وَمَا أُوتِيتُمْ مِنَ الْعِلْمِ إِلَّا هَلِيلًا

Analog IC Design

Lecture 09 Frequency Response (2)

Dr. Hesham A. Omran

Integrated Circuits Lab (ICL)
Electronics and Communications Eng. Dept.
Faculty of Engineering
Ain Shams University

MOSFET in Saturation

The channel is pinched off if the difference between the gate and drain voltages is not sufficient to create an inversion layer

$$I_D = \frac{\mu_n C_{ox}}{2} \frac{W}{L} \cdot V_{ov}^2 (1 + \lambda V_{DS})$$

Regions of Operation Summary

Low-Frequency Small-Signal Model

$$g_{m} = \frac{\partial I_{D}}{\partial V_{GS}} = \mu C_{ox} \frac{W}{L} V_{ov} = \sqrt{\mu C_{ox} \frac{W}{L} \cdot 2I_{D}} = \frac{2I_{D}}{V_{ov}}$$

$$g_{mb} = \eta g_{m}, \quad \eta \approx 0.1 - 0.25$$

$$r_{o} = \frac{1}{\frac{\partial I_{D}}{\partial V_{DS}}} = \frac{1}{\lambda I_{D}}, \quad \lambda \propto \frac{1}{L}$$

$$g_{mv_{gs}} \longrightarrow g_{mb} v_{bs} \longrightarrow r_{o} \longrightarrow p_{mb} v_{bs}$$

Rin/out Shortcuts Summary

Active Load (Source OFF)

Diode Connected (Source Absorption)

- Always in saturation
- \Box Bulk effect: $g_m \to g_m + g_{mb}$

Why GmRout?

$$egin{aligned} R_{out} &= rac{v_{\chi}}{i_{\chi}} \ @ \ v_{in} &= 0 \ G_m &= rac{i_{out,sc}}{v_{in}} \ A_v &= G_m R_{out} \ A_i &= G_m R_{in} \end{aligned}$$

- Divide and conquer
 - Rout simplified: vin=0
 - Gm simplified: vout=0
 - We already need Rin/out
 - We can quickly and easily get
 Rin/out from the shortcuts

Summary of Basic Topologies

	CS	CG	CD (SF)	
	R _D Vout Vin Vin Vout V _X iout,sc	R _D , V _{out} j _{out,sc} V _{in}	iout,sc V _x V _{in} V _{out} R _s iout,sc	
	Voltage & current amplifier	Current buffer	Voltage buffer	
Rin	∞	$R_S//\frac{1}{g_m + g_{mb}} \left(1 + \frac{R_D}{r_o}\right)$	∞	
Rout	$R_D / / r_o [1 + (g_m + g_{mb})R_S]$	$R_D//r_o$	$R_S//\frac{1}{g_m + g_{mb}} \left(1 + \frac{R_D}{r_o}\right)$	
Gm	$\frac{-g_m}{1+(g_m+g_{mb})R_S}$	$g_m + g_{mb}$	$\frac{g_m}{1+R_D/r_o}$	

Frequency Response

Poles and Zeros

☐ Transfer function

$$H(s) = \frac{N(s)}{D(s)}$$

- \square Zeros: roots of numerator => N(s)
- \square Poles: roots of denominator => D(s)
- \square Frequency response: $s \Rightarrow j\omega$

$$H(j\omega) = \frac{V_{out}(j\omega)}{V_{in}(j\omega)} = |H(j\omega)|e^{j\phi}$$

- \square Magnitude $(a + jb) = \sqrt{a^2 + b^2}$
- \Box Phase $(a+jb) = \tan^{-1}\frac{b}{a}$

Frequency Response

SCTC and OCTC Techniques

- ☐ Low-frequency range (LFR) => Not common in IC design
 - Only consider one cap at a time
 - Assume other caps are s.c.
 - s.c. time constant (SCTC) technique
 - $-\omega_L \approx \omega_{L1} + \omega_{L2} + \cdots$
 - Highest pole dominates (L.I.N. dominates)
- ☐ High-frequency range (HFR) => More important in IC design
 - Only consider one cap at a time
 - Assume other caps are o.c.
 - o.c. time constant (OCTC) technique
 - $\omega_H \approx \omega_{H1}//\omega_{H2}//\cdots$
 - Lowest pole dominates (H.I.N. dominates)
- Both provide good approx if one pole is dominant (and poles are real)

Calculating Zeros by Inspection

- 1. Find the value $s = s_z$ that makes $H(s) = 0 \Rightarrow v_{out} = 0$
- ☐ Examples:

$$\Box C_{c1}: v_o = 0 \text{ if } Z_{C_1} = \infty$$

$$-Z_{C_1} = \frac{1}{sC_1}$$

$$- \Rightarrow s_{z1} = 0$$

$$\Box C_S: v_o = 0 \text{ if } Z_S = \infty$$

$$- Z_S = \frac{R_S}{1 + sR_SC_S}$$

$$- \Rightarrow s_{Z2} = -\frac{1}{R_SC_S}$$

Calculating Poles by Inspection

- 1. Set $v_{sig} = 0$
- 2. Calculate the venin resistance $(R_{th,i})$ seen by each cap (C_i)
- 3. $s_{p,i} = -\frac{1}{R_{th,i}C_i}$
- ☐ Examples:

$$\Box C_S: R_{th2} \approx R_S / / \frac{1}{g_m}$$

$$- \Rightarrow s_{p2} = -\frac{1}{\left(\frac{R_S}{\frac{1}{g_m}}\right)C_S}$$

Calculating Poles by Inspection

- 1. Set $v_{sig} = 0$
- 2. Calculate the venin resistance $(R_{th,i})$ seen by each cap (C_i)

3.
$$s_{p,i} = -\frac{1}{R_{th,i}C_i}$$

- ☐ Examples:
 - Each node is associated with a pole
 - H.I.N. dominates

$$\frac{V_{out}}{V_{in}}(s) = \frac{A_1}{1 + R_S C_{in} s} \cdot \frac{A_2}{1 + R_1 C_N s} \cdot \frac{1}{1 + R_2 C_P s}$$

Miller's Theorem

$$A_{v} = \frac{V_{Y}}{V_{X}}$$

$$\frac{V_{X} - V_{Y}}{Z} = \frac{V_{X}}{Z_{1}} = -\frac{V_{Y}}{Z_{2}}$$

$$Z_{1} = \frac{Z}{1 - \frac{V_{Y}}{V_{X}}} = \frac{Z}{1 - A_{v}}$$

$$Z_{2} = \frac{Z}{1 - \frac{V_{X}}{V_{Y}}} = \frac{Z}{1 - \frac{1}{A_{v}}}$$

lacktriangle Note: Miller's Theorem cannot be used for Z_{out} calculation

Miller Effect

 \square Capacitance multiplication: $Z_F = 1/sC_F$

$$Z_1 = \frac{Z_F}{1 - A_v} \approx \frac{Z_F}{A} = \frac{1}{sAC_F} \Rightarrow C_{in} = AC_F$$

$$Z_2 = \frac{Z_F}{1 - \frac{1}{A_n}} \approx Z_F = \frac{1}{sC_F} \Rightarrow C_{out} \approx C_F$$

Miller's Approximation

$$Z_1 = \frac{Z}{1 - A_v} \& Z_2 = \frac{Z}{1 - \frac{1}{A_v}}$$

- \square But A_v is a function of frequency!
- Miller's Approximation: Substitute with the low frequency gain
 - $-A_v(s) \approx A_o$
 - It does not tell about the feedforward zero (next slide)
 - Gives good approx ONLY if the i/p pole is dominant
- See Example 6.4 in [Razavi, 2017]

The Feedforward Zero

$$s_z = -\frac{G_m}{C_F}$$

- \square RHP zero if G_m is –ve (e.g. CS)
 - Mag inc and phase drops
 - Very bad for loop stability
 - More on this when we study OTAs

MOSFET Capacitances

C_{gs} and C_{gd}

High Frequency Small Signal Model

MOSFET Capacitances Summary

- \Box Usually $C_{gs} \gg C_{gd}$
- \Box Usually $C_{sb} \gg C_{db}$

	C_{gb}	C_{gs}	C_{gd}	C_{sb}	C_{db}
Cutoff	$\leq WLC_{ox}$	WC_{ov}	WC_{ov}	$A_S C_j + P_S C_{j,SW}$	$A_D C_j + P_D C_{j,SW}$
Triode	0	$\frac{1}{2}WLC_{ox}+WC_{ov}$	$\frac{1}{2}WLC_{ox}+WC_{ov}$	$\left(A_S + \frac{WL}{2}\right)C_j + P_SC_{j,SW}$	$\left(A_D + \frac{WL}{2}\right)C_j + P_DC_{j,SW}$
Saturation	0	$\frac{2}{3}WLC_{ox}+WC_{ov}$	WC_{ov}	$(A_S + WL) C_j + P_S C_{j,SW}$	$A_D C_j + P_D C_{j,SW}$

IC Amplifier Frequency Response

- \Box A_o is the midband gain (or DC gain) of the amplifier
- \square ω_{p1} is the 3dB bandwidth = BW = ω_{3dB}
- \square ω_{p2} is the non-dominant pole
- Gain-Bandwidth Product (GBW) is the frequency at which gain is unity (1 = 0dB) (a.k.a. unity gain frequency: ω_u)
- lacktriangle Usually, we design the amplifier such that $\omega_{\rm p2}$ and ωz > GBW

$$\frac{V_{out}}{V_{in}} = \frac{A_o (1 + s / \omega_z)}{(1 + s / \omega_{p1})(1 + s / \omega_{p2})}$$

$$GBW = A_o \omega_{n1}$$

Frequency Response of CS: Midband

$$A_{v} = \frac{v_{in}}{v_{sig}} \cdot \frac{v_{o}}{v_{in}}$$

$$\frac{v_{o}}{v_{in}} = G_{m}R_{out} = -g_{m}(R_{D}||R_{L}||r_{o})$$

$$\frac{v_{in}}{v_{sig}} = \frac{R_{in}}{R_{in} + R_{sig}}, R_{in} = R_{G} = R_{G1}||R_{G2}$$

$$\Box C_{C1}: R_{th} = R_{sig} + R_G \rightarrow \omega_{p,C_{C1}} = \frac{1}{(R_{sig} + R_G)C_{C1}} \& \omega_{z,C_{C1}} = 0$$

$$\Box C_{C2}: R_{th} = R_L + R_D || r_o \rightarrow \omega_{p,C_{C2}} = \frac{1}{(R_L + R_D || r_o)C_{C2}} \& \omega_{z,C_{C2}} = 0$$

$$\square$$
 $C_S: R_{th} = R_S || R_{LFS} \rightarrow \omega_{p,C_S} = \frac{1}{(R_S || R_{LFS})C_S} \& \omega_{z,C_S} = \frac{1}{R_S C_S}$

- \Box Usually ω_{p,C_S} is dominant: $\omega_L \approx \omega_{p,C_S}$ (why?)
- Note that for ICs we usually use direct coupling (no LFR)

- lacksquare Break the feedback capacitance (C_{gd}) using Miller
 - Read the exact analysis w/o Miller approx in [Razavi, 2017, S6.2]
- ☐ Each node is associated with a pole
 - i/p node \rightarrow i/p pole $(\omega_{p,in})$ & o/p node \rightarrow o/p pole $(\omega_{p,out})$
- ☐ Don't forget the RHP feedforward zero

$$\omega_{z,C_{gd}} = \frac{g_m}{C_{gd}} \rightarrow \text{Usually } \omega_{z,C_{gd}} \text{ is very high (why?)}$$

☐ i/p pole: suffers from Miller effect

$$R_{th,in} = R_{sig} || R_G \rightarrow \omega_{p,in} \approx \frac{1}{(R_{sig} || R_G) \left(C_{gs} + C_{gd} (1 + A_o) \right)}, A_o = \left| \frac{v_o}{v_{in}} \right|$$

□ o/p pole:

$$R_{th,out} = R_L ||R_D||r_o \rightarrow \omega_{p,out} \approx \frac{1}{(R_L ||R_D||r_o) \left(C_L + C_{db} + C_{gd}(1 + 1/A_o)\right)}$$

 \Box Usually i/p pole is dominant: $\omega_H \approx \omega_{p,in}$ (why?), unless $R_{sig} \downarrow \downarrow$

- \square If $\omega_{p,out}$ is dominant (e.g., if $R_{sig} \downarrow \downarrow$ or $C_L \uparrow \uparrow$)
 - Multiplying C_{gd} by the low frequency gain is **NOT** accurate (why?)

$$- \omega_{p,in} \approx \frac{1}{(R_{sig}||R_G)(C_{gs} + C_{gd}(1 + A_v))} \approx \frac{1}{(R_{sig}||R_G)(C_{gs} + C_{gd})}$$

$$-\omega_{H} \approx \omega_{p,out} = \frac{1}{R_{out}C_{out}}$$

-
$$GBW = A_v \omega_H = G_m R_{out} \cdot \frac{1}{R_{out} C_{out}} = \frac{G_m}{C_{out}} \rightarrow \text{ind. of } R_{out}!$$

- Note that we must consider the parasitic capacitors of all transistors in the circuit
- Example:

Frequency Response of CS: Z_{in}

With Miller approx.

$$Z_{in} = \frac{1}{[C_{GS} + (1 + g_m R_D) C_{GD}]s}$$

 \square Exact Analysis (C_{qs} adds in parallel)

$$\frac{V_X}{I_X} = \frac{1 + R_D(C_{GD} + C_{DB})s}{C_{GD}s(1 + g_m R_D + R_D C_{DB}s)}$$

- Extra pole and zero at high frequency
- At relatively low frequency the exact solution reduces to Miller approx.

Frequency Response of CS: Z_{out}

- Can we use Miller?
- $\Box i_{x} = f(v_{gs}) =$
- $\Box v_x = f(v_{gs}) =$
- $\Box Z_{out} = \frac{v_{\chi}}{i_{\chi}} =$
- \square r_o and C_{db} add in parallel
- Important special case: If we have a large capacitor parallel to C_{ad}
 - We will need this case when we study Miller OTA

Frequency Response of CS: Z_{out}

☐ Can we use Miller?

$$\Box i_{\chi} = f(v_{gs}) = g_m v_{gs} + \frac{v_{gs}(1 + R_{sig}C_{gs})}{R_{sig}}$$

$$\square \quad v_{\chi} = f(v_{gs}) = v_{gs} + \frac{v_{gs}(1 + R_{sig}C_{gs})}{sR_{sig}C_{gd}}$$

$$\square Z_{out} = \frac{v_x}{i_x} \approx \frac{1 + sR_{sig}(C_{gs} + C_{gd})}{sC_{gd}g_mR_{sig}(1 + s\frac{C_{gs}}{g_m})}$$

- \square r_o and C_{dh} add in parallel
- Important special case: If we have a large capacitor parallel to C_{ad}
 - $-|Z_m|\approx 1/g_m$
 - We will need this case when we study Miller OTA

- $\Box i/p pole: \omega_{p,in} = \frac{1}{(R_{sig}||R_S||R_{LFS})(C_{gs}+C_{sb})}$
- \Box o/p pole: $\omega_{p,out} = \frac{1}{(R_D||R_{LFD})(C_L + C_{db} + C_{gd})}$
- \Box Usually o/p pole is dominant: $\omega_H \approx \omega_{p,out}$ (why?)
- \square No FB cap \rightarrow No Miller effect $\rightarrow BW_{CG} \gg BW_{CS}$

Frequency Response of Cascode: HFR

Case 1: BW limited by o/p pole $(R_D \uparrow \uparrow R_{sig} \downarrow \downarrow)$ (cascode for gain)

$$\Box A_{o1} = \left| \frac{v_x}{v_{in}} \right| = g_{m1}(r_{o1} || R_{LFS}), R_{LFS} \neq \infty \text{ (why?)}$$

$$\square \ \omega_{p,x} = \frac{1}{r_{o1} \left(c_{gs2} + c_{sb2} + c_{db1} + c_{gd1} (1 + 1/A_{o1}) \right)}$$

$$\square \quad \omega_{p,out} \approx \frac{1}{r_{o1}(g_{m2}r_{o2})(c_L + c_{db2} + c_{gd2})} = \frac{\omega_{p,out,CS}}{g_m r_o} \rightarrow \text{Dominant}$$

$$\Box \ \ GBW = A_v \omega_{p,out} = A_{v,CS} \omega_{p,out,CS} = \frac{G_m}{C_{out}} \rightarrow \text{Same as CS!}$$

Frequency Response of Cascode: HFR

Case 2: BW limited by i/p pole ($R_D \downarrow \downarrow R_{sig} \uparrow \uparrow$) (cascode for BW)

$$\Box A_v = \frac{v_{out}}{v_{sig}} \approx g_{m1} R_D \approx A_{v,CS} \rightarrow \text{Similar to CS!}$$

$$\Box A_{o1} = \left| \frac{v_x}{v_{in}} \right| = g_{m1}(r_{o1} || \frac{1}{g_{m2}}) \approx 1$$

$$\square \ \omega_{p,in} \approx \frac{1}{R_{sig}(C_{gs1} + 2C_{gd1})}$$

– Miller effect reduced → BW extension!

$$\square \ \omega_{p,x} \approx \frac{1}{(r_{o1}||\frac{1}{g_{m2}})\left(C_{gs2} + C_{sb2} + C_{db1} + 2C_{gd1}\right)}$$

$$\square$$
 $\omega_{p,out} \approx \frac{1}{R_D(C_L + C_{db2} + C_{gd2})} \approx \omega_{p,out,CS} \rightarrow \text{Similar to CS!}$

$$\square$$
 $GBW = A_v \omega_{p,in} > GBW$ of CS

Frequency Response of Cascode: HFR

Summary

- ☐ If BW is limited by o/p pole
 - $GBW = A_v \omega_{p,out} = G_m R_{out} \cdot \frac{1}{R_{out} C_{out}} = \frac{G_m}{C_{out}}$
 - Cascode can be used to trade gain for bandwidth by modifying R_{out}
 - But the GBW remain unchanged @ $\frac{G_m}{C_{out}}$
- ☐ If BW is limited by i/p pole
 - Cascode can provide higher BW (Miller ↓)
 - The gain may be higher as well
 - $A_v\omega_{p,out}$ remains unchanged but GBW ↑
- See Example 10.10 in Sedra/Smith 7th ed.

- \Box The poles can be complex and nearby \rightarrow OCTC cannot be used \odot
 - Simple circuit, but complicated and lengthy analysis!
- \square Special case 1: $R_{sig} = 0$
- \square Special case 2: $R_S \rightarrow IDC$, $C_L = 0$, g_{mb} and r_o neglected, $A_v \equiv 1$

- \Box Special case 1: $R_{sig} = 0$
 - Only one pole at the output

$$\omega_{p,out} = \frac{1}{\left(R_S//\frac{1}{g_m + g_{mh}}\right)\left(C_L + C_{gs} + C_{sb}\right)} \rightarrow \text{Large BW (why?)}$$

- $oxed{\Box}$ Special case 2: $R_S o IDC$, $C_L = 0$, g_{mb} and r_o neglected, $A_v \equiv 1$
 - Apply Miller: C_{qs} is **bootstrapped**

$$\omega_{p,in} = \frac{1}{R_{sig}C_{gd}} \rightarrow \text{Large BW (why?)}$$

- lacktriangle The poles can be complex and nearby o OCTC cannot be used oxines
 - Simple circuit, but complicated and lengthy analysis!

Frequency Response of CD: Z_{in}

$$\Box i_{in} = f(v_{gs}) = v_{gs} s C_{gs}$$

 \Box If $\frac{1}{sC_L}$ is dominant (e.g., CD driving large cap load, or @ high freq)

$$Z_{in} \approx \frac{1}{sC_{qs}} + \frac{1}{sC_L} + \frac{g_m}{s^2C_{qs}C_L} = \frac{1}{j\omega C_{qs}} + \frac{1}{j\omega C_L} - \frac{g_m}{\omega^2C_{qs}C_L} \rightarrow \text{-ve res?!!}$$

Can be used in oscillators, and may make amplifiers unstable!

Frequency Response of CD: Z_{out}

$$\Box i_x = f(v_{gs}) = -v_{gs}sC_{gs} - g_m v_{gs}$$

$$\square v_{\chi} = f(v_{gs}) = -v_{gs} - v_{gs} s C_{gs} R_{sig}$$

$$Z_{out} = \frac{v_x}{i_x} = \frac{1 + sC_{gs}R_{sig}}{sC_{gs} + g_m} = \frac{1}{g_m} \left(\frac{1 + sR_{sig}C_{gs}}{1 + s\frac{C_{gs}}{g_s}} \right) \rightarrow @ \ \omega \ \uparrow \uparrow : Z_{out} \approx R_{sig}$$

- □ Usually $R_{sig} > \frac{1}{g_m}$ (buffer) → inductive rise
- \square Body resistance $\left(\frac{1}{a_{mh}}\right)$ and r_o add in parallel

- \square A compensation network (R_1 and C_1) can be used to compensate for the negative input impedance and prevent overshoots
- See Johns and Martin Section 4.4 for more details

Thank you!

$$\frac{v_{out}}{v_{sig}} = A_M \frac{1 + \frac{s}{\omega_z}}{1 + b_1 s + b_2 s^2} = A_M \frac{1 + \frac{s}{\omega_z}}{1 + \frac{1}{Q} \frac{s}{\omega_o} + \frac{s^2}{\omega_o^2}}$$

$$\frac{v_{out}}{v_{sig}} = A_M \frac{1 + \frac{s}{\omega_z}}{\left(1 + \frac{s}{\omega_{p1}}\right) \left(1 + \frac{s}{\omega_{p2}}\right)} = A_M \frac{1 + \frac{s}{\omega_z}}{1 + \left(\frac{1}{\omega_{p1}} + \frac{1}{\omega_{p2}}\right) s + \frac{s^2}{\omega_{p1} \omega_{p2}}}$$

$$\omega_{\mathbf{z}} = \frac{g_m}{C_{gs}}$$
, $\omega_o = \frac{1}{\sqrt{b_2}}$, $Q = \frac{\sqrt{b_2}}{b_1}$, $R_{Leff} = R_S//r_o//\frac{1}{g_{mb}}$

$$b_1 = \left(C_{gd} + \frac{C_{gs}}{g_m R_{Leff} + 1}\right) R_{sig} + \left(\frac{C_{gs} + C_L}{g_m R_{Leff} + 1}\right) R_{Leff}$$

$$b_2 = \left(\frac{\left(C_{gs} + C_{gd}\right)C_L + C_{gs}C_{gd}}{g_m R_{Leff} + 1}\right) R_{sig} R_{Leff}$$

Special case: $R_{Leff} \uparrow \uparrow$ $\frac{v_{out}}{v_{sig}} = A_M \frac{1 + \frac{s}{\omega_z}}{1 + b_1 s + b_2 s^2} A_M = \frac{1 + \frac{s}{\omega_z}}{1 + \left(\frac{1}{\omega_{n1}} + \frac{1}{\omega_{n2}}\right) s + \frac{s^2}{\omega_{n1} \omega_{n2}}}$

$$b_1 = C_{gd}R_{sig} + \frac{C_{gs} + C_L}{g_m}$$

$$b_2 = \left(\frac{\left(C_{gs} + C_{gd}\right)C_L + C_{gs}C_{gd}}{g_m}\right)R_{sig}$$

$$\Box$$
 If $C_L = 0$

$$b_1 = C_{gd}R_{sig} + \frac{C_{gs}}{g_m} = \frac{1}{\omega_{p1}} + \frac{1}{\omega_{p2}} \Rightarrow \boldsymbol{\omega_{p2}} = \boldsymbol{\omega_z}$$

$$b_2 = C_{gd}R_{sig} \cdot \frac{C_{gs}}{g_m} = \frac{1}{\omega_{p1}} \frac{1}{\omega_{p2}}$$

lacktriangle Special case: ω_{p1} is dominant

$$\frac{v_{out}}{v_{sig}} = A_M \frac{1 + \frac{s}{\omega_z}}{1 + b_1 s + b_2 s^2} \approx A_M \frac{1 + \frac{s}{\omega_z}}{1 + \left(\frac{1}{\omega_{p1}}\right) s + \frac{s^2}{\omega_{p1} \omega_{p2}}}$$

$$\omega_{p1} \approx \frac{1}{b_1}$$

$$\omega_{p2} \approx \frac{b_1}{b_2}$$