Predicting Injuries at Theme Parks

By Matthew Coulombe

Problem Statement

How can we predict a common injury diagnosis to allow the park to safeguard against these injuries by allocating medical personnel, procedures, supplies and warning signs properly and increase patron safety?

The Data

NEISS hospital data from 2013-2017

	SAS Variable	Description/Code book	
Excel/Tab Variable			
CPSC_Case_Number	NEK	CPSC case number	
Treatment_Date	Trmt_date	Date of Treatment	
Age	Age	Age of Patient	
Sex	Sex	Sex of Patient	
Race	Race	Race of Patient	
Other_Race	Raceoth	Description of Other Race (Used with Race=3)	
Body_Part	Bdpt	Injured Body Part	
Diagnosis	Diag	Injury Diagnosis	
Other_Diagnosis	Diagoth	Description of Other Diagnosis (Used with Diag	
Disposition	Disp	Disposition	
Location	Loc	Incident Location	
Product_1	Prod1	Product Code (See NEISS Coding Manual for Deta	
Narrative	Narr	Description of Injury Event	
Stratum	Stratum	Design Variable-Stratum	
PSU	PSU	Design Variable-Primary Sampling Unit (PSU)	
Weight	Wt	Statistical Weight for National Estimates	

Exploratory Data Analysis - Diagnosis

Exploratory Data Analysis - Product Codes

Exploratory Data Analysis - Device Category

Exploratory Data Analysis - Age

Exploratory Data Analysis - Body Part

Exploratory Data Analysis - Treatment Date

Preprocessing

		Diagnosis	Split_Diagnosis	
CPSC_Ca	se_Number			
1	180125260	Fracture	common	
	180108428	Dental injury	uncommon	
	180120413	Other	uncommon	
	180125238	Fracture	common	
	180135290	Strain, sprain	common	
			200	
	130113361	Contusion, abrasion	common	
	130109590	Laceration	uncommon	
	130113339	Nerve damage	uncommon	
	130109054	Hematoma	uncommon	
	130123446	Dental injury	uncommon	

	day_of_week	Treatment_Date	day_of_week_S
CPSC_Case_Number			
180125260	6	2017-12-31	Sunday
180108428	6	2017-12-31	Sunday
180120413	6	2017-12-31	Sunday
180125238	5	2017-12-30	Saturday
180135290	5	2017-12-30	Saturday
130113361	3	2013-01-03	Thursday
130109590	2	2013-01-02	Wednesday
130113339	2	2013-01-02	Wednesday
130109054	1	2013-01-01	Tuesday
130123446	1	2013-01-01	Tuesday

Models

Three Models:

- Baseline Model
- Logistic Regression Model
- Random Forest Model

5 Scoring Metrics:

- Accuracy
- Precision
- Recall
- F1
- Balanced Accuracy

Models - Baseline

Accuracy: 0.56 Precision: 0.56 Recall: 1.0

F1: 0.718

Models - Logistic Regression

Accuracy: 0.749 Precision: 0.725 Recall: 0.889

F1: 0.799

Models - Random Forest

Accuracy: 0.74 Precision: 0.719 Recall: 0.882 F1: 0.792

Recommendation

Best Model: Logistic Regression

Accuracy: 0.749 Precision: 0.725 Recall: 0.889 F1: 0.799

Next Steps

- Tune Hyperparameters
- Breakdown Common/Uncommon injuries
- Try other models for better performance
- Dive deeper into the results of our model

Limitations

- Very basic modeling procedure
- PSU, Weight, and Stratum
- Data is for the type of injury, assuming there is an incident, not the rate at which injuries occur.