

Mensuration I Ex 20.4 Q13

Answer:

```
We have,
```

```
(i) P is the midpoint of AD.

Thus AP = PD = 25 cm and AB = CD = 20 cm

From the figure, we observed that,

Area of \triangle APB = Area of \triangle PDC

Area of \triangle APB = \frac{1}{2}x ABx AP
```

$$= \frac{1}{2} \times 20 \text{ cm} \times 25 \text{ cm} = 250 \text{ cm}^2$$
Area of $\triangle PDC = \text{Area of } \triangle APB = 250 \text{ cm}^2$

Area of
$$\triangle$$
 RPQ = $\frac{1}{2}$ x Base x Height
= $\frac{1}{2}$ x 25 cm x 10 cm = 125 cm²

Hence,

Sum of the three triangles = $(250 + 250 + 125) \text{ cm}^2$ = 625 cm^2

(ii) Area of the rectangle ABCD = 50 cm x 20 cm = 1000 cm^2

Thus

Area of the rectangle – Sum of the areas of three triangles (There is a mistake in the question; it should be area of three triangles) = $(1000 - 625) \text{ cm}^2 = 375 \text{ cm}^2$

Mensuration I Ex 20.4 Q14

Answer:

We have,

Join CE, which intersect AD at point E.

Here, AE = ED = BC = 25 m and EC = AB = 30 m

Area of the rectangle ABCE = AB x BC

$$= 30 \text{ m} \times 25 \text{ m}$$

$$= 750 \text{ m}^2$$

Area of
$$\triangle$$
 CED = $\frac{1}{2}$ x EC x ED
= $\frac{1}{2}$ x 30 m x 25 m
= 375 m²

Hence,

Area of the quadrilateral ABCD =
$$(750 + 375) \text{ m}^2$$

= 1125 m^2

Mensuration I Ex 20.4 Q15

Answer:

Join BE.

Area of the rectangle BCDE = CD x DE

 $= 10 \text{ cm x } 12 \text{ cm} = 120 \text{ cm}^2$

Area of
$$\triangle ABE = \frac{1}{2} \times BE \times \text{ height of the triangle}$$

= $\frac{1}{2} \times 10 \text{ cm} \times (20 - 12) \text{ cm}$
= $\frac{1}{2} \times 10 \text{ cm} \times 8 \text{ cm} = 40 \text{ cm}^2$

Hence,

Area of the pentagon $ABCDE = (120 + 40) \text{ cm}^2 = 160 \text{ cm}^2$

********* END ********