Statistics Inference I

Probability Theory, Lecture 2

Haoming Wang

25 June 2020

This is the Lecture note for the *Mathematical Statistics*. The reference materials is *Statistics Inference second edition, George Casella, Roger L. Berger*. The course covers first 5 chapters of the book: Probability Theory, Transformations and Expectations, Common Families of Distributions, Multiple Random Variables, Properties of a Random Sample.

Properties for probability measure

Theorem 1. Suppose \mathcal{F} is a σ algebra on S, if $A_i(i \in I) \in \mathcal{F}$, then $\cap_{i \in I} A_i \in \mathcal{F}$.

Proof.
$$A_i(i \in I) \in \mathcal{F} \Rightarrow A_i^c(i \in I) \in \mathcal{F} \Rightarrow \bigcup_{i \in I} A_i^c \in \mathcal{F} \Rightarrow (\bigcup_{i \in I} A_i^c)^c = \bigcap_{i \in I} A_i \in \mathcal{F}.$$

Definition 1 (Borel field). We call the σ algebra generated by all open intervals on $\mathbb R$ the Borel field, denoted as $\mathcal B$.

Theorem 2. Given a probability space $(S, \mathcal{F}, \mathbb{P})$, if A is an event $(A \in \mathcal{F})$, then $\mathbb{P}(A^c) = 1 - \mathbb{P}(A)$.

Proof. Since
$$A^c \cap A = \emptyset$$
, $A \cup A^c = S$, thus $\mathbb{P}(A) + \mathbb{P}(A^c) = \mathbb{P}(A \cup A^c) = \mathbb{P}(S) = 1$.

Furthermore, $\mathbb{P}\left(A^{c}\right) \geq 0$ by definition, thus $1 \leq \mathbb{P}\left(A\right) = 1 - \mathbb{P}\left(A^{c}\right) \leq 1$.

Theorem 3. Given probability space $(S, \mathcal{F}, \mathbb{P})$, for $\forall A, B \in \mathcal{F}$:

- 1. $\mathbb{P}(B \cap A^c) = \mathbb{P}(B) \mathbb{P}(A \cap B);$
- 2. $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) \mathbb{P}(A \cap B)$;
- 3. if $A \subseteq B$, then $\mathbb{P}(A) < \mathbb{P}(B)$.

Proof. 1. Since $B = (B \cap A) \cup (B \cap A^c)$ and $(B \cap A) \cap (B \cap A^c) = \emptyset$, thus $\mathbb{P}(B) = \mathbb{P}(B \cap A^c) + \mathbb{P}(A \cap B)$;

2. Similarly, $A \cup B = (A \cap B^c) \cup (B \cap A^c) \cup (A \cap B)$ and $(A \cap B^c)$, $(B \cap A^c)$, $(A \cap B)$ are pairwise disjoin. thus

$$\mathbb{P}(A \cup B) = \mathbb{P}(A \cap B^{c}) + \mathbb{P}(B \cap A^{c}) + \mathbb{P}(A \cap B)$$
$$= \mathbb{P}(A) - \mathbb{P}(A \cap B) + \mathbb{P}(B) - \mathbb{P}(B \cap A) + \mathbb{P}(A \cap B)$$
$$= \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B).$$

CONTENT:

- 1. Properties for probability measure
- 2. Bayes' theorem
- 3. Random variable

Note 1. \mathcal{B} is the smallest σ algebra that contains all open intervals on \mathbb{R} .

As we introduced last lecture, the close interval can be created by the intersection of countable open interval, and the intersection of the elements in a σ algebra is still in it. Thus the close intervals are also contained in \mathcal{B} . Actually, any intervals on \mathbb{R} are in \mathcal{B} .

The union, intersection, difference of the countable intervals on \mathbb{R} is measurable set on which probability need to be defined. It is the reason why we need \mathcal{B} .

Theorem 4 (Bonferroni's Inequality). *Given probability space* $(S, \mathcal{F}, \mathbb{P})$, for $\forall A, B \in \mathcal{F}$: $\mathbb{P}(A \cap B) \geq \mathbb{P}(A) + \mathbb{P}(B) - 1$.

Proof. Since $\mathbb{P}(A \cap B) + \mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B)$, we have

$$\mathbb{P}(A \cap B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cup B)$$
$$\geq \mathbb{P}(A) + \mathbb{P}(B) - 1.$$

When $A \cup B = S$, the equality, =, holds.

Example 1. Given two event A, B in S, where $\mathbb{P}(A) = .8$, $\mathbb{P}(B) = .9$, then $\mathbb{P}(A \cap B) \geq \mathbb{P}(A) + \mathbb{P}(B) - 1 = .7$. On the other hands, $A \cap B \subseteq A$, thus $.7 \leq \mathbb{P}(A \cap B) \leq .8$.

Furthermore, we can extend the general form of Bonferroni's Inequality: Since $\mathbb{P}\left(\bigcup_{i=1}^{n}A_{i}^{c}\right)\leq\sum_{i=1}^{n}\mathbb{P}\left(A_{i}^{c}\right)=\sum_{i=1}^{n}1-\mathbb{P}\left(A_{i}\right)=n \sum_{i=1}^n \mathbb{P}(A_i)$, and $\mathbb{P}\left(\bigcup_{i=1}^n A^c\right) = 1 - \mathbb{P}\left(\left(\bigcup_{i=1}^n A_i^c\right)^c\right) = 1 - \mathbb{P}\left(\bigcap_{i=1}^n A_i\right)$,

$$\mathbb{P}\left(\cap_{i=1}^{n} A_{i}\right) \geq \sum_{i=1}^{n} \mathbb{P}\left(A_{i}^{c}\right) - (n-1).$$

Bayes' theorem

Theorem 5. Given a (finite or countable)partition $C_i(i \in I)$ of S, $A \subseteq S$, then $\mathbb{P}(A) = \sum_{i \in I} \mathbb{P}(A \cap C_i)$.

Proof. Since $C_i(i \in I)$ is a partition, they are pairwise disjoin, thus $A \cap C_i (i \in I)$ are pairwise disjoin, and $\bigcup_{i \in I} (A \cap C_i) = A \cap (\bigcup_{i \in I} C_i) = A \cap (\bigcup_{i \in I} C_i)$ $A \cap S = A$, thus

$$\mathbb{P}\left(A\right) = \mathbb{P}\left(A \cap \left(\cup_{i \in I} C_i\right)\right) = \mathbb{P}\left(\cup_{i \in I} (A \cap C_i)\right) = \sum_{i \in I} \mathbb{P}\left(A \cap C_i\right).$$

Definition 2 (Conditional probability). Given two events *A*, *B* of *S*, and $\mathbb{P}(B) > 0$. The condition probability $\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$ is the probability of A occurs under the condition that B occurs.

Theorem 6 (Bayes' theorem). Given a (finite or countable) partition $A_i(i \in I)$ of S, $B \subseteq S$ and $\mathbb{P}(B) > 0$, then

$$\mathbb{P}\left(A_{i}|B\right) = \frac{\mathbb{P}\left(B|A_{i}\right) \cdot \mathbb{P}\left(A_{i}\right)}{\sum_{j \in I} \mathbb{P}\left(B|A_{j}\right) \cdot \mathbb{P}\left(A_{j}\right)}.$$

Proof. Trivial.

Note 2. Distribution holds on countable case: $A \cap (\bigcup_{i=1}^{\infty} C_i) = \bigcup_{i=1}^{\infty} (A \cap C_i)$, it can be proved by induction.

Note 3. The multiplication principle: $\mathbb{P}(A \cap B) = \mathbb{P}(A|B) \cdot \mathbb{P}(B).$

Theorem 7. Given a sample space S with a σ algebra \mathcal{F} , suppose B is an event of S, and $\mathbb{P}(B) > 0$, then $\mathbb{P}(\cdot|B)$ is a probability on \mathcal{F} .

Proof. 1. for $\forall A \in \mathcal{F}$, $\mathbb{P}(A|B) = \frac{A \cap B}{\mathbb{P}(B)} \geq 0$;

2.
$$\mathbb{P}(S|B) = \frac{\mathbb{P}(S \cap B)}{\mathbb{P}(B)} = \frac{\mathbb{P}(B)}{\mathbb{P}(B)} = 1$$

2. $\mathbb{P}\left(S|B\right) = \frac{\mathbb{P}(S \cap B)}{\mathbb{P}(B)} = \frac{\mathbb{P}(B)}{\mathbb{P}(B)} = 1;$ 3. for countable pairwise disjoin events $A_i (i \in I)$, we have

$$\mathbb{P}\left(\cup_{i\in I} A_i \middle| B\right) = \frac{\mathbb{P}\left(B \cap \left(\cup_{i\in I} A_i\right)\right)}{\mathbb{P}\left(B\right)} = \frac{\mathbb{P}\left(\cup_{i\in I} \left(A_i \cap B\right)\right)}{\mathbb{P}\left(B\right)}$$
$$= \frac{\sum_{i\in I} \mathbb{P}\left(A_i \cap B\right)}{\mathbb{P}\left(B\right)}$$
$$= \sum_{i\in I} \mathbb{P}\left(A_i \middle| B\right).$$

Definition 3 (Independence). Given two events A, B of S, we say A, Bare independent events if $\mathbb{P}(A \cap B) = \mathbb{P}(A) \cdot \mathbb{P}(B)$. Otherwise, we say A, B are dependent events.

Note 4. If A, B are dependent, and $\mathbb{P}(B) > 0$, then $\mathbb{P}(A|B) = \mathbb{P}(A)$.

Theorem 8. Given two independent events A, B of S, we have

- 1. A and B^c are independent event;
- 2. A^c and B are independent event;
- 3. A^c and B^c are independent event;

Proof. Since $A = (A \cap B) \cup (A \cap B^c)$, we have

$$\mathbb{P}(A \cap B^{c}) = \mathbb{P}(A) - \mathbb{P}(A \cap B)$$

$$= \mathbb{P}(A) - \mathbb{P}(A) \cdot \mathbb{P}(B)$$

$$= \mathbb{P}(A) \cdot (1 - \mathbb{P}(B))$$

$$= \mathbb{P}(A) \cdot \mathbb{P}(B^{c}).$$

The others propositions are trivial.

Definition 4 (Mutually independent). We say events A_1, \dots, A_n on Sare mutually independent if

$$\mathbb{P}\left(A_{i} \cap A_{j}\right) = \mathbb{P}\left(A_{i}\right) \cdot \mathbb{P}\left(A_{j}\right),$$

$$\mathbb{P}\left(A_{i} \cap A_{j} \cap A_{k}\right) = \mathbb{P}\left(A_{i}\right) \cdot \mathbb{P}\left(A_{j}\right) \cdot \mathbb{P}\left(A_{k}\right),$$

$$\vdots$$

$$\mathbb{P}\left(\bigcap_{i=1}^{n} A_{i}\right) = \prod_{i=1}^{n} \mathbb{P}\left(A_{i}\right).$$

for any $i \neq j \neq k \neq \cdots$, $i, j, k, \cdots \in \{1, \cdots, n\}$.

Random variable

Intuitively, random variable *X* is a real function on sample space $S \xrightarrow{X} \mathbb{R}$. For example, flip a coin twice, we can define X is the number of heads, that is X(H, H) = 2, X(H, T) = 1, X(T, H) = 1, X(T, T) = 0.

Definition 5 (Random variable). Random variable is a measurable real map from sample space S to \mathbb{R} .

Notice that the probability \mathbb{P} is defined on the σ algebra \mathcal{F} of the sample space *S*, instead of random variable *X*. So when we talk about the probability of the value of the random variable, what we mean is the probability of the **pre-image** of the map *X*, which is the element of \mathcal{F} .

The pre-image of X is denoted by X^{-1} , means

$$X^{-1}(x) = \{ s \in S | X(s) = x \},$$

of course $X^{-1}(x) \subseteq S$ and $X^{-1}(x) \in \mathcal{F}$. And furthermore:

$$\mathbb{P}\left(X \in A\right) = \mathbb{P}\left(X^{-1}(A)\right) = \mathbb{P}\left(\left\{s \in S \middle| X(s) \in A\right\}\right).$$

So when we flip a fair coin twice, and define *X* is the number of heads, then

$$\mathbb{P}(X = 1) = \mathbb{P}(X^{-1}(1))$$

$$= \mathbb{P}(\{s \in S | X(s) = 1\})$$

$$= \mathbb{P}(\{(H, T), (T, H)\})$$

$$= \frac{1}{4}.$$

Notice that

Note 5. Here X^{-1} is not the inverse of map *X*, since *X* would not be a bijection.