Université de Rennes 1 Licence de mathématiques Module Anneaux et arithmétique

Feuille de TD n°3

Exercice 3.1

Soit **K** un corps et $P \in \mathbf{K}[X]$. Les assertions suivantes sont elles vraies ou fausses? On justifiera bien entendu la réponse.

- 1. Si P n'a pas de racine dans \mathbf{K} , alors P est irréductible dans $\mathbf{K}[X]$.
- 2. Si P est irréductible dans K[X], alors P n'a pas de racine dans K.

Exercice 3.2

Soit **K** un corps. On travaille dans $\mathbf{K}[X]$.

- 1. Soit n un entier naturel et d un diviseur de n. Montrer que $X^d 1$ divise $X^n 1$ (on pourra travailler dans l'anneau quotient $\mathbf{K}[X]/\langle X^d 1 \rangle$).
- 2. Soit n un entier naturel. Soit d un entier naturel non nul et r le reste de la division euclidienne de n par d. Montrer que $X^r 1$ est le reste de la division euclidienne de $X^n 1$ par $X^d 1$.
- 3. Soit m et n des entiers naturels, et $d = \operatorname{pgcd}(m, n)$. Déduire de ce qui précède que $X^d 1$ est un pgcd de $X^m 1$ et $X^n 1$.

Exercice 3.3

- 1. Quels sont les polynômes irréductibles de $\mathbb{C}[X]$?
- 2. Quels sont les polynômes irréductibles de $\mathbb{R}[X]$?
- 3. Dans la suite de l'exercice, P désigne le polynôme $X^4 + 1$. Factoriser P en produit d'irréductibles dans $\mathbb{C}[X]$.
- 4. Factoriser P en produit d'irréductibles dans $\mathbf{R}[X]$.
- 5. Montrer que P ne peut pas se factoriser en produit de deux polynômes de degré 2 à coefficients rationnels.
- 6. En déduire que P est irréductible dans $\mathbf{Q}[X]$.

Exercice 3.4

Soit d un entier supérieur à 2 et sans facteur carré, c'est-à-dire tel que pour tout nombre premier p, p^2 ne divise pas d.

- 1. Montrer que $\sqrt{d} \notin \mathbf{Q}$ et que le polynôme $X^2 d$ est irréductible dans $\mathbf{Q}[X]$.
- 2. Soit $A = \{a + b\sqrt{d}, (a,b) \in \mathbf{Q}^2\}$; montrer que A est un sous-corps de \mathbf{R} isomorphe à $\mathbf{Q}[X]/\langle X^2 d \rangle$. Si $(a,b) \in \mathbf{Q}^2 \setminus \{(0,0)\}$, montrer que $a + b\sqrt{d}$ est inversible dans A et expliciter son inverse.

Exercice 3.5

Soit **K** un corps et $P, Q \in \mathbf{K}[X]$.

1. Rappeler comment on peut utiliser l'algorithme d'Euclide pour déterminer $\Pi := \operatorname{pgcd}(P, Q)$.

- 2. Soit **L** un corps tel que **K** est un sous-corps de **L**. On a donc $\mathbf{K}[X] \subset \mathbf{L}[X]$. On suppose que Q divise P dans $\mathbf{K}[X]$. Montrer que Q divise P dans $\mathbf{L}[X]$.
- 3. Montrer que la réciproque est vraie (on pourra considérer une division euclidienne). Ainsi on pourra simplement dire « Q divise P » sans préciser si on voit P et Q comme des éléments de $\mathbf{K}[X]$ ou de $\mathbf{L}[X]$.
- 4. On voit P et Q comme des éléments de $\mathbf{L}[X]$. Montrer que leur pgcd est égal à Π . Ainsi on pourra parler du pgcd de P et Q sans préciser si l'on considère P et Q comme des éléments de $\mathbf{K}[X]$ ou comme des éléments de $\mathbf{L}[X]$.
- 5. Montrer que si P est irréductible dans $\mathbf{L}[X]$, alors P est irréductible dans $\mathbf{K}[X]$ (on pourra raisonner par contraposition). Montrer par des exemples que la réciproque est fausse. Ainsi, lorsque l'on parle d'irréductibilité, il est très important de préciser si l'on voit P comme un élément de $\mathbf{K}[X]$ ou comme un élément de $\mathbf{L}[X]$.

Exercice 3.6

Pour tout polynôme $P \in \mathbf{C}[X]$ non nul, on note $N_0(P)$ le nombre de racines de P comptées sans multiplicité. Par exemple $N_0(X^3) = 1$, $N_0(X^2(X-1)) = 2$. Le but de cet exercice est de démontrer le théorème suivant.

Théorème. Soit A, B, C des éléments de $\mathbb{C}[X]$ vérifiant A + B = C. On les suppose en outre premiers entre eux et non constants tous les trois. Alors on a l'inégalité

$$Max(deg(A), deg(B), deg(C)) \leq N_0(ABC) - 1.$$

Ce théorème, dit de Mason-Stothers, a été démontré par Stothers en 1981 et indépendamment par Mason en 1983. Ce résultat a été à l'origine d'une célèbre (et toujours largement ouverte) conjecture d'arithmétique, la « conjecture abc». La conjecture abc est un énoncé analogue au théorème de Mason-Stothers où $\mathbf Z$ joue le rôle de $\mathbf C[X]$. La démonstration proposée dans cette exercice du théorème de Mason-Stothers est dûe à Noah Snyder, qui l'a trouvée à la fin des années 90 alors qu'il était encore au lycée. Nous verrons également comment le théorème de Mason-Stothers implique facilement le grand théorème de Fermat pour $\mathbf C[X]$ (le grand théorème de Fermat pour les entiers a été démontré par Wiles en 1994, mais la démonstration est infiniment moins élémentaire que dans le cas des polynômes!).

- 1. Montrer qu'on peut supposer qu'on a Max(deg(A), deg(B), deg(C)) = deg(C).
- 2. Vérifier la relation A'B-AB'=A'C-AC'. En déduire que $\operatorname{pgcd}(A,A')\operatorname{pgcd}(B,B')\operatorname{pgcd}(C,C')$ divise A'B-AB' puis l'inégalité

$$\deg(\operatorname{pgcd}(A,A')) + \deg(\operatorname{pgcd}(B,B')) + \deg(\operatorname{pgcd}(C,C')) \leqslant \deg(A) + \deg(B) - 1.$$

3. Soit $P \in \mathbf{C}[X]$ non nul. Montrer la relation

$$\deg(\operatorname{pgcd}(P, P')) = \deg(P) - N_0(P).$$

- 4. Montrer qu'on a $N_0(ABC) = N_0(A) + N_0(B) + N_0(C)$.
- 5. Déduire de ce qui précède le théorème de Mason-Stothers.
- 6. Déduire du théorème de Mason-Stothers le grand théorème de Fermat pour $\mathbf{C}[X]$: soit $n \ge 3$ un entier, et A, B, C des polynômes de $\mathbf{C}[X]$ premiers entre eux et vérifiant $A^n + B^n + C^n = 0$; alors A, B et C sont des constantes (raisonner par l'absurde, et appliquer Mason-Stothers à A^n, B^n et C^n).

Exercice 3.7

Soit n et m des entiers strictement positifs. Montrer que les conditions suivantes sont équivalentes :

- 1. le groupe $\mathbf{Z}/m\mathbf{Z} \times \mathbf{Z}/n\mathbf{Z}$ est cyclique;
- 2. les entiers n et m sont premiers entre eux.

Exercice 3.8

Soit p un nombre premier impair.

- 1. Quels éléments de $(\mathbf{Z}/p\mathbf{Z})^{\times}$ sont leur propre inverse?
- 2. Déduire de la question précédente le théorème de Wilson : soit n un entier naturel supérieur à 3; alors n est premier si et seulement si on a $(n-1)! \equiv -1 \mod n$.

Exercice 3.9

Choisir un petit nombre premier p (disons inférieur à 20) et répondre aux questions suivantes : quels sont les ordres possibles des éléments du groupe \mathbf{F}_p^{\times} ? Combien d'éléments de chaque ordre ce groupe possède-t-il? Quels sont les éléments qui engendrent le groupe? Recommencer avec un autre petit nombre premier...

Exercice 3.10

- 1. Soit $A = \mathbf{Z}/4\mathbf{Z}$. Déterminer A^{\times} ; A^{\times} est-il un groupe cyclique? Mêmes questions avec $A = \mathbf{Z}/9\mathbf{Z}$.
- 2. Soit p un nombre premier. Soit $x = [1+p]_{p^2}$. Montrer que $x \in (\mathbf{Z}/p^2\mathbf{Z})^{\times}$. Montrer que l'ordre de x dans le groupe $(\mathbf{Z}/p^2\mathbf{Z})^{\times}$ est p.
- 3. Soit n un entier tel que $[n]_p \in (\mathbf{Z}/p\mathbf{Z})^{\times}$. On note r l'ordre de $[n]_p$ dans le groupe $(\mathbf{Z}/p\mathbf{Z})^{\times}$. Montrer que $[n]_{p^2}$ est un élément de $(\mathbf{Z}/p^2\mathbf{Z})^{\times}$. Montrer que l'ordre de $[n]_{p^2}$ dans le groupe $(\mathbf{Z}/p^2\mathbf{Z})^{\times}$ est divisible par r.
- 4. Déduire de la question précédente que le groupe $(\mathbf{Z}/p^2\mathbf{Z})^{\times}$ possède un élément y dont l'ordre est divisible par p-1. En déduire que le groupe $(\mathbf{Z}/p^2\mathbf{Z})^{\times}$ possède un élément z dont l'ordre est p-1.
- 5. Soit G un groupe, g et h des éléments de G d'ordres finis respectivement égaux à n et m; on suppose que g et h commutent et que n et m sont premiers entre eux; montrer que gh est d'ordre mn.
- 6. Déduire des questions précédentes que le groupe $(\mathbf{Z}/p^2\mathbf{Z})^{\times}$ est un groupe cyclique.

Exercice 3.11

- 1. Soit p un nombre premier. On s'intéresse aux polynômes irréductibles sur \mathbf{F}_p . Expliciter une méthode effective pour déterminer la liste des polynômes irréductibles de degré 2 et 3 sur \mathbf{F}_p . Expliquer ensuite comment en déduire la liste des polynômes irréductibles de degré 4, puis 5 sur \mathbf{F}_p . Expliquer enfin une procédure générale permettant de déterminer de manière effective les polynômes irréductibles de degré n sur \mathbf{F}_p avec n quelconque.
- 2. Donner la liste des polynômes irréductibles unitaires de degré 2 et 3 sur $\mathbf{F}_3[X]$. Même question pour $\mathbf{F}_5[X]$.

- 3. Donner la liste des polynômes irréductibles unitaires de degré 4 dans $\mathbf{F}_2[X]$, puis dans $\mathbf{F}_3[X]$, puis dans $\mathbf{F}_5[X]$.
- 4. Pour $\mathbf{K} = \mathbf{F}_2$, \mathbf{F}_3 ou \mathbf{F}_5 et pour chacun des polynômes P déterminés ci-dessus, donner la liste des éléments de $\mathbf{K}[X]/\langle P \rangle$ (on notera α l'image de X dans le quotient), écrire les tables d'addition et de multiplication dans le corps $\mathbf{K}[X]/\langle P \rangle$, vérifier que le groupe $(\mathbf{K}[X]/\langle P \rangle)^{\times}$ est cyclique et en donner un générateur.
- 5. Pour $\mathbf{K} = \mathbf{F}_2$, \mathbf{F}_3 ou \mathbf{F}_5 , et $d \in \{2, 3, 4\}$, et chaque couple (P, Q) de polynômes de $\mathbf{K}[X]$ irréductibles, unitaires, de degré d et distincts, exhiber un isomorphisme de $\mathbf{K}[X]/\langle P \rangle$ sur $\mathbf{K}[X]/\langle Q \rangle$.

La résolution complète de cet exercice est longue, surtout si l'on s'astreint à faire tous les calculs à la main; il est conseillé d'en traiter une proportion suffisamment importante pour se sentir à l'aise avec les calculs explicites dans les corps finis.

Exercice 3.12

- 1. Soit p un nombre premier. Montrer que les anneaux $\mathbf{Z}_{(p)}/p\mathbf{Z}_{(p)}$ et $\mathbf{Z}/p\mathbf{Z}$ sont isomorphes (cf. exercices 1.7.3 et 2.6).
- 2. En déduire que si q est un nombre premier distinct de p alors les anneaux $\mathbf{Z}_{(p)}$ et $\mathbf{Z}_{(q)}$ ne sont pas isomorphes.
- 3. Soit n un entier strictement positif. Montrer que les anneaux $\mathbf{Z}_{(p)}/p^n\mathbf{Z}_{(p)}$ et $\mathbf{Z}/p^n\mathbf{Z}$ sont isomorphes.

Exercice 3.13

1. On considère les idéaux suivants de $\mathbf{Z}[X,Y]$:

$$\langle X, Y \rangle$$
, $\langle 2X \rangle$, $\langle X, Y, 2 \rangle$, $\langle 2X, Y, 2 \rangle$.

Ces idéaux sont-ils premiers (respectivement maximaux)?

- 2. Soit n un entier. À quelle condition sur n l'idéal $\langle n, X \rangle$ est-il un idéal premier (respectivement maximal) de $\mathbf{Z}[X]$? Même question avec l'idéal $\langle n \rangle$.
- 3. Soit A un anneau et n un entier strictement positif. Soit \mathcal{I} un idéal de $A[X_1,\ldots,X_n]$. On suppose qu'il existe un élément $P\in\mathcal{I}$ tel que $P-X_n\in A[X_1,\ldots,X_{n-1}]$. Montrer que $A[X_1,\ldots,X_n]/\mathcal{I}$ est naturellement isomorphe à un quotient de $A[X_1,\ldots,X_{n-1}]$ que l'on décrira. On pourra commencer par montrer que pour tout élément Q de $A[X_1,\ldots,X_n]$, Q et $Q(X_1,\ldots,X_{n-1},X_n-P)$ sont égaux modulo \mathcal{I} .

Calculer le quotient $A[X,Y]/\langle X-Y^2,Y+1\rangle$ à l'aide du résultat précédent, puis en exhibant un morphisme de A-algèbres surjectif de noyau convenable.

Exercice 3.14

Cet exercice s'intéresse aux éléments irréductibles de $\mathbf{Z}[i]$ et fait suite à l'exercice 2.10, dont on pourra admettre ici les résultats.

- 1. Soit A un anneau intègre et $a \in A$ un élément irréductible. Montrer que les propriétés suivantes sont équivalentes :
 - (a) l'idéal aA est premier;
 - (b) pour tout $(b, c) \in A^2$ tel que a divise bc, alors a divise b ou a divise c.

- On admet (provisoirement) que tout élément irréductible de l'anneau $\mathbf{Z}[i]$ vérifie ces propriétés.
- 2. Soit z un élément irréductible de $\mathbf{Z}[i]$. Montrer qu'il existe un nombre premier p tel que z divise p dans $\mathbf{Z}[i]$. En déduire que les irréductibles de $\mathbf{Z}[i]$ sont exactement les éléments qui s'écrivent αp avec p nombre premier congru à 3 modulo 4 et $\alpha \in \{1, -1, i, -i\}$ ou a + ib avec $a, b \in \mathbf{Z}$ et $a^2 + b^2$ premier. Vérifier a posteriori que pour tout élément irréductible z de $\mathbf{Z}[i]$, l'idéal $z\mathbf{Z}[i]$ est premier.
- 3. Décomposer en produit d'irréductibles dans $\mathbf{Z}[i]$ l'élément -9+123i. Indication : supposons la décomposition écrite ; que peut-on dire de la norme des éléments intervenant dans la décomposition ?

Exercice 3.15

Cette exercice fait appel à la notion de sous-algèbre, pour laquelle on pourra se reporter au complément de cours disponible en ligne sur la page du module.

Soit **K** un corps. Soit A une **K**-algèbre et $a \in A$. Soit $\operatorname{ev}_a : \mathbf{K}[X] \to A$ le morphisme d'évaluation en a. et $\mathbf{K}[a]$ son image dans A. Rappelons que que a est transcendant sur **K** si ev_a est injectif; dans le cas contraire, a est dit algébrique sur **K**, et le générateur unitaire de $\operatorname{Ker}(\operatorname{ev}_a)$ est appelé polynôme minimal de a (sur **K**).

- 1. Soit $a \in A$. Vérifier que a est algébrique sur \mathbf{K} si et seulement s'il existe $P \in \mathbf{K}[X] \setminus \{0\}$ tel que P(a) = 0.
- 2. On suppose que A n'est pas l'anneau nul. Soit $a \in A$. Montrer que a est algébrique sur K si et seulement si la K-algèbre K[a] est un K-espace vectoriel de dimension finie si et seulement s'il existe $n \in \mathbb{N}$ tel que $\{a^i\}_{0 \le i \le n}$ est une base du K-espace vectoriel K[a].
- 3. Soit n un entier strictement positif et a_1, \ldots, a_n des éléments de A. On note $\operatorname{ev}_{a_1, \ldots, a_n}$ l'unique morphisme de \mathbf{K} -algèbres $\mathbf{K}[X_1, \ldots, X_n] \to A$ qui, pour tout $i \in \mathbf{N}$ tel que $1 \leqslant i \leqslant n$, envoie X_i sur a_i , et $\mathbf{K}[a_1, \ldots, a_n]$ son image dans A. Montrer que $\mathbf{K}[a_1, \ldots, a_n]$ est la sous- \mathbf{K} -algèbre de A engendrée par $\{a_1, \ldots, a_n\}$. Montrer par ailleurs que $\mathbf{K}[a_1, \ldots, a_n]$ est le sous- \mathbf{K} -espace vectoriel de A engendré par $\{\prod_{i=1}^n a_i^{n_i}\}_{(n_i)\in \mathbf{N}^n}$. En déduire que les conditions suivantes sont équivalentes :
 - (a) $\mathbf{K}[a_1, \dots, a_n]$ est un **K**-espace vectoriel de dimension finie;
 - (b) les éléments a_1, \ldots, a_n sont tous algébriques sur **K**.
 - En déduire que l'ensemble des éléments de A qui sont algébriques sur \mathbf{K} est une sous- \mathbf{K} -algèbre de A.
- 4. Soit $P \in \mathbf{K}[X] \setminus \{0\}$ un polynôme unitaire. On suppose dans cette question que $A = \mathbf{K}[X]/P\mathbf{K}[X]$ et on note x l'image de X dans A. Montrer que tout élément de A est algébrique sur \mathbf{K} et que le polynôme minimal de x sur \mathbf{K} est P.
- 5. On suppose dans cette question que A est intègre. Soit $a \in A$ un élément algébrique sur K. Montrer que le polynôme minimal de a sur K est irréductible, et que K[a] est un sous-corps de A.
- 6. On suppose dans cette question que A est un corps. Soit B une A-algèbre et $b \in B$. Montrer que si b est algébrique sur \mathbf{K} alors b est algébrique sur \mathbf{K} .
- 7. On suppose dans cette question que A est intègre. Soit $a_1, \ldots, a_n \in A$ des éléments algébriques sur \mathbf{K} . Montrer que $\mathbf{K}[a_1, \ldots, a_n]$ est un sous-corps de A.
- 8. On suppose dans cette question que A est un corps et un \mathbf{K} -espace vectoriel de dimension finie. Soit B une A-algèbre tel que B est un A-espace vectoriel de dimension finie. Montrer que B est un \mathbf{K} -espace vectoriel de dimension finie.

9. On suppose dans cette question que A est un corps et que tout élément de A est algébrique sur K. Soit B une A-algèbre et $b \in B$. Montrer que b est algébrique sur A si et seulement si b est algébrique sur K.

Exercice 3.16

On rappelle une partie du théorème de structure des groupes abéliens finis.

Théorème. Soit G un groupe abélien fini non trivial. Alors il existe un entier strictement positif r et un r-uplet (d_1, \ldots, d_r) d'entiers supérieurs à 2 tels que pour tout $1 \le i \le r - 1$, d_i divise d_{i+1} et

$$G \cong \prod_{i=1}^r \mathbf{Z}/d_i \mathbf{Z}.$$

Soit **K** un corps fini. Déduire du théorème ci-dessus que \mathbf{K}^{\times} est un groupe cyclique. *Indication* : supposons $r \geq 2$; que peut-on dire du nombre d'éléments de G dont l'ordre divise d_1 ?

Exercice 3.17

- 1. Soit $p \ge 2$ un entier, r et n des entiers strictement positifs. Montrer que $p^r 1$ divise $p^n 1$ si et seulement si r divise n.
- 2. Soit p un nombre premier et n un entier strictement positif.
 - (a) Soit r un diviseur positif de n et $P \in \mathbf{F}_p[X]$ un polynôme irréductible de degré r. Montrer que P divise $X^{p^n} 1$.
 - (b) Soit r un entier strictement positif et $P \in \mathbf{F}_p[X]$ un polynôme irréductible de degré r. On suppose que P divise $X^{p^n} X$ Montrer que r divise n. Indication : soit $\mathbf{K} = \mathbf{F}_p[X]/\langle P \rangle$; montrer que pour tout $x \in \mathbf{K}$, on a $x^{p^n} = x$.
 - (c) Pour tout entier strictement positif n, on note Irr(p, n) l'ensemble des polynômes irréductibles unitaires de degré n sur \mathbf{F}_p . Montrer les relations

$$X^{p^n} - X = \prod_{\substack{r \mid n \\ P \in \mathrm{Irr}(p,r)}} P$$

et

$$p^n = \sum_{r|n} r \operatorname{Irr}(p, r).$$

En déduire l'encadrement

$$\frac{p^n - p^{\lfloor \frac{n}{2} \rfloor + 1}}{n} \leqslant \operatorname{Irr}(p, n) \leqslant \frac{p^n}{n}.$$

En déduire que pour tout entier strictement positif n, l'ensemble Irr(p, n) est non vide.