NAME: RAMYA RAMESH USN: 1BM19CS227

COURSE NAME: MACHINE LEARNING

COURSE CODE: 20CS6PCMAL

ML LAB REPORT

PROGRAM-1

Implement and demonstrate the FIND-S algorithm for finding the most specific hypothesis based on a given set of training data samples.

TRAINING DATA USED: enjoysport.csv

1	sky	air_temp	humidity	wind	water	forecast	enjoy_sport
2	sunny	warm	normal	strong	warm	same	yes
3	sunny	warm	high	strong	warm	same	yes
4	rainy	cold	high	strong	warm	change	no
5	sunny	warm	high	strong	cool	change	yes

```
import csv
a=[]
with open(r'C:\Users\bmsce\Desktop\enjoysport.csv','r') as csvfile:
  next(csvfile)
  for r in csv.reader(csvfile):
     a.append(r)
  print(a)
num attr = len(a[0]) - 1
hyp = ['0']*num_attr
print("\n The initial hypothesis is:",hyp)
for i in range(0,len(a)):
  if a[i][num attr]=='yes':
     print("\n Instance",i+1,"is",a[i],"and it is a Positive Instance")
     for j in range(0,num attr):
        if hyp[j]=='0' or hyp[j]==a[i][j]:
          hyp[j]=a[i][j]
        else:
          hyp[j]='?'
     print("The hypothesis for the training instance",i+1,"is:",hyp,"\n")
  if a[i][num_attr]=='no':
     print("\n Instance",i+1,"is",a[i],"and it is a Negative Instance. Hence, it is IGNORED.")
     print("The hypothesis for the training instance",i+1,"is:",hyp,"\n")
print("\n The Maximally specific hypothesis for the training instance is:",hyp)
```

```
[['sunny', 'warm', 'normal', 'strong', 'warm', 'same', 'yes'], ['sunny', 'warm', 'high', 'strong', 'warm', 'same', 'yes'], ['rainy', 'cold', 'high',
'strong', 'warm', 'change', 'no'], ['sunny', 'warm', 'high', 'strong', 'cool', 'change', 'yes']]

The initial hypothesis is: ['0', '0', '0', '0', '0', '0']

Instance 1 is ['sunny', 'warm', 'normal', 'strong', 'warm', 'same', 'yes'] and it is a Positive Instance
The hypothesis for the training instance 1 is: ['sunny', 'warm', 'same', 'yes'] and it is a Positive Instance
The hypothesis for the training instance 2 is: ['sunny', 'warm', '?', 'strong', 'warm', 'same']

Instance 3 is ['rainy', 'cold', 'high', 'strong', 'warm', 'change', 'no'] and it is a Negative Instance. Hence, it is IGNORED.
The hypothesis for the training instance 3 is: ['sunny', 'warm', '?', 'strong', 'warm', 'same']

Instance 4 is ['sunny', 'warm', 'high', 'strong', 'cool', 'change', 'yes'] and it is a Positive Instance
The hypothesis for the training instance 4 is: ['sunny', 'warm', '?', 'strong', '?', '?']
The Maximally specific hypothesis for the training instance is: ['sunny', 'warm', '?', 'strong', '?', '?']
```

PROGRAM-2

For a given set of training data examples stored in a .CSV file, implement and demonstrate the Candidate-Elimination algorithm to output a description of the set of all hypotheses consistent with the training examples.

TRAINING DATA USED: library.csv

1	citations	size	inlibrary	price	editions	buy
2	many	big	no	expensive	many	yes
3	some	small	no	affordable	one	no
4	many	small	yes	affordable	many	yes
5	many	small	no	expensive	many	yes

CODE:

import csv

data=[]

```
with open(r"C:\Users\admin\Desktop\library.csv") as csvfile:
    next(csvfile)
    for r in csv.reader(csvfile):
        data.append(r)
    print(data)
```

```
num=len(data[0])-1
s=['0']*num
g=[['?' for i in range(len(s))] for j in range(len(s))]
for i in range(0,len(data)):
   if data[i][num]=="yes":
     for j in range(0,num):
        if s[j]=='0' or s[j]==data[i][j]:
           s[j]=data[i][j]
        else:
           s[j]='?'
           g[j][j]='?'
   elif data[i][num]=="no":
     for j in range(0,num):
        if s[j]!=data[i][j]:
           g[j][j]=s[j]
        else:
           g[j][j]="?"
   print("\nSteps of Candidate Elimination Algorithm",i+1)
   print(s)
   print(g)
gh=[]
for i in g:
   for j in i:
     if j!='?':
        gh.append(i)
        break
print("\nFinal specific hypothesis:\n",s)
print("\nFinal general hypothesis:\n",gh)
```

```
[['many', 'big', 'no', 'expensive', 'many', 'yes'], ['some', 'small', 'no', 'affordable', 'one', 'no'], ['many', 'small', 'yes', 'affordable', 'many', 'yes'], ['many', 'small', 'no', 'expensive', 'many', 'yes']]
Steps of Candidate Elimination Algorithm 1
['many', 'big', 'no', 'expensive', 'many']
[['?', '?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'],
```

PROGRAM-3

Write a program to demonstrate the working of the decision tree-based ID3 algorithm. Use an appropriate data set for building the decision tree and apply this knowledge to classify a new sample.

TRAINING DATA USED: PlayTennis.csv

1	Outlook	Temperature	Humidity	Wind	Play Tennis
2	Sunny	Hot	High	Weak	No
3	Sunny	Hot	High	Strong	No
4	Overcast	Hot	High	Weak	Yes
5	Rain	Mild	High	Weak	Yes
6	Rain	Cool	Normal	Weak	Yes
7	Rain	Cool	Normal	Strong	No
8	Overcast	Cool	Normal	Strong	Yes
9	Sunny	Mild	High	Weak	No
10	Sunny	Cool	Normal	Weak	Yes
11	Rain	Mild	Normal	Weak	Yes
12	Sunny	Mild	Normal	Strong	Yes
13	Overcast	Mild	High	Strong	Yes
14	Overcast	Hot	Normal	Weak	Yes
15	Rain	Mild	High	Strong	No

CODE:

import pandas as pd
import numpy as np
df = pd.read csv(r'C:\Users\Ramya\Downloads\PlayTennis.csv')

```
print("\n Input Data Set is:\n", df)
eps = np.finfo(float).eps
target=df.keys()[-1]
print('Target: ',target)
attributes=list(df.keys())
attributes.remove(target)
print('Predicting Attributes: ', attributes)
values in target = df[target].unique()
print(values_in_target)
def find entropy whole(df):
  overall_entropy = 0
  for value in values_in_target:
     p = df[target].value counts()[value] / len(df[target])
     overall_entropy += -p * np.log2(p)
  return overall entropy
find_entropy_whole(df)
def find_entropy_of_attribute(df, attribute):
  values in attribute = df[attribute].unique()
  entropy_attribute = 0
  for value in attribute in values in attribute:
     overall entropy = 0
     for value_in_target in values_in_target:
       num = len(df[attribute][df[attribute] == value in attribute][df[target] == value in target])
       den = len(df[attribute][df[attribute] == value_in_attribute])
       p = num / (den + eps)
       overall_entropy += -p * np.log2(p+eps)
     p2 = den / len(df)
     entropy_attribute += -p2 * overall_entropy
  return abs(entropy_attribute)
for attribute in df.keys()[:-1]:
  print(f'Entropy of the attribute "{attribute}" is :', find entropy of attribute(df, attribute))
def find_best_attribute_to_divide(df):
  IG = []
  all_attributes = df.keys()[:-1]
  for attribute in all attributes:
     IG.append(find_entropy_whole(df) - find_entropy_of_attribute(df, attribute))
  print(IG)
  index of attribute with max IG = np.argmax(IG)
  best_attribute = all_attributes[index_of_attribute_with_max_IG]
  return best attribute
find best attribute to divide(df)
def buildTree(df, tree=None):
```

```
node = find best attribute to divide(df)
  attValue = np.unique(df[node])
  if tree is None:
    tree = \{\}
    tree[node] = {}
  for value in attValue:
    subtable = df[df[node] == value].reset index(drop=True)
     clValue, counts = np.unique(subtable[target], return_counts=True)
    if len(counts) == 1: #Checking purity of subset
       tree[node][value] = clValue[0]
    else:
       tree[node][value] = buildTree(subtable) # Calling the function recusively
  return tree
buildTree(df)
import pydot
data = buildTree(df)
def draw(parent name, child name):
  edge = pydot.Edge(parent_name, child_name)
  graph.add_edge(edge)
def visit(node, parent=None):
  for k,v in node.items():
    if isinstance(v, dict):
       # We start with the root node whose parent is None
       # we don't want to graph the None node
       if parent:
          draw(parent, k)
       visit(v, k)
     else:
       draw(parent, k)
       # drawing the label using a distinct name
       draw(k, k+'_'+v)
graph = pydot.Dot(graph_type='graph')
visit(data)
graph.write_png('output_graph.png')
```


PROGRAM-4

Write a program to implement the naïve Bayesian classifier for a sample training data set stored as a .CSV file. Compute the accuracy of the classifier, considering few test data sets.

GAUSSIAN NAIVE BAYES

TRAINING DATA USED: pima_indian.csv

1	num_preg	glucose_conc	diastolic_bp	thickness	insulin	bmi	diab_pred	age	diabetes
2	6	148	72	35	0	33.6	0.627	50	1
3	1	85	66	29	0	26.6	0.351	31	0
4	8	183	64	0	0	23.3	0.672	32	1
5	1	89	66	23	94	28.1	0.167	21	0
6	0	137	40	35	168	43.1	2.288	33	1
7	5	116	74	0	0	25.6	0.201	30	0
8	3	78	50	32	88	31	0.248	26	1
9	10	115	0	0	0	35.3	0.134	29	0
10	2	197	70	45	543	30.5	0.158	53	1
11	8	125	96	0	0	0	0.232	54	1
12	4	110	92	0	0	37.6	0.191	30	0
13	10	168	74	0	0	38	0.537	34	1
14	10	139	80	0	0	27.1	1.441	57	0
15	1	189	60	23	846	30.1	0.398	59	1

CODE:

```
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.naive_bayes import GaussianNB
from sklearn import metrics
```

```
df = pd.read_csv(r"C:\Users\admin\Desktop\pima_indian.csv")
feature_col_names = ['num_preg', 'glucose_conc', 'diastolic_bp', 'thickness', 'insulin', 'bmi', 'diab_pred',
'age']
predicted_class_names = ['diabetes']
```

X = df[feature_col_names].values # these are factors for the prediction y = df[predicted_class_names].values # this is what we want to predict xtrain,xtest,ytrain,ytest=train_test_split(X,y,test_size=0.33)

print ('\n the total number of Training Data :',ytrain.shape) print ('\n the total number of Test Data :',ytest.shape)

Training Naive Bayes (NB) classifier on training data.

```
clf = GaussianNB().fit(xtrain,ytrain.ravel())
predicted = clf.predict(xtest)
predictTestData= clf.predict([[6,148,72,35,0,33.6,0.627,50]])
```

#printing Confusion matrix, accuracy, Precision and Recall

```
print('\n Confusion matrix')
print(metrics.confusion_matrix(ytest,predicted))
print('\n Accuracy of the classifier is',metrics.accuracy_score(ytest,predicted))
print('\n The value of Precision', metrics.precision_score(ytest,predicted))
print('\n The value of Recall', metrics.recall_score(ytest,predicted))
```

print("Predicted Value for individual Test Data:", predictTestData)

OUTPUT:

```
the total number of Training Data : (514, 1)

the total number of Test Data : (254, 1)

Confusion matrix
[[136 28]
[ 31 59]]

Accuracy of the classifier is 0.7677165354330708

The value of Precision 0.6781609195402298

The value of Recall 0.65555555555556

Predicted Value for individual Test Data: [1]
```

MULTINOMIAL NAIVE BAYES

TRAINING DATA USED: species.csv

1	color	legs	height	species
2	white	3	short	М
3	green	2	tall	М
4	green	3	short	М
5	white	3	short	М
6	green	2	short	н
7	white	2	tall	н
8	white	2	tall	Н
9	white	2	short	н
10	green	3	tall	Н

```
import pandas as pd
import numpy as np

dataset = pd.read_csv(r'C:\Users\admin\Desktop\species.csv')
X = dataset.iloc[:, :-1].values
y = dataset.iloc[:, -1].values

from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
X[:,0] = le.fit_transform(X[:,0])
X[:,2] = le.fit_transform(X[:,2])

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0)

class MultiNB(object):
```

```
def init (self):
     self.priors = None
     self.params = None
     self.unique_labels = None
  def fit(self, X, y, alpha=1.0):
     assert ((alpha <= 1.0) and (alpha > 0.0)), "ERROR: smoothing parameter alpha should have value
within [0.0, 1.0]!"
    self.unique_labels = np.unique(y)
     self.params = np.zeros(shape = (X.shape[1], len(self.unique labels)))
     self.priors = np.zeros(shape = (len(self.unique labels),))
    for ix, label in enumerate (self.unique labels):
       # Boolean mask for extracting training samples corresponding to label
       mask = (y == label)
       # Add-1 smoothing; verified numerically that probabilities column-sum to 1
       token counts in label = (np.sum(X[mask, :], axis=0) + alpha)
       total tokens in label = np.sum(X[mask, :]) + X.shape[1] * alpha
       self.params[:, ix] = token counts in label / total tokens in label
       self.priors[ix] = np.sum(mask)/len(y)
  def predict log likelihood(self, X):
     log params = np.log(self.params)
     log_likelihoods = np.dot(X, log_params)
     return log likelihoods
  def predict(self, X):
     log likelihoods = self.predict log likelihood(X)
     index to label = np.argmax(log likelihoods, axis=1)
     pred y = np.asarray([self.unique labels[index] for index in index to label])
     return pred y
like = MultiNB()
like.fit(X train,y train)
from sklearn.metrics import confusion matrix, accuracy score, classification report
y pred = like.predict(X test)
cm = confusion matrix(y test, y pred)
print(cm)
accuracy_score(y_test, y_pred)
print(classification_report(y_test, y_pred))
```

```
1 print(y_pred)
[,W, ,W,]
[[0 1]
 [0 1]]
             precision recall f1-score
                                           support
          Н
                 0.00
                           0.00
                                    0.00
                                                1
                 0.50
                           1.00
                                    0.67
                                                1
                                                2
                                    0.50
   accuracy
  macro avg
                 0.25
                           0.50
                                    0.33
                                                2
weighted avg
                 0.25
                           0.50
                                    0.33
                                                2
```

PROGRAM-5

Write a program to construct a Bayesian network considering training data. Use this model to make predictions.

TRAINING DATA USED: heart_disease.csv

1	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	thal	heartdisease
2	63	1	1	145	233	1	2	150	0	2.3	3	0	6	0
3	67	1	4	160	286	0	2	108	1	1.5	2	3	3	2
4	67	1	4	120	229	0	2	129	1	2.6	2	2	7	1
5	37	1	3	130	250	0	0	187	0	3.5	3	0	3	0
6	41	0	2	130	204	0	2	172	0	1.4	1	0	3	0
7	56	1	2	120	236	0	0	178	0	0.8	1	0	3	0
8	62	0	4	140	268	0	2	160	0	3.6	3	2	3	3
9	57	0	4	120	354	0	0	163	1	0.6	1	0	3	0
10	63	1	4	130	254	0	2	147	0	1.4	2	1	7	2

CODE:

import numpy as np import pandas as pd import csv from pgmpy.estimators import MaximumLikelihoodEstimator from pgmpy.models import BayesianNetwork from pgmpy.inference import VariableElimination

heartDisease = pd.read_csv(r"C:\Users\admin\Desktop\heart_disease.csv")
heartDisease = heartDisease.replace('?',np.nan)

```
print('Sample instances from the dataset are given below')
print(heartDisease.head())
print('\n Attributes and datatypes')
print(heartDisease.dtypes)
model = BayesianNetwork([('age', 'heartdisease'), ('sex', 'heartdisease'), (
'exang', 'heartdisease'), ('cp', 'heartdisease'), ('heartdisease',
'restecg'),('heartdisease','chol')])
print('\n Learning CPD using Maximum likelihood estimators')
model.fit(heartDisease,estimator=MaximumLikelihoodEstimator)
print('\n Inferencing with Bayesian Network:')
HeartDiseasetest infer = VariableElimination(model)
print(\n 1.Probability of HeartDisease given evidence= restecg :1')
q1=HeartDiseasetest_infer.query(variables=['heartdisease'],evidence={'restecg':1})
print(q1)
print('\n 2.Probability of HeartDisease given evidence= cp:2')
q2=HeartDiseasetest_infer.query(variables=['heartdisease'],evidence={'cp':2})
print(q2)
OUTPUT:
 Learning CPD using Maximum likelihood estimators
```

```
Inferencing with Bayesian Network:
1.Probability of HeartDisease given evidence= restecg :1
 0% | 0/4 [00:00<?, ?it/s]
0% | 0/4 [00:00<?, ?it/s]
| heartdisease | phi(heartdisease) |
-----
| heartdisease(0) |
                        0.1012
| heartdisease(1) | 0.0000 |
| heartdisease(2) | 0.2392 |
| heartdisease(3) | 0.2015 |
| heartdisease(4) | 0.4581 |
```

2.Probability of HeartDisease given evidence= cp: 0%	2
heartdisease phi(heartdisease)	
heartdisease(0)	
heartdisease(1) 0.2159	
heartdisease(2) 0.1373	
heartdisease(3) 0.1537	
heartdisease(4)	

Apply k-Means algorithm to cluster a set of data stored in a .CSV file.

TRAINING DATA USED: income.csv

1	Name	Age	Income(\$)
2	Rob	27	70000
3	Michael	29	90000
4	Mohan	29	61000
5	Ismail	28	60000
6	Kory	42	150000
7	Gautam	39	155000
8	David	41	160000
9	Andrea	38	162000
10	Brad	36	156000

CODE:

import pandas as pd from sklearn.cluster import KMeans from sklearn.preprocessing import MinMaxScaler from matplotlib import pyplot as plt %matplotlib inline

df = pd.read_csv('C:/Users/admin/downloads/income.csv')
df.head(10)

```
Name Age Income($)
 0
        Rob
              27
                      70000
     Michael
              29
                      90000
 2
     Mohan
                      61000
 3
              28
                      60000
      Ismail
 4
        Kory
              42
                     150000
                     155000
 5
    Gautam
              39
 6
      David
              41
                     160000
                     162000
 7
     Andrea
              38
 8
       Brad
              36
                     156000
 9 Angelina
                     130000
scaler = MinMaxScaler()
scaler.fit(df[['Age']])
df[['Age']] = scaler.transform(df[['Age']])
scaler.fit(df[['Income($)']])
df[['Income($)']] = scaler.transform(df[['Income($)']])
df.head(10)
     Name
              Age Income($)
```

```
Rob 0.058824
                   0.213675
0
   Michael 0.176471 0.384615
   Mohan 0.176471
                   0.136752
     Ismail 0.117647
                   0.128205
      Kory 0.941176
                   0.897436
   Gautam 0.764706
                   0.940171
     David 0.882353
                   0.982906
    Andrea 0.705882
                   1.000000
      Brad 0.588235
                   0.948718
9 Angelina 0.529412 0.726496
plt.scatter(df['Age'], df['Income($)'])
k_range = range(1, 11)
sse = []
for k in k_range:
kmc = KMeans(n_clusters=k)
kmc.fit(df[['Age', 'Income($)']])
sse.append(kmc.inertia_)
sse
plt.xlabel = 'Number of Clusters'
plt.ylabel = 'Sum of Squared Errors'
plt.plot(k_range, sse)
km = KMeans(n_clusters=3)
km
y_predict = km.fit_predict(df[['Age', 'Income($)']])
y_predict
```

```
df['cluster'] = y_predict
df.head()
df0 = df[df.cluster == 0]
df1 = df[df.cluster == 1]
df2 = df[df.cluster == 2]
km.cluster_centers_
p1 = plt.scatter(df0['Age'], df0['Income($)'],color='red')
p2 = plt.scatter(df1['Age'], df1['Income($)'],color='blue')
p3 = plt.scatter(df2['Age'], df2['Income($)'],color='green')
c = plt.scatter(km.cluster_centers_[:,0], km.cluster_centers_[:,1], color='black')
plt.legend((p1, p2, p3, c),
    ('Cluster 1', 'Cluster 2', 'Cluster 3', 'Centroid'))
```



```
y_predict = km.fit_predict(df[['Age', 'Income($)']])
y_predict
```

 $\mathsf{array}([1,\ 1,\ 1,\ 1,\ 2,\ 2,\ 2,\ 2,\ 2,\ 2,\ 1,\ 1,\ 1,\ 1,\ 1,\ 0,\ 0,\ 0,\ 0,\ 0])$

df['cluster'] = y_predict

df.head()

Apply EM algorithm to cluster a set of data stored in a .CSV file. Compare the results of k-Means algorithm and EM algorithm.

TRAINING DATA USED: load_iris (dataset.csv)

1	5.1	3.5	1.4	0.2	Iris-setosa
2	4.9	3	1.4	0.2	Iris-setosa
3	4.7	3.2	1.3	0.2	Iris-setosa
4	4.6	3.1	1.5	0.2	Iris-setosa
5	5	3.6	1.4	0.2	Iris-setosa
6	5.4	3.9	1.7	0.4	Iris-setosa
7	4.6	3.4	1.4	0.3	Iris-setosa
8	5	3.4	1.5	0.2	Iris-setosa
9	4.4	2.9	1.4	0.2	Iris-setosa
10	4.9	3.1	1.5	0.1	Iris-setosa

```
from sklearn.cluster import KMeans
from sklearn.mixture import GaussianMixture
import sklearn.metrics as metrics
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
names = ['Sepal_Length', 'Sepal_Width', 'Petal_Length', 'Petal_Width', 'Class']
dataset = pd.read_csv("C:/Users/admin/Downloads/dataset.csv", names=names)
X = dataset.iloc[:, :-1]
label = {'Iris-setosa': 0,'Iris-versicolor': 1, 'Iris-virginica': 2}
y = [label[c] for c in dataset.iloc[:, -1]]
plt.figure(figsize=(14,7))
colormap=np.array(['red','lime','black'])
plt.subplot(1,3,1)
plt.title('Real')
plt.scatter(X.Petal_Length,X.Petal_Width,c=colormap[y])
model=KMeans(n_clusters=3, random_state=0).fit(X)
```

```
plt.scatter(X.Petal_Length,X.Petal_Width,c=colormap[model.labels_])
print('The confusion matrix of K-Mean:\n',metrics.confusion_matrix(y, model.labels_))
print('The accuracy score of K-Mean: ',metrics.accuracy_score(y, model.labels_))

gmm=GaussianMixture(n_components=3, random_state=0).fit(X)
y_cluster_gmm=gmm.predict(X)
plt.subplot(1,3,3)
plt.title('GMM Classification')
plt.scatter(X.Petal_Length,X.Petal_Width,c=colormap[y_cluster_gmm])
print('The confusion matrix of EM:\n',metrics.confusion_matrix(y, y_cluster_gmm))
print('The accuracy score of EM: ',metrics.accuracy_score(y, y_cluster_gmm))
```

plt.subplot(1,3,2) plt.title('KMeans')

```
The accuracy score of K-Mean: 0.24
The Confusion matrixof K-Mean:
[[ 0 50  0]
[48  0  2]
[14  0 36]]
The accuracy score of EM: 0.366666666666664
The Confusion matrix of EM:
[[50  0  0]
[ 0 5 45]
[ 0 50  0]]
```


Write a program to implement k-NearestNeighbor algorithm to classify the iris data set. Print both correct and wrong predictions.

TRAINING DATA USED: load_iris

data = datasets.load_iris()
df = pd.DataFrame(data=data.data, columns=data.feature_names)
df.head(10)

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)
0	5.1	3.5	1.4	0.2
1	4.9	3.0	1.4	0.2
2	4.7	3.2	1.3	0.2
3	4.6	3.1	1.5	0.2
4	5.0	3.6	1.4	0.2
5	5.4	3.9	1.7	0.4
6	4.6	3.4	1.4	0.3
7	5.0	3.4	1.5	0.2
8	4.4	2.9	1.4	0.2
9	4.9	3.1	1.5	0.1

CODE (built-in):

```
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import classification_report, confusion_matrix
from sklearn import datasets
x = data.data
y = data.target
x_train, x_test, y_train, y_test = train_test_split(x,y,test_size=0.3,random_state=42)
classifier = KNeighborsClassifier(n_neighbors=5)
classifier.fit(x_train, y_train)
y_pred=classifier.predict(x_test)
print('Confusion Matrix')
print(confusion_matrix(y_test,y_pred))
print('Accuracy Metrics')
print(classification_report(y_test,y_pred))
```

CODE:

```
from scipy import stats
def EuclideanDistance(x1, x2):
  return np.sum((x1 - x2) ** 2, axis=1)
class KNN:
  def __init__(self, k, distance_metric=EuclideanDistance, task_type='Classification'):
     self. k = k
     self._distance_metric = distance_metric
     self. task type = task type
  def fit(self, X, y):
     self._X = X
     self. y = y
  def predict(self, newExample):
     distance vector = self. distance metric(self. X, newExample)
     k_nearest_neighbors_indices = np.argpartition(distance_vector, self._k)[:self._k]
     k_nearest_neighbors = self._y[k_nearest_neighbors_indices]
     if self. task type == 'Classification':
       label = stats.mode(k_nearest_neighbors)[0]
     else:
       label = k nearest neighbors.mean()
     return label, k_nearest_neighbors_indices
  def eval(self, X test, y test):
     y_pred = np.zeros(y_test.shape)
     for i in range(y_test.shape[0]):
       y predicted[i], = self.predict(X test[i,:])
     if self._task_type == 'Classification': # for all examples
       error = np.mean(y_test == y_pred, axis=0)
     else:
       error_vector = y_predicted - y_test
       error = np.sqrt((error_vector.T @ error_vector) / error_vector.ravel().shape[0])
     return error
```

OUTPUT:

```
pred = KNN(k=5)
Confusion Matrix
                                                   pred.fit(X_train,y_train)
[[19 0 0]
[ 0 13 0]
[ 0 0 13]]
Accuracy Metrics
                                                   pred.predict(X_test[0])
           precision recall f1-score support
                                                 (array([1], dtype=int64), array([ 67, 263, 538, 276, 490], dtype=int64))
         0
                       1.00
                                  1.00
                                             19
               1.00
                      1.00
                                  1.00
                1.00
                      1.00
                                  1.00
                                             13
                                                  y_test[0]
                                  1.00
                                             45
                      1.00
1.00
                1.00
                                  1.00
                                             45
  macro avg
               1.00
                                             45
weighted avg
                                  1.00
```

Implement the Linear Regression algorithm in order to fit data points. Select the appropriate data set for your experiment and draw graphs.

TRAINING DATA USED: fetch_california_housing

from sklearn.datasets import fetch_california_housing
X, y = fetch_california_housing(return_X_y=True,as_frame=True)

X.head()

	MedInc	HouseAge	AveRooms	AveBedrms	Population	AveOccup	Latitude	Longitude
0	8.3252	41.0	6.984127	1.023810	322.0	2.555556	37.88	-122.23
1	8.3014	21.0	6.238137	0.971880	2401.0	2.109842	37.86	-122.22
2	7.2574	52.0	8.288136	1.073446	496.0	2.802260	37.85	-122.24
3	5.6431	52.0	5.817352	1.073059	558.0	2.547945	37.85	-122.25
4	3.8462	52.0	6.281853	1.081081	565.0	2.181467	37.85	-122.25

y.head()

```
0 4.526
1 3.585
2 3.521
3 3.413
4 3.422
Name: MedHouseVal, dtype: float64
```

```
def __init__(self):
    self.t0 = 200
    self.t1 = 100000
def predict (self, X):
    return X@w
def loss (self, X, y):
    e = y - self.predict(X)
    return 0.5 *(e.T @ e)
def rmse(self,X, y):
    return np.sqrt(2/X.shape[0] * self.loss(X, y))
def fit(self, X, y):
    self.w = np.linalg.pinv(X) @ y
    return self.w
def calculate_gradient(self, X, y):
```

```
return X.T @ (self.predict(X) - y)

def update_weights(self, grad, lr):
    return (self.w - lr * grad)

def learning_schedule(self, t):
    return self.t0 / (self.t0 + self.t1)

def gd(self, X, y, num_epochs, lr):
    self.w = np.zeros(X.shape[1])
    self.w_all = list()
    self.err_all = list()
    for i in range(epochs):
        dJdw = calculate_gradient(X, y)
        self.w_all.append(self.w)
        self.err_all.append(self.loss(X, y))
        self.w = self.update_weights(dJdw, lr)
    return self.w
```

CODE: (built-in)

import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 42)
from sklearn.linear_model import LinearRegression
linreg = LinearRegression()
linreg.fit(X_train, y_train)

OUTPUT:

y_pred = linreg.predict(X_test)
pd.DataFrame(data={'Actuals': y_test, 'Predictions': y_pred})

	Actuals	Predictions
20046	0.47700	0.719123
3024	0.45800	1.764017
15663	5.00001	2.709659
20484	2.18600	2.838926
9814	2.78000	2.604657
15362	2.63300	1.991746
16623	2.66800	2.249839
18086	5.00001	4.468770
2144	0.72300	1.187511
3665	1.51500	2.009403

4128 rows × 2 columns

```
plt.figure(figsize=(4, 3))
plt.scatter(y_test, y_pred)
plt.plot([0, 50], [0, 50], '--k')
plt.xlabel('Actual')
plt.ylabel('Predicted')
plt.show()
```


Implement the non-parametricLocally Weighted Regression algorithm in order to fit data points. Select the appropriate data set for your experiment and draw graphs.

TRAINING DATA USED: tips.csv

1	total_bill	tip	sex	smoker	day	time	size
2	16.99	1.01	Female	No	Sun	Dinner	2
3	10.34	1.66	Male	No	Sun	Dinner	3
4	21.01	3.5	Male	No	Sun	Dinner	3
5	23.68	3.31	Male	No	Sun	Dinner	2
6	24.59	3.61	Female	No	Sun	Dinner	4
7	25.29	4.71	Male	No	Sun	Dinner	4
8	8.77	2.0	Male	No	Sun	Dinner	2
9	26.88	3.12	Male	No	Sun	Dinner	4
10	15.04	1.96	Male	No	Sun	Dinner	2

```
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np

def kernel(point,xmat, k):
    m,n = np.shape(xmat)
    weights = np.mat(np.eye((m))) # eye - identity matrix
    for j in range(m):
        diff = point - X[j]
        weights[j,j] = np.exp(diff*diff.T/(-2.0*k**2))
    return weights
```

```
def localWeight(point,xmat,ymat,k):
  wei = kernel(point,xmat,k)
  W = (X.T^*(wei^*X)).I^*(X.T^*(wei^*ymat.T))
  return W
def localWeightRegression(xmat,ymat,k):
  m,n = np.shape(xmat)
  ypred = np.zeros(m)
  for i in range(m):
     ypred[i] = xmat[i]*localWeight(xmat[i],xmat,ymat,k)
  return ypred
def graphPlot(X,ypred):
  sortindex = X[:,1].argsort(0) #argsort - index of the smallest
  xsort = X[sortindex][:,0]
  fig = plt.figure()
  ax = fig.add subplot(1,1,1)
  ax.scatter(bill,tip, color='green')
  ax.plot(xsort[:,1],ypred[sortindex], color = 'red', linewidth=5)
  plt.xlabel('Total bill')
  plt.ylabel('Tip')
  plt.show();
data = pd.read_csv('tips.csv')
bill = np.array(data.total_bill) # We use only Bill amount and Tips data
tip = np.array(data.tip)
mbill = np.mat(bill) # .mat will convert nd array is converted in 2D array
mtip = np.mat(tip)
m= np.shape(mbill)[1]
one = np.mat(np.ones(m))
X = np.hstack((one.T,mbill.T)) # 244 rows, 2 cols
# increase k to get smooth curves
ypred = localWeightRegression(X,mtip,3)
graphPlot(X,ypred)
```


CODE (built-in):

```
import numpy as np
from bokeh.plotting import figure, show, output_notebook
from bokeh.layouts import gridplot
from bokeh.io import push_notebook
def local regression(x0, X, Y, tau):# add bias term
x0 = np.r_{1}, x0 # Add one to avoid the loss in information
X = np.c [np.ones(len(X)), X]
# fit model: normal equations with kernel
xw = X.T * radial kernel(x0, X, tau) # XTranspose * W
beta = np.linalg.pinv(xw @ X) @ xw @ Y #@ Matrix Multiplication or Dot Product
# predict value
return x0 @ beta # @ Matrix Multiplication or Dot Product for prediction
def radial kernel(x0, X, tau):
return np.exp(np.sum((X - x0) ** 2, axis=1) / (-2 * tau * tau))
# Weight or Radial Kernal Bias Function
n = 1000
# generate dataset
X = np.linspace(-3, 3, num=n)
print("The Data Set ( 10 Samples) X:\n",X[1:10])
Y = np.log(np.abs(X ** 2 - 1) + .5)
print("The Fitting Curve Data Set (10 Samples) Y:\n",Y[1:10])
# jitter X
X += np.random.normal(scale=.1, size=n)
print("Normalised (10 Samples) X :\n",X[1:10])
domain = np.linspace(-3, 3, num=300)
print(" Xo Domain Space(10 Samples) :\n",domain[1:10])
def plot lwr(tau):
# prediction through regression
prediction = [local regression(x0, X, Y, tau) for x0 in domain]
plot = figure(plot_width=400, plot_height=400)
plot.title.text='tau=%g' % tau
plot.scatter(X, Y, alpha=.3)
plot.line(domain, prediction, line width=2, color='red')
return plot
show(gridplot([[plot_lwr(10.), plot_lwr(1.)],
[plot_lwr(0.1), plot_lwr(0.01)]]))
```

```
The Data Set ( 10 Samples) X :

[-2.99399399 -2.98798799 -2.98198198 -2.97597598 -2.96996997 -2.96396396 -2.95795796 -2.95195195 -2.94594595]

The Fitting Curve Data Set (10 Samples) Y :

[2.13582188 2.13156806 2.12730467 2.12303166 2.11874898 2.11445659 2.11015444 2.10584249 2.10152068]

Normalised (10 Samples) X :

[-3.07038137 -2.97903806 -3.07809225 -2.93627863 -2.95209929 -3.03687263 -2.8601589 -2.83440865 -2.98620123]

Xo Domain Space(10 Samples) :

[-2.97993311 -2.95986622 -2.93979933 -2.91973244 -2.89966555 -2.87959866 -2.85953177 -2.83946488 -2.81939799]
```

