Algoritmos e Programação de Computadores

Segundo Semestre de 2014

Exercícios

- 1) Escreva funções que calculam as seguintes operações sobre matrizes quadradas com dimensão 10×10 :
 - adição de duas matrizes;
 - subtração de duas matrizes;
 - transposta de uma matriz e
 - multiplicação de duas matrizes.
- 2) Escreva uma função que verifica se ocorreu *xeque* em um determinado jogo xadrez. O tabuleiro de xadrez é representado por uma matriz inteira 8×8 . Neste matriz, o valor 0 indica a ausência de peça em uma daterminada posição do tabuleiro. Peças são representadas pelos valores indicados na Tabela 1.

Valor	Peça
1	Peão preto
2	Cavalo preto
3	Torre preta
4	Bispo preto
5	Rei preto
6	Rainha preta
7	Peão preto
8	Cavalo preto
9	Torre preta
10	Bispo preto
11	Rei preto
12	Rainha preta

Tabela 1: Valores que representam as peças de um jogo de xadrez.

3) Escreva um programa que recebe uma matriz de caracteres (letras ou números) e uma palavra e determina se esta palavra está na matriz. Uma palavra está em

uma matriz se sua seqüência de letras pode ser encontrada na matriz, de tal maneira que:

- a primeira letra da palavra existe na matriz e
- o restante da palavra está disposto em uma reta que se inicia na posição da primeira letra e segue em um dos oito sentidos diferentes (N, NE, L, SE, S, SO, O, NO);

Seu programa deve imprimir todas as posições iniciais em que a palavra pode ser encontrada na matriz (caso exista alguma).

Por exemplo, para a matriz 6×3

1	2	3	4	T	R
Α	S	Α	С	R	T
0	X	G	Т	В	K

e a palavra "CASA", seu programa deve imprimir a posição (1, 3).

Lembre-se de que seu programa deve também ler tamanho das dimensões da matriz. Assuma que o número de linhas e colunas desta matriz é sempre menor ou igual a 10.

- 4) O Jogo da Vida simula o comportamento de "células" em um universo discreto bidimensional governado por um conjunto de regras simples para nascimento, morte e sobrevivência. O universo é representado por um reticulado sobre um toro, isto é, todas as posições no universo têm oito posições vizinhas (quatro vizinhos de lado e quatro de canto). Cada posição do universo é ocupada por uma célula viva ou morta. O universo começa com uma população inicial de células vivas. A cada passo de tempo (iteração) uma nova geração de células é gerada baseada na população da geração anterior de acordo com as seguintes regras:
 - sobrevivência: um célula passa da geração corrente para a geração seguinte se ela tiver duas ou três células vizinhas vivas na geração corrente;
 - morte: uma célula viva morre ao fim da geração corrente se ela tem menos de duas (solidão) ou mais de três células vivas (inanição) na sua vizinhança;
 - nascimento: uma célula morta (re)nasce na geração seguinte caso ela tiver exatamente três células vivas na sua vizinhança na geração anterior.

Desenvolva um programa que implemente o jogo da vida seguindo estas regras em um reticulado 50×50 . Gere a primeira geração de forma aleatória.

5) Em processamento de imagens, usualmente, as imagens digitais são representadas utilizando matrizes bi-dimensionais e algumas operações básicas são

definidas a partir de transformações matriciais. Em geral, estas transformações levam em conta os valores de células desta matriz localizadas em uma determinada vizinhaça. Por exemplo, a transformação chamada erosão, em uma vizinhaça 3×3 , calcula, para cada célula da matriz, o mínimo entre o valor da própria célula e o de seus vizinhos distantes em até uma célula (incluindo diagonais).

Escreva um programa que lê os tamanhos das duas dimensões de uma matriz, M, e a própria matriz (ou seja, os valores de suas células) e, subsequentemente, calcula e mostra na tela o resultado da erosão de M. Note que a vizinhaça é válida somente dentro da matriz.

Por exemplo, para a matriz 5×5

1	1	1	1	0
1	1	1	1	1
1	1 1	0	1	1
1	1	1	1	1 1
1	1	1	1	1

deve-se imprimir

1	1	1	0	0
1		0	0	0
1	0	0	0	1
1		0	0	1
1	1	1	1	1

Assuma que o número de linhas e colunas desta matriz é sempre menor ou igual a 30.