1. function[North, South, Right, Left, autoch] = look (postion_obj, stop_posi
tion)

参数:

position_obj 目标点位置坐标

stop_position 机器人的位置坐标

返回值:

North 北

South 南

Right 右

Left 左

autoch 当前方向

作用:

根据目标点与机器人当前位置进行对比,确定机器人当前前进的方向,(这里默认 y 轴正方向为北),返回 North或 South。之后再确定目标点在机器人的左方还是右方还是当前前方,返回 Right Left autoch。

2. function transl = y_transl(start_position, end_position, Delta_y)
参数:

start_position 起始位置

end_position 停止位置

Delta_y 水平单位移动距离

返回值:

trans1 水平单位移动的次数

作用:

在阶梯状下潜的过程中, 判断单位水平前进所需要的次数。

3. function[up, down] = target_image_pose(down_transl, start_position, end
_position, Delta_y)

参数:

down_transl 垂直下潜阈值

start position 同上

end_position 同上

Delta_y 同上

返回值:

up 前进

down 下降

作用:

对比前进所需次数与下降所需次数,决定前进还是下降。实现阶梯状下潜。

4. function position =

approach(start_position,end_position,an,down_transl_spd,

fps,Delta_y,Delta_z,down_transl)

参数:

start_position 同上

end_position 同上

an 动画

down_transl_spd 逼近过程中的步长

fps 帧率

Delta_y 同上

Delta_z 同上

down transl 同上

返回值:

position 坐滩位置

作用:

找到目标点之后的阶梯状下潜。

5. function end_position = brake(start_pose, start_v, max_deceleration,
al, fps)

参数:

start_pose 开始制动时的位姿信息(包括位置与朝向)

start_v 要制动时的瞬时速度

max_deceleration 设置的减速度

al 动画

fps

返回值:

end_position 停止时的位置

作用:

在发现目标点之后制动减速直到机器人停下。

6. function orientation = calc_orientation(start_position,
end_position)

参数:

start_position

end_position

返回值:

orientation 角度

作用:

计算从 $(end_position(1:2)-start_position(1:2))$ 与 x 轴之间的角度的函数,返回该角度。

7. function cur_position = corrent(cur_position, optimal_path, max distance)

参数:

cur position 当前位置

optimal_path 理想的巡航路线

max_distance 允许的最大偏离距离

返回值:

cur position 是否需要纠偏 (0 1)

作用:

纠正因洋流和浪偏离的巡航路线的函数, cur_position 为当前位置, optimal_path 为理想的巡航路线, max_distance 为允许的最大偏离距离, 超过此距离即开始纠偏, 若需要纠偏则返回值为 1, 否则为 0。

8. function position = dive(start_position, end_position,
down_transl_spd, an, fps)

参数:

start_position 起始位置

end_position 终止位置

down_transl_spd 步长

an 动画

fps 帧率

返回值:

position 水平移动之后的位置

作用:

模拟视觉识别,当检测到目标之后,根据 look()函数的信息,判断目标在当前机器人的左右还是当前方向,而后水平左(右)移动,直到目标与机器人共线(此过程模拟视觉图像中目标出现在屏幕中轴线上),返回水平移动之后的位置。

9. function position = dive_back(start_position, end_position,
down_transl_spd, an, fps)

参数:

start_position 初始位置

end_position 终止位置

down_transl_spd 步长

an 动画

fps 帧率

返回值:

position 终止位置

作用:

从初始位置到终止位置,并动画展示。

10. function position = float(start_position, end_position, transl_spd,
an, fps,down_transl_spd,z_cruising)

参数:

start_position 初始位置

end_position 终止位置

transl_spd 步长

an 动画

fps 帧率

down_transl_spd 步长

z_cruising 巡航平面高度

返回值:

position 发现目标时的巡航位置

作用:

在机器人完成下潜抓取之后,垂直上浮到巡航面,并返回到发现目标时的巡航位置。

11. function [position, orientation, objects] = grab(position,
orientation, objects, index)

参数:

position 位置

orientation 角度

objects 目标点

index 下标

返回值:

position 位置

orientation 角度

objects 目标点

作用:

贪心算法初始化

12. function [position, orientation, objects] = greedy_grab(pose_start, objects, work_radius, search_radius, transl_spd, rot_spd, al, fps) 参数:

pose_start 初始位置

objects 目标点列表

work radius 机械臂的工作半径

search radius 能够探测的范围半径

transl_spd 步长

rot_spd 角速度

al 动画

fps 帧率

返回值:

position 执行完贪心之后的位置

orientation 执行完贪心之后的角度位姿

objects 更新过后的目标列表

作用:

在海底搜寻目标时的贪心算法,pose_start 为刚从巡航平面下降至海底平面时的位姿,objects 用于存放搜寻的目标,work_radius 为机械臂的工作半径,search_radius 为能够探测的范围半径,若在 pose_start 时检测到在机械臂工作半径之内的目标则直接抓取,能检测到但在工作半径之外的目标则需要移动至该位置进行抓取,重复上述过程直至附近无检测目标。

13. function [index, dist] = nearest_obj(position, objects)
参数:

position 当前位置

objects 目标列表

返回值:

index 最近目标的下标

dist 到最近目标的距离

作用:

在海底时用于检测最近目标点供贪心算法使用。

14. function current = noise()

返回值:

current

作用:

模拟巡航时洋流与浪的噪声函数 (最简单的高斯噪声),大概率产生分三个方向 (x,y,z)的小洋流,小概率产生较大的浪。

15. function orientation = rotate(start_orient, end_orient, rot_spd) 参数:

start_orient 初始角度

end_orient 终止角度

rot spd 角速度

作用:

计算从 start_orient 到 end_orient 的角度

16. function [has_object, position] = search_object(objects, pose,
detect_radius, work_radius)

参数:

objects 目标列表

pose 位姿信息

detect radius 检测半径

work radius 工作半径

返回值:

has object 是否找到

position 当前巡航点检测到的有效目标

作用:

巡航平面搜寻海底目标的过程, 其搜索半径不会超过每条航路的间距。

17. function show_trajectory(al, traj, fps)

作用:

用于展示运动轨迹。

18. function [optimal_path_new, vels, deceleration_x, deceleration_y, deceleration_z, max_vels_x, max_vels_y, max_vels_z, t_x, t_y, t_z,v_] = traj_new(optimal_path, transl_spd, approximate_max_vels_x, approximate_max_vels_y, approximate_max_vels_z, acceleration_x, acceleration_y, acceleration_z, approximate_deceleration_x, approximate_deceleration_y, approximate_deceleration_z)

参数:

optimal path 路径关键点

transl_spd 步长

approximate_max_vels_x x 轴方向最大速度

approximate_max_vels_y y 轴方向最大速度

approximate max vels z z 轴方向最大速度

acceleration_x x 轴方向加速度

acceleration y y 轴方向加速度

acceleration_z z 轴方向加速度

approximate_deceleration_x x 轴方向预估减速度

approximate_deceleration_y y 轴方向预估减速度

approximate deceleration z z 轴方向预估减速度

返回值:

optimal_path_new 新的路径关键点

vels 各点三方向的速度

deceleration_x 实际的 x 轴方向减速度

deceleration_y 实际的 y 轴方向减速度

deceleration_z 实际的 z 轴方向减速度

max_vels_x 实际的 x 轴方向最大速度

max_vels_y 实际的 y 轴方向最大速度

max vels z 实际的 z 轴方向最大速度

t_x x 上时间

t y y上时间

t_z z上时间

v 每点的所有速度信息

作用:

traj_new 是替换原有 MATLAB 机器人工具箱中规划两点运动轨迹的函数(初速度与到达时速度均为 0),使用动力学三公式(初中物理),涉及参数较多,首先需要提供要规划的两点及步长等信息,并提供三个方向的加速度(acceleration_x, acceleration_y, acceleration_z),预估的三个方向的减速度及最大速度(原本想设计成可人工控制加减速度且可以给出匀速时的最大速度,但设计上有失误,无法规划中间的匀速运动,目前只能实现给出加速度做匀加速运动,再根据给出的预估减速度计算出真正的减速度,再进行匀减速运动,即实际上代码中有

用的只有匀加速——匀减速部分,但代码中还存在失败的匀速部分的代码,故在输入最大速度参数时会输入一个无法达到的速度,在匀速过程开始前进入减速过程),根据步长给出两点之间的规划的各点的位置与三项速度,返回的是规划的各点、各点三项速度、实际的三项减速度、实际的最大速度及每点之间相隔的三项时间。

19. function result = within_boundary()
作用:

返回 true。