

<u>Help</u>

sandipan_dey >

<u>Calendar</u> **Discussion** <u>Notes</u> <u>Course</u> <u>Progress</u> <u>Dates</u>

☆ Course / Unit 2: Geometry of Derivat... / Lecture 4: Introduction to vectors and dot pro...

You are taking "Exam (Timed, No Correctness Feedback)" as a timed exam. Show more

End My Exam

44:17:50

Lecture due Aug 18, 2021 20:30 IST Completed

Practice

Find the angle

1/1 point (graded)

Let $\vec{v}=\langle 1,1 \rangle$ and $\vec{w}=\langle 2,1 \rangle$. Use the dot product to find $\cos \theta$ where θ is the angle between \vec{v} and \vec{w} .

Solution:

From the dot product formula, we have

$$\vec{v} \cdot \vec{w} = \langle 1, 1 \rangle \cdot \langle 2, 1 \rangle = (1)(2) + (1)(1) = 3. \tag{3.35}$$

We also have

$$\vec{v} \cdot \vec{w} = |\vec{v}| |\vec{w}| \cos \theta. \tag{3.36}$$

So we need to compute $|\vec{v}|$ and $|\vec{w}|$ and set the above quantity equal to 3. We have

$$|\vec{v}| = \sqrt{(1)^2 + (1)^2} = \sqrt{2}$$
 (3.37)

$$|\vec{w}| = \sqrt{(2)^2 + (1)^2} = \sqrt{5}.$$
 (3.38)

Putting it all together, we have

$$3 = \sqrt{2}\sqrt{5}\cos\theta = \sqrt{10}\cos\theta. \tag{3.39}$$

Solving for $\cos heta$ gives

$$\cos \theta = \frac{3}{\sqrt{10}}.\tag{3.40}$$

Submit

You have used 1 of 5 attempts

1 Answers are displayed within the problem

We'll help with this next part

In this problem, we will continue using $ec v=\langle 1,1 \rangle$ and $ec w=\langle 2,1 \rangle$. We have drawn the vectors in the xy-plane below.

We then draw a line from the tip of \vec{v} to \vec{w} such that the line forms a right angle with \vec{w} as shown below where we denote the point where the line intersects $ec{w}$ by A.

We define the vector \vec{u} to be the vector that starts at the origin and extends to the point A.

Your turn, find the magnitude

1/1 point (graded)

Using the information given and your answer to the previous problem, find the magnitude of \vec{u} .

$$|\vec{u}| = \boxed{3/\text{sqrt}(5)}$$
 Answer: 3/sqrt(5)

Solution:

Notice that \vec{v} , \vec{u} , and the dotted line form a right triangle.

This means that the length of $ec{u}$ is equal to the length of $ec{v}$ multiplied by $\cos heta$. In other words,

$$|\vec{u}| = |\vec{v}| \cos \theta. \tag{3.41}$$

From the previous problem, we know that

$$|\vec{v}| = |\langle 1, 1 \rangle| = \sqrt{2} \tag{3.42}$$

and

10/7/21, 2:05 AM

So we have

$$|\vec{u}| = |\vec{v}| \cos \theta = \sqrt{2} \left(\frac{3}{\sqrt{10}}\right) = \frac{3}{\sqrt{5}}.$$
 (3.44)

Submit

You have used 1 of 5 attempts

1 Answers are displayed within the problem

Find the vector

1.0/1 point (graded)

Using the information from the previous problems, find the vector \vec{u} .

(Enter your answer as a vector with two components inside square brackets, e.g., [1,1].)

Solution:

We know that \vec{u} is in the same direction as \vec{w} . So we have

$$\vec{u} = c\vec{w} = c\langle 2, 1 \rangle \tag{3.45}$$

for some constant c. To find c, we take the magnitude of \vec{u} and set it equal to our answer from the previous problem. So we have

$$\frac{3}{\sqrt{5}} = |\vec{u}| = c|\langle 2, 1 \rangle| = c\sqrt{5}. \tag{3.46}$$

Solving for \boldsymbol{c} gives

$$c = \frac{3}{5}.\tag{3.47}$$

Our answer is then

$$\vec{u} = \frac{3}{5} \langle 2, 1 \rangle = \langle \frac{6}{5}, \frac{3}{5} \rangle. \tag{3.48}$$

Submit

You have used 1 of 3 attempts

1 Answers are displayed within the problem

13. Practice with dot product

Add a Post

Previous Next >

© All Rights Reserved

About

Affiliates

edX for Business

Open edX

Careers

<u>News</u>

Legal

Terms of Service & Honor Code

Privacy Policy

Accessibility Policy

Trademark Policy

<u>Sitemap</u>

Connect

<u>Blog</u>

Contact Us

Help Center

Media Kit

Donate

© 2021 edX Inc. All rights reserved.

深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>