6. Heaps

Priority Queue

Recall Queue ADT Model

Priority Queue Model

Priority Queue

Basic Operations:

- Insert a key
- Delete the maximum

Possible Implementations:

- Linked List
- BST
- Heap

Binary Heap

Two important properties:

- 1. Structure property
 - A heap is a complete binary tree (i.e. completely filled, with the possible exception of the bottom level, which is filled from left to right)
 - Since a complete binary tree is regular, it can be represented in an array and no pointers are necessary.

Complete Binary Tree

For any element in array[i], the left child is in position 2i, the right child is in 2i+1, and the parent is in Li/2.

	A	В	С	D	E	F	G	Н	1	J		
0	1	2	3	4	5	6	7	8	9	10	11	12

Priority Queue

```
typedef struct node{
   int max_heap_size;
   int size;
   int *elements;
}heap;
```


Priority Queue

```
heap *create(int max) {
  heap *h;
  h = (heap *)malloc(sizeof(heap));
  if (h==NULL)
       error ("Out of space!");
  h->elements = (int *)malloc(sizeof(int) * (max+1));
  if (h->elements==NULL)
       error("Out of space!");
  h->max heap size = max;
  h \rightarrow size = 0;
  return h;
```

Binary Heap

Two important properties:

- 2. Heap order property
 - In a heap, for every node X, the key in the parent of X is larger than the key in X, except the root.
 - By this property, the maximum element can always be found at the root.

Heap

A

Binary Heap

Operations:

- Insert
- Delete max
- * Build heap

• Strategy: "percolate up"

Priority Queue

```
void insert(int x, heap *h) {
  int i;
  if(is full(h))
      error("Priority Queue is full!");
  else{
      i = ++h->size;
      while (h->elements[i/2]<x) {
            h->elements[i]=h->elements[i/2];
            i/=2;
      h->elements[i]=x;
```


n successive insertions ≈ O(n log n)

• Strategy: "percolate down" from n/2


```
for(i=n/2;i>0;i--)
   percolate_down(i);
```



```
for(i=n/2;i>0;i--)
   percolate_down(i);
```

- To bound the running time of build_heap, we must bound the number of possible swaps.
- This can be done by computing the sum of the heights of all the nodes in the heap.

• This tree consists of 1 node at height h, 2 nodes at height h-1, 2² nodes at height h-2, and in general 2ⁱ nodes at height h-i.

· The sum of the heights of all the nodes is then

$$S = \sum_{i=0}^{h} 2^{i} (h - i)$$

The sum of the heights of all the nodes is then

$$S = \sum_{i=0}^{h} 2^{i} (h-i)$$

$$= h + 2(h-1) + 4(h-2) + 8(h-3) + 16(h-4) + \dots + 2^{h-1} (1)$$

$$2S = 2h + 4(h-1) + 8(h-2) + 16(h-3) + \dots + 2^{h} (1)$$

$$S = -h + 2 + 4 + 8 + \dots + 2^{h-1} + 2^{h}$$

$$= (2^{h+1} - 1) - (h+1)$$

The sum of the heights of all the nodes is then

$$= (2^{h+1} - 1) - (h+1)$$

$$= 2^{h}$$

$$= 2^{\log_2 n}$$

$$= n^{\log_2 2}$$

$$= O(n)$$

The Selection Problem
 Input: List of n elements, which can be totally ordered, and an integer k
 Output: Find the kth largest element

Algo1:

- Read elements into an array and sort them, returning the appropriate element. \approx O(n²)

- The Selection Problem Algo2:
 - Read k elements into an array and sort them, the smallest is in the kth position.
 - Process the remaining elements one by one. As an element arrives, it is compared with kth element in the array.
 - If it is larger, the kth element is removed, and the new element is placed on the correct place among the remaining k-1 elements.
 - When the algorithm ends, the element in the kth position is the answer. \approx O(n*k) \approx O(n²)

- The Selection Problem Algo3:
 - Read n elements into an array.
 - Apply the build_heap algorithm.
 - Perform k delete_max operations.
 - The last element extracted from the heap is the answer.
 - ≈ O(n log n)

- The Selection Problem Algo3:
 - build_heap ≈ O(n)
 - delete_max ≈ O(log n)
 - k delete_max ≈ O(k log n)
 - total \approx O(n + k log n)
 - if $k = \lceil n/2 \rceil \approx O(n \log n)$

Merging

6. Heaps

Binomial Queues

Binomial Queues

- Support merging, insertion, and delete_max in O(log n) worst-case time per operation.
- Collection of heap-ordered trees, known as a forest.
- Each of the heap-ordered trees are of a constrained form known as a binomial tree.

Binomial Queues

- There is at most one binomial tree of every height.
- A binomial tree of height 0 is a one-node tree; a binomial tree, B_k , of height k is formed by attaching a binomial tree, B_{k-1} , to the root of another binomial tree, B_{k-1} .
- Binomial trees of height k have exactly 2^k nodes.

Priority Queue

- If we impose heap order on the binomial trees and allow at most one binomial tree of any height, we can uniquely represent a priority queue of any size by a collection of binomial trees
- A priority queue of size 13 could be represented by the forest B₃, B₂, B₀.
- Can also be represented as 1101

Binomial Queue Operations

Maximum element – scan the roots of all trees
 ≈ O(log n)

Priority Queue of size: 6 = 110

Binomial Queue Operations

- Maximum element scan the roots of all trees
 ≈ O(log n)
- Merging two binomial queues ≈ O(log n)

 H_3

 H_3

 H_3

Binomial Queue Operations

- Maximum element scan the roots of all trees
 ≈ O(log n)
- Merging two binomial queues ≈ O(log n)
- Insertion creates one-node tree and merge
 ≈ O(log n)

Binomial Queue Operations

- Maximum element scan the roots of all trees
 ≈ O(log n)
- Merging two binomial queues ≈ O(log n)
- Insertion creates one-node tree and merge
 ≈ O(log n)
- Delete_max ≈ O(log n)

H'

H''

 H_3

 H_3

 H_3

6. Heapsort

Heapsort

```
HeapSort(A,n)
begin
  BuildHeap(A)
  for i=n downto 2 do
     swap(A[1],A[i])
     Heapify(A,1,(i-1))
end
```


Resulting Max-Heap

swap(A[1],A[i])

Heapify(A,1,9)

2nd pass: i=9

2nd pass: i=9

swap(A[1],A[9])

2nd pass: i=9

Heapify(A,1,8)

3rd pass: i=8

3rd pass: i=8

swap(A[1],A[8])

3rd pass: i=8

Heapify(A,1,7)

swap(A[1],A[7])

Heapify(A,1,6)

swap(A[1],A[6])

Heapify(A,1,5)

swap(A[1],A[5])

Heapify(A,1,4)

swap(A[1],A[4])

Heapify(A,1,3)

swap(A[1],A[3])

Heapify(A,1,2)

swap(A[1],A[2])

Quiz

- Build heap:
 - 15, 8, 4, 3, 1, 7, 11, 10, 20, 9, 6, 5, 12, 14, 13

- In the array implementation (first element is at index 1), what is the value at:
 - 1. index 3?
 - 2. index 7?
 - 3. index 14?

