

# Introdução à Engenharia de Software

# Objetivo da Aula

Compreender os conceitos iniciais sobre software e a aplicação do contexto de engenharia ao cenário de produção de software.

## Apresentação

O profissional de tecnologia da informação é responsável por uma atividade essencial no dia a dia de qualquer negócio: a resolução de problemas.

Os softwares são programas de computadores desenvolvidos para um cliente específico ou para o mercado em geral, e visam possibilitar com que os seus usuários tenham o seu trabalho afetado positivamente por meio da tecnologia.

O contexto de engenharia atribuído à elaboração de software tem o objetivo de aplicar métodos, práticas e ferramentas na resolução de problemas, visando garantir eficiência, praticidade e segurança aos processos apoiados por ele.

Nesta aula vamos aprender um pouco sobre o papel da engenharia de software na elaboração de softwares.

# 1. A Importância do Software na Atualidade

Hoje é praticamente impossível pensar em qualquer atividade pessoal ou profissional sem o apoio de um software. Os softwares podem estar presentes em pequenas soluções através de sistemas embutidos, em geladeiras e tvs, por exemplo, ou grandes sistemas de informação, como os de bancos e companhias aéreas.

A nossa vida pessoal também é muito afetada diariamente por conta do uso dos softwares, e neste caso podemos citar o controle dos nossos compromissos diários em agendas eletrônicas, marcações de consultas médicas, até a compra de ingressos para shows e cinema, isso sem contar com todas as facilidades que os softwares que estão nos smartphones nos proporcionam.



Vale a pena dizer que o profissional de tecnologia da informação, por ter como especialidade a resolução de problemas, acaba transitando pelos diversos níveis organizacionais, a saber, operacional, tático e estratégico.

Administração
Estratégica

Administração
Tática

Administração
Operacional

Figura 1: Pirâmide Organizacional

Fonte: Laudon e Laudon.

Para cada nível, necessidades diferentes são observadas, pois o gerente do nível estratégico tem a necessidade de observar o dado de uma maneira diferente da visão que necessita o gerente operacional.

Assim, toda vez que o profissional de software estiver envolvido na produção de algum software, é importante conhecer bem os *stakeholders*. Os *stakeholders* são os profissionais interessados e envolvidos no projeto, aqueles que podem tomar decisão durante o andamento do projeto.

Alguns exemplos de *stakeholders* são os gerentes, o patrocinador do projeto e os *keyusers*, que são usuários importantes da parte do cliente. É importante ressaltar que alguns dos próprios membros da equipe de desenvolvimento também são considerados *stakeholders*.

#### 2. Software

Mas o que é o software afinal? Em um contexto simples, os softwares são programas de computadores criados para a resolução de um ou mais problemas.



Esses programas podem ser desenvolvidos como produtos que vão apoiar o trabalho de um ou mais profissionais. Esses produtos podem ser divididos em duas categorias: os softwares genéricos e os softwares por encomenda.

Os softwares genéricos são desenvolvidos para que sirvam para várias empresas de um mesmo ramo. Por exemplo, um software para controlar o estoque de uma empresa pode ser facilmente empregado em outra empresa que também deseja controlar o seu estoque.

Já os softwares por encomenda tratam especificamente o problema do cliente solicitante, sendo desenvolvido para uma realidade particular e, portanto, pertencente exclusivamente a quem o encomendou. Um exemplo desse tipo de software seria um sistema construído para controlar as atividades acadêmicas de uma determinada escola.

#### 3. O Profissional de Software

A partir daí temos o profissional de software atuando como facilitador técnico para que outros profissionais possam ter as suas atividades diárias influenciadas pelo apoio dos softwares.

A tarefa desse profissional é observar e entender as necessidades do cliente, para poder analisar e propor uma solução computacional que tornará viável, ágil e simplificada a execução das tarefas do cliente.

Este é um ponto interessante para o profissional de tecnologia da informação, de uma forma geral, pois ele passa a conhecer o domínio de negócio ao qual ele está prestes a construir uma solução, entendendo o funcionamento, os processos e as regras de negócio. Uma responsabilidade e tanto, não acha?

A área de tecnologia proporciona diversos desafios que devem ser encarados pelo profissional de TI. Cada um desses desafios está relacionado com o papel e cargo desses profissionais. Por ser uma tarefa muito difícil elencar todos os papéis que um profissional de TI pode possuir, alguns dos mais comuns conseguimos observar na lista a seguir:

- a) Desenvolvimento: apoiam atividades organizacionais a partir de sistemas que facilitam o controle, coordenação e tomada de decisão nos negócios.
  - · Analista de Sistemas:
  - · Analista de Requisitos;
  - Programador;
  - · Analista de Testes;
  - · Administrador de Dados.



- b) Suporte: tem a responsabilidade de manter os sistemas computacionais e a infraestrutura em funcionamento e com a garantia da segurança.
  - · Analista de Suporte;
  - · Analista de Redes;
  - Analista de Infraestrutura;
  - · Administrador de Banco de Dados.

Além dessas duas grandes áreas, ainda temos cargos relacionados à Análise dos Dados, Governança, dentre outras áreas relacionados à tecnologia da informação.

#### 4. Engenharia de Software

Para que tudo isso seja possível, nasceu a Engenharia de Software, uma disciplina que prevê o desenvolvimento profissional de software, propondo métodos, técnicas e ferramentas que permita o desenvolvimento de um produto com qualidade.

Muito antes de tratar o desenvolvimento de software como engenharia, ocorreu a chamada de "Crise do Software". Esse termo se origina dos anos 1970 e relata o momento em que a Engenharia de Software praticamente não existia, algo que se tornou crítico, uma vez que esse período apresentou um crescimento substancial na atividade de desenvolvimento de software em todo o planeta.

Especificamente este termo foi cunhado na apresentação de uma palestra feita por Edsger Dijkstra na *Association for Computing Machinery The Humble Programmer* (EWD340), que gerou artigo publicado no periódico *Communications of the ACM*.

O artigo *The Humble Programmer* (1972) pode ser encontrado no link <u>www.cs.utexas.</u> edu/users/EWD/ewd03xx/EWD340.PDF.

Alguns aspectos conseguem direcionar quais eram os sintomas que apontavam a Crise do Software:

- · Projetos que não cumpriam o orçamento previsto;
- · Projetos que ultrapassavam o prazo determinado no início do desenvolvimento;
- Software com defeito;
- · Software com qualidade pobre e muito difíceis de serem entendidos;
- · Projetos difíceis de manutenir;



• Softwares que não entregavam aquilo que era pedido pelo cliente.

Nesse aspecto, a Engenharia proporcionou aos profissionais de desenvolvimento uma espécie de ponto zero, que ajudava os desenvolvedores a utilizarem e compartilharem as melhores práticas para o desenvolvimento, sempre a partir da definição de técnicas, ferramentas e processos que foram bem-sucedidos em projetos diversos.

#### 5. Causas da Falha de Projetos de Softwares

Ainda com todas as definições da Engenharia de Software, os projetos podem falhar caso nãos sejam considerados alguns aspectos importantes. A lista a seguir apresenta alguns dos motivos clássicos que fazem com que os projetos acabem falhando:

- Escolha errada da tecnologia a ser empregado no projeto;
- Escolha errada do processo de desenvolvimento do software;
- · Mudanças rápidas nas regras de negócio;
- Inflexibilidade do sistema ou do processo;
- Pouco tempo de investimento no planejamento do projeto;
- · Prazos irreais (subestimação ou superestimação do esforço);
- · Falta de recursos adequados (pessoas, máquinas, ferramentas, ambiente etc.);
- · Falhas no processo de captura, especificação e gerência de requisitos;
- · Baixa participação dos stakeholders no projeto;
- Baixo índice de feedback pelo cliente;
- · Falhas no gerenciamento de riscos;
- · Pouco suporte da alta direção.

O profissional de software deve estar atento para cada uma dessas causas e deve considerar os possíveis planos de contingência para o caso de falhas nos quesitos mais importantes, principalmente aqueles que se tem menor controle, como a baixa participação dos *stakeholders*.



#### 6. Os Desdobramentos da Engenharia de Software

O desenvolvimento de software passou por uma evolução natural agregando valores entre pessoas, hardware e softwares disponíveis.

Antes, os softwares eram produzidos para atender a problemas departamentais. Por exemplo, softwares de contabilidade, departamento de pessoal e estoque. Mais precisamente, o objetivo era a automação de processos.

Mas as empresas entenderam que era necessário que os softwares de cada parte de uma organização se comunicassem, evitando assim o registro de informações em duplicidade. Agora o foco estava no aumento da produtividade.

A integração dos sistemas foi essencial para que as informações pudessem ser interpretadas de maneira corporativa, gerando eficiência e criando um diferencial competitivo em relação aos concorrentes diretos.

A aplicação de metodologias de desenvolvimento e o uso de ferramentas que apoiam esses processos tornou-se uma prática, aumentando a qualidade e permitindo que todo um processo de continuidade e aperfeiçoamento do software se tornasse uma realidade.

Atualmente outras iniciativas para o aumento na produtividade do desenvolvimento do software são aplicadas nas fábricas de software, como o compartilhamento de projetos construídos em equipe, o uso de ferramentas de versionamento, e a aplicação dos modelos ágeis de desenvolvimento, fazendo com que a elaboração de software seja facilitada, e que as melhores práticas sejam reconhecidas e aplicadas, tudo isso graças à Engenharia de Software!

## Considerações Finais

Nesta aula inicial abordamos não só a conceituação de software, mas também dedicamos um tempo a entender o importante papel do analista de sistemas nos processos que apoiam a construção de soluções para os mais diversos problemas dos mais distintos domínios.

Traçamos um panorama sobre a forma como o software é importante em nosso dia a dia atualmente, e como era o cenário descrito como "crise do software" em tempos em que não havia a preocupação com a metodologia e os processos para desenvolvimento de software, assim como havia poucas ferramentas de apoio para a atividade de desenvolvimento de software.

Descrevemos também a evolução no conceito de produção de software, apontando quais foram as principais evoluções e como estas ajudaram na melhoria desta atividade essencial para os dias atuais.



## **Materiais Complementares**



Artigo que deu origem ao termo "crise do software" de Edsger Dijkstra: *The Humble Programmer*. Disponível em: <a href="https://www.cs.utexas.edu/users/EWD/ewd03xx/EWD340">https://www.cs.utexas.edu/users/EWD/ewd03xx/EWD340</a>. PDF. Acesso em: 28 out. 2022.



Por que os Softwares falham? Disponível em: <a href="http://www.linhadecodigo.com.br/artigo/2054/por-que-projetos-de-software-falham.aspx">http://www.linhadecodigo.com.br/artigo/2054/por-que-projetos-de-software-falham.aspx</a>. Acesso em: 28 out. 2022.

#### Referências

KENNETH C. LAUDON; JANE P. LAUDON. *Sistemas de informação gerenciais*. 11ª edição. Editora Pearson, 2014.

PRESSMAN, R. G. Engenharia de Software. 9ª ed. Rio de Janeiro: McGraw-Hill, 2021.

SOMMERVILLE, I. *Engenharia de Software*. 10ª ed. São Paulo: Pearson Addison. Wesley, 2019.