Suffix

Alphabet	Menge der endlichen Folgen
DEFINITION	Definition
Wort	${\bf Induktiv}w^n{\bf definieren}$
DEFINITION	Definition
y, w sind Wörter über \sum . Dann heißt y:	Sprachen
DEFINITION	DEFINITION
Präfix	Infix
Definition	Definition

formale Sprachen

Für eine Menge X ist X^* die Menge der endlichen Folgen über X.

Beispiel: Elemente von a, b, c, d*: (a, b, c), ()

Ein Alphabet ist eine endliche nichtleere Menge. Üblicherweise heißen Alphabete hier \sum, Γ, Δ . Ist \sum Alphabet, so nennen wir die Elemente oft Buchstaben und die Elemente von $\sum *$ auch Wörter über \sum (auch String/Zeichenkette).

$$w^n = \begin{cases} \epsilon & \text{falls } n = 0\\ w * w^{n-1} & n > 0 \end{cases}$$

Sind $u = (a_1, a_2, ...a_n)$ und $v = (b_1, b_2, ..., b_n)$ Wörter, so ist u * v das Wort $(a_1, a_2, ...a_n, b_1, b_2, ..., b_n)$; es wird als Verkettung/Konkatenation von u und v bezeichnet. An Stelle von u * v schreibt man auch uv.

f: Menge der möglichen Eingaben \to Menge der möglichen Ausgaben Spezialfall A=0,1 heißt Entscheidungsproblem. Sie ist gegeben durch die Menge der Eingaben.

- Präfix/Anfangsstück von w
, wenn es $z \in \sum^*$ gibt mit yz = w
- Infix/Faktor von w
, wenn es $x, z \in \sum^*$ gibt mit xyz = w
- Suffix/Endstück von w
, wenn es $x \in \sum^*$ gibt mit xy = w

Seien y,w Wörter über \sum . Dann heißt Infix/Faktor von w, wenn es $x,z\in\sum *$ gibt mit xyz=w.

Seien y,w Wörter über \sum . Dann heißt Präfix/Anfangsstück von w, wenn es $z \in \sum *$ gibt mit yz = w.

Sei \sum ein Alphabet. Teilmengen von \sum * werden formale Sprachen über \sum genannt. Eine Menge L ist eine formale Sprache wenn es ein Alphabet \sum gibt, so dass L formale Sprache über \sum ist (d.h. $L \subseteq \sum$ *).

Seien y,w Wörter über \sum . Dann heißt Suffix/Endstück von w, wenn es $x \in \sum *$ gibt mit xy = w.

Verkettung von	Sprachen
----------------	----------

Kleene Abschluss

DEFINITION DEFINITION

Prioritätsregeln für Operationen auf Sprachen

Grammatik

DEFINITION DEFINITION

Ableitung einer Grammatik

Wort ist Satzform

DEFINITION DEFINITION

erzeugte Sprache

Chomsky-0

Chomsky-2

DEFINITION DEFINITION

Chomsky-1

Sei L eine Sprache. Dann ist $L*=\bigcup_{n\geq 0}L^n$ der Kleene-Abschluss oder die Kleene-Iteration von L. Weiter ist $L^+=\bigcup_{n\geq 0}L^n$

$$(L^+ = L * L = L^* * L)$$

Sind L_1 und L_2 Sprachen, so heißt die Sprache $L_1L_2 = \{w | \exists w_1 \in L_1, w_2 \in L_2 : w = w_1w_2\}$ (auch $L_1 * L_2$) die Konkatenation oder Verkettung von L_1 und L_2 .

Grammatiken sind ein Mittel um alle syntaktisch korrekten Sätze einer Sprache zu erzeugen. Eine Grammatik G ist ein 4-Tupel $G=(V,\sum,P,S)$ das folgende Bedingungen erfüllt

- $\bullet~$ V ist eine endliche Menge von Nicht-Terminalen oder Variablen
- \sum ist ein Alphabet (Menge der Terminale) mit $V \cap \sum = \varnothing$,d.h. kein Zeichen ist gleichzeitig Terminal und Nicht-Terminal
- $P \subseteq (V \cup \sum)^+ \times (v \cup \sum)^*$ ist eine endliche Menge von Regeln oder Produktionen (Produktionsmenge)
- $S \in V$ ist das Startsymbol/ die Startvariable oder das Axiom Jede Grammatik hat nur endlich viele Regeln!
- Potenz/Iteration binden stärker als Konkatenation
- Konkatenation stärker als Vereinigung/Durchschnitt/Differenz

Ein Wort $w \in (V \cup \sum)^*$ heißt Satzform, wenn es eine Ableitung gibt, deren letztes Wort w ist.

Sei $G = (V, \sum, P, S)$ eine Grammatik. Eine Ableitung ist eine endliche Folge von Wörtern $w_0, w_1, w_2, ..., w_n$ mit $w_0 \Rightarrow w_1 \Rightarrow w_2 \Rightarrow ... \Rightarrow w_n$.

Jede Grammatik ist vom Typ 0 (Semi-Thue-System) und wird auch als rekursiv-aufzählbar bezeichnet.

Die Sprache $L(G)=w\in\sum^*|S\Rightarrow_G^*w$ aller Satzformen aus \sum^* heißt von G erzeugte Sprache.

Eine Regel $(l \to r)$ heißt kontext-frei wenn $l \in V$ und $r \in (V \cup \sum)^*$ gilt. Eine Grammatik ist vom Typ 2, falls sie nur kontext-freie Regeln enthält

Eine Regel heißt kontext-sensitiv, wenn es Wörter $u,v,w\in (V\cup \sum)^*, |v|>0$ und ein Nichtterminal $A\in V$ gibt mit l=uAw und r=uvw. Eine Grammatik ist vom Typ 1 (oder kontext-sensitiv) falls

- alle Regeln aus P kontext-sensitiv sind
- $(S \to \epsilon) \in P$ die einzige nicht kontext-sensitive Regel in P ist und S auf keiner rechten Seite einer Regel aus P vorkommt

von einem DFA akzeptierte Sprache

DEFINITION

Text

- 1. $w=\epsilon$: Da G vom Typ 1 ist, gilt $w\in L(G)$ genau dann wenn $(S\to\epsilon)\in P$. Dies kannn ein Algorithmus entscheiden
- 2. $|w| \geq 1$: Definiere einen gerichteten Graphen (W,E) wie folgt
 - $\bullet\,$ Knoten sind die nichtleeren Wörter über $V\cup \sum\, \, \mathrm{der}$ Länge $\geq |w|$ (insbes. $S, w \in W$)
 - $(u, v) \in E$ genau dann wenn $u \Rightarrow_G v$

da kontext-sensitiv ist, gilt $1=|u_0|\geq |u_1|\geq |u_2|\geq ...\geq |u_n|=|w|,$ also $u_i\in W$ f.a. $1\geq i\geq n.$ Also existiert Pfad von S nach w im Graphen (W , E), womit die Behauptung bewiesen ist.

Zu einem gegebenen DFA definieren wir die Funktion $\hat{\delta}: Z \times \sum^* \to Z \text{ induktiv wie folgt, wobei } z \in Z, \\ w \in \sum^+ \text{ und } a \in \sum:$

- $\hat{\delta}(z, \epsilon) = z$
- $\hat{\delta}(z, aw) = \hat{\delta}(\delta(z, a), w)$

Der Zustand $\hat{\delta}(z, w)$ ergibt sich indem man vom Zustand z aus dem Pfad folgt der mit w beschriftet ist.

Eine Sprache $L \supseteq \sum^*$ ist regulär, wenn es einen DFA mit L(M) = L gibt (bzw. wird von einem DFA akzeptiert). Jede reguläre Sprache ist rechtslinear.

Eine Regl ist rechtslinear, wenn $l \in V$ und $r \in \sum V \cup \epsilon$ gilt. Eine Grammatik ist vom Typ 3 wenn sie nur rechtslineare Regeln enthält.

ein deterministischer endlicher Automat M ist ein 5-Tupel $M = (Z, \sum, z_0, \delta, E)$

- \bullet Z eine endliche Menge von Zuständen
- \sum das Eingabealphabet (mit $Z \cap \sum = \emptyset$)
- $z_0 \in Z$ der Start/Anfangszustand (max Einer)
- $\overset{.}{\delta}: Z \times \overset{.}{\sum} \to \overset{.}{\mathsf{U}}$ Überführungs/ $\overset{.}{\mathsf{U}}\mathsf{bergangsfunktion}$ die
- $E \subseteq Z$ die Menge der Endzustände

Abkürzung: DFA (deterministic finite automaton)

die von einem DFA akzeptierte Sprache ist:

 $L(M)=w\in \textstyle\sum^*|\hat{\delta}(z_0,w)\in E$ Mit anderen Worten: Ein Wort w
 wird genau dann akzeptiert, wenn derjenige Pfad, der im

Anfangszustand beginnt und dessen Übergänge mit den Zeichen von w markiert sind, in einem Endzustand endet.

Text