AH is a conversion factor! 2 C2 H6 (g) + 7 O2 (g) -> 4 (O2 (g) + 6 H2 O(2) > DH = -5700 (G) what's quis 12.59 of Cette react? DH = - 5700 KJ/mol - per mole of RXN -5700 KJ = 2 mol C2H6 exothermaic 2+C = 2+12.01 1200 KJ of head 6 x H- 6 x 1.01 13 RELEASED 30.08 12.59 C2H6 | 1 mol (2H6 | -5700 KJ = -1200 KJ 30.089 GHG /2mol GHG MOLAR MASS AH

Predicting AH of chemical rans! involves the use of standard enthalpies of formation. - all gases are under E-formation a std. pressure of latin - all soles en at a std. conc. of IM -all solids + liquids DHF of a substance is equal to AH for the reachin where we torm I mot of substance from its elements in their most slabb forms

ex:
$$\triangle H_f^o$$
 (CH3OH(R)) = -238.7 $\frac{K7}{MOT}$

Cosgraphite) + 2 H2(g) \longrightarrow CH3OH(R); $\triangle H_a^o$ -238.7 $\frac{K7}{MOT}$

if we doubted up this No... X2

2 C(s,graphite) + 4H2(g) + O2(g) \longrightarrow 2 CH3OH(R)

There are tables in back of Change that list hundreds of substances + their $\triangle H_f^o$ values.

WHY? We can use them to predict $\triangle H_f^o$ ANY chamical oxin.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Table 6.4 Standard Enthalpies of Formation of Some Inorganic Substances at 25°C

Substance	$\Delta H_{\rm f}^{\circ}$ (kJ/mol)	Substance	$\Delta H_{\rm f}^{\circ}$ (kJ/mol)
Ag(s)	0	$H_2O_2(l)$	-187.6
AgCl(s)	-127.04	Hg(l)	0
Al(s)	0	$I_2(s)$	0
$Al_2O_3(s)$	-1669.8	HI(g)	25.94
$\mathrm{Br}_2(l)$	0	Mg(s)	0
HBr(g)	-36.2	MgO(s)	-601.8
C(graphite)	0	$MgCO_3(s)$	-1112.9
C(diamond)	1.90	$N_2(g)$	0
CO(g)	-110.5	$NH_3(g)$	-46.3
$CO_2(g)$	-393.5	NO(g)	90.4
Ca(s)	0	$NO_2(g)$	33.85
CaO(s)	-635.6	$N_2O_4(g)$	9.66
CaCO ₃ (s)	-1206.9	$N_2O(g)$	81.56
$\operatorname{Cl}_2(g)$	0	O(g)	249.4
HCl(g)	-92.3	$O_2(g)$	0
Cu(s)	0	$O_3(g)$	142.2
CuO(s)	-155.2	S(rhombic)	0
$F_2(g)$	0	S(monoclinic)	0.30
HF(g)	-268.61	$SO_2(g)$	-296.1
H(g)	218.2	$SO_3(g)$	-395.2
$H_2(g)$	0	$H_2S(g)$	-20.15
$H_2O(g)$	-241.8	ZnO(s)	-347.98
$H_2O(l)$	-285.8	ZnS(s)	-202.9

 \dagger In thermodynamics, the standard pressure is defined as 1 bar, where 1 bar = 10^5 Pa = 0.987 atm. Because 1 bar differs from 1 atm by only 1.3 percent, we will continue to use 1 atm as the standard pressure. Note that the normal melting point and boiling point of a substance are defined in terms of 1 atm.

ex: What's
$$\triangle H_{RM}$$
 for...

 $N_2O_+(g) \longrightarrow 2NO_2(g)$

if $\triangle H_f^o(N_2O_+(g)) = +9.66$ (C3/Mol)

if $\triangle H_f^o(NO_2(g)) = +33.85$ K3/Mol)

 $\triangle H_{RM} = [2 + \triangle H_f^o(NO_2(g))] - [1 \times \triangle H_f^o(N_2O_4(g))]$
 $= (2 + 33.85 \frac{K3}{Mol}) - (1 \times 9.66 \frac{K3}{Mol})$
 $= +58.0 \times 3/Mol$
 $\triangle (X) = X_{final} - X_{initial}$
 $= Prods - Reacts$.

if
$$(CO(9)) = -169.8kJ/mo(1)$$

($(CO(9)) = -110.5 KJ/mo(1)$

($(O_2(9)) = -393.5 KJ/mo(1)$

$$\Delta H_{nx}^{\circ} = \left[2 + \Delta H_{r}^{\circ} (A_{10}) + 3 + \Delta H_{r}^{\circ} (co_{2}g_{1}) \right] \bigcirc$$

$$\left[1 + \Delta H_{r}^{\circ} (A_{12}o_{3}g_{1}) + 3 + \Delta H_{r}^{\circ} (co_{3}g_{1}) \right]$$

$$= \left[2 + O + 3 + -393.5 \frac{(c_{2})}{m_{e_{1}}} \right] \bigcirc$$

$$[1 \times -1669.8 \frac{E7}{mel} + 3 \times -110.5 \frac{E7}{mel}]$$