

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»

КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»

Отчёт по лабораторным работам №1-2 по дисциплине "Методы машинного обучения"

Тема Модель полиномиальной регрессии
Студент Варламова Е. А.
Группа <u>ИУ7-23М</u>
Оценка (баллы)
Преполаватели Сололовников Владимир Игоревич

содержание

	Γ eo $_{ m I}$	ретическая часть
1	1.1	Полиномиальная регрессия
1	1.2	Постановка задачи
		1.2.1 Задача 1
		1.2.2 Задача 2
1	1.3	Функционал эмпирического риска
1	1.4	Обобщающая способность
1	1.5	Описание алгоритма
2 Пр	Пра	актическая часть
2	2.1	Выбор средств разработки
		Исследование ПО
2	2.2	исследование по
2	2.2	2.2.1 Задача 1

1 Теоретическая часть

1.1 Полиномиальная регрессия

Полиномиальная регрессия — это метод восстановления зависимости между независимыми и зависимыми переменными при помощи полиномиальной функции. Он часто используется для приближения нелинейного поведения данных и улучшения качества предсказаний по сравнению с линейной регрессией. Полиномиальная регрессия позволяет уловить сложные взаимосвязи в данных и учитывать нелинейные зависимости.

Целью данной лабораторной работы является изучение модели полиномиальной регрессии.

Для этого необходимо решить следующие задачи:

- формализовать задачу;
- описать алгоритм работы ПО, решающего поставленную задачу;
- привести особенности реализации ΠO , решающего поставленную задачу;
- провести исследование зависимости среднеквадратичной ошибки регрессии от степени полинома;
- провести исследование зависимости значения функционала эмпирического риска на обучающей и контрольной выборках от степени полинома.

1.2 Постановка задачи

1.2.1 Задача 1

Создать обучающую выборку с использованием функции

$$y(x) = \theta_1 x + \theta_2 \sin(x) + \theta_3 \tag{1.1}$$

с добавлением шума с нормальным распределением.

Построить модель полиномиальной регрессии, аппроксимирующей данные обучающей выборки. Исходить из того, что степень полинома (начальный закон генерации обучающей выборки) неизвестен. Обучение проводить методом наименьших квадратов.

1.2.2 Задача 2

Феномен Рунге – это эффект нежелательных осцилляций, возникающий при использовании полиномов высоких степеней для интерполяции.

Функция:

$$y(x) = \frac{1}{1 + 25x^2}, x \in [-2, 2]$$
(1.2)

Обучающая выборка:

$$S_l: x_i = \frac{4(i-1)}{l-1} - 2, i = 1, \dots, l$$
 (1.3)

Контрольная выборка:

$$S_k: x_i = \frac{4(i-0.5)}{l-1} - 2, i = 1, \dots, l-1.$$
 (1.4)

Рассчитать функционал эмпирического риска (функционал качества) для обучающей и контрольной выборок (вывести графики). Оценить обобщающую способность (generalization ability). Найти оптимальную степень полинома для аппроксимации.

1.3 Функционал эмпирического риска

Функционал эмпирического риска (empirical risk functional) используется в машинном обучении для измерения качества модели на обучающей выборке. Он представляет собой среднее значение функции потерь (loss function) на обучающих примерах.

Для задачи регрессии, наши данные состоят из пар (x_i, y_i) , где x_i - входное значение, а y_i - соответствующее целевое значение. Пусть h(x) - модель, а $\ell(h(x), y)$ - функция потерь. Тогда эмпирический риск R(h) может быть записан следующим образом:

$$R(h) = \frac{1}{N} \sum_{i=1}^{N} \ell(h(x_i), y_i)$$

Здесь N - количество обучающих примеров, и сумма берется по всем парам (x_i, y_i) . Функция потерь $\ell(h(x_i), y_i)$ оценивает разницу между предсказанным значением $h(x_i)$ и истинным значением y_i .

В данной работе используется квадратичная функция потерь, а, соотвественно, функционал эмпирического риска равен среднеквадратичной ошибке.

1.4 Обобщающая способность

Обобщающая способность (generalization ability) модели является ее способностью хорошо предсказывать новые, невиданные ранее данные после обучения на имеющемся наборе обучающих данных. Обобщающая способность — это ключевой критерий эффективности модели и важна для того, чтобы избежать переобучения.

Обобщающая способность зависит от сбалансированности модели между точностью на обучающем наборе и способностью обобщаться на новые данные. Модель с хорошей обобщающей способностью сможет давать точные предсказания на новых данных, не привязываясь к особенностям обучающего набора.

Для оценки обобщающей способности модели после обучения ее на обучающем наборе, обычно используют разделение данных на обучающую и тестовую выборки, а также кросс-валидацию. Это помогает оценить, насколько модель способна хорошо предсказывать на новых данных.

1.5 Описание алгоритма

Схема алгоритма, вычисляющего оптимальную степень полинома по обучающей выборке, представлена на рисунке 1.1.

Данный алгоритм используется в обеих задачах, однако во второй задаче среднеквадратичная ошибка вычисляется не на обучающей, а на контрольной выборке.

Рис. 1.1: Схема работы алгоритма

2 Практическая часть

2.1 Выбор средств разработки

В качестве языка программирования был использован язык Python, поскольку этот язык кроссплатформенный и для него разработано огромное количество библиотек и модулей, решающих разнообразные задачи.

В частности, имеются библиотеки, включающие в себя алгоритмы аппроксимации полиномом и линейной регрессии в библиотеке [1].

Для создания графиков была выбрана библиотека matplotlib [2], доступная на языке Python, так как она предоставляет удобный интерфейс для работы с данными и их визуализации.

2.2 Исследование ПО

2.2.1 Задача 1

В листинге 2.1 представлен код, вычисляющий оптимальную степень полинома по обучающей выборке и рисует зависимость среднеквадратичной ошибки модели по обучающей выборке от степени полинома.

Листинг 2.1: код

```
import numpy as np
from sklearn.preprocessing import PolynomialFeatures
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error
import matplotlib.pyplot as plt

theta_1 = 2
theta_2 = 1
theta_3 = 0.5

np.random.seed(0)
X_train = np.linspace(0, 10, 100)
y_train = theta_1 * X_train + theta_2 * np.sin(X_train) + theta_3 + np.
random.normal(0, 0.5, 100)
```

```
min mse = float('inf')
  best degree = 0
  degrees = list(range(1, 50))
  errors = []
18
  for degree in degrees:
20
      poly features = PolynomialFeatures (degree=degree)
21
      X poly = poly features. fit transform (X train.reshape (-1, 1))
22
      model = LinearRegression()
23
      model.fit(X_poly, y_train)
24
25
      y pred = model.predict(X poly)
26
27
      mse = mean squared error(y train, y pred)
28
      errors.append(mse)
29
      if mse < min mse:</pre>
30
          min mse = mse
31
          best degree = degree
32
33
  print(f"Optimal degree of poly: {best degree}")
  best poly features = PolynomialFeatures (degree=best degree)
  X poly best = best poly features. fit transform (X train.reshape (-1, 1))
37
38
  best model = LinearRegression()
39
  best model.fit(X poly best, y train)
40
41
  plt.plot(degrees, errors)
  plt.xlabel('Degree of poly')
  plt.ylabel('Value error')
  plt.title('Dependence of value error on degree of poly')
  plt.show()
```

На рисунке 2.1 показана зависимость значения ошибки от степени полинома. Видно, что увеличение степени полинома необязательно даёт лучшие результаты в смысле уменьшения ошибки.

Рис. 2.1:

Результат работы ΠO – было вычислено, что оптимальная степень полинома равна 13.

2.2.2 Задача 2

В листинге 2.2 представлен код, вычисляющий оптимальную степень полинома по контрольной выборке и рисует зависимость среднеквадратичной ошибки модели (функционала эмпирического риска) для обучающей и контрольной выборок от степени полинома.

Листинг 2.2: код

```
import numpy as np
2 import matplotlib.pyplot as plt
3 from sklearn.preprocessing import PolynomialFeatures
4 from sklearn.linear model import LinearRegression
  from sklearn.metrics import mean_squared_error
  def true_function(x):
      return 1 / (1 + 25 * x**2)
  I = 21
  X train = np.array([4 * (i - 1) / (l - 1) - 2 \text{ for } i \text{ in } range(1, l + 1)]).
     reshape(-1, 1)
  X control = np.array([4 * (i - 0.5) / (l - 1) - 2 \text{ for } i \text{ in } range(1, l)]).
     reshape(-1, 1)
  y train = true function(X train)
  y = control = true function(X control)
  def fit polynomial regression (X, y, degree):
16
      poly features = PolynomialFeatures (degree=degree)
17
      X_poly = poly_features.fit_transform(X)
18
      model = LinearRegression()
19
      model.fit(X_poly, y)
20
      return model, poly features
21
23
  def calculate error (model, poly features, X, y):
      X \text{ poly} = \text{poly features.transform}(X)
25
      y pred = model.predict(X poly)
26
      return mean squared error(y, y pred)
27
28
  degrees = np.arange(1, 50)
  train errors = []
  control errors = []
32
  for degree in degrees:
34
      model, poly features = fit polynomial regression(X train, y train,
35
      train error = calculate error (model, poly features, X train, y train)
36
      control error = calculate error(model, poly features, X control,
          y control)
```

```
train errors.append(train error)
38
      control errors.append(control error)
39
40
  plt.plot(degrees, train_errors, label='Train Error')
41
  plt.plot(degrees, control_errors, label='Control Error')
  plt.xlabel('Degree of Polynomial')
  plt.ylabel('Mean Squared Error')
  plt.title('Error vs Polynomial Degree')
  plt.legend()
  plt.show()
47
48
  optimal degree = degrees[np.argmin(control errors)]
  print(f'Optimal polynomial degree for approximation: {optimal degree}')
```

На рисунке 2.2 показана зависимость значения ошибки от степени полинома. Как и в предыдущей задаче, видно, что увеличение степени полинома необязательно даёт лучшие результаты в смысле уменьшения ошибки.

Рис. 2.2:

На рисунке 2.3 показана зависимость значения ошибки от степени полинома для обучающей и контрольной выбоорок. Видим, что для контрольной выборки с определённого значения степени полинома ошибка стремительно растёт, что демонстрирует эффект Рунге — эффект нежелательных осцилляций или колебаний вблизи крайних точек интерполяции при использовании полиномов высоких степеней.

Рис. 2.3:

Рассмотрим интервал низких степеней полинома для получения оптимальной степени полинома на рисунке 2.4.

Рис. 2.4:

Видим, что оптимальная степень полинома равна 10.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Scikit-learn: Machine learning in Python / F. Pedregosa [и др.]. 2011.
- 2. Библиотека визуализации данных matplotlib [Электронный ресурс]. Режим доступа: URL: https://matplotlib.org (дата обращения: 13.12.2023).