CLAIMS

We Claim:

5

- 1. An Alq₃-functionalized compound comprising a polymerizable moiety and an Alq₃-moiety, wherein q, in each instance, comprises an 8-hydroxyquinoline residue.
- 10 2. The Alq₃-functionalized compound of Claim 1, wherein the Alq₃-moiety is functionalized with at least one electron-donating group, at least one electron-withdrawing group, or a combination thereof.
- 3. The Alq₃-functionalized compound of Claim 1, wherein the Alq₃-moiety is functionalized with at least one group independently selected from: a hydrocarbyl group, an oxygen group, a sulfur group, a nitrogen group, a phosphorus group, an arsenic group, a carbon group, a silicon group, a germanium group, a tin group, a lead group, a boron group, an aluminum group, an inorganic group, an organometallic group, or a substituted analog thereof, any one of which having from 1 to about 30 carbon atoms; a halide; hydrogen; or any combination thereof.
 - 4. The Alq₃-functionalized compound of Claim 1, wherein the compound has

$$(CH_2)_5NHCH_2 \longrightarrow \begin{pmatrix} V_n & V_n & V_n \\ V_n & V_n & V_n \\ V_n & V_n & V_n \end{pmatrix}$$

the formula

wherein Y and Z are independently selected from -F, -Cl, -Br, -I, -R¹, - CR^{1} =O, -CH=CHC(O)R¹, -C(O)R¹, -C(O)OR¹, -CN, -C(NR¹)R¹, -C(NR¹)OR¹, -C(NR¹)OR

wherein R¹, in each instance, is independently selected from H or a substituted or unsubstituted hydrocarbyl group having from 1 to about 30 carbon atoms;

wherein X, in each instance, is independently selected from F, Cl, Br, I, H, OR¹, -SR¹, or NR¹₂; and

wherein n and m are independently selected from an integer from 0 to 3.

15 5. The Alq₃-functionalized compound of Claim 1, wherein the compound is selected from:

$$(CH_2)_5NHCH_2 \longrightarrow (CH_2)_5NHCH_2 \longrightarrow (CH_$$

5

$$(CH_2)_5NHCH_2 \longrightarrow (CH_2)_5NHCH_2 \longrightarrow (CH_$$

- 5 6. A light-emitting diode comprising the polymerization product of the Alq₃-functionalized compound of Claim 1.
 - 7. A composition comprising the polymerization product of an Alq₃-functionalized monomer, wherein the Alq₃-functionalized monomer comprises a polymerizable moiety and an Alq₃-moiety, and wherein q, in each instance, comprises an 8-hydroxyquinoline residue.
 - 8. The composition of Claim 7, wherein the polymerization product is substantially non-crosslinked.

- 9. The composition of Claim 7, wherein the Alq₃-moiety is functionalized with at least one electron-donating group, at least one electron-withdrawing group, or a combination thereof.
- 5 10. The composition of Claim 7, wherein the polymerizable moiety comprises norbornene.
 - 11. A light-emitting diode comprising the composition of Claim 7.
- 12. A composition comprising the polymerization product of at least one Alq₃functionalized monomer and at least one comonomer, wherein the Alq₃functionalized monomer comprises a polymerizable moiety and an Alq₃-moiety,
 and wherein q, in each instance, comprises an 8-hydroxyquinoline residue.
- 15 13. The composition of Claim 12, wherein the polymerizable moiety comprises norbornene, norbornadiene, cyclopentene, cyclooctene, cyclooctadiene, or a substituted analog thereof.
- 14. The composition of Claim 12, wherein the polymerizable moiety comprises norbornene or a substituted analog thereof.
 - 15. The composition of Claim 12, wherein the Alq₃-moiety is functionalized with at least one electron-donating group, at least one electron-withdrawing group, or a combination thereof.

30

16. The composition of Claim 12, wherein the Alq₃-moiety is functionalized with at least one group independently selected from: a hydrocarbyl group, an oxygen group, a sulfur group, a nitrogen group, a phosphorus group, an arsenic group, a carbon group, a silicon group, a germanium group, a tin group, a lead group, a boron group, an aluminum group, an inorganic group, an organometallic

group, or a substituted analog thereof, any one of which having from 1 to about 30 carbon atoms; a halide; hydrogen; or any combination thereof.

- The composition of Claim 12, wherein the Alq₃-moiety is functionalized 17. with at least one group independently selected from -F, -Cl, -Br, -I, -R¹, -CR¹=O, 5 $-CH=CHC(O)R^{1}$, $-C(O)R^{1}$, $-C(O)OR^{1}$, -CN, $-C(NR^{1})R^{1}$, $-C(NR^{1})OR^{1}$, $-C(NR^{1})OR^{1}$ $CH_2C_6H_4X$, $-CH_2C_6H_3X_2$, $-CH_2C_6H_4R^1$, $-CH_2C_6H_3R^1_2$, $-CH_2CH_2C_6H_4X$, - $CH_2CH_2C_6H_3X_2$, $CH_2CH_2C_6H_4R^1$, $-CH_2CH_2C_6H_3R^1_2$, $-CH=CR^1_2$, $-C\equiv CR^1$, $-OR^1$, $-OC(O)R^{1}$, $-SiR^{1}_{3}$, $-OSiR^{1}_{3}$, $-NO_{2}$, $-NR^{1}_{2}$, $-N_{3}$, $-N=CR^{1}_{2}$, $-N=NR^{1}$, $-SR^{1}$, -SX, $-N=CR^{1}_{2}$, $-N=NR^{1}_{3}$, -SX, $-N=CR^{1}_{2}$, $-N=NR^{1}_{3}$, -SX, $-N=CR^{1}_{3}$, $-N=CR^{1}_{3}$, $-N=NR^{1}_{3}$, -SX, $-N=NR^{1}_{3}$, $-N=NR^{1}_{3}$, -N=N OSO_2R^1 , $-OSO_2OR^1$, -SCN, $-SO_2R^1$, $-PR^1_2$, $-PX_2$, $-P(O)R^1_2$, $-P(OR^1)_2$, -P(O10 $P(O)(OR^{1})_{2}$, $-OSiR^{1}_{3}$, $-OPR^{1}_{2}$, $-OAIR^{1}_{2}$, $-AsR^{1}_{2}$, $-As(O)R^{1}_{2}$, $-As(OR^{1})_{2}$ $As(O)(OR^{1})_{2}$, SnR^{1}_{3} , $OSnR^{1}_{3}$, SnX^{1}_{3} , $OSnX^{1}_{3}$, $-BR^{1}_{2}$, $-BX_{2}$, $-BR^{1}X$, $-SO_{2}X$, $-BX_{2}$, $-BX_{3}$, $-BX_{3}$, $-BX_{4}$, $-BX_{5}$ OAIX₂, -OSiX₃, -OPX₂, -OSO₂X, -AsX₂, or -As(O)X₂; wherein R¹, in each instance, is independently selected from H or a substituted or unsubstituted hydrocarbyl group having from 1 to about 30 carbon atoms; and wherein X, in 15 each instance, is independently selected from F, Cl, Br, I, H, OR¹, -SR¹, or NR¹₂.
- 18. The composition of Claim 12, wherein the Alq₃-moiety is functionalized by at least one group independently selected from alkyl, cycloalkyl, alkenyl, alkynyl, aryl, aralkyl, formyl, acyl, imide, amide, imine, alkoxide, aryloxide, alkylthiolate, arylthiolate, alkoxyalkyl, haloalkyl, carboxylate, or a substituted analog thereof, any one of which having up to about 30 carbon atoms.
- 19. The composition of Claim 12, wherein the Alq₃-moiety is functionalized by at least one group independently selected from methyl, ethyl, propyl, cyclopropyl, n-butyl, tert-butyl, sec-butyl, isobutyl, cyclobutyl, amyl, isoamyl, pentyl, cyclopentyl, hexyl, cyclohexyl, cycloheptyl, heptyl, octyl, cyclooctyl, nonyl, decyl, dodecyl, 2-ethylhexyl, pentenyl, butenyl, benzyl, phenyl, tolyl, naphthyl, anthracenyl, F, Cl, Br, I, OMe, OEt, O-n-Pr, O-i-Pr, O-n-Bu, O-t-Bu, O-s-Bu, OPh, OC₆H₄Me, OC₆H₃Me₂, NMe₂, NEt₂, NPh₂, NHMe, NHEt, NHPh, -

CH=O, -CH=CHC(O)Ph, or a substituted analog thereof, any one of which having up to about 30 carbon atoms.

- 20. The composition of Claim 12, wherein the Alq₃-functionalized monomer further comprises a chemical spacer between the polymerizable moiety and the Alq₃-moiety, having between 1 and about 30 carbon atoms.
 - 21. The composition of Claim 20, wherein the chemical spacer is selected from -(CH₂)_nNHCH₂- or -(CH₂)_nNR¹CH₂-, wherein n is from 1 to about 12, and R¹ is selected from a hydrocarbyl or substituted hydrocarbyl having from 1 to about 30 carbon atoms.
 - 22. The composition of Claim 12, wherein the polymerization product comprises a block copolymer or a random copolymer.

15

10

23. The composition of Claim 12, wherein the Alq₃-functionalized monomer is selected from:

$$(CH_2)_5NHCH_2 \longrightarrow O$$

$$(CH_2)_$$

$$(CH_2)_5NHCH_2 \longrightarrow (CH_2)_5NHCH_2 \longrightarrow (CH_$$

any combination thereof.

5

24. The composition of Claim 12, wherein the at least one comonomer

comprises a compound with the formula from 1 to about 12.

 CH_3 (CH_2)_n , wherein n is an integer

- 10 25. The composition of Claim 12, wherein the polymerization product is characterized by a polydispersity (Mw/Mn) from about 1.5 to about 1.8.
 - 26. A light-emitting diode comprising the composition of Claim 12.

- 27. A method of making an Alq₃-functionalized polymer, comprising: polymerizing an Alq₃-functionalized monomer in the presence or absence of at least one comonomer;
- wherein the Alq₃-functionalized monomer comprises a polymerizable moiety and an Alq₃-moiety; and

wherein q, in each instance, comprises an 8-hydroxyquinoline residue.

- 28. The method of Claim 27, wherein the Alq₃-functionalized monomer is polymerized in the presence of at least one comonomer.
 - 29. The method of Claim 27, wherein the Alq₃-functionalized monomer is polymerized in the presence of at least one comonomer, and wherein the molar ratio of Alq₃-functionalized monomer to comonomer is from about 1:1 to about 1:100.
 - 30. The method of Claim 27, wherein the Alq₃-functionalized monomer is polymerized in the presence of at least one comonomer comprising

$$CH_3$$
 (CH_2)_n, wherein n is an integer from 1 to about 12.

20

15

- 31. The method of Claim 27, wherein the polymerizable moiety of the Alq₃-functionalized monomer is selected from norbornene, norbornadiene, cyclopentene, cyclooctene, cyclooctadiene, or a functionalized analog thereof.
- 25 32. The method of Claim 27, wherein the method comprises a ring-opening metathesis polymerization (ROMP) method.

- 33. The method of Claim 27, wherein the method comprises a radical polymerization method or a living radical polymerization method.
- 34. The method of Claim 27, wherein the polymerization is conducted in the presence of a catalyst comprising a transition metal carbene compound.
 - 35. The method of Claim 27, wherein the polymerization is conducted in the presence of a catalyst comprising Ru(CHPh)Cl₂[CHN₂(mesityl)₂C₂H₄](PCy₃).
- 36. The method of Claim 27, wherein the Alq₃-moiety is functionalized with at least one group independently selected from: a hydrocarbyl group, an oxygen group, a sulfur group, a nitrogen group, a phosphorus group, an arsenic group, a carbon group, a silicon group, a germanium group, a tin group, a lead group, a boron group, an aluminum group, an inorganic group, an organometallic group, or a substituted analog thereof, any one of which having from 1 to about 30 carbon atoms; a halide; hydrogen; or any combination thereof.
- 37. The method of Claim 27, wherein the Alq₃-moiety is functionalized with at least one group independently selected from -F, -Cl, -Br, -I, -R¹, -CR¹=O, -CH=CHC(O)R¹, -C(O)R¹, -C(O)OR¹, -CN, -C(NR¹)R¹, -C(NR¹)OR¹, -CH₂C₆H₄X, -CH₂C₆H₃X₂, -CH₂C₆H₄R¹, -CH₂C₆H₃R¹₂, -CH=CR¹₂, -C=CR¹, -OR¹, -OC(O)R¹, -SiR¹₃, -OSiR¹₃, -NO₂, -NR¹₂, -N₃, -N=CR¹₂, -N=NR¹, -SR¹, -SX, -OSO₂R¹, -OSO₂OR¹, -SCN, -SO₂R¹, -PR¹₂, -PX₂, -P(O)R¹₂, -P(OR¹)₂, -P(O)(OR¹)₂, -OSiR¹₃, OSnR¹₃, SnX¹₃, OSnX¹₃, -BR¹₂, -As(O)R¹₂, -As(OR¹)₂, -As(O)(OR¹)₂, SnR¹₃, OSnR¹₃, SnX¹₃, OSnX¹₃, -BR¹₂, -BX₂, -BR¹X, -SO₂X, -OAlX₂, -OSiX₃, -OPX₂, -OSO₂X, -AsX₂, or -As(O)X₂; wherein R¹, in each instance, is independently selected from H or a substituted or unsubstituted hydrocarbyl group having from 1 to about 30 carbon atoms; and wherein X, in

each instance, is independently selected from F, Cl, Br, I, H, OR¹, -SR¹, or NR¹₂.

- 38. The method of Claim 27, wherein the Alq₃-moiety is functionalized by at least one group independently selected from alkyl, cycloalkyl, alkenyl, alkynyl, aryl, aralkyl, formyl, acyl, imide, amide, imine, alkoxide, aryloxide, alkylthiolate, arylthiolate, alkoxyalkyl, haloalkyl, carboxylate, or a substituted analog thereof, any one of which having up to about 30 carbon atoms.
- 39. The method of Claim 27, wherein the Alq₃-moiety is functionalized by at least one group independently selected from methyl, ethyl, propyl, cyclopropyl, n10 butyl, tert-butyl, sec-butyl, isobutyl, cyclobutyl, amyl, isoamyl, pentyl, cyclopentyl, hexyl, cyclohexyl, cycloheptyl, heptyl, octyl, cyclooctyl, nonyl, decyl, dodecyl, 2-ethylhexyl, pentenyl, butenyl, benzyl, phenyl, tolyl, naphthyl, anthracenyl, F, Cl, Br, I, OMe, OEt, O-n-Pr, O-i-Pr, O-n-Bu, O-t-Bu, O-s-Bu, OPh, OC₆H₄Me, OC₆H₃Me₂, NMe₂, NEt₂, NPh₂, NHMe, NHEt, NHPh, -CH=O, 15 CH=CHC(O)Ph, or a substituted analog thereof, any one of which having up to about 30 carbon atoms.
- 40. The method of Claim 27, wherein the Alq₃-functionalized monomer further comprises a chemical spacer between the polymerizable moiety and the Alq₃-moiety, having between 1 and about 30 carbon atoms.
 - 41. The method of Claim 40, wherein the chemical spacer is selected from $(CH_2)_nNHCH_2$ or - $(CH_2)_nNR^1CH_2$ -, wherein n is from 1 to about 12, and R^1 is selected from a hydrocarbyl or substituted hydrocarbyl having from 1 to about 30 carbon atoms.
 - 42. The method of Claim 27, wherein the polymerization product comprises a block copolymer.

43. The method of Claim 27, wherein the Alq₃-functionalized monomer is selected from:

$$(CH_2)_5NHCH_2 \longrightarrow 0$$

$$(CH_2)_$$

$$(CH_2)_5NHCH_2 \longrightarrow (CH_2)_5NHCH_2 \longrightarrow (CH_$$

any combination thereof.

5

- 44. A method of functionalizing a polymer with an Alq₃ moiety, comprising: providing an Alq₃-functionalized monomer; and
- polymerizing an Alq₃-functionalized monomer in the presence or absence of at least one comonomer;
- wherein the Alq₃-functionalized monomer comprises a polymerizable moiety and an Alq₃-moiety; and
- wherein q, in each instance, comprises an 8-hydroxyquinoline residue.

$$(CH_2)_nNR^1CH_2$$
 OH

- 45. A compound having the formula , wherein: n is from 1 to about 12; and R¹ is selected from H, a hydrocarbyl, or a substituted hydrocarbyl having from 1 to about 30 carbon atoms.
- 46. A composition comprising the polymerization product of:

$$(CH_2)_nNR^1CH_2$$
 OH

- 1) a compound having the formula , wherein: n is from 1 to about 12; and R¹ is selected from H, a hydrocarbyl, or a substituted hydrocarbyl having from 1 to about 30 carbon atoms; and
- 20 2) at least one optional comonomer having up to about 30 carbon atoms.

47. The composition of Claim 46, wherein the at least one comonomer

comprises a compound with the formula
$$(CH_2)_n$$
, wherein n is an integer from 1 to about 12.

- 5 48. An Mq_n-functionalized compound comprising a polymerizable moiety and an Mq_n-moiety, wherein q, in each instance, comprises an 8-hydroxyquinoline residue, and M is selected from Mg, Zn, Al, Ga, or In; and n is selected from 2 or 3 according to the valence of the metal.
- 10 49. The Mq_n-functionalized compound of Claim 48, wherein the Mq_n-moiety is functionalized with at least one electron-donating group, at least one electron-withdrawing group, or a combination thereof.
- 50. The Mq_n-functionalized compound of Claim 48, wherein the Mq_n-moiety is functionalized with at least one group independently selected from: a hydrocarbyl group, an oxygen group, a sulfur group, a nitrogen group, a phosphorus group, an arsenic group, a carbon group, a silicon group, a germanium group, a tin group, a lead group, a boron group, an aluminum group, an inorganic group, an organometallic group, or a substituted analog thereof, any one of which having from 1 to about 30 carbon atoms; a halide; hydrogen; or any combination thereof.
 - 51. The Mq_n-functionalized compound of Claim 48, wherein the compound

has the formula

wherein Y and Z are independently selected from -F, -Cl, -Br, -I, -R¹, -CR¹=O, -CH=CHC(O)R¹, -C(O)R¹, -C(O)OR¹, -CN, -C(NR¹)R¹, -C(NR¹)OR¹, -CH₂C₆H₄X, -CH₂C₆H₃X₂, -CH₂C₆H₄R¹, -CH₂C₆H₃R¹₂, -CH₂CH₂C₆H₄X, -CH₂CH₂C₆H₄X¹, -CH₂CH₂C₆H₃R¹₂, -CH=CR¹₂, -C≡CR¹, -OR¹, -OC(O)R¹, -SiR¹₃, -OSiR¹₃, -NO₂, -NR¹₂, -N₃, -N=CR¹₂, -N=NR¹, -SR¹, -SX, -OSO₂R¹, -OSO₂OR¹, -SCN, -SO₂R¹, -PR¹₂, -PX₂, -P(O)R¹₂, -P(OR¹)₂, -P(O)(OR¹)₂, -OSiR¹₃, -OPR¹₂, -OAlR¹₂, -AsR¹₂, -As(O)R¹₂, -As(OR¹)₂, -As(O)(OR¹)₂, SnR¹₃, OSnR¹₃, SnX¹₃, OSnX¹₃, -BR¹₂, -BX₂, -BR¹X, -SO₂X, -OAlX₂, -OSiX₃, -OPX₂, -OSO₂X, -AsX₂, or -As(O)X₂;

wherein R¹, in each instance, is independently selected from H or a substituted or unsubstituted hydrocarbyl group having from 1 to about 30 carbon atoms;

wherein X, in each instance, is independently selected from F, Cl, Br, I, H, OR¹, -SR¹, or NR¹₂; and

wherein q and m are independently selected from an integer from 0 to 3.

52. The Mq_n-functionalized compound of Claim 48, wherein:

$$(CH_2)_5NHCH_2 - O$$
 the compound has the formula

5

10

X is selected from an 8-hydroxyquinoline residue selected from

wherein the 8-hydroxyquinoline residue has been deprotonated.

5

53. A method of making a Mq_n -functionalized polymer, comprising: preparing a q_n -functionalized monomer;

polymerizing the monomer in the presence or absence of a comonomer to form a q_n -functionalized polymer; and

reacting the polymer with a metal complex to form a Mq $_{n}$ -functionalized polymer;

wherein M is selected from Mg, Zn, Al, Ga, or In; and n is selected from 2 or 3 according to the valence of the metal.

15