Si nos damos cuenta, 9 = 32, donde:

- ·) El 3 nos indica que debemos trabajar en 763[0]
- ·) El 2 nos indica el grado del polinomio irreducible $\tau(x) = x^2 - x - 1$. (He he tomado este polinomio en lugar de tomazme x^2+1 θ x^2+x-1 , perfectamente validos, ya que estos polinomios No tienen raices =>irreducibles)

Para définir un averpo recesitamos un conjunto y 2 operaciones.

.) El vonjunto está formado por polenomuos de 723[x] con grado menore o igual que 2.

 $k_{q} = \{0, 1, 2, \times, \times + 1, \times + 2, 2x, 2x + 1, 2x + 2\}$

·) la primoza operación es la suma habitual de polinomios, definida como:

+: Kg x Kg --- Kg $(p(x), q(x)) \mapsto p(x) + q(x)$

Veamos ahora que cumple las propiredades necesarias gara ser grupo.

- 1) Es una operación binaria interna: la suma de dos elementos pertenele al conjunto tel y como vamos a ver.
- 2) Es asociativa: al ser la suma habital de polinomios.
- 3) Existe elemento neutro: al ser la suma habitual, el
- el neutro es el O y este elemento, está en Kq.
- 4) Existe elemento simétrico: veamos mediante la tabla que todos los elementos trenen sinétricos.
- 5) Es connutativo: al ser suma habitual de plinomios. Por tanto (kg,+) es un grupo conmutation.

· · · · · · · · · · · · · · · · · · ·				1		1	1	ĺ	1 -
+	0	1	2_	×	X+1	x+2	2 x	2x+1	2x+2
Ò	0	1	2	×	X+ 1	x+2	2 ×	2x+1	2 x+2
1		2	3	X+1	x+2	×	2x+1	2x+2	2×
2			1	X+2.	X	X+ 1	2x+2	2 x	2×+1
X				2x	2x+1	2x+2	0	٨	2
X+)					2x+2	2x	1	2	0
x+2						2x+1	2	0	1
2x				,			Χ	x+1	X+2
2xx1								x+2	Х
2x+2									X+1

.) Defininos el producto como:

$$0: kg \times kg \longrightarrow kg$$

 $(p(x), q(x)) \longmapsto p(x) \cdot q(x) \mod x(x)$

$$\pi(k) = x^2 - x - 1$$

El producto No puede ser el producto de polinamios usual ya que no es interno.

Veamos ahora que (kg, 0) es un monoide:

1) Assiatividad:

$$(p(x) \odot q(x)) \odot \mathbf{E}(x) = (p(x), q(x) \mod \mathbf{E}(x)) \odot \mathbf{E}(x)$$

- = (p(x).g(x) mod r(x)).r(x) mod r(x)
- = p(x) q(x). s(x) mod r(x)
- = p(x).(q(x).s(x) mod r(x)) mod r(x)
- = p(x) 0 (q(x) 0 /2(x))
- 2) Es una operación interna tal y como podemos vez en la tabla de multiplicación.
- 3) El neutro: el elemento heutro es el 1 y pertenece a Kg

Veamos que es un anillo:

$$s(x)$$
 0 $(p(x) + q(x)) = s(x) (p(x) + q(x)) \mod \pi(x)$
= $(s(x) \cdot p(x) + s(x) q(x)) \mod \pi(x)$
= $s(x) p(x) \mod \pi(x) + s(x) q(x) \mod \pi(x)$

= $S(x) \odot p(x) + S(x) \odot q(x)$

Analogamente

 $(p(x) + q(x)) \odot s(x) = p(x) \odot s(x) + q(x) \odot s(x)$ Por lo que la prop. distributiva también se da. Así, (Kq, +, 0) es un anillo, y como abora voremos, todo elemento tiene inverso, por tanto (Kq, +, 0) es un cuerpo.

0 1		i ,	12	×	x+1	x+2	2x .	2x+1	2x12	
<u>•</u>	0	1	-					0	O	
0	0	0	0	0	0	0	0			
		1	2	×	X+1	1+2	2 x	2x+1	2x+2	
1 2			1	2x	2x+2	2 x + 1	x	x+2	x + 1	
X				X+i	x+2	1	2x+2	2_	x+2	
					2	X	x+2	2 <i>x</i>	1	
x+1 x+2	2					2x+2	2	x+ 1	2 <i>x</i>	
							X+1	Λ	2x+1	
2×								2x+1	X	
2x+1									2	
2x+2										