

Elizabeth Hofer

December 4, 2020

1 Revision History

Date	Version	Notes
11.19.2020	1.0	Initial Release

2 Symbols, Abbreviations and Acronyms

 $See SRS\ Documentation\ at\ https://github.com/liziscool/cas741_project/blob/master/docs/SRS/SRS.pdf$

Contents

1	Rev	vision I	History											
2	Symbols, Abbreviations and Acronyms													
3	Introduction													
4	Not	ation												
5	Mo	dule D	Decomposition											
6	MIS	IIS of Control Module												
	6.1	Modul	le											
	6.2	Uses												
	6.3	Syntax	x											
		6.3.1	Exported Constants											
		6.3.2	Exported Access Programs											
	6.4	Seman	n <mark>tics</mark>											
		6.4.1	State Variables											
		6.4.2	Environment Variables											
		6.4.3	Assumptions											
		6.4.4	Access Routine Semantics											
		6.4.5	Local Functions											
7	MIS	S of Sp	pecification Parameter Module											
	7.1		<u>le</u>											
	7.2	Uses												
	7.3	Syntax	x											
		7.3.1	Exported Constants											
		7.3.2	Exported Access Programs											
	7.4	Seman	ntics											
		7.4.1	State Variables											
		7.4.2	Environment Variables											
		7.4.3	Assumptions											
		7.4.4	Access Routine Semantics											
		7.4.5	Local Functions											
	7.5	Consid	$rac{ m derations}{ m derations}$											
3	MIS	S of In	put Param Module											
	8.1	_	le											
	8.2													
	8.3		X											
			Exported Constants											

		8.3.2	Exported Access Programs	7
	8.4	Seman	itics	7
		8.4.1	State Variables	7
		8.4.2	Environment Variables	8
		8.4.3	Assumptions	8
		8.4.4	Access Routine Semantics	8
		8.4.5	Local Functions	9
9			ead Data Module	10
	9.1		e	10
	9.2			10
	9.3		<u> </u>	10
		9.3.1	Exported Constants	10
		9.3.2	Exported Access Programs	10
	9.4		atics	10
		9.4.1	State Variables	10
		9.4.2	Environment Variables	10
		9.4.3	Assumptions	10
		9.4.4	Access Routine Semantics	10
		9.4.5	Local Functions	11
10	NATO	of Do	and down Confirmation Module	12
ΤÛ			oundary Configuration Module	12
			e	
				12
	10.5		Exported Constants	12
			Exported Constants	12 12
	10.4		Exported Access Programs	
	10.4		State Wesiekler	12
			State Variables	12
			Environment Variables	12
			Assumptions	12
			Access Routine Semantics	12
	10 5		Local Functions	13
	10.5	Consid	lerations	13
11	MIS	of ST	CFT Module	14
			le	14
				14
			·	14
	11.0		Exported Constants	14
			Exported Access Programs	14
	11.4		tics	14
	11.1		State Veriables	1/

		11.4.2	Environment	Variables		 		 		 					 14
		11.4.3	Assumptions			 		 		 					 14
		11.4.4	Access Rout	ne Semant	ics	 		 		 					 14
		11.4.5	Local Functi	ons		 		 		 					 15
		of Wa													16
			e												16
															16
		•													16
			Exported Co												16
			Exported Ac												16
			tics												16
			State Variab												16
		12.4.2	Environment	Variables		 		 		 					 16
		12.4.3	Assumptions			 		 		 					 16
		12.4.4	Access Rout	ne Semant	ics	 		 		 					 16
		12.4.5	Local Functi	ons		 		 		 					 17
			tput Verific												18
			e												18
															18
															18
			Exported Co												18
			Exported Ac												18
			tics												18
			State Variab												18
			Environment												18
			Assumptions												18
			Access Rout												18
		13.4.5	Local Functi	ons		 		 		 					 19
11	NITC	of Ou	tput Modu												20
			e												20
															20
															20
			Exported Co												20
			Exported Ac												20
			tics												20
			State Variab												20
			Environment												20
			Assumptions												20
			Access Rout		1CS	 	•	 	 •	 	•	•	 •	•	 20
		1/1/1/5	Local Functi	ong											20

15	MIS	S of Compute Transform	21
	15.1	Module	21
	15.2	Uses	21
	15.3	Syntax	21
		15.3.1 Exported Constants	21
		15.3.2 Exported Access Programs	21
	15.4	Semantics	21
		15.4.1 State Variables	21
		15.4.2 Environment Variables	21
		15.4.3 Assumptions	21
		15.4.4 Access Routine Semantics	21
		15.4.5 Local Functions	22
	15.5	Considerations	22
16	MIS	S of Zero Pad Module	23
	16.1	Module	23
	16.2	Uses	23
	16.3	Syntax	23
		16.3.1 Exported Constants	23
		16.3.2 Exported Access Programs	23
	16.4	Semantics	23
		16.4.1 State Variables	23
		16.4.2 Environment Variables	23
		16.4.3 Assumptions	23
		16.4.4 Access Routine Semantics	23
		16.4.5 Local Functions	23
17	MIS	S of Matrix Data Structure Module	24
	17.1	Module	24
	17.2	Uses	24
	17.3	Syntax	24
		17.3.1 Exported Constants	24
		17.3.2 Exported Access Programs	24
	17.4	Semantics	24
		17.4.1 State Variables	24
		17.4.2 Environment Variables	24
		17.4.3 Assumptions	24
		17.4.4 Access Routine Semantics	24
		17.45 Local Functions	25

18 MIS of Plotting Module	26
18.1 Module	 26
18.2 Uses	 26
18.3 Syntax	 26
18.3.1 Exported Constants	 26
18.3.2 Exported Access Programs	 26
18.4 Semantics	 26
18.4.1 State Variables	 26
18.4.2 Environment Variables	 26
18.4.3 Assumptions	 26
18.4.4 Access Routine Semantics	 26
18.4.5 Local Functions	 27

3 Introduction

The following document details the Module Interface Specifications for Time_Freq_Analysis, a program to compute the time-frequency analysis of a 1 dimensional signal.

Complementary documents include the System Requirement Specifications and Module Guide. The full documentation and implementation can be found at https://github.com/liziscool/cas741_project.

4 Notation

The structure of the MIS for modules comes from Hoffman and Strooper (1995), with the addition that template modules have been adapted from Ghezzi et al. (2003). The mathematical notation comes from Chapter 3 of Hoffman and Strooper (1995). For instance, the symbol := is used for a multiple assignment statement and conditional rules follow the form $(c_1 \Rightarrow r_1|c_2 \Rightarrow r_2|...|c_n \Rightarrow r_n)$.

The following table summarizes the primitive data types used by Time_Freq_Analysis.

Data Type	Notation	Description
character integer	char Z	a single symbol or digit a number without a fractional component in $(-\infty, \infty)$
natural number	N	a number without a fractional component in $[1, \infty)$
real	\mathbb{R}	any number in $(-\infty, \infty)$
complex	\mathbb{C}	a number with a real part a and an imaginary part b s.t. $a+bi$ where i is the imaginary number

The specification of Time_Freq_Analysis uses some derived data types: sequences, strings, and tuples. Sequences are lists filled with elements of the same data type. Strings are sequences of characters. Tuples contain a list of values, potentially of different types. In addition, Time_Freq_Analysis uses functions, which are defined by the data types of their inputs and outputs. Local functions are described by giving their type signature followed by their specification.

5 Module Decomposition

The following table is taken directly from the Module Guide document for this project.

Level 1	Level 2
Hardware-Hiding Module	
Behaviour-Hiding Module	Input Parameter Module Specification Param Module Read Data Module Boundary Configuration Module STFT Module Wavelet Module Output Verification Module Output Module Compute Transform Module Control Module
Software Decision Module	Plotting Module Zero-Pad Module Matrix Data Structure Module Fast Fourier Transform Module

Table 1: Module Hierarchy

6 MIS of Control Module

6.1 Module

main

6.2 Uses

Compute Transform Module 15, Output Module 14, Output Verification Module, Plotting Module 18

6.3 Syntax

6.3.1 Exported Constants

None.

6.3.2 Exported Access Programs

Name	In	Out	Exceptions
main	$argc$: \mathbb{N} ,	< -	-
	$argv_1, \ldots, argv_{argc}$	>	
	s.t. $argv_n : string$		

6.4 Semantics

6.4.1 State Variables

None.

6.4.2 Environment Variables

None.

6.4.3 Assumptions

- User enters correct inputs for calculation that is expected.
- User enters inputs in correct format.

6.4.4 Access Routine Semantics

main():

- transition: Controls the entire program, transition through the program as follows:
 - 1. Sets param from command line arguments set_inputs().

- 2. Calls compute transform module with comp_transform().
- 3. Plots output with plot_matrix()

7 MIS of Specification Parameter Module

7.1 Module

spec_param

7.2 Uses

None.

7.3 Syntax

7.3.1 Exported Constants

Name	Type
MIN_FREQ	\mathbb{R}
MAX_FREQ	\mathbb{R}
MIN_SIG_LEN	\mathbb{N}
MAX_SIG_LEN	\mathbb{N}
$STEP_SIZE$	\mathbb{N}
WIN_SIZE	\mathbb{N}

What are the values of the arts?

7.3.2 Exported Access Programs

None.

7.4 Semantics

7.4.1 State Variables

None.

7.4.2 Environment Variables

None.

7.4.3 Assumptions

None.

7.4.4 Access Routine Semantics

None.

7.5 Considerations

This module basically just holds all of the constants.

MIS of Input Param Module 8

8.1 Module

input_param

8.2 Uses

Specification Param Module 7, Hardware Hiding Module

8.3 **Syntax**

8.3.1 **Exported Constants**

None.

8.3.2 **Exported Access Programs**

Name	In	Out	Exceptions
set_input	$argc : \mathbb{N}, <$	(-	bad_arguments,
	$argv_1, \dots, argv_a$	$_{rgc} >$	bad_min_time,
	s.t. $argv_n$:	bad_max_time,
	string		bad_time_range,
			bad_min_freq,
			bad_max_freq,
			bad_freq_range ,
			bad_transform_type
param.N	-	\mathbb{N}	V 1
f_1	-	\mathbb{R}	
f_2	-	\mathbb{R}	
n_1	-	\mathbb{R}	Mather than a set of shirings you could use an enumerated types
n_2	-	\mathbb{R}	~ (17/m John & Jerglis,
$transform_type$	-	$\{`W',`\hat{S}'\}$	} could use on
param.time_res	-	N	you come us
_param.freq_res	-	\mathbb{N}	commercated Mrs
param.sig_file	_	string	Ovidaty of
mantics			ξW, 5 }

8.4 **Semantics**

8.4.1 State Variables

None.

Den't you want a state variable for each of the imput parans?

Environment Variables 8.4.2

None.

8.4.3 Assumptions

While there will be measures in place to check that the input values comply with the ability of the program, some additional assumptions are listed below

- 1. The user inputs the correct file path.
- 2. The bounds are appropriate for the signal.
- 3. The input parameters must be set (initialized) before they are accessed.

Access Routine Semantics 8.4.4

set_input():

• output: None.

• exception: exc:=

if any of the arguments are incorrectly flagged (i.e. using a flag that doesn't

there should be a state

param.N:

• exception: none

param.f1:

• output: $out := f_1$

• exception: none

param.f2:

• output: $out := f_2$

Your ordprishing values, but where are the values coming there are the values coming from? I think state variable are missing.

- exception: none
- param.n1:
- output: $out := n_1$
- exception: none
- param.n2:
- output: $out := n_2$
- exception: none
- param.time_div:
- output: $out := time_div$
- exception: none
- param.freq_div:
- output: $out := freq_div$
- exception: none
- param.time_res:
- output: $out := time_res$
- exception: none
- param.freq_res :
- output: out := freq res
- exception: none
- param.sig_filename:
- output: $out := sig_{-}filename$
- exception: none

9 MIS of Read Data Module

9.1 Module

read_data

9.2 Uses

Input Param Module 8

9.3 Syntax

9.3.1 Exported Constants

None.

9.3.2 Exported Access Programs

Name	In	Out		Exceptions
read_sig	sig_filen	$\operatorname{name}:\operatorname{string},\ldots,x_N$	$> x_n : \mathbb{R}$	bad_path,
				empty_file,
				file_wrong_format

9.4 Semantics

9.4.1 State Variables

None.

9.4.2 Environment Variables

None.

Shouldn't you have a something on environments on environments and on environments

9.4.3 Assumptions

1. File should be in correct format.

9.4.4 Access Routine Semantics read_sig():

• output: out := $\langle x_1, \dots, x_N \rangle$

It isn't clear what?
This module doo?
This module doo?
It is role to change to
State of the import?
State of the module?

10

 \bullet exception: exc :=

 $\begin{cases} bad_file & \text{if the file or a directory on the path does not exist} \\ empty_file & \text{if the file has no data in it} \\ file_format_wrong & \text{if data in the folder is not in } \mathbb{R} \text{ or uses incorrect delimter} \end{cases}$

9.4.5 Local Functions

10 MIS of Boundary Configuration Module

10.1 Module

bound_config

10.2 Uses

Specification Param Module 7

10.3 Syntax

10.3.1 Exported Constants

None.

10.3.2 Exported Access Programs

Name	In	Out	Exceptions
calc_freq_res	$f_1: \mathbb{R}, f_2: \mathbb{R}, \text{ win_size}: \mathbb{N}$	\mathbb{R}	-
$calc_time_res$	$n_1: \mathbb{N}, n_2: \mathbb{R}, \text{ step_size}: \mathbb{N}$	\mathbb{N}	_

10.4 Semantics

10.4.1 State Variables

None.

10.4.2 Environment Variables

None.

10.4.3 Assumptions

None.

ns . Show your arguments

10.4.4 Access Routine Semantics

calc_freq_res():

• output: out := $(f_2 - f_1) * win_size$

calc_time_res():

• output: out := $\frac{(n_2-n_1)}{\frac{win_size}{step_size}}$

None.

10.5 Considerations

At the time this document was written, the writer is not totally confident in the methods to calculate time_res or freq_res. The equations provided above are sufficient to communicate the point, but in execution it may be more complicated, and at that time this section of the document will be updated to reflect that.

MIS of STFT Module 11

11.1 Module

STFT

11.2 Uses

FFT Module, Boundary Configuration Module 10 Matrix Data Structure Module 17

11.3 **Syntax**

11.3.1 **Exported Constants**

None.

11.3.2 **Exported Access Programs**

Name	In	Out	Exceptions
comp_stft	$\langle x_1, \ldots, x_N \rangle$ where	<	-
-	$x_n : \mathbb{R}, N : \mathbb{N},$ time_res: \mathbb{N} , freq_res: \mathbb{N}	$X_{0,0}, X_{0,1}, \dots, X_{1,0}, X_{1,0}$ where $x_{i,j} : \mathbb{C}$	$X_{I,J} > 0$

Semantics 11.4

11.4.1 State Variables

None.

Environment Variables 11.4.2

None.

11.4.3 Assumptions

None.

Show aguments Access Routine Semantics

comp_stft():

• output: out := $\langle X_{0,0}, X_{0,1}, \dots, X_{1,0}, X_{1,1}, \dots, X_{I,J} \rangle$ where $X_{i,j}:\mathbb{C} \text{ s.t.}$

 $X(i,j) = \sum_{i=0}^{WIN_SIZE} x_i w_i e^{-\hat{i}\omega j}$ Wis valued? So taked? The substitution of the substitu

and $I[0, time_res]$ and $J[0, freq_res]$ and \hat{i} is the imaginary number.

• This routine will utilize the fast Fourier transform.

Local Functions

window_function():

$$w_n = \left(\sin\frac{\pi * n}{WIN\ SIZE}\right)^2\tag{2}$$

• output: out := $< w_0, \ldots, w_{WIN_SIZE} >$ where $w_n = (\sin \frac{\pi * n}{WIN_SIZE})^2$ where $w_n = (\sin \frac{\pi * n}{WIN_SIZE})^2$

V

12 MIS of Wavelet

12.1 Module

wavelet

12.2 Uses

FFT Module, Boundrey Configuration Module 10, Matrix Data Structure Module 17

12.3 Syntax

12.3.1 Exported Constants

None.

12.3.2 Exported Access Programs

Name	In	Out	Exceptions
comp_waveletT	$\langle x_1, \ldots, x_N \rangle$ where	<	_
	$x_n : \mathbb{R}, N : \mathbb{N},$	$X_{0,0}, X_{0,1}, \dots, X_{1,0}, X_{1,1}$	$1,\ldots,X_{I,J}>$
	time_res: \mathbb{N} , freq_res :	where $x_{i,j}:\mathbb{C}$	
	\mathbb{N}		

12.4 Semantics

12.4.1 State Variables

None.

12.4.2 Environment Variables

None.

12.4.3 Assumptions

None.

12.4.4 Access Routine Semantics

comp_waveletT():

• output: out := $\langle X_{0,0}, X_{0,1}, \dots, X_{1,0}, X_{1,1}, \dots, X_{I,J} \rangle$ s.t.

$$X(a,b) = \frac{1}{\sqrt{a}} \sum_{n=0}^{wav_scale_a} \Psi_{a,b,n} x_n$$
 (3)

where $\Psi_{a,b,n}$ represents the wavelet scaled by a and shifted by b.

names forguments

rever invoked

wavelet_function():

• output: out := $< w_0, \dots, w_{wav_scale_a} >$ where

$$w_n = c_\sigma \pi^{-\frac{1}{4}e^{-\frac{1}{2}t}} (e^{i\sigma n} - \kappa_\sigma)$$
 (4)

and where $\kappa_{\sigma}=e^{1\frac{1}{2}\sigma^2}$ and $c_{\sigma}=(1+e^{-\sigma^2}-2e^{-\frac{3}{4}\sigma^2})^{\frac{1}{2}}$, a.k.a. a Morlet Wavelet.

13 MIS of Output Verification Module

13.1 Module

 $output_verify$

13.2 Uses

Matrix Data Module

13.3 Syntax

13.3.1 Exported Constants

None.

13.3.2 Exported Access Programs

Name	${f In}$	Out	Exceptions
verify_out	put <	$b:\mathbb{B}$	-
	$X_{0,0}, X_{0,1}, \dots$	$X_{1,0}, X_{1,1}, \ldots, X_{I,J} > $	
	where $x_{i,j}:\mathbb{R}$		

13.4 Semantics

13.4.1 State Variables

None.

13.4.2 Environment Variables

None.

13.4.3 Assumptions

None.

13.4.4 Access Routine Semantics

verify_output():

$$\bullet$$
 output: out :=
$$\begin{cases} T & \text{if transform passes verification} \\ F & \text{if transform fails verification} \end{cases}$$

, where he the value?

To pass the verification the output matrix must pass the following conditions:

$$\sum_{j=0}^{freq.res} X_{i,j} \le \Sigma x_n \tag{5}$$

where Σx_n and corresponds to the portion of the signal represented by i in $X_{i,j}$. (5)

5 Local Functions

13.4.5**Local Functions**

14 MIS of Output Module

14.1 Module

output

14.2 Uses

Hardware Hiding Module

Syntax 14.3

14.3.1**Exported Constants**

Exported Access Programs 14.3.2

Name	In	Out	Exceptions
get_output	-	<	_
		$X_{0,0}, X_{0,1}, \ldots, X_{1,0}, X_{1,0}$	$_1,\ldots,X_{I,J}>$
		where $x_{i,j}:\mathbb{R}$	

14.4 **Semantics**

State Variables 14.4.1

None.

14.4.2 **Environment Variables**

None.

14.4.3 Assumptions

1. The user requires the memory location of the output matrix, as in it does not need to be written to any external file. I I threar no inpull, how are these found?

14.4.4Access Routine Semantics

get_output():

• output: out := $\langle X_{0,0}, X_{0,1}, \dots, X_{1,0}, X_{1,1}, \dots, X_{I,J} \rangle$ where $x_{i,j} : \mathbb{R}$ where X is the time frequency representation of the data as calculated by Time_Freq_Analysis.

Local Functions 14.4.5

15 MIS of Compute Transform

15.1 Module

 $comp_transform$

15.2 Uses

Read Data Module 9, Wavelet Module 12, STFT Module 11, Zero Pad Module 16, Matrix Data Structure Module 17

15.3 Syntax

15.3.1 Exported Constants

None.

15.3.2 Exported Access Programs

Name	In	Out	Exceptions
$comp_transform$	$\langle x_1, \ldots, x_N \rangle$ where	<	-
	$x_n : \mathbb{R}, N : \mathbb{N}, f_1 :$	$X_{0,0}, X_{0,1}, \dots, X_{1,0}, X_{1,1}, \dots$	$X_{I,J} >$
	$\mathbb{R}, f_2 : \mathbb{R}, T :$	where $x_{i,j}:\mathbb{R}$	
	$\{`W',`S'\}$	-	

15.4 Semantics

15.4.1 State Variables

None.

15.4.2 Environment Variables

None.

15.4.3 Assumptions

None.

15.4.4 Access Routine Semantics

comp_transform():

• output: $\langle X_{0,0}, X_{0,1}, \dots, X_{1,0}, X_{1,1}, \dots, X_{I,J} \rangle$ where $x_{i,j} : \mathbb{R}$

Such that X is calculated in the following way:

- 1. The input signal is read using read_data 9 using the parameters specified by the Input Parameter Module 8.
- 2. The signal is zero-padded using Zero Pad Module.
- 3. Some computations are done regarding the boundary configuration using calc_freq_res and calc_time_res from 10 which are needed for the following step.
- 4. The signal is transformed using ether comp_waveletT if T=`W' or comp_STFT if T=`T'
- 5. The matrix output from the transforms are complex, to convert them to a real power values the matrix is X is computed from as followed:

$$X_{i,j} = \sqrt{X_{\mathbb{C}}.real^2 +_{\mathbb{C}}.im^2}$$

Where $X_{\mathbb{C}}.real$ is the real part of the transform and $X_{\mathbb{C}}.im$ is the imaginary part.

15.4.5 Local Functions

None.

15.5 Considerations

The Zero-Pad Module extends the size of the signal x by 2 times the window size WIN_SIZE , however, this doesn't affect the size of the output transform matrix.

MIS of Zero Pad Module 16

16.1 Module

zero_pad

Uses 16.2

None.

16.3 Syntax

16.3.1 **Exported Constants**

None.

16.3.2 **Exported Access Programs**

Name	In	Out	Exceptions
zero_pad_sig	$g < x_1, \ldots, x_N > \text{where}$	$\langle x_1, \dots, x_{N+2WIN_SIZE} \rangle$	-
	$x_n : \mathbb{R}, N : \mathbb{N},$		
	$WIN_SIZE $		
Semantic State Var	iables UA	this a condant? rally all caps mean	o constant.

16.4 **Semantics**

16.4.1 **State Variables**

None.

16.4.2 **Environment Variables**

None.

16.4.3 Assumptions

None.

Access Routine Semantics

zero_pad_sig():

• output: $\langle x_1, \dots, x_{N+2WIN_SIZE} \rangle$ such that $x_n = 0$ from $n[0, WIN_SIZE], x_{n+WIN_SIZE} = 0$ \hat{x}_n from n[0, N] where \hat{x} is the original signal and N is the length of the original signal.

16.4.5 **Local Functions**

MIS of Matrix Data Structure Module 17

17.1Module

mat

17.2 Uses

None.

17.3 **Syntax**

17.3.1 **Exported Constants**

None.

17.3.2 **Exported Access Programs**

Nam	ne In	Out	Exceptions
init	$X:\mathbb{N},Y:\mathbb{N}$	$< X_{0,0}, X_{0,1}, \ldots,$	$\overline{X_{1,0}, X_{1,1}, \dots, X_{X,Y}} >$
		where $x_{x,y}: NUI$	LL
m	$x: \mathbb{N}, y: \mathbb{N}$	$m:\mathbb{R}$	-
Sem	nantics		What does this mean?
Stat	e Variables		MAX COOL MAY), a. 1

17.4 **Semantics**

State Variables 17.4.1

None.

17.4.2 **Environment Variables**

None.

17.4.3Assumptions

None.

17.4.4 **Access Routine Semantics**

mat.init():

• output: $\langle X_{0,0}, X_{0,1}, \dots, X_{1,0}, X_{1,1}, \dots, X_{X,Y} \rangle$ Where $X_{x,y}$ is null but it is large able to hold type \mathbb{R} .

mat.m():

• output: $m: \mathbb{R}$ m is the data in the matrix at the specified index.

MIS of Plotting Module 18

18.1Module

plot

18.2 Uses

None.

18.3 Syntax

18.3.1**Exported Constants**

None.

Exported Access Programs 18.3.2

Name	In	Out	Exceptions
plot_matrix	<	$b:\mathbb{B}$	bad_path
	$X_{0,0}, X_{0,1}, \ldots, X_{1,0}, X_{1,0}$	$1,\ldots,X_{X,Y}>$	
	where $x_{x,y}:\mathbb{R}$		

18.4 **Semantics**

State Variables 18.4.1

None.

Environment Variables

None.

18.4.3 Assumptions

None.

A plothing module would usually have an usually have an environment variable environment screen for the screen 18.4.4 Access Routine Semantics

plot_matrix():

• output: out:=

 $\begin{cases} F & \text{if output file was not created successfully} \\ T & \text{if output file was created successfully} \end{cases}$

• exception: exc:= bad_path if out file was not written successfully. Pathol number?

4.5 Local Functions

18.4.5 **Local Functions**

Name	In	Out	Description	2
calc_colour	$x: \mathbb{R}$	$R,B,G:\mathbb{R}$	converts the matrix value into correspond- ing R,G,B values for heat map	{ How?

References

Carlo Ghezzi, Mehdi Jazayeri, and Dino Mandrioli. Fundamentals of Software Engineering. Prentice Hall, Upper Saddle River, NJ, USA, 2nd edition, 2003.

Daniel M. Hoffman and Paul A. Strooper. Software Design, Automated Testing, and Maintenance: A Practical Approach. International Thomson Computer Press, New York, NY, USA, 1995. URL http://citeseer.ist.psu.edu/428727.html.