МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФГБОУ ВО «АЛТАЙСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

КАФЕДРА ВТиЭ

Лабораторный практикум по курсу «Схемотехника ЭВМ»

Лабораторная работа №1

Лабораторная работа № 1

Тема: Синтез дешифратора адреса

Цель работы:

Получение навыков синтеза и моделирования заданных комбинационных схем в САПР Altera MAX+PLUS II.

Задачи:

Синтезировать комбинационную схему дешифратора адреса с заданными параметрами в САПР Altera Max+plus II в режиме графического редактора (Graphic Editor). Произвести исследование временных параметров полученной схемы (Simulator).

Теоретические сведения:

Дешифратор адреса (ДшА) - это комбинационная схема с **М**-входами и 1-выходом, формирующая на выходе "1" в том случае, когда число, подаваемое на его входы, попадает в указанный, при проектировании ДшА диапазон.

Дешифратор адреса, например, используется в системах с Общей Шиной, когда все элементы системы одновременно к ней подключены. В таком случае, запрос попадает ко всем элементам сразу, но обрабатывается только тем, чей адрес совпал с адресом, содержащимся в запросе. Число входов \mathbf{M} при этом зависит от количества адресуемых элементов, максимальное число которых равно 2^{M} .

Другой пример, это когда дешифратор адреса используется как один из функциональных блоков плат ввода-вывода.

Литература:

- 1. Altera MAX+PLUS® II ver. 10.2 Help
- 2. Р.И.Грушвицкий, А.Х.Мурсаев, Е.П.Угрюмов Проектирование систем на микросхемах с программируемой структурой. 2-е изд., перераб. и доп. СПб.: БХВ-Петербург, 2006. 736с.
- 3. В.Б.Стешенко ПЛИС фирмы ALTERA: проектирование устройств обработки сигналов.- М.: ДОДЭКА, 2000. 128с.

Выполнение работы:

Выполнение лабораторной работы можно разделить на следующие этапы:

- 1. На основе заданных параметров определяется фиксированная и переменная часть адреса.
- 2. Для фиксированной части адреса: строится булева функция.
- 3. Для переменной части адреса:
- строится карта Карно;
- по карте Карно рассчитывается булева функция.
- 4. Объединяются функций фиксированной и переменной частей адреса.
- 5. С использованием графического редактора пакета MAX+PLUS (Graphic Editor) по получившейся булевой функции строится схема.
- 6. Выполняется компилирование схемы (Compiler).

- 7. С помощью редактора WaveForm Editor задаются внешние воздействия, необходимые для проверки работоспособности схемы. В данном случае необходимо, чтобы на входы подавались все адреса, на которые должен реагировать ДшА, и несколько других адресов для проверки их отсечения схемой.
- 8. Запускается симулятор работы схемы (Simulator).
- 9. Измеряются временные задержки, возникающие при работе схемы. Измерение задержек можно проводить как вручную в WaveForm Editor, так и с помощью Timing Analyzer.

Требования к защите работы:

- 1. Демонстрация схемы дешифратора и результатов моделирования на компьютере.
- 2. Отчет по лабораторной работе (оформленный в соответствии с Приложением 2).
- 3. Правильные ответы на вопросы преподавателя по теме работы.

Пример выполнения лабораторной работы:

Задание:

Вариант №1. Необходимо синтезировать дешифратор 12-разрядного адреса, с диапазоном адресов 0xF00 - 0xF0F, исключая адреса 0xF06 и 0xF0A.

Выполнение работы:

Синтезируем булеву функцию, описывающую работу дешифратора адреса (F). С целью снижения числа переменных для метода карт Карно определяем фиксированную и переменную часть заданного диапазона. Для нашего задания фиксированная часть - это 0xF0 (старшие 8 бит). Переменная часть: 0x0 - 0xF (младшие 4 бита).

$$F(a_0, a_1 ... a_{11}) = Z(a_4, a_5 ... a_{11}) \& Y(a_0, a_1 ... a_3)$$

где функция Z – дешифрирует из диапазона старшую часть адреса, а Y – дешифрирует младшую часть адреса.

Строим булеву функцию(Z) для фиксированной части адреса:

Если записать таблицу истинности для функции Z, то мы получим таблицу размера 256 х 8. Функция будет выдавать истинное значение только при равенстве входных аргументов величине 0xF0 (или в двоичном виде: 11110000).

Данному адресу соответствует булева функция $a_{11}a_{10}a_9a_8\overline{a_7}a_6\overline{a_5}a_4$.

При подстановке адреса в функцию получаем: $1 \cdot 1 \cdot 1 \cdot \overline{0} \cdot \overline{0} \cdot \overline{0} \cdot \overline{0} \cdot \overline{0} = 1$

Строим булеву функцию(Y) для переменной части адреса:

Запишем для нее таблицу истинности:

A_3	A_2	A_1	A_{θ}	Y
0	0	0	0	1
0	0	0	1	1
0	0	1	0	1
0	0	1	1	1
0	1	0	0	1

0	1	0	1	1
0	1	1	0	0
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	0
1	0	1	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

Строим для нее карту Карно для 4-х переменных ($a_3a_2a_1a_0$). По вертикали (a_3a_2) , по горизонтали (a_1a_0). Отмечаем клетки, попадающие в заданный диапазон символом (X), а клетки в него не попадающие символом (0)

	00	01	11	10
00	X	X	X	X
01	X	X	X	X
11	X	X	X	X
10	W	0	X	0

По методу Карно, осуществляем склейку следующих строк и столбцов: Столбец 00 (терм $\overline{a_3}\overline{a_2}$), столбец 11 (терм a_3a_2), Строки 00 и 01 (терм $\overline{a_1}$), Строки 01 и 11 (терм $\overline{a_0}$).Полученный результат: $\overline{a_3}\overline{a_2}\vee a_3a_2\vee \overline{a_1}\vee a_0$

Осуществляем проверку:

Возьмем три адреса 0x1, 0x6, 0xA.

 $0x1:0001 - \overline{00} \lor 00 \lor \overline{0} \lor 1 = 1 \lor 0 \lor 1 \lor 1 = 1$

 $0x6: 0110 - \overline{01} \lor 01 \lor \overline{1} \lor 0 = 0 \lor 0 \lor 0 \lor 0 = 0$

 $0xA: 1010 - \overline{10} \lor 10 \lor \overline{1} \lor 0 = 0 \lor 0 \lor 0 \lor 0 = 0$

Булева функция для переменной части адреса составлена правильно.

Объединяем функции в одну:

 $a_{11}a_{10}a_9a_8a_7a_6a_5a_4(a_3a_2\vee a_3a_2\vee a_1\vee a_0)$

По полученной функции строим схему, заменяя логические функции, соответствующими элементами. Изображение схемы построенной в Altera Max+plus II приведено на Рис.1.1. Исходный файл схемы (lab1.gdf).

Рис.1.1 Схема дешифратора в редакторе Graphic Editor (Altera Max+plus II).

На Рис.1.2. отображены результаты работы схемы и отклик дешифратора на входное воздействие. На вход по шине адреса A[11..0] подаются адреса в диапазоне 0xEFE – 0xF11. На выходе CS можно видеть отклик дешифратора на него. Исходный файл **lab1.scf**

Рис.1.2 Входной сигнал и отклик дешифратора в Waveform Editor (Altera Max+plus II).

С помощью средств Waveform Editor производим замер временных задержек на каждом переключении с указанием кода переключения (см. Рис.1.3). Пример:

T(0xF05 - 0xF06) = 6.0 Hc.T(0xF06 - 0xF07) = 6.0 Hc.

. . .

Рис.1.3 Измерение задержек переключения в Waveform Editor (Altera Max+plus II).

Результаты измерения задержек переключения элементов с помощью Timing Analyzer показаны на Рис.1.4. При использовании данного метода отпадает необходимость в ручном измерении задержек переключения, т.к. их все можно найти в сводной таблице задержек.

Delay Matrix

Destination

		CS
Source	A0	6.0ns
	A1	6.0ns
	A2	6.0ns
	A3	6.0ns
	A4	6.0ns
	A5	6.0ns
	A6	6.0ns
	A7	6.0ns
	A8	6.0ns
	A9	6.0ns
	A10	6.0ns
	A11	6.0ns

Рис.1.4 Timing Analyzer (Altera Max+plus II).

Вопросы к работе:

- 1. От чего зависит максимальная частота работы схемы и как она связана со временем задержки срабатывания?
- 2. Какая связь между таблицей истинности функции и картой Карно?
- 3. Какому закону булевой алгебры соответствует операция минимизации по методу карт Карно?
- 4. По умолчанию, Simulator осуществляет симулирование работы схемы в течение 1мк. Как изменить этот параметр?

Приложение 1 Варианты для лабораторной работы №1

Вариант	Начало	Конец	Исключение	Вариант	Начало	Конец	Исключение
<u>№</u>	диапазона	диапазона	0 =0 < 0 =0 +	<u>№</u>	диапазона	диапазона	
1	0xF00	0xF0F	0xF06, 0xF0A	33	0x502	0x50A	0x505, 0x504
2	0xF10	0xF1E	0xF1A, 0xF1B	34	0x41C	0x41F	0x41D, 0x41E
3	0xD23	0xD2F	0xD28, 0xD29	35	0x328	0x32C	0x329, 0x32A
4	0xC30	0xC34	0xC30, 0xC33	36	0x230	0x23E	0x23A, 0x23C
5	0xB41	0xB4E	0xB44, 0xB4D	37	0x143	0x14B	0x145, 0x149
6	0xA55	0xA59	0xA57, 0xA58	38	0x051	0x05A	0x053, 0x054
7	0x961	0x96F	0x964, 0x96B	39	0xF69	0xF6F	0xF6A, 0xF6E
8	0x873	0x87D	0x876, 0x87A	40	0xE73	0xE7E	0xE75, 0xE7A
9	0x78A	0x78F	0x78B, 0x78C	41	0xD81	0xD8D	0xD82, 0xD84
10	0x692	0x699	0x696, 0x697	42	0xC90	0xC9C	0xC93, 0xC98
11	0x5A7	0x5AF	0x5A9, 0x5AC	43	0xBA5	0xBAB	0xBA8, 0xBAA
12	0x4B4	0x4B8	0x4B5, 0x4B6	44	0xAB4	0xABA	0xAB8, 0xAB9
13	0x3C8	0x3CE	0x3CA, 0x3CB	45	0x9C2	0x9C9	0x9C7, 0x9C8
14	0x2D3	0x2DC	0x2D6, 0x2DA	46	0x8DA	0x8DE	0x8DB, 0x8DC
15	0x1E4	0x1EB	0x1E6, 0x1E9	47	0x7E4	0x7E8	0x7E6, 0x7E7
16	0x0FB	0x0FF	0x0FE, 0x0FD	48	0x6F1	0x6F7	0x6F4, 0x6F5
17	0xFE1	0xFE9	0xFE2, 0xFE6	49	0xF45	0xF4F	0xF45, 0xF49
18	0xED0	0xEDA	0xED4, 0xED8	50	0xE54	0xE57	0xE55, 0xE56
19	0xDC2	0xDCB	0xDC5, 0xDC9	51	0xD38	0xD3D	0xD39, 0xD3A
20	0xCB4	0xCBF	0xCB8, 0xCBB	52	0xC60	0xC66	0xC63, 0xC65
21	0xB00	0xB05	0xB02, 0xB03	53	0xB19	0xB1E	0xB1A, 0xB1C
22	0xA95	0xA9D	0xA97, 0xA9A	54	0xA21	0xA29	0xA25, 0xA28
23	0x988	0x98F	0x989, 0x98B	55	0x953	0x958	0x955, 0x957
24	0x861	0x86E	0x868, 0x86A	56	0x864	0x867	0x865, 0x866
25	0x753	0x759	0x755, 0x757	57	0x775	0x77C	0x777, 0x779
26	0x64A	0x64F	0x64B, 0x64C	58	0x641	0x64E	0x645, 0x64B
27	0x531	0x535	0x532, 0x534	59	0x51B	0x51F	0x51C, 0x51E
28	0x424	0x42B	0x427, 0x428	60	0x42C	0x42F	0x42D, 0x42E
29	0x315	0x31A	0x318, 0x319	61	0x34A	0x34F	0x34B, 0x34D
30	0x201	0x207	0x203, 0x206	62	0x280	0x285	0x283, 0x284
31	0x1F2	0x1FA	0x1F6, 0x1F9	63	0x102	0x109	0x107, 0x108
32	0x0E9	0x0EF	0x0EA, 0x0EC	64	0x045	0x04A	0x046, 0x048

Правила оформления отчетов к лабораторным работам

Отчет, является документом, отражающим результаты и ход выполнения лабораторной работы. Отчет должен содержать следующие пункты:

- 1. Титульный лист содержащий тему и номер лабораторной работы, фамилии выполнявшего студента и проверявшего преподавателя (пример в конце приложения).
- 2. Цель работы указывается цели выполняемой работы.
- 3. Задачи указываются задачи, решаемые в ходе выполнения лабораторной работы, приводится и расшифровывается собственный вариант задания.
- 4. Выполнение работы указываются расчеты, проведенные в ходе работы, а также результаты этих расчетов.
- 5. Результаты работы прикладывается распечатка, полученных в результате работы схем, модулей, временных диаграмм и результаты замеров временных задержек, возникающих при работе схемы, на каждом переключении с указанием кода переключения.
- 6. Выводы пункт содержит перечень решенных в ходе работы задач и достигнутых целей, а также проблемы, возникшие в ходе работы.

Обратить внимание:

- 1. Отчет принимается только в бумажном виде. Т.е. отчет должен быть полностью набран на компьютере и распечатан. Отчеты в электронном виде рассматриваться не будут.
- 2. Листы отчета должны быть пронумерованы и скреплены между собой.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФГБОУ ВО «АЛТАЙСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

КАФЕДРА ВТиЭ

Отчет по лабораторной работе №_ по курсу «Схемотехника ЭВМ»

« Тема лабораторной работы »

Выполнил	•
студент	группы
	Иванов И.И.
Проверил:	доцент
	Шмидт В.В.