Bidyut Saha

PhD Scholar Embedded AI and TinyML Researcher Indian Institute of Technology Kharagpur, India

☐ +91 9051668691

☐ sahabidyut999@gmail.com

♦ https://bidyutsaha.github.io

in linkedin.com/in/sahabidyut

Objective

PhD candidate specializing in **TinyML**, **Embedded AI**, **Edge AI**, and sustainable low-power machine learning, with a focus on advancing AI solutions for resource-constrained environments. Expertise in on-device model personalization, hardware-aware neural architecture search (NAS), and model compression techniques. Actively seeking a Research Scientist role to contribute to cutting-edge advancements in Embedded AI and TinyML for low-power, efficient AI systems.

Education

2020–2025 PhD in Embedded AI and TinyML, Indian Institute of Technology, Kharagpur,

Research focus: TinyML, AloT, Computer Vision, Embedded AI, and low-power machine learning models on resource-constrained devices.

2018–2020 M.Tech in Computer Science, University of Calcutta, India

2013–2016 B.Tech in Computer Science and Engineering, University of Calcutta, India

2010–2013 **B.Sc (Honours) in Computer Science**, Asutosh College, University of Calcutta, India

Research Projects

2022–2023 **On-device Human Activity Detection in Wearables**, *TinyML and Embedded Al Project*

- Developed a smart band prototype using ESP32 VROOM with integrated IMU sensors on a custom PCB, housed in a 3D-printed case, costing under \$12 per unit.
- Built a web application and Android app for data collection and labeling, utilizing BLE and Wi-Fi with MQTT, Flask, and MongoDB. The solution supports deployment across cloud, desktop, or Raspberry Pi, and integrates a lightweight ML model for real-time on-device human activity recognition, eliminating the need for computation offloading.

2023-2024 Human Activity Model Personalization

- Designed a cloud-based framework for personalizing human activity models and automating their deployment to smart bands.
- Developed a framework for on-device training within Android environments for model personalization and domain adaptation for individual users.

2024-Present GPU-free Neural Architecture Search (NAS) Tool

- Developed a hardware-aware NAS tool optimized for TinyML on resource-constrained devices. The tool operates on CPU-only systems without relying on GPUs, implementing model compression techniques for efficient deployment on embedded systems.
- Integrated a time-bound search for model architecture optimization, allowing rapid deployment.

2024-Present Channel Pruning with Genetic Algorithm for TinyML Deployment

- Created a tool for channel pruning, enabling model optimization for extreme resourceconstrained hardware like MCUs.
- Leveraged L2 norm for determining channel importance and applied genetic algorithms to optimize pruning percentages for each layer.

2023–2024 Gesture Recognition for Human-Computer Interaction Systems

- Implemented on-device gesture recognition using IMU sensors in wearable devices to control nearby connected devices, enabling hands-free interaction.
- Developed a static hand gesture recognition model using image sensors and deployed it on an ESP32 CAM, achieving a detection range of 2.5 meters. The system is designed to be low-cost, low-power, and privacy-preserving for gesture control.

2024-Present Real-time On-device Face Tracking System on MCU

 Deployed an ultra-lightweight deep learning model (under 70KB) on an ESP32, achieving real-time face tracking with a frame rate of 4 FPS, specifically designed for low-power MCUs.

2024-Present On-device Leaf Disease Detection

 Developed a plant disease detection model optimized for deployment on an MCU with a 120KB RAM footprint, enabling low-power, low-latency offline inference on resourceconstrained hardware, contributing to sustainable AI solutions.

2024-Present Disaster Surveillance Using Image Classification

• Integrated a low-power, low-RAM image classification model onto a drone system powered by an ESP32, designed for real-time, low-cost disaster surveillance in affected areas.

2021–2022 Intrusion Detection on Edge Devices

- O Designed an intrusion detection system using WiFi sensing and camera-based deep learning on edge devices for real-time monitoring.
- O Developed an acoustic surveillance system for environmental monitoring.

2019–2020 Automatic Image Colorization

Applied Generative Adversarial Networks (GANs) to colorize black-and-white images
efficiently, optimizing the solution for edge devices with limited processing power.

Publications

- 1 Saha, Bidyut, et al. "BandX: An intelligent IoT-band for human activity recognition based on TinyML." Proceedings of the 24th International Conference on Distributed Computing and Networking. 2023.
- 2 Saha, Bidyut, et al. "TinyML-Driven On-Device Personalized Human Activity Recognition and Auto-Deployment to Smart Bands." Proceedings of the Third International Conference on Al-ML Systems. 2023. [Best Research Paper Award]
- 3 Saha, Bidyut, et al. "From Wrist to World: Harnessing Wearable IMU Sensors and TinyML to Enable Smart Environment Interactions." Proceedings of the Third International Conference on Al-ML Systems. 2023. [Best Demo Paper Award]
- 4 Saha, Bidyut, et al. "Personalized Human Activity Recognition: Real-time On-device Training and Inference." IEEE Consumer Electronics Magazine. 2024.
- 5 Samanta, Riya, Bidyut Saha, and Soumya K. Ghosh. "TinyML-On-The-Fly: Real-Time Low-Power and Low-Cost MCU-Embedded On-Device Computer Vision for Aerial Image Classification." 2024 IEEE Space, Aerospace and Defence Conference (SPACE). IEEE, 2024.

- 6 Saha, Bidyut, et al. "TinyML-Powered Gesture Wizardry: Low-Cost, Low-Power Two-Stage CNN for Static Hand Gesture Classification on MCU in Appliance Control." Proceedings of the Fourth International Conference on Al-ML Systems. 2023. (Accepted)
- 7 Saha, Bidyut, et al. "LeafSense: A Portable, Low-Cost, Low-Power Plant Disease Diagnostic Device Using TinyML." Proceedings of the Fourth International Conference on Al-ML Systems. 2023. (Accepted)
- 8 Saha, Bidyut, et al. "TinyTNAS: GPU-Free, Time-Bound, Hardware-Aware Neural Architecture Search for TinyML Time Series Classification." arXiv preprint arXiv:2408.16535. 2024.
- 9 Saha, Bidyut, et al. "Optimizing TinyML: The Impact of Reduced Data Acquisition Rates for Time Series Classification on Microcontrollers." arXiv preprint arXiv:2409.10942. 2024.
- 10 Saha, Bidyut, et al. "Towards Sustainable Personalized On-Device Human Activity Recognition with TinyML and Cloud-Enabled Auto Deployment." arXiv preprint arXiv:2409.00093. 2024.
- 11 Samanta, Riya, et al. "CTG-KrEW: Generating Synthetic Structured Contextually Correlated Content by Conditional Tabular GAN with K-Means Clustering and Efficient Word Embedding." arXiv preprint arXiv:2409.01628. 2024.

Patents & Tools

- 1 Wearable Gesture Recognition System for Appliance Control (Filed: Indian Patent, May 2024, Application No: 202431037176).
- 2 TinyTNAS: GPU-Free, Time-Bound, Hardware-Aware Neural Architecture Search for TinyML Time Series Classification. https://github.com/BidyutSaha/TinyTNAS.

Technical Skills

AI &

TinyML

Embedded Deploying ML models on microcontrollers (MCUs) for real-time, low-power Al solutions using TinyML and TensorFlow Lite.

Model Expertise in pruning neural networks for efficient deployment on resource-constrained **Compression** devices without compromising accuracy.

& Optimiza-

tion

Neural Conducting NAS optimized for CPU-based systems in embedded environments, **Architecture** eliminating GPU dependency.

Search

(NAS)

Custom Designing custom PCBs for IoT applications, integrating sensors for Al-powered PCB Design systems.

Edge AI & Real-time analytics and edge computing on low-power platforms such as ESP32 and **IoT** Raspberry Pi.

Full-stack Comprehensive knowledge of both front-end and back-end development for IoT Develop- systems.

ment

Mobile App Developing tools for data collection and user interaction via BLE and WiFi.

Development

Professional Experience

2020–Present PhD Research Scholar, Indian Institute of Technology, Kharagpur Led research projects in TinyML, low-power machine learning, and edge computing, mentoring interns and B.Tech students.

2016–2018 **Full Stack Software Engineer**, Tata Consultancy Services, Kolkata Developed desktop and web applications and enterprise software solutions.

Leadership & Mentoring

Teaching NPTEL Cloud Computing, IIT Kharagpur Assistant

Mentorship Mentored 5 interns and 2 B.Tech students on TinyML and IoT project development.

Demos

On-Device On-Device Human Activity Recognition, https://www.youtube.com/watch?v= HAR CNJ4wyo7Dyo

Gesture Gesture Control with TinyML, https://www.youtube.com/watch?v= Control _57USD7uBtk

TinyML in Computer Vision with TinyML, https://drive.google.com/file/d/Computer 1blo3jk4ag8X9VhA5FBZuLmeCsWQ2HeRp/view?usp=sharing Vision