DM07 - Circuit du premier ordre

L'annexe 1 est à rendre avec la copie.

Exercice 1 – Guirlandes électriques

On cherche à optimiser l'alimentation électrique d'un système comportant deux guirlandes électriques, modélisées par deux résistances R_1 et R_2 de même valeur : $R_1 = R_2 = R = 2\,\Omega$. La première guirlande est dédiée à un fonctionnement continu. La seconde est associée à un interrupteur K qui bascule périodiquement afin de produire un clignotement. On supposera dans cet exercice que la puissance lumineuse fournie par ces guirlandes est proportionnelle à la puissance électrique qu'elles reçoivent.

Système de base

1. Rappeler et retrouver l'expression de la puissance \mathcal{P}_{J} dissipée par effet Joule dans une résistance R parcourue par un courant d'intensité I.

On considère dans un premier temps le circuit représenté ci-dessous, alimenté par un générateur réel de f.é.m. $E=6\,\mathrm{V}$ et de résistance interne $r=1\,\Omega$.

2. Lorsque l'interrupteur K est ouvert, établir l'expression de l'intensité $i = I_o$. En déduire l'expression de la puissance $\mathcal{P}_{1,o}$ reçue par la guirlande R_1 . Faire l'application numérique. Quelle est la puissance $\mathcal{P}_{2,o}$ reçue par la guirlande R_2 ?

On s'intéresse maintenant au cas où l'interrupteur K est fermé.

- 3. Établir la nouvelle expression de $i = I_f$. En déduire les intensités $i_1 = I_{1,f}$ et $i_2 = I_{2,f}$ circulant dans les deux guirlandes.
- 4. Exprimer, puis calculer la puissance $\mathcal{P}_{1,f}$ reçue par la guirlande 1 en fonction de E, R et r.
- 5. La puissance reçue par la première guirlande est-elle identique dans les deux régimes? Expliquer ce qu'un observateur verrait lors du fonctionnement de la guirlande.
- 6. Comment doit-on choisir r par rapport à R pour limiter cet effet? Commenter.

Système amélioré

On considère maintenant le circuit représenté ci-contre, afin de limiter les variations de puissance reçue par la première guirlande. Un bobine d'inductance L a donc été ajoutée en série avec la première guirlande. L'interrupteur K est ouvert pour $t \in [0, T/2[$ et fermé pour $t \in [T/2, T[$.

- 7. Quand l'interrupteur est ouvert, justifier qu'en régime permanent, l'ajout de la bobine ne modifie pas la valeur de l'intensité i obtenue à la question 2.
- 8. Établir l'équation différentielle vérifiée par i_1 sur l'intervalle [0, T/2[. Faire apparaitre un temps caractéristique τ_1 et donner son expression en fonction de L, R et r.
- 9. Sur l'intervalle [T/2, T[, lorsque l'interrupteur est fermé, l'intensité $i_1(t)$ vérifie l'équation différentielle :

$$\frac{\mathrm{d}i_1}{\mathrm{d}t} + \frac{i_1}{\tau_2} = \frac{E}{L\left(1 + \frac{r}{R}\right)} \quad \text{avec} \quad \tau_2 = \frac{L(1 + \frac{r}{R})}{R + 2r}.$$

Que devient cette équation en régime permanent? En déduire que l'ajout de la bobine ne modifie pas la valeur de l'intensité $i_1 = I_{1,f}$ en régime permanent obtenue à la question 3.

On mesure expérimentalement les variations de l'intensité i_1 en mesurant la tension aux bornes de la guirlande R_1 à l'aide d'un oscilloscope. On obtient les courbes représentées en annexe 1, à rendre avec la copie, pour deux valeurs différentes de l'inductance L, notées L_1 et L_2 .

- 10. Laquelle des deux inductances est la plus élevée? Justifier. Déterminer la valeur de L_1 .
- 11. Indiquer l'inductance à utiliser pour limiter le clignotement de la guirlande R_1 . Justifier.

On admet que ce choix est respecté et que lorsqu'elle est allumée, la deuxième guirlande est parcourue par un courant d'intensité quasi constante $i_2 \approx 1.4$ A.

12. Le générateur est en réalité une batterie, identique à celle représentée ci-dessous. Proposer une estimation de la durée de fonctionnement Δt du système et de son rendement η , c'est-à-dire le rapport entre l'énergie reçue par les guirlandes et celle fournie par la batterie. Conclure.

Annexe 1 — Évolution de l'intensité du courant parcourant la guirlande ${\it R}_1$

