

6161901009

6161901086 6161901116

6161901011

MARCELLA PURNAWAN W

VINCENT RONALDI

TIARA ALAMANDA

DARA ANJANI SYAFII

Batasan Masalah

02. Dasar Teori

03. Soal 1

04. Soal 2

05. Python

Batasan Masalah

Batasan Masalah

$$p(s) = \frac{1}{\sqrt{2\pi}} \int_{-s}^{s} exp\left(-\frac{z^{2}}{2}\right) dz \qquad (s > 0)$$

Membuat program untuk menghitung p(s) dengan menggunakan kuadratur Gauss komposit dengan m panel dan n titik (node) per panel untuk menghitung integral dengan variabel s diinput oleh pengguna. Kemudian hitung integral tersebut dengan aturan trapesium dan Simpson dengan banyaknya titik $k = 2, 3, 4, \cdots$, 31 untuk aturan trapesium dan $k = 3, 5, 7, \cdots$, 31 untuk aturan Simpson. Gambarkan:

- 1. Garis lurus yang merupakan nilai dari integral (1) dengan menggunakan kuadratur Gauss komposit.
- 2. Ke-30 nilai integral (1) yang diperoleh dari aturan trapesium.
- 3. Ke-15 nilai integral (1) yang diperoleh dari aturan Simpson.

Batasan Masalah

2

$$I = \int_{0}^{\infty} \frac{2}{1+x^2} dx$$

Menghitung dan menjelaskan integral tak wajar secara numerik dengan nilai eksak

$$I=\pi$$

Dasar Teori

Kuadratur Gauss Komposit

$$I \cong \int_{a}^{b} f(x) dx$$

Diubah menjadi

$$I \cong \int_{-1}^{1} f(t)dt = c_1 f(x_1) + c_2 f(x_2) + \dots + c_n f(x_n)$$

dengan

. . .

$$x = \frac{(a+b) + (b-a)t}{2}$$

$$dx = \frac{(b-a)}{2}dt$$

Dasar Teori

Kuadratur Gauss Komposit

n	Faktor bobot	Argumen fungsi	Galat pemotongan
2	$c_1 = 1.000000000$	$x_1 = -0.577350269$	$\approx f^{(4)}(c)$
	$c_2 = 1.0000000000$	$x_2 = 0.577350269$	XX 5.15X
3	$c_1 = 0.555555556$	$x_1 = -0.774596669$	$\approx f^{(6)}(c)$
	$c_2 = 0.888888889$	$x_2 = 0$	10 0000
525	$c_3 = 0.555555556$	$x_1 = 0.774596669$	
4	$c_1 = 0.347854845$	$x_1 = -0.861136312$	$\approx f^{(8)}(c)$
	$c_2 = 0.652145155$	$x_2 = -0.339981044$	10.000
	$c_3 = 0.652145155$	$x_3 = 0.339981044$	
	$c_3 = 0.347854845$	$x_4 = 0.861136312$	
5	$c_1 = 0.236926885$	$x_1 = -0.906179846$	$\approx f^{(10)}(c)$
	$c_2 = 0.478628670$	$x_2 = -0.538469310$	157.7 (2).2
	$c_3 = 0.5688888889$	$x_3 = 0$	
	$c_4 = 0.478628670$	$x_4 = 0.538469310$	
	$c_5 = 0.236926885$	$x_5 = 0.906179846$	
6	$c_1 = 0.171324492$	$x_1 = -0.932469514$	$\approx f^{(12)}(c)$
	$c_2 = 0.360761573$	$x_2 = -0.661209386$	12 10 100 100
	$c_3 = 0.467913935$	$x_3 = -0.238619186$	
	$c_4 = 0.467913935$	$x_4 = 0.238619186$	
	$c_5 = 0.360761573$	$x_5 = 0.661209386$	
	$c_6 = 0.171324492$	$x_6 = 0.932469514$	

Aturan Trapesium

Aturan trapesium 1 segmen

$$I \cong \int_{a}^{b} f_{1}(x)dx = h\left(\frac{f(a) + f(b)}{2}\right)$$

dengan h = (b-a)/1

Aturan trapesium n segmen

$$I = \int_{x_0}^{x_1} f(x)dx + \int_{x_1}^{x_2} f(x)dx + \dots + \int_{x_{n-1}}^{x_n} f(x)dx$$

$$I \cong h \frac{f(x_0) + f(x_1)}{2} + h \frac{f(x_1) + f(x_2)}{2} + \dots + h \frac{f(x_{n-1}) + f(x_n)}{2}$$

$$I \cong \frac{h}{2} [f(x_0) + f(x_1) + f(x_1) + f(x_2) + \dots + f(x_{n-1}) + f(x_n)]$$

$$I \cong \frac{h}{2} \left[f(x_0) + \left(2 \sum_{i=1}^{n-1} f(x_i) \right) + f(x_n) \right]$$

dengan h = (b-a)/n

Aturan Simpson's 1/3

Aturan simpson's ⅓ 1 segmen

$$I \cong \int_{a}^{b} f_{2}(x)dx = h \frac{f(x_{0}) + 4f(x_{1}) + f(x_{2})}{3}$$

dengan h = (b-a)/2

Aturan simpson's 1/3 n segmen

$$I = \int_{x_0}^{x_2} f(x)dx + \int_{x_2}^{x_4} f(x)dx + \dots + \int_{x_{n-2}}^{x_n} f(x)dx$$

$$I \cong h \frac{f(x_0) + 4f(x_1) + f(x_2)}{3} + h \frac{f(x_2) + 4f(x_3) + f(x_4)}{3} + \dots + \frac{f(x_{n-2}) + 4f(x_{n-1}) + f(x_n)}{3}$$

$$I \cong \frac{h}{3}[f(x_0) + 4f(x_1) + 2f(x_2) + \dots + 4f(x_{n-1}) + f(x_n)]$$

$$I = \frac{h}{3} \left[f(x_0) + \left(4 \sum_{i=2k-1}^{n-1} f(x_i) \right) + \left(2 \sum_{j=2k}^{n-2} f(x_j) \right) + f(x_n) \right]$$
 dengan h = (b-a)/n

·····Integral Tak Wajar

Identitas Integral Tak Wajar

$$\int_{a}^{b} f(x) dx = \int_{\frac{1}{b}}^{\frac{1}{a}} \frac{1}{t^{2}} f\left(\frac{1}{t}\right) dt \qquad , ab > 0$$

$$\int_{-\infty}^{b} f(x)dx = \int_{-\infty}^{-A} f(x)dx + \int_{-A}^{b} f(x)dx$$

Extended Midpoint Rule

. . .

$$\int_{x_0}^{x_n} f(x)dx = h \left[\frac{3}{2} f(x_1) + \sum_{i=2}^{n-2} f(x_i) + \frac{3}{2} f(x_{n-1}) \right]$$

$$\int_{x_0}^{x_n} f(x)dx = h \left[\frac{3}{2} f(x_1) + \sum_{i=2}^{n-1} f(x_i) + \frac{3}{2} f(x_n) \right]$$

$$\int_{x_0}^{x_n} f(x)dx = h[f(x_{1/2}) + f(x_{3/2}) + \dots + f(x_{(n-3)/2}) + f(x_{(n-1)/2})]$$

Dasar Teori

Galat (Error)

$$\varepsilon_t = \left|\frac{nilai\ sebenarnya - nilai\ aproksimasi}{nilai\ sebenarnya}\right| \times 100\%$$

n	Gauss	Trapesium	Galat Relatif Trapesium (%)	Simpson 1/3	Galat Relatif Simpson 1/3 (%)
2	0,997300203936741	1,210122386440112	21,339831		
3	0,997300203936741	0,9767465949004495	2,060925	0,9737920293	2,357181
4	0,997300203936741	0,9936139802177313	0,369620		
5	0,997300203936741	0,9945376449567906	0,277004	0,9927649056	0,454758
6	0,997300203936741	0,9952975108780335	0,200811		
7	0,997300203936741	0,9957888011035815	0,151549	0,9945225587	0,278516
8	0,997300203936741	0,9961226160945735	0,118078		
9	0,997300203936741	0,9963585390727517	0,094421	0,9953736839	0,193174
10	0,997300203936741	0,9965308930529221	0,077139		

Tabel perhitungan untuk s=3

0,9966603734041711

0,9967599783627766

0,064156

0,054169

0,9958545828

0,144953

0,997300203936741

0,997300203936741

11

12

n	Gauss	Trapesium	Galat Relatif Trapesium (%)	Simpson 1/3	Galat Relatif Simpson 1/3 (%)
13	0,997300203936741	0,9968381707491409	0,046328	0,9961563479	0,114695
14	0,997300203936741	0,9969006370242968	0,040065		
15	0,997300203936741	0,9969513052871393	0,034984	0,9963603922	0,094236
16	0,997300203936741	0,9969929558490305	0,030808		
17	0,997300203936741	0,9970275994120714	0,027334	0,9965062055	0,079615
18	0,997300203936741	0,9970567181604074	0,024414		
19	0,997300203936741	0,9970814234880235	0,021937	0,9966149131	0,068715
20	0,997300203936741	0,9971025616184731	0,019818		
21	0,997300203936741	0,9971207858323173	0,017990	0,996698705	0,060313

0,016404

0,015018

Tabel perhitungan untuk s=3

0,9967650502

0,053660

0,9971366068073556

0,9971504283153513

0,997300203936741

0,997300203936741

22

23

		•			
n	Gauss	Trapesium	Galat Relatif Trapesium (%)	Simpson 1/3	Galat Relatif Simpson 1/3 (%)
25	0,997300203936741	0,9971733008525546	0,012725	0,996818753	0,048275
26	0,997300203936741	0,9971828237623732	0,011770		
27	0,997300203936741	0,9971913153151121	0,010918	0,9968630302	0,043836

0,010156

0,009471

0,008852

0,008292

0,040118

0,036962

0,9969001096

0,9969315782

0,9971989190180939

0,9972057542949423

0,9972119211712503

0,9972175039315448

28

29

30

31

0,997300203936741

0,997300203936741

0,997300203936741

0,997300203936741

Tabel perhitungan untuk s=3

Algoritma Aproksimasi Integral Tak Wajar

Aproksimasi Integral I

Perbandingan Hasil Aproksimasi						
	n	Hasil Aproksimasi				
		Aturan Trapesium	Aturan Simpson 1/3	EMR		
	2	3,10000	3,13333	3,16235		
	3	3,12308	-	3,15085		
	4	3,13188	3,14157	3,14680		
	5	3,13493	-	3,14493		
	10	3,13493	3,14159	3,14243		
	15	3,14085	-	3,14196		
	20	3,14118	3,14159	3,14180		
	25	3,14133	-	3,14178		
	50	3,14153	3,14159	3,14163		
	101	3,14158	-	3,14160		
	1000	3,14159	3,14159	3,14590		

. .

.

• •

• • •

. . .

. . . .

	Perbandingan Hasil Galat (Error)						
		n	Hasil Galat (Error)				
•			Aturan Trapesium	Aturan Simpson 1/3	EMR		
		2	1,32394%	0,26290%	0,66082%		
		3	0,58937%	-	0,29465%		
		4	0,33156%	0,00076%	0,16577%		
·		5	0,21220%	-	0,1061%		
		10	0,05305%	0,00000%	0,2653%		
	•	15	0,02358%	-	0,01179%		
•	•	20	0,01326%	0,00000%	0,00663%		
• (•	25	0,00849%	-	0,00424%		
	•	50	0,00212%	0,00000%	0,00106%		
	•	101	0,00052%	-	0,00026%		
		1000	0,00001%	0,00000%	0,00000%		

. . .

. . .

PYTHON

TERIMA KASIH

CREDITS: This presentation template was created by Slidesgo, including icons by Flaticon, and infographics & images by Freepik.

