Прогнозирование градиента давления на приеме центробежного насоса для нефтегазовой промышленности

Студент: Ф. Гарбар

Научный руководитель: С. Абдуракипов

Введение

- Жидкость, поступает в колесо (2);
- При быстром вращении колеса жидкость между лопатками (3) быстро отбрасывается под действием центробежной силы: передача механической энергии лопаток жидкости;
- Согласно уравнению Бернулли сумма параметров системы постоянная, поэтому рост скорости жидкости влечет снижение давления в системе.

$$z + \frac{p}{\rho g} + \frac{w^2}{2g} = const$$

• Ожидаемо, что для исправной работы подобной системы необходимы современные способы прогнозирования и анализа данных.

Методология

- Для подбора оптимальных параметров были использованы:
- 1. LightGBM градиентный спуск на основе дерева решений (метрика L2);
- 2. RandomForestRegressor дерево решений, основанное на разбиении на случайные подвыборки с дальнейшим усреднением (метрика AUC);
- 3. Ridge Regression линейная регрессия с L2 регуляризацией.
- Библиотека Hyperopt для поиска гиперпараметров модели град. бустинга LightGBM и RFRegressor.
- Вместо прямого поиска перебором по сетке (GridSearch) можно использовать поиск на основе модели и перебирать нужные области пространства параметров (сетки) и быстрее сходиться к минимуму

Датасет и его обработка 1/3

- Период наблюдений: Июль 2019
- Разбиение по номеру скважины: **WELL_ID**
- Кол-во скважин: 17
- Моделирование осуществляется на 3-х time series
- Целевая переменная: **DSHORTT1138P2300058***
- Частота наблюдений 5 минут
- Данные нормализованы, используя min-max scaler:

$$x_{scaled} = \frac{x - x_{min}}{x_{max} - x_{min}}$$

- Наибольшая связь (по абсолютной величине) у целевой переменной DSHORTT1138P2300058
- 1) Т1138Р6000096: Наработка двигателя с момента последнего включения, сек
- 2) Т1138Р6000315: Время простоя двигателя с момента последнего выключения, сек
- 3) **Т1138Р4000064**: Загрузка двигателя, %
- **4) Т1138Р2600012**: Ток фазы A двигателя, A

Датасет и его обработка 2/3

Признак	Описание	Интервал значений	
T1138P6000096	Наработка двигателя с момента последнего включения, с	0-17100	
T1138P6000315	Время простоя двигателя с момента последнего выключения, с	0-86100	
DSHORTT1138P4000064	Средняя скорость изменения загрузки двигателя ЧАС, %/час	-49.2 - 79.2	
DSHORTT1138P2600012	Средняя скорость изменения тока фазы А двигателя в ЧАС, А/час	-21.12 - 21.6	
DSHORTT1205P2300000	Средняя скорость изменения давления в коллекторе ИУ в ЧАС, МПа/час	-0.38 - 3.45	
T1138P4000064	Загрузка двигателя, %	0 - 108	
T1138P2600012	Ток фазы А двигателя, А	0 - 37.60	
T1205P2300000	Давление в коллекторе измерительной установки, МПа	0.69 - 3.99	
DSHORTT1138P2300058	Средняя скорость изменения давления на приеме насоса в ЧАС, МПа/час	0.30 - 0.31	

Датасет и его обработка 3/3

Классическая схема кросс-валидации для TS

Равномерное добавление новых наблюдений к набору данных по мере "течения времени".

Недостатки:

- Первый синий фолд очень короткий по времени
- Большая дисперсия по метрикам в test фолдах (из-за сильно разного количества данных в train)
- Когда у вас много WELL_ID нужно сначала группировать по отдельным WELL_ID, а потом делить по времени это вне стандартного функционала sklearn. Time Series Split

Кастомная схема кросс-валидации для TS

Вся обучающая часть = **Июль месяц** для каждой **WELL_ID**

Результаты 1/3

Модель

MAPE average, %

LightGBM	0.0803
RandomForestRegressor	0.0781
Ridge Regression	0.0855

Модель

Best parameters (Скважина 14)

LightGBM	colsample_bytree	доля параметров для trian каждого дерева	0.9
	learning_rate	скорость обучения при град. спуске	0.09
	max_depth	глубина дерева решения	23
	min_child_weight	кол-во элементов нужных для образования "листа"	2
	subsample	доля данных, отбираемая для построения ветки дерева	0.81
RandomForestRe gressor	n_estimators	общее число деревьев	4
	max_depth	макс. глубина дерева	10
	max_features	макс. число features для наилучшего разделения	0.10
	min_samples_leaf	мин. число наблюдений в ноде	1
	min_samples_split	мин. число наблюдений для образования ноды	5

Результаты 2/3

Результаты 3/3

- Ridge Regression. Наибольшее влияние имеют следующие переменные:
 - 1. **Т1205Р2300000** Давление в установке, МПа (Знак +)
 - 2. Т1138Р4000064 Загрузка двигателя, % (Знак -)
 - 3. **DSHORTT1205P2300000** Средняя скорость изменения давления в коллекторе, МПа/час (Знак -)
 - 4. **DSHORTT1138P2600012** Средняя скорость изменения тока фазы A, А/час (Знак -)
- Отрицательное значение коэффициента говорит в пользу увеличения скорости прокачки (создание движущей силы).
- Наименьшее влияние имеют следующие переменные:
 - 1. Т1138Р6000096 Время простоя двигателя с момента последнего выключения, с
 - 2. Т1138Р6000096: Наработка двигателя с момента последнего включения, с
- Вклад в предсказание скорости изменения давления может быть мал ввиду не информативности переменных после выхода насоса на рабочие параметры добычи.

Выводы

Что уже сделано?

- Разработана модель на основе LGBoost, Random Forest и Ridge regression;
- Полученная ошибка значительно меньше условно принятой (5%);
- Результаты интерпретируемой модели согласуются с физическим смыслом.

Что можно улучшить?

- Применение Нейронной сети;
- Генерация новых параметров из имеющихся (библиотека tsfresh);
- Рассмотрение влияния новых внешних факторов.

Appendix 1/4

Light GB

```
'learning_rate' - скорость обучения при град. спуске;

'max_depth' - глубина дерева решения (во избежании чрезмерного роста дерева);

'min_child_weight' - мин. вес Гессиана/кол-во элементов нужных для образования "листа"; [1]

'colsample_bytree' - доля параметров (случайно выбранных), которые будут использоваться для

trian каждого дерева; [2]

'subsample' - bagging_fraction - доля данных, отбираемая для построения ветки дерева [3]

'n_estimators' - количество деревьев для fit [4]

'eval_metric': '12' - Евклидова метрика (среднеквадратичная ошибка) [5]
```

Random Forest

```
'min_samples_leaf' - мин. число наблюдений в ноде; [6]

'min_samples_split' - мин. число наблюдений для разбиения внутренней ноды;

'max_depth' - макс. глубина дерева;

'max_features' - макс. число features, которые следует учитывать при поиске наилучшего разделения
'n_estimators' - общее число деревьев;
```

'eval metric': 'auc' - площадь под кривой ROC (TPR vs. FPR) [7]

Appendix 2/4

- Библиотека <u>tsfresh</u> для генерации признаков из временного ряда
- Функция EfficientFCParameters() позволяет сгенерировать большое количество новых объясняющих признаков:
 - 1. Квантили
 - 2. Линейные тренды и агрегирующие функции от них
 - 3. Коэффициенты преобразования Фурье и их агрегаты
 - 4. Коэффициенты Вейвлет преобразования и их агрегаты
 - 5. Минимумы и максимумы функций их положения во времени

- Требует очень больших вычислительных мощностей
- Сгенерированные признаки слабоинтерпретируемы

Appendix 3/4

Appendix 4/4

- Метод определяет такие оси (РСА компоненты) в пространстве признаков, относительно которых дисперсия (информативность) максимальная.
- Оси должны быть ортогональны друг другу.
- Берем N компонент, которые описывают кумулятивную (например, 95%) дисперсию выборки.

