The locally most powerful rank test: A rank test tailored to microbiome data

Stijn Hawinkel, Alemu Takele Assefa and Olivier Thas

January 15, 2017

Motivation

- ▶ **Differential abundance**: difference in mean taxon abundance between two groups
- Parametric methods (based on negative binomial and Gaussian distributions) have more power than the Wilcoxon rank sum test

Power to detect differential abundance

The Wilcoxon rank sum test

- a.k.a. the Mann-Whitney U or Wilcoxon-Mann-Whitney (WMW) test
- ▶ Given two sets of observations Y_1 and Y_2 with sample sizes n_1 and n_2 , it tests the null-hypothesis that for randomly sampled observations

$$H_0: P(Y_1 > Y_2) = 0.5$$

▶ The test statistic is of the form

$$\sum_{i=1}^{n1} \sum_{j=1}^{n} I(Y_{i1} \geq Y_{j,pooled})$$

The Wilcoxon rank sum test

Note that

$$\sum_{j=1}^{n} I(Y_{i1} \geq Y_{j,pooled})$$

equals the rank R_i of Y_{i1} (observation i in group 1)

The test statistic then becomes

$$T = \sum_{i=1}^{n1} R_i$$

hence the Wilcoxon rank sum test

Optimality of rank sum tests

More formally we can define the linear rank test statistics as

$$T = \sum_{i=1}^{n} c_i a(R_i)$$

with $c_i = 1$ for group 1 and $c_i = 0$ for group 2 and a() the score function of the ranks

- ▶ For the Wilcoxon rank sum test, $a(R_i) = R_i$
- ► This choice leads to the best power when the data follow the logistic distribution

Distributions

LMPRT

► An old theory provides us with the optimal scores for any distribution

$$a(R_i) = E_f\left(\frac{\partial}{\partial \Delta}log(f(Y_{(i)}; \Delta))|_{\Delta=0}\right)$$

- $Y_{(i)}$ the i-th order statistic, i.e. the i-th smallest observation
- ► This leads to the locally most powerful rank test (LMPRT)
- Assumption: Location shift, same shape of distribution

$$f_1(y) = f_2(y - \Delta)$$

Location shift assumption

LMPRT

$$a(R_i) = E_f\left(\frac{\partial}{\partial \Delta}log(f(Y_{(i)}; \Delta))|_{\Delta=0}\right)$$

- if we use the density of the logistic distribution we find $a(R_i) = c_1 * R_i + c_2$, i.e. the WMW
- We could use e.g. the density of the negative binomial distribution BUT
 - This assumption can be wrong
 - We want to be distribution free (develop a rank test)
 - Violates the location shift assumption
 - ▶ We have plenty of data! => Let's estimate f from the data

Uninformative scores

- This is a two step approach:
 - ightharpoonup Estimate scores $a(R_i)$
 - Use these scores for hypothesis testing
- The score estimation must not be related to the hypothesis of interest!
- We estimate scores based on observations of only one of both groups

The location shift assumption

- ➤ **Solution**: divide taxa in groups with homogeneous variance where location-shift does hold approximately
- Scores are calculated conditional on the variance (or the zero frequency)

Differences in mean

- ► Taxa are further subdivided into groups of rather homogeneous means
- \triangleright \triangle is then the difference between these means

groups	Variance group 1		Variance group v
Mean group 1	$Y_{11(1)}, Y_{11(2)},, Y_{11(I)}$		$Y_{v1(1)}, Y_{v1(2)},, Y_{v1(I)}$
Mean group 2	$Y_{12(1)}, Y_{12(2)},, Y_{12(l)}$		$Y_{v2(1)}, Y_{v2(2)},, Y_{v2(I)}$
:	:	٠.	:
Mean group m	$Y_{1m(1)}, Y_{1m(2)},, Y_{1m(l)}$		$Y_{vm(1)}, Y_{vm(2)},, Y_{vm(l)}$

Outline

$$a(R_i) = E_f\left(\frac{\partial}{\partial \Delta} \log(f(Y_{(i)}; \Delta))|_{\Delta=0}\right)$$

- 1. Estimate f non-parametrically
- 2. Approximate the derivative to Δ numerically
- 3. Find the value of $\frac{\partial}{\partial \Delta}$ at $\Delta=0$ through linear regression
- 4. Approximate the expectation E_f as an average through bootstrapping

1) Estimate the density

groups	Variance group 1		Variance group v
Mean group 1 Mean group 2	$Y_{11(1)}, Y_{11(2)},, Y_{11(l)}$ $Y_{12(1)}, Y_{12(2)},, Y_{12(l)}$		$Y_{v1(1)}, Y_{v1(2)},, Y_{v1(l)}$ $Y_{v2(1)}, Y_{v2(2)},, Y_{v2(l)}$
: Mean group m	: Y ₁ m(1), Y ₁ m(2),, Y ₁ m(1)	·	$Y_{vm(1)}, Y_{vm(2)},, Y_{vm(l)}$

Estimate f as \hat{f} in every mean-variance group with a kernel smoother

2) Approximate the derivative to Δ numerically

$$\frac{\partial}{\partial \Delta} log(f(Y_{(i)}; \Delta)) \approx \frac{log(f_{12}(Y_{12(i)}) - log(f_{11}(Y_{11(i)})}{\mu_2 - \mu_1}$$

for
$$\Delta_{12} = \mu_2 - \mu_1$$

groups	Variance group 1		Variance group v
Mean group 1 (μ_1) Mean group 2 (μ_2)	$Y_{11(1)}, Y_{11(2)},, Y_{11(l)}$ $Y_{12(1)}, Y_{12(2)},, Y_{12(l)}$		$Y_{v1(1)}, Y_{v1(2)},, Y_{v1(l)}$ $Y_{v2(1)}, Y_{v2(2)},, Y_{v2(l)}$
:	:	٠.	:
Mean group m (μ_m)	$Y_{1m(1)}, Y_{1m(2)},, Y_{1m(l)}$		$Y_{vm(1)}, Y_{vm(2)},, Y_{vm(l)}$

3) Find the value of $\frac{\partial}{\partial \Delta}$ at $\Delta=0$ through linear regression

4) Approximate the expectation E_f as an average through bootstrapping

- Stratified bootstrap by mean-variance subgroups
- Sample $n = n_1 + n_2$ observations with replacement (n = total number of samples)

groups	Variance group 1		Variance group v
Mean group 1 (μ_1) Mean group 2 (μ_2)	$Y_{11(1)}, Y_{11(2)},, Y_{11(l)}$ $Y_{12(1)}, Y_{12(2)},, Y_{12(l)}$		$Y_{v1(1)}, Y_{v1(2)},, Y_{v1(l)}$ $Y_{v2(1)}, Y_{v2(2)},, Y_{v2(l)}$
:	:	٠	:
Mean group m (μ_m)	$Y_{1m(1)}, Y_{1m(2)},, Y_{1m(l)}$		$Y_{vm(1)}, Y_{vm(2)},, Y_{vm(l)}$

Scores

- ▶ We now have *n* scores for every variance group
- ▶ Smooth the $a(R_i)$ vs. R_i relationship

Real data example (American gut data): Raw scores

Real data example (American gut data): Smooth scores

Hypothesis testing with the LMPRT

- ► For every taxon: calculate variance
- ▶ Use scores from the corresponding variance group to calculate the test statistic for taxon *j*

$$T_j = \sum_{i=1}^n c_i a_j(R_{ij})$$

- \triangleright P-values can easily be calculated by permuting the group labels c_i
- We only use the ranks R_{ij} in the final test!

Normalization

- For comparability with the WMW, we divide all the counts by their library sizes
- ▶ The whole algorithm works with *relative abundances*
- Later we may improve on this

Prospects

- ▶ Implement and optimize algorithm
- ► Test performance in simulation studies