COMP9418: Advanced Topics in Statistical Machine Learning

A Bighine Int Propagation

https://tutorcs.com

WeChat: cstutorcs

Instructor: Gustavo Batista

University of New South Wales

Introduction

- In this lecture, we discuss a class of approximate inference algorithms based on belief propagation
 - Belief propagation was introduced as an exact algorithm for networks with polytree structure
 - Later, applied to networks with arbitrary structure and produced high-quality approximations in certain cases.
 WeChat: cstutorcs
- We introduce generalization of the algorithm with a full spectrum of approximations
 - Belief propagation approximation at one end
 - Exact results at the other

Belief Propagation

- Belief propagation is a messaging-passing algorithm
 - Originally developed for exact inference in polytrees networks
 - Assignment Project Exam Help

 A polytree is a network with only one undirected path
 between any two nodes https://tutorcs.com
- WeChat: cstutorcs
 The exact algorithm is a variation of the jointree
 - It computes P(X, e) for every variable in the polytree
 - We discuss the approximate algorithm later on

Belief Propagation

• Suppose we want to apply the jointree algorithm under evidence E = true

In this case, we can create a "special" jointree has Help the same structure as the polytree

• A node i in the jointree habite X where U are the parents of X

where U are the parents of XWe Chat: cstutores • Edge $U \to X$ in the jointree has separator $S_{ij} = U$

Therefore

- Jointree width equals polytree treewidth
- Each jointree message is over a single variable

Belief Propagation

 Belief propagation is the jointree algorithm under these circumstances

Messages are notated differently based on the polytree

• Message from node U to chasignmente Project Example (causal support)

• Messages from node Y to parent X denoted X_Y (diagnostic support)

WeChat: cstutorcs

• The joint marginal for the family of variable X with parents U_i and children Y_i is given by

$$P(X\boldsymbol{U}) = \phi_X(X, \boldsymbol{U}) \prod_i \pi_X(U_i) \prod_i \lambda_{Y_i}(X)$$

- In the presence of evidence, the belief propagation uses an evidence indicator $\lambda_e(X)$
 - $\lambda_e(x) = 1$ if x is consistent with the pyidence eand reconsistent with the pyidence eand reconsistent with the pyidence eand reconsistent with the pyidence example of the pyidence of
 - We can rewrite the joint material that the second of variable X with parents U_i , children Y_i and evidence e as WeChat: cstutorcs

$$P(X\boldsymbol{U},\boldsymbol{e}) = \lambda_{\boldsymbol{e}}(X) \, \phi_{X}(X,\boldsymbol{U}) \prod_{i} \pi_{X}(U_{i}) \prod_{j} \lambda_{Y_{j}}(X)$$

Using this notation, diagnostic messages can be defined as

$$\lambda_X(U_i) = \sum_{X \mathbf{U} \setminus \{U_i\}} \lambda_e(X) \, \phi_X(X, \mathbf{U}) \prod_{k \neq i} \pi_X(U_k) \prod_j \lambda_{Y_j}(X)$$
Assignment Project Exam Help

And causal messages as https://tutorcs.com

$$\pi_{Y_j}(X) = \sum_{\boldsymbol{U}} \lambda_e(X) \, \phi_X(X, \boldsymbol{U}) \, \prod_{i} \pi_{\boldsymbol{X}}(U_i) \, \prod_{k \neq j} \lambda_{\boldsymbol{X}}(X)$$

 A node can send a message to a neighbour only after it has received messages from all other neighbours

Using this notation, diagnostic messages can be defined as

$$\lambda_X(U_i) = \sum_{X \mathbf{U} \setminus \{U_i\}} \lambda_e(X) \, \phi_X(X, \mathbf{U}) \prod_{k \neq i} \pi_X(U_k) \prod_j \lambda_{Y_j}(X)$$
Assignment Project Exam Help

And causal messages as https://tutorcs.com

$$\pi_{Y_j}(X) = \sum_{\boldsymbol{U}} \lambda_e(X) \, \phi_X(X, \boldsymbol{U}) \, \prod_{i} \pi_{\boldsymbol{X}}(U_i) \, \prod_{k \neq j} \lambda_{\boldsymbol{X}}(X)$$

 A node can send a message to a neighbour only after it has received messages from all other neighbours

- When a node has a single neighbour, it can immediately send a message to that neighbour
 - This includes a leaf node X with a single parent U

Assignment Project Exam Help
$$\lambda_X(U) = \sum_{X \in X} \lambda_e(X) \, \phi_X(X, U)$$

• And a root node X with a single child Y

$$\pi_Y(X) = \lambda_Y(X)\phi_X(X,U)$$
we hat: cstutores

- These are the base cases for belief propagation
 - These messages can be computed immediately as they do not depend on any other messages
 - Typically, messages are first propagated toward a root and them pushed away from root

Belief Propagation: Example

 $P(B,C,D,\mathbf{e}) = \phi_D(D,B,C)\pi_D(B)\pi_D(C)\lambda_E(D)\lambda_F(D)$

e: $\{E = true\}$

Belief Propagation: Example

- We can use P(B, C, D, e) to compute marginals for the variables B, C and D. For instance
 - We can also compute the joint marginal for C once we compute the message from D to C
 Assignment Project Exam Help
 - To compute conditional marginals, we simply normalize joint marginals
- Another approach is to use a constant \(\eta\) that normalizes the factor to sum to one
 WeChat: cstutorcs

$$P(X\boldsymbol{U}|\boldsymbol{e}) = \eta \ \lambda_{\boldsymbol{e}}(X) \ \phi_{X}(X,\boldsymbol{U}) \prod_{i} \pi_{X}(U_{i}) \prod_{j} \lambda_{Y_{j}}(X)$$

$$\lambda_{X}(U_{i}) = \eta \sum_{X\boldsymbol{U}\setminus\{U_{i}\}} \lambda_{\boldsymbol{e}}(X) \ \phi_{X}(X,\boldsymbol{U}) \prod_{k\neq i} \pi_{X}(U_{k}) \prod_{j} \lambda_{Y_{j}}(X)$$

$$\pi_{Y_{j}}(X) = \eta \sum_{X\boldsymbol{U}\setminus\{U_{i}\}} \lambda_{\boldsymbol{e}}(X) \ \phi_{X}(X,\boldsymbol{U}) \prod_{i} \pi_{X}(U_{i}) \prod_{i\neq i} \lambda_{Y_{k}}(X)$$

$$egin{array}{c|c} C & P(C, e) \\ \hline c & .0009 \\ \hline ar{c} & .3067 \\ \hline \end{array}$$

Belief Propagation in Connected Networks

- Belief propagation was designed as an exact algorithm for polytrees
 - However, it was later applied to connected networks
- This application poses some difficulties
 A message can be sent from X to Y only when X has received all messages from other neighbours
 - https://tutorcs.com
 The correctness of belief propagation depends on the underlying polytree
- The results can be incorrect if the toconnected networks
 - The algorithm is no longer always correct
 - But can still provide some high-quality approximations in many cases
- In the figure, after node E send a message to C no other message can be propagated
 - Since each is dependent on others that are waiting to be propagated

Iterative Belief Propagation (IBP)

- Iterative or Loopy Belief Propagation assumes some initial value to each message in the network
 - Given these initial values, each node is ready to send a message to each of its neighbours
 Assignment Project Exam Help
 - At each iteration t, every node X send a message to its neighbours using the messages received from t-1
- The algorithm iterates until message convergence
 - The value of messages at the current iteration are within some threshold from their values at the previous iteration
 - When IBP converges, the values of the messages at convergence are called fixed point
 - IBP may have multiple fixed points on a given network

Message Schedule

- For some networks, IBP can oscillate and never converge
- The convergence rate can depend on the order the messages are propagated, which is known as message schedule
 Parallel schedule: the order of the messages does not affect the
 - algorithm
 - https://tutorcs.com
 Sequential schedule: messages are propagates as soon as they are computed WeChat: cstutorcs
- Sequential schedules are flexible in when and how quickly information is propagated
- Although one schedule may converge and other may not, all schedules have the same fixed points

Parallel Iterative Belief Propagation

```
t \leftarrow 0
initialize all messages
while messages have not converged do
         t \leftarrow t + 1
        for each node x with parents project Exam Help
                  for each parent U_i do \lambda_X^t(U_i) \leftarrow \eta \sum_{X \boldsymbol{U} \setminus \{U_i\}} \lambda_e(X) \phi_X(X, \boldsymbol{U}) \prod_{k \neq i} \pi_X^{t-1}(U_k) \prod_j \lambda_{Y_j}^{t-1}(X)
                  for each child we Chat: cstutorcs
                             \pi_{Y_i}^t(X) \leftarrow \eta \sum_{\boldsymbol{U}} \lambda_e(X) \, \phi_X(X, \boldsymbol{U}) \prod_i \pi_X^{t-1}(U_i) \prod_{k \neq j} \lambda_{Y_k}^{t-1}(X)
 return \beta(X\boldsymbol{U}) = P(X\boldsymbol{U}|\boldsymbol{e}) = \eta \ \lambda_{\boldsymbol{e}}(X) \ \phi_{X}(X,\boldsymbol{U}) \prod_{i} \pi_{X}^{t}(U_{i}) \prod_{j} \lambda_{Y_{i}}^{t}(X)
```

The Kullback-Leibler Divergence

The Kullback-Leibler divergence, known as KL divergence, between two distributions P
and P' conditioned on e

$$KL(P'(X|e), P(X|e)) \stackrel{\text{def}}{=} \sum_{e \in E} P'(x|e) \log \frac{P'(x|e)}{\text{Help}}$$
Assignment Project Exam

https://tutorcs.com

- KL(P'(X|e), P(X|e)) is non-negative and equal to zero if and only if P'(X|e) and P(X|e) are equivalent WeChat: cstutorcs
 - However, KL divergence is not a true distance since it is not symmetric. In general $KL(P'(X|e), P(X|e)) \neq KL(P(X|e), P'(X|e))$
 - We say we are weighting the KL divergence by the approximate distribution
 - This variation has some useful computational properties

Optimizing KL Divergence

- The approximate inference can be posed as an optimization problem
 - The goal is to search for an approximate distribution P' that minimizes KL divergence with P
 - We can assume a parametrized form for P' and search for the best instance, i.e., the best set of Assignment Project Exam Help parameters
- The Iterative Belief Propagation algorithm presented before assumes that the approximate distribution P'(X) factors as $P'(X|e) = \prod_{u \in U} \frac{P'(X|u|e)}{\prod_{u \in U} P'(u|e)}$

$$P'(X|e) = \prod_{XU} \frac{P'(XU|e)}{\prod_{U \in U} P'(U|e)}$$

- XU ranges over the families of the network N
- U ranges over nodes that appear as parents in N

Optimizing KL Divergence

The approximate distribution P'(X) factors as

$$P'(\boldsymbol{X}|\boldsymbol{e}) = \prod_{\boldsymbol{X}\boldsymbol{U}} \frac{P'(\boldsymbol{X}\boldsymbol{U}|\boldsymbol{e})}{\prod_{\boldsymbol{U}\in\boldsymbol{U}} P'(\boldsymbol{U}|\boldsymbol{e})}$$

- XU ranges over the families of the network N Project Exam Helps U ranges over nodes that appear as parents in N

https://tutorcs.com

- Some observations about this assumption
 - This choice of P'(X|e) is expressive the region to describe to the content of distributions induced by polytree networks
 - If the network N is a polytree then P(X|e) factors according to this equation (see figure for an example)
 - If N is not a polytree, then we are trying to fit P(X|e) into an approximation P'(X|e) as if it were generated by a polytree

$$\frac{P(A,B,C,D,E,F) =}{P(A)P(C)P(B,A)P(D,B,C)P(E,D)P(F,D)}$$
$$\frac{P(A)P(B)P(C)P(D)P(D)}{P(A)P(B)P(C)P(D)P(D)}$$

Optimizing KL Divergence

- The previous correspondence that IBP fixed points are stationary points of the KL divergence
 - They may or may not be local minima oject Exam Help
 - When IBP performs well, it often has fixed points that are minima of the KL divergence
 https://tutorcs.com
 - Otherwise, we need to seek approximations P' whose factorizations are more expressive than the polytree-based factorization
- If we do not insist on marginals being over families and individual variables, we can have a more general form that covers every distribution

Generalized Belief Propagation

 We saw in the previous lecture that a network can be factorized according to this this expression if

 $P'(X|e) = \frac{\prod_{C} P'(C|e)}{\prod_{S} P'(S|e)}$

- C corresponds to the clusters of a jointree
- S corresponds to the separateignment Project Exam Help
- If we base our factorization in a jointree https://tutorcs.com
 - Solving the previous optimization problem yields the same update equations of the jointree algorithme Chat: cstutorcs
- Therefore, the factorizations used by IBP and the factorization based on jointrees can be viewed as two extremes
 - One efficient but approximate
 - The other expensive but exact

Joingraphs

- There is a spectrum of factorizations that fall in between these two extremes
 - This allows a trade-off quality and efficiency Exam Help
 - The notion of joingraph is one way to obtain such a spectrum https://tutorcs.com
- Joingraphs are generaliza Worshot: jointuteess
 - They can be used to obtain factorizations according to $P'(X|e) = \frac{\prod_{C} P'(C|e)}{\prod_{S} P'(S|e)}$
 - They are used to formulate a message-passing algorithm like IBF, known as iterative joingraph propagation

Joingraphs

■ A joingraph G for a network N is a graph where nodes i are labelled by cluster C_i , and edges i - j are labelled by separators S_i Exam Help Moreover, G satisfies the following properties

• Clusters C_i and separators S_{ij} are sets of nodes from N WeChat: cstutores

- lacktriangle Each factor in N must appear in some cluster $oldsymbol{\mathcal{C}}_i$
- If a variable X appears in two clusters C_i and C_j , then there exists a unique path connecting i and j in the joingraph such that X appears in every cluster and separator on that path
- For every edge i-j in the joingraph, $S_{ij} \subseteq C_i \cap C_j$

Jointrees and Joingraphs

 We can think of a jointgraph as a way of relaxing some constraints of jointrees

In a jointree, if two clusters C_i and C_i share a set C_i of variables X then every cluster and separator on the path connecting C_i and C_i are C_i and C_i are C_i and C_i are C_i are C_i and C_i are C_i are C_i and C_i are C_i are C_i are C_i and C_i are C_i a

• In a joingraph, we assert each variable $X \in X$ be contained in clusters and separators of some path connecting C_i and C_j

• We do not require separators S_{ij} to be precisely the intersection of C_i and C_j , as in the case of jointrees

Valid Joingraph?

 $\phi_1(A,B,C), \phi_2(B,C), \phi_3(B,D), \phi_4(D,E), \phi_5(B,E), \phi_6(B,D), \phi_7(B,D,F)$

Valid Joingraph?

 $\phi_1(A,B,C), \phi_2(B,C), \phi_3(B,D), \phi_4(D,E), \phi_5(B,E), \phi_6(B,D), \phi_7(B,D,F)$

Valid Joingraph?

 $\phi_1(A,B,C), \phi_2(B,C), \phi_3(B,D), \phi_4(D,E), \phi_5(B,E), \phi_6(B,D), \phi_7(B,D,F)$

Joingraph Factorization

A joingraph induces an approximate factorization

$$P'(X|e) = \frac{\prod_{i} P'(C_i|e)}{\prod_{ij} P'(S_{ij}|e)}$$
Project Exam Help ABC https://tutorcs.com

When the joingraph corresponds: testilointree,
 the factorization is exact

Dual Joingraph

 A dual joingraph is a special joingraph whose factorization reduces to the one used by IBP

 A dual joingraph G fox singstwent Project Exam Helps obtained as follows

• G has the same undirected structure as N

- For each family XU in N, the collappoint i in G has the cluster $C_i = XU$
- For each $U \to X$ in N, the corresponding edge i-j in G has separator $\mathbf{S}_{ij} = U$

Dual jointgraph (approximate, same as IBP)

 $P'(\boldsymbol{X}|\boldsymbol{e}) = \frac{P'(A|\boldsymbol{e})P'(B|\boldsymbol{e})P'(A,B,C|\boldsymbol{e})P'(A,B,D|\boldsymbol{e})P'(C,D,E|\boldsymbol{e})}{P'(A|\boldsymbol{e})^2P'(B|\boldsymbol{e})^2P'(C|\boldsymbol{e})P'(D|\boldsymbol{e})}$

Assignment Project Exam Helpa

https://tutorcs.com

WeChat: cstutorcs

Dual Joingraph

Bayes net

Dual jointgraph (approximate, same as IBP)

$$P'(\boldsymbol{X}|\boldsymbol{e}) = \frac{P'(A|\boldsymbol{e})P'(B|\boldsymbol{e})P'(A,B,C|\boldsymbol{e})P'(A,B,D|\boldsymbol{e})P'(C,D,E|\boldsymbol{e})}{P'(A|\boldsymbol{e})^2P'(B|\boldsymbol{e})^2P'(C|\boldsymbol{e})P'(D|\boldsymbol{e})}$$

Assignment Project Exam Help ABC

Jointree (exact)

$$P'(X|e) = \frac{P'(A,B,C|e)P'(A,B,D|e)P'(A,B,D|e)P'(A,B,D|e)P'(C,D|e)}{P'(A,B,C|e)P'(A,B,D|e)P'(C,D|e)}$$

WeChat: cstutorcs

Dual jointgraph (approximate, same as IBP)

$$P'(\boldsymbol{X}|\boldsymbol{e}) = \frac{P'(A|\boldsymbol{e})P'(B|\boldsymbol{e})P'(A,B,C|\boldsymbol{e})P'(A,B,D|\boldsymbol{e})P'(C,D,E|\boldsymbol{e})}{P'(A|\boldsymbol{e})^2P'(B|\boldsymbol{e})^2P'(C|\boldsymbol{e})P'(D|\boldsymbol{e})}$$

Assignment Project Exam Help\

Jointree (exact)

$$P'(X|e) = \frac{P'(A,B,C|e)P'(A,B,D|e)P'(A,B,D|e)P'(C,D|e)}{P'(A,B,C|e)P'(A,B,D|e)P'(C,D|e)}$$

WeChat: cstutorcs

Joingraph (trade complexity and quality)

$$P'(\boldsymbol{X}|\boldsymbol{e}) = \frac{P'(A,B,C|\boldsymbol{e})P'(A,B,D|\boldsymbol{e})P'(A,C,D|\boldsymbol{e})P'(C,D,E|\boldsymbol{e})}{P'(B|\boldsymbol{e})P'(A,C|\boldsymbol{e})P'(A,D|\boldsymbol{e})P'(C,D|\boldsymbol{e})}$$

Joingraph (trade complexity and quality)

$$P'(\boldsymbol{X}|\boldsymbol{e}) = \frac{P'(A,B,C|\boldsymbol{e})P'(A,B,D|\boldsymbol{e})P'(A,C,D|\boldsymbol{e})P'(C,D,E|\boldsymbol{e})}{P'(B|\boldsymbol{e})P'(A,C|\boldsymbol{e})P'(A,D|\boldsymbol{e})P'(C,D|\boldsymbol{e})}$$

Assignment Project Exam Help\

https://tutorcs.com

WeChat: cstutorcs

Iterative Joingraph Propagation

- Suppose we have a network N that induces a distribution P
 - And a corresponding joingraph that induces a factorization P'
 - Also, we want to compute the sign magnitude of the separator marginals $P'(S_{ij}|e)$ that minimize the KL divergence between P(X|e) and the state of the separator of the se
- WeChat: cstutorcs
 This optimization problem can be solved with a generalization of IBP called interactive joingraph propagation (IJGP)

Iterative Joingraph Propagation

- The algorithm starts assigning each network factor ϕ and evidence indicator λ_e to some cluster C_i that contains variables in ϕ
 - All factors are associated to so ignustrated (Renject a Examps Help
 - No factor is present in more than one cluster (no overcounting of information)

WeChat: cstutorcs

- It propagates messages with the equations
 - $M_{ij} = \eta \sum_{C_i \setminus S_{ij}} \psi_i \prod_{k \neq j} M_{ki}$
 - where ψ_i is the product of all CPTs and evidence indicators assigned to cluster $m{C}_i$
 - M_{ii} is the message sent from cluster i to cluster j

Parallel Iterative Joingraph Propagation

```
initialize all messages  \begin{array}{l} \textbf{while} \text{ messages have not converged do} \\ \hline & t \leftarrow t \\ \hline & Assignment \\ & For each joingraph edge \\ & t \leftarrow t \\ \hline & Signment \\ & t \leftarrow t \\ \hline & Signment \\ & t \leftarrow t \\ \hline & Signment \\ & t \leftarrow t \\ \hline & Signment \\ & t \leftarrow t \\ \hline & Signment \\ & t \leftarrow t \\ \hline & Signment \\ & t \leftarrow t \\ \hline & Signment \\ & t \leftarrow t \\ \hline & Toject \\ & Exam \\ & Help \\ & t \rightarrow t \\ \hline & t
```

Joingraph Example with Markov Nets

Joingraph Example with Markov Nets

Joingraph Example with Markov Nets

Message Passing with Markov Nets

Message Passing with Markov Nets

Message Passing: Avoid Self-Beliefs

Notice that

- $M_{3,4}$ only considers from 2 ($M_{2.3}$)
- Therefore, ignoring information from 4
- This helps to avoid reinforcing selfbeliefs

Bethe Graph

A simple way to generate a valid joingraph

Murphy, K., Weiss, Y., & Jordan, M. I. (2013). Loopy belief propagation for approximate inference: An empirical study. *arXiv* preprint *arXiv*:1301.6725.

toyQMR network

Murphy, K., Weiss, Y., & Jordan, M. I. (2013). Loopy belief propagation for approximate inference: An empirical study. *arXiv* preprint *arXiv*:1301.6725.

Murphy, K., Weiss, Y., & Jordan, M. I. (2013). Loopy belief propagation for approximate inference: An empirical study. *arXiv* preprint *arXiv*:1301.6725.

QMR-DT network

Exact marginals (circles) and error bars

Murphy, K., Weiss, Y., & Jordan, M. I. (2013). Loopy belief propagation for approximate inference: An empirical study. *arXiv* preprint *arXiv*:1301.6725.

Convergence and Message Schedule

- In their analysis, Murphy, Weiss & Jordan used synchronous (parallel) message passaging
 - However, convergence can be improved with asynchronous approaches
 Assignment Project Exam Help
- Some approaches for asynchronous message scheduling https://tutorcs.com
 Tree reparameterization (TRP): Choose a tree (spanning tree is a good
 - Tree reparameterization (TRP): Choose a tree (spanning tree is a good choice) and pass messages. The trees must cover all edges
 - Residual belief propagation (RBP): Pass messages between two clusters whose beliefs over separators disagree the most. Usually, organised with a priority queue
- Smoothing messages
 - $M_{ij} = \lambda \left(\eta \sum_{C_i \setminus S_{ij}} \psi_i \prod_{k \neq j} M_{ki} \right) + (1 \lambda) M_{ij}^{old}$

Joingraph Example with Markov Nets

Convergence and Message Schedule

50 random grids of size 11×11 and C = 11 (left) and C = 13 (right)

Conclusion

- Belief propagation extends the paradigm of message passing
 - It provides a full spectrum of possibilities from exact to approximate inference
- Interactive joingraph propagation (IJGP) algorithm
 - Can be interpreted as an Apprigath them to Principes the Kladive I ger pe between
 - The factorization induced by the network
 - The factorization induced by thetique raptutores.com
- IJGP messages convergence
 - Guaranteed in a single iteration if the folingraph is a tree (foint ee)
 - Otherwise, convergence is not guaranteed
 - Even if the messages converge, its beliefs may not be necessarily equal the true marginals
 - Although very often in practice they will be close
- Task
 - Read chapter 14 (but 14.8)