MANNK.032A PATENT

EPITOPE SEQUENCES

Cross Reference to Related Applications

[0001] This application claims priority under 35 U.S.C. 119(e) to U.S. Provisional Patent Application Serial No. 60/409,123, filed on September 6, 2002, entitled "EPITOPE SEQUENCES," and which provisional application is incorporated herein by reference in its entirety, including the compact disks submitted with the provisional application.

Background of the Invention

Field of the Invention

[0002] The present invention generally relates to peptides, and nucleic acids encoding peptides, that are useful epitopes of target-associated antigens. More specifically, the invention relates to epitopes that have a high affinity for MHC class I and that are produced by target-specific proteasomes.

Description of the Related Art

Neoplasia and the Immune System

[0003] The neoplastic disease state commonly known as cancer is thought to result generally from a single cell growing out of control. The uncontrolled growth state typically results from a multi-step process in which a series of cellular systems fail, resulting in the genesis of a neoplastic cell. The resulting neoplastic cell rapidly reproduces itself, forms one or more tumors, and eventually may cause the death of the host.

[0004] Because the progenitor of the neoplastic cell shares the host's genetic material, neoplastic cells are largely unassailed by the host's immune system. During immune surveillance, the process in which the host's immune system surveys and localizes foreign materials, a neoplastic cell will appear to the host's immune surveillance machinery as a "self' cell.

Viruses and the Immune System

[0005] In contrast to cancer cells, virus infection involves the expression of clearly non-self antigens. As a result, many virus infections are successfully dealt with by

the immune system with minimal clinical sequela. Moreover, it has been possible to develop effective vaccines for many of those infections that do cause serious disease. A variety of vaccine approaches have been used successfully to combat various diseases. These approaches include subunit vaccines consisting of individual proteins produced through recombinant DNA technology. Notwithstanding these advances, the selection and effective administration of minimal epitopes for use as viral vaccines has remained problematic.

[0006] In addition to the difficulties involved in epitope selection stands the problem of viruses that have evolved the capability of evading a host's immune system. Many viruses, especially viruses that establish persistent infections, such as members of the herpes and pox virus families, produce immunomodulatory molecules that permit the virus to evade the host's immune system. The effects of these immunomodulatory molecules on antigen presentation may be overcome by the targeting of select epitopes for administration as immunogenic compositions. To better understand the interaction of neoplastic cells and virally infected cells with the host's immune system, a discussion of the system's components follows below.

[0007] The immune system functions to discriminate molecules endogenous to an organism ("self" molecules) from material exogenous or foreign to the organism ("non-self" molecules). The immune system has two types of adaptive responses to foreign bodies based on the components that mediate the response: a humoral response and a cell-mediated response. The humoral response is mediated by antibodies, while the cell-mediated response involves cells classified as lymphocytes. Recent anticancer and antiviral strategies have focused on mobilizing the host immune system as a means of anticancer or antiviral treatment or therapy.

[0008] The immune system functions in three phases to protect the host from foreign bodies: the cognitive phase, the activation phase, and the effector phase. In the cognitive phase, the immune system recognizes and signals the presence of a foreign antigen or invader in the body. The foreign antigen can be, for example, a cell surface marker from a neoplastic cell or a viral protein. Once the system is aware of an invading body, antigen specific cells of the immune system proliferate and differentiate in response to the invader-triggered signals. The last stage is the effector stage in which the effector cells of the immune system respond to and neutralize the detected invader.

[0009] An array of effector cells implements an immune response to an invader. One type of effector cell, the B cell, generates antibodies targeted against foreign antigens encountered by the host. In combination with the complement system, antibodies direct the destruction of cells or organisms bearing the targeted antigen. Another type of effector cell is the natural killer cell (NK cell), a type of lymphocyte having the capacity to spontaneously recognize and destroy a variety of virus infected cells as well as malignant cell types. The method used by NK cells to recognize target cells is poorly understood.

[0010] Another type of effector cell, the T cell, has members classified into three subcategories, each playing a different role in the immune response. Helper T cells secrete cytokines which stimulate the proliferation of other cells necessary for mounting an effective immune response, while suppressor T cells down-regulate the immune response. A third category of T cell, the cytotoxic T cell (CTL), is capable of directly lysing a targeted cell presenting a foreign antigen on its surface.

The Major Histocompatibility Complex and T Cell Target Recognition

[0011] T cells are antigen-specific immune cells that function in response to specific antigen signals. B lymphocytes and the antibodies they produce are also antigen-specific entities. However, unlike B lymphocytes, T cells do not respond to antigens in a free or soluble form. For a T cell to respond to an antigen, it requires the antigen to be processed to peptides which are then bound to a presenting structure encoded in the major histocompatibility complex (MHC). This requirement is called "MHC restriction" and it is the mechanism by which T cells differentiate "self" from "non-self" cells. If an antigen is not displayed by a recognizable MHC molecule, the T cell will not recognize and act on the antigen signal. T cells specific for a peptide bound to a recognizable MHC molecule bind to these MHC-peptide complexes and proceed to the next stages of the immune response.

[0012] There are two types of MHC, class I MHC and class II MHC. T Helper cells (CD4⁺) predominately interact with class II MHC proteins while cytolytic T cells (CD8⁺) predominately interact with class I MHC proteins. Both classes of MHC protein are transmembrane proteins with a majority of their structure on the external surface of the cell. Additionally, both classes of MHC proteins have a peptide binding cleft on their external portions. It is in this cleft that small fragments of proteins, endogenous or foreign, are bound and presented to the extracellular environment.

[0013] Cells called "professional antigen presenting cells" (pAPCs) display antigens to T cells using the MHC proteins but additionally express various costimulatory molecules depending on the particular state of differentiation/activation of the pAPC. When T cells, specific for the peptide bound to a recognizable MHC protein, bind to these MHC-peptide complexes on pAPCs, the specific co-stimulatory molecules that act upon the T cell direct the path of differentiation/activation taken by the T cell. That is, the co-stimulation molecules affect how the T cell will act on antigenic signals in future encounters as it proceeds to the next stages of the immune response.

[0014] As discussed above, neoplastic cells are largely ignored by the immune system. A great deal of effort is now being expended in an attempt to harness a host's immune system to aid in combating the presence of neoplastic cells in a host. One such area of research involves the formulation of anticancer vaccines.

Anticancer Vaccines

[0015] Among the various weapons available to an oncologist in the battle against cancer is the immune system of the patient. Work has been done in various attempts to cause the immune system to combat cancer or neoplastic diseases. Unfortunately, the results to date have been largely disappointing. One area of particular interest involves the generation and use of anticancer vaccines.

[0016] To generate a vaccine or other immunogenic composition, it is necessary to introduce to a subject an antigen or epitope against which an immune response may be mounted. Although neoplastic cells are derived from and therefore are substantially identical to normal cells on a genetic level, many neoplastic cells are known to present tumor-associated antigens (TuAAs). In theory, these antigens could be used by a subject's immune system to recognize these antigens and attack the neoplastic cells. In reality, however, neoplastic cells generally appear to be ignored by the host's immune system.

[0017] A number of different strategies have been developed in an attempt to generate vaccines with activity against neoplastic cells. These strategies include the use of tumor-associated antigens as immunogens. For example, U.S. Patent No. 5,993,828, describes a method for producing an immune response against a particular subunit of the Urinary Tumor Associated Antigen by administering to a subject an effective dose of a composition comprising inactivated tumor cells having the Urinary Tumor Associated Antigen on the cell surface and at least one tumor associated antigen selected from the

group consisting of GM-2, GD-2, Fetal Antigen and Melanoma Associated Antigen. Accordingly, this patent describes using whole, inactivated tumor cells as the immunogen in an anticancer vaccine.

[0018] Another strategy used with anticancer vaccines involves administering a composition containing isolated tumor antigens. In one approach, MAGE-A1 antigenic peptides were used as an immunogen. (See Chaux, P., et al., "Identification of Five MAGE-A1 Epitopes Recognized by Cytolytic T Lymphocytes Obtained by *In Vitro* Stimulation with Dendritic Cells Transduced with MAGE-A1," J. Immunol., 163(5):2928-2936 (1999)). There have been several therapeutic trials using MAGE-A1 peptides for vaccination, although the effectiveness of the vaccination regimes was limited. The results of some of these trials are discussed in Vose, J.M., "Tumor Antigens Recognized by T Lymphocytes," 10th European Cancer Conference, Day 2, Sept. 14, 1999.

[0019] In another example of tumor associated antigens used as vaccines, Scheinberg, et al. treated 12 chronic myelogenous leukemia (CML) patients already receiving interferon (IFN) or hydroxyurea with 5 injections of class I-associated bcr-abl peptides with a helper peptide plus the adjuvant QS-21. Scheinberg, D.A., et al., "BCR-ABL Breakpoint Derived Oncogene Fusion Peptide Vaccines Generate Specific Immune Responses in Patients with Chronic Myelogenous Leukemia (CML) [Abstract 1665], American Society of Clinical Oncology 35th Annual Meeting, Atlanta (1999). Proliferative and delayed type hypersensitivity (DTH) T cell responses indicative of Thelper activity were elicited, but no cytolytic killer T cell activity was observed within the fresh blood samples.

[0020] Additional examples of attempts to identify TuAAs for use as vaccines are seen in the recent work of Cebon, et al. and Scheibenbogen, et al. Cebon, et al. immunized patients with metastatic melanoma using intradermally administered MART-1₂₆₋₃₅ peptide with IL-12 in increasing doses given either subcutaneously or intravenously. Of the first 15 patients, 1 complete remission, 1 partial remission, and 1 mixed response were noted. Immune assays for T cell generation included DTH, which was seen in patients with or without IL-12. Positive CTL assays were seen in patients with evidence of clinical benefit, but not in patients without tumor regression. Cebon, et al., "Phase I Studies of Immunization with Melan-A and IL-12 in HLA A2+ Positive Patients with

Stage III and IV Malignant Melanoma," [Abstract 1671], American Society of Clinical Oncology 35th Annual Meeting, Atlanta (1999).

[0021] Scheibenbogen, et al. immunized 18 patients with 4 HLA class I restricted tyrosinase peptides, 16 with metastatic melanoma and 2 adjuvant patients. Scheibenbogen, et al., "Vaccination with Tyrosinase peptides and GM-CSF in Metastatic Melanoma: a Phase II Trial," [Abstract 1680], American Society of Clinical Oncology 35th Annual Meeting, Atlanta (1999). Increased CTL activity was observed in 4/15 patients, 2 adjuvant patients, and 2 patients with evidence of tumor regression. As in the trial by Cebon, et al., patients with progressive disease did not show boosted immunity. In spite of the various efforts expended to date to generate efficacious anticancer vaccines, no such composition has yet been developed.

Antiviral Vaccines

- [0022] Vaccine strategies to protect against viral diseases have had many successes. Perhaps the most notable of these is the progress that has been made against the disease small pox, which has been driven to extinction. The success of the polio vaccine is of a similar magnitude.
- [0023] Viral vaccines can be grouped into three classifications: live attenuated virus vaccines, such as vaccinia for small pox, the Sabin poliovirus vaccine, and measles mumps and rubella; whole killed or inactivated virus vaccines, such as the Salk poliovirus vaccine, hepatitis A virus vaccine and the typical influenza virus vaccines; and subunit vaccines, such as hepatitis B. Due to their lack of a complete viral genome, subunit vaccines offer a greater degree of safety than those based on whole viruses.
- [0024] The paradigm of a successful subunit vaccine is the recombinant hepatitis B vaccine based on the viruses envelope protein. Despite much academic interest in pushing the reductionist subunit concept beyond single proteins to individual epitopes, the efforts have yet to bear much fruit. Viral vaccine research has also concentrated on the induction of an antibody response although cellular responses also occur. However, many of the subunit formulations are particularly poor at generating a CTL response.

Summary of the Invention

[0025] Previous methods of priming professional antigen presenting cells (pAPCs) to display target cell epitopes have relied simply on causing the pAPCs to

express target-associated antigens (TAAs), or epitopes of those antigens which are thought to have a high affinity for MHC I molecules. However, the proteasomal processing of such antigens results in presentation of epitopes on the pAPC that do not correspond to the epitopes present on the target cells.

[0026] Using the knowledge that an effective cellular immune response requires that pAPCs present the same epitope that is presented by the target cells, the present invention provides epitopes that have a high affinity for MHC I, and that correspond to the processing specificity of the housekeeping proteasome, which is active in peripheral cells. These epitopes thus correspond to those presented on target cells. The use of such epitopes in compositions, such as vaccines and other immunogenic compositions (including pharmaceutical and immunotherapeutic compositions) can activate the cellular immune response to recognize the correctly processed TAA and can result in removal of target cells that present such epitopes. In some embodiments, the housekeeping epitopes provided herein can be used in combination with immune epitopes, generating a cellular immune response that is competent to attack target cells both before and after interferon induction. In other embodiments the epitopes are useful in the diagnosis and monitoring of the target-associated disease and in the generation of immunological reagents for such purposes.

[0027] Embodiments of the invention relate to isolated epitopes, antigens and/or polypeptides. The isolated antigens and/or polypeptides can include the epitopes. Preferred embodiments include an epitope or antigen having the sequence as disclosed in Tables 1A or 1B. Other embodiments can include an epitope cluster comprising a polypeptide from Tables 1A or 1B. Further, embodiments include a polypeptide having substantial similarity to the already mentioned epitopes, polypeptides, antigens, or clusters. Other preferred embodiments include a polypeptide having functional similarity to any of the above. Still further embodiments relate to a nucleic acid encoding the polypeptide of any of the epitopes, clusters, antigens, and polypeptides from Tables 1A or 1B and mentioned herein.

[0028] For purposes of the following summary and discussion of other embodiments of the invention, reference to "the epitope," "the epitopes," or "epitope from Tables 1A or 1B" may include without limitation to all of the foregoing forms of the epitope including an epitope with the sequence set forth in the Tables or elsewhere herein,

a cluster comprising such an epitope or epitopes, a polypeptide having substantial or functional similarity to those epitopes or clusters, and the like.

[0029] The polypeptide or epitope can be immunologically active. The polypeptide comprising the epitope can be less than about 30 amino acids in length, more preferably, the polypeptide is 8 to 10 amino acids in length, for example. Substantial or functional similarity can include addition of at least one amino acid, for example, and the at least one additional amino acid can be at an N-terminus of the polypeptide. The substantial or functional similarity can include a substitution of at least one amino acid.

[0030] The epitope, cluster, or polypeptide comprising the same can have affinity to an HLA-A2 molecule. The affinity can be determined by an assay of binding, by an assay of restriction of epitope recognition, by a prediction algorithm, and the like. The epitope, cluster, or polypeptide comprising the same can have affinity to an HLA-B7, HLA-B51 molecule, and the like.

[0031] In preferred embodiments the polypeptide can be a housekeeping epitope. The epitope or polypeptide can correspond to an epitope displayed on a tumor cell, to an epitope displayed on a neovasculature cell, and the like. The epitope or polypeptide can be an immune epitope. The epitope, cluster and/or polypeptide can be a nucleic acid. The epitope, cluster and/or polypeptide can be encoded by a nucleic acid.

[0032] Other embodiments relate to compositions, including pharmaceutical or immunogenic compositions comprising the polypeptides, including an epitope from Tables 1A or 1B, a cluster, or a polypeptide comprising the same, and a pharmaceutically acceptable adjuvant, carrier, diluent, excipient, and the like. The adjuvant can be a polynucleotide. The polynucleotide can include a dinucleotide, which can be CpG, for example. The adjuvant can be encoded by a polynucleotide. The adjuvant can be a cytokine and the cytokine can be, for example, GM-CSF.

[0033] The compositions can further include a professional antigen-presenting cell (pAPC). The pAPC can be a dendritic cell, for example. The composition can further include a second epitope. The second epitope can be a polypeptide, a nucleic acid, a housekeeping epitope, an immune epitope, and the like.

[0034] Still further embodiments relate to compositions, including pharmaceutical and immunogenic compositions that include any of the nucleic acids discussed herein, including those that encode polypeptides that comprise epitopes or

antigens from Tables 1A or 1B. Such compositions can include a pharmaceutically acceptable adjuvant, carrier, diluent, excipient, and the like.

[0035] Other embodiments relate to recombinant constructs that include such a nucleic acid as described herein, including those that encode polypeptides that comprise epitopes or antigens from Tables 1A or 1B. The constructs can further include a plasmid, a viral vector, an artificial chromosome, and the like. The construct can further include a sequence encoding at least one feature, such as for example, a second epitope, an IRES, an ISS, an NIS, a ubiquitin, and the like.

[0036] Further embodiments relate to purified antibodies that specifically bind to at least one of the epitopes in Tables 1A or 1B. Other embodiments relate to purified antibodies that specifically bind to a peptide-MHC protein complex comprising an epitope disclosed in Tables 1A or 1B or any other suitable epitope. The antibody from any embodiment can be a monoclonal antibody or a polyclonal antibody.

[0037] Still other embodiments relate to multimeric MHC-peptide complexes that include an epitope, such as, for example, an epitope disclosed in Tables 1A or 1B. Also, contemplated are antibodies specific for the complexes.

[0038] Embodiments relate to isolated T cells expressing a T cell receptor specific for an MHC-peptide complex. The complex can include an epitope, such as, for example, an epitope disclosed in Tables 1A or 1B. The T cell can be produced by an *in vitro* immunization and can be isolated from an immunized animal. Embodiments relate to T cell clones, including cloned T cells, such as those discussed above. Embodiments also relate to polyclonal population of T cells. Such populations can include a T cell, as described above, for example.

[0039] Still further embodiments relate to compositions, including pharmaceutical and immunogenic compositions that include a T cell, such as those described above, for example, and a pharmaceutically acceptable adjuvant, carrier, diluent, excipient, and the like.

[0040] Embodiments of the invention relate to isolated protein molecules comprising the binding domain of a T cell receptor specific for an MHC-peptide complex. The complex can include an epitope as disclosed in Tables 1A or 1B. The protein can be multivalent. Other embodiments relate to isolated nucleic acids encoding such proteins. Still further embodiments relate to recombinant constructs that include such nucleic acids.

[0041] Other embodiments of the invention relate to host cells expressing a recombinant construct as described above and elsewhere herein. The host cells can include constructs encoding an epitope, a cluster or a polypeptide comprising said epitope or said cluster. The epitope or epitope cluster can be one or more of those disclosed in Tables 1A or 1B, for example, and as otherwise defined. The host cell can be a dendritic cell, macrophage, tumor cell, tumor-derived cell, a bacterium, fungus, protozoan, and the like. Embodiments also relate to compositions, including pharmaceutical and immunogenic compositions that include a host cell, such as those discussed herein, and a pharmaceutically acceptable adjuvant, carrier, diluent, excipient, and the like.

[0042] Still other embodiments relate to compositions including immunogenic compositions, such as for example, vaccines or immunotherapeutic compositions. The compositions can include at least one component, such as, for example, an epitope disclosed in Tables 1A or 1B or otherwise described herein; a cluster that includes such an epitope, an antigen or polypeptide that includes such an epitope; a composition as described above and herein; a construct as described above and herein, a T cell, a construct comprising a nucleic acid encoding a T cell receptor binding domain specific for an MHC-peptide complex and compositions including the same, a host cell as described above and herein, and compositions comprising the same.

Further embodiments relate to methods of treating an animal. The [0043] methods can include administering to an animal a composition, including a pharmaceutical or an immunogenic composition, such as, a vaccine or immunotherapeutic composition, including those disclosed above and herein. The administering step can include a mode of delivery, such as, for example, transdermal, intranodal, perinodal, oral, intravenous, intradermal, intramuscular, intraperitoneal, mucosal, aerosol inhalation, instillation, and the like. The method can further include a step of assaying to determine a characteristic indicative of a state of a target cell or target cells. The method can include a first assaying step and a second assaying step, wherein the first assaying step precedes the administering step, and wherein the second assaying step follows the administering step. The method can further include a step of comparing the characteristic determined in the first assaying step with the characteristic determined in the second assaying step to obtain a result. The result can be for example, evidence of an immune response, a diminution in number of target cells, a loss of mass or size of a tumor comprising target cells, a decrease in number or concentration of an intracellular parasite infecting target cells, and the like.

- [0044] Embodiments relate to methods of evaluating immunogenicity of a composition, including a vaccine or an immunotherapeutic composition. The methods can include administering to an animal a vaccine or immunotherapeutic, such as those described above and elsewhere herein, and evaluating immunogenicity based on a characteristic of the animal. The animal can be MHC-transgenic.
- [0045] Other embodiments relate to methods of evaluating immunogenicity that include *in vitro* stimulation of a T cell with the vaccine or immunotherapeutic composition, such as those described above and elsewhere herein, and evaluating immunogenicity based on a characteristic of the T cell. The stimulation can be a primary stimulation.
- [0046] Still further embodiments relate to methods of making a passive/adoptive immunotherapeutic. The methods can include combining a T cell or a host cell, such as those described above and elsewhere herein, with a pharmaceutically acceptable adjuvant, carrier, diluent, excipient, and the like.
- [0047] Other embodiments relate to methods of determining specific T cell frequency, and can include the step of contacting T cells with a MHC-peptide complex comprising an epitope disclosed in Tables 1A or 1B, or a complex comprising a cluster or antigen comprising such an epitope. The contacting step can include at least one feature, such as, for example, immunization, restimulation, detection, enumeration, and the like. The method can further include ELISPOT analysis, limiting dilution analysis, flow cytometry, in situ hybridization, the polymerase chain reaction, any combination thereof, and the like.
- [0048] Embodiments relate to methods of evaluating immunologic response. The methods can include the above-described methods of determining specific T cell frequency carried out prior to and subsequent to an immunization step.
- [0049] Other embodiments relate to methods of evaluating immunologic response. The methods can include determining frequency, cytokine production, or cytolytic activity of T cells, prior to and subsequent to a step of stimulation with MHC-peptide complexes comprising an epitope, such as, for example an epitope from Tables 1A or 1B, a cluster or a polypeptide comprising such an epitope.
- [0050] Further embodiments relate to methods of diagnosing a disease. The methods can include contacting a subject tissue with at least one component, including, for example, a T cell, a host cell, an antibody, a protein, including those described above

and elsewhere herein; and diagnosing the disease based on a characteristic of the tissue or of the component. The contacting step can take place *in vivo* or *in vitro*, for example.

- [0051] Still other embodiments relate to methods of making a composition, including for example, a vaccine. The methods can include combining at least one component. For example, the component can be an epitope, a composition, a construct, a T cell, a host cell; including any of those described above and elsewhere herein, and the like, with a pharmaceutically acceptable adjuvant, carrier, diluent, excipient, and the like.
- [0052] Embodiments relate to computer readable media having recorded thereon the sequence of any one of SEQ ID NOS: 108-610, in a machine having a hardware or software that calculates the physical, biochemical, immunologic, molecular genetic properties of a molecule embodying said sequence, and the like.
- [0053] Still other embodiments relate to methods of treating an animal. The methods can include combining the method of treating an animal that includes administering to the animal a vaccine or immunotherapeutic composition, such as described above and elsewhere herein, combined with at least one mode of treatment, including, for example, radiation therapy, chemotherapy, biochemotherapy, surgery, and the like.
- [0054] Further embodiments relate to isolated polypeptides that include an epitope cluster. In preferred embodiments the cluster can be from a target-associated antigen having the sequence as disclosed in any one of Tables 68-73, wherein the amino acid sequence includes not more than about 80% of the amino acid sequence of the antigen.
- [0055] Other embodiments relate to immunogenic compositions, including vaccines or immunotherapeutic products that include an isolated peptide as described above and elsewhere herein. Still other embodiments relate to isolated polynucleotides encoding a polypeptide as described above and elsewhere herein. Other embodiments relate vaccines or immunotherapeutic products that include these polynucleotides. The polynucleotide can be DNA, RNA, and the like.
- [0056] Still further embodiments relate to kits comprising a delivery device and any of the embodiments mentioned above and elsewhere herein. The delivery device can be a catheter, a syringe, an internal or external pump, a reservoir, an inhaler, microinjector, a patch, and any other like device suitable for any route of delivery. As mentioned, the kit, in addition to the delivery device also includes any of the

embodiments disclosed herein. For example, without limitations, the kit can include an isolated epitope, a polypeptide, a cluster, a nucleic acid, an antigen, a pharmaceutical composition that includes any of the foregoing, an antibody, a T cell, a T cell receptor, an epitope-MHC complex, a vaccine, an immunotherapeutic, and the like. The kit can also include items such as detailed instructions for use and any other like item.

Brief Description of the Drawings

- [0057] Figures 1A-C is a sequence alignment of NY-ESO-1 and several similar protein sequences.
- [0058] Figure 2 graphically represents a plasmid vaccine backbone useful for delivering nucleic acid-encoded epitopes.
- [0059] Figures 3A and 3B are FACS profiles showing results of HLA-A2 binding assays for tyrosinase₂₀₇₋₂₁₅ and tyrosinase₂₀₈₋₂₁₆.
- [0060] Figure 3C shows cytolytic activity against a tyrosinase epitope by human CTL induced by *in vitro* immunization.
- [0061] Figure 4 is a T=120 min. time point mass spectrum of the fragments produced by proteasomal cleavage of SSX-2₃₁₋₆₈.
 - [0062] Figure 5 shows a binding curve for HLA-A2:SSX-2₄₁₋₄₉ with controls.
- [0063] Figure 6 shows specific lysis of SSX-2₄₁₋₄₉—pulsed targets by CTL from SSX-2₄₁₋₄₉—immunized HLA-A2 transgenic mice.
- [0064] Figure 7A, B, and C show results of N-terminal pool sequencing of a T=60 min. time point aliquot of the PSMA₁₆₃₋₁₉₂ proteasomal digest.
- [0065] Figure 8 shows binding curves for HLA-A2:PSMA₁₆₈₋₁₇₇ and HLA-A2:PSMA₂₈₈₋₂₉₇ with controls.
- [0066] Figure 9 shows results of N-terminal pool sequencing of a T=60 min. time point aliquot of the PSMA₂₈₁₋₃₁₀ proteasomal digest.
- [0067] Figure 10 shows binding curves for HLA-A2:PSMA₄₆₁₋₄₆₉, HLA-A2:PSMA₄₆₀₋₄₆₉, and HLA-A2:PSMA₆₆₃₋₆₇₁, with controls.
- [0068] Figure 11 shows the results of a γ (gamma)-IFN-based ELISPOT assay detecting PSMA₄₆₃₋₄₇₁-reactive HLA-A1⁺ CD8⁺ T cells.
- [0069] Figure 12 shows blocking of reactivity of the T cells used in figure 10 by anti-HLA-A1 mAb, demonstrating HLA-A1-restricted recognition.

- [0070] Figure 13 shows a binding curve for HLA-A2:PSMA₆₆₃₋₆₇₁, with controls.
- [0071] Figure 14 shows a binding curve for HLA-A2:PSMA₆₆₂₋₆₇₁, with controls.
- [0072] Figure 15. Comparison of anti-peptide CTL responses following immunization with various doses of DNA by different routes of injection.
- [0073] Figure 16. Growth of transplanted gp33 expressing tumor in mice immunized by i.ln. injection of gp33 epitope-expressing, or control, plasmid.
- [0074] Figure 17. Amount of plasmid DNA detected by real-time PCR in injected or draining lymph nodes at various times after i.ln. of i.m. injection, respectively.
- [0075] Figures 18-70 are proteasomal digestion maps depicting the mapping of mass spectrum peaks from the digest onto the sequence of the indicated substrate.

Detailed Description of the Preferred Embodiment

Definitions

- [0076] Unless otherwise clear from the context of the use of a term herein, the following listed terms shall generally have the indicated meanings for purposes of this description.
- [0077] PROFESSIONAL ANTIGEN-PRESENTING CELL (pAPC) a cell that possesses T cell costimulatory molecules and is able to induce a T cell response. Well characterized pAPCs include dendritic cells, B cells, and macrophages.
 - [0078] PERIPHERAL CELL a cell that is not a pAPC.
- [0079] HOUSEKEEPING PROTEASOME a proteasome normally active in peripheral cells, and generally not present or not strongly active in pAPCs.
- [0080] IMMUNE PROTEASOME a proteasome normally active in pAPCs; the immune proteasome is also active in some peripheral cells in infected tissues.
- [0081] EPITOPE a molecule or substance capable of stimulating an immune response. In preferred embodiments, epitopes according to this definition include but are not necessarily limited to a polypeptide and a nucleic acid encoding a polypeptide, wherein the polypeptide is capable of stimulating an immune response. In other preferred embodiments, epitopes according to this definition include but are not necessarily limited to peptides presented on the surface of cells, the peptides being non-covalently bound to the binding cleft of class I MHC, such that they can interact with T cell receptors (TCR).

Epitopes presented by class I MHC may be in immature or mature form. "Mature" refers to an MHC epitope in distinction to any precursor ("immature") that may include or consist essentially of a housekeeping epitope, but also includes other sequences in a primary translation product that are removed by processing, including without limitation, alone or in any combination proteasomal digestion, N-terminal trimming, or the action of exogenous enzymatic activities. Thus, a mature epitope may be provided embedded in a somewhat longer polypeptide, the immunological potential of which is due, at least in part, to the embedded epitope; or in its ultimate form that can bind in the MHC binding cleft to be recognized by TCR, respectively.

[0082] MHC EPITOPE – a polypeptide having a known or predicted binding affinity for a mammalian class I or class II major histocompatibility complex (MHC) molecule.

[0083] HOUSEKEEPING EPITOPE – In a preferred embodiment, a housekeeping epitope is defined as a polypeptide fragment that is an MHC epitope, and that is displayed on a cell in which housekeeping proteasomes are predominantly active. In another preferred embodiment, a housekeeping epitope is defined as a polypeptide containing a housekeeping epitope according to the foregoing definition, that is flanked by one to several additional amino acids. In another preferred embodiment, a housekeeping epitope is defined as a nucleic acid that encodes a housekeeping epitope according to the foregoing definitions.

[0084] IMMUNE EPITOPE – In a preferred embodiment, an immune epitope is defined as a polypeptide fragment that is an MHC epitope, and that is displayed on a cell in which immune proteasomes are predominantly active. In another preferred embodiment, an immune epitope is defined as a polypeptide containing an immune epitope according to the foregoing definition, that is flanked by one to several additional amino acids. In another preferred embodiment, an immune epitope is defined as a polypeptide including an epitope cluster sequence, having at least two polypeptide sequences having a known or predicted affinity for a class I MHC. In yet another preferred embodiment, an immune epitope is defined as a nucleic acid that encodes an immune epitope according to any of the foregoing definitions.

[0085] TARGET CELL – a cell to be targeted by the vaccines and methods of the invention. Examples of target cells according to this definition include but are not

necessarily limited to: a neoplastic cell and a cell harboring an intracellular parasite, such as, for example, a virus, a bacterium, or a protozoan.

[0086] TARGET-ASSOCIATED ANTIGEN (TAA) – a protein or polypeptide present in a target cell.

[0087] TUMOR-ASSOCIATED ANTIGENS (TuAA) – a TAA, wherein the target cell is a neoplastic cell.

[0088] HLA EPITOPE – a polypeptide having a known or predicted binding affinity for a human class I or class II HLA complex molecule.

[0089] ANTIBODY – a natural immunoglobulin (Ig), poly- or monoclonal, or any molecule composed in whole or in part of an Ig binding domain, whether derived biochemically or by use of recombinant DNA. Examples include *inter alia*, F(ab), single chain Fv, and Ig variable region-phage coat protein fusions.

[0090] ENCODE – an open-ended term such that a nucleic acid encoding a particular amino acid sequence can consist of codons specifying that (poly)peptide, but can also comprise additional sequences either translatable, or for the control of transcription, translation, or replication, or to facilitate manipulation of some host nucleic acid construct.

[0091] SUBSTANTIAL SIMILARITY – this term is used to refer to sequences that differ from a reference sequence in an inconsequential way as judged by examination of the sequence. Nucleic acid sequences encoding the same amino acid sequence are substantially similar despite differences in degenerate positions or modest differences in length or composition of any non-coding regions. Amino acid sequences differing only by conservative substitution or minor length variations are substantially similar. Additionally, amino acid sequences comprising housekeeping epitopes that differ in the number of N-terminal flanking residues, or immune epitopes and epitope clusters that differ in the number of flanking residues at either terminus, are substantially similar. Nucleic acids that encode substantially similar amino acid sequences are themselves also substantially similar.

[0092] FUNCTIONAL SIMILARITY – this term is used to refer to sequences that differ from a reference sequence in an inconsequential way as judged by examination of a biological or biochemical property, although the sequences may not be substantially similar. For example, two nucleic acids can be useful as hybridization probes for the same sequence but encode differing amino acid sequences. Two peptides that induce

cross-reactive CTL responses are functionally similar even if they differ by non-conservative amino acid substitutions (and thus do not meet the substantial similarity definition). Pairs of antibodies, or TCRs, that recognize the same epitope can be functionally similar to each other despite whatever structural differences exist. In testing for functional similarity of immunogenicity one would generally immunize with the "altered" antigen and test the ability of the elicited response (Ab, CTL, cytokine production, etc.) to recognize the target antigen. Accordingly, two sequences may be designed to differ in certain respects while retaining the same function. Such designed sequence variants are among the embodiments of the present invention.

[0093] VACCINE – this term is used to refer to those immunogenic compositions that are capable of eliciting prophylactic and/or therapeutic responses that prevent, cure, or ameliorate disease.

[0094] IMMUNOGENIC COMPOSITION - this term is used to refer to compositions capable of inducing an immune response, a reaction, an effect, and/or an event. In some embodiments, such responses, reactions, effects, and/or events can be induced *in vitro* or *in vivo*, for example. Included among these embodiments are the induction, activation, or expansion of cells involved in cell mediated immunity, for example. One example of such cells is cytotoxic T lymphocytes (CTLs). A vaccine is one type of immunogenic composition. Another example of such a composition is one that induces, activates, or expands CTLs *in vitro*. Further examples include pharmaceutical compositions and the like.

Table 1A. SEQ ID NOS.* including epitopes in Examples 1-7, 13, 14.

SEQ ID NO	IDENTITY	SEQUENCE
1	Tyr 207-216	FLPWHRLFLL
2	Tyrosinase protein	Accession number**: P14679
3	SSX-2 protein	Accession number: NP_003138
4	PSMA protein	Accession number: NP_004467
5	Tyrosinase cDNA	Accession number: NM_000372
6	SSX-2 cDNA	Accession number: NM_003147
7	PSMA cDNA	Accession number: NM_004476
8	Tyr 207-215	FLPWHRLFL
9	Tyr 208-216	LPWHRLFLL
10	GGW 2 21 62	YFSKEEWEKMKASEKIFYVYMKRKYEAMTKLGF
	SSX-2 31-68	KATLP

		
11	SSX-2 32-40	FSKEEWEKM
12	SSX-2 39-47	KMKASEKIF
13	SSX-2 40-48	MKASEKIFY
14	SSX-2 39-48	KMKASEKIFY
15	SSX-2 41-49	KASEKIFYV
16	SSX-2 40-49	MKASEKIFYV
17	SSX-2 41-50	KASEKIFYVY
18	SSX-2 42-49	ASEKIFYVY
19	SSX-2 53-61	RKYEAMTKL
20	SSX-2 52-61	KRKYEAMTKL
21	SSX-2 54-63	KYEAMTKLGF
22	SSX-2 55-63	YEAMTKLGF
23	SSX-2 56-63	EAMTKLGF
24	HBV18-27	FLPSDYFPSV
25	HLA-B44 binder	AEMGKYSFY
26	SSX-1 41-49	KYSEKISYV
27	SSX-3 41-49	KVSEKIVYV
28	SSX-4 41-49	KSSEKIVYV
29	SSX-5 41-49	KASEKIIYV
30	PSMA163-192	AFSPQGMPEGDLVYVNYARTEDFFKLERDM
31	PSMA 168-190	GMPEGDLVYVNYARTEDFFKLER
32	PSMA 169-177	MPEGDLVYV
33	PSMA 168-177	GMPEGDLVYV
34	PSMA 168-176	GMPEGDLVY
35	PSMA 167-176	QGMPEGDLVY
36	PSMA 169-176	MPEGDLVY
37	PSMA 171-179	EGDLVYVNY
38	PSMA 170-179	PEGDLVYVNY
39	PSMA 174-183	LVYVNYARTE
40	PSMA 177-185	VNYARTEDF
41	PSMA 176-185	YVNYARTEDF
42	PSMA 178-186	NYARTEDFF
43	PSMA 179-186	YARTEDFF
44	PSMA 181-189	RTEDFFKLE
45	PSMA 281-310	RGIAEAVGLPSIPVHPIGYYDAQKLLEKMG
46	PSMA 283-307	IAEAVGLPSIPVHPIGYYDAQKLLE
47	PSMA 289-297	LPSIPVHPI
48	PSMA 288-297	GLPSIPVHPI
49	PSMA 297-305	IGYYDAQKL
50	PSMA 296-305	PIGYYDAQKL
51	PSMA 291-299	SIPVHPIGY
52	PSMA 290-299	PSIPVHPIGY

53	PSMA 292-299	IPVHPIGY
54	 	
55	PSMA 299-307	YYDAQKLLE SSIEGNIYTI DVDCTBI MVSI VHI TVEI
56	PSMA454-481 PSMA 456-464	SSIEGNYTLRVDCTPLMYSLVHLTKEL IEGNYTLRV
57	 	
58	PSMA 455-464	SIEGNYTLRV
59	PSMA 457-464	EGNYTLRV
60	PSMA 461-469	TLRVDCTPL
61	PSMA 460-469	YTLRVDCTPL
	PSMA 462-470	LRVDCTPLM
62	PSMA 463-471	RVDCTPLMY
63	PSMA 462-471	LRVDCTPLMY
64	PSMA653-687	FDKSNPIVLRMMNDQLMFLERAFIDPLGLPDRPFY
65	PSMA 660-681	VLRMMNDQLMFLERAFIDPLGL
66	PSMA 663-671	MMNDQLMFL
67	PSMA 662-671	RMMNDQLMFL
68	PSMA 662-670	RMMNDQLMF
69	Tyr 1-17	MLLAVLYCLLWSFQTSA
70	GP100 protein ²	Accession number: P40967
71	MAGE-1 protein	Accession number: P43355
72	MAGE-2 protein	Accession number: P43356
73	MAGE-3 protein	Accession number: P43357
74	NY-ESO-1 protein	Accession number: P78358
75	LAGE-1a protein	Accession number: CAA11116
76	LAGE-1b protein	Accession number: CAA11117
77	PRAME protein	Accession number: NP 006106
78	PSA protein	Accession number: P07288
79	PSCA protein	Accession number: 043653
80	GP100 cds	Accession number: U20093
81	MAGE-1 cds	Accession number: M77481
82	MAGE-2 cds	Accession number: L18920
83	MAGE-3 cds	Accession number: U03735
84	NY-ESO-1 cDNA	Accession number: U87459
85	PRAME cDNA	Accession number: NM 006115
86	PSA cDNA	Accession number: NM 001648
87	PSCA cDNA	Accession number: AF043498
88	CEA protein	Accession number: P06731
89	CEA cDNA	Accession number: NM_004363
90	Her2/Neu protein	Accession number: P04626
91	Her2/Neu cDNA	Accession number: M11730
92	SCP-1 protein	Accession number: Q15431
93	SCP-1 cDNA	Accession number: X95654
94	SSX-4 protein	Accession number: O60224
L	L	L

95	SSX-4 cDNA	Accession number: NM_005636
96	GAGE-1 protein	Accession number: Q13065
97	GAGE-1 cDNA	Accession number: U19142
98	Suvivin protein	Accession number: O15392
99	Survivin cDNA	Accession number: NM_001168
100	Melan-A protein	Accession number: Q16655
101	Melan-A cDNA	Accession number: U06452
102	BAGE protein	Accession number: Q13072
103	BAGE cDNA	Accession number: U19180
104	PSA 59-67	WVLTAAHCI
105	Glandular Kallikrein 1	Accession number: P06870
106	Elastase 2A	Accession number: P08217
107	Pancreatic elastase IIB	Accession number: NP_056933

Table 1B. SEQ ID NOS.* including epitopes in Examples 15-67.

SEQ ID NO	IDENTITY	SEQUENCE
108	Tyr 171-179	NIYDLFVWM
109	Tyr 173-182	YDLFVWMHYY
110	Tyr 174-182	DLFVWMHYY
111	Tyr 186-194	DALLGGSEI
112	Tyr 191-200	GSEIWRDIDF
113	Tyr 192-200	SEIWRDIDF
114	Tyr 193-201	EIWRDIDFA
115	Tyr 407-416	LQEVYPEANA
116	Tyr 409-418	EVYPEANAPI
117	Tyr 410-418	VYPEANAPI
118	Tyr 411-418	YPEANAPI
119	Tyr 411-420	YPEANAPIGH
120	Tyr 416-425	APIGHNRESY
121	Tyr 417-425	PIGHNRESY
122	Tyr 417-426	PIGHNRESYM
123	Tyr 416-425	APIGHNRESY
124	Tyr 417-425	PIGHNRESY
125	Тут 423-430	ESYMVPFI
126	Tyr 423-432	ESYMVPFIPL
127	Tyr 424-432	SYMVPFIPL
128	Tyr 424-433	SYMVPFIPLY
129	Tyr 425-433	YMVPFIPLY

SEQ ID NO	IDENTITY	SEQUENCE
130	Tyr 426-434	MVPFIPLYR
131	Tyr 426-435	MVPFIPLYRN
132	Tyr 427-434	VPFIPLYR
133	Tyr 430-437	IPLYRNGD
134	Tyr 430-439	IPLYRNGDFF
135	Tyr 431-439	PLYRNGDFF
136	Tyr 431-440	PLYRNGDFFI
137	Tyr 434-443	RNGDFFISSK
138	Tyr 435-443	NGDFFISSK
139	Tyr 463-471	YIKSYLEQA
140	Tyr 466-474	SYLEQASRI
141	Tyr 469-478	EQASRIWSWL
142	Tyr 470-478	QASRIWSWL
143	Tyr 471-478	ASRIWSWL
144	Tyr 471-479	ASRIWSWLL
145	Tyr 473-481	RIWSWLLGA
146	CEA 92-100	GPAYSGREI
147	CEA 92-101	GPAYSGREII
148	CEA 93-100	PAYSGREI
149	CEA 93-101	PAYSGREII
150	CEA 93-102	PAYSGREIIY
151	CEA 94-102	AYSGREIIY
152	CEA 97-105	GREIIYPNA
153	CEA 98-107	REIIYPNASL
154	CEA 99-107	EIIYPNASL
155	CEA 99-108	EIIYPNASLL
156	CEA 100-107	IIYPNASL
157	CEA 100-108	IIYPNASLL
158	CEA 100-109	IIYPNASLLI
159	CEA 102-109	YPNASLLI
160	CEA 107-116	LLIQNIIQND
161	CEA 132-141	EEATGQFRVY
162	CEA 133-141	EATGQFRVY
163	CEA 141-149	YPELPKPSI
164	CEA 142-149	PELPKPSI
165	CEA 225-233	RSDSVILNV
166	CEA 225-234	RSDSVILNVL
167	CEA 226-234	SDSVILNVL
168	CEA 226-235	SDSVILNVLY
169	CEA 227-235	DSVILNVLY
170	CEA 233-242	VLYGPDAPTI

SEQ ID NO	IDENTITY	SEQUENCE
171	CEA 234-242	LYGPDAPTI
172	CEA 235-242	YGPDAPTI
173	CEA 236-245	GPDAPTISPL
174	CEA 237-245	PDAPTISPL
175	CEA 238-245	DAPTISPL
176	CEA 239-247	APTISPLNT
177	CEA 240-249	PTISPLNTSY
178	CEA 241-249	TISPLNTSY
179	CEA 240-249	PTISPLNTSY
180	CEA 241-249	TISPLNTSY
181	CEA 246-255	NTSYRSGENL
182	CEA 247-255	TSYRSGENL
183	CEA 248-255	SYRSGENL
184	CEA 248-257	SYRSGENLNL
185	CEA 249-257	YRSGENLNL
186	CEA 251-259	SGENLNLSC
187	CEA 253-262	ENLNLSCHAA
188	CEA 254-262	NLNLSCHAA
189	CEA 260-269	HAASNPPAQY
190	CEA 261-269	AASNPPAQY
191	CEA 264-273	NPPAQYSWFV
192	CEA 265-273	PPAQYSWFV
193	CEA 266-273	PAQYSWFV
194	CEA 272-280	FVNGTFQQS
195	CEA 310-319	RTTVTTITVY
196	CEA 311-319	TTVTTITVY
197	CEA 319-327	YAEPPKPFI
198	CEA 319-328	YAEPPKPFIT
199	CEA 320-327	AEPPKPFI
200	CEA 321-328	EPPKPFIT
201	CEA 321-329	EPPKPFITS
202	CEA 322-329	PPKPFITS
203	CEA 382-391	SVTRNDVGPY
204	CEA 383-391	VTRNDVGPY
205	CEA 389-397	GPYECGIQN
206	CEA 391-399	YECGIQNEL
207	CEA 394-402	GIQNELSVD
208	CEA 403-411	HSDPVILNV
209	CEA 403-412	HSDPVILNVL
210	CEA 404-412	SDPVILNVL
211	CEA 404-413	SDPVILNVLY

SEQ ID NO	IDENTITY	SEQUENCE
212	CEA 405-412	DPVILNVL
213	CEA 405-413	DPVILNVLY
214	CEA 408-417	ILNVLYGPDD
215	CEA 411-420	VLYGPDDPTI
216	CEA 412-420	LYGPDDPTI
217	CEA 413-420	YGPDDPTI
218	CEA 417-425	DPTISPSYT
219	CEA 418-427	PTISPSYTYY
220	CEA 419-427	TISPSYTYY
221	CEA 418-427	PTISPSYTYY
222	CEA 419-427	TISPSYTYY
223	CEA 419-428	TISPSYTYYR
224	CEA 424-433	YTYYRPGVNL
225	CEA 425-433	TYYRPGVNL
226	CEA 426-433	YYRPGVNL
227	CEA 426-435	YYRPGVNLSL
228	CEA 427-435	YRPGVNLSL
229	CEA 428-435	RPGVNLSL
230	CEA 428-437	RPGVNLSLSC
231	CEA 430-438	GVNLSLSCH
232	CEA 431-440	VNLSLSCHAA
233	CEA 432-440	NLSLSCHAA
234	CEA 438-447	HAASNPPAQY
235	CEA 439-447	AASNPPAQY
236	CEA 442-451	NPPAQYSWLI
237	CEA 443-451	PPAQYSWLI
238	CEA 444-451	PAQYSWLI
239	CEA 449-458	WLIDGNIQQH
240	CEA 450-458	LIDGNIQQH
241	CEA 450-459	LIDGNIQQHT
242	CEA 581-590	RSDPVTLDVL
243	CEA 582-590	SDPVTLDVL
244	CEA 582-591	SDPVTLDVLY
245	CEA 583-590	DPVTLDVL
246	CEA 583-591	DPVTLDVLY
247	CEA 588-597	DVLYGPDTPI
248	CEA 589-597	VLYGPDTPI
249	CEA 596-605	PIISPPDSSY
250	CEA 597-605	IISPPDSSY
251	CEA 597-606	IISPPDSSYL
252	CEA 599-606	SPPDSSYL

SEQ ID NO	IDENTITY	SEQUENCE
253	CEA 600-608	PPDSSYLSG
254	CEA 600-609	PPDSSYLSGA
255	CEA 602-611	DSSYLSGANL
256	CEA 603-611	SSYLSGANL
257	CEA 604-613	SYLSGANLNL
258	CEA 605-613	YLSGANLNL
259	CEA 610-618	NLNLSCHSA
260	CEA 620-629	NPSPQYSWRI
261	CEA 622-629	SPQYSWRI
262	CEA 627-635	WRINGIPQQ
263	CEA 628-636	RINGIPQQH
264	CEA 628-637	RINGIPQQHT
265	CEA 631-639	GIPQQHTQV
266	CEA 632-639	IPQQHTQV
267	CEA 644-653	KITPNNNGTY
268	CEA 645-653	ITPNNNGTY
269	CEA 647-656	PNNNGTYACF
270	CEA 648-656	NNNGTYACF
271	CEA 650-657	NGTYACFV
272	CEA 661-670	ATGRNNSIVK
273	CEA 662-670	TGRNNSIVK
274	CEA 664-672	RNNSIVKSI
275	CEA 666-674	NSIVKSITV
276	GAGE-1 7-16	STYRPRPRRY
277	GAGE-1 8-16	TYRPRPRRY
278	GAGE-1 10-18	RPRPRRYVE
279	GAGE-1 16-23	YVEPPEMI
280	GAGE-1 22-31	MIGPMRPEQF
281	GAGE-1 23-31	IGPMRPEQF
282	GAGE-1 24-31	GPMRPEQF
283	GAGE-1 105-114	KTPEEEMRSH
284	GAGE-1 106-115	TPEEEMRSHY
285	GAGE-1 107-115	PEEEMRSHY
286	GAGE-1 110-119	EMRSHYVAQT
287	GAGE-1 113-121	SHYVAQTGI
288	GAGE-1 115-124	YVAQTGILWL
289	GAGE-1 116-124	VAQTGILWL
290	GAGE-1 116-125	VAQTGILWLL
291	GAGE-1 117-125	AQTGILWLL
292	GAGE-1 118-126	QTGILWLLM
293	GAGE-1 118-127	QTGILWLLMN

SEQ ID NO	IDENTITY	SEQUENCE
294	GAGE-1 120-129	GILWLLMNNC
295	GAGE-1 121-129	ILWLLMNNC
296	GAGE-1 124-131	LLMNNCFL
297	GAGE-1 123-131	WLLMNNCFL
298	GAGE-1 122-130	LWLLMNNCF
299	GAGE-1 121-130	ILWLLMNNCF
300	GAGE-1 121-129	ILWLLMNNC
301	GAGE-1 120-129	GILWLLMNNC
302	GAGE-1 118-127	QTGILWLLMN
303	GAGE-1 118-126	QTGILWLLM
304	GAGE-1 117-125	AQTGILWLL
305	GAGE-1 116-125	VAQTGILWLL
306	GAGE-1 116-124	VAQTGILWL
307	GAGE-1 115-124	YVAQTGILWL
308	GAGE-1 113-121	SHYVAQTGI
309	MAGE-1 62-70	SAFPTTINF
310	MAGE-1 61-70	ASAFPTTINF
311	MAGE-1 60-68	GASAFPTTI
312	MAGE-1 57-66	SPQGASAFPT
313	MAGE-1 144-151	FGKASESL
314	MAGE-1 143-151	IFGKASESL
315	MAGE-1 142-151	EIFGKASESL
316	MAGE-1 142-149	EIFGKASE
317	MAGE-1 133-140	IKNYKHCF
318	MAGE-1 132-140	VIKNYKHCF
319	MAGE-1 131-140	SVIKNYKHCF
320	MAGE-1 132-139	VIKNYKHC
321	MAGE-1 131-139	SVIKNYKHC
322	MAGE-1 128-136	MLESVIKNY
323	MAGE-1 127-136	EMLESVIKNY
324	MAGE-1 126-134	AEMLESVIK
325	MAGE-2 274-283	GPRALIETSY
326	MAGE-2 275-283	PRALIETSY
327	MAGE-2 276-284	RALIETSYV
328	MAGE-2 277-286	ALIETSYVKV
329	MAGE-2 278-286	LIETSYVKV
330	MAGE-2 278-287	LIETSYVKVL
331	MAGE-2 279-287	IETSYVKVL
332	MAGE-2 280-289	ETSYVKVLHH
333	MAGE-2 282-291	SYVKVLHHTL
334	MAGE-2 283-291	YVKVLHHTL

SEQ ID NO	IDENTITY	SEQUENCE
335	MAGE-2 285-293	KVLHHTLKI
336	MAGE-2 303-311	PLHERALRE
337	MAGE-2 302-309	PPLHERAL
338	MAGE-2 301-309	YPPLHERAL
339	MAGE-2 300-309	SYPPLHERAL
340	MAGE-2 299-307	ISYPPLHER
341	MAGE-2 298-307	HISYPPLHER
342	MAGE-2 292-299	KIGGEPHI
343	MAGE-2 291-299	LKIGGEPHI
344	MAGE-2 290-299	TLKIGGEPHI
345	MAGE-3 303-311	PLHEWVLRE
346	MAGE-3 302-309	PPLHEWVL
347	MAGE-3 301-309	YPPLHEWVL
348	MAGE-3 301-308	YPPLHEWV
349	MAGE-3 300-308	SYPPLHEWV
350	MAGE-3 299-308	ISYPPLHEWV
351	MAGE-3 298-307	HISYPPLHEW
352	MAGE-3 293-301	ISGGPHISY
353	MAGE-3 292-301	KISGGPHISY
354	Melan-A 45-54	CWYCRRNGY
355	Melan-A 46-54	WYCRRNGY
356	Melan-A 47-55	YCRRRNGYR
357	Melan-A 49-57	RRRNGYRAL
358	Melan-A 51-60	RNGYRALMDK
359	Melan-A 52-60	NGYRALMDK
360	Melan-A 55-63	RALMDKSLH
361	Melan-A 56-63	ALMDKSLH
362	Melan-A 55-64	RALMDKSLHV
363	Melan-A 56-64	ALMDKSLHV
364	PRAME 275-284	YISPEKEEQY
365	PRAME 276-284	ISPEKEEQY
366	PRAME 277-285	SPEKEEQYI
367	PRAME 278-285	PEKEEQYI
368	PRAME 279-288	EKEEQYIAQF
369	PRAME 280-288	KEEQYIAQF
370	PRAME 283-292	QYIAQFTSQF
371	PRAME 284-292	YIAQFTSQF
372	PRAME 284-293	YIAQFTSQFL
373	PRAME 285-293	IAQFTSQFL
374	PRAME 286-295	AQFTSQFLSL
375	PRAME 287-295	QFTSQFLSL

SEQ ID NO	IDENTITY	SEQUENCE
376	PRAME 290-298	SQFLSLQCL
377	PRAME 439-448	VLYPVPLESY
378	PRAME 440-448	LYPVPLESY
379	PRAME 446-455	ESYEDIHGTL
380	PRAME 448-457	YEDIHGTLHL
381	PRAME 449-457	EDIHGTLHL
382	PRAME 451-460	IHGTLHLERL
383	PRAME 454-463	TLHLERLAYL
384	PRAME 455-463	LHLERLAYL
385	PRAME 456-463	HLERLAYL
386	PRAME 456-465	HLERLAYLHA
387	PRAME 458-467	ERLAYLHARL
388	PRAME 459-467	RLAYLHARL
389	PRAME 459-468	RLAYLHARLR
390	PRAME 460-467	LAYLHARL
391	PRAME 460-468	LAYLHARLR
392	PRAME 461-470	AYLHARLREL
393	PRAME 462-470	YLHARLREL
394	PRAME 462-471	YLHARLRELL
395	PRAME 463-471	LHARLRELL
396	PRAME 464-471	HARLRELL
397	PRAME 464-472	HARLRELLC
398	PRAME 469-478	ELLCELGRPS
399	PRAME 470-478	LLCELGRPS
400	PSA 144-153	QEPALGTTCY
401	PSA 145-153	EPALGTTCY
402	PSA 162-171	PEEFLTPKKL
403	PSA 163-171	EEFLTPKKL
404	PSA 165-173	FLTPKKLQC
405	PSA 165-174	FLTPKKLQCV
406	PSA 166-174	LTPKKLQCV
407	PSA 167-174	TPKKLQCV
408	PSA 167-175	TPKKLQCVD
409	PSA 170-179	KLQCVDLHVI
410	PSA 171-179	LQCVDLHVI
411	PSCA 73-81	DSQDYYVGK
412	PSCA 74-82	SQDYYVGKK
413	PSCA 74-83	SQDYYVGKKN
414	PSCA 76-84	DYYVGKKNI
415	PSCA 77-84	YYVGKKNI
416	PSCA 78-86	YVGKKNITC

SEQ ID NO	IDENTITY	SEQUENCE
417	PSCA 78-87	YVGKKNITCC
418	PSMA 381-390	WVFGGIDPQS
419	PSMA 385-394	GIDPQSGAAV
420	PSMA 386-394	IDPQSGAAV
421	PSMA 387-394	DPQSGAAV
422	PSMA 387-395	DPQSGAAVV
423	PSMA 387-396	DPQSGAAVVH
424	PSMA 388-396	PQSGAAVVH
425	PSMA 389-398	QSGAAVVHEI
426	PSMA 390-398	SGAAVVHEI
427	PSMA 391-398	GAAVVHEI
428	PSMA 391-399	GAAVVHEIV
429	PSMA 392-399	AAVVHEIV
430	PSMA 597-605	CRDYAVVLR
431	PSMA 598-607	RDYAVVLRKY
432	PSMA 599-607	DYAVVLRKY
433	PSMA 600-607	YAVVLRKY
434	PSMA 602-611	VVLRKYADKI
435	PSMA 603-611	VLRKYADKI
436	PSMA 603-612	VLRKYADKIY
437	PSMA 604-611	LRKYADKI
438	PSMA 604-612	LRKYADKIY
439	PSMA 605-614	RKYADKIYSI
440	PSMA 606-614	KYADKIYSI
441	PSMA 607-614	YADKIYSI
442	PSMA 616-625	MKHPQEMKTY
443	PSMA 617-625	KHPQEMKTY
444	PSMA 618-627	HPQEMKTYSV
445	SCP-1 62-71	IDSDPALQKV
446	SCP-1 63-71	DSDPALQKV
447	SCP-1 67-76	ALQKVNFLPV
448	SCP-1 70-78	KVNFLPVLE
449	SCP-1 71-80	VNFLPVLEQV
450	SCP-1 72-80	NFLPVLEQV
451	SCP-1 75-84	PVLEQVGNSD
452	SCP-1 76-84	VLEQVGNSD
453	SCP-1 202-210	YEREETRQV
454	SCP-1 202-211	YEREETRQVY
455	SCP-1 203-211	EREETRQVY
456	SCP-1 203-212	EREETRQVYM
457	SCP-1 204-212	REETRQVYM

SEQ ID NO	IDENTITY	SEQUENCE
458	SCP-1 211-220	YMDLNSNIEK
459	SCP-1 213-221	DLNSNIEKM
460	SCP-1 216-226	SNIEKMITAF
461	SCP-1 217-225	NIEKMITAF
462	SCP-1 218-225	IEKMITAF
463	SCP-1 397-406	RLENYEDQLI
464	SCP-1 398-406	LENYEDQLI
465	SCP-1 398-407	LENYEDQLII
466	SCP-1 399-407	ENYEDQLII
467	SCP-1 399-408	ENYEDQLIIL
468	SCP-1 400-408	NYEDQLIIL
469	SCP-1 400-409	NYEDQLIILT
470	SCP-1 401-409	YEDQLIILT
471	SCP-1 401-410	YEDQLIILTM
472	SCP-1 402-410	EDQLIILTM
473	SCP-1 406-415	IILTMELQKT
474	SCP-1 407-415	ILTMELQKT
475	SCP-1 424-432	KLTNNKEVE
476	SCP-1 424-433	KLTNNKEVEL
477	SCP-1 425-433	LTNNKEVEL
478	SCP-1 429-438	KEVELEELKK
479	SCP-1 430-438	EVELEELKK
480	SCP-1 430-439	EVELEELKKV
481	SCP-1 431-439	VELEELKKV
482	SCP-1 530-539	ETSDMTLELK
483	SCP-1 531-539	TSDMTLELK
484	SCP-1 548-556	NKKQEERML
485	SCP-1 553-562	ERMLTQIENL
486	SCP-1 554-562	RMLTQIENL
487	SCP-1 555-562	MLTQIENL
488	SCP-1 555-564	MLTQIENLQE
489	SCP-1 560-569	ENLQETETQL
490	SCP-1 561-569	NLQETETQL
491	SCP-1 561-570	NLQETETQLR
492	SCP-1 567-576	TQLRNELEYV
493	SCP-1 568-576	QLRNELEYV
494	SCP-1 571-580	NELEYVREEL
495	SCP-1 572-580	ELEYVREEL
496	SCP-1 573-580	LEYVREEL
497	SCP-1 574-583	EYVREELKQK
498	SCP-1 575-583	YVREELKQK

SEQ ID NO	IDENTITY	SEQUENCE
499	SCP-1 675-684	LLEEVEKAKV
500	SCP-1 676-684	LEEVEKAKV
501	SCP-1 676-685	LEEVEKAKVI
502	SCP-1 677-685	EEVEKAKVI
503	SCP-1 681-690	KAKVIADEAV
504	SCP-1 683-692	KVIADEAVKL
505	SCP-1 684-692	VIADEAVKL
506	SCP-1 685-692	IADEAVKL
507	SCP-1 694-702	KEIDKRCQH
508	SCP-1 694-703	KEIDKRCQHK
509	SCP-1 695-703	EIDKRCQHK
510	SCP-1 695-704	EIDKRCQHKI
511	SCP-1 696-704	IDKRCQHKI
512	SCP-1 697-704	DKRCQHKI
513	SCP-1 698-706	KRCQHKIAE
514	SCP-1 698-707	KRCQHKIAEM
515	SCP-1 699-707	RCQHKIAEM
516	SCP-1 701-710	QHKIAEMVAL '
517	SCP-1 702-710	HKIAEMVAL
518	SCP-1 703-710	KIAEMVAL
519	SCP-1 737-746	QEQSSLRASL
520	SCP-1 738-746	EQSSLRASL
521	SCP-1 739-746	QSSLRASL
522	SCP-1 741-750	SLRASLEIEL
523	SCP-1 742-750	LRASLEIEL
524	SCP-1 743-750	RASLEIEL
525	SCP-1 744-753	ASLEIELSNL
526	SCP-1 745-753	SLEIELSNL
527	SCP-1 745-754	SLEIELSNLK
528	SCP-1 746-754	LEIELSNLK
529	SCP-1 747-755	EIELSNLKA
530	SCP-1 749-758	ELSNLKAELL
531	SCP-1 750-758	LSNLKAELL
532	SCP-1 751-760	SNLKAELLSV
533	SCP-1 752-760	NLKAELLSV
534	SCP-1 752-761	NLKAELLSVK
535	SCP-1 753-761	LKAELLSVK
536	SCP-1 753-762	LKAELLSVKK
537	SCP-1 754-762	KAELLSVKK
538	SCP-1 755-763	AELLSVKKQ
539	SCP-1 787-796	EKKDKKTQTF

SEQ ID NO	IDENTITY	SEQUENCE
540	SCP-1 788-796	KKDKKTQTF
541	SCP-1 789-796	KDKKTQTF
542	SCP-1 797-806	LLETPDIYWK
543	SCP-1 798-806	LETPDIYWK
544	SCP-1 798-807	LETPDIYWKL
545	SCP-1 799-807	ETPDIYWKL
546	SCP-1 800-807	TPDIYWKL
547	SCP-1 809-817	SKAVPSQTV
548	SCP-1 810-817	KAVPSQTV
549	SCP-1 812-821	VPSQTVSRNF
550	SCP-1 815-824	QTVSRNFTSV
551	SCP-1 816-824	TVSRNFTSV
552	SCP-1 816-825	TVSRNFTSVD
553	SCP-1 823-832	SVDHGISKDK
554	SCP-1 829-838	SKDKRDYLWT
555	SCP-1 832-840	KRDYLWTSA
556	SCP-1 832-841	KRDYLWTSAK
557	SCP-1 833-841	RDYLWTSAK
558	SCP-1 835-843	YLWTSAKNT
559	SCP-1 835-844	YLWTSAKNTL
560	SCP-1 837-844	WTSAKNTL
561	SCP-1 841-850	KNTLSTPLPK
562	SCP-1 842-850	NTLSTPLPK
563	SCP-1 832-840	KRDYLWTSA
564	SCP-1 832-841	KRDYLWTSAK
565	SCP-1 833-841	RDYLWTSAK
566	SCP-1 835-843	YLWTSAKNT
567	SCP-1 839-846	SAKNTLST
568	SCP-1 841-850	KNTLSTPLPK
569	SCP-1 842-850	NTLSTPLPK
570	SCP-1 843-852	TLSTPLPKAY
571	SCP-1 844-852	LSTPLPKAY
572	SSX-2 5-12	DAFARRPT
573	SSX-2 7-15	FARRPTVGA
574	SSX-2 8-17	ARRPTVGAQI
575	SSX-2 9-17	RRPTVGAQI
576	SSX-2 10-17	RPTVGAQI
577	SSX-2 13-21	VGAQIPEKI
578	SSX-2 14-21	GAQIPEKI
579	SSX-2 15-24	AQIPEKIQKA
580	SSX-2 16-24	QIPEKIQKA

581 SSX-2 16-25 QIPEKIQKAF 582 SSX-2 17-24 IPEKIQKA 583 SSX-2 17-25 IPEKIQKAF 584 SSX-2 18-25 PEKIQKAF 585 Survivin 116-124 ETNNKKKEF 586 Survivin 122-131 KEFEETAKKV 587 Survivin 123-131 EFEETAKKV 588 Survivin 127-134 TAKKVRRA 590 Survivin 126-134 ETAKKVRA 591 Survivin 128-136 AKKVRRAIE 592 Survivin 129-138 KKVRRAIEQL 593 Survivin 130-138 KVRRAIEQL 594 Survivin 130-139 KVRRAIEQL 595 Survivin 131-138 VRRAIEQL 596 BAGE 24-31 SPVVSWRL 597 BAGE 19-27 LMKEESPVV 598 BAGE 18-27 RLMKEESPVV 600 BAGE 18-26 RLMKEESPVV 601 BAGE 13-22 QLLQARLMKE 602 BAGE 13-22 QLLQARLMKE 603 Survivin 130-141 KVR	SEQ ID NO	IDENTITY	SEQUENCE
583 SSX-2 17-25 IPEKIQKAF 584 SSX-2 18-25 PEKIQKAF 585 Survivin 116-124 ETNNKKKEF 586 Survivin 122-131 KEFEETAKKV 587 Survivin 122-131 EFEETAKKV 588 Survivin 123-131 EFEETAKKV 589 Survivin 127-134 TAKKVRA 590 Survivin 126-134 ETAKKVRA 591 Survivin 128-136 AKKVRRAIE 592 Survivin 129-138 KKVRRAIEQL 593 Survivin 130-138 KVRRAIEQL 594 Survivin 130-139 KVRRAIEQL 595 Survivin 131-138 VRRAIEQL 596 BAGE 24-31 SPVVSWL 597 BAGE 21-29 KEESPVVSW 598 BAGE 19-27 LMKEESPVV 599 BAGE 18-26 RLMKEESPVV 600 BAGE 14-22 LLQARLMKE 601 BAGE 13-22 QLLQARLMKE 602 BAGE 13-22 QLLQARLMKE 603 Survivin 130-141 KV	581	SSX-2 16-25	QIPEKIQKAF
584 SSX-2 18-25 PEKIQKAF 585 Survivin 116-124 ETNNKKKEF 586 Survivin 117-124 TNNKKKEF 587 Survivin 122-131 KEFEETAKKV 588 Survivin 123-131 EFEETAKKV 589 Survivin 127-134 TAKKVRRA 590 Survivin 126-134 ETAKKVRA 591 Survivin 128-136 AKKVRRAIE 592 Survivin 129-138 KKVRAIEQL 593 Survivin 130-138 KVRRAIEQL 594 Survivin 130-139 KVRAIEQL 595 Survivin 131-138 VRRAIEQL 596 BAGE 24-31 SPVVSWRL 597 BAGE 21-29 KEESPVVSW 598 BAGE 19-27 LMKEESPVV 599 BAGE 18-26 RLMKEESPVV 600 BAGE 18-26 RLMKEESPV 601 BAGE 13-22 QLLQARLMKE 602 BAGE 13-22 QLLQARLMKE 603 Survivin 130-141 KHSSGCAFLSVKKQFEELTLGEFLKLDRERAKN 605 Survivin	582	SSX-2 17-24	IPEKIQKA
585 Survivin 116-124 ETNNKKKEF 586 Survivin 117-124 TNNKKKEF 587 Survivin 122-131 KEFEETAKKV 588 Survivin 123-131 EFEETAKKV 589 Survivin 127-134 TAKKVRRA 590 Survivin 126-134 ETAKKVRA 591 Survivin 128-136 AKKVRRAIE 592 Survivin 129-138 KKVRRAIEQL 593 Survivin 130-138 KVRRAIEQL 594 Survivin 130-139 KVRRAIEQL 595 Survivin 131-138 VRRAIEQL 596 BAGE 24-31 SPVVSWRL 597 BAGE 21-29 KEESPVVSW 598 BAGE 19-27 LMKEESPVV 599 BAGE 18-26 RLMKEESPV 600 BAGE 13-22 QLLQARLMKE 602 BAGE 13-22 QLLQARLMKE 603 Survivin 13-28 FLKDHRISTFKNWPFL 604 Survivin 130-141 KVRRAIEQLAAM 605 Survivin 130-141 KVRRAIEQLAAM 606 GAGE-1 1	583	SSX-2 17-25	IPEKIQKAF
586 Survivin 117-124 TNNKKKEF 587 Survivin 122-131 KEFEETAKKV 588 Survivin 123-131 EFEETAKKV 589 Survivin 127-134 TAKKVRRA 590 Survivin 126-134 ETAKKVRRA 591 Survivin 128-136 AKKVRRAIE 592 Survivin 129-138 KKVRRAIEQL 593 Survivin 130-138 KVRRAIEQL 594 Survivin 130-139 KVRRAIEQL 595 Survivin 131-138 VRRAIEQL 596 BAGE 24-31 SPVVSWRL 597 BAGE 21-29 KEESPVVSW 598 BAGE 19-27 LMKEESPVV 599 BAGE 18-27 RLMKEESPVV 600 BAGE 18-26 RLMKEESPV 601 BAGE 13-22 QLLQARLMKE 602 BAGE 13-22 QLLQARLMKE 603 Survivin 130-141 KHSSGCAFLSVKKQFEELTLGEFLKLDRERAKN 605 Survivin 130-141 KVRRAIEQLAAM 606 GAGE-1 116-133 VAQTGILWLLMNNCFLNL 607	584	SSX-2 18-25	PEKIQKAF
587 Survivin 122-131 KEFEETAKKV 588 Survivin 123-131 EFEETAKKV 589 Survivin 127-134 TAKKVRRA 590 Survivin 126-134 ETAKKVRRA 591 Survivin 126-134 ETAKKVRRA 591 Survivin 128-136 AKKVRRAIE 592 Survivin 129-138 KKVRRAIEQL 593 Survivin 130-138 KVRRAIEQL 594 Survivin 130-139 KVRRAIEQL 595 Survivin 131-138 VRRAIEQL 596 BAGE 24-31 SPVVSWRL 597 BAGE 21-29 KEESPVVSW 598 BAGE 19-27 LMKEESPVV 599 BAGE 18-27 RLMKEESPVV 600 BAGE 18-26 RLMKEESPV 601 BAGE 14-22 LLQARLMKE 602 BAGE 13-22 QLLQARLMKE 603 Survivin 130-28 FLKDHRISTFKNWPFL 604 Survivin 130-141 KVRRAIEQLAAM 605 Survivin 130-141 KVRRAIEQLAAM 606 GAGE-1 116-	585	Survivin 116-124	ETNNKKKEF
588 Survivin 123-131 EFEETAKKV 589 Survivin 127-134 TAKKVRRA 590 Survivin 126-134 ETAKKVRRA 591 Survivin 128-136 AKKVRRAIE 592 Survivin 129-138 KKVRRAIEQL 593 Survivin 130-138 KVRRAIEQL 594 Survivin 130-139 KVRRAIEQLA 595 Survivin 131-138 VRRAIEQL 596 BAGE 24-31 SPVVSWRL 597 BAGE 21-29 KEESPVVSW 598 BAGE 19-27 LMKEESPVV 599 BAGE 18-27 RLMKEESPVV 600 BAGE 14-22 LLQARLMKE 601 BAGE 14-22 LLQARLMKE 602 BAGE 13-22 QLLQARLMKE 603 Survivin 13-28 FLKDHRISTFKNWPFL 604 Survivin 79-111 KHSSGCAFLSVKKQFEELTLGEFLKLDRERAKN 605 Survivin 130-141 KVRRAIEQLAAM 606 GAGE-1 116-133 VAQTGILWLLMNNCFLNL 607 BAGE 7-17 FLALSAQLLQA	586	Survivin 117-124	TNNKKKEF
589 Survivin 127-134 TAKKVRRA 590 Survivin 126-134 ETAKKVRRA 591 Survivin 128-136 AKKVRRAIE 592 Survivin 129-138 KKVRRAIEQL 593 Survivin 130-138 KVRRAIEQL 594 Survivin 130-139 KVRRAIEQLA 595 Survivin 131-138 VRRAIEQL 596 BAGE 24-31 SPVVSWRL 597 BAGE 21-29 KEESPVVSW 598 BAGE 19-27 LMKEESPVV 599 BAGE 18-26 RLMKEESPVV 600 BAGE 18-26 RLMKEESPVV 601 BAGE 13-22 QLLQARLMKE 602 BAGE 13-22 QLLQARLMKE 603 Survivin 13-28 FLKDHRISTFKNWPFL 604 Survivin 79-111 KHSSGCAFLSVKKQFEELTLGEFLKLDRERAKN 605 Survivin 130-141 KVRRAIEQLAAM 606 GAGE-1 116-133 VAQTGILWLLMNNCFLNL 607 BAGE 7-17 FLALSAQLLQA	587	Survivin 122-131	KEFEETAKKV
590 Survivin 126-134 ETAKKVRRA 591 Survivin 128-136 AKKVRRAIE 592 Survivin 129-138 KKVRRAIEQL 593 Survivin 130-138 KVRRAIEQL 594 Survivin 130-139 KVRRAIEQLA 595 Survivin 131-138 VRRAIEQL 596 BAGE 24-31 SPVVSWRL 597 BAGE 21-29 KEESPVVSW 598 BAGE 19-27 LMKEESPVV 599 BAGE 18-27 RLMKEESPVV 600 BAGE 18-26 RLMKEESPV 601 BAGE 14-22 LLQARLMKE 602 BAGE 13-22 QLLQARLMKE 603 Survivin 13-28 FLKDHRISTFKNWPFL 604 Survivin 79-111 KHSSGCAFLSVKKQFEELTLGEFLKLDRERAKN 605 Survivin 130-141 KVRRAIEQLAAM 606 GAGE-1 116-133 VAQTGILWLLMNNCFLNL 607 BAGE 7-17 FLALSAQLLQA	588	Survivin 123-131	EFEETAKKV
591 Survivin 128-136 AKKVRRAIE 592 Survivin 129-138 KKVRRAIEQL 593 Survivin 130-138 KVRRAIEQL 594 Survivin 130-139 KVRRAIEQLA 595 Survivin 131-138 VRRAIEQL 596 BAGE 24-31 SPVVSWRL 597 BAGE 21-29 KEESPVVSW 598 BAGE 19-27 LMKEESPVV 599 BAGE 18-27 RLMKEESPVV 600 BAGE 18-26 RLMKEESPV 601 BAGE 14-22 LLQARLMKE 602 BAGE 13-22 QLLQARLMKE 603 Survivin 13-28 FLKDHRISTFKNWPFL 604 Survivin 79-111 KHSSGCAFLSVKKQFEELTLGEFLKLDRERAKN 605 Survivin 130-141 KVRRAIEQLAAM 606 GAGE-1 116-133 VAQTGILWLLMNNCFLNL 607 BAGE 7-17 FLALSAQLLQA	589	Survivin 127-134	TAKKVRRA
592 Survivin 129-138 KKVRRAIEQL 593 Survivin 130-138 KVRRAIEQL 594 Survivin 130-139 KVRRAIEQLA 595 Survivin 131-138 VRRAIEQL 596 BAGE 24-31 SPVVSWRL 597 BAGE 21-29 KEESPVVSW 598 BAGE 19-27 LMKEESPVV 599 BAGE 18-27 RLMKEESPVV 600 BAGE 18-26 RLMKEESPV 601 BAGE 14-22 LLQARLMKE 602 BAGE 13-22 QLLQARLMKE 603 Survivin 13-28 FLKDHRISTFKNWPFL 604 Survivin 79-111 KHSSGCAFLSVKKQFEELTLGEFLKLDRERAKN 605 Survivin 130-141 KVRRAIEQLAAM 606 GAGE-1 116-133 VAQTGILWLLMNNCFLNL 607 BAGE 7-17 FLALSAQLLQA	590	Survivin 126-134	ETAKKVRRA
593 Survivin 130-138 KVRRAIEQL 594 Survivin 130-139 KVRRAIEQLA 595 Survivin 131-138 VRRAIEQL 596 BAGE 24-31 SPVVSWRL 597 BAGE 21-29 KEESPVVSW 598 BAGE 19-27 LMKEESPVV 599 BAGE 18-27 RLMKEESPVV 600 BAGE 18-26 RLMKEESPV 601 BAGE 13-22 LLQARLMKE 602 BAGE 13-22 QLLQARLMKE 603 Survivin 13-28 FLKDHRISTFKNWPFL 604 Survivin 79-111 KHSSGCAFLSVKKQFEELTLGEFLKLDRERAKN 605 Survivin 130-141 KVRRAIEQLAAM 606 GAGE-1 116-133 VAQTGILWLLMNNCFLNL 607 BAGE 7-17 FLALSAQLLQA	591	Survivin 128-136	AKKVRRAIE
594 Survivin 130-139 KVRRAIEQLA 595 Survivin 131-138 VRRAIEQL 596 BAGE 24-31 SPVVSWRL 597 BAGE 21-29 KEESPVVSW 598 BAGE 19-27 LMKEESPVV 599 BAGE 18-27 RLMKEESPVV 600 BAGE 18-26 RLMKEESPV 601 BAGE 14-22 LLQARLMKE 602 BAGE 13-22 QLLQARLMKE 603 Survivin 13-28 FLKDHRISTFKNWPFL 604 Survivin 79-111 KHSSGCAFLSVKKQFEELTLGEFLKLDRERAKN 605 Survivin 130-141 KVRRAIEQLAAM 606 GAGE-1 116-133 VAQTGILWLLMNNCFLNL 607 BAGE 7-17 FLALSAQLLQA	592	Survivin 129-138	KKVRRAIEQL
595 Survivin 131-138 VRRAIEQL 596 BAGE 24-31 SPVVSWRL 597 BAGE 21-29 KEESPVVSW 598 BAGE 19-27 LMKEESPVV 599 BAGE 18-27 RLMKEESPVV 600 BAGE 18-26 RLMKEESPV 601 BAGE 14-22 LLQARLMKE 602 BAGE 13-22 QLLQARLMKE 603 Survivin 13-28 FLKDHRISTFKNWPFL 604 Survivin 79-111 KHSSGCAFLSVKKQFEELTLGEFLKLDRERAKN 605 Survivin 130-141 KVRRAIEQLAAM 606 GAGE-1 116-133 VAQTGILWLMNNCFLNL 607 BAGE 7-17 FLALSAQLLQA	593	Survivin 130-138	KVRRAIEQL
596 BAGE 24-31 SPVVSWRL 597 BAGE 21-29 KEESPVVSW 598 BAGE 19-27 LMKEESPVV 599 BAGE 18-27 RLMKEESPVV 600 BAGE 18-26 RLMKEESPV 601 BAGE 14-22 LLQARLMKE 602 BAGE 13-22 QLLQARLMKE 603 Survivin 13-28 FLKDHRISTFKNWPFL 604 Survivin 79-111 KHSSGCAFLSVKKQFEELTLGEFLKLDRERAKN 605 Survivin 130-141 KVRRAIEQLAAM 606 GAGE-1 116-133 VAQTGILWLLMNNCFLNL 607 BAGE 7-17 FLALSAQLLQA	594	Survivin 130-139	KVRRAIEQLA
597 BAGE 21-29 KEESPVVSW 598 BAGE 19-27 LMKEESPVV 599 BAGE 18-27 RLMKEESPVV 600 BAGE 18-26 RLMKEESPV 601 BAGE 14-22 LLQARLMKE 602 BAGE 13-22 QLLQARLMKE 603 Survivin 13-28 FLKDHRISTFKNWPFL 604 Survivin 79-111 KHSSGCAFLSVKKQFEELTLGEFLKLDRERAKN 605 Survivin 130-141 KVRRAIEQLAAM 606 GAGE-1 116-133 VAQTGILWLLMNNCFLNL 607 BAGE 7-17 FLALSAQLLQA	595	Survivin 131-138	VRRAIEQL
598 BAGE 19-27 LMKEESPVV 599 BAGE 18-27 RLMKEESPVV 600 BAGE 18-26 RLMKEESPV 601 BAGE 14-22 LLQARLMKE 602 BAGE 13-22 QLLQARLMKE 603 Survivin 13-28 FLKDHRISTFKNWPFL 604 Survivin 79-111 KHSSGCAFLSVKKQFEELTLGEFLKLDRERAKN 605 Survivin 130-141 KVRRAIEQLAAM 606 GAGE-1 116-133 VAQTGILWLLMNNCFLNL 607 BAGE 7-17 FLALSAQLLQA	596	BAGE 24-31	SPVVSWRL
599 BAGE 18-27 RLMKEESPVV 600 BAGE 18-26 RLMKEESPV 601 BAGE 14-22 LLQARLMKE 602 BAGE 13-22 QLLQARLMKE 603 Survivin 13-28 FLKDHRISTFKNWPFL 604 Survivin 79-111 KHSSGCAFLSVKKQFEELTLGEFLKLDRERAKN 605 Survivin 130-141 KVRRAIEQLAAM 606 GAGE-1 116-133 VAQTGILWLLMNNCFLNL 607 BAGE 7-17 FLALSAQLLQA	597	BAGE 21-29	KEESPVVSW
600 BAGE 18-26 RLMKEESPV 601 BAGE 14-22 LLQARLMKE 602 BAGE 13-22 QLLQARLMKE 603 Survivin 13-28 FLKDHRISTFKNWPFL 604 Survivin 79-111 KHSSGCAFLSVKKQFEELTLGEFLKLDRERAKN 605 Survivin 130-141 KVRRAIEQLAAM 606 GAGE-1 116-133 VAQTGILWLLMNNCFLNL 607 BAGE 7-17 FLALSAQLLQA	598	BAGE 19-27	LMKEESPVV
601 BAGE 14-22 LLQARLMKE 602 BAGE 13-22 QLLQARLMKE 603 Survivin 13-28 FLKDHRISTFKNWPFL 604 Survivin 79-111 KHSSGCAFLSVKKQFEELTLGEFLKLDRERAKN 605 Survivin 130-141 KVRRAIEQLAAM 606 GAGE-1 116-133 VAQTGILWLLMNNCFLNL 607 BAGE 7-17 FLALSAQLLQA	599	BAGE 18-27	RLMKEESPVV
602 BAGE 13-22 QLLQARLMKE 603 Survivin 13-28 FLKDHRISTFKNWPFL 604 Survivin 79-111 KHSSGCAFLSVKKQFEELTLGEFLKLDRERAKN 605 Survivin 130-141 KVRRAIEQLAAM 606 GAGE-1 116-133 VAQTGILWLLMNNCFLNL 607 BAGE 7-17 FLALSAQLLQA	600	BAGE 18-26	RLMKEESPV
603 Survivin 13-28 FLKDHRISTFKNWPFL 604 Survivin 79-111 KHSSGCAFLSVKKQFEELTLGEFLKLDRERAKN 605 Survivin 130-141 KVRRAIEQLAAM 606 GAGE-1 116-133 VAQTGILWLLMNNCFLNL 607 BAGE 7-17 FLALSAQLLQA	601	BAGE 14-22	LLQARLMKE
604 Survivin 79-111 KHSSGCAFLSVKKQFEELTLGEFLKLDRERAKN 605 Survivin 130-141 KVRRAIEQLAAM 606 GAGE-1 116-133 VAQTGILWLLMNNCFLNL 607 BAGE 7-17 FLALSAQLLQA	602	BAGE 13-22	QLLQARLMKE
605 Survivin 130-141 KVRRAIEQLAAM 606 GAGE-1 116-133 VAQTGILWLLMNNCFLNL 607 BAGE 7-17 FLALSAQLLQA	603	Survivin 13-28	_
606 GAGE-1 116-133 VAQTGILWLLMNNCFLNL 607 BAGE 7-17 FLALSAQLLQA	604	Survivin 79-111	KHSSGCAFLSVKKQFEELTLGEFLKLDRERAKN
607 BAGE 7-17 FLALSAQLLQA	605	Survivin 130-141	KVRRAIEQLAAM
<u></u>	606	GAGE-1 116-133	VAQTGILWLLMNNCFLNL
608 BAGE 18-27 RLMKEESPVV	607	BAGE 7-17	FLALSAQLLQA
	608	BAGE 18-27	RLMKEESPVV
609 BAGE 2-27 AARAVFLALSAQLLQARLMKEESPVV	609	BAGE 2-27	AARAVFLALSAQLLQARLMKEESPVV
610 BAGE 30-39 RLEPEDGTAL	610	BAGE 30-39	RLEPEDGTAL

[0095] *Any of SEQ ID NOS. 108-602 can be useful as epitopes in any of the various embodiments of the invention. Any of SEQ ID NOS. 603-610 can be useful as sequences containing epitopes or epitope clusters, as described in various embodiments of the invention.

[0096] **All accession numbers used here and throughout can be accessed through the NCBI databases, for example, through the Entrez seek and retrieval system on the world wide web.

[0097] Note that the following discussion sets forth the inventors' understanding of the operation of the invention. However, it is not intended that this discussion limit the patent to any particular theory of operation not set forth in the claims.

[0098] In pursuing the development of epitope vaccines others have generated lists of predicted epitopes based on MHC binding motifs. Such peptides can be immunogenic, but may not correspond to any naturally produced antigenic fragment. Therefore, whole antigen will not elicit a similar response or sensitize a target cell to cytolysis by CTL. Therefore such lists do not differentiate between those sequences that can be useful as vaccines and those that cannot. Efforts to determine which of these predicted epitopes are in fact naturally produced have often relied on screening their reactivity with tumor infiltrating lymphocytes (TIL). However, TIL are strongly biased to recognize immune epitopes whereas tumors (and chronically infected cells) will generally present housekeeping epitopes. Thus, unless the epitope is produced by both the housekeeping and immuno- proteasomes, the target cell will generally not be recognized by CTL induced with TIL-identified epitopes. The epitopes of the present invention, in contrast, are generated by the action of a specified proteasome, indicating that they can be naturally produced, and enabling their appropriate use. The importance of the distinction between housekeeping and immune epitopes to vaccine design is more fully set forth in PCT publication WO 01/82963A2, which is hereby incorporated by reference in its The teachings and embodiments disclosed in said PCT publication are contemplated as supporting principals and embodiments related to and useful in connection with the present invention.

[0099] The epitopes of the invention include or encode polypeptide fragments of TAAs that are precursors or products of proteasomal cleavage by a housekeeping or immune proteasome, and that contain or consist of a sequence having a known or predicted affinity for at least one allele of MHC I. In some embodiments, the epitopes include or encode a polypeptide of about 6 to 25 amino acids in length, preferably about 7 to 20 amino acids in length, more preferably about 8 to 15 amino acids in length, and still more preferably 9 or 10 amino acids in length. However, it is understood that the polypeptides can be larger as long as N-terminal trimming can produce the MHC epitope or that they do not contain sequences that cause the polypeptides to be directed away from the proteasome or to be destroyed by the proteasome. For immune epitopes, if the larger

peptides do not contain such sequences, they can be processed in the pAPC by the immune proteasome. Housekeeping epitopes may also be embedded in longer sequences provided that the sequence is adapted to facilitate liberation of the epitope's C-terminus by action of the immunoproteasome. The foregoing discussion has assumed that processing of longer epitopes proceeds through action of the immunoproteasome of the pAPC. However, processing can also be accomplished through the contrivance of some other mechanism, such as providing an exogenous protease activity and a sequence adapted so that action of the protease liberates the MHC epitope. The sequences of these epitopes can be subjected to computer analysis in order to calculate physical, biochemical, immunologic, or molecular genetic properties such as mass, isoelectric point, predicted mobility in electrophoresis, predicted binding to other MHC molecules, melting temperature of nucleic acid probes, reverse translations, similarity or homology to other sequences, and the like.

[0100] In constructing the polynucleotides encoding the polypeptide epitopes of the invention, the gene sequence of the associated TAA can be used, or the polynucleotide can be assembled from any of the corresponding codons. For a 10 amino acid epitope this can constitute on the order of 10^6 different sequences, depending on the particular amino acid composition. While large, this is a distinct and readily definable set representing a miniscule fraction of the $>10^{18}$ possible polynucleotides of this length, and thus in some embodiments, equivalents of a particular sequence disclosed herein encompass such distinct and readily definable variations on the listed sequence. In choosing a particular one of these sequences to use in a vaccine, considerations such as codon usage, self-complementarity, restriction sites, chemical stability, etc. can be used as will be apparent to one skilled in the art.

[0101] The invention contemplates producing peptide epitopes. Specifically these epitopes are derived from the sequence of a TAA, and have known or predicted affinity for at least one allele of MHC I. Such epitopes are typically identical to those produced on target cells or pAPCs.

Compositions Containing Active Epitopes

[0102] Embodiments of the present invention provide polypeptide compositions, including vaccines, therapeutics, diagnostics, pharmacological and pharmaceutical compositions. The various compositions include newly identified epitopes of TAAs, as well as variants of these epitopes. Other embodiments of the

invention provide polynucleotides encoding the polypeptide epitopes of the invention. The invention further provides vectors for expression of the polypeptide epitopes for purification. In addition, the invention provides vectors for the expression of the polypeptide epitopes in an APC for use as an anti-tumor vaccine. Any of the epitopes or antigens, or nucleic acids encoding the same, from Table 1 can be used. Other embodiments relate to methods of making and using the various compositions.

[0103] A general architecture for a class I MHC-binding epitope can be described, and has been reviewed more extensively in Madden, D.R. Annu. Rev. Immunol. 13:587-622, 1995, which is hereby incorporated by reference in its entirety. Much of the binding energy arises from main chain contacts between conserved residues in the MHC molecule and the N- and C-termini of the peptide. Additional main chain contacts are made but vary among MHC alleles. Sequence specificity is conferred by side chain contacts of so-called anchor residues with pockets that, again, vary among MHC alleles. Anchor residues can be divided into primary and secondary. Primary anchor positions exhibit strong preferences for relatively well-defined sets of amino acid residues. Secondary positions show weaker and/or less well-defined preferences that can often be better described in terms of less favored, rather than more favored, residues. Additionally, residues in some secondary anchor positions are not always positioned to contact the pocket on the MHC molecule at all. Thus, a subset of peptides exists that bind to a particular MHC molecule and have a side chain-pocket contact at the position in question and another subset exists that show binding to the same MHC molecule that does not depend on the conformation the peptide assumes in the peptide-binding groove of the MHC molecule. The C-terminal residue (P Ω ; omega) is preferably a primary anchor residue. For many of the better studied HLA molecules (e.g. A2, A68, B27, B7, B35, and B53) the second position (P2) is also an anchor residue. However, central anchor residues have also been observed including P3 and P5 in HLA-B8, as well as P5 and PΩ(omega)-3 in the murine MHC molecules H-2D^b and H-2K^b, respectively. Since more stable binding will generally improve immunogenicity, anchor residues are preferably conserved or optimized in the design of variants, regardless of their position.

[0104] Because the anchor residues are generally located near the ends of the epitope, the peptide can buckle upward out of the peptide-binding groove allowing some variation in length. Epitopes ranging from 8-11 amino acids have been found for HLA-A68, and up to 13 amino acids for HLA-A2. In addition to length variation between the

anchor positions, single residue truncations and extensions have been reported and the Nand C-termini, respectively. Of the non-anchor residues, some point up out of the groove,
making no contact with the MHC molecule but being available to contact the TCR, very
often P1, P4, and PΩ(omega)-1 for HLA-A2. Others of the non-anchor residues can
become interposed between the upper edges of the peptide-binding groove and the TCR,
contacting both. The exact positioning of these side chain residues, and thus their effects
on binding, MHC fine conformation, and ultimately immunogenicity, are highly sequence
dependent. For an epitope to be highly immunogenic it must not only promote stable
enough TCR binding for activation to occur, but the TCR must also have a high enough
off-rate that multiple TCR molecules can interact sequentially with the same peptideMHC complex (Kalergis, A.M. et al., *Nature Immunol*. 2:229-234, 2001, which is hereby
incorporated by reference in its entirety). Thus, without further information about the
ternary complex, both conservative and non-conservative substitutions at these positions
merit consideration when designing variants.

[0105]The polypeptide epitope variants can be made, for example, using any of the techniques and guidelines for conservative and non-conservative mutations. Variants can be derived from substitution, deletion or insertion of one or more amino acids as compared with the native sequence. Amino acid substitutions can be the result of replacing one amino acid with another amino acid having similar structural and/or chemical properties, such as the replacement of a threonine with a serine, for example. Such replacements are referred to as conservative amino acid replacements, and all appropriate conservative amino acid replacements are considered to be embodiments of one invention. Insertions or deletions can optionally be in the range of about 1 to 4, preferably 1 to 2, amino acids. It is generally preferable to maintain the "anchor positions" of the peptide which are responsible for binding to the MHC molecule in question. Indeed, immunogenicity of peptides can be improved in many cases by substituting more preferred residues at the anchor positions (Franco, et al., Nature Immunology, 1(2):145-150, 2000, which is hereby incorporated by reference in its entirety). Immunogenicity of a peptide can also often be improved by substituting bulkier amino acids for small amino acids found in non-anchor positions while maintaining sufficient cross-reactivity with the original epitope to constitute a useful vaccine. The variation allowed can be determined by routine insertions, deletions or substitutions of amino acids in the sequence and testing the resulting variants for activity exhibited by the

polypeptide epitope. Because the polypeptide epitope is often 9 amino acids, the substitutions preferably are made to the shortest active epitope, for example, an epitope of 9 amino acids.

[0106] Variants can also be made by adding any sequence onto the N-terminus of the polypeptide epitope variant. Such N-terminal additions can be from 1 amino acid up to at least 25 amino acids. Because peptide epitopes are often trimmed by N-terminal exopeptidases active in the pAPC, it is understood that variations in the added sequence can have no effect on the activity of the epitope. In preferred embodiments, the amino acid residues between the last upstream proteasomal cleavage site and the N-terminus of the MHC epitope do not include a proline residue. Serwold, T. at al., Nature Immunol. 2:644-651, 2001, which is hereby incorporated by reference in its entirety. Accordingly, effective epitopes can be generated from precursors larger than the preferred 9-mer class I motif.

[0107] Generally, peptides are useful to the extent that they correspond to epitopes actually displayed by MHC I on the surface of a target cell or a pACP. A single peptide can have varying affinities for different MHC molecules, binding some well, others adequately, and still others not appreciably (Table 2). MHC alleles have traditionally been grouped according to serologic reactivity which does not reflect the structure of the peptide-binding groove, which can differ among different alleles of the same type. Similarly, binding properties can be shared across types; groups based on shared binding properties have been termed supertypes. There are numerous alleles of MHC I in the human population; epitopes specific to certain alleles can be selected based on the genotype of the patient.

<u>Table 2.</u>
Predicted Binding of Tyrosinase₂₀₇₋₂₁₆ (SEQ ID NO. 1) to Various MHC types

MHC I type	*Half time of dissociation (min)
A1	0.05
A*0201	1311.
A*0205	50.4
A3_	2.7
A*1101 (part of the A3 supertype)	0.012
A24	6.0
B7	4.0

B8	8.0
B14 (part of the B27 supertype)	60.0
B*2702	0.9
B*2705	30.0
B*3501 (part of the B7 supertype)	2.0
B*4403	0.1
B*5101 (part of the B7 supertype)	26.0
B*5102	55.0
B*5801	0.20
B60	0.40
B62	2.0

[0108] *HLA Peptide Binding Predictions (world wide web hypertext transfer protocol "access at bimas.dcrt.nih.gov/molbio/hla bin").

[0109] In further embodiments of the invention, the epitope, as peptide or encoding polynucleotide, can be administered as a pharmaceutical composition, such as, for example, a vaccine or an immunogenic composition, alone or in combination with various adjuvants, carriers, or excipients. It should be noted that although the term vaccine may be used throughout the discussion herein, the concepts can be applied and used with any other pharmaceutical composition, including those mentioned herein. Particularly advantageous adjuvants include various cytokines and oligonucleotides containing immunostimulatory sequences (as set forth in greater detail in the co-pending applications referenced herein). Additionally the polynucleotide encoded epitope can be contained in a virus (e.g. vaccinia or adenovirus) or in a microbial host cell (e.g. Salmonella or Listeria monocytogenes) which is then used as a vector for the polynucleotide (Dietrich, G. et al. Nat. Biotech. 16:181-185, 1998, which is hereby incorporated by reference in its entirety). Alternatively a pAPC can be transformed, ex vivo, to express the epitope, or pulsed with peptide epitope, to be itself administered as a vaccine. To increase efficiency of these processes, the encoded epitope can be carried by a viral or bacterial vector, or complexed with a ligand of a receptor found on pAPC. Similarly the peptide epitope can be complexed with or conjugated to a pAPC ligand. A vaccine can be composed of more than a single epitope.

[0110] Particularly advantageous strategies for incorporating epitopes and/or epitope clusters, into a vaccine or pharmaceutical composition are disclosed in PCT Publication WO 01/82963 and U.S. Patent Application No. 09/560,465 entitled "EPITOPE SYNCHRONIZATION IN ANTIGEN PRESENTING CELLS," filed on April

28, 2000, which are hereby incorporated by reference in their entireties. The teaching and embodiments disclosed in said PCT publication are contemplated as supporting principals and embodiments related to and useful in connection with the present invention. Epitope clusters for use in connection with this invention are disclosed in PCT Publication WO 01/82963 and U.S. Patent Application No. 09/561,571 entitled "EPITOPE CLUSTERS," filed on April 28, 2000, which are hereby incorporated by reference in their entireties. The teaching and embodiments disclosed in said PCT publication are contemplated as supporting principals and embodiments related to and useful in connection with the present invention.

- [0111] Preferred embodiments of the present invention are directed to vaccines and methods for causing a pAPC or population of pAPCs to present housekeeping epitopes that correspond to the epitopes displayed on a particular target cell. Any of the epitopes or antigens in Table 1, can be used for example. In one embodiment, the housekeeping epitope is a TuAA epitope processed by the housekeeping proteasome of a particular tumor type. In another embodiment, the housekeeping epitope is a virus-associated epitope processed by the housekeeping proteasome of a cell infected with a virus. This facilitates a specific T cell response to the target cells. Concurrent expression by the pAPCs of multiple epitopes, corresponding to different induction states (pre- and post-attack), can drive a CTL response effective against target cells as they display either housekeeping epitopes or immune epitopes.
- [0112] By having both housekeeping and immune epitopes present on the pAPC, this embodiment can optimize the cytotoxic T cell response to a target cell. With dual epitope expression, the pAPCs can continue to sustain a CTL response to the immune-type epitope when the tumor cell switches from the housekeeping proteasome to the immune proteasome with induction by IFN, which, for example, may be produced by tumor-infiltrating CTLs.
- [0113] In a preferred embodiment, immunization of a patient is with a vaccine that includes a housekeeping epitope. Many preferred TAAs are associated exclusively with a target cell, particularly in the case of infected cells. In another embodiment, many preferred TAAs are the result of deregulated gene expression in transformed cells, but are found also in tissues of the testis, ovaries and fetus. In another embodiment, useful TAAs are expressed at higher levels in the target cell than in other cells. In still other embodiments, TAAs are not differentially expressed in the target cell compare to other

cells, but are still useful since they are involved in a particular function of the cell and differentiate the target cell from most other peripheral cells; in such embodiments, healthy cells also displaying the TAA may be collaterally attacked by the induced T cell response, but such collateral damage is considered to be far preferable to the condition caused by the target cell.

- [0114]The vaccine contains a housekeeping epitope in a concentration effective to cause a pAPC or populations of pAPCs to display housekeeping epitopes. Advantageously, the vaccine can include a plurality of housekeeping epitopes or one or more housekeeping epitopes optionally in combination with one or more immune epitopes. Formulations of the vaccine contain peptides and/or nucleic acids in a concentration sufficient to cause pAPCs to present the epitopes. The formulations preferably contain epitopes in a total concentration of about 1µg-1mg/100µl of vaccine preparation. Conventional dosages and dosing for peptide vaccines and/or nucleic acid vaccines can be used with the present invention, and such dosing regimens are well understood in the art. In one embodiment, a single dosage for an adult human may advantageously be from about 1 to about 5000 µl of such a composition, administered one time or multiple times, e.g., in 2, 3, 4 or more dosages separated by 1 week, 2 weeks, 1 month, or more. insulin pump delivers 1 ul per hour (lowest frequency) ref intranodal method patent.
- [0115] The compositions and methods of the invention disclosed herein further contemplate incorporating adjuvants into the formulations in order to enhance the performance of the vaccines. Specifically, the addition of adjuvants to the formulations is designed to enhance the delivery or uptake of the epitopes by the pAPCs. The adjuvants contemplated by the present invention are known by those of skill in the art and include, for example, GMCSF, GCSF, IL-2, IL-12, BCG, tetanus toxoid, osteopontin, and ETA-1.
- [0116] In some embodiments of the invention, the vaccines can include a recombinant organism, such as a virus, bacterium or parasite, genetically engineered to express an epitope in a host. For example, *Listeria monocytogenes*, a gram-positive, facultative intracellular bacterium, is a potent vector for targeting TuAAs to the immune system. In a preferred embodiment, this vector can be engineered to express a housekeeping epitope to induce therapeutic responses. The normal route of infection of this organism is through the gut and can be delivered orally. In another embodiment, an adenovirus (Ad) vector encoding a housekeeping epitope for a TuAA can be used to

induce anti-virus or anti-tumor responses. Bone marrow-derived dendritic cells can be transduced with the virus construct and then injected, or the virus can be delivered directly via subcutaneous injection into an animal to induce potent T-cell responses. Another embodiment employs a recombinant vaccinia virus engineered to encode amino acid sequences corresponding to a housekeeping epitope for a TAA. Vaccinia viruses carrying constructs with the appropriate nucleotide substitutions in the form of a minigene construct can direct the expression of a housekeeping epitope, leading to a therapeutic T cell response against the epitope.

[0117] The immunization with DNA requires that APCs take up the DNA and express the encoded proteins or peptides. It is possible to encode a discrete class I peptide on the DNA. By immunizing with this construct, APCs can be caused to express a housekeeping epitope, which is then displayed on class I MHC on the surface of the cell for stimulating an appropriate CTL response. Constructs generally relying on termination of translation or non-proteasomal proteases for generation of proper termini of housekeeping epitopes have been described in PCT Publication WO 01/82963 and U.S. Patent application No. 09/561,572 entitled EXPRESSION VECTORS ENCODING EPITOPES OF TARGET-ASSOCIATED ANTIGENS, filed on April 28, 2000, which are hereby incorporated herein by reference in their entirety. The teaching and embodiments disclosed in said PCT publication are contemplated as supporting principals and embodiments related to and useful in connection with the present invention.

[0118] As mentioned, it can be desirable to express housekeeping peptides in the context of a larger protein. Processing can be detected even when a small number of amino acids are present beyond the terminus of an epitope. Small peptide hormones are usually proteolytically processed from longer translation products, often in the size range of approximately 60-120 amino acids. This fact has led some to assume that this is the minimum size that can be efficiently translated. In some embodiments, the housekeeping peptide can be embedded in a translation product of at least about 60 amino acids. In other embodiments the housekeeping peptide can be embedded in a translation product of at least about 50, 30, or 15 amino acids.

[0119] Due to differential proteasomal processing, the immune proteasome of the pAPC produces peptides that are different from those produced by the housekeeping proteasome in peripheral body cells. Thus, in expressing a housekeeping peptide in the context of a larger protein, it is preferably expressed in the APC in a context other than its

full length native sequence, because, as a housekeeping epitope, it is generally only efficiently processed from the native protein by the housekeeping proteasome, which is not active in the APC. In order to encode the housekeeping epitope in a DNA sequence encoding a larger protein, it is useful to find flanking areas on either side of the sequence encoding the epitope that permit appropriate cleavage by the immune proteasome in order to liberate that housekeeping epitope. Altering flanking amino acid residues at the N-terminus and C-terminus of the desired housekeeping epitope can facilitate appropriate cleavage and generation of the housekeeping epitope in the APC. Sequences embedding housekeeping epitopes can be designed *de novo* and screened to determine which can be successfully processed by immune proteasomes to liberate housekeeping epitopes.

Alternatively, another strategy is very effective for identifying sequences allowing production of housekeeping epitopes in APC. A contiguous sequence of amino acids can be generated from head to tail arrangement of one or more housekeeping epitopes. A construct expressing this sequence is used to immunize an animal, and the resulting T cell response is evaluated to determine its specificity to one or more of the epitopes in the array. By definition, these immune responses indicate housekeeping epitopes that are processed in the pAPC effectively. The necessary flanking areas around this epitope are thereby defined. The use of flanking regions of about 4-6 amino acids on either side of the desired peptide can provide the necessary information to facilitate proteasome processing of the housekeeping epitope by the immune proteasome. Therefore, a sequence ensuring epitope synchronization of approximately 16-22 amino acids can be inserted into, or fused to, any protein sequence effectively to result in that housekeeping epitope being produced in an APC. In alternate embodiments the whole head-to-tail array of epitopes, or just the epitopes immediately adjacent to the correctly processed housekeeping epitope can be similarly transferred from a test construct to a vaccine vector.

[0121] In a preferred embodiment, the housekeeping epitopes can be embedded between known immune epitopes, or segments of such, thereby providing an appropriate context for processing. The abutment of housekeeping and immune epitopes can generate the necessary context to enable the immune proteasome to liberate the housekeeping epitope, or a larger fragment, preferably including a correct C-terminus. It can be useful to screen constructs to verify that the desired epitope is produced. The abutment of housekeeping epitopes can generate a site cleavable by the immune

proteasome. Some embodiments of the invention employ known epitopes to flank housekeeping epitopes in test substrates; in others, screening as described below are used whether the flanking regions are arbitrary sequences or mutants of the natural flanking sequence, and whether or not knowledge of proteasomal cleavage preferences are used in designing the substrates.

- [0122] Cleavage at the mature N-terminus of the epitope, while advantageous, is not required, since a variety of N-terminal trimming activities exist in the cell that can generate the mature N-terminus of the epitope subsequent to proteasomal processing. It is preferred that such N-terminal extension be less than about 25 amino acids in length and it is further preferred that the extension have few or no proline residues. Preferably, in screening, consideration is given not only to cleavage at the ends of the epitope (or at least at its C-terminus), but consideration also can be given to ensure limited cleavage within the epitope.
- [0123] Shotgun approaches can be used in designing test substrates and can increase the efficiency of screening. In one embodiment multiple epitopes can be assembled one after the other, with individual epitopes possibly appearing more than once. The substrate can be screened to determine which epitopes can be produced. In the case where a particular epitope is of concern a substrate can be designed in which it appears in multiple different contexts. When a single epitope appearing in more than one context is liberated from the substrate additional secondary test substrates, in which individual instances of the epitope are removed, disabled, or are unique, can be used to determine which are being liberated and truly constitute sequences ensuring epitope synchronization.
- [0124] Several readily practicable screens exist. A preferred *in vitro* screen utilizes proteasomal digestion analysis, using purified immune proteasomes, to determine if the desired housekeeping epitope can be liberated from a synthetic peptide embodying the sequence in question. The position of the cleavages obtained can be determined by techniques such as mass spectrometry, HPLC, and N-terminal pool sequencing; as described in greater detail in U. S. Patent Applications entitled METHOD OF EPITOPE DISCOVERY, EPITOPE SYNCHRONIZATION IN ANTIGEN PRESENTING CELLS, PCT Publication, U.S. applications and Provisional U. S. Patent Applications entitled EPITOPE SEQUENCES, which are all cited and incorporated by reference herein.

[0125] Alternatively, in vivo screens such as immunization or target sensitization can be employed. For immunization a nucleic acid construct capable of expressing the sequence in question is used. Harvested CTL can be tested for their ability to recognize target cells presenting the housekeeping epitope in question. Such targets cells are most readily obtained by pulsing cells expressing the appropriate MHC molecule with synthetic peptide embodying the mature housekeeping epitope. Alternatively, cells known to express housekeeping proteasome and the antigen from which the housekeeping epitope is derived, either endogenously or through genetic engineering, can be used. To use target sensitization as a screen, CTL, or preferably a CTL clone, that recognizes the housekeeping epitope can be used. In this case it is the target cell that expresses the embedded housekeeping epitope (instead of the pAPC during immunization) and it must express immune proteasome. Generally, the target cell can be transformed with an appropriate nucleic acid construct to confer expression of the embedded housekeeping epitope. Loading with a synthetic peptide embodying the embedded epitope using peptide loaded liposomes or a protein transfer reagent such as BIOPORTERTM (Gene Therapy Systems, San Diego, CA) represents an alternative.

[0126] Additional guidance on nucleic acid constructs useful as vaccines in accordance with the present invention are disclosed in WO 01/82963 and U.S. Patent Application No. 09/561,572 entitled "EXPRESSION VECTORS ENCODING EPITOPES OF TARGET-ASSOCIATED ANTIGENS," filed on April 28, 2000, both of which are hereby incorporated by reference in their entireties. Further, expression vectors and methods for their design, which are useful in accordance with the present invention are disclosed in PCT Publication WO 03/063770; U.S. Patent Application No. 10/292,413, filed on November 7, 2002; and U.S. Provisional Application No. 60/336,968 (attorney docket number CTLIMM.022PR) entitled "EXPRESSION VECTORS ENCODING EPITOPES OF TARGET-ASSOCIATED ANTIGENS AND METHODS FOR THEIR DESIGN," filed on 11/7/2001; all of which are incorporated by reference in their entireties. The teaching and embodiments disclosed in said PCT publications are contemplated as supporting principals and embodiments related to and useful in connection with the present invention.

[0127] A preferred embodiment of the present invention includes a method of administering a vaccine including an epitope (or epitopes) to induce a therapeutic immune response. The vaccine is administered to a patient in a manner consistent with the

standard vaccine delivery protocols that are known in the art. Methods of administering epitopes of TAAs including, without limitation, transdermal, intranodal, perinodal, oral, intravenous, intradermal, intramuscular, intraperitoneal, and mucosal administration, including delivery by injection, instillation or inhalation. A particularly useful method of vaccine delivery to elicit a CTL response is disclosed in Australian Patent No. 739189 issued January 17, 2002; PCT Publication No. WO 099/02183; U.S. Patent Application No. 09/380,534, filed on September 1, 1999; a Continuation-in-Part thereof U.S. Patent Application No. 09/776,232 both entitled "A METHOD OF INDUCING A CTL RESPONSE," filed on February 2, 2001, published as 20020007173; and PCT Publication No. WO 02/062368; all of which are incorporated herein by reference in their entireties. The teachings and embodiments disclosed in said publications and applications are contemplated as supporting principals and embodiments related to and useful in connection with the present invention.

Reagents Recognizing Epitopes

[0128] In another aspect of the invention, proteins with binding specificity for the epitope and/or the epitope-MHC molecule complex are contemplated, as well as the isolated cells by which they can be expressed. In one set of embodiments these reagents take the form of immunoglobulins: polyclonal sera or monoclonal antibodies (mAb), methods for the generation of which are well know in the art. Generation of mAb with specificity for peptide-MHC molecule complexes is known in the art. See, for example, Aharoni et al. *Nature* 351:147-150, 1991; Andersen et al. *Proc. Natl. Acad. Sci. USA* 93:1820-1824, 1996; Dadaglio et al. *Immunity* 6:727-738, 1997; Duc et al. *Int. Immunol.* 5:427-431,1993; Eastman et al. *Eur. J. Immunol.* 26:385-393, 1996; Engberg et al. *Immunotechnology* 4:273-278, 1999; Porgdor et al. *Immunity* 6:715-726, 1997; Puri et al. *J. Immunol.* 158:2471-2476, 1997; and Polakova, K., et al. *J. Immunol.* 165 342-348, 2000; all of which are hereby incorporated by reference in their entirety.

[0129] In other embodiments the compositions can be used to induce and generate, *in vivo* and *in vitro*, T-cells specific for the any of the epitopes and/or epitope-MHC complexes. In preferred embodiments the epitope can be any one or more of those listed in TABLE 1, for example. Thus, embodiments also relate to and include isolated T cells, T cell clones, T cell hybridomas, or a protein containing the T cell receptor (TCR) binding domain derived from the cloned gene, as well as a recombinant cell expressing such a protein. Such TCR derived proteins can be simply the extra-cellular domains of

the TCR, or a fusion with portions of another protein to confer a desired property or function. One example of such a fusion is the attachment of TCR binding domains to the constant regions of an antibody molecule so as to create a divalent molecule. The construction and activity of molecules following this general pattern have been reported, for example, Plaksin, D. et al. *J. Immunol*. 158:2218-2227, 1997 and Lebowitz, M.S. et al. *Cell Immunol*. 192:175-184, 1999, which are hereby incorporated by reference in their entirety. The more general construction and use of such molecules is also treated in U.S. patent 5,830,755 entitled T CELL RECEPTORS AND THEIR USE IN THERAPEUTIC AND DIAGNOSTIC METHODS, which is hereby incorporated by reference in its entirety.

[0130] The generation of such T cells can be readily accomplished by standard immunization of laboratory animals, and reactivity to human target cells can be obtained by immunizing with human target cells or by immunizing HLA-transgenic animals with the antigen/epitope. For some therapeutic approaches T cells derived from the same species are desirable. While such a cell can be created by cloning, for example, a murine TCR into a human T cell as contemplated above, *in vitro* immunization of human cells offers a potentially faster option. Techniques for *in vitro* immunization, even using naive donors, are know in the field, for example, Stauss et al., *Proc. Natl. Acad. Sci. USA* 89:7871-7875, 1992; Salgaller et al. *Cancer Res.* 55:4972-4979, 1995; Tsai et al., *J. Immunol.* 158:1796-1802, 1997; and Chung et al., *J. Immunother.* 22:279-287, 1999; which are hereby incorporated by reference in their entirety.

[0131] Any of these molecules can be conjugated to enzymes, radiochemicals, fluorescent tags, and toxins, so as to be used in the diagnosis (imaging or other detection), monitoring, and treatment of the pathogenic condition associated with the epitope. Thus a toxin conjugate can be administered to kill tumor cells, radiolabeling can facilitate imaging of epitope positive tumor, an enzyme conjugate can be used in an ELISA-like assay to diagnose cancer and confirm epitope expression in biopsied tissue. In a further embodiment, such T cells as set forth above, following expansion accomplished through stimulation with the epitope and/or cytokines, can be administered to a patient as an adoptive immunotherapy.

Reagents Comprising Epitopes

[0132] A further aspect of the invention provides isolated epitope-MHC complexes. In a particularly advantageous embodiment of this aspect of the invention, the

complexes can be soluble, multimeric proteins such as those described in U. S. Patent No. 5,635,363 (tetramers) or U. S. Patent No. 6,015,884 (Ig-dimers), both of which are hereby incorporated by reference in their entirety. Such reagents are useful in detecting and monitoring specific T cell responses, and in purifying such T cells.

[0133] Isolated MHC molecules complexed with epitopic peptides can also be incorporated into planar lipid bilayers or liposomes. Such compositions can be used to stimulate T cells *in vitro* or, in the case of liposomes, *in vivo*. Co-stimulatory molecules (e.g. B7, CD40, LFA-3) can be incorporated into the same compositions or, especially for *in vitro* work, co-stimulation can be provided by anti-co-receptor antibodies (e.g. anti-CD28, anti-CD154, anti-CD2) or cytokines (e.g. IL-2, IL-12). Such stimulation of T cells can constitute vaccination, drive expansion of T cells *in vitro* for subsequent infusion in an immuotherapy, or constitute a step in an assay of T cell function.

The epitope, or more directly its complex with an MHC molecule, can [0134] be an important constituent of functional assays of antigen-specific T cells at either an activation or readout step or both. Of the many assays of T cell function current in the art (detailed procedures can be found in standard immunological references such as Current Protocols in Immunology 1999 John Wiley & Sons Inc., N.Y., which is hereby incorporated by reference in its entirety) two broad classes can be defined, those that measure the response of a pool of cells and those that measure the response of individual cells. Whereas the former conveys a global measure of the strength of a response, the latter allows determination of the relative frequency of responding cells. Examples of assays measuring global response are cytotoxicity assays, ELISA, and proliferation assays detecting cytokine secretion. Assays measuring the responses of individual cells (or small clones derived from them) include limiting dilution analysis (LDA), ELISPOT, flow cytometric detection of unsecreted cytokine (described in U.S. Patent No. 5,445,939, entitled "METHOD FOR ASSESSMENT OF THE MONONUCLEAR LEUKOCYTE IMMUNE SYSTEM" and U.S. Patent Nos 5,656,446; and 5,843,689, both entitled "METHOD FOR THE ASSESSMENT OF THE MONONUCLEAR LEUKOCYTE IMMUNE SYSTEM," reagents for which are sold by Becton, Dickinson & Company under the tradename 'FASTIMMUNE', which patents are hereby incorporated by reference in their entirety) and detection of specific TCR with tetramers or Ig-dimers as stated and referenced above. The comparative virtues of these techniques have been reviewed in Yee, C. et al. Current Opinion in Immunology, 13:141-146, 2001, which is hereby incorporated by reference in its entirety. Additionally detection of a specific TCR rearrangement or expression can be accomplished through a variety of established nucleic acid based techniques, particularly in situ and single-cell PCR techniques, as will be apparent to one of skill in the art.

[0135] These functional assays are used to assess endogenous levels of immunity, response to an immunologic stimulus (e.g. a vaccine), and to monitor immune status through the course of a disease and treatment. Except when measuring endogenous levels of immunity, any of these assays presume a preliminary step of immunization, whether in vivo or in vitro depending on the nature of the issue being addressed. Such immunization can be carried out with the various embodiments of the invention described above or with other forms of immunogen (e.g., pAPC-tumor cell fusions) that can provoke similar immunity. With the exception of PCR and tetramer/Ig-dimer type analyses which can detect expression of the cognate TCR, these assays generally benefit from a step of in vitro antigenic stimulation which can advantageously use various embodiments of the invention as described above in order to detect the particular functional activity (highly cytolytic responses can sometimes be detected directly). Finally, detection of cytolytic activity requires epitope-displaying target cells, which can be generated using various embodiments of the invention. The particular embodiment chosen for any particular step depends on the question to be addressed, ease of use, cost, and the like, but the advantages of one embodiment over another for any particular set of circumstances will be apparent to one of skill in the art.

[0136] The peptide MHC complexes described in this section have traditionally been understood to be non-covalent associations. However it is possible, and can be advantageous, to create a covalent linkages, for example by encoding the epitope and MHC heavy chain or the epitope, \(\beta_2\)-microglobulin, and MHC heavy chain as a single protein (Yu, Y.L.Y., et al., J. Immunol. 168:3145-3149, 2002; Mottez, E., et at., J. Exp. Med. 181:493,1995; Dela Cruz, C. S., et al., Int. Immunol. 12:1293, 2000; Mage, M. G., et al., Proc. Natl. Acad. Sci. USA 89:10658,1992; Toshitani, K., et al., Proc. Natl. Acad. Sci. USA 93:236,1996; Lee, L., et al., Eur. J. Immunol. 24:2633,1994; Chung, D. H., et al., J. Immunol. 163:3699,1999; Uger, R. A. and B. H. Barber, J. Immunol. 160:1598, 1998; Uger, R. A., et al., J. Immunol. 162:6024,1999; and White, J., et al., J. Immunol. 162:2671, 1999; which are incorporated herein by reference in their entirety). Such constructs can have superior stability and overcome roadblocks in the processing-

presentation pathway. They can be used in the already described vaccines, reagents, and assays in similar fashion.

Tumor Associated Antigens

[0137] Epitopes of the present invention are derived from the TuAAs tyrosinase (SEQ ID NO. 2), SSX-2, (SEQ ID NO. 3), PSMA (prostate-specific membrane antigen) (SEQ ID NO. 4), MAGE-1 (SEQ ID NO. 71), MAGE-2 (SEQ ID NO. 72), MAGE-3 (SEQ ID NO. 73), PRAME, (SEQ ID NO. 77), PSA, (SEQ ID NO. 78), PSCA, (SEQ ID NO. 79), CEA (carcinoembryonic antigen), (SEQ ID NO. 88), SCP-1 (SEQ ID NO. 92), GAGE-1, (SEQ ID NO. 96), survivin, (SEQ ID NO. 98), Melan-A/MART-1 (SEQ ID NO. 100), and BAGE (SEQ ID NO. 102). The natural coding sequences for these fifteen proteins, or any segments within them, can be determined from their cDNA or complete coding (cds) sequences, SEQ ID NOS. 5-7, 81-83, 85-87, 89, 93, 97, 99, 101, and 103, respectively.

[0138] Tyrosinase is a melanin biosynthetic enzyme that is considered one of the most specific markers of melanocytic differentiation. Tyrosinase is expressed in few cell types, primarily in melanocytes, and high levels are often found in melanomas. The usefulness of tyrosinase as a TuAA is taught in U.S. Patent 5,747,271 entitled "METHOD FOR IDENTIFYING INDIVIDUALS SUFFERING FROM A CELLULAR ABNORMALITY SOME OF WHOSE ABNORMAL CELLS PRESENT COMPLEXES OF HLA-A2/TYROSINASE DERIVED PEPTIDES, AND METHODS FOR TREATING SAID INDIVIDUALS" which is hereby incorporated by reference in its entirety.

[0139] GP100, also known as PMel17, also is a melanin biosynthetic protein expressed at high levels in melanomas. GP100 as a TuAA is disclosed in U.S. Patent 5,844,075 entitled "MELANOMA ANTIGENS AND THEIR USE IN DIAGNOSTIC AND THERAPEUTIC METHODS," which is hereby incorporated by reference in its entirety.

[0140] Melan-A, also called MART-1 (Melanoma Antigen Recognized by T cells), is another melanin biosynthetic protein expressed at high levels in melanomas. The usefulness of Melan-A/MART-1 as a TuAA is taught in U.S. Patent Nos. 5,874,560 and 5,994,523 both entitled "MELANOMA ANTIGENS AND THEIR USE IN DIAGNOSTIC AND THERAPEUTIC METHODS," as well as U.S. Patent No. 5,620,886, entitled "ISOLATED NUCLEIC ACID SEQUENCE CODING FOR A

TUMOR REJECTION ANTIGEN PRECURSOR PROCESSED TO AT LEAST ONE TUMOR REJECTION ANTIGEN PRESENTED BY HLA-A2", all of which are hereby incorporated by reference in their entirety.

[0141] SSX-2, also know as Hom-Mel-40, is a member of a family of highly conserved cancer-testis antigens (Gure, A.O. et al. *Int. J. Cancer* 72:965-971, 1997, which is hereby incorporated by reference in its entirety). Its identification as a TuAA is taught in U.S. Patent 6,025,191 entitled "ISOLATED NUCLEIC ACID MOLECULES WHICH ENCODE A MELANOMA SPECIFIC ANTIGEN AND USES THEREOF," which is hereby incorporated by reference in its entirety. Cancer-testis antigens are found in a variety of tumors, but are generally absent from normal adult tissues except testis. Expression of different members of the SSX family have been found variously in tumor cell lines. Due to the high degree of sequence identity among SSX family members, similar epitopes from more than one member of the family will be generated and able to bind to an MHC molecule, so that some vaccines directed against one member of this family can cross-react and be effective against other members of this family (see example 3 below).

[0142] MAGE-1, MAGE-2, and MAGE-3 are members of another family of cancer-testis antigens originally discovered in melanoma (MAGE is a contraction of melanoma-associated antigen) but found in a variety of tumors. The identification of MAGE proteins as TuAAs is taught in U.S. Patent 5,342,774 entitled NUCLEOTIDE SEQUENCE ENCODING THE TUMOR REJECTION ANTIGEN PRECURSOR, MAGE-1, which is hereby incorporated by reference in its entirety, and in numerous subsequent patents. Currently there are 17 entries for (human) MAGE in the SWISS Protein database. There is extensive similarity among these proteins so in many cases, an epitope from one can induce a cross-reactive response to other members of the family. A few of these have not been observed in tumors, most notably MAGE-H1 and MAGE-D1, which are expressed in testes and brain, and bone marrow stromal cells, respectively. The possibility of cross-reactivity on normal tissue is ameliorated by the fact that they are among the least similar to the other MAGE proteins.

[0143] GAGE-1 is a member of the GAGE family of cancer testis antigens (Van den Eynde, B., et al., *J. Exp. Med.* 182: 689-698, 1995; U.S Patent Nos. 5,610,013; 5648226; 5,858,689; 6,013,481; and 6,069,001). The PubGene database currently lists 12 distinct accessible members, some of which are synonymously known as PAGE or

XAGE. GAGE-1 through GAGE-8 have a very high degree of sequence identity, so most epitopes can be shared among multiple members of the family.

[0144] BAGE is a cancer-testis antigen commonly expressed in melanoma, particularly metastatic melanoma, as well as in carcinomas of the lung, breast, bladder, and squamous cells of the head and neck. It's usefulness as a TuAA is taught in U.S. Patent Nos. 5,683,88 entiltled "TUMOR REJECTION ANTIGENS WHICH CORRESPOND TO AMINO ACID SEQUENCES IN TUMOR REJECTION ANTIGEN PRECURSOR BAGE, AND USES THEREOF" and 5,571,711 entitled "ISOLATED NUCLEIC ACID MOLECULES CODING FOR BAGE TUMOR REJECTION ANTIGEN PRECURSORS", both of which are hereby incorporated by reference in their entirety.

[0145] NY-ESO-1, is a cancer-testis antigen found in a wide variety of tumors, also known as CTAG-1 (Cancer-Testis Antigen-1) and CAG-3 (Cancer Antigen-3). NY-ESO-1 as a TuAA is disclosed in U.S. Patent 5,804,381 entitled ISOLATED NUCLEIC ACID MOLECULE ENCODING AN ESOPHAGEAL CANCER ASSOCIATED ANTIGEN, THE ANTIGEN ITSELF, AND USES THEREOF which is hereby incorporated by reference in its entirety. A paralogous locus encoding antigens with extensive sequence identity, LAGE-1a/s (SEQ ID NO. 75) and LAGE-1b/L (SEQ ID NO. 76), have been disclosed in publicly available assemblies of the human genome, and have been concluded to arise through alternate splicing. Additionally, CT-2 (or CTAG-2, Cancer-Testis Antigen-2) appears to be either an allele, a mutant, or a sequencing discrepancy of LAGE-1b/L. Due to the extensive sequence identity, many epitopes from NY-ESO-1 can also induce immunity to tumors expressing these other antigens. See figure 1. The proteins are virtually identical through amino acid 70. From 71-134 the longest run of identities between NY-ESO-1 and LAGE is 6 residues, but potentially cross-reactive sequences are present. And from 135-180 NY-ESO and LAGE-1a/s are identical except for a single residue, but LAGE-1b/L is unrelated due to the alternate splice. The CAMEL and LAGE-2 antigens appear to derive from the LAGE-1 mRNA, but from alternate reading frames, thus giving rise to unrelated protein sequences. More recently, GenBank Accession AF277315.5, Homo sapiens chromosome X clone RP5-865E18, RP5-1087L19, complete sequence, reports three independent loci in this region which are labeled as LAGE1 (corresponding to CTAG-2 in the genome assemblies), plus LAGE2-A and LAGE2-B (both corresponding to CTAG-1 in the genome assemblies).

[0146] PSMA (prostate-specific membranes antigen), a TuAA described in U.S. Patent 5,538,866 entitled "PROSTATE-SPECIFIC MEMBRANES ANTIGEN" which is hereby incorporated by reference in its entirety, is expressed by normal prostate epithelium and, at a higher level, in prostatic cancer. It has also been found in the neovasculature of non-prostatic tumors. PSMA can thus form the basis for vaccines directed to both prostate cancer and to the neovasculature of other tumors. This later concept is more fully described in U.S. Patent Publication No. 20030046714; PCT Publication No. WO 02/069907; and a provisional U.S. Patent application No. 60/274,063 entitled ANTI-NEOVASCULAR VACCINES FOR CANCER, filed March 7, 2001, and U.S. Application No. 10/094,699, attorney docket number CTLIMM.015A, filed on March 7, 2002, entitled "ANTI-NEOVASCULAR PREPARATIONS FOR CANCER," all of which are hereby incorporated by reference in their entireties. The teachings and embodiments disclosed in said publications and applications are contemplated as supporting principals and embodiments related to and useful in connection with the present invention. Briefly, as tumors grow they recruit ingrowth of new blood vessels. This is understood to be necessary to sustain growth as the centers of unvascularized tumors are generally necrotic and angiogenesis inhibitors have been reported to cause tumor regression. Such new blood vessels, or neovasculature, express antigens not found in established vessels, and thus can be specifically targeted. By inducing CTL against neovascular antigens the vessels can be disrupted, interrupting the flow of nutrients to (and removal of wastes from) tumors, leading to regression.

[0147] Alternate splicing of the PSMA mRNA also leads to a protein with an apparent start at Met₅₈, thereby deleting the putative membrane anchor region of PSMA as described in U.S. Patent 5,935,818 entitled "ISOLATED NUCLEIC ACID MOLECULE ENCODING ALTERNATIVELY SPLICED PROSTATE-SPECIFIC MEMBRANES ANTIGEN AND USES THEREOF" which is hereby incorporated by reference in its entirety. A protein termed PSMA-like protein, Genbank accession number AF261715, is nearly identical to amino acids 309-750 of PSMA and has a different expression profile. Thus the most preferred epitopes are those with an N-terminus located from amino acid 58 to 308.

[0148] PRAME, also know as MAPE, DAGE, and OIP4, was originally observed as a melanoma antigen. Subsequently, it has been recognized as a CT antigen, but unlike many CT antigens (e.g., MAGE, GAGE, and BAGE) it is expressed in acute

myeloid leukemias. PRAME is a member of the MAPE family which consists largely of hypothetical proteins with which it shares limited sequence similarity. The usefulness of PRAME as a TuAA is taught in U.S. Patent 5,830,753 entitled "ISOLATED NUCLEIC ACID MOLECULES CODING FOR TUMOR REJECTION ANTIGEN PRECURSOR DAGE AND USES THEREOF" which is hereby incorporated by reference in its entirety.

[0149] PSA, prostate specific antigen, is a peptidase of the kallikrein family and a differentiation antigen of the prostate. Expression in breast tissue has also been reported. Alternate names include gamma-seminoprotein, kallikrein 3, seminogelase, seminin, and P-30 antigen. PSA has a high degree of sequence identity with the various alternate splicing products prostatic/glandular kallikrein-1 and -2, as well as kalikrein 4, which is also expressed in prostate and breast tissue. Other kallikreins generally share less sequence identity and have different expression profiles. Nonetheless, cross-reactivity that might be provoked by any particular epitope, along with the likelihood that that epitope would be liberated by processing in non-target tissues (most generally by the housekeeping proteasome), should be considered in designing a vaccine.

[0150] PSCA, prostate stem cell antigen, and also known as SCAH-2, is a differentiation antigen preferentially expressed in prostate epithelial cells, and overexpressed in prostate cancers. Lower level expression is seen in some normal tissues including neuroendocrine cells of the digestive tract and collecting ducts of the kidney. PSCA is described in U.S. Patent 5,856,136 entitled "HUMAN STEM CELL ANTIGENS" which is hereby incorporated by reference in its entirety.

[0151] Synaptonemal complex protein 1 (SCP-1), also known as HOM-TES-14, is a meiosis-associated protein and also a cancer-testis antigen (Tureci, O., et al. Proc. Natl. Acad. Sci. USA 95:5211-5216, 1998). As a cancer antigen its expression is not cell-cycle regulated and it is found frequently in gliomas, breast, renal cell, and ovarian carcinomas. It has some similarity to myosins, but with few enough identities that cross-reactive epitopes are not an immediate prospect.

[0152] The ED-B domain of fibronectin is also a potential target. Fibronectin is subject to developmentally regulated alternative splicing, with the ED-B domain being encoded by a single exon that is used primarily in oncofetal tissues (Matsuura, H. and S. Hakomori *Proc. Natl. Acad. Sci. USA* 82:6517-6521, 1985; Carnemolla, B. et al. *J. Cell Biol.* 108:1139-1148, 1989; Loridon-Rosa, B. et al. *Cancer Res.*50:1608-1612, 1990; Nicolo, G. et al. *Cell Differ. Dev.* 32:401-408, 1990; Borsi, L. et al. *Exp. Cell Res.*

199:98-105, 1992; Oyama, F. et al. *Cancer Res.* 53:2005-2011, 1993; Mandel, U. et al. *APMIS* 102:695-702, 1994; Farnoud, M.R. et al. *Int. J. Cancer* 61:27-34, 1995; Pujuguet, P. et al. Am. J. Pathol. 148:579-592, 1996; Gabler, U. et al. *Heart* 75:358-362, 1996; Chevalier, X. *Br. J. Rheumatol.* 35:407-415, 1996; Midulla, M. *Cancer Res.* 60:164-169, 2000).

[0153] The ED-B domain is also expressed in fibronectin of the neovasculature (Kaczmarek, J. et al. Int. J. Cancer 59:11-16, 1994; Castellani, P. et al. Int. J. Cancer 59:612-618, 1994; Neri, D. et al. Nat. Biotech. 15:1271-1275, 1997; Karelina, T.V. and A.Z. Eisen Cancer Detect. Prev. 22:438-444, 1998; Tarli, L. et al. Blood 94:192-198, 1999; Castellani, P. et al. Acta Neurochir. (Wien) 142:277-282, 2000). As an oncofetal domain, the ED-B domain is commonly found in the fibronectin expressed by neoplastic cells in addition to being expressed by the neovasculature. Thus, CTL-inducing vaccines targeting the ED-B domain can exhibit two mechanisms of action: direct lysis of tumor cells, and disruption of the tumor's blood supply through destruction of the tumor-associated neovasculature. As CTL activity can decay rapidly after withdrawal of vaccine, interference with normal angiogenesis can be minimal. The design and testing of vaccines targeted to neovasculature is described in Provisional U.S. Patent Application No. 60/274,063 entitled "ANTI-NEOVASCULATURE VACCINES FOR CANCER" and in U.S. Patent Application No. 10/094,699, attorney docket number CTLIMM.015A, entitled "ANTI-NEOVASCULATURE PREPARATIONS FOR CANCER, filed on date even with this application (March 7, 2002). A tumor cell line is disclosed in Provisional U.S. Application No. 60/363,131, filed on March 7, 2002, attorney docket number CTLIMM.028PR, entitled "HLA-TRANSGENIC MURINE TUMOR CELL LINE," which is hereby incorporated by reference in its entirety.

[0154] Carcinoembryonic antigen (CEA) is a paradigmatic oncofetal protein first described in 1965 (Gold and Freedman, J. Exp. Med. 121: 439-462, 1965. Fuller references can be found in the Online Medelian Inheritance in Man; record *114890). It has officially been renamed carcinoembryonic antigen-related cell adhesion molecule 5 (CEACAM5). Its expression is most strongly associated with adenocarcinomas of the epithelial lining of the digestive tract and in fetal colon. CEA is a member of the immunoglobulin supergene family and the defining member of the CEA subfamily.

[0155] Survivin, also known as Baculoviral IAP Repeat-Containing Protein 5 (BIRC5), is another protein with an oncofetal pattern of expression. It is a member of the

inhibitor of apoptosis protein (IAP) gene family. It is widely overexpressed in cancers (Ambrosini, G. et al., *Nat. Med.* 3:917-921, 1997; Velculiscu V.E. et al., *Nat. Genet.* 23:387-388, 1999) and it's function as an inhibitor of apoptosis is believed to contribute to the malignant phenotype.

[0156] HER2/NEU is an oncogene related to the epidermal growth factor receptor (van de Vijver, et al., *New Eng. J. Med.* 319:1239-1245, 1988), and apparently identical to the c-ERBB2 oncogene (Di Fiore, et al., Science 237: 178-182, 1987). The over-expression of ERBB2 has been implicated in the neoplastic transformation of prostate cancer. As HER2 it is amplified and over-expressed in 25-30% of breast cancers among other tumors where expression level is correlated with the aggressiveness of the tumor (Slamon, et al., *New Eng. J. Med.* 344:783-792, 2001). A more detailed description is available in the Online Medelian Inheritance in Man; record *164870.

[0157] All references mentioned herein are hereby incorporated by reference in their entirety. Further, incorporated by reference in its entirety is U.S. Patent Application No. 10/005,905 (attorney docket number CTLIMM.021CP1) entitled "EPITOPE SYNCHRONIZATION IN ANTIGEN PRESENTING CELLS," filed on November 7, 2001 and a continuation thereof, U.S. Application No. 10/026,066, filed on December 7, 2000, attorney docket number CTLIMM.21CP1C, also entitled "EPITOPE SYNCHRONIZATION IN ANTIGEN PRESENTING CELLS."

[0158] Useful epitopes were identified and tested as described in the following examples. However, these examples are intended for illustration purposes only, and should not be construed as limiting the scope of the invention in any way.

EXAMPLES

Example 1

Manufacture of epitopes.

A. Synthetic production of epitopes

[0159] Peptides having an amino acid sequence of any of SEQ ID NO: 1, 8, 9, 11-23, 26-29, 32-44, 47-54, 56-63, 66-68, or 108-602 are synthesized using either FMOC or tBOC solid phase synthesis methodologies. After synthesis, the peptides are cleaved from their supports with either trifluoroacetic acid or hydrogen fluoride, respectively, in the presence of appropriate protective scavengers. After removing the acid by evaporation, the peptides are extracted with ether to remove the scavengers and the crude,

precipitated peptide is then lyophilized. Purity of the crude peptides is determined by HPLC, sequence analysis, amino acid analysis, counterion content analysis and other suitable means. If the crude peptides are pure enough (greater than or equal to about 90% pure), they can be used as is. If purification is required to meet drug substance specifications, the peptides are purified using one or a combination of the following: reprecipitation; reverse-phase, ion exchange, size exclusion or hydrophobic interaction chromatography; or counter-current distribution.

Drug product formulation

[0160] GMP-grade peptides are formulated in a parenterally acceptable aqueous, organic, or aqueous-organic buffer or solvent system in which they remain both physically and chemically stable and biologically potent. Generally, buffers or combinations of buffers or combinations of buffers and organic solvents are appropriate. The pH range is typically between 6 and 9. Organic modifiers or other excipients can be added to help solubilize and stabilize the peptides. These include detergents, lipids, cosolvents, antioxidants, chelators and reducing agents. In the case of a lyophilized product, sucrose or mannitol or other lyophilization aids can be added. Peptide solutions are sterilized by membrane filtration into their final container-closure system and either lyophilized for dissolution in the clinic, or stored until use.

B. Construction of expression vectors for use as nucleic acid vaccines

presented below. The particular advantages of these designs are set forth in PCT Publication No. WO 01/82963 and U.S. Patent Application No. 09/561,572 entitled "EXPRESSION VECTORS ENCODING EPITOPES OF TARGET-ASSOCIATED ANTIGENS," filed on April 28, 2000, which have been incorporated by reference in their entireties above. Additional vectors strategies for their design are disclosed in PCT Publication WO 03/063770; U.S. Patent Application No. 10/292,413, filed on November 7, 2002; and Provisional U.S. Patent application No. 60/336,968 entitled "EXPRESSION VECTORS ENCODING EPITOPES OF TARGET-ASSOCIATED ANTIGENS AND METHODS FOR THEIR DESIGN," filed on November 7, 2001, which were incorporated by reference in their entireties above. The teachings and embodiments disclosed in said PCT publications and applications are contemplated as supporting principals and embodiments related to and useful in connection with the present invention.

[0162] A suitable *E. coli* strain was then transfected with the plasmid and plated out onto a selective medium. Several colonies were grown up in suspension culture and positive clones were identified by restriction mapping. The positive clone was then grown up and aliquotted into storage vials and stored at -70°C.

[0163] A mini-prep (QIAprep Spin Mini-prep: Qiagen, Valencia, CA) of the plasmid was then made from a sample of these cells and automated fluorescent dideoxy sequence analysis was used to confirm that the construct had the desired sequence.

B.1 Construction of pVAX-EP1-IRES-EP2

[0164] Overview:

[0165] The starting plasmid for this construct is pVAX1 purchased from Invitrogen (Carlsbad, CA). Epitopes EP1 and EP2 were synthesized by GIBCO BRL (Rockville, MD). The IRES was excised from pIRES purchased from Clontech (Palo Alto, CA).

[0166] Procedure:

- [0167] pIRES was digested with EcoRI and NotI. The digested fragments
 were separated by agarose gel electrophoresis, and the IRES fragment was
 purified from the excised band.
- [0168] pVAX1 was digested with EcoRI and NotI, and the pVAX1 fragment was gel-purified.
- 3. [0169] The purified pVAX1 and IRES fragments were then ligated together.
- 4. [0170] Competent E. coli of strain DH5α were transformed with the ligation mixture.
- 5. [0171] Minipreps were made from 4 of the resultant colonies.
- 6. [0172] Restriction enzyme digestion analysis was performed on the miniprep DNA. One recombinant colony having the IRES insert was used for further insertion of EP1 and EP2. This intermediate construct was called pVAX-IRES.
- 7. [0173] Oligonucleotides encoding EP1 and EP2 were synthesized.
- 8. [0174] EP1 was subcloned into pVAX-IRES between AfIII and EcoRI sites, to make pVAX-EP1-IRES;
- 9. [0175] EP2 was subcloned into pVAX-EP1-IRES between SalI and NotI sites, to make the final construct pVAX-EP1-IRES-EP2.

10. [0176] The sequence of the EP1-IRES-EP2 insert was confirmed by DNA sequencing.

B 2. Construction of pVAX-EP1-IRES-EP2-ISS-NIS

[0177] Overview:

[0178] The starting plasmid for this construct was pVAX-EP1-IRES-EP2 (Example 1). The ISS (immunostimulatory sequence) introduced into this construct is AACGTT, and the NIS (standing for nuclear import sequence) used is the SV40 72bp repeat sequence. ISS-NIS was synthesized by GIBCO BRL. See Figure 2.

[0179] Procedure:

- [0180] pVAX-EP1-IRES-EP2 was digested with NruI; the linearized plasmid was gel-purified.
- 2. [0181] ISS-NIS oligonucleotide was synthesized.
- 3. [0182] The purified linearized pVAX-EP1-IRES-EP2 and synthesized ISS-NIS were ligated together.
- 4. [0183] Competent E. coli of strain DH5 α were transformed with the ligation product.
- 5. [0184] Minipreps were made from resultant colonies.
- 6. [0185] Restriction enzyme digestions of the minipreps were carried out.
- 7. [0186] The plasmid with the insert was sequenced.

B3. Construction of pVAX-EP2-UB-EP1

[0187] Overview:

[0188] The starting plasmid for this construct was pVAX1 (Invitrogen). EP2 and EP1 were synthesized by GIBCO BRL. Wild type Ubiquitin cDNA encoding the 76 amino acids in the construct was cloned from yeast.

[0189] Procedure:

- 1. [0190] RT-PCR was performed using yeast mRNA. Primers were designed to amplify the complete coding sequence of yeast Ubiquitin.
- 2. [0191] The RT-PCR products were analyzed using agarose gel electrophoresis. A band with the predicted size was gel-purified.
- 3. [0192] The purified DNA band was subcloned into pZERO1 at EcoRV site.

 The resulting clone was named pZERO-UB.

- 4. [0193] Several clones of pZERO-UB were sequenced to confirm the Ubiquitin sequence before further manipulations.
- 5. [0194] EP1 and EP2 were synthesized.
- 6. [0195] EP2, Ubiquitin and EP1 were ligated and the insert cloned into pVAX1 between BamHI and EcoRI, putting it under control of the CMV promoter.
- 7. [0196] The sequence of the insert EP2-UB-EP1 was confirmed by DNA sequencing.

Example 2

Identification of useful epitope variants.

[0197] The 10-mer FLPWHRLFLL (SEQ ID NO. 1) is identified as a useful epitope. Based on this sequence, numerous variants are made. Variants exhibiting activity in HLA binding assays (see Example 3, section 6) are identified as useful, and are subsequently incorporated into vaccines. Variants that increase the stability of binding, assayed can be particularly usefule, for example as described in WO 97/41440 entitled "Methods for Selecting and Producing T Cell Peptide Epitopes and Vaccines Incorporating Said Selected Epitopes," which is incorporated herein by reference in its entirety. The teachings and embodiments disclosed in said PCT publication are contemplated as supporting principals and embodiments related to and useful in connection with the present invention.

[0198] The HLA-A2 binding of length variants of FLPWHRLFLL have been evaluated. Proteasomal digestion analysis indicates that the C-terminus of the 9-mer FLPWHRLFL (SEQ ID NO. 8) is also produced. Additionally the 9-mer LPWHRLFLL (SEQ ID NO. 9) can result from N-terminal trimming of the 10-mer. Both are predicted to bind to the HLA-A*0201 molecule, however of these two 9-mers, FLPWHRLFL displayed more significant binding and is preferred (see Figs. 3A and B).

[0199] In vitro proteasome digestion and N-terminal pool sequencing indicates that tyrosinase₂₀₇₋₂₁₆ (SEQ ID NO. 1) is produced more commonly than tyrosinase₂₀₇₋₂₁₅ (SEQ ID NO. 8), however the latter peptide displays superior immunogenicity, a potential concern in arriving at an optimal vaccine design. FLPWHRLFL, tyrosinase₂₀₇₋₂₁₅ (SEQ ID NO. 8) was used in an in vitro immunization of HLA-A2⁺ blood to generate CTL (see CTL Induction Cultures below). Using peptide pulsed T2 cells as targets in a standard chromium release assay it was found that the CTL induced by tyrosinase₂₀₇₋₂₁₅ (SEQ ID

NO. 8) recognize tyrosinase₂₀₇₋₂₁₆ (SEQ ID NO. 1) targets equally well (see fig. 3C). These CTL also recognize the HLA-A2⁺, tyrosinase⁺ tumor cell lines 624.38 and HTB64, but not 624.28 an HLA-A2⁻ derivative of 624.38 (fig. 3C). Thus the relative amounts of these two epitopes produced in vivo, does not become a concern in vaccine design.

CTL induction cultures

[0200] PBMCs from normal donors were purified by centrifugation in Ficoll-Hypaque from buffy coats. All cultures were carried out using the autologous plasma (AP) to avoid exposure to potential xenogeneic pathogens and recognition of FBS peptides. To favor the in vitro generation of peptide-specific CTL, we employed autologous dendritic cells (DC) as APCs. DC were generated and CTL were induced with DC and peptide from PBMCs as described (Keogh et al., 2001). Briefly, monocyte-enriched cell fractions were cultured for 5 days with GM-CSF and IL-4 and were cultured for 2 additional days in culture media with 2 μg/ml CD40 ligand to induce maturation. 2 x10⁶ CD8+-enriched T lymphocytes/well and 2 x10⁵ peptide-pulsed DC/well were co-cultured in 24-well plates in 2 ml RPMI supplemented with 10% AP, 10 ng/ml IL-7 and 20 IU/ml IL-2. Cultures were restimulated on days 7 and 14 with autologous irradiated peptide-pulsed DC.

[0201] Sequence variants of FLPWHRLFL are constructed as follow. Consistent with the binding coefficient table (see Table 3) from the NIH/BIMAS MHC binding prediction program (see reference in example 3 below), binding can be improved by changing the L at position 9, an anchor position, to V. Binding can also be altered, though generally to a lesser extent, by changes at non-anchor positions. Referring generally to Table 3, binding can be increased by employing residues with relatively larger coefficients. Changes in sequence can also alter immunogenicity independently of their effect on binding to MHC. Thus binding and/or immunogenicity can be improved as follows:

[0202] By substituting F,L,M,W, or Y for P at position 3; these are all bulkier residues that can also improve immunogenicity independent of the effect on binding. The amine and hydroxyl-bearing residues, Q and N; and S and T; respectively, can also provoke a stronger, cross-reactive response.

[0203] By substituting D or E for W at position 4 to improve binding; this addition of a negative charge can also make the epitope more immunogenic, while in

some cases reducing cross-reactivity with the natural epitope. Alternatively the conservative substitutions of F or Y can provoke a cross-reactive response.

[0204] By substituting F for H at position 5 to improve binding. H can be viewed as partially charged, thus in some cases the loss of charge can hinder cross-reactivity. Substitution of the fully charged residues R or K at this position can enhance immunogenicity without disrupting charge-dependent cross-reactivity.

[0205] By substituting I, L, M, V, F, W, or Y for R at position 6. The same caveats and alternatives apply here as at position 5.

[0206] By substituting W or F for L at position 7 to improve binding. Substitution of V, I, S, T, Q, or N at this position are not generally predicted to reduce binding affinity by this model (the NIH algorithm), yet can be advantageous as discussed above.

[0207] Y and W, which are equally preferred as the Fs at positions 1 and 8, can provoke a useful cross-reactivity. Finally, while substitutions in the direction of bulkiness are generally favored to improve immunogenicity, the substitution of smaller residues such as A, S, and C, at positions 3-7 can be useful according to the theory that contrast in size, rather than bulkiness per se, is an important factor in immunogenicity. The reactivity of the thiol group in C can introduce other properties as discussed in Chen, J.-L., et al. *J. Immunol.* 165:948-955, 2000.

Table 3. 9-mer Coefficient Table for HLA-A*0201*

	HLA Coefficient table for file "A_0201_standard"								
Amino Acid						1			
Type	1 st	2 nd	3rd	4th	5th	6th	7th	8th	9th
Α	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
С	1.000	0.470	1.000	1.000	1.000	1.000	1.000	1.000	1.000
D	0.075	0.100	0.400	4.100	1.000	1.000	0.490	1.000	0.003
E	0.075	1.400	0.064	4.100	1.000	1.000	0.490	1.000	0.003
F	4.600	0.050	3.700	1.000	3.800	1.900	5.800	5.500	0.015
G	1.000	0.470	1.000	1.000	1.000	1.000	0.130	1.000	0.015
Н	0.034	0.050	1.000	1.000	1.000	1.000	1.000	1.000	0.015
	1.700	9.900	1.000	1.000	1.000	2.300	1.000	0.410	2.100
K	3.500	0.100	0.035	1.000	1.000	1.000	1.000	1.000	0.003
L	1.700	72.000	3.700	1.000	1.000	2.300	1.000	1.000	4.300
М	1.700	52.000	3.700	1.000	1.000	2.300	1.000	1.000	1.000
N	1.000	0.470	1.000	1.000	1.000	1.000	1.000	1.000	0.015
Р	0.022	0.470	1.000	1.000	1.000	1.000	1.000	1.000	0.003
Q	1.000	7.300	1.000	1.000	1.000	1.000	1.000	1.000	0.003
R	1.000	0.010	0.076	1.000	1.000	1.000	0.200	1.000	0.003
S	1.000	0.470	1.000	1.000	1.000	1.000	1.000	1.000	0.015
T	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.500
V	1.700	6.300	1.000	1.000	1.000	2.300	1.000	0.410	14.000
W	4.600	0.010	8.300	1.000	1.000	1.700	7.500	5.500	0.015
Υ	4.600	0.010	3.200	1.000	1.000	1.500	1.000	5.500	0.015

[0208] *This table and other comparable data that are publicly available are useful in designing epitope variants and in determining whether a particular variant is substantially similar, or is functionally similar.

Example 3 Cluster Analysis (SSX-2₃₁₋₆₈).

1. Epitope cluster region prediction:

[0209] The computer algorithms: SYFPEITHI (internet http:// access at syfpeithi.bmi-heidelberg.com/Scripts/MHCServer.dll/EpPredict.htm), based on the book "MHC Ligands and Peptide Motifs" by H.G.Rammensee, J.Bachmann and S.Stevanovic; and HLA Peptide Binding Predictions (NIH) (internet http:// access at bimas.dcrt.nih.gov/molbio/hla_bin), described in Parker, K. C., et al., *J. Immunol*. 152:163, 1994; were used to analyze the protein sequence of SSX-2 (GI:10337583). Epitope clusters (regions with higher than average density of peptide fragments with high predicted MHC affinity) were defined as described fully in U.S. Patent Application No.

09/561,571 entitled "EPITOPE CLUSTERS," filed on April 28, 2000. Using a epitope density ratio cutoff of 2, five and two clusters were defined using the SYFPETHI and NIH algorithms, respectively, and peptides score cutoffs of 16 (SYFPETHI) and 5 (NIH). The highest scoring peptide with the NIH algorithm, $SSX-2_{41-49}$, with an estimated halftime of dissociation of >1000 min., does not overlap any other predicted epitope but does cluster with $SSX-2_{57-65}$ in the NIH analysis.

2. Peptide synthesis and characterization:

[0210] SSX-2₃₁₋₆₈.

YFSKEEWEKMKASEKIFYVYMKRKYEAMTKLGFKATLP (SEQ ID NO. 10) was synthesized by MPS (Multiple Peptide Systems, San Diego, CA 92121) using standard solid phase chemistry. According to the provided 'Certificate of Analysis', the purity of this peptide was 95%.

3. <u>Proteasome digestion:</u>

[0211] Proteasome was isolated from human red blood cells using the proteasome isolation protocol described in PCT Publication No. WO 01/82963 and U.S. Patent Application No. 09/561,074 entitled "METHOD OF EPITOPE DISCOVERY," filed on April 28, 2000; both of which are incorporated herein by reference in their entireties. The teachings and embodiments disclosed in said PCT publication and application are contemplated as supporting principals and embodiments related to and useful in connection with the present invention. SDS-PAGE, western-blotting, and ELISA were used as quality control assays. The final concentration of proteasome was 4 mg/ml, which was determined by non-interfering protein assay (Geno Technologies Inc.). Proteasomes were stored at -70°C in 25 μl aliquots.

[0212] SSX-2₃₁₋₆₈ was dissolved in Milli-Q water, and a 2 mM stock solution prepared and 20µL aliquots stored at -20°C.

[0213] 1 tube of proteasome (25 μL) was removed from storage at-70°C and thawed on ice. It was then mixed thoroughly with 12.5μL of 2mM peptide by repipetting (samples were kept on ice). A 5μL sample was immediately removed after mixing and transferred to a tube containing 1.25μL 10%TFA (final concentration of TFA was 2%); the T=0 min sample. The proteasome digestion reaction was then started and carried out at 37°C in a programmable thermal controller. Additional 5μL samples were taken out at 15, 30, 60, 120, 180 and 240 min respectively, the reaction was stopped by adding the

sample to 1.25 μ L 10% TFA as before. Samples were kept on ice or frozen until being analyzed by MALDI-MS. All samples were saved and stored at -20°C for HPLC analysis and N-terminal sequencing. Peptide alone (without proteasome) was used as a blank control: 2 μ L peptide + 4 μ L Tris buffer (20 mM, pH 7.6) + 1.5 μ L TFA.

4. MALDI-TOF MS measurements:

[0214] For each time point 0.3 μL of matrix solution (10mg/ml α -cyano-4-hydroxycinnamic acid in AcCN/H₂O (70:30)) was first applied on a sample slide, and then an equal volume of digested sample was mixed gently with matrix solution on the slide. The slide was allowed to dry at ambient air for 3-5 min. before acquiring the mass spectra. MS was performed on a Lasermat 2000 MALDI-TOF mass spectrometer that was calibrated with peptide/protein standards. To improve the accuracy of measurement, the molecular ion weight (MH⁺) of the peptide substrate was used as an internal calibration standard. The mass spectrum of the T=120 min. digested sample is shown in figure 4.

5. MS data analysis and epitope identification:

[0215] To assign the measured mass peaks, the computer program MS-Product, a tool from the UCSF Mass Spectrometry Facility (http:// accessible at prospector.ucsf.edu/ucsfhtml3.4/msprod.htm), was used to generate all possible fragments (N- and C-terminal ions, and internal fragments) and their corresponding molecular weights. Due to the sensitivity of the mass spectrometer, average molecular weight was used. The mass peaks observed over the course of the digestion were identified as summarized in Table 4.

[0216] Fragments co-C-terminal with 8-10 amino acid long sequences predicted to bind HLA by the SYFPEITHI or NIH algorithms were chosen for further study. The digestion and prediction steps of the procedure can be usefully practiced in any order. Although the substrate peptide used in proteasomal digest described here was specifically designed to include predicted HLA-A2.1 binding sequences, the actual products of digestion can be checked after the fact for actual or predicted binding to other MHC molecules. Selected results are shown in Table 5.

Table 4. SSX-2₃₁₋₆₈ Mass Peak Identification.

MS PEAK	PEPTIDE	SEQUENCE	CALCULATED
(measured)		YFSKEEW	MASS (MH ⁺)
988.23	31-37	IFSKEEW	989.08
1377.68±2.3			
8	31-40	YFSKEEWEKM	1377.68
1662.45±1.3			
0	31-43	YFSKEEWEKMKAS	1663.90
2181.72±0.8			
5	31-47	YFSKEEWE KMKASEKIF	2181.52
2346.6	31-48	YFSKEEWEKMKASEKIFY	2344.71
1472.16±1.5			
4	38-49	EKM KASEKIFYV	1473.77
2445.78±1.1			
8	31-49*	YFSKEEWEKMKASEKIFYV	2443.84
2607.	31-50	YFSKEEWEKMKASEKIFYVY	2607.02
1563.3	50-61	YMKRKYEAMTKL	1562.93
3989.9	31-61	YFSKEEWEKMKASEKIFYVYMKRKYEAMTKL	3987.77
1603.74±1.5			
3	51-63	MKRKYEAMTKLGF	1603.98
1766.45±1.5	50-63	YMKR KYEAMTKLGF	1767.16
	30-03	Tridical Datas Control of the Contro	1/0/.10
1866.32±1.2			
2	49-63	VYMKR KYEAMTKLGF	1866.29
		YFSKEEWEKMKASEKIFYVYMKR KYEAMTKLG	
4192.6	31-63	F	4192.00
		YFSKEEWEKMKASEKIFYVYMKRKYEAMTKLG	
4392.1	31-65**	FKA	4391.25

[0217] Boldface sequence correspond to peptides predicted to bind to MHC.

[0218] * On the basis of mass alone this peak could also have been assigned to the peptide 32-50, however proteasomal removal of just the N-terminal amino acid is unlikely. N-terminal sequencing (below) verifies the assignment to 31-49.

[0219] ** On the basis of mass this fragment might also represent 33-68. N-terminal sequencing below is consistent with the assignment to 31-65.

Table 5. Predicted HLA binding by proteasomally generated fragments

SEQ ID NO.	PEPTIDE	HLA	SYFPEITHI	NIH
11	FSKEEWEKM	B*3501	NP†	90
12	KMKASEKIF	B*08	17	<5
13 & (14)	(K) MKASEKIFY	A1	19 (19)	<5
15 &(16)	(M) KASEKIFYV	A*0201	22 (16)	1017
		B*08	17	<5
		B*5101	22 (13)	60
		B*5102	NP	133
		B*5103	NP	121
17 & (18)	(K) ASEKIFYVY	A1	34 (19)	14
19 & (20)	(K) RKYEAMTKL	A*0201	15	<5
		A26	15	NP
		B14	NP	45 (60)
		B*2705	21	15
		B*2709	16	NP
		B*5101	15	<5
21	KYEAMTKLGF	A1	16	<5
~-		A24	NP	300
22	YEAMTKLGF	B*4403	NP	80
23	EAMTKLGF	B*08	22	<5

†No prediction

[0220] As seen in Table 5, N-terminal addition of authentic sequence to epitopes can generate epitopes for the same or different MHC restriction elements. Note in particular the pairing of (K)RKYEAMTKL (SEQ ID NOS 19 and (20)) with HLA-B14, where the 10-mer has a longer predicted halftime of dissociation than the co-C-terminal 9-mer. Also note the case of the 10-mer KYEAMTKLGF (SEQ ID NO. 21) which can be used as a vaccine useful with several MHC types by relying on N-terminal trimming to create the epitopes for HLA-B*4403 and -B*08.

6. HLA-A0201 binding assay:

[0221] Binding of the candidate epitope KASEKIFYV, SSX-2₄₁₋₄₉, (SEQ ID NO. 15) to HLA-A2.1 was assayed using a modification of the method of Stauss et al., (Proc Natl Acad Sci USA 89(17):7871-5 (1992)). Specifically, T2 cells, which express empty or unstable MHC molecules on their surface, were washed twice with Iscove's

modified Dulbecco's medium (IMDM) and cultured overnight in serum-free AIM-V medium (Life Technologies, Inc., Rockville, MD) supplemented with human \(\beta 2 microglobulin at 3µg/ml (Sigma, St. Louis, MO) and added peptide, at 800, 400, 200, 100, 50, 25, 12.5, and 6.25 μ g/ml.in a 96-well flat-bottom plate at $3x10^5$ cells/200 μ l (microliter)/well. Peptide was mixed with the cells by repipeting before distributing to the plate (alternatively peptide can be added to individual wells), and the plate was rocked gently for 2 minutes. Incubation was in a 5% CO₂ incubator at 37°C. The next day the unbound peptide was removed by washing twice with serum free RPMI medium and a saturating amount of anti-class I HLA monoclonal antibody, fluorescein isothiocyanate (FITC)-conjugated anti-HLA A2, A28 (One Lambda, Canoga Park, CA) was added. After incubation for 30 minutes at 4°C, cells were washed 3 times with PBS supplemented with 0.5% BSA, 0.05%(w/v) sodium azide, pH 7.4-7.6 (staining buffer). (Alternatively W6/32 (Sigma) can be used as the anti-class I HLA monoclonal antibody the cells washed with staining buffer and then incubated with fluorescein isothiocyanate (FITC)-conjugated goat F(ab') antimouse-IgG (Sigma) for 30 min at 4°C and washed 3 times as before.) The cells were resuspended in 0.5 ml staining buffer. The analysis of surface HLA-A2.1 molecules stabilized by peptide binding was performed by flow cytometry using a FACScan (Becton Dickinson, San Jose, CA). If flow cytometry is not to be performed immediately the cells can be fixed by adding a quarter volume of 2% paraformaldehyde and storing in the dark at 4°C.

[0222] The results of the experiment are shown in Figure 5. SSX-2₄₁₋₄₉ (SEQ ID NO. 15) was found to bind HLA-A2.1 to a similar extent as the known A2.1 binder FLPSDYFPSV (HBV₁₈₋₂₇; SEQ ID NO: 24) used as a positive control. An HLA-B44 binding peptide, AEMGKYSFY (SEQ ID NO: 25), was used as a negative control. The fluoresence obtained from the negative control was similar to the signal obtained when no peptide was used in the assay. Positive and negative control peptides were chosen from Table 18.3.1 in *Current Protocols in Immunology* p. 18.3.2, John Wiley and Sons, New York, 1998.

7. <u>Immunogenicity:</u>

A. *In vivo* immunization of mice.

[0223] HHD1 transgenic A*0201 mice (Pascolo, S., et al. *J. Exp. Med.* 185:2043-2051, 1997) were anesthetized and injected subcutaneously at the base of the tail, avoiding lateral tail veins, using 100 µl containing 100 nmol of SSX-2₄₁₋₄₉ (SEQ ID

NO. 15) and 20 µg of HTL epitope peptide in PBS emulsified with 50 µl of IFA (incomplete Freund's adjuvant).

B. <u>Preparation of stimulating cells (LPS blasts).</u>

un-immunized mice were sacrificed and the carcasses were placed in alcohol. Using sterile instruments, the top dermal layer of skin on the mouse's left side (lower midsection) was cut through, exposing the peritoneum. The peritoneum was saturated with alcohol, and the spleen was aseptically extracted. The spleen was placed in a petri dish with serum-free media. Splenocytes were isolated by using sterile plungers from 3 ml syringes to mash the spleens. Cells were collected in a 50 ml conical tubes in serum-free media, rinsing dish well. Cells were centrifuged (12000 rpm, 7 min) and washed one time with RPMI. Fresh spleen cells were resuspended to a concentration of 1x10⁶ cells per ml in RPMI-10%FCS (fetal calf serum). 25g/ml lipopolysaccharide and 7 μg/ml Dextran Sulfate were added. Cell were incubated for 3 days in T-75 flasks at 37°C, with 5% CO₂. Splenic blasts were collected in 50 ml tubes pelleted (12000 rpm, 7 min) and resuspended to 3X10⁷/ml in RPMI. The blasts were pulsed with the priming peptide at 50 μg/ml, RT 4hr. mitomycin C-treated at 25μg/ml, 37⁰C, 20 min and washed three times with DMEM.

C. *In vitro* stimulation.

[0225] 3 days after LPS stimulation of the blast cells and the same day as peptide loading, the primed mice were sacrificed (at 14 days post immunization) to remove spleens as above. $3x10^6$ splenocytes were co-cultured with $1x10^6$ LPS blasts/well in 24-well plates at 37° C, with 5% CO₂ in DMEM media supplemented with 10% FCS, $5x10^{-5}$ M β-mercaptoethanol, 100μ g/ml streptomycin and 100 IU/ml penicillin. Cultures were fed 5% (vol/vol) ConA supernatant on day 3 and assayed for cytolytic activity on day 7 in a 51Cr-release assay.

D. Chromium-release assay measuring CTL activity.

[0226] To assess peptide specific lysis, 2x10⁶ T2 cells were incubated with 100 μCi sodium chromate together with 50 μg/ml peptide at 37°C for 1 hour. During incubation they were gently shaken every 15 minutes. After labeling and loading, cells were washed three times with 10 ml of DMEM-10% FCS, wiping each tube with a fresh Kimwipe after pouring off the supernatant. Target cells were resuspended in DMEM-10% FBS 1x10⁵/ml. Effector cells were adjusted to 1x10⁷/ml in DMEM-10% FCS and 100 μl serial 3-fold dilutions of effectors were prepared in U-bottom 96-well plates. 100

 μ l of target cells were added per well. In order to determine spontaneous release and maximum release, six additional wells containing 100 μ l of target cells were prepared for each target. Spontaneous release was revealed by incubating the target cells with 100 μ l medium; maximum release was revealed by incubating the target cells with 100 μ l of 2% SDS. Plates were then centrifuged for 5 min at 600 rpm and incubated for 4 hours at 37°C in 5% CO₂ and 80% humidity. After the incubation, plates were then centrifuged for 5 min at 1200 rpm. Supernatants were harvested and counted using a gamma counter. Specific lysis was determined as follows: % specific release = [(experimental release - spontaneous release)/(maximum release - spontaneous release)] x 100.

[0227] Results of the chromium release assay demonstrating specific lysis of peptide pulsed target cells are shown in figure 6.

8. Cross-reactivity with other SSX proteins:

[0228] SSX- 2_{41-49} (SEQ ID NO. 15) shares a high degree of sequence identity with the same region of the other SSX proteins. The surrounding regions have also been generally well conserved. Thus the housekeeping proteasome can cleave following V_{49} in all five sequences. Moreover, SSX₄₁₋₄₉ is predicted to bind HLA-A*0201 (see Table 6). CTL generated by immunization with SSX- 2_{41-49} cross-react with tumor cells expressing other SSX proteins.

Table 6. SSX₄₁₋₄₉ – A*0201 Predicted Binding

SEQ ID NO.	Family Member	Sequence	SYFPEITHI Score	NIH Score
15	SSX-2	KASEKIFYV	22	1017
26	SSX-1	KYSEKISYV	18	1.7
27	SSX-3	KVSEKIVYV	24	1105
28	SSX-4	KSSEKIVYV	20	82
29	SSX-5	KASEKIIYV	22	175

Example 4

Cluster Analysis (PSMA₁₆₃₋₁₉₂).

[0229] A peptide, AFSPQGMPEGDLVYVNYARTEDFFKLERDM, PSMA₁₆₃₋₁₉₂, (SEQ ID NO. 30), containing an A1 epitope cluster from prostate specific membrane antigen, PSMA₁₆₈₋₁₉₀ (SEQ ID NO. 31) was synthesized using standard solid-phase F-moc chemistry on a 433A ABI Peptide synthesizer. After side chain deprotection and cleavage from the resin, peptide first dissolved in formic acid and then diluted into 30% Acetic acid, was run on a reverse-phase preparative HPLC C4 column at following conditions: linear AB gradient (5% B/min) at a flow rate of 4 ml/min, where eluent A is 0.1% aqueous TFA and eluent B is 0.1% TFA in acetonitrile. A fraction at time 16.642 min containing the expected peptide, as judged by mass spectrometry, was pooled and lyophilized. The peptide was then subjected to proteasome digestion and mass spectrum analysis essentially as described above. Prominent peaks from the mass spectra are summarized in Table 7.

Table 7. PSMA₁₆₃₋₁₉₂ Mass Peak Identification.

PEPTIDE	SEQUENCE	CALCULATE D MASS (MH ⁺)
163-177	AFSPQGMPEGDLVYV	1610.0
178-189	NYARTEDFFKLE	1533.68
170-189	PEGDLVYVNYARTEDFFKLE	2406.66
178-191	NYARTEDFFKLERD	1804.95
170-191	PEGDLVYVNYARTEDFFKLERD	2677.93
178-192	NYARTEDFFKLERDM	1936.17
163-176	AFSPQGMPEGDLVY	1511.70
177-192	VNYARTEDFFKLERDM	2035.30

163-179	AFSPQGMPEGDLVYVNY	1888.12
180-192	ARTEDFFKLERDM	1658.89
163-183	AFSPQGMPEGDLVYVNYARTE	2345.61
184-192	DFFKLERDM	1201.40
176-192	YVNYARTEDFFKLERDM	2198.48
167-185	QGMPEGDLVY VNYARTEDF	2205.41
178-186	NYARTEDFF	1163.22

[0230] Boldface sequences correspond to peptides predicted to bind to MHC, see Table 8.

N-terminal Pool Sequence Analysis

part 3 above) was subjected to N-terminal amino acid sequence analysis by an ABI 473A Protein Sequencer (Applied Biosystems, Foster City, CA). Determination of the sites and efficiencies of cleavage was based on consideration of the sequence cycle, the repetitive yield of the protein sequencer, and the relative yields of amino acids unique in the analyzed sequence. That is if the unique (in the analyzed sequence) residue X appears only in the nth cycle a cleavage site exists n-1 residues before it in the N-terminal direction. In addition to helping resolve any ambiguity in the assignment of mass to sequences, these data also provide a more reliable indication of the relative yield of the various fragments than does mass spectrometry.

[0232] For PSMA₁₆₃₋₁₉₂ (SEQ ID NO. 30) this pool sequencing supports a single major cleavage site after V_{177} and several minor cleavage sites, particularly one after Y_{179} . Reviewing the results presented in figures 7A-C reveals the following:

[0233] S at the 3rd cycle indicating presence of the N-terminus of the substrate.

[0234] Q at the 5th cycle indicating presence of the N-terminus of the substrate.

[0235] N at the 1^{st} cycle indicating cleavage after V_{177} .

[0236] N at the 3^{rd} cycle indicating cleavage after V_{175} . Note the fragment 176-192 in Table 7.

[0237] T at the 5^{th} cycle indicating cleavage after V_{177} .

[0238] T at the 1^{st} -3rd cycles, indicating increasingly common cleavages after R_{181} , A_{180} and Y_{179} . Only the last of these correspond to peaks detected by mass

spectrometry; 163-179 and 180-192, see Table 7. The absence of the others can indicate that they are on fragments smaller than were examined in the mass spectrum.

[0239] K at the 4^{th} , 8^{th} , and 10^{th} cycles indicating cleavages after E_{183} , Y_{179} , and V_{177} , respectively, all of which correspond to fragments observed by mass spectroscopy. See Table 7.

[0240] A at the 1^{st} and 3^{rd} cycles indicating presence of the N-terminus of the substrate and cleavage after V_{177} , respectively.

[0241] P at the 4th and 8th cycles indicating presence of the N-terminus of the substrate.

[0242] G at the 6^{th} and 10^{th} cycles indicating presence of the N-terminus of the substrate.

[0243] M at the 7^{th} cycle indicating presence of the N-terminus of the substrate and/or cleavage after F_{185} .

[0244] M at the 15^{th} cycle indicating cleavage after V_{177} .

[0245] The 1st cycle can indicate cleavage after D₁₉₁, see Table 7.

[0246] R at the 4^{th} and 13^{th} cycle indicating cleavage after V_{177} .

[0247] R at the 2^{nd} and 11^{th} cycle indicating cleavage after Y_{179} .

[0248] V at the 2^{nd} , 6^{th} , and 13^{th} cycle indicating cleavage after V_{175} , M_{169} and presence of the N-terminus of the substrate, respectively. Note fragments beginning at 176 and 170 in Table 7.

[0249] Y at the 1^{st} , 2^{nd} , and 14^{th} cycles indicating cleavage after V_{175} , V_{177} , and presence of the N-terminus of the substrate, respectively.

[0250] L at the 11th and 12th cycles indicating cleavage after V_{177} , and presence of the N-terminus of the substrate, respectively, is the interpretation most consistent with the other data. Comparing to the mass spectrometry results we see that L at the 2nd, 5th, and 9th cycles is consistent with cleavage after F_{186} , E_{183} or M_{169} , and Y_{179} , respectively. See Table 7.

Epitope Identification

[0251] Fragments co-C-terminal with 8-10 amino acid long sequences predicted to bind HLA by the SYFPEITHI or NIH algorithms were chosen for further analysis. The digestion and prediction steps of the procedure can be usefully practiced in any order. Although the substrate peptide used in proteasomal digest described here was specifically designed to include a predicted HLA-A1 binding sequence, the actual

products of digestion can be checked after the fact for actual or predicted binding to other MHC molecules. Selected results are shown in Table 8.

Table 8. Predicted HLA binding by proteasomally generated fragments

SEQ ID NO	PEPTIDE	HLA	SYFPEITHI	NIH
32 & (33)	(G) MPEGDLVY V	A*0201	17 (27)	(2605)
ļ		B*0702	20	<5
] [B*5101	22	314
34 & (35)	(Q) GMPEGDLV Y	A1	24 (26)	<5
		A3	16 (18)	36
		B*2705	17	25
36	MPEGDLVY	B*5101	15	NP†
37 & (38)	(P) EGDLVYVN Y	A1	27 (15)	12
ł		A26	23 (17)	NP
39	LVYVNYARTE	A3	21	<5
40 & (41)	(Y) VNYARTED F	A26	(20)	NP
		B*08	15	<5
		B*2705	12	50
42	NYARTEDFF	A24	NP†	100
		Cw*0401	NP	120
43	YARTEDFF	B*08	16	<5
44	RTEDFFKLE	A1	21	<5
		A26	15	NP

†No prediction

HLA-A*0201 binding assay:

[0252] HLA-A*0201 binding studies were preformed with PSMA₁₆₈₋₁₇₇, GMPEGDLVYV, (SEQ ID NO. 33) essentially as described in Example 3 above. As seen in figure 8, this epitope exhibits significant binding at even lower concentrations than the positive control peptides. The Melan-A peptide used as a control in this assay (and throughout this disclosure), ELAGIGILTV, is actually a variant of the natural sequence (EAAGIGILTV) and exhibits a high affinity in this assay.

Example 5

Cluster Analysis (PSMA₂₈₁₋₃₁₀).

[0253] Another peptide, RGIAEAVGLPSIPVHPIGYYDAQKLLEKMG, PSMA₂₈₁₋₃₁₀, (SEQ ID NO. 45), containing an A1 epitope cluster from prostate specific membrane antigen, PSMA₂₈₃₋₃₀₇ (SEQ ID NO. 46), was synthesized using standard solid-phase F-moc chemistry on a 433A ABI Peptide synthesizer. After side chain deprotection and cleavage from the resin, peptide in ddH2O was run on a reverse-phase preparative HPLC C18 column at following conditions: linear AB gradient (5% B/min) at a flow rate of 4 ml/min, where eluent A is 0.1% aqueous TFA and eluent B is 0.1% TFA in acetonitrile. A fraction at time 17.061 min containing the expected peptide as judged by mass spectrometry, was pooled and lyophilized. The peptide was then subjected to proteasome digestion and mass spectrum analysis essentially as described above. Prominent peaks from the mass spectra are summarized in Table 9.

Table 9. PSMA₂₈₁₋₃₁₀ Mass Peak Identification.

PEPTIDE	SEQUENCE	CALCULATE
		D MASS (MH ⁺)
281-297	RGIAEAVGLPSIPVHPI*	1727.07
286-297	AVGLPSIPVHPI**	1200.46
287-297	VGLPSIPVHPI	1129.38
288-297	GLPSIPVHPI'	1030.25
298-310	GYYDAQKLLEKMG‡	1516.5
298-305	GYYDAQKL§	958.05
281-305	RGIAEAVGLPSIPVHPIGYYDAQKL	2666.12
281-307	RGIAEAVGLPSIPVHPIGYYDAQKLLE	2908.39
286-307	AVGLPSIPVHPIGYYDAQKLLE¶	2381.78
287-307	VGLPSIPVHPIGYYDAQKLLE	2310.70
288-307	GLPSIPVHPIGYYDAQKLLE#	2211.57
281-299	RGIAEAVGLPSIPVHPIGY	1947
286-299	AVGLPSIPVHPIGY	1420.69
287-299	VGLPSIPVHPIGY	1349.61
288-299	GLPSIPVHPIGY	1250.48
287-310	VGLPSIPVHPIGYYDAQKLLEKMG	2627.14
288-310	GLPSIPVHPIGYYDAQKLLEKMG	2528.01

- [0254] Boldface sequences correspond to peptides predicted to bind to MHC, see Table 10.
 - [0255] *By mass alone this peak could also have been 296-310 or 288-303.
- [0256] **By mass alone this peak could also have been 298-307. Combination of HPLC and mass spectrometry show that at some later time points this peak is a mixture of both species.
 - † By mass alone this peak could also have been 289-298.
 - ≠ By mass alone this peak could also have been 281-295 or 294-306.
 - § By mass alone this peak could also have been 297-303.
 - ¶ By mass alone this peak could also have been 285-306.
 - # By mass alone this peak could also have been 288-303.
- [0257] None of these alternate assignments are supported N-terminal pool sequence analysis.

N-terminal Pool Sequence Analysis

- part 3 above) was subjected to N-terminal amino acid sequence analysis by an ABI 473A Protein Sequencer (Applied Biosystems, Foster City, CA). Determination of the sites and efficiencies of cleavage was based on consideration of the sequence cycle, the repetitive yield of the protein sequencer, and the relative yields of amino acids unique in the analyzed sequence. That is if the unique (in the analyzed sequence) residue X appears only in the nth cycle a cleavage site exists n-1 residues before it in the N-terminal direction. In addition to helping resolve any ambiguity in the assignment of mass to sequences, these data also provide a more reliable indication of the relative yield of the various fragments than does mass spectrometry.
- [0259] For PSMA₂₈₁₋₃₁₀ (SEQ ID NO. 45) this pool sequencing supports two major cleavage sites after V_{287} and I_{297} among other minor cleavage sites. Reviewing the results presented in Fig. 9 reveals the following:
- [0260] S at the 4^{th} and 11^{th} cycles indicating cleavage after V_{287} and presence of the N-terminus of the substrate, respectively.
- [0261] H at the 8^{th} cycle indicating cleavage after V_{287} . The lack of decay in peak height at positions 9 and 10 versus the drop in height present going from 10 to 11

can suggest cleavage after A_{286} and E_{285} as well, rather than the peaks representing latency in the sequencing reaction.

[0262] D at the 2^{nd} , 4^{th} , and 7^{th} cycles indicating cleavages after Y_{299} , I_{297} , and V_{294} , respectively. This last cleavage is not observed in any of the fragments in Table 10 or in the alternate assignments in the notes below.

[0263] Q at the 6^{th} cycle indicating cleavage after I_{297} .

[0264] M at the 10^{th} and 12^{th} cycle indicating cleavages after Y_{299} and I_{297} , respectively.

Epitope Identification

[0265] Fragments co-C-terminal with 8-10 amino acid long sequences predicted to bind HLA by the SYFPEITHI or NIH algorithms were chosen for further study. The digestion and prediction steps of the procedure can be usefully practiced in any order. Although the substrate peptide used in proteasomal digest described here was specifically designed to include a predicted HLA-A1 binding sequence, the actual products of digestion can be checked after the fact for actual or predicted binding to other MHC molecules. Selected results are shown in Table 10.

<u>Table 10.</u>

<u>Predicted HLA binding by proteasomally generated fragments: PSMA₂₈₁₋₃₁₀</u>

SEQ ID NO.	PEPTIDE	HLA	SYFPEITHI	NIH
47 & (48)	(G)LPSIPVH PI	A*0201	16 (24)	(24)
		B*0702/B7	23	12
	}	B*5101	24	572
		Cw*0401	NP†	20
49 & (50)	(P) IGYYDAQ KL	A*0201	(16)	<5
		A26	(20)	NP
		B*2705	16	25
		B*2709	15	NP
		B*5101	21	57
	{	Cw*0301	NP	24
51 & (52)	(P)SIPVHPI GY	A1	21 (27)	<5
	1	A26	22	NP
		A3	16	<5
53		B*5101	16	NP

	IPVHPIGY			
54	YYDAQKLLE	Al	22	<5

†No prediction

[0266] As seen in Table 10, N-terminal addition of authentic sequence to epitopes can often generate still useful, even better epitopes, for the same or different MHC restriction elements. Note for example the pairing of (G)LPSIPVHPI with HLA-A*0201, where the 10-mer can be used as a vaccine useful with several MHC types by relying on N-terminal trimming to create the epitopes for HLA-B7, -B*5101, and Cw*0401.

HLA-A*0201 binding assay:

[0267] HLA-A*0201 binding studies were preformed with PSMA₂₈₈₋₂₉₇, GLPSIPVHPI, (SEQ ID NO. 48) essentially as described in Examples 3 and 4 above. As seen in figure 8, this epitope exhibits significant binding at even lower concentrations than the positive control peptides.

Example 6

Cluster Analysis (PSMA₄₅₄₋₄₈₁).

[0268] Another peptide, SSIEGNYTLRVDCTPLMYSLVHLTKEL, PSMA₄₅₄₋₄₈₁, (SEQ ID NO. 55) containing an epitope cluster from prostate specific membrane antigen, was synthesized by MPS (purity >95%) and subjected to proteasome digestion and mass spectrum analysis as described above. Prominent peaks from the mass spectra are summarized in Table 11.

Table 11. PSMA₄₅₄₋₄₈₁ Mass Peak Identification.

MS PEAK	PEPTIDE	SEQUENCE	CALCULATED
(measured)	l		MASS (MH ⁺)
1238.5	454-464	SSIEGNYTLRV	1239.78
1768.38±0.60	454-469	SSIEGNYTLRVDCTPL	1768.99
1899.8	454-470	SSIEGNYTLRVDCTPLM	1900.19
1097.63±0.91	463-471	RVDCTPLMY	1098.32
2062.87±0.68	454-471*	SSIEGNYTLRVDCTPLMY	2063.36
1153	472-481**	SLVHNLTKEL	1154.36
1449.93±1.79	470-481	MYSLVHNLTKEL	1448.73

[0269] Boldface sequence correspond to peptides predicted to bind to MHC, see Table 12.

[0270] * On the basis of mass alone this peak could equally well be assigned to the peptide 455-472 however proteasomal removal of just the N-terminal amino acid is considered unlikely. If the issue were important it could be resolved by N-terminal sequencing.

**On the basis of mass this fragment might also represent 455-464.

Epitope Identification

[0272] Fragments co-C-terminal with 8-10 amino acid long sequences predicted to bind HLA by the SYFPEITHI or NIH algorithms were chosen for further study. The digestion and prediction steps of the procedure can be usefully practiced in any order. Although the substrate peptide used in proteasomal digest described here was specifically designed to include predicted HLA-A2.1 binding sequences, the actual products of digestion can be checked after the fact for actual or predicted binding to other MHC molecules. Selected results are shown in Table 12.

Table 12. Predicted HLA binding by proteasomally generated fragments

SEQ ID NO	PEPTIDE	HLA	SYFPEITHI	NIH
56 & (57)	(S) IEGNYTLRV	A1	(19)	<5
		A*0201	16 (22)	<5
58	EGNYTLRV	B*5101	15	NP†
59 & (60)	(Y)TLRVDCTPL	A*0201	20 (18)	(5)
		A26	16 (18)	NP
		В7	14	40
		B8	23	<5
		B*2705	12	30
		Cw*0301	NP	(30)
61	LRVDCTPLM	B*2705	20	600
		B*2709	20	NP
62 & (63)	(L) RVDCTPLMY	A1	32 (22)	125 (13.5)
	{	A3	25	<5
		A26	22	NP
		B*2702	NP	(200)
	!	B*2705	13 (NP)	(1000)

†No prediction

[0273] As seen in Table 12, N-terminal addition of authentic sequence to epitopes can often generate still useful, even better epitopes, for the same or different MHC restriction elements. Note for example the pairing of (L)RVDCTPLMY (SEQ ID NOS 62 and (63)) with HLA-B*2702/5, where the 10-mer has substantial predicted halftimes of dissociation and the co-C-terminal 9-mer does not. Also note the case of SIEGNYTLRV (SEQ ID NO 57) a predicted HLA-A*0201 epitope which can be used as a vaccine useful with HLA-B*5101 by relying on N-terminal trimming to create the epitope.

HLA-A*0201 binding assay

[0274] HLA-A*0201 binding studies were preformed, essentially as described in Example 3 above, with PSMA₄₆₀₋₄₆₉, TLRVDCTPL, (SEQ ID NO. 60). As seen in figure 10, this epitope was found to bind HLA-A2.1 to a similar extent as the known A2.1 binder FLPSDYFPSV (HBV₁₈₋₂₇; SEQ ID NO: 24) used as a positive control. Additionally, PSMA₄₆₁₋₄₆₉, (SEQ ID NO. 59) binds nearly as well.

ELISPOT analysis: PSMA₄₆₃₋₄₇₁ (SEQ ID NO. 62)

The wells of a nitrocellulose-backed microtiter plate were coated with [0275]capture antibody by incubating overnight at 4°C using 50 µl (microliter)/well of 4µg/ml murine anti-human γ (gamma)-IFN monoclonal antibody in coating buffer (35 mM sodium bicarbonate, 15 mM sodium carbonate, pH 9.5). Unbound antibody was removed by washing 4 times 5 min. with PBS. Unbound sites on the membrane then were blocked by adding 200µl (microliter)/well of RPMI medium with 10% serum and incubating 1 hr. at room temperature. Antigen stimulated CD8⁺ T cells, in 1:3 serial dilutions, were seeded into the wells of the microtiter plate using 100µl (microliter)/well, starting at 2x10⁵ cells/well. (Prior antigen stimulation was essentially as described in Scheibenbogen, C. et al. *Int. J. Cancer* 71:932-936, 1997. PSMA₄₆₂₋₄₇₁ (SEQ ID NO. 62) was added to a final concentration of 10µg/ml and IL-2 to 100 U/ml and the cells cultured at 37°C in a 5% CO₂, water-saturated atmosphere for 40 hrs. Following this incubation the plates were washed with 6 times 200 µl (microliter)/well of PBS containing 0.05% Tween-20 (PBS-Tween). Detection antibody, 50µl (microliter)/well of 2g/ml biotinylated murine anti-human γ (gamma)-IFN monoclonal antibody in PBS+10% fetal calf serum, was added and the plate incubated at room temperature for 2 hrs. Unbound detection antibody was removed by washing with 4 times 200 µl of PBS-Tween. 100µl of avidin-conjugated horseradish peroxidase (Pharmingen, San Diego, CA) was added to each well and incubated at room temperature for 1 hr. Unbound enzyme was removed by washing with 6 times 200 µl of PBS-Tween. Substrate was prepared by dissolving a 20 mg tablet of 3-amino 9-ethylcoarbasole in 2.5 ml of N, N-dimethylformamide and adding that solution to 47,5 ml of 0.05 M phosphate-citrate buffer (pH 5.0). 25 µl of 30% H₂O₂ was added to the substrate solution immediately before distributing substrate at100 µl (microliter)/well and incubating the plate at room temperature. After color development (generally 15-30 min.), the reaction was stopped by washing the plate with water. The plate was air dried and the spots counted using a stereomicroscope.

[0276] Figure 11 shows the detection of PSMA₄₆₃₋₄₇₁ (SEQ ID NO. 62)-reactive HLA-A1⁺ CD8⁺ T cells previously generated in cultures of HLA-A1⁺ CD8⁺ T cells with autologous dendritic cells plus the peptide. No reactivity is detected from cultures without peptide (data not shown). In this case it can be seen that the peptide reactive T cells are present in the culture at a frequency between 1 in 2.2×10^4 and 1 in 6.7×10^4 . That this is truly an HLA-A1-restricted response is demonstrated by the ability of anti-HLA-A1 monoclonal antibody to block γ (gamma) IFN production; see figure 12.

Example 7

Cluster Analysis (PSMA₆₅₃₋₆₈₇).

[0277] Another peptide, FDKSNPIVLRMMNDQLMFLERAFIDPLGLPDRP FY PSMA₆₅₃₋₆₈₇, (SEQ ID NO. 64) containing an A2 epitope cluster from prostate specific membrane antigen, PSMA₆₆₀₋₆₈₁ (SEQ ID NO 65), was synthesized by MPS (purity >95%) and subjected to proteasome digestion and mass spectrum analysis as described above. Prominent peaks from the mass spectra are summarized in Table 13.

Table 13. PSMA₆₅₃₋₆₈₇ Mass Peak Identification.

MS PEAK (measured)	PEPTIDE	SEQUENCE	CALCULATED MASS (MH ⁺)
(Carolina and and and and and and and and and a			
906.17±0.65	681-687**	LPDRPFY	908.05
1287.73±0.76	677-687**	DPLGLPDRPFY	1290.47
1400.3±1.79	676-687	IDPLGLPDRPFY	1403.63

1548.0±1.37	675-687	FIDPLGLPDRPFY	1550.80
1619.5±1.51	674-687**	AFIDPLGLPDRPFY	1621.88
1775.48±1.32	673-687*	RAFIDPLGLPDRPFY	1778.07
2440.2±1.3	653-672	FDKSNPIVLRMMNDQLMFLE	2442.932
1904.63±1.56	672-687*	ERAFIDPLGLPDRPFY	1907.19
2310.6±2.5	653-671	FDKSNPIVLR MMNDQLMFL	2313.82
		r en a et dor de don dev	2020.25
2017.4±1.94	671-687	LERAFIDPLGLPDRPFY	2020.35
2197.43±1.78	653-670	FDKSNPIVL RMMNDQLMF	2200.66

[0278] Boldface sequence correspond to peptides predicted to bind to MHC, see Table 13.

[0279] * On the basis of mass alone this peak could equally well be assigned to a peptide beginning at 654, however proteasomal removal of just the N-terminal amino acid is considered unlikely. If the issue were important it could be resolved by N-terminal sequencing.

[0280] ** On the basis of mass alone these peaks could have been assigned to internal fragments, but given the overall pattern of digestion it was considered unlikely.

Epitope Identification

[0281] Fragments co-C-terminal with 8-10 amino acid long sequences predicted to bind HLA by the SYFPEITHI or NIH algorithms were chosen for further study. The digestion and prediction steps of the procedure can be usefully practiced in any order. Although the substrate peptide used in proteasomal digest described here was specifically designed to include predicted HLA-A2.1 binding sequences, the actual products of digestion can be checked after the fact for actual or predicted binding to other MHC molecules. Selected results are shown in Table 14.

Table 14. Predicted HLA binding by proteasomally generated fragments

SEQ ID NO	PEPTIDE	HLA	SYFPEITHI	NIH
66 & (67)	(R)MMNDQLMF L	A*0201	24 (23)	1360 (722)

		A*0205	NP†	71 (42)
		A26	15	NP
		B*2705	12	50
68	RMMNDQLMF	B*2705	17	75

†No prediction

[0282] As seen in Table 14, N-terminal addition of authentic sequence to epitopes can generate still useful, even better epitopes, for the same or different MHC restriction elements. Note for example the pairing of (R)MMNDQLMFL (SEQ ID NOS. 66 and (67)) with HLA-A*02, where the 10-mer retains substantial predicted binding potential.

HLA-A*0201 binding assay

[0283] HLA-A*0201 binding studies were preformed, essentially as described in Example 3 above, with PSMA₆₆₃₋₆₇₁, (SEQ ID NO. 66) and PSMA₆₆₂₋₆₇₁, RMMNDQLMFL (SEQ NO. 67). As seen in figures 10, 13 and 14, this epitope exhibits significant binding at even lower concentrations than the positive control peptide (FLPSDYFPSV (HBV₁₈₋₂₇); SEQ ID NO: 24). Though not run in parallel, comparison to the controls suggests that PSMA₆₆₂₋₆₇₁ (which approaches the Melan A peptide in affinity) has the superior binding activity of these two PSMA peptides.

Example 8

Vaccinating with epitope vaccines.

1. Vaccination with peptide vaccines:

A. Intranodal delivery

[0284] A formulation containing peptide in aqueous buffer with an antimicrobial agent, an antioxidant, and an immunomodulating cytokine, was injected continuously over several days into the inguinal lymph node using a miniature pumping system developed for insulin delivery (MiniMed; Northridge, CA). This infusion cycle was selected in order to mimic the kinetics of antigen presentation during a natural infection.

B. Controlled release

[0285] A peptide formulation is delivered using controlled PLGA microspheres as is known in the art, which alter the pharmacokinetics of the peptide and improve immunogenicity. This formulation is injected or taken orally.

C. Gene gun delivery

[0286] A peptide formulation is prepared wherein the peptide is adhered to gold microparticles as is known in the art. The particles are delivered in a gene gun, being accelerated at high speed so as to penetrate the skin, carrying the particles into dermal tissues that contain pAPCs.

D. Aerosol delivery

[0287] A peptide formulation is inhaled as an aerosol as is known in the art, for uptake into appropriate vascular or lymphatic tissue in the lungs.

2. Vaccination with nucleic acid vaccines:

[0288] A nucleic acid vaccine is injected into a lymph node using a miniature pumping system, such as the MiniMed insulin pump. A nucleic acid construct formulated in an aqueous buffered solution containing an antimicrobial agent, an antioxidant, and an immunomodulating cytokine, is delivered over a several day infusion cycle in order to mimic the kinetics of antigen presentation during a natural infection.

[0289] Optionally, the nucleic acid construct is delivered using controlled release substances, such as PLGA microspheres or other biodegradable substances. These substances are injected or taken orally. Nucleic acid vaccines are given using oral delivery, priming the immune response through uptake into GALT tissues. Alternatively, the nucleic acid vaccines are delivered using a gene gun, wherein the nucleic acid vaccine is adhered to minute gold particles. Nucleic acid constructs can also be inhaled as an aerosol, for uptake into appropriate vascular or lymphatic tissue in the lungs.

Example 9

Assays for the effectiveness of epitope vaccines.

1. Tetramer analysis:

[0290] Class I tetramer analysis is used to determine T cell frequency in an animal before and after administration of a housekeeping epitope. Clonal expansion of T cells in response to an epitope indicates that the epitope is presented to T cells by pAPCs. The specific T cell frequency is measured against the housekeeping epitope before and after administration of the epitope to an animal, to determine if the epitope is present on pAPCs. An increase in frequency of T cells specific to the epitope after administration indicates that the epitope was presented on pAPC.

2. Proliferation assay:

[0291] Approximately 24 hours after vaccination of an animal with housekeeping epitope, pAPCs are harvested from PBMCs, splenocytes, or lymph node cells, using monoclonal antibodies against specific markers present on pAPCs, fixed to magnetic beads for affinity purification. Crude blood or splenoctye preparation is enriched for pAPCs using this technique. The enriched pAPCs are then used in a proliferation assay against a T cell clone that has been generated and is specific for the housekeeping epitope of interest. The pAPCs are coincubated with the T cell clone and the T cells are monitored for proliferation activity by measuring the incorporation of radiolabeled thymidine by T cells. Proliferation indicates that T cells specific for the housekeeping epitope are being stimulated by that epitope on the pAPCs.

3. Chromium release assay:

[0292] A human patient, or non-human animal genetically engineered to express human class I MHC, is immunized using a housekeeping epitope. T cells from the immunized subject are used in a standard chromium release assay using human tumor targets or targets engineered to express the same class I MHC. T cell killing of the targets indicates that stimulation of T cells in a patient would be effective at killing a tumor expressing a similar TuAA.

Example 10

Induction of CTL response with naked DNA is efficient by Intra-lymph node immunization.

[0293] In order to quantitatively compare the CD8⁺ CTL responses induced by different routes of immunization a plasmid DNA vaccine (pEGFPL33A) containing a well-characterized immunodominant CTL epitope from the LCMV-glycoprotein (G) (gp33; amino acids 33-41) (Oehen, S., et al., *Immunology* 99, 163-169 2000) was used, as this system allows a comprehensive assessment of antiviral CTL responses. Groups of 2 C57BL/6 mice were immunized once with titrated doses (200-0.02μg) of pEGFPL33A DNA or of control plasmid pEGFP-N3, administered i.m. (intramuscular), i.d. (intradermal), i.spl. (intrasplenic), or i.ln. (intra-lymph node). Positive control mice received 500 pfu LCMV i.v. (intravenous). Ten days after immunization spleen cells were isolated and gp33-specific CTL activity was determined after secondary *in vitro* restimulation. As shown in Fig. 15, i.m. or i.d. immunization induced weakly detectable CTL responses when high doses of pEFGPL33A DNA (200μg) were administered. In

contrast, potent gp33-specific CTL responses were elicited by immunization with only 2µg pEFGPL33A DNA i.spl. and with as little as 0.2µg pEFGPL33A DNA given i.ln. (figure 15; symbols represent individual mice and one of three similar experiments is shown). Immunization with the control pEGFP-N3 DNA did not elicit any detectable gp33-specific CTL responses (data not shown).

Example 11

Intra-lymph node DNA immunization elicits anti-tumor immunity.

[0294] To examine whether the potent CTL responses elicited following i.ln. immunization were able to confer protection against peripheral tumors, groups of 6 C57BL/6mice were immunized three times at 6-day intervals with 10µg of pEFGPL33A DNA or control pEGFP-N3 DNA. Five days after the last immunization small pieces of solid tumors expressing the gp33 epitope (EL4-33) were transplanted s.c. into both flanks and tumor growth was measured every 3-4d. Although the EL4-33 tumors grew well in mice that had been repetitively immunized with control pEGFP-N3 DNA (figure 16), mice which were immunized with pEFGPL33A DNA i.ln. rapidly eradicated the peripheral EL4-33 tumors (figure 16).

Example 12

<u>Differences in lymph node DNA content mirrors differences in CTL response following intra-lymph node and intramuscular injection.</u>

[0295] pEFGPL33A DNA was injected i.ln. or i.m. and plasmid content of the injected or draining lymph node was assessed by real time PCR after 6, 12, 24, 48 hours, and 4 and 30 days. At 6, 12, and 24 hours the plasmid DNA content of the injected lymph nodes was approximately three orders of magnitude greater than that of the draining lymph nodes following i.m. injection. No plasmid DNA was detectable in the draining lymph node at subsequent time points (Fig. 17). This is consonant with the three orders of magnitude greater dose needed using i.m. as compared to i.ln. injections to achieve a similar levels of CTL activity. CD8^{-/-} knockout mice, which do not develop a CTL response to this epitope, were also injected i.ln. showing clearance of DNA from the lymph node is not due to CD8⁺ CTL killing of cells in the lymph node. This observation also supports the conclusion that i.ln. administration will not provoke immunopathological damage to the lymph node.

Example 13

Administration of a DNA plasmid formulation of a therapeutic vaccine for melanoma to humans.

[0296] A SYNCHROTOPE™ TA2M melanoma vaccine encoding the HLA-A2-restricted tyrosinase epitope SEQ ID NO. 1 and epitope cluster SEQ ID NO. 69, was formulated in 1% Benzyl alcohol, 1% ethyl alcohol, 0.5mM EDTA, citrate-phosphate, pH 7.6. Aliquots of 80, 160, and 320 ug DNA/ml were prepared for loading into MINIMED 407C infusion pumps. The catheter of a SILHOUETTE infusion set was placed into an inguinal lymph node visualized by ultrasound imaging. The assembly of pump and infusion set was originally designed for the delivery of insulin to diabetics and the usual 17mm catheter was substituted with a 31mm catheter for this application. The infusion set was kept patent for 4 days (approximately 96 hours) with an infusion rate of about 25 ul (microliter)/hour resulting in a total infused volume of approximately 2.4 ml. Thus the total administered dose per infusion was approximately 200, and 400 µg; and can be 800 ug, respectively, for the three concentrations described above. Following an infusion subjects were given a 10 day rest period before starting a subsequent infusion. Given the continued residency of plasmid DNA in the lymph node after administration (as in example 12) and the usual kinetics of CTL response following disappearance of antigen, this schedule will be sufficient to maintain the immunologic CTL response.

Example 14

Evaluating Likelihood of Epitope Cross-reactivity on Non-target Tissues.

[0297] As noted above PSA is a member of the kallikrein family of proteases, which is itself a subset of the serine protease family. While the members of this family sharing the greatest degree of sequence identity with PSA also share similar expression profiles, it remains possible that individual epitope sequences might be shared with proteins having distinctly different expression profiles. A first step in evaluating the likelihood of undesirable cross-reactivity is the identification of shared sequences. One way to accomplish this is to conduct a BLAST search of an epitope sequence against the SWISSPROT or Entrez non-redundant peptide sequence databases using the "Search for short nearly exact matches" option; hypertext transfer protocol accessible on the world wide web (http://www) at "ncbi.nlm.nih.gov/blast/index.html". Thus searching SEQ ID NO. 104, WVLTAAHCI, against SWISSPROT (limited to entries for homo sapiens) one

finds four exact matches, including PSA. The other three are from kallikrein 1 (tissue kallikrein), and elastase 2A and 2B. While these nine amino acid segments are identical, the flanking sequences are quite distinct, particularly on the C-terminal side, suggesting that processing may proceed differently and that thus the same epitope may not be liberated from these other proteins. (Please note that kallikrein naming is confused. Thus, the kallikrein 1 [accession number P06870] is a different protein than the one [accession number AAD13817] mentioned in the paragraph on PSA above in the section on tumor-associated antigens).

[0298] This possibility can be tested in several ways. Synthetic peptides containing the epitope sequence embedded in the context of each of these proteins can be subjected to *in vitro* proteasomal digestion and analysis as described above. Alternatively, cells expressing these other proteins, whether by natural or recombinant expression, can be used as targets in a cytotoxicity (or similar) assay using CD8⁺ T cells that recognize the epitope, in order to determine if the epitope is processed and presented.

Examples 15-67

Epitopes.

[0299] The methodologies described above, and in particular in examples 3-7, have been applied to additional synthetic peptide substrates, as summarized in figures 18-70 leading to the identification of further epitopes as set forth the in tables 15-67 below. The substrates used here were generally designed to identify products of housekeeping proteasomal processing that give rise to HLA-A*0201 binding epitopes, but additional MHC-binding reactivities can be predicted, as discussed above. Many such reactivities are disclosed, however, these listings are meant to be exemplary, not exhaustive or limiting. As also discussed above, individual components of the analyses can be used in varying combinations and orders. N-terminal pool sequencing which allows quantitation of various cleavages and can resolve ambiguities in the mass spectrum where necessary, can also be used to identify cleavage sites when digests of substrate yield fragments that do not fly well in MALDI-TOF mass spectrometry. Due to these advantages it was routinely used. Although it is preferred to identify epitopes on the basis of the C-terminus of an observed fragment, epitopes can also be identified on the basis of the N-terminus of an observed fragment adjacent to the epitope.

[0300] Not all of the substrates necessarily meet the formal definition of an epitope cluster as referenced in example 3. Some clusters are so large that it was more convenient to use substrates spanning only a portion of the cluster. In other cases, substrates were extended beyond clusters meeting the formal definition to include neighboring predicted epitopes or were designed around predicted epitopes with no association with any cluster. In some instances, actual binding activity dictated what substrate was made when HLA binding activity was determined for a selection of peptides with predicted affinity, before synthetic substrates were designed.

[0301] Figures 18-70 show the results of proteasomal digestion analysis as a mapping of mass spectrum peaks onto the substrate sequence. Each figure presents an individual timepoint from the digestion judged to be respresentative of the overall data, however some epitopes listed in Tables 15-67 were identified based on fragments not observed at the particular timepoints illustrated. The mapping of peaks onto the sequence was informed by N-terminal pool sequencing of the digests, as noted above. Peaks possibly corresponding to more than one fragment are represented by broken lines. Nonetheless, epitope identifications are supported by unambiguous occurrence of the associated cleavage.

Example 15: Tyrosinase 171-203

Table 15

Preferred Epitopes Revealed by Housekeeping Proteasome Digestion

Fritana	pitope Sequence Sequ		Sequence HLA type	HLA binding predictions†			
Epitope	Sequence	ID No.	IIILA type	SYFPEITHI	NIH		
			A0201	17	93.656		
171-179	NIYDLFVWM	108	A26	25	N/A		
			A3	18	<5		
173-182	YDLFVWMHYY	109	A1	17	<5		
		DLFVWMHYY 110 A	A1	16	<5		
174-182	DLFVWMHYY		110	110	A26	30	N/A
}			A3	16	27		
106 104	DALLCCCEL	111	A0201	17	<5		
186-194	DALLGGSEI	DALLGGSEI	DALLGGSEI	LLGGSEI 111	B5101	26	440
191-200	GSEIWRDIDF	112	A1	18	67.5		
192-200	SEIWRDIDF	113	B08	16	<5		
193-201	EIWRDIDFA	114	A26	20	N/A		

†Scores are given from the two binding prediction programs referenced above (see example 3)

[0302] See also figure 18.

Example 16: Tyrosinase 401-427

Table 16

Preferred Epitopes Revealed by Housekeeping Proteasome Digestion

Enitono	Saguenas	Sequence	LIT A trums	HLA binding	predictions†
Epitope	Sequence	ID No.	HLA type	SYFPEITHI	NIH
407-416	LQEVYPEANA	115	A0203	18	N/A
409-418	EVVDEANADI	116	A26	19	N/A
409-418	EVYPEANAPI	110	A3	20	<5
410-418	VYPEANAPI	117	B5101	15	6.921
411-418	YPEANAPI	118	B5101	22	N/A
411-420	YPEANAPIGH	119	A1	16	<5
416 425	425 APIGHNRESY	120	A1	18	<5
416-425		APIGHNRESY	120	A26	15
1			A1	16	<5
417-425	PIGHNRESY	121	A26	21	N/A
			A3	17	<5
417-426	PIGHNRESYM	122	A26	19	N/A

†Scores are given from the two binding prediction programs referenced

[0303] above (see example 3)

[0304] See also figure 19.

Example 17: Tyrosinase 415-449

<u>Table 17</u>

Preferred Epitopes Revealed by Housekeeping Proteasome Digestion

Epitope	Sequence	Sequence	HLA type	HLA binding	g predictions†
Epitope	Sequence	ID No.	No. HLA type	SYFPEITHI	NIH
	i		A1	18	<5
416-425	APIGHNRESY	120	A26	15	N/A
410-423	ATOMINEST	120	A3	17	<5
			B0702	15	N/A
		}	A1	16	<5
417-425	PIGHNRESY	124	A26	21	N/A
	·		A3	17	<5
423-430	ESYMVPFI	125	B5101	17	N/A
423-432	ESYMVPFIPL	126	A26	18	N/A
424-432	SYMVPFIPL	127	B0702	16	N/A
424 422	CVACADEIDLA	120	A1	19	<5
424-433	SYMVPFIPLY	128	A26	15	N/A
			A0201	18	<5
425-433	YMVPFIPLY	129	A1	23	5
			A26	17	N/A
426-434	MVPFIPLYR	130	A3	18	<5
426-435	MVPFIPLYRN	131	A26	16	N/A
427-434	VPFIPLYR	132	B5101	18	N/A
430-437	IPLYRNGD	133	B08	16	<5
430-439	IPLYRNGDFF	134	B0702	18	N/A
431-439	PLYRNGDFF	135	A26	18	N/A
431-437	TETICODIT	155	A3	24	<5
431-440	431-440 PLYRNGDFFI	136	A0201	16	23.43
731-770	1211d ODITI	150	A3	17	<5
434-443	RNGDFFISSK	137	A3	20	<5
435-443	NGDFFISSK	138	A3	15	<5
155-445	1.00111001		B2705	15	5

†Scores are given from the two binding prediction programs referenced

[0305] above (see example 3)

[0306] See also figure 20.

Example 18: Tyrosinase 457-484

Table 18

Preferred Epitopes Revealed by Housekeeping Proteasome Digestion

Enitone	Cananaa	Sequence	III A trino	HLA binding	predictions†
Epitope	Sequence	ID No.	HLA type	SYFPEITHI	NIH
463-471	YIKSYLEQA	139	A0201	18	<5
403-4/1	TIKSTLEQA	139	A26	17	N/A
466-474	SYLEQASRI	140	B5101	16	<5
469-478	EQASRIWSWL	141	A26	17	N/A
470-478	QASRIWSWL	142	B5101	16	55
471-478	ASRIWSWL	143	B08	16	<5
471-479	ASRIWSWLL	144	B08	16	<5
			A0201	19	13.04
473-481	RIWSWLLGA	145	A26	16	N/A
			A3	15	<5

†Scores are given from the two binding prediction programs referenced

[0307] above (see example 3)

[0308] See also figure 21.

Example 19: CEA 92-118

<u>Table 19</u>
<u>Preferred Epitopes Revealed by Housekeeping Proteasome Digestion</u>

TP-:4	S-:4	Sequence	III A Auma	HLA binding	predictions†
Epitope	Sequence	ID No.	HLA type	SYFPEITHI	NIH
			B0702	18	8
92-100	GPAYSGREI	146	B08	15	<5
			B5101	22	484
92-101	GPAYSGREII	147	B0702	18	12
93-100	PAYSGREI	148	B5101	22	N.A.
93-101	PAYSGREII	149	B5101	24	48.4
93-102	PAYSGREIIY	150	A1	19	<5
94-102	AYSGREIIY	151	A1	21	<5
07.105	CDEHVDNA	150	B2705	17	200
97-105	GREIIYPNA	152	B2709	16	
98-107	REIIYPNASL	153	A0201	16	<5
			A0201	21	<5
			A26	28	N.A.
00 107	THE TONIA OF	154	A3	16	<5
99-107	EIIYPNASL	154	B0702	15	6
1.			B08	18	<5
			B2705	16	<5
			A0201	16	<5
99-108	EIIYPNASLL	155	A26	27	N.A.
,			A3	17	<5
100-107	IIYPNASL	156	B08	15	<5
			A0201	23	15.979
			A26	21	N.A.
			A24	N.A.	<5
100-108	IIYPNASLL	157	A3	23	<5
100-108	HIPNASLL	137	B08	15	<5
			B1510	15	N.A.
			B2705	16	50
			B2709	15	
100-109	IIYPNASLLI	150	A0201	22	7.804
100-109	III PNASLLI	158	A3	20	<5
102-109	YPNASLLI	159	B5101	23	N.A.
107-116	LLIQNIIQND	160	A0201	18	<5
107-110	LLIQINIIQND	100	A26	17	N.A.

†Scores are given from the two binding prediction programs referenced

[0309] above (see example 3)

[0310] See also figure 22.

Example 20: CEA 131-159

<u>Table 20</u>

<u>Preferred Epitopes Revealed by Housekeeping Proteasome Digestion</u>

Enitono	S	Sequence	LII A tuno	HLA binding predictions†	
Epitope	Sequence	ID No.	HLA type	SYFPEITHI	NIH
132-141	DE ATCOERVY	161	A1	19	<5
132-141	EEATGQFRVY	101	A26	21	N.A.
	EATGQFRVY		A1	22	<5
133-141		162	A26	23	N.A.
Ĺ			B5101	At type SYFPEITHI A1 19 A26 21 A1 22 A26 23 35101 16 30702 20	<5
141 140	ADEL DIADEL	163	B0702	20	<5
141-149	YPELPKPSI		B5101	22	572
142-149	PELPKPSI	164	B08	16	<5

†Scores are given from the two binding prediction programs referenced

[0311] above (see example 3)

[0312] See also figure 23.

Example 21: CEA 225-251

<u>Table 21</u>

<u>Preferred Epitopes Revealed by Housekeeping Proteasome Digestion</u>

F2-14	<u> </u>	Sequence	TIT A 4	HLA binding	g predictions†
Epitope	Sequence	ID No.	HLA type	SYFPEITHI	NIH
			A0201	15	<5
225-233	RSDSVILNV	165	A1	22	<5
 			B2709	15	N.A.
225-234	RSDSVILNVL	166	A0201	15	<5
226-234	SDSVILNVL	167	A0201	17	<5
226-235	SDSVILNVLY	168	A1	20	<5
227-235	DCMI NM V	169	Al	22	<5
221-233	DSVILNVLY	109	A26	18	N.A.
222 242	VIVCDDADTI	170	A0201	25	56.754
233-242	VLYGPDAPTI	170	A3	23	<5
224 242	LYGPDAPTI	171	A0201	15	<5
234-242	LIGPDAPII	1/1	B5101	15	5.72
235-242	YGPDAPTI	172	B5101	22	N.A.
236-245	CDD A DTICDI	172	A0201	15	- <5
230-243	GPDAPTISPL	173	B0702	23	24
			A0201	15	<5
237-245	PDAPTISPL	174	A26	16	N.A.
			B2705	15	<5
238-245	DAPTISPL	175	B5101	25	N.A.
239-247	APTISPLNT	176	B0702	20	6
240-249	PTISPLNTSY	177	A1	22	<5
240-249	PIISPLNISI	1//	A26	24	N.A.
			A1	20	5
241-249	TISPLNTSY	178	A26	24	N.A.
		<u> </u>	A3	20	<5

†Scores are given from the two binding prediction programs referenced

[0313] above (see example 3)

[0314] See also figure 24.

Example 22: CEA 239-270

<u>Table 22</u>

<u>Preferred Epitopes Revealed by Housekeeping Proteasome Digestion</u>

Enitone	Coguana	Sequence	III A tropo	HLA binding predictions†	
Epitope	Sequence	ID No.	HLA type	SYFPEITHI	NIH
240-249	PTISPLNTSY	179	A1	22	<5
240-249	PHOPLINION	1/9	A26	24	N.A.
			A1	20	5
241-249	TISPLNTSY	180	A26	24	N.A.
			A3	20	<5
246-255	NTSYRSGENL	181	A26	19	N.A.
247-255	TSYRSGENL	182	B2705	15	50
248-255	SYRSGENL	183	B08	18	<5
248-257	SYRSGENLNL	184	B0702	14	<5
			A0201	15	<5
249-257	YRSGENLNL	185	B0702	16	<5
249-237	I KOGENLINL	165	B2705	27	2000
	,	1	B2709	22	N.A.
251-259	SGENLNLSC	186	A1	19	<5
253-262	ENLNLSCHAA	187	A0203	19	<5
254-262	NLNLSCHAA	188	A0201	17	<5

†Scores are given from the two binding prediction programs referenced

[0315] above (see example 3)

[0316] See also figure 25.

Example 23: CEA 259-286

<u>Table 23</u>

<u>Preferred Epitopes Revealed by Housekeeping Proteasome Digestion</u>

		Sequence		HLA binding predictions†	
Epitope	Sequence	ID No.	HLA type	SYFPEITHI	NIH
260-269	HAASNPPAQY	189	A1	15	<5
		400	A1	17	<5
261-269	AASNPPAQY	NPPAQY 190	A3	17	<5
264-273	NPPAQYSWFV	191	B0702	18	<5
201273			B0702	18	<5
265-273	PPAQYSWFV	192	B5101	19	20
266-273	PAQYSWFV	193	B5101	18	N.A.
272-280	FVNGTFQQS	194	A26	18	N.A.
			A3	15	<5

†Scores are given from the two binding prediction programs referenced

[0317] above (see example 3)

[0318] See also figure 26.

Example 24: CEA 309-336

<u>Table 24</u>

<u>Preferred Epitopes Revealed by Housekeeping Proteasome Digestion</u>

Enitono	Common	Sequence	III A turno	HLA binding	g predictions†
Epitope	Sequence	ID No.	HLA type	SYFPEITHI	NIH
			A1	22	<5
310-319	RTTVTTITVY	195	A26	24	N.A.
l		l	A3	15	<5
			A1	22	<5
311-319	TTVTTITVY	196	A26	24	N.A.
		}	B2705	15	5
	YAEPPKPFI		A0201	17	<5
319-327		197	A1	17	18
			B5101	22	286
319-328	YAEPPKPFIT	198	Al	16	45
320-327	AEPPKPFI	199	B08	16	<5
321-328	EPPKPFIT	200	B5101	16	N.A.
321-329	EDDADELLE	201	B0702	16	<5
321-329	EPPKPFITS	201	B5101	16	12.1
322-329	PPKPFITS	202	B08	16	<5

†Scores are given from the two binding prediction programs referenced

[0319] above (see example 3)

[0320] See also figure 27.

Example 25: CEA 381-408

<u>Table 25</u>

<u>Preferred Epitopes Revealed by Housekeeping Proteasome Digestion</u>

Enitone	Cognones	Sequence	TIT A tumo	HLA binding	predictions†
Epitope	Sequence	ID No.	HLA type	SYFPEITHI	NIH
			A1	18	<5
382-391	SVTRNDVGPY	203	A26	24	N.A.
			A3	21	<5
383-391	VTRNDVGPY	204	A1	23	<5
363-391			A26	24	N.A.
389-397	GPYECGIQN	205	B5101	17	11
201 200	VECCIONEI	206	A0201	17	<5
391-399	YECGIQNEL		B2705	17	30
204 402	CIONELCAD	207	A26	15	N.A.
394-402	GIQNELSVD	207	A3	16	<5

†Scores are given from the two binding prediction programs referenced

[0321] above (see example 3)

[0322] See also figure 28.

Example 26: CEA 403-429

<u>Table 26</u>

<u>Preferred Epitopes Revealed by Housekeeping Proteasome Digestion</u>

17.4	Enitona Saguanas		THE A A	HLA binding	g predictions†	
Epitope	Sequence	Sequence ID No.	HLA type	SYFPEITHI	NIH	
403-411	403-411 HSDPVILNV	208	A0201	17	<5	
403-411	HSDI VILIV	200	A1	26	37.5	
			A0201	17	<5	
			A1	19	7.5	
403-412	HSDPVILNVL	209	A26	15	N.A.	
			A24	N.A.	8.064	
			B4402	17	N.A.	
404-412	SDPVILNVL	210	A0201	17	<5	
404-412	SDPVILNVL	210	B4402	16	N.A.	
404-413	SDPVILNVLY	211	A1	20	<5	
405-412	DDVII NIVI	212	B08	16	<5	
403-412	DPVILNVL	212	B5101	24	N.A.	
				A1	18	<5
405-413	DPVILNVLY	213	A26	18	N.A.	
			B5101	16	7.26	
408-417	ILNVLYGPDD	214	A3	15	<5	
411-420	VIVCDDDDTI	215	A0201	25	56.754	
411-420	VLYGPDDPTI	213	A3	20	<5	
412-420	LYGPDDPTI	216	A0201	15	<5	
412-420	LIGPODPII	210	A24	N.A.	60	
413-420	YGPDDPTI	217	B5101	22	N.A.	
417-425	DPTISPSYT	218	B0702	16	<5	
418-427	PTISPSYTYY	210	Al	21	<5	
710-44/	11116161111	219	A26	27	N.A.	
419-427	TISPSYTYY	220	A1	19	5	
417-42/	110101111	220	A26	27	N.A.	

†Scores are given from the two binding prediction programs referenced

[0323] above (see example 3)

[0324] See also figure 29.

Example 27: CEA 416-448

<u>Table 27</u>

<u>Preferred Epitopes Revealed by Housekeeping Proteasome Digestion</u>

77. 4		Sequence	TTT A 4	HLA binding	predictions†
Epitope	Sequence	ID No.	HLA type	SYFPEITHI	NIH
410 407	DEVENOUS PROPERTY.	221	A1	21	<5
418-427	PTISPSYTYY	221	A26	27	N.A.
			A1	19	5
419-427	TISPSYTYY	222	A26	27	N.A.
			A3	18	<5
419-428	TISPSYTYYR	223	A3	15	5.4
		1	A0201	18	<5
424-433	YTYYRPGVNL	224	A24	N.A.	<5
			A26	20	N.A.
			A0201	14	<5
425 422	TVVDDCVAII	225	A24	N.A.	200
425-433	TYYRPGVNL		B0702	16	<5
			B2705	16	5
426-433	YYRPGVNL	226	B08	16	<5
126 125	AMADDON DIL CI	227	A0201	17	<5
426-435	YYRPGVNLSL	221	B0702	15	<5
			A0201	17	<5
427-435	YRPGVNLSL	228	B2705	26	2000
		L	B2709	21	N.A.
120 125	DDCVAIL CI	229	B08	17	<5
428-435	RPGVNLSL	229	B5101	17	N.A.
428-437	RPGVNLSLSC	230	B0702	14	<5
420 429	GVNLSLSCH	231	A26	16	N.A.
430-438	GANTSTRCH	231	B2705	15	<5
431-440	VNLSLSCHAA	232	A0203	19	N.A.
432-440	NLSLSCHAA	233	A0201	16	<5

†Scores are given from the two binding prediction programs referenced

[0325] above (see example 3)

[0326] See also figure 30.

Example 28: CEA 437-464

<u>Table 28</u>

<u>Preferred Epitopes Revealed by Housekeeping Proteasome Digestion</u>

Fritana	Sacranas	Sequence	TIT A Assess	HLA binding	g predictions†
Epitope	Sequence	ID No.	HLA type	SYFPEITHI	NIH
438-447	HAASNPPAQY	234	A1	15	<5
439-447	AASNPPAQY	235	A1	17	<5
439-447	AASNPFAQI	233	A3	17	<5
442-451	NPPAQYSWLI	236	B0702	17	8
443-451	DD A OVCWI I	227	B0702	17	<5
443-431	PPAQYSWLI	237	B5101	21	40
444-451	PAQYSWLI	238	B5101	20	N.A.
			A0201	17	<5
449-458	WLIDGNIQQH	239	A26	17	N.A.
			A3	21	<5
			A0201	16	<5
450-458	LIDGNIQQH	240	A26	19	N.A.
		`	A3	17	<5
450-459	LIDCNICOLIT	241	A0201	. 16	<5
430-439	LIDGNIQQHT	241	A26	15	N.A.

†Scores are given from the two binding prediction programs referenced

[0327] above (see example 3)

[0328] See also figure 31.

Example 29: CEA 581-607

<u>Table 29</u>

<u>Preferred Epitopes Revealed by Housekeeping Proteasome Digestion</u>

Epitope	Seguence	Sequence	THE A trime	HLA binding predictions†	
	Sequence	ID No.	HLA type	SYFPEITHI	NIH
	RSDPVTLDVL	242	A0201	16	<5
581-590			A1	19	7.5
361-390	KSDFVILDVL		A26	15	N.A.
			A24	N.A.	9.6
582-590	SDPVTLDVL	243	A0201	16	<5
582-591	SDPVTLDVLY	244	A1	19	<5
583-590	DPVTLDVL	245	B08	16	<5
363-390			B5101	25	N.A.
	DPVTLDVLY	246	A1	17	<5
583-591			A26	18	N.A.
			B5101	16	6
588-597	DVLYGPDTPI	247	A26	16	N.A.
	VLYGPDTPI	248	A0201	25	56.754
589-597			A3	17	6.75
			B5101	-17	11.44
,	PIISPPDSSY	249	A1	15	<5
596-605			A26	25	N.A.
			A3	22	<5
	,		A1	20	5
597-605	IISPPDSSY	250	A26	24	N.A.
			A3	24	<5

†Scores are given from the two binding prediction programs referenced

[0329] above (see example 3)

[0330] See also figure 32.

Example 30: CEA 595-622

<u>Table 30</u>

<u>Preferred Epitopes Revealed by Housekeeping Proteasome Digestion</u>

Epitope	G	Sequence	TYY A 4	HLA binding predictions†	
	Sequence	ID No.	HLA type	SYFPEITHI	NIH
	Habbbaan	251	A0201	22	27.464
597-606			A26	21	N.A.
397-000	IISPPDSSYL		A3	16	<5
			B0702	14	<5
500 606	CDDDCCVI	252	B08	18	<5
599-606	SPPDSSYL		B5101	17	N.A.
600-608	PPDSSYLSG	253	A1	16	<5
600-609	PPDSSYLSGA	254	B0702	17	<5
602-611	DSSYLSGANL	255	A26	16	N.A.
602 611	SSYLSGANL	256	A0201	15	<5
603-611			B2705	17	50
604-613	SYLSGANLNL	257	A0201	15	<5
004-013			A24	N.A.	300
			A0201	25	98.267
			A26	19	N.A.
605-613	VI CO ANII NII	250	A3	15	<5
	YLSGANLNL	258	B0702	16	<5
1	·		B08	17	<5
			B2705	16	30
610-618	NLNLSCHSA	259	A0201	18	<5

†Scores are given from the two binding prediction programs referenced

[0331] above (see example 3)

[0332] See also figure 33.

Example 31: CEA 615-641

<u>Table 31</u>

<u>Preferred Epitopes Revealed by Housekeeping Proteasome Digestion</u>

Epitope	Cognones	Sequence	HLA type	HLA binding predictions†	
	Sequence	ID No. HLA ty		SYFPEITHI	NIH
620-629	NPSPQYSWRI	260	B0702	19	8
622-629	SPQYSWRI	261	B08	15	<5
			B5101	20	N.A.
627-635	WRINGIPQQ	262	B2705	19	20
628-636	RINGIPQQH	263	A3	22	<5
	MNOIPQH	203	A3 22 B2705 16	<5	
628-637	RINGIPQQHT	264	A0201	15	<5
631-639	GIPQQHTQV	265	A0201	19	9.563
632-639	IPQQHTQV	266	B5101	20	N.A.

†Scores are given from the two binding prediction programs referenced

[0333] above (see example 3)

[0334] See also figure 34.

Example 32: CEA 643-677

<u>Table 32</u>
<u>Preferred Epitopes Revealed by Housekeeping Proteasome Digestion</u>

Epitope	Cognance	Sequence	LYI A trunc	HLA binding predictions†	
	Sequence	ID No.	HLA type	SYFPEITHI	NIH
	KITPNNNGTY	267	A1	20	5
644-653			A26	22	N.A.
ł			A3	25	<5 <5 N.A. <5
			A1	22	<5
645-653	ITPNNNGTY	268	A26	21	N.A.
			A3	14	<5
647-656	PNNNGTYACF	269	A26	15	N.A.
648-656	NNNGTYACF	270	A26	17	N.A.
650-657	NGTYACFV	271	B5101	15	N.A.
661-670	ATGRNNSIVK	272	A3	20	<5
662-670	TGRNNSIVK	273	A3	18	<5
664-672	RNNSIVKSI	274	B2709	15	N.A.
666-674	NSIVKSITV	275	A0201	16	<5

†Scores are given from the two binding prediction programs referenced

[0335] above (see example 3)

[0336] See also figure 35.

Example 33: GAGE-1 6-32

<u>Table 33</u>

<u>Preferred Epitopes Revealed by Housekeeping Proteasome Digestion</u>

Epitope	C	Sequence ID No.	HLA type	HLA binding predictions†	
	Sequence			SYFPEITHI	NIH
	STYRPRPRRY	276	A1	23	<5
7-16			A26	21	N/A
			A3	15	<5 <5 <5 <5 N/A
8-16	TYRPRPRRY	277	A1	19	<5
0-10	TYRPRPRRY		A3	15	<5
	!	278	A3	17	<5
10-18	RPRPRRYVE		B0702	16	N/A
			B08	20	<5
16-23	YVEPPEMI	279	B5101	15	N/A
22-31	MICDADDEOE	200	A26	23	N/A
22-31	MIGPMRPEQF	280	A3	19	<5
23-31	IGPMRPEQF	281	B08	15	<5
24-31	GPMRPEQF	282	B5101	16	N/A

†Scores are given from the two binding prediction programs referenced

[0337] above (see example 3)

[0338] See also figure 36.

Example 34: GAGE-1 105-131

<u>Table 34</u>

<u>Preferred Epitopes Revealed by Housekeeping Proteasome Digestion</u>

E-:4	S	Sequence	HLA type	HLA binding predictions†	
Epitope	Sequence	ID No.		SYFPEITHI	NIH
105-114	KTPEEEMRSH	283	A26	18	N/A
106-115	TPEEEMRSHY	284	Al	26	11.25
107-115	PEEEMRSHY	285	A1	26	<5
110-119	EMRSHYVAQT	286	A0201	15	<5
113-121	SHYVAQTGI	287	B5101	15	<5
			A0201	23	108.769
115-124 YVAQ1	YVAQTGILWL	288	A26	24	N/A
			A3	15	<5
	VAQTGILWL	289	A0201	22	6.381
116-124			B08	16	<5
	VAQIGILWL		B2705	16	10
			B5101	20	78.65
116-125	VAQTGILWLL	290	A0201	19	8.701
117-125	AQTGILWLL	291	A0201	17	37.362
	AQIGILWLL	291	B2705	16	200
118-126	QTGILWLLM	292	A26	19	N/A
118-127	QTGILWLLMN	293	A26	15	N/A
120-129	GILWLLMNNC	294	A26	15	N/A
121-129	ILWLLMNNC	295	A0201	15	161.227

†Scores are given from the two binding prediction programs referenced

[0339] above (see example 3)

[0340] See also figure 37.

Example 35: GAGE-1 112-137

<u>Table 35</u>

<u>Preferred Epitopes Revealed by Housekeeping Proteasome Digestion</u>

		Converse	HLA	HLA bindin	g predictions†	
Epitope	Sequence	Sequence ID No.		SYFPEITH I	NIH	
124-131	LLMNNCFL	296	B08	16	<5	
			A0201	22	1999.734	
123-131	WLLMNNCFL	297	A26	16	N/A	
			B08	17	<5	
122-130	LWLLMNNCF	298	B2705	15	<5	
121-130	ILWLLMNNCF	299	A26	18	N/A	
121-130	ILWELMINNEF	299	A3	17	10	
121-129	ILWLLMNNC	295	A0201	15	161.227	
120-129	GILWLLMNNC	294	A26	15	N/A	
118-127	QTGILWLLMN	293	A26	15	N/A	
118-126	QTGILWLLM	292	A26	19	N/A	
	AQTGILWLL			A0201	17	37.362
117-125		291	B2705	16	200	
1			B4402	17	N/A	
116-125	VAQTGILWLL	290	A0201	19	8.701	
			A0201	22	6.381	
1			B08	16	<5	
116-124	VAQTGILWL	289	B2705	16	10	
			B4402	15	N/A	
			B5101	20	78.65	
			A0201	23	108.769	
115-124	YVAQTGILWL	288	A26	24	N/A	
1			A3	15	<5	
113-121	SHYVAQTGI	287	B5101.	15	<5	

†Scores are given from the two binding prediction programs referenced above (see example 3)

[0341] See also figure 38.

Example 36 MAGE-1 51-77

<u>Table 36</u>

<u>Preferred Epitopes Revealed by Housekeeping Proteasome Digestion</u>

Epitope		Sequence	TII A 4ma	HLA binding predictions†		
	Sequence	ID No.	HLA type	SYFPEITHI	NIH	
62-70 SAFPTTIN			A26	15	N/A	
	SAFPTTINF	309	B4402	18	N/A	
<u> </u>			B2705	17	25	
61-70	ASAFPTTINF	310	B4402	15	N/A	
(0, (0	CACAEDTE	311	A0201	16	<5	
60-68	GASAFPTTI		B5101	25	220	
57-66	SPQGASAFPT	312	B0702	19	N/A	

†Scores are given from the two binding prediction programs referenced

[0342] above

[0343] See also figure 39.

Example 37: MAGE-1 126-153

<u>Table 37</u>

<u>Preferred Epitopes Revealed by Housekeeping Proteasome Digestion</u>

Epitope	Sequence	Sequence ID No.	HLA type	HLA predictions† SYFPEITHI	binding NIH
144-151	FGKASESL	313	B08	21	<5
142 151		214	A26	16	N/A
143-151	IFGKASESL	314	B2705	15	<5
			A0201	20	<5
142-151	EIFGKASESL	315	A26	29	N/A
			B4402	15	N/A
142-149	EIFGKASE	316	B08	16	<5
133-140	IKNYKHCF	317	B08	18	<5
132-140	VIKNYKHCF	318	A26	21	N/A
	VIKIVIKICI		B08	21	<5
			A26	23	N/A
131-140	SVIKNYKHCF	319	A3	18	<5
			B4402	15	N/A
132-139	VIKNYKHC	320	В08	15	<5
131-139	SVIKNYKHC	321	A26	18	N/A
			A1	28	45
128-136	MLESVIKNY	322	A26	24	N/A
120-150	WILLSVIKIVI	322	A3	17	<5
			B4402	15	N/A
			A1	15	<5
127-136	EMLESVIKNY	323	A26	23	N/A
			B4402	18	N/A
	,		A3	18	<5
126-134	AEMLESVIK	324	B2705	15	30
]	B4402	16	N/A

†Scores are given from the two binding prediction programs referenced [0344] above (see example 3).

[0345] See also figure 40.

Example 38: MAGE-2 272-299

<u>Table 38</u>

<u>Preferred Epitopes Revealed by Housekeeping Proteasome Digestion</u>

TR-14		Sequence	III A 4	HLA binding	predictions†
Epitope	Sequence	ID No.	HLA type	SYFPEITHI	NIH
274-283	GPRALIETSY	325	A1	15	<5
275 202	DDALIETCV	326	A1	15	<5
275-283	PRALIETSY	320	B2705	23	100
276 204	RALIETSYV	327	A0201	18	19.658
276-284	RALIEISIV	321	B5101	20	55
			A0201	-30	427.745
277-286	ALIETSYVKV	328	A26	18	N/A
			A3	21	<5
			A0201	23	·<5
278-286	LIETSYVKV	329	A26	17	N/A
			B5101	15	<5
278-287	LIETCVVVVI	IETSYVKVL 330	A0201	22	<5
270-207	LIEISIVKVL		A26	22	N/A
			A0201	15	<5
279-287	IETSYVKVL	331	B1510	15	N/A
			B5101	15	<5
280-289	ETSYVKVLHH	332	A26	21	N/A
282-291	SYVKVLHHTL	333	A0201	15	<5
			A0201	19	<5
283-291	YVKVLHHTL	334	A26	20	N/A
203-291	IVAVLUUIL	33 4	A3	15	<5
			B08	21	<5
			A0201	20	11.822
285-293	KVLHHTLKI	335	A3	18	<5
			B5101	15	<5

†Scores are given from the two binding prediction programs referenced

[0346] above (see example 3)

[0347] See also figure 41.

Example 39 MAGE-2 287-314

<u>Table 39</u>

<u>Preferred Epitopes Revealed by Housekeeping Proteasome Digestion</u>

TD		Sequence	TIT A 4	HLA binding	predictions†
Epitope	Sequence	ID No.	HLA type	SYFPEITHI	NIH
303-311	PLHERALRE	336	A3	19	<5
303-311	PLHERALRE	330	B08	16	<5
302-309	PPLHERAL	337	B08	16	<5
302-309	PPLHERAL	337	B5101	18	N/A
			B0702	21	N/A
201 200	YPPLHERAL	338	B08	18	<5
301-309			B4402	15	N/A
	}		B5101	20	143
200 200	CVDDLUEDAL	220	A0201	15	<5
300-309	SYPPLHERAL	339	B4402	18	N/A
299-307	ISYPPLHER	340	B2705	17	25
298-307	HISYPPLHER	341	A26	15	N/A
292-299	KIGGEPHI	342	B5101	15	N/A
291-299	LKIGGEPHI	343	A0201	17	<5
290-299	TLKIGGEPHI	344	A0201	18	<5

†Scores are given from the two binding prediction programs referenced

[0348] above (see example 3)

[0349] See also figure 42.

Example 40 Mage-3 287-314

<u>Table 40</u>

<u>Preferred Epitopes Revealed by Housekeeping Proteasome Digestion</u>

Enidana	Saguence	Sequence	TII A tumo	HLA binding	predictions†
Epitope	Sequence	ID No.	HLA type	SYFPEITHI	NIH
303-311	PLHEWVLRE	345	A26	15	N/A
202 200	DOLLIE WALL	246	B08	16	<5
302-309	PPLHEWVL	346	B5101	19	N/A
			B0702	21	N/A
301-309	YPPLHEWVL	347	B08	17	<5
			B5101	22	130
301-308	YPPLHEWV	348	B5101	22	N/A
300-308	SYPPLHEWV	349	A0201	15	<5
299-308	ISYPPLHEWV	350	A0201	15	6.656
298-307	HISYPPLHEW	351	A26	15	N/A
293-301	ISGGPHISY	352	A1	25	<5
			A1	20	<5
292-301	KISGGPHISY	353	A26	23	N/A
		ł	A3	21	5.4

†Scores are given from the two binding prediction programs referenced

[0350] above (see example 3)

[0351] See also figure 43.

Example 41: Melan-A 44-71

<u>Table 41</u>

<u>Preferred Epitopes Revealed by Housekeeping Proteasome Digestion</u>

TC:4	Saguenes	Sequence	TIT A A	HLA binding	predictions†
Epitope	Sequence	ID No.	HLA type	SYFPEITHI	NIH
45-54	CWYCRRRNGY	354	A1	16	<5
46-54	WYCRRRNGY	355	A1	16	<5
47-55	YCRRRNGYR	356	B08	15	<5
		- 	B08	17	<5
49-57	RRRNGYRAL	GYRAL 357	B2705	26	1800
			B2709	24	N/A
51-60	RNGYRALMDK	358	A3	15	<5
52-60	NGYRALMDK	359	A3	18	<5
55-63	RALMDKSLH	360	B2705	16	<5
56-63	ALMDKSLH	361	B08	16	<5
55-64	RALMDKSLHV	362	A0201	17	<5
			A0201	26	1055.104
56-64	ALMDKSLHV	363	A3	18	<5
			B08	16	<5

†Scores are given from the two binding prediction programs referenced

[0352] above (see example 3)

[0353] See also figure 44.

Example 42: PRAME 274-301

<u>Table 42</u>

<u>Preferred Epitopes Revealed by Housekeeping Proteasome Digestion</u>

T 1		Sequence		HLA binding	predictions†		
Epitope	Sequence	ID No.	HLA type	SYFPEITHI	NIH		
			A1	21	5		
			A26	23	N/A		
275-284	YISPEKEEQY	364	A3	20	<5		
			B4402	15	N/A		
			A1	19	<5		
276-284	ISPEKEEQY	365	A26	15	N/A		
			B0702	17	N/A		
277-285	SPEKEEQYI	366	B5101	21	484		
278-285	PEKEEQYI	367	B08	18	<5		
			A26	24	N/A		
279-288	EKEEQYIAQF	368	B4402	16	N/A		
	<u> </u>		A26	17	N/A		
280-288	KEEQYIAQF	369	B2705	19	45		
			B4402	25	N/A		
			A3	17	<5		
283-292	QYIAQFTSQF	370	B4402	15	N/A		
			A0201	15	<5		
284-292	YIAQFTSQF	371	A26	24	N/A		
			A3	19	<5		
			A0201	22	74.314		
284-293	YIAQFISQFL	YIAQFTSQFL	YIAQFTSQFL	372	A26	21	N/A
			A0201	15	<5		
285-293	IAQFTSQFL	373	B08	15	<5		
			B5101	19	78.65		
			A0201	16	15.226		
			A26	15	N/A		
286-295	AQFTSQFLSL	374	B0702	15	N/A		
			A4402	18	N/A		
287-295	QFTSQFLSL	375	A26	21	N/A		
	 ` ` ` ` 		A0201	17	18.432		
200 200	gont of o of	25.5	A26	16	N/A		
290-298	SQFLSLQCL	376	B2705	16	1000		
			B4402	15	N/A		

†Scores are given from the two binding prediction programs referenced

[0354] above (see example 3)

[0355] See also figure 45.

Example 43: PRAME 434-463

<u>Table 43</u>

<u>Preferred Epitopes Revealed by Housekeeping Proteasome Digestion</u>

Enitone	Camana	Sequence	III A tumo	HLA binding predictions†	
Epitope	Sequence	ID No.	HLA type	SYFPEITHI	NIH
			A0201	20	<5
439-448	VLYPVPLESY	377	A1	21	5
439-440	VLIPVPLESI	377	A26	25	N/A
			A3	25	67.5
440-448	LYPVPLESY	378	A1	16	<5
446-455	ESYEDIHGTL	379	A26	16	N/A
448-457	YEDIHGTLHL	380	A1	18	<5
449-457	EDIHGTLHL	381	B2705	15	<5
451-460	IHGTLHLERL	382	A0201	16	<5

†Scores are given from the two binding prediction programs referenced

[0356] above (see example 3)

[0357] See also figure 46.

Example 44: PRAME 452-480

<u>Table 44</u>

<u>Preferred Epitopes Revealed by Housekeeping Proteasome Digestion</u>

E *4	6	Sequence	YYT A 4	HLA binding	predictions†
Epitope	Sequence	ID No.	HLA type	SYFPEITHI	NIH
454 463	TY III DDY AND	202	A0201	26	270.234
454-463	TLHLERLAYL	383	A26	21	N/A
			A0201	22	<5
155 163	THE EDI AND	204	B08	20	<5
455-463	LHLERLAYL	384	B1510	21	N/A
			B2705	15	<5
456-463	HLERLAYL	385	B08	17	<5
156 165	III EDI AVI HA	206	A3	16	<5
456-465	HLERLAYLHA	386	A1	17	<5
458-467	ERLAYLHARL	387	A26	16	N/A
			A0201	24	21.362
459-467	DIAVITADI	388	B08	17	<5
439-407	RLAYLHARL		B2705	18	90
			B2709	15	N/A
459-468	RLAYLHARLR	389	A3_	22	<5
460-467	LAYLHARL	390	B08	15	<5
400-407	LATLHARL	390	B5101	20	N/A
460-468	LAYLHARLR	391	B5101	18	<5
461-470	AYLHARLREL	392	A0201	20	<5
401-470		392	B4402	16	N/A
462-470	YLHARLREL	393	A0201	28	45.203
402-470	ILHARLKEL	393	B08	25	8
462-471	VIIIADIDELI	394	A0201	22	48.151
402-471	YLHARLRELL	394	A26	16	N/A
463-471	LHARLRELL	395	A0201	15	<5
403-4/1	LUAKTKETT	393	B1510	22	N/A
161 171	HARLRELL	396	B08	30	320
464-471	HARLRELL	390	B5101	17	N/A
464-472	HARLRELLC	397	B08	20	16
469-478	ELLCELGRPS	398	A3	15	<5
470-478	LLCELGRPS	399	A0201	15	<5

†Scores are given from the two binding prediction programs referenced

[0358] above (see example 3)

[0359] See also figure 47.

Example 45: PSA 143-169

<u>Table 45</u>

<u>Preferred Epitopes Revealed by Housekeeping Proteasome Digestion</u>

Epitope Se	Sequence HI A type	Sequence		HLA binding predictions†	
	Sequence	ID No.	HLA type	SYFPEITHI	NIH
144-153	QEPALGTTCY	400	A1	15	<5
145 153	TDAT CTTCV	401	A1	17	<5
145-153 EPALGTTCY	EPALGITCY	401	A26	17	N/A

†Scores are given from the two binding prediction programs referenced

[0360] above (see example 3)

[0361] See also figure 48.

Example 46: PSA 156-1883

<u>Table 46</u>

<u>Preferred Epitopes Revealed by Housekeeping Proteasome Digestion</u>

Enitona	Enitona Seguence	Sequence	III A 4	HLA binding	predictions†
Epitope	Sequence	ID No.	HLA type	SYFPEITHI	NIH
162-171	PEEFLTPKKL	402	B4402	24	N.A.
163-171	EEFLTPKKL	403	A26	17	N.A.
103-171	EEFLIFKKL	403	B4402	29	N.A.
165-173	FLTPKKLQC	404	A3	20	<5
103-173	FLIFAKLQC	404	B08	17	<5
165-174	FLTPKKLQCV	405	A0201	26	735.86
103-174	FLIPKKLQCV	405	A26	15	N.A.
166-174	LTDVVLOCV	406	A0201	21	<5
100-1/4	LTPKKLQCV	400	A26	18	N.A.
167-174	TPKKLQCV	407	B08	16	<5
10/-1/4	IPKKLQCV	407	B5101	22	N.A.
167-175	TPKKLQCVD	408	B5101	15	<5
170 170	KLOCADITIA	TI OCUPATIVITA AND	A0201	24	34.433
1/0-1/9	170-179 KLQCVDLHVI	409	A3	17	<5
171 170	LOCVIDLINI	410	A0201	15	<5
171-179	LQCVDLHVI	410	B5101	16	6.292

†Scores are given from the two binding prediction programs referenced

[0362] above (see example 3)

[0363] See also figure 49.

Example 47: PSCA 67-94

<u>Table 47</u>

<u>Preferred Epitopes Revealed by Housekeeping Proteasome Digestion</u>

Enitono	C	Sequence	LIT A tuno	HLA binding predictions	
Epitope	Sequence	ID No.	HLA type	SYFPEITHI	NIH
73-81	DSQDYYVGK	411	A3	15	<5
74-82	SQDYYVGKK	412	A1	16	<5
74-83	SQDYYVGKKN	413	A1	15	<5
76-84	DYYVGKKNI	414	B5101	19	23.426
77-84	YYVGKKNI	415	B08	16	<5
78-86	YVGKKNITC	416	A3	15	<5
78-87	YVGKKNITCC	417	A26	15	N/A

†Scores are given from the two binding prediction programs referenced

[0364] above (see example 3)

[0365] See also figure 50.

Example 48: PSMA 378-405

<u>Table 48</u>

<u>Preferred Epitopes Revealed by Housekeeping Proteasome Digestion</u>

P-14	C	Sequence	TTT A 4	HLA binding	predictions†
Epitope	Sequence	ID No.	HLA type	SYFPEITHI	NIH
381-390	WVFGGIDPQS	418	A26	16	N/A
301-390	WYFGGIDFQS	418	A3	15	<5
			A0201	24	<5
	ļ		A0203	· 17	N/A
385-394	GIDPQSGAAV	419	A1	15	10
			A26	15	N/A
			A3	18	< 5.
386-394	IDPQSGAAV	420	A0201	15	<5
387-394	DPQSGAAV	421	B5101	22	N/A
207 206	DDOGG A AVIII	422	B0702	18	N/A
387-395	DPQSGAAVV	422	B5101	26	440
387-396	DPQSGAAVVH	423	A3	15	<5
388-396	PQSGAAVVH	424	A3	17	<5
389-398	QSGAAVVHEI	425	A0201	15	<5
200 200	CCAANTIE	126	A0201	19	<5
390-398	SGAAVVHEI	426	B5101	21	88
391-398	GAAVVHEI	427	B5101	23	N/A
201 200	CAANATICNA	420	A0201	17	<5
391-399	GAAVVHEIV	428	B5101	20	133.1
392-399	AAVVHEIV	429	B5101	19	N/A

†Scores are given from the two binding prediction programs referenced

[0366] above (see example 3)

[0367] See also figure 51.

Example 49: PSMA 597-623

<u>Table 49</u>

<u>Preferred Epitopes Revealed by Housekeeping Proteasome Digestion</u>

E-itana	S	Sequence	TIX A dorman	HLA binding	predictions†	
Epitope	Sequence	ID No.	HLA type	SYFPEITHI	NIH	
597-605	CRDYAVVLR	430	B2705	22	N/A	
			A1	17	<5	
598-607	RDYAVVLRKY	431	A26	15	N/A	
			A3	16	<5	
599-607	DYAVVLRKY	432	A1	19	<5	
399-007	DIAVVLKKI	432	A26	22	N/A	
600-607	YAVVLRKY	433	B5101	17	N/A	
602-611	VVLRKYADKI	434	A0201	17	<5	
002-011	VVLKKTADKI	434	A3	18	<5	
i	VLRKYADKI			A0201	22	<5
603-611		435	A3	16	<5	
003-011			B08	19	<5	
			B5101	16	5.72	
	VLRKYADKIY		A1	17	<5	
603-612		436	A26	19	N/A	
			A3	19	<5	
604-611	LRKYADKI	437	B08	17	<5	
604-612	LRKYADKIY	438	A1	15	<5	
004-012		436	B2705	19	N/A	
605-614	RKYADKIYSI	439	A0201	16	<5	
606-614	KYADKIYSI	440	A0201	20	<5	
000-014	KIADKIISI	440	B08	17	<5	
607-614	YADKIYSI	441	B5101	27	N/A	

†Scores are given from the two binding prediction programs referenced

[0368] above (see example 3)

[0369] See also figure 52.

Example 50: PSMA 615-642

<u>Table 50</u>

<u>Preferred Epitopes Revealed by Housekeeping Proteasome Digestion</u>

Epitope	G	Sequence	III A 40.00 c	HLA binding predictions†	
	Sequence	ID No.	HLA type	SYFPEITHI	NIH
616-625 MKHPQEMKTY	442	A1	19	<5	
	MKHPQEMKIY	442	A26	16	N/A
(17.625	KIIDOEMWAY	PQEMKTY 443	A1	15	<5
617-625	KHPQEMKIY		A26	16	N/A
618-627 HPQEMKTYSV	ALDOED WATEROW	PQEMKTYSV 444	A0201	15	<5
	HPQEMKIYSV		B0702	17	N/A

†Scores are given from the two binding prediction programs referenced

[0370] above (see example 3)

[0371] See also figure 53.

Example 51: SCP-1 57-86

<u>Table 51</u>

<u>Preferred Epitopes Revealed by Housekeeping Proteasome Digestion</u>

Enitone	Saguaras	Sequence	III A duma	HLA binding	predictions†	
Epitope	Sequence	ID No.	HLA type	SYFPEITHI	NIH	
62-71	IDSDPALQKV	445	A0201	19	<5	
			A0201	17	<5	
63-71	DSDPALQKV	446	A1	20	7.5	
03-71	DSDPALQKV	440	A26	15	N/A	
			B5101	15	5.324	
67-76	ALORANEI DV	ALQKVNFLPV	447	A0201	23	132.149
07-70	ALQKVINTLFV	447	A3	16	<5	
70-78	KVNFLPVLE	448	A3	18	<5	
71-80	VNFLPVLEQV	449	A0201	16	<5	
72-80	NFLPVLEQV	450	A0201	18	<5	
75-84	PVLEQVGNSD	451	A3	18	<5	
76-84	MEONONO	452	Al	15	<5	
/0-84	VLEQVGNSD	SD 452	A3	16	<5	

†Scores are given from the two binding prediction programs referenced

[0372] above (see example 3)

[0373] See also figure 54.

Example 52: SCP-1 201-227

<u>Table 52</u>

<u>Preferred Epitopes Revealed by Housekeeping Proteasome Digestion</u>

		Sequence	TTT A 4	HLA binding	predictions†
Epitope	Sequence	ID No.	HLA type	SYFPEITHI	NIH
202-210	YEREETRQV	453	A0201	16	. <5
			A1	19	<5
202-211	YEREETRQVY	454	A3	15	<5
	_		A4402	22	N/A
			A1	27	<5
203-211	EREETRQVY	455	A26	19	N/A
			B2705	20	N/A
203-212	EREETRQVYM	456	A26	17	N/A
204-212	REETRQVYM	457	B2705	15	N/A
211-220	YMDLNSNIEK	458	A1	17	25
		450	A0201	20	<5
213-221	DLNSNIEKM	459	A26	28	N/A
		460	A26	19	N/A
216-226	SNIEKMITAF	460	B4402	19	N/A
			A26	26	N/A
217-225	NIEKMITAF	461	B2705	17	N/A
			B4402	16	N/A
218-225	IEKMITAF	462	B08	17	<5

†Scores are given from the two binding prediction programs referenced

[0374] above (see example 3)

[0375] See also figure 55.

Example 53: SCP-1 395-424

<u>Table 53</u>

<u>Preferred Epitopes Revealed by Housekeeping Proteasome Digestion</u>

E - '4	S	Sequence	TYY A 4	HLA bindin	g predictions†
Epitope	Sequence	ID No.	HLA type	SYFPEITHI	NIH
397-406	RLENYEDQLI	463	A0201	17	<5
397-400	RLENTEDQLI	403	A3	15	<5
398-406	LENYEDQLI	464	B4402	19	N/A
398-407	LENYEDQLII	465	B4402	19	N/A
399-407	ENYEDQLII	466	B5101	17	19.36
399-408	ENYEDQLIIL	467	A26	20	N/A
400-408	NYEDQLIIL	468	A1	16	<5
400-409	NYEDQLIILT	469	A1	16	<5
401-409	YEDQLIILT	470	A1	18	<5
401-409	1 EDQLILL1	4/0	B4402	16	N/A
401 410	VEDOLIII TM	471	A1	18	<5
401-410	YEDQLIILTM	4/1	B4402	16	N/A
402 410	EDOLULTM	472	A26	18	N/A
402-410	EDQLIILTM	472	B2705	15	<5
406-415 IILTMELOK	IILTMELQKT	472	A0201	22	14.824
400-413	IILIMELQKI	473	A26	16	N/A
407-415	ILTMELQKT	474	A0201	21	29.137

†Scores are given from the two binding prediction programs referenced

[0376] above (see example 3).

[0377] See also figure 56.

Example 54: SCP-1 416-442

<u>Table 54</u>

<u>Preferred Epitopes Revealed by Housekeeping Proteasome Digestion</u>

F-'4	C	Sequence	117 A 4	HLA binding	g predictions†
Epitope Seque	Sequence	ID No.	HLA type	SYFPEITHI	NIH
424-432	KLTNNKEVE	475	A3	18	<5
			A0201	24	74.768
424-433	KLTNNKEVEL	476	A26	18	N/A
			A3	18	<5
			A0201	22	<5
425-433	LTNNKEVEL	477	A26	21	N/A
			B08	22	<5
429-438	KEVELEELKK	478	A3	17	<5
	EVELEELKK		Al	18	90
430-438		479	A26	17	N/A
430-438			A3	24	<5
			B2705	15	<5
420 420	EVELEELKKV	480	A0201	15	<5
430-439	EVELEELKKV	460	A26	21	N/A
			A0201	20	80.217
431-439	VELEELKKV	481	A4402	15	N/A
			B5101	17	<5

†Scores are given from the two binding prediction programs referenced

[0378] above (see example 3)

[0379] See also figure 57.

Example 55: SCP-1 518-545

<u>Table 55</u>

<u>Preferred Epitopes Revealed by Housekeeping Proteasome Digestion</u>

Epitope	S	Sequence Sequence ID No.	III A 4uma	HLA binding predictions†	
	Sequence		HLA type	SYFPEITHI	NIH
530-539	ETSDMTLELK	482	A26	21	N/A
531-539	TSDMTLELK	483	A1	16	15

†Scores are given from the two binding prediction programs referenced

[0380] above (see example 3)

[0381] See also figure 58.

Example 56: SCP-1 545-578

<u>Table 56</u>

<u>Preferred Epitopes Revealed by Housekeeping Proteasome Digestion</u>

173	Saguenes	Sequence	TYT A 4	HLA binding	predictions†
Epitope	Sequence	ID No.	HLA type	SYFPEITHI	NIH
548-556	NKKQEERML	484	B08	20	<5
552 562	EDMI TOIENI	485	A26	19	N/A
553-562	ERMLTQIENL	465	B4402	17	N/A_
			A0201	24	64.335
			B2705	21	150
554-562	RMLTQIENL	486	B2709	17	N/A
			B4402	15	N/A
555-562	MLTQIENL	487	B08	16	<5
555-564	MLTQIENLQE	488	A3	16	<5
560-569	ENLQETETQL	489	A26	16	N/A
			A0201	22	87.586
5(1.5(0	NI OETETOI	400	A26	19	N/A
561-569	NLQETETQL	490	A3	15	<5
			B08	18	<5
561-570	NLQETETQLR	491	A3	15	6

†Scores are given from the two binding prediction programs referenced

[0382] above (see example 3).

[0383] See also figure 59.

Example 57: SCP-1 559-585

<u>Table 57</u>

<u>Preferred Epitopes Revealed by Housekeeping Proteasome Digestion</u>

E-:4	6	Sequence	TIT A Assess	HLA binding predictions†	
Epitope	Sequence	ID No.	HLA type	SYFPEITHI	NIH
567-576	TQLRNELEYV	492	A0201	16	161.729
568-576	QLRNELEYV	493	A0201	24	32.765
308-370	QURNELETV	493	A3	16	<5
571-580	NELEYVREEL	494	A0201	16	<5
3/1-360		494	B4402	23	N/A
		1	A0201	17	<5
572-580	ELEYVREEL	495	A26	23	N/A
			B08	20	<5
573-580	LEYVREEL	496	B08	19	<5
574-583	EYVREELKQK	497	A3	16	<5
575 502	MADEELKOK	400	A26	17	N/A
575-583	YVREELKQK	498	A3	27	<5

†Scores are given from the two binding prediction programs referenced

[0384] above (see example 3)

[0385] See also figure 60.

Example 58: SCP-1 665-701

<u>Table 58</u>

<u>Preferred Epitopes Revealed by Housekeeping Proteasome Digestion</u>

TF:4	S	Sequence	TIL A days	HLA binding	predictions†
Epitope	Sequence	ID No.	HLA type	SYFPEITHI	NIH
675-684	LLEEVEKAKV	499	A0201	27	31.026
676-684	LEEVEKAKV	500	A0201	15	<5
676-685	LEEVEKAKVI	501	A4402	22	N/A
			B08	21	<5
677-685	EEVEKAKVI	502	B4402	24	N/A
			B5101	18	<5
681-690	KAKVIADEAV	503	A0201	15	<5
	KVIADEAVKL		A0201	21	6.542
(02 (02		504	A26	22	N/A
683-692			A3	25	<5
			B4402	17	N/A
			A0201	26	20.473
			A26	22	N/A
684-692	VIADEAVKL	505	- A3	17	<5
			B08	16	<5
			B2705	15	N/A
(05 (00	LADEAUZI	506	B08	17	<5
685-692	IADEAVKL	506	B5101	21	N/A

†Scores are given from the two binding prediction programs referenced

[0386] above (see example 3)

[0387] See also figure 61.

Example 59: SCP-1 694-720

<u>Table 59</u>

<u>Preferred Epitopes Revealed by Housekeeping Proteasome Digestion</u>

D . 14		Sequence	TTT A 4	HLA binding	predictions†
Epitope	Sequence	ID No.	HLA type	SYFPEITHI	NIH
694-702	KEIDKRCQH	507	A3	16	<5
094-702	KEIDKKCQH	307	A4402	17	N/A
694-703	KEIDKRCOHK	508	A3	17	<5
094-703	KEIDKKCQIIK	308	B4402	15	N/A
695-703	EIDKRCQHK	509	A26	20	N/A
093-703	EIDKRCQHK	309	A3	20	<5
606 704	EIDKBCOIIKI	510	A0201	16	<5
093-704	95-704 EIDKRCQHKI	510	A26	19	N/A
696-704	IDKRCQHKI	511	B08	17	<5
697-704	DKRCQHKI	512	B5101	16	N/A
698-706	KRCQHKIAE	513	B2705	16	60
698-707	KRCQHKIAEM	514	A26	15	N/A
			A26	15	N/A
699-707	RCQHKIAEM	515	B2705	18	9
701-710	QHKIAEMVAL	516	A26	15	N/A
<u> </u>			A0201	15	<5
702-710 HKIA	HKIAEMVAL	517	A26	16	N/A
			B4402	16	N/A
703-710	KIAEMVAL	518	B08	16	<5

†Scores are given from the two binding prediction programs referenced

[0388] above (see example 3)

[0389] See also figure 62.

Example 60: SCP-1 735-769

<u>Table 60</u>

<u>Preferred Epitopes Revealed by Housekeeping Proteasome Digestion</u>

- ·		Sequence	***	HLA binding	predictions†			
Epitope	Sequence	ID No.	HLA type	SYFPEITHI	NIH			
737-746	QEQSSLRASL	519	B4402	21	N.A.			
720 746	EOCGI DAGI	620	A26	22	N.A.			
738-746	EQSSLRASL	519 520 521 522 523 524 525 526 527 528 529 530 531 532 534 535	B0702	15	6			
739-746	QSSLRASL	521	B08	19	<5			
			A0201	24	<5			
741-750	SLRASLEIEL	522	A26	17	N.A.			
			A3	16	<5			
		523 524 525 526 527	A0201	17	<5			
742-750	LRASLEIEL	523	B2705	23	2000			
			B2709	21	N.A.			
743-750	RASLEIEL	524	B5101	17	N.A.			
744-753	ASLEIELSNL	525	A0201	20	<5			
144-133	ASLEIELSNL	323	A26	16	N.A.			
	5-753 SLEIELSNL					A0201	25	<5
745-753		526	A26	22	N.A.			
143-133	SEERELSINE		A3	15	<5			
			B08	18	<5			
745-754	SLEIELSNLK	527	A1	15	18			
743-734	BELIELDIVER		A3	22	20			
746-754	LEIELSNLK	528	B2705	16	30			
	EBIBEOTIE		B4402	15	N.A.			
747-755	EIELSNLKA	520	A1	19	<5			
141-133	EIELSIVERA	329	A26	18	N.A.			
749-758	ELSNLKAELL	530	A0201	17	<5			
143-736	ELSIVERALLE	330	A26	22	N.A.			
750-758	LSNLKAELL	531	B08	21	<5			
751-760	SNLKAELLSV	532	A0201	21	<5			
			A0201	26	5.599			
752-760	NLKAELLSV	533	A3	18	<5			
			B08	16	<5			
752-761	NLKAELLSVK	534	A3	30	30			
753-761	LKAELLSVK	535	A3	19	<5			
753-762	LKAELLSVKK	536	A3	16	<5			
754 763	KAELLSVKK	537	A3	18	<5			
754-762			B2705	18	30			
755-763	AELLSVKKQ	538	B4402	19	N.A.			

†Scores are given from the two binding prediction programs referenced

[0390] above (see example 3)

[0391] See also figure 63.

Example 61: SCP-1 786-816

<u>Table 61</u>

<u>Preferred Epitopes Revealed by Housekeeping Proteasome Digestion</u>

T-:4	C	Sequence	TTI A 4	HLA binding	predictions†
Epitope	Sequence	ID No.	HLA type	SYFPEITHI	NIH
707 706	EVVDVVTOTE	520	A26	19	N/A
787-796	EKKDKKTQTF	539	B4402	15	N/A
788-796	KKDKKTQTF	540	B08	16	<5
780-790	KKDKKTQII	340	B2705	16	<5
789-796	KDKKTQTF	541	B08	16	<5
797-806 LLETPDIYWK	PDIYWK 542	A0201	16	<5	
171-000	CEETI DIT WK	342	A3	21	90
700 006	LETRONYUW	542	B2705	15	30
798-806	LETPDIYWK	543	B4402	16	N/A
			A0201	15	7.944
798-807	LETPDIYWKL	544	A26	15	N/A
			A4402	24	N/A
799-807	ETPDIYWKL	545	A26	31	N/A
133-001	EIIDIIWKL	J-4-J	B4402	16	N/A
900 907	TPDIYWKL	5.1.6	B08	16	<5
800-807	IFDITWKL	546	B5101	19	N/A

†Scores are given from the two binding prediction programs referenced

[0392] above (see example 3)

[0393] See also figure 64.

Example 62: SCP-1 806-833

<u>Table 62</u>

<u>Preferred Epitopes Revealed by Housekeeping Proteasome Digestion</u>

E-:4	S	Sequence	TIT A 41ma	HLA binding predictions†		
Epitope	Sequence	ID No.	HLA type	SYFPEITHI	NIH	
809-817	SKAVPSQTV	547	A0201	17	<5	
810-817	KAVPSQTV	548	B5101	19	N/A	
812-821	VPSQTVSRNF	549	B0702	18	N/A	
015 024	15 004 OTHER PROPERTY	550	A0201	16	<5	
815-824	QTVSRNFTSV	550	A26	16	N/A	
			A0201	16	11.426	
816-824	TVSRNFTSV	551	A26	15	N/A	
	1		A3	16	<5	
816-825	TVSRNFTSVD	552	A3	20	<5	
823-832	SVDHGISKDK	553	A3	21	<5	

†Scores are given from the two binding prediction programs referenced

[0394] above (see example 3)

[0395] See also figure 65.

Example 63: SCP-1 826-853

<u>Table 63</u>

<u>Preferred Epitopes Revealed by Housekeeping Proteasome Digestion</u>

Enitona	Cannona	Sequence	III A tumo	HLA binding	predictions†
Epitope	Sequence	ID No.	HLA type	SYFPEITHI	NIH
829-838	SKDKRDYLWT	554	A1	18	<5
832-840	KRDYLWTSA	555	B2705	16	600
832-841	KRDYLWTSAK	556	A3	17	<5
833-841 RDYLWTSAK	557	A3	23	<5	
833-841	RDILWISAK	557	B2705	18	15
835-843	YLWTSAKNT	558	A0201	16	284.517
835-844	YLWTSAKNTL	559	A0201	26	815.616
833-844	YLWISAKNIL		A26	16	N/A
837-844	WTSAKNTL	560	B08	20	<5
841-850	KNTLSTPLPK	561	A3	18	<5
842-850	NTLSTPLPK	562	A3	16	<5

†Scores are given from the two binding prediction programs referenced

[0396] above (see example 3)

[0397] See also figure 66.

Example 64: SCP-1 832-859

<u>Table 64</u>

<u>Preferred Epitopes Revealed by Housekeeping Proteasome Digestion</u>

E:4	C	Sequence	TIT A 4	HLA binding	g predictions†
Epitope	Sequence	ID No.	HLA type	SYFPEITHI	NIH
832-840	KRDYLWTSA	563	B2705	16	600
832-841	KRDYLWTSAK	564	A3	17	<5
022 041	DDVIWTCAV	565	A3	23	<5
833-841 RDYLWTSAK	RDILWISAK	303	B2705	18	15
835-843	YLWTSAKNT	566	A0201	16	284.517
839-846	SAKNTLST	567	B08	16	<5
841-850	KNTLSTPLPK	568	A3	18	<5
842-850	NTLSTPLPK	569	A3	16	<5
		1	A1	16	<5
843-852	TLSTPLPKAY	570	A26	19	N/A
843-832	ILSTPLPKAT	570	A3	18	<5
ł			B4402	17	N/A
944 953	LSTPLPKAY	571	A1	23	7.5
844-852	LSIPLPKAY	571	A4402	18	N/A

†Scores are given from the two binding prediction programs referenced

[0398] above (see example 3)

[0399] See also figure 67.

Example 65: SSX-2 1-27

<u>Table 65</u>

<u>Preferred Epitopes Revealed by Housekeeping Proteasome Digestion</u>

70-14		Sequence	TTT A 4	HLA binding	predictions†
Epitope	Sequence	ID No.	HLA type	SYFPEITHI	NIH
5-12	DAFARRPT	572	B5101	18	N/A
7-15	FARRPTVGA	573	A0201	15	<5
8-17	ARRPTVGAQI	574	A3	18	<5
0.17	DDDTVCAOL	575	B2705	23	1800
9-17	RRPTVGAQI	575	B2709	23	N/A
10-17	RPTVGAQI	576	B5101	20	N/A
13-21	VGAQIPEKI	577	B5101	20	125.84
14-21	GAQIPEKI	578	B5101	25	N/A
15-24	AQIPEKIQKA	579	A0201	16	<5
			A0201	21	6.442
16-24	QIPEKIQKA	580	A26	20	N/A
	j		B08	17	<5
16.05	OTBERTONAE	501	A26	24	N/A
16-25	QIPEKIQKAF	581	A3	16	<5
17-24	IPEKIQKA	582	B5101	19	N/A
			B0702	19	N/A
17-25	IPEKIQKAF	583	B08	15	<5
			B2705	16	<5
18-25	PEKIQKAF	584	B08	16	<5

†Scores are given from the two binding prediction programs referenced

[0400] above (see example 3)

[0401] See also figure 68.

Example 66: Survivin 116-142

<u>Table 66</u>

<u>Preferred Epitopes Revealed by Housekeeping Proteasome Digestion</u>

n	6	Sequence	TIT A 4	HLA binding	g predictions†
Epitope	Sequence	ID No.	HLA type	SYFPEITHI	NIH
116 124	ETNNKKKEF	585	A26	28	N/A
116-124	EINNAAAE	202	B08	20	<5
117-124	TNNKKKEF	586	B08	16	<5
122-131	KEFEETAKKV	587	A0201	15	71.806
122 121	EFFETAVVV	500	A26	15	N/A
123-131	31 EFEETAKKV	588	B5101	15	5.324
127-134	TAKKVRRA	589	B5101	17	N/A
126-134	ETAKKVRRA	590	A26	24	N/A
128-136	AKKVRRAIE	591	B08	19	<5
129-138	KKVRRAIEQL	592	A0201	15	<5
			A0201	19	<5
	ļ		A26	23	N/A
130-138	KVRRAIEQL	593	A3	22	<5
			B08	17	. <5
			B2705	16	30
130-139	KVRRAIEQLA	594	A3	19	<5
131-138	VRRAIEQL	595	В08	17	<5

†Scores are given from the two binding prediction programs referenced

[0402] above (see example 3)

[0403] See also figure 69.

<u>Table 67</u>
Preferred Epitopes Revealed by Housekeeping Proteasome Digestion

Enitone	6	Sequence	TIT A tumo	HLA binding	g predictions†
Epitope	Sequence	ID No.	HLA type	SYFPEITHI	NIH
24.21	ann ann	506	B08	19	<5
24-31	SPVVSWRL	596	B5101	17	N/A
21-29	KEESPVVSW	597	B4402	23	N/A
10.27	19-27 LMKEESPVV	598	A0201	22	5.024
19-27		398	B5101	15	<5
18-27	8-27 RLMKEESPVV	599	A0201	22	105.51
10-27	KLIVIKEESPVV	399	A3	18	<5
18-26	RLMKEESPV	600	A0201	21	257.342
16-20	RLMREESPY	000	A3	17	<5
14-22	LLOADIMKE	601	A0201	18	<5
14-22	LLQARLMKE	001	A3	15	<5
			A0201	18	<5
13-22	QLLQARLMKE	602	A26	15	N/A
			A3	15	<5

†Scores are given from the two binding prediction programs referenced

[0404] above (see example 3)

[**0405**] See also figure 70.

Example 68

Epitope Clusters.

[0406] Known and predicted epitopes are generally not evenly distributed across the sequences of protein antigens. As referred to above, we have defined segments of sequence containing a higher than average density of (known or predicted) epitopes as epitope clusters. Among the uses of epitope clusters is the incorporation of their sequence into substrate peptides used in proteasomal digestion analysis as described herein, or to otherwise inform the selection and design of such substrates. Epitope clusters can also be useful as vaccine components. Fuller discussions of the definition and uses of epitope clusters is found in PCT Publication No. WO 01/82963; PCT Publication No. WO 03/057823; and U.S. Patent Application No. 09/561,571 entitled EPITOPE CLUSTERS, which all are or were previously incorporated by reference in their entireties and in U.S. Patent

Application No. 10/026,066 entitled "EPITOPE SYNCHRONIZATION IN ANTIGEN PRESENTING CELLS", which is hereby incorporated by reference in its entirety. Epitopes and epitope clusters for many of the TAA mentioned herein have been previously disclosed in PCT Publication No. WO 02/081646; in Patent Application No. 09/561,571; in U.S. Patent Application No. 10/117,937; U.S. Provisional Application Nos. 60/337,017 filed on November 7, 2001, and 60/363,210 filed on March 7, 2002, all entitled EPITOPE SEQUENCES, which are all incorporated by reference in their entirety. The teachings and embodiments disclosed in said publications and applications are contemplated as supporting principals and embodiments related to and useful in connection with the present invention.

[0407] For the TuAAs survivin (SEQ ID NO. 98) and GAGE-1 (SEQ ID NO. 96) the following tables (68-73) present 9-mer epitopes predicted for HLA-A2 binding using both the SYFPEITHI and NIH algorithms and the epitope density of regions of overlapping epitopes, and of epitopes in the whole protein, and the ratio of these two densities. (The ratio must exceed one for there to be a cluster by the above definition; requiring higher values of this ratio reflect preferred embodiments). Individual 9-mers are ranked by score and identified by the position of their first amino in the complete protein sequence. Each potential cluster from a protein is numbered. The range of amino acid positions within the complete sequence that the cluster covers is indicated, as are the rankings of the individual predicted epitopes it is made up of.

Table 68

HLA-A2 Epitope cluster analysis for Survivin (NIH algorithm)

Length of protein sequence: 142 amino acids

Number of 9-mers: 134

Number of 9-mers with NIH score $\geq 5:2$

Cluster	AA	Peptide	Start	Score	<u>Pepti</u>	des/AAs	Ratio
		Rank	Position		Cluster	Whole Pro.	
1	13-28	1	13	10.26	0.125	0.014	8.875
SEQ ID NO:603		2	20	4.919			

Table 69

HLA-A2 Epitope cluster analysis for Survivin (SYFPEITHI algorithm)

Length of protein sequence: 142 amino acids

Number of 9-mers: 134

Number of 9-mers with SYFPEITHI score ≥ 15: 10

Cluster	AA	Peptide	Start	Score	Peptid	es/AAs	Ratio
<u></u>		Rank	Position		Cluster	Whole Pro.	
1	13-28	5	13	17	0.125	0.070	1.775

SEQ ID NO:603		4	20	18			
2	79-111	8	79	15	0.182	0.070	2.597
SEQ ID NO:604		9	81	15			
		6	88	17			
		1	96	23			
1		7	97	16			
		10	103	15			
3	130-141	2	130	19	0.167	0.070	2.381
SEQ ID NO:60	5	3	133	19			

Table 70

HLA-A2 Epitope cluster analysis for GAGE-1 (NIH algorithm)

Length of protein sequence: 138 amino acids Number of 9-mers: 130

Number of 9-mers with NIH score ≥ 5 : 5

Number of 9-me	AA	Peptide Rank	Start Position	Score	Peptides/AAs		Ratio
Cluster					Cluster	Whole Pro.	
1	116-133		123	1999.734	0.278	0.036	7.667
SEQ ID NO:606		2	121	161.227			
		3	125	49.834			
		4	117	37.362			
		5	116	6.381			

<u>Table 71</u> **HLA-A2** Epitope cluster analysis for GAGE-1 (SYFPEITHI algorithm)

Length of protein sequence: 138 amino acids

Number of 9-mers: 130

Number of 9-mers with SYFPEITHI score \geq 5: 6

Cluster	AA	Peptide	Start	Score	Peptid	es/AAs	Ratio
Clustor	1	Rank	Position		Cluster	Whole Pro.	
1	116-133	1	116	22	0.333	0.043	7.667
SEQ ID NO:606		2	123	22			
		3	125	22			
		4	117	17			
		5	120	16			
		6	121	15			

<u>Table 72</u> **HLA-A2** Epitope cluster analysis for BAGE (NIH algorithm)

Length of protein sequence: 43 amino acids

Number of 9-mers included: 35

Number of 9-mers with NIH score ≥ 5 : 4

Cluster		Peptide	Start	Score	Score Peptides/AAs		
Cluster		Rank	Position		Cluster	Whole Pro.	
1	7-17	2	7	98.267	0.182	0.093	1.955
SEQ ID NO:607		3	9	11.426			
2	18-27	1	18	257.342	0.200	0.093	2.151
SEQ ID NO:608		4	19	5.024			

Table 73 HLA-A2 Epitope cluster analysis for BAGE (SYFPEITHI algorithm)

Length of protein sequence: 43 amino acids Number of 9-mers included: 35

Number of 9-mers with SYFPEITHI score ≥ 15: 10

Cluster	AA	Peptide	Start	Score	Peptides/AAs		Ratio
		Rank	Position		Cluster	Whole Pro.	
1	2-27	6	2	18	0.308	0.233	1.323
SEQ ID NO:609		9	6	16			
		1	7	23			
		3	9	21			
		5	11	19			
		7	14	18			
		4	18	21			
		2	19	22			
2	30-39	8	30	17	0.200	0.233	0.858
SEQ ID NO:610		10	31	15			

[0408] The embodiments of the invention are applicable to and contemplate variations in the sequences of the target antigens provided herein, including those disclosed in the various databases that are accessible by the world wide web. Specifically for the specific sequences disclosed herein, variation in sequences can be found by using the provided accession numbers to access information for each antigen.

TYROSINASE PROTEIN; SEQ ID NO 2

- 1 MLLAVLYCLL WSFQTSAGHF PRACVSSKNL MEKECCPPWS GDRSPCGQLS GRGSCQNILL
- 61 SNAPLGPQFP FTGVDDRESW PSVFYNRTCQ CSGNFMGFNC GNCKFGFWGP NCTERRLLVR
- 121 RNIFDLSAPE KDKFFAYLTL AKHTISSDYV IPIGTYGQMK NGSTPMFNDI NIYDLFVWMH
- 181 YYVSMDALLG GSEIWRDIDF AHEAPAFLPW HRLFLLRWEQ EIQKLTGDEN FTIPYWDWRD
- 241 AEKCDICTDE YMGGQHPTNP NLLSPASFFS SWQIVCSRLE EYNSHQSLCN GTPEGPLRN
- 301 PGNHDKSRTP RLPSSADVEF CLSLTQYESG SMDKAANFSF RNTLEGFASP LTGIADASQS
- 361 SMHNALHIYM NGTMSQVQGS ANDPIFLLHH AFVDSIFEQW LRRHRPLQEV YPEANAPIGH
- 421 NRESYMVPFI PLYRNGDFFI SSKDLGYDYS YLQDSDPDSF QDYIKSYLEQ ASRIWSWLLG
 - 481 AAMVGAVLTA LLAGLVSLLC RHKRKQLPEE KQPLLMEKED YHSLYQSHL

SSX-2 PROTEIN; SEQ ID NO 3

- 1 MNGDDAFARR PTVGAQIPEK IQKAFDDIAK YFSKEEWEKM KASEKIFYVY MKRKYEAMTK
- 61 LGFKATLPPF MCNKRAEDFQ GNDLDNDPNR GNQVERPQMT FGRLQGISPK IMPKKPAEEG
- 121 NDSEEVPEAS GPQNDGKELC PPGKPTTSEK IHERSGPKRG EHAWTHRLRE RKOLVIYEEI
 - 181 SDPEEDDE

PSMA PROTEIN; SEQ ID NO 4

- 1 MWNLLHETDS AVATARRPRW LCAGALVLAG GFFLLGFLFG WFIKSSNEAT NITPKHNMKA
- 61 FLDELKAENI KKFLYNFTQI PHLAGTEQNF QLAKQIQSQW KEFGLDSVEL AHYDVLLSYP
- 121 NKTHPNYISI INEDGNEIFN TSLFEPPPPG YENVSDIVPP FSAFSPQGMP EGDLVYVNYA

181	RTEDFFKLER	DMKINCSGKI	VIARYGKVFR	GNKVKNAQLA	GAKGVILYSD
PADYFAPGVK					
241	SYPDGWNLPG	GGVQRGNILN	LNGAGDPLTP	GYPANEYAYR	RGIAEAVGLP
SIPVHPIGYY					
301	DAQKLLEKMG	GSAPPDSSWR	GSLKVPYNVG	PGFTGNFSTQ	KVKMHIHSTN
EVTRIYNVIG					
361	TLRGAVEPDR	YVILGGHRDS	WVFGGIDPQS	GAAVVHEIVR	SFGTLKKEGW
RPRRTILFAS					
421	WDAEEFGLLG	STEWAEENSR	LLQERGVAYI	NADSSIEGNY	TLRVDCTPLM
YSLVHNLTKE					
481	LKSPDEGFEG	KSLYESWTKK	SPSPEFSGMP	RISKLGSGND	FEVFFQRLGI
ASGRARYTKN					
541	WETNKFSGYP	LYHSVYETYE	LVEKFYDPMF	KYHLTVAQVR	GGMVFELANS
IVLPFDCRDY					
601	AVVLRKYADK	IYSISMKHPQ	EMKTYSVSFD	SLFSAVKNFT	EIASKFSERL
QDFDKSNPIV					
661	LRMMNDQLMF	LERAFIDPLG	LPDRPFYRHV	IYAPSSHNKY	AGESFPGIYD
ALFDIESKVD					
721	PSKAWGEVKR Q	IYVAAFTVQ AA	AETLSEVA		

Homo sapiens tyrosinase (oculocutaneous albinism IA) (TYR), mRNA.; ACCESSION NM 000372 VERSION NM 000372.1 GI:4507752 SEQ ID NO 2 /translation="MLLAVLYCLLWSFQTSAGHFPRACVSSKNLMEKECCPPWSGDRS PCGOLSGRGSCONILLSNAPLGPOFPFTGVDDRESWPSVFYNRTCQCSGNFMGFNCGN` CKFGFWGPNCTERRLLVRRNIFDLSAPEKDKFFAYLTLAKHTISSDYVIPIGTYGOMK NGSTPMFNDINIYDLFVWMHYYVSMDALLGGSEIWRDIDFAHEAPAFLPWHRLFLLRW EQEIQKLTGDENFTIPYWDWRDAEKCDICTDEYMGGQHPTNPNLLSPASFFSSWQIVC SRLEEYNSHOSLCNGTPEGPLRRNPGNHDKSRTPRLPSSADVEFCLSLTQYESGSMDK AANFSFRNTLEGFASPLTGIADASQSSMHNALHIYMNGTMSQVQGSANDPIFLLHHAF VDSIFEOWLRRHRPLOEVYPEANAPIGHNRESYMVPFIPLYRNGDFFISSKDLGYDYS YLODSDPDSFODYIKSYLEOASRIWSWLLGAAMVGAVLTALLAGLVSLLCRHKRKQLP EEKQPLLMEKEDYHSLYQSHL"

SEQ ID NO 5 ORIGIN

l atcactgtag tagtagctgg aaagagaaat ctgtgactcc aattagccag ttcctgcaga

⁶¹ ccttgtgagg actagaggaa gaatgctcct ggctgttttg tactgcctgc tgtggagttt

¹²¹ ccagacetee getggeeatt teeetagage etgtgetee tetaagaace tgatggagaa

- 181 ggaatgctgt ccaccgtgga gcggggacag gagtccctgt ggccagcttt caqqcaqaqq
- 241 ttcctgtcag aatatccttc tgtccaatgc accacttggg cctcaatttc ccttcacagg
- 301 ggtggatgac cgggagtcgt ggccttccgt cttttataat aggacctgcc agtgctctgg
- 361 caacttcatg ggattcaact gtggaaactg caagtttggc ttttggggac caaactgcac
- 421 agagagacga ctcttggtga gaagaacat cttcgatttg agtgccccag agaaggacaa
- $481\ {\rm atttttgcc}\ {\rm tacctcactt}\ {\rm tagcaaagca}\ {\rm taccatcagc}\ {\rm tcagactatg}\ {\rm tcatccccat}$
- 541 agggacctat ggccaaatga aaaatggatc aacacccatg tttaacgaca tcaatattta
- 601 tgacctcttt gtctggatgc attattatgt gtcaatggat gcactgcttg ggggatctga
- 661 aatctggaga gacattgatt ttgcccatga agcaccagct tttctgcctt ggcatagact
- 721 cttcttgttg cggtgggaac aagaaatcca gaagctgaca ggagatgaaa acttcactat
- 781 tccatattgg gactggcggg atgcagaaaa gtgtgacatt tgcacagatg agtacatggg
- 841 aggtcagcac cccacaaatc ctaacttact cagcccagca tcattcttct cctcttggca
- 901 gattgtctgt agccgattgg aggagtacaa cagccatcag tctttatgca atggaacgcc
- 961 cgagggacct ttacggcgta atcctggaaa ccatgacaaa tccagaaccc caaggctccc
- 1021 ctcttcagct gatgtagaat tttgcctgag tttgacccaa tatgaatctg gttccatgga
- 1081 taaagctgcc aatttcagct ttagaaatac actggaagga tttgctagtc cacttactgg
- 1141 gatagcggat gcctctcaaa gcagcatgca caatgccttg cacatctata tgaatggaac
- 1201 aatgtcccag gtacagggat ctgccaacga tcctatcttc cttcttcacc atgcatttgt
- 1261 tgacagtatt tttgagcagt ggctccgaag gcaccgtcct cttcaagaag tttatccaga
- 1321 agccaatgca cccattggac ataaccggga atcctacatg gttcctttta taccactgta
- 1381 cagaaatggt gatttcttta tttcatccaa agatctgggc tatgactata gctatctaca
- 1441 agattcagac ccagactctt ttcaagacta cattaagtcc tatttggaac aagcgagtcg
- 1501 gatctggtca tggctccttg gggcggcgat ggtaggggcc gtcctcactg ccctgctggc
- 1561 agggettgtg agettgetgt gtegteacaa gagaaageag etteetgaag
- 1621 actcctcatg gagaaagagg attaccacag cttgtatcag agccatttat aaaaggctta
- 1681 ggcaatagag tagggccaaa aagcctgacc tcactctaac tcaaagtaat gtccaggttc
- 1741 ccagagaata tctgctggta tttttctgta aagaccattt gcaaaattgt aacctaatac

1801 aaagtgtagc cttcttccaa ctcaggtaga acacacctgt ctttgtcttg ctgttttcac

1861 tcagcccttt taacattttc ccctaagccc atatgtctaa ggaaaggatg ctatttggta

1921 atgaggaact gttatttgta tgtgaattaa agtgctctta tttt

Homo sapiens synovial sarcoma, X breakpoint 2 (SSX2), mRNA.

ACCESSION NM 003147

VERSION NM_003147.1 GI:10337582

SEQ ID NO 3

/translation="MNGDDAFARRPTVGAQIPEKIQKAFDDIAKYFSKEEWEKMKASE

KIFYVYMKRKYEAMTKLGFKATLPPFMCNKRAEDFQGNDLDNDPNRGNQVERPQMTFG

RLQGISPKIMPKKPAEEGNDSEEVPEASGPQNDGKELCPPGKPTTSEKIHERSGPKRG EHAWTHRLRERKQLVIYEEISDPEEDDE"

SEQ ID NO 6 ORIGIN

1 ctctctttcg attcttccat actcagagta cgcacggtct gattttctct ttggattctt

61 ccaaaatcag agtcagactg ctcccggtgc catgaacgga gacgacgcct ttgcaaggag

121 acccacggtt ggtgctcaaa taccagagaa gatccaaaag gccttcgatg atattgccaa

181 atacttctct aaggaagagt gggaaaagat gaaagcctcg gagaaaatct tctatgtgta

241 tatgaagaga aagtatgagg ctatgactaa actaggtttc aaggccaccc tcccaccttt

301 catgtgtaat aaacgggccg aagacttcca ggggaatgat ttggataatg accctaaccg

361 tgggaatcag gttgaacgtc ctcagatgac tttcggcagg ctccagggaa tctccccgaa

421 gatcatgccc aagaagccag cagaggaagg aaatgattcg gaggaagtgc cagaagcatc

481 tggcccacaa aatgatggga aagagctgtg cccccggga aaaccaacta cctctgagaa

541 gattcacgag agatctggac ccaaaagggg ggaacatgcc tggacccaca gactgcgtga

601 gagaaaacag ctggtgattt atgaagagat cagcgaccct gaggaagatg acgagtaact

661 cccctcaggg atacgacaca tgcccatgat gagaagcaga acgtggtgac ctttcacgaa

721 catgggcatg gctgcggacc cctcgtcatc aggtgcatag caagtg

Homo sapiens folate hydrolase (prostate-specific membrane antigen) 1 (FOLH1), mRNA.

ACCESSION NM 004476

VERSION NM 004476.1 GI:4758397

SEQ ID No. 4
/translation="MWNLLHETDSAVATARRPRWLCAGALVLAGGFFLLGFLFGWFIK
SSNEATNITPKHNMKAFLDELKAENIKKFLYNFTQIPHLAGTEQNFQLAKQIQSQWKE
FGLDSVELAHYDVLLSYPNKTHPNYISIINEDGNEIFNTSLFEPPPPGYENVSDIVPP
FSAFSPQGMPEGDLVYVNYARTEDFFKLERDMKINCSGKIVIARYGKVFRGNKVKNAQ
LAGAKGVILYSDPADYFAPGVKSYPDGWNLPGGGVQRGNILNLNGAGDPLTPGYPANE
YAYRRGIAEAVGLPSIPVHPIGYYDAQKLLEKMGGSAPPDSSWRGSLKVPYNVGPGFT
GNFSTQKVKMHIHSTNEVTRIYNVIGTLRGAVEPDRYVILGGHRDSWVFGGIDPQSGA
AVVHEIVRSFGTLKKEGWRPRRTILFASWDAEEFGLLGSTEWAEENSRLLQERGVAYI
NADSSIEGNYTLRVDCTPLMYSLVHNLTKELKSPDEGFEGKSLYESWTKKSPSPEFSG
MPRISKLGSGNDFEVFFQRLGIASGRARYTKNWETNKFSGYPLYHSVYETYELVEKFY
DPMFKYHLTVAQVRGGMVFELANSIVLPFDCRDYAVVLRKYADKIYSISMKHPQEMKT
YSVSFDSLFSAVKNFTEIASKFSERLQDFDKSNPIVLRMMNDQLMFLERAFIDPLGLP
DRPFYRHVIYAPSSHNKYAGESFPGIYDALFDIESKVDPSKAWGEVKRQIYVAAFTVQ
AAAETLSEVA"

SEQ ID NO 7 ORIGIN

- 1 ctcaaaaggg gccggatttc cttctcctgg aggcagatgt tgcctctctc tctcgctcgg
- 61 attggttcag tgcactctag aaacactgct gtggtggaga aactggaccc caggtctgga
- 121 gcgaattcca gcctgcaggg ctgataagcg aggcattagt gagattgaga
- 181 cccgccgtgg tggttggagg gcgcgcagta gagcagcagc acaggcgcgg gtcccgggag
- 241 gccggctctg ctcgcgccga gatgtggaat ctccttcacg aaaccgactc ggctgtggcc
- 301 accgcgcgc gcccgcgctg gctgtgcgct ggggcgctgg tgctggcggg tggcttcttt
- 361 ctcctcggct tcctcttcgg gtggtttata aaatcctcca atgaagctac taacattact
- 421 ccaaagcata atatgaaagc atttttggat gaattgaaag ctgagaacat caagaagttc
- 481 ttatataatt ttacacagat accacattta gcaggaacag aacaaaactt tcagcttgca
- 541 aagcaaattc aatcccagtg gaaagaattt ggcctggatt ctgttgagct agcacattat
- 601 gatgtcctgt tgtcctaccc aaataagact catcccaact acatctcaat aattaatgaa

- 661 gatggaaatg agattttcaa cacatcatta tttgaaccac ctcctccagg atatgaaaat
- . 721 gtttcggata ttgtaccacc tttcagtgct ttctctcctc aaggaatgcc agagggcgat
- 781 ctagtgtatg ttaactatgc acgaactgaa gacttcttta aattggaacg ggacatgaaa
- 841 atcaattgct ctgggaaaat tgtaattgcc agatatggga aagttttcag aggaaataag
- 901 gttaaaaatg cccagctggc aggggccaaa ggagtcattc tctactccga ccctgctgac
- 961 tactttgctc ctggggtgaa gtcctatcca gatggttgga atcttcctgg aggtggtgtc
- 1021 cagcgtggaa atatcctaaa tctgaatggt gcaggagacc ctctcacacc aggttaccca
- 1081 gcaaatgaat atgettatag gegtggaatt geagaggetg ttggtettee aagtatteet
- 1141 gttcatccaa ttggatacta tgatgcacag aagctcctag aaaaaatggg tggctcagca
- 1201 ccaccagata gcagctggag aggaagtctc aaagtgccct acaatgttgg acctggcttt
- 1261 actggaaact tttctacaca aaaagtcaag atgcacatcc actctaccaa tgaagtgaca
- 1321 agaatttaca atgtgatagg tactctcaga ggagcagtgg aaccagacag atatgtcatt
- 1381 ctgggaggtc accgggactc atgggtgttt ggtggtattg accctcagag tggagcagct
- 1441 gttgttcatg aaattgtgag gagctttgga acactgaaaa aggaagggtg gagacctaga
- 1501 agaacaattt tgtttgcaag ctgggatgca gaagaatttg gtcttcttgg ttctactgag
- 1561 tgggcagagg agaattcaag actccttcaa gagcgtggcg tggcttatat taatgctgac
- 1621 tcatctatag aaggaaacta cactctgaga gttgattgta caccgctgat gtacagcttg
- 1681 gtacacaacc taacaaaaga gctgaaaagc cctgatgaag gctttgaagg caaatctctt
- 1741 tatgaaagtt ggactaaaaa aagtccttcc ccagagttca gtggcatgcc caggataagc
- 1801 aaattgggat ctggaaatga ttttgaggtg ttcttccaac gacttggaat tgcttcaggc
- 1861 agagcacggt atactaaaaa ttgggaaaca aacaaattca gcggctatcc actgtatcac
- 1921 agtgtctatg aaacatatga gttggtggaa aagttttatg atccaatgtt taaatatcac
- 1981 ctcactgtgg cccaggttcg aggagggatg gtgtttgagc tagccaattc catagtgctc
- 2041 ccttttgatt gtcgagatta tgctgtagtt ttaagaaagt atgctgacaa aatctacagt
- 2101 atttctatga aacatccaca ggaaatgaag acatacagtg tatcatttga ttcacttttt
- 2161 tctgcagtaa agaattttac agaaattgct tccaagttca gtgagagact ccaggacttt
- 2221 gacaaaagca acccaatagt attaagaatg atgaatgatc aactcatgtt tctggaaaga

2281 gcatttattg atccattagg gttaccagac aggccttttt ataggcatgt catctatgct

2341 ccaagcagcc acaacaagta tgcaggggag tcattcccag gaatttatga tgctctgttt

2401 gatattgaaa gcaaagtgga cccttccaag gcctggggag aagtgaagag acagatttat

2461 gttgcagcct tcacagtgca ggcagctgca gagactttga gtgaagtagc ctaagaggat

2521 tctttagaga atccgtattg aatttgtgtg gtatgtcact cagaaagaat cgtaatgggt

2581 atattgataa attttaaaat tggtatattt gaaataaagt tgaatattat atataaaaaa

2641 aaaaaaaaaa aaa

Human melanocyte-specific (pmel 17) gene, exons 2-5, and complete cds.

ACCESSION U20093

VERSION U20093.1 GI:1142634

SEO ID NO 70

/translation="MDLVLKRCLLHLAVIGALLAVGATKVPRNQDWLGVSRQLRTKAWNRQLYPEWTE AQRLDCWRGGQVSLKVSNDGPTLIGANASFSIALNFPGSQKVLPDGQVIWVNNTIINGSQVWGGQPVY PQETDDACIFPDGGPCPSGSWSQKRSFVYVWKTWGQYWQVLGGPVSGLSIGTGRAMLGTHTMEVTVYH RRGSRSYVPLAHSSSAFTITDQVPFSVSVSQLRALDGGNKHFLRNQPLTFALQLHDPSGYLAEADLSY TWDFGDSSGTLISRAPVVTHTYLEPGPVTAQVVLQAAIPLTSCGSSPVPGTTDGHRPTAEAPNTTAGQ VPTTEVVGTTPGQAPTAEPSGTTSVQVPTTEVISTAPVQMPTAESTGMTPEKVPVSEVMGTTLAEMST PEATGMTPAEVSIVVLSGTTAAQVTTTEWVETTARELPIPEFGPDASSIMSTESITGSLGPLLDGTA TLRLVKRQVPLDCVLYRYGSFSVTLDIVQGIESAEILQAVPSGEGDAFELTVSCQGGLPKEACMEISS PGCQPPAQRLCQPVLPSPACQLVLHQILKGGSGTYCLNVSLADTNSLAVVSTQLIMPGQEAGLGQVPL IVGILLVLMAVVLASLIYRRRLMKQDFSVPQLPHSSSHWLRLPRIFCSCPIGENSPLLSGQQV"

SEQ ID NO 80 ORIGIN

OKIGIN					
1	gtgctaaaaa	gatgccttct	tcatttggct	gtgataggtg	ctttgtggct
gtgggggcta					
61	caaaagtacc	cagaaaccag	gactggcttg	gtgtctcaag	gcaactcaga
accaaagcct					
121	ggaacaggca	gctgtatcca	gagtggacag	aagcccagag	acttgactgc
tggagaggtg					
181	gtcaagtgtc	cctcaaggtc	agtaatgatg	ggcctacact	gattggtgca
aatgcctcct					
241	tctctattgc	cttgaacttc	cctggaagcc	aaaaggtatt	gccagatggg
caggttatct					
301	gggtcaacaa	taccatcatc	aatgggagcc	aggtgtgggg	aggacagcca
gtgtatcccc					
361	aggaaactga	cgatgcctgc	atcttccctg	atggtggacc	ttgcccatct
ggctcttggt					
421	ctcagaagag	aagctttgtt	tatgtctgga	agacctgggg	tgagggactc
ccttctcagc					
481	ctatcatcca	cacttgtgtt	tacttctttc	tacctgatca	cctttcttt
ggccgcccct					

541	tccaccttaa	cttctgtgat	tttctctaat	cttcattttc	ctcttagatc
ttttctcttt 601	cttagcacct	agcccccttc	aagctctatc	ataattcttt	ctggcaactc
ttggcctcaa 661 ccatatcaca	ttgtagtcct	accccatgga	atgcctcatt	aggacccctt	ccctgtcccc
721 agtgccgttt	gccttccaaa	caccctcaga	agtaatcata	cttcctgacc	tcccatctcc
781 tttcattcca	cgaagcctgt	ccctcagtcc	cctttgacca	gtaatctctt	cttccttgct
841 ctgagcattg	aaaatgcttc	aggccaatac	tggcaagttc	tagggggccc	agtgtctggg
901 catcgccggg	ggacaggcag	ggcaatgctg	ggcacacaca	ccatggaagt	gactgtctac
961 actggtaagg	gatcccggag	ctatgtgcct	cttgctcatt	ccagctcagc	cttcaccatt
1021 tggatggact	gttcaggaag	ggcaaggcca	gttgtagggc	aaagagaagg	cagggaggct
1081 aagacctagg	gcaaaggaga	aaggtgaaat	gctgtgcaaa	cttaaagtag	aagggccagg
1141 agttggaggg	cagagaaatg	tgaggcttag	tgccagtgaa	gggccagcca	gtcagcttgg
1201 tggctccaat	tgtggctgtg	aaaggagaag	ctgtggctca	ggcctggttc	tcaccttttc
1261 atggagggaa	cccagaccag	gtgcctttct	ccgtgagcgt	gtcccagttg	cgggccttgg
1321 accccagtgg	caagcacttc	ctgagaaatc	agcctctgac	ctttgccctc	cagctccatg
1381 gtggaaccct	ctatctggct	gaagctgacc	tctcctacac	ctgggacttt	ggagacagta
1441 tcactgccca	gatctctcgg	gcacctgtgg	tcactcatac	ttacctggag	cctggcccag
1501 ttccaggcac	ggtggtcctg	caggctgcca	ttcctctcac	ctcctgtggc	tcctccccag
1561 aagtgcctac	cacagatggg	cacaggccaa	ctgcagaggc	ccctaacacc	acagctggcc
1621 ctggaaccac	tacagaagtt	gtgggtacta	cacctggtca	ggcgccaact	gcagagccct
1681 tgccaactgc	atctgtgcag	gtgccaacca	ctgaagtcat	aagcactgca	cctgtgcaga
1741 gtaccacact	agagagcaca	ggtatgacac	ctgagaaggt	gccagtttca	gaggtcatgg
1801 caattgtggt 1861	ggcagagatg	tcaactccag	aggctacagg	tatgacacct	gcagaggtat
ccacagctag 1921	gctttctgga agagctacct	accacagctg atccctgagc	cacaggtaac ctgaaggtcc	aactacagag agatgccagc	tgggtggaga tcaatcatgt
ctacggaaag 1981	tattacaggt	tccctgggcc	ccctgctgga	tggtacagcc	accttaaggc
tggtgaagag 2041	acaagtcccc	ctggattgtg	ttctgtatcg	atatggttcc	ttttccgtca
ccctggacat 2101	tgtccagggt	attgaaagtg	ccgagatcct	gcaggctgtg	ccgtccggtg
agggggatgc	J 9999		- 3 - 3	J- JJ5	J - 33 - 3

2161 atttgagetg actgtgteet gecaaggegg getgeecaag gaageetgea tggagatctc 2221 atcqccaqqq tqccaqccc ctqcccaqcq qctqtqccaq cctqtqctac ccaqcccaqc 2281 ctgccagctg gttctgcacc agatactgaa gggtggctcg gggacatact gcctcaatgt 2341 gtctctggct gataccaaca gcctggcagt ggtcagcacc cagcttatca tgcctggtag 2401 qtccttqqac agagactaaq tqaqqaqqqa agtqqataga qqqqacagct ggcaagcagc 2461 agacatgagt gaagcagtgc ctgggattct tctcacaggt caagaagcag gccttgggca 2521 ggttccgctg atcgtgggca tcttgctggt gttgatggct gtggtccttg catctctgat 2581 atataggcgc agacttatga agcaagactt ctccgtaccc cagttgccac ataqcaqcaq 2641 tcactggctg cgtctacccc gcatcttctg ctcttgtccc attggtgaga atagccccct 2701 cctcagtggg cagcaggtct gagtactctc atatgatgct gtgattttcc tggagttgac 2761 agaaacacct atatttcccc cagtcttccc tgggagacta ctattaactg aaataaa 11

Homo sapiens kallikrein 3, (prostate specific antigen) (KLK3), mRNA. ACCESSION NM_001648 VERSION NM_001648.1 GI:4502172 SEO ID NO 78

/translation="MWVPVVFLTLSVTWIGAAPLILSRIVGGWECEKHSQPWQVLVAS
RGRAVCGGVLVHPQWVLTAAHCIRNKSVILLGRHSLFHPEDTGQVFQVSHSFPHPLYDMSLLKNRFLR
PGDDSSHDLMLLRLSEPAELTDAVKVMDLPTQEPALGTTCYASGWGSIEPEEFLTPKKLQCVDLHVIS
NDVCAQVHPQKVTKFMLCAGRWTGGKSTCSGDSGGPLVCNGVLQGITSWGSEPCALPERPSLYTKVVH
YRKWIKDTIVANP"

SEQ ID NO 86 ORIGIN

01110111					
1	agccccaagc	ttaccacctg	cacccggaga	gctgtgtgtc	accatgtggg
tcccggttgt					
61	cttcctcacc	ctgtccgtga	cgtggattgg	tgctgcaccc	ctcatcctgt
ctcggattgt					
121	gggaggctgg	gagtgcgaga	agcattccca	accctggcag	gtgcttgtgg
cctctcgtgg					
181	cagggcagtc	tgcggcggtg	ttctggtgca	ccccagtgg	gtcctcacag
ctgcccactg					
241	catcaggaac	aaaagcgtga	tcttgctggg	tcggcacagc	ctgtttcatc
ctgaagacac					
301	aggccaggta	tttcaggtca	gccacagctt	cccacacccg	ctctacgata
tgagcctcct					
361	gaagaatcga	ttcctcaggc	caggtgatga	ctccagccac	gacctcatgc
tgctccgcct					
421	gtcagagcct	gccgagctca	cggatgctgt	gaaggtcatg	gacctgccca
cccaggagcc					

```
481 agcactgggg accacctgct acgcctcagg ctggggcagc attgaaccag
aggagttctt
     541 gaccccaaag aaacttcagt gtgtggacct ccatgttatt
tgtgtgcgca
     601 agttcaccct cagaaggtga ccaagttcat gctgtgtgct
                                                        ggacgctgga
cagggggcaa
      661 aagcacctgc tcgggtgatt ctgggggccc acttgtctgt aatggtgtgc
ttcaaggtat
      721 cacgtcatgg ggcagtgaac catgtgccct gcccgaaagg ccttccctgt
acaccaaggt
     781 ggtgcattac cggaagtgga tcaaggacac catcgtggcc
                                                       aacccctgag
cacccctatc
     841 aaccccctat tgtagtaaac ttggaacctt ggaaatgacc aggccaagac
tcaagcctcc
     901 ccaqttctac tgacctttgt ccttaggtgt gaggtccagg gttgctagga
aaaqaaatca
     961 gcagacacag gtgtagacca gagtgtttct taaatggtgt
                                                        aattttgtcc
tctctgtgtc
    1021 ctggggaata
                     ctggccatgc ctggagacat
                                            atcactcaat
                                                        ttctctgagg
acacagatag
    1081 gatggggtgt
                     ctgtgttatt tgtggggtac
                                           agagatgaaa
                                                        gaggggtggg
atccacactg
    1141 agagagtgga gagtgacatg tgctggacac tgtccatgaa gcactgagca
gaagctggag
    1201 gcacaacgca ccagacactc acagcaagga tggagctgaa aacataaccc
actctqtcct
    1261 ggaggcactg ggaagcctag agaaggctgt gagccaagga gggagggtct
tcctttggca
    1321 tqqqatqqqq atqaaqtaaq qaqaqqqact gqaccccctq qaaqctgatt
cactatgggg
    1381 ggaggtgtat tgaagtcctc cagacaaccc tcagatttga tgatttccta
gtagaactca
    1441 cagaaataaa gagctgttat actgtg
//
```

Human autoimmunogenic cancer/testis antigen NY-ESO-1 mRNA, complete cds.

ACCESSION U87459

VERSION U87459.1 GI:1890098

SEQ ID NO 74

/translation="MQAEGRGTGGSTGDADGPGGPGIPDGPGGNAGGPGEAGAT GGRGPRGAGARASGPGGGAPRGPHGGAASGLNGCCRCGARGPESRLLEFYLAM PFATPMEAELARRSLAQDAPPLPVPGVLLKEFTVSGNILTIRLTAADHRQLQLS ISSCLQQLSLLMWITQCFLPVFLAQPPSGQRR"

SEQ ID NO 84 ORIGIN

1 atcctcgtgg gccctgacct tctctctgag agccgggcag aggctccgga
gccatgcagg
61 ccgaaggccg gggcacaggg ggttcgacgg gcgatgctga tggcccagga

ggccctggca

```
121 ttcctgatgg cccagggggc aatgctggcg gcccaggaga ggcgggtgcc
acqqqcqqca
      181 qaqqtccccq ggqcgcaqqq qcaqcaaqqq cctcqggqcc ggqaggaggc
gccccgcggg
      241 gtccgcatgg cggcgcgct tcagggctga atggatgctg cagatgcggg
gccagggggc
      301 cggagagccg cctgcttgag ttctacctcg ccatgccttt cgcgacaccc
atqqaaqcaq
      361 agetggeeg caggageetg geecaggatg ceceaecget teeegtgeea
ggggtgcttc
      421 tgaaggagtt cactgtgtcc ggcaacatac tgactatccg actgactgct
gcagaccacc
      481 gccaactgca gctctccatc agctcctgtc tccagcagct ttccctgttg
atgtggatca
      541 cgcagtgctt tctgcccgtg tttttggctc agcctccctc agggcagagg
cgctaagccc
      601 agectggege ecettectag gteatgeete etecectagg gaatggteee
agcacgagtg
      661 gccagttcat tgtgggggcc tgattgtttg tcgctggagg aggacggctt
acatgtttgt
      721 ttctgtagaa aataaaactg agctacgaaa aa
11
LAGE-la protein [Homo sapiens].
ACCESSION
           CAA11116
PTD
                q3255959
                CAA11116.1 GI:3255959
VERSION
SEQ ID NO 75
ORIGIN
        1 mqaeqrqtqq stqdadqpqq pqipdqpqqn agqpqeagat ggrgprqaga
arasgprgga
       61 prgphggaas aqdgrcpcga rrpdsrllel hitmpfsspm eaelvrrils
rdaaplprpg
      121 avlkdftvsg nllfirltaa dhrqlqlsis sclqqlsllm witqcflpvf
lagapsggrr
      181
11
LAGE-1b protein [Homo sapiens].
ACCESSION CAA11117
PID
                q3255960
VERSION
                CAA11117.1 GI:3255960
SEQ ID NO 76
ORIGIN
        1 mqaeqrqtqq stqdadqpqq pqipdgpqgn aggpgeagat ggrgprgaga
arasgprgga
       61 prgphggaas aqdgrcpcga rrpdsrllel hitmpfsspm eaelvrrils
rdaaplprpg
      121 avlkdftvsg nllfmsvwdq dregagrmrv vgwglgsasp egqkardlrt
pkhkvseqrp
      181 gtpgppppeg aqgdgcrgva fnvmfsaphi
```

Human antigen (MAGE-1) gene, complete cds. ACCESSION M77481 VERSION M77481.1 GI:416114 SEQ ID NO 71

/translation="MSLEQRSLHCKPEEALEAQQEALGLVCVQAATSSSSPLVL GTLEEVPTAGSTDPPQSPQGASAFPTTINFTRQRQPSEGSSSREEEGPSTSCIL ESLFRAVITKKVADLVGFLLLKYRAREPVTKAEMLESVIKNYKHCFPEIFGKAS ESLQLVFGIDVKEADPTGHSYVLVTCLGLSYDGLLGDNQIMPKTGFLIIVLVMI AMEGGHAPEEEIWEELSVMEVYDGREHSAYGEPRKLLTQDLVQEKYLEYRQVPD SDPARYEFLWGPRALAETSYVKVLEYVIKVSARVRFFFPSLREAALREEEEGV"

SEQ ID NO 81

ORIGIN					
1	ggatccaggc	cctgccagga	aaaatataag	ggccctgcgt	gagaacagag
ggggtcatcc					
61	actgcatgag	agtggggatg	tcacagagtc	cagcccaccc	tcctggtagc
actgagaagc					
121	cagggctgtg	cttgcggtct	gcaccctgag	ggcccgtgga	ttcctcttcc
tggagctcca					
181	ggaaccaggc	agtgaggcct	tggtctgaga	cagtatcctc	aggtcacaga
gcagaggatg					
241	cacagggtgt	gccagcagtg	aatgtttgcc	ctgaatgcac	accaagggcc
ccacctgcca					
301	caggacacat	aggactccac	agagtctggc	ctcacctccc	tactgtcagt
cctgtagaat	33	23			-
361	cgacctctgc	tggccggctg	taccctgagt	accctctcac	ttcctccttc
aggttttcag					
421	gggacaggcc	aacccagagg	acaggattcc	ctggaggcca	cagaggagca
ccaaggagaa	9994449944			+ + 9 9 - 9 9 +	
481	gatctgtaag	taggcctttg	ttagagtctc	caaggttcag	ttctcagctg
aggcctctca	gattegtaag	caggeeeeeg	ccagageeee	caaggeecag	·
541	cacactccct	ctctccccag	gcctgtgggt	cttcattgcc	cagctcctgc
ccacactcct	Cacacccccc	cccccag	gcccgcgggc	cccaccycc	cagetteetge
601	aaataataaa	atasaasaa	tantantata	tattanaana	aggagatataa
	gcctgctgcc	ctgacgagag	tcatcatgtc	tcttgagcag	aggagtctgc
actgcaagcc					
661	tgaggaagcc	cttgaggccc	aacaagaggc	cctgggcctg	gtgtgtgtgc
aggctgccac					
721	ctcctcctcc	tctcctctgg	tcctgggcac	cctggaggag	gtgcccactg
ctgggtcaac					
781	agatcctccc	cagagtcctc	agggagcctc	cgcctttccc	actaccatca
acttcactcg					
841	acagaggcaa	cccagtgagg	gttccagcag	ccgtgaagag	gaggggccaa
gcacctcttg					
901	tatcctggag	tccttgttcc	gagcagtaat	cactaagaag	gtggctgatt
tggttggttt					
961	tctgctcctc	aaatatcgag	ccagggagcc	agtcacaaag	gcagaaatgc
tggagagtgt					
1021	catcaaaaat	tacaagcact	gttttcctga	gatcttcggc	aaagcctctg
agtccttgca					

```
1081 gctggtcttt ggcattgacg tgaaggaagc agaccccacc ggccactcct
atqtccttqt
    1141 cacctgccta
                     ggtctctcct atgatggcct
                                           gctgggtgat
                                                        aatcagatca
tgcccaagac
    1201 aggcttcctg
                     ataattgtcc tggtcatgat tgcaatggag
                                                       ggcggccatg
ctcctgagga
    1261 ggaaatctgg
                     gaggagctga
                                gtgtgatgga
                                           ggtgtatgat
                                                       gggagggagc
acagtgccta
    1321 tggggagccc
                     aggaagctgc tcacccaaga tttggtgcag gaaaagtacc
tggagtaccg
    1381 gcaggtgccg
                     gacagtgatc ccgcacgcta tgagttcctg tggggtccaa
agacceteae
    1441 tgaaaccagc tatgtgaaag tccttgagta tgtgatcaag gtcagtgcaa
gagttcgctt
    1501 tttcttccca tccctgcgtg aagcagcttt gagagaggag gaagagggag
tctgagcatg
    1561 agttgcagcc
                     aaggccagtg
                                ggaggggac tgggccagtg
                                                       caccttccag
ggccgcgtcc
    1621 agcagettee eetgeetegt gtgacatgag geceattett
                                                       cactctgaag
agagcggtca
    1681 gtgttctcag
                     tagtaggttt ctgttctatt gggtgacttg
                                                       gagatttatc
tttgttctct
    1741 tttggaattg ttcaaatgtt tttttttaag ggatggttga atgaacttca
gcatccaagt
    1801 ttatgaatga cagcagtcac acagttctgt gtatatagtt taagggtaag
agtcttgtgt
    1861 tttattcaga ttgggaaatc cattctattt tgtgaattgg gataataaca
gcagtggaat
    1921 aagtacttag aaatgtgaaa aatgagcagt aaaatagatg agataaagaa
ctaaagaaat
    1981 taagagatag
                     tcaattcttg ccttatacct cagtctattc tgtaaaattt
ttaaaqatat
    2041 atgcatacct
                     ggatttcctt ggcttctttg agaatgtaag
                                                       agaaattaaa
tctgaataaa
    2101 gaattcttcc
                     tgttcactgg
                                ctcttttctt ctccatgcac
                                                       tgagcatctg
ctttttggaa
    2161 ggccctgggt
                     tagtagtgga gatgctaagg taagccagac tcatacccac
ccatagggtc
    2221 gtagagtcta
                     ggagctgcag tcacqtaatc gaggtggcaa
                                                       gatgtcctct
aaagatgtag
    2281 ggaaaagtga gagagggtg agggtgtggg gctccgggtg agagtggtgg
agtgtcaatg
    2341 ccctgagctg gggcattttg ggctttggga aactgcagtt ccttctgggg
gagctgattg
    2401 taatgatctt gggtggatcc
11
Human MAGE-2 gene exons 1-4, complete cds.
           L18920
ACCESSION
VERSION
           L18920.1 GI:436180
SEO ID NO 72
```

 $\label{translation} $$ \operatorname{Thranslation}= \operatorname{Thranslation}$

SEFQAAISRKMVELVHFLLKYRAREPVTKAEMLESVLRNCQDFFPVIFSKASEYLQLVFGIEVV EVVPISHLYILVTCLGLSYDGLLGDNQVMPKTGLLIIVLAIIAIEGDCAPEEKIWEELSMLEVFE GREDSVFAHPRKLLMQDLVQENYLEYRQVPGSDPACYEFLWGPRALIETSYVKVLHHTLKIGGEP HISYPPLHERALREGEE"

SEQ ID NO 82 ORIGIN

ORIGIN					
1	attccttcat.	caaacagcca	ggagtgagga	agaggaccct	cctgagtgag
gactgaggat 61	ccaccctcac	cacatagtgg	gaccacagaa	tccagctcag	cccctcttgt
cagccctggt 121	acacactggc	aatgatctca	ccccgagcac	acccctcccc	ccaatgccac
ttcgggccga 181	ctcagagtca	gagacttggt	ctgaggggag	cagacacaat	cggcagagga
tggcggtcca 241	ggctcagtct	ggcatccaag	tcaggacctt	gagggatgac	caaaggcccc
tcccaccccc 301					
ccctacccct	aactcccccg	accccaccag	gatctacagc	ctcaggatcc	ccgtcccaat
361 tccgggcaga	acaccaacac	catcttcatg	cttaccccca	ccccccatc	cagatcccca
421	atccggttcc	acccttgccg	tgaacccagg	gaagtcacgg	gcccggatgt
gacgccactg 481	acttgcacat	tggaggtcag	aggacagcga	gattctcgcc	ctgagcaacg
gcctgacgtc 541	ggcggaggga	agcaggcgca	ggctccgtga	ggaggcaagg	taagacgccg
agggaggact 601	gaggcgggcc	tcaccccaga	cagagggccc	ccaataatcc	agcgctgcct
ctgctgccgg 661	gcctggacca	ccctgcaggg	gaagacttct	caggctcagt	cgccaccacc
tcaccccgcc 721	accccccgcc	gctttaaccg	cagggaactc	tggcgtaaga	gctttgtgtg
accagggcag 781	ggctggttag	aagtgctcag	ggcccagact	cagccaggaa	tcaaggtcag
gaccccaaga					
841 aacaccaacc	ggggactgag	ggcaacccac	cccctaccct	cactaccaat	cccatccccc
901	ccacccccat	ccctcaaaca	ccaaccccac	ccccaaaccc	cattcccatc
tcctcccca 961	ccaccatcct	ggcagaatcc	ggctttgccc	ctgcaatcaa	cccacggaag
ctccgggaat 1021	ggcggccaag	cacgcggatc	ctgacgttca	catgtacggc	taagggaggg
aaggggttgg 1081	gtctcgtgag	tatggccttt	gggatgcaga	ggaagggccc	aggcctcctg
gaagacagtg 1141	gagtccttag	gggacccagc	atgccaggac	agggggccca	ctgtacccct
gtctcaaact					
1201 cagcaggggg	gagccacctt	ttcattcagc	cgagggaatc	ctagggatgc	agacccactt
1261 aggggacctt	ttggggccca	gcctgcgagg	agtcaagggg	aggaagaaga	gggaggactg
1321 ccgaatgtgc	ggagtccaga	tcagtggcaa	ccttgggctg	ggggatcctg	ggcacagtgg

1381	cccgtgctca	ttgcaccttc	agggtgacag	agagttgagg	gctgtggtct
gagggctggg 1441	acttcaggtc	agcagaggga	ggaatcccag	gatctgccgg	acccaaggtg
tgccccttc 1501	atgaggactg	gggatacccc	cggcccagaa	agaagggatg	ccacagagtc
tggaagtccc 1561	ttgttcttag	ctctggggga	acctgatcag	ggatggccct	aagtgacaat
ctcatttgta 1621	ccacaggcag	gaggttgggg	aaccctcagg	gagataaggt	gttggtgtaa
agaggagctg 1681	tctgctcatt	tcagggggtt	gggggttgag	aaagggcagt	ccctggcagg
agtaaagatg 1741	agtaacccac	aggaggccat	cataacgttc	accctagaac	caaaggggtc
agccctggac 1801	aacgcacgtg	ggggtaacag	gatgtggccc	ctcctcactt	gtctttccag
atctcaggga 1861	gttgatgacc	ttgttttcag	aaggtgactc	aggtcaacac	aggggcccca
tctggtcgac 1921	agatgcagtg	gttctaggat	ctgccaagca	tccaggtgga	gagcctgagg
taggattgag 1981	ggtacccctg	ggccagaatg	cagcaagggg	gccccataga	aatctgccct
gcccctgcgg 2041	ttacttcaga	gaccctgggc	agggctgtca	gctgaagtcc	ctccattatc
ctgggatctt 2101	tgatgtcagg	gaaggggagg	ccttggtctg	aaggggctgg	agtcaggtca
gtagagggag 2161	ggtctcaggc	cctgccagga	gtggacgtga	ggaccaagcg	gactcgtcac
ccaggacacc 2221	tggactccaa	tgaatttgga	catctctcgt	tgtccttcgc	gggaggacct
ggtcacgtat 2281	ggccagatgt	gggtcccctc	atatccttct	gtaccatatc	agggatgtga
gttcttgaca 2341	tgagagattc	tcaagccagc	aaaagggtgg	gattaggccc	tacaaggaga
aaggtgaggg 2401	ccctgagtga	gcacagaggg	gaccctccac	ccaagtagag	tggggacctc
acggagtctg 2461	gccaaccctg	ctgagacttc	tgggaatccg	tggctgtgct	tgcagtctgc
acactgaagg 2521	cccgtgcatt	cctctcccag	gaatcaggag	ctccaggaac	caggcagtga
ggccttggtc 2581	tgagtcagtg	tcctcaggtc	acagagcaga	ggggacgcag	acagtgccaa
cactgaaggt 2641	ttgcctggaa	tgcacaccaa	gggccccacc	cgcccagaac	aaatgggact
ccagagggcc 2701	tggcctcacc	ctccctattc	tcagtcctgc	agcctgagca	tgtgctggcc
ggctgtaccc 2761	tgaggtgccc	tcccacttcc	tccttcaggt	tctgaggggg	acaggctgac
aagtaggacc 2821	cgaggcactg	gaggagcatt	gaaggagaag	atctgtaagt	aagcctttgt
cagageetee 2881	aaggttcagt	tcagttctca	cctaaggcct	cacacacgct	ccttctctcc
ccaggcctgt 2941 agagtcatca	gggtcttcat	tgcccagctc	ctgcccgcac	tcctgcctgc	,tgccctgacc

3001 gcccgaggag	tgcctcttga	gcagaggagt	cagcactgca	agcctgaaga	aggccttgag
3061 accgcttctt	aggccctggg	cctggtgggt	gcgcaggctc	ctgctactga	ggagcagcag
3121 tcaccgagtc	cctcttctac	tctagtggaa	gttaccctgg	gggaggtgcc	tgctgccgac
3181 actctttgga	ctccccacag	tcctcaggga	gcctccagct	tctcgactac	catcaactac
3241 tttcccgacc	gacaatccga	tgagggctcc	agcaaccaag	aagaggaggg	gccaagaatg
3301 cattttctgc	tggagtccga	gttccaagca	gcaatcagta	ggaagatggt	tgagttggtt
3361 agtgtcctca	tcctcaagta	tcgagccagg	gagccggtca	caaaggcaga	aatgctggag
3421 ttgcagctgg	gaaattgcca	ggacttcttt	cccgtgatct	tcagcaaagc	ctccgagtac
3481 cttgtcacct	tctttggcat	cgaggtggtg	gaagtggtcc	ccatcagcca	cttgtacatc
3541 aagacaggcc	gcctgggcct	ctcctacgat	ggcctgctgg	gcgacaatca	ggtcatgccc
3601 gaggagaaaa	tcctgataat	cgtcctggcc	ataatcgcaa	tagagggcga	ctgtgcccct
3661 gtcttcgcac	tctgggagga	gctgagtatg	ttggaggtgt	ttgaggggag	ggaggacagt
3721 taccggcagg	atcccaggaa	gctgctcatg	caagatctgg	tgcaggaaaa	ctacctggag
3781 ctcattgaaa	tgcccggcag	tgatcctgca	tgctacgagt	tcctgtgggg	tccaagggcc
3841 cacatttcct	ccagctatgt	gaaagtcctg	caccatacac	taaagatcgg	tggagaacct
3901 gcacatgttg	acccacccct	gcatgaacgg	gctttgagag	agggagaaga	gtgagtctca
3961	cagccagggc	cagtgggagg	gggtctgggc	cagtgcacct	tccagggccc
catccattag 4021	cttccactgc	ctcgtgtgat	atgaggccca	ttcctgcctc	tttgaagaga
gcagtcagca 4081	ttcttagcag	tgagtttctg	ttctgttgga	tgactttgag	atttatcttt
ctttcctgtt 4141	ggaattgttc	aaatgttcct	tttaacaaat	ggttggatga	acttcagcat
ccaagtttat 4201	gaatgacagt	agtcacacat	agtgctgttt	atatagttta	ggggtaagag
tcctgttttt 4261	tattcagatt	gggaaatcca	ttccattttg	tgagttgtca	cataataaca
gcagtggaat 4321	atgtatttgc	ctatattgtg	aacgaattag	cagtaaaata	catgatacaa
ggaactcaaa 4381	agatagttaa	ttcttgcctt	atacctcagt	ctattatgta	aaattaaaaa
tatgtgtatg 4441	tttttgcttc	tttgagaatg	caaaagaaat	taaatctgaa	taaattcttc
ctgttcactg 4501	gctcatttct	ttaccattca	ctcagcatct	gctctgtgga	aggccctggt
agtagtggg //					

Human MAGE-3 antigen (MAGE-3) gene, complete cds. ACCESSION U03735 VERSION U03735.1 GI:468825 SEQ ID NO 73

/translation="MPLEQRSQHCKPEEGLEARGEALGLVGAQAPATEEQEAASSSSTLVEVTLGEVP AAESPDPPQSPQGASSLPTTMNYPLWSQSYEDSSNQEEEGPSTFPDLESEFQAALSRKVAELVHFLLL KYRAREPVTKAEMLGSVVGNWQYFFPVIFSKASSSLQLVFGIELMEVDPIGHLYIFATCLGLSYDGLL GDNQIMPKAGLLIIVLAIIAREGDCAPEEKIWEELSVLEVFEGREDSILGDPKKLLTQHFVQENYLEY RQVPGSDPACYEFLWGPRALVETSYVKVLHHMVKISGGPHISYPPLHEWVLREGEE"

SEQ ID NO 83

ORIGIN					
1	acgcaggcag	tgatgtcacc	cagaccacac	cccttccccc	aatgccactt
cagggggtac					.
61	tcagagtcag	agacttggtc	tgaggggagc	agaagcaatc	tgcagaggat
ggcggtccag 121	gctcagccag	gcatcaactt	caggaccctg	agggatgacc	gaaggccccg
cccacccacc		_	-		
181	cccaactccc	ccgaccccac	caggatctac	agcctcagga	ccccgtccc
aatccttacc					
241	ccttgcccca	tcaccatctt	catgcttacc	tccaccccca	tccgatcccc
atccaggcag 301	22+2224+2	an angat ana	~~~~~~~~	~~+ ~~+ ~~~	++~~~~~
	aatccagttc	cacccctgcc	cggaacccag	ggtagtaccg	ttgccaggat
gtgacgccac 361	taacttacac	attagaggte	2422426646	ananttataa	coctanacan
cgagcgacgg	tgacttgcgc	attggaggtc	agaagaccgc	gagattctcg	ccctgagcaa
421	cctgacgtcg	gcggagggaa	gccggcccag	gctcggtgag	gaggcaaggt
aagacgctga	cccgacgccg	geggagggaa	googgoodag	gocoggegag	gaggeaagge
481	gggaggactg	aggcgggcct	cacctcagac	agagggcctc	aaataatcca
gtgctgcctc	J J J J J J	5 5 - 5 5 5			
541	tgctgccggg	cctgggccac	cccgcagggg	aagacttcca	ggctgggtcg
ccactacctc				-	
601	accccgccga	ccccgccgc	tttagccacg	gggaactctg	gggacagagc
ttaatgtggc					
661	cagggcaggg	ctggttagaa	gaggtcaggg	cccacgctgt	ggcaggaatc
aaggtcagga					
721	ccccgagagg	gaactgaggg	cagcctaacc	accaccctca	ccaccattcc
cgtcccccaa					
781	cacccaaccc	cacccccatc	ccccattccc	atccccaccc	ccacccctat
cctggcagaa	+	~~~~	+	~~~~	~~~+~~~~~
841	tccgggcttt	gcccctggta	tcaagtcacg	gaagctccgg	gaatggcggc
caggcacgtg 901	agtcctgagg	ttcacatcta	cggctaaggg	agggaagggg	ttcggtatcg
cgagtatggc	ageceeyayy	cccacaccta	cggccaaggg	agggaagggg	cccggcaccg
961	cgttgggagg	cagcgaaagg	gcccaggcct	cctggaagac	agtggagtcc
tgaggggacc	0900999499	ougoguaagg	goodaggood	oooggaagao	~9°99~9°°°
1021	cagcatgcca	ggacaggggg	cccactgtac	ccctgtctca	aaccgaggca
ccttttcatt	, ,		,	J	3 33
1081	cggctacggg	aatcctaggg	atgcagaccc	acttcagcag	ggggttgggg
cccagccctg					
1141	cgaggagtca	tggggaggaa	gaagagggag	gactgagggg	accttggagt
ccagatcagt					

1201	ggcaaccttg	ggctggggga	tgctgggcac	agtggccaaa	tgtgctctgt
gctcattgcg 1261	ccttcagggt	gaccagagag	ttgagggctg	tggtctgaag	agtgggactt
caggtcagca 1321 ccctatgtgg	gagggaggaa	tcccaggatc	tgcagggccc	aaggtgtacc	cccaaggggc
1381	tggacagatg	cagtggtcct	aggatctgcc	aagcatccag	gtgaagagac
tgagggagga 1441	ttgagggtac	ccctgggaca	gaatgcggac	tgggggcccc	ataaaaatct
gccctgctcc 1501	tgctgttacc	tcagagagcc	tgggcagggc	tgtcagctga	ggtccctcca
ttatcctagg 1561	atcactgatg	tcagggaagg	ggaagccttg	gtctgagggg	gctgcactca
gggcagtaga 1621	gggaggctct	cagaccctac	taggagtgga	ggtgaggacc	aagcagtctc
ctcacccagg 1681	gtacatggac	ttcaataaat	ttggacatct	ctcgttgtcc	tttccgggag
gacctgggaa 1741	tgtatggcca	gatgtgggtc	ccctcatgtt	tttctgtacc	atatcaggta
tgtgagttct 1801	tgacatgaga	gattctcagg	ccagcagaag	ggagggatta	ggccctataa
ggagaaaggt 1861	gagggccctg	agtgagcaca	gaggggatcc	tccaccccag	tagagtgggg
acctcacaga 1921	gtctggccaa	ccctcctgac	agttctggga	atccgtggct	gcgtttgctg
tctgcacatt 1981	gggggcccgt	ggattcctct	cccaggaatc	aggagctcca	ggaacaaggc
agtgaggact 2041	tggtctgagg	cagtgtcctc	aggtcacaga	gtagaggggg	ctcagatagt
gccaacggtg 2101	aaggtttgcc	ttggattcaa	accaagggcc	ccacctgccc	cagaacacat
ggactccaga 2161	gcgcctggcc	tcaccctcaa	tactttcagt	cctgcagcct	cagcatgcgc
tggccggatg 2221	taccctgagg	tgccctctca	cttcctcctt	caggttctga	ggggacaggc
tgacctggag 2281	gaccagaggc	ccccggagga	gcactgaagg	agaagatctg	taagtaagcc
	cctccaaggt	tccattcagt	actcagctga	ggtctctcac	atgctccctc
tctccccagg 2401	ccagtgggtc	tccattgccc	agctcctgcc	cacactcccg	cctgttgccc
tgaccagagt 2461	catcatgcct	cttgagcaga	ggagtcagca	ctgcaagcct	gaagaaggcc
ttgaggcccg 2521	aggagaggcc	ctgggcctgg	tgggtgcgca	ggctcctgct	actgaggagc
aggaggctgc 2581	ctcctcctct	tctactctag	ttgaagtcac	cctgggggag	gtgcctgctg
ccgagtcacc 2641	agatcctccc	cagagtcctc	agggagcctc	cagcctcccc	actaccatga
actaccetet 2701	ctggagccaa	tcctatgagg	actccagcaa	ccaagaagag	gaggggccaa
gcaccttccc 2761 tggttcattt	tgacctggag	tccgagttcc	aagcagcact	cagtaggaag	gtggccgagt

```
2821 tetgeteete aagtategag eeagggagee ggteacaaag geagaaatge
tqqqqaqtqt
    2881 cgtcggaaat
                     tggcagtatt tctttcctgt gatcttcagc
gttccttgca
    2941 gctggtcttt
                     ggcatcgagc tgatggaagt ggaccccatc
                                                       ggccacttgt
acatctttqc
                     ggcctctcct acgatggcct gctgggtgac
    3001 cacctgcctg
                                                       aatcagatca
tqcccaaqqc
    3061 aggcctcctg ataatcgtcc tggccataat cgcaagagag ggcgactgtg
cccctgagga
    3121 gaaaatctgg
                     gaggagctga gtgtgttaga ggtgtttgag
                                                       gggagggaag
acagtatctt
    3181 gggggatccc aagaagctgc tcacccaaca tttcgtgcag gaaaactacc
tggagtaccg
    3241 gcaggtcccc ggcagtgatc ctgcatgtta tgaattcctg tggggtccaa
gggccctcgt
    3301 tgaaaccagc tatgtgaaag tcctgcacca tatggtaaag atcagtggag
gacctcacat
    3361 ttcctaccca cccctqcatq aqtqqqtttt qaqaqaqqqq
                                                       gaagagtgag
tctgagcacg
    3421 agttgcagcc
                     agggccagtg ggaggggtc tgggccagtg caccttccgg
ggccgcatcc
    3481 cttagtttcc actgcctcct gtgacgtgag gcccattctt cactctttga
agcgagcagt
    3541 cagcattett agtagtgggt ttetgttetg ttggatgaet ttgagattat
tctttatttc
    3601 ctgttggagt tgttcaaatg ttccttttaa cggatggttg aatgagcgtc
agcatccagg
    3661 tttatgaatg acagtagtca cacatagtgc tgtttatata gtttaggagt
aagagtcttg
    3721 ttttttactc aaattgggaa atccattcca ttttgtgaat tgtgacataa
taatagcagt
    3781 ggtaaaagta tttgcttaaa attgtgagcg aattagcaat aacatacatg
agataactca
    3841 agaaatcaaa
                     agatagttga ttcttgcctt gtacctcaat
                                                       ctattctgta
aaattaaaca
    3901 aatatgcaaa ccaggatttc cttgacttct ttgagaatgc aagcgaaatt
aaatctgaat
    3961 aaataattet teetetteae tggetegttt etttteegtt eacteageat
ctactctata
    4021 ggaggcctg ggttagtagt ggggatgcta aggtaagcca gactcacgcc
tacccatagg
    4081 gctgtagagc ctaggacctg cagtcatata attaaggtgg tgagaagtcc
tgtaagatgt
    4141 agaggaaatg taagagaggg gtgagggtgt ggcgctccgg gtgagagtag
tggagtgtca
    4201 atac
11
Homo sapiens prostate stem cell antigen (PSCA) mRNA, complete
cds.
ACCESSION
           AF043498
           AF043498.1 GI:2909843
VERSION
SEQ ID NO 79
```

 $\label{translation} $$ / translation = ``MKAVLLALLMAGLALQPGTALLCYSCKAQVSNEDCLQVENCTQLGEQCWTARIRAVGLLTVISKGCSLNCVDDSQDYYVGKKNITCCDTDLCNASGAHALQPAAAILALLPALGLLLWGPGQL''$

```
SEQ ID NO 87
ORIGIN
       1 agggagaggc agtgaccatg aaggctgtgc tgcttgccct gttgatgqca
ggcttggccc
      61 tgcagccagg cactgccctg ctgtgctact cctgcaaagc ccaggtgagc
aacgaggact
     121 qcctqcaqqt gqaqaactqc acccagctgg gggagcagtg ctggaccgcg
cqcatccqcq
     181 cagttggcct cctgaccgtc atcagcaaag gctgcagctt gaactgcgtg
gatgactcac
     241 aggactacta cgtgggcaag aagaacatca cgtgctgtga caccgacttg
tgcaacgcca
     301 geggggeeca tgeeetgeag eeggetgeeg ceateettge getgeteeet
gcactcggcc
     361 tgctgctctg gggacccggc cagctatagg ctctgggggg
                                                        ccccgctgca
gcccacactg
     421 ggtgtggtgc cccaggcctt tgtgccactc ctcacagaac ctggcccagt
gggagcctgt
     481 cctggttcct gaggcacatc ctaacgcaag tttgaccatg tatgtttgca
ccccttttcc
      541 ccnaaccctg accttcccat gggccttttc caggattccn accnggcaga
tcagttttag
      601 tqanacanat ccgcntgcag atggcccctc caaccntttn tgttgntgtt
tccatggccc
      661 agcattttcc accettaacc ctgtgttcag gcacttnttc ccccaggaag
ccttccctqc
      721 ccaccccatt tatqaattqa qccaqqtttq qtccqtqgtq tcccccqcac
ccagcagggg
      781 acaggcaatc aggagggccc agtaaaggct gagatgaagt ggactgagta
gaactggagg
      841 acaaqaqttq acqtqaqttc ctqgqaqttt ccagagatgg ggcctggagg
cctggaggaa
      901 ggggccaggc ctcacatttg tggggntccc gaatggcagc ctgagcacag
cqtaqqccct
      961 taataaacac ctgttggata agccaaaaaa
11
GLANDULAR KALLIKREIN 1 PRECURSOR (TISSUE KALLIKREIN)
            (KIDNEY/PANCREAS/SALIVARY GLAND KALLIKREIN).
ACCESSION
           P06870
           g125170
PTD
           P06870 GI:125170
VERSION
SEQ ID NO 105
ORIGIN
        1 mwflvlclal slggtgaapp iqsrivggwe ceqhsqpwqa alyhfstfqc
ggilvhrqwv
```

```
61 ltaahcisdn yqlwlgrhnl fddentaqfv hvsesfphpg fnmsllenht
rgadedyshd
     121 lmllrltepa dtitdavkvv elptqepevg stclasgwgs iepenfsfpd
dlqcvdlkil
     181 pndecekahv qkvtdfmlcv ghleggkdtc vgdsggplmc dgvlqgvtsw
gyvpcgtpnk
     241 psvavrvlsy vkwiedtiae ns
11
ELASTASE 2A PRECURSOR.
ACCESSION
          P08217
PID
           g119255
VERSION
           P08217 GI:119255
SEQ ID NO 106
ORIGIN
       1 mirtll1stl vagalscgdp typpyvtrvv ggeearpnsw pwqvslqyss
ngkwyhtcgg
      61 slianswvlt aahcisssrt yrvglgrhnl yvaesgslav svskivvhkd
wnsngiskgn
     121 diallklanp vsltdkigla clppagtilp nnypcyvtgw grlgtngavp
dvlaggrllv
     181 vdyatcsssa wwgssvktsm icaggdgvis scngdsggpl ncqasdgrwq
vhqivsfqsr
     241 lgcnyyhkps vftrvsnyid winsviann
11
pancreatic elastase IIB [Homo sapiens].
ACCESSION
           NP 056933
           a7705648
PID
           NP 056933.1 GI:7705648
VERSION
SEO ID NO 107
ORIGIN
       1 mirtllstl vagalscgvs tyapdmsrml ggeearpnsw pwqvslgyss
ngqwyhtcgg
      61 slianswvlt aahcisssri yrvmlqqhnl yvaesgslav svskivvhkd
wnsngvskan
     121 diallklanp vsltdkiqla clppagtilp nnypcyvtgw grlqtngalp
ddlkggrllv
     181 vdyatcsssg wwgstvktnm icaggdgvic tcngdsggpl ncqasdgrwe
vhgigsltsv
     241 lgcnyyykps iftrvsnynd winsviann
//
PRAME Homo sapiens preferentially expressed antigen in melanoma
(PRAME), mRNA.
ACCESSION
           NM 006115
           NM 006115.1 GI:5174640
VERSION
SEQ ID NO 77
```

PLFMAAFDGRHSQTLKAMVQAWPFTCLPLGVLMKGQHLHLETFKAVLDGLDVLLAQEVRPRRWKLQVL DLRKNSHQDFWTVWSGNRASLYSFPEPEAAQPMTKKRKVDGLSTEAEQPFIPVEVLVDLFLKEGACDE LFSYLIEKVKRKKNVLRLCCKKLKIFAMPMQDIKMILKMVQLDSIEDLEVTCTWKLPTLAKFSPYLGQ MINLRRLLLSHIHASSYISPEKEEQYIAQFTSQFLSLQCLQALYVDSLFFLRGRLDQLLRHVMNPLET LSITNCRLSEGDVMHLSQSPSVSQLSVLSLSGVMLTDVSPEPLQALLERASATLQDLVFDECGITDDQ LLALLPSLSHCSQLTTLSFYGNSISISALQSLLQHLIGLSNLTHVLYPVPLESYEDIHGTLHLERLAY LHARLRELLCELGRPSMVWLSANPCPHCGDRTFYDPEPILCPCFMPN"

SEQ ID NO 85 ORIGIN

- 1 gcttcagggt acagctcccc cgcagccaga agccgggcct gcagcccctc agcaccgctc
- 61 cgggacaccc cacccgcttc ccaggcgtga cctgtcaaca gcaacttcgc ggtgtggtga
- 121 actctctgag gaaaaaccat tttgattatt actctcagac gtgcgtggca acaagtgact
- 181 gagacctaga aatccaagcg ttggaggtcc tgaggccagc ctaagtcgct tcaaaatgga
- 241 acgaaggcgt ttgtggggtt ccattcagag ccgatacatc agcatgagtg tgtggacaag
- 301 cccacggaga cttgtggagc tggcagggca gagcctgctg aaggatgagg ccctggccat
- 361 tgccgccctg gagttgctgc ccagggagct cttcccgcca ctcttcatgg cagcctttga
- 421 cgggagacac agccagaccc tgaaggcaat ggtgcaggcc tggcccttca cctgcctccc
- 481 tctgggagtg ctgatgaagg gacaacatct tcacctggag accttcaaag ctgtgcttga
- 541 tggacttgat gtgctccttg cccaggaggt tcgccccagg aggtggaaac ttcaagtgct
- 601 ggatttacgg aagaactctc atcaggactt ctggactgta tggtctggaa acagggccag
- 661 tctgtactca tttccagagc cagaagcagc tcagcccatg acaaagaagc gaaaagtaga
- 721 tggtttgagc acagaggcag agcagccctt cattccagta gaggtgctcg tagacctgtt
- 781 cctcaaggaa ggtgcctgtg atgaattgtt ctcctacctc attgagaaag tgaagcgaaa
- 841 gaaaaatgta ctacgcctgt gctgtaagaa gctgaagatt tttgcaatgc ccatgcagga
- 901 tatcaagatg atcctgaaaa tggtgcagct ggactctatt gaagatttgg aagtgacttg
- 961 tacctggaag ctacccacct tggcgaaatt ttctccttac ctgggccaga tgattaatct
- 1021 gcgtagactc ctcctctcc acatccatgc atcttcctac atttccccgg agaaggaaga
- 1081 gcagtatatc gcccagttca cctctcagtt cctcagtctg cagtgcctgc aggctctcta
- 1141 tgtggactct ttatttttcc ttagaggccg cctggatcag ttgctcaggc acgtgatgaa
- 1201 ccccttggaa accctctcaa taactaactg ccggctttcg gaaggggatg tgatgcatct
- 1261 gtcccagagt cccagcgtca gtcagctaag tgtcctgagt ctaagtgggg tcatgctgac

1321 cgatgtaagt cccgagcccc tccaagctct gctggagaga gcctctgcca ccctccagga

1381 cctggtcttt gatgagtgtg ggatcacgga tgatcagctc cttgccctcc tgccttccct

1441 gagccactgc tcccagctta caaccttaag cttctacggg aattccatct ccatatctgc

1501 cttgcagagt ctcctgcagc acctcatcgg gctgagcaat ctgacccacg tgctgtatcc

1561 tgtcccctg gagagttatg aggacatcca tggtaccctc cacctggaga qqcttqccta

1621 tctgcatgcc aggctcaggg agttgctgtg tgagttgggg cggcccagca tggtctggct

1681 tagtgccaac ccctgtcctc actgtgggga cagaaccttc tatgacccgg agcccatcct

1741 gtgcccctgt ttcatgccta actagctggg tgcacatatc aaatgcttca ttctgcatac

1801 ttggacacta aagccaggat gtgcatgcat cttgaagcaa caaagcagcc acagtttcag

1861 acaaatgttc agtgtgagtg aggaaaacat gttcagtgag gaaaaaacat tcagacaaat

1921 gttcagtgag gaaaaaaagg ggaagttggg gataggcaga tgttgacttg aggagttaat

1981 gtgatctttg gggagataca tcttatagag ttagaaatag aatctgaatt tctaaaggga

2041 gattctggct tgggaagtac atgtaggagt taatccctgt gtagactgtt gtaaagaaac

2101 tgttgaaaat aaagagaagc aatgtgaagc aaaaaaaaa aaaaaaaa

//

CEA Homo sapiens carcinoembryonic antigen-related cell adhesion molecule 5 (CEACAM5), mRNA.

ACCESSION NM 004363

VERSION NM 004363.1 GI:11386170

SEQ ID NO 88

/translation="MESPSAPPHRWCIPWQRLLLTASLLTFWNPPTTAKLTIESTPFN VAEGKEVLLLVHNLPQHLFGYSWYKGERVDGNRQIIGYVIGTQQATPGPAYSGREIIY PNASLLIQNIIQNDTGFYTLHVIKSDLVNEEATGQFRVYPELPKPSISSNNSKPVEDK DAVAFTCEPETQDATYLWWVNNQSLPVSPRLQLSNGNRTLTLFNVTRNDTASYKCETQ NPVSARRSDSVILNVLYGPDAPTISPLNTSYRSGENLNLSCHAASNPPAQYSWFVNGT FQQSTQELFIPNITVNNSGSYTCQAHNSDTGLNRTTVTTITVYAEPPKPFITSNNSNP VEDEDAVALTCEPEIQNTTYLWWVNNQSLPVSPRLQLSNDNRTLTLLSVTRNDVGPYE CGIQNELSVDHSDPVILNVLYGPDDPTISPSYTYYRPGVNLSLSCHAASNPPAQYSWL

IDGNIQQHTQELFISNITEKNSGLYTCQANNSASGHSRTTVKTITVSAELPKPSISSN NSKPVEDKDAVAFTCEPEAQNTTYLWWVNGQSLPVSPRLQLSNGNRTLTLFNVTRNDA RAYVCGIQNSVSANRSDPVTLDVLYGPDTPIISPPDSSYLSGANLNLSCHSASNPSPQ YSWRINGIPQQHTQVLFIAKITPNNNGTYACFVSNLATGRNNSIVKSITVSASGTSPG LSAGATVGIMIGVLVGVALI"

SEQ ID NO 89 ORIGIN

ctcagggcag	agggaggaag	gacagcagac	cagacagtca	cagcagcctt
tcctggaact	caagctcttc	tccacagagg	aggacagagc	agacagcaga
tctccctcgg	cccctcccca	cagatggtgc	atcccctggc	agaggctcct
tcacttctaa	ccttctggaa	cccgcccacc	actgccaagc	tcactattga
ttcaatgtcg	cagaggggaa	ggaggtgctt	ctacttgtcc	acaatctgcc
tttggctaca	gctggtacaa	aggtgaaaga	gtggatggca	accgtcaaat
gtaataggaa	ctcaacaagc	taccccaggg	cccgcataca	gtggtcgaga
cccaatgcat	ccctgctgat	ccagaacatc	atccagaatg	acacaggatt
cacgtcataa	agtcagatct	tgtgaatgaa	gaagcaactg	gccagttccg
gagctgccca	agccctccat	ctccagcaac	aactccaaac	ccgtggagga
	cctgtgaacc	tgagactcag	gacgcaacct	acctgtggtg
•				
cagagcctcc	cggtcagtcc	caggctgcag	ctgtccaatg	gcaacaggac
ttcaatgtca	caagaaatga	cacagcaagc	tacaaatgtg	aaacccagaa
gccaggcgca	gtgattcagt	catcctgaat	gtcctctatg	gcccggatgc
	tcctggaact tctccctcgg tcacttctaa ttcaatgtcg tttggctaca gtaataggaa cccaatgcat cacgtcataa gagctgccca gtggccttca	tcctggaact caagctcttc tctccctcgg cccctcccca tcacttctaa ccttctggaa ttcaatgtcg cagaggggaa tttggctaca gctggtacaa gtaataggaa ctcaacaagc cccaatgcat ccctgctgat cacgtcataa agtcagatct gagctgcca agccctccat gtggccttca cctgtgaacc cagagcctcc cggtcagtcc ttcaatgtca caagaaatga	tectggaact caagetette tecacagagg tetecetegg cecetececa cagatggtge teacttetaa cettetggaa ceegeceace tteaatgteg cagagggaa ggaggtgett tttggetaca getggtacaa aggtgaaaga gtaataggaa etcaacaage taceceaggg cecaatgeat ceetgetgat ceagaacate cacgteataa agteagatet tgtgaatgaa gagetgeeca ageeeteeat etecageace gtggeettea cetgtgaace tgagaeteag cagageetee eggteagtee caggetgeag tteaatgtea caagaaatga cacageaage	tecetggaact caagetette tecacagagg aggacagage tetecetegg cecetececa cagatggtge ateceetgge teaettetaa cettetggaa ceegeceace actgecaage tteaatgteg cagaggggaa ggaggtgett etaettgtee tttggetaca getggtacaa aggtgaaaga gtggatggea gtaataggaa eteaacaage taceecaggg ceegeataca cecaatgeat ecetgetgat ceagaacate atecagaatg cacgteataa agteagatet tgtgaatgaa gaageaactg gagetgeeca ageeeteeat eteeageae aacteeaaae gtggeettea eetgtgaace tgagaeteag gaegeaacet cagageetee eggteagtee caggetgeag etgteeaatg tteaatgtea caagaaatga cacageaage tacaaatgtg

841	tcccctctaa	acacatctta	cagatcaggg	gaaaatctga	acctctcctg
ccacgcagcc					
901	tctaacccac	ctgcacagta	ctcttggttt	gtcaatggga	ctttccagca
atccacccaa					
961	gagctcttta	tccccaacat	cactgtgaat	aatagtggat	cctatacgtg
ccaagcccat					
1021	aactcagaca	ctggcctcaa	taggaccaca	gtcacgacga	tcacagtcta
tgcagagcca					
1081	cccaaaccct	tcatcaccag	caacaactcc	aaccccgtgg	aggatgagga
tgctgtagcc					
1141	ttaacctgtg	aacctgagat	tcagaacaca	acctacctgt	ggtgggtaaa
taatcagagc					
1201	ctcccggtca	gtcccaggct	gcagctgtcc	aatgacaaca	ggaccctcac
tctactcagt					
1261	gtcacaagga	atgatgtagg	accctatgag	tgtggaatcc	agaacgaatt
aagtgttgac					
1321	cacagcgacc	cagtcatcct	gaatgtcctc	tatggcccag	acgaccccac
catttccccc					
1381	tcatacacct	attaccgtcc	aggggtgaac	ctcagcctct	cctgccatgc
agcctctaac					
1441	ccacctgcac	agtattcttg	gctgattgat	gggaacatcc	agcaacacac
acaagagctc					
1501	tttatctcca	acatcactga	gaagaacagc	ggactctata	cctgccaggc
caataactca					
1561	gccagtggcc	acagcaggac	tacagtcaag	acaatcacag	tctctgcgga
gctgcccaag					
1621	ccctccatct	ccagcaacaa	ctccaaaccc	gtggaggaca	aggatgctgt
ggccttcacc					
1681	tgtgaacctg	aggctcagaa	cacaacctac	ctgtggtggg	taaatggtca
gagcctccca					
1741	gtcagtccca	ggctgcagct	gtccaatggc	aacaggaccc	tcactctatt
caatgtcaca					
1801	agaaatgacg	caagagccta	tgtatgtgga	atccagaact	cagtgagtgc
aaaccgcagt					
1861	gacccagtca	ccctggatgt	cctctatggg	ccggacaccc	ccatcatttc
cccccagac	:				

```
1921 tegtettace tttegggage gaaceteaac eteteetgee acteggeete
taacccatcc
    1981 ccgcagtatt cttggcgtat caatgggata ccgcagcaac acacacaagt
tctctttatc
    2041 gccaaaatca cgccaaataa taacgggacc tatgcctgtt ttgtctctaa
cttggctact
    2101 ggccgcaata attccatagt caagagcatc acagtctctg catctggaac
ttctcctqqt
    2161 ctctcagctg gggccactgt cggcatcatg attggagtgc tggttggggt
tgctctgata
    2221 tagcagccct ggtgtagttt cttcatttca ggaagactga cagttgtttt
gcttcttcct
    2281 taaagcattt gcaacagcta cagtctaaaa ttgcttcttt accaaggata
tttacagaaa
    2341 agactetgae cagagatega gaccatecta gecaacateg tgaaaceeca
tctctactaa
    2401 aaatacaaaa atgagctggg cttggtggcg cgcacctgta gtcccagtta
ctcgggaggc
    2461 tgaggcagga gaatcgcttg aacccgggag gtggagattg cagtgagccc
agatcgcacc
    aaaagaagac
    2581 totgacotgt actottgaat acaagtttot gataccactg cactgtotga
gaatttccaa
    2641 aactttaatg aactaactga cagcttcatg aaactgtcca ccaagatcaa
gcagagaaaa
    2701 taattaattt catgggacta aatgaactaa tgaggattgc tgattcttta
aatgtcttgt
    2761 ttcccagatt tcaggaaact ttttttcttt taagctatcc actcttacag
caatttqata
    2821 aaatatactt ttgtgaacaa aaattgagac atttacattt tctccctatg
tagtcactcc
    2881 agacttggga aactattcat gaatatttat attgtatggt aatatagtta
ttgcacaagt
    2941 tcaataaaaa tctgctcttt gtataacaga aaaa
```

11

H r2/Neu Human tyrosine kinase-type receptor (HER2) mRNA, complete cds.

ACCESSION M11730

VERSION M11730.1 GI:183986

SEQ ID NO 90

/translation="MELAALCRWGLLLALLPPGAASTQVCTGTDMKLRLPASPETHLD MLRHLYQGCQVVQGNLELTYLPTNASLSFLQDIQEVQGYVLIAHNQVRQVPLQRLRIV RGTOLFEDNYALAVLDNGDPLNNTTPVTGASPGGLRELQLRSLTEILKGGVLIQRNPQ LCYQDTILWKDIFHKNNQLALTLIDTNRSRACHPCSPMCKGSRCWGESSEDCQSLTRT VCAGGCARCKGPLPTDCCHEQCAAGCTGPKHSDCLACLHFNHSGICELHCPALVTYNT DTFESMPNPEGRYTFGASCVTACPYNYLSTDVGSCTLVCPLHNOEVTAEDGTORCEKC SKPCARVCYGLGMEHLREVRAVTSANIQEFAGCKKIFGSLAFLPESFDGDPASNTAPL OPEOLOVFETLEEITGYLYISAWPDSLPDLSVFONLOVIRGRILHNGAYSLTLOGLGI SWLGLRSLRELGSGLALIHHNTHLCFVHTVPWDQLFRNPHQALLHTANRPEDECVGEG LACHQLCARGHCWGPGPTQCVNCSQFLRGQECVEECRVLQGLPREYVNARHCLPCHPE COPONGSVTCFGPEADQCVACAHYKDPPFCVARCPSGVKPDLSYMPIWKFPDEEGACQ PCPINCTHSCVDLDDKGCPAEORASPLTSIVSAVVGILLVVVLGVVFGILIKRRQQKI RKYTMRRLLQETELVEPLTPSGAMPNQAQMRILKETELRKVKVLGSGAFGTVYKGIWI PDGENVKIPVAIKVLRENTSPKANKEILDEAYVMAGVGSPYVSRLLGICLTSTVQLVT QLMPYGCLLDHVRENRGRLGSQDLLNWCMQIAKGMSYLEDVRLVHRDLAARNVLVKSP NHVKITDFGLARLLDIDETEYHADGGKVPIKWMALESILRRRFTHQSDVWSYGVTVWE LMTFGAKPYDGIPAREIPDLLEKGERLPOPPICTIDVYMIMVKCWMIDSECRPRFREL VSEFSRMARDPORFVVIONEDLGPASPLDSTFYRSLLEDDDMGDLVDAEEYLVPOOGF FCPDPAPGAGGMVHHRHRSSSTRSGGGDLTLGLEPSEEEAPRSPLAPSEGAGSDVFDG DLGMGAAKGLOSLPTHDPSPLQRYSEDPTVPLPSETDGYVAPLTCSPQPEYVNQPDVR POPPS PREGPL PAAR PAGATLERAKTLS PGKNGVVKDV FAFGGAVEN PEYLT PQGGAA PQPHPPPAFSPAFDNLYYWDQDPPERGAPPSTFKGTPTAENPEYLGLDVPV"

SEO ID NO 91

ORIGIN Chromosome 17q21-q22.

- 1 aattetegag etegtegace ggtegaegag etegagggte gaegageteg agggegegeg
- 61 cccggcccc acccctcgca gcaccccgcg ccccgcgccc tcccagccgg gtccagccgg

121	agccatgggg	ccggagccgc	agtgagcacc	atggagctgg	cggccttgtg
ccgctggggg					
181	ctcctcctcg	ccctcttgcc	ccccggagcc	gcgagcaccc	aagtgtgcac
cggcacagac					
241	atgaagctgc	ggctccctgc	cagtcccgag	acccacctgg	acatgctccg
ccacctctac					
301	cagggctgcc	aggtggtgca	gggaaacctg	gaactcacct	acctgcccac
caatgccagc					
361	ctgtccttcc	tgcaggatat	ccaggaggtg	cagggctacg	tgctcatcgc
tcacaaccaa					
421	gtgaggcagg	tcccactgca	gaggctgcgg	attgtgcgag	gcacccagct
ctttgaggac					
481	aactatgccc	tggccgtgct	agacaatgga	gacccgctga	acaataccac
ccctgtcaca					
541	ggggcctccc	caggaggcct	gcgggagctg	cagcttcgaa	gcctcacaga
gatcttgaaa					
601	ggaggggtct	tgatccagcg	gaacccccag	ctctgctacc	aggacacgat
tttgtggaag					
661	gacatcttcc	acaagaacaa	ccagctggct	ctcacactga	tagacaccaa
ccgctctcgg					
721	gcctgccacc	cctgttctcc	gatgtgtaag	ggctcccgct	gctggggaga
gagttctgag					
781	gattgtcaga	gcctgacgcg	cactgtctgt	gccggtggct	gtgcccgctg
caaggggcca					
841	ctgcccactg	actgctgcca	tgagcagtgt	gctgccggct	gcacgggccc
caagcactct					
901	gactgcctgg	cctgcctcca	cttcaaccac	agtggcatct	gtgagctgca
ctgcccagcc					
961	ctggtcacct	acaacacaga	cacgtttgag	tccatgccca	atcccgaggg
ccggtataca					
1021	ttcggcgcca	gctgtgtgac	tgcctgtccc	tacaactacc	tttctacgga
cgtgggatcc					
1081	tgcaccctcg	tctgccccct	gcacaaccaa	gaggtgacag	cagaggatgg
aacacagcgg					
1141	tgtgagaagt	gcagcaagcc	ctgtgcccga	gtgtgctatg	gtctgggcat
ggagcacttg	•				

1201	cgagaggtga	gggcagttac	cagtgccaat	atccaggagt	ttgctggctg
caagaagatc					
1261	tttgggagcc	tggcatttct	gccggagagc	tttgatgggg	acccagcctc
caacactgcc					
1321	ccgctccagc	cagagcagct	ccaagtgttt	gagactctgg	aagagatcac
aggttaccta					
1381	tacatctcag	catggccgga	cagcctgcct	gacctcagcg	tcttccagaa
cctgcaagta		•			
1441	atccggggac	gaattctgca	caatggcgcc	tactcgctga	ccctgcaagg
gctgggcatc					
1501	agctggctgg	ggctgcgctc	actgagggaa	ctgggcagtg	gactggccct
catccaccat					
1561	aacacccacc	tctgcttcgt	gcacacggtg	ccctgggacc	agctctttcg
gaacccgcac					
1621	caagctctgc	tccacactgc	caaccggcca	gaggacgagt	gtgtgggcga
gggcctggcc					
1681	tgccaccagc	tgtgcgcccg	agggcactgc	tggggtccag	ggcccaccca
gtgtgtcaac					
1741	tgcagccagt	tccttcgggg	ccaggagtgc	gtggaggaat	gccgagtact
gcaggggctc					
1801	cccagggagt	atgtgaatgc	caggcactgt	ttgccgtgcc	accctgagtg
tcagccccag					
1861	aatggctcag	tgacctgttt	tggaccggag	gctgaccagt	gtgtggcctg
tgcccactat					
1921	aaggaccctc	ccttctgcgt	ggcccgctgc	cccagcggtg	tgaaacctga
cctctcctac					
1981		ggaagtttcc	agatgaggag	ggcgcatgcc	agccttgccc
catcaactgc					
2041	acccactcct	gtgtggacct	ggatgacaag	ggctgccccg	ccgagcagag
agccagccct		.			
2101		tcgtctctgc	ggiggiigge	attctgctgg	LOGEGGEE
gggggtggtc 2161		tantannaa.	3.0000000000	224210000	antagaggat
	tttgggatcc	tcatcaagcg	acggcagcag	aagatccgga	agtacacgat
gcggagactg 2221		caaaactaat	aaaaccacta	acacctaggg	aaacaatacc
		cggagctggt	ggagccgctg	acacctagcg	gagcgatgcc
caaccaggcg					

2281	cagatgcgga	tcctgaaaga	gacggagctg	aggaaggtga	aggtgcttgg
atctggcgc	t				
2341	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	tctacaaggg	catctggatc	cctgatgggg	agaatgtgaa
aattccagt	g				
2401	gccatcaaag	tgttgaggga	aaacacatcc	cccaaagcca	acaaagaaat
cttagacga	a				
2461	gcatacgtga	tggctggtgt	gggctcccca	tatgtctccc	gccttctggg
catctgcct	g				
2521	acatccacgg	tgcagctggt	gacacagctt	atgccctatg	gctgcctctt
agaccatgt	С				
2581	cgggaaaacc	gcggacgcct	gggctcccag	gacctgctga	actggtgtat
gcagattgc	C				
2641	aaggggatga	gctacctgga	ggatgtgcgg	ctcgtacaca	gggacttggc
cgctcggaa	C				
2701	gtgctggtca	agagtcccaa	ccatgtcaaa	attacagact	tcgggctggc
tcggctgct	g				•
2761	gacattgacg	agacagagta	ccatgcagat	gggggcaagg	tgcccatcaa
gtggatggc	g				
2821	ctggagtcca	ttctccgccg	gcggttcacc	caccagagtg	atgtgtggag
ttatggtgt	g				
2881	actgtgtggg	agctgatgac	ttttggggcc	aaaccttacg	atgggatccc
agcccggga	g				
2941	atccctgacc	tgctggaaaa	gggggagcgg	ctgccccagc	ccccatctg
caccattga	t				
3001	gtctacatga	tcatggtcaa	atgttggatg	attgactctg	aatgtcggcc
aagattccg	g				
3061	gagttggtgt	ctgaattctc	ccgcatggcc	agggaccccc	agcgctttgt
ggtcatcca	g				
3121	aatgaggact	tgggcccagc	cagtcccttg	gacagcacct	tctaccgctc
actgctgga	g	,			
3181	gacgatgaca	tgggggacct	ggtggatgct	gaggagtatc	tggtacccca
gcagggctt	c				
3241	ttctgtccag	accctgcccc	gggcgctggg	ggcatggtcc	accacaggca
ccgcagctc	a				
3301	tctaccagga	gtggcggtgg	ggacctgaca	ctagggctgg	agccctctga
agaggaggc	:c				

3361	cccaggtctc	cactggcacc	ctccgaaggg	gctggctccg	atgtatttga
tggtgacctg					
3421	ggaatggggg	cagccaaggg	gctgcaaagc	ctccccacac	atgaccccag
ccctctacag					
3481	cggtacagtg	aggaccccac	agtacccctg	ccctctgaga	ctgatggcta
cgttgcccc					
3541	ctgacctgca	gccccagcc	tgaatatgtg	aaccagccag	atgttcggcc
ccagccccct					
3601	tcgccccgag	agggccctct	gcctgctgcc	cgacctgctg	gtgccactct
ggaaagggcc					
3661	aagactctct	ccccagggaa	gaatggggtc	gtcaaagacg	tttttgcctt
tgggggtgcc					
3721	gtggagaacc	ccgagtactt	gacaccccag	ggaggagctg	cccctcagcc
ccaccctcct					•
3781	cctgccttca	gcccagcctt	cgacaacctc	tattactggg	accaggaccc
accagagcgg					
3841	ggggctccac	ccagcacctt	caaagggaca	cctacggcag	agaacccaga
gtacctgggt		ì			
3901	ctggacgtgc	cagtgtgaac	cagaaggcca	agtccgcaga	agccctgatg
tgtcctcagg					
3961	gagcagggaa	ggcctgactt	ctgctggcat	caagaggtgg	gagggccctc
cgaccacttc					
4021	caggggaacc	tgccatgcca	ggaacctgtc	ctaaggaacc	ttccttcctg
cttgagttcc					
4081	cagatggctg	gaaggggtcc	agcctcgttg	gaagaggaac	agcactgggg
agtctttgtg					
4141	gattctgagg	ccctgcccaa	tgagactcta	gggtccagtg	gatgccacag
cccagcttgg					
4201	ccctttcctt	ccagatcctg	ggtactgaaa	gccttaggga	agctggcctg
agaggggaag					
4261	cggccctaag	ggagtgtcta	agaacaaaag	cgacccattc	agagactgtc
cctgaaacct					
4321	agtactgccc	cccatgagga	aggaacagca	atggtgtcag	tatccaggct
ttgtacagag					
4381	tgcttttctg	tttagttttt	actttttttg	ttttgtttt	ttaaagacga
aataaagacc					

4441 cagggagaa tgggtgttgt atggggaggc aagtgtgggg ggtccttctc cacacccact
4501 ttgtccattt gcaaatatat tttggaaaac
//

H.sapiens mRNA for SCP1 protein.

ACCESSION X95654

VERSION X95654.1 GI:1212982

SEO ID NO 92

/translation="MEKQKPFALFVPPRSSSSQVSAVKPQTLGGDSTFFKSFNKCTED DLEFPFAKTNLSKNGENIDSDPALQKVNFLPVLEQVGNSDCHYQEGLKDSDLENSEGL SRVFSKLYKEAEKIKKWKVSTEAELRQKESKLQENRKIIEAQRKAIQELQFGNEKVSL KLEEGIOENKOLIKENNATRHLCNLLKETCARSAEKTKKYEYEREETRQVYMDLNNNI EKMITAHGELRVQAENSRLEMHFKLKEDYEKIQHLEQEYKKEINDKEKQVSLLLIQIT EKENKMKDLTFLLEESRDKVNQLEEKTKLQSENLKQSIEKQHHLTKELEDIKVSLQRS VSTOKALEEDLOIATKTICOLTEEKETOMEESNKARAAHSFVVTEFETTVCSLEELLR TEOORLEKNEDOLKILTMELOKKSSELEEMTKLTNNKEVELEELKKVLGEKETLLYEN KQFEKIAEELKGTEQELIGLLQAREKEVHDLEIQLTAITTSEQYYSKEVKDLKTELEN EKLKNTELTSHCNKLSLENKELTQETSDMTLELKNQQEDINNNKKQEERMLKQIENLQ ETETQLRNELEYVREELKQKRDEVKCKLDKSEENCNNLRKQVENKNKYIEELQQENKA LKKKGTAESKOLNVYEIKVNKLELELESAKOKFGEITDTYQKEIEDKKISEENLLEEV EKAKVIADEAVKLOKEIDKRCOHKIAEMVALMEKHKHQYDKIIEERDSELGLYKSKEQ EOSSLRASLEIELSNLKAELLSVKKOLEIEREEKEKLKREAKENTATLKEKKDKKTOT FLLETPEIYWKLDSKAVPSOTVSRNFTSVDHGISKDKRDYLWTSAKNTLSTPLPKAYT VKTPTKPKLOORENLNIPIEESKKKRKMAFEFDINSDSSETTDLLSMVSEEETLKTLY RNNNPPASHLCVKTPKKAPSSLTTPGPTLKFGAIRKMREDRWAVIAKMDRKKKLKEAE KLFV"

SEQ ID NO 93 ORIGIN

- $1 \quad \text{gccctcatag} \quad \text{accgtttgtt} \quad \text{gtagttcgcg} \quad \text{tgggaacagc} \quad \text{aacccacggt} \\ \text{ttcccgatag} \qquad \cdot$
- 61 ttcttcaaag atatttacaa ccgtaacaga gaaaatggaa aagcaaaagc cctttgcatt

121 gttcgtacca ccgagatcaa gcagcagtca ggtgtctgcg gtgaaacctc agaccctggg 181 aggcgattcc actttcttca agagtttcaa caaatgtact gaagatgatt tggagtttcc 241 atttgcaaag actaatctct ccaaaaatgg ggaaaacatt gattcagatc ctqctttaca 301 aaaagttaat ttcttgcccg tgcttgagca ggttggtaat tctgactgtc actatcagga 361 aggactaaaa gactctgatt tggagaattc agagggattg agcagagtgt tttcaaaact 421 gtataaggag gctgaaaaga taaaaaaatg gaaagtaagt acagaagctg aactgagaca 481 gaaagaaagt aagttgcaag aaaacagaaa gataattgaa gcacagcgaa aagccattca 541 ggaactgcaa tttggaaatg aaaaagtaag tttgaaatta gaagaaggaa tacaagaaaa 601 taaagattta ataaaagaga ataatgccac aaggcattta tgtaatctac tcaaagaaac 661 ctgtgctaga tctgcagaaa agacaaagaa atatgaatat gaacgggaag aaaccaggca 721 agtttatatg gatctaaata ataacattga gaaaatgata acagctcatg gggaacttcg 781 tgtgcaagct gagaattcca gactggaaat gcattttaag ttaaaggaag attatqaaaa 841 aatccaacac cttgaacaag aatacaagaa ggaaataaat gacaaggaaa agcaggtatc 901 actactattg atccaaatca ctgagaaaga aaataaaatg aaagatttaa catttctqct 961 agaggaatcc agagataaag ttaatcaatt agaggaaaag acaaaattac agagtgaaaa 1021 cttaaaacaa tcaattgaga aacagcatca tttgactaaa gaactagaag atattaaaqt 1081 gtcattacaa agaagtgtga gtactcaaaa ggctttagag gaagatttac agatagcaac 1141 aaaaacaatt tgtcagctaa ctgaagaaaa agaaactcaa atggaagaat ctaataaagc

1201 tagagetget cattegtttg tggttactga atttgaaact actgtetgea gcttggaaga 1261 attattgaga acagaacagc aaagattgga aaaaaatgaa gatcaattga aaatacttac 1321 catggagett caaaagaaat caagtgaget ggaagagatg actaagetta caaataacaa 1381 agaagtagaa cttgaagaat tgaaaaaagt cttgggagaa aaggaaacac ttttatatga 1441 aaataaacaa tttgagaaga ttgctgaaga attaaaagga acagaacaag aactaattgg 1501 tettetecaa gecagagaga aagaagtaca tgatttggaa atacagttaa ctgccattac 1561 cacaagtgaa cagtattatt caaaagaggt taaagatcta aaaactgagc ttgaaaacqa 1621 gaagettaag aatactgaat taacttcaca ctgcaacaag ctttcactag aaaacaaaga 1681 gctcacacag gaaacaagtg atatgaccct agaactcaag aatcagcaag aagatattaa 1741 taataacaaa aagcaagaag aaaggatgtt gaaacaaata gaaaatcttc aagaaacaga 1801 aacccaatta agaaatgaac tagaatatgt gagagaagag ctaaaacaga aaagagatga 1861 agttaaatgt aaattggaca agagtgaaga aaattgtaac aatttaagga aacaaqttqa 1921 aaataaaaac aagtatattg aagaacttca gcaggagaat aaggccttga aaaaaaaqq 1981 tacagcagaa agcaagcaac tgaatgttta tgagataaag gtcaataaat tagagttaga 2041 actagaaagt gccaaacaga aatttggaga aatcacagac acctatcaga aagaaattga 2101 qqacaaaaaq atatcaqaaq aaaatctttt qgaaqaggtt gagaaagcaa aagtaatagc 2161 tgatgaagca gtaaaattac agaaagaaat tgataagcga tgtcaacata aaatagctga 2221 aatggtagca cttatggaaa aacataagca ccaatatgat aagatcattg aagaaagaga

	2281	ctcagaatta	ggactttata	agagcaaaga	acaagaacag	tcatcactga
gago	catcttt		23	3 3	, ,	J
<i>3 3</i>	2341	ggagattgaa	ctatccaatc	tcaaagctga	acttttgtct	gttaagaagc
aact	tgaaat				-	
	2401	agaaagagaa	gagaaggaaa	aactcaaaag	agaggcaaaa	gaaaacacag
ctad	ctcttaa					
	2461	agaaaaaaaa	gacaagaaaa	cacaaacatt	tttattggaa	acacctgaaa
ttta	attggaa					
	2521	attggattct	aaagcagttc	cttcacaaac	tgtatctcga	aatttcacat
cagt	tgatca					
	2581	tggcatatcc	aaagataaaa	gagactatct	gtggacatct	gccaaaaata
cttt	tatctac					
	2641	accattgcca	aaggcatata	cagtgaagac	accaacaaaa	ccaaaactac
agca	aaagaga					
	2701	aaacttgaat	atacccattg	aagaaagtaa	aaaaaagaga	aaaatggcct
ttga	aatttga					
	2761	tattaattca	gatagttcag	aaactactga	tcttttgagc	atggtttcag
aaga	aagagac					
	2821	attgaaaaca	ctgtatagga	acaataatcc	accagcttct	catctttgtg
tcaa	aaacacc					
	2881	aaaaaaggcc	ccttcatctc	taacaacccc	tggacctaca	ctgaagtttg
gago	ctataag					
	2941	aaaaatgcgg	gaggaccgtt	gggctgtaat	tgctaaaatg	gatagaaaaa
aaaa	aactaaa			,		
	3001	agaagctgaa	aagttatttg	tttaatttca	gagaatcagt	gtagttaagg
agco	ctaataa					
- 4 - 4	3061	cgtgaaactt	atagttaata	ttttgttctt	atttgccaga	gccacatttt
atci	tggaagt 3121		222252655	02+022+02+	ttgtgtttct	++ >+ > ++ ++
300	ctaaatg	tgagacttaa	aaaatacttg	catyaatyat	ctgtgttttt	Clacaciccic
aycı	_	ttaactacat	attgtctgga	aacctotcat	tgtattcaga	taattagatg
atta	atatatt		actycetyga	aaccegecae	egeaeeeaga	caaccagacg
ucce	3241		tttcttgtat	tcatgaaaac	tgtttttact	aagttttcaa
atti	tgtaaag	•	Josephan	1000900000	-90000000	
400	3301		aatgctagga	atgcattatt	gagggtcatt	ctttattctt
taci	tattaaa	•	· 5 5 5 ··	- 5	J J J J	
	- -					

3361 atattttgga tgcaaaaaaa aaaaaaaaa aaa

Homo sapiens synovial sarcoma, X breakpoint 4 (SSX4), mRNA.

ACCESSION NM 005636

VERSION NM 005636.1 GI:5032122

SEQ ID NO 94

/translation="MNGDDAFARRPRDDAQISEKLRKAFDDIAKYFSKKEWEKMKSSEKIVY
VYMKLNYEVMTKLGFKVTLPPFMRSKRAADFHGNDFGNDRNHRNQVERPQMTFG
SLQRIFPKIMPKKPAEEENGLKEVPEASGPQNDGKQLCPPGNPSTLEKINKTSGPKRG
KHAWTHRLRERKQLVVYEEISDPEEDDE"

SEQ ID NO 95

ORIGIN

- 1 atgaacggag acgacgcctt tgcaaggaga cccagggatg atgctcaaat atcagagaag
- 61 ttacgaaagg ccttcgatga tattgccaaa tacttctcta agaaagagtg
- 121 aaatcctcgg agaaaatcgt ctatgtgtat atgaagctaa actatgaggt catgactaaa
- 181 ctaggtttca aggtcaccct cccacctttc atgcgtagta aacgggctgc agacttccac
- 241 gggaatgatt ttggtaacga tcgaaaccac aggaatcagg ttgaacgtcc tcagatgact
- 301 ttcggcagcc tccagagaat cttcccgaag atcatgccca agaagccagc agaggaagaa
- 361 aatggtttga aggaagtgcc agaggcatct ggcccacaaa atgatgggaa acagctgtgc
- 421 cccccgggaa atccaagtac cttggagaag attaacaaga catctggacc caaaaggggg
- 481 aaacatgcct ggacccacag actgcgtgag agaaagcagc tggtggttta tgaagagatc
 - 541 agcgaccctg aggaagatga cgagtaactc ccctcg

U19142. Human GAGE-1 prot...[gi:914898]

LOCUS HSU19142 646 bp mRNA linear

DEFINITION Human GAGE-1 protein mRNA, complete cds.

ACCESSION U19142

VERSION U19142.1 GI:914898

SEQ ID No. 96

/translation="MSWRGRSTYRPRPRRYVEPPEMIGPMRPEQFSDEVEPATPEEGE

SEQ ID NO. 97

- 1 ctgccgtccg gactcttttt cctctactga gattcatctg tgtgaaatat gagttggcga
- 61 ggaagatcga cctatcggcc tagaccaaga cgctacgtag agcctcctga aatgattggg
- 121 cctatgcggc ccgagcagtt cagtgatgaa gtggaaccag caacacctga agaaggggaa
- 181 ccagcaactc aacgtcagga tcctgcagct gctcaggagg gagaggatga
- 241 gcaggtcaag ggccgaagcc tgaagctgat agccaggaac agggtcaccc acagactggg
- 301 tgtgagtgtg aagatggtcc tgatgggcag gagatggacc cgccaaatcc agaggaggtg
- 361 aaaacgcctg aagaagagat gaggtctcac tatgttgccc agactgggat tctctggctt
- 421 ttaatgaaca attgcttctt aaatctttcc ccacggaaac cttgagtgac tgaaatatca
- 481 aatggcgaga gaccgtttag ttcctatcat ctgtggcatg tgaagggcaa tcacagtgtt
- 541 aaaagaagac atgctgaaat gttgcaggct gctcctatgt tggaaaattc ttcattgaag
- 601 ttctcccaat aaagctttac agccttctgc aaagaaaaaa aaaaaa

NM 001168. Homo sapiens bacu...[gi:4502144]

LOCUS BIRC5 1619 bp mRNA linear

DEFINITION Homo sapiens baculoviral IAP repeat-containing 5

(survivin) (BIRC5), mRNA.

ACCESSION NM 001168

VERSION NM 001168.1 GI:4502144

SEQ ID NO. 98

/translation="MGAPTLPPAWQPFLKDHRISTFKNWPFLEGCACTPERMAEAGFI

HCPTENEPDLAQCFFCFKELEGWEPDDDPIEEHKKHSSGCAFLSVKKQFEELTLGEFL KLDRERAKNKIAKETNNKKKEFEETAKKVRRAIEQLAAMD"

SEQ ID NO. 99

- 1 ccgccagatt tgaatcgcgg gacccgttgg cagaggtggc ggcggcggca tgggtgccc
- 61 gacgttgccc cctgcctggc agccctttct caaggaccac cgcatctcta cattcaagaa
- 121 ctggcccttc ttggagggct gcgcctgcac cccggagcgg atggccgagg ctggcttcat
- 181 ccactgcccc actgagaacg agccagactt ggcccagtgt ttcttctgct tcaaggagct
- 241 ggaaggctgg gagccagatg acgaccccat agaggaacat aaaaagcatt cqtccqqttq
- 301 cgctttcctt tctgtcaaga agcagtttga agaattaacc cttggtgaat ttttgaaact
- 361 ggacagagaa agagccaaga acaaaattgc aaaggaaacc aacaataaga agaaagaatt
- 421 tgaggaaact gcgaagaaag tgcgccgtgc catcgagcag ctggctgcca tggattgagg
- 481 cctctggccg gagctgcctg gtcccagagt ggctgcacca cttccagggt ttattccctg
- 541 gtgccaccag ccttcctgtg ggccccttag caatgtctta ggaaaggaga tcaacatttt

601	caaattagat	gtttcaactg	tgctcctgtt	ttgtcttgaa	agtggcacca
gaggtgcttc					
661	tgcctgtgca	gcgggtgctg	ctggtaacag	tggctgcttc	tctctctctc
tctcttttt					
721	gggggctcat	ttttgctgtt	ttgattcccg	ggcttaccag	gtgagaagtg
agggaggaag					
781	aaggcagtgt	cccttttgct	agagctgaca	gctttgttcg	cgtgggcaga
gccttccaca					
841	gtgaatgtgt	ctggacctca	tgttgttgag	gctgtcacag	tcctgagtgt
ggacttggċa					
901	ggtgcctgtt	gaatctgagc	tgcaggttcc	ttatctgtca	cacctgtgcc
tcctcagagg					
961	acagttttt	tgttgttgtg	tttttttgtt	tttttttt	ggtagatgca
tgacttgtgt					
1021	gtgatgagag	aatggagaca	gagtccctgg	ctcctctact	gtttaacaac
atggctttct					
1081	tattttgttt	gaattgttaa	ttcacagaat	agcacaaact	acaattaaaa
ctaagcacaa					
1141	agccattcta	agtcattggg	gaaacggggt	gaacttcagg	tggatgagga
gacagaatag					
1201	agtgatagga	agcgtctggc	agatactcct	tttgccactg	ctgtgtgatt
agacaggccc					
1261	agtgagccgc	ggggcacatg	ctggccgctc	ctccctcaga	aaaaggcagt
ggcctaaatc					
1321	ctttttaaat	gacttggctc	gatgctgtgg	gggactggct	gggctgctgc
aggccgtgtg	ī				
1381	tctgtcagcc	caaccttcac	atctgtcacg	ttctccacac	gggggagaga
cgcagtccgc	:				
1441	ccaggtcccc	gctttctttg	gaggcagcag	ctcccgcagg	gctgaagtct
ggcgtaagat					
1501	gatggatttg	attcgccctc	ctccctgtca	tagagctgca	gggtggattg
ttacagcttc					
1561	gctggaaacc	tctggaggtc	atctcggctg	ttcctgagaa	ataaaaagcc
tgtcatttc					
//					

U06452. Human melanoma an...[gi:476131]

LOCUS HSU06452 1524 bp mRNA linear

DEFINITION Human melanoma antigen recognized by T-cells (MART-1) mRNA.

ACCESSION U06452

VERSION U06452.1 GI:476131

SEQ ID NO.100

/translation="MPREDAHFIYGYPKKGHGHSYTTAEEAAGIGILTVILGVLLLIG

CWYCRRNGYRALMDKSLHVGTQCALTRRCPQEGFDHRDSKVSLQEKNCEPVVPNAPP AYEKLSAEQSPPPYSP"

SEQ ID NO.	101				
1	agcagacaga	ggactctcat	taaggaaggt	gtcctgtgcc	ctgaccctac
aagatgccaa	~				
61	gagaagatgc	tcacttcatc	tatggttacc	ccaagaaggg	gcacggccac
tcttacacca					
121	cggctgaaga	ggccgctggg	atcggcatcc	tgacagtgat	cctgggagtc
ttactgctca					
181	tcggctgttg	gtattgtaga	agacgaaatg	gatacagagc	cttgatggat
aaaagtcttc					
241	atgttggcac	tcaatgtgcc	ttaacaagaa	gatgcccaca	agaagggttt
gatcatcggg					
301	acagcaaagt	gtctcttcaa	gagaaaaact	gtgaacctgt	ggttcccaat
gctccacctg					
361	cttatgagaa	actctctgca	gaacagtcac	caccacctta	ttcaccttaa
gagccagcga					
421	gacacctgag	acatgctgaa	attatttctc	tcacactttt	gcttgaattt
aatacagaca					
481	tctaatgttc	tcctttggaa	tggtgtagga	aaaatgcaag	ccatctctaa
taataagtca	•				
541	gtgttaaaat	tttagtaggt	ccgctagcag	tactaatcat	gtgaggaaat
gatgagaaat	-				

```
601 attaaattgg gaaaactcca tcaataaatg ttgcaatgca tgatactatc
tgtgccagag
     661 gtaatgttag taaatccatg gtgttatttt ctgagagaca gaattcaagt
gggtattctg
     721 gggccatcca atttctcttt acttgaaatt tggctaataa caaactagtc
aggttttcga
     781 accttgaccg acatgaactg tacacagaat tgttccagta ctatggagtg
ctcacaaagg
     841 atacttttac aggttaagac aaagggttga ctggcctatt tatctgatca
agaacatgtc
     901 agcaatgtct ctttgtgctc taaaattcta ttatactaca ataatatat
gtaaagatcc
     961 tatagetett tttttttgag atggagttte gettttgttg eccaggetgg
agtgcaatgg
    1021 cgcgatcttg gctcaccata acctccgcct cccaggttca agcaattctc
ctgccttagc
     1081 ctcctgagta gctgggatta caggcgtgcg ccactatgcc tgactaattt
tgtagtttta
     1141 gtagagacgg ggtttctcca tgttggtcag gctggtctca aactcctgac
ctcaggtgat
     1201 ctgcccgcct cagcctccca aagtgctgga attacaggcg tgagccacca
cacctaacta
     1261 gatcctatat cttaggtaag acatataacg cagtctaatt acatttcact
tcaaggctca
     1321 atgctattct aactaatgac aagtattttc tactaaacca gaaattggta
gaaggattta
     1381 aataagtaaa agctactatg tactgcctta gtgctgatgc ctgtgtactg
ccttaaatgt
     1441 acctatggca atttagctct cttgggttcc caaatccctc tcacaagaat
gtgcagaaga
     1501 aatcataaag gatcagagat tctg
//
U19180. Human B melanoma ...[gi:726039]
                                                     linear
```

DEFINITION Human B melanoma antigen (BAGE) mRNA, complete cds.

HSU19180

LOCUS

1004 bp

mRNA

ACCESSION U19180

VERSION U19180.1 GI:726039

SEQ IS NO. 102

/translation="MAARAVFLALSAQLLQARLMKEESPVVSWRLEPEDGTALCFIF"

SEQ ID NO. 103

SEQ ID NO.	103				
1	cgccaattta	gggtctccgg	tatctcccgc	tgagctgctc	tgttcccggc
ttagaggacc					
61	aggagaaggg	ggagctggag	gctggagcct	gtaacaccgt	ggctcgtctc
actctggatg					
121	gtggtggcaa	cagagatggc	agcgcagctg	gagtgttagg	agggcggcct
gagcggtagg					
181	agtggggctg	gagcagtaag	atggcggcca	gagcggtttt	tctggcattg
tctgcccagc					
241	tgctccaagc	caggctgatg	aaggaggagt	cccctgtggt	gagctggagg
ttggagcctg					
301	aagacggcac	agctctgtgc	ttcatcttct	gaggttgtgg	cagccacggt
gatggagacg					
361	gcagctcaac	aggagcaata	ggaggagatg	gagtttcact	gtgtcagcca
ggatggtctc					
421	gatctcctga	cctcgtgatc	cgcccgcctt	ggccttccaa	agtgccgaga
ttacagcgat					
481	gtgcattttg	taagcacttt	ggagccacta	tcaaatgctg	tgaagagaaa
tgtacccaga					
541	tgtatcatta	tccttgtgct	gcaggagccg	gctcctttca	ggatttcagt
cacatcttcc					
601	tgctttgtcc	agaacacatt	gaccaagctc	ctgaaagatg	taagtttact
acgcatagac					
661	ttttaaactt	caaccaatgt	atttactgaa	aataacaaat	gttgtaaatt
ccctgagtgt					
721	tattctactt	gtattaaaag	gtaataatac	ataatcatta	aaatctgagg
gatcattgcc					
781	agagattgtt	ggggagggaa	atgttatcaa	cggtttcatt	gaaattaaat
ccaaaaagtt					

- 841 atttcctcag aaaaatcaaa taaagtttgc atgtttttta ttcttaaaac attttaaaaa
- 901 ccactgtaga atgatgtaaa tagggactgt gcagtatttc tgacatatac tataaaatta
- 961 ttaaaaagtc aatcagtatt caacatcttt tacactaaaa agcc //

[0409] The entire contents of all patents and publications discussed herein are incorporated by reference in their entirety to the same extent as if each individual publication was specifically and individually indicated to be incorporated by reference in its entirety. Furthermore, the teachings and embodiments disclosed in any of the publications, including patents, patent publications and non-patent publications, disclosed herein are contemplated as supporting principals and embodiments related to and useful in connection with the present invention.

[0410] The invention illustratively described herein suitably may be practiced in the absence of any element or elements, limitation or limitations which is not specifically disclosed herein. The terms and expressions which have been employed are used as terms of description and not of limitation, and there is no intention that in the use of such terms and expressions indicates the exclusion of equivalents of the features shown and described or portions thereof. It is recognized that various modifications are possible within the scope of the invention claimed. Thus, it should be understood that although the present invention has been specifically disclosed by preferred embodiments and optional features, modification and variation of the concepts herein disclosed may be resorted to by those skilled in the art, and that such modifications and variations are considered to be within the scope of the embodiments of this invention.