

# BronchoGAN: Anatomically consistent and domain-agnostic image-to-image translation for video bronchoscopy





Ahmad Soliman<sup>1</sup>, Ron Keuth<sup>1</sup>, Marian Himstedt<sup>2</sup>

- 1) Institute for Medical Informatics, University of Lübeck, Germany
- 2) Faculty for Electrical Engineering and Computer Science, Technical University of Applied Sciences Lübeck, Germany

#### MOTIVATION

- Limited amount of public bronchoscopy videos is available for training deep learning models
- In contrast, large-scale public CT datasets do exist > can be used for GAN-based image synthesis
- Use anatomy from CT-rendered virtual bronchoscopy and lung phantoms as source domain
- Use appearance from limited in-/ ex-vivo videos as target domain



### PROBLEM STATEMENT

- GAN: Risk of mode collapse for limited training data
- Anatomy (bronchial orifice) not accurately preserved
- Different visual appearances (virtual bronchoscopy, phantom material/lightning) -> domain gap

#### METHOD

- Use intermediate depth image representation obtained from foundational model (DepthAnything)
  - Domain-agnostic representation
- Segment anatomical structures (bronchial orifice) from depth images using training-free segmentation
- Condition image synthesis on segmentation maps of input and generator output
  - → Structure guidance using DICE loss



BronchoGAN architecture incorporating domain-agnostic image representations, training-free orifice segmentation and structure guidance.

### QUALITATIVE RESULTS



depth input (no segmentation) while BronchoGAN uses depth and segmentations.



CycleGAN results. Unpaired image translation baseline fails to preserve anatomy and cannot account for domain gaps.

## QUANTITATIVE RESULTS

| Model                | FID \     | SSIM ↑ | DICE ↑ |
|----------------------|-----------|--------|--------|
| cycleGAN             | 1717.9574 | 0.2831 | 0.2412 |
| pix2pix_base         | 1564.0430 | 0.4042 | 0.3950 |
| pix2pix_depth (ours) | 1006.5910 | 0.3875 | 0.6334 |
| BronchoGAN (ours)    | 770.6833  | 0.4623 | 0.6743 |

#### CONCLUSION

- GAN-based image translation tends to mode collapse and faces domain gaps in bronchoscopy
  - > use intermediate representation (depthAnything)
- Use segmentation maps to guide image synthesis and preserve anatomy (bronchial orifice)
- Future work addresses the integration of detailed labelling and multiclass segmentation