Adatbázisok 1. (nappali/esti) Relációs adatbázis tervezés – 1. rész

Funkcionális függőségek Felbontások Normálformák

A relációs adatmodell tervezése

- Megtehetnénk, hogy valamennyi adatot egyetlen relációba tennénk:
 - Felhasználó szempontjából kényelmes
 - <u>Sok "felesleges" adat van benne</u> nem jó tárolási hatékonyság, az adatbázist ellentmondásossá teheti

A relációs adatmodell tervezése

- Előzők miatt

 valahogy a felhasználási eset fogalmait, kapcsolatait modellezni kell (pl. Egyed/Kapcsolat modellel, ld. későbbi előadáson)
- De még így is előfordulhat, hogy nem lesz elég "ügyes" a modellezés
 még mindig lehetnek felesleges adatok konkrét előfordulásnál
- Emiatt fontos fogalom a redundancia:
- Adott egy $R(A_1, ..., A_n)$ reláció. Ha valamely A_i attribútum értékét ki tudjuk az $\{A_j \mid j \neq i\}$ attribútumok értékeiből "következtetni" \rightarrow a relációt redundánsnak nevezzük.
- A "következtetési szabályok" az ún. Amstrong-axiómák lesznek (ld. alább)

Funkcionális függőségek

- X ->Y egy R relációra vonatkozó megszorítás, miszerint ha két sor megegyezik X összes attribútumán, Y attribútumain is meg kell, hogy egyezzenek.
 - Jelölés: X, Y, Z,... attribútum halmazokat; A, B, C,... attribútumokat jelöl.
 - Jelölés: {A,B,C} attribútum halmaz helyett ABC-t írunk.

Jobboldalak szétvágása (ff)

- $X->A_1A_2...A_n$ akkor és csak akkor teljesül R relációra, ha $X->A_1$, $X->A_2$,..., $X->A_n$ is teljesül R-en.
- Példa: A->BC ekvivalens A->B és
 A->C függőségek kettősével.
- Baloldalak szétvágására nincs általános szabály.
- Általában FF-k jobboldalán egyetlen attribútum szerepel majd.

Példa: FF

Főnökök(név, cím, kedveltSörök, gyártó, kedvencSör)

- FF-k, amelyek vszleg teljesülnek:
 - 1. név -> cím kedvencSör
 - Ez az FF ugyanaz, mint név -> cím és név -> kedvencSör.
 - 2. kedveltSörök -> gyártó.

Példa: egy lehetséges előfordulás

Relációk kulcsai

- K szuperkulcs R relációra, ha K funkcionálisan meghatározza R attribútumait.
- K kulcs R-en, ha K szuperkulcs, de egyetlen valódi részhalmaza sem szuperkulcs.

Példa: szuperkulcs

Főnökök(név, cím, kedveltSörök, gyártó, kedvencSör)

- ☐ {név, kedveltSörök} szuperkulcs, hiszen a két attribútum meghatározza funkcionálisan a maradék attribútumokat.
 - ➤ név -> cím kedvencSör
 - ▶ kedveltSörök -> gyártó

Példa: kulcs

- {név, kedveltSörök} kulcs, hiszen sem {név}, sem {kedveltSörök} nem szuperkulcs.
 - név -> gyártó; kedveltSörök -> cím nem teljesülnek.
- Az előbbin kívül nincs több kulcs, de számos szuperkulcs megadható még.
 - Minden olyan halmaz, amit tartalmazza {név, kedveltSörök}-t.

Kis kombinatorika

- Feladat: R relációnak legyenek A₁,..., A_n az attribútumai. Adjuk meg n függvényeként, hogy R-nek hány szuperkulcsa van, ha
 - (a) csak A₁ kulcs,
 - (b) A_1 és A_2 kulcsok,
 - (c) $\{A_1, A_2\}, \{A_3, A_4\}$ kulcsok,
 - (d) $\{A_1, A_2\}, \{A_1, A_3\}$ kulcsok.

Hogyan kaphatjuk meg a kulcsokat?

- 1. Szimplán megadunk egy *K* kulcsot, mert a specifikáció alapján eldönthető.
 - Az FF-k K -> A alakúak, ahol A "végigmegy" az összes attribútumon
- Vagy: megadjuk az FF-ket, és ezekből következtetjük ki a kulcsokat.

Még egy természetesen adódó FF

 Példa: az "ugyanabban az időben nem lehet két előadás ugyanabban a teremben" lefordítva:

idő terem -> előadás.

FF-k kikövetkeztetése

- Legyenek $X_1 \rightarrow A_1$, $X_2 \rightarrow A_2$,..., $X_n \rightarrow A_n$ adott FF-ek, szeretnénk tudni, hogy $Y \rightarrow B$ teljesül-e olyan relációkra, amire az előbbi FF-ek teljesülnek.
 - Példa: A -> B és B -> C teljesülése esetén A -> C biztosan teljesül.
- Ez az adatbázis sémájának megtervezésekor lesz majd fontos.

Armstrong-axiómák I.

- (A1) Reflexitivitás: ha Y ⊆ X ⊆ R, akkor X → Y. Az ilyen függőségeket triviális függőségeknek nevezzük.
- (A2) Bővítés: ha X → Y teljesül, akkor tetszőleges Z ⊆ R-ra XZ → YZ teljesül.
- (A3) Tranzitivitás: ha $X \rightarrow Y$ és $Y \rightarrow Z$, akkor $X \rightarrow Z$.
- Példák a személy (sz_ig_szám, TAJ, név, anyja_neve, születés, kor, fizetés) tábla esetén:
 - (A1) (név, születés) → név
 - (A2) születés → kor, akkor (születés, név) → (kor, név)
 - (A3) TAJ \rightarrow születés, születés \rightarrow kor, akkor TAJ \rightarrow kor.

Példa levezetésre

- Legyen R = ABCD és F = $\{A \rightarrow C, B \rightarrow D\}$:
 - 1. A \rightarrow C adott.
 - 2. AB \rightarrow ABC (A2) alapján.
 - 3. $B \rightarrow D$ adott.
 - 4. ABC \rightarrow ABCD (A2) alapján.
 - 5. AB \rightarrow ABCD (A3) alapján 2-ből és 4-ből.
- Példa: bizonyítsuk be levezetéssel, hogy { X → Y, XY → Z }-ből következik { X → Z }.