Programme Execution Instructions

Question 1

In the folder *RobotSimulator_Q1*, run *Sim_DifferentialDriveWithObstacles.m* with *init_Q1* and *controller_r* filled in the corresponding section to calculate the wheel radius; Replace *controller_r* with *controller_l_w* and run again to calculate the distance between the wheels.

Question 2

Run the script Sim_DifferentialDriveWithObstacles.m in the folder RobotSimulator_Q2.

Question 3

Run the script Sim_DifferentialDriveWithObstacles.m in the folder RobotSimulator _Q3.

Question 4

Run the script Sim DifferentialDriveWithObstacles.m in the folder RobotSimulator Q4.

Question 5

In the folder Simulink, run $sisotool_method.m$ and open the session $Max_Phase_Margin.mat$ to obtain the Control System Designer result; Run $enumeration_method.m$ to implement the enumeration method of finding the optimal k_P ; Double click on $Simulink_Q5.slx$ to get the simulation of the system in Simulink, click on Run to get the three Scope result.

Question 6

Run ctr_discret.m in the Discrete_Simulink folder to get the discretised transfer function of the PD controller; Double click on Simulink_Q6.slx to get the simulation of the system in Simulink, click on Run to get the two Scope result.