Monte Carlo Tree Search on a Graphics Processing Unit in the Context of Online Robotic Decision Making

Felix Steinberger Eriksson

Mentors: Soon-Jo Chung and Ben Riviere 24 August 2023

Introduction

 Sequential decision problems occur in the context of e.g. autonomous vehicles

Introduction

- Sequential decision problems occur in the context of e.g. autonomous vehicles
- In real scenarios: sequences of such problems, require fast solutions

Introduction

- Sequential decision problems occur in the context of e.g. autonomous vehicles
- In real scenarios: sequences of such problems, require fast solutions
- Critically, we want anytime algorithms that can provide reasonable solutions if terminated early.

Often model a sequential decision problem as an MDP.

Often model a sequential decision problem as an MDP.

Definition

Often model a sequential decision problem as an MDP.

Definition

A (deterministic finite) *Markov Decision Process (MDP)* is a tuple $\langle \mathcal{X}, \mathcal{U}, F, R, H \rangle$ where

• \mathcal{X} is the state space,

Often model a sequential decision problem as an MDP.

Definition

- X is the state space,
- U is the action set,

Often model a sequential decision problem as an MDP.

Definition

- X is the state space,
- *U* is the action set,
- $F: \mathcal{X} \times \mathcal{U} \rightarrow \mathcal{X}$ is the *transition function*,

Often model a sequential decision problem as an MDP.

Definition

- X is the state space,
- *U* is the action set,
- $F: \mathcal{X} \times \mathcal{U} \rightarrow \mathcal{X}$ is the *transition function*,
- $R: \mathcal{X} \times \mathcal{U} \to [0,1] \subset \mathbb{R}$ is the *reward function* and

Often model a sequential decision problem as an MDP.

Definition

- X is the state space,
- *U* is the action set,
- $F: \mathcal{X} \times \mathcal{U} \rightarrow \mathcal{X}$ is the *transition function*,
- $R: \mathcal{X} \times \mathcal{U} \rightarrow [0, 1] \subset \mathbb{R}$ is the *reward function* and
- $H \in \mathbb{N}$ is the *horizon*.

Often model a sequential decision problem as an MDP.

Definition

- X is the state space,
- *U* is the action set,
- $F: \mathcal{X} \times \mathcal{U} \to \mathcal{X}$ is the *transition function*,
- $R: \mathcal{X} \times \mathcal{U} \to [0,1] \subset \mathbb{R}$ is the *reward function* and
- $H \in \mathbb{N}$ is the *horizon*.
- For simplicity, consider only finite \mathcal{X} ($|\mathcal{X}| = X < \infty$) and \mathcal{U} ($|\mathcal{U}| = U < \infty$). Caltect

At time t, in state $x_t \in \mathcal{X}$, an agent

At time t, in state $x_t \in \mathcal{X}$, an agent

• selects an action $a_t \in \mathcal{U}$,

At time t, in state $x_t \in \mathcal{X}$, an agent

- selects an action $a_t \in \mathcal{U}$,
- receives reward $R(x_t, a_t)$, and

At time t, in state $x_t \in \mathcal{X}$, an agent

- selects an action $a_t \in \mathcal{U}$,
- receives reward $R(x_t, a_t)$, and
- transitions to state $x_{t+1} = F(x_t, a_t)$.

• An agent's interaction is described by a *policy* π that determines the selected action given the current state.

- An agent's interaction is described by a *policy* π that determines the selected action given the current state.
- In the finite horizon case, a policy is a sequence $(a_h)_h \in \mathcal{U}^H$.

- An agent's interaction is described by a *policy* π that determines the selected action given the current state.
- In the finite horizon case, a policy is a sequence $(a_h)_h \in \mathcal{U}^H$.
- Objective: find optimal policy/action sequence $(a_h^*)_h \in \mathcal{U}^H$.

- An agent's interaction is described by a *policy* π that determines the selected action given the current state.
- In the finite horizon case, a policy is a sequence $(a_h)_h \in \mathcal{U}^H$.
- Objective: find optimal policy/action sequence $(a_h^*)_h \in \mathcal{U}^H$.
- Equivalently: determine $(a_h^*)_h \in \arg\max_{(a_h)_h} \sum_{h=0}^{H-1} R(x_h, a_h)$ where $x_{h+1} = F(x_h, a_h) \ \forall h = 0, \dots, H-1$.

Associated search tree

 A finite MDP can be associated with a graph (in general), here a tree.

Associated search tree

- A finite MDP can be associated with a graph (in general), here a tree.
- Canonical MDP: Delayed Dense Needle with Gap

Delayed Dense Needle with Gap

General/flexible framework for randomized tree search.
 Iterate the following:

- General/flexible framework for randomized tree search.
 Iterate the following:
- 1) Explore exhaustively to some leaf node in current tree.

- General/flexible framework for randomized tree search. Iterate the following:
- Explore exhaustively to some leaf node in current tree.
- 2) Add a child node.

- General/flexible framework for randomized tree search.
 Iterate the following:
- 1) Explore exhaustively to some leaf node in current tree.
- 2) Add a child node.
- 3) Simulate trajectory until termination.

- General/flexible framework for randomized tree search. Iterate the following:
- Explore exhaustively to some leaf node in current tree.
- 2) Add a child node.
- 3) Simulate trajectory until termination.
- Backpropagate collected statistics about states on trajectory.

GORP

 As a proxy for MCTS we consider Greedy over Random Policy (GORP) (Laidlaw et al., 2023).

GORP

- As a proxy for MCTS we consider Greedy over Random Policy (GORP) (Laidlaw et al., 2023).
- Similar to Model Predictive Control. To compute the next optimal action, explore exhaustively for the next κ steps, then sample m rollouts until termination.

GORP

- As a proxy for MCTS we consider Greedy over Random Policy (GORP) (Laidlaw et al., 2023).
- Similar to Model Predictive Control. To compute the next optimal action, explore exhaustively for the next κ steps, then sample m rollouts until termination.
- With exploration horizon κ and per-node sampling budget m selected appropriately, can guarantee an optimal policy with sample complexity $\mathcal{O}(H^2|U|^\kappa m)$, where H is the horizon of the MDP and |U| is the number of actions in the fixed, finite action set U.

 Not adaptive: κ and m need to be large enough to find the correct action at each iteration. In many cases, this leads to over-computation for easier subproblems. Future research direction.

- Not adaptive: κ and m need to be large enough to find the correct action at each iteration. In many cases, this leads to over-computation for easier subproblems. Future research direction.
- Not anytime: Early termination gives no guarantees on degree of suboptimality of yielded solution. May not even yield a complete policy.

- Not adaptive: κ and m need to be large enough to find the correct action at each iteration. In many cases, this leads to over-computation for easier subproblems. Future research direction.
- Not anytime: Early termination gives no guarantees on degree of suboptimality of yielded solution. May not even yield a complete policy.
- Need a priori knowledge of parameters κ and m.

- Not adaptive: κ and m need to be large enough to find the correct action at each iteration. In many cases, this leads to over-computation for easier subproblems. Future research direction.
- Not anytime: Early termination gives no guarantees on degree of suboptimality of yielded solution. May not even yield a complete policy.
- Need a priori knowledge of parameters κ and m.
- Often, computing these is at least as expensive as solving the MDP in question.

Doubling trick

 One approach to alleviate the last two problems is to employ the following doubling trick.

Doubling trick

 One approach to alleviate the last two problems is to employ the following doubling trick.

Implementation

 Employ GPGPU programming in CUDA to achieve orders of magnitude better real-time performance than possible on a CPU.

 Speedups of factor 70 to 140 on canonical evaluation MDP.

Summary & Conclusion

Orders of magnitudes faster speedup

Summary & Conclusion

- Orders of magnitudes faster speedup
- Anytime version of GORP

Summary & Conclusion

- Orders of magnitudes faster speedup
- Anytime version of GORP
- A strong case for feasibility of MCTS in real-time applications like robotic planning.

Acknowledgements

Thank you! Reach out at felixse@kth.se.

Thank you to Soon-Jo Chung, Ben Riviere and all the amazing people at ARCL!

