Method	FOR MUL A	CONPITIONS	QUANTITY REPRESENTED BY INTEGRAND	when to use
CROSS - SECTION	∫ A(t) dt	A IS CONTINUOUS ON R≟t≤b	AREA OF A CROSS-SECTION PERPENDICULAR TO 1-AXIS	CROSS-SEC. IS TRIANGULAR, SQUARE, ETC. (NOT A DISC OR CYLINDER)
Diac	fπf(ε) ² dt	f continuous on aitib	AREA OF A CROSS-SECTION PERPENDICULAR TO 1-AKIS	CROSS - SEC. IS A DISC OF RADIUS F(t) REGION BOUNDED BY F
			f(e) t	t-Axis is revolved @ t-Axis And
WASHER (SUBTRAC - TIVE DISC	∫π (f(t)²-g(t)³)dt	f,g cont's an a ± t ± b, f(t) ≥ g(t)	AREA OF A CROSS-SECTION PERPENDICULAR TO 1-AXIS	CROSS-SEC. IS A DISC OF RADIUS $f(t)$ WITH A HOLE OF RADIUS $g(t)$ REGION BDD. BY $f \stackrel{.}{\cdot} g$ IS REVOLVED @ $t-A$ XIS
Shell	$\int_{2\pi}^{b} t f(t) dt$	f cont's on a £ £ £ b	SURFACE AREA OF AN OPEN CYLINDER OF RADIUS & AND HEIGHT F(t) PERPENDICULAR TO &-AXIS	REGION BDD BY f AND t-AXIS IS REVOLUED @ AXIS PERPENDICULAR TO t-AXIS!
SUBTRAC — TIVE SHELL	∫2πt (f(ε) -g(ε)) dt	f,g cont's on a ± t ± b, f(t) ≥ g(t)	SURFACE AREA OF AN OPEN CYLINDER OF RADIUS & AND HEIGHT F(t) - g(t) PERP. TO & -AXIS	REGION BDD BY f AND g IS REVOLVED @ AXIS PERPENDICULAR TO t-AXIS! f(t) g(t)