# RMP- Bayesian Filter & Particle Filter

| :≣<br>Key    | KF/EKF/UKF VS. Bayes Filter |                 |     | global localization |         | non-Gaussian     |
|--------------|-----------------------------|-----------------|-----|---------------------|---------|------------------|
| words        | non-linear                  | particle filter | res | sampling            | unknown | initial position |
| :≣<br>Status | note comple                 | ete             |     |                     |         |                  |

## KF/EKF/UKF: incremental localization

- robot position: can be modeled by a single Gaussian distribution
- **known initial position** (Initialization necessary)

### Problem:

- unknown initial position —> robot can be anywhere
- distribution of the robot position: unsmooth, non-Gaussian

Filtering: **sequentially estimating** the states of a system as **a set of observations available** onine.

- Solution:  $p(X_k|Y_k) = p(x_k|Y_k)$  —> no need to keep track of all states.
- ▼ a general system: non-linear, non-Gaussian
  - · assumptions:
    - $\circ$  states are markovian:  $p(x_k|x_{k-1},x_{k-2},\ldots,x_0)=p(x_k|x_{k-1})$
    - $\circ$  observations:  $P(y_k|x_k,\ldots,x_0)=P(y_k|x_k)$

## **Bayesian Inference:**

- ullet Goal: construct posterior state  $x_k$  given a sequence observations  $Y_k$
- Solution: Monte Carlo method —> approximate by a cloud of weighted discrete particles

# **Bayes Filter**

- · assumptions:
  - $\circ$  states are markovian:  $p(x_k|x_{k-1},x_{k-2},\ldots,x_0)=p(x_k|x_{k-1})$
  - $\circ$  observations:  $P(y_k|x_k,\ldots,x_0)=P(y_k|x_k)$
  - o arbitrary distribution: a mixture of multiple Gaussians
- **▼** Input:
  - **sequence** of observations:  $y_{1:k} = [y_1, y_2, \dots, y_k]$
  - sequence of constrol inputs:  $u_{0:k-1} = [u_0, u_1, \dots, u_{k-1}]$
  - ullet motion model:  $P(x_k|x_{k-1},u_{k-1})$  with initial  $P(x_1|u_0)$
  - measurement model (map):  $P(y_k|x_k)$
- ▼ Prediction:

$$P(x_{k+1}) = \int P(x_{k+1}|x_k,u_k) \cdot P(x_k) dx_k$$

- ▼ Correction (measurement update):
  - posterior probability distribution:  $P(x_k|y_{1:k},u_{0:k-1})$ 
    - combination of prediction and observation of KF —> recursive

$$P(x_k|u_{0:k-1},y_{1:k}) = \eta_k \cdot \underbrace{P(y_k|x_k)}_{ ext{observation}} \int_{x_{k-1}} \underbrace{P(x_k|x_{k-1},u_{k-1})}_{ ext{prediction}} \cdot \underbrace{P(x_{k-1}|u_{0:k-2},y_{1:k-1})}_{ ext{recursive instance}}$$

#### discrete case: Grid-based Localization

 Updating using motion mdel: a discrete convolution of prior by the driving noise of planned motion

$$P(x_{k+1}^-) = \Sigma P(x_{k+1}^-|x_k,u_k) \cdot P(x_k)$$

 Updating from observation: a multiplication of prior probability by likelihood of observation

$$P(x_{k+1}) = \eta \cdot P(y_{k+1}|x_{k+1}^-) \cdot P(x_{k+1}^-)$$

—> a probability distribution —> maximum likelihood

# Bayes Filter VS. Kalman Filter

- KF:
  - local navigation: update the unique position. (even with Data association: it will be matched to one position)
  - if multiple solutions: unable to associate observation to prediction. —> Data
    association problem —> ambiguities
- · Bayes Filter:
  - o global navigation
  - combination of prediction and observation in recursion.
  - need to integrate the entire space to calculate posterior.



# Particle Filter / Monto Carlo Filter

• non-Gaussian, nonlinear processes

- Input:
  - sequence of measurements  $y_{1:k}$
  - $\circ$  sequence of control vectors  $u_{0:k-1}$
  - $\circ$  N samples corresponding to prior belief P(x) uniform distribution  $P(x_0)$  / others from previous call  $P(x_{k-1})$
- Output:
- ▼ Process:
  - 1. Initial state: uniform distribution of samples
  - 2. draw n samples/particles from the belief
  - prediction: predict state for each particle with motion model, each sample has weight = 1
  - measurement update: for each mesaurement, each particle updates measurement prediction with measurement model
  - 5. **update weight** with actual measurement.
  - 6. resample particles according to the updated weight
- Resampling:
  - $\circ$  Roulette wheel: roll the wheel n times —> bias towards higher weight, O(logn)
  - Stochastic universal sampling: generate n pointers evenly on the wheel at 1 time, O(n)

# **Bayes Filter VS. Particle Filter**

- Bayes: represent the probability distribution as n-dimensional function
  - --> space discretization, computational expensive
- Particle: represent belief with samples/particles —> particle density \( \frac{1}{2}, \) probability \( \frac{1}{2} \)