Три сюжета напоследок

Эконометрика. Openedu. Неделя 15

Три сюжета

- Квантильная регрессия
- Алгоритм случайного леса
- Байесовский подход

Квантильная регрессии

Моделировать можно не только среднее, но и медиану или другой определённый квантиль.

Классическая регрессия — модель для среднего

Предпосылки классической модели:

- $y_i = \beta_1 + \beta_2 x_i + \varepsilon_i$
- экзогенность, $E(\varepsilon_i|x_i)=0$
- другие предпосылки

Следствие:

$$E(y_i|x_i) = \beta_1 + \beta_2 x_i$$

Минимизация суммы квадратов

Модель:
$$E(y_i|x_i) = \beta_1 + \beta_2 x_i$$

- Сумма квадратов остатков, $Q(\hat{\beta}_1, \hat{\beta}_2) = \sum_i (y_i \hat{y}_i)^2$
- ullet Минимизируя $Q(\hat{eta}_1,\hat{eta}_2)$ получаем состоятельные оценки $\hat{eta}_1,\,\hat{eta}_2$

Медианная регрессия

Модель: $Med(y_i|x_i) = \beta_1 + \beta_2 x_i$

На большой выборке:

Математическое ожидание — среднее арифметическое значение

объясняемой переменной y_i при заданном x_i

Медиана, $Med(y_i|x_i)$ — число, больше которого оказывается ровно

половина y_i при заданном x_i

Алгоритм получения оценок

- ullet Сумма модулей остатков, $M(\hat{eta}_1,\hat{eta}_2) = \sum_i |y_i \hat{y}_i|$
- ullet Минимизируя $M(\hat{eta}_1,\hat{eta}_2)$ получаем состоятельные оценки $\hat{eta}_1,\,\hat{eta}_2$

Пример у неоновой доски

Найдите оценку $\hat{\beta}$ медианной регрессии:

$$Med(y_i|x_i) = \beta x_i$$

Набор данных:

у	X
1	1
2	5
6	5

Медианная и классическая регрессия

- Классическая: от каких факторов зависит $E(y_i|x_i)$?
- Медианная: от каких факторов зависит $Med(y_i|x_i)$?
- ullet Оценки \hat{eta}_j и $se(\hat{eta}_j)$ считаются по разным формулам
- Если распределение ε_i симметрично, то оба подхода дают асимптотически одинаковые оценки
- ullet Сходная проверка гипотез: $t=rac{\hat{eta}_j-eta_j}{se(\hat{eta}_j)} o N(0,1)$

Медианная регрессия: минусы

- Нет явных формул для оценок коэффициентов и стандартных ошибок
- Только асимптотические свойства оценок коэффициентов

Медианная регрессия: плюсы

- Взгляд на данные с другой стороны
- Более устойчивые оценки в случае "выбросов" в ε_i

Произвольная квантиль

• Медиана, *Med*(*y_i*), — квантиль 50%

$$P(y_i \leq Med(y_i)) = 0.5$$

• Квантиль порядка τ , q_{τ} :

$$P(y_i \leq q_{\tau}) = \tau$$

• Например:

Квантиль порядка 10% для y_i — такое число $q_{0.1}$, что вероятность того, что y_i окажется меньше этого числа, равна 10%.

Квантильная регрессия

Модель:
$$q_{\tau}(y_i|x_i) = \beta_1^{\tau} + \beta_2^{\tau}x_i$$

• Зависимость для разных квантилей может быть разная!

Асимметричная сумма модулей остатков:

$$M(\hat{\beta}_1, \hat{\beta}_2) = \sum_i w_i \cdot |y_i - \hat{y}_i|$$
 где веса w_i равны:

$$w_i = \begin{cases} (1-\tau), \ y_i < \hat{y}_i \\ \tau, \ y_i \ge \hat{y}_i \end{cases}$$

ullet Минимизируя $M(\hat{eta}_1,\hat{eta}_2)$ получаем состоятельные оценки $\hat{eta}_1,\,\hat{eta}_2$

Квантильная регрессия стоимости квартир

```
недорогое жильё (10%-ый квантиль): \widehat{price}_i = 3.9 + 1.3totsp_i дорогое жильё (90%-ый квантиль): \widehat{price}_i = -102.4 + 3.6totsp_i
```

Квантильная регрессия стоимости на графике

Алгоритм случайного леса

- Очень хорошо прогнозирует
- Не объясняет, как устроены данные

Две версии алгоритма

- ullet Для непрерывной y_i
- Для качественной y_i

Каждый мужчина должен посадить дерево

Набор данных

у	X	Z
1	1	-2
1	0	3
2	0	-4
10	0	9
20	1	9

Каждый мужчина должен посадить дерево

Как посадить дерево?

- Из имеющихся k переменных случайно отбираем $k' = \lceil k/3 \rceil$ переменных
- Из отобранных k' переменных выбираем ту, которая даёт наилучшее деление ветви дерева на две
- Повторяем до тех пор, пока в каждом терминальном узле остаётся больше nodesize = 5 наблюдений

Наилучшее деление

```
До деления: RSS=274.8 \{1,1,2,10,20\},\ \hat{y}=\bar{y}=6.8, После разбиения: RSS=RSS_1+RSS_2=50.67 Слева: \{1,1,2\},\ \hat{y}=\bar{y}=1.33,\ RSS_1=0.67 Справа: \{10,20\},\ \hat{y}=\bar{y}=15,\ RSS_2=50
```

Алгоритм случайный

Повторное применение алгоритма к тому же набору данных даст слегка другие оценки

Мужчина, владеющий R, может посадить целый лес!

- Случайным образом отбираем (с повторениями) *п* наблюдений из исходных *п* наблюдений
- Сажаем дерево по случайной подвыборке
- Повторяем до получения $n_{tree} = 500$ деревьев

Прогноз случайного леса:

- ullet Каждое из $n_{tree}=500$ деревьев даёт свой прогноз \hat{y}_i
- Усредняем и получаем финальный прогноз

Неоновая доска. Пример построения регрессионного дерева

у	X
1	1
2	2
9	3
10	4
10	5

Байесовский подход

Опишем наше незнание параметра θ в виде априорного закона распределения!

Пример. Неизвестная вероятность

•
$$p \in [0; 1]$$

Априорная плотность:

$$f(p) = egin{cases} 1, \ p \in [0;1] \\ 0, \ \text{иначе} \end{cases}$$

Пример. Неизвестный положительный коэффициент

•
$$\beta \in [0; +\infty)$$

Априорная плотность:

$$f(eta) = egin{cases} \exp(-eta), \ eta \in [0; \infty) \ 0, \ ext{иначе} \end{cases}$$

Модель

Модель задаёт закон распределения наблюдений, y_i , при фиксированном значении параметров Например,

$$y_i = \beta_1 + \beta_2 x_i + \varepsilon_i, \ \varepsilon_i \sim N(0, \sigma^2)$$

Кристально-чистая логика байесовского подхода

Определяем:

- Априорное распределение, $f(\theta)$
- ullet Модель для данных, f(y| heta)

По формуле условной вероятности получаем:

• Апостериорное распределение, $f(\theta|y)$

Формула условной вероятности

$$f(\theta|y) = \frac{f(y|\theta) \cdot f(\theta)}{f(y)} \sim f(y|\theta) \cdot f(\theta)$$

Пример у неоновой доски

Наблюдения: пойманы 2 карася и щука.

Отдельные наблюдения независимы, вероятность поймать щуку и карася стабильна во времени.

Найдите апостериорную плотность вероятности поймать карася в пруду.

- нет информации
- Бабушка: караси встречаются чаще щук!

Как описать сложную функцию плотности?

Сколь угодно точное описание любой плотности!

 \bullet Большая выборка независимых значений случайной величины r :

$$r_1, r_2, r_3, \ldots, r_{10000}$$

• Можно оценить всё: E(r), $E(r^2)$, P(r > 0)

Монте-Карло по схеме Марковской цепи

MCMC (Markov Chain Monte Carlo) Заменяет формулу условной вероятности

Алгоритм МСМС

На входе:

- Априорное распределение, $f(\theta)$
- ullet Модель для данных, f(y| heta)

На выходе:

ullet Большая выборка из апостериорного распределения, f(heta|y)

Алгоритм случайный

Повторное применение алгоритма к тому же набору данных даст слегка другие оценки

Плюсы байесовского подхода

• Можно задавать вопросы про неизвестные параметры:

$$P(\beta_3 > 0|y), P(\beta_3 = 0|y), E(\beta_3|y)$$
?

• Апостериорное распределение есть всегда!

даже при жесткой мультиколлинеарности и полном отсутствии наблюдений

Минусы байесовского подхода

- Его не все знают
- Может требовать больших объемов вычислений

МСМС и логит

"Идеальное прогнозирование" — ситуация, в которой ML оценки логит-модели не существуют

Логит-модель

$$y_i \in \{0,1\}.$$
 $y_i = \begin{cases} 1, y_i^* \geq 0 \\ 0, y_i^* < 0 \end{cases}$ Скрытая переменная: $y_i^* = \beta_1 + \beta_2 x_i + \varepsilon_i.$

Априорное распределение для логит модели

```
\beta \sim N(b_0, B_0^{-1})
 Гиперпараметры:
 b_0 — априорное среднее
 B_0 — априорная матрица точности
 B_0^{-1} = Var(\beta)
```

Выбор априорных гиперпараметров

Традиционно:

$$B_0 = (0, 0, \dots, 0)'$$

$$B_0 = \begin{pmatrix} d & 0 & 0 & \dots \\ 0 & d & 0 & \dots \\ 0 & 0 & d & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

Число d мало

To ects: $\beta_1 \sim N(0, 1/d), \ \beta_2 \sim N(0, 1/d), \ \dots$

Пример проблемной ситуации

У	Х
0	1
0	2
1	3

Логит и пробит оценки не существуют

Логит со вкусом Байеса

Априорно: $\beta_1 \sim N(0, 10^2), \ \beta_2 \sim N(0, 10^2)$ Апостериорные средние: $\hat{y}_i^* = -10.8 + 4.5x_i$ $y_i = \begin{cases} 1, y_i^* \geq 0 \\ 0, y_i^* < 0 \end{cases}$

Регрессия пик-плато

Модель:
$$y_i = \beta_1 + \beta_2 x_i + \beta_3 z_i + \varepsilon_i$$
, $\varepsilon_i \sim N(0, \sigma^2)$

Вариант априорного распределения пик-плато

- $\beta_j | \gamma_j, \tau_j^2 \sim N(0, \gamma_j \cdot \tau_j^2)$
- $\gamma_j = \begin{cases} 1, & \text{с вероятностью } 1/2 \\ 0, & \text{с вероятностью } 1/2 \end{cases}$
- $\tau_i^2 \sim \Gamma^{-1}(a_1, a_2)$
- $\sigma^2 \sim \Gamma^{-1}(b_1, b_2)$

Гиперпараметры: a_1, a_2, b_1, b_2

Регрессия пик-плато

Позволяет напрямую отвечать на вопрос: Чему равна вероятность $P(\beta_2 = 0|y)$?

Пример с машинами

Апостериорные средние значения коэффициентов:

$$\widehat{dist}_i = 12.81 + 0.28 speed_i + 0.01 speed_i^2$$

Апостериорные вероятности:

$$P(\beta_{speed} = 0|y) = 0.15$$

$$P(\beta_{speed^2} = 0|y) = 0.05$$

Большое спасибо

Нам не удалось решить все наши задачи.

Решения, что мы находим, лишь ставят перед нами новые вопросы. В каком-то смысле, мы также мало знаем, как и раньше. Но мы верим, что наше незнание стало глубже, а не знаем мы всё более важные вещи.

Большое спасибо тем, кто прошел вместе с нами этот курс до конца!