

FET Single Stage Amplifier

Ve311 Electronic Circuits (Fall 2021)

Dr. Chang-Ching Tu

- $V_{in} < V_{TH} \rightarrow M_1 \text{ Off}$ $V_{out} = V_{DD}$
- $V_{in1} > V_{in} > V_{TH} \rightarrow M_1$ in Saturation

$$V_{\text{out}} = V_{\text{DD}} - R_{\text{D}} \frac{1}{2} \mu_{\text{n}} C_{\text{ox}} \frac{W}{L} (V_{\text{in}} - V_{\text{TH}})^2$$

•
$$V_{in} > V_{in1} \rightarrow M_1$$
 in Triode
$$V_{out} = V_{DD} - R_D \mu_n C_{ox} \frac{W}{L} [(V_{in} - V_{TH}) V_{out} - \frac{1}{2} V_{out}^2]$$

$$\begin{cases} V_{\text{out}} = V_{\text{in1}} - V_{\text{TH}} \\ = V_{\text{DD}} - R_{\text{D}} \frac{1}{2} \mu_{\text{n}} C_{\text{ox}} \frac{W}{L} (V_{\text{in1}} - V_{\text{TH}})^{2} \end{cases}$$

• V_{gs} increases by $\Delta V_{in} \rightarrow I_{d}$ increases by $\Delta V_{in} \cdot gm \rightarrow V_{out}$ decreases by $\Delta V_{in} \cdot (gm \cdot R_D)$

$$A_{v} = \frac{v_{out}}{v_{in}} = -gm \cdot R_{D}$$

Small-signal analysis leads to the same result as DC analysis.

$$A_{v} = \frac{v_{out}}{v_{in}} = -gm \cdot (R_{D} \parallel r_{o})$$

- Small-signal analysis leads to the same result as DC analysis.
- gm is a function of V_{GS} and V_{DS} , while r_o is a function of I_D . \rightarrow **Nonlinearity**

Example

Sketch the drain current and transconductance of M₁ as a function of input

voltage. Assume $\lambda = \gamma = 0$.

Example

Assuming M₁ in saturation, calculate its small-signal gain.

Solution:

• Small-signal Analysis:

$$A_{v} = \frac{v_{out}}{v_{in}} = -gm_{1}r_{o1}$$

• DC Analysis:

$$I_{1} = \frac{1}{2} \mu_{n} C_{ox} \frac{W}{L} (V_{in} - V_{TH})^{2} (1 + \lambda V_{DS})$$

DC Analysis

$$\lambda = 0 \quad \gamma \neq 0$$

$$\begin{vmatrix} V_{\text{out}} = V_{\text{in1}} - V_{\text{TH1}} \\ \frac{1}{2} \mu_{\text{n}} C_{\text{ox}} \left(\frac{W}{L} \right)_{1} (V_{\text{in1}} - V_{\text{TH1}})^{2} = \frac{1}{2} \mu_{\text{n}} C_{\text{ox}} \left(\frac{W}{L} \right)_{2} [V_{\text{DD}} - (V_{\text{in1}} - V_{\text{TH1}}) - V_{\text{TH2}}]^{2}$$

• V_{gs} increases by $\Delta V_{in} \rightarrow I_{d}$ increases by $\Delta V_{in} \cdot gm \rightarrow V_{out}$ decreases

DC Analysis
$$\lambda = 0 \quad \gamma \neq 0$$

V_{in1} > V_{in} > V_{TH} → M₁ in Saturation

$$\frac{1}{2}\mu_{n}C_{ox}\left(\frac{W}{L}\right)_{1}(V_{in} - V_{TH1})^{2} = \frac{1}{2}\mu_{n}C_{ox}\left(\frac{W}{L}\right)_{2}[V_{DD} - V_{out} - V_{TH2}]^{2}$$

$$\sqrt{\left(\frac{W}{L}\right)_{1}}(V_{in} - V_{TH1}) = \sqrt{\left(\frac{W}{L}\right)_{2}}(V_{DD} - V_{out} - V_{TH2})$$

$$\sqrt{\left(\frac{W}{L}\right)_{1}} = \sqrt{\left(\frac{W}{L}\right)_{2}\left(-\frac{\partial V_{out}}{\partial V_{in}} - \frac{\partial V_{TH2}}{\partial V_{in}}\right)}$$

$$\sqrt{\left(\frac{W}{L}\right)_{1}} = \sqrt{\left(\frac{W}{L}\right)_{2}\left(-\frac{\partial V_{out}}{\partial V_{in}} - \frac{\partial V_{TH2}}{\partial V_{out}} \frac{\partial V_{out}}{\partial V_{in}}\right)}$$

$$= \eta = \frac{1}{2\sqrt{2\Phi_{F} + V_{SB}}}$$

$$A_{v} = \frac{\partial V_{out}}{\partial V_{in}} = -\sqrt{\frac{(W/L)_{1}}{(W/L)_{2}}} \frac{1}{1+\eta}$$
• η is a function of V_{SB} .
• A_{v} is almost linear for M_{1} in saturation.

$$A_{v} = \frac{v_{out}}{v_{in}} = \frac{-gm_{1}}{gm_{2} + gmb_{2}}$$
$$= -\sqrt{\frac{(W/L)_{1}}{(W/L)_{2}}} \frac{1}{1 + \eta}$$

Small-signal analysis leads to the same result as DC analysis.

Small-signal Analysis

$$\lambda \neq 0 \quad \gamma \neq 0$$

$$\begin{split} A_{v} &= \frac{\upsilon_{out}}{\upsilon_{in}} \\ &= -gm_{1} \left(\frac{1}{gm_{2}} \parallel r_{o2} \parallel r_{o1} \right) \\ &\approx -\frac{gm_{1}}{gm_{2}} \\ &= -\sqrt{\frac{\mu_{n}(W/L)_{1}}{\mu_{p}(W/L)_{2}}} \\ &= -\frac{V_{SG2} - V_{TH2}}{V_{GS1} - V_{TH1}} \end{split}$$

- For A_v = 10, (W/L)₁ >> (W/L)₂ → Disproportionally large transistor
- For $A_v = 10$, $(V_{SG2} V_{TH2}) = 10 \times (V_{GS1} V_{TH1}) \rightarrow$ **Limited output swing**

Example

 M_1 in saturation and $I_S = 0.75 \times I_1$. How do the disadvantages of CS stage with diode-connected load get improved?

 $V_{\text{in}} \sim V_{\text{out}}$

Solution:

• Small-signal Analysis ($\lambda = 0$):

$$A_{v} = \frac{v_{\text{out}}}{v_{\text{in}}} = -\frac{gm_{1}}{gm_{2}} = -\frac{\sqrt{2\mu_{n}C_{ox}\left(\frac{W}{L}\right)_{1}I_{D1}}}{\sqrt{2\mu_{p}C_{ox}\left(\frac{W}{L}\right)_{2}I_{D2}}} = -\frac{\sqrt{4\mu_{n}\left(\frac{W}{L}\right)_{1}}}{\sqrt{\mu_{p}\left(\frac{W}{L}\right)_{2}}} = -\frac{4(V_{\text{SG2}} - V_{\text{TH2}})}{(V_{\text{GS1}} - V_{\text{TH1}})}$$

Common-Source with Current-Source Load

 To achieve high A_v, the output swing is severely limited in the CS stages with resistive load and diode-connected load.

 v_{sb1} gmb $_{\scriptscriptstyle 1}$

Here $V_{out, max} = V_{DD} - (V_{SG2} - V_{TH2})$, which can be quite close to V_{DD} .

 r_{o1}

 $v_{gs1}gm_1$

Common-Source with Current-Source Load

Small-signal Analysis

- $V_{out, max} = V_{DD} (V_{SG2} V_{TH2})$
- $V_{\text{out, min}} = (V_{\text{GS1}} V_{\text{TH1}})$
- For high gm₁ and small $(V_{GS1} V_{TH1})$, W of M₁ needs to be large.
- For high r_{o1} and r_{o2}, L of M₁ and M₂ need to be large and L of M₁ and M₂ needs to be increased proportionally. The cost is the large parasitic drain junction capacitance at the output.

Amplifier Equivalent Circuit

- How to calculate G_m ? υ_{out} shorted to ground. $G_m = i_{out}/\upsilon_{in}$
- How to calculate R_{out} ? υ_{in} shorted to ground and υ_{out} connected to υ_{test} . $R_{out} = \upsilon_{test}/i_{test}$

Small-signal **Analysis**

$\lambda \neq 0 \quad \forall \neq 0$

$$\begin{cases} i_o = \frac{-v_a}{R_S} \\ (v_{in} - v_a)gm_1 + i_o = \frac{v_a}{r_{o1}} + v_agmb_1 \end{cases}$$

$$G_m = \frac{i_o}{\upsilon_{in}} = \frac{-gm_1r_{o1}}{R_S + r_{o1} + (gm_1 + gmb_1)r_{o1}R_S} \approx -\frac{1}{R_S} \quad \text{If } (gm_1 + gmb_1)r_{o1}R_S \\ >> r_{o1} \text{ and } R_S$$

- At low V_{in} (gm small), turn-on behavior of $R_S \neq 0$ is similar to that of $R_S = 0$.
- At large V_{in} (gm large), the effect of R_s, i.e. degradation, becomes more significant.
- $V_{in} = 0 \text{ V} \rightarrow M_1 \text{ off, no current flowing} \rightarrow V_a = 0 \text{ V} \text{ and } V_{out} = V_{DD}$

Small-signal Analysis

$$R_{\text{out}} = R_{\text{out1}} \parallel R_D = [R_S + r_{o1} + (gm_1 + gmb_1)r_{o1}R_S] \parallel R_D \approx R_D$$

Small-signal Analysis

$$\lambda \neq 0 \quad \gamma \neq 0$$

$$\begin{split} A_{v} &= \frac{\upsilon_{out}}{\upsilon_{in}} = G_{m}R_{out} \\ &= \frac{-gm_{1}r_{o1}}{R_{S} + r_{o1} + (gm_{1} + gmb_{1})r_{o1}R_{S}} \cdot \frac{[R_{S} + r_{o1} + (gm_{1} + gmb_{1})r_{o1}R_{S}]R_{D}}{[R_{S} + r_{o1} + (gm_{1} + gmb_{1})r_{o1}R_{S}] + R_{D}} \end{split}$$

$$\approx -\frac{R_D}{R_S}$$
 If $(gm_1 + gmb_1)r_{o1}$, the intrinsic gain, is large.

Example

Assuming $\lambda = \gamma = 0$, calculate the small signal voltage gain of the circuit below.

Solution:

$$G_{\rm m} = -\frac{1}{\frac{1}{\rm gm_1} + \frac{1}{\rm gm_2}}$$

$$R_{out} = R_D$$

$$A_v = G_m R_{out}$$

Example

Calculate the small signal voltage gain of the circuit below.

Solution:

$$G_{m} = \frac{-gm_{1}r_{o1}}{r_{o1} + R_{S} + (gm_{1} + gmb_{1})r_{o1}R_{S}}$$

$$R_{out} = r_{o1} + R_{S} + (gm_{1} + gmb_{1})r_{o1}R_{S}$$

$$A_{v} = G_{m}R_{out} = -gm_{1}r_{o1}$$

- I_o is ideal current source → Voltage across R_s is constant
 → M₁ source shorted to ground
- R_D replaced by current source → Nonlinearity issue arises again

Ideal Amplifier

For driving a low impedance load, source follower, as a buffer, provides
 no gain but large input impedance and low output impedance.

DC Analysis

$$\lambda = 0$$
 $\nu \neq 0$

 $\rightarrow V_{\text{in1}} = V_{\text{DD}} + V_{\text{TH}}$

•
$$V_{in} < V_{TH} \rightarrow M_1 \text{ Off}$$

 $V_{out} = 0$

• $V_{in1} > V_{in} > V_{TH} \rightarrow M_1$ in Saturation

$$R_{S} \frac{1}{2} \mu_{n} C_{ox} \frac{W}{I_{.}} (V_{in} - V_{out} - V_{TH})^{2} = V_{out}$$

• $V_{in} > V_{in1} \rightarrow M_1$ in Triode

$$R_{S}\mu_{n}C_{ox}\frac{W}{L}\left[(V_{in}-V_{out}-V_{TH})(V_{DD}-V_{out})-\frac{1}{2}(V_{DD}-V_{out})^{2}\right]=V_{out}$$

DC Analysis

$$\lambda = 0$$

$$v \neq 0$$

• $V_{in1} > V_{in} > V_{TH} \rightarrow M_1$ in Saturation

$$R_S \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{in} - V_{out} - V_{TH})^2 = V_{out}$$

$$R_{S} \frac{1}{2} \mu_{n} C_{ox} \frac{W}{L} 2(V_{in} - V_{out} - V_{TH}) \left(1 - \frac{\partial V_{out}}{\partial V_{in}} - \frac{\partial V_{TH}}{\partial V_{in}} \right) = \frac{\partial V_{out}}{\partial V_{in}}$$

$$R_{S} \left[u_{n} C_{ox} \frac{W}{L} (V_{in} - V_{out} - V_{TH}) \right] \left(1 - \frac{\partial V_{out}}{\partial V_{in}} - \frac{\partial V_{TH}}{\partial V_{out}} \frac{\partial V_{out}}{\partial V_{in}} \right) = \frac{\partial V_{out}}{\partial V_{in}}$$

$$= gm$$

$$= \eta = \frac{\partial V_{out}}{\partial V_{out}} \frac{\partial V_{out}}{\partial V_{in}} = \frac{\partial V_{out}}{\partial V_{in}} \frac{\partial V_{out}}{\partial V_{in}} = \frac{\partial V_{out}}{\partial V_{out}} \frac{\partial V_{out}}{\partial V_{out}} \frac{\partial V_{out}}{\partial V_{out}} = \frac{\partial V_{out}}{\partial V_{out}} \frac{\partial V_{out}}{\partial V_{out}} \frac{\partial V_{out}}{\partial V_{out}} = \frac{\partial V_{out}}{\partial V_{out}} \frac{\partial V_{ou$$

$$A_{v} = \frac{gmR_{S}}{1 + gmR_{S}(1 + \eta)} = \frac{gmR_{S}}{1 + (gm + gmb)R_{S}} \approx \frac{1}{1 + \eta}$$

Small-signal Analysis

$$\lambda = 0$$
 $\gamma \neq 0$

$$G_{\rm m} = g {\rm m}$$

$$R_{out} = R_S \parallel \left(\frac{1}{gm + gmb}\right)$$

$$A_{v} = \frac{gmR_{S}}{1 + (gm + gmb)R_{S}} \approx \frac{1}{1 + \eta}$$

1.0 1 1 1 V_{TH} V_{in}

If
$$(gm + gmb)R_S >> 1$$

Small-signal Analysis

$$\lambda \neq 0$$
 $\gamma \neq 0$

$$G_{\rm m} = g {\rm m}$$

$$R_{out} = r_o \parallel R_S \parallel \left(\frac{1}{gm + gmb}\right)$$

$$A_{v} = \frac{gmr_{o}R_{S}}{r_{o} + R_{S} + (gm + gmb)r_{o}R_{S}} \approx \frac{1}{1 + \eta}$$

If $(gm + gmb)r_oR_S >> r_o$ and R_S

Source Follower with Current Source

DC Analysis

$$\lambda = 0$$

$$\gamma \neq 0$$

$$\frac{1}{2}\mu_{n}C_{ox}\frac{W}{L}(V_{in}-V_{out}-V_{TH})^{2}=I_{1}$$

$$\frac{1}{2}\mu_{n}C_{ox}\frac{W}{L}2(V_{in}-V_{out}-V_{TH})\left(1-\frac{\partial V_{out}}{\partial V_{in}}-\frac{\partial V_{TH}}{\partial V_{in}}\right)=0$$

$$\mu_{n}C_{ox}\frac{W}{L}(V_{in}-V_{out}-V_{TH})\left(1-\frac{\partial V_{out}}{\partial V_{in}}-\frac{\partial V_{TH}}{\partial V_{out}}\frac{\partial V_{out}}{\partial V_{in}}\right)=0$$

$$=gm = \eta$$

$$A_v = \frac{1}{1+\eta} \qquad \text{If } \gamma = 0, A_v = 1.$$

Source Follower with Current Source

Small-signal Analysis

$$\lambda = 0$$
 $\nu \neq 0$

$$G_{m} = gm$$

$$R_{out} = \frac{1}{gm + gmb}$$

$$A_{v} = \frac{1}{1+\eta}$$
 If $\gamma = 0$, $A_{v} = 1$.

Source Follower with Current Source

Small-signal Analysis

$$G_{m} = gm_{1}$$

$$R_{out} = r_{o1} \parallel r_{o2} \parallel \left(\frac{1}{gm_{1} + gmb_{1}}\right)$$

$$A_{v} = \frac{gmr_{o1}r_{o2}}{r_{o1} + r_{o2} + (gm + gmb)r_{o1}r_{o2}}$$

If r_{o1} and r_{o2} large, A_v is linear.

Source Follower with Current Source ($V_{SB} = 0$)

Small-signal Analysis

$$G_{m} = gm_{1}$$

$$R_{out} = r_{o1} \parallel r_{o2} \parallel \frac{1}{gm_{1}}$$

$$A_{v} = \frac{gm_{1}r_{o1}r_{o2}}{r_{o1} + r_{o2} + gm_{1}r_{o1}r_{o2}}$$

 The sacrifice here is the higher output impedance due to smaller mobility of holes relative to electrons.

Source Follower as Level Shifter

$V_{\rm in} \leq V_{\rm DD} - V_{\rm SG2} + V_{\rm TH1}$

$$\begin{cases} G_{m} = -gm_{1} \\ R_{out} = r_{o1} \parallel r_{o2} \parallel \frac{1}{gm_{2}} \end{cases}$$

$$V_{in} - V_{GS3} \le V_{DD} - V_{SG2} + V_{TH1}$$

$$\begin{cases} G_{m(left)} = gm_3 \\ R_{out(left)} = r_{o3} \parallel \frac{1}{gm_3 + gmb_3} \end{cases}$$

$$\begin{cases} R_{in(right)} = \infty \\ G_{m(right)} = -gm_1 \\ R_{out(right)} = r_{o1} \parallel r_{o2} \parallel \frac{1}{gm_2} \end{cases}$$

CS + Source Follower

$$A_{v} = -gm_{1}(r_{o1} \parallel R_{L})$$

 Voltage gain severely reduced when R_L very small

$$A_v = -gm_1r_{o1} \times$$

$$gm_2\left(r_{o2} \parallel \frac{1}{gm_2 + gmb_2} \parallel r_{o3} \parallel R_L\right)$$

 Voltage gain maintained when R₁ very small

 $(W/L)_1$ = 20/0.5, I_D = 0.2 mA, V_{THO} = 0.6 V, $2\varphi_F$ = 0.7 V, $\mu_n C_{ox}$ = 50 μ A/V², γ = 0.4 V¹/² and λ = 0. (a) Calculate V_{out} for V_{in} = 1.2 V. (b) Minimum $(W/L)_2$ for which M_2 remains saturated.

Solution:

(a)
$$I_{D} = \frac{1}{2} \mu_{n} C_{ox} \frac{W}{L} (V_{in} - V_{out} - V_{THO})^{2} \rightarrow V_{out} = 0.153 \text{ V}$$

$$V_{TH1} = V_{THO} + \gamma (\sqrt{2\Phi_{F} + V_{out}} - \sqrt{2\Phi_{F}}) = 0.635 \text{ V} \rightarrow V_{out} \approx 0.118 \text{ V}$$

(b)
$$V_{\text{out}} = 0.118 \text{ V} \ge V_{\text{GS2}} - V_{\text{TH2}}$$

$$I_{\text{D}} = \frac{1}{2} \mu_{\text{n}} C_{\text{ox}} \frac{W}{L} (V_{\text{GS2}} - V_{\text{TH2}})^2 \rightarrow \left(\frac{W}{L}\right)_2 \ge \frac{283}{0.5}$$

Calculate the small signal voltage gain of the circuit below.

Solution:

$$\begin{split} G_m &= gm_1 \\ R_{out} &= \frac{1}{gm_1 + gmb_1} \parallel r_{o1} \parallel \frac{1}{gm_2 + gmb_2} \parallel r_{o2} \\ A_v &= G_m R_{out} \end{split}$$

Ideal Amplifier

 For converting and amplifying small-signal current to voltages, common-gate provides low input impedance and moderate gain, but relatively large output impedance.

DC Analysis

$$\lambda = 0$$
 $\gamma \neq 0$

- $V_{in} > V_b V_{TH} \rightarrow M_1 \text{ Off}$ $V_{out} = V_{DD}$
- $= V_{DD} R_{D} \frac{1}{2} \mu_{n} C_{ox} \frac{W}{L} (V_{b} V_{in1})^{2}$

 $V_{out} = V_b - V_{TH}$

- $V_b V_{TH} > V_{in} > V_{in1} \rightarrow M_1$ in Saturation $V_{\text{out}} = V_{\text{DD}} - R_{\text{D}} \frac{1}{2} \mu_{\text{n}} C_{\text{ox}} \frac{1}{1} (V_{\text{b}} - V_{\text{in}} - V_{\text{TH}})^{2}$
- V_{in} < V_{in1} → M₁ in Triode $V_{\text{out}} = V_{\text{DD}} - R_{\text{D}} \mu_{\text{n}} C_{\text{ox}} \frac{W}{I} [(V_{\text{b}} - V_{\text{in}} - V_{\text{TH}})(V_{\text{out}} - V_{\text{in}}) - \frac{1}{2} (V_{\text{out}} - V_{\text{in}})^{2}]$

DC Analysis

$$\lambda = 0$$
$$\gamma \neq 0$$

• $V_b - V_{TH} > V_{in} > V_{in1} \rightarrow M_1$ in Saturation

$$\begin{split} V_{out} &= V_{DD} - R_D \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_b - V_{in} - V_{TH})^2 \\ \frac{\partial V_{out}}{\partial V_{in}} &= -R_D \frac{1}{2} \mu_n C_{ox} \frac{W}{L} 2 (V_b - V_{in} - V_{TH}) \left(-1 - \frac{\partial V_{TH}}{\partial V_{in}} \right) \\ &= R_D \mu_n C_{ox} \frac{W}{L} (V_b - V_{in} - V_{TH}) \left(1 + \frac{\partial V_{TH}}{\partial V_{in}} \right) \\ &= gm = \eta = \frac{\gamma}{2\sqrt{2\Phi_F + V_{SB}}} \end{split}$$

$$A_v &= \frac{\partial V_{out}}{\partial V_{in}} = R_D gm(1 + \eta)$$

- gm is a function of I_D and η is a function of V_{SB} .
- A_v is not quite linear.

$$G_{\rm m} = \frac{(gm + gmb)r_{\rm o} + 1}{r_{\rm o} + R_{\rm S} + (gm + gmb)r_{\rm o}R_{\rm S}}$$

$$R_{out} = R_D \parallel [r_o + R_S + (gm + gmb)r_oR_S]$$

$$A_{v} = \frac{(gm + gmb)r_{o} + 1}{r_{o} + R_{S} + (gm + gmb)r_{o}R_{S} + R_{D}} R_{D} \approx R_{D}gm(1 + \eta)$$
If $R_{S} = 0$ and $r_{o} = \infty$

Common-Gate (Input Impedance)

$$\begin{cases} i_t = v_t(gm + gmb) + \frac{v_t - v_{out}}{r_o} \\ v_{out} = R_D i_t \end{cases}$$

$$R_{in} = \frac{R_D + r_o}{1 + (gm + gmb)r_o}$$

If
$$R_D = 0$$

$$R_{in} = r_o \parallel \frac{1}{gm} \parallel \frac{1}{gmb}$$

$$R_{in} = \infty$$

$$R_{in} = \infty$$

Common-Gate (Output Impedance)

$$R_{out} = [R_S + r_{o1} + (gm_1 + gmb_1)r_{o1}R_S] \parallel R_D$$

Calculate the small-signal voltage gain at low frequencies of the circuits below. To minimize wave reflection at point X, the input impedance must be equal to 50 Ω .

$$R_{\rm in} = \frac{R_{\rm D} + r_{\rm o2}}{1 + (gm_2 + gmb_2)r_{\rm o2}} = 50 \,\Omega$$

Calculate the small-signal voltage gain of the circuit below. ($\lambda \neq 0$, $\gamma \neq 0$)

Calculate the small-signal voltage gain of the circuit below. ($\lambda \neq 0$, $\gamma \neq 0$)

Since no current flowing in Rs, $v_a = v_{in}$.

$$v_{out} - v_{in}(gm + gmb)r_o = v_{in}$$

$$A_v = \frac{v_{out}}{v_{in}} = 1 + (gm + gmb)r_o$$

Calculate the small-signal transimpedance gain of the circuit below. ($\lambda \neq 0$, $\gamma \neq 0$)

$$\frac{v_{out}}{i_{in}} = -\frac{R_P}{R_{in} + R_P} R_D = \frac{-R_P R_D [1 + (gm + gmb)r_o]}{R_D + r_o + R_P + (gm + gmb)r_o R_P}$$

Cascode

Ideal Amplifier

CS + CG with Resistive Load

$$\lambda \neq 0 \quad \gamma \neq 0$$

$$\begin{cases} \textbf{G}_{m} = -gm_{1} \frac{r_{o1}}{r_{o1} + \left(r_{o2} \parallel \frac{1}{gm_{2} + gmb_{2}}\right)} \\ \textbf{R}_{out} = \left[r_{o1} + r_{o2} + (gm_{2} + gmb_{2})r_{o2}r_{o1}\right] \parallel \textbf{R}_{D} \end{cases}$$

$$R_{out} = [r_{o1} + r_{o2} + (gm_2 + gmb_2)r_{o2}r_{o1}] \parallel R_{D}$$

$$A_v = G_m R_{out}$$

$$\begin{aligned} V_{a} & \geq V_{in} - V_{TH1} \\ V_{b} - V_{GS2} & \geq V_{in} - V_{TH1} \\ V_{b} & \geq V_{in} - V_{TH1} + V_{GS2} \\ V_{out} & \geq V_{b} - V_{TH2} & \geq (V_{in} - V_{TH1}) + (V_{GS2} - V_{TH2}) \\ V_{DD} & \geq V_{out} & \geq V_{ov1} + V_{ov2} \end{aligned}$$

CS + CG with Ideal Current Source Load

$$\lambda \neq 0 \quad \gamma \neq 0$$

CS + CG with Cascode Current Source Load

$$\lambda \neq 0 \quad \gamma \neq 0$$

$$\begin{array}{c|c} \textbf{V}_{\text{b3}} & \textbf{I} & \textbf{I} & \textbf{M}_{\text{4}} \\ \textbf{V}_{\text{b2}} & \textbf{M}_{\text{3}} & \textbf{Cascode} \\ \textbf{Current} & \textbf{Source} \\ \end{array} \\ \hline \textbf{R}_{\text{out}} = \begin{bmatrix} r_{o1} + r_{o2} + (gm_2 + gmb_2)r_{o2}r_{o1} \\ \| [r_{o3} + r_{o4} + (gm_3 + gmb_3)r_{o3}r_{o4}] \end{bmatrix} \\ \\ \end{array}$$

$$A_v = G_m R_{out}$$

$$\left(V_{\mathrm{DD}} - V_{\mathrm{ov3}} - V_{\mathrm{ov4}} \ge V_{\mathrm{out}} \ge V_{\mathrm{ov1}} + V_{\mathrm{ov2}}\right)$$

Folded Cascode

Small-signal Analysis

 $A_v = G_m R_{out}$

$$\lambda \neq 0 \quad \gamma \neq 0$$

$$\int_{0}^{C_{m}} G_{m} = -gm_{1} \frac{(r_{01} \parallel r_{03})}{(r_{01} \parallel r_{03}) + (r_{02} \parallel \frac{1}{gm_{2} + gmb_{2}})}$$

$$R_{out} = [(r_{01} \parallel r_{03}) + r_{02} + (gm_{2} + gmb_{2})r_{02}(r_{01} \parallel r_{03})] \parallel R_{D}$$