

Nome: Gabriel Henrique Allebrandt - 12866________ Data: 19 de junho de 2018

1. Controle de Qualidade. Os dados a seguir foram obtidos em um ensaio R&R. Determine os parâmetros $\%R\&R_{VT}$ e $\%R\&R_{TOL}$ desses processos de medição e indique se eles são adequados ou não e o motivo (Extraído do livro Fundamentos de Metrologia Científica e Industrial de Armando Albertazzi G. Jr. e André R. de Souza, 2^a edição, página 409).

	Peças									
Operadores		1	2	3	4	5	6	7	8	9
	Medição 1	51.3	51.23	51.27	51.24	51.17	51.22	51.16	51.12	51.2
A	Medição 2	51.18	51.17	51.26	51.07	51.32	51.09	51.18	51.12	51.25
	Medição 3	51.25	51.25	51.22	51.22	51.28	51.22	51.08	51.4	51.17
	Medição 1	51.28	51.11	51.2	51.36	51.17	51.2	51.09	51.37	51.19
В	Medição 2	51.18	51.2	51.24	51.2	51.43	51.35	51.2	51.12	51.14
	Medição 3	51.04	51.48	51.15	51.27	51.41	51.14	51.13	51.29	51.06
С	Medição 1	51.24	51.27	51.48	51.16	51.24	51.37	51.34	51.4	51.22
	Medição 2	51.18	51.25	51.17	51.05	51.35	51.21	51.17	51.24	51.29
	Medição 3	51.13	51.26	51.14	51.29	51.31	51.33	51.36	50.98	51.34

2. Ajuste Linear. Para determinar a constante de elasticidade de uma mola, um estudante pendura várias massas M em uma extremidade da mola e mede a sua correspondente dimensão l. Os resultados obtidos estão apresentados na Tabela 1. Como a força $mg = k(l-l_0)$ é o comprimento da mola sem distensão, esses dados devem se ajustar a uma reta, $l = l_0 + (g/k)m$. Faça um ajuste por mínimos quadrados para essa reta, considerando os dados apresentados, e determine as melhores estimativas para l_0 e para k. Calcule o comprimento l e sua incerteza para o peso de 1kg (Extraído do livro Introdução à análise de erros de John R. Taylor, 2^a edição, página 200).

	Peso m (gramas)	200	300	400	500	600	700	800	900
Ì	Comprimento l (cm)								

Tabela 1: Comprimento versus peso para uma mola M.

3. Medidas Correlacionadas. Considere o modelo matemático abaixo para medição de uma resistência com base nos valores simultaneamente observados de corrente e voltagem sob condições ambientais idênticas, utilizando um voltímetro e um amperímetro (ambos os instrumentos estavam com escala selecionada visando a menor incerteza associada ao conjunto de medições em questão, ver Tabelas 3 e 4), considerando a influência de correlação entre as variáveis e tendo ciência de que a temperatura ambiente estava oscilando entre 18°C e 28°C. Determine a incerteza no cálculo de R com 99.73% de confiança de acordo com a quantidade de algarismos significativos de acordo com o Método de Monte Carlo.

$$R = (V_a + V_{resol} + V_{calib} + V_{temp})/(I_a + I_{resol} + I_{calib} + I_{temp})$$
, sendo:

N	1	2	3	4	5	6	7	8
$V_a(V)$	11.04	10.73	10.04	11.29	10.73	10.64	10.27	9.94
$I_a (mA)$	110.051	107.1	100.368	113.548	106.896	107.304	102.014	98.589

Tabela 2: Medições simultâneas de voltagem e corrente

Faixa	Precisão
200mV, 2V, 20V, 200V	$\pm (0.5\% + 3D)$
1000V	$\pm (1.0\% + 5D)$

Tabela 3: Incerteza do voltímetro de 3 1/2 dígitos, segundo o certificado de calibração, válida para temperatura ambiente oscilando entre $-10^{\circ}C$ e $40^{\circ}C$.

Faixa	Incerteza				
20mA	$\pm (0.8\% + 3D)$				
200mA	$\pm (1.2\% + 4D)$				
20A	$\pm (2.0\% + 5D)$				

Tabela 4: Incerteza do amperímetro de 5 1/2 dígitos, segundo o certificado de calibração, válida para temperatura de $23^{\circ}C \pm 5^{\circ}C$ e umidade relativa < 75%.