UNIVERSITE ASSANE SECK DE ZIGUINCHOR CELLULE PEDAGOGIQUE DE ESPACE MATH TUTORAT ALGEBRE 1 SUR LOGIQUE ET RAISONNEMENT PRESENTER PAR : DIOP KAFF

Exercice 1

On rappelle que $\sqrt{2}$ est un nombre irrationnel

- 1°) Démontrer sue si a et b sont deux entiers relatifs tels que a+b $\sqrt{2}$ =0 Alors a=b=o .
- 2°) En déduire que si m, n, p et q sont des entiers relatifs alors

 $m+n\sqrt{2}=p+q\sqrt{2}$ si et seulement si m=p et n=q

EXERCICE 2

Soit n un entier.

1°) Donner la réciproque et la contraposée de la proposition G suivante :

Si n^2 est impair alors n est impair.

- 2°) Démontrer la contraposée de la proposition G
- 3°) A-t-on démontré la proposition G.

EXERCICE 3

Soient les quartes assertions suivantes :

a)
$$\exists x \in IR \ \forall x \in IR \ x + y > 0$$
;

b)
$$\forall x \in IR \quad \exists y \in IR \quad x + y > 0;$$

C)
$$\forall x \in IR \ \forall y \in IR \quad x + y > 0$$
;

$$d$$
) $\exists x \in IR \ \forall y \in IR \quad y^2 > x$;

- 1) Donner la négation des assertions a, b, c et d.
- 2)les assertions a, b, c et d sont-elles vraies ou fausses.

Exercice 4

- 1)Etablir la table de vérité du connecteur P \oplus Q definie par : P \oplus $Q = (P \lor Q) \land (P \land Q)$.
- 2)Montrer l'égalité $P \oplus Q = (P \land \neg Q) \lor (\neg P \land Q)$.

EXERCICE 5

1) Démontrer par récurrence que $\forall \, n>0$:

$$\sum_{k=1}^{n} (2K - 1) = 1 + 3 + 5 + \dots + 2n - 1 = n^{2}$$
.

2) Montrer par recurrence que pour tout $n \in IN^*$, on a :

3)
$$\sum_{k=1}^{n} (-1)^k k = \frac{(-1)^n (2n+1)-1}{4}$$
.

EXERCICE 6

Soit $x \in IR$ tel que $x + \frac{1}{x} \in Z$

- 1) Démontrer par recurrence que tout $n \in IN$ $x^n + \frac{1}{x^n} \in Z$. 2) Déterminer x telque $x + \frac{1}{x} = 4$. Calculer $x^n + \frac{1}{x^n}$ en fonction de n.

ESPACE MATH AU SERVICE DES ETUDIANTS DE LA MPI