Example files associated with the three books

Volume 1 <u>Embedded Systems: Introduction to ARM Cortex M Microcontrollers</u> Fourth Edition (new 10/2013) <u>Available from Amazon e-book</u>, Fourth edition includes material on TM4C123.

Volume 2 <u>Embedded Systems: Real-Time Interfacing to ARM Cortex M Microcontrollers</u> <u>Errata</u> Third Edition (new 11/2013) <u>Available from Amazon</u> <u>e-book</u> Third edition includes material on TM4C123.

Volume 3 <u>Embedded Systems: Real-Time Operating Systems for ARM Cortex M Microcontrollers</u> <u>Errata</u> Second edition (new 1/2014) <u>Available on Amazon</u> Second edition includes material on TM4C123.

These project files run on the LM3S811, LM3S1968, LM3S8962, LM4F120, or TM4C123 microcontrollers and will compile using the Keil uVision4 C compiler. Most of the examples also are configured to run on Texas Instrument's Code Composer Studio (<u>for instructions on using CCS, refer to Appendix 3 of Volumes 1</u> or 2) These files are Copyright by Jonathan W. Valvano. You may use, edit, run or distribute these files as long as the copyright notices within the files remain. No specific warrantee exists concerning the accuracy or reliability of these examples. I think they work, but history has shown, sometimes I can be wrong. If you want to get more information on the example, click on the C file. The zip files are complete uVision4 projects. How to convert a project based on one Stellaris microcontroller into a project for a different microcontroller Go to Home Page

Keil uVision Reference Manual and instructions for download and setup

Installing windows drivers for the Launchpad

How to install drivers on a Windows 8 machine

To download all LM3S1968 software ValvanoWare_1968.zip

To download many TM4C123/LM4F123 software LaunchPadware.zip (include introductory software needed for EE319K Fall 2013)

To build the directory for the LM3S811, LM3S1968, or LM3S8962 is

ValvanoWare

driverlib

....

LCD_1968 (any LM3S example on this page)

To build a directory for the LM4F120 or TM4C123

LaunchPadware

driverlib (with driverlib-cm4f,lib in it)

inc

GPIO_4F120 (any LM4F120 example on this page)

All of these LM4F120 examples will run on the new Tiva TM4C123 microcontroller.

Videos

How to change the name of an assembly project

How to build a not gate

Stellaris LaunchPad Tester booster pack and software application designed by Daniel Valvano

Assembly Language Examples for Volume 1

Link to download	Book reference	External Hardware	Ports used	Description
<u>lm3s1968.s</u> <u>lm4f120.s</u>			All	These assembly files contain all the port addresses for the microcontroller. To use this file, you open this file copy the lines you need and paste the lines into your program. You cannot include this file, like you can include the lm3S1968.h file in C

SimpleProject 811asm.zip SimpleProject 1968asm.zip SimpleProject 4F120asm.zip	Program 3.2	none	none	Random number generator using
Switch 811asm.zip Switch 1968asm.zip Switch 4F120asm.zip	Program 4.2	One switch	GPIO	Input from switch
GPIO_811asm.zip GPIO_1968asm.zip GPIO_4F120asm.zip	Program 4.5, Example 4.2	Four LEDs	GPIO	Output pattern 5 6 10 9 to Port D
InputOutput_811asm.zip InputOutput_1968asm.zip InputOutput_4F120asm.zip	Section 4.2	On board switches and LED	GPIO	Functional abstraction of the switches and LED. Switches include internal pull-up resistors.
NotGate_1968asm.zip GPIO_PORTG_1968asm.zip	Chapter 4 stuff	Switch, LED	Port D GPIO	Input on PD0, not gate, output on PD1, see http://www.youtube.com/watch?v=cg2EuTg]F7Y PORTG version uses SELECT and LED on LM3S1968 board
Lab2starter.zip			GPIO	EE319K lab 2 starter file with configuration for logic analyzer
SSR_1968asm.zip SSR_4F120asm.zip	Program 4.3	Switch and LED	GPIO	Switch input and LED (or SSR) output
Squarewaves_1968asm.zip SquarewavePG2_1968asm.zip Squarewaves_4F120asm.zip	Program 4.4		GPIO	Continuous output of two pins creating two squarewaves; PG2 version toggles LED every 1 second
PLL 811asm.zip PLL 1968asm.zip PLL 4F120asm.zip	Program 4.6	PG2 LED	PLL, GPIO	PLL used to change clock speed, LED flashes
SysTick 811asm.zip SysTick 1968asm.zip SysTick 4F120asm.zip	Program 4.6, Program 4.7	PG2 LED	PLL, SysTick, GPIO	LED flashes at constant rate, SysTick used to implement a time delay
Performance_1968asm.zip	Program 4.10, Section 4.7	PG2 LED	PLL, SysTick, GPIO	Performance measurements on a square root function
PointerTrafficLight_1968asm.zip	Example 6.6, Program 6.8	LEDs and switches	PLL, SysTick, GPIO	Finite state machine, linked structure
OLED_1968asm.zip	Example 6.5, Program 6.11-6.13	OLED	SSI	Graphics driver for OLED, bit matrix, graphics buffer
LLFifo_1968asm.zip	Section 6.6, Program 6.11-6.18	none	none	Linked list FIFO, dynamic memory manager
PeriodicSysTickInts_811asm.zip PeriodicSysTickInts_1968asm.zip PeriodicSysTickInts_4F120asm.zip	Program 9.7	LED	PLL, SysTick, GPIO	Interrupts are used to create a periodic task, need scope on LED output to debug (oscillates at 1000 Hz)
LinearInterpolation 1968asm.zip	Program 6.22			Linear interpolation, sine function
MealyEngineControl_1968asm.zip	Program 6.9			Mealy finite state machine
PeriodicTimer0AInts 1968asm.zip PeriodicTimer0AInts 4F120asm.zip	Program 9.8			Timer interrupt
FIFO_4F120asm.zip FIFO.s		none	none	Pointer implementation of FIFO queue, size must be a power of 2. Implemented on the LM4F120, but will run on any Cortex M.
UART2_4F120asm.zip UART2.s	Program 5.11	connection to PC	UART0	Interrupt serial port, transmit receive interrupts, both hardware and software FIFO queues

C Examples from Volumes 1, 2, and 3

Link to download	Book reference	External Hardware	Ports used	Description

SSR 811.zip SSR 1968.zip SSR 4F120.zip	Example 2.1	Solid state relay	GPIO	Provide functions that initialize a GPIO pin and turn it on and off. Use bit-banded I/O.
SSR.c GPIO_811.zip GPIO_1968.zip GPIO_4F120.zip	Example 2.2	Four LEDs	GPIO	Initialize four GPIO pins as outputs. Continually generate output to drive simulated stepper motor.
GPIO.c Switch 811.zip Switch 1968.zip Switch 4F120.zip	Example 2.3	One switch	GPIO	Provide functions that initialize a GPIO as input, and allows software to read the status of a switch.
Switch.c PLL 811.zip PLL 1968.zip PLL 4F120.zip PLL.c	Example 2.4		PLL	A software function to change the bus speed using the PLL.
SysTick 811.zip SysTick 1968.zip SysTick 4F120.zip SysTick wait 4F120.zip SysTick vait 4F120.zip	Program 2.11		SysTick	Provide functions that initialize the SysTick module, wait at least a designated number of clock cycles, and wait approximately a multiple of 10 milliseconds using busy wait.
OLED_811.zip OLED_1968.zip OLED_8962.zip Output.c	Section 3.4.5	oLED on the board	On the 811, uses I2C, on the 1968 and 8962 used SSI	Abstraction of the OLED as a general purpose output device allowing the use of printf to stream to the OLED
Logo 1968.zip Logo 8962.zip logo.c		OLED on board	SSI	Start with a 4-bit (16 color) BMP file less than 128 by 80, convert it to a ROM buffer in the LM3S, then display it on the OLED. Includes a DOS executable, BmpConvert.exe, used to convert BMP to C source code for image data.
TableTrafficLight_811.zip TableTrafficLight.c	Program 3.1, Example 3.1	Red, Yellow, Green LEDs, resistors, drivers, switches	GPIO, SysTick	Use a table implementation of a Moore finite state machine to operate a traffic light.
PointerTrafficLight_811.zip PointerTrafficLight_1968.zip PointerTrafficLight.c	Program 3.2, Example 3.1	Red, Yellow, Green LEDs, resistors, drivers, switches	GPIO, SysTick, PLL	Use a pointer implementation of a Moore finite state machine to operate a traffic light.
PortableTrafficLight_811.zip PortableTrafficLight.c	Program 3.3	Red, Yellow, Green LEDs, resistors, drivers, switches	GPIO, SysTick	Use a table implementation of a Moore finite state machine to operate a traffic light. This time, only the "#define" section is processor specific, and the rest of the code can easily be adapted to another system.
PointerRobot 811.zip PointerRobot.c	Example 3.2, Program 3.4	LEDs and switches simulate robot functions	GPIO	Use a pointer implementation of a Mealy finite state machine to control a robot.
FunctionRobot_811.zip FunctionRobot.c	Example 3.2, Program 3.5	LEDs and switches simulate robot functions	GPIO	Use a function pointer implementation of a Mealy finite state machine to control a robot. Use bit-banded I/O.
		Simulate robot rairctions		
MealyEngineControl_1968.zip	Volume 1, Program 6.9			Mealy finite state machine
FIFO_811.zip FIFO_1968.zip FIFO.c FIFO.h	Programs 3.7, 3.8, 3.9 and 3.10		GPIO, Timer0A periodic interrupts	First in first out queue, pointer method and index method Provide functions that initialize a FIFO, put data in, get data out, and return the current size. The file includes an index and a pointer implementation and macros to create more FIFOs. Periodic interrupts are used to verify the FIFO has no critical sections.
HeapFixedBlock 8962.zip Heap.c Heap.h	Program 3.11, Volume 3, Program 3.1, Section 3.2.2	-	-	Fixed size memory manager. Allocate memory block, and deallocated block.
Clock_811.zip Clock.c			SysTick	Provide functions that initialize the SysTick module, wait at least a designated number of clock cycles, and wait approximately a multiple of 1 millisecond.
Performance 811.zip Performance 1968.zip Performance.c	Program 3.17		SysTick	Use the SysTick timer to measure approximately how long it takes to calculate a square root.
LCD 1968.zip lcd.c	Section 4.7.1, Program 4.2, Program 4.3	HD44780 LCD	GPIO, SysTick	LCD interface using 8-bit parallel port mode, blind-cycle synchronization using SysTick timer. Will work with both 3.3V and 5V devices
Nokia5110_4F120.zip Nokia5110.c		Nokia 5110	SSI0	48x84 LCD graphics; example can output characters and draw images on the screen, https://www.sparkfun.com/products/10168
ST7735.c ST7735_4F120.zip		ST7735	SSI0, PPL, Systick	128x160 pixels, 1.8" 18-bit color TFT LCD display; example can output characters and draw images on the screen, http://www.adafruit.com /products/358

SSD2119.c we are working on this example		Kentec EB-LM4F120-L35	All PortB, PA7-4	SSD2119 interface on a 320x240 pixels, 16-bit color, 3.5 in, 15 pin
Stepper_811.zip Stepper_4F120.zip stepper.c	Example 4.1, Programs 4.4, 4.5 and 46	Stepper motor	GPIO, SysTick	Provide functions that step the motor once clockwise, step once counterclockwise, initialize the stepper motor interface and turn the motor to the valid desired position.
ParallelKeypad 811.zip	Example 4.2,	Parallel keypad	GPIO	Use a busy-wait loop to wait for a rising edge and then
ParallelKeypad.c ParallelADC_811.zip ParallelPrinter_811.zip ParallelPrinter.c	Program 4.7	Parallel ADC	GPIO	return the parallel data from the keypad. Use a handshaked interface to request an ADC conversion, wait for a rising edge signaling completion, and return the parallel result.
Handshake_1968.zip	Example 4.3, Program 4.8	Parallel printer	GPIO	Use a handshaked interface to request a character print while outputting a parallel character and wait for a rising edge signaling completion.
Receiver.c Transmitter.c	Example 4.4, Programs 4.9, 4.10, and 4.11	Two microcontrollers	GPIO	Two microcontrollers interfaced via parallel ports, synchronization with busy-wait, handshaked protocol
UART 811.zip UART 1968.zip UART 8962.zip UART 4F120.zip UART.c	Program 4.12	Virtual COM port through debugger USB	UART	Provide functions that initialize the UART, wait for and return a character, and print a character.
MatrixKeypad 1968.zip MatrixKeypad.c	Example 4.5, Programs 4.13, 4.14	4 by 4 matrix keyboard	GPIO	Busy-wait synchronization of a keyboard. Row by row scanning of the matrix keyboard. Not debounced.
EdgeInterrupt_811.zip EdgeInterrupt_4F120.zip EdgeInterrupt.c	Program 5.6	External switch	GPIO	Request an interrupt on the falling edge of PC4 (when the user button is pressed) and increment a counter in the interrupt. Note that button bouncing is not addressed.
TwoButtonVector_811.zip TwoButtonVector.c	Example 5.1, Program 5.7	One button and resistor	GPIO	Use vectored interrupts to respond to two button presses. Note that button bouncing is not addressed.
TwoButtonPoll_811.zip	Example 5.1, Program 5.8	Two buttons and resistors	GPIO	Use polled interrupts to respond to two button presses. Note that button bouncing is not addressed.
ParallelKeypadInt_811.zip	Example 5.2, Program 5.9	Parallel keypad	GPIO	Use an interrupt on the rising edge and then return the parallel data from the keypad.
ParallelPrinterInt_811.zip	Example 5.3, Program 5.10	Parallel printer	GPIO	Use a handshaked interface synchronized with interrupts to request a character print on a parallel printer. Interrupt when the printing is complete.
TwoButtonFunct_811.zip	old version	Two buttons and resistors	GPIO	Use vectored interrupts to run functions when buttons are pressed. One button and function pair is higher priority.
UART2 811.zip UART2 1968.zip UART2 4F120.zip UART2.c	Program 5.11		UART	Use UARTO to implement bidirectional data transfer to and from a computer running HyperTerminal. This time, interrupts and FIFOs are used.
PeriodicSysTickInts 811.zip PeriodicSysTickInts 1968.zip PeriodicSysTickInts 2110.zip PeriodicSysTickInts 8962.zip PeriodicSysTickInts 4F120.zip PeriodicSysTickInts.c	Program 5.12		GPIO, SysTick	Periodic interrupts using SysTick. Software allows you to select the interrupt period and attach a user program (hook)
MatrixKeypadPeriodic_1968.zip Matrix.c	Example 5.4, Figure 5.18, Program 5.13	4 by 4 matrix keyboard	GPIO, SysTick	Periodic polling synchronization of a keyboard. Row by row scanning of the matrix keyboard occurs during a period SysTick ISR. Data passed via a FIFO. This solution debounces the keyboard.
InputCapture 811.zip InputCapture 1968.zip InputCapture 4F120.zip InputCapture.c	Program 6.1		GPIO, Timer0A	Use Timer0A in edge time mode to request interrupts on the rising edge of PD4 (CCP0), and count the pulses.
PeriodMeasure 811.zip PeriodMeasure 8962.zip PeriodMeasure 4F120.zip PeriodMeasure.c	Example 6.2, Program 6.2		GPIO, Timer0A	Use Timer0A in edge time mode to request interrupts on the rising edge of PD4 (CCP0), and measure period between pulses.
PeriodicTimer0AInts 811.zip PeriodicTimer0AInts 1968.zip PeriodicTimer0AInts 4F120.zip Periodic32bitT0Ints 4F120.zip Timer0A.c	Program 6.5, Example 6.6		GPIO, Timer0A, PLL	Use TimerOA in periodic mode to request interrupts at a particular period. Uses the timer prescale.
PulseCount_811.zip			GPIO, Timer0A	Use Timer0A in edge time mode to request interrupts on the rising edge of PD4 (CCP0), and count the pulses.
HighPulseMeasure_811.zip			GPIO, Timer0A	Use Timer0A in edge to rD4 (CCPV), and count the puises. Use Timer0A in edge time mode to record time at rising and falling edges of PD4 (CCP0), and subtract them to get high pulse duration.
HighPulseMeasureInts 811.zip			GPIO, SysTick	Use Timer0A in edge time mode to request interrupts on both edges of PD4 (CCP0), determine which edge occurred, and subtract times to get period.
HighPulseMeasureHW_811.zip			Timer0	Use both subtimers of Timer0 to record time at rising and falling edges of the signal. An interrupt makes the data available, but measurement is in hardware.
Timer0APWM_811.zip	Program 6.6		Timer0	Use Timer0A in PWM mode to generate a square wave of a given period with 50% duty cycle.
FlexibleTimer0APWM_811.zip Timer0APWM_4F120.zip			Timer0	Use Timer0A in PWM mode to generate a square wave of a given high period and low period.
FreqMeasure 811.zip	Program 6.8		GPIO, Timer0	Use Timer0B in edge count mode to count positive edges within a period set by Timer0A in periodic mode. In Timer0A periodic interrupts, calculate frequency.

LongPeriodMeasure_811.zip	Program 6.9		GPIO, Timer0	Use Timer0A in edge time mode to request interrupts on the rising edge of PD4 (CCP0). In Timer0B periodic interrupts, count amount of time between rising edges to determine
PWM 811.zip PWM 1968.zip PWMDual 4C123.zip PWM 4C123.zip	Program 6.7		PWM0	period. Use PWM0 to generate a 100 Hz square wave with 50% duty cycle.
SyncPrinter 811.zip	Program 7.1		GPIO, UART	Use UART0 to implement a printer interface with DTR synchronization. When the user button is pressed, DTR is low, and the printer is ready.
MAX5353_811.zip MAX5353_4F120.zip	Program 7.2	MAX5353 12-bit DAC	SSI	Provide a function that initializes the SSI0 module to interface with a MAX5353 12-bit DAC, and use SSI0 to send a 16-bit code to the MAX5353 and return the reply.
MAX1246_811.zip	Program 7.3	MAX1246 12-bit ADC	SSI	Provide a function that initializes the SSI0 module to interface with a MAX1246 12-bit ADC, and use SSI0 to send an 8-bit channel number code to the MAX1246 and return a 12-bit ADC value.
74HC595_811.zip	Program 7.4	74HC595 shift register	SSI	Use SSI0 to interface with a 74HC595 shift register to
I2C 811.zip	Programs 7.5, 7.6, 7.7	HMC6352 compass or TMP102 thermometer	I2C	convert 3 output ports to 8 output ports. Provide functions that initialize the I2C0 module to interface with an HMC6352 compass or TMP102 thermometer, send 1, 2, or 3 bytes to a particular slave address, and receive 1 or 2 bytes from a particular slave address.
InternalResistors 811.zip		Two buttons	GPIO	Provide a function that initializes GPIO PortD for a pull-up
DebounceSysTick_811.zip		One button	GPIO, SysTick	resistor on PD0 and a pull-down resistor on PD1. Use the SysTick timer to de-bounce a switch using 10 ms
DebounceTimer_811.zip				blind waits. Use Timer0A in periodic mode to debounce a switch using
DebounceCombo 811.zip		One button	GPIO, Timer0A	an interrupt. Basically, the switch is read every 10 ms. Use Timer0A in edge time mode to request interrupts on any
DebumiceCombo 811.21p		One button	GPIO, Timer0A, Timer0B	ose Finiteior in edge time floute to request interrupts on any edge of PD4 (CCP0) and start Timer0B. In Timer0B one-shot interrupts, record the state of the switch once it has stopped bouncing. This interface features minimum latency and allows for the user to attach functions to switch touch and switch release.
Piano_811.zip		16 buttons	GPIO, Timer0A	Use Timer0A in periodic mode to request interrupts to record changes on the 16 piano keys, directly connected to 16 GPIO pins.
MatrixKeypad 811.zip	old version with timer interrupts	Matrix keypad, resistors	GPIO, Timer0A	Provide functions that initialize GPIO ports and timers, arm the matrix keypad to respond to a button press, and scan the matrix keypad and return the ASCII code for the key pressed and number of keys pressed. Create a data structure based on the appearance of the keypad. Finally, use key wakeup interrupts on any change of GPIO Port A, then use TimerOA to request an interrupt in 10 ms to scan the matrix keypad.
7Segment_811.zip		7-segment LEDs, resistors, 2N2907, 2N2222	GPIO, Timer0A	Use Timer0A in periodic mode to request interrupts to interface a scanned LED display and refresh the image. Panel select driven by PNP transistor; segment select driven by NPN transistor.
PWMSine 811.zip PWMSine 1968.zip	Program 8.7	Resistor capacitor filter	PWM0	Use PWM0 to generate a sine wave of a given frequency. Timer0A periodic interrupts are used to cycle through each element of the output wave sequence.
ADCSWTrigger 811.zip ADCSWTrigger 1968.zip ADCSWTrigger 4F120.zip ADCSWTrigger.c ADC TwoChanSWTrigger 1968.zip ADCSWTriggerTwoChan 4F120.zip			ADC	Provide functions that initialize ADC SS3 to be triggered by software and trigger a conversion, wait for it to finish, and return the result. The TwoChan examples use SS2 sampling two channels with software start and busy-wait synchronization.
ADCT0ATrigger_811.zip ADCT0ATrigger_4F120.zip ADCT0ATrigger.c			ADC, Timer0A	Provide a function that initializes Timer0A to trigger ADC SS3 conversions and request an interrupt when the conversion is complete.
ADCPrintResults_811.zip ADCPrintResults_1968.zip			ADC, PLL, Timer0A, UART	Use a setup similar to ADCT0ATrigger.c to gather ADC samples into a buffer. When the buffer is full, print them to the UART separated by TABs.
PI 811.zip		DC motor, TIP120, diode, resistor	PWM0, Timer0	Use a setup similar to PeriodMeasure.c to measure the tachometer period. Implement a PI controller to keep this period near a desired value.
Incremental 811.zip		DC motor, TIP120, diode, resistor	PWM0, Timer0A	Use a setup similar to PeriodMeasure.c to measure the tachometer period. Implement an incremental controller to keep this period near a desired value.
PICalibrate_811.zip		DC motor, TIP120, diode, resistor	PLL, PWM0, Timer0A, Timer1, UART	Use PWM0 to drive the motor at a steady 25% duty cycle for a short time. Then, abruptly increase to 75% duty cycle and measure the tachometer period to calculate constants for the PI controller.
Servo_811.zip		HiTec HS-322HD servo	PWM0, UART	Accept a string from the UART, parse it into a period, use PWM to output this period to the servo, which rotates to a particular angle.
Linecamera 811.zip		TSL1401R-LF camera	ADC0, ADC1, GPIO, I2C0, PLL, Timer0, UART	Interface a line camera, periodically take images, display them on the OLED display. Exposure length set by potentiometer position.
rit128x96x4.c rit128x96x4.h	OLED graphics	oLED on the LM3S1968 board	SSI on LM1968 or LM8962	Additional functionality to plot measured signals versus time. See the comments for RIT128x96x4PlotClear,

AGM1264 1968.zip				RIT128x96x4PlotPoint(); RIT128x96x4PlotNext(); RIT128x96x4ShowPlot(); The LCD-00710 from www.sparkfun is a
AGM1264_4F120.zip		AGM1264 LCD graphics	GPIO, PLL on LM1968 or LM4F120	low-cost graphics LCD. It is 64 by 128 screen interfaced with 12 parallel output pins and is powered by 5V. It interfaces directly to the 3.3V LM3S without level shifters.
Flash 811.zip FlashProgram.c	Volume 3, Programs 6.2 and 6.3		Internal EEPROM	Provide functions that initialize the flash memory, write 32-bit data to flash, write an array of 32-bit data to flash, and erase a 1 KB block.
Heap_8962.zip Heap_4F120.zip heap.c heap.h	Volume 3, Section 3.2.3			Memory manager implementing malloc and free
RTOS_811.zip osasm.txt_os.c	Volume 3, Programs 4.4 through 4.12, Section 4.2		GPIO, PLL, SysTick	Implement a real-time operating system with tasks
SDC_8962.zip SDC_2110.zip SDC_4F120.zip	Volume 3, Section 6.6, Program 6.4	Secure digital card	Systick, and SSI	Low-level device driver for secure digital card
Camera 811.zip camera.c	Volume 3, Program 6.5	TCM8230MD digital camera	I2C, PWM, and parallel ports	An interface of a camera with a resolution of 640 by 256 with RGB=5:6:5 color
CAN_8962_2110.zip CAN_4F120.zip	Volume 3	CAN cable	Controller Area Network, CAN	The LM3S8962 board is interfaced to the LM3S2110 board via CAN. The switch position on one board is displayed as LED status on the other. Communication is both directions.
PI_811.zip PI.c	Volume 3, Program 10.3	DC motor and tachometer	PWM, input capture	Proportion Integral Digital Controller, speed is measured with a tachometer and input capture. Power is controlled with PWM and a Darlington transistor, The system runs the motor at constant speed under variable load
ezLCD_811.zip Application Note ezLCD.h ezLCD.c		ezLCD301 and speaker	UART, PWM, ADC, Timer0	The ezLCD301 is a color graphics module with touch screen. See http://store.earthlcd.com/ezLCD-301 . It is interfaced to a LM3S811. The zip file includes PCBartist files to create a PCB that fits into a PacTec XP-RB enclosure.
Ethernet_8962.zip	Volume 3, Program 9.1	Crossover Ethernet cable	Ethernet, SysTick	This example will appear in the second edition of Volume 3 due to be published Jan 2013. Information is communicated from one LM3S8962 to another via Ethernet.
LinearInterpolation 1968.zip LinearInterpolation 1968asm.zip LinearInterpolation.c	Volume 1, Program 6.22			Linear interpolation, sine function
DMASoftware_4F120.zip DMASoftware.c	Volume 3, Program 6.1	none	uDMA	Memory to memory transfer using uDMA
DMATimer_4F120.zip DMATimer.c	Maluma 3	PORTF input	Timer, uDMA	PORTF to memory transfer using uDMA, triggered by a periodic timer.
DMASPI 4F120.zip	Volume 3, Chapter 6	MAX5353 12-bit DAC	Timer, SSI, uDMA	Streaming data from memory to DAC/SSI using periodic timer, and ping-pong DMA.

Last updated March 26, 2014