Алгоритмы

АлгориТм или алгориФм?

- Обычно: алгориТм
- Марков: алгориФм
- Названия эквивалентны

Понятие алгоритма

• Инструкция, какие действия нужно предпринять для достижения результата

Классы алгоритмов

- Механические, детерминированные, жёсткие
 — определённые действия в чёткой
 последовательности
- Вероятностные несколько путей, приводящих к вероятному достижению результата.
- Параллельные для работы параллельно исполняющихся программ, процессов, нитей.
- Эвристические на основании соображений без сторгого обоснования

Алгоритмы в курсах ФУПМ

- Детерминированные информатика (1 семестр)
- В приложении к олимпиадным задачам «Алгоритмы: построение и анализ»
- Теория формальных систем и алгоритмов (3 семестр).
- Детерминированные на графах «Алгоритмы и модели вычислений», 4 семестр
- Методы оптимизации (5-8 семестр)
- Параллельные алгоритмы (информатика, 3 семестр; параллельное программирование, 6-7 семестры; сетевые технологии, 7-8 семестры)
- Приближённые алгоритмы «эффективные алгоритмы», 11 семестр.

Модели для описания алгоритмов: машины Тьюринга и Поста

Нормальный алгорифм Маркова

Примитивно рекурсивные функции

Базовые:

- Нулевая функция О функция без аргументов, всегда возвращающая 0.
- Функция следования S одного переменного, сопоставляющая любому натуральному числу x непосредственно следующее за ним натуральное число x+1.
- Функции I_n^m, где 0<m\leqslant n, от n переменных, сопоставляющие любому упорядоченному набору x_1,\dots, x_n натуральных чисел число x_m из этого набора.

Оператор суперпозиции (иногда — оператор подстановки). Пусть f — функция от m переменных, a g_1, \dots, g_m — упорядоченный набор функций от n переменных каждая. Тогда результатом суперпозиции функций g_k в функцию f называется функция h от n переменных, сопоставляющая любому упорядоченному набору x_1, \dots, x_n натуральных чисел число

• h(x 1,...,x n)=f(g 1(x 1,...,x n),...,g m(x 1,...,x n)).

Оператор примитивной рекурсии. Пусть f — функция от n переменных, а g — функция от n+2 переменных. Тогда результатом применения оператора примитивной рекурсии к паре функций f и g называется функция h от n+1 переменной вида

- h(x_1,...,x_n,0)=f(x_1,...,x_n);
- h(x 1,...,x n,y+1)=g(x 1,...,x n,y,h(x 1,...,x n,y)).

Блоксхемы

Схемы Насси-Шнейдермана

O(n)

O(n) <=const * n при больших n

ВременнАя сложность

• Зависимость времение исполнения (или количества простых операций) от размера входных данных

Пространственная сложность

• Зависимость потребляемой памяти от размера входных данных

Жадный алгоритм

- На каждом этапе двигаться в сторону наиболее выгодного решения.
- Acm.mipt.ru/judge задача 26
- Каждый раз стремимся к числу, делящемуся на 4 (1-3 обрабатываем отдельно)

Динамическое программирование

• Решение вычисляется из решения подзадач

Факториал

- a[i]=i*a[i-1]
- Временная сложность O(n)
- Пространственная сложность O(n)

1-мерная динамика

- Числа Фибоначчи
 fib[n]=fib[n-1]+fib[n-2];
- 009 задача с ElJudge
 Можно уменьшить пространственную сложность до O(1)

1-мерная динамика

- 065 задача с ElJudge
- Покупка билетов
- queue[i]=min(
 a[i]+queue[i-1],
 b[i-1]+queue[i-2],
 c[i-2]+queue[i-3])

Дискретная задача о рюкзаке

- ElJudge, задача 059
- Есть список целочисленных длин композиций. Какую максимальную их сумму мы можем получить при условии, что она не превышает X?
- Можем ли мы получить сумму длин Z?
- Какие длины мы можем получить, добавив композицию длины N?

2-мерная динамика

• LCS — наибольшая общая подпоследовательность(BDCABA, ABCBD)=BCB

	В	D	С	A	В	A
Α	0	0	0	1	1	1
В	1	1	1	1	2	2
С	1	1	2	2	2	2
В	1	1	2	2	3	3
D	1	2	2	2	3	3

Сложность

- Пространственная O(n*m)
- Временная O(n*m)