A Closer Look at Accuracy vs. Robustness

Yao-Yuan Yang* Cyrus Rashtchian* Hongyang Zhang Ruslan Salakhutdinov Kamalika Chaudhuri

> University of California, San Diego Toyota Technological Institute at Chicago Carnegie Mellon University

> > July 8, 2020

Adversarial example

Figure: Goodfellow et al. [3]

Trade-off between natural accuracy and adversarial accuracy is being observed on many defense algorithms (Tsipras et al. [6], Gilmer et al. [2]).

Trade-off between natural accuracy and adversarial accuracy is being observed on many defense algorithms (Tsipras et al. [6], Gilmer et al. [2]).

Question

Is this trade-off intrinsic?

Trade-off between natural accuracy and adversarial accuracy is being observed on many defense algorithms (Tsipras et al. [6], Gilmer et al. [2]).

Question

Is this trade-off intrinsic?

Answer

This trade-off is not intrinsic for many image classification tasks

Trade-off between natural accuracy and adversarial accuracy is being observed on many defense algorithms (Tsipras et al. [6], Gilmer et al. [2]).

Question

Is this trade-off intrinsic?

Answer

This trade-off is not intrinsic for many image classification tasks

What is the property that makes this trade-off not intrinsic?

Property: *r*-separation

Definition (*r*-separation (finite sample version))

Dataset $\{\mathbf{x}_i, y_i\}_{i=1}^N$ is r-separated if $\forall i \neq j$:

$$y_i \neq y_j$$
 implies $dist(\mathbf{x}_i, \mathbf{x}_j) \geq 2r$

No intrinsic trade-off for r-separated data

Theorem

If data is r-separated on the support of the classes, there exists a classifier that is perfectly robust (with radius r) and accurate, based on a function with $\frac{1}{r}$ -Locally Lipschitz

Definition (L-Locally Lipschitz)

A function $f: \mathcal{X} \to \mathbb{R}$ is L-Locally Lipschitz in a radius r around $\mathbf{x} \in \mathcal{X}$, if for all \mathbf{x}' such that $d(\mathbf{x}, \mathbf{x}') \le r$, it holds that: $|f(\mathbf{x}) - f(\mathbf{x}')| < L \cdot d(\mathbf{x}, \mathbf{x}')$

Real datasets are r-separated

Many benchmark datasets are separated enough for common perturbation distances (ϵ) to be both robust and accurate

	ϵ	Required separation (2ϵ)	Train-Train separation	Test-Train separation	
MNIST	0.1	0.2	0.737	0.812	
CIFAR-10	0.031	0.062	0.212	0.220	
SVHN	0.031	0.062	0.094	0.110	
ResImageNet	0.005	0.01	0.180	0.224	

Real datasets are r-separated

Many benchmark datasets are separated enough for common perturbation distances (ϵ) to be both robust and accurate

	ϵ	Required separation (2ϵ)	Train-Train separation	Test-Train separation	
MNIST	0.1	0.2	0.737	0.812	
CIFAR-10	0.031	0.062	0.212	0.220	
SVHN	0.031	0.062	0.094	0.110	
ResImageNet	0.005	0.01	0.180	0.224	

Empirical observations

Comparison of different defenses

Low local Lipschitz (smooth) classifier:

- generates higher adversarial test accuracy
- increases the generalization gap

		CIFAR-10						
		train acc.	test acc.	adv test acc.	test Lipschitz	gap	adv gap	
High Lip.	Natural GR [1] LLR [5]	100.00 94.90 100.00	93.81 80.74 91.44	0.00 21.32 22.05	425.71 28.53 94.68	6.19 14.16 8.56	0.00 3.94 4.50	
Low Lip.	RST [7] AT [4] TRADES [8]	99.86 99.84 99.78	84.61 83.51 85.55	40.89 43.51 46.63	23.15 26.23 22.42	15.25 16.33 14.23	41.31 49.94 47.67	

show when data distribution is r-separated, there is no intrinsic trade-off

show when data distribution is r-separated, there is no intrinsic trade-off

show that many real datasets are r-separated

show when data distribution is r-separated, there is no intrinsic trade-off

show that many real datasets are r-separated

main open question is to close the gap between robustness and accuracy

show when data distribution is r-separated, there is no intrinsic trade-off

show that many real datasets are r-separated

main open question is to close the gap between robustness and accuracy

 a promising direction is to reduce standard and adversarial generalization gaps

Thank you for listening.

Poster session Zoom

Meeting ID: 927 7808 5557

Password: 481137

More information

Paper: https://arxiv.org/abs/2003.02460

Code: https://git.io/JJTC6

• Blog: https://ucsdml.github.io/

Contact

Website: http://yyyang.me/

References I

- [1] Chris Finlay and Adam M Oberman. Scaleable input gradient regularization for adversarial robustness. *arXiv* preprint *arXiv*:1905.11468, 2019.
- [2] Justin Gilmer, Luke Metz, Fartash Faghri, Samuel S Schoenholz, Maithra Raghu, Martin Wattenberg, and Ian Goodfellow. Adversarial spheres. arXiv preprint arXiv:1801.02774, 2018.
- [3] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial examples. In *ICLR*, 2015.
- [4] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. Towards deep learning models resistant to adversarial attacks. In *ICLR*, 2018.

References II

- [5] Chongli Qin, James Martens, Sven Gowal, Dilip Krishnan, Krishnamurthy Dvijotham, Alhussein Fawzi, Soham De, Robert Stanforth, and Pushmeet Kohli. Adversarial robustness through local linearization. In *Advances in Neural Information Processing Systems*, pages 13847–13856, 2019.
- [6] Dimitris Tsipras, Shibani Santurkar, Logan Engstrom, Alexander Turner, and Aleksander Madry. Robustness may be at odds with accuracy. *arXiv preprint arXiv:1805.12152*, 2018.
- [7] Cihang Xie, Mingxing Tan, Boqing Gong, Jiang Wang, Alan L Yuille, and Quoc V Le. Adversarial examples improve image recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 819–828, 2020.
- [8] Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric P Xing, Laurent El Ghaoui, and Michael I Jordan. Theoretically principled trade-off between robustness and accuracy. arXiv preprint arXiv:1901.08573, 2019.