Google

Inside AlphaGo

David Silver, Research Scientist and AlphaGo Team Lead

Go in numbers

Why is Go hard for computers to play?

Brute force search intractable:

- 1. Search space is huge
- 2. "Impossible" for computers to evaluate who is winning

Game tree complexity = b^d

Convolutional neural network

Policy network

Value network

Training AlphaGo

Exhaustive search

Reducing breadth with policy network

Reducing depth with value network

Monte-Carlo tree search in AlphaGo: selection

P prior probabilityO action value

$$u(P) \propto P/N$$

Monte-Carlo tree search in AlphaGo: expansion

 $p_{\!_{\!\mathcal{O}}}$ Policy network

prior probability

Monte-Carlo tree search in AlphaGo: evaluation

 v_{θ} Value network

Monte-Carlo tree search in AlphaGo: backup

Action value

Value network

AlphaGo

- Plays on 50 TPUs on Google Cloud
- Searches ~50 moves deep

~100,000 positions per second

AlphaGo vs Lee Sedol

Lee Sedol (9p): winner of 18 world titles

Match was played in Seoul, March 2016

AlphaGo won the match 4-1

Search-Based Policy Iteration

AlphaGo becomes its own teacher
 It learns from its own searches

- Policy is improved by AlphaGo search
- Policy is evaluated according to outcome of AlphaGo vs AlphaGo games

AlphaGo plays games against itself

Policy network P is trained to predict AlphaGo's moves

Value network V is trained to predict winner

New policy and value network are used in next iteration of AlphaGo

AlphaGo Master

- Plays on single TPU machine
- Uses deeper and more powerful policy/value networks
- Trained by search-based policy iteration

60-0 vs top professionals

(online games)

AlphaGo vs Ke Jie

Ke Jie (9p): player ranked #1 in world

Match was played in China, May 2017

AlphaGo won the match 3-0

Deep Reinforcement Learning: Beyond AlphaGo

Deep Reinforcement Learning: Beyond AlphaGo

Thank you

DeepMind

