

$$A = \begin{bmatrix} | & | & | \\ \lambda_1 \mathbf{v} & \lambda_2 \mathbf{v} & \cdots & \lambda_n \mathbf{v} \\ | & | & | \end{bmatrix}$$

- a) What is the rank of the matrix A?
- **b)** Prove that the nullspace N(A) is a hyperplane through the origin.

$$\lambda_{j} = \begin{pmatrix} \lambda_{i} \\ \lambda_{j} \end{pmatrix}, \quad \lambda_{i} \vee.$$

b) [= gilt
$$N(A) = \{ x \in \mathbb{R}^n : A_x = 0 \}$$

Vir enchen
$$d \in \mathbb{R}^n$$
, $H_d = \{ x \in \mathbb{R}^n : d^T x = 0 \}$ so does $V(A) = H_d$.

$$N(A) \leq 1_d$$
: Sei $x \in N(A)$. Is gilt

$$A_{\times} = \begin{bmatrix} \lambda_{1} \vee \dots & \lambda_{n} \vee \\ 1 & & & \\ &$$

$$= \begin{pmatrix} \lambda_1 \vee_1 \times_1 + \lambda_2 \vee_1 \times_2 + \dots + \lambda_n \vee_1 \times_n \\ = \lambda_1 \vee_2 \times_1 + \lambda_2 \vee_2 \times_2 + \dots + \lambda_n \vee_2 \times_n \\ \vdots$$

$$\lambda_1 \vee_n \times_1 + \lambda_2 \vee_n \times_2 + \dots + \lambda_n \vee_n \times_n$$

$$= \begin{pmatrix} v_1 \cdot (\lambda_1 x_1 + \lambda_2 x_2 + \dots + \lambda_n x_n) \\ v_2 \cdot (\lambda_1 x_1 + \lambda_2 x_2 + \dots + \lambda_n x_n) \\ \vdots \\ v_n \cdot (\lambda_1 x_1 + \lambda_2 x_2 + \dots + \lambda_n x_n) \end{pmatrix}$$

0.	Skew-symmetric matrices (************************************
_	A square matrix $A \in \mathbb{R}^{m \times m}$ is skew-symmetric if and only if $A^{\top} = -A$.
	a) Give an example of a nonzero skew-symmetric matrix when $m=2$.
	b) Let $A = [a_{ij}]_{i=1,j=1}^m$ be skew-symmetric. Show that $a_{ii} = 0$ for all $i \in [m]$.
	c) Which matrices in $\mathbb{R}^{m \times m}$ are both skew-symmetric and symmetric? Argue why your list is complete.
	d) Let $A \in \mathbb{R}^{3 \times 3}$ be skew-symmetric. Show that $\operatorname{rank}(A) \leq 2$.
a)	Sei A = (an anz). Wenn A schielsymetrisch ist, gilt:
	$A^{T} = \begin{pmatrix} a_{11} & a_{21} \\ a_{12} & a_{22} \end{pmatrix} = \begin{pmatrix} -a_{11} & -a_{12} \\ -a_{21} & a_{22} \end{pmatrix} = -A$
	Also muss $a_{11} = a_{22} = 0$ and $a_{12} = -a_{21}$.
	$\Gamma = 1$ Beispiel ware also $A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$.
b)	Da $A^{T} = -A$, muss getten dass $a_{ii} = -a_{ii}$, $i \in Im I$.
	$a_{ii} = -a_{ii} \qquad \Rightarrow \qquad 2a_{ii} = 0 \qquad \Rightarrow \qquad a_{ii} = 0$
c)	Symmetrisch: AT = A
	Schichsymmetrisch: AT = -A
	$A^{T} = A$ and $A^{T} = -A$
	\Rightarrow $A = -A$
	=> 2 A = 0
	=> A = 0
	Also ist nur die Nullmatrix symmetrisch und schiefsymmetrisch.
J)	Observation 2.5 (ii): Die Spalten von A sind linear
	unabhängig genan dann, wenn x=0 der einzige
	Veletor ist, so dass $A \times = 0$.

4. Scalar product (★★☆)

Recall that the scalar product of two vectors

$$\mathbf{v} = \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix} \text{ and } \mathbf{w} = \begin{pmatrix} w_1 \\ w_2 \\ \vdots \\ w_n \end{pmatrix}$$

in \mathbb{R}^n is a real number given by

$$\mathbf{v}^{\top}\mathbf{w} = v_1w_1 + v_2w_2 + \dots + v_nw_n$$

for the covector $\mathbf{v}^{\top} \in (\mathbb{R}^n)^*$. The vectors \mathbf{v} and \mathbf{w} are orthogonal to each other if and only if

Let $A \in \mathbb{R}^{m \times n}$ be the matrix

 $A(\lambda_x + \mu_y) = 0.$

$$A = \begin{bmatrix} - & \mathbf{u}_1^\top & - \\ - & \mathbf{u}_2^\top & - \\ & \vdots \\ - & \mathbf{u}_m^\top & - \end{bmatrix}$$

with rows $\mathbf{u}_1^{\top}, \mathbf{u}_2^{\top}, \dots, \mathbf{u}_m^{\top} \in (\mathbb{R}^n)^*$. Recall that, by Observation 2.8, we have

$$A\mathbf{x} = \begin{bmatrix} - & \mathbf{u}_1^\top & - \\ - & \mathbf{u}_2^\top & - \\ & \vdots & \\ - & \mathbf{u}_m^\top & - \end{bmatrix} \mathbf{x} = \begin{pmatrix} \mathbf{u}_1^\top \mathbf{x} \\ \mathbf{u}_2^\top \mathbf{x} \\ \vdots \\ \mathbf{u}_m^\top \mathbf{x} \end{pmatrix}$$

for $\mathbf{x} \in \mathbb{R}^n$. In particular, we have $A\mathbf{x} = \mathbf{0}$ if and only if \mathbf{x} is orthogonal to each of $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_m$.

a) Now consider two vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ satisfying $A\mathbf{x} = \mathbf{0}$ and $A\mathbf{y} = \mathbf{0}$ and let $\lambda, \mu \in \mathbb{R}$ be arbitrary. Prove that the vector $\lambda \mathbf{x} + \mu \mathbf{y}$ is orthogonal to each of $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_m$.

b) Finally, consider the set of vectors $\mathcal{L} = \{\mathbf{x} \in \mathbb{R}^n : A\mathbf{x} = \mathbf{0}\}$ and assume $|\mathcal{L}| \geq 2$. Is \mathcal{L} a finite set? zeigen: Venn v ochhogenal zu x und y, dam K Hint ist v arthogonal zu \x+My, \x, m ER Sei $V \in \mathbb{R}^n$ so doss $V^T X = 0$, $V^T Y = 0$. Nach Observation 1.10 gilt: $V^{T}(\lambda_{x} + \mu_{y}) = \lambda_{v} V^{T} \times + \mu_{v} V^{T} = 0$ Also stimmt x. Wie betrachten nun eine Zeile u. von A. Da Ax = 0 and Ay = 0, ist up of the good $2n \times 4$ Also muss up or the good $2n \times 4$ $\times 4$

