Filter Summary Report: CG,TIA,simple,Z1,Z2

Generated by MacAnalog-Symbolix

January 18, 2025

Contents

1 Examined $H(z)$ for CG TIA simple Z1 Z2: $\frac{Z_1Z_2Z_Lg_m+Z_1Z_L}{Z_1Z_2g_m+Z_1+Z_2+Z_L}$
${\bf 2} {\bf HP}$
3 BP 3.1 BP-1 $Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, R_2, \infty, \infty, \infty\right)$
$4~{ m LP}$
5 BS 5.1 BS-1 $Z(s) = \left(L_1 s + \frac{1}{C_1 s}, R_2, \infty, \infty, \infty\right)$ 5.2 BS-2 $Z(s) = \left(\frac{R_1\left(C_1 L_1 s^2 + 1\right)}{C_1 L_1 s^2 + C_1 R_1 s + 1}, R_2, \infty, \infty, \infty\right)$
6 GE 6.1 GE-1 $Z(s) = \left(R_1, L_2s + \frac{1}{C_2s}, \infty, \infty, \infty\right)$ 6.2 GE-2 $Z(s) = \left(R_1, L_2s + R_2 + \frac{1}{C_2s}, \infty, \infty, \infty\right)$ 6.3 GE-3 $Z(s) = \left(R_1, \frac{C_2L_2R_2s^2 + L_2s + R_2}{C_2L_2s^2 + 1}, \infty, \infty, \infty\right)$
6.2 GE-2 $Z(s) = \left(R_1, L_2s + R_2 + \frac{1}{C_2s}, \infty, \infty, \infty\right)$
$6.3 \text{GE-3} \ Z(s) = \left(R_1, \ \frac{C_2L_2R_2s^2 + L_2s + R_2}{C_2L_2s^2 + 1}, \ \infty, \ \infty, \ \infty\right) \dots $
$6.4 GE-4 Z(s) = \left(R_1, \frac{R_2(C_2L_2s^2+1)}{C_2L_2s^2+C_2R_2s+1}, \infty, \infty, \infty\right)$ $6.5 GE-5 Z(s) = \left(L_1s + R_1 + \frac{1}{C_1s}, R_2, \infty, \infty, \infty\right)$ $6.6 GE-6 Z(s) = \left(\frac{C_1L_1R_1s^2 + L_1s + R_1}{C_1L_1s^2 + 1}, R_2, \infty, \infty, \infty\right)$
6.5 GE-5 $Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, R_2, \infty, \infty, \infty\right)$
6.6 GE-6 $Z(s) = \left(\frac{C_1 L_1 R_1 s^2 + L_1 s + R_1}{C_1 L_1 s^2 + 1}, R_2, \infty, \infty, \infty\right)$
7 AP
1 11
8 INVALID-NUMER 8.1 INVALID-NUMER-1 $Z(s) = \left(L_1s, \frac{1}{C_2s}, \infty, \infty, \infty\right)$ 8.2 INVALID-NUMER-2 $Z(s) = \left(L_1s, \frac{R_2}{C_2R_2s+1}, \infty, \infty, \infty\right)$ 8.3 INVALID-NUMER-3 $Z(s) = \left(L_1s, R_2 + \frac{1}{C_2s}, \infty, \infty, \infty\right)$ 8.4 INVALID-NUMER-4 $Z(s) = \left(\frac{1}{C_1s}, \frac{1}{C_2s}, \infty, \infty, \infty\right)$ 8.5 INVALID-NUMER-5 $Z(s) = \left(\frac{1}{C_1s}, \frac{R_2}{C_2R_2s+1}, \infty, \infty, \infty\right)$
8 INVALID-NUMER 8.1 INVALID-NUMER-1 $Z(s) = \left(L_1s, \frac{1}{C_2s}, \infty, \infty, \infty\right)$ 8.2 INVALID-NUMER-2 $Z(s) = \left(L_1s, \frac{R_2}{C_2R_2s+1}, \infty, \infty, \infty\right)$ 8.3 INVALID-NUMER-3 $Z(s) = \left(L_1s, R_2 + \frac{1}{C_2s}, \infty, \infty, \infty\right)$ 8.4 INVALID-NUMER-4 $Z(s) = \left(\frac{1}{C_1s}, \frac{1}{C_2s}, \infty, \infty, \infty\right)$ 8.5 INVALID-NUMER-5 $Z(s) = \left(\frac{1}{C_1s}, \frac{R_2}{C_2R_2s+1}, \infty, \infty, \infty\right)$ 8.6 INVALID-NUMER-6 $Z(s) = \left(\frac{1}{C_1s}, R_2 + \frac{1}{C_2s}, \infty, \infty\right)$
8 INVALID-NUMER $8.1 \text{INVALID-NUMER-1} \ Z(s) = \left(L_1 s, \frac{1}{C_2 s}, \infty, \infty, \infty\right)$ $8.2 \text{INVALID-NUMER-2} \ Z(s) = \left(L_1 s, \frac{R_2}{C_2 R_2 s + 1}, \infty, \infty, \infty\right)$ $8.3 \text{INVALID-NUMER-3} \ Z(s) = \left(L_1 s, R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty\right)$ $8.4 \text{INVALID-NUMER-4} \ Z(s) = \left(\frac{1}{C_1 s}, \frac{1}{C_2 s}, \infty, \infty, \infty\right)$ $8.5 \text{INVALID-NUMER-5} \ Z(s) = \left(\frac{1}{C_1 s}, \frac{R_2}{C_2 R_2 s + 1}, \infty, \infty, \infty\right)$ $8.6 \text{INVALID-NUMER-6} \ Z(s) = \left(\frac{1}{C_1 s}, R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty\right)$ $8.7 \text{INVALID-NUMER-7} \ Z(s) = \left(\frac{R_1}{C_2 s + 1}, \frac{1}{C_2 s}, \infty, \infty, \infty\right)$
8 INVALID-NUMER $8.1 \text{INVALID-NUMER-1} \ Z(s) = \left(L_1 s, \frac{1}{C_2 s}, \infty, \infty, \infty\right)$ $8.2 \text{INVALID-NUMER-2} \ Z(s) = \left(L_1 s, \frac{R_2}{C_2 R_2 s + 1}, \infty, \infty, \infty\right)$ $8.3 \text{INVALID-NUMER-3} \ Z(s) = \left(L_1 s, R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty\right)$ $8.4 \text{INVALID-NUMER-4} \ Z(s) = \left(\frac{1}{C_1 s}, \frac{1}{C_2 s}, \infty, \infty, \infty\right)$ $8.5 \text{INVALID-NUMER-5} \ Z(s) = \left(\frac{1}{C_1 s}, \frac{R_2}{C_2 R_2 s + 1}, \infty, \infty, \infty\right)$ $8.6 \text{INVALID-NUMER-6} \ Z(s) = \left(\frac{1}{C_1 s}, R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty\right)$ $8.7 \text{INVALID-NUMER-7} \ Z(s) = \left(\frac{R_1}{C_2 s + 1}, \frac{1}{C_2 s}, \infty, \infty, \infty\right)$
8 INVALID-NUMER 8.1 INVALID-NUMER-1 $Z(s) = \left(L_1s, \frac{1}{C_2s}, \infty, \infty, \infty\right)$ 8.2 INVALID-NUMER-2 $Z(s) = \left(L_1s, \frac{R_2}{C_2R_2s+1}, \infty, \infty, \infty\right)$ 8.3 INVALID-NUMER-3 $Z(s) = \left(L_1s, R_2 + \frac{1}{C_2s}, \infty, \infty, \infty\right)$ 8.4 INVALID-NUMER-4 $Z(s) = \left(\frac{1}{c_1s}, \frac{1}{c_2s}, \infty, \infty, \infty\right)$ 8.5 INVALID-NUMER-5 $Z(s) = \left(\frac{1}{c_1s}, \frac{R_2}{C_2R_2s+1}, \infty, \infty, \infty\right)$ 8.6 INVALID-NUMER-6 $Z(s) = \left(\frac{1}{c_1s}, \frac{R_2}{c_2R_2s+1}, \infty, \infty, \infty\right)$ 8.7 INVALID-NUMER-7 $Z(s) = \left(\frac{R_1}{c_1R_1s+1}, \frac{1}{c_2s}, \infty, \infty, \infty\right)$ 8.8 INVALID-NUMER-8 $Z(s) = \left(\frac{R_1}{c_1R_1s+1}, \frac{R_2}{c_2R_2s+1}, \infty, \infty, \infty\right)$ 18.9 INVALID-NUMER-9 $Z(s) = \left(\frac{R_1}{c_1R_1s+1}, R_2 + \frac{1}{c_2s}, \infty, \infty, \infty\right)$ 19.
8 INVALID-NUMER 8.1 INVALID-NUMER-1 $Z(s) = \left(L_1s, \frac{1}{C_2s}, \infty, \infty, \infty\right)$ 8.2 INVALID-NUMER-2 $Z(s) = \left(L_1s, \frac{R_2}{C_2R_2s+1}, \infty, \infty, \infty\right)$ 8.3 INVALID-NUMER-3 $Z(s) = \left(L_1s, R_2 + \frac{1}{C_2s}, \infty, \infty, \infty\right)$ 8.4 INVALID-NUMER-4 $Z(s) = \left(\frac{1}{c_1s}, \frac{1}{c_2s}, \infty, \infty, \infty\right)$ 8.5 INVALID-NUMER-5 $Z(s) = \left(\frac{1}{c_1s}, \frac{R_2}{C_2R_2s+1}, \infty, \infty, \infty\right)$ 8.6 INVALID-NUMER-6 $Z(s) = \left(\frac{1}{c_1s}, \frac{R_2}{c_2R_2s+1}, \infty, \infty, \infty\right)$ 8.7 INVALID-NUMER-7 $Z(s) = \left(\frac{R_1}{c_1R_1s+1}, \frac{1}{c_2s}, \infty, \infty, \infty\right)$ 8.8 INVALID-NUMER-8 $Z(s) = \left(\frac{R_1}{c_1R_1s+1}, \frac{R_2}{c_2R_2s+1}, \infty, \infty, \infty\right)$ 18.9 INVALID-NUMER-9 $Z(s) = \left(\frac{R_1}{c_1R_1s+1}, R_2 + \frac{1}{c_2s}, \infty, \infty, \infty\right)$ 19.
8 INVALID-NUMER 8.1 INVALID-NUMER-1 $Z(s) = \left(L_1s, \frac{1}{C_2s}, \infty, \infty, \infty\right)$ 8.2 INVALID-NUMER-2 $Z(s) = \left(L_1s, \frac{R_s}{C_2R_2s+1}, \infty, \infty, \infty\right)$ 8.3 INVALID-NUMER-3 $Z(s) = \left(L_1s, R_2 + \frac{1}{C_2s}, \infty, \infty, \infty\right)$ 8.4 INVALID-NUMER-4 $Z(s) = \left(\frac{1}{c_1s}, \frac{1}{c_2s}, \infty, \infty, \infty\right)$ 8.5 INVALID-NUMER-5 $Z(s) = \left(\frac{1}{c_1s}, \frac{R_2}{C_2R_2s+1}, \infty, \infty, \infty\right)$ 8.6 INVALID-NUMER-6 $Z(s) = \left(\frac{1}{c_1s}, \frac{R_2}{c_2s}, \infty, \infty, \infty\right)$ 8.7 INVALID-NUMER-7 $Z(s) = \left(\frac{R_1}{c_1R_1s+1}, \frac{R_2}{c_2s}, \infty, \infty, \infty\right)$ 8.8 INVALID-NUMER-8 $Z(s) = \left(\frac{R_1}{c_1R_1s+1}, \frac{R_2}{c_2R_2s+1}, \infty, \infty, \infty\right)$ 18.9 INVALID-NUMER-9 $Z(s) = \left(\frac{R_1}{c_1R_1s+1}, R_2 + \frac{1}{c_2s}, \infty, \infty, \infty\right)$ 19.

10 INVALID-ORDER 10.1 INVALID-ORDER-1 $Z(s) = (R_1, R_2, \infty, \infty, \infty)$	1.
10.1 INVALID-ORDER-1 $Z(s) = (R_1, R_2, \infty, \infty, \infty)$	1
10.3 INVALID-ORDER-3 $Z(s) = \left(R_1, \frac{R_2}{C_0R_0s+1}, \infty, \infty, \infty\right)$	1
10.4 INVALID-ORDER-4 $Z(s) = \left(R_1, R_2 + \frac{1}{C_{s,s}}, \infty, \infty, \infty\right)$	1:
10.5 INVALID-ORDER-5 $Z(s) = (L_1s, R_2, \infty, \infty, \infty)$	1:
10.6 INVALID-ORDER-6 $Z(s) = \left(L_1 s, \ L_2 s + \frac{1}{C_2 s}, \ \infty, \ \infty\right)$	12
10.7 INVALID-ORDER-7 $Z(s) = \left(L_1 s, \ L_2 s + R_2 + \frac{1}{C_2 s}, \ \infty, \ \infty\right) \ldots \ldots$	12
10.8 INVALID-ORDER-8 $Z(s) = \left(L_1 s, \frac{C_2 L_2 R_2 s^2 + L_2 s + R_2}{C_2 L_2 s^2 + 1}, \infty, \infty, \infty\right)$	1:
10.9 INVALID-ORDER-9 $Z(s) = \left(L_1 s, \frac{R_2\left(C_2 L_2 s^2+1\right)}{C_2 L_2 s^2 + C_2 R_2 s + 1}, \infty, \infty, \infty\right)$	1:
10.10INVALID-ORDER-10 $Z(s) = \left(\frac{1}{C_1 s}, R_2, \infty, \infty, \infty\right)$	12
10.11INVALID-ORDER-11 $Z(s) = \left(\frac{1}{C_1 s}, L_2 s + \frac{1}{C_2 s}, \infty, \infty, \infty\right)$	12
$10.12 \text{INVALID-ORDER-12 } Z(s) = \left(\frac{1}{C_1 s}, \ L_2 s + R_2 + \frac{1}{C_2 s}, \ \infty, \ \infty, \ \infty\right)$	12
$10.13\text{INVALID-ORDER-13} \ Z(s) = \left(\frac{1}{C_1 s}, \ \frac{C_2 L_2 R_2 s^2 + L_2 s + R_2}{C_2 L_2 s^2 + 1}, \ \infty, \ \infty, \ \infty\right) \dots $	12
10.14INVALID-ORDER-14 $Z(s) = \left(\frac{1}{C_1 s}, \frac{R_2(C_2 L_2 s^2 + 1)}{C_2 L_2 s^2 + C_2 R_2 s + 1}, \infty, \infty, \infty\right)$	1:
10.15INVALID-ORDER-15 $Z(s) = \left(\frac{R_1}{C_1R_1s+1}, R_2, \infty, \infty\right)$	1
$10.16 \text{INVALID-ORDER-16 } Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \ L_2 s + \frac{1}{C_2 s}, \ \infty, \ \infty \right) \qquad \dots $	1:
$10.17 \text{INVALID-ORDER-17 } Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, L_2 s + R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty\right) $	1
$10.18 \text{INVALID-ORDER-18 } Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \frac{C_2 L_2 R_2 s^2 + L_2 s + R_2}{C_2 L_2 s^2 + 1}, \infty, \infty, \infty\right) \dots \dots$	1:
$10.19 \text{INVALID-ORDER-19 } Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \frac{R_2 \left(C_2 L_2 s^2 + 1\right)}{C_2 L_2 s^2 + C_2 R_2 s + 1}, \infty, \infty, \infty\right) $	13
$10.20 \text{INVALID-ORDER-20 } Z(s) = \left(R_1 + \frac{1}{C_1 s}, \ R_2, \ \infty, \ \infty, \ \infty\right) \dots $	1
$10.21 \text{INVALID-ORDER-21 } Z(s) = \left(R_1 + \frac{1}{C_{1s}}, \ L_2 s + \frac{1}{C_{2s}}, \ \infty, \ \infty, \ \infty\right) \dots $	1
$10.22 \text{INVALID-ORDER-} 22 \ Z(s) = \left(R_1 + \frac{1}{C_1 s}, \ L_2 s + R_2 + \frac{1}{C_2 s}, \ \infty, \ \infty, \ \infty\right) \dots $	1
10.23INVALID-ORDER-23 $Z(s) = \left(R_1 + \frac{1}{C_{1s}}, \frac{C_2L_2R_2s^2 + L_2s + R_2}{C_2L_2s^2 + 1}, \infty, \infty, \infty\right)$	1
10.24INVALID-ORDER-24 $Z(s) = \left(R_1 + \frac{1}{C_1 s}, \frac{R_2(C_2 L_2 s^2 + 1)}{C_2 L_2 s^2 + C_2 R_2 s + 1}, \infty, \infty, \infty\right)$	14
$10.25 \text{INVALID-ORDER-} 25 \ Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \ \frac{1}{C_2 s}, \ \infty, \ \infty, \ \infty\right) \dots $	1
$10.26 \text{INVALID-ORDER-} 26 \ Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \ \frac{R_2}{C_2 R_2 s + 1}, \ \infty, \ \infty, \ \infty\right) $	1
$10.27 \text{INVALID-ORDER-27 } Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \ R_2 + \frac{1}{C_2 s}, \ \infty, \ \infty, \ \infty\right)$	
$10.28 \text{INVALID-ORDER-} 28 \ Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \ L_2 s + \frac{1}{C_2 s}, \ \infty, \ \infty, \ \infty\right) $	14
$10.29 \text{INVALID-ORDER-} 29 \ Z(s) = \left\langle L_1 s + \frac{1}{C_1 s}, \ L_2 s + R_2 + \frac{1}{C_2 s}, \ \infty, \ \infty, \ \infty \right\rangle $	1
$10.30 \text{INVALID-ORDER-30 } Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \frac{C_2 L_2 R_2 s^2 + L_2 s + R_2}{C_2 L_2 s^2 + 1}, \infty, \infty, \infty \right) $	14
10.31INVALID-ORDER-31 $Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \frac{R_2(C_2 L_2 s^2 + 1)}{C_2 L_2 s^2 + C_2 R_2 s + 1}, \infty, \infty, \infty\right)$	14
$10.32 \text{INVALID-ORDER-} 32 \ Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, \ \frac{1}{C_2 s}, \ \infty, \ \infty, \ \infty\right) \ \dots $	1
$10.33 \text{INVALID-ORDER-33 } Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, \frac{R_2}{C_2 R_2 s + 1}, \infty, \infty, \infty\right) $	
$10.34 \text{INVALID-ORDER-34 } Z(s) = \left(\underbrace{\frac{L_1 s}{C_1 L_1 s^2 + 1}}, \ R_2 + \underbrace{\frac{1}{C_2 s}}, \ \infty, \ \infty, \ \infty \right) $	1
$10.35 \text{INVALID-ORDER-35 } Z(s) = \left(\frac{L_1 s}{C_1 \overline{L_1 s^2} + 1}, \ L_2 s + \frac{1}{C_2 s}, \ \infty, \ \infty, \ \infty\right) \qquad \dots $	1
$10.36 \text{INVALID-ORDER-36 } Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, L_2 s + R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty\right) \dots \dots$	1
$10.37 \text{INVALID-ORDER-37 } Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, \frac{C_2 L_2 R_2 s^2 + L_2 s + R_2}{C_2 L_2 s^2 + 1}, \infty, \infty, \infty\right) \qquad (2.5)$	
10.38INVALID-ORDER-38 $Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, \frac{R_2(C_2 L_2 s^2 + 1)}{C_2 L_2 s^2 + C_2 R_2 s + 1}, \infty, \infty, \infty\right)$	
$10.39 \text{INVALID-ORDER-39 } Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \frac{1}{C_2 s}, \infty, \infty, \infty\right)$	1

$10.40 \text{INVALID-ORDER-40 } Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \frac{R_2}{C_2 R_2 s + 1}, \infty, \infty, \infty\right) $	15
$10.41 \text{INVALID-ORDER-41 } Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \ R_2 + \frac{1}{C_2 s}, \ \infty, \ \infty\right) \dots $	16
$10.42 \text{INVALID-ORDER-42 } Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \ L_2 s + \frac{1}{C_2 s}, \ \infty, \ \infty, \ \infty\right) $	16
$10.43 \text{INVALID-ORDER-43 } Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \ L_2 s + R_2 + \frac{1}{C_2 s}, \ \infty, \ \infty, \ \infty\right) $	16
10.44INVALID-ORDER-44 $Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \frac{C_2 L_2 R_2 s^2 + L_2 s + R_2}{C_2 L_2 s^2 + 1}, \infty, \infty, \infty\right)$	16
10.45INVALID-ORDER-45 $Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \frac{R_2(C_2 L_2 s^2 + 1)}{C_2 L_2 s^2 + C_2 R_2 s + 1}, \infty, \infty, \infty\right)$	16
$10.46 \text{INVALID-ORDER-46} \ Z(s) = \left(\frac{L_1 R_1 s}{C_1 L_1 R_1 s^2 + L_1 s + R_1}, \frac{1}{C_2 s}, \infty, \infty, \infty\right) $	16
$10.47 \text{INVALID-ORDER-47 } Z(s) = \left(\frac{L_1 R_1 s}{C_1 L_1 R_1 s^2 + L_1 s + R_1}, \frac{R_2}{C_2 R_2 s + 1}, \infty, \infty, \infty\right) \dots \dots$	16
10.48INVALID-ORDER-48 $Z(s) = \left(\frac{L_1 R_1 s}{C_1 L_1 R_1 s^2 + L_1 s + R_1}, R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty\right)$	16
10.49INVALID-ORDER-49 $Z(s) = \left(\frac{L_1 R_1 s}{C_1 L_1 R_1 s^2 + L_1 s + R_1}, L_2 s + \frac{1}{C_2 s}, \infty, \infty, \infty\right)$	16
10.50INVALID-ORDER-50 $Z(s) = \left(\frac{L_1 R_1 s}{C_1 L_1 R_1 s^2 + L_1 s + R_1}, L_2 s + R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty\right)$	17
$10.51 \text{INVALID-ORDER-51 } Z(s) = \left(\frac{L_1 R_1 s}{C_1 L_1 R_1 s^2 + L_1 s + R_1}, \frac{C_2 L_2 R_2 s^2 + L_2 s + R_2}{C_2 L_2 s^2 + 1}, \infty, \infty, \infty\right) \dots \dots$	17
$10.52 \text{INVALID-ORDER-52 } Z(s) = \left(\frac{L_1 R_1 s}{C_1 L_1 R_1 s^2 + L_1 s + R_1}, \frac{R_2 \left(C_2 L_2 s^2 + 1\right)}{C_2 L_2 s^2 + C_2 R_2 s + 1}, \infty, \infty, \infty\right) $	17
$10.53 \text{INVALID-ORDER-53 } Z(s) = \left(\underbrace{C_1 L_1 R_1 s^2 + L_1 s + R_1}_{C_1 L_1 s^2 + 1}, \; \underbrace{1}_{C_2 s}, \; \infty, \; \infty, \; \infty \right) \dots $	17
10.54INVALID-ORDER-54 $Z(s) = \left(\frac{C_1L_1R_1s^2 + L_1s + R_1}{C_1L_1s^2 + 1}, \frac{R_2}{C_2R_2s + 1}, \infty, \infty, \infty\right)$	17
10.55INVALID-ORDER-55 $Z(s) = \left(\frac{C_1 L_1 R_1 s^2 + L_1 s + R_1}{C_1 L_1 s^2 + 1}, \ R_2 + \frac{1}{C_2 s}, \ \infty, \ \infty, \ \infty \right)$	17
10.56INVALID-ORDER-56 $Z(s) = \left(\frac{C_1L_1R_1s^2 + L_1s + R_1}{C_1L_1s^2 + 1}, L_2s + \frac{1}{C_2s}, \infty, \infty, \infty\right)$	17
10.57INVALID-ORDER-57 $Z(s) = \left(\frac{C_1L_1R_1s^2 + L_1s + R_1}{C_1L_1s^2 + 1}, L_2s + R_2 + \frac{1}{C_2s}, \infty, \infty, \infty\right)$	17
$10.58 \text{INVALID-ORDER-} 58 \ Z(s) = \left(\frac{C_1 L_1 R_1 s^2 + L_1 s + R_1}{C_1 L_1 s^2 + 1}, \ \frac{C_2 L_2 R_2 s^2 + L_2 s + R_2}{C_2 L_2 s^2 + 1}, \ \infty, \ \infty, \ \infty\right) \ \dots $	17
$10.59 \text{INVALID-ORDER-59 } Z(s) = \left(\frac{C_1 L_1 R_1 s^2 + L_1 s + R_1}{C_1 L_1 s^2 + 1}, \frac{R_2 \left(C_2 L_2 s^2 + 1\right)}{C_2 L_2 s^2 + C_2 R_2 s + 1}, \infty, \infty, \infty\right) $	18
10.60INVALID-ORDER-60 $Z(s) = \left(\frac{R_1(C_1L_1s^2+1)}{C_1L_1s^2+C_1R_1s+1}, \frac{1}{C_2s}, \infty, \infty, \infty\right)$	18
10.61INVALID-ORDER-61 $Z(s) = \left(\frac{R_1(C_1L_1s^2+1)}{C_1L_1s^2+C_1R_1s+1}, \frac{R_2}{C_2R_2s+1}, \infty, \infty, \infty\right)$	18
10.62INVALID-ORDER-62 $Z(s) = \left(\frac{R_1(C_1L_1s^2+1)}{C_1L_1s^2+C_1R_1s+1}, R_2 + \frac{1}{C_2s}, \infty, \infty, \infty\right)$	18
$10.62 \text{INVALID-ORDER-62 } Z(s) = \left(\frac{R_1\left(C_1L_1s^2+1\right)}{C_1L_1s^2+C_1R_1s+1}, \ R_2 + \frac{1}{C_2s}, \ \infty, \ \infty, \ \infty\right)$ $10.63 \text{INVALID-ORDER-63 } Z(s) = \left(\frac{R_1\left(C_1L_1s^2+1\right)}{C_1L_1s^2+C_1R_1s+1}, \ L_2s + \frac{1}{C_2s}, \ \infty, \ \infty, \ \infty\right)$	18
$10.64 \text{INVALID-ORDER-64 } Z(s) = \left(\frac{R_1\left(C_1L_1s^2+1\right)}{C_1L_1s^2+C_1R_1s+1}, \ L_2s + R_2 + \frac{1}{C_2s}, \ \infty, \ \infty, \ \infty\right) \ \dots $	18
$10.65 \text{INVALID-ORDER-65 } Z(s) = \left(\frac{R_1 \left(C_1 L_1 s^2 + 1 \right)}{C_1 L_1 s^2 + C_1 R_1 s + 1}, \frac{C_2 L_2 R_2 s^2 + L_2 s + R_2}{C_2 L_2 s^2 + 1}, \infty, \infty, \infty \right) $	18
$10.66 \text{INVALID-ORDER-} 66 \ Z(s) = \left(\frac{R_1(C_1L_1s^2+1)}{C_1L_1s^2+C_1R_1s+1}, \ \frac{R_2(C_2L_2s^2+1)}{C_2L_2s^2+C_2R_2s+1}, \ \infty, \ \infty, \ \infty\right)' $	18

11 PolynomialError

1 Examined H(z) for CG TIA simple Z1 Z2: $\frac{Z_1Z_2Z_Lg_m+Z_1Z_L}{Z_1Z_2g_m+Z_1+Z_2+Z_L}$

$$H(z) = \frac{Z_1 Z_2 Z_L g_m + Z_1 Z_L}{Z_1 Z_2 g_m + Z_1 + Z_2 + Z_L}$$

- 2 HP
- 3 BP
- **3.1** BP-1 $Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, R_2, \infty, \infty, \infty\right)$

$H(s) = \frac{s \left(L_1 R_2 Z_L g_m + L_1 Z_L \right)}{R_2 + Z_L + s^2 \left(C_1 L_1 R_2 + C_1 L_1 Z_L \right) + s \left(L_1 R_2 g_m + L_1 \right)}$

Parameters:

$$\begin{array}{l} \text{Q:} \ \frac{C_1R_2\sqrt{\frac{1}{C_1L_1}} + C_1Z_L\sqrt{\frac{1}{C_1L_1}}}{R_2g_m + 1} \\ \text{wo:} \ \sqrt{\frac{1}{C_1L_1}} \\ \text{bandwidth:} \ \frac{\sqrt{\frac{1}{C_1L_1}}(R_2g_m + 1)}{C_1R_2\sqrt{\frac{1}{C_1L_1}} + C_1Z_L\sqrt{\frac{1}{C_1L_1}}} \\ \text{K-LP:} \ 0 \\ \text{K-HP:} \ 0 \\ \text{K-BP:} \ Z_L \\ \text{Qz:} \ \text{None} \\ \text{Wz:} \ \text{None} \end{array}$$

3.2 BP-2
$$Z(s) = \left(\frac{L_1 R_1 s}{C_1 L_1 R_1 s^2 + L_1 s + R_1}, R_2, \infty, \infty, \infty\right)$$

$H(s) = \frac{s\left(L_{1}R_{1}R_{2}Z_{L}g_{m} + L_{1}R_{1}Z_{L}\right)}{R_{1}R_{2} + R_{1}Z_{L} + s^{2}\left(C_{1}L_{1}R_{1}R_{2} + C_{1}L_{1}R_{1}Z_{L}\right) + s\left(L_{1}R_{1}R_{2}g_{m} + L_{1}R_{1} + L_{1}R_{2} + L_{1}Z_{L}\right)}$

$$\begin{array}{l} \text{Q:} \ \frac{C_1R_1R_2\sqrt{\frac{1}{C_1L_1}}+C_1R_1Z_L\sqrt{\frac{1}{C_1L_1}}}{R_1R_2g_m+R_1+R_2+Z_L} \\ \text{wo:} \ \sqrt{\frac{1}{C_1L_1}} \\ \text{bandwidth:} \ \frac{\sqrt{\frac{1}{C_1L_1}}(R_1R_2g_m+R_1+R_2+Z_L)}{C_1R_1R_2\sqrt{\frac{1}{C_1L_1}}+C_1R_1Z_L\sqrt{\frac{1}{C_1L_1}}} \\ \text{K-LP:} \ 0 \\ \text{K-HP:} \ 0 \\ \text{K-BP:} \ \frac{R_1R_2Z_Lg_m+R_1Z_L}{R_1R_2g_m+R_1+R_2+Z_L} \\ \text{Qz:} \ \text{None} \\ \text{Wz:} \ \text{None} \end{array}$$

- 4 LP
- 5 BS

5.1 BS-1
$$Z(s) = \left(L_1 s + \frac{1}{C_1 s}, R_2, \infty, \infty, \infty\right)$$

 $H(s) = \frac{R_2 Z_L g_m + Z_L + s^2 \left(C_1 L_1 R_2 Z_L g_m + C_1 L_1 Z_L \right)}{R_2 g_m + s^2 \left(C_1 L_1 R_2 g_m + C_1 L_1 \right) + s \left(C_1 R_2 + C_1 Z_L \right) + 1}$

Parameters:

$$\begin{array}{l} \text{Q:} \ \frac{L_1R_2g_m\sqrt{\frac{1}{C_1L_1}} + L_1\sqrt{\frac{1}{C_1L_1}}}{R_2 + Z_L} \\ \text{wo:} \ \sqrt{\frac{1}{C_1L_1}} \\ \text{bandwidth:} \ \frac{\sqrt{\frac{1}{C_1L_1}}(R_2 + Z_L)}{L_1R_2g_m\sqrt{\frac{1}{C_1L_1}} + L_1\sqrt{\frac{1}{C_1L_1}}} \\ \text{K-LP:} \ Z_L \\ \text{K-HP:} \ Z_L \\ \text{K-BP:} \ 0 \\ \text{Qz:} \ \text{None} \\ \text{Wz:} \ \sqrt{\frac{1}{C_1L_1}} \end{array}$$

5.2 BS-2
$$Z(s) = \left(\frac{R_1(C_1L_1s^2+1)}{C_1L_1s^2+C_1R_1s+1}, R_2, \infty, \infty, \infty\right)$$

$$H(s) = \frac{R_1 R_2 Z_L g_m + R_1 Z_L + s^2 \left(C_1 L_1 R_1 R_2 Z_L g_m + C_1 L_1 R_1 Z_L \right)}{R_1 R_2 g_m + R_1 + R_2 + Z_L + s^2 \left(C_1 L_1 R_1 R_2 g_m + C_1 L_1 R_1 + C_1 L_1 R_2 + C_1 L_1 Z_L \right) + s \left(C_1 R_1 R_2 + C_1 R_1 Z_L \right)}$$

Parameters:

$$\begin{aligned} & \text{Q:} \ \frac{L_1R_1R_2g_m\sqrt{\frac{1}{C_1L_1}} + L_1R_1\sqrt{\frac{1}{C_1L_1}} + L_1R_2\sqrt{\frac{1}{C_1L_1}} + L_1Z_L\sqrt{\frac{1}{C_1L_1}}}{R_1R_2 + R_1Z_L} \\ & \text{wo:} \ \sqrt{\frac{1}{C_1L_1}} \\ & \text{bandwidth:} \ \frac{\sqrt{\frac{1}{C_1L_1}}(R_1R_2 + R_1Z_L)}{L_1R_1R_2g_m\sqrt{\frac{1}{C_1L_1}} + L_1R_1\sqrt{\frac{1}{C_1L_1}} + L_1R_2\sqrt{\frac{1}{C_1L_1}} + L_1Z_L\sqrt{\frac{1}{C_1L_1}}} \\ & \text{K-LP:} \ \frac{R_1R_2Z_Lg_m + R_1Z_L}{R_1R_2g_m + R_1 + R_2 + Z_L} \\ & \text{K-HP:} \ \frac{R_1R_2Z_Lg_m + R_1Z_L}{R_1R_2g_m + R_1 + R_2 + Z_L} \\ & \text{K-BP:} \ 0 \\ & \text{Qz:} \ \text{None} \\ & \text{Wz:} \ \sqrt{\frac{1}{C_1L_1}} \end{aligned}$$

6 **GE**

6.1 GE-1
$$Z(s) = \left(R_1, L_2 s + \frac{1}{C_2 s}, \infty, \infty, \infty\right)$$

$H(s) = \frac{C_2L_2R_1Z_Lg_ms^2 + C_2R_1Z_Ls + R_1Z_Lg_m}{R_1g_m + s^2\left(C_2L_2R_1g_m + C_2L_2\right) + s\left(C_2R_1 + C_2Z_L\right) + 1}$

$$\begin{aligned} & \text{Q:} \ \frac{L_2 R_1 g_m \sqrt{\frac{1}{C_2 L_2}} + L_2 \sqrt{\frac{1}{C_2 L_2}}}{R_1 + Z_L} \\ & \text{wo:} \ \sqrt{\frac{1}{C_2 L_2}} \\ & \text{bandwidth:} \ \frac{\sqrt{\frac{1}{C_2 L_2}} (R_1 + Z_L)}{L_2 R_1 g_m \sqrt{\frac{1}{C_2 L_2}} + L_2 \sqrt{\frac{1}{C_2 L_2}}} \\ & \text{K-LP:} \ \frac{R_1 Z_L g_m}{R_1 g_m + 1} \\ & \text{K-HP:} \ \frac{R_1 Z_L g_m}{R_1 g_m + 1} \\ & \text{K-BP:} \ \frac{R_1 Z_L}{R_1 + Z_L} \\ & \text{Qz:} \ L_2 g_m \sqrt{\frac{1}{C_2 L_2}} \\ & \text{Wz:} \ \sqrt{\frac{1}{C_2 L_2}} \end{aligned}$$

6.2 GE-2
$$Z(s) = \left(R_1, L_2 s + R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty\right)$$

$$H(s) = \frac{C_{2}L_{2}R_{1}Z_{L}g_{m}s^{2} + R_{1}Z_{L}g_{m} + s\left(C_{2}R_{1}R_{2}Z_{L}g_{m} + C_{2}R_{1}Z_{L}\right)}{R_{1}g_{m} + s^{2}\left(C_{2}L_{2}R_{1}g_{m} + C_{2}L_{2}\right) + s\left(C_{2}R_{1}R_{2}g_{m} + C_{2}R_{1} + C_{2}R_{2} + C_{2}Z_{L}\right) + 1}$$

Parameters:

$$\begin{aligned} & \text{Q:} \ \frac{L_2 R_1 g_m \sqrt{\frac{1}{C_2 L_2}} + L_2 \sqrt{\frac{1}{C_2 L_2}}}{R_1 R_2 g_m + R_1 + R_2 + Z_L} \\ & \text{wo:} \ \sqrt{\frac{1}{C_2 L_2}} \\ & \text{bandwidth:} \ \frac{\sqrt{\frac{1}{C_2 L_2}} (R_1 R_2 g_m + R_1 + R_2 + Z_L)}{L_2 R_1 g_m \sqrt{\frac{1}{C_2 L_2}} + L_2 \sqrt{\frac{1}{C_2 L_2}}} \\ & \text{K-LP:} \ \frac{R_1 Z_L g_m}{R_1 g_m + 1} \\ & \text{K-HP:} \ \frac{R_1 Z_L g_m}{R_1 g_m + 1} \\ & \text{K-BP:} \ \frac{R_1 R_2 Z_L g_m + R_1 Z_L}{R_1 R_2 g_m + R_1 + R_2 + Z_L} \\ & \text{Qz:} \ \frac{L_2 g_m \sqrt{\frac{1}{C_2 L_2}}}{R_2 g_m + 1} \\ & \text{Wz:} \ \sqrt{\frac{1}{C_2 L_2}} \end{aligned}$$

6.3 GE-3
$$Z(s) = \left(R_1, \frac{C_2L_2R_2s^2 + L_2s + R_2}{C_2L_2s^2 + 1}, \infty, \infty, \infty\right)$$

Parameters:

$$Q \colon \frac{C_2 R_1 R_2 g_m \sqrt{\frac{1}{C_2 L_2}} + C_2 R_1 \sqrt{\frac{1}{C_2 L_2}} + C_2 R_2 \sqrt{\frac{1}{C_2 L_2}} + C_2 Z_L \sqrt{\frac{1}{C_2 L_2}}}{R_1 g_m + 1}$$

$$\text{wo: } \sqrt{\frac{1}{C_2 L_2}}$$

$$\text{bandwidth: } \frac{\sqrt{\frac{1}{C_2 L_2}} (R_1 g_m + 1)}{C_2 R_1 R_2 g_m \sqrt{\frac{1}{C_2 L_2}} + C_2 R_1 \sqrt{\frac{1}{C_2 L_2}} + C_2 R_2 \sqrt{\frac{1}{C_2 L_2}} + C_2 Z_L \sqrt{\frac{1}{C_2 L_2}}}$$

$$\text{K-LP: } \frac{R_1 R_2 Z_L g_m + R_1 Z_L}{R_1 R_2 g_m + R_1 + R_2 + Z_L}$$

$$\text{K-HP: } \frac{R_1 R_2 Z_L g_m + R_1 Z_L}{R_1 R_2 g_m + R_1 + R_2 + Z_L}$$

$$\text{K-BP: } \frac{R_1 Z_L g_m}{R_1 g_m + 1}$$

$$Q_Z \colon \frac{C_2 R_2 g_m \sqrt{\frac{1}{C_2 L_2}} + C_2 \sqrt{\frac{1}{C_2 L_2}}}{g_m}$$

$$\text{Wz: } \sqrt{\frac{1}{C_2 L_2}}$$

6.4 GE-4
$$Z(s) = \left(R_1, \frac{R_2(C_2L_2s^2+1)}{C_2L_2s^2+C_2R_2s+1}, \infty, \infty, \infty\right)$$

$$Q \colon \frac{L_{2}R_{1}R_{2}g_{m}\sqrt{\frac{1}{C_{2}L_{2}}} + L_{2}R_{1}\sqrt{\frac{1}{C_{2}L_{2}}} + L_{2}R_{2}\sqrt{\frac{1}{C_{2}L_{2}}} + L_{2}Z_{L}\sqrt{\frac{1}{C_{2}L_{2}}}}{R_{1}R_{2} + R_{2}Z_{L}}$$

$$\text{wo: } \sqrt{\frac{1}{C_{2}L_{2}}}$$

$$\text{bandwidth: } \frac{\sqrt{\frac{1}{C_{2}L_{2}}}(R_{1}R_{2} + R_{2}Z_{L})}{L_{2}R_{1}R_{2}g_{m}\sqrt{\frac{1}{C_{2}L_{2}}} + L_{2}R_{1}\sqrt{\frac{1}{C_{2}L_{2}}} + L_{2}R_{2}\sqrt{\frac{1}{C_{2}L_{2}}} + L_{2}Z_{L}\sqrt{\frac{1}{C_{2}L_{2}}}}$$

$$\text{K-LP: } \frac{R_{1}R_{2}Z_{L}g_{m} + R_{1}Z_{L}}{R_{1}R_{2}g_{m} + R_{1}+R_{2}+Z_{L}}$$

$$\text{K-HP: } \frac{R_{1}R_{2}Z_{L}g_{m} + R_{1}Z_{L}}{R_{1}R_{2}g_{m} + R_{1}+R_{2}+Z_{L}}$$

$$\text{K-BP: } \frac{R_{1}Z_{L}}{R_{1} + Z_{L}}$$

$$Q_{Z} \colon \frac{L_{2}R_{2}g_{m}\sqrt{\frac{1}{C_{2}L_{2}}} + L_{2}\sqrt{\frac{1}{C_{2}L_{2}}}}{R_{2}}$$

$$\text{Wz: } \sqrt{\frac{1}{C_{2}L_{2}}}$$

$$H(s) = \frac{L_2 R_1 Z_L g_m s + R_1 R_2 Z_L g_m + R_1 Z_L + s^2 \left(C_2 L_2 R_1 R_2 Z_L g_m + C_2 L_2 R_1 Z_L \right)}{R_1 R_2 g_m + R_1 + R_2 + Z_L + s^2 \left(C_2 L_2 R_1 R_2 g_m + C_2 L_2 R_1 + C_2 L_2 R_2 + C_2 L_2 Z_L \right) + s \left(L_2 R_1 g_m + L_2 \right)}$$

$$H(s) = \frac{C_2R_1R_2Z_Ls + R_1R_2Z_Lg_m + R_1Z_L + s^2\left(C_2L_2R_1R_2Z_Lg_m + C_2L_2R_1Z_L\right)}{R_1R_2g_m + R_1 + R_2 + Z_L + s^2\left(C_2L_2R_1R_2g_m + C_2L_2R_1 + C_2L_2R_2 + C_2L_2Z_L\right) + s\left(C_2R_1R_2 + C_2R_2Z_L\right)}$$

6.5 GE-5
$$Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, R_2, \infty, \infty, \infty\right)$$

$$H(s) = \frac{R_2 Z_L g_m + Z_L + s^2 \left(C_1 L_1 R_2 Z_L g_m + C_1 L_1 Z_L \right) + s \left(C_1 R_1 R_2 Z_L g_m + C_1 R_1 Z_L \right)}{R_2 g_m + s^2 \left(C_1 L_1 R_2 g_m + C_1 L_1 \right) + s \left(C_1 R_1 R_2 g_m + C_1 R_1 + C_1 R_2 + C_1 Z_L \right) + 1}$$

Parameters:

$$\begin{aligned} & \text{Q:} \ \frac{L_1 R_2 g_m \sqrt{\frac{1}{C_1 L_1}} + L_1 \sqrt{\frac{1}{C_1 L_1}}}{R_1 R_2 g_m + R_1 + R_2 + Z_L} \\ & \text{wo:} \ \sqrt{\frac{1}{C_1 L_1}} \\ & \text{bandwidth:} \ \frac{\sqrt{\frac{1}{C_1 L_1}} (R_1 R_2 g_m + R_1 + R_2 + Z_L)}{L_1 R_2 g_m \sqrt{\frac{1}{C_1 L_1}} + L_1 \sqrt{\frac{1}{C_1 L_1}}} \\ & \text{K-LP:} \ Z_L \\ & \text{K-HP:} \ Z_L \\ & \text{K-BP:} \ \frac{R_1 R_2 Z_L g_m + R_1 Z_L}{R_1 R_2 g_m + R_1 + R_2 + Z_L} \\ & \text{Qz:} \ \frac{L_1 \sqrt{\frac{1}{C_1 L_1}}}{R_1} \\ & \text{Wz:} \ \sqrt{\frac{1}{C_1 L_1}} \end{aligned}$$

6.6 GE-6
$$Z(s) = \left(\frac{C_1L_1R_1s^2 + L_1s + R_1}{C_1L_1s^2 + 1}, R_2, \infty, \infty, \infty\right)$$

$$H(s) = \frac{R_1 R_2 Z_L g_m + R_1 Z_L + s^2 \left(C_1 L_1 R_1 R_2 Z_L g_m + C_1 L_1 R_1 Z_L \right) + s \left(L_1 R_2 Z_L g_m + L_1 Z_L \right)}{R_1 R_2 g_m + R_1 + R_2 + Z_L + s^2 \left(C_1 L_1 R_1 R_2 g_m + C_1 L_1 R_1 + C_1 L_1 R_2 + C_1 L_1 Z_L \right) + s \left(L_1 R_2 g_m + L_1 \right)}$$

Parameters:

$$\begin{aligned} & \text{Q:} \ \frac{C_1 R_1 R_2 g_m \sqrt{\frac{1}{C_1 L_1}} + C_1 R_1 \sqrt{\frac{1}{C_1 L_1}} + C_1 R_2 \sqrt{\frac{1}{C_1 L_1}} + C_1 Z_L \sqrt{\frac{1}{C_1 L_1}}}{R_2 g_m + 1} \\ & \text{wo:} \ \sqrt{\frac{1}{C_1 L_1}} \\ & \text{bandwidth:} \ \frac{\sqrt{\frac{1}{C_1 L_1}} (R_2 g_m + 1)}{C_1 R_1 R_2 g_m \sqrt{\frac{1}{C_1 L_1}} + C_1 R_1 \sqrt{\frac{1}{C_1 L_1}} + C_1 R_2 \sqrt{\frac{1}{C_1 L_1}} + C_1 Z_L \sqrt{\frac{1}{C_1 L_1}}} \\ & \text{K-LP:} \ \frac{R_1 R_2 Z_L g_m + R_1 Z_L}{R_1 R_2 g_m + R_1 + R_2 + Z_L} \\ & \text{K-HP:} \ \frac{R_1 R_2 Z_L g_m + R_1 Z_L}{R_1 R_2 g_m + R_1 + R_2 + Z_L} \\ & \text{K-BP:} \ Z_L \\ & \text{Qz:} \ C_1 R_1 \sqrt{\frac{1}{C_1 L_1}} \end{aligned}$$

7 AP

8 INVALID-NUMER

8.1 INVALID-NUMER-1
$$Z(s) = \left(L_1 s, \frac{1}{C_2 s}, \infty, \infty, \infty\right)$$

$$H(s) = \frac{C_2 L_1 Z_L s^2 + L_1 Z_L g_m s}{C_2 L_1 s^2 + s \left(C_2 Z_L + L_1 g_m \right) + 1}$$

$$\begin{array}{l} \text{Q:} \ \frac{C_2L_1\sqrt{\frac{1}{C_2L_1}}}{C_2Z_L + L_1g_m} \\ \text{wo:} \ \sqrt{\frac{1}{C_2L_1}} \\ \text{bandwidth:} \ \frac{C_2Z_L + L_1g_m}{C_2L_1} \\ \text{K-LP:} \ 0 \\ \text{K-HP:} \ Z_L \\ \text{K-BP:} \ \frac{L_1Z_Lg_m}{C_2Z_L + L_1g_m} \\ \text{Qz:} \ \text{None} \end{array}$$

8.2 INVALID-NUMER-2 $Z(s) = \left(L_1 s, \frac{R_2}{C_2 R_2 s + 1}, \infty, \infty, \infty\right)$

Parameters:

$$\begin{array}{l} \text{Q:} \ \frac{C_2L_1R_2\sqrt{\frac{1}{C_2L_1}+\frac{Z_L}{C_2L_1R_2}}}{C_2R_2Z_L+L_1R_2g_m+L_1} \\ \text{wo:} \ \sqrt{\frac{R_2+Z_L}{C_2L_1R_2}} \\ \text{bandwidth:} \ \frac{\sqrt{\frac{R_2+Z_L}{C_2L_1R_2}}(C_2R_2Z_L+L_1R_2g_m+L_1)}{C_2L_1R_2\sqrt{\frac{1}{C_2L_1}+\frac{Z_L}{C_2L_1R_2}}} \\ \text{K-LP:} \ 0 \\ \text{K-HP:} \ Z_L \\ \text{K-BP:} \ \frac{L_1R_2Z_Lg_m+L_1Z_L}{C_2R_2Z_L+L_1R_2g_m+L_1} \\ \text{Qz:} \ \text{None} \\ \text{Wz:} \ \text{None} \end{array}$$

8.3 INVALID-NUMER-3 $Z(s) = \left(L_1 s, R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty\right)$

Parameters:

$$\begin{array}{l} \text{Q:} \ \frac{C_2L_1R_2g_m\sqrt{\frac{1}{C_2L_1R_2g_m+C_2L_1}}+C_2L_1\sqrt{\frac{1}{C_2L_1R_2g_m+C_2L_1}}}{C_2R_2+C_2Z_L+L_1g_m} \\ \text{wo:} \ \sqrt{\frac{1}{C_2L_1R_2g_m+C_2L_1}} \\ \text{bandwidth:} \ \frac{(C_2R_2+C_2Z_L+L_1g_m)\sqrt{\frac{1}{C_2L_1R_2g_m+C_2L_1}}}{C_2L_1R_2g_m\sqrt{\frac{1}{C_2L_1R_2g_m+C_2L_1}}+C_2L_1\sqrt{\frac{1}{C_2L_1R_2g_m+C_2L_1}}} \\ \text{K-LP:} \ 0 \\ \text{K-HP:} \ Z_L \\ \text{K-BP:} \ \frac{L_1Z_Lg_m}{C_2R_2+C_2Z_L+L_1g_m} \\ \text{Qz:} \ \text{None} \\ \text{Wz:} \ \text{None} \end{array}$$

8.4 INVALID-NUMER-4 $Z(s) = \left(\frac{1}{C_1 s}, \frac{1}{C_2 s}, \infty, \infty, \infty\right)$

$$\begin{aligned} &\text{Q: } \frac{C_1C_2Z_L\sqrt{\frac{g_m}{C_1C_2Z_L}}}{C_1+C_2}\\ &\text{wo: } \sqrt{\frac{g_m}{C_1C_2Z_L}}\\ &\text{bandwidth: } \frac{C_1+C_2}{C_1C_2Z_L}\\ &\text{K-LP: } Z_L\\ &\text{K-HP: } 0\\ &\text{K-BP: } \frac{C_2Z_L}{C_1+C_2}\\ &\text{Qz: None}\\ &\text{Wz: None} \end{aligned}$$

$$H(s) = \frac{C_2 L_1 R_2 Z_L s^2 + s \left(L_1 R_2 Z_L g_m + L_1 Z_L \right)}{C_2 L_1 R_2 s^2 + R_2 + Z_L + s \left(C_2 R_2 Z_L + L_1 R_2 g_m + L_1 \right)}$$

$$H(s) = \frac{L_1 Z_L g_m s + s^2 \left(C_2 L_1 R_2 Z_L g_m + C_2 L_1 Z_L \right)}{s^2 \left(C_2 L_1 R_2 g_m + C_2 L_1 \right) + s \left(C_2 R_2 + C_2 Z_L + L_1 g_m \right) + 1}$$

$$H(s) = \frac{C_2 Z_L s + Z_L g_m}{C_1 C_2 Z_L s^2 + g_m + s (C_1 + C_2)}$$

8.5 INVALID-NUMER-5 $Z(s) = \left(\frac{1}{C_1 s}, \frac{R_2}{C_2 R_2 s + 1}, \infty, \infty, \infty\right)$

Parameters:

$$\begin{array}{l} \text{Q:} \ \frac{C_{1}C_{2}R_{2}Z_{L}\sqrt{\frac{g_{m}}{C_{1}C_{2}Z_{L}}}+\frac{1}{C_{1}C_{2}R_{2}Z_{L}}}{C_{1}R_{2}+C_{1}Z_{L}+C_{2}R_{2}} \\ \text{wo:} \ \sqrt{\frac{R_{2}g_{m}+1}{C_{1}C_{2}R_{2}Z_{L}}} \\ \text{bandwidth:} \ \frac{\sqrt{\frac{R_{2}g_{m}+1}{C_{1}C_{2}R_{2}Z_{L}}}(C_{1}R_{2}+C_{1}Z_{L}+C_{2}R_{2})}{C_{1}C_{2}R_{2}Z_{L}\sqrt{\frac{g_{m}}{C_{1}C_{2}Z_{L}}}+\frac{1}{C_{1}C_{2}R_{2}Z_{L}}} \\ \text{K-LP:} \ Z_{L} \\ \text{K-HP:} \ 0 \\ \text{K-BP:} \ \frac{C_{2}R_{2}Z_{L}}{C_{1}R_{2}+C_{1}Z_{L}+C_{2}R_{2}} \\ \text{Qz:} \ \text{None} \\ \text{Wz:} \ \text{None} \end{array}$$

8.6 INVALID-NUMER-6 $Z(s) = \left(\frac{1}{C_1 s}, R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty\right)$

Parameters:

$$\begin{array}{l} \text{Q:} \ \frac{C_1C_2R_2\sqrt{\frac{g_m}{C_1C_2R_2+C_1C_2Z_L}} + C_1C_2Z_L\sqrt{\frac{g_m}{C_1C_2R_2+C_1C_2Z_L}}}{C_1+C_2R_2g_m+C_2} \\ \text{wo:} \ \sqrt{\frac{g_m}{C_1C_2R_2+C_1C_2Z_L}} \\ \text{bandwidth:} \ \frac{\sqrt{\frac{g_m}{C_1C_2R_2+C_1C_2Z_L}} (C_1+C_2R_2g_m+C_2)}{C_1C_2R_2\sqrt{\frac{g_m}{C_1C_2R_2+C_1C_2Z_L}} + C_1C_2Z_L\sqrt{\frac{g_m}{C_1C_2R_2+C_1C_2Z_L}}} \\ \text{K-LP:} \ Z_L \\ \text{K-HP:} \ 0 \\ \text{K-BP:} \ \frac{C_2R_2Z_Lg_m+C_2Z_L}{C_1+C_2R_2g_m+C_2} \\ \text{Qz:} \ \text{None} \\ \text{Wz:} \ \text{None} \end{array}$$

8.7 INVALID-NUMER-7 $Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \frac{1}{C_2 s}, \infty, \infty, \infty\right)$

$$\begin{aligned} & \text{Q:} \ \frac{C_1 C_2 R_1 Z_L \sqrt{\frac{g_m}{C_1 C_2 Z_L} + \frac{1}{C_1 C_2 R_1 Z_L}}}{C_1 R_1 + C_2 R_1 + C_2 Z_L} \\ & \text{wo:} \ \sqrt{\frac{R_1 g_m + 1}{C_1 C_2 R_1 Z_L}} \\ & \text{bandwidth:} \ \frac{\sqrt{\frac{R_1 g_m + 1}{C_1 C_2 R_1 Z_L}} (C_1 R_1 + C_2 R_1 + C_2 Z_L)}{C_1 C_2 R_1 Z_L \sqrt{\frac{g_m}{C_1 C_2 Z_L} + \frac{1}{C_1 C_2 R_1 Z_L}}} \\ & \text{K-LP:} \ \frac{R_1 Z_L g_m}{R_1 g_m + 1} \\ & \text{K-HP:} \ 0 \\ & \text{K-BP:} \ \frac{C_2 R_1 Z_L}{C_1 R_1 + C_2 R_1 + C_2 Z_L} \\ & \text{Qz:} \ \text{None} \\ & \text{Wz:} \ \text{None} \end{aligned}$$

$$H(s) = \frac{C_2 R_2 Z_L s + R_2 Z_L g_m + Z_L}{C_1 C_2 R_2 Z_L s^2 + R_2 g_m + s \left(C_1 R_2 + C_1 Z_L + C_2 R_2\right) + 1}$$

$$H(s) = \frac{Z_L g_m + s \left(C_2 R_2 Z_L g_m + C_2 Z_L \right)}{g_m + s^2 \left(C_1 C_2 R_2 + C_1 C_2 Z_L \right) + s \left(C_1 + C_2 R_2 g_m + C_2 \right)}$$

$$H(s) = \frac{C_2 R_1 Z_L s + R_1 Z_L g_m}{C_1 C_2 R_1 Z_L s^2 + R_1 g_m + s \left(C_1 R_1 + C_2 R_1 + C_2 Z_L\right) + 1}$$

8.8 INVALID-NUMER-8
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \frac{R_2}{C_2 R_2 s + 1}, \infty, \infty, \infty\right)$$

$$H(s) = \frac{C_2 R_1 R_2 Z_L s + R_1 R_2 Z_L g_m + R_1 Z_L}{C_1 C_2 R_1 R_2 Z_L s^2 + R_1 R_2 g_m + R_1 + R_2 + Z_L + s \left(C_1 R_1 R_2 + C_1 R_1 Z_L + C_2 R_1 R_2 + C_2 R_2 Z_L \right)}$$

Parameters:

$$\begin{array}{l} \text{Q:} \ \frac{C_1C_2R_1R_2Z_L\sqrt{\frac{g_m}{C_1C_2Z_L} + \frac{1}{C_1C_2R_2Z_L} + \frac{1}{C_1C_2R_1Z_L} + \frac{1}{C_1C_2R_1Z_L} + \frac{1}{C_1C_2R_1Z_L}}{C_1R_1R_2+C_1R_1Z_L+C_2R_1R_2+C_2R_2Z_L} \\ \text{wo:} \ \sqrt{\frac{R_1R_2g_m+R_1+R_2+Z_L}{C_1C_2R_1R_2Z_L}} \\ \text{bandwidth:} \ \frac{\sqrt{\frac{R_1R_2g_m+R_1+R_2+Z_L}{C_1C_2R_1R_2Z_L}}(C_1R_1R_2+C_1R_1Z_L+C_2R_1R_2+C_2R_2Z_L)}{C_1C_2R_1R_2Z_L\sqrt{\frac{g_m}{C_1C_2Z_L} + \frac{1}{C_1C_2R_2Z_L} + \frac{1}{C_1C_2R_1Z_L} + \frac{1}{C_1C_2R_1R_2}}} \\ \text{K-LP:} \ \frac{R_1R_2Z_Lg_m+R_1Z_L}{R_1R_2g_m+R_1+R_2+Z_L} \\ \text{K-HP:} \ 0 \\ \text{K-BP:} \ \frac{C_2R_1R_2Z_L}{C_1R_1Z_L+C_2R_1R_2+C_2R_2Z_L} \\ \text{Qz:} \ \text{None} \\ \text{Wz:} \ \text{None} \end{array}$$

8.9 INVALID-NUMER-9 $Z(s) = \left(\frac{R_1}{C_1R_1s+1}, R_2 + \frac{1}{C_2s}, \infty, \infty, \infty\right)$

$$H(s) = \frac{R_1 Z_L g_m + s \left(C_2 R_1 R_2 Z_L g_m + C_2 R_1 Z_L\right)}{R_1 g_m + s^2 \left(C_1 C_2 R_1 R_2 + C_1 C_2 R_1 Z_L\right) + s \left(C_1 R_1 + C_2 R_1 R_2 g_m + C_2 R_1 + C_2 R_2 + C_2 Z_L\right) + 1}$$

Parameters:

$$Q: \frac{C_1C_2R_1R_2\sqrt{\frac{R_1g_m}{C_1C_2R_1R_2+C_1C_2R_1Z_L}} + C_1C_2R_1Z_L\sqrt{\frac{R_1g_m}{C_1C_2R_1R_2+C_1C_2R_1Z_L}} + C_1C_2R_1Z_L\sqrt{\frac{R_1g_m}{C_1C_2R_1R_2+C_1C_2R_1Z_L}} + C_1C_2R_1Z_L\sqrt{\frac{R_1g_m}{C_1C_2R_1R_2+C_1C_2R_1Z_L}} + C_1C_2R_1Z_L\sqrt{\frac{R_1g_m}{C_1C_2R_1R_2+C_1C_2R_1Z_L}} + C_1C_2R_1Z_L\sqrt{\frac{R_1g_m}{C_1C_2R_1R_2+C_1C_2R_1Z_L}} + C_1C_2R_1C_2R_1Z_L}$$

$$\text{bandwidth: } \frac{\sqrt{\frac{R_1g_m+1}{C_1C_2R_1R_2+C_1C_2R_1Z_L}} (C_1R_1+C_2R_1R_2g_m+C_2R_1+C_2R_2+C_2Z_L)} {C_1C_2R_1R_2+C_1C_2R_1Z_L} + C_1C_2R_1Z_L\sqrt{\frac{R_1g_m}{C_1C_2R_1R_2+C_1C_2R_1Z_L}} + C_1C_2R_1Z_L\sqrt{\frac{R_1g_m}{C_1C_2R_1R_2+C_1C_2R_1Z_L}} + C_1C_2R_1Z_L\sqrt{\frac{R_1g_m}{C_1C_2R_1R_2+C_1C_2R_1Z_L}} + C_1C_2R_1Z_L\sqrt{\frac{R_1g_m}{C_1C_2R_1R_2+C_1C_2R_1Z_L}} + C_1C_2R_1Z_L\sqrt{\frac{R_1g_m}{C_1C_2R_1R_2+C_1C_2R_1Z_L}} + C_2R_1Z_L\sqrt{\frac{R_1g_m}{C_1C_2R_1R_2+C_1C_2R_1Z_L}} + C_1C_2R_1Z_L} + C_1C_2R_1Z_L\sqrt{\frac{R_1g_m}{C_1C_2R_1R_2+C_1C_2R_1Z_L}} + C_1C_2R_1Z_L\sqrt{\frac{R_1g_m}{C_1C_2R_1R_2+C_1C_2R_1Z_L}} + C_1C_2R_1Z_L\sqrt{\frac{R_1g_m}{C_1C_2R_1R_2+C_1C_2R_1Z_L}} + C_1C_2R_1Z_L\sqrt{\frac{R_1g_m}{C_1C_2R_1R_2+C_1C_2R_1Z_L}} + C_1C_2R_1Z_L\sqrt{\frac{R_1g_m}{C_1C_2R_1R_$$

9 INVALID-WZ

9.1 INVALID-WZ-1
$$Z(s) = \left(R_1 + \frac{1}{C_1 s}, \frac{1}{C_2 s}, \infty, \infty, \infty\right)$$

$$H(s) = \frac{C_1 C_2 R_1 Z_L s^2 + Z_L g_m + s \left(C_1 R_1 Z_L g_m + C_2 Z_L\right)}{g_m + s^2 \left(C_1 C_2 R_1 + C_1 C_2 Z_L\right) + s \left(C_1 R_1 g_m + C_1 + C_2\right)}$$

$$\begin{aligned} &\text{Q: } \frac{C_1C_2R_1\sqrt{\frac{g_m}{C_1C_2R_1+C_1C_2Z_L}} + C_1C_2Z_L\sqrt{\frac{g_m}{C_1C_2R_1+C_1C_2Z_L}}}{C_1R_1g_m + C_1 + C_2} \\ &\text{wo: } \sqrt{\frac{g_m}{C_1C_2R_1+C_1C_2Z_L}} \\ &\text{bandwidth: } \frac{\sqrt{\frac{g_m}{C_1C_2R_1+C_1C_2Z_L}} (C_1R_1g_m + C_1 + C_2)}{C_1C_2R_1\sqrt{\frac{g_m}{C_1C_2R_1+C_1C_2Z_L}} + C_1C_2Z_L\sqrt{\frac{g_m}{C_1C_2R_1+C_1C_2Z_L}}} \\ &\text{K-LP: } Z_L \\ &\text{K-HP: } \frac{R_1Z_L}{R_1 + Z_L} \\ &\text{K-BP: } \frac{C_1R_1Z_Lg_m + C_2Z_L}{C_1R_1g_m + C_1 + C_2} \\ &\text{Qz: None} \\ &\text{Wz: } \sqrt{\frac{g_m}{C_1C_2R_1}} \end{aligned}$$

9.2 INVALID-WZ-2 $Z(s) = \left(R_1 + \frac{1}{C_1 s}, \frac{R_2}{C_2 R_2 s + 1}, \infty, \infty, \infty\right)$

$$H(s) = \frac{C_1C_2R_1R_2Z_Ls^2 + R_2Z_Lg_m + Z_L + s\left(C_1R_1R_2Z_Lg_m + C_1R_1Z_L + C_2R_2Z_L\right)}{R_2g_m + s^2\left(C_1C_2R_1R_2 + C_1C_2R_2Z_L\right) + s\left(C_1R_1R_2g_m + C_1R_1 + C_1R_2 + C_1Z_L + C_2R_2\right) + 1}$$

Parameters:

$$Q: \frac{C_1C_2R_1R_2\sqrt{\frac{R_2g_m}{C_1C_2R_1R_2+C_1C_2R_2Z_L} + C_1C_2R_1R_2+C_1C_2R_2Z_L}{C_1R_1R_2g_m+C_1R_1+C_1R_2+C_1Z_L+C_2R_2}}{C_1R_1R_2g_m+C_1R_1+C_1R_2+C_1Z_L+C_2R_2}} \\ \text{wo: } \sqrt{\frac{R_2g_m+1}{C_1C_2R_1R_2+C_1C_2R_2Z_L}}} \\ \text{bandwidth: } \frac{\sqrt{\frac{R_2g_m}{C_1C_2R_1R_2+C_1C_2R_2Z_L}}{C_1C_2R_1R_2+C_1C_2R_2Z_L}}}{C_1C_2R_1R_2g_m+C_1R_1+C_1R_2+C_1Z_L+C_2R_2}}{C_1C_2R_1R_2+C_1C_2R_2Z_L}} \\ \text{bandwidth: } \frac{\sqrt{\frac{R_2g_m}{C_1C_2R_1R_2+C_1C_2R_2Z_L}}{C_1C_2R_1R_2+C_1C_2R_2Z_L}} + C_1C_2R_2Z_L\sqrt{\frac{R_2g_m}{C_1C_2R_1R_2+C_1C_2R_2Z_L}} + C_1C_2R_2Z_L\sqrt{\frac{R_2g_m}{C_1C_2R_1R_2+C_1C_2R_2Z_L}}}}{C_1R_1R_2g_m+C_1R_1+C_1R_2+C_1Z_L+C_2R_2}} \\ \text{K-LP: } Z_L \\ \text{K-HP: } \frac{R_1Z_L}{R_1+Z_L} \\ \text{K-HP: } \frac{R_1Z_L}{R_1+Z_L} \\ \text{C_1}R_1R_2Z_Lg_m\sqrt{\frac{R_2g_m}{C_1C_2R_1R_2+C_1C_2R_2Z_L} + C_1R_2Z_L\sqrt{\frac{g_m}{C_1C_2R_1R_2+C_1C_2R_2Z_L}} + C_1R_1Z_L\sqrt{\frac{g_m}{C_1C_2R_1R_2+C_1C_2R_2Z_L}} + C_1R_2Z_L\sqrt{\frac{g_m}{C_1C_2R_1R_2+C_1C_2R_2Z_L}} + C_1R_2Z_L\sqrt{\frac{g_m}{C_1C_2R_1R_2+$$

9.3 INVALID-WZ-3 $Z(s) = \left(R_1 + \frac{1}{C_1 s}, \ R_2 + \frac{1}{C_2 s}, \ \infty, \ \infty, \ \infty\right)$

$$H(s) = \frac{Z_L g_m + s^2 \left(C_1 C_2 R_1 R_2 Z_L g_m + C_1 C_2 R_1 Z_L \right) + s \left(C_1 R_1 Z_L g_m + C_2 R_2 Z_L g_m + C_2 Z_L \right)}{g_m + s^2 \left(C_1 C_2 R_1 R_2 g_m + C_1 C_2 R_1 + C_1 C_2 R_2 + C_1 C_2 Z_L \right) + s \left(C_1 R_1 g_m + C_1 + C_2 R_2 g_m + C_2 \right)}$$

Parameters:

$$Q: \frac{C_1C_2R_1R_2g_m\sqrt{\overline{C_1C_2R_1R_2g_m}+C_1C_2R_1+C_1C_2R_2+C_1C_2Z_L}}{C_1R_1g_m+C_1C_2R_1+C_1C_2R_2+C_1C_2Z_L} + C_1C_2R_1\sqrt{\overline{C_1C_2R_1R_2g_m}+C_1C_2R_1+C_1C_2R_2+C_1C_2Z_L}} \\ Wo: \sqrt{\frac{g_m}{C_1C_2R_1R_2g_m}+C_1C_2R_1+C_1C_2R_2+C_1C_2Z_L}} \\ bandwidth: \frac{g_m}{C_1C_2R_1R_2g_m+C_1C_2R_1+C_1C_2R_2+C_1C_2Z_L}} \\ V_{C_1C_2R_1R_2g_m+C_1C_2R_1+C_1C_2R_2+C_1C_2Z_L} \\ V_{C_1C_2R_1R_2g_m+C_1C_2R_1+C_1C_2R_2+C_1C_2Z_L}} \\ V_{C_1C_2R_1R_2g_m+C_1C_2R_1+C_1C_2R_2+C_1C_2Z_L}} \\ V_{C_1C_2R_1R_2g_m+C_1C_2R_1+C_1C_2R_2+C_1C_2Z_L}} \\ V_{C_1C_2R_1R_2g_m+C_1C_2R_1+C_1C_2R_2+C_1C_2Z_L}} \\ V_{C_1C_2R_1R_2g_m+C_1C_2R_1+C_1C_2R_2+C_1C_2Z_L}} \\ V_{C_1C_2R_1R_2g_m+C_1C_2R_1+C_1C_2R_2+C_1C_2Z_L} \\ V_{C_1C_2R_1R_2g_m+C_1C_2R_1+C_1C_2R_2+C_1C_2Z_L} \\ V_{C_1C_2R_1R_2g_m+C_1C_2R_1+C_1C_2R_2+C_1C_2Z_L} \\ V_{C_1C_2R_1R_2g_m+C_1C_2R_1+C_1C_2R_2+C_1C_2Z_L} \\ V_{C_1C_2R_1R_2g_m+C_1C_2R_2+C_1C_2Z_L} \\ V_{C_1C_2R_1R_2g_m+C_1C_2R_2+C_1C_2Z_L} \\ V_{C_1C_2R_1R_2g_m+C_1C_2R_2+C_1C_2Z_L} \\ V_{C_1C_2R_1R_2g_m+C_1C_2R_2+C_1C_2R_1} \\ V_{C_1C_2R_1R_2g_m+C_1C_2R_2+C_1C_2R_1} \\ V_{C_1C_2R_1R_2g_m+C_1C_2R_2+C_1C_2R_1} \\ V_{C_1C_2R_1R_2g_m+C_1C_2R_2+C_1C_2R_1} \\ V_{C_1C_2R_1R_2g_m+C_1C_2R_1} \\ V_{C_1C_2R_1R_2g$$

10 INVALID-ORDER

10.1 INVALID-ORDER-1 $Z(s) = (R_1, R_2, \infty, \infty, \infty)$

$$H(s) = \frac{R_1 R_2 Z_L g_m + R_1 Z_L}{R_1 R_2 g_m + R_1 + R_2 + Z_L}$$

10.2 INVALID-ORDER-2 $Z(s) = \left(R_1, \frac{1}{C_2 s}, \infty, \infty, \infty\right)$

$$H(s) = \frac{C_2 R_1 Z_L s + R_1 Z_L g_m}{R_1 g_m + s \left(C_2 R_1 + C_2 Z_L\right) + 1}$$

10.3 INVALID-ORDER-3
$$Z(s) = \left(R_1, \frac{R_2}{C_2R_2s+1}, \infty, \infty, \infty\right)$$

$$H(s) = \frac{C_2 R_1 R_2 Z_L s + R_1 R_2 Z_L g_m + R_1 Z_L}{R_1 R_2 g_m + R_1 + R_2 + Z_L + s \left(C_2 R_1 R_2 + C_2 R_2 Z_L\right)}$$

10.4 INVALID-ORDER-4
$$Z(s) = \left(R_1, R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty\right)$$

$$H(s) = \frac{R_1 Z_L g_m + s \left(C_2 R_1 R_2 Z_L g_m + C_2 R_1 Z_L \right)}{R_1 g_m + s \left(C_2 R_1 R_2 g_m + C_2 R_1 + C_2 R_2 + C_2 Z_L \right) + 1}$$

10.5 INVALID-ORDER-5 $Z(s) = (L_1 s, R_2, \infty, \infty, \infty)$

$$H(s) = \frac{s(L_1 R_2 Z_L g_m + L_1 Z_L)}{R_2 + Z_L + s(L_1 R_2 g_m + L_1)}$$

10.6 INVALID-ORDER-6 $Z(s) = \left(L_1 s, \ L_2 s + \frac{1}{C_2 s}, \ \infty, \ \infty, \ \infty\right)$

$$H(s) = \frac{C_2 L_1 L_2 Z_L g_m s^3 + C_2 L_1 Z_L s^2 + L_1 Z_L g_m s}{C_2 L_1 L_2 g_m s^3 + s^2 \left(C_2 L_1 + C_2 L_2 \right) + s \left(C_2 Z_L + L_1 g_m \right) + 1}$$

10.7 INVALID-ORDER-7 $Z(s) = \left(L_1 s, \ L_2 s + R_2 + \frac{1}{C_2 s}, \ \infty, \ \infty\right)$

$$H(s) = \frac{C_2 L_1 L_2 Z_L g_m s^3 + L_1 Z_L g_m s + s^2 \left(C_2 L_1 R_2 Z_L g_m + C_2 L_1 Z_L\right)}{C_2 L_1 L_2 g_m s^3 + s^2 \left(C_2 L_1 R_2 g_m + C_2 L_1 + C_2 L_2\right) + s \left(C_2 R_2 + C_2 Z_L + L_1 g_m\right) + 1}$$

10.8 INVALID-ORDER-8 $Z(s) = \left(L_1 s, \frac{C_2 L_2 R_2 s^2 + L_2 s + R_2}{C_2 L_2 s^2 + 1}, \infty, \infty, \infty\right)$

$$H(s) = \frac{L_1 L_2 Z_L g_m s^2 + s^3 \left(C_2 L_1 L_2 R_2 Z_L g_m + C_2 L_1 L_2 Z_L \right) + s \left(L_1 R_2 Z_L g_m + L_1 Z_L \right)}{R_2 + Z_L + s^3 \left(C_2 L_1 L_2 R_2 g_m + C_2 L_1 L_2 \right) + s^2 \left(C_2 L_2 R_2 + C_2 L_2 Z_L + L_1 L_2 g_m \right) + s \left(L_1 R_2 g_m + L_1 + L_2 \right)}$$

10.9 INVALID-ORDER-9 $Z(s) = \left(L_1 s, \frac{R_2(C_2 L_2 s^2 + 1)}{C_2 L_2 s^2 + C_2 R_2 s + 1}, \infty, \infty, \infty\right)$

$$H(s) = \frac{C_2L_1R_2Z_Ls^2 + s^3\left(C_2L_1L_2R_2Z_Lg_m + C_2L_1L_2Z_L\right) + s\left(L_1R_2Z_Lg_m + L_1Z_L\right)}{R_2 + Z_L + s^3\left(C_2L_1L_2R_2g_m + C_2L_1L_2\right) + s^2\left(C_2L_1R_2 + C_2L_2R_2 + C_2L_2Z_L\right) + s\left(C_2R_2Z_L + L_1R_2g_m + L_1\right)}$$

10.10 INVALID-ORDER-10 $Z(s) = \left(\frac{1}{C_1 s}, R_2, \infty, \infty, \infty\right)$

$$H(s) = \frac{R_2 Z_L g_m + Z_L}{R_2 g_m + s (C_1 R_2 + C_1 Z_L) + 1}$$

10.11 INVALID-ORDER-11 $Z(s) = \left(\frac{1}{C_1 s}, L_2 s + \frac{1}{C_2 s}, \infty, \infty, \infty\right)$

$$H(s) = \frac{C_2 L_2 Z_L g_m s^2 + C_2 Z_L s + Z_L g_m}{C_1 C_2 L_2 s^3 + g_m + s^2 \left(C_1 C_2 Z_L + C_2 L_2 g_m \right) + s \left(C_1 + C_2 \right)}$$

10.12 INVALID-ORDER-12 $Z(s) = \left(\frac{1}{C_1 s}, L_2 s + R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty\right)$

$$H(s) = \frac{C_2L_2Z_Lg_ms^2 + Z_Lg_m + s\left(C_2R_2Z_Lg_m + C_2Z_L\right)}{C_1C_2L_2s^3 + g_m + s^2\left(C_1C_2R_2 + C_1C_2Z_L + C_2L_2g_m\right) + s\left(C_1 + C_2R_2g_m + C_2\right)}$$

10.13 INVALID-ORDER-13 $Z(s) = \left(\frac{1}{C_1 s}, \frac{C_2 L_2 R_2 s^2 + L_2 s + R_2}{C_2 L_2 s^2 + 1}, \infty, \infty, \infty\right)$

$$H(s) = \frac{L_2 Z_L g_m s + R_2 Z_L g_m + Z_L + s^2 \left(C_2 L_2 R_2 Z_L g_m + C_2 L_2 Z_L \right)}{R_2 g_m + s^3 \left(C_1 C_2 L_2 R_2 + C_1 C_2 L_2 Z_L \right) + s^2 \left(C_1 L_2 + C_2 L_2 R_2 g_m + C_2 L_2 \right) + s \left(C_1 R_2 + C_1 Z_L + L_2 g_m \right) + 1}$$

10.14 INVALID-ORDER-14
$$Z(s) = \left(\frac{1}{C_1 s}, \frac{R_2(C_2 L_2 s^2 + 1)}{C_2 L_2 s^2 + C_2 R_2 s + 1}, \infty, \infty, \infty\right)$$

$$H(s) = \frac{C_2R_2Z_Ls + R_2Z_Lg_m + Z_L + s^2\left(C_2L_2R_2Z_Lg_m + C_2L_2Z_L\right)}{R_2g_m + s^3\left(C_1C_2L_2R_2 + C_1C_2L_2Z_L\right) + s^2\left(C_1C_2R_2Z_L + C_2L_2R_2g_m + C_2L_2\right) + s\left(C_1R_2 + C_1Z_L + C_2R_2\right) + 1}$$

10.15 INVALID-ORDER-15
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, R_2, \infty, \infty, \infty\right)$$

$$H(s) = \frac{R_1 R_2 Z_L g_m + R_1 Z_L}{R_1 R_2 g_m + R_1 + R_2 + Z_L + s \left(C_1 R_1 R_2 + C_1 R_1 Z_L\right)}$$

10.16 INVALID-ORDER-16
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, L_2 s + \frac{1}{C_2 s}, \infty, \infty\right)$$

$$H(s) = \frac{C_2L_2R_1Z_Lg_ms^2 + C_2R_1Z_Ls + R_1Z_Lg_m}{C_1C_2L_2R_1s^3 + R_1g_m + s^2\left(C_1C_2R_1Z_L + C_2L_2R_1g_m + C_2L_2\right) + s\left(C_1R_1 + C_2R_1 + C_2Z_L\right) + 1}$$

10.17 INVALID-ORDER-17
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, L_2 s + R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty\right)$$

$$H(s) = \frac{C_2L_2R_1Z_Lg_ms^2 + R_1Z_Lg_m + s\left(C_2R_1R_2Z_Lg_m + C_2R_1Z_L\right)}{C_1C_2L_2R_1s^3 + R_1g_m + s^2\left(C_1C_2R_1R_2 + C_1C_2R_1Z_L + C_2L_2R_1g_m + C_2L_2\right) + s\left(C_1R_1 + C_2R_1R_2g_m + C_2R_1 + C_2R_2 + C_2Z_L\right) + 1}$$

10.18 INVALID-ORDER-18
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \frac{C_2 L_2 R_2 s^2 + L_2 s + R_2}{C_2 L_2 s^2 + 1}, \infty, \infty, \infty\right)$$

$$H(s) = \frac{L_2 R_1 Z_L g_m s + R_1 R_2 Z_L g_m + R_1 Z_L + s^2 \left(C_2 L_2 R_1 R_2 Z_L g_m + C_2 L_2 R_1 Z_L\right)}{R_1 R_2 g_m + R_1 + R_2 + Z_L + s^3 \left(C_1 C_2 L_2 R_1 R_2 + C_1 C_2 L_2 R_1 Z_L\right) + s^2 \left(C_1 L_2 R_1 + C_2 L_2 R_1 R_2 g_m + C_2 L_2 R_1 + C_2 L_2 R_2 + C_2 L_2 Z_L\right) + s \left(C_1 R_1 R_2 + C_1 R_1 Z_L + L_2 R_1 g_m + L_2\right)}$$

10.19 INVALID-ORDER-19
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \frac{R_2 \left(C_2 L_2 s^2 + 1\right)}{C_2 L_2 s^2 + C_2 R_2 s + 1}, \infty, \infty, \infty\right)$$

$$H(s) = \frac{C_2R_1R_2Z_Ls + R_1R_2Z_Lg_m + R_1Z_L + s^2\left(C_2L_2R_1R_2Z_Lg_m + C_2L_2R_1Z_L\right)}{R_1R_2g_m + R_1 + R_2 + Z_L + s^3\left(C_1C_2L_2R_1R_2 + C_1C_2L_2R_1Z_L\right) + s^2\left(C_1C_2R_1R_2Z_L + C_2L_2R_1R_2g_m + C_2L_2R_1 + C_2L_2R_2 + C_2L_2Z_L\right) + s\left(C_1R_1R_2 + C_1R_1Z_L + C_2R_1R_2 + C_2R_2Z_L\right)}$$

10.20 INVALID-ORDER-20 $Z(s) = \left(R_1 + \frac{1}{C_1 s}, R_2, \infty, \infty, \infty\right)$

$$H(s) = \frac{R_2 Z_L g_m + Z_L + s \left(C_1 R_1 R_2 Z_L g_m + C_1 R_1 Z_L \right)}{R_2 q_m + s \left(C_1 R_1 R_2 q_m + C_1 R_1 + C_1 R_2 + C_1 Z_L \right) + 1}$$

10.21 INVALID-ORDER-21 $Z(s) = \left(R_1 + \frac{1}{C_1 s}, L_2 s + \frac{1}{C_2 s}, \infty, \infty, \infty\right)$

$$H(s) = \frac{C_1C_2L_2R_1Z_Lg_ms^3 + Z_Lg_m + s^2\left(C_1C_2R_1Z_L + C_2L_2Z_Lg_m\right) + s\left(C_1R_1Z_Lg_m + C_2Z_L\right)}{g_m + s^3\left(C_1C_2L_2R_1g_m + C_1C_2L_2\right) + s^2\left(C_1C_2R_1 + C_1C_2Z_L + C_2L_2g_m\right) + s\left(C_1R_1g_m + C_1 + C_2\right)}$$

10.22 INVALID-ORDER-22
$$Z(s) = \left(R_1 + \frac{1}{C_1 s}, L_2 s + R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty\right)$$

$$H(s) = \frac{C_1C_2L_2R_1Z_Lg_ms^3 + Z_Lg_m + s^2\left(C_1C_2R_1R_2Z_Lg_m + C_1C_2R_1Z_L + C_2L_2Z_Lg_m\right) + s\left(C_1R_1Z_Lg_m + C_2R_2Z_Lg_m + C_2Z_L\right)}{g_m + s^3\left(C_1C_2L_2R_1g_m + C_1C_2L_2\right) + s^2\left(C_1C_2R_1R_2g_m + C_1C_2R_1 + C_1C_2R_2 + C_1C_2Z_L + C_2L_2g_m\right) + s\left(C_1R_1g_m + C_1 + C_2R_2g_m + C_2Z_L\right)}$$

10.23 INVALID-ORDER-23
$$Z(s) = \left(R_1 + \frac{1}{C_1 s}, \frac{C_2 L_2 R_2 s^2 + L_2 s + R_2}{C_2 L_2 s^2 + 1}, \infty, \infty, \infty\right)$$

$$H(s) = \frac{R_2 Z_L g_m + Z_L + s^3 \left(C_1 C_2 L_2 R_1 R_2 Z_L g_m + C_1 C_2 L_2 R_1 Z_L\right) + s^2 \left(C_1 L_2 R_1 Z_L g_m + C_2 L_2 Z_L g_m + C_2 L_2 Z_L\right) + s \left(C_1 R_1 R_2 Z_L g_m + C_1 R_1 Z_L + L_2 Z_L g_m\right)}{R_2 g_m + s^3 \left(C_1 C_2 L_2 R_1 R_2 g_m + C_1 C_2 L_2 R_1 + C_1 C_2 L_2 R_2 + C_1 C_2 L_2 Z_L\right) + s^2 \left(C_1 L_2 R_1 g_m + C_1 L_2 + C_2 L_2 R_2 g_m + C_2 L_2\right) + s \left(C_1 R_1 R_2 g_m + C_1 R_1 Z_L + L_2 Z_L g_m\right)}$$

10.24 INVALID-ORDER-24
$$Z(s) = \left(R_1 + \frac{1}{C_1 s}, \frac{R_2(C_2 L_2 s^2 + 1)}{C_2 L_2 s^2 + C_2 R_2 s + 1}, \infty, \infty, \infty\right)$$

$$H(s) = \frac{R_2 Z_L g_m + Z_L + s^3 \left(C_1 C_2 L_2 R_1 R_2 Z_L g_m + C_1 C_2 L_2 R_1 Z_L\right) + s^2 \left(C_1 C_2 R_1 R_2 Z_L + C_2 L_2 R_2 Z_L g_m + C_2 L_2 Z_L\right) + s \left(C_1 R_1 R_2 Z_L g_m + C_1 R_1 Z_L + C_2 R_2 Z_L\right)}{R_2 g_m + s^3 \left(C_1 C_2 L_2 R_1 R_2 g_m + C_1 C_2 L_2 R_1 + C_1 C_2 L_2 R_2 + C_1 C_2 L_2 Z_L\right) + s^2 \left(C_1 C_2 R_1 R_2 + C_1 C_2 R_2 Z_L + C_2 L_2 R_2 g_m + C_2 L_2\right) + s \left(C_1 R_1 R_2 g_m + C_1 R_1 + C_1 R_2 + C_1 Z_L + C_2 R_2\right) + 1}$$

10.25 INVALID-ORDER-25
$$Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \frac{1}{C_2 s}, \infty, \infty, \infty\right)$$

$$H(s) = \frac{C_1 C_2 L_1 Z_L s^3 + C_1 L_1 Z_L g_m s^2 + C_2 Z_L s + Z_L g_m}{C_1 C_2 L_1 s^3 + g_m + s^2 \left(C_1 C_2 Z_L + C_1 L_1 g_m \right) + s \left(C_1 + C_2 \right)}$$

10.26 INVALID-ORDER-26
$$Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \frac{R_2}{C_2 R_2 s + 1}, \infty, \infty, \infty\right)$$

$$H(s) = \frac{C_1C_2L_1R_2Z_Ls^3 + C_2R_2Z_Ls + R_2Z_Lg_m + Z_L + s^2\left(C_1L_1R_2Z_Lg_m + C_1L_1Z_L\right)}{C_1C_2L_1R_2s^3 + R_2g_m + s^2\left(C_1C_2R_2Z_L + C_1L_1R_2g_m + C_1L_1\right) + s\left(C_1R_2 + C_1Z_L + C_2R_2\right) + 1}$$

10.27 INVALID-ORDER-27
$$Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \ R_2 + \frac{1}{C_2 s}, \ \infty, \ \infty, \ \infty\right)$$

$$H(s) = \frac{C_1 L_1 Z_L g_m s^2 + Z_L g_m + s^3 \left(C_1 C_2 L_1 R_2 Z_L g_m + C_1 C_2 L_1 Z_L \right) + s \left(C_2 R_2 Z_L g_m + C_2 Z_L \right)}{g_m + s^3 \left(C_1 C_2 L_1 R_2 g_m + C_1 C_2 L_1 \right) + s^2 \left(C_1 C_2 R_2 + C_1 C_2 Z_L + C_1 L_1 g_m \right) + s \left(C_1 + C_2 R_2 g_m + C_2 \right)}$$

10.28 INVALID-ORDER-28
$$Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \ L_2 s + \frac{1}{C_2 s}, \ \infty, \ \infty, \ \infty\right)$$

10.29 INVALID-ORDER-29
$$Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \ L_2 s + R_2 + \frac{1}{C_2 s}, \ \infty, \ \infty, \ \infty\right)$$

$$H(s) = \frac{C_1C_2L_1L_2Z_Lg_ms^4 + Z_Lg_m + s^3\left(C_1C_2L_1R_2Z_Lg_m + C_1C_2L_1Z_L\right) + s^2\left(C_1L_1Z_Lg_m + C_2L_2Z_Lg_m\right) + s\left(C_2R_2Z_Lg_m + C_2Z_L\right)}{C_1C_2L_1L_2g_ms^4 + g_m + s^3\left(C_1C_2L_1R_2g_m + C_1C_2L_1 + C_1C_2L_2\right) + s^2\left(C_1C_2R_2 + C_1C_2Z_L + C_1L_1g_m + C_2L_2g_m\right) + s\left(C_1 + C_2R_2g_m + C_2Z_L\right)}$$

10.30 INVALID-ORDER-30
$$Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \frac{C_2 L_2 R_2 s^2 + L_2 s + R_2}{C_2 L_2 s^2 + 1}, \infty, \infty, \infty\right)$$

$$H(s) = \frac{C_1L_1L_2Z_Lg_ms^3 + L_2Z_Lg_ms + R_2Z_Lg_m + Z_L + s^4\left(C_1C_2L_1L_2R_2Z_Lg_m + C_1C_2L_1L_2Z_L\right) + s^2\left(C_1L_1R_2Z_Lg_m + C_1L_1Z_L + C_2L_2R_2Z_Lg_m + C_2L_2Z_L\right)}{R_2g_m + s^4\left(C_1C_2L_1L_2R_2g_m + C_1C_2L_1L_2\right) + s^3\left(C_1C_2L_2R_2 + C_1C_2L_2Z_L + C_1L_1L_2g_m\right) + s^2\left(C_1L_1R_2g_m + C_1L_1 + C_1L_2 + C_2L_2R_2g_m + C_2L_2\right) + s\left(C_1R_2 + C_1Z_L + C_2L_2Z_L\right)}$$

10.31 INVALID-ORDER-31
$$Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \frac{R_2(C_2 L_2 s^2 + 1)}{C_2 L_2 s^2 + C_2 R_2 s + 1}, \infty, \infty, \infty\right)$$

10.32 INVALID-ORDER-32
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, \frac{1}{C_2 s}, \infty, \infty, \infty\right)$$

$$H(s) = \frac{C_2 L_1 Z_L s^2 + L_1 Z_L g_m s}{C_1 C_2 L_1 Z_L s^3 + s^2 (C_1 L_1 + C_2 L_1) + s (C_2 Z_L + L_1 g_m) + 1}$$

10.33 INVALID-ORDER-33
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, \frac{R_2}{C_2 R_2 s + 1}, \infty, \infty, \infty\right)$$

$$H(s) = \frac{C_2L_1R_2Z_Ls^2 + s\left(L_1R_2Z_Lg_m + L_1Z_L\right)}{C_1C_2L_1R_2Z_Ls^3 + R_2 + Z_L + s^2\left(C_1L_1R_2 + C_1L_1Z_L + C_2L_1R_2\right) + s\left(C_2R_2Z_L + L_1R_2g_m + L_1\right)}$$

10.34 INVALID-ORDER-34
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty\right)$$

$$H(s) = \frac{L_1 Z_L g_m s + s^2 \left(C_2 L_1 R_2 Z_L g_m + C_2 L_1 Z_L \right)}{s^3 \left(C_1 C_2 L_1 R_2 + C_1 C_2 L_1 Z_L \right) + s^2 \left(C_1 L_1 + C_2 L_1 R_2 g_m + C_2 L_1 \right) + s \left(C_2 R_2 + C_2 Z_L + L_1 g_m \right) + 1}$$

10.35 INVALID-ORDER-35
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, L_2 s + \frac{1}{C_2 s}, \infty, \infty, \infty\right)$$

$$H(s) = \frac{C_2L_1L_2Z_Lg_ms^3 + C_2L_1Z_Ls^2 + L_1Z_Lg_ms}{C_1C_2L_1L_2s^4 + s^3\left(C_1C_2L_1Z_L + C_2L_1L_2g_m\right) + s^2\left(C_1L_1 + C_2L_1 + C_2L_2\right) + s\left(C_2Z_L + L_1g_m\right) + 1}$$

10.36 INVALID-ORDER-36
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, L_2 s + R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty\right)$$

$$H(s) = \frac{C_2L_1L_2Z_Lg_ms^3 + L_1Z_Lg_ms + s^2\left(C_2L_1R_2Z_Lg_m + C_2L_1Z_L\right)}{C_1C_2L_1L_2s^4 + s^3\left(C_1C_2L_1R_2 + C_1C_2L_1Z_L + C_2L_1L_2g_m\right) + s^2\left(C_1L_1 + C_2L_1R_2g_m + C_2L_1 + C_2L_2\right) + s\left(C_2R_2 + C_2Z_L + L_1g_m\right) + 1}$$

10.37 INVALID-ORDER-37
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, \frac{C_2 L_2 R_2 s^2 + L_2 s + R_2}{C_2 L_2 s^2 + 1}, \infty, \infty, \infty\right)$$

$$H(s) = \frac{L_1 L_2 Z_L g_m s^2 + s^3 \left(C_2 L_1 L_2 R_2 Z_L g_m + C_2 L_1 L_2 Z_L\right) + s \left(L_1 R_2 Z_L g_m + L_1 Z_L\right)}{R_2 + Z_L + s^4 \left(C_1 C_2 L_1 L_2 R_2 + C_1 C_2 L_1 L_2 Z_L\right) + s^3 \left(C_1 L_1 L_2 + C_2 L_1 L_2 R_2 g_m + C_2 L_1 L_2\right) + s^2 \left(C_1 L_1 R_2 + C_1 L_1 Z_L + C_2 L_2 R_2 + C_2 L_2 Z_L + L_1 L_2 g_m\right) + s \left(L_1 R_2 g_m + L_1 + L_2\right)}$$

10.38 INVALID-ORDER-38
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, \frac{R_2 \left(C_2 L_2 s^2 + 1\right)}{C_2 L_2 s^2 + C_2 R_2 s + 1}, \infty, \infty, \infty\right)$$

$$H(s) = \frac{C_2L_1R_2Z_Ls^2 + s^3\left(C_2L_1L_2R_2Z_Lg_m + C_2L_1L_2Z_L\right) + s\left(L_1R_2Z_Lg_m + L_1Z_L\right)}{R_2 + Z_L + s^4\left(C_1C_2L_1L_2Z_L\right) + s^3\left(C_1C_2L_1R_2Z_L + C_2L_1L_2R_2g_m + C_2L_1L_2\right) + s^2\left(C_1L_1R_2 + C_1L_1Z_L + C_2L_1R_2 + C_2L_2R_2 + C_2L_2Z_L\right) + s\left(C_2R_2Z_L + L_1R_2g_m + L_1\right)}$$

10.39 INVALID-ORDER-39
$$Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \frac{1}{C_2 s}, \infty, \infty, \infty\right)$$

$$H(s) = \frac{C_1 C_2 L_1 Z_L s^3 + Z_L g_m + s^2 \left(C_1 C_2 R_1 Z_L + C_1 L_1 Z_L g_m \right) + s \left(C_1 R_1 Z_L g_m + C_2 Z_L \right)}{C_1 C_2 L_1 s^3 + g_m + s^2 \left(C_1 C_2 R_1 + C_1 C_2 Z_L + C_1 L_1 g_m \right) + s \left(C_1 R_1 g_m + C_1 + C_2 Z_L \right)}$$

10.40 INVALID-ORDER-40
$$Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \frac{R_2}{C_2 R_2 s + 1}, \infty, \infty, \infty\right)$$

$$H(s) = \frac{C_1C_2L_1R_2Z_Ls^3 + R_2Z_Lg_m + Z_L + s^2\left(C_1C_2R_1R_2Z_L + C_1L_1R_2Z_Lg_m + C_1L_1Z_L\right) + s\left(C_1R_1R_2Z_Lg_m + C_1R_1Z_L + C_2R_2Z_L\right)}{C_1C_2L_1R_2s^3 + R_2g_m + s^2\left(C_1C_2R_1R_2 + C_1C_2R_2Z_L + C_1L_1R_2g_m + C_1L_1\right) + s\left(C_1R_1R_2g_m + C_1R_1 + C_1R_2 + C_1Z_L + C_2R_2\right) + 1}$$

10.41 INVALID-ORDER-41
$$Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \ R_2 + \frac{1}{C_2 s}, \ \infty, \ \infty, \ \infty\right)$$

$$H(s) = \frac{Z_L g_m + s^3 \left(C_1 C_2 L_1 R_2 Z_L g_m + C_1 C_2 L_1 Z_L\right) + s^2 \left(C_1 C_2 R_1 R_2 Z_L g_m + C_1 C_2 R_1 Z_L + C_1 L_1 Z_L g_m\right) + s \left(C_1 R_1 Z_L g_m + C_2 R_2 Z_L g_m + C_2 Z_L\right)}{g_m + s^3 \left(C_1 C_2 L_1 R_2 g_m + C_1 C_2 L_1\right) + s^2 \left(C_1 C_2 R_1 R_2 g_m + C_1 C_2 R_1 + C_1 C_2 R_2 + C_1 C_2 Z_L + C_1 L_1 g_m\right) + s \left(C_1 R_1 g_m + C_1 + C_2 R_2 g_m + C_2 Z_L\right)}$$

10.42 INVALID-ORDER-42
$$Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \ L_2 s + \frac{1}{C_2 s}, \ \infty, \ \infty, \ \infty\right)$$

$$H(s) = \frac{C_1C_2L_1L_2Z_Lg_ms^4 + Z_Lg_m + s^3\left(C_1C_2L_1Z_L + C_1C_2L_2R_1Z_Lg_m\right) + s^2\left(C_1C_2R_1Z_L + C_1L_1Z_Lg_m + C_2L_2Z_Lg_m\right) + s\left(C_1R_1Z_Lg_m + C_2Z_L\right)}{C_1C_2L_1L_2g_ms^4 + g_m + s^3\left(C_1C_2L_1 + C_1C_2L_2R_1g_m + C_1C_2L_2\right) + s^2\left(C_1C_2R_1 + C_1C_2Z_L + C_1L_1g_m + C_2L_2g_m\right) + s\left(C_1R_1Z_Lg_m + C_1C_2Z_L\right)} + s\left(C_1R_1Z_Lg_m + C_1C_2Z_L\right) + s^2\left(C_1C_2R_1 + C_1C_2Z_L + C_1L_1g_m + C_2L_2g_m\right) + s\left(C_1R_1Z_Lg_m + C_1C_2Z_L\right) + s^2\left(C_1C_2R_1 + C_1C_2Z_L + C_1L_1Z_Lg_m + C_2L_2g_m\right) + s\left(C_1R_1Z_Lg_m + C_1C_2Z_L\right) + s^2\left(C_1C_2R_1Z_L + C_1C_2Z_L\right) + s^2\left(C_1C_2R_1Z_L + C_1C_2Z_L\right) + s^2\left(C_1C_2R_1Z_L + C_1C_2Z_L\right) + s^2\left(C_1C_2R_1Z_L\right) + s^2\left(C_1C_2R_1Z_L\right$$

10.43 INVALID-ORDER-43
$$Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \ L_2 s + R_2 + \frac{1}{C_2 s}, \ \infty, \ \infty, \ \infty\right)$$

$$H(s) = \frac{C_1C_2L_1L_2Z_Lg_ms^4 + Z_Lg_m + s^3\left(C_1C_2L_1R_2Z_Lg_m + C_1C_2L_1Z_L + C_1C_2L_2R_1Z_Lg_m\right) + s^2\left(C_1C_2R_1R_2Z_Lg_m + C_1C_2R_1Z_L + C_1L_1Z_Lg_m + C_2L_2Z_Lg_m\right) + s\left(C_1R_1Z_Lg_m + C_2R_2Z_Lg_m + C_2Z_Lg_m\right) + s\left(C_1R_1Z_Lg_m + C_2R_2Z_Lg_m + C_2R_2Z_Lg_m\right) + s\left(C_1R_1Z_Lg_m + C_2R_2Z_Lg_m\right) + s\left(C_1R_1Z_Lg_m + C_2R_2Z_Lg_m\right) + s\left(C_1R_1Z_Lg_m + C_1R_2Z_Lg_m\right) + s\left(C_1R$$

10.44 INVALID-ORDER-44
$$Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \frac{C_2 L_2 R_2 s^2 + L_2 s + R_2}{C_2 L_2 s^2 + 1}, \infty, \infty, \infty\right)$$

10.45 INVALID-ORDER-45
$$Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \frac{R_2(C_2 L_2 s^2 + 1)}{C_2 L_2 s^2 + C_2 R_2 s + 1}, \infty, \infty, \infty\right)$$

$$H(s) = \frac{R_2 Z_L g_m + Z_L + s^4 \left(C_1 C_2 L_1 L_2 R_2 Z_L g_m + C_1 C_2 L_1 L_2 Z_L\right) + s^3 \left(C_1 C_2 L_1 R_2 Z_L + C_1 C_2 L_2 R_1 R_2 Z_L g_m + C_1 C_2 L_2 R_1 Z_L\right) + s^2 \left(C_1 C_2 R_1 R_2 Z_L + C_1 L_1 R_2 Z_L g_m + C_1 L_1 Z_L + C_2 L_2 Z_L\right) + s \left(C_1 R_1 R_2 Z_L g_m + C_1 R_1 Z_L + C_2 R_2 Z_L\right) + s \left(C_1 R_1 R_2 Z_L g_m + C_1 R_2 Z_L + C_1 R_2 Z_L\right) + s \left(C_1 R_1 R_2 Z_L g_m + C_1 R_2\right) + s \left(C_1 R_1 R_2 Z_L g_m + C_1 R_2\right) + s \left(C_1 R_1 R_2 Z_L g_m + C_1 R_2\right) + s \left(C_1 R_1 R_2 Z_L g_m + C_1 R_2\right) + s \left(C_1 R_1 R_2 Z_L g_m + C_1 R_2\right) + s \left(C_1 R_1 R_2 Z_L g_m + C_1 R_2\right) + s \left(C_1 R_1 R_2 Z_L g_m + C_1 R_2\right) + s \left(C_1 R_1 R_2 Z_L g_m + C_1 R_2\right) + s \left(C_1 R_1 R_2 Z_L g_m + C_1 R_2$$

10.46 INVALID-ORDER-46
$$Z(s) = \left(\frac{L_1 R_1 s}{C_1 L_1 R_1 s^2 + L_1 s + R_1}, \frac{1}{C_2 s}, \infty, \infty, \infty\right)$$

$$H(s) = \frac{C_2 L_1 R_1 Z_L s^2 + L_1 R_1 Z_L g_m s}{C_1 C_2 L_1 R_1 Z_L s^3 + R_1 + s^2 \left(C_1 L_1 R_1 + C_2 L_1 R_1 + C_2 L_1 Z_L \right) + s \left(C_2 R_1 Z_L + L_1 R_1 g_m + L_1 \right)}$$

10.47 INVALID-ORDER-47
$$Z(s) = \left(\frac{L_1 R_1 s}{C_1 L_1 R_1 s^2 + L_1 s + R_1}, \frac{R_2}{C_2 R_2 s + 1}, \infty, \infty, \infty\right)$$

$$H(s) = \frac{C_2L_1R_1R_2Z_Ls^2 + s\left(L_1R_1R_2Z_Lg_m + L_1R_1Z_L\right)}{C_1C_2L_1R_1R_2Z_Ls^3 + R_1R_2 + R_1Z_L + s^2\left(C_1L_1R_1R_2 + C_1L_1R_1Z_L + C_2L_1R_1R_2 + C_2L_1R_2Z_L\right) + s\left(C_2R_1R_2Z_L + L_1R_1R_2g_m + L_1R_1 + L_1R_2 + L_1Z_L\right)}$$

10.48 INVALID-ORDER-48
$$Z(s) = \left(\frac{L_1 R_1 s}{C_1 L_1 R_1 s^2 + L_1 s + R_1}, R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty\right)$$

$$H(s) = \frac{L_{1}R_{1}Z_{L}g_{m}s + s^{2}\left(C_{2}L_{1}R_{1}R_{2}Z_{L}g_{m} + C_{2}L_{1}R_{1}Z_{L}\right)}{R_{1} + s^{3}\left(C_{1}C_{2}L_{1}R_{1}Z_{L}\right) + s^{2}\left(C_{1}L_{1}R_{1} + C_{2}L_{1}R_{1}R_{2}g_{m} + C_{2}L_{1}R_{1} + C_{2}L_{1}R_{2} + C_{2}L_{1}Z_{L}\right) + s\left(C_{2}R_{1}R_{2} + C_{2}R_{1}Z_{L} + L_{1}R_{1}g_{m} + L_{1}\right)}$$

10.49 INVALID-ORDER-49
$$Z(s) = \left(\frac{L_1 R_1 s}{C_1 L_1 R_1 s^2 + L_1 s + R_1}, L_2 s + \frac{1}{C_2 s}, \infty, \infty, \infty\right)$$

$$H(s) = \frac{C_2L_1L_2R_1Z_Lg_ms^3 + C_2L_1R_1Z_Ls^2 + L_1R_1Z_Lg_ms}{C_1C_2L_1L_2R_1s^4 + R_1 + s^3\left(C_1C_2L_1R_1Z_L + C_2L_1L_2R_1g_m + C_2L_1L_2\right) + s^2\left(C_1L_1R_1 + C_2L_1R_1 + C_2L_1Z_L + C_2L_2R_1\right) + s\left(C_2R_1Z_L + L_1R_1g_m + L_1\right)}{c_1C_2L_1L_2R_1s^4 + R_1 + s^3\left(C_1C_2L_1R_1Z_L + C_2L_1L_2R_1g_m + C_2L_1L_2\right) + s^2\left(C_1L_1R_1 + C_2L_1R_1 + C_2L_1Z_L + C_2L_2R_1\right) + s\left(C_2R_1Z_L + L_1R_1g_m + L_1\right)}$$

10.51 INVALID-ORDER-51 $Z(s) = \left(\frac{L_1 R_1 s}{C_1 L_1 R_1 s^2 + L_1 s + R_1}, \frac{C_2 L_2 R_2 s^2 + L_2 s + R_2}{C_2 L_2 s^2 + 1}, \infty, \infty, \infty\right)$

 $H(s) = \frac{L_1L_2R_1Z_Lg_ms^2 + s^3\left(C_2L_1L_2R_1R_2Z_Lg_m + C_2L_1L_2R_1Z_L\right) + s\left(L_1R_1R_2Z_Lg_m + L_1R_1Z_L\right)}{R_1R_2 + R_1Z_L + s^4\left(C_1C_2L_1L_2R_1R_2 + C_1C_2L_1L_2R_1Z_L\right) + s^3\left(C_1L_1L_2R_1 + C_2L_1L_2R_1 +$

10.52 INVALID-ORDER-52 $Z(s) = \left(\frac{L_1 R_1 s}{C_1 L_1 R_1 s^2 + L_1 s + R_1}, \frac{R_2 (C_2 L_2 s^2 + 1)}{C_2 L_2 s^2 + C_2 R_2 s + 1}, \infty, \infty, \infty\right)$

 $H(s) = \frac{C_2L_1R_1R_2Z_Ls^2 + s^3\left(C_2L_1L_2R_1R_2Z_Lg_m + C_2L_1L_2R_1Z_L\right) + s\left(L_1R_1R_2Z_Lg_m + L_1R_1Z_L\right)}{R_1R_2 + R_1Z_L + s^4\left(C_1C_2L_1L_2R_1R_2 + C_1L_1L_2R_1Z_L\right) + s^3\left(C_1C_2L_1R_1R_2Z_L + C_2L_1L_2R_1Z_L\right) + s^2\left(C_1L_1R_1R_2 + C_2L_1L_2R_1Z_L + C_2L_1R_1Z_L\right) + s^2\left(C_1L_1R_1R_2 + C_2L_1R_1Z_L + C_2L_1R_1Z_L + C_2L_1R_1Z_L\right) + s\left(C_2R_1R_2Z_L + L_1R_1R_2Z_L + C_2L_1R_1Z_L\right) + s\left(C_2R_1R_2Z_L + C_2L_1R_1Z_L\right) + s\left(C_2R_1R_2Z_L\right) + s\left(C_2R_1R_2\right) + s\left(C_2R_1R_2Z_L\right) + s\left(C_2R_1R_2\right) + s\left(C_2$

10.53 INVALID-ORDER-53 $Z(s) = \left(\frac{C_1 L_1 R_1 s^2 + L_1 s + R_1}{C_1 L_1 s^2 + 1}, \frac{1}{C_2 s}, \infty, \infty, \infty\right)$

$$H(s) = \frac{C_1C_2L_1R_1Z_Ls^3 + R_1Z_Lg_m + s^2\left(C_1L_1R_1Z_Lg_m + C_2L_1Z_L\right) + s\left(C_2R_1Z_L + L_1Z_Lg_m\right)}{R_1g_m + s^3\left(C_1C_2L_1R_1 + C_1C_2L_1Z_L\right) + s^2\left(C_1L_1R_1g_m + C_1L_1 + C_2L_1\right) + s\left(C_2R_1 + C_2Z_L + L_1g_m\right) + 1}$$

10.54 INVALID-ORDER-54 $Z(s) = \left(\frac{C_1 L_1 R_1 s^2 + L_1 s + R_1}{C_1 L_1 s^2 + 1}, \frac{R_2}{C_2 R_2 s + 1}, \infty, \infty, \infty\right)$

$$H(s) = \frac{C_1C_2L_1R_1R_2Z_Ls^3 + R_1R_2Z_Lg_m + R_1Z_L + s^2\left(C_1L_1R_1R_2Z_Lg_m + C_1L_1R_1Z_L + C_2L_1R_2Z_L\right) + s\left(C_2R_1R_2Z_L + L_1R_2Z_Lg_m + L_1Z_L\right)}{R_1R_2g_m + R_1 + R_2 + Z_L + s^3\left(C_1C_2L_1R_1R_2 + C_1L_1R_2Z_L\right) + s^2\left(C_1L_1R_1R_2g_m + C_1L_1R_1 + C_1L_1R_2 + C_1L_1Z_L + C_2L_1R_2\right) + s\left(C_2R_1R_2Z_L + L_1R_2Z_Lg_m + L_1Z_L\right)}$$

10.55 INVALID-ORDER-55 $Z(s) = \left(\frac{C_1L_1R_1s^2 + L_1s + R_1}{C_1L_1s^2 + 1}, R_2 + \frac{1}{C_2s}, \infty, \infty, \infty\right)$

$$H(s) = \frac{R_1 Z_L g_m + s^3 \left(C_1 C_2 L_1 R_1 R_2 Z_L g_m + C_1 C_2 L_1 R_1 Z_L\right) + s^2 \left(C_1 L_1 R_1 Z_L g_m + C_2 L_1 R_2 Z_L g_m + C_2 L_1 Z_L\right) + s \left(C_2 R_1 R_2 Z_L g_m + C_2 R_1 Z_L + L_1 Z_L g_m\right)}{R_1 g_m + s^3 \left(C_1 C_2 L_1 R_1 R_2 g_m + C_1 C_2 L_1 R_1 + C_1 C_2 L_1 R_2 + C_1 C_2 L_1 Z_L\right) + s^2 \left(C_1 L_1 R_1 g_m + C_1 L_1 + C_2 L_1 R_2 g_m + C_2 L_1\right) + s \left(C_2 R_1 R_2 Z_L g_m + C_2 R_1 Z_L + L_1 Z_L g_m\right)}$$

10.56 INVALID-ORDER-56 $Z(s) = \left(\frac{C_1L_1R_1s^2 + L_1s + R_1}{C_1L_1s^2 + 1}, L_2s + \frac{1}{C_2s}, \infty, \infty, \infty\right)$

$$H(s) = \frac{C_1C_2L_1L_2R_1Z_Lg_ms^4 + R_1Z_Lg_m + s^3\left(C_1C_2L_1R_1Z_L + C_2L_1L_2Z_Lg_m\right) + s^2\left(C_1L_1R_1Z_Lg_m + C_2L_1Z_L + C_2L_2R_1Z_Lg_m\right) + s\left(C_2R_1Z_L + L_1Z_Lg_m\right)}{R_1g_m + s^4\left(C_1C_2L_1L_2R_1g_m + C_1C_2L_1L_2\right) + s^3\left(C_1C_2L_1R_1 + C_1C_2L_1Z_L + C_2L_1L_2g_m\right) + s^2\left(C_1L_1R_1g_m + C_1L_1 + C_2L_1 + C_2L_2R_1g_m + C_2L_2\right) + s\left(C_2R_1Z_L + L_1Z_Lg_m\right) + s^2\left(C_1L_1R_1g_m + C_1L_1 + C_2L_1 + C_2L_2R_1g_m + C_2L_2\right) + s\left(C_2R_1Z_L + L_1Z_Lg_m\right) + s^2\left(C_1L_1R_1g_m + C_1L_1 + C_2L_1 + C_2L_1R_1g_m + C_2L_2\right) + s^2\left(C_1L_1R_1g_m + C_1L_1 + C_2L_1 + C_2L_1R_1g_m + C_2L_2\right) + s^2\left(C_1L_1R_1g_m + C_1L_1 + C_2L_1R_1g_m + C_2L_1R_1g_m\right) + s^2\left(C_1L_1R_1g_m + C_1L_1R_1g_m + C_2L_1R_1g_m\right) + s^2\left(C_1L_1R_1g_m + C_2L_1R_1g_m + C_2L_1R_1g_m\right) + s^2\left(C_1L_1R_1g_m + C_1L_1R_1g_m + C_2L_1R_1g_m\right) + s^2\left(C_1L_1R_1g_m + C_2L_1R_1g_m\right) + s^2\left(C_1L_1R_$$

10.57 INVALID-ORDER-57 $Z(s) = \left(\frac{C_1L_1R_1s^2 + L_1s + R_1}{C_1L_1s^2 + 1}, L_2s + R_2 + \frac{1}{C_2s}, \infty, \infty, \infty\right)$

$$H(s) = \frac{C_1C_2L_1L_2R_1Z_Lg_ms^4 + R_1Z_Lg_m + s^3\left(C_1C_2L_1R_1R_2Z_Lg_m + C_1C_2L_1R_1Z_L + C_2L_1L_2Z_Lg_m\right) + s^2\left(C_1L_1R_1Z_Lg_m + C_2L_1Z_L + C_2L_1Z_Lg_m\right) + s\left(C_2R_1Z_Lg_m + C_2L_1Z_Lg_m\right) + s\left(C_2R_1R_2Z_Lg_m + C_2R_1Z_L + L_1Z_Lg_m\right)}{R_1g_m + s^4\left(C_1C_2L_1L_2R_1g_m + C_1C_2L_1L_2\right) + s^3\left(C_1C_2L_1R_1R_2g_m + C_1C_2L_1R_1 + C_1C_2L_1R_2 + C_1C_2L_1Z_L + C_2L_1L_2g_m\right) + s^2\left(C_1L_1R_1g_m + C_1L_1 + C_2L_1R_2g_m + C_2L_1 + C_2L_1R_2g_m + C_2L_1 + C_2L_1R_2g_m\right) + s^2\left(C_1L_1R_1g_m + C_1L_1 + C_2L_1R_2g_m + C_2L_1 + C_2L_1R_2g_m + C_2L_1 + C_2L_1R_2g_m\right) + s^2\left(C_1L_1R_1g_m + C_1L_1 + C_2L_1R_2g_m + C_2L_1 + C_2L_1R_2g_m + C_2R_1Z_L + L_1Z_Lg_m\right) + s^2\left(C_1L_1R_1g_m + C_1L_1 + C_2L_1R_2g_m + C_2L_1 + C_2L_1R_2g_m + C_2R_1Z_L + C_2L_1R_2g_m\right) + s^2\left(C_1L_1R_1g_m + C_1L_1 + C_2L_1R_2g_m + C_2L_1 + C_2L_1R_2g_m + C_2R_1Z_L + C_2R_1R_2g_m + C_2R_1Z_L + C_2R_1R_2g_m + C_2R_1R_2g_m + C_2R_1R_2g_m\right) + s^2\left(C_1L_1R_1g_m + C_1L_1 + C_2L_1R_2g_m + C_2R_1R_2g_m +$$

10.58 INVALID-ORDER-58 $Z(s) = \left(\frac{C_1L_1R_1s^2 + L_1s + R_1}{C_1L_1s^2 + 1}, \frac{C_2L_2R_2s^2 + L_2s + R_2}{C_2L_2s^2 + 1}, \infty, \infty, \infty\right)$

10.59 INVALID-ORDER-59
$$Z(s) = \left(\frac{C_1L_1R_1s^2 + L_1s + R_1}{C_1L_1s^2 + 1}, \frac{R_2(C_2L_2s^2 + 1)}{C_2L_2s^2 + C_2R_2s + 1}, \infty, \infty\right)$$

$$H(s) = \frac{R_1 R_2 Z_L g_m + R_1 Z_L + s^4 \left(C_1 C_2 L_1 L_2 R_1 R_2 Z_L g_m + C_1 C_2 L_1 L_2 R_1 Z_L\right) + s^3 \left(C_1 C_2 L_1 R_1 R_2 Z_L g_m + C_2 L_1 L_2 Z_L\right) + s^2 \left(C_1 L_1 R_1 R_2 Z_L g_m + C_1 L_1 R_1 Z_L + C_2 L_1 R_2 Z_L + C_2 L_2 R_1 R_2 Z_L g_m + C_2 L_1 L_2\right) + s \left(C_1 R_1 R_2 Z_L g_m + C_1 L_1 R_1 Z_L + C_2 L_1 R_2 Z_L + C_2 L_1 R_2 Z_L g_m + C_2 L_1 R_2\right) + s^2 \left(C_1 L_1 R_1 R_2 Z_L g_m + C_1 L_1 R_1 Z_L + C_2 L_1 R_2 Z_L + C_2$$

10.60 INVALID-ORDER-60
$$Z(s) = \left(\frac{R_1(C_1L_1s^2+1)}{C_1L_1s^2+C_1R_1s+1}, \frac{1}{C_2s}, \infty, \infty\right)$$

$$H(s) = \frac{C_1C_2L_1R_1Z_Ls^3 + C_1L_1R_1Z_Lg_ms^2 + C_2R_1Z_Ls + R_1Z_Lg_m}{R_1g_m + s^3\left(C_1C_2L_1R_1 + C_1C_2L_1Z_L\right) + s^2\left(C_1C_2R_1Z_L + C_1L_1R_1g_m + C_1L_1\right) + s\left(C_1R_1 + C_2R_1 + C_2Z_L\right) + 1}$$

10.61 INVALID-ORDER-61
$$Z(s) = \left(\frac{R_1(C_1L_1s^2+1)}{C_1L_1s^2+C_1R_1s+1}, \frac{R_2}{C_2R_2s+1}, \infty, \infty, \infty\right)$$

$$H(s) = \frac{C_1C_2L_1R_1R_2Z_Ls^3 + C_2R_1R_2Z_Ls + R_1R_2Z_Lg_m + R_1Z_L + s^2\left(C_1L_1R_1R_2Z_Lg_m + C_1L_1R_1Z_L\right)}{R_1R_2g_m + R_1 + R_2 + Z_L + s^3\left(C_1C_2L_1R_1R_2 + C_1C_2L_1R_2Z_L\right) + s^2\left(C_1C_2R_1R_2Z_L + C_1L_1R_1R_2g_m + C_1L_1R_1 + C_1L_1R_2 + C_1L_1Z_L\right) + s\left(C_1R_1R_2 + C_1R_1Z_L + C_2R_1R_2 + C_2R_2Z_L\right)}$$

10.62 INVALID-ORDER-62
$$Z(s) = \left(\frac{R_1(C_1L_1s^2+1)}{C_1L_1s^2+C_1R_1s+1}, R_2 + \frac{1}{C_2s}, \infty, \infty, \infty\right)$$

$$H(s) = \frac{C_1L_1R_1Z_Lg_ms^2 + R_1Z_Lg_m + s^3\left(C_1C_2L_1R_1R_2Z_Lg_m + C_1C_2L_1R_1Z_L\right) + s\left(C_2R_1R_2Z_Lg_m + C_2R_1Z_L\right)}{R_1g_m + s^3\left(C_1C_2L_1R_1R_2g_m + C_1C_2L_1R_1 + C_1C_2L_1R_2 + C_1C_2L_1Z_L\right) + s^2\left(C_1C_2R_1R_2 + C_1C_2R_1Z_L + C_1L_1R_1g_m + C_1L_1\right) + s\left(C_1R_1 + C_2R_1R_2g_m + C_2R_1 + C_2R_1Z_L\right) + 1}$$

10.63 INVALID-ORDER-63
$$Z(s) = \left(\frac{R_1(C_1L_1s^2+1)}{C_1L_1s^2+C_1R_1s+1}, L_2s + \frac{1}{C_2s}, \infty, \infty, \infty\right)$$

$$H(s) = \frac{C_1C_2L_1L_2R_1Z_Lg_ms^4 + C_1C_2L_1R_1Z_Ls^3 + C_2R_1Z_Ls + R_1Z_Lg_m + s^2\left(C_1L_1R_1Z_Lg_m + C_2L_2R_1Z_Lg_m\right)}{R_1g_m + s^4\left(C_1C_2L_1L_2R_1g_m + C_1C_2L_1L_2\right) + s^3\left(C_1C_2L_1R_1 + C_1C_2L_1Z_L + C_1C_2L_2R_1\right) + s^2\left(C_1C_2R_1Z_L + C_1L_1R_1g_m + C_1L_1 + C_2L_2R_1g_m + C_2L_2\right) + s\left(C_1R_1 + C_2R_1 + C_2Z_L\right) + 1}$$

10.64 INVALID-ORDER-64
$$Z(s) = \left(\frac{R_1(C_1L_1s^2+1)}{C_1L_1s^2+C_1R_1s+1}, L_2s + R_2 + \frac{1}{C_2s}, \infty, \infty, \infty\right)$$

10.65 INVALID-ORDER-65
$$Z(s) = \left(\frac{R_1(C_1L_1s^2+1)}{C_1L_1s^2+C_1R_1s+1}, \frac{C_2L_2R_2s^2+L_2s+R_2}{C_2L_2s^2+1}, \infty, \infty, \infty\right)$$

$$H(s) = \frac{C_1L_1L_2R_1Z_Lg_ms^3 + L_2R_1Z_Lg_m + R_1Z_L + s^4\left(C_1C_2L_1L_2R_1R_2Z_Lg_m + C_1C_2L_1L_2R_1Z_L\right) + s^2\left(C_1L_1R_1R_2Z_Lg_m + C_1L_1R_1Z_L + C_2L_2R_1R_2Z_Lg_m + C_2L_2R_1Z_L\right)}{R_1R_2g_m + R_1 + R_2 + Z_L + s^4\left(C_1C_2L_1L_2R_1R_2g_m + C_1C_2L_1L_2R_1 + C_1C_2L_1L_2R_1 + C_1C_2L_1L_2R_1 + C_1L_1R_2 + C_1L_1R_1 + C_1L_1R_2 + C_1L_1R_1 + C_1L_1R_2 + C_1L_1R_1 + C$$

10.66 INVALID-ORDER-66
$$Z(s) = \left(\frac{R_1(C_1L_1s^2+1)}{C_1L_1s^2+C_1R_1s+1}, \frac{R_2(C_2L_2s^2+1)}{C_2L_2s^2+C_2R_2s+1}, \infty, \infty, \infty\right)$$

$$H(s) = \frac{C_1C_2L_1R_1R_2Z_Ls^3 + C_2R_1R_2Z_Ls + R_1R_2Z_Lg_m + R_1Z_L + s^4\left(C_1C_2L_1L_2R_1Z_L\right) + s^2\left(C_1L_1R_1R_2Z_Lg_m + C_1L_1R_1Z_L + C_2L_2R_1R_2Z_Lg_m + C_2L_2R_1Z_L\right)}{R_1R_2g_m + R_1 + R_2 + Z_L + s^4\left(C_1C_2L_1L_2R_1R_2g_m + C_1C_2L_1L_2R_1 + C_1C_2L_1L_2R_1 + C_1C_2L_1R_2Z_L + C_1C_2L_2R_1Z_L\right) + s^2\left(C_1C_2R_1R_2Z_L + C_1L_1R_1R_2Z_Lg_m + C_1L_1R_1Z_L + C_2L_2R_1Z_L\right)} \\ = \frac{C_1C_2L_1R_1R_2Z_Ls^3 + C_2R_1R_2Z_Ls + R_1R_2Z_Lg_m + R_1Z_L + s^4\left(C_1C_2L_1L_2R_1Z_L\right) + s^2\left(C_1L_1R_1R_2Z_Lg_m + C_1L_1R_1Z_L + C_2L_2R_1Z_L\right)}{R_1R_2G_m + R_1R_2Z_Ls + C_1C_2L_1R_2Z_L + C$$

11 PolynomialError