Homework 1

Liu Huihang

SA 18017026 QQ: 184050473

MAIL: huihang@mail.ustc.edu.cn

Problem 1 Let $X_1, ..., X_n \sim F$ and let $F_n(x)$ be the empirical distribution function, for a fixed x, find limiting distribution of $\sqrt{F_n(x)}$.

Solution

We have $F_n = \frac{1}{n} \sum_{i=1}^n I(X_i \leq x)$, and $F_n \sim \frac{1}{n} Binomial(n, F(x))$. By CLT, we get $\frac{nF_n(x) - nF(x)}{\sqrt{n}\sqrt{nF(x)(1-F(x))}} = \frac{F_n(x) - F(x)}{\sqrt{(F(x)(1-F(x)))}} \rightsquigarrow N(0,1)$. Thus, $F_n \rightsquigarrow N(F(x), F(x)(1-F(x)))$. Finally, we get $\sqrt{F_n} \rightsquigarrow ?$

So,
$$\hat{\tau} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} F_n(X_i)}$$
.
Thus, $T(F_n) \leadsto N(\sqrt{F}, \frac{1}{n^2} \sum_{i=1}^{n} F_n(X_i))$

Problem 2 Let x, y be two distinct real numbers, find $Cov(F_n(x), F_n(y))$, where F_n be the empirical distribution function.

Solution

Assume that x < y. We have $F_n(x) = \frac{1}{n} \sum_{i=1}^n I(X_i \le x)$, and $F_n(x) \sim \frac{1}{n} Binomial(n, F(x))$. This gives

$$Cov(F_n(x), F_n(y)) = E[F_n(x) - E(F_n(x))][F_n(y) - E(F_n(y))]$$

= $E[F_n(x)F_n(y)] - E[F_n(x)]E[F_n(y)]$

where

$$n^{2}E[F_{n}(x)F_{n}(y)] = E\left[\sum_{i=1}^{n} I(X_{i} \leq x) \sum_{j=1}^{n} I(X_{j} \leq y)\right]$$

$$= E\left[\sum_{i=1}^{n} \sum_{j=1}^{n} I(X_{i} \leq x)I(X_{j} \leq y)\right]$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} E[I(X_{i} \leq x)I(X_{j} \leq y)]$$

$$= \sum_{i=1}^{n} E[I(X_{i} \leq x)I(X_{i} \leq y)] + \sum_{i,j=1; i \neq j}^{n} E[I(X_{i} \leq x)] E[I(X_{j} \leq y)]$$

$$= nF(x) + n(n-1)F(x)F(y)$$

and
$$E[F_n(x)]E[F_n(y)] = F(x)F(y)$$
.
Thus, $Cov(F_n(x), F_n(y)) = \frac{F(x) + (n-1)F(x)F(y)}{n} - F(x)F(y) = \frac{F(x) - F(x)F(y)}{n}$

Problem 3 Let $X_{(1)} \leq \cdots \leq X_{(n)}$ be order statistics from continuous population F, prove that for any $0 < \beta < 1$

$$P(F(X_{(n)}) - F(X_{(1)}) > \beta) = 1 - n\beta^{n-1} + (n-1)\beta^n.$$

Solution

We have $\mathbf{P}\left(F(X_{(n)}) \leq x, F(X_{(1)}) \leq y\right) = x^n \left(1 - (1-y)^n\right)$ which leads to the joint probability density of $F(X_{(n)})$ and $F(X_{(1)}), f_{F(X_{(n)}), F(X_{(1)})}(x,y) = \frac{\partial}{\partial x \partial y} x^n \left(1 - (1-y)^n\right) = n^2 x^{n-1} (1-y)^{n-1}$.

Thus,
$$\mathbf{P}(F(X_{(n)}) - F(X_{(1)}) > \beta) = \int_{x-y>\beta} f_{F(X_{(n)}), F(X_{(1)})}(x, y) dx dy = \int_0^{1-\beta} \int_{y+\beta}^1 n^2 x^{n-1} (1-y)^{n-1} dy dx = \int_0^{1-\beta} (1-(y-\beta)^n)(1-y)^{n-1} dy = 1-\beta^n - \int_0^{1-\beta} (y+\beta)^n (1-y)^{n-1} dy = F(X_{(n)})$$

Problem 4 Let X_1, \ldots, X_n be simple samples from U(0,1), prove that sample median $\hat{\xi}_{n,1/2}$ has asymptotic distribution $N(\frac{1}{2}, \frac{1}{4n})$.