# Network Layer – Service Model

Kameswari Chebrolu

# Recap

- Build reasonably sized networks spanning thousands of hosts via Extended LANs
- Drawbacks:
  - Not scalable
  - Can't handle heterogeneity
- Network Layer switching to the rescue

#### **Problem Statement**

- Make millions of hosts using different technology communicate
  - Heterogeneity: Addressing conventions,
     bandwidth, latency, loss rates, packet sizes

Internet

- Solution: Internet Protocol (IP)
  - Internet: Interconnect Networks
  - Invented by Robert Kahn and Vint Cerf



### Service Model

- What service can the network layer offer?
  - Deliver given packets to specified destination
- Delivery options (over packet switching)
- Guaranteed delivery
  Bounded delay
- Guaranteed minimum bandwidth
  - Guaranteed maximum jitter
  - In-order delivery
    - Duplicate suppression

### **Datagram Delivery Model**

- Datagram: No connection set-up
- Best Effort Service

- Many different technologies 20 ms bounded delay
- Will make best effort to deliver the packet
  - Packets can get <u>lost</u>, corrupted, <u>reordered</u>, misdelivered, duplicated, delayed
- KISS principle in practice (Simplest service)
- IP protocol's greatest strength
  - Runs over anything

## **Service Model Implementation**



#### **Points to Note**

- Heterogeneity
  - Move a layer above: Network Layer (IP)
  - Best effort service model
- Scalability
  - Hierarchical addressing
  - Efficient Routing algorithms
- Internet Architecture: Hour Glass



### **Summary**

- Objective: Interconnect heterogeneous networks in a scalable fashion
- Service Model: Best Effort Delivery
- Functionality: IP protocol (packet format, addressing), forwarding, routing
- Ahead: Implementation inside a router