Università degli studi di Milano-Bicocca

ADVANCED MACHINE LEARNING

Assignment 3

Autore:

Federico Manenti - 790032 - f.manenti3@campus.unimib.it

11 novembre 2019

Indice

1	Dataset	
1	Dataset	

2 Rete Neurale 1

1 Dataset

Il dataset scelto per questo task di classificazione è il MNIST uno dei più utilizzati in ambito accademico: consiste in immagini di cifre (da 0 a 9) in scala di grigi scritte a mano da diversi soggetti.

Figura 1: Tre esempi di cifre diverse

Le immagini utilizzate hanno una shape di (28,28,1) e i dati sono già divisi in train e test set.

2 Rete Neurale

Per risolvere il task assegnato è stata utilizzata una CNN con limite di 7500 parametri. Prima di utilizzare la rete neurale i dati hanno subito una reshape per avere dimensioni: (N^o immagini, 28, 28, 1). L'architettura utilizzata consiste in:

- Conv2d (16 neuroni, kernel = (3, 3), Relu ed essendo lo strato iniziale possiede l'input shape)
- BatchNormalization (parametri di default)

- Conv2d (16 neuroni, kernel = (3,3) e Relu)
- BatchNormalization (parametri di default)
- MaxPoolig2d (pool size = (2, 2))
- Conv2d (16 neuroni, kernel = (3,3) e Relu)
- BatchNormalization (parametri di default)
- Conv2d (8 neuroni, kernel = (3,3) e Relu)
- BatchNormalization (parametri di default)
- MaxPoolig2d (pool size = (2, 2))
- Flatten
- **Dropout** (rateo = 0.5)
- **Dense** (10 neuroni pari al numero di classi e SoftMax come funzione di attivazione)

La loss utilizzata è la sparse categorical crossentropy, l'ottimizzatore è RM-Sprop con learning rate di 0.0001 e il batch size è stato fissato a 64, inoltre è stato utilizzato il 30% di dati come validation set. Il numero di epoche è stato impostato a 100, ma per evitare overfitting si è implementato l'early stopping con pazienza di 5 e metrica da osservare la validation accuracy.

Il numero di parametri per ogni layer e in totale sono riportati nella figura seguente:

Layer (type)	Output Shape	Param #
conv2d_1 (Conv2D)	(None, 26, 26, 16)	160
batch_normalization_1 (Batch	(None, 26, 26, 16)	64
conv2d_2 (Conv2D)	(None, 24, 24, 16)	2320
batch_normalization_2 (Batch	(None, 24, 24, 16)	64
max_pooling2d_1 (MaxPooling2	(None, 12, 12, 16)	0
conv2d_3 (Conv2D)	(None, 10, 10, 16)	2320
batch_normalization_3 (Batch	(None, 10, 10, 16)	64
conv2d_4 (Conv2D)	(None, 8, 8, 8)	1160
batch_normalization_4 (Batch	(None, 8, 8, 8)	32
max_pooling2d_2 (MaxPooling2	(None, 4, 4, 8)	0
flatten_1 (Flatten)	(None, 128)	0
dropout_1 (Dropout)	(None, 128)	0
dense_1 (Dense)	(None, 10)	1290
Total params: 7,474 Trainable params: 7,362 Non-trainable params: 112		

Figura 2: Numero parametri

Grazie all'early stop il modello si ferma attorno all'ottantesima iterazione (nel caso considerato 85) e raggiunge i risultati:

- Train Loss = 0.0440
- Train Validation = 0.9856
- Validation Loss = 0.0345
- Validation Accuracy = 0.9903

I grafici relativi a Loss Score e Accuracy sono i seguenti:

Infine il modello è stato testato sulla porzione di dati apposita raggiungendo un risultato di $\mathbf{Loss} = 0.0268$ e $\mathbf{Accuracy} = 0.9913$. Si riporta il classification report del test set:

	precision	recall	f1-score	support
0	0.99	0.99	0.99	980
1	0.99	1.00	0.99	1135
2	0.99	0.99	0.99	1032
3	0.99	1.00	0.99	1010
4	0.99	0.98	0.99	982
5	0.99	0.99	0.99	892
6	0.99	0.98	0.99	958
7	0.98	0.99	0.99	1028
8	0.99	0.99	0.99	974
9	0.99	0.98	0.98	1009
accuracy			0.99	10000
macro avg	0.99	0.99	0.99	10000
weighted avg	0.99	0.99	0.99	10000

Figura 4: Classification report