

Trigonometric Identities 2

A-level Maths Topic Summaries - Trigonometry

Fill in the blanks to complete the summary notes on trigonometric identities involving the reciprocal trigonometric functions $\sec \theta$, $\csc \theta$ and $\cot \theta$.

$$\equiv \frac{1}{\sin \theta}$$

$$\equiv \frac{1}{\cos \theta}$$

$$\equiv \frac{1}{\tan \theta}$$

$$\equiv \frac{\cos \theta}{\sin \theta}$$

$$1 + \tan^2 \theta \equiv \boxed{}$$

$$1 + \cot^2 \theta \equiv \boxed{}$$

Items:

 $egin{array}{c} \sec heta \end{array} egin{array}{c} \csc heta \end{array} egin{array}{c} \cot heta \end{array} egin{array}{c} \sec^2 heta \end{array} egin{array}{c} \csc^2 heta \end{array}$

Created for isaacphysics.org by Jonathan Waugh

Reciprocal Trigonometric Functions

A-level Maths Topic Summaries - Trigonometry

Fill in the blanks to complete the notes on reciprocal trigonometric functions.

Part A $\sin x$ and $\csc x$

Figure 1: The graphs of $\csc x$ (blue line) and $\sin x$ (yellow dashed line).

Key properties of $\csc x$:

$$\csc x = \frac{1}{(}$$

- ullet vertical asymptotes at x=[, where n is any integer
- domain:
- range:

Items:

Part B $\cos x$ and $\sec x$

Figure 2: The graphs of $\sec x$ (blue line) and $\cos x$ (yellow dashed line).

Key properties of $\sec x$:

$$\sec x = \frac{1}{\left(\begin{array}{c} \end{array}\right)}$$

- ullet vertical asymptotes at x=igcap n , where n is any integer
- domain:
- range:

Items:

Figure 3: The graphs of $\cot x$ (blue line) and $\tan x$ (yellow dashed line).

Key properties of $\cot x$:

$$\cot x = \frac{1}{\left[\begin{array}{c} \end{array}\right]}$$

- ullet vertical asymptotes at x=[, where n is any integer
- domain:
- range:

Items:

Created for isaacphysics.org by Jonathan Waugh

Question deck:

<u>STEM SMART Single Maths 30 - Trigonometry: Reciprocal & Inverse Functions</u>

Inverse Trigonometric Functions

A-level Maths Topic Summaries - Trigonometry

Fill in the blanks to complete the notes on inverse trigonometric functions.

Figure 1: The graphs of $\sin x$ and $\arcsin x$.

In order to define an inverse function, we need to restrict the domain of $\sin x$ to the interval

The inverse of $\sin x$ is written as $\arcsin x$ or $\sin^{-1} x$. The domain and range of the inverse function are

- domain:
- range:

Items:

$$oxed{-rac{\pi}{2} \leq x \leq rac{\pi}{2}} \quad egin{pmatrix} -1 \leq x \leq 1 \end{pmatrix} \quad egin{pmatrix} 0 \leq x \leq \pi \end{pmatrix} \quad egin{pmatrix} \mathbb{R} \end{pmatrix}$$

$\cos x$ and $\arccos x$

Figure 2: The graphs of $\cos x$ and $\arccos x$.

In order to define an inverse function, we need to restrict the domain of $\cos x$ to the interval

The inverse of $\cos x$ is written as $\arccos x$ or $\cos^{-1} x$. The domain and range of the inverse function are

- domain:
- range:

Items:

$$oxed{-rac{\pi}{2} \leq x \leq rac{\pi}{2}} egin{pmatrix} -1 \leq x \leq 1 \end{pmatrix} egin{pmatrix} 0 \leq x \leq \pi \end{pmatrix}$$

Figure 3: The graphs of $\tan x$ and $\arctan x$. Asymptotes are drawn as grey dashed lines.

In order to define an inverse function, we need to restrict the domain of an x to the interval

The inverse of $\cos x$ is written as $\arctan x$ or $\tan^{-1} x$. The domain and range of the inverse function are

- domain:
- range:

The inverse function has horizontal asymptotes passing through on the vertical axis.

Items:

$$oxed{-rac{\pi}{2} < x < rac{\pi}{2}} \quad oxed{-1 < x < 1} \quad oxed{0 < x < 1} \quad oxed{\mathbb{R}} \quad egin{pmatrix} \pm rac{\pi}{2} \end{pmatrix} \quad egin{pmatrix} \pm 1 \end{pmatrix}$$

Created for isaacphysics.org by Jonathan Waugh

Question deck:

Simplify Trig Expressions

Pre-Uni Maths for Sciences H3.1

Simplify the following trigonometric expressions.

Part A
$$\frac{1}{\cos^2 t - 1}$$

Simplify the following expression to give a single trigonometric function:

$$\frac{1}{\cos^2 t - 1}$$

The following symbols may be useful: cos(), cosec(), cot(), sec(), sin(), t, tan()

Part B
$$\frac{1-\sin^2 x}{\cos x}$$

Simplify the following expression to give a single trigonometric function:

$$\frac{1-\sin^2 x}{\cos x}$$

The following symbols may be useful: cos(), cosec(), cot(), sec(), sin(), tan(), x

Part C
$$\sin \alpha \tan \alpha - \frac{1}{\cos \alpha}$$

Simplify the following expression to give a single trigonometric function:

$$\sin\alpha\tan\alpha - \frac{1}{\cos\alpha}$$

The following symbols may be useful: alpha, cos(), cosec(), cot(), sec(), sin(), tan()

Part D
$$an w - rac{\cos w}{1-\sin w}$$

Simplify the following expression to give a single trigonometric function:

$$\tan w - \frac{\cos w}{1 - \sin w}$$

The following symbols may be useful: cos(), cosec(), cot(), sec(), sin(), tan(), w

Created for isaacphysics.org by Julia Riley.

Question deck:

STEM SMART Single Maths 30 - Trigonometry: Reciprocal & Inverse Functions

Functions: Reciprocal Trig 1ii

Subject & topics: Maths Stage & difficulty: A Level P2

Part	Α		
sec	$\frac{1}{2}\alpha$	=	4

Solve, for $0^\circ < \alpha < 180^\circ$, the equation $\sec \frac{1}{2}\alpha = 4$. Give your answer in degrees, to three significant figures.

Part B $aneta=7\coteta$

Solve, for $0^\circ < \beta < 180^\circ$, the equation $\tan \beta = 7 \cot \beta$. Give your answers to three significant figures.

Enter your answers in order from lowest value of $\boldsymbol{\beta}$ to highest.

(lowest value)

(highest value)

Used with permission from UCLES A-level Maths papers, 2003-2017.

Question deck:

<u>STEM SMART Single Maths 30 - Trigonometry: Reciprocal & </u>

Inverse Functions

Advanced Trig Identities 5ii

Subject & topics: Maths Stage & difficulty: A Level P2

Solve, for $0^\circ < heta < 360^\circ$, the equation $\sec^2 heta = 4 an heta - 2$. Give inexact answers to 1 dp.	
Enter your answers in order from lowest value of $ heta$ to highest.	
(lowest value)	
(highest value)	

Used with permission from UCLES A-level Maths papers, 2003-2017.

Question deck:

STEM SMART Single Maths 30 - Trigonometry: Reciprocal & Inverse Functions

Functions: Inverse Trig 3ii

Figure 1: Graphs A, B and C.

Each diagram in Figure 1 shows part of a curve, the equation of which is one of the following:

 $y = \arcsin x, \ \ y = \arccos x, \ \ y = \arctan x, \ \ y = \sec x, \ \ y = \cot x$

Part A	
Graph	Α

Which equation corresponds to graph A?

 $y = \cot x$

 $y = \arctan x$

 $y = \arcsin x$

 $y = \csc x$

 $y = \arccos x$

 $y = \sec x$

Part B **Graph** B

Which equation corresponds to graph B?

 $y = \arcsin x$

 $y = \sec x$

 $y = \csc x$

 $y = \arctan x$

 $y = \cot x$

 $y = \arccos x$

Part C Graph C	
Which equation corresponds to graph C?	
$y=\sec x$	
y=rccos x	
y=rcsin x	
$y=\cot x$	
$y=\arctan x$	
$y = \csc x$	

Used with permission from UCLES A-level Maths papers, 2003-2017.

Question deck:

STEM SMART Single Maths 30 - Trigonometry: Reciprocal & Inverse Functions

Sketching Reciprocal Trigonometric Functions

Part A ${\sf Sketch} \ 2\sec x + 2$

Sketch the graph of $y=2\sec x+2$ in the interval $0^\circ \le x \le 360^\circ$.

Part B

Sketch
$$\cot{(x+\frac{\pi}{4})}-1$$

Sketch the graph of $y=\cot{(x+\frac{\pi}{4})}-1$ in the interval $0\leq x\leq 2\pi$.

Part C

Sketch
$$-\csc\frac{x}{2}-3$$

Sketch the graph of $y=-\csc{rac{x}{2}}-3$ in the interval $-2\pi \leq x \leq 2\pi$.

Created for isaacphysics.org by Matthew Rihan

Question deck:

STEM SMART Single Maths 30 - Trigonometry: Reciprocal &

Inverse Functions

Functions: Inverse Trig 1ii

Figure 1 shows the graph of $y = -\arcsin{(x-1)}$.

Figure 1: A graph of the function $y = - rcsin{(x-1)}$

Part A

Transformations

tails of the pair of geometrical transformations which transform the graph of $y=-rcsin{(x-1)}$ to the f $y=rcsin{x}$.
Reflect in line $y=x$, translate by 1 in $+y$ -direction
Reflect in $y=-x$, translate by 1 in $+x$ -direction
Reflect in y -axis, translate by 1 in $\pm y$ -direction
Reflect in y -axis, translate by 1 in $-y$ -direction
Reflect in y -axis, translate by 1 in $-x$ -direction
Reflect in x -axis, translate by 1 in $\pm x$ -direction
Reflect in x -axis, translate by 1 in $-x$ -direction

Part B **Sketch**

Sketch the graph of $y=\left|-\arcsin\left(x-1\right)\right|$. To prevent any sharp changes in your curve from being smoothed out, sketch your curve as two sections.

Part C Solutions

Find the solutions of the equation $\left|-\arcsin\left(x-1\right)\right|=\frac{\pi}{3}.$ Give your answers to 3 sf.

Used with permission from UCLES A-level Maths papers, 2003-2017.

Question deck:

STEM SMART Single Maths 30 - Trigonometry: Reciprocal &

Inverse Functions

Sketching Inverse Trigonometric Functions

Part A ${\sf Sketch} \arcsin \tfrac{x}{3} + \tfrac{\pi}{2}$

Sketch the graph of $y=rcsinrac{x}{3}+rac{\pi}{2}.$

Part B ${\bf Sketch}\ 2\arctan\left(x-1\right)$

Sketch the graph of $y=2\arctan{(x-1)}$.

Part C

Sketch $\arccos\left(-\frac{x}{2} + \frac{1}{2}\right) - \frac{\pi}{3}$

Sketch the graph of $y=\arccos{(-\frac{x}{2}+\frac{1}{2})}-\frac{\pi}{3}$.

Created for isaacphysics.org by Matthew Rihan