	演算法HW3 資工2B 春常宇
L	9.]-[]
	Step 1: Find the minmum -> n-1 times
	Step 2 : divide & Conquer
	Step 2 : divide & conquer let minimum as pivot K
	A ZK K >K
	84 g Y
	c find A[P:q-1], KK
	s find A[P:q-1], KK 2 find A[q=Y], >K
	Keep doing rominatively, even remarking
	keep doing recursively, every recursion Step will drude the length of array half
	=) until find the second smullest, cost
	Than I - I (k don't need to compare)
	compare)
	Hence,
	Total compations = n-1 + [lan] - 1
	Total compasison = $n-1+\lceil lgn\rceil-1$
	$= n + \lceil lgh \rceil - 2$
	*

```
9,1-2] even: 1/9/1/1/1/
        Start, max, min, x
        if h is odd
           Start=2, max=min=1, x=A[2]
}.
       else
           17 ACZ] > ACZ]
٦,
                                             14/14
             max=A[2], min=A[2]
           else
 Ŋ,
              max = A[2], min = A[]
81
 9,
           Start = 3, X = A[3]
 101
        for i=start to n step 2
 11,
 121
            1- x == max
                                            not max
 13.
               x = max
            else if x == min
14,
                                            not win
             X = min
15,
            it ACIJ > ALIH]
 16,
             exchange A[7] with A[7+1]
 l \vartheta'
 181
            it Acija min
            min = ALIJ
it AlitiJ = max
 >0 1
 入[,
              max = A[i]
Smallest # comparison = 5h/2-4 x
    | odd: 5[n/2]
| even: 5(n-2)/2+1=5n/2-4
```

[9.2-3]

Mihimum

A = < >13,0,5,1,9,1,8,6,4>

Worst case: T(n) = T(n-1) + (h) -> (h) (n)

(2,3,0,5,1,9,1,8,6,4) (2,3,0,5,1,4,1,8,6,9) (2,3,0,5,1,4,1,6,8,9) (2,3,0,5,6,4,1,1,1,8,9) (2,3,0,4,1,5,6,1,8,9) (2,3,0,4,1,5,6,1,8,9) (2,1,0,3,4,5,6,1,8,9) (0,1,2,3,4,5,6,1,8,9)

total comparison = 1+9+6+5+5+3+2 = 43

```
1. QuickSoye (A, P, Y)

2. it PCY

3. q = Select (A, P, Y, (P+Y)/2)

4. g = PARTITION (A, P, Y, q)

5. QuickSoye (A, P, q-1)

QuickSoye (A, P, q-1)
```

Line 2, q is always the middle

(1) Quicksoft won't be the worst case (1) (12)

$$T(n) = H(n) + H(n) + 2T(n/2)$$

= $2T(n/2) + H(n)$

By muster theorem, $h^{19n} = h = h$

T(h) = (H) (nlgh)

```
9.3-5]
```

```
while (r-p+1) \mod 5 \neq 0

for j=p+1 to r  // put the minimum into A[p]

if A[p] > A[j]

exchange A[p] with A[j]

// If we want the minimum of A[p:r], we're done.

if i=1

return A[p]

// Otherwise, we want the (i-1)st element of A[p+1:r].

p=p+1

i=i-1

May be use in A[p]
```

0000

line 1-10: put the smallest to ACPI

(7, 7)	sorted	# comparison (Line 3)
(1,3)	A[I:I]	3
(2,2)		2
(3,1)		
(- , ,)	HU"	L .
		total: 8+2+1 = 6 x

[9.3] total weight sum = - 1. n=1 L'each dements has some weight in i, weight median = median of x,... 2 equal R med jan Q Sorted list

Step 1: using quick sort (H) (nlgn)

Step 2: find the index that $\sum_{x_i \in X_k} w_i = \frac{1}{z}$,

then $X_k = X_{i-1}$ (H) (n)

T(n) = (H(nlgh) + (H(n) = (H)(nlgh) &

Best solution:

find mid-x, mid-y, then

[] Xi - mid-x | + | yi - mid-y |
i=1, y=1

Will be the smallest. (By the conclusion of

9.61 (\mathcal{O}) Assume k is odd, y (K+1)/2 g = n/k low side = 4+1)/2. Lg/2/ Z (K+1)8/4 high side = (k+1)/2. Ly+1)/2 > (k+1) y/4 kg-(k+1)g/4=3k-1 4Kh T(n) = T(n/k) + T(3k-1n) + (H) (n) C: stitably < c(n/k) + c (3k-1n) + (A)(n) large $670, 4 170 \leq 3 + 4 + 6 + (n)$ If we want run in linear time, then 3 Kts <1 , K 23 X

Same Steps in (a), when
$$n=1$$
, we get

$$T(n) = T(n/3) + T(2n/3) + \Theta(n)$$

$$h/(3/2)^{k} = 1$$
 $k = 193/2$

$$T(n) = cn - 193/2 n$$

$$= O(n | g n)$$

(C)

By (b), time complexity is O(hlgn) when n=3. In order to reach O(n), we need to let n>3. And the fastest way to reach it is multiply by 3, $n'=3\times3=9$ (odd).

Line 1: change to mod 9 (1: 9 groups)

-Line 2-13: same

- Line 15-17: 3 april 9 april 9

- Line 20: find x = middle of A[P+48': P+58'-1]

__line 2 - 18: partition to find the 1th largest

(b)

g= n/9

 $T(n) = T(n/9) + T(13n/18) + \Theta(n)$ $C: \text{suitably mage} \leq C(n/9) + C(13n/18) + \Theta(n)$

C20, 4470

$$= cn - \frac{3}{18} cn + (1)(h)$$

) | | , | - | | max = TUT for 7=2 to m if (T[i] != NIL) & (TG] 7 max) max = TETT Worst case: (H) cm) & 1111-5 Use Pirect - Address Let the hash table size = m hash function . h 1 h= {0,1,...,m-1} -> {0,1,...,m-1} (2) 50, NIL 1, occupied Ohce the condition satisfied D& Q, We can make sure dictionary operations

will knn in O(1) time.

1) successful search . unsuccessful search Result: Faster Reuson = list is sorted () use binary search (H) (lgn) (ii) insert, deletion Result : slower Reason = " heed to find the correct position to maintain sorted order i', take much more time [11.2-5] By thm. 11.2, we know shuessful search take (A)(1+d)

[11-3-4]

K	h(k)
61	[1000 (b). (F-1)/2 mod 1)] = 754
62	L1006 (62-(5-1)/2 mod 1)] = 766
63	Llovo (63(JT-1)/2 mod 1)]=178
64	L1000 (64-(Js-1)/2 mod 1)]=191
65	[1000 (65. (IS-1) /2 mod 1)] = 803

```
[11.4-1]
Key= {10,22,31,4,15,28,17,88,59,9
(1) Linear probe: hck, i) = (k+i) mod m
                 h(k, ()
                    ((of)) mod 1 = 0
                     22+1) mod 11 = 10
                      4+1) mod 11 = 5
                      15t1) mod || = 5

(28t1) mod || = 7

(17t1) mod || = 7

(88t1) mod || = 5

(59t1) mod || = 5
  Q
                     solide +1
                1) = Slot ) + | Slot 8

88 = Slot | + | Slot 2

59 = Slot 5 + | Slot 6 + | Slot ] + | Slot 9
```

(2) double hashing: $h_2(k) = 1 + (k \mod (m-1))$

(3 (1 (3			
1(UZ) 4 (N2)(E)	K	hick)	h2CK)
0	0	[7]	1+(10%10)=270
9	22	22 7 9	1+()2% 10) = 3 70
8	31	3 7 8	1+(3/%10)=270
J	4	4	1+(4%00) =5-73
6	15	15-76	1+ (15% 10) = 6+0
5	28	28 7 5	1+(15610) = 670
4	โป	1974	1+(115/10) = 870
3	Şά	88 7 3	1+(88%10) = 970
).	<u> </u>	5972	1+(59%10) = 670
همنگ	1		

$$\frac{m}{1} = \frac{m}{m!} = \frac{m}{m}$$

[11.] 前面至少有P個已 inserted (1 Pra, X, > Py $= \frac{n}{m} \cdot \frac{n-1}{m-p} \cdot \frac{n-p}{m-p}$ $\leq \left(\frac{n}{m}\right)^{\frac{n}{2}} \left(\frac{n}{m}\right)^{\frac{n}{2}}$ < (m/2) = >-6 (b) P= 22gn 1号入(a)的流音语 $P_{Y} = \frac{-2lgn}{r} = \frac{-2lgn}{r} = \frac{-2}{n} = O(1/n^{2})$ 1,2 # insertion & search moximum are

independent i'i PrEX > 2 gzy = Sum of each search maximum By (b), Prex > 29 27 = n. O(1/n) = O(1/n) &

(d) by (9), $E[X] = \sum_{n=1}^{\infty} P_n \{X^2 \ge 1 \}$ $\sum_{n=1}^{\infty} P_$

[11-2]

(1) Build the BST (ensure height = O(lgn))

-> (H) (nlyn)

(2) Worst case:

SEARCH Operation: A) (nlyn

(b) By thm. 11.7 we know,

{# probe of unsweesful searchy
$$\leq \frac{1}{1-q}$$
 $\frac{1}{1-q} = 2gn$
 $\frac{1}{1-mm} =$

×