GEORETRIC INTERPRETATION OF THE TEST

Consider again the representation of the model in an n-dimensional space. Here, the voriables $(\underline{y}, \underline{x}_1, ..., \underline{x}_p)$ are n-dimensional vectors, with coordinates the observations on the n units.

The coroniates $(x_1,...,x_p)$ identify a subspace of dimension p_1 C(X). This subspace is defined by all linear combinations $\beta_1 x_1 + ... + \beta_p x_p = X_p^p$. The mean of Y is $\mu = x_p^p \implies$ the mean of Y belongs to C(X).

The vector \underline{Y} in general will not belong to C(X): indeed we have seen that $\hat{\mu} = \hat{Y}$ is the orthogonal projection of \underline{Y} onto C(X).

What happens when we compose NESTED models? exemple with 2 voulables \$1, \$2

Full model: $\underline{Y} = \beta_1 \underline{x}_1 + \beta_2 \underline{x}_2 + \underline{\varepsilon}$ $X = \left[\underline{x}_1 \ \underline{x}_2\right]$

C(x) is the subset of \mathbb{R}^3 of all einear combinations $\beta_1 \times_1 + \beta_2 \times_2$ (dim = 2) $\frac{\hat{y}}{2} = \hat{\beta}_1 \times_1 + \hat{\beta}_2 \times_2$ is the arthoponal projection of $\frac{y}{2}$ orto C(x)

Assume we want to test $\begin{cases} H_0: \beta_2 = 0 \\ H_1: \beta_1 \neq 0 \end{cases}$

Under the, the reduced model is $Y = \beta_1 \times 1 + \xi$ Here $X^{(0)} = [\times 1]$ $C(X^{(0)})$ is the subset of einem combinations $\beta_1 \times 1$ (dim = 1) $C(X^0)$ is defined by a straight line (and not the enrice plane) fitted values $\frac{N}{2} = \frac{N}{2} \times 1$; $\frac{N}{2}$ belongs to $C(X^{(0)})$ \rightarrow This is a constrained estimate

example with 2 covoriates X_1 and X_2 and 1 text $\beta_2 = 0$

 $\frac{\hat{y}}{\hat{y}}$: projection on C(x)

The vector d is equal to $\hat{y} - \hat{y}$ and also to $\hat{e} - \hat{e}$ **Note over d 1 e

**Pythapone's Thm. $\hat{e}^{\dagger}\hat{e} + \hat{d}^{\dagger}\hat{d} = \hat{e}^{\dagger}\hat{e}$ **At d = $\hat{e}^{\dagger}\hat{e}$ - $\hat{e}^{\dagger}\hat{e}$

With the test about nested models, we are looking at the difference between the unconstrained estimate \hat{y} and the constrained are \hat{y} , or, equivalently, between the errors we commit under the unconstrained model (\hat{z}) and the restricted model (\hat{z}).