Triangle rectangle.

On considère un triangle ABC rectangle en C.

On se place dans un repère $(O; \vec{i}, \vec{j})$.

On suppose connues les coordonnées de $A(x_A; y_A)$ et de $B(x_B; y_B)$.

On suppose de plus que $(\overline{AB}; \overline{AC}) = \alpha[2\pi]$.

On cherche les coordonnées du point C.

On note *I* le milieu du segment [*AB*].

Comme A, B et C appartiennent au cercle de centre I et de diamètre [AB] (car ABC est rectangle en C), le théorème de l'angle au centre nous permet d'affirmer que $(\overrightarrow{IB}; \overrightarrow{IC}) = 2\alpha[2\pi]$.

C est donc l'image de B par la rotation de centre I et d'angle 2α .

Le point *I* a pour coordonnées $\left(\frac{x_A + x_B}{2}; \frac{y_A + y_B}{2}\right)$.

En se plaçant dans le plan complexe, $z_C = (z_B - z_I)e^{i2\alpha} + z_I$.