Kalman Filter-Based Statistical Arbitrage: A Dynamic Pairs Trading Strategy

Chong Tin Tak

IEDA3180 - Data-Driven Portfolio Optimisation The Hong Kong University of Science and Technology

7 May 2025

Introduction: The Quest for Market Neutrality

 Goal: Develop & evaluate a dynamic, market-neutral pairs trading strategy.

• Why Pairs Trading?

- Exploit temporary price divergences between related assets (cointegration).
- Aim for reduced dependence on market direction.

• The Challenge:

- Asset relationships aren't static they drift!
- Static OLS models fail to adapt \rightarrow Risk exposure.

Our Solution: The Kalman Filter

- Dynamically estimates changing relationships (hedge ratio β , intercept α) in real-time.
- Leads to a more adaptive & robust strategy.
- Example Pair: CL (Colgate) vs GIS (General Mills) [Consumer Staples]

Methodology: Finding the Right Pair (CL & GIS)

Rigorous Selection Process (In-Sample: 2017-2021):

- Screened Consumer Staples sector stocks.
- 2 Tested pairs using Engle-Granger (p < 0.05).
- **3** Confirmed spread stationarity with ADF test (p < 0.05).
- Checked Half-Life (CL/GIS: 26.3 days viable range).

Visual Diagnostics (In-Sample):

Methodology: Dynamic Hedging & Trading Logic

Kalman Filter in Action:

- Models: Spread = $CL_t (\beta_t \times GIS_t + \alpha_t)$
- Estimates time-varying β_t (hedge) & α_t (level).

Trading Signal: Z-Score of dynamic KF Spread

- Z = (Spread Roll Mean) / Roll Std Dev (60d Window)
- Trade Rules: Enter @ +/- 2.0 Z Exit @ +/- 0.5 Z

Results: Out-of-Sample Performance (2022-2024)

The Real Test: Performance on unseen data.

Strategy	CAGR	Ann. Vol.	Sharpe	Max DD	Calmar	Trades
Kalman Filter	0.067	0.053	1.259	-0.035	1.938	36
Bench: SPY	0.013	0.195	0.165	-0.245	0.054	0
Bench: CL	-0.005	0.184	0.065	-0.182	-0.028	0
Bench: GIS	0.014	0.205	0.168	-0.309	0.044	0
Bench: Static OLS	0.007	0.061	0.147	-0.073	0.099	20

Key Highlights:

- Excellent Risk-Adjusted Return:
 KF Sharpe (1.26) vs SPY (0.17) & Static OLS (0.15)
- Superior Risk Control: KF Max Drawdown (-3.5%) vs SPY (-24.5%)!
- KF Advantage: Dynamic approach significantly outperforms static model & benchmarks OOS.

Results: Visual Evidence (Out-of-Sample)

Message: Strategy delivers consistent returns while effectively managing risk.

Sensitivity & Robustness

Parameter Validation:

- Sensitivity analysis performed across key params (Window, Delta, Thresholds, Dynamic Mode).
- Optimal parameters (W=60, $\Delta=1e-06$, E=2.0, X=0.5) identified and used for final OOS results.

Conclusion: Why Use This Kalman Filter Approach?

Summary: Successfully implemented & validated a dynamic KF pairs trading strategy with strong OOS results.

Key Advantages Demonstrated:

- √ Adaptability: Tracks changing relationships where static models fail.
- ✓ Risk Control: Low volatility & minimal drawdown (-3.5%).
- ✓ **Performance:** Superior risk-adjusted returns (Sharpe **1.26**) vs benchmarks & static models.
- ✓ **Systematic:** Data-driven selection & tuning.

Value Proposition: This KF methodology offers a robust framework for statistical arbitrage, aiming for consistent, market-neutral returns with controlled risk.

- Thank You -