Тема: Линейная регрессия, коэффициент корреляции

ЗАДАНИЕ. С целью анализа взаимного влияния зарплаты и текучести рабочей силы на пяти однотипных фирмах с одинаковым числом работников проведены измерения уровня месячной зарплаты X и числа уволившихся за год рабочих Y:

X	100	150	200	250	300
Y	60	35	20	20	15

Найти линейную регрессию Y на X, выборочный коэффициент корреляции.

Решение. Сначала найдем характеристики случайных величин X и Y (выборочное среднее и выборочное среднее квадратическое отклонение).

						Сумма
\mathcal{X}_{i}	100	150	200	250	300	1000
$(x_i - \overline{x})^2$	10000	2500	0	2500	10000	25000

Выборочная средняя
$$\bar{x} = \frac{1}{n} \sum x_i = \frac{1}{5} 1000 = 200$$

Выборочная дисперсия
$$\overline{D}_x = \frac{1}{n} \sum_{i} (x_i - \overline{x})^2 = \frac{1}{5} 25000 = 5000$$

Выборочное квадратическое отклонение $\sigma_{x} = \sqrt{\overline{D_{x}}} \approx 70,711$

y_i	60	35	20	20	15	150
$(y_i - \overline{y})^2$	900	25	100	100	225	1350

Выборочная средняя
$$\overline{y} = \frac{1}{n} \sum y_i = \frac{1}{5} 150 = 30$$

Выборочная дисперсия
$$\overline{D}_y = \frac{1}{n} \sum (y_i - \overline{y})^2 = \frac{1}{5} 1350 = 270$$

Выборочное квадратическое отклонение
$$\sigma_{y} = \sqrt{\overline{D_{y}}} \approx 16,432$$

Осталось подсчитать $\sum x_i y_i = 24750$. Подсчеты занесем в таблицу:

X_i	100	150	200	250	300	
y_i	60	35	20	20	15	Су
$x_i y_i$	6000	5250	4000	5000	4500	24

Сумма 24750

Коэффициент корреляции вычислим по формуле

Задача скачана с сайта www.MatBuro.ru ©МатБюро - Решение задач по высшей математике

$$r_{\hat{a}} = \frac{\sum x_i y_i - n \overline{xy}}{n \sigma_x \sigma_y} = \frac{24750 - 5 \cdot 200 \cdot 30}{5 \cdot 70,711 \cdot 16,432} \approx -0,904.$$

Уравнение регрессии У на X имеет вид $\frac{1}{y_x} - \frac{1}{y} = r_a \frac{\sigma_y}{\sigma_x} (x - x)$. Подставляем все величины:

$$\overline{y_x}$$
 - 30 = -0,904 $\frac{16,432}{70,711}$ (x - 200)

$$\overline{y_x} = -0,21x + 72,015$$