Universitatea Babeş-Bolyai Facultatea de Matematică și Informatică

Exam on Dynamical Systems (simulation)

- 1. (2p) Find the flow of $\dot{x} = -2(x-5)$. This dynamical system has a global attractor?
 - 2. (0.5p) Represent in the complex plane the curves

$$\{2e^{it} : t \in [0, \pi/2]\}, \{2e^{it} : t \in [0, \pi]\}, \{2e^{it} : t \in [0, 2\pi)\}.$$

- 3. Let $A = \begin{pmatrix} 2 5 \\ 1 2 \end{pmatrix}$.
- (a) (3.5p) Find the principal matrix solution of the system X' = AX.
- (b) (0.5p) Compute e^{At} . (c) (1p) Find $a, b \in \mathbb{R}$ such that $H : \mathbb{R}^2 \to \mathbb{R}$, $H(x,y) = x^2 + ay^2 + bxy$ is a global first integral of X' = AX.
 - 4. (0.5p) How many solutions has the following problem?
 - (a) $x''' + t^2x = 0$, x(0) = x'(0) = 1;
 - (b) $x''' + t^2x = 0$, x(0) = x'(0) = x''(0) = 1.
 - 5. We consider the map

$$f: \mathbb{R} \to \mathbb{R}, \quad f(x) = \frac{1}{50}x(100 - x).$$

- (a) (1p) Find its fixed points and study their stability.
- (b) (0.75p) Using the stair-step (cobweb) diagram estimate the basin of attraction of the attractor fixed point. If you do not know how to do it, try another way: in the difference equation $x_{k+1} = \frac{1}{50}x_k(100 x_k)$, make the change of variable $x_k = 100y_k$ and use the automatically generated cobweb for the logistic map.
- (c) (0.25p) If $(x_k)_{k\geq 0}$ represent the number of fish in some lake at month k and

$$x_{k+1} = \frac{1}{50}x_k(100 - x_k), \quad x_0 = \eta$$

try to predict the fate of the fish in the case $\eta=80$ and also in the case $\eta=10$.