# GRAMÁTICAS LIBRES DEL CONTEXTO (GLL, GRADO 2)

## TIPOS DE GRAMÁTICAS

| Tipo | Gramática      | Restricciones a la forma de las                                                         | Lenguaje        | Autómata    |
|------|----------------|-----------------------------------------------------------------------------------------|-----------------|-------------|
|      |                | Reglas                                                                                  |                 |             |
| 0    | Irrestricta    | Ninguna restricción                                                                     | Recursivamente  | Máquina de  |
|      |                | $\mu_1 \mu_2 \beta_1 \beta_2 \beta_3 \operatorname{con} \mu_i \beta_i \in (V \cup T)^*$ | Enumerables     | Turing      |
| 1    | Dependientes   | La parte derecha contiene como                                                          | Dependiente del | Autómata    |
|      | del Contexto o | mínimo los símbolos de la parte                                                         | Contexto        | lineales    |
|      | Sensibles de   | izquierda                                                                               |                 | infinitos   |
|      | Contexto       | AμB →AβB                                                                                |                 |             |
|      |                | con A,B $\in$ V y $\mu$ , $\beta \in$ (V U T)*                                          |                 |             |
| 2    | Independiente  | La parte izquierda solo puede                                                           | Independiente   | Autómata de |
|      | del Contexto   | tener un símbolo                                                                        | del Contexto    | Pilas       |
|      |                | A→ β,                                                                                   |                 |             |
|      |                | con A $\in$ V, y $\beta \in$ (V U T)*                                                   |                 |             |
| 3    | Regulares      | La regla solo puede tener 2                                                             | Regulares       | Autómata    |
|      |                | formas:                                                                                 |                 | finito      |
|      |                | A→aB y A→a,                                                                             |                 |             |
|      |                | con A,B ∈V y a ∈T                                                                       |                 |             |

## GRAMÁTICA LIBRE DE CONTEXTO

• En informática, una **gramática libre de contexto** es una gramática formal en la que cada regla de producción es de la forma:

 $V \rightarrow w$ 

• Donde V es un símbolo no terminal y w es una cadena de terminales y/o no terminales. El término *libre de contexto* se refiere al hecho de que el no terminal V puede siempre ser sustituido por w sin tener en cuenta el contexto en el que ocurra. Un lenguaje formal es libre de contexto si hay una gramática libre de contexto que lo genera.

## GRAMÁTICA LIBRE DE CONTEXTO

- o permiten describir la mayoría de los lenguajes de programación, de hecho, la síntaxis de la mayoría de lenguajes de programación está definida mediante gramáticas libres de contexto.
- o son suficientemente simples como para permitir el diseño de eficientes algoritmos de análisis sintáctico que, para una cadena de caracteres dada determinen como puede ser generada desde la gramática.

## GRAMÁTICA LIBRE DE CONTEXTO

- Los analizadores LL tratan subconjuntos restringidos de gramáticas libres de contexto.
- La notación más frecuentemente utilizada para expresar gramáticas libres de contexto es la forma Backus-Naur.

## **DEFINICIÓN FORMAL**

• Una gramática libre de contexto puede ser definida mediante la 4-tupla:

$$G = (Vt, Vn, P, S)$$
 donde

- $\circ$   $V_t$  es un conjunto finito de terminales
- $\circ$   $V_n$  es un conjunto finito de no terminales
- P es un conjunto finito de producciones
- $\circ$  S $\in$ V<sub>n</sub> es el Símbolo Inicial
- o los elementos de *P* son de la forma:

$$V_n \in (V_n \cup V_t)^*$$

### **Gramáticas Libres del Contexto (Tipo 2)**

Sea G = 
$$({A}, {a, b}, S, P)$$
 donde P =  ${S \rightarrow A, A \rightarrow aAb, A \rightarrow ab}$ 

Algunas cadenas generadas por la gramática G:

$$S \Rightarrow A \Rightarrow ab$$

$$S \Rightarrow A \Rightarrow aAb \Rightarrow aabb$$

$$S \Rightarrow A \Rightarrow aAb \Rightarrow aaAbb \Rightarrow aaabbb$$

G es una gramática libre del contexto que genera el lenguaje:

$$L = \{w \in \Sigma^* / w = a^n b^n con n > 0 \}$$

#### OTRA FORMA...

o Una gramática libre de contexto simple es:

$$S \rightarrow aSb \mid \epsilon$$

- O Donde | es un *o lógico* es usado para separar múltiples opciones para el mismo no terminal, ε indica una cadena vacía.
- Esta gramática genera el lenguaje no regular  $L=\{w\in\Sigma^*/w=a^nb^n,\ n>0\}.$

#### EJEMPLO: PALÍNDROMES

- Un palíndrome es una palabra w que cumple  $w = w^R$ , donde  $w^R$  es la misma palabra w sólo que escrita en orden inverso.
- Sea PAL el lenguaje de las palabras palíndromes sobre  $\{a, b\}$ , entonces:

$$PAL = \{w \in (a + b)^* \mid w = w^{R}\}\$$
  
=  $\{\varepsilon, a, b, aa, bb, aaa, bbb, aba, bab, .....\}$ 

## ¿Es PAL un lenguaje regular?

## Gramática que define PAL

- 1.  $S \rightarrow \varepsilon \mid a \mid b$
- $S \rightarrow aSa$ ,
- $S \rightarrow bSb$ .
- 4. Cualquier palíndrome sobre {a, b} debe poder ser obtenido aplicando un número finito de veces las reglas de reemplazo 1, 2 y 3.

#### EJEMPLO: PALABRAS NO PALÍNDROMES

- 1.  $S \rightarrow aSa \mid bSb \mid A$
- 2.  $A \rightarrow aBb \mid bBa$
- $B \rightarrow aB \mid bB \mid \epsilon$

## EJEMPLO: GLL PARA UN PALÍNDROME

- 1.  $S \to \varepsilon$ ,  $S \to a$ ,  $S \to b$ .

  o simplemente:  $S \to \varepsilon \mid a \mid b$
- 2.  $S \rightarrow aSa$ ,  $S \rightarrow bSb$ .

  o simplemente:  $S \rightarrow aSa \mid bSb$
- Cualquier palíndrome sobre  $\{a, b\}$  debe poder ser obtenido aplicando un número finito de veces las reglas 1 y 2.

## EJEMPLO: PALABRAS NO PALÍNDROMES

- 1.  $S \rightarrow aSa / bSb / A$
- 2.  $A \rightarrow aBb / bBa$
- 3.  $B \rightarrow aB / bB / \lambda$
- 4. Esto define la negación del lenguaje L anteriormente descrito, es L
- 5. Notar que la negación de L no es igual que el complemento de L.

#### **EJEMPLO**

- 1. La GLL para el lenguaje de todas las cadenas que se pueden formar con las letras a y b, habiendo un número diferente de una que de otra, sería:
- 1.  $S \rightarrow U|V$
- 2.  $U \rightarrow TaU|TaT$
- 3.  $V \rightarrow TbV|TbT$
- 4.  $T \rightarrow aTbT|bTaT|\varepsilon$
- 2. T genera todas las cadenas con la misma cantidad de letras a que b, U genera todas las cadenas con más letras a, y V todas las cadenas con más letras b.

#### EJEMPLO:

- 1. La gramática sin restricciones
- $V = \{S, A, C\}$
- 2.  $S = \{a, b, c\}$
- $S \rightarrow aAbc / e$
- 4.  $A \rightarrow aAbC / e$
- 5.  $Cb \rightarrow bC$
- 6.  $Cc \rightarrow cc$
- 2. Con símbolo inicial S genera el lenguaje
- 3.  $L = \{ai \ bi \ ci \ | \ i > = 0\}$

#### EJEMPLO

Sea 
$$L=\{w\in\Sigma^*/w=a^nb^nc^{n+m},con\ n>0\ y\ m>0\}$$

L NO es un lenguaje regular, y puede ser generado por la siguiente gramática libre de contexto:

- 1.  $S \rightarrow aSc/B$ 2.  $B \rightarrow bBc|\varepsilon$

#### Árbol de Derivación

1. Un árbol de derivación (o árbol sintáctico) es una representación gráfica de como se deriva una forma sentencial a partir del símbolo no-terminal inicial.

2. Un árbol es un grafo dirigido acíclico en el cual cada nodo se conecta con un nodo distinguido, llamado nodo raíz mediante un único camino.

#### Árbol de Derivación

3. Un nodo n1 se dice descendiente de otro nodo n2 si se puede llegar a n1 a partir de n1. El nodo raíz no es descendiente de ningún nodo, y los nodos que no tienen descendientes se denominan hojas. El resto de los nodos se denominan nodos interiores.

## Árbol de Derivación



Un árbol de derivación tiene las siguientes propiedades:

- 1. El nodo raíz está rotulado con el símbolo distinguido (inicial) de la gramática.
- 2. Cada hoja corresponde a un símbolo terminal o un símbolo no-terminal.
- 3. Cada nodo interior corresponde a un símbolo noterminal.

#### Árbol de derivación

Sea 
$$G = (\{A, B\}, \{a, b, c\}, S, P)$$
 donde  

$$P = \{S \rightarrow AB, A \rightarrow aAb, A \rightarrow ab, B \rightarrow cB, B \rightarrow c\}$$

¿ La cadena aabbccc ∈ L(G)?



#### **Formas Normales de Chomsky**

- 1. Es un modelo o forma normal para las producciones. Se dice que una GLC está en Forma Normal de Chomsky, si no contiene ε producciones y si todas las producciones son de la forma:
- 2.  $A \rightarrow a$ , para  $a \in \Sigma$
- 3.  $A \rightarrow BC$ , con B y C no terminales
- 4. Toda GLC puede ser transformada en una GLC en Forma Normal de Chomsky.
- 5. Sea G una GLC tal que  $\epsilon \notin L(G)$
- 6. Sea G una GLC tal que  $\epsilon \in L(G)$

## FORMAS NORMALES

#### Forma Normal de Greibach

Una gramática libre de contexto  $G = \langle V, \Sigma, S, P \rangle$  esta en la Forma Normal de Greibach si cada regla tiene alguna de las siguientes formas:

- a.  $A \rightarrow a A_1 A_2 ... A_n$
- b.  $A \rightarrow a$
- c.  $S \rightarrow \varepsilon$

En donde  $a \in \Sigma$  y  $A_i \in V - \{S\}$  para i = 1, 2, ... n

<u>Teorema</u>. Toda gramática libre de contexto puede ser convertida a una gramática equivalente en la forma normal de Greibach.