

Implementación de un enfoque basado en teoría de juegos para contrarrestar amenazas persistentes avanzadas

Diego Esteban Quintero Rey

Artículo de referencia

RESEARCH ARTICLE

Defending Against Advanced Persistent Threats Using Game-Theory

Stefan Rass¹*, Sandra König², Stefan Schauer²

1 Universität Klagenfurt, Institute of Applied Informatics, Klagenfurt, Austria, 2 Austrian Institute of Technology, Safety & Security Department, Klagenfurt, Austria

^{*} stefan.rass@aau.at

Amenaza Persistente Avanzada (APT)

Conjunto de procesos informáticos sigilosos orquestados por un tercero (organización, grupo delictivo, una empresa, un estado, ...) con la intención y la capacidad de atacar de forma avanzada (a través de múltiples vectores de ataque) y continuada en el tiempo, un objetivo determinado (empresa competidora, estado, ...).

Modelado de una APT

Modelado de una APT

Table 3. APT scenarios (adversary's action set AS_2 , based on Fig 2)

```
1 execute(0) → ftp_rhosts(0,1) → rsh(0,1) → ftp_rhosts(1,2) → rsh(1,2) → local_bof(2) → full_access(2)

2 execute(0) → ftp_rhosts(0,1) → rsh(0,1) → rsh(1,2) → local_bof(2) → full_access(2)

3 execute(0) → ftp_rhosts(0,2) → rsh(0,2) → local_bof(2) → full_access(2)

4 execute(0) → rsh(0,1) → ftp_rhosts(1,2) → rsh(1,2) → local_bof(2) → full_access(2)

5 execute(0) → rsh(0,1) → rsh(1,2) → local_bof(2) → full_access(2)

6 execute(0) → rsh(0,2) → local_bof(2) → full_access(2)

7 execute(0) → sshd_bof(0,1) → ftp_rhosts(1,2) → rsh(1,2) → local_bof(2) → full_access(2)

8 execute(0) → sshd_bof(0,1) → rsh(1,2) → local_bof(2) → full_access(2)
```

Controles y la variable aleatoria pérdida L_{ij}

El juego APT

Table 4. Correspondence of Attack Trees/Graphs and Extensive Form Games.

Extensive form game	Attack tree/graph
start of the game	root of the tree/graph
stage of the gameplay	node in the tree/graph
allowed moves at each stage (for the adversary)	possible exploits at each node
end of the game	leaf node (attack target)
strategies	paths from the root to the leaf (= attack vectors)
information sets	uncertainty in the attacker's current position and move

doi:10.1371/journal.pone.0168675.t004

- Atacante: Invisible (Sigiloso, puede o no estar presente)
- Defensor: Omnisciente (Tiene acceso a todo el sistema)

Matriz del juego APT

 AS_1 : controles \rightarrow globales

 AS_2 : ataques (caminos) \rightarrow vectores de ataque (puntuales)

Fig. 7. Specification of an APT Game (Example Workflow Snapshot)

Objetivo de los jugadores

- Defensor: Escoger las defensas i que minimizan la pérdida L_{ij}
- Atacante: Escoger los ataques j que maximizan la pérdida L_{ij}

Suma cero: lo que uno pierde el otro lo gana

Cálculo del equilibrio y comparación de distribuciones

• El cálculo del equilibrio se hace con el algoritmo de juego ficticio.

• La matriz del juego es una matriz de distribuciones, no una matriz de números.

• Los autores encontraron que al comparar lexicográficamente las derivadas de las KDE de las distribuciones, se logra convergencia con juego ficticio y además se obtiene un orden de preferencia \geq donde $L_1 \geq L_2$ si L_2 genera menos pérdidas

Frecuencias a KDEs

Derivadas de las KDEs y Serie de Taylor

$$f^{(k)}(x) = \frac{1}{N\sqrt{\pi}} \frac{(-1)^k}{(h \cdot \sqrt{2})^{k+1}} \times \sum_{j=1}^n \left[H_k \left(\frac{x - x_j}{h\sqrt{2}} \right) \cdot \exp \left(-\frac{(x - x_j)^2}{2h^2} \right) \right]$$

$$\tilde{f}_{\hat{L}_{ij}} \simeq \left((-1)^k f_{\hat{L}_{ij}}^{(k)}(a) \right)_{k=0}^{\infty} = (y_0, y_1, y_2, \ldots) \in \mathbb{R}^{\infty},$$

Pila de matrices de derivadas

Fig. 8. Applying Fictitious Play

Juego Ficticio en "Paralelo"

Arquitectura de la solución

Complejidad en experimentos dependientes de la topología