Truth Table & Minterm Expansion

Computer Science 111
Boston University
Vahid Azadeh-Ranjbar, Ph.D.

Revisiting the Circuit from Last Class ...

<u>in</u>	<u>puts</u>	<u>output</u>
<u>X</u>	<u>Y</u>	
0	0	1
0	1	0
1	0	0
1	1	1

- The top AND gate implements which row of the truth table? the top row
- The bottom AND gate implements which row? the bottom row

Boolean Expressions for Truth Tables

ing	<u>outs</u>	output
<u>X</u>	<u>Y</u>	
0	0	1
0	1	0
1	0	0
1	1	1
		1

This truth table/circuit can be summarized by the expression:

$$\overline{xy} + xy$$

- This expression is the *minterm expansion* of this truth table.
 - one minterm for each row that has an output of 1
 - · combined using OR

- 1. If you don't have it, create the truth table.
- 2. Delete the rows with an output of 0.
- 3. Create a minterm for each remaining row (the ones with an output of 1):
 - AND the input variables together
 - if a variable has a 0 in that row, negate it
 - example: minterm for the 2nd row xyz
- 4. OR the minterms together.

$$\overline{x}\overline{y}z + \overline{x}y\overline{z} + x\overline{y}\overline{z} + xyz$$

Odd Parity

- This truth table and circuit are for the *odd parity* function.
 - outputs 1 when the number of 1 inputs is odd

What is the minterm expansion of this truth table?

<u>i</u> ı	nputs	<u>output</u>	
<u>X</u>	<u>y</u>	<u>Z</u>	
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0
			•

- A. yz + xz + xy
- B. $xyz + x\overline{y}\overline{z} + \overline{x}y\overline{z} + \overline{x}\overline{y}z$
- $C. \quad \overline{x}\overline{y}z \ + \ \overline{x}y\overline{z} \ + \ x\overline{y}\overline{z} \ + \ xyz$
- D. $\overline{x}\overline{y}\overline{z} + \overline{x}yz + x\overline{y}z + \overline{x}\overline{y}z$
- E. none of the above

What is the minterm expansion of this truth table?

<u>i</u> ı	output		
<u>X</u>	Y	<u>Z</u>	
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
-1-	0	0	0
1	0	1	1
1	1	0	1
-1-	1	1	0
_	_	_	1

$$\overline{x}\overline{y}\overline{z} + \overline{x}yz + x\overline{y}z + xy\overline{z}$$

- A. yz + xz + xy
- B. $xyz + x\overline{y}\overline{z} + \overline{x}y\overline{z} + \overline{x}\overline{y}z$
- C. $\overline{x}\overline{y}z + \overline{x}y\overline{z} + x\overline{y}\overline{z} + xyz$
- $D. \quad \overline{x}\overline{y}\overline{z} \ + \ \overline{x}yz \ + \ x\overline{y}z \ + \ \overline{x}\overline{y}z$
- E. none of the above

ex: greater_than_4(x, y, z)

- \rightarrow 1 if the 3-digit binary number xyz > 4
- → 0 otherwise

for example:

- greater_than_4(1, 1, 0) \rightarrow 1 (True) because $110_2 = 6_{10}$, and 6 > 4
- greater_than_4(0, 1, 1) \rightarrow 0 (False) because $011_2 = 3_{10}$, and 3 is not > 4

Building a Minterm Expansion for a Boolean Function

ex: greater_than_4(x, y, z)

⇒ 1 if the 3-digit binary number xyz > 4 $\frac{dec}{0}$ $\frac{x}{0}$ $\frac{x}{0}$ $\frac{z}{0}$ 0 otherwise

1. If you don't have it, create the truth table. $\begin{bmatrix} 2 & 0 & 1 & 0 \\ 3 & 0 & 1 & 1 \end{bmatrix}$

<u>inputs</u>

output

ex: greater_than_4(x, y, z)

 \rightarrow 1 if the 3-digit binary number xyz > 4 $\frac{dec}{}$ $\frac{x}{}$ $\frac{y}{}$ $\frac{z}{}$

→ 0 otherwise

1. If you don't have it, create the truth table. $\begin{bmatrix} 2 \\ 3 \end{bmatrix}$

2. Delete the rows with an output of 0.

inputs

output

Building a Minterm Expansion for a Boolean Function

ex: greater_than_4(x, y, z)

 \rightarrow 1 if the 3-digit binary number xyz > 4 $\frac{dec}{}$ \times \times \times \times \times

→ 0 otherwise

1. If you don't have it, create the truth table. $\begin{bmatrix} 2 & 1 \\ 3 & 1 \end{bmatrix}$

2. Delete the rows with an output of 0.

3. Create a minterm for each remaining row 6: (the ones with an output of 1).

What Is the Minterm for the **BLUE** Row?

,	_	nputs	<u>output</u>	
<u>dec</u>	<u>X</u>	У	<u>Z</u>	
0:	0	0	0	0
1:	-0-	0	1	0
2:	0	1	0	0
3 :	0	1	1	0
4:	<u>-1</u>	0	0	ŏ
5:	1	0	1	1
6:	1	1	0	1
7:	1	1	1	1

- A. $x + \overline{y} + z$
- B. $\bar{x} + y + \bar{z}$
- C. $\bar{x}y\bar{z}$
- D. xyz
- E. none of the above

What Is the Minterm for the **BLUE** Row?

	<u>iı</u>	nputs	output	
dec	<u>X</u>	У	<u>Z</u>	
0:	0	0	0	0
1:	0	0	1	0
2:	0	1	0	0
3 .	_0_	<u>-</u>	_1_	
4:	_1_	_	_	ے ا
5:	1	0	1	1
6:	1	1	0	1
7:	1	1	1	1

- A. $x + \overline{y} + z$
- B. $\bar{x} + y + \bar{z}$
- $C. \quad \overline{x}y\overline{z}$
- D. xyz
- E. none of the above

inputs

0

0 1

1: 0 0 1

1

1 1 0

1 1

inputs

<u>x</u> y

1: 0 0 1

1 0

1 1

1 1

1

0

0: 0

2: 0

7:

0: 0

output

0

0

0 0

1

1

1

output

0

0

0

0 0

1

1

ex: greater_than_4(x, y, z)

- \rightarrow 1 if the 3-digit binary number xyz > 4 $\frac{dec}{}$ \times $\frac{x}{}$
- → 0 otherwise

- 3. Create a minterm for each remaining row 6: (the ones with an output of 1):
 - AND the input variables together
 - · if a variable has a 0 in that row, negate it

Building a Minterm Expansion for a Boolean Function

ex: greater_than_4(x, y, z)

- \rightarrow 1 if the 3-digit binary number xyz > 4 <u>dec</u>
- \rightarrow 0 otherwise
- 1. If you don't have it, create the truth table.
- 2. Delete the rows with an output of 0.
- 3. Create a minterm for each remaining row 6: (the ones with an output of 1):
 - AND the input variables together
 - if a variable has a 0 in that row, negate it
- 4. OR the minterms together.

$$x\overline{y}z + xy\overline{z} + xyz$$

Which AND gate corresponds to row 3 of the table?

			input		output
		x	У	Z	
row	0	0	0	0	0
row	1	0	0	1	0
row	2	0	1	0	1
row	3	0	1	1	1
row	4	1	0	0	0
row	5	1	0	1	1
row	6	1	1	0	0
row	7	1	1	1	1

- Complete the rest of the truth table.
- What is its minterm expansion as a formula/expression?
- If the inputs represent a three-bit integer, what property of integers does the circuit compute?

Which AND gate corresponds to row 3 of the table?

- Complete the rest of the truth table.
- What is its minterm expansion as a formula/expression?
 xyz + xyz + xyz
- If the inputs represent a three-bit integer, what property of integers does the circuit compute?

Which AND gate corresponds to row 3 of the table?

		input		output
	X	У	Z	
row 0	0	0	0	0
row 1	0	0	1	0
row 2	0	1	0	1
row 3	0	1	1	1
row 4	1	0	0	0
row 5	1	0	1	1
row 6	1	1	0	0
row 7	1	1	1	1

- Complete the rest of the truth table.
- What is its minterm expansion as a formula/expression?
 xyz + xyz + xyz
- If the inputs represent a three-bit integer, what property of integers does the circuit compute? whether the integer is prime

MOORE'S LAW "Transistor density on integrated circuits doubles about every two years." *

1950s Silicon Transistor

1 Transistor 1960s TTL Quad Gate

16 Transistors 1970s 8-bit Microprocessor

4500 Transistors 1980s 32-bit Microprocessor

275,000 Transistors 1990s 32-bit Microprocessor

3 100 000

3,100,000 Transistors 2000s 64-bit Microprocessor

592,000,000 Transistors