# Топологический анализ изображений лиц

Гвоздева Виктория
Соколова Анастасия
Харчевникова Ангелина

# Цель и Задачи

#### Цель:

Инструментами Data Mining сравнить топологию фотографий лиц

#### Задачи:

- Выбрать один из существующих публично доступных наборов данных, содержащих фотографии лиц с метками
- Используя глубокие сверточные нейронные сети (подходящие для распознавания лиц), представить фотографии в векторном виде
- Выполнить кластеризацию лиц
- С помощью одной из библиотек для топологического анализа представить полученные данные в виде облака точек
- Интерпретировать результаты

# Инструменты

Набор данных: Labeled Faces in the Wild (LFW)





Сверточная сеть: VGGFace2 (ResNet-50) - вектор признаков из 2048 элементов



Библиотека: <a href="https://github.com/scikit-tda/kepler-mapper">https://github.com/scikit-tda/kepler-mapper</a>

# Подход 1

- 1. Предобработка изображений
- 2. Визуализация кластеризации с помощью Kepler Mapper



## Подход 2

- 1. Предобработка изображений
- 2. Подача на вход CNN
- 3. Получение вектора признаков
- 4. Визуализация кластеризации с помощью Kepler Mapper



# Алгоритмы кластеризации

- 1. Агломеративная кластеризация
- 2. MiniBatchKMeans
- 3. DBSCAN
- 4. Birch
- 5. AffinityPropagation
- 6. MeanShift



# Метрики

- 1. Adjusted Rand Index (ARI)
- 2. Adjusted Mutual Information (AMI)
- 3. Homogeneity
- 4. Completeness
- 5. V-measure
- 6. Fowlkes-Mallows Scores (FMS)

### Выбор оптимального числа кластеров

#### Silhouette score







MiniBatchKMeans

Birch

AgglomerativeClustering

# Результаты

| Name of algorithm       | Clusters | ARI    | AMI     | Homogeneity | Completeness | V-measure | FMS    |
|-------------------------|----------|--------|---------|-------------|--------------|-----------|--------|
| AgglomerativeClustering | 500      | 0.8002 | 0.7401  | 0.9852      | 0.9825       | 0.9839    | 0.9246 |
|                         | 500      | 0.9936 | 0.9519  | 0.9957      | 0.9769       | 0.9862    | 0.9937 |
| MiniBatchKMeans         | 200      | 0.1987 | 0.5012  | 0.9012      | 0.7234       | 0.8123    | 0.3725 |
|                         | 200      | 0.3468 | 0.6038  | 0.8993      | 0.7619       | 0.8249    | 0.3649 |
| DBSCAN                  | 3628     | 0.0    | 0.4e-12 | 0.5396      | 0.7248       | 0.6322    | 0.0    |
|                         | 3739     | 0.0    | 1.2e-11 | 0.6517      | 1.0          | 0.7891    | 0.0    |
| Birch                   | 500      | 0.2513 | 0.2103  | 0.9203      | 0.9775       | 0.9480    | 0.4329 |
|                         | 500      | 0.3794 | 0.8283  | 0.9203      | 0.9775       | 0.9480    | 0.4585 |
| AffinityPropagation     | 455      | 0.3008 | 0.8039  | 0.9120      | 0.9222       | 0.9171    | 0.4001 |
|                         | 455      | 0.3336 | 0.8036  | 0.9077      | 0.9478       | 0.9273    | 0.4337 |
| MeanShift               | 3628     | 0.0    | 1.7e-11 | 0.6729      | 0.9834       | 0.8282    | 0.0    |
|                         | 3739     | 0.0    | 1.2e-11 | 0.6517      | 1.0          | 0.7891    | 0.0    |

#### Результаты кластеризации для изображений













#### Результаты кластеризации для векторов признаков













Результаты агломеративной кластеризации для изображений



# Результаты агломеративной кластеризации для векторов признаков



#### Заключение

Поставленная цель достигнута и все задачи выполнены

#### Результаты экспериментального исследования:

- Использование векторов признаков демонстрирует более высокие показатели по точности кластеризации и производительности по сравнению с рассмотрением изображений as-is
- Наиболее показательные результаты демонстрирует алгоритм Агломеративная Кластеризация
- С помощью библиотеки Kepler Mapper визуализированы результаты кластеризации лиц: алгоритмы с высокими показателями точности продемонстрировали более точное объединение фотографий лиц одного и того же человека

# Спасибо за внимание!