Série d'exercices : le mouvement

1^{ER} EXERCICE

1) Convertir en km/h:

10m/s , 240m/mn , 685cm/s.

2) Convertir en m/s:

7,2km/h , 18m/mn , 90km/h .

2^{ème} EXERCICE

Une voiture se déplace selon une trajectoire rectiligne avec une vitesse constante v=90km/h par rapport au référentiel terrestre.

Quelle est la nature du mouvement ? Trouver l'équation horaire de son mouvement sachant que l'abscice à l'instant t=0 est $x_0=125m$.

·····

3^{ème} EXERCICE

L'équation horaire du mouvement d'un mobile M selon une trajectoire rectiligne est:

$$x=3.t-4,5$$
 x (en mètre) et t(en seconde)

- 1) Quelle est la nature du mouvement de M? justifier votre réponse.
- 2) Quel est l'abscisse du mobile aux instants : t=0 et t= 2s?
- 3) A quel instant le mobile passe t il par le point d'abscisse x=0?

4ème rayan oron

4^{ème} EXERCICE

On lance un cavalier sur un banc à coussin d'air horizontal. On enregistre le mouvement d'un point M du cavalier pendant des intervalles de temps successifs et égaux $\tau = 40ms$

On obtient l'enregistrement suivant à l'échelle 1/2:

- 1) Préciser la nature du mouvement.
- 2) Calculer la vitesse instantanée aux points suivants : M_1 , M_3 , M_5 .
- 3) Représenter avec une échelle convenable : \vec{v}_5 , \vec{v}_3 et \vec{v}_1
- 4) On considère le point M_2 origine de l'axe des abscisses (O, \overline{i}) et l'instant d'enregistrement du point M_0 origine du repère de temps. Trouver l'équation horaire du mouvement.

5^{ème} EXERCICE:

On donne l'enregistrement du mouvement d'un mobile M pendant des intervalles de temps successifs et égaux : $\tau = 30ms$

Sachant que le mobile passe par le point M_2 à l'instant t=0 et que le point M_3 est considéré origine de l'axe des abscisses (O,\overline{i}) qui est orienté dans le sens du mouvement. \overline{i} dont le vecteur unitaire

- 1) Calculer la valeur de la vitesse instantanée de M à chacun des points M_2 , M_3 , M_4 et M_5 . Quelle est votre conclusion?
- 2) Déduire la nature du mouvement de M?
- 3)Déterminer l'équation horaire du mouvement du point M.
- 4)Quelle sera la position du mobile à l'instant t=0,042s?

6ème EXERCICE:

On donne l'enregistrement du mouvement d'un mobile M pendant des intervalles de temps successifs et égaux . $\tau = 50ms$