RIVELATORI DI RADIAZIONE (CENNI)

STRUMENTI SENSIBILI ALL' INTERAZIONE DI PARTICELLE, CARICHE E NEUTRE.

DARENO 3 CLASSIFICAZIONI:

- 1 TIPO DI GRANDEZZA FISICA DA MISURARE
 - . FLUSSO DI PARTICELE
 - . CONTEGGIO DI PARTICELLE SINGOLE
 - RIVELATORI PIÙ SEMPLICI
 - . ENERGIA DEPOSTA SPETTRI DI ENERGIA
 - POSIZIONE DI DEPOSIZIONE DELL'ENERGIA
 - . TEMPI OI ARRIVO DI PARTICELLE
 - . VELDCITÀ DI PARTICELLE
 - . MOMENTO DI PARTICELLE

POSSONO ESSERE MISURATE SIMULTANEAMENTE

(2) TIPO OI RADIAZIONE

- · SPETTROSCOPIA X
- · SPETTROSCOPIA (3
- · SPETTROSCOPIA X
- . NEUTRONI
- . NEUTRINI
- . Y ED ELETTRONI DI ALTA ENERGIA
- . ADRONI DI ALTA ENERGIA
 - QUESTE PERÒ SONO "SPECIALIZZAMONI", E NON COPRONO TUTTO CO SPETTRO DEI RIVELATORI ESISTENTI

PRINCIPIO DI FUNZIONAMENTO . RIVELATORI A GAS - PRODUZIONE DI N COPPIE IONI 22AZIONE ELETTRONE - IONE ("CARICA LIBERATA") - MISURA DELLA CARICA LIBERATA RIVELATORI A STATO SOLIDO (GIUNZIONE A POLARIZZAZIONE INVERSA) PRODUZIONE DI N COPPE ELETTRONE - LACUNA ("CARICA LIBERATA") - MISURA DELLA CARICA LIBERATA SCINTILLATORI - ECCITAZIONE ATOMICA - MISURA DEI FOTONI DI DISECCITAZIONE

TEMPERATURA DETERMINATO DA UNA PARTICELLA SINGOLA

MISURE DI AMPIEZZA DI IMPULSI SINGOLI

PER I AIVELATORI DI TIPO a), b) e c) DELLA
CLASSIFICAZIONE PRECEDENTE, POSSIAMO, DAL
PUNTO DI VISTA DELLA MISURA DELL'ENERGIA,
ELABORARE UN MODELLO SEMPLIFICATO PER IL
RIVELATORE.

DI FORMAZIONE DELL'IMPULSO

CARICANDO UNA CAPACITÀ

C CON LA CORRENTE ((t)

SI OTTIENE UN IMPULSO

DI TENSIONE V(t), CHE

RAGGIUNGE IL MASSIMO:

· VALE LA SEGUENTE CATENA DI PROPORZIONALITÀ :

E OC Q OC VM => E = X · VM

IL MASSIMO DELL'IMPULSO DI TENSIONE

(AMPIEZZA) È UNA MISURA DELL'ENERGIA

DEPOSTA
PER DETERMINARE X , SI FA UNA

CALIBRAZIONE .

QUINDI, IN MODO SEMPLIFICATO, IL RIVELATORE È
UN SISTEMA [RIVELATORE PROPRIAMENTE DETTO] +

[APPARATO ELETTRONICO] COSÌ SCHEMATIZZABILE

APPARATO
ELETTRONICO

| VISCITA DELL'APPARATO
ELETTRONICO
| COSÌ SCHEMATIZZABILE

QUANDO ESEGUO MISURE DI ENERGIA, MI INTERESSA SAPERE COME SI DISTRIBUISCONO LE ENERGIE DEPOSTE, OSSIA QUANTO FREQUENTI SONO CERTE ENERGIE RISPETTO AD ALTRE.

SPETTROS COPIA -

POSSO ASSUMERE CHE GLI INTERVALLI SIAND INFINITESIMI (NON VERD PER GLI STRUMENTI CHE DIGITALIZZANO: ADC -> "ANALOG TO DIGITAL CONVERTER") E LO SPETTRO DIVENTA UNA CURVA CONTINUA:

(PER COMODITÀ, DESIGNO VM CON H)

dN

SPETTRO

SE SONO INTERESSATO AL NUMERO DI CONTEGGI IN UNA CERTA ZONA, ESEGUO UN INTEGRALE :

A VOLTE (PIÙ RARAMENTE) SI RACCOLGONO SPETTRI

LA CATENA DI STRUMENTI CHE PRODUCE UNO SPETTRO DIFFERENZIALE È COST SCHEMATIZZABILE :

PRODUCE UN IMPULSO V(T) CON MASSIMO H

H PUD ESSERE
PIÙ O MENO
"DILATATO" A
SECONDA DEL
GUADACNO G
DEL SISTEMA
ELETTRONICO

"DIGITALIZZA"
L'IMPULSO, OSSIA
TRASFORMA
L'AMPIEZZA H
IN UN NUMERO
COMPRESO TRA
1 E 2"7

PRECISIONE > Nº DI BIT

"FONDO SCALA" IN VOLT DA IMPOSTARE) NUMERI FORNITI

RALLA ADC IN

2" "CANALI"...

OGNI CANALE RAPPRESENTI

L'INTERVALLO MINIMO

AH IN CUI SI CONTANO

GLI IMPULSI...

GENERA LO

SPETTRO DIFFERENZIALE

PROPRIETÀ DEI RIVELATORI

. EFFICIENTA

· RISOLUZIONE ENERGETICA

SPAZIALE

TEMPONALE

CHE UN RIVELATORE E'M GRADO DI

EFFICIENZA ASSOLUTA

FATTOM CHE INFLUENZANO L'EFFICIENZA

- 1 FATTORE DI ATTENUAZIONE GEOMETRICA G
- 2 FATTORE DI ATTENUAZIONE DEL MATERIALE M
- 3 EFFICIENZA D'INTERAZIONE
- 4 EFFICIENZA DI REGISTRAZIONE

- DIPENDE DALLA GED METHA DEL SISTEMA
- DIMINUISCE SE ALLONTANO LA SORGENTE
- PER UNA GEOMETRIA A 4TT GS1
- PER UNA GEORETRIA A 2TI G & O.5

Si ha
$$\Omega = \int_{A} \frac{\cos \alpha}{r^2} dA$$

alisop. dA e la diret. della s.

r distants duess, dal rivelatore

con un nuelabore CILINDRICO di nessio CASO SEMPLICE

$$\int 2 = 2\pi \left(1 - \frac{d}{\sqrt{d^2+\alpha^2}}\right) \frac{d^{3/2}}{d^2} = \frac{\pi \alpha^2}{d^2}$$

- 2) Tiene conto di :
 - . AUTO ASSORBIMENTO DELLA SORGENTE
 - . KATERIALE INTERPOSTO FRA SORGENTE E RIVELATORE
 - · VOWHE MORTO
- T = # IMPULSI REGISTRATI

 # DI QUANTI DI RAD. IN CIDENTI NEL VOLUME VIVO

- · DIPENDE DAL MATERIALE (M)
 - · DIPENDE DALLO SPESSORE (*)

CASO DI PARTICELLE CARICHE

T ~ 1

BASTA LA FORMAZIONE DI UNA SOLA

COPPIA PER CONSIDENARE IL QUANTO

CONE "AUELATO"

IN MODO PIUT ALGONOSO:

Siano dati Eo e W. Allova no = 50 3648TTO ALLA

I = 1 - P(0) = 1 - eno

I = 1 - P(0) = 1 - eno

• In An , per particelle AL MINIMO en IONIERA FIONE

no = 3,4 ioni/mm

Allona

$$I(1em) = 1 - e^{-34} \approx 1$$

 $I(1em) = 1 - e^{-3/4} = 1 - 0.033 \sim 97\% + 100\%$

STATISTICAMENTE POSSO NON RIVELARE ALCUNI QUANTI DI RADIAZIONE 4

Sia mil tasso di registrazione = # DI EVENTI UTILI REGISTR.

Allora

R = M DIPENDE DAL TEMPO MORTO BEL

MIO SISTEMA (vedi dopo...)

ALTRE DEFINITIONI UTILI

EFFICIENZA INTRINSECA

Eint = Eabs 4TT

SVINCOLA L'EFFICIENZA DA PROBLEMI GEORETRICI, VALE NELL'IP, DI DAGENTE PUNTIFORME MAT: INTERPOSTO TRASCURABILE

MORTO E DALLE CARATT, DEL RIVELATORE

DIPENDE DA : . HATERIALE RIVELATORE

- · SPESSORE WNGO P
- . ENERGIA DEL QUANTO ING DENTE

EFFICIENZA AL PICED

Allo ra

$$S = N + \frac{4\pi}{\epsilon_{ip}} e A = S.(Br. Retio)$$

attività della modo di alecadim.

sorgente on E pari el picco

E MON SI CALCOLA: SI MISURA

Possibile alternativa: USO DI MONTECARLO testati

LA RISOLUZIONE ENERGETICA

ENERGY, CHE SI ARRESTINO NEL RIVELATORE STESSO.

AD DONI EVENTO, CORRISPONDE ESATTAMENTE

UNA DEPOSIZIONE DI ENERGIA E.

NELLO SPETTRO DIFFERENZIALE, MI ASPETTO UN PICCO MOLTO STRETTO _ SE USO UN MCA, MI ASPETTO CHE LE AMPIEZZE VENGANO TUTTE COLLOCATE NELLO STESSO CANALE.

MA: IL RIVELATORE NON MISURA CON INFINITA

LE CAUSE DI DETERIORAMENTO DELLA AISOLUZIONE SONO MOLTEPLICI :

- DI CARATTERE STATISTICO:

L'IMPULSO V(t) CRESCE SEMPRE SU UNA

OI CARATTERE SISTEMATICO:

- . DALLA POSIZIONE;
- . es. DERIVA TEMPORALE DI X

MA PER RIVELATORI BASATI SULLA GENERAZIONE
DI CARICA LIBERA, ('È UNA CAUSA IRRIDUCIBILE
DI DETERIORAMENTO DELLA RISOLUZIONE.

- " LIBERO UNA CARICA Q -
- · LA CARICA PERÒ È DISCRETA.

 IN REALTÀ, LIBERO M PORTATORI DI CARICA,

 DENUNO CARATTERIZZATO DA UNA CARICA ELEMENTARE 9

 Q = M · 9
- E= 20. H = 20. Q = 20 gn => E och
 - MA: LA LIBERAZIONE DI CARICA È UN PROCESSO STATISTICO. IN FLUTTUA EVENTO PER EVENTO, ATTORNO AD UN VALOR MEDIO N

-D Q FLUTTUR, H FLUTTUR -

" VALUTIANO LA FLUTTUAZIONE.

SE I PROCESSI SINGOLI CHE LIBERANO I PORTATORI
DI CARICA 9 SONO L'UNO INDIPENDENTE DALL'ALTRO,
N SI DISTRIBUISCE ATTORNO AD N SECONDO LA
STATISTICA DI POISSON;

P(n) =
$$\frac{(N)^n e^{-N}}{n!}$$
 — NORMALIZZATA A 1

P(n) = PROBABILITÀ DI AVERE N PORTATORI LIBERI

0.3

LA DISTRIBUZIONE È
ASIMMETRICA (CODA)

YARIANZA DELLA DISTRIBUZIONE :

NOCTION IN SHOKENBURTEIN

6 = TN - DEVIAZIONE STANDARD.

SE N È MOLTO GRANDE (N>20), LA
DISTRIBUZIONE DI POISSON PUÒ ESSERE APPROSCIMATA
CON UNA GAUSSIANA (CHE È SIMMETRICA)

$$P(n) = \frac{1}{\sqrt{2\pi N}} \exp \left[-\frac{(n-N)^2}{2N}\right]$$

SE, COME È VERO IN GENERALE :

ANCHE H SARA DISTRIBUITO COME UNA

$$H = \frac{q}{C} \cdot N$$

$$G_{H} = \frac{q}{C} \cdot G_{N} = \frac{q}{C} \sqrt{N}$$

$$P(H) = \frac{A}{G_{H} \sqrt{2IC}} \exp \left(-\frac{(H - H)^{2}}{2G_{H}^{2}}\right)$$

$$P$$

QUINDI ;

FWHM = 2.35 6H = 2.35 6N = 2.35 1 (x 100)

RISOLUZIONE PERCENTUALE (LIMITE STATISTICO)

ES. PARTICELLA DI E= 1 MeV IN UN GAS.

VEDRENO CHE IN UN GAS OCCORRONO N'30 eV

PER LIBERARE UNA COPPIA IONE - ELETTRONE.

ALLORA: N= 106/30 ~ 3 × 104 => \(\bar{N} \geq 1.8 × 102 \)

FWHM - 0.5% (LIMITE STATISTICO)

LA RISOLUZIONE MIGLIORA COME 1/IN AL CRESCERE DI N-

IN REALTÀ, IL PROCESSO NON È POISSONIANO (EVENTI

F = 60 OSSERVATA CON F < 1

MISURA DELLA POSIZIONE

- · RIVELATORI TRACCIANTI
- . SEGMENTAZIONE DEGLI ELETTRODI
- · MATRICI DI RIVELATORI IDENTICI

Definiano

PRECISIONE SPAZIALE

- · PRECISIONE CON CUI È RICOSTRUITA LA POSITIONE DI UN ELEMENTO DELLA TRACCIA
- · DISPERSIONE BEI PUNTI RISPETTO ALL' INTERPOLATIONE LI NEARE DELLA TRACCIA

RISOLUZIONE SPAZIALE

. MINIMA SEPARAZIONE DI 2 TRACCE RISOLTE INDIVIDUALM.

RISOLUZIONE TEMPORALE

HININO INTERVALLO TEMPORALE TRA 2 EVENTI CHE UN PIVELATORE E' IN GRADO A RISOLVERE

= TEMPO MORTO

AC 3043916

CARATTERISTICHE INTRINSECHE DEL RIVELATORE MECCANISMI DI RACCOLTA DEI QUANTI PRODOTTI STRUMENTAZIONE ELETTRONICA DI LETTURA

SE 2 EVENTI NON SONO RISOLTI TEMPORALMENTE SI HA :

PILE-UP ERRATA VALUTAZIONE DEL TASSO DI CONTEGAI

ERRATA VALUTAZIONE DELL'ENERGIA (E~E,+E)

OCCORRE SAFER APPORTARE UNA CORREZIONE PER

Sta h il tasso d'interazione VERO
APPARENTE

2 il tempo monto caratteristico oles riselatore

MODELLO DI RIVELATORE NON PARALIZEABILE

Tempo morto totale (mt)·tms => n = m Tasso di perdifa di eventi n·mt = n-m (n -> n m -> + HODELLO DI RIVELATORE PARALIZZABILE

Probab. di quere un intervallo > ? P(T) = \[\begin{align} P(+) \oldot = ne^- \oldot \]

Probab. di quere un intervallo > ? P(T) = \[\begin{align} P(+) \oldot = e^{-nT} \end{align}

Allows \quad m = ne^- \(n + \infty \one m + o \)

PER BASSI PATE

n as 1 -> m = n(1-nc) IN ENTRAMBI I CALI

ATTENTIONE PER ALTI RATE (ALTO TEMPO MORTO) LA STATISTICA DI
CONTEGGIO NON È PIÙ VERAMENTE POISSONIANA (C'ÈBIAS)

MISURA DEL TEMPO MORTO

METODO CON 2 SORGENTI

SI BASA SO NA TASSO DI CONTEGGI CON SORGENTE 1

N2

1 e 2 assieme

N6 TASSO DI CONTEGGI DI FONDO

E SO MA, M2, M2, M3, TASSI OSSERVATI

Hove $n_{12} - n_b = (n_4 - n_b) + (n_2 - n_b)$ $n_{12} + n_b = n_4 + n_2$

POSSO SOSTITUIRE I TASSI VELI CON I TASSI OSSER VATI COME DATI DAI 2 MOSELLI DI TEMPO MORTO E RISOLUERE, OTTENEN CO

· CASO SEMPLICE: MODELLO NON PARALIZEABILE CON ME = 0 $T = \frac{m_1 m_2 - [m_1 m_2 (m_{12} - m_1)(m_{12} - m_2)]^{1/2}}{m_1 m_2 m_{12}}$

METODO CON SORGENTE A VITA MEDIA BASSA

NB

· PENDENZA DELLA RETTA NEL GRAFICO (X,Y)

- · NOTA NO , TROVO 2
- · SERVE ANCHE PER IDENTIFICANE IL MODELLO ACATTO