Stochastic Dual Coordinate Ascent with Adaptive Probabilities

Dominik Csiba¹ Zheng Qu¹ Peter Richtárik¹

¹University of Edinburgh

Optimization and Big Data 2015 6. - 8. May, Edinburgh

Empirical Risk Minimization

▶ Object-label pairs $(A_i, y_i) \in \mathbb{R}^d \times \mathbb{R}$ appear naturally in the world with unknown distribution \mathcal{D} .

Empirical Risk Minimization

- ▶ Object-label pairs $(A_i, y_i) \in \mathbb{R}^d \times \mathbb{R}$ appear naturally in the world with unknown distribution \mathcal{D} .
- ▶ Find a vector $w \in \mathbb{R}^d$ such that for $(A_i, y_i) \sim \mathcal{D}$ we get

$$A_i^{\top} w \approx y_i$$
.

Empirical Risk Minimization

- ▶ Object-label pairs $(A_i, y_i) \in \mathbb{R}^d \times \mathbb{R}$ appear naturally in the world with unknown distribution \mathcal{D} .
- ▶ Find a vector $w \in \mathbb{R}^d$ such that for $(A_i, y_i) \sim \mathcal{D}$ we get

$$A_i^{\top} w \approx y_i$$
.

More precisely, we wish to find w solving

$$\min_{w} \mathbf{E}_{(A_i, y_i) \sim \mathcal{D}} \left[loss(A_i^T w, y_i) \right]$$

Empirical Risk Minimization

- ▶ Object-label pairs $(A_i, y_i) \in \mathbb{R}^d \times \mathbb{R}$ appear naturally in the world with unknown distribution \mathcal{D} .
- ▶ Find a vector $w \in \mathbb{R}^d$ such that for $(A_i, y_i) \sim \mathcal{D}$ we get

$$A_i^{\top} w \approx y_i$$
.

More precisely, we wish to find w solving

$$\min_{w} \mathbf{E}_{(A_i, y_i) \sim \mathcal{D}} \left[loss(A_i^T w, y_i) \right]$$

1. Draw sample pairs $(A_i, y_i)_{i=1}^n$ from \mathcal{D} .

Empirical Risk Minimization

- ▶ Object-label pairs $(A_i, y_i) \in \mathbb{R}^d \times \mathbb{R}$ appear naturally in the world with unknown distribution \mathcal{D} .
- ▶ Find a vector $w \in \mathbb{R}^d$ such that for $(A_i, y_i) \sim \mathcal{D}$ we get

$$A_i^{\top} w \approx y_i$$
.

More precisely, we wish to find w solving

$$\min_{w} \mathbf{E}_{(A_i, y_i) \sim \mathcal{D}} \left[loss(A_i^T w, y_i) \right]$$

- 1. Draw sample pairs $(A_i, y_i)_{i=1}^n$ from \mathcal{D} .
- 2. Take the empirical average

$$\min_{w} \frac{1}{n} \sum_{i=1}^{n} loss(A_{i}^{\top} w, y_{i})$$

Primal

$$\min_{w \in \mathbb{R}^d} \left[P(w) \stackrel{\text{def}}{=} \frac{1}{n} \sum_{i=1}^n \phi_i(A_i^\top w) + \lambda g(w) \right]$$

Primal

$$\min_{w \in \mathbb{R}^d} \left[P(w) \stackrel{\text{def}}{=} \frac{1}{n} \sum_{i=1}^n \phi_i(A_i^\top w) + \lambda g(w) \right]$$

Dual

$$\max_{\alpha \in \mathbb{R}^n} \left[D(\alpha) = -\lambda g^* \left(\frac{1}{\lambda n} \sum_{i=1}^n A_i \alpha_i \right) - \frac{1}{n} \sum_{i=1}^n \phi_i^* (-\alpha_i) \right]$$

► Two new algorithms

- ► Two new algorithms
 - ► AdaSDCA Theoretical

- ► Two new algorithms
 - ► AdaSDCA Theoretical
 - AdaSDCA+ Efficient variant of AdaSDCA

- ► Two new algorithms
 - ► AdaSDCA Theoretical
 - AdaSDCA+ Efficient variant of AdaSDCA
- Properties

- ► Two new algorithms
 - ► AdaSDCA Theoretical
 - ► AdaSDCA+ Efficient variant of AdaSDCA
- Properties
 - ► Coordinate descent on dual variables (SDCA-type algorithm)

- ► Two new algorithms
 - ► AdaSDCA Theoretical
 - AdaSDCA+ Efficient variant of AdaSDCA
- Properties
 - Coordinate descent on dual variables (SDCA-type algorithm)
 - Adaptive probability distribution over dual coordinates

- Two new algorithms
 - AdaSDCA Theoretical
 - AdaSDCA+ Efficient variant of AdaSDCA
- Properties
 - Coordinate descent on dual variables (SDCA-type algorithm)
 - Adaptive probability distribution over dual coordinates
 - First convergence guarantee for adaptive probability distribution

- ► Two new algorithms
 - AdaSDCA Theoretical
 - AdaSDCA+ Efficient variant of AdaSDCA
- Properties
 - Coordinate descent on dual variables (SDCA-type algorithm)
 - Adaptive probability distribution over dual coordinates
 - First convergence guarantee for adaptive probability distribution
- ▶ Convergence Rate

- ► Two new algorithms
 - ► AdaSDCA Theoretical
 - AdaSDCA+ Efficient variant of AdaSDCA
- Properties
 - Coordinate descent on dual variables (SDCA-type algorithm)
 - Adaptive probability distribution over dual coordinates
 - First convergence guarantee for adaptive probability distribution
- Convergence Rate
 - AdaSDCA enjoys better rate than the best known rate for SDCA with importance sampling

Importance Sampling

$$T \ge \left(n + \frac{\frac{1}{n} \sum_{i=1}^{n} v_i}{\lambda \gamma}\right) \log \left(\frac{c}{\epsilon}\right) \Rightarrow \mathbb{E}[P(w^T) - D(\alpha^T)] \le \epsilon$$

Experiments

cov1 dataset, d = 54, n = 581,012

Smooth Hinge loss with L_2 regularizer

Experiments

synthetic dataset, d = 100, n = 10,000,000, sparsity= 0.1 ◆Ada+ Opt.I -Ada+ Opt.II Optimal Duality Gap مرکہ مرکہ **▼**SDCA 6

1000

. Time/s 1500

Smooth Hinge loss with L_2 regularizer

500

2500

2000

Thank you for your attention!