2024/01/25 セミナー資料

大柴寿浩

2024/01/25

1 向きづけと双対性 [KS90, 3.3]

命題 1.1 ([KS90, Prop3.3.6]). X を n 次元 C^0 多様体とする.

- (i) or_X は前層 $U \mapsto \operatorname{Hom}(H^n_c(U;A_X),A)$ から誘導された層である.
- (ii) $x\in X$ に対し,標準的な同型 $\mathrm{or}_{X,x}\cong\mathrm{Hom}\left(H^n_{\{x\}}(X;A_X),A\right)\cong H^n_{\{x\}}(X;A_X)$ が存在する.
- (iii) X が向きづけられた可微分多様体であるとする.このとき,同型 ${\rm or}_X\cong A_X$ が存在する.この同型は X の向きをとりかえることで符号が変わる.

証明. (i) U を \mathbf{R}^n と同相な X の開集合とすると,

$$\mathrm{R}\Gamma(U;\omega_X)\cong\mathrm{R}\mathrm{Hom}_{A_X}(A_U,\omega_X)$$

$$\cong \mathrm{R}\mathrm{Hom}_A(\mathrm{R}\Gamma_c(X;A_U),A)$$

$$\cong \mathrm{Hom}_A(\mathrm{R}\Gamma_c(X;A_U),A)$$

$$\cong \mathrm{Hom}_A(\mathrm{R}\Gamma_c(X;A_U),A)$$

$$\cong \mathrm{Hom}_A(H^n_c(U;A_U),A)[n]$$

である. $\omega_X \cong \operatorname{or}_X[n]$ なので (i) が従う.

(ii) $x \in X$ とする. x の近傍 U で \mathbf{R}^n と同相なものがある. この近傍 U に対して,[KS90, Proposition 3.3.4 (ii)] より

$$\operatorname{Hom}(\operatorname{or}_{X/\{x\}}, A_X) \cong \operatorname{or}_X$$

が、[KS90, Proposition 3.2.3 (ii)] より、

$$R\Gamma_{\{x\}}(U; A_U) \xrightarrow{\sim} R\Gamma_c(U; A_U)$$

が成りたつ. コホモロジーを取ると

$$H_{\{x\}}^n(U; A_U) \xrightarrow{\sim} H_c^n(U; A_U)$$

(iii) $X=\bigcup_i U_i$ を X の開被覆で,各 U_i が $U_i \cong \mathbf{R}^n$ であり,座標変換が X の向きづけと整合的なものとする.各 U_i ごとの同型 $\phi_{U_i}\colon \mathrm{or}_X|_{U_i}\cong A_{U_i}$ を次の補題 $\mathbf{1.2}$ により貼り合わせることができる.[KS90, Proposition 3.2.3] により,向き反転させると, ϕ_{U_i} は $-\phi_{U_i}$ になる.

補題 1.2 ([KS90, Prop3.3.7]). E をユークリッド空間 \mathbf{R}^n とし、同型 $\mathrm{or}_E \cong A_E$ を固定する. U と V を E の開集合とし、 $f\colon U\to V$ を微分同相写像とする. U の各点における f のヤコビアンが正であるとする. このとき、次の図式は可換である.

$$\begin{array}{c|c}
\operatorname{or}_{U} & \stackrel{\sim}{\longrightarrow} \operatorname{or}_{E/U} & \stackrel{\sim}{\longrightarrow} A_{U} \\
\downarrow^{\sharp} & & \uparrow^{\sharp}_{A} \\
f^{-1}(\operatorname{or}_{V}) & \stackrel{\sim}{\longrightarrow} f^{-1}(\operatorname{or}_{E/V}) & \stackrel{\sim}{\longrightarrow} f^{-1}(A_{V})
\end{array}$$

(ただし、射 f_{or}^{\sharp} と f_A^{\sharp} は次のように定義する。 a_U と a_V を U と V から $\{\mathrm{pt}\}$ への射影とする。このとき f_A^{\sharp} は同型 $f^{-1}\circ a_V^{-1}\overset{\sim}{\to} a_U^{-1}$ で f_{or}^{\sharp} は同型 $f^{-1}\circ a_V^{-1}[-n]\overset{\sim}{\to} f^!\circ a_V^![-n]\overset{\sim}{\to} \circ a_U^{-1}$ で ある。 $f^{-1}\cong f^!$ である。)

 $f\colon Y\to X$ を C^0 多様体の間の射とする. f を閉うめ込み $j\colon Y\hookrightarrow Y\times X$ としずめ込み $p\colon Y\times X\to X$ の合成に分解して

$$(3.3.5) f: Y \stackrel{j}{\hookrightarrow} Y \times X \stackrel{p}{\longrightarrow} X$$

とかくことができる. j(y)=(y,f(y)) で p(y,x)=x である. 命題付録 A.1–付録 A.3 を適用すると, $F\in\mathsf{D}^+(A_X)$ に対し,

$$\begin{split} f^! F &\cong (p \circ j)^! F &\underset{\text{命題付録 A.1}}{\cong} j^! p^! F \\ &\overset{\cong}{\cong} j^{-1} \operatorname{R}\Gamma_{j(Y)} \left(p^! F \right) \\ &\overset{\cong}{\cong} j^{-1} \operatorname{R}\Gamma_{j(Y)} p^{-1} F \otimes \omega_{(Y \times X)/X} \\ &\overset{\cong}{\cong} j^{-1} \operatorname{R}\Gamma_{j(Y)} p^{-1} F \otimes \operatorname{or}_{(Y \times X)/X} [\dim Y \times X - \dim X] \\ &\overset{\cong}{\cong} j^{-1} \operatorname{R}\Gamma_{j(Y)} p^{-1} F \otimes \operatorname{or}_{Y} [\dim Y], \end{split}$$

すなわち

$$(3.3.6) f!F \cong j^{-1} \operatorname{R}\Gamma_{j(Y)} p^{-1}F \otimes \operatorname{or}_{Y}[\dim Y]$$

である. $F = A_X$ のとき,

(3.3.7)
$$\operatorname{or}_{Y/X} \cong j^{-1} \left(H_{j(Y)}^{\dim Y} (A_{Y \times X}) \right) \otimes \operatorname{or}_{Y}$$

である. さらに $f = id_X$ のときは,

(3.3.8)
$$\operatorname{or}_{X} \cong H_{X}^{\dim X}(A_{X \times X})|_{X}$$

記号 **1.3** ([KS90, Notation 3.3.8]). 本書では X 章 $\S 3$ をのぞき, 実多様体 X の次元を $\dim X$ で表す. $f: Y \to X$ を C^0 多様体の射とするとき, 次のようにおく.

$$\dim Y/X := \dim Y - \dim X.$$

Y が部分多様体のとき,

$$\operatorname{codim}_X Y := -\dim Y / X$$

のようにもかく. 混同する恐れがないときは $\operatorname{codim}_X Y$ を $\operatorname{codim} Y$ と略記する. 次が成り立つ.

(3.3.10)
$$\omega_{Y/X} \cong \operatorname{or}_{Y/X}[\dim Y/X].$$

このとき,次のようにおくと自然.

(3.3.11)
$$\omega_{Y/X}^{\otimes -1} := \mathbb{R} \mathscr{H}om(\omega_{Y/X}, A_Y),$$
$$\cong \operatorname{or}_{Y/X}[-\dim Y/X].$$

命題 1.4 ([KS90, Proposition 3.3.9]). $f: Y \to X$ を局所コンパクト空間の間の連続写像とする. 次の条件が成りたつとする.

- (i) f は位相的しずめ込みである.
- (ii) $Rf_!f^!\mathbf{Z}_X \to \mathbf{Z}_X$ は同型である.

このとき, $F \in \mathsf{D}^+(\mathbf{Z}_X)$ に対し、射 $F \to \mathsf{R} f_* f^{-1}$ は同型である.

証明. $l \in f$ のファイバー次元とすると,

$$f^! F \underset{\text{fig A.3(ii)}}{\cong} f^{-1} F \otimes f^! \mathbf{Z}_X$$

であり、 $f'\mathbf{Z}_X$ は $\mathbf{Z}_Y[l]$ と局所的に同型である. したがって、

$$f^{-1}F \cong \mathcal{R}\mathscr{H}om(f^!\mathbf{Z}_X, f^!F),$$

$$\mathcal{R}f_*f^{-1}F \cong \mathcal{R}f_*\mathcal{R}\mathscr{H}om(f^!\mathbf{Z}_X, f^!F)$$

$$\cong_{V.D.} \mathcal{R}\mathscr{H}om(\mathcal{R}f_!f^!\mathbf{Z}_X, F)$$

$$\stackrel{\sim}{\sim} F.$$

注意 **1.5** ([KS90, Remark 3.3.10]). $f: Y \to X$ を局所コンパクト空間の間の連続写像とし、fはファイバー次元 l の位相的しずめ込みであるとする.このとき、命題 **1.4** の条件 (ii) が成りたつ

ためには任意の $x \in X$ に対し、次の同型が成り立つことが必要十分である.

(3.3.12)
$$R\Gamma_c(f^{-1}(x); \omega_{f^{-1}(x)}) \stackrel{\sim}{\to} \mathbf{Z}.$$

この同型は次の同型と同値である.

(3.3.13)
$$\mathbf{Z} \stackrel{\sim}{\to} \mathrm{R}\Gamma(f^{-1}(x); \mathbf{Z}_{f^{-1}(x)}).$$

実際, $M \coloneqq \mathrm{R}\Gamma_c(f^{-1}(x);\omega_{f^{-1}(x)})$ とおき, $M^*\operatorname{RHom}(M,\mathbf{Z})$ とおく. このとき, $M^*\cong \mathrm{R}\Gamma(f^{-1}(x);\mathbf{Z}_{f^{-1}(x)})$ であり, $\mathsf{D}^{\mathrm{b}}(\operatorname{Mod}(\mathbf{Z}))$ における同型 $M\overset{\sim}{\to}\mathbf{Z}$ は同型 $\mathbf{Z}\overset{\sim}{\to}M^*$ と同じである.

いま, X を n 次元 C^0 多様体とし, \mathbf{a}_X で写像 $X \to \{\mathrm{pt}\}$ を表す.射 $\mathrm{Ra}_{X!}\mathbf{a}_X^!A_{\{\mathrm{pt}\}} \to A_{\{\mathrm{pt}\}}$ から射

$$(3.3.14) Ra_{X} \omega_X \to A$$

が定まる. 0次コホモロジーをとることで,「積分射」

(3.3.15)
$$\int_X : H_c^n(X; \operatorname{or}_X) \to A$$

が定まる. 他方で, $A={f C}$ かつ X が C^∞ 多様体であるとき,よく知られた射 $H^n_c(X;{\rm or}_X)\to {f C}$ が次のようにして得られる. ${\rm or}_X$ はド・ラーム複体

$$0 \to C_X^{\infty,(0)} \otimes \operatorname{or}_X \to \cdots \to C_X^{\infty,(n)} \otimes \operatorname{or}_X \to 0$$

と擬同形である. $C_X^{\infty,(j)}\otimes {
m or}_X$ は ${
m c}$ 柔軟なので,

$$H_c^n(X; \operatorname{or}_X) \cong \Gamma_c(X; C^{\infty,(n)} \otimes \operatorname{or}_X) / d\Gamma_c(X; C^{\infty,(n-1)} \otimes \operatorname{or}_X)$$

である. ϕ をコンパクト台をもつ密度,すなわち $\Gamma_c(X; C^{\infty,(n)} \otimes \operatorname{or}_X)$ の元とすると, $\int_X \phi$ が意味をもつ.ストークスの定理から, $\psi \in \Gamma_c(X; C^{\infty,(n-1)} \otimes \operatorname{or}_X)$ で $\phi = d\psi$ となるものが存在するとき $\int_X \phi = 0$ となる.したがって, \int_X は射

(3.3.16)
$$\int_X : \Gamma_c(X; C^{\infty,(n)} \otimes \operatorname{or}_X) / d\Gamma_c(X; C^{\infty,(n-1)} \otimes \operatorname{or}_X) \to \mathbf{C}$$

を定める. この射 (3.3.16) は (3.3.15) と符号を除いて一致する.

X が連結のとき、 $H_c^n(X; \text{or}_X) \cong \text{Hom}(H^0(X; \mathbf{C}_X), \mathbf{C}) \cong \mathbf{C}$ である. したがって、(3.3.15) と (3.3.16) は 0 以外の定数倍を除いて等しい.

命題 **1.6** ([KS90, Proposition 3.3.11]). X を n 次元 C^0 多様体とし,A を環とする.このとき, $\operatorname{Mod}(A_X)$ のホモロジー次元は $3n+\operatorname{gld}(A)+1$ でおさえられる.

系 1.7([KS90, Corollary 3.3.12]). X を C^0 多様体とする.このとき,R $\mathscr{H}om(\cdot,\cdot)$ は $\mathsf{D}^{\mathrm{b}}(A_X)^{\mathrm{op}} \times \mathsf{D}^{\mathrm{b}}(A_X)$ から $\mathsf{D}^{\mathrm{b}}(A_X)$ への関手を定める.

付録 A あとで使う定理(復習)

命題 付録 **A.1** ([KS90, Proposition 3.1.8]). $f: Y \to X$, $g: Z \to Y$ を局所コンパクト空間 の間の連続写像とする. $f_!$ と $g_!$ のコホモロジー次元が有限であるとする. このとき, $(f \circ g)_!$ のコホモロジー次元は有限で

$$(f \circ g)^! \cong g^! \circ f^!$$

である.

命題 付録 **A.2** ([KS90, Proposition 3.1.12]). $f: Y \to X$ を Y から X の局所閉集合 Z の上への同相写像とする. このとき,

$$f^! \cong f^{-1} \circ \mathrm{R}\Gamma_{f(Y)}(\cdot)$$

である.

命題 付録 **A.3** ([KS90, Proposition 3.3.2]). $f: Y \to X$ をファイバー次元 l の位相的沈めこみとする.

- (i) $k \neq -l$ に対し $H^k(f^!A_X) = 0$ であり,局所的に $H^{-l}(f^!A_X) \cong A_Y$ である.
- (ii) $f^{-1}(\cdot) \otimes \omega_{Y/X} \to f^!(\cdot)$ は同型である.

付録 B 層の例([KS90, §2.9] から)

B.1 向きづけ, 微分形式, 密度

 C^0 多様体 M 上の層として,向きづけ層 or_M を考えることも必要になってくる. or_M は \mathbf{Z}_M と 局所的に同型な層であり,M の向きが存在する場合,その向きを選ぶことと同型 $\mathrm{or}_M\cong \mathbf{Z}_M$ を選ぶことが同義となるようなものである. or_M については次章で詳しくしらべる.

いま, $\alpha=\infty$ または $\alpha=\omega$ とし,p を整数とする. C_M^{α} を係数にもつ p 次微分形式の層を $C_M^{\alpha,(p)}$ とおく.また外微分を $d\colon C_M^{\alpha,(p)}\to C_M^{\alpha,(p+1)}$ で表す.

 (x_1,\ldots,x_n) が M 上の局所座標系であるとする.このとき,p 形式 f は次の形にただ一通りに表されるのであった.

$$f = \sum_{|I|=p} f_I dx_I,$$

ここに, $I = \{i_1, \dots, i_p\} \subset \{1, \dots, n\}, (i_1 < i_2 < \dots < i_p), dx_I = dx_{i_1} \wedge \dots \wedge dx_{i_p}$ で、 f_I は

 C_M^{α} の切断である. このとき,

$$df = \sum_{i=1}^{n} \sum_{|I|=p} \frac{\partial f_I}{\partial x_i} dx_i \wedge dx_I$$

となるのであった. もうひとつ層を導入する.

$$\mathscr{V}_M^{\alpha} \coloneqq C_M^{\alpha,(n)} \otimes \operatorname{or}_M$$

 $(\alpha=\infty$ または $\alpha=\omega$)とおき,M 上の C^{α} 密度の層とよぶ. コンパクト台をもつ C^{∞} 密度は積分することができる. \int_{M} ・で積分写像

(付録 B.1)
$$\int_{M} \cdot: \Gamma_{c}(M; \mathscr{V}_{M}^{\infty}) \to \mathbf{C}$$

を表す. $C_M^{\alpha,(p)}$ と \mathscr{V}_M^{α} は C_M^{α} 加群の層である.

「1 の分割」の存在から,層 C_M^{α} , $C_M^{\alpha,(p)}$, \mathscr{V}_M^{α} は $\alpha \neq \omega$ に対しては \mathfrak{c} 柔軟であることが従う.層 C_M^{ω} , $C^{\omega,(p)}$, \mathscr{V}_M^{ω} は関手 $\Gamma(M;\cdot)$ に対し非輪状,すなわち j>0 に対し $H^j(M;C_M^{\omega})=0$ である.Grauert [G58] を参照.

B.2 分布と超関数

 C^∞ 多様体 M 上にはシュワルツ分布の層 $\mathscr{D}b_M$ が自然に定まる (Schwartz[S66], de Rham[R55] を参照). $\mathscr{D}b_M$ は c 柔軟層であり, $\Gamma_c(M;\mathscr{D}b_M)$ は $\Gamma(M;\mathscr{V}_M^\infty)$ の双対位相線形空間である.ただし, $\Gamma(M;\mathscr{V}_M^\infty)$ にはフレシェ空間としての自然な位相を入れている.

 C^ω 多様体 M 上にも同様に佐藤超関数の層 \mathcal{B}_M が自然に定まる(佐藤 [Sa59] を参照)。 \mathcal{B}_M は脆弱層であり, $\Gamma_c(M;\mathcal{B}_M)$ は $\Gamma(M;\mathcal{V}_M^\omega)$ の双対位相線形空間である。ただし, $\Gamma(M;\mathcal{V}_M^\omega)$ にはDFS 空間としての自然な位相を入れている(Martineau と Schapira に詳細な解説がある)。

積分写像 (付録 B.1) はペアリング

$$\Gamma(M; C_M^\infty) \times \Gamma_c(M; \mathscr{V}_M^\infty) \longrightarrow \mathbf{C}$$
 (付録 B.2)
$$(f, g) \longmapsto \int_M fg$$

を定める. このペアリングから C_M^∞ から $\mathscr{D}b_M$ への層の射がひきおこされ, この射が単射であることも示せる. さらに, 実解析多様体 M の上では, 単射 $\Gamma(M;\mathcal{V}_M^\omega) \to \Gamma(M;\mathcal{V}_M^\infty)$ から射 $\mathscr{D}b_M \to \mathscr{B}_M$ が引き起こされ, こちらも単射であることがわかる.

分布係数の p 形式の層 $\mathscr{D}_{M}^{(p)}\coloneqq C_{M}^{\infty,(p)}\otimes_{C_{M}^{\infty}}\mathscr{D}_{M}$ や超関数係数の p 形式の層 $\mathscr{B}_{M}^{(p)}\coloneqq C_{M}^{\omega,(p)}\otimes_{C_{M}^{\infty}}\mathscr{B}_{M}$ も定義することができる。 $\mathscr{D}_{M}^{(p)}$ は c 柔軟層, $\mathscr{B}_{M}^{(p)}$ は脆弱層である。

参考文献

- [Le13] John M. Lee, *Introduction to Smooth Manifolds*, Second Edition, Graduate Texts in Mathematics, **218**, Springer, 2013.
- [Sp65] Michael Spivak, Calculus on Manifolds, Benjamin, 1965.
- [B+84] Borel, Intersection Cohomology, Progress in Mathematics, 50, Birkhäuser, 1984.
- [G58] Grauert, On Levi's problem and the embedding of real analytic manifolds, Ann. Math. 68, 460–472 (1958).
- [GP74] Victor Guillemin, Alan Pollack, Differential Topology, Prentice-Hall, 1974.
- [KS90] Masaki Kashiwara, Pierre Schapira, Sheaves on Manifolds, Grundlehren der Mathematischen Wissenschaften, 292, Springer, 1990.
- [KS06] Masaki Kashiwara, Pierre Schapira, Categories and Sheaves, Grundlehren der Mathematischen Wissenschaften, 332, Springer, 2006.
- [R55] de Rham, Vari'et'es différentiables, Hermann, Paris, 1955.
- [Sa59] Mikio Sato, Theory of Hyperfunctions, 1959-60.
- [S66] Schwartz, Théorie de distributions, Hermann, Paris, 1966.
- [Sh16] 志甫淳, 層とホモロジー代数, 共立出版, 2016.
- [Ike21] 池祐一, 超局所層理論概説, 2021.
- [Tak17] 竹内潔, D 加群, 共立出版, 2017.