

Lecture 15

Models

Announcements

- **HW 8** due Wednesday 3/13 @ 11pm
- Lab 9 this week

Weekly Goals

- Last week
 - Append array, for statements, Simulation and Chance
 - Methods of sampling, Distributions of large random samples

Today

- Models that involve chance
- Assessing the consistency of the data and the model
- Wednesday
 - Comparing distributions
 - Hypothesis tests

Review: Distributions

Distributions

- Any random quantity has a probability distribution:
 - All possible values it can take
 - The probability it takes each value
- After repeated draws, it has an empirical distribution:
 - All observed values it took
 - The proportion of times it took each value
- After many independent draws, the empirical distribution looks more and more like the probability distribution

Probability Distribution of a Statistic

- Values of a statistic vary because random samples vary
- "Sampling distribution" or "probability distribution" of the statistic:
 - All possible values of the statistic,
 - and all the corresponding probabilities
- Can be hard to calculate
 - Either have to do the math
 - Or have to generate all possible samples and calculate the statistic based on each sample

Empirical Distribution of a Statistic

- Empirical distribution of the statistic:
 - Based on simulated values of the statistic
 - Consists of all the observed values of the statistic,
 - and the proportion of times each value appeared

- Good approximation to the probability distribution of the statistic
 - if the number of repetitions in the simulation is large

(Demo)

Assessing Models

Models

A model is a set of assumptions about the data

- In data science, many models involve assumptions about processes that involve randomness
 - "Chance models"

• Key question: does the model fit the data?

Approach to Assessment

 If we can simulate data according to the assumptions of the model, we can learn what the model predicts.

 We can then compare the predictions to the data that were observed.

• If the data and the model's predictions are not consistent, that is evidence against the model.

Today's Examples

Some Goals of Data Science

- Understand the world better
- Help make the world better

For example

- Help expose injustice
- Help counter injustice

The skills that you have gained empower you to do this.

First Example

- U.S. Constitution grants equal protection under the law
- All defendants have the right to due process

We will study a U.S. Supreme Court case in the 1960s

- A Black defendant was denied his Constitutional right to a fair jury
- The Court made incorrect and biased judgments about
 - the data in the case
 - the legal processes in the defendant's original trial
- We will discuss errors and racial bias in the Court's judgment

This case became the foundation of significant reform.

Jury Selection

US Constitution:

"right to a speedy and public trial, by an impartial jury"

Robert Swain's Case

- Robert Swain, a Black man, was convicted in Talladega County, AL
- He appealed to the U.S. Supreme Court
- Main reason: Unfair jury selection in the County's trials

Panel should be representative of the eligible jurors

Chosen by deliberate inclusion or exclusion

Eligible jurors: 26% Black

Jury panel: 8 out of 100 Black

Jury: 0 Black

Supreme Court Ruling, 1965

The Court denied Robert Swain's appeal.

Discussion Question

- Court's view: 8/100 is less than 26%, but not different enough to show Black panelists were systematically excluded
- Question: Would 8/100 be a realistic outcome if the jury panel selection process were truly unbiased?

Sampling from a Distribution

Sample at random from a categorical distribution

```
sample_proportions(sample_size, pop_distribution)
```

- Samples at random from the population
 - Returns an array containing the empirical distribution of the categories in the sample

(Demo)

Statistical Bias

- Evidence provided by Robert Swain:
 "only 10 to 15% of ... jury panels drawn from the jury box since 1953 have been [Black], there having been only one case in which the percentage was as high as 23%"
- Percent of Black panelists was always lower than expected under random sampling
- Bias: when errors are systematically in one direction

A Genetic Model

Gregor Mendel, 1822-1884

A Model

- Pea plants of a particular kind
- Each one has either purple flowers or white flowers
- Mendel's model:
 - Each plant is purple-flowering with chance 75%,
 - regardless of the colors of the other plants
- Question:
 - Is the model good, or not?

Choosing a Statistic

- Take a sample, see what percent are purple-flowering
- If that percent is much larger or much smaller than 75, that is evidence against the model
- **Distance** from 75 is the key
- Statistic:
 - | sample percent of purple-flowering plants 75 |
- If the statistic is large, that is evidence against the model

Two Viewpoints

Model and Alternative

Jury selection:

- Model: The people on the jury panels were selected at random from the eligible population
- Alternative viewpoint: No, they were biased against black men

Genetics:

- Model: Each plant has a 75% chance of having purple flowers
- Alternative viewpoint: No, it doesn't

Steps in Assessing a Model

- Choose a statistic to measure discrepancy between model and data
- Simulate the statistic under the model's assumptions
- Compare the data to the model's predictions:
 - Draw a histogram of simulated values of the statistic
 - Compute the observed statistic from the real sample
- If the observed statistic is far from the histogram, that is evidence against the model

Next time

RACIAL AND ETHNIC DISPARITIES IN

ALAMEDA COUNTY JURY POOLS