

Convolutional Neural Networks for Sentiment Analysis on Italian Tweets

Giuseppe Attardi, Daniele Sartiano, Chiara Alzetta, Federica Semplici

Dipartimento di Informatica Università di Pisa

Task 2. Polarity Classification

Convolutional Neural Network

G. Attardi, D. Sartiano (2016) SemEval 2016, Task 4

Training the network

Plain Word Embeddings

- Word2vec on 167 million Italian tweets
- Parameters:
 - embeddings size 300
 - window dimension 5
 - discarding words with freq < 5
- 450k word embeddings obtained

Sentiment Specific WE

- Starting from plain WE
- Sentiment polarity of texts into the embeddings
- Positive and Negative tweets based on emoticons
 - More negative tweets than positive tweets

Distant Supervision

- Silver corpus created as follows:
- Randomly choose max 10k tweets per class (mixed and neutral added)
- Select tweets which are assigned same class by:
 - 1. emoticon presence (RE match)
 - 2. classifier trained using the task trainset (gold).

Experiments

- Extensive experiments with various configurations of the classifier:
 - filters
 - plain or sentiment specific word embeddings
 - gold or silver training set.
- Best settings:

	Run 1		Run 2		
Embeddings	WE skipgram		SWE		
Training set	Gold	Silver	Gold	Silver	
Filters	2, 3, 5	4, 5, 6, 7	7, 7, 7, 7, 8, 8, 8, 8	7, 8, 9, 10	

Results

Top official results for polarity classification

System	Positive F-score	Negative F-score	Combined F- score
UniPI_2.c	0.685	0.6426	0.6638
team1_1.u	0.6354	0.6885	0.662
team1_2.u	0.6312	0.6838	0.6575
team4c	0.644	0.6605	0.6522
team31.c	0.6265	0.6743	0.6504
team5_2.c	0.6426	0.648	0.6453
team32.c	0.6395	0.6469	0.6432
UniPI_1.u	0.6699	0.6146	0.6422
UniPI_1.c	0.6766	0.6002	0.6384
UniPI_2.u	0.6586	0.5654	0.612

 The extended silver corpus did not help, possibly because the resulting corpus was still

unbalanced.

New Results

Unipi_2c	Positive	Negative	F-score
official run	0.685	0.6426	0.6638
plain embeddings	0.6851	0.6612	0.6731
SE 200k tweets 25 epochs	0.6779	0.6826	0.6803
SE 500k tweets 4 epochs	0.6818	0.6856	0.6837

Conclusions

- The experiments confirmed the validity of the Convolutional Neural Networks in Twitter sentiment classification, also for the Italian language.
- Sentiment Embeddings proved to be effective for sentiment classification