Bioinformatics and Data Mining Research Group

Improving Rice Leaf Disease Identification with Object Detection and Image Enhancement

FARIA AHMED	190041218
TASFIA TASNEEM ANNESHA	190041220
RAFI HASSAN CHOWDHURY	190041234

Under the supervision of:

Tareque Mohmud Chowdhury
Assistant Professor
Department of Computer Science and Engineering (CSE)
Islamic University of Technology (IUT), OIC

Rice Leaf Disease Identification

 Identification involves determining the specific disease affecting a crop based on observable symptoms or characteristics.

Object detection

Object detection involves identifying and locating objects within an image.

Image Enhancement

- Process that involves improving the quality or visual appearance of an image.
- Useful scenarios Noisy Image, Low contrast Image, Low Resolution Image

Identification with Object Detection and Image Enhancement

Input Image → Image Enhancement → Object detection model → Disease Identification → Output

Problem Statement

"The challenge lies in providing small-scale farmers with limited resources access to timely and accurate crop disease detection. Existing issues include low-quality images from mobile phones, a scarcity of quality data, and the need for mobile-compatible solutions."

Rice Loss

Source: [7]

Current Challenges

- Limited Access to High-Resolution Devices
- Low Computational Power of Farmer's Devices
- Challenges in Data Collection
- Inadequate Size of Available Dataset
- Varied Environmental Conditions
- Biased images in available dataset
- Integration of Image Enhancement Techniques

"Identification and Recognition of Rice Diseases and Pests Using Convolutional Neural Networks "[1]

- by C. R. Rahman, P. S. Arko, M. E. Ali, M. A. I. Khan, S. H. Apon, F. Nowrin, and A. Wasif, Biosystems Engineering

Performance:

CNN Architecture	Training Method Used	Mean Validation Accuracy	Standard Deviation	
	Baseline training	89.19%	10.28	
VGG16	Transfer Learning	86.52%	5.37	
	Fine Tuning	97.12%	2.23	
	Baseline training	91.17%	3.96	
InceptionV3	Transfer Learning	72.09%	7.96	
	Fine Tuning	96.37%	3.9	
	Baseline training	78.84%	7.38	
MobileNetv2	Transfer Learning	77.52%	8.56	
	Fine Tuning	96.12%	3.08	
	Baseline training	79.98%	6.96	
NasNet Mobile	Transfer Learning	78.21%	8.09	
	Fine Tuning	96.95%	3.35	
	Baseline training	74.88%	8.18	
SqueezeNet v1.1	Transfer Learning	42.76%	9.12	
	Fine Tuning	92.5%	3.75	
Simple CNN	Two Stage Training	94.33%	0.96	

Dataset:

- BRRI's Online Available Dataset
- total 1426 images of rice diseases and pests

Limitations:

- They have a large number of parameter
- Different symptoms at different stages of an attack

400 1111
138 million
23.8 million
2.3 million
4.3 million
0.7 million
0.8 million

"Rice Disease Identification Method Based on Attention Mechanism and Deep Dense Network " $^{[2]}$

- by M. Jiang, C. Feng, X. Fang, Q. Huang, C. Zhang, and X. Shi, Electronics, vol. 12

Fig: SE DenseNet Model Architecture

Fig: AB-SE-DenseNet model architecture

"RiceNet: A two stage machine learning method for rice disease identification" [3]

-by Z. Liu, S. Wang, Y. Zhang, Z. Li, Z. Li, X. Li, and X. Zhang, Biosystems Engineering

Fig: Processing Flow

Dataset:

Disease in image	Training dataset	Clipped patch dataset		
Rice Panicle Neck Blast	50	120		
Rice False Smut	50	180		
Rice Leaf Blast	50	189		
Rice Stem Blast	50	137		
Total	200	626		

Limitations:

All the images taken here are high resolution (3024 x 4032 taken by iPhone 7 or Huawei P10) images. The model may not work very well on low resolution image.

"RiceNet: A two stage machine learning method for rice disease identification"

-by Z. Liu, S. Wang, Y. Zhang, Z. Li, Z. Li, X. Li, and X. Zhang, Biosystems Engineering

Standard Models.

Model	lel SIZE OF OF OF		Speed V100 (ms)	Params (M)	FLOPs (G)	
YOLOX-s	640	40.5	40.5	9.8	9.0	26.8
YOLOX-m	640	46.9	47.2	12.3	25.3	73.8
YOLOX-I	640	49.7	50.1	14.5	54.2	155.6
YOLOX-x	640	51.1	51.5	17.3	99.1	281.9
YOLOX-Darknet53	640	47.7	48.0	11.1	63.7	185.3

Fig: YOLOX architecture performance

Source : Github [5]

[3]

"Lite-SRGAN and Lite-UNet: Toward Fast and Accurate Image Super-Resolution, Segmentation, and Localization for Plant Leaf Diseases"

-by H. S. El-Assiouti, H. El-Saadawy, M. N. Al-Berry, and M. F. Tolba, IEEE Access

Fig: Lite-UNet

Fig: Lite-SRGAN

"Lite-SRGAN and Lite-UNet: Toward Fast and Accurate Image Super-Resolution, Segmentation, and Localization for Plant Leaf Diseases" [4]

-by H. S. El-Assiouti, H. El-Saadawy, M. N. Al-Berry, and M. F. Tolba, IEEE Access

Limitations:

- Training dataset has no background noise.
- Close-up shot
- Trained and tested on better resolution image

Fig: Processing Flow

Research Aims and Objectives

Aim 1

Rice leaf image enhancement and object detection.

Objectives

- Determining the performance on low quality dataset.
- Use image enhancement method for better object detection.
- Evaluating the effects of data enhancement technique on the object detection performance.
- Ensuring mobile compatibility.

Research Aims and Objectives

Aim 2

Identify the input image in 10 different disease classes.

Objectives

- Identifying diseases with high accuracy using light architecture models.
- Developing an efficient system that combines image enhancement and disease detection techniques, specifically tailored for paddy crop disease identification.

Proposed Pipeline

Fig: Proposed Pipeline

Enhancement

Discriminator Network

Fig: Processing Flow

Detection

Name of Model	No. of Parameters
MobileNetV2	2.24M
YOLOX-Nano	0.91M
YOLOX-Tiny	5.06M

Fig: Object Detection

Identification

Name of Model	No. of Parameters
SqueezeNet	1.25M
MobileNetV2	~3.47M
NASNetMobile	~ 5.33M
EfficientNetB0	~ 5.3M

Fig: Image Identification

Dataset

Paddy Doctor: Paddy Disease Classification [6]

- Training dataset: 10,407 (75%) labeled paddy leaf images across ten classes (nine diseases and normal leaf).
- Test dataset: 3,469 (25%) paddy leaf images into one of the nine diseases or normal leaf

Dhan-Shomadhan: A Dataset of Rice Leaf Disease Classification for Bangladeshi Local Rice [8]

- 5 different harmful diseases of rice leaf called Brown Spot, Leaf Scaled, Rice Blast, Rice Tungro, Sheath Blight.
- Dataset contains 1106 images.

Dataset

BRRI's Online Available Dataset [9]

• total 1426 images of rice diseases and pests

Class Name	No. of Collected Images
False Smut	93
Brown Plant Hopper (BPH)	71
Bacterial Leaf Blight (BLB)	138
Neck Blast	286
Stemborer	201
Hispa	73
Sheath Blight and/or Sheath Rot	219
Brown Spot	111
Others	234

Table 1: Image Collection of Different Classes

Our Experiments

Dataset	# Classes	# Samples	Classifier	Accuracy
	3		Basic CNN	76.56%
Original Dataset: <u>Rice Leaf Diseases</u>		40 each class, splitted into training and testing set with 80:20	MobileNet-v2	87.00%
<u>Dataset</u>			MobileNet-v3	33.33%
Customized Dataset: RLD_train_test		ratio	VGG19	62.50%
			EfficientNet	80.00%
Dataset	# Classes	# Samples	Classifier	Accuracy
	10		MobileNetV2	32.37%
Original Dataset: <u>Paddy Doctor: Paddy</u> <u>DIsease Classification</u> Customized Dataset: PD_train_test		10.407 total image,	MobileNet-v3Large	7.50%
		splitted into training and testing set with 80:10:10 ratio	VGG19	87.65%

Dataset	# Classes	# Samples	Classifier	Accuracy	Precision	Recall	F1-Score	Parameters
Original Dataset: Dataset Customized Dataset: BRRI_train_test	9	Total 1426 images in 10 classes with a maximum of 286 images and minimum of 71 images in a single class	MobileNet-v2	83.71%	84.2200	83.7100	83.9600	2.24M
			MobileNet-v3	81.61%	82.4200	81.6100	82.0100	4.21M
			MixNet	84.41%	84.6400	84.4100	84.5200	5.81M
			EfficientNet	78.81%	79.8200	78.8100	79.3100	4.02M
			XceptionNet	81.61%	81.7600	81.6100	81.6900	20.83M
			InceptionV3	67.62%	68.7300	67.6200	68.1700	21.80M

Our Experiments

Fig: Image enhancement experiment

Future Work

Data Collection

Collect data from the field and make a dataset of our own.

Motivation:

- In some images the disease affected leaves are blurry.
- High Resolution training and testing Images.
- Test Set images are not labelled
- Close-up image
- The number of available field image is very small
- Biased dataset

Fig: Sample from Dhan-Shomadhan dataset

BLB

BPH

Fig: Sample from BRRI dataset

Future Work

- Increase the efficiency of the model with high accuracy.
- Integrate the model in a mobile application for ease of disease detection.

References

[1]C. R. Rahman, P. S. Arko, M. E. Ali, M. A. I. Khan, S. H. Apon, F. Nowrin, and A. Wasif, "Identification and recognition of rice diseases and pests using convolutional neural networks," *Biosystems Engineering*, vol. 194, pp. 112–120, 2020.

[2]M. Jiang, C. Feng, X. Fang, Q. Huang, C. Zhang, and X. Shi, "Rice disease identification method based on attention mechanism and deep dense network," *Electronics*, vol. 12, p. 508, 01 2023.

[3]Z. Zhang, X. Wang, and Z. Wang, "Ricenet: A two stage machine learning method for rice disease identification," *Biosystems Engineering*, vol. 209, pp.1–13, 2022.

[4]H. S. El-Assiouti, H. El-Saadawy, M. N. Al-Berry, and M. F. Tolba, "Lite-srgan and lite-unet: Toward fast and accurate image super-resolution, segmentation, and localization for plant leaf diseases," *IEEE Access*, vol. 11, pp. 67 498–67 517, 2023.

[5]Megvii-BaseDetection. (Year of the GitHub repository's last update) YOLOX: You only look once extreme. GitHub repository. [Online]. Available: https://github.com/Megvii-BaseDetection/YOLOX.git

[6]Kaggle. Paddy Doctor | Paddy disease classification dataset. Kaggle dataset. [Online]. Available: https://www.kaggle.com/c/paddy-disease-classification/data

[7]Oerke, E-C. "Crop losses to pests." The Journal of Agricultural Science, vol.144, no. 1, pp. 31-43, 2006

[8]Dhan-shomadhan: A dataset of rice leaf disease classification for bangladeshi local rice. [Online]. Available: https://data.mendeley.com/datasets/znsxdctwtt/1

[9]Brri's online available dataset. [Online]. Available: <u>Dataset - Google Drive</u>

Thank You!