## Représentation arborescente des programmes mini-ML

Comme dans n'importe quel langage de programmation, avant d'aborder l'exécution des programmes mini-ML, nous devons préciser la notion de portée des variables, c.-à-d. à quoi se refère une variable donnée. Pour cela, une représentation graphique des programmes (les expressions suffisent) sous forme d'arbres est très commode.

| Expression                                                                   | Arbre                                                         |
|------------------------------------------------------------------------------|---------------------------------------------------------------|
| X                                                                            | X                                                             |
| $\begin{array}{c} \textbf{fun } x \rightarrow e \\ \\ e_1 \ e_2 \end{array}$ | fun<br>/\<br>x e<br>\$<br>/\<br>e <sub>1</sub> e <sub>2</sub> |

# Représentation arborescente des programmes mini-ML (suite et fin)

| Expression                           | Arbre                                              |
|--------------------------------------|----------------------------------------------------|
| e <sub>1</sub> + e <sub>2</sub> etc. | <del>+</del> /\                                    |
| 0 ou 1 ou 2 etc.<br>(e)              | $e_1$ $e_2$ 0 ou 1 ou 2 etc. $e$                   |
| $let x = e_1 in e_2$                 | $ et \rangle                                     $ |

## Construction des arbres de programme

Intuitivement, la méthode générale consiste d'abord à parenthèser complètement l'expression qui fait le programme.

Chaque parenthèse correspond à une sous-expression et chaque sous-expression correspond à un sous-arbre.

On construit l'arbre des feuilles vers la racine en parcourant les sous-expressions parenthèsées les plus imbriquées vers les plus externes.

## Exemples d'arbres de programmes

L'expression (1+2)\*(5/1) se représente



et let x = 1 in (1+2)\*(5/1) devient (attention : x et x sont différents)



# Exemples d'arbres de programmes (suite)

L'expression let x = 1 in ((let x = 2 in x) + x) est



Qu'en est-il de fun y  $\rightarrow$  x + (fun x  $\rightarrow$  x) y? Et de

```
let x = 1 in
  let f = fun y -> x + y in
  let x = 2
in f(x)
```

Quid du programme page 11?

#### Liaison statique et environnement

Une phrase associe une expression e à une variable x: on parle de liaison, notée  $x\mapsto e$ . Un sous-programme définit donc un ensemble de liaisons appelé environnement.

Une liaison est *statique* si l'on peut déterminer à la compilation (c.-à-d. en examinant le code source) à quelle expression une variable donnée fait référence. Par exemple dans

```
let x = 0 in
  let id = fun x -> x in
  let y = id (x) in
  let x = (fun x -> fun y -> x + y) 1 2
in x+1;;
```

à quelle expression fait référence x dans x+1?

# Liaison statique et environnement (suite et fin)

Les liaisons sont ordonnées dans l'environnement *par ordre de définition*. Ainsi

- 1. l'environnement est initialement vide : {}
- 2. après let x = 0 in il vaut  $\{x \mapsto 0\}$
- 3. après let id = fun x -> x in il vaut  $\{id \mapsto fun \times x \rightarrow x; x \mapsto 0\}$
- 4. après let y = id(x) in il vaut  $\{y \mapsto id(x); id \mapsto fun \times \rightarrow x; x \mapsto 0\}$
- 5. après let x = ... il vaut  $\{x \mapsto ...; y \mapsto id(x); id \mapsto \mathbf{fun} \ x \to x; x \mapsto 0\}$

La liaison  $x \mapsto 0$  est donc cachée, ou hors de portée, dans x+1.

On notera  $\rho(x)$  la première liaison de x dans l'environnement  $\rho$  (si elle existe).

# Variables libres et représentation graphique des liaisons dans une expression

La définition locale **let**  $x = e_1$  **in**  $e_2$  lie  $e_1$  à x, noté  $x \mapsto e_1$ , dans  $e_2$ . Il se peut que dans  $e_2$  une autre définition locale lie la même variable...

Pour y voir plus clair on applique le procédé suivant sur l'arbre de programme. À partir de chaque occurrence de variable, remontons vers la racine. Si nous trouvons un premier let liant cette variable, créons un arc entre son occurrence et ce let. Si, à la racine, aucun let n'a été trouvé, la variable est dite *libre* dans l'expression. On notera  $\mathcal{L}(e)$  l'ensemble des variables libres de e.



#### Variables libres d'une abstraction

Une situation similaire se pose avec les fonctions  $\mathbf{fun} \ x \to e$ : dans leur corps e le paramètre x cache une éventuelle variable x liée plus haut dans l'arbre. Il nous faut alors considérer que  $\mathbf{fun}$  est un lieur comme  $\mathbf{let}$ .

Reprenons fun y  $\rightarrow$  x + (fun x  $\rightarrow$  x) y:



Quid des programmes pages 11 et 17?

# Expressions closes et évaluation

Une expression close est une expression sans variables libres. Seul un programme clos peut être évalué (exécuté). En effet, quel serait la valeur du programme réduit à la simple expression x?

C'est pourquoi la première analyse statique des compilateurs consiste à déterminer les variables libres des expressions. Si le programme n'est pas clos, il est rejeté. Dans le cas de x, le compilateur OCaml imprimerait

#### Unbound value x

(c.-à-d. « Valeur x non liée ») et s'arrêterait. L'intérêt est que cette expression non close est rejetée à la compilation et ne provoque donc pas une erreur à l'exécution.