最適輸送法を用いた 偏微分方程式のソルバー PDE solver using optimal transport

坂井 幸人

数物科学専攻2年

February 7, 2024

目次

- ① 研究目的
- ② 前提知識
- The back-and-forth method
- 4 実装と結果

研究背景

- U:内部エネルギー
- $\nabla \varphi$: Uによって生成される圧力勾配
- ρ : 質量密度 (確率測度) $(\rho \ge 0, \|\rho\|_{L_1} = 1)$

$$\partial_t \rho - \nabla \cdot (\rho \nabla \varphi) = 0,$$

$$\varphi = \delta U(\rho).$$

- ⇒ 一般的に剛性かつ非線形であるため数値計算が困難
- ⇒ 効率的かつ正確にシュミレートしたい

研究背景

$$\begin{split} \partial_t \rho - \nabla \cdot (\rho \nabla \varphi) &= 0, \\ \varphi &= \delta U(\rho). \end{split}$$

$$U(\rho) &= \frac{\gamma}{m-1} \int_{\Omega} \rho^m \, dx$$

$$\frac{\partial \rho}{\partial t} &= \gamma \Delta(\rho^m) \quad (m > 1, \gamma > 0)$$

研究目的

The back-and-forth method[2] を用いた偏微分方程式のソルバーが多孔質勾配方程式 (porous medium equation)

$$\frac{\partial \rho}{\partial t} = \gamma \Delta(\rho^m) \quad (m > 1, \gamma > 0)$$

を他のソルバーより効率的に、幅広い条件で解けることを示す。

前提知識

最適輸送問題 (Monge の問題 (1871))

ある砂山から砂山 (測度 μ) と同じ体積の穴 (測度 ν) に砂を運ぶ (写像T). 輸送にかかるコストは重さと移動距離に依存する時, コストを最小にする方法を求めよ.

Figure: transport map

多孔質勾配方程式について考える:

$$\frac{\partial \rho}{\partial t} = \gamma \Delta(\rho^m) \quad (m > 1, \gamma > 0)$$

ただし内部エネルギー Uは

$$U(\rho) = \frac{\gamma}{m-1} \int \rho^m \, dx$$

である。

 \implies 時間離散化によって近似解 ρ を求めたい

⇒ 多孔質勾配方程式を Wasserstein 距離を用いた Wasserstein 勾配流として表現する

$$\frac{\partial \rho}{\partial t} = \gamma \Delta(\rho^m) \quad (m > 1, \gamma > 0)$$

- \bullet $\tau > 0$
- $t_n := n\tau$

最小化問題

$$\rho_n \in \operatorname*{argmin}_{\substack{\rho \geq 0 \\ \|\rho\|_{I_1} = 1}} \left(U(\rho) + \frac{1}{2\tau} W_2^2(\rho, \rho_{n-1}) \right)$$

2-Wasserstein 距離

$$\frac{1}{2\tau}W_2^2(\rho,\mu) = \sup_{\varphi(x) + \psi(y) \le \frac{1}{2\tau}|x-y|^2} \left(\int \varphi d\rho + \int \psi d\mu \right)$$

c-変換

$$\psi^{c}(x) := \inf_{y} \left(\frac{1}{2\tau} |x - y|^2 - \psi(y) \right)$$

を定義することで、

$$\varphi(x) + \psi(y) \le \frac{1}{2\tau} |x - y|^2$$

の制約をなくし、一つの関数で表すことができる。

内部エネルギー Uの Legendre 変換

$$U^*(arphi) := \sup_{\substack{
ho \geq 0 \ \|
ho\|_{1}=1}} \left(\int arphi \, d
ho - U(
ho)
ight)$$

を用いることで、最小化問題は以下の双対性を持つ:

$$\begin{split} \min_{\substack{\rho \geq 0 \\ \|\rho\|_{L^1} = 1}} \left(U(\rho) + \frac{1}{2\tau} W_2^2(\rho, \mu) \right) &= \sup \left(\int \varphi^c \ d\mu - U^*(-\varphi) \right) =: \sup J \\ &= \sup \left(\int \psi \ d\mu - U^*(-\psi^c) \right) =: \sup J \end{split}$$

The back-and-forth method

$$J(\varphi) := \int \varphi^{c} d\mu - U^{*}(-\varphi)$$

$$\nabla_{H}J(\varphi) = (\Theta_{1}\mathsf{Id} - \Theta_{2}\Delta)^{-1} [\delta U^{*}(-\varphi) - T_{\varphi\#}\mu]$$

$$I(\psi) := \int \psi d\mu - U^{*}(-\psi^{c})$$

$$\nabla_{H}I(\psi) = (\Theta_{1}\mathsf{Id} - \Theta_{2}\Delta)^{-1} [\mu - T_{\psi\#}(\delta U^{*}(\psi^{c}))]$$

$$\psi \leftarrow \varphi^{c}$$

$$\varphi \leftarrow \psi^{c}$$

Algorithm

Algorithm: the back-and-forth method

Input μ and φ_0 , iterate until $\|\delta U^*(-\varphi) - T_{\varphi\#}\mu\|_{L^1(\Omega)} < \forall \varepsilon$:

$$\varphi_{k+\frac{1}{2}} = \varphi_k + \nabla_H J(\varphi_k)$$

$$\psi_{k+\frac{1}{2}} = (\varphi_{k+\frac{1}{2}})^c$$

$$\psi_{k+1} = \psi_{k+\frac{1}{2}} + \nabla_H I(\psi_{k+\frac{1}{2}})$$

$$\varphi_{k+1} = (\psi_{k+1})^c$$

$$\nabla_{H}J(\varphi) = (\Theta_{1}\mathsf{Id} - \Theta_{2}\Delta)^{-1} \left[\delta U^{*}(-\varphi) - T_{\varphi\#}\mu\right]$$
$$\nabla_{H}I(\psi) = (\Theta_{1}\mathsf{Id} - \Theta_{2}\Delta)^{-1} \left[\mu - T_{\psi\#}(\delta U^{*}(\psi^{c}))\right]$$

H: 重み付き Sobolev 空間 H¹ に基づくノルム

pushforward measure

$$\nabla_{H}J(\varphi) = (\Theta_{1}\mathsf{Id} - \Theta_{2}\Delta)^{-1} \left[\delta U^{*}(-\varphi) - T_{\varphi\#}\mu\right]$$
$$\nabla_{H}I(\psi) = (\Theta_{1}\mathsf{Id} - \Theta_{2}\Delta)^{-1} \left[\mu - T_{\psi\#}(\delta U^{*}(\psi^{c}))\right]$$

 $T_{\varphi\#}\mu$ は μ から ρ へ輸送する写像 T による pushforward measure である $(T_{\varphi\#}\mu=\rho)$ 。

Figure: pushforward measure

BFMの解から最小化問題の解の復元

多孔質勾配方程式

$$\frac{\partial \rho}{\partial t} = \gamma \Delta(\rho^m) \quad (m > 1, \gamma > 0)$$

の最小化問題

$$\rho_n \in \underset{\substack{\rho \geq 0 \\ \|\rho\|_{I^1} = 1}}{\operatorname{argmin}} \left(U(\rho) + \frac{1}{2\tau} W_2^2(\rho, \rho_{n-1}) \right)$$

は、BFM から得られた解 φ_{n*} を利用して、

$$\rho_{n*}(x) = \delta U^*(-\varphi_{n*}) = \left(\frac{m-1}{m\gamma}\max(-\varphi_{n*},0)\right)^{\frac{1}{m-1}}$$

で求めることができる

実装

多孔質勾配方程式 $(m = 2, \gamma = 10^{-3})$

$$\frac{\partial \rho}{\partial t} = \gamma \Delta(\rho^m)$$

- the back-and-forth method を用いたソルバー
- Berger, Brezis, Rogers[1] によって提案された BBR スキームの ソルバー
- Euler 陽解法

を用いて計算する

ただし厳密解は Barenblatt solution を用いる

$$\rho(t,x) = \max\left(\frac{1}{t^{\frac{1}{3}}}\left(C - \frac{1}{12}\frac{|x|^2}{t^{\frac{2}{3}}}\right), 0\right)$$

The back-and-forth method の数値解

Figure: 時刻 t = 0, 0.4, 0.8, 2.0 における時間ステップ τ に対するグラフ

BBRスキームの数値解

Figure: 時刻 t = 0, 0.4, 0.8, 2.0 における時間ステップ τ に対するグラフ

計算速度と誤差比較

Table: Errors and calculation times(grid size 512, $\varepsilon=10^{-3}$)

τ	$N_{ au}$	the back-and-forth method		BBR scheme	
		Error	Time(s)	Error	Time(s)
0.4	5	8.68×10^{-2}	0.069	7.19×10^{-1}	0.000342
0.2	10	5.74×10^{-2}	0.139	6.37×10^{-1}	0.00067
0.1	20	$3.61 imes 10^{-2}$	0.162	4.97×10^{-1}	0.00131
0.05	40	2.15×10^{-2}	0.17	2.98×10^{-1}	0.00275
0.025	80	$1.25 imes 10^{-2}$	0.198	$1.16 imes 10^{-1}$	0.00495
0.0125	160	$7.66 imes 10^{-3}$	0.214	$3.77 imes 10^{-2}$	0.0102
0.00625	320	$5.06 imes 10^{-3}$	0.245	1.02×10^{-2}	0.0202
0.0001	20000	1.81×10^{-2}	3.7	1.25×10^{-4}	1.54

まとめ

- 大きい τ でも近似ができる
 - $\rho_*(x) = \delta U^*(-\varphi_*)$ で ρ を再現する
 - ▶ c-変換によって制約条件がない
- ② grid size に対して適切な τ と ε を取る必要がある
 - ▶ BFM ループの終了条件 $\|\delta U^*(-\varphi) T_{\varphi\#}\mu\|_{L^1(\Omega)} < \forall \varepsilon$ を満た さないため

今後の展望としては多孔質勾配方程式の mの値を大きくすること、2・3次元などで考えることなどが挙げられる

参考文献

- [1] Alan E. Berger, Haim Brezis, and Joël C. W. Rogers. A numerical method for solving the problem $u_t \delta f(u) = 0$. RAIRO. Analyse numérique, 13(4):297–312, 1979.
- [2] Matt Jacobs, Wonjun Lee, and Flavien Léger. The back-and-forth method for Wasserstein gradient flows. ESAIM Control Optim. Calc. Var., 27:Paper No. 28, 35, 2021.