

Curso de Tecnologia em Sistemas de Computação Disciplina: Redes de Computadores II AP3 – 2º semestre de 2014 – GABARITO

(a) Utilizando o algoritmo de Dijkstra, calcule os caminhos mais curtos a partir do nó D, destacado em verde, para todos os outros nós da rede. Construa uma tabela igual à mostrada em aula que mostra o funcionamento do algoritmo de forma iterativa.

Resposta: N' $d_A p_A$ $d_{\rm B} p_{\rm B}$ $d_{\rm E}\,p_{\rm E}$ $d_{\rm F} p_{\rm F}$ $d_{\rm H} p_{\rm H}$ D DF 5 D DFA DFAB 15 B 7 B 9 B DFABE 12 E 9 B DFABEH 12 E 9 B DFABEHG 12 E DFABEHGC

(b) Construa a tabela de roteamento do nó D, isto é, para cada roteador de destino, indique o enlace de saída utilizado por D para encaminhar pacotes para este destino.

Destino A B C E F G H	Respo	osta:							
		Destino	A	В	C	E	F	G	Н
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Enlace de saída	(D,A)	(D,B)	(D,B)	(D,B)	(D,F)	(D,B)	(D,F)

Considere um mecanismo NAT cujo endereço IP na rede pública é 124.142.202.244 e que gerencia as conexões da rede privada, que ocupa a faixa 192.168.0.0/16. Suponha que o NAT possui a seguinte tabela de tradução de endereços, onde cada regra é identificada por um número:

	(IP, porta) da estação local	(IP, porta) da estação remota	Porta pública no NAT
(1)	192.168.0.1, 20785	11.68.96.172, 32106	1025
(2)	192.168.0.2, 29414	34.219.187.46, 28169	1028
(3)	192.168.0.3, 10991	18.72.84.127, 11368	17370
(4)	192.168.0.4, 31689	59.184.41.67, 8794	21535
(5)	192.168.0.3, 13949	51.230.182.143, 16479	15228
(6)	192.168.0.2, 17963	94.157.198.179, 2981	1027
(7)	192.168.0.2, 10353	215.7.218.95, 19791	10950
(8)	192.168.0.5, 4298	185.175.78.221, 28912	31574
(9)	192.168.0.6, 16130	129.40.125.195, 15123	1029
(10)	192.168.0.4, 25808	2.56.16.140, 15082	1024

Determine se cada uma das afirmações a seguir é verdadeira ou falsa e justifique usando apenas uma frase:

- As estações 192.168.0.4 e 192.168.0.2 serão vistas por todas as estações na Internet como sendo duas estações distintas.
 - Em todas as comunicações de ambas as estações com a Internet, elas irão compartilhar o IP 124.142.202.244, de modo que elas serão indistinguíveis.
- O emprego do NAT interfere tanto com o uso de aplicações P2P como de navegadores Web pelas estações da rede local.
 - Navegadores Web somente necessitam iniciar conexões, e o NAT irá criar entradas em sua tabela de tradução para cada conexão solicitada, logo a aplicação irá funcionar sem problemas.
- O Um pacote com origem 146.43.173.240, porta 30894 e destino 124.142.202.244, porta 21535 será encaminhado para a rede local.
 - Não há entrada correspondente para este pacote na tabela de tradução do NAT, logo ele deve ser descartado.
- √ A estação 192.168.0.2 é incapaz de hospedar um servidor Web, acessível de qualquer estação da Internet através da porta 80 (HTTP). Toda tentativa de conexão com este servidor Web iniciará com o envio de um pacote para o NAT com porta de destino 80, o que significa que este pacote será descartado e a conexão não será aberta.
- Um pacote enviado pela estação 192.168.0.6 na porta 16130, com destino à estação 129.40.125.195, porta 15123 será descartado pelo NAT.
 NAT punca descarta pacotes com origem na rede local e destino na
 - O NAT nunca descarta pacotes com origem na rede local e destino na Internet pública; em vez disso, ele cria novas entradas na tabela de tradução para permitir o envio destes pacotes.

Considere um datagrama IP que é enviado de h1 com destino a h2.

(a) Lembrando que o campo TTL (*Time to Live*) do cabeçalho IP é diminuído de uma unidade a cada salto, suponha que o datagrama é enviado com TTL inicial de 32. Para cada um dos 5 enlaces que o datagrama irá atravessar, determine o endereço origem, o endereço destino e o valor de TTL registrados no cabeçalho deste datagrama quando ele atravessa o enlace.

(b) Suponha que todas as tabelas ARP envolvidas estão devidamente preenchidas. Para cada um dos 5 enlaces, determine o endereço origem e o endereço destino dos quadros Ethernet que irão encapsular este datagrama quando ele atravessa o enlace.

Os números entre parênteses são os identificadores de cada enlace. Considere que, em um dado momento, as tabelas de encaminhamento dos switches sejam as seguintes:

Tabel	a de S1
Destino	Interface
h2	1
h6	8
h1	1

Tabel	a de S2
Destino	Interface
h2	3
h6	1
h1	2

Tabel	a de S3
Destino	Interface
h2	5
h6	5
h1	5

Tabel	a de S4
Destino	Interface
h2	8
h6	9
h1	8

(a) Se a estação h1 enviar um quadro para a estação h4, por quais enlaces esse quadro será transmitido?

Resposta:

O quadro será transmitido pelos enlaces 1, 2, 3, 4, 5, 6, 7, 8, 9 e 10.

(b) Durante a transmissão deste quadro, algum dos switches desta rede irá adicionar alguma entrada em sua tabela de encaminhamento? Se sim, quais switches e quais entradas?

Resposta:

Nenhum switch irá adicionar entradas em sua tabela de encaminhamento

(a) A longo prazo, qual a taxa de transmissão que uma estação alcança se somente ela possuir dados para transmitir? E se todas as estações possuírem dados para transmitir?

Resposta:

Em ambos os cenários, a estação em questão somente pode acessar o meio em um slot a cada 4, e deve ficar em silêncio nos slots restantes. Isto leva a uma taxa de transmissão de $0 \cdot 3/4 + 40 \cdot 1/4 = 10$ Mbps.

(b) Suponha que, a partir do instante t = 41.0 ms, a estação 1 deseja transmitir um total de 1.6 Mbits, e a partir do instante t = 19.0 ms, a estação 2 deseja transmitir um total de 0.64 Mbits. Determine o retardo inicial de ambas as transmissões (isto é, o tempo que cada estação aguarda para iniciar a transmissão após adquirir os dados a serem enviados) e o instante de tempo em que cada transmissão termina.

Resposta:

A estação 1 irá iniciar sua transmissão no instante t=160.0 ms, com um retardo inicial de 119.0 ms, e irá encerrar sua transmissão no instante t=200.0 ms. Já a estação 2 irá iniciar sua transmissão no instante t=40.0 ms, com um retardo inicial de 21.0 ms, e irá encerrar sua transmissão no instante t=56.0 ms.

Questão 6	ntos
Considere as afirmações abaixo sobre transmissões multimídia. Para cada afirmação, inc	dique
se a mesma é verdadeira ou falsa, e explique sua resposta utilizando <i>anenas uma fras</i>	e·

- $\sqrt{\ }$ Se o retardo fim-a-fim entre um usuário A e um usuário B é constante então o jitter é igual a zero.
 - O jitter é a variação do retardo fim-a-fim entre os pacotes transmitidos de um usuário A para um usuário B, portanto se o retardo fim-a-fim é constante, não existe variação e o jitter é zero.
- $\sqrt{}$ A técnica de interleaving tem como desvantagem o aumento da latência. Na técnica de interleaving cada pacote transmitido é composto de n pedaços, sendo que cada pedaço é uma parte de um pacote do fluxo original. Logo, para o receptor tocar um pacote do fluxo original, ele deve aguardar a chegada de n pacotes.
- A técnica de interleaving insere redundância no fluxo de pacotes transmitidos e portanto aumenta a taxa de transmissão da aplicação.
 A técnica de interleaving consiste na divisão dos pacotes originais em pedaços e reorganização desses pedaços construindo os novos pacotes que serão transmitidos, de forma que não é inserida nenhuma informação redundante.
- O objetivo do mecanismo de FEC é aliviar o problema do atraso aleatório entre os pacotes de dados, ou seja, reduzir o jitter da rede.
 O objetivo do FEC é aliviar o problema de perdas de pacote pela rede, enviando informação redundante que pode ser utilizada para recuperar pacotes perdidos.
- No mecanismo de bufferização do lado do cliente, quanto maior for o buffer inicial maior é a chance do mesmo esvaziar durante a reprodução dos pacotes de dados. Quanto maior for o buffer inicial, mais pacotes estarão presentes quando o cliente começar a reproduzir os pacotes de dados, e menor é a chance do mesmo esvaziar durante esta reprodução.