Tarea

1. Realizar un análisis de una serie trimestral empleando SARIMA

Se usará la serie de Kaggle "Country Gold Reserves Annual, quarterly, & monthly" de la pagina https://www.kaggle.com/datasets/eliasdabbas/gold-reserves-by-country-quarterly para Mexico.

a. Análisis previo (hay que diferenciar)

Graficamos la serie

summarize ounces

Variable	Obs	Mean	Std. Dev.	Min	Max
ounces	257	2473928	1758374	81694.98	5943000

Graficando la autocorrelación simple

Graficando la autocorrelación parcial

Verificamos si la serie es estacionaria para diferenciar, como el valor critico es mayor al calculado, el test indica que hay raíz unitaria por lo que no es estacionaria.

Dickey-Fuller test for unit root

Number of obs = 250

Interpolated Dickey-Fuller

Test 1% Critical 5% Critical 10% Critical

	Test	1% Critical	5% Critical	10% Critical
	Statistic	Value	Value	Value
Z(t)	-1.596	-3.460	-2.880	-2.570

MacKinnon approximate p-value for Z(t) = 0.4856

Al diferenciar tenemos:

b. Test de raíz unitaria, test de estacionalidad, correlogramas (AC y PAC) Graficando la autocorrelación simple

Graficando la autocorrelación parcial

Volvemos a revisar si es estacionaria y comprobamos el valor critico es menor al calculado, la prueba indica que no hay raíz unitaria por lo que es estacionaria.

Dickey-Fuller test for unit root

Number of obs = 249

		Into	erpolated Dickey-F	uller ———
	Test Statistic	1% Critical Value	5% Critical Value	10% Critical Value
Z(t)	-14.466	-3.460	-2.880	-2.570

MacKinnon approximate p-value for Z(t) = 0.0000

Phillips-Perron test for unit root

Z(rho)

Z(t)

Number of obs = 249 Newey-West lags = 4

-2.570

-2.880

Test 1% Critical 5% Critical 10% Critical Statistic Value Value Value -230.649 -20.297 -13.998 -11.199

-3.460

MacKinnon approximate p-value for Z(t) = 0.0000

-14.478

Con kpss vemos que en todos el calculado es menor al crítico por lo que aceptamos Ho es No estacionario

KPSS test for D.ounces

Maxlag = 5 chosen by Schwert criterion Autocovariances weighted by Bartlett kernel

Critical values for H0: D.ounces is trend stationary

10%: 0.119 5%: 0.146 2.5%: 0.176 1%: 0.216

Lag order	Test statistic
0	.0768
1	.0714
2	.0711
3	.0698
4	.068
5	.068

c. Estimación de modelo SARIMA

Al ser una serie trimestral graficamos con 4 rezagos

Graficando la autocorrelación simple

Graficando la autocorrelación parcial

Estimando el modelo tenemos las siguientes opciones

Con un sarima (1,1,1,4)

ARIMA regression

Sample: 1951q4 - 2019q2, but with gaps Number of obs = 253 Wald chi2(2) = 187.00 Log likelihood = -3759.474 Prob > chi2 = 0.0000

S4.ounces	Coef.	OPG Std. Err.	z	P> z	[95% Conf.	Interval]
ounces						
_cons	-29006.1	57807.74	-0.50	0.616	-142307.2	84294.99
ARMA4						
ar						
L1.	.9418268	.0794862	11.85	0.000	.7860368	1.097617
ma						
L1.	9999889	155.7668	-0.01	0.995	-306.2973	304.2974
/sigma	681693	5.31e+07	0.01	0.495	0	1.05e+08

Note: The test of the variance against zero is one sided, and the two-sided confidence interval is truncated at zero.

Akaike's information criterion and Bayesian information criterion

Model	N	ll(null)	ll(model)	df	AIC	BIC
	253		-3759.474	4	7526.947	7541.081

Note: BIC uses N = number of observations. See [R] BIC note.

Con un sarima(1,1,2,4)

ARIMA regression

		OPG				
S4.ounces	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
ounces						
_cons	-20065.92	48905.37	-0.41	0.682	-115918.7	75786.85
ARMA4						
ar						
L1.	.0254688	3.437931	0.01	0.994	-6.712753	6.763691
ma						
L1.	0339756	3.415305	-0.01	0.992	-6.727851	6.6599
L2.	0205673	.0781546	-0.26	0.792	1737474	.1326129
/sigma	692059.4	15978.61	43.31	0.000	660741.9	723376.9

Note: The test of the variance against zero is one sided, and the two-sided confidence interval is truncated at zero.

Akaike's information criterion and Bayesian information criterion

•	Model	N	ll(null)	ll(model)	df	AIC	BIC
		253		-3761.175	5	7532.351	7550.017

Note: BIC uses N = number of observations. See [R] BIC note.

Con un sarima (2,1,1,4)

ARIMA regression

Sample: 1951q4 - 2019q2, but with gaps Number of obs = 253 Wald chi2(4) = 25986.70 Log likelihood = -3752.333 Prob > chi2 = 0.0000

S4.ounces	Coef.	OPG Std. Err.	z	P> z	[OFW Conf	. Interval]
54.ounces	Coer.	Sta. Err.	2	P> Z	[95% CONT.	. Interval
ounces						
_cons	-19916.52	45163.51	-0.44	0.659	-108435.4	68602.33
ARMA4						
ar						
L1.	031502	.0416416	-0.76	0.449	113118	.0501141
L2.	9873568	.0290745	-33.96	0.000	-1.044342	9303719
ma						
L1.	0232064	1.49115	-0.02	0.988	-2.945808	2.899395
L2.	.999974	127.7715	0.01	0.994	-249.4275	251.4275
/sigma	651640.7	4.16e+07	0.02	0.494	Ø	8.22e+07

Note: The test of the variance against zero is one sided, and the two-sided confidence interval is truncated at zero.

Akaike's information criterion and Bayesian information criterion

Model	N	ll(null)	ll(model)	df	AIC	BIC
14	253		-3752.333	6	7516.666	7537.867

Note: BIC uses N = number of observations. See [R] BIC note.

De estos tres elegimos el sarima (1,1,2,4)

d. Verificación de supuestos (estacionariedad principalmente)

Probamos estacionalidad

Number of observations : 246

Deterministic variables : Seasonal dummies Optimal lag selection method: Modified AIC

Lags tested: 5

Augmented by lags: 0

	Stat	1% critical	5% critical	10% critical	
t[0]	-7.110	-3.424	-2.845	-2.548	
t[Pi]	-8.007	-3.423	-2.845	-2.548	
F[Pi/2]	54.224	8.861	6.628	5.592	
F[All seas]	58.393	7.666	5.944	5.132	
F[All]	56.065	7.001	5.556	4.869	
Testing regre	ssion:				

Revisamos t[Pi] y F[all], vemos que son mayores en valor absoluto por lo que sugiere no estacionaridad en los datos.

2. Realizar un análisis de un precio de una acción de forma diaria empleando ARCH, GARCH, etc.

Analizamos a coca cola (KO)

a. Análisis previo (hay que diferenciar)

Graficamos la serie

Vemos un resumen de los datos

. summarize adjclose

Variable	Obs	Mean	Std. Dev.	Min	Max
adjclose	253	58.6689	2.28728	51.55385	63.58

Hacemos la prueba de raíz unitaria y vemos que el valor critico es mayor al calculado, el test indica que hay raíz unitaria por lo que no es estacionaria.

Dickey-Fuller test for unit root			Number of	obs =	198	
		Interpolated Dickey-Fuller				
	Test Statistic	1% Critical Value	5% Critical Value	109	Critical Value	
Z(t)	-0.772	-3.477	-2.883		-2.573	
	rron test for uni	lue for Z(t) = 0.	Number of obs	=	198	
			Newey-West lag	s =	4	
		Int	erpolated Dickey-Ful	ler		
	Test	1% Critical	5% Critical	10% Cri	itical	
	Statistic	Value	Value	Va	alue	
Z(rho)	-2.274	-20.127	-13.896	-1	11.131	

-3.477

-2.883

-2.573

MacKinnon approximate p-value for Z(t) = 0.8283

-0.768

Z(t)

Diferenciamos para hacerla estacionaria

Corroboramos nuevamente que sea estacionaria y vemos que si es estacionaria. Al ver que el valor critico es menor al valor calculado en los test.

		Interpolated Dickey-Fuller					
	Test Statistic	1% Critical Value	5% Critical Value	10% Critical Value			
Z(t)	-12.023	-3.495	-2.887	-2.577			

MacKinnon approximate p-value for Z(t) = 0.0000

Phillips-Perron test for unit root

Number of obs = 145 Newey-West lags = 4

		Interpolated Dickey-Fuller					
	Test Statistic	1% Critical Value	5% Critical Value	10% Critical Value			
Z(rho)	-145.225	-19.950	-13.790	-11.060			
Z(t)	-12.021	-3.495	-2.887	-2.577			

MacKinnon approximate p-value for Z(t) = 0.0000

b. Test ARCH con n rezagos

. reg adjclose

Source	SS	df	MS	Number	r of obs	=	253
				F(0,	252)	=	0.00
Model	0	0		Prob	> F	=	
Residual	1318.37604	252	5.23165096	R-squ	ared	=	0.0000
				- Adj R	-squared	=	0.0000
Total	1318.37604	252	5.23165096	Root	MSE	=	2.2873
adjclose	Coef.	Std. Err.	t	P> t	[95% Cor	nf.	Interval]
_cons	58.6689	.1438001	407.99	0.000	58.38569	9	58.9521
Number of gaps .M test for a	s in sample: utoregressive	54 condition	al heterosk	kedastici	ty (ARCH)		
lags(p)	ch	i2	df		Pr	ob	> chi2
1	173.9	980	1			0.0	000

H0: no ARCH effects

vs. H1: ARCH(p) disturbance

c. Estimación de modelo

Estimado un arch

ARCH family regression

Sample: 22may2023 - 22may2024, but with gaps Number of obs = 253
Distribution: Gaussian Wald chi2(.) = .
Log likelihood = -441.8821 Prob > chi2 = .

adjclose	Coef.	OPG Std. Err.	z	P> z	[95% Conf	. Interval]
adjclose _cons	59.22553	.0473809	1249.99	0.000	59.13266	59.31839
ARCH arch	.9307497	.1212165	7.68	0.000	.6931698	1.16833
_cons	.1788525	.0401575	4.45	0.000	.1001453	.2575598

Estimando un garch

ARCH tamily regression

Sample: 22may2023 - 22may2024, but with gaps Number of obs = 253
Distribution: Gaussian Wald chi2(.) = .
Log likelihood = -439.6973 Prob > chi2 = .

adjclose	Coef.	OPG Std. Err.	z	P> z	[95% Conf.	Intervall
		J		17121	[55% COIII.	
adjclose _cons	59.24767	.0480749	1232.40	0.000	59.15344	59.34189
ARCH						
arch L1.	.954494	.1185837	8.05	0.000	.7220742	1.186914
garch L1.	0285958	.0151416	-1.89	0.059	0582727	.0010812
_cons	.2219635	.0634891	3.50	0.000	.0975271	.3463999

El modelo GARCH es el que mejor modela la serie.

d. Verificación de supuestos

Verificamos autocorrelación

Dado que el valor p es menor que el nivel de significancia, se rechaza la hipótesis nula de que los residuos son ruido blanco.

Portmanteau test for white noise

```
Portmanteau (Q) statistic = 2260.0228
Prob > chi2(40) = 0.0000
```

Verificación de la No Heterocedasticidad en los Residuos

Como el p-valor es menor al 5% no hay heterocedastsidad, los residuos son homocedasticos.

Time-series regression

Sample: 22may2023 - 22may2024, but with gaps	Number of obs	=	253
Distribution: Gaussian	Wald chi2(.)	=	
Log likelihood = -567.8134	Prob > chi2	=	

resid	Coef.	OPG Std. Err.	z	P> z	[95% Conf.	Interval]
_cons	5787732	.1594846	-3.63	0.000	8913573	2661891
/SIGMA2	5.210973	.4229635	12.32	0.000	4.381979	6.039966

Verificación de Normalidad de los Residuos

Como el p-valor es menor al 5% aceptamos que no los residuos siguen una distribución normal

sktest resid

Skewness/Kurtosis tests for Normality

Variable	Obs	Pr(Skewness)	Pr(Kurtosis)	_	Prob>chi2
resid	253	0.0000	0.0122	21.67	0.0000