Simulating models of polymer collapse

Thomas Prellberg

School of Mathematical Sciences Queen Mary, University of London

COVLAT06 June 29 – July 1, 2006

Outline

- Polymers in solution:
 - Equilibrium statistical mechanics, lattice models, exponents
- Algorithm:
 - Stochastic growth & flat histogram (PERM/flatPERM)
- Simulations and results:
 - Interacting self-avoiding walks/trails (ISAW/ISAT)
 - Site-weighted random walks (SWRW): a tale of surprises

Polymers in Solution

Modelling of Polymers in Solution

- Polymers: long chains of monomers
- "Coarse-Graining": beads on a chain
- "Excluded Volume": minimal distance between beads
- Contact with solvent: effective short-range interaction
- Good/bad solvent: repelling/attracting interaction

Modelling of Polymers in Solution

- Polymers: long chains of monomers
- "Coarse-Graining": beads on a chain
- "Excluded Volume": minimal distance between beads
- Contact with solvent: effective short-range interaction
- Good/bad solvent: repelling/attracting interaction

A Model of a Polymer in Solution

 $Random\ Walk\ +\ Excluded\ Volume\ +\ Short\ Range\ Attraction$

Polymer Collapse, Coil-Globule Transition, Θ-Point

length N, spatial extension $R \sim N^{\nu}$

 $T > T_c$: good solvent swollen phase (coil)

 $T = T_c$: Θ -polymer

 $T < T_c$: bad solvent collapsed phase (globule)

Critical Exponents

Length scale exponent ν : $R_N \sim N^{\nu}$

d	Coil	Θ	Globule
2	3/4	4/7	1/2
3	0.587	1/2(log)	1/3
4	$1/2(\log)$	1/2	1/4

Critical Exponents

Length scale exponent ν : $R_N \sim N^{\nu}$

d	Coil	Θ	Globule
2	3/4	4/7	1/2
3	0.587	1/2(log)	1/3
4	$1/2(\log)$	1/2	1/4

Entropic exponent γ : $Z_N \sim \mu^N N^{\gamma-1}$

d	Coil	Θ	Globule
2	43/32	8/7	different scaling form
3	1.15	1(log)	$Z_{N} \sim \mu^{N} \mu_{s}^{N^{\sigma}} N^{\gamma-1}$
4	1(log)	1	$\sigma = (d-1)/d$ (surface)

Crossover Scaling at the Θ-Point

Crossover exponent ϕ

$$R_N \sim N^{\nu} \mathcal{R}(N^{\phi} \Delta T)$$
 $Z_N \sim \mu^N N^{\gamma - 1} \mathcal{Z}(N^{\phi} \Delta T)$

Specific heat of
$$Z_N$$
 at $T = T_c$: $C_N \sim N^{\alpha \phi}$

$$2 - \alpha = 1/\phi$$
 tri-critical scaling relation

Crossover Scaling at the Θ-Point

Crossover exponent ϕ

$$R_N \sim N^{\nu} \mathcal{R}(N^{\phi} \Delta T)$$
 $Z_N \sim \mu^N N^{\gamma - 1} \mathcal{Z}(N^{\phi} \Delta T)$

Specific heat of Z_N at $T = T_c$: $C_N \sim N^{\alpha \phi}$

$$2 - \alpha = 1/\phi$$
 tri-critical scaling relation

Poor man's mean field theory of the Θ -Point for $d \ge 3$

Balance between "excluded volume" and attractive interaction

- \Rightarrow polymer behaves like random walk: u=1/2, $\gamma=1$
- \Rightarrow weak thermodynamic phase transition $\alpha = 0$, i.e. $\phi = 1/2$

Crossover Scaling at the Θ-Point

Crossover exponent ϕ

$$R_N \sim N^{\nu} \mathcal{R}(N^{\phi} \Delta T)$$
 $Z_N \sim \mu^N N^{\gamma - 1} \mathcal{Z}(N^{\phi} \Delta T)$

Specific heat of
$$Z_N$$
 at $T = T_c$: $C_N \sim N^{\alpha \phi}$

$$2 - \alpha = 1/\phi$$
 tri-critical scaling relation

Poor man's mean field theory of the Θ -Point for $d \ge 3$

Balance between "excluded volume" and attractive interaction

- \Rightarrow polymer behaves like random walk: $\nu = 1/2$, $\gamma = 1$
- \Rightarrow weak thermodynamic phase transition $\alpha = 0$, i.e. $\phi = 1/2$

The Canonical Lattice Model

Interacting Self-Avoiding Walk (ISAW)

- Physical space \rightarrow simple cubic lattice \mathbb{Z}^3
- Polymer → self-avoiding random walk (SAW)
- ullet Quality of solvent o short-range interaction ϵ

The Canonical Lattice Model

Interacting Self-Avoiding Walk (ISAW)

- \bullet Physical space \to simple cubic lattice \mathbb{Z}^3
- Polymer → self-avoiding random walk (SAW)
- ullet Quality of solvent o short-range interaction ϵ

Partition function:

$$Z_N(\omega) = \sum_m C_{N,m} \omega^m$$

 $C_{N,m}$ is the number of SAWs with N steps and m interactions

The Canonical Lattice Model

Interacting Self-Avoiding Walk (ISAW)

- Physical space \rightarrow simple cubic lattice \mathbb{Z}^3
- Polymer → self-avoiding random walk (SAW)
- ullet Quality of solvent o short-range interaction ϵ

Partition function:

$$Z_N(\omega) = \sum_m C_{N,m} \omega^m$$

 $C_{N,m}$ is the number of SAWs with N steps and m interactions

Thermodynamic Limit for a dilute solution:

$$V=\infty$$
 and $N\to\infty$

Theory and Models

- Theoretical results from e.g.
 - ullet d=2: Coulomb gas methods, conformal invariance, SLE, ...
 - $d \ge 3$: self-consistent mean field theory
 - field theory: $\phi^4 \phi^6$ O(n)-model for $n \to 0$

Theory and Models

- Theoretical results from e.g.
 - d=2: Coulomb gas methods, conformal invariance, SLE, ...
 - $d \ge 3$: self-consistent mean field theory
 - field theory: $\phi^4 \phi^6$ O(n)-model for $n \to 0$

A Model of a Polymer in Solution

 ${\sf Random\ Walk+Excluded\ Volume+Short\ Range\ Attraction}$

Theory and Models

- Theoretical results from e.g.
 - ullet d=2: Coulomb gas methods, conformal invariance, SLE, ...
 - $d \ge 3$: self-consistent mean field theory
 - field theory: $\phi^4 \phi^6$ O(n)-model for $n \to 0$

A Model of a Polymer in Solution

Random Walk + Excluded Volume + Short Range Attraction

- Canonical model: interacting self-avoiding walks (ISAW)
- Alternative model: interacting self-avoiding trails (ISAT)
 vertex avoidance (walks) ⇔ edge avoidance (trails)

nearest-neighbour interaction ⇔ contact interaction

- simulations of ISAW confirm the theoretical predictions
- simulations of ISAT confound the theoretical predictions

- simulations of ISAW confirm the theoretical predictions
- simulations of ISAT confound the theoretical predictions

Length scale exponent ν for \mathbb{Z}^2 :

Model	Coil	Θ	Globule
ISAW	3/4	4/7	1/2
ISAT	3/4	$1/2(\log)$	1/2

Entropic exponent γ for \mathbb{Z}^2 :

Crossover exponent ϕ for \mathbb{Z}^2 :

Model	Coil	Θ
ISAW	43/32	8/7
ISAT	43/32	1(log)

Model	
ISAW	3/7
ISAT	0.84(3)

Simulations of ISAT

• At critical T_c , ISAT can be modelled as kinetic growth; simulations up to $N=10^6$

AL Owczarek and T Prellberg, J. Stat. Phys. 79 (1995) 951-967

• Pruned Enriched Rosenbluth Method enables simulations for $T \neq T_c$; new simulations up to $N = 2 \cdot 10^6$

AL Owczarek and T Prellberg, Physica A, in print

• On the square lattice, SAW = SAT but ISAW \neq ISAT

- On the square lattice, SAW = SAT but ISAW \neq ISAT
- On the diamond lattice, ISAT shows a bimodal distribution characteristic of a first-order transition, and at T_c (left peak) one finds purely Gaussian behaviour

T Prellberg and AL Owczarek, Phys. Rev. E 51 (1995) 2142-214

(figure from) P Grassberger and R Hegger, J. Phys. A 29 (1996) 279-288

- On the square lattice, SAW = SAT but ISAW \neq ISAT
- On the diamond lattice, ISAT shows a bimodal distribution characteristic of a first-order transition, and at T_c (left peak) one finds purely Gaussian behaviour

T Prellberg and AL Owczarek, Phys. Rev. E 51 (1995) 2142-214

(figure from) P Grassberger and R Hegger, J. Phys. A 29 (1996) 279-288

10 years later, this is still not understood!

- ISAW/ISAT contain on-site and nearest-neighbour interactions
- The field-theory is formulated with purely local interactions
- Field theory is equivalent to Edwards model:
 - Brownian motion + suppression of self-intersections + attractive interactions
 - field theory is $\phi^4 \phi^6$ O(n)-model for $n \to 0$

- ISAW/ISAT contain on-site and nearest-neighbour interactions
- The field-theory is formulated with purely local interactions
- Field theory is equivalent to Edwards model:
 - Brownian motion + suppression of self-intersections + attractive interactions
 - field theory is $\phi^4-\phi^6$ $\mathit{O(n)} ext{-model}$ for $\mathit{n} \to 0$

Formulate a lattice model with purely local interactions

- ISAW/ISAT contain on-site and nearest-neighbour interactions
- The field-theory is formulated with purely local interactions
- Field theory is equivalent to Edwards model:
 - Brownian motion + suppression of self-intersections + attractive interactions
 - field theory is $\phi^4 \phi^6$ $\mathit{O(n)} ext{-model}$ for n o 0

Formulate a lattice model with purely local interactions

- Site-weighted random walk:
 - lattice random walk weighted by multiple visits of sites
 - few visits to same site are favoured (attractive interaction)
 - too many visits are disfavoured (excluded volume)

- ISAW/ISAT contain on-site and nearest-neighbour interactions
- The field-theory is formulated with purely local interactions
- Field theory is equivalent to Edwards model:
 - Brownian motion + suppression of self-intersections + attractive interactions
 - field theory is $\phi^4 \phi^6$ $\mathit{O(n)} ext{-model}$ for n o 0

Formulate a lattice model with purely local interactions

- Site-weighted random walk:
 - lattice random walk weighted by multiple visits of sites
 - few visits to same site are favoured (attractive interaction)
 - too many visits are disfavoured (excluded volume)

(technically, this is an extension of a Domb-Joyce model)

Site-Weighted Random Walk

• An *N*-step random walk $\xi = (\vec{\xi}_0, \vec{\xi}_1, \dots, \vec{\xi}_N)$ induces a density-field ϕ_{ξ} on the lattice sites \vec{x} via

$$\phi_{\xi}(\vec{x}) = \sum_{i=0}^{N} \delta_{\vec{\xi}_i, \vec{x}}$$

Site-Weighted Random Walk

• An *N*-step random walk $\xi = (\vec{\xi}_0, \vec{\xi}_1, \dots, \vec{\xi}_N)$ induces a density-field ϕ_{ξ} on the lattice sites \vec{x} via

$$\phi_{\xi}(\vec{x}) = \sum_{i=0}^{N} \delta_{\vec{\xi}_i, \vec{x}}$$

 \bullet Define the energy as a functional of the field $\phi=\phi_\xi$

$$E(\xi) = \sum_{\vec{x}} f(\phi(\vec{x}))$$

Site-Weighted Random Walk

• An *N*-step random walk $\xi = (\vec{\xi}_0, \vec{\xi}_1, \dots, \vec{\xi}_N)$ induces a density-field ϕ_{ξ} on the lattice sites \vec{x} via

$$\phi_{\xi}(\vec{x}) = \sum_{i=0}^{N} \delta_{\vec{\xi}_i, \vec{x}}$$

 \bullet Define the energy as a functional of the field $\phi=\phi_\xi$

$$E(\xi) = \sum_{\vec{x}} f(\phi(\vec{x}))$$

• Incorporate self-avoidance and attraction via choice of f(t). For example, f(0) = f(1) = 0,

$$f(2) = \varepsilon_1$$
, $f(3) = \varepsilon_2$,

and
$$f(t \ge 4) = \infty$$
.

Site-Weighted Random Walk (ctd)

Site-Weighted Random Walk (ctd)

Partition function

$$Z_N(\beta) = \sum_{m_1,m_2} C_{N,m_1,m_2} e^{-\beta(m_1\varepsilon_1 + m_2\varepsilon_2)}$$

with density of states C_{N,m_1,m_2}

Site-Weighted Random Walk (ctd)

Partition function

$$Z_N(\beta) = \sum_{m_1,m_2} C_{N,m_1,m_2} e^{-\beta(m_1\varepsilon_1 + m_2\varepsilon_2)}$$

with density of states C_{N,m_1,m_2}

- Simulate two variants of the model on the square and simple cubic lattice
 - random walks with immediate reversal allowed (RA2, RA3)
 - random walks with immediate reversal forbidden (RF2, RF3)

The Algorithm and Simulations

PERM: "Go With The Winners"

PERM = Pruned and Enriched Rosenbluth Method

Grassberger, Phys Rev E 56 (1997) 3682

Rosenbluth Method: kinetic growth

PERM: "Go With The Winners"

PERM = Pruned and Enriched Rosenbluth Method

Grassberger, Phys Rev E 56 (1997) 3682

Rosenbluth Method: kinetic growth

- Enrichment: weight too large → make copies of configuration
- Pruning: weight too small → remove configuration occasionally

PERM: "Go With The Winners"

PERM = Pruned and Enriched Rosenbluth Method

Grassberger, Phys Rev E 56 (1997) 3682

Rosenbluth Method: kinetic growth

- ullet Enrichment: weight too large o make copies of configuration
- Pruning: weight too small → remove configuration occasionally

State-of-the-art: flatPERM = flat histogram PERM

M Bachmann and W Janke, PRL 91 (2003) 208105

T Prellberg and J Krawczyk, PRL 92 (2004) 120602

- flatPERM samples a generalised multicanonical ensemble
- Determines the whole density of states in one simulation!

• Four simulations: reversal allowed/forbidden, 2d/3d

- Four simulations: reversal allowed/forbidden, 2d/3d
- Density of states C_{N,m_1,m_2} accessible up to N=256

- Four simulations: reversal allowed/forbidden, 2d/3d
- Density of states C_{N,m_1,m_2} accessible up to N=256
- Perform partial summation, e.g. over m_2

$$\bar{C}_{N,m_1}(\beta_2) = \sum_{m_2} C_{N,m_1,m_2} e^{\beta_2 m_2}$$

- Four simulations: reversal allowed/forbidden, 2d/3d
- Density of states C_{N,m_1,m_2} accessible up to N=256
- Perform partial summation, e.g. over m₂

$$\bar{C}_{N,m_1}(\beta_2) = \sum_{m_2} C_{N,m_1,m_2} e^{\beta_2 m_2}$$

• Density of states $\bar{C}_{N,m_1}(\beta_2)$ accessible up to N=1024 (for β_2 fixed)

SWRW in 3d, reversal forbidden (RF3)

Phase diagram

SWRW in 3d, reversal forbidden (RF3)

Phase diagram

2nd order transition

1st order transition

SWRW in 3d, reversal forbidden (RF3)

Phase diagram

bimodal distribution

$$\beta_2 = -1.0$$
:

2nd order transition

$$\beta_1 = -1.0$$
:

1st order transition

SWRW in 2d, reversal allowed (RA2)

We find a smooth crossover:

Both 1st order and 2nd order transitions have disappeared!

SWRW in 2d, reversal allowed (RA2)

We find a smooth crossover:

Both 1st order and 2nd order transitions have disappeared!

RA3 and RF2

2nd order transition disappears as in RA2 1st order transition weakens

SWRW summarised

Model	2d	3d
RA	no transitions	one transition
RF	one transition	two transitions

SWRW summarised

Model	2d	3d
RA	no transitions	one transition
RF	one transition	two transitions

Unexpected and intriguing behaviour

Changing the dimension and/or allowing reversals removes the phase transition

SWRW summarised

Model	2d	3d
RA	no transitions	one transition
RF	one transition	two transitions

Unexpected and intriguing behaviour

Changing the dimension and/or allowing reversals removes the phase transition

Many open Questions remain ...

- Polymers in solution:
 - Random Walk + Excluded Volume + Attraction?

- Polymers in solution:
 - Random Walk + Excluded Volume + Attraction?
- Algorithm:
 - Stochastic growth & flat histogram (PERM/flatPERM)

- Polymers in solution:
 - Random Walk + Excluded Volume + Attraction?
- Algorithm:
 - Stochastic growth & flat histogram (PERM/flatPERM)
- Simulations and results:
 - ISAW versus ISAT
 - Site-weighted random walks (SWRW)

- Polymers in solution:
 - Random Walk + Excluded Volume + Attraction?
- Algorithm:
 - Stochastic growth & flat histogram (PERM/flatPERM)
- Simulations and results:
 - ISAW versus ISAT
 - Site-weighted random walks (SWRW)

An unfinished story!

Acknowledgements

Joined work with A.L. Owczarek, A. Rechnitzer, J. Krawczyk

- The algorithm:
 - T. Prellberg and J. Krawczyk, "Flat histogram version of the pruned and enriched Rosenbluth method," Phys. Rev. Lett. 92 (2004) 120602; selected for Virt. J. Biol. Phys. Res. 7 (2004)
 - T. Prellberg, J. Krawczyk, and A. Rechnitzer, "Polymer simulations with a flat histogram stochastic growth algorithm," Computer Simulation Studies in Condensed Matter Physics XVII, pages 122-135, Springer Verlag, 2006

Acknowledgements

Joined work with A.L. Owczarek, A. Rechnitzer, J. Krawczyk

The algorithm:

- T. Prellberg and J. Krawczyk, "Flat histogram version of the pruned and enriched Rosenbluth method," Phys. Rev. Lett. 92 (2004) 120602; selected for Virt. J. Biol. Phys. Res. 7 (2004)
- T. Prellberg, J. Krawczyk, and A. Rechnitzer, "Polymer simulations with a flat histogram stochastic growth algorithm," Computer Simulation Studies in Condensed Matter Physics XVII, pages 122-135, Springer Verlag, 2006

Current simulations:

- A. L. Owczarek and T. Prellberg, "Collapse transition of self-avoiding trails on the square lattice," Physica A, in print
- J. Krawczyk, T. Prellberg, A. L. Owczarek, and A. Rechnitzer, "Self-avoiding random walk with multiple site weightings and restrictions," Phys. Rev. Lett. 96 (2006) 240603

Acknowledgements

Joined work with A.L. Owczarek, A. Rechnitzer, J. Krawczyk

The algorithm:

- T. Prellberg and J. Krawczyk, "Flat histogram version of the pruned and enriched Rosenbluth method," Phys. Rev. Lett. 92 (2004) 120602; selected for Virt. J. Biol. Phys. Res. 7 (2004)
- T. Prellberg, J. Krawczyk, and A. Rechnitzer, "Polymer simulations with a flat histogram stochastic growth algorithm," Computer Simulation Studies in Condensed Matter Physics XVII, pages 122-135, Springer Verlag, 2006

Current simulations:

- A. L. Owczarek and T. Prellberg, "Collapse transition of self-avoiding trails on the square lattice," Physica A, in print
- J. Krawczyk, T. Prellberg, A. L. Owczarek, and A. Rechnitzer, "Self-avoiding random walk with multiple site weightings and restrictions," Phys. Rev. Lett. 96 (2006) 240603

Things to come:

 J. Krawczyk, A. L. Owczarek, T. Prellberg, and A. Rechnitzer, "Simulation of Lattice Polymers with Hydrogen-Like Bonding," preprint

The End