Introduction (10)	Brief description of the aircraft, including its purpose (fighter, passenger,			
	etc.) its history, and its manufacturer			
	☐ Clearly state whether you will focus on longitudinal or lateral dynamics			
Correct First	Dynamic Characteristics – tables eigenvalues, eigenvectors/mode shapes.			
Report (25)	☐ Comparison to acceptable ranges in Nelson's text. Flying Performance			
	level assessment.			
	☐ Compare eigenvalues to approximate formulae			
	☐ Plot transient responses (all 4) to more than one set of initial conditions.			
	☐ All tables of contents use section and subsection headings.			
	☐ Describe in words, with as few equations as possible, what was done			
	☐ Proposed control system (for firs report)			
Define control	☐ May include simulation results of stick-fixed flying to demonstrate			
objective (15)	dynamic behavior of system, goal of control system.			
	If relevant, give a quantitative description of the control objective in			
	terms of flying qualities and modal properties, such as damping factors			
	and periods.			
Feedback	☐ Design a control system to achieve the performance objective			
Controller Design	☐ Show by analysis and simulation that you have (or have not) achieved the			
(25)	objective.			
	☐ Try using the same feedback for a different flight condition, and see if the			
	performance is still improved.			
	\Box Identify your transfer function $G(s)$			
	o Why did you choose it?			
	 Document its calculation 			
	 Compute step response 			
	☐ Describe the goal of your control effort			
	\Box Create and describe a root locus plot of your G(s) for proportional control			
	☐ Choose at least two control strategies (e.g. phase lead, PID).			
	☐ Implement your control strategy			
	 Compute step response 			
	 Compute performance metrics 			
	 Compute steady-state errors 			
Appendix (15)	☐ Table of plane parameters & stability derivatives, source citied			
	☐ Include calculation for remaining coefficient needed for equations fo			
	motion. Justify any neglected quantities.			
	☐ Matlab scripts			
Overall Clarity				
and Presentation				
Bonus	□ Nelson's Appendix			
	☐ Lateral dynamics			

Name:				_	
Atmost	heric	Flight	Mechanics.	Class	Project

ENG ME403