Two Views Are Better than One: Monocular 3D Pose Estimation with Multiview Consistency

Christian Keilstrup Ingwersen¹, Rasmus Tirsgaard², Rasmus Nylander¹, Janus Nørtoft Jensen³, Anders Bjorholm Dahl², and Morten Rieger Hannemose²

Trackman A/S¹

Technical University of Denmark²

Presented by

DaeYong Kim, Dept. of Artificial Intelligence, Ajou University

Introduction & Background

Objective

• The challenge of estimating 3D human pose from a single 2D image

Limitations of Previous Methods

- 3D data is accurate but expensive and hard to obtain
- 2D data is abundant but lacks of depth information, depth ambiguity issue

Consistency Loss

- Enforces consistency between 3D poses inferred from different views
- Uses Procrustes analysis to align 3D posed from Multiple views
- Without camera calibration, extrinsic/intrinsic parameters not needed

Overview

Similarity transformation

• It is a geometric transformation that reserves the shape of an object Scaling, Rotation, Translation

$$X' = sRX + t$$

Why is Similarity transformation

- 3D poses predicted from different camera views are in different coordinate systems.
- Directly comparing them is difficult because of **scale**, **rotation**, **and position differences**.
- To eliminate the need for camera calibration (extrinsic/intrinsic parameters).

Similarity transformation

- It is a geometric transformation that reserves the shape of an object Scaling, Rotation, Translation
- we have to calculate the optimal similarity transform with parameters $\,\hat{ heta}_{ab}$

$$\hat{\theta}_{ab} = \arg\min_{\theta} \sum_{i=1}^{n} \left| \left| \tau \left(\hat{J}_{a,i}; \theta \right) - \hat{J}_{b,i} \right| \right|_{2}^{2}$$

$$au\left(\hat{J}_{a,i};\hat{\theta}_{ab}\right) = s\hat{J}_{a,i}R + t$$

7

Procrustes Analysis

• It it a form of statistical shape analysis used to analyze the distribution of a set of shapes.

mean of Consistency Loss

- The mean difference over every pair of two cameras
- S: the total of sequences,
- V: the set of possible pairs of views of the sequence

$$\mathcal{L}_{\text{con}} = \sum_{s=1}^{S} \frac{1}{|V_s|} \sum_{(a,b) \in V_s} \mathcal{L}_{\text{c}} \left(\hat{J}_a, \hat{J}_b \right)$$

Consistency Loss

$$\mathcal{L}_{\mathrm{c}}(\hat{J}_{a}, \hat{J}_{b}) = \frac{1}{n} \sum_{i=1}^{n} \left\| \tau \left(\hat{J}_{a,i}; \hat{\theta}_{ab} \right) - \hat{J}_{b,i} \right\|_{2}$$

Experimental Setup & Datasets

Used Model

• motionBERT: 2D → 3D Pose

Experimental Setup & Datasets

Datasets

- SportsPose: Dynamic sports movements, additional views included (fine-tuning)
- Human3.6M: Used for semi-supervised learning experiments (semi-supervised learning)

Evaluations

Fine-tuning: SportsPose

	Soccer kick		Tennis serve		Baseball pitch		Volley		Jumping		All	
	MPJPE	PA	MPJPE	PA	MPJPE	PA	MPJPE	PA	MPJPE	PA	MPJPE	PA
Baseline												
MotionBERT [46]	64.2	39.5	70.7	39.7	85.0	42.2	86.8	50.0	78.0	48.9	77.1	44.1
Iqbal $et \ al. \ [14]^4$												
Fine-tuning with 3D data (2 views)												
$\mathcal{L}_{\mathrm{3D}}$ (5)			27.3									
$\mathcal{L}_{\mathrm{3D_{con}}}(6),\mathrm{Ours}$	26.1	20.5	25.4	18.8	29.4	22. 4	30.8	23.8	27.9	20.9	28.0	21.3
Only 2D fine-tuning (2 views)												
$\mathcal{L}_{ ext{2D}}(extbf{7})$	59.0	44.1	59.1	42.0	73.8	45.1	64.7	47.8	65.0	45.6	64.4	45.0
$\mathcal{L}_{ ext{2D}_{ ext{con}}}(ext{8}), ext{Ours}$	36.6	22.5	34.2	22.2	41.7	25.2	37.3	23.7	32.0	22.7	36.4	22.0

Right +		
$\underbrace{\text{view }x}$	MPJPE	PA-MPJPE
View 1	21.8	22.4
View 2	21.6	24.3
View 3	27.3	31.8
View 4	25.6	26.7
View 5	31.9	35.6
View 6	25.8	27.2

<Evaluation Table>

<Which views to use>

Evaluations

Semi-supervised: Human3.6M

• 3D data: supervised learning

• 2D data: Consistency Loss (No-labels)

Methods	$\mathbf{MPJPE} \downarrow$	PA-MPJPE ↓
Rodhin et al. (ECCV'18) [35]	131.7	98.2
Pavlakos et al. (ICCV'19) [32]	110.7	74.5
Li et al. (ICCV'19) [22]	88.8	66.5
Rodhin et al. (CVPR'18) [36]	-	65.1
Kocabas et al. (CVPR'19) [20]	-	60.2
Iqbal et al. (CVPR'20) [14]	62.8	51.4
Roy et al. (3DV'22) [37]	60.8	48.4
Ours	58.9	43.6

Limitations & Contributions

Limitations

- Performance depends on camera placements
- Requires fixed camera positions
- Requires precise camera synchronization

Contributions

- Works without camera calibration.
- Significantly improves performance even without 3D ground truth data.

Q&A