

DIMENSIONALITY'S BLESSING CLUSTERING IMAGES BY UNDERLYING DISTRIBUTION

CVPR 2018

FF79RR

COURSE PROJECT

AUTHORS

Wen-Yan Lin, Siying Liu, Jian-Huang Lai, Yasuyuki Matsushita

INSTRUCTOR: DR. TUSHAR SANDHAN MENTOR: HIDANGMAYUM BEBINA DEVI BY: VISHAL HIMMATSINGHKA (211175)

INTRODUCTION

- Contrast-Loss Challenge: Traditional clustering in high-dimensional data is difficult due to "contrast-loss," where distances between data points converge, complicating separation.
- New Perspective: This paper reinterprets contrast-loss as an advantage, showing that it can help concentrate similar data points on thin, distinct hyper-shells, enabling better separability.
- Transformative Insight: By leveraging contrast-loss, the approach turns this limitation into a powerful tool for organizing and clustering high-dimensional data.

OBJECTIVE

- Objective: This research introduces a novel clustering algorithm, "Distribution-Clustering," designed to harness contrast-loss in highdimensional spaces.
- Features: The algorithm automatically determines the number of clusters, groups data based on underlying distributions, and is robust to outliers.
- Impact: This approach enhances clustering accuracy, particularly for chaotic, high-dimensional datasets, by leveraging distribution-based similarities.

RELATED RESEARCH

- Existing Approaches: High-dimensional clustering challenges have led to methods like sub-space and projective clustering, aimed at reducing contrastloss effects.
- Emerging Insights: Recent studies indicate that contrast-loss might aid in cluster and outlier detection, presenting new advantages.
- Contribution: Building on Beyer et al.'s foundational work, this paper shows how contrast-loss can enhance natural data separability, providing a foundation for the proposed clustering algorithm.

METHODOLOGY

- 1. Feature Extraction: A pre-trained AlexNet model in the TestModel class extracts deep features for each image, converting them into one-dimensional vectors through adaptive pooling and flattening to capture essential characteristics.
- 2. Distance Calculation: The cluster function computes pairwise squared Euclidean distances between image feature vectors, laying the foundation for clustering by measuring the "closeness" of images in feature space.
- 3. Affinity Matrix Computation: Using these distances, the compute_affinity_matrix function calculates a second-order affinity matrix. This matrix reflects image similarities by computing and averaging the squared differences in distances of image pairs i and j to all other images, capturing second-order similarity in elements A(i, j).
- 4. Distribution-Clustering Algorithm: The algorithm initializes clustering with the smallest non-zero element in the affinity matrix, forming a candidate cluster H. It expands H by including points with average second-order distances below a threshold tau, and validates clusters that meet a minimum size, assigning unique labels.
- 5. Outlier Handling: Images that don't fit well into existing clusters are treated as outliers and placed separately, preserving the purity of primary clusters.
- 6. Final Clustering Result: This process repeats until all images are either clustered or marked as single-point outliers if they don't meet similarity criteria, resulting in clusters that group images based on their underlying distribution characteristics within the threshold tau.

RESULTS

Distribution-clustering

The clusttering results of Distribution clustering was compared with other known methods like K-Means, GMM, Spectral clustering on various performance metrices such tas Silhouette Score, Calinski-Harabasz Index, Davies-Bouldin Index. Some sample results can be seen below on two given datasets, coloseum images and Mnist digit dataset are shown below.

	Silhouette Score	Calinski-Harabasz Index	Davies-Bouldin Index
method			
kmeans	0.025718	4.999815	2.248301
gmm	0.021279	4.790093	1.896970
spectral	0.025493	4.747467	2.313330
distribution	0.028362	3.192529	2.287611
improved_distribution	0.034347	3.462428	2.224356
improved_distribution	0.034347	3.462428	2.224356
improved_distribution	0.034347 Silhouette Score	3.462428 Calinski-Harabasz Index	2.224356 Davies-Bouldin Index
improved_distribution method			
method	Silhouette Score	Calinski-Harabasz Index	Davies-Bouldin Index
method kmeans	Silhouette Score 0.088517	Calinski-Harabasz Index 27.638248	Davies-Bouldin Index 2.217181
method kmeans gmm	0.088517 0.100902	Calinski-Harabasz Index 27.638248 27.930472	2.217181 2.153142

PROPOSED ADVANCEMENT

- FLD for Distance Calculation: Fisher Linear Discriminant (FLD) replaces Euclidean distance in the distance matrix, projecting data into a space that maximizes inter-cluster separability and minimizes intra-cluster variance.
- Initial Clusters: The algorithm starts with initial clusters from a conventional method, then applies FLD to refine the clustering space.
- Affinity Matrix: The FLD Enhanced transformation yields a more accurate affinity matrix, improving the clustering process by better representing the true relationships between data points.

Tests had been performed on a given unit of 100 images alongwith the mentioned known datsets such as MNIST and Caltech 101 with multiple sets of images.

- Novel Perspective on Contrast-Loss: The paper reinterprets the traditionally negative contrast-loss phenomenon in high-dimensional clustering as a beneficial property, utilizing it in the Distribution-Clustering algorithm to group data based on distribution similarities.
- Automatic Outlier Handling and Clean Clusters: The algorithm naturally produces clean clusters with automatic outlier handling, enhancing its robustness in clustering tasks.
- FLD Enhancement for Clustering: The introduction of Fisher Linear Discriminant (FLD) refines the clustering process by improving cluster separability and robustness, particularly in complex, high-dimensional datasets. This results in enhanced accuracy and wider applicability to challenging datasets.