TD 1 - Fonctions usuelles

Entraînements

Exercice 1. À l'aide d'une étude de fonction, démontrer les inégalités suivantes :

1.
$$\forall x > 0, \ x - \frac{x^2}{2} \le \ln(1+x) \le x$$

2.
$$\forall x \in \mathbb{R}^+ : e^x - \frac{x^2}{2} \ge 1.$$

Exercice 2. Pour chacune des expressions, donner le domaine de définition et simplifier quand c'est possible.

1.
$$f(x) = x \ln \sqrt{e^{\frac{x}{2}}} + \left(\sqrt{e^{2\ln(2x-1)}}\right)^3$$
.

2.
$$g(x) = e^{\sqrt{\ln x}} + e^{(\ln x)^2}$$
.

Exercice 3. Etudier les fonctions suivantes :

1.
$$f_1: x \mapsto (2x^2 - 4x + 5)e^x - xe^{(x^2)}$$

2.
$$f_2: x \mapsto \ln(x^2 + x + 1) - x$$

3.
$$f_3: x \mapsto xe^{-x^2+x}$$

4.
$$f_4: x \mapsto x^2 e^{(-x^2)}$$

5.
$$f_5: x \mapsto x \ln(x)$$

6.
$$f_6: x \mapsto \frac{e^x}{e^{2x} + 1}$$

Type DS

Exercice 4. 1. Montrer à l'aide d'une étude de fonction que pour tout $x \in \mathbb{R}$, $e^x \ge x + 1$.

2. En déduire que pour tout
$$x \in \mathbb{R}, \ e^{2x} - x \ge 0$$

3. De même en déduire que pour tout
$$x \in \mathbb{R}, e^x - 2x \ge 0$$

$$f: x \mapsto \sqrt{e^x - 2x}$$

$$g: x \mapsto \sqrt{e^{2x} - x}$$

Exercice 5. Soit f la fonction définie par

$$f(x) = \frac{e^x}{\ln(x)}$$

- 1. Donner l'ensemble de définition et de dérivation de f.
- 2. Calculer la dérivée de f en déduire que le signe de f' dépend de celui de $g(x) = \ln(x) \frac{1}{x}$
- 3. Donner l'ensemble de définition et de dérivation de g et calculer sa dérivée.
- 4. Montrer qu'il existe un unique $\alpha \in]1, +\infty[$ tel que f'(x) > 0 sur $]\alpha, +\infty[$ et f'(x) < 0 sur $]0, \alpha[\cap D_f]$.
- 5. Donner le tableau de variations complet de f.
- 6. Donner l'équation de la tangente à la courbe représentative de f en e.

Exercice 6 (BAC 1997 PONDICHERY). On considère la fonction f définie sur $[0; +\infty]$ par

$$f(x) = \frac{e^x - 1}{xe^x + 1}$$

On désigne par $\mathcal C$ sa courbe représentative dans le plan rapporté à un repère orthonormal $(O,\vec i,\vec j)$

Partie A

* étude d'une fonction auxiliaire

Soit la fonction g définie sur l'intervalle $[0; +\infty[$ par

$$g(x) = x + 2 - e^x.$$

- 1. Étudier le sens de variation de g sur $[0; +\infty[$ et déterminer la limite de g en $+\infty$.
- 2. (a) Montrer que l'équation g(x) = 0 admet une solution et une seule dans $[0 ; +\infty[$. On note α cette solution.
 - (b) Prouver que $1 < \alpha < 2$. (On rappelle que 2 < e < 3)
- 3. En déduire le signe de g(x) suivant les valeurs de x.

Partie B

* Étude de la fonction f et tracé de la courbe C

1. (a) Montrer que, pour tout x appartenant à $[0; +\infty]$,

$$f'(x) = \frac{e^x g(x)}{(xe^x + 1)^2}.$$

- (b) En déduire le sens de variation de la fonction f sur $[0; +\infty]$.
- 2. (a) Montrer que pour tout réel positif x,

$$f(x) = \frac{1 - e^{-x}}{x + e^{-x}}$$

- (b) En déduire la limite de f en $+\infty$. Interpréter graphiquement le résultat trouvé.
- 3. (a) Établir que $f(\alpha) = \frac{1}{\alpha + 1}$.
 - (b) En utilisant l'encadrement de α établi dans la question **A.2.**, donner un encadrement de $f(\alpha)$.
- 4. Déterminer une équation de la tangente (T) à la courbe C au point d'abscisse 0.
- 5. (a) Établir que, pour tout x appartenant à l'intervalle $[0; +\infty]$,

$$f(x) - x = \frac{(x+1)u(x)}{xe^x + 1}$$
 avec $u(x) = e^x - xe^x - 1$.

- (b) Étudier le sens de variation de la fonction u sur l'intervalle $[0; +\infty[$. En déduire le signe de u(x).
- (c) Déduire des questions précédentes la position de la courbe \mathcal{C} par rapport à la droite (T).
- 6. Tracer \mathcal{C} et (T).