Optimization of Bicycle Suspension Tuning

Jeff Robinson

AA222 Final Project Presentation

June 4, 2019

Problem: Bike suspension tuning is more art than science

Goal: Applicability of Direct, Stochastic, Populationbased algorithms vs. Cyclic Coordinate Descent

Model: 2-DoF Dynamical System

- $k_1 \& k_2$ exponential ramp at displacement limits
- b_1 set by motion rate $(\dot{y}_1 \dot{y}_2)$, 4 regimes
- Stochastic terrain incline \dot{y}_g (SMA smoothing)

Design Space: 8D - $\begin{bmatrix} k_1 & k_2 & b_{1RH} & b_{1RL} & b_{1CL} & b_{1CH} & \dot{y}_{cross,R} & \dot{y}_{cross,C} \end{bmatrix}$

Objectives: Ground Following – mean distance between tire and ground – corresponds to traction

Ride Comfort (Transmitted Impulse) – RMS of \dot{y}_1

Optimization of Bicycle Suspension Tuning

Jeff Robinson

AA222 Final Project Presentation

June 4, 2019

Example Simulation Plots

Optimization of Bicycle Suspension Tuning

Jeff Robinson

AA222 Final Project Presentation

June 4, 2019

CCD 0.0002465 [1] 3.773 [6]

0.5, 0.5

3.495 **[4]**

3.975 **[7]**

3.675 **[5]**

3.277 **[2]**

Weights 1.0, 0.0

GPS 0.03780 [2]

NMS 0.04329 [3]

ASA 0.4126 **[6]**

CMA 0.2389 **[5]**

PSO 0.1137 [4]

Firefly 0.1137 **[4]**

0.0, 1.0

6.057 **[3]** 3.33

5.781**[1]** 2.33

(unstable) 5.66

6.344 **[5]** 5.33

5.896 **[2]** 2.66

3.221 **[1]** 6.215 **[4]** 3.33

3.301 **[3]** 5.896 **[2]** 3.00

Constraints: Damping Ratio $0.2 < \zeta < 1.0$

Positive sign, except $\dot{y}_{cross,C}$ by definition

Quadratic & Count penalties, fixed multiplier

Algorithms: Representatives of each gradient-free type

- Direct: Cyclic Coordinate Descent (CCD), Generalized Pattern Search (GPS) with basis vectors, Nelder-Mead Simplex (NMS)
- Stochastic: Adaptive Simulated Annealing (ASA), Covariance Matrix Adaptation (CMA)
- Population: Particle Swarm Optimization (PSO), Firefly Algorithm

Results: Tested with 3 weightings: [GF, RC] = [1.0, 0.0], [0.5, 0.5], [0.0, 1.0], 640 objective evaluations, 1 iteration of each algorithm

CCD is 4th, GPS is 1st, represent commonly used methods

More sophisticated algorithms require more evaluations, less reliable