

Asymptotic Analysis

Session Learning Outcome-SLO

- Estimate algorithmic complexity
- Learn approximation tool
- Specify the behaviour of algorithm

Asymptotic Analysis

- Analysis of a given algorithm with larger values of input data
- Theory of approximation.
- Asymptote of a curve is a line that closely approximates a curve but does not touch the curve at any point of time
- Used by paul bachman in number theory
- Specify the behaviour of the algorithm when the input size increases

Asymptotic Notation

- The order of growth of the running time of an algorithms, gives a simple characterization of algorithms efficiency.
- It also allows to compare relative performance of alternative algorithms.
- Asymptotic order is concerned with how the running time of an algorithm increases with the size of the input, if input increases from small value to large values
 - 1. Big-Oh notation (O)
 - 2. Big-Omega notation (Ω)
 - 3. Theta notation (θ)
 - 4. Little-oh notation (o)
 - 5. Little-omega notation (ω)

Big-Oh Notation (O)

- Big-oh notation is used to define the worst-case running time of an algorithm and concerned with large values of *n*.
- **Definition:** A function t(n) is said to be in O(g(n)), denoted as $t(n) \in O(g(n))$, if t(n) is bounded above by some constant multiple of g(n) for all large n. i.e., if there exist some positive constant c and some non-negative integer n0 such that

$$t(n) \le cg(n)$$
 for all $n \ge n0$

- O(g(n)): Class of functions t(n) that grow no faster than g(n).
- Big-oh puts asymptotic *upper bound* on a function.

Big-Oh Notation (O)

Big-Oh Notation (O)

 $1 < \log n < \sqrt{n} < n < n \log n < n^2 < n^3 < \dots < 2^n < 3^n < \dots < n^n$

• Let t(n) = 2n + 3 upper bound $2n + 3 \le \underline{\hspace{1cm}}??$

 $2n + 3 \le 5n$ $n \ge 1$ here c = 5 and g(n) = n

t(n) = O(n)

 $2n + 3 \le 5n^2$ $n \ge 1$ here c = 5 and $g(n) = n^2$

 $t(n) = O(n^2)$

Big-Omega notation (Ω)

- This notation is used to describe the best case running time of algorithms and concerned with large values of n.
- **Definition:** A function t(n) is said to be in $\Omega(g(n))$, denoted as $t(n) \in \Omega(g(n))$, if t(n) is bounded below by some positive constant multiple of g(n) for all large n. i.e., there exist some positive constant c and some non-negative integer n0. Such that

$$t(n) \ge cg(n)$$
 for all $n \ge n0$

• It represents the *lower bound* of the resources required to solve a problem.

Big-Omega notation (Ω)

Big-Omega notation (Ω)

 $1 < \log n < \sqrt{n} < n < n \log n < n^2 < n^3 < \dots < 2^n < 3^n < \dots < n^n$

• Let
$$t(n) = 2n + 3$$
 lower bound $2n + 3 \ge ??$

$$2n + 3 \ge 1n$$
 $n \ge 1$
here $c = 5$ and $g(n) = n$

$$t(n) = \Omega(n)$$

$$2n + 3 \ge 1\log n$$
 $n \ge 1$
here $c = 5$ and $g(n) = \log n$

$$t(n) = \Omega(\log n)$$

Theta notation (θ)

• **Definition:** A function t(n) is said to be in θ (g(n)), denoted $t(n) \in \theta(g(n))$, if t(n) is bounded both above and below by some positive constant multiples of g(n) for all large n. i.e., if there exist some positive constant c1 and c2 and some non-negative integer n0 such that

$$c2g(n) \le t(n) \le c1g(n)$$
 for all $n > n0$
 $\theta(g(n)) = O(g(n)) \cap \Omega(g(n))$

Theta notation (θ)

Theta notation (θ)

$$1 < \log n < \sqrt{n} < n < n \log n < n^2 < n^3 < \dots < 2^n < 3^n < \dots < n^n$$

• Let t(n) = 2n + 3 average bound $\leq 2n + 3 \leq 2n + 3 \leq$

$$1n \le 2n + 3 \le 5n$$
 $n \ge 1$
here $c1 = 5$, $c2 = 1$ and $g(n) = n$

$$t(n) = \theta(n)$$

Little-oh notation (o)

- This notation is used to describe the worst case analysis of algorithms and concerned with small values of n.
- **Definition**: A function t(n) is said to be in o(g(n)), denoted $t(n) \in o(g(n))$, if there exist some positive constant c and some non-negative integer such that

$$t(n) \le cg(n)$$

$$\lim_{n\to\infty}\frac{t(n)}{g(n)}=0$$

Little-omega notation (ω)

- This notation is used to describe the best case analysis of algorithms and concerned with small values of n.
- The function $t(n) = \omega(g(n))$ iff

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty \qquad \text{(or)} \quad \lim_{n \to \infty} \frac{g(n)}{f(n)} = 0$$

Properties of O, Ω and θ

General property:

If t(n) is O(g(n)) then a * t(n) is O(g(n)). Similar for Ω and θ

Transitive Property:

If $f(n) \in O(g(n))$ and $g(n) \in O(h(n))$, then $f(n) \in O(h(n))$; that is O is transitive. Also Ω , θ , o and ω are transitive.

Reflexive Property

If f(n) is given then f(n) is O(f(n))

Symmetric Property

If f(n) is $\theta(g(n))$ then g(n) is $\theta(f(n))$

Transpose Property

If f(n) = O(g(n)) then g(n) is $\Omega(f(n))$

Asymptotic Notation

Notation	What it means	In terms of limit	Representation	Mathematically equivalent to
Big oh (O)	Growth of $t(n)$ is \leq the growth of $g(n)$	$\lim_{n \to \infty} \frac{t(n)}{g(n)} = c. c \ge 0$	t(n) = O(g(n))	≤
Big omega (Ω)	Growth of $t(n)$ is \geq the growth of $g(n)$	$\lim_{n\to\infty}\frac{t(n)}{g(n)}\neq 0$	$t(n) = \Omega(g(n))$	≥
Theta notation (θ)	Growth of $t(n)$ is \approx the growth of $g(n)$	$\lim_{n \to \infty} \frac{t(n)}{g(n)} = c, c > 0$	$t(n) = \theta(g(n))$	\approx
Little oh (o)	Growth of t(n) is << the growth of g(n)	$ \lim_{n \to \infty} \frac{t(n)}{g(n)} = 0 $	t(n) = o(g(n))	<
Little omega (ω)	Growth of t(n) is >> the growth of g(n)	$ \lim_{n \to \infty} \frac{t(n)}{g(n)} = \infty $	$t(n) = \omega(g(n))$	>

Activity

- Find the upper bound, lower bound and tight bound range for the following functions
 - -2n+5
 - -3n + 2
 - -3n+3
 - $-n^2 \log n$
 - $-10 n^2 + 4 n + 2$
 - $-20 \text{ n}^2 + 80 \text{ n} + 10$
 - -n!
 - $-\log n!$

Order of growth of functions

Summary

- Asymptotic analysis estimate an algorithmic complexity
- Based on theory of approximation.
- Effective in specifying the behaviour of algorithm when the input size increases
- Big Oh notation upper bound
- Big Omega notation lower bound
- Little oh notation tight bound