} n_{\beta} n_{\chi} n_{\delta} n_{\epsilon} - \frac{1}{6} \Gamma^{\delta\epsilon}_{\alpha} n_{\beta} n_{\chi} n_{\delta} n_{\epsilon}$		
		$\begin{vmatrix} \frac{1}{6} \Gamma_{\alpha\beta\chi} + \frac{1}{6} \Gamma_{\alpha\chi\beta} - \frac{1}{15} \eta_{\beta\chi} \Gamma_{\alpha\delta}^{\delta} + \frac{1}{6} \Gamma_{\beta\alpha\chi} + \frac{1}{6} \Gamma_{\beta\chi\alpha} - \frac{1}{15} \eta_{\alpha\chi} \Gamma_{\beta\delta}^{\delta} + \frac{1}{6} \Gamma_{\chi\alpha\beta} + \frac{1}{6} \Gamma_{\chi\beta\alpha} - \frac{1}{15} \eta_{\alpha\beta} \Gamma_{\chi\delta}^{\delta} - \frac{1}{15} \eta_{\alpha\beta} \Gamma_{\alpha\beta}^{\delta} - \frac{1}{15} \eta_{\alpha\beta} \Gamma_{\alpha$		
		$\frac{1}{15} \eta_{\beta\chi} \Gamma^{\delta}{}_{\alpha\delta} - \frac{1}{15} \eta_{\alpha\chi} \Gamma^{\delta}{}_{\beta\delta} - \frac{1}{15} \eta_{\alpha\beta} \Gamma^{\delta}{}_{\chi\delta} - \frac{1}{15} \eta_{\beta\chi} \Gamma^{\delta}{}_{\delta\alpha} - \frac{1}{15} \eta_{\alpha\chi} \Gamma^{\delta}{}_{\delta\beta} - \frac{1}{15} \eta_{\alpha\beta} \Gamma^{\delta}{}_{\delta\chi} + \frac{1}{15} \Gamma^{\delta}{}_{\chi\delta} \eta_{\alpha} \eta_{\beta} +$		
		$\frac{1}{15} \Gamma^{\delta}_{\chi\delta} n_{\alpha} n_{\beta} + \frac{1}{15} \Gamma^{\delta}_{\delta\chi} n_{\alpha} n_{\beta} + \frac{1}{15} \Gamma^{\delta}_{\beta\delta} n_{\alpha} n_{\chi} + \frac{1}{15} \Gamma^{\delta}_{\beta\delta} n_{\alpha} n_{\chi} + \frac{1}{15} \Gamma^{\delta}_{\delta\beta} n_{\alpha} n_{\chi} + \frac{1}{15} \Gamma^{\delta}_{\alpha\delta} n_{\alpha} n_{\chi} + \frac{1}$		
		$\frac{1}{15} \Gamma^{\delta}_{\alpha\delta} n_{\beta} n_{\chi} + \frac{1}{15} \Gamma^{\delta}_{\delta\alpha} n_{\beta} n_{\chi} - \frac{1}{6} \Gamma_{\beta\chi}^{\delta} n_{\alpha} n_{\delta} - \frac{1}{6} \Gamma_{\beta\chi}^{\delta} n_{\alpha} n_{\delta} - \frac{1}{6} \Gamma_{\chi\beta}^{\delta} n_{\alpha} n_{\delta$		
		$\frac{1}{6} \Gamma^{\delta}_{\beta\chi} n_{\alpha} n_{\delta}^{-\frac{1}{6}} \Gamma^{\delta}_{\chi\beta} n_{\alpha} n_{\delta}^{+\frac{1}{15}} \eta_{\beta\chi} \Gamma^{\delta\epsilon}_{\epsilon} n_{\alpha} n_{\delta}^{-\frac{1}{6}} \Gamma^{\delta}_{\alpha\chi} n_{\beta} n_{\delta}^{-\frac{1}{6}} \Gamma^{\delta}_{\alpha\chi} n_{\beta} n_{\delta}^{-\frac{1}{6}} \Gamma^{\delta}_{\chi\alpha} n_{\beta}^{-\frac{1}{6}} \Gamma^{\delta}_{\chi\alpha} n_{\beta}^{$		
		$\frac{1}{6} \Gamma_{\chi \alpha}^{\delta} n_{\beta} n_{\delta}^{-\frac{1}{6}} \Gamma_{\alpha \chi}^{\delta} n_{\beta} n_{\delta}^{-\frac{1}{6}} \Gamma_{\chi \alpha}^{\delta} n_{\beta} n_{\delta}^{+\frac{1}{15}} \eta_{\alpha \chi} \Gamma_{\epsilon}^{\delta \epsilon} n_{\beta} n_{\delta}^{-\frac{1}{6}} \Gamma_{\alpha \beta}^{\delta} n_{\chi} n_{\delta}^{-\frac{1}{6}} \Gamma_{\alpha \beta}^{\delta} n_{\chi} n_{\delta}^{-\frac{1}{6}}$		
Γ ^{#1} _{αβχ}	Symmetry[3, $\Gamma_{3}^{\#1} \bullet 1 \bullet 2 \bullet 3$, $\{ \bullet 1 \rightarrow -a, \bullet 2 \rightarrow -b, \bullet 3 \rightarrow -c \}$,	$\frac{1}{6} \Gamma_{\beta\alpha}^{\alpha} n_{\chi} n_{\delta}^{} - \frac{1}{6} \Gamma_{\beta\alpha}^{\alpha} n_{\chi} n_{\delta}^{} - \frac{1}{6} \Gamma_{\alpha\beta}^{\alpha} n_{\chi} n_{\delta}^{} - \frac{1}{6} \Gamma_{\beta\alpha}^{\alpha} n_{\chi} n_{\delta}^{} + \frac{1}{15} \eta_{\alpha\beta} \Gamma_{\alpha\beta}^{\epsilon} n_{\chi} n_{\delta}^{} - \frac{1}{5} \Gamma_{\alpha}^{\epsilon} n_{\alpha} n_{\beta} n_{\chi} n_{\delta}^{} +$	$\Delta_{3^{-} \alpha eta \chi}^{\# 1}$	
΄ 3 αβχ	StrongGenSet[{1, 2, 3}, GenSet[(1,2), (2,3)]]]	$\frac{1}{15} \eta_{\beta\chi} \Gamma^{\delta}_{\delta} n_{\alpha} n_{\epsilon} + \frac{1}{15} \eta_{\beta\chi} \Gamma^{\delta\epsilon}_{\delta} n_{\alpha} n_{\epsilon} + \frac{1}{15} \eta_{\alpha\chi} \Gamma^{\delta}_{\delta} n_{\beta} n_{\epsilon} + \frac{1}{15} \eta_{\alpha\chi} \Gamma^{\delta\epsilon}_{\delta} n_{\beta} n_{\epsilon} + \frac{1}{15} \eta_{\alpha\beta} \Gamma^{\delta}_{\delta} n_{\chi} n_{\epsilon} + $	$-3 \alpha \beta \chi$	
		$\frac{1}{2}$ n $r^{\delta\epsilon}$ n n $\frac{1}{2}$ $r^{\delta\epsilon}$ n n n n $\frac{1}{2}$ $r^{\delta\epsilon}$ n n r		

 $\frac{1}{15} \eta_{\alpha\beta} \Gamma^{\delta\epsilon}_{\delta} n_{\chi} n_{\epsilon} - \frac{1}{5} \Gamma^{\delta}_{\delta} n_{\alpha} n_{\beta} n_{\chi} n_{\epsilon} - \frac{1}{5} \Gamma^{\delta\epsilon}_{\delta} n_{\alpha} n_{\beta} n_{\chi} n_{\epsilon} + \frac{1}{15} \eta_{\beta\chi} \Gamma^{\delta\epsilon}_{\alpha} n_{\delta} n_{\epsilon} +$

 $\frac{1}{15} \eta_{\beta\chi} \Gamma^{\delta\epsilon}_{\alpha} n_{\delta} n_{\epsilon} + \frac{1}{15} \eta_{\alpha\chi} \Gamma^{\delta\epsilon}_{\beta} n_{\delta} n_{\epsilon} + \frac{1}{15} \eta_{\alpha\beta} \Gamma^{\delta\epsilon}_{\chi} n_{\delta} n_{\epsilon} + \frac{4}{15} \Gamma_{\chi}^{\delta\epsilon} n_{\alpha} n_{\beta} n_{\delta} n_{\epsilon} + \frac{1}{15} \eta_{\alpha\beta} \Gamma^{\delta\epsilon}_{\gamma} n_{\delta} n_{\delta$

 $\frac{4}{15} \, \Gamma^{\delta \ \epsilon}_{\ \chi} \, n_{\alpha} \, n_{\beta} \, n_{\delta} \, n_{\epsilon} + \frac{4}{15} \, \Gamma^{\delta \epsilon}_{\ \chi} \, n_{\alpha} \, n_{\beta} \, n_{\delta} \, n_{\epsilon} + \frac{4}{15} \, \Gamma^{\delta \epsilon}_{\beta} \, n_{\alpha} \, n_{\chi} \, n_{\delta} \, n_{\epsilon} + \frac{4}{15} \, \Gamma^{\delta \ \epsilon}_{\beta} \, n_{\alpha} \, n_{\chi} \, n_{\delta} \, n_{\epsilon} + \frac{4}{15} \, \Gamma^{\delta \ \epsilon}_{\beta} \, n_{\alpha} \, n_{\chi} \, n_{\delta} \, n_{\epsilon} + \frac{4}{15} \, \Gamma^{\delta \ \epsilon}_{\beta} \, n_{\alpha} \, n_{\chi} \, n_{\delta} \, n_{\epsilon} + \frac{4}{15} \, \Gamma^{\delta \ \epsilon}_{\beta} \, n_{\alpha} \, n_{\chi} \, n_{\delta} \, n_{\epsilon} + \frac{4}{15} \, \Gamma^{\delta \ \epsilon}_{\beta} \, n_{\alpha} \, n_{\chi} \, n_{\delta} \, n_{\epsilon} + \frac{4}{15} \, \Gamma^{\delta \ \epsilon}_{\beta} \, n_{\alpha} \, n_{\chi} \, n_{\delta} \, n_{\epsilon} + \frac{4}{15} \, \Gamma^{\delta \ \epsilon}_{\beta} \, n_{\alpha} \, n_{\chi} \, n_{\delta} \, n_{\epsilon} + \frac{4}{15} \, \Gamma^{\delta \ \epsilon}_{\beta} \, n_{\alpha} \, n_{\chi} \, n_{\delta} \, n_{\epsilon} + \frac{4}{15} \, \Gamma^{\delta \ \epsilon}_{\beta} \, n_{\alpha} \, n_{\chi} \, n_{\delta} \, n_{\epsilon} + \frac{4}{15} \, \Gamma^{\delta \ \epsilon}_{\beta} \, n_{\alpha} \, n_{\chi} \, n_{\delta} \, n_{\epsilon} + \frac{4}{15} \, \Gamma^{\delta \ \epsilon}_{\beta} \, n_{\alpha} \, n_{\chi} \, n_{\delta} \, n_{\epsilon} + \frac{4}{15} \, \Gamma^{\delta \ \epsilon}_{\beta} \, n_{\alpha} \, n_{\chi} \, n_{\delta} \, n_{\epsilon} + \frac{4}{15} \, \Gamma^{\delta \ \epsilon}_{\beta} \, n_{\alpha} \, n_{\chi} \, n_{\delta} \, n_{\epsilon} + \frac{4}{15} \, \Gamma^{\delta \ \epsilon}_{\beta} \, n_{\alpha} \, n_{\chi} \, n_{\delta} \, n_{\epsilon} + \frac{4}{15} \, \Gamma^{\delta \ \epsilon}_{\beta} \, n_{\alpha} \, n_{\chi} \, n_{\delta} \, n_{\epsilon} + \frac{4}{15} \, \Gamma^{\delta \ \epsilon}_{\beta} \, n_{\alpha} \, n_{\chi} \, n_{\delta} \, n_{\epsilon} + \frac{4}{15} \, \Gamma^{\delta \ \epsilon}_{\beta} \, n_{\alpha} \, n_{\chi} \, n_{\delta} \, n_{\epsilon} + \frac{4}{15} \, \Gamma^{\delta \ \epsilon}_{\beta} \, n_{\alpha} \, n_{\chi} \, n_{\delta} \, n_{\epsilon} + \frac{4}{15} \, \Gamma^{\delta \ \epsilon}_{\beta} \, n_{\alpha} \, n_{\chi} \, n_{\delta} \, n_{\epsilon} + \frac{4}{15} \, \Gamma^{\delta \ \epsilon}_{\beta} \, n_{\alpha} \, n_{\chi} \, n_{\delta} \, n_{\epsilon} + \frac{4}{15} \, \Gamma^{\delta \ \epsilon}_{\beta} \, n_{\alpha} \, n_{\chi} \, n_{\delta} \, n_{\delta$

 $\frac{4}{15} \Gamma^{\delta\epsilon}_{\beta} n_{\alpha} n_{\chi} n_{\delta} n_{\epsilon} + \frac{4}{15} \Gamma^{\delta\epsilon}_{\alpha} n_{\beta} n_{\chi} n_{\delta} n_{\epsilon} + \frac{4}{15} \Gamma^{\delta\epsilon}_{\alpha} n_{\beta} n_{\chi} n_{\delta} n_{\epsilon} + \frac{4}{15} \Gamma^{\delta\epsilon}_{\alpha} n_{\beta} n_{\chi} n_{\delta} n_{\epsilon} - \frac{4}{15} \Gamma^{\delta\epsilon}_{\alpha} n_{\beta} n_{\chi} n_{\delta} n_{\epsilon} + \frac{4}{15} \Gamma^{\delta\epsilon}_{\alpha} n_{\beta} n_{\chi} n_{\delta} n_{\epsilon} - \frac{4}{15} \Gamma^{\delta\epsilon}_{\alpha} n_{\beta} n_{\chi} n_{\delta} n_{\epsilon} + \frac{4}{15} \Gamma^{\delta\epsilon}_{\alpha} n_{\beta} n_{\chi} n_{\delta} n_{\epsilon} - \frac{4}{15} \Gamma^{\delta\epsilon}_{\alpha} n_{\beta} n_{\chi} n_{\delta} n_{\epsilon} + \frac{4}{15} \Gamma^{\delta\epsilon}_{\alpha} n_{\beta} n_{\chi} n_{\delta} n_{\epsilon} + \frac{4}{15} \Gamma^{\delta\epsilon}_{\alpha} n_{\beta} n_{\chi} n_{\delta} n_{\epsilon} - \frac{4}{15} \Gamma^{\delta\epsilon}_{\alpha} n_{\beta} n_{\chi} n_{\delta} n_{\epsilon} + \frac{4}{15} \Gamma^{\delta\epsilon}_{\alpha} n_{\beta} n_{\chi} n_{\delta} n_{\epsilon} - \frac{4}{15} \Gamma^{\delta\epsilon}_{\alpha} n_{\beta} n_{\chi} n_{\delta} n_{\epsilon} + \frac{4}{15} \Gamma^{\delta\epsilon}_{\alpha} n_{\beta} n_{\chi} n_{\delta} n_{\epsilon} - \frac{4}{15} \Gamma^{\delta\epsilon}_{\alpha} n_{\beta} n_{\chi} n_{\delta} n_{\epsilon} - \frac{4}{15} \Gamma^{\delta\epsilon}_{\alpha} n_{\beta} n_{\chi} n_{\delta} n_{\epsilon} + \frac{4}{15} \Gamma^{\delta\epsilon}_{\alpha} n_{\beta} n_{\chi} n_{\delta} n_{\epsilon} - \frac{4}{15} \Gamma^{\delta\epsilon}_{\alpha} n_{\beta} n_{\chi} n_{\delta} n_{\delta} - \frac{4}{15} \Gamma^{\delta\epsilon}_{\alpha} n_{\delta} n_{\delta} n_{\delta} - \frac{4}{15} \Gamma$

 $\frac{1}{15} \eta_{\alpha\chi} \Gamma_{\beta}^{\delta\epsilon} n_{\delta} n_{\epsilon} + \frac{1}{15} \eta_{\alpha\beta} \Gamma_{\chi}^{\delta\epsilon} n_{\delta} n_{\epsilon} + \frac{1}{15} \eta_{\beta\chi} \Gamma_{\alpha}^{\delta\epsilon} n_{\delta} n_{\epsilon} + \frac{1}{15} \eta_{\alpha\chi} \Gamma_{\beta}^{\delta\epsilon} n_{\delta} n_{\epsilon} + \frac{1}{15} \eta_{\alpha\beta} \Gamma_{\chi}^{\delta\epsilon} n_{\delta} n_{$