Amendments to the Claims

This listing of claims will replace all prior versions, and listings, of claims in the present application:

Listing of Claims

1	1 5. (canceled)
1	615. (canceled)
1	16. (previously amended) A method of operating a receiver to receive an RF
2	signal, the receiver comprises an LNA with continuously variable gain that receives the
3	RF signal and produces an LNA output signal coupled to a VGA, the LNA and VGA
4	have control inputs to receive control signals that set gain factors of the LNA and VGA,
5	respectively, the method comprising steps of:
6	determining that a received power level of the RF signal is varying within a first
7	selected power range;
8	maintaining the gain factor of the VGA; and
9	adjusting the gain factor of the LNA so that a signal-to-noise ratio required for
10	demodulation of the RF signal is met with a selected margin and linearity requirements of
11	the receiver are reduced.
1	17. (original) The method of claim 16, further comprising steps of:
2	determining that the received power level of the RF signal is varying within a
3	second selected power range;
4	maintaining the gain factor of the LNA; and
5	adjusting the gain factor of the VGA so that the signal-to-noise ratio required for
6	demodulation of the RF signal is met.
1	18. (canceled)

1	19. (currently amended) The method of claim 18, further comprising steps of: A
2	method of operating a receiver to receive an RF signal, the receiver comprises an
3	LNA with continuously variable gain that receives the RF signal and produces an
4	LNA output signal coupled to a VGA, the LNA and VGA have control inputs to
5	receive control signals that set gain factors of the LNA and VGA, respectively, the
6	method comprising steps of:
7	determining that a received power level of the RF signal is varying within a
8	first selected power range;
9	adjusting the gain factor of the VGA;
10	adjusting the gain factor of the LNA so that a signal-to-noise ratio required
11	for demodulation of the RF signal is met with a selected margin and linearity
12	requirements of the receiver are reduced;
13	determining that the received power level of the RF signal is varying within a
14	second selected power range;
15	maintaining the gain factor of the LNA; and
16	adjusting the gain factor of the VGA so that the signal-to-noise ratio required for
17	demodulation of the RF signal is met.
1	20. (canceled)
1	21. (currently amended) The control network of claim 20, further comprising:
2	A radio receiver comprising:
3	a continuously variable gain low noise amplifier (LNA) coupled to a
4	subsequent variable gain amplifier (VGA);
5	a demodulator to generate an automatic gain control signal indicating a
6	power level of a desired received signal; and
7	a control network coupled to receive the gain control signal to optimally set
8	the gain of the LNA and VGA in a way that minimizes LNA gain while maintaining
.9	the required signal quality for proper demodulation, wherein the control network
10	further comprises:

11	an input for receiving a received signal strength indicator (RSSI);
12	an input for receiving a quality indicator of the demodulated signal; and
13	logic to perform a mapping function wherein the gain of the LNA and VGA are
14	controlled optimally.
1	22. (original) The control network of claim 21, wherein the logic to perform the
2	mapping function operates to lower the gain of the LNA once the desired received signal
3	power exceeds a level where interfering signals are possible until a gain range of the
4	LNA is exhausted, at which point only the gain of the VGA is controlled.
1	23. (original) The control network of claim 21, wherein the logic to perform the
2	mapping function operates to lower the gain of the LNA and VGA together as the power
3	of the received signal increases above a sensitivity threshold until the gain range of the
4	LNA is exhausted, at which point only the gain of the VGA is controlled.
1	24. (original) The control network of claim 21, wherein the quality indicator is on
2	or more of a bit energy per noise spectral density (E_b/N_o) , a bit error rate (BER), and a fram
3	erasure rate (FER).