TWO-STAGE RECOMMENDER SYSTEM

Степанов Даниил Бредихин Александр Конюшенко Юлия Яскевич Александр Ачарйа Кирилл

Фролов Евгений - Дирижёр

First-stage models

Tensor Model

 $||\mathcal{A}_0 - \mathcal{R}||_F^2 \to \min$ $\mathcal{R} = \mathcal{G} \times_1 U \times_2 V \times_3 W$

Why Two-stage Recommender system?

Many real-world recommender systems need to be highly scalable: matching millions of items with billions of users, with milliseconds latency. The scalability requirement has led to widely used two-stage recommender systems, consisting of efficient candidate generation model(s) in the first stage and a more powerful ranking model in the second stage.

What is this?

This is Problems, Always

Our plan

- 1. Honestly split the data
- 2. Train and test 1st stage models
- 3. Make some feature generation
- 4. Train and test 2nd stage models
- Tune hyperparameters for combined model

YouTube

"была ли у вас какая-то тактика с самого начала , которой вы придерживались" ?

"была ли у вас какая-то тактика с самого начала , которой вы придерживались" ?

Data preprocessing

- 1. First split: train 95% and test 5%
- 2. Remove test users from train
- 3. Split train on stage1_train, stage2_predict, stage2_train, stage2_holdout
- 4. Add generated features to stage2_train
- 5. Finally, split test on test_predict and test_holdout

Data by time: stage1_train, stage2_predict, stage2_train, stage2_holdout, final_test, final_train

train

from this to this

Feature Engineering

Main concept - Sequential features

Your browser history?

Interactions with objects

SVD-embeddings

Metadata of items

BERT-embeddings

Second-stage model

How to fit?

- 1. Get candidates from the first-level model
- 2. Merge with stage2_train to generate labels
- 3. Add generated features
- 4. Train model

How to predict?

- 1. Repeat 1, 2, 3 steps from fit for final_test, but without labels
- 2. Score candidates and choose top-10
- 3. Calculate metrics on final_holdout

Results

Baseline models results

model	hit rate	mrr	COV
SVD	0.0841	0.0325	0.2670
EASEr	0.0912	0.0365	0.1861

Two-stage model results

model	hit rate	mrr	COV
SVD + CB	0.0859	0.0332	0.2459

Качественные результаты

Разработана схема валидации двухуровневой модели

Проверены следующие гипотезы:

- 1. Двухуровневая модель лучше одноуровневой
- 2. Динамические признаки лучше статических
- 3. Тензорная модель уточняет предсказания

Sources

• Блоги про двухуровневый подход:

https://habr.com/ru/company/okko/blog/454224/

https://habr.com/ru/company/tinkoff/blog/454818/

https://habr.com/ru/company/avito/blog/439206/

• Литература по моделям:

https://dl.acm.org/doi/10.1145/1864708.1864721

https://arxiv.org/abs/1607.04228

• Генерация фичей:

https://habr.com/ru/post/447376/

https://github.com/aprotopopov/retailhero_recommender

https://github.com/mike-chesnokov/x5_retailher o_2020_recs

https://arxiv.org/abs/1610.04850

• Примеры:

https://github.com/evfro/recsys19_hybridsvd/tree/master/data

https://github.com/skoltech-ai/Recommender-S ystems-Intro-Sber-2022/blob/main/Evaluation.ip ynb

https://github.com/sharthZ23/your-second-recsys/blob/master/lecture_5/tutorial_hybrid_model.ipvnb/