武汉大学计算机学院2011-2012学年第一学期 2009级《编译原理》参考答案

 \neg 、(1)

 $\operatorname{start} \to 0 \stackrel{\varepsilon}{\to} 1 \stackrel{1}{\to} 4 \stackrel{0}{\to} 3 \stackrel{\varepsilon}{\to} 1 \stackrel{0}{\to} 1 \stackrel{1}{\to} 4$

(2)

$$A = \{0,1,2\}$$

$$B = \{1,2,3\}$$

$$C = \{4,5\}$$

$$D = \{1,2\}$$

状态转换图为:

(3) 两个等价状态集合 $P = \{A, B, D\}, Q = \{C\}.$ 最小状态自动机如下:

- (4) 以1结尾,且没有连续的1.
- (5) r = 0*(100*)*1
- 二、(1)最左推导如下:

$$\begin{array}{ccc} D & \underset{lm}{\Longrightarrow} & T \, L \\ & \underset{lm}{\Longrightarrow} & \operatorname{int} L \\ & \underset{lm}{\Longrightarrow} & \operatorname{int} L, \operatorname{id} \\ & \underset{lm}{\Longrightarrow} & \operatorname{int} \operatorname{id}, \operatorname{id} \end{array}$$

(2) 消除左递归后的文法如下:

$$\begin{array}{ccc} D & \to & T\,L \\ T & \to & \mathrm{int} \mid \mathrm{char} \\ L & \to & \mathrm{id} \; L' \\ L' & \to & , \; \mathrm{id} \mid \varepsilon \end{array}$$

(3) $\operatorname{First}(D) = \operatorname{First}(T) = \{\operatorname{int}, \operatorname{char}\}; \operatorname{First}(L) = \{\operatorname{id}\}; \operatorname{First}(L') = \{\varepsilon, `, `\}.$ $\operatorname{Follow}(S) = \operatorname{Follow}(L) = \operatorname{Follow}(L' = \{\$\}; \operatorname{Follow}(T) = \{\operatorname{id}\}.$

(4)

	id	,	int	char	\$
D			$D \to TL$	$D \to TL$	
T			$T \to \text{int}$	$T \to \text{char}$	
L	$L \to \operatorname{id} L'$				
L'		$L' \to , id L'$			$L' \to \varepsilon$

(5) 语句"int id, id"的分析过程如下所示:

剩余串	分析栈	分析动作
int id, id \$	D\$	$D \to TL$
int id, id \$	TL\$	$T \to \text{int}$
int id, id \$	$\operatorname{int} L\$$	match-advance
id, id \$	L\$	$L \to \mathrm{id}L'$
id, id \$	$\operatorname{id} L'\$$	match-advance
, id \$	L'\$	$L' \to , idL''$
, id \$, id L' \$	match-advance
id \$	$\operatorname{id} L'$ \$	match-advance
\$	L'\$	$L' \to \varepsilon$
\$	\$	分析成功

三、 (1) "id * id > id"的两颗不同的语法树:

语法树1:

语法树2:

(2)

$$T \rightarrow T * F \mid F$$

 $F \rightarrow \text{id} > F \mid \text{id}$

四、(1) 识别活前缀的自动机在吃进 id 之后到达状态 I_6 ,不能再接受任何符号,因此 id * id > 不是活前缀;而识别活前缀的自动机在吃进 T*T > 之后到达状态 I_4 ,所对应的LR(0)项目集即是其有效项目集:

$$\begin{split} & \overline{\{T \to T \bullet > T\}} \\ = & \{T \to T \bullet > T, \, T \to \bullet T * T, \, T \to \bullet T > T, \, T \to \bullet \mathrm{id} \} \end{split}$$

- (2) $First(T) = \{ id \}, Follow(T) = \{ *, >, \$ \}.$
- (3) SLR分析表如下所示:

	action				goto
状态	*	>	id	\$	E
0			s6		1
1	s2	s4		acc	
2			s6		3
3	r1	s4		r1	
4			s6		5
5	s2	s4		r2	
6	r3	r3		r3	

(4) "id * id > id"的分析过程如下所示:

剩余串	分析栈	分析动作
id * id > id\$	0	shift
*id > id\$	0id6	reduce $T \to id$
*id > id\$	0T1	shift
id > id\$	0T1 * 2	shift
> id\$	0T1 * 2id6	reduce $T \to id$
> id\$	0T1 * 2T3	shift
id\$	0T1 * 2T3 > 4	shift
\$	0T1 * 2T3 > 4id6	reduce $T \to id$
\$	0T1 * 2T3 > 4T5	reduce $T \to T > T$
\$	0T1 * 2T3	reduce $T \to T * T$
\$	0T1	分析成功

五、(1)

产生式 语义规则
$$T \to T_1 * T_2 \qquad T.\text{class} = \text{prod.}$$

$$T.\text{type} = T_1.\text{type} + \text{","} + T_2.\text{type.}$$

$$T \to T_1 > T_2 \qquad \text{if} \quad T_2.\text{class} = \text{prod} \quad \text{then error else}$$

$$T.\text{class} = \text{func.}$$

$$T.\text{type} = T_2.\text{type} + \text{"(*)("} + T_1.\text{type} + \text{")".}$$

$$T \to (T_1) \qquad T.\text{type} = T_1.\text{type.}$$

$$T.\text{class} = T_1.\text{class.}$$

$$T \to \text{id} \qquad T.\text{class} = \text{basic.}$$

$$T.\text{type} = \text{id.lexme.}$$

(2) "((int * char) > int" 的附注语法树(注: 限于篇幅, 省略了语法树中的括号部分):

六、

七、Program 1中的main用传值方式调用foo时,首先对实参1,A和B 求值,即将指向函数A和B的指针传给foo,并没有调用函数A和B。执行((b? f: g))后结果为指向函数A的指针,((b? f: g))()即调用函数A,故返回10正常退出。即相当于传名。

而 $Program\ 2$ 中的main用传值方式调用foo时,首先对实参1, x + y和x / y求值求值,而y = 0, 因此报浮点数异常。