Create ecocyc-lei

July 7, 2022

1 LL-3821 Tracing for Lei - Generate graphdb ecocyc-lei

https://sbrgsoftware.atlassian.net/browse/LL-3821

The database ecocyc-lei was generated by removing and adding nodes to ecocyc-mod2. Results will not exactly match ecocyc-25.5-gds.

First, create a database named 'ecocyc-lei' that is the same as ecocyc-mod2

```
[17]: import pandas as pd
from py2neo import Graph
pd.set_option('display.max_colwidth', 170)
```

```
[18]: graph = Graph("bolt://localhost:7687", auth=("neo4j", "rcai"),

→name="ecocyc-lei")

graph_ll = Graph("bolt://localhost:7687", auth=("neo4j", "rcai"),

→name="lifelike-stg")

graph_humancyc = Graph("bolt://localhost:7687", auth=("neo4j", "rcai"),

→name="humancyc")
```

1.0.1 Knockout genes: tnaA, yddG, IdhA, CytR

Knockout the list of genes, and their encoded proteins and catalyzed reactions

1.0.2 Get biocyc ids for the genes, proteins and reactions

Get all nodes downstream of the given genes (proteins, reactions)

```
return ids
[18]: df1 = get_biocyc_ids('tnaA')
               n.biocyc_id
                                             n.name n.entityType
                  EG11005
     0
                                                            Gene
                                      tryptophanase
     1 TRYPTOPHAN-MONOMER
                                                         Protein
           TRYPTOPHAN-CPLX complex of tryptophanase
                                                        Protein
     3
           TRYPTOPHAN-RXN
                                     TRYPTOPHAN-RXN
                                                        Reaction
           LCYSDESULF-RXN
                                     LCYSDESULF-RXN
                                                        Reaction
     ['EG11005', 'TRYPTOPHAN-MONOMER', 'TRYPTOPHAN-CPLX', 'TRYPTOPHAN-RXN',
     'LCYSDESULF-RXN']
                           'TRYPTOPHAN-MONOMER', 'TRYPTOPHAN-CPLX',
               ['EG11005',
     'TRYPTOPHAN-RXN'] Run the following cypher query
     match(n:db_EcoCyc) where n.biocyc_id in ['EG11005', 'TRYPTOPHAN-MONOMER', 'TRYPTOPHAN-CPLX',
[19]: df = get biocyc ids('yddG')
           n.biocyc_id
                                          n.name n.entityType
               EG12713
                                                         Gene
                                            yddG
     1 EG12713-MONOMER amino acid exporter YddG
                                                      Protein
         TRANS-RXN0-265
                               amino acid export
                                                     Reaction
     ['EG12713', 'EG12713-MONOMER', 'TRANS-RXNO-265']
     Remove ['EG12713', 'EG12713-MONOMER', 'TRANS-RXN0-265']
     match(n:db_EcoCyc) where n.biocyc_id in ['EG12713', 'EG12713-MONOMER', 'TRANS-RXN0-265'] deta
[20]: df = get biocyc ids('ldhA')
                    n.biocyc_id
                                                  n.name n.entityType
     0
                           G592
                                                    ldhA
                                                                 Gene
     1 DLACTDEHYDROGNAD-MONOMER D-lactate dehydrogenase
                                                             Protein
                     CPLX0-8158 D-lactate dehydrogenase
                                                             Protein
            DLACTDEHYDROGNAD-RXN
                                    DLACTDEHYDROGNAD-RXN
                                                             Reaction
     ['G592', 'DLACTDEHYDROGNAD-MONOMER', 'CPLX0-8158', 'DLACTDEHYDROGNAD-RXN']
     Remove the following biocyc id (reaction is reversible, has two entries) ['G592',
     'DLACTDEHYDROGNAD-MONOMER', 'CPLX0-8158', 'DLACTDEHYDROGNAD-RXN']
     match(n:db_EcoCyc) where n.biocyc_id in
     ['G592', 'DLACTDEHYDROGNAD-MONOMER', 'CPLX0-8158', 'DLACTDEHYDROGNAD-RXN']
     detach delete n;
[15]: df = get_biocyc_ids('cytR')
       n.biocyc_id
                                                       n.name n.entityType
          EG10200
                                                                     None
                                                         cytR
```

```
PD04028 DNA-binding transcriptional repressor CytR
                                                                  None
1
  CPLX0-7740 DNA-binding transcriptional repressor CytR
2
                                                                  None
3
   RXN0-6409
                                                     None
                                                                  None
4 CPLX0-8051
                                            CytR-cytidine
                                                                  None
['EG10200', 'PD04028', 'CPLX0-7740', 'RXN0-6409', 'CPLX0-8051']
Remove ['EG10200', 'PD04028', 'CPLX0-7740', 'RXN0-6409', 'CPLX0-8051']
match(n:db_EcoCyc) where n.biocyc_id in
['EG10200', 'PD04028', 'CPLX0-7740', 'RXN0-6409', 'CPLX0-8051']
detach delete n;
```

1.1 Knock-Ins: DDC, AANAT, ASMT and phhB

```
[25]: def get_reaction_nodes(reaction_id):
          Given the reaction id (humancyc reaction), find all the associated \Box
       \hookrightarrow compounds.
          Query used lifelike database
          querv = """
          match p=(r:db_BioCyc {biocyc_id:$reaction_id})-[:CONSUMED_BY|PRODUCES]-()
          unwind nodes(p) as n
          return distinct n.biocyc_id,n.name, labels(n)
          df = graph_ll.run(query, reaction_id=reaction_id).to_data_frame()
          return df
```

Reaction: RXN3DJ-170 catalyzed by DDC Both serotonin and 5-hydroxyl-Ltryptophan are not ecocyc compound

```
[30]: df = get_reaction_nodes('RXN3DJ-170')
      print(len(df))
      df
```

5

```
[30]:
                  n.biocyc_id
                                                n.name \
      0
                   RXN3DJ-170
                                                  None
                       PROTON
                                                    H+
      1
        5-HYDROXY-TRYPTOPHAN 5-hydroxy-L-tryptophan
      3
               CARBON-DIOXIDE
                                                   C02
      4
                    SEROTONIN
                                             serotonin
                                                                               labels(n)
      0
                                  [db_BioCyc, db_HumanCyc, db_PseudomonasCyc, Reaction]
         [db_BioCyc, db_EcoCyc, Compound, db_HumanCyc, db_YeastCyc, db_PseudomonasCyc]
      1
                                  [db_BioCyc, Compound, db_HumanCyc, db_PseudomonasCyc]
      2
```

```
3 [db_BioCyc, db_EcoCyc, Compound, db_HumanCyc, db_YeastCyc, db_PseudomonasCyc] 4 [db_BioCyc, Compound, db_HumanCyc, db_PseudomonasCyc]
```

2. Reaction AROMATIC-L-AMINO-ACID-DECARBOXYLASE-RXN tryptamine is not EcoCyc compound

```
[31]: get reaction nodes("AROMATIC-L-AMINO-ACID-DECARBOXYLASE-RXN")
[31]:
                                     n.biocyc_id
                                                         n.name
      0
         AROMATIC-L-AMINO-ACID-DECARBOXYLASE-RXN
                                                           None
      1
                                              TRP
                                                   L-tryptophan
      2
                                                             H+
                                           PROTON
      3
                                       TRYPTAMINE
                                                     tryptamine
      4
                                                            C02
                                  CARBON-DIOXIDE
                                                                               labels(n)
                                  [db_BioCyc, db_HumanCyc, db_PseudomonasCyc, Reaction]
      0
      1
        [db_BioCyc, db_EcoCyc, Compound, db_HumanCyc, db_YeastCyc, db_PseudomonasCyc]
        [db BioCyc, db EcoCyc, Compound, db HumanCyc, db YeastCyc, db PseudomonasCyc]
      2
                                  [db_BioCyc, Compound, db_HumanCyc, db_PseudomonasCyc]
      3
         [db_BioCyc, db_EcoCyc, Compound, db_HumanCyc, db_YeastCyc, db_PseudomonasCyc]
```

1.1.1 Based on the spread sheet, create the following reactions:

- PHHB_RXN: tryptonphan -> 5-hydroxytryptophan
- DDC RXN: 5-hydroxytryptophan -> 5-hydroxytryptamine + CO2
- AANAT RXN: 5-hydroxytryptamine + acetyl-CoA -> acetyl-5-hydroxytryptamine + CoA
- ASMT_RXN: acetyl-5-hydroxytryptamine + SAM -> melatonin + SAH

```
2
            5-hydroxytryptamine
                                                       SEROTONIN
3
                                              N-ACETYL-SEROTONIN
   N-acetyl-5-hydroxytryptamine
4
                      melatonin
                                  N-ACETYL-5-METHOXY-TRYPTAMINE
5
                             SAM
                                           S-ADENOSYLMETHIONINE
6
                             SAH
                                               ADENOSYL-HOMO-CYS
7
                             C02
                                                  CARBON-DIOXIDE
8
                             CoA
                                                            CO-A
9
                                                      ACETYL-COA
                      acetyl-CoA
                      b.name
0
                L-tryptophan
1
      5-hydroxy-L-tryptophan
2
                    serotonin
3
          N-acetyl-serotonin
4
                   melatonin
5
     S-adenosyl-L-methionine
6
   S-adenosyl-L-homocysteine
7
8
                  coenzyme A
9
                  acetyl-CoA
    labels(b)
0
                 [db_BioCyc, db_EcoCyc, Compound, db_HumanCyc, db_YeastCyc,
db PseudomonasCyc]
                                          [db_BioCyc, Compound, db_HumanCyc,
db PseudomonasCyc]
                                          [db_BioCyc, Compound, db_HumanCyc,
db PseudomonasCyc]
                                                              [db_BioCyc, Compound,
db_HumanCyc]
4
                                                              [db_BioCyc, Compound,
db_HumanCyc]
   [db BioCyc, db EcoCyc, Compound, db HumanCyc, db YeastCyc, db PseudomonasCyc,
BioCycClass]
                 [db_BioCyc, db_EcoCyc, Compound, db_HumanCyc, db_YeastCyc,
db_PseudomonasCyc]
                 [db_BioCyc, db_EcoCyc, Compound, db_HumanCyc, db_YeastCyc,
db_PseudomonasCyc]
                 [db_BioCyc, db_EcoCyc, Compound, db_HumanCyc, db_YeastCyc,
db_PseudomonasCyc]
                 [db BioCyc, db EcoCyc, Compound, db HumanCyc, db YeastCyc,
db_PseudomonasCyc]
```

1.1.2 Create pathway - PMY-6030

```
[48]: | query = """
      match (n:Pathway:db_BioCyc) where n.biocyc_id = 'PWY-6030'
      return n.biocyc_id as biocyc_id, n.name as name
      pathway = graph_humancyc.run(query).data()[0]
      pathway
[48]: {'biocyc_id': 'PWY-6030', 'name': 'serotonin and melatonin biosynthesis'}
[49]: | query = """
      merge (n:Pathway:db BioCyc {biocyc id:$biocyc id})
      set n.eid = $biocyc_id, n.name = $name, n.dispayName=$name, n.
      graph.run(query, biocyc_id=pathway['biocyc_id'], name=pathway['name'])
[49]: (No data)
     1.1.3 Create reactions
[47]: | query = """
      match (n:Pathway:db_BioCyc) where n.biocyc_id = 'PWY-6030' with n
      match (n)-[:IN PATHWAY]-(r:Reaction)-[]-(:EnzReaction)-[:CATALYZES]-()<-[:</pre>

→COMPONENT_OF*O..]-()-[:ENCODES]-(g)
      return [x in collect(g) | x.name] as gene, r.biocyc_id as biocyc_id, r.
      →ec_number as ec_number,
      r.direction as direction, replace(r.description, "==", "=") as detail
      reactions = graph_humancyc.run(query).to_data_frame()
      reactions.to_excel("/Users/rcai/data/notebook/lei/humancyc_melatonin_rxn.xlsx",u
       →index=False)
[54]: | query = """
      match (p:Pathway {biocyc_id: $pathway_id})
      with p match (p)-[:IN PATHWAY]-(r:Reaction)-[:COMSUMED BY|PRODUCES]-(c:Compound)
      return c.biocyc_id as biocyc_id, c.name as name
      11 11 11
      chems = graph_humancyc.run(query, pathway_id=pathway['biocyc_id']).data()
[79]: def add_compounds(pathway_id):
          query = """
          match (p:Pathway {biocyc_id: $pathway_id})
          with p match (p)-[:IN PATHWAY]-(r:Reaction)-[:CONSUMED BY|PRODUCES]-(c:
       \hookrightarrowCompound)
          return c.biocyc_id as biocyc_id, c.name as name
```

```
chems = graph_humancyc.run(query, pathway_id=pathway_id).data()
          query2 = """
          merge (c:Compound {biocyc_id:$biocyc_id}) set c:db_BioCyc, c.name=$name,
          c.displayName=$name, c.eid=$biocyc_id
          for chem in chems:
              print("add", chem)
              graph.run(query2, biocyc_id=chem['biocyc_id'], name=chem['name'])
[80]: add_compounds(pathway['biocyc_id'])
     add {'biocyc_id': 'CARBON-DIOXIDE', 'name': 'CO2'}
     add {'biocyc_id': 'SEROTONIN', 'name': 'serotonin'}
     add {'biocyc_id': '5-HYDROXY-TRYPTOPHAN', 'name': '5-hydroxy-L-tryptophan'}
     add {'biocyc_id': 'PROTON', 'name': 'H+'}
     add {'biocyc_id': 'N-ACETYL-SEROTONIN', 'name': 'N-acetyl-serotonin'}
     add {'biocyc_id': 'PROTON', 'name': 'H+'}
     add {'biocyc_id': 'CO-A', 'name': 'coenzyme A'}
     add {'biocyc_id': 'ACETYL-COA', 'name': 'acetyl-CoA'}
     add {'biocyc_id': 'SEROTONIN', 'name': 'serotonin'}
     add {'biocyc_id': 'PROTON', 'name': 'H+'}
     add {'biocyc_id': 'ADENOSYL-HOMO-CYS', 'name': 'S-adenosyl-L-homocysteine'}
     add {'biocyc_id': 'N-ACETYL-5-METHOXY-TRYPTAMINE', 'name': 'melatonin'}
     add {'biocyc_id': 'N-ACETYL-SEROTONIN', 'name': 'N-acetyl-serotonin'}
     add {'biocyc_id': '5-HYDROXY-TRYPTOPHAN', 'name': '5-hydroxy-L-tryptophan'}
     add {'biocyc_id': 'CPD-5881', 'name': '(6R)-4a-hydroxy-tetrahydrobiopterin'}
     add {'biocyc_id': 'TRP', 'name': 'L-tryptophan'}
     add {'biocyc_id': 'OXYGEN-MOLECULE', 'name': 'oxygen'}
     add {'biocyc_id': 'CPD-14053', 'name':
     '(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin'}
[83]: def add_reactions(pathway_id):
          query = """
          match (p:Pathway {biocyc_id: $pathway_id})-[:IN_PATHWAY]-(r:Reaction)
          return r.biocyc_id as biocyc_id, r.ec_number as ec_number,
          replace(r.description, '==', '=') as detail
          reactions = graph_humancyc.run(query, pathway_id=pathway_id).data()
          print('reactions:', len(reactions))
          query_rxn = """
          merge(n:Reaction {biocyc_id:$biocyc_id}) set n:db_BioCyc, n.eid = ∪
       ⇒$biocyc_id,
          n.ec_number=$ec_number, n.displayName=$ec_number, n.detail=$detail, n.

¬comment='knocked in'
```

```
query_pwy = """
  match(n:Reaction {biocyc_id:$biocyc_id}), (p:Pathway {biocyc_id:
merge (n)-[:IN PATHWAY]->(p)
  for r in reactions:
      print(r['biocyc id'])
      graph.run(query_rxn, biocyc_id=r['biocyc_id'],__
→ec_number=r['ec_number'], detail=r['detail'])
       graph.run(query_pwy, biocyc_id=r['biocyc_id'], pathway_id=pathway_id)
   # add input
  query = """
  match (p:Pathway {biocyc_id: $pathway_id})-[:IN_PATHWAY]-(r:Reaction)
  with r match (r)-[:CONSUMED BY]-(c)
  return r.biocyc_id as reaction_id, c.biocyc_id as chem_id
  inputs = graph_humancyc.run(query, pathway_id=pathway_id).data()
  print("inputs", len(inputs))
  query_input = """
  match(r:Reaction {biocyc_id: $reaction_id}), (c:db_BioCyc {biocyc_id:⊔
\hookrightarrow$chem_id})
  merge (c)-[:CONSUMED BY]->(r)
  for inchem in inputs:
      print(inchem)
      graph.run(query_input, reaction_id=inchem['reaction_id'],__
→chem id=inchem['chem id'])
   # add output
  query = """
  match (p:Pathway {biocyc id: $pathway id})-[:IN PATHWAY]-(r:Reaction)
  with r match (r)-[:PRODUCES]-(c)
  return r.biocyc id as reaction id, c.biocyc id as chem id
  outputs = graph_humancyc.run(query, pathway_id=pathway_id).data()
  print("outputs", len(outputs))
  query_output = """
  match(r:Reaction {biocyc_id: $reaction_id}), (c:db_BioCyc {biocyc_id:_

    $chem id})
  merge (r)-[:PRODUCES]->(c)
  for outchem in outputs:
      print(outchem)
```

```
graph.run(query_output, reaction_id=outchem['reaction_id'],__
       [84]: add_reactions(pathway['biocyc_id'])
     reactions: 4
     RXN3DJ-170
     RXN3DJ-35528
     ACETYLSEROTONIN-O-METHYLTRANSFERASE-RXN
     TRYPTOPHAN-5-MONOOXYGENASE-RXN
     inputs 9
     {'reaction_id': 'RXN3DJ-170', 'chem_id': '5-HYDROXY-TRYPTOPHAN'}
     {'reaction_id': 'RXN3DJ-170', 'chem_id': 'PROTON'}
     {'reaction_id': 'RXN3DJ-35528', 'chem_id': 'ACETYL-COA'}
     {'reaction id': 'RXN3DJ-35528', 'chem id': 'SEROTONIN'}
     {'reaction id': 'ACETYLSEROTONIN-O-METHYLTRANSFERASE-RXN', 'chem id':
     'S-ADENOSYLMETHIONINE'}
     {'reaction_id': 'ACETYLSEROTONIN-O-METHYLTRANSFERASE-RXN', 'chem_id': 'N-ACETYL-
     SEROTONIN'}
     {'reaction_id': 'TRYPTOPHAN-5-MONOOXYGENASE-RXN', 'chem_id': 'TRP'}
     {'reaction_id': 'TRYPTOPHAN-5-MONOOXYGENASE-RXN', 'chem_id': 'OXYGEN-MOLECULE'}
     {'reaction_id': 'TRYPTOPHAN-5-MONOOXYGENASE-RXN', 'chem_id': 'CPD-14053'}
     outputs 10
     {'reaction_id': 'RXN3DJ-170', 'chem_id': 'CARBON-DIOXIDE'}
     {'reaction_id': 'RXN3DJ-170', 'chem_id': 'SEROTONIN'}
     {'reaction_id': 'RXN3DJ-35528', 'chem_id': 'N-ACETYL-SEROTONIN'}
     {'reaction_id': 'RXN3DJ-35528', 'chem_id': 'PROTON'}
     {'reaction_id': 'RXN3DJ-35528', 'chem_id': 'CO-A'}
     {'reaction_id': 'ACETYLSEROTONIN-O-METHYLTRANSFERASE-RXN', 'chem_id': 'PROTON'}
     {'reaction_id': 'ACETYLSEROTONIN-O-METHYLTRANSFERASE-RXN', 'chem_id': 'ADENOSYL-
     HOMO-CYS'}
     {'reaction id': 'ACETYLSEROTONIN-O-METHYLTRANSFERASE-RXN', 'chem id':
     'N-ACETYL-5-METHOXY-TRYPTAMINE'}
     {'reaction_id': 'TRYPTOPHAN-5-MONOOXYGENASE-RXN', 'chem_id': '5-HYDROXY-
     TRYPTOPHAN'}
     {'reaction_id': 'TRYPTOPHAN-5-MONOOXYGENASE-RXN', 'chem_id': 'CPD-5881'}
     1.1.4 Replace humancyc compound CPD-14053 with Ecocyc compound CPD0-2101
           (MH4)
     CPD0-1201 is a product of folM.
     match(n:Compound {biocyc_id:'CPD-14053'}) detach delete n;
     match(n:Compound {biocyc_id:'CPD0-2101'}), (r:Reaction {biocyc_id:'TRYPTOPHAN-5-MONOOXYGENASE-
     Export database as json file:
```

```
call apoc.export.json.all("/Users/rcai/data/database_backup/ecocyc-lei.json", {useTypes: true}
```

1.2 Add phhB step

```
TpH: Tryptophan + MH4 -> 5-hydroxytryptophan + MH3OH folM: qMH2 + NADPH + H = MH4 + NADP + (EcoCyc) phhB: MH3OH -> qMH2 + H2O (Reaction biocyc_id: RXN-7908)
```

- MH4: 5,6,7,8-tetrahydromonapterin (biocyc_id: CPD0-2101)
- MH3OH: 4a-hydroxytetrahydropterin (CPD-5881)
- qMH2: 7,8-dihydromonapterin (biocyc_id: CPD-11770)

set synonyms to easy read

```
match(n:db_BioCyc {biocyc_id: 'CPD0-2101'}) set n.displayName = 'MH4', n.synonyms = [n.name, n
match(n:db_BioCyc {biocyc_id: 'CPD-5881'}) set n.displayName = 'MH30H', n.synonyms = [n.name, n
match(n:db_BioCyc {biocyc_id: 'CPD-11770'}) set n.displayName = 'qMH2', n.synonyms = [n.name, n
```

1.2.1 add reaction

```
merge (n:db_BioCyc:Reaction {biocyc_id: 'RXN-7908'})
set n.eid = n.biocyc_id, n.displayName='phhB RXN',
n.comment='knockin, modified', n.detail="MH30H => qMH2 + H20"
return n;

match (n:Reaction {biocyc_id: 'RXN-7908'}), (c:Compound {biocyc_id:'CPD-5881'})
merge (c)-[:CONSUMED_BY]->(n);

match (n:Reaction {biocyc_id: 'RXN-7908'}), (c:Compound {biocyc_id:'CPD-11770'})
merge (n)-[:PRODUCES]->(c) return n;
```

1.2.2 Change reaction displayName and detail

```
match(n:Reaction {biocyc_id:'TRYPTOPHAN-5-MONOOXYGENASE-RXN'})
set n.displayName='TpH RXN', n.comment="knockin, modified",
n.detail = "L-tryptophan + MH4 => 5-hydroxy-L-tryptophan + MH3OH" return n;

match(n:Reaction {biocyc_id:'RXN3DJ-170'})
set n.displayName = 'DDC RXN', n.comment='knockin' return n;

match(n:Reaction {biocyc_id:'RXN3DJ-35528'})
set n.displayName = 'AANAT RXN', n.comment = 'knockin' return n;

match(n:Reaction {biocyc_id:'ACETYLSEROTONIN-O-METHYLTRANSFERASE-RXN'})
set n.displayName='ASMT RXN', n.comment = 'knockin' return n;

match(n:Reaction {biocyc_id: 'RXNO-6367'})
set n.displayName = 'folm RXN', n.detail = "qMH2 + NADPH + H+ => MH4 + NADP+"
return n;
```

1.2.3 set entityType

```
match(n:Compound) where not exists(n.entityType) set n.entityType = 'Chemical';
match(n:Reaction) where not exists(n.entityType) set n.entityType = 'Reaction';
```

2 Summary

2.0.1 Knock-out

```
TnaA: ['EG11005', 'TRYPTOPHAN-MONOMER', 'TRYPTOPHAN-CPLX', 'TRYPTOPHAN-RXN']

yddG: ['EG12713', 'EG12713-MONOMER', 'TRANS-RXNO-265']

ldhA: ['G592', 'DLACTDEHYDROGNAD-MONOMER', 'CPLXO-8158', 'DLACTDEHYDROGNAD-RXN']

cytR: ['EG10200', 'PD04028', 'CPLX0-7740', 'RXNO-6409', 'CPLX0-8051']
```

2.0.2 Knock-in

- TpH: TRYPTOPHAN-5-MONOOXYGENASE-RXN
 - Tryptophan + MH4 -> 5-hydroxytryptophan + MH3OH
- DDC: RXN3DJ-170
 - 5-hydroxy-L-tryptophan + H+ => CO2 + serotonin
- AANAT: RXN3DJ-35528
 - acetyl-CoA + serotonin => N-acetyl-serotonin + H+ + coenzyme A
- ASMT: ACETYLSEROTONIN-O-METHYLTRANSFERASE-RXN
 - S-adenosyl-L-methionine + N-acetyl-serotonin => H+ + S-adenosyl-L-homocysteine + melatonin
- folM: RXN0-6367
 - qMH2 + NADPH + H = MH4 + NADP + (EcoCyc)
- phhB: RXN-7908
 - MH3OH -> qMH2 + H2O

2.0.3 Naming

- MH4: 5,6,7,8-tetrahydromonapterin (biocyc_id: CPD0-2101)
- MH3OH: 4a-hydroxytetrahydropterin (CPD-5881)
- qMH2: 7,8-dihydromonapterin (biocyc_id: CPD-11770)

[]: