

Спецкурс: системы и средства параллельного программирования

Отчёт № 2 Подсчет количества cache miss для блочного матричного умножения со сбором информации с аппаратных счетчиков с помощью системы PAPI.

Работу выполнила **Зайденварг Е.А.**

Постановка задачи и формат данных

Задача

Реализовать последовательный алгоритм блочного матричного умножения и оценить влияние кэша на время выполнения программы. Дополнить отчёт результатами сбора информации с аппаратных счётчиков, используя систему PAPI.

Формула определения оптимального блока: 3*b*b=mL, b - размер блока в элементах, mL - размер кэша.

Снимать необходимо информацию о промахах кэша (1 и 2 уровней), числе процессорных тактов, числе FLOP-ов и TLB, в зависимости от размеров блока (фиксированный или по формуле) и двух порядков индексов, для 5 квадратных матриц.

Формат командной строки

<имя файла матрицы A><имя файла матрицы B><имя файла матрицы C><размер блока для умножения
><режим, порядок индексов>.

Режимы: 1 - ijk, 2 - ikj.

Формат файла-матрицы:Матрица представляются в виде бинарного файла следующего формата:

Тип	Значение	Описание
Число типа size_t	N – натуральное число	Число строк матрицы
Число типа size_t	М – натуральное число	Число столбцов матрицы
Массив чисел типа float	$N \times M$ элементов	Массив элементов матрицы

Элементы матрицы хранятся построчно.

Результаты

1. Время выполнения

Зависимость времени выполнения рабочих циклов: для размера блока 32х32 и порядка индексов ijk; для размера блока 32х32 и порядка индексов ikj; для размера оптимального блока, определённого по формуле, и порядка индексов ikj.

2. Промахи кэша L1

Зависимость промахов кэша L1: для размера блока 32х32 и порядка индексов ijk; для размера блока 32х32 и порядка индексов ikj; для размера оптимального блока, определённого по формуле, и порядка индексов ikj.

3. Промахи кэша L2

Зависимость промахов кэша L2: для размера блока 32х32 и порядка индексов ijk; для размера блока 32х32 и порядка индексов ikj; для размера оптимального блока, определённого по формуле, и порядка индексов ikj.

4. Процессорные такты

Зависимость процессорных тактов: для размера блока 32х32 и порядка индексов ijk; для размера блока 32х32 и порядка индексов ikj; для размера оптимального блока, определённого по формуле, и порядка индексов ikj.

5. TLB

Зависимость TLB (Translation Lookaside Buffer): для размера блока 32х32 и порядка индексов ijk; для размера блока 32х32 и порядка индексов ikj; для размера оптимального блока, определённого по формуле, и порядка индексов ikj.

6. FLOP

Зависимость FLOP: для размера блока 32х32 и порядка индексов ijk; для размера блока 32х32 и порядка индексов ikj; для размера оптимального блока, определённого по формуле, и порядка индексов ikj.

Основные выводы

Исследования показали следующие результаты при увеличении размеров матриц:

- 1. Наименьшее время достигается для порядка индексов ік і и оптимальном размере блока (по формуле).
- 2. Наименьшее число промахов кэша L1 достигается при порядке индексов ікј и размере блока 32.
- 3. Наименьшее число промахов кэша L2 достигается при порядке индексов ікј и оптимальном размере блока.
- 4. Наименьшее число процессорных тактов достигается при порядке индексов ік ји оптимальном размере блока (по формуле).
- 5. Значения TLB примерно одинаковы для всех параметров.
- 6. Значения FLOP примерно одинаковы для всех параметров.