UAV Velocity Prediction Using Audio data

Team TN

Eunyoung Bang

Jeongyoun Seo

Yeongmin Seo

Raymond Zeng

Aminata Bineta Bibi NIANG

K-SQ 2nd floor,

Purdue University

08/03/2022

AGENDA

01	02	03	04
Introduction	Methodology	Result	Conclusion
Member Motivation	Background Dataset CNN Architecture	MFCC Result Result Graph	Summary Future Work

Introduction

Member Motivation

Members

Eunyoung Bang

University: Kangwon National

Major: Computer Engineering

Interest field : Machine Learning, Deep

Learning

JeongYoun Seo

University: Sangmyung

Major: Human Intelligence Information

Engineering

Interest field: AI, Deep Learning

Raymond Zeng

University: Purdue

Major: Cyber Security

Interest field : Cyber Security

Yeongmin Seo

University: DaeguCatholic

Major : Cyber Security

Interest field: Security, Machine

Learning

Aminata Bineta Bibi NIANG

University: Institut Polytechnique de

Paris

Major: Network Engineering

Interest field: Cybersecurity,

Telecommunications, AI

Problem Statement

Drone crashes into Russian oil refinery in possible attack [1]

FBI says PA electricity station likely 'target' of drone incident [2]

Problem Statement

How can we respond to malicious UAVs?

Our goal is

Our goal is

UAV Velocity Prediction Using Audio data

Why Audio Data? [3], [4], [5]

- Even with noise limitations, it provides good results for distinguishing the drone's sound.
- Audio data obtain relatively results at less cost than other methods.

Justice of malicious UAV

The U.S. FAA set UAV speed limit **100mph.**

Fast UAV that exceeds the speed limit

Set a speed limit

Indoor experiment is hard to accelerate the speed of UAV

Set the experimental threshold at 10mph

Methodology

Background
Dataset
CNN Architecture

Train models

MFCC [6]

SVM [7]

Machine learning to find the maximum value of this Margin

Random Forest [8]

LGBM [9]

CNN [10]

Drone Information (Indoor)

	X8SW	
Charging time (min)	About 150	
Controlling distance (meter)	About 70	
Flying time (min)	About 9	
Product Size (mm)	500 X 500 X 190	

Microphone	Speed gun	Place
Dell XPS15 9570 SAMSUNG Ion 2020 NT950XCR-G58A	Bushnell Velocity Speed Gun (Accuracy: +/- 1 mph)	K-SW 2nd floor

Methods for Collecting Drone Data

Dataset

Change the length of the dataset

Dataset

Description of dataset

Speed Type	Fast	Slow	Ratio
Train Data	776	639	80%
Validation Data	261	210	10%
Test Data	261	210	10%

CNN Architecture

Layer Description

	Layer	In Channels	Kernel	Padding	Stride	Activate
Layer1	Conv1D	20	4	2	2	ReLU
Layer2	Conv1D	11	4	2	2	ReLU
Layer3	Conv1D	5	4	2	2	Sigmoid

Result

MFCC Result Result Graph

MFCC Result

Velocity	Feature 0	Feature 1	Feature 2	Feature 3	Feature 4
Slow	-48.16	-25.84	19.66	0.91	-17.52
Fast	-55.64	-11.42	25.14	-3.21	-23.56
(time: 3sec)	Feature 5	Feature 6	Feature 7	Feature 8	Feature 9
	21.85	-10.59	20.11	-15.26	9.50
	22.03	-14.79	14.18	-18.04	7.65
	Feature 10	Feature 11	Feature 12	Feature 13	Feature 14
	-0.63	-9.87	7.72	-1.24	-1.62
	-3.59	-6.54	1.83	-1.03	-5.80
	Feature 15	Feature 16	Feature 17	Feature 18	Feature 19
	0.52	-4.19	-6.14	-3.47	1.66
	-0.25	-5.22	-2.39	-3.67	0.12

MFCC Result

Velocity	Feature 0	Feature 1	Feature 2	Feature 3	Feature 4
Slow	-48.16	-25.84	19.66	0.91	-17.52
Fast	-55.64	-11.42	25.14	-3.21	-23.56
(time: 3sec)	Feature 5	Feature 6	Feature 7	Feature 8	Feature 9
	21.85	-10.59	20.11	-15.26	9.50
	22.03	-14.79	14.18	-18.04	7.65
	Feature 10	Feature 11	Feature 12	Feature 13	Feature 14
	-0.63	-9.87	7.72	-1.24	-1.62
	-3.59	-6.54	1.83	-1.03	-5.80
	Feature 15	Feature 16	Feature 17	Feature 18	Feature 19
	0.52	-4.19	-6.14	-3.47	1.66
	-0.25	-5.22	-2.39	-3.67	0.12

MFCC Result

Velocity	Feature 0	Feature 1	Feature 2	Feature 4	Feature 7	Feature 12
Slow	-48.16	-25.84	19.66	-17.52	20.11	7.72
Fast	-55.64	-11.42	25.14	-23.56	14.18	1.83
Value difference	7.48	14.42	5.48	6.04	5.93	5.89

Machine Learning and Deep Learning Result

Model	Accuracy	Precision	Recall	F-1 Score
SVM	0.987	0.977	1.000	0.988
Random Forest	0.997	0.996	1.000	0.998
LGBM	0.995	0.992	1.000	0.996
CNN	1.000	1.000	1.000	1.000

Machine Learning and Deep Learning Result

Model	Accuracy	Precision	Recall	F-1 Score
SVM	0.987	0.977	1.000	0.988
Random Forest	0.997	0.996	1.000	0.998
LGBM	0.995	0.992	1.000	0.996
CNN	1.000	1.000	1.000	1.000

Machine Learning and Deep Learning Result

Model	Accuracy	Precision	Recall	F-1 Score
SVM	0.987	0.977	1.000	0.988
Random Forest	0.997	0.996	1.000	0.998
LGBM	0.995	0.992	1.000	0.996
CNN	1.000	1.000	1.000	1.000

	F-1 Score
SVM	0.988
Random Forest	0.998
LGBM	0.996
CNN	1.000

Conclusion

Summary Future Work

Summary

- Why we decided to do this project?
 - Drone Strike, Kamikaze attack
- How to solve the problem?
 - Predicting the velocity of the UAVs
- What does result means?
 - Possibility of prediction of UAV velocity

Future Work

- Generalization of the model
 - Outdoor environments of datasets
 - Expanding the range of drone types
- Improved performance of the model
 - Gradually increase the speed limits by 5 mph

REFERENCE

- [1] L. Harding, "Drone crashes into Russian oil refinery in possible attack" The Guardian https://www.theguardian.com/world/2022/jun/22/russian-novoshakhtinsk-oil-refinery-struck-drone-possible-attack-inside-borders (accessed July. 24, 2022)
- [2] B. Crumley, "FBI says PA electricity station likely 'target' of drone incident," dronedj.com. https://dronedj.com/2021/11/04/fbi-says-pa-electricity-station-likely-target-of-drone-incident/ (accessed May. 17, 2022)
- [3] E. E. Case, A. M. Zelnio, and B. D. Rigling, "Low-cost acoustic array for small uav detection and tracking," in 2008 IEEE Nat. Aerosp. and Electronics Conf. IEEE, 2008, pp. 110-113.
- [4] A. Bernardini, F. Mangiatordi, E. Pallotti, and L. Capodiferro, "Drone detection by acoustic signature identification," Electronic Imaging, vol. 2017, no. 10, pp. 60-64, 2017.
- [5] Y. Seo, B. Jang, and S. Im, "Drone detection using convolutional neural networks with acoustic stft features," in 2018 15th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS). IEEE, 2018, pp. 1-6.
- [6] H. Fayek, Speech Processing for Machine Learning: Filter banks, Mel-Frequency Cepstral Coefficients (MFCCs) and What's In-Between, haythamfayek, last modified 05/09, 2022, accessed Apr 21, 2016, https://haythamfayek.com/2016/04/21/speech-processing-for-machine-learning.html

REFERENCE

[7] holehouse, "Stanford Machine Learning", holehouse.org. http://www.holehouse.org/mlclass/ (accessed June. 02, 2022)

[8] jhkim0759. "RandomForest, XGBoost, LGBM, CatBoost뭐가 다를까?," tistory.com, https://jhkim0759.tistory.com/12 (accessed July. 18, 2022)

[9] Eunji L., "XGBoost vs. LightGBM, 어떤 알고리즘이 더 좋을까?", github.com, https://assaeunji.github.io/machine%20learning/2021-01-07-xgboost/ (accessed July. 18, 2022)

[10] A. Kumar, "Different Types of CNN Architectures Explained: Examples", vitalflux.com, https://vitalflux.com/different-types-of-cnn-architectures-explained-examples/ (accessed July. 18, 2022)

Thank you for listening

Q&A

Team TN

Eunyoung Bang (yeong35@kangwon.ac.kr)
Jeongyoun Seo (201810773@sangmyung.kr)
Yeongmin Seo (dudals1003@cu.ac.kr)
Raymond Zeng (zeng172@purdue.edu)
Aminata Bineta Bibi NIANG
(aminata.niang@telecom-sudparis.e)

Mentor

Eric T. Matson Anthony H. Smith Yaqin Wang Minji Lee Larry Hiday

