<u>PSALTer</u> results panel

 $S = \iiint \left(\frac{1}{8}\left(4\,a_{0}\,\mathcal{A}_{\alpha}^{\alpha\beta}\,\mathcal{A}_{\beta\chi}^{\chi} + \mathcal{A}^{\alpha\beta\chi}\left(-4\,a_{0}\,\mathcal{A}_{\beta\chi\alpha}^{\alpha\beta} + 8\,w_{\alpha\beta\chi}\right) + 8\,\tau^{\alpha\beta}\,h_{\alpha\beta}^{\alpha\beta} - 2\,a_{0}\,h_{\chi}^{\chi}\,\partial_{\beta}\mathcal{A}_{\alpha}^{\beta\beta} - 2\,a_{0}\,h_{\chi}^{\alpha}\,\partial_{\beta}\mathcal{A}_{\alpha}^{\beta\beta} - 2\,a_{0}\,h_{\chi}^{\chi}\,\partial_{\beta}\mathcal{A}_{\alpha}^{\beta\beta} - 2\,$

<u>Wave</u> <u>operator</u>

Saturated propagator

Θ	• " a αβ		3 • Μς αβ	• 7 α	• ″a α	• γ a α	• γγς α	• " ς α	• πς α	• γς α
${}^{1^{+}}\mathcal{W}_{a}{}^{\parallel}\dagger^{lphaeta}$	0	$-\frac{2\sqrt{2}}{a_{\stackrel{\bullet}{0}}}$	Θ	0	0	0	0	0	0	0
$^{1^{+}}_{\cdot}W_{a}^{\perp}^{\dagger}^{\alpha\beta}$	$-\frac{2\sqrt{2}}{a_{\stackrel{\bullet}{0}}}$	$\frac{2}{a}$	Θ	0	0	0	0	0	Θ	0
$^{1^{+}}_{\cdot}W_{S}^{\perp}\dagger^{\alpha\beta}$	0	Θ	$\frac{4}{a \cdot -c \cdot k^2}$	0	0	0	0	0	0	0
1 $^{-}$ \mathcal{T}^{\perp} †	Θ	Θ	Θ	$\frac{2 k^{2} \left(a_{0} + c_{3} k^{2}\right)}{a_{0}^{2} \left(2 + k^{2}\right)^{2}}$	$\frac{2 i \sqrt{2} k}{a \cdot (2+k^2)}$	$\frac{i k \left(-c_{3} k^{4} + a_{0} (4 + k^{2})\right)}{a_{0}^{2} (2 + k^{2})^{2}}$	$\frac{i \sqrt{\frac{2}{3}} k \left(-2 a_{0} (1+k^{2})+c_{3} k^{2} (4+k^{2})\right)}{a_{0}^{2} (2+k^{2})^{2}}$	$\frac{i\sqrt{\frac{10}{3}}k}{a\cdot(2+k^2)}$	$-\frac{i k (4+k^2) \left(a_{0}+c_{3} k^2\right)}{\sqrt{3} a_{0}^{2} (2+k^2)^2}$	$\frac{2 i \sqrt{\frac{2}{3}} k}{a \cdot (2+k^2)}$
1 w_{a}^{\parallel} \dagger^{α}	0	0	0	$-\frac{2 i \sqrt{2} k}{2 a + a \cdot k^2}$	0	$\frac{\sqrt{2} (4+k^2)}{a_{\theta}(2+k^2)}$	$-\frac{2 k^2}{\sqrt{3} \left(2 a_{\stackrel{.}{\theta}} + a_{\stackrel{.}{\theta}} k^2\right)}$	0	$\frac{\sqrt{\frac{2}{3}} k^2}{2 a \cdot a \cdot k^2 e^2}$	0
1 · W_{a} · † † $^{\alpha}$	Θ	Θ	Θ	$\frac{i k \left(c_{3} k^{4}-a_{0} (4+k^{2})\right)}{a_{0}^{2} (2+k^{2})^{2}}$	$\frac{\sqrt{2} (4+k^2)}{a_{\theta} (2+k^2)}$	$\frac{c_{3} k^{6} + a_{0} (4 + k^{2})^{2}}{2 a_{0}^{2} (2 + k^{2})^{2}}$	$-\frac{k^{2}\left(2 a \cdot + c \cdot k^{2} \left(4 + k^{2}\right)\right)}{\sqrt{6} a \cdot 2 \left(2 + k^{2}\right)^{2}}$	$-\frac{\sqrt{\frac{5}{6}} k^2}{a_{\frac{1}{6}} (2+k^2)}$	$\frac{k^{2}\left(c_{3} k^{2} (4+k^{2})+a_{0} (8+3 k^{2})\right)}{2 \sqrt{3} a_{0}^{2} (2+k^{2})^{2}}$	$-\frac{\sqrt{\frac{2}{3}} k^2}{a_{\frac{1}{6}}(2+k^2)}$
¹-W _s ^{⊥t} † ^α	0	0	0	$-\frac{i\sqrt{\frac{2}{3}} k\left(-2 a_{\dot{\theta}} (1+k^2)+c_{\dot{3}} k^2 (4+k^2)\right)}{a_{\dot{\theta}}^2 (2+k^2)^2}$	$-\frac{2 k^2}{\sqrt{3} \left(2 a_{\theta} + a_{\theta} k^2\right)}$	$-\frac{k^{2}\left(2 a + c k^{2} k^{2} (4+k^{2})\right)}{\sqrt{6} a e^{2} (2+k^{2})^{2}}$	$\frac{1}{3} \left(-\frac{1}{c_{3} k^{2}} + \frac{c_{3} k^{2} (4+k^{2})^{2}}{a_{0}^{2} (2+k^{2})^{2}} - \frac{16+12 k^{2}+k^{4}}{a_{0} (2+k^{2})^{2}} \right)$	$\frac{1}{3} \sqrt{5} \left(-\frac{1}{c_3^2 k^2} + \frac{1}{a_0^2 - \frac{2a_0^2}{4+k^2}} \right) - \frac{1}{a_0^2 + \frac{2a_0^2}{4+k^2}} $	$\frac{2 a_0^2 (2+k^2)^2 + c_3^2 k^4 (4+k^2)^2 + 2 a_0 c_3 k^2 (4+3 k^2+k^4)}{3 \sqrt{2} a_0^2 c_3^2 k^2 (2+k^2)^2}$	$\frac{2}{3} \left(-\frac{1}{c_{3} k^{2}} + \frac{1}{a_{0} - \frac{2a_{0}}{4+k^{2}}} \right)$
¹⁻W _s ∥t † ^α	0	0	0	$-\frac{i\sqrt{\frac{10}{3}}k}{a_{\frac{1}{0}}(2+k^2)}$	0	$-\frac{\sqrt{\frac{5}{6}} k^2}{a_{\odot} (2+k^2)}$	$\frac{1}{3} \sqrt{5} \left(-\frac{1}{c_3^2 k^2} + \frac{1}{a_0^2 - \frac{a_0^2}{4k^2}} \right)$	$\frac{4}{3a_{\theta}} - \frac{5}{3c_{3}k^{2}}$	$\frac{1}{3} \sqrt{\frac{5}{2}} \left(-\frac{2}{c_{3}^{2} k^{2}} + \frac{1}{-a_{0}^{2} + \frac{0}{4+k^{2}}} \right)$	$-\frac{2\sqrt{5}\left(a_{\frac{1}{6}}-2c_{\frac{1}{3}}k^{2}\right)}{3a_{\frac{1}{6}}c_{\frac{1}{3}}k^{2}}$
¹-W _s ^{⊥h} † ^α	0	Θ	0	$\frac{i k (4+k^2) \left(a \cdot + c \cdot k^2\right)}{\sqrt{3} a \cdot e^2 (2+k^2)^2}$	$\frac{\sqrt{\frac{2}{3}} k^2}{2 a_0 + a_0 k^2}$	$\frac{k^{2}\left(c_{3} k^{2} (4+k^{2})+a_{6} (8+3 k^{2})\right)}{2 \sqrt{3} a_{6}^{2} (2+k^{2})^{2}}$	$-\frac{2 a_{\theta}^{2} (2+k^{2})^{2}+c_{3}^{2} k^{4} (4+k^{2})^{2}+2 a_{\theta} c_{3} k^{2} (4+3 k^{2}+k^{4})}{3 \sqrt{2} a_{\theta}^{2} c_{3} k^{2} (2+k^{2})^{2}}$	$\frac{1}{3} \sqrt{\frac{5}{2}} \left(-\frac{2}{c_{\cdot k}^2} + \frac{1}{-a_{\cdot k}^2 + \frac{2a_{\cdot k}}{4+k^2}} \right)$	$\frac{1}{6} \left(-\frac{4}{c_{3} k^{2}} + \frac{c_{3} k^{2} (4+k^{2})^{2}}{a_{0}^{2} (2+k^{2})^{2}} + \frac{32+24 k^{2}+5 k^{4}}{a_{0} (2+k^{2})^{2}} \right)$	$\frac{1}{3} \sqrt{2} \left(-\frac{2}{c_{3} k^{2}} + \frac{1}{-a_{0} + \frac{2a_{0}}{4+k^{2}}} \right)$
1 · w_{s} ^{$\parallel h$} \dagger	0	Θ	0	$-\frac{2 i \sqrt{\frac{2}{3}} k}{2 a + a \cdot k^2}$	0	$-\frac{\sqrt{\frac{2}{3}} k^2}{a_{\stackrel{\circ}{0}} (2+k^2)}$	$\frac{2}{3} \left(-\frac{1}{c \cdot k^2} + \frac{1}{a \cdot -\frac{2a}{4+k^2}} \right)$	$-\frac{2\sqrt{5}\left(a_{\theta}-2c_{3}k^{2}\right)}{3a_{\theta}c_{3}k^{2}}$	$\frac{1}{3} \sqrt{2} \left(-\frac{2}{c_{\cdot} k^{2}} + \frac{1}{-a_{\cdot} + \frac{2a_{\cdot}}{4+k^{2}}} \right)$	$\frac{4}{3}\left(\frac{5}{a_{\cdot 0}}-\frac{1}{c_{\cdot 3}k^2}\right)$
										2 ⁺ σ= + αβ

Source constraints

Spin-parity form	Covariant form	Multiplicitie			
$k \cdot \mathcal{W}_{s}^{\parallel} + 2 k \cdot \mathcal{W}_{s}^{\perp h} - 6 i \cdot \mathcal{T}^{\perp} = 0$	$2 \partial_{\beta} \partial_{\alpha} \mathcal{T}^{\alpha\beta} + \partial_{\chi} \partial^{\chi} \partial_{\alpha} \mathcal{W}^{\alpha\beta}_{\beta} = \partial_{\chi} \partial_{\beta} \partial_{\alpha} \mathcal{W}^{\alpha\beta\chi}$	1			
$k \stackrel{0^+}{\cdot} \mathcal{W}_{S}^{\perp t} + 2 i \stackrel{0^+}{\cdot} \mathcal{T}^{\perp} == 0$	$2 \partial_{\beta} \partial_{\alpha} \mathcal{T}^{\alpha\beta} = \partial_{\chi} \partial_{\beta} \partial_{\alpha} \mathcal{W}^{\alpha\beta\chi}$	1			
$k \stackrel{1}{\cdot} \mathcal{W}_{s}^{\perp h^{\alpha}} - 6 i \stackrel{1}{\cdot} \mathcal{T}^{\perp^{\alpha}} = k \left(3 \stackrel{1}{\cdot} \mathcal{W}_{a}^{\perp^{\alpha}} + \stackrel{1}{\cdot} \mathcal{W}_{s}^{\perp t^{\alpha}}\right)$	$2 \partial_{\chi} \partial_{\beta} \partial^{\alpha} \mathcal{T}^{\beta \chi} + \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial_{\beta} w^{\beta \alpha \chi} = 2 \partial_{\chi} \partial^{\chi} \partial_{\beta} \mathcal{T}^{\alpha \beta} + \partial_{\delta} \partial_{\chi} \partial_{\beta} \partial^{\alpha} w^{\beta \chi \delta}$	3			
Total expected gauge generators:					

Massive spectrum

Massive particle Pole residue: $-\frac{4}{c_{\frac{1}{3}}} > 0$ Square mass: $\frac{a}{c_{\frac{3}{3}}} > 0$ Spin: 1 Parity: Even

<u>Massless</u> <u>spectrum</u>

Massless particle

Pole residue: $\frac{1}{c_{\frac{1}{3}}} + \frac{6c_{\frac{1}{3}}p^4}{a_{\frac{1}{0}}^2} >$ Polarisations: 2

Gauge symmetries

(Not yet implemented in PSALTer)

<u>Unitarity</u> conditions

(Unitarity is demonstrably impossible)

Validity assumptions

(Not yet implemented in PSALTer)