جلسه چهاردهم

فرم کلی روابط بازگشتی:

شرايط اوليه :

 $a_{0}=A_{0}$, $a_{1}=A_{1}$,...., $A_{v}=a_{v}$.

 $a_n=f_n(a_{n-1},a_{n-2},.....a_1,a_0)$, n>v.

اگر $f_n(a_{n-1},....,a_0)$ برحسب $a_{n-1},....,a_0$ خطی باشد به رابطه بازگشتی مذکور یک رابطه بازگشتی خطی می گوییم.

در این حالت به ازای آرایه ی دو بعدی مانند $\{g_{n,i}\}$ و تابعی مانند F(n) داریم :

$$f_n(a_{n-1},...,a_0) = \sum_{i=0}^{n-1} g_{n,i} \times a_i + F(n)$$

مثال :

جلسه چهاردهم

اگر در عبارت $f_n(a_{n-1},....,a_0)$ جمله های a_{n-k-1}a₀ حضور نداشته باشند ولی جمله a_{n-k-1} وجود نداشته باشد به معادله بازگشتی $a_n=f_n(a_{n-1},....,a_0)$ +F(n) یک معادله مرتبه $a_n=f_n(a_{n-1},...,a_0)$

اگر در معادله (*) داشته باشیمF(n) =0 به آن یک معادله همگن گفته میشود.

معادله بازگشتی خطی با ضرایب ثابت مرتبه k معادله ای به صورت :

$$a_n=c_1a_{n-1}+c_2a_{n-2}+.....+c_ka_{n-k}+F(x)$$

است که در آن $c_k \neq 0$ اگر بعلاوه F(n) = 0 آنگاه به معادله فوق یک معادله بازگشتی خطی همگن مرتبه k با ضرایب ثابت گفته میشود . چند جمله ای مشخصه متناظر این معادله طبق تعریف عبارتست از :

 $\Delta(r) = r^k - c_1 r^{k-1}, \dots, c_{k-1} r - c_k$

میدانیم چند جمله ای که ریشه های آن $\Delta(r)$ باشد را میتوان به صورت زیر نوشت:

 $\Delta^{(R)}(r)=c_k r^k+c_{k-1}r^{k-1}+....+c_1r$

قضیه 1.فرض کنید $C_1, C_2 \neq 0$ اعداد مفروضی باشند و معادله $\Delta(r) = r^2 - c_1 r - c_2$ دار ای دو ریشه متمایز $a_n = c_1 a_{n-1} + c_2 a_{n-2}$, $n \geq 2$ باشد. در اینصورت دنباله $\{a_n\}_{n \geq 0}$ جوابی از معادله بازگشتی $\{a_n\}_{n \geq 0}$

است.

 $a_n = \alpha_1 r_1^n + \alpha_2 r_2^n$ اگر و تنها اگر ثابت های α_1 و α_2 موجود باشند بطوریکه

 r_1,r_2 اگر r_1,r_2 ریشه های r_1,r_2 باشند داریم

$$r_1^2 = c_1 r_1 + c_2 \Rightarrow \times \alpha_1$$

$$r_2^2 = c_1 r_2 + c_1 \Rightarrow \times \alpha_2$$

$$r_2^n = c_1 r_2^{n-1} + c_1 r_2^{n-2}$$

. در نتیجه دنباله : $b_n = \alpha_1 r_1^n + \alpha_2 r_2^n$ در رابطه بازگشتی $b_n = \alpha_1 r_1^n + \alpha_2 r_2^n$ صدق میکند

جلسه چهاردهم

حال فرض کنیم دنباله مفروض $\{X_n\}_{n\geq 0}$ در رابطه بازگشتی $X_n=C_1X_{n-1}+C_2X_{n-2}$ صدق کند . برای آنکه نشان دهیم دنباله $\{X_n\}_{n\geq 0}$ نیز به همان فرم مطرح شده در صورت قضیه هست ابتدا دنباله ای مانند

به دست می آوریم بطوریکه: $b_n = \alpha_1 r_1^n + \alpha_2 r_2^n$

$$\begin{cases}
b_0=x_0 \\
b_1=x_1
\end{cases}$$

(در واقع برای این منظور باید α_1 و α_2 را بطور مناسب تعیین کنیم)

سپس نتیجه میگیریم به ازای هر مقدار $b_n = x_n, n > 0$ و قسمت عکس قضیه از اینجا ثابت میشود.

حكم فوق به كمك استقرا با دو مقدمه نسبت به n ثابت ميشود).

معادله فیبونانچی به این روش حل شود.

قضیه 2.در قضیه قبل فرض کنید معادله درجه دوم r^2 - c_1r - $c_2=0$ به جای دو ریشه متمایز دارای ریشه مضاعف $a_n=c_1a_{n-1}+c_2a_{n-2}$ باشد.در اینصورت دنباله $a_n=c_1a_{n-1}+c_2a_{n-2}$ جوابی از معادله بازگشتی $a_n=c_1a_{n-1}+c_2a_{n-2}$ است.اگر و تنها اگر ثابت های

 a_n = $\alpha_1 r_0^n + \alpha_2 n r_0^n$ و α_2 موجود باشند بطوریکه: α_2

قضیه $a_n = c_1 a_{n-1} + c_2 a_{n-2}$ و معادله $a_n = c_1 a_{n-1} + c_2 a_{n-2}$ دارای $a_n = c_1 a_{n-1} + c_2 a_{n-2}$ باشد در $a_n = a_n = c_1 a_{n-1} + c_2 a_{n-2}$ است اگر و تنها اگر مقادیر $a_n = a_1 c_1 a_{n-1} + c_2 a_{n-2}$ موجود باشند بطوریکه: $a_n = a_1 c_1 a_{n-1} + c_2 a_{n-2}$