

"4 Clustering I"

Dr. Zeyd Boukhers

@ZBoukhers

Institute for Web Science and Technologies
University of Koblenz-Landau

November 17, 2021

From previous lecture

- Data dimension reduction
 - PCA
 - SVD

Agenda

- What is clustering?
- What is unsupervised learning?
- How to evaluate clustering results?
- What are intrinsic and extrinsic evaluation measures?
- How does K-Means work?
- How to choose *k* for K-Means?
- What is the EM algorithm?

Examples

Goal of clustering

- Identification of a finite set of *clusters* (= categories, "classes", groups) in the data.
- Objects in the same cluster should be as *similar* as possible.
 - High intra-similarity.
- Objects in different clusters should be as dissimilar as possible.
 - High inter-variance
- "Unsupervised learning" => no labels are given.

Clustering

What does similar mean?

What does similar mean?

Task

- Objects (dataset):
 - $D = \{x_1, x_2, ..., x_N\}$

An object is characterized by attributes

•
$$x_i = (x_{i,1}, x_{i,2}, ..., x_{i,l})$$

- Task:
 - Find groups

•
$$\Psi = \{\psi_1, \psi_2, ..., \psi_k\}$$

- Find function
 - $\gamma: D \to \Psi$
- Unsupervised learning

(green, round, even)

(orange, round, rough)

Difference to classification: Groups not given!

Variations of the Task

- Cluster types:
 - Flat vs. Hierarchical
 - Exclusive vs. Multiple clusters
 - $\gamma: D \to \wp(\Psi)$
- Function γ
 - Hard vs. Soft assignments
 - $\gamma: D \to \Psi \times \mathbb{R}$
 - Based on shape, density, estimates of distribution mixture

Cardinality

- Number of clusters
 - Provided (externally) or to be defined (given explicit hyperparameter) or found over the data (given other hyperparameters, e.g. density or density distribution).

Evaluation

- Intrinsic
 - Evaluate the quality of clusters directly.
 - E.g. compactness, separation of groups, etc.
- Extrinsic
 - Employ external knowledge
 - · Ground truth from classification data
 - Assuming categories to be optimal clusters
 - Compare found with pre-defined clusters
 - Difficulty of finding a matching
- Indirect
 - User testing (satisfaction, task performance)
 - Application specific metrics

Intrinsic metrics

- Dunn Index
 - Notion of cluster separation

$$I_{\rm Dunn}(\Psi) = \frac{\delta_{\rm min}}{\delta_{\rm max}}$$

- δ_{\min} smallest inter-cluster distance
- $\delta_{
 m max}$ largest intra-cluster distance
- Requires pair-wise distances
 - Distance matrix
 - Graphical representation
 - Minimal distance: white
 - Maximal distance: black
- Applicable also to ground truth
 - Notion of difficulty of cluster problem
 - Example

$$I_{\text{Dunn}}(\{c_E, c_P, c_T\}) = \frac{0.577}{1.414} = 0.435$$

Intrinsic metrics

- Silhouette coefficient s(i) for object x_i
 - Average distance a(i) to all other objects in the same cluster ψ

$$a(i) = \sum_{\mathbf{x} \in \psi} \frac{1}{|\psi|} \delta(\mathbf{x}_i, \mathbf{x})$$

• Average distance to any other cluster ψ' , $\psi' \neq \psi$:

d(i,
$$\psi'$$
) = $\sum_{x \in \psi'} \frac{1}{|\psi'|} \delta(x_i, x)$

• Average distance b(i) to the closest cluster ψ' , $\psi' \neq \psi$:

$$b(i) = \min_{\psi' \in \Psi} d(i, \psi')$$

• Silhouette coefficient: $s(i) = \frac{b(i)-a(i)}{max(a(i),b(i))}$

Intrinsic metrics

- Silhouette coefficient
 - Values: $-1 \le s(i) \le 1$
 - Value close to 1:
 - a(i) much smaller than b(i)
 - Distances within cluster very small in comparison to distances with other clusters
 - Value close to 0:
 - $a(i) \approx b(i)$
 - Same internal as external distance
 - Value close to -1:
 - b(i) much smaller than a(i)
 - Other instances are (on average) closer than the instances in same cluster
- Aggregation: Average silhouette coefficient

$$s(i) = \frac{b(i) - a(i)}{max(a(i), b(i))}$$

Extrinsic metrics

External knowledge (ground truth of categories)

$$\Omega = \{\omega_1, \cdots, \omega_{k'}\}$$

- Compare the clusters Ψ and categories Ω
- Determine:
 - $n_j^{(u)}$: number of objects from ω_u being clustered into ψ_j
- Purity
 - Ratio of strongest represented category

Purity
$$(\psi_j) = \frac{1}{|\psi_j|} \cdot \max_{u=1,\dots,k'} n_j^{(u)}$$

Aggregate over all clusters

Purity(
$$\Psi$$
) = $\sum_{j=1}^{k} \frac{|\psi_j|}{N}$ · Purity(ψ_j)

Purity of 1 can always be achieved!

Extrinsic metrics

- Mutual Information:
 - Mutual agreement between clusters and categories

$$MI(\Psi) = \frac{1}{N} \sum_{j=1}^{k} \sum_{u=1}^{k'} n_j^{(u)} \cdot \log \frac{n_j^{(u)} \cdot N}{\sum_{m=1}^{k'} n_j^{(m)} \cdot \sum_{t=1}^{k} n_t^{(u)}}$$

- Log base: 2 or $k \cdot k'$
- Rand Index:
 - Consider document pairs on categories and clusters
 - Agreements: same-same (ss), different-different (dd)
 - Disagreements: same-different (sd), different-same (ds)
 - Agreement-ratio:

$$I_{\text{Rand}}(\Psi) = \frac{\text{ss} + \text{dd}}{\text{ss} + \text{dd} + \text{sd} + \text{ds}}$$

Example

1.
$$\psi_1 = \{x_1, x_2, x_3, x_4, x, x_6, x_7, x_8, x_9, x_{10}, \frac{x_{11}, x_{20}}{2}\}$$

2.
$$\psi_2 = \{o_{12}, o_{13}, o_{14}, o_{15}, o_{16}, o_{17}, o_{18}, o_{19}\}$$

3.
$$\psi_3 = \{x_{21}, x_{22}, x_{23}, x_{24}, x_{25}, x_{27}, x_{28}, x_{30}\}$$

4.
$$\psi_4 = \{x_{26}, x_{29}\}$$

• Purity:

Purity
$$(\psi_1) = \frac{10}{12} = 0.83$$

Purity $(\Psi) = \frac{12}{30} \cdot 0.83 + \frac{8}{30} \cdot 1.0 + \frac{8}{30} \cdot 1.0 + \frac{2}{30} \cdot 1.0 = 0.93$

- Mutual Information
 - Log base $k \cdot k'$
 - Several values are 0

$$MI(\Psi) = \frac{1}{30} \cdot \left(10 \cdot \log \frac{10 \cdot 30}{12 \cdot 10} + 2 \cdot \log \frac{2 \cdot 30}{12 \cdot 10} + 8 \cdot \log \frac{8 \cdot 30}{8 \cdot 10} + 8 \cdot \log \frac{8 \cdot 30}{8 \cdot 10} + 2 \cdot \log \frac{2 \cdot 30}{2 \cdot 10}\right) = 0.370$$

Example

1.
$$\psi_1 = \{x_1, x_2, x_3, x_4, x, x_6, x_7, x_8, x_9, x_{10}, x_{11}, x_{20}\}$$

2.
$$\psi_2 = \{o_{12}, o_{13}, o_{14}, o_{15}, o_{16}, o_{17}, o_{18}, o_{19}\}$$

3.
$$\psi_3 = \{x_{21}, x_{22}, x_{23}, x_{24}, x_{25}, x_{27}, x_{28}, x_{30}\}$$

4.
$$\psi_4 = \{x_{26}, x_{29}\}$$

• Agreements:

•
$$ss = 103 = {10 \choose 2} + 1 + {8 \choose 2} + {8 \choose 2} + 1$$

•
$$dd = 280 = 10 \cdot 18 + 2 \cdot 10 + 8 \cdot 10$$

Disagreements

•
$$sd = 32 = 2 \cdot 8 + 2 \cdot 8$$

•
$$ds = 20 = 2 \cdot 10$$

• Rand Index:

$$I_{\text{Rand}}(\Psi) = \frac{383}{435} = 0.88$$

K-Means

General clustering algorithm

- Characteristics:
 - Flat clusters
 - No overlaps
 - Good runtime
 - Simple to implement
- Parameters
 - *k* : number of clusters
 - Initial random seed

Algorithm

- Random seed Ψ for k clusters (e.g. single objects)
- Determine centroids Z for clusters
- While centroids not stable
 - For all objects x_i
 - Reassign x_i to cluster ψ_j with minimal $\delta(\overrightarrow{x_i}, \overrightarrow{z_j})$
 - For all clusters ψ_i
 - Re-compute centroid \vec{z}_i

K-means Algorithm

```
K-means (Set of points D, Integer k)
   Create an "initial" partitioning of D in k cluster;
   Compute a set Z' = \{Z'_1, \ldots, Z'_k\} of centroids for the k Cluster;
   Z = \{\};
   repeat until Z = Z'
      Z = Z';
      Generate k clusters by assigning each data point to the nearest centroid
       Z;
      Compute the set Z' = \{Z'_1, \ldots, Z'_k\} of centroids for the new clusters;
   return Z';
```

K-Means: example

Compute new centroids

Compute new centroids

Assign each point to the nearest centroid

Advantages and disadvantages of k-means

Advantages:

- Efficiency: time complexity: O(n) for each iteration, Number of iterations is usually very small (~ 5 10).
- Simple implementation
- Easy, good interpretability
- K-means is the most popular clustering algorithm!

Disadvantages:

- Susceptible to noise and outliers since all objects influence the computation of centroids
- Cluster have always convex form
- The number of clusters k is often difficult to determine
- Strong dependency on initial partition (runtime + result!)

Illustration of a convex set which looks somewhat like a deformed circle. The (black) line segment joining points x and y lies completely within the (green) set. Since this is true for any points x and y within the set that we might choose, the set is convex.

Illustration of a non-convex set. Since the red part of the (black and red) line-segment joining the points x and y lies outside of the (green) set, the set is non-convex.

Variations

- Random seed
 - Assign all objects
 - Compute actual centroids
- Stop criterion
 - No change of clusters (equivalent)
 - Small changes of the centroids
 - Fixed number of iterations
- Centroids
 - Non-standard metrics (e.g. string similarity)
 - Mean centroid cannot be computed
 - K-Median
 - Use most central objects

Initial configuration

- Choice of initial seed can cause different outcomes!
- Solution
 - Repeat with different seeds
 - Evaluate quality
 - Dunn index
 - Residual Sum of Squares

$$RSS(\Psi) = \sum_{j=1}^{k} \sum_{d_i \in \psi_j} \delta(\vec{d}_i, \vec{z}_j)^2$$

Choose best performing setting

Choice of K

- Important parameter!
- Knowledge about the data
 - Expert insights
- Development of RSS
 - Monotonous decline
 - Typically two points where decline slows down

Problematic configurations

- Outliers
 - Cause singleton clusters
 - Solution:
 - Remove and treat separately
- Empty clusters
 - Unlucky position of centroids
 - Solution:
 - Split large cluster
- Non-spheric shapes
 - Cannot be handled!

K-Means-Clustering

Probabilistic Models

Probabilistic models

- Observations *D* (our Data)
- Hidden (latent) parameters θ

• Example: Throwing a coin: 10 x head, 2 x tail

Probabilistic models

- Observations *D* (our Data)
- Hidden (latent) parameters θ

• Example: Throwing a coin: 8 x head, 2 x tail

Probabilistic models

- Observations *D* (our Data)
- Hidden (latent) parameters θ
- Example: Throwing a coin: 8 x head, 2 x tail
- θ : Bernoulli (p)

Overview: Probability distributions

Overview: Probability distributions

- Observations *D* (our Data)
- Hidden (latent) parameters θ

- Example: Throwing a coin: 8 x head, 2 x tail
- θ : Bernoulli (p)

How to estimate p?

- Observations *D* (our Data)
- Hidden (latent) parameters θ
- Example: Throwing a coin: 8 x head, 2 x tail
- θ : Bernoulli (p)
- Likelihood: $L = P(D|\theta) = \prod_{d_i \in D} P(d_i|\theta)$

- Observations *D* (our Data)
- Hidden (latent) parameters θ
- Example: Throwing a coin: 8 x head, 2 x tail
- θ : Bernoulli (p)
- Likelihood: $L = P(D|\theta) = \prod_{d_i \in D} P(d_i|\theta)$
- Log-Likelihood: $\sum_{d_i \in D} \log(P(d_i|\theta))$

- Observations D (our Data)
- Hidden (latent) parameters θ
- Example: Throwing a coin: 8 x head, 2 x tail
- θ : Bernoulli (p)
- Likelihood: $L = P(D|\theta) = \prod_{d_i \in D} P(d_i|\theta)$
- Log-Likelihood: $\sum_{d_i \in D} \log(P(d_i|p)) \mid d_i \in \{H, T\}$

• θ : Bernoulli (p)

• Likelihood:
$$L = P(D|\theta) = \prod_{d_i \in D} P(d_i|\theta)$$

• Log-Likelihood: $\sum_{d_i \in D} \log(P(d_i|p)) \mid d_i \in \{H, T\}$

$$= n^T \cdot \log (P(T|p)) + n^H \cdot \log (P(H|p))$$

$$= n^T \cdot \log(p) + n^H \cdot \log(1-p)$$

$$\log L = n^T \cdot \log(p) + n^H \cdot \log(1 - p)$$

• Maximization:

$$\frac{\partial \log L}{\partial p} = \frac{n^T}{p} - \frac{n^H}{1 - p} = 0$$

$$\Leftrightarrow p = \frac{n^T}{n^T + n^H} = \frac{2}{2 + 8} = 0.2$$

Expectation Maximization

Expectation Maximization (EM)

General clustering algorithm

- Characteristics:
 - Probabilistic approach
 - Soft assignments to clusters
 - Generalization of K-Means

- Parameters
 - *K* : number of clusters
 - Initial random seed
 - Model for the distribution

• Data can be explained by a mixture of parametrized probability distributions – one per cluster.

- Data can be explained by a mixture of parametrized probability distributions one per cluster.
- Problem: the true distributions are unknown, all we see is the data:

Model of the distribution

- Provide a model how the data is distributed, e.g.
 - Density of a normal distribution (1 dimensional)

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

- Where μ is the mean and σ the standard deviation
- Density of a normal distribution (m-dimensional)

$$f(\mathbf{x}) = \frac{1}{\sigma\sqrt{(2\pi)^m|S|}} e^{-\left(\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^T S(\mathbf{x} - \boldsymbol{\mu})\right)}$$

- Where μ is an m-dimensional vector, S an m×m covariance matrix and |S| the determinant
- Other distribution P with parameters ϑ

Model estimation

- Estimate model parameters from data
- Maximum likelihood estimation:
 - 1 dimensional case:

$$\mu = \frac{1}{n} \sum_{x \in D} x_i \qquad \sigma = \sqrt{\frac{1}{n-1}} \sum_{x \in D} (x_i - \mu)^2$$

• m-dimensional case:

$$\vec{\mu} = \frac{1}{n} \sum_{\mathbf{x} \in D} \overrightarrow{\mathbf{x}_i} \qquad S = \frac{1}{n-1} \sum_{\mathbf{x} \in D} (\overrightarrow{\mathbf{x}_i} - \vec{\mu}) (\overrightarrow{\mathbf{x}_i} - \vec{\mu})^T$$

Maximize log likelihood function:

$$\log(L(\vartheta|D)) = \log(\prod_{\mathbf{x} \in D} P(\mathbf{x}|\vartheta)) = \sum_{\mathbf{x} \in D} \log(P(\mathbf{x}|\vartheta))$$

But: we don't know which objects belongs to which cluster ...

Latent variables: Cluster assignment

- For each object $x_i \in D$, we have a latent variables z_{ij} modelling to which cluster ω_j it belong
- Two steps:
 - Expectation step
 - Calculate the expected values for z_{ij} given the current model parameters ϑ
 - So: how probable is it that object x_i belongs to cluster ω_i under the current model hypothesis ϑ
 - Maximization step
 - Calculate the model parameters θ given the current estimates for the latent variables z_{ij}
 - So: how do the model parameters look like under the assumption that the assigment to clusters is correct.
- Iterate until convergence (little change)

Initialization

• Problem:

- Expectation step needs model parameters to estimate latent variables
- Maximization step needs latent variables to estimate model parameters

• Different options:

- Hand selected initial model parameters
- Random initialization
- Choose random individuals
- Perform k-means cluster to find initial clusters

Example

Cluster people by their height

- Two classes
- Assume initial model:

•
$$\mu_1 = 110$$

$$\sigma_1 = 20$$

•
$$\mu_2 = 160$$

$$\sigma_{2} = 20$$

• Expectation:

- $f_{\mu_1,\sigma_1}(124) = 0.01561$
- $f_{\mu_2,\sigma_2}(124) = 0.00395$
- Weights:
 - $z_{1,1} = 0.7982$
 - $z_{1,2} = 0.2018$

•

height
124
115
121
139
98
135
131
170
166
155
167
158
175
143
163
160
145
176

Example

- Given all weights:
- New model parameters

$$\mu_j = \frac{\sum_{x \in D} z_{i,j} x_i}{\sum_{x \in D} z_{i,j}}$$

$$\sigma_j = \sqrt{\frac{\sum_{x \in D} z_{i,j} (x_i - \mu)^2}{\sum_{x \in D} z_{i,j}}}$$

- Values:
 - $\mu_1 = 123.72$

$$\sigma_1 = 15.98$$

•
$$\mu_2 = 157.72$$

$$\sigma_2 = 14.62$$

Gender	height
F	124
F	115
F	121
F	139
F	98
F	135
F	131
M	170
M	166
M	155
M	167
M	158
M	175
M	143
M	163
M	160
M	145
M	176

Summary

- Clustering
 - K-Means
 - Expectation-Maximization algorithm

Thank you!

Zeyd Boukhers

E-mail: Boukhers@uni-koblenz.de

Phone: +49 (0) 261 287-2765

Web: Zeyd.Boukhers.com

University of Koblenz-Landau Universitätsstr. 1 56070 Koblenz

