Lecture Notes 5 for 9/10

Sentential Operators

Let's define a sentential operator as follows:

+ A sentential operator is a fragment of a sentence with some blanks, such that when you input declarative sentences into those blanks, you get a new declarative sentence.

Some examples of sentential operators include:

+	It is not the case that
+	Antonio believes that
+	Either or

Truth-functionality

Some sentential operators are *truth-functional*. Others aren't.

Consider for instance:

+ it is not the case that _____

If you know whether the inputted sentence is true, then you know whether the new sentence generated is true, too.

A sentential operator is truth functional just in case the truth value of any new sentence generated by plugging in sentences into the operator's blank(s) is a function fo the truth value(s) of the imputed sentences.

But other sentential operators aren't truth-functional. For example.

+	Antonio believes that
т	Antonio believes that

There are some true sentences such that if you plug them into *Antonio believes* _____ you get a new truth.

But there are other truths that Antonio doesn't believe. In which case if you plug them in you get a falsehood.

The semantics of logical operators in propositional logic

One way of understanding PL is as the study of truth-functional operators.

A big stipulation we will be making is that each of the operators in our language is truth-functional.

Because of this, it is possible to represent the meaning of each of our operators in the form of a truth-table.

- 1. Each operator can be understood as a function from truth value input(s) to a truth value output.
- 2. One way of spelling out this function is via a truth-table.

The definitions.

Let p and q be variables ranging over sentences of PL.

¬p is true iff p is false..

р	¬р
Т	F
F	т

 $(p \lor q)$ is true iff p is true or q is true.

р	q	(p ∨ q)
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F

 $(p \land q)$ is true iff p is true and q is true.

р	q	(p ∧ q)
Т	Т	Т
Т	F	F
F	Т	F
F	F	F

 $(p \equiv q)$ is true iff p and q are both true or p and q are both false.

р	q	(p ≡ q)
Т	Т	Т
Т	F	F
F	Т	F
F	F	Т

 $(p \supset q)$ is true iff p is false or q is true.

 $(p \supset q)$ is true iff it's not the case that p is true but q is false.

р	q	(p ⊃ q)
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

Some problems

Let A, B, and C be true and X, Y, and Z be false.

Compute the truth value of each of the following sentences.

False

2.
$$(A \wedge X) \vee (B \wedge Y)$$

False

3.
$$\neg B \supset \neg(X \lor Y)$$

True

4.
$$(A \equiv B) \equiv (X \equiv Y)$$

True

An interpretation of PL

An interpretation of PL is a function from atomic sentences of PL to either true or false.

PL Valuation

For any interpretation of PL I, a valuation for PL V_I is a function from sentences of PL to true or false such that:

For any atomic sentence α and PL-sentences ϕ and ψ :

- 1. $V_{I}(\alpha) = I(\alpha)$
- 2. $V_I(\phi)$ = False iff $V_I(\neg \phi)$ is True;
- 3. $V_I(\phi \lor \psi)$ = True iff $V_I(\phi)$ is true or $V(\psi)$ is
- 4. $V_I(\phi \wedge \psi)$ = True iff $V_I(\phi)$ is true and $V_I(\psi)$ is
- 5. $V_I(\phi \equiv \psi)$ = True iff $V_I(\phi)$ and $V_I(\psi)$ are both true or both false;
- 6. $V(\phi \supset \psi)$ = True iff $V_{\rm I}(\phi)$ is false or $V_{\rm I}(\psi)$ is true.

Tautology

A sentence of PL is a tautology iff on any interpretation of PL, the value of the sentence is true.

Or: a sentence of PL is a tautology iff for any interpretation I of PL, $V_{\scriptscriptstyle I}(\phi)$ = True.

Contradiction

A sentence of PL is a contradiction iff on any interpretation of PL, the value of the sentence is false.

Or: a sentence of PL, ϕ , is a contradiction iff for any interpretation I of PL, $V_{\scriptscriptstyle I}(\phi)$ = True.

Contingency

A sentence of PL is a contingency iff there are interpretations on which the sentence is true and interpretation on which the sentence is false.

Or: a sentence of PL, φ , is a contingency iff there is an interpretation I1 on which $V_{11}(\varphi)$ = True and there is also an interpretation I2 on which $V_{12}(\varphi)$ = False.

Some more problems

Compute truth tables for these sentences of PL. Identify whether each sentence is a tautology, a contradiction, or a contingency.

1.
$$\neg (A \equiv \neg B) \equiv \neg (A \equiv B)$$

A B	¬ (A ≡				A ≡	
T T	Т	T F					
T F	F	ТТ	ΤF	F	Т	ΤF	F
FT	F	FΤ	FΤ	F	Т	FF	Т
FFI	Т	FF	ΤF	F	F	FΤ	F

Contradiction

2.
$$A \supset (B \supset A)$$

Tautology

3. (¬A ∧ B) ∨ A

A B C	(¬A ∧ B)	∨ C
TTT	FTFT	
T T F T F T		F F T T
T F F F T T	F T F F T F T T	F F T T
FTF	TFTT	T F
FFT FFF	T F F F T F F F	T T F F