EXAMEN D'ANALYSE III

Session de rattrapage Durée : 1h30

Exercice 1 (6 points)

- 1. Soient $x \in \mathbb{R}_+^*$ et $n \in \mathbb{N}^*$. Ecrire la formule de Taylor-Lagrange à l'ordre n de la fonction $y \mapsto^i e^y$ sur l'intervalle [0, x].
- 2. En déduire que

$$e^x > \sum_{k=0}^n \frac{x^k}{k!}, \quad \forall x \in \mathbb{R}_+^*, \quad \forall n \in \mathbb{N}^*$$

3. On note $u_n = \sum_{k=0}^n \frac{x^k}{k!}$, pour x > 0 fixé. Montrer que la suite $(u_n)_{n \ge 1}$ est convergente et déterminer sa limite.

Exercice 2 (4 points)

Soit $f:]0, +\infty[\to \mathbb{R}$ une fonction convexe.

- 1. Enoncer le lemme des trois pentes.
- 2. On suppose, de plus, que la fonction f est strictement croissante sur $]0,+\infty[$. Montrer que $\lim_{x\to +\infty} f(x)=+\infty$.

Exercice 3 (10 points)

- 1. Ecrire le développement limité d'ordre 4 en 0 de la fonction $x\mapsto \frac{\tan(x)}{x}$.
- 2. Déterminer le développement limité d'ordre 4 en 0 de la fonction $x \mapsto \frac{x}{\tan(x)}$.
- 3. En déduire le développement asymptotique d'ordre 3 en 0 de la fonction $x \mapsto \frac{1}{\tan(x)}$.
- 4. Donner un équivalent simple au voisinage de 0 de la fonction $x \mapsto \frac{1}{\tan(x)} \frac{1}{x}$.
- 5. Montrer que la fonction $x \mapsto \frac{x}{\tan(x)}$ admet un extremum local en 0. Préciser la nature de cet extremum.

BONNE CHANCE