N° candidat: 13910

Automatisation du diagnostic de fractures osseuses par apprentissage profond

Santé, prévention

PLAN

- 1. Objectif
- 2. Apprentissage profond
- 3. Réseau neuronal convolutif
- 4. Recherche du meilleur algorithme
- 5. Conclusion
- 6. Annexes

Objectif

Radiographie par rayons X

3/27

Apprentissage profond Principe général de fonctionnement

Apprentissage profond Structure d'un modèle entièrement connecté

Réseau profond de neurones

Apprentissage profond Détail d'un neurone

Apprentissage profond Fonctions d'activation

y = x

$$\tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

ReLU (Unité de rectification linéaire)

Sigmoïde

 $f(x) = \frac{1}{1 + e^{-x}}$

7/27

Apprentissage profond Compilation du modèle

Dernière étape de définition d'un modèle : configurer sa manière d'apprendre

- → Fonction de perte : évalue l'erreur du modèle par rapport aux données d'entraînements
- → Optimizer : modifie les attributs du modèle en cherchant à minimiser la fonction de perte

Apprentissage profond Entraînement du modèle

« Apprendre » pour un réseau neuronal : ajuster les poids associés à chaque neurone de sorte à réduire l'erreur

Paramètres d'apprentissage :

- Batch_size : nombre de données traitées avant mise à jour des poids
- Epochs : nombre de passage du réseau sur l'entièreté des données
- Part d'aléatoire

Réseau neuronal convolutif (CNN)

Ajout de nouvelles couches en amont de la structure précédente -> Les entrées sont scindés en morceaux au préalable

Source: https://static-01.hindawi.com/articles/js/volume-2019/6134610/figures/6134610.fig.001.svgz

Réseau neuronal convolutif (CNN) Choix du type de réseau

Perceptron multicouches (MLP)

- Toutes les couches sont entièrement connectées
- Simplicité théorique
- Nombre de poids très grands

Réseau neuronal convolutif (CNN)

- Couches partiellement connectées
- Invariance de location des entrées
- Compréhension des dépendances spatiales locales
- Plus compliqué à implémenter
- → CNN plus simple à entraîner et plus adapté au traitement d'images

Réseau neuronal convolutif (CNN) Couches de convolution

Couche de convolution : assemblage de filtres qui s'appliquent aux entrées

Paramètres spécifiques : nombre de filtres, dimensions des filtres

Réseau neuronal convolutif (CNN) Couches de pooling

Réduit les dimensions du tableau transmis par la couche de convolution -> conserve les informations utiles tout en diminuant les coûts en mémoire et en temps

Exemples : prendre le maximum / la moyenne des valeurs dans un sous-tableau

Source: https://www.analyticsvidhya.com/blog/2021/08/beginners-guide-to-convolutional-neural-network-with-implementation-in-python/

Recherche du meilleur algorithme Préparation d'une base de données adéquate

Recherche du meilleur algorithme Prototype de modèle retenu

Certains paramètres sont particulièrement efficaces dans les problèmes de classification binaires

On prendra donc:

- Binary_crossentropy comme fonction de perte
- adam comme fonction d'optimisation
- ReLu pour les fonctions d'activations internes au réseau
- Sigmoid pour la fonction d'activation de la couche de sortie (valeur de sortie entre 0 et 1)

Recherche du meilleur algorithme Essais préliminaires

Taille du lot: 8

Taille des filtres: 5x5

Nombre d'époques : 10

2 couches entièrement connectées

2 {couche de convolution + couche de

pooling}

Nombre d'images	600	8376
Meilleure précision	0.613	0.689
Temps (1 époque)	60s	570s

Recherche du meilleur algorithme Influence de la couche de convolution

Mesures sur 600 images ; 5 époques

Précision

Dimension filtre

17/27

Recherche du meilleur algorithme Overfitting

Mesures sur toutes les images ; 10 époques

Recherche du meilleur algorithme *Ajout de couches*

Ajout d'une couche de convolution et une couche entièrement connectée

Ajout de deux couches de convolution et deux couches entièrement connectées

→ Précision légèrement supérieure mais temps d'entraînement plus important

Recherche du meilleur algorithme *Tailles des lots*

Précision

Conclusion

Meilleure précision obtenue : 0.738

→ Résultats insuffisants pour le domaine médical

Problème très complexe -> modèle difficile à ajuster

Nécessité d'une grande puissance de calcul et de beaucoup de mémoire

Axes d'amélioration:

- Meilleure qualité de la base de donnés
- Data augmentation
- S'intéresser à chaque paramètre plus en détail (nombre de couches, de neurones
- Moyens matériels bien plus importants

Annexes *Modules*

```
from tensorflow.keras.models import Sequential
     from tensorflow.keras.layers import Conv2D
     from tensorflow.keras.layers import MaxPooling2D
     from tensorflow.keras.layers import Dense
     from tensorflow.keras.layers import Flatten
     from tensorflow.keras.preprocessing.image import load_img
     from tensorflow.keras.preprocessing.image import img_to_array
     from tensorflow.image import rgb_to_grayscale
8
     from tensorflow.image import resize
     from matplotlib import pyplot
10
11
     from os import listdir
12
     import pandas as pd
13
     import numpy as np
14
     import random as rd
15
```

```
def charger dataset(membre, tab chem, longueur=100000):
43
          """Charge le dataset correspondant à une certaine partie du corps
44
         à partir des chemins données sous forme de liste ou d'array""
45
         dataset, label = [], []
47
49
         i=0
         for elem in tab chem:
             dossier = elem[0]
             if not(membre in dossier):
                  continue
             if i > longueur: break
             for img in listdir(dossier):
                  dataset.append(charger img(dossier+img))
                  label.append(elem[1])
                  i+=1
                  print(i)
         dataset = np.asarray(dataset)
64
         label = np.asarray(label)
         return (dataset, label)
```

```
def charger_dataset_partiel(membre, tab chem, longueur, plage):
          """Charge le dataset correspondant à une certaine partie du corps
70
         à partir des chemins données sous forme de liste ou d'array""
71
72
         dataset, label = [], []
          indices = rd.sample(range(plage[0], plage[1]), longueur)
76
         for i in range(longueur):
              elem = tab chem[indices[i]]
78
              dossier = elem[0]
79
              if not(membre in dossier):
                  i-=1
81
                  continue
82
              for img in listdir(dossier):
                  dataset.append(charger img(dossier+img))
85
                  label.append(elem[1])
                  print(i)
87
         dataset = np.asarray(dataset)
          label = np.asarray(label)
          return (dataset, label)
```

```
def define model(ker size):
           """Modèle CNN utilisé pour la prédiction des anomalies"""
          model = Sequential()
          model.add(Conv2D(32, ker size, activation='relu', input shape=(300, 300, 1)))
          model.add(MaxPooling2D((2, 2)))
          model.add(Conv2D(64, ker size, activation='relu'))
101
          model.add(MaxPooling2D((2, 2)))
102
          model.add(Flatten())
103
          model.add(Dense(64, activation='relu'))
104
          model.add(Dense(64, activation='relu'))
105
106
          model.add(Dense(1, activation='sigmoid'))
107
          # compile model
          model.compile(optimizer='adam', loss='binary crossentropy', metrics=['accuracy'])
108
          return model
109
110
111
112
      def prep_model(dataset, label, b s, valX, valY, nb e =5, ker size = (5,5)):
113
          model = define model(ker size)
114
           history = model.fit(dataset, label, validation data=(valX,valY), batch size=b s, epochs=nb e)
115
116
           return model, history
117
```

```
# normalize images
121
      def prep_normalize(train, test):
122
           """Les pixels sont linéairement distribués dans [0,1]"""
123
          # convert from integers to floats
124
          train norm = train.astype('float32')
125
126
          test norm = test.astype('float32')
          # normalize to range 0-1
127
          train norm = train norm / 255.0
128
          test norm = test norm / 255.0
129
          # return normalized images
130
          return train norm, test norm
131
```

Annexes

Exemple d'exécution d'un modèle

```
#Exécution du programme
train ds, train label = charger dataset("SHOULDER", charger chemins("MURA-v1.1", "train"))
v ds, v label = charger dataset("SHOULDER", charger chemins("MURA-v1.1", "valid"))
#pre-processing
train ds, v ds = prep normalize(train ds, v ds)
#Entrainement
model, history = prep model(train ds, train label, 8, v ds, v label, 10, (5,5))
#évaluation du modèle
_, train_acc = model.evaluate(train_ds, train_label)
, test acc = model.evaluate(v ds, v label)
print('Train: %.3f, Test: %.3f' % (train acc, test acc))
# plot loss during training
pyplot.subplot(211)
pyplot.title('Loss')
pyplot.plot(history.history['loss'], label='train')
pyplot.plot(history.history['val loss'], label='test')
pyplot.legend()
# plot accuracy during training
pyplot.subplot(212)
pyplot.title('Accuracy')
pyplot.plot(history.history['accuracy'], label='train')
pyplot.plot(history.history['val accuracy'], label='test')
pyplot.legend()
pyplot.show()
```