CCE RF/PF

ಕರ್ನಾಟಕ ಶಾಲಾ ಪರೀಕ್ಷೆ ಮತ್ತು ಮೌಲ್ಯನಿರ್ಣಯ ಮಂಡಲಿ, ಮಲ್ಲೇಶ್ವರಂ, ಬೆಂಗಳೂರು - 560 003

KARNATAKA SCHOOL EXAMINATION AND ASSESSMENT BOARD, MALLESHWARAM, BENGALURU - 560 003

ಮಾರ್ಚ್/ಏಪ್ರಿಲ್ 2025 ರ ಪರೀಕ್ಷೆ - 1

MARCH/APRIL 2025 EXAMINATION - 1

ಮಾದರಿ ಉತ್ತರಗಳು

MODEL ANSWERS

ಸಂಕೇತ ಸಂಖ್ಯೆ : $\mathbf{81-E}$ Code No. : $\mathbf{81-E}$

ವಿಷಯ: ಗಣಿತ

Subject: MATHEMATICS

(ಶಾಲಾ ಅಭ್ಯರ್ಥಿ / ಖಾಸಗಿ ಅಭ್ಯರ್ಥಿ)

(Regular Fresh / Private Fresh)

(ಆಂಗ್ಲ ಮಾಧ್ಯಮ / English Medium)

ದಿನಾಂಕ : 24. 03. 2025] [ಗರಿಷ್ಠ ಅಂಕಗಳು : 80

Date: 24. 03. 2025 [Max. Marks: 80

Qn. Nos.	Ans. Key		Value Poi	nts		Marks allotted
I.		Multiple choice	questions :		8 × 1 = 8	
1.		LCM of 2 and 3 is	s			
		(A) 2	(B)	3		
		(C) 5	(D)	6		
		Ans.:				
	(D)	6				1

CCE RF/PF(A)/101/1811 (MA)

[Turn over

Qn. Nos.	Ans. Key	Value Points	Marks allotted
2.		If the lines represented by the equations $a_1x + b_1y + c_1 = 0$ and $a_2x + b_2y + c_2 = 0$ are coincident, then the correct relation is (A) $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$ (B) $\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$ (C) $\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$ (D) $\frac{a_1}{a_2} \neq \frac{b_1}{b_2} = \frac{c_1}{c_2}$	
	(A)	Ans.: $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$	1
3.	(D)	The quadratic equation in the following is (A) $x^3 - 6x$ (B) $p(x) = x^2 + 7x$ (C) $3x = 9$ (D) $x^2 + 3x + 4 = 0$ Ans.: $x^2 + 3x + 4 = 0$	•
4.	(D)	In the following, the shapes which are always similar are, (A) any two equilateral triangles (B) square and rectangle (C) square and rhombus (D) any two trapeziums Ans.:	1
5.	(A)	any two equilateral triangles The volume of a sphere of radius 'r' units is (A) $\frac{2}{3} \pi r^3$ cubic units (B) $\frac{4}{3} \pi r^3$ cubic units (C) $\frac{1}{3} \pi r^3$ cubic units (D) $\frac{3}{2} \pi r^3$ cubic units Ans.:	1
	(B)	$\frac{4}{3}\pi r^3$ cubic units	1

2

Qn. Nos.	Ans. Key	Value Points	Marks allotted
c		The distance of a point $P(x, y)$ from the origin is	
6.		(A) $\sqrt{x^2 - y^2}$ (B) $\sqrt{x + y}$ (C) $\sqrt{x^2 + y^2}$ (D) $\sqrt{x - y}$	
		(C) $\sqrt{x^2 + y^2}$ (D) $\sqrt{x - y}$	
		Ans.:	
	(C)	$\sqrt{x^2+y^2}$	1
7.		The common difference of the arithmetic progression $-1, -3, -5 \dots$ is	
		(A) -1 (B) 2	
		(C) -2 (D) 3	
		Ans.:	
	(C)	- 2	1
8.		In the given figure 'O' is the centre of the circle and the length of the arc APB is 4π cm. If $OB = 9$ cm, then the measure of angle θ is	
		$O \circ \Theta$ A A	
		(A) 60° (B) 80° (C) 85° (D) 70°	
		Ans.:	
	(B)	80°	1

Qn. Nos.	Valu	ue Points	Marks allotted
II.	Answer the following que	estions: $8 \times 1 = 8$	
	(Direct answers from	Q. Nos. 9 to 16 full marks	
	should be given)		
9.	Write the degree of a linear	polynomial.	
	Ans.:		
	1 (one)		1
10.	Write the formula to find t	he total surface area of a cube	
	of edge 'a' units.		
	Ans.:		
	$6a^2$ sq.units		1
11.	In the given frequency dist	ribution table, write the modal	
	class:		
	Class-interval	Frequency	
	1 – 3	4	
	3 – 5 5 – 7	8 2	
	7 – 9	2	
	Ans.:		
	3 – 5		1
10		inen a sailela arrame	1
12.	Write the probability of an <i>Ans.</i> :	impossible event.	
	0		1
13.	How many solutions do the $2x + 2y = 0$ and $2x + 2y$		
	2x + 3y - 9 = 0 and $3x + 2yAns.:$	y – 0 – 0 Has r	
	One solution / unique solu	ution	1

Qn. Nos.	Value Points	Marks allotted
14.	Write the zeroes of the polynomial $y = p(x)$ in the given	
	graph.	
	y = p(x)	
	1	
	x ⁴ -8 -4 -3 -2 -4 0 1 2 3 4 6 X	
	1	

	-74	
	Y	
	Ans.:	
	$-1 \text{ and } 4$ $\frac{1}{2} + \frac{1}{2}$	1
15.	Write the roots of the quadratic equation $x(x+2) = 0$.	
	Ans.:	
	0 and -2 $\frac{1}{2} + \frac{1}{2}$	1
16.	In the given figure, write the similarity criterion used to	
	show that \triangle <i>ABC</i> ~ \triangle <i>QRP</i> .	
	$\frac{A}{5}$	
	$2\sqrt{3}$	
	$B \stackrel{L}{\longrightarrow} C \qquad Q \stackrel{L}{\longrightarrow} R$	
	CCE RF/PF(A)/101/1811 (MA)	Turn over

CCE RF/PF(A)/101/1811 (MA)

[Turn over

Qn. Nos.	Value Points	Marks allotted
	Ans.:	
	SSS or side – side - Side	1
	Note : Q. No. from 9 to 16 give full marks for direct	
	answer.	
III.	Answer the following questions: $8 \times 2 = 16$	
17.	In the given figure, $\triangle ABC = 90^{\circ}$. Write the values of the	
	following:	
	i) $\sin \alpha$	
	ii) $\tan \theta$	
	θ 5 units	
	3 units	
	$B \longrightarrow \alpha \longrightarrow C$	
	Ans.:	
	(i) $\sin \alpha = \frac{3}{5}$	
	(ii) $\tan \theta = \frac{4}{3}$	2
18.	Prove that $6 + \sqrt{2}$ is an irrational number.	
	OR	
	The HCF and LCM of two positive integers are respectively	
	4 and 60. If one of the integers is 20, then find the other	
	integer.	
	Ans.:	
	Let us assume to the contrary that $6+\sqrt{2}$ is rational.	
	$6+\sqrt{2}=\frac{a}{b}$ ' a' and ' b' are coprimes ($b\neq 0$)	
	$\sqrt{2} = \frac{a}{b} - 6$	
	$\sqrt{2} = \frac{a}{b} - 6$ $\sqrt{2} = \frac{a - 6b}{b}$ $\sqrt{2}$	

Qn. Nos.	Value Points	Marks allotted
	This shows that $\sqrt{2}$ is rational.	
	But this contradicts the fact that $\sqrt{2}$ is irrational.	
	This contradiction has arisen because of our wrong assumption.	
	\therefore 6+ $\sqrt{2}$ is an irrational number. $\frac{1}{2}$	2
	OR	
	Let 'a' and 'b' be two positive integers	
	HCF(a, b) = 4	
	LCM (a, b) = 60	
	a = 20	
	<i>b</i> = ?	
	$a \times b = HCF(a, b) \times LCM(a, b)$	
	$20 \times b = 4 \times 60$	
	$b = \frac{4 \times 60^3}{20_1}$	
	\mathcal{L}_{1}	
	b = 12	2
19.	Solve the given pair of linear equations by elimination	
	method:	
	2x + y = 10	
	x - y = 2	
	Ans.:	
	$2x + y = 10 \dots (1)$	
	Adding $x - y = 2$	
	4.2	
	$x = \frac{12}{3}$	
	x = 4	
	Substitute $x = 4$ in equation (1)	
	2 (4) + y = 10	
	8 + y = 10	
	y = 10 - 8	
	y=2	
	Note: Marks should be given if the value of 'x' is	
	substituted in equation (2)	2
20.	Find the roots of the quadratic equation	
	$x^2 + 8x + 12 = 0.$	
	OR	

Qn. Nos.	Value Points	Marks allotted
	Find the discriminant of the quadratic equation	
	$x^2 + 4x + 5 = 0$ and hence write the nature of the roots.	
	Ans.:	
	$x^2 + 8x + 12 = 0$	
	$x^2 + 6x + 2x + 12 = 0$ \tag{1/2}	
	x(x+6)+2(x+6)=0	
	$(x+6)(x+2)=0$ $\frac{1}{2}$	
	x + 6 = 0 or $x + 2 = 0$	
	x = -6 or $x = -2$	2
	Note: If alternate method is followed to get correct answer, then give full marks.	
	OR	
	$x^2 + 4x + 5 = 0$	
	$ax^2 + bx + c = 0$	
	a = 1, b = 4, c = 5	
	Discriminant = $b^2 - 4ac$	
	$= (4)^2 - 4(1)(5)$	
	= 16 - 20	
	= -4 < 0	2
	Nature of roots : No real roots.	
21.	Find the sum of first 20 terms of the arithmetic progression 5, 9, 13, using formula.	
	Ans.: a = 5 d = 9 - 5 = 4 n = 20	
	$S_n = \frac{n}{2} [2a + (n-1)d]$ \frac{1}{2}	
	$S_{20} = \frac{20}{2} [2(5) + (20 - 1) 4]$	
	= 10 [10 + 76] = 10 (86)	
	$= 10 (86)$ $S_{20} = 860$ $\frac{1}{2}$	
	Note: If alternate method is used to get the correct answer, then give full marks.	2

Qn. Nos.	Value Points	Marks allotted
22.	In the given figure, PA and PB are tangents to the circle with centre 'O'. If $PA = 4$ cm and $APO = 40^{\circ}$, then find	
	the measure of AOB and length of PB.	
	O A	
	Ans.:	
	In $\triangle OAP$, $\angle OAP = 90^{\circ}$ [:: $OA \perp AP$]	
	$\therefore \angle AOP = 180^{\circ} - (90^{\circ} + 40^{\circ})$	
	= 180° – 130°	
	$\angle AOP = 50^{\circ}$	
	$\angle AOP = \angle BOP$ $\left[\because \Delta AOP \cong \Delta BOP \right]$	
	$\therefore \angle BOP = 50^{\circ}$	
	$\therefore \angle AOB = 50^{\circ} + 50^{\circ} = 100^{\circ}$ \frac{1}{2}	
	$PA = PB$ (By theorem) : $PB = 4$ cm $\frac{1}{2}$	
	Note: If alternate method is used to get correct answer,	
	then give full mars.	2
23.	According to Fundamental Theorem of Arithmetic, if	
	$40 = x^y . z$, then find the values of x , y and z .	
	Ans.: 2 40 2 20 2110	
	5	
	$40=2^3 \times 5^1$ ½	
	Given $40 = x^y \times z$	
	$\therefore x = 2 \qquad y = 3 \qquad z = 5 \qquad \frac{1}{2} + \frac{1}{2} + \frac{1}{2}$	2

Qn. Nos.	Value Points	Marks allotted
24.	If $A(1, y)$, $B(4, 3)$, $C(x, 6)$ and $D(3, 5)$ are the	
,	vertices of a parallelogram taken in an order, then find	
	the values of x and y .	
	C (x, 6)	
	Ans.:	
	Mid-point of $AC = Mid-point$ of BD (Diagonals of a	
	parallelogram bisect each other)	
	$\left(\frac{x+1}{2}, \frac{6+y}{2}\right) = \left(\frac{4+3}{2}, \frac{3+5}{2}\right)$	
	$\left(\frac{x+1}{2}, \frac{6+y}{2}\right) = \left(\frac{7}{2}, 4\right)$	
	$\frac{x+1}{2} = \frac{7}{2} \qquad \frac{6+y}{2} = 4$	
	x + 1 = 7 $6 + y = 8$	
	x = 7 - 1 $y = 8 - 6$	
	x = 6 $y = 2$	
	Finding $x \frac{1}{2}$	
	Finding $y \frac{1}{2}$	
	Note: If alternate method is used to get correct answer, then give full marks.	2
IV.	Answer the following questions: $9 \times 3 = 27$	
25.	Find the zeroes of the quadratic polynomial $p(x) = x^2 + 7x + 10$ and verify the relationship between the zeroes and the coefficients. Ans.: $p(x) = x^2 + 7x + 10$ $= x^2 + 5x + 2x + 10$	
	=x(x+5)+2(x+5)	
	p(x) = (x+5)(x+2) 1/2	
	(x+5)(x+2)=0	
	(x+5) (x+2) = 0 x+5=0 or $x+2=0x=-5$ or $x=-2$	
	$x = -5$ or $x = -2$ $\frac{1}{2}$	

Qn. Nos.	Value Points	Marks allotted
	- 5 and - 2 are the zeroes of given polynomial.	
	Sum of zeroes = $-2 + (-5) = -7 = \frac{-(7)}{1}$	
	$= \frac{-\operatorname{coefficient of } x}{\operatorname{coefficient of } x^2} \left(\frac{-b}{a}\right) $ 1	
	Product of zeroes = $(-2) \times (-5) = 10 = \frac{10}{1}$	
	$= \frac{\text{constant term}}{\text{coefficient of } x^2} \left(\frac{c}{a}\right) \qquad 1$	3
26.	Prove that "The tangent at any point of a circle is perpendicular to the radius through the point of contact". <i>Ans.</i> :	
	R	
	$Y \qquad P \qquad Q \qquad X \qquad \qquad 1/2$	
	Data: 'O' is the centre of the circle. XY is the tangent at	
	' P '. OP is the radius.	
	To prove : $OP \perp XY$.	
	Construction: Take a point Q' on XY other than P' and join QQ . Let it intersect the circle at R' .	
	Proof: From the figure, $OQ > OR$.	
	But $OR = OP$ (radii of the same circle) $\frac{1}{2}$ $OQ > OP$.	
	This happens for every point on the line XY except the point P .	
	\therefore <i>OP</i> is the shortest distance from <i>O</i> to the points on <i>XY</i> .	
	$\therefore OP \perp XY$	
	Note: If the theorem is proved as given in textbook give full marks.	3
27.	Prove that :	
_,.	$\frac{\cos A}{1+\sin A} + \frac{1+\sin A}{\cos A} = 2 \sec A.$	
	OR	

Qn. Nos.	Value Points	Marks allotted
	Find the value of:	
	$\left(\frac{5\cos^2 60^\circ + 4\sec^2 30^\circ - \tan^2 45^\circ}{\sin^2 30^\circ + \cos^2 30^\circ}\right)$	
	Ans.:	
	LHS = $\frac{\cos A}{1 + \sin A} + \frac{1 + \sin A}{\cos A}$	
	$= \frac{\cos^2 A + (1 + \sin A)^2}{\cos A (1 + \sin A)}$	
	$= \frac{\cos^2 A + 1 + \sin^2 A + 2\sin A}{\cos A (1 + \sin A)}$ ¹ / ₂	
	$= \frac{1+1+2\sin A}{\cos A(1+\sin A)} \qquad [::\sin^2 A + \cos^2 A = 1] \frac{1}{2}$	
	$=\frac{2+2\sin A}{\cos A(1+\sin A)}$	
	$=\frac{2(1+\sin A)}{\cos A(1+\sin A)}$	
	$=\frac{2}{\cos A}$	
	$= 2 \sec A \qquad \left[\because \frac{1}{\cos A} = \sec A \right] \qquad \frac{1}{2}$	
	LHS = RHS	3
	OR	
	$\cos 60^{\circ} = \frac{1}{2}$, $\sec 30^{\circ} = \frac{2}{\sqrt{3}}$, $\tan 45^{\circ} = 1$ $\frac{1}{2} + \frac{1}{2} + \frac{1}{2}$	
	$\sin 30^{\circ} = \frac{1}{2}, \cos 30^{\circ} = \frac{\sqrt{3}}{2}$	
	$= \frac{5\left(\frac{1}{2}\right)^2 + 4\left(\frac{2}{\sqrt{3}}\right)^2 - (1)^2}{\left(\frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2}$	
	$= \frac{5\left(\frac{1}{4}\right) + 4\left(\frac{4}{3}\right) - 1}{\frac{1}{4} + \frac{3}{4}}$	

12

Qn. Nos.	Value Points	Marks allotted
	$= \frac{\frac{5}{4} + \frac{16}{3} - 1}{1}$ $= \frac{15 + 64 - 12}{12}$	
	$=\frac{67}{12}$	3
	Note: If directly taken as $\sin^2 30^\circ + \cos^2 30^\circ = 1$, then also	
	give full marks.	
28.	In the given figure 'O' is the centre of the circle of radius 21 cm. If $\triangle AOB = 60^\circ$, then find the area of the segment	
	APB.	
	[Take $\sqrt{3} = 1.73$]	
	O A P	
	Ans.: θ	
	Area of the sector $OAPB = \frac{\theta}{360^{\circ}} \times \pi r^2$	
	$=\frac{\cancel{60^{\circ}}}{\cancel{360^{\circ}}\cancel{62}}\times\frac{\cancel{22^{11}}}{\cancel{7}}\times\cancel{21^{\cancel{3}}}\times\cancel{21}$	
	= 11 × 21	
	$= 231 \text{ cm}^2$	
	ΔOAB is an equilateral triangle	
	Area of equilateral $\triangle OAB = \frac{\sqrt{3}}{4}a^2$	
	$= \frac{1 \cdot 73}{4} \times 21 \times 21$ $= \frac{762 \cdot 93}{4}$	
	= 190.73 cm^2	

CCE RF/PF(A)/101/1811 (MA) [Turn over

Qn.	Value Points	Marks
Nos.	Area of the segment \ Area of sector \ (area of)	allotted
29.	Area of the segment $=$ Area of sector $=$ Area of sector $=$ Area of the segment $=$ Area of sector $=$ Ar	3
	internally in the ratio 2:3.	
	OR	
	Find a relation between x and y such that the point (x, y) is equidistant from the points $(3, 6)$ and $(-3, 4)$ <i>Ans.</i> :	
	(-1,7) $(4,-3)$ $2:3$	
	x_1, y_1 x_2, y_2 $m_1 = 2, m_2 = 3$	
	$P(x, y) = \left(\frac{m_1 x_2 + m_2 x_1}{m_1 + m_2}, \frac{m_1 y_2 + m_2 y_1}{m_1 + m_2}\right)$	
	$= \left(\frac{2(4)+3(-1)}{2+3}, \frac{2(-3)+3(7)}{2+3}\right)$	
	$= \left(\frac{8-3}{5}, \frac{-6+21}{5}\right)$	
	$=\left(\frac{5}{5},\frac{15}{5}\right)$	
	P(x, y) = (1, 3)	3
	OR	
	P(x,y) $A(3,6)$ $B(-3,4)$ $PA = PB$	
	$\sqrt{(x-3)^2 + (y-6)^2} = \sqrt{(x+3)^2 + (y-4)^2}$ Squaring on both sides	
	$(x-3)^2 + (y-6)^2 = (x+3)^2 + (y-4)^2$	
	$x^{2} + 9 - 6x + y^{2} + 36 - 12y = x^{2} + 9 + 6x + y^{2} + 16 - 8y$	
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	

Qn. Nos.		Value Po	ints			Marks allotted
	-12x - 4y + 20 = 0)				
	$\begin{array}{c} \div -4 \\ 3x + y - 5 = 0 \end{array}$				1/2	
	_				/2	
30.	Find the mean for					
		ss-interval	Freque	псу		
		10 – 20	2			
		20 – 30	3			
		30 – 40	6			
		10 – 50	5			
		50 – 60	4			
		OR				
	Find the median for		ng data :			
		ss-interval	Frequei	псу		
		15 – 20	4			
		20 – 25	5			
		25 – 30	10			
		30 – 35	5			
		35 – 40	6			
	Ans.:	T	1			
	Class interval	frequency	Mid-point	$x_i f_i$		
		(f_i)	x_i			
	10 – 20	2	15	30		
	20 - 30	3	25	75		
	30 - 40	6 5	35	210		
	40 – 50 50 – 60	4	45 55	225 220		
	30 00	$\sum f_i = 20$	33	$\sum f_i x_i = 7$	760	
		· ·			2	
	$Mean = \overline{X} = \frac{\sum f_i x_i}{\sum f_i}$	-			1/2	
	$=\frac{760}{20}$					
	Mean $(\overline{X}) = 38$				1/2	3
		OR				

Qn. Nos.		Value Points		Marks allotted
	Class interval	frequency	Cumulative frequency	
	15 – 20	4	4	
	20 - 25	5	9	
	25 – 30	10	19	
	30 – 35	5	24	
	35 – 40	6	30	
		n = 30		
			1	
	$\frac{n}{2} = \frac{30}{2} = 15$, $t = 25$, c	7	5 ½	
	Median = $l + \left\lfloor \frac{\frac{n}{2} - c}{f} \right\rfloor$	$\left \frac{f}{dt} \right \times h$	1/2	
	$= 25 + \left[\frac{15 - 10}{10} \right]$	_		
	$= 25 + \frac{6}{10} \times \frac{6}{10}$	5	1/2	
	= 25 + 3 Median = 28		1/2	3
31.	card is drawn raprobability of getting i) a perfect squar	andomly from t g a card bearing –		
	n(s)=	20	1/2	
	(i) $A = \{1, 4, 9, 16\}$	$\{0\}$: $n(A)=4$	1/2	
	$P(A) = \frac{n(A)}{n(S)}$, ,	1/2	
	$P(A) = \frac{4}{20}$	or $P(A) = \frac{1}{5}$	1/2	
				1

allotted	Value Points	Qn.
	(ii) $B = \{ 6, 12, 18 \}$ $\therefore n(B) = 3$	Nos.
	$P(B) = \frac{n(B)}{n(S)}$ $P(B) = \frac{3}{20}$ ¹ / ₂	
3	$P(B) = \frac{3}{1/2}$	
	8	32.
	angled triangle is 5 cm. If the area of the triangle is	
	150 cm ² , then find the base and altitude of the triangle.	
	OR The sum of the squares of two consecutive even positive	
	integers is 164. Find the integers.	
	Ans.:	
	Let altitude = x cm, then $\frac{1}{2}$	
	base = $(x-5)$ cm	
	Area of triangle = 150 cm ²	
	$\frac{1}{2}$. $x.(x-5)=150$	
	$x^2 - 5x = 300$	
	$x^2 - 5x - 300 = 0$ \frac{1}{2}	
	$x^2 - 20x + 15x - 300 = 0$	
	x(x-20) + 15(x-20) = 0	
	(x-20)(x+15)=0	
	Base = $x - 5 = 20 - 5 = 15$ cm	
	Note: If x and $x + 5$ are considered to solve the problem	
3	to get the correct answer, then give full marks.	
	OR	
	Let the two consecutive even positive integers be x and	
	(x+2)	
	By data $x^2 + (x+2)^2 = 164$	
	$x^2 + x^2 + 2^2 + 4x = 164$	
l		
	$2x^2 + 4x + 4 - 164 = 0$ \frac{1}{2}	
	$x^2 - 5x - 300 = 0$	

Qn. Nos.	Value Points	Marks allotted
	÷ 2 $x^{2} + 2x - 80 = 0$ $x^{2} + 10x - 8x - 80 = 0$ $x(x+10) - 8(x+10) = 0$ $(x+10)(x-8) = 0$	
	x+10=0 or $x-8=0x = -10$ or $x = 8x$ is positive integer $x = 8x + 2 = 8 + 2 = 10$	2
33.	Two consecutive even positive integers are 8 and 10. $\frac{1}{2}$ Two line segments AB and CD intersect each other at a point 'O'. Join AC and BD such that $AC \mid\mid BD$ and prove that $\Delta AOC \sim \Delta BOD$. Ans. A To draw $AB \& CD \rightarrow \frac{1}{2} + \frac{1}{2}$ Joining $AC \& BD \rightarrow \frac{1}{2}$	3
	In $\triangle ACO$ and $\triangle BDO$ $\angle CAO = \angle DBO \qquad [Alternate angles AC \mid \mid BD \mid 1/2 \angle ACO = \angle BDO \angle AOC = \angle BOD \qquad [Vertically opposite angles] 1/2 \therefore \triangle AOC \sim \triangle BOD \qquad [AAA similarity] \qquad 1/2 Note: If AA similarity criterion is used to prove \triangle ACO \sim \triangle BDO, then also give full marks.$	3
v.	Answer the following questions: $4 \times 4 = 16$	
34.	Find the solution of the given pair of linear equations by graphical method: $x + 2y = 8$ $x + y = 5$	

18

Qn. Nos.	Value Points	Marks allotted
	Data : In $\triangle ABC$, $DE \mid \mid BC$	
	To prove : $\frac{AD}{DB} = \frac{AE}{EC}$	
	Construction : Draw $DM \perp AC$ and $EN \perp AB$. Join BE and CD	
	Proof: $\frac{ar(\Delta ADE)}{ar(\Delta BDE)} = \frac{\frac{1}{2} \times AD \times EN}{\frac{1}{2} \times DB \times EN} = \frac{AD}{DB}$ (1)	
	$\frac{ar(\Delta ADE)}{ar(\Delta DEC)} = \frac{\frac{1}{2} \times AE \times DM}{\frac{1}{2} \times EC \times DM} = \frac{AE}{EC} \dots (2)$	
	ΔBDE and ΔDEC are on the same base DE and between	
	the same parallels BC and DE .	
	$\therefore ar(\Delta BDE) = ar(\Delta DEC) \dots (3)$ From (1), (2), and (3)	
	From (1), (2) and (3) $\frac{AD}{DB} = \frac{AE}{EC}$ ¹ / ₂	4
	Note: If the theorem is proved as in the textbook, then	·
2.5	give full marks.	
36.		
	cm and radius 60 cm standing on a hemisphere of radius	
	60 cm is placed upright in a right circular cylinder full of	
	water such that it touches the bottom as shown in the	
	figure. If the radius of the cylinder is 60 cm and height is	
	180 cm, then find the volume of water left in the cylinder	
	in terms of π .	
	120 cm	
	60 cm	
	OR	

CCE RF/PF(A)/101/1811 (MA)

	,	<u> </u>
Qn.	Value Points	Marks
Nos.	1 3320 2 22202	allotted
	A solid is made of a cylinder with a hemispherical	
	depression having the same radius ('r' cm) as that of	
	cylinder at the top end as shown in the figure. The	
	volume of the hemispherical depression is $18000 \pi \text{ cm}^3$.	
	If the height of the cylinder is 145 cm, then find the total	
	surface area of the solid.	
	145 cm	
	Ans.:	
	Volume of cylinder = $\pi r^2 h$	
	$= \pi (60)^2 \times 180$	
	$= \pi(3600) \times 180$	
	$= 6,48,000 \pi \text{cm}^3$	
	Volume of the solid =	
	$= \frac{1}{3}\pi r^2 h + \frac{2}{3}\pi r^3$	
	$=\frac{1}{3}\pi r^2[h+2r]$	
	$= \frac{1}{3}\pi \times 60^2 \left[120 + 2(60)\right] $ ½	
	$= \frac{1}{2} \times \pi \times 60^2 \times 240^{80}$	
	$= 2,88,000 \pi \text{ cm}^3$ Volume of water $= \begin{cases} \text{Volume of} \\ \text{Cylinder} \end{cases} - \begin{cases} \text{Volume of} \\ \text{Solid} \end{cases} \frac{1}{2}$ $= 648000\pi - 288000 \pi$	
	$= 3,60,000\pi \text{ cm}^3$	4
	OR	

81-E 22

Qn. Nos.	Value Points	Marks allotted
	Volume of Hemisphere = $\frac{2}{3}\pi r^3$	
	$18000 \pi = \frac{2}{3} \times \pi \times r^3$	
	J	
	$r^3 = \frac{18000 \times 3}{2}$	
	$r^3 = 27000$ r = 30 cm	
	TSA of solid = $\left\{\begin{array}{c} CSA \text{ of} \\ Hemisphere \end{array}\right\} + \left\{\begin{array}{c} CSA \text{ of} \\ cylinder \end{array}\right\} + \left\{\begin{array}{c} Area \text{ of} \\ circular \\ base \end{array}\right\}^{1/2}$	
	= $2\pi r^2 + 2\pi r h + \pi r^2$ = $\pi r [2r + 2h + r]$	
	$= \frac{22}{7} \times 30 \left[2 \times 30 + 2 \times 145 + 30 \right]$	
	$= \frac{22}{7} \times 30 \times [60 + 290 + 30]$	
	$= \frac{22}{7} \times 30 \times 380$	
	$= \frac{250800}{7} \text{ cm}^2$	
	$\approx 35828.5 \text{ cm}^2$	4
37.	An arithmetic progression consists of 16 terms. The sum of all its terms is 768. If the last term of the progression is 93, then find the arithmetic progression. Also show that	
	the sum of all the terms of this progression is equal to 3 times the sum of first 16 odd natural numbers using	
	formula.	
	Ans.:	
	n = 16	
	$a_{16} = l = 93$	
	$S_n = \frac{n}{2} [a + a_n]$	
	$768 = \frac{16^8}{2} [a + 93]$	
	$S_{16} = 768$ $a_n = l = 93$ $S_n = \frac{n}{2} [a + a_n]$ $768 = \frac{16^8}{2} [a + 93]$ $a + 93 = \frac{768}{8}$	

Qn. Nos.	Value Points	Marks allotted
	a + 93 = 96	
	$a = 96 - 93$ $a = 3$ $a_n = a + (n-1) d$	
	93 = 3 + (16 - 1) d 93 = 3 + 15d	
	$15d = 90$ $d = \frac{90}{15}$	
	d = 6	
	<i>AP</i> is 3, 9, 15, 21, 27	
	$S_{16} = 3 + 9 + 15 + 21 + \dots$ up to 16 terms	
	= 3 [1 + 3 + 5 + 7 + up to 16 terms] $\frac{1}{2}$	
	$= 3 \times 16^{2} \qquad [S_n = n^2]$	4
	$= 3 \times 256$ sum of first n odd	
	∴ 768 = 768 natural nos.	
	Note: If $S_n = \frac{n}{2} [2a + (n-1)d]$ formula is used to get	
	the correct answer, then give full marks.	
VI.	Answer the following question: $1 \times 5 = 5$	
38.	A pole and a tower are standing vertically on a level ground. The height of the pole is 6 m and the angle of elevation to the top of the pole from the bottom of the tower is 30° . The angle of elevation to the top of the tower from the top of the pole is 60° as shown in the figure. Find the height of the tower (CD). Also find the distance (AC) between the top of the pole and the top of the tower.	
	A 60° E	
	B 30 D	

CCE RF/PF(A)/101/1811 (MA) [Turn over

Qn. Nos.	Value Points	Marks allotted
	Ans.:	
	In $\triangle ABD$, $\tan 30^\circ = \frac{AB}{BD}$	
	$\frac{1}{\sqrt{3}} = \frac{6}{BD}$	
	$BD = 6\sqrt{3} \text{ m}$	
	$BD = AE = 6\sqrt{3} \text{ m}$	
	In $\triangle AEC$, $\tan 60^\circ = \frac{CE}{AE}$	
	$\sqrt{3} = \frac{CE}{6\sqrt{3}}$	
	$6\sqrt{3}.\sqrt{3} = CE$	
	$\therefore CE = 6 (3) = 18 \text{ m}$ ¹ / ₂	
	In $\triangle AEC$, $\sin 60^\circ = \frac{CE}{AC}$	
	$\frac{\sqrt{3}}{2} = \frac{18}{AC}$	
	$AC = \frac{18 \times 2}{\sqrt{3}}$	
	$= \frac{36}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}$	
	$= \frac{36\sqrt{3}}{3}$	
	$AC = 12\sqrt{3} \text{ m}$	
	CD = CE + DE = 18 + 6 = 24 m ½	5
	Note: If alternate method is used to get correct answer, then give full marks.	