$12n_{0153} \ (K12n_{0153})$

Ideals for irreducible components of X_{par}

$$\begin{split} I_1^u &= \langle -u^{13} - u^{12} + 2u^{11} + 3u^{10} - 2u^9 - 4u^8 + 4u^6 + 2u^5 - 2u^4 - u^3 + 2u^2 + b + u - 1, \\ &- 2u^{13} - 2u^{12} + 4u^{11} + 7u^{10} - 4u^9 - 11u^8 - u^7 + 12u^6 + 6u^5 - 6u^4 - 4u^3 + 4u^2 + a + 3u - 1, \\ &- u^{14} + 2u^{13} - u^{12} - 6u^{11} - 2u^{10} + 8u^9 + 7u^8 - 6u^7 - 10u^6 + 6u^4 - 4u^2 - u + 1 \rangle \\ &- I_2^u &= \langle u^7 - u^5 + 2u^3 + b - u + 1, \ u^7 - u^5 + u^4 + 2u^3 - u^2 + a + 2, \ u^8 - u^7 - u^6 + 2u^5 + u^4 - 2u^3 + 2u - 1 \rangle \end{split}$$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 22 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$I_1^u = \langle -u^{13} - u^{12} + \dots + b - 1, \ -2u^{13} - 2u^{12} + \dots + a - 1, \ u^{14} + 2u^{13} + \dots - u + 1 \rangle$$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 1\\0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0\\u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 2u^{13} + 2u^{12} + \dots - 3u + 1\\u^{13} + u^{12} + \dots - u + 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1\\u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -3u^{13} - 4u^{12} + \dots + 5u - 2\\-2u^{13} - 4u^{12} + \dots + 4u - 2 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -2u^{13} - 4u^{12} + \dots + 3u - 2\\2u^{13} + u^{12} + \dots + 2u + 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u\\-u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{3}\\u^{5} - u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{5} - u\\-u^{7} + u^{5} - 2u^{3} + u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u^{10} + u^{8} - 2u^{6} + u^{4} - u^{2} + 1\\-u^{10} + 2u^{8} - 3u^{6} + 2u^{4} - u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{13} + u^{12} - 2u^{11} - u^{10} + 2u^{9} + u^{7} + 2u^{6} - 3u^{5} - 2u^{4} + 3u^{3} - 2u + 1 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes
$$= -7u^{13} - 6u^{12} + 18u^{11} + 25u^{10} - 24u^9 - 44u^8 + 9u^7 + 53u^6 + 13u^5 - 35u^4 - 13u^3 + 23u^2 + 7u - 21u^4 + 3u^4 + 3$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{14} + 35u^{13} + \dots + 57u + 1$
c_2, c_4	$u^{14} - 9u^{13} + \dots + u - 1$
c_3, c_7	$u^{14} - 7u^{13} + \dots - 640u - 256$
c_5,c_8,c_9	$u^{14} + 2u^{13} + \dots + 3u + 1$
c_6, c_{11}	$u^{14} - 2u^{13} + \dots + u + 1$
c_{10}, c_{12}	$u^{14} + 6u^{13} + \dots + 9u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{14} - 215y^{13} + \dots - 1173y + 1$
c_2, c_4	$y^{14} - 35y^{13} + \dots - 57y + 1$
c_{3}, c_{7}	$y^{14} - 75y^{13} + \dots + 16384y + 65536$
c_5, c_8, c_9	$y^{14} - 30y^{13} + \dots - 9y + 1$
c_6, c_{11}	$y^{14} - 6y^{13} + \dots - 9y + 1$
c_{10}, c_{12}	$y^{14} + 6y^{13} + \dots - 25y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.959410 + 0.328783I		
a = 2.22180 + 0.56610I	-3.28458 + 1.19495I	-18.0412 - 3.1465I
b = 1.191800 + 0.163474I		
u = -0.959410 - 0.328783I		
a = 2.22180 - 0.56610I	-3.28458 - 1.19495I	-18.0412 + 3.1465I
b = 1.191800 - 0.163474I		
u = -0.501889 + 0.920209I		
a = 0.725724 + 0.027363I	18.7096 - 2.3664I	-13.94239 + 0.06300I
b = 3.28288 - 0.17435I		
u = -0.501889 - 0.920209I		
a = 0.725724 - 0.027363I	18.7096 + 2.3664I	-13.94239 - 0.06300I
b = 3.28288 + 0.17435I		
u = -0.853744 + 0.641916I		
a = -0.410449 - 0.466723I	1.83462 + 2.50408I	-6.20303 - 3.70135I
b = -0.596688 - 0.171568I		
u = -0.853744 - 0.641916I		
a = -0.410449 + 0.466723I	1.83462 - 2.50408I	-6.20303 + 3.70135I
b = -0.596688 + 0.171568I		
u = 1.014210 + 0.562829I		
a = 1.61553 - 1.07680I	-1.62931 - 4.65799I	-15.4888 + 5.2954I
b = 1.036730 + 0.627532I		
u = 1.014210 - 0.562829I		
a = 1.61553 + 1.07680I	-1.62931 + 4.65799I	-15.4888 - 5.2954I
b = 1.036730 - 0.627532I		
u = 0.589347 + 0.525928I		
a = -0.333608 + 0.150120I	-0.335782 + 0.137583I	-12.53131 - 0.75433I
b = 0.644384 - 0.529402I		
u = 0.589347 - 0.525928I		
a = -0.333608 - 0.150120I	-0.335782 - 0.137583I	-12.53131 + 0.75433I
b = 0.644384 + 0.529402I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.25934		
a = 4.69391	12.1268	-18.9430
b = 3.12501		
u = -1.128420 + 0.686699I		
a = 2.14185 + 3.38010I	16.7915 + 8.2751I	-16.0152 - 4.1669I
b = 3.21915 + 0.28216I		
u = -1.128420 - 0.686699I		
a = 2.14185 - 3.38010I	16.7915 - 8.2751I	-16.0152 + 4.1669I
b = 3.21915 - 0.28216I		
u = 0.420479		
a = -0.615608	-0.632046	-15.6130
b = 0.318491		

$$\text{II. } I_2^u = \langle u^7 - u^5 + 2u^3 + b - u + 1, \ u^7 - u^5 + u^4 + 2u^3 - u^2 + a + 2, \ u^8 - u^7 - u^6 + 2u^5 + u^4 - 2u^3 + 2u - 1 \rangle$$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{7} + u^{5} - u^{4} - 2u^{3} + u^{2} - 2 \\ -u^{7} + u^{5} - 2u^{3} + u - 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{7} + u^{5} - u^{4} - 2u^{3} + u^{2} - 2 \\ -u^{7} + u^{5} - 2u^{3} + u - 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{3} \\ u^{5} - u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{5} - u \\ -u^{7} + u^{5} - 2u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{5} + u \\ u^{5} - u^{3} + u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{5} + u \\ u^{7} - u^{5} + 2u^{3} - u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{7} - u^{4} - 2u^{3} + u^{2} - u - 2 \\ -2u^{7} + 2u^{5} - 4u^{3} + 2u - 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-2u^7 u^6 + 5u^5 5u^3 + u^2 + 4u 17$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_2	$(u-1)^8$
c_{3}, c_{7}	u^8
<i>C</i> ₄	$(u+1)^8$
<i>C</i> ₅	$u^8 + u^7 - 3u^6 - 2u^5 + 3u^4 + 2u - 1$
c_6	$u^8 - u^7 - u^6 + 2u^5 + u^4 - 2u^3 + 2u - 1$
c_8, c_9	$u^8 - u^7 - 3u^6 + 2u^5 + 3u^4 - 2u - 1$
c_{10}	$u^8 - 3u^7 + 7u^6 - 10u^5 + 11u^4 - 10u^3 + 6u^2 - 4u + 1$
c_{11}	$u^8 + u^7 - u^6 - 2u^5 + u^4 + 2u^3 - 2u - 1$
c_{12}	$u^8 + 3u^7 + 7u^6 + 10u^5 + 11u^4 + 10u^3 + 6u^2 + 4u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$(y-1)^8$
c_3, c_7	y^8
c_5, c_8, c_9	$y^8 - 7y^7 + 19y^6 - 22y^5 + 3y^4 + 14y^3 - 6y^2 - 4y + 1$
c_6, c_{11}	$y^8 - 3y^7 + 7y^6 - 10y^5 + 11y^4 - 10y^3 + 6y^2 - 4y + 1$
c_{10}, c_{12}	$y^8 + 5y^7 + 11y^6 + 6y^5 - 17y^4 - 34y^3 - 22y^2 - 4y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.570868 + 0.730671I		
a = -0.805639 - 0.183365I	-2.68559 + 1.13123I	-13.47926 - 0.84929I
b = 0.320534 - 0.633953I		
u = 0.570868 - 0.730671I		
a = -0.805639 + 0.183365I	-2.68559 - 1.13123I	-13.47926 + 0.84929I
b = 0.320534 + 0.633953I		
u = -0.855237 + 0.665892I		
a = -0.189481 - 1.310380I	0.51448 + 2.57849I	-14.5054 - 3.2330I
b = -1.54709 - 0.16160I		
u = -0.855237 - 0.665892I		
a = -0.189481 + 1.310380I	0.51448 - 2.57849I	-14.5054 + 3.2330I
b = -1.54709 + 0.16160I		
u = -1.09818		
a = 0.729394	-8.14766	-19.4520
b = 0.879647		
u = 1.031810 + 0.655470I		
a = 0.708845 - 0.169402I	-4.02461 - 6.44354I	-15.2754 + 5.9053I
b = 0.679246 + 0.851242I		
u = 1.031810 - 0.655470I		
a = 0.708845 + 0.169402I	-4.02461 + 6.44354I	-15.2754 - 5.9053I
b = 0.679246 - 0.851242I		
u = 0.603304		
a = -2.15684	-2.48997	-15.0280
b = -0.785038		

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u-1)^8)(u^{14} + 35u^{13} + \dots + 57u + 1)$
c_2	$((u-1)^8)(u^{14} - 9u^{13} + \dots + u - 1)$
c_{3}, c_{7}	$u^8(u^{14} - 7u^{13} + \dots - 640u - 256)$
C_4	$((u+1)^8)(u^{14}-9u^{13}+\cdots+u-1)$
<i>C</i> 5	$ (u^8 + u^7 - 3u^6 - 2u^5 + 3u^4 + 2u - 1)(u^{14} + 2u^{13} + \dots + 3u + 1) $
<i>c</i> ₆	$(u^8 - u^7 + \dots + 2u - 1)(u^{14} - 2u^{13} + \dots + u + 1)$
c_{8}, c_{9}	$(u^8 - u^7 - 3u^6 + 2u^5 + 3u^4 - 2u - 1)(u^{14} + 2u^{13} + \dots + 3u + 1)$
c_{10}	$(u^8 - 3u^7 + 7u^6 - 10u^5 + 11u^4 - 10u^3 + 6u^2 - 4u + 1)$ $\cdot (u^{14} + 6u^{13} + \dots + 9u + 1)$
c_{11}	$(u^8 + u^7 + \dots - 2u - 1)(u^{14} - 2u^{13} + \dots + u + 1)$
c_{12}	$(u^{8} + 3u^{7} + 7u^{6} + 10u^{5} + 11u^{4} + 10u^{3} + 6u^{2} + 4u + 1)$ $\cdot (u^{14} + 6u^{13} + \dots + 9u + 1)$

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$((y-1)^8)(y^{14}-215y^{13}+\cdots-1173y+1)$
c_2, c_4	$((y-1)^8)(y^{14} - 35y^{13} + \dots - 57y + 1)$
c_3, c_7	$y^8(y^{14} - 75y^{13} + \dots + 16384y + 65536)$
c_5,c_8,c_9	$(y^8 - 7y^7 + 19y^6 - 22y^5 + 3y^4 + 14y^3 - 6y^2 - 4y + 1)$ $\cdot (y^{14} - 30y^{13} + \dots - 9y + 1)$
c_6, c_{11}	$(y^8 - 3y^7 + 7y^6 - 10y^5 + 11y^4 - 10y^3 + 6y^2 - 4y + 1)$ $\cdot (y^{14} - 6y^{13} + \dots - 9y + 1)$
c_{10}, c_{12}	$(y^8 + 5y^7 + 11y^6 + 6y^5 - 17y^4 - 34y^3 - 22y^2 - 4y + 1)$ $\cdot (y^{14} + 6y^{13} + \dots - 25y + 1)$