The resistance R_I is a variable resistor that can take on values in the range $0 \le R_I \le 24\Omega$.

Vs = 12 V

1. Find the value of $R_1=R_{1\alpha}$ that maximizes current i_1 and the resulting current $i_1=i_{1\alpha}$.

Is = 3 A

2. Find the value of $R_1 = R_{1b}$ that maximizes voltage v_1 and the resulting current $v_1 = v_{1b}$.

R3 = 18 ohm

R2 = 12 ohm

3. Find the value of $R_1 = R_{1c}$ that maximizes the power received by R_1 and the resulting power P_{1c} .

R4 = 24 ohm

$$\Rightarrow R_{TH} = 18 / (12 + 24) = \left(\frac{1}{18} + \frac{1}{36}\right)^{-1}$$
$$= \left(\frac{3}{36}\right)^{-1} = 12 - \Omega$$

Voc= 48V

(1)
$$R_1=0$$
 $C_1=\frac{48}{12}=4 \Rightarrow C_1=4A$

(2)
$$R_1 = 24 \Omega$$
 $\sigma_1 = 48.\frac{24}{24+12} = 48.\frac{2}{3} = 32$

$$V_1 = 32V$$

$$\vec{C} = \frac{48}{24} = 2A \implies P = i^2R = 4.12$$