

Learning Objectives

- 1. How to achieve linear regression using basis functions?
- 2. What are the relationships between maximum likelihood and least squares, between maximum a posterior and regularization, and among expected loss, bias, variance, and noise?
- 3. What are the common regularization methods for regression?
- 4. How to achieve Bayesian linear regression?
- 5. What is the kernel for regression?
- 6. How to choose the model complexity?
- 7. What are the evidence approximation and maximization?

Bayesian Machine Learning

Process of Machine Learning:

```
p(\theta|training\ data,\ model) \propto p(training\ data\ |\ model,\ \theta)\ p_0(\theta|model)
posterior likelihood prior
```

Process of Prediction:

```
p(\textit{testing data} \mid \textit{training data}, model) = \\ \int p(\textit{testing data} \mid model, \theta) p(\theta \mid \textit{training data}, model) d\theta
```

Process of Model Evaluation:

For super-parameter tuning

```
p(training data, | model) = 
\int p(training data | model, \theta) p_0(\theta | model) d\theta
```

Bayesian Learning for LGS

Given
$$y = Ax + v$$

$$p(x) = \mathcal{N}(x|\mu, \Sigma) \quad p(v) = \mathcal{N}(v|0, Q)$$

$$x = m + u$$

$$p(x|y) = \mathcal{N}(x|m, L) \quad p(u) = \mathcal{N}(u|0, L)$$

we have

$$\begin{cases}
L^{-1} = A^{T}Q^{-1}A + \Sigma^{-1} \\
m = L\{A^{T}Q^{-1}y + \Sigma^{-1}\mu\}
\end{cases}$$

Bayesian Prediction for LGS

Given
$$y = Ax + v$$

$$p(x) = \mathcal{N}(x|\mu, \Sigma) \quad p(v) = \mathcal{N}(v|0, Q)$$

$$x = m + u$$

$$p(x|y) = \mathcal{N}(x|m, L) \quad p(u) = \mathcal{N}(u|0, L)$$

We have

$$p(y|x) = \mathcal{N}(y|Ax, Q)$$

$$p(y') = \int p(y'|x)p(x|y)dx = \mathcal{N}(y'|Am, ALA^T + Q)$$

Bayesian Model Evaluation for LGS

Given

$$y = Ax + v$$

$$p(x) = \mathcal{N}(x|\mu, \Sigma) \quad p(v) = \mathcal{N}(v|0, Q)$$

we have

$$p(y|x) = \mathcal{N}(y|Ax, Q)$$

$$p(y) = \int p(y|x)p(x)dx = \mathcal{N}(y|A\mu, A\Sigma A^T + Q)$$

Outlines

- Linear Basis Function Models
- Maximum Likelihood and Least Squares
- Bias Variance Decomposition
- Bayesian Linear Regression
- Predictive Distribution
- Bayesian Model Comparison
- Evidence Approximation and Maximization

Linear Basis Function Models (1)

Example: Polynomial Curve Fitting

$$y(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \ldots + w_M x^M = \sum_{j=0}^{M} w_j x^j$$

Linear Basis Function Models (2)

■ Generally

$$y(\mathbf{x}, \mathbf{w}) = \sum_{j=0}^{M-1} w_j \phi_j(\mathbf{x}) = \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x})$$

where $\phi_i(x)$ are known as basis functions.

- lacksquare Typically, $\phi_0(\mathbf{x}) = 1$, so that w_0 acts as a bias.
- lacksquare In the simplest case, we use linear basis functions : $\phi_d(\mathbf{x}) = x_d$.

Linear Basis Function Models (3)

Polynomial basis functions:

$$\phi_j(x) = x^j$$
.

These are global; a small change in x affect all basis functions.

Linear Basis Function Models (4)

Gaussian basis functions:

$$\phi_j(x) = \exp\left\{-\frac{(x-\mu_j)^2}{2s^2}\right\}$$

These are local; a small change in x only affect nearby basis functions. μ_j and s control location and scale (width).

Linear Basis Function Models (5)

Sigmoidal basis functions:

$$\phi_j(x) = \sigma\left(\frac{x - \mu_j}{s}\right)$$

where

$$\sigma(a) = \frac{1}{1 + \exp(-a)}.$$

Also these are local; a small change in x only affect nearby basis functions. μ_j and s control location and scale (slope).

Outlines

- Linear Basis Function Models
- Maximum Likelihood and Least Squares
- Bias Variance Decomposition
- Bayesian Linear Regression
- Predictive Distribution
- Bayesian Model Comparison
- Evidence Approximation and Maximization

Maximum Likelihood and Least Squares (1)

■ Assume observations from a deterministic function with added Gaussian noise:

$$t=y(\mathbf{x},\mathbf{w})+\epsilon$$
 where $p(\epsilon|eta)=\mathcal{N}(\epsilon|0,eta^{-1})$

which is the same as saying,

$$p(t|\mathbf{x}, \mathbf{w}, \beta) = \mathcal{N}(t|y(\mathbf{x}, \mathbf{w}), \beta^{-1}).$$

Given observed inputs, $\mathbf{X} = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$, and targets, $\mathbf{t} = [t_1, \dots, t_N]^{\mathrm{T}}$, we obtain the likelihood function

$$p(\mathbf{t}|\mathbf{X}, \mathbf{w}, \beta) = \prod_{n=1}^{N} \mathcal{N}(t_n|\mathbf{w}^{\mathrm{T}}\boldsymbol{\phi}(\mathbf{x}_n), \beta^{-1}).$$

Maximum Likelihood and Least Squares (2)

Taking the logarithm, we get

$$\ln p(\mathbf{t}|\mathbf{w},\beta) = \sum_{n=1}^{N} \ln \mathcal{N}(t_n|\mathbf{w}^{\mathrm{T}}\boldsymbol{\phi}(\mathbf{x}_n),\beta^{-1})$$
$$= \frac{N}{2} \ln \beta - \frac{N}{2} \ln(2\pi) - \beta E_D(\mathbf{w})$$

where

$$E_D(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{t_n - \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n)\}^2$$

is the sum-of-squares error.

Maximum Likelihood and Least Squares (3)

Computing the gradient and setting it to zero yields

$$\nabla_{\mathbf{w}} \ln p(\mathbf{t}|\mathbf{w}, \beta) = \beta \sum_{n=1}^{N} \{t_n - \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n)\} \boldsymbol{\phi}(\mathbf{x}_n)^{\mathrm{T}} = \mathbf{0}.$$

Solving for w, we get

$$\mathbf{w}_{\mathrm{ML}} = \left(\mathbf{\Phi}^{\mathrm{T}}\mathbf{\Phi}
ight)^{-1}\mathbf{\Phi}^{\mathrm{T}}\mathbf{t}$$

The Moore-Penrose pseudo-inverse, Φ^{\dagger} .

where

$$\boldsymbol{\Phi} = \left(\begin{array}{cccc} \phi_0(\mathbf{x}_1) & \phi_1(\mathbf{x}_1) & \cdots & \phi_{M-1}(\mathbf{x}_1) \\ \phi_0(\mathbf{x}_2) & \phi_1(\mathbf{x}_2) & \cdots & \phi_{M-1}(\mathbf{x}_2) \\ \vdots & \vdots & \ddots & \vdots \\ \phi_0(\mathbf{x}_N) & \phi_1(\mathbf{x}_N) & \cdots & \phi_{M-1}(\mathbf{x}_N) \end{array}\right).$$
Roger Penrose 2020 Nobel Prize Laurate in Physics

Geometry of Least Squares

Consider

$$\mathbf{y} = \mathbf{\Phi} \mathbf{w}_{\mathrm{ML}} = [oldsymbol{arphi}_1, \ldots, oldsymbol{arphi}_M] \, \mathbf{w}_{\mathrm{ML}}.$$
 $\mathbf{y} \in \mathcal{S} \subseteq \mathcal{T}$ $\mathbf{t} \in \mathcal{T}$ N -dimensional M -dimensional

S is spanned by $\varphi_1, \dots, \varphi_M$. \mathbf{w}_{ML} minimizes the distance between \mathbf{t} and its orthogonal projection on S, i.e. \mathbf{y} .

Sequential Learning

□ Data items considered one at a time (a.k.a. online learning); use stochastic (sequential) gradient descent:

$$\mathbf{w}^{(\tau+1)} = \mathbf{w}^{(\tau)} - \eta \nabla E_n$$

=
$$\mathbf{w}^{(\tau)} + \eta (t_n - \mathbf{w}^{(\tau)T} \boldsymbol{\phi}(\mathbf{x}_n)) \boldsymbol{\phi}(\mathbf{x}_n).$$

■ This is known as the *least-mean-squares* (*LMS*) algorithm. Issue: how to choose η ?

Regularized Least Squares (1)

☐ Consider the error function:

$$E_D(\mathbf{w}) + \lambda E_W(\mathbf{w})$$

Data term + Regularization term

■ With the sum-of-squares error function and a quadratic regularizer, we get

$$\frac{1}{2} \sum_{n=1}^{N} \{t_n - \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n)\}^2 + \frac{\lambda}{2} \mathbf{w}^{\mathrm{T}} \mathbf{w}$$

which is minimized by

$$\mathbf{w} = \left(\lambda \mathbf{I} + \mathbf{\Phi}^{\mathrm{T}} \mathbf{\Phi}\right)^{-1} \mathbf{\Phi}^{\mathrm{T}} \mathbf{t}.$$

 λ is called the regularization coefficient.

Regularized Least Squares (2)

With a more general regularizer, we have

$$\frac{1}{2} \sum_{n=1}^{N} \{t_n - \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n)\}^2 + \frac{\lambda}{2} \sum_{j=1}^{M} |w_j|^q$$

Regularized Least Squares (3)

Lasso tends to generate sparser solutions than a quadratic regularizer.

Multiple Outputs (1)

Analogously to the single output case we have:

$$p(\mathbf{t}|\mathbf{x}, \mathbf{W}, \beta) = \mathcal{N}(\mathbf{t}|\mathbf{y}(\mathbf{W}, \mathbf{x}), \beta^{-1}\mathbf{I})$$
$$= \mathcal{N}(\mathbf{t}|\mathbf{W}^{\mathrm{T}}\boldsymbol{\phi}(\mathbf{x}), \beta^{-1}\mathbf{I}).$$

Given observed inputs, $\mathbf{X} = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$, and targets, $\mathbf{T} = [\mathbf{t}_1, \dots, \mathbf{t}_N]^T$, we obtain the log likelihood function

$$\ln p(\mathbf{T}|\mathbf{X}, \mathbf{W}, \beta) = \sum_{n=1}^{N} \ln \mathcal{N}(\mathbf{t}_{n}|\mathbf{W}^{T} \boldsymbol{\phi}(\mathbf{x}_{n}), \beta^{-1}\mathbf{I})$$

$$= \frac{NK}{2} \ln \left(\frac{\beta}{2\pi}\right) - \frac{\beta}{2} \sum_{n=1}^{N} \left\|\mathbf{t}_{n} - \mathbf{W}^{T} \boldsymbol{\phi}(\mathbf{x}_{n})\right\|^{2}.$$

Multiple Outputs (2)

☐ Maximizing with respect to W, we obtain

$$\mathbf{W}_{\mathrm{ML}} = \left(\mathbf{\Phi}^{\mathrm{T}}\mathbf{\Phi}
ight)^{-1}\mathbf{\Phi}^{\mathrm{T}}\mathbf{T}.$$

lacktriangle If we consider a single target variable, $oldsymbol{t}_k$, we see that

$$\mathbf{w}_k = \left(\mathbf{\Phi}^{\mathrm{T}}\mathbf{\Phi}
ight)^{-1}\mathbf{\Phi}^{\mathrm{T}}\mathbf{t}_k = \mathbf{\Phi}^{\dagger}\mathbf{t}_k$$

where $\mathbf{t}_k = [t_{1k}, \dots, t_{Nk}]^T$, which is identical with the single output case.

Outlines

- Linear Basis Function Models
- Maximum Likelihood and Least Squares
- Bias Variance Decomposition
- Bayesian Linear Regression
- Predictive Distribution
- Bayesian Model Comparison
- Evidence Approximation and Maximization

The Expected Squared Loss Function

https://stats.stackexchange.com/questions/228561/loss-functions-for-regression-proof

The Bias-Variance Decomposition (1)

☐ Recall the *expected squared loss*,

$$\mathbb{E}[L] = \int \left\{ y(\mathbf{x}) - h(\mathbf{x}) \right\}^2 p(\mathbf{x}) \, \mathrm{d}\mathbf{x} + \iint \{ h(\mathbf{x}) - t \}^2 p(\mathbf{x}, t) \, \mathrm{d}\mathbf{x} \, \mathrm{d}t \right\}$$
where
$$h(\mathbf{x}) = \mathbb{E}[t|\mathbf{x}] = \int t p(t|\mathbf{x}) \, \mathrm{d}t.$$

- lacksquare The second term of $\mathbb{E}[L]$ corresponds to the noise inherent in the random variable t.
- What about the first term?

The Bias-Variance Decomposition (2)

Suppose we were given multiple data sets, each of size N. Any particular data set, \mathcal{D} , will give a particular function $y(\mathbf{x}; \mathcal{D})$. We then have

$$\{y(\mathbf{x}; \mathcal{D}) - h(\mathbf{x})\}^{2}$$

$$= \{y(\mathbf{x}; \mathcal{D}) - \mathbb{E}_{\mathcal{D}}[y(\mathbf{x}; \mathcal{D})] + \mathbb{E}_{\mathcal{D}}[y(\mathbf{x}; \mathcal{D})] - h(\mathbf{x})\}^{2}$$

$$= \{y(\mathbf{x}; \mathcal{D}) - \mathbb{E}_{\mathcal{D}}[y(\mathbf{x}; \mathcal{D})]\}^{2} + \{\mathbb{E}_{\mathcal{D}}[y(\mathbf{x}; \mathcal{D})] - h(\mathbf{x})\}^{2}$$

$$+2\{y(\mathbf{x}; \mathcal{D}) - \mathbb{E}_{\mathcal{D}}[y(\mathbf{x}; \mathcal{D})]\}\{\mathbb{E}_{\mathcal{D}}[y(\mathbf{x}; \mathcal{D})] - h(\mathbf{x})\}.$$

The Bias-Variance Decomposition (3)

☐ Taking the expectation over D yields

$$\mathbb{E}_{\mathcal{D}}\left[\left\{y(\mathbf{x}; \mathcal{D}) - h(\mathbf{x})\right\}^{2}\right] \\ = \underbrace{\left\{\mathbb{E}_{\mathcal{D}}[y(\mathbf{x}; \mathcal{D})] - h(\mathbf{x})\right\}^{2}}_{\left(\text{bias}\right)^{2}} + \underbrace{\mathbb{E}_{\mathcal{D}}\left[\left\{y(\mathbf{x}; \mathcal{D}) - \mathbb{E}_{\mathcal{D}}[y(\mathbf{x}; \mathcal{D})]\right\}^{2}\right]}_{\text{variance}}.$$

The Bias-Variance Decomposition (4)

☐ Thus we can write

expected $loss = (bias)^2 + variance + noise$

where

Model:			
Model:			
Data:			

The Bias-Variance Decomposition (5)

lacktriangle Example: 25 data sets from the sinusoidal, varying the degree of regularization, λ .

The Bias-Variance Decomposition (6)

lacktriangle Example: 25 data sets from the sinusoidal, varying the degree of regularization, λ .

The Bias-Variance Decomposition (7)

lacktriangle Example: 25 data sets from the sinusoidal, varying the degree of regularization, λ .

The Bias-Variance Trade-off

From these plots, we note that an over-regularized model (large λ) will have a high bias, while an under-regularized model (small λ) will have a high variance.

