Opakovanie lineárnej algebry, práca s vektormi

Poznámka: V lineárnom programovaní budeme pracovať so stĺpcovými vektormi, pričom

 $\begin{pmatrix} 3 \\ -1 \\ 5 \end{pmatrix}$, $(3, -1, 5)^{\mathsf{T}}$, $(3 -1 5)^{\mathsf{T}}$ sú rôzne zápisy toho istého stĺpcového vektora v E_3 .

Pre niektorý z príkladov 1- 10 riešte nasledujúce úlohy v E_2 . Úlohy riešte výpočtom aj graficky.

- 1. Zakreslite vektor \boldsymbol{a} v súradnicovom systéme v E_2 .
- 2. Zakreslite vektor $-\boldsymbol{a}$ v súradnicovom systéme v E_2 .
- 3. Určte veľkosť (dĺžku) vektorov \mathbf{a} a $-\mathbf{a}$. Výsledok porovnajte s ich grafickým znázornením v E_2 .
- 4. Vynásobte vektory **b** reálnym číslom $\alpha = -2$.
- 5. Vydeľte vektory \boldsymbol{b} reálnym číslom $\beta = 2$.
- 6. Vypočítajte a graficky znázornite (ak sa dá):
 - a) súčet vektorov: **a** + **b**
 - b) rozdiel vektorov: $\boldsymbol{a} \boldsymbol{b}$
 - c) veľkosť (dĺžku) rozdielu vektorov: |a b|
 - d) skalárny súčin vektorov: $\mathbf{a} \cdot \mathbf{b}$.

 Určte, za akých podmienok môžete skalárny súčin vykonať. $\mathbf{b} = (6, -8)^{\mathrm{T}}$
- 2. $\boldsymbol{a} = (3,4)^{\mathrm{T}}, \quad \boldsymbol{b} = (-8,6)^{\mathrm{T}}$ 3. $\boldsymbol{a} = (4,-3)^{\mathrm{T}}, \quad \boldsymbol{b} = (3,4)^{\mathrm{T}}$ 4. $\boldsymbol{a} = (3,-4)^{\mathrm{T}}, \quad \boldsymbol{b} = (-8,6)^{\mathrm{T}}$ 5. $\boldsymbol{a} = (-3,4)^{\mathrm{T}}, \quad \boldsymbol{b} = (6,8)^{\mathrm{T}}$ 6. $\boldsymbol{a} = (4,-3)^{\mathrm{T}}, \quad \boldsymbol{b} = (6,8)^{\mathrm{T}}$ 7. $\boldsymbol{a} = (3,4)^{\mathrm{T}}, \quad \boldsymbol{b} = (8,6)^{\mathrm{T}}$ 8. $\boldsymbol{a} = (4,3)^{\mathrm{T}}, \quad \boldsymbol{b} = (6,8)^{\mathrm{T}}$ 9. $\boldsymbol{a} = (4,-3)^{\mathrm{T}}, \quad \boldsymbol{b} = (6,-8)^{\mathrm{T}}$

1. $\mathbf{a} = (4, -3)^{\mathrm{T}}, \quad \mathbf{b} = (4, 3)^{\mathrm{T}}$

- 7. Sú dané vektory $\mathbf{u} = (5,-2)^{\mathsf{T}}$, $\mathbf{v} = (0,4)^{\mathsf{T}}$, $\mathbf{w} = (1,-3)^{\mathsf{T}}$. Riešte výpočtom aj graficky:
 - a) $u + \frac{1}{2} \cdot v 2w$.
 - b) z bodu $\mathbf{x}_0 = (0,0)^T$ prejdite do bodu \mathbf{x}_1 v smere vektora \mathbf{u} , potom z bodu \mathbf{x}_1 prejdite do bodu \mathbf{x}_2 v smere vektora \mathbf{v} s dĺžkou kroku $\alpha = \frac{1}{2}$. Nakoniec prejdite z bodu \mathbf{x}_2 prejdite do bodu \mathbf{x}_3 v smere vektora $-\mathbf{w}$ s dĺžkou kroku $\alpha = 2$.
- 8. Sú dané vektory $\mathbf{x} = (6,3,-4)^{\mathsf{T}}$ a $\mathbf{y} = (-3,3,8)^{\mathsf{T}}$. Vypočítajte:
 - a) x + y
 - b) x-y
 - c) |x-y|
 - d) $\mathbf{x}^{\mathsf{T}} \cdot \mathbf{y}$
- 9. Sú dané vektory $\mathbf{a} = (a_1, a_2, ..., a_n)^T$ a $\mathbf{b} = (b_1, b_2, ..., b_n)^T$ a reálne číslo $\alpha \in R$. Rozpíšte výsledné vektory pomocou zložiek vektora (a) a b)). Výpočet c) a d) rozpíšte pomocou symbolu sumy a aj bez nej:
 - a) $\alpha.a$
 - b) **a + b**
 - c) |a-b|
 - d) skalárny súčin vektorov $\boldsymbol{a}^{\mathsf{T}}.\boldsymbol{b}$
- 10.Ak sú splnené predpoklady pre násobenie dvoch matíc, vynásobte nasledujúce matice:

a)
$$\begin{pmatrix} 2 & 4 \\ 3 & 0 \\ -1 & 5 \\ 2 & 2 \end{pmatrix} * \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$$

b)
$$\begin{pmatrix} 2 & 4 \\ 3 & 0 \\ -1 & 5 \\ 2 & 2 \end{pmatrix} * \begin{pmatrix} 1 & 4 \\ 2 & 3 \\ 3 & 2 \\ 4 & 1 \end{pmatrix}$$