ENGINE MANAGEMENT DURING NTRE START UP

Mel Bulman **Dave Saltzman Aerojet Propulsion Division**

NP-TIM-92

NASA Lewis Research Center Plum Brook Station

October 22, 1992

• Energopool • Babcock & Wilcox

TOTAL ENGINE SYSTEM MANAGEMENT CRITICAL TO SUCCESSFUL NTRE START UP

- Reactor Power Control
 - Hydrogen Reactivity Insertion
 - Moderator Effectiveness (Reactor Spectrum)
- **Reactor Cooling**
 - Moderator Cooling Loop
 - Fuel Assembly Thermal Shock
- Propellant Feed System Dynamics
 - Pump Characteristics
 - Feed System Pressurization
- **Engine Performance**
 - Propellant Expended at Low I.P

• Energopool • Babcock & Wilcox NP-TIM-92

NERVA Type Engines Have A Narrow Start Window

SENCIRP • Energopool • Babcock & Wilcox

MJB 10/15/92

AEROJET • Energopool • Babcock & Wilcox

NTP: Systems Modeling

REACTOR POWER CONTROL SUPERIOR WITH HETEROGENEOUS MODERATOR

- More Efficient Fuel Design
- More Efficient Moderator Design
- Less Sensitive to Hydrogen reactivity Insertion
- Reactor Time Constants Longer With more Thermalized Neutrons

LIENEURP

A∈ROJET • Energopool • Babcock & Wilcox

HETEROGENEOUS REACTOR COOLING MORE EFFECTIVE

- Moderator Cooled by Separate Loop
 - Fuel Assemblies Can Be Cooled up to Low Power
 Levels with Moderator Cooling Loop
- Fuel Assembly Inlet Temperature Controlled by Moderator Loop
 - Propellant Preheated in Moderator Loop
 - Recuperator Prevents Large Swings in Propellant Flow or Inlet Temperature (Avolds Thermal Shock)

Energopool • Babcock & Wilcox
NP-TIM-92 575

OUR PROPELLANT FEED SYSTEM DYNAMICS ARE EFFICIENTLY CONTROLLED

- **Engine Prestart Conditioning**
 - Pumps Chilled in
 - Reactor Warmed
 - Feed System Pressurized (Reduces Inrush Dynamics)
- Aerojet Pumps are Designed with Greater Stall Margin
- Our Recuperated Cycle Greatly Aids The Start up Ample Thermal Power Accelerates Bootstrap

 - Provides Thermal and Hydraulic damping
 - Isolates Fuel Assembly from Feed System
- Our Integrated Controller can Choose the Optimun path to Full Power, Balancing:
 - Isp Loss
 - Fuel Element Thermal Shock

ARRULET · Energopool · Babcock & Wilcox

INTEGRATED NTRE START SEQUENCE

- **Engine Prestart Conditioning**
 - Pump Chill In
 - Moderator Loop Pressurization with TPA Chill H₂ (First Start Only)
 - Closed Loop Engine Warm Up (First Start Only)
 - **Engine Now on Standby Mode for Starting**
- Start
 - Spin Start TPAs with Warm Presurized H₂ From Moderator Loop
 - **TPA Acceleration Dominated by Engine** Thermal Mass (Power for Approx. 10 Starts in Recuperator Alone)

GENCORP AERCUET · Energopool · Babcock & Wilcox

Moderator Cooling Loop Key to Efficient NTRE Starting

NENCORP • Energopool • Babcock & Wilcox

Moderator Cooling Loop Key to Efficient NTRE Starting

SENCORP • Energopool • Babcock & Wilcox

Our Integrated Engine Starts More Reliably

And With Less Impulse Loss than Nerva Type Engines

SENCTORP • Energopool • Babcock & Wilcox

MJB 10/15/92

We Are in the Process of Upgrading NETAP

Constructing New Modules for:

Recuperator

Moderator

PBR and CIS Fuel Elements

Twin 4-Stage TPAs

Auxiliary Turbo Circulation System

SENCORP - Energopool - Babcock & Wilcox
NTP: Systems Modeling 578

ANALYTICAL SIMULATION IS CRUCIAL TO PROVIDING A LOW RISK ENGINE DEVELOPMENT

- Determine Start Sequence and Operating Limits
 - Valve Phasing
 - Reflector Positioning
 - Thermal Requirements
- Verify Adequate Component Operating Margins Throughout Transient Operation
 - Avoid Pump Stall or Cavitation
 - Reactor Overheating
 - Nozzle Flow Choking
 - Satisfactory Power Balance for Bootstrap
- Establish Control Feedback Requirements

SENCORP • Energopool • Babcock & Wilcox

ACCURATE SIMULATION IS ACHIEVED THROUGH DYNAMIC COUPLING OF PHYSICAL PROCESSES

- TPA Power Balance
- TPA Inertia
- Flow Dynamics and Resistance
 - Method of Characteristics
 - Volume Filling
- Heat Transfer to Propellant and Components
- Fission Heat Generation / Decay Heat
 - Deposted in Fuel
 - Deposted in moderator
- Momentum, Energy, and Flow Conservation
- Feedback Control Loop

SENCORP

ARROJET • Energopool • Babcock & Wilcox

Integrated NTRE Improves Mission Performance

SENCORP • Energopool • Babcock & Wilcox