xLR(k): deterministic bottom-up parsing ISCL-BA-06

Çağrı Çöltekin ccoltekin@sfs.uni-tuebingen.de

Winter Semester 2020/21

* Start from the input symbols, try to reduce the input to the start symbol Unlike top-down parsing where productions drive the parsing, in bottom-up

parsing reduction is the main operation · Reduction matches RHS of a grammar rule, and replaces it with its LHS

A typical bottom-up parser has two basic operations reduce replace one more more symbols in the sentential form with their LHS non-terminal

shift move the next unprocessed symbol from the input to the sentential form

Bottom-up (shift-reduce) parsing: an example

Sent. Form	Input	Action
	dnyan	shift

Bottom-up (shift-reduce) parsing: an example

 $S \rightarrow NP \ VP \quad NP \rightarrow d \ AN \quad NP \rightarrow AN \ VP \rightarrow v \ NP \quad AN \rightarrow a \ AN \rightarrow n$

SENT. FORM	INPUT	Action
dn	van	r. AN → n
dn	van	shift

Bottom-up (shift-reduce) parsing: an example

Sent. Form	Input	Action
dn	van	r. AN → n
dnva	n	shift

Bottom-up (shift-reduce) parsing: an example

 $S \rightarrow NP VP \quad NP \rightarrow d AN \quad NP \rightarrow AN \\ VP \rightarrow v NP \quad AN \rightarrow a AN \quad AN \rightarrow n$

Sent. Form	Input	Action
dn	van	r: AN → n
dnva AN		r: AN → a AN
dnva AN		r: NP -> AN

Bottom-up (shift-reduce) parsing: an example

 $S \rightarrow NP \ VP \quad NP \rightarrow d \ AN \quad NP \rightarrow AN \ VP \rightarrow v \ NP \quad AN \rightarrow a \ AN \rightarrow n$

Sent. Form	INPUT	Action	
dn	van	r. AN → n	
dnv AN		r. AN → a AN	

Bottom-up (shift-reduce) parsing: an example

SENT. FORM	Input	Action	
1	nvan	shift	

Bottom-up (shift-reduce) parsing: an example

NT. FORM	Input	Action
1	van	r: AN → n
w	an	shift

Bottom-up (shift-reduce) parsing: an example

INDUT ACTION

SENT. FORM	Input	Action
dn	van	r: AN → n
dnvan		r: AN -> n

Bottom-up (shift-reduce) parsing: an example

 $S \rightarrow NP \ VP \quad NP \rightarrow d \ AN \quad NP \rightarrow AN \ VP \rightarrow v \ NP \quad AN \rightarrow a \ AN \quad AN \rightarrow n$

INPUT ACTION

dnya NP		reject
dnva AN		r: AN → a AN
CEE	Vali	E AN → B

Bottom-up (shift-reduce) parsing: an example

S

 $S \rightarrow NP VP \quad NP \rightarrow d \ AN \quad NP \rightarrow AN \ VP \rightarrow v \ NP \quad AN \rightarrow a \ AN \quad AN \rightarrow n$

ENT. FORM	Input	Action
ln .	van	r: AN -> n

Bottom-up (shift-reduce) parsing: an example Bottom-up (shift-reduce) parsing: an example $S \rightarrow NP \ VP \quad NP \rightarrow d \ AN \quad NP \rightarrow AN \ VP \rightarrow v \ NP \quad AN \rightarrow a \ AN \quad AN \rightarrow n$ SENT. FO Bottom-up (shift-reduce) parsing: an example Bottom-up (shift-reduce) parsing: an example \rightarrow NP VP NP \rightarrow d AN NP \rightarrow AN P \rightarrow v NP AN \rightarrow a AN AN \rightarrow n \rightarrow NP VP NP \rightarrow d AN NP \rightarrow AN P \rightarrow VNP AN \rightarrow a AN AN \rightarrow n $VP \rightarrow v NP$ $VP \rightarrow v NP$ INDIT ACTION INPUT ACTION SENT FORM SENT FORM Bottom-up (shift-reduce) parsing: an example Bottom-up (shift-reduce) parsing: an example $S \rightarrow NP \ VP \quad NP \rightarrow d \ AN \quad NP \rightarrow AN \ VP \rightarrow v \ NP \quad AN \rightarrow a \ AN \quad AN \rightarrow n$ \rightarrow NP VP NP \rightarrow d AN NP \rightarrow AN P \rightarrow v NP AN \rightarrow a AN AN \rightarrow n $VP \rightarrow v NP$ INPUT ACTION INPUT ACTION reduce/reduce conflic Bottom-up (shift-reduce) parsing: an example Bottom-up (shift-reduce) parsing: an example $S \rightarrow NP \ VP \quad NP \rightarrow d \ AN \quad NP \rightarrow AN \ VP \rightarrow v \ NP \quad AN \rightarrow a \ AN \quad AN \rightarrow n$ Bottom-up (shift-reduce) parsing: an example Bottom-up (shift-reduce) parsing: an example $S \rightarrow NP VP \quad NP \rightarrow d AN \quad NP \rightarrow AN \\ VP \rightarrow v NP \quad AN \rightarrow a AN \quad AN \rightarrow n$ ENT. FORM

Bottom-up (shift-reduce) parsing: an example

Issuer Across

Bottom-up (shift-reduce) parsing: an example

ENT. FORM

Bottom-up (shift-reduce) parsing: an example Bottom-up (shift-reduce) parsing: an example $S \rightarrow NP VP \quad NP \rightarrow d AN \quad NP \rightarrow AN \\ VP \rightarrow v NP \quad AN \rightarrow a AN \quad AN \rightarrow n$ Bottom-up (shift-reduce) parsing: an example Bottom-up (shift-reduce) parsing: an example $S \rightarrow NP \ VP \quad NP \rightarrow d \ AN \quad NP \rightarrow AN \ VP \rightarrow v \ NP \quad AN \rightarrow a \ AN \quad AN \rightarrow n$ T Acre Bottom-up (shift-reduce) parsing: an example Bottom-up (shift-reduce) parsing: an example \rightarrow NP VP NP \rightarrow d AN NP \rightarrow AN $\rightarrow NP \ VP \quad NP \rightarrow d \ AN \quad NP \rightarrow AN$ $VP \rightarrow v NP$ $AN \to a \; AN \quad AN \to n$ $VP \rightarrow v NP$ $AN \rightarrow a \ AN \quad AN \rightarrow n$ INDIT ACTION INDUT ACTION SENT FORM SENT FORM NP va AN Bottom-up (shift-reduce) parsing: an example Bottom-up (shift-reduce) parsing: an example $\rightarrow NP \; VP \quad NP \rightarrow d \; AN \quad NP \rightarrow AN$ $\rightarrow NP \, VP \quad NP \rightarrow d \, AN \quad NP \rightarrow AN$ $VP \rightarrow v NP$ $AN \to a \; AN \quad AN \to n$ $VP \rightarrow v NP$ $AN \rightarrow a \ AN \quad AN \rightarrow n$ INDIT ACTION INDUT ACTION Bottom-up (shift-reduce) parsing: an example Bottom-up (shift-reduce) parsing: an example $\rightarrow NP \; VP \quad NP \rightarrow d \; AN \quad NP \rightarrow AN$ \rightarrow NP VP NP \rightarrow d AN NP \rightarrow AN P \rightarrow v NP AN \rightarrow a AN AN \rightarrow n $VP \rightarrow v NP$ $VP \rightarrow v NP$ $AN \rightarrow a AN \quad AN \rightarrow n$ Two issues with a backtracking shift-reduce parser Table driven bottom-up parsing * The extra work done by a backtracking shift-reduce parser can be elimin for a large class of grammars The general idea is the same with LL(k) grammars: preprocess the grammar to construct a table * Obvious one: reduce/reduce and shift/reduce conflicts mean * The class of LR(k) (scanning from Left-to-right, producing a Rright) Not-so-obvious one: recognizing 'handles':
 The rule that we locate at the right edge of the active sentential form is called a derivation) grammars can be parsed deterministically using k lookahead - 100 core task we have the formula of the formula symbols * k=1 is most common, LR(0) parser are also useful in some cases, larger kapplies (if any) allows expressive grammars . In a efficient parser we want to avoid both LL(k) grammars are a subset of LR(k) grammars Most practical programming language compilers are LR(1) parsers
 LR(k) parsers are difficult to build manually, but tools that take a CF ar and construct and LR(1) parser are in con non user (e.g., yacc)

Dotted rules, or 'items', (again) and augmented grammars

- * An LR parser keeps a set of states (actually a finite-state automaton) to represent the current parser state during parsing
- An LR parser's states are sets of 'dotted rules' similar to Early or chart parsers we discussed earlier
- $-A \rightarrow \bullet \alpha$ $-A \rightarrow \alpha \bullet \beta$ $-A \rightarrow \alpha \bullet$
- + We also introduce a new start symbol, with a single production $S^{'}\,\rightarrow\,S$
- This rule helps parser to determine when to stop: the parser accepts the input only when reducing S to S'

Shift-reduce parsing with LR(0) automaton

- The simplest version of the LR parsers uses LR(0) automaton to guide the parsing decisions

 Use a stack to keep track of active states
- Use a static to keep track of active states
 State with state of Sast with states
 If there is an outgoing edge labeled with the current input, shift: push the target state to the state.
 Otherwise reduce based on contents of the current state. For example, if the current state contains 5 10° 10°,
 pop hos symbols (for NT and VT) from the stack.
 pos the state reachied through 55 from the state on the top of the stack.

a d n v

9

5 8 9 e 5 e 9 e

S NI ΔN

ACTION

 $\begin{array}{c} \mathbf{reduce} \ S' \ \to \ S \\ \mathbf{reduce} \ NP \ \to \ AN \\ \mathbf{shift} \end{array}$

reduce S → NP VP shift

t ace AN → a AN

t uce AN \rightarrow n uce VP \rightarrow v NP uce NP \rightarrow d AN

Example

LR(0) automator

9 reduce AN → n 10 reduce VP → v NP 11 reduce NP → d AN

state ACTION shift

0 shift 1 reduce $\begin{array}{ll} 0 & shift \\ 1 & reduce \ S' \rightarrow S \\ 2 & reduce \ NP \rightarrow AN \\ 3 & shift \\ 4 & reduce \ S \rightarrow NP \ VP \end{array}$

5 chift

shift

6 reduce AN → a AN 7 shift

Example Parsine with LR GOTO S NE a d n v ΔN reduce S' → S reduce NP → AN shift iceS → NP VP 9 € ice AN → a AN 5 8 9 e 5 e 9 e

AN -- -- AN AN -- -- -- AN

4

6

5 e

5 8 9 e 5 e 9 e

vp. B

AN -- sa AN AN -- sa

5 8 9 e 10 2

Example

state	ACTION			GOTO						
			à	ď	n	v	S	NP	VP	AN
- 0	shift		5	8	9	e	1	3	e	2
1	reduce S	→ S								
2 3	reduce NF					-				
	shift reduce S -		e.	e	e	-	e		*	
4 5 6	shift		5	e	9	e				6
6	reduce AN									
7	shift		5	8	9			10		2
8	shift reduce AN		5	e	9	e				11
10	reduce VP	i → n								
11	reduce NF	→ dAN								
Seack	Sex	т. Гоям	I				ba	ut A	CTION	
089	d n		Ť			-	rar	s A	N →	n

9	of Table	-									Taxin In	main 3	10,0	
			d n					ran	9	AN →	n			
			Sent Form					bar	π	Action				
	10 11	reduce	$P : AN \rightarrow n$ $P : VP \rightarrow v : NP$ $P : NP \rightarrow d : AN$											
	8	shift		5	e	9	ē				11			
	7	shift	AN - IAN	5	8	9	e		10	0	2			
	567	chift	$a S \rightarrow NP VP$ $a AN \rightarrow a AN$	5	e	9	e				6			
	3	shift	NP → AN	e	e	e	7	e		4				

Fyample

Example Parsing with LR(0

		0 reduc	$P AN \rightarrow n$ $P VP \rightarrow v NP$ $P NP \rightarrow d AN$	5	e	9	•	11	
S	TACK		Sint Form	\Box			INPUT	Action	
0	8 11		d AN	П			van\$	$NP \rightarrow dAN$	
COMMIN NO.		Silvegen						Water to	mester 2020; 21

GOTO
a d n v S NP VP AN
5 8 9 e 1 3

Example

stat	2 ACTI	ON					GO	Ю			
			a	d	n	v	S	N	P V	P	AN
_			5	8	9	e	1	3		2	2
	redu	$gS' \rightarrow S$									
		$v NP \rightarrow AN$									
			e	e	e	7	e		- 4		
	redu	$eS \rightarrow NPVP$									
			5	e	9	e					6
		$e AN \rightarrow a AN$	_								
			5	8	9			10	,		2
			5	e	9	e					11
		e AN → n									
1	redu	e VP → v NP									
	redu	$e NP \rightarrow d AN$									
STACK		Sent Form					INP	UT	Асти	ON	
0.3		NP	=		_	_			shift	=	

state

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	037			NP v		_			an\$	shift		
4 reduce S → NP VP 5 shift 6 reduce AN → a AN 7 shift 8 shift 5 8 9 e 10 2 8 shift 9 reduce AN → n 10 reduce VP → v NP 11 reduce VP → d AN	037			NP v		_			_			
4 reduce S → NP VP 5 shift 6 reduce AN → a AN 5 e 9 e 6 7 shift 5 8 9 e 10 2 8 shift 5 8 9 e 11 9 shift 5 e 9 e 11 10 reduce VP → v NP	STACK			SENT. FORM		П			INPUT	Аспо	N	
4 reduce S → NP VP 5 shift 5 e 9 e 6 6 reduce AN → a AN 7 shift 5 8 9 e 10 2 8 shift 5 e 9 e 11		10	reduc	$eVP \rightarrow vNP$								
4 reduce S → NP VP 5 shift 5 e 9 e 6 6 reduce AN → a AN 7 shift 5 8 9 e 10 2		8			5	e	9	e			11	
4 reduce S → NP VP 5 shift 5 e 9 e 6 6 reduce AN → a AN			shift		5				1	0	2	
4 reduce S → NP VP		6		eAN → aAN	-	•						
		2		eS → NP VP	=		0				4	
		3	shift		e	e	e	7	e	4		

a d n v S NF

Es

 tate	ACTION					CO	Ю		
		a	d	n	v	S	NP	VP	AN
0	shift	5	8	9	e	1	3	e	2
1	reduce S → S reduce NP → AN								
- 2	reduce NP → AN shift		e		7				
4	reduce S → NP VP			٠				•	

state	ACTION					CO	Ю		
		a	d	n	v	S	NI	P VP	AN
0	shift	5	8	9	e	1	3	e	2
1	reduce S → S								
2	reduce NP → AN								
3	shift	e	e	e	7	e		4	
4 5	reduce S → NP VI	?							
5	shift	. 5	e	9	e				6
6 7	reduce AN → a Al shift		8	9			10		2
8	shift	5	8	9	e		20		ñ
9	reduce AN -> n	- 3		7					
10	reduce VP → v NI								
11									
DACK	SENT. FORM					Ьæ	UT	Action	
375	NP v a			_	_	,	: 5	shift	

Examp

a d n v S NP VI solution S = S = 9 e 1 3 e reduce S → S = 9 e 1 3 e reduce S → S = 9 e 1 3 e reduce S → NP VP = 6 e 7 e 4 reduce S → NP VP = 6 e 6 7 e 4 reduce AN → a AN 5 e 9 e reduce AN → a AN 5 e 9 e 10	
1 reduce S → S 2 reduce NP → AN 3 shift 4 reduce S → NP VP 5 shift 6 reduce AN → a AN 7 shift 7 shift 5 8 9 e 10	
2 reduce NF → AN 3 shift 4 reduce S → NF VF 5 shift 6 reduce AN → a AN 7 shift 5 8 9 e 10	
3 shift e e e e 7 e 4 4 reduceS → NP VP 5 shift 5 e 9 e 6 reduceAN → a AN 7 shift 5 8 9 e 10	
4 reduce S → NP VP 5 shift 5 e 9 e 6 reduce AN → a AN 7 shift 5 8 9 e 10	
6 reduce AN → a AN 7 shift 5 8 9 e 10	-
6 reduce AN → a AN 7 shift 5 8 9 e 10	
7 shift 5 8 9 e 10	
	2
8 shift 5 e 9 e	11
9 reduce AN → n	
10 reduce VP → v NP	
11 reduce NP → d AN	
SINT. FORM INPUT ACTIO	

Example → S → AN seure reduce S → NP VF shift reduce AN → a AN

→ S → AN seure reduce S → NP VP shift $\begin{array}{c} \text{shift} \\ \text{reduce AN} \, \rightarrow \, a \, \text{AN} \end{array}$

state	ACTION					GO	Ю		
		a	d	n	v	S	NP	VP	AN
- 0	shift	5	8	9	e	1	3	e	2
1	reduce S → S								
2	reduce NP → AN								
3	shift reduce S - NP VP	e	e	e	7	e		4	
4	reduce S → NP VP shift	5		9					
6	reduce AN → a AN	3	e	7	e				
7	shift	5	8	9	e		10		2
8	shift	5	e	9	ě				11
9	reduce AN → n								
10	reduce VP → v NP								
11	reduce NP → d AN								

R(0) auto state	ACTION					GO	Ю		
		a	d	n	v	S	NP	VP	AN
- 0	shift	- 5	8	9	e	1	3	e	2
1	$reduce S' \rightarrow S$								
2	$reduce NP \rightarrow AN$				_				
3	shift reduce S → NP VP	e	e	e	7	e		-	
5	chiff	5	e	0					6
6	reduce AN → a AN		•	-	•				U
7	shift	5	8	9	e		10		2
8	shift	5	e	9	e				11
9	$reduce AN \rightarrow n$								
10	$reduce VP \rightarrow v NP$								
11	reduce NP → d AN								

8 9 e

Example

state	ACTION					GO	TO		
		a	ď	n	v	S	NP	VP	AN
- 0	shift	5	8	9	e	1	3	e	2
1	reduce $S' \rightarrow S$								
2	reduce NP → AN								
3	shift		e	e	7	e		4	
4	reduce S → NP VP								
5	shift	5	e	9	e				6
6	reduce AN → a A?								
7	shift	5	8	9	e		10		2
8	shift	5	e	9	e				11
9	reduce AN → n								
10	reduce VP → v NP								
11	reduce NP → d AN	ě							
СK	Sent Form					Iva	ut A	CTION	
	S				_		\$ S	→ N	(P VP

Limitations of LR(0)

- me we have an additional rule: $VP \rightarrow v$. This would lead to a LR(0) automaton entry
- VP → V+ NP VP → V+ NP NP → + ± MI NP → + ± MI AN → + ± ANI AN → + ± We have a shift/reduce conflict
- * A simple solution (SLR): shift if possible, otherwise reduce
- In general LR(0) parsers/gran mars are limited, for most purposes we need
- more powerful parsers

LR parsers with lookahead

Example

- LR(k): pa . Lookahead allows LR(k) parser to parse a larger class of grammars
- The disadvantage is m

oeS → NP VP oe AN → a AN

- . Another option is the LALR(k) parsers which use a smaller automator
- * LALR(1) parsers and parser generators are commonly used in practice

Why use xLR(k) parsers?

- LR(k) parsers gen eral, efficient (non-backtracking) shift-re LR(k) parsers can be constructed for (almost) any formal/programming
- language constructs
- In general LR(k) grammars are more expressive. LL(k) is a subset of LR(k)
 LR(k) parsers can detect syntax errors as soon as it is possible to detect them

LR grammars and ambiguity

- . LR(k) parsers cannot handle ambiguity . If a grammar is ambiguous we cannot construct an LR(k) parse table for it
- . In general, determining whether a grammar is ambiguous is intractable
- This is sometimes used for a test for ambiguity:
 If we can build a LR(k) parser for a grammar, then it is not ambiguous
 If we cannot, it is inconclusive

 xLR(k) parsers are powerful bottom-up deterministic parsers . LR grammars are more general than LL grammars

natural language parsers to reduce the non-determinism Understanding the concepts here is useful for building parser generators and understanding the related natural language parsers Reading suggestion: Grune and Jacobs (2007, ch.9), Aho et al. (2007, Section 4.5–4.7)

· These parsers are difficult to build manually, but automatic parser generators

What about natural language parsing

· Natural languages are inherently ambigu

- · As a result, we cannot use these parsers for parsing natural languages · Nevertheless, the techniques are useful

 - We can use LR-like parsers to reduce the non-determinism: GLR parsers (also known as Tomita passer)
 Instead of a table-driven parser, we can predict the action with a machine learning method: transition-based dependency parsers do that

Summary

• Alth

