

Model predictive control and trajectory optimization of large vehicle-manipulators

IEEE International Conference on Mechatronics 2019

Balint Varga, Selina Meier, Stefan Schwab, Sören Hohmann **FZI Research Center for Information Technology**

18. March 2019

Motivation

Automatizing mobile working machines

Motivation

Automatizing mobile working machines

(semi)-autonomic Functions

Relieving human worker

Goals of the research work

Goals of the research work

- Design of a general control model for a large vehiclemanipulator system
- Position control of the vehicle and the manipulator along their reference trajectories, with a model predictive control (MPC)

Outline of the presentation

State of the art

Simulation environment

Control model concept for vehicle-manipulator systems

Simulation results

State of the art

Simulation environment

Control model concept for vehicle-manipulator systems

Simulation results

- Control of large hydraulic manipulators
 - Modelling and control methods for forestry cranes [Fodor 2015], [Hera 2015]

[Fodor 2015]

State of the Art

Simulation environment

Control concept

Results

- Control of large hydraulic manipulators
 - Modelling and control methods for forestry cranes [Fodor 2015], [Hera 2015]

[Fodor 2015]

Small indoor

- Small mobile manipulators [Mashali 2014], [White 2009]
- Control methods for dual trajectories

[White 2009]

State of the Art Simulation environment

Control concept

Results

- Control of large hydraulic manipulators
 - Modelling and control methods for forestry cranes [Fodor 2015], [Hera 2015]

- Small indoor
 - Small mobile manipulators [Mashali 2014], [White 2009]
 - Control methods for dual trajectories

There is no control model for large vehicle-manipulators

State of the Art

Simulation environment

Control concept

Results

State of the art

Simulation environment

Control model concept for vehicle-manipulator systems

Simulation results

Control model

Simulation model

Simulation model consists of two subsystems: vehicle + robotic arm

Vehicle model:

State of the Art

Simulation environment

Control concept

Results

Control model

Simulation model

Simulation model consists of two subsystems: vehicle + robotic arm

Vehicle model:

- 3D, nonlinear Model
- Equations of motion derived with Euler-Newton based on [Kovacs 2014]
- Inputs: Steering angle, driving torques

State of the Art

Simulation environment

Control concept

Results

Control model

Simulation model

Simulation model consists of two subsystems: vehicle + robotic arm

Modell of the manipulator:

State of the Art

Simulation environment

Control concept

Results

Control model

Simulation model

Simulation model consists of two subsystems: vehicle + robotic arm

Modell of the manipulator:

- Large robotic arm, with hydraulic power unit based on [Ruderman 2017]
- Inputs: desired position and the orientation of the manipulator
- Computing the desired angles with inverse kinematic
- Joints are controlled with a PID-controller

State of the Art

Simulation environment

Control concept

Results

Control concept

State of the art

Simulation environment

Control model concept for vehicle-manipulator systems

Simulation results

Control model

Simulation model

- Control model: kinematic single track and planar manipulator
- Controlling the system along two references → Frénet-Frame

State of the Art

Simulation environment

Control concept

Results

Control model

Simulation model

- Control model: kinematic single track and planar manipulator
- Controlling the system along two references → Frénet-Frame

State of the Art

Simulation environment

Control concept

Results

Control model

Simulation model

- Control model: kinematic single track and planar manipulator
- Controlling the system along two references → Frénet-Frame

Simulation environment

Control concept

Results

Conclusion & further research

State of the Art

Control model

Simulation model

- Control model: kinematic single track and planar manipulator
- Controlling the system along two references → Frénet-Frame

State of the Art

Simulation environment

Control concept

Results

Control model

Simulation model

- Control model: kinematic single track and planar manipulator
- Controlling the system along two references → Frénet-Frame

State of the Art

Simulation environment

Control concept

Results

Control model

Simulation model

 Control model: kinematic single track and planar manipulator

Controlling the system along
 two references → Frénet-Fra

State of the Art

Simulation environment

Control concept

Results

Control model

Simulation model

Control model: kinematic single track and planar manipulator

Controlling the system along

State of the Art

Simulation environment

Control concept

Results

 $P_{\rm m}$

Control model

Simulation model

 Control model: kinematic single track and planar manipulator

 Controlling the system along two references → Frénet-Frame

 $j_{
m v}$,

State of the Art

Simulation environment

Control concept

Results

State space model:

State of the Art

Simulation environment

Control concept

Results

State space model:

$$\dot{\mathbf{x}} = f(\mathbf{x}(t), \mathbf{u}(t), \mathbf{z}(t)) \quad \mathbf{y} = g(\mathbf{x}(t))$$

State of the Art

Simulation environment

Control concept

Results

State space model:

$$\dot{\mathbf{x}} = f(\mathbf{x}(t), \mathbf{u}(t), \mathbf{z}(t)) \quad \mathbf{y} = g(\mathbf{x}(t))$$

$$\mathbf{u}(t) = \begin{bmatrix} \kappa_{\text{v}} \ \dot{\mathbf{a}} \ \dot{\alpha} \end{bmatrix}^{T}$$
$$\mathbf{z}(t) = \begin{bmatrix} \dot{\kappa}_{\text{rv}} \ \dot{\kappa}_{\text{rm}} \end{bmatrix}^{T}$$

$$\mathbf{z}(t) = \left[\dot{\kappa}_{\mathrm{rv}} \, \dot{\kappa}_{\mathrm{rm}}\right]^T$$

State of the Art

Simulation environment

Control concept

Results

State space model:

 $j_{\rm v}$

$$\dot{\mathbf{x}} = f(\mathbf{x}(t), \mathbf{u}(t), \mathbf{z}(t)) \quad \mathbf{y} = g(\mathbf{x}(t))$$

$$\mathbf{u}(t) = \left[\kappa_{\mathbf{v}} \ \dot{\mathbf{a}} \ \dot{\alpha}\right]^{T}$$

$$\mathbf{z}(t) = \left[\dot{\kappa}_{\mathrm{rv}} \, \dot{\kappa}_{\mathrm{rm}}\right]^T$$

$$\mathbf{x}(t) = \left[d_{\mathbf{v}} \ \Delta \theta_{\mathbf{v}} \ d_{\mathbf{m}} \ \Delta \theta_{\mathbf{m}} \ \mathbf{a} \ \alpha \ \kappa_{\mathbf{r}\mathbf{v}} \ \kappa_{\mathbf{r}\mathbf{m}} \right]^{T}$$

$$\mathbf{y}(t) = \left[d_{\mathbf{v}} \ d_{\mathbf{v}} + (L+l)sin(\Delta\theta) \ d_{\mathbf{m}} \ \mathbf{a} \right]^{T}$$

State of the Art Simulation environment

Control concept

Results

State space model:

$$\dot{\mathbf{x}} = f(\mathbf{x}(t), \mathbf{u}(t), \mathbf{z}(t))$$

State of the Art

Simulation environment

Control concept

Results

State space model:

$$\dot{\mathbf{x}} = f(\mathbf{x}(t), \mathbf{u}(t), \mathbf{z}(t))$$

Linearizing around the Equilibrium:

$$\mathbf{x} = \begin{bmatrix} 0 & 0 & 0 & 0 & \mathbf{a}_r & \alpha_r & 0 & 0 \end{bmatrix}^T$$

State of the Art

Simulation environment

Control concept

Results

State space model:

$$\dot{\mathbf{x}} = f(\mathbf{x}(t), \mathbf{u}(t), \mathbf{z}(t))$$

Linearizing around the Equilibrium:

$$\mathbf{x} = \begin{bmatrix} 0 & 0 & 0 & 0 & \mathbf{a}_r & \alpha_r & 0 & 0 \end{bmatrix}^T$$

 $\rightarrow a_r$: Ref. length of the robotic arm α_r : Ref. angle of the robotic arm

State of the Art

Simulation environment

Control concept

Results

State space model:

$$\dot{\mathbf{x}} = f(\mathbf{x}(t), \mathbf{u}(t), \mathbf{z}(t))$$

Linearizing around the Equilibrium:

$$\mathbf{x} = \begin{bmatrix} 0 & 0 & 0 & 0 & \mathbf{a}_r & \alpha_r & 0 & 0 \end{bmatrix}^T$$

 $\rightarrow a_r$: Ref. length of the robotic arm α_r : Ref. angle of the robotic arm

→ Linear state space model:

$$\dot{\mathbf{x}}(t) = \mathbf{A}(t)\Delta \mathbf{x}(t) + \mathbf{B}(t)\Delta \mathbf{u}(t) + \mathbf{Z}\Delta \mathbf{z}(t)$$
$$\mathbf{y}(t) = \mathbf{C}\Delta \mathbf{x}(t)$$

State of the Art

Simulation environment

Control concept

Results

Continuous state space model:

$$\dot{x} = A_c x + B_c u + E_c z$$
$$y = C_c x$$

Based on [Borrelli 2011]

State of the Art

Simulation environment

Control concept

Results

Continuous state space model:

$$\dot{x} = A_c x + B_c u + E_c z$$
$$y = C_c x$$

Time discrete system model:

Time discretization with the sampling *T*

$$x_{k+1} = A x_k + B u_k + E z_k$$

$$y_k = C x_k$$

Based on [Borrelli 2011]

State of the Art

Simulation environment

Control concept

Results

Continuous state space model:

$$\dot{x} = A_c x + B_c u + E_c z$$
$$y = C_c x$$

Time discrete system model:

Time discretization with the sampling T

$$x_{k+1} = A x_k + B u_k + E z_k$$

$$y_k = C x_k$$

Over *N* steps horizon

→ batch-Formula vector sequences

$$\mathbf{x} = \begin{bmatrix} \mathbf{x}_1^{\mathrm{T}}, ..., \mathbf{x}_N^{\mathrm{T}} \end{bmatrix}^{\mathrm{T}}$$
 $\mathbf{u} = \begin{bmatrix} \mathbf{u}_0^{\mathrm{T}}, ..., \mathbf{u}_{N-1}^{\mathrm{T}} \end{bmatrix}^{\mathrm{T}}$
 $\mathbf{z} = \begin{bmatrix} \mathbf{z}_0^{\mathrm{T}}, ..., \mathbf{z}_{N-1}^{\mathrm{T}} \end{bmatrix}^{\mathrm{T}}$
 $\mathbf{y} = \begin{bmatrix} \mathbf{y}_1^{\mathrm{T}}, ..., \mathbf{y}_N^{\mathrm{T}} \end{bmatrix}^{\mathrm{T}}$

Transformation

$$\mathbf{x} = \mathcal{A} x_0 + \mathcal{B} \mathbf{u} + \mathcal{E} \mathbf{z}$$
$$\mathbf{y} = \mathcal{C} (\mathcal{A} x_0 + \mathcal{B} \mathbf{u} + \mathcal{E} \mathbf{z})$$

Based on [Borrelli 2011]

State of the Art

Simulation environment

Control concept

Results

Cost function:

$$J(x, \boldsymbol{u}) = \sum_{k=1}^{N} \boldsymbol{x}_{k}^{\mathrm{T}} \boldsymbol{Q} \boldsymbol{x}_{k} + \sum_{k=0}^{N-1} \boldsymbol{u}_{k}^{\mathrm{T}} \boldsymbol{R} \boldsymbol{u}_{k}$$

$$\mathbf{Q} = \operatorname{diag}(G_d, G_{\Delta\theta}, G_{dM}, 0, G_{\Delta\alpha}, 0, 0)$$

$$\mathbf{R} = \operatorname{diag}(G_{\kappa_{v}}, G_{\dot{\boldsymbol{\alpha}}}, G_{\dot{\boldsymbol{\alpha}}})$$

Based on [Borrelli 2011]

State of the Art

Simulation environment

Control concept

Results

Cost function:

$$J(x, u) = \sum_{k=1}^{N} x_k^{\mathrm{T}} Q x_k + \sum_{k=0}^{N-1} u_k^{\mathrm{T}} R u_k$$

$$\mathbf{Q} = \operatorname{diag}(G_d, G_{\Delta\theta}, G_{dM}, 0, G_{\Delta\alpha}, 0, 0)$$

$$\mathbf{R} = \operatorname{diag}(G_{\kappa_{v}}, G_{\dot{\alpha}}, G_{\dot{\alpha}})$$

Constraints:

Constraints on the inputs:

$$\mathbf{u}_{\min} = \left[\mathbf{u}_{\min}^{\mathrm{T}}, \dots, \mathbf{u}_{\min}^{\mathrm{T}}\right]^{\mathrm{T}}$$
$$\mathbf{u}_{\max} = \left[\mathbf{u}_{\max}^{\mathrm{T}}, \dots, \mathbf{u}_{\max}^{\mathrm{T}}\right]^{\mathrm{T}}$$

and the outputs:

$$\mathbf{y}_{\min} = \left[\mathbf{y}_{\min}^{\mathrm{T}}, ..., \mathbf{y}_{\min}^{\mathrm{T}}\right]^{\mathrm{T}}$$
$$\mathbf{y}_{\max} = \left[\mathbf{y}_{\max}^{\mathrm{T}}, ..., \mathbf{y}_{\max}^{\mathrm{T}}\right]^{\mathrm{T}}$$

Based on [Borrelli 2011]

State of the Art

Simulation environment

Control concept

Results

Cost function:

$$J(x, \boldsymbol{u}) = \sum_{k=1}^{N} \boldsymbol{x}_{k}^{\mathrm{T}} \boldsymbol{Q} \boldsymbol{x}_{k} + \sum_{k=0}^{N-1} \boldsymbol{u}_{k}^{\mathrm{T}} \boldsymbol{R} \boldsymbol{u}_{k}$$

$$\mathbf{Q} = \operatorname{diag}(G_d, G_{\Delta\theta}, G_{dM}, 0, G_{\Delta\alpha}, 0, 0)$$

$$\mathbf{R} = \operatorname{diag}(G_{\kappa_v}, G_{\dot{\alpha}}, G_{\dot{\alpha}})$$

Constraints:

Constraints on the inputs:

$$\mathbf{u}_{\min} = \left[\boldsymbol{u}_{\min}^{\mathrm{T}}, ..., \boldsymbol{u}_{\min}^{\mathrm{T}}\right]^{\mathrm{T}}$$
$$\mathbf{u}_{\max} = \left[\boldsymbol{u}_{\max}^{\mathrm{T}}, ..., \boldsymbol{u}_{\max}^{\mathrm{T}}\right]^{\mathrm{T}}$$

and the outputs:

$$\mathbf{y}_{\min} = \left[\mathbf{y}_{\min}^{\mathrm{T}}, ..., \mathbf{y}_{\min}^{\mathrm{T}}\right]^{\mathrm{T}}$$
$$\mathbf{y}_{\max} = \left[\mathbf{y}_{\max}^{\mathrm{T}}, ..., \mathbf{y}_{\max}^{\mathrm{T}}\right]^{\mathrm{T}}$$

Based on [Borrelli 2011]

LQ-Optimization

→ Implementation as a quadratic programming with constraints:

$$J(x_0, \mathbf{z}, \mathbf{u}) = \mathbf{u}^{\mathrm{T}} \boldsymbol{H} \, \mathbf{u} + 2 (x_0^{\mathrm{T}} \boldsymbol{F} + \mathbf{z}^{\mathrm{T}} \boldsymbol{G}) \mathbf{u}$$

s.t.
$$u_{\min} \le u \le u_{\max}$$

 $y_{\min} \le y \le y_{\max}$

Cost function:

$$J(\boldsymbol{x}, \boldsymbol{u}) = \sum_{k=1}^{N} \boldsymbol{x}_{k}^{\mathrm{T}} \boldsymbol{Q} \boldsymbol{x}_{k} + \sum_{k=0}^{N-1} \boldsymbol{u}_{k}^{\mathrm{T}} \boldsymbol{R} \boldsymbol{u}_{k}$$

$$\mathbf{Q} = \operatorname{diag}(G_d, G_{\Delta\theta}, G_{dM}, 0, G_{\Delta\alpha}, 0, 0)$$

$$\mathbf{R} = \operatorname{diag}(G_{\kappa_v}, G_{\dot{\alpha}}, G_{\dot{\alpha}})$$

Constraints:

Constraints on the inputs:

$$\mathbf{u}_{\min} = \left[\mathbf{u}_{\min}^{\mathrm{T}}, \dots, \mathbf{u}_{\min}^{\mathrm{T}}\right]^{\mathrm{T}}$$
$$\mathbf{u}_{\max} = \left[\mathbf{u}_{\max}^{\mathrm{T}}, \dots, \mathbf{u}_{\max}^{\mathrm{T}}\right]^{\mathrm{T}}$$

and the outputs:

$$\mathbf{y}_{\min} = \left[\mathbf{y}_{\min}^{\mathrm{T}}, ..., \mathbf{y}_{\min}^{\mathrm{T}}\right]^{\mathrm{T}}$$
$$\mathbf{y}_{\max} = \left[\mathbf{y}_{\max}^{\mathrm{T}}, ..., \mathbf{y}_{\max}^{\mathrm{T}}\right]^{\mathrm{T}}$$

Based on [Borrelli 2011]

LQ-Optimization

→ Implementation as a quadratic programming with constraints:

$$J(\boldsymbol{x}_0, \mathbf{z}, \mathbf{u}) = \mathbf{u}^{\mathrm{T}} \boldsymbol{H} \, \mathbf{u} + 2 (\boldsymbol{x}_0^{\mathrm{T}} \boldsymbol{F} + \mathbf{z}^{\mathrm{T}} \boldsymbol{G}) \mathbf{u}$$

s.t.
$$u_{\min} \le u \le u_{\max}$$

 $y_{\min} \le y \le y_{\max}$

Simulation results

Introduction

State of the Art

Control model concept for vehicle-manipulator systems

Simulation results

Scenario 1: References Γ_{V} and Γ_{M}

State of the Art

Simulation environment

Control concept

Results

Scenario 1: References Γ_{V} and Γ_{M}

Starting value

 $d_0 = 0.25 \text{ m}$

 $\theta_0 = 0.1 \text{ rad}$

 $a_0 = 2.1 \text{ m}$

 $\alpha_0 = 1.1 \text{ rad}$

State of the Art

Simulation environment

Control concept

Results

Scenario 1: References Γ_{V} and Γ_{M}

Reference angle

$$\alpha_r = \frac{3\pi}{8}$$

Starting value

$$d_0 = 0.25 \text{ m}$$

$$\theta_0 = 0.1 \, \mathrm{rad}$$

$$a_0 = 2.1 \text{ m}$$

$$\alpha_0 = 1.1 \text{ rad}$$

State of the Art

Simulation environment

Control concept

Results

Scenario 1: References Γ_{V} and Γ_{M}

Reference angle

$$\alpha_r = \frac{3\pi}{8}$$

Starting value

$$d_0 = 0.25 \text{ m}$$

$$\theta_0 = 0.1 \text{ rad}$$

$$a_0 = 2.1 \text{ m}$$

$$\alpha_0 = 1.1 \text{ rad}$$

State of the Art

Simulation environment

Control concept

Results

Model predictive control and trajectory optimization of large vehicle-manipulators B. Varga, S. Meier, S. Schwab, S. Hohmann

State of the Art

Simulation environment

Control concept

Results

Scenario 2: References Γ_{v} and Γ_{M}

State of the Art

Simulation environment

Control concept

Results

Scenario 2: References Γ_{v} and Γ_{M}

State of the Art

Simulation environment

Control concept

Results

Scenario 2: References Γ_{v} and Γ_{M}

State of the Art

Simulation environment

Control concept

Results

State of the Art Simulation environment Control concept Results Conclusion & further research

Conclusion and further research

Introduction

State of the Art

Control model concept for vehicle-manipulator systems

Simulation results

Conclusion and further research work

Conclusion:

- Control model in Frenét-Frame for large vehicle-manipulator
- Implementation a MPC for position control
- Validation with simulations

Further research:

- Systematic method for the parameter tuning of the MPC
- Development of a control model for three-dimensional trajectories

State of the Art

Simulation environment

Control concept

Results

Citations

- [Fodor 2015] S. Fodor, C. Vazquez, and L. Freidovich, "Automation of slewing motions for forestry cranes" in 2015 15th International Conference on Control, Automation and Systems (ICCAS). IEEE, 2015.
- [Hera 2015] P. L. Hera and D. O. Morales, "Model-based development of control Systems for forestry cranes" Journal of Control Science and Engineering, vol. 2015, pp. 1–15, 2015.
- [Mashali 2014] M. Mashali et al., "Design, implementationand evaluation of a motion control scheme for mobile platforms with high uncertainties" in 5th IEEE RAS/EMBS IEEE, 2014
- [White 2009] G. D. White et al. "Experimental evaluation of dynamic redundancy resolution in a nonholonomic wheeled mobile manipulator" IEEE/ASME Transactions on Mechatronics, vol. 14, no. 3, pp. 349–357, 2009

- [Kovacs 2014] R. Kovacs et al.: "Modeling of commercial vehicles for vehicle dynamics control development," in 2014 IEEE 9th IEEE International Symposium on Applied Computational Intelligence and Informatics (SACI). IEEE, 2014
- [Ruderman 2017] M. Ruderman, "Full- and reducedorder model of hydraulic cylinder for motion control" in IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society, IEEE, 2017
- [Borrelli 2011] Borrelli et al.: Predictive Control for Linear and Hybrid Systems. Cambridge University Press, 2011.

Thank you for your attention!

Model predictive control and trajectory optimization of large vehiclemanipulators

Balint Varga, Selina Meier, Stefan Schwab, Sören Hohmann 18. March 2019

Contact:

Balint Varga

FZI Research Center for Information Technology, ESS

Tel.: +49 721 9654-185

E-Mail: varga@fzi.de

CONTROL MODEL

- Differential equation of the vehicle
 - Position Description of F

Differential equation of the vehicle

$$\dot{s} = v \frac{\cos(\Delta \theta)}{1 - d\kappa_r} \qquad \qquad \frac{\Delta \theta = \theta - \theta_r \text{ klein}}{d\kappa_r \ll 1} \qquad \dot{s} \approx v$$

$$\dot{d} = v \sin(\Delta \theta)$$

• Orientation $\Delta \theta = \theta - \theta_r$

$$\kappa_r(s) = \frac{\partial \theta_r}{\partial s} \longrightarrow \dot{s} \kappa_r(s) = \dot{\theta}_r$$

$$\Delta \dot{\theta} = \dot{\theta} - \dot{\theta}_r = v \frac{\tan(\delta)}{2L} - \dot{s}\kappa_r(s)$$

$$\vec{d} = v \sin(\Delta \theta)$$

$$\Delta \dot{\theta} = v \left(\frac{\tan(\delta)}{2L} - \kappa_r \right)$$

$$\tilde{\delta} = \frac{\tan(\delta)}{2L}$$

 $\Delta \dot{\theta} = v \left(\frac{\tan(\delta)}{2L} - \kappa_r \right)$

- Differential equation of the manipulator
 - Position Description of M

Position – Description of IVI
$$m{r}_{OM} = m{r}_{OF} + (2L + l_P) \ m{i}_F + a \cos \alpha \ m{i}_F + a \sin \alpha \ m{j}_F$$
 $\rightarrow \frac{\partial m{r}_{OM}}{\partial t} = (v(t) + \dot{a} \cos \alpha - a \sin \alpha \ (\dot{\alpha} + \dot{\theta})) \ m{i}_F$ $+ ((2L + l_P) \ \dot{\theta} + \dot{a} \sin \alpha + a \cos \alpha \ (\dot{\alpha} + \dot{\theta})) \ m{j}_F$ $:= v_{xM} \ m{i}_F + v_{yM} \ m{j}_F$

$$\rightarrow \frac{\partial \boldsymbol{r}_{OM}}{\partial t} = \left[(v_{xM} \cos \Delta \theta_M - v_{yM} \sin \Delta \theta_M) \right] \boldsymbol{i}_{RM} + \left[(v_{xM} \sin \Delta \theta_M + v_{yM} \cos \Delta \theta_M) \right] \boldsymbol{j}_{RM}$$

Differenzwinkel $\Delta \theta_M = \theta - \theta_{rM}$

Differential equation of the manipulator

$$\begin{split} \dot{d}_{M} &= v_{xM} \sin \Delta \theta_{M} + v_{yM} \cos \Delta \theta_{M} \\ &= \sin \Delta \theta_{M} (v(t) + \dot{a} \cos \alpha - a \sin \alpha \ \dot{\alpha} - a \sin \alpha \ \dot{\theta}) \\ &+ \cos \Delta \theta_{M} ((2L + l_{P})\dot{\theta} + a \cos \alpha \ \dot{\theta} + \dot{a} \sin \alpha + a \cos \alpha \ \dot{\alpha}) \\ \dot{s}_{M} &= v_{xM} \cos \Delta \theta_{M} - v_{yM} \sin \Delta \theta_{M} \\ &= \cos \Delta \theta_{M} (v(t) + \dot{a} \cos \alpha - a \sin \alpha \ \dot{\alpha} - a \sin \alpha \ \dot{\theta}) \\ &- \sin \Delta \theta_{M} ((2L + l_{P})\dot{\theta} + a \cos \alpha \ \dot{\theta} + \dot{a} \sin \alpha + a \cos \alpha \ \dot{\alpha}) \\ \Delta \dot{\theta}_{M} &= \dot{\theta} - \dot{\kappa}_{rM} \dot{s}_{M} \\ &= \dot{\theta} - \kappa_{rM} (\cos \Delta \theta_{M} (v(t) + \dot{a} \cos \alpha - a \sin \alpha \ \dot{\alpha} - a \sin \alpha \ \dot{\theta}) \\ &- \sin \Delta \theta_{M} ((2L + l_{P})\dot{\theta} + a \cos \alpha \ \dot{\theta} + \dot{a} \sin \alpha + a \cos \alpha \ \dot{\alpha})) \end{split}$$

Nonlinear state equations

$$\mathbf{x}^{\mathrm{T}} = [d, \Delta\theta, d_{M}, \Delta\theta_{M}, a, \alpha, \kappa_{r}, \kappa_{rM}] \qquad \mathbf{u}^{\mathrm{T}} = [\tilde{\delta}, \dot{a}, \dot{\alpha}] := [u_{1}, u_{2}, u_{3}] \\
\mathbf{z}^{\mathrm{T}} = [\dot{\kappa}_{r}, \dot{\kappa}_{rM}] := [z_{1}, z_{2}, z_{3}] \qquad \mathbf{y}^{\mathrm{T}} = [d, d_{V}, d_{M}, \Delta\alpha] \\
\dot{d} = v(t) \sin \Delta\theta \qquad (1a) \\
\Delta\dot{\theta} = v(t)(u_{1} - \kappa_{r}) \qquad (1b) \\
\dot{d}_{M} = \sin \Delta\theta_{M}(v(t) + u_{2}\cos\alpha - (v(t)u_{1} + u_{3})a\sin\alpha) \\
+ \cos \Delta\theta_{M}((2L + l_{P})v(t)u_{1} + u_{2}\sin\alpha + (v(t)u_{1} + u_{3})a\cos\alpha) \qquad (1c) \\
\Delta\dot{\theta}_{M} = v(t)u_{1} - \kappa_{rM}(\cos\Delta\theta_{M}(v(t) + u_{2}\cos\alpha - (v(t)u_{1} + u_{3})a\sin\alpha) \\
- \sin\Delta\theta_{M}((2L + l_{P})v(t)u_{1} + u_{2}\sin\alpha + (v(t)u_{1} + u_{3})a\cos\alpha) \qquad (1d) \\
\dot{\alpha} = u_{3} \qquad (1e) \\
\dot{\kappa}_{r} = z_{1} \qquad (1f) \\
\dot{\kappa}_{rM} = z_{2} \qquad (1g)$$

Equilibrium and linearization

for
$$u=0, z=0$$

$$\rightarrow \boldsymbol{x}_{e}^{\mathrm{T}} = [d_{e}, \Delta\theta_{e}, d_{Me}, \Delta\theta_{Me}, a_{e}, \alpha_{e}, \kappa_{re}, \kappa_{rMe}] \\
= [0, 0, 0, 0, a_{e}, \alpha_{e}, 0, 0] \qquad v(t) > 0 \text{ und } a_{e} > 0$$

$$\rightarrow \Delta \dot{d} = v(t)\Delta(\Delta\theta) \qquad (1a)$$

$$\Delta(\Delta \dot{\theta}) = v(t)(\Delta u_{1} - \Delta \kappa_{r}) \qquad (1b)$$

$$\Delta \dot{d}_{M} = v(t)\Delta(\Delta\theta_{M}) + (2L + l_{P} + a_{e}\cos\alpha_{e})v(t)\Delta u_{1}$$

$$+ \sin\alpha_{e}\Delta u_{2} + a_{e}\cos\alpha_{e}\Delta u_{3} \qquad (1c)$$

$$\Delta(\Delta \dot{\theta}_{M}) = v(t)(\Delta u_{1} - \Delta \kappa_{rM}) \qquad (1d)$$

$$\Delta \dot{\alpha} = \Delta u_{3} \qquad (1e)$$

$$\Delta \dot{\kappa}_{r} = \Delta z_{1} \qquad (1f)$$

$$\Delta \dot{\kappa}_{TM} = \Delta z_{2} \qquad (1g)$$

Linear state space model

$$\dot{\boldsymbol{x}}(t) = \boldsymbol{A}_c(t)\boldsymbol{x}(t) + \boldsymbol{B}_c(t)\boldsymbol{u}(t) + \boldsymbol{E}_c\boldsymbol{z}(t)$$

 $\boldsymbol{y}(t) = \boldsymbol{C}_c\boldsymbol{x}(t)$

$$m{B}_c(t) = egin{bmatrix} 0 & 0 & 0 & 0 \ v(t) & 0 & 0 & 0 \ (2L + l_P + a_e \cos lpha_e) v(t) & \sin lpha_e & a_e \cos lpha_e \ v(t) & 0 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 \ \end{pmatrix}$$

$$m{E}_c = egin{bmatrix} 0 & 0 & 0 \ 0 & 0 \ 0 & 0 \ 0 & 0 \ 0 & 0 \ 1 & 0 \ 0 & 1 \end{bmatrix}$$

CONTROL DESIGN

State of the Art

Simulation environment

Control concept

Results

Model predictive control - fundamentals

- Prediction model
- Optimizer:
 - Cost function
 - Constraints

State of the Art

Simulation environment

Control concept

Results

Model predictive control - fundamentals

- Prediction model
- Optimizer:
 - Cost function
 - Constraints

Inspired by [Borrelli 2011]

State of the Art

Simulation environment

Control concept

Results

Model predictive control - fundamentals

- Prediction model
- Optimizer:
 - Cost function
 - Constraints

min
$$J(x, u)$$

s.t. $\dot{x} = f(x, u)$
 $c(x, u) \le 0$

Inspired by [Borrelli 2011]

State of the Art

Simulation environment

Control concept

Results

Model predictive control - fundamentals

- Prediction model
- Optimizer:
 - Cost function
 - Constraints

min
$$J(x, u)$$

s.t. $\dot{x} = f(x, u)$
 $c(x, u) \le 0$

Inspired by [Borrelli 2011]

State of the Art

Simulation environment

Control concept

Results

Model predictive control - fundamentals

- Prediction model
- Optimizer:
 - Cost function
 - Constraints

min
$$J(x, u)$$

s.t. $\dot{x} = f(x, u)$
 $c(x, u) \le 0$

Inspired by [Borrelli 2011]

State of the Art

Simulation environment

Control concept

Results

Time continuous system model

$$\dot{\boldsymbol{x}}(t) = \boldsymbol{A}_c \boldsymbol{x}(t) + \boldsymbol{B}_c \boldsymbol{u}(t) + \boldsymbol{E}_c \boldsymbol{z}(t)$$

 $\boldsymbol{y}(t) = \boldsymbol{C}_c \boldsymbol{x}(t)$

d model with T

$$egin{aligned} m{A}(k) &= e^{m{A}_c T} pprox m{I} + m{A}_c T + rac{1}{2} m{A}_c^2 T^2 \ m{B}(k) &= \int_0^T e^{m{A}_c (T- au)} m{B}_c \mathrm{d} au \ m{E}(k) &= \int_0^T e^{m{A}_c (T- au)} m{E}_c \mathrm{d} au \ m{C}(k) &= m{C}_c \end{aligned}$$

Time discrete prediction model

$$x(k+1) = A(k)x(k) + B(k)u(k) + E(k)z(k)$$

 $y(k) = C(k)x(k)$

Time discrete prediction model:

$$x(k+1) = A(k)x(k) + B(k)u(k) + E(k)z(k)$$

 $y(k) = C(k)x(k)$

Cost function

$$J(\boldsymbol{x}, \boldsymbol{u}) = \sum_{k=1}^{N} \boldsymbol{x}_k^{\mathrm{T}} \boldsymbol{Q} \boldsymbol{x}_k + \sum_{k=0}^{N-1} \boldsymbol{u}_k^{\mathrm{T}} \boldsymbol{R} \boldsymbol{u}_k$$

mit $\boldsymbol{Q} = \mathrm{diag}(G_d, G_{\Delta \theta}, G_{dM}, 0, G_{\Delta \alpha}, 0, 0)$ $\boldsymbol{Q} \geq 0$

und $\boldsymbol{R} = \mathrm{diag}(G_{\tilde{\delta}}, G_{\dot{a}}, G_{\dot{\alpha}})$ $\boldsymbol{R} > 0$

Future vector sequences $\mathbf{x} = [m{x}_1^{\mathrm{T}}, \dots, m{x}_N^{\mathrm{T}}]^{\mathrm{T}}$

$$egin{aligned} \mathbf{x} &= [oldsymbol{x}_1^{\mathrm{T}}, \dots, oldsymbol{x}_N^{\mathrm{T}}]^{\mathrm{T}} \ \mathbf{u} &= [oldsymbol{u}_0^{\mathrm{T}}, oldsymbol{u}_1^{\mathrm{T}}, \dots, oldsymbol{u}_{N-1}^{\mathrm{T}}]^{\mathrm{T}} \ \mathbf{z} &= [oldsymbol{z}_0^{\mathrm{T}}, oldsymbol{z}_1^{\mathrm{T}}, \dots, oldsymbol{z}_{N-1}^{\mathrm{T}}]^{\mathrm{T}} \ \mathbf{y} &= [oldsymbol{y}_1^{\mathrm{T}}, \dots, oldsymbol{y}_N^{\mathrm{T}}]^{\mathrm{T}} \end{aligned}$$

Prädiktion

$$\mathbf{x} = \mathcal{A}x_0 + \mathcal{B}\mathbf{u} + \mathcal{E}\mathbf{z}$$

$$\mathbf{y} = \mathcal{C}(\mathcal{A}x_0 + \mathcal{B}\mathbf{u} + \mathcal{E}\mathbf{z}) \quad \text{mit} \quad \mathcal{C} = \text{blkdiag}(\underbrace{C, \dots, C}_{N-\text{mal}})$$

Kostenfunktion

$$J(\mathbf{x}, \mathbf{u}) = \mathbf{x}^{\mathrm{T}} \mathcal{Q} \mathbf{x} + \mathbf{u}^{\mathrm{T}} \mathcal{R} \mathbf{u} \quad \text{mit} \quad \mathcal{Q} = \text{blkdiag} \underbrace{(\mathcal{Q}, \dots, \mathcal{Q})}_{N-\text{mal}} \quad \text{und} \quad \mathcal{R} = \text{blkdiag} \underbrace{(\mathcal{R}, \dots, \mathcal{R})}_{N-\text{mal}}$$

Cost function

$$J(\boldsymbol{x}_0, \mathbf{z}, \mathbf{u}) = \mathbf{u}^{\mathrm{T}} \boldsymbol{H} \mathbf{u} + 2(\boldsymbol{x}_0^{\mathrm{T}} \boldsymbol{F} + \mathbf{z}^{\mathrm{T}} \boldsymbol{G}) \mathbf{u}$$

with $\boldsymbol{H} = \boldsymbol{\mathcal{B}}^{\mathrm{T}} \boldsymbol{\mathcal{Q}} \boldsymbol{\mathcal{B}} + \boldsymbol{\mathcal{R}}$, $\boldsymbol{F} = \boldsymbol{\mathcal{A}}^{\mathrm{T}} \boldsymbol{\mathcal{Q}} \boldsymbol{\mathcal{B}}$ and $\boldsymbol{G} = \boldsymbol{\mathcal{E}}^{\mathrm{T}} \boldsymbol{\mathcal{Q}} \boldsymbol{\mathcal{B}}$

→ Convex optimization problem

$$m{H} > m{0} \quad ext{da} \quad m{\mathcal{R}} > m{0} \quad ext{und} \quad m{\mathcal{B}}^{ ext{T}} m{\mathcal{Q}} m{\mathcal{B}} \geq m{0}$$

 $\rightarrow \mathbf{u}^*$ is unique

$$abla_{\mathbf{u}}J(oldsymbol{x}_0,\mathbf{u}) = 2oldsymbol{H}\mathbf{u} + 2oldsymbol{F}^{\mathrm{T}}oldsymbol{x}_0 = \mathbf{0} \ \mathbf{u}^*(oldsymbol{x}_0) = -oldsymbol{H}^{-1}oldsymbol{F}^{\mathrm{T}}oldsymbol{x}_0$$

Constraints of the outputs

$$\mathbf{y} = [oldsymbol{y}_1^{\mathrm{T}}, \dots, oldsymbol{y}_N^{\mathrm{T}}]^{\mathrm{T}} \ \mathbf{y}_{\min} \leq \mathbf{y} \leq \mathbf{y}_{\max}$$

$$\mathbf{y} = \mathcal{C}(\mathcal{A}x_0 + \mathcal{B}\mathbf{u}) \quad \mathrm{mit} \quad \mathcal{C} = \mathrm{blkdiag}(\underbrace{C, \dots, C}_{N-\mathrm{mal}})$$

$$\left[egin{array}{c} \mathcal{CB} \ -\mathcal{CB} \end{array}
ight] \mathbf{u} \leq \left[egin{array}{c} \mathbf{y}_{\mathrm{max}} - \mathcal{CA} x_0 \ -\mathbf{y}_{\mathrm{min}} + \mathcal{CA} x_0 \end{array}
ight] \ egin{array}{c} egin{array}{c} \mathbf{b}_c \end{array}$$

→ Quadratic program

$$egin{aligned} \min_{\mathbf{u}} & J(oldsymbol{x}_0, \mathbf{u}) = \mathbf{u}^{\mathrm{T}} oldsymbol{H} \mathbf{u} + 2 oldsymbol{x}_0^{\mathrm{T}} oldsymbol{F} \mathbf{u} \ & \mathrm{s.t.} & oldsymbol{A}_c \mathbf{u} \leq oldsymbol{b}_c \ & \mathbf{u}_{\min} \leq \mathbf{u} \leq \mathbf{u}_{\max} \end{aligned}$$