

基础必修—管综(数学)

不等式

主讲老师:媛媛老师

邮箱:family7662@dingtalk.com

不等式的性质

一元二次不等式

均值不等式

特殊不等式

一、不等式的性质

一不等式的性质

1.不等式的基本性质

(1) 若a > b,则 $a \pm c > b \pm c$

(2) 若a > b, c > 0,则ac > bc

(3) 若a > b, c < 0,则ac < bc

> 不等式的性质

2.传递性:
$$\begin{cases} a > b \\ b > c \end{cases} \Rightarrow a > c$$

3.同向相加性:
$$\begin{cases} a > b \\ c > d \end{cases} \Rightarrow a+c>b+d$$

4.同向皆正相乘性:
$$\begin{vmatrix} a > b > 0 \\ c > d > 0 \end{vmatrix} \Rightarrow ac > bd$$

5.同号倒数性:
$$a > b > 0 \Leftrightarrow \frac{1}{b} > \frac{1}{a} > 0$$
 $a < b < 0 \Leftrightarrow \frac{1}{b} < \frac{1}{a} < 0$

6.皆正乘(开)方性:
$$a > b > 0 \Rightarrow a^n > b^n > 0, \sqrt[n]{a} > \sqrt[n]{b} > 0 (n \in Z_+)$$

$$1.$$
设 a 、 b 、 c 为实数, 且 $a > b$, 则()

A.若
$$a > 5$$
 ,则 $b > 5$

B.若
$$a > b > 0$$
 , 则 $\frac{1}{a} > \frac{1}{b} > 0$

$$C.a^2 > b^2$$

$$E.a - c > b - c$$

1.设a、b、c为实数,且a > b,则(\mathbf{E})

A.若
$$a > 5$$
 ,则 $b > 5$

B.若
$$a > b > 0$$
 , 则 $\frac{1}{a} > \frac{1}{b} > 0$

$$C.a^2 > b^2$$

$$E.a - c > b - c$$

【解析】因为a > b, 所以a - c > b - c, 故选E.

一元二次不等式

一元二次不等式

1.一元二次不等式

$$ax^{2} + bx + c > 0(\vec{x} < 0)$$

2.解一元二次不等式的步骤

①先化成标准型: $ax^2 + bx + c > 0$ (或 < 0),且 a > 0;

- ②计算对应方程的判别式**Δ**;
- ③求对应方程的根;
- ④利用口诀"大于号取两边,小于号取中间"写出解集.

一元二次不等式

$$y = ax^{2} + bx + c$$

$$x_{1} \downarrow 0 \qquad x_{2}$$

练习

2.不等式 –
$$x^2 + 2x > 0$$
的解集为()

$$A.\{x|x<0或x>2\}$$

B.
$$\{x | -2 < x < 0\}$$

$$C.\{x | 0 < x < 2\}$$

$$D.\{x | x < -2$$
或 $x > 0\}$

$$\mathsf{E}.\{x|x<0\}$$

2.不等式 –
$$x^2 + 2x > 0$$
的解集为(C)

A.
$$\{x | x < 0$$
或 $x > 2\}$

B.
$$\{x | -2 < x < 0\}$$

$$C.\{x|0 < x < 2\}$$

$$D.\{x | x < -2$$
或 $x > 0\}$

$$E.{x|x < 0}$$

【解析】先化成标准型得, $x^2 - 2x < 0 \Rightarrow x(x-2) < 0 \Rightarrow 0 < x < 2.$ 故选C.

参 练习

3.若关于x的一元二次不等式 $x^2 - 3x + k \le 0$ 的解集为空集,则k的取值范围是()

B.0 <
$$k$$
 ≤ 2

$$D.k > \frac{9}{4}$$

$$\mathsf{E}.k < \frac{9}{4}$$

3.若关于x的一元二次不等式 $x^2 - 3x + k \le 0$ 的解集为空集,则k的取值范围是(D)

B.0 <
$$k \le 2$$

$$D.k > \frac{9}{4}$$

$$E.k < \frac{9}{4}$$

【解析】不等式所对应的二次函数开口向上,要使得不等式的解集为空集,需要令

$$\Delta < 0$$
, 即9 – $4k < 0$, 解得 $k > \frac{9}{4}$, 故选D.

三、均值不等式

〉均值不等式

1.定义

当 x_1, x_2, \dots, x_n 为n个正实数时, $\frac{x_1 + x_2 + \dots + x_n}{n} \ge \sqrt[n]{x_1 x_2 \cdots x_n}$,当且仅当 $x_1 = x_2 = \dots = x_n$

时,等号成立.

成立条件:一正二定三相等

一正:指的是所有数据均为正数.

二定:和定积最大;积定和最小.

三相等: 当且仅当 $x_1 = x_2 = \cdots = x_n$ 时,等号成立.

均值不等式

2.常见形式

(1)
$$a,b \in R^+ \Rightarrow a+b \ge 2\sqrt{ab}, ab \le \left(\frac{a+b}{2}\right)^2$$
,当且仅当 $a=b$ 时等号成立

(2)
$$a,b \in R \Rightarrow a^2 + b^2 \ge 2ab, ab \le \frac{a^2 + b^2}{2}$$
, 当且仅当 $a = b$ 时等号成立

(3)
$$a,b,c \in R^+ \Rightarrow a+b+c \ge 3\sqrt[3]{abc},abc \le \left(\frac{a+b+c}{3}\right)^3$$
,当且仅当 $a=b=c$ 时等号成立

(4)
$$a + \frac{1}{a} \ge 2(a > 0)$$
 (当且仅当 $a = \frac{1}{a}$ 即 $a = 1$ 时等号成立)

参 练习

4.设两个正数a、b满足a + b = 20,则ab的最大值为()

A.100

B.400

C.50

D.200

E.10

练习

4.设两个正数a、b满足a + b = 20,则ab的最大值为(A)

A.100

B.400

【解析】因为
$$a+b \ge 2\sqrt{ab}$$
, 所以 $\sqrt{ab} \le \frac{a+b}{2}$

C.50
$$\Rightarrow ab \le \frac{(a+b)^2}{4} = \frac{400}{4} = 100$$
,故选A.

D.200

E.10

参 练习

$$5.$$
若 $x > 0$,则 $2x + \frac{8}{x}$ 的最小值为()

- A.2
- B.4
- C.6
- D.8
- E.10

参 练习

$$5.$$
若 $x > 0$,则 $2x + \frac{8}{x}$ 的最小值为(**D**)

A.2

B.4

C.6

D.8

E.10

【解析】因为
$$x > 0$$
, $2x + \frac{8}{x} \ge 2\sqrt{2x \cdot \frac{8}{x}} = 8$, 故选D.

6.已知
$$m > 0$$
、 $n > 0$,则 $(m+n)\left(\frac{1}{m} + \frac{4}{n}\right)$ 的最小值为()

A.18

B.15

C.12

D.9

E.6

练习

6.已知
$$m > 0$$
、 $n > 0$,则 $(m+n)\left(\frac{1}{m} + \frac{4}{n}\right)$ 的最小值为(D)

【解析】
$$(m+n)\left(\frac{1}{m}+\frac{4}{n}\right)=1+\frac{4m}{n}+\frac{n}{m}+4=5+\frac{4m}{n}+\frac{n}{m}$$

C.12

因为
$$m > 0$$
、 $n > 0$,所以 $\frac{4m}{n} > 0$, $\frac{n}{m} > 0$,则原式= $5 + \frac{4m}{n} + \frac{n}{m}$

$$\geq 5 + 2\sqrt{\frac{4m}{n} \cdot \frac{n}{m}} = 5 + 2 \times 2 = 9$$
, 故选D.

7.已知
$$x < \frac{5}{4}$$
,则函数 $y = 4x - 2 + \frac{1}{4x - 5}$ 的最大值为()

- A.1
- B.2
- C.4
- D.6
- E.8

7.已知
$$x < \frac{5}{4}$$
,则函数 $y = 4x - 2 + \frac{1}{4x - 5}$ 的最大值为(A)

$$[X]$$
 【解析】因为 $X < \frac{5}{4}$,则 $4X - 5 < 0$,需要提出一个负号,使5 - B.2

C.4
$$4x > 0$$
, 再凑积为定值, 则 $y = 4x - 5 + 3 + \frac{1}{4x - 5} = -(5 - 4x + 6)$

E.8
$$\frac{1}{5-4x} + 3 \le -2\sqrt{(5-4x) \cdot \frac{1}{5-4x}} + 3 = 1.$$
 当且仅当5 $-4x = \frac{1}{5-4x}$, 即 $x = 1$ 时取等号. 故当 $x = 1$ 时, y 取最大值1,故选A.

参 练习

8.当0 < x < 4,则函数y = x(8 - 2x)的最大值为()

A.1

B.2

C.4

D.6

E.8

练习

8.当
$$0 < x < 4$$
,则函数 $y = x(8 - 2x)$ 的最大值为(E)

- A.1
- B.2 【解析】因为8-2x>0, 需凑和为定值, 则 $y = \frac{1}{2} \cdot 2x \cdot (8-2x)$

C.4
$$\leq \frac{1}{2} \left[\frac{2x + (8 - 2x)}{2} \right]^2 = 8$$
. 当且仅当2 $x = 8 - 2x$ 即 $x = 2$ 时取等号,故当 $x = 2$

- D.6 时, y取最大值8, 故选E.
- E.8

四、特殊不等式

与特殊不等式

1.绝对值不等式

(1) 分段讨论法:
$$|f(x)| = \begin{cases} f(x) & f(x) \ge 0 \\ -f(x) & f(x) < 0 \end{cases}$$

(2) 平方法:
$$(|f(x)|)^2 = [f(x)]^2$$

(3)公式法:
$$|f(x)| < a(a > 0) \Leftrightarrow -a < f(x) < a$$

$$|f(x)| > a(a > 0) \Leftrightarrow f(x) < -a \overrightarrow{\boxtimes} f(x) > a$$

大于号取两边,小于号取中间

9.不等式
$$|2x - 3| \le 1$$
的解集为()

$$A.\{x | 1 \le x \le 2\}$$

$$B.\{x|x \le -1或x \ge 2\}$$

$$C.\{x | 1 \le x \le 3\}$$

$$D.\{x | 2 \le x \le 3\}$$

$$E.{x|x \le -2$$
或 $x \ge 1}$

参 练习

9.不等式
$$|2x - 3| \le 1$$
的解集为(**A**)

$$A.\{x | 1 \le x \le 2\}$$

$$B.\{x | x \le -1 \vec{u}x \ge 2\}$$

$$C.\{x | 1 \le x \le 3\}$$

$$D.\{x | 2 \le x \le 3\}$$

$$E.{x|x \le -2$$
或 $x \ge 1}$

【解析】因为 $|2x-3| \le 1 \Longrightarrow -1 \le 2x-3 \le 1$,所以 $1 \le x \le 2$,故选A.

2.绝对值三角不等式

(1) 基本形式 $|a|-b| \le |a\pm b| \le |a|+|b|$

(2)等号成立条件:同号 $ab \ge 0$,异号 $ab \le 0$

表达式	成立条件	示例
a + b = a+b	$ab \ge 0$	-3 + -5 = -3 - 5
a + b = a - b	$ab \leq 0$	3 + -5 = 3 + 5
a - b = a + b	$ab \leq 0$	-5 - 3 = -5 + 3
a - b = a - b	$ab \ge 0$	-5 - -3 = -5 + 3

2.绝对值三角不等式

(1) 基本形式 $|a|-|b| \le |a\pm b| \le |a|+|b|$

(3)不等号成立条件:等号成立的反面

表达式	成立条件	示例
a + b > a + b	ab < 0	-3 + 5 > -3 + 5
a + b > a - b	<i>ab</i> >0	-3 + -5 > -3 + 5
a - b < a + b	ab > 0	-5 - -3 < -5 - 3
a - b < a - b	ab < 0	-5 - 3 < -5 - 3

$$10.|x + 1| + |x - 3|$$
的最小值为()

- A.1
- B.2
- **C**.3
- D.4
- E.-2

$$10.|x+1|+|x-3|$$
的最小值为(**D**)

A.1

B.2

C.3

D.4

E.-2

【解析】
$$|x+1|+|x-3| \ge |(x+1)-(x-3)| = |4| = 4$$
, 故选D。

11.已知函数
$$f(x) = |3 - x| + |x - m|$$
的最小值为1,则 m 为()

$$A.m = 3$$

$$B.m = 2$$

$$C.m = 4$$

$$D.m = 2$$
或 $m = 4$

$$E.m = 1$$
或 $m = 3$

11.已知函数
$$f(x) = |3 - x| + |x - m|$$
的最小值为1,则 m 为(D)

$$A.m = 3$$

$$B.m = 2$$

$$C.m = 4$$

$$D.m = 2$$
或 $m = 4$

$$E.m = 1$$
或 $m = 3$

【解析】 $f(x) = |3-x| + |x-m| \ge |(3-x) + (x-m)| = |3-m| = 1$, 所以m = 2或m = 4,故选D。

与特殊不等式

3.分式不等式

$$\frac{f(x)}{g(x)} \ge 0 \Leftrightarrow \begin{cases} f(x)g(x) \ge 0 \\ g(x) \ne 0 \end{cases}$$

$$\frac{f(x)}{g(x)} \le 0 \Leftrightarrow \begin{cases} f(x)g(x) \le 0 \\ g(x) \ne 0 \end{cases}$$

练习

12.不等式
$$\frac{2x-3}{x+1} > 0$$
的解集是()

A.1 <
$$x < \frac{3}{2}$$

B.-1 <
$$x$$
 < 3

$$C.x < -1 \vec{\boxtimes} x > \frac{3}{2}$$

D. -
$$1 < x < \frac{3}{2}$$

$$E.x < 1 或 x > \frac{3}{2}$$

12.不等式 $\frac{2x-3}{x+1} > 0$ 的解集是(**C**)

A.1 <
$$x < \frac{3}{2}$$

B.-1 <
$$x$$
 < 3

$$C.x < -1$$
或 $x > \frac{3}{2}$

D. -
$$1 < x < \frac{3}{2}$$

$$E.x < 1$$
或 $x > \frac{3}{2}$

注意:不能像方程那样直接去分母,

因为分母的正负不知

【解析】
$$\frac{2x-3}{x+1} > 0$$

$$\therefore \frac{2x-3}{x+1} \cdot (x+1)^2 > 0 \cdot (x+1)^2$$

$$\therefore (2x-3)(x+1)>0$$
,故原不等式的解集为 $\{x|x<-1$ 或 $x>\frac{3}{2}\}$

学习→点击课程→点击评价(5星好评)→提交评价

感谢您的观看

主讲老师: 媛媛老师

(邮箱: family7662@dingtalk.com