Tomographic Reconstruction and Wavefront Set

Héctor Andrade Loarca joint with Philipp Petersen, Gitta Kutyniok and Ozan Öktem

AFG Oberseminar

31st of May, 2018

Inverse problems in Imaging

Goal

Recover parameters characterizing a system under investigation from measurements (recover image from data).

Inverse problems in Imaging

Goal

Recover parameters characterizing a system under investigation from measurements (recover image from data).

Mathematical formulation

Recover $f_{\text{true}} \in X$ from data

$$g = \mathcal{T}(f_{\mathsf{true}}) + \delta g$$

where $y \in Y, \mathcal{T} : X \longrightarrow Y$ and $\delta g \in Y$.

Inverse problems in Imaging

Goal

Recover parameters characterizing a system under investigation from measurements (recover image from data).

Mathematical formulation

Recover $f_{\text{true}} \in X$ from data

$$g = \mathcal{T}(f_{\mathsf{true}}) + \delta g$$

where $y \in Y, \mathcal{T} : X \longrightarrow Y$ and $\delta g \in Y$.

Classical solution: Minimization of the miss-fit against data:

$$\min_{f \in X} \mathcal{L}(\mathcal{T}(f), g)$$

 $\mathcal{L}: Y \times Y \longrightarrow \mathbb{R}$ is a transformation of the negative data log-likelihood, e.g. $L(f) = ||\mathcal{T}(f) - g||_2^2$.

Solving an inverse problem is known as regularization, and classically one can perform it by minimizing the miss-fit against data:

$$f \longrightarrow \mathcal{L}(\mathcal{T}(f), g)$$

where $\mathcal{L}: Y \times Y \longrightarrow \mathbb{R}$ is a suitable affine transformation of the negative of the data log-likelihood.

Solving an inverse problem is known as regularization, and classically one can perform it by minimizing the miss-fit against data:

$$f \longrightarrow \mathcal{L}(\mathcal{T}(f), g)$$

where $\mathcal{L}: Y \times Y \longrightarrow \mathbb{R}$ is a suitable affine transformation of the negative of the data log-likelihood.

In typical applications the forward operator \mathcal{T} is ill-posed, that is, a solution (if it exists) is unstable with respect to the data g, small changes to data results in large changes to a reconstruction, hence finding a maximum likelihood solution may lead to overfitting. One then need to use other techniques.

Our problem: 2D X-ray tomography

In 2D X-ray tomography the forward operator is given by the Radon transform \mathcal{R} :

$$\mathcal{R}f(\theta,s) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) \delta(x\cos\theta + y\sin\theta - s) dx dy$$

in this parametrization $\mathcal{R}f$ is known as the **sinogram**.

Our problem: 2D X-ray tomography

In 2D X-ray tomography the forward operator is given by the Radon transform \mathcal{R} :

$$\mathcal{R}f(\theta,s) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) \delta(x\cos\theta + y\sin\theta - s) dx dy$$

in this parametrization $\mathcal{R}f$ is known as the **sinogram**.

III-posedness:

- ▶ Filtered back projection (R^{-1}) involves differentiation \longrightarrow increases singularities, even more with images with noise.
- $ightharpoonup R^{-1}$ is unbounded \longrightarrow two far apart images can have very close Radon transform (a non-zero image can have a zero Radon transform).

How to solve ill-posed inverse problems?

Three classical techniques:

- ightharpoonup Pseudo-inverse of $\mathcal T$ using a mollifier.
- ▶ Iterative regularization, starting with a fixed point iteration scheme for minimizing (iterative hard thresholding), and stop iterates before over-fitting.
- ▶ Variational regularization, by introducing a functional $S: X \longrightarrow \mathbb{R}$, that encodes a-priori information about f_{true} , e.g. sparsity under some dictionary.

$$\min_{f \in X} [\mathcal{L}(\mathcal{T}f, g) + \lambda \mathcal{S}f]$$
 for fixed $\lambda \geq 0$

 λ (regularization parameter) governs the influence of the a priori knowledge, choosing it is a problem.

Learning comes into play

One could ask to learn a pseudo-inverse $\mathcal{T}_{\Theta}(g) \approx f_{\mathsf{true}}$ and learn the parameters $\Theta \in \mathcal{Z}$ through a loss functional.

Learning comes into play

One could ask to learn a pseudo-inverse $\mathcal{T}_{\Theta}(g) \approx f_{\mathsf{true}}$ and learn the parameters $\Theta \in Z$ through a loss functional.

Fully learned method are very dependent on the training set, one would like to combine a partially learned iterative method with known information of the problem (e.g. wavefront set).

Learning comes into play

One could ask to learn a pseudo-inverse $\mathcal{T}_{\Theta}(g) \approx f_{\mathsf{true}}$ and learn the parameters $\Theta \in Z$ through a loss functional.

Fully learned method are very dependent on the training set, one would like to combine a partially learned iterative method with known information of the problem (e.g. wavefront set).

- ▶ If \mathcal{T} is local (e.g. deblurring problem) \longrightarrow convolutional neural network and known pairs (g, f_{true}) .
- ▶ If \mathcal{T} is global (e.g. Radon transform) \longrightarrow CNN does not work, it becomes unfeasible to work with NN with fully connected layers.

Alternative solutions

• Recast to image-to-image problem: perform some initial (non machine-learning) reconstruction (e.g. FBP), and then use standard CNN to denoise the initial reconstruction. Upside: it outperforms previous state of the art methods. Donwside: it does not give you more information than using just non-machine learning reconstruction.

Alternative solutions

- Recast to image-to-image problem: perform some initial (non machine-learning) reconstruction (e.g. FBP), and then use standard CNN to denoise the initial reconstruction. Upside: it outperforms previous state of the art methods. Donwside: it does not give you more information than using just non-machine learning reconstruction.
- ② Incorporate enough a-priori information to make the problem tractable and learn the rest (Learned Primal-dual algorithm): First use CNN to update the data (dual step), then apply \mathcal{T}^* and use the result as input to another neural network which updates the reconstruction (primal step), then apply \mathcal{T} and use it as input to a neural network that updates the data, and so on. Upside: it separates the global aspect of the problem into the forward model and its adjoint and only need to learn local aspects. Downside: to train the NN one needs to perform back-propagation through this NN severak times.

Wavefront set as extra information

Definition (N-Wavefront set)

Let $N \in \mathbb{R}$ and f a distribution on \mathbb{R}^2 . We say $(x,\lambda)\mathbb{R}^2 \times \mathbb{R}^2$ is a N-regular directed point if there exists a nbd. of U_x of x, a smooth cutoff function Φ with $\Phi \equiv 1$ on U_x and a nbd. V_λ of λ such that:

$$(\Phi f)^{\wedge}(\eta) = O((1-|\eta|)^{-N}) \quad ext{for all} \quad \eta = (\eta_1,\eta_2) \quad ext{such that} \quad rac{\eta_2}{\eta_1} \in V_{\lambda}$$

The N-Wavefront set $WF^N(f)$ is the complement of the N-regular directed point. The Wavefront Set WF(f) is defined as

$$WF(f) = \bigcup_{N>0} WF^N(f)$$

Question? How can one incorporate extra information from the N-Wavefront set of an image by knowing just its Radon Transform.

Answer: Canonical shearlet transform of the sinogram

Classical Shearlet Transform

$$\langle f, \psi_{\mathsf{a},\mathsf{s},\mathsf{t}} \rangle = \int_{\mathbb{P}^2} f(x) \overline{\psi_{\mathsf{a},\mathsf{s},\mathsf{t}}(x)} dx$$

where

$$\mathcal{SH}(\psi) = \{\psi_{\mathsf{a},\mathsf{s},t}(\mathsf{x}) := \mathsf{a}^{-3/4}\psi(\mathsf{S}_\mathsf{s}\mathsf{A}_\mathsf{a}\mathsf{x} - t) : (\mathsf{a},\mathsf{s},t) \in \mathbb{R}_+ \times \mathbb{R} \times \mathbb{R}^2\}$$

and

$$A_a := \begin{pmatrix} a^1 & 0 \\ 0 & a^{1/2} \end{pmatrix} \quad S_s := \begin{pmatrix} 1 & s \\ 0 & 1 \end{pmatrix}$$

Theorem (Resolution of the Wavefront set by continuous shearlet frames; Grohs, 2011)

Let Ψ be a Schwartz function with infinitely many vanishing moments in x_2 -direction. Let f be a tempered distribution and $\mathcal{D}=\mathcal{D}_1\cup\mathcal{D}_2$, where $\mathcal{D}_1=\{(t_0,s_0)\in\mathbb{R}^2\times[-1,1]: \text{for }(s,t)\text{ in a nbd. } U\text{ fo }(s_0,t_0), |\mathcal{SH}_{\psi}f(a,s,t)|=O(a^k)\text{ for all }k\in\mathbb{N},\text{ with the implied constant uniform over }U\}$ and $\mathcal{D}_2=\{\ (t_0,s_0)\in\mathbb{R}^2\times(1,\infty]: \text{for }(1/s,t)\text{ in a nbd. } U\text{ of }(s_0,t_0), |\mathcal{SH}_{\psi^{\nu}}f(a,s,t)|=O(a^k)\text{ for all }k\in\mathcal{N},\text{ with the implied constant uniform over }U\}.$ Then

$$WF(f)^c = \mathcal{D}$$

Theorem (Resolution of the Wavefront set by continuous shearlet frames; Grohs, 2011)

Let Ψ be a Schwartz function with infinitely many vanishing moments in x_2 -direction. Let f be a tempered distribution and $\mathcal{D}=\mathcal{D}_1\cup\mathcal{D}_2$, where $\mathcal{D}_1=\{(t_0,s_0)\in\mathbb{R}^2\times[-1,1]: \text{for }(s,t)\text{ in a nbd. } U\text{ fo }(s_0,t_0), |\mathcal{SH}_{\psi}f(a,s,t)|=O(a^k)\text{ for all }k\in\mathbb{N},\text{ with the implied constant uniform over }U\}$ and $\mathcal{D}_2=\{\ (t_0,s_0)\in\mathbb{R}^2\times(1,\infty]: \text{for }(1/s,t)\text{ in a nbd. } U\text{ of }(s_0,t_0), |\mathcal{SH}_{\psi^{\nu}}f(a,s,t)|=O(a^k)\text{ for all }k\in\mathcal{N},\text{ with the implied constant uniform over }U\}.$ Then

$$WF(f)^c = \mathcal{D}$$

Theorem (O. Ötkem et al., 2008)

Broadly speaking, a point on the N-Wavefront set of a distribution corresponds to a point on the N+1/2-Wavefront set of its Radon transform, with the corresponding directions.

Only thing left: Shearlets on the sinogram

Vsing results of compactly supported shearlets and shearlets on bounded domains, one can construct a shearlet frame on the space of the sinogram $L^2_{x_1-2\pi}([0,2\pi)\times\mathbb{R})$, given by

$$\psi_{\mathsf{a},\mathsf{s},\mathsf{t}}^{\mathsf{x}_1-2\pi}(\mathsf{x}_1,\mathsf{x}_2) := \sum_{\ell \in \{-1,0,1\}} \psi_{\mathsf{a},\mathsf{s},\mathsf{t}}(\mathsf{x}_1+2\pi\ell,\mathsf{x}_2)$$

where $\psi_{a,s,t}$ is a shearlet compactly supported on $[0,2\pi) \times \mathbb{R}$, whose corresponding system form a frame for $L^2([0,2\pi) \times \mathbb{R})$.

Only thing left: Shearlets on the sinogram

▶ Using results of compactly supported shearlets and shearlets on bounded domains, one can construct a shearlet frame on the space of the sinogram $L^2_{x_1-2\pi}([0,2\pi)\times\mathbb{R})$, given by

$$\psi_{a,s,t}^{\mathsf{x}_1-2\pi}(\mathsf{x}_1,\mathsf{x}_2) := \sum_{\ell \in \{-1,0,1\}} \psi_{a,s,t}(\mathsf{x}_1+2\pi\ell,\mathsf{x}_2)$$

where $\psi_{a,s,t}$ is a shearlet compactly supported on $[0,2\pi) \times \mathbb{R}$, whose corresponding system form a frame for $L^2([0,2\pi) \times \mathbb{R})$.

▶ Then in the learned primal-dual algorithm one can incorporate as extra information the N-Wavefront set of the image by pulling back the N+1/2-Wavefront set captured by the proposed shearlet frame. This will let us to get a solution with minimum lost of the important features of the images.

Thanks!

Questions?

