1.16 CliqueDV

[Solució del prof. Conrado Martínez]

- 1. Se demuestra por inducción. Si el grafo consta de un solo vértice entonces tal vértice es una 1-clique. En general, supongamos que los subgrafos C_1 y C_2 retornados por las llamadas recursivas—que reciben como entrada un subgrafo con menor número de vértices que G—son, por hipótesis de inducción, cliques en G_1 y G_2 , respectivamente. El bucle 6.2 tiene como invariante que C_1^+ es una clique de G: cada vértice que se añade a C_1^+ es adyacente a todos los vértices en C_1^+ por lo cual el invariante se mantiene en todo momento. Pasa otro tanto con el bucle 6.3, el invariante es que C_2^+ es una clique de G. Por tanto el algoritmo devuelve una clique de G.
- 2. El coste del bucle 6.2 es $\mathcal{O}(n^2)$: para cada uno de los $\mathcal{O}(n/2)$ vértices de C_2 se comprueba, recorriendo su lista de adyacencia, si está conectado a cada uno de los $\mathcal{O}(n)$ vértices de C_1^+ . Y el coste de 6.3 es $\mathcal{O}(n^2)$ por idéntica razón. Así que el coste del algoritmo verifica la siguiente recurrencia:

$$C(n) = \mathcal{O}(n^2) + 2C(n/2),$$

cuya solución es $C(n) = \mathcal{O}(n^2)$.

4. El problema de decidir si un grafo dado contiene una clique de tamaño k es NP-completo, y por tanto la versión de optimización (encontrar la clique de tamaño máximo) es NP-difícil. No sol es fácil, es probablemente imposible modificar el algoritmo para que encuentre una clique de G de tamaño máximo en tiempo $\mathcal{O}(n^2)$ —o de hecho en tiempo polinómico $(n^{\mathcal{O}(1)})$