Claudia Rella

claudia.rella@gmail.com | https://www.claudiarella.com

EDUCATION

Doctor of Philosophy in Mathematical Physics

2020, Oct – present

Department of Theoretical Physics, University of Geneva, Switzerland

Thesis: Supervised by Prof. Marcos Marino.

Affiliations: ERC Synergy Grant ReNewQuantum - National Centre of Competence in Research SwissMAP.

Solvay Doctoral School (2020, Oct – Dec): Type-II String Theory – Superstrings and D-branes – AdS/CFT Correspondence – Modern Methods in Conformal Field Theory – Resurgence and Non-Perturbative Methods in Quantum Field Theory – Quantum Information and Quantum Gravity.

Master of Science in Mathematical and Theoretical Physics – Distinction

2018, Oct – 2019, Jun

Mathematical Institute and Department of Physics, University of Oxford, UK

Thesis: Motivic Amplitudes. Supervised by Prof. Francis Brown.

Affiliations: St John's College.

Coursework in Physics: General Relativity – Relativistic Quantum Field Theory – Gauge Field Theory – Symmetries in Particle Physics – The Standard Model and Beyond – Radiative Processes and High-Energy Astrophysics – Bosonic String Theory – Supersymmetry and Supergravity – Topological Quantum Field Theory – Topological Quantum Matter – Topological Quantum Computation.

Coursework in Mathematics: Groups Representations – Algebraic Geometry – Algebraic Topology.

Bachelor of Science in Physics – Summa cum Laude

2015, Oct - 2018, Jun

Department of Physics, University of Rome La Sapienza, Italy

Thesis: Photonic Bloch Waves. Supervised by Prof. Fabio Sciarrino.

Coursework in Physics: Classical, Analytical and Relativistic Mechanics – Inorganic Chemistry – Thermodynamics – Non-Relativistic Electromagnetism – Non-Relativistic Quantum Mechanics – Classical and Quantum Statistical Mechanics – Nuclear and Subnuclear Physics – Atomic and Molecular Physics – Optics and Photonics.

Laboratory Coursework: Mechanics – Thermodynamics – Electronics – Signals and Systems – Optics.

Coursework in Informatics: C Programming Language – Numerical Analysis – Algorithms.

Coursework in Mathematics: Linear Algebra – Real Analysis – Complex and Functional Analysis – Probability Calculus. Number Theory (*) – Groups, Rings and Fields (*) – Numerical Semigroups (*) – Galois Theory (*) – Modules and Algebras (*) – Representation Theory (*) – Lie Groups and Lie Algebras (*) – Affine and Projective Geometry (*) – Differential and Riemannian Geometry (*) – General, Algebraic and Differential Topology (*) – PDEs (*).

RESEARCH EXPERIENCE AND INTERNSHIPS

Particle Physics Research Internship in Modelling and Programming

2020, Jul - Sep

NA62 @ CERN, Geneva, Switzerland

Specifics: Contributed to the design of an experimental framework for the detection of Dark Sector particles in proton beam dump experiments. Contributed to the implementation of a specific model to exploit the displaced-vertex signal from the secondary muons of NA62 to probe the parameter space of a theoretically conjectured light exotic scalar generated via muon bremsstrahlung. Produced the predicted sensitivity plot using programming language C++ and data analysis software ROOT. NA62 is a proton-on-target collision experiment recently searching for Beyond Standard Model physics at low energies at the Super Proton Synchrotron.

Master Class in Mathematical Physics

2019, Oct - 2020, Jun

University of Geneva and NCCR SwissMAP, Geneva, Switzerland

Coursework: Random Matrix Theory – Brownian Motion – Stochastic Calculus – Random Growth – Loewner Evolution.

Research: Collaborated with Prof. Francis Brown (University of Oxford) on *Motivic Feynman Integrals*, specifically investigating the motivic Galois coaction and factorisation theorems for scalar Feynman graphs with non-generic kinematics. Collaborated with Prof. Francesco Riva (University of Geneva) on *Effective Field Theory*, specifically investigating the restrictions placed by beyond-positivity bounds on Horndeski theories of modified gravity.

^{(*):} Extra-curricular coursework at Department of Mathematics.

Business Consulting Internship in Big Data and AI

Pangea Formazione, Rome, Italy

Specifics: Contributed to a Deep Learning predictive model for preventative maintenance of large infrastructures equipped with alarm nets. Project implemented using Bayesian Neural Networks and programming language R and customized to fit the specific needs of the commissioning telecom company. Pangea Formazione is a Big Data Analytics and Al company providing customised software for management consulting and training.

Particle Physics Research Internship in Simulation and Data Analysis

2017, Sep - Nov

2019, Jul - Aug

PADME @ INFN - LNF, Frascati, Italy

Specifics: Contributed to the development of a Monte Carlo optical simulation of the Small-Angle Calorimeter of PADME's detector using simulation software Geant4 and programming language C++. Characterised the performance of a single PbF₂ crystal attached to a Hamamatsu R13478UV photomultiplier tube with focus on time and energy resolutions using data analysis software ROOT. PADME (Positron Annihilation into Dark Matter Experiment) is a positron-on-target collision experiment searching for dark photon production at high intensity at the DAFNE Beam Test Facility.

PUBLICATIONS

An Introduction to Motivic Feynman Integrals

2020, Aug

Submitted to SIGMA, arXiv:2009.00426

Characterization and Performance of PADME's Cherenkov-Based Small-Angle Calorimeter

2019. Mar

With A. Frankenthal et al., Nucl. Instrum. Methods Phys. Res. A 919 (2019) 89-97, DOI:10.1016/j.nima.2018.12.035

TALKS

Introduction to Motivic Amplitudes

2019, Nov

Research Seminar on Lie Groups and Moduli Spaces, University of Geneva, Switzerland

Motivic Scattering Amplitudes

2019, Aug

Conference on Representation Theory and Integrable Systems, ETH, Zürich, Switzerland

Monte Carlo Simulation of PADME's Small-Angle Calorimeter

2017, Dec

PADME Weekly Meeting, INFN – LNF, Frascati, Italy

TEACHING EXPERIENCE

Lecturer on Topological Surfaces

2019, Oct

Master Class in Mathematical Physics – Department of Mathematics, University of Geneva, Switzerland

Topics: Introduction to Topological Spaces – Hausdorff Separation Axiom – Connectedness and Compactness – Abstract Topological Manifolds and Surfaces – Normal Forms for Surfaces – Real Projective Plane $\mathbb{R}\mathbf{P^2}$ in detail.

Lecturer on Riemannian Geometry

2018, Mar – May

Excellence Program in Physics – Department of Mathematics, University of Rome La Sapienza, Italy

Topics: Introduction to Riemannian Geometry – Riemannian Manifolds with Non-Positive Curvature – Jacobi Fields and Conjugate Points – Cartan-Hadamard Theorem – Killing Fields.

ACADEMIC ACHIEVEMENTS AND SCHOLARSHIPS

Excellence Fellowship

2019

NCCR SwissMAP, Switzerland

Degree Prize for Distinction

2019

St. John's College, University of Oxford, UK

Torno Subito Scholarship

2018

Department of Education, Research and University, Lazio, Italy

Best Student Award for the Course in Nuclear and Subnuclear Physics

2018

University of Rome La Sapienza and INFN, Italy

Summer Student Scholarship

2017

INFN, Italy

Excellence Program 2016 – 2018

Department of Physics, University of Rome La Sapienza, Italy

Deserving Student Scholarship

University of Rome La Sapienza, Italy

2015 - 2018

SKILLS

Italian Language Native

English Language Level C2 (CEFRL) - Cambridge ESOL Level 3 Certificate

Programming Languages C, C++, HTML, Perl, R, Python

Version-control Systems Git

Data Analysis Software MATLAB, ROOT, gnuplot

Simulation Software Geant4

MEMBERSHIPS

Mentee of LeadTheFuture Mentorship Program Invited Fellow of Italian Physics Society (SIF)

2019 – present 2019 – present