Вставка AVL-дерево. Общая схема

- 1. Выполнить вставку нового ключа обычным образом
- 2. Найти самое низкое место, в котором нарушается фактор баланса
- 3. Восстановить баланс с помощью поворотов и обновить факторы баланса у вершин

Вставка AVL-дерево. Пример 1

Выполнить вставку значения 4 в данное дерево и восстановить баланс, если он был нарушен.

Вставка AVL-дерево. Пример 2

Выполнить вставку значения 18 в данное дерево и восстановить баланс, если он был нарушен.

Вставка AVL-дерево. Пример 3

Выполнить вставку значения 7 в данное дерево и восстановить баланс, если он был нарушен.

В-дерево как самостоятельная структура

Самобалансирующиеся В-деревья представлены в 1970 г. Р. Байером, Е. МакКрейтом как средство для эффективного представления больших упорядоченных индексов.

- 1. Поддерживают упорядоченность данных и все стандартные операции
- 2. Вершина может содержать несколько ключей
- 3. Вершина может содержать несколько потомков

В-дерево определяется...

минимальной степенью ветвления $t \geq 2$ и набором правил:

- 1. Каждая вершина В-дерева содержит минимум t-1 ключей (кроме корня, в котором их может быть меньше)
- 2. Наибольшее число ключей в вершине В-дерева 2t-1
- 3. Ключи, хранящиеся в вершине В-дерева, отсортированы.
- 4. Количество потомков у каждой вершины В-дерева всегда на 1 больше количества ключей в узле
- 5. Все листья В-дерева располагаются на одном уровне

Вершина В-дерева


```
template<class T>
class Node {
    T *data;
    Node<T> **childPtrs;
    size_t t;
    size_t size;
    bool isLeaf;
    ... ;
```

t=2

Каждая вершина содержит минимум по одному ключу

Каждая вершина содержит максимум три ключа

Минимальное количество потомков – два

Максимальное количество потомков – четыре

t = 2

insert(2)

t = 2

insert(2)

t = 2

insert(2)
insert(5)
insert(-1)

t = 2

insert(2)
insert(5)
insert(-1)
insert(4)

-1		2		5	

t = 2

insert(2)

insert(5)

insert(-1)

t = 2

insert(2)

insert(5)

insert(-1)

t = 2

insert(2)
insert(5)
insert(-1)
insert(4)

-1		2		5	

Расщепляем вершину по медиане

t=2

insert(2)
insert(5)
insert(-1)
insert(4)

t=2

-1				5	

«Расщепляем» вершину по медиане insert(2)

insert(5)

insert(-1)

t = 2

insert(2)

insert(5)

insert(-1)

insert(4)

insert(-5)

t = 2

insert(2)

insert(5)

insert(-1)

insert(4)

insert(-5)

insert(6)

t = 2

insert(2)

insert(5)

insert(-1)

insert(4)

insert(-5)

insert(6)

t = 2

insert(2)

insert(5)

insert(-1)

insert(4)

insert(-5)

insert(6)

t = 2


```
insert(2)
```

insert(5)

insert(-1)

insert(4)

insert(-5)

insert(6)

insert(2)
insert(5)
insert(-1)
insert(4)
insert(-5)

insert(6)


```
insert(2)
insert(5)
insert(-1)
insert(4)
insert(-5)
```

insert(6)

- insert(2)
- insert(5)
- insert(-1)
- insert(4)
- insert(-5)
- insert(6)
- insert(7)
- insert(3)

t = 2


```
insert(2)
insert(5)
insert(-1)
insert(4)
insert(-5)
insert(6)
insert(7)
insert(3)
insert(3.7)
```


t = 2

```
insert(2)
insert(5)
insert(-1)
insert(4)
insert(-5)
insert(6)
insert(7)
insert(3)
insert(3.7)
```

insert(3.5)


```
insert(2)
```

t = 2

insert(2)
insert(5)

insert(-1)

insert(4)

insert(-5)

insert(6)

insert(7)

insert(3)

insert(3.7)

insert(3.5)

insert(2)
insert(5)
insert(-1)
insert(4)
insert(-5)

insert(6)
insert(7)

insert(3)
insert(3.7)

insert(3.5)

insert(2)
insert(5)
insert(-1)
insert(4)
insert(-5)
insert(6)

insert(7)

insert(3)

insert(3.7)

insert(3.5)

- 1. Ищем лист, в который потенциально можем записать вставляемое значение
- 2. Лист заполнен?
 - 1. НЕТ ищем правильную позицию в листе для вставки
 - 2. ДА расщепляем лист по медиане, которую выталкиваем «наверх» (в предка)

- 1. Ищем лист, в который потенциально можем записать вставляемое значение
- 2. Лист заполнен?
 - 1. НЕТ ищем правильную позицию в листе для вставки
 - 2. ДА расщепляем лист по медиане, которую выталкиваем «наверх» (в предка)

Выталкивание медианы в предка потенциально может привести к нескольким дополнительным выталкиваниям выше по дереву

По мере локализации листовой вершины для записи вставляемого значения выполняем т.н. упреждающее расщепление всех уже заполненных вершин

2-3-4 дерево

В-дерево с доп. ограничениями

В-дерево с минимальной степенью ветвления t=2 также называется 2-3-4 деревом по количеству потомков, которое может иметь каждая вершина

Более общий вариант 2–3 дерева, чем тот, который был рассмотрен на лекции

В-дерево с доп. ограничениями

В-дерево с минимальной степенью ветвления t=2 также называется 2-3-4 деревом по количеству потомков, которое может иметь каждая вершина

НЕТ ОГРАНИЧЕНИЙ НА ЛОКАЛИЗАЦИЮ КРАСНЫХ ВЕРШИН

при работе с **красно**—черным деревом можно пользоваться его изометрией как с 2–3, так и с 2–3–4 деревом

Для набора ключей $A = \{10, 85, 15, 70, 20, 60, 30, 50\}$

- Построить **красно-черное** дерево по A
- Построить 2-3 и 2-3-4 дерево по A

Выполнять балансировку при необходимости