

DongAo Ma¹, Mohammad Reza Hosseinzadeh Taher¹, Jiaxuan Pang¹, Nahid UI Islam¹, Fatemeh Haghighi¹, Michael B. Gotway², Jianming Liang¹

¹ Arizona State University ² Mayo Clinic

MOTIVATION: Transformers have good properties for medical images

- Pay attention to whole image to model global context of a body region
- Capture intra-image relations to detect co-occurrence of pathologies
- Build hierarchical feature maps to identify lesions at different scales

Q1
How do visual
transformers
perform on medical
images?

Transformers need pretraining to achieve competitive performance on medical images

Benchmarking:

2 Transformer architectures vs. 1 CNN architecture

6 pretrained Transformers vs. 3 pretrained CNNs

Result I: Transformers significantly underperform CNNs when training from scratch **Result II:** Transformers can offer similar results as CNNs with ImageNet pretraining

Q2

What pretraining method for transformers performs the best?

Q3

Can we further boost transformers' performance for medical images?

Self-supervised learning based on masked image modeling can learn preferable features for medical tasks

Comparing:

Supervised pretraining using both ImageNet images and labels vs. Self-supervised pretraining using only ImageNet images

Method	Task	ChestX-ray14	CheXpert	Shenzhen	VinDr-CXR	RSNA Pneumonia	RSNA PE
Supervised	ViT-B	80.05±0.17	87.88±0.50	93.67±1.03	88.30±1.45	71.50±0.52	91.19±0.11
	Swin-B	81.73±0.14	87.80±0.42	93.35±0.77	90.35±0.31	73.44±0.46	94.85±0.07
SimMIM	ViT-B	79.55±0.56	88.07±0.43 <mark>- n</mark>	.s. 93.47±2.48 *	88.91±0.55 -n	.s. 72.08±0.47 -n	.s. 91.39±0.10 -*
	Swin-B	81.95±0.15	88.16±0.31	94.12±0.96	90.24±0.35	73.66±0.34	95.27±0.12

*The best methods are bolded while the others are highlighted in green if they achieve equivalent performance compared with the best one (i.e., p > 0.05).

Result III: Self-supervised SimMIM model with the Swin-B backbone outperforms fully-supervised baselines

Domain-adaptive pretraining using a large-scale in-domain dataset can further boost transformers' performance

Boosting:

Create a large-scale in-domain dataset by assembling 13 datasets to satisfy transformer's data hunger → X-rays(926K)

Adopt self-supervised learning to overcome heterogeneity of expert labels

Task Model (SimMIM+Swin-B)	ChestX-ray14	CheXpert	Shenzhen	VinDr-CXR	RSNA Pneumonia
Scratch	77.04±0.34	83.39±0.84	92.52±4.98	78.49±1.00	70.02±0.42
ImageNet	81.95±0.15	88.16±0.31	94.12±0.96	90.24±0.35	73.66±0.34
ChestX-ray14	78.87±0.69	86.75±0.96	93.03±0.48	79.86±1.82	71.99±0.55
X-rays(926K)	82.72±0.17	*** 87.83±0.23 -n.	s. 95.21±1.44 -*	90.60±1.95	** 73.57±0.27 -*
lmageNet→ChestX-ray14	82.45±0.15	87.74±0.31	94.83±0.90	90.33±0.88	73.85±0.72
ImageNet→X-rays(926K)	83.04±0.15	88.37±0.40	95.76±1.79	91.71±1.04	74.09±0.39

*The best methods are bolded while the others are highlighted in green if they achieve equivalent performance compared with the best one (i.e., p > 0.05).

Result IV: The domain-adapted model with learning experience on both ImageNet and a large-scale in-domain data (X-rays(926K)) achieves the highest performance