

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION  
International Bureau

## INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

|                                                         |    |                                                               |
|---------------------------------------------------------|----|---------------------------------------------------------------|
| (51) International Patent Classification <sup>6</sup> : | A1 | (11) International Publication Number: WO 99/18072            |
| C07D 205/08, A61K 31/395                                |    | (43) International Publication Date: 15 April 1999 (15.04.99) |

|                                                                                                                                                                                                                                                                                                                                                                         |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (21) International Application Number:                                                                                                                                                                                                                                                                                                                                  | PCT/CA98/00953            | (81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, HR, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG). |
| (22) International Filing Date:                                                                                                                                                                                                                                                                                                                                         | 6 October 1998 (06.10.98) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| (30) Priority Data:                                                                                                                                                                                                                                                                                                                                                     |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 60/061,544                                                                                                                                                                                                                                                                                                                                                              | 7 October 1997 (07.10.97) | US                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (71) Applicant (for all designated States except US):                                                                                                                                                                                                                                                                                                                   |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| BOEHRINGER INGELHEIM (CANADA) LTD. [CA/CA];<br>2100 Cunard, Laval, Quebec H7S 2G5 (CA).                                                                                                                                                                                                                                                                                 |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| (72) Inventors; and                                                                                                                                                                                                                                                                                                                                                     |                           | Published                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| (75) Inventors/Applicants (for US only): YOAKIM, Christiane [CA/CA]; 65 Gianchetti, Laval, Quebec H7G 4T5 (CA). DEZIEL, Robert [CA/CA]; 546 avenue Chester, Ville Mont-Royal, Quebec H3R 1W9 (CA). OGILVIE, William, W. [CA/CA]; 335 rue Edgewood, Rosemere, Quebec J7A 2M3 (CA). O'MEARA, Jeffrey [CA/CA]; 590 rue Jolivet #4, Laval-des-Rapides, Quebec H7N 5Y6 (CA). |                           | With international search report.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (74) Agents: TANDAN, Susan, I. et al.; Van Zant & Associates, Suite 1407, 77 Bloor Street West, Toronto, Ontario M5S 1M2 (CA).                                                                                                                                                                                                                                          |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

## (54) Title: AZETIDINONE DERIVATIVES FOR THE TREATMENT OF HCMV INFECTIONS

## (57) Abstract

A compound of formula (I) wherein R<sup>1</sup> is hydrogen, methyl, ethyl, methoxy or methylthio; R<sup>2</sup> and R<sup>3</sup> each independently is hydrogen or lower alkyl; R<sup>4</sup> is hydrogen, lower alkyl, methoxy, ethoxy or benzyloxy; R<sup>5</sup> is lower alkyl, lower cycloalkyl, (CH<sub>2</sub>)<sub>m</sub>C(O)OR<sup>6</sup> wherein m is the integer 1 or 2 and R<sup>6</sup> is lower alkyl, phenyl optionally substituted; optionally Het or Het(lower alkyl); or R<sup>4</sup> and R<sup>5</sup> together with the nitrogen atom to which they are attached form a nitrogen containing ring optionally substituted with C(O)O-benzyl or with phenyl optionally substituted with C(O)OR<sub>7</sub> wherein R<sub>7</sub> is lower alkyl or (lower alkyl)phenyl; and Z is lower alkyl or optionally substituted phenyl or Het; with the proviso that when Z is (CH<sub>2</sub>)<sub>p</sub>-(Het), then R<sup>2</sup> and R<sup>3</sup> each is hydrogen; or a therapeutically acceptable acid addition salt thereof.



**FOR THE PURPOSES OF INFORMATION ONLY**

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

|    |                          |    |                                       |    |                                           |    |                          |
|----|--------------------------|----|---------------------------------------|----|-------------------------------------------|----|--------------------------|
| AL | Albania                  | ES | Spain                                 | LS | Lesotho                                   | SI | Slovenia                 |
| AM | Armenia                  | FI | Finland                               | LT | Lithuania                                 | SK | Slovakia                 |
| AT | Austria                  | FR | France                                | LU | Luxembourg                                | SN | Senegal                  |
| AU | Australia                | GA | Gabon                                 | LV | Latvia                                    | SZ | Swaziland                |
| AZ | Azerbaijan               | GB | United Kingdom                        | MC | Monaco                                    | TD | Chad                     |
| BA | Bosnia and Herzegovina   | GE | Georgia                               | MD | Republic of Moldova                       | TG | Togo                     |
| BB | Barbados                 | GH | Ghana                                 | MG | Madagascar                                | TJ | Tajikistan               |
| BE | Belgium                  | GN | Guinea                                | MK | The former Yugoslav Republic of Macedonia | TM | Turkmenistan             |
| BF | Burkina Faso             | GR | Greece                                | ML | Mali                                      | TR | Turkey                   |
| BG | Bulgaria                 | HU | Hungary                               | MN | Mongolia                                  | TT | Trinidad and Tobago      |
| BJ | Benin                    | IE | Ireland                               | MR | Mauritania                                | UA | Ukraine                  |
| BR | Brazil                   | IL | Israel                                | MW | Malawi                                    | UG | Uganda                   |
| BY | Belarus                  | IS | Iceland                               | MX | Mexico                                    | US | United States of America |
| CA | Canada                   | IT | Italy                                 | NE | Niger                                     | UZ | Uzbekistan               |
| CF | Central African Republic | JP | Japan                                 | NL | Netherlands                               | VN | Viet Nam                 |
| CG | Congo                    | KE | Kenya                                 | NO | Norway                                    | YU | Yugoslavia               |
| CH | Switzerland              | KG | Kyrgyzstan                            | NZ | New Zealand                               | ZW | Zimbabwe                 |
| CI | Côte d'Ivoire            | KP | Democratic People's Republic of Korea | PL | Poland                                    |    |                          |
| CM | Cameroon                 | KR | Republic of Korea                     | PT | Portugal                                  |    |                          |
| CN | China                    | KZ | Kazakhstan                            | RO | Romania                                   |    |                          |
| CU | Cuba                     | LC | Saint Lucia                           | RU | Russian Federation                        |    |                          |
| CZ | Czech Republic           | LI | Liechtenstein                         | SD | Sudan                                     |    |                          |
| DE | Germany                  | LK | Sri Lanka                             | SE | Sweden                                    |    |                          |
| DK | Denmark                  | LR | Liberia                               | SG | Singapore                                 |    |                          |
| EE | Estonia                  |    |                                       |    |                                           |    |                          |

AZETIDINONE DERIVATIVES FOR THE TREATMENT OF  
HCMV INFECTIONS

Field of the Invention

5

This invention relates to azetidinone derivatives having activity against herpes infections. More specifically, the invention relates to azetidin-2-one derivatives exhibiting antiherpes activity, to pharmaceutical compositions comprising the derivatives, and methods of using the derivatives to inhibit the replication of herpes virus and to treat herpes infections.

15 Background of the Invention

Herpes viruses inflict a wide range of diseases against humans and animals. For instance, herpes simplex viruses, types 1 and 2 (HSV-1 and HSV-2), are responsible for cold sores and genital lesions, respectively; varicella zoster virus (VZV) causes chicken pox and shingles; and the human cytomegalovirus (HCMV) is a leading cause of opportunistic infections in immunosuppressed individuals.

Over the past two decades, a class of compounds known as the purine and pyrimidine nucleoside analogs has received the most attention by investigators in the search for new therapeutic agents for treatment of herpes virus infections. As a result, several nucleoside analogs have been developed as antiviral agents. The most successful to date is acyclovir which is the agent of choice for treating genital HSV

infections. Another nucleoside analog, ganciclovir, has been used with some success in treating HCMV infections.

5 Nevertheless, in spite of some significant advances, the need for effective, safe therapeutic agents for treating herpes viral infections continues to exist. For a review of current therapeutic agents in this area, see R.E. Boeheme et al., Annual Reports in  
10 Medicinal Chemistry, 1995, 30, 139.

The present application discloses a group of azetidin-2-one derivatives particularly active against cytomegalovirus. This activity coupled with  
15 a wide margin of safety, renders these derivatives desirable agents for combating herpes infections.

Azetidin-2-one derivatives have been reported in the literature as having a variety of biological activities; mainly antibacterial, antiinflammatory, antidegenerative, etc. However, azetidin-2-one derivatives have not been reported to be antiviral agents against herpes viruses.

25 The following references disclose azetidin-2-ones having biological activity:  
S.K. Shah et al., European patent application  
0,199,630, October 29, 1986,  
S.K. Shah et al., European patent application  
30 0,377,549, October 18, 1989,  
P.L. Durette and M. Maccoss, US patent 5,100,880,  
March 31, 1992,  
P.L. Durette and M. Maccoss, US patent 5,104,862,  
April 14, 1992,

## 3

W.K. Hagmann et al., *Bioorg. Med. Chem. Lett.* **1992**, 2, 681,  
 W.K. Hagmann et al., *J. Med. Chem.* **1993**, 36, 771,  
 J.B. Doherty et al., US patent 5,229,381, issued July  
 5 20, 1993,  
 S.K. Shah et al., *Bioorg. Med. Chem. Lett.* **1993**, 3, 2295,  
 G. Crawley, PCT patent WO 95/02579, published January 26, 1995,  
 10 P.E. Finke et al., *J. Med. Chem.* **1995**, 38, 2449, and  
 K. Kobayashi et al., Japanese patent application 07242624, published September 19, 1995; *Chem. Abstr.* **1996**, 124, 29520.

15 The present azetidin-2-one derivatives are distinguished from the prior art compounds in that they possess different chemical structures and biological activities.

20 Summary of the Invention

The azetidin-2-one derivatives are represented by formula 1:



25 wherein R¹ is hydrogen, methyl, ethyl, methoxy or methylthio;

R² and R³ each independently is hydrogen or lower alkyl;

R⁴ is hydrogen, lower alkyl, methoxy, ethoxy or  
 30 benzyloxy;

$R^5$  is lower alkyl, lower cycloalkyl,  $(CH_2)_mC(O)OR^6$  wherein  $m$  is the integer 1 or 2 and  $R^6$  is lower alkyl or phenyl(lower alkyl); phenyl, phenyl monosubstituted, disubstituted or trisubstituted with a substituent selected independently from the group consisting of lower alkyl, lower alkoxy, lower alkylthio, halo, hydroxy and amino; phenyl(lower alkyl), phenyl(lower alkyl) monosubstituted or disubstituted on the phenyl portion thereof with a substituent selected independently from the group consisting of lower alkyl, lower alkoxy, lower alkylthio, halo, hydroxy, nitro, amino, lower alkylamino, di(lower alkyl)amino, lower acylamino, di(lower alkyl)aminocarbonyl, cyano, trifluoromethyl, (trifluoromethyl)thio, (trifluoromethyl)sulfinyl, (trifluoromethyl)sulfonyl and  $C(O)OR^7$  wherein  $R^7$  is lower alkyl or phenyl(lower alkyl); Het or Het(lower alkyl) wherein Het represents an unsubstituted, monosubstituted or disubstituted five or six membered, monovalent heterocyclic ring containing one or two heteroatoms selected from the group consisting of N, O or S, wherein each substituent is selected independently from the group consisting of lower alkyl, lower alkoxy, halo and hydroxy; 5-(benzo[1,3]dioxolyl) methyl, (1(R)-1-naphthalenyl)ethyl, 2-benzothiazolyl or 2-thiazolo[4,5-b]pyridinyl; or  $R^4$  and  $R^5$  together with the nitrogen atom to which they are attached form a piperidino, morpholino, thiomorpholino, piperazino, N-methylpiperazino, 1-(3,4-dihydro-1H-isoquinolinyl) or 2-(3,4-dihydro-1H-isoquinolinyl) or a pyrrolidino ring optionally

substituted with benzyloxycarbonyl or with phenyl  
said phenyl ring optionally mono- or  
di-substituted with a substituent selected  
independently from the group consisting of lower  
5 alkyl, lower alkoxy, lower alkylthio, halo, hydroxy,  
nitro, amino, lower alkylamino, di(lower alkyl)amino,  
lower acylamino, di(lower alkyl)aminocarbonyl, cyano,  
trifluoromethyl, (trifluoromethyl)thio,  
(trifluoromethyl)sulfinyl, (trifluoromethyl)sulfonyl  
10 and C(O)OR, wherein R, is lower alkyl or (lower  
alkyl)phenyl;  
and  
z is lower alkyl, phenyl, phenyl monosubstituted or  
disubstituted with a substituent selected  
15 independently from lower alkyl, lower alkoxy, halo,  
hydroxy and amino; phenylmethyl, phenylmethyl mono-  
substituted or disubstituted on the phenyl portion  
thereof with a substituent selected from the group  
consisting of lower alkyl, lower alkoxy, halo,  
20 hydroxy and amino; or (CH<sub>2</sub>)<sub>p</sub>-(Het) wherein p is the  
integer 0 or 1 and Het is as defined herein; with the  
proviso that when z is (CH<sub>2</sub>)<sub>p</sub>-(Het) as defined herein  
then R<sup>2</sup> and R<sup>3</sup> each is hydrogen;  
or a therapeutically acceptable acid addition salt  
25 thereof.

A preferred group of compounds is represented by  
formula 1 wherein R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are as defined  
hereinabove;

30 R<sup>4</sup> is hydrogen or lower alkyl;  
R<sup>5</sup> is lower alkyl, lower cycloalkyl, CH<sub>2</sub>C(O)OR<sup>6</sup>  
wherein R<sup>6</sup> is methyl, ethyl or phenylmethyl; phenyl,  
phenyl monosubstituted, disubstituted or

trisubstituted with a substituent selected independently from the group consisting of lower alkyl, lower alkoxy, lower alkylthio, halo, hydroxy and amino; phenyl(lower alkyl), phenyl(lower alkyl) 5 monosubstituted or disubstituted on the phenyl portion thereof with a substituent selected independently from the group consisting of lower alkyl, lower alkoxy, lower alkylthio, halo, hydroxy, nitro, amino, lower alkylamino, di(lower alkyl)amino, 10 lower acylamino, di(lower alkyl)aminocarbonyl, cyano, trifluoromethyl, (trifluoromethyl)thio, (trifluoromethyl)sulfinyl, (trifluoromethyl)sulfonyl and C(O)OR<sup>7</sup> wherein R<sup>7</sup> is methyl, ethyl or phenylmethyl; Het or Het(lower alkyl) wherein Het is 15 2-furyl, 2-methyl-3-furyl, 2-thienyl, 2-pyridinyl, 3-pyridinyl, 4-pyridinyl, 3-methyl-2-pyrrolyl, 2-thiazolyl, 4-thiazolyl, 2-isoxazolyl, 2-pyrimidinyl, 4-methyl-2-pyrimidinyl, 4,6-dimethyl-2-pyrimidinyl, 4-pyrimidinyl, 2,6-dimethyl-2-pyrimidinyl, 4-20 methyltetrazolyl, 2-benzothiazolyl or 2-thiazolo[4,5-b]pyridinyl; (5-benzo[1,3]dioxolyl)methyl, 1(R)-(1-naphthalenyl)ethyl; or R<sup>4</sup> and R<sup>5</sup> together with the nitrogen atom to which they are attached form a pyrrolidino, piperidino, 25 morpholino, N-methylpiperazino, 1-(3,4-dihydro-1H-isoquinolinyl) or 2-(3,4-dihydro-1H-isoquinolinyl); and Z is as defined hereinabove.

A more preferred group of compounds is represented by 30 formula 1 wherein R<sup>1</sup> is hydrogen, methyl, ethyl, methoxy or methylthio; R<sup>2</sup> and R<sup>3</sup> each independently is hydrogen, or methyl; R<sup>4</sup> is hydrogen, methyl, or ethyl;

$R^5$  is methyl, ethyl, 1-methylethyl, cyclobutyl, cyclopentyl, cyclohexyl,  $CH_2C(O)OR^6$  wherein  $R^6$  is methyl or phenylmethyl; phenyl, 4-fluorophenyl, 4-methoxyphenyl, 3,5-dimethyl-4-methoxyphenyl, 4-

5 methylphenyl, 4-(methylthio)phenyl, phenylmethyl, phenylethyl, 1-phenylpropyl, 1-phenylbutyl, phenylmethyl monosubstituted at position 3 or 4 of the phenyl portion thereof with a substituent selected from the group consisting of methyl, ethyl,

10 1-methylethyl, 1,1-dimethylethyl, propyl, methoxy, ethoxy, methylthio, bromo, chloro, fluoro, nitro, acetylamino,  $C(O)NMe_2$ ,  $C(O)NET_2$ , cyano, trifluoromethyl, (trifluoromethyl)thio, (trifluoromethyl)sulfinyl, (trifluoromethyl)sulfonyl

15 and  $C(O)OR^7$  wherein  $R^7$  is methyl, ethyl or benzyl; (5-benzo[1,3]dioxolyl)methyl, 1-(R)-(1-naphthyl)ethyl, 2-pyridinyl, 4-pyridinyl, 2-pyridinylmethyl, 4-pyridinylmethyl, 1-(4-pyridinyl)ethyl or 1-(4-pyridinyl)propyl; or

20  $R^4$  and  $R^5$  together with the nitrogen to which they are attached form a pyrrolidino, piperidino, morpholino, 1-(3,4-dihydro-1H-isoquinolinyl) or 2-(3,4-dihydro-1H-isoquinolinyl); and  $Z$  is phenyl or phenylmethyl.

25 Another more preferred group of compounds is represented by formula 1 wherein  $R^1$  is hydrogen, methyl or methylthio;

$R^2$  and  $R^3$  each independently is hydrogen or methyl;

30  $R^4$  is hydrogen, methyl or ethyl;

$R^5$  is methyl, ethyl, 1-methylethyl, cyclobutyl, cyclopentyl, cyclohexyl,  $CH_2C(O)OR^6$  wherein  $R^6$  is

methyl or phenylmethyl; phenyl, 4-fluorophenyl, 4-methoxyphenyl, 3,5-dimethyl-4-methoxyphenyl, 4-methylphenyl, 4-(methylthio)phenyl, phenylmethyl, 1-phenylpropyl, 1-phenylbutyl, phenylmethyl mono-  
5 substituted at position 3 or 4 of the phenyl portion thereof with a substituent selected from the group consisting of methyl, ethyl, 1-methylethyl, 1,1-dimethylethyl, propyl, methoxy, ethoxy, methylthio, bromo, chloro, fluoro, nitro, acetylarnino, C(O)NMe<sub>2</sub>,  
10 C(O)NET<sub>2</sub>, cyano, trifluoromethyl, (trifluoromethyl)thio, (trifluoromethyl)sulfinyl, (trifluoromethyl)sulfonyl and C(O)OR<sup>7</sup> wherein R<sup>7</sup> is methyl, ethyl or benzyl; (5-benzo[1,3]dioxolyl)methyl, 1(R)-(1-  
15 naphthalenyl)ethyl, 2-pyridinyl, 4-pyridinyl, 2-pyridinylmethyl, 4-pyridinylmethyl, 1-(4-pyridinyl)ethyl or 1-(4-pyridinyl)propyl; and Z is lower alkyl.  
  
20 Still another more preferred group of compounds is represented by formula 1 wherein R<sup>1</sup> is hydrogen, methyl, methylthio or methoxy; R<sup>2</sup> and R<sup>3</sup> each independently is hydrogen or methyl; R<sup>4</sup> is hydrogen, methyl or ethyl;  
25 R<sup>5</sup> is methyl, ethyl, 1-methylethyl, cyclobutyl, cyclopentyl, cyclohexyl, CH<sub>2</sub>C(O)OR<sup>6</sup> wherein R<sup>6</sup> is methyl or phenylmethyl; phenyl, 4-fluorophenyl, 4-methoxyphenyl, 3,5-dimethyl-4-methoxyphenyl, 4-methylphenyl, 4-(methylthio)phenyl, phenylmethyl, 1-  
30 phenylpropyl, 1-phenylbutyl, phenylmethyl mono-substituted at position 3 or 4 of the phenyl portion thereof with a substituent selected from the group consisting of methyl, ethyl, 1-methylethyl, 1,1-

dimethylethyl, propyl, methoxy, ethoxy, methylthio,  
bromo, chloro, fluoro, nitro, acetylamino, C(O)NMe<sub>2</sub>,  
C(O)NET<sub>2</sub>, cyano, trifluoromethyl,  
(trifluoromethyl)thio, (trifluoromethyl)sulfinyl,  
5 (trifluoromethyl)sulfonyl and C(O)OR<sup>7</sup> wherein R<sup>7</sup> is  
methyl, ethyl or benzyl; (5-  
benzo[1,3]dioxolyl)methyl, 1(R)-(1-  
naphthalenyl)ethyl, 2-pyridinyl, 4-pyridinyl, 2-  
pyridinylmethyl, 4-pyridinylmethyl, 1-(4-  
10 pyridinyl)ethyl or 1-(4-pyridinyl)propyl; and  
z is 2-furyl, 2-thienyl, 2-pyridinyl, 3-pyridinyl, 4-  
pyridinyl, 3-methyl-2-pyrrolyl, 2-thiazolyl, 2-  
isoxazolyl, 2-pyrimidinyl, 4,6-dimethyl-2-  
pyrimidinyl, 5-(1-methyl-1H-tetrazolyl), 5-(2-methyl-  
15 2H-tetrazolyl), 2-benzothiazolyl or 2-thiazolo[4,5-  
b]pyridinyl.

A most preferred group of compounds is represented by  
formula 1 wherein R<sup>1</sup> is hydrogen, methyl, methoxy or  
20 methylthio;  
R<sup>2</sup> and R<sup>3</sup> each is hydrogen;  
R<sup>4</sup> is hydrogen or methyl;  
R<sup>5</sup> is CH<sub>2</sub>C(O)OR<sup>6</sup> wherein R<sup>6</sup> is phenylmethyl; or  
R<sup>5</sup> is 4-fluorophenyl, 4-methoxyphenyl, 3,5-dimethyl-  
25 4-methoxyphenyl, (4-methylthio)phenyl, phenylmethyl,  
1(R)-phenylethyl, 1(S)-phenylethyl, 1(R)-  
phenylpropyl, 1(R)-phenylbutyl, (4-  
methylphenyl)methyl, {4-(1-methylethyl)phenyl}methyl,  
(4-methoxyphenyl)methyl, (4-chlorophenyl)methyl, (2-  
30 nitrophenyl)methyl, (3-nitrophenyl)methyl, {4-  
(acetylamino)phenyl}methyl, {4-  
(trifluoromethyl)phenyl}methyl, {4-  
{(trifluoromethyl)thio}phenyl}methyl, {4-

{(trifluoromethyl)sulfinyl}phenyl)methyl, {4-  
{(trifluoromethyl)sulfonyl}phenyl)methyl, {4-  
(methoxycarbonyl)phenyl} methyl, (5-benzo[1,3]  
dioxolyl)methyl, 1(R)-(1-naphthalenyl)ethyl, 4-  
5 pyridinyl, 4-pyridinylmethyl or 1-(4-  
pyridinyl)propyl; or  
 $R^4$  and  $R^5$  together with the nitrogen to which they  
are attached form a pyrrolidino, morpholino, 1-(3,4-  
dihydro-1*H*-isoquinolinyl) or 2-(3,4-dihydro-1*H*-  
10 isoquinolinyl); and  
 $Z$  is phenyl or phenylmethyl.

Included within the scope of this invention is a pharmaceutical composition for treating  
15 cytomegalovirus infections in a human comprising a compound of formula 1, or a therapeutically acceptable salt thereof, and a pharmaceutically acceptable carrier.

20 The scope of the invention also includes a method for treating cytomegalovirus infections in a human comprising administering thereto an effective amount of the compound of formula 1, or a therapeutically acceptable salt thereof.

25 Also included within the scope is a method for protecting human cells against cytomegalovirus pathogenesis comprising treating said cells with an anti-cytomegalovirus effective amount of a compound  
30 of formula 1, or a therapeutically acceptable salt thereof.

Compounds of formula I according to the present invention may also be used in co-therapies with other  
35 conventional anti-herpes compounds, such as but not

limited to ganciclovir, foscarnet, acyclovir, valacyclovir, famciclovir, cidofovir, penciclovir, and lobucavir.

- 5 Compounds of formula I according to the present invention may also be used in co-therapies with anti-retroviral compounds such as reverse transcriptase inhibitors (i.e. AZT, 3TC) or protease inhibitors.
- 10 Process for preparing the compounds of formula 1 are described hereinafter.

#### Detailed Description of the Invention

##### 15 General

As used herein, the following definitions apply unless otherwise noted:

With reference to the instances where (R) or (S) is used to designate the configuration of a radical, e.g. R<sup>5</sup> of the compound of formula 1, the designation is done in the context of the compound and not in the context of the radical alone.

25 The term "residue" with reference to an amino acid or amino acid derivative means a radical derived from the corresponding α-amino acid by eliminating the hydroxyl of the carboxy group and one hydrogen of the α-amino group. For instance, the terms Gln, Ala, Gly, 30 Ile, Arg, Asp, Phe, Ser, Leu, Cys, Asn, Sar and Tyr represent the "residues" of L-glutamine, L-alanine, glycine, L-isoleucine, L-arginine, L-aspartic acid, L-phenylalanine, L-serine, L-leucine, L-cysteine, L-asparagine, sarcosine and L-tyrosine, respectively.

The term "side chain" with reference to an amino acid or amino acid derivative means a residue attached to the  $\alpha$ -carbon atom of the  $\alpha$ -amino acid. For example,  
5 the R-group side chain for glycine is hydrogen, for alanine it is methyl, for valine it is isopropyl.  
For the specific R-groups or side chains of the  $\alpha$ -amino acids reference is made to A.L. Lehninger's text on Biochemistry (see chapter 4).

10

The term "halo" as used herein means a halo radical selected from bromo, chloro, fluoro or iodo.

15

The term "lower alkyl" or ( $C_{1-6}$  alkyl) as used herein, either alone or in combination with another radical, means straight or branched chain alkyl radicals containing up to six carbon atoms and includes methyl, ethyl, propyl, butyl, hexyl, 1-methylethyl, 1-methylpropyl, 2-methylpropyl and 1,1-dimethylethyl.

20

The term "lower alkoxy" as used herein means straight chain alkoxy radicals containing one to four carbon atoms and branched chain alkoxy radicals containing three to four carbon atoms and includes methoxy, 25 ethoxy, propoxy, 1-methylethoxy, butoxy and 1,1-dimethylethoxy. The latter radical is known commonly as *tert*-butoxy.

30

The term "lower alkanoyl" as used herein, either alone or in combination with another radical, means a straight chain 1-oxoalkyl containing from one to six carbon atoms or a branched chain 1-oxoalkyl containing from four to six carbon atoms; for example, acetyl, propionyl(1-oxopropyl), 2-methyl-1-oxopropyl, 2-methylpropionyl and 2-ethylbutyryl.

The term "lower cycloalkyl" as used herein, either alone or in combination with another radical, means saturated cyclic hydrocarbon radicals containing from 5 three to seven carbon atoms and includes cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and cycloheptyl.

The term "amino" as used herein means an amino radical of formula -NH<sub>2</sub>. The term "lower alkylamino" 10 as used herein means alkylamino radicals containing one to six carbon atoms and includes methylamino, propylamino, (1-methylethyl)amino and (2-methylbutyl)amino. The term "di(lower alkyl)amino" means an amino radical having two lower alkyl 15 substituents each of which contains one to six carbon atoms and includes dimethylamino, diethylamino, ethylmethylamino and the like.

The term "Het" as used herein means a monovalent 20 radical derived by removal of a hydrogen from a five- or six-membered saturated or unsaturated heterocycle containing from one to four heteroatoms selected from nitrogen, oxygen and sulfur. Optionally, the heterocycle may bear one or two substituents; for 25 example, N-oxido, lower alkyl, phenyl-(C<sub>1-3</sub>)alkyl, lower alkoxy, halo, amino or lower alkylamino. Again optionally, the five- or six- membered heterocycle can be fused to a phenyl. Examples of suitable 30 heterocycles and optionally substituted heterocycles include pyrrolidine, tetrahydrofuran, thiazolidine, pyrrole, 1*H*-imidazole, 1-methyl-1*H*-imidazole, pyrazole, furan, thiophene, oxazole, isoxazole, thiazole, 2-methylthiazole, 2-aminothiazole, 2-(methylamino)-thiazole, piperidine, 1- 35 methylpiperidine, 1-methylpiperazine, 1,4-dioxane,

morpholine, pyridine, pyridine N-oxide, pyrimidine,  
2,4-dihydroxypyrimidine, 2,4-dimethylpyrimidine, 2,6-dimethylpyrimidine, 1-methyl-1*H*-tetrazole, 2-methyl-2*H*-tetrazole, benzothiazole and thiazolo[4,5-  
5 b]pyridine.

The term "pharmaceutically acceptable carrier" as used herein means a non-toxic, generally inert vehicle for the active ingredient which does not  
10 adversely affect the ingredient.

The term "effective amount" means a predetermined antiviral amount of the antiviral agent, i.e. an amount of the agent sufficient to be effective  
15 against the virus *in vivo*.

The azetidin-2-one derivatives of formula 1 can be obtained in the form of therapeutically acceptable acid addition salts. In the instance where a  
20 particular derivative has a residue which functions as a base, examples of such salts are those with organic acids, e.g. acetic, lactic, succinic, benzoic, salicylic, methanesulfonic or p-toluenesulfonic acid, as well as polymeric acids such  
25 as tannic acid or carboxymethyl cellulose, and salts with inorganic acids such as hydrohalic acids, e.g. hydrochloric acid, or sulfuric acid, or phosphoric acid.

30 Process

Compounds of formula 1 can be synthesized from commercially available, suitably protected amino acids, as exemplified hereinafter. (For general  
35 synthetic procedures see: *The Organic Chemistry of*

*beta-Lactams*, Gunda I. Georg, Ed.; VCH Publishers Inc., New York, N.Y., USA, 1992, pp 1 to 48 and 257 to 293.)

5 Compounds of formula 1 wherein  $R^1$  to  $R^5$ , inclusive, and  $Z$  are as defined herein can be prepared by a process selected from one of the following processes:

A) reacting a key intermediate of formula 2:



10

wherein  $R^1$ ,  $R^2$ ,  $R^3$  and  $Z$  are as defined herein either

(a) with an isocyanate of formula  $R^5NCO$  wherein  $R^5$  is as defined herein in the presence of a proton acceptor, or (b) with a phenoxy carbamate of formula  $R^5NHC(O)OPh$  in the presence of a proton acceptor, to obtain the corresponding compound of formula 1  
15 wherein  $R^1$ ,  $R^2$ ,  $R^3$ ,  $R^5$  and  $Z$  are as defined herein and  $R^4$  is hydrogen; or

B) reacting the key intermediate of formula 2 wherein  
20  $R^1$ ,  $R^2$ ,  $R^3$  and  $Z$  are as defined herein with a carbamoyl chloride derivative of formula  $R^4R^5NC(O)Cl$  wherein  $R^4$  is lower alkyl, methoxy, ethoxy or benzyloxy, and  $R^5$  is as defined herein, or  $R^4$  and  $R^5$  together with the nitrogen atom to which they are  
25 attached form a pyrrolidino, piperidino, morpholino, N-methylpiperazino, 1-(3,4-dihydro-1*H*-isoquinolinyl or 2-(3,4-dihydro-1*H*-isoquinolinyl) in the presence

## 16

of a proton acceptor to obtain the corresponding compound of formula 1 wherein  $R^1$ ,  $R^2$ ,  $R^3$  and  $R^5$  are as defined herein, and  $R^4$  is lower alkyl, methoxy, ethoxy or benzyloxy, or  $R^4$  and  $R^5$  together with the 5 nitrogen atom to which they are attached are as defined herein, and  $Z$  is as defined herein.

The aforementioned key intermediate of formula 2 can be prepared by a process illustrated by Scheme A as 10 follows:

Scheme A



wherein PG is an amino protecting group and  $R^2$ ,  $R^3$  15 and  $Z$  are as defined herein.

The starting material of formula 3 is either commercially available or can be made by known methods.

With reference to Scheme A, the protected amino acid 20 (3) is homologized by well known procedures to give the benzyl ester of the corresponding  $\beta$ -amino acid (4). The latter benzyl ester is deprotected to provide the corresponding free amino acid which is 25 cyclodehydrated according to known procedures, see for instance M.F. Loewe et al., Tetrahedron Letters 1991, 32, 2299; and S. Kobayashi et al., J. Am. Chem.

Soc., 1981, 103, 2406, to give the key intermediate of formula 2.

The preparation of the compound of formula 1 can be  
5 illustrated further by reference to scheme B wherein  
PG, R<sup>2</sup>, R<sup>3</sup> and R<sup>5</sup> are as defined herein and R<sup>1</sup>, R<sup>1A</sup>  
and R<sup>4</sup> are as defined hereinbelow in the description  
of scheme B.

Scheme B



- 10 With reference to Scheme B, commercially available, suitably protected amino acid (3a) is homologized by standard procedures to give the benzyl ester of the corresponding  $\beta$ -amino acid (4a). The latter benzyl ester is deprotected to provide the corresponding  
15 free amino acid which is cyclodehydrated by known procedures to give a key intermediate of formula 5.

Condensation of the key intermediate (5) with an appropriate isocyanate of formula  $\text{R}^5\text{NCO}$  in the presence of a proton acceptor affords a corresponding 5 ureido derivative which is the compound of formula 1 wherein  $\text{R}^1$ ,  $\text{R}^4$  are hydrogen and  $\text{R}^2$ ,  $\text{R}^3$  and  $\text{R}^5$  inclusive are as defined herein. Alternatively, a primary or secondary amine, or salts thereof, can be preactivated with triphosgene in presence of a base, 10 for example diisopropylethylamine; or via the formation of the phenoxy carbamate derivative which in turn is reacted with the intermediate of formula 5; to provide the preceding compound of formula 1 wherein  $\text{R}^1$  is hydrogen.

15 Optionally, the key intermediate of formula 5 can be functionalized at position 3 of the azetidin-2-one ring; namely, the nitrogen atom of the intermediate of formula 5 is first protected with a suitable N- 20 protecting group and then the resulting N-protected derivative is alkylated by standard methods at position 3. Subsequent deprotection gives the functionalized intermediate (6). Intermediate (6) thereafter can be transformed to the desired ureido 25 compound of formula 1 wherein  $\text{R}^1$  is lower alkyl, lower alkoxy or (lower alkyl)thio in the same manner as described above for the transformation of key intermediate (5) to the ureido compound of formula 1 wherein  $\text{R}^1$  is hydrogen and  $\text{R}^2$  to  $\text{R}^5$ , inclusive, are 30 as defined herein.

The process of this invention can be illustrated further by more specific reference to the process depicted by Scheme B.

Accordingly, an amino protected phenylalanine derivative of formula 3a is homologized to the benzyl ester (4a) according to the following procedure:

5

- (a) reacting an amino protected phenylalanine derivative of formula 3a wherein PG is an amino protecting group and  $R^2$  and  $R^3$  are as defined herein in the presence of alkyl chloroformate, preferably 10 isobutyl chloroformate, and a tertiary organic base, e.g. N-methylmorpholine or triethylamine, to obtain a corresponding mixed anhydride, (b) reacting the mixed anhydride with diazomethane to obtain a corresponding diazomethylketone, and (c) rearranging the 15 diazomethylketone with silver benzoate in the presence of benzyl alcohol and a tertiary organic base, e.g. N-methylmorpholine or triethylamine, to obtain a corresponding benzyl ester (4a).
- 20 Thereafter, benzyl ester (4a) is subjected to deprotection conditions, for instance hydrogenation in the presence of a catalytic amount of palladium hydroxide on carbon when PG is a benzyloxycarbonyl protecting group, to give the corresponding  $\beta$ -amino acid. The latter compound is subjected to 25 cyclodehydration conditions, for instance methanesulfonyl chloride/sodium bicarbonate, in a suitable solvent, e.g. acetonitrile, to give the key intermediate of formula 5 in which  $R^2$  and  $R^3$  are as 30 defined herein.

The key intermediate of formula 5 can be transformed to the azetidinone derivative of formula 1 wherein  $R^1$  and  $R^4$  each is hydrogen,  $R^2$ ,  $R^3$ ,  $R^5$  are as defined

herein and  $\text{Z}$  is phenyl by reacting the key intermediate of formula 5 with an appropriate isocyanate of formula  $\text{R}^5\text{NCO}$  wherein  $\text{R}^5$  is as defined herein in the presence of a base (proton acceptor.)

5 A convenient and practical base is triethylamine or preferably lithium bis(trimethylsilyl)amide. In this manner the ureido residue is incorporated into the desired azetidinone (i.e. the compound of formula 1 wherein  $\text{R}^1$  and  $\text{R}^4$  each is hydrogen,  $\text{R}^2$ ,  $\text{R}^3$  and  $\text{R}^5$  are

10 as defined herein and  $\text{Z}$  is phenyl).

A method for the introduction of the ureido residue so that azetidinone derivatives of formula 1 can be realized for those derivatives in which  $\text{R}^1$  is

15 hydrogen,  $\text{R}^2$ ,  $\text{R}^3$  and  $\text{R}^5$  are as defined herein,  $\text{R}^4$  is lower alkyl, methoxy, ethoxy or benzyloxy, or  $\text{R}^4$  and  $\text{R}^5$  together with the nitrogen atom to which they are attached are as defined herein, and  $\text{Z}$  is phenyl is as follows: reacting the key intermediate (5) with a

20 carbamoyl chloride derivative of formula  $\text{R}^4\text{R}^5\text{NC(O)Cl}$  wherein  $\text{R}^4$  is lower alkyl, methoxy, ethoxy or benzyloxy, and  $\text{R}^5$  is as defined herein, or  $\text{R}^4$  and  $\text{R}^5$  together with the nitrogen atom to which they are attached are as defined herein, in the presence of a

25 suitable tertiary amine, for example diisopropyl-ethylamine or preferably lithium bis(trimethylsilyl)amide. The requisite carbamoyl chloride derivative can be prepared by preactivating the appropriate secondary amine with triphosgene. This

30 particular method for the formation of the ureido residue is especially suitable for the preparation of azetidinone derivatives in which  $\text{R}^4$  is lower alkyl,

and for the preparation of azetidinone derivatives in which  $R^4$  and  $R^5$  together with the nitrogen atom to which they are attached are as defined herein.

- 5 Another method for forming the ureido residue to obtain the desired azetidinone derivatives of formula 1 in which  $R^1$  and  $R^4$  each is hydrogen,  $R^2$ ,  $R^3$  and  $R^5$  are as defined herein and  $Z$  is phenyl involves reacting the key intermediate (5) with a  
10 phenoxy carbamate of formula  $R^5HNC(O)OPh$  wherein  $R^5$  is as defined herein in the presence of a suitable base (proton acceptor), e.g. triethylamine or preferably lithium bis(trimethylsilyl)amide, thereby obtaining the desired product.

- 15 Turning now to the preparation of the azetidinones of formula 1 in which  $R^1$  is methyl, ethyl, methoxy or methylthio,  $R^2$  to  $R^5$ , inclusive, are as defined herein and  $Z$  is phenyl, the versatile intermediate of  
20 formula 5 can be functionalized at position 3 of the azetidinone ring as follows: Firstly a N-protecting group, such as benzyl, (4-methoxyphenyl)methyl or preferably tert-butyldimethylsilyl (Me<sub>3</sub>C-Si(Me<sub>2</sub>)<sup>-</sup>), is introduced at position 1 of the intermediate (5).  
25 The resulting amino protected derivative of formula 5 then is subjected to standard alkylating conditions with the appropriate electrophilic reagent. More explicitly, enolate formation is effected in the presence of a suitable proton acceptor, e.g. lithium  
30 diisopropylamide or lithium bis(trimethylsilyl)amide. Thereafter, the enolate is reacted with (a) a methyl or ethyl halide, e.g. methyl iodide or ethyl iodide; or b) with oxygen in the presence of

trimethylphosphite to provide the corresponding 3-hydroxy substituted, which in turn is reacted with diazomethane in the presence of silica gel; or c) with dimethyldisulfide; followed by N-deprotection 5 under standard conditions to give the corresponding functionalized intermediate of formula 6 wherein R<sup>1</sup> is methyl or ethyl, or methoxy, or methylthio, respectively, and R<sup>2</sup> and R<sup>3</sup> are as defined herein.

- 10 Thereafter, the functionalized intermediate of formula 6 is converted to the desired compound of formula 1 wherein R<sup>1</sup> is methyl, ethyl, methoxy or methylthio, R<sup>2</sup> to R<sup>5</sup>, inclusive, are as defined herein and Z is phenyl in the same manner as 15 described above for the introduction of the ureido residue in the transformation of the key intermediate of formula 5 to the compound of formula 1 in which R<sup>1</sup> is hydrogen, R<sup>2</sup> to R<sup>5</sup>, inclusive, are as defined herein and Z is phenyl.

20

- Finally, the preparation the azetidinones of formula 1 wherein R<sup>2</sup> and R<sup>3</sup> each is hydrogen, R<sup>1</sup>, R<sup>4</sup>, R<sup>5</sup> are as defined herein and Z is (CH<sub>2</sub>)<sub>p</sub>-(Het) wherein p and Het are as defined herein can be illustrated by 25 Scheme C wherein PG, R<sup>1</sup>, R<sup>4</sup>, R<sup>5</sup>, Het and p are as defined herein:

Scheme C



With reference to Scheme C, suitably N-protected 4-carboxyazetidinones of formula 7 wherein R<sup>1</sup> is as defined herein and PG is an amino protecting group are well known or can be prepared by known methods such as the methods for functionalizing position 3 of azetidinones described hereinbefore. For example, the N-protected 4-carboxyazetidinone of formula 7 wherein PG is the protecting group Me<sub>3</sub>CSi(Me)<sub>2</sub><sup>-</sup> has been described by P.E. Finke et al., *J. Med. Chem.* 1995, 38, 2449. The N-protected 4-carboxyazetidinone of formula 7 is reduced to the corresponding 4-(hydroxymethyl)azetidinone derivative of formula 8 with a reducing agent capable of converting an acid to its corresponding alcohol. The 4-(hydroxymethyl)azetidinone is then oxidized to give the aldehyde of formula 9 with a reagent capable of

transforming a primary alcohol to its corresponding aldehyde. The latter aldehyde so obtained is reacted with an appropriate Grignard reagent of the formula Het(CH<sub>2</sub>)<sub>p</sub>-(halo)Mg wherein Het and p are as defined herein and halo is bromo, chloro or iodo, or with an appropriate organolithium reagent of the formula Het(CH<sub>2</sub>)<sub>p</sub>-Li to give the product (10). Subsequent removal of the secondary hydroxy group on the side chain at position 4 of product (10) by standard methods, for instance by conversion of the hydroxy moiety to a reducible group which is subsequently removed by reduction, followed by cleavage of the N-protecting group from the resulting protected  $\beta$ -lactam affords the desired intermediate  $\beta$ -lactam of formula 11.

More explicitly, the transformation of the 4-carboxyazetidinone (7) to the desired intermediate (11) can be exemplified as follows: Reduction of the 4-carboxyazetidinone (7) wherein PG is Me<sub>3</sub>CSiMe<sub>2</sub><sup>-</sup> and R<sup>1</sup> is as defined herein with borane in tetrahydrofuran, or via the formation of a mixed anhydride with isobutyl chloroformate in the presence of an organic tertiary base, e.g. N-methylmorpholine or diisopropylethylamine, followed by reduction of the mixed anhydride with sodium borohydride in water, yields the 4-(hydroxymethyl)azetidinone (8) wherein PG is Me<sub>3</sub>CSiMe<sub>2</sub><sup>-</sup> and R<sup>1</sup> is as defined herein. The latter compound is oxidized with an appropriate oxidizing agent, e.g. oxalyl chloride-activated dimethyl sulfoxide (K. Omura and D. Swern, *Tetrahedron* 1978, 34, 1651) or triacetoxy periodinane (D.B. Dess and J.C. Martin, *J. Org. Chem.* 1983, 48,

4155) to give the corresponding aldehyde of formula 9. This aldehyde subsequently is reacted with the appropriate Grignard reagent  $\text{Het}(\text{CH}_2)_p\text{-Mg-}(\text{halo})$  as defined hereinbefore, or with the organolithium 5 reagent  $\text{Het}(\text{CH}_2)_p\text{-Li}$  as defined hereinbefore to give the addition product (10) as a mixture of diastereoisomers. Deoxygenation of the hydroxy-bearing side chain of addition product (10) can be accomplished in two steps. Firstly, the 10 corresponding diastereoisomeric xanthates can be formed by reacting product (10) with carbon disulfide in the presence of a tertiary amine or with 1,1'-thiocarbonyldiimidazole; the diastereoisomeric xanthates so obtained are reacted with tributyltin 15 hydride in the presence of 2,2'-azobisisobutyronitrile (AIBN) in refluxing benzene. In this manner, deoxygenation of the hydroxy bearing side chain is effected, followed by removal of the N-protecting group to provide the desired intermediate 20  $\beta$ -lactam of formula 11. The latter intermediate can be transformed into a compound of formula 1 wherein  $\text{R}^2$  and  $\text{R}^3$  each is hydrogen,  $\text{R}^1$ ,  $\text{R}^4$  and  $\text{R}^5$  are as defined herein, and  $\text{Z}$  is  $(\text{CH}_2)_p\text{-Het}$  wherein p and Het are as defined herein in the same manner as described 25 above for the introduction of the ureido residue to the intermediate of formula 5.

More specifically when Het is a tetrazol derivative, intermediate (11) was obtained from derivative (8) 30 using published procedures (J. Fetter; E. Keskeny; T. Czuppon; K. Lempert; M. Kajtar-Peredy; J. Tamas. *J. Chem. Soc. Perkin Trans. 1992*, 1, 3061-3067 and L.T. Giang; J. Fetter; K. Lempert; M. Kajtar-Peredy; A. Gomory; *Tetrahedron*, 1996, 52, 10169-10184).

Antiherpes Activity

The antiherpes activity of the aforementioned  
5 azetidinone derivatives of formula 1 (HCMV protease  
inhibitors) can be demonstrated by biochemical,  
microbiological and biological procedures.

A biochemical procedure for demonstrating anti-  
10 cytomegalovirus activity for the azetidinone  
derivatives of formula 1 is described in the examples  
hereinafter. This particular assay determines the  
ability of a test compound to inhibit the activity of  
HCMV protease. More specifically, in the assay  
15 described herein, the inhibitory activity of the test  
compound is evaluated on the basis of its ability to  
interfere with the HCMV No protease cleavage of a  
fluorogenic peptide substrate which in turn is based  
on the maturation cleavage site of the enzyme.

20 Methods for demonstrating the inhibiting effect of  
the azetidinone derivatives of formula 1 on CMV  
replication involving cell culture techniques are  
described in the examples herein.

25 When the HCMV protease inhibitor is employed as an  
antiviral agent, it is administered orally, or  
systemically to humans in a vehicle comprising one or  
more pharmaceutically acceptable carriers, the  
30 proportion of which is determined by the solubility  
and chemical nature of the compound, chosen route of  
administration and standard biological practice. For  
oral administration, the compound or a  
therapeutically acceptable salt thereof can be  
35 formulated in unit dosage forms such as capsules or

tablets each containing a predetermined amount of the active ingredient, ranging from about 50 to 500 mg, in a pharmaceutically acceptable carrier.

- 5 For parenteral administration, the HCMV protease inhibitor is administered by either intravenous, subcutaneous or intramuscular injection, in compositions with pharmaceutically acceptable vehicles or carriers. For administration by  
10 injection, it is preferred to use the compounds in solution in a sterile aqueous vehicle which may also contain other solutes such as buffers or preservatives as well as sufficient quantities of pharmaceutically acceptable salts or of glucose to  
15 make the solution isotonic.

Suitable vehicles or carriers for the above noted formulations are described in standard pharmaceutical texts, e.g. in "Remington's The Science and Practice  
20 of Pharmacy", 19<sup>th</sup> ed., Mack Publishing Company, Easton, Penn., 1995, or in "Pharmaceutical Dosage Forms and Drug Delivery Systems", 6<sup>th</sup> ed., H.C. Ansel et al., Eds., Williams & Wilkins, Baltimore, Maryland, 1995.

- 25 The dosage of the HCMV protease inhibitor will vary with the form of administration and the particular active agent chosen. Furthermore, it will vary with the particular host under treatment. Generally,  
30 treatment is initiated with small increments until the optimum effect under the circumstance is reached. The inhibitor compound is most desirably administered at a concentration level that will generally afford antivirally effective results without causing any  
35 harmful or deleterious side effects.

For oral administration, the HCMV protease inhibitor is administered in the range of 20 to 200 mg per kilogram of body weight per day, with a preferred 5 range of 25 to 100 mg per kilogram.

For ocular administration, the HCMV protease inhibitor is administered either topically or intraocularly (injection or implant) in a suitable 10 preparation. For example, an implant containing the compound in a suitable formulation can be surgically plated in the posterior segment of the eye through a small incision.

15 With reference to systemic administration, the HCMV protease inhibitor is administered at a dosage of 10 mg to 150 mg per kilogram of body weight per day, although the aforementioned variations will occur. However, a dosage level that is in the range of from 20 about 10 mg to 100 mg per kilogram of body weight per day is most desirably employed in order to achieve effective results.

#### EXAMPLES

25 The following examples further illustrate this invention. All reactions were performed under nitrogen or argon atmosphere unless stated otherwise. Temperatures are given in degrees Celsius. Solution 30 percentages or ratios express a volume to volume relationship, unless stated otherwise. Nuclear magnetic resonance spectra were recorded on a Bruker 400 MHz spectrometer; the chemical shifts ( $\delta$ ) are reported in parts per million. Abbreviations or 35 symbols used herein include Abz: 2-aminobenzoic acid;

Bzl: benzyl (also known as phenylmethyl); DIEA: diisopropylethylamine; DMF: dimethylformamide; DMSO: dimethylsulfoxide; EDTA: ethylenediaminetetraacetic acid; Et: ethyl; EtOAc: ethyl acetate; Et<sub>2</sub>O: diethyl ether; HRMS: high resolution mass spectrometry; MS(ES): electrospray mass spectrometry; MS(FAB) or FAB/MS: fast atom bombardment mass spectrometry; FBS: fetal bovine serum; Me: methyl; MeOH: methanol; MeCN: acetonitrile; PFU: plaque forming units; Ph: phenyl; THF: tetrahydrofuran.

#### Example 1

4(*S*)-Benzyl-3(*S*)-methyl-2-oxoazetidine-1-carboxylic acid benzylamide (1: R<sup>1</sup> = Me, R<sup>2</sup>, R<sup>3</sup> and R<sup>4</sup> each = H, R<sup>5</sup> = Bzl and Z = Ph) (Table 2, entry #207).

##### Step A

To a solution of N-(benzyloxycarbonyl-L-phenylalanine (18.7 g, 62 mmol) in THF (300 mL) was added Et<sub>3</sub>N (6.9 g, 9.5 mL, 68 mmol). The mixture was cooled to -10°. Isobutylchloroformate (11.0 g, 10.5 mL, 81 mmol) was added dropwise over 10 min. After 30 min at -10°, and 30 min at room temperature (20-22°), a solution of diazomethane in Et<sub>2</sub>O (0.3-0.5 M, 500 mL) was added. The reaction mixture was stirred for 10 min and then purged with nitrogen for 2 h. The resulting white precipitate was removed by filtration and the filtrate was concentrated under reduced pressure. The residue was purified by flash chromatography (SiO<sub>2</sub>, 20% EtOAc in hexane) to give 15.9 g (83% yield) of the desired diazoketone as a yellow solid.

## 30

The diazoketone (13.2 g, 43 mmol) was dissolved in THF (150 mL). Benzyl alcohol (4.66 mL, 45 mmol) was added at room temperature. Silver benzoate (977 mg, 4.29 mmol) in triethylamine (8.92 mL, 64 mmol) was 5 added dropwise (vigorous gas evolution). After 30 min at room temperature, the reaction mixture was concentrated under reduced pressure. The residue was dissolved in EtOAc. The solution was washed with H<sub>2</sub>O and brine, dried (MgSO<sub>4</sub>) and concentrated. The 10 residue was purified by flash chromatography (SiO<sub>2</sub>, 15% EtOAc in hexane) to yield 3(S)-{((benzyloxy)carbonyl)amino}-4-phenylbutyric acid benzyl ester (11 g, 63% yield) as a white solid.  
<sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>) δ 7.40-7.10 (m, 15H), 5.27 (brd, J = 8.0 Hz, 1H), 5.14 (d, J = 12.2 Hz, 1H), 5.10 (d, J = 12.2 Hz, 1H), 5.06 (s, 2H), 4.30-4.20 (m, 1H), 2.93 (dd, J = 13.3, 6.5 Hz, 1H), 2.82 (dd, J = 13.3, 7.6 Hz, 1H), 2.57 (dd, J = 16, 5.5 Hz, 1H), 2.50 (dd, J = 16, 5.0 Hz, 1H).

20

## Step B

The 3(S)-{((benzyloxy)carbonyl)amino}-4-phenylbutyric acid benzyl ester (from step A) (10.97 g, 27.2 mmol) 25 in MeOH (1 L) was stirred at room temperature for 7 h under an hydrogen atmosphere (1 atmosphere) in the presence of 20% Pd (OH)<sub>2</sub>/C (50 mg). The catalyst was removed by filtration through diatomaceous earth. The filtrate was concentrated under reduced pressure 30 to yield 4.53 g (93% yield) of 3(S)-amino-4-phenylbutyric acid as a white solid.

A suspension of NaHCO<sub>3</sub> (12.74 g, 152 mmol) in MeCN (1.55 L) was stirred and heated to gentle reflux. Mesyl chloride (2.15 mL, 27.8 mmol) was added,

followed by the portionwise addition of the preceding acid (4.53 g, 25.3 mmol) over 5 h. After 16 h under reflux, the solid was removed by filtration at 60° and the filtrate was concentrated under reduced pressure. The residual solid was triturated with EtOAc and filtered. The filtrate was concentrated and the residue purified by flash chromatography (SiO<sub>2</sub>, 40% EtOAc in hexane) to give 4(S)-benzylazetidin-2-one (2.20 g, 54% yield) as a white solid.

10 <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>) δ 7.35-7.17 (m, 5H), 5.83 (brs, 1H), 3.88-3.82 (m, 1H), 3.08 (ddd, J = 14.8, 5.0, 2.2 Hz, 1H), 2.98 (dd, J = 13.7, 5.7 Hz, 1H), 2.84 (dd, J = 13.7, 7.9 Hz, 1H), 2.70 (ddd, J = 14.9, 2.0, 1.3 Hz, 1H).

15

Step C

To a solution of 4(S)-benzylazetidin-2-one (400 mg, 2.48 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (8 mL) was added DIEA (648 μL, 20 3.72 mmol), followed by tert-butyldimethylsilyl chloride (411 mg, 2.73 mmol). The reaction mixture was stirred for 16 h at room temperature. The CH<sub>2</sub>Cl<sub>2</sub> was evaporated and the residue was purified by flash chromatography (SiO<sub>2</sub>, 12% EtOAc in hexane) to give 25 4(S)-benzyl-1-(tert-butyldimethylsilyl)azetidin-2-one (647 mg, 95% yield) as a white solid.

1H-NMR (400 MHz, CDCl<sub>3</sub>) δ 7.34-7.15 (m, 5H), 3.77-3.70 (m, 1H), 3.25 (dd, J = 13.5, 3.5 Hz, 1 H), 2.99 (dd, J = 15.5 Hz, 5 Hz, 1H), 2.70 (dd, J = 15.5, 2.5 Hz, 1H), 2.59 (dd, J = 13.5, 11 Hz, 1H), 1.01 (s, 9H), 0.31 (s, 3H), 0.29 (s, 3H).

Step D

To a solution of diisopropylamine (705  $\mu$ L, 5.03 mmol) in anhydrous THF (12 mL) at -20° was added butyllithium (2.87 mL, 4.60 mmol, 1.6 M in hexane). After the reaction mixture was cooled to -78°, a 5 solution of 4(S)-benzyl-1-(tert-butyldimethylsilyl)azetidin-2-one (640 mg, 2.32 mmol) in THF (4 mL) was added and the mixture was stirred at -78° for 15 min followed by addition of methyl iodide (488 mg, 214  $\mu$ L, 3.44 mmol). After 10 min, the reaction 10 mixture was poured into EtOAc (125 mL). The organic phase was washed with aqueous NaHSO<sub>4</sub> (1M) and brine, dried (MgSO<sub>4</sub>), filtered and concentrated . The residual oil was purified by flash chromatography (SiO<sub>2</sub>, 6% EtOAc in hexane) to give 4(S)-benzyl-1- 15 (tert-butyldimethylsilyl)-3(S)-methylazetidin-2-one (557 mg , 83% yield) as a pale yellow solid.

<sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.33-7.15 (m, 5H), 3.35 (ddd, J = 10.8, 3.8, 2.5 Hz, 1H), 3.21 (dd, J = 13.4, 3.8 Hz, 1H), 2.88 (qd, J = 7.5, 2.5 Hz, 1H), 2.60 (dd, J = 13.4, 10.8 Hz, 1H), 1.02 (d, J = 7.5 Hz, 3H), 20 1.00 (s, 9H), 0.31 (s, 3H), 0.27 (s, 3H).

## Step E

To a solution of 4(*S*)-benzyl-1-(tert-butyldimethylsilyl)-3(*S*)-methylazetidin-2-one (557 mg, 1.92 mmol) 5 in MeOH (25 mL) at 0° was added cesium fluoride (439 mg, 2.89 mmol). After 1 h MeOH was evaporated under reduced pressure and the residue was dissolved in EtOAc. The organic phase was washed with H<sub>2</sub>O and brine, dried (MgSO<sub>4</sub>), filtered and concentrated. The 10 residue was purified by flash chromatography (SiO<sub>2</sub>, 50% EtOAc in hexane) to give 4(*S*)-benzyl-3(*S*)-methylazetidin-2-one (239 mg, 71% yield) as a white solid.

15 <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>) δ 7.35-7.17 (m, 5H), 5.78 (brs, 1H), 3.46 (ddd, J = 8.0, 5.9, 2.0 Hz, 1H), 2.98 (dd, J = 13.5, 5.9 Hz, 1H), 2.91 (qd, J = 7.3, 2.0 Hz, 1H), 2.84 (dd, J = 13.5, 8.0 Hz, 1H), 1.26 (d, J = 7.3 Hz, 3H).

## 20 Step F

To a solution of 4(*S*)-benzyl-3(*S*)-methylazetidin-2-one (50 mg, 0.28 mmol) in THF (4 mL) at -78°, lithium bis(trimethylsilyl)amide (280 μL, 280 mmol, 1 M in 25 THF) was added. After 10 min, benzyl isocyanate (37.2 mg, 34.6 μL, 0.28 mmol) was added. Stirring was continued at -78° for 45 min. The reaction mixture was diluted with EtOAc (50 mL) and washed with aqueous NaHSO<sub>4</sub> (1M) and brine, dried (MgSO<sub>4</sub>), 30 filtered and concentrated. The residue was purified by flash chromatography (SiO<sub>2</sub>, 14% EtOAc in hexane) to give the title compound 4(*S*)-benzyl-3(*S*)-methyl-2-oxoazetidine-1-carboxylic acid benzylamide (23 mg, 27% yield) as a colorless oil.

<sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>) δ 7.38-7.19 (m, 10 H), 6.94 (t, J = 5.1 Hz, 1 H), 4.53 (dd, J = 14.9, 6.0 Hz, 1 H), 4.48 (dd, J = 14.9, 6.0 Hz, 1 H), 3.90 (ddd, J = 8.6, 3.2, 2.9 Hz, 1 H), 3.53 (dd, J = 13.7, 3.5 Hz, 1 H), 2.95 (qd, J = 7.6, 2.5 Hz, 1 H), 2.92 (dd, J = 13.3, 8.9 Hz, 1 H), 1.14 (d, J = 7.6 Hz, 3 H); FAB MS m/z 309.3 (MH<sup>+</sup>); HRMS calcd for C<sub>19</sub>H<sub>21</sub>N<sub>2</sub>O<sub>2</sub>: 309.1603 (MH<sup>+</sup>); found: 309.1614.

10

**Example 2**

4(S)-Benzyl-2-oxoazetidine-1-carboxylic acid benzylamide (1: R<sup>1</sup>, R<sup>2</sup>, R<sup>3</sup> and R<sup>4</sup> each = H, R<sup>5</sup> = Bzl and Z = Ph) (Table 1, entry #116).

15

By following the procedure of step F of example 1, but replacing 4(S)-benzyl-3(S)-methylazetidin-2-one with an equivalent amount of 4(S)-benzylazetidin-2-one, described in step B of example 1, the title compound was obtained.

20  
25  
30  
35  
40  
45  
50  
55  
60  
65  
70  
75  
80  
85  
90  
95  
100  
105  
110  
115  
120  
125  
130  
135  
140  
145  
150  
155  
160  
165  
170  
175  
180  
185  
190  
195  
200  
205  
210  
215  
220  
225  
230  
235  
240  
245  
250  
255  
260  
265  
270  
275  
280  
285  
290  
295  
300  
305  
310  
315  
320  
325  
330  
335  
340  
345  
350  
355  
360  
365  
370  
375  
380  
385  
390  
395  
400  
405  
410  
415  
420  
425  
430  
435  
440  
445  
450  
455  
460  
465  
470  
475  
480  
485  
490  
495  
500  
505  
510  
515  
520  
525  
530  
535  
540  
545  
550  
555  
560  
565  
570  
575  
580  
585  
590  
595  
600  
605  
610  
615  
620  
625  
630  
635  
640  
645  
650  
655  
660  
665  
670  
675  
680  
685  
690  
695  
700  
705  
710  
715  
720  
725  
730  
735  
740  
745  
750  
755  
760  
765  
770  
775  
780  
785  
790  
795  
800  
805  
810  
815  
820  
825  
830  
835  
840  
845  
850  
855  
860  
865  
870  
875  
880  
885  
890  
895  
900  
905  
910  
915  
920  
925  
930  
935  
940  
945  
950  
955  
960  
965  
970  
975  
980  
985  
990  
995  
1000  
1005  
1010  
1015  
1020  
1025  
1030  
1035  
1040  
1045  
1050  
1055  
1060  
1065  
1070  
1075  
1080  
1085  
1090  
1095  
1100  
1105  
1110  
1115  
1120  
1125  
1130  
1135  
1140  
1145  
1150  
1155  
1160  
1165  
1170  
1175  
1180  
1185  
1190  
1195  
1200  
1205  
1210  
1215  
1220  
1225  
1230  
1235  
1240  
1245  
1250  
1255  
1260  
1265  
1270  
1275  
1280  
1285  
1290  
1295  
1300  
1305  
1310  
1315  
1320  
1325  
1330  
1335  
1340  
1345  
1350  
1355  
1360  
1365  
1370  
1375  
1380  
1385  
1390  
1395  
1400  
1405  
1410  
1415  
1420  
1425  
1430  
1435  
1440  
1445  
1450  
1455  
1460  
1465  
1470  
1475  
1480  
1485  
1490  
1495  
1500  
1505  
1510  
1515  
1520  
1525  
1530  
1535  
1540  
1545  
1550  
1555  
1560  
1565  
1570  
1575  
1580  
1585  
1590  
1595  
1600  
1605  
1610  
1615  
1620  
1625  
1630  
1635  
1640  
1645  
1650  
1655  
1660  
1665  
1670  
1675  
1680  
1685  
1690  
1695  
1700  
1705  
1710  
1715  
1720  
1725  
1730  
1735  
1740  
1745  
1750  
1755  
1760  
1765  
1770  
1775  
1780  
1785  
1790  
1795  
1800  
1805  
1810  
1815  
1820  
1825  
1830  
1835  
1840  
1845  
1850  
1855  
1860  
1865  
1870  
1875  
1880  
1885  
1890  
1895  
1900  
1905  
1910  
1915  
1920  
1925  
1930  
1935  
1940  
1945  
1950  
1955  
1960  
1965  
1970  
1975  
1980  
1985  
1990  
1995  
2000  
2005  
2010  
2015  
2020  
2025  
2030  
2035  
2040  
2045  
2050  
2055  
2060  
2065  
2070  
2075  
2080  
2085  
2090  
2095  
2100  
2105  
2110  
2115  
2120  
2125  
2130  
2135  
2140  
2145  
2150  
2155  
2160  
2165  
2170  
2175  
2180  
2185  
2190  
2195  
2200  
2205  
2210  
2215  
2220  
2225  
2230  
2235  
2240  
2245  
2250  
2255  
2260  
2265  
2270  
2275  
2280  
2285  
2290  
2295  
2300  
2305  
2310  
2315  
2320  
2325  
2330  
2335  
2340  
2345  
2350  
2355  
2360  
2365  
2370  
2375  
2380  
2385  
2390  
2395  
2400  
2405  
2410  
2415  
2420  
2425  
2430  
2435  
2440  
2445  
2450  
2455  
2460  
2465  
2470  
2475  
2480  
2485  
2490  
2495  
2500  
2505  
2510  
2515  
2520  
2525  
2530  
2535  
2540  
2545  
2550  
2555  
2560  
2565  
2570  
2575  
2580  
2585  
2590  
2595  
2600  
2605  
2610  
2615  
2620  
2625  
2630  
2635  
2640  
2645  
2650  
2655  
2660  
2665  
2670  
2675  
2680  
2685  
2690  
2695  
2700  
2705  
2710  
2715  
2720  
2725  
2730  
2735  
2740  
2745  
2750  
2755  
2760  
2765  
2770  
2775  
2780  
2785  
2790  
2795  
2800  
2805  
2810  
2815  
2820  
2825  
2830  
2835  
2840  
2845  
2850  
2855  
2860  
2865  
2870  
2875  
2880  
2885  
2890  
2895  
2900  
2905  
2910  
2915  
2920  
2925  
2930  
2935  
2940  
2945  
2950  
2955  
2960  
2965  
2970  
2975  
2980  
2985  
2990  
2995  
3000  
3005  
3010  
3015  
3020  
3025  
3030  
3035  
3040  
3045  
3050  
3055  
3060  
3065  
3070  
3075  
3080  
3085  
3090  
3095  
3100  
3105  
3110  
3115  
3120  
3125  
3130  
3135  
3140  
3145  
3150  
3155  
3160  
3165  
3170  
3175  
3180  
3185  
3190  
3195  
3200  
3205  
3210  
3215  
3220  
3225  
3230  
3235  
3240  
3245  
3250  
3255  
3260  
3265  
3270  
3275  
3280  
3285  
3290  
3295  
3300  
3305  
3310  
3315  
3320  
3325  
3330  
3335  
3340  
3345  
3350  
3355  
3360  
3365  
3370  
3375  
3380  
3385  
3390  
3395  
3400  
3405  
3410  
3415  
3420  
3425  
3430  
3435  
3440  
3445  
3450  
3455  
3460  
3465  
3470  
3475  
3480  
3485  
3490  
3495  
3500  
3505  
3510  
3515  
3520  
3525  
3530  
3535  
3540  
3545  
3550  
3555  
3560  
3565  
3570  
3575  
3580  
3585  
3590  
3595  
3600  
3605  
3610  
3615  
3620  
3625  
3630  
3635  
3640  
3645  
3650  
3655  
3660  
3665  
3670  
3675  
3680  
3685  
3690  
3695  
3700  
3705  
3710  
3715  
3720  
3725  
3730  
3735  
3740  
3745  
3750  
3755  
3760  
3765  
3770  
3775  
3780  
3785  
3790  
3795  
3800  
3805  
3810  
3815  
3820  
3825  
3830  
3835  
3840  
3845  
3850  
3855  
3860  
3865  
3870  
3875  
3880  
3885  
3890  
3895  
3900  
3905  
3910  
3915  
3920  
3925  
3930  
3935  
3940  
3945  
3950  
3955  
3960  
3965  
3970  
3975  
3980  
3985  
3990  
3995  
4000  
4005  
4010  
4015  
4020  
4025  
4030  
4035  
4040  
4045  
4050  
4055  
4060  
4065  
4070  
4075  
4080  
4085  
4090  
4095  
4100  
4105  
4110  
4115  
4120  
4125  
4130  
4135  
4140  
4145  
4150  
4155  
4160  
4165  
4170  
4175  
4180  
4185  
4190  
4195  
4200  
4205  
4210  
4215  
4220  
4225  
4230  
4235  
4240  
4245  
4250  
4255  
4260  
4265  
4270  
4275  
4280  
4285  
4290  
4295  
4300  
4305  
4310  
4315  
4320  
4325  
4330  
4335  
4340  
4345  
4350  
4355  
4360  
4365  
4370  
4375  
4380  
4385  
4390  
4395  
4400  
4405  
4410  
4415  
4420  
4425  
4430  
4435  
4440  
4445  
4450  
4455  
4460  
4465  
4470  
4475  
4480  
4485  
4490  
4495  
4500  
4505  
4510  
4515  
4520  
4525  
4530  
4535  
4540  
4545  
4550  
4555  
4560  
4565  
4570  
4575  
4580  
4585  
4590  
4595  
4600  
4605  
4610  
4615  
4620  
4625  
4630  
4635  
4640  
4645  
4650  
4655  
4660  
4665  
4670  
4675  
4680  
4685  
4690  
4695  
4700  
4705  
4710  
4715  
4720  
4725  
4730  
4735  
4740  
4745  
4750  
4755  
4760  
4765  
4770  
4775  
4780  
4785  
4790  
4795  
4800  
4805  
4810  
4815  
4820  
4825  
4830  
4835  
4840  
4845  
4850  
4855  
4860  
4865  
4870  
4875  
4880  
4885  
4890  
4895  
4900  
4905  
4910  
4915  
4920  
4925  
4930  
4935  
4940  
4945  
4950  
4955  
4960  
4965  
4970  
4975  
4980  
4985  
4990  
4995  
5000  
5005  
5010  
5015  
5020  
5025  
5030  
5035  
5040  
5045  
5050  
5055  
5060  
5065  
5070  
5075  
5080  
5085  
5090  
5095  
5100  
5105  
5110  
5115  
5120  
5125  
5130  
5135  
5140  
5145  
5150  
5155  
5160  
5165  
5170  
5175  
5180  
5185  
5190  
5195  
5200  
5205  
5210  
5215  
5220  
5225  
5230  
5235  
5240  
5245  
5250  
5255  
5260  
5265  
5270  
5275  
5280  
5285  
5290  
5295  
5300  
5305  
5310  
5315  
5320  
5325  
5330  
5335  
5340  
5345  
5350  
5355  
5360  
5365  
5370  
5375  
5380  
5385  
5390  
5395  
5400  
5405  
5410  
5415  
5420  
5425  
5430  
5435  
5440  
5445  
5450  
5455  
5460  
5465  
5470  
5475  
5480  
5485  
5490  
5495  
5500  
5505  
5510  
5515  
5520  
5525  
5530  
5535  
5540  
5545  
5550  
5555  
5560  
5565  
5570  
5575  
5580  
5585  
5590  
5595  
5600  
5605  
5610  
5615  
5620  
5625  
5630  
5635  
5640  
5645  
5650  
5655  
5660  
5665  
5670  
5675  
5680  
5685  
5690  
5695  
5700  
5705  
5710  
5715  
5720  
5725  
5730  
5735  
5740  
5745  
5750  
5755  
5760  
5765  
5770  
5775  
5780  
5785  
5790  
5795  
5800  
5805  
5810  
5815  
5820  
5825  
5830  
5835  
5840  
5845  
5850  
5855  
5860  
5865  
5870  
5875  
5880  
5885  
5890  
5895  
5900  
5905  
5910  
5915  
5920  
5925  
5930  
5935  
5940  
5945  
5950  
5955  
5960  
5965  
5970  
5975  
5980  
5985  
5990  
5995  
6000  
6005  
6010  
6015  
6020  
6025  
6030  
6035  
6040  
6045  
6050  
6055  
6060  
6065  
6070  
6075  
6080  
6085  
6090  
6095  
6100  
6105  
6110  
6115  
6120  
6125  
6130  
6135  
6140  
6145  
6150  
6155  
6160  
6165  
6170  
6175  
6180  
6185  
6190  
6195  
6200  
6205  
6210  
6215  
6220  
6225  
6230  
6235  
6240  
6245  
6250  
6255  
6260  
6265  
6270  
6275  
6280  
6285  
6290  
6295  
6300  
6305  
6310  
6315  
6320  
6325  
6330  
6335  
6340  
6345  
6350  
6355  
6360  
6365  
6370  
6375  
6380  
6385  
6390  
6395  
6400  
6405  
6410  
6415  
6420  
6425  
6430  
6435  
6440  
6445  
6450  
6455  
6460  
6465  
6470  
6475  
6480  
6485  
6490  
6495  
6500  
6505  
6510  
6515  
6520  
6525  
6530  
6535  
6540  
6545  
6550  
6555  
6560  
6565  
6570  
6575  
6580  
6585  
6590  
6595  
6600  
6605  
6610  
6615  
6620  
6625  
6630  
6635  
6640  
6645  
6650  
6655  
6660  
6665  
6670  
6675  
6680  
6685  
6690  
6695  
6700  
6705  
6710  
6715  
6720  
6725  
6730  
6735  
6740  
6745  
6750  
6755  
6760  
6765  
6770  
6775  
6780  
6785  
6790  
6795  
6800  
6805  
6810  
6815  
6820  
6825  
6830  
6835  
6840  
6845  
6850  
6855  
6860  
6865  
6870  
6875  
6880  
6885  
6890  
6895  
6900  
6905  
6910  
6915  
6920  
6925  
6930  
6935  
6940  
6945  
6950  
6955  
6960  
6965  
6970  
6975  
6980  
6985  
6990  
6995  
7000  
7005  
7010  
7015  
7020  
7025  
7030  
7035  
7040  
7045  
7050  
7055  
7060  
7065  
7070  
7075  
7080  
7085  
7090  
7095  
7100  
7105  
7110  
7115  
7120  
7125  
7130  
7135  
7140  
7145  
7150  
7155  
7160  
7165  
7170  
7175  
7180  
7185  
7190  
7195  
7200  
7205  
7210  
7215  
7220  
7225  
7230  
7235  
7240  
7245  
7250  
7255  
7260  
7265  
7270  
7275  
7280  
7285  
7290  
7295  
7300  
7305  
7310  
7315  
7320  
7325  
7330  
7335  
7340  
7345  
7350  
7355  
7360  
7365  
7370  
7375  
7380  
7385  
7390  
7395  
7400  
7405  
7410  
7415  
7420  
7425  
7430  
7435  
7440  
7445  
7450  
7455  
7460  
7465  
7470  
7475  
7480  
7485  
7490  
7495  
7500  
7505  
7510  
7515  
7520  
7525  
7530  
7535  
7540  
7545  
7550  
7555  
7560  
7565  
7570  
7575  
7580  
7585  
7590  
7595  
7600  
7605  
7610  
7615  
7620  
7625  
7630  
7635  
7640  
7645  
7650  
7655  
7660  
7665  
7670  
7675  
7680  
7685  
7690  
7695  
7700  
7705  
7710  
7715  
7720  
7725  
7730  
7735  
7740  
7745  
7750  
7755  
7760  
7765  
7770  
7775  
7780  
7785  
7790  
7795  
7800  
7805  
7810  
7815  
7820  
7825  
7830  
7835  
7840  
7845  
7850  
7855  
7860  
7865  
7870  
7875  
7880  
7885  
7890  
7895  
7900  
7905  
7910  
7915  
7920  
7925  
7930  
7935  
7940  
7945  
7950  
7955  
7960  
7965  
7970  
7975  
7980  
7985  
7990  
7995  
8000  
8005  
8010  
8015  
8020  
8025  
8030  
8035  
8040  
8045  
8050  
8055  
8060  
8065  
8070  
8075  
8080  
8085  
8090  
8095  
8100  
8105  
8110  
8115  
8120  
8125  
8130  
8135  
8140  
8145  
8150  
8155  
8160  
8165  
8170  
8175  
8180  
8185  
8190  
8195  
8200  
8205  
8210  
8215  
8220  
8225  
8230  
8235  
8240  
8245  
8250  
8255  
8260  
8265  
8270  
8275  
8280  
8285  
8290  
8295  
8300  
8305  
8310  
8315  
8320  
8325  
8330  
8335  
8340  
8345  
8350  
8355  
8360  
8365  
8370  
8375  
8380  
8385  
8390  
8395  
8400  
8405  
8410  
8415  
8420  
8425  
8430  
8435  
8440  
8445  
8450  
8455  
8460  
8465  
8470  
8475  
8480  
8485  
8490  
8495  
8500  
8505  
8510  
8515  
8520  
8525  
8530  
8535  
8540  
8545  
8550  
8555  
8560  
8565  
8570  
8575  
8580  
8585  
8590  
8595  
8600  
8605  
8610  
8615  
8620  
8625  
8630  
8635  
8640  
8645  
8650  
8655  
8660  
8665  
8670  
8675  
8680  
8685  
8690  
8695  
8700  
8705  
8710  
8715  
8720  
8725  
8730  
8735  
8740  
8745  
8750  
8755  
8760  
8765  
8770  
8775  
8780  
8785  
8790  
8795  
8800  
8805  
8810  
8815  
8820  
8825  
8830  
8835  
8840  
8845  
8850  
8855  
8860  
8865  
8870  
8875  
8880  
8885  
8890  
8895  
8900  
8905  
8910  
8915  
8920  
8925  
8930  
8935  
8940  
8945  
8950  
8955  
8960  
8965  
8970  
8975  
8980  
8985  
8990  
8995  
9000

**Example 3**

1(R)-Phenylpropyl isocyanate (Intermediate for introducing the 1(R)-phenylpropyl group at R<sup>5</sup> of the 5 compound of formula 1)

To a solution of 1(R)-phenylpropylamine (14.33 g, 106 mmol) in Et<sub>2</sub>O (102 mL) was added a 1.0 M solution of HCl /Et<sub>2</sub>O (212 mL, 212 mmol). The resulting solution 10 was stirred for 30 min and then evaporated to dryness on a rotary evaporator. The resulting white hydrochloride salt was suspended in toluene (200 mL). Triphosgene was added (11.67 g, 39.3 mmol) and the resulting suspension was stirred at reflux for 3 h 15 and at room temperature for 18 h. The reaction mixture was concentrated and the final volume adjusted to 200 mL with toluene giving a final concentration of 0.53M. The resulting isocyanate solution was used as such.

20 An aliquot (170 mL) was concentrated to give a colorless oil:

<sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>) δ 7.36-7.22 (m, 5H), 4.50 (t, J = 6.7 Hz, 1H), 1.82 (q, J = 7.3 Hz, 2H), 0.94 (t, J = 7.3 Hz, 2H).

25

**Example 4**

4-{{(Phenoxy carbonyl)amino}methyl}pyridine (Intermediate for introducing the 4-(aminomethyl)- 30 pyridinyl group at R<sup>5</sup> of the compound of formula 1)

To a solution of 4-(aminomethyl)pyridine (10.7 g, 98.5 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (245 mL) at 0°, was added Et<sub>3</sub>N (14.2 mL, 19.9 g, 197 mmol), followed by a dropwise

addition of phenylchloroformate (14.8 mL, 18.5 g, 118 mmol). After stirring for 1 h, the resulting mixture was diluted with EtOAc (1.5 L). The organic phase was washed twice with water, then brine, dried over sodium sulfate and concentrated under reduced pressure. Purification of the residue by chromatography ( $\text{SiO}_2$ , gradient EtOAc to 10 % MeOH /  $\text{CHCl}_3$ ) gave a yellow solid which was recrystallized from EtOAc : hexane (2 : 1) to yield the desired compound (9.55 g, 41.85 mmol, 42 % yield).

<sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>) δ 8.61 (d, J = 5.7 Hz, 2H), 7.40-7.15 (m, 7H), 5.61 (bs, 1H), 4.50 (d, J = 6.4 Hz, 2H).

15 Example 5

N-Methyl-N-{{4-(trifluoromethyl)phenyl}methyl}-carbamoyl chloride (Intermediate for introducing methyl at R<sup>4</sup> and {4-(trifluoromethyl)phenyl}methyl at R<sup>5</sup> of the compound of formula 1)

To a solution of {4-(trifluoromethyl)phenyl}methyl bromide (20.0 g, 83.7 mmol) in EtOH was added methylamine (100 mL of 40% aqueous solution, 1290 mmol). After 2 h, the reaction was concentrated under reduced pressure. The aqueous phase was separated and extracted with EtOAc (2 x 100 mL). The combined organic phase was washed with 5% aqueous NaHCO<sub>3</sub> solution and then brine, dried over magnesium sulfate, filtered and evaporated to dryness. The resulting residue was dissolved in HCl/dioxane (4N, 100 mL). The solvent was removed under reduced pressure. The resulting solid was triturated with Et<sub>2</sub>O and collected by suction filtration to provide

N-methyl {4-(trifluoromethyl)phenyl}methylamine hydrochloride salt (17.0 g, 90% yield) as a white solid.

The salt was suspended in CH<sub>2</sub>Cl<sub>2</sub> (150 mL), and the 5 suspension was cooled at 0°. DIEA (30.2 mL, 173 mmol) was added to the cooled solution, followed by the addition of a phosgene solution in toluene (1.93 M, 55 mL, 105.7 mmol). After 2 h at 0°, the reaction mixture was concentrated and the resulting thick gum 10 was extracted with Et<sub>2</sub>O. Evaporation of the Et<sub>2</sub>O extract gave a light yellow oil which was purified by flash chromatography (SiO<sub>2</sub> : 10% EtOAc in hexane) to give the title compound as a pale yellow oil (16.0 g, 84% yield).

15 <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>) δ 7.59 (m, 2H), 7.33 (m, 2H), 4.72 and 4.58 (2 x s, 2H), 3.04 and 2.97 (2 x s, 3H).

#### Example 6

20 4(S)-tert-Butyl-2-oxoazetidine-1-carboxylic acid (1(R)-phenylpropyl)amide (1: R<sub>1</sub>=H, R<sub>2</sub>=R<sub>3</sub>=Z=Me, R<sub>4</sub>=H, R<sub>5</sub>=1-(R)Ph-Pr) (Table 2, entry #215).

25 By following the same procedure as in example 1, step A, but using 2(S)-{(benzyloxycarbonyl)amino}-3,3-dimethylbutanoic acid as the starting material, 3(S)-{(benzyloxycarbonyl)amino}-4,4-dimethylpentanoic acid benzyl ester is obtained as a colorless oil.

30 <sup>1</sup>H-NMR (400MHz, CDCl<sub>3</sub>) δ 7.28-7.19 (m, 10H), 5.01-4.93 (m, 4H), 4.80 (d, J = 10.2 Hz, 1H), 3.94 (td, J = 9.9, 3.8 Hz, 1H), 2.59 (dd, J = 14.6, 4.1 Hz, 1H), 2.24 (dd, J = 14.3, 9.9 Hz, 1H), 0.85 (s, 9H).

## Step B

The 3(S)-{(benzyloxycarbonyl)amino}-4,4-dimethyl-pentanoic acid benzyl ester (from step A) (490 mg, 5 1.33 mmol) in EtOH (13.3 mL) was stirred at room temperature for 16 h under an hydrogen atmosphere (1 atmosphere) in the presence of 20% Pd(OH)<sub>2</sub>/C (50 mg). The catalyst was removed by filtration over diatomaceous earth. The filtrate was concentrated 10 under reduced pressure to yield 186 mg (96% yield) of the expected amino acid as a white solid.

To a suspension of the amino acid (169 mg, 1.16 mmol) in MeCN (116 mL) and H<sub>2</sub>O (20 drops) was added 2- 15 chloro-1-methylpyridinium iodide (356 mg, 1.39 mmol), followed by Et<sub>3</sub>N (405 μL, 2.90 mmol). The resulting yellow suspension was stirred for 6 h at reflux, and then at room temperature for 18 h. The mixture was concentrated to dryness and the residue was purified 20 by flash chromatography (SiO<sub>2</sub>, 75% EtOAc in hexane) to yield 4(S)-tert-butylazetidine-2-one (93 mg, 63% yield) as a white solid.

<sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>) δ 5.83-5.67 (bs, 1H), 3.45 (dd, J = 5.1, 2.6 Hz, 1H), 2.85 (ddd, J = 14.9, 5.1, 25 2.5 Hz, 1H), 2.69 (ddd, J = 14.9, 2.5, 1.0 Hz, 1H), 0.93 (s, 9H).

## Step C

Following the same procedure as in example 1, step F, but using 4(S)-tert-butylazetidine-2-one as starting material and 1(R)-phenylpropyl isocyanate as reactant, 4(S)-tert-butyl-2-oxoazetidine-1-carboxylic acid (1(R)-phenylpropyl)amide was obtained as a waxy solid.

<sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>) δ 7.35-7.24 (m, 5H), 7.21 (d, J = 10.2 Hz, 1H), 4.76 (dd, J = 15.3, 7.6 Hz, 1H), 3.91 (dd, J = 6.0, 3.9 Hz, 1H), 2.96 (dd, J = 16.2, 6.0 Hz, 1H), 2.76 (dd, J = 16.2, 3.2 Hz, 1H), 1.91-1.79 (m, 2H), 1.03 (s, 9H), 0.93 (t, J = 7.3 Hz, 3H); IR (CHCl<sub>3</sub>) ν 3361, 1752, 1693 cm<sup>-1</sup>; FAB MS m/z 289.1 (MH<sup>+</sup>); HRMS calcd for C<sub>17</sub>H<sub>25</sub>N<sub>2</sub>O<sub>2</sub> : 289.1916 (MH<sup>+</sup>); found: 289.1921.

## Example 7

20 4(S)-Benzyl-2-oxoazetidine-1-carboxylic acid N-methyl-N-({4-(trifluoromethyl)phenyl}methyl)amide (1: R<sub>1</sub>=R<sub>2</sub>=H, R<sub>4</sub>=Me, R<sub>5</sub>=CH<sub>2</sub>(4-CF<sub>3</sub>)-Ph, Z=Ph) (Table 1, entry #135).

25 To a solution of 4(S)-benzyl-azetidin-2-one (110 mg, 0.68 mmol) (from example 1, step B) in THF (6 mL) at -50°, potassium bis(trimethylsilyl)amide (1.43 mL, 0.717 mmol, 0.5 M in toluene) was added. After 20 min the reaction mixture was added via cannula to a 30 solution of N-methyl-N-({4-(trifluoromethyl)phenyl}carbamoyl chloride (from example 5) (860 mg, 3.4 mmol) in THF (6 mL). The reaction mixture was stirred for 2 h during which time the temperature rose to -20°. The reaction was

then quenched with brine (2 mL) and diluted with EtOAc (25 mL). The aqueous phase was extracted with EtOAc (2 x 10 mL). The combined organic layers were washed with brine, dried ( $MgSO_4$ ), filtered and concentrated. The residue was purified by flash chromatography ( $SiO_2$ , 20% EtOAc in hexane) to give the title compound (102 mg, 40% yield) as a colorless oil.

$^1H$ -NMR (400 MHz,  $CDCl_3$ )  $\delta$  7.58 (d,  $J$  = 7.9 Hz, 2H),  
10 7.31 (d,  $J$  = 7.9 Hz, 2H), 7.26-7.10 (m, 5H), 4.80-  
4.53 (m, 2H), 4.41 (m, 1H), 3.15 (dd,  $J$  = 14.8, 3.8  
Hz, 1H), 2.85 (s, 3H), 2.84 (m, 2H), 2.65 (dd,  $J$  =  
14.8, 3.5 Hz, 1H); IR (neat)  $\nu$  1778, 1665  $cm^{-1}$ , FAB  
MS m/z 377 ( $MH^+$ ); HRMS calcd for  $C_{20}H_{20}F_3N_2O_2$ :  
15 377.1477; found: 377.1488.

#### Example 8

20 4(S)-Benzyl-2-oxoazetidine-1-carboxylic acid (4-pyridinylmethyl)amide (1:  $R_1=R_2=R_3=R_4=H$ ,  $R_5=CH_2-(4-Py)$ , Z=Ph) (Table 1, entry #136).

25 Following the same procedure as in example 1, step F, but using 4-{{(phenoxy carbonyl)amino}methyl}pyridine (from example 4) as reactant instead of benzyl isocyanate, the title compound is obtained as a white solid.

30  $^1H$ -NMR (400 MHz,  $CDCl_3$ )  $\delta$  8.55 (m, 2H), 7.38-7.12 (m, 7H), 7.01 (m, 1H), 4.47 (m, 2H), 4.29 (m, 1H), 3.41 (dd,  $J$  = 14.0, 3.0 Hz, 1H), 2.99 (dd,  $J$  = 16.2, 5.8 Hz, 1H), 2.93 (dd,  $J$  = 14.0, 8.4 Hz, 1H), 2.73 (dd,  $J$  = 16.2, 2.9 Hz, 1H); IR ( $CDCl_3$ )  $\nu$  3357, 1764, 1694

$\text{cm}^{-1}$ , FAB MS m/z 296.1 ( $\text{MH}^+$ ); HRMS calcd for  $\text{C}_{17}\text{H}_{18}\text{N}_3\text{O}_2$ : 296.1399; found: 296.1408.

### Example 9

5

4(S)-Benzyl-3(S)-(methylthio)-2-oxoazetidine-1-carboxylic acid (1(R)-phenylpropyl)amide (1:  $R_1=\text{MeS}$ ,  $R_2=R_3=R_4=\text{H}$ ,  $R_5=1(R)\text{Ph-Pr}$ ,  $Z=\text{Ph}$ ) (Table 2, entry #209).

10 Following the same procedure as in example 1, step D, but replacing methyliodide with dimethyl disulfide, 4(S)-benzyl-1-(tert-butyldimethylsilyl)-3(S)-(methylthio)azetidin-2-one is obtained.

15  $^1\text{H-NMR}$  (400 MHz,  $\text{CDCl}_3$ )  $\delta$  7.36-7.20 (m, 5H), 3.75 (d,  $J = 2.6$  Hz, 1H), 3.66 (ddd,  $J = 10.5$ , 3.8, 2.2 Hz, 1H), 3.29 (dd,  $J = 13.7$ , 3.8, 1H), 2.67 (dd,  $J = 13.7$ , 10.5 Hz, 1H), 1.82 (s, 3H), 1.03 (s, 9H), 0.34 (s, 3H), 0.31 (s, 3H).

20 Following the deprotection procedure described in example 1, step E, but using 4(S)-benzyl-1-(tert-butyldimethylsilyl)-3(S)-(methylthio)azetidin-2-one as the starting material, followed by urea formation as shown in example 1, step F, but using 1(R)-25 phenylpropyl isocyanate (from example 3) as reactant, the title compound is obtained as a colorless oil.

25  $^1\text{H-NMR}$  (400 MHz,  $\text{CDCl}_3$ )  $\delta$  7.38-7.21 (m, 10H), 6.90 (d,  $J = 8.6$  Hz, 1H), 4.82 (dd,  $J = 15.4$ , 7.5 Hz, 1H), 4.13 (ddd,  $J = 8.3$ , 2.5, 2.5 Hz, 1H), 3.77 (d,  $J = 2.5$  Hz, 1H), 3.49 (dd,  $J = 14.3$ , 3.5 Hz, 1H), 3.08 (dd,  $J = 14.3$ , 8.3 Hz, 1H), 1.93 (s, 3H), 1.93-1.84 (m, 2H), 0.96 (t,  $J = 7.3$  Hz, 3H); IR ( $\text{CHCl}_3$ )  $\nu$  3359, 1763, 1702  $\text{cm}^{-1}$ ; FAB MS m/z 369.2 ( $\text{MH}^+$ ); HRMS calcd for  $\text{C}_{21}\text{H}_{25}\text{N}_2\text{O}_2\text{S}$ : 369.1637 ( $\text{MH}^+$ ); found: 369.1646.

**Example 10**

4(S)-Benzyl-3(S)-methoxy-2-oxoazetidine-1-carboxylic  
5 acid (4-pyridinylmethyl)amide (1: R<sub>1</sub>=MeO, R<sub>2</sub>=R<sub>3</sub>=R<sub>4</sub>=H,  
R<sub>5</sub>=CH<sub>2</sub>-(4-Py) (Table 2, entry #210).

To a solution of diisopropylamine (800 µL, 5.7 mmol)  
in anhydrous THF (40 mL) at -20° was added butyl-  
10 lithium (3.56 mL, 5.7 mmol, 1.6 M in hexane). After  
15 min., the reaction was cooled to -78°, and freshly  
distilled trimethylphosphite (1.12 mL, 7.6 mmol) was  
added followed by a solution of 4(S)-benzyl-1-(tert-  
butyldimethylsilyl)azetidin-2-one (from example 1,  
15 step C, 1.05 g, 3.8 mmol) in THF (10 mL). A constant  
stream of oxygen was introduced and the mixture was  
stirred at -78° for 3 h. The reaction mixture was  
quenched with saturated aqueous NH<sub>4</sub>Cl and extracted  
with EtOAc (120 mL). The organic layer was washed  
20 with brine, dried (MgSO<sub>4</sub>), filtered and concentrated.  
The residue was purified by flash chromatography  
(SiO<sub>2</sub>, 10% EtOAc-hexane to 30% EtOAc in hexane) to  
give 4(S)-benzyl-1-(tert-butyldimethylsilyl)-3(S)-  
hydroxyazetidin-2-one (671 mg, 60% yield) as a white  
25 solid.

<sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>) δ 7.25-7.21 (m, 5H), 4.51 (d,  
J = 2 Hz, 1H), 3.75-3.71 (m, 1H), 3.26 (bs, 1H), 3.20  
(dd, J = 14, 3.8 Hz, 1H), 2.66 (dd, J = 14, 11.1 Hz,  
1H), 1.00 (s, 9H), 0.30 (d, J = 3.5 Hz, 6H).

30

To a solution of 4(S)-benzyl-1-(tert-butyldimethyl-  
silyl)-3(S)-hydroxyazetidin-2-one (150 mg, 0.51 mmol)  
in Et<sub>2</sub>O (70 mL) at 0° was added silica gel (40 - 60  
µm, 9 g). The vigorously stirred mixture was treated

with diazomethane in Et<sub>2</sub>O(50 mL, 0.3 - 0.5 M solution). Once the yellow color had almost disappeared after about 15 min, additional diazomethane solution (20 mL) was added. This procedure was repeated several times until no more starting material could be detected on TLC (about 1.5 h). The reaction mixture was stirred for an additional hour at room temperature then filtered and concentrated to give 4(S)-benzyl-1-(tert-butyl-dimethylsilyl)-3(S)-methoxyazetidin-2-one (157 mg, 99 % yield) as a white solid which was pure enough for further manipulation.

<sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>) δ 7.27-7.20 (m, 5H), 4.16 (d, J = 1.9 Hz, 1H), 3.67 (ddd, J = 11.1, 3.8, 1.9 Hz, 1H), 3.23 (dd, J = 13.5, 3.8 Hz, 1H), 2.94 (s, 3H), 2.57 (dd, J = 13.4, 11.1 Hz, 1H), 1.01 (s, 9H), 0.32 (d, J = 6 Hz, 6H).

Following the same procedure as in example 1 step E, but using 4(S)-benzyl-1-(tert-butyldimethylsilyl)-3(S)-methoxyazetidin-2-one as the starting material, 4(S)-benzyl-3(S)-methoxyazetidin-2-one was obtained.

<sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>) δ 7.36-7.18 (m, 5H), 6.00 (brs, 1H), 4.26 (t, J = 1.9 Hz, 1H), 3.80 (ddd, J = 7.8, 6.2, 1.6 Hz, 1H), 3.34 (s, 3H), 2.98 (dd, J = 14, 6.2 Hz, 1H), 2.88 (dd, J = 14, 7.8 Hz, 1H).

Following the same procedure as in example 1 step F, but using 4(S)-benzyl-3(S)-methoxyazetidin-2-one as starting material and 4-{{(phenoxy carbonyl)amino}-methyl}pyridine as reactant, 4(S)-benzyl-3(S)-methoxy-2-oxoazetidine-1-carboxylic acid (4-pyridinylmethyl)amide was obtained as a light yellow oil.

## 44

<sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>) δ 8.60 - 7.22 (m, 9H), 7.06 - 7.04 (m, 1H), 4.52 - 4.50 (m, 2H), 4.28 (d, J = 2.2 Hz, 1H), 4.21 - 4.17 (m, 1H), 3.57 (dd, J = 14, 3.5Hz, 1H), 3.15 (s, 3H), 2.93 (dd, J = 14.2, 8.9 Hz, 1H); IR (neat) ν 1773, 1770 cm<sup>-1</sup>; FAB-MS m/z 329 (MH<sup>+</sup>); HRMS calcd for C<sub>18</sub>H<sub>20</sub>N<sub>3</sub>O<sub>3</sub>: 326.1504(MH<sup>+</sup>); found: 326.1519.

## Example 11

10

4(R)-(2-Thiazolylmethyl)-2-oxoazetidine-1-carboxylic acid N-methyl-N-{{(4-trifluoromethyl)phenyl)methyl} amide (1: R<sub>1</sub>=R<sub>2</sub>=R<sub>3</sub>=H, R<sub>4</sub>=Me, R<sub>5</sub>=CH<sub>2</sub>-(4-CF<sub>3</sub>-Ph), Z=2-thioazolyl) (Table 2, entry 218).

15

To a solution of 1-(tert-butyldimethylsilyl)-4-oxo-azetidine-2(R)-carboxylic acid (15.0 g, 65.40 mmol) in THF (367 mL) at 0°, was added N-methylmorpholine (7.2 mL, 65.40 mmol) and isobutyl chloroformate (8.5 mL, 65.40 mmol). After stirring for 1.5 h at 0° a solution of NaBH<sub>4</sub> (9.9 g, 261.61 mmol) in H<sub>2</sub>O (98 mL) was added portionwise. The reaction was stirred for 45 min, then diluted with EtOAc and quenched with aqueous HCl solution (10%) to pH 5-6. The organic phase was collected and the aqueous phase was extracted twice with EtOAc. The combined organic layers were washed with saturated aqueous NaHCO<sub>3</sub> and brine, dried (MgSO<sub>4</sub>), filtered and concentrated. The residual oil was purified by flash chromatography (SiO<sub>2</sub>, eluent : gradient 25% to 50% EtOAc / hexane) to provide 1-(tert-butyldimethylsilyl)-4(R)-(hydroxymethyl)azetidin-2-one (8.46 g, 60% yield) as a white solid. <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>) δ 3.74-3.69

(m, 1H), 3.65-3.56 (m, 2H), 3.1-2.98 (m, 1H), 2.81-2.76 (m, 1H), 2.01 (s, 1H), 0.89 (s, 9H), 0.18 (s, 3H), 0.16 (s, 3H). FAB MS m/z 216.2 ( $MH^+$ ).

- 5 A solution of 1-(*tert*-butyldimethylsilyl)-4(*R*)-(hydroxymethyl)azetidin-2-one (309 mg, 1.44 mmol) and Dess-Martin periodinane (917 mg, 2.16 mmol) in  $CH_2Cl_2$  (15 mL) was stirred at room temperature for 1 h. A 1:1 mixture of 10 % aqueous  $NaHSO_3$  : saturated  
10 aqueous solution of  $NaHCO_3$  (20 mL) was added and the mixture was stirred vigorously until both layers were clear (15 min). The mixture was then extracted with  $Et_2O$ , washed with  $NaHCO_3$  and brine, dried ( $MgSO_4$ ), filtered and concentrated. The resulting aldehyde  
15 (263 mg, 85 % yield) was immediately dissolved in THF (5 mL) and added dropwise to a solution of 2-lithiothiazole [prepared by the addition of butyllithium (1.3 mmol, 1.04 mL, 1.25 M) to a solution of thiazole (1.3 mmol, 115 mg) in THF (15 mL) at -50°]. The resulting solution was stirred at -50° for 45 min then quenched with a saturated aqueous solution of  $NH_4Cl$ . The mixture was extracted with  $EtOAc$ . The extract was washed with brine, dried ( $MgSO_4$ ), filtered and concentrated. The resulting  
20 residue was purified by radial chromatography (40 %  $EtOAc$  in hexane) to afford the desired mixture of diastereoisomeric alcohols.  $^1H$ -NMR (400 MHz,  $CDCl_3$ )  $\delta$  7.73 (d, J = 3.2 Hz, 1H), 7.34 (d, J = 3.2 Hz, 1H), 4.98 (d, J = 6.7 Hz, 1H), 4.20 (brs, 1H), 3.93-3.89  
25 (m, 1H), 3.01 (dd, J = 15.7, 5.7 Hz, 1H), 2.77 (dd, J = 15.7, 2.8 Hz, 1H), 0.99 (s, 9H), 0.30 (s, 3H), 0.24 (s, 3H).

A solution of the diastereoisomeric alcohols (121 mg, 0.41 mmol) and 1,1'-thiocarbonyldiimidazole (216 mg, 1.22 mmol) in CH<sub>2</sub>Cl<sub>2</sub> was stirred at room temperature for two days. The resulting mixture was then 5 evaporated and subjected to flash chromatography (SiO<sub>2</sub>, 40 % EtOAc in hexane) to afford the desired mixture of diastereoisomeric xanthates (127 mg, 77 % yield). <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>) δ 8.40-8.35 (m, 1H), 7.87-7.84 (m, 1H), 7.66-7.58 (m, 1H), 7.44-7.40 (m, 1H), 7.10-7.07 (m, 1H), 6.90-6.85 (m, 1H), 6.90-6.85 10 (m, 1H), 4.47-4.43 and 4.35-4.33 (2 X m, 1H), 3.22 (dd, J = 15.8, 5.8 Hz, 1H), 3.02 (dd, J = 15.8, 2.7 Hz, 1H), 0.95 and 0.94 (2 X s, 9H), 0.29, 0.27, 0.26 and 0.25 (4 X s, 6H).

15

The latter mixture was dissolved in benzene (2 mL) together with 2,2'-azobisisobutyronitrile (AIBN, 1 mg). The solution was added to a refluxing solution of Bu<sub>3</sub>SnH (0.17 mL, 0.62 mmol) in benzene over a 15 20 min period using a syringe pump. The resulting solution was heated at reflux for 1 h, then cooled to room temperature and the residue subjected to flash chromatography (SiO<sub>2</sub>, 40 % EtOAc in hexane) to afford 4(R)-(2-thiazoylmethyl)-1-(tert- 25 butyldimethylsilyl)azetidin-2-one (45 mg, 51 % yield). <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>) δ 7.73 (d, J = 3.2 Hz, 1H), 7.25 (d, J = 3.2 Hz, 1H), 4.02-3.97 (m, 1H), 3.58 (dd, J = 14.8, 3.5 Hz, 1H), 3.19 (dd, J = 15.6, 5.4 Hz, 1H), 3.11 (dd, J = 14.8, 9.9 Hz, 1H), 2.83 30 (dd, J = 15.6, 2.5 Hz, 1H), 1.00 (s, 9H), 0.31 (s, 3H), 0.28 (s, 3H).

By following the same procedure as in example 1 step E for the deprotection followed by the ureido formation as in example 7, the title compound, 4(R)-thiazolylmethyl)-2-oxoazetidine-1-carboxylic acid N-methyl-N-{{(4-trifluoromethyl)phenyl}methyl} amide, was obtained as a yellow gum.  $^1\text{H-NMR}$  (400 MHz,  $\text{CDCl}_3$ )  $\delta$  7.72 (d,  $J = 3.3$  Hz, 1H), 7.62 (d,  $J = 8.1$  Hz, 2H), 7.40 (d,  $J = 8.1$  Hz, 2H), 7.25 (d,  $J = 3.3$  Hz, 1H), 4.70-4.55 (m, 3H), 3.59 (dd,  $J = 14.9, 4.2$  Hz, 1H), 3.45 (dd,  $J = 14.9, 6.9$  Hz, 1H), 3.10-3.00 (m, 2H), 2.97 (s, 3H); IR (neat)  $\nu$  1780, 1669  $\text{cm}^{-1}$ ; FAB-MS  $m/z$  384.2 ( $\text{MH}^+$ ); HRMS calcd for  $\text{C}_{17}\text{H}_{16}\text{F}_3\text{N}_3\text{O}_2\text{S}$ : 384.0994 ( $\text{MH}^+$ ); found: 384.1003.

15

**Example 12**

4(R)-(2-methyl-2*H*-tetrazol-5-ylmethyl)-2-oxoazetidine-1-carboxylic acid N-methyl-N-{{(4-trifluoromethyl)phenyl}methyl}amide.  $R_1=R_2=R_3=H$ ,  
20  $R_4=\text{Me}$ ,  $R_5=\text{CH}_2-(4-\text{CF}_3-\text{Ph})$ ,  $Z=2$ -methyl-2*H*-tetrazolyl) (table 2, entry 223)

The same procedure as in example 7 was followed, but using 4(R)-(2-methyl-2*H*-tetrazol-5-ylmethyl)azetidine-2-one (that was obtained using published procedures of J. Fetter; E. Keskeny; T. Czuppon; K. Lempert; M. Kajtar-Peredy; J. Tamas. *J. Chem. Soc. Perkin Trans. 1992, 1, 3061-3067* and L.T. Giang; J. Fetter; K. Lempert; M. Kajtar-Peredy; A. Gomory; *Tetrahedron, 1996, 52, 10169-10184*). After ureido formation the title compound was obtained as a yellow gum.

$^1\text{H-NMR}$  (400 MHz,  $\text{CDCl}_3$ )  $\delta$  7.56 (d,  $J = 8.0$  Hz, 2H), 7.35 (d,  $J = 8.0$  Hz, 2H), 4.70-4.44 (m, 3H), 4.21 (s,

3H), 3.40 (dd,  $J = 15.0, 4.1$  Hz, 1H), 3.28 (dd,  $J = 15.0, 6.5$  Hz, 1H), 3.03 (dd,  $J = 16.0, 6.0$  Hz, 1H) 2.90 (s, 3H), 2.83 (dd,  $J = 16.0, 3.7$  Hz, 1H); IR (neat)  $\nu$  1779, 1669, 1322 cm<sup>-1</sup>; FAB MS m/z 383.1 (MH<sup>+</sup>); HRMS calcd for C<sub>16</sub>H<sub>18</sub>F<sub>3</sub>N<sub>6</sub>O<sub>2</sub> : 383.1444; found 383.1452.

### Example 13

10 The following two assays (A and B) were used to evaluate anti HCMV activity.

#### A. HCMV N<sub>o</sub> Protease Assay

Material & Methods: Fluorescence measurements were recorded on a Perkin-Elmer LS-50B spectrofluorimeter equipped with a plate reader accessory. UV measurements were recorded on a Thermomax<sup>®</sup> microplate reader from Molecular Devices Corporation, Menlo Park, CA, USA.

20 HCMV N<sub>o</sub> protease was assayed with an internally quenched fluorogenic substrate based on the maturation cleavage site (Abz-VVNASSRLY(3-NO<sub>2</sub>)R-OH, k<sub>cat</sub>/K<sub>M</sub> = 260 M<sup>-1</sup>s<sup>-1</sup>). The fluorescence increase upon 25 cleavage of the Ala-Ser amide bond was monitored using excitation  $\lambda = 312$  nm (slit 2.5nm) and emission  $\lambda = 415$  nm (slit 5nm). A protocol adaptable to a 96-well plate format was designed for the determination of IC<sub>50</sub> values of inhibitors. Briefly, HCMV N<sub>o</sub> was 30 incubated for 2 1/2 h at 30° in presence of the substrate with a range of sequentially diluted inhibitors concentrations (300 to 0.06 μM depending on the potency of each compound). After this period,

enzymatic hydrolysis of the fluorogenic substrate in the absence of inhibitor led to about a 30% conversion. Quenching was not required before fluorescence measurement since the total scanning time by the plate reader accessory was brief relative to the duration of the reaction. The aqueous incubation buffer contained 50 mM tris(hydroxymethyl)aminomethane.HCl pH 8, 0.5M Na<sub>2</sub>SO<sub>4</sub>, 50 mM NaCl, 0.1 mM EDTA, 1 mM tris(2-carboxyethyl)phosphine.HCl, 3% v/v DMSO and 0.05% w/v casein. The final concentrations of HCMV No protease (expressed in terms of total monomer concentration) and substrate were 100 nM and 5 µM respectively. IC<sub>50</sub> values were obtained through fitting of the inhibition curve to a competitive inhibition model using SAS NLIN procedure. The mode of inhibition was determined by measurements of the initial rates (in cuvettes) at various substrate concentrations in the buffer as described above. The IC<sub>50</sub> values listed in the following tables the IC<sub>50</sub> were obtained according to this assay.

B. Plaque Reduction Assay (PRA):

Hs-68 cells (ATCC # CRL 1635) were seeded in 12-well plates at 83,000 cells/well in 1 mL of DMEM medium (Gibco Canada Inc.) supplemented with 10% fetal bovine serum (FBS, Gibco Canada Inc.). The plates were incubated for 3 days at 37° to allow the cells to reach 80-90% confluency prior to the assay.

The medium was removed from the cells by aspiration. The cells were then infected with approximately 50 PFU of HCMV (strain AD169, ATCC VR-538) in DMEM

medium supplemented with 5% inactivated FBS (assay medium). (DMEM medium is commercially available and has been described by R. Dulbecco et al., *Virology* 1959, 8, 396.) The virus was allowed to adsorb to 5 cells for 2 h at 37°. Following viral adsorption, the medium was removed from the wells by aspiration. The cells were then incubated with or without 1 mL of appropriate concentrations of test reagent in assay medium. Occasionally, test compounds were added 24 h 10 post-infection. After 4 days of incubation at 37°, the medium was exchanged with fresh medium containing test compound and 4 days later the cells were fixed with 1% aqueous formaldehyde and stained with a 2% violet solution in 20% ethanol in water. Microscopic 15 plaques were counted using a stereomicroscope. Drug effects were calculated as a percent reduction in the number of plaques in the presence of each drug concentration compared to the number observed in the absence of drug. Ganciclovir was used as a positive 20 control in all experiments.

The EC<sub>50</sub> values obtained according to this assay for certain azetidine derivatives of this invention are listed in the following table under the heading EC<sub>50</sub>.

**Example 14**

In conjunction with the appropriate starting materials and intermediates, the procedures of examples 1 to 11 can be used to prepare other compounds of formula 1. Examples of compounds thus prepared are listed in the following Tables I, II and III together with mass spectrum data for the compounds, and results from the assays A and B of example 12. Cytotoxic effects noted as TC<sub>50</sub> in the following tables were determined according to the tetrazolium salt (MTT) metabolic assay, F. Denizot and F. Lang, *J. Immun. Meth.*, 1986, 89, 271.

Symbols used in the following tables include 4-AcNH-Ph: 4-(acetylamino)phenyl; 4-NH<sub>2</sub>-Ph: 4-aminophenyl; BTZ: benzothiazolyl; Bu: butyl; 4-CF<sub>3</sub>-Ph: 4-(trifluoromethyl)phenyl; 4-Cl-Ph: 4-chlorophenyl; 4-COOMe-Ph: 4-(methoxycarbonyl)phenyl; Et: ethyl; 4-F-Ph: 4-fluorophenyl; 4-I-Ph: 4-iodophenyl; 4-isoPr-Ph: 4-(1-methylethyl)phenyl; Me: methyl; 4-MeO-3,5-Me<sub>2</sub>-Ph: 4-methoxy-3,5-dimethylphenyl; 4-MeO-Ph: 4-methoxyphenyl; 4-Me-Ph: 4-methylphenyl; 2-NO<sub>2</sub>-Ph: 2-nitrophenyl; 4-NO<sub>2</sub>-Ph: 4-nitrophenyl; Ph: phenyl; Pr: propyl; 4-Py: 4-pyridinyl; 1-(4-Py)-Pr: 1-(4-pyridinyl)propyl; 4-SCF<sub>3</sub>-Ph: 4-{(trifluoromethyl)-thio}phenyl; 4-SOCF<sub>3</sub>-Ph: 4-{(trifluoromethyl)sulfinyl}phenyl; 4-SO<sub>2</sub>CF<sub>3</sub>-Ph: 4-{(trifluoromethyl)sulfonyl}phenyl; THZ: thiazolyl.

TABLE I  
Compound of formula 1 having the structure



wherein R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> each is hydrogen, Z is phenyl and R<sup>4</sup> and R<sup>5</sup> are designated as follows:

| Entry No. | R <sup>4</sup> | R <sup>5</sup>                      | IC <sub>50</sub> μM | EC <sub>50</sub> μM | TC <sub>50</sub> μM | FAB/MS (MH <sup>+</sup> ) |
|-----------|----------------|-------------------------------------|---------------------|---------------------|---------------------|---------------------------|
| 101       | H              | 4-F-Ph                              | 3.7                 | >250                | >250                | 299                       |
| 102       | H              | 4-MeO-Ph                            | 3.9                 | 215                 | >250                | 311                       |
| 103       | H              | 4-Me-Ph                             | 5.3                 | >250                | >250                | 295                       |
| 104       | H              | Ph                                  | 3.1                 | >250                | >250                | 281                       |
| 105       | H              | 1( <i>R</i> )-(1-naphthalenyl)ethyl | 7.7                 | >18                 | >18                 | 359                       |
| 106       | H              | 4-MeO-3,5-Me <sub>2</sub> -Ph       | 2.4                 | 190                 | >250                | 339                       |
| 107       | H              | 4-Py                                | 1.9                 | >250                | >250                | 282                       |
| 108       | H              | 1( <i>S</i> or <i>R</i> )-(4-Py)-Pr | 28                  |                     |                     | 324                       |
| 109       | H              | 1( <i>R</i> or <i>S</i> )-(4-Py)-Pr | 1.6                 | 130                 | >250                | 324                       |

TABLE I

Compound of formula 1 having the structure



wherein R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> each is hydrogen, Z is phenyl and R<sup>4</sup> and R<sup>5</sup> are designated as follows:

| Entry No. | R <sup>4</sup> | R <sup>5</sup>                        | IC <sub>50</sub> μM | EC <sub>50</sub> μM | TC <sub>50</sub> μM | FAB/MS (MH <sup>+</sup> ) |
|-----------|----------------|---------------------------------------|---------------------|---------------------|---------------------|---------------------------|
| 110       | H              | Et <sub>2</sub> CH                    | 38                  |                     |                     | 275                       |
| 111       | H              | (5-benzo[1,3]dioxolyl)methyl          | 3.7                 | >150                | >150                | 330                       |
| 112       | Me             | CH <sub>2</sub> Ph                    | 10                  | 150                 | >150                | 309                       |
| 113       | Me             | CH <sub>3</sub>                       | 50                  |                     |                     | 233.1                     |
| 114       | Me             | CH <sub>2</sub> CH <sub>2</sub> Ph    | 38                  |                     |                     | 323.2                     |
| 115       | Me             | CH <sub>2</sub> COOCH <sub>2</sub> Ph | 11.7                |                     |                     |                           |
| 116       | H              | CH <sub>2</sub> -Ph                   | 8.9                 | 53                  | >250                | 295.2                     |
| 117       | Et             | CH <sub>2</sub> -Ph                   | 42                  |                     |                     | 323.2                     |
| 118       | H              | 1(R)-Ph-Pr                            | 2.6                 | 180                 | >250                | 323.2                     |
| 119       | Me             | 1(R)-Ph-Et                            | 24                  |                     |                     | 323                       |

TABLE I

Compound of formula 1 having the structure



wherein R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> each is hydrogen, Z is phenyl and R<sup>4</sup> and R<sup>5</sup> are designated as follows:

| Entry No. | R <sup>4</sup> | R <sup>5</sup>                          | I <sub>C50</sub><br>μM | E <sub>C50</sub><br>μM | T <sub>C50</sub><br>μM | FAB/MS<br>(M <sup>+</sup> ) |
|-----------|----------------|-----------------------------------------|------------------------|------------------------|------------------------|-----------------------------|
| 120       | Me             | 1(S)-Ph-Et                              | 17.7                   |                        |                        | 323                         |
| 121       | H              | 1(R)-Ph-Bu                              | 3.4                    | 160                    | >250                   | 337                         |
| 122       | Me             | CH <sub>2</sub> (4-NO <sub>2</sub> -Ph) | 1.5                    | 105                    | >250                   | 354.2                       |
| 123       | Me             | 1(R)-Ph-Pr                              | 30                     |                        |                        | 337.3                       |
| 124       | Me             | CH <sub>2</sub> (2-NO <sub>2</sub> -Ph) | 6.9                    | 150                    | >250                   | 354.2                       |
| 125       | Me             | CH <sub>2</sub> (4-NH <sub>2</sub> -Ph) | 13.4                   |                        |                        | 324.3                       |
| 126       | Me             | CH <sub>2</sub> (4-Cl-Ph)               | 6.9                    | 150                    | >250                   | 343.2                       |
| 127       | H              | 1(S or R)-{(4-Py)-Pr}                   | 28                     |                        |                        | 338                         |
| 128       | H              | 1(R or S)-(4-Py)-Pr                     | 1.6                    | 110                    | >250                   | 338                         |
| 129       | Me             | CH <sub>2</sub> (4-Me-Ph)               | 8.9                    | 140                    | >200                   | 323.2                       |

TABLE I

Compound of formula 1 having the structure



wherein R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> each is hydrogen, Z is phenyl and R<sup>4</sup> and R<sup>5</sup> are designated as follows:

| Entry No. | R <sup>4</sup>                                          | R <sup>5</sup> | IC <sub>50</sub> μM | EC <sub>50</sub> μM | TC <sub>50</sub> μM | FAB/MS (MH <sup>+</sup> ) |
|-----------|---------------------------------------------------------|----------------|---------------------|---------------------|---------------------|---------------------------|
| 130 Me    | CH <sub>2</sub> (4-MeO-Ph)                              | 7.4            | 110                 | >250                | 339.2               |                           |
| 131 Me    | CH <sub>2</sub> (4-COOMe-Ph)                            | 2.5            | 140                 | >250                | 367.2               |                           |
| 132 Me    | CH <sub>2</sub> (4-AcNH-Ph)                             | 17             | 150                 | >250                | 366                 |                           |
| 133 Me    | CH <sub>2</sub> (3-NO <sub>2</sub> -Ph)                 | 6.9            | 170                 | >250                | 354                 |                           |
| 134 Me    | CH <sub>2</sub> (4-isoprop-Ph)                          | 6.4            | 150                 | 200                 | 351                 |                           |
| 135 Me    | CH <sub>2</sub> (4-CF <sub>3</sub> -Ph)                 | 3.7            | 190                 | >250                | 377                 |                           |
| 136 H     | CH <sub>2</sub> (4-Py)                                  | 13             | >250                | >250                | 296.1               |                           |
| 137 Me    | CH <sub>2</sub> (4-SCF <sub>3</sub> -Ph)                | 6.9            | >250                | >250                | 409                 |                           |
| 138 Me    | CH <sub>2</sub> (4-SOCF <sub>3</sub> -Ph)               | 8.7            | >250                | >250                | 425                 |                           |
| 139 Me    | CH <sub>2</sub> (4-SO <sub>2</sub> CF <sub>3</sub> -Ph) | 4.3            | >250                | >250                | 441                 |                           |

**TABLE I**

Compound of formula 1 having the structure



wherein R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> each is hydrogen, Z is phenyl and R<sup>4</sup> and R<sup>5</sup> are designated as follows:

| Entry No. | R <sup>4</sup> | R <sup>5</sup> | IC <sub>50</sub> μM | EC <sub>50</sub> μM | TC <sub>50</sub> μM | FAB/MS (MH <sup>+</sup> ) |
|-----------|----------------|----------------|---------------------|---------------------|---------------------|---------------------------|
| 140       | H              |                | 14                  |                     |                     | 321.2                     |
| 141       | H              |                | 42                  |                     |                     | 309                       |
| 142       | H              |                | 9.7                 | >250                | >250                | 296                       |

57

TABLE I

Compound of formula 1 having the structure



wherein R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> each is hydrogen, Z is phenyl and R<sup>4</sup> and R<sup>5</sup> are designated as follows:

| Entry No. | R <sup>4</sup> | R <sup>5</sup> | IC <sub>50</sub> μM | EC <sub>50</sub> μM | TC <sub>50</sub> μM | FAB/MS (MH <sup>+</sup> ) |
|-----------|----------------|----------------|---------------------|---------------------|---------------------|---------------------------|
| 143       | H              |                | 33                  |                     |                     | 296                       |
| 144       | H              |                | 29                  |                     |                     | 309.2                     |
| 145       | Me             |                | 6.1                 | 120                 | >250                | 334                       |
| 146       | Me             |                | 30                  |                     |                     | 268.1                     |

TABLE II

Compounds of formula 1 having the structure

wherein R<sup>1</sup>, R<sup>2</sup>, R<sup>3</sup>, R<sup>4</sup>, R<sup>5</sup> and Z are designated as follows:

| Entry No. | R <sup>1</sup> | R <sup>2</sup> | R <sup>3</sup> | R <sup>4</sup> | R <sup>5</sup>         | Z  | IC <sub>50</sub> μM | EC <sub>50</sub> μM | TC <sub>50</sub> μM | FAB/MS (MH <sup>+</sup> ) |
|-----------|----------------|----------------|----------------|----------------|------------------------|----|---------------------|---------------------|---------------------|---------------------------|
| 201       | Me             | H              | H              | H              | CH <sub>2</sub> (4-Py) | Ph | 12                  | 190                 | >250                | 310                       |
| 202       | Et             | H              | H              | H              | CH <sub>2</sub> (4-Py) | Ph | 58                  |                     |                     | 324.2                     |
| 203       | Me             | H              | H              | H              | Ph                     | Ph | 0.81                | >250                | >250                | 295.2                     |
| 204       | Me             | H              | H              | H              | 4-Py                   | Ph | 0.97                | 205                 | >250                | 296.3                     |
| 205       | Me             | H              | H              | H              | 1(S or R)-(4-Py)-Pr    | Ph | 21                  | >250                | >250                | 338                       |
| 206       | Me             | H              | H              | H              | 1(R or S)-(4-Py)-Pr    | Ph | 3.2                 | 96                  | >250                | 338                       |
| 207       | Me             | H              | H              | H              | CH <sub>2</sub> Ph     | Ph | 5.3                 | 140                 | >250                | 309.3                     |
| 208       | Me             | H              | H              | Me             | CH <sub>2</sub> Ph     | Ph | 4.2                 | 150                 | >250                | 323.3                     |
| 209       | MeS            | H              | H              | H              | 1(R)-Ph-Pr             | Ph | 4.7                 | 27                  | >250                | 369                       |
| 210       | MeO            | H              | H              | H              | CH <sub>2</sub> (4-Py) | Ph | 2.1                 | 210                 | >250                | 326                       |

TABLE II

Compounds of formula I having the structure

wherein  $\text{R}^1$ ,  $\text{R}^2$ ,  $\text{R}^3$ ,  $\text{R}^4$ ,  $\text{R}^5$  and  $\text{Z}$  are designated as follows:

| Entry No. | $\text{R}^1$ | $\text{R}^2$ | $\text{R}^3$ | $\text{R}^4$ | $\text{R}^5$                             | $\text{Z}$         | $\text{IC}_{50}$ $\mu\text{M}$ | $\text{EC}_{50}$ $\mu\text{M}$ | $\text{TC}_{50}$ $\mu\text{M}$ | FAB/MS ( $\text{MH}^+$ ) |
|-----------|--------------|--------------|--------------|--------------|------------------------------------------|--------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------|
| 211       | H            | H            | H            | H            | CH <sub>2</sub> -(4-Py)                  | (4-i-Ph)           | 8.6                            | >100                           | >100                           | 422.1                    |
| 212       | H            | H            | H            | H            | 1( <i>R</i> )-Ph-Pr                      | CH <sub>2</sub> Ph | 4.3                            | 140                            | >250                           | 337.3                    |
| 213       | H            | H            | Me           | H            | 1( <i>R</i> )-Ph-Pr                      | Me                 | 5.9                            | 210                            | >250                           | 275                      |
| 214       | H            | H            | H            | H            | 1( <i>R</i> )-Ph-Pr                      | Me                 | 7.6                            | 180                            | >250                           | 261.1                    |
| 215       | H            | Me           | Me           | H            | 1( <i>R</i> )-Ph-Pr                      | Me                 | 41                             |                                |                                | 289.1                    |
| 216       | H            | H            | Me           | H            | 1( <i>R</i> )-Ph-Pr                      | ( <i>R</i> )-Et    | 4.4                            | 110                            | >250                           | 289.1                    |
| 217       | H            | H            | Me           | H            | 1( <i>R</i> )-Ph-Pr                      | ( <i>S</i> )-Et    | 11                             | 85                             | >250                           | 289.1                    |
| 218       | H            | H            | H            | Me           | CH <sub>2</sub> -(4-CF <sub>3</sub> -Ph) | (2-THZ)            | 5.5                            | 78                             | 178                            | 384.2                    |
| 219       | H            | H            | H            | Me           | CH <sub>2</sub> -(4-CF <sub>3</sub> -Ph) | (2-BTZ)            | 0.88                           | 110                            | >250                           | 434                      |

TABLE II

Compounds of formula 1 having the structure



wherein  $R^1$ ,  $R^2$ ,  $R^3$ ,  $R^4$ ,  $R^5$  and  $Z$  are designated as follows:

| Entry No. | R <sup>1</sup> | R <sup>2</sup> | R <sup>3</sup> | R <sup>4</sup> | R <sup>5</sup>                                                                      | Z                                                                                     | I <sub>C50</sub> μM | E <sub>C50</sub> μM | T <sub>C50</sub> μM | FAB/MS (MH <sup>+</sup> ) |
|-----------|----------------|----------------|----------------|----------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------|---------------------|---------------------|---------------------------|
| 220       | H              | H              | H              | Me             |  |     | 14                  |                     |                     | 444                       |
| 221       | H              | H              | H              | Me             |  |   | 7.1                 | 59                  | >100                | 367                       |
| 222       | H              | H              | H              | H              |  |  | 5                   | 125                 | >148                | 329                       |

TABLE II

Compounds of formula 1 having the structure

wherein R<sup>1</sup>, R<sup>2</sup>, R<sup>3</sup>, R<sup>4</sup>, R<sup>5</sup> and Z are designated as follows:

| Entry No. | R <sup>1</sup> | R <sup>2</sup> | R <sup>3</sup> | R <sup>4</sup> | R <sup>5</sup> | Z | IC <sub>50</sub> μM | EC <sub>50</sub> μM | TC <sub>50</sub> μM | FAB/MS (MH <sup>+</sup> ) |
|-----------|----------------|----------------|----------------|----------------|----------------|---|---------------------|---------------------|---------------------|---------------------------|
| 223       | H              | H              | H              | Me             |                |   | 5.7                 | 94                  | >195                | 383.1                     |
| 224       | H              | H              | H              | Me             |                |   | 2.7                 | 100                 | >133                | 360                       |
| 225       | H              | H              | H              | Me             |                |   | 0.7                 | 30                  | >50                 | 411                       |
| 226       | H              | H              | H              | Me             |                |   | 1.3                 | 70                  | >79                 | 360                       |

TABLE II  
Compounds of formula 1 having the structure



wherein R<sup>1</sup>, R<sup>2</sup>, R<sup>3</sup>, R<sup>4</sup>, R<sup>5</sup> and Z are designated as follows:

| Entry No. | R <sup>1</sup> | R <sup>2</sup> | R <sup>3</sup> | R <sup>4</sup> | R <sup>5</sup> | Z | IIC <sub>50</sub> μM | EC <sub>50</sub> μM | TC <sub>50</sub> μM | FAB/MS (MH <sup>+</sup> ) |
|-----------|----------------|----------------|----------------|----------------|----------------|---|----------------------|---------------------|---------------------|---------------------------|
| 227       | H              | H              | H              | Me             |                |   | 2.5                  | >29                 | >29                 | 361                       |
| 228       | H              | H              | H              | Me             |                |   | 4.5                  | >16                 | >16                 | 383                       |
| 229       | H              | H              | H              | Me             |                |   | 3.1                  | 143                 | >261                | 344.1                     |
| 230       | H              | H              | H              | Me             |                |   | 2.7                  | 11                  | >25                 | 434                       |

63

TABLE II

Compounds of formula I having the structure

wherein  $\text{R}^1$ ,  $\text{R}^2$ ,  $\text{R}^3$ ,  $\text{R}^4$ ,  $\text{R}^5$  and  $\text{Z}$  are designated as follows:

| Entry No. | $\text{R}^1$ | $\text{R}^2$ | $\text{R}^3$ | $\text{R}^4$ | $\text{R}^5$ | $\text{Z}$ | $\text{IC}_{50}$ $\mu\text{M}$ | $\text{EC}_{50}$ $\mu\text{M}$ | $\text{TC}_{50}$ $\mu\text{M}$ | FAB/MS ( $\text{MH}^+$ ) |
|-----------|--------------|--------------|--------------|--------------|--------------|------------|--------------------------------|--------------------------------|--------------------------------|--------------------------|
| 231       | H            | H            | H            | Me           |              |            | 2.7                            | 11                             | >25                            | 384                      |

64

TABLE III

Compounds of formula 1 having the structure



wherein R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> each is hydrogen, Z is phenyl, and R<sup>4</sup> and R<sup>5</sup> together with the nitrogen to which they are attached are designated as follows:

| Entry No. | N<sup>R⁴</sup><sub>R⁵</sub>              | IC <sub>50</sub><br>μM | EC <sub>50</sub><br>μM | TC <sub>50</sub><br>μM | FAB/MS<br>(MH <sup>+</sup> ) |
|-----------|------------------------------------------|------------------------|------------------------|------------------------|------------------------------|
| 301       | morpholino                               | 142                    |                        |                        | 275.1                        |
| 302       | 2-(3,4-dihydro-1 <i>H</i> -isoquinoliny) | 36                     |                        |                        | 321                          |
| 303       | pyrrolidino                              | 63                     |                        |                        | 259                          |
| 304       | 1-(3,4-dihydro-1 <i>H</i> -isoquinoliny) | 154                    |                        |                        | 321.2                        |

## Claims:

## 1. A compound of formula I



- 5 wherein  $\mathbf{R}^1$  is hydrogen, methyl, ethyl, methoxy or methylthio;
- $\mathbf{R}^2$  and  $\mathbf{R}^3$  each independently is hydrogen or lower alkyl;
- $\mathbf{R}^4$  is hydrogen, lower alkyl, methoxy, ethoxy or 10 benzyloxy;
- $\mathbf{R}^5$  is lower alkyl, lower cycloalkyl,  $(\text{CH}_2)_m\text{C}(\text{O})\text{OR}^6$  wherein  $m$  is the integer 1 or 2 and  $\mathbf{R}^6$  is lower alkyl or phenyl(lower alkyl);
- phenyl, phenyl monosubstituted, disubstituted or 15 trisubstituted with a substituent selected independently from the group consisting of:
- lower alkyl, lower alkoxy, lower alkylthio, halo, hydroxy and amino; phenyl(lower alkyl), phenyl(lower alkyl) monosubstituted or 20 disubstituted on the phenyl portion thereof with a substituent selected independently from the group consisting of lower alkyl, lower alkoxy, lower alkylthio, halo, hydroxy, nitro, amino, lower alkylamino, di(lower alkyl)amino, lower acylamino, di(lower alkyl)aminocarbonyl, cyano, trifluoromethyl, (trifluoromethyl)thio, (trifluoromethyl)sulfinyl, (trifluoromethyl)sulfonyl and  $\text{C}(\text{O})\text{OR}^7$  wherein  $\mathbf{R}^7$  25 is lower alkyl or phenyl(lower alkyl);

Het or Het(lower alkyl) wherein Het represents an unsubstituted, monosubstituted or disubstituted five or six membered, monovalent heterocyclic ring containing one or two heteroatoms selected from the group consisting of N, O or S, wherein each substituent is selected independently from the group consisting of lower alkyl, lower alkoxy, halo and hydroxy;

5-(benzo[1,3]dioxolyl) methyl, (1(R)-1-

10 naphthalenyl)ethyl, 2-benzothiazolyl or 2-thiazolo[4,5-b]pyridinyl; or

R<sup>4</sup> and R<sup>5</sup> together with the nitrogen atom to which they are attached form a piperidino, morpholino, thiomorpholino, piperazino, N-methylpiperazino, 1-

15 (3,4-dihydro-1H-isoquinolinyl) or 2-(3,4-dihydro-1H-isoquinolinyl) or a pyrrolidino ring optionally substituted with C(O)Obenzyl or with phenyl said phenyl ring optionally mono- or di-substituted with a substituent selected

20 independently from the group consisting of lower alkyl, lower alkoxy, lower alkylthio, halo, hydroxy, nitro, amino, lower alkylamino, di(lower alkyl)amino, lower acylamino, di(lower alkyl)aminocarbonyl, cyano, trifluoromethyl, (trifluoromethyl)thio,

25 (trifluoromethyl)sulfinyl, (trifluoromethyl)sulfonyl and C(O)OR, wherein R, is lower alkyl or (lower alkyl)phenyl;

and

Z is lower alkyl, phenyl, phenyl monosubstituted or

30 disubstituted with a substituent selected independently from lower alkyl, lower alkoxy, halo, hydroxy and amino; phenylmethyl, phenylmethyl mono-substituted or disubstituted on the phenyl portion thereof with a substituent selected from the group

consisting of lower alkyl, lower alkoxy, halo, - hydroxy and amino; or  $(CH_2)_p$ - $(\text{Het})$  wherein p is the integer 0 or 1 and Het is as defined herein; with the proviso that when Z is  $(CH_2)_p$ - $(\text{Het})$  as defined herein  
5 then R<sup>2</sup> and R<sup>3</sup> each is hydrogen;  
or a therapeutically acceptable acid addition salt thereof.

2. The compound of formula 1 according to claim 1  
10 wherein R<sup>1</sup>, R<sup>2</sup> and R<sup>3</sup> are as defined in claim 1;  
R<sup>4</sup> is hydrogen or lower alkyl;  
R<sup>5</sup> is lower alkyl, lower cycloalkyl,  $CH_2C(O)OR^6$   
wherein R<sup>6</sup> is methyl, ethyl or phenylmethyl;  
phenyl, phenyl monosubstituted, disubstituted or  
15 trisubstituted with a substituent selected  
independently from the group consisting of lower  
alkyl, lower alkoxy, lower alkylthio, halo, hydroxy  
and amino; phenyl(lower alkyl), phenyl(lower alkyl)  
monosubstituted or disubstituted on the phenyl  
20 portion thereof with a substituent selected  
independently from the group consisting of lower  
alkyl, lower alkoxy, lower alkylthio, halo, hydroxy,  
nitro, amino, lower alkylamino, di(lower alkyl)amino,  
lower acylamino, di(lower alkyl)aminocarbonyl, cyano,  
25 trifluoromethyl, (trifluoromethyl)thio,  
(trifluoromethyl)sulfinyl, (trifluoromethyl)sulfonyl  
and C(O)OR<sup>7</sup> wherein R<sup>7</sup> is methyl, ethyl or  
phenylmethyl;  
Het or Het(lower alkyl) wherein Het is 2-furyl, 2-  
30 methyl-3-furyl, 2-thienyl, 2-pyridinyl, 3-pyridinyl,  
4-pyridinyl, 3-methyl-2-pyrrolyl, 2-thiazolyl, 4-  
thiazolyl, 2-isoxazolyl, 2-pyrimidinyl, 4-methyl-2-  
pyrimidinyl, 4,6-dimethyl-2-pyrimidinyl, 4-

pyrimidinyl, 2,6-dimethyl-2-pyrimidinyl, 4-methyltetrazolyl, 2-benzothiazolyl or 2-thiazolo[4,5-b]pyridinyl; (5-benzo[1,3]dioxolyl)methyl, 1(R)-(1-naphthalenyl)ethyl; or

- 5 R<sup>4</sup> and R<sup>5</sup> together with the nitrogen atom to which they are attached form a pyrrolidino, piperidino, morpholino, N-methylpiperazino, 1-(3,4-dihydro-1H-isoquinolinyl) or 2-(3,4-dihydro-1H-isoquinolinyl); and z is as defined in claim 1.

10

3. The compound of formula 1 according to claim 2 wherein R<sup>1</sup> is hydrogen, methyl, ethyl, methoxy or methylthio;
- R<sup>2</sup> and R<sup>3</sup> each independently is hydrogen, or methyl;
- 15 R<sup>4</sup> is hydrogen, methyl, or ethyl;
- R<sup>5</sup> is methyl, ethyl, 1-methylethyl, cyclobutyl, cyclopentyl, cyclohexyl, CH<sub>2</sub>C(O)OR<sup>6</sup> wherein R<sup>6</sup> is methyl or phenylmethyl;
- phenyl, 4-fluorophenyl, 4-methoxyphenyl, 3,5-dimethyl-4-methoxyphenyl, 4-methylphenyl, 4-(methylthio)phenyl, phenylmethyl, phenylethyl, 1-phenylpropyl, 1-phenylbutyl, phenylmethyl monosubstituted at position 3 or 4 of the phenyl portion thereof with a substituent selected from the
- 20 group consisting of methyl, ethyl, 1-methylethyl, 1,1-dimethylethyl, propyl, methoxy, ethoxy, methylthio, bromo, chloro, fluoro, nitro, acetylarnino, C(O)NMe<sub>2</sub>, C(O)NET<sub>2</sub>, cyano, trifluoromethyl, (trifluoromethyl)thio,
- 25 (trifluoromethyl)sulfinyl, (trifluoromethyl)sulfonyl and C(O)OR<sup>7</sup> wherein R<sup>7</sup> is methyl, ethyl or benzyl;

- (5-benzo[1,3]dioxolyl)methyl, 1(R)-(1-naphthyl)ethyl, 2-pyridinyl, 4-pyridinyl, 2-pyridinylmethyl, 4-pyridinylmethyl, 1-(4-pyridinyl)ethyl or 1-(4-pyridinyl)propyl; or
- 5 R<sup>4</sup> and R<sup>5</sup> together with the nitrogen to which they are attached form a pyrrolidino, piperidino, morpholino, 1-(3,4-dihydro-1H-isoquinolinyl) or 2-(3,4-dihydro-1H-isoquinolinyl); and z is phenyl or phenylmethyl.
- 10 4. The compound of formula 1 according to claim 3 wherein R<sup>1</sup> is hydrogen, methyl or methylthio; R<sup>2</sup> and R<sup>3</sup> each independently is hydrogen or methyl; R<sup>4</sup> is hydrogen, methyl or ethyl;
- 15 R<sup>5</sup> is methyl, ethyl, 1-methylethyl, cyclobutyl, cyclopentyl, cyclohexyl, CH<sub>2</sub>C(O)OR<sup>6</sup> wherein R<sup>6</sup> is methyl or phenylmethyl; phenyl, 4-fluorophenyl, 4-methoxyphenyl, 3,5-dimethyl-4-methoxyphenyl, 4-methylphenyl, 4-
- 20 (methylthio)phenyl, phenylmethyl, 1-phenylpropyl, 1-phenylbutyl, phenylmethyl monosubstituted at position 3 or 4 of the phenyl portion thereof with a substituent selected from the group consisting of methyl, ethyl, 1-methylethyl, 1,1-dimethylethyl,
- 25 propyl, methoxy, ethoxy, methylthio, bromo, chloro, fluoro, nitro, acetylarnino, C(O)NMe<sub>2</sub>, C(O)NET<sub>2</sub>, cyano, trifluoromethyl, (trifluoromethyl)thio, (trifluoromethyl)sulfinyl, (trifluoromethyl)-sulfonyl and C(O)OR<sup>7</sup> wherein R<sup>7</sup> is methyl, ethyl or
- 30 benzyl;
- (5-benzo[1,3]dioxolyl)methyl, 1(R)-(1-naphthalenyl)ethyl, 2-pyridinyl, 4-pyridinyl, 2-

pyridinylmethyl, 4-pyridinylmethyl, 1-(4-pyridinyl)ethyl or 1-(4-pyridinyl)propyl; and  
z is lower alkyl.

- 5 5. The compound of formula 1 according to claim 4  
wherein R<sup>1</sup> is hydrogen, methyl, methylthio or  
methoxy;  
R<sup>2</sup> and R<sup>3</sup> each independently is hydrogen or methyl;  
R<sup>4</sup> is hydrogen, methyl or ethyl;  
10 R<sup>5</sup> is methyl, ethyl, 1-methylethyl, cyclobutyl,  
cyclopentyl, cyclohexyl, CH<sub>2</sub>C(O)OR<sup>6</sup> wherein R<sup>6</sup> is  
methyl or phenylmethyl;  
phenyl, 4-fluorophenyl, 4-methoxyphenyl, 3,5-dimethyl-4-methoxyphenyl, 4-methylphenyl, 4-  
15 (methylthio)phenyl, phenylmethyl, 1-phenylpropyl, 1-phenylbutyl, phenylmethyl monosubstituted at position  
3 or 4 of the phenyl portion thereof with a  
substituent selected from the group consisting of  
methyl, ethyl, 1-methylethyl, 1,1-dimethylethyl,  
20 propyl, methoxy, ethoxy, methylthio, bromo, chloro,  
fluoro, nitro, acetylarnino, C(O)NMe<sub>2</sub>, C(O)NET<sub>2</sub>,  
cyano, trifluoromethyl, (trifluoromethyl)thio,  
(trifluoromethyl)sulfinyl, (trifluoromethyl)sulfonyl  
and C(O)OR<sup>7</sup> wherein R<sup>7</sup> is methyl, ethyl or  
25 benzyl;  
(5-benzo[1,3]dioxolyl)methyl, 1(R)-(1-naphthalenyl)ethyl, 2-pyridinyl, 4-pyridinyl, 2-pyridinylmethyl, 4-pyridinylmethyl, 1-(4-pyridinyl)ethyl or 1-(4-pyridinyl)propyl; and  
30 z is 2-furyl, 2-thienyl, 2-pyridinyl, 3-pyridinyl, 4-pyridinyl, 3-methyl-2-pyrrolyl, 2-thiazolyl, 2-isoxazolyl, 2-pyrimidinyl, 4,6-dimethyl-2-pyrimidinyl, 5-(1-methyl-1H-tetrazolyl), 5-(2-methyl-

2*H*-tetrazolyl), 2-benzothiazolyl or 2-thiazolo[4;5-b]pyridinyl.

6. The compound of formula 1 according to claim 5  
5 wherein R<sup>1</sup> is hydrogen, methyl, methoxy or  
methylthio;  
R<sup>2</sup> and R<sup>3</sup> each is hydrogen;  
R<sup>4</sup> is hydrogen or methyl;  
R<sup>5</sup> is CH<sub>2</sub>C(O)OR<sup>6</sup> wherein R<sup>6</sup> is phenylmethyl; or  
10 R<sup>5</sup> is 4-fluorophenyl, 4-methoxyphenyl, 3,5-dimethyl-  
4-methoxyphenyl, (4-methylthio)phenyl, phenylmethyl,  
1(R)-phenylethyl, 1(S)-phenylethyl, 1(R)-  
phenylpropyl, 1(R)-phenylbutyl, (4-  
methylphenyl)methyl, {4-(1-methylethyl)phenyl}methyl,  
15 (4-methoxyphenyl)methyl, (4-chlorophenyl)methyl, (2-  
nitrophenyl)methyl, (3-nitrophenyl)methyl, (4-  
(acetylamino)phenyl)methyl, (4-  
(trifluoromethyl)phenyl)methyl, {4-  
((trifluoromethyl)thio)phenyl}methyl, {4-  
20 {((trifluoromethyl)sulfinyl)phenyl}methyl, {4-  
((trifluoromethyl)sulfonyl)phenyl}methyl, {4-  
(methoxycarbonyl)phenyl} methyl, (5-benzo[1,3]  
dioxolyl)methyl, 1(R)-(1-naphthalenyl)ethyl, 4-  
pyridinyl, 4-pyridinylmethyl or 1-(4-  
25 pyridinyl)propyl; or  
R<sup>4</sup> and R<sup>5</sup> together with the nitrogen to which they  
are attached form a pyrrolidino, morpholino, 1-(3,4-  
dihydro-1*H*-isoquinolinyl) or 2-(3,4-dihydro-1*H*-  
isoquinolinyl); and  
30 z is phenyl or phenylmethyl.

7. The compound of formula 1 according to claim 1  
selected from the group consisting of:



wherein  $R^1$ ,  $R^2$  and  $R^3$  each is hydrogen,  $Z$  is phenyl and  $R^4$  and  $R^5$  are designated as follows:

| Entry<br>No. | $R^4$ | $R^5$                                    |
|--------------|-------|------------------------------------------|
| 101          | H     | 4-F-Ph                                   |
| 102          | H     | 4-MeO-Ph                                 |
| 103          | H     | 4-Me-Ph                                  |
| 104          | H     | Ph                                       |
| 105          | H     | 1(R)-(1-naphthalenyl)ethyl               |
| 106          | H     | 4-MeO-3,5-Me <sub>2</sub> -Ph            |
| 107          | H     | 4-Py                                     |
| 108          | H     | 1(S or R)-(4-Py)-Pr                      |
| 109          | H     | 1(R or S)-(4-Py)-Pr                      |
| 110          | H     | Et <sub>2</sub> CH                       |
| 111          | H     | (5-benzo[1,3]dioxolyl)methyl             |
| 112          | Me    | CH <sub>2</sub> Ph                       |
| 113          | Me    | CH <sub>3</sub>                          |
| 114          | Me    | CH <sub>2</sub> CH <sub>2</sub> Ph       |
| 115          | Me    | CH <sub>2</sub> COOCH <sub>2</sub> Ph    |
| 116          | H     | CH <sub>2</sub> -Ph                      |
| 117          | Et    | CH <sub>2</sub> -Ph                      |
| 118          | H     | 1(R)-Ph-Pr                               |
| 119          | Me    | 1(R)-Ph-Et                               |
| 120          | Me    | 1(S)-Ph-Et                               |
| 121          | H     | 1(R)-Ph-Bu                               |
| 122          | Me    | CH <sub>2</sub> -(4-NO <sub>2</sub> -Ph) |
| 123          | Me    | 1(R)-Ph-Pr                               |
| 124          | Me    | CH <sub>2</sub> -(2-NO <sub>2</sub> -Ph) |
| 125          | Me    | CH <sub>2</sub> -(4-NH <sub>2</sub> -Ph) |



wherein  $R^1$ ,  $R^2$  and  $R^3$  each is hydrogen,  $Z$  is phenyl and  $R^4$  and  $R^5$  are designated as follows:

| Entry<br>No. | $R^4$ | $R^5$                                       |
|--------------|-------|---------------------------------------------|
| 126          | Me    | $CH_2-(4\text{-Cl-Ph})$                     |
| 127          | H     | $1(S \text{ or } R)-(4\text{-Py)-Pr}$       |
| 128          | H     | $1(R \text{ or } S)-(4\text{-Py)-Pr}$       |
| 129          | Me    | $CH_2-(4\text{-Me-Ph})$                     |
| 130          | Me    | $CH_2-(4\text{-MeO-Ph})$                    |
| 131          | Me    | $CH_2-(4\text{-COOMe-Ph})$                  |
| 132          | Me    | $CH_2-(4\text{-AcNH-Ph})$                   |
| 133          | Me    | $CH_2-(3\text{-NO}_2\text{-Ph})$            |
| 134          | Me    | $CH_2-(4\text{-isoPr-Ph})$                  |
| 135          | Me    | $CH_2-(4\text{-CF}_3\text{-Ph})$            |
| 136          | H     | $CH_2-(4\text{-Py})$                        |
| 137          | Me    | $CH_2-(4\text{-SCF}_3\text{-Ph})$           |
| 138          | Me    | $CH_2-(4\text{-SOCF}_3\text{-Ph})$          |
| 139          | Me    | $CH_2-(4\text{-SO}_2\text{CF}_3\text{-Ph})$ |
| 140          | H     |                                             |
| 141          | H     |                                             |
| 142          | H     |                                             |
| 143          | H     |                                             |



wherein  $R^1$ ,  $R^2$  and  $R^3$  each is hydrogen,  $Z$  is phenyl and  $R^4$  and  $R^5$  are designated as follows:

| Entry<br>No. | $R^4$ | $R^5$          |
|--------------|-------|----------------|
| 144          | H     | $CH_2-CH_2-Ph$ |
| 145          | Me    |                |
| 146          | Me    |                |

8. The compound according to claim 7, selected from the group consisting of entries #: 101, 102, 103, 104, 106, 107, 109, 111, 117, 118, 121, 122, 128, 5 131, 135, and 139.

9. The compound of formula 1 according to claim 1 selected from the group consisting of:



wherein  $R^1$ ,  $R^2$ ,  $R^3$ ,  $R^4$ ,  $R^5$  and  $Z$  are designated as follows:

| Entry<br>No. | $R^1$ | $R^2$ | $R^3$ | $R^4$ | $R^5$ | $Z$ |
|--------------|-------|-------|-------|-------|-------|-----|
|              |       |       |       |       |       |     |

75



wherein  $R^1$ ,  $R^2$ ,  $R^3$ ,  $R^4$ ,  $R^5$  and  $Z$  are designated as follows:

| Entry No. | $R^1$ | $R^2$ | $R^3$ | $R^4$ | $R^5$                                        | $Z$             |
|-----------|-------|-------|-------|-------|----------------------------------------------|-----------------|
| 201       | Me    | H     | H     | H     | $CH_2-(4\text{-Py})$                         | Ph              |
| 202       | Et    | H     | H     | H     | $CH_2-(4\text{-Py})$                         | Ph              |
| 203       | Me    | H     | H     | H     | Ph                                           | Ph              |
| 204       | Me    | H     | H     | H     | 4-Py                                         | Ph              |
| 205       | Me    | H     | H     | H     | $1(S \text{ or } R)-(4\text{-Py})\text{-Pr}$ | Ph              |
| 206       | Me    | H     | H     | H     | $1(R \text{ or } S)-(4\text{-Py})\text{-Pr}$ | Ph              |
| 207       | Me    | H     | H     | H     | $CH_2\text{Ph}$                              | Ph              |
| 208       | Me    | H     | H     | Me    | $CH_2\text{Ph}$                              | Ph              |
| 209       | MeS   | H     | H     | H     | $1(R)\text{-Ph-Pr}$                          | Ph              |
| 210       | MeO   | H     | H     | H     | $CH_2-(4\text{-Py})$                         | Ph              |
| 211       | H     | H     | H     | H     | $CH_2-(4\text{-Py})$                         | (4-I-Ph)        |
| 212       | H     | H     | H     | H     | $1(R)\text{-Ph-Pr}$                          | $CH_2\text{Ph}$ |
| 213       | H     | H     | Me    | H     | $1(R)\text{-Ph-Pr}$                          | Me              |
| 214       | H     | H     | H     | H     | $1(R)\text{-Ph-Pr}$                          | Me              |
| 215       | H     | Me    | Me    | H     | $1(R)\text{-Ph-Pr}$                          | Me              |
| 216       | H     | H     | Me    | H     | $1(R)\text{-Ph-Pr}$                          | (R)-Et          |
| 217       | H     | H     | Me    | H     | $1(R)\text{-Ph-Pr}$                          | (S)-Et          |
| 218       | H     | H     | H     | Me    | $CH_2-(4\text{-CF}_3\text{-Ph})$             | (2-THZ)         |
| 219       | H     | H     | H     | Me    | $CH_2-(4\text{-CF}_3\text{-Ph})$             | (2-BTZ)         |
| 220       | H     | H     | H     | Me    |                                              |                 |
| 221       | H     | H     | H     | Me    |                                              |                 |



wherein  $R^1$ ,  $R^2$ ,  $R^3$ ,  $R^4$ ,  $R^5$  and  $Z$  are designated as follows:

| Entry No. | $R^1$ | $R^2$ | $R^3$ | $R^4$ | $R^5$ | $Z$ |
|-----------|-------|-------|-------|-------|-------|-----|
| 222       | H     | H     | H     | H     |       |     |
| 223       | H     | H     | H     | Me    |       |     |
| 224       | H     | H     | H     | Me    |       |     |
| 225       | H     | H     | H     | Me    |       |     |
| 226       | H     | H     | H     | Me    |       |     |
| 227       | H     | H     | H     | Me    |       |     |
| 228       | H     | H     | H     | Me    |       |     |
| 229       | H     | H     | H     | Me    |       |     |
| 230       | H     | H     | H     | Me    |       |     |



wherein  $R^1$ ,  $R^2$ ,  $R^3$ ,  $R^4$ ,  $R^5$  and  $Z$  are designated as follows:

| Entry<br>No. | $R^1$ | $R^2$ | $R^3$ | $R^4$ | $R^5$ | $Z$ |
|--------------|-------|-------|-------|-------|-------|-----|
| 231          | H     | H     | H     | Me    |       |     |

10. The compound according to claim 9 selected from the group consisting of entries #: 203, 204, 206, 208, 209, 210, 212, 216, 219, 222, 224, 225, 226, 5 227, 228, 229, 230, and 231.

11. The compound according to claim 10 selected from the group consisting of entries #: 203, 204, 219, 225 and 226.

10

12. The compound according to claim 1 selected from the group consisting of:



wherein  $R^1$ ,  $R^2$  and  $R^3$  each is hydrogen,  $Z$  is phenyl, and  $R^4$  and  $R^5$  together with the nitrogen to which they are attached are designated as follows

| Entry No. | $\begin{array}{c} \text{N} \\   \\ \text{R}^4 \\   \\ \text{R}^5 \end{array}$ |
|-----------|-------------------------------------------------------------------------------|
| 301       | morpholino                                                                    |
| 302       | 2-(3,4-dihydro-1 <i>H</i> -isoquinolinyl)                                     |
| 303       | pyrrolidino                                                                   |
| 304       | 1-(3,4-dihydro-1 <i>H</i> -isoquinolinyl)                                     |

13. A pharmaceutical composition for treating cytomegalovirus infections in a mammal, including human, comprising a compound of formula 1 according to claim 1, or a therapeutically acceptable salt thereof, and a pharmaceutically acceptable carrier.

14. A method for treating cytomegalovirus infection in a mammal, including human, comprising administering thereto an effective amount of a compound of formula 1 according to claim 1, or a therapeutically acceptable salt thereof.

15. A method for protecting human cells against cytomegalovirus pathogenesis comprising treating said cells with an anti-cytomegalovirus effective amount of a compound of formula 1 according to claim 1, or a therapeutically acceptable salt thereof.

20 16. The compound of formula 1 according to claim 1 in combination with another anti-herpes compound selected from the group consisting of ganciclovir, foscarnet, acyclovir, valacyclovir, famciclovir, cidofovir, penciclovir, and lobucavir.

25

17. The compound of formula 1 according to claim 1 in combination with another anti-retroviral compound selected from the group consisting of reverse transcriptase inhibitors and protease inhibitors.

# INTERNATIONAL SEARCH REPORT

International Application No

PCT/CA 98/00953

**A. CLASSIFICATION OF SUBJECT MATTER**  
IPC 6 C07D205/08 A61K31/395

According to International Patent Classification (IPC) or to both national classification and IPC

**B. FIELDS SEARCHED**

Minimum documentation searched (classification system followed by classification symbols)  
IPC 6 C07D

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

**C. DOCUMENTS CONSIDERED TO BE RELEVANT**

| Category * | Citation of document, with indication, where appropriate, of the relevant passages                                              | Relevant to claim No. |
|------------|---------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| A          | WO 95 02579 A (ZENECA LIMITED)<br>26 January 1995<br>cited in the application<br>see the whole document<br>---                  | 1,13                  |
| A          | EP 0 337 549 A (MERCK & CO)<br>18 October 1989<br>see the whole document<br>& US 5 229 381 A<br>cited in the application<br>--- | 1,13                  |
| A          | GB 2 266 527 A (MERCK & CO INC.)<br>3 November 1993<br>see the whole document<br>---                                            | 1,13                  |

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

\* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"&" document member of the same patent family

Date of the actual completion of the international search

Date of mailing of the international search report

23 December 1998

07/01/1999

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2  
NL - 2280 HV Rijswijk  
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl.  
Fax: (+31-70) 340-3016

Authorized officer

Kyriakakou, G

## INTERNATIONAL SEARCH REPORT

International Application No

PCT/CA 98/00953

## C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

| Category | Citation of document, with indication, where appropriate, of the relevant passages                                   | Relevant to claim No. |
|----------|----------------------------------------------------------------------------------------------------------------------|-----------------------|
| A        | US 5 104 862 A (PHILIPPE L. DURETTE)<br>14 April 1992<br>cited in the application<br>see the whole document<br>---   | 1,13                  |
| A        | US 5 100 880 A (PHILIPPE L. DURETTE)<br>31 March 1992<br>cited in the application<br>see the whole document<br>----- | 1,13                  |

## INTERNATIONAL SEARCH REPORT

Information on patent family members

Int'l Application No

PCT/CA 98/00953

| Patent document cited in search report |   | Publication date | Patent family member(s) |            | Publication date |
|----------------------------------------|---|------------------|-------------------------|------------|------------------|
| WO 9502579                             | A | 26-01-1995       | AU                      | 7080094 A  | 13-02-1995       |
| EP 337549                              | A | 18-10-1989       | AT                      | 128704 T   | 15-10-1995       |
|                                        |   |                  | AU                      | 1858292 A  | 10-09-1992       |
|                                        |   |                  | AU                      | 3263089 A  | 12-10-1989       |
|                                        |   |                  | CA                      | 1337990 A  | 23-01-1996       |
|                                        |   |                  | CN                      | 1037144 A  | 15-11-1989       |
|                                        |   |                  | DE                      | 68924439 D | 09-11-1995       |
|                                        |   |                  | DE                      | 68924439 T | 09-05-1996       |
|                                        |   |                  | DK                      | 170589 A   | 12-10-1989       |
|                                        |   |                  | ES                      | 2079373 T  | 16-01-1996       |
|                                        |   |                  | FI                      | 891689 A   | 12-10-1989       |
|                                        |   |                  | GR                      | 3017656 T  | 31-01-1996       |
|                                        |   |                  | JP                      | 2006471 A  | 10-01-1990       |
|                                        |   |                  | JP                      | 2736113 B  | 02-04-1998       |
|                                        |   |                  | LV                      | 11459 A    | 20-08-1996       |
|                                        |   |                  | LV                      | 11459 B    | 20-12-1996       |
|                                        |   |                  | PT                      | 90222 A,B  | 10-11-1989       |
|                                        |   |                  | US                      | 5229381 A  | 20-07-1993       |
| GB 2266527                             | A | 03-11-1993       | NONE                    |            |                  |
| US 5104862                             | A | 14-04-1992       | CA                      | 2062885 A  | 21-09-1992       |
|                                        |   |                  | EP                      | 0505095 A  | 23-09-1992       |
|                                        |   |                  | JP                      | 5097881 A  | 20-04-1993       |
| US 5100880                             | A | 31-03-1992       | CA                      | 2062886 A  | 21-09-1992       |
|                                        |   |                  | EP                      | 0505097 A  | 23-09-1992       |
|                                        |   |                  | JP                      | 5097882 A  | 20-04-1993       |

**This Page is Inserted by IFW Indexing and Scanning  
Operations and is not part of the Official Record**

**BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER: \_\_\_\_\_**

**IMAGES ARE BEST AVAILABLE COPY.**

**As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.**