Chương 3: Biến ngẫu nhiên nhiều chiều

Lê Xuân Lý ⁽¹⁾

Viện Toán ứng dụng và Tin học, ĐHBK Hà Nội

Hà Nội, tháng 8 năm 2012

⁽¹⁾ Email: lexuanly@gmail.com

Nôi dung

- Luật phân phối xác suất của biến ngẫu nhiên nhiều chiều
 - Các khái niêm cơ sở
 - Phân phối xác suất của biến ngẫu nhiên hai chiều rời rạc
 - Phân phối xác suất của biến ngẫu nhiên hai chiều liên tục
- Các tham số đặc trưng của biến ngẫu nhiên hai chiều Kỳ vọng và phương sai của các thành phần

 - Hiệp phương sai và hê số tương quan
- - Hàm của một biến ngẫu nhiên
 - Hàm của hai biến ngẫu nhiên
 COME
 COME
- - Luât số lớn
 - Định lý giới han trung tâm

Các khái niệm cơ sở

- Ở chương trước chúng ta quan tâm đến xác suất của biến ngẫu nhiên riêng rẽ. Nhưng trong thực tế nhiều khi ta phải xét đồng thời nhiều biến khác nhau có quan hệ tương hỗ (ví dụ khi nghiên cứu về sinh viên một trường đại học thì cần quan tâm đến chiều cao, cân nặng, tuổi, . . .). Do đó dẫn đến khái niệm biến ngẫu nhiên nhiều chiều hay véctơ ngẫu nhiên.
- ullet Để cho đơn giản, ta nghiên cứu biến ngẫu nhiên hai chiều (X,Y), trong đó X,Y là các biến ngẫu nhiên một chiều. Hầu hết các kết quả thu được đều có thể mở rộng khá dễ dàng cho trường hợp biến ngẫu nhiên n chiều.
- Biến ngẫu nhiên hai chiều được gọi là rời rạc (liên tục) nếu các thành phần của nó là các biến ngẫu nhiên rời rạc (liên tục).

Các khái niệm cơ sở

Dinh nghĩa 3.1

Hàm phân phối xác suất của biến ngẫu nhiên hai chiều (X,Y) được xác định như sau

$$F(x,y) = P(X < x, Y < y), x, y \in \mathbb{R}.$$
 (3.1)

Nhiều tài liệu gọi hàm trên là hàm phân phối xác suất đồng thời của hai biến X và Y.

Tính chất

- $0 \le F(x,y) \le 1, \ \forall x,y \in \mathbb{R};$
- F(x,y) là hàm không giảm theo từng đối số;
- $F(-\infty, y) = F(x, -\infty) = 0, \ \forall x, y \in \mathbb{R} \ \text{và} \ F(+\infty, +\infty) = 1;$
- Với $x_1 < x_2, \ y_1 < y_2$ ta luôn có

$$P(x_1 \le X \le x_2, y_1 \le y \le y_2) = F(x_2, y_2) + F(x_1, y_1) - F(x_1, y_2) - F(x_2, y_1).$$

الادماء 1956

Các khái niệm cơ sở

Tính chất (tiếp)

Các hàm

$$F(x, +\infty) = P(X < x, Y < +\infty) = P(X < x) =: F_X(x)$$

 $F(+\infty, y) = P(X < +\infty, Y < y) = P(Y < y) =: F_Y(x)$

là các hàm phân phối riêng của các biến ngẫu nhiên X và Y và còn được gọi là các *phân phối biên* của biến ngẫu nhiên hai chiều (X,Y).

Định nghĩa 3.2

Hai biến ngẫu nhiên X,Y được gọi là độc lập nếu

$$F(x,y) = F_X(x).F_Y(y), \forall x, y \in \mathbb{R}.$$

Dinh nghĩa 3.3

Bảng phân phối xác suất của biến ngẫu nhiên hai chiều (X,Y) rời rạc được xác định như sau

 y_1 y_2 y_j y_n X x_1 p_{11} p_{12} $p_{1,j}$ p_{1n} x_2 p_{21} p_{22} p_{2i} p_{2n} P(X = x) x_i p_{i1} p_{i2} p_{ij} p_{in} P(X = x) x_m \sum

Trong đó

$$p_{ij} = P(X = x_i, Y = y_j) \quad \forall i = \overline{1, m}, j = \overline{1, n}.$$

Kích thước bảng này có thể chạy ra vô hạn khi m,n chạy ra vô hạn.

- $p_{ij} \geq 0 \ \forall i, j;$
- \bullet Hàm phân phối xác suất được xác định theo công thức $F(x,y) = \sum\limits_{i,j: \ x_i < x, \ y_j < y} p_{ij};$
- Các phân phối biên được xác định như sau:

$$P(X = x_i) = \sum_{j} P(X = x_i, Y = y_j) = \sum_{j} p_{ij}$$

 $P(Y = y_j) = \sum_{j} P(X = x_i, Y = y_j) = \sum_{j} p_{ij}$

Trong đó

$$p_{ij} = P(X = x_i, Y = y_j) \quad \forall i = \overline{1, m}, j = \overline{1, n}.$$

Kích thước bảng này có thể chạy ra vô hạn khi m,n chạy ra vô hạn.

- $p_{ij} \geq 0 \quad \forall i, j;$
- $\bullet \sum_{i,j} p_{ij} = 1;$
- \bullet Hàm phân phối xác suất được xác định theo công thức $F(x,y) = \sum\limits_{i,j: \ x_i < x, \ y_j < y} p_{ij};$
- Các phân phối biên được xác định như sau:

$$P(X = x_i) = \sum_{j} P(X = x_i, Y = y_j) = \sum_{j} p_{ij}$$

 $P(Y = y_j) = \sum_{j} P(X = x_i, Y = y_j) = \sum_{j} p_{ij}$

Trong đó

$$p_{ij} = P(X = x_i, Y = y_j) \quad \forall i = \overline{1, m}, j = \overline{1, n}.$$

Kích thước bảng này có thể chạy ra vô hạn khi m,n chạy ra vô hạn.

- $p_{ij} \geq 0 \quad \forall i, j$:
- $\bullet \sum_{i,j} p_{ij} = 1;$
- ullet Hàm phân phối xác suất được xác định theo công thức $F(x,y) = \sum\limits_{i,j:\; x_i < x,\; y_j < y} p_{ij};$
- Các phân phối biên được xác định như sau:

$$P(X = x_i) = \sum_{j} P(X = x_i, Y = y_j) = \sum_{j} p_{ij}$$

 $P(Y = y_j) = \sum_{j} P(X = x_i, Y = y_j) = \sum_{j} p_{ij}$

Trong đó

$$p_{ij} = P(X = x_i, Y = y_j) \quad \forall i = \overline{1, m}, j = \overline{1, n}.$$

Kích thước bảng này có thể chạy ra vô hạn khi m,n chạy ra vô hạn.

- \bullet $p_{ij} > 0 \ \forall i, j$:
- $\bullet \sum_{i,j} p_{ij} = 1;$
- ullet Hàm phân phối xác suất được xác định theo công thức $F(x,y) = \sum\limits_{i,j:\; x_i < x,\; y_j < y} p_{ij};$
- Các phân phối biên được xác định như sau:

$$P(X = x_i) = \sum_{j} P(X = x_i, Y = y_j) = \sum_{j} p_{ij}$$

 $P(Y = y_j) = \sum_{i} P(X = x_i, Y = y_j) = \sum_{i} p_{ij}.$

Ví du 1

Cho bảng phân phối xác suất đồng thời của (X,Y) như sau:

X Y	1	2	3
1	0.10	0.25	0.10
2	0.15	0.05	0.35

Tìm bảng phân phối xác suất của X và Y, sau đó tính F(2;3).

Giải

Lấy tổng của hàng, cột tương ứng ta thu được

17	1	0
X	1	2
P(X=x)	0.45	0.55

Y	1	2	3
P(Y=x)			

Ta có

$$F(2,3) = \sum_{x_i < 2} \sum_{y_j < 3} p_{ij} = p_{11} + p_{12} = 0.35.$$

Giải

Lấy tổng của hàng, cột tương ứng ta thu được

X	1	2	
P(X=x)	0.45	0.55	

Y	1	2	3
P(Y=x)	0.25	0.30	0.45

Ta cá

$$F(2,3) = \sum_{x_i < 2} \sum_{y_j < 3} p_{ij} = p_{11} + p_{12} = 0.35.$$

Giải

Lấy tổng của hàng, cột tương ứng ta thu được

X	1	2
P(X=x)	0.45	0.55

Y	1	2	3
P(Y=x)	0.25	0.30	0.45

Ta có

$$F(2,3) = \sum_{x_i < 2} \sum_{y_j < 3} p_{ij} = p_{11} + p_{12} = 0.35.$$

Chú ý 3.1

• Hai biến ngẫu nhiên X,Y được gọi là độc lập với nhau nếu ta có

$$P(X = x_i, Y = y_j) = P(X = x_i).P(Y = y_j), \forall i = \overline{1, m}, j = \overline{1, n}$$

• Các xác suất có điều kiên vẫn được tính như thông thường, tức là

$$P\left(X=x_i|Y=y_j\right)=\frac{P(X=x_i,\ Y=y_j)}{P(Y=y_j)}\quad\text{hoặc}$$

$$P\left(X=x_i|Y\in D\right)=\frac{P(X=x_i,\ Y\in D)}{P(Y\in D)}$$

Công thức cũng tương tự với $P(Y = y_i | X = x_i)$, $P(Y = y_i | X \in D)$.

Chú ý 3.1

ullet Hai biến ngẫu nhiên X,Y được gọi là độc lập với nhau nếu ta có

$$P(X = x_i, Y = y_j) = P(X = x_i).P(Y = y_j), \quad \forall i = \overline{1, m}, \ j = \overline{1, n}$$

Các xác suất có điều kiện vẫn được tính như thông thường, tức là

$$P\left(X=x_i|Y=y_j
ight)=rac{P(X=x_i,\ Y=y_j)}{P(Y=y_j)}$$
 hoặc $P\left(X=x_i|Y\in D
ight)=rac{P(X=x_i,\ Y\in D)}{P(Y\in D)}$

Công thức cũng tương tự với $P(Y = y_j | X = x_i)$, $P(Y = y_j | X \in D)$.

Chú ý 3.1

ullet Hai biến ngẫu nhiên X,Y được gọi là độc lập với nhau nếu ta có

$$P(X = x_i, Y = y_j) = P(X = x_i).P(Y = y_j), \forall i = \overline{1, m}, j = \overline{1, n}$$

Các xác suất có điều kiện vẫn được tính như thông thường, tức là

$$P\left(X=x_i|Y=y_j
ight)=rac{P(X=x_i,\ Y=y_j)}{P(Y=y_j)}$$
 hoặc
$$P\left(X=x_i|Y\in D
ight)=rac{P(X=x_i,\ Y\in D)}{P(Y\in D)}$$

Công thức cũng tương tự với $P(Y = y_i | X = x_i)$, $P(Y = y_i | X \in D)$.

Dinh nghĩa 3.4

Hàm hai biến không âm, liên tục f(x,y) được gọi là hàm mật độ xác suất đồng thời của biến ngẫu nhiên hai chiều liên tục (X < Y) nếu nó thỏa mãn

$$P((X,Y) \in \mathcal{D}) = \iint_{\mathcal{D}} f(x,y) dx dy \quad \forall \mathcal{D} \subset \mathbb{R}^{2}.$$
 (3.2)

•
$$F(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(u,v)dudv;$$

$$\bullet \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x,y) dx dy.$$

Tính chất (tiếp)

•
$$f(x,y) = \frac{\partial^2 F(x,y)}{\partial x \partial y}$$
;

Các hàm mật độ biến $+\infty$ theo $x: \ f_X(x) = \int f(x,y) dy;$

• theo
$$x: f_X(x) = \int_{-\infty}^{+\infty} f(x,y)dy;$$

• theo
$$y$$
: $f_Y(y) = \int_{-\infty}^{+\infty} f(x,y) dx$.

$$\varphi\left(x|y\right) = \frac{f(x,y)}{f_Y(y)}.$$

Tính chất (tiếp)

•
$$f(x,y) = \frac{\partial^2 F(x,y)}{\partial x \partial y}$$
;

Các hàm mật độ biên

ác hàm mật độ biên
$$\bullet \ \ {\rm theo} \ x: \ \ f_X(x) = \int\limits_{-\infty}^{+\infty} f(x,y) dy;$$

• theo
$$y$$
: $f_Y(y) = \int_{-\infty}^{+\infty} f(x,y) dx$.

$$\varphi(x|y) = \frac{f(x,y)}{f_Y(y)}$$

Tính chất (tiếp)

•
$$f(x,y) = \frac{\partial^2 F(x,y)}{\partial x \partial y}$$
;

Các hàm mật độ biên

ác hàm mật độ biên
$$\bullet \ \ \text{theo} \ x: \ \ f_X(x) = \int\limits_{-\infty}^{+\infty} f(x,y) dy;$$

• theo
$$y$$
 : $f_Y(y) = \int\limits_{-\infty}^{+\infty} f(x,y) dx$.

- Hai biến ngẫu nhiên X và Y được gọi là độc lập nếu $f(x,y) = f_X(x).f_Y(y) \ \forall x,y.$

$$\varphi(x|y) = \frac{f(x,y)}{f_{Y}(y)}$$

Tính chất (tiếp)

•
$$f(x,y) = \frac{\partial^2 F(x,y)}{\partial x \partial y}$$
;

Các hàm mật độ biên

ác hàm mật độ biên
$$\bullet \ \ \text{theo} \ x: \quad f_X(x) = \int\limits_{-\infty}^{+\infty} f(x,y) dy;$$

- ullet theo $y: \ f_Y(y)=\int\limits_{-\infty}^{+\infty}f(x,y)dx.$
- Hai biến ngẫu nhiên X và Y được gọi là độc lập nếu $f(x,y) = f_X(x).f_Y(y) \ \forall x,y.$
- Hàm mật độ có điều kiện của X khi đã biết Y=y:

$$\varphi(x|y) = \frac{f(x,y)}{f_Y(y)}.$$

Nội dung

- Luật phân phối xác suất của biến ngẫu nhiên nhiều chiều
 - Các khái niêm cơ sở
 - Phân phối xác suất của biến ngẫu nhiên hai chiều rời rạc
 - Phân phối xác suất của biến ngẫu nhiên hai chiều liên tục
- 2 Các tham số đặc trưng của biến ngẫu nhiên hai chiều
 - Kỳ vọng và phương sai của các thành phần
 - Hiệp phương sai và hệ số tương quan
- 3 Hàm của biến ngẫu nhiên
 - Hàm của một biến ngẫu nhiên
 - Hàm của hai biến ngẫu nhiên
 than cong. com
- 4 Luật số lớn và định lý giới hạn trung tâm
 - Luật số lớn
 - Định lý giới hạn trung tâm

Kỳ vọng và phương sai của các thành phần

Trường hợp (X,Y) rời rạc

$$EX = \sum_{i} P(X = x_i) = \sum_{i} \sum_{j} x_i p_{ij}; \quad EY = \sum_{j} y_j P(Y = y_j) = \sum_{i} \sum_{j} y_j p_{ij}$$
$$VX = \sum_{i} \sum_{j} x_i^2 p_{ij} - (EX)^2; \quad VY = \sum_{i} \sum_{j} y_j^2 p_{ij} - (EY)^2.$$

Trường hợp (X,Y) liên tục

$$EX = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} x \cdot f(x, y) dx dy; \qquad EY = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} y \cdot f(x, y) dx dy$$
$$VX = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} x^2 \cdot f(x, y) dx dy - (EX)^2; \quad VY = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} y^2 \cdot f(x, y) dx dy - (EY)^2.$$

Kỳ vọng và phương sai của các thành phần

Trường hợp (X,Y) rời rạc

$$EX = \sum_{i} P(X = x_i) = \sum_{i} \sum_{j} x_i p_{ij}; \quad EY = \sum_{j} y_j P(Y = y_j) = \sum_{i} \sum_{j} y_j p_{ij}$$
$$VX = \sum_{i} \sum_{j} x_i^2 p_{ij} - (EX)^2; \quad VY = \sum_{i} \sum_{j} y_j^2 p_{ij} - (EY)^2.$$

Trường hợp (X,Y) liên tục

$$\begin{split} EX &= \int\limits_{-\infty}^{+\infty} \int\limits_{-\infty}^{+\infty} x.f(x,y) dx dy; \\ VX &= \int\limits_{-\infty}^{+\infty} \int\limits_{-\infty}^{+\infty} x^2.f(x,y) dx dy - (EX)^2; \quad VY &= \int\limits_{-\infty}^{+\infty} \int\limits_{-\infty}^{+\infty} y^2.f(x,y) dx dy - (EY)^2. \end{split}$$

Kỳ vọng và phương sai của các thành phần

Chú ý 4.1

Đối với biến ngẫu nhiên Z=g(X,Y) ta có

$$EZ = E[g(X,Y)] = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} g(x,y).f(x,y)dxdy$$

cuu duong than cong. com

Dinh nghĩa 4.1

Cho biến ngẫu nhiên hai chiều (X,Y), hiệp phương sai của hai thành phần X và Y, kí hiệu là μ_{XY} , được xác định bởi

$$\mu_{XY} = E[(X - EX)(Y - EY)] = E(XY) - EX.EY,$$
(4.3)

trong đó E(XY) được xác định theo công thức

$$E(XY) = \begin{cases} \sum\limits_i \sum\limits_j x_i y_j p_{ij}, & \text{dối với biến ngẫu nhiên rời rạc} \\ +\infty + \infty \\ \int \int x y. f(x,y), & \text{dối với biến ngẫu nhiên liên tục} \end{cases}$$

Dinh nghĩa 4.2

Ta nói rằng X và Y không tương quan nếu $\mu_{XY}=0$.

Nhận xét

- $\bullet \ \mu_{XY} = \mu_{YX};$
- Phương sai chính là trường hợp riêng của hiệp phương sai $(VX = \mu_{XX}, \ VY = \mu_{YY});$
- Nếu X,Y độc lập thì ta có E(XY)=EX.EY. Khi đó $\mu_{XY}=0$, tức là X và Y không tương quan. Vậy ta có, nếu hai biến ngẫu nhiên độc lập thì không tương quan. Diều ngược lại chưa chắc đã đúng.

Dinh nghĩa 4.2

Ta nói rằng X và Y không tương quan nếu $\mu_{XY} = 0$.

Nhận xét

- $\mu_{XY} = \mu_{YX}$;
- Phương sai chính là trường hợp riêng của hiệp phương sai $(VX = \mu_{XX}, \ VY = \mu_{YY});$
- Nếu X,Y độc lập thì ta có E(XY)=EX.EY. Khi đó $\mu_{XY}=0$, tức là X và Y không tương quan. Vậy ta có, nếu hai biến ngẫu nhiên độc lập thì không tương quan. Điều ngược lại chưa chắc đã đúng.

Dinh nghĩa 4.2

Ta nói rằng X và Y không tương quan nếu $\mu_{XY} = 0$.

Nhân xét

- \bullet $\mu_{XY} = \mu_{YX}$;
- Phương sai chính là trường hợp riêng của hiệp phương sai $(VX = \mu_{XX}, VY = \mu_{YY})$:
- Nếu X,Y độc lập thì ta có E(XY)=EX.EY. Khi đó $\mu_{XY}=0$, tức là X và Ykhông tương quan. Vậy ta có, nếu hai biến ngẫu nhiên độc lập thì không tương quan. Điều ngược lại chưa chắc đã đúng.

17 / 30

Định nghĩa 4.3

 $\emph{Ma trận hiệp phương sai}$ của biến ngẫu nhiên hai chiều (X,Y) được xác định bởi

$$\Gamma = \begin{bmatrix} \mu_{XX} & \mu_{XY} \\ \mu_{YX} & \mu_{YY} \end{bmatrix}$$

Dinh nghĩa CHU QUONG Thân công. com

$$\rho_{XY} = \frac{\mu_{XY}}{\sigma_X \sigma_Y}.\tag{4.4}$$

- Có thể chứng minh được $|\rho_{XY}| < 1$. Nếu $\rho_{XY} = \pm 1$ ta nói hai biến ngẫu nhiên X
- Nếu $\rho_{XY} = 0$ ta nói hai biến ngẫu nhiên X và Y là không tương quan.

Định nghĩa 4.3

 ${\it Ma~trận~hiệp~phương~sai}$ của biến ngẫu nhiên hai chiều (X,Y) được xác định bởi

$$\Gamma = \begin{bmatrix} \mu_{XX} & \mu_{XY} \\ \mu_{YX} & \mu_{YY} \end{bmatrix}$$

Định nghĩa 4.4

 $H\!\hat{e}$ số tương quan của hai biến ngẫu nhiên X và Y, ký hiệu là ρ_{XY} và được xác định theo công thức

$$\rho_{XY} = \frac{\mu_{XY}}{\sigma_X \sigma_Y}.$$
(4.4)

Chú ý 4.2

- Có thể chứng minh được $|\rho_{XY}| \leq 1$. Nếu $\rho_{XY} = \pm 1$ ta nói hai biến ngẫu nhiên X và Y có tương quan tuyến tính;
- Nếu $\rho_{XY}=0$ ta nói hai biến ngẫu nhiên X và Y là không tương quan.

Định nghĩa 4.3

 $\emph{Ma trận hiệp phương sai}$ của biến ngẫu nhiên hai chiều (X,Y) được xác định bởi

$$\Gamma = \begin{bmatrix} \mu_{XX} & \mu_{XY} \\ \mu_{YX} & \mu_{YY} \end{bmatrix}$$

Dinh nghĩa 4.4

 $\emph{Hệ số tương quan}$ của hai biến ngẫu nhiên X và Y, ký hiệu là ρ_{XY} và được xác định theo công thức

$$\rho_{XY} = \frac{\mu_{XY}}{\sigma_X \sigma_Y}.$$
 (4.4)

Chú ý 4.2

- Có thể chứng minh được $|\rho_{XY}| \leq 1$. Nếu $\rho_{XY} = \pm 1$ ta nói hai biến ngẫu nhiên X và Y có tương quan tuyến tính;
- Nếu $ho_{XY}=0$ ta nói hai biến ngẫu nhiên X và Y là không tương quan.

Nội dung

- Luật phân phối xác suất của biến ngẫu nhiên nhiều chiều
 - Các khái niệm cơ sở
 - Phân phối xác suất của biến ngẫu nhiên hai chiều rời rạc
 - Phân phối xác suất của biến ngẫu nhiên hai chiều liên tục
- Các tham số đặc trưng của biến ngẫu nhiên hai chiều g
 Kỳ vong và phương sai của các thành phần
 - Ny vọng và phương sai của các thanh pr
 - Hiệp phương sai và hệ số tương quan
- 3 Hàm của biến ngẫu nhiên
 - Hàm của một biến ngẫu nhiên
 - Hàm của hai biến ngẫu nhiên
 CONE COME
- 4 Luật số lớn và định lý giới hạn trung tâm
 - Luật số lớn
 - Định lý giới hạn trung tâm

Nếu ta xác định là một hàm của biến ngẫu nhiên X thì Z trở thành một biến ngẫu nhiên mới. Ta sẽ tìm hàm phân phối xác suất cho Z trong một số trường hợp đơn giản.

Định nghĩa 5.1

Cho biến ngẫu nhiên X có hàm phân phối xác suất. Khi đó hàm phân phối xác suất của Z được xác định theo cách sau:

$$F_Z(z) = P(Z < z) = P(g(X) < z) = P(X \in D),$$
 (5.5)

trong đó $D = \{x | g(x) < z\}.$

Tuy nhiên tùy vào từng bài có thể có các cách giải ngắn hơn.

Ví du 2

Cho biến ngẫu nhiên X có bảng phân phối xác suất

X	-1	0	1	2	3
P(X=x)	0.1	0.2	0.3	0.2	0.2

Xác định luật phân phối xác suất của $Z = X^2$ và tìm kỳ vọng của Z.

$$P(Z=0) = P(X=0) = 0.2;$$
 $P(Z=1) = P(X=1) + P(X=-1) = 0.4;$ $P(X=4) = P(X=2) = 0.2;$ $P(Z=9) = P(X=3) = 0.2.$

		4	
P(Z=z)	0.4		

Ví du 2

Cho biến ngẫu nhiên X có bảng phân phối xác suất

Г	X	-1	0	1	2	3
	P(X = x)	0.1	0.2	0.3	0.2	0.2

Xác định luật phân phối xác suất của $Z = X^2$ và tìm kỳ vong của Z.

Giải

Ta có $X \in \{-1,0,1,2,3\}$, suy ra $Z \in \{0,1,4,9\}$ với các xác suất tương ứng:

$$P(Z = 0) = P(X = 0) = 0.2;$$
 $P(Z = 1) = P(X = 1) + P(X = -1) = 0.4;$ $P(X = 4) = P(X = 2) = 0.2;$ $P(Z = 9) = P(X = 3) = 0.2.$

Kỳ vọng $EZ = \sum z_i p_i = 3$.

Ví du 3

Thanh AB dài $10\mathrm{cm}$ bỗng nhiên bị gãy ở một điểm C bất kỳ. Hai đoạn AC và BCđược dùng làm hai cạnh của một hình chữ nhật. Tìm hàm phân phối xác suất của biến ngẫu nhiên chỉ diện tích hình chữ nhật đó.

Giải

Gọi X là biến ngẫu nhiên chỉ độ dài đoạn AC, ta có $X \sim U(0;10)$. Gọi Y là biến ngẫu nhiên chỉ diện tích hình chữ nhật, ta có Y = X(10 - X). Do

 $X \in (0;10) \Rightarrow Y = X(10-X) \in (0;25)$. Vậy ta có hàm phân phối xác suất của Y là

$$F_Y(y) = \begin{cases} 0, & y \le 0 \\ 1, & y > 25 \end{cases}.$$

Với $0 < y \le 25$ ta có

$$\begin{split} F_Y(y) &= P(Y < y) = P(X(10 - X) < y) = P\left(X^2 - 10X + y > 0\right) \\ &= P\left(X < 5 - \sqrt{25 - y}\right) + P\left(X > 5 + \sqrt{25 - y}\right) \\ &= P\left(0 < X < 5 - \sqrt{25 - y}\right) + P\left(10 > X > 5 + \sqrt{25 - y}\right) = \frac{5 - \sqrt{25 - y}}{5}. \end{split}$$

Hàm của hai biến ngẫu nhiên

Xét biến ngẫu nhiên Z = g(X, Y), trong đó (X, Y) là biến ngẫu nhiên hai chiều đã biết luật phân phối. Ta sẽ xét luật phân phối xác suất của Z trong một số trường hợp đơn giản theo cách sau:

$$F_Z(z) = P(Z < z) = P(g(X,Y) < z) = P((X,Y) \in D),$$

trong đó $D\{(x,y)|g(x,y) < z\}$.

Đối với biến ngẫu nhiên hai chiều liên tục (X,Y) với hàm mật độ đồng thời f(x,y) ta có

$$P((X,Y) \in D) = \iint_D f(x,y)dxdx,$$

đồng thời kỳ vọng

$$EZ = E\left(g(X,Y)\right) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} g(x,y).f(x,y)dxdy.$$

Hàm của hai biến ngẫu nhiên

Ví du 4

Hai người bạn hẹn gặp nhau ở công viên trong khoảng thời gian từ 17h đến 18h. Họ hẹn nhau nếu người nào đến trước thì sẽ đơi người kia trong vòng 10 phút. Sau 10 phút đơi nếu không gặp sẽ về. Thời điểm đến của hai người là ngẫu nhiên và độc lập với nhau trong khoảng thời gian trên. Tính xác suất hai người gặp được nhau.

Giải

Quy gốc thời gian về lúc 17h. Goi X,Y là biến ngẫu nhiên chỉ thời điểm người A,Bđến, ta có $X,Y\sim U(0;60)$. Do X,Y độc lập nên chúng có hàm mật độ đồng thời

$$f(x,y) = \begin{cases} \frac{1}{3600}, & (x,y) \in [0;60]^2 \\ 0, & \text{ngược lại} \end{cases}. \text{ Gọi } Z \text{ là biến ngẫu nhiên chỉ khoảng thời gian giữa}$$

thời điểm hai người đến. Ta có Z=|X-Y|. Khi đó, xác suất hai người gặp nhau là

$$P(Z < 10) = P(|X - Y| < 10) = P((X, Y) \in D),$$

trong đó D là giao miền |X-Y|<10 và hình vuông $[0;60]^2$. Vậy

 $S_D = 100 - 1100 - 1100$

Nội dung

- Luật phân phối xác suất của biến ngẫu nhiên nhiều chiều
 - Các khái niêm cơ sở
 - Phân phối xác suất của biến ngẫu nhiên hai chiều rời rạc
 - Phân phối xác suất của biến ngẫu nhiên hai chiều liên tục
- 2 Các tham số đặc trưng của biến ngẫu nhiên hai chiều
 - Kỳ vọng và phương sai của các thành phần
 - Hiệp phương sai và hệ số tương quan
- 3 Hàm của biến ngẫu nhiên
 - Hàm của một biến ngẫu nhiên
 - Hàm của hai biến ngẫu nhiên
- 4 Luật số lớn và định lý giới hạn trung tâm
 - Luât số lớn
 - Định lý giới hạn trung tâm

Luât số lớn

Bất đẳng thức Trebyshev

Định lý 1: Cho Y là biến ngẫu nhiên không âm. Khi đó với $\epsilon > 0$ tuỳ ý cho trước ta có:

$$P(Y \ge \epsilon) < \frac{E(Y^2)}{\epsilon^2}$$

Chứng minh

Ta chứng minh cho trường hợp Y là biến ngẫu nhiên liên tục.

$$P(Y \ge \epsilon) = \int_{\epsilon}^{+\infty} f(y)dy = \frac{1}{\epsilon^2} \int_{\epsilon}^{+\infty} \epsilon^2 f(y)dy \le \frac{1}{\epsilon^2} \int_{\epsilon}^{+\infty} y^2 f(y)dy$$
$$\le \frac{1}{\epsilon^2} \int_{0}^{+\infty} y^2 f(y)dy = \frac{E(Y^2)}{\epsilon^2}$$

$$\leq \frac{1}{\epsilon^2} \int_{0}^{+\infty} y^2 \cdot f(y) dy = \frac{E(Y^2)}{\epsilon^2}$$

Tuy nhiên dấu bằng không thể đồng thời xảy ra ở cả 2 dấu \leq nên ta có DPCM.

SAM

Luật số lớn

Bất đẳng thức Trebyshev

Định lý 2: Cho X là biến ngẫu nhiên có $EX=\mu, VX=\sigma^2$ hữu hạn. Khi đó với $\epsilon>0$ tuỳ ý cho trước ta có:

$$P(|X - \mu| \ge \epsilon) < \frac{\sigma^2}{\epsilon^2}$$

hay tương đương

$$P(|X - \mu| \le \epsilon) \ge 1 - \frac{\sigma^2}{\epsilon^2}$$

Chứng minh

Ta chứng minh cho trường hợp X là biến ngẫu nhiên liên tục.

Ta chỉ cần đặt $Y = |X - \mu|$, lập tức áp dụng định lý 1 ta có ĐPCM.

Luât số lớn

Áp dụng định lý 2 với $X=\frac{1}{n}\sum_{i=1}^n X_i$ ta có luật số lớn Trebyshev

Luât số lớn Trebyshev

Nếu dãy các biến ngẫu nhiên $X_1, X_2, ... X_n, ...$ độc lập, có kỳ vọng hữu hạn và phương sai bị chặn $(VX_i \le C \text{ với C là hằng số})$, khi đó với $\epsilon > 0$ tuỳ ý cho trước ta có:

$$\lim_{n \to +\infty} P(|\frac{1}{n} \sum_{i=1}^{n} X_i - \frac{1}{n} \sum_{i=1}^{n} EX_i| < \epsilon) = 1$$

Hê quả

Nếu dãy các biến ngẫu nhiên $X_1, X_2, ... X_n, ...$ độc lập, có cùng kỳ vọng $(EX_i = \mu)$ và phương sai bị chăn ($VX_i < C$ với C là hằng số), khi đó với $\epsilon > 0$ tuỳ ý cho trước ta có:

$$\lim_{n \to +\infty} P(|\frac{1}{n} \sum_{i=1}^{n} X_i - \mu| < \epsilon) = 1$$

Luật số lớn Bernoulli

Áp dụng luật số lớn Trebyshev với trường hợp $X_i \sim B(1,p)$ chính là số lần xảy ra A trong phép thử thứ i ta có luật số lớn Bernoulli.

Luât số lớn Bernoulli

Xét n phép thử độc lập, cùng điều kiện.

Trong mỗi phép thử, xác suất xảy ra A luôn là p.

m là số lần xảy ra A trong n phép thử.

khi đó với $\epsilon > 0$ tuỳ ý cho trước ta có:

$$\lim_{n \to +\infty} P(|\frac{m}{n} - p| < \epsilon) = 1$$

Với luật số lớn Bernoulli ta đã chứng minh được điều thừa nhận trong phần ĐỊNH NGHĨA XÁC SUẤT THEO THỐNG KÊ, đó là với $n\to+\infty$ thì $\frac{m}{n}\to p$

Định lý giới hạn trung tâm

Đinh lý giới han trung tâm

Giả sử $\{X_n\}$ là dãy biến ngẫu nhiên độc lập cùng phân phối với $EX_i=\mu, VX_i=\sigma^2.$

Đặt $\overline{X_n} = \sum_{i=1}^n X_i$. Khi đó với n đủ lớn ta có:

$$\overline{X_n} \sim N(\mu, \frac{\sigma^2}{n})$$

hay là

$$\frac{\overline{X_n} - \mu}{\sigma} \sqrt{n} \sim N(0; 1)$$

