

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ

КАФЕДРА КОМПЬЮТЕРНЫЕ СИСТЕМЫ И СЕТИ (ИУ6)

НАПРАВЛЕНИЕ ПОДГОТОВКИ 09.03.04 Программная инженерия

ОТЧЕТ

по лабораторной работе № 4

Название: Исследование мультиплексоров

Дисциплина: Архитектура ЭВМ

Студент	ИУ7-42Б	13 мая 2022 г.	А.П. Лемешев	
	(Группа)	(Подпись, дата)	(И.О. Фамилия)	
Преподаватель				
		(Подпись, дата)	(И.О. Фамилия)	

1. Цель работы

Изучение принципов построения, практического применения и экспериментального исследования мультиплексоров.

2. Ход выполнения работы

Задание №1

Рис. 1 - ИС ADG508

Исследование ИС ADG408 или ADG508 в качестве коммутатора MUX 8-1 цифровых сигналов:

1. на информационные входы D0 ...D7 мультиплексора подать комбинацию сигналов, заданную преподавателем из табл. 2. Логические уровни 0 и 1 задавать источниками напряжения U=5 B и 0 B (общая);

- 2. на адресные входы A2, A1, A0 подать сигналы Q3, Q2. Q1 соответственно с выходов 4-разрядного двоичного счетчика (младший разряд Q0). На вход счетчика подать импульсы генератора с частотой 500 кГц.
- 3. снять временную диаграмму сигналов при EN=1 и провести ее анализ. Наблюдение сигналов выполнить на логическом анализаторе.

Вариант №13: 1 1 0 0 0 1 1 0;

Рис. 2 – схема коммутатора MUX8 – 1 цифровых сигналов

Рис. 3 – временная диаграмма коммутатора

Вывод: таким образом, проделав данное задание и изучив сигналы, можно сделать вывод, что они совпадают с входными данными.

Задание №2

Исследование ИС ADG408 или ADG508 (рис.6) в качестве коммутатора MUX 8 – 1 аналоговых сигналов:

- 1. на информационные входы D0 ...D7 мультиплексора подать дискретные уровни напряжений с источников напряжения UCC (приложение Multisim): 0 B; 0.7 B; 1.4 B; 2.1 B; 2.8 B; 3.5 B; 4.2 B; 5.0 B;
- 2. на адресные входы A2, A1, A0 подать сигналы Q3, Q2. Q1 соответственно с выходов 4-разрядного двоичного счетчика (младший разряд Q0). На вход счетчика подать импульсы генератора с частотой 500 кГц;

3. снять временную диаграмму сигналов при EN=1 и провести ее анализ. Наблюдение сигналов выполнить на логическом анализаторе, выходного сигнала мультиплексора – на логическом анализаторе и осциллографе. Совместить развертки сигналов, регистрируемых логическим анализатором и осциллографом

Рис. 4 - схема коммутатора MUX8 - 1 цифровых сигналов

Рис. 5 - временная диаграмма коммутатора

Вывод: таким образом, проделав данное задание, можно увидеть, что результатом работы мультиплексора будет 1 при достижении напряжения больше, чем EN/2.

Задание №3

Исследование ИС ADG408 или ADG508 (рис.6) как коммутатора MUX 8 - 1 цифровых сигналов в качестве формирователя ФАЛ четырех переменных.

Вариант №13: Φ АЛ(0, 1, 3, 4, 7, 9, 10, 11, 13) => (1101 1001 0111 0100).

Проверить работу формирователя в статическом и динамическом режимах. Снять временную диаграмму сигналов формирователя ФАЛ и провести ее анализ.

Табл. 1 – таблица истинности

Набор	X_4	X_3	X_2	X_1	f	Примечание
0	0	0	0	0	1	D0 = 1
1	0	0	0	1	1	
2	0	0	1	0	0	D1 = X1
3	0	0	1	1	1	
4	0	1	0	0	1	D2 = !X1
5	0	1	0	1	0	
6	0	1	1	0	0	D3 = X1
7	0	1	1	1	1	
8	1	0	0	0	0	D4 = 1
9	1	0	0	1	1	
10	1	0	1	0	1	D5 = 1
11	1	0	1	1	1	
12	1	1	0	0	0	D6 = X1
13	1	1	0	1	1	
14	1	1	1	0	0	D7 = 0
15	1	1	1	1	0	

Рис. 6 – схема коммутатора MUX8 – 1 цифровых сигналов в качестве формирования ФАЛ четырёх переменных

Рис. 7 – временная диаграмма коммутатора

Вывод: таким образом, проделав данное задание, был исследован ИС ADG408 или ADG508 как коммутатора MUX 8-1 цифровых сигналов в качестве формирователя Φ AЛ четырех переменных.

Задание №4

Наращивание мультиплексора. Построить схему мультиплексора MUX 16-1 на основе простого мультиплексора MUX 4-1 и дешифратора DC 2-4. Исследовать мультиплексора MUX 16-1 в динамическом режиме. На адресные входы подать сигналы с 4-разрядного двоичного счетчика, на информационные входы D0 ...D15. Провести анализ временной диаграммы сигналов мультиплексора MUX 16-1. мультиплексора MUX 16-1.

Вариант №13: (1101 1001 0111 0100).;

Рис. 8 – схема мультиплексора MUX16 – 1 на основе простого мультиплексора MUX4 – 1 и дешифратора DC 2

Рис. 9 - Временная диаграмма мультиплексора МҮХ16 – 1

Вывод: проделав данное задание, был исследован мультиплексор MUX 16 – 1 в динамическом режиме.

3. Вывод

В ходе лабораторной работы были изучены принципы построения, практического применения и экспериментального исследования мультиплексоров.

4. Контрольные вопросы

1. Что такое мультиплексор?

Mультиплексор — это функциональный узел, имеющий п адресных входов и N = 2п информационных входов и выполняющий коммутацию на выход того информационного сигнала, адрес (т.е. номер) которого установлен на адресных входах. Иначе мультиплексор — это адресный

коммутатор. Мультиплексор обозначается MUX N -1 или MS N -1, т.е. коммутатор, имеющий N информационных входов и один выход.

2. Какую логическую функцию выполняет мультиплексор?

$$Y = EN \cdot \bigvee_{j=0}^{2^{n}-1} D_{j} \cdot m_{j}(A_{n-1}, A_{n-2}, ..., A_{i}, ..., A_{1}, A_{0})$$

 A_i — адресные входы и сигналы, $i=\overline{0,n-1}$;

 D_i – информационные входы и сигналы, $j = \overline{0, 2^n - 1}$;

 m_i – конституента единицы (конъюнкция всех переменных A_i);

EN – вход и сигнал разрешения (стробирования).

3. Каково назначение и использование входа разрешения?

- собственно для разрешения работы мультиплексора;
- для стробирования;
- для наращивания числа информационных входов.

При EN=1 разрешается работа мультиплексора и выполнение им своей функции, при EN=0 работа мультиплексора запрещена и на его выходах устанавливаются неактивные уровни сигналов.

4. Какие функции может выполнять мультиплексор?

Мультиплексоры широко применяются для построения:

- коммутаторов-селекторов;
- постоянных запоминающих устройств емкостью $2^n \times 1$ бит, комбинационных схем, реализующих функции алгебры логики;
- преобразователей кодов (например, параллельного кода в последовательный) и других узлов.

5. Какие способы наращивания мультиплексоров?

- по пирамидальной схеме соединения мультиплексоров меньшей размерности,
- путем выбора мультиплексора группы информационных входов по адресу (т.е. номеру) мультиплексора с помощью дешифратора адреса мультиплексора группы, а затем выбором информационного сигнала

мультиплексором группы по адресу информационного сигнала в группе.

6. Поясните методику синтеза формирователя ФАЛ на мультиплексоре?

Реализация ФАЛ п переменных на мультиплексоре с п адресных входами тривиальна: на адресные входы подаются переменные, на информационные входы — значения ФАЛ на соответствующих наборах переменных. На выходе получаем значения ФАЛ в соответствии с наборами переменных. В этом случае мультиплексор — ПЗУ.

Для реализации Φ АЛ n+1 переменных на адресные входы мультиплексора подаются n переменных, на информационные входы - (n+1)-я переменная или ее инверсия, константы 0 или 1 в соответствии со значениями Φ АЛ.

7. Почему возникают ложные сигналы на выходе мультиплексора? Как их устранить?

Ложные сигналы на выходе мультиплексора возникают из-за гонок входных сигналов. Для их вход EN используется как стробирующий: для выделения полезного сигнала на вход EN подается сигнал в интервале времени, свободном от действия ложных сигналов.