Reinforcement Learning Introduction to Dynamic Programming

What is Dynamic Programming ??

Dynamic programming for solving RL problems:

optimal policy.

perfect model of the environment

pls', r/s, a)

Reinforcement Learning Policy Evaluation

> Policy Evaluation (Prediction).
> Policy Emprovemed (Control).

Policy Evaluation using DP

Bellman euqation for v_{π} :

$$v_{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) [r + \gamma v_{\pi}(s')]$$

 \nearrow \checkmark

Update equation for policy evaluation:

$$v_{k+1}(s) = \sum_{a} \pi(a|s) \sum_{s',r} p(r,s'|s,a)[r + \gamma v_k(s')]$$

Lim JK 2 JK

Gridworld example

- . State 0 and 15 are the terminal states.
- Agent is allowed to move UP, RIGHT, DOWN and LEFT.
- Each action deterministically cause the state transitions, except that actions which would take our agent off the grid, in such case the state remains unchanged.
- Reward of -1 on all transitions.
- Undiscounted and episodic.
- Policy to be evaluated is the equiprobable policy:

$$\pi(UP|s) = \pi(RIGHT|s) = \pi(DOWN|s) = \pi(LEFT|s) = 0.25 \ \forall s \in S$$

Y21

4×1×[1+(-20)] + 4×1×[1+(-20)] + 4×1×[-1+(-1-7)] + 4×1×[-1+(-1-7)]

0

$ u_{\scriptscriptstyle (x)}$									
	0	-14.	-20.	-22					
	-14	-18.	-20.	-20					
	-20	-20	-18	-14	•				

-1

	v_1	10	
0	-6.1	-8.4	-9.0
-6.1	-7.7	-8.4	-8.4
-8.4	-8.4	-7.7	-6.1

-2.0

-2.0

-2.0

Dynamic Programming Page 4

0	-14.	-20.	-22			0	-6.1	-8.4	-9.0		
-14	-18.	-20.	-20			-6.1	-7.7	-8.4	-8.4		
-20	-20	-18	-14	• —	 	-8.4	-8.4	-7.7	-6.1	•	_
-22	-20	-14	0	V		-9.0	-8.4	-6.1	0		
_				4	C						

Policy Evaluation using DP (Algorithm)

Reinforcement Learning

Policy Improvement

 $\pi(s) = \alpha$ $J_{\pi}(s)$ $J_{\pi}(s)$ $J_{\pi}(s)$ $J_{\pi}(s)$ $J_{\pi}(s)$ $J_{\pi}(s)$ $J_{\pi}(s)$

Let π and π' be any pair of deterministic policies s.t., $q_{\pi}(s, \pi'(s)) \ge v_{\pi}(s) \quad \forall \quad s \in S$ Then $\pi' \geq \pi$, that is, $v_{\pi'}(s) \ge v_{\pi}(s)$

$$\geq v_{\pi}(s) \qquad \forall \ s \in S$$

Policy π' is greedy wrt the value function of previous policy, i.e.,

$$\pi'(s) = \operatorname{argmax}_{a} \ q_{\pi}(s, a)$$

$$= \operatorname{argmax}_{a} \sum_{s', r} p(s', r|s, a)[r + \gamma v_{\pi}(s)]$$

When the new policy π' is as good as the the previous policy $\underline{\pi}$, then $v_\pi = v_{\pi'}$, hence

$$v_{\pi'}(s) = \max_{\substack{a \\ s', r}} \sum_{\substack{s', r \\ s', r}} p(s', r|s, a)[r + \gamma v_{\pi'}(s)]$$

$$= \max_{\substack{a \\ s', r \\ s', r}} p(s', r|s, a)[r + \gamma v_{\pi'}(s)]$$

$$V_{\pi}(s) \geq \max_{\substack{a \\ s', r \\ s$$

Gridworld example

- State 0 and 15 are the terminal states.
- · Agent is allowed to
- Each action determ agent off the grid,
- Reward of -1 on all
- · Undiscounted and
- Initial policy is an equiprobable policy

o move UP, RIGHT, DOWN and LEFT.	4	5	6	7
ministically cause the state transitions, except that actions which would take our in such case the state remains unchanged.	0	9	10	11
·	0	9	10	11
Il transitions.	12	13	14	15
l episodic.				

1

2

3

Reinforcement Learning Policy Iteration

Policy Iteration Policy Iteration RESTRESTRE RESTRESTRE RESTRE RESTRE RESTRE VALUATION RESTRE RES

Gridworld example

- State 0 and 15 are the terminal states.
- Agent is allowed to move UP, RIGHT, DOWN and LEFT.
- Each action deterministically cause the state transitions, except that actions which would take our agent off the grid, in su ch case the state remains unchanged.
- Reward of -1 on all transitions.
- Undiscounted and episodic.
- Initial policy is an equiprobable policy:

 $\pi(UP|s) = \pi(RIGHT|s) = \pi(DOWN|s) = \pi(LEFT|s) = 0.25 \ \forall s \in S$

0	1	2	3
4	5	6	7
8	9	10	11
12	13	14	15

Policy Iteration Algorithm


```
3. Policy Improvement  \begin{array}{l} \text{policy-stable} \leftarrow true \\ \text{For each } s \in \mathbb{S}: \\ \text{old-action} \leftarrow \pi(s) \\ \pi(s) \leftarrow \operatorname{argmax}_a \sum_{s',r} p(s',r|s,a) \big[ r + \gamma V(s') \big] \\ \text{If } \textit{old-action} \neq \pi(s), \text{ then } \textit{policy-stable} \leftarrow \textit{false} \\ \text{If } \textit{policy-stable}, \text{ then stop and } \text{return } V \approx v_* \text{ and } \pi \approx \pi_*; \text{ else go to } 2 \\ \end{array}
```

Reinforcement Learning Value Iteration

Value Iteration:

Gridworld example

• State 0 and 15 are the terminal states.

- Agent is allowed to move UP, RIGHT, DOWN and LEFT.
- Each action deterministically cause the state transitions, except that actions which would take our agent off the grid, in such case the state remains unchanged.
- Reward of -1 on all transitions.
- Undiscounted and episodic.
- Initial policy is an equiprobable policy:

$$\pi(UP|s) = \pi(RIGHT|s) = \pi(DOWN|s) = \pi(LEFT|s) = 0.25 \ \forall s \in S$$

0	1	2	3
4	5	6	7
8	9	10	11
12	13	14	15

Value iteration algorithm

E -> I

a 1:mal poling

E -> I ophned Junchin -> optimed poliny,

Reinforcement Learning Efficiency of DP based methods

181 IM

[|X|]

P