Math 21-236, Mathematical Studies Analysis II, Spring 2012 Assignment 4

The due date for this assignment is Monday March 5.

1. A global implicit function theorem. Let $f:(a,b)\times\mathbb{R}\to\mathbb{R}$ be a function of class C^1 . Assume that for every $x\in(a,b)$ there exists $\alpha_x>0$ such that

 $\left| \frac{\partial f}{\partial y} \left(x, y \right) \right| \ge \alpha_x$

for all $y \in \mathbb{R}$. Prove that there exists a unique function $g:(a,b) \to \mathbb{R}$ of class C^1 such that

$$f\left(x, g\left(x\right)\right) = 0$$

for all $x \in (a, b)$.

2. Let $(X, \|\cdot\|_X)$ and $(Y, \|\cdot\|_Y)$ be two normed spaces, let $x, y \in X$, with $x \neq y$, let S be the segment of endpoints x and y, that is,

$$S = \{tx + (1-t)y : t \in [0,1]\},\$$

and let $f: S \to R$ be such that f is continuous in S and there exists the directional derivative $\frac{\partial f}{\partial v}(z)$ for all $z \in S$ except at most x and y, where $v := \frac{x-y}{\|x-y\|_X}$. Prove that

$$\|f(x) - f(y)\|_{Y} \le \sup_{w \in S} \left\| \frac{\partial f}{\partial v}(w) \right\|_{Y} \|x - y\|_{X}.$$

3. Let $f:[a,b]\to\mathbb{R}$ be a function of class C^2 with f=0 in $[a,a+\varepsilon]\cup[b-\varepsilon,b].$ Let

$$E := \{(x, f(x)) : x \in [a, b]\}$$

and consider the function

$$g(x,y) := \operatorname{dist}((x,y), E), \quad (x,y) \in \mathbb{R}^2.$$

Let

$$U_{\delta} := \{(x, y) : x \in (a, b), f(x) < y < f(x) + \delta\}.$$

(a) Prove that there exists $\delta > 0$ small with the property that for every $(x,y) \in U_{\delta}$ there exists a unique point $(t,s) \in E$ such that

$$dist((x, y), E) = ||(x, y) - (t, s)||.$$

- (b) Find a precise formula in terms of f and f' that relates (t, s) to (x, y).
- (c) Prove that the function q is of class C^1 in U_{δ} .

4. Given the equation

$$\alpha \log(1 + xy) + \alpha^2 xy - 2\sin x + y - 1 = 0,$$

where $\alpha \in \mathbb{R}$ is a fixed parameter.

- (a) Prove that in a neighborhood of the point P = (0,1) the equation implicitly determines a function y = g(x).
- (b) Determine, if they exist, those values of α for which the function g has a maximum at the point x = 0.