Decidability and generation for the variety of distributive ℓ -pregroups

Isis A. Gallardo (joint work with Nick Galatos)

University of Denver

May 14, 2024

Lattice-ordered groups

A lattice-ordered group, or ℓ -group, is an algebra $\mathbf{G}=(G,\wedge,\vee,\cdot,^{-1},1)$ such that

- \bullet (G, \land, \lor) is a lattice,
- $(G, \cdot, ^{-1}, 1)$ is a group $(x^{-1}x = 1 = xx^{-1})$ and
- multiplication preserves the order. (eqv: it distributes over join/over meet.)

A pregroup (Lambek, Buzskowski) is a structure $(L,\cdot,1,\stackrel{\ell}{,}^r,\leqslant)$, where $(L,\cdot,1)$ is a monoid, multiplication preserves the order and:

$$x^{\ell}x \leqslant 1 \leqslant xx^{\ell} \text{ and } xx^{r} \leqslant 1 \leqslant x^{r}x.$$

A lattice-ordered pregroup, or ℓ -pregroup, is an algebra $\mathbf{L}=(L,\wedge,\vee,\cdot,{}^\ell,{}^r,1)$ such that

- (L, \wedge, \vee) is a lattice,
- ullet $(L,\cdot,1,{}^\ell,{}^r,\leqslant)$ is a pregroup

We denote by LG the variety of ℓ -groups, and by DLP the variety of ℓ -pregroups for which the lattice reduct is distributive.

 Distributive ℓ-pregroups: Generation and decidability, with N. Galatos, Journal of Algebra, Volume 648, 2024, Pages 9-35.

Examples of ℓ -groups

Examples:

- $(\mathbb{Z}, min, max, +, -, 0)$, $(\mathbb{Q}, min, max, +, -, 0)$, $(\mathbb{R}, min, max, +, -, 0)$.
- The order-preserving permutations (aka automorphisms) $\operatorname{Aut}(C, \leq)$ on a totally-ordered set (C, \leq) , under functional composition and pointwise order. For example, the *symmetric* ℓ -groups: $\operatorname{Aut}(\mathbf{n})$, $\operatorname{Aut}(\mathbb{R})$, $\operatorname{Aut}(\mathbb{R})$.

Holland's embedding theorem. Every ℓ -group can be embedded in a symmetric ℓ -group: $\mathbf{G} \hookrightarrow \mathbf{Aut}(\mathbf{C})$, for some chain \mathbf{C} .

Holland's generation theorem. The variety of ℓ -groups is generated by $\mathbf{Aut}(\mathbb{R})$: $\mathsf{LG} = \mathsf{V}(\mathbf{Aut}(\mathbb{R}))$.

Theorem. (Holland - McCleary) The equational theory of ℓ -groups is decidable.

Examples of distributive ℓ -pregroups and representation

Definition: Given functions $f: \mathbf{P} \to \mathbf{Q}$ and $g: \mathbf{Q} \to \mathbf{P}$ between posets, we say that g is a *residual* for f, or that f is a *dual residual* for g, or that (f,g) form a *residuated pair*, if

$$f(p) \leqslant q \Leftrightarrow p \leqslant g(q)$$
, for all $p \in P, q \in Q$.

Fact: The residual of f, when it exists, is unique and we denote it by f^r . The dual residual of f, when it exists, is unique and we denote it by f^ℓ . Also,

$$f^\ell(y) = \bigwedge \{x: y \leqslant f(x)\} \qquad \text{ and } \qquad f^r(y) = \bigvee \{x: f(x) \leqslant y\}.$$

Given a chain C, F(C) denotes the set of all functions from C to C that have residuals and dual residuals of all orders.

Fact (Galatos - Jipsen - Kowalski - Ono, 2007): For every chain \mathbf{C} , $\mathbf{F}(\mathbf{C})$ is a distributive ℓ -pregroup, under functional composition and pointwise order.

Theorem (Galatos - Horcik, 2013): Every distributive ℓ -pregroup can be embedded in $\mathbf{F}(\mathbf{C})$, for some chain \mathbf{C} .

Generation

It turns out that $\mathbf{F}(\mathbb{R}) = \mathbf{Aut}(\mathbb{R})$ (all bi-infinitely residuated maps on \mathbb{R} are bijections), as we see below.

On the other hand the only invertible elements (bijections) in $\mathbf{F}(\mathbb{Z})$ are the translations: $x\mapsto nx$, for $n\in\mathbb{Z}$. It is thus surprising that:

Theorem (G.-Galatos): DLP is generated by $F(\mathbb{Z})$.

In particular, if an equation fails in $\mathbf{Aut}(\mathbb{R})$, then it fails in $\mathbf{F}(\mathbb{Z})$.

A chain Ω is called *integral* it is isomorphic to a lexicographic product $I \times \mathbb{Z}$.

Theorem (G.-Galatos): Every distributive ℓ -pregroup can be embedded in $F(\Omega)$ for some *integral* chain Ω .

Limit points

Given a chain Ω , we define:

$$\Omega^-:=\{a\in\Omega:\,a=\bigvee_{b< a}b\},\quad \Omega^+:=\{a\in\Omega:\,a=\bigwedge_{a< b}b\}\quad\text{and}\quad \Omega^\pm:=\Omega^-\cup\Omega^+,$$

the sets of limit points from below, limit points from above and limit points, respectively.

Limit points

Given a chain Ω , we define:

$$\Omega^-:=\{a\in\Omega:\ a=\bigvee_{b< a}b\},\quad \Omega^+:=\{a\in\Omega:\ a=\bigwedge_{a< b}b\}\quad\text{and}\quad \Omega^\pm:=\Omega^-\cup\Omega^+,$$

the sets of limit points from below, limit points from above and *limit points*, respectively.

Maps that are residuated and dually residuated on a chain Ω preserve and reflect certain limit points:

Lemma. If Ω is a chain, $a \in \Omega$, $f \in F(\Omega)$ and $|f^{-1}[f(a)]| = 1$, then $a \in \Omega^-$ iff $f(a) \in \Omega^-$; and $a \in \Omega^+$ iff $f(a) \in \Omega^+$.

Limit points

Given a chain Ω , we define:

$$\Omega^-:=\{a\in\Omega:\,a=\bigvee_{b< a}b\},\quad \Omega^+:=\{a\in\Omega:\,a=\bigwedge_{a< b}b\}\quad\text{and}\quad \Omega^\pm:=\Omega^-\cup\Omega^+,$$

the sets of limit points from below, limit points from above and *limit points*, respectively.

Maps that are residuated and dually residuated on a chain Ω preserve and reflect certain limit points:

Lemma. If Ω is a chain, $a \in \Omega$, $f \in F(\Omega)$ and $|f^{-1}[f(a)]| = 1$, then $a \in \Omega^-$ iff $f(a) \in \Omega^-$; and $a \in \Omega^+$ iff $f(a) \in \Omega^+$.

Lemma. If Ω is a chain, $a \in \Omega$, $f \in F(\Omega)$ and $|f^{-1}[a]| > 1$, then $a \notin \Omega^{\pm}$, $f^{\ell}(a) \notin \Omega^{-}$ and $f^{r}(a) \notin \Omega^{+}$.

If $a, \gamma \in \Omega^-$ and $\gamma \in \Omega^+$, then $\overline{\Omega}$ will contain

$$\Omega \cup \{(-n,a) : n \in \mathbb{Z}^+\} \cup \{(n,\gamma) : n \in \mathbb{Z}^*\}$$

If $a, \gamma \in \Omega^-$ and $\gamma \in \Omega^+$, then $\overline{\Omega}$ will contain

$$\Omega \cup \{(-n, a) : n \in \mathbb{Z}^+\} \cup \{(n, \gamma) : n \in \mathbb{Z}^*\}$$

We define $(k, a) \leq (n, b)$ if and only if a < b or $(a = b \text{ and } k \leq n)$, where we write (0, a) for $a \in \Omega$.

If $a, \gamma \in \Omega^-$ and $\gamma \in \Omega^+$, then $\overline{\Omega}$ will contain

$$\Omega \cup \{(-n,a): n \in \mathbb{Z}^+\} \cup \{(n,\gamma): n \in \mathbb{Z}^*\}$$

We define $(k, a) \leq (n, b)$ if and only if a < b or $(a = b \text{ and } k \leq n)$, where we write (0, a) for $a \in \Omega$.

In general:

$$\overline{\Omega} = \Omega \cup \{(k, a) : a \in \Omega^+ \text{ and } k \in \mathbb{Z}^+\}$$
$$\cup \{(-k, a) : a \in \Omega^- \text{ and } k \in \mathbb{Z}^+\}$$

Integral chains

Embedding $F(\Omega)$ in $F(\overline{\Omega})$, where $\overline{\Omega}$ an integral chain

If $a, \gamma \in \Omega^-$ and $\gamma \in \Omega^+$, then $\overline{\Omega}$ will contain

$$\Omega \cup \{(-n, a) : n \in \mathbb{Z}^+\} \cup \{(n, \gamma) : n \in \mathbb{Z}^*\}$$

We define $(k,a) \leq (n,b)$ if and only if a < b or $(a = b \text{ and } k \leq n)$, where we write (0,a) for $a \in \Omega$.

In general:

$$\overline{\Omega} = \Omega \cup \{(k, a) : a \in \Omega^+ \text{ and } k \in \mathbb{Z}^+\}$$
$$\cup \{(-k, a) : a \in \Omega^- \text{ and } k \in \mathbb{Z}^+\}$$

$$\frac{\overline{f}}{\overline{f}} \text{ extends } f \text{ with } \\ \overline{f}((n,a)) = (n,f(a)) \text{ and } \overline{f}((n,a)) = f(\gamma).$$

If $a, \gamma \in \Omega^-$ and $\gamma \in \Omega^+$, then $\overline{\Omega}$ will contain

$$\Omega \cup \{(-n, a) : n \in \mathbb{Z}^+\} \cup \{(n, \gamma) : n \in \mathbb{Z}^*\}$$

We define $(k,a) \leq (n,b)$ if and only if a < b or $(a = b \text{ and } k \leq n)$, where we write (0,a) for $a \in \Omega$.

In general:

$$\overline{\Omega} = \Omega \cup \{(k, a) : a \in \Omega^+ \text{ and } k \in \mathbb{Z}^+\}$$
$$\cup \{(-k, a) : a \in \Omega^- \text{ and } k \in \mathbb{Z}^+\}$$

 $\overline{\underline{f}}$ extends f with $\overline{f}((n,a)) = (n,f(a))$ and $\overline{f}((n,a)) = f(\gamma)$.

If $f \in F(\Omega)$ and $kb \in \overline{\Omega}$, we define

$$\overline{f}(kb) = f(b)$$
, if $|f^{-1}[f(b)]| > 1$ or $k = 0$.

$$\overline{f}(kb) = kf(b)$$
, if $|f^{-1}[f(b)]| = 1 & k \neq 0$.

Improved representation

Lemma: If Ω is a chain and $f \in F(\Omega)$, then $\overline{f} \in F(\overline{\Omega})$.

Improved representation

Lemma: If Ω is a chain and $f \in F(\Omega)$, then $\overline{f} \in F(\overline{\Omega})$.

Theorem: For every chain Ω , the assignment $\overline{\ }: F(\Omega) \to F(\overline{\Omega})$ is an ℓ -pregroup embedding.

Improved representation

Lemma: If Ω is a chain and $f \in F(\Omega)$, then $\overline{f} \in F(\overline{\Omega})$.

Theorem: For every chain Ω , the assignment $\overline{}: F(\Omega) \to F(\overline{\Omega})$ is an ℓ -pregroup embedding.

Theorem: Every distributive ℓ -pregroup can be embedded in $\mathbf{F}(\Omega)$ for some integral chain Ω .

Corollary: If an equation fails in DLP, then it fails in $F(\Omega)$, for some integral chain Ω .

Example of an ℓ -pregroup diagram

The equation $1 \le x^{\ell}x$ fails in $\mathbf{F}(\mathbb{Z})$, because $f^{\ell}f(7) = 4 < 7 = id_{\mathbb{Z}}(7)$.

Example of an ℓ -pregroup diagram

The equation
$$1 \le x^{\ell}x$$
 fails in $\mathbf{F}(\mathbb{Z})$, because $f^{\ell}f(7) = 4 < 7 = id_{\mathbb{Z}}(7)$.

We restrict f and f^ℓ to partial functions g and $g^{[\ell]}$ on the chain $7, f(7) = 5, f^\ell f(7) = 4$ by g(7) = 5 and $g^{[\ell]}(5) = 4$.

Example of an ℓ -pregroup diagram

The equation $1 \le x^{\ell}x$ fails in $\mathbf{F}(\mathbb{Z})$, because $f^{\ell}f(7) = 4 < 7 = id_{\mathbb{Z}}(7)$.

We restrict f and f^ℓ to partial functions q and $q^{[\ell]}$ on the chain

$$7, f(7) = 5, f^{\ell}f(7) = 4$$

by
$$g(7) = 5$$
 and $g^{[\ell]}(5) = 4$.

To make sure that $g^{[\ell]}(5) = 4$ is computed correctly, we need to

- include more elements in the chain
- ullet define g on some of these elements
- mark some covers: 3 < 4.

Definitions

A *c-chain* is a triple (Δ, \leq, \prec) , consisting of a finite chain (Δ, \leq) and a subset $\prec \subseteq \prec$ of the covering relation, i.e. if $a \prec b$, then a is covered by b.

Given a partial function g on a c-chain $\Delta=(\Delta,\leqslant,\prec)$, we define the relation $g^{[\ell]}$ on Δ by: for all $x,b\in\Delta$, $(x,b)\in g^{[\ell]}$ iff

 $b \in Dom(g)$ and $\exists a \in Dom(g)$ such that $a \prec b$ and $g(a) < x \leq g(b)$.

Also, we define the relation $g^{[r]}$ on Δ by: for all $x, a \in \Delta$, $(x, a) \in g^{[r]}$ iff $a \in Dom(g)$, there exists $b \in Dom(g)$, such that $a \prec b$ and $g(a) \leqslant x < g(b)$.

Given a c-chain Δ , and an order-preserving partial function g on Δ , we define $g^{\lfloor n \rfloor}$, for all $n \in \mathbb{N}$, recursively by: $g^{\lfloor 0 \rfloor} = g$ and $g^{\lfloor k+1 \rfloor} := (g^{\lfloor k \rfloor})^{\lfloor \ell \rfloor}$. Also, we define $g^{\lfloor -n \rfloor}$, for all $n \in \mathbb{N}$, recursively by $g^{\lfloor -(k+1) \rfloor} := (g^{\lfloor k \rfloor})^{\lfloor r \rfloor}$.

A diagram $(\Delta, f_1, \ldots, f_n)$, consists of a finite c-chain Δ and order-preserving partial functions f_1, \ldots, f_n on Δ , where $n \in \mathbb{N}$.

Notation: if a has a lower cover, we denote it by -a or (-1)a or a-1; +a, 1a and a+1 denote the upper cover of a, when it exists. Also, we write 0a for a.

Given $\varepsilon: 1 \leqslant w_1 \lor \ldots \lor w_k$ (intentional form), where w_1,\ldots,w_k are of the form $x_1^{(m_1)}x_2^{(m_2)}\ldots x_i^{(m_i)}$ where x_1,\ldots,x_i are variables (not necessarily distinct), $i\in\mathbb{N}$ and $m_1,\ldots,m_i\in\mathbb{Z}$; $x^{(0)}:=x$ and for all $m\in\mathbb{Z}^+$, $x^{(m)}:=x^{\ell^m}$, $x^{(-m)}:=x^{r^m}$.

Given $\varepsilon: 1 \leqslant w_1 \vee \ldots \vee w_k$ (intentional form), where w_1,\ldots,w_k are of the form $x_1^{(m_1)}x_2^{(m_2)}\ldots x_i^{(m_i)}$ where x_1,\ldots,x_i are variables (not necessarily distinct), $i\in\mathbb{N}$ and $m_1,\ldots,m_i\in\mathbb{Z};\ x^{(0)}:=x$ and for all $m\in\mathbb{Z}^+,\ x^{(m)}:=x^{\ell^m},\ x^{(-m)}:=x^{r^m}$. We define the set of *final subwords* of ε

$$FS_{\varepsilon} := \{u : w_1 = vu \text{ or } \dots \text{ or } w_k = vu, \text{ for some } v\}$$

Given $\varepsilon:1\leqslant w_1\vee\ldots\vee w_k$ (intentional form), where w_1,\ldots,w_k are of the form $x_1^{(m_1)}x_2^{(m_2)}\ldots x_i^{(m_i)}$ where x_1,\ldots,x_i are variables (not necessarily distinct), $i\in\mathbb{N}$ and $m_1,\ldots,m_i\in\mathbb{Z};\ x^{(0)}:=x$ and for all $m\in\mathbb{Z}^+,\ x^{(m)}:=x^{\ell^m},\ x^{(-m)}:=x^{r^m}$. We define the set of *final subwords* of ε

$$FS_{\varepsilon} := \{u : w_1 = vu \text{ or } \dots \text{ or } w_k = vu, \text{ for some } v\}$$

For a variable x among the variables x_1, \ldots, x_n of ε , $m \in \mathbb{N}$ and $v \in FS_{\varepsilon}$ we define:

$$\begin{split} \Delta^v_{x,m} &:= \{v\} \cup \bigcup_{j=0}^m \{\sigma_j x^{(j)} \dots \sigma_m x^{(m)} v : \sigma_j, \dots, \sigma_m \in \{-1,0\}, \sigma_0 = 0\} \\ \Delta^v_{x,-m} &:= \{v\} \cup \bigcup_{j=0}^m \{\sigma_j x^{(-j)} \dots \sigma_m x^{(-m)} v : \sigma_j, \dots, \sigma_m \in \{1,0\}, \sigma_0 = 0\} \\ S_\varepsilon &:= \{(i,m,v) : i \in \{1,\dots,n\}, m \in \mathbb{Z}, v \in FS_\varepsilon \text{ and } x_i^{(m)} v \in FS_\varepsilon\} \\ \Delta_\varepsilon &:= \{1\} \cup \bigcup_{(i,m,v) \in S} \Delta^v_{x_i,m} \end{split}$$

Given $\varepsilon:1\leqslant w_1\vee\ldots\vee w_k$ (intentional form), where w_1,\ldots,w_k are of the form $x_1^{(m_1)}x_2^{(m_2)}\ldots x_i^{(m_i)}$ where x_1,\ldots,x_i are variables (not necessarily distinct), $i\in\mathbb{N}$ and $m_1,\ldots,m_i\in\mathbb{Z};\ x^{(0)}:=x$ and for all $m\in\mathbb{Z}^+,\ x^{(m)}:=x^{\ell^m},\ x^{(-m)}:=x^{r^m}$. We define the set of *final subwords* of ε

$$FS_{\varepsilon} := \{u : w_1 = vu \text{ or } \dots \text{ or } w_k = vu, \text{ for some } v\}$$

For a variable x among the variables x_1, \ldots, x_n of ε , $m \in \mathbb{N}$ and $v \in FS_{\varepsilon}$ we define:

$$\begin{split} & \Delta_{x,m}^v := \{v\} \cup \bigcup_{j=0}^m \{\sigma_j x^{(j)} \dots \sigma_m x^{(m)} v : \sigma_j, \dots, \sigma_m \in \{-1,0\}, \sigma_0 = 0\} \\ & \Delta_{x,-m}^v := \{v\} \cup \bigcup_{j=0}^m \{\sigma_j x^{(-j)} \dots \sigma_m x^{(-m)} v : \sigma_j, \dots, \sigma_m \in \{1,0\}, \sigma_0 = 0\} \\ & S_\varepsilon := \{(i,m,v) : i \in \{1,\dots,n\}, m \in \mathbb{Z}, v \in FS_\varepsilon \text{ and } x_i^{(m)} v \in FS_\varepsilon\} \\ & \Delta_\varepsilon := \{1\} \cup \bigcup_{(i,m,v) \in S} \Delta_{x_i,m}^v \end{split}$$

Observe that, $FS_{\varepsilon} \subseteq \Delta_{\varepsilon}$ is finite, hence also Δ_{ε} is finite.

Compatible surjections

Given an equation $\varepsilon(x_1,\ldots,x_n)$ in intentional form, a *compatible surjection* for ε is an onto map $\varphi:\Delta_{\varepsilon}\to\mathbb{N}_q$, where $\mathbb{N}_q=\{1,\ldots,q\}$ is an initial segment of \mathbb{Z}^+ under the natural order (and $q\leqslant |\Delta_{\varepsilon}|$), such that:

- (i) The relation $g_i := \{(\varphi(u), \varphi(x_i u)) \mid u, x_i u \in \Delta_{\varepsilon}\}$ on \mathbb{N}_q is an order-preserving partial function for all $i \in \{1, \ldots, n\}$.
- (ii) The relation $\prec := \{ (\varphi(v), \varphi(+v)) \mid v, +v \in \Delta_{\varepsilon} \} \cup \{ (\varphi(-v), \varphi(v)) \mid v, -v \in \Delta_{\varepsilon} \}$ on \mathbb{N}_q is contained in the covering relation \prec of \mathbb{N}_q .
- $\text{(iii)} \ \ \varphi(x_i^{(m)}u)=g_i^{[m]}(\varphi(u))\text{, when } i\in\{1,\dots,n\}\text{, } m\in\mathbb{Z} \text{ and } u,x_i^{(m)}u\in\Delta_\varepsilon.$

By the first two conditions, $\mathbf{D}_{\varepsilon,\varphi}:=(\mathbb{N}_q,\leqslant,\prec,g_1,\ldots,g_n)$ is a diagram; in (iii), $g_i^{[m]}$ is calculated in this diagram.

We say that the equation $1 \leq w_1 \vee \ldots \vee w_k$ in intentional form *fails* in a compatible surjection φ , if $\varphi(w_1), \ldots, \varphi(w_k) < \varphi(1)$.

Theorem: If an equation ε fails in DLP, then it fails in some compatible surjection for ε .

Theorem: If an equation ε fails in a compatible surjection, then it fails in a diagram based on a chain of size up to $|\Delta_{\varepsilon}|$.

 $\begin{array}{l} 1 \leqslant x^{\ell}x \text{ fails in the diagram} \\ (\{3,4,5,6,7,8,9\},\leqslant,\prec,g), \text{ since} \\ g^{[\ell]}g(7) = 5 < 7. \end{array}$

 $\begin{array}{l} 1 \leqslant x^{\ell}x \text{ fails in the diagram} \\ (\{3,4,5,6,7,8,9\},\leqslant,\prec,g), \text{ since} \\ g^{\lfloor\ell\rfloor}g(7) = 5 < 7. \end{array}$

We extend g to an $f \in \mathbf{F}(\mathbb{Z})$ such that $g^{[\ell]}(7) = f^{\ell}(7)$.

 $\begin{array}{l} 1 \leqslant x^{\ell}x \text{ fails in the diagram} \\ (\{3,4,5,6,7,8,9\},\leqslant,\prec,g), \text{ since} \\ g^{\lfloor\ell\rfloor}g(7) = 5 < 7. \end{array}$

We extend g to an $f \in \mathbf{F}(\mathbb{Z})$ such that $g^{[\ell]}(7) = f^{\ell}(7)$.

We have $f^{\ell}f(7) = 5 < 7$ and therefore $\mathbf{F}(\mathbb{Z}) \not\models 1 \leqslant x^{\ell}x$.

 $\begin{array}{l} 1 \leqslant x^{\ell}x \text{ fails in the diagram} \\ (\{3,4,5,6,7,8,9\},\leqslant,\prec,g), \text{ since} \\ g^{\lfloor\ell\rfloor}g(7) = 5 < 7. \end{array}$

We extend g to an $f \in \mathbf{F}(\mathbb{Z})$ such that $g^{[\ell]}(7) = f^{\ell}(7)$.

We have $f^{\ell}f(7) = 5 < 7$ and therefore $\mathbf{F}(\mathbb{Z}) \not\models 1 \leqslant x^{\ell}x$.

Generation and decidability

Theorem: Every equation in the language of ℓ -pregroups that fails in a diagram also fails in $\mathbf{F}_{fs}(\mathbb{Z})$, the subalgebra of $\mathbf{F}(\mathbb{Z})$ consisting of the functions of finite support.

Generation and decidability

Theorem: Every equation in the language of ℓ -pregroups that fails in a diagram also fails in $\mathbf{F}_{fs}(\mathbb{Z})$, the subalgebra of $\mathbf{F}(\mathbb{Z})$ consisting of the functions of finite support.

Corollary: An equation ε holds in DLP iff it holds in all compatible surjections for ε iff it holds in all finite diagrams for ε of size up to $|\Delta_{\varepsilon}|$ iff it holds in $\mathbf{F}_{\mathrm{fs}}(\mathbb{Z})$ iff it holds in $\mathbf{F}(\mathbb{Z})$.

Generation and decidability

Theorem: Every equation in the language of ℓ -pregroups that fails in a diagram also fails in $\mathbf{F}_{\mathsf{fs}}(\mathbb{Z})$, the subalgebra of $\mathbf{F}(\mathbb{Z})$ consisting of the functions of finite support.

Corollary: An equation ε holds in DLP iff it holds in all compatible surjections for ε iff it holds in all finite diagrams for ε of size up to $|\Delta_{\varepsilon}|$ iff it holds in $\mathbf{F}_{\mathrm{fs}}(\mathbb{Z})$ iff it holds in $\mathbf{F}(\mathbb{Z})$.

Corollary: The equational theory of DLP is decidable.

Example of failure

For $1\leqslant x^\ell x$ we consider the sets $\Delta^1_{x,0}=\{1,x\}$ and $\Delta^x_{x,1}=\{x,x^\ell x,-x^\ell x,xx^\ell x,x-x^\ell x\}.$ Their union is the set $\Delta_\varepsilon=\{1,x,x^\ell x,-x^\ell x,xx^\ell x,x-x^\ell x\}.$

Example of failure

For $1\leqslant x^\ell x$ we consider the sets $\Delta^1_{x,0}=\{1,x\}$ and $\Delta^x_{x,1}=\{x,x^\ell x,-x^\ell x,xx^\ell x,x-x^\ell x\}.$ Their union is the set $\Delta_\varepsilon=\{1,x,x^\ell x,-x^\ell x,xx^\ell x,x-x^\ell x\}.$

The compatible surjection is $\varphi: \Delta_{\varepsilon} \to \{1, 2, 3, 4\}$ where:

$$\varphi(x)=\varphi(xx^\ell x)=4 \quad \varphi(1)=\varphi(x-x^\ell x)=3$$

$$\varphi(x^\ell x)=2 \quad \varphi(-x^\ell x)=1$$

Example of failure

For $1\leqslant x^\ell x$ we consider the sets $\Delta^1_{x,0}=\{1,x\}$ and $\Delta^x_{x,1}=\{x,x^\ell x,-x^\ell x,xx^\ell x,x-x^\ell x\}.$ Their union is the set $\Delta_\varepsilon=\{1,x,x^\ell x,-x^\ell x,xx^\ell x,x-x^\ell x\}.$

The compatible surjection is $\varphi: \Delta_{\varepsilon} \to \{1, 2, 3, 4\}$ where:

$$\begin{split} \varphi(x) &= \varphi(xx^\ell x) = 4 \quad \varphi(1) = \varphi(x - x^\ell x) = 3 \\ \varphi(x^\ell x) &= 2 \quad \varphi(-x^\ell x) = 1 \end{split}$$

The resulting diagram is $(\mathbb{N}_4, \leqslant, \prec, g)$, where \leqslant is induced by \mathbb{Z} , $\prec = \{(1,2)\}$ and $g = \{(3,4),(2,4),(1,3)\}$.

References

Cayley's and Holland's theorems for idempotent semirings and their applications to residuated lattices, N. Galatos, R. Horcik, Semigroup Forum 87(3) (2013), 569-589.

Residuated frames with applications to decidability, N. Galatos, P. Jipsen, Transactions of the AMS 365(3) (2013), 1219-1249.

Residuated lattices: an algebraic glimpse at substructural logics., N. Galatos, P. Jipsen, T. Kowalski, and H. Ono., Studies in Logic and the Foundations of Mathematics, 151. Elsevier B. V., Amsterdam, 2007. xxii+509 pp.

Lattice-ordered pregroups are semi-distributive, N. Galatos, P. Jipsen, M. Kinyon, and A. Prenosil, Algebra Universalis 82(1) (2021), #16, 6pp.