Outline

- Probabilities
- Bayes' rule (Applied in different fields, including NLP)
- Build your own Naive-Bayes tweet classifier!

@ deeplearning.ai

Probabilities

Corpus of tweets

A → Positive tweet

$$P(A) = N_{pos} / N = 13 / 20 = 0.65$$

@ deeplearning.ai

Introduction

Corpus of tweets

Tweets containing the word "happy"

@ deeplearning.ai

Probabilities

Tweets containing the word "happy"

"happy"

 $B \rightarrow tweet contains "happy".$

$$P(B) = P(happy) = N_{happy} / N$$

$$P(B) = 4/20 = 0.2$$

Probability of the intersection

@ deeplearning.ai

Conditional Probabilities

P(B | A) = P("happy" | Positive)

P(B | A) = 3 / 13 = 0.231

@ deeplearning.ai

Conditional Probabilities

P(A | B) = P(Positive | "happy")

P(A | B) = 3/4 = 0.75

@ deeplearning.ai

Probability of <u>B</u>, given <u>A</u> happened Looking at the elements of set <u>A</u>, the chance that one also belongs to set <u>B</u>

Conditional probabilities

$$P(\text{Positive} | \text{``happy''}) =$$

$$P(\text{Positive} \cap \text{``happy''})$$

$$P(\text{``happy''})$$

@ deeplearning.ai

Bayes' rule

$$P(\text{Positive}|\text{"happy"}) = P(\text{"happy"}|\text{Positive}) \times \frac{P(\text{Positive})}{P(\text{"happy"})}$$

$$P(X|Y) = P(Y|X) \times \frac{P(X)}{P(Y)}$$

@ deeplearning.ai

Bayes' rule

$$P(\text{Positive} | \text{"happy"}) = \frac{P(\text{Positive} \cap \text{"happy"})}{P(\text{"happy"})}$$

$$P(\text{"happy"}|\text{Positive}) = \frac{P(\text{"happy"} \cap \text{Positive})}{P(\text{Positive})}$$

@ deeplearning.ai

Summary

- Conditional probabilities → Bayes' Rule
- $P(X|Y) = P(Y|X) \times \frac{P(X)}{P(Y)}$

Naïve Bayes for Sentiment Analysis

Positive tweets

I am happy because I am learning NLP I am happy, not sad.

Negative tweets

I am sad, I am not learning NLP I am sad, not happy

word	Pos	Neg
	3	3
am	3	3
happy	2	1
because	1	0
learning	1	1
NLP	1	1
sad	1	2
not	1	2
N	13	12

@ deeplearning.ai

P(w_i | class)

word	Pos	Neg
	0.24	0.25
am	0.24	0.25
happy	0.15	0.08
because	0.08	0
learning	0.08	0.08
NLP	0.08	0.08
sad	0.08	0.17
not	0.08	0.17

@ deeplearning.ai

$P(w_i | class)$

word	Pos	Neg
	3	3
am	3	3
happy	2	1
because	1	0
learning	1	1
NLP	1	1
sad	1	2
not	1	2
Nclass	13	12

word	Pos	Neg
	0.24	0.25
am	0.24	0.25
happy	0.15	80.0
because	80.0	0.00
learning	80.0	80.0
NLP	80.0	80.0
sad	80.0	0.17
not	0.08	0.17

@ deeplearning.ai

Naïve Bayes

Tweet: I am happy today; I am learning.

$$\prod_{i=1}^{m} \frac{P(w_i|pos)}{P(w_i|neg)} = \frac{0.14}{0.10} = 1.4 > 1$$

$$\frac{0.20}{0.20} * \frac{0.20}{0.20} * \frac{0.14}{0.10} * \frac{0.20}{0.20} * \frac{0.20}{0.20} * \frac{0.10}{0.10}$$

word	Pos	Neg
	0.20	0.20
am	0.20	0.20
happy	0.14	0.10
because	0.10	0.05
learning	0.10	0.10
NLP	0.10	0.10
sad	0.10	0.15
not	0.10	0.15

Summary

Naive Bayes inference condition rule for binary classification

$$\prod_{i=1}^{m} \frac{P(w_i|pos)}{P(w_i|neg)}$$

• Table of probabilities

@ deeplearning.ai

Introducing $P(w_i | \text{class})$ with smoothing

word	Pos	Neg
	3	3
am	3	3
happy	2	1
because	1	0
learning	1	1
NLP	1	1
sad	1	2
not	1	2
Nalasa	12	12

	word	Pos	Neg
	I	0.19	0.20
	am	0.19	0.20
	happy	0.14	0.10
	because	0.10	0.05
	learning	0.10	0.10
	NLP	0.10	0.10
	sad	0.10	0.15
V = 8	not	0.10	0.15
	Sun	n 1	1

@ deeplearning.ai

Laplacian Smoothing

$$P(w_i|class) = \frac{freq(w_i, class)}{N_{class}}$$

class ∈ {Positive, Negative}

$$P(w_i|class) = \frac{freq(w_i, class) + 1}{N_{class} + V}$$

 N_{class} = frequency of all words in class

V = number of unique words in vocabulary

@ deeplearning.ai

Summary

- Laplacian smoothing to avoid $P(w_{\cdot}|class) = 0$
- Naïve Bayes formula

$$\prod_{i=1}^{m} \frac{P(w_i|pos)}{P(w_i|neg)}$$

Ratio of probabilities

$$ratio(w_i) = \frac{P(w_i | Pos)}{P(w_i | Neg)}$$

@ deeplearning.ai

Log Likelihood

$$\frac{P(pos)}{P(neg)} \prod_{i=1}^{m} \frac{P(w_i|pos)}{P(w_i|neg)}$$

- Products bring risk of underflow
- log(a * b) = log(a) + log(b)

•
$$log(\frac{P(pos)}{P(neg)}\prod_{i=1}^{n}\frac{P(w_i|pos)}{P(w_i|neg)}) \implies log\frac{P(pos)}{P(neg)} + \sum_{i=1}^{n}log\frac{P(w_i|pos)}{P(w_i|neg)}$$

log prior + log likelihood

@ deeplearning.ai

Naïve Bayes' inference

class \in {pos, neg} **w** -> Set of m words in a tweet

$$\left| \frac{P(pos)}{P(neg)} \right| \prod_{i=1}^{m} \frac{P(w_i|pos)}{P(w_i|neg)} > 1$$

- A simple, fast, and powerful baseline
- A probabilistic model used for classification

@ deeplearning.ai

Summing the Lambdas

doc: I am happy because I am learning.

$$\lambda(w) = \log \frac{P(w|pos)}{P(w|neg)}$$
$$\lambda(\text{happy}) = \log \frac{0.09}{0.01} \approx 2.2$$

word	Pos	Neg	λ
I	0.05	0.05	0
am	0.04	0.04	0
happy	0.09	0.01	2.2
because	0.01	0.01	0
learning	0.03	0.01	1.1
NLP	0.02	0.02	0
sad	0.01	0.09	-2.2
not	0.02	0.03	-0.4

Summary

Word sentiment

$$ratio(w) = \frac{P(w|pos)}{P(w|neg)}$$

$$ratio(w) = \frac{P(w|pos)}{P(w|neg)}$$
$$\lambda(w) = log \frac{P(w|pos)}{P(w|neg)}$$

@ deeplearning.ai

Log Likelihood

$$\prod_{i=1}^{m} \frac{P(w_i|pos)}{P(w_i|neg)} > 1$$

@ deeplearning.ai

Log Likelihood

doc: I am happy because I am learning.

$$\sum_{i=1}^{m} log \frac{P(w_i|pos)}{P(w_i|neg)} = \sum_{i=1}^{m} \lambda(w_i)$$

 $\log \text{ likelihood} = 0 + 0 + 2.2 + 0 + 0 + 0 + 1.1 = 3.3$

word	Pos	Neg	λ
	0.05	0.05	0
am	0.04	0.04	0
happy	0.09	0.01	2.2
because	0.01	0.01	0
learning	0.03	0.01	1.1
NLP	0.02	0.02	0
sad	0.01	0.09	-2.2
not	0.02	0.03	-0.4

@ deeplearning.ai

Summary

Tweet sentiment:

$$log \prod_{i=1}^{m} ratio(w_i) = \sum_{i=1}^{m} \lambda(w_i)$$
 > 0

Outline

- Predict using a N\u00e4ive Bayes Model
- Using your validation set to compute model accuracy

@ deeplearning.ai

Predict using Naïve Bayes

- log-likelihood dictionary $\lambda(w) = log \frac{P(w|pos)}{P(w|neg)}$ word λ
- $logprior = log \frac{D_{pos}}{D_{neg}} = 0$
- Tweet: [I, pass, the NLP interview]

$$score = -0.01 + 0.5 - 0.01 + 0 + logprior = 0.48$$

$$pred = score > 0$$

word	20
	-0.01
the	-0.01
happi	0.63
because	0.01
pass	0.5
NLP	0
sad	-0.75
not	-0.75

@ deeplearning.ai

Predict using Naïve Bayes

- log-likelihood dictionary $\lambda(w) = log \frac{P(w|pos)}{P(w|neg)}$
- $logprior = log \frac{D_{pos}}{D_{neg}} = 0$
- Tweet: I passed the NLP interview.

word	λ
I	-0.01
the	-0.01
happi	0.63
because	0.01
pass	0.5
NLP	0
sad	-0.75
not	-0.75

@ deeplearning.ai

Testing Naïve Bayes

• $X_{val} Y_{val} \lambda logprior$

$$score = predict(X_{val}, \lambda, logprior)$$

$$pred = score > 0$$

$$\begin{bmatrix} 0.5 \\ -1 \\ 1.3 \\ \vdots \\ score_m \end{bmatrix} > 0 = \begin{bmatrix} 0.5 > 0 \\ -1 > 0 \\ 1.3 > 0 \\ \vdots \\ score_m > 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 1 \\ \vdots \\ pred_m \end{bmatrix}$$

Testing Naïve Bayes

•
$$X_{val} \ Y_{val} \ \lambda \ logprior$$

$$score = predict(X_{val}, \lambda, logprior)$$

$$pred = score > 0$$

$$\frac{1}{m} \sum_{i=1}^{m} (pred_i == Y_{val_i})$$

$$pred_m == Y_{val_m}$$

@ deeplearning.ai

Applications of Naïve Bayes

$$P(pos|tweet) \approx P(pos)P(tweet|pos)$$

 $P(neg|tweet) \approx P(neg)P(tweet|neg)$

$$\frac{P(pos|tweet)}{P(neg|tweet)} = \frac{P(pos)}{P(neg)} \prod_{i=1}^{m} \frac{P(w_i|pos)}{P(w_i|neg)}$$

@ deeplearning.ai

Summary

- $\bullet~X_{val}~Y_{val}$ Performance on unseen data
- ullet Predict using λ and logprior for each new tweet

• Accuracy
$$\longrightarrow \frac{1}{m} \sum_{i=1}^{m} (pred_i == Y_{val_i})$$

• What about words that do not appear in $\lambda(w)$?

@ deeplearning.ai

Applications of Naïve Bayes

Author identification:

 $\frac{P(book)}{P(book)}$

Spam filtering:

 $\frac{P(\text{spam}|\text{email})}{P(\text{nonspam}|\text{email})}$

Applications of Naïve Bayes

Information retrieval:

$$P(\text{document}_k|\text{query}) \propto \prod_{i=0}^{|query|} P(\text{query}_i|\text{document}_k)$$

Retrieve document if $P(document_k|query) > threshold$

@ deeplearning.ai

Naïve Bayes Applications

- Sentiment analysis
- Author identification
- Information retrieval
- Word disambiguation
- Simple, fast and robust!

@ deeplearning.ai

Applications of Naïve Bayes

Word disambiguation:

 $\frac{P(\text{river}|\text{text})}{P(\text{money}|\text{text})}$

Bank:

@ deeplearning.ai

Outline

- Independence
- Relative frequency in corpus

Naïve Bayes Assumptions

• Independence

"It is sunny and hot in the Sahara desert."

@ deeplearning.ai

Naïve Bayes Assumptions

• Relative frequencies in corpus

@ deeplearning.ai

Naïve Bayes Assumptions

"It's always cold and snowy in ___."

spring?? summer? fall?? winter??

@ deeplearning.ai

Summary

- Independence: Not true in NLP
- Relative frequency of classes affect the model

Outline

- Removing punctuation and stop words
- Word order
- Adversarial attacks

(a) deeplearning.ai

Processing as a Source of Errors: Removing Words

Tweet: This is not good, because your attitude is not even close to being nice.

processed_tweet: [good, attitude, close, nice]

(a) deeplearning.ai

Processing as a Source of Errors: Punctuation

Tweet: My beloved grandmother **¾**

processed_tweet: [belov, grandmoth]

@ deeplearning.ai

Processing as a Source of Errors: Word Order

Tweet: I am happy because I did not go.

Tweet: I am not happy because I did go.

Adversarial attacks

Sarcasm, Irony and Euphemisms

Tweet: This is a ridiculously powerful movie. The plot was gripping and I cried right through until the ending!

processed_tweet: [ridicul, power, movi, plot, grip, cry, end]

