Accurate 100+ site Kagome Lattice Ground State Energy (GSE) by Perturbing Hamiltonian on the defect triangles

Muhammad Ahsan

Associate Prof.

Department of Mechatronics and Control engineering,

UET Lahore

Alumni Duke University 2015,

IBM Researcher program 2023, IBM Credit Program 2024

Key insights from the credits program experiment and study (1) Success of ODR Method for 100x100 circuit

Problem:
Higher
error in
observable
(qubits)
at higher
circuit
depth!

_
λ
epth
≓
rc
<u></u>
\circ
ള
. <u>≍</u>
ä
<u>e</u>
ncreasing
<u></u>

Truncated circuit qubits range [a-b]	Segmented original $\langle obs \rangle$: x	Segmented Ref (obs): y	Noise mitigated Segmented $\langle obs \rangle = 10x/r$
[1-20]	-6.50±0.15	8.45±0.10	-7.7
[21-40]	-6.64±0.27	6.6±0.42	-10.06
[41-60]	-5.58±0.36	3.83±0.52	-14.6
[61-80]	-3.99±0.06	3.16±0.16	-12.62
[81-100]	-3.64±0.30	3.09±0.32	-11.78
Complete Circuit	$\langle obs \rangle$ =-26.53 Original error in the $\langle obs \rangle$: 47%	25.13	$\langle obs \rangle = -52.76$ Mitigated Error in the $\langle obs \rangle$: 5.2%

Torino jobs: crhgpgvut4r4kjefe2mg & crhgphaji5oi10mnb9ng

Solution: With operator

Decoherence Renormalization (ODR) method, noise at higher depths was effectively mitigated!

Qiskit101-qubit Real Amplitude ansatz for KAFM Ground State Energy (GSE) problem

Key insights from the last year credits program experiments and study (2) Hamiltonian Perturbation method needs revision

- Dimer covering: takes us close to the GSE, but not close enough. The gap can't be bridged without dealing with DEFECT TRIANGLES
- Qiskit 100x100 single layer Real Amplitude ansatz: is good at generating dimer cover, but can it address DEFECT TRIANGLE problem?
- Exploit Defect Triangles (new strategy):
 - Extract defect triangle from dimer covering generated by the ansatz
 - Focus Hamiltonian perturbation on defect triangle and update edge weights
 - Recompute GSE by VQE with the same ansatz

Existing IBM cloud quantum simulators can only simulate up to 64-qubit 100x100 real-amplitude ansatz!

Modified (new) proposal:

100-qubit quantum compute: $min_{\varphi}\langle \varphi | H_{pert} | \varphi \rangle$

100x100 real amplitude ansatz: $|\phi\rangle$

Hamiltonian perturbation on defect triangles

$$H_{pert} = H_{orig} + 0.5 H_{\Delta}$$

Proof of concept

GSE with two-unit cell Kagome lattice

Two unit-cell Kagome Lattice GSE Example

Two unit-cell Kagome lattice

- 19 sites [0,1,2,..,18]
- 30 edges:

```
E={[0,1],[1,2],[1,11],[2,11],[2,3],[3,4],[2,4],[4,6],[4,5],[5,6],[6,7],[6,8],[7,8],[8,9],[9,10],[8,10],[10,11],[11,12],[10,12],[12,13],[13,14],[12,14],[14,15],[15,16],[14,1],[16,17],[17,1],[16,18],[17,0],[17,1]}
```


Qiskit:19-qubit Real Amplitude Single-layer ansatz

All edges have weight = 1, i.e., $\forall_{i,j} \ weight[i,j] = 1$

Heisenberg KAFM Hamiltonian

$$H = \sum_{[i,j]\in E} X_i X_j + Y_i Y_j + Z_i Z_j$$

True GSE = -29.14

Qiskit: 19-qubit Real Amplitude Single-layer ansatz

The ansatz's lowest estimate of GSE: $\langle \varphi | H | \varphi \rangle$ = -27.2

Lattice with dimer covering C = {[0,1],[2,3],[4,5],[6,7],[8,9], [10,11],[12,13],[14,15],[16,17]}

Dimer

Spinion

Dimer covering C resulting in defect triangle and spinion

Perturbed Hamiltonian of the Defect Triangle

Original Hamiltonian: H

Perturbed Hamiltonian: H_{pert}

$$H_{orig} = X_a X_b + Y_a Y_b + Z_a Z_b + X_b X_c + Y_b Y_c + Z_b Z_c + X_c X_a + Y_c Y_a + Z_c Z_a$$

$$H_{pert} = (1+wt) (X_a X_b + Y_a Y_b + Z_a Z_b) + (1+wt) (X_b X_c + Y_b Y_c + Z_b Z_c) + (1+wt) (X_c X_a + Y_c Y_a + Z_c Z_a)$$

where wt ≈ 0.5 (WHY?)

Calculating additional weight: wt

- N → Number of Kagome unit cells, mapped by the ansatz circuit, whose dimer covering creates the DEFECT TRIANGLE (DT)
- K (≤ 3) → Number of individual Kagome unit cells, each separately mapped by respective ansatz circuit, whose dimer covering places a dimer in DT
- wt = N/(N + k)

Example

Example (contd...)

$$H_{\text{pert}} = \sum_{[i,j] \in U} X_i X_j + Y_i Y_j + Z_i Z_j +$$

$$(1 + wt) \sum_{[i,j] \in S} X_i X_j + Y_i Y_j + Z_i Z_j$$

```
U=\{[0,1],[2,3],[3,4],[2,4],[4,6],
[4,5],[5,6],[6,7],[6,8],[7,8],[8,<sup>†</sup>
9],[9,10],[8,10],[10,11],[11,12],
[10,12],[12,13],[13,14],[12,14],[
14,15],[15,16],[14,1],[16,17],[17]
,1],[16,18],[17,0],[17,1]}
              weight = 1
S = \{[1,2],[1,11],[2,11]\}
            weight = 1+wt
```

 H_{pert} : Perturbed Hamiltonian

Example (contd...)

Two unit-cell Kagome lattice

Heisenberg KAFM Hamiltonian

$$H = \sum_{[i,j]\in E} X_i X_j + Y_i Y_j + Y_i Y_j$$

True GSE = -29.14

The ansatz's lowest estimate of

GSE: $\langle \varphi | H_{pert} | \varphi \rangle$ = -29.2

With perturbed Hamiltonian same ansatz lowers the GSE error to 0.9% (<< 6.7%)

Modified (new) proposal: To quantum compute: $min_{\varphi}\langle \varphi | H_{pert} | \varphi \rangle$

100x100 real amplitude ansatz: $|\phi\rangle$

Hamiltonian perturbation on defect triangles

$$H_{pert} = H_{orig} + 0.5 H_{\Delta}$$

