What this all is about?

Lecture 2

Petr Lukianchenko

9 September 2024

Syllabus

Recall basic of probability

MGF to start

Lecture 2

Markov chain

Lecture 3

Convergences

Lecture 4

Conditional Expectations

Lecture 5

Poisson distribution

Lecture 6

G-algebra

Lecture 7

Filtration

Stochastic Processes: Basic Definitions

Stochastic process

The value of a variable changes in an uncertain way

Discrete vs. continuous time

When can a variable change?

What values can a variable take?

Markov property

Only the current value of a variable is relevant for future predictions

No information from past prices or path

A Chain

The state transition diagram:

- ▶ Consider time index n = 0, 1, 2, ... & time dependent random state X_n
- \triangleright State X_n takes values on a countable number of states
 - ▶ In general denotes states as i = 0, 1, 2, ...
 - Might change with problem
- ▶ Denote the history of the process $\mathbf{X}_n = [X_n, X_{n-1}, \dots, X_0]^T$
- Denote stochastic process as X_N
- ▶ The stochastic process $X_{\mathbb{N}}$ is a Markov chain (MC) if

$$P[X_{n+1} = j | X_n = i, \mathbf{X}_{n-1}] = P[X_{n+1} = j | X_n = i] = P_{ij}$$

ightharpoonup Future depends only on current state X_n

Observations

- ▶ Process's history \mathbf{X}_{n-1} irrelevant for future evolution of the process
- ightharpoonup Probabilities P_{ij} are constant for all times (time invariant)
- From the definition we have that for arbitrary m

$$P\left[X_{n+m} \mid X_n, \mathbf{X}_{n-1}\right] = P\left[X_{n+m} \mid X_n\right]$$

- ▶ X_{n+m} depends only on X_{n+m-1} , which depends only onX_{n+m-2} , ... which depends only on X_n
- ► Since P_{ij}'s are probabilities they're positive and sum up to 1

$$P_{ij} \geq 0$$

$$\sum_{j=1}^{\infty} P_{ij} = 1$$

Matrix Representation

▶ Group transition probabilities P_{ij} in a "matrix" **P**

$$\mathbf{P} := \begin{pmatrix} P_{00} & P_{01} & P_{02} & \dots \\ P_{10} & P_{11} & P_{12} & \dots \\ \vdots & \vdots & \vdots & \vdots \\ P_{i0} & P_{i1} & P_{i2} & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

Not really a matrix if number of states is infinite

Graph Representation

A graph representation is also used

Useful when number of states is infinite

Homogeneous Chain

■ The evolution of a markov chain is defined by its transition probability, defined by $\mathbb{P}(X_{n+1} = j | X_n = i)$ (where without loss of generality we may assume that S is an integer set.

Definition 45

• The chain $\{X_n\}$ is called *homogeneous* if its transition probabilities do not depend on the time, i.e.,

$$\mathbb{P}(X_{n+1} = j | X_n = i) = \mathbb{P}(X_1 = j | X_0 = i)$$

for all n, i, j. The *transition probability matrix* $P = [p_{i,j}]$ *is the* $|S| \times |S|$ matrix of the transition probabilities, such that $p_{i,j} = \mathbb{P}(X_{n+1} = j | X_n = i)$

Persistent and Transient States

• A state $i \in S$ is called *persistent* (or recurrent) if

$$\mathbb{P}(X_n = i \text{ for some } n \geq 1 | X_0 = i) = 1$$

- Otherwise, if the above probability is strictly less than 1, the state is called *transient*.
- We are interested in the *first passage* probability

$$f_{i,j}(n) = \mathbb{P}(X_1 \neq j, X_2 \neq j, \dots, X_{n-1} \neq j, X_n = j | X_0 = i)$$

• We define $f_{i,j} = \sum_{n=1}^{\infty} f_{i,j}(n)$. Note: state j is persistent if and only if $f_{j,j} = 1$.

Ex 1

A ·
$$V_1 = h_1 \cdot V_1$$

eigenvalues $\begin{pmatrix} \frac{1}{6} & 1 \\ \frac{1}{3} & \frac{2}{3} \end{pmatrix}$

eigenvertons $\chi \begin{pmatrix} 1 \\ 1 \end{pmatrix}$

A · $V_1 = h_1 \cdot V_1$

A · $V_1 = h_1 \cdot V_1$

A · $V_1 = h_1 \cdot V_1$

11

Stationary Distribution

Definition 50

The vector π is called a *stationary distribution* of the chain if it has entries $\{\pi_j: j \in S\}$ such that:

- a) $\pi_j \ge 0$ for all j, and $\sum_{j \in S} \pi_j = 1$.
- b) it satisfies $\pi = \pi P$, that is, $\pi_j = \sum_i \pi_i p_{i,j}$ for all $j \in S$.
- This is called "stationary distribution" since if X_0 is distributed with $u(0) = \pi$, then all X_n will have the same distribution, in fact

$$\mathbf{u}(n) = \mathbf{u}(0)\mathbf{P}^n = \boldsymbol{\pi}\mathbf{P}^n = \boldsymbol{\pi}\mathbf{P}\mathbf{P}^{n-1} = \boldsymbol{\pi}\mathbf{P}^{n-1} = \cdots = \boldsymbol{\pi}$$

• Given the classification of chains and the decomposition theorem, we shall assume that the chain is *irreducible*, that is, its state space is formed by a single equivalence class of intercommunicating (persistent) states *C* or by the class of transient states *T*.

Stochastic FSM

The transition matrix:

$$A = \begin{pmatrix} 0.42 & 0.38 & 0.20 \\ 0.10 & 0.45 & 0.45 \\ 0.20 & 0.20 & 0.60 \end{pmatrix}$$
• Stochastic matrix:
Rows sum up to 1
• Double stochastic matrix:
Rows and columns sum

Rows and columns sum up to 1

	System state is fully observable	System state is partially observable	
System is autonomous	Markov chain	Hidden Markov model	
System is controlled	Markov decision process	Partially observable Markov decision process	

Each directed edge $A \rightarrow B$ is associated with the **positive** transition probability from A to B.

	Α	В	C	D
	0.95	0	0.05	0
Α				
	0.2	0.5	0	0.3
В				
	0	0.2	0	0.8
С				
	0	0	1	0
D				

- States of Markov chains are classified by the digraph representation (omitting the actual probability values)
- A, C and D are *recurrent* states: they are in strongly connected components which are **sinks** in the graph.

B is not recurrent – it is a transient state

Alternative definitions:

A state *s* is *recurrent* if it can be reached from any state reachable from *s*; otherwise it is *transient*.

A Markov Chain is *irreducible* if the corresponding graph is strongly connected (and thus all its states are recurrent).

- A state *s* has a period *k* if *k* is the *GCD* of the lengths of all the cycles that pass via *s*. (in the shown graph the period of A is 2).
- A Markov Chain is *periodic* if all the states in it have a period k > 1. It is *aperiodic* otherwise.

A Markov chain is *ergodic* if :

- 1. the corresponding graph is strongly connected.
- 2. It is not peridoic

Ergodic Markov Chains are important since they guarantee the corresponding Markovian process converges to a unique distribution, in which all states have strictly positive probability.

