TERM TEST, WINTER 2015

February 12, 6:00-8:00 PM

COURSE: ECE 4260 Communication Systems

DEPARTMENT: Electrical and Computer Engineering

TIME ALLOWED: 2 HOURS

EXAMINER: P. Yahampath PAGE NO: 1 OF 8

• Closed-book exam:

- No printed or handwritten material of any form allowed.
- No Internet access or the use of any other form of electronic media permitted.
- A non-programmable calculator may be used.
- Answer all 6 questions. For full credit, you must clearly show how you arrive at the solution, including all relevant calculations. Solutions without intermediate steps will not receive any marks.

3 Marks

- 1. Write brief (but clear) answers to the following questions.
 - (a) What are the important advantages of digital communication compared to analog communication? List at least two.
 - (b) What is the main advantage of conventional AM over DSB-SC AM?
 - (c) What is the main advantage of FM over conventional AM?

4 Marks

2. The carrier signal $c(t) = 100\cos(20 \times 10^4 \pi t)$ DSB-SC modulated using the following message.

$$m(t) = \cos 8000\pi t + \sin 8000\pi t$$

- (a) Write down a time-domain expression for the modulated signal.
- (b) Determine the Fourier transform the modulated signal.
- (c) Plot and label the magnitude spectrum of the modulated signal.

3 Marks

3. A message signal is shown below (plotted to scale).

A frequency modulator (FM) is available to you.

- (a) You are supposed to generate a *phase modulated* (PM) signal using the message m(t) shown above. How would you do this using the FM modulator available to you? Explain with the aid of a simple block diagram.
- (b) Suppose you can adjust the sensitivity (in Hz/volts) of the FM modulator. If the PM signal you generate in part (a) is required to have a maximum phase deviation of 1.5 radians, to what value would you set the FM modulator sensitivity? Why?

TERM TEST, WINTER 2015

February 12, 6:00-8:00 PM

COURSE: ECE 4260 Communication Systems

DEPARTMENT: Electrical and Computer Engineering

TIME ALLOWED: 2 HOURS

EXAMINER: P. Yahampath PAGE NO: <u>2 OF 8</u>

1 Mark

4. A sinusoidal message signal is used to angle modulate a carrier of 100 kHz. The frequency spectrum of the modulated signal as displayed on a spectrum analyzer is shown below (only the positive frequency axis shown). Assuming that the spectrum has no other significant components, estimate the maximum phase deviation of the modulated carrier.

4 Marks

5. The *periodic* message signal m(t) shown below has most of its total power contained in the first 30 harmonics. This message is applied to a frequency modulator whose carrier frequency and amplitude are 1 MHz and 100 mV respectively, and the sensitivity is 1.2 kHz/v.

- (a) Plot and label the frequency deviation (in kHz) of the modulated carrier as a function of time.
- (b) Plot and label the phase deviation (in radians) of the modulated carrier as a function of time.
- (c) Find an estimate for the bandwidth of the modulated signal.
- (d) Find the average power of the modulated signal.

TERM TEST, WINTER 2015

February 12, 6:00-8:00 PM

COURSE: ECE 4260 Communication Systems

DEPARTMENT: Electrical and Computer Engineering

TIME ALLOWED: $\mathbf{2}$ HOURS

EXAMINER: P. Yahampath PAGE NO: <u>3 OF 8</u>

5 Marks 6. Shown below is a block diagram of a modulator, where m(t) is the message signal.

The signal x(t) is a full-wave rectified sinusoidal as shown (note that time is in μs). The center frequency and the bandwidth of the BPF are 198 kHz and 4 kHz respectively.

- (a) Suppose $m(t) = 1000 \text{sinc}^2(4000t)$. Determine the Fourier transform of m(t) and plot its frequency spectrum.
- (b) Plot the frequency spectrum of the modulated signal y(t).
- (c) What kind of a modulator is this (DSB-SC, conv. AM, SSB, FM, PM)?
- (d) What is the carrier frequency?

– END OF TEST —

TERM TEST, WINTER 2015

February 12, 6:00-8:00 PM

COURSE: ECE 4260 Communication Systems

DEPARTMENT: Electrical and Computer Engineering

TIME ALLOWED: 2 HOURS

EXAMINER: P. Yahampath

PAGE NO: <u>4 OF 8</u>

Appendix

• Carson's rule: $2(\beta + 1)W$

• Trigonometric identities:

$$\cos[2\pi f_c t + a \sin 2\pi f_m t] = \sum_{n=-\infty}^{\infty} J_n(a) \cos[2\pi (f_c + n f_m) t]$$

$$\cos[2\pi f_c t + a \cos 2\pi f_m t] = \sum_{n=-\infty}^{\infty} J_n(a) \cos[2\pi (f_c + n f_m) t + \frac{n\pi}{2}]$$

$$\cos^3 x = \frac{1}{4} (3 \cos x + \cos 3x)$$

$$\sin^3 x = \frac{1}{4} (3 \sin x - \sin 3x)$$

$$\sin x = \frac{1}{2j} (e^{ix} - e^{-jx})$$

$$\sin(x \pm y) = \sin x \cos y \pm \cos x \sin y$$

$$\cos(x \pm \frac{\pi}{2}) = \mp \sin x$$

$$\sin(x \pm \frac{\pi}{2}) = \pm \cos x$$

$$\sin(x \pm y) = \frac{\tan x \pm \tan y}{1 \mp \tan x \tan y}$$

$$\sin(x \pm y) = \frac{\tan x \pm \tan y}{1 \mp \tan x \tan y}$$

$$\sin(x \pm y) = \frac{\tan x \pm \tan y}{1 \mp \tan x \tan y}$$

$$\sin(x \pm y) = \frac{\tan x \pm \tan y}{1 \mp \tan x \tan y}$$

$$\sin(x \pm y) = \frac{1}{2} [\cos(x - y) - \cos(x + y)]$$

$$\cos^2 x - \sin^2 x = \cos 2x$$

$$\sin^2 x + \cos^2 x = 1$$

$$\cos^2 x - \sin^2 x = \cos 2x$$

$$\sin^2 x \cos x = \frac{1}{2} [1 + \cos 2x)$$

$$\sin^2 x = \frac{1}{2} [1 - \cos 2x]$$

TERM TEST, WINTER 2015

February 12, 6:00-8:00 PM

COURSE: ECE 4260 Communication Systems

DEPARTMENT: Electrical and Computer Engineering

TIME ALLOWED: 2 HOURS

EXAMINER: P. Yahampath

PAGE NO: <u>5 OF 8</u>

Note: $J_{-n}(\beta) = (-1)^n J_n(\beta)$

TERM TEST, WINTER 2015

February 12, 6:00-8:00 PM

PAGE NO: <u>6 OF 8</u>

COURSE: ECE 4260 Communication Systems

DEPARTMENT: Electrical and Computer Engineering

TIME ALLOWED: 2 HOURS

EXAMINER: P. Yahampath

Table of Common Fourier Series

Name	Waveform	a ₀	a _k	Comments
1. Square wave	X_0	0	$-j\frac{2X_0}{\pi k}$ when k is odd	a _k = 0 when k is even
2. Sawtooth	$X(t)$ X_0	$\frac{X_0}{2}$	$j\frac{X_0}{2\pi k}$	
3. Triangular wave	$X(t)$ X_0 T_0 t	$\frac{X_0}{2}$	$\frac{-2X_0}{(\pi k)^2}$ when k is odd	a _k = 0 when k is even
4. Full-wave rectified	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{2X_0}{\pi}$	$\frac{2X_0}{\pi(1-4k^2)}$	
5. Half-wave rectified	$\begin{array}{c c} X(t) & & & & \\ \hline X_0 & & & & \\ \hline -T_0 & & & & \\ \hline \end{array}$	$\frac{X_0}{\pi}$	$\frac{X_0}{\pi(1-k^2)}$ when k is even	$a_k = 0$ when k is odd, except $a_{1=-j} \frac{X_0}{4}$
6. Rectangular Wave	X_0	$\frac{wX_0}{T_0}$	$\frac{wX_0}{T_0} sinc \frac{wk\omega_0}{2}$ $\frac{wX_0}{T_0} \frac{\sin \frac{wk\omega_0}{2}}{\frac{wk\omega_0}{2}}$ $\frac{X_0}{k\pi} \sin \frac{wk\omega_0}{2}$	$\omega_0 = \frac{2\pi}{T_0}$ $sinc(x) = \frac{\sin x}{x}$
7. Impulse train	$X_0 \wedge X_0 $	$\frac{X_0}{T_0}$	$\frac{X_0}{T_0}$	

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t} = a_0 + \sum_{k=1}^{\infty} 2|a_k|\cos(k\omega_0 t + \angle a_k)$$

TERM TEST, WINTER 2015

February 12, 6:00-8:00 PM

COURSE: ECE 4260 Communication Systems

DEPARTMENT: Electrical and Computer Engineering

TIME ALLOWED: 2 HOURS

EXAMINER: P. Yahampath PAGE NO: 7 OF 8

TABLE OF FOURIER TRANSFORMS

Time Domain $(x(t))$	Frequency Domain $(X(f))$	
$\delta(t)$	1	
1	$\delta(f) \ e^{-j2\pi f t_0}$	
$\delta(t-t_0)$ $e^{j2\pi f_0 t}$	$e^{-j2\pi j t_0}$ $\delta(f-f_0)$	
$\cos(2\pi f_0 t)$	$\frac{\delta(f - f_0)}{\frac{1}{2}\delta(f - f_0) + \frac{1}{2}\delta(f + f_0)}$	
	2 2 2	
$\sin(2\pi f_0 t)$	$-\frac{1}{2j}\delta(f+f_0) + \frac{1}{2j}\delta(f-f_0)$	
$\begin{cases} 1, & t < \frac{1}{2} \end{cases}$	$\sin(\pi f)$	
$\Pi(t) = \begin{cases} 1, & t < \frac{1}{2} \\ \frac{1}{2}, & t = \pm \frac{1}{2} \\ 0, & \text{otherwise} \end{cases}$	$\operatorname{sinc}(f) = \frac{\sin(\pi f)}{\pi f}$	
0, otherwise	· . <i>J</i>	
$\operatorname{sinc}(t)$	$\Pi(f)$	
$\begin{cases} t+1, & -1 \le t < 0 \end{cases}$. 240	
$\Lambda(t) = \begin{cases} t + 1, & -1 \le t < 0 \\ -t + 1, & 0 \le t < 1 \\ 0, & \text{otherwise} \end{cases}$	$\operatorname{sinc}^2(f)$	
$\sin c^2(t)$	$\Lambda(f)$	
$ sinc2(t) $ $ e^{-\alpha t}u_{-1}(t), \alpha > 0 $	$\frac{\Lambda(f)}{\frac{1}{\alpha+j2\pi f}}$	
$te^{-\alpha t}u_{-1}(t), \alpha > 0$	$\alpha + j2\pi f$ 1	
	$\frac{1}{(\alpha+j2\pi f)^2}$ $\frac{2\alpha}{\alpha^2+(2\pi f)^2}$	
$e^{-\alpha t }$	$\frac{2\alpha}{\alpha^2+(2\pi f)^2}$	
$e^{-\pi t^2}$	$e^{-\pi f^2}$	
$sgn(t) = \begin{cases} 1, & t > 0 \\ -1, & t < 0 \\ 0, & t = 0 \end{cases}$	1//1 6	
$\operatorname{sgn}(t) = \begin{cases} -1, & t < 0 \\ 0, & t = 0 \end{cases}$	$1/(j\pi f)$	
$ \begin{array}{cc} (0, & t = 0) \\ u_{-1}(t) \end{array} $	$\frac{1}{8}\delta(f) \perp \frac{1}{1}$	
$\delta'(t)$	$\frac{1}{2}\delta(f) + \frac{1}{j2\pi f}$	
$\delta^{(n)}(t)$	$j2\pi f$ $(j2\pi f)^n$	
	$-j\pi \operatorname{sgn}(f)$	
$\sum_{n=-\infty}^{n=+\infty} \frac{\frac{1}{t}}{\delta(t-nT_0)}$	$\frac{1}{T_0}\sum_{n=-\infty}^{n=+\infty}\delta\left(f-\frac{n}{T_0}\right)$	
∠n=-∞ ************************************	$T_0 \angle n = -\infty$ $(J T_0)$	

TERM TEST, WINTER 2015

February 12, 6:00-8:00 PM

COURSE: ECE 4260 Communication Systems

DEPARTMENT: Electrical and Computer Engineering

TIME ALLOWED: 2 HOURS

EXAMINER: P. Yahampath

PAGE NO: <u>8 OF 8</u>

TABLE 2.2	TABLE OF FOURIER-TRANSFORM PROPERTIES
------------------	---------------------------------------

Signal	Fourier Transform $\alpha X_1(f) + \beta X_2(f)$	
$\overline{\alpha x_1(t) + \beta x_2(t)}$		
X(t)	x(-f)	
x(at)	$\frac{1}{ a }X\left(\frac{f}{a}\right)$	
$x(t-t_0)$	$e^{-j2\pi f t_0}X(f)$	
$e^{j2\pi f_0 t}x(t)$	$X(f-f_0)$	
$x(t) \star y(t)$	X(f)Y(f)	
x(t)y(t)	$X(f) \star Y(f)$	
$\frac{d}{dt}x(t)$	$j2\pi f X(f)$	
$\frac{d^n}{dt^n}x(t)$	$(j2\pi f)^n X(f)$	
tx(t)	$\left(\frac{j}{2\pi}\right)\frac{d}{df}X(f)$	
$t^n x(t)$	$\left(\frac{j}{2\pi}\right)^n \frac{d^n}{df^n} X(f)$	
$\int_{-\infty}^{t} x(\tau) d\tau$	$\frac{X(f)}{j2\pi f} + \frac{1}{2}X(0)\delta(f)$	