SEMANTIC RELATION EXTRACTION AND CLASSIFICATION IN SCIENTIFIC PAPERS

ERIK KRISTIAN JANEZIC

IMPORTANCE

Autonomous knowledge extraction from sceintific papers

Generation and reall time updating of knowledge semantic networks

Processing complex scientific queries

TASK

- SemEval 2018
- Extraction and classification of relations in abstracts of scientific papers
- Sub-tsks:
 - Classification on clean data
 - Classification on noisy data
 - Relation extraction

DATA

350 abstracts from different scientific fields

• Entities:

<text id="H01-1001"> <title>Activity detection for information access to oral
communication</title> <abstract> <entity id="H01-1001.1">Oral communication</
entity> is ubiquitous and carries important information yet it is also time
consuming to document. Given the development of <entity id="H01-1001.2">
storage media and networks</entity> one could just record and store a <entity
id="H01-1001.3">conversation</entity> for documentation. The question is,
however, how an interesting information piece would be found in a <entity id="
H01-1001.4">large database</entity> . Traditional <entity id="H01-1001.5">
information retrieval techniques</entity> use a <entity id="H01-1001.6">

Relations:

- USAGE(H01-1001.5,H01-1001.7,REVERSE)
- USAGE(H01-1001.9,H01-1001.10)
- PART_WHOLE(H01-1001.14,H01-1001.15,REVERSE)
- MODEL-FEATURE(H01-1017.4,H01-1017.5)

• Unbalanced relations data:

USAGE RES	ULT MODEL-FEATU	JRE PART-WHOLE	TOPIC	COMPARE
483 7	2 326	234	18	95

LSTM MODEL

- 1 layered LSTM
- 64 dimensional hidden state
- Log-softmax transformation of the last hidden layer
- Training
 - Weighted negative log likelihood loss function
 - Weights for each relation class were calculated by: numAllRelations/numRelation
 - Stohastic gradient descent with ADAM optimization

DATA PREPARATION

- GloVe 50 dimensional embeddings
- Mapping each word to its appropriate embedding
- If word is missing in the embedding vocabulary, ignore it

RESULTS

LOSS USAGE

PART-WHOLE

RESULT

MODEL-FEATURE

COMPARE

TOPIC

MACRO AVERAGE

FEATURE PLANS

Include POS tags and WordNet descriptions in word rpresentations

Expermient with combination of CNNs and LSTMS

• Research sparse word representations and hierarchical temporal memory in more detile and see how it could be used in combination with other models