This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

THIS PAGE BLANK (USPTO)

DIALOG(R) File 351: Derwent WPI (c) 2002 Thomson Derwent. All rts. reserv. 008294242 WPI Acc No: 1990-181243/ 199024 XRAM Acc No: C90-078684 XRPX Acc No: N90-140833 Toner contg. semi-crystalline polyolefin resin mixt. - used to provide developing agent for forming photographic image, for copying appts., etc. Patent Assignee: XEROX CORP (XERO) Number of Countries: 002 Number of Patents: 003 Patent Family: Week Date Patent No Kind Date Applicat No Kind 19890807 199024 B Α 19900320 JP 89204555 Α JP 2079860 19910205 US 88231428 19880812 199108 Α US 4990424 19890807 199915 B2 19990308 JP 89204555 Α JP 2866111 Priority Applications (No Type Date): US 88231428 A 19880812 Patent Details: Patent No Kind Lan Pg Main IPC Filing Notes JP 2079860 Α 12 US 4990424 12 Α 9 G03G-009/087 Previous Publ. patent JP 2079860 JP 2866111 B2 Abstract (Basic): JP 2079860 A Toner compsn. contains mixture of resin particles of styrene polymer or polyester and semicrystalline polyolefin having m. pt. of about 50-100, pref., about 60-80 deg.C and its copolymer and pigment particles. USE/ADVANTAGE - The toner compsn. is used with carrier particles to provide a developing agent compsn. which is useful for forming electrophotographic image, for copying equipment, etc. The resin particles are harmless and have nonblocking properties at below 50 deg.C, good processing properties with other toner compsn., fusion-fixing properties in a wide range of fixing temp., frictional charging properties, etc. The toner compsn. has a low fixing temp., e.g. 121.1-165-6 deg.C. (Provisional Basic previously advised in week 9017) (12pp Dwg.No.0/0)est Abstract (Equivalent): US 4990424 A Toner compsn. comprises a dispersion of pigment particles in a polymer blend produced from styrene (co)polymers or polyesters and one or more semicrystalline alk-1-ene homopolymers having a m.pt. pref. of 60-80 deg.C, mean Mn of about 17,500-1,500,000 and a dispersion ratio Mw/Mn of about 2-15. Pref. polyolefins are obtd. by homopolymerisation of 14-20C alkenes. USE - The prods. are improved toners for developing latent electrostatic images in photoelectrostatic copying systems, having lower heats of fusion, lower m.pts., cohesion at temps. above the m.pt. and enhanced triboelectric charging properties. (12pp) Title Terms: TONER; CONTAIN; SEMI; CRYSTAL; POLYOLEFIN; RESIN; MIXTURE; DEVELOP; AGENT; FORMING; PHOTOGRAPH; IMAGE; COPY; APPARATUS Derwent Class: A13; A17; A89; G08; P84; S06 International Patent Class (Main): G03G-009/087 International Patent Class (Additional): C08L-023/02; C08L-025/04; C08L-067/02; G03G-009/08 File Segment: CPI; EPI; EngPI Manual Codes (CPI/A-N): A04-C01; A04-G01E; A05-E01D; A07-A02; A07-A04D;

A12-L05C2; G06-G05

Manual Codes (EPI/S-X): S06-A04C1

Plasdoc Codes (KS): 0231 0232 0233 2541 2553 2642 2656 2667 2675 2808 0304 0305 1288

Polymer Fragment Codes (PF):

- *001* 014 034 04- 041 046 055 056 323 393 506 511 525 575 577 578 597 604 608 62- 658 659 688 725
- *002* 014 034 04- 041 046 143 323 393 506 511 525 575 577 578 597 604 608 62- 658 659 688 725

⑩日本国特許庁(JP)

① 特許出願公開

@ 公 開 特 許 公 報 (A) 平2-79860

Int. Cl. 5

識別記号

庁内整理番号

❸公開 平成2年(1990)3月20日

G 03 G 9/087

7265-2H G 03 G 9/08

321 **

審査請求 未請求 請求項の数 4 (全12頁)

砂発明の名称 半結晶質ポリオレフイン樹脂混合物を含むトナーおよび現像剤組成
なか

②特 願 平1-204555

②出 願 平1(1989)8月7日

優先権主張 Ø1988年8月12日 9米国(US) 9231428

⑫発 明 者 ジョン ジー ヴアン アメリカ合衆国 ニユーヨーク州 14568 ウオルワース

デューセン オンタリオ センター ロード 3624

⑫発 明 者 テイモシー ジェイ アメリカ合衆国 ニユーヨーク州 14586 ウエスト へ

フラー ンリエッタ イースト リヴアー ロード 3629

⑪出 願 人 ゼロツクス コーポレ アメリカ合衆国 ニユーヨーク州 14644 ロチエスター

ーション ゼロツクス スクエア (番地なし)

四代 理 人 弁理士 中村 稔 外7名

最終頁に続く

明 細 書

1.発明の名称 半結晶質ポリオレフィン樹脂混合物を含むトナーおよび現像剤

組成物

2. 特許請求の額囲

- (I) スチレンボリマーまたはポリエステルと、融 点約50℃~約100℃を有する半結晶質ポリ オレフィンおよびそのコポリマーとを含有する 樹脂粒子の混合物;および顔料粒子を含むトナ ー組成物。
- (2) 半結晶質ポリオレフィンの融点が約60℃~約80℃である請求項(1)記載のトナー組成物。
- (3) ポリオレフィンが次式: (C14Hze) x 、
 (C15Hze) x 、(C14Hze) x 、(C17Hze) x 、
 (C18Hze) x 、(C17Hze) x 、および
 (C26Hze) x を有するポリオレフィンからな
 る群より選ばれ、各式中、xが約250~約
 21,000の数である請求項(1)記載のトナー組成物。
- (4) 請求項(1)記載のトナー組成物およびキャリヤー粒子を含む現像剤組成物。

3.発明の詳細な説明

発明の背景

本発明は一般にトナー組成物に関し、さらに詳 細には、本発明は半結晶質ポリオレフィン樹脂と スチレンメタクリレート、スチレンアクリレート、 ポリエステルおよびスチレンプクジェンのような 通常の公知ガラス質トナー樹脂との混合物を含む トナー組成物を含む現像剤組成物に関する。さら に詳細には、本発明の1つの実施腹様においては、 ポリオレフィントナー高分子樹脂の混合物を含有 するトナー組成物とキャリヤー成分とを混合する ことによって調製した現像剤組成物が提供される。 本発明の1つの特定の実施態様においては、前述 のポリスチレンと半結晶質のポリオレフィン樹脂、 α-オレフィンポリマー、これらのコポリマーと の混合物を含み、これらの成分が無毒であり、 50℃以下の温度で非ブロッキング性であり、例 えば他の手段によるトナー組成物への収穫性ない し加工性を有じ、広い定 温度範囲において溶験 定着性であり、樹脂の融点以上では凝集性であり、

さらに摩擦電気的に帯電性であるトナー組成物が 提供される。さらにまた、本発明のトナー組成物 は、ある場合には、低定着温度を有し、従って、 定着中により低い定着エネルギーしか必要とせず、 使用する定者装置系の寿命延長を可能にする。従 って、本発明のトナーは、例えば、約121.1~ 約165.6℃(約250~約330°F)の温度 (定着ロールセット温度) で定者できる。多くの 現在商業的に入手できるトナーは約1489~約 162.8℃ (約300~約325°F) の温度で 定着する。さらに本発明に関して、DSCにより また他の公知方法により測定したとき約50~約 100で好ましくは約60~約80での融点を有 する半結晶質αーオレフィンポリマーまたはコポ リマーは、発明者Timothy J. Puller , Thomas W. Smith , William M. Prest Jr., Robert A. Helson , Kathleen H. HcGrane, および Suresh N. Abujaによる トナー アンド ディベロッパ ーコンポジションズ ウイズ セミクリスタリン ポリオレフィン レジンズ (Ioner and Developer Compositions With Semicrystalline Polyolefin Resins) なる名称の米国特許第 号 (まだ譲渡されず) に開示されており、該米国特許出願の記載はすべて参考として本明細」に引用する。また、本発明のトナーおよび現像剤組成物は電子写真像形成および複写装置とりわけ静電複写像形成方法において特に有用である。 従来の技術

米国特許第 4,529.680号は主成分としてメチルー1ーペンテン類を含有する加圧定着用の磁性トナーを開示している。さらに詳細にはは、該米国特許には、その第 2 欄、 6 6 行からの記載において、メチルー1ーペンテンを本質的に合有が開示されるボリマーな合とは、ボリマーはホモボリマーであり、このボリマーであり、記載によるでは、ボリマーの固有粘度は特定の範囲にあるによいては、ボリマーの動点は150~240で好ましくは180で~230での範囲にあること

も示唆されている。特許性調査の結果として存在 する他の背景的に興味のある特許には、米国特許 第 3.720,617号、第 3.752,666号、第 3.788.994 号、第 3.983,045号、第 4.051,077号、 第 4.108.653号、第 4.258.116号および 第 4.558.108号がある。

 例えば、121.1 で (250°F)以下で定着で き、それによって低定着温度での使用を可能にし、 定着中の低出力情費を与える低定着エネルギーを 可能にし、かつ使用する定着装置特に定者ロール の使用寿命の延長を可能にするトナー組成物が求 められている。別の要求は上述のトナー組成物と キャリヤー粒子を含む現像剤組成物を提供するこ とにある。また、添加剤例えば帯電促進成分を含 有しそれによって正または負帯電トナー組成物を 与えるトナーおよび現像剤組成物も求められてい る。さらにまた、電子写真像形成複写装置におい て実質的に背景付着物のない固形像領域の形成お よびハーフトーン像の完全なグレースケール形成 を可能にする半結晶質ポリオレフィンポリマーを 食有するトナーおよび現像剤組成物が求められて いる。

また、半結晶質αーオレフィンポリマー、そのコポリマーおよびこれらポリマーおよびコポリマーの混合物であって約50~約100で好ましくは約60~約80での融点を有し、これらの樹脂

を含有するトナー組成物を電子写真像形成複写装置において使用できる現像形に調製でき、かつ定着を、例えば、フラッシュ、照射、加熱炉および 冷間圧着法により実施できるものが求められている。

(発明が解決しようとする課題)

4

本発明の目的は前途の利点の多くを有するトナ ーおよび現像剤組成物を提供することである。

本発明の別の目的は半結晶質ポリオレフィン樹脂を含有する樹脂ブレンドを含む正常電トナーを含む現像剤組成物を提供することである。

また、本発明の別の目的はスチレンポリマーと 半結晶質αーオレフィンポリマーまたはコポリマ ー成分とを含有し、これら成分が約50~約100 で好ましくは約60~約80での融点を有するト ナー組成物を提供することである。

(課題を解決するための手段)

本発明の上記および他の目的はある種のポリオ レフィン樹脂を含有するトナーおよび現像剤組成 物を提供することによって速成される。さらに詳 細には、本発明の1つの実施機様においては、倒料粒子、および前述したようなスチレンポリマー、ポリエステル等と半結晶質樹脂ポリオレフィンポリマー、特に、半結晶質αーオレフィンポリマー、コポリマーまたはこれらの混合物の混合物とを含むトナー組成物が提供される。これらのポリオレフィンはDSCで測定したとき約50~約100 で好ましくは約60~約80℃の融点を有することが好ましい。

さらに詳細には、本発明のトナー組成物において使用する約50~約100で好ましくは約60~約80での融点を有する半結晶質ポリマーは×が約250~約211.000の数である次の式において示され、その数平均分子量は、GPCにより測定したとき約17.500~約1.500,000であり、そして、Mw/No分散性比は約2~約15である。

- I. ポリペンテン (C: H:s) *
- II. ポリテトラデセンー (C1eH2e) w
- 田、ポリペンタデセンー (CisHee) x
- Ⅳ. ポリヘキサデセン~ (C, *H s *) *
- V. ポリヘプタデセンー (C:17H:1) =
- VI. ポリオクタデセンー (CioHso) "
- 姐 ポリノナデセン (C:*H:*) x
- 切、ポリエイコセン (CooHto) x

特定の半結晶質ポリオレフィンポリマーの例には、ポリー1ーペンテン、ポリー1ーテトラデセン、ポリー1ーペンタデセン、ポリー1ーペナデセン、ポリー1ーオクタデセン、ポリー1ーオクタデセン、ポリー1ーナデセン、ポリー1ーナイコセン、およびこれらの類似物等がある。他半結晶質ポリオレフィンが約50~約100℃ れこれらのポリオレフィンが約50~約100℃ 好ましくは約60~約80℃の融点を有する限り使用できる。

また、コポリマーも、これらコポリマーが上述

の、即ち、約50~約100で好ましくは約60 ~80℃の融点を有する限り、本発明の樹脂混合 物において使用でき、これらのコポリマーは2種 のモノマーから調製する。一般に、これらのコポ リマーは約80~約99.5モル%の上述のポリベ ソテンモノマーと約0.5~15モル%の上述の式 I~MIのポリオレフィンポリマーを含有する。ま た、コポリマーは融点50~100でを有するエ チレン、プロピレンまたはプテン系コポリマーも 特別に含み得る。これらのコポリマーは通常少い エネルギーしか消費しない、即ち、例えば、その 定着熱は上記のポリマー類よりも小さく、高定着 熱は約250ジュールノ8であり;定着熱はトナ - 組成物を紙のような支持基体に効果的にかつ永 久に定着させるのに必要な然量である。さらに、 これらのコポリマーは一般に約17,000~

約150,000 の数平均分子量を育し、また分散性Hw /Mn比約2~約15を育する。半結晶質のポリオ レフィンおよびそのコポリマー、並びにそれらの 混合物は多く供給源から入手でき、これら化合物 の関製方法は多くの公知文献に関示されている; 例えば、"U. Giannini, G. Bruckner, B. Peliino およびA. Cassatta,ジャーナル オブ ポリ マー サイエンス (Jaurnal of Polymer Science)、 part C (22), pp. 157~175 (1968)"、および"K. J. Clark,

A. turner Jones、およびD. G. H. Sandiford、ケミストリー イン インダストリー (Chemistry in Industry).pp. 2010 ~2012 (1962) を参照されたい;これら論文の各々の記載はすべて参考として本明細書に引用する。混合物においては、約75~約95重量%のポリマーを使用し、約5~約30重量%のコポリマーを使用し得るが、それ以外の混合物も本発明の目的が進成される限り使用できる。

本発明のトナー組成物中に存在する第2 樹脂成分の例には、スチレンアクリレート、スチレンメタクリレート、スチレンブタジェン、ブリオライト (pliolite) およびポリエステル等がある (米田特許第3,590,000号、第4,560,635号、

ック、酸化鉄、マグネタイトおよびこれらの混合物をトナー粒子用の着色剤として使用できる。顔料は、好ましいのはカーボンブラックであるが、トナー組成物を高度に着色するのに十分な量で存在すべきである。即ち、顔料粒子はトナー組成物の総重量落準で約2~約20重量%の量で存在するが、それより少量または多量の顔料も本発明の目的が達成される限り使用できる。

種々のマグネタイトも、多くの場合、マピコ (Mapico) ブラックとして商業的に入手できるものを包含する酸化鉄 (PeO・Pe』O』)の混合物を含むが、本発明のトナー組成物中に含有させ得る。これらの顔料粒子は種々の有効量で存在するが、一般には、トナー組成物中で約10~約30盤量 %の量好ましくは約16~約19 選量%の量で存在する。これで明記しない他のマグネタイトも本発明の目的が達成される限り使用できる。

多くの種々の帯電促進級加利も本発明のトナー 組成物に含有させてこれら組成物上に例えば、約 10~約35マイクロクーロン/gの正電荷を復 第 4.558,108号、第 4,469,770号および 第 4.298.672号を参照されたい。これら米国特許の記載はすべて参考として本明細 に引用する)。 一般に、約50~約75重量%のこれらポリマーと約25~約50重量%の半結晶質ポリオレフィンまたはそのコポリマーとが本発明のトナー組成 物中に存在する。しかしながら、上記トナー樹脂 半結晶質ポリオレフィンまたはそのコポリマーは、 一般に、例えば、他の成分の量によりまた本発明 の目的が達成される限り種々の有効量でトナー組 成物中に存在する。一般的には、約25~約75 重量%好ましくは50重量%の上記半結晶質樹脂 が本発明の1つの実施機様において存在する。

上記混合物は、トナー組成物中に、例えば、すべての成分の総量が約100%に等しいとした場合の他の成分の量により程々の有効量で存在する。一般的には、上記混合物は約50~約95重量%好ましくは約65~約90重量%の量で存在する。多くの周知の適当な顔料または染料、例えば、カーポンプラック、ニグロシン染料、ランプブラ

得せしかるのに使用できる。帯電促進添加剤の例には、アルキルピリジニウム 大国特許第 4.298,672 号参照、その記載はすべて本明細書に参数性事なとととして、という、1900 日本では、1900 日本には、1900 日本にはは、1900 日本には、1900 日本には、1900 日本には、1900 日本には、1900 日本には、1900 日本には、1900 日本にはは、1900 日本には、1900 日本にはは、1900 日本にはは、

さらにまた、本発明のトナー組成物は、内部または外部成分として、エーロジル (Aerosil)を包含するコロイド状シリカ、ステアリン酸亜鉛のような脂肪酸の金属塩、金属塩 (米国特許第3,590,000 号および第3,900,588号参照、これら米国特許の記載はすべて参考として本明細 に引

用する): およびワックス成分、特に、ポリエチレンおよびポリプロピレンのような約1,000 ~約15,000好ましくは約1,000 ~約6,000 の分子量を有するもののような他の添加剤も含有し得、これらの添加剤は一般に約0.1~約1重量%の量で存在する。

. بِد

本発明のトナー組成物はトナー樹脂粒子と類料粒子即ち着色剤とを溶融混合し次いで機械的に即砕することを包含する多くの方法で調製できる。他の方法にはスプレー乾燥法、溶融分散法、分散重合法、押出法および懸濁重合法のような当該技術において周知の方法がある。1つの分散重合法においては、樹脂粒子の混合物と観料粒子の溶媒分散体を調整された条件下にスプレー乾燥させて所優の製品を得る。

本発明のトナー組成物の有する重要な特徴には 約165.6 ℃ (約330°F) 以下の定着温度、 および約121.1~約176.7 ℃ (約250~約 350°F) の定着温度範囲とがある。 さらにま た、本発明のトナーは、例えば、いくつかの実施

態様において100万回の現像コピーを越える延 長された四数の像形成サイクルに亘って約10~ 約35マイクロクーロン/gの安定な摩擦電気帯 電値を有するものと考えられている。理論によっ て拘束する積りはないけれども、摩擦電気帯電値 の模様な低下あるいは実質的に低下しない2つの 重要な要因は使用するポリオレフィンの特異な物 理的性質および使用するキャリヤー粒子の安定性 にあるものと信じている。また、本発明のトナー 組成物における少ないエネルギー消費もある場合 に重要である、何故ならば、例えば、約148.9 で~約165.6で (約300~約330°F) で 定着するスチレンプタジェンを含有するトナーを 包含する他の通常のトナーと比較し、本発明のト ナーはより低温で、即ち、約121.1℃ (約 250°F、定着ロールセット温度)で定着でき るからである。

上記のトナーと混合して現像利組成物を調製することのできるキャリヤー粒子としては、キャリヤーコアがスチール、ニッケル、マグネタイト、

フェライト、銅亜鉛フェライト、鉄、ポリマーお よびこれらの混合物等を包有する種々の公知の成 分を使用する。また、米国特許出願第 136,792号 および第 136.791号に開示されているような粉末 コーティング法によって調製したキャリヤー粒子 も有用であり、これら米国特許出願の記載はすべ て参考として本明細書に引用する。さらに詳細に は、これらのキャリヤー粒子は、低密度多孔質の 磁性または磁力吸引性金属コアキャリヤー粒子を コーティングキャリヤー粒子の重量基準で、例え ば、約0.05~約3重量%のポリマー混合物とポ リマー混合物のキャリヤーコアに対する機械的街 撃または静電吸引による付着が得られるまで混合 し;キャリヤーコア粒子とポリマーの混合物を併 えば約93.3℃~約287.8℃ (約200°F~ 約550°F) の温度に約10~約60分間加熱 してポリマーをキャリヤーコア粒子に融合せしめ; コーティングしたキャリヤー粒子を冷却し;しか る後、得られたキャリヤー粒子を所望の粒度へ分 級することによって興製できる。

本発明の特定の実施機様においては、第1のドライポリマー成分と第2のドライポリマー成分と の混合物を含むコーティングを有するコアからなるキャリヤー粒子が提供される。 従って、このキャリヤー組成物はドライポリマーコーティング混合物を鉄とともに有する公知のコア材料を含み得る。 その後、本発明の現像 利組成物は上記のキャリヤー粒子をポリオレフィン 樹脂粒子を含む混合物と類料粒子とを含むトナー組成物と混合することによって複製できる。

即ち、本発明の目的が逸成される限り、多くのの過当な固形コアキャリヤー材料を使用することができる。重要な特徴的なキャリヤー性質にはよび・一粒子に正電荷を獲得せしめ得る性質、お望のである。また、キャリヤーはが動特性を与える性質がある。また、キャリヤーコアが所望のサウスを可能において磁性ブラシ形成を可能にする。 当な磁力特性:およびキャリヤーコアが所望の機能的経時特性を有することである。好ましいキャ リヤーコアには平均粒径約30~約200ミクロンを有するフェライト、スポンジ鉄またはスチール粒がある。

本発明のキャリヤー粒子用に使用するポリマー コーティングの具体的な例は摩擦電気系列

発明の目的が達成される限り使用できる。

さらに上記のポリマーコーティング混合物に関して、本明細書で使用する。近似。とは使用する 各ポリマーの選択が摩擦電気系列におけるそれらポリマーの位置によって決まることを意味し、従って、例えば、第2ポリマーよりも有意に低い摩擦電気帯電値を有する第1ポリマーを使用できる。

キャリヤーコーティング混合物中に存在するネイング混合物中に存在する。 中ででは、使用する特定の成分、コーティングボリマーとの部の望する性質によって変化でして、一般的には、使用するコーティングボリマーと約90本約10重量%の第1ポリマーとの対するを関係では、対する物を使用する。本発明の1つのは、約70~約40重量%の第2ポリマーでは、高限な帯で値、即ち、30重量によりでは、ないのカイナール(Kynar)301下として商業によりできるポリファ化ビニリデンのような第1ポ

リマーと約50重量%のポリメチルアクリレートまたはポリメチルメタクリレートのような第2ポリマーを使用する。一方、低摩擦電気帯電镀、例えば、約10マイクロクーロン/g以下を望む場合、約30重量%の第1ポリマーと約70重量%の第2ポリマーを使用する。

一般に、約1~約5重量部のトナー粒子を約10~約300重量部の上述のキャリヤー粒子と 混合して現像剤組成物の調製を行う。キャリヤー コーティング量は使用する特定のコーティングを 包含する多くの要因によって変化し得る。即ち、 約0.1~約5重量が好ましくは約3重量がのコーティング量を使用できる。

また、本発明の範囲には、トナー樹脂粒子の混合物、キャリヤー粒子、および飼料即ち着色剤としてのマゼンタ、シアンおよび/またはイエローまたはこれらの混合物とを含むカラートナー組成物も包含される。さらに詳細には、顔料として使用し得るマゼンク物質の例には1、9ージメチル環境キナクリドンおよびカラーインデックスに

CI 60720として掲載されているアントラキノン 染料;CIデイスパースド レッド15、カラー インデックスにCI 26050として掲載されている ジアゾ染料:Clyルペント レッド19等があ る。顔料として使用できるシアン物質の例には解 テトラー4(オクタデシル スルホンアミド)フ タロシアニン:カラーインデックスにCI 74160 として掲載されているX-飼フタロシアニン顔料; CIピグメント ブルー;カラーインデックスに CI 69810として掲載されているアントラスレン ブルー;およびスペシャル ブルーX-2137等が あり、また、使用できるイエロー顔料の具体的な 例にはジアリライド イエロー 3. 3ージクロロ ベンジジン アセトアセトアニリド、カラーイン デックスにCI 12700として掲載されているモノ アゾ顔料: C I ソルベント イエロー 1 6 、カラ ーインデックスにフロン イェローSE/GLN として搭載されているニトロ フェニル アミン スルホンアミド: CIディスパースド イエロー 33、2. 5-ジメトキシー4ースルホン アニ

リド フェニルアゾー4 '-クロロー2, 5-ジメトキシ アセトアセトアニリド;およびパーマネント イエローFGL等がある。これらの顔料は一般にトナー組成物中にトナー樹脂粒子の重量基準で約1~約15重量%の畳で存在する。

包含する本明細書で記載するような方法でも調製できる。得られたアイソタクチックポリマーは20~60%結晶性である。その後、半結晶質ポリマー、前述の樹脂混合物を調製するためのポリマー、飼料粒子および他の添加剤を、例えば、溶融押出によって混合する。得られるトナー粒子を分級し噴煙して好ましくは約10~約20ミクロンの平均容量直径を有するトナー粒子を得る。

スチレンーブクジェン コポリマー、低溶融性 ポリエステル (SPARI) およびスチレンー がサル メタクリレートのような通常のトナー 材料と実施例1~3のポリオレフィンを混合 ただ は、トナーの定着範囲の増大および/たない。 にて着温度とは定着ロールを発展を形成と着 に とった温度を かえに なる に を ない は と できるトナー 定者 ロールへのオフセット との間の範囲にあることを 意味する。

一般に、トナー組成物の調製においては、半結晶質制脂ポリマー粒子は最初市販の供給源から得た。さらに、これらのポリマーは、例えば、アイソタクチック触媒系三塩化チタン(選元アルミニウム)/ジエチル アルミニウムクロライドによる1-オレフィン類のチーグラーーナック重合を

実施例

実施例 1

ポリーα-オレフィンの調製:

は別: すべてのオレフィン類、ジェチルアルミニウム クロライド(トルエン中 2 5 重畳 5 名液)、およびトルエンは、アルドリッチ社;テキサスアルキルス社、シェル社およびケブロン社から入手して使用した。塩化チタン(ロ)、還元アルミニウムはアルファ社またはスタッファーケミカル社より入手した。実験室置のポリオレフィンを調製するのに用いた典型的な実験手順は後のポリー1ーペンテンの調製において記載されている。ポリー1ーオレフィン類の一般的調製および

特性决定

半結晶質ポリオレフィン、そのコポリマーまたは他の『ポリオレフィンはすべて『U. Giannini, G. Bruckner, B. Pellino およびA. Cassatta, J. Polymer Sci.: Part C. (22), 157-175 (1968) 『および『K. J. Clark, A. Turner Jones,およびD. J. H. Sandiford,

(. . .

Chemistry and Industry, 2010 - 2012 (1962)* に記載された方法によって調製した、これら文献 の記載はすべて参考として本明細書に引用する。 さらに詳細には、αーオレフィン (10g)をト ルエン(40㎡)を含む適当な反応容器に装入し た。これにジエチルアルミニウムクロライド (テ キサスアルキルズ社またはアルドリッチ社より入 手したトルエン中1.8モル溶液9~20㎖)をア ・ルゴンまたは窒素の不活性雰囲気下に加え、次い で、禁三塩化チタン、33%塩化アルミニウムの 固溶体(ステッファー社より供給された固溶体) を加えた。14~72時間後、反応混合物をメタ ノールで注意深く冷却し、ウォーリング (Waring) プレングーを用いてメタノール、水次いでメタノ ールで多数回洗浄した。得られた白色粉末を一定 重量まで真空乾燥させて60~99%理論量のポ リーαーオレフィンを得た。得られたポリマーは 示差走査熟量計(DSC)、ソリッドステート CP/MAS12C核磁気共鳴分光分析、溶液粘度 測定、ゲル透明クロマトグラフィー (GPC) 、

および溶融流動分析により特性決定した。また、 概製した確々のポリオレフィンのいくつかは GPC重量平均分子量約51.000~約1,500.000 お よび数平均分子量約18.000~約700,000 を有して いた。重量平均対数平均分子質の比は2~11の 範囲であった。また、得られた物質のいくつか、 例えば、ポリデセン、ポリドデセン、ポリトリデ セン、ポリペンタデセン、およびポリオクタデセ ンは二通りの分子量分布を有する。種々のポリオ レフィンのDSC融点はシャープであり側鎖長に 依存していた。

調製したポリオレフィンのいくつかの融点(括 弧内で)はポリエチレン(130)、ポリプロピ レン(180)、ポリプテン(120)、ポリベ ンテン(11)、ポリヘプテン(17)、ポリデ セン(25)、ポリドデセン(25)、ポリトリ デセン(35)、ポリテトラデセン(50)、ポ リベンタデセン(67)、ポリヘキサデセン(68)、 ポリオクタデセン(73)、およびポリエイコセ ン(80)であった。不満足な高融点ポリオレフ

ィンの例はポリエチレン、ポリプロピレンおよびポリプテンである。標製したポリオレフィンのいくつかのDSC結晶度は20%(ポリテトラデセン)、25~35%(ポリベンテンおよびポリヘキサデセン)、40%(ポリオクタデセン)、および50%(ポリエイコセン)であった。45%の結晶度はポリオクタデセンにおいてX 核法を用いて例定した。

種々のαーオレフィンのコポリマーも腐骸し、 その酸点は最終組成に依存していた。具体的には、 0.5 モル%および1モル%のオクテンと共反応させたベンテンは、それぞれ、5 4 セと6 2 七の酸点を有するコポリマーを与えた。5 モル%と10 モル%のペンテンと共反応させたヘキサデセンは、それぞれ、5 2 セと5 4 セの酸点を有するコポリマーを与えた。5 でおよび49 セの酸点を有するコポリマーを与えた。1 でル%、5 で、5 3 セおよび49 セの酸点を有するコポリマーを与えた。1 モル%、5 モル%、5 0 モル%、5 0 モル% よび9 9 モル%のヘキサデセンと共反応させたオクグデセンは、それぞれ、71で、70で、69で、62 で、64でおよび65での融点を有するコポリマーを与えた。

各ポリオレフィンの溶融粘度は主として鎖長に 依存する。一般的には、溶融ポリエイコセンとポ リオクタデセンは溶融ポリペンテンよりも1桁小 さい粘度である。約24~約30の炭素鎖長を有 する溶酸ポリαーオレフィンは溶腫ポリペンテン よりも2桁程小さい粘度である。ポリベンテンの 温度に対する複素粘度(例えば、ポイズで5,000 即ち5×10°) は80℃での3×10°から 160ででの5×10°に変化する。80でと 160℃の同じ温度において、数種のポリオレフ ィンの複素粘度は次のとおりである:ポリドデセ ン、1×104 と8.5×10*;ポリヘキサデセ ン、8×10° と6.5×10°;ポリオクタデセ ン、3×10° と1.9×10°;およびポリエイ コセン、2×10° とし5×10° (いずれも 10ラジアン/砂でのポイズ)。これらの値はス

ポリー1-ベンテンの調製:

グローブバック中の窒素雰囲気下に、塩化チタン (皿) (1.8g、9.2ミリモル)をベークライト スクリューキャップとエラストマーライニングを有する125 mt 容量の堅固密封こはくびん (アルドリッチ社)中でトルエン (40 mt)に加えた。次に、注入器を用いて、ジェチル アルミニウム クロライド (500 mt のトルエン中

ズに淅次低下した。これは、100℃での10°ポイズから160℃での4×10°ポイズに急低下する溶融粘度を有する通常のトナーポリマースチレン、 9%ブタジェン) に匹敵する。ポリー1ーペンテン生成物のGPC分子量はトルエン中で測定しNw/Nn比は1.66・10°/2・10°であった。また、ポリマーペンテン生成物の溶液固有粘度はトルエン中25℃で0.851であった。

実施例 2

ポリー1-ペンテンのパルク調製:

グローブバック中のアルゴン雰囲気下に、トルエン (1.600 ml)、1 - ペンテン (500 gl)、ジェチル アルミニウム クロライド (800 ml)、追加のトルエン (500 ml) および塩化チタン (50) (92.5 gl)を1ガロン広口高密度ポリエチレン容器中に加え、次いで、スクリューキャップで密封した。得られた混合物を内容物が温まで(45 cl)まで振蕩した。密封容器を周期的に扱済させながら発熱が鎮静するまで 45 分間氷浴中

14.4 g) を加え、次いで、1-ペンテン (9.5 g、0.135モル)を急いで添加した。びんを密 封し必要に応じて振蕩させながら25℃で15時 間放置した。反応混合物をオープン中で40~ 45でで5時間加熱した。25でに冷却後、混合 物をメタノールで処理して反応を冷却した。濃塩 酸 (10 ml) を含有するメタノール (100 ml) を加え、得られた混合物をプレンダー中で撹拌し た。追加のメタノール(200㎡)を加え、撹拌 を疑返した。メタノールからデカンティーション した高分子トップ層をプレングー内で洗浄水が透 明になるまで水洗した。次に、得られたポリート - ペンテンポリマーをメタノールで洗浄し、濾過 により単離し、オープン中で40℃で乾燥させた。 収量は7.2 7 g (76.5%) 白色高分子物質であ り、この物質は温トルエン中に溶解して1℃の DSC融点を有していた。ポイズでの溶融粘度は、 10ラジアンノ秒で操作したレオメトリックス グイナミック ピスコメーターにより、80℃の 2×10 4ポイズから160 ℃での 4×10 3ポイ

に置いた。内容物を周期的に張蕩させながら35 セに温め、反応を25℃で16時間進行せしめた。 混合物は分割的に氷浴中に置いた48ピーカーに 加え、メタノールを撹拌しながら注意深く加えた。 ピーカー内容物が緑色を呈したとき、生成物をブ レンダー中のメタノールに加えポリマーを沈澱さ せた。沈澱ポリマーを集め、ブレンダー中でメタ ノールで洗浄し、遊遇し、水洗し、さらにメタノ ールで洗浄した。所望のポリマーペンテン生成物 を建過して単離し、エアオープン中で60℃で少 なくとも2.4時間乾燥させた。白色粉末として得 られてしての融点を有するポリートーペンテンの 収率は89.4%であった。同じ手順に従ってポリ -1-ヘキサデセンとポリー1-オクタデセンを 猟製した。ヘキサデセン(550g)においては、 51.180TICE. . 536 MO AREL Cli よび2.2.6のトルエンを用いて上記手順を繰返し た。オクタデセン(500g)においては、 4 5. 5 8 OTI C 4 2 . 4 7 7 ml O A & Et 2 C 4 . および20のトルエンを用いた。

実施例 3

ポリー1-エイコセンのバルク調製:

アルゴン入口、水冷コンデンサーおよび機械的 提件器を備えた3 ℓ の 3 っ口丸底フラスコに、溶 融1-エイコセン(200g)、トルエン(800 14)、およびジエチルアルミニウムクロライド (トルエン中25%溶板476.61g)を加えた。 これに、アルゴン吹き込みによる模単圧下に粉末 ロートを用いてトルエン (100㎡) 中に照過さ せた塩化チタン (質) (40.2g) を急いで加え た。得られた混合物をアルゴン下に25℃で16 時間撹拌せしめた。次いで混合物を氷浴で冷却し、 メタノールを演下しながら加えて反応を冷却した。 得られたゲルを濃塩酸 (200㎡)を含有するメ タノール (2 4) と混合した。その後、充分なメ タノールを加えてポリートーエイコセンポリマー を沈澱させ、このポリマーを濾過により集め、ブ レンダー中で洗浄水が透明になるまで水洗した。 次に、ポリマーをメタノールと混合し、濾過によ り単離し、オーブン中でも0℃で乾燥させた。収

獲物は敵点 8 0 でを有する微細な白色繊維状粉末ポリー1 - エイコセン 1 9 4 g (97.2%) であった。

実施例 4

トナーの腐製 - 一般的腐製:

現像した潜像を、"食"ターゲットおよびセレ

ン感光体のカスケード現像法によって得た。5~10秒の露光および食バイアスを用いて現像し正トナー像を感光体から紙に転写した。定者性評価はシリコーンオイルをベーバータオルで適用する。シリコンホットロール定者機で行った。定者機セット温度はオメガ高温計を用いて測定し、定者ロール速度はおよそ76.2 ca/秒(3インチ/秒)であった。

実施例 5

スチレン ブタジェン(87/13)55.5型 量%と実施例2で得たポリペンテン25重量%または50重量%を含有する混合物74重量%; 16度量%のマピコブラックマグネタイト; および10重量%のレーガル330カーボンブラックを溶融混合し次いで機械的に摩砕することにナーを溶融混合し次いで機械的に摩砕することにナー組成物を噴霧し分級して平均容量直径約85元とは対象を噴撃したが、このトナー組成物は22.5重量%のポリペンテン、67.5重量%の上記スチレン

ブタジェン、および10重量%のレーガル330カーボンプラックを含有していた。これらのトナーはセレン感光体とシリコーン定着ロールを有する静電複写像形成試験装置において1628℃(325°F)で定着した。さらに、定着ロールから現像へのトナーオフセットは1.000 回の像形

成サイクルにおいて生じなかった。

上記スチレンブタジェンコポリマートナーへの25 および50 重量%の添加は定着機セット温度の165.6で(330°P)から162.8で(325°P)へのわずかな低下を与えた。パインダー樹脂に対して溶融ポリペンテンによってインダー樹脂に対して溶融ポリペンテンによってはた粘弾性の向上および潜在的枯晶化熱が受けてれず能な定着特性を与えている、即ち、最終像は耐摩耗性で耐消失性であり、さらにまた、トナー像の定着ロールへのオフセットもなくて指流性である。

上記のトナーは像形成装置でのシリコーンオイルを回避する静電複写像形成法において使用でき

るものと考えられている。

実施例 6

ポリヘキサデセン (1 2 重量粉) とスチレン ブ タジェンを含むトナー混合物 (8 9.5 重量粉)

ボリヘキサデセン12 重量%、スチレンブタジェン(89/11)62 重量%、10 重量%のレーガル330カーボンブラック、および1.5 重量%のジステアリルジメチルアンモニウムメチルサルフェートを130~150で溶験押出した。次いで、押出物をフィズ(Fitz)ミルを用いて粉砕し喷霧した。分級したトナーをエーロジルR972、0.5 重量%およびステアリン酸亜鉛1.0 重量%で処理して、受け入れ可能な流動角

(30°)、およびキャリヤーコア(このキャリヤーコアは60重量%のポリフッ化ビニリデンと40重量%のポリメチルメタクリレートとを含有するポリマー混合物のコーティング0.6重量%を表面に有するスチールを含む)に対する摩擦電気帯電値とを得た。このトナーの摩擦電気帯電値は約2%のトナー濃度で+15マイクロクローンノ

8 であり、 4 %のトナー海皮 (1 0 0 重量部のキャリヤー当り 4 重量部のトナー) で + 3 0 マイクロクーロン/8 であった。

負帯電させた多層型光導電性像形成部材を有す るゼロックス コーポレーション1075像形成 装置中で、像を上記で調製したトナーで現像し、 定着させて、157.8 t (316 °F) で定着し た多様なパイル高を有する固形領域を得た。また、 アルミニウム支持基体、三方晶セレンの光励起態、 および55重量%のポリカーボネート マクロロ ン中に分散させた45重量%のアリールアミン N, N′-ジフェニル-N, N′-ピス (3-メ チルフェニル) 1、1′-ピフェニルー4、4′ ージアミンの、電荷移送層とを含む負帯電多層型 保形成部材を有する静電複写像形成試験装置(米 國特許第 4265990 号参照、この内容は参考例とし てすべて本明細書中に引用する) 中でも像を形成 し次いで上記で調製したトナーで現像して、 約25.000回の像形成サイクルを越える延長された 数回の像形成サイクルに亙って背景付着物のない

優れた品質と高解像力を有する像を得た。 実施例 7

ポリヘキサデセン (2 1 重量 %) とスチレン ブ タジェンを含むトナー混合物 (8 4 重量 %)

スチレンブクジェン(87/13)63 重量%、 ポリヘキサデセン21 重量%、10 重量%のレーガル330カーボンブラック、ポリプロピレン 660Pワックス5 重量%、およびジステアリル ジメチルアンモニウムサルフェート1 重量%の混合物(84 重量%)を130~150でで一緒に押出したトナーを要「4 ないがしてのの11 重量%のステアリレたトナーを要「7 2 および0.4 重量%のステアリンのよりで30°の流動角が実施例6のキャリヤーに対して48.9ででの関係な混合時間において18.4 μ c / 8 であった。このトナーは148.9 で(300°F)での定着値を有していた。

各半結晶質ポリオレフィン(実施例1のポリベ

ンテン、実施例2のポリヘキサデセン、実施例2 のポリオクタデカン、および実施例3のポリエイ コセン)、25重量がおよび75重量%のスチレ ンnープチルメタクリレート(この樹脂混合物は 70重量%の量で存在する)を10重量%のブラ ックパールズしまたは10重量%のレーガル 330カーボンブラックと混合し、カーボンブラ ックはトルエンまたは塩化メチレン中10重量% **園形分で40~60℃で加熱することにより溶解** させた。次に得られたスラリーを冷却し、その間、 ポリマーをウォーリングブレンダー、大カデー (Kady)ミル、およびボールミルまたはスチール 球を傭えたアトライターを用いて激しく撹拌した。 その後、得られた各スラリー化粒子をメタノール に加え、濾過により単離し、次いで真空乾燥させ た。サブミクロン 0.5 ミクロン~約20ミクロン の平均直径の極めて小さいトナー粒子が2つの調 製トナーにおいて得られた。分級後、平均直径約 10ミクロンを有するトナー組成物を得た。これ らの粒子は、その後、アルカノックス (Alkanox)

特別平2-79860 (12)

石ケンの存在する乾燥トナー粒子の水性懸濁液の 散しい撹拌での温和な加熱次いで氷水による急冷 により熱回転楕円面状化した。各トナー粒子は、 それぞれにおいて、鍵過によって母離し真空乾燥 させた。

実施例 8

本発明のトナーおよび現像剤組成物を実施例6の手順を繰返すことによって調製したが、キャリヤー粒子として、40重量%のカイナール301下および60重量%のポリメチルメタクリレー面量%のポリメチルメタククを表面量%のコーティングを表面粒気を有す重量%のコーティングを表面粒で、このキャリヤを表面粒が、100円で混合した。その後には一クロナイザーで混合した。その後に手したので、410°P)で110g/分別を度に維持した。 摩擦電気液散測定後のまた公知の

ファラディケージ装置で測定したときのトナーは +15マイクロクーロン/8の正摩擦電気帯電値 を有していた。

实施例 9

世性トナー組成物を実施例6の手順を最返すことによって調製したが、76.5%の樹脂混合物、4%のカーボンブラック、19%のマグネタタイト、および0.5%のジステアリルジメチルアンモニウムメチルサルフェートを用いた。統いて、このトナーを実施例8のキャリヤー粒子と混合物は35重量%のカイナール301Pと65重量%のポリメチルメタクリレートを含んでいた。このトナーは20マイクロクーロン/8の正路機電気と0.0021br・の摩擦電気低下速度を有していた。

第1頁の統き

Dint. Cl. 5	識別配号	庁内整理番号
// C 08 L 23/02	LCH A LCT B	7107-4 J
25/04 67/02	LDS LPA	7107-4 J 7445-4 J 8933-4 J

②発明者 スレツシュ ケイ ア アメリカ合衆国 ニューヨーク州 14580 ウェブスター ウジヤ ゲートストーン サークル 1192