Problem 1 (10 points). Solve each of the following recursions.

- 1. $T(n) = 2 \cdot T(n/2) + n \cdot \log n$
- 2. $T(n) = 4 \cdot T(n/2) + n \cdot (\log n)^2$
- 3. $T(m,n) = 4 \cdot T(m,n/2) + m \cdot n^2$

Solution.

- 1. We can use the *recursion tree* approach to solve it: $T(n) = \sum_{k=0}^{\log n} 2^k \cdot (n/2^k) \cdot \log(n/2^k) = \sum_{k=0}^{\log n} n \cdot (\log n k) = n \cdot \log n \cdot (\log n + 1) n \cdot \sum_{k=0}^{\log n} k = n \cdot \log n \cdot (\log n + 1) n \cdot (\log n + 1) \cdot \log n / 2 = \Theta(n \cdot (\log n)^2)$
- 2. We can use *lower and upper bounds* to solve it. Let $f(n) = n \cdot (\log n)^2$, $g_1(n) = n$, and $g_2(n) = n^{1.01}$. We have $f = O(g_2)$ and $f = \Omega(g_1)$. Let $T_1(n) = 4 \cdot T(n/2) + g_1(n)$ and $T_2(n) = 4 \cdot T(n/2) + g_2(n)$. We have $T_1(n) \leq T(n) \leq T_2(n)$. Solving $T_1(n)$ and $T_2(n)$ with master's theorem gives $T_1(n) = \Theta(n^2)$ and $T_2(n) = \Theta(n^2)$. Therefore, we have $T(n) = \Theta(n^2)$.
- 3. Notice that in subproblems T(m, n/2) the first parameter m is the same with that in T(m, n). Hence we can regard m as a "constant" in solving this recursion. Let T'(n) = T(m, n). We have $T'(n) = 4 \cdot T(n/2) + m \cdot n^2$. By applying master's theorem, we have $T'(n) = \Theta(m \cdot n^2 \cdot \log n) = T(m, n)$.

NOTE: Following is the more general form of the master's theorem, which can be used to directly solve the above first two recursions. Let $T(n) = a \cdot T(n/b) + f(n)$ be the recursion we want to solve. Let constant $c = \log_b a$. Let $\varepsilon > 0$ be any positive constant. We have

$$T(n) = \left\{ egin{array}{ll} \Theta(n^c) & ext{if} \quad f(n) = O(n^{c-\epsilon}) \ \Theta(f(n) \cdot \log n) & ext{if} \quad f(n) = \Theta(n^c \cdot (\log n)^k) \ \Theta(f(n)) & ext{if} \quad f(n) = \Omega(n^{c+\epsilon}) \end{array}
ight.$$

Problem 2 (10 points). You are given a polygon with n vertices, represented as the coordinates of its n vertices $((x_1,y_1),(x_2,y_2),\cdots,(x_n,y_n))$ along the polygon in counter-clockwise order. Design a linear-time algorithm to decide whether this polygon is convex.

Solution. The algorithm is to check, for any continuous 3 vertices, (p_k, p_{k+1}, p_{k+2}) , along the polygon, their orientation must be either "turn left", or colinear (then p_{k+2} must be on the extension of $p_k p_{k+1}$).

```
function decide-convex-polygon (P[1\cdots n]) append P[1] and P[2] to P; for k=1 to n let vector a=P[k+1]-P[k]:=(a_1,a_2); let vector b=P[k+2]-P[k]:=(b_1,b_2); let x=a_1\cdot b_2-a_2\cdot b_1; if x>0: continue; if x<0: return false; if ||a||_2\leq ||b||_2: continue; /* when a and b are colinear, compute and compare their norms */ else return false; end for; return true; end function
```

Problem 3 (20 points). You are given a sorted array $S[1 \cdots n]$ with n distinct integers, i.e., S[i] < S[i+1], for all $1 \le i < n$. Design a divide-and-conquer algorithm to decide whether there exists an index k such that S[k] = k. Your algorithm should run in $O(\log n)$ time.

Solution. The algorithm is to do a *binary search*. We compare S[n/2] with n/2. If S[n/2] = n/2 then we find such index. If S[n/2] > n/2, then we can claim that for any k > n/2 we must have S[k] > k. This is because all integers in S are distinct and sorted in ascending order. Therefore for any k > n/2 we have $S[k] \ge S[n/2] + (k - n/2) > n/2 + k - n/2 = k$. In other words, when we have S[n/2] > n/2 when we can discard the second half of the array, and only search such index in the first half. With the same reasoning, when we have S[n/2] < n/2 when we can discard the first half of the array, and only search such index in the second half.

We define the recursive function decide-index (S, a, b) with parameters array $S[1 \cdots n]$, two indices a and b satisfying $1 \le a \le b \le n$, returns an index k if S[k] = k and $a \le k \le b$, and returns false if no such k can be found.

```
function decide-index (S[1\cdots n], a, b)

if a = b and S[a] = a: return a;

if a = b and S[a] \neq a: return false;

let m = (a+b)/2;

if S[m] = m: return m;

if S[m] > m: return decide-index (S, a, m-1);

if S[m] < m: return decide-index (S, m+1, b);

end function
```

With the above recursive function, the call of decide-index (S, 1, n) will give us such k if S[k] = k in the entire array, and return false if no such index can be found in the entire array.

Notice how to analyze the running time of this algorithm. First, the array S never changes during the recursive call. So we can always pass a *pointer* of S, which takes constant space, to every call of decide-index. This means that n is *not* the input size of the recursive function. In fact, the input size of decide-index should be defined as b-a, as it will be reduced by half in every iteration.

Let T(k) be the running time of decide-index (S, a, b) when k = b - a (regardless the size of S). We then have T(k) = T(k/2) + O(1). Therefore, we have $T(k) = O(\log k)$. We eventually need to run decide-index (S, 1, n), which therefore takes $O(\log n)$ time.

Problem 4 (20 points). Given the following two convex polygons $C_1 = (p_1, p_2, p_3, p_7, p_8)$ and $C_2 = (p_5, p_4, p_6, p_9, p_{11}, p_{10})$, compute the convex hull of $C_1 \cup C_2$ using the linear time algorithm described within the divide-and-conquer algorithm for convex hull:

- 1. Partition C_2 into two sorted list, C_2^{UP} and C_2^{LOW} , such that the points in each list are sorted w.r.t. the anchor point p_1 in counter-clockwise order.
- 2. Give the merged list of C_2^{UP} and C_2^{LOW} , denoted as C_2' , such that all points in C_2' are sorted w.r.t. the anchor point p_1 in counter-clockwise order.
- 3. Give the merged list C'_2 and C_1 , denoted as C, such that all points in C are sorted w.r.t. the anchor point p_1 in counter-clockwise order.
- 4. Run the Graham-Scan-Core algorithm with *C* as input: give the status of the stack as each point in *C* gets processed.

Solution.

```
1. C_2^{UP} = (p_4, p_6, p_9) and C_2^{LOW} = (p_{11}, p_{10}, p_5).

2. C_2' = (p_4, p_5, p_6, p_9, p_{10}, p_{11}).

3. C = (p_1, p_2, p_3, p_4, p_5, p_6, p_7, p_8, p_9, p_{10}, p_{11}).

4. The status of stack is as follows:
```

```
processing p_1: [p_1]

processing p_2: [p_1, p_2]

processing p_3: [p_1, p_2, p_3]

processing p_4: [p_1, p_2, p_3, p_4]

processing p_5: [p_1, p_2, p_3, p_4, p_5]

processing p_6: [p_1, p_2, p_3, p_4, p_6]

processing p_6: [p_1, p_2, p_3, p_4, p_6]

processing p_7: [p_1, p_2, p_3, p_4, p_6, p_7]

processing p_8: [p_1, p_2, p_3, p_4, p_6, p_7, p_8]

processing p_9: [p_1, p_2, p_3, p_4, p_6, p_7, p_9]

processing p_9: [p_1, p_2, p_3, p_4, p_6, p_7, p_9]

processing p_{10}: [p_1, p_2, p_3, p_4, p_6, p_7, p_9]

processing p_{11}: [p_1, p_2, p_3, p_4, p_6, p_7, p_9]

processing p_{11}: [p_1, p_2, p_3, p_4, p_6, p_7, p_9]
```

Problem 5 (10 points). Analysis the expected running time of the following randomized algorithm for sorting. You may assume that all elelments in *A* are distinct.

```
function combined-sort (array A[1\cdots n])

if n=1, then return A;

select k from \{1,2,\cdots,n\} uniformly at random;

compute A_L as the list of elements in A that are smaller than A[k];

compute A_R as the list of elements in A that are larger than A[k];

X_L = \text{merge-sort } (A_L);

X_R = \text{merge-sort } (A_R);

return (X_L, A[k], X_R).

end function
```

Solution. Let T(n) be the running time of combined-sort (A) when array A contains n elements. Notice that T(n) is a random variable as there is randomization within the algorithm. Notice also that this algorithm is not a recurive algorithm. Let M(m) be the running time of merge-sort when its input size is m. We know that $M(m) = O(m \cdot \log m)$. We have $T(n) = O(n) + M(|A_L|) + M(|A_R|)$. Notice that $|A_L|$ is also a random variable with distribution of $Pr(|A_L| = i) = 1/n$, for any $0 \le i \le n - 1$. Similarly,

 $\Pr(|A_R|=i)=1/n$, for any $0 \le i \le n-1$. Take expection w.r.t. the randomness of $|A_L|$ and $|A_R|$ on both sides. We have $T(n)=O(n)+2\cdot\sum_{i=0}^{n-1}1/n\cdot M(i)=O(n)+2/n\cdot\sum_{i=0}^{n-1}O(i\cdot\log i)=O(n\cdot\log n)$.

Problem 6 (30 points). The square of a matrix A is its product with itself, i.e., AA.

- 1. Show that 5 multiplications are sufficient to compute the square of a 2×2 matrix.
- 2. What is wrong with the following algorithm for computing the square of an $n \times n$ matrix? "Use a divide-and-conquer algorithm as in Strassen's algorithm, except that instead of getting 7 subproblems of size n/2, we now get 5 subproblems of size n/2 thanks to part (1). Using the same analysis as in Strassen's algorithm, we can conclude that the algorithm runs in time $O(n^{\log_2 5})$ "
- 3. Show that if $n \times n$ matrices can be squared in $O(n^c)$ time for certain constant c, then any two $n \times n$ matrices can be multipled in $O(n^c)$.

Solution.

1. We have

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \times \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} a^2 + bc & ab + bd \\ ac + cd & bc + d^2 \end{bmatrix}$$

It suffice to compute a^2 , bc, b(a+d), c(a+d), and d^2 .

- 2. The problem with above reasoning is that, as the recursion goes, the subproblems are not "square of a matrix" any more.
- 3. Given any two $n \times n$ matrices A and B, build a new matrix of size $2n \times 2n$:

$$X = \begin{bmatrix} A & B \\ 0 & 0 \end{bmatrix}$$

We can then compute the square of X using the given algorithm. The running time would be $O((2n)^c) = O(n^c)$, as c is a constant. Notice that

$$X \times X = \begin{bmatrix} A & B \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} A & B \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} A^2 & AB \\ 0 & 0 \end{bmatrix}$$

which gives the product of A and B. Therefore, we have an algorithm that can compute AB in $O(n^c)$ time.