# Natural Language Processing with Disaster Tweets

Justinas Jučas - Delft University of Technology William Yihao Zhang - Technical University Berlin Gausse Mael Dongmo Kenfack - INSA de Lyon Matthias Diederichsen - University of British Columbia

#### Table of Contents

- 1. Problem Introduction
- 2. Data Analysis
- 3. Data Preprocessing
- 4. Proposed Methods:
  - 4.1. LSTM methods
  - 4.2. Simple MLP with embeddings
  - 4.3. Distil-BERT
- 5. Result Analysis
- 6. Summary
- 7. Workload

#### Problem: Classifying Tweets



#### How do we approach this?

#### Natural Language Processing



#### What we don't want:



# Train: ~7.6k tweets

Test: ~3.2k tweets



#### Dataset

| id | text                                                       | location        | keyword   | target |
|----|------------------------------------------------------------|-----------------|-----------|--------|
| 1  | [] LOOK AT<br>THE SKY<br>LAST NIGHT<br>IT WAS<br>ABLAZE [] | "London,<br>UK" | ablaze    | O      |
| 2  | Twelve<br>feared killed<br>in [] crash                     | N/A             | ambulance | 1      |

Train: ~7.6k tweets

Test: ~3.2k tweets



#### Dataset

| Null Values | Keyword | Location |
|-------------|---------|----------|
| Train       | 0.80%   | 33.27%   |
| Test        | 0.79%   | 33.86%   |



Certain keywords heavily skew towards non disaster or disaster tweets



More balanced proportion for the tweet's Location



Distribution of target class for engineered features





Observation:
Some engineered features
have unique distributions

Approach 1: Custom preprocessing through regex



Approach 2: Utilize open-source library SpaCy







#saudiarabia 13 confirmed dead as suicide bomber attacks Saudi Arabian mosque

The I... http://t.co/LwAnE9vupg - http://t.co/CpQguFZB28



#saudiarabia 13 confirmed dead as suicide bomber attacks Saudi Arabian mosque

The I... http://t.co/LwAnE9vupg - http://t.co/CpQguFZB28



#saudiarabia 13 confirmed dead as suicide bomber attacks Saudi Arabian mosque

The I... -



Saudi arabia <del>13</del> confirmed dead as suicide bomber attacks Saudi Arabian mosque - The I... -



Saudi arabia confirmed dead as suicide bomber attacks Saudi Arabian mosque - The I... -



Saudi arabia confirmed dead <del>as</del> suicide bomber attacks Saudi Arabian mosque <del>The I</del>

# Approach I: LSTM

#### LSTM Model – GloVe Embeddings

GloVe = Global Vectors for Word Representations

#### Twitter GloVe:

- Introduce 2014 by Stanford NLP research group
- Trained on 2 Billion tweets containing 27 billion tokens
- Vocabulary of 1.2 Tokens
- Embeddings available: 25d, 50d, 100d and 200d



#### In our Dataset:

- 92.86% coverage of unique tokens

#### LSTM Model – Word2Vec Embeddings

#### word2vec-google-news-300:

- Created in 2013 at Google
- Trained on 100 billion words from Google News.
- 300-dimensional vectors
- Predicts context words from a target word (Skip-Gram) or predicst the target word from context words (Continuous Bag of Words).



#### In our Dataset:

- 74.7% coverage of unique tokens

#### LSTM - Motivation

#### LSTMs are good at:

- 1. Handling sequential data and storing context
- 2. Dealing with Ambiguity
- 3. Sentiment Analysis

# LSTM - Quick visualization



#### LSTM Model –GloVe Embeddings



Test Accuracy: 80.69%

#### LSTM - Glove Embeddings Results





#### LSTM - Word2Vec Results





Final test accuracy:

Before modification: 77.43% After modification: 80.12%

#### LSTM Model - Modifications



Idea: Multi Input Model With engineered Features

Test Accuracy: 80.44%

# Approach II: MLP with Embeddings

Let's try a simple classifier with the text embeddings as input



#### MLP architecture



```
MLPModel(
   (fc1): Linear(in_features=300, out_features=64, bias=True)
   (dropout): Dropout(p=0.3, inplace=False)
   (fc2): Linear(in_features=64, out_features=32, bias=True)
   (fc3): Linear(in_features=32, out_features=1, bias=True)
)
```

#### MLP architecture

- Embeddings from Spacy model "en core web lg"
- Experimenting with available data
- Test Accuracy : 80.90 %



- The Training process is fast
- The Model starts overfiting very quickly
- Not enough data





# Approach III: distil-BERT

#### distil-BERT

- Bidirectional Encoder Representations from Transformers
- Smaller, faster version of BERT
- 66M parameters
- Considered as baseline approach for NLP experiments



#### Idea I: classification-head training

Default classification head: 600k parameters

Final accuracy: 81.00%



#### Idea II: fine-tuning transformers' weights

Retrain the whole model

Final accuracy: 80.91%



### Idea III: finding components to (re)train



But there is **exponentially** many different ways to train the model... What can we do?

**Genetic Algorithm!** 



Fin/a/l accuracy: 80.94%

Can we decrease the size of the model?

YES!

### Neural Network Quantization

- Normally, all weights are encoded in float32 values!
- Models encoded in lower bit values take less storage and have higher inference!



### Standard Quantization methods:

- Static quantization
- K-Means quantization
- GPTO
- AQLM

### class transformers.GPTQConfig

< source

```
(bits: int, tokenizer: typing.Any = None, dataset: typing.Union[typing.List[str], str, NoneType] = None, group_size: int = 128, damp_percent: float = 0.1, desc_act: bool = False, sym: bool = True, true_sequential: bool = True, use_cuda_fp16: bool = False, model_seqlen: typing.Optional[int] = None, block_name_to_quantize: typing.Optional[str] = None, module_name_preceding_first_block: typing.Optional[typing.List[str]] = None, batch_size: int = 1, pad_token_id: typing.Optional[int] = None, use_exllama: typing.Optional[bool] = None, max_input_length: typing.Optional[int] = None, exllama_config: typing.Optional[typing.Dict[str, typing.Anyl]] = None, cache_block_outputs: bool = True, modules_in_block_to_quantize: typing.Optional[typing.List[typing.List[str]]] = None, **kwargs )
```

# Boring!

# Idea: find optimal combination of uniformly-quantized layers!

$$s=rac{max-min}{2^b-1}$$

$$q = \operatorname{round}(x/s) + z$$

### Idea III: finding optimal layers to (re)train



### Idea III: finding optimal layers to (re)train





Quantization step for layer, compressing to c; bits:

- 1. Find lowest absolute weight value in the layer w<sub>min</sub>
- 2. Scale all weights by 1/w<sub>min</sub> and cast to int.
- Find the amount of bits needed to represent maximum absolute value of the resulting weights b<sub>max</sub>
- 4. Bit-shift all weights by max(b<sub>max</sub>- c<sub>i</sub>, 0) to the right.

# **Final Results**

| Approach         | Test Accuracy |
|------------------|---------------|
| LSTM+Glove       | 80.69 %       |
| Multi-Input LSTM | 80.44 %       |
| MLP+Spacy        | 80.90%        |
| Distil-BERT      | 81.00%        |

- All approaches resulted in similar accuracies
- Distil-BERT likely performed better due to its higher complexity
- Distil-BERT could be compressed to 25% of its size

### **Summary**

- Data Exploration and Processing
- 3 Approaches
- Future Research Directions
- Potential Applications

## Workload 25% each :)

