4 Relatório

4.1 Introdução

A maior aplicação do diodo Zener reside na regulação de tensão de saída de fontes de alimentação. Através da utilização do diodo Zener, em conjunto com um resistor, pode-se conseguir que uma fonte de alimentação forneça tensão praticamente constante à carga. O comportamento do diodo Zener na região de ruptura permite a montagem de circuitos reguladores de tensão, que serão extremamente utéis para a fontes de corrente contínua, a fim de reduzir o fator de ripple destas, assim como ilustrado na Figura 5.

Figura 5: Diagrama de blocos de uma fonte DC.

A Figura 6 nos mostra detalhes da operação do diodo na região de ruptura. Observamos a existência de uma resistência dinâmica, r_z , o que implicará que a tensão que será aplicada na carga, V_o , terá uma pequena dependência na fonte de tensão, V_s . Em outras palavras, esperamos que se V_s aumente, V_o também será acrescido de um pequeno valor. O parâmetro que relaciona a variação de V_o e de V_s é chamado de regulação de linha.

Usando o raciocínio análogo ao parágrafo anterior, podemos relacionar a variação na corrente da carga e na tensão de saída, dado que temos uma resistência dinâmica r_z . No entanto, também há a possibilidade de pensarmos em termos de resistência, já que $i_l = \frac{V_o}{R_l}$. Logo, teremos uma pequena dependência entre a resistência da carga, R_l , e a tensão da carga V_o . O parâmetro que relaciona a variação de V-o e i_l é chamado de regulação de carga.

Neste experimento, estudaremos ambos os parâmetros e ainda exploraremos um componente mais sofisticado para regulagem de tensão, um circuito integrado da família 78xx. O circuito integrado 7805 é um regulador linear de tensão, e será utilizado em diversas configurações, cada qual com sua própria aplicação. Um regulador linear tensão, garante que se a tensão é garantidamente maior que um certo valor, um outro valor, mais baixo, será dado como saída.

Figura 6: Relação detalhada da corrente e tensão de um Diodo Zener operando na região de ruptura.

4.2 Análises

No experimento de número 1, montou-se o circuito descrito pela Figura 1, e nos terminais do capacitor, obtivemos a Figura 7 através de um osciloscópio. Para V_i , constatou-se os seguintes valores:

$$\begin{split} V_{medio} &= 19.3V \\ V_{rms} &= 140mV \\ V_{min} &= 19.1V \\ V_{max} &= 19.7V \end{split}$$

De forma semelhante, observamos o comportamento da tensão V_o nos terminais da carga, obtendo assim a Figura 8. As medidas relevantes para V_o foram:

$$V_{medio} = 8.6V$$

$$V_{rms} = 140mV$$

$$V_{min} = 8.4V$$

$$V_{max} = 8.8V$$

Notou-se que os sinais, quando visualizados na tela do osciloscópio, parecem estar perfeitamente constantes. No entanto, quando coletados e graficados os dados deste sinal, observou-se pequenas flutuações entre os valores. Ressalta-se aqui, a importância da coleta de dados.

Figura 7: Sinal de entrada do circuito descrito na Figura 1, V_i , medida nos terminais do capacitor C_1 .

No experimento de número 2, montou-se o circuito descrito pela Figura 2, e nos terminais do capacitor, obtivemos a Figura 9 através de um osciloscópio. Para V_i , constatou-se os seguintes valores:

$$V_{medio} = 19.5V$$

$$V_{rms} = 90mV$$

$$V_{min} = 19.2V$$

$$V_{max} = 19.7V$$

De forma semelhante, observamos o comportamento da tensão V_o nos terminais da carga, obtendo assim a Figura 10.

Figura 8: Sinal de saída do circuito descrito na Figura 1, V_o , medida nos terminais da carga R_l .

As medidas relevantes para V_o foram:

$$V_{medio} = 4.4V$$

$$V_{rms} = 60mV$$

$$V_{min} = 4.4V$$

$$V_{max} = 4.8V$$

Figura 9: Sinal de entrada do circuito descrito na Figura 2, V_i , medida nos terminais do capacitor C_1 .

No experimento de número 3, montou-se o circuito descrito pela Figura 3, e variando o potenciômetro, percebeu-se a influência da variação de carga no circuito. Para uma medida mais precisa, representou-se o potenciômetro por 3 resistências e obteu-se a Tabela 1.

No experimento de número 4, montou-se o circuito descrito pela Figura 4, e utilizou-se de um amperímetro para medir a corrente em R_l e de um voltímetro para medir V_o . Repetindo a medição para dois valores de resistência distintos, construi-se a Tabela 2.

Figura 10: Sinal de saída do circuito descrito na Figura 2, V_o , medida nos terminais da carga R_l .

Tabela 1: Valores obtidos através do osciloscópio para três diferentes resistências, paralelas com a carga, no sistema descrito pela Figura 3.

$[\Omega]$	Médio $[V]$	Mínimo $[V]$	Máximo $[V]$
100	320×10^{-3}	200×10^{-3}	400×10^{-3}
470	2.3	2.2	2.4
820	4.15	4	4.2

Tabela 2: Valores obtidos através de um voltímetro e um amperímetro para duas diferentes cargas no sistema descrito pela Figura 4.

$[\Omega]$	$V_l[V]$	$i_l[mA]$
47	20.35	111.5
100	2.3	56.1

4.3 Discussões

O diodo Zener, quando reversamente polarizado em uma tensão suficiente para que se atinja a zona de ruptura, se comporta como um regulador de tensão, que proporcionará uma queda de tensão constante, no caso 8.8V. Como o diodo Zener está em paralelo com a carga, esta sofrerá uma queda constante de mesmo valor. O resistor R_s é responsável por controlar a quantidade de corrente que entrará no diodo Zener e na carga, pois a queda de tensão nele será $V_i - V_z$, sendo V_z a tensão no terminal do diodo Zener. Notase aqui, que o fator de ondulação é muito próximo de zero, pois a tensão saída é praticamente constante.

Para uma configuração em que se manteve fixo V_i e R_l variável, determinouse os limites de operação do regulador Zener, utilizando-se, quando necessário, as informações do datasheet (Fairchild Nov-2014) presentes na Tabela 3.

Tabela 3: Datasheet do 1N4007 retirado da fabricante Fairchild (Novembro de 2014).

Rating	Symbol	Тур	Max	Unit
Maximum Instantaneous Forward Voltage Drop, (i $_{\rm F}$ = 1.0 Amp, T $_{\rm J}$ = 25 °C)	v _F	0.93	1.1	٧
Maximum Full –Cycle Average Forward Voltage Drop, (I $_{\rm O}$ = 1.0 Amp, T $_{\rm L}$ = 75 °C, 1 inch leads)	V _{F(AV)}	-	0.8	V
Maximum Reverse Current (rated DC voltage) $(T_J = 25 ^{\circ}\text{C})$ $(T_J = 100 ^{\circ}\text{C})$	I _R	0.05 1.0	10 50	μΑ
Maximum Full –Cycle Average Reverse Current, (I $_{\rm O}$ = 1.0 Amp, T $_{\rm L}$ = 75 °C, 1 inch leads)	I _{R(AV)}	-	30	μΑ

$$R_{L_{min}} = \frac{RV_z}{V_i - V_z}$$

$$R_{L_{min}} = \frac{820 \times 8.8}{19.3 - 8.8} = 687.24\Omega$$
(1)

$$I_{L_{max}} = \frac{V_z}{R_{l_{min}}}$$

$$I_{L_{max}} = \frac{8.8}{687.24} = 12.8mA$$
(2)

$$I_R = \frac{V_R}{R}$$
 (3)
 $I_R = \frac{8.5}{820} = 10.73mA$

$$I_{L_{min}} = I_R - I_{zm}$$
 (4)
 $I_{L_{min}} = 10.73 \times 10^{-3} - 30 \times 10^{-6} = 10.7 mA$

$$R_{l_{max}} = \frac{V_z}{I_{l_{min}}}$$

$$R_{l_{max}} = \frac{8.8}{10.7 \times 10^{-3}} = 822.43\Omega$$
(5)

Para o experimento 2, temos o valor máximo de corrente de carga quando toda corrente passar apenas pela carga. Para uma tensão $V_{max}=4.8V$ e uma carga fixa de $1k\Omega$, teremos uma corrente máxima na carga $I_{l_{max}}=4.8mA$. Utilizando-se parte do datasheet (Fairchild Sep 2014) da família 78xx/78xxA, a tensão de entrada mínima é 7V.

Para o circuito do experimento 3, obteu-se a expressão de V_o em função de R_1 e R_2 e na corrente do terminal 2 do regulador de tensão 7805. Para os cálculos utilizou-se da informação que a diferença de tensão entre o pino 2 (GND) e o pino 3 (Output) é de 5V(4.8-5.2V) segundo o datasheet mostrado na Tabela 4.

Tabela 4: Datasheet do 7805 retirado da fabricante Fairchild (Setembro de 2014).

Refer to the test circuit,	-40° C < T _{.1} < 1	125° C, $I_{\odot} = 500 \text{ m}$	$A, V_1 = 10 V, 0$	$C_1 = 0.1 \mu F$, ur	nless otherwise specified.

Symbol	Parameter	Conditions		Min.	Тур.	Max.	Unit
		T _J = +25°C		4.80	5.00	5.20	V
V _O	Output Voltage	I _O = 5 mA to 1 A, P _O 15 W, V _I = 7 V to 20 V		4.75	5.00	5.25	
Regline	Line Regulation ⁽²⁾	T _J = +25°C	V _I = 7 V to 25 V		4.0	100.0	- mV
			V _I = 8 V to 12 V		1.6	50.0	
Regload	Load Regulation ⁽²⁾	T _J = +25°C	I _O = 5 mA to 1.5 A		9.0	100.0	mV
			I _O = 250 mA to 750 mA		4.0	50.0	
IQ	Quiescent Current	T _J = +25°C			5	8	mA
1	Quiescent Current Change	I _O = 5 mA to 1 A			0.03	0.50	mA
IQ		V _I = 7 V to 25 V			0.30	1.30	
V _O / T	Output Voltage Drift ⁽³⁾	I _O = 5 mA			-0.8		mV/°C
V_N	Output Noise Voltage	f = 10 Hz to 100 kHz, T _A = +25°C			42		μV
RR	Ripple Rejection ⁽³⁾	f = 120 Hz, V _I = 8 V to 18 V		62	73		dB
V_{DROP}	Dropout Voltage	T _J = +25°C, I _O = 1 A			2		V
R _O	Output Resistance ⁽³⁾	f = 1 kHz			15		m
I _{SC}	Short-Circuit Current	T _J = +25°C, V _I = 35 V		·	230		mA
I _{PK}	Peak Current ⁽³⁾	T _J = +25°C			2.2		Α

$$V_{o} \frac{R_{2}}{R_{1} + R_{2}} = V_{o} - 5$$

$$V_{o} \left(\frac{R_{2}}{R_{1} + R_{2}} - 1\right) = -5$$

$$V_{o} = \frac{5}{R_{1}} (R_{2} + R_{1})$$

$$V_{o} = I_{2} (R_{2} + R_{1})$$
(6)

Para o valor de 100Ω da resistência R_2 , representando a resistência variável do potenciômetro, em série com a resistência intrínsica fixa do potenciômetro calculou-se:

$$V_o = 0.01 \times (100 + 470) = 5.7V$$

Para o valor de 470Ω da resistência R_2 , representando a resistência variável do potenciômetro, em série com a resistência intrínsica fixa do potenciômetro calculou-se:

$$V_o = 0.01 \times (470 + 470) = 9.4V$$

Para o valor de 820Ω da resistência R_2 , representando a resistência variável do potenciômetro, em série com a resistência intrínsica fixa do potenciômetro calculou-se:

$$V_0 = 0.01 \times (820 + 470) = 12.9V$$

No entanto, ao observarmos a Tabela 1 observamos uma divergência enorme entre a prática e a teoria. Isto é um indicador provável de uma falha na montagem do circuito. Especula-se que a dupla tenha substituído ambos os resistores, que representa o valor fixo do potenciômetro e o valor variável, por um resistor equivalente, o que ocasionou no fracasso do experimento de número 3.

Analisando a Tabela 2 podemos validar algumas expectativas teóricas advindas da teoria de uma fonte de corrente com regulador de tensão. Como descrito anteriormente, o datasheet nos informa que a tensão entre os pinos GND e Output se mantém constante em 5V, desta forma, se variarmos o valor da resistência compreendida entre estes dois pinos, teremos uma fonte de corrente ajustável, regulada pelo valor da resistência empregada. Ao trocarmos uma resistência de 100Ω por uma menor (praticamente metade) de 47Ω fornecemos uma corrent a R_l de quase duas vezes maior.

4.4 Conclusão

Neste experimento compreendeu-se o funcionamento de diversos circuitos reguladores de tensão e de uma configuração que permite construir uma fonte de corrente. Os experimentos 1 e 2 foi de extrema valia para entender melhor a teoria de funcionamento de um Diodo Zener e do circuito integrado 7805 e a importância destes tipos de circuitos no fim do encadeamento de circuitos que compõe uma fonte de tensão DC. Foi possível comparar, a partir dos gráficos e dos valores coletados no osciloscópio, que o 7805 desempenha melhor a função de regulador de tensão em comparação com o diodo Zener. Entendeuse também, como utilizar configurações com um potenciômetro e um circuito integrado 7805 para obter-se tensões e correntes variáveis através da mudança de resistência.