Лабораторная работа №1.2.1 ОПРЕДЕЛЕНИЕ СКОРОСТИ ПОЛЕТА ПУЛИ ПРИ ПОМОЩИ БАЛЛИСТИЧЕСКОГО МАЯТНИКА

Гёлецян А.Г.

27 ноября 2021 г.

1 Введение

Цель работы:

• определить скорость полета пули, применяя законы сохранения и используя баллисттичечкие маятники

2 Ход работы

2.1 Метод баллистического маятника, совершающего поступательное движение

$$L = (221.5 \pm 0.5) \text{cm}$$

$$g = (9.8155 \pm 0.0005) \text{mc}^{-2}$$

$$M = (2900 \pm 5) \text{f}$$

$$\sigma_m = 0.001 \text{f}$$

$$\sigma_{\Delta x} = 0.25 \text{mm}$$

$$u = \frac{M}{m} \sqrt{\frac{g}{L}} \Delta x$$

$$\varepsilon_u^2 = \varepsilon_M^2 + \varepsilon_m^2 + \varepsilon_{\Delta x}^2 + \frac{1}{4} \varepsilon_L^2 + \frac{1}{4} \varepsilon_g^2$$

Проведя все соответствующие измерения получаем следующие данные

No	m, г	Δx , mm	u, m/c	σ_u , M/C
1	0.506	13.0	157	3
2	0.503	13.0	158	3
3	0.500	13.0	159	3
4	0.513	13.0	155	3

Отсюда получаем среднее значение скорости $\bar{u} = (157 \pm 3) \text{м/c}.$

2.2 Метод крутильного баллистического маятника

$$R = (34 \pm 0.2) \text{cm}$$

$$r = (23.1 \pm 0.2) \text{cm}$$

$$d = (43 \pm 0.5) \text{cm}$$

$$M = (714 \pm 0.1) \text{f}$$

$$\sigma_m = 0.001 \text{f}$$

$$\sigma_x = 0.2 \text{mm}$$

$$\varphi \approx \frac{x}{2d}$$

$$\sqrt{kI} = \frac{4\pi M R^2 T_1}{T_1^2 - T_2^2}$$

$$u = \varphi \frac{\sqrt{kI}}{mr}$$

Для нахождения периодов

	1	2	3	σ_T , c
T_1, c	18.3	18.4	18.0	0.2
T_2 , c	13.92	14.00	13.96	0.04

$$T1 = (18.2 \pm 0.2)c$$

 $T2 = (13.96 \pm 0.04)c$

получаем

$$\sqrt{kI} = (137 \pm 2)10^4 \text{rcm}^2 \text{c}^{-1}$$

Проведя все соответствующие измерения получаем следующие данные

No	m , Γ	Δx , mm	u, m/c	$\sigma_u, \mathrm{M/c}$
1	0.510	11.2	152	4
2	0.504	11.5	157	4
3	0.501	11.5	158	4
4	0.515	11.3	151	4

Отсюда $\bar{u}=(155\pm4){\rm M/c}$