

המכללה האקדמית תל אביב יפו בית הספר למדעי המחשב

מספר גרסה: 0000

חלק א - שאלות סגורות - 48 נקודות

חלק זה מורכב משש שאלות רב-ברירה, 8 נק' לכל שאלה.

<u>שאלה מס' 1 (8 נק')</u>

נתונות 5 טענות, (הניחו שכל הלוגריתמים הם בבסיס 2):

$$n^{\mathrm{nlog}\,n}=\Omega(\,2^{n!}):1$$
 טענה $\Omega(n)^{\frac{1}{10}}=O(\log n):2$ טענה $\Omega(n)^{\frac{1}{10}}=\Omega(\log n):2$ טענה $\Omega(n)^{\frac{1}{100}}=\Omega(n):2$ טענה $\Omega(n)^{\frac{1}{100}}=\Omega(n):2$ טענה $\Omega(n)^{\frac{1}{100}}=\Omega(n):2$ טענה $\Omega(n)^{\frac{1}{100}}=\Omega(n):2$

מה מההיגדים הבאים נכון:

ב. כל חמש הטענות נכונות.

יש שתי טענות נכונות והיתר שגויות. 🔄

יש שלוש טענות נכונות והיתר שגויות. 🖵

כל חמש הטענות שגויות 📮

. יש טענה נכונה אחת והיתר שגויות.

יש ארבע טענות נכונות והיתר שגויות. 📮

מספר גרסה: 0000

שאלה מס' 2 (8 נק')

נתונה הפונקציה הבאה שעושה שימוש בפונקציה calc שתוגדר בהמשך:

int func (int A[], int n)

```
int i,j,k,sum;

if (n<=1)

return 1;

sum=0

for (i = 2; i \le n; i = i * i)

for (j = 2; j \le 2^i; j = j * j)

sum ++

k = calc(n)

for (j = 1; j <= k; j++)

sum += func(A, n/2);

return sum
```

 $\theta(n \log n)$ הדר טוענת: אם $\operatorname{calc}(n)=1$, אז עלות היא $\operatorname{calc}(n)=1$ ליאור טוענת: אם $\operatorname{calc}(n)=1$, אז עלות היא $\operatorname{calc}(n)=1$ יוליה טוענת: אם $\operatorname{calc}(n)=1$, אז עלות היא $\operatorname{calc}(n)=1$ מיטל טוענת: אם $\operatorname{calc}(n)=2$, אז עלות היא $\operatorname{calc}(n)=2$ מאיה טוענת: אם $\operatorname{calc}(n)=2$, אז עלות היא $\operatorname{calc}(n)=2$ מאיה טוענת: אם $\operatorname{calc}(n)=2$, אז עלות

מה מההיגדים הבאים נכון:

- ליאור צודקת והשאר טועות. 🖵
- 🚚. הדר ומאיה צודקות והשאר טועות.
- ען אף היגד מההיגדים האחרים אינו נכון.
 - . הדר ומיטל צודקות והשאר טועות. 📮
 - ליאור ומיטל צודקות והשאר טועות. 🔄
 - ם מיטל צודקת והשאר טועות. 📮

מספר גרסה: 0000

<u>שאלה מס' 3 (8 נק')</u>

נתונים שני עצי 2-3 ו au_2 שכל אחד מהם מחזיק au_2 2-3 נתונים שני עצי

.3 בעץ \mathcal{T}_2 הדרגה של כל קדקוד פנימי היא 2, ובעץ \mathcal{T}_3 הדרגה של כל קדקוד פנימי היא

. מבצעים הכנסה של מפתח חדש לכל אחד מהעצים באמצעות הפעולה Insert מבצעים הכנסה של מפתח חדש לכל אחד מהעצים באמצעות הפעולה ל \mathcal{X}_2 , נסמן ב \mathcal{X}_2 את מספר הקדקודים הפנימיים שעברו פיצול במהלך ההכנסה ל

 \mathcal{X}_3 ונסמן ב \mathcal{X}_3 את מספר הקדקודים הפנימיים שעברו פיצול במהלך ההכנסה ל

 $?^{X_3}$ מה ניתן להגיד על סדרי הגודל של

- .ד. יש יותר מתשובה נכונה אחת מבין התשובות א-ד.
 - באף אחת מהתשובות א-ד אינה נכונה.
- . $x_3 = \theta(\log n)$ גם $x_2 = \theta(\log n)$ יכול להיות ש
 - . $x_3 = O(1)$ גם $x_2 = \theta(\log n)$ בטוח ש
 - $x_3 = O(1)$ וגם $x_2 = O(1)$ יכול להיות ש
 - $.x_3 = \theta(\log n)$ גם $x_2 = O(1)$ בטוח ש.

שאלה מס' 4 (8 נק')

$\Theta((n \log n)^2)$ נתון אלגוריתם שזמן הריצה הממוצע שלו הוא

טענה 1: בטוח שזמן הריצה של האלגוריתם במקרה הגרוע הוא $O(n^4)$ (נקרא: או גדול)

טענה 2: בטוח שזמן הריצה של האלגוריתם במקרה הטוב הוא (נקרא: או גדול) טענה 2: בטוח שזמן הריצה של האלגוריתם להחיבה של האלגוריתם במקרה הטוב הוא $\theta(n^2)$

טענה 3: ייתכן שזמן הריצה של האלגוריתם במקרה הגרוע הוא (נקרא: או גדול) טענה 3: ייתכן שזמן הריצה של האלגוריתם לא

(נקרא: או קטן) ס $(n \log n)$ ייתכן שזמן הריצה של האלגוריתם במקרה הטוב הוא

 $\omega(n\log n)$ ייתכן שזמן הריצה של האלגוריתם במקרה הטוב ייתכן שזמן הריצה של

מה מההיגדים הבאים נכון:

- ב, 2,5 נכונות והיתר שגויות.
- נכונות והיתר שגויות.
- . יש⁻רק טענה נכונה אחת והיתר שגויות. ∟.
- אף היגד מההיגדים האחרים אינו נכון. 📮
 - . 4,5 נכונות והיתר שגויות.
 - נכונות והיתר שגויות. 📮

מספר גרסה: 0000

שאלה מס' 5 (8 נק'<u>)</u>

נתון האלגוריתם הבא הנקרא SortTogether, המקבל בקלט מערך []A ואת גודלו n. המערך מכיל את כל המספרים השלמים מ1 עד n באיזשהו סדר (מופע אחד של כל מספר).

:SortTogether(A[],n) תיאור האלגוריתם

- (מיון מהיר) Quick Sort על \sqrt{n} האיברים השמאליים מריצים את אלגוריתם \sqrt{n}
- (מיון מיזוג) Merge Sort על יתר האיברים האיברים הימניים) מריצים את אלגוריתם (מיון $n-\sqrt{n}$) על יתר האיברים -
- ממזגים את שני החלקים הממוינים (\sqrt{n} האיברים השמאליים ו $\sqrt{n}-\sqrt{n}$ האיברים הימניים) באמצעות הפעולה Merge

בהנחת התפלגות אחידה על הקלט (כלומר, כל פרמוטציה של המספרים 1 עד n יכולה להופיע בקלט באותה ההסתברות), מה זמן הריצה של אלגוריתם SortTogether במקרה הגרוע, ומה זמן הריצה במקרה הממוצע?

- $\theta(n)$ ובמקרה הממוצע $\theta(n \log n)$ ובמקרה הממוצע . \Box
- . במקרה הגרוע $heta(n^2)$ ובמקרה הממוצע (heta(n)
- ... לא ניתן לקבוע במדויק את סדרי הגודל של זמני הריצה לפי נתוני השאלה.
 - ו. אף אחת מהתשובות א-ה אינה נכונה.
 - $\theta(n \log n)$ במקרה הגרוע $\theta(n^2)$ ובמקרה הממוצע במקרה הגרוע.
 - $\theta(n \log n)$ ובמקרה הממוצע $\theta(n \log n)$ ובמקרה המוצע . \Box

```
שאלה מס' 6 (8 נק')
```

נתונה טבלת ערבול עם שרשור בגודל m=4.

המפתחות המגיעים למבנה נבחרים באופן אקראי מהתחום {0,...,399} בהתפלגות הבאה:

$$\frac{1}{200}$$
 בהסתברות $\{0,...,99\}$ כל איבר מהתחום

$$\frac{1}{600}$$
 בהסתברות $\{100,...,399\}$ בהסתברות

 $\{0,...,399\}$ שימו לב שההתפלגות בשאלה זו אינה אחידה. לשם השוואה, בהתפלגות אחידה, כל איבר מהתחום

$$(\frac{1}{400}$$
 נבחר בהסתברות

איזו מהפונקציות הבאות היא פונקציית ערבול אחידה לפי נתוני השאלה?

$$h(k) = k \mod 400$$
 ב.

$$h(k) = \left\lfloor \frac{k}{100} \right\rfloor \cdot \mathbf{k}$$

$$h(k) = \left\lfloor \frac{k}{100} \right\rfloor \mod 4 . \mathsf{T}$$

.ד. יש יותר מתשובה נכונה אחת מבין התשובות א-ד.

אף אחת מהתשובות א-ד אינה נכונה. 🖵

$$h(k) = k \mod 4 \square$$

ברצוננו לממש את טיפוס הנתונים המופשט תור. כלומר, את הפעולות:

MakeEmpty()

IsEmpty()

EnQueue(x)

DeQueue()

ברשותכם רק 2 מחסניות S_2 , בטיפוס נתונים מופשט (ADT), עם הפעולות הבאות:

MakeEmpty()

IsEmpty()

Push(x)

Pop()

זמן הריצה של כל סדרה של n פעולות של התור במימוש שלכם נדרש להיות (heta(n), בהינתן שכל פעולת מחסנית מבוצעת ב (heta(1).

בפתרון שלכם אין להשתמש בתוצאות שראינו בכיתה בהקשר של שאלה זו.

MakeEmpty() תיאור

מספר גרסה: 0000

EnQueue(x) גור	תיא
DeQueue() גור	תיא

	$\mathcal{O}(n)$ הוכחה שזמן הריצה של כל סדרה של n הוכחה שזמן הריצה של
	חוכחה שזמן הריצה של כל סדרה של n פעולות תור הוא (Ω(n

מספר גרסה: 0000

<u>שאלה מס' 8</u>

שאלה זו עוסקת במבנה הנתונים ערימה.

<u>שאלה מס' 8.1 (13 נק')</u>

נתון האלגוריתם של פלויד לבניית ערימת מקסימום ממערך בגודל ח.

מספר גרסה: 0000

T(n) = O()
1(11) - 0(

שאלה מס' 8.2 (13 נק')

ראינו כיצד מתבצעת הפעולה משובה בערימת מקסימום, ושזמן הריצה של הפעולה במקרה הגרוע הוא deleteMax כאשר מתבצעת על ערימה בגודל n.

בסעיף זה נתייחס לבעיית ה deleteMax ולא לאלגוריתם הספציפי שראינו עבורה, ונבחן האם קיים אלגוריתם טוב יותר.

:בעיית ה deleteMax מוגדרת כך

קלט: ערימת מקסימום H בגודל n

. פרט לאחד בעל ערך מקסימלי. H פרט לאחד בעל ערך מקסימלי. H פרט לאחד בעל ערך מקסימלי.

הוכיחו או הפריכו: קיים אלגוריתם לבעיית ה deleteMax שזמן הריצה שלו במקרה הגרוע הוא (o(log n (נקרא: או קטן).

הוכחה/הפרכה