

"How to Build a Regression Model"

Melinda K. Higgins, Ph.D.

14 November 2008

Outline

- I. Basics
- **II.** Assumptions
- **III.** Linear Relationships
- **IV. Understanding Correlation**
- V. 3 Types of Linear Regression (theory development)
- **VI.** Diagnostics of Model Fit
- VII. Problems with Multicollinearity
- **VIII. Outliers**
- IX. References

Basics

- Dependent Variable
 - Continuous
 - Single
- Independent Variables
 - Continuous or Discrete (dummy coding)
 - Single or Multiple
- "Linear" Relationship discussion following

Assumptions

- The IVs (independent variables) have a relationship with the DV (dependent variable)
- That relationship is linear (either directly or through transformations)
- The independent variables are independent of one another (no multicollinearity) – although some "mild/minor" correlation may be tolerated.
- Any case which has "missing" data on any of the IVs or DV will be eliminated from the analysis
- The intercept and all coefficients for the IVs are "Fixed." ["Random Coefficient Models" to be discussed later.]

Linear Relationships

Which are Linear?

$$Y = \beta_0 + \beta_1 X_1 + \varepsilon$$

$$Y = β_0 + β_1 X_1 + β_2 X_2 + β_{12} X_1 X_2 + ε$$

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_1^2 + \varepsilon$$

• InY =
$$\beta_0 + \beta_1 X_1 + \beta_2 (\operatorname{sqrt}(X_2)) + \epsilon$$

?
$$Y = \beta_0 X_1^{\beta 1} X_2^{\beta 2} e^{\epsilon}$$
 Take In() natural log of both sides

$$\cdot [\ln Y = \ln \beta_0 + \beta_1 \ln X_1 + \beta_2 \ln X_2 + \epsilon] \checkmark$$

•
$$Y = \beta_0 X_1^{\beta 1} X_2^{\beta 2} + \varepsilon$$
 Intrinsically nonlinear

Correlation (2 variables)

Suppose r = 0.5, then $r^2 = 0.25$ and $1-r^2 = 0.75$

- Venn Diagram ["ballantine"] where each circle represents the variance of that variable
- The overlap in circles represents the degree of correlation (or r²).
- •Just because we know r2 MUST STILL MAKE PICTURES!!

 $(0.341)^2 = .116$

		comfort	role	involvement
comfort	Pearson Correlation	1	.341**	.162
	Sig. (2-tailed)		.004	.165
	N	76	\ 68	75
role	Pearson Correlation	.341**	1	.381**
	Sig. (2-tailed)	.004		.001
	N	68	68	67
involvement	Pearson Correlation	.162	.381**	1
	Sig. (2-tailed)	.165	.001	
	N	75	67	75

How to Build a Regression Wodel

4 similar datasets – they have identical regression results – or do they?

	l	I	l	II	II	IV	
X	У	X	У	X	У	X	У
10	8.04	10	9.14	10	7.46	8	6.58
8	6.95	8	8.14	8	6.77	8	5.76
13	7.58	13	8.74	13	12.74	8	7.71
9	8.81	9	8.77	9	7.11	8	8.84
11	8.33	11	9.26	11	7.81	8	8.47
14	9.96	14	8.1	14	8.84	8	7.04
6	7.24	6	6.13	6	6.08	8	5.25
4	4.26	4	3.1	4	5.39	19	12.5
12	10.84	12	9.13	12	8.15	8	5.56
7	4.82	7	7.26	7	6.42	8	7.91
5	5.68	5	4.74	5	5.73	8	6.89

For all four datasets:

Property	<u>Value</u>
Mean of each x variable	9.0
Variance of each x variable	10.0
Mean of each y variable	7.5
Variance of each y variable	3.75
Correlation between each x and y variable	0.816
Linear regression line	y = 3 + 0.5x
=	

But what do they look like?

How to Build a Regression Model

See http://en.wikipedia.org/wiki/Anscombe%27s_quartet

F.J. Anscombe, "Graphs in Statistical Analysis," American Statistician, 27 (February 1973), 17-21.

Anscombe's quartet - From Wikipedia, the free encyclopedia

Anscombe's quartet comprises four datasets which have identical simple statistical properties, yet which are revealed to be very different when inspected graphically. Each dataset consists of eleven (x,y) points. They were constructed in 1973 by the statistician F.J. Anscombe to demonstrate the importance of graphing data before analyzing it, and of the effect of outliers on the statistical properties of a dataset.

- The first one (top left) seems to be distributed normally, and corresponds to what one would expect when considering two variables correlated and following the assumption of normality.
- ❖ The second one (top right) is not distributed normally; while an obvious relationship between the two variables can be observed, it is not linear, and the Pearson correlation coefficient is not relevant.
- In the third case (bottom left), the linear relationship is perfect, except for one outlier which exerts enough influence to lower the correlation coefficient from 1 to 0.81.
- ❖ Finally, the fourth example (bottom right) shows another example when one outlier is enough to produce a high correlation coefficient, even though the relationship between the two variables is not linear.

Correlation (among DV and IVs)

Standard vs Sequential vs Stepwise

• Standard – all variables enter at one time ["ENTER"]

 <u>Sequential</u> (also sometimes called "Hierarchical Regression") – variables enter in specific (sequential) order ["BLOCK1" "BLOCK2" etc]

 Stepwise (also called "Statistical Regression") – variables are allowed to "compete statistically" ["Forward, Backward"]

Standard – X₁ X₂ and X₃ all at once

 $R^2 = a + b + c + d + e$

But who gets credit for each piece?

IV₁ gets credit for a IV₂ gets credit for c IV₃ gets credit for e

b and c do not get "assigned" to any of the 3 IVs

<u>Sequential – X₁ then X₂ then X₃</u>

 $R^2 = a + b + c + d + e$

IV₁ gets credit for a + b IV₂ gets credit for c + d IV₃ gets credit for e

Stepwise (statistical) – X₁ X₂ and X₃ "compete"

 $R^2 = a+b+c+d+e$

Assume the "amount of variance explained" is highest for X1 followed by X3 followed by X2

IV₁ gets credit for a+b IV₂ gets credit for c IV₃ gets credit for e+d

Exam Anxiety Example (A. Field Book)

Compare Exam Performance (DV=Y) against Time Spent Revising Exam (IV1=X1) and Anxiety Level (IV2=X2) [Correlation Matrix]

Correlations

		exam Exam Performance (%)	anxiety Exam Anxiety	revise Time Spent Revising
exam Exam	Pearson Correlation	1	441**	.397**
Performance (%)	Sig. (2-tailed)		.000	.000
	Sum of Squares and Cross-products	68637.204	-20048.511	19061.592
	Covariance	672.914	-196.554	186.878
	N	103	103	103
anxiety Exam Anxiety	Pearson Correlation	441**	1	(709**
	Sig. (2-tailed)	.000		.000
	Sum of Squares and Cross-products	-20048.511	30112.058	-22571.667
	Covariance	-196.554	295.216	-221.291
	N	103	103	103
revise Time Spent	Pearson Correlation	.397**	709**	1
Revising	Sig. (2-tailed)	.000	.000	
	Sum of Squares and Cross-products	19061.592	-22571.667	33634.816
	Covariance	186.878	-221.291	329.753
	N	103	103	103

^{**.} Correlation is significant at the 0.01 level (2-tailed).

Assigning Variance

Partial Correlation

Correlations

Control Variables			exam Exam Performance (%)	anxiety Exam Anxiety	revise Time Spent Revising
-none- ^a	exam Exam	Correlation	1.000	441	.397
	Performance (%)	Significance (2-tailed)		.000	.000
		df	0	101	101
	anxiety Exam Anxiety	Correlation	441	1.000	709
		Significance (2-tailed)	.000		.000
		df	101	0	101
	revise Time Spent Revising	Correlation	.397	709	1.000
		Significance (2-tailed)	.000	.000	
		df	101	101	0
revise Time	exam Exam	Correlation	1.000	247	
Spent Revising	Performance (%)	Significance (2-tailed)		.012	
		df	0	100	
	anxiety Exam Anxiety	Correlation	247	1.000	
		Significance (2-tailed)	.012		
		df	100	0	

a. Cells contain zero-order (Pearson) correlations.

When Revision is controlled for, the squared correlation between Exam Performance and Anxiety is reduced from $(-.441)^2 = .194$ down to only $(-.247)^2 = .061$.

Semi-Partial Correlation [obtained from Sequential Regression]

Model Summary^c

					Change Statistics				
Model	R	R Square	Adjusted R Square	Std. Error of the Estimate	R Square Change	FChange	df1	df2	Sig. F Change
1	.397 ^a	.157	.149	23.92947	.157	18.865	1	101	.000
2	.457 ^b	.209	.193	23.30573	.051	6.479	1	100	.012

- a. Predictors: (Constant), revise Time Spent Revising
- b. Predictors: (Constant), revise Time Spent Revising, anxiety Exam Anxiety
- c. Dependent Variable: exam Exam Performance (%)

We knew this from the Initial Correlation Matrix Exam-[Revision] $r^2 = (.397)^2 = .157$

The amount of variance "left over" after "controlling for" Revision, for Anxiety is .051 (5.1%).

Back to the Venn Diagram

Exam-[Anxiety+Revision] $R^2 = a+b+c$

Exam-[Anxiety] $r^2 = (-.441)^2 = .194$ Exam-[Revision] $r^2 = (.397)^2 = .157$

And now we know the "semi-partial" correlation for Anxiety (controlling for Revision Time) = .051.

So, overall r²=.209=.157+.051

** Remember we don't know c directly and we can't get d directly**

R^2 Breakdown (overall r^2_{x1x2} =0.209)

Standard Regression (X1 and X2 together)	= or ≠	Sequential Regression (X1 then X2)
$r_{X1}^2 = (a+c)/(a+b+c+d) = 0.157$	=	$r^2_{X1} = (a+c)/(a+b+c+d) = 0.157$
$r_{\chi_2}^2 = (b+c)/(a+b+c+d) = 0.194$	=	$r^2_{X2} = (b+c)/(a+b+c+d) = 0.194$
$sr^2_{X1} = a/(a+b+c+d) = 0.014$ ("Part" in SPSS)	≠	$sr^2_{X1} = (a+c)/(a+b+c+d) = 0.157$
$sr^2_{X2} = b/(a+b+c+d) = 0.051$	=	$sr^2_{X2} = b/(a+b+c+d) = 0.051$
$pr^2_{X1} = a/(a+d) = 0.018$ ("Partial" in SPSS)	≠	$pr^2_{X1} = (a+c)/(a+c+d) = 0.1576$ ("Partial" in SPSS)
$pr^2_{X2} = b/(b+d) = 0.061$	=	$pr^2_{X2} = b/(b+d) = 0.061$

From p.145 – Tabachnick – but notation based on previous Venn, where "c" represents the overlap of X1 and X2

Separate Regressions

Model Summary^b

					Change Statistics				
Model	R	R Square	Adjusted R Square	Std. Error of the Estimate	R Square Change	F Change	df 1	df2	Sig. F Change
1	.441 ^a		.186	23.39691	.194	24.384	1	101	.000

a. Predictors: (Constant), anxiety Exam Anxiety

Model Summary^b

					Change Statistics				
Model	R	R Square	Adjusted R Square	Std. Error of the Estimate	R Square Change	F Change	df 1	df2	Sig. F Change
1	.397 ^a		.149	23.92947	.157	18.865	1	101	.000

a. Predictors: (Constant), revise Time Spent Revising

Model Summary^b

					Change Statistics				
 	_		Adjusted	Std. Error of	R Square	- 0	16.4	160	Sig. F
Model	R	R Square	R Square	the Estimate	Change	F Change	df 1	df2	Change
1	.457 ^a	.209	.193	23.30573	.209	13.184	2	100	.000

- a. Predictors: (Constant), revise Time Spent Revising, anxiety Exam Anxiety
- b. Dependent Variable: exam Exam Performance (%)

How to Build a Regression Model

Standard Regressions – "correlations"

Coefficients^a

		Unstandardized Coefficients						95% Confidence	ce Interval for B
Model		В	Std. Error	Beta	t	Sig.	Lower Bound	Upper Bound	
1	(Constant)	87.833	17.047		5.152	.000	54.012	121.653	
	anxiety Exam Anxiety	485	.191	321	-2.545	.012	863	107	
	revise Time Spent Revising	.241	.180	.169	1.339	.184	116	.599	

a. Dependent Variable: exam Exam Performance (%)

Take the squares of these to get pr² and sr² respectively.

Sequential Regression – "correlations" Revision Time goes in first

Model Summary^c

					sr ²	Ch	ange Statistic	s	
Model	R	R Square	Adjusted R Square	Std. Error of the Estimate	R Square Change	F Change	df1	df2	Sig. F Change
1	.397 ^a	.157	.149	23.92947	.157	18.865	1	101	.000
2	.457 ^b	.209	.193	23.30573	.051	6.479	1	100	.012

- a. Predictors: (Constant), revise Time Spent Revising
- b. Predictors: (Constant), revise Time Spent Revising, anxiety Exam Anxiety
- c. Dependent Variable: exam Exam Performance (%)

		Unstandardized Coefficients		Correlations				Collinearity Statistics		
Model		В	Std. Error	Zero-order	Partial Part		Tolerance	VIF		
1	(Constant)	45.321	3.503							
	revise Time Spent Revising	.567	.130	.397		.397		.397	1.000	1.000
2	(Constant)	87.833	17.047		pr		sr			
	revise Time Spent Revising	.241	.180	.397		.133		.119	.497	2.012
	anxiety Exam Anxiety	485	.191	441		247		226	.497	2.012

a. Dependent Variable: exam Exam Performance (%)

So $(-0.226)^2 = 0.051$

If Anxiety goes in first

Model Summary^c

					Change Statistics					
Model	R	R Square	Adjusted R Square	Std. Error of the Estimate	R Square Change	F Change	df 1	df2	Sig. F Change	
1	.441 ^a	.194	.186	23.39691	.194	24.384	1	101	.000	
2	.457 ^b	.209	.193	23.30573	.014	1.792	1	100	.184	

- a. Predictors: (Constant), anxiety Exam Anxiety
- b. Predictors: (Constant), anxiety Exam Anxiety, revise Time Spent Revising
- c. Dependent Variable: exam Exam Performance (%)

R^2 Breakdown (overall r^2_{x1x2} =0.209)

Standard Regression (X1 and X2 together)	= or ≠	Sequential Regression (X1 then X2)
$r^2_{X1} = (a+c)/(a+b+c+d) = 0.157$ (revision)	=	$r^2_{X1} = (a+c)/(a+b+c+d) = 0.157$
$r^2_{X2} = (b+c)/(a+b+c+d) = 0.194$ (anxiety)	=	$r^2_{X2} = (b+c)/(a+b+c+d) = 0.194$
$sr^2_{X1} = a/(a+b+c+d) = 0.014$ ("Part" in SPSS)	≠	$sr^2_{X1} = (a+c)/(a+b+c+d) = 0.157$
$sr^2_{X2} = b/(a+b+c+d) = 0.051$	=	$sr^2_{X2} = b/(a+b+c+d) = 0.051$
$pr^{2}_{X1} = a/(a+d) = 0.018$ ("Partial" in SPSS)	≠	$pr^2_{X1} = (a+c)/(a+c+d) = 0.1576$ ("Partial" in SPSS)
$pr^2_{X2} = b/(b+d) = 0.061$	=	$pr^2_{X2} = b/(b+d) = 0.061$

"Unique" contribution to variance from each IV – i.e. Anxiety contributes 5.1% of the variance (controlling for revision time) – OR Revision Time contributed 1.4% of the variance (controlling for Anxiety Level) – although this was not significant (p-val=0.184)**

^{* **} NOTE that sr^2_{x1} is very small 0.014 – and if we run a sequential regression putting Anxiety in first, this r^2 change (0.014) for adding in Revision Time has a non-sig p-val (0.184).

"Stepwise"/"Statistical" Regression

Variables Entered/Removed^a

Model	Variables Entered	Variables Removed	Method
1	anxiety Exam		Stepwise (Criteria: Probability-of-F-to-enter <= .050,
	Anxiety		Probability-of-F-to-remove >= .100).

a. Dependent Variable: exam Fxam Performance (%)

Model Summaryb

					Change Statistics				
1			Adjusted	Std. Error of	R Square	- 0	16.4	16.0	Sig. F
Model	R	R Square	R Square	the Estimate	Change	F Change	df 1	df2	Change
1	.441 ^a	.194	.186	23.39691	.194	24.384	1	101	.000

- a. Predictors: (Constant), anxiety Exam Anxiety
- b. Dependent Variable: exam Exam Performance (%)

Excluded Variables^b

						Col	linearity Statis	stics
Model		Beta In	t	Sig.	Partial Correlation	Tolerance	VIF	Minimum Tolerance
1	revise Time Spent Revising	.169 ^a	1.339	.184	.133	.497	2.012	.497

- a. Predictors in the Model: (Constant), anxiety Exam Anxiety
- b. Dependent Variable: exam Exam Performance (%)

How to Build a Regression Model

So what does this mean?

- You need to know which variables to put into the model and when – <u>ideally based on theory.</u>
- If you have no idea try combinations use "stepwise"/"statistical" regression to "see which ones fall out of the model"

Diagnostics

- Look at your residuals (should look normal with a mean of 0 and even scatter) [observed vs predicted]
- Look at normal probability plots
- Look at plots of residuals versus the order in which the data were collected – should look random.
- Look at residuals versus variables left out of the model should look random, if not, you may want to consider including the variable in the model.

Figure 5.19 – A. Field Book - Slides

Regression Standardized Residual

Regression Standardized Residual

Figure 5.18 – A. Field Book - Slides

<u>Multicollinearity – minor here</u>

Coefficients^a

Model		Collinearity Tolerance	Statistics VIF
1	(Constant) revise Time Spent Revising	1.000	1.000
2	(Constant) revise Time Spent Revising anxiety Exam Anxiety	.497 .497	2.012

a. Dependent Variable: exam Exam Performance (%)

Ideally want VIF close to 1 and Tolerance close to 1.

Tolerances < 0.2 (<0.4) and VIF's >10 (>2.5) or so are cause for concern.

Also review, Condition Index (>30 is a problem) and variance proportions (>0.5) for dimensions that correspond to higher condition indexes – if on same line.

						//\	
				\	/arianc ∉ I	Proport	tions
				revis <mark>e T</mark>		Time	
			Condition		É pe	1	anxiety Exam
Model	Dimension	Eigenvalue	Index	(Constant)	Revis	ing	Anxiety
1	1	1.740	1.000	.13		.13	
	2	.260	2.584	.87		.87	
2	1	2.562	1.000	.00	/	.02	.00
	2	.428	2.447	00 V		.37	01
	3	.010	15.754	.99	(.61	.98

a. Dependent Variable: exam Exam Performance (%)

How to Build a Regression Model

Could leave one out Or Could do PCA (principal components analysis)

"Outliers?" - "Leverage"&"DFFit"&"DFBetas"

How to Build a Regression Model

Residuals Plot – something's off

Normal P-P Plot of Regression Standardized Residual

How to Build a Regression Model

SPSS Linear Regression "Save" Menu

Plot x3 against Std DFfit

How to Build a Regression Model

Plot x3 against Std DFBeta-intercept

Plot x3 against DFBeta-x3

References

- Field, Andy. "Discovering Statistics Using SPSS" 2nd edition, SAGE Publications, 2005.
- Tabachnick, Barbara G.; Fidell, Linda S. "Using Multivariate Statistics" 5th edition, Pearson Eduation Inc., 2007.
- Cohen, Jacob; Cohen, Patricia; West, Stephen; Aiken, Leona "Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences" 3rd edition, Lawrence Erlbaum Associates Inc., 2003.

Parting Thoughts

VIII. Statistical Resources and Contact Info

SON S:\Shared\Statistics_MKHiggins\website2\index.htm

[updates in process]

Working to include tip sheets (for SPSS, SAS, and other software), lectures (PPTs and handouts), datasets, other resources and references

Statistics At Nursing Website: [website being updated] http://www.nursing.emory.edu/pulse/statistics/

And Blackboard Site (in development) for "Organization: Statistics at School of Nursing"

Contact

Dr. Melinda Higgins

Melinda.higgins@emory.edu

Office: 404-727-5180 / Mobile: 404-434-1785

How to Build a Regression Model