

23

Efficienza asintotica degli algoritmi

- Per input piccoli può non essere corretto considerare solo l'ordine di grandezza ma per input "abbastanza" grandi è corretto farlo
- Esempio: 10n²+100n+10
 per n<10, il secondo termine è maggiore del primo
 man mano che n cresce il contributo dato dai termini meno significativi
 diminuisce

Progettazione di Algoritmi, a.a. 2022-23 A. De Bonis

Limiti superiori. $0 \le T(n)$ è O(f(n)) se esistono due costanti c > 0 ed $n_0 \ge 0$ tali che per tutti gli $n \ge n_0$ si ha $T(n) \le c \cdot f(n)$.

Progettazione di Algoritmi, a.a. 2022-23

25

25

Ordine asintotico di grandezza

Limiti superiori. $0 \le T(n)$ è O(f(n)) se esistono due costanti c > 0 ed $n_0 \ge 0$ tali che per tutti gli $n \ge n_0$ si ha $T(n) \le c \cdot f(n)$.

Esempio: dimostriamo che $3n^2 + 2n \grave{e} O(n^2)$.

Dobbiamo dimostrare l'esistenza delle costanti c > 0 ed $n_0 \ge 0$ tali che $3n^2 + 2n \le cn^2$ per ogni $n \ge n_0$. Risolviamo la disequazione $3n^2 + 2n \le cn^2$. Siccome consideriamo solo valori di $n \ge 0$ allora la disuguaglianza non puo` valere se c < 3 (escludiamo anche c=3 perche' la disuguaglianza varrebbe solo per n=0). Quindi se scriviamo la disuguaglianza come $(c-3)n^2 - 2n \ge 0$ il coefficiente $c-3 \ge 0$ e risolvendo la disequazione di II grado abbiamo che essa è soddisfatta per $n\le 0$ e per $n \ge 2/(c-3)$.

Ci interessano solo i valori di $n \ge 2/(c-3)$.

Poniamo quindi n_0 = 2/(c-3) dove c è una qualsiasi costante >3.

Se ad esempio prendiamo c=4 allora n_0 =2. In figura confrontiamo il grafico di T(n)= $3n^2 + 2n$ con quello di $h(n)=n^2$

Se prendessimo c=5 allora potremmo prendere no = 1.

Se prendessimo c=3.1 allora potremmo prendere n_0 = 20.

Ordine asintotico di grandezza

Limiti inferiori. $T(n) \in \Omega(f(n))$ se esistono costanti c > 0 ed $n_0 \ge 0$ tali che per tutti gli $n \ge n_0$ si ha $T(n) \ge c \cdot f(n) \ge 0$.

Progettazione di Algoritmi, a.a. 2022-23

27

27

Ordine asintotico di grandezza

Limiti inferiori. $T(n) \in \Omega(f(n))$ se esistono costanti c > 0 ed $n_0 \ge 0$ tali che per tutti gli $n \ge n_0$ si ha $T(n) \ge c \cdot f(n) \ge 0$.

Esempio: dimostriamo che $3n^2 + 2n \grave{e} \Omega(n^2)$.

Dobbiamo dimostrare l'esistenza delle costanti c > 0 ed $n_0 \ge 0$ tali $3n^2 + 2n \ge cn^2$ per ogni $n \ge n_0$.

Risolviamo la disequazione $3n^2 + 2n \ge cn^2$. Questa è soddisfatta \longleftrightarrow $(3-c)n^2 + 2n \ge 0$.

Se consideriamo valori $c \le 3$ è evidente che $(3 - c) \ge 0$ e quindi $(3-c)n^2 + 2n \ge 0$ è soddisfatta per ogni $n \ge 0$.

Scegliamo allora c=3 (meglio prendere la costante c quanto piu` grande).

Per c=3, la disequazione di partenza $3n^2 + 2n \le cn^2$ è soddisfatta per ogni $n \ge 0$.

Abbiamo quindi trovato le costanti c ed n_0 (con c=3 ed n_0 =0) per cui si ha che $3n^2 + 2n \ge cn^2$ per ogni $n \ge n_0$.

Ordine asintotico di grandezza

- Quando analizziamo un algoritmo miriamo a trovare stime asintotiche quanto più "strette" è possibile
- Dire che InsertionSort ha tempo di esecuzione $O(n^3)$ non è errato ma $O(n^3)$ non è un limite "stretto" in quanto si può dimostrare che InsertionSort ha tempo di esecuzione $O(n^2)$
- O(n²) è un limite stretto?
 - Sì, perché il numero di passi eseguiti da InsertionSort è an²+bn+c, con a>0, che non solo è $O(n^2)$ ma è anche $\Omega(n^2)$.
 - Si può dire quindi che il tempo di esecuzione di Insertion Sort è $\Theta(n^2)$

Progettazione di Algoritmi, a.a. 2022-23 A. De Bonis

31

31

Frrore comune

Affermazione priva di senso. Ogni algoritmo basato sui confronti richiede almeno O(n log n) confronti.

• Per i lower bound si usa Ω

Affermazione corretta. Ogni algoritmo basato sui confronti richiede almeno Ω (n log n) confronti.

Progettazione di Algoritmi, a.a. 2022-23 A. De Bonis

Proprietà

Transitività.

- Se f = O(g) e g = O(h) allora f = O(h).
- Se $f = \Omega(g)$ e $g = \Omega(h)$ allora $f = \Omega(h)$. Se $f = \Theta(g)$ e $g = \Theta(h)$ allora $f = \Theta(h)$.

Additività.

- Se f = O(h) e g = O(h) allora f + g = O(h).
- Se f = $\Omega(h)$ e $g = \Omega(h)$ allora f + $g = \Omega(h)$. Se f = $\Theta(h)$ e $g = \Theta(h)$ allora f + $g = \Theta(h)$.

Progettazione di Algoritmi, a.a. 2022-23

33

Bound asintotici per alcune funzioni di uso comune

```
Polinomi. a_0 + a_1 n + ... + a_d n^d, con a_d > 0, è \Theta(n^d).
```

Dim. $O(n^d)$: dobbiamo trovare due costanti c>0 e $n_0 \ge 0$ tali che $a_0 + a_1 n + a_2 n + a_3 n + a_4 n + a_5 n +$... + a_dn^d ≤ c n^d per ogni n ≥ n₀

```
a_0 + a_1 n + a_2 n^2 + ... + a_d n^d
\leq |a_0| + |a_1|n + |a_2|n^2 + ... + |a_d|n^d
\leq (|a_0| + |a_1| + |a_2| + ... + |a_d|) n^d, per ogni n≥1.
Basta quindi prendere n_0=1 e c=|a_0|+|a_1|+...+|a_d| (è una costante)
```

Progettazione di Algoritmi, a.a. 2022-23

Bound asintotici per alcune funzioni di uso comune

Dimostriamo come esercizio che $a_0 + a_1 n + ... + a_d n^d$ è anche $\Omega(n^d)$:

- ricordiamo che stiamo assumendo che a_d e` positivo
- $a_0 + a_1 n + ... + a_d n^d = a_d n^d + ... + a_1 n + a_0 \ge a_d n^d (|a_0| + |a_1| n + ... + |a_{d-1}| n^{d-1})$
- Abbiamo appena visto che un polinomio di grado d è O(n^d)
 - Ciò implica $|a_0| + |a_1|n + ... + |a_{d-1}|n^{d-1} = O(n^{d-1})$ e di conseguenza esistono due costanti $n'_0 \ge 0$ e c'>0

tali che $|a_0| + |a_1|n + ... + |a_{d-1}|n^{d-1} \le c'n^{d-1}$ per ogni n≥n'0

- In realta` possiamo prendere n₀'=1 come nella dim. precedente.
- Quindi $a_d n^d (|a_0| + |a_1|n + ... + |a_{d-1}|n^{d-1}) \ge a_d n^d c' n^{d-1}$ per ogni $n \ge n'_0$
- da cui $a_0 + a_1 n + ... + a_d n^d \ge a_d n^d c' n^{d-1}$ per ogni $n \ge n'_0$

Progettazione di Algoritmi, a.a. 2022-23

3.5

35

Bound asintotici per alcune funzioni di uso comune

- * Per dimostrare $a_0 + a_1 n + ... + a_d n^d = \Omega(n^d)$ dobbiamo trovare le costanti $n_0 \ge 0$ e c > 0 tali che $a_0 + a_1 n + ... + a_d n^d \ge c n^d$ per ogni $n \ge n_0$
- Nella slide precedente abbiamo dimostrato che esistono due costanti $n'_0 \ge 0$ e c'>0 tali che $a_0 + a_1 n + ... + a_d n^d \ge a_d n^d c' n^{d-1}$ per ogni $n \ge n'_0 = 1$.
- Da questo momento in poi siccome useremo la disuguaglianza in \$assumeremo che n ≥1.

Il fatto che vale la disuguaglianza in $\stackrel{\clubsuit}{\bullet}$ ci dice che per trovare due costanti $n_0 \ge 0$ e c > 0 tali che $a_0 + a_1 n + ... + a_d n^d \ge c n^d$ per ogni $n \ge n_0$, è sufficiente trovare due costanti $n_0 \ge 0$ e c > 0 tali che $a_d n^d - c' n^{d-1} \ge c n^d$ per ogni $n \ge n_0$ (tenendo sempre presente che n_0 dovra` essere ≥ 1)

- Scriviamo la diseguaglianza $a_d n^d c' n^{d-1} \ge c n^d$ come $(a_d c) n^d c' n^{d-1} \ge 0$.
- Stiamo considerando valori di n maggiori di 1 per cui se prendiamo c< a_d (cioe` a_d -c >0) esistono sicuramente valori di n per cui $(a_d$ -c)n^d-c'n^{d-1} ≥ 0 .
- Dividiamo tutto per n^{d-1} e risolviamo la disequazione (a_d-c)n-c' ≥ 0 che è soddisfatta per n ≥ c'/(a_d-c), dove c' è la costante in e c è una costante positiva e minore di a_d a nostra scelta.
- Abbiamo quindi trovato le nostre costanti $n_0 = max\{c'/(a_d-c),1\}$ e c uguale ad una qualsiasi costante positiva minore di a_d Progettazione di Algoritmi, a.a. 2022-23

Ordine asintotico di grandezza

Esempio:

```
T(n) = 32n^2 + 17n + 32.

-T(n) è O(n^2), O(n^3), Ω(n^2), Ω(n) e Θ(n^2).

-T(n) non è O(n), Ω(n^3), Θ(n) o Θ(n^3).
```

Progettazione di Algoritmi, a.a. 2022-23 A. De Bonis

37

37

Tempo lineare: O(n)

Tempo lineare. Il tempo di esecuzione è al più un fattore costante per la dimensione dell'input.

Esempio:

Computazione del massimo. Computa il massimo di n numeri a₁, ..., a_n.

```
\max \leftarrow a_1
for i = 2 to n \in Se (a_i > \max)
\max \leftarrow a_i
```

Il problema dell'individuazione del max di n numeri e` $\Omega(n)$

Dim. ogni numero diverso dal massimo deve partecipare ad almeno un confronto in cui risulta < dell'altro elemento → almeno un confronto per ciascuno degli n-1 elementi diversi dal massimo

Progettazione di Algoritmi, a.a. 2022-23 A. De Bonis

Tempo lineare: O(n)

Merge. Combinare 2 sequenze ordinate $A = a_1, a_2, ..., a_n$ with $B = b_1, b_2, ..., b_m$ in una lista ordinata.


```
\label{eq:second_second} \begin{split} &i=1,\ j=1\\ &\text{while }(i \leq n \ \text{and} \ j \leq m) \  \, \{\\ &if \  \, (a_i \leq b_j) \  \, \text{aggiungi } a_i \  \, \text{alla fine della lista output e incrementa i}\\ &else \  \, \text{aggiungi } b_j \  \, \text{alla fine della lista output e incrementa j} \, \}\\ &\text{Ciclo per aggiungere alla lista output gli elementi non ancora}\\ &esaminati \  \, \text{di una delle due liste input} \end{split}
```

Affermazione. Fondere due sequenze ordinate rispettivamente di dimensione n ed m richiede tempo O(n+m).

Dim. Dopo ogni iterazione del while o del ciclo sottostante, la

lunghezza dell'output aumenta di 1.

Progettazione di Algoritmi, a.a. 2022-23

A. De Bonis

39

39

Tempo quadratico: O(n²)

Tempo quadratico. Tipicamente si ha quando un algoritmo esamina tutte le coppie di elementi input

Coppia di punti più vicina. Data una lista di n punti del piano $(x_1, y_1), ..., (x_n, y_n),$ vogliamo trovare la coppia più vicina.

Soluzione $O(n^2)$. Calcola la distanza tra tutte le coppie di punti.

```
\begin{array}{l} \text{min} \leftarrow (\mathbf{x}_1 - \mathbf{x}_2)^2 + (\mathbf{y}_1 - \mathbf{y}_2)^2 \\ \text{for } i = 1 \text{ to n } \{ \\ \text{for } j = i{+}1 \text{ to n } \{ \\ \text{d} \leftarrow (\mathbf{x}_i - \mathbf{x}_j)^2 + (\mathbf{y}_i - \mathbf{y}_j)^2 \\ \text{Se } (\text{d} < \text{min}) \\ \text{min} \leftarrow \text{d} \\ \} \\ \} \end{array}
```

Progettazione di Algoritmi, a.a. 2022-23 A. De Bonis

Per esercizio, svolgiamo l'analisi dell'algoritmo nella slide precedente.

Il for esterno mi costa: tempo lineare in n + il tempo per eseguire tutte le iterazioni del for interno

Analizziamo il for interno:

Chiamiamo t_i il numero di iterazioni del for interno alla i-esima iterazione del for esterno

Quante volte viene iterato il for interno in totale? Risposta: t₁+t₂+...+t_n.

Per ogni i si ha t_i=(n-i)

Quindi sommando i ti per tutte le iterazioni del for esterno ho

```
t_1+t_2+...+t_n = (n-1)+(n-2)+...+1+0 = n(n-1)/2 iterazioni del for interno IN TOTALE
```

siccome la singola esecuzione del corpo del for interno richiede tempo pari ad una costante c \rightarrow il tempo richiesto da tutte le iterazioni del for interno è c(n(n-1)/2)= Θ (n²)

Tempo totale: $\Theta(n) + \Theta(n^2) = \Theta(n^2)$

Progettazione di Algoritmi, a.a. 2022-23

41

41

Tempo cubico: $O(n^3)$

Tempo cubico. Tipicamente si ha quando un algoritmo esamina tutte le triple di elementi.

Esempio:

Disgiunzione di insiemi. Dati n insiemi S_1 , ..., S_n ciascuno dei quali è un sottoinsieme di $\{1, 2, ..., n\}$, c'è qualche coppia di insiemi che è disgiunta? Soluzione $O(n^3)$. Per ogni coppia di insiemi, determinare se i due insiemi sono disgiunti. (Supponiamo di poter determinare in tempo costante se un elemento appartiene ad un insieme)

```
flag = true
for i = 1 to n{    //corpo iterato n volte
    for j = i+1 to n {        //corpo iterato n-i volte ad ogni iterazione del for esterno
        foreach elemento p di S<sub>i</sub> {        //corpo iterato al più n volte ad ogni iteraz. for su j
             if p appartiene anche a S<sub>j</sub>        //supponiamo test richiede ogni volta O(1)
                  flag = false; break;
        }
        If(flag = true) // nessun elemento di Si appartiene a Sj
                  riporta che S<sub>i</sub> e S<sub>j</sub> sono disgiunti
        }
}
```

Un utile richiamo

Alcune utili proprietà dei logaritmi:

- 1. $\log_a x = (\log_b x) / (\log_b a)$
- 2. $\log_a(xy) = \log_a x + \log_a y$
- 3. $\log_a x^k = k \log_a x$

Dalla 1. discende:

4. $\log_a x = 1/(\log_x a)$

Dalla 3. discende:

5. $\log_a(1/x) = -\log_a x$

Dalla 2. e dalla 5. discende:

6. $\log_a(x/y) = \log_a x - \log_a y$

Progettazione di Algoritmi, a.a. 2022-23

43

43

Regole per la notazione asintotica

$$d(n) = O(f(n)) \Rightarrow ad(n) = O(f(n)), \forall \text{ costante } a > 0$$

Es.:
$$\log n = O(n) \Rightarrow 7 \log n = O(n)$$

$$d(n) = O(f(n)), e(n) = O(g(n)) \Rightarrow d(n) + e(n) = O(f(n) + g(n))$$

Es.:
$$\log n = O(n), \sqrt{n} = O(n) \Rightarrow \log n + \sqrt{n} = O(n)$$

$$d(n) = O(f(n)), e(n) = O(g(n)) \Rightarrow d(n)e(n) = O(f(n)g(n))$$

Es.:
$$\log n = O(\sqrt{n}), \sqrt{n} = O(\sqrt{n}) \Rightarrow \sqrt{n} \log n = O(n)$$

$$d(n) = O(f(n)), f(n) = O(g(n)) \Rightarrow d(n) = O(g(n))$$

Es.:
$$\log n = O(\sqrt{n}), \sqrt{n} = O(n) \Rightarrow \log n = O(n)$$

$$f(n) = a_d n^d + \cdots + a_1 n + a_0 \Rightarrow f(n) = O(n^d)$$

Es.:
$$5n^7 + 6n^4 + 3n^3 + 100 = O(n^7)$$

$$n^x = O(a^n), \ \forall \ \text{costanti} \ x>0, \\ a>1 \\ \text{Progettazione di Algoritmi, a.a. 2022-23} \text{Es.: } n^{100} = O(2^n)$$

Regole per la notazione asintotica

- Le prime 5 regole nella slide precedente valgono anche se sostituiamo O con Ω o con Θ
- Dimostriamo per esercizio la 1.
- d(n)=O(f(n))→ ad(n)=O(f(n), per a costante positiva
- Dim
- $d(n)=O(f(n)) \rightarrow esistono due costanti c'>0 ed n'_0 \ge 0 t.c. <math>d(n) \le c'f(n)$ per ogni $n \ge n'_0$
- Moltiplicando entrambi i membri della disuguaglianza per a il verso della disuguaglianza rimane invariato perche' a>0.
- Quindi si ha ad(n)≤ac'f(n) per ogni n ≥ n'0.
- Abbiamo quindi trovato le costanti c ed n_0 per cui vale la definizione di O(f(n))
 - basta infatti porre c=ac' ed n₀ = n'₀
 - NB: ac' e` una costante > 0 perche' sia a che c' sono costanti >0.

Progettazione di Algoritmi, a.a. 2022-23

45

45

Dimostriamo l'additivita`

- d(n)=O(f(n)) ed $e(n)=O(g(n)) \rightarrow d(n)+e(n)=O(f(n)+g(n))$
- · Dim.
- 1. $d(n)=O(f(n)) \rightarrow esistono due costanti c'>0 ed n'₀>0 t.c. <math>d(n)< c'f(n)$ per ogni $n \ge n'_0$
- 2. $e(n)=O(g(n)) \rightarrow esistono due costanti c">0 ed n"₀>0 t.c. <math>e(n) \le c = g(n)$ per ogni $n \ge n$ "₀
- la 1 \rightarrow d(n) \leq c'f(n) per ogni n \geq n'₀ , la 2 \rightarrow e(n) \leq c"g(n) per ogni n \geq n"₀
- e di conseguenza, $d(n)+e(n)\le c'f(n)+c''g(n)\le \max\{c',c''\}f(n)+\max\{c',c''\}g(n)=\max\{c',c''\}$ (f(n)+g(n)) per ogni n maggiore di n'_0 e n''_0
- Ponendo c= $\max\{c',c''\}$ ed $n_0=\max\{n'_0,n''_0\}$, possiamo quindi affermare che
- $d(n)+e(n) \le c(f(n)+g(n))$ per ogni $n \ge n_0$ e cio` implica d(n)+e(n)=O(f(n)+g(n))

Progettazione di Algoritmi, a.a. 2022-23 A. De Bonis