Perception

SI 649 W20: Information visualization

Matthew Kay, Assistant Professor, School of Information & Computer Science and Engineering University of Michigan Portions of slides adapted from Eytan Adar

(quiz)

(laptops)

Group project

Groups of 3-5 (of your choosing)

Must be in same section

Propose a project idea

More suggested ideas and details later this week

This week

Lecture

Perception Effectiveness and expressiveness

Lab

More Altair! (yayy / booo)

What can perception tell us about channel effectiveness?

Last week we talked grammar of graphics...

Channels / encodings -> Marks

How well do these match, given the channel used?

What channel is best for quantitative data? ...for ordered data? ...for nominal data? etc.

What channel is best for nominal data?

Nominal

Pick one, cross it off; pick another, ...

^	mpg [‡]	cyl [‡]	disp ‡	hp ‡	drat [‡]	wt [‡]	qsec ‡	vs [‡]	am [‡]
Mazda RX4	21.0	6	160.0	110	3.90	2.620	16.46	0	1
Mazda RX4 Wag	21.0	6	160.0	110	3.90	2.875	17.02	0	1
Datsun 710	22.8	4	108.0	93	3.85	2.320	18.61	1	1
Hornet 4 Drive	21.4	6	258.0	110	3.08	3.215	19.44	1	0
Hornet Sportabout	18.7	8	360.0	175	3.15	3.440	17.02	0	0
Valiant	18.1	6	225.0	105	2.76	3.460	20.22	1	0
Duster 360	14.3	8	360.0	245	3.21	3.570	15.84	0	0
Merc 240D	24.4	4	146.7	62	3.69	3.190	20.00	1	0
Merc 230	22.8	4	140.8	95	3.92	3.150	22.90	1	0
Merc 280	19.2	6	167.6	123	3.92	3.440	18.30	1	0
Merc 280C	17.8	6	167.6	123	3.92	3.440	18.90	1	0
Merc 450SE	16.4	8	275.8	180	3.07	4.070	17.40	0	0
Merc 450SL	17.3	8	275.8	180	3.07	3.730	17.60	0	0
Merc 450SLC	15.2	8	275.8	180	3.07	3.780	18.00	0	0
Cadillac Fleetwood	10.4	8	472.0	205	2.93	5.250	17.98	0	0
Lincoln Continental	10.4	8	460.0	215	3.00	5.424	17.82	0	0
Chrysler Imperial	14.7	8	440.0	230	3.23	5.345	17.42	0	0
Fiat 128	32.4	4	78.7	66	4.08	2.200	19.47	1	1
Honda Civic	30.4	4	75.7	52	4.93	1.615	18.52	1	1
Toyota Corolla	33.9	4	71.1	65	4.22	1.835	19.90	1	1
Toyota Corona	21.5	4	120.1	97	3.70	2.465	20.01	1	0
Dodge Challenger	15.5	8	318.0	150	2.76	3.520	16.87	0	0
AMC Javelin	15.2	8	304.0	150	3.15	3.435	17.30	0	0
Camaro Z28	13.3	8	350.0	245	3.73	3.840	15.41	0	0
Pontiac Firebird	19.2	8	400.0	175	3.08	3.845	17.05	0	0
Fiat X1-9	27.3	4	79.0	66	4.08	1.935	18.90	1	1

Remember this?

Let's build a chart systematically...

Pick one, cross it off; pick another, ...

Grammar of graphics

FALSETRUE

manual

mpg: numeric

wt: numeric

manual: nominal

wt -> x position

mpg -> y position

manual -> color

mark: point

Effectiveness

35 -

This chart works because it uses accurate channels (ones with low estimation error).

This is the essence of effectiveness.

manual

FALSE

TRUE

What about this?

What about this?

Quantitative

Position
Length
Angle
Slope
Area
Volume
Density
Color Saturation
Color Hue

Texture Connection Containment Shape

Do they express the same facts?

Quantitative

Position Length Angle Slope Area Volume Density Color Saturation Color Hue

> Texture Connection Containment Shape

Effectiveness / expressiveness

Equally expressive, but scatterplot is more effective

manual

Perception can help us with more than just channel selection...

Length encoding:

Length encoding:

Length encoding:

Length encoding:

Area encoding:

Reference lines

Induce bias...

...but can be used to decrease error

Popout and preattentiveness

https://www.csc2.ncsu.edu/faculty/healey/PP/

Popout and preattentiveness

Preattentiveness

-> popout

-> layering

What do people see first?

What can people see separately?

Popout and preattentiveness

Preattentiveness

- -> popout
- -> layering

What do people see first?

What can people see separately?

Popout and preattentiveness

Preattentiveness

- -> popout
- -> layering

What do people see first?

What can people see separately?

Integral and separable channels

Assume we have two pieces of data: Height & GPA

We want a glyph to represent both

What channels should we use?

Integral and separable channels

Separable ← Integral

color location color motion color shape size orientation x size y size red-green yellow-blue

Perceptually uniform colormaps

[Bernice E Rogowitz and Lloyd A Treinish. 1993. Why Should Engineers and Scientists Be Worried About Color? IBM Thomas J. Watson Research Center. Retrieved May 11, 2013 from http://www.research. ibm.com/people/l/lloydt/ color/color.HTM]

For continuous color maps, Viridis (and co)...

[http://bids.github.io/]

For discrete colormaps, Color Brewer...

Perception + grammar of graphics helps us design more effective charts

Perception

Use perception to choose most effective channels.

Think in effectiveness and expressiveness.

Use popout and separable encodings.

Use perceptually uniform colormaps.

Group activity

What are the variables / types?

Channels / encodings?

Marks?

Is this effective?

New York Times, August 9, 1978, p. D-2.

Group activity

What are the variables / types?

Channels / encodings? Marks?

Is this effective?

Group activity

What are the variables / types?

Channels / encodings?

Marks?

Effectiveness?

N.B.: skier size indicates price of six-day regional peaktime ski pass