Compiler Construction

ARNOLD MEIJSTER
A.MEIJSTER@RUG.NL

Algebra of Regular Expressions

AXIOM	DESCRIPTION	
$r \mid s = s \mid r$	is commutative	
$\mathbf{r} \mid (\mathbf{s} \mid \mathbf{t}) = (\mathbf{r} \mid \mathbf{s}) \mid \mathbf{t}$	is associative	
$(\mathbf{r} \mathbf{s}) \mathbf{t} = \mathbf{r} (\mathbf{s} \mathbf{t})$	concatenation is associative	
$\frac{\mathbf{r}(\mathbf{s} \mathbf{t}) = \mathbf{r}\mathbf{s} \mathbf{r}\mathbf{t}}{(\mathbf{s} \mathbf{t})\mathbf{r} = \mathbf{s}\mathbf{r} \mathbf{t}\mathbf{r}}$	concatenation distributes over	
$\epsilon r = r\epsilon = r$	ϵ is the identity element for concatenation	
$\mathbf{r}^* = (\mathbf{r} \mid \boldsymbol{\epsilon})^*$	relation between $*$ and ϵ	
r** = r*	* is idempotent	

Automata & Language Theory

- Terminology
 - FSA = Finite State Automaton
 - A recognizer that takes an input string and determines whether it's a valid string of the language.

Regexp: (0 | 1(01*0)*1)*

Automata & Language Theory

- Deterministic FSA (DFA)
 - Has in each state at most one action for any given input symbol
- Non-Deterministic FSA (NFA)
 - May have more than one alternative action for the same input symbol per state.
 - Cannot utilize standard single character look-ahead algorithm!
- Bottom Line
 - o expressive power(NFA) == expressive power(DFA)
 - Conversion can be automated

Deterministic Finite Automata

A DFA is a mathematical model that consists of:

- S, a set of states
- Σ , the symbols of the input alphabet
- move, a transition function.
 - $move(state, symbol) \rightarrow state$
 - move: $S \times \Sigma \rightarrow S$
- A state $s_0 \in S$, the start state
- $F \subseteq S$, a set of final or accepting states.

DFA: Transition table representation of b*abb

$S = \{ 0, 1, 2, 3 \}$
$\Sigma = \{ a, b \}$
$s_0 = 0$
$\mathbf{F} = \{ 3 \}$

Move:

i	n	p	u	t
---	---	---	---	---

		a	b
s t	0	1	0
a t	1		2
e	2		3

DFA simulation algorithm

Since DFA move/transition tables don't have any alternative options, DFAs are easily simulated using the following algorithm.

```
state \leftarrow s_0;
lexeme \leftarrow \epsilon;
trail \leftarrow \epsilon;
c ← nextchar();
while c \neq eof and c \in AcceptableCharacters(state) do
  append(trail, c);
  state ← move[state,c]; /* transition table */
  if state ∈ FinalStates then
     lexeme ← concat(lexeme, trail);
     trail \leftarrow \epsilon:
  endi f
  c ← nextchar();
end;
pushbackcharacter(c);
pushback(trail);
```

Non-Deterministic Finite Automata

An NFA is a mathematical model that consists of:

- S, a set of states
- Σ , the symbols of the input alphabet
- move, a transition function.
 - $move(state, symbol) \rightarrow P(S)$
 - move: $S \times \Sigma \rightarrow P(S)$
- $s_0 \in S$, the start state
- $F \subseteq S$, a set of final or accepting states.

Automata & Language Theory

$$\Sigma = \{a,b\}$$

$$L = (a+b)*b$$

NFA

DFA

NFA and DFA accepting the same language

Automata & Language Theory

$$\Sigma = \{a,b\}$$

$$L = (a+b)*b$$

NFA

DFA

NFA and minimal DFA accepting the same language

NFA Construction: (a (b*c)) | (a (b | c+)?)

Automatic construction example

• a(b*c)

• a(b|c+)?

4 a 5 c

Build a Disjunction!

Epsilon-Transitions: (a (b*c)) | (a (b |c+)?)

Epsilon-Transitions: (a (b*c)) | (a (b |c+)?)

A bit smarter is to factor out common prefixes

NFA- Regular Expressions & Lexers

A lexical analyzer is a union of NFAs.

Each NFA accepts a language token.

A Backtracking NFA?

- Given an input string, we trace moves
- If no more (acceptable) input & in final state, ACCEPT
- If no more (acceptable) input & not in final state, backtrack if possible

Input: ababb

$$move(0, \mathbf{a}) = 1$$

$$move(1, \mathbf{b}) = 2$$

$$move(2, a) = ?$$
(undefined)

REJECT!

$$move(0, a) = 0$$

$$move(0, b) = 0$$

$$move(0, a) = 1$$

$$move(1, b) = 2$$

$$move(2, b) = 3$$

ACCEPT!

Even worse...

Most paths do not result in acceptance!

aaaabb is only accepted along the path:

$$0 \rightarrow 0 \rightarrow 0 \rightarrow 0 \rightarrow 1 \rightarrow 2 \rightarrow 3$$

BUT... it is not accepted along the paths:

$$0 \rightarrow 1 \rightarrow \text{fail}$$
 $0 \rightarrow 0 \rightarrow 1 \rightarrow \text{fail}$
 $0 \rightarrow 0 \rightarrow 0 \rightarrow 1 \rightarrow \text{fail}$

The NFA "Problem"

Valid input may need backtracking

- Can be very inefficient (worst case, exponential time complexity)
- Morever, it needs (substantial) input buffering

Solution?

o Build an equivalent DFA!

The DFA saves the day

- A DFA is an NFA with a few restrictions
 - No epsilon transitions
 - For every state s, there is at most one transition (s,x) for any symbol x in Σ
- Why do you want to do this?
 - Easy to implement a DFA with an algorithm!
 - **The current character suffices to make decisions**
 - No look-ahead required
 - No backtracking (stack/buffer) required
 - Much faster scanner

NFA vs. DFA

- NFA
 - o smaller number of states than DFA
 - o it requires a backtracking computation.
- DFA
 - larger number of states
 - o it requires a *constant* computation for each input symbol.
- caveat During the NFA=>DFA conversion, the number of states might explode
 - \circ From N to 2^N states
 - o Fortunately:
 - \times 2^N rarely occurs
 - DFA's can be minimized

NFA to DFA Conversion process

From State 0, where can we move without consuming any input?

This forms a new state: {0,1,2,6,8}

Which transitions are defined for this new state?

NFA to DFA Conversion

 Merge states that can be reached without consuming any input into aggregated states

Final States

- An aggregated state is final
 - o IFF at least one of its original NFA states was final

The Resulting DFA

NFA->DFA: Algorithm Concepts

NFA $N = (S, \Sigma, s_0, F, MOVE)$

These 3 operations are utilized by the conversion algorithm.

 \in -Closure(s) : s \in S

: set of states in S that are reachable

from s using \in -paths that originate from s.

 \in -Closure of T : T \subseteq S

: NFA states reachable from any $t \in T$ using \in -paths only.

move(T,a) : $T \subseteq S$, $a \in \Sigma$

: Set of states to which there is a transition

on input a from some $t \in T$

Illustrating Conversion – An Example

First we calculate: \in -closure(0) (i.e., state 0) \in -closure(0) = {0, 1, 2, 4, 7} (states reachable from 0 via \in -paths) Let A={0, 1, 2, 4, 7} be a state of the new DFA

Conversion Example – continued (1)

 2^{nd} , we calculate: $a : \in -closure(move(A,a))$ and

 $b : \in -closure(move(A,b))$

 $\underline{\mathbf{a}} : \in \text{-closure}(move(A,a)) = \in \text{-closure}(move(\{0,1,2,4,7\},a)) = \in \text{-closure}(\{3,8\}) \text{ (since } move(2,a)=3 \text{ and } move(7,a)=8)$

We compute: \in -closure({3,8}) = {1,2,3,4,6,7,8} (since $3 \rightarrow 6 \rightarrow 1 \rightarrow 4$, $6 \rightarrow 7$, and $1 \rightarrow 2$ all by \in -moves)

Let $B = \{1,2,3,4,6,7,8\}$ be a new state. Define Dtran[A,a] = B.

 $b : \in -closure(move(A,b)) = \in -closure(\{5\})$ (since move(4,b)=5)

We compute: \in -closure($\{5\}$) = $\{1,2,4,5,6,7\}$ (since $5 \rightarrow 6 \rightarrow 1 \rightarrow 4$, $6 \rightarrow 7$, and $1 \rightarrow 2$ all by \in -moves)

Let $C=\{1,2,4,5,6,7\}$ be a new state. Define Dtran[A,b]=C.

Conversion Example – continued (2)

```
3^{rd}, we calculate transitions for state B on \{a,b\}
\underline{a}: \in \text{-closure}(move(B,a)) = \in \text{-closure}(move(\{1,2,3,4,6,7,8\},a))\}
= \{1,2,3,4,6,7,8\} = B
Define Dtran[B,a] = B.
\underline{b}: \in \text{-closure}(move(B,b)) = \in \text{-closure}(move(\{1,2,3,4,6,7,8\},b))\}
= \{1,2,4,5,6,7,9\} = D
Define Dtran[B,b] = D.
```

```
4<sup>th</sup> , we calculate for state C on {a,b}

a : ∈-closure(move(C,a)) = ∈-closure(move({1,2,4,5,6,7},a))}
= {1,2,3,4,6,7,8} = B

Define Dtran[C,a] = B.

b : ∈-closure(move(C,b)) = ∈-closure(move({1,2,4,5,6,7},b))}
= {1,2,4,5,6,7} = C

Define Dtran[C,b] = C.
```

Conversion Example – continued (3)

```
5<sup>th</sup> , we calculate for state D on {a,b}

\underline{a} : \in \text{-closure}(move(D,a)) = \in \text{-closure}(move(\{1,2,4,5,6,7,9\},a))\}
= \{1,2,3,4,6,7,8\} = B

Define Dtran[D,a] = B.

\underline{b} : \in \text{-closure}(move(D,b)) = \in \text{-closure}(move(\{1,2,4,5,6,7,9\},b))\}
= \{1,2,4,5,6,7,10\} = E

Define Dtran[D,b] = E.
```

Finally, we calculate for state E on {a,b}

```
\underline{a} : ∈-closure(move(E,a)) = ∈-closure(move(\{1,2,4,5,6,7,10\},a))} = \{1,2,3,4,6,7,8\} = B
Define Dtran[E,a] = B.
```

$$\underline{b}$$
 : ∈-closure($move(E,b)$) = ∈-closure($move(\{1,2,4,5,6,7,10\},b)$)} = $\{1,2,4,5,6,7\}$ = C

Define Dtran[E,b] = C.

Conversion Example – continued (4)

This calculation yields the following transition table for the DFA:

	Input Symbol a b		
State			
\mathbf{A}	В	\mathbf{C}	
В	В	D	
C	В	C	
D	В	${f E}$	
E	В	C	

Algorithm For Subset Construction

```
initially, \in-closure(s_0) is only (unmarked) state in Dstates;
while there is unmarked state T in Dstates do begin
  mark T;
   for each input symbol a do begin
        U := \in -closure(move(T,a));
        if U is not in Dstates then
            add U as an unmarked state to Dstates;
        Dtran[T,a] := U
  end
end
```

Example: building a lexer

NFA's:

Example – continued(1)

Combined NFA:

Construct DFA: (It has 6 states)

 $\{0,1,3,7\}, \{2,4,7\}, \{5,8\}, \{6,8\}, \{7\}, \{8\}$

Example – continued(2)

NFA->DFA for this example:

	Input		
STATE	a	b	Pattern
{0,1,3,7}	{2,4,7}	{8}	none
{2,4,7}	{7}	{5,8}	a
{8}	-	{8}	a*b+
{7}	{7}	{8}	none
{5,8}	1	{6,8}	a*b+
{6,8}	-	{8}	abb a*b+

Regular Expression to NFA Construction

- We now focus on transforming a Reg. Expr. to an NFA
- This construction allows us to take:
 - Regular Expressions (which describe tokens)
 - to an NFA
 - to a DFA (using the power set construction algorithm)
- The construction process is component wise
 - Construction is an example of syntax-directed translation

Construction Algorithm : R.E. \rightarrow NFA

1. For the regular expression ϵ , construct

2. For the regular expression $a \in \Sigma$, construct

Construction Algorithm : R.E. \rightarrow NFA

3. If s, t are regular expressions, N(s), N(t) their NFAs then s|t has NFA:

where i and f are new start / final states, and ϵ -moves are introduced from i to the old start states of N(s) and N(t) as well as from all of their final states to f.

Construction Algorithm : R.E. \rightarrow NFA

4. If s, t are regular expressions, N(s), N(t) their NFAs then s.t (concatenation) has NFA:

where i is the start state of N(s) (or new for the alternative) and f is the final state of N(t) (or new). Overlap maps final state of N(s) to start state of N(t).

Construction Algorithm : R.E. \rightarrow NFA

5. If s is a regular expressions, N(s) its NFA, then s* (Kleene star) has NFA:

where: i is a new start state and f is a new final state ϵ -move i to f (to accept null string) ϵ -moves i to old start, old final(s) to f ϵ -move old final to old start (loop)

Properties of Construction

Let r be a regular expression, with NFA N(r), then

- 1. N(r) has at most 2*(#symbols + #connectives of r) states
- 2. N(r) has exactly one start and one accepting state
- 3. BEWARE to assign unique names to all states!

Detailed Example: (ab*c) | (a(b|c*))

Parse Tree for this regular expression:

What is the NFA? Let's construct it!

Detailed Example – (ab*c) | (a(b|c*))

Detailed Example – (ab*c) | (a(b|c*))

Detailed Example: (ab*c) | (a(b|c*)) Final Step

 $r_{13}: r_5 | r_{12}$

Minimizing the number of DFA states

 A DFA is minimal if no DFA with fewer states does the same task

Minimizing the number of DFA states

(46)

In the following DFA with alphabet {0,1}, consider the accepting states c and g. Once, we reach either of them, remaining input is guaranteed to be accepted.

47)

A: No, they can be unified as illustrated below.

49

Can any other states be unified because any subsequent string suffixes produce identical results?

50

A: Yes, b and f. Notice that if you're in b or f then:

- if string ends, reject in both cases
- 2. if next character is 0, forever accept in both cases
- 3. if next character is 1, forever reject in both cases

51)

Any other ways to simplify the automaton?

Useless States

Yes, get rid of d.

Getting rid of unreachable *useless states* doesn't affect the accepted language.

DFA Minimization

DEF: An automaton is *irreducible* if

- o it contains no useless states, and
- o no two distinct states are equivalent.

The goal of minimization algorithm is to create irreducible automata from arbitrary ones.

Idea: use the NFA->DFA subset construction algorithm twice

- For an automaton *N*
 - Let reverse(N) be the NFA constructed by making the initial state final, introducing an initial state which is the union of the original final states, and reversing all arcs.
 - \circ Let dfa(N) be the DFA that results from applying the NFA to DFA conversion to N.
 - Let *reachable(N)* be an automaton for *N* that is obtained after removing all states that are not reachable from the initial state.
- Then,

reachable(dfa(reverse[reachable(dfa(reverse(N))]))

is the minimal DFA that implements N [Brzozowski, 1962]

This result is not intuitive, but it is proven in the above mentioned paper. We will not discuss the proof here.

Step 1: construction of reversed NFA

Reversed NFA

Step 2: DFA subset construction algorithm on reverse(NFA)

Step 3: reverse it again

dfa(reverse(NFA))

Reverse it, again: reverse(dfa(reverse(NFA)))

Step 4: again DFA subset construction algorithm

Summary

If we can

Specify tokens with Regular Expressions

then, we (or better, Flex) can build a scanner by

- Creating an NFA for the recognition of each token
- Build a big NFA by union of the token NFAs
- Turn the big NFA into a DFA
- Minimize the DFA
- Scan with the obtained DFA

Next Topic

PARSING

