Mitsume: an Object-Based Remote Memory System

Shin-Yeh Tsai, Yiying Zhang

One-Sided Remote Memory/NVM

- One-sided devices
 - Devices without (general) computation power
 - Can only be read and written to with limited, low-level APIs
 - Disaggregated memory
 - NVMe over fabrics
- Cheap, low energy

Remote Memory Challenges and Opportunities

Challenges

- No computation power at memory
- Remote memory can fail independently

Opportunities

- Can trace and control (remote) memory accesses
- No local accesses that can violate atomicity

How to use one-sided remote memory/NVM devices?

Local Multiprocessor Shared Memory

Remote Memory

Remote Memory and Local Memory Comparison

- Similarities
 - No computation power
 - Multiple processors (cores) can read and write to

- Differences (remote memory)
 - No hardware coherence
 - Can fail independently (and more often)
 - Larger but slower than local memory

Our View of Remote Memory

- Treat remote memory as a raw data-store hardware
 - Similar to DRAM chips in local main memory
 - Fast, cheap data store

- Extract the control and intelligence apart
 - Similar to memory controller in local main memory
 - But managed in software

Mitsume*: an Object-Based Remote Memory System

- Separate data and control path
- Data: one-sided
 - Client nodes read/write to remote memory
 - Multiple processors (cores) can read and write to
- Control: two-sided
 - Global software controller manages remote memory and talks to clients via two-sided operations

^{*} Mitsume means three eyes in Japanese and is from the manga and anime Mitsume ga Tooru (the Three-Eyed One)

Mitsume Architecture

Mitsume Data Organization

- Data stored and located by "object"
- Updates to an object guaranteed atomic and append-only
- Each object can have multiple versions
- Flexible physical locations of (versions) objects
- Each object can have their own replication factor

Global Control

- Allocate physical memory at remote memory
- Garbage collection
- Ensures QoS for different clients
- Resource management and load balancing
- Failure handling
- Security

Usage Models

- Key-value store
- Version system
- Remote swap
- Messaging system
- Pub/Sub

Conclusion

- One-sided memory/NVM devices are useful
- Learn from local memory system
- Separate data and control of remote memory
- Many usage possibilities of remote memory

Thank you Questions?

wuklab.io

