Name: \_\_\_\_\_

2. (9 points) Consider the following data set with 4-dimensional data points (recall that each column represents one data point):

$$X = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad Y = \begin{bmatrix} 1.1 & 1.9 & 3.1 \end{bmatrix}$$

We perform ridge regression with a linear hypothesis class and no constant offset, i.e.  $h(x^{(i)}; \Theta) = \theta^T x^{(i)}$ .

(a) What is an optimal  $\theta^*$  and its mean-squared error (MSE) for a minimizer of the ridge regression objective with  $\lambda = 0$ , on this data? (Note,  $\theta^*$  may not be unique with  $\lambda = 0$ .)

**Solution:** There are many solutions because the number of features (d = 4) is larger than the number of data points (n = 3). The system of equations is:

$$\theta^T X = Y$$

One possible solution is:

$$\theta^* = [1, 0.1, -0.1, 0.1]^T$$

This can be seen by inspection, because Y is essentially just the first feature in X (the top row), with some corrections. The corrections are given by the one-hot encodings provided by the other features in X.

The MSE of this solution is zero.

(b) As  $\lambda$  becomes very large, what will the MSE be of the  $\theta^*$  that minimizes the ridge regression objective? It is OK to leave unsimplified, e.g.  $5^2$ .

**Solution:** As  $\lambda$  becomes very large,  $\hat{\theta}$  will become smaller and smaller. Eventually,  $\hat{\theta} = 0$ . This would lead to

$$MSE = \frac{1}{3}(1.1^2 + 1.9^2 + 3.1^2) = \frac{1}{3}(14.43) = 4.81.$$

(c) Each one of the following parameter vectors was obtained by minimizing the ridge regression objective with  $\lambda = .01, 1$ , and 100. Which was which? (We rounded to 3 decimals.)

 $\theta = [0.789, 0.078, 0.081, 0.183]^T$ 

Solution: 
$$\lambda = 1$$

 $\theta = [0.045, 0.004, 0.006, 0.010]^T$ 

Solution: 
$$\lambda = 100$$

| Name: |   |
|-------|---|
|       | · |

 $\theta = [0.945, 0.151, 0.010, 0.258]^T$ 

**Solution:**  $\lambda = .01$