

Apr 22, 2024

Mitochondrial DNA base editing in HEK293T cells

DOI

dx.doi.org/10.17504/protocols.io.yxmvm3rnol3p/v1

Nicole Lake¹, Kaiyue Ma¹, Justin Cohen¹, Monkol Lek¹

¹Department of Genetics, Yale School of Medicine, New Haven, CT, USA.

Lek Lab

Justin Cohen

Yale School of Medicine

OPEN ACCESS

DOI: dx.doi.org/10.17504/protocols.io.yxmvm3rnol3p/v1

Protocol Citation: Nicole Lake, Kaiyue Ma, Justin Cohen, Monkol Lek 2024. Mitochondrial DNA base editing in HEK293T cells. protocols.io https://dx.doi.org/10.17504/protocols.io.yxmvm3rnol3p/v1

Manuscript citation:

Lake NJ, et al. Quantifying constraint in the human mitochondrial genome. bioRxiv (2023). https://doi.org/10.1101/2022.12.16.520778

License: This is an open access protocol distributed under the terms of the <u>Creative Commons Attribution License</u>, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working
We use this protocol and it's
working

Created: February 12, 2024

Last Modified: April 22, 2024

Protocol Integer ID: 95136

Keywords: DdCBE, Base Editor, Mitochondria, Transfection, HEK293

Abstract

This protocol is for the transfection of mitochondrial-targeted DddA-derived cytosine base editors (DdCBE), and their subsequent selection, in HEK293T cells. This uses a dual plasmid system, where a 'left' and 'right' DdCBE are needed for editing. Enrichment of cells with both DdCBE halves is achieved by separate drug selection for the left and right plasmids.

Materials

HEK293 cells (ATCC, CRL-3216)

HEK media

- DMEM DMEM (Gibco, 11965092)
- 10% FBS (R&D Systems S11150)
- No antibiotics

DdCBE plasmids:

Left/left-dead (blastR) and Right (PuroR)

Lipofectamine 3000 reagents (ThermoFisher, L3000008)

Opti-Mem I reduced serum medium (ThermoFisher, 31985070)

12-well tissue culture plates (Corning, 353043)

Blasticidin (ThermoFisher, A1113903)

Puromycin (ThermoFisher, A1113803)

Protocol materials

© Opti-MEM™ I Reduced Serum Medium Inermo Fisher Scientific Catalog #31985070 In 2 steps
₩ HEK293T ATCC Catalog #CRL-3216 Step 1
X Lipofectamine™ 3000 Transfection Reagent Thermo Fisher Scientific Catalog # L3000008 In <u>3 steps</u>
Falcon® 12-well Clear Flat Bottom TC-treated Multiwell Cell Culture Plate, with Lid, Individually Wr Corning Catalog #353043
Step 1.2
♥ Puromycin Dihydrochloride Thermo Fisher Catalog #A1113803 In 2 steps
Fetal Bovine Serum (FBS) ATCC Catalog #30-2020 In 4 steps

Plating of the HEK293T Cells

- 1 Plating of HEK293T ATCC Catalog #CRL-3216
- 1.1 The day before transfection, trypsinize and count the cells.
- 1.2 In a

1.3 Wait for cells to attach Overnight at 37 °C in a 5% CO₂ tissue culture incubator.

Transfection of DdCBE Plasmids

- 2 Transfection of DdCBE Plasmids
- 2.1 For each well of cells to be transfected, dilute \square 3 μ L of
 - Lipofectamine™ 3000 Transfection Reagent Thermo Fisher
 Scientific Catalog #L3000008

into $\underline{\underline{\hspace{0.1cm}}}$ 50 μL (total volume) of

Ø Opti-MEM™ I Reduced Serum Medium Thermo Fisher Scientific Catalog #31985070 and mix well.

2.2 In a separate tube, for each well of cells to be transfected, dilute 🚨 2 µg of each DdCBE Left Dead (inactive) DdCBE Plasmid addgene Catalog #179683 with Right DdCBE Plasmid addgene Catalog #179686 that had been modified to include PuroR marker (left and right, for total of 4 µg plasmid DNA (pDNA)) Note The DdCBE plasmids used were obtained from Addgene, which included left (Addgene #179682) and right (Addgene #179686) DdCBE plasmids for editing, and a left dead (i.e. inactive) DdCBE plasmid (Addgene #179683) used with the right as a control. For this protocol, the right DdCBE plasmid was modified by replacing the BSD gene with PuroR to enable dual selection. Please see the associated publication for more plasmid details. into 4 50 µL (total volume) of **⊘** Opti-MEM™ I Reduced Serum Medium **Thermo Fisher Scientific Catalog #**31985070 Then add 4 8 µL P3000 Reagent from Lipofectamine™ 3000 Transfection Reagent Thermo Fisher Scientific Catalog #L3000008 (a 2:1 ratio to DNA) directly to the diluted pDNA. Mix well. 2.3 Add the diluted pDNA solution in P3000 reagent (from 2.2) to diluted 15m Lipofectamine™ 3000 Transfection Reagent **Thermo Fisher** Scientific Catalog #L3000008 (from 2.1), mix, and incubate for 00:15:00 min at room temperature. 2.4 Discard the old medium in the well. Add A 1 mL complete HEK media (MEM, high glucose Thermo Fisher Scientific Catalog #11965092 with [M] 10 % volume Fetal Bovine Serum (FBS) ATCC Catalog #30-2020 | without antibiotics) to each tube, mix well, and add to the corresponding well. Do this step well by well.

Selection of the Transfected Cells

18h

3 Selection of the Transfected Cells

Incubate the cells at 37 °C in a 5% CO₂ tissue culture incubator.

3.1 18:00:00 hrs later, replace the medium with complete HEK media (18h MEM, high glucose Thermo Fisher Scientific Catalog #11965092 with [M] 10 % volume Fetal Bovine Serum (FBS) ATCC Catalog #30-2020 | without antibiotics) containing up to ∆ 5 ug/mL of ∆ 1 ug/mL of
 √ 1 ug/mL of
 √ 2 ug/mL of
 √ 3 ug/mL of
 √ 3 ug/mL of
 √ 3 ug/mL of
 √ 4 ug/ Puromycin Dihydrochloride Thermo Fisher Catalog #A1113803 3.2 Continue selection for 10-14 days and replace the medium every 2 days with complete HEK media containing Blasticidin S HCl (10 mg/mL) Thermo Fisher Catalog #A1113903 and Puromycin Dihydrochloride Thermo Fisher Catalog #A1113803 . Ensure drug selection is not finished until all the control untransfected cells are dead. Passage the cells to a larger wellsize or flask if needed. 3.3 Once selection is finished, maintain the cells in complete HEK media (DMEM, high glucose Thermo Fisher Scientific Catalog #11965092 with Fetal Bovine Serum (FBS) ATCC Catalog #30-2020 without antibiotics) for at least 2 days before performing any experiments.

Protocol references

Protocol adapted from Mok, B.Y., et al. A bacterial cytidine deaminase toxin enables CRISPR-free mitochondrial base editing. Nature 583, 631–637 (2020), and Mok, B.Y., et al. CRISPR-free base editors with enhanced activity and expanded targeting scope in mitochondrial and nuclear DNA. Nat Biotechnol 40, 1378–1387 (2022).