GNU Radio ile Uygulamalı Haberleşme Sistemleri

Linux Kış Kampı Eskişehir, 10-13 Şubat 2025

Outline

Quick Recap

Digital Comms

QPSK

ADS-B

Recap - Analog Communications

- Amplitude/Frequency/Phase
- AM/SSB/NBFM/WBFM/CW
- Of the all above which one has the smallest bandwidth?

Schedule

- First Day: GNU Radio Introduction, DSP, GR Simulation Mode
- Second Day: SDR Introduction, RTL-SDR, GR Real-Time Mode
- Third Day: Analog Communications
- Fourth Day: Digital Communications

Digital vs Analog

- Source data
- Continuity
- Noise
- Error

Communication Systems Block Diagram

Digital Communications - Detailed

Wireless system: big picture

A transmitter, a receiver and a channel between them

Elements of Transmit/Receive

Transmitter

- Bits → Waveforms
 - Encoding
 - Add redundancy (intelligently) to help the receiver to recover the information despite errors.
- Modulation
 - Group/map bits into symbols.
 - "Mount" symbols on an analog waveform to be sent over the air.

Modulation Waveform

- Generate a basic analog signal and modify it according to the incoming bits and symbols:
 - Modify various aspects: amplitude, frequency or phase
 - AM, FM, Phase modulation

Modulation Order

- Defines the number of bits that are mapped to a symbol/signal.
 - With each Mod. order M, we can have up to M different symbols.
 - Mod. order M = 16: every log2(16) = 4 bits are mapped to a symbol.

$$0000 \rightarrow S1\ 0001 \rightarrow S2\ ...\ 1111 \rightarrow S16$$

Modulation Symbols

- Groups of bits:
 - Can be represented as an integer
 - E.g., 0010 → 2
 - o Or, in a different plane as we will see next

IQ Representation

- A sinusoid signal can be represented by two other orthogonal sinusoids:
 - \circ Inphase: a cos(2 π ft)
 - Quadrature: b sin(2πft)
 - Create an "orthonormal basis".
 - A complex 2D plane where any point can be reached through a linear combination of I & Q:

$$v = al + jbQ$$

Web Resources for IQ Data

I/Q Data for Dummies

What's Your IQ - About Quadrature Signals... | Tektronix

Constellation Diagram

- A 2D representation of symbols along I and Q:
 - Now, we define the symbols as complex numbers in the form of a+jb.
 - I and Q implied.
 - We don't normally choose any a & b.
 - Choose such that the points on the constellation have regular distances.
 - E.g., ±1, ±1j

QAM

- What we saw was Quadrature Amplitude Modulation (QAM).
 - Generate signals through modifying the amplitude of two fundamental signals
 - Map each group of bits to these amplitudes.
 - Most used modulation scheme in modern wireless systems.
 - Bit values are assigned to QAM points in a particular order such that the hamming distance between neighboring points is always 1.
 - With this bit assignment, we probably see a 1-bit error even if we misdetect the symbol due to channel noise.

More QAM

- Can send more bits per symbol:
 - Higher modulation orders: 16-QAM, 64-QAM, 256-QAM
- Restricted by transmit power
 - For the same power budget, symbols get packed closer
 - Harder to sort out on the receiver side.

Higher modulations

Upconversion (Carrier Modulation)

- Suppose we want to transmit a signal, s(t).
- We can't just go ahead and transmit it!
 - Regulations on spectrum usage
- We need to move it to where we're allowed to transmit.
 - Upconversion:
 - Multiply signal with a carrier sinusoid.
 - Sinusoid with carrier frequency fc

Shift the Signal

Transmitter: Putting all together

Channel

- Source of all difficulties in wireless.
 - Effect of the environment on the transmitted signal
 - Pathloss
 - Fading
 - Multipath
 - signal arriving through different paths
 - Doppler shift

Channel Modeling

- It's a random process.
- Modeled by random distributions. Most popular:
 - AWGN
 - Rayleigh
 - o Rice

Receiver

- Waveforms → Bits
 - Downconversion
 - Synchronization
 - Equalization
 - Demodulation

Downconverison (Carrier Demodulation)

- Mirroring upconversion at the TX
 - Just multiply the received waveform with a sinusoid at the carrier frequency

Synchronization

- Before doing anything the receiver needs to first detect the start of a stream/packet/frame of incoming data.
- Correlate with a known sequence (sync. Signal)
 - Make out the start of the data stream relative to the correlation peak
 - Receiver knows where and how long the known sequence is

Synchronization

Equalization

- Channel introduces errors.
- Need to offset these errors.
 - Reverse channel effect.
- Use the/a known sequence, called pilot, to estimate the channel
 - Remove the pilot. What's left is channel + noise.
 - Get better estimates by averaging over more sequences.

Demodulation

- Decide which symbol, consecutively which bits, were sent.
- Need criteria to decide based on received signal
 - Maximum likelihood
 - Assume xi was sent (given), what is the probability of observing yj? → Choose xi with max. probability.
- Maximum a posteriori
 - ⊙ Given observation yj what is the probability that xi was sent? → Choose xi with max.
 probability.

Smallest Distance

- If every symbol has the same probability of being sent, both criteria are the same.
- Smallest distance.
 - Choose the constellation point closer to where the received symbol has landed

Decision Regions

- These criteria define decision regions
 - Areas around each constellation point xi, where each point is closer to xi than any other constellation point xj.
 - Very regular for QAM
 - Decide based on which region y lands on

Errors

- Packing more symbols on the constellation increases rate.
 - More bits/channel use.
- Leads to more errors
 - Smaller distances/decision regions for same power
- Higher constellation orders need higher SNR
 - Makes the received symbol to land closer to the correct point.

Wireless System: Putting all together

End-to-End Digital Communication System Simulation

RADAR

Large areas of airspace are not covered by radar

Radar installations are expensive!

Automatic Dependent Surveillance—Broadcast (ADS-B)

- Replacement for active RADAR
- Location, velocity, ...
- 5-10 Messages/second
- You can receive
 - o 1200 messages/second
 - from 133 different airplanes

ADS-B

ADS-B Aggregators

Pegasus 100

Cumhuriyet

Drawing Hearts

Check out for more on drawing hearts!

 https://www.flightradar24.com/blog/a-brief-history-of-drawing-hearts-with-an-ai rliner/

ADS-B Data Format

- Pulse Position Modulation (PPM)
- There are 2 bits, (1 and 0), and therefore two positions
- Manchester encoding used
- Each "bit" is 1μs long, the pulse is 0.5 μs.
- 8-bit preamble of "11n00nnn"
- Sample each bit twice (every 0.5 μs), or 2 MSPS

ADS-B Packets

- Short squitters are 56bits (8bits Control, 24bits address, 24bits parity check)
- Long squitters are 112bits (8 bits preamble + 8bits control, 24bits address, 56bits ADS-B message, 24bits parity)

ADS-B Hunting

Use RTL-SDR to catch ADS-B signal

Schedule

- First Day: GNU Radio Introduction, DSP, GR Simulation Mode
- Second Day: SDR Introduction, RTL-SDR, GR Real-Time Mode
- Third Day: Analog Communications
- Fourth Day: Digital Communications

Do you agree?

Survey

Have your say before leaving!

Nice to *communicate* with you all!

- Reach out to me at vtreqitim@gmail.com
- Find me on LinkedIn
- Contact me for educational/academic deliveries