UiO IN-BIOS5000/9000

Illumina Technology

Arvind Sundaram Oct 28, 2024

Norwegian Sequencing Centre OUS, Ullevål, Oslo

High Throughput Sequencing

- * First generation past, present
 - Up to 1 kb; high quality data; multiplexed
 - * SANGER; Highly automated (ABI Sanger 3730xl)
- * Second generation present
 - * Shorter reads; Massive parallelisation and real high throughput
 - * Illumina, BGISeq, Ion-torrent, [454, Solid]
 - RNA is reverse-transcribed to cDNA before sequencing
- * Third generation [present] future
 - Long-read sequencing; Single-molecule sequencing (without amplification)
 - PacBio, Oxford Nanopore, [more in development]
 - Potential to sequence RNA directly

Illumina sequencers

- * Second generation sequencing technique
- * Sequencing-by-synthesis aka SBS
 - * https://www.youtube.com/watch?v=fCd6B5HRaZ8
- Mass parallelisation and real high throughput

Library prep and sequencing

Fragment (DNA) sequenced: up to 800 bp

Sequencing by synthesis (SBS)

Old sequencers use 4 colors Newer machines use 2 colors iSeq uses 1 color

XLEAP-SBS (2022)

- Increased speed
- Greater fidelity
- Greater accuracy
- More robustness

Sequencing

Library prep and sequencing

Fragment (DNA) sequenced: up to 800 bp

Read type: Mate pair

Long fragment

Add adapters during library preparation

Multiplexing: single/dual index

Multiplexing: pooling

Read type: Single end

50 - 300 bp long

Read type: Paired end

50 - 300 bp long

50 - 300 bp long

Single/Paired-end/Mate pair sequencing

- * Paired-end reads or mate pair reads are pairs of reads known to come from two close regions in the genome.
- They are located with an approximate fixed distance from each other.
- * Typically paired ends are a ~100-500bp apart, while mate pairs are ~2-10kb apart
- * Allows short reads to have a larger "effective" size
- Performed by sequencing fragments from both ends
- * Often used with Illumina reads
 - * Typically 2 x 150 bp separated by 300bp
- * May also overlap (e.g. 2x250bp from 400bp fragments)

Paired-end sequencing

- * Both ends of fragments will be sequenced
- * Gives information on genomic distance between pairs of reads
- * May be used to overcome some problems with short reads

Adpters and multiplexing

I2 sequencing order is sequencer dependent

DRAGEN on-board/external

BCL Convert

DRAGEN ORA Compression

DRAGEN FASTQC + MultiQC

Whole Genome

Enrichment (including Exome)

DRAGEN Amplicon

RNA

Single Cell RNA

NanoString GeoMx NGS

Methylation

Metagenomics

RNA Pathogen Detection

COVID

TSO 500 Portfolio

Imputation

ScATAC-Seq

PGx Star Allele Caller

Illumina Complete Long Reads

DRAGEN secondary analysis for RIPIP and

FPGA based-architecture

30 minute* end-to-end analysis

Now open-source (2024)

Cloud based analysis

Stand-alone server

Integrated on-board

- NextSeq 1000/2000
- NovaSeq X
- MiSeq i100

Illumina sequencers - benchtop

a. The MiSeq i100 System supports the 5M and 25M flow cells only; the MiSeq i100 Plus System supports all four flow cells.

b. Listed run times are estimates.

Illumina sequencers - slightly bigger

NextSeq	EEA	С.	4-m-2
NextSen	220	31	/stem«
ITUNIOUG	000	~	1000111

NextSeq 1000 and NextSeq 2000 Systems

1						
Flow cell	Mid-output	High-output	P1 ^b	P2 ^b	P3°	P4 ^c
Output range	16-39 Gb	25-120 Gb	10-60 Gb	40-240 Gb	120-360 Gb	90-540 Gb
Single-end reads per run	130M	400M	100M	400M	1.2B	1.8B
Run time (hr)	15-26	11–29	8-34	12-42	18-40	12-44
Maximum read length (bp)	2 × 150	2 × 150	2 × 300	2×300	2 × 150	2 × 150
Included data analysis	Local Run Manager		Onboard DRAGEN se	condary analysis		

Illumina sequencers - production scale

What can you sequence using Illumina

DNA studies

- * Whole genome sequencing short reads are a pitfall
- Genome re-sequencing
- Exomes and target re-sequencing...
- * ChiP seq and more...
- * RNA studies
- modification studies
 - Methylation and more...

Applications

			DRAGEN		DRAGEN		DRAGEN	
iSeq™ 100	MiniSeq™	MiSeq™	MiSeq™ i100/i100 Plus	NextSeq [™] 550	NextSeq [™] 1000/2000	NovaSeq™ 6000	NovaSeq™ X/X Plus	
			SMALL WHOLE-GENOME SEQUE	NCING				
			TARGETED GENE SEQUENCIN	NG				
			TARGETED GENE EXPRES	SSION PROFILING				
			16S METAGE	NOMIC SEQUENCING				
					EXON	ME SEQUENCING		
				1	TRANSCRIPTOME SEQUENCING			
		CELL-FREE SEQUENCING*						
	SINGLE-CELL OR SPATIAL PROFILING					SPATIAL PROFILING		
	SHOTGUN METAGENOMICS							
O DNA			METHYLATION ANALYSIS					
RNA Epigenetics	S					CHROMATIN ANALYSIS'		
Other					LAI	RGE WHOLE-GENOME SEC	QUENCING	