

Homework exercises set #1

Problem 1. Write each of the following complex numbers in polar form:

(1)
$$z_1 = -1$$

(2)
$$z_2 = -3i/2$$

(3)
$$z_3 = \sqrt{2}$$

(4)
$$z_4 = 1 + i$$

(5)
$$z_5 = -5 + 5i$$

(6)
$$z_6 = 0$$

(7)
$$z_7 = -\sqrt{3} + i$$

(8)
$$z_8 = 2 - 2i\sqrt{3}$$

Problem 2. Let z_1, \ldots, z_6 be the complex numbers defined in Problem 1.

- (1) Compute $z = z_2 z_4 z_5$ using algebraic forms, then polar forms, and check that the results agree.
- (2) Same question for $z = (z_4)^6$ and $z = (z_7)^8$.

Problem 3. Let us define the cosine and sine of a complex number z with the following formulas:

$$\cos(z) = \frac{e^{iz} + e^{-iz}}{2}$$
 $\sin(z) = \frac{e^{iz} - e^{-iz}}{2i}$.

21:640:403 Complex variables

Fall 2016

- (1) Compute cos(z) and sin(z) for z = 0, z = i, $z = \pi$.
- (2) Prove that if z is real, then cos(z) and sin(z) agree with the standard cosine and sine for real numbers.
- (3) Find all the complex numbers z such that $\sin(z) = 0$. Hint: start by denoting $Z = e^{iz}$ and express $\sin(z)$ in terms of Z.

Problem 4. Let z be a complex number such that $e^z = 2 - 2i$.

- (1) Compute e^{-z} .
- (2) Compute $|e^z|$, then find the real part of z.
- (3) Write e^z in polar form, then find all possible values for z.