Grid Computing Unit - 1

By G. Raghuraman

Introduction

- The innovative approach to computing can be compared with large power "Utility" grid.
- Grid computing openly seeks and is capable of adding infinite number of computing devices, adding the computing capability and problem resolution tasks.

Use case scenarios

- Financial Organizations
- Study of atmospheric ozone layer by scientists
- Online multiplayer game scenarios
- Studying natural disaster by Government

Grid Computing provides

- Highly scalable
- Highly secure
- Extremely high performance mechanisms

For discovering, negotiating access to remote computing resources in a seamless manner.

Grid computing utilities are available "On Demand"

Definition

- "A Computational Grid is a hardware and software infrastructure that provides dependable, consistent, pervasive and inexpensive access to high end computational capabilities"
- There are open standards throughout the grid implementation, which also accommodate a variety of other open standards based protocols and frameworks.

Foundations of Grid Computing

- Coordinated Resources
 - Avoid Centralized control
 - Provide infrastructure for coordination based on policies and SLA
- Open Standards protocols & frameworks
 - Interoperability and integration facilities
 - Standards applied for resource discovery, access & Coordination
- Quality of Service (QoS)

Early Grid activities

Derivatives of Grids

- Compute Grids
- Data Grids
- Science Grids
- Access Grids
- Knowledge Grids
- Cluster Grids
- Tera Grids
- Commodity Grids

Key value of Grid

User Satisfaction

Measured based on

- Availability
- Performance
- Simplicity of access
- Management aspects
- Business values
- Flexibility in pricing

Functional areas

Data

The Core functional data requirements for Grid computing applications are

- the ability to integrate multiple distributed, heterogeneous and independently managed data sources
- the ability to provide efficient data transfer mechanisms
- the ability to provide data checking, replication mechanism to reduce network traffic
- the ability to provide necessary data discovery mechanisms
- the ability to implement data encryption and integrity checks
- the ability to provide backup / restore mechanism

Computation

The core functional computational requirements for grid applications are

- the ability to allow for independent management of computing resources
- the ability to provide mechanisms that can be intelligently and transparently select computing resources
- the understanding of current and predicted loads, resource availability, dynamic resource configuration and provisioning
- Failure detection and Failover mechanisms
- Ensure appropriate security mechanisms

Current Grid Activities

Virtual Organization

- This application concept of coordinated resource sharing includes any resource available within a virtual organization, including computing power, data, hardware, software and applications, networking services and any other forms of computing resource attainment
- The virtual organizations manage their resources and typically will provision additional resources on an "as needed" basis

Requirements needed for Grid computing architectures utilized by virtual organizations

Resource categories

- 1. The need for dynamic discovery of computing resources
- 2. The immediate allocation and provisioning of these resources
- 3. The management of these resources to meet the required SLA's
- 4. The provisioning of multiple autonomic features like self diagnosis, self healing, self configuring and self management
- 5. The provisioning of secure access methods

Requirements needed for Grid computing architectures utilized by virtual organizations

- Virtual Organizations must be capable of providing facilities
 - 1. The formation of virtual task forces or groups
 - 2. The dynamic collection of resources from heterogeneous providers
 - 3. The dynamic identification and automatic problem resolution
 - 4. The dynamic provisioning and management capabilities of resources
 - 5. The formation of secured federation and common management model
 - 6. The secure delegation of user credentials and identity mapping to the local domains
 - 7. The management of resources including utilizations and allocation to meet a budget and other economic criteria

Requirements needed for Grid computing architectures utilized by virtual organizations

- User applications must be able to perform
 - 1. The clear unambiguous identification of problem
 - 2. The identification and mapping of resources
 - 3. The ability to sustain the required level of QoS
 - 4. The capability to collect feedback regarding the resources

An Overview of Grid Business Areas

Business benefits

- 1. Acceleration of implementation time frames
- 2. Improved productivity
- 3. Allowing widely dispersed departments to create VO to share data
- 4. Robust and infinitely flexible infrastructures
- 5. Providing instantaneous access to massive computing and data resources
- 6. Leveraging existing capital expenditures investments and operational expenditure investments
- 7. Avoiding common pitfalls of over provisioning and incurring excess costs

Major Business areas

- Life sciences
- Financial services
- Higher education
- Engineering services
- Government
- Collaborative games

Grid Applications

- Schedulers
- Resource Brokers
- Load balancing
- Grid Portals
- Integrated Solutions

Schedulers

- Management of Jobs
 - Allocating resources
 - Partitioning of jobs
 - Data Management
 - Event Correlation
 - Service level management

 Local Scheduler

 Job

 Meta Scheduler

 Job

 Job

Job

Cluster Scheduler

Schedulers

- Schedulers must provide capabilities for
 - Advanced resource reservation
 - SLA validation and enforcement
 - Job and resource policy Management and enforcement for best turnaround times
 - Monitoring job executions and status
 - Rescheduling and corrective actions of partial failover situations

Resource Broker

- Provides pairing services between service requesters and service providers
- Pairing enables the selection of best available resources from service provider
- The resource brokers collect information and use this in pairing process (info. – resource availability, usage models, capabilities and pricing info)

Resource Broker

Load Balancing

- Avoid processing delays, commitment of resources
- Failure detection and management

Grid Portals

- Similar to Web portals
- Personalized Graphical user interface

THANK YOU