Data-X Spring 2019: Homework 06

Name:

Anish Saha

SID:

26071616

Course (IEOR 135/290):

Machine Learning

In this homework, you will do some exercises with prediction. We will cover these algorithms in class, but this is for you to have some hands on with these in scikit-learn. You can refer - https://github.com/ikhlaqsidhu/data-x/blob/master/05a-tools-predicition-titanic/titanic.ipynb)

Display all your outputs.

```
In [15]: import numpy as np
import pandas as pd

In [16]: # machine learning libraries
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import AdaBoostClassifier
from sklearn.linear_model import Perceptron
from sklearn.tree import DecisionTreeClassifier
```

- 1. Read diabetesdata.csv file into a pandas dataframe. About the data:
 - 1. TimesPregnant: Number of times pregnant
 - 2. glucoseLevel: Plasma glucose concentration a 2 hours in an oral glucose tolerance test
 - 3. **BP**: Diastolic blood pressure (mm Hg)
 - 4. insulin: 2-Hour serum insulin (mu U/ml)
 - 5. **BMI**: Body mass index (weight in kg/(height in m)^2)
 - 6. pedigree: Diabetes pedigree function
 - 7. Age: Age (years)
 - 8. IsDiabetic: 0 if not diabetic or 1 if diabetic)

```
In [17]: #Read data & print the head
    df = pd.read_csv("diabetesdata.csv")
    df.head()
```

Out[17]:

	TimesPregnant	glucoseLevel	ВР	insulin	вмі	Pedigree	Age	IsDiabetic
0	6	148.0	72	0	33.6	0.627	50.0	1
1	1	NaN	66	0	26.6	0.351	31.0	0
2	8	183.0	64	0	23.3	0.672	NaN	1
3	1	NaN	66	94	28.1	0.167	21.0	0
4	0	137.0	40	168	43.1	2.288	33.0	1

2. Calculate the percentage of Null values in each column and display it.

```
In [18]:
         df.isna().sum() / len(df)
Out[18]: TimesPregnant
                          0.000000
         glucoseLevel
                          0.044271
         ВP
                          0.00000
         insulin
                          0.00000
         BMI
                          0.00000
         Pedigree
                          0.00000
         Age
                          0.042969
         IsDiabetic
                          0.00000
         dtype: float64
```

3. Split data into train_df and test_df with 15% as test.

```
In [29]: np.random.seed(999)
    idx = np.random.rand(len(df)) < 0.85
        train_df, test_df = df[idx], df[~idx]
        len(df), len(train_df), len(test_df)

Out[29]: (768, 653, 115)</pre>
```

4. Display the means of the features in train and test sets. Replace the null values in train_df and test_df with the mean of EACH feature column separately for train and test. Display head of the dataframes.

```
In [32]: print(train_df.mean())
    print(test_df.mean())

    train_df.fillna(train_df.mean(), inplace=True)
    test_df.fillna(test_df.mean(), inplace=True)

print("\nTrain")
    print(train_df.head())
    print("\nTest")
    print(test_df.head())
```

TimesPregnant	3.983384
glucoseLevel	120.787639
BP	68.978852
insulin	80.598187
BMI	31.998943
Pedigree	0.472144
Age	33.606635
IsDiabetic	0.345921
dtype: float64	
TimesPregnant	2.981132
glucoseLevel	122.417476
BP	69.896226
insulin	74.811321
BMI	31.952830
Pedigree	0.470208
Age	31.784314
IsDiabetic	0.367925
dtype: float64	

/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/pandas/core/generic.py:5430: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy self._update_inplace(new_data)

Train

	TimesPregnant	glucoseLevel	BP	insulin	BMI	Pedigree	Age
\							
0	6	148.000000	72	0	33.6	0.627	50.000000
1	1	120.787639	66	0	26.6	0.351	31.000000
2	8	183.000000	64	0	23.3	0.672	33.606635
3	1	120.787639	66	94	28.1	0.167	21.000000
4	0	137.000000	40	168	43.1	2.288	33.000000

Test

4

	TimesPregnant	glucoseLevel	BP	insulin	BMI	Pedigree	Age	IsD
iabetic								
16	0	122.417476	84	230	45.8	0.551	31.0	
1								
26	7	147.000000	76	0	39.4	0.257	43.0	
1								
31	3	158.000000	76	245	31.6	0.851	28.0	
1								
40	3	180.000000	64	70	34.0	0.271	26.0	
0								
41	7	133.000000	84	0	40.2	0.696	37.0	
0								

5. Split train_df & test_df into X_train, Y_train and X_test, Y_test. Y_train and Y_test should only have the column we are trying to predict, IsDiabetic.

```
X_train, X_test = train_df.drop("IsDiabetic", axis=1), test_df.drop("IsD
In [33]:
          iabetic", axis=1)
          y train, y test = train df["IsDiabetic"], test df["IsDiabetic"]
          print("X train")
          print(X_train.head())
          print("\nX test")
          print(X_test.head())
          print("\ny_train")
          print(y train.head())
          print("\ny_test")
          print(y_test.head())
          X train
                                                                 Pedigree
             TimesPregnant
                             glucoseLevel
                                            BP
                                                insulin
                                                           BMI
                                                                                  Age
          0
                               148.000000
                                            72
                                                                    0.627
                                                                           50.000000
                          6
                                                       0
                                                          33.6
          1
                          1
                               120.787639
                                            66
                                                       0
                                                          26.6
                                                                    0.351
                                                                           31.000000
          2
                          8
                               183.000000
                                            64
                                                       0
                                                          23.3
                                                                    0.672
                                                                           33.606635
          3
                          1
                               120.787639
                                                      94
                                                          28.1
                                                                    0.167
                                                                           21.000000
                                            66
          4
                          0
                               137.000000
                                            40
                                                     168
                                                          43.1
                                                                    2.288
                                                                           33.000000
          X test
              TimesPregnant
                              glucoseLevel
                                             BP
                                                 insulin
                                                            BMI
                                                                 Pedigree
                                                                              Age
          16
                                                           45.8
                           0
                                122.417476
                                             84
                                                      230
                                                                     0.551
                                                                             31.0
                           7
          26
                                                        0
                                                           39.4
                                                                     0.257
                                                                             43.0
                                147.000000
                                             76
                           3
                                                      245
                                                           31.6
                                                                             28.0
          31
                                158.000000
                                             76
                                                                     0.851
          40
                           3
                                180.000000
                                             64
                                                       70
                                                           34.0
                                                                     0.271
                                                                             26.0
          41
                           7
                                133.000000
                                             84
                                                        0
                                                           40.2
                                                                     0.696
                                                                             37.0
          y train
          0
               1
          1
               0
          2
               1
          3
               0
          4
               1
          Name: IsDiabetic, dtype: int64
          y_test
          16
                1
          26
                1
          31
                1
          40
                0
          41
          Name: IsDiabetic, dtype: int64
```

6. Use this dataset to train perceptron, logistic regression and random forest models using 15% test split. Report training and test accuracies. Try different hyperparameter values for these models and see if you can improve your accuracies.

```
from sklearn.metrics import accuracy score, confusion_matrix
from sklearn.model selection import GridSearchCV
# 6a. Logistic Regression
mod1 = LogisticRegression()
mod1.fit(X_train, y_train)
print("Logistic Regression Model Performance:")
y pred_train = mod1.predict(X_train)
train_rmse = accuracy_score(y_train, y_pred_train)
print("Training Accuracy: " + str(train_rmse))
y_pred_test = mod1.predict(X_test)
test_rmse = accuracy_score(y_test, y_pred_test)
print("Test Accuracy: " + str(test_rmse))
print("\n")
penalty = ['11', '12']
C = np.logspace(0, 5, 10)
hyperparameters = dict(C=C, penalty=penalty)
clf = GridSearchCV(mod1, hyperparameters, cv=5, verbose=0)
mod2 = clf.fit(X_train, y_train) # optimized hyperparameters
print("Optimized Logistic Regression Model Performance:")
y pred train = mod2.predict(X train)
train_rmse = accuracy score(y train, y pred train)
print("Training Accuracy: " + str(train rmse))
y_pred_test = mod2.predict(X_test)
test_rmse = accuracy_score(y_test, y_pred_test)
print("Test Accuracy: " + str(test rmse))
```

Logistic Regression Model Performance: Training Accuracy: 0.7658610271903323 Test Accuracy: 0.7830188679245284

Optimized Logistic Regression Model Performance: Training Accuracy: 0.7719033232628398 Test Accuracy: 0.7924528301886793

```
In [35]: from sklearn.neural_network import MLPClassifier
         # 6b. Perceptron
         mod3 = Perceptron()
         mod3.fit(X_train, y_train)
         print("Perceptron Model Performance:")
         y_pred_train = mod3.predict(X_train)
         train_rmse = accuracy_score(y_train, y_pred_train)
         print("Training Accuracy: " + str(train_rmse))
         y_pred_test = mod3.predict(X_test)
         test_rmse = accuracy_score(y_test, y_pred_test)
         print("Test Accuracy: " + str(test_rmse))
         hyperparameters = { 'alpha': [0.0001, 0.05], 'fit_intercept': [True, Fal
         se],
                              'max_iter': [100, 1000], 'penalty': penalty }
         clf = GridSearchCV(mod3, hyperparameters, cv=5, verbose=0)
         mod4 = clf.fit(X_train, y_train) # optimized hyperparameters
         print("Optimized Perceptron Model Performance:")
         y_pred_train = mod4.predict(X_train)
         train_rmse = accuracy_score(y_train, y_pred_train)
         print("Training Accuracy: " + str(train_rmse))
         y_pred_test = mod4.predict(X_test)
         test_rmse = accuracy_score(y_test, y_pred_test)
         print("Test Accuracy: " + str(test_rmse))
         print("\n")
         # 6b. Multi-Layer Perceptron
         mod3 = MLPClassifier()
         mod3.fit(X_train, y_train)
         print("Multi-Layer Perceptron Model Performance:")
         y_pred_train = mod3.predict(X_train)
         train_rmse = accuracy_score(y_train, y_pred_train)
         print("Training Accuracy: " + str(train_rmse))
         y pred_test = mod3.predict(X_test)
         test_rmse = accuracy_score(y_test, y_pred_test)
         print("Test Accuracy: " + str(test_rmse))
         print("\n")
         hyperparameters = { 'hidden_layer_sizes': [(50,50,50), (50,100,50), (100
         ,)],
                              'alpha': [0.0001, 0.05], 'activation': ['tanh', 'rel
         u'],
                              'learning_rate': ['constant', 'adaptive'] }
         clf = GridSearchCV(mod3, hyperparameters, cv=5, verbose=0)
         mod4 = clf.fit(X_train, y_train) # optimized hyperparameters
         print("Optimized Multi-Layer Perceptron Model Performance:")
         y_pred_train = mod4.predict(X_train)
         train_rmse = accuracy_score(y_train, y_pred_train)
         print("Training Accuracy: " + str(train_rmse))
         y_pred_test = mod4.predict(X_test)
```

test_rmse = accuracy_score(y_test, y_pred_test)
print("Test Accuracy: " + str(test_rmse))

Perceptron Model Performance:

Training Accuracy: 0.3776435045317221 Test Accuracy: 0.39622641509433965

/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-pa ckages/sklearn/linear_model/stochastic_gradient.py:128: FutureWarning: max_iter and tol parameters have been added in <class 'sklearn.linear_m odel.perceptron.Perceptron'> in 0.19. If both are left unset, they defa ult to max_iter=5 and tol=None. If tol is not None, max_iter defaults to max_iter=1000. From 0.21, default max_iter will be 1000, and default tol will be 1e-3.

"and default tol will be 1e-3." % type(self), FutureWarning)

Optimized Perceptron Model Performance: Training Accuracy: 0.6993957703927492 Test Accuracy: 0.7169811320754716

Multi-Layer Perceptron Model Performance: Training Accuracy: 0.6963746223564955
Test Accuracy: 0.7075471698113207

Optimized Multi-Layer Perceptron Model Performance: Training Accuracy: 0.7537764350453172 Test Accuracy: 0.7452830188679245

```
In [36]:
         # 6c. Random Forest
         mod5 = RandomForestClassifier()
         mod5.fit(X_train, y_train)
         print("Random Forest Model Performance:")
         y pred_train = mod5.predict(X_train)
          train_rmse = accuracy_score(y_train, y_pred_train)
         print("Training Accuracy: " + str(train rmse))
         y_pred_test = mod5.predict(X_test)
          test_rmse = accuracy_score(y_test, y_pred_test)
         print("Test Accuracy: " + str(test_rmse))
         print("\n")
         \max_{x \in \mathbb{R}} depth = [int(x) \text{ for } x \text{ in } np.linspace(10, 110, num = 10)]
         max_depth.append(None)
          hyperparameters = { 'max depth': max depth, 'min samples split': [2, 5,
          10],
                               'max_features': ['auto', 'sqrt'], 'bootstrap': [True
          , False | }
          clf = GridSearchCV(mod5, hyperparameters, cv=5, verbose=0)
         mod6 = clf.fit(X_train, y_train) # optimized hyperparameters
         print("Optimized Random Forest Model Performance:")
         y pred train = mod6.predict(X train)
          train_rmse = accuracy score(y train, y pred train)
          print("Training Accuracy: " + str(train rmse))
         y_pred_test = mod6.predict(X_test)
          test_rmse = accuracy_score(y_test, y_pred_test)
         print("Test Accuracy: " + str(test rmse))
```

```
Training Accuracy: 0.9833836858006042
Test Accuracy: 0.7830188679245284

Optimized Random Forest Model Performance:
Training Accuracy: 0.918429003021148
Test Accuracy: 0.8018867924528302
```

Random Forest Model Performance:

- 7. For your logistic regression model -
- a . Compute the log probability of classes in IsDiabetic for the first 10 samples of your train set and display it. Also display the predicted class for those samples from your logistic regression model trained before.

```
In [37]: print("Log Probabilities for first 10 training samples")
         print(mod2.predict log proba(X train)[:10])
         print("\n")
         print("Predicted Class for first 10 training samples")
         print(mod2.predict(X_train)[:10])
         Log Probabilities for first 10 training samples
         [[-1.10942339 -0.40010307]
          [-0.17359275 -1.83658434]
          [-1.61647411 -0.22139221]
          [-0.1537507 -1.94831341]
          [-1.70591041 - 0.20041259]
          [-0.18852481 -1.7613076]
          [-0.07912209 -2.57606337]
          [-0.99331984 -0.46258348]
          [-1.47067037 - 0.26106793]
          [-0.05511131 - 2.92582943]
         Predicted Class for first 10 training samples
         [1 0 1 0 1 0 0 1 1 0]
```

b. Now compute the log probability of classes in IsDiabetic for the first 10 samples of your test set and display it. Also display the predicted class for those samples from your logistic regression model trained before. (using the model trained on the training set)

```
print("Log Probabilities for first 10 training samples")
In [38]:
         print(mod2.predict_log_proba(X_test)[:10])
         print("\n")
         print("Predicted Class for first 10 training samples")
         print(mod2.predict(X_test)[:10])
         Log Probabilities for first 10 training samples
         [[-0.47680148 -0.96960119]
          [-1.21847992 -0.35052146]
          [-0.88339004 -0.5333766 ]
          [-1.35006788 -0.30005519]
          [-1.03682156 -0.43785386]
          [-0.04436754 -3.137349]
          [-0.08413521 -2.51710276]
          [-0.20566261 -1.68258782]
          [-0.01692857 - 4.08720499]
          [-0.02651673 -3.64320836]]
         Predicted Class for first 10 training samples
         [0 1 1 1 1 0 0 0 0 0]
```

c. What can you interpret from the log probabilities and the predicted classes?

In the outputs above, the first column represents the log probability that the sample is of class 0 [IsDiabetic = 0], while the second column represents the log probability that the sample is of class 1 [IsDiabetic = 1]. The probability that a sample is of a certain class is computed using the formula:

$$P(\text{sample}_j \text{is not diabetic}) = e^{a[j][0]} \mid P(\text{sample}_j \text{is diabetic}) = e^{a[j][1]}$$
 for the j^{th} sample, and a is the array displayed above

The predicted class corresponds to the column with the higher log probability (and consequently, higher probability) value – or in other words, whichever log probability value is closer to 0 since all log probability values are negative. This can be confirmed by observing the outputs above.

8. Is mean imputation is the best type of imputation (as we did in 4.) to use? Why or why not? What are some other ways to impute the data?

Mean imputation is not the best type of imputation to use. This is because it often does not preserve relationships between variables (imputed values have zero correlation with other variables), presents biased metrics of standard error and variance, and can result in a biased sample mean. The only advantage is that it preserves the sample size. Some other ways to impute the data include hot-deck imputation, cold-deck imputation, regression imputation, and multiple imputation (ex: MICE, using chained equations, for when data is randomly missing).

Extra Credit (2 pts) - MANDATORY for students enrolled in IEOR 290

9. Implement the K-Nearest Neighbours (https://en.wikipedia.org/wiki/K-nearest neighbors algorithm)) algorithm for k=1 from scratch in python (do not use KNN from existing libraries). KNN uses Euclidean distance to find nearest neighbors. Split your dataset into test and train as before. Also fill in the null values with mean of features as done earlier. Use this algorithm to predict values for 'IsDiabetic' for your test set. Display your accuracy.

```
In [39]: # K-Nearest Neighbors Classifier for k=1
         class KNN Classifier():
             def fit(self, X_train, y_train):
                  self.X_train = X_train
                  self.y_train = y_train
             def euclidean_dist(self, x1, x2):
                 distance = 0
                  for i in range(len(x1)):
                      distance = distance + (x1[i] - x2[i])**2
                  return distance
             def k nearest(self, row, k=1):
                 best dist = self.euclidean dist(row, self.X train[0])
                 best idx = 0
                  for i in range(k, len(self.X_train)):
                      dist = self.euclidean dist(row, self.X train[i])
                      if dist < best dist:</pre>
                          best dist = dist
                          best idx = i
                 return self.y_train[best_idx]
             def predict(self, X_test, k=1):
                 result = []
                  for row in X test:
                      label = self.k_nearest(row, k)
                      result.append(label)
                 return result
         mod7 = KNN Classifier()
         mod7.fit(X_train.values, y_train.values)
         print("MANUAL IMPLEMENTATION | K-Nearest Neighbors Model Performance:")
         y pred_train = mod7.predict(X_train.values)
         train_rmse = accuracy_score(y_train, y_pred_train)
         print("Training Accuracy: " + str(train rmse))
         y pred_test = mod7.predict(X_test.values)
         test_rmse = accuracy_score(y_test, y_pred_test)
         print("Test Accuracy: " + str(test_rmse))
```

MANUAL IMPLEMENTATION | K-Nearest Neighbors Model Performance: Training Accuracy: 1.0
Test Accuracy: 0.7264150943396226

SKLEARN IMPLEMENTATION | K-Nearest Neighbors Model Performance: Training Accuracy: 0.8096676737160121
Test Accuracy: 0.7264150943396226