Homework 4

Michael Laughlin and Taylor Short

The label "Problem" is used for required problems. "Exercise" is for suggested exercises.

Problem 1 (Golan 199). Let V be a vector space of finite dimension n > 0 over \mathbb{R} and, for each positive integer i, let U_i be a proper subspace of V. Show that $V \neq \bigcup_{i=1}^{\infty} U_i$.

Problem 2 (Golan 210). Let V be a vector space over a field F and assume V is not finitely generated. Show that there exists an infinite sequence W_1, W_2, \ldots of proper subspaces of V satisfying $\bigcup_{i=1}^{\infty} W_i = V$.

Exercise (Golan 239). Let V and W be a vector space over \mathbb{Q} and let $\alpha: V \to W$ be a function satisfying $\alpha(x+y) = \alpha(x) + \alpha(y)$ for all $x, y \in V$. Is α necessarily a linear transformation?

Exercise (Golan 240). Let $\alpha : \mathbb{R} \to \mathbb{R}$ be a continuous function satisfying $\alpha(x+y) = \alpha(x) + \alpha(y)$ for all $a, b \in \mathbb{R}$. Show that α is a linear transformation.

Problem 3 (Golan 241). Let W_1 and W_2 be subspaces of a vector space V over a field F and assume we have linear transformations $\alpha_1: W_1 \to V$ and $\alpha_2: W_2 \to V$ satisfying the condition that $\alpha_1(v) = \alpha_2(v)$ for all $v \in W_1 \cap W_2$. Find a linear transformation $\theta: W_1 + W_2 \to V$ such that the restriction of θ to W_i equals α_i (i = 1, 2), or show why no such linear transformation exists.

Problem 4 (Golan 251). Let V, W and Y be vector spaces finitely generated over a field F and let $\alpha \in \text{Hom}(V, W)$. Let $\text{ann}(\alpha)$ denote the set of those $\beta \in \text{Hom}(W, Y)$ satisfying the condition that $\beta \alpha$ is the 0-transformation. That is,

$$\operatorname{ann}(\alpha) = \{ \beta \in \operatorname{Hom}(W, Y) \mid \forall v \in V \ \beta \alpha(v) = 0_Y \}.$$

Prove that $ann(\alpha)$ is a subspace of Hom(W,Y) and compute its dimension.

Exercise (Golan 253). Let V and W be vector spaces over a field F and assume that there are subspaces V_1 and V_2 of V, both of positive dimension, satisfying $V = V_1 \bigoplus V_2$. For i = 1, 2, let

 $U_i = \{\alpha \in \text{Hom}(V, W) \mid V_i \subseteq \text{ker}(\alpha)\}$. Show that $\{U_1, U_2\}$ is an independent set of subspaces of Hom(V, W). Is it necessarily true that $\text{Hom}(V, W) = U_1 \bigoplus U_2$?

Problem 5 (Golan 256). Let V and W be vector spaces over a field F. Define a function $\varphi: \operatorname{Hom}(V,W) \to \operatorname{Hom}(V\times W,V\times W)$ by setting $\varphi(\alpha): \begin{bmatrix} v \\ w \end{bmatrix} \mapsto \begin{bmatrix} 0_V \\ \alpha(v) \end{bmatrix}$. Is φ a linear transformation of vector spaces over F? Is it a monomorphism?

Problem 6 (Golan 293 & 294). Let V, W and Y be vector spaces over a field F, and let $\beta \in \operatorname{Hom}(V,Y)$. Prove the following:

1. If $\alpha \in \text{Hom}(W,Y)$ is an epimorphism, then there exists $\theta \in \text{Hom}(V,W)$ such that $\beta = \alpha\theta$.

$$V$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad$$

2. If $\alpha \in \text{Hom}(V, W)$ is a monomorphism, then there exists $\theta \in \text{Hom}(W, Y)$ such that $\beta = \theta \alpha$.

$$0 \longrightarrow V \xrightarrow{\alpha} W$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \qquad \qquad$$

Note to students: Here is an alternative statement of the problem, with naming conventions that agree with Golan. You may solve whichever version you prefer.

1. If $\alpha \in \text{Hom}(V, W)$ is an epimorphism, then for every $\beta \in \text{Hom}(Y, W)$ there exists $\theta \in \text{Hom}(Y, V)$ such that $\beta = \alpha \theta$.

$$V \xrightarrow{\exists \theta \qquad \beta \downarrow} V \xrightarrow{\alpha} W \longrightarrow 0$$

2. If $\alpha \in \text{Hom}(V, W)$ is a monomorphism, then for every $\beta \in \text{Hom}(V, Y)$ there exists $\theta \in \text{Hom}(W, Y)$ such that $\beta = \theta \alpha$.

Problem 7 (Golan 296).¹ Let V, W be vector spaces over a field F, let $\alpha \in \text{Hom}(V, W)$, and let D be a nonempty linearly independent subset of $\text{im}(\alpha)$. Show that there exists a basis B of V satisfying $\{\alpha(v) \mid v \in B\} = D$.

Problem 8 (Golan 306). Let V, W and Y be vector spaces over a field F. Let $\{\alpha_1, \ldots, \alpha_n\}$ be a finite subset of $\operatorname{Hom}(V, W)$ and let $\beta \in \operatorname{Hom}(V, Y)$ be a linear transformation satisfying $\bigcap_{i=1}^n \ker(\alpha_i) \subseteq \ker(\beta)$. Show that there exist linear transformations $\gamma_1, \ldots, \gamma_n$ in $\operatorname{Hom}(W, Y)$ satisfying $\beta = \sum_{i=1}^n \gamma_i \alpha_i$.

Problem 9 (Golan 266). Let A and B be nonempty sets. Let V be the collection of all subsets of A and let W be the collection of all subsets of B, both of which are vector spaces over GF(2). Any function $f: A \to B$ defines a function $\alpha_f: W \to V$ by setting $\alpha_f: D \mapsto \{a \in A: f(a) \in D\}$. Show that each such function α_f defines a linear transformation, and find its kernel.

The claim in this problem seems incorrect to me. If you agree, give a counter-example, then modify the claim so it is correct and prove it. If you disagree, and you believe the claim is correct, then prove it as given.