Lecture 10 (Analytical Solution)

1 Plot of $J(\theta)$ for SGD

The graph has extra zig-zag points between each epoch (once entire batch is consumed). The graph has periodic convergence. So the algorithm is stopped only at number of iterations which are multiples of m/r.

2 Analytical Solution for Least Square Regression

Design matrix $X \in \mathbb{R}^{m \times (n+1)}$ is such that each row X_i is x_i^T . $Y \in \mathbb{R}^m$ is vector of y_i . $\Theta \in \mathbb{R}^{n+1}$ is vector of θ_i . Now consider,

$$X\Theta - Y$$

This is the difference part of the error. Thus, $J(\theta)$ equals

$$\frac{1}{2m}(X\Theta - Y)^T(X\Theta - Y)$$

On solving the equation, $\nabla_{\theta} J(\theta) = 0$ (and simplifying the equation),

$$\frac{1}{2m} \nabla_{\theta} \left(\Theta^{T} X^{T} X \Theta - 2 \Theta^{T} X^{T} Y + Y^{T} Y \right) = 0$$

$$\implies \frac{1}{m} X^{T} \left(X \Theta - Y \right) = 0$$

$$\implies \Theta = (X^{T} X)^{-1} X^{T} Y$$