Kontextfreie Sprache

Gegeben ist die Grammatik $G = (\{a, b\}, \{S, A, B\}, S, P)$ und den Produktionen

 $P = \{$

$$S \rightarrow SAB \mid \epsilon$$

 $BA \rightarrow AB$
 $AA \rightarrow aa$
 $BB \rightarrow bb$

}

(a) Geben Sie einen Ausdruck an, der die Wörter der Sprache beschreibt.

 $L = \{(a^n b^n)^m \mid m \in \mathbb{N}_0 \text{ und } n \in \text{ gerade Zahlen}\}$

Einige Testableitungen um die Grammatik in Erfahrung zu bringen: "." nur als optische Stütze nach 4 Zeichen eingefügt.

Mit 4 Buchstaben

 $S \vdash SAB \vdash SABAB \vdash ABAB \vdash AABB \vdash aabb$

Mit 6 Buchstaben

 $S \vdash ... \vdash ABAB.AB \vdash AABB.AB \vdash AABA.BB \vdash AAAB.BB \vdash \varnothing$

Mit 8 Buchstaben

 $S \vdash ... \vdash ABAB.ABAB \vdash ... \vdash aabb.aabb$

S \vdash ... \vdash ABAB.ABAB \vdash ... \vdash AABB.AABB \vdash AABA.BABB \vdash AABA.ABBB \vdash AAAA.BBBB \vdash aaaa.bbbb

Mit 12 Buchstaben

 $S \vdash ... \vdash ABAB.ABAB.ABAB \vdash ... \vdash aabb.aabb.aabb$

 $S \vdash ... \vdash ABAB.ABAB.ABAB \vdash AAAA.BBBB.AABB \vdash aaaa.bbbb.aabb$

(b) Geben Sie eine kontextfreie Grammatik G' an, für die gilt: L(G') = L(G)

$$P = \{$$

$$S
ightarrow aaSbb \mid SS \mid \epsilon$$
 $\}$ flaci.com/Grn19rt8w

1

(c) Geben Sie einen Kellerautomaten an, der die Sprache akzeptiert.

1. Kellerautomat (aus der Grammtik abgeleitet)

$$K = (\{z_0, z_1, z_2\}, \{a, b\}, \{\#, S, A, B\}, \delta, z_0, \#, z_0)$$

flaci.com/Araj960s2

2. Kellerautomat

$$K = (\{z_0, z_1\}, \{a, b\}, \{\#, 1, 2\}, \delta, z_0, \#, z_0)$$

Bemerkung zum Kelleralphabet: 1 steht für 1A, also ein a befindet sich im Keller, und 2 steht für 2A, also zwei a befinden sich im Keller.

flaci.com/Ahfqseouz