

UNIVERSIDADE FEDERAL DE MINAS GERAIS INSTITUTO DE CIÊNCIAS EXATAS DEPARTAMENTO CIÊNCIA DA COMPUTAÇÃO

BRENO DE CASTRO PIMENTA

RA: 2017114809

Trabalho: Lista 04 Disciplina: ALC Turma: TZ

:. det = 4.5.3 = 60

E quando una matriz possui determinante diferente de zero, o sistema linear contendo essa matriz contendo acena (il

essa matriz contén apena única solção, pois ele é possível e determinado.

b)
$$\begin{cases} \cdot 4x_1 = 12 - 0 \times = 3 \\ \cdot -2x_1 + 5x_2 = 4 - 0 - 2(3) + 5x_2 = 4 - 0 \times_2 = 2 \end{cases}$$

 $\cdot x_1 + 7x_2 + 3x_3 = 20 - 0 (3) + 7(2) + 3x_3 = 20 - 0 \times_3 = 1$

$$X = \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}$$

8-4 (6-), 2-2 = (1) 44 1 1 = 1 = (1) 44

8- = (6-) -1 = (A) tob

b) so dot(A) = dot(LL)), enco dot(A) so (d

2) def LU(A):

$$m, n = A.$$
 shape
for K in range $(n-1)$:
for S in range $(K+1):n$:

s in nowge
$$(K+1):n$$
:
 $A[s,k] = A[s,k] / A[k,k]$
 $A[s,(K+1):n] = A[s,k] * A[k,(K+1):n]$

at women with a course of the same obtained the

neturn A

			,awg				
2)	L	Multiplicadon				OP. L	1 LR
	1		3	2	4		1
a)	2	m21 = 43	T	1	2		2
) _	m31 = 4/3	4	3	-2		(3)
	4		0	4/3	2/3	-3 hs + ha	2
	15	$m_{32} = 1$	0	4/3		-1/3 hs + h3	3
	6	X E + (2) F + (8)		0	-24/3	-L4 + L5	3
	L=	(1 0 0) 1/3 1 0 1/3 1 1,		U	$=\begin{pmatrix} 3 \\ 0 \\ 0 \end{pmatrix}$	2 4 1/3 2/3 0 -8)	

OBS: Não foi PEDIDO COM PIVOTAÇÃO PARCIAL!

b) Se
$$\det(A) = \det(LU)$$
, entro $\det(A) = \det(L) \cdot \det(U)$
 $\det(L) = 1$ e $\det(U) = 3 \cdot \frac{1}{3} \cdot (-8) = -8$
 $\det(A) = 1 \cdot (-8) = -8$

4) a) (F) A matriz CA não é singular.

Sendo det(C) # O saí que ela não é singular.

Logo det(CA) = det(C). det(A) = O, se

a matriz (A) não fon singular, ponembre

ela pade sen, Logo det(A) = O e pontaurto

det (CA) pade sen zeno, ou sesa singular.

b) (F) Se C for una matriz de permutação, então del (CA) = del (A)

Trocar duas Linhas de uma matriz faz com que
seu determinante sera multiplicado por (-1), ou sera
se C permutar n vetes as Linhas de A e
n for um número impar teremos del (CA) = -del (A).

C) (F) O sistema Ax = b não e' necessoriomente equivalente ao sistema CAx = Cb

Quando uma matriz não é singular ela pode ser multiplicada dos dois lados da equação, pois possui inversa, dessa forma sem alterar os nesultados da equação, sendo assim Ax=b é equivalente a CAX=Cb.

Ex: $Ax=b \Rightarrow CAx = Cb \Rightarrow C^{-1}CAx = C^{-1}Cb$ Ax=b