Markov Decision Process

Mattia Pellegrino, Ph.D Fellow mattia.pellegrino@unipr.it

Summary

- Markov Processes
- Markov Reward Processes
- Markov Decision Processes

INTRODUCTION

- Markov decision processes describe formally an environment for reinforcement learning
- Where the environment is fully observable
 - We know everything
- Almost all RL problems can be described as MDP
 - In some ways we can hypothesize all the problems as MDP
 - Partially observable problems can be converted into MDPs

MARKOV PROPERTY

An information state (a.k.a. Markov state) contains all useful information from the history

• A state S_{t} is a Markov state if and only if

$$\mathbb{P}\left[S_{t+1} \mid S_t\right] = \mathbb{P}\left[S_{t+1} \mid S_1, \dots, S_t\right]$$

The future is independent of the past given present

$$H_{1:t} \longrightarrow S_t \longrightarrow H_{t+1:\infty}$$

- Once the state is known, the history is irrelevant
- The environment state S^e_t is a Markov State
- The history H_t is a Markov state

STATE TRANSITION MATRIX

 For every Markov process we can define the transition probability from a state to another on

$$P_{s,s'} = P[S_{t+1} = s' \mid S_t = s]$$

 State transition matrix P defines the transition probabilities from all states s to all successor states s'

$$P = \text{ from } \begin{bmatrix} P_{11} \dots P_{1n} \\ P_{n1} \dots P_{nn} \end{bmatrix}$$

MARKOV PROPERTY

A Markov process is a memoryless random process (a sequence of random states S_1 , S_2 with the Markov property)

- A Markov Process (or Markov Chain) is a tuple <S,P>
 - S is a finite set of states
 - P is a state transition probability matrix,

$$P_{s,s'} = \mathbb{P}[S_{t+1} = s' | S_t = s]$$

 Sequence of *episodes* for Student Markov Chain starting from Subject1

$$S_1, S_2, \ldots, S_T$$

- S1 S2 S3 Pass Sleep
- S1 IN IN S1 S2 Sleep
- S1 S2 S3 Bar S2 S3 Pass Sleep
- S1 IN IN S1 S2 S3 Bar S1 IN IN
 IN S1 S2 S3 Bar S2 Sleep

	S1	S2	S3	Pass	Bar	IN	Sleep
S1		0.5				0.5	
S2			0.8				0.2
S3				0.6	0.4		
Pass							1.0
Bar	0.2	0.4	0.4				
IN	0.1					0.9	
Sleep							1

MARKOV REWARD PROCESS

- A Markov reward process is a Markov chain with values
- A Markov Reward process is a tuple <S, P, R, gamma>
 - S is a finite set of states
 - P is a state transition probability matrix

$$P_{s',s} = \mathbb{P}[S_{t+1} = s' | S_t = s]$$

R is a reward function

$$R_s = \mathbb{E}[R_{t+1}|S_t = s]$$

Gamma is a discount factor

$$\gamma \in [0,1]$$

RETURN

 The return G_t (Goal) is the total discounted reward from time-step t

$$G_t = R_{t+1} + \gamma R_{t+2} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$$

- \circ The discount $\gamma \in [0,1]$ is the present value of the future rewards
- The value of receiving R after k+1 timetesps is gamma^k r
- if gamma is close to 0 than we have a myopic evaluation, if is close to 1 is far-sighted evaluation

VALUE FUNCTION

• The value function v(s) of an MRP is the expected return starting from state s

$$v(s) = \mathbb{E}[G_t|S_t = s]$$

EXAMPLE: STUDENT MRP

• Starting from $S_1 = S1$ with gamma = 1/2

C1 C2 C3 Pass Sleep

C1 FB FB C1 C2 Sleep

C1 C2 C3 Pub C2 C3 Pass Sleep

C1 FB FB C1 C2 C3 Pub

$$v1 = -2 - 2 * 1 2 - 2 * 1 4 + 10 * 1 8 = -2.25$$

$$v1 = -2 - 1 * 1 2 - 1 * 1 4 - 2 * 1 8 - 2 * 1 16 = -3.125$$

$$v1 = -2 - 2 * 1 2 - 2 * 1 4 + 1 * 18 - 2 * 1 16 ... = -3.41$$

$$v1 = -2 - 1 * 1 2 - 1 * 1 4 - 2 * 1 8 - 2 * 1 16 ... = -3.20$$

EXAMPLE: STATE-VALUE FUNCTION (1)

EXAMPLE: STATE-VALUE FUNCTION (2)

EXAMPLE: STATE-VALUE FUNCTION (3)

BELLMAN EQUATION

- The value function can be divided into two parts:
 - Immediate reward *R_{t+1}*
 - Discounted value of successor state

$$v(s) = \mathbb{E} [G_t \mid S_t = s]$$

$$= \mathbb{E} [R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots \mid S_t = s]$$

$$= \mathbb{E} [R_{t+1} + \gamma (R_{t+2} + \gamma R_{t+3} + \dots) \mid S_t = s]$$

$$= \mathbb{E} [R_{t+1} + \gamma G_{t+1} \mid S_t = s]$$

$$= \mathbb{E} [R_{t+1} + \gamma v (S_{t+1}) \mid S_t = s]$$

BELLMAN EQUATION

$$v(s) = \mathbb{E}[R_{t+1} + \gamma v(S_{t+1}) | S_t = s]$$

$$v(s) = R_s + \gamma \sum_{s' \in S} P_{ss'v(s')}$$

EXAMPLE: BELLMAN EQUATION

BELLMAN EQUATION (MATRIX)

The Bellman equation can be converted into a matrix form

$$v = R + \gamma P v$$

Where v is a column vector in which every row is a state

$$\begin{bmatrix} v(1) \\ \vdots \\ v(n) \end{bmatrix} = \begin{bmatrix} \mathcal{R}_1 \\ \vdots \\ \mathcal{R}_n \end{bmatrix} + \gamma \begin{bmatrix} \mathcal{P}_{11} & \dots & \mathcal{P}_{1n} \\ \vdots & & \\ \mathcal{P}_{11} & \dots & \mathcal{P}_{nn} \end{bmatrix} \begin{bmatrix} v(1) \\ \vdots \\ v(n) \end{bmatrix}$$

SOLVING THE BELLMAN EQUATION

The Bellman equation is linear and ca be solved

$$v = R + \gamma P v$$

$$(I - \gamma P)v = R$$

$$v = (I - \gamma P)^{-1}R$$

- Direct solution only possible for small MRPs
- There are many iterative methods for large MDPs:
 - Dynamic programming
 - Monte-Carlo evaluation
 - Temporal-Difference learning

MARKOV DECISION PROCESS

• A Markov Decision process (MDP) is a Markov reward process with decision. All states are Markov in the environment.

A Markov decision Process is a tuple $\langle S, A, P, R, \gamma \rangle$

- S is a finite set of states
- A is a finite set of actions
- *P* is a state transition probability matrix,

$$P_{ss'}^a = \mathbb{P}[S_{t+1} = s | S_t = s, A_t = a]$$

- \circ R reward function, $R_s^a = \mathbb{E}[R_{t+1}|S_t = s, A_t = a]$
- $\circ \quad \gamma$ is a discount factor $\gamma \in [0,1]$

EXAMPLE: STUDENT MDP

POLICIES

ullet A policy π is a distribution over actions given states,

$$\pi(a|s) = \mathbb{P}[A_t = a|S_t = s]$$

- A policy defines (in a fully way) the agent's behaviour
- MDP policies depend on the current state (we throw away the history)
- The policies are stationary and time-independent

POLICIES

- Given an MDP $M = \langle S, A, P, R, \gamma \rangle$ and a policy π :
 - \circ The state sequence $S_i, S_2 \dots$ is a Markov process $\langle S, P^{\pi} \rangle$
 - The state and the reward sequence $S_1, R_2, S_2 \dots$ is a Markov reward process $\langle S, P^\pi, R^\pi, \gamma \rangle$ Where:

$$P_{s,s'}^{\pi} = \sum_{a \in A} \pi(a|s) P_{s,s'}^{a}$$

$$R_s^{\pi} = \sum_{a \in A} \pi(a|s) R_s^a$$

VALUE FUNCTION

• The state-value function $v_{\pi}(s)$ of an MDP is the expected return starting from state s, and then following the policy

$$v_{\pi} = \mathbb{E}_{\pi}[G_t|S_t = s]$$

• The action-value function $q_{\pi}(s,a)$ is the expected return starting from state s, taking action a, according to policy π

$$q_{\pi}(s, a) = \mathbb{E}_{\pi}[G_t | S_t = s, A_t = a]$$

EXAMPLE: STUDENT MDP

BELLMAN EXPECTATION EQUATION

• The state-value function can be split into immediate reward plus the discounted value of successor state

$$v_{\pi}(s) = \mathbb{E}_{\pi}[R_{t+1} + \gamma v_{\pi}(S_{t+1})|S_t = s]$$

• The action-value function can similarly be splitted

$$q_{\pi}(s, a) = \mathbb{E}_{\pi}[R_{t+1} + \gamma q_{\pi}(S_{t+1}, A_{t+1}) | S_t = s, A_t = a]$$

BELLMAN EXPECTATION EQUATION

V_{π}

$$v_{\pi}(s) = \sum_{a \in A} \pi(a|s) q_{\pi}(s,a)$$

Q_{π}

$$q_{\pi}(s,a) = R_s^a + \gamma \sum_{s' \in S} P_{ss}^a v_{\pi}(s')$$

BELLMAN EXPECTATION EQUATION - 2

$$v_{\pi}(s) = \sum_{a \in \mathcal{A}} \pi(a \mid s) \left(\mathcal{R}_{s}^{a} + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^{a} v_{\pi}(s') \right)$$

$$q_{\pi}(s, a) = \mathcal{R}_{s}^{a} + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^{a} \sum_{a' \in \mathcal{A}} \pi \left(a' \mid s' \right) q_{\pi} \left(s', a' \right)$$

EXAMPLE: STUDENT MDP

OPTIMAL VALUE FUNCTION

• The optimal state-value function $v_*(s)$ is the maximum value function over all policies

$$v_*(s) = \max_{\pi} v_{\pi}(s)$$

• The optimal action-value function $q_*(s,a)$ is the maximum action-value function over all policies

$$q_*(s, a) = \max_{\pi} q_{\pi}(s, a)$$

- This function specifies the best possible performance in the MDP.
- An MDP is "solved" when we discover the optimal value

EXAMPLE: STUDENT MDP (optimal value function)

EXAMPLE: STUDENT MDP (optimal action-value

function)

OPTIMAL POLICY

- For any Markov Decision Process
 - There is an optimal policy π_* that is better than or equal to all other policies, $\pi_* \geq \pi, \forall \pi$
 - All optimal policies achieve the optimal value function, $v_{\pi_*} = v_*(s)$
 - All optimal policies achieve the optimal action-value function, $q_{\pi_*}(s, a) = q_*(s, a)$

OPTIMAL POLICY

• An optimal policy can be found maximizing over $q_*(s,a)$

$$\pi_*(a \mid s) = \begin{cases} 1 & \text{if } a = \underset{a \in \mathcal{A}}{\operatorname{argmax}} q_*(s, a) \\ 0 & \text{otherwise} \end{cases}$$

- There is always an optimal policy (deterministic) for any MDP
- \circ If we know $q_*(s,a)$, we already have the optimal policy

EXAMPLE: STUDENT MDP (optimal policy)

BELLMAN OPTIMALITY EQUATION

$$v_* = \max_a q_*(s, a)$$

$$q_*(s, a) = R_s^a + \gamma \sum_{s' \in S} P_{ss'}^a v_*(s')$$

BELLMAN OPTIMALITY EQUATION - 2

$$v_*(s) = \max_a R_s^a + \gamma \sum_{s' \in S} P_{ss'}^a v_*(s')$$

$$q_*(s, a) = R_s^a + \gamma \sum_{s' \in S} P_{ss'}^a \max_a q_*(s', a')$$

EXAMPLE: STUDENT MDP (optimal policy)

SOLVING BELLMAN OPTIMALITY EQ

- The Bellman Optimality Equation
 - Is not linear
 - No closed form solution
 - Can be solved with many iterative solution methods:
 - Value Iteration
 - Policy Iteration
 - Q-learning
 - Sarsa