ECON 7710

Econometrics I

Lecture notes 2.

Convergence of random sequences:

• **Definition:** Suppose that X_n is the sequence of r.v. on (Ω, \mathcal{F}, P) . This sequence converges in probability (in measure) to r.v. X if $\forall \epsilon > 0$

$$\lim_{n \to \infty} P(|X_n - X| > \epsilon) = 0.$$

- Notation $X_n \xrightarrow{p} X$
- **Definition:** X_n converges almost surely (almost everywhere) to r.v. X if

$$P(\{\omega : X_n(\omega) \not\to X(\omega)\}) = 0.$$

- Notation $X_n \xrightarrow{a.s.} X$
- $X_n \xrightarrow{a.s.} X \Rightarrow X_n \xrightarrow{p} X$ but not the opposite
- Exception: if X_n is monotone increasing or decreasing, then $X_n \xrightarrow{a.s.} X \Leftrightarrow X_n \xrightarrow{p} X$.
 - By contradiction, suppose that $X_n \stackrel{p}{\longrightarrow} X$, $X_n \downarrow$ and X_n does not converge a.s.
 - Then $\exists \ \epsilon > 0$ and set A, s.t. $P(A) \ge \delta > 0$, $\sup_{k \ge n} |X_k(\omega) X(\omega)| > \epsilon$ for $\omega \in A$.
 - Since $X_n \downarrow$, then $\sup_{k \geq n} |X_k(\omega) X(\omega)| = |X_n(\omega) X(\omega)|$. And thus $P(|X_n X| > \epsilon) \geq \delta$, which contradicts convergence in probability.
- **Theorem:** $X_n \xrightarrow{a.s.} X$ iff $Y_n = \sup_{k \ge n} |X_k X| \xrightarrow{p} 0$. In other words, $\forall \epsilon > 0$

$$P(\sup_{k \ge n} |X_k - X| > \epsilon) \to 0$$

• Proof: $X_n \xrightarrow{a.s.} X$ iff $Y_n \xrightarrow{a.s.} 0$ and sequence Y_n is monotone.

- Theorem: If the series $\sum_{k=1}^{\infty} P(|X_n X| > \epsilon)$ converges for any $\epsilon > 0$, then $X_n \xrightarrow{a.s.} X$.
- Proof: $P(\bigcup_{k\geq n}\{|X_n-X|>\epsilon\})\leq \sum_{k=n}^{\infty}P(|X_n-X|>\epsilon).$
- Corollary: If $X_n \xrightarrow{p} X$ then it has a subsequence X_{n_k} such that $X_{n_k} \xrightarrow{a.s.} X$
- Proof: Choose k such that $P(|X_{n_k} X| > \epsilon) \le a_k$ where $\sum_k a_k < \infty$, e.g. $a_k = 1/k^2$
- Theorem: If $Y_n = \sum_{k=1}^n X_k$ and X_k are independent, then $Y_n \stackrel{p}{\longrightarrow} Y \Rightarrow Y_n \stackrel{a.s.}{\longrightarrow} Y$.
- **Definition:** X_n converges to X in mean of order r (mean square if r=2) or convergence in L_r if

$$\lim_{n \to \infty} E[|X_n - X|^r] = 0$$

- Notation $X_n \xrightarrow{(r)} X$
- $X_n \xrightarrow{(r)} X \Rightarrow X_n \xrightarrow{p} X$ (due to Chebychev's inequality)
- Neither convergence in probability nor a.s. convergence lead to convergence in mean.
- **Definition:** Sequence X_n is a Cauchy sequence in probability (a.s., in mean) if for any $\epsilon > 0$

$$\lim_{n,m\to\infty} P(|X_n - X_m| > \epsilon) = 0$$

$$(\lim_{n\to\infty} P(\sup_{n\geq m} |X_n - X_m| > \epsilon) = 0, \sup_{n\geq m} E[|X_n - X_m|^r] = 0)$$

- Lemma (Borel-Cantelli) Let $\{A_n\}_{n=1}^{\infty}$ be sequence of events on (Ω, \mathcal{F}, P) and let A = $\bigcap_{n=1}^{\infty} \bigcup_{k>n} A_k.$ Then if $\sum_{n=1}^{\infty} P(A_n) < \infty$ then P(A) = 0
- Proof: $P(A) = \lim_{n \to \infty} P\left(\bigcup_{k \ge n} A_k\right) \le \lim_{n \to \infty} \sum_{k \ge n} P\left(A_k\right) = 0.$
- Theorem: X_n converges in probability (a.s., in mean) iff it is a Cahuchy sequence in > (Not super imp for the class)

 Once in the class) probability (a.s. in mean).
- Proof: Let X_n be Cauchy sequence in probability

- Take n_k , s.t.

$$P(|X_n - X_m| > 2^{-k}) < 2^{-k}, \ n, m \ge n_k.$$

- Let $X'_k = X_{n_k}$ and $A_k = \{|X'_k X'_{k+1}| > 2^{-k}\}$
- Then $P(A_k) \leq 2^{-k}$ and by Borel-Cantelli lemma w.p. 1 the number of occurrences of A_k is finite
- This means that for each $\omega \setminus A$ we can find $k_0(\omega)$, s.t. $|X'_k(\omega) X'_{k+1}(\omega)| \leq 2^{-k}$.
- Thus, for all $k, l \geq k_0(\omega) |X'_k(\omega) X'_l(\omega)| \leq 2^{-k+1}$
- This means that $X_k'(\omega)$ is a Cauchy numeric sequence and $\exists X(\omega)$, s.t. $\lim_{k\to\infty} |X_k'(\omega) X(\omega)| = 0$
- Therefore

$$P(|X_n - X| \ge \epsilon) \le P(|X_n - X_{n_k}| \ge \frac{\epsilon}{2}) + P(|X_{n_k} - X| \ge \frac{\epsilon}{2}) \to 0.$$

• Theorem (continuous mapping): Suppose that $X_n \xrightarrow{a.s.} X$ $(X_n \xrightarrow{p} X)$ and $g(\cdot)$ is function continuous a.e. relative to r.v. X (i.e. continuous at each point of the set B s.t. $P(X \in B) = 1$). Then

$$g(X_n) \xrightarrow{a.s.} g(X) (g(X_n) \xrightarrow{p} g(X)).$$

Convergence of distributions:

• **Definition:** F_n weakly converges to F and denote $F_n \Rightarrow F$ if for all bounded continuous function $f(\cdot)$

$$\int f(x) dF_n(x) \to \int f(x) dF(x)$$

- Theorem: $F_n \Rightarrow F$ iff $F_n(x) \to F(x)$ at all x where $F(\cdot)$ is continuous.
- If F(x) is continuous, then $F_n \Rightarrow F$ implies uniform convergence $\sup_x |F_n(x) F(x)| \to 0$
- **Definition:** If for the distribution function of r.v. X_n and X $P_n \Rightarrow P$, then we say that X_n converges to X in distribution and denote it $X_n \xrightarrow{d} X$
- $X_n \xrightarrow{p} X$ implies $X_n \xrightarrow{d} X$ but not the other way around.

Limits of sequences of distributions:

- General definition of weak convergence requires verification of convergence for all bounded continuous functions $f(\cdot)$ which may be impractical; we need to see if instead we can only look at some smaller class
- Consider generalization of class of all cdf's \mathcal{F} to class \mathcal{G} such that for all $G \in \mathcal{G}$

1.
$$\lim_{x_n \to +\infty} G_{X_1 \dots X_n}(x_1, \dots, x_n) = G_{X_1 \dots X_{n-1}}(x_1, \dots, x_{n-1})$$

2.
$$\lim_{x_n \to -\infty} G_{X_1...X_n}(x_1, ..., x_n) = 0$$

3.
$$G(-\infty) \ge 0$$
 and $G(+\infty) \le 1$

We call these the generalized distributions

- Theorem (Helly-Bray): The class \mathcal{G} is a compact w.r.t. weak convergence \Rightarrow , i.e. from any sequence $\{G_n \in \mathcal{G}\}$ one can extract a converging subsequence $\mathcal{G}_{n_k} \Rightarrow G$
- The reason why we need extension of \mathcal{F} is because it is not compact, i.e. $F_n \Rightarrow G$ with $F_n \in \mathcal{F}$ does not mean that $G \in \mathcal{F}$
 - Sequence of distribution functions

$$F_n(x) = \begin{cases} 0, & x \le -n, \\ \frac{1}{2}, & -n < x \le n, \\ 1, & x > n. \end{cases}$$

converges to $G(x) \equiv \frac{1}{2}$

- **Definition:** Sequence of distributions F_n is asymptotically tight if for any $\epsilon > 0$ we can find N such that $\inf_n(F_n(N) F_n(-N)) > 1 \epsilon$
- **Definition:** Class \mathcal{L} of continuous and bounded functions defines the distribution if

$$\int f(x) dF(x) = \int f(x) dG(x), \quad F \in \mathcal{F}, G \in \mathcal{G},$$

for all $f \in \mathcal{L}$ implies F = G

- Theorem: Suppose that \mathcal{L} defines the distribution. Then $F \in \mathcal{F}$ with $F_n \Rightarrow F$ exists iff
 - 1. Sequence $\{F_n\}$ is asymptotically tight
 - 2. $\lim_{n\to\infty} \int f dF_n$ exists for all $f\in\mathcal{L}$
- Corollary: Let \mathcal{L} define the distributions and

$$\int f dF_n \to \int f dF, \ F \in \mathcal{G}$$

for any $f \in \mathcal{L}$. In addition at least one of the following three conditions hold

- 1. $\{F_n\}$ is asymptotically tight
- 2. $F \in \mathcal{F}$
- 3. $f \equiv 1 \in \mathcal{L}$

Then $F \in \mathcal{F}$ and $F_n \Rightarrow F$

- Example: Class of functions $\mathcal{L} = \{e^{itx}, t \in \mathbb{R}\}$ defines distributions
- **Theorem:** $F_n \Rightarrow F$ iff $\phi_n(t) \to \phi(t)$ for each t
- **Theorem:** Suppose that $\phi_n(t) = \int e^{itx} dF_n(x)$ is a sequence of characteristic functions and $\phi_n(t) \to \phi(t)$ for each t as $n \to \infty$. The following conditions are equivalent:
 - 1. $\phi(t)$ is a characteristic function
 - 2. $\phi(t)$ is continuous at t=0
 - 3. Sequence $\{F_n\}$ is asymptotically tight
- Thus if convergence of c.f. occurs and one of the conditions is satisfied then there exists a distribution F which corresponds to the limit of $\{F_n\}$

Sequences of identically distributed independent r.v.:

• Theorem (Khinchin's Law of Large Numbers): Suppose that $\{X_n\}_{n=1}^{\infty}$ is sequence of independent identically distributed (i.i.d.) r.v. with $E[X_n] = a$ and let $S_n = \sum_{k=1}^n X_k$. Then $S_n/n \xrightarrow{p} a$

• Proof: C.f. of X_k for some neighborhood of 0

$$|\phi(t)-1|<\frac{1}{2}.$$

Define $l(t) = \log \phi(t)$ in that neighborhood and given that the expectation exists

$$l'(0) = \frac{\phi'(0)}{\phi(0)} = ia.$$

Then for each t exists n such that l(t/n) is well-defined

$$\phi_{S_n/n}(t) = \phi^n(t/n) = e^{l(t/n)n}$$

given that l(0) = 0, then for $n \to \infty$

$$e^{l(t/n) n} = exp\left(t\frac{l(t/n) - l(0)}{t/n}\right) \to e^{l'(0)t} = e^{iat}$$

This is c.f. of degenerate distribution at a. Thus $S_n/n \xrightarrow{p} a$.

- Sample average $\bar{X} = S_n/n$ allows to re-write LLN as $\bar{X} \stackrel{p}{\longrightarrow} E[X_n]$
- Suppose that $V[X_n] = \sigma^2 < \infty$. Define the new sequence

$$Z_n = \frac{S_n - a \, n}{\sigma \sqrt{n}},$$

and let $\Phi(x)$ be the standard normal cdf.

• Theorem (the Central Limit Theorem): If $0 < \sigma^2 < \infty$, then

$$\lim_{n \to \infty} \sup_{x} |P(Z_n < x) - \Phi(x)| = 0$$

(i.e. uniformly in x)

• Proof: Uniform convergence follows from continuity of $\Phi(\cdot)$ and weak convergence. w.l.o.g. set a = 0. Since V[X] exists then so does $\phi''(t)$ and thus

$$\phi(t) = \phi(0) + t \phi'(0) + \frac{t^2}{2}\phi''(0) + o(t^2) = 1 - \frac{t^2\sigma^2}{2} + o(t^2)$$

Thus for $n \to \infty$

$$\log \phi_{Z_n}(t) = n \log \left(1 - \frac{\sigma^2}{2} \left(\frac{t}{\sigma \sqrt{n}}\right)^2 + o\left(\frac{t^2}{n}\right)\right) = n \left(-\frac{t^2}{2n} + o\left(\frac{t^2}{n}\right)\right) = -\frac{t^2}{2} + o(1) \to -\frac{t^2}{2}$$

Thus $\phi_{Z_n}(t)$ converges to the c.f. of standard normal random variables.

• CLT implies that $Z_n = \frac{S_n - an}{\sigma \sqrt{n}} \stackrel{d}{\longrightarrow} N(0, 1)$

Stochastic Order: $X_n = o_p(1)$ if $X_n \stackrel{p}{\longrightarrow} 0$. $X_n = O_p(1)$ if $\lim_{M \to \infty} \limsup_n P(|X_n| > M) = 0$.

Facts: $X_n = O_p(a_n)$ means $a_n^{-1}X_n = O_p(1)$. $O_p(1)o_p(1) = o_p(1)$. $O_p(a_n)O_p(b_n) = O_p(a_nb_n)$. $O_p(a_n) + O_p(b_n) = O_p(a_n + b_n) = O_p(\max\{a_n, b_n\})$.

Properties of convergence:

- Theorem: Let X_n , X and Y_n be random vectors. Then
 - (i) $X_n \xrightarrow{a.s.} X$ implies $X_n \xrightarrow{p} X$;
 - (ii) $X_n \stackrel{p}{\longrightarrow} X$ implies $X_n \stackrel{d}{\longrightarrow} X$;
 - (iii) $X_n \xrightarrow{p} c$ (c is a constant) iff $X_n \xrightarrow{d} c$;
 - (iv) if $X_n \xrightarrow{d} X$ and $||X_n Y_n|| \xrightarrow{p} 0$, then $Y_n \xrightarrow{d} X$;
 - (v) if $X_n \xrightarrow{d} X$ and $Y_n \xrightarrow{p} c$ (c is a constant), then $(X_n, Y_n) \xrightarrow{d} (X, c)$;
 - (vi) if $X_n \xrightarrow{p} X$ and $Y_n \xrightarrow{p} Y$, then $(X_n, Y_n) \xrightarrow{p} (X, Y)$
- Note: (vi) is not true for convergence in distribution (see problem set)
- **Theorem (Slutsky):** Let X_n , X and Y_n be random vectors. If $X_n \xrightarrow{d} X$ and $Y_n \xrightarrow{d} c$ (for a constant c) then
 - (i) $X_n + Y_n \stackrel{d}{\longrightarrow} X + c$;
 - (ii) $Y_n X_n \stackrel{d}{\longrightarrow} cX$;
 - (iii) $X_n/Y_n \xrightarrow{d} X/c$ (provided $c \neq 0$)
- Example: For i.i.d. Y_1, \ldots, Y_n with $E[Y_i^2] < \infty$ construct sample variance

$$S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (Y_i - \bar{Y})^2$$
, with $S_n^2 \xrightarrow{p} V[Y_i]$

by Continuous Mapping Theorem theorem. We then construct the t-statistic as

$$t_n = \frac{\sqrt{n}(\bar{Y} - E[Y_n])}{S_n}.$$

Then by CLT, continuous mapping theorem and Slutsky's theorem $t_n \stackrel{d}{\longrightarrow} N(0,1)$

Convergence in non-i.i.d settings:

• Theorem (Lindeberg-Feller CLT): Let $Y_{n,1}, \ldots, Y_{n,k_n}$ be independent r.v. with finite variances such that

$$\sum_{i=1}^{k_n} E[\|Y_{n,i}\|^2] \mathbf{1}\{\|Y_{n,i}\| > \epsilon\} \to 0, \quad \forall \epsilon > 0,$$

 $\sum_{i=1}^{k_n} E[(Y_{n,i} - E[Y_{n,i}])'(Y_{n,i} - E[Y_{n,i}])] \to \Sigma$. Then

$$\sum_{i=1}^{k_n} (Y_{n,i} - E[Y_{n,i}]) \xrightarrow{d} N(0, \Sigma).$$

• Example: Linear regression expressed as

$$Y = X\beta + e,$$

with known $n \times p$ full rank matrix X, unobserved vector of errors e with i.i.d. components with mean zero and variance σ^2 . We need to estimate β from observation (Y, X). Least squares estimator is

$$\widehat{\beta} = (X'X)^{-1}X'Y$$

which is unbiased with covariance matrix $\sigma^2(X'X)^{-1}$. Define matrix $A^{1/2}$ such that for PSD A, $A = A^{1/2}A^{1/2}$. Then

$$(X'X)^{1/2}(\widehat{\beta} - \beta) = (X'X)^{-1/2}X'e$$

Write $(X'X)^{-1/2}X'e = \sum_{i=1}^{n} a_{ni}e_i$, where a_{ni} is the *i*th column of matrix $A = (X'X)^{-1/2}X'$. Given that $E[(X'X)^{-1/2}X'ee'X(X'X)^{-1/2}'] = \sigma^2I$, $\Sigma = \sigma^2I$ in the statement of Lindeberg-Feller theorem. Next we need to ensure that

$$\sum_{i=1}^{n} \|a_{ni}\|^2 E[e_i^2 \mathbf{1}\{\|a_{ni}\| |e_i| > \epsilon\}] \to 0.$$

Note that $\sum_{i=1}^{n} ||a_{ni}||^2 = \operatorname{trace}(AA') = p$. Thus

$$\sum_{i=1}^{n} \|a_{ni}\|^{2} E[e_{i}^{2} \mathbf{1}\{\|a_{ni}\||e_{i}| > \epsilon\}] \leq \sum_{i=1}^{n} \|a_{ni}\|^{2} \max_{1 \leq i \leq n} E[e_{i}^{2} \mathbf{1}\{\|a_{ni}\||e_{i}| > \epsilon\}]$$

$$\leq pE[e_i^2] \max_{1 \leq i \leq n} E[\mathbf{1}\{\|a_{ni}\||e_i| > \epsilon\}] \leq p\sigma^2 \max_{1 \leq i \leq n} \frac{\|a_{ni}\|E[|e_i|]}{\epsilon} = \frac{p\sigma^2 E[|e_i|]}{\epsilon} \max_{1 \leq i \leq n} \|a_{ni}\|.$$

Lideberg-Feller CLT holds for least squares estimator if $\max_{1 \le i \le n} \|a_{ni}\| \to 0$.

Delta method:

- **Theorem:** If $g(\cdot)$ satisfies the continuous mapping theorem, then $g(X_n) \stackrel{d}{\longrightarrow} g(X)$
- **Theorem:** Suppose that $X_n \stackrel{d}{\longrightarrow} X$ and $g(\cdot)$ is differentiable at $a, b_n \to 0$. Then

$$\frac{g(a+b_nX_n)-g(a)}{b_n} \stackrel{d}{\longrightarrow} X g'(a).$$

If g'(a) = 0 and g''(a) exists, then

$$\frac{g(a+b_nX_n)-g(a)}{b_n^2} \xrightarrow{d} \frac{1}{2}X^2 g''(a).$$

• Example: Suppose that for i.i.d. X_1, \ldots, X_n , $E[X_i] = 0$ and $E[X_i^2] = 1$. In this case $\sqrt{n}\bar{X} \xrightarrow{d} N(0,1)$ by CLT and $n\bar{X} \xrightarrow{d} \chi_1^2$ by CMT. Then

$$\sqrt{n}(\cos(\bar{X}) - 1) \stackrel{d}{\longrightarrow} 0.$$

However

$$\cos \bar{X} - \cos 0 = (\bar{X} - 0)0 + \frac{1}{2}(\bar{X} - 0)^2(\cos x)''|_{x=0} + \dots$$

Thus
$$-2n(\cos \bar{X} - 1) \xrightarrow{d} \chi_1^2$$