Computer Vision Spring 2017 Problem Set #5

Yonathan Lim yonathan@gatech.edu

1a: Gradient Pair of transA

transA gradient-pair image - ps5-1-a-1.png

1a: Gradient Pair of simA

simA gradient-pair image - ps5-1-a-2.png

1b: Harris Response Image (transA)

transA image - ps5-1-b-1.png

1b: Harris Response Image (transB)

transB image - ps5-1-b-2.png

1b: Harris Response Image (simA)

simA image - ps5-1-b-3.png

1b: Harris Response Image (simB)

simB image - ps5-1-b-4.png

1c: Harris Corners Image (transA)

transA image - ps5-1-c-1.png

1c: Harris Corners Image (transB)

transB image - ps5-1-c-2.png

1c: Harris Corners Image (simA)

simA image - ps5-1-c-3.png

1c: Harris Corners Image (simB)

simB image - ps5-1-c-4.png

2a: Interest Points Pair (transA-B)

Interest points with angles show on transA/B-pair image - ps5-2-a-1.png

2a: Interest Points Pair (simA-B)

Interest points with angles show on simA/B-pair image - ps5-2-a-2.png

2b: Putative Pair Image (transA-B)

Putative transA/B-pair image - ps5-2-b-1.png

2b: Putative Pair Image (simA-B)

Putative simA/B-pair image - ps5-2-b-2.png

3a: Consensus Set Image (transA-B)

Biggest consensus set lines drawn on pair - ps5-3-a-1.png

3b: Consensus Set Image (simA-B)

Biggest consensus set lines drawn on pair - ps5-3-b-1.png

3c: Consensus Set Image II (simA-B)

Biggest consensus set lines drawn on pair - ps5-3-c-1.png

3d: Warped Image

warpedB image- ps5-3-d-1.png

overlay image - ps5-3-d-2.png

4a: Warped Image (CHALLENGE)

warpedB image- ps5-4-a-1.png

overlay image - ps5-4-a-2.png

5: Discussion

- For question 1, describe the behavior of your corner detector including anything surprising, such as points not found in both images of a pair.
 - For the corner detector, I have to set the kernel size to be small (3, 3). If the kernel is too big, the harris response will be unfocused. Some corners are only found on one image but not the others. This is due to distance of the object affecting the size of the corner. In addition, even though harris detector is rotation invariant, there are many corners that are not detected.

5: Discussion

- For questions 2 and 3, ORB and RANSAC:
 - What translation vector was used?
 - [[-149.2] [-85.4]]
 - What percentage of your matches was the biggest consensus set?
 - 47.82% for translate, similarity, or affine.

5: Discussion

- Regardless of whether you implemented the challenge problem, comment as to whether using the similarity transform or the affine one would give better results, and why or why not.
 - Using the affine transform would give better result. It appears to align better compare to similarity transform. The affine transformation preserves points and straight lines but does not preserve angles between lines or distance between points.