- 1. The lattice records a value for each variable. Suppose we have n variables v_1, \ldots, v_n in the program. Then an example element of the lattice is $[v_1 \to \{+, 0\}, \ldots, v_n \to \{0, -\}]$.
- 2. Forward analysis.
- 3. $x_1 \vee x_2 = [x_1[v_1] \cup x_2[v_1], \dots, x_1[v_n] \cup x_2[v_n]].$

4. Here,
$$c$$
 is a constant. $f_{x=c}(V) = \begin{cases} V[x \to \{+\}] \text{ if } c \text{ is positive,} \\ V[x \to \{-\}] \text{ if } c \text{ is negative,} \end{cases}$. $V[x \to \{0\}] \text{ if } c = 0$

5. Here, c is a constant. The transfer function is shown as following

x c	-	0	+
{+}	{-,0,+}	{+}	{+}
$\{0,+\}$	{-,0,+}	$\{0,+\}$	$\{+\}$
{0}	{-}	{0}	$\{+\}$
{-,0}	{-}	{-,0}	{-,0,+}
{-}	{-}	{-}	{-,0,+}
{-,+}	{-,0,+}	{-,+}	{-,0,+}
{-,0,+}	{-,0,+}	{-,0,+}	{-,0,+}
ϕ	ϕ	ϕ	ϕ

6. $f_{x=c}(V)$ is distributive.

$$f_{x=c}(V_1 \vee V_2) = f_{x=c}([V_1[x_1] \cup V_2[x_1], \dots, V_1[x] \cup V_2[x], \dots, V_1[x_n] \cup V_2[x_n]])$$

$$= [V_1[x_1] \cup V_2[x_1], \dots, sgn(c), \dots, V_1[x_n] \cup V_2[x_n]]$$

$$f_{x=c}(V_1) \vee f_{x=c}(V_2)$$

$$= [V_1[x_1], \dots, sgn(c), \dots, V_1[x_n]] \vee [V_2[x_1], \dots, sgn(c), \dots, V_2[x_n]]$$

$$= [V_1[x_1] \cup V_2[x_1], \dots, sgn(c), \dots, V_1[x_n] \cup V_2[x_n]] = f_{x=c}(V_1 \vee V_2)$$

 $f_{x=x+c}(V)$ is distributive. By enumerating all the possible value of $V_1[x]$, $V_2[x]$, an c, we can prove that $f_{x=x+c}(V_1) \vee f_{x=x+c}(V_2) = f_{x=x+c}(V_1) \vee f_{x=x+c}(V_2)$ always holds.

- 7. Yes. Since F is distributive, it is monotone. Also, the lattice is finite, and thus the algorithm always terminates.
- 8. Yes. According to [Kildall, 1973], since F is distributive, MOP = MFP.