Tema #5

INSTRUCŢIUNI

- 1. Deadline: 9 ianuarie 2024, ora 23:59.
- 2. Rezolvările problemelor ce presupun scrierea unui cod (**EX#1**) vor fi salvate ca fișier *.txt, cu denumirea GRUPA_NUME_PRENUME.txt
- 3. Rezolvările problemelor ce presupun rezolvarea pe hârtie (**EX#2–5**) vor fi salvate ca fişier *.pdf, cu denumirea GRUPA_NUME_PRENUME.pdf
- 4. Cele două fișiere vor fi trimise la adresa de email mihai.bucataru@drd.unibuc.ro.
- EX#1 Simulați în Python, folosind funcția np.random.random(), o variabilă aleatoare continuă normală standard, $Z \sim \mathcal{N}(0,1)$, utilizând metoda transformării Box-Muller cu o singură variabilă. Exprimați transformarea Box-Muller astfel:

$$Z = \sqrt{-2\ln(U_1)}\cos(2\pi U_2)$$

sau

$$Z = \sqrt{-2\ln(U_1)}\sin(2\pi U_2)$$

unde U_1 și U_2 sunt două variabile uniforme pe intervalul (0,1). Construiți histograma datelor obținute și verificați că aproximarea funcției de densitate ale variabilei aleatoare simulate corespunde distribuției normale standard.

- **EX#2** Fie Z o variabilă aleatoare continuă normală standard, $Z \sim \mathcal{N}(0,1)$. Ce distribuție are $X := \sigma Z$? Argumentați.
- **EX#3** Dacă $X \sim \text{Exp}(\lambda)$ și $\alpha > 0$, ce distribuție are $Y \coloneqq \alpha \cdot X$? Dar $Z \coloneqq X^2$? Argumentați.
- **EX#4** Arătați că dacă $X \sim \text{Exp}(\lambda)$, atunci $[X] + 1 \sim \text{Geom}(1 e^{-\lambda})$, unde [x] denotă partea întreagă a lui x.
- $\mathbf{EX\#5}$ Durata de viață a calculatoarelor din laboratorul 305 este o variabilă aleatoare continuă cu densitatea

$$f(x) = \begin{cases} K - \frac{x}{50}, & \text{pentru } 0 \le x \le 10\\ 0, & \text{altfel} \end{cases}$$

- (a) K = ?
- (b) Care este probabilitatea ca un calculator să se strice în 5 ani?
- (c) Care este durata medie de viață a unui calculator? Cu ce varianță?