Image-Based Model Drift Detection

using model inversion and membership inference attacks

Outline

1.	What is Model Drift?	3
2.	Importance of Model Drift Detection	4
3.	Overview of Our Approach	5
	a) Gray Data Definition	6
	b) Membership Inference Definition	7
	c) Steps 1-2: Model Creation	8
	d) Steps 3-4: Gray Data Generation	9
	e) Steps 5-6: Membership Inference Attacks	10
	f) Step 7: Model Drift Detection	11
4.	Recent Results	12
5.	Future Direction	

What is Model Drift?

Model Drift occurs when the performance of a machine learning model worsens over time

Data Drift: occurs when the data changes from original dataset

e.g., a model will be provided with entirely new data that it has not yet seen. Concept Drift: occurs when the model's awareness of a certain feature changes

e.g., the data given to the model will be perturbed or manipulated in some way.

Why is this important?

New information is a constant in real-world applications

Knowing how a model fails leads to better solutions

Ensures a model's performance long-term

Our approach

Detecting *concept drift* in image data

7 steps to test the base model's definition of the concepts (or classes) of image datasets:

#1-2: create models on different portions of the dataset

#3-4 : create *gray data* for each model

#5-6: *infer membership* of gray data within base model

#7: check scores to detect drift

What is Gray Data?

Model inversion attacks use a classifier to attempt to recreate the training data given to a model as "gray data"

What is Membership Inference?

Membership inference attacks aim to predict if a specific instance of data was used in the training data for the model

predict(data)(prediction, class label, "in" / "out") (data record, class label) Shadow Training Set 1 Shadow Model 1 "in" Prediction Set "out" Prediction Set Shadow Test Set Shadow Training Set kShadow Model k "in" Prediction Set ktrain() Shadow Test Set k "out" Prediction Set Attack Training Set Attack Model

shadow models created by feeding random examples the model to determine key features

final model can predict whether a data point was in the training data of a model

Model Creation

Split training data in original dataset into base data and production data, then...

1 Create **base model** from base data

2 Create **production model** from production data

Gray Data Generation

- Run a *model inversion* attack on the base model to generate **base gray data**
 - determines the base model's concept of the classes from the base data

Run a *model inversion* attack on the production model to generate **production gray data**determines the production model's concept of the classes from production data

Membership Inference Attacks

Run *membership inference* attack on base model with base gray data

base drift score determines whether the concept of a class has drifted

Run *membership inference* attack on base model with production gray data

production drift score determines whether the concept of a class has drifted

Model Drift Detection

If production drift accuracy score << base drift accuracy score, then concept drift confirmed

Does our approach work?

	base model test accuracy	production model test accuracy
CIFAR-10	0.5738	0.5969
EMNIST	0.8200	0.8246

^{**}results collected using an average of three tests from our published Jupyter notebook**

Does our approach work?

	Rule-Based Membership Inference Attacks		Black-Box Membership Inference Attacks			
**results using our <u>published Jupyter</u> <u>notebook</u> **	accuracy with base gray data	accuracy with production gray data	accuracy with base gray data	accuracy with production gray data		
CIFAR-10	1.0	0.6666	1.0	0.3611		
EMNIST	1.0	0.5352	0.9516	0.1713		
results collected using an average of three tests from our published Jupyter notebook						
production drift acc << base drift acc						
	model drift detected					

What is the future direction with this method?

Detection \rightarrow **Mitigation**

detect drift in a model and recover from drift with an updated model

Overhead Imagery Datasets

detect drift in a model that operates on overhead imagery

