

Reversible Solid Oxide Electrolysis

Randy Petri
Director
Product Development & Federal Programs

Electrolytic Hydrogen Production Workshop

DOE Fuel Cell Technologies Office

Hosted by:

National Renewable Energy Laboratory, Golden, Colorado

February 27th and 28th, 2014

Ultra-Clean, Efficient, Reliable Power

 FuelCell Energy fully acquired the shares of Versa Power Systems on December 20, 2012. Prior to this, FuelCell Energy owned approximately 39% of Versa

> "We view solid oxide fuel cell technology as complementary to our carbonate fuel cell product line ... for future sub-megawatt power generation and storage applications.

> By acquiring Versa, we can leverage our current ... experience to accelerate the commercialization of this ... technology to expand our market opportunities."

—Chip Bottone, President and CEO, FuelCell Energy, Inc.

 Following the transaction, Versa Power Systems became a wholly-owned subsidiary of FuelCell Energy

Integrated Fuel Cell Company

Design & Manufacture

Megawatt–class power generation solutions

Services

Over 80 DFC® plants operating at more than 50 sites – 1.7 billion kWh ultraclean power produced

Engineering / Construction

Over 300 megawatts installed and in backlog

Installations/orders in 9 countries

59 MW Fuel Cell Park- on line February 19, 2014

• 59 MW fuel cell park

- Construction period only about one year
- 21 power plants: 2.8 MWDFC3000[®]

Ownership

- 49% by electric utility KHNP
- 21% by financial investors
- 15% by gas company
 Samchully
- 15% by POSCO Energy

Reversible SOC Development

Reversible Solid Oxide Cells (RSOCs) are energy conversion devices which can integrate renewable production of electricity and hydrogen when power generation (SOFC) and steam electrolysis (SOEC) are coupled in a system and have the potential of maximizing the potential of renewable (intermittent) energy

Goals

► To advance RSOC cell / stack technology in the areas of endurance and performance

Why Solid oxide-based electrolysis development?

 At SOEC temperatures, about 20-25% less power is required per kg hydrogen delivered.

EERE Project: focused on improving degradation of SOFCEL cells and stacks

RSOC Status: Stack Repeat Unit

Electrolysis Endurance

Electrolysis Degradation Status

Six cell types have passed the degradation criteria of less than 4%/1000 hours in SOEC mode

RSOFC-4 and RSOFC-7 passed both performance and degradation criteria

	Electrolysis (SOEC) Degradation		
Cell Type	mV / 1000 hrs	% / 1000 hrs	Duration (hrs)
Target	< 50	< 4	> 1000
TSC-2	91	7.3	2893
EC-1	27	2.2	8465
EC-2	~0	~0	2400
EC-3	72	5.8	1792
RSOFC-1	35	2.8	6472
RSOFC-2	120	9.6	1152
RSOFC-3	42	3.4	2653
RSOFC-4	24	1.9	3618
RSOFC-7	19	1.5	1005

Post Test Analysis After 8,000 Hours:

- All electrochemical functional layers fully intact, no delamination between electrodes and electrolyte
- No chemical impurities or contaminations, such as, Cr poisoning found in cathode (air electrode)
- No microstructure coarsening found

Stack Repeat Unit: Longest operating SOFCEL-**Daily Cyclic Operation**

Stack Repeat Unit: SOFCEL, Status, as of January 29, 2014

Stack Repeat Unit: Accelerated Cycling (Total 6,080 Cycles)

kW-Class Stack Cyclic Test: 121 cm² x 28-Cell stack, daily, SOFC, SOEC cycles

Development of a Scaled-Up kW-Class RSOFC Stack

- Leveraged SECA-- scaled up 25 by 25 cm cell (550 cm² active area)
- Target operating current density: 0.364 A/cm², 200 A load in both fuel cell and electrolysis mode
- Target operating temperature: 750°C
- The stack went through conditioning and passed the VPS standard acceptance test with one thermal cycle prior to the milestone test

Steady state electrolysis test at 750°C and 364 mA/cm² (200 A)

~ 1kg H2 per day production rate

GT058711-0001 TC0
EERE - RSOFC stack 550 cm2 active area, TS24

Overview: as of January 29, 2014

Metric	Status		
✓ Performance (Area specific resistance in both SOFC and SOEC operating modes)	$0.223~\Omega\text{-cm}^2$ in SOEC $0.224~\Omega\text{-cm}^2$ in SOFC		
✓ Cyclic Degradation (Overall decay rate)	SOFC: ~0.5% per 1000 hours SOEC: <1% per 1000 hours		
Current Density: Normal Maximum exploration	500 mA/cm ² 3,200 mA/cm ²		
✓ Endurance- Stack Repeat Unit:	Straight SOEL: over 8000 hours (1 year) with less than 2.5% SOFCEL: >11,000 hours cyclic operation Simulated 15 years of Cycling (6080 cycles)		
☑PreliminaryScaleup:	 Leveraged SECA 121, and 550 cm2 platform; A number of kW-class RSOFC stacks were built and tested; Demonstrated kW-class stack operating in electrolysis mode with less than 3% per 1000 hours degradation rate at 750°C 		

RSOFC-7 Cell Performance at Ultra-high Electrolysis Current Density

High performance of RSOFC-7 can reduce hydrogen production cost and meet DOE water electrolysis efficiency (2017 target of 75%) at the same time

In addition to the operating cost savings, high temperature SOEL or SOFCEL offers the opportunity to run at ≥ the EERE target 75% efficiency, with 2 to 5 times higher hydrogen production rate per unit electrochemical active area versus the state-of-the-art regenerative PEMFC (with the same electrical inputs)— a 2 to 5 times savings in stack module cost.

- Techno-economic Analysis and SOEL and SOFCEL System Design
 - Tap into the strong starting point from NREL
- Materials and endurance development for ultra high current density, solid oxide-based electrolysis
- Stack Scale-up and System integration— as a function of the techno-economic direction—
 - Straight SOEL
 - SOFCEL