## BADANIA OPERACYJNE I LOGISTYKA ĆW. PROJEKTOWE

DR INŻ. KRYSTIAN ZYGUŁA

KZYGULA@AGH.EDU.PL

B4/P.103

TEL. 12617 38 72

#### Przygotowano na podstawie:

- Dr inż. O. Lypchanskyi: materiały własne
- mgr Anna Bernaciak: materiały ćwiczeniowe

# PLAN ZAJĘĆ **INO GR. 1**

| <b>2024-03-04 CWP1</b> 9:45 - 11:15                    | Regulamin i zasady zaliczenia. Organizacja zajęć. Podział na zespoły i tematy projektów. Wprowadzenie teoretyczne z Metody CPM. Wymagania do aplikacji z Metody CPM. |
|--------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>2024-03-18 CWP2</b><br>9:45 - 11:15 - <b>ONLINE</b> | Praca nad projektem z Metody CPM.                                                                                                                                    |
| <b>2024-04-15 CWP3</b><br>9:45 - 11:15                 | Praca nad projektem z Metody CPM.                                                                                                                                    |
| <b>2024-04-29 CWP4</b><br>9:45 - 11:15                 | Wprowadzenie teoretyczne z Zagadnienia Pośrednika. Wymagania do aplikacji z Zagadnienia Pośrednika.                                                                  |
| <b>2024-05-13 CWP5</b><br>9:45 - 11:15                 | Oddawanie projektów z Metody CPM. Praca nad projektem z Zagadnienia<br>Pośrednika.                                                                                   |
| <b>2024-05-20 CWP6</b><br>9:45 - 11:15                 | Praca nad projektem z Zagadnienia Pośrednika.                                                                                                                        |
| <b>2024-06-03 CWP7</b><br>9:45 - 11:15                 | Oddawanie projektów z Zagadnienia Pośrednika. Wystawianie ocen.                                                                                                      |

# PLAN ZAJĘĆ **ITE GR. 1**

| <b>2024-02-26 CWP1</b> 13:15 - 14:45                  | Regulamin i zasady zaliczenia. Organizacja zajęć. Podział na zespoły i tematy projektów. Wprowadzenie teoretyczne z Metody CPM. Wymagania do aplikacji z Metody CPM. |
|-------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>2024-03-11 CWP2</b> 13:15 - 14:45                  | Praca nad projektem z Metody CPM.                                                                                                                                    |
| <b>2024-03-25 CWP3</b><br>13:15 - 14:45               | Praca nad projektem z Metody CPM.                                                                                                                                    |
| <b>2024-04-08 CWP4</b><br>13:15 - 14:45               | Wprowadzenie teoretyczne z Zagadnienia Pośrednika. Wymagania do aplikacji z Zagadnienia Pośrednika.                                                                  |
| <b>2024-04-22 CWP5</b><br>13:15 - 14:45               | Oddawanie projektów z Metody CPM. Praca nad projektem z Zagadnienia<br>Pośrednika.                                                                                   |
| <b>2024-05-06 CWP6</b><br>13:15 - 14:45               | Praca nad projektem z Zagadnienia Pośrednika.                                                                                                                        |
| <b>2024-05-27 CWP7</b><br>13:15 - 14:45 <b>ONLINE</b> | Oddawanie projektów z Zagadnienia Pośrednika. Wystawianie ocen.                                                                                                      |

## PLAN ZAJĘĆ **ITE GR. 2**

| <b>2024-03-04 CWP1</b> 13:15:14:45                  | Regulamin i zasady zaliczenia. Organizacja zajęć. Podział na zespoły i tematy projektów. Wprowadzenie teoretyczne z Metody CPM. Wymagania do aplikacji z Metody CPM. |  |  |
|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| <b>2024-03-18 CWP2</b> 13:15 : 14:45- <b>ONLINE</b> | Praca nad projektem z Metody CPM.                                                                                                                                    |  |  |
| <b>2024-04-15 CWP3</b> 13:15:14:45                  | Praca nad projektem z Metody CPM.                                                                                                                                    |  |  |
| <b>2024-04-29 CWP4</b> 13:15 : 14:45                | Wprowadzenie teoretyczne z Zagadnienia Pośrednika. Wymagania do aplikacji z Zagadnienia Pośrednika.                                                                  |  |  |
| <b>2024-05-13 CWP5</b> 13:15:14:45                  | Oddawanie projektów z Metody CPM. Praca nad projektem z Zagadnienia<br>Pośrednika.                                                                                   |  |  |
| <b>2024-05-20 CWP6</b> 13:15:14:45                  | Praca nad projektem z Zagadnienia Pośrednika.                                                                                                                        |  |  |
| <b>2024-06-10 CWP7</b> 13:15:14:45                  | Oddawanie projektów z Zagadnienia Pośrednika. Wystawianie ocen.                                                                                                      |  |  |

## PLAN ZAJĘĆ **ITE GR. 3**

| <b>2024-02-26 CWP1</b> 9:45 : 11:15                  | Regulamin i zasady zaliczenia. Organizacja zajęć. Podział na zespoły i tematy projektów. Wprowadzenie teoretyczne z Metody CPM. Wymagania do aplikacji z Metody CPM. |
|------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>2024-03-11 CWP2</b> 9:45 : 11:15                  | Praca nad projektem z Metody CPM.                                                                                                                                    |
| <b>2024-03-25 CWP3</b> 9:45 : 11:15                  | Praca nad projektem z Metody CPM.                                                                                                                                    |
| <b>2024-04-08 CWP4</b> 9:45 : 11:15                  | Wprowadzenie teoretyczne z Zagadnienia Pośrednika. Wymagania do aplikacji z Zagadnienia Pośrednika.                                                                  |
| <b>2024-04-22 CWP5</b><br>9:45 : 11:15               | Oddawanie projektów z Metody CPM. Praca nad projektem z Zagadnienia<br>Pośrednika.                                                                                   |
| <b>2024-05-06 CWP6</b> 9:45 : 11:15                  | Praca nad projektem z Zagadnienia Pośrednika.                                                                                                                        |
| <b>2024-05-27 CWP7</b><br>9:45 : 11:15 <b>ONLINE</b> | Oddawanie projektów z Zagadnienia Pośrednika. Wystawianie ocen.                                                                                                      |

#### **SYLLABUS**

| Rodzaje zajęć studenta                                            | Średnia liczba godzin* przeznaczonych na zrealizowane aktywności |   |
|-------------------------------------------------------------------|------------------------------------------------------------------|---|
| Wykład                                                            | 28                                                               |   |
| Ćwiczenia laboratoryjne                                           | 14                                                               |   |
| Ćwiczenia projektowe                                              | 14                                                               |   |
| Przygotowanie do zajęć                                            | 35                                                               | 1 |
| Samodzielne studiowanie tematyki zajęć                            | 40                                                               | B |
| Egzamin lub kolokwium zaliczeniowe                                | 2                                                                |   |
| Dodatkowe godziny kontaktowe                                      | 2                                                                |   |
| Przygotowanie projektu, prezentacji, pracy pisemnej, sprawozdania | 15                                                               | 1 |

- 1 NIEUSPRAWIEDLIWIONA NIEOBECNOŚĆ
- KAŻDĄ KOLEJNĄ NALEŻY USPRAWIEDLIWIĆ
- STUDENT, KTÓRY BĘDZIE NA MNIEJ NIŻ CZTERECH
  ZAJĘCIACH JEST TRAKTOWANY JAK STUDENT,
  KTÓRY NIE UCZĘSZCZAŁ NA ZAJĘCIA.
- STUDENT, KTÓRY BĘDZIE MIAŁ WIĘCEJ NIŻ
   DWIE NIEUSPRAWIEDLIWIONE NIEOBECNOŚCI
   TRAKTOWANY JEST JAK STUDENT, KTÓRY NIE
   UCZĘSZCZAŁ NA ZAJĘCIA.

#### REGULAMIN PRACOWNI KOMPUTEROWEJ

- 1. W SALACH KOMPUTEROWYCH NIE WOLNO JEŚĆ/PIĆ,
- 2. ODZIENIE WIERZCHNIE (KURTKI, PŁASZCZE) NALEŻY ZOSTAWIĆ W SZATNI (Z WYJĄTKIEM SYTUACJI GDY SZATNIA JEST NIECZYNNA),
- 3. NIE WOLNO ODŁĄCZAĆ OD PRĄDU/INTERNETU ŻADNEGO URZĄDZENIA W PRACOWNI KOMPUTEROWEJ,
- 4. MOŻNA KORZYSTAĆ Z WŁASNEGO LAPTOPA JEŻELI NIE NARUSZA TO POPRZEDNIEGO PUNKTU (ZASILACZ MOŻNA PODŁĄCZYĆ **TYLKO W WOLNE GNIAZDKA**),
- 5. NALEŻY PRZESTRZEGAĆ ZASAD BHP ORAZ REGULAMINU PRACOWNI,
- 6. NIE WOLNO INSTALOWAĆ ŻADNEGO OPROGRAMOWANIA NA STANOWISKACH KOMPUTEROWYCH,
- 7. WSZELKIE USTERKI/NIEPRAWIDŁOWOŚCI W FUNKCJONOWANIU SPRZĘTU NALEŻY BEZZWŁOCZNIE ZGŁOSIĆ PROWADZĄCEMU.

- ABY UZYSKAĆ ZALICZENIE Z ĆW. PROJEKTOWYCH NALEŻY PRZYGOTOWAĆ I ZŁOŻYĆ DWA PROJEKTY ORAZ OTRZYMAĆ OCENĘ MIN. 3,0 Z KAŻDEGO.
- DOWODEM ZALICZENIA JEST ZAPREZENTOWANIE DWÓCH PROJEKTÓW PROWADZĄCEMU NA WYZNACZONYCH ZAJĘCIACH ORAZ ZŁOŻENIE SPRAWOZDANIA.
- PROJEKT REALIZUJEMY W ZESPOŁACH TRZY- LUB DWUOSOBOWYCH
- ZESPOŁY MAJĄ DOWOLNOŚĆ W WYBORZE JĘZYKA I ŚRODOWISKA PROGRAMOWANIA
- NA KAŻDYCH ZAJĘCIACH ZESPOŁY BĘDĄ PRZEDSTAWIAŁY POSTĘP PRACY ZGODNIE
   Z PRZYJĘTYM HARMONOGRAMEM PROJEKTU. ZA POSTĘPY LUB ICH BRAK ZESPOŁY
   BĘDĄ OTRZYMYWAŁY + / -
- KAŻDE 3 "-" TO 0.5 OCENY W DÓŁ DO OCENY KOŃCOWEJ

- TEMATEM PROJEKTU JEST STWORZENIE APLIKACJI KTÓRE BĘDĄ ROZWIĄZYWAĆ
   ZADANIE Z METODY CPM I ZAGADNIENIE POŚREDNIKA OBA ZAGADNIENIA MOGĄ
   ZAWIERAĆ SIĘ W JEDNEJ APLIKACJI.
- TEMATY PROJEKTÓW DLA POSZCZEGÓLNYCH PAR RÓŻNIĆ SIĘ BĘDĄ TYLKO RODZAJEM
   APLIKACJI PRZEGLĄDARKOWA LUB OKIENKOWA.
- KAŻDA APLIKACJA POWINNA POSIADAĆ INTERFEJS DO WPISYWANIA DANYCH WEJŚCIOWYCH.
- KAŻDA APLIKACJA POWINNA POSIADAĆ WIZUALIZACJĘ WYNIKÓW.
  - DLA METODY CPM: NP. W FORMIE GRAFU\* / TABELI, OBLICZENIE NAJWCZEŚNIEJSZYCH/NAJPÓŹNIEJSZYCH
    MOMENTÓW ZAKOŃCZENIA I ROZPOCZĘCIA CZYNNOŚCI, OBLICZENIE REZERW CZASOWYCH, OKREŚLENIE ŚCIEŻKI
    KRYTYCZNEJ, KONSTRUKCJA HARMONOGRAMU GANTTA\*\* (ASAP/ALAP).
  - **DLA ZAGADNIENIA POŚREDNIKA:** ZAWIERAJĄCĄ: TABELĘ ZYSKÓW JEDNOSTKOWYCH, TABELĘ OPTYMALNYCH PRZEWOZÓW ORAZ WYLISTOWANE: KOSZT CAŁKOWITY, PRZYCHÓD CAŁKOWITY, ZYSK POŚREDNIKA.

<sup>\*</sup> OBOWIĄZKOWY

<sup>\*\*</sup> DODATKOWY

#### OCENIANIE (METODA CPM):

- ABY UZYSKAĆ OCENĘ POZYTYWNĄ APLIKACJA MUSI POPRAWNIE ROZWIĄZYWAĆ
   ZAGADNIENIE
- APLIKACJA Z GRAFICZNYM INTERFEJSEM (JEŚLI KONSOLOWA MAX. 3.5).
- OCENA WYJŚCIOWA 4.0:
  - ZA BRAK ELEMENTU Z INTERFEJSU LUB WIZUALIZACJI WYNIKÓW ODEJMOWANE JEST 0.5 OCENY.
  - ZA KAŻDĄ DODATKOWĄ FUNKCJONALNOŚĆ LUB DODATKOWY ELEMENT WIZUALIZACJI WYNIKÓW DODAWANE JEST 0.5 OCENY.
- OCENIE PODDAWANE BĘDĄ RÓWNIEŻ ZABEZPIECZANIA. STARANNOŚĆ, CZYTELNOŚĆ I ESTETYKA APLIKACJI, DZIĘKI CZEMU MOŻNA PONIEŚĆ OCENĘ.
- ODDANIE APLIKACJI PO TERMINIE: ODEJMOWANE JEST 0.5 OCENY ZA KAŻDE SPOTKANIE

#### OCENIANIE (ZAGADNIENIE POŚREDNIKA):

- APLIKACJA POWINNA ROZWIĄZYWAĆ NIEZBILANSOWANE ZAGADNIENIE POŚREDNIKA (TJ. POPYT ≠ PODAŻ), JEŚLI BĘDZIE OBLICZAĆ ZAGADNIENIE ZBILANSOWANE MAX. 4.0
- APLIKACJA Z GRAFICZNYM INTERFEJSEM (JEŚLI KONSOLOWA MAX. 3.5).
- OCENA WYJŚCIOWA 4.0:
  - ZA BRAK KAŻDEJ Z FUNKCJONALNOŚCI Z GUI I WIZUALIZACJI ODEJMOWANE JEST 0,5 OCENY
    (MOŻLIWOŚĆ WPISANIA: PODAŻY, POPYTU, CEN ZAKUPU I SPRZEDAŻY, KOSZTÓW TRANSPORTU, TABELA ZYSKÓW
    JEDNOSTKOWYCH, TABELA OPTYMALNYCH PRZEWOZÓW ORAZ WYLISTOWANE: KOSZT CAŁKOWITY, PRZYCHÓD CAŁKOWITY,
    ZYSK POŚREDNIKA)
  - ZA WPROWADZENIE DODATKOWYCH FUNKCJONALNOŚCI (NP. DOWOLNOŚĆ W WYBORZE ILOŚCI DOSTAWCÓW I ODBIORCÓW, DODATKOWE DANE WYŚWIETLANE PRZY WIZUALIZACJI WYNIKÓW) DODAWANE JEST 0,5 OCENY.
- OCENIE PODDAWANE BĘDĄ RÓWNIEŻ ZABEZPIECZANIA. STARANNOŚĆ, CZYTELNOŚĆ I ESTETYKA APLIKACJI, DZIĘKI CZEMU MOŻNA PONIEŚĆ OCENĘ.
- ODDANIE APLIKACJI PO TERMINIE: ODEJMOWANE JEST 0.5 OCENY ZA KAŻDE SPOTKANIE

#### PROJEKT – FORMA ZALICZENIA

- ZESPÓŁ PROJEKTOWY PREZENTUJE DZIAŁANIE PROGRAMU PROWADZĄCEMU INDYWIDUALNIE
- PODCZAS ZALICZENIA APLIKACJA TESTOWANA JEST NA PRZYKŁADZIE JEDNEGO ZADANIA WYBRANEGO PRZEZ PROWADZĄCEGO
- NA DZIEŃ ZALICZENIA NALEŻY PRZYGOTOWAĆ SPRAWOZDANIE ZGODNIE Z WYTYCZNYMI PROWADZĄCEGO (UPEL)
- PROJEKT MOŻNA ODDAĆ WCZEŚNIEJ

### **UPEL**

- MATERIAŁY DODATKOWE
- WYSYŁANIE SPRAWOZDAŃ
- ZESTAWIENIE OCEN

#### HASŁA GRUPOWE

- BOILITE1
- BOILITE2
- BOILITE3
- BOILINO1

• **PYTANIA**?

• PODZIAŁ NA ZESPOŁY PROJEKTOWE.

DEKLARACJA RODZAJU APLIKACJI

PRZYGOTOWANIE HARMONOGRAMU PROJEKTU I PODZIAŁU
 OBOWIĄZKÓW NA NASTĘPNE ZAJĘCIA.

### **METODA CPM**

- METODA ŚCIEŻKI KRYTYCZNEJ (ANG. CRITICAL PATH METHOD, CPM)
- METODA PLANOWANIA PRZEDSIĘWZIĘĆ, PROJEKTÓW, KTÓRE SKŁADAJĄ SIĘ Z WIELU
   CZYNNOŚCI WYKONYWANYCH W USTALONEJ KOLEJNOŚCI PO SOBIE BĄDŹ RÓWNOLEGLE.



## PODSTAWOWE POJĘCIA

- BEZPOŚREDNI POPRZEDNIK CZYNNOŚĆ KTÓRĄ NALEŻY ZAKOŃCZYĆ
   PRZED ROZPOCZĘCIEM OBECNIE ROZPATRYWANEJ CZYNNOŚCI
- ZDARZENIE MOMENT W KTÓRYM KOŃCZY SIĘ OSTATNIA CZYNNOŚĆ PRZED ROZPOCZĘCIEM KOLEJNEJ.
- CZAS KRYTYCZNY NAJKRÓTSZY MOŻLIWY CZAS REALIZACJI PROJEKTU.
- ŚCIEŻKA KRYTYCZNA NASTĘPUJĄCE PO SOBIE CZYNNOŚCI KTÓRE WYZNACZAJĄ CZAS KRYTYCZNY. W JEJ SKŁAD WCHODZĄ CZYNNOŚCI KRYTYCZNE.

| Czynność | Czynność bezpośrednio<br>poprzedzająca | Czas<br>trwania |
|----------|----------------------------------------|-----------------|
| A        | _                                      | 5               |
| В        | _                                      | 7               |
| С        | A                                      | 6               |
| D        | A                                      | 8               |
| E        | В                                      | 3               |
| F        | С                                      | 4               |
| G        | C                                      | 2               |
| Н        | E, D, F                                | 5               |

| Czynność | Czas trwania, dni | Następstwo zdarzeń |
|----------|-------------------|--------------------|
| Α        | 3                 | 1-2                |
| В        | 4                 | 2-3                |
| С        | 6                 | 2-4                |
| D        | 7                 | 3-5                |
| E        | 1                 | 5-7                |
| F        | 2                 | 4-7                |
| G        | 3                 | 4-6                |
| Н        | 4                 | 6-7                |
| 1        | 1                 | 7-8                |
| J        | 2                 | 8-9                |

### Dane wejściowe

- Czynność poprzedzająca
- Następstwo zdarzeń



### KROK DO PRZODU

WYLICZENIE NAJWCZEŚNIEJSZYCH MOMENTÓW ROZPOCZĘCIA I ZAKOŃCZENIA CZYNNOŚCI
 ES (EARLY START) – NAJWCZEŚNIEJSZY MOMENT ROZPOCZĘCIA CZYNNOŚCI

EF (EARLY FINISH) – NAJWCZEŚNIEJSZY MOMENT ZANOŃCZENIA CZYNNOŚCI

T – CZAS TRWANIA CZYNNOŚCI

$$EF = ES+T$$

| CZYNNOŚĆ A | Czynność C |
|------------|------------|
| CZYNNOSC A | Czynnosc   |

$$\mathsf{ES} = \mathsf{5}$$

$$ES = 0$$
  $EF = 5+6 = 11$ 

$$EF = 0+5 = 5$$

## CZYNNOŚĆ B Czynność D

$$ES = 0 \qquad ES = 5$$

$$EF = 0+7 = 7$$







| _ |         |
|---|---------|
|   | Czas    |
|   | trwania |
|   | 5       |
|   | 7       |
|   | 6       |
|   | 8       |
|   | 3       |
|   | 4       |
|   | 2       |
|   |         |

### KROK DO TYŁU

WYLICZENIE NAJWCZEŚNIEJSZYCH MOMENTÓW ROZPOCZĘCIA I ZAKOŃCZENIA CZYNNOŚCI
 LS (LATE START) – NAJPÓŹNIEJSZY MOMENT ROZPOCZĘCIA CZYNNOŚCI
 LF (LATE FINISH) – NAJPÓŹNIEJSZY MOMENT ZANOŃCZENIA CZYNNOŚCI

LS = LF-T

T – CZAS TRWANIA CZYNNOŚCI

|        | , , |   |
|--------|-----|---|
| CZYNN  |     | ш |
| CZININ |     | п |

LF = 20

LS = 20-5 = 15

CZYNNOŚĆ G

**LF = 20** 

LS = 20-2 = 18

#### Czynność F

**LF** = 15

LS = 15-4 = 11

Czynność E

LF = 15

LS = 15-3 = 12

Itd.....



|   | Czas    |
|---|---------|
|   | trwania |
|   | 5       |
|   | 7       |
|   | 6       |
|   | 8       |
|   | 3       |
|   | 4       |
|   | 2       |
|   | 5       |
| ŀ |         |

### REZERWY

- REZERWA CZYNNOŚCI DŁUGOŚĆ ODCINKA CZASU O JAKI MOŻEMY OPÓŹNIĆ REALIZACJĘ
   CZYNNOŚCI
- R = LS-ES = LF-EF
- JEŻELI REZERWA JEST RÓWNA ZERO TO CZYNNOŚĆ WCHODZI W SKŁAD ŚCIEŻKI KRYTYCZNEJ.

| Czynność | Czas<br>trwania | ES | EF | LS | LF | Rezerwa | Czynność<br>krytyczna |
|----------|-----------------|----|----|----|----|---------|-----------------------|
| Α        | 5               | 0  | 5  | 0  | 5  | 0       | tak                   |
| B        | 7               | 0  | 7  | 5  | 12 | 5       | nie                   |
| C        | 6               | 5  | 11 | 5  | 11 | 0       | tak                   |
| D        | 8               | 5  | 13 | 7  | 15 | 2       | nie                   |
| E        | 3               | 7  | 10 | 12 | 15 | 5       | nie                   |
| F        | 4               | 11 | 15 | 11 | 15 | 0       | tak                   |
| G        | 2               | 11 | 13 | 18 | 20 | 7       | nie                   |
| Н        | 5               | 15 | 20 | 15 | 20 | 0       | tak                   |

## GRAF

 SPOSÓB PREZENTACJI GRAFU JEST DOWOLNY, ALE MAJĄ SIĘ NA NIM ZNALEŹĆ INFORMACJE TAKIE JAK:

- NR ZDARZENIA
- ES
- EF
- R
- CZY NALEŻY DO ŚCIEŻKI KRYTYCZNEJ





### **GANTT CHART**



Harmonogram ASAP (as soon as possible) – rozpoczęcie wszystkich czynności zaplanowane w najwcześniejszych momentach

Harmonogram ALAP (as late as possible) – rozpoczęcie wszystkich czynności zaplanowane w najpóźniejszych momentach

## PRZYKŁADOWA APLIKACJA



## ZAGADNIENIE POŚREDNIKA

# POŚREDNIK NABYWA TOWAR OD **m** DOSTAWCÓW, PRZEWOZI I SPRZEDAJE GO **n** ODBIORCOM.

#### Znamy:

a<sub>i</sub> — maksymalną ilość towaru, jaką można kupić u *i*-tego dostawcy (jego podaż),

 $\mathbf{b}_{j}$ — maksymalną ilość towaru, jaką można sprzedać j-temu odbiorcy (jego popyt),

**k**<sub>z</sub> — koszt zakupu u *i*-tego dostawy,

**c**<sub>j</sub> — cenę sprzedaży *j*-temu odbiorcy,

 $\mathbf{k}_{tij}$ — jednostkowy koszt transportu na trasie do *i*-tego dostawcy do *j*-tego odbiorcy.

Należy ustalić taki plan zakupów, transportu i sprzedaży, aby dochód pośrednika był maksymalny.

Dochód (zysk) = przychód ze sprzedaży (cena) - koszt zakupu - koszt transportu.

ZAKŁADAMY, ŻE POŚREDNIK NIE TWORZY ZAPASÓW, A WIĘC ZAKUPIONA ILOŚĆ TOWARU JEST RÓWNA ILOŚCI SPRZEDANEJ.

**OZNACZMY PONADTO PRZEZ:** 

x<sub>ij</sub>—WIELKOŚĆ PRZEWOZU NA TRASIE < i, j>,

**z**<sub>ij</sub>—DOCHÓD JEDNOSTKOWY (ZYSK) Z TRASY < **i**, **j**>,

$$\mathbf{z}_{ij} = \mathbf{c}_{j} - \mathbf{k}_{zi} - \mathbf{k}_{tij}$$

Model matematyczny zagadnienia pośrednika można zapisać następująco: znajdź takie wartości zmiennych x<sub>ii</sub> aby:

$$\sum_{i=1}^{m} \sum_{j=1}^{n} z_{ij} x_{ij} \to max$$



Funkcja celu maksymalizuje dochód pośrednika.

$$\sum_{i,j}^{n} x_{ij} \le a_i \quad (i = 1, \dots, m) \quad \Longrightarrow \quad$$

 $\sum_{i=1}^{n} x_{ij} \le a_i$  (i = 1, ..., m) Warunek zapewnia, że od każdego dostawcy w się (i kupuje) nie więcej niż wynosi jego podaż. Warunek zapewnia, że od każdego dostawcy wywozi

$$\sum_{ij}^{m} x_{ij} \leq b_j \quad (j = 1, \dots, n)$$

Warunek gwarantuje, że każdemu odbiorcy dostarcza się (i  $\sum x_{ij} \le b_j \quad (j = 1, ..., n)$  sprzedaje) nie więcej niż wynosi jego popyt. Plan przewozu określa jednoznacznie plan zakupu i sprzedaży.

$$x_{ij} \ge 0$$
  $(i = 1, ..., m; j = 1, ..., n)$ 



1) Fikcyjnego dostawcy (FD) o podaży równej popytowi wszystkich odbiorców

$$a_{m+1} = \sum_{j=1}^{n} b_j$$

2) Fikcyjnego odbiorcy (FO) o popycie równym podaży wszystkich dostawców

$$a_{n+1} = \sum_{i=1}^{n} a_i$$

3) Zerowych dochodów jednostkowych na trasach od fikcyjnego dostawcy oraz do fikcyjnego odbiorcy.

**Krok 2.** Wyznaczamy rozwiązanie wyjściowe, stosując metodę maksymalnego elementu macierzy, czyli rozwiązywanie zadania rozpoczynamy od tras najbardziej dochodowych.

Krok 3. Rozwiązanie jest optymalne, jeżeli:

$$\Delta_{ij} \leq 0 \quad \langle i,j \rangle \in N$$

• POŚREDNIK KUPUJE TOWAR U DWÓCH DOSTAWCÓW (PODAŻ: 20 I 30, JEDNOSTKOWE KOSZTY ZAKUPU 10 I 12), PRZEWOZI GO I SPRZEDAJE TRZEM ODBIORCOM (POPYT: 10, 28 I 27, CENY SPRZEDAŻY: 30, 25 I 30). JEDNOSTKOWE KOSZTY TRANSPORTU PODAJE TABELA:

|                | <b>O</b> <sub>1</sub> | O <sub>2</sub> | O <sub>3</sub> |
|----------------|-----------------------|----------------|----------------|
| $D_1$          | 8                     | 14             | 17             |
| D <sub>2</sub> | 12                    | 9              | 19             |

- a) wyznacz plan dostaw maksymalizujący zysk całkowity pośrednika
- b) oblicz całkowity koszt zakupu, całkowity koszt transportu, przychód i zysk pośrednika
- c) czy uzyskane rozwiązanie jest jedynym rozwiązaniem optymalnym

• POŚREDNIK KUPUJE TOWAR U DWÓCH DOSTAWCÓW (PODAŻ: 20 I 30, JEDNOSTKOWE KOSZTY ZAKUPU 10 I 12), PRZEWOZI GO I SPRZEDAJE TRZEM ODBIORCOM (POPYT: 10, 28 I 27, CENY SPRZEDAŻY: 30, 25 I 30). JEDNOSTKOWE KOSZTY TRANSPORTU PODAJE TABELA:

#### Krok 1.

Celem zadania jest maksymalizowanie zysku, jaki może osiągnąć pośrednik. Można więc zapisać, że:

$$f(c) = Z_c \rightarrow max$$

(słownie: funkcja celu równa się zysk całkowity dąży do maksimum) Wiemy także, iż całkowity zysk jest różnicą między osiąganymi przychodami i ponoszonymi kosztami, czyli:

$$\mathbf{Z}_{c} = \mathbf{P}_{c} - \mathbf{K}_{c}$$

(słownie: zysk całkowity równa się przychody całkowite minus koszty całkowita)

Sekwencja czynności wykonywanych przez pośrednika jest następująca:

- a) Pośrednik kupuje towar u dostawców : (ponosi **koszt** w postaci zapłaty ceny zakupu)
- b) Pośrednik przewozi go do odbiorców (ponosi koszt transportu)
- c) sprzedaje towar odbiorcom (osiąga **przychód** w postaci zapłaty, jaką za to otrzymuje, która ma wysokość ceny sprzedaży)

|                | O <sub>1</sub> | O <sub>2</sub> | <b>O</b> <sub>3</sub> |
|----------------|----------------|----------------|-----------------------|
|                |                |                |                       |
| $D_\mathtt{1}$ | 8              | 14             | 17                    |
| D <sub>2</sub> | 12             | 9              | 19                    |

• POŚREDNIK KUPUJE TOWAR U DWÓCH DOSTAWCÓW (PODAŻ: 20 I 30, JEDNOSTKOWE KOSZTY ZAKUPU 10 I 12), PRZEWOZI GO I SPRZEDAJE TRZEM ODBIORCOM (POPYT: 10, 28 I 27, CENY SPRZEDAŻY: 30, 25 I 30). JEDNOSTKOWE KOSZTY TRANSPORTU PODAJE TABELA:

#### Krok 1 cd.

Widzimy zatem, iż koszty całkowite są sumą kosztów zakupu (cen zakupu) i kosztów transportu):

$$\mathbf{K}_{\mathrm{c}} = \mathbf{K}_{\mathrm{z}} + \mathbf{K}_{\mathrm{T}}$$

(słownie: koszty całkowite równają się koszty zakupu plus koszty transportu)

Należy więc skonstruować macierz zysków jednostkowych, które osiąga pośrednik na poszczególnych trasach korzystając ze wzoru:

$$\mathbf{Z}_{\text{DmOn}} = \mathbf{C} - \mathbf{K}_{z} - \mathbf{K}_{t}$$

(słownie: zysk na trasie od Dostawcy "m" do Odbiorcy "n" równa się cena sprzedaży towaru Obiorcy "n" minus koszt zakupu od Dostawcy "m" minus koszt transportu na tej trasie)

|                | <b>O</b> <sub>1</sub> | O <sub>2</sub> | O <sub>3</sub> |
|----------------|-----------------------|----------------|----------------|
| $D_1$          | 8                     | 14             | 17             |
| D <sub>2</sub> | 12                    | 9              | 19             |

D1 
$$\rightarrow$$
 O1  
30 - (10 + 8) = 30 - 18 = 12

Macierz zysków jednostkowych

|                | 01 | 02 | O <sub>3</sub> |
|----------------|----|----|----------------|
| $D_1$          | 12 | 1  | 3              |
| D <sub>2</sub> | 6  | 4  | -1             |

• POŚREDNIK KUPUJE TOWAR U DWÓCH DOSTAWCÓW (PODAŻ: 20 I 30, JEDNOSTKOWE KOSZTY ZAKUPU 10 I 12), PRZEWOZI GO I SPRZEDAJE TRZEM ODBIORCOM (POPYT: 10, 28 I 27, CENY SPRZEDAŻY: 30, 25 I 30). JEDNOSTKOWE KOSZTY TRANSPORTU PODAJE TABELA:

#### Krok 2.

Jeśli dostawcy nie są wstanie zaspokoić popytu, lub podaż przewyższa popyt wprowadzamy fikcyjnego dostawce (o podaży równej popytowi wszystkich odbiorców) i fikcyjnego obiorcę (o popycie równym podaży wszystkich dostawców) aby zbilansować macierz. Zyski jednostkowe z transakcji z fikcyjnymi podmiotami będą każdorazowo równe zero. Umieszczone na tych trasach wolumeny przewozu odzwierciedlają nie zaspo odbiorców lub niewykorzystaną podaż dostawców (w zależności od sytuacji).

|                     | O <sub>1</sub> (10) | O <sub>2</sub> (28) | O <sub>3</sub> (27) | OF (50) |
|---------------------|---------------------|---------------------|---------------------|---------|
| D <sub>1</sub> (20) | 12                  | 1                   | 3                   | 0       |
| D <sub>2</sub> (30) | 6                   | 4                   | -1                  | 0       |
| DF (65)             | 0                   | 0                   | 0                   | 0       |

• POŚREDNIK KUPUJE TOWAR U DWÓCH DOSTAWCÓW (PODAŻ: 20 I 30, JEDNOSTKOWE KOSZTY ZAKUPU 10 I 12), PRZEWOZI GO I SPRZEDAJE TRZEM ODBIORCOM (POPYT: 10, 28 I 27, CENY SPRZEDAŻY: 30, 25 I 30). JEDNOSTKOWE KOSZTY TRANSPORTU PODAJE TABELA:

#### Krok 3.

Dla tak skonstruowanej macierzy rozpoczynamy rozpisywanie pierwszej propozycji optymalnego planu przewozów, kierując się regułą **maksymalnego elementu macierzy.** Czyli rozpoczynamy rozpisywanie przewozów od tras, na których osiągany zysk jest największy. Pamiętamy przy tym o regule, iż w pierwszej kolejności rozpisujemy trasy między dostawcami i odbiorcami rzeczywistymi, a gdy te zostaną już uzupełnione, dopiero przechodzimy do wiersza i kolumny podmiotów fikcyjnych.

|                                               | O <sub>1</sub> (4 | <del>10)</del> 0 | O <sub>2</sub> <del>(28)</del> 0 |    | O₃ <del>(27)</del> <del>17 15</del><br>0 |    | OF <del>(50)</del> 0 |    |
|-----------------------------------------------|-------------------|------------------|----------------------------------|----|------------------------------------------|----|----------------------|----|
| D <sub>1</sub> <del>(20)</del> <del>10</del>  | 12                |                  | 1                                |    | 3                                        |    | 0                    |    |
| 0                                             |                   | 10               |                                  | X  |                                          | 10 |                      | X  |
| D (20) 2.0                                    | 6                 |                  | 4                                |    | -1                                       |    | 0                    |    |
| D <sub>2</sub> <del>(30)</del> <del>2</del> 0 |                   | x                |                                  | 28 |                                          | 2  |                      | x  |
| DF <del>(65)</del> <del>50</del>              | 0                 |                  | 0                                |    | 0                                        |    | 0                    |    |
| 0                                             |                   | X                |                                  | X  |                                          | 15 |                      | 50 |

• POŚREDNIK KUPUJE TOWAR U DWÓCH DOSTAWCÓW (PODAŻ: 20 I 30, JEDNOSTKOWE KOSZTY ZAKUPU 10 I 12), PRZEWOZI GO I SPRZEDAJE TRZEM ODBIORCOM (POPYT: 10, 28 I 27, CENY SPRZEDAŻY: 30, 25 I 30). JEDNOSTKOWE KOSZTY TRANSPORTU PODAJE TABELA:

#### Krok 4.

Skoro zaspokoiliśmy już, na tyle, na ile było to możliwe, popyt odbiorców, wykorzystując podaż dostawców i maksymalizując zysk pośrednika, sprawdźmy, czy zaproponowane rozwiązanie jest optymalne. Czyli, czy spełnia warunek funkcji celu, jakim jest maksymalizacja zysków pośrednika, przy danych ograniczeniach. Pomoże nam w tym wyliczenie zmiennych dualnych αi i βj korzystając ze wzoru:

 $\mathbf{z_{ij}} - \mathbf{\alpha_i} - \mathbf{\beta_j} = \mathbf{0}$ (podpowiedź: rozwiązując układ równań, wygodnie jest przyjąć, że  $\alpha_F = 0$ )

|                                               | O <sub>1</sub> ( | <del>10)</del> | O <sub>2</sub> <del>(</del> | <del>28)</del> | O₃ <del>(27</del> | <del>17 15</del><br>0 | OF ( | <del>50)</del> | $\alpha_{\rm i}$  |
|-----------------------------------------------|------------------|----------------|-----------------------------|----------------|-------------------|-----------------------|------|----------------|-------------------|
| D <sub>1</sub> <del>(20)</del> <del>10</del>  | 12               |                | 1                           |                | 3                 |                       | 0    |                | 3                 |
| 0                                             |                  | 10             |                             | X              |                   | 10                    |      | X              |                   |
| D <sub>2</sub> <del>(30)</del> <del>2</del> 0 | 6                |                | 4                           |                | -1                |                       | 0    |                | -1                |
| D <sub>2</sub> <del>(30)</del> = 0            |                  | X              |                             | 28             |                   | 2                     |      | X              | -1                |
| DF <del>(65)</del> <del>50</del>              | 0                |                | 0                           |                | 0                 |                       | 0    |                | 0                 |
| 0                                             |                  | X              |                             | X              |                   | 15                    |      | 50             | U                 |
| $\boldsymbol{\beta}_{j}$                      | !                | 9              | !                           | 5              |                   | 0                     |      | 0              | <u>z12 - α1 -</u> |

$$z21 - \alpha 2 - \beta 1 = 0$$

$$z11 - \alpha 1 - \beta 1 = 0$$

$$z1F - \alpha 1 - \beta F = 0$$

$$zFF - \alpha F - \beta F = 0$$

• POŚREDNIK KUPUJE TOWAR U DWÓCH DOSTAWCÓW (PODAŻ: 20 I 30, JEDNOSTKOWE KOSZTY ZAKUPU 10 I 12), PRZEWOZI GO I SPRZEDAJE TRZEM ODBIORCOM (POPYT: 10, 28 I 27, CENY SPRZEDAŻY: 30, 25 I 30). JEDNOSTKOWE KOSZTY TRANSPORTU PODAJE TABELA:

DF-> O<sub>2</sub>

#### Krok 5.

Następnie wyznaczamy zmienne kryterialne dla tras nie bazowych, korzystając ze wzoru:

$$\Delta_{ij} = \mathbf{z}_{ij} - \alpha_i - \beta_j$$

Jeśli, któraś ze obliczonych zmiennych kryterialnych ma wartość dodatnią należy wybrać pętlę zmian oraz ponownie obsadzić trasy. Dodawanie i odejmowanie na kolejnych trasach zapewni równowagę. Zabrać możemy maksymalnie tyle, ile wynosi minimum z tras, z których odejmujemy.

Gdy już to zrobimy powracamy do kroku 4 i sprawdzamy czy nowe rozwiązanie spełnia funkcję celu.

$$D_1 \rightarrow O_2$$
  $\Delta_1 = 1-5-3 = -7$ 
 $D_1 \rightarrow OF$   $\Delta_2 = 0-3-0 = -3$ 
 $D_2 \rightarrow O_1$   $\Delta_3 = 6+1-9 = -2$ 
 $D_2 \rightarrow OF$   $\Delta_4 = 0+1-0 = 1$ 
 $DF \rightarrow O_1$   $\Delta_5 = 0-0-9 = -9$ 

 $\Delta_6 = 0-0-5 = -5$ 

|                     | O <sub>1</sub> (10) | O <sub>2</sub> (28) | O <sub>3</sub> (27) | OF (50) |
|---------------------|---------------------|---------------------|---------------------|---------|
| D <sub>1</sub> (20) | х                   | -7                  | х                   | -3      |
| D <sub>2</sub> (30) | -2                  | x                   | × -                 | 1       |
| DF (65)             | -9                  | -5                  | _ x                 | x       |

## PRZYKŁADOWA APLIKACJA

