

| S | R | N |  |  |  |  |  |  |  |
|---|---|---|--|--|--|--|--|--|--|

## PES UNIVERSITY, BANGALORE

(Established Under Karnataka Act 16 of 2013)

**UE21MA141A** 

## JULY 2022: END SEMESTER ASSESSMENT (ESA) B. TECH I SEMESTER UE21MA141A – ENGINEERING MATHEMATICS - I

Time: 3 Hours Answer All Questions Max Marks: 100

| 1. | a) | Test the convergence of the series $\frac{\sqrt{2}-1}{3^3-1} + \frac{\sqrt{3}-1}{4^3-1} + \frac{\sqrt{4}-1}{5^3-1} + \cdots$           | 7   |
|----|----|----------------------------------------------------------------------------------------------------------------------------------------|-----|
|    | b) | Test the convergence of the series $\frac{4}{3} + \frac{4 \cdot 7}{3 \cdot 5} + \frac{4 \cdot 7 \cdot 10}{3 \cdot 5 \cdot 7} + \cdots$ | 6   |
|    | c) | Discuss the nature of the series $\sum_{n=1}^{\infty} \frac{4 \cdot 7 \cdot 10 \cdot \cdots \cdot (3n+1)}{n!} x^n$                     | 7   |
| 2. | a) | If $x^y + y^x = c$ , then what is $\frac{dy}{dx}$ ?                                                                                    | 6   |
|    | b) | Expand $e^x log_e(1+y)$ in powers of x and y up to terms of third degree.                                                              | 7   |
|    | c) | Find the minimum value of $f(x, y, z) = x^2 + y^2 + z^2$ subject to $xy + yz + zx = 3a^2$ .                                            | 7   |
| 3. | a) | Solve the differential equation $\frac{dy}{dx} + 4xy + xy^3 = 0$ .                                                                     | 7   |
|    | b) | Find the orthogonal trajectories of the family of curves $\left(r + \frac{k^2}{r}\right) cos\theta = a$ , where $a$ is the parameter.  | 7   |
|    | c) | Solve the non-linear differential equation $p^3 + 2xp^2 - p^2y^2 - 2xy^2p = 0$ .                                                       | 6   |
| 4. | a) | Solve the initial value problem $\frac{d^3y}{dx^3} + 3\frac{d^2y}{dx^2} - 4y = 0, y(0) = 1;$<br>$y'(0) = 0; \ y''(0) = \frac{1}{2}.$   |     |
|    | b) | Solve the differential equation $\frac{d^2y}{dx^2} - y = \frac{2}{1+e^x}$ by using the method of variation of parameters.              | 7 7 |
|    | c) | Solve the differential equation $(2x + 5)^2 \frac{d^2y}{dx^2} - 6(2x + 5) \frac{dy}{dx} + 8y = 6x$ .                                   | 6   |

| 5. | a) | Evaluate $\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} (\cos\theta + \sin\theta)^{\frac{1}{3}} d\theta$ using Beta and Gamma functions. |   |
|----|----|----------------------------------------------------------------------------------------------------------------------------------|---|
|    |    | Note that $\frac{1}{3}$ is the superscript of $(\cos\theta + \sin\theta)$ in the given integral.                                 | 6 |
|    | b) | Prove that $x[J_{v-1}(x) + J_{v+1}(x)] = 2vJ_v(x)$ .                                                                             |   |
|    |    |                                                                                                                                  | 7 |
|    | c) | Prove that $J_0^2 + 2J_1^2 + 2J_2^2 + 2J_3^2 + \dots = 1$ .                                                                      |   |
|    |    |                                                                                                                                  | 7 |