Theorem (3.2.20b). Let f be the function defined by $f(n) = (2^n + n^2)(n^3 + 3^n)$. f(x) is $\mathcal{O}(6^n)$.

Proof. Let g be the function defined by $g(n) = 6^n$. If $n \ge 4$, then

$$f(n) = (2^n n^3 + 2^n 3^n + n^2 n^3 + 3^n n^2) \le (2^n 3^n + 2^n 3^n + 2^n 3^n + 2^n 3^n).$$

$$4(2^n3^n)=4(6^n)$$
, so $f(n)$ is $\mathcal{O}(6^n)$ with constant witnesses $C=4$ and $k=4$.