Using a Synchrotron to Explore the Potential Verwey Transition in Lead Rhodium Oxide

Patrick Clancy¹, Melissa Van Bussel², Cassandra Thompson², Lindsey Munro², Jiaqiang Yan³, Jim Britten¹, and Jacob Ruff⁴

1. McMaster University, 2. Trent University, 3. Oak Ridge National Laboratory, 4. Cornell High Energy Synchrotron Source

October 21st, 2017

CUPC 2017, Carleton University

Lead Rhodium Oxide

- ► Pb₃Rh₇O₁₅
- Mixed Valence compound: $Pb_3[Rh^{3+}]_4[Rh^{4+}]_3O_{15}$
- ▶ Transition metal
- ► Space group: P6₃/mcm
- Hexagonal crystal structure
 - ▶ Lattice constants: a = b = 10.35 Å, c = 13.28 Å

Verwey Transition

- A type of phase transition: properties change rapidly/discontinuously
- Electrical resistivity increases, charge ordering occurs
- ► Magnetite (Fe₃O₄) 3d transition metal, $T_V \sim 125K$
- ► Lead rhodium oxide 4d transition metal, change in space group at ~185K (H. Mizoguchi et al, 2009)
- Use synchrotron to determine charge ordering below ~185K
- Would be first 4d or 5d transition metal oxide Verwey Transition

Synchrotron X-rays

- Electron changes direction, energy is emitted
- Faster electron means higher energy emitted
- X-ray wavelengths can be achieved if electron is moving fast enough
- Synchrotron accelerates electrons, then changes their direction periodically, producing X-rays
- The X-rays are directed towards beamlines

Cornell High Energy Synchrotron Source

- ► Travelled to Ithaca, NY to use Cornell High Energy Synchrotron Source (CHESS) beamline A2
- 99.9999995% speed of light
- Circumference: 768m
- Week long experiment, with the first day being used to mount the crystal and align the beam properly

Details of the Experiment

- Beamline A2 can receive electromagnetic radiation of energies 5-70 keV
- ▶ Used 23.22 keV, K-edge for Rh
 - Energy required to eject an electron from the innermost shell
- Used liquid nitrogen stream to get sample to ~185K
 - Sometimes the mass would increase too much and sample would move, would need to realign
- Diffraction patterns produced in real-time

resonant scattering;
Single crystals & thin
films; High-energy
powder diffraction and
PDF; Reciprocal space
mapping; low
temperatures and
custom sample
environments

Resonant & non-

Predicted charge ordering:

Green = Rh⁴⁺
Blue = Rh³⁺
Grey = Intermediate Charge

H. Mizoguchi et al, Chem. Mater. (2009)

- For the space group P6₃/mcm, peaks should only be occurring on this plane (0KL) at 2n
- But structurally forbidden peaks are present both below AND above ~185K
- This suggests that the structure of lead rhodium oxide is more complicated than originally predicted

Charge ordering seen:

Summary and Conclusions

- ▶ Pb3Rh7O15 is the first 4d transition metal oxide candidate for a Verwey Transition, at ~175K
- ► The structure of lead rhodium oxide is more complex than predicted in 2009, at low and high temperatures
- At low temperatures (~175K), the crystal structure becomes twinned trigonal

Acknowledgments

Melissa Van Bussel is supported by the Trent University Physics Department and the Trent Central Student Association through the Academic, Personal, Professional and Leadership Development (APPLE) Fund.

