Inteligencia Artificial

Lógica de primer orden

[Transparencias adaptadas de Dan Klein and Pieter Abbeel: CS188 Intro to Al, UC Berkeley (ai.berkeley.edu)]

Repaso: Conocimiento

- Base de conocimiento (KB) = conjunto de sentencias (que representan afirmaciones sobre el mundo) en un lenguaje formal
- Enfoque declarativo para crear un agente (u otro sistema):
 - Dile lo que necesita saber (o pídele que aprenda el conocimiento)
 - A continuación, puede preguntarse qué hacer: las respuestas deben obtenerse de la base de conocimiento
- Los agentes pueden verse a nivel de conocimiento es decir, lo que saben, se implemente como se implemente
- Un único algoritmo de inferencia puede responder a cualquier pregunta que se pueda responder

Base de conocimiento Motor de inferencia

Hechos específicos del dominio

Código genérico

Repaso: Lógica

- Sintaxis: ¿Qué sentencias están permitidas?
- Semántica:
 - ¿Cuáles son los mundos posibles?
 - ¿Qué frases son verdaderas en qué mundos (modelos)? (es decir, definición de verdad)
 - Se dice que el modelo m "satisface α " o "es un modelo de α "
 - $M(\alpha)$ representa todos los modelos de α

Semanticaland

Espectro de representaciones

Problemas de búsqueda

Planificación, **lógica proposicional**, redes Bayesianas, redes neuronales

Lógica de primer orden, bases de datos, programas lógicos, programas probabilísticos

Poder expresivo

- Objetivo: adoptar las bases de la lógica proposicional (independiente del contexto, sin ambigüedades) y construir sobre ellas una lógica más expresiva tomando ideas del lenguaje natural y evitando sus defectos.
- Reglas del ajedrez
 - 100.000 páginas en lógica proposicional
 - 1 página en lógica de primer orden
- Reglas de Pacman:
 - ∀t Alive(t) ⇔
 [Alive(t-1) ∧ ¬∃ g,x,y [Ghost(g) ∧ At(Pacman,x,y,t-1) ∧ At(g,x,y,t-1)]]

Elementos del lenguaje natural

- Sustantivos y grupos nominales: Objetos
- Verbos: **Relaciones** que pueden ser *unarias* (**propiedades**, adjetivos) o n-arias (binarias, ternarias, cuaternarias, etc.)
- Algunas de estas relaciones son funciones: solo hay un valor para una determinada entrada (mapeo entre objetos)
- "Los cuadrados colindantes al Wumpus son malolientes"
- "El malvado rey Juan gobernó Inglaterra en 1200"
- "Uno más dos es igual a tres"

La lógica de primer orden se construye sobre objetos y relaciones. Además, permite expresar hechos sobre *algunos* o *todos* los objetos del universo.

Lógica de primer orden (FOL) vs. proposicional

- Distinto compromiso ontológico: se diferencian en lo que asumen sobre la naturaleza de la realidad.
- Lógica proposicional: supone que hay hechos que se dan o no se dan en el mundo. Cada hecho puede estar en uno de dos estados: verdadero o falso, y cada modelo asigna verdadero o falso a cada símbolo de proposición.
- Lógica de primer orden: supone algo más; en concreto, que el mundo está formado por objetos con ciertas relaciones entre ellos que se mantienen o no. Los modelos formales son más complicados que los de la lógica proposicional.

Mundos posibles

- Un mundo posible en lógica de primer orden (FOL) está formado por:
 - Un conjunto no vacío de objetos
 - Para cada predicado (relación) k-ario en el lenguaje, un conjunto de tuplas de k objetos (es decir, el conjunto de tuplas de objetos que satisfacen el predicado en este mundo)
 - Para cada función k-aria en el lenguaje, un mapeo de las tuplas de k objetos a objetos
 - Para cada símbolo constante, un objeto particular (se pueden considerar las constantes funciones 0-arias)

Mundo posible

Mundos posibles

- Un mundo posible en lógica de primer orden (FOL) está formado por:
 - Un conjunto no vacío de objetos
 - Para cada predicado (relación) k-ario en el lenguaje, un conjunto de tuplas de k objetos (es decir, el conjunto de tuplas de objetos que satisfacen el predicado en este mundo)
 - Para cada función k-aria en el lenguaje, un mapeo de las tuplas de k objetos a objetos
 - Para cada símbolo constante, un objeto particular (se pueden considerar las constantes funciones 0-arias)

Mundo posible

Mundos posibles

- Un mundo posible en lógica de primer orden (FOL) está formado por:
 - Un conjunto no vacío de objetos
 - Para cada predicado (relación) k-ario en el lenguaje, un conjunto de tuplas de k objetos (es decir, el conjunto de tuplas de objetos que satisfacen el predicado en este mundo)
 - Para cada función k-aria en el lenguaje, un mapeo de las tuplas de k objetos a objetos
 - Para cada símbolo constante, un objeto particular (se pueden considerar las constantes funciones 0-arias)

Mundo posible

¿Cuántos mundos posibles?

Sintaxis y semántica: términos

- Un término se refiere a un objeto; puede ser:
 - Un símbolo constante; por ejemplo: A, B, MalvadoReyJuan
 - El mundo posible fija estos referentes
 - Un símbolo de función con términos como argumentos; por ejemplo, BFF(MalvadoReyJuan)
 - El mundo posible especifica el valor de la función, dados los referentes de los términos
 - BFF(MalvadoReyJuan) -> BFF(2) -> 3
 - Una variable lógica; por ejemplo, x
 - (lo vamos a ver justo después)

Sintaxis y semántica: sentencias atómicas

- Una sentencia atómica es una proposición elemental (vs. símbolos en log. proposicional)
 - Un símbolo de predicado con términos como argumentos; p. ej., Knows(A, BFF(B))
 - Verdadero si y solo si los objetos a los que se refieren los términos están en la relación a la que se refiere el predicado
 - Knows(A,BFF(B)) -> Knows(1,BFF(2)) ->
 Knows(1,3) -> F
 - Una igualdad entre términos; p. ej.,
 BFF(BFF(BFF(B)))=B
 - Verdadero si y solo si los términos se refieren a los mismos objetos
 - BFF(BFF(B)))=B -> BFF(BFF(BFF(2)))=2 ->
 BFF(BFF(3))=2 -> BFF(1)=2 -> 2=2 -> V

Sintaxis y semántica: sentencias complejas

Sentencias con conectores lógicos

$$\neg \alpha$$
, $\alpha \land \beta$, $\alpha \lor \beta$, $\alpha \Rightarrow \beta$, $\alpha \Leftrightarrow \beta$

- Sentencias con cuantificadores universales o existenciales; por ejemplo:
 - ∀x Knows(x, BFF(x)):

Verdadero en el mundo w si y solo si es Verdadero **en todas las extensiones** de w donde x se refiere a un objeto en w

- x -> 1: Knows(1, BFF(1)) -> Knows(1,2) -> V
- x -> 2: Knows(2, BFF(2)) -> Knows(2,3) -> V
- x -> 3: Knows(3, BFF(3)) -> Knows(3,1) -> F

Sintaxis y semántica: sentencias complejas

Sentencias con conectores lógicos

$$\neg \alpha$$
, $\alpha \land \beta$, $\alpha \lor \beta$, $\alpha \Rightarrow \beta$, $\alpha \Leftrightarrow \beta$

- Sentencias con cuantificadores universales o existenciales; por ejemplo:
 - ∃x Knows(x, BFF(x)):

Verdadero en el mundo w si y solo si es Verdadero **en alguna extensión** de w donde x se refiere a un objeto en w

- x -> 1: Knows(1, BFF(1)) -> Knows(1,2) -> V
- x -> 2: Knows(2, BFF(2)) -> Knows(2,3) -> V
- x -> 3: Knows(3, BFF(3)) -> Knows(3,1) -> F

Ejemplos de sentencias

- Todo el mundo conoce a Obama
 - \forall n Person(n) \Rightarrow Knows(n,Obama)

- Hay alguien al que todo el mundo conoce
 - ∃s Person(s) ∧ ∀n Person(n) ⇒ Knows(n,s)
- Todo el mundo conoce a alguien
 - $\forall x \ \mathsf{Person}(x) \Rightarrow \exists y \ \mathsf{Person}(y) \land \mathsf{Knows}(x,y)$

Más ejemplos de sentencias

- Dos personas cualesquiera de la misma nacionalidad hablan una lengua común
 - Nationality(x,n) x tiene nacionalidad n
 - Speaks(x,I) x habla el idioma I
 - ∀x,y (∃ n Nationality(x,n) ∧ Nationality(y,n)) ⇒
 (∃ I Speaks(x,l) ∧ Speaks(y,l))

Inferencia en lógica de primer orden (FOL)

- La implicación se define exactamente igual que en lógica proposicional:
 - $\alpha \models \beta$ (" α implica β ") sii en cada mundo donde α es verdad, β también
 - P. ej., ∀x Knows(x,Obama) implica ∃y∀x Knows(x,y)
- En FOL, podemos ir más allá de responder "sí" o "no"; dada una consulta existencialmente cuantificada, se devuelve una sustitución (o ligadura) para la(s) variable(s) de tal manera que la frase resultante esté implicada: KB = ∀x Knows(x,Obama)
 - Pregunta = ∃y∀x Knows(x,y)
 - Respuesta = Sí, σ = {y/Obama}
 - Notación: $\alpha \sigma$ significa aplicar la sustitución σ a la sentencia α
 - Si α = \forall x Knows(x,y) y σ = {y/Obama}, entonces $\alpha\sigma$ = \forall x Knows(x,Obama)

Percepciones

- Vector de percepciones de cinco elementos.
- Sentencia en la KB de FOL: el vector y el tiempo en el que se percibió

$$Percept([Stench, Breeze, Glitter, None, None], 5) \leftarrow parat = 5$$

· La percepción implica hechos sobre el estado actual

```
\forall t, s, g, m, c \ Percept([s, Breeze, g, m, c], t) \Rightarrow Breeze(t)
\forall t, s, b, m, c \ Percept([s, b, Glitter, m, c], t) \Rightarrow Glitter(t)
```

Acciones

```
Turn(Right), Turn(Left), Forward, Shoot, Grab, Climb
```

¿Cómo determinar cuál es la mejor acción?

```
AskVars(\exists a \ BestAction(a, 5))
```

- En FOL, esto devuelve algo como: $\{a/Grab\}$ (sustitución)
- Pueden implementarse comportamientos reflejos con sentencias condicionales

```
\forall t \; Glitter(t) \Rightarrow BestAction(Grab, t)
```

Términos

- Las casillas no serán Casilla_{1,2} sino [1, 2]
 - Esto nos permite, por ejemplo, definir la adyacencia de forma concisa:

$$\forall x, y, a, b \ Adjacent([x, y], [a, b]) \Leftrightarrow (x = a \land (y = b - 1 \lor y = b + 1)) \lor (y = b \land (x = a - 1 \lor x = a + 1))$$

- Predicado unario Pit que se evalúa a verdadero en las casillas con hoyos
- Constante Wumpus

Físicas (ejemplos)

Los objetos solo pueden estar en una posición en un instante

$$\forall x, s_1, s_2, t \ At(x, s_1, t) \land At(x, s_2, t) \Rightarrow s_1 = s_2$$

 Si el agente está en una casilla y percibe una brisa (Breeze), entonces esa casilla es ventosa (Breezy)

$$\forall s, t \ At(Agent, s, t) \land Breeze(t) \Rightarrow Breezy(s)$$

Una vez descubierto qué lugares son ventosos (o malolientes)
 y, muy importante, no ventosos (o no malolientes), el agente
 puede deducir dónde están los pozos (y dónde el Wumpus)

$$\forall s \ Breezy(s) \Leftrightarrow \exists r \ Adjacent(r,s) \land Pit(r)$$

También podemos cuantificar sobre el tiempo:

$$\forall t \; HaveArrow(t+1) \Leftrightarrow (HaveArrow(t) \land \neg Action(Shoot, t))$$

Inferencia en FOL: Proposicionalización

- Convertir (KB $\wedge \neg \alpha$) a lógica proposicional (PL), y utilizar un solucionador SAT de PL para comprobar la (in)satisfacibilidad
 - Idea: sustituir variables por términos básicos, convertir sentencias atómicas en símbolos (definiciones formales en siguiente diapositiva)
 - ∀x Knows(x,Obama) y Democrat(Biden)
 - Knows(Obama,Obama) y Knows(Biden,Obama) y Democrat(Obama)
 - Knows_Obama_Obama \wedge Knows_Biden_Obama \wedge Democrat_Biden
 - pero ∀x Knows(Mother(x),x)
 - Knows(Mother(Obama), Obama) y
 Knows(Mother(Mother(Obama)), Mother(Obama))...
 - Truco: para k = 1 a infinito, utilizar todos los posibles términos con un anidamiento de llamadas a la función hasta k
 - Si hay implicación, encontraremos una contradicción para una k finita (Herbrand); si no, puede continuar para siempre: semidecidible

Inferencia en FOL: Proposicionalización

- Para convertir a PL cuando hay variables:
- Instanciación universal (UI):
 - Podemos inferir cualquier sentencia obtenida sustituyendo un término base (un término sin variables) por la variable

```
\forall x \text{ King}(x) \land \text{Greedy}(x) \Rightarrow \text{Evil}(x)
```

King(John) ∧ Greedy(John) ⇒ Evil(John)

King(Richard) ∧ Greedy(Richard) ⇒ Evil(Richard)

King(Father (John)) ∧ Greedy(Father (John)) ⇒ Evil(Father (John))

• • •

- Instanciación existencial:
 - La variable se sustituye por un nuevo símbolo constante

```
\exists x \text{ Crown}(x) \land \text{OnHead}(x, \text{John})
Crown(C_1) \land \text{OnHead}(C_1, \text{John})
```

Inferencia en FOL: Inferencia por elevación

- Aplicar reglas de inferencia directamente a sentencias de primer orden; por ejemplo:
 - KB = Person(Socrates), $\forall x \text{ Person}(x) \Rightarrow \text{Mortal}(x)$
 - concluir Mortal(Socrates)
 - La regla general es una versión "elevada" de Modus Ponens:
 - Dados $\alpha \Rightarrow \beta$ y α' , donde $\alpha'\sigma = \alpha\sigma$ para alguna sustitución σ , concluir $\beta\sigma$
 - En el ejemplo, σ es $\{x/Socrates\}$
 - Dado Knows(x,Obama) y Knows(y,z) ⇒ Likes(y,z)
 - σ es {y/x, z/Obama}, concluir Likes(x,Obama)
- Unificación: encontrar sustituciones que hacen que expresiones lógicas diferentes parezcan idénticas

UNIFY(Knows(John, x), Knows(y, Mother(y))) = {y/John, x/Mother(John)}

 Cuando se compara una variable con un término complejo, se debe comprobar si la propia variable se encuentra dentro del término; si es así, la comparación falla porque no se puede construir un unificador coherente.

Resumen

- La lógica de primer orden (FOL) es un lenguaje formal muy expresivo
- Muchos ámbitos del sentido común y del conocimiento técnico pueden escribirse en FOL:
 - circuitos, software, planificación, legislación, impuestos, protocolos de red y seguridad, descripciones de productos, transacciones de comercio electrónico, sistemas de información geográfica, Google Knowledge Graph, web semántica, etc.
- En general, la inferencia es semidecidible; en la práctica, muchos problemas pueden resolverse eficientemente.