Estruturas de Dados

Percurso em Grafos

Aula 12

Prof. Felipe A. Louza

Roteiro

- Definições
- 2 Busca em profundidade
- Busca em largura
- 4 Custo computacional
- Componentes Conexas
- 6 Caminhos em um Grafo
- Referências

Roteiro

- Definições
- 2 Busca em profundidade
- Busca em largura
- 4 Custo computacional
- **5** Componentes Conexas
- 6 Caminhos em um Grafo
- Referências

Um $\underline{\text{caminho}}$ em um grafo de \underline{u} para \underline{v} é:

- Uma sequência sem repetição de vértices vizinhos
- ullet Começando em u e terminado em v

Um <u>caminho</u> em um grafo de u para v é:

- Uma sequência sem repetição de vértices vizinhos
- Começando em u e terminado em v

Por exemplo:

• 0, 1, 6, 7, 2, 3, 8 é um caminho de 0 para 8

Um <u>caminho</u> em um grafo de <u>u</u> para <u>v</u> é:

- Uma sequência sem repetição de vértices vizinhos
- Começando em u e terminado em v

Por exemplo:

- 0, 1, 6, 7, 2, 3, 8 é um caminho de 0 para 8
- 0, 1, 2, 7, 6, 1, 2, 3, 8 **não** é um caminho de 0 para 8

Um <u>caminho</u> em um grafo de u para v é:

- Uma sequência sem repetição de vértices vizinhos
- Começando em u e terminado em v

Por exemplo:

- 0, 1, 6, 7, 2, 3, 8 é um caminho de 0 para 8
- 0, 1, 2, 7, 6, 1, 2, 3, 8 **não** é um caminho de 0 para 8
- 0,5,8 **não** é um caminho de 0 para 8

Um <u>caminho</u> em um grafo de <u>u</u> para <u>v</u> é:

- Uma sequência de vértice v_0, v_1, \ldots, v_k onde
- $v_0 = u e v_k = v$
- $\{v_i, v_{i+1}\}$ é uma aresta para todo $0 \le i \le k-1$
- $v_i \neq v_j$ para todo $0 \leq i < j \leq k \leftarrow$ sem repetição

Um <u>caminho</u> em um grafo de u para v é:

- Uma sequência de vértice v_0, v_1, \dots, v_k onde
 - $v_0 = u e v_k = v$
 - $\{v_i, v_{i+1}\}$ é uma aresta para todo $0 \le i \le k-1$
 - $v_i \neq v_j$ para todo $0 \leq i < j \leq k \leftarrow$ sem repetição

k é o comprimento do caminho

• k = 0 se e somente se u = v

Um grafo pode ter várias "partes"

Chamamos essas partes de Componentes Conexas

Um grafo pode ter várias "partes"

Chamamos essas partes de Componentes Conexas

 Um par de vértices está na mesma componente se e somente se existe caminho entre eles

Um grafo pode ter várias "partes"

Chamamos essas partes de Componentes Conexas

- Um par de vértices está na mesma componente se e somente se existe caminho entre eles
 - Não há caminho entre vértices de componentes distintas

Um grafo pode ter várias "partes"

Chamamos essas partes de Componentes Conexas

- Um par de vértices está na mesma componente se existe caminho entre eles
 - Não há caminho entre vértices de componentes distintas
- Um grafo conexo tem apenas uma componente conexa

Um ciclo em um grafo é:

Um ciclo em um grafo é:

 Uma sequência de vértices vizinhos sem repetição exceto pelo primeiro e o último vértice (que são os mesmos)

Um ciclo em um grafo é:

 Uma sequência de vértices vizinhos sem repetição exceto pelo primeiro e o último vértice (que são os mesmos)

Por exemplo:

Um ciclo em um grafo é:

 Uma sequência de vértices vizinhos sem repetição exceto pelo primeiro e o último vértice (que são os mesmos)

Por exemplo:

• 5, 6, 7, 8, 9, 5 é um ciclo

Um ciclo em um grafo é:

 Uma sequência de vértices vizinhos sem repetição exceto pelo primeiro e o último vértice (que são os mesmos)

Por exemplo:

- 5, 6, 7, 8, 9, 5 é um ciclo
- 1, 2, 3 **não** é um ciclo

Um ciclo em um grafo é:

 Uma sequência de vértices vizinhos sem repetição exceto pelo primeiro e o último vértice (que são os mesmos)

Por exemplo:

- 5, 6, 7, 8, 9, 5 é um ciclo
- 1, 2, 3 **não** é um ciclo
- 1, 2, 7, 6, 1 é um ciclo

Um ciclo em um grafo é:

 Uma sequência de vértices vizinhos sem repetição exceto pelo primeiro e o último vértice (que são os mesmos)

Por exemplo:

- 5, 6, 7, 8, 9, 5 é um ciclo
- 1, 2, 3 **não** é um ciclo
- 1, 2, 7, 6, 1 é um ciclo
- 1, 2, 7, 6, 1, 0 **não** é um ciclo

1

Um ciclo em um grafo é:

 Uma sequência de vértices vizinhos sem repetição exceto pelo primeiro e o último vértice (que são os mesmos)

Por exemplo:

- 5, 6, 7, 8, 9, 5 é um ciclo
- 1, 2, 3 **não** é um ciclo
- 1, 2, 7, 6, 1 é um ciclo
- 1,2,7,6,1,0 **não** é um ciclo (mas contém um ciclo)

•

Uma árvore é um grafo conexo acíclico

• Em uma árvore "enraizada" definimos uma raiz

Uma árvore é um grafo conexo acíclico

• Em uma árvore "enraizada" definimos uma raiz

Uma <u>floresta</u> (conjunto de árvores) é um grafo acíclico

• Suas componentes conexas são árvores

Uma árvore é um grafo conexo acíclico

• Em uma árvore "enraizada" definimos uma raiz

Uma <u>floresta</u> (conjunto de árvores) é um grafo acíclico

Suas componentes conexas são árvores

Um <u>subgrafo</u> é um **grafo obtido** a partir da remoção de vértices e arestas de um dado grafo

Uma <u>árvore</u> é um grafo conexo acíclico

• Em uma árvore "enraizada" definimos uma raiz

Uma <u>floresta</u> (conjunto de árvores) é um grafo acíclico

Suas componentes conexas são árvores

Um <u>subgrafo</u> é um **grafo obtido** a partir da remoção de vértices e arestas de um dado grafo

Uma <u>árvore</u> é um grafo conexo acíclico

• Em uma árvore "enraizada" definimos uma raiz

Uma <u>floresta</u> (conjunto de árvores) é um grafo acíclico

Suas componentes conexas são árvores

Um <u>subgrafo</u> é um **grafo obtido** a partir da remoção de vértices e arestas de um dado grafo

Um subgrafo que é uma floresta

Uma <u>árvore</u> é um grafo conexo acíclico

• Em uma árvore "enraizada" definimos uma raiz

Uma <u>floresta</u> (conjunto de árvores) é um grafo acíclico

Suas componentes conexas são árvores

Um <u>subgrafo</u> é um **grafo obtido** a partir da remoção de vértices e arestas de um dado grafo

Um subgrafo que é uma árvore

Uma <u>árvore</u> é um grafo conexo acíclico

• Em uma árvore "enraizada" definimos uma raiz

Uma <u>floresta</u> (conjunto de árvores) é um grafo acíclico

Suas componentes conexas são árvores

Um <u>subgrafo</u> é um **grafo obtido** a partir da remoção de vértices e arestas de um dado grafo

Um subgrafo com ciclo

Nosso primeiro problema

Queremos saber se existe um caminho entre u e v

Nosso primeiro problema

Queremos saber se existe um caminho entre u e v

Se existe caminho e $u \neq v$, existe um segundo vértice v_1

Queremos saber se existe um <u>caminho</u> entre <u>u</u> e <u>v</u>

Se existe caminho e $u \neq v$, existe um segundo vértice v_1

• E v₁ é vizinho de u

Queremos saber se existe um <u>caminho</u> entre <u>u</u> e <u>v</u>

Se existe caminho e $u \neq v$, existe um segundo vértice v_1

- E v₁ é vizinho de u
- Então, ou $v_1 = v$, ou existe um terceiro vértice v_2

Queremos saber se existe um <u>caminho</u> entre <u>u</u> e <u>v</u>

Se existe caminho e $u \neq v$, existe um segundo vértice v_1

- E v₁ é vizinho de u
- Então, ou $v_1 = v$, ou existe um terceiro vértice v_2
 - E v₂ é vizinho de v₁

Queremos saber se existe um <u>caminho</u> entre <u>u</u> e <u>v</u>

Se existe caminho e $u \neq v$, existe um segundo vértice v_1

- E v₁ é vizinho de u
- Então, ou $v_1 = v$, ou existe um terceiro vértice v_2
 - E v_2 é vizinho de v_1
- E assim por diante...

Queremos saber se existe um caminho entre u e v

Se existe caminho e $u \neq v$, existe um segundo vértice v_1

- E v₁ é vizinho de u
- Então, ou $v_1 = v$, ou existe um terceiro vértice v_2
 - E v_2 é vizinho de v_1
- E assim por diante...

A dificuldade é acertar **qual vizinho** v_1 de u devemos usar...

Queremos saber se existe um caminho entre u e v

Se existe caminho e $u \neq v$, existe um segundo vértice v_1

- E v₁ é vizinho de u
- Então, ou $v_1 = v$, ou existe um terceiro vértice v_2
 - E v₂ é vizinho de v₁
- E assim por diante...

A dificuldade é acertar **qual vizinho** v_1 de u devemos usar...

Solução: testar todos!

Roteiro

- Definições
- 2 Busca em profundidade
- Busca em largura
- 4 Custo computacional
- **5** Componentes Conexas
- 6 Caminhos em um Grafo
- Referências

Vamos fazer uma busca em profundidade:

- Vá o máximo possível em uma direção
- Se não encontrou o vértice, volte e tente <u>outro caminho</u> por um vértice não visitado

- Vá o máximo possível em uma direção
- Se não encontrou o vértice, volte e tente <u>outro caminho</u> por um vértice não visitado

- Vá o máximo possível em uma direção
- Se não encontrou o vértice, volte e tente <u>outro caminho</u> por um vértice não visitado

- Vá o máximo possível em uma direção
- Se não encontrou o vértice, volte e tente <u>outro caminho</u> por um vértice não visitado

- Vá o máximo possível em uma direção
- Se não encontrou o vértice, volte e tente <u>outro caminho</u> por um vértice não visitado

- Vá o máximo possível em uma direção
- Se não encontrou o vértice, volte e tente <u>outro caminho</u> por um vértice não visitado

- Vá o máximo possível em uma direção
- Se não encontrou o vértice, volte e tente <u>outro caminho</u> por um vértice não visitado

- Vá o máximo possível em uma direção
- Se não encontrou o vértice, volte e tente <u>outro caminho</u> por um vértice não visitado

- Vá o máximo possível em uma direção
- Se não encontrou o vértice, volte e tente <u>outro caminho</u> por um vértice não visitado

- Vá o máximo possível em uma direção
- Se não encontrou o vértice, volte e tente <u>outro caminho</u> por um vértice não visitado

- Vá o máximo possível em uma direção
- Se não encontrou o vértice, volte e tente <u>outro caminho</u> por um vértice não visitado

- Vá o máximo possível em uma direção
- Se não encontrou o vértice, volte e tente <u>outro caminho</u> por um vértice não visitado

- Vá o máximo possível em uma direção
- Se não encontrou o vértice, volte e tente <u>outro caminho</u> por um vértice não visitado

- Vá o máximo possível em uma direção
- Se não encontrou o vértice, volte e tente <u>outro caminho</u> por um vértice não visitado

- Vá o máximo possível em uma direção
- Se não encontrou o vértice, volte e tente <u>outro caminho</u> por um vértice não visitado

- Vá o máximo possível em uma direção
- Se não encontrou o vértice, volte e tente <u>outro caminho</u> por um vértice não visitado

TAD - Interface

grafo.h

```
//Funções
   Grafo* criar_grafo(int n);
   void destruir_grafo(Grafo *p);
14
15
   void inserir_aresta(Grafo *p, int u, int v);
   void remover_aresta(Grafo *p, int u, int v);
17
18
   int tem_aresta(Grafo *p, int u, int v);
   void imprimir_arestas(Grafo *g);
20
21
   int get_vertices(Grafo *p);
23
   int existe_caminho(Grafo *p, int u, int v); //busca em profundidade
24
```

Grafo - Busca em profundidade

grafo.c

```
int existe_caminho(Grafo *p, int u, int v) {
     int *visitado = (int*) malloc (p->n * sizeof(int));
91
     int i:
92
     for (i = 0; i < p->n; i++)
93
       visitado[i] = 0;
94
     int encontrou = busca_recursiva(p, visitado, u, v);
95
     free(visitado);
96
     return encontrou;
97
98
```

Grafo - Busca em profundidade

grafo.c

```
int busca_recursiva(Grafo *p, int *visitado, int u, int v) {//profundidade
     int w;
79
80
     if (u == v) return 1; //sempre existe caminho de u para v
     visitado[u] = 1;
81
82
     for (w = 0; w < p->n; w++){
       if (tem_aresta(p, u, w) && !visitado[w])
83
         if (busca_recursiva(p, visitado, w, v))
84
           return 1;
85
86
     return 0;
87
88
```


Cliente

exemplo1.c

```
int main() {
     int n, m, i, u, v;
6
     scanf("%d %d", &n, &m);
     Grafo *G = criar_grafo(n);
8
     for (i = 0; i < m; i++) {
       scanf("%d %d", &u, &v);
10
       inserir_aresta(G, u, v);
11
12
13
     imprimir_arestas(G);
     for (u = 0; u < n; u++)
14
15
       for (v = u+1; v < n; v++)
         if(existe_caminho(G, u, v))
16
           printf("%d <-> %d\n", u, v);
17
     return 0;
18
   }
19
```

Makefile

Vamos usar o Makefile para compilar:

```
1 LIB = grafo_matriz.o
```

```
1 exemplo1: exemplo1.c $(LIB)
2 gcc $^ -o $@
```

Vamos executar:

```
1 $ ./exemplo1 < teste1.in
2 {0,1}
3 {1,2}
4 {3,5}
5 {4,5}
6 0 <-> 1
7 0 <-> 2
8 1 <-> 2
9 3 <-> 4
10 3 <-> 5
11 4 <-> 5
```

Grafo - Busca em profundidade usando uma Pilha

Podemos fazer uma busca em profundidade usando pilha:

- A cada passo, desempilhamos um vértice não visitado
- E inserimos os seus vizinhos na pilha

Pilha

Grafo - Busca em profundidade usando uma Pilha

Podemos fazer uma busca em profundidade usando pilha:

- A cada passo, desempilhamos um vértice não visitado
- E inserimos os seus vizinhos na pilha

Pilha

Podemos fazer uma busca em profundidade usando pilha:

- A cada passo, desempilhamos um vértice não visitado
- E inserimos os seus vizinhos na pilha

Pilha

Podemos fazer uma busca em profundidade usando pilha:

- A cada passo, desempilhamos um vértice não visitado
- E inserimos os seus vizinhos na pilha

Pilha

- A cada passo, desempilhamos um vértice não visitado
- E inserimos os seus vizinhos na pilha

- A cada passo, desempilhamos um vértice não visitado
- E inserimos os seus vizinhos na pilha

- A cada passo, desempilhamos um vértice não visitado
- E inserimos os seus vizinhos na pilha

- A cada passo, desempilhamos um vértice não visitado
- E inserimos os seus vizinhos na pilha

- A cada passo, desempilhamos um vértice não visitado
- E inserimos os seus vizinhos na pilha

Pilha

- A cada passo, desempilhamos um vértice não visitado
- E inserimos os seus vizinhos na pilha

- A cada passo, desempilhamos um vértice não visitado
- E inserimos os seus vizinhos na pilha

Podemos fazer uma busca em profundidade usando pilha:

- A cada passo, desempilhamos um vértice não visitado
- E inserimos os seus vizinhos na pilha

4

Pilha

- A cada passo, desempilhamos um vértice não visitado
- E inserimos os seus vizinhos na pilha

- A cada passo, desempilhamos um vértice não visitado
- E inserimos os seus vizinhos na pilha

- A cada passo, desempilhamos um vértice não visitado
- E inserimos os seus vizinhos na pilha

- A cada passo, desempilhamos um vértice não visitado
- E inserimos os seus vizinhos na pilha

- A cada passo, desempilhamos um vértice não visitado
- E inserimos os seus vizinhos na pilha

- A cada passo, desempilhamos um vértice não visitado
- E inserimos os seus vizinhos na pilha

- A cada passo, desempilhamos um vértice não visitado
- E inserimos os seus vizinhos na pilha

- A cada passo, desempilhamos um vértice não visitado
- E inserimos os seus vizinhos na pilha

- A cada passo, desempilhamos um vértice não visitado
- E inserimos os seus vizinhos na pilha

- A cada passo, desempilhamos um vértice não visitado
- E inserimos os seus vizinhos na pilha

- A cada passo, desempilhamos um vértice não visitado
- E inserimos os seus vizinhos na pilha

- A cada passo, desempilhamos um vértice não visitado
- E inserimos os seus vizinhos na pilha

- A cada passo, desempilhamos um vértice não visitado
- E inserimos os seus vizinhos na pilha

- A cada passo, desempilhamos um vértice não visitado
- E inserimos os seus vizinhos na pilha

- A cada passo, desempilhamos um vértice não visitado
- E inserimos os seus vizinhos na pilha

- A cada passo, desempilhamos um vértice não visitado
- E inserimos os seus vizinhos na pilha

- A cada passo, desempilhamos um vértice não visitado
- E inserimos os seus vizinhos na pilha

Pilha

- A cada passo, desempilhamos um vértice não visitado
- E inserimos os seus vizinhos na pilha

- A cada passo, desempilhamos um vértice não visitado
- E inserimos os seus vizinhos na pilha

- A cada passo, desempilhamos um vértice não visitado
- E inserimos os seus vizinhos na pilha

- A cada passo, desempilhamos um vértice não visitado
- E inserimos os seus vizinhos na pilha

- A cada passo, desempilhamos um vértice não visitado
- E inserimos os seus vizinhos na pilha

- A cada passo, desempilhamos um vértice não visitado
- E inserimos os seus vizinhos na pilha

- A cada passo, desempilhamos um vértice não visitado
- E inserimos os seus vizinhos na pilha

Podemos fazer uma busca em profundidade usando pilha:

- A cada passo, desempilhamos um vértice não visitado
- E inserimos os seus vizinhos na pilha

13

Pilha

Podemos fazer uma busca em profundidade usando pilha:

- A cada passo, desempilhamos um vértice não visitado
- E inserimos os seus vizinhos na pilha

4

Pilha

Grafo - Busca em profundidade usando uma Pilha

Podemos fazer uma busca em profundidade usando pilha:

- A cada passo, desempilhamos um vértice não visitado
- E inserimos os seus vizinhos na pilha

Pilha

Grafo - Busca em profundidade usando uma Pilha

Podemos fazer uma busca em profundidade usando pilha:

- A cada passo, desempilhamos um vértice não visitado
- E inserimos os seus vizinhos na pilha

Pilha

Implementação na <u>lista de exercícios</u>.

Grafo - Busca em profundidade usando uma Pilha

Podemos fazer uma busca em profundidade usando pilha:

- A cada passo, desempilhamos um vértice não visitado
- E inserimos os seus vizinhos na pilha

Pilha

Roteiro

- Definições
- Busca em profundidade
- 3 Busca em largura
- 4 Custo computacional
- Componentes Conexas
- 6 Caminhos em um Grafo
- Referências

Fila

Fila

Fila 2

Fila 8

Fila

Fila

Fila

Usando uma fila, visitamos primeiro os vértices mais próximos

• Enfileiramos os vizinhos de 0 (que estão a distância 1)

- Enfileiramos os vizinhos de 0 (que estão a distância 1)
- Desenfileiramos um de seus vizinho

- Enfileiramos os vizinhos de 0 (que estão a distância 1)
- Desenfileiramos um de seus vizinho
- E enfileiramos os vizinhos deste vértice

- Enfileiramos os vizinhos de 0 (que estão a distância 1)
- Desenfileiramos um de seus vizinho
- E enfileiramos os vizinhos deste vértice
 - que estão a distância 2 de 0

- Enfileiramos os vizinhos de 0 (que estão a distância 1)
- Desenfileiramos um de seus vizinho
- E enfileiramos os vizinhos deste vértice
 - que estão a distância 2 de 0
- Assim por diante...

- Enfileiramos os vizinhos de 0 (que estão a distância 1)
- Desenfileiramos um de seus vizinho
- E enfileiramos os vizinhos deste vértice
 - que estão a distância 2 de 0
- Assim por diante...

Grafo - Busca em largura


```
grafo.h
```

```
4 #include "fila.h"
```

```
26 int existe_caminho_v2(Grafo *p, int u, int v);//busca em largura
```

Grafo - Busca em largura

grafo.c

```
int existe_caminho_v2(Grafo* p, int u, int v) {
126
      int *visitado = (int*) malloc (p->n * sizeof(int));
127
     int i;
128
     for (i = 0; i < p->n; i++)
129
        visitado[i] = 0:
130
      int encontrou = busca_em_largura(p, visitado, u, v);
131
132
      free(visitado);
133
     return encontrou;
134
```

Implementação da Busca em Largura

```
int busca_em_largura(Grafo *p, int *visitado, int u, int v) {//ex. u=0, v=9
102
      int encontrou = 0:
103
      Fila *F = fila criar();
104
      fila adicionar(&F. u):
105
      visitado[u] = 1:
106
      while(fila_tamanho(F)>0) {
107
        int i = fila_topo(F);
108
109
        fila remover(&F);
110
        int w:
111
        for (w = 0; w < p->n; w++){
          if (tem_aresta(p, i, w) && !visitado[w]) {
112
113
            if(w == v){
              encontrou = 1;
114
              break:
115
116
            visitado[w] = 1; //evita repetição na fila
117
            fila adicionar(&F. w):
118
119
120
121
      fila destruir(&F);
122
123
    return encontrou:
124
```

Cliente

exemplo2.c

```
int main() {
     int n, m, i, u, v;
6
     scanf("%d %d", &n, &m);
     Grafo *G = criar_grafo(n);
    for (i = 0; i < m; i++) {
       scanf("%d %d", &u, &v);
10
       inserir aresta(G, u, v);
11
12
13
     imprimir_arestas(G);
     for (u = 0; u < n; u++)
14
15
       for (v = u+1; v < n; v++)
         if(existe_caminho_v2(G, u, v))
16
           printf("%d <-> %d\n", u, v);
17
     return 0:
18
   }
19
```

Makefile

Vamos usar o Makefile para compilar:

```
LIB = grafo_matriz.o \
    lista_circular.o \
    fila.o
```

```
exemplo2: exemplo2.c $(LIB)
gcc $^ -o $@
```

Vamos executar:

```
1 $\$ ./exemplo2 < teste2.in
2 {0,1}
3 {1,2}
4 {3,5}
5 {4,5}
6 0 <-> 1
7 0 <-> 2
8 1 <-> 2
9 3 <-> 4
10 3 <-> 5
11 4 <-> 5
```

Roteiro

- Definições
- Busca em profundidade
- 3 Busca em largura
- 4 Custo computacional
- Componentes Conexas
- 6 Caminhos em um Grafo
- Referências

Custo <u>computacional</u> para fazer uma busca em <u>profundidade</u> ou em largura em um grafo com?

Custo computacional para fazer uma busca em profundidade ou em largura em um grafo com?

Suponha que inserir e remover na

- Pilha/Fila leva O(1)
- Podemos usar vetores ou listas ligadas

Custo <u>computacional</u> para fazer uma busca em profundidade ou em largura em um grafo com?

Suponha que inserir e remover na

- Pilha/Fila leva O(1)
- Podemos usar vetores ou listas ligadas

A busca percorre todos os vértices

E empilha/enfileira seus vizinhos não visitados

Custo <u>computacional</u> para fazer uma busca em <u>profundidade</u> ou em <u>largura</u> em um grafo com?

Suponha que inserir e remover na

- Pilha/Fila leva O(1)
- Podemos usar vetores ou listas ligadas

A busca percorre todos os vértices

- E empilha/enfileira seus vizinhos não visitados
- Se usarmos uma Matriz de Adjacências, leva $O(|V|^2)$

Custo <u>computacional</u> para fazer uma busca em profundidade ou em largura em um grafo com?

Suponha que inserir e remover na

- Pilha/Fila leva O(1)
- Podemos usar vetores ou listas ligadas

A busca percorre todos os vértices

- E empilha/enfileira seus vizinhos não visitados
- Se usarmos uma Matriz de Adjacências, leva $O(|V|^2)$

E se usarmos Listas de Adjacência?

Cada aresta é analisada no máximo duas vezes

Custo computacional para fazer uma busca em profundidade ou em largura em um grafo com?

Suponha que inserir e remover na

- Pilha/Fila leva O(1)
- Podemos usar vetores ou listas ligadas

A busca percorre todos os vértices

- E empilha/enfileira seus vizinhos não visitados
- Se usarmos uma Matriz de Adjacências, leva $O(|V|^2)$

E se usarmos Listas de Adjacência?

- Cada aresta é analisada no máximo duas vezes
- Gastamos tempo $O(\max\{|V|,|E|\}) = O(|V|+|E|)$

Custo computacional para fazer uma busca em profundidade ou em

largura em um grafo com?

Suponha que inserir e remover na

- Pilha/Fila leva O(1)
- Podemos usar vetores ou listas ligadas

A busca percorre todos os vértices

- E empilha/enfileira seus vizinhos não visitados
- Se usarmos uma Matriz de Adjacências, leva $O(|V|^2)$

E se usarmos Listas de Adjacência?

- Cada aresta é analisada no máximo duas vezes
- Gastamos tempo $O(\max\{|V|,|E|\}) = O(|V|+|E|)$

0 4 8 12 1 5 9 13 2 6 10 14 3 7 11 15

Custo computacional para fazer uma busca em profundidade ou em

largura em um grafo com?

Suponha que inserir e remover na

- Pilha/Fila leva O(1)
- Podemos usar vetores ou listas ligadas

A busca percorre todos os vértices

- E empilha/enfileira seus vizinhos não visitados
- Se usarmos uma Matriz de Adjacências, leva $O(|V|^2)$

E se usarmos Listas de Adjacência?

- Cada aresta é analisada no máximo duas vezes
- Gastamos tempo $O(\max\{|V|,|E|\}) = O(|V|+|E|)$

Se G for denso,
$$O(|V| + |E|) = O(|V|^2)$$

Custo computacional para fazer uma busca em profundidade ou em

largura em um grafo com?

Suponha que inserir e remover na

- Pilha/Fila leva O(1)
- Podemos usar vetores ou listas ligadas

A busca percorre todos os vértices

- E empilha/enfileira seus vizinhos não visitados
- Se usarmos uma Matriz de Adjacências, leva $O(|V|^2)$

E se usarmos Listas de Adjacência?

- Cada aresta é analisada no máximo duas vezes
- Gastamos tempo $O(\max\{|V|,|E|\}) = O(|V|+|E|)$

Se G for esparso, $O(|V| + k \cdot |V|) = O(|V|)$, k é o grau médio. (melhor listas de ajd.)

Roteiro

- Definições
- Busca em profundidade
- Busca em largura
- 4 Custo computacional
- Componentes Conexas
- 6 Caminhos em um Grafo
- Referências

```
void visita recursiva(Grafo *p, int *C, int comp, int u) {
138
139
      C[u] = comp:
      int w;
140
141
     for (w = 0; w < p->n; w++){
        if (tem_aresta(p, u, w) \&\& C[w] == -1)
142
143
          visita_recursiva(p, C, comp, w);//busca em profundidade
144
145
146
147
    int* encontra_componentes(Grafo *p) {
      int *C = (int*) malloc(p->n * sizeof(int));
148
      int u;
149
      for (u = 0; u < p->n; u++)
150
      C[u] = -1:
151
      int comp = 0;
152
      for (u = 0; u < p->n; u++){
153
      if (C[u] == -1) {
154
          visita_recursiva(p, C, comp, u);
155
          comp++;
156
157
158
    return C;
159
160
```

```
void visita recursiva(Grafo *p, int *C, int comp, int u) {
138
139
      C[u] = comp:
      int w;
140
141
     for (w = 0; w < p->n; w++){
        if (tem_aresta(p, u, w) \&\& C[w] == -1)
142
143
          visita_recursiva(p, C, comp, w);//busca em profundidade
144
145
146
147
    int* encontra_componentes(Grafo *p) {
      int *C = (int*) malloc(p->n * sizeof(int));
148
      int u;
149
      for (u = 0; u < p->n; u++)
150
      C[u] = -1:
151
      int comp = 0;
152
                                                                     10
      for (u = 0; u < p->n; u++){
153
      if (C[u] == -1) {
154
          visita_recursiva(p, C, comp, u);
155
          comp++;
156
157
158
    return C;
159
160
```

```
void visita recursiva(Grafo *p, int *C, int comp, int u) {
138
139
      C[u] = comp:
      int w;
140
141
     for (w = 0; w < p->n; w++){
        if (tem_aresta(p, u, w) \&\& C[w] == -1)
142
143
          visita_recursiva(p, C, comp, w);//busca em profundidade
144
145
146
147
    int* encontra_componentes(Grafo *p) {
      int *C = (int*) malloc(p->n * sizeof(int));
148
      int u;
149
      for (u = 0; u < p->n; u++)
150
      C[u] = -1:
151
      int comp = 0;
152
      for (u = 0; u < p->n; u++){
153
      if (C[u] == -1) {
154
          visita_recursiva(p, C, comp, u);
155
          comp++;
156
157
158
    return C;
159
160
```

```
void visita recursiva(Grafo *p, int *C, int comp, int u) {
138
139
      C[u] = comp:
      int w;
140
141
     for (w = 0; w < p->n; w++){
        if (tem_aresta(p, u, w) \&\& C[w] == -1)
142
143
          visita_recursiva(p, C, comp, w);//busca em profundidade
144
145
146
147
    int* encontra_componentes(Grafo *p) {
      int *C = (int*) malloc(p->n * sizeof(int));
148
      int u;
149
      for (u = 0; u < p->n; u++)
150
      C[u] = -1:
151
      int comp = 0;
152
      for (u = 0; u < p->n; u++){
153
      if (C[u] == -1) {
154
          visita_recursiva(p, C, comp, u);
155
          comp++;
156
157
158
    return C;
159
160
```

```
void visita recursiva(Grafo *p, int *C, int comp, int u) {
138
139
      C[u] = comp:
      int w;
140
141
     for (w = 0; w < p->n; w++){
        if (tem_aresta(p, u, w) \&\& C[w] == -1)
142
143
          visita_recursiva(p, C, comp, w);//busca em profundidade
144
145
146
147
    int* encontra_componentes(Grafo *p) {
      int *C = (int*) malloc(p->n * sizeof(int));
148
      int u;
149
      for (u = 0; u < p->n; u++)
150
      C[u] = -1:
151
152
      int comp = 0;
      for (u = 0; u < p->n; u++){
153
      if (C[u] == -1) {
154
          visita_recursiva(p, C, comp, u);
155
          comp++;
156
157
158
    return C;
159
160
```

Cliente

exemplo3.c

```
int main() {
     int n, m, i, u, v;
     scanf("%d %d", &n, &m);
     Grafo *G = criar_grafo(n);
10
     for (i = 0; i < m; i++) {
11
       scanf("%d %d", &u, &v);
12
       inserir_aresta(G, u, v);
13
14
     int *C = encontra_componentes(G);
15
     int c=0:
16
     for (i = 0; i < n; i++) //encontra o número de componentes
17
       c = max(C[i], c);
18
     for (i = 0; i < c; i++){//para cada componente}
19
       printf("Componente %d: ", i+1);
20
       for (u = 0; u < n; u++)
21
         if(C[u]==i) printf("%d ", u);
22
       printf("\n");
23
24
25
     free(C):
   return 0:
26
27
```

Makefile

Vamos usar o Makefile para compilar:

```
LIB = grafo_matriz.o \
lista_circular.o \
fila.o
```

```
exemplo3: exemplo3.c $(LIB)
gcc $^-o $@
```

Vamos executar:

Roteiro

- Definições
- Busca em profundidade
- 3 Busca em largura
- 4 Custo computacional
- Componentes Conexas
- 6 Caminhos em um Grafo
- Referências

Considere uma busca em profundidade no grafo G.

As arestas usadas formam uma árvore!

33

Considere uma busca em profundidade no grafo G.

As arestas usadas formam uma árvore!

• Essa árvore dá <u>um caminho</u> de **qualquer vértice** até a raiz (origem)

3.

Considere uma busca em profundidade no grafo G.

As arestas usadas formam uma árvore!

- Essa árvore dá <u>um caminho</u> de **qualquer vértice** até a <u>raiz</u> (origem)
- Para saber $u \rightsquigarrow v$: basta ir "subindo" na árvore

2

Considere uma busca em profundidade no grafo G.

```
void visita recursiva v2(Grafo *p, int *pai, int u, int v) {
164
      pai[v] = u;
165
166
     int w:
     for (w = 0; w < p->n; w++)
167
        if (tem_aresta(p, v, w) && pai[w] == -1)
168
          visita_recursiva_v2(p, pai, v, w);//busca em profundidade
169
170
171
172
    int *encontra_caminhos(Grafo *p, int u) {
      int i, *pai = (int*) malloc(p->n * sizeof(int));
173
     for (i = 0; i < p->n; i++) pai[i] = -1;
174
      visita_recursiva_v2(p, pai, u, u);
175
176
    return pai:
177
```


Imprimindo o caminho

```
179
    void imprimir_caminho_reverso(int *pai, int v) {
      printf("%d ", v);
180
      if(pai[v] != v)
181
        imprimir_caminho_reverso(pai, pai[v]);
182
183
184
185
    void imprimir_caminho(int *pai, int v) {
      if(pai[v] != v)
186
187
        imprimir_caminho(pai, pai[v]);
      printf("%d ", v);
188
189
                 0
                                                 13
                                                   10 13 14
```

Cliente

exemplo4.c

```
int main() {
     int n, m, i, u, v;
     scanf("%d %d", &n, &m);
     Grafo *G = criar_grafo(n);
10
     for (i = 0; i < m; i++) {
11
       scanf("%d %d", &u, &v);
12
       inserir_aresta(G, u, v);
13
14
     int *pai = encontra_caminhos(G, 0);
15
     for (i = 0; i < n; i++){
16
       printf("%d: ", i);
17
       imprimir_caminho(pai, i);
18
       printf("\n");
19
20
     free(pai);
21
   return 0:
23
```

Makefile

Vamos usar o Makefile para compilar:

```
exemplo4: exemplo4.c $(LIB)
gcc $^ -o $@
```

Vamos executar:

```
$ ./exemplo4 < teste4.in
10
11
13
15
                 10 13 14 15
           8 9 5
```


Fim

Dúvidas?

Roteiro

- Definições
- Busca em profundidade
- Busca em largura
- 4 Custo computacional
- **5** Componentes Conexas
- 6 Caminhos em um Grafo
- Referências

Referências

- Materiais adaptados dos slides do Prof. Rafael C. S. Schouery, da Universidade Estadual de Campinas.
- R. Sedgewick, "Algorithms in C Parts 5 Third Edition" (Capítulo 18)