HW #22; date: Nov. 21, 2017 MATH 110 Linear Algebra with Professor Stankova

- 6.2 #1 (a) False. They must be linearly independent. (b) True. Use Gram-Schmidt on any basis. (c) True. Say $W = S^{\perp}$. If $x \in W$ and $y \in W$, this means that $x \cdot s = 0$ and $y \cdot s = 0$ for any $s \in S$. Then, $(ax + by) \cdot s = a(x \cdot s) + b(y \cdot s) = 0 + 0 = 0$, so $ax + by \in W$. (d) False. It should be an orthonormal basis. (e) True. (f) False. In \mathbb{R}^{\neq} , $\{(0,0),(1,1)\}$ is an orthogonal set, but linearly dependent. (g) True. If we have a linear dependence $\sum a_i x_i = 0$, then we have $0 = \langle \sum a_i x_i, \sum a_i x_i \rangle = \sum |a_i|^2$ (since $\langle x_i, x_j \rangle = 0$ if $i \neq j$ and $\langle x_i, x_i \rangle$.) So this expression can only be zero if all of the $a_i = 0$.
- 6.2 #2bcdgij (b) $v_1 = (1, 1, 1)$. $v_2 = (0, 1, 1) \frac{(1, 1, 1) \cdot (0, 1, 1)}{(1, 1, 1) \cdot (1, 1, 1)} (1, 1, 1) = \frac{1}{3} (-2, 1, 1)$. $v_3 = (0, 0, 1) \frac{(0, 0, 1) \cdot (1, 1, 1)}{3} (1, 1, 1) \frac{(0, 0, 1) \cdot (1, 1, 1)}{3} (1, 1, 1) = \frac{1}{3} (-2, 1, 1)$. $\frac{(0,0,1)\cdot(-2,1,1)}{6}(-2,1,1) = \frac{1}{2}(0,-1,1) \text{ (note that I ignored the constant } \frac{1}{3} \text{ in the calcuation here } - \text{it's because the numerator an denominator will cancel out)}.$ The basis is $(1,1,1),\frac{1}{3}(-2,1,1),\frac{1}{2}(0,-1,1)$. The orthonormal basis is $u_1 = \frac{1}{\sqrt{3}}(1,1,1)$, $u_2 = \frac{1}{\sqrt{6}}(-2,1,1)$, $u_3 = \frac{1}{\sqrt{2}}(0,-1,1)$. The Fourier coefficients of (1,1,2) are $\frac{4}{\sqrt{3}}, \frac{1}{\sqrt{6}}, \frac{1}{\sqrt{2}}$. We verify: $\frac{4}{\sqrt{3}} \frac{1}{\sqrt{3}}(1,1,1) + \frac{1}{\sqrt{6}} \frac{1}{\sqrt{6}}(-2,1,1) + \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}}(0,-1,1) = \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}}(0,-1,1)$ $\frac{4}{3}(1,1,1) + \frac{1}{6}(-2,1,1) + \frac{1}{2}(0,-1,1) = (1,1,2)$
 - (c) $v_1 = 1$. $v_2 = x \frac{\int_0^1 x \, dx}{\int_0^1 1 \, dx} 1 = x \frac{1}{2}$, $v_3 = x^2 \frac{\int_0^1 x \, dx}{1} 1 \frac{\int_0^1 x^2 (x 1/2) \, dx}{\int_0^1 (x 1/2)^2 \, dx} x = x^2 \frac{1}{3} (x \frac{1}{2}) = x^2 x + \frac{1}{6}$. The orthonormal basis is $u_1 = 1$, $u_2 = \frac{1}{\sqrt{\int_0^1 (x 1/2)^2 \, dx}} (x \frac{1}{2}) = \sqrt{3}(2x 1)$, $u_3 = \frac{1}{\int_0^1 (x^2 x + 1/6)^2 \, dx} (x^2 x 1) = \frac{1}{2} \frac{1$ $(x-\frac{1}{6}) = \sqrt{180}(x^2-x+\frac{1}{6}) = \sqrt{5}(6x^2-6x+1)$. The Fourier coefficients of h(x) = 1+x are $\frac{3}{2}$, $\frac{\sqrt{3}}{6}$ and 0. We verify: $\frac{3}{2} + \frac{\sqrt{3}}{6} \sqrt{3}(2x-1) = \frac{3}{2} + \frac{1}{2}(2x-1) = x+1$
 - (d) Note: in this problem you have to be really careful about the order of the Hermitian product, since the entries are complex. $v_1 = (1, i, 0)$ and $v_2 = (1 - i, 2, 4i) - \frac{(1 - i) \cdot 1 + 2 \cdot -i + 4i \cdot 0}{2} (1, i, 0) = (1 - i, 2, 4i) - (\frac{1 - 3i}{2}, \frac{3 + i}{2}, 0) = (\frac{1 + i}{2}, \frac{1 - i}{2}, 4i)$. Orthonormal: $u_1 = \frac{1}{\sqrt{2}} (1, i, 0)$ and $u_2 = \frac{1}{2\sqrt{17}} (1 + i, 1 - i, 8i)$. Fourier coefficients of (3+i,4i,-4) are $\frac{1}{\sqrt{2}}3+i+4i\cdot(-i)=\frac{1}{\sqrt{2}}(7+i)$ and $\frac{1}{2\sqrt{17}}(34i)=\sqrt{17}i$. Verify: $\frac{1}{2}(7+i)(1,i,0) + \frac{1}{2}i(1+i,1-i,8i) = (3+i,4i,-4)$
 - (g) Note that the Frobenius product of a matrix with itself is the square of its entries, and the Frobenius product of is the "dot product" of the two matrix "component-wise." This makes the calcuations a bit easier. $v_1 = \begin{pmatrix} 3 & 5 \\ -1 & 1 \end{pmatrix}, v_2 = \begin{pmatrix} -1 & 9 \\ 5 & -1 \end{pmatrix} - \frac{-3-5+45-1}{9+1+25+1} \begin{pmatrix} 3 & 5 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} -4 & 4 \\ 6 & -2 \end{pmatrix}.$

$$v_3 = \begin{pmatrix} 7 & -17 \\ 2 & -6 \end{pmatrix} - \frac{-72}{36} \begin{pmatrix} 3 & 5 \\ -1 & 1 \end{pmatrix} - \frac{-72}{72} \begin{pmatrix} -4 & 4 \\ 6 & -2 \end{pmatrix} = \begin{pmatrix} 9 & -3 \\ 6 & -6 \end{pmatrix}. \text{ Orthonormal: } u_1 = \frac{1}{6} \begin{pmatrix} 3 & 5 \\ -1 & 1 \end{pmatrix},$$

$$u_2 = \frac{1}{6\sqrt{2}} \begin{pmatrix} -4 & 4 \\ 6 & -2 \end{pmatrix}, \ u_3 = \frac{1}{9\sqrt{2}} \begin{pmatrix} 9 & -3 \\ 6 & -6 \end{pmatrix}.$$
 Finally, the Fourier coefficients of $\begin{pmatrix} -1 & 27 \\ -4 & 8 \end{pmatrix}$ are $24, 6\sqrt{2}, -9\sqrt{2}$. Verify: $\frac{1}{6} \begin{pmatrix} 3 & 5 \\ -1 & 1 \end{pmatrix} 24 + \frac{1}{6\sqrt{2}} \begin{pmatrix} -4 & 4 \\ 6 & -2 \end{pmatrix} 6\sqrt{2} + \frac{1}{9\sqrt{2}} \begin{pmatrix} 9 & -3 \\ 6 & -6 \end{pmatrix} (-9\sqrt{2}) = \begin{pmatrix} -1 & 27 \\ -4 & 8 \end{pmatrix}.$

$$24, 6\sqrt{2}, -9\sqrt{2}. \text{ Verify: } \frac{1}{6} \left(-1 \right) 24 + \frac{1}{6\sqrt{2}} \left(6 \right) 6\sqrt{2} + \frac{1}{9\sqrt{2}} \left(6 \right) (-9\sqrt{2}) = \left(-4 \right) 8$$

$$(i) v_1 = \sin(t), v_2 = \cos(t) - \frac{\int_0^\pi \sin(t)\cos(t) dt}{\int_0^\pi \sin(t)\cos(t) dt} \sin(t) = \cos(t), v_3 = 1 - \frac{\int_0^\pi \sin(t) dt}{\int_0^\pi \sin(t) dt} \sin(t) - \frac{\int_0^\pi \cos(t) dt}{\int_0^\pi \cos(t) dt} \cos(t)$$

$$\frac{4}{\pi}\sin(t)) = t - \frac{\pi}{\pi/2}\sin(t) - \frac{2}{\pi/2}\cos(t) - \frac{\frac{1}{2}(\pi^2 - 8)}{\pi - \frac{8}{\pi}}(1 - \frac{4}{\pi}\sin(t)) = t - 2\sin(t) + \frac{4}{\pi}\cos(t) - \frac{\pi}{2} + 2\sin(t) = t + \frac{4}{\pi}\cos(t) - \frac{\pi}{2}.$$
 Orthonormal: $u_1 = \sqrt{\frac{2}{\pi}}\sin(t)$, $u_2 = \sqrt{\frac{2}{\pi}}\cos(t)$, $u_3 = \sqrt{\frac{\pi}{\pi^2 - 8}}(1 - \frac{4}{\pi}\sin(t))$, and $u_4 = \sqrt{\frac{12\pi}{\pi^4 - 96}}(t + \frac{4}{\pi}\cos(t) - \frac{\pi}{2})$. The Fourier coefficients of $g(t) = 2t + 1$ are $\sqrt{\frac{2}{\pi}}(2 + 4\pi)$, $\sqrt{\frac{2}{\pi}}8$, $\sqrt{\frac{\pi}{\pi^2 - 8}}\frac{(2\pi + 1)(\pi^2 - 8)}{\pi}$, $\sqrt{\frac{12\pi}{\pi^4 - 96}}\frac{\pi^4 - 96}{3\pi}$. The final verification is left to the reader.

- (j) $v_1=(1,i,2-i,-1), \ v_2=(2+3i,3i,1-i,2i) \frac{(2+3i,3i,1-i,2i)\cdot(1,-i,2+i,-1)}{8}(1,i,2-i,-1) = (1+3i,2i,-1,1+2i), \ v_3=(-1+7i,6+10i,11-4i,3+4i) \frac{(-1+7i,6+10i,11-4i,3+4i)\cdot(1,-i,2+i,-1)}{8}(1,i,2-i,-1) \frac{(-1+7i,6+10i,11-4i,3+4i)\cdot(1-3i,-2i,-1,1-2i)}{20}(1+3i,2i,-1,1+2i) = (-7+i,6+2i,5,5).$ Normalized: $u_1=\frac{1}{\sqrt{8}}(1,i,2-i,-1), \ u_2=\frac{1}{\sqrt{20}}(1+3i,2i,-1,1+2i), \ u_3=\frac{1}{\sqrt{140}}(-7+i,6+2i,5,5).$ Fourier coefficients of (-2+7i,6+9i,9-3i,4+4i): $\frac{24+8i}{\sqrt{8}}=\sqrt{8}(3+i), \frac{44-12i}{\sqrt{20}}, \frac{112-4i}{\sqrt{140}}.$ The final verification is left to the reader.
- 6.2 #3 β is already orthonormal. Then, we have that the Fourier coefficients are $\frac{7}{\sqrt{2}}$ and $\frac{-1}{\sqrt{2}}$.
- 6.2 #4 We want (x, y, z) satisfying the equations x iz = 0 and x + 2y + z = 0. These are just matrix equations, so we can solve $\begin{pmatrix} 1 & 0 & i \\ 1 & -2 & 1 \end{pmatrix} x = 0$. This row reduces to $\begin{pmatrix} 1 & 0 & -i \\ 0 & 2 & 1+i \end{pmatrix}$, so we have that S^{\perp} is spanned by the vector (i, -(1+i)/2, 1).
- 6.2 #5 S_0^{\perp} is the plane normal to the vector x_0 . S^{\perp} is the line normal to the plane spanned by x_1, x_2 .
- 6.2 #6 Using Theorem 6.6, write x=y+z where $y\in W^{\perp}$ and $z\in W$. Then, we have $\langle x,y\rangle=\langle y+z,y\rangle=\langle y,y\rangle+\langle z,y\rangle=||y||^2$, since z and y are orthogonal by construction. This is nonzero if and only if y is nonzero; however, we assumed that $x\not\in W$, and if y=0 then $x=z\in W$, so y was nonzero by assumption.
- 6.2 #7 If $z \in W^{\perp}$, then $\langle z, v \rangle = 0$ for every $v \in W$, in particular if $v \in \beta$. Conversely, suppose that $\langle z, v \rangle = 0$ for every $v \in \beta$. Since β is a basis, every $w \in W$ can be written $w = a_1v_1 + \dots a_rv_r$ for $v_i \in \beta$. Then, $\langle z, w \rangle = \langle z, \sum a_i v_i \rangle = \sum \overline{a_i} \langle z, v_i \rangle = 0$.
- 6.2 #8 We induct on the indices i. For i=1 the statement is obvious, since Gram-Schmidt does not do anything to the first vector. Suppose that the statement is true up for $i=1,\ldots,k$. Then Gram-Schmidt says that $v_{k+1}=w_{k+1}-\sum_{i=1}^k\frac{\langle w_{k+1},v_i\rangle}{\langle v_i,v_i\rangle}v_i=w_{k+1}-\sum_{i=1}^k\frac{\langle w_{k+1},w_i\rangle}{\langle w_i,w_i\rangle}w_i=w_{k+1}$, since the w_i are orthogonal, completing the proof.
- 6.2 #10 For $x \in V$, write x = w + z where $w \in W$ and $z \in W^{\perp}$, which can be done uniquely by Theorem 6.6. Define T(x) = w. This is a well-defined function, but we need to show that it is linear. To see this, write x' = w' + z'. Then, the ax + bx' = (aw + bw') + (az + bz'). Since W and W^{\perp} are subspaces, $aw + bw' \in W$ and $az + bz' \in W^{\perp}$. Since the decomposition in Theorem 6.6 was unique, it must be the case that T(ax + bx') = aw + bw' = aT(x) + bT(x'). Further, since w and z are orthogonal, we have $||x||^2 = ||w||^2 + ||z||^2$ by the Pythagorean Theorem. Thus, $||T(x)|| = ||w|| = \sqrt{||x||^2 ||z||^2} \le ||x||$.
- 6.2 #11 The ijth entry of AB is the dot product between the ith row of A and the jth column of B. Thus the ijth entry of AA^* is the dot product between the ith row of A and the jth column of A^* , which is the conjugate of the jth row of A. Thus, $AA^* = I$ if and only if $\langle a_i, a_j \rangle$ is 0 when $i \neq j$ and 1 when i = j, where the brackets indicate the standard inner product on \mathbb{C}^n .

- 6.2 #13c First, we show that $W \subset (W^{\perp})^{\perp}$. Suppose that $w \in W$. We claim that $w \in (W^{\perp})^{\perp}$; that is, for any x such that $\langle x, y \rangle = 0$ for very $y \in W$, we have $\langle w, x \rangle = 0$. But $\langle w, x \rangle = \overline{\langle x, w \rangle} = 0$, just taking y = w. Next, we show that $(W^{\perp})^{\perp} \subset W$. Suppose that $x \in (W^{\perp})^{\perp}$. Write x = w + w', where $w \in W$ and $w' \in W^{\perp}$ using Theorem 6.6. We want to show that $x \in W$. Suppose not; using Exercise 6, we should be able to choose $y \in W^{\perp}$ such that $\langle x, y \rangle \neq 0$. But in fact we can't, since $x \in (W^{\perp})^{\perp}$, i.e. $\langle x, y \rangle = 0$ for every $y \in W^{\perp}$. Thus, $x \in W$.
- 6.2 #14 First, we will show that $(W_1 + W_2)^{\perp} \subset W_1^{\perp} \cap W_2^{\perp}$. If $x \in (W_1 + W_2)^{\perp}$, then in particular it is in $(W_1 \cup W_2)^{\perp}$ since $W_1 \cup W_2 \subset W_1 + W_2$. That is, $\langle x, w \rangle = 0$ if $w \in W_1$ or $w \in W_2$. Thus, $x \in W_1^{\perp}$ and $x \in W_2^{\perp}$, so $x \in W_1^{\perp} \cap W_2^{\perp}$. Now, we will show that $(W_1 + W_2)^{\perp} \supset W_1^{\perp} \cap W_2^{\perp}$. Suppose that $x \in W_1^{\perp} \cap W_2^{\perp}$. This means that $\langle x, w_1 \rangle = 0$ for all $w_1 \in W_1$, and the same is true for all $w_2 \in W_2$. Thus, for any $w \in W$, written as $w = w_1 + w_2$, we have $\langle x, w_1 + w_2 \rangle = 0$, proving the first equation. For the second equation, apply Exercise 13c.
- 6.2 #19bc (b) First, we find a basis for W. $\beta = \{(-3,1,0),(2,0,1)\}$ will do. We then make it orthogonal via Gram-Schmidt: $v_1 = (-3,1,0)$ and $v_2 = (2,0,1) \frac{-6}{10}(-3,1,0) = (2,0,1) + (-9/5,-3/5,0) = \frac{1}{5}(1,-3,5)$. Let's instead set $v_2 = (1,-3,5)$ since the constant doesn't matter. The projection is $\frac{(2,1,3)\cdot(-3,1,0)}{10}(-3,1,0) + \frac{(2,1,3)\cdot(1,-3,5)}{35}(1,-3,5) = (13/6,-17/10,2)$. (c) We computed the orthogonal basis in Problem 2c, which is $\{1,x-\frac{1}{2}\}$. Then, the projection is $\frac{\int_0^1 4+3x-2x^2 dx}{\int_0^1 1 dx} 1 + \frac{\int_0^1 (x-\frac{1}{2})(4+3x-2x^2) dx}{\int_0^1 (x-\frac{1}{2})^2 dx}(x-\frac{1}{2}) = \frac{6}{29} + \frac{1/12}{1/12}(x-\frac{1}{2}) = x \frac{17}{58}$.
 - 6.2 #22 (a) Take $v_1 = \sqrt{t}$ and $v_2 = t \frac{\int_0^1 t \sqrt{t} \, dt}{\int_0^1 t \, dt} \sqrt{t} = \sqrt{t} \frac{5/2}{1/2} \sqrt{t} = t 5\sqrt{t}$. We then normalize $u_1 = \sqrt{2t}$ and $u_2 = \frac{\sqrt{6}}{\sqrt{53}} (t 5\sqrt{t})$. (b) We project to W: $(\int_0^1 t^2 \sqrt{t} \, dt) \sqrt{t} + \sqrt{6/53} (\int_0^1 t^2 (t 5\sqrt{t}) \, dt) (t 5\sqrt{t}) = \frac{7}{2} \sqrt{t} \sqrt{6/53} (69/4) (t 5\sqrt{t})$.
 - 6.2 #23 (a) We need to check the properties for inner products on V. However, note that $F^n \subset V$ as the "first n components." Any sentence we have to check involves vectors $v \in V$ which are in F^n for large enough n (i.e. since only finitely many coefficients can be nonzero, take n to be the maximum index of such coefficient). This means that for each such sentence, our verification of the inner product properties happens in F^n , in which we know they hold, so the result follows. (b) It's not hard to check that these vectors are orthogonal, and also normal (just check that $\sum_{n} e_i(n)e_j(n) =$ $e_i(i)e_j(i)+e_i(j)+e_j(j)=\delta_{ij}$). We also need to show it is a basis; let $\sigma\in V$. It is nonzero at finitely many indices, say indexed by the finite set S. Then, $\sigma = \sum_{s \in S} \sigma(s) e_s$, so the set spans. It is also linearly independent since it is orthogonal, so it is a basis. (c) (i) Note that $\sigma_n(k) = 1$ if k = 1, n and zero otherwise. Suppose that $e_1 = \sum_{s \in S} a_s \sigma_s$ (finite sum). Choose some $k \in S$. Then, $e_1(k) = 0$ but $\sum_{s \in S} a_s \sigma_s(k) = a_k$, we have that $a_k = 0$. Since k was chosen arbitrarily, we have $a_k = 0$ for all $k \in S$, i.e. that the right hand is zero. But, $e_1(1) = 1$, i.e. $e_1 \neq 0$, so we have a contradiction. (ii) Let $w \in W^{\perp}$. Let us write $w = \sum_{s \in S} a_s e_s$ where S is some finite set containing 1. Note that for $k \geq 2$, we have $0 = \langle w, \sigma_k \rangle = \sum_{s \in S} a_s \langle e_s, \sigma_k \rangle = \sum_{s \in S} a_s \langle e_s, e_1 + e_k \rangle$. This expression is $a_1 + a_k$ if $k \in S$ and a_1 if $k \notin S$. This shows that $a_1 = 0$ and hence $a_k = 0$ for every $k \in S$, $k \ge 2$ so w = 0. Thus, $(W^{\perp})^{\perp} = V$, which is not W.

Challenge: Prove that if the rows of a square matrix are orthonormal (under the dot product), then the columns are also orthonormal. Solution: Suppose that the rows are orthonormal. In general, the ijth entry of AB (where A, B are matrices) is the dot product between the ith row of A and the jth column of B. Thus, the ijth entry of AA^t is the dot product of the ith row of A and the jth row of A^t . The jth row of A^t is the jth column of A, so this is 1 if i = j and 0 if $i \neq j$. In other words, $AA^t = I$. Since A is square, this means that $A^{-1} = A^t$. In particular, a right inverse is a left inverse, so $A^tA = I$. The ijth entry of A^tA is the dot product between the ith column of A and the jth column of A. This says that the columns of A are orthogonal.