

Leveraging Convolutional Neural Networks for the identification of Pneumonia

Project Proposal

Lewis Higgins - Student ID 22133848

CMP6228 - Deep Neural Networks

Module Coordinator: Khalid Ismail

Word count excluding figures, references and appendices: XXXX / 1500 $\,$

Contents

Introduction		
1	Motivation and objectives	2
	1.1 Subject area	2
	1.2 Dataset choice	2
	1.2.1 Potential issues	3
	1.3 Data science problem	4
2	Related work	5
	2.1 Introduction	5
	2.2 Traditional machine learning methods	5
	2.3 Deep Neural Networks	6
	2.4 Data augmentation	7
3	Deep learning fundamentals	8
	3.1 Convolutional Neural Networks (CNNs)	8
4	Proposed model	9
	4.1 Architecture	9
Bi	ibliography	9
Appendix A - Class imbalance		12

Introduction

In this report, a novel solution is proposed to address a significant data science problem in the medical field, in the form of a deep neural network to accurately identify the presence of pneumonia from an image of a chest X-ray. To do so, this neural network will be trained on a publicly available dataset that has been previously seen across many publications, and advanced techniques for the model will be discussed.

This proposal will specifically cover the motivation behind this project before exploring related literature and previous works in great depth. To conclude, an optimal model will be proposed based on the knowledge extracted from these related works.

Motivation and objectives

1.1 Subject area

Pneumonia is a lower respiratory tract infection (LRTI) commonly caused by viruses or bacteria wherein the alveoli of the lungs become clogged with pus and fluid, which can be life-threatening in people of any age, but especially in children and the elderly (NHS, 2017). The World Health Organisation (WHO) state that pneumonia is the single largest infectious cause of death in children, killing 808,000 children under the age of 5 in 2017 (WHO, 2025). Furthermore, even if pneumonia is survived during the initial infection, Allinson et al. (2023) studied that those who contract the condition as a child are 93% more likely to die from respiratory diseases later in life than those who did not.

It is therefore imperative that recent technological advancements are leveraged for the quick diagnosis of the infection to allow swift treatment to avoid life-threatening consequences, both in the short-term and long-term.

1.2 Dataset choice

The chosen dataset is sourced from the Mendeley data repository (Mendeley, 2025), uploaded and created by Kermany et al. (2018, p.1127) in their research of the applications of neural networks for medical diagnoses. The dataset contains 5,856 images of chest X-ray scans of children taken from the Guangzhou Women and Children's Medical Center in China, and is 1.18GB in size. Kermany et al. (2018, p.e1) state that the data was heavily screened and scrutinized for confirmation before labelling, which was done by removing low quality or unreadable images, and then consulting two expert physicians before labelling the images. The physicians' labelled set was then presented to a third expert, who confirmed their validity. Because of this, there is absolute certainty in the authenticity and validity of the data itself as well as its ground truth labels. There are only two classes of images: those with pneumonia and those without, as depicted by Figures 1.1 and 1.2.

Figure 1.1: A sample image without pneumonia.

Figure 1.2: A sample image with pneumonia.

1.2.1 Potential issues

The dataset has already been pre-emptively split into training and testing sets, which saves having to perform a manual split. However, the data itself is not immediately usable and will require further preprocessing before being used to train a model, namely due to the following issues:

- Images are different resolutions.
 - The sample images vary widely in resolution, with some being substantially higher than others. The neural network's input layer will be fixed in size, meaning all input data must be the same size or the network will be unable to process it. This can be addressed programmatically using Keras to automatically resize all images to a given resolution.

• Class imbalance

The training set contains 1,349 samples of patients without pneumonia, but 3,883 samples of patients with pneumonia. This will lead to the model favouring those with pneumonia rather than the underrepresented class of those without. This can be addressed using the techniques discussed in Appendix A.

1.3 Data science problem

This dataset poses a clear data science problem pertaining to the binary classification of these images which will be addressed through the development of a convolutional neural network image classification model leveraging supervised learning. The ground truth is present within the dataset through its file structure¹, shown below:

```
'-- chest_xray/
|-- test/
    I-- NORMAL/
        |-- NORMAL-4512-0001.jpeg
        |-- NORMAL-11419-0001.jpeg
        '-- ...234 more images
    '-- PNEUMONIA/
        |-- BACTERIA-40699-0001.jpeg
        |-- VIRUS-4190128-0001
        '-- ...388 more images
'-- train/
    |-- NORMAL/
        |-- NORMAL-28501-0001.jpeg
        |-- NORMAL-32326-0001.jpeg
        '-- ...1347 more images
    '-- PNEUMONIA/
        |-- BACTERIA-7422-0001.jpeg
        |-- VIRUS-12220-0001.jpeg
        '-- ...3881 more images
```

Files of the appropriate class are stored in the relevant subfolder². When this dataset is loaded, it will be possible to assign the relevant label to each image based on its subfolder of origin. Note that while there are separate files for bacterial and viral pneumonia, an analysis of other works using this dataset, seen in Chapter 2, indicated that this will not be an issue.

¹Because Kermany et al. (2018)'s work was not only on pneumonia, the Mendeley ZIP file contains two separate datasets. This proposal is only for the "chest" xray" dataset.

²Shown file names are given as examples, and are not in the direct order they appear in the folders.

Related work

2.1 Introduction

This section of the report aims to demonstrate the main concepts of related techniques that have been previously used to solve the problem through a thorough review of surrounding literature.

2.2 Traditional machine learning methods

Traditional machine learning methods such as Random Forests, K-Nearest Neighbours and Support Vector Machines have previously been leveraged for pneumonia classification as seen in the works of Ortiz-Toro et al. (2022). They state that leveraging these traditional approaches alongside the creation of handcrafted textural features 'offers good performance with very low computational complexity', as seen in their results wherein they attained an F1-Score of 93%.

However, leveraging traditional methods on detailed image datasets such as Kermany et al. (2018)'s relies upon manual feature engineering of textural features, which can unintentionally introduce bias. Dataset bias can significantly harm the generalisation capabilities of produced models (Selvaraju et al., 2017). This is because it is possible that the new data given to a deployed model would differ from the preset features used on the original dataset, which a biased model would be unable to accurately predict, unlike deep learning methods which can automatically interpret features without manual intervention.

Furthermore, some researchers such as Wang et al. (2021) have leveraged both traditional and deep learning techniques on other unrelated datasets, wherein they discovered that the Support Vector Machine they used had an accuracy 10% lower than a convolutional neural network on a large dataset, though actually had an accuracy 3% higher on a smaller dataset. They also note that deep learning methods have considerably longer training times than traditional counterparts.

SVMs in particular are the most commonly seen model in works using this dataset. SVMs aim to find the optimal hyperplane which separates one class from another. They are likely the most common due to their high performance and evaluation metrics even when many dimensions are introduced, such as in image data.

Figure 2.1: A cursory overview of an SVM's functionality.

2.3 Deep Neural Networks

Deep neural networks are the most heavily used methods for classification tasks with this dataset, which can be seen on both the dataset's Kaggle page (Mooney, 2018), and through a thorough literature search.

There are a wide variety of neural network types, though the most suitable and most commonly used neural network architecture across related literature¹ for image classifications such as the one proposed here is a Convolutional Neural Network (CNN). CNNs are heavily used for image classification tasks across many fields, including for identifying pneumonia. A more detailed description of the functionality of a CNN can be found in Section 4.1, as this section instead details the accomplishments of other works with Kermany et al. (2018)'s dataset.

El Asnaoui (2021)'s work is one of the most informative² testing three different pretrained CNNs and then testing combinations of the three merged into different ensemble models. They tested implementations of pretrained InceptionResNet_V2, MobileNet_V2, and ResNet50 models, achieving F1-scores of 93.52, 91.62 and 93.47 respectively. They also produced an ensemble model containing all three, which achieved their highest F1 score of 94.84. Their work clearly depicts the effectiveness of CNNs in classifying pneumonia.

Analysing the works of others published on the dataset's Kaggle page also follows this trend - CNNs are the most optimal choice for this particular classification task, with many achieving accuracies of at least 92% with minimal overfitting. Many of these works cite the previously mentioned class imbalance, which Mathur (2020) and others solve with **data augmentation**.

¹Specifically, the works of El Asnaoui (2021), Rajpurkar et al. (2017), Sourab and Kabir (2022), Stephen et al. (2019) and Umar Ibrahim et al. (2022)

²It should be noted that they used an altered dataset which they created from merging Kermany et al. (2018)'s data with a COVID-19 dataset.

2.4 Data augmentation

Deep learning fundamentals

Deep neural networks are a significant advancement in computing which build greatly upon traditional machine learning techniques especially in fields such as computer vision and image recognition. By leveraging newfound processing power typically found in high-end graphics cards, neural networks formed of layers of neurons which replicate the functionality of the human mind can be created to solve problems at higher degrees of accuracy than ever before. A visualisation of a deep neural network is depicted in Figure 3.1.

Figure 3.1: A neural network with input, hidden and output layers (IBM, 2021).

3.1 Convolutional Neural Networks (CNNs)

Proposed model

"This section should demonstrate the suitability of the proposed solution in solving the data science problem" $\,$

4.1 Architecture

Bibliography

- Allinson, James Peter, Nishi Chaturvedi, Andrew Wong, Imran Shah, Gavin Christopher Donaldson, Jadwiga Anna Wedzicha and Rebecca Hardy (8th Apr. 2023). 'Early Childhood Lower Respiratory Tract Infection and Premature Adult Death from Respiratory Disease in Great Britain: A National Birth Cohort Study'. In: *The Lancet* 401 (10383), pp. 1183–1193. ISSN: 0140-6736, 1474-547X. DOI: 10.1016/S0140-6736(23)00131-9. pmid: 36898396.
- El Asnaoui, Khalid (1st Mar. 2021). 'Design Ensemble Deep Learning Model for Pneumonia Disease Classification'. In: *International Journal of Multimedia Information Retrieval* 10 (1), pp. 55–68. ISSN: 2192-662X. DOI: 10.1007/s13735-021-00204-7.
- IBM (6th Oct. 2021). What Is a Neural Network? | IBM. URL: https://www.ibm.com/think/topics/neural-networks (visited on 13/03/2025).
- Kermany, Daniel S., Michael Goldbaum, Wenjia Cai, Carolina C. S. Valentim, Huiying Liang, Sally L. Baxter, Alex McKeown, Ge Yang, Xiaokang Wu, Fangbing Yan, Justin Dong, Made K. Prasadha, Jacqueline Pei, Magdalene Y. L. Ting, Jie Zhu, Christina Li, Sierra Hewett, Jason Dong, Ian Ziyar, Alexander Shi, Runze Zhang, Lianghong Zheng, Rui Hou, William Shi, Xin Fu, Yaou Duan, Viet A. N. Huu, Cindy Wen, Edward D. Zhang, Charlotte L. Zhang, Oulan Li, Xiaobo Wang, Michael A. Singer, Xiaodong Sun, Jie Xu, Ali Tafreshi, M. Anthony Lewis, Huimin Xia and Kang Zhang (22nd Feb. 2018). 'Identifying Medical Diagnoses and Treatable Diseases by Image-Based Deep Learning'. In: Cell 172 (5), 1122–1131.e9. ISSN: 0092-8674, 1097-4172. DOI: 10.1016/j.cell.2018.02.010. pmid: 29474911.
- Mathur, Madhav (2020). Pneumonia Detection Using CNN(92.6% Accuracy). URL: https://kaggle.com/code/madz2000/pneumonia-detection-using-cnn-92-6-accuracy (visited on 13/03/2025).
- Mendeley (2025). Large Dataset of Labeled Optical Coherence Tomography (OCT) and Chest X-Ray Images Mendeley Data. URL: https://data.mendeley.com/datasets/rscbjbr9sj/3 (visited on 27/02/2025).
- Mooney, Paul (2018). Chest X-Ray Images (Pneumonia). URL: https://www.kaggle.com/datasets/paultimothymooney/chest-xray-pneumonia (visited on 28/02/2025).
- NHS (23rd Oct. 2017). *Pneumonia*. nhs.uk. URL: https://www.nhs.uk/conditions/pneumonia/(visited on 27/02/2025).
- Ortiz-Toro, César, Angel García-Pedrero, Mario Lillo-Saavedra and Consuelo Gonzalo-Martín (June 2022). 'Automatic Detection of Pneumonia in Chest X-ray Images Using Textural Features'. In: *Computers in Biology and Medicine* 145, p. 105466. ISSN: 0010-4825. DOI: 10.1016/j.compbiomed.2022.105466. pmid: 35585732.
- Rajpurkar, Pranav, Jeremy Irvin, Kaylie Zhu, Brandon Yang, Hershel Mehta, Tony Duan, Daisy Ding, Aarti Bagul, Curtis Langlotz, Katie Shpanskaya, Matthew P. Lungren and Andrew Y. Ng (25th Dec. 2017). *CheXNet: Radiologist-Level Pneumonia Detection on Chest X-Rays with Deep Learning*. DOI: 10.48550/arXiv.1711.05225. arXiv: 1711.05225 [cs]. URL: http://arxiv.org/abs/1711.05225 (visited on 11/03/2025). Prepublished.
- Selvaraju, Ramprasaath R., Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh and Dhruv Batra (Oct. 2017). 'Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization'. In: 2017 IEEE International Conference on

- Computer Vision (ICCV). 2017 IEEE International Conference on Computer Vision (ICCV), pp. 618–626. DOI: 10.1109/ICCV.2017.74.
- Sourab, Sazzad Yousuf and Md Ahasan Kabir (1st Jan. 2022). 'A Comparison of Hybrid Deep Learning Models for Pneumonia Diagnosis from Chest Radiograms'. In: Sensors International 3, p. 100167. ISSN: 2666-3511. DOI: 10.1016/j.sintl.2022.100167.
- Stephen, Okeke, Mangal Sain, Uchenna Joseph Maduh and Do-Un Jeong (2019). 'An Efficient Deep Learning Approach to Pneumonia Classification in Healthcare'. In: *Journal of Healthcare Engineering* 2019 (1), p. 4180949. ISSN: 2040-2309. DOI: 10.1155/2019/4180949.
- Umar Ibrahim, Abdullahi, Mehmet Ozsoz, Sertan Serte, Fadi Al-Turjman and Salahudeen Habeeb Kolapo (2022). 'Convolutional Neural Network for Diagnosis of Viral Pneumonia and COVID-19 Alike Diseases'. In: *Expert Systems* 39 (10), e12705. ISSN: 1468-0394. DOI: 10.1111/exsy.12705.
- Wang, Pin, En Fan and Peng Wang (1st Jan. 2021). 'Comparative Analysis of Image Classification Algorithms Based on Traditional Machine Learning and Deep Learning'. In: *Pattern Recognition Letters* 141, pp. 61–67. ISSN: 0167-8655. DOI: 10.1016/j.patrec. 2020.07.042.
- WHO (2025). Pneumonia. URL: https://www.who.int/health-topics/pneumonia (visited on 27/02/2025).

Appendix A - Class imbalance