## Лабораторная работа 2.1.3. Определение теплоты испарения жидкости

Вязовцев Андрей, Б01-005

16.03.21

**Цель работы:** 1) измерение частоты колебаний и длины волны при резонансе звуковых колебаний в газе, заполняющем трубу; 2) определение показателя адиабаты с помощью уравнения состояния идеального газа.

В работе используются: звуковой генератор (ГЗ); электронный осциллограф (ЭО); микрофон; телефон; раздвижная труба; теплоизолированная труба, обогреваемая водой из термостата; баллон со сжатым углекислым газом; газгольдер.

## Теоритическая справка:

Распространение звука в газе является адиабатическим процессом, поэтому его скорость зависит от показателя адиабаты  $\gamma$ . Выражается она следующей формулой:

$$c = \sqrt{\gamma \, \frac{RT}{\mu}}$$

Отсюда находим:

$$\gamma = \frac{\mu}{RT}c^2$$

T. к. в запаянном сосуде волны, распространяющиеся вдоль трубы, испытывают отражения, резонанс будет наблюдаться, если длина трубы L удовлетворяет следующему условию:

$$L = n\frac{\lambda}{2}, n \in \mathbb{Z}$$

При этом будут места, где слои газа не испытывают смещения (узлы смещения), они повторяются по всей длине через  $\frac{\lambda}{2}$ . Между ними находятся максимумы смещения (пучности).

Скорость звука так связана с его частотой f и длиной волны  $\lambda$ :

$$c = \lambda f \tag{1}$$

Подбор условий, при которых возникает резонанс, можно производить двояко:

1. Изменение длины трубы. Для последовательных резонансов имеем:

$$L_n = n\frac{\lambda}{2}, L_{n+1} = (n+1)\frac{\lambda}{2}, \dots, L_{n+k} = n\frac{\lambda}{2} + k\frac{\lambda}{2}$$

Отсюда следует, что L(k) — линейная зависимость, а коэффициент наклона данной прямой есть  $\frac{\lambda}{2}.$ 

2. Изменение частоты звуковых колебаний. Для последовательных резонансов получим:

$$L = \frac{\lambda_1}{2}n = \frac{\lambda_2}{2}(n+1) = \dots = \frac{\lambda_k}{2}(n+k)$$
 (2)

Из уравнений (1) и (2) получаем:

$$f_{k+1} = f_1 + \frac{c}{2L}k$$

Следовательно, f(k) — линейная зависимость, её коэффициент на-клона —  $\frac{c}{2L}$ 

## Экспериментальная установка:



Рис. 1. Установка для измерения скорости звука при помощи раздвижной трубы



Рис. 2. Установка для изучения зависимости скорости звука от температуры

## Ход работы:

- 1. Сначала проведём эксперименты на экпериментальной установке №1. Включим в ЭО и ГЗ, подождём, пока они прогреются (5-7 минут). После этого настроим осциллограф. Продуем трубу от углекислого газа, который мог остаться от предыдущих опытов.
- 2. Рассчитаем, в каком диапозоне частот следует вести измерения, чтобы можно было наблюдать 2-5 резонансов. Т. к. изначально труба имеет длину  $L_{min} = 700 \pm 5$ мм и может удлиняться до  $L_{min} = 930 \pm 5$ мм, из несложных соображений получаем:

$$f_{min}=rac{(2-1)c}{2(L_{max}-L_{min})}pprox 700$$
 Гц 
$$f_{max}=rac{(5-1)c}{2(L_{max}-L_{min})}pprox 3\ ext{к}$$
Гц

Стоит отметить, что т. к. скорость звука несколько выше, а в результате экспериментов мы будем получать больше 5 резонансов, измерения будут проводиться в немного другом диапозоне частот.

- 3. Будем плавно уменьшать длину трубы от  $L_{max}$  до  $L_{min}$  и фиксировать, при каких длинах трубы L наблюдается резонанс. Проведём данные измерения для 6 различных частот. Результаты внесём в табл. 1.
- 4. Изобразим зависимость  $\Delta L(k)$  для каждого значения частоты, где  $\Delta L = L_{n+k} L_n$ .

| $f$ , к $\Gamma$ ц | L, mm |      |      |      |      |     |     |     |
|--------------------|-------|------|------|------|------|-----|-----|-----|
| 2,0                | 17,8  | 10,0 | 2,0  |      |      |     |     |     |
| 2,5                | 21,6  | 15,2 | 8,6  | 2,0  |      |     |     |     |
| 3,0                | 21,6  | 16,2 | 10,9 | 5,5  | 0,0  |     |     |     |
| 3,5                | 20,0  | 15,2 | 10,5 | 5,7  | 1,0  |     |     |     |
| 4,2                | 22,7  | 19,1 | 15,6 | 12,1 | 8,5  | 4,9 | 1,3 |     |
| 5,0                | 22,2  | 19,1 | 16,1 | 13,0 | 10,0 | 6,9 | 3,8 | 0,7 |

Таблица 1. Резонансы воздуха, установка 1













5. Теперь найдём  $\frac{\lambda}{2}$  как коэффициент наклона этих графиков, а после можно найти скорость звука:

$$c_{2.0} = 316 \frac{M}{c^2}$$
  $c_{2.5} = 327 \frac{M}{c^2}$   $c_{3.0} = 323 \frac{M}{c^2}$   $c_{3.5} = 333 \frac{M}{c^2}$   $c_{4.2} = 299 \frac{M}{c^2}$   $c_{5.0} = 307 \frac{M}{c^2}$ 

Т. к. погрешность генератора частот пренебрежимо мала ( $\varepsilon_f \approx 0.01\%$ ), верно следующее:  $\varepsilon_c = \varepsilon_\lambda$ . Из формулы для погрешности МНК получаем:

$$\varepsilon_{c_{2.0}} = 0.4\%$$
  $\varepsilon_{c_{2.5}} = 0.4\%$   $\varepsilon_{c_{3.0}} = 0.3\%$   $\varepsilon_{c_{3.5}} = 0.2\%$   $\varepsilon_{c_{4.2}} = 0.2\%$   $\varepsilon_{c_{5.0}} = 0.2\%$ 

Таким образом, наиболее точными измерениями являются последние, в которых было больше резонансов. Стоит отметить, что значения, полученные в различных опытах, отличаются не более чем на 10%. Значит, эти значения находятся в согласии друг с другом.

6. Продуем трубу углекислым газом, после чего найдём скорость звука в углекислом газе, для этого проделаем те же действия, что и в предыдущих пунктах. Внесём результаты экспериментов в табл. 2, построим графики, найдём c и погрешности.

| $f$ , к $\Gamma$ ц | L, mm |      |      |      |     |     |     |
|--------------------|-------|------|------|------|-----|-----|-----|
| 2,0                | 22,4  | 15,7 | 9,1  | 2,7  |     |     |     |
| 2,5                | 17,9  | 12,0 | 6,0  | 0,4  |     |     |     |
| 3,0                | 21,9  | 16,8 | 11,8 | 7,0  | 2,2 |     |     |
| 3,5                | 19,9  | 15,8 | 11,5 | 7,4  | 3,5 |     |     |
| 4,0                | 22,7  | 18,8 | 15,2 | 11,6 | 8,2 | 4,5 | 1,0 |

Таблица 2. Резонансы углекислого газа, установка 1











Скорости звука:

$$c_{2.0} = 263 \frac{M}{c^2}$$
  $c_{2.5} = 293 \frac{M}{c^2}$   $c_{3.0} = 295 \frac{M}{c^2}$   $c_{3.5} = 288 \frac{M}{c^2}$   $c_{4.2} = 288 \frac{M}{c^2}$ 

Их погрешности:

$$\varepsilon_{c_{2.0}} = 0.5\%$$
  $\varepsilon_{c_{2.5}} = 0.7\%$   $\varepsilon_{c_{3.0}} = 0.6\%$   $\varepsilon_{c_{3.5}} = 0.7\%$   $\varepsilon_{c_{4.2}} = 0.6\%$ 

7. Теперь проведём измерения на второй установке. Будем изменять частоту  $\Gamma$ 3, и фиксировать последовательные резонансы. Сделаем это для нескольких температур. Результаты занесём в табл. 3.

| $t, {}^{o}C$ | f, Гц |     |     |     |      |  |  |
|--------------|-------|-----|-----|-----|------|--|--|
| 23           | 195   | 450 | 660 | 870 | 1100 |  |  |
| 30           | 220   | 460 | 660 | 880 | 1110 |  |  |
| 40           | 207   | 465 | 675 | 895 | 1115 |  |  |
| 50           | 205   | 470 | 690 | 910 | 1135 |  |  |
| 60           | 203   | 472 | 695 | 922 | 1150 |  |  |

Таблица 3. Резонансы, установка 2

Графики f(k):











По коэффициенту наклона, который равен  $\frac{c}{2L}$  найдём скорость звука. Учтём, что L=700 мм.

$$c_{23} = 312 \frac{M}{c^2}$$
  $c_{30} = 308 \frac{M}{c^2}$   $c_{40} = 314 \frac{M}{c^2}$   $c_{50} = 322 \frac{M}{c^2}$   $c_{60} = 328 \frac{M}{c^2}$ 

По аналогии с установкой 1 находим погрешности для скорости звука:

$$\varepsilon_{c_{23}} = 1.5\%$$
  $\varepsilon_{c_{30}} = 1.1\%$   $\varepsilon_{c_{40}} = 1.6\%$   $\varepsilon_{c_{50}} = 1.7\%$   $\varepsilon_{c_{60}} = 1.6\%$ 

8. Найдём показатель адиабаты по формуле:

$$\gamma = \frac{\mu}{RT}c^2 \approx \frac{29 \cdot 10^{-3}}{8.314 \cdot 296} \cdot 308^2 \approx 1{,}11$$

Для нахождения относительной погрешности воспользуемся тем, что  $\varepsilon_T=\frac{1}{296},~{\rm a}~\varepsilon_c=\varepsilon_{c_{23}}=1,5\%$ 

$$\varepsilon_{\gamma} = \sqrt{\varepsilon_c^2 + \varepsilon_T^2} \approx 1.5\%$$

Итак,  $\gamma = 1.11 \pm 0.02$