Deep Learning Book

Chapter 7 Regularization for Deep Learning

Botian Shi botianshi@bit.edu.cn March 7, 2017

- How to make an algorithm that will perform well not just on the training data, but also on new inputs?
- Many strategies designed to reduce the test error, possibly at the expense of increased training error.
- · These strategies are known collectively as regularization.
- · Many regularization algorithm have been developed.
- Developing more effective regularization strategies is one of the major research efforts in the field.
- In this chapter, we describe regularization in more detail, focusing on regularization strategies for deep models or models that may be used as building blocks to form deep models.

- How to make an algorithm that will perform well not just on the training data, but also on new inputs?
- Many strategies designed to reduce the test error, possibly at the expense of increased training error.
- · These strategies are known collectively as regularization.
- · Many regularization algorithm have been developed.
- Developing more effective regularization strategies is one of the major research efforts in the field.
- In this chapter, we describe regularization in more detail, focusing on regularization strategies for deep models or models that may be used as building blocks to form deep models.

- How to make an algorithm that will perform well not just on the training data, but also on new inputs?
- Many strategies designed to reduce the test error, possibly at the expense of increased training error.
- These strategies are known collectively as regularization.
- · Many regularization algorithm have been developed.
- Developing more effective regularization strategies is one of the major research efforts in the field.
- In this chapter, we describe regularization in more detail, focusing on regularization strategies for deep models or models that may be used as building blocks to form deep models.

- How to make an algorithm that will perform well not just on the training data, but also on new inputs?
- Many strategies designed to reduce the test error, possibly at the expense of increased training error.
- These strategies are known collectively as **regularization**.
- · Many regularization algorithm have been developed.
- Developing more effective regularization strategies is one of the major research efforts in the field.
- In this chapter, we describe regularization in more detail, focusing on regularization strategies for deep models or models that may be used as building blocks to form deep models.

- How to make an algorithm that will perform well not just on the training data, but also on new inputs?
- Many strategies designed to reduce the test error, possibly at the expense of increased training error.
- These strategies are known collectively as **regularization**.
- · Many regularization algorithm have been developed.
- Developing more effective regularization strategies is one of the major research efforts in the field.
- In this chapter, we describe regularization in more detail, focusing on regularization strategies for deep models or models that may be used as building blocks to form deep models.

- There are many regularization strategies.
 - 1. Put extra constrains on a machine learning model. (Adding restrictions on the parameter values.)
 - 2. Add extra terms in the objective function that can be thought of as corresponding to a soft constraint on the parameter values.
- If chosen carefully, these extra constraints and penalties can lead to improved performance on the test set.
- · Sometimes these constraints and penalties are designed to
 - 1. encode specific kinds of prior knowledge.
 - 2. Express a generic preference for a simpler model class in order to promote generalization.
 - make an under-determined problem determined. (Provide more information)
- Other forms of regularization, known as ensemble methods, combine multiple hypotheses that explain the training data.

- There are many regularization strategies.
 - 1. Put extra constrains on a machine learning model. (Adding restrictions on the parameter values.)
 - 2. Add extra terms in the objective function that can be thought of as corresponding to a soft constraint on the parameter values.
- If chosen carefully, these extra constraints and penalties can lead to improved performance on the test set.
- · Sometimes these constraints and penalties are designed to
 - encode specific kinds of prior knowledge.
 - 2. Express a generic preference for a simpler model class in order to promote generalization.
 - make an under-determined problem determined. (Provide more information)
- Other forms of regularization, known as ensemble methods, combine multiple hypotheses that explain the training data.

- There are many regularization strategies.
 - 1. Put extra constrains on a machine learning model. (Adding restrictions on the parameter values.)
 - 2. Add extra terms in the objective function that can be thought of as corresponding to a soft constraint on the parameter values.
- If chosen carefully, these extra constraints and penalties can lead to improved performance on the test set.
- · Sometimes these constraints and penalties are designed to
 - encode specific kinds of prior knowledge.
 - 2. Express a generic preference for a simpler model class in order to promote generalization.
 - 3. make an under-determined problem determined. (Provide more information)
- Other forms of regularization, known as ensemble methods, combine multiple hypotheses that explain the training data.

- There are many regularization strategies.
 - 1. Put extra constrains on a machine learning model. (Adding restrictions on the parameter values.)
 - 2. Add extra terms in the objective function that can be thought of as corresponding to a soft constraint on the parameter values.
- If chosen carefully, these extra constraints and penalties can lead to improved performance on the test set.
- · Sometimes these constraints and penalties are designed to
 - encode specific kinds of prior knowledge
 - Express a generic preference for a simpler model class in order to promote generalization.
 - 3. make an under-determined problem determined. (Provide more information)
- Other forms of regularization, known as ensemble methods, combine multiple hypotheses that explain the training data.

- There are many regularization strategies.
 - 1. Put extra constrains on a machine learning model. (Adding restrictions on the parameter values.)
 - 2. Add extra terms in the objective function that can be thought of as corresponding to a soft constraint on the parameter values.
- If chosen carefully, these extra constraints and penalties can lead to improved performance on the test set.
- · Sometimes these constraints and penalties are designed to
 - 1. encode specific kinds of prior knowledge.
 - 2. Express a generic preference for a simpler model class in order to promote generalization.
 - 3. make an under-determined problem determined. (Provide more information)
- Other forms of regularization, known as ensemble methods, combine multiple hypotheses that explain the training data.

- There are many regularization strategies.
 - 1. Put extra constrains on a machine learning model. (Adding restrictions on the parameter values.)
 - 2. Add extra terms in the objective function that can be thought of as corresponding to a soft constraint on the parameter values.
- If chosen carefully, these extra constraints and penalties can lead to improved performance on the test set.
- · Sometimes these constraints and penalties are designed to
 - 1. **encode** specific kinds of **prior knowledge**.
 - 2. Express a generic preference for a simpler model class in order to promote generalization.
 - 3. make an under-determined problem determined. (Provide more information)
- Other forms of regularization, known as ensemble methods, combine multiple hypotheses that explain the training data.

- · Principle: Treading increased bias for reduced variance.
- An effective regularizer is one that makes a profitable trade, reducing variance significantly while not overly increasing the bias.
- In practice, an overly complex model family does not necessarily include the target function or the true data generating process, or even a close approximation.
- We almost never have access to the true data generating process so we can never know for sure if the model family being estimated includes the generating process or not.

- · Principle: Treading increased bias for reduced variance.
- An effective regularizer is one that makes a profitable trade, reducing variance significantly while not overly increasing the bias.
- In practice, an overly complex model family does not necessarily include the target function or the true data generating process, or even a close approximation.
- We almost never have access to the true data generating process so we can never know for sure if the model family being estimated includes the generating process or not.

- · Principle: Treading increased bias for reduced variance.
- An effective regularizer is one that makes a profitable trade, reducing variance significantly while not overly increasing the bias.
- In practice, an overly complex model family does not necessarily include the target function or the true data generating process, or even a close approximation.
- We almost never have access to the true data generating process so we can never know for sure if the model family being estimated includes the generating process or not.

- · Principle: Treading increased bias for reduced variance.
- An effective regularizer is one that makes a profitable trade, reducing variance significantly while not overly increasing the bias.
- In practice, an overly complex model family does not necessarily include the target function or the true data generating process, or even a close approximation.
- We almost never have access to the true data generating process so we can never know for sure if the model family being estimated includes the generating process or not.

- However, most applications of deep learning algorithms are to domains where the true data generating process is almost certainly outside the model family.
- Deep learning algorithms are typically applied to extremely complicated domains such as images, audio sequences and text, for which the true generation process essentially involves simulating the entire universe.
- To some extent, we are always trying to fit a square peg(the data generating process) into a round hole (our model family)
 『持方枘 (ruì) 而欲内圆凿』.
- What this means is that controlling the complexity of the model is not a simple matter of finding the model of the right size, with the right number of parameters.
- Insteamd, we might find that the best fitting model is a large model that has been regularized appropriately.
- We now review several strategies for how to create such a large, deep regularized model

- However, most applications of deep learning algorithms are to domains where the true data generating process is almost certainly outside the model family.
- Deep learning algorithms are typically applied to extremely complicated domains such as images, audio sequences and text, for which the true generation process essentially involves simulating the entire universe.
- · To some extent, we are always trying to fit a square peg(the data generating process) into a round hole (our model family)
 『持方枘 (ruì) 而欲内圆凿』.
- What this means is that controlling the complexity of the model is not a simple matter of finding the model of the right size, with the right number of parameters.
- Insteamd, we might find that the best fitting model is a large model that has been regularized appropriately.
- We now review several strategies for how to create such a large, deep, regularized model

- However, most applications of deep learning algorithms are to domains where the true data generating process is almost certainly outside the model family.
- Deep learning algorithms are typically applied to extremely complicated domains such as images, audio sequences and text, for which the true generation process essentially involves simulating the entire universe.
- To some extent, we are always trying to fit a square peg(the data generating process) into a round hole (our model family)
 『持方枘 (ruì) 而欲内圆凿』.
- What this means is that controlling the complexity of the model is not a simple matter of finding the model of the right size, with the right number of parameters.
- Insteamd, we might find that the best fitting model is a large model that has been regularized appropriately.
- We now review several strategies for how to create such a large, deep, regularized model

- However, most applications of deep learning algorithms are to domains where the true data generating process is almost certainly outside the model family.
- Deep learning algorithms are typically applied to extremely complicated domains such as images, audio sequences and text, for which the true generation process essentially involves simulating the entire universe.
- To some extent, we are always trying to fit a square peg(the data generating process) into a round hole (our model family)
 『持方枘 (ruì) 而欲内圆凿』.
- What this means is that controlling the complexity of the model is not a simple matter of finding the model of the **right size**, with the **right number of parameters**.
- Insteamd, we might find that the best fitting model is a large model that has been regularized appropriately.
- We now review several strategies for how to create such a large, deep, regularized model

- However, most applications of deep learning algorithms are to domains where the true data generating process is almost certainly outside the model family.
- Deep learning algorithms are typically applied to extremely complicated domains such as images, audio sequences and text, for which the true generation process essentially involves simulating the entire universe.
- To some extent, we are always trying to fit a square peg(the data generating process) into a round hole (our model family)
 『持方枘 (ruì) 而欲内圆凿』.
- What this means is that controlling the complexity of the model is not a simple matter of finding the model of the **right size**, with the **right number of parameters**.
- Insteamd, we might find that the best fitting model is a large model that has been regularized appropriately.
- We now review several strategies for how to create such a large, deep, regularized model.

- However, most applications of deep learning algorithms are to domains where the true data generating process is almost certainly outside the model family.
- Deep learning algorithms are typically applied to extremely complicated domains such as images, audio sequences and text, for which the true generation process essentially involves simulating the entire universe.
- To some extent, we are always trying to fit a square peg(the data generating process) into a round hole (our model family)
 『持方枘 (ruì) 而欲内圆凿』.
- What this means is that controlling the complexity of the model is not a simple matter of finding the model of the **right size**, with the **right number of parameters**.
- Insteamd, we might find that the best fitting model is a large model that has been regularized appropriately.
- We now review several strategies for how to create such a large, deep, regularized model.

- Regularization has been used for decades prior to the advent of deep learning.
- Linear models allow simple straightforward and effective regularization strategies.
- Most approaches are based on limiting the capacity of models by adding a parameter norm penalty $\Omega(\theta)$ to the objective function J:

$$J(\boldsymbol{\theta}; \mathbf{X}, \mathbf{y}) = J(\boldsymbol{\theta}; \mathbf{X}, \mathbf{y}) + \alpha \Omega(\boldsymbol{\theta})$$

- Setting α to 0 results in no regularization. Larger values of α correspond to more regularization.
- · Optimize both J and norm
- \cdot Different Ω has different result

- Regularization has been used for decades prior to the advent of deep learning.
- Linear models allow simple straightforward and effective regularization strategies.
- Most approaches are based on limiting the capacity of models by adding a parameter norm penalty $\Omega(\theta)$ to the objective function J:

$$J(\boldsymbol{\theta}; X, y) = J(\boldsymbol{\theta}; X, y) + \alpha \Omega(\boldsymbol{\theta})$$

- Setting α to 0 results in no regularization. Larger values of α correspond to more regularization.
- · Optimize both J and norm
- \cdot Different Ω has different result

- Regularization has been used for decades prior to the advent of deep learning.
- Linear models allow simple straightforward and effective regularization strategies.
- Most approaches are based on limiting the capacity of models by adding a parameter norm penalty $\Omega(\theta)$ to the objective function J:

$$\tilde{J}(\boldsymbol{\theta}; X, y) = J(\boldsymbol{\theta}; X, y) + \alpha \Omega(\boldsymbol{\theta})$$

- Setting α to 0 results in no regularization. Larger values of α correspond to more regularization.
- · Optimize both J and norm
- \cdot Different Ω has different result

- Regularization has been used for decades prior to the advent of deep learning.
- Linear models allow simple straightforward and effective regularization strategies.
- Most approaches are based on limiting the capacity of models by adding a parameter norm penalty $\Omega(\theta)$ to the objective function J:

$$\tilde{J}(\boldsymbol{\theta}; \mathbf{X}, \mathbf{y}) = J(\boldsymbol{\theta}; \mathbf{X}, \mathbf{y}) + \alpha \Omega(\boldsymbol{\theta})$$

- Setting α to 0 results in no regularization. Larger values of α correspond to more regularization.
- · Optimize both J and norm
- \cdot Different Ω has different result

- Regularization has been used for decades prior to the advent of deep learning.
- Linear models allow simple straightforward and effective regularization strategies.
- Most approaches are based on limiting the capacity of models by adding a parameter norm penalty $\Omega(\theta)$ to the objective function J:

$$\tilde{J}(\boldsymbol{\theta}; X, y) = J(\boldsymbol{\theta}; X, y) + \alpha \Omega(\boldsymbol{\theta})$$

- Setting α to 0 results in no regularization. Larger values of α correspond to more regularization.
- · Optimize both J and norm
- \cdot Different Ω has different result

- Regularization has been used for decades prior to the advent of deep learning.
- Linear models allow simple straightforward and effective regularization strategies.
- Most approaches are based on limiting the capacity of models by adding a parameter norm penalty $\Omega(\theta)$ to the objective function J:

$$\tilde{J}(\boldsymbol{\theta}; \mathbf{X}, \mathbf{y}) = J(\boldsymbol{\theta}; \mathbf{X}, \mathbf{y}) + \alpha \Omega(\boldsymbol{\theta})$$

- Setting α to 0 results in no regularization. Larger values of α correspond to more regularization.
- · Optimize both J and norm
- Different Ω has different result.

- We penalize **only the weights** of the affine transformation at each layer and leaves the biases unregularized.
- We do not induce too much variance by leaving the biases unregularized.
- Regularizing the bias parameters can introduce a significant amount of under-fitting.
- We therefore use the vector w to indicate all of the weights that should be affected by a norm penalty, while the vector θ denotes all of the parameters, including both w and the unregularized parameters.
- Sometime we use a separate penalty with a different α coefficient for each layer.
- But it can be expensive to search for the correct value of multiple hyper-parameters, it is still reasonable to use the same weight decay at all layers just to reduce the size of search space.

- We penalize **only the weights** of the affine transformation at each layer and leaves the biases unregularized.
- We do not induce too much variance by leaving the biases unregularized.
- Regularizing the bias parameters can introduce a significant amount of under-fitting.
- We therefore use the vector w to indicate all of the weights that should be affected by a norm penalty, while the vector θ denotes all of the parameters, including both w and the unregularized parameters.
- Sometime we use a separate penalty with a different α coefficient for each layer.
- But it can be expensive to search for the correct value of multiple hyper-parameters, it is still reasonable to use the same weight decay at all layers just to reduce the size of search space.

- We penalize **only the weights** of the affine transformation at each layer and leaves the biases unregularized.
- We do not induce too much variance by leaving the biases unregularized.
- Regularizing the bias parameters can introduce a significant amount of under-fitting.
- We therefore use the vector w to indicate all of the weights that should be affected by a norm penalty, while the vector θ denotes all of the parameters, including both w and the unregularized parameters.
- Sometime we use a separate penalty with a different α coefficient for each layer.
- But it can be expensive to search for the correct value of multiple hyper-parameters, it is still reasonable to use the same weight decay at all layers just to reduce the size of search space.

- We penalize **only the weights** of the affine transformation at each layer and leaves the biases unregularized.
- We do not induce too much variance by leaving the biases unregularized.
- Regularizing the bias parameters can introduce a significant amount of under-fitting.
- We therefore use the vector \mathbf{w} to indicate all of the weights that should be affected by a norm penalty, while the vector $\mathbf{\theta}$ denotes all of the parameters, including both \mathbf{w} and the unregularized parameters.
- Sometime we use a separate penalty with a different α coefficient for each layer.
- But it can be expensive to search for the correct value of multiple hyper-parameters, it is still reasonable to use the same weight decay at all layers just to reduce the size of search space.

- We penalize **only the weights** of the affine transformation at each layer and leaves the biases unregularized.
- We do not induce too much variance by leaving the biases unregularized.
- Regularizing the bias parameters can introduce a significant amount of under-fitting.
- We therefore use the vector w to indicate all of the weights that should be affected by a norm penalty, while the vector θ denotes all of the parameters, including both w and the unregularized parameters.
- Sometime we use a separate penalty with a different α coefficient for each layer.
- But it can be expensive to search for the correct value of multiple hyper-parameters, it is still reasonable to use the same weight decay at all layers just to reduce the size of search space.

L² Parameter Regularization

• The L^2 norm penalty commonly known as weight decay.

$$\Omega(\boldsymbol{\theta}) = \frac{1}{2} \|\mathbf{w}\|_2^2$$

- This regularization strategy drives the weights closer to the origin. (as well as *ridge regression* or *Tikhonov regularization*)
- We can gain some insight into the behavior of weight decay regularization. (assume no bias for simplification)

$$\tilde{J}(w; X, y) = \frac{\alpha}{2} w^{\mathsf{T}} w + J(w; X, y)$$
$$\nabla_{w} \tilde{J}(w; X, y) = \alpha w + \nabla_{w} J(w; X, y)$$

The update

$$w \leftarrow w - \epsilon(\alpha w + \nabla_w J(w; X, y))$$

$$w \leftarrow (1 - \epsilon \alpha) w - \epsilon \nabla_w J(w; X, y)$$

- Shrink the weight vector by a constant factor on each step.
- · What happens over the entire course of training?

L² Parameter Regularization

• The L^2 norm penalty commonly known as weight decay.

$$\Omega(\boldsymbol{\theta}) = \frac{1}{2} \|\mathbf{w}\|_2^2$$

- This regularization strategy drives the weights closer to the origin. (as well as *ridge regression* or *Tikhonov regularization*)
- We can gain some insight into the behavior of weight decay regularization. (assume no bias for simplification)

$$\tilde{J}(w; X, y) = \frac{\alpha}{2} w^{\mathsf{T}} w + J(w; X, y)
\nabla_w \tilde{J}(w; X, y) = \alpha w + \nabla_w J(w; X, y)$$

The update

$$w \leftarrow w - \epsilon(\alpha w + \nabla_w J(w; X, y))$$

$$w \leftarrow (1 - \epsilon \alpha) w - \epsilon \nabla_w J(w; X, y)$$

- Shrink the weight vector by a constant factor on each step.
- · What happens over the entire course of training?

• The L^2 norm penalty commonly known as weight decay.

$$\Omega(\boldsymbol{\theta}) = \frac{1}{2} \|\mathbf{w}\|_2^2$$

- This regularization strategy drives the weights closer to the origin. (as well as *ridge regression* or *Tikhonov regularization*)
- We can gain some insight into the behavior of weight decay regularization. (assume no bias for simplification)

$$\tilde{J}(w; X, y) = \frac{\alpha}{2} w^{T} w + J(w; X, y)$$
$$\nabla_{w} \tilde{J}(w; X, y) = \alpha w + \nabla_{w} J(w; X, y)$$

The update

$$\mathbf{w} \leftarrow \mathbf{w} - \epsilon(\alpha \mathbf{w} + \nabla_{\mathbf{w}} J(\mathbf{w}; \mathbf{X}, \mathbf{y}))$$
$$\mathbf{w} \leftarrow (1 - \epsilon \alpha) \mathbf{w} - \epsilon \nabla_{\mathbf{w}} J(\mathbf{w}; \mathbf{X}, \mathbf{y})$$

- Shrink the weight vector by a constant factor on each step.
- · What happens over the entire course of training?

• The L^2 norm penalty commonly known as weight decay.

$$\Omega(\boldsymbol{\theta}) = \frac{1}{2} \| \mathbf{w} \|_2^2$$

- This regularization strategy drives the weights closer to the origin. (as well as *ridge regression* or *Tikhonov regularization*)
- We can gain some insight into the behavior of weight decay regularization. (assume no bias for simplification)

$$\tilde{J}(w; X, y) = \frac{\alpha}{2} w^{T} w + J(w; X, y)$$
$$\nabla_{w} \tilde{J}(w; X, y) = \alpha w + \nabla_{w} J(w; X, y)$$

The update

$$w \leftarrow w - \epsilon(\alpha w + \nabla_w J(w; X, y))$$

$$w \leftarrow (1 - \epsilon \alpha) w - \epsilon \nabla_w J(w; X, y)$$

- Shrink the weight vector by a constant factor on each step.
- · What happens over the entire course of training?

- In mathematics, approximation theory is concerned with how functions can best be approximated with simpler functions.
- local linear approximation and taylor expansion
 - 1. For example, when the independent variable of function $y = x^3$ changes, which is Δx , the variation of y is

$$\Delta y = (x + \Delta x)^3 - x^3 = 3x^2 \Delta x + 3x(\Delta x)^2 + (\Delta x)^3$$

- 2. When $\Delta x \to 0$, omit last two terms: $\Delta y = 3x^2 \Delta x$
- 3. In general:

$$\Delta y = f(x_0 + \Delta x) - f(x_0) \approx f'(x_0) \times \Delta x$$

$$\Delta y = f(x) - f(x_0), \ \Delta x = x - x_0$$

$$f(x) - f(x_0) = f'(x_0) \times (x - x_0)$$

$$f(x) = f(x_0) + f'(x_0)(x - x_0)$$

4. In order to improve the precision, we can use second-order approximation, which is the second-order Taylor series expansion.

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2$$

- In mathematics, approximation theory is concerned with how functions can best be approximated with simpler functions.
- · local linear approximation and taylor expansion
 - 1. For example, when the independent variable of function $y = x^3$ changes, which is Δx , the variation of y is

$$\Delta y = (x + \Delta x)^3 - x^3 = 3x^2 \Delta x + 3x(\Delta x)^2 + (\Delta x)^3$$

- 2. When $\Delta x \rightarrow 0$, omit last two terms: $\Delta y = 3x^2 \Delta x$
- 3. In general:

$$\Delta y = f(x_0 + \Delta x) - f(x_0) \approx f'(x_0) \times \Delta x$$

$$\Delta y = f(x) - f(x_0), \ \Delta x = x - x_0$$

$$f(x) - f(x_0) = f'(x_0) \times (x - x_0)$$

$$f(x) = f(x_0) + f'(x_0)(x - x_0)$$

 In order to improve the precision, we can use second-order approximation, which is the second-order Taylor series expansion.

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2$$

- In mathematics, approximation theory is concerned with how functions can best be approximated with simpler functions.
- · local linear approximation and taylor expansion
 - 1. For example, when the independent variable of function $y = x^3$ changes, which is Δx , the variation of y is

$$\Delta y = (x + \Delta x)^3 - x^3 = 3x^2 \Delta x + 3x(\Delta x)^2 + (\Delta x)^3$$

- 2. When $\Delta x \to 0$, omit last two terms: $\Delta y = 3x^2 \Delta x$
- 3. In general:

$$\Delta y = f(x_0 + \Delta x) - f(x_0) \approx f'(x_0) \times \Delta x$$

$$\Delta y = f(x) - f(x_0), \ \Delta x = x - x_0$$

$$f(x) - f(x_0) = f'(x_0) \times (x - x_0)$$

$$f(x) = f(x_0) + f'(x_0)(x - x_0)$$

In order to improve the precision, we can use second-order approximation, which is the second-order Taylor series expansion.

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2$$

- In mathematics, approximation theory is concerned with how functions can best be approximated with simpler functions.
- · local linear approximation and taylor expansion
 - 1. For example, when the independent variable of function $y = x^3$ changes, which is Δx , the variation of y is

$$\Delta y = (x + \Delta x)^3 - x^3 = 3x^2 \Delta x + 3x(\Delta x)^2 + (\Delta x)^3$$

- 2. When $\Delta x \to 0$, omit last two terms: $\Delta y = 3x^2 \Delta x$
- 3. In general:

$$\Delta y = f(x_0 + \Delta x) - f(x_0) \approx f'(x_0) \times \Delta x$$

$$\Delta y = f(x) - f(x_0), \ \Delta x = x - x_0$$

$$f(x) - f(x_0) = f'(x_0) \times (x - x_0)$$

$$f(x) = f(x_0) + f'(x_0)(x - x_0)$$

In order to improve the precision, we can use second-order approximation, which is the second-order Taylor series expansion

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2$$

- In mathematics, approximation theory is concerned with how functions can best be approximated with simpler functions.
- · local linear approximation and taylor expansion
 - 1. For example, when the independent variable of function $y = x^3$ changes, which is Δx , the variation of y is

$$\Delta y = (x + \Delta x)^3 - x^3 = 3x^2 \Delta x + 3x(\Delta x)^2 + (\Delta x)^3$$

- 2. When $\Delta x \to 0$, omit last two terms: $\Delta y = 3x^2 \Delta x$
- 3. In general:

$$\Delta y = f(x_0 + \Delta x) - f(x_0) \approx f'(x_0) \times \Delta x$$

$$\Delta y = f(x) - f(x_0), \ \Delta x = x - x_0$$

$$f(x) - f(x_0) = f'(x_0) \times (x - x_0)$$

$$f(x) = f(x_0) + f'(x_0)(x - x_0)$$

In order to improve the precision, we can use second-order approximation, which is the second-order Taylor series expansion

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2$$

- In mathematics, approximation theory is concerned with how functions can best be approximated with simpler functions.
- · local linear approximation and taylor expansion
 - 1. For example, when the independent variable of function $y = x^3$ changes, which is Δx , the variation of y is

$$\Delta y = (x + \Delta x)^3 - x^3 = 3x^2 \Delta x + 3x(\Delta x)^2 + (\Delta x)^3$$

- 2. When $\Delta x \rightarrow 0$, omit last two terms: $\Delta y = 3x^2 \Delta x$
- 3. In general:

$$\Delta y = f(x_0 + \Delta x) - f(x_0) \approx f'(x_0) \times \Delta x$$

$$\Delta y = f(x) - f(x_0), \ \Delta x = x - x_0$$

$$f(x) - f(x_0) = f'(x_0) \times (x - x_0)$$

$$f(x) = f(x_0) + f'(x_0)(x - x_0)$$

In order to improve the precision, we can use second-order approximation, which is the second-order Taylor series expansion

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)$$

- In mathematics, approximation theory is concerned with how functions can best be approximated with simpler functions.
- · local linear approximation and taylor expansion
 - 1. For example, when the independent variable of function $y = x^3$ changes, which is Δx , the variation of y is

$$\Delta y = (x + \Delta x)^3 - x^3 = 3x^2 \Delta x + 3x(\Delta x)^2 + (\Delta x)^3$$

- 2. When $\Delta x \to 0$, omit last two terms: $\Delta y = 3x^2 \Delta x$
- 3. In general:

$$\Delta y = f(x_0 + \Delta x) - f(x_0) \approx f'(x_0) \times \Delta x$$

$$\Delta y = f(x) - f(x_0), \ \Delta x = x - x_0$$

$$f(x) - f(x_0) = f'(x_0) \times (x - x_0)$$

$$f(x) = f(x_0) + f'(x_0)(x - x_0)$$

In order to improve the precision, we can use second-order approximation, which is the second-order Taylor series expansion.

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2$$

- Let $w^* = \arg \min_{w} J(w)$ (unregularized training cost)
- Making a quadratic approximation to the objective function in the neighborhood of the value of the weights. (In DLBook, they used $\hat{J}(\theta)$, but here we use $\hat{J}(w)$ to explain easier)

$$\hat{J}(w) = J(w^*) + \frac{1}{2}(w - w^*)^T H(w - w^*)$$

- Where **H** is the Hessian matrix of *J* with respect to **w** evaluated at **w***.
- There is no first-order term in this quadratic approximation, because w* is defined to be a minimum, where the gradient vanishes.
- The minimum of \hat{J} occurs where its gradient

$$\nabla_{\mathbf{w}} \hat{J}(\mathbf{w}) = \mathsf{H}(\mathbf{w} - \mathbf{w}^*)$$

is equal to 0

- Let $w^* = \arg \min_{w} J(w)$ (unregularized training cost)
- Making a quadratic approximation to the objective function in the neighborhood of the value of the weights. (In DLBook, they used $\hat{J}(\theta)$, but here we use $\hat{J}(w)$ to explain easier)

$$\hat{J}(w) = J(w^*) + \frac{1}{2}(w - w^*)^T H(w - w^*)$$

- Where H is the Hessian matrix of J with respect to w evaluated at w*.
- There is no first-order term in this quadratic approximation, because w* is defined to be a minimum, where the gradient vanishes.
- The minimum of ĵ occurs where its gradient

$$\nabla_{\mathbf{w}} \hat{J}(\mathbf{w}) = \mathsf{H}(\mathbf{w} - \mathbf{w}^*)$$

is equal to 0

- Let $w^* = \arg \min_{w} J(w)$ (unregularized training cost)
- Making a quadratic approximation to the objective function in the neighborhood of the value of the weights. (In DLBook, they used $\hat{J}(\theta)$, but here we use $\hat{J}(w)$ to explain easier)

$$\hat{J}(w) = J(w^*) + \frac{1}{2}(w - w^*)^T H(w - w^*)$$

- Where H is the Hessian matrix of J with respect to w evaluated at w*.
- There is no first-order term in this quadratic approximation, because w* is defined to be a minimum, where the gradient vanishes.
- The minimum of \hat{j} occurs where its gradient

$$\nabla_{\mathbf{w}} \hat{J}(\mathbf{w}) = \mathsf{H}(\mathbf{w} - \mathbf{w}^*)$$

is equal to 0.

- Let $\mathbf{w}^* = \arg\min_{\mathbf{w}} J(\mathbf{w})$ (unregularized training cost)
- Making a quadratic approximation to the objective function in the neighborhood of the value of the weights. (In DLBook, they used $\hat{J}(\theta)$, but here we use $\hat{J}(w)$ to explain easier)

$$\hat{J}(w) = J(w^*) + \frac{1}{2}(w - w^*)^T H(w - w^*)$$

- Where H is the Hessian matrix of J with respect to w evaluated at w*.
- There is no first-order term in this quadratic approximation, because \mathbf{w}^* is defined to be a minimum, where the gradient vanishes.
- The minimum of \hat{j} occurs where its gradient

$$\nabla_{\mathbf{w}} \hat{J}(\mathbf{w}) = \mathsf{H}(\mathbf{w} - \mathbf{w}^*)$$

is equal to 0.

- Let $\mathbf{w}^* = \arg\min_{\mathbf{w}} J(\mathbf{w})$ (unregularized training cost)
- Making a quadratic approximation to the objective function in the neighborhood of the value of the weights. (In DLBook, they used $\hat{J}(\theta)$, but here we use $\hat{J}(w)$ to explain easier)

$$\hat{J}(w) = J(w^*) + \frac{1}{2}(w - w^*)^T H(w - w^*)$$

- Where H is the Hessian matrix of J with respect to w evaluated at w*.
- There is no first-order term in this quadratic approximation, because \mathbf{w}^* is defined to be a minimum, where the gradient vanishes.
- The minimum of \hat{j} occurs where its gradient

$$\nabla_{\mathsf{w}} \hat{\mathsf{J}}(\mathsf{w}) = \mathsf{H}(\mathsf{w} - \mathsf{w}^*)$$

is equal to 0.

- To study the effect of weight decay, we modify $\nabla_w \hat{J}(w) = H(w-w^*)$ by adding the weight decay gradient.
- We can solve for the minimum of the regularized version of \hat{J}
- · We use the variable $ilde{ extbf{w}}$ to represent the location of the minimum

$$\alpha \tilde{w} + H(\tilde{w} - w^*) = 0$$

$$(H + \alpha I)\tilde{w} = Hw^*$$

$$\tilde{w} = \frac{Hw^*}{(H + \alpha I)}$$

- · As lpha approaches 0, the regularized solution $ilde{\mathbf{w}}$ approaches \mathbf{w}^*
- But what happens as α grows?

- To study the effect of weight decay, we modify $\nabla_w \hat{J}(w) = H(w-w^*)$ by adding the weight decay gradient.
- We can solve for the minimum of the regularized version of \hat{J} .
- · We use the variable $\tilde{\textbf{w}}$ to represent the location of the minimum.

$$\alpha \tilde{\mathbf{w}} + \mathbf{H}(\tilde{\mathbf{w}} - \mathbf{w}^*) = 0$$
$$(\mathbf{H} + \alpha \mathbf{I})\tilde{\mathbf{w}} = \mathbf{H}\mathbf{w}^*$$
$$\tilde{\mathbf{w}} = \frac{\mathbf{H}\mathbf{w}^*}{(\mathbf{H} + \alpha \mathbf{I})}$$

- \cdot As lpha approaches 0, the regularized solution $ilde{\mathbf{w}}$ approaches \mathbf{w}^*
- But what happens as α grows?

- To study the effect of weight decay, we modify $\nabla_w \hat{J}(w) = H(w w^*)$ by adding the weight decay gradient.
- · We can solve for the minimum of the regularized version of \hat{J} .
- · We use the variable $\tilde{\textbf{w}}$ to represent the location of the minimum.

$$\alpha \tilde{\mathbf{w}} + \mathbf{H}(\tilde{\mathbf{w}} - \mathbf{w}^*) = 0$$
$$(\mathbf{H} + \alpha \mathbf{I})\tilde{\mathbf{w}} = \mathbf{H}\mathbf{w}^*$$
$$\tilde{\mathbf{w}} = \frac{\mathbf{H}\mathbf{w}^*}{(\mathbf{H} + \alpha \mathbf{I})}$$

- As α approaches 0, the regularized solution $\tilde{\mathbf{w}}$ approaches \mathbf{w}^* .
- But what happens as α grows?

- Because **H** is real and symmetric, we can decompose it into a diagonal matrix Λ and an orthonormal basis of eigenvectors, Q, such that $\mathbf{H} = Q\Lambda Q^{\mathsf{T}}$.
- Applying the decomposition $\tilde{\mathbf{w}} = (\mathbf{H} + \alpha \mathbf{I})^{-1} \mathbf{H} \mathbf{w}^*$

$$\tilde{\mathbf{W}} = (\mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^{\mathsf{T}} + \alpha \mathbf{I})^{-1} \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^{\mathsf{T}} \mathbf{w}^{*} \tag{1}$$

$$= \left[\mathbf{Q}(\mathbf{\Lambda} + \alpha \mathbf{I})\mathbf{Q}^{\mathsf{T}} \right]^{-1} \mathbf{Q}\mathbf{\Lambda}\mathbf{Q}^{\mathsf{T}}\mathbf{w}^{*} \tag{2}$$

$$= Q(\Lambda + \alpha I)^{-1} \Lambda Q^{\mathsf{T}} W^*$$
 (3)

$$= Q \frac{\Lambda}{\Lambda + \alpha I} Q^{\mathsf{T}} w^* \tag{4}$$

- We see that the effect of weight decay is to rescale w* along the axes defined by the eigenvectors of H.
- Specifically, the component of w^* that is aligned with the i-th eigenvector of H is rescaled by a factor of $\frac{\lambda_i}{\lambda_i + \alpha}$

- Because **H** is real and symmetric, we can decompose it into a diagonal matrix Λ and an orthonormal basis of eigenvectors, Q, such that $\mathbf{H} = Q\Lambda Q^{\mathsf{T}}$.
- Applying the decomposition $\tilde{\mathbf{w}} = (\mathbf{H} + \alpha \mathbf{I})^{-1} \mathbf{H} \mathbf{w}^*$

$$\tilde{\mathbf{W}} = (\mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^{\mathsf{T}} + \alpha \mathbf{I})^{-1} \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^{\mathsf{T}} \mathbf{W}^{*}$$
 (1)

$$= \left[\mathbf{Q}(\mathbf{\Lambda} + \alpha \mathbf{I}) \mathbf{Q}^{\mathsf{T}} \right]^{-1} \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^{\mathsf{T}} \mathbf{w}^{*}$$
 (2)

$$= \mathbf{Q}(\mathbf{\Lambda} + \alpha \mathbf{I})^{-1} \mathbf{\Lambda} \mathbf{Q}^{\mathsf{T}} \mathbf{w}^* \tag{3}$$

$$= Q \frac{\Lambda}{\Lambda + \alpha I} Q^{\mathsf{T}} W^* \tag{4}$$

- We see that the effect of weight decay is to rescale w* along the axes defined by the eigenvectors of H.
- Specifically, the component of w^* that is aligned with the i-th eigenvector of H is rescaled by a factor of $\frac{\lambda_i}{\lambda_i + \alpha}$

- Because **H** is real and symmetric, we can decompose it into a diagonal matrix Λ and an orthonormal basis of eigenvectors, Q, such that $\mathbf{H} = Q\Lambda Q^{\mathsf{T}}$.
- Applying the decomposition $\tilde{\mathbf{w}} = (\mathbf{H} + \alpha \mathbf{I})^{-1} \mathbf{H} \mathbf{w}^*$

$$\tilde{\mathbf{W}} = (\mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^{\mathsf{T}} + \alpha \mathbf{I})^{-1} \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^{\mathsf{T}} \mathbf{W}^{*}$$
 (1)

$$= \left[\mathbf{Q}(\mathbf{\Lambda} + \alpha \mathbf{I}) \mathbf{Q}^{\mathsf{T}} \right]^{-1} \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^{\mathsf{T}} \mathbf{w}^{*}$$
 (2)

$$= \mathbf{Q}(\mathbf{\Lambda} + \alpha \mathbf{I})^{-1} \mathbf{\Lambda} \mathbf{Q}^{\mathsf{T}} \mathbf{w}^* \tag{3}$$

$$= Q \frac{\Lambda}{\Lambda + \alpha I} Q^{\mathsf{T}} W^* \tag{4}$$

- We see that the effect of weight decay is to rescale w^* along the axes defined by the eigenvectors of H.
- Specifically, the component of w^* that is aligned with the i-th eigenvector of H is rescaled by a factor of $\frac{\lambda_i}{\lambda_i + \alpha}$

- Because **H** is real and symmetric, we can decompose it into a diagonal matrix Λ and an orthonormal basis of eigenvectors, Q, such that $\mathbf{H} = Q\Lambda Q^{\mathsf{T}}$.
- Applying the decomposition $\tilde{\mathbf{w}} = (\mathbf{H} + \alpha \mathbf{I})^{-1} \mathbf{H} \mathbf{w}^*$

$$\tilde{\mathbf{W}} = (\mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^{\mathsf{T}} + \alpha \mathbf{I})^{-1} \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^{\mathsf{T}} \mathbf{W}^{*}$$
 (1)

$$= \left[\mathbf{Q}(\mathbf{\Lambda} + \alpha \mathbf{I})\mathbf{Q}^{\mathsf{T}} \right]^{-1} \mathbf{Q}\mathbf{\Lambda}\mathbf{Q}^{\mathsf{T}}\mathbf{w}^{*} \tag{2}$$

$$= \mathbf{Q}(\mathbf{\Lambda} + \alpha \mathbf{I})^{-1} \mathbf{\Lambda} \mathbf{Q}^{\mathsf{T}} \mathbf{w}^* \tag{3}$$

$$= Q \frac{\Lambda}{\Lambda + \alpha I} Q^{\mathsf{T}} \mathbf{w}^* \tag{4}$$

- We see that the effect of weight decay is to rescale w^* along the axes defined by the eigenvectors of H.
- Specifically, the component of w^* that is aligned with the i-th eigenvector of H is rescaled by a factor of $\frac{\lambda_i}{\lambda_i + \alpha}$

References i

References