

AUTOMATION

A reflective presentation about the largest trend in EIT by Tobias Zeier

Agenda

Introduction

Robotics and Automation

Efficiency and Skill Shift

Module Reflection

Conclusion

Introduction

Tobias Zeier, 35

Zurich, Switzerland

2011: Apprenticeship in IT System Engineering

2020: Advanced Federal Diploma of Higher Education in Business Informatics

Head of two DevOps Teams within the Banking industry

Robotics and Automation

Fig 1-3: Robotics and Automation (copyright free from https://unsplash.com/)

Automation - Efficiency

Country	2004	2007
Denmark	0.39	0.63
Spain	0.52	0.62
Finland	0.33	0.40
France	0.55	0.66
Germany	1.60	1.80
Italy	0.72	0.80
Japan	0.98	0.85
Sweden	0.32	0.38
UK	0.25	0.30

Table 1: Robots per Country (Kromann et al., 2020)

Automation – Skill Shift

Figure 4: Automation will boost employment (Nakamura & Zeira, 2023)

Figure 5: Importance of training (Upreti & Sridhar, 2024)

Reflection

EIT: TOGAF

Reflection

Python Coding

Frustration, Challenge

Conclusion

Upskilling

Customer expectation

Education

References

Goldberg, K. (2012) What Is Automation?. IEEE Transactions on Automation Science and Engineering 9(1): 1–2. DOI: https://doi.org/10.1109/tase.2011.2178910

Kromann, L., Malchow-Møller, N., Skaksen, J.R. & Sørensen, A. (2019) Automation and productivity - a cross-country, cross-industry comparison. *Industrial and Corporate Change* 29(2): 265–287. DOI: https://doi.org/10.1093/icc/dtz039

Herm, L.-V., Janiesch, C., Helm, A., Imgrund, F., Hofmann, A. & Winkelmann, A. (2022) A framework for implementing robotic process automation projects. *Information Systems and e-Business Management* 21(1): 1–35. DOI: https://doi.org/10.1007/s10257-022-00553-8

Nakamura, H. & Zeira, J. (2023) Automation and unemployment: help is on the way. *Journal of Economic Growth*. 29: 215–250. DOI: https://doi.org/10.1007/s10887-023-09233-9

Acemoglu, D., & Restrepo, P. (2019) Automation and New Tasks: How Technology Displaces and Reinstates Labor. *The Journal of Economic Perspectives*. 33(2): 3–30. Available from: https://www.jstor.org/stable/26621237 [Accessed 19 July 2024].

Upreti, A., & Sridhar, V. (2024) Assessing the Effect of Task Automation in Labor Markets: Case of IT Services Industry. *IEEE transactions on technology and society*. 5(1): 107-117. DOI: https://doi.org/10.1109/tts.2024.3365423.