In [13]:

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
```

In [3]:

```
ad_data = pd.read_csv('advertising.csv')
```

In [4]:

ad_data.head()

Out[4]:

	Daily Time Spent on Site	Age	Area Income	Daily Internet Usage	Ad Topic Line	City	Male	Country	Timestamp	Clicked on Ad
0	68.95	35	61833.90	256.09	Cloned 5thgeneration orchestration	Wrightburgh	0	Tunisia	2016-03-27 00:53:11	0
1	80.23	31	68441.85	193.77	Monitored national standardization	West Jodi	1	Nauru	2016-04-04 01:39:02	0
2	69.47	26	59785.94	236.50	Organic bottom-line service- desk	Davidton	0	San Marino	2016-03-13 20:35:42	0
3	74.15	29	54806.18	245.89	Triple-buffered reciprocal time-frame	West Terrifurt	1	Italy	2016-01-10 02:31:19	0
4	68.37	35	73889.99	225.58	Robust logistical utilization	South Manuel	0	Iceland	2016-06-03 03:36:18	0

In [5]:

ad_data.shape

Out[5]:

(1000, 10)

In [7]:

ad_data.hist(bins=30, figsize=(12, 8));


```
In [8]:
```

```
plt.figure(figsize=(12, 8))
sns.jointplot(x='Age', y='Area Income', data=ad_data);
```

/Users/sudeng/anaconda3/lib/python3.7/site-packages/scipy/stats/stats.py:1713: FutureWarning: Using a n on-tuple sequence for multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[se q]`. In the future this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an error or a different result.

return np.add.reduce(sorted[indexer] * weights, axis=axis) / sumval

<Figure size 864x576 with 0 Axes>

In [9]:

```
plt.figure(figsize=(12, 8))
sns.jointplot(x='Age', y='Daily Time Spent on Site', data=ad_data, kind='kde');
```

/Users/sudeng/anaconda3/lib/python3.7/site-packages/scipy/stats/stats.py:1713: FutureWarning: Using a n on-tuple sequence for multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[se q]`. In the future this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an error or a different result.

return np.add.reduce(sorted[indexer] * weights, axis=axis) / sumval

<Figure size 864x576 with 0 Axes>


```
plt.figure(figsize=(12, 8))
sns.jointplot(x='Daily Time Spent on Site', y='Daily Internet Usage', data=ad_data);
```

/Users/sudeng/anaconda3/lib/python3.7/site-packages/scipy/stats/stats.py:1713: FutureWarning: Using a n on-tuple sequence for multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the future this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an error or a different result.

return np.add.reduce(sorted[indexer] * weights, axis=axis) / sumval

<Figure size 864x576 with 0 Axes>

In [12]:

sns.pairplot(ad_data, hue='Clicked on Ad');

/Users/sudeng/anaconda3/lib/python3.7/site-packages/scipy/stats/stats.py:1713: FutureWarning: Using a n on-tuple sequence for multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[se q]`. In the future this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an error or a different result.

return np.add.reduce(sorted[indexer] * weights, axis=axis) / sumval

/Users/sudeng/anaconda3/lib/python3.7/site-packages/statsmodels/nonparametric/kde.py:488: RuntimeWarnin g: invalid value encountered in true divide

binned = fast_linbin(X, a, b, gridsize) / (delta * nobs)

/Users/sudeng/anaconda3/lib/python3.7/site-packages/statsmodels/nonparametric/kdetools.py:34: RuntimeWa rning: invalid value encountered in double scalars

FAC1 = 2*(np.pi*bw/RANGE)**2

/Users/sudeng/anaconda3/lib/python 3.7/site-packages/numpy/core/from numeric.py: 83: Runtime Warning: invalid value encountered in reduce

return ufunc.reduce(obj, axis, dtype, out, **passkwargs)


```
/ Internet L
 ∑ 150
   100
   1.0
 0.6
W 0.4
   0.2
   0.0
   1.0
   0.8
 0.6 PA 0.6
 Clicked C
   0.2
   0.0
                100
                                      25000 50000 75000
                                                          200
In [14]:
from sklearn.cross_validation import train_test_split
In [16]:
ad data.columns
Out[16]:
'Timestamp', 'Clicked on Ad'],
     dtype='object')
In [17]:
x = ad data[['Daily Time Spent on Site', 'Age', 'Area Income',
       'Daily Internet Usage', 'Male']]
y = ad data['Clicked on Ad']
In [18]:
x train, x test, y train, y test = train test split(x, y, test size=0.3, random state=101)
In [19]:
from sklearn.linear_model import LogisticRegression
In [20]:
logmodel = LogisticRegression()
In [22]:
logmodel.fit(x train, y train)
Out[22]:
LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
          intercept_scaling=1, max_iter=100, multi_class='ovr', n_jobs=1,
          penalty='12', random_state=None, solver='liblinear', tol=0.0001,
          verbose=0, warm start=False)
In [23]:
predictions = logmodel.predict(x test)
In [26]:
from sklearn.metrics import classification report, confusion matrix
In [25]:
```

```
classification_report(y_test, predictions)
Out[25]:
             precision recall f1-score support\n\n 0 0.91 0.95 0.93 1 0.94 0.90 0.92 143\n\navg / total 0.92 0.92 0.92
157\n
300\n'
In [27]:
cm = confusion_matrix(y_test, predictions)
In [29]:
plt.figure(figsize=(12, 8))
sns.heatmap(cm, annot=True);
                                                                                - 125
     1.5e+02
 0 -
                                                                                - 100
                                                                                - 75
                                                     1.3e+02
                                                                                - 25
In [ ]:
```