1. Построение распределения длин пиков до и после конвертации в hg19, фильтрация длинных пиков, расположение пиков относительно аннотированных генов

Оба эксперимента проводились со сборкой hg38, поэтому придется конвертировать оба файла

Эксперимент ENCFF475QVQ

Распределение до конвертации (число пиков равно 72566):

Распределение после конвертации из hg38 в hg19 (число пиков равно 72542):

Произошло незначительное сокращение числа пиков: не удалось перевести всего 14 из них

Пороговым значением для отсечения длинных пиков я выбрал 4000, т.к. после этого значения распределение перестаёт быть непрерывным. После фильтрации распределение длин пиков приобрело следующий вид, число пиков сократилось на 6:

В результате работы ChIPseeker получилась такая круговая диаграмма:

Эксперимент ENCFF432EMI

Распределение до конвертации (число пиков равно 94207):

H3K36me3_GM12878.ENCFF432EMI.hg38

Распределение после конвертации (число пиков равно 94189):

H3K36me3_GM12878.ENCFF432EMI.hg19

Произошло незначительное сокращение числа пиков: не удалось перевести всего 18 из них

Пороговым значением для отсечения длинных пиков я выбрал 4000, т.к. после этого значения распределение перестаёт быть

непрерывным. После фильтрации распределение длин пиков приобрело следующий вид, число пиков сократилось на 9:

В результате работы ChIPseeker получилась такая круговая диаграмма:

2. Анализ участков вторичной структуры ДНК

Распределение длин пиков вторичной структуры (всего пиков - 1285463):

Расположение пиков относительно аннотированных генов:

3. Анализ пересечений результатов эксперимента

Распределение длин пиков пересечения вторичной структуры ДНК и результатов эксперимента (всего пиков - 55788):

Расположение результатов пересечения относительно аннотированных генов:

len

Работа с геномным браузером (использовавшиеся параметры кастомных треков):

track visibility=dense name="ENCFF432EMI" description="H3K36me3_GM12878.ENCFF432EMI.hg19.filtered.bed"

 $https://raw.githubusercontent.com/amamedov/hse21_H3K36me3_G4_human/main/data/H3K36me3_GM1\\2878.ENCFF432EMI.hg19.filtered.bed$

track visibility=dense name="ENCFF475QVQ" description="H3K36me3_GM12878.ENCFF475QVQ.hg19.filtered.bed"

 $https://raw.githubusercontent.com/amamedov/hse21_H3K36me3_G4_human/main/data/H3K36me3_GM1\\2878.ENCFF475QVQ.hg19.filtered.bed$

track visibility=dense name="ChIP_merge" description="H3K36me3_GM12878.merge.hg19.bed"

https://raw.githubusercontent.com/amamedov/hse21 H3K36me3 G4 human/main/data/H3K36me3 GM1 2878.merge.hg19.bed

track visibility=dense name="G4" color=0,200,0 description="G4"

 $https://raw.githubusercontent.com/amamedov/hse21_H3K36me3_G4_human/main/data/Homo_Li_KPDS. bed$

track visibility=dense name="intersect_with_G4" color=200,0,0 description="H3K36me3_GM12878.intersect_with_Homo_Li_KPDS.bed"

https://raw.githubusercontent.com/amamedov/hse21_H3K36me3_G4_human/main/data/H3K36me3_GM1 2878.intersect with Homo Li KPDS.bed

Ссылка на сессию в геномном браузере:

http://genome.ucsc.edu/s/mamedov%2Daa/hg19 H3K36me3 GM12878

Примеры пересечения структуры ДНК с гистоновой меткой:

GO-анализ уникальных генов:

Results 🕚		
	Reference list	Client Text Box Input
Uniquely Mapped IDS:	20595 out of 20595	298 out of 312
Unmapped IDs:	<u>0</u>	<u>246</u>
Multiple mapping information:	0	<u>14</u>

Значения FDR одинаковые, равные единице, поэтому нельзя однозначно сказать, какие категории наиболее значимы. Пример некоторых встретившихся категорий: ion transmembrane

transport, respiratory burst involved in defense response, response to lead ion, positive regulation of chronic inflammatory response, negative regulation of chronic inflammatory response

Результаты ассоциации пиков с генами

С генами удалось ассоциировать 1044 пика. Всего получилось 544 уникальных ассоциированных гена.