Appunti Geometria e algebra lineare

Alexandru Gabriel Bradatan

Data di compilazione: 22 settembre 2019

1 Insiemi

Un insieme è una collezione di oggetti. Tutta la matematica si basa sulla teoria assiomatica degli insiemi. Un insieme A si può indicare per elencazione $(A = \{a_1, \ldots, a_n\})$ o con una condizione $(A = \{x | condizione\})$. La cardinalità di A è il numero di oggetti: |A| = n. La cardinalità dell'insieme vuoto è 0.

Esempi $\mathbb{N} = \{0, 1, 2, \dots\}, \mathbb{Q} = \{q = \frac{m}{n} | m, n \in \mathbb{Z}, n \neq 0\}, \mathbb{R} = \{x \text{ numeri decimali}\}.$

Un insieme particolare è l'insieme con nessun elemento detto vuoto, indicato con \emptyset . Un altro insieme particolare è l'insieme di tutti gli tutto detto insieme universo U.

1.1 Sottoinsiemi

Un insieme può essere sottoinsieme di un altro, ossia contenere una parte degli elementi dell'insieme più grande. Formalizzando si può dire che:

$$A \subset B \implies \forall a \in A, a \in B$$

1.2 Insiemi numerici

Trattati nel dettaglio negli appunti di Analisi 1.

1.3 Operazioni

Le operazioni più usate sono:

Unione $A \cup B = \{x | x \in A \lor x \in B\}$

Intersezione $A \cap B = \{x | x \in A \land x \in B\}$

Differenza $A - B = \{x | x \in A \land x \notin B\}$ Si può anche trovare indicata con \

<u>Prodotto cartesiano</u> $A \times B = \{(a,b)|a \in A, b \in B\}$ Le coppie (a,b) sono anche dette <u>coppie</u> (m-uple per m elementi)

2 Relazioni

Una relazione è un sottoinsieme del prodotto cartesiano tra due insiemi.

Per indicare che due elementi (a_i, b_j) sono legati da una relazione R usiamo $\underline{a_i} \sim_R b_j$. Per rappresentare le relazioni si possono usare i diagrammi di Venn (le patate) con le frecce che collegano i vari elementi tra di loro.

Esempio Presi $A = \{a_1, a_2\}, B = \{b_1, b_2\}$, calcoliamo il loro prodotto cartesiano e otterremo 16 possibili sottoinsiemi:

$$R_0 = \emptyset$$

$$R_1 = \{(a_1, b_1)\}, \dots, R_4$$

$$R_5 = \{(a_1, b_1), (a_1, b_2)\}, \dots, R_{10}$$

$$R_{11} = \{(a_1, b_1), (a_1, b_2), (a_2, b_1)\}, \dots, R_{14}$$

$$R_{15} = A \times B$$

2.1 Relazioni particolari

Relazione d'ordine Prendiamo una relazione $R \subseteq A \times A$, essa è d'ordine se:

- è riflessiva: $(a, a) \in R \forall a \in R$
- è antisimmetrica: $(a,b),(b,a) \in R \implies a=b$
- è transitiva: $(a,b),(b,c) \in R \implies (a,c) \in R$

Insieme totalmente e parzialmente ordinato Siano A un insieme ed R una relazione d'ordine su A. Se per ogni $a1, a2 \in A$ vale $(a1, a2) \in R$ oppure $(a2, a1) \in R$, R si dice relazione d'ordine totale e la coppia (A, R) si dice insieme totalmente ordinato. In caso contrario si dice che R è una relazione d'ordine parziale e la coppia (A, R) si dice insieme parzialmente ordinato.

Relazione di equivalenza Prendiamo una relazione $R \subseteq A \times A$, essa è di equivalenza se:

- è riflessiva: $(a, a) \in R \forall a \in R$
- è simmetrica: $(a, b) \in R \implies (b, a) \in R$
- è transitiva: $(a,b),(b,c)\in R \implies (a,c)\in R$

Una modo di vedere la relazione di equivalenza è come generalizzazione dell'uguaglianza.

Classe di equivalenza Data una relazione di equivalenza R, preso un elemento a, la classe di equivalenza di a sono tutti gli elementi equivalenti equivalenti ad a, ossia:

$$[a]_R = \{b \in A | a \sim_R a\}$$

La classe di equivalenza è in sostanza l'insieme di tutti gli elementi equivalenti tra di loro.

<u>Teorema</u>: Ogni elemento $a \in A$ appartiene a una sola classe di equivalenza (dimostrazione nella dispensa, teorema 2.38). <u>Teorema</u>: Un insieme A sul quale agisce una relazione di equivalenza R è l'unione disgiunta delle sue classi di equivalenza.

Insieme quoziente L'insieme quoziente A/R di A rispetto a una relazione di equivalenza R è l'insieme di tutte le classi di equivalenza.

3 Funzioni

Le funzioni sono speciali relazioni che associano a ogni elemento del primo insieme un solo elemento del secondo. Una funzione in genere si indica con la lettera minuscola e usa questa notazione:

$$f: A \to B$$

L'insieme A è detto dominio, B il codominio. L'insieme di tutte le possibili funzioni che vanno da A a B si indica con B^A .

Preso $a \in A, b = f(a)$ sarà la sua immagine. La controimmagine di b è l'elemento tale che $f^{-1}(b) = \{a \in A | f(a) = b\}$

L'insieme di tutte le immagini è detto insieme immagine e si indica con Im(f).

Funzione particolare La funzione $A \times A = \Delta A = Id(A) = \{(a,a)|a \in A\}$ è detta funzione identità o insieme diagonale.

Iniettività Una funzione è detta iniettiva se $\forall a, b \in A, a \neq b \implies f(a) \neq f(b)$.

Suriettività Una funzione è detta suriettiva se $\forall b \in B, \exists a \in A | f(a) = b.$

Funzione biunivoca Se una funzione è sia iniettiva che suriettiva è detta biunivoca. Se una funzione è biunivoca può essere invertita ottenendo $f^{-1}: B \to A$.

Composizione di funzioni Date due funzioni $f: A \to B, g: B \to C$, la composizione $g \circ f$ delle due è una nuova funzione tale che $g \circ f: A \to C$. Ciò equivale a dire che $(g \circ f)(a) = g(f(a))$

4 Operazioni

Le operazioni sono delle speciali funzioni: dati n+1 insiemi A_1, \ldots, A_{n+1} non vuoti, una operazione n-aria * è una funzione che:

$$*: A_1 \times \dots \times A_n \to A_{n+1}$$
$$(a_1, \dots, a_n) \mapsto *(a_1, \dots, a_n)$$

Se $\underline{A_1 = \cdots = A_{n+1}}$ allora l'operazione è detta interna, altrimenti è detta esterna. Se $\underline{n=2}$ allora l'operazione è detta binaria e si può indicare con $a_1 * a_2$.

Esempi La somma + un'operazione binaria interna a N

$$\begin{array}{cccc} +: & \mathbb{N} \times \mathbb{N} & \rightarrow & \mathbb{N} \\ & (n1, n2) & \mapsto & n3 = n1 + n2 \end{array}$$

La differenza è sempre un'operazione binaria, ma esterna ad N

Le varie operazioni possono essere rappresentate in tabelle che indicano tutti i possibili casi. Ad esempio, esistono $2^4 = 16$ diverse operazioni binarie interne $(*: A \times A \to A)$ ad $A = \{a_1, a_2\}$.

Proprietà delle operazioni Le operazioni possono godere di alcune proprietà:

Elemento neutro a * e = a

Inverso $a * a^{-1} = e$

Proprietà commutativa a * b = b * a

Proprietà assocativa a * (b * c) = (a * b) * c

Proprietà distributiva Lega due operazioni: $a \cdot (b * c) = (a \cdot b) * (a \cdot c)$

5 Struttura algebrica

Dicesi struttura algebrica l'insieme di un certo numero di insiemi A_1, \ldots, A_n , chiamato supporto della struttura e delle operazioni $*_1, \ldots, *_n$ su questi insiemi.

Tre importanti strutture sono il gruppo, l'anello e il campo.

5.1 Il gruppo

Il gruppo è una struttura algebrica del tipo (G,*) dove G è un insieme e * è un'operazione binaria interna a G che deve rispettare queste date proprietà $\forall a \in G$:

- \bullet Deve possedere l'elemento neutro in G
- ullet Deve possedere l'inverso in G
- Deve godere della proprietà associativa

Se l'operazione è anche commutativa il gruppo viene detto abeliano.

5.2 L'anello

Un anello è una struttura algebrica del tipo $(A, *, \cdot)$ dove le due operazioni devono soddisfare le seguenti proprietà:

- (A, *) è un gruppo abeliano
- \bullet deve avere elemento neutro in A
- · deve godere della proprietà associativa
- · e * devono essere legate dalla proprietà distributiva

Se la seconda operazione è commutativa, allora l'anello si dice commutativo.

5.3 Il campo

Un campo è una struttura algebrica del tipo $(K, *, \cdot)$ dove le due operazioni devono soddisfare le seguenti proprietà:

- (K,*) deve essere un gruppo abeliano con elemento neutro e
- Detto $K^* = K e$, (K^*, \cdot) deve essere un gruppo abeliano
- Le due operazioni sono legate dalla proprietà distributiva

Il campo $(\mathbb{R}, +, \times)$ è uno dei campi più importanti.

5.4 Omomorfismo

Un omomorfismo tra due strutture algebriche è una funzione f che commuta tra le due con le loro operazioni. Se f è invertibile, allora viene chiamata isomorfismo.

Omomorfismo di gruppi Dati due gruppi (A, *) e (B, \cdot) la funzione $\underline{f} : A \to B$ è un omomorfismo se

$$f(a_1 * a_2) = f(b_1) \cdot f(b_2)$$

Omomorfismo di campo Dati due campi $(A, *_1, \cdot_1)$ e $(B, *_2, \cdot_2)$ la funzione $\underline{f: A \to B}$ è un omomorfismo se

$$f(a_1 *_1 a_2) = f(b_1) *_2 f(b_2) \land f(a_1 \cdot_1 a_2) = f(b_1) \cdot_2 f(b_2)$$

6 Polinomi

Un polinomio P(x) è una particolare funzione della forma:

$$P(x) = \sum_{i=0}^{n} a_i x^i \text{ con } n \in \mathbb{N}$$

Dove (a_1, \ldots, a_n) (i coefficienti) appartengono a un campo K^{n+1} . L'insieme di tutti i possibili coefficienti si indica con K[x]. Un polinomio nelle m variabili x_1, \ldots, x_m è definito induttivamente come l'espressione:

$$P(x_1, \dots, x_m) = \sum_{i=0}^{n} Q_i(x_1, \dots, x_{m-1}) x_m^i$$

dove Q_1, \ldots, Q_n sono polinomi nelle prime m-1 variabili. L'insieme di tutti i polinomi di questo tipo si indica con $K[x_1, \ldots, x_m]$.

Se il campo K coincide con il campo dei reali $((\mathbb{R}, +, \times))$ allora $K[x] = \mathbb{R}[x]$ e sarà l'insieme di tutti i possibili polinomi con variabile reale.

Un polinomio è generalmente scritto come somma di monomi.

Il grado di un polinomio Il grado di un polinomio P(x) è il massimo grado dei suoi monomi con grado diverso da 0. Il polinomio nullo ha per definizione grado indeterminato.

6.1 Divisione tra polinomi

Data la coppia $(A, B) \in K[x] \times K[x], B \neq 0$, esiste una sola coppia $(Q, R) \in K[x] \times K[x]$ tale che A = QB + R per la quale grado(R) < grado(Q) o grado(R) = 0. $Q \in R$ sono rispettivamente quoziente e resto della divisione di $A \in B$.

Molteplicità algebrica Dati $P \in K[x], r \in \mathbb{N}$ esiste un valore m < grado(P) tale che $(x - r)^m$ divida P(x). Tale valore è detto molteplicità algebrica di r rispetto a P. La r sarà la radice del polinomio. Se la molteplicità algebrica di r è 1, r è una radice semplice.

Chiusura algebrica Le radici di un polinomio $P \in K[x]$ di grado n rispettano la regola $m_1 + \cdots + m_i \leq n$ dove m_i è la molteplicità algebrica di r_i con $i = 1, \ldots, k$. Per ogni campo K esisterà un altro campo K che lo contiene tale che ogni polinomio appartenente ad esso abbia le radici che soddisfino $m_1 + \cdots + m_i = n$. Tale campo è detto chiusura algebrica di K. Se K e la sua chiusura coincidono, K si dice algebricamente completo.

Il campo dei \mathbb{C} è algebricamente chiuso, è la chiusura algebrica di \mathbb{R} e contiene la chiusura algebrica di \mathbb{Q} .

7 Matrici

Le matrici sono uno strumento fondamentale per fare i conti in matematica.

Dati due insiemi $M=1,\ldots,m$ e $N=1,\ldots,n$, una matrice di ordine (m,n) ad elementi nel campo K è una funzione definita come:

$$A: M \times N \to K$$
$$(i,j) \mapsto a_{ij}$$

L'insieme di tutte le matrici di ordine (m, n) su K viene indicato con Mat(m, n; K).

La matrice nulla è indicata con 0_{mn} . La matrice identità I_{mn} è, invece, una matrice del tipo:

$$\begin{array}{cccc} I_{mn}: & M \times N & \to & K \\ & (m,n) & \mapsto & \Delta & \text{con } \Delta = 1 \text{ se } i = j \end{array}$$

Rappresentazione Una matrice può essere pensata come una tabella di numeri di m righe ed n colonne:

$$A = \begin{cases} 1 & \cdots & n \\ 1 & a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{cases} \in Mat(m, n; K)$$

8 Sistemi lineari