Part 5. Curve Fitting Chapter 17. Least-Squares Regression

Lecture 15

Linear Regression

17.1

Homeyra Pourmohammadali

Curve Fitting- Motivation

- Data are often given for discrete values along continuum.
- Estimates of points between discrete values may be required.
- Curve fitting techniques can fit curves to discrete data to obtain required intermediate values.

Curve Fitting- Main Engineering Applications

1

Trend Analysis

• Predicting values of dependent variable: extrapolation beyond data points or interpolation between data points.

2

Hypothesis Testing

• Comparing existing mathematical model with measured data

Curve Fitting- Engineering Applications Examples

Removing measurement noise

Filling in missing data points (e.g. improper data record)

Find trajectory of an object (s) based on discrete velocity values (v is derivative of s and a is the second derivative of s)

Integrating digital data (e.g. find area under curve with discrete points)

Differentiating digital data (e.g. modeling the discrete data with a polynomial and differentiating polynomial)

Curve Fitting- General Approaches

Two general approaches:

Data exhibit a significant degree of scatter

The strategy is to derive a single curve that represents the general trend of the data.

Data is very precise

The strategy is to pass a curve or a series of curves through each of the points.

Curve Fitting-Non-Computer Methods

a) Sketch one straight-line that visually conforms to all data

b) Using straight-line segments to connect the points

c) Using curves to represent data

Example 1. Curve fitting. A study investigating household budgeting practices surveyed a random sample of 7 families in a small town, collecting data for the total food expenditures last month vs. gross monthly income:

Income (\$100)	55	83	38	61	33	49	67
Food (\$100)	14	24	13	16	9	15	17

Least Squares Regression: Linear Regression

Linear Regression

• Fitting a straight line to a set of paired observations:

$$(x_1, y_1), (x_2, y_2), ..., (x_n, y_n).$$

$$y = a_0 + a_1 x + e$$

 a_1 : slope, a_0 : intercept,

e : error, or residual, betweenmodel and observations

Criterion 1. Minimize the sum of the residual errors for all available data (where n is total number of points):

$$\sum_{i=1}^{n} e_i = \sum_{i=1}^{n} (y_i - a_o - a_1 x_i)$$

• Is this an adequate criterion? does it yield a unique best fit?

Criterion 2. Minimize the sum of the absolute values

$$\sum_{i=1}^{n} |e_i| = \sum_{i=1}^{n} |y_i - a_0 - a_1 x_i|$$

• Is this an adequate criterion? does it yield a unique best fit?

Criterion 3. (called Minimax Criterion) Minimize the maximum distance that an individual point falls from the line

• Is this an adequate criterion? does it yield a unique best fit?

Example 2. Appropriate Criterion. Given the data points (2,4), (3,6), (2,6) and (3,8), best fit the data to a straight line. Use Criterion#1 and 2.

Minimize
$$\sum_{i=1}^{n} e_i$$
 or $\sum_{i=1}^{n} |e_i|$

T	D • .
I lata	Points
Data	1 Omis

x	y
2.0	4.0
3.0	6.0
2.0	6.0
3.0	8.0

Data points for y vs x data.

Criterion 4: Minimize the sum of the squares of the residuals between the measured *y* and the *y* calculated with the linear model:

$$S_r = \sum_{i=1}^n e_i^2 = \sum_{i=1}^n (y_i, \text{measured} - y_i, \text{model})^2 = \sum_{i=1}^n (y_i - a_0 - a_1 x_i)^2$$

• Is this an adequate criterion?

Yields a unique line for a given set of data.

Criterion 4: Need to find a_0 and a_1 coefficients in such a way that minimize S_r .

Differentiate with respect to these coefficients

$$\frac{\partial S_r}{\partial a_o} = 0$$

$$\frac{\partial S_r}{\partial a_1} = 0$$

Least-Squares Fit of a Straight Line

$$\frac{\partial S_r}{\partial a_o} = -2 \sum (y_i - a_o - a_1 x_i) = 0$$

$$\frac{\partial S_r}{\partial a_1} = -2 \sum \left[(y_i - a_o - a_1 x_i) x_i \right] = 0$$

$$0 = \sum y_i - \sum a_0 - \sum a_1 x_i$$

$$0 = \sum y_i x_i - \sum a_0 x_i - \sum a_1 x_i^2$$

Normal equations, can be solved simultaneously

$$\sum a_0 = na_0$$

$$na_0 + \left(\sum x_i\right) a_1 = \sum y_i$$

$$a_{1} = \frac{n\sum x_{i}y_{i} - \sum x_{i}\sum y_{i}}{n\sum x_{i}^{2} - (\sum x_{i})^{2}}$$

$$a_0 = \overline{y} - a_1 \overline{x}$$

Example 3. Linear Regression. A study wishes to develop an empirical model for the number of calories per single serving of breakfast cereal as a function of the amount of sugar. Thirteen different samples are measured as follows. Find the coefficients of regression line: a_0 and a_1

Sugar (g)	4	15	12	11	8	6	7	2	7	14	20	3	13
Calories	120	200	140	110	120	80	190	100	120	190	190	110	120

Error of Linear Regression

Residual in linear regression: vertical distance between a data point and the line

"Goodness" of Our Fit

If total sum of the squares around the mean for the dependent variable, y, is S_t

If sum of the squares of residuals around the regression line is S_r

If S_t - S_r quantifies the improvement or error reduction due to describing data in terms of a straight line rather than as an average value:

(a) (b)

r – correlation coefficient

Error in Linear Regression

$$r = \frac{n\sum x_{i}y_{i} - (\sum x_{i}) (\sum y_{i})}{\sqrt{n\sum x_{i}^{2} - (\sum x_{i})^{2}} \cdot \sqrt{n\sum y_{i}^{2} - (\sum y_{i})^{2}}}$$

r: correlation efficient

Poor fit (no fit)

Perfect fit of linear data

Special Cases

• For a perfect fit

$$S_r = 0$$
 & $r = r^2 = 1$

signifying that the line explains 100% of the variability of data.

• For:

$$r = r^2 = 0$$
 & $S_r = S_t$

the fit represents no improvement.

Example 4. Error of Linear Regression. A study wishes to develop an empirical model for the number of calories per single serving of breakfast cereal as a function of the amount of sugar. Thirteen different samples are measured as follows. Find the correlation coefficient related directly to residual error.

Sugar (g)	4	15	12	11	8	6	7	2	7	14	20	3	13
Calories	120	200	140	110	120	80	190	100	120	190	190	110	120

What about <u>non-linear</u> relationships?

Example 5. Non-linear relationship

$$y = a e^{bx}$$

Example 5 continued. Non-linear relationship.

Example 5 continued. Non-linear relationship.

X	y
1	0.5
2	1.7
3	3.4
4	5.7
5	8.4

Example 5 continued. Non-linear relationship.

X	y	log(x)	log(y)
1	0.5	0	-0.301
2	1.7	0.301	0.230
3	3.4	0.477	0.531
4	5.7	0.602	0.756
5	8.4	0.699	0.924

Recall Mathematics & Statistic Self-Study

Recall: Mathematics- Mean & StDev

Arithmetic Mean. The sum of the individual data points (y_i) divided by the number of points (n).

$$\overline{y} = \frac{\sum y_i}{n}$$

$$i = 1, \dots, n$$

Standard Deviation (StDev). The most common measure of a spread for a sample.

$$S_{y} = \sqrt{\frac{S_{t}}{n-1}}$$
 or $S_{y}^{2} = \frac{\sum y_{i}^{2} - (\sum y_{i})^{2} / n}{n-1}$

Recall: Mathematics-Variance & c.v.

Variance. Representation of spread by the square of the standard deviation.

$$S_y^2 = \frac{\sum (y_i - \overline{y})^2}{n-1}$$
 Degrees of freedom

Coefficient of Variation. Has the utility to quantify the spread of data.

$$c.v. = \frac{S_y}{\overline{y}} 100\%$$

Recall: Mathematics-Normal Distribution

Recall: Mathematics-Confidence Interval

