Plano de Ensino EDA-2 2025-1

FCTE - Un
B- γ

professor Bruno César Ribas

March 24, 2025

Contents

1	Pla	no de Ensino	1
	1.1	Ementa	1
	1.2	Horários das aulas e atendimento	2
	1.3	Método	2
	1.4	Critérios de Avaliação	2
	1.5	Cronograma	5
	1.6	Bibliografia	10
		-	

1 Plano de Ensino

Curso:Engenharia de SoftwarePeríodo Letivo2025/1Disciplina:Estruturas de Dados 2CódigoFGA0030Carga Horária:60 horasCréditos04

1.1 Ementa

- Estruturas não-lineares. Árvores. Tabelas hash. Grafos
- Filas de prioridade. Heap
- \bullet Algoritmos de ordenação avançados O(NlgN) e O(n)
- Algoritmos de manipulação e análise de grafos
- Aplicações

1.2 Horários das aulas e atendimento

- Aulas:
 - {terça,quinta}-feira, das 14:00 às 15:50
- Atendimento:
 - {terça,quinta}-feira, das 18:00 às 19:00
- E-mail:
 - bruno.ribas *EM* unb.br
- Página:
 - https://www.brunoribas.com.br
 - Youtube
 - SIGAA

1.3 Método

Aula expositiva por meio de aula síncronas em Sala de Aula, quadro branco e projetor, lista de exercícios e, material de apoio disponibilizado no Youtube (gravados ou em *live stream*).

Os *slides* das aulas; materiais, e; trabalhos estarão disponíveis na página https://www.brunoribas.com.br/eda2/2025-1/. Os demais materiais estarão disponíveis no SIGAA.

Toda a comunicação será dada em SALA de AULA e noticiada no SIGAA como uma notícia da disciplina.

1.4 Critérios de Avaliação

- As notas serão atribuídas como um número inteiro no intervalo [0, 100].
- A avaliação será composta por três provas presenciais e um trabalho:
 - As provas serão realizadas presencialmente na FCTE.
 - O trabalho será entregue por meio do sistema MOJ.
- As avaliações podem conter questões teóricas e/ou práticas, a critério do professor.
- Qualquer tentativa de fraude resultará em média ZERO no semestre para todos os envolvidos, acarretando menção SR.

1.4.1 Provas

Serão aplicadas 3 (**três**) provas escritas individuais, cujas datas constam no cronograma. Se necessário, essas datas poderão ser alteradas, com aviso prévio mínimo de uma semana por meio do **SIGAA**.

- Cada prova conterá uma ou mais questões.
- Uma questão será considerada correta somente se o resultado final e seu respectivo desenvolvimento estiverem adequadamente descritos pelo aluno.
 - Respostas com erros no resultado final, desenvolvimento incorreto ou incompleto, ou sem desenvolvimento receberão nota zero.
- As provas abrangerão todo o conteúdo lecionado desde o início do semestre até a aula anterior à sua aplicação.
- O horário oficial das provas começará às 14h00:
 - Após a saída do primeiro estudante ou depois das 14h15, nenhum aluno poderá ingressar na sala de prova.
- As provas P_1 , P_2 e P_3 terão pontuação máxima de 30, 30 e 30 pontos, respectivamente.
 - Questões extras podem ser incluídas, mas a nota máxima de cada prova permanecerá inalterada.
- Durante as provas:
 - Não será permitido o uso de materiais impressos, eletrônicos (celulares, calculadoras, smartwatches etc.) ou comunicação com colegas.
 - Qualquer infração resultará em **nota zero** no semestre.

No final do semestre será aplicada uma prova repositiva, individual, caso o aluno apresente um atestado de saúde em até 5 (cinco) dias após a realização da prova, ou em outros casos previstos em lei (alistamento militar, etc). A prova repositiva corresponderá à avaliação perdida pelo aluno e abrangerá todo o conteúdo do curso.

1.4.2 Trabalho

O trabalho terá sua data de entrega definida no cronograma. Alterações de prazo poderão ocorrer, se necessário.

- O enunciado será disponibilizado no sistema MOJ, e a entrega deve ser feita por esse sistema, em arquivo único.
- O trabalho terá pontuação máxima de 10 pontos.
- Poderá ser realizado individualmente ou em dupla.
- Caso a nota do trabalho seja determinante para a aprovação do aluno, este deverá apresentá-lo ao professor.
 - A apresentação será em caráter de defesa podendo ser solicitado modificações no trabalho ou reimplementação de trechos do código.
- Se o estudante utilizar modelos de linguagem treinados (LLMs) para gerar parte do trabalho, incluindo código ou texto, essa utilização deve ser declarada explicitamente.
 - O n\(\tilde{a}\) o cumprimento dessa exig\(\tilde{e}\) ncia pode ser interpretado como tentativa de fraude.

1.4.3 Atividades Extras

Poderão ser atribuídas atividades extras **opcionais**, definidas pelo professor. Informações sobre forma de entrega, data e critérios de avaliação serão divulgadas pelo **SIGAA**. A pontuação dessas atividades será somada à nota final.

1.4.4 Presença

A presença será registrada por meio de lista de assinaturas ou chamada oral conduzida pelo professor.

1.4.5 Menção Final

A nota final será calculada pela seguinte equação:

$$M_F = P_1 + P_2 + P_3 + T \tag{1}$$

1.4.6 Critérios de aprovação

Obterá **aprovação** no curso o aluno que cumprir **todas** as exigências listadas abaixo:

- 1. $M_F >= 50$; e
- 2. Presença em 75% ou mais das aulas.

Por fim, a menção final do curso é dada de acordo com a tabela abaixo:

M_F	Menção	Descrição
0	SR	$Sem\ rendimento$
[1, 29]	II	Inferior
[30, 49]	MI	$M\'edio\ Inferior$
[50, 69]	MM	$M\'edio$
[70, 89]	MS	Médio Superior
[90, 100]	SS	Superior

IMPORTANTE: Atestados médicos e documentos comprobatórios de justificativa de faltas dão direito à realização de atividades avaliativas que você venha a perder, mas essas ausências justificadas também são levadas em consideração como ausências efetivas para o cômputo da frequência minima obrigatória (Graduação UnB – Manual para estudantes, pág. 35).

1.5 Cronograma

1.5.1 Aula 1

25 MAR

- Introdução
 - Objetivos da disciplina
 - Método de avaliação
 - conceitos gerais
- Grupo de alunos da disciplina (com os monitores) https://t.me/ +097HKK80qdswNzIx

1.5.2 Aula 2

27_MAR

• BUSCA: Tabela de Símbolos e BST

1.5.3 Aula 3	$01_{ m ABR}$
• BUSCA: Tabela de Símbolos e BST	
1.5.4 Aula 4	$03_{ m ABR}$
• Árvore 2-3	
• Árvore Red-Black	
1.5.5 Aula 5	$08_{ m ABR}$
• Árvore Red-Black	
1.5.6 Aula 6	$10_{ m ABR}$
• Skip List	
1.5.7 Aula 7	$15_{ m ABR}$
• Tabela Hash	
1.5.8 Aula 8	$17_{ m ABR}$
• Tabela Hash	
1.5.9 Aula 9	$22_{ ext{ABR}}$
• Estudo empírico dos métodos de busca	
• Quando escolher cada um dos métodos	
1.5.10 Aula 10	$24_{ m ABR}$
• Árvore de Intervalos	
1.5.11 Aula 11	29_ABR:PROVA
• Prova 1	

1.5.12	Aula 12	01_MAI:FERIADO
1.5.13	Aula 13	06 _MAI
• G	rafos - Introdução	
	 Representações; variações, extensões e custo Tipos de problemas para grafos 	s
1.5.14	Aula 14	08 _MAI
• B	usca em Grafos	
	BFS e DFSbusca generalizadaanálise dos algoritmos	
1.5.15	Aula 15	13_MAI
• B	usca em Grafos	
1.5.16	Aula 16	15_MAI
• G	rafos Dirigidos	
	alcançabilidade e fecho transitivoEquivalência e ordem parcial	
1.5.17		20_MAI
• D		
	Ordenação topológicaAlcançabilidade	
	 Arcançabilidade Componentes fortemente conexas Fecho transitivo	
1.5.18	Aula 18	22 _MAI
• Á	rvores Geradoras Mínimas	
	- PRIM	
	- Kruskal	
	- Boruvka	

1.5.19 Aula 19	27 _MAI
• Árvores Geradoras Mínimas	
1.5.20 Aula 20	29_MAI
• Caminhos mínimos de fonte única	
– Dijkstra	
1.5.21 Aula 21	03_JUN:PROVA
• Prova 2	
1.5.22 Aula 22	$05_{ m JUN}$
• Caminhos mínimos de fonte única	
- Pesos negativos	
– Bellman-Ford	
1.5.23 Aula 23	10 _JUN
• Caminhos mínimos de fonte única	
1.5.24 Aula 24	$12_{ m JUN}$
• Fluxo máximo	
1.5.25 Aula 25	17_JUN
• Fluxo máximo	
• Divulgação do enunciado do trabalho	
1.5.26 Aula 26	19_jun:feriado
1.5.27 Aula 27	$24_{ m JUN}$

• Fluxo máximo

1.5.28 Aula 28	26 _JUN
• Busca externa	
- B-tree	
1.5.29 Aula 29	$01_{ m JUL}$
• Busca externa	
1.5.30 Aula 30	$03_{ m JUL}$
• Dúvidas do trabalho	
1.5.31 Aula 31	08_JUL:PROVA
• Prova 3	
1.5.32 Aula 32	$10_{ m JUL}$
• Tempo para implementação do trabalho	
1.5.33 Aula 33	$15_{ m JUL}$
• Tempo para a implementação do trabalho	
1.5.34 Aula 34	$17_{ m JUL}$
• Prova repositiva	
• Prazo final de entrega do trabalho, até às 16h00	
1.5.35 Aula 35	22 _JUL
• Defesa dos trabalhos de acordo com os critérios defaula	inidos no plano de
1.5.36 Aula 36	$24_{ m JUL}$
• Continuação da defesa dos trabalhos	

• Finalização da disciplina

1.6 Bibliografia

1.6.1 Bibliografia Básica

- CORMEN, Thomas H.; LEISERSON, Charles E.; RIVEST, Ronald L.; STEIN, Cli or. Algoritmos: Teoria e Prática. 2a.edição, Campus.
- Algorithms in C , Robert Sedgewick

1.6.2 Bibliografia Complementar

- MEHLHORN, K; SANDERS, P. Algorithms and Data Structures: The Basic ToolBox, 1st. ed. Springer, 2008.
- HALIM, Steve S; HALIM, Felix. Competitive Programming, 1st ed, Lulu, 2010.
- STEPHENS, Rod. Essential Algorithms: A Pratical Approach to Computer Algorithms. John Wiley Sons, 2013.
- AHO, A. V.; ULLMAN, J. D. Foundations of Computer Science: C Edition (Principles of Computer Science Series), 1st ed., W. H. Freeman, 1994.

1.6.3 Para acesso de casa

- Apostila de Estruturas de Dados
 - Bruno Ribas