Monoïdes - Groupes

I/ Opération

1. Définition

Une **loi de composition interne** sur un ensemble E ou **opération** dans E est une application de $E \times E$ dans E.

Si l'opération est notée * , on écrit plutôt a * b que *(a,b) pour l'image du couple (a,b)

*:
$$E \times E \rightarrow E$$

 $(a,b) \rightarrow a*b$

On utilise aussi les notations : +, o, \bullet , \times , \bot , \star ...

Exemples:

- \triangleright L'addition et la multiplication dans \mathbb{N}
- \triangleright L'intersection, la réunion, la différence dans $\mathcal{P}(E)$.
- La concaténation (&) dans l'ensemble des mots (ex "ISEN-" & "YNCREA" = "ISEN-YNCREA")
- La fonction qui, à deux points du plan, associe leur milieu.
- \triangleright La composition \circ des applications d'un ensemble E vers lui-même.

Contre-exemples:

- La multiplication d'un vecteur par un réel
- \triangleright La division dans \mathbb{R}
- \triangleright L'addition dans $\{-3, -2, -1, 0, 1, 2, 3\}$
- \triangleright Le produit scalaire \mathbb{R}^2

2. Table d'opération (table de Pythagore) pour un ensemble fini

Une opération "quelconque"						L'addition dans $\mathbb{Z}/6\mathbb{Z}$							La multiplication dans $\mathbb{Z}/4\mathbb{Z}$					
dans $\{a,b,c,d\}$																		
1	a	b	С	d		0	1	2	3	4	5			0	1	2	3	
					0	0	1	2	3	4	5							
a	b	a	b	b	1	1	2	3	4	5	0		0	0	0	0	0	
b	С	С	b	a	2	2	3	4	5	0	1		1	0	1	2	3	
С	b	b	d	c	3	3	4	5	0	1	2		2	0	2	0	2	
					4	4	5	0	1	2	3							
d	d	a	d	b	5	5	0	1	2	3	4		3	0	3	2	1	

2. Propriétés

Soit (E, *) un ensemble muni d'une opération *, on dit que :

- \triangleright la loi * est associative ssi $\forall a, b, c \in E, a*(b*c) = (a*b)*c$
- ➤ la loi * est commutative ssi $\forall a, b \in E, a*b = b*a$

Exemples:

- \triangleright L'addition et la multiplication dans \mathbb{N} sont commutatives et associatives.
- \triangleright La soustraction dans \mathbb{Z} n'est ni commutative ni associative.
- \triangleright L'intersection, la réunion dans $\mathcal{P}(E)$ sont commutatives et associatives.
- La concaténation est associative mais pas commutative.
- \triangleright Le produit vectoriel de 2 vecteurs de l'espace n'est ni commutatif ni associatif. Par exemple si $(\vec{i}, \vec{j}, \vec{k})$

est la base orthonormée canonique, $\vec{i} \wedge \vec{j} = \dots$ et $\vec{j} \wedge \vec{i} = \dots$, $(\vec{i} \wedge \vec{j}) \wedge \vec{j} = \dots$ et $\vec{i} \wedge (\vec{j} \wedge \vec{j}) = \dots$

L'opération 'milieu' dans le plan est commutative, mais pas associative.

Associativité généralisée :

- Soient E un ensemble muni d'une opération \star , $x_1, x_2, ..., x_n$ des éléments de E.
- Un parenthésage admissible d'une expression est un parenthésage qui permet de regrouper 2 par 2 des éléments $x_1, x_2, ..., x_n$, ou des expressions calculées à partir de ceux-ci par un parenthésage plus fin. On peut définir cette notion récursivement :
 - \diamond (initialisation) Une expression constituée d'un unique élément x_i est bien parenthésée.
 - Le parenthésage $(expression_1 * expression_2)$ est admissible si et seulement si les deux expressions sont bien parenthésées.
 - Remarque: Le parenthésage le plus externe n'est pas complètement utile, et ne sert qu'à continuer la construction si d'autres termes doivent s'ajouter à l'expression. Ainsi, dans une expression munie d'un parenthésage admissible, on omet souvent le jeu de parenthèses externes.

Par exemple, l'expression $(x_1 \star x_2)$ est bien parenthésée mais on l'écrit plutôt $x_1 \star x_2$,

l'expression $(x_1 \star (x_2 \star x_3))$ est bien parenthésée mais on l'écrit plutôt $x_1 \star (x_2 \star x_3)$

- \triangleright Si l'opération \star est **associative**, tous les parenthésages admissibles de $x_1 \star x_2 \star ... \star x_n$ donnent le même résultat. On convient alors de ne pas écrire de parenthèses.
- Si l'opération \star est **commutative et associative**, alors quelle que soit la permutation σ des indices 1,2,..,n, l'expression $x_{\sigma(1)} \star x_{\sigma(2)} \star ... \star x_{\sigma(n)}$ donne toujours le même résultat.

On convient de le noter $\underset{i=1}{\overset{n}{\star}} x_i$, l'ordre n'ayant pas d'importance.

En notation additive, on aura $\sum_{i=1}^{n} x_i$ et en notation multiplicative $\prod_{i=1}^{n} x_i$

Notations:

- Si l'opération est commutative, on la note *souvent* '+' comme une addition Exemple : Synthèse additive : bleu+vert = RGB(0,0,1)+RGB(0,1,0) = RGB(0,1,1) = cyan
- Si l'opération n'est pas commutative (ou si on ne le sait pas), on la note *souvent* '.' comme une multiplication. Exemples : la composée de 2 applications f et g peut se noter $f \circ g$ ou $f \cdot g$ ou $f \cdot g$

la chaîne concaténée de s_1 et s_2 sera notée s_1 . s_2

3. Elément neutre, symétrique

Soit (E,*) un ensemble muni d'une opération *, on dit que :

- \triangleright un élément e de E est élément neutre de la loi * ssi $\forall a \in E, a * e = a$ et e * a = a
- ➤ Dans ce cas, on dit qu'un élément a de E est symétrisable pour la loi * ssi $\exists b \in E$, a*b=e et b*a=e. On dit alors que b est **un** symétrique de a.

Exemples:

- Addition dans $\mathbb{N}: 0$ est élément neutre mais seul 0 possède un symétrique (opposé).
- \triangleright Multiplication dans \mathbb{Z} : 1 est élément neutre mais seuls 1 et -1 possèdent un symétrique (inverse).
- \triangleright \mathbb{R} n'a pas d'élément neutre pour la soustraction.
- \nearrow est élément neutre de la réunion dans $\mathcal{P}(E)$ et lui seul possède un symétrique. E est élément neutre de l'intersection dans $\mathcal{P}(E)$ et lui seul possède un symétrique.
- La chaîne vide est élément neutre de la concaténation.
- \triangleright \mathbb{R}^3 n'a pas d'élément neutre pour le produit vectoriel
- Le plan n'a pas d'élément neutre pour l'opération 'milieu'

 \triangleright I est élément neutre de la multiplication des matrices $n \times n$. Une matrice a un symétrique (inverse) si et seulement si son déterminant est non nul.

Notations:

- \triangleright Si l'opération est notée '+', l'élément neutre est noté '0' et le symétrique d'un élément x est appelé son opposé et noté '-x' (sous réserve d'unicité! voir plus loin)
- \triangleright Si l'opération est notée multiplicativement, l'élément neutre est appelé unité et noté '1' et le symétrique d'un élément x est appelé son inverse et noté ' x^{-1} ' (sous réserve d'unicité! voir plus loin)

Attention on évitera les notations $\frac{1}{x}$ et $\frac{y}{x}$

car si l'opération \star n'est pas commutative, on peut avoir $y \star \frac{1}{x} \neq \frac{1}{x} \star y$

Exemple : pour des matrices A et B, distinguer A B^{-1} et $B^{-1}A$

4. Elément absorbant

Soit (E,*) un ensemble muni d'une opération * , on dit que :

 \triangleright un élément a de E est élément absorbant la loi * ssi $\forall x \in E, a * x = a$ et x * a = a

Exemples:

- Multiplication dans \mathbb{N} , \mathbb{Z} ou \mathbb{R} : 0 est élément absorbant
- \triangleright Dans $\mathcal{P}(E)$, E est absorbant pour la réunion et \varnothing absorbant pour l'intersection.
- Synthèse additive des couleurs : RGB(0,0,0) est neutre et RGB(1,1,1) absorbant
- \triangleright Synthèse soustractive des couleurs : RGB(1,1,1) est neutre et RGB(0,0,0) absorbant

4. Itérations d'une opération:

 \triangleright Soit \star une loi **associative** sur *E* pour laquelle il existe un élément neutre *e* .

Soit *x* un élément de *E* et $n \in \mathbb{N}^*$.

 $x \star x \star ... \star x$ (*n* fois le terme *x*) est noté $x^{\star n}$ ou x^n (s'il n'y a pas ambiguïté ou en notation multiplicative). Par définition, on pose $x^{\star 0} = e$ ($x^0 = 1$ en notation multiplicative)

Par definition, on pose $x^{-} = e$ ($x^{-} = 1$ en notation multiplicative)

Remarque : Si la loi n'est pas associative, le parenthèsage peut avoir de l'importance.

exemple dans
$$\mathbb{R}$$
 avec la loi $x \star y = 3x + 2y$: $(x \star x) \star x = (5x) \star x = 17x$
 $x \star (x \star x) = x \star (5x) = 13x$

Pour tous n, p dans \mathbb{N} on a $x^{*n} \star x^{*p} = x^{*(n+p)}$ ou, plus simplement, $x^n x^p = x^{(n+p)}$

et
$$(x^{*n})^{*p} = x^{*(np)}$$
 ou, plus simplement, $(x^n)^p = x^{np}$

ightharpoonup Si x est inversible, pour $n \in \mathbb{N}$ on pose $x^{\star (-n)} = (x^{\star n})^{-1}$ ou, plus simplement, $x^{-n} = (x^n)^{-1}$

On a alors pour tous n, p dans $\mathbb{Z} x^n x^p = x^{(n+p)}$ et $(x^n)^p = x^{np}$

> Attention! Si \star n'est pas commutative, on n'a pas forcément $(x \star y)^n = x^{\star n} \star y^{\star n}$

Exemple: pour des matrices $n \times n (AB)^2 = ABAB$ et pas forcément A^2B^2

En notation additive on écrit x + x + ... + x = nx et 0x = 0 (plus précisément $0_{\mathbb{Z}}x = 0_{\mathbb{F}}$)

Les propriétés s'écrivent alors $\forall n, p \in \mathbb{N} \ (\forall n, p \in \mathbb{Z} \text{ si } x \text{ a un opposé})$:

$$nx + px = (n+p)x$$
, $n(px) = (np)x$

II/ Monoïde

1. Définition

Un ensemble E muni d'une opération * est un **monoïde** si

- □ la loi * est associative
- □ et *E* admet un élément neutre pour la loi *.

Exemples:

- Addition dans \mathbb{N} , \mathbb{Z} , \mathbb{R} ou \mathbb{C} : 0 est élément neutre
- \triangleright Multiplication dans \mathbb{N} , \mathbb{Z} , \mathbb{R} ou \mathbb{C} : 1 est élément neutre
- \triangleright L'ensemble A^A des applications de A dans lui-même est un monoïde pour la loi \circ . Id est l'élément neutre.
- \triangleright L'ensemble $\mathcal{L}(E)$ est endomorphismes d'un espace vectoriel E est un monoïde pour la loi \circ .
- L'ensemble des chaînes de caractères est un monoïde pour la concaténation.

2. Propriétés

Dans un monoïde (E,*):

- > L'élément neutre est unique
- Si un élément a admet un symétrique, alors ce symétrique est unique. On note alors $a^{*(-1)}$ (ou, plus simplement a^{-1}) le symétrique de a.
- \triangleright Si deux éléments a et b sont symétrisables, alors a*b est symétrisable et $(a*b)^{-1} = b^{-1}*a^{-1}$.

Remarques:

- L'application $f: \mathbb{N} \to \mathbb{N}$ a plusieurs inverses à gauche, dont $g_0: \mathbb{N} \to \mathbb{N}$ et $g_1: \mathbb{N} \to \mathbb{N}$ car $g_0 \circ f = g_1 \circ f = id$ mais $g_0(9) = 0$ et $g_1(9) = 1$. mais f n'a pas d'inverse à droite.
- ightharpoonup Soit $A \in M_n(\mathbb{R})$. A est inversible \Leftrightarrow A est inversible à gauche \Leftrightarrow A est inversible à droite \Leftrightarrow det $A \neq 0$

3. Elément régulier

Définition: Soit (E, *) un ensemble muni d'une opération *, et $a \in E$

- ➤ $a \text{ est régulier à droite si } \forall (x, y) \in E, x*a = y*a \implies x = y$
- ightharpoonup a est régulier à gauche si $\forall (x,y) \in E, \ a * x = a * y \implies x = y$
- > a est régulier s'il est régulier à droite et à gauche

Exemples:

- Dans (\mathbb{R} ,×) 0 n'est pas un élément régulier. Tous les autres sont réguliers
- \triangleright Dans (\mathbb{N}^*,\times), tous élément est régulier
- \triangleright Dans $(\mathcal{P}(E), \cup)$, $\{a,b\} \cup \{b,c\} = \{a,c\} \cup \{b,c\}$ donc $\{b,c\}$ n'est pas régulier
- > Toute chaîne est régulière pour la concaténation

Propriété

Dans un monoïde, tout élément inversible est régulier (mais réciproque fausse)

Remarque

- \triangleright Dans (\mathbb{N}^*,\times), tous élément est régulier, mais seul 1 est inversible.
- ightharpoonup Dans $\left(M_n(\mathbb{R}),\times\right)$ une matrice est régulière si et seulement elle est inversible

4. Préordre associé à un monoïde

Soit (E, *) un monoïde. On définit la relation \mathcal{R} dans E par :

$$\forall x, y \in E / x \Re y \Leftrightarrow \exists z \in E / y = z x$$

La relation \mathcal{R} est une relation de pré-ordre sur E

La relation d'équivalence associée est la relation ≈ définie par

$$\forall x, y \in E / x \approx y \Leftrightarrow \exists z \in E / z \text{ inversible et } y = z x$$

La relation de pré-ordre R induit une relation d'ordre sur les classes d'équivalence.

Exemples

- ▶ Dans (\mathbb{Z} ,×): $a \mid b \Leftrightarrow \exists k \in \mathbb{Z}/b = k \ a$ l'équivalence associée est $a \approx b \Leftrightarrow a \mid b$ et $b \mid a \Leftrightarrow |a| = |b|$. La divisibilité dans \mathbb{Z} induit la relation d'ordre de divisibilité dans \mathbb{N}
- \triangleright Dans $(\mathcal{P}(E), \cup)$, le pré-odre associé est la relation d'inclusion. C'est ici une relation d'ordre.
- Dans l'ensemble des chaînes de caractères, la relation de pré-ordre est : $s_1 S_2 \Leftrightarrow \exists s_3/s_2 = s_3.s_1 \Leftrightarrow s_1$ est un *suffixe* (ou *section finissante*) de s_2 exemple « LABLA » est un suffixe de « BLABLABLA » C'est une relation d'ordre.

On peut aussi définir $s_1 \mathcal{P} s_2 \Leftrightarrow \exists s_3 / s_2 = s_1 \cdot s_3 \Leftrightarrow s_1 \text{ est un } \textit{préfixe} \text{ (ou } \textit{section } \textit{commençante} \text{) de } s_2$

 \triangleright Dans le monoïde $(\mathscr{L}(E), \circ)$ des endomorphismes d'un espace vectoriel E, le pré-odre associé est :

$$\forall f, g \in \mathcal{L}(E) / f \mathcal{R} g \Leftrightarrow \exists h \in \mathcal{L}(E) / g = h f \Leftrightarrow Ker(f) \subset Ker(g)$$