AMENDMENT UNDER 37 C.F.R. § 1.116 U. S. Application No. 09/943,352

AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions and listings of claims in the application:

LISTING OF CLAIMS:

- 1 4. (canceled).
- 5. (currently amended): A method as defined in Claim 1 or 2 A radiation image read-out method, comprising the steps of:
- i) linearly irradiating stimulating rays onto an area of a stimulable phosphor sheet, on which a radiation image has been stored, with stimulating ray irradiating means, the stimulating rays causing the stimulable phosphor sheet to emit light in proportion to an amount of energy stored thereon during its exposure to radiation,
- ii) receiving the light, which has been emitted from the linear area of the stimulable phosphor sheet exposed to the linear stimulating rays, with one surface of a light guide device, which is located such that the one surface stands facing the linear area of the stimulable phosphor sheet exposed to the linear stimulating rays, the emitted light, which has thus been received, being guided through the light guide device toward end faces of the light guide device,
- iii) detecting the emitted light, which has been radiated out from at least one end face of the light guide device, with a line sensor, which comprises a plurality of photoelectric conversion devices arrayed along the at least one end face of the light guide device, and
- iv) moving the stimulable phosphor sheet with respect to the stimulating ray irradiating means, the light guide device, and the line sensor and in a direction, which is approximately

2

Ç

43

normal to a length direction of the linear area of the stimulable phosphor sheet exposed to the linear stimulating rays,

wherein at least one line sensor is located at a region of one end face of the light guide device, such that the at least one line sensor is capable of detecting the light, which is emitted from a subarea of the linear area of the stimulable phosphor sheet exposed to the linear stimulating rays,

a region of the one end face of the light guide device, at which region no line sensor is located, is formed as a light reflecting surface,

at least one line sensor is located at a region of a different end face of the light guide device, which different end face stands facing the one end face of the light guide device, such that the at least one line sensor stands facing the region of the one end face of the light guide device, which region is formed as the light reflecting surface, and

a region of the different end face of the light guide device, at which region no line sensor is located, is formed as a light reflecting surface.

- 6. (currently amended): A method as defined in Claim 1 or 2A radiation image read-out method, comprising the steps of:
- i) linearly irradiating stimulating rays onto an area of a stimulable phosphor sheet, on which a radiation image has been stored, with stimulating ray irradiating means, the stimulating rays causing the stimulable phosphor sheet to emit light in proportion to an amount of energy stored thereon during its exposure to radiation,
- ii) receiving the light, which has been emitted from the linear area of the stimulable phosphor sheet exposed to the linear stimulating rays, with one surface of a light guide device,

¢,

0

which is located such that the one surface stands facing the linear area of the stimulable phosphor sheet exposed to the linear stimulating rays, the emitted light, which has thus been received, being guided through the light guide device toward end faces of the light guide device,

iii) detecting the emitted light, which has been radiated out from at least one end face of the light guide device, with a line sensor, which comprises a plurality of photoelectric conversion devices arrayed along the at least one end face of the light guide device, and

iv) moving the stimulable phosphor sheet with respect to the stimulating ray irradiating means, the light guide device, and the line sensor and in a direction, which is approximately normal to a length direction of the linear area of the stimulable phosphor sheet exposed to the linear stimulating rays,

wherein the light guide device is divided into pixels, which are arrayed along an array direction of the photoelectric conversion devices of the line sensor and at a pitch identical with an array pitch of the photoelectric conversion devices.

- 7. (currently amended): Amethod as defined in Claim 1 or 2 A radiation image read-out method, comprising the steps of:
- i) linearly irradiating stimulating rays onto an area of a stimulable phosphor sheet, on which a radiation image has been stored, with stimulating ray irradiating means, the stimulating rays causing the stimulable phosphor sheet to emit light in proportion to an amount of energy stored thereon during its exposure to radiation,
- ii) receiving the light, which has been emitted from the linear area of the stimulable phosphor sheet exposed to the linear stimulating rays, with one surface of a light guide device, which is located such that the one surface stands facing the linear area of the stimulable phosphor

♦

sheet exposed to the linear stimulating rays, the emitted light, which has thus been received, being guided through the light guide device toward end faces of the light guide device,

iii) detecting the emitted light, which has been radiated out from at least one end face of the light guide device, with a line sensor, which comprises a plurality of photoelectric conversion devices arrayed along the at least one end face of the light guide device, and

iv) moving the stimulable phosphor sheet with respect to the stimulating ray irradiating means, the light guide device, and the line sensor and in a direction, which is approximately normal to a length direction of the linear area of the stimulable phosphor sheet exposed to the linear stimulating rays,

wherein the light, which has been emitted from the linear area of the stimulable phosphor sheet exposed to the linear stimulating rays, is collected with a light collecting optical system, and the emitted light, which has thus been collected, is guided by the light collecting optical system toward the light guide device.

- 8. (original): A method as defined in Claim 7 wherein the light, which has been emitted from the linear area of the stimulable phosphor sheet exposed to the linear stimulating rays, is collected with a plurality of light collecting optical systems, and the emitted light, which has thus been collected, is guided by each of the light collecting optical systems toward the light guide device.
 - 9 12. (canceled).
- 13. (currently amended): An apparatus as defined in Claim 9 or 10A radiation image read-out apparatus, comprising:

٥

Ó

i) stimulating ray irradiating means for linearly irradiating stimulating rays onto an area of a stimulable phosphor sheet, on which a radiation image has been stored, the stimulating rays causing the stimulable phosphor sheet to emit light in proportion to an amount of energy stored thereon during its exposure to radiation,

ii) a light guide device, which is located such that one surface stands facing the linear area of the stimulable phosphor sheet exposed to the linear stimulating rays, the light guide device receiving the light, which has been emitted from the linear area of the stimulable phosphor sheet exposed to the linear stimulating rays, with the one surface of the light guide device and guiding the emitted light, which has thus been received, toward end faces of the light guide device,

iii) a line sensor, which comprises a plurality of photoelectric conversion devices arrayed along at least one end face of the light guide device, the line sensor detecting the emitted light, which has been radiated out from the at least one end face of the light guide device, and

iv) sub-scanning means for moving the stimulable phosphor sheet with respect to the stimulating ray irradiating means, the light guide device, and the line sensor and in a direction, which is approximately normal to a length direction of the linear area of the stimulable phosphor sheet exposed to the linear stimulating rays,

wherein at least one line sensor is located at a region of one end face of the light guide device, such that the at least one line sensor is capable of detecting the light, which is emitted from a subarea of the linear area of the stimulable phosphor sheet exposed to the linear stimulating rays,

a region of the one end face of the light guide device, at which region no line sensor is located, is formed as a light reflecting surface,

at least one line sensor is located at a region of a different end face of the light guide device, which different end face stands facing the one end face of the light guide device, such that the at least one line sensor stands facing the region of the one end face of the light guide device, which region is formed as the light reflecting surface, and

a region of the different end face of the light guide device, at which region no line sensor is located, is formed as a light reflecting surface.

14. (currently amended): An apparatus as defined in Claim 9 or 10A radiation image read-out apparatus, comprising:

i) stimulating ray irradiating means for linearly irradiating stimulating rays onto an area of a stimulable phosphor sheet, on which a radiation image has been stored, the stimulating rays causing the stimulable phosphor sheet to emit light in proportion to an amount of energy stored thereon during its exposure to radiation,

ii) a light guide device, which is located such that one surface stands facing the linear area of the stimulable phosphor sheet exposed to the linear stimulating rays, the light guide device receiving the light, which has been emitted from the linear area of the stimulable phosphor sheet exposed to the linear stimulating rays, with the one surface of the light guide device and guiding the emitted light, which has thus been received, toward end faces of the light guide device,

iii) a line sensor, which comprises a plurality of photoelectric conversion devices arrayed along at least one end face of the light guide device, the line sensor detecting the emitted light, which has been radiated out from the at least one end face of the light guide device, and

iv) sub-scanning means for moving the stimulable phosphor sheet with respect to the stimulating ray irradiating means, the light guide device, and the line sensor and in a direction, which is approximately normal to a length direction of the linear area of the stimulable phosphor sheet exposed to the linear stimulating rays,

wherein the light guide device is divided into pixels, which are arrayed along an array direction of the photoelectric conversion devices of the line sensor and at a pitch identical with an array pitch of the photoelectric conversion devices.

15. (currently amended): An apparatus as defined in Claim 9 or 10A radiation image read-out apparatus, comprising:

i) stimulating ray irradiating means for linearly irradiating stimulating rays onto an area of a stimulable phosphor sheet, on which a radiation image has been stored, the stimulating rays causing the stimulable phosphor sheet to emit light in proportion to an amount of energy stored thereon during its exposure to radiation,

ii) a light guide device, which is located such that one surface stands facing the linear area of the stimulable phosphor sheet exposed to the linear stimulating rays, the light guide device receiving the light, which has been emitted from the linear area of the stimulable phosphor sheet exposed to the linear stimulating rays, with the one surface of the light guide device and guiding the emitted light, which has thus been received, toward end faces of the light guide device,

iii) a line sensor, which comprises a plurality of photoelectric conversion devices arrayed along at least one end face of the light guide device, the line sensor detecting the emitted light, which has been radiated out from the at least one end face of the light guide device, and

iv) sub-scanning means for moving the stimulable phosphor sheet with respect to the stimulating ray irradiating means, the light guide device, and the line sensor and in a direction, which is approximately normal to a length direction of the linear area of the stimulable phosphor sheet exposed to the linear stimulating rays,

wherein the apparatus further comprises a light collecting optical system, which is located between the stimulable phosphor sheet and the light guide device, the light collecting optical system collecting the light, which has been emitted from the linear area of the stimulable phosphor sheet exposed to the linear stimulating rays, and guiding the emitted light, which has thus been collected, toward the light guide device.

- 16. (original): An apparatus as defined in Claim 15 wherein the light, which has been emitted from the linear area of the stimulable phosphor sheet exposed to the linear stimulating rays, is collected with a plurality of light collecting optical systems, and the emitted light, which has thus been collected, is guided by each of the light collecting optical systems toward the light guide device.
- 17. (currently amended): The method as defined in Claim 1A radiation image read-out method, comprising the steps of:
- i) linearly irradiating stimulating rays onto an area of a stimulable phosphor sheet, on which a radiation image has been stored, with stimulating ray irradiating means, the stimulating

AMENDMENT UNDER 37 C.F.R. § 1.116 U. S. Application No. 09/943,352

rays causing the stimulable phosphor sheet to emit light in proportion to an amount of energy stored thereon during its exposure to radiation,

ii) receiving the light, which has been emitted from the linear area of the stimulable phosphor sheet exposed to the linear stimulating rays, with one surface of a light guide device, which is located such that the one surface stands facing the linear area of the stimulable phosphor sheet exposed to the linear stimulating rays, the emitted light, which has thus been received, being guided through the light guide device toward end faces of the light guide device,

iii) detecting the emitted light, which has been radiated out from at least one end face of the light guide device, with a line sensor, which comprises a plurality of photoelectric conversion devices arrayed along the at least one end face of the light guide device, and

iv) moving the stimulable phosphor sheet with respect to the stimulating ray irradiating means, the light guide device, and the line sensor and in a direction, which is approximately normal to a length direction of the linear area of the stimulable phosphor sheet exposed to the linear stimulating rays, wherein the light guide device is divided into a plurality of sections along the length direction, wherein each section channels a portion of the light received toward the end faces of the light guide device.

- 18. (currently amended): The method as defined in Claim 3 A radiation image read-out method, comprising the steps of:
- i) linearly irradiating stimulating rays onto an area of a stimulable phosphor sheet, on which a radiation image has been stored, with stimulating ray irradiating means, the stimulating rays causing the stimulable phosphor sheet to emit light in proportion to an amount of energy stored thereon during its exposure to radiation,

ii) receiving the light, which has been emitted from the linear area of the stimulable phosphor sheet exposed to the linear stimulating rays, with one surface of a light guide device, which is located such that the one surface stands facing the linear area of the stimulable phosphor sheet exposed to the linear stimulating rays, the emitted light, which has thus been received, being guided through the light guide device toward end faces of the light guide device,

iii) detecting the emitted light, which has been radiated out from at least one end face of the light guide device, with a line sensor, which comprises a plurality of photoelectric conversion devices arrayed along the at least one end face of the light guide device, and

iv) moving the stimulable phosphor sheet with respect to the stimulating ray irradiating means, the light guide device, and the line sensor and in a direction, which is approximately normal to a length direction of the linear area of the stimulable phosphor sheet exposed to the linear stimulating rays,

wherein each of two line sensors is located at one of two end faces of the light guide device, which end faces stand facing each other, such that each of the two line sensors is capable of detecting the light, which is emitted from an approximately overall length of the linear area of the stimulable phosphor sheet exposed to the linear stimulating rays, and

outputs of photoelectric conversion devices of the two line sensors, which photoelectric conversion devices correspond to an identical site on the linear area of the stimulable phosphor sheet exposed to the linear stimulating rays, are added to each other, and

wherein the light guide device is divided into a plurality of sections along the length direction, wherein each section channels a portion of the light received toward the end faces of the light guide device.

AMENDMENT UNDER 37 C.F.R. § 1.116 U. S. Application No. 09/943,352

- 19. (currently amended): The method as defined in Claim 4 A radiation image read-out method, comprising the steps of:
- i) linearly irradiating stimulating rays onto an area of a stimulable phosphor sheet, on which a radiation image has been stored, with stimulating ray irradiating means, the stimulating rays causing the stimulable phosphor sheet to emit light in proportion to an amount of energy stored thereon during its exposure to radiation,
- ii) receiving the light, which has been emitted from the linear area of the stimulable phosphor sheet exposed to the linear stimulating rays, with one surface of a light guide device, which is located such that the one surface stands facing the linear area of the stimulable phosphor sheet exposed to the linear stimulating rays, the emitted light, which has thus been received, being guided through the light guide device toward end faces of the light guide device,
- iii) detecting the emitted light, which has been radiated out from at least one end face of the light guide device, with a line sensor, which comprises a plurality of photoelectric conversion devices arrayed along the at least one end face of the light guide device, and
- iv) moving the stimulable phosphor sheet with respect to the stimulating ray irradiating means, the light guide device, and the line sensor and in a direction, which is approximately normal to a length direction of the linear area of the stimulable phosphor sheet exposed to the linear stimulating rays,

wherein the line sensor is located at one end face of the light guide device, such that the line sensor is capable of detecting the light, which is emitted from an approximately overall length of the linear area of the stimulable phosphor sheet exposed to the linear stimulating rays, and

an end face of the light guide device, the end face being located on a side opposite to the one end face at which the line sensor is located, is formed as a light reflecting surface, and wherein the light guide device is divided into a plurality of sections along the length direction, wherein each section channels a portion of the light received toward the end faces of the light guide device.

20. (currently amended): The method as defined in Claim 2A radiation image read-out apparatus, comprising:

i) stimulating ray irradiating means for linearly irradiating stimulating rays onto an area of a stimulable phosphor sheet, on which a radiation image has been stored, the stimulating rays causing the stimulable phosphor sheet to emit light in proportion to an amount of energy stored thereon during its exposure to radiation,

ii) a light guide device, which is located such that one surface stands facing the linear area of the stimulable phosphor sheet exposed to the linear stimulating rays, the light guide device receiving the light, which has been emitted from the linear area of the stimulable phosphor sheet exposed to the linear stimulating rays, with the one surface of the light guide device and guiding the emitted light, which has thus been received, toward end faces of the light guide device,

iii) a line sensor, which comprises a plurality of photoelectric conversion devices arrayed along at least one end face of the light guide device, the line sensor detecting the emitted light, which has been radiated out from the at least one end face of the light guide device, and

iv) sub-scanning means for moving the stimulable phosphor sheet with respect to the stimulating ray irradiating means, the light guide device, and the line sensor and in a direction,

which is approximately normal to a length direction of the linear area of the stimulable phosphor sheet exposed to the linear stimulating rays,

wherein the light guide device is divided into a plurality of sections along the length direction, wherein each section channels a portion of the light received and converts the portion into fluorescence, toward the end faces of the light guide device.

- 21. (currently amended): The method as defined in Claim 1A radiation image read-out method, comprising the steps of:
- i) linearly irradiating stimulating rays onto an area of a stimulable phosphor sheet, on which a radiation image has been stored, with stimulating ray irradiating means, the stimulating rays causing the stimulable phosphor sheet to emit light in proportion to an amount of energy stored thereon during its exposure to radiation,
- ii) receiving the light, which has been emitted from the linear area of the stimulable phosphor sheet exposed to the linear stimulating rays, with one surface of a light guide device, which is located such that the one surface stands facing the linear area of the stimulable phosphor sheet exposed to the linear stimulating rays, the emitted light, which has thus been received, being guided through the light guide device toward end faces of the light guide device,
- iii) detecting the emitted light, which has been radiated out from at least one end face of the light guide device, with a line sensor, which comprises a plurality of photoelectric conversion devices arrayed along the at least one end face of the light guide device, and

iv) moving the stimulable phosphor sheet with respect to the stimulating ray irradiating means, the light guide device, and the line sensor and in a direction, which is approximately

normal to a length direction of the linear area of the stimulable phosphor sheet exposed to the linear stimulating rays,

wherein each of the-two line sensors is capable of detecting the light which is emitted from a subarea of the linear area of the stimulable phosphor sheet exposed to the linear stimulating rays.

- 22. (currently amended): The method as defined in Claim 3-A radiation image read-out method, comprising the steps of:
- i) linearly irradiating stimulating rays onto an area of a stimulable phosphor sheet, on which a radiation image has been stored, with stimulating ray irradiating means, the stimulating rays causing the stimulable phosphor sheet to emit light in proportion to an amount of energy stored thereon during its exposure to radiation,
- ii) receiving the light, which has been emitted from the linear area of the stimulable phosphor sheet exposed to the linear stimulating rays, with one surface of a light guide device, which is located such that the one surface stands facing the linear area of the stimulable phosphor sheet exposed to the linear stimulating rays, the emitted light, which has thus been received, being guided through the light guide device toward end faces of the light guide device,
- iii) detecting the emitted light, which has been radiated out from at least one end face of the light guide device, with a line sensor, which comprises a plurality of photoelectric conversion devices arrayed along the at least one end face of the light guide device, and
- iv) moving the stimulable phosphor sheet with respect to the stimulating ray irradiating means, the light guide device, and the line sensor and in a direction, which is approximately

normal to a length direction of the linear area of the stimulable phosphor sheet exposed to the linear stimulating rays,

wherein each of two line sensors is located at one of two end faces of the light guide device, which end faces stand facing each other, such that each of the two line sensors is capable of detecting the light, which is emitted from an approximately overall length of the linear area of the stimulable phosphor sheet exposed to the linear stimulating rays, and

outputs of photoelectric conversion devices of the two line sensors, which photoelectric conversion devices correspond to an identical site on the linear area of the stimulable phosphor sheet exposed to the linear stimulating rays, are added to each other, and

wherein each of-the two line sensors is capable of detecting the light which is emitted from a subarea of the linear area of the stimulable phosphor sheet exposed to the linear stimulating rays.

- 23. (currently amended): The method as defined in Claim 4-A radiation image read-out method, comprising the steps of:
- i) linearly irradiating stimulating rays onto an area of a stimulable phosphor sheet, on which a radiation image has been stored, with stimulating ray irradiating means, the stimulating rays causing the stimulable phosphor sheet to emit light in proportion to an amount of energy stored thereon during its exposure to radiation,
- ii) receiving the light, which has been emitted from the linear area of the stimulable phosphor sheet exposed to the linear stimulating rays, with one surface of a light guide device, which is located such that the one surface stands facing the linear area of the stimulable phosphor

sheet exposed to the linear stimulating rays, the emitted light, which has thus been received, being guided through the light guide device toward end faces of the light guide device,

iii) detecting the emitted light, which has been radiated out from at least one end face of the light guide device, with a line sensor, which comprises a plurality of photoelectric conversion devices arrayed along the at least one end face of the light guide device, and

iv) moving the stimulable phosphor sheet with respect to the stimulating ray irradiating means, the light guide device, and the line sensor and in a direction, which is approximately normal to a length direction of the linear area of the stimulable phosphor sheet exposed to the linear stimulating rays,

wherein the line sensor is located at one end face of the light guide device, such that the line sensor is capable of detecting the light, which is emitted from an approximately overall length of the linear area of the stimulable phosphor sheet exposed to the linear stimulating rays, and

an end face of the light guide device, the end face being located on a side opposite to the one end face at which the line sensor is located, is formed as a light reflecting surface, and wherein each of the two-line sensors sensor is capable of detecting the light which is emitted from a subarea of the linear area of the stimulable phosphor sheet exposed to the linear stimulating rays.

24. (currently amended): The method as defined in Claim 2-A radiation image read-out apparatus, comprising:

i) stimulating ray irradiating means for linearly irradiating stimulating rays onto an area of a stimulable phosphor sheet, on which a radiation image has been stored, the stimulating rays

causing the stimulable phosphor sheet to emit light in proportion to an amount of energy stored thereon during its exposure to radiation,

ii) a light guide device, which is located such that one surface stands facing the linear area of the stimulable phosphor sheet exposed to the linear stimulating rays, the light guide device receiving the light, which has been emitted from the linear area of the stimulable phosphor sheet exposed to the linear stimulating rays, with the one surface of the light guide device and guiding the emitted light, which has thus been received, toward end faces of the light guide device,

iii) a line sensor, which comprises a plurality of photoelectric conversion devices arrayed along at least one end face of the light guide device, the line sensor detecting the emitted light, which has been radiated out from the at least one end face of the light guide device, and

iv) sub-scanning means for moving the stimulable phosphor sheet with respect to the stimulating ray irradiating means, the light guide device, and the line sensor and in a direction, which is approximately normal to a length direction of the linear area of the stimulable phosphor sheet exposed to the linear stimulating rays,

wherein each of the two line sensors is capable of detecting the light which is emitted from a subarea of the linear area of the stimulable phosphor sheet exposed to the linear stimulating rays.

- 25. (currently amended): The method as defined in Claim 1-A radiation image read-out method, comprising the steps of:
- i) linearly irradiating stimulating rays onto an area of a stimulable phosphor sheet, on which a radiation image has been stored, with stimulating ray irradiating means, the stimulating

rays causing the stimulable phosphor sheet to emit light in proportion to an amount of energy stored thereon during its exposure to radiation,

ii) receiving the light, which has been emitted from the linear area of the stimulable phosphor sheet exposed to the linear stimulating rays, with one surface of a light guide device, which is located such that the one surface stands facing the linear area of the stimulable phosphor sheet exposed to the linear stimulating rays, the emitted light, which has thus been received, being guided through the light guide device toward end faces of the light guide device,

iii) detecting the emitted light, which has been radiated out from at least one end face of the light guide device, with a line sensor, which comprises a plurality of photoelectric conversion devices arrayed along the at least one end face of the light guide device, and

iv) moving the stimulable phosphor sheet with respect to the stimulating ray irradiating means, the light guide device, and the line sensor and in a direction, which is approximately normal to a length direction of the linear area of the stimulable phosphor sheet exposed to the linear stimulating rays,

wherein the end faces are disposed substantially parallel to the linear area of the stimulable phosphor sheet exposed to the linear stimulating rays.

- 26. (currently amended): The method as defined in Claim 1 A radiation image read-out method, comprising the steps of:
- i) linearly irradiating stimulating rays onto an area of a stimulable phosphor sheet, on which a radiation image has been stored, with stimulating ray irradiating means, the stimulating rays causing the stimulable phosphor sheet to emit light in proportion to an amount of energy stored thereon during its exposure to radiation,

ii) receiving the light, which has been emitted from the linear area of the stimulable phosphor sheet exposed to the linear stimulating rays, with one surface of a light guide device, which is located such that the one surface stands facing the linear area of the stimulable phosphor sheet exposed to the linear stimulating rays, the emitted light, which has thus been received, being guided through the light guide device toward end faces of the light guide device,

iii) detecting the emitted light, which has been radiated out from at least one end face of
the light guide device, with a line sensor, which comprises a plurality of photoelectric conversion
devices arrayed along the at least one end face of the light guide device, and

iv) moving the stimulable phosphor sheet with respect to the stimulating ray irradiating means, the light guide device, and the line sensor and in a direction, which is approximately normal to a length direction of the linear area of the stimulable phosphor sheet exposed to the linear stimulating rays,

wherein a first end face of the end faces is disposed at an upstream end of the light guide device and a second end face of the end faces is disposed at a downstream end of the light guide device.

27. (currently amended): The method as defined in Claim 2-A radiation image read-out apparatus, comprising:

i) stimulating ray irradiating means for linearly irradiating stimulating rays onto an area of a stimulable phosphor sheet, on which a radiation image has been stored, the stimulating rays causing the stimulable phosphor sheet to emit light in proportion to an amount of energy stored thereon during its exposure to radiation,

ii) a light guide device, which is located such that one surface stands facing the linear area of the stimulable phosphor sheet exposed to the linear stimulating rays, the light guide device receiving the light, which has been emitted from the linear area of the stimulable phosphor sheet exposed to the linear stimulating rays, with the one surface of the light guide device and guiding the emitted light, which has thus been received, toward end faces of the light guide device,

iii) a line sensor, which comprises a plurality of photoelectric conversion devices arrayed along at least one end face of the light guide device, the line sensor detecting the emitted light, which has been radiated out from the at least one end face of the light guide device, and

iv) sub-scanning means for moving the stimulable phosphor sheet with respect to the stimulating ray irradiating means, the light guide device, and the line sensor and in a direction, which is approximately normal to a length direction of the linear area of the stimulable phosphor sheet exposed to the linear stimulating rays,

wherein the end faces are disposed substantially parallel to the linear area of the stimulable phosphor sheet exposed to the linear stimulating rays.

28. (currently amended): The method as defined in Claim 2-A radiation image read-out apparatus, comprising:

i) stimulating ray irradiating means for linearly irradiating stimulating rays onto an area of a stimulable phosphor sheet, on which a radiation image has been stored, the stimulating rays causing the stimulable phosphor sheet to emit light in proportion to an amount of energy stored thereon during its exposure to radiation,

ii) a light guide device, which is located such that one surface stands facing the linear area of the stimulable phosphor sheet exposed to the linear stimulating rays, the light guide device receiving the light, which has been emitted from the linear area of the stimulable phosphor sheet exposed to the linear stimulating rays, with the one surface of the light guide device and guiding the emitted light, which has thus been received, toward end faces of the light guide device,

iii) a line sensor, which comprises a plurality of photoelectric conversion devices arrayed along at least one end face of the light guide device, the line sensor detecting the emitted light, which has been radiated out from the at least one end face of the light guide device, and

iv) sub-scanning means for moving the stimulable phosphor sheet with respect to the stimulating ray irradiating means, the light guide device, and the line sensor and in a direction, which is approximately normal to a length direction of the linear area of the stimulable phosphor sheet exposed to the linear stimulating rays,

wherein a first end face of the end faces is disposed at an upstream end of the light guide device and a second end face of the end faces is disposed at a downstream end of the light guide device.

- 29. (new): A radiation image read-out apparatus, comprising:
- i) stimulating ray irradiating means for linearly irradiating stimulating rays onto an area of a stimulable phosphor sheet, on which a radiation image has been stored, the stimulating rays causing the stimulable phosphor sheet to emit light in proportion to an amount of energy stored thereon during its exposure to radiation,

AMENDMENT UNDER 37 C.F.R. § 1.116 U. S. Application No. 09/943,352

- ii) a light guide device, which is located such that one surface stands facing the linear area of the stimulable phosphor sheet exposed to the linear stimulating rays, the light guide device receiving the light, which has been emitted from the linear area of the stimulable phosphor sheet exposed to the linear stimulating rays, with the one surface of the light guide device and guiding the emitted light, which has thus been received, toward end faces of the light guide device,
- iii) a line sensor, which comprises a plurality of photoelectric conversion devices arrayed along at least one end face of the light guide device, the line sensor detecting the emitted light, which has been radiated out from the at least one end face of the light guide device, and
- iv) sub-scanning means for moving the stimulable phosphor sheet with respect to the stimulating ray irradiating means, the light guide device, and the line sensor and in a direction, which is approximately normal to a length direction of the linear area of the stimulable phosphor sheet exposed to the linear stimulating rays,

wherein at least one line sensor is located at a region of one end face of the light guide device, such that the at least one line sensor is capable of detecting the light, which is emitted from a subarea of the linear area of the stimulable phosphor sheet exposed to the linear stimulating rays,

a region of the one end face of the light guide device, at which region no line sensor is located, is formed as a light reflecting surface,

at least one line sensor is located at a region of a different end face of the light guide device, which different end face stands facing the one end face of the light guide device, such that the at least one line sensor stands facing the region of the one end face of the light guide device, which region is formed as the light reflecting surface, and

a region of the different end face of the light guide device, at which region no line sensor is located, is formed as a light reflecting surface.

- 30. (new): A radiation image read-out apparatus, comprising:
- i) stimulating ray irradiating means for linearly irradiating stimulating rays onto an area of a stimulable phosphor sheet, on which a radiation image has been stored, the stimulating rays causing the stimulable phosphor sheet to emit light in proportion to an amount of energy stored thereon during its exposure to radiation,
- ii) a light guide device, which is located such that one surface stands facing the linear area of the stimulable phosphor sheet exposed to the linear stimulating rays, the light guide device receiving the light, which has been emitted from the linear area of the stimulable phosphor sheet exposed to the linear stimulating rays, with the one surface of the light guide device and guiding the emitted light, which has thus been received, toward end faces of the light guide device,
- iii) a line sensor, which comprises a plurality of photoelectric conversion devices arrayed along at least one end face of the light guide device, the line sensor detecting the emitted light, which has been radiated out from the at least one end face of the light guide device, and
- iv) sub-scanning means for moving the stimulable phosphor sheet with respect to the stimulating ray irradiating means, the light guide device, and the line sensor and in a direction, which is approximately normal to a length direction of the linear area of the stimulable phosphor sheet exposed to the linear stimulating rays,

wherein the light guide device is divided into pixels, which are arrayed along an array direction of the photoelectric conversion devices of the line sensor and at a pitch identical with an array pitch of the photoelectric conversion devices.

- 31. (new): A radiation image read-out apparatus, comprising:
- i) stimulating ray irradiating means for linearly irradiating stimulating rays onto an area of a stimulable phosphor sheet, on which a radiation image has been stored, the stimulating rays causing the stimulable phosphor sheet to emit light in proportion to an amount of energy stored thereon during its exposure to radiation,
- ii) a light guide device, which is located such that one surface stands facing the linear area of the stimulable phosphor sheet exposed to the linear stimulating rays, the light guide device receiving the light, which has been emitted from the linear area of the stimulable phosphor sheet exposed to the linear stimulating rays, with the one surface of the light guide device and guiding the emitted light, which has thus been received, toward end faces of the light guide device,
- iii) a line sensor, which comprises a plurality of photoelectric conversion devices arrayed along at least one end face of the light guide device, the line sensor detecting the emitted light, which has been radiated out from the at least one end face of the light guide device, and
- iv) sub-scanning means for moving the stimulable phosphor sheet with respect to the stimulating ray irradiating means, the light guide device, and the line sensor and in a direction, which is approximately normal to a length direction of the linear area of the stimulable phosphor sheet exposed to the linear stimulating rays,

AMENDMENT UNDER 37 C.F.R. § 1.116 U. S. Application No. 09/943,352

wherein the light, which has been emitted from the linear area of the stimulable phosphor sheet exposed to the linear stimulating rays, is collected with a light collecting optical system, and the emitted light, which has thus been collected, is guided by the light collecting optical system toward the light guide device.

- 32. (new): An apparatus as defined in Claim 31 wherein the light, which has been emitted from the linear area of the stimulable phosphor sheet exposed to the linear stimulating rays, is collected with a plurality of light collecting optical systems, and the emitted light, which has thus been collected, is guided by each of the light collecting optical systems toward the light guide device.
 - 33. (new): A radiation image read-out apparatus, comprising:
- i) stimulating ray irradiating means for linearly irradiating stimulating rays onto an area of a stimulable phosphor sheet, on which a radiation image has been stored, the stimulating rays causing the stimulable phosphor sheet to emit light in proportion to an amount of energy stored thereon during its exposure to radiation,
- ii) a light guide device, which is located such that one surface stands facing the linear area of the stimulable phosphor sheet exposed to the linear stimulating rays, the light guide device receiving the light, which has been emitted from the linear area of the stimulable phosphor sheet exposed to the linear stimulating rays, with the one surface of the light guide device, converting the emitted light, which has thus been received, into fluorescence, and guiding the fluorescence toward end faces of the light guide device,
- iii) a line sensor, which comprises a plurality of photoelectric conversion devices arrayed along at least one end face of the light guide device, the line sensor detecting the fluorescence,

which has been radiated out from the at least one end face of the light guide device, and thereby indirectly detecting the emitted light, and

iv) sub-scanning means for moving the stimulable phosphor sheet with respect to the stimulating ray irradiating means, the light guide device, and the line sensor and in a direction, which is approximately normal to a length direction of the linear area of the stimulable phosphor sheet exposed to the linear stimulating rays,

wherein at least one line sensor is located at a region of one end face of the light guide device, such that the at least one line sensor is capable of detecting the light, which is emitted from a subarea of the linear area of the stimulable phosphor sheet exposed to the linear stimulating rays,

a region of the one end face of the light guide device, at which region no line sensor is located, is formed as a light reflecting surface,

at least one line sensor is located at a region of a different end face of the light guide device, which different end face stands facing the one end face of the light guide device, such that the at least one line sensor stands facing the region of the one end face of the light guide device, which region is formed as the light reflecting surface, and

a region of the different end face of the light guide device, at which region no line sensor is located, is formed as a light reflecting surface.

- 34. (new): A radiation image read-out apparatus, comprising:
- i) stimulating ray irradiating means for linearly irradiating stimulating rays onto an area of a stimulable phosphor sheet, on which a radiation image has been stored, the stimulating rays

causing the stimulable phosphor sheet to emit light in proportion to an amount of energy stored thereon during its exposure to radiation,

- ii) a light guide device, which is located such that one surface stands facing the linear area of the stimulable phosphor sheet exposed to the linear stimulating rays, the light guide device receiving the light, which has been emitted from the linear area of the stimulable phosphor sheet exposed to the linear stimulating rays, with the one surface of the light guide device, converting the emitted light, which has thus been received, into fluorescence, and guiding the fluorescence toward end faces of the light guide device,
- iii) a line sensor, which comprises a plurality of photoelectric conversion devices arrayed along at least one end face of the light guide device, the line sensor detecting the fluorescence, which has been radiated out from the at least one end face of the light guide device, and thereby indirectly detecting the emitted light, and
- iv) sub-scanning means for moving the stimulable phosphor sheet with respect to the stimulating ray irradiating means, the light guide device, and the line sensor and in a direction, which is approximately normal to a length direction of the linear area of the stimulable phosphor sheet exposed to the linear stimulating rays,

wherein the light guide device is divided into pixels, which are arrayed along an array direction of the photoelectric conversion devices of the line sensor and at a pitch identical with an array pitch of the photoelectric conversion devices.

- 35. (new): A radiation image read-out apparatus, comprising:
- i) stimulating ray irradiating means for linearly irradiating stimulating rays onto an area of a stimulable phosphor sheet, on which a radiation image has been stored, the stimulating rays

causing the stimulable phosphor sheet to emit light in proportion to an amount of energy stored thereon during its exposure to radiation,

- ii) a light guide device, which is located such that one surface stands facing the linear area of the stimulable phosphor sheet exposed to the linear stimulating rays, the light guide device receiving the light, which has been emitted from the linear area of the stimulable phosphor sheet exposed to the linear stimulating rays, with the one surface of the light guide device, converting the emitted light, which has thus been received, into fluorescence, and guiding the fluorescence toward end faces of the light guide device,
- iii) a line sensor, which comprises a plurality of photoelectric conversion devices arrayed along at least one end face of the light guide device, the line sensor detecting the fluorescence, which has been radiated out from the at least one end face of the light guide device, and thereby indirectly detecting the emitted light, and
- iv) sub-scanning means for moving the stimulable phosphor sheet with respect to the stimulating ray irradiating means, the light guide device, and the line sensor and in a direction, which is approximately normal to a length direction of the linear area of the stimulable phosphor sheet exposed to the linear stimulating rays,

wherein the apparatus further comprises a light collecting optical system, which is located between the stimulable phosphor sheet and the light guide device, the light collecting optical system collecting the light, which has been emitted from the linear area of the stimulable phosphor sheet exposed to the linear stimulating rays, and guiding the emitted light, which has thus been collected, toward the light guide device.

- 36. (new): An apparatus as defined in Claim 35 wherein the light, which has been emitted from the linear area of the stimulable phosphor sheet exposed to the linear stimulating rays, is collected with a plurality of light collecting optical systems, and the emitted light, which has thus been collected, is guided by each of the light collecting optical systems toward the light guide device.
 - 37. (new): A radiation image read-out apparatus, comprising:
- i) stimulating ray irradiating means for linearly irradiating stimulating rays onto an area of a stimulable phosphor sheet, on which a radiation image has been stored, the stimulating rays causing the stimulable phosphor sheet to emit light in proportion to an amount of energy stored thereon during its exposure to radiation,
- ii) a light guide device, which is located such that one surface stands facing the linear area of the stimulable phosphor sheet exposed to the linear stimulating rays, the light guide device receiving the light, which has been emitted from the linear area of the stimulable phosphor sheet exposed to the linear stimulating rays, with the one surface of the light guide device and guiding the emitted light, which has thus been received, toward end faces of the light guide device,
- iii) a line sensor, which comprises a plurality of photoelectric conversion devices arrayed along at least one end face of the light guide device, the line sensor detecting the emitted light, which has been radiated out from the at least one end face of the light guide device, and
- iv) sub-scanning means for moving the stimulable phosphor sheet with respect to the stimulating ray irradiating means, the light guide device, and the line sensor and in a direction,

which is approximately normal to a length direction of the linear area of the stimulable phosphor sheet exposed to the linear stimulating rays,

wherein each of two line sensors is located at one of two end faces of the light guide device, which end faces stand facing each other, such that each of the two line sensors is capable of detecting the light, which is emitted from an approximately overall length of the linear area of the stimulable phosphor sheet exposed to the linear stimulating rays, and

outputs of photoelectric conversion devices of the two line sensors, which photoelectric conversion devices correspond to an identical site on the linear area of the stimulable phosphor sheet exposed to the linear stimulating rays, are added to each other, and

wherein the light guide device is divided into a plurality of sections along the length direction, wherein each section channels a portion of the light received toward the end faces of the light guide device.

- 38. (new): A radiation image read-out apparatus, comprising:
- i) stimulating ray irradiating means for linearly irradiating stimulating rays onto an area of a stimulable phosphor sheet, on which a radiation image has been stored, the stimulating rays causing the stimulable phosphor sheet to emit light in proportion to an amount of energy stored thereon during its exposure to radiation,
- ii) a light guide device, which is located such that one surface stands facing the linear area of the stimulable phosphor sheet exposed to the linear stimulating rays, the light guide device receiving the light, which has been emitted from the linear area of the stimulable phosphor sheet exposed to the linear stimulating rays, with the one surface of the light guide

device and guiding the emitted light, which has thus been received, toward end faces of the light guide device,

iii) a line sensor, which comprises a plurality of photoelectric conversion devices arrayed along at least one end face of the light guide device, the line sensor detecting the emitted light, which has been radiated out from the at least one end face of the light guide device, and

iv) sub-scanning means for moving the stimulable phosphor sheet with respect to the stimulating ray irradiating means, the light guide device, and the line sensor and in a direction, which is approximately normal to a length direction of the linear area of the stimulable phosphor sheet exposed to the linear stimulating rays,

wherein the line sensor is located at one end face of the light guide device, such that the line sensor is capable of detecting the light, which is emitted from an approximately overall length of the linear area of the stimulable phosphor sheet exposed to the linear stimulating rays, and an end face of the light guide device, the end face being located on a side opposite to the one end face at which the line sensor is located, is formed as a light reflecting surface, and

wherein the light guide device is divided into a plurality of sections along the length direction, wherein each section channels a portion of the light received toward the end faces of the light guide device.

- 39. (new): A radiation image read-out apparatus, comprising:
- i) stimulating ray irradiating means for linearly irradiating stimulating rays onto an area of a stimulable phosphor sheet, on which a radiation image has been stored, the stimulating rays causing the stimulable phosphor sheet to emit light in proportion to an amount of energy stored thereon during its exposure to radiation,

- ii) a light guide device, which is located such that one surface stands facing the linear area of the stimulable phosphor sheet exposed to the linear stimulating rays, the light guide device receiving the light, which has been emitted from the linear area of the stimulable phosphor sheet exposed to the linear stimulating rays, with the one surface of the light guide device and guiding the emitted light, which has thus been received, toward end faces of the light guide device,
- iii) a line sensor, which comprises a plurality of photoelectric conversion devices arrayed along at least one end face of the light guide device, the line sensor detecting the emitted light, which has been radiated out from the at least one end face of the light guide device, and
- iv) sub-scanning means for moving the stimulable phosphor sheet with respect to the stimulating ray irradiating means, the light guide device, and the line sensor and in a direction, which is approximately normal to a length direction of the linear area of the stimulable phosphor sheet exposed to the linear stimulating rays,

wherein each of two line sensors is located at one of two end faces of the light guide device, which end faces stand facing each other, such that each of the two line sensors is capable of detecting the light, which is emitted from an approximately overall length of the linear area of the stimulable phosphor sheet exposed to the linear stimulating rays, and

outputs of photoelectric conversion devices of the two line sensors, which photoelectric conversion devices correspond to an identical site on the linear area of the stimulable phosphor sheet exposed to the linear stimulating rays, are added to each other, and

wherein each of-the two line sensors is capable of detecting the light which is emitted from a subarea of the linear area of the stimulable phosphor sheet exposed to the linear stimulating rays.

- 40. (new): A radiation image read-out apparatus, comprising:
- i) stimulating ray irradiating means for linearly irradiating stimulating rays onto an area of a stimulable phosphor sheet, on which a radiation image has been stored, the stimulating rays causing the stimulable phosphor sheet to emit light in proportion to an amount of energy stored thereon during its exposure to radiation,
- ii) a light guide device, which is located such that one surface stands facing the linear area of the stimulable phosphor sheet exposed to the linear stimulating rays, the light guide device receiving the light, which has been emitted from the linear area of the stimulable phosphor sheet exposed to the linear stimulating rays, with the one surface of the light guide device and guiding the emitted light, which has thus been received, toward end faces of the light guide device,
- iii) a line sensor, which comprises a plurality of photoelectric conversion devices arrayed along at least one end face of the light guide device, the line sensor detecting the emitted light, which has been radiated out from the at least one end face of the light guide device, and
- iv) sub-scanning means for moving the stimulable phosphor sheet with respect to the stimulating ray irradiating means, the light guide device, and the line sensor and in a direction, which is approximately normal to a length direction of the linear area of the stimulable phosphor sheet exposed to the linear stimulating rays,

AMENDMENT UNDER 37 C.F.R. § 1.116 U. S. Application No. 09/943,352

wherein the line sensor is located at one end face of the light guide device, such that the line sensor is capable of detecting the light, which is emitted from an approximately overall length of the linear area of the stimulable phosphor sheet exposed to the linear stimulating rays, and

an end face of the light guide device, the end face being located on a side opposite to the one end face at which the line sensor is located, is formed as a light reflecting surface, and wherein the line sensor is capable of detecting the light which is emitted from a subarea of the linear area of the stimulable phosphor sheet exposed to the linear stimulating rays.