$12a_{0713} (K12a_{0713})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^{69} + u^{68} + \dots + u + 1 \rangle$$

* 1 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 69 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^{69} + u^{68} + \dots + u + 1 \rangle$$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{7} - 2u^{5} + 2u^{3} - 2u \\ -u^{7} + u^{5} - 2u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{12} - 3u^{10} + 5u^{8} - 6u^{6} + 4u^{4} - 3u^{2} + 1 \\ -u^{12} + 2u^{10} - 4u^{8} + 4u^{6} - 3u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{17} + 4u^{15} - 9u^{13} + 14u^{11} - 15u^{9} + 14u^{7} - 10u^{5} + 6u^{3} - 3u \\ u^{17} - 3u^{15} + 7u^{13} - 10u^{11} + 11u^{9} - 10u^{7} + 6u^{5} - 4u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{3} \\ u^{5} - u^{3} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{20} - 3u^{18} + \dots - 3u^{2} + 1 \\ u^{22} - 4u^{20} + \dots - 8u^{4} + 3u^{2} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u^{39} + 8u^{37} + \dots + 42u^{5} - 8u^{3} \\ u^{39} - 7u^{37} + \dots + 2u^{3} + u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{59} - 10u^{57} + \dots + 5u^{3} - 2u \\ u^{61} - 11u^{59} + \dots - u^{3} + u \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-4u^{68} + 52u^{66} + \cdots 4u 6$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_{1}, c_{8}	$u^{69} + 25u^{68} + \dots - u + 1$
c_2, c_7	$u^{69} + u^{68} + \dots + u + 1$
c_3, c_4, c_9	$u^{69} - u^{68} + \dots - 15u + 1$
c_5, c_6, c_{11}	$u^{69} + u^{68} + \dots + u + 1$
c_{10}	$u^{69} - 17u^{68} + \dots + 49u - 1$
c_{12}	$u^{69} - 3u^{68} + \dots - 15u + 5$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_{1}, c_{8}	$y^{69} + 39y^{68} + \dots + 3y - 1$
c_2, c_7	$y^{69} - 25y^{68} + \dots - y - 1$
c_3, c_4, c_9	$y^{69} - 69y^{68} + \dots + 31y - 1$
c_5, c_6, c_{11}	$y^{69} - 61y^{68} + \dots - y - 1$
c_{10}	$y^{69} + 3y^{68} + \dots + 959y - 1$
c_{12}	$y^{69} + 7y^{68} + \dots + 535y - 25$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.561535 + 0.801719I	0.59754 - 9.28056I	-1.67855 + 4.92481I
u = -0.561535 - 0.801719I	0.59754 + 9.28056I	-1.67855 - 4.92481I
u = -0.741260 + 0.705629I	2.07770 - 1.55952I	0. + 4.24575I
u = -0.741260 - 0.705629I	2.07770 + 1.55952I	0 4.24575I
u = 0.858174 + 0.460652I	3.02036 + 0.76922I	-4.00000 + 0.63988I
u = 0.858174 - 0.460652I	3.02036 - 0.76922I	-4.00000 - 0.63988I
u = 0.552904 + 0.795056I	-4.60768 + 5.51677I	-6.32456 - 4.07554I
u = 0.552904 - 0.795056I	-4.60768 - 5.51677I	-6.32456 + 4.07554I
u = 0.787073 + 0.683095I	2.73226 - 1.63418I	0
u = 0.787073 - 0.683095I	2.73226 + 1.63418I	0
u = 0.744206 + 0.732824I	7.48690 + 4.59797I	0
u = 0.744206 - 0.732824I	7.48690 - 4.59797I	0
u = -0.891875 + 0.548288I	-1.16815 + 2.14250I	0
u = -0.891875 - 0.548288I	-1.16815 - 2.14250I	0
u = -0.540612 + 0.778681I	-2.67823 - 1.59684I	-3.63668 - 0.69772I
u = -0.540612 - 0.778681I	-2.67823 + 1.59684I	-3.63668 + 0.69772I
u = -0.923734 + 0.200980I	1.85137 + 5.82041I	-6.32686 - 6.94483I
u = -0.923734 - 0.200980I	1.85137 - 5.82041I	-6.32686 + 6.94483I
u = 0.582842 + 0.744201I	3.93389 + 1.07116I	0.776477 - 0.457625I
u = 0.582842 - 0.744201I	3.93389 - 1.07116I	0.776477 + 0.457625I
u = -0.930462	-0.771769	-9.37220
u = -0.519198 + 0.768041I	-2.80848 - 1.33304I	-4.00000 + 1.12385I
u = -0.519198 - 0.768041I	-2.80848 + 1.33304I	-4.00000 - 1.12385I
u = -0.805040 + 0.718870I	8.37556 + 3.79820I	0
u = -0.805040 - 0.718870I	8.37556 - 3.79820I	0
u = 0.900653 + 0.146018I	-3.07880 - 2.61927I	-12.21002 + 6.26526I
u = 0.900653 - 0.146018I	-3.07880 + 2.61927I	-12.21002 - 6.26526I
u = 0.493368 + 0.760092I	-4.98673 - 2.50951I	-7.03178 + 3.70440I
u = 0.493368 - 0.760092I	-4.98673 + 2.50951I	-7.03178 - 3.70440I
u = -1.09692	-1.56890	0

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.476518 + 0.754332I	0.06794 + 6.25168I	-2.30141 - 4.86494I
u = -0.476518 - 0.754332I	0.06794 - 6.25168I	-2.30141 + 4.86494I
u = 0.945924 + 0.588557I	2.32478 - 5.03042I	0
u = 0.945924 - 0.588557I	2.32478 + 5.03042I	0
u = 0.911304 + 0.669367I	2.35185 - 3.58854I	0
u = 0.911304 - 0.669367I	2.35185 + 3.58854I	0
u = 1.132630 + 0.007821I	-8.44892 - 0.18975I	0
u = 1.132630 - 0.007821I	-8.44892 + 0.18975I	0
u = -1.135870 + 0.021393I	-10.52510 + 4.16744I	0
u = -1.135870 - 0.021393I	-10.52510 - 4.16744I	0
u = 1.136010 + 0.030089I	-5.39627 - 7.98412I	0
u = 1.136010 - 0.030089I	-5.39627 + 7.98412I	0
u = -0.900087 + 0.702148I	8.08679 + 1.63035I	0
u = -0.900087 - 0.702148I	8.08679 - 1.63035I	0
u = -0.943327 + 0.681204I	1.46972 + 6.88966I	0
u = -0.943327 - 0.681204I	1.46972 - 6.88966I	0
u = 0.947298 + 0.697651I	6.87547 - 10.05570I	0
u = 0.947298 - 0.697651I	6.87547 + 10.05570I	0
u = 1.033920 + 0.660350I	2.60685 - 6.43711I	0
u = 1.033920 - 0.660350I	2.60685 + 6.43711I	0
u = -1.057090 + 0.628994I	-1.60252 - 1.02909I	0
u = -1.057090 - 0.628994I	-1.60252 + 1.02909I	0
u = -0.769541	-1.25215	-7.16180
u = 1.057010 + 0.636565I	-6.61719 - 2.76776I	0
u = 1.057010 - 0.636565I	-6.61719 + 2.76776I	0
u = -1.055470 + 0.647367I	-4.37317 + 6.68516I	0
u = -1.055470 - 0.647367I	-4.37317 - 6.68516I	0
u = -1.054270 + 0.658260I	-4.18744 + 7.02467I	0
u = -1.054270 - 0.658260I	-4.18744 - 7.02467I	0
u = 1.056900 + 0.666631I	-6.10164 - 11.02080I	0

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.056900 - 0.666631I	-6.10164 + 11.02080I	0
u = -1.056820 + 0.671674I	-0.8759 + 14.8224I	0
u = -1.056820 - 0.671674I	-0.8759 - 14.8224I	0
u = 0.461695 + 0.473110I	3.31546 + 0.65994I	-1.10722 + 1.03109I
u = 0.461695 - 0.473110I	3.31546 - 0.65994I	-1.10722 - 1.03109I
u = 0.101930 + 0.482846I	4.82799 - 3.72475I	2.55800 + 4.45689I
u = 0.101930 - 0.482846I	4.82799 + 3.72475I	2.55800 - 4.45689I
u = -0.142678 + 0.371599I	-0.151965 + 1.056310I	-2.64659 - 6.18313I
u = -0.142678 - 0.371599I	-0.151965 - 1.056310I	-2.64659 + 6.18313I

II. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_8	$u^{69} + 25u^{68} + \dots - u + 1$
c_2, c_7	$u^{69} + u^{68} + \dots + u + 1$
c_3, c_4, c_9	$u^{69} - u^{68} + \dots - 15u + 1$
c_5, c_6, c_{11}	$u^{69} + u^{68} + \dots + u + 1$
c_{10}	$u^{69} - 17u^{68} + \dots + 49u - 1$
c_{12}	$u^{69} - 3u^{68} + \dots - 15u + 5$

III. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_{1}, c_{8}	$y^{69} + 39y^{68} + \dots + 3y - 1$
c_2, c_7	$y^{69} - 25y^{68} + \dots - y - 1$
c_3, c_4, c_9	$y^{69} - 69y^{68} + \dots + 31y - 1$
c_5, c_6, c_{11}	$y^{69} - 61y^{68} + \dots - y - 1$
c_{10}	$y^{69} + 3y^{68} + \dots + 959y - 1$
c_{12}	$y^{69} + 7y^{68} + \dots + 535y - 25$