Problème 2 A

Nous avons $m(t) = \mathrm{Sa}^2(t)$. Nous cherchons dans la table $\mathrm{Sa}^2(t) \Leftrightarrow \pi \, \mathrm{Tri}(\omega/2\omega_0)$. Avec $\omega_0 = 1$ nous avons $M(\omega) = \pi \, \mathrm{Tri}(\omega/2)$. Après la modulation nous avons

Après filtrage nous avons

Voyons l'impact de l'échantillonnage avec $\omega_0 = 4$

$$\neq (t) = y(t) S_{r}(t)$$
 $T = \frac{3\pi}{4}$ $\omega_{o} = \frac{3\pi}{4} = 4$

$$f(t)g(t) \qquad \left| \frac{1}{2\pi} \cdot \left\{ F(\omega) * G(\omega) \right\} \qquad \delta_{T_0}(t) = \sum_{n=-\infty}^{+\infty} \delta(t - nT_0) \right| \qquad \omega_0 \sum_{n=-\infty}^{+\infty} \delta(\omega - n\omega_0)$$

$$Z(\omega) = \frac{1}{2\pi} Y(\omega) + 4 \sum_{n=-\infty}^{\infty} S(\omega - 4n) = \frac{2}{\pi} \sum_{n=-\infty}^{\infty} Y(\omega - 4n)$$

Notons que chaque copie aura un hauteur de $2/\pi \cdot \pi/2 = 1$, où chaque copie de spectre est décalé par 4 :

Chaque somme de triangles donne un rectangle

Donc après l'échantillonnage nous avons $Z(\omega)$

Après filtrage nous avons

Un seul rectangle $\mathrm{Rect}\left(\omega/2\right)$ sort du filtre, dont la transformée est $1/\pi\cdot\mathrm{Sa}\left(t\right)$ et nous voyons que la constante est $\alpha=1/\pi$.

Problème 2 B

Avec un échantillonnage à $\omega_0=5$, $T_0=2\pi/5$, nous aurons un hauteur de $5/2\pi\cdot\pi/2=5/4$

Chaque somme de triangles donne un rectangle

Donc après l'échantillonnage nous avons $Z(\omega)$

Après filtrage nous avons

Nous avons réussi à isoler une copie du spectre original sans distorsion du au repliement spectrale.

Problème 3 A

Pour chercher x₁ et x₂, nous remarquons

Après modulation nous aurons

Remarquons que

 $Y_2(\omega) = \frac{j}{2} X_2(\omega + 100) - \frac{j}{2} X_2(\omega - 100)$, donc $jY_2(\omega) = \frac{-1}{2} X_2(\omega + 100) + \frac{1}{2} X_2(\omega - 100)$, donc le spectre X_2 est inversé sur la fréquence positive. En cherchant la somme, nous aurons

pour les fréquences négatives

donc le spectre $Z(\omega)$ sera

Problème 3 B

Le filtre non idéal est

Les filtres H_1 et H_2 deviennent

Problème 3 C

Pour chercher x₁ et x₂, nous remarquons

Après modulation nous aurons

Remarquons que

 $Y_2(\omega) = \frac{j}{2}X_2(\omega+100) - \frac{j}{2}X_2(\omega-100)$, donc $jY_2(\omega) = \frac{-1}{2}X_2(\omega+100) + \frac{1}{2}X_2(\omega-100)$, donc le spectre X_2 est inversé sur les fréquences positives. En cherchant la somme, nous aurons

Le contenu fréquentiel de m(t) est entre 90 et 100, en bas de la porteuse à 100. Donc ce signal est à bande latérale unique inférieure. En plus, il est une variation avec une bande résiduelle :

Problème 3 D

Le filtre non linéaire rend la largeur de bande 10% plus grande que la solution avec un filtre idéal. Avec une pente inférieure à ½ (par exemple une pente de 1/6), nous aurons encore plus de résidu. Donc

La sortie est un signal à bande latérale unique supérieur.	La largeur spectrale du signal à la sortie sera plus grande avec un filtre non idéal avec une pente inférieure à ½.
La sortie n'est pas un signal à bande latérale unique.	La largeur spectrale du signal à la sortie sera plus grande avec un filtre non idéal avec une pente supérieure à ½.
La sortie est un signal à bande	La largeur spectrale du signal à la sortie n'est pas touchée
latérale unique inférieur.	par la pente de ½