Playing Safe FSTTCS'2014

Thomas Colcombet, Nathanaël Fijalkow and Florian Horn

Delhi, India

December 16th, 2014

Games

Games

Games

General form

$$\sigma:V^+\to V$$

General form

$$\sigma: V^+ \to V$$

Positional or memoryless

$$\sigma: V \to V$$

General form

$$\sigma: V^+ \to V$$

Positional or memoryless

$$\sigma: V \to V$$

Finite-memory

$$\begin{cases}
\sigma: V \times M \to V \\
\mu: M \times E \to M
\end{cases}$$

Let $W \subseteq A^{\omega}$, compute:

$$\mathrm{mem}(W) \; \doteq \; \sup_{\mathcal{G} = (\mathcal{A}, W) \; \mathrm{game}} \; \inf_{\substack{\sigma \; \mathrm{winning} \\ \mathrm{strategy}}} \; \mathrm{mem}(\sigma) \; .$$

Let $W \subseteq A^{\omega}$, compute:

$$\mathrm{mem}(W) \; \doteq \; \sup_{\mathcal{G} = (\mathcal{A}, W) \; \mathrm{game}} \; \inf_{\substack{\sigma \; \mathrm{winning} \\ \mathrm{strategy}}} \; \mathrm{mem}(\sigma) \; .$$

Equivalently:

- upper bound: for all games $\mathcal{G} = (\mathcal{A}, W)$, if Eve has a winning strategy, then she has a winning strategy using at most mem(W) memory states,
- *lower bound:* there exists a game $\mathcal{G} = (\mathcal{A}, W)$ where Eve has a winning strategy, but no winning strategy using less than mem(W) memory states.

A winning strategy for Eve uses two memory states.

A winning strategy for Eve uses two memory states.

A winning strategy for Eve uses two memory states.

Theorem (Dziembowski, Jurdziński, Walukiewicz, 1997)

For W a boolean combination of "infinitely many $a \in A$ ", mem(W) is computable (and characterized through the Zielonka tree).

Theorem (Kopczyński, 2007)

For W which is ω -regular, mem_{chromatic}(W) is computable.

Theorem (Dziembowski, Jurdziński, Walukiewicz, 1997)

For W a boolean combination of "infinitely many $a \in A$ ", mem(W) is computable (and characterized through the Zielonka tree).

Theorem (Kopczyński, 2007)

For W which is ω -regular, mem_{chromatic} (W) is computable.

Conjecture (Kopczyński, 2008)

For W which is ω -regular, $\operatorname{mem}_{\operatorname{chromatic}}(W) = \operatorname{mem}(W)$.

Our Results

Res(W) is the set of residuals of W: for $u \in \Sigma^*$,

$$u^{-1}W = \{v \mid u \cdot v \in W\} .$$

Theorem (Colcombet, F., Horn)

For all safety conditions W, mem(W) is the width of $(Res(W), \subseteq)$, i.e. the size of the largest antichain.

Our Results

Res(W) is the set of residuals of W: for $u \in \Sigma^*$,

$$u^{-1}W = \{v \mid u \cdot v \in W\} .$$

Theorem (Colcombet, F., Horn)

For all safety conditions W, mem(W) is the width of $(Res(W), \subseteq)$, i.e. the size of the largest antichain.

- We make no regularity assumption!
- This holds for infinite arenas of finite degree.

An upper bound

The memory structure \mathcal{M}_W uses Res(W) as set of memory states, and:

- the initial memory state is $\varepsilon^{-1}W = W$,
- each time a letter a is read from $u^{-1}W$, the memory is updated to $(u \cdot a)^{-1}W$.

The memory structure \mathcal{M}_W uses Res(W) as set of memory states, and:

- the initial memory state is $\varepsilon^{-1}W = W$,
- each time a letter a is read from $u^{-1}W$, the memory is updated to $(u \cdot a)^{-1}W$.

Lemma (An upper bound)

For all games G = (A, W), Eve has a winning strategy using M_W .

Another example

"read at most ten consecutive a's, and then an b".

$$W = a + b \cdot a + bb \cdot a + \ldots + b^{10} \cdot a.$$

Another example

"read at most ten consecutive a's, and then an b".

$$W = a + b \cdot a + bb \cdot a + \dots + b^{10} \cdot a.$$

In every game with condition W, Eve wins without memory.

Another example

"read at most ten consecutive a's, and then an b".

$$W = a + b \cdot a + bb \cdot a + \ldots + b^{10} \cdot a.$$

In every game with condition W, Eve wins without memory.

 \hookrightarrow This shows that the memory structure \mathcal{M}_W is not optimal.

If Eve wins from $(q, u^{-1}L)$ and $u^{-1}L \subseteq v^{-1}L$, then she wins from $(q, v^{-1}L)$

If Eve wins from $(q, u^{-1}L)$ and $u^{-1}L \subseteq v^{-1}L$, then she wins from $(q, v^{-1}L)$ using the same strategy.

If Eve wins from $(q, u^{-1}L)$ and $u^{-1}L \subseteq v^{-1}L$, then she wins from $(q, v^{-1}L)$ using the same strategy.

Intuition: whenever in $(q, v^{-1}L)$, play as from $(q, u^{-1}L)$, where $u^{-1}L$ is minimally winning from q.

If Eve wins from $(q, u^{-1}L)$ and $u^{-1}L \subseteq v^{-1}L$, then she wins from $(q, v^{-1}L)$ using the same strategy.

Intuition: whenever in $(q, v^{-1}L)$, play as from $(q, u^{-1}L)$, where $u^{-1}L$ is minimally winning from q.

Problems:

- there may not exist minimally winning left quotients!
- winning or losing depends on the current position, which makes updating the memory state not trivial.

Our results

Theorem (Colcombet, F., Horn)

For all safety conditions W, mem(W) is the width of $(Res(W), \subseteq)$, i.e. the size of the largest antichain.

Our results

Theorem (Colcombet, F., Horn)

For all safety conditions W, mem(W) is the width of $(Res(W), \subseteq)$, i.e. the size of the largest antichain.

- Fails for infinite arenas of infinite degree.
- Unifies several results from the literature: boundedness condition, energy condition, generalized reachability.

The end

Thanks!