PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE DEPARTAMENTO DE CIENCIA DE LA COMPUTACIÓN IIC2283 - Diseño y Análisis de Algoritmos

Profesor: Nicolás Van Sint Jan

Ayudante: Julián García

Ayudantía 11 Teoría de números

Problema 1: Teorema de Lagrange

Demuestre que si (G, \circ) es un grupo finito y (H, \circ) , es un subgrupo de (G, \circ) , entonces |H| divide a |G|.

Problema 2: Teorema Chino de los Restos

1. Sean m, n tales que gcd(m, n) = 1. Demuestre que para todo a, b existe c tal que:

$$c \equiv a \mod m$$

 $c \equiv b \mod n$

- 2. Demuestre que la solución anterior es única bajo $\equiv \operatorname{mod}(m \cdot n)$
- 3. Demuestre que a es primo relativo con $m \vee b$ es primo relativo con n ssi c es primo relativo con $m \cdot n$.
- 4. Utilice lo anterior para demostrar que si gdc(m,n)=1, entonces $\phi(m\cdot n)=\phi(m)\cdot\phi(n)$, donde $\phi(n) = |\mathbb{Z}_n^*|.$
- 5. Demuestre que si p es primo, entonces $\phi(p^k) = p^{k-1}(p-1)$
- 6. Demuestre que si $n = p^{e_1} \cdot p^{e_2} \cdot \dots \cdot p^{e_q}$, donde $i \neq j \Rightarrow p_i \neq p_j$, todo p_i es primo y $e_i > 0$, entonces:

$$\phi(n) = n \prod_{i=1}^{1} \left(1 - \frac{1}{p_i} \right)$$

Problema 3

1. Dados enteros $\{d_1,...,d_n\}$, se define $gcd(d_1,...,d_n)$ como el menor entero positivo que divide a todos los d_i . Demuestre que existen enteros $\{x_1, ..., x_n\}$ tales que:

$$gcd(d_1, ..., d_n) = d_1 \cdot x_1 + ... + d_n x_n$$

2. Sea $J \subseteq \mathbb{Z}$, con $J \neq \emptyset$, tal que para todo $x \in J$ y para todo $z \in \mathbb{Z}$ se cumple que $xz \in J$. Además si $a, b \in J$, entonces $a + b \in J$. Demuestre que existe $z \in \mathbb{Z}$ tal que:

$$J = \{ zt \mid t \in \mathbb{Z} \}$$

3. Dados enteros positivos $\{d_1,...,d_n\}$ se define el conjunto S como:

$$S(d_1,...,d_n) = \{d_1 \cdot x_1 + ... + d_n x_n \mid x_1,...,x_n \in \mathbb{Z}\}$$

Desarrolle y analice un algoritmo que dado un entero X y enteros $d_1, ..., d_n$ determine si X pertenece o no a $S(d_1, ..., d_n)$.