## CSE 250A. Principles of Al

Probabilistic Reasoning and Decision-Making

#### Lecture 13 – More latent variable models

Lawrence Saul Department of Computer Science and Engineering University of California, San Diego

Fall 2021

### Outline

- Review
- 2 Mixture models
- Noisy-OR models
- 4 Hidden Markov models

### EM algorithm

#### Updates

root nodes 
$$P(X_i = x) \leftarrow \frac{1}{T} \sum_t P(X_i = x | V_t = v_t)$$
nodes with parents 
$$P(X_i = x | \text{pa}_i = \pi) \leftarrow \frac{\sum_t P(X_i = x, \text{pa}_i = \pi | V_t = v_t)}{\sum_t P(\text{pa}_i = \pi | V_t = v_t)}$$

#### Convergence

Each iteration of these updates is guaranteed to increase the log-likelihood  $\sum_t \log P(V_t)$  (except at stationary points).

### Example 1



Incomplete data  $\{(a_t, c_t)\}_{t=1}^T$ A and C are observed. B is hidden

• E-step (Inference)

$$P(b|a_t, c_t) = \frac{P(c_t|b) P(b|a_t)}{\sum_{b'} P(c_t|b') P(b'|a_t)}$$

M-step (Learning)

$$P(a) = \frac{1}{T} \operatorname{count}(A=a)$$

$$P(b|a) \leftarrow \frac{\sum_{t} I(a, a_{t}) P(b|a_{t}, c_{t})}{\sum_{t} I(a, a_{t})}$$

$$P(c|b) \leftarrow \frac{\sum_{t} I(c, c_{t}) P(b|a_{t}, c_{t})}{\sum_{t} P(b|a_{t}, c_{t})}$$

### Application 1: word clustering



ago day earlier Friday Monday month quarter

1 as cents made make take

$$w, w' \in \{1, 2, \dots, V\}$$
  
 $z \in \{1, 2, \dots, k\}$  where  $k \ll V$ 

| 2  | reported said Thursday trading Tuesday<br>Wednesday ()                                   | 21      | but called San (:) (start-of-sentence)                                                               |
|----|------------------------------------------------------------------------------------------|---------|------------------------------------------------------------------------------------------------------|
| 3  | even get to                                                                              | 22      | bank board chairman end group members<br>number office out part percent price prices rate            |
| 4  | based days down home months up work years<br>⟨%⟩                                         |         | sales shares use                                                                                     |
| 5  | those (,) (—)                                                                            | 23      | a an another any dollar each first good her his its<br>my old our their this                         |
|    |                                                                                          | 24      | long Mr. year                                                                                        |
| 7  | eighty fifty forty ninety seventy sixty thirty twenty $\langle () \langle \cdot \rangle$ | 25      |                                                                                                      |
| 8  | can could may should to will would                                                       | <u></u> | thousand time today war week ()) (unknown)                                                           |
| 9  | 5 ( 7 ( 7)                                                                               | 26      | also government he it market she that there<br>which who                                             |
| 10 | economic high interest much no such tax united<br>well                                   | 27      | A. B. C. D. E. F. G. I. L. M. N. P. R. S. T. U.                                                      |
| 11 |                                                                                          | 28      | both foreign international major many new oil<br>other some Soviet stock these west world            |
| 12 | because do how if most say so then think very<br>what when where                         | 29      | after all among and before between by during for<br>from in including into like of off on over since |
| 13 | according back expected going him plan used way                                          |         | through told under until while with                                                                  |
| 15 | don't I people they we you                                                               |         | eight fifteen five four half last next nine oh one                                                   |
| 16 | Bush company court department more officials<br>police retort spokesman                  | 30      | second seven several six ten third three twelve two zero $\langle - \rangle$                         |
| 17 | former the                                                                               | 31      | are be been being had has have is it's not still                                                     |
| 18 | American big city federal general house military                                         | 100     | was were                                                                                             |
| 10 | national party political state union York                                                | 32      | chief exchange news public service trade                                                             |
|    |                                                                                          |         |                                                                                                      |

19 billion hundred million nineteen

20 did (") (')

k = 32

### Outline

- Review
- Mixture models
- Noisy-OR models
- 4 Hidden Markov models

## Example 2 — Inference



A, B, C are observed. Z is hidden.

#### Posterior probability

$$P(Z|A,B,C) = \frac{P(C|Z,A,B)P(Z|A,B)}{P(C|A,B)}$$
 Bayes rule
$$= \frac{P(C|Z,A,B)P(Z)}{P(C|A,B)}$$
 marginal independence
$$= \frac{P(C|Z,A,B)P(Z)}{\sum_{Z} P(C|Z=z,A,B)P(Z=z)}$$
 normalization

## Example 2 — Learning



Incomplete data set  $\{a_t, b_t, c_t\}_{t=1}^T$ 

Log (conditional) likelihood

$$\mathcal{L} = \sum_{t} \log P(c_{t}|a_{t}, b_{t})$$

$$= \sum_{t} \log \sum_{z} P(z, c_{t}|a_{t}, b_{t}) \quad \boxed{\text{marginalization}}$$

$$= \sum_{t} \log \sum_{z} P(z|a_{t}, b_{t}) P(c_{t}|z, a_{t}, b_{t}) \quad \boxed{\text{product rule}}$$

$$= \sum_{t} \log \sum_{z} P(z) P(c_{t}|z, a_{t}, b_{t}) \quad \boxed{\text{marginal independence}}$$

EM update

$$P(z) \leftarrow \frac{1}{T} \sum_{t} P(z|a_t, b_t, c_t)$$
 root node

### **Application**

#### Markov models

Let  $P_1(w)$  be a unigram model. Let  $P_2(w'|w)$  be a bigram model. Let  $P_3(w''|w,w')$  be a trigram model.

#### Linear interpolation of Markov models

$$\underbrace{P_{\text{mix}}(w_{\ell}|w_{\ell-1},w_{\ell-2})}_{\text{mixture model}} = \lambda_1 P_1(w_{\ell}) + \lambda_2 P_2(w_{\ell}|w_{\ell-1}) + \lambda_3 P_3(w_{\ell}|w_{\ell-1},w_{\ell-2})$$

We require  $\lambda_i \geq 0$  and  $\sum_i \lambda_i = 1$ . This ensures a properly normalized distribution. But how to estimate  $\lambda_1, \lambda_2, \lambda_3$ ?

# Methodology

#### What to do

Use corpus A to estimate  $P_1(w)$ ,  $P_2(w'|w)$ ,  $P_3(w''|w,w')$ . Use corpus B to estimate  $\lambda_1$ ,  $\lambda_2$ ,  $\lambda_3$  (only). Use corpus C to evaluate the mixture model  $P_{\rm mix}(w''|w,w')$ .

#### What not to do

Do not use corpus A to estimate  $\lambda_1, \lambda_2, \lambda_3$ . Otherwise you will find  $\lambda_3 = 1$  and  $\lambda_1 = \lambda_2 = 0$ .

Do not use corpus C to estimate any parameters. That would bias the evaluation.

## Latent variable model (con't)



#### Predicting the next word

$$\begin{split} &P(w_{\ell}|w_{\ell-1},w_{\ell-2})\\ &= \sum_{z} P(z,w_{\ell}|w_{\ell-1},w_{\ell-2}) \quad \boxed{\text{marginalization}}\\ &= \sum_{z} P(z|w_{\ell-1},w_{\ell-2}) P(w_{\ell}|w_{\ell-1},w_{\ell-2},z) \quad \boxed{\text{product rule}}\\ &= \sum_{z} P(z) P(w_{\ell}|w_{\ell-1},w_{\ell-2},z) \quad \boxed{\text{marginal independence}} \end{split}$$

### Latent variable model (con't)



#### Predicting the next word

$$\begin{split} &P(w_{\ell}|w_{\ell-1},w_{\ell-2})\\ &= \sum_{z} P(z,w_{\ell}|w_{\ell-1},w_{\ell-2}) \quad \text{marginalization} \\ &= \sum_{z} P(z|w_{\ell-1},w_{\ell-2}) P(w_{\ell}|w_{\ell-1},w_{\ell-2},z) \quad \text{product rule} \\ &= \sum_{z} P(z) P(w_{\ell}|w_{\ell-1},w_{\ell-2},z) \quad \text{marginal independence} \\ &= \lambda_{1} P_{1}(w_{\ell}) + \lambda_{2} P_{2}(w_{\ell}|w_{\ell-1}) + \lambda_{3} P_{3}(w_{\ell}|w_{\ell-1},w_{\ell-2}) \quad \overset{\blacksquare!}{\underset{92/215}{\square}} \end{split}$$

## Learning the mixing coefficients



• Mixing the *n*-gram models

We learn  $P_1(w)$ ,  $P_2(w'|w)$ , and  $P_3(w''|w,w')$  from corpus A. We learn  $\lambda_1, \lambda_2, \lambda_3$  from corpus B.

EM update for mixing coefficients

$$\underbrace{P(Z=i)}_{\lambda_i} \leftarrow \frac{1}{L_B} \sum_{\ell=1}^{L_B} P(Z=i|w_\ell, w_{\ell-1}, w_{\ell-2})$$

Here,  $L_B$  is the length in words of corpus B.

### Extensions of this model



EM may seem like overkill to learn just 3 numbers  $\lambda_1, \lambda_2, \lambda_3$ . But this model can be extended in interesting ways ...



Now the coefficients depend on the previous word:

$$P(Z=i|w_{\ell-1})=\lambda_i(w_{\ell-1})$$

This model has 3V coefficients where V is the vocabulary size. But the EM algorithm hardly changes.

### Outline

- Review
- Mixture models
- Noisy-OR models
- 4 Hidden Markov models

# Example 3: Noisy-OR



The log (conditional) likelihood is  $\sum_t \log P(y_t|x_t)$ . How to estimate parameters  $p_i \in [0,1]$  that maximize this?

- Gradient ascent
- Newton's method
- EM but how? Isn't the data complete?

# EM for noisy-OR



#### HW<sub>6</sub>

First you will show that this model is equivalent to noisy-OR. Then you will derive the EM updates for  $p_i \in [0,1]$ .

### Outline

- Review
- Mixture models
- Noisy-OR models
- Hidden Markov models

# Hidden Markov models (HMMs)



#### Random variables

$$S_t \in \{1, 2, ..., n\}$$
 hidden state at time  $t$   
 $O_t \in \{1, 2, ..., m\}$  observation at time  $t$ 

#### States versus observations

Each observation  $O_t$  is a noisy, partial reflection of the true underlying (but hidden) state  $S_t$  of the world at time t.

What makes this model so useful?

## Housetraining a puppy



This is Lilo. She's a chihuahua-terrier.

 $O_t \in \{ \text{sleeping, eating, barking, waiting by door, etc.} \}$  $S_t \in \{ \text{playful, hungry, tired, ready to burst} \}$ 

Does Lilo need to go outside? What is  $P(s_t|o_1, o_2, ..., o_t)$ ?

# Speech recognition



 $O_t$  is the acoustic feature vector for windowed speech at time t.  $S_t$  is the unit of language (e.g., phoneme) being uttered at time t.

What did I just hear?  
What is 
$$\operatorname{argmax}_{s_1, s_2, \dots, s_T} P(s_1, s_2, \dots, s_T | o_1, o_2, \dots, o_T)$$
?

# Autonomous navigation



https://www.extremetech.com/computing/305691-the-future-of-sensors-for-self-driving-cars-all-roads-all-conditions

 $O_t$  encodes the sensor readings at time t.

 $S_t$  encodes the nearby vehicles and pedestrians at time t.

Monitoring the road: what is  $P(s_t|o_1, o_2, ..., o_t)$ ?

#### HMMs as belief networks



Conditional independence assumptions

$$P(S_t|S_1, S_2, ..., S_{t-1}) = P(S_t|S_{t-1})$$
  
 $P(O_t|S_1, S_2, ..., S_T) = P(O_t|S_t)$ 

CPTs are shared across time

$$P(S_t = s'|S_{t-1} = s) = P(S_{t+1} = s'|S_t = s)$$
  
 $P(O_t = o|S_t = s) = P(O_{t+1} = o|S_{t+1} = s)$ 

Joint distribution

$$P(S_1,\ldots,S_T)$$

#### HMMs as belief networks



Conditional independence assumptions

$$P(S_t|S_1, S_2, ..., S_{t-1}) = P(S_t|S_{t-1})$$
  
 $P(O_t|S_1, S_2, ..., S_T) = P(O_t|S_t)$ 

CPTs are shared across time

$$P(S_t = s' | S_{t-1} = s) = P(S_{t+1} = s' | S_t = s)$$
  
 $P(O_t = o | S_t = s) = P(O_{t+1} = o | S_{t+1} = s)$ 

Joint distribution

$$P(\underbrace{S_1,\ldots,S_T}_{\vec{S}},\underbrace{O_1,\ldots,O_T}_{\vec{O}}) = P(S_1) P(O_1|S_1) \prod_{t=2}^{T} \left[ P(S_t|S_{t-1}) P(O_t|S_t) \right]$$

#### Parameters of HMMs



$$a_{ij} = P(S_{t+1} = j | S_t = i)$$

 $n \times n$  transition matrix

$$b_{ik} = P(O_t = k | S_t = i)$$

 $n \times m$  emission matrix

$$\pi_i = P(S_1 = i)$$

 $n \times 1$  initial state distribution

# Next lecture: key computations in HMMs



#### Inference

- How to compute the likelihood  $P(o_1, o_2, \ldots, o_T)$ ?
- ② How to compute the most likely state sequence  $\operatorname{argmax}_{\vec{s}} P(\vec{s}|\vec{o})$ ?
- **3** How to update beliefs by computing  $P(s_t|o_1, o_2, \ldots, o_t)$ ?

#### Learning

How to estimate parameters  $\{\pi_i, a_{ij}, b_{ik}\}$  that maximize the log-likelihood of observed sequences?