Nonlinear DID:

Lessons from Staggered Linear Differences in Differences

Fernando Rios-Avila

Introduction

- Differences in Differences (DiD) design is one of the most popular methods in applied microeconomics, because it requires relatively few assumptions to identify treatment effects.
 - No anticipation,
 - Parallel trends,
 - No spillovers
- The canonical DiD, a 2x2 design, simply compares means (or conditional means) of the outcome variable (before after x treated non-treated) to identify treatment effects.
 - Thus it can be used even if outcome is a limited dependent variable (binary, count, etc) (parallel to the linear regression case)
- Because the Canonical design is rather limited, many extensions have been proposed to handle more complex scenarios: Staggered Treatment with **GxT DID**.
 - Early Extensions (infamous TWFE) have been shown to be problematic. (negative weights and bad controls)
 - but more recent approaches (See Roth et al. (2023)) have shown how can one better use these designs to identify treatment effects, avoiding the simple-TWFE problems.
- Linear models, however, have limitations:
 - Linear models do a poor job interpolating and predicting LDV outcomes
 - Parallel trends assumptions may only be credible under specific functional forms

Disclaimer:

who am I not?

Not Andrew Goodman-Bacon

- Among others, Andrew showed the problems of using TWFE in the presence of staggered adoption of the treatment.
- Because of treatment timing, later treated units are compared to **bad** controls (early treated ones), in potential violation of the parallel trends assumption.
- This also relates to negative weights.
- See Goodman-Bacon (2021)

Not Pedro Sant'Anna

- \bullet Pedro and Brantly proposed deconstructing the GxT problem. Consider only good 2x2 DD designs to identify Treatment effects in DID.
- Agregate them as needed to obtain the desired treatment effect (weighted Average). (dynamic, average, across time, across groups, etc)
- Along with **Jonathan Roth**, discuss the problem of PTA and functional forms. Not all may be valid.
- see Callaway and Sant'Anna (2021) and Roth and Sant'Anna (2023)

Not Jeffrey Wooldridge

- Jeff Wooldridge brought back life to the ${\bf TWFE}.$
- The problem was not the **TWFE** part of the analysis, but the model specification.
 - (post \times treated instead of $G \times T$)
- This insights, can be extended to nonlinear cases.
- See Wooldridge (2021) and Wooldridge (2023)

Fernando Rios-Avila

- I have followed some of the developments in DID with staggered adoption of the treatment.
 - Implemented few things (drdid/csdid/csdid2/jwdid)
 - Understood few others (comparison groups, efficiency, negative weights, nonlinear models)
- And today, I will be providing some of my insights regarding the empirical analysis of nonlinear DID.
 - I will rely heavily on Wooldridge (2023),

Basics: 2x2 DiD

• In the 2x2 DID design, we have 2 groups:

- Control (D=0) and treated (D=1),
- Which are observed for two periods of time:
 - Before (T=0) and after (T=1) the treatment.
- For all groups and periods of time, we observe the realized outcome $Y_{i,t}$, but cannot observe all potential outcomes $Y_{i,t}(D)$.
- Realized outcomes are determined by the following equation:

$$Y_{i,t} = D_i Y_{i,t}(1) + (1 - D_i) Y_{i,t}(0)$$

If treatment occured at some point between T0 and T1, and we could observe all potential outcomes, the estimate of interested, Average Treatment effect, could be estimated as follows:

$$ATT = E(Y_{i,1}(1) - Y_{i,1}(0)|D_i = 1)$$

For the treated, we observe $Y_{i,1}(1)$, but cannot observe $Y_{i,t}(0)$ (counterfactual), thus, to identify Treatment Effects, we need to impose some assumptions.

• PTA:

$$\begin{split} E(Y_{i,1}(0) - Y_{i,0}(0)|D_i = 1) &= E(Y_{i,1} - Y_{i,0}|D_i = 0) \\ E(Y_{i,1}(0)|D_i = 1) &= E(Y_{i,0}(0)|D_i = 1) + E(Y_{i,1} - Y_{i,0}|D_i = 0) \end{split}$$

• No Anticipation:

$$Y_{i,0}(1) = Y_{i,0}(0) = Y_{i,0}$$

Thus, ATT can be estimated as follows:

$$\begin{split} ATT &= E(Y_{i,1}(1)|D_i = 1) - E(Y_{i,1}(0)|D_i = 1) \\ &= E(Y_{i,1}|D_i = 1) - \left(E(Y_{i,0}|D_i = 1) + E(Y_{i,1} - Y_{i,0}|D_i = 0)\right) \\ &= E(Y_{i,1} - Y_{i,0}|D_i = 1) - E(Y_{i,1} - Y_{i,0}|D_i = 0) \end{split}$$

• And the Same could be done via Regressions:

$$y_{i,t} = \beta_0 + \beta_1 T + \beta_2 D_i + \theta(D_i \times T) + \epsilon_{i,t}$$

• ATT identification relies on the Parallel trend assumption.

How to test for PTA?

- PTA is a non-testable assumption, because we do not observe all potential outcomes.
- However, if we "move", from the 2x2 design, it may be possible to test if PTA hold Before treatment.
- Consider a case of T periods of time, and that treatment happen at period G.
- Say we estimate the ATT comparing periods T and T-1, for any T<G.

$$ATT(T) = E(Y_{i,T} - Y_{i,T-1}|D_i = 1) - E(Y_{i,T} - Y_{i,T-1}|D_i = 0)$$

- If there is no anticipation, and Parallel trends hold, then ATT(T) = 0 if T < G
 - This is what Callaway and Sant'Anna (2021) uses for PTA testing

How to test for PTA?

• Alternatively, one could simply estimate all ATT's using period G-1 as baseline period (long2 differences):

$$ATT^2(T) = E(Y_{i,T} - Y_{i,G-1} | D_i = 1) - E(Y_{i,T} - Y_{i,G-1} | D_i = 0)$$

- And use all post-treatment periods to estimate the ATT $(T \geq G)$
- and use all pre-treatment periods to test for PTA (T < G)

What if PTA does not hold?

- As suggested by Wooldridge (2023), one of the reasons PTA may not hold is because we may be analyzing the wrong model.
 - consider two groups of workers, high and low earners, that experience the same wage growth. (parallel trends in relative terms)
 - If we observe wages at levels, parallel trends would be violated
 - And Post treatment estimates will be missleading

Wage PTA in levels

Wage PTA in logs

PTA may hold for $G(\bar{Y})$

A similar story could be told about other types of transformations.

In general, it is possible that PTA hold for some other monotonic transformation of the outcome variable.

$$G^{-1}\Big(E_1[Y_{i,1}(0)]\Big) - G^{-1}\Big(E_1[Y_{i,0}(0)]\Big) = G^{-1}\Big(E_0[Y_{i,1}]\Big) - G^{-1}\Big(E_0[Y_{i,0}]\Big)$$

This is very similar to the PTA assumption explored in Roth and Sant'Anna (2023).

$$E_1\Big[g(Y_{i,1}(0))\Big] - E_1\Big[g(Y_{i,0}(0))\Big] = E_0\Big[g(Y_{i,1})\Big] - E_0\Big[g(Y_{i,0})\Big]$$

Wooldridge idea: It may be possible to identify ATTs using correct functional forms, through the **latent index**.

How do things Change?

• Using this insight, we can go back to the 2x2 design, and see how things change.

Before:

$$E(y_{i,t}|D,T) = \beta_0 + \beta_1 T + \beta_2 D_i + \theta(D_i \times T)$$

After:

$$E(y_{i,t}|D,T) = G\Big(\beta_0 + \beta_1 T + \beta_2 D_i + \theta(D_i \times T)\Big)$$

- For the practitioner, the extended Nonlinear DID simply requires choosing a functional form that better fits the data.
 - Poisson, logit, fractional regression, multinomial model, Linear model, etc

Extension I: Adding Covariates

- Many papers in the literature consider the use of covariates in the estimation of the ATT.
- The lessons from Sant'Anna and Zhao (2020):
 - The choosen covariates should be time fixed, to avoid contamination of the treatment effect.
 - Using covariates allows relaxing the parallel trends assumption: PTA hold for specific groups of individuals. (if not for the whole population due to compositional changes)
- In the 2x2 DID-Regression, covariates can be added with interactions:

$$\begin{split} y_{i,t} &= \beta_0 + \beta_1 D + \beta_2 T + \theta(D \times T) \\ &+ X \gamma + D \times X \gamma_d + T \times X \gamma_T + D \times T (X - \bar{X}) \lambda + \epsilon_{i,t} \end{split}$$

• The same could be done in the nonlinear case

Extension II: GxT DiD

- The 2x2 design is rather limited, because often people have access to multiple periods of time, with differential treatment timing. (staggered adoption of the treatment)
 - I call this the GxT design (G groups, T periods of time)
- The majority of the papers that analyze this case impose an additional assumption:
 - Treatment is not Reversable: Once treated always treated

NOTE: Because of the interactions required, adding covariates would rapidily "consume" degrees of freedom. (may be a problem with nonlinear models).

How to see this? --> tab tvar gvar

The Problem

• Early extensions of the 2x2 design to the GxT design, relied on the TWFE estimator.

$$y_{i,t} = \delta_i + \delta_t + \theta^{fe} D_{i,t} + e_{i,t}$$

where $D_{i,t}=1$ only after treatment is in place, and zero otherwise.

- This model has been shown to be problematic, because of How OLS estimates the θ^{fe} parameter.
 - θ^{fe} is a weighted average of all possible 2x2 DID designs. Goodman-Bacon (2021)
 - Some designs use early treated units as controls for late treated units, which might be a violation of the parallel trends assumption.
 - * (treated units effectively receiving negative weights) Goodman-Bacon (2021), Chaisemartin and D'Haultfœuille (2020) and Borusyak, Jaravel, and Spiess (2023).

Avoiding the Problem

- Callaway and Sant'Anna (2021) proposes a simple solution: Deconstruct the problem into smaller pieces (2x2 DIDs), and aggregate them as needed.
- Wooldridge (2021), however, proposes a different solution: Use the correct functional form to estimate the ATTs.

Instead of:
$$Y_{i,t} = \delta_i + \gamma_t + \theta^{fe} P T_{i,t} + \epsilon_{i,t}$$

Use:
$$Y_{i,t} = \delta_i + \gamma_t + \sum_{g \in \mathbb{G}} \sum_{t=g}^{T} \theta_{g,t} \mathbb{1}(G = g, T = t) + \epsilon_{i,t}$$

• Their Message: Embrace heterogeneity across time and cohorts.

An added Insight

- The approach proposed by Wooldridge (2021), is more efficient than Callaway and Sant'Anna (2021), because it uses all pre-treatment data to estimate the ATTs. (Callaway and Sant'Anna (2021) uses only one pre-treatment period)
- However, doing this doesn't allow you to test for PTA directly, unless we use an alternative approach:

$$Y_{i,t} = \delta_i + \gamma_t + \sum_{g \in \mathbb{G}} \sum_{t=t_0}^{g-2} \theta_{g,t}^{pre} \mathbb{1}(G = g, T = t) + \sum_{g \in \mathbb{G}} \sum_{t=g}^T \theta_{g,t}^{post} \mathbb{1}(G = g, T = t) + \epsilon_{i,t}$$

- This specification is equivalent to Callaway and Sant'Anna (2021) and to Sun and Abraham (2021).
 - Its explicity a regression (Wooldridge)
 - and uses actual, instead of relative, time.

Implementing NL-DID the JW way

- One of the advantages of the approaches proposed by Wooldridge (2021) and Wooldridge (2023), is that they can be directly estimated using regressions.
- The hard part is to construct all the interactions required for the model to work.
- And a second challenge is to aggregate the results.

jwdid

- jwdid is a simple command that helps with the construction of all required interactions that could be used to implement Wooldridge approach.
- It is flexible enough, in that it allows you to choose different estimators that would better fit your data.
- it comes with its own post estimation commands that can help you aggregate the results into simple ATT, dynamics effects, across periods, across years, etc.
- Lets take it for a spin

Command Syntax

- jwdid Command Name. In charge of getting all interactions -right-
 - depvar [indepvar] Declare the dependent variables. Independent variables are optional. They should be time fixed.
 - [if] [in] [weight], Declares sample and weights. Only PW is allowed.

Command Main Options

- jwdid: main options
 - ivar(varname): Panel indicator. If not declared, command assumes one is using repeated cross sections.
 - cluster(varname): Cluster variable. To request a clustered standard error other than at ivar level. Recommended with RC.
 - tvar(varname) or time(varname): Required, Time variable. There are two ways to call it for compatability with csdid.

- gvar(varname): Group variable. Indicates the timing of when a unit has ben treated.
- trtvar(varname): If using Panel data, one could instead provide the post-treatment dummy.
 - * If data is repeated crossection, one requires using trgvar(varname) (Pseudo panel indicator).

Extra Options

- group: Requests using group fixed effects, instead of individual fixed effects (default)
- never: Request to use alternative specification that allows to test for PTA. (default is to use the standard specification)
- Linear and Nonlinear models:
 - method(command, options): Request to use a specific method to model the data.
 Default is using linear regression via reghdfe.
 - the option part allows you do include specific options for the method. (e.g. method(glm, link() family()))

Example 1: Min Wages on Employment CS data

```
clear all
qui:ssc install frause
qui:frause mpdta, clear
frause mpdta, clear
jwdid lemp, ivar(county) tvar(year) gvar(first)
(Written by R.
WARNING: Singleton observations not dropped; statistical significance is biased
> (link)
(MWFE estimator converged in 2 iterations)
HDFE Linear regression
                                                   Number of obs =
                                                                          2,500
Absorbing 2 HDFE groups
                                                   F(
                                                       7,
                                                              499) =
                                                                           3.82
Statistics robust to heteroskedasticity
                                                   Prob > F
                                                                         0.0005
                                                   R-squared
                                                                         0.9933
                                                   Adj R-squared
                                                                         0.9915
                                                   Within R-sq.
                                                                         0.0101
Number of clusters (countyreal) =
                                                   Root MSE
                                                                         0.1389
                                          500
```

(Std. err. adjusted for 500 clusters in countyreal)

lemp	 Coefficient	Robust std. err.	t	P> t	[95% conf.	interval]
first_treat#						
year#	l					
ctr						
2004 2004	0193724	.0223818	-0.87	0.387	0633465	.0246018
2004 2005	0783191	.0304878	-2.57	0.010	1382195	0184187
2004 2006	1360781	.0354555	-3.84	0.000	2057386	0664177
2004 2007	1047075	.0338743	-3.09	0.002	1712613	0381536
2006 2006	.0025139	.0199328	0.13	0.900	0366487	.0416765
2006 2007	0391927	.0240087	-1.63	0.103	0863634	.007978
2007 2007	043106	.0184311	-2.34	0.020	0793182	0068938
	l					
_cons	5.77807	.001544	3742.17	0.000	5.775036	5.781103

Absorbed degrees of freedom:

	•	- Redundant	
countyreal year		500 0	0 * 5

* = FE nested within cluster; treated as redundant for DoF computation

```
gen emp = exp(lemp)
jwdid emp, ivar(county) tvar(year) gvar(first) method(poisson)
```

```
Iteration 0: log pseudolikelihood = -2980537.4
Iteration 1: log pseudolikelihood = -2980526.5
Iteration 2: log pseudolikelihood = -2980526.5
```

(Std. err. adjusted for 500 clusters in countyreal)

I		Robust				
emp	Coefficient	std. err.	z	P> z	[95% conf	. interval]
first_treat#	 					
year#						
ctr						
2004 2004	0080499	.0100858	-0.80	0.425	0278177	.0117178
2004 2005	0252131	.0176754	-1.43	0.154	0598562	.0094299
2004 2006	051965	.0197745	-2.63	0.009	0907222	0132077
2004 2007	0672208	.0192207	-3.50	0.000	1048926	029549
2006 2006	.055212	.0330023	1.67	0.094	0094714	.1198954
2006 2007	.0109993	.04294	0.26	0.798	0731617	.0951602
2007 2007	060675	.0149793	-4.05	0.000	0900339	0313161
			2.00			
first_treat						
2004	.4789133	.4347691	1.10	0.271	3732184	1.331045
2006 I	.6010118	.3248861	1.85	0.064	0357532	1.237777
2007	.1269293	.2472938	0.51	0.608	3577576	.6116163
i						
year						
2004	0459369	.0064592	-7.11	0.000	0585966	0332771
2005	0301284	.0094457	-3.19	0.001	0486416	0116152
2006	0030985	.0122001	-0.25	0.800	0270104	.0208133
2007	.0350031	.0118264	2.96	0.003	.0118238	.0581824
İ						
_cons	6.84775	.1555219	44.03	0.000	6.542932	7.152567

jwdid emp, ivar(county) tvar(year) gvar(first) method(poisson) never

```
Iteration 0: log pseudolikelihood = -2980450.1
Iteration 1: log pseudolikelihood = -2980438.8
Iteration 2: log pseudolikelihood = -2980438.8
```

Poisson regression Number of obs = 2,500 Wald chi2(19) = 262.50 Log pseudolikelihood = -2980438.8 Prob > chi2 = 0.0000

(Std. err. adjusted for 500 clusters in countyreal)
-----| Robust

	emp	Coefficient	std. err.	z	P> z	[95% conf.	interval]
first_	treat#						
	year#						
c	_tr						
2004	2004	0063802	.0111509	-0.57	0.567	0282356	.0154752
2004	2005	027483	.0190781	-1.44	0.150	0648753	.0099094
2004	2006	0641446	.0224733	-2.85	0.004	1081913	0200978
2004	2007	0704859	.0204208	-3.45	0.001	1105099	0304619
2006	2003	0081647	.0366458	-0.22	0.824	079989	.0636597
2006	2004	0289763	.0258763	-1.12	0.263	0796929	.0217403
2006	2006	.0310817	.0186723	1.66	0.096	0055153	.0676788
2006	2007	0042165	.0335939	-0.13	0.900	0700593	.0616263
2007	2003	.0358582	.0236868	1.51	0.130	0105671	.0822835
2007	2004	.0517571	.0164417	3.15	0.002	.019532	.0839822
2007	2005	.0237174	.0112134	2.12	0.034	.0017395	.0456952
2007	2007	0329817	.009941	-3.32	0.001	0524657	0134976
	1						
first_	treat						
	2004	.4821784	.4354246	1.11	0.268	3712381	1.335595
	2006	.6162276	.3252255	1.89	0.058	0212028	1.253658
	2007	.099236	.244468	0.41	0.685	3799124	.5783844
	1						
	year						
	2004	0476066	.0080213	-5.94	0.000	063328	0318852
	2005	0278586	.0118649	-2.35	0.019	0511134	0046038
	2006	.009081	.016213	0.56	0.575	0226959	.040858
	2007	.0382682	.0136908	2.80	0.005	.0114347	.0651017
	- 1						
	_cons	6.844485	. 1573451	43.50	0.000	6.536094	7.152875

Example 1: Aggregations

1	estat event				
		J D	elta-method		
					[95% conf. interval]
	event.	+ I		 	

-4	-	37.84578	27.92442	1.36	0.175	-16.88508	92.57665
-3		36.91665	23.13761	1.60	0.111	-8.43224	82.26554
-2	-	7.462364	14.88422	0.50	0.616	-21.71018	36.63491
-1		0	(omitted)				
0	-	-13.33389	12.32746	-1.08	0.279	-37.49527	10.82749
1	-	-18.42686	40.35552	-0.46	0.648	-97.52222	60.6685
2	-	-95.3188	36.54186	-2.61	0.009	-166.9395	-23.69806
3		-107.5067	44.45653	-2.42	0.016	-194.6399	-20.37347

estat group

	D Coefficient	elta-method std. err.	z	P> z	[95% conf.	interval]
group 2004 2006 2007	-63.03151 23.89072 -34.94374	28.14208 46.37715 13.54265	-2.24 0.52 -2.58	0.025 0.606 0.010	-118.189 -67.00682 -61.48686	-7.874052 114.7883 -8.400625

estat calendar

	E	elta-method std. err.	z	P> z		interval]
calendar 2004 2005 2006 2007		15.81277 29.74368 33.13277 16.84608	-0.58 -1.35 0.16 -2.19	0.560 0.178 0.877 0.029	-40.21192 -98.37767 -59.7912 -69.83316	21.77301 18.21541 70.08689 -3.797752

qui:estat event, plot

graph export event.png, replace width(1000)

Example 2: Wooldridge Simulation data

```
clear all
   use nonlinear_did/did_common_6_binary, clear
   qui {
   reg y i.w#c.d#c.f04 i.w#c.d#c.f05 i.w#c.d#c.f06 ///
       i.w#c.d#c.f04#c.x i.w#c.d#c.f05#c.x i.w#c.d#c.f06#c.x ///
       f02 f03 f04 f05 f06 ///
       c.f02#c.x c.f03#c.x c.f04#c.x c.f05#c.x c.f06#c.x ///
       d x c.d#c.x, noomitted vce(cluster id)
     est sto m1
10
   qui:margins, dydx(w) at(f02 = 0 f03 = 0 f04 = 1 f05 = 0 f06 = 0) ///
11
       subpop(if d == 1) noestimcheck vce(uncond) post
12
   ereturn display
   est restore m1
   qui:margins, dydx(w) at (f02 = 0 f03 = 0 f04 = 0 f05 = 1 f06 = 0) ///
       subpop(if d == 1) noestimcheck vce(uncond) post
```

```
ereturn display
 est restore m1
  qui:margins, dydx(w) at(f02 = 0 f03 = 0 f04 = 0 f05 = 0 f06 = 1) ///
     subpop(if d == 1) noestimcheck vce(uncond) post
  ereturn display
                            (Std. err. adjusted for 1,000 clusters in id)
                     Unconditional
            | Coefficient std. err. t P>|t| [95% conf. interval]
  ______
        1.w | .0462206 .0367939 1.26 0.209
                                              -.0259816
  (results m1 are active now)
                           (Std. err. adjusted for 1,000 clusters in id)
                      Unconditional
            Coefficient std. err. t P>|t| [95% conf. interval]
  ______
         1.w | .0755069 .0376124 2.01 0.045 .0016985 .1493153
  (results m1 are active now)
                          (Std. err. adjusted for 1,000 clusters in id)
                     Unconditional
            | Coefficient std. err. t > |t| [95% conf. interval]
         1.w | .0445457 .0379857 1.17 0.241 -.0299952 .1190866
  Using jwdid:
1 clear all
use nonlinear_did/did_common_6_binary, clear
qui: jwdid y x, ivar(id) tvar(year) trtvar(w) method(regress)
 estat event, vce(unconditional)
```

| Coefficient std. err. t P>|t| [95% conf. interval]

Unconditional

(Std. err. adjusted for 1,000 clusters in id)

Using Logit

```
clear all
  use nonlinear_did/did_common_6_binary, clear
3 qui {
  logit y i.w#c.d#c.f04 i.w#c.d#c.f05 i.w#c.d#c.f06 ///
       i.w#c.d#c.f04#c.x i.w#c.d#c.f05#c.x i.w#c.d#c.f06#c.x ///
       f02 f03 f04 f05 f06 c.f02#c.x c.f03#c.x c.f04#c.x c.f05#c.x c.f06#c.x ///
       d x c.d#c.x, noomitted vce(cluster id)
     est store m1
   }
10
   qui:margins, dydx(w) at (f02 = 0 f03 = 0 f04 = 1 f05 = 0 f06 = 0) ///
11
       subpop(if d == 1) noestimcheck vce(uncond) post
12
  ereturn display
13
  est restore m1
   qui:margins, dydx(w) at (f02 = 0 f03 = 0 f04 = 0 f05 = 1 f06 = 0) ///
       subpop(if d == 1) noestimcheck vce(uncond) post
  ereturn display
17
  est restore m1
   qui:margins, dydx(w) at(f02 = 0 f03 = 0 f04 = 0 f05 = 0 f06 = 1) ///
       subpop(if d == 1) noestimcheck vce(uncond) post
  ereturn display
```

	Coefficient +					interval]	
	.1217999	.0355845	3.42	0.001	.0520556		
(results m1 are active now) (Std. err. adjusted for 1,000 clusters in id)							
	U Coefficient		z			interval]	
	.1073639		2.89			.1801261	

Using jwdid:

```
clear all
use nonlinear_did/did_common_6_binary, clear
qui: jwdid y x, ivar(id) tvar(year) trtvar(w) method(logit)
estat event, vce(unconditional)
```

		(Std.	err. adj	justed fo	r 1,000 clust	ers in id)
	Coefficient	nconditiona std. err.	z	P> z	[95% conf.	interval]
event	'					
0	.0886639	.0326848	2.71	0.007	.0246029	.1527249
1	.1217999	.0355845	3.42	0.001	.0520556	.1915441
2	.1073639	.0371242	2.89	0.004	.0346018	.1801261

Conclusion

- DID is a popular method for analyzing policy interventions.
- Thanks to the contributions of Wooldridge, Roth and Sant'Anna among others, we have a better understanding of how to implement DID in more complex scenarios.
- One of this important extensions is the use of nonlinear models to better fit the data, and better estimate treatment effects.
- The jwdid command is a simple tool that can help you implement the Wooldridge approach to nonlinear DID.

Thank you

If interested in other work of mine,
Visit my website
Follow me on twitter
or use my Stata packages

References

- Borusyak, Kirill, Xavier Jaravel, and Jann Spiess. 2023. "Revisiting Event Study Designs: Robust and Efficient Estimation." https://arxiv.org/abs/2108.12419.
- Callaway, Brantly, and Pedro H. C. Sant'Anna. 2021. "Difference-in-Differences with Multiple Time Periods." *Journal of Econometrics*, Themed Issue: Treatment Effect 1, 225 (2): 200–230. https://doi.org/10.1016/j.jeconom.2020.12.001.
- Chaisemartin, Clément de, and Xavier D'Haultfœuille. 2020. "Two-Way Fixed Effects Estimators with Heterogeneous Treatment Effects." *American Economic Review* 110 (9): 2964–96. https://doi.org/10.1257/aer.20181169.
- Goodman-Bacon, Andrew. 2021. "Difference-in-Differences with Variation in Treatment Timing." *Journal of Econometrics* 225 (2): 254–77. https://doi.org/https://doi.org/10.1016/j.jeconom.2021.03.014.
- Roth, Jonathan, and Pedro H. C. Sant'Anna. 2023. "When Is Parallel Trends Sensitive to Functional Form?" *Econometrica* 91 (2): 737–47. https://doi.org/10.3982/ECTA19402.
- Roth, Jonathan, Pedro H. C. Sant'Anna, Alyssa Bilinski, and John Poe. 2023. "What's Trending in Difference-in-Differences? A Synthesis of the Recent Econometrics Literature." Journal of Econometrics 235 (2): 2218–44. https://doi.org/10.1016/j.jeconom.2023.03.008.
- Sant'Anna, Pedro H. C., and Jun Zhao. 2020. "Doubly Robust Difference-in-Differences Estimators." *Journal of Econometrics* 219 (1): 101–22. https://doi.org/10.1016/j.jeconom. 2020.06.003.
- Sun, Liyang, and Sarah Abraham. 2021. "Estimating Dynamic Treatment Effects in Event Studies with Heterogeneous Treatment Effects." *Journal of Econometrics*, Themed Issue: Treatment Effect 1, 225 (2): 175–99. https://doi.org/10.1016/j.jeconom.2020.09.006.
- Wooldridge, Jeffrey M. 2021. "Two-Way Fixed Effects, the Two-Way Mundlak Regression, and Difference-in-Differences Estimators." SSRN Journal. https://doi.org/10.2139/ssrn. 3906345.
- ——. 2023. "Simple Approaches to Nonlinear Difference-in-Differences with Panel Data." The Econometrics Journal 26 (3): C31–66. https://doi.org/10.1093/ectj/utad016.