MATH 135 - Algebra for Honours Math

Kevin Carruthers Winter 2013

Implications

Definition: An impication is a statement S such that a hypothesis (or assumption) H ensures the validity of the conclusion C, and may either be true or false. An implication is only false if a hypothesis is true and the conclusion is false (ie a counter-example exists). In other words, for $S: P \implies Q$ (P implies Q), S is true unless P is true and Q is false.

Note that this can give confusing results such as

- If 1 = 2, then 2 = 2
- If 1 = 2, then 2 = 3

Because 1 = 2 is a false hypothesis, both of these implications are true, regardless of the vailidty of their conclusion.

Direct Proof

For a direct proof, we start by assuming the hypothesis, and derive the conclusion.

- 1. Always assume the hypothesis is true.
- 2. Never assume the conclusion is true.
- 3. Starting from the hypothesis, think of what can be derived using definitions, theorems, and logical deductions.
- 4. Look toward the conclusion, think of what needs to be achieved to prove the conclusion.

Proposition: For $S_0 = A \implies B$, $S_1 = B \implies C$, and $S_2 = A \implies C$, prove S_2 given S_0 and S_1 .

Proof:

Assume A. Since both A and $A \Longrightarrow B$ are true, B is true. Since B and $B \Longrightarrow C$ are true, C is true. Thus $A \Longrightarrow C$ is true. QED.

Proposition: Given S_0 , S_1 , and S_2 , assume S_0 and S_2 are true. Must S_1 be true? Proof:

 $B \Longrightarrow C$ is false if and only if B is true and C is false. If C is false, we have A is false, so we have both $A \Longrightarrow B$ and $A \Longrightarrow C$ are true, but $B \Longrightarrow C$ is false. Thus S_0 and S_2 do not imply S_1 . QED.

Divisibility

Definition: An integer m divides an integer n if there exists an integer k such that n = km. This is denoted as $m \mid n$.

Proposition: Transitivity of Divisibility

Let a, b, and c be integers. If $a \mid b$ and $b \mid c$, then $a \mid c$.

Proof:

Since $a \mid b$, there exists an integer k such that b = ka.

Since $b \mid c$, there exists an integer j such that c = jb.

Then c = jka. Since $jk \in \mathbb{Z}$, we have $a \mid c$. QED.

Sets

A set is a collection of objects. We use the notation $e \in S$ for element e in set S. Sets can not have duplicate elements and may be defined in any order. They may be described in set builder notation $S = \{x_0, x_1, ..., x_n\}$, $T = \{2k + 1 \mid k \in \mathbb{R}\}$

If S and T are sets, the **cartesian product** of S and T is

$$S \times T = \{(a, b) \mid a \in S, b \in T\}$$

The order of elements within each pair does matter.

For a finite set S, the **coordinality** of S is the number of elements in S, denoted |S|. Note that $|S \times T| = |S||T|$. The empty set is the only one with a coordinality of 0.

Operations

Note that we use \land , \lor , and \neg to denote "and", "or", and "not".

- 1. Union: $S \cup T = \{x \mid x \in S \lor x \in T\}$
- 2. Intersection: $S \cap T = \{x \mid x \in S \land x \in T\}$
- 3. Complement: $S^c = \{x \mid x \notin S\}$. Note that $S^{c^c} = S$.
 - Complements are transitive, ie $(A \cap B)^c = A^c \cap B^c$.
- 4. Difference (relative complement of B in A): $S \setminus T = \{x \mid x \in S \land x \notin T\}$. In other words, $S \setminus T = S \cap B^c$.

• Relative complements are inversely transitive, ie $X \setminus (A \cap B) = (X \setminus A) \cup (X \setminus B)$.

Subsets

Definition: S is a subset of T ($S \subseteq T$) if and only if for every $x \in \mathbb{R}$, $x \in S \implies x \in T$. Note that $S \subseteq S$ and the zero set is a subset of every other set.

For a set S, the **power set** is the set of all possible subsets of S, denoted by $\mathcal{P}(S)$ or 2^S

Example: for
$$S = \{1, 2\}$$
, $\mathcal{P}(S) = \{\{\}, \{1\}, \{2\}, \{1, 2\}\}$ thus $\{2\} \in \mathcal{P}(S)$ but $2 \notin \mathcal{P}(S)$ so $\{\{2\}\}\subseteq \mathcal{P}(S). |\mathcal{P}(S)| = 4$, or $|\mathcal{P}(n)| = 2^{|n|}$

Equality

A = B if and only if for every $x \in \mathbb{R}$, $(x \in A \iff x \in B)$. From the definitions of a subset, we also have $A = B \iff A \subseteq B$ and $B \subseteq A$.

Proposition: $S \cap (T \cup U) = (S \cap T) \cup (S \cap U)$

Proof:

Let $x \in S \cap (T \cup U)$.

So $x \in S$ and $x \in T \cup U$.

We have two cases:

If $x \in T$, $x \in S \cap T$.

If $x \in U$, $x \in S \cap U$.

Therefore, $x \in (S \cap T) \cup (S \cap U)$. QED.

Quantifiers

The universal quantifier \forall means "for all" and the existential quantifier \exists means "there exists".

Examples:

 $\forall x, x = 3 \text{ is false if } x \in \mathbb{Z} \text{ but true if } x \in \{3\}$

 $\exists y, y < 1 \text{ is true if } y \in \mathbb{Z} \text{ but not if } y \in \mathbb{N}$

We can thus compare these qualifiers to logical statements. For example

$$\forall x, P(x) = P(x_0) \land P(x_1) \land P(x_2)...$$

and

$$\exists x, P(x) = P(x_0) \lor P(x_1) \lor P(x_2)...$$

Proving Statements Containing Quantifiers

Note that some quantifiers can be hidden in words. For example, the mathematical definition of divisibility is $a \mid c \implies \exists k \in \mathbb{Z} \mid c = ka$

- 1. To prove that something exists, construct this thing.
- 2. To prove a universal property, select an arbitrary member of the universe and prove the property for this instance.

Nested Qualifiers

Proposition: $\forall x \in \mathbb{R}, \exists y \in \mathbb{R} \mid y < x$

Proof:

Let $x \in \mathbb{R}$,

Then y = x - 1 satisfies $y \in \mathbb{R}$ and y < x. QED.

but **Proposition:** $\exists y \in \mathbb{R}, \forall x \in \mathbb{R} \mid y < x$

Proof:

If such a y exists, then x = y does not satisfy y < x.

This is a contradiction, thus the proposition is false. QED.

Proposition: $\forall x \in \mathcal{P}(\mathbb{N}), x \notin \{\} \implies \exists y \in x, \forall z \in x \mid y < z\}$

Proof:

Can be accepted logically. QED.

Binary Relations

Let X be a set. A **binary relation** on X is a two-variable predicate \mathcal{R} defined on X (ie for $\{(x,y) \in X \times X\}, \mathcal{R}(x,y)$ may be either true or false). When $\mathcal{R}(x,y)$ holds, we say x is \mathcal{R} -related to y and write $x\mathcal{R}y$.

Equality, ordering, and divisibility are all examples of relations. We also have

$$A \subseteq B \iff \forall x \in S, (x \in A \implies x \in B)$$

and for any $A, B \in \mathcal{P}(S)$ the disjointedness relation

$$A\perp B\iff A\cap B=\{\}$$

For a binary relation on set X, the relation is

- Reflexive if $\forall x \in X, x \mathcal{R} x$
- Symmetric if $\forall x, y \in X, x \mathcal{R} y \implies y \mathcal{R} x$
- Transitive if $\forall x, y, x \in X, x\mathcal{R}y \land y\mathcal{R}z \implies x\mathcal{R}z$

Equivalence Relations

Let X be a non-empty set. An **equivalence relation** on X is a binary relation on X that is reflexive, symmetric, and transitive. The most common example of this is for $S = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid x = y\}, x\mathcal{R}y$ is an equivalent relation.

Implication Modifiers

Converses

The **converse** of $A \implies B$ is $B \implies A$. Note that the converse does not necessarily have the same truth value as the original implication. If both statements are true, then the elements within them are equivalent.

Negations

Let A, B, and C be statements. Then

1.
$$\neg (A \land B) \iff (\neg A) \lor (\neg B)$$

$$2. \neg (A \lor B) \iff (\neg A) \land (\neg b)$$

$$3. \ \neg (A \implies B) \iff A \land \neg B$$

$$4. \ \neg(\neg A)) \iff A$$

Let S be a set, P(x) is a statement dependant on $x \in S$. Then

1.
$$\neg(\forall x \in S, P(x)) \iff \exists x \in S, \neg P(x))$$

$$2. \ \neg (\exists x \in S, P(x)) \iff \forall x \in S, \neg P(x))$$

To find the negation of P(x), we can do the following

$$P(x) = \exists y \in \mathbb{R}, \forall x \in \mathbb{R} \mid y < x$$

$$\neg P(x) = \neg(\exists y \in \mathbb{R}, \forall x \in \mathbb{R} \mid y < x)$$

$$= \forall y \in \mathbb{R}, (\neg(\forall x \in \mathbb{R} \mid y < x))$$

$$= \forall y \in \mathbb{R}, \exists x \in \mathbb{R} \mid y \geq x$$

Contrapositive

Definition: The contrapositive of $P \implies Q$ is $\neg Q \implies \neg P$. A statement and its contrapositive are equivalent, and it can sometimes be easier to prove the contrapositive.

Proposition: For $n \in \mathbb{Z}$, if n^2 is even then n is even

```
Proof: Suppose n is odd. Then n=2k+1 for some k\in\mathbb{Z}. So n^2=(2k+1)^2=4k^2+4k+1. Then n^2 is odd. Thus we have n is odd \implies n^2 is odd, so n^2 is even \implies n is even. QED.
```

Use a contrapositive when the hypothesis does not give much to work with or when the negation of the implication is nicer.

Contradiction

Assume the conclusion is false (or the contrapositive is false). If you derive something impossible, the assumption must be wrong.

Uniqueness

To prove the existence of x, suppose there are two of them x and y. Try to prove either it must be the case that x = y, or assume $x \neq y$ and reach a contradiction.

Deduction Overview

Methods of deduction:

- Direct: assume the hypothesis and find the conclusion.
- Example: especially with quantifiers, find an example which breaks the implication.
- Contrapositive: prove the contrapositive.
- Absurdity: Assume the implication (or contrapositive) is false, try to find something blatantly contradictory.

Induction

Induction is useful when proving general statements $\forall x$.

Principle of Mathematical Induction

Suppose P(n) is a statement for $n \geq n_0$. If

1. $P(n_0)$ is true, and

2. $\forall k \geq n_0, P(k) \implies P(k+1)$.

Then, by induction, P(n) is true $\forall n \geq n_0$.

Weak Induction

Weak induction is a general technique based directly on the Principle of Mathematical Induction (henceforth referred to as POMI), and is suited to proving statements of the form " $\forall n \geq n_0, P(n)$ ". It consists of two steps:

- 1. the base case (prove $P(n_0)$), and
- 2. the **induction step** (chose an arbitrary $k \ge n_0$ for which we assume P(k), then prove P(k+1)).

Then we simply invoke the POMI to conclude $\forall n, P(n)$.

Proposition: $\forall n \geq 2, (1+x)^n > 1+nx$

Proof:

For n=2 we have

$$P(2) = (1+x)^{2}$$

$$= 1 + 2x + x^{2}$$

$$> 1 + 2x + 0$$

$$> 1 + 2x$$

This proves P(2)

Assume that $(1+x)^k > 1 + kx$. Then

$$P(k+1) = (1+x)^{k+1}$$

$$= (1+x)^k (1+x)$$

$$> (1+kx)(1+x)$$

$$> 1+kx+x+kx^2$$

$$> 1+(k+1)x+0$$

$$> 1+(k+1)x$$

So $\forall k \geq 2, P(k) \implies P(k+1)$. Thus, by POMI, $\forall n \geq 2, (1+x)^n > 1 + nx$. QED.

Strong Induction

Strong induction is an alternative to weak induction which may be used when P(k+1) is dependant on either multiple past cases or a single past case P(j) where the relative location of j < k cannot be determined.

Principle of Strong Induction, v1

Definition: Let P(n) be a property concerning integers $n \geq n_0$. Suppose that the following are true:

- 1. $P(n_0)$, and
- 2. $\forall k \ge n_0, \forall n_o \le j \le k, P(j) \implies P(k+1)$

Then $\forall n, P(n)$.

Proposition: Every natural number n > 1 can be expressed as a product of primes.

Proof:

For any $n \geq 2$, if n is prime then n is the product of a single prime (itself). Thus n is prime $\implies P(n)$.

Assume n is composite. By definition $\exists m \mid 1 < m < n \land m \mid n$.

For $n = md, d \in \mathbb{N}$, we have 1 < d < n.

By induction hypothesis, $P(m) \wedge P(d)$, which means we can express m and d as products of primes. The we can write

$$m = p_0 p_1 ... p_s$$

and

$$d = q_0 q_1 ... q_t$$

SO

$$n = md = (p_0p_1...p_s)(q_0q_1...q_t)$$

is a product of primes. By POSI, $\forall n \geq 2, n$ is a product of primes. QED.

Principle of Strong Induction, v2

The first version of POSI can fail given certain low values of k (for certain P(n) we may have $P(n) \iff n \ge b \land b \ge n_0$). We thus modify POSI to separately verify the multiple base cases of P(j) for $n_o \le j \le b$.

Definition: Let P(n) be a property concerning integers $n \geq n_0$. Suppose, for some integer $b \geq n_0$, the following are true:

- 1. $P(n_0), P(n_0 + 1), ..., P(b)$, and
- 2. $\forall k \ge b, \forall n_o \le j \le k, P(j)$

Proposition: $\forall n \geq 60, n = 7x + 11y; n, x, y \in \mathbb{Z}, x, y \geq 0$. Use the following equalities:

$$1 = 7(-3) + 11(2) \tag{1}$$

$$1 = 7(8) + 11(-5) \tag{2}$$

$$60 = 7(7) + 11(1) \tag{3}$$

Proof:

Equation (3) clearly verifies P(60).

Since we have x is multiplied by 7 and 7 < 11, we take P(j) with $60 \le j \le 66$ as the base cases, all of which can be verified with a list of equations (omitted).

Assume that $k \ge 67$ is such that P(j) holds for all $60 \le j < k$.

Since $k \ge 67, k-7 \ge 60$ and so P(k-7) is true, thus

$$k - 7 = 7x + 11y$$

for some x and y. We can manipulate this equation to have

$$k = 7(x+1) + 11y$$

and since $x + 1 \in \mathbb{Z} \land x + 1 \ge 0, P(k)$.

Thus we have shown that whenever $k \geq 67$, P(60), ...P(k-1) all true imply P(k). By POSI, this proposition is true. QED.

Properites of Various Things

Divisibility

Proposition: Divisibility of Integer Combinations

Let $a, b, c \in \mathbb{Z}$. $a \mid b \wedge a \mid c \implies a \mid bx + cy, \forall x, y \in \mathbb{Z}$

Proof:

Since $a \mid b \land a \mid c$, there exists $k, l \in \mathbb{Z}$ such that b = ka and c = la

Then bx + cy = kax + lay = a(kx + ly). Since $kx + ly \in \mathbb{Z}$, $a \mid bx + cy$. QED.

Proposition: Bounds by Divisibility

 $Let \ a,b \in \mathbb{Z}.a \mid b \wedge b \neq 0 \implies |a| \leq |b|$

Proof:

Since $a \mid b$, there exist $k \in \mathbb{Z}$ such that b = ka.

Then $|b| = |ka| = |k||a| \ge |a|$. QED.

Division Algorithm

Proposition: Let $a \in \mathbb{Z} \wedge b \in \mathbb{N}$. Then there exist unique integers q, r such that a = qb + r where $0 \le r < b$

Greatest Common Divisors

Definition: For any $a, b \in \mathbb{Z}$ not both 0, the greatest common divisor of a and b, denoted gcd(a,b), is the integer d such that $d \mid a \land d \mid b$ and $c \mid a \land c \mid b \implies c \leq d$.

Proposition: GCD with Remainders

If $a, b, q, r \in \mathbb{Z}$ such that a = qb + r, then gcd(a, b) = gcd(b, r)

Proof:

Let $d = \gcd(a, b)$.

Since d is a common divisor of $a, b, d \mid b$.

We see that r = a - qb. Since a - qb is an integer combination of a and b, $d \mid a - qb$, so $d \mid r$.

Let c be a common divisor of b and r. So $c \mid b \land c \mid r$.

Since qb + r is an integer combination of b and r, $c \mid qb + r$. So $c \mid a$. Therefore, c is a common divisor of a, b. Since $d = \gcd(a, b), c \le d$.

Thus $d = \gcd(b, r)$ so $\gcd(a, b) = \gcd(b, r)$. QED.

Proposition: GCD Characterization

For $a, b \in \mathbb{Z}$, if $d \mid a, d \mid b, d \geq 0$, and $\exists x, y \in \mathbb{Z}$ such that ax + by = d, then $d = \gcd(a, b)$.

Proof:

If a = b then gcd(a, b) = 1 so then x = 1, y = 0 is an integer solution to ax + by = a.

Without loss of generality, assume a > b. Define function E(a, b) to be the number of steps required when feeding (a, b) into the Euclidean algorithm. We will prove by induction on E(a, b).

E(a,b) = 1 so $b \mid a$. Then gcd(a,b) = b.

Assume for some $k \ge 1$ the result holds when E(a, b) = k.

Suppose E(a, b) = k + 1. In the first step of the alogirthm, we calculate a = qb + r and gcd(a, b) = gcd(b, r).

Let $d = \gcd(a, b)$. Then E(b, r) = k, so there exists $x_0, y_0 \in \mathbb{Z}$ such that $bx_0 + ry_0 = \gcd(b, r) = d$.

Substitute r = a - qb to get $d = bx_0 + (a - qb)y_0 = ay_0 + b(x_0 - qy_0)$.

Then $x = y_0, y = x_0 - qy_0$ is an integer soution to ax + by = d. QED.

Coprimes

Definition: For $a, b \in \mathbb{Z}$, a and b are coprime if $\gcd(a, b) = 1$.

Proposition: Coprimesness and Divisibility

If $a,b,c \in \mathbb{Z}$ where $c \mid ab$ and a and c are coprime, then $c \mid b$.

Proof:

Since gcd(a, c) = 1, there exist x, y such that ax + cy = 1. Then bax + bcy = b.

Since $c \mid ab \land c \mid c$, $c \mid bax + bcy$ (by integer combination) so $c \mid b$. QED.

Proposition: Primes and Divisibility

If $a, b \in \mathbb{Z}$, p is prime and $p \mid ab$, then $p \mid a$ or $p \mid b$.

Proof:

Assume $p \nmid a$. Since the only positive factors of p are 1 and p and $p \nmid a$, gcd(p, a) = 1. Given Coprimeness and Divisibility, $p \mid b$. So $p \mid a \lor p \mid b$. QED.

Proposition: Division by GCD

If $a, b \in \mathbb{Z}$ where $d = \gcd(a, b > 0 \text{ then } \gcd(\frac{a}{d}, \frac{b}{d}) = 1$

Linear Diophantine Equations

Definition: An LDE has the form $a_0x_0 + a_1x_1 + ... + a_nx_n = c$ where $a_0, ... a_n, c \in \mathbb{Z}$ and $x_0, ... x_n$ are integer variables.

Given the one variable case ax = c, there exists a solution if and only if $a \mid c$. If there is a solution, that solution is unique. For the two variable case ax + by = c the set of all solutions is $\{(x_0, y_0) \in \mathbb{Z} \times \mathbb{Z} \mid ax_0 + by_0 = c\}$.

Generally, ax + by = c has an integer solution whenever $gcd(a, b) \mid c$.

Proposition: LDE 1

Let $a, b, c \in \mathbb{Z}$, $d = \gcd(a, b)$. Then ax + by = c has an integer solution if and only if $d \mid c$.

Proposition: LDE 2

Let $a, b, c \in \mathbb{Z}$, $d = \gcd(a, b) > 0$. If (x_0, y_0) is an integer solution to ax + by = c, the complete set of integers is $\{(x_0 + \frac{b}{d}n, y_0 - \frac{a}{d}n) \mid n \in \mathbb{Z}\}$.

Primes

Euclid's Theorem hols that there are infintiely many primes. Note that every integer greater than two is a product of primes.

Proposition: Each composite integer n has a prime divisor of at most \sqrt{m}

Fundamental Theorem of Arithmetic

Proposition: Every integer greater than one can be expressed uniquely as a product of primes (up to the order of the factors).

Prime Factorization

Each positive integer can be writen as $n = p_0^{n_0} p_1^{n_1} \dots p_k^{n_k}$ where each p is a distinct prime and each p is a non-negative integer.

Proposition: If $a = p_0^{n_0} p_1^{n_1} ... p_k^{n_k}$ is a prime factorization of a, then d is a positive divisor of a if and only if $d = p_0^{d_0} p_1^{d_1} ... p_k^{d_k}$ where $d_i \leq a_i$ for each i.

Proposition: If $a = p_0^{a_0} p_1^{a_1} ... p_k^{a_k}$ and $b = p_0^{b_0} p_1^{b_1} ... p_k^{b_k}$ are prime factorizations of a and b, then $gcd(a,b) = p_0^{d_0} p_1^{d_1} ... p_k^{d_k}$ where $d_i = min(a_i,b_1)$ for all i.

Congruences

Definition: Let m be a fixed positive integer and $a, b \in \mathbb{Z}$. Then a is congruent to b module m if $m \mid a - b$. We write $a \equiv b \pmod{m}$. Equivelently, $a \equiv b \pmod{m}$ if a = b + km for some $k \in \mathbb{Z}$.

Note that congruences are reflexive, symmetric, and transitive.

Arithmetic of Cogruences

Proposition: Let $a, b, a', b' \in \mathbb{Z}, m \in \mathbb{N}$. If $a \equiv a' \pmod{m}$ and $b \equiv b \pmod{m}$ then

- $a + b \equiv a' + b' \pmod{m}$
- $a b \equiv a' b' \pmod{m}$
- $ab \equiv a'b' \pmod{m}$

Modular Arithmetic

Definition: Let $m \in \mathbb{N}$. For any $a \in \mathbb{Z}$, we define $[a] = \{k \in \mathbb{Z} \mid a \equiv k \pmod{m}\}$. In turn, this allows us to define $\mathbb{Z}_m = \{[0], [1], ...[m-1]\}$.

Within \mathbb{Z}_5 we have [3] + [4] = [7] = [2] and [1] - [3] = [1] + [2] = [3].

The main point of this: $a \equiv b \pmod{m} \iff [a] = [b]$ in \mathbb{Z}_m .

This also gives us two representations of Fermat's Little Theorem:

- If p is prime and $p \nmid a$ where $a \in \mathbb{Z}$, then $a^{p-1} \equiv 1 \pmod{p}$
- In \mathbb{Z}_p , if $[a] \neq [0]$ then $[a^{p-1}] = 1$

Linear Congruences

 $ax \equiv b \pmod{m} \iff [a][m] = [b] \text{ in } \mathbb{Z}_m.$

Proposition: $ax \equiv b \pmod{m}$ has an integer solution if and only if $gcd(a, m) \mid b$.

Chinese Remainder Theorem

The CRT deals with simultaneous congruences. Example $n \equiv a_1 \pmod{m}_1$ and $n \equiv a_2 \pmod{m}_2$.

Proposition: If m_1 and m_2 are coprime, then there exists a solution to this set of congruences. If n_0 is one such solution, the entire set of solutions can be given by $n \equiv n_0 \pmod{m_1 m_2}$.

Generalized form: if $m_0, m_1, ...m_k \in \mathbb{N}$ where all are coprime, then for any $a_0, a_1, ...a_k \in \mathbb{Z}$, the set of congruences has a solution. If n_0 is a solution, then the complete solution set is $n \equiv n_0 \pmod{m_0 m_1 ... m_k}$.

System of Linear Congruences

For the system of linear congruences $2x + 4y \equiv 5 \pmod{13}$ and $2x + 5y \equiv 7 \pmod{13}$, we often write this as $\begin{bmatrix} 3 & 4 \\ 2 & 5 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \equiv \begin{bmatrix} 5 \\ 7 \end{bmatrix} \pmod{13}$. We can then use vector algebra to solve this. We solve for $A^{-1} = \det(A)^{-1} \begin{bmatrix} b & -b \\ -c & a \end{bmatrix}$, and use $\begin{bmatrix} x \\ y \end{bmatrix} = A^{-1} \begin{bmatrix} 5 \\ 7 \end{bmatrix} \pmod{13}$.

Square and Multiply

Example problem: Find the remainder of $\frac{a^n}{m}$ when n is large.

Example: find the remainder of $9^{1}9$ divides by 100.

 $9^1 \equiv 9 \pmod{100}$

 $9^2 \equiv 81 \pmod{100}$

 $9^4 \equiv 81^2 \equiv 61 \pmod{100}$

 $9^8 \equiv 61^2 \equiv 21 \pmod{100}$

 $9^{16} \equiv 21^2 \equiv 41 \pmod{100}$

 $9^{19} \equiv 41(81)9 \equiv 89 \pmod{100}$.

While technically valid, this method takes $2\log_2(n)$ steps. One possible optimization is to use FLT as a shortcut.

Complex Numbers

The set of complex numbers is defined as $\mathbb{C} = \{a + bi \mid a, b \in \mathbb{R}\}$. The standard form of one such number is z = a + bi, where a is the **real part** and bi is the **imaginary part**.

We also define the conjugate $\overline{a+bi}=a-bi$ and the modulus $|a+bi|=\sqrt{a^2+b^2}$.

Complex numbers are commutative and distributive under addition and multiplication. The additive identity is 0 and the additive inverse of a = bi is -a - bi. The multiplicative identity is 1 and the multiplicative inverse of a + bi is $\frac{a - bi}{a^2 + b^2}$.

Properties of Complex Numbers

1.
$$|z| = 0 \iff z = 0$$

$$2. \ z \cdot \overline{z} = |z|^2$$

$$3. |zw| = |z| \cdot |w|$$

4.
$$|z+w| \le |z| + |w|$$
 (this is the triangle inequality for complex numbers)

Complex Angles

We write $\cos \theta + i \sin \theta$ as $e^{i\theta}$ and for $z = a + bi = r(\cos \theta + i \sin \theta) = re^{i\theta}$.

Thus we have

•
$$\cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2}$$

•
$$\sin \theta = \frac{e^{i\theta} - e^{-i\theta}}{2i}$$

•
$$\cosh \theta(x) = \frac{e^x + e^{-x}}{2}$$

•
$$\sinh \theta(x) = \frac{e^x - e^{-x}}{2}$$

So we know $\cos(x) = \cosh(ix)$ and $\sin(x) = -i\sinh(ix)$.

Nth Roots

For $a, z \in \mathbb{C}$, we want $z^n = a$. Suppose $a = re^{i\theta}$ and $z = se^{i\phi}$. Then $s = r^{\frac{1}{n}}$ and $\phi = \frac{\theta + 2\pi k}{n}$

Polynomials

Definition: Let \mathbb{F} be a field (informally, a number system closed under arithmetic operations, i.e. \mathbb{R}). A polynomial in x over \mathbb{F} is anything of the form $\sum_{i=0}^{n} a_i x^i = a_n x^n + a_{n-1} x_{n-1} + ... a_1 x + a_0$ where $n \geq 0$, $n \in \mathbb{N}$, $a_n, a_{n-1}, ... a_1, a_0 \in \mathbb{F}$. The set of all polynomials in x over \mathbb{F} is denoted as $\mathbb{F}(x)$.

Polynomials such as $x^2 + 1$ can not be factored in \mathbb{R} , but it can be factored in \mathbb{C} with (x+i)(x-i). In \mathbb{Z}_2 , we can factor it as $(x+1)^2$, but it is not factorizable in \mathbb{Z}_n , $n \neq 2$. Thus the same polynomial can act quite differently given varying \mathbb{F} .

For any two polynomials in \mathbb{F} , we define addition and subtraction in the obvious way (by coefficient terms) as $f(x) \pm g(x) = \sum_{i=0}^{n} (a_i \pm b_1)x^i$. Multiplication is defined as $f(x)g(x) = \sum_{i=0}^{n} (a_i \pm b_1)x^i$.

$$\sum_{i=0}^{n} \left(\sum_{j=0}^{i} a_{j} b_{i-j} \right) x^{i}$$
 (note that this equation also works for power series). This also gives us

the power formula
$$f^k(x) = \sum_{i=0}^n \binom{k+i-1}{i-1} x^i$$
.

Though there is no formula for division, we do have the **division algorithm for polynomials**: if $f(x), g(x) \in \mathbb{F}$ and g(x) is not the zero polynomial, then there exist unique polynomials in \mathbb{F} such that f(x) = p(x)g(x) + r(x) and the degree of r(x) is between zero and the degree of g(x).

Cryptography

Private Key

The keys must be kept between two users. Anyone with the key can decode the ciphertext, but otherwise they can not. Key exchange needs to be done privately. $\binom{100}{2} = 4950$ keys are required.

Key management among a large group of people is a problem.

Public Key

The key for encryption is published, thus we need a system where knowing the encryption key does not help in decrypting a message.

RSA

Key Generation:

- 1. Pick two big prime numbers p, q.
- 2. Let n = pq.
- 3. Let $\phi(n) = (p-1)(q-1)$.
- 4. Pick e that is coprime with $\phi(n)$.
- 5. Find d such that $ed \equiv 1 \pmod{\phi(n)}$.

The receiver published the public encryption key e, n and keeps the private decryption key d, n to themselves.

Encryption and Decryption:

We only encrypt integer messages M where $0 \le M < n$. For encryption, the cipher text C is one where $C \equiv m^e \pmod{n}$. The decrypted text D is one where $D \equiv C^d \pmod{n}$. This works when $M \equiv D \pmod{n}$ in all cases.

Example: Public key (19, 4307), private key (1099, 4307). We turn an English message into integers, so we have "PR" is M=1618. $C\equiv 1618^{10}\equiv 2762\pmod{4307}$. To decrypt C we have $D\equiv 2762^{1099}\equiv 1618\pmod{4307}$.

```
Proposition: D \equiv M \pmod n

Proof:

We have D \equiv M^{ed} \pmod n.

We then split n into p and q.

We first claim that M^{ed} \equiv M \pmod p.

Suppose p \nmid M. By FLT, M^{p-1} \equiv 1 \pmod p.

Since eD \equiv 1 \pmod \phi(n), \exists k \in \mathbb{Z} such that ed = 1 + k(p-1)(q-1).

Then M^{ed} \equiv M^{1+k(p-1)(q-1)} \equiv MM^{k(p-1)(q-1)} \pmod p.

Since M^{p-1} \equiv 1 \pmod p, this is equivalent to M1^{k(q-1)}, so M^{ed} \equiv M \pmod p.

Now suppose p \mid M. Then M \equiv 0 \pmod p and M^{ed} \equiv 0 \pmod p.

So M^{ed} \equiv M \pmod p.

By switching the roles of p and q, we get that M^{ed} \equiv M \pmod q.

This implies simultaneous congruence, and by CRT we have M^{ed} \equiv M \pmod pq. QED.
```

Propositions

This section is a summary of all propositions covered in this course.

Proposition (Transitivity of Divisibility (TD)). For $a,b \in \mathbb{Z}$, $a \mid b \land b \mid c \implies a \mid c$

Proposition (Divisibility of Integer Combinations (DIC)). For $a, b, c, x, y \in \mathbb{Z}$, $a \mid b \land a \mid c \implies a \mid bx + cy$.

Proposition (Bounds by Divisibility (BBD)). For $a, b \in \mathbb{Z}$, $a \mid b \land b \neq 0 \implies |a| \leq |b|$.

Proposition (Division Algorithm (DA)). For $a, b \in \mathbb{Z}$ and b > 0, $\exists q, r \mid a = qb + r \land 0 \le r < b$.

Proposition (GCD with Remainders (GCD WR)). For $a, b \in \mathbb{Z}$ not both zero, if we have integers q, r such that a = qb + r then gcd(a, b) = gcd(b, r).

Proposition (GCD Characterization Theorem (GCD CT)). If d is a positive common divisor of a and b, and there exists integers x and y such that ax + by = d, then $d = \gcd(a, b)$.

Proposition (Extended Euclidean Algorithm (EEA)). For $a, b \in \mathbb{Z}$ both positive, then $d = \gcd(a, b)$ can be computed and there exist integers x and y such that ax + by = d.

Proposition (Congruences and Division (CD)). $ac \equiv bc \pmod{m} \land \gcd(c, m) = 1 \implies a \equiv b \pmod{m}$.

Proposition (Fermat's Little Theorem (FLT)). If p is prime and $p \nmid a$, then $a^{p-1} \equiv 1 \pmod{p}$.

Proposition (Fermat's Little Theorem Corollary (FLT)). For any integer a and prime p, $a^p \equiv a \pmod{p}$.

Proposition (Existence of Inverses is \mathbb{Z}_p (INV \mathbb{Z}_p)). If p is prime and [a] is a non-zero element within \mathbb{Z}_p , then $\exists [b] \in \mathbb{Z}_p \mid [a] \cdot [b] = 1$

Proposition (Chinese Remainder Theorem (CRT)). For any set of linear congruences, if $gcd(m_0, ...m_k) = 1$, then the solution can be given by $n = n_0 \pmod{m_0...m_k}$.

Proposition (RSA). If p and q are distinct primes, n = pq, e and d are positive integers such that $ed \equiv 1 \pmod{(p-1)(q-1)}$, $0 \le M < n$, $M^e \equiv C \pmod{n}$, and $C^d \equiv R \pmod{n}$ where $0 \le R < n$, then R = M.

Proposition (Cardinality of Disjoint Sets (CDS)). If S and T are disjoint finite sets, then $|S \cup T| = |S| + |T|$

Proposition (Cardinality of Intersecting Sets (CIS)). If S and T are any finite sets, then $|S \cup T| = |S| + |T| - |S \cap T|$

Proposition (Cardinality of Subsets of Finite Sets (CSFS)). If S and T are finite sets and $S \subset T$, then |S| < |T|