CSC0056: Data Communication

Lecture 02: Layered Network Architecture

Instructor: Chao Wang 王超

Department of Computer Science and Information Engineering

Course information

- Instructor: Chao Wang 王超 (https://wangc86.github.io/)
 - Email: cw@ntnu.edu.tw
 - Office: Room 511, Applied Science Building, Gongguan Campus
 - Office hours: Wednesdays and Fridays, 10am-noon, or by appointment
- Course website: https://wangc86.github.io/csc0056/
 - Homework submission: via NTNU Moodle (https://moodle.ntnu.edu.tw/)
- Course meetings: Mondays 9:10-12:10 in C007, Gongguan Campus

Acknowledgement: Some slides' materials in this course are borrowed with permission from the 2014 edition of the course taught by Prof. Yao-Hua Ho 賀耀華 Figures are obtained from the textbook available at http://web.mit.edu/dimitrib/www/datanets.html

Layered system architecture

- Module: a device/process that perform a function
- Black-box view of modules
- Communication between modules
 - Protocol
 - Interface

Layered system architecture (cont.)

- Advantage
 - Simplicity of design
 - Easy to understand
 - Standard, interchangeable modules

- Disadvantage (if too many layers)
 - Duplicated functionality
 - Additional latency

Modern example: AUTOSAR (Automotive Open System Architecture)

Application Layer							
Runtime Environment							
Syste	m Services	Memory Services	Crypto Services	Off-board Communication Services	Communication Services	I/O Hardware Abstraction	Complex Drivers
	Onboard Device Abstraction	Memory Hardware Abstraction	Crypto Hardware Abstraction	Wireless Communication HW Abstraction	Communication Hardware Abstraction		
	Microcontroller Drivers	Memory Drivers	Crypto Drivers	Wireless Communication Drivers	Communication Drivers	I/O Drivers	
Microcontroller							

https://autosar.org/fileadmin/user_upload/standards/classic/4-3/AUTOSAR_EXP_LayeredSoftwareArchitecture.pdf

Modern example: Industrial IoT Systems

Chao Wang, Christopher Gill, Chenyang Lu. FRAME: Fault Tolerant and Real-Time Messaging for Edge Computing. IEEE International Conference on Distributed Computing Systems (ICDCS), accepted, 2019.

2019/9/16

Data communication

- The OSI model
 - Seven layers
 - In this course, we focus on layers beneath Session

Transport layer

- Virtual end-to-end message service to the higher layers
- Functions
 - Break messages into packets (at the transmitting end)
 - Reassemble packets into messages (at the receiving end)
 - Re-sequence packets at destination
 - Recover from residual errors and failures
 - Provide end-to-end flow control

Network layer

- Each host (node) contains one network layer module
- Provide routing and flow control for the network

Data link control layer

The MAC sublayer

- MAC (Medium access control)
- Function
 - Allocate the multi-access channel so that each node can successfully transmit its frames without undue interference from the other nodes

Physical layer

Encapsulation of data

• What happen if there are too many layers?

2019/9/16

Take a break

• Wireless technology?

Into the physical layer

- Linear time-invariant (LTI) systems:
- 1. If input s(t) yields output r(t), then for any τ , input $s(t-\tau)$ yields output $r(t-\tau)$.
- **2.** If s(t) yields r(t), then for any real number α , $\alpha s(t)$ yields $\alpha r(t)$.
- **3.** If $s_1(t)$ yields $r_1(t)$ and $s_2(t)$ yields $r_2(t)$, then $s_1(t) + s_2(t)$ yields $r_1(t) + r_2(t)$.

Communication channel with filtering

Signal distortion

• Intersymbol interference

(a)

(b)

(read the note of lecture02 at

https://wangc86.github.io/csc0056/lec2note.pdf)

Summary of lecture 02

- Layered network architecture
- The physical layer: channels and modems
 - See the note at https://wangc86.github.io/csc0056/lec2note.pdf

- Next lecture: Error detection at the data link layer
- Course logistics
 - Remember to visit and view the course website (e.g., via this QR code)
 - Submit your homework assignments and view scores via NTNU Moodle