Health Inequality and Economic Disparities by Race, Ethnicity, and Gender

Nicolò Russo, Rory McGee, Mariacristina De Nardi, Margherita Borella, and Ross Abram

December 5, 2024

Presented by Jake Harmon

Introduction: Objective

 How unequally distributed is health by race, ethnicity, and gender?

Introduction: Objective

- How unequally distributed is health by race, ethnicity, and gender?
- How can these disparities explain differences in key economic outcomes such as:
 - Disability
 - · Length of working life
 - · Nursing home entry
 - · Duration of life spent in poor health
 - · Lifespan

Data

Health and Retirement Study (HRS)

- Longitudinal survey of a representative sample of Americans over age 50
- · Participants interviewed every 2 years
- Participants provide data on health care, housing, assets, pensions, employment and disability

Data

RAND HRS Longitudinal File combines individual survey data into single 1992-2018 dataset

- · Data used is 1996-2018 (key variables not tracked until 1996)
- Looking only at participants under age 100 who identify as non-Hispanic White, non-Hispanic Black, or Hispanic
- · Sample consists of 216,166 individual-year observations

Methodology

- Construct measure of frailty (fraction of one's possible health deficits)
- 2. Correct for under-reporting of medical diagnoses for Black and Hispanic individuals
- 3. Estimate differences in key economic outcomes

Methodology I: Frailty

Table 1: Health deficits

Deficit	Deficit
ADLs	Difficulty lifting a weight heavier than 10 lbs
Difficulty bathing	Difficulty lifting arms over the shoulders
Difficulty dressing	Difficulty picking up a dime
Difficulty eating	Difficulty pulling/pushing large objects
Difficulty getting in/out of bed	Difficulty sitting for two hours
Difficulty using the toilet	
Difficulty walking across a room	Diagnoses
Difficulty walking one block	Diagnosed with high blood pressure
Difficulty walking several blocks	Diagnosed with diabetes
	Diagnosed with cancer
IADLs	Diagnosed with lung disease
Difficulty grocery shopping	Diagnosed with a heart condition
Difficulty making phone calls	Diagnosed with a stroke
Difficulty managing money	Diagnosed with psychological or psychiatric problems
Difficulty preparing a hot meal	Diagnosed with arthritis
Difficulty taking medication	
Difficulty using a map	Healthcare Utilization
	Has stayed in the hospital in the previous two years
Other Functional Limitations	Has stayed in a nursing home in the previous two years
Difficulty climbing one flight of stairs	
Difficulty climbing several flights of stairs	Addictive Diseases
Difficulty getting up from a chair	Has BMI larger than 30
Difficulty kneeling or crouching	Has ever smoked cigarettes

Notes: Each deficit takes a value of 0 (if the respondent reports not having it) or 1 (if the respondent reports having it).

Methodology II: Correct for Under-Reporting

Figure A-1: Summary of our imputation procedure.

Figure 2: Differences in health deficits prevalence. Age 55-59. Positive values indicate a deficit is more common among White individuals, while negative values show higher prevalence among non-White individuals.

Figure 3: Potential health deficits prevalence. Age 55-59

Table 2: Pseudo- \mathbb{R}^2 table

			Women			Men	
		White	Hispanic	Black	White	Hispanic	Black
	Basic Controls	0.048	0.046	0.036	0.045	0.022	0.032
	SRHS	0.212	0.122	0.129	0.186	0.112	0.122
SDI Recipient Next Wave	Frailty	0.244	0.193	0.185	0.245	0.222	0.175
	Frailty and SRHS	0.268	0.202	0.199	0.264	0.241	0.196
	Basic Controls	0.118	0.081	0.083	0.134	0.101	0.120
	SRHS	0.128	0.110	0.102	0.140	0.128	0.126
SS Benefits Recipient Next Wave	Frailty	0.126	0.091	0.097	0.142	0.112	0.139
	Frailty and SRHS	0.132	0.123	0.114	0.147	0.145	0.145
	Basic Controls	0.241	0.172	0.169	0.220	0.144	0.122
	SRHS	0.285	0.209	0.206	0.266	0.194	0.176
NH Entry Next Wave	Frailty	0.315	0.231	0.214	0.303	0.272	0.234
	Frailty and SRHS	0.319	0.250	0.227	0.308	0.291	0.244
	Basic Controls	0.166	0.157	0.120	0.140	0.157	0.109
	SRHS	0.240	0.194	0.169	0.219	0.212	0.151
Death Next Wave	Frailty	0.266	0.221	0.189	0.237	0.244	0.176
	Frailty and SRHS	0.276	0.230	0.201	0.251	0.253	0.182
			Percentag	e change	from basi	c controls	
	SRHS	341%	166%	260%	318%	412%	283%
SDI Recipient Next Wave	Frailty	407%	320%	416%	450%	916%	449%
	Frailty and SRHS	458%	341%	454%	492%	1,005%	514%
			Percentag	e change	from basi	c controls	
	SRHS	9%	37%	23%	5%	27%	5%
SS Benefits Recipient Next Wave	Frailty	7%	13%	17%	6%	11%	16%
	Frailty and SRHS	12%	53%	38%	10%	43%	21%
			Percentag	e change	from basi	c controls	
	SRHS	18%	21%	22%	21%	35%	44%
NH Entry Next Wave	Frailty	31%	34%	27%	38%	89%	92%
	Frailty and SRHS	32%	45%	34%	40%	102%	102%
			Percentag	e change	from basi	c controls	
	SRHS	45%	24%	41%	57%	35%	39%
Death Next Wave	Frailty	60%	41%	57%	69%	55%	62%
	Frailty and SRHS	66%	47%	67%	79%	61%	61%

Figure 5: 25th (first row) and 75th (second row) frailty percentile by age. Men (left column) and women (right column). Each statistic is smoothed using a three-year moving average.

Figure 6: Comparison between observed and potential frailty for men (Panel (a)) and women (Panel (b)) and within-race percentage change between observed and potential frailty (Panel (c)). The averages in Panels (a) and (b) are smoothed using a three-year moving average. The percentage change in Panel (c) is computed using the smooth averages from Panels (a) and (b).

Figure 8: Average fraction of remaining life spent in bad health starting from age 55. This is computed as the fraction of remaining life spent in one of the two lowest health states ("poor" and "fair" health, or frailty quintiles), conditional on remaining alive

Figure 10: Average number of years receiving disability benefits after age 55

Figure 13: Average number of years in a nursing home after age 55

- 1. Evidence of substantial health inequality
- 2. White men and women also have much lower frailty (i.e., better health), on average, than Hispanic and Black ones

Limitations: Nursing Home

"Factors like informal care from extended family may have a greater impact. For instance, Almeida, Molnar, Kawachi, and Subramanian (2009) shows that Hispanic Americans have large family networks and high levels of social support, which may explain why they spend less time in nursing homes than their White and Black counterparts."

Extension: Objective

- 1. Incorporate additional measures of family structure
- 2. Incorporate additional measures of income and assets
- 3. Improve existing predictions of nursing home entry with additional measures
- 4. Logistic regression v. machine learning

Extension: Model

$$Pr(nursinghome_{i,t+1} = 1) = NH(h_{it}, X_{i,t})$$

Where

- h is estimated health transition probabilities
- X is the set of basic controls, self reported health status, and frailty

Extension: Model

$$Pr(nursinghome_{i,t+1} = 1) = NH(h_{it}, X_{i,t}, \frac{Z_{i,t}}{Z_{i,t}})$$

Where

- · h is estimated health transition probabilities
- X is the set of basic controls, self reported health status, and frailty
- Z is the set of variables measuring family structure and income and assets

Extension: Data

	Table 1: Su	mmary Statis	stics			
	White		Hispanic		Black	
	Mean	Std. Dev	Mean	Std. Dev	Mean	Std. Dev
Family Structure						
Number of Living Children	2.996	1.923	3.820	2.411	3.663	2.509
Number of Living Siblings	2.421	2.083	4.551	3.068	3.859	2.939
Income and Assets						
Total Non-Housing Wealth (thousands)	343.9	1076	69.64	436.7	57.71	316.4
Total Household Income (thousands)	70.20	196.7	38.59	132.1	40.95	55.96
Poverty Status (binary)	5.8%		26.8%		22.5%	
Parents						
Mother's Age (or age at death)	76.50	13.95	73.84	15.70	71.77	15.89
Father's Age (or age at death)	71.93	14.01	72.50	15.16	69.93	14.99
Mother's Education (years)	10.20	3.10	5.57	4.35	9.15	3.48
Father's Education (years)	9.92	3.51	5.86	4.59	8.38	3.69
Other						
Veteran Status (binary)	23.1%		8.8%		14.6%	
Residing in Urban area (binary)	44.9%		56.9%		62.4%	
Residing in Rural area (binary)	32.2%		13.1%		16.9%	

Note: summary statistics computed across male and female respondents and across waves 2 through 14.

Extension: Methodology

- Exclude individuals that lived in nursing home last wave or before
- · Oversampling the minority group of nursing home entrants

Extension: Methodology

Extension: Results

	Table 2: Pseudo	R-squared				
			Men			
	White	Hispanic	Black	White	Hispanic	Black
Basic Controls	0.241	0.172	0.169	0.220	0.144	0.122
SHRS	0.285	0.209	0.206	0.266	0.194	0.176
Frailty	0.315	0.231	0.214	0.303	0.272	0.234
Frailty and SHRS	0.319	0.250	0.227	0.308	0.291	0.244
and Household Characteristics (HC)*	0.319	0.259	0.242	0.310	0.334	0.253
and Income and Assets (I&A)*	0.320	0.246	0.239	0.311	0.309	0.256
and both HC and I&A*	0.323	0.262	0.251	0.313	0.335	0.264
		Percent	t Change fro	om Basic Co	ontrols	
SHRS	18%	21%	22%	21%	35%	44%
Frailty	31%	34%	27%	38%	89%	92%
Frailty and SHRS	32%	45%	34%	40%	102%	102%
and Household Characteristics (HC)	32%	50%	43%	41%	132%	108%
and Income and Assets (I&A)	33%	43%	41%	41%	114%	110%
and both HC and I&A	34%	52%	48%	42%	133%	117%

^{*}Average Pseudo R-squared across 4 folds of 75%/25% stratified K-Fold cross validation training/test sets

Extension: Machine Learning

- L1/L2 Regularization (Elastic Net)
- · Random Forest
- Gradient Boosting

Table 3: Model	Comparisons	(Pseudo R-s	quared)					
		Women			Men			
	White	Hispanic	Black	White	Hispanic	Black		
Logistic Regression	0.323	0.262	0.251	0.313	0.335	0.264		
Logistic Regression with $\rm L1/L2$ Regularization	0.323	0.258	0.251	0.314	0.329	0.265		
Random Forest	0.490	0.532	0.469	0.491	0.624	0.511		
XGBoost	0.616	0.8919	0.739	0.6393	0.9129	0.8274		

 $Note: Average\ Pseudo\ R-squared\ across\ 4\ folds\ of\ 75\%/25\%\ stratified\ K-Fold\ cross\ validation\ training/test\ sets$

Table 3: Model Comparisons (Pseudo R-squared)								
		Women			Men			
	White	Hispanic	Black	White	Hispanic	Black		
Logistic Regression	0.323	0.262	0.251	0.313	0.335	0.264		
Logistic Regression with $\rm L1/L2$ Regularization	0.323	0.258	0.251	0.314	0.329	0.265		
Random Forest	0.490	0.532	0.469	0.491	0.624	0.511		
XGBoost	0.616	0.8919	0.739	0.6393	0.9129	0.8274		

Note: Average Pseudo R-squared across 4 folds of 75%/25% stratified K-Fold cross validation training/test sets

"McFadden (1977) argues that values between 0.2 and 0.4 denote an "excellent fit" of the full model."

$$F_1$$
 score = $2 \cdot \frac{\text{Precision} \cdot \text{Recall}}{\text{Precision} + \text{Recall}}$

Where:

$$\begin{aligned} \text{Precision} &= \frac{\text{True Positives}}{\text{True Positives} + \text{False Positives}} \\ \text{Recall} &= \frac{\text{True Positives}}{\text{True Positives} + \text{False Negatives}} \end{aligned}$$

Table 4: Model Comparisons (F1 Score)

	Women				Men			
	White	Hispanic	Black	White	Hispanic	Black		
Logistic Regression	0.974	0.992	0.982	0.985	0.992	0.983		
Random Forest	0.8869	0.9327	0.9107	0.892	0.9553	0.9321		
XGBoost	0.9104	0.9728	0.9422	0.9195	0.9818	0.9645		
	Percent Change from Logistic Regression							
Random Forest	-9.0%	-5.9%	-7.2%	-9.5%	-3.7%	-5.1%		
XGBoost	-6.6%	-1.9%	-4.0%	-6.7%	-1.0%	-1.8%		

 $Note: Average \ Pseudo \ R-squared \ across \ 4 \ folds \ of \ 75\%/25\% \ stratified \ K-Fold \ cross \ validation \ training/test \ sets$

Extension: Summary

- 1. Incorporate additional measures of family structure
- 2. Incorporate additional measures of income and assets
- 3. Improve existing predictions of nursing home entry with additional measures
- 4. Logistic regression v. machine learning