

Housekeeping

- Wrangling coding practice due tonight!
- Office hours tomorrow 10am-12pm
- Problem Set 3 has large R component

Joining data frames

Assume we have two data frame, x and y. There are some shared variables (i.e. columns) in the two. Suppose we want to combine them together into one single data frame.

```
1 something_join(x, y)
```

Setup

For the next few slides...

1 **x**

1 y

ID	x_val
1	x1
2	x2
3	x3

left_join()

Adds columns to x from y, matching all rows in x

1 x			1 y	,				
ID	x_val		Ш	D y_val				
1	x1	_		1 y1		loft ioin(v	, _v)	
2	x2	_		2 y2		left_join(x	, y)	_
3	хЗ	_		4 y4	1	x1	1	V
1 lef	t_join(z	x, y, b	y = "II)")				
	_	ID x	_val	y_val	2	x2	2	V
		1 x	1	y1		XZ		У
		2 x	2	y2	3	v2	4	V
	-	3 x	:3	NA	3	x3	4	У

right_join()

Adds columns to x from y, matching all rows in y

full_join()

Adds columns to x from y, matching all rows in x OR y

inner_join()

All rows from x where there are matching values in y, return all combination of multiple matches in the case of multiple matches

inner_join() (cont.)

Example with multiple matches:

```
    ID x_val
    ID y_val

    1 x1
    1 y1

    2 x2
    2 y2

    3 x3
    4 y4

    1 new_x
    1 new_y
```

```
1 inner_join(x2, y2, by = "ID")
```

Warning in inner_join(x2, y2, by = "ID"): Detected an unexpected many-to-many relationship between x and y.

- i Row 1 of `x` matches multiple rows in `y`.
- i Row 1 of `y` matches multiple rows in `x`.
- i If a many-to-many relationship is expected, set `relationship =
 "many-to-many" to silence this warning.

ID	x_val	y_val
1	x1	y1
1	x1	new_y
2	x2	y2
1	new_x	y1
1	new_x	new_y

semi_join()

Returns all rows from x with a match in y, but does not add columns from y

anti_join()

Returns all rows from x without any match in y, and not add columns from y

Joining with different variable names

If the variables in x and y have different names but we know they represent the same variable:

ID	x_val	y_val
1	x1	y1
2	x2	y2
3	х3	NA

Joining on multiple variables

Can specify more than one variable in the by argument. Will need to a vector of character objects.

enrollment			1 pa	yment		
student_id	course	start_year		student_id	Course	status
1	STAT 310	F22		1	STAT 310	paid
1	MATH 223	F22		1	MATH 223	paid
2	STAT 310	F23		2	STAT 310	unpaid
3	STAT 201	W24		3	STAT 201	paid

student_id	tudent_id course		status
1	STAT 310	F22	paid
1	MATH 223	F22	paid
2	STAT 310	F23	unpaid
3	STAT 201	W24	paid

Live code

Example

We have data on fishery harvests (in tons) by countries from 2016:

```
1 fish |>
2 slice(1:9)
```

country	capture	aquaculture
Afghanistan	1000	1200
Albania	7886	950
Algeria	95000	1361
American Samoa	3047	20
Andorra	0	0
Angola	486490	655
Antigua and Barbuda	3000	10
Argentina	755226	3673
Armenia	3758	16381

Bringing in continent

Suppose I would like to explore the data on a continent level. We don't have continent in the current data frame, but we could join in the following data:

```
1 continents |>
2 slice(1:5)
```

country	continent
Afghanistan	Asia
Åland Islands	Europe
Albania	Europe
Algeria	Africa
American Samoa	Oceania

- We want to keep all rows and columns from fish and add a column for corresponding continents. Which join function should we use?
- We want to keep all rows from fish for which we have a corresponding continent and add a column for corresponding continents. Which join function should we use?

Example (cont.)

```
1 left_join(fish, continents, by = "country") |>
2 slice(1:9)
```

country	capture	aquaculture	continent
Afghanistan	1000	1200	Asia
Albania	7886	950	Europe
Algeria	95000	1361	Africa
American Samoa	3047	20	Oceania
Andorra	0	0	Europe
Angola	486490	655	Africa
Antigua and Barbuda	3000	10	NA
Argentina	755226	3673	Americas
Armenia	3758	16381	Asia

1	<pre>inner_join(fish,</pre>	continents,	by =	"country")	>
2	<pre>slice(1:9)</pre>				

country	capture	aquaculture	continent
Afghanistan	1000	1200	Asia
Albania	7886	950	Europe
Algeria	95000	1361	Africa
American Samoa	3047	20	Oceania
Andorra	0	0	Europe
Angola	486490	655	Africa
Argentina	755226	3673	Americas
Armenia	3758	16381	Asia
Aruba	142	0	Americas

- Notice the NA
- Could also use the following piping code:

```
1 fish |>
2 left_join(continents, by = "country")
```

group_by()

```
1 fish |>
      left join(continents, by = "country") |>
  3
      group by(continent) |> # get continent-level summary stats
  4
      summarise(mean capture = mean(capture), sd capture = sd(capture))
# A tibble: 6 \times 3
 continent mean capture sd capture
                  <dbl>
                             <dbl>
 <chr>
1 Africa
                180705.
                           266107.
2 Americas
                433235. 1038899.
3 Asia
               1036018. 2869652.
                317874. 797072.
4 Europe
5 Oceania
                74660. 121027.
6 <NA>
                134722. 448079.
```

Visualize

```
fish |>
na.omit() |> #remove observations with any NAs
left_join(continents, by = "country") |>
ggplot(aes(x = continent, y = capture)) +
geom_boxplot(outliers = F) +
theme_bw() +
labs(caption = "Excluding outliers")
```


Visualize (cont.)

```
fish |>
mutate(log_capture = log(capture)) |>
left_join(continents, by = "country") |>
na.omit() |> #remove observations with any NAs
ggplot(aes(x = continent, y = capture)) +
geom_boxplot(outliers = F) +
theme_bw() +
labs(caption = "Excluding outliers", y = "Log capture")
```

Warning: Removed 4 rows containing non-finite outside the scale range (`stat_boxplot()`).

Excluding countries with 0 capture