Table 3	Electric Fields	•

Examples	E, N/C
in a fluorescent lighting tube	10
in the atmosphere during fair weather	100
under a thundercloud or in a lightning bolt	10 000
at the electron in a hydrogen atom	5.1×10^{11}

Our new equation for electric field strength points out an important property of electric fields. As the equation indicates, an electric field at a given point depends only on the charge, q, of the object setting up the field and on the distance, r, from that object to a specific point in space. As a result, we can say that an electric field exists at any point near a charged body even when there is no test charge at that point. The examples in **Table 3** show the magnitudes of various electric fields.

SAMPLE PROBLEM D

STRATEGY Electric Field Strength

PROBLEM

A charge $q_1 = +7.00 \mu C$ is at the origin, and a charge $q_2 = -5.00 \mu C$ is on the x-axis 0.300 m from the origin, as shown at right. Find the electric field strength at point P, which is on the y-axis 0.400 m from the origin.

SOLUTION

1. Define the problem, and identify the known variables.

Given:
$$q_1 = +7.00 \,\mu\text{C} = 7.00 \times 10^{-6} \,\text{C}$$
 $r_1 = 0.400 \,\text{m}$ $q_2 = -5.00 \,\mu\text{C} = -5.00 \times 10^{-6} \,\text{C}$ $r_2 = 0.500 \,\text{m}$ $\theta = 53.1^{\circ}$

Unknown: E at P(y = 0.400 m)

Apply the principle of superposition. You must first calculate the electric field produced by each charge individually at point P and then add these fields together as vectors.

2. Calculate the electric field strength produced by each charge.

Because we are finding the magnitude of the electric field, we can neglect the sign of each charge.

$$E_1 = k_C \frac{q_1}{r_1^2} = (8.99 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2) \left(\frac{7.00 \times 10^{-6} \text{ C}}{(0.400 \text{ m})^2} \right) = 3.93 \times 10^5 \text{ N/C}$$

$$E_2 = k_C \frac{q_2}{r_2^2} = (8.99 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2) \left(\frac{5.00 \times 10^{-6} \text{ C}}{(0.500 \text{ m})^2} \right) = 1.80 \times 10^5 \text{ N/C}$$

3. Analyze the signs of the charges.

The field vector $\mathbf{E_1}$ at P due to q_1 is directed vertically upward, as shown in the figure above, because q_1 is positive. Likewise, the field vector $\mathbf{E_2}$ at P due to q_2 is directed toward q_2 because q_2 is negative.