Statistical Modelling: Understanding Mean Structure

Chapter 3

Timothée Bonnet and Terry Neeman May 14, 2019

Key components of a statistical model of an experiment

- Outcome measure
 - Response variable
 - Measure of interest
- Experimental factors
 - · Conditions that can be manipulated
 - Conditions of interest (e.g. genotype, gender)
 - Main questions: do the conditions impact upon the outcome measure?
- Blocking factors
 - Conditions (not of interest) that may impact upon the outcome measure
 - · Sources of variation in the experiment that need to be controlled for
 - Clustering of experimental units

ALWAYS BEGIN WITH A RESEARCH QUESTION

Simple linear models

$$\label{eq:response} \begin{split} \textit{response} &= \underbrace{\textit{A} + \textit{D} \times \textit{predictor}}_{\substack{\text{Mean Structure} \\ \text{Experimental factors}}} + \underbrace{\epsilon, \text{ with } \epsilon \sim \textit{N}(0, \sigma)}_{\substack{\text{Variance Structure} \\ \text{Unrelated to experiment factors}}} \end{split}$$

Example 1: Can drought tolerance in Arabidopsis be improved through genetic modification?

Context

Outcome measure: Leaf water retention LWR (%) Experimental factors:

- Gene A, genotypes (AA/aa)
- Gene B, genotypes (BB/bb)

Example 1: Can drought tolerance in Arabidopsis be improved through genetic modification?

Context

Outcome measure: Leaf water retention LWR (%) Experimental factors:

- Gene A, genotypes (AA/aa)
- Gene B, genotypes (BB/bb)

How many parameters to describe the different genotypes combinations?

4 treatments	Gene A	
	AA	aa
Gene B BB	С	C + A
bb	C + B	C+A+B+D

Two different models

Additive model - 3 parameters

4 treatments		Gene A	
		AA aa	
Gene B	ВВ	С	C + A
	bb	C+B	C+A+B

Full factorial model / Interactive model - 4 parameters

4 treatments	Gene A	
	AA	aa
Gene B BB	С	C + A
bb	C + B	C+A+B+D

What is different? What does the additive model assume?

Which model to use?

Additive model - 3 parameters

4 treatments		Gene A		
		AA	aa	
Gene B	ВВ	C	C + A	
	bb	C+B	C+A+B	

Full factorial model / Interactive model - 4 parameters

4 treatments	Gene A	
	AA	aa
Gene B BB	С	C + A
bb	C + B	C+A+B+D

- 1. Import data "Prac3mockLWR.csv"
- 2. Visualize data
- 3. Model data
- 4. Assess model assumptions

1. Import data "Prac3mockLWR.csv"

```
LWR <- read.csv("Prac3mockLWR.csv")</pre>
```

2. Visualise the data

```
ggplot(LWR, aes(GeneB,LWR,colour=GeneA)) +
geom_boxplot() + geom_point()
```

Full factorial or additive?

3. Model data

```
lmadditive <- lm(LWR ~ GeneA + GeneB, data = LWR)
summary(lmadditive)
anova(lmadditive)</pre>
```

```
lminteraction <- lm(LWR ~ GeneA * GeneB, data = LWR)
summary(lminteraction)
anova(lminteraction)
emmeans(lminteraction, pairwise ~ GeneA|GeneB)
emmeans(lminteraction, pairwise ~ GeneB|GeneA)</pre>
```

What are the estimates for A, B, C, D under each models?

4. Model assumptions

plot(lminteraction)

Which cabbage cultivar has the higher Vitamin C content on average?

Research context

- 60 cabbage heads
- 2 cultivars: c39 and c52
- 3 planting dates: Days 16, 20, 21

How many parameters to describe our scientific question?

Which cabbage cultivar has the higher Vitamin C content on average?

Research context

• 60 cabbage heads

• 2 cultivars: c39 and c52

• 3 planting dates: Days 16, 20, 21

		Cultivar		
		c39	c52	
Planting	Day 16	Α	A + B	
date	Day 20	A + C	A + B $A + B + C$	
	Day 21	A+D	A+B+D	
Marginal	means			

Which cabbage cultivar has the higher Vitamin C content on average?

Fit additive and interactive models in R

Dataset "Prac3cabbagedata.csv"

Are temperature mechanisms modified in a genetically modified tomato plant?

Research context

- 2 tomato plants
- 2 Genotypes: WT/mutant
- Watering condition: Normal/Drought
- Leaf temperature measured

How many parameters to describe our scientific question?

Are temperature mechanisms modified in a genetically modified tomato plant?

Research context

• 2 tomato plants

• 2 Genotypes: WT/mutant

• Watering condition: Normal/Drought

• Leaf temperature measured

		Water condition		
		Normal	Drought	Marginal means
Genotype	WT			
	mutant			
Marginal m	ieans			

Are temperature mechanisms modified in a genetically modified tomato plant?

Dataset "Prac3droughtdata.csv" Fit the appropriate model in R.

Compare genotypes and water conditions with emmeans

Relationship diameter/density differ between tree species?

Research context

• Nothofagus in the Andes

• 41 plots with 3 species (StandTypes)

• Outcome: Plot density

 $\bullet \ \ \, \mathsf{Factors:} \ \, \mathsf{StandType,} \ \, \mathsf{QuadDiam}$

Relationship diameter/density differ between tree species?

Research context

- Nothofagus in the Andes
- 41 plots with 3 species (StandTypes)
- Outcome: Plot density
- Factors: StandType, QuadDiam

Which model to use

Fit the models with "Prac3forest.csv" and answer the scientific question

Are NODk mice more susceptible to obesity when exposed to a high fat diet?

Research context

- 37 mice: 16 NODk /21 WT
- Randomised to either regular or high fat diet
- Monitored for 14 weeks
- Outcome measure: Body weight (g)
- Experimental factors: Diet (2), Strain (2), Age (7)

Data "Prac3diabeticmice.csv"