Errata

Page 67 (sign)

For the translational be specified on a line that between bodies i and j. No P_i and Q_i are located on bc vector \mathbf{v}_i in body j con $\mathbf{v}_i' = [x_i^P - x_i^Q, y_i^P - y_i^Q]^T$ an on body j. The vector \mathbf{d}_{i} Vectors \mathbf{v}_i and \mathbf{v}_j must rem collinear, it is necessary perpendicular to \mathbf{v}_i . Using

$$\mathbf{\Phi}^{t(i,j)} = \begin{bmatrix} (\mathbf{v}_i^{\perp})^T \mathbf{d}_{ij} \\ (\mathbf{v}_i^{\perp})^T \mathbf{v}_i \end{bmatrix}$$

Page 68 (unbalanced parentheses)

Using Eqs. 2.4.12 and 2.6.8,

qs. 2.4.12 and 2.6.8,

$$\boldsymbol{\gamma}^{t(i,j)} = -\begin{bmatrix} \mathbf{v}_i^{T} [\mathbf{B}_{ij} \mathbf{s}_j^{P} (\dot{\boldsymbol{\phi}}_j - \dot{\boldsymbol{\phi}}_i)^2 - \mathbf{B}_i^{T} (\mathbf{r}_j - \mathbf{r}_i) \dot{\boldsymbol{\phi}}_i^2 - 2 \mathbf{A}_i^{T} (\dot{\mathbf{r}}_j - \dot{\mathbf{r}}_i) \dot{\boldsymbol{\phi}}_i \end{bmatrix}$$

where the second term on the right is zero, because of Eq. 3.3.13.