Modelování a simulace v elektrotechnice

Základy řešení nelineárních algebraických rovnic

František Mach

Katedra teoretické elektrotechniky Regionální inovační centrum elektrotechniky Fakulta elektrotechnická Západočeská univerzita v Plzni

8. cvičení, 10.11.2016

Obsah

- Úvod do problematiky
 - Definice základních pojmů
 - Motivace

- 2 Newtonova metoda
 - Základní princip metody
 - Implementace metody (základní princip)
 - Příklad řešení kubické rovnice

Úvod do problematiky

- Úvod do problematiky
 - Definice základních pojmů
 - Motivace

- 2 Newtonova metoda
 - Základní princip metody
 - Implementace metody (základní princip)
 - Příklad řešení kubické rovnice

Lineární algebraická rovnice je rovnice, ve které se vyskytují neznámé pouze v první mocnině. Obecně lze tedy rovnici zapsat ve tvaru

$$ax = b$$
.

Naproti tomu nelineární algebraická rovnice obsahuje vyšší mocniny a lze ji tedy zapsat ve tvaru

$$a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0 = b, n > 1.$$

Uvažujme tedy rovnici v obecném tvaru rovnosti funkci F(x)=G(x), pak pro lineární funkci f(x)=F(x)-G(x)=0 musí platit princip superpozice. Musí tedy platit podmínka aditivity

$$f(x_1 + x_2) = f(x_1) + f(x_2)$$

a zároveň podmínka homogenity

$$f(cx) = cf(x).$$

Pokud princip superpozice neplatí, funkce f(x) je nelineární a tedy také příslušná rovnice je nelineární algebraickou rovnici.

Definice základních pojmů

Obrázek: Příklady zobrazení lineární a nelineární rovnice y=f(x). Graf zobrazuje lineární algebraickou rovnici (červená křivka), nelineární kvadratickou (zelená křivka) a kubickou rovnici (modrá křivka)

Nelinearity magnetických obvodů

Velmi důležitou oblastí elektrotechniky, kde je nutné využívat nelineární matematické modely, jsou elektrické stroje a přístroje tvořené feromagnetickými materiály, které se vyznačují nelineární závislostí relativní permeability μ_r na magnetické indukci B.

Obrázek: Laboratorní prototyp FSPM stroje pracujícího ve funkci generátoru a zobrazení vektorů magnetické indukce ${m B}$ a magnetických indukčních čar získaných řešením matematického modelu [Miroslav Blohmann]

Úvod do problematiky

Nelineární polovodičové prvky

Základním principem funkce polovodičových prvků je nelineární voltampérová charakteristika. Simulace jejich reálné funkce vede tedy také na řešení nelineárních matematických modelů.

Obrázek: Laboratorní prototyp elektromagnetického aktuátoru řízený elektronickým spínačem s MOSFET tranzistory. Řešení komplexního modelu aktuátoru zahrnuje řadu nelinearit, kromě již zmíněné nelinearity magnetického obvodu také nelinearitu řady polovodičových prvků [Tomáš Kaminský]

Nelinearity teplotních charakteristik materiálů

Při simulaci tepelných procesů se velmi často setkáváme s nutností řešit nelineární matematické modely, a to především kvůli teplotním charakteristikám materiálů.

Obrázek: Porovnání výsledků měření teploty Fieldova kovu s výsledky získanými řešením lineárního a nelineárního matematického modelu, a to při jeho ohřevu a tavení v laboratorní indukční peci. Z výsledků je naprosto zřejmá nutnost uvažovat nelinearitu teplotních charakteristik materiálů, v tomto případě se jedná o měrnou tepelnou kapacitu $c_{\rm p}$). Pravý obrázek zobrazuje rozložení teploty na povrchu tavené vsázky pořízený termokamerou během experimentu. [Jana Kuthanová, Kateřina Mizerová]

Newtonova metoda

- 1 Úvod do problematiky
 - Definice základních pojmů
 - Motivace

- 2 Newtonova metoda
 - Základní princip metody
 - Implementace metody (základní princip)
 - Příklad řešení kubické rovnice

Uvažujme nelineární algebraickou rovnici ve tvaru funkce

$$f(x) = 0\,,$$

kde řešením je právě takové x^* pro které platí uvedená rovnost, tedy v průsečíku grafu funkce s osou x. Pokud se funkce f(x) chová rozumně (je spojitá, hladká a monotónní na řešeném intervalu), lze očekávat její řešení ve směru směrnice tečny sestrojené v bodě počátečního odhadu x_0 .

Rovnice tečny a určení jejího průsečíku s osou

Tečna ke grafu funkce y=f(x) v bodě dotyku $T[x_0,y_0];y_0=f(x_0)$ lze popsat rovnicí

$$(y - y_0) = f'(x_0)(x - x_0),$$

ze které lze snadno určit bod, ve kterém daná tečna protíná osu x pro y=0 z výrazu

$$x = x_0 - \frac{y_0}{f'(x_0)} = x_0 - \frac{f(x_0)}{f'(x_0)}.$$

Newtonova metoda

Základní princip metody

Newtonova metoda (metoda tečen nebo Newton-Raphsonova metoda) je iterační numerická metoda, která hledá právě řešení nelineární funkce ve tvaru

$$f(x) = 0,$$

pomocí směrnice tečny v bodě x_0 , která představuje derivaci funkce $f'(x_0)$ v daném bodě. Pro výpočet této směrnice přitom můžeme využít analytické vyjádření derivace nebo numerický výpočet v úlohách, kde analytické vyjádření derivace nelze nalézt.

Výpočet nového řešení x_{k+1} z počátečního odhadu x_k pak provedeme v místě průsečíku tečny s osou x, který určíme podle vztahu

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}, k = 0, 1, 2, \dots, n$$

Nově nalezené řešení x_{k+1} bude za splnění uvedených podmínek (spojitá, hladká a monotóní funkce) blíže nule a iteračním postupem lze tak následně získat aproximaci přesného řešení.

Numerická derivace

Numerická derivace představuje aproximaci derivace funkce f'(x) na základě funkčních hodnot f(x) pro konečné množství hodnot nezávisle proměnné x. Uvažujeme velmi malé h různé od nuly, dostaneme tak předpis pro výpočet dopředné derivace ve tvaru

$$f'(x) \approx \frac{f(x+h) - f(x)}{h}$$
 , nebo derivace centrální $f'(x) \approx \frac{f(x+h) - f(x-h)}{2h}$.

Newtonova metoda


```
function x = newton(fce, interval, x0, epsilon)
a = interval(1);
b = interval(2);
n = 1e4:
dx = (b-a)/n;
for i = 1 \cdot n
    % vypocet reseni rovnice pro x0
    v0 = fce(x0);
    % vypocet derivace rovnice v x0
    dy = (fce(x0+dx)-y0)/dx;
    % vypocet noveho parametru a reseni
    x = x0 - y0/dy;
    v = fce(x);
    % vypocet chyby reseni
    err = abs(v-v0)/v;
    % kontrola na pozadovanou chybu reseni
    if err <= epsilon</pre>
        return
    end
    x0 = x;
end
end
```


Obrázek: První krok výpočtu: určení x_1 ze známé počáteční podmínky x_0

Obrázek: Druhý krok výpočtu (určíme x_2 z již známé hodnoty x_1)

Obrázek: Třetí krok výpočtu (určíme x_3 z již známé hodnoty x_2)

Obrázek: Čtvrtý krok výpočtu (určíme x_4 z již známé hodnoty x_3)

Obrázek: Pátý krok výpočtu (určíme x_5 z již známé hodnoty x_6)