Linear Algebra II

陳信睿

January, 2023

Abstract

這篇筆記主要是因爲在預習線性代數二的時候,常常發現很多重要的定理都 記不太起來,並且老師在下學期沒有選定指定的參考書,所以我就寫了這份筆記。 主要是參考謝銘倫老師的影片 [2],以及著名的線性代數教科書 [1] 所寫。

I wrote this note because I often found that I could not remember many important theorems when I was studying Linear Algebra II, and my teacher did not choose a reference book for the next semester. The main reference is Professor Ming-Lun Hsieh's video [2], and the famous linear algebra textbook [1].

Contents

1	1.1	Otient and dual spaces Quotient space	
2	Inner product space		
	2.1	Orthogonal projection	10
	2.2	Orthonormal basis and Gram-Schimdt process	12
	2.3	Hilbert space	15
	2.4	Adjoint linear transformation	16

1 Quotient and dual spaces

1.1 Quotient space

Definition 1 (Quotient space). Let V be a vector space and let W be its subspace. Define an equivalence relation on V such that

$$v_1 \sim v_2 \text{ if } v_1 - v_2 \in W.$$

It is easy to verify that \sim is indeed an equivalence relationship on V. For each $v_0 \in V$, define $[v_0] = \{v \in V : v \sim v_0\}$ the equivalence class of v_0 . Then, $\{[v] : v \in V\}$ is called the quotient space V/W.

Remark. The quotient space V/W is equipped with a natural vector (linear) structure, namely,

$$\begin{cases} [v_1] + [v_2] = [v_1 + v_2] & \text{, for all } v_1, v_2 \in V \\ c[v_1] = [cv_1] & \text{, for all } v_1 \in V \text{ and } c \in \mathbb{F} \end{cases}.$$

Although it is crucial that we shall check these natural addition and scalar multiplication are "well-defined", we omitted here.

Definition 2 (Quotient maps). There is a natural surjective map

$$\pi: V \to V/W, \\ v \mapsto [v],$$

which is called the quotient map. Moreover, it is a linear transformation.

Remark.

$$\ker \pi = \{ v \in V : \pi(v) = [0] \}$$

$$= \{ v \in V : [v] = [0] \}$$

$$= \{ v \in V : v - 0 \in W \}$$

$$= W .$$

Corollary. It follows from the dimension formula that $\dim_{\mathbb{F}} V/W = \dim_{\mathbb{F}} V - \dim_{\mathbb{F}} W$ whenever V is finite dimensional.

Here we give an alternative proof without using dimensional formula. Since V has finite dimension, let $\mathcal{B} = \{w_1, w_2, \ldots, w_s\}$ be a basis of W and extend \mathcal{B} to $\mathcal{A} = \{w_1, w_2, \ldots, w_r\}$ a basis of V. We claim that $\{[w_{s+1}], \ldots, [w_s]\}$ is a basis of V/W. To see this, we shall show that:

1. $\{[w_{s+1}], \dots, [w_r]\}$ generate V/W. Suppose $[v] \in V/W$. Let $v = \sum_{i=1}^r \alpha_i w_i$, then

$$[v] = \left[\sum_{i=s+1}^{r} \alpha_i w_i\right] = \sum_{i=s+1}^{r} \alpha_i [w_i] .$$

2. $\{[w_{s+1}], \ldots, [w_r]\}$ are linear independent over \mathbb{F} . Suppose $\sum_{i=s+1}^r \alpha_i \cdot [w_i] = [0]$, for some $\alpha_i \in \mathbb{F}$. Then,

$$\begin{split} \left[\sum_{i=s+1}^{r} \alpha_i w_i\right] &= [0] \\ \iff \sum_{i=s+1}^{r} \alpha_i w_i \in W \\ \iff \sum_{i=s+1}^{r} \alpha_i w_i &= \sum_{j=1}^{s} \beta_j w_j, \text{ for some } \beta_j \in \mathbb{F}. \end{split}$$

We conclude that α_i are all zeros, since \mathcal{A} is a basis of V.

Discussions above show that $\dim_{\mathbb{F}} V/W = r - s = \dim_{\mathbb{F}} V - \dim_{\mathbb{F}} W$. Now, we shall study some property about the quotient space V/W. The next theorem characterize the quotient space V/W by the following universal property.

Theorem 3. Let T be a linear transformation from V to U, such that ker T contain W, namely $W \subset \ker T$. Then, T factors through π uniquely. That is, there exists a unique linear transformation $S: V/W \to U$ such that

$$T = S \circ \pi$$
.

Proof. Define $S: V/W \to U$ by

$$S([v]) = T(v).$$

We first show that S is a well-defined map, namely, if [v] = [v'], then T(v) = T(v'). Note that $[v] = [v'] \implies v - v' \in W \subset \ker T$, we conclude T(v) = T(v'). By definition, S is a linear transformation and $S \circ \pi = T$. The uniqueness of such S follows from the surjectivity of π .

Remark. The quotient space V/W with the quotient map π is the unique vector space satisfying the theorem. That is, if we are given $\pi': V \to V'$ satisfying the property: for every linear transformation $T: V \to U$ with $W \subset \ker T$, there exists a unique $S': V' \to U$ such that $S' \circ \pi' = T$. Then, $V' \simeq V/W$ uniquely.

Proof. From the assumptions, we have

$$\begin{cases} \exists ! \ S: V/W \to V', \text{ such that } \pi' = S \circ \pi \\ \exists ! \ S': V' \to V/W, \text{ such that } \pi = S' \circ \pi' \end{cases}.$$

This shows $S \circ S' = \operatorname{Id}_{V'}$; $S' \circ S = \operatorname{Id}_{V/W}$ (using Theorem 3 again.) We conclude $V' \simeq V/W$ uniquely.

Corollary. Let $T: V \to W$ be a linear transformation. Then,

$$V/\ker T \simeq \operatorname{Im} T$$
.

Hence, $\dim_{\mathbb{F}} V / \ker T = \dim_{\mathbb{F}} \operatorname{Im} T$.

Proof. From Theorem 3, we have: there exists a unique $S:V/\ker T\to W$, such that $T=S\circ\pi$. It follows from the surjectivity of π that $\mathrm{Im} S=\mathrm{Im} T$. We claim that S is injective. Note that

$$\ker S = \{ [v] \in V / \ker T : S([v]) = 0 \}$$

$$= \{ [v] \in V / \ker T : T(v) = 0 \}$$

$$= \{ [v] \in V / \ker T : v \in \ker T \}$$

$$= \{ [0] \}.$$

Thus, S is a bijection. This completes the proof.

Now, let $T:V\to V$ be a linear transformation and let $W\subset V$ be a T-invariant subspace. Then, T induce a linear transformation \widetilde{T} on V/W define by:

$$\widetilde{T}: V/W \to V/W \\ [v] \mapsto [T(v)] \ .$$

This is a well-defined map since

$$[v] = [v'] \implies v - v' \in W$$

$$\implies T(v) - T(v') = T(v - v') \in W$$

$$\implies [T(v)] = [T(v')].$$

Now, let $\mathcal{B} = \{v_1, v_2, \dots, v_s\}$ be a basis of W, and extend it to $\mathcal{A} = \mathcal{B} \sqcup \mathcal{B}'$, a basis of V. We have shown that $[\mathcal{B}'] = \{[v] : v \in \mathcal{B}'\}$ is a basis of V/W. Then, we have

$$[T]_{\mathcal{A}} = \begin{pmatrix} [T|_{W}]_{\mathcal{B}} & * \\ & & \\ & & \\ 0 & [\widetilde{T}]_{[\mathcal{B}']} \end{pmatrix}.$$

We thus have

$$\begin{cases} \operatorname{ch}_{T}(x) = \operatorname{ch}_{T|_{W}}(x) \cdot \operatorname{ch}_{\widetilde{T}}(x) \\ \operatorname{m}_{T}(x) \text{ is divisible by } \operatorname{m}_{T|_{W}}(x) \end{cases}.$$

Corollary. If T is diagonalizable, then so is \widetilde{T} .

The corollary follows from the fact that $m_T(x)$ is divisible by $m_{\tilde{T}}(x)$. We next shall discuss the concept of dual spaces.

1.2 Dual space

Definition 4 (dual space). Let V be a vector space over \mathbb{F} . It is well-known that $L(V, \mathbb{F})$ is a vector space over \mathbb{F} . It is called the dual space of V, and its elements are called linear functionals of V. We often write V^{\vee} to denote the dual space of V.

Recall that:

Given two vector spaces V, W over \mathbb{F} . Then we have L(V, W) is a vector space over \mathbb{F} and

$$\dim_{\mathbb{F}} L(V, W) = \dim_{\mathbb{F}} V \cdot \dim_{\mathbb{F}} W.$$

Thus, we conclude that $\dim_{\mathbb{F}} V^{\vee} = \dim_{\mathbb{F}} V$ if $\dim_{\mathbb{F}} V < \infty$. Here we give an alternative proof.

Theorem 5. Suppose V is a finite dimensional vector space over \mathbb{F} . Then, $\dim_{\mathbb{F}} V^{\vee} = \dim_{\mathbb{F}} V$.

Proof. Let $\mathcal{B} = \{v_1, v_2, \dots, v_n\}$ be a basis of V. Let us consider the following linear functional:

$$v_i^{\vee}: V \to \mathbb{F}$$

$$\sum_{i=1}^n \alpha_i \cdot v_i \mapsto \alpha_i$$

We claim that $\mathcal{B}^{\vee} = \{v_1^{\vee}, v_2^{\vee}, \dots, v_n^{\vee}\}$ is a basis of V^{\vee} , the dual space of V. We first show that \mathcal{B}^{\vee} is linear independent. Suppose there exist $\beta_i \in \mathbb{F}$ such that

$$\sum_{i=1}^{n} \beta_i v_i^{\vee} = 0,$$

then

$$\sum_{i=1}^{n} \beta_i v_i^{\vee}(v_j) = 0.$$

This shows

$$\beta_i = 0$$
, for all $i = 1, 2, ..., n$.

Next we show that \mathcal{B}^{\vee} generate V^{\vee} . Given $l \in V^{\vee}$. Then, from the linearity of l, we have

$$l = \sum_{i=1}^{n} l(v_i) \cdot v_i^{\vee}.$$

We conclude that \mathcal{B}^{\vee} is a basis of V^{\vee} .

Remark. The basis \mathcal{B}^{\vee} is called the dual basis of \mathcal{B} .

Given a linear transformation $T:V\to W$, it induces a linear transformation $T^\vee:W^\vee\to V^\vee$ between dual spaces defined by:

$$T^{\vee}(l)(v) := l(T(v)), \text{ for } l \in W^{\vee} \text{ and } v \in V.$$

It is easy to verify that T^{\vee} is a linear transformation.

Theorem 6. Let V, W be two finite dimensional vector spaces over \mathbb{F} . Let $\mathcal{A} = \{v_1, v_2, \dots, v_n\}$ and $\mathcal{B} = \{w_1, w_2, \dots, w_m\}$ be bases of V and W, respectively. Given $T: V \to W$. Then,

$$[T]_{\mathcal{A},\mathcal{B}}^{\mathbf{t}} = [T^{\vee}]_{\mathcal{B}^{\vee},\mathcal{A}^{\vee}}.$$

Proof. Let $A := [T]_{\mathcal{A},\mathcal{B}} = (a_{ij})_{n \times n}$ and $B := [T^{\vee}]_{\mathcal{B}^{\vee},\mathcal{A}^{\vee}} = (b_{ij})_{n \times n}$. From the definition, we have

$$T(v_j) = \sum_{i=1}^m a_{ij} w_i$$
$$T^{\vee}(w_i^{\vee}) = \sum_{j=1}^n b_{ji} v_j^{\vee}$$

Then,

$$b_{ji} = T^{\vee}(w_i^{\vee})(v_j) = w_i^{\vee}(T(v_j)) = w_i^{\vee}\left(\sum_{i=1}^m a_{ij}w_i\right) = a_{ij}.$$

This proves the theorem.

Theorem 7. Let V be a vector space and let $W \subset V$ be a subspace. Then,

$$(V/W)^{\vee} \simeq \{l \in V^{\vee} : W \subset \ker l\}.$$

Proof. We have known that there is a natural map $\pi: V \to V/W$. We claim that π^{\vee} is the isomorphism that bijects $(V/W)^{\vee}$ and $\{l \in V^{\vee}: W \subset \ker l\}$. We first show that π^{\vee} is injective. Suppose $\pi^{\vee}(l) = 0$, for some $l \in (V/W)^{\vee}$. Then,

$$l(\pi(v)) = 0$$
, for all $v \in V$
 $\implies l([v]) = 0$, for all $v \in V$.

This shows the injectivity of π^{\vee} . Hence, $(V/W)^{\vee} \simeq \operatorname{Im} \pi^{\vee}$. It suffices to show that $\operatorname{Im} \pi^{\vee} = \{l \in V^{\vee} : W \subset \ker l\}$.

1. $\operatorname{Im} \pi^{\vee} \subset \{l \in V^{\vee} : W \subset \ker l\}$. For each $S \in (V/W)^{\vee}$ and $w \in W$, we have

$$\pi^{\vee}(S)(w) = S(\pi(w)) = S([w]) = S([0]) = 0.$$

2. $\{l \in V^{\vee} : W \subset \ker l\} \subset \operatorname{Im} \pi^{\vee}$. Let $l \in V^{\vee}$ such that $W \subset \ker l$. Theorem 3 asserts that there exists a unique $S : V/W \to \mathbb{F}$ such that $l = S \circ \pi$. This implies $\pi^{\vee}(S) = l$.

Discussions above complete the proof.

Corollary. Let $A \in M_{m \times n}(\mathbb{F})$. Then, rank $A = \operatorname{rank} A^{\operatorname{t}}$.

Proof. Let $V = \mathbb{F}^n$, $W = \mathbb{F}^m$ and let $T: V \to W$ defined by

$$T(v) = A \cdot v.$$

Then it is equivalent to prove

$$\dim \operatorname{Im} T = \dim (\operatorname{Im} T^{\vee}).$$

By Theorem 7,

$$(W/\mathrm{Im}T)^{\vee} \simeq \{l \in W^{\vee} : \mathrm{Im}T \subset \ker l\} = \{l \in W^{\vee} : T^{\vee}(l) = 0\} = \ker(T^{\vee}). \tag{1}$$

Thus,

$$\dim W - \dim \operatorname{Im} T = \dim W / \operatorname{Im} T = \dim (W / \operatorname{Im} T)^{\vee} = \dim W^{\vee} - \dim \operatorname{Im} (T^{\vee}).$$

This complets the proof.

Theorem 8. Let V and W are two finite vector spaces, and let $T:V\to W$ be a linear transformation. Then,

- 1. T is surjective if and only if T^{\vee} is injective.
- 2. T is injective if and only if T^{\vee} is surjective.

Proof. In the proof of the previous corollary, we have shown in equation 1 that

$$(W/\mathrm{Im}T)^{\vee} \simeq \ker(T^{\vee}),$$

this proves the first assertion. Similarly, we have

$$(V/\ker T)^{\vee} \simeq \{l \in V^{\vee} : \ker T \subset \ker l\}. \tag{2}$$

We claim the set on the right hand side is $\text{Im}(T^{\vee})$.

1. $\{l \in V^{\vee} : \ker T \subset \ker l\} \subset \operatorname{Im}(T^{\vee}).$ Let $l \in V^{\vee}$ such that $\ker T \subset \ker l$. It is well-known that there exist a subspace $X \subset W$ such that $W = \operatorname{Im} T \oplus X$. Consider a transformation $s : W \to \mathbb{F}$ defined

$$s(w) = l(v),$$

where w = T(v) + x, for some $v \in V$ and $x \in X$. This is a well-defined map, since $\ker T \subset \ker l$. Note that s is a linear transformation and $l = s \circ T = T^{\vee}(s)$. This implies $\{l \in V^{\vee} : \ker T \subset \ker l\} \subset \operatorname{Im}(T^{\vee})$.

2. $\operatorname{Im}(T^{\vee}) \subset \{l \in V^{\vee} : \ker T \subset \ker l\}$. Let $l = \in \operatorname{Im}(T^{\vee})$. Then, there exists $s \in W^{\vee}$ such that $l = T^{\vee}(s) = s \circ T$, thus $\ker T \subset \ker l$.

Discussions above with equation 2 show that

$$(V/\ker T)^{\vee} \simeq \operatorname{Im}(T^{\vee}),$$

which is equivalent to the second assertion.

Remark. In the class, the teacher prove with another approach, which use the following property:

Let V be a finite dimensional vector space, and let $V^{\vee\vee}$ be the dual space of V, then there is a natural identification, that is, there is an isomorphism $\phi: V \to V^{\vee\vee}$ defined by

$$\phi: x \mapsto (\hat{x}: f \mapsto f(x)), \quad f \in V^{\vee}.$$

Next, we show that why we shall study dual spaces by the following theorem.

Theorem 9. Let V be a finite dimensional vector space over \mathbb{F} . Let $l_1, l_2, \ldots, l_s \in V^{\vee}$ be linearly independent. Suppose $b_1, b_2, \ldots, b_s \in \mathbb{F}$ and put

$$\Xi = \{ v \in V : l_i(v) = b_i, \text{ for all } 1 \le i \le s \}.$$

Then, $\Xi \neq \emptyset$.

by:

Proof. Consider the linear transformation $T: V \to \mathbb{F}^s$ defined by:

$$T: v \mapsto (l_1(v), l_2(v), \dots, l_s(v)).$$

Then, dim ker T is dim V - s. Here we omit the details of the proof.

2 Inner product space

Definition 10 (inner product). Let V be a vector space over \mathbb{F} , where $\mathbb{F} = \mathbb{R}$ or \mathbb{C} . A function $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{F}$ is called an inner product if the following conditions are satisfied:

- 1. $\langle x+y,z\rangle = \langle x,z\rangle + \langle y,z\rangle$, for all $x,y,z\in V$.
- 2. $\langle cx, y \rangle = c \cdot \langle x, y \rangle$, for all $x, y \in V$ and $c \in \mathbb{F}$.
- 3. $\langle x, y \rangle = \overline{\langle y, x \rangle}$, for all $x, y \in V$.
- 4. $\langle x, x \rangle \geq 0$, for all $x \in V$ and $\langle x, x \rangle = 0$ if and only if x = 0.

We write $(V, \langle \cdot, \cdot \rangle)$ for a vector space V together with an inner product structure $\langle \cdot, \cdot \rangle$. In the following text, \mathbb{F} sill stand for \mathbb{R} or \mathbb{C} unless otherwise stated.

We could also define the concept of norm or length of a vector $v \in V$.

Definition 11 (norm). For each $v \in V$, define the norm of v as $||v|| = \langle v, v \rangle^{1/2}$.

Theorem 12 (Riesz representation Theorem on a finite dimensional space). Let $(V, \langle \cdot, \cdot \rangle)$ be an inner product space. Then,

$$\Phi: V \to V^{\vee}$$
$$v \mapsto \Phi(v)(x) = \langle x, v \rangle$$

is an isomorphism.

Proof. We first prove that Φ is injective. Note that

$$\ker \Phi = \left\{ v \in V : \langle x, v \rangle = 0, \text{ for all } x \in V \right\} = \left\{ 0 \right\}.$$

Since V is finite dimensional, we have $\dim_{\mathbb{F}} V = \dim_{\mathbb{F}} V^{\vee}$, thus Φ is an isomorphism. \square

In other words, inner product $\langle \cdot, \cdot \rangle$ identifies V with its dual space V^{\vee} when V is finite dimensional. We now start study how to represent an inner product structure with a matrix. Suppose V is a finite dimensional vector space, and let $\mathcal{A} = \{v_1, v_2, \dots, v_n\}$ be a basis of V. For any $x, y \in V$, there exist α_i, β_i such that

$$x = \sum_{i=1}^{n} \alpha_i \cdot v_i; \quad y = \sum_{j=1}^{n} \beta_j \cdot v_j.$$

Then.

$$\langle x, y \rangle = \left\langle \sum_{i=1}^{n} \alpha_i \cdot v_i, \sum_{i=1}^{n} \beta_j \cdot v_j \right\rangle = \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \overline{\beta_j} \left\langle v_i, v_j \right\rangle.$$

Hence, if we let

$$\Omega = (\langle v_i, v_j \rangle) \in M_n(\mathbb{F}),$$

we have

$$\langle x, y \rangle = \begin{pmatrix} \alpha_1 & \alpha_2 & \dots & \alpha_n \end{pmatrix} \cdot \Omega \cdot \begin{pmatrix} \frac{\overline{\beta_1}}{\overline{\beta_2}} \\ \vdots \\ \overline{\beta_n} \end{pmatrix}.$$

The matrix Ω is called the matrix of \langle , \rangle associated with \mathcal{A} .

Theorem 13 (change of basis). Let $\mathcal{B} = \{w_1, \dots, w_n\}$ be another basis of V. Assume that

$$w_j = \sum_{i=1}^n a_{ij} v_i$$
, for all $1 \le j \le n$.

Then,

$$\Omega' = A^{t} \cdot \Omega \cdot \overline{A}.$$

where Ω' is the matrix of \langle , \rangle associated with \mathcal{B} and $A = (a_{ij})$.

Proof. Note that

$$\langle w_i, w_j \rangle = \left\langle \sum_{k=1}^n a_{ki} v_k, \sum_{l=1}^n a_{lj} v_l \right\rangle$$
$$= \sum_{k=1}^n \sum_{l=1}^n a_{ki} \left\langle v_k, v_l \right\rangle \overline{a_{lj}}$$
$$= \sum_{k=1}^n \sum_{l=1}^n a_{ik}^{\,\mathrm{t}} \left\langle v_k, v_l \right\rangle \overline{a_{lj}},$$

This proves the theorem.

Next, we shall ask whether we can define an inner product structure on V if we are given a matrix $\Omega \in M_n(\mathbb{F})$ and a basis \mathcal{A} of V. The answer is no. In fact, the matrix can define an inner product structure on finite dimensional V if and only if it is positive definite. However,

Theorem 14. If $\Omega = B \cdot B^*$ for some $B \in M_n(\mathbb{F})$ with $\det B \neq 0$, then $\langle , \rangle_{\Omega, \mathcal{A}}$ is an inner product for any choice of \mathcal{A} .

Proof. Let $\mathcal{A} = \{v_1, v_2, \dots, v_n\}$ be an arbitrary basis of V. It suffices to show the inner product defined by Ω satisfies the fourth axiom of Definition 10. If $x \in V$, then

$$x = \sum_{i=1}^{n} \alpha_i \cdot v_i$$
, for some $\alpha_i \in \mathbb{F}$.

We have

$$\langle x, x \rangle_{\Omega, \mathcal{A}} := \begin{pmatrix} \alpha_1 & \alpha_2 & \dots & \alpha_n \end{pmatrix} \cdot \Omega \cdot \begin{pmatrix} \overline{\alpha_1} \\ \overline{\alpha_2} \\ \vdots \\ \overline{\alpha_n} \end{pmatrix}$$

$$= \begin{pmatrix} \alpha_1 & \alpha_2 & \dots & \alpha_n \end{pmatrix} \cdot B \cdot B^* \cdot \begin{pmatrix} \overline{\alpha_1} \\ \overline{\alpha_2} \\ \vdots \\ \overline{\alpha_n} \end{pmatrix}$$

$$= (yB) \cdot (yB)^*,$$

where $y = (\alpha_1 \ \alpha_2 \ \dots \ \alpha_n)$ is a row vector. Write $yB = (\beta_1 \ \beta_2 \ \dots \ \beta_n)$. We get

$$\langle x, x \rangle_{\Omega, \mathcal{A}} = \begin{pmatrix} \beta_1 & \beta_2 & \dots & \beta_n \end{pmatrix} \cdot \begin{pmatrix} \overline{\beta_1} \\ \overline{\beta_2} \\ \vdots \\ \overline{\beta_n} \end{pmatrix} = \sum_{i=1}^n |\beta_i|^2 \ge 0,$$

and $\langle x, x \rangle_{\Omega, \mathcal{A}} = 0$ if and only if y = 0. From the assumption that $\det B \neq 0$, it follows x = 0 if $\langle x, x \rangle = 0$.

Definition 15 (Hermitian and positive definite matrix). Let $\Omega \in M_n(\mathbb{F})$. Then,

- 1. Ω is said to be Hermitian if $\Omega^* = \Omega$.
- 2. Ω is said to be positive definite if Ω is Hermitian and

$$x \cdot \Omega \cdot x^* > 0$$
, for all row vector $x \in \mathbb{F}^n \setminus \{0\}$.

Remark. Let $\Omega \in M_n(\mathbb{F})$. Define an $\langle \cdot, \cdot \rangle$ on the vector space $V = \mathbb{F}^n$ by

$$\langle x, y \rangle = x \cdot \Omega \cdot y^*$$
, where x and y are row vectors,

then $\langle \ , \ \rangle$ is an inner product on V if and only if Ω is positive definite.

2.1 Orthogonal projection

Definition 16 (perpendicular). Let (V, \langle , \rangle) be an inner product space. Then, we say a vector v is perpendicular to w if

$$\langle v, w \rangle = 0.$$

We often write $v \perp w$ to indicate two vectors are perpendicular to each other.

Note that the Pythagorean theorem holds under this definition:

If
$$\langle v, w \rangle = 0$$
, then $||v + w||^2 = ||v||^2 + ||w||^2$.

Now, we can define orthogonal projection of x to y.

Definition 17 (Orthogonal projection). Given two vectors $x, y \in (V, \langle , \rangle)$ $(y \neq 0)$. Proj_y(x) is the vector satisfying the following two conditions:

- 1. $\operatorname{Proj}_{y}(x)$ is parallel to y.
- 2. $x \operatorname{Proj}_{y}(x) \perp y$.

From this definition, we can assume that $\operatorname{Proj}_y(x) = \alpha \cdot y$, for some $\alpha \in \mathbb{F}$. Since $x - \operatorname{Proj}_y(x) \perp y$, we have

$$\langle x - \alpha \cdot y, y \rangle = 0 \iff \alpha = \frac{\langle x, y \rangle}{\langle y, y \rangle}.$$

We conclude that

$$\operatorname{Proj}_{y}(x) = \frac{\langle x, y \rangle}{\|y\|^{2}} \cdot y.$$

Lemma 1. Let $x, y \in (V, \langle , \rangle)$ $(y \neq 0)$. Then,

$$\left\|\operatorname{Proj}_{y}(x)\right\| \leq \|x\|.$$

Moreover, the equality holds if and only if x is parallel to y.

Proof. It follows from the Pythagorean theorem.

Corollary. $|\langle x, y \rangle| \le ||x|| \, ||y||$, holds for all $x, y \in V$.

It immediate follows from Lemma 1. This inequality is known as "Cauchy's inequality".

Corollary. $||x+y|| \le ||x|| + ||y||$, holds for all $x, y \in V$.

Proof. It is equivalent to prove $||x + y||^2 \le (||x|| + ||y||)^2$.

$$||x + y||^{2} \le (||x|| + ||y||)^{2}$$

$$\iff ||x||^{2} + 2||x|| \cdot ||y|| + ||y||^{2}$$

$$\iff ||x||^{2} + \langle x, y \rangle + \langle y, x \rangle + ||y||^{2} \le ||x||^{2} + 2||x|| \cdot ||y|| + ||y||^{2}$$

$$\iff \Re\langle x, y \rangle \le ||x|| \cdot ||y||.$$

Note that $\Re\langle x,y\rangle \leq |\langle x,y\rangle| \leq ||x|| \cdot ||y||$. This proves the corollary.

In general, if we were given a subspace $W \subset V$, we can discuss about $\operatorname{Proj}_W(x)$, the orthogonal projection of x to W.

Definition 18 (Generalization of orthogonal projection). Let W be a subspace of V and let x be a vector in V. Then, $\text{Proj}_W(x)$ is the vector satisfying the following two conditions:

- 1. $\operatorname{Proj}_W(x) \in W$.
- 2. $x \operatorname{Proj}_W(x) \perp W$. That is, $x \operatorname{Proj}_W(x)$ is perpendicular to any vectors in W.

The existence of $\operatorname{Proj}_W(x)$ in a finite dimensional vector space V follows from the following theorem.

Theorem 19. Let V be a finite dimensional inner product space and let W be a subspace of V. Define W^{\perp} as

$$W^{\perp} := \left\{ v \in V : \langle v, w \rangle = 0, \text{ for all } w \in W \right\}.$$

Then, W^{\perp} is a subspace. Moreover, $V = W \oplus W^{\perp}$.

Proof. It is easy to see that W^{\perp} is a subspace of V. Recall Theorem 12, we have an isomorphism:

$$V \simeq V^{\vee}$$

 $v \mapsto l_v(x) = \langle x, v \rangle$.

Note that the image of W^{\perp} under this map is

$$\{l \in V^{\vee} : W \subset \ker l\} \,.$$

By Theorem 7, we have

$$W^{\perp} \simeq (V/W)^{\vee}$$
.

Thus,

$$\dim_{\mathbb{F}} V = \dim_{\mathbb{F}} W + (\dim_{\mathbb{F}} V - \dim_{\mathbb{F}} W)$$
$$= \dim_{\mathbb{F}} W + \dim_{\mathbb{F}} V/W$$
$$= \dim_{\mathbb{F}} W + \dim_{\mathbb{F}} W^{\perp}.$$

We claim that $W \cap W^{\perp} = \{0\}$. Suppose $x \in W \cap W^{\perp}$, then $\langle x, x \rangle = 0$. This shows that x must be 0. We conclude that

$$V = W \oplus W^{\perp}$$
.

If we are given a subspace $W \subset V$ and a vector x, then according to Theorem 19, there exist unique vectors $w_x \in W$, $w_x' \in W^{\perp}$ such that

$$x = w_x + w_x'.$$

We define $\operatorname{Proj}_w(x) := w_x$. We now discuss a new idea of (external) direct sum of vector spaces.

Definition 20 (direct sum). Let V_1, V_2 be two vector spaces. Define

$$V_1 \oplus V_2 := \{(v_1, v_2) \in V_1 \times V_2\}$$
.

This space has a natural linear structure:

$$(v_1, v_2) + (v'_1, v'_2) := (v_1 + v'_1, v_2 + v'_2)$$

 $c(v_1, v_2) := (c \cdot v_1, c \cdot v_2)$

We shall say $V_1 \oplus V_2$ is the external direct sum of V_1 and V_2 .

We can check that:

If W_1, W_2 are two subspaces of V, such that $W_1 \cap W_2 = \{0\}$. Then,

$$W_1 \oplus_{\text{in}} W_2 \simeq W_1 \oplus_{\text{out}} W_2,$$

where \oplus_{in} is the original (internal) direct sum.

2.2 Orthonormal basis and Gram-Schimdt process

Definition 21 (orthonormal basis). A set of vectors $\{v_{\alpha} : \alpha \in \Lambda\}$ is an orthonormal set if $\langle v_{\alpha}, v_{\beta} \rangle = 0$ whenever $\alpha \neq \beta$, and $||v_{\alpha}|| = 1$ for all $\alpha \in \Lambda$. An orthonormal basis is an orthonormal set which is a basis.

Lemma 2. If $\{v_1, v_2, \dots, v_r\}$ is an orthonormal set, then it is linearly independent.

Proof. Suppose there exist $\alpha_i \in \mathbb{F}$ such that

$$\sum_{i=1}^{r} \alpha_i \cdot v_i = 0.$$

Then,

$$0 = \langle 0, v_i \rangle = \left\langle \sum_{i=1}^r \alpha_i \cdot v_i, v_i \right\rangle = \alpha_i.$$

This completes the proof.

Remark.

1. If $\dim_{\mathbb{F}} V < \infty$, then any orthonormal set of cardinality equal to n is an orthonormal basis.

2. Let \mathcal{A} be an orthonormal basis. Then, $\Omega = I_n$, where Ω is the matrix of \langle , \rangle associated with \mathcal{A} .

The existence of orthonormal bases in a finite dimensional inner product space follows from the next theorem. The technique to find such a basis is known as Gram-Schmidt process.

Theorem 22 (Gram-Schmidt process). Suppose $\{v_1, v_2, \ldots, v_r\}$ is linearly independent. Then, there exists an orthonormal set $\{w_1, w_2, \ldots, w_r\}$ such that

$$\operatorname{span}_{\mathbb{F}}\{w_1, w_2, \dots, w_r\} = \operatorname{span}_{\mathbb{F}}\{v_1, v_2, \dots, v_r\}.$$

Proof. Define u_i and w_i recursively as:

We claim that $\operatorname{span}_{\mathbb{F}}\{v_1,\ldots,v_k\}=\operatorname{span}_{\mathbb{F}}\{w_1,\ldots,w_k\}$ and $\{w_1,\ldots,w_k\}$ is an orthonormal set, for each $1\leq k\leq r$. It is trivial when k=1. Suppose this assertion is true for some k=m< r, then $\langle u_{m+1},w_i\rangle=\langle v_{m+1},w_i\rangle-\langle v_{m+1},w_i\rangle=0$ for $i\leq m$. Also, $v_{m+1}\notin\operatorname{span}_{\mathbb{F}}\{w_1,\ldots,w_m\}=\operatorname{span}_{\mathbb{F}}\{v_1,\ldots,v_m\}$, since $\{v_1,v_2,\ldots,v_r\}$ is linearly independent. We thus have $u_{k+1}\neq 0$, this completes the proof by mathematical induction on k.

Corollary.

1. If (V, \langle , \rangle) is a finite dimensional inner product space over \mathbb{F} , then an orthonormal basis exists.

2. Let Ω be a positive definite matrix. From the remark of Definition 15, Ω defines an inner product on $V = \mathbb{F}^n$. Let P be an invertible matrix such that $Pe_i = w_i$, where $\{e_1, \ldots, e_n\}$ is the standard basis of V and $\{w_1, \ldots, x_n\}$ is one orthonormal basis of V with respect to the inner product defined by Ω . Then, Theorem 13 asserts

$$I_n = P^{t} \cdot \Omega \cdot \overline{P} \implies \Omega = P^{-1t} \cdot \overline{P^{-1}}.$$

Let $Q = P^{-1^{t}}$, then we conclude

$$\Omega = Q \cdot Q^*.$$

For each positive definite matrix $\Omega \in M_n(\mathbb{F})$, there is an invertible matrix $Q \in M_n(\mathbb{F})$ such that $\Omega = Q \cdot Q^*$.

Recall that in Theorem 19 we have shown the existence of $\operatorname{Proj}_W(x)$ when W is a subspace of finite dimensional vector space V. In fact, we can derive the same result but using a weaker condition.

Theorem 23 (orthogonal projection revisited). Let (V, \langle , \rangle) be an inner product space. (It could be infinite dimensional.) Let $W \subset V$ be a subspace with finite dimension. Then, $\operatorname{Proj}_W(x)$ exists uniquely. In fact,

$$\operatorname{Proj}_{W}(x) = \sum_{i=1}^{n} \langle x, w_{i} \rangle \cdot w_{i},$$

where $\{w_1, w_2, \dots, w_n\}$ is an orthogonal basis of W.

Proof. We first show that $\langle x - \operatorname{Proj}_W(x), w \rangle = 0$, for all $w \in W$. Note that

$$\langle x - \operatorname{Proj}_W(x), w_i \rangle = \langle x, w_i \rangle - \langle x, w_i \rangle = 0,$$

for all $1 \leq i \leq n$. It remains to show $\operatorname{Proj}_W(x)$ is unique. Let $y \in W$ such that $x - y \in W^{\perp}$, then

$$\begin{split} \left\| \operatorname{Proj}_W(x) - y \right\|^2 &= \left\langle \operatorname{Proj}_W(x) - y, \operatorname{Proj}_W(x) - y \right\rangle \\ &= \left\langle \operatorname{Proj}_W(x) - x + x - y, \operatorname{Proj}_W(x) - y \right\rangle \\ &= \left\langle \operatorname{Proj}_W(x) - x, \operatorname{Proj}_W(x) - y \right\rangle + \left\langle x - y, \operatorname{Proj}_W(x) - y \right\rangle \\ &= 0 + 0 = 0 \,. \end{split}$$

We now generalize the idea of orthogonal projection to the case when the subspace W is not given.

Definition 24 (projection). Let V be an inner product space over \mathbb{F} , and let $T:V\to V$ be a linear transformation.

- 1. We say T is a projection if $T^2 = T$.
- 2. We say T is an orthogonal projection if $T^2 = T$ and $(\operatorname{Im} T)^{\perp} = \ker T$.

Remark. Let $T: V \to V$ be an orthogonal projection defined as above. Then, $T(v) = \operatorname{Proj}_W(v)$, where $W := \operatorname{Im} T$.

2.3 Hilbert space

In the previous text, lots of properties of inner product spaces only hold when the space is finite dimensional. This subsection we shall introduce a kind of inner product space that act like a finite dimensional inner product space.

Definition 25 (Hilbert space). Let $(V, \langle \ , \ \rangle)$ be an inner product space. The norm $\|\cdot\|$ induces a metric d on V. V is said to be a Hilbert space, if (V, d) is a complete metric space in the sense that every Cauchy sequence converges. A subspace $W \subset V$ is closed if W is a Hilbert subspace.

Remark. In analysis, "closedness" of a subspace W means that every convergent sequence in W converges to a point in W. This definition coincides the above definition.

Theorem 26 (existence of orthogonal projection). Let (V, \langle , \rangle) be a Hilbert space and let $W \subset V$ be a closed subset. Then, $\operatorname{Proj}_W(x)$ exists uniquely.

Proof. Let $d := \inf_{w \in W} ||w - x||$. We claim that there exist a vector $y_0 \in W$ such that $||y_0 - x|| = d$. By the definition of infimum, there exist y_n such that

$$d \le ||y_n - x|| < d + \frac{1}{n}.$$

We first show that (y_n) is a Cauchy sequence. Given $\epsilon > 0$. Let $N \in \mathbb{N}$ large enough so that

$$\frac{8d}{N} + \frac{4}{N^2} < \epsilon.$$

By the parallelogram law, we have

$$||y_n - y_m||^2 = 2(||y_n - x||^2 + ||y_m - x||^2) - ||y_n + y_m - 2x||^2$$

$$< 2\left(\left(d + \frac{1}{n}\right)^2 + \left(d + \frac{1}{m}\right)\right) - 4\left\|\frac{y_n + y_m}{2} - x\right\|^2$$

$$< 4\left(d + \frac{1}{N}\right)^2 - 4d^2 = \frac{8d}{N} + \frac{4}{N^2} < \epsilon,$$

where $n, m \geq N$. Hence, (y_n) is a Cauchy sequence. Suppose $y_n \to y_0$, then $||y_0 - x|| = d$. We now show that $p = x - y_0 \in W^{\perp}$. Let us introduce two parameters $t \in \mathbb{F}$ and $w \in W$, then we have

$$||p - t \cdot w||^2 = ||x - y_0 - t \cdot w||^2 \ge d^2$$

$$\implies ||p||^2 + t^2 \cdot ||w||^2 - 2\Re(\bar{t} \cdot \langle p, w \rangle) \ge d^2$$

$$\implies t^2 \cdot ||w||^2 - 2\Re(\bar{t} \cdot \langle p, w \rangle) \ge 0.$$
(3)

If $\langle p, w \rangle \neq 0$, then $\langle p, w \rangle = r \cdot \exp(i\theta)$ for some r > 0. We plug in $t = \epsilon \cdot \exp(i\theta)$ to (3), for small enough $\epsilon > 0$. Then,

$$\epsilon^2 \|w\|^2 \ge 2 \cdot \Re(\epsilon r),$$

which fail to be true when ϵ is small enough. Therefore, $y_0 = \lim y_n = \operatorname{Proj}_W(x)$.

Next, we introduce the concept of bounded linear functional.

Definition 27 (bounded linear functional). Let (V, \langle , \rangle) be a Hilbert space over \mathbb{F} . A linear functional $l: V \to \mathbb{F}$ is said to be bounded if there exists M > 0 such that

$$|l(v)| \le M \cdot ||v||,$$

for all $v \in V$. The set of all bounded linear functional on V is denoted by V_{bdd}^{\vee} . In fact, we can similarly define the concept of bounded linear transformation.

Remark.

- 1. Any bounded linear functional is a continuous function, with respect to the norm of V and metric on \mathbb{F} .
- 2. Any finite dimensional inner product space V is a Hilbert space, moreover, $V_{\text{bdd}}^{\vee} = V^{\vee}$.

Theorem 28 (Riesz representation theorem). Let (V, \langle , \rangle) be a Hilbert space, and let $l \in V_{\text{bdd}}^{\vee}$ be a bounded linear functional, then there exist $y \in V$, such that

$$l(x) = \langle x, y \rangle$$
,

for all $x \in V$.

Proof. Let l be a bounded linear functional. Then, $N = \ker l$ is a closed subspace of V. (Recall that the preimage under a continuous function of a closed set is closed.) If N is V, then l = 0, and we can take y = 0. Now, we assume that $N \subsetneq V$, it follows from Theorem 26 that there exists $v \in N^{\perp}$. (Hence $l(v) \neq 0$.) Consider a function $\alpha(x) = l(x)/l(v)$, for all $x \in V$. Then,

$$l(x) = \alpha(x) \cdot l(v)$$

$$\implies l(x - \alpha \cdot v) = 0$$

$$\implies x - \alpha \cdot v \in N$$

$$\implies \langle x - \alpha \cdot v, v \rangle = 0$$

$$\implies \langle x, v \rangle = \alpha \cdot \langle v, v \rangle$$

$$\implies l(x) = \langle x, y \rangle, \text{ where } y = \frac{\overline{l(v)}}{\|v\|^2} \cdot v.$$

2.4 Adjoint linear transformation

Definition 29 (adjoint linear transformation). Let (V, \langle , \rangle) and (W, \langle , \rangle) be two inner product spaces over \mathbb{F} and let $T: V \to W$ be a linear transformation. We define the adjoint of T is the transformation $T^*: W \to V$ such that:

$$\langle T^*(w), v \rangle = \langle v, T(w) \rangle$$
,

for all $v \in V$ and $w \in W$.

We now show that T^* exists uniquely if both V and W are finite dimensional.

Theorem 30. Let V and W be two finite dimensional inner product spaces and let $T: V \to W$ be a linear transformation. Then, T^* exists uniquely.

Proof. By Theorem 22, there exist orthonormal bases of V and W, say $\mathcal{A} = \{v_1, \ldots, v_n\}$ and $\mathcal{B} = \{w_1, \ldots, w_m\}$, respectively. Let $[T]_{\mathcal{A},\mathcal{B}} = A = (a_{ij})_{m \times n}$. We now assume T^* exists, and let $[T^*]_{\mathcal{B},\mathcal{A}} = (b_{ij})_{n \times m}$. Then,

$$\langle T^*(w_i), v_j \rangle = \langle w_i, T(v_j) \rangle$$

$$\implies \left\langle \sum_{k=1}^n b_{ki} \cdot v_k, v_j \right\rangle = \left\langle w_i, \sum_{l=1}^m a_{lj} \cdot w_l \right\rangle$$

$$\implies b_{ji} = \overline{a_{ij}}.$$

This shows the uniqueness of T^* . In fact, this also shows the existence of T^* , since we can define:

$$T^*: W \to V$$

 $[w]_{\mathcal{B}} \mapsto A^* \cdot [w]_{\mathcal{B}},$

where $[w]_{\mathcal{B}}$ denote the coordinate vector of w with respect to the basis \mathcal{B} . The calculations above implies T^* meets the condition of adjoint linear transformation.

Theorem 31. Let V, W be inner product spaces over \mathbb{F} , and let T_1, T_2 and T be linear transformations from V to W. Suppose T_1^*, T_2^* and T_0^* exist. Then, the following properties hold:

- 1. $(T_1 + T_2)^* = T_1^* + T_2^*$.
- 2. $(\alpha \cdot T)^* = \overline{\alpha} \cdot T^*$, for $\alpha \in \mathbb{F}$.
- 3. Let U be an inner product space and let $S: W \to U$ be a linear transformation with the adjoint exists. Then, $(S \circ T)^* = T^* \circ S^*$.
- 4. $T^{**} = T$.

The proof is very straightforward, so we omit it.

Theorem 32. Let $T: V \to W$ be a linear transformation between two "finite dimensional" inner product spaces. Then,

- 1. $(\text{Im}T)^{\perp} = \ker(T^*)$.
- 2. $(\ker T)^{\perp} = \operatorname{Im}(T^*)$.

Proof. To show the first assertion, suppose $w \in (\operatorname{Im} T)^{\perp}$, namely,

$$\langle w, T(v) \rangle = 0$$
, for all $v \in V$.
 $\iff \langle T^*(w), v \rangle = 0$, for all $v \in V$.
 $\iff T^*(w) = 0$.
 $\iff w \in \ker(T^*)$.

Similarly, for the second assertion, we assume that $v \in \text{Im}(T^*)$, then $v = T^*(w)$ for some $w \in W$. Note that

$$\langle v, x \rangle = \langle T^*(w), x \rangle = \langle w, T(x) \rangle = 0$$
, for all $x \in \ker T$.

Thus, we conclude that $\operatorname{Im}(T^*) \subset (\ker T)^{\perp}$. By the dimensional formulas, we get $\operatorname{Im}(T^*) = (\ker T)^{\perp}$.

Definition 33 (unitary linear transformation (operator)). Let $T:V\to W$ be a linear transformation between two inner product spaces (probably infinite dimensional). T is called unitary if

$$\langle T(v_1), T(v_2) \rangle = \langle v_1, v_2 \rangle,$$

for all $v_1, v_2 \in V$.

The next theorem gives a characterization of unitary operators.

Theorem 34. Given a linear transformation $T: V \to W$ between two finite dimensional inner product spaces. Then the following statements are equivalent:

- 1. T is unitary.
- 2. ||T(v)|| = ||v||, for all $v \in V$.
- 3. $T^* \circ T = \mathrm{Id}_V$.
- 4. T sends the orthonormal basis to an orthonormal set.

References

- [1] S.H. Friedberg, A.J. Insel, and L.E. Spence. *Linear Algebra*. Featured Titles for Linear Algebra (Advanced) Series. Pearson Education, 2003. ISBN: 9780130084514.
- [2] 謝銘倫. 線性代數二. https://www.youtube.com/playlist?list=PLVJXJebp04Pg W5WgeU_hIm17mS08Eoggx. 2016.