《电动力学》课后习题——第一章 电磁现象的基本规律

物理 (4+4) 1801 胡喜平 学号 U201811966

网站 https://hxp.plus/ 邮件 hxp201406@gmail.com

2020年10月22日

- **2.1** 半径为 R 的电介质球,极化强度为 $\vec{P} = K \frac{\vec{r}}{r^2}$,电容率为 ϵ
- (1) 计算束缚电荷的体密度和面密度
- (2) 计算自由电荷体密度
- (3) 计算球外和球内的电势
- (4) 求该带电介质球产生的静电场总能量

解

- **2.2** 贼均匀外电场中置入半径为 R_0 的导体球,试用分离变量法求下列两种情况的电势:
- (1) 导体球上接有电池, 使球与地保持电势差 φ
- (2) 导体球上带总电荷 Q

解

2.4 均匀介质球(电容率为 ε_1)的中心置一自由电偶极子 \vec{p}_f ,球外充满了另一种介质(电容率为 ε_2),求空间各点电势和极化电荷分布。

提示: $\varphi = \frac{\vec{p}_f \cdot \vec{R}}{4\pi \varepsilon_1 R^3} + \varphi'$, 而 φ' 满足拉普拉斯方程

解

2.8 半径为 R_0 的导体球外充满均匀绝缘介质 ε ,导体球接地,离球心 a 处($a > R_0$)置一点电荷 Q_f ,试用分离变量法求空间各点电势,证明所得结果与镜像法结果相同

解

2.11 在接地的导体平面上有一半径为 a 的半球凸部,半球的球心在导体平面上,点电荷 Q 位于系统的对称轴上,并与平面相距为 b (b > a),试用镜像法求空间电势

解

2.12 有一点电荷 Q 位于两个相互垂直的接地导体平面所围成的直角空间内,它到两个平面的距离为 a 和 b,求空间电势

解

2.18 一半径为 R_0 的球面,在球坐标 $0<\theta<\frac{\pi}{2}$ 的半球面上电势为 φ_0 ,在 $\frac{\pi}{2}<\theta<\pi$ 的半球面上电势为 $-\varphi_0$,球空间各点电势

解

2.19 上题能用格林函数解吗?结果如何?

解