1. Global methane levels from 2002

For this problem set, methane levels have been determined by applying several algorithms to different satellite instruments. Download the netCDF4 file (200301_202006-C3S-L3_GHG-PRODUCTS-OBS4MIPS-MERGED-v4.3.nc) here, which contains monthly-averaged methane levels (xch4) in the unit of ppb at each 5° (lon) x 5° (lat) grid over the globe from 2003-01 to 2020-06.

```
In [1]:
```

```
import netCDF4
import xarray as xr
import numpy as np
import pandas as pd
import matplotlib as mpl
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
import warnings
warnings.filterwarnings("ignore") #忽略warnings
ds = xr.open_dataset("200301_202006-C3S-L3_GHG-PRODUCTS-OBS4MIPS-MERGED-v4.3.nc", engine="netcdf4")
ds
```

Out[1]:

xarray.Dataset

▶ Dimensions: (time: 210, bnds: 2, lat: 36, lon: 72, pressure: 10)

▼ Coordinates:

time	(time)	datetime64[ns]	2003-01-16T12:00:	
lat	(lat)	float64	-87.5 -82.5 -77.5	
lon	(lon)	float64	-177.5 -172.5 17	

▼ Data variables:

time_bnds	(time, bnds)	datetime64[ns]	
lat_bnds	(lat, bnds)	float64	
lon_bnds	(lon, bnds)	float64	
pre	(pressure)	float64	
pre_bnds	(pressure, bnds)	float64	
land_fraction	(lat, lon)	float64	
xch4	(time, lat, lon)	float32	
xch4_nobs	(time, lat, lon)	float64	
xch4_stderr	(time, lat, lon)	float32	
xch4_stddev	(time, lat, lon)	float32	
column_averagi	(time, pressure, lat, lon)	float32	
vmr_profile_ch4	(time, pressure, lat, lon)	float32	

► Attributes: (28)

1.1 [5 points] Compute methane climatology for each month, and plot your results in 12 panels.

In [31]:

1.2 [5 points] Plot globally-averaged methane from 2003-01 to 2020-06 as a time series. Describe your results. Check your plot with this one.

In [30]:

```
weight = np.cos(np.deg2rad(mc.lat))
mc.weighted(weight).mean(dim=('lat','lon'), skipna=True).plot()
plt.show()
```


A: Globally-averaged methane climatology goes up over time, and has a distinct seasonal periodicity

1.3 [5 points] Plot deseasonalized methane levels at point [15° S, 150° W] from 2003-01 to 2020-06 as a time series. Describe your results.

In [29]:

```
groupdata = mc.groupby('time.month')
mc_anom = groupdata - groupdata.mean(dim='time')
mc_anom.sel(lon=-150, lat=-15, method='nearest').plot(figsize=(8, 6))
plt.show()
```


A: There will be many NANs near the point [15°S, 150°W], resulting in an incomplete graph

2.1 [10 points] Compute monthly climatology for SST from Niño 3.4 region, and subtract climatology from SST time series to obtain anomalies.

In [5]:

Out[5]:

	mean_3_anomalies	date
0	-0.352137	1960-03-15
1	-0.307922	1960-04-15
2	-0.210945	1960-05-15
3	-0.240803	1960-06-15
4	-0.225803	1960-07-15
677	-0.442696	2016-08-15
678	-0.618628	2016-09-15
679	-0.728378	2016-10-15
680	-0.836065	2016-11-15
681	-0.907836	2016-12-15

682 rows × 2 columns

2.2 [10 points] Visualize the computed Niño 3.4. Your plot should look similar to this one.

```
In [6]:
```

```
df.plot(x="date", y="mean_3_anomalies", figsize=(8, 6))
plt.axhline(y=0.5, ls="-", c="r") #Mark the line corresponding to the outlier
plt.axhline(y=0, ls=":", c="black")
plt.axhline(y=-0.5, ls="-", c="g") #Mark the line corresponding to the outlier
plt.xticks(rotation=45) #The X-axis is marked by a 45° rotation
plt.ylabel('Anomaly in Degress C')
plt.xlabel('Year')
plt.title('SST Anomaly in Niño 3.4 Region(5° N-5° S, 120° W-170° W)')
plt.show()
```


3. Explore a netCDF dataset

In [9]:

```
T = xr.open_dataset('2016-2020-T.nc', engine="netcdf4")
group_data = T.t2m.groupby('time.month')

T_anom = group_data - group_data.mean(dim='time') # Apply mean to grouped data, and then compute the T_anom_d = T_anom.sum(dim=('latitude', 'longitude'))

T_anom_m = T_anom_d.resample(time='M').mean().plot()
plt.ylabel('T °C')
plt.show() #The original graph of the data is in 3.2
```


3.2 [10 points] Make at least 5 different plots using the dataset.

In [10]:

```
T. t2m. mean(dim='time').plot()
plt. show()
```


In [15]:

```
q3_2=T.t2m.mean(dim=('longitude','latitude')) #Global data average
fig, ax = plt.subplots()
n, bins, patches = ax.hist(q3_2,40, density=1)# the histogram of the data
plt.title('Histogram of T')
plt.xlabel('temperature')
plt.ylabel('probability dendity')
plt.tight_layout() #Automatically adjusts subgraph parameters to provide the specified population
plt.show()
```


In [26]:

```
monthly_mean = q3_2.resample(time='M').mean()
monthly_mean.plot(color='g')
plt.show()
```


In [18]:

plt.boxplot(q3_2)
plt.show()

In [28]:

 $q3_2.plot()$ #The original data graph shows seasonal periodicity plt. show()

