

Report No: CCIS15120093104

FCC REPORT

Applicant: HUNG WAI PRODUCTS LIMITED

Address of Applicant: Unit 11, 12/F., New Commerce Centre, 19 On Sum Street,

Shatin, Hong Kong

Equipment Under Test (EUT)

Product Name: 21.5"Quad Core Media Player Slim Housing

Model No.: DT215-AS4-1080-SL, 502-2159ATM

FCC ID: 2AB6Z-DT215-AS4-SL

Applicable standards: FCC CFR Title 47 Part 15 Subpart E Section 15.407

Date of sample receipt: 08 Dec., 2015

Date of Test: 08 Dec., to 16 Dec., 2015

Date of report issued: 17 Dec., 2015

Test Result: PASS*

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

Version

Version No.	Date	Description
00	17 Dec., 2015	Android player Main board with wireless module (FCC ID: 2AB6Z-1859ATMB) and same antenna were used by the device, only conducted emission and Radiated emission were re-tested.

Viki zhul Test Engineer Tested by: 17 Dec., 2015 Date:

Reviewed by: Date: 17 Dec., 2015

Project Engineer

3 Contents

		Page
1	1 COVER PAGE	1
2	2 VERSION	2
3	3 CONTENTS	3
4	4 TEST SUMMARY	4
5	GENERAL INFORMATION	5
	5.1 CLIENT INFORMATION	5
	5.2 GENERAL DESCRIPTION OF E.U.T	5
	5.3 TEST ENVIRONMENT AND MODE	7
	5.4 LABORATORY FACILITY	
	5.5 LABORATORY LOCATION	
	5.6 TEST INSTRUMENTS LIST	8
6	TEST RESULTS AND MEASUREMENT DATA	9
	6.1 ANTENNA REQUIREMENT	9
	6.2 CONDUCTED EMISSION	10
	6.3 CONDUCTED OUTPUT POWER	13
	6.4 OCCUPY BANDWIDTH	
	6.5 POWER SPECTRAL DENSITY	
	6.6 BAND EDGE	
	6.7 Spurious Emission	
	6.7.1 Restricted Band	
	6.7.2 Unwanted Emissions in the Restricted Bands	
	6.8 FREQUENCY STABILITY	37
7	7 TEST SETUP PHOTO	38
	B FUT CONSTRUCTIONAL DETAILS	39

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.407 (g)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.407 (a)	Pass*
26dB Occupied Bandwidth	15.407 (a)	Pass*
6dB Emission Bandwidth	15.407(e)	Pass*
Power Spectral Density	15.407 (a)	Pass*
Band Edge	15.407(b)	Pass
Spurious Emission	15.205/15.209	Pass
Frequency Stability	15.407(g)	Pass*

Pass: The EUT complies with the essential requirements in the standard.

Pass*: The test data refer to FCC ID: 2AB6Z-1859ATMB.

Remark: Test according to ANSI C63.4:2009

5 General Information

5.1 Client Information

Applicant:	HUNG WAI PRODUCTS LIMITED
Address of Applicant:	Unit 11, 12/F., New Commerce Centre, 19 On Sum Street, Shatin, Hong Kong
Manufacturer:	HUNG WAI ELECTRONICS (HUIZHOU) LTD.
Address of Manufacturer:	3 rd floor, NO. 3, Minfeng Road, Huinan High and New Technology Industry Park, Huiao Avenue, Huizhou City, Guangdong, China

5.2 General Description of E.U.T.

<u> </u>	
Product Name:	21.5"Quad Core Media Player Slim Housing
Model No.:	DT215-AS4-1080-SL, 502-2159ATM
Operation Frequency:	Band 1: 5180MHz-5240MHz Band 4: 5745MHz-5825MHz
Operation mode:	Indoor used
Channel numbers:	Band 1: 802.11a/802.11n20: 4, 802.11n40: 2 Band 4: 802.11a/802.11n20: 5, 802.11n40: 2
Channel separation:	802.11a/802.11n20: 20MHz, 802.11n40: 40MHz
Modulation technology: (IEEE 802.11a)	BPSK, QPSK,16-QAM, 64-QAM
Modulation technology: (IEEE 802.11n)	BPSK, QPSK, 16-QAM, 64-QAM
Data speed(IEEE 802.11a)	6Mbps, 9Mbps,12Mbps,18Mbps, 24Mbps,36Mbps,48Mbps, 54Mbps
Data speed (IEEE 802.11n20):	MCS0: 6.5Mbps, MCS1:13Mbps, MCS2:19.5Mbps, MCS3:26Mbps, MCS4:39Mbps, MCS5:52Mbps, MCS6:58.5Mbps, MCS7:65Mbps
Data speed (IEEE 802.11n40):	MCS0:15Mbps, MCS1:30Mbps, MCS2:45Mbps, MCS3:60Mbps, MCS4:90Mbps, MCS5:120Mbps, MCS6:135Mbps, MCS7:150Mbps
Antenna Type:	Omni-directional
Antenna gain:	2.5 dBi
AC Adapter:	MODEL: PS36IBCAY3000S Input: AC 100-240V 50/60Hz 1.0A Output: DC 12V, 3000mA
Remark:	Model No.: DT215-AS4-1080-SL, 502-2159ATM are electrically identical, only model number is different for customer and for HUNG WAI.

Operation Frequency each of channel

Band 1				
802.11a/802.11n20		802.11n40		
Channel	Frequency	Channel	Frequency	
36	5180MHz	39	5190MHz	
40	5200MHz	45	5230MHz	
44	5220MHz			
48	48 5240MHz			
	Bai	nd 4		
802.11a/	802.11n20	802.11n40		
Channel	Frequency	Channel	Frequency	
149	5745MHz	151	5755MHz	
153	5765MHz	159	5795MHz	
157	157 5785MHz			
161	161 5805MHz			
165	5825MHz	_		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Band 1					
802.11a/802	2.11n20	802.11n40			
Channel	Frequency	Channel	Frequency		
The lowest channel	5180MHz	The lowest channel	5190MHz		
The middle channel	5200MHz	The highest channel	5230MHz		
The highest channel 5240MHz					
	Bar	nd 4			
802.11a/802	2.11n20	802.11n40			
Channel	Frequency	Channel	Frequency		
The lowest channel	The lowest channel 5745MHz		5755MHz		
The middle channel	The middle channel 5785MHz		5795MHz		
The highest channel 5825MHz					

Report No: CCIS15120093104

5.3 Test environment and mode

Operating Environment:				
Temperature:	24.0 °C			
Humidity:	54 % RH			
Atmospheric Pressure:	1010 mbar			
Test mode:				
Continuously transmitting mode	Keep the EUT in 100% duty cycle transmitting with modulation.			

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	Data rate
802.11a	6 Mbps
802.11n20	6.5 Mbps
802.11n40	13 Mbps

Final Test Mode:

According to ANSI C63.4 standards, the test results are both the "worst case" and "worst setup" 6 Mbps for 802.11a, 6.5 Mbps for 802.11n20 and 13 Mbps for 802.11n40. All test items for 802.11a and 802.11n were performed with duty cycle above 98%, meet the requirements of KDB789033.

5.4 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

● FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

■ IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.5 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.6 Test Instruments list

Radia	Radiated Emission:					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
1	3m Semi - Anechoic Chamber	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017
2	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	CCIS0005	03-28-2015	03-28-2016
3	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA9120D	CCIS0006	03-28-2015	03-28-2016
4	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
5	Amplifier (10kHz-1.3GHz)	HP	8447D	CCIS0003	04-01-2015	03-31-2016
6	Amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	04-01-2015	03-31-2016
7	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	04-01-2015	03-31-2016
8	Horn Antenna	ETS-LINDGREN	3160	GTS217	04-01-2015	03-31-2016
9	Printer	HP	HP LaserJet P1007	N/A	N/A	N/A
10	Positioning Controller	UC	UC3000	CCIS0015	N/A	N/A
11	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP	CCIS0023	03-28-2015	03-28-2016
12	EMI Test Receiver	Rohde & Schwarz	ESPI	CCIS0022	03-28-2015	03-28-2016
13	Loop antenna	Laplace instrument	RF300	EMC0701	04-01-2015	03-31-2016
14	Universal radio communication tester	Rhode & Schwarz	CMU200	CCIS0069	03-28-2015	03-28-2016
15	Signal Analyzer	Rohde & Schwarz	FSIQ3	CCIS0088	04-08-2015	04-08-2016

Cond	Conducted Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	11-10-2013	11-09-2016	
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	03-28-2015	03-28-2016	
3	LISN	CHASE	MN2050D	CCIS0074	03-28-2015	03-28-2016	
4	Coaxial Cable	CCIS	N/A	CCIS0086	04-01-2015	03-31-2016	
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	

6 Test results and Measurement Data

6.1 Antenna requirement

Standard requirement:

FCC Part15 E Section 15.203 /407(a)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, § 15.213, § 15.217, § 15.219, or § 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with § 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

E.U.T Antenna:

The antenna of EUT is a reverse-SMA connector, which cannot be replaced by end-user. And the antenna gain is 2.5 dBi.

6.2 Conducted Emission

Test Requirement:	FCC Part15 C Section 15.207				
Test Method:	ANSI C63.10: 2009				
Test Frequency Range:	150 kHz to 30 MHz				
Class / Severity:	Class B				
Receiver setup:	RBW=9 kHz, VBW=30 kHz				
Limit:	Fraguenay range (MHz)	Limit (d	BuV)		
	Frequency range (MHz)	Quasi-peak	Average		
	0.15-0.5 66 to 56* 56 to 46*				
	0.5-5	56	46		
	5-30	60	50		
Test procedure	* Decreases with the logarithm1. The E.U.T and simulators				
	 a line impedance stabilization network (L.I.S.N.). It provides a 500hm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 500hm/50uH coupling impedance with 500hm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10: 2013 on conducted measurement. 				
Test setup:	Referen	ice Plane			
	AUX Equipment E.U Test table/Insulation plan Remark E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Test table height=0.8m	EMI Receiver	r AC power		
Test Instruments:	Refer to section 5.6 for details				
Test mode:	Refer to section 5.3 for details.				
Test results:	Passed				

Measurement Data

Site

: CCIS Shielding Room : FCC PART15 B QP LISN LINE : 21.5 Quad Core Media Player : DT215-AS4-10-05L Condition EUT

: DT215-AS4-1080-SL

Test Mode : 5G-Wifi mode

Power Rating : AC 120V/60Hz

Environment : Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: Viki

Remark :

Kemark	:							
	F	Read		Cable		Limit	Over	Paraula
	rreq	rever	Factor	LOSS	Level	Line	Limit	Remark
	MHz	dBu∀	₫B	₫B	dBu∀	dBu∀	₫B	
1	0.150	50.15	0.27	10.78	61.20	66.00	-4.80	QP
2	0.165	47.77	0.27	10.77	58.81	65.21	-6.40	QP
3	0.180	28.98	0.28	10.77	40.03	54.50	-14.47	Average
4	0.185	45.57	0.28	10.77	56.62	64.24	-7.62	QP
5	0.220	19.11	0.28	10.76	30.15	52.83	-22.68	Average
1 2 3 4 5 6 7 8 9	0.280	17.06	0.26	10.74	28.06	50.81	-22.75	Average
7	0.320	14.53	0.26	10.74	25.53			Average
8	0.330	30.04	0.27	10.73	41.04	59.44	-18.40	QP
9	0.400	27.78	0.28	10.72	38.78	57.86	-19.08	QP
10	0.731	9.01	0.22	10.78	20.01	46.00	-25.99	Average
11	16.661	28.90	0.33		40.14		-19.86	
12	16, 661	19.31	0.33	10.91	30.55	50,00	-19.45	Average

Neutral:

Trace: 9 Site

: CCIS Shielding Room : FCC PART15 B QP LISN NEUTRAL : 21.5 "Quad Core Media Player : DT215-AS4-1080-SL Condition EUT

Model Test Mode : 5G-Wifi mode

Power Rating : AC 120V/60Hz Environment : Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: Viki

emark.	Freq	Read Level	LISN Factor	Cable Loss		Limit Line	Over Limit	Remark
-	MHz	dBu∜	<u>dB</u>	<u>dB</u>	—dBu∜	dBu₹	<u>dB</u>	
1	0.150	50.84	0.25	10.78	61.87	66.00	-4.13	QP
2	0.175	47.51	0.25	10.77	58.53	64.72	-6.19	QP
2 3 4 5 6 7	0.175	28.32	0.25	10.77	39.34	54.72	-15.38	Average
4	0.200	44.88	0.25	10.76	55.89	63.62	-7.73	QP
5	0.200	26.64	0.25	10.76	37.65	53.62	-15.97	Average
6	0.249	21.35	0.26	10.75	32.36	51.78	-19.42	Average
7	0.305	19.85	0.26	10.74	30.85	50.10	-19.25	Average
8	0.415	31.79	0.26	10.73	42.78	57.55	-14.77	QP
9	0.494	29.53	0.29	10.76	40.58	56.10	-15.52	QP
10	0.541	16.21	0.26	10.76	27.23	46.00	-18.77	Average
11	16.661	23.11	0.25	10.91	34.27	50.00	-15.73	Average
12	16.928	31.87	0.25	10.91	43.03	60.00	-16.97	QP

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss

6.3 Conducted Output Power

Test Requirement:	FCC Part15 E Section 15.407 (a) (1) (ii) & (a) (3)						
Test Method:	ANSI C63.10: 2009, KDB 789033						
Limit:	Band 1: 1 W (For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi.); Band 4: 1W.						
Test setup:							
	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to section 5.6 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Refer to FCC ID: 2AB6Z-1859ATMB						

6.4 Occupy Bandwidth

Test Requirement:	FCC Part15 E Section 15.407 (a) (5) and Section 15.407 (e)							
Test Method:	ANSI C63.10:2009 and KDB 789033							
Limit:	Band 1: N/A(26dB Emission Bandwidth and 99% Occupy Bandwidth) Band 4: N/A(26dB Emission Bandwidth and 99% Occupy Bandwidth) Band 4: >500kHz(6dB Bandwidth)							
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane							
Test Instruments:	Refer to section 5.6 for details							
Test mode:	Refer to section 5.3 for details							
Test results:	Refer to FCC ID: 2AB6Z-1859ATMB							

6.5 Power Spectral Density

Test Requirement:	FCC Part15 E Section 15.407 (a) (1) (ii) & (a) (3)						
Test Method:	ANSI C63.10:2009, KDB 789033						
Limit:	Band 1: 17 dBm/MHz (The maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.); Band 4: 30dBm/500kHz						
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to section 5.6 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Refer to FCC ID: 2AB6Z-1859ATMB						

6.6 Band Edge

0.0	Band Edge							
	Test Requirement:	FCC Part15 E S	ection 15.4	07 (b)				
	Test Method:	ANSI C63.10:20	09 , KDB 7	89033				
	Receiver setup:	Detector Quasi-peak RMS	RBW 120kHz 1MHz	VBW 300kHz 3MHz		Remark Quasi-peak Value Average Value		
	Limit:	7		¥11111	· · · · · · · · · · · · · · · · · · ·			
	Ziiiii.			Limit (dl	BuV/m @3m)		Remark	
		 Band	1		68.20		eak Value	
		Dana	<u> </u>	_	54.00		erage Value	
		Band	4		78.20 54.00		eak Value erage Value	
		Remark: 1. Band 1 limit: E[dBμV/m] = EIRP[dBm] + 95.2=68.2 dBuV/m, for EIPR[dBm]= -27dBm. 2. Band 4 limit: E[dBμV/m] = EIRP[dBm] + 95.2=78.2 dBuV/m, for EIPR[dBm]= -17dBm.						
	Test Procedure:	 E[dBµV/m] = EIRP[dBm] + 95.2=78.2 dBuV/m, for EIPR[dBm]= -17dBm. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data 						
	Test setup:	Sheet. Antenna Tower Horn Antenna Spectrum Analyzer Amplifier						
	Test Instruments:	Refer to section 5.6 for details						
	Test mode:	Refer to section 5.3 for details						
	Test results:	Passed						

Band 1:

				802.11a						
Test c	hannel		Lowest		Le	vel	F	Peak		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5150.00	35.26	32.07	9.13	40.06	36.40	68.20	-31.80	Horizontal		
5150.00	30.26	32.07	9.13	40.06	31.40	68.20	-36.80	Vertical		
	802.11a									
Test c	hannel		Lowest		Le	vel	Av	erage		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5150.00	25.79	32.07	9.13	40.06	26.93	54.00	-27.07	Horizontal		
5150.00	25.36	32.07	9.13	40.06	26.50	54.00	-27.50	Vertical		
				802.11a						
Test c	hannel	Highest			Level		Peak			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	35.46	31.78	9.15	40.18	36.21	68.20	-31.99	Horizontal		
5350.00	32.56	31.78	9.15	40.18	33.31	68.20	-34.89	Vertical		
				802.11a						
Test c	hannel		Highest		Le	vel	Av	erage		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	25.46	31.78	9.15	40.18	26.21	54.00	-27.79	Horizontal		
5350.00	26.34	31.78	9.15	40.18	27.09	54.00	-26.91	Vertical		

			8	02.11n-HT20				
Test c	hannel	Lowest			Le	vel	Peak	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5150.00	34.09	32.07	9.13	40.06	35.23	68.20	-32.97	Horizontal
5150.00	35.26	32.07	9.13	40.06	36.40	68.20	-31.80	Vertical
			8	02.11n-HT20				
Test c	hannel		Lowest		Le	vel	Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5150.00	25.46	32.07	9.13	40.06	26.60	54.00	-27.40	Horizontal
5150.00	26.39	32.07	9.13	40.06	27.53	54.00	-26.47	Vertical
			8	02.11n-HT20				
Test c	hannel	Highest			Le	vel	Peak	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5350.00	33.46	31.78	9.15	40.18	34.21	68.20	-33.99	Horizontal
5350.00	31.26	31.78	9.15	40.18	32.01	68.20	-36.19	Vertical
			8	02.11n-HT20				
Test c	hannel		Highest		Le	vel	Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5350.00	25.46	31.78	9.15	40.18	26.21	54.00	-27.79	Horizontal
5350.00	23.56	31.78	9.15	40.18	24.31	54.00	-29.69	Vertical

	802.11n-HT40										
Test c	hannel		Lowest		Le	vel	F	Peak			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5150.00	33.46	32.07	9.13	40.06	34.60	68.20	-33.60	Horizontal			
5150.00	32.45	32.07	9.13	40.06	33.59	68.20	-34.61	Vertical			
802.11n-HT40											
Test c	hannel		Lowest		Le	vel	Av	rerage			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5150.00	26.45	32.07	9.13	40.06	27.59	54.00	-26.41	Horizontal			
5150.00	23.51	32.07	9.13	40.06	24.65	54.00	-29.35	Vertical			
			8	02.11n-HT40							
Test c	hannel	Highest			Le	vel	F	Peak			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5350.00	35.26	31.78	9.15	40.18	36.01	68.20	-32.19	Horizontal			
5350.00	34.16	31.78	9.15	40.18	34.91	68.20	-33.29	Vertical			
			8	02.11n-HT40							
Test c	hannel		Highest		Le	vel	Av	rerage			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5350.00	25.36	31.78	9.15	40.18	26.11	54.00	-27.89	Horizontal			
5350.00	23.46	31.78	9.15	40.18	24.21	54.00	-29.79	Vertical			

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Band 4:

				802.11a					
Test c	hannel		Lowest		Le	vel	F	Peak	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5725.00	35.26	32.27	9.30	40.54	36.29	78.20	-41.91	Horizontal	
5725.00	34.56	32.27	9.30	40.54	35.59	78.20	-42.61	Vertical	
802.11a									
Test c	hannel		Lowest		Le	vel	Av	erage	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5725.00	26.53	32.27	9.30	40.54	27.56	54.00	-26.44	Horizontal	
5725.00	25.48	32.27	9.30	40.54	26.51	54.00	-27.49	Vertical	
				802.11a					
Test c	hannel	Highest			Le	vel	Peak		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5850.00	40.28	32.71	9.37	40.69	41.67	78.20	-36.53	Horizontal	
5850.00	41.56	32.71	9.37	40.69	42.95	78.20	-35.25	Vertical	
				802.11a					
Test c	hannel		Highest		Le	vel	Av	erage	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5850.00	27.46	32.71	9.37	40.69	28.85	54.00	-25.15	Horizontal	
5850.00	26.93	32.71	9.37	40.69	28.32	54.00	-25.68	Vertical	

802.11n-HT20										
Test c	hannel	Lowest			Le	vel	F	Peak		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5725.00	40.26	32.27	9.30	40.54	41.29	78.20	-36.91	Horizontal		
5725.00	40.23	32.27	9.30	40.54	41.26	78.20	-36.94	Vertical		
802.11n-HT20										
Test c	hannel		Lowest		Le	vel	Av	erage		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5725.00	26.74	32.27	9.30	40.54	27.77	54.00	-26.23	Horizontal		
5725.00	26.35	32.27	9.30	40.54	27.38	54.00	-26.62	Vertical		
			8	02.11n-HT20						
Test c	hannel	Highest			Le	vel	F	Peak		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5850.00	36.97	32.71	9.37	40.69	38.36	78.20	-39.84	Horizontal		
5850.00	35.26	32.71	9.37	40.69	36.65	78.20	-41.55	Vertical		
			8	02.11n-HT20						
Test c	hannel		Highest		Le	vel	Av	erage		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5850.00	26.34	32.71	9.37	40.69	27.73	54.00	-26.27	Horizontal		
5850.00	25.16	32.71	9.37	40.69	26.55	54.00	-27.45	Vertical		

802.11n-HT40										
Test c	hannel		Lowest		Le	vel	F	Peak		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5725.00	39.42	32.27	9.30	40.54	40.45	78.20	-37.75	Horizontal		
5725.00	40.26	32.27	9.30	40.54	41.29	78.20	-36.91	Vertical		
802.11n-HT40										
Test c	hannel		Lowest		Le	vel	Av	rerage		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5725.00	26.43	32.27	9.30	40.54	27.46	54.00	-26.54	Horizontal		
5725.00	25.63	32.27	9.30	40.54	26.66	54.00	-27.34	Vertical		
			8	02.11n-HT40						
Test c	hannel	Highest			Le	vel	Peak			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5850.00	34.56	32.71	9.37	40.69	35.95	78.20	-42.25	Horizontal		
5850.00	35.29	32.71	9.37	40.69	36.68	78.20	-41.52	Vertical		
			8	02.11n-HT40						
Test c	hannel		Highest		Le	vel	Av	rerage		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5850.00	28.75	32.71	9.37	40.69	30.14	54.00	-23.86	Horizontal		
5850.00	27.46	32.71	9.37	40.69	28.85	54.00	-25.15	Vertical		

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

6.7 Spurious Emission

6.7.1 Restricted Band

6.7.1	Restricted Band										
	Test Requirement:	FCC Part15 E	Section 15.40	7(b)							
	Test Method:	ANSI C63.10: 2	2009								
	Test Frequency Range:	Band 1: 4.5 GH Band 4: 5.35 G			z to 5.46Gł	·lz					
	Test site:	Measurement [Distance: 3m								
	Receiver setup:			T ==	I						
		Frequency	Pook 1MHz 3MHz Pook Value								
		Above 1GHz RMS 1MHZ 3MHZ Peak Value RMS 1MHZ 3MHZ Average Value									
	Limit:	RIVIS TIVITZ SIVITZ Average value									
		Freque	ency	Limit (dBuV		Remark					
		Above 1	GHz -	74.0		Peak Value					
				54.0	0	Average Value					
	Test Procedure:	the ground to determine to determine antenna, we tower. 9. The antennathe ground Both horize make the result of find the test-result of find the test-result of the emist the limit specified I have 10dE	d at a 3 meter ne the position was set 3 met which was mo na height is will to determine ontal and vert measurement suspected emother the antered the rota table maximum reaseceiver system and width with sion level of the color of the color of the mould be reparation.	camber. The n of the highers away from unted on the taried from one the maximunical polarization was turned ading. In was set to Fish Maximum Fine EUT in peatesting could loorted. Otherwid be re-tested.	table was rest radiation. In the interfector of a variation of a variation of the analytic and to heights from 0 degrated Mode. It was arrand to heights from 0 degrat	rence-receiving able-height antenna our meters above ne field strength. Intenna are set to nged to its worst from 1 meter to 4 rees to 360 degrees					
	Τοστ σοταμ.	Antenna Tower Horn Antenna Spectrum Analyzer Turn Table Amplifier									
	Test Instruments:	Refer to section	n 5.6 for detai	ls							
	Test mode:	Refer to section	n 5.3 for detai	ls							
	Test results:	Passed									

Band 1:

802.11a

Test c	hannel		Lowest		Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	30.26	30.72	8.54	40.67	28.85	74.00	-45.15	Horizontal
4500.00	32.16	30.72	8.54	40.67	30.75	74.00	-43.25	Vertical
Test c	hannel		Lowest		Le	vel	Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	25.63	30.72	8.54	40.67	24.22	54.00	-29.78	Horizontal
4500.00	25.42	30.72	8.54	40.67	24.01	54.00	-29.99	Vertical
Test c	hannel		Highest		Level		F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	31.46	31.99	9.16	40.23	32.38	74.00	-41.62	Horizontal
5460.00	32.59	31.99	9.16	40.23	33.51	74.00	-40.49	Vertical
Test c	hannel		Highest		Level A		Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	34.56	31.99	9.16	40.23	35.48	54.00	-18.52	Horizontal
5460.00	23.06	31.99	9.16	40.23	23.98	54.00	-30.02	Vertical

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n-HT20

Test c	hannel		Lowest		Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	34.16	30.72	8.54	40.67	32.75	74.00	-41.25	Horizontal
4500.00	34.28	30.72	8.54	40.67	32.87	74.00	-41.13	Vertical
Test c	hannel		Lowest		Le	vel	Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	22.56	30.72	8.54	40.67	21.15	54.00	-32.85	Horizontal
4500.00	23.59	30.72	8.54	40.67	22.18	54.00	-31.82	Vertical
Test c	hannel		Highest		Level		F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	33.56	31.99	9.16	40.23	34.48	74.00	-39.52	Horizontal
5460.00	32.58	31.99	9.16	40.23	33.50	74.00	-40.50	Vertical
Test c	hannel		Highest Level		Av	erage		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	23.56	31.99	9.16	40.23	24.48	54.00	-29.52	Horizontal
5460.00	22.56	31.99	9.16	40.23	23.48	54.00	-30.52	Vertical

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n-HT40

Test c	hannel		Lowest		Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	33.26	30.72	8.54	40.67	31.85	74.00	-42.15	Horizontal
4500.00	33.59	30.72	8.54	40.67	32.18	74.00	-41.82	Vertical
Test c	hannel		Lowest		Le	vel	Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	23.56	30.72	8.54	40.67	22.15	54.00	-31.85	Horizontal
4500.00	26.35	30.72	8.54	40.67	24.94	54.00	-29.06	Vertical
							Peak	
Test c	hannel		Highest		Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Peak Polarization
Frequency	Read Level		Cable		Level	Limit Line	Over	
Frequency (MHz)	Read Level (dBuV/m)	Factor (dB)	Cable Loss (dB)	Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
Frequency (MHz) 5460.00 5460.00	Read Level (dBuV/m) 31.46	Factor (dB) 31.99	Cable Loss (dB) 9.16	Factor (dB) 40.23	Level (dBuV/m) 32.38	Limit Line (dBuV/m) 74.00 74.00	Over Limit (dB) -41.62 -38.50	Polarization Horizontal
Frequency (MHz) 5460.00 5460.00	Read Level (dBuV/m) 31.46 34.58	Factor (dB) 31.99	Cable Loss (dB) 9.16 9.16	Factor (dB) 40.23	Level (dBuV/m) 32.38 35.50	Limit Line (dBuV/m) 74.00 74.00	Over Limit (dB) -41.62 -38.50	Polarization Horizontal Vertical
Frequency (MHz) 5460.00 5460.00 Test cl	Read Level (dBuV/m) 31.46 34.58 hannel Read Level	31.99 31.99 Antenna	Cable Loss (dB) 9.16 9.16 Highest Cable	Factor (dB) 40.23 40.23 Preamp	Level (dBuV/m) 32.38 35.50 Le	Limit Line (dBuV/m) 74.00 74.00 vel Limit Line	Over Limit (dB) -41.62 -38.50 Av	Polarization Horizontal Vertical erage

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Band 4:

802.11a

Test c	hannel		Lowest		Le	vel	F	eak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5350.00	43.26	31.78	9.15	40.18	44.01	74.00	-29.99	Horizontal
5460.00	44.15	31.99	9.16	40.23	45.07	74.00	-28.93	Horizontal
5350.00	42.58	31.78	9.15	40.18	43.33	74.00	-30.67	Vertical
5460.00	41.59	31.99	9.16	40.23	42.51	74.00	-31.49	Vertical
Test c	hannel		Lowest		Level		Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5350.00	30.16	31.78	9.15	40.18	30.91	54.00	-23.09	Horizontal
5460.00	29.85	31.99	9.16	40.23	30.77	54.00	-23.23	Horizontal
5350.00	30.26	31.78	9.15	40.18	31.01	54.00	-22.99	Vertical
5460.00	33.17	31.99	9.16	40.23	34.09	54.00	-19.91	Vertical

802.11n-HT20

002.1111-11120										
Test c	hannel		Lowest		Le	vel	F	Peak		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	43.25	31.78	9.15	40.18	44.00	74.00	-30.00	Horizontal		
5460.00	46.59	31.99	9.16	40.23	47.51	74.00	-26.49	Horizontal		
5350.00	42.18	31.78	9.15	40.18	42.93	74.00	-31.07	Vertical		
5460.00	43.78	31.99	9.16	40.23	44.70	74.00	-29.30	Vertical		
Test c	hannel		Lowest		Level		Av	erage		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	31.56	31.78	9.15	40.18	32.31	54.00	-21.69	Horizontal		
5460.00	31.45	31.99	9.16	40.23	32.37	54.00	-21.63	Horizontal		
5350.00	30.29	31.78	9.15	40.18	31.04	54.00	-22.96	Vertical		
5460.00	32.56	31.99	9.16	40.23	33.48	54.00	-20.52	Vertical		

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n-HT40

Test c	hannel		Lowest		Le	vel	F	eak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5350.00	40.58	31.78	9.15	40.18	41.33	74.00	-32.67	Horizontal
5460.00	41.59	31.99	9.16	40.23	42.51	74.00	-31.49	Horizontal
5350.00	43.67	31.78	9.15	40.18	44.42	74.00	-29.58	Vertical
5460.00	44.57	31.99	9.16	40.23	45.49	74.00	-28.51	Vertical
Test c	hannel		Lowest		Level		Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5350.00	30.15	31.78	9.15	40.18	30.90	54.00	-23.10	Horizontal
5460.00	32.46	31.99	9.16	40.23	33.38	54.00	-20.62	Horizontal
5350.00	35.46	31.78	9.15	40.18	36.21	54.00	-17.79	Vertical
5460.00	34.18	31.99	9.16	40.23	35.10	54.00	-18.90	Vertical

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

6.7.2 Unwanted Emissions in the Restricted Bands

Test Requirement:	FCC Part15 C S	Section 15.209	and 15.205						
Test Method:	ANSI C63.10:2009								
Test Frequency Range:	30MHz to 40GH	lz							
Test site:	Measurement D	istance: 3m							
Receiver setup:									
·	Frequency	Detector	RBW	VBW	Remark				
	30MHz-1GHz	Quasi-peak	100kHz	300kHz	Quasi-peak Value				
	Above 1GHz Peak 1MHz 3MHz				Peak Value				
Limit:									
	Freque	ncy	Limit (dBuV/	/m @3m)	Remark				
	30MHz-8	8MHz	40.0)	Quasi-peak Value				
	88MHz-21	6MHz	43.5	5	Quasi-peak Value				
	216MHz-9	60MHz	46.0		Quasi-peak Value				
	960MHz-	1GHz	54.0)	Quasi-peak Value				
	Freque	ncv	Limit (dBn	n/MHz)	Remark				
	Treque	Ticy	68.2		Peak Value				
	Above 1	GHz	54.0		Average Value				
Test Procedure:	1. The EUT we the ground determine of the EUT we antenna, we tower. 3. The antennal ground to compare the formula formula and the second sec	ras placed on the at a 3 meter can be position of the position of the position of the position of the position was mount at height is variated the mand vertical polarical polar	ne top of a romber. The the highest rome ted on the total ed from one naximum valurizations of tuned to he	otating table table was readiation. the interferop of a variation of the first the antennal of the first the arranging to the from the first table.	e 0.8 meters above otated 360 degrees to rence-receiving able-height antenna our meters above the eld strength. Both as are set to make the enged to its worst case 1 meter to 4 meters				
	5. The test-re Specified E 6. If the emiss limit specifi the EUT we 10dB marg	 and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 							

Below 1GHz

Horizontal:

Site : 3m chamber

: FCC PART15 CLASS B 3m VULB9163(30M1G) HORIZONTAL Condition

EUT

: 21.5"Quad Core Media Player : DT215-AS4-1080-SL : 5G-Wifi mode Model Test mode

Power Rating: AC120V/60Hz
Environment: Temp:25.5°C Huni:55% 101KPa
Test Engineer: Viki
REMARK:

: Freq						Limit Line			
MHz	dBu∜	$\overline{dB/m}$	₫B	dB	dBuV/m	$\overline{dBuV/m}$	<u>d</u> B		
211.527	54.63	10.93	1.44	28.76	38.24	43.50	-5.26	QP	
281.995	57.62	12.70	1.72	28.48	43.56	46.00	-2.44	QP	
390.723	56.20	14.87	2.09	28.74	44.42	46.00	-1.58	QP	
420.580	52.09	15.47	2.18	28.82	40.92	46.00	-5.08	QP	
699.305	43.12	18.80	2.91	28.67	36.16	46.00	-9.84	QP	
845.088	43.20	20.55	3.24	28.02	38.97	46.00	-7.03	QP	
	MHz 211.527 281.995 390.723 420.580 699.305	Freq Level MHz dBuV 211.527 54.63 281.995 57.62 390.723 56.20 420.580 52.09 699.305 43.12	Freq Level Factor MHz dBuV dB/m 211.527 54.63 10.93 281.995 57.62 12.70 390.723 56.20 14.87 420.580 52.09 15.47 699.305 43.12 18.80	Freq Level Factor Loss MHz dBuV dB/m dB 211.527 54.63 10.93 1.44 281.995 57.62 12.70 1.72 390.723 56.20 14.87 2.09 420.580 52.09 15.47 2.18 699.305 43.12 18.80 2.91	Freq Level Factor Loss Factor MHz dBuV dB/m dB dB 211.527 54.63 10.93 1.44 28.76 281.995 57.62 12.70 1.72 28.48 390.723 56.20 14.87 2.09 28.74 420.580 52.09 15.47 2.18 28.82 699.305 43.12 18.80 2.91 28.67	MHz dBuV dB/m dB dB dBuV/m 211.527 54.63 10.93 1.44 28.76 38.24 281.995 57.62 12.70 1.72 28.48 43.56 390.723 56.20 14.87 2.09 28.74 44.42 420.580 52.09 15.47 2.18 28.82 40.92 699.305 43.12 18.80 2.91 28.67 36.16	Freq Level Factor Loss Factor Level Line MHz dBuV dB/m dB dB dBuV/m dBuV/m dBuV/m 211.527 54.63 10.93 1.44 28.76 38.24 43.50 281.995 57.62 12.70 1.72 28.48 43.56 46.00 390.723 56.20 14.87 2.09 28.74 44.42 46.00 420.580 52.09 15.47 2.18 28.82 40.92 46.00 699.305 43.12 18.80 2.91 28.67 36.16 46.00	MHz dBuV dB/m dB dB dBuV/m dBuV/m dBuV/m dBuV/m dB dB dB dBuV/m dBuV/m dBuV/m dB dB dBuV/m dBuV/m dB dB dB dBuV/m dBuV/m dB uV/m dB dB uV/m dB dB uV/m dB dB uV/m dB uV/m dB dB uV/m dB uV/m dB uV/m uV/m dB uV/m uV/	Freq Level Factor Loss Factor Level Line Limit Remark MHz dBuV dB/m dB dB dBuV/m dBuV/m dB 211.527 54.63 10.93 1.44 28.76 38.24 43.50 -5.26 QP 281.995 57.62 12.70 1.72 28.48 43.56 46.00 -2.44 QP 390.723 56.20 14.87 2.09 28.74 44.42 46.00 -1.58 QP 420.580 52.09 15.47 2.18 28.82 40.92 46.00 -5.08 QP 699.305 43.12 18.80 2.91 28.67 36.16 46.00 -9.84 QP

Vertical:

Site : 3m chamber

: FCC PART15 CLASS B 3m VULB9163(30M1G) VERTICAL : 21.5 "Quad Core Media Player : DT215-AS4-1080-SL Condition

EUT

: DT215-AS4-1080-SL
Test mode : 5G-Wifi mode
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C Huni:55% 101KPa
Test Engineer: Viki
REMARK :

$r_{11}r_{21}r_{21}r_{21}$									
	Freq		Antenna Factor				Limit Line	Over Limit	Remark
_	MHz	dBu∜	<u>dB</u> /m	<u>d</u> B	<u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	dB	
1	58.819	46.90	12.77	0.68	29.78	30.57	40.00	-9.43	QP
2	173.814	54.67	9.23	1.35	29.02	36.23	43.50	-7.27	QP
3	281.995	49.67	12.70	1.72	28.48	35.61	46.00	-10.39	QP
4	390.723	54.22	14.87	2.09	28.74	42.44	46.00	-3.56	QP
5	494.199	50.43	16.45	2.38	28.94	40.32	46.00	-5.68	QP
4 5 6	848.056	46.24	20.55	3.25	28.01	42.03	46.00	-3.97	QP

Above 1GHz:

Band 1:

	802.11a mode Lowest channel (Peak Value)										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10360.00	41.05	39.23	13.84	41.34	52.78	68.20	-15.42	Vertical			
10360.00	40.26	39.23	13.84	41.34	51.99	68.20	-16.21	Horizontal			
		802.11	a mode Lowe	est channe	l (Average V	alue)					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10360.00	29.68	39.23	13.84	41.34	41.41	54.00	-12.59	Vertical			
10360.00	30.58	39.23	13.84	41.34	42.31	54.00	-11.69	Horizontal			

	802.11a mode Middle channel (Peak Value)										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10400.00	41.28	39.36	13.85	41.27	53.22	68.20	-14.98	Vertical			
10400.00	40.59	39.36	13.85	41.27	52.53	68.20	-15.67	Horizontal			
		802.11	a mode Mido	lle channe	l (Average V	alue)					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10400.00	33.57	39.36	13.85	41.27	45.51	54.00	-8.49	Vertical			
10400.00	35.26	39.36	13.85	41.27	47.20	54.00	-6.80	Horizontal			

	802.11a mode Highest channel (Peak Value)										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10480.00	41.26	39.56	13.90	41.06	53.66	68.20	-14.54	Vertical			
10480.00	40.18	39.56	13.90	41.06	52.58	68.20	-15.62	Horizontal			
		802.11a	a mode High	est channe	I (Average \	/alue)					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10480.00	29.97	39.56	13.90	41.06	42.37	54.00	-11.63	Vertical			
10480.00	30.49	39.56	13.90	41.06	42.89	54.00	-11.11	Horizontal			

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

	802.11n20 mode Lowest channel (Peak Value)										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10360.00	41.58	39.23	13.84	41.34	53.31	68.20	-14.89	Vertical			
10360.00	42.78	39.23	13.84	41.34	54.51	68.20	-13.69	Horizontal			
		802.11n2	20 mode Lov	vest chann	el (Average	Value)					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10360.00	31.49	39.23	13.84	41.34	43.22	54.00	-10.78	Vertical			
10360.00	32.59	39.23	13.84	41.34	44.32	54.00	-9.68	Horizontal			

	802.11n20 mode Middle channel (Peak Value)										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10400.00	41.57	39.36	13.85	41.27	53.51	68.20	-14.69	Vertical			
10400.00	40.18	39.36	13.85	41.27	52.12	68.20	-16.08	Horizontal			
		802.11n	20 mode Mic	ldle chann	el (Average	Value)					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10400.00	31.24	39.36	13.85	41.27	43.18	54.00	-10.82	Vertical			
10400.00	30.28	39.36	13.85	41.27	42.22	54.00	-11.78	Horizontal			

	802.11n20 mode Highest channel (Peak Value)										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10480.00	41.48	39.56	13.90	41.06	53.88	68.20	-14.32	Vertical			
10480.00	42.57	39.56	13.90	41.06	54.97	68.20	-13.23	Horizontal			
		802.11n2	20 mode Higl	hest chann	el (Average	Value)					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10480.00	30.28	39.56	13.90	41.06	42.68	54.00	-11.32	Vertical			
10480.00	29.00	39.56	13.90	41.06	41.40	54.00	-12.60	Horizontal			

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

	802.11n40 mode Lowest channel (Peak Value)									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
10380.00	41.58	39.29	13.84	41.31	53.40	68.20	-14.80	Vertical		
10380.00	37.46	39.29	13.84	41.31	49.28	68.20	-18.92	Horizontal		
		802.11n	40 mode Lov	vest chann	el (Average	Value)				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
10380.00	29.97	39.29	13.84	41.31	41.79	54.00	-12.21	Vertical		
10380.00	30.18	39.29	13.84	41.31	42.00	54.00	-12.00	Horizontal		

	802.11n40 mode Highest channel (Peak Value)										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10460.00	40.18	39.54	13.88	41.17	52.43	68.20	-15.77	Vertical			
10460.00	39.48	39.54	13.88	41.17	51.73	68.20	-16.47	Horizontal			
		802.11n ²	10 mode Hig	hest chann	el (Average	Value)					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10460.00	31.48	39.54	13.88	41.17	43.73	54.00	-10.27	Vertical			
10460.00	29.58	39.54	13.88	41.17	41.83	54.00	-12.17	Horizontal			

Remark.

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Band 4:

	802.11a mode Lowest channel (Peak Value)										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
11490.00	44.29	40.25	13.82	40.75	57.61	68.20	-10.59	Vertical			
11490.00	40.16	40.25	13.82	40.75	53.48	68.20	-14.72	Horizontal			
		802.11	a mode Lowe	est channe	l (Average V	alue)					
Frequency (MHz) Read Antenna Level Factor (dBuV) (dB/m) Cable Loss (dB) Preamp Factor (dBuV/m) Level Limit Line Limit (dBuV/m) (dBuV/m) (dB) Country Cable Loss (dB)								polarization			
11490.00	28.56	40.25	13.82	40.75	41.88	54.00	-12.12	Vertical			
11490.00	24.54	40.25	13.82	40.75	37.86	54.00	-16.14	Horizontal			

	802.11a mode Middle channel (Peak Value)									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
11570.00	40.16	40.17	13.78	40.91	53.20	68.20	-15.00	Vertical		
11570.00	40.29	40.17	13.78	40.91	53.33	68.20	-14.87	Horizontal		
		802.11	a mode Mido	dle channe	(Average V	alue)				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
11570.00	29.47	40.17	13.78	40.91	42.51	54.00	-11.49	Vertical		
11570.00	28.56	40.17	13.78	40.91	41.60	54.00	-12.40	Horizontal		

	802.11a mode Highest channel (Peak Value)										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
11650.00	41.25	39.89	13.74	41.06	53.82	68.20	-14.38	Vertical			
11650.00	41.56	39.89	13.74	41.06	54.13	68.20	-14.07	Horizontal			
		802.11a	mode High	est channe	I (Average \	/alue)					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
11650.00	30.57	39.89	13.74	41.06	43.14	54.00	-10.86	Vertical			
11650.00	29.63	39.89	13.74	41.06	42.20	54.00	-11.80	Horizontal			

Remark:

Final Level =Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor
 The emission levels of other frequencies are very lower than the limit and not show in test report.

	802.11n20 mode Lowest channel (Peak Value)									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
11490.00	41.28	40.25	13.82	40.75	54.60	68.20	-13.60	Vertical		
11490.00	40.26	40.25	13.82	40.75	53.58	68.20	-14.62	Horizontal		
		802.11n2	20 mode Lov	vest chann	el (Average	Value)				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
11490.00	35.85	40.25	13.82	40.75	49.17	54.00	-4.83	Vertical		
11490.00	30.46	40.25	13.82	40.75	43.78	54.00	-10.22	Horizontal		

	802.11n20 mode Middle channel (Peak Value)									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
11570.00	41.30	40.17	13.78	40.91	54.34	68.20	-13.86	Vertical		
11570.00	42.56	40.17	13.78	40.91	55.60	68.20	-12.60	Horizontal		
		802.11n	20 mode Mic	ldle chann	el (Average	Value)				
Frequency (MHz) Read Level Factor (dBuV) (dB/m) Read Level Factor (dB/m) Cable Factor (dB) Preamp Factor (dBuV/m) Factor (dB) Level Limit Line Limit (dBuV/m) (dBuV/m) (dB) polarization								polarization		
11570.00	28.74	40.17	13.78	40.91	41.78	54.00	-12.22	Vertical		
11570.00	26.59	40.17	13.78	40.91	39.63	54.00	-14.37	Horizontal		

	802.11n20 mode Highest channel (Peak Value)									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
11650.00	39.78	39.89	13.74	41.06	52.35	68.20	-15.85	Vertical		
11650.00	40.26	39.89	13.74	41.06	52.83	68.20	-15.37	Horizontal		
		802.11n2	20 mode Hig	hest chann	el (Average	Value)				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
11650.00	30.15	39.89	13.74	41.06	42.72	54.00	-11.28	Vertical		
11650.00	30.46	39.89	13.74	41.06	43.03	54.00	-10.97	Horizontal		

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n40 mode Lowest channel (Peak Value)								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11510.00	41.26	40.26	13.83	40.77	54.58	68.20	-13.62	Vertical
11510.00	40.58	40.26	13.83	40.77	53.90	68.20	-14.30	Horizontal
802.11n40 mode Lowest channel (Average Value)								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11510.00	25.36	40.26	13.83	40.77	38.68	54.00	-15.32	Vertical
11510.00	27.46	40.26	13.83	40.77	40.78	54.00	-13.22	Horizontal

802.11n40 mode Highest channel (Peak Value)								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11590.00	36.59	40.08	13.77	40.95	49.49	68.20	-18.71	Vertical
11590.00	35.42	40.08	13.77	40.95	48.32	68.20	-19.88	Horizontal
802.11n40 mode Highest channel (Average Value)								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11590.00	25.16	40.08	13.77	40.95	38.06	54.00	-15.94	Vertical
11590.00	24.96	40.08	13.77	40.95	37.86	54.00	-16.14	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

6.8 Frequency stability

Test Requirement:	ECC Part15 E Section 15 407 (a)				
•	FCC Part15 E Section 15.407 (g)				
Limit:	Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within				
	the band of operation under all conditions of normal operation as				
	specified in the user's manual.				
Test setup:	Temperature Chamber				
	Spectrum analyzer EUT				
	Att.				
	Variable Power Supply				
	Note: Measurement setup for testing on Antenna connector				
Test procedure:	1. The EUT is installed in an environment test chamber with external power source.				
	Set the chamber to operate at 50 centigrade and external power source to output at nominal voltage of EUT.				
	A sufficient stabilization period at each temperature is used prior to each frequency measurement.				
	4. When temperature is stabled, measure the frequency stability.				
	5. The test shall be performed under -30 to 50 centigrade and 85 to 115 percent of the nominal voltage. Change setting of chamber and external power source to complete all conditions.				
Test Instruments:	Refer to section 5.6 for details				
Test mode:	Refer to section 5.3 for details, and all channels have been tested, only shows the worst channel data in this report.				
Test results:	Refer to FCC ID: 2AB6Z-1859ATMB				