# **About the Course**

#### Schedule

- October 25 to December 19.
- 9:30h to 14:40h (5 hours/day).
- Holidays:
  - November 1 (Wed).
  - December 6, 7, and 8 (Wed, Thu, Fri).
- 170h for ML.
- 10h for "Formació Complementària".

### **Daily Schedule**

- 9:30h 10:40h Finish previous day exercises.
  - Break
- 11h 13h Theory + exercises.
  - Break
- 13:20h 14:30h Exercises.

3 days ~10 days ~10 days 3 days

Intro:

- Python
- Numpy
- Pandas



#### ML:

- Data cleaning.
- Algorithms: LR, kNN, DT, RF, GBDT, SVM, NB, NN
- Concepts: Train/Test, Cross-validation, Hyperparameter tuning, etc.
- Exercises: Price prediction, hotel cancelation









#### **Cross-curricular**

• Information search and comprehension.

### Daily time spent searching for answers/solutions



#### **Bibliography**



#### Extra Bibliography

- Al
  - Artificial Intelligence: A Modern Approach (Stuart Russell et al.) (HARD)
- ML
  - The StatQuest illustrated guide to machine learning (Josh Starmer) (MEDIUM)
  - An Introduction to Statistical Learning (Gareth James et al.) (MEDIUM+)
  - The Elements of Statistical Learning (Trevor Hastie et al.) (HARD)
- DL
  - Deep Learning with Python (François Chollet) (MEDIUM)
  - Deep Learning (Ian Goodfellow et al.) (HARD)
- Maths
  - Mathematics for Machine Learning (Marc Peter Deisenroth et al.) (MEDIUM)

### Python 3.X

- Numpy
- Pandas
- Matplotlib / Seaborn
- Scipy
- Sklearn
- Tensorflow / Pytorch

### Why Python?

- Open source.
- Simple syntax (data science problems tend to be small scripts).
- Very useful libraries, specially for data science.
- Active community.
- Slow... but not so much with the appropriate libraries.

#### **Jupyter Notebooks**

```
In [1]: %matplotlib inline
        import pandas as pd
        import numpy as np
        import plotly
        from IPython.display import display, Markdown as md
In [2]: title = "My Shiny Report"
        x = 1000
        y = 3
In [3]: display(md("# Just look at this graph from {}".format(title)))
        Just look at this graph from My Shiny Report
In [4]: df = pd.DataFrame(np.random.randn(x, y))
        df.cumsum().plot()
Out[4]: <matplotlib.axes. subplots.AxesSubplot at 0x7f127adda278>
         -20
         -40
         -60
```

1000

200

### **Jupyter Notebooks**

- Visual Studio Code
- Browser
- JupyterLab desktop
- Google colab

#### Install

- Recommendation: Anaconda (<u>www.anaconda.com</u>).
  - Python, pip and jupyter notebooks should be included there.

• If not using Anaconda, follow the next slides for installing all the components separately.

### **Install Python**

- Python (<u>www.python.org</u>).
- Pip (included with Python).
- Libraries (numpy, pandas, matplotlib, seaborn, scipy, sklearn, tensorflow)
  - pip install numpy
  - o etc.

#### **Jupyter Notebooks Installation**

- pip install jupyter
- jupyter notebook

or

jupyter notebook --no-browser

- NB extensions (https://jupyter-contrib-nbextensions.readthedocs.io/en/latest/install.html):
  - pip install jupyter\_contrib\_nbextensions
  - o jupyter contrib nbextension install --user

#### **Course Drive**

http://bit.ly/ml oct 23