Newtons avkjølingslov

Innleiing

Målet med dette forsøket er å sjekke om newtons avkjølingslov gir oss ein representativ modell for endring av temperatur over tid, ved å samanlikne reell data med den teoretiske modellen gjennom å plotte i Python.

Teori

Newtons avkjølingslov fortel oss at raten av endring i temperaturen til eit objekt er proporsjonal med differansen mellom temperaturen til objektet og temperaturen til miljøet rundt. Formelen til newtons avkjølingslov går som følgjer:

$$\dot{T} = \alpha (T - T_k)$$

Der T er temperaturen til objektet, medan T_k er temperaturen til omgivnadane, for eksempel romtemperatur eller temperaturen i eit kjøleskap. α er varmeoverføringskoeffisienten, som fortel oss om raten av varmeoverføring. Vidare kan vi løyse differensiallikninga på følgjande måte;

$$\dot{T} = \alpha (T - T_k)$$

$$\dot{T} - \alpha T = -\alpha T_k$$

$$\dot{T} * e^{-\alpha t} - \alpha T * e^{-\alpha t} = -\alpha T_k * e^{-\alpha t}$$

$$\int \frac{d(Te^{-\alpha t})}{dt} = \int -\alpha T_k * e^{-\alpha t} dt$$

$$Te^{-\alpha t} = T_k * e^{-\alpha t} + c$$

$$T = T_k + ce^{\alpha t}$$

Utstyrsliste

- 1. Skål
- 2. Termometer
- 3. Klokke

Metode

- 1. Fyll ei skål med varmt vatn.
- 2. Mål starttemperaturen til vatnet.
- **3.** Mål deretter temperaturen med høvelege intervall fram til temperaturen når temperaturen til omgivnadane.

Resultat

Figur 1: Viser dei fysiske målingane, saman med dei teoretiske verdiane newtons avkjølingslov gir oss.

I dette plottet har eg nytta $\alpha = \frac{1}{10} \ln{(\frac{21}{56})}$ og c = 56. Konstanten c finn vi ved å sette;

$$f(0) = start\ temperatur$$

 $78 = 22 + ce^0$

$$c = 56$$

Varmeoverføringskoeffisienten, α , finn vi ved å bruke ein målt temperatur etter ei viss tid(Her må ein prøve seg litt fram med ulike temperaturar og tider for å finne ein mest mogleg representativ α).

$$f(t) = \text{målt temperatur}$$
$$36 = 22 + 56e^{\alpha 18}$$
$$\alpha = \frac{1}{18} \ln{(\frac{14}{56})}$$

Diskusjon

Som vi ser ut i frå grafen gir newtons metode oss ein funksjon som er relativt representativ i forhold til målingane , men ikkje heilt. Funksjonen som tar utgangspunkt i newtons metode gir ei større temperaturendring per tid enn det dei reelle målingane gav. Grunnen til kvifor dette er tilfelle er vanskeleg å sei konkret, men faktorar som fordamping, endring av konveksjonen i rommet eller varmestråling frå ukontrollerbare objekt kan ha bidrege til å skape eit miljø som påverka varmeendringsraten i noko grad. Hadde derimot skåla med vatn vore plassert i eit perfekt miljø, so hadde kanskje newtons metode gitt ein meir representativ modell. Der eg også verdt å merke seg at ulike verdiar for α kan gi svært ulike grafar.

Konklusjon

Newtons metode er ein særs forenkla modell av temperaturendring, den tar ikkje høgde for mange av dei faktorane som kan påverke resultatet. Men, dersom vi vel korrekt α , kan vi likevel få ein relativt realistisk modell.

Tillegg:

Her er Python-koda:

```
import matplotlib.pyplot as plt
import math as ma
temp = [78, 61, 55, 49, 46, 43, 41, 39, 37, 36, 31, 30, 30, 29, 28, 28, 27, 27, 26, 25, 25, 24, 23, 22]
tid = [0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 26, 28, 30, 32, 34, 36, 38, 40, 42, 48, 55, 56, 80, 120]
temp2 = []
def f(x):
    return 22+56*ma.e**((1/18)*ma.log(14/56)*x)
for i in range(len(tid)):
   temp2.append(f(tid[i]))
plt.plot(tid, temp, label = f'Målingar')
plt.plot(tid, temp2, label = f'Newtons avkjølingslov')
plt.legend()
plt.grid()
plt.xlabel(f'tid(minutt)')
plt.ylabel(f'temp(celsius)')
plt.title(f'Temperaturendring i vatn')
plt.show()
```