МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ «ЛЬВІВСЬКА ПОЛІТЕХНІКА» ІКНІ

Кафедра ПЗ

3BIT

до лабораторної роботи №2

на тему: «Синтез і моделювання шифраторів і дешифраторів та мультиплексорів і демультикомплексорів в системі Proteus»

з дисципліни: «Архітектура комп'ютера»

Лектор : доцент каф. ПЗ Крук О.Г
Виконала: ст.гр.ПЗ-23
Кохман О.В.
Прийняв: доцент каф. ПЗ Крук О.Г
«»2022 p. Σ

Тема. Синтез і моделювання шифраторів і дешифраторів та мультиплексорів і демультиплексорів в системі Proteus.

Мета. Закріпити практичні навики моделювання логічних схем в середовищі системи програм Proteus; поглибити знання про основні типи комбінаційних схем: шифратори, дешифратори, мультиплексори і демультиплексори; опанувати їх синтез; дослідити роботу синтезованих схем в системі програм Proteus.

Індивідуальне завдання

Варіант 11:

	z_0/a_0	0	1	0	1	0	1	0	1	f ₀ , КГц				
$N_{\underline{0}}$	z_1/a_1	0	0	1	1	0	0	1	1		Пріоритет			
	$\mathbf{z}_2/\mathbf{a}_2$	0	0	0	0	1	1	1	1					
11		d_1	d_2	d_3	0	d_4	0	0	d_0	136	F ₃ ,F ₂ , F ₅ , F ₇ , F ₁ , F ₆ ,F ₄			

Теоретичні відомості

Шифратор (encoder, coder, CD) m*n - це цифровий пристрій, призначений для перетворення вхідного m-розрядного унітарного коду у вихідний n-розрядний двійковий позиційний код. Двійковий код, що має завжди тільки одну одиницю, а решта - нулі, називається унітарним. При активізації одного з входів (появі на ньому одиниці) на виходах шифратора формується код, що відображає номер активного входу. Повний двійковий шифратор має m=2n входів і n виходів, n0 неповного шифратора $m<2^n$ 0.

Дешифратор (decoder, DC) n*m - це цифровий пристрій, призначений для перетворення вхідного n-розрядного двійкового позиційного коду у вихідний m-розрядний унітарний код. Як бачимо, дешифратор виконує функцію, обернену функції шифратора. Якщо m=2n, то дешифратор є повним, в неповного дешифратора $m<2^n$.

Мультиплексор (multiplexer, MUX) - це комбінаційний цифровий пристрій, призначений для комутування (перемикання) логічних сигналів від одного з п інформаційних X-входів на єдиний D-вихід. Номер конкретного інформаційного входу, який повинен під'єднуватися до виходу в певний

момент часу, вказується за допомогою адресних А-входів. Зв'язок між числом адресних входів q та числом інформаційних входів n визначається співвідношенням $2^q \ge n$.

Демультиплексор (demultiplexer, DMX) - це комбінаційний цифровий пристрій, призначений для комутування (перемикання) логічного сигналу з одного інформаційного D входу на один з п інформаційних Y виходів. Номер виходу, на який передається значення вхідного логічного сигналу, визначається в певний конкретний момент часу за допомогою адресних Авходів. Зв'язок між числом адресних входів q та числом інформаційних виходів п визначається співвідношенням $2^q \ge n$.

Протокол роботи

$$T = 1/f = 1/136000 = 0.00000735$$
 seconds
 $\tau = T/8 = 0.00000092$ seconds

Шифратор:

Вирази для проміжних змінних:

$$H_{3} = F_{3}$$

$$H_{2} = \overline{F_{3}} * F_{2}$$

$$H_{5} = \overline{F_{3}} * \overline{F_{2}} * F_{5}$$

$$H_{7} = \overline{F_{3}} * \overline{F_{2}} * \overline{F_{5}} * F_{7}$$

$$H_{1} = \overline{F_{3}} * \overline{F_{2}} * \overline{F_{5}} * \overline{F_{7}} * F_{1}$$

$$H_{6} = \overline{F_{3}} * \overline{F_{2}} * \overline{F_{5}} * \overline{F_{7}} * \overline{F_{1}} * F_{6}$$

$$H_{4} = \overline{F_{3}} * \overline{F_{2}} * \overline{F_{5}} * \overline{F_{7}} * \overline{F_{1}} * \overline{F_{6}} * F_{4}$$

Вихідні сигнали через проміжні змінні:

$$X_0 = H_1 + H_3 + H_5 + H_7$$

$$X_1 = H_2 + H_3 + H_6 + H_7$$

$$X_0 = H_4 + H_5 + H_6 + H_7$$

Рис.1 Схема пріоритетного шифратора.

Рис.2 Графік сигналів пріоритетного шифратора.

Вихідний двійковий код(х0,х1,х2):
0 – 000 (0)
1 – 110 (3)
2 – 010 (2)
3 – 101 (5)

4 - 001	4 – 111 (7)
5 – 101	5 – 100 (1)
6-011	6 – 011 (6)
7 – 111	7 – 001 (4)

Отримана послідовність вихідного двійкового коду збігаєтся із заданим вхідним двійковим кодом, отже синтезований пріоритетний шифратор працює коректно.

Дешифратор:

Рівняння для кожного з виходів:

$$V_0 = Z_2 * Z_1 * Z_0 (7)$$

$$V_1 = \overline{Z_2} * \overline{Z_1} * \overline{Z_0} (0)$$

$$V_2 = \overline{Z_2} * \overline{Z_1} * Z_0 (1)$$

$$V_3 = \overline{Z_2} * Z_1 * \overline{Z_0} (2)$$

$$V_4 = Z_2 * \overline{Z_1} * \overline{Z_0} (4)$$

$$V_5 = \overline{Z_2} * Z_1 * Z_0 * 0 (3)$$

$$V_6 = Z_2 * \overline{Z_1} * Z_0 * 0$$
 (5)

$$V_7 = Z_2 * Z_1 * \overline{Z_0} * 0 (6)$$

Рис. 3 Схема лінійного дешифратора.

Рис.4 Графік сигналів лінійного дешифратора.

Z2	Z1	Z0	V0	V1	V2	V3	V4	V5	V6	V7	№
0	0	0	0	1	0	0	0	0	0	0	(0)
0	0	1	0	0	1	0	0	0	0	0	(1)
0	1	0	0	0	0	1	0	0	0	0	(2)
0	1	1	0	0	0	0	0	0	0	0	(3)
1	0	0	0	0	0	0	1	0	0	0	(4)
1	0	1	0	0	0	0	0	0	0	0	(5)
1	1	0	0	0	0	0	0	0	0	0	(6)
1	1	1	1	0	0	0	0	0	0	0	(7)

Таблиця істинності вихідного дешифратора (v0 = d0, v1 = d1, v2 = d2, v3 = d3, v4 = d4). Ця таблиця збігається із заданою вхідною таблицею, отже синтезований дешифратор працює коректно.

Мультиплексор:

$$D = \overline{(A_0} * \overline{A_1} * \overline{A_2} * D_0) + (A_0 * \overline{A_1} * \overline{A_2} * D_1) + \overline{(A_0} * A_1 * \overline{A_2} * D_2) + \overline{(A_0} * \overline{A_1} * A_2 * D_3) + (A_0 * A_1 * A_2 * D_4) - ДДНФ$$

Рис. 5 Схема мультиплексора.

Рис. 6 Графік сигналів мультиплексора.

A2	A1	A0	X4	X3	X2	X1	X0	D
0	0	0	0	0	0	1	0	D1
0	0	1	0	0	1	0	0	D2
0	1	0	0	1	0	0	0	D3
0	1	1	0	0	0	0	0	0
1	0	0	1	0	0	0	0	D4
1	0	1	0	0	0	0	0	0
1	1	0	0	0	0	0	0	0
1	1	1	0	0	0	0	1	D0

Таблиця істинності мультиплексора. Збігається із заданою вхідною таблицею, отже мультиплексор працює коректно.

Демультиплексор:

$$\mathbf{Y0} = A_2 * A_1 * A_0 * D0$$

$$\mathbf{Y1} = \overline{A_2} * \overline{A_1} * \overline{A_0} * D1$$

$$\mathbf{Y2} = \overline{A_2} * \overline{A_1} * A_0 * D2$$

$$\mathbf{Y3} = \overline{A_2} * A_1 * \overline{A_0} * D3$$

$$\mathbf{Y4} = A_2 * \overline{A_1} * \overline{A_0} * D4$$

Рис. 7 Схема демультиплексора.

Рис. 8 Графік сигналів демультиплексора.

A2	A1	A0	D	Y4	Y3	Y2	Y1	Y0
0	0	0	Y1	0	0	0	1	0
0	0	1	Y2	0	0	1	0	0
0	1	0	Y3	0	1	0	0	0
0	1	1	0	0	0	0	0	0

1	0	0	Y4	1	0	0	0	0
1	0	1	0	0	0	0	0	0
1	1	0	0	0	0	0	0	0
1	1	1	Y0	0	0	0	0	1

Таблиця істинності демультиплексора. Збігається із заданою вхідною таблицею, отже демультиплексор працює коректно.

Висновки

На цій лабораторній роботі я дізналась про основні комфінаційні схеми та синтезувала їх: шифратор, дешифратор, мультиплексор, демультиплексор у програмі Proteus 8.13 Professional, також синтезувала для кожної схеми цифрові графіки, побудувала по цих графіках таблиці істинності та порівняла їх із заданими.