

STM326

موضوعات المحاضرة:

- □ مبدأ عمل البرتوكول I2C
- مزايا بروتوكول الاتصال التسلسلي 12C في متحكمات STM32 □
 - □ المخطط الصندوقي لوحدة I2C في متحكمات STM32 □
 - □ أنماط العمل المختلفة للوحدة I2C في متحكمات STM32 □
 - □ دوال مكتبة HAL المستخدمة للتعامل مع وحدة □
 - صبط إعدادات وحدة I2C في متحكمات STM32

مقارنة بين بروتوكولات الاتصال التسلسلي الشائعة:								
	RS232	RS485	I2C	SPI	M-wire	1-wire	USB	CAN
Sync/Async	Async	Async.	Sync.	Sync.	Sync.	Async.	Async.	Async.
Туре	peer-peer	master/slaves	multi-master	multi-master	master/slaves	master/slaves	host/device	multi-master
Duplex	full	half	half	full	full	half	half	half
Signaling	single-ended	Differential	single-ended	single-ended	single-ended	single-ended	Differential	Differential
Max Devices No.	2	32, 128, 256	40 (cap=400pf)	8 (cap, circuit)	8 (cap, circuit)	20 (cap, power)	127 per controller	2048
Data Rate	Up to 115Kbps	Up to 35Mbps	Std.: 100kbps Fast: 400kbps Hi: 3.4Mbps	Up to 10Mbps	Up to 1Mbps	Std.: 16.3Kbps Overdrive: 142kbps	Low: 1.5Mbps Full: 12Mbps Hi : 480Mbps	Up to 1Mbps
Max. Length	15m	1200m (at 100kbps)	6m	3m	3m	300m	5m	1000m (at 62kbps)
Pin Count	2* (Tx, Rx)	2 (A, B)	2 (SDA, SCL)	3 + SS* (SI, SO, SCK)	3 + SS* (DI, DO, SK)	1 (IO)	2 (A+, A-)	2 (CAN_H, _L)
Interfacing	HW	HW	SW HW	HW SW	HW SW	HW & SW	protocol stack	HW & SW
Flow Control . Hexabitz	HW or SW - Spring 20	HW or SW 23 handshake	Acknowledge from slave	None	None	CRC, Pulling	Polling by controller	CSMA / CDAMP

I2C

Inter Integrated Circuit

بروتوكول الاتصال التسلسلي I²C (Inter Integrated Circuit)

- □ هو عبارة عن بروتوكول اتصال تسلسلي يُستخدم على نطاق واسع لتوصيل الدوائر المتكاملة الطرفية بالمتحكمات في الاتصالات قصيرة المدى
 - تم تطویره من قبل شرکة Philips فی أوائل 1980.

عبارة عن بروتوكول اتصال:

- 1. تسلسلي
- 2. متزامن
- Multi-Slave J Multi-Masters .3
 - 4. ثنائي الاتجاه
 - 5. نصف مزدوج الاتجاه

- □ في الحالة الخاملة تكون القيمة المنطقية على كلا الخطين "1°.
- □ كل جهاز موصول على هذا الناقل يملك عنوان فريد (Unique Address) يستخدم لتحديد جهاز الـ "Slave" المراد التخاطب معه.
 - □ العنوان الخاص بكل جهاز يكون مؤلف من 7 بتات وقد يكون بطول 10 بت. بالتالي إن
- الحد الأقصى لعدد Slaves يمكن أن يكون 128 لعنونة 7 بتات أو 1024 لعنونة 10 بتات.
 - □ يمكن أن يصل الطول الأعظمي لناقل 12C إلى 6 أمتار.

تنقل البيانات بأنماط سرعات مختلفة

السرعة	النمط
100 kbps	Standard Mode
400 kbps	Fast Mode
1 mbps	Fast Mode Plus
3.4 mbps	High-Speed Mode
5 mbps	Ultra-Fast Mode

النمطين Standard Mode و Fast Mode مدعومين بشكل واسع في معظم الأجهزة

تتكون رسالة I2C من بعض العناصر الأساسية (الشروط) التي تحدث على الناقل بشكل متسلسل:

1. تبدأ دائمًا بشرط بداية.

2. يتبع ذلك إطار يحوي عنوان الـ Slave المطلوب التواصل معه (7 بتات أو 10 بتات)

3. ثم بت قراءة / كتابة لتحديد ما إذا كان الماستر (الذي بدأ شرط كالملات للقراءة (1) أو الكتابة (0) إلى هذا الـ Slave الذي يحمل هذا العنوان. 4. إذا كان الـ Slave ذو العنوان المحدد في إطار العنوان موجود فسوف يعيد بت (0) للمصادقة ACK أو للتأكيد الإيجابي وإلا فإن حالة البت تكون (1) وهذا يعني تأكيد سلبي NACK أي أنه لايوجد Slave بهذا العنوان.

5. بعد ذلك، يتم إرسال البيانات عبارة عن بايت بايت ويكون كل بايت متبوعًا ببت ACK لتأكيد استقبال البيانات من المستقبل. وأخيرًا، يمكن للماستر إنهاء الاتصال عن طريق إرسال تسلسل شرط التوقف (F).

إذا كان بايت البيانات هو بايت كتابة على الـ Slave فإنه (أي الـ Slave) يقوم بالمصادقة على هذا البايت عبر بت المصادقة كلى هذا البايت عبر بت المصادقة كان بايت البيانات هو بايت قراءة من الـ Slave فإن الماستر هو الذي يقوم ما إذا كان بايت البيانات هو البايت عبر بت المصادقة على هذا البايت عبر بت المصادقة المحادقة على هذا البايت عبر بت المصادقة على هذا البايت عبر بت المصادقة على هذا البايت عبر بت المصادقة البايت عبر بت المصادقة على هذا البايت عبر بت المصادقة البايت البايت عبر بت المصادقة البايت عبر بت المصادقة البايت عبر بت المصادقة البايت البايت البايت

شرط بدء نقل البيانات: يقوم الماستر بسحب SDA إلى المستوى المنخفض ثم سحب SCL إلى المستوى المنخفض يشير هذا التسلسل إلى أن هذا الماستر يطالب بناقل SCL للاتصال، مما يجبر أجهزة الماستر الأخرى الموجودة على الانتظار وهذا يمنع حدوث تصادم.

شرط إيقاف نقل البيانات: يقوم الماستر بتحرير مستوى SCL بالتالي سوف تنتقل إلى المستوى المرتفع ثم يقوم بتحرير مستوى SDA. يشير هذا إلى حالة STOP. يؤدي هذا إلى تحرير الناقل للسماح لوحدات الماستر الأخرى بالتواصل أو للسماح لنفس الماستر بالتواصل مع جهاز آخر.

مثال كتابة البيانات في I2C

كتابة البيانات على المحول الرقمي التشابهي DAC80501

مثال كتابة البيانات في I2C

كتابة البيانات على المحول الرقمي التشابهي DAC80501

هذا المبدل يستخدم بروتوكول 12C لاستقبال البيانات الرقمية والتي تخزن في مسجل DAC ثم يتم تحويلها إلى قيمة تشابهية. إن هذا المبدل يحول القيم الرقمية بطول 16 بت إلى قيم تشابهية. بالتالي إن القيمة الواردة للمسجل تحتوي على بايتين.

- بفرض أن القيمة الرقمية هي 0x4CCD
 - وأن عنوان المبدل هو 1001001
- وعنوان المسجل DAC هو 1000 0000

عندها إن المخطط التالي يوضح إطار بيانات 12C في عملية الكتابة هذه.

مثال كتابة البيانات في I2C

مصادقات ACK يقوم بها الـ Slave

أنماط العمل المختلفة للوحدة I2C في متحكماتSTM32

- Slave transmitter
 - Slave receiver
- Master transmitter
 - Master receiver
- حيث يكون الوضع الافتراضي لوحدة I2C هو Slave mode ، كما يمكن أن تعمل
 - Polling, Interrupt, DMA

دوال مكتبة HAL المستخدمة للتعامل مع وحدة I2C في وضع الـ DMA

□ فحص حالة جهاز مرتبط على الناقل 12C:

HAL_I2C_IsDeviceReady (I2C_HandleTypeDef * hi2c, uint16_t DevAddress, uint32_t Trials, uint32_t Timeout);

- وتستخدم هذه الدالة للتأكد من وجود slave device على الناقل 12C وأنه يعمل بشكل جيد أم لا.

دوال مكتبة HAL المستخدمة للتعامل مع وحدة Polling

Master Transmission

HAL_I2C_Master_Transmit (I2C_HandleTypeDef * hi2c, uint16_t DevAddress, uint8_t* pData, uint16_t Size, uint32_t Timeout);

DevAddress عنوان الجهاز وهو مكون من 7 بت ويجب إزاحته نحو اليسار بمقدار بت واحد قبل استدعاء الطرفية للتحويل من 8 بت إلى 7 بت. pData: مؤشر للبيانات المراد إرسالها، Size: حجم البيانات، Timeout: مدة المهلة قبل فشل الإرسال

Master Reception

HAL_I2C_Master_Receive (I2C_HandleTypeDef * hi2c, uint16_t DevAddress, uint8_t* pData, uint16_t Size, uint32_t Timeout);

دوال مكتبة HAL المستخدمة للتعامل مع وحدة Polling

Slave Transmission

HAL_I2C_Slave_Transmit (I2C_HandleTypeDef * hi2c, uint8_t *
pData, uint16_t Size, uint32_t Timeout);

Slave Reception

HAL_I2C_Slave_Receive (I2C_HandleTypeDef * hi2c, uint8_t * pData, uint16_t Size, uint32_t Timeout);

دوال مكتبة HAL المستخدمة للتعامل مع وحدة I2C في وضع الـ Interrupt

Master Transmission

HAL_I2C_Master_Transmit_IT (I2C_HandleTypeDef * hi2c, uint16_t DevAddress, uint8_t * pData, uint16_t Size);

```
- بعد استدعاء هذه الدالة تقوم وحدة I2C ببدء عملية الإرسال لكامل البايتات الموجودة ضمن الـ buffer وعند الانتهاء يتم استدعاء التابع التالي:
```

void HAL_I2C_MasterTxCpltCallback (I2C_HandleTypeDef * hi2c)
{
 // TX Done .. Do Something!

دوال مكتبة HAL المستخدمة للتعامل مع وحدة I2C في وضع الـ Interrupt

Master Reception

HAL_I2C_Master_Receive_IT (I2C_HandleTypeDef * hi2c, uint16_t DevAddress, uint8_t * pData, uint16_t Size);

```
- بعد استدعاء هذه الدالة تقوم وحدة I2C ببدء عملية الاستقبال لكامل البايتات الموجودة ضمن ال- buffer وعند الانتهاء يتم استدعاء التابع التالي:
```

دوال مكتبة HAL المستخدمة للتعامل مع وحدة DMA

Master Transmission

HAL_I2C_Master_Transmit_DMA (I2C_HandleTypeDef * hi2c, uint16_t DevAddress, uint8_t * pData, uint16_t Size);

- بعد استدعاء هذه الدالة تقوم وحدة I2C ببدء عملية الإرسال لكامل البايتات الموجودة ضمن الـ buffer وعند الانتهاء يتم استدعاء التابع التالى:

void HAL_I2C_MasterTxCpltCallback (I2C_HandleTypeDef * hi2c)
{
 // TX Done .. Do Something!

دوال مكتبة HAL المستخدمة للتعامل مع وحدة DMA

```
Master Reception
HAL I2C Master Receive_DMA (I2C_HandleTypeDef * hi2c,
uint16 t DevAddress, uint8 t * pData, uint16 t Size);
- بعد استدعاء هذه الدالة تقوم وحدة I2C ببدء عملية الاستقبال لكامل البايتات الموجودة ضمن الـ
                                   buffer وعند الانتهاء يتم استدعاء التابع التالى:
void HAL I2C MasterRxCpltCallback (I2C HandleTypeDef * hi2c)
// RX Done .. Do Something!
```

دوال مكتبة HAL المستخدمة للتعامل مع وحدة 12C

- إذا أردنا ارسال أو استقبال بيانات من مسجلات محددة ضمن الجهاز المرسل له ، على سبيل المثال إذا أردنا إرسال بيانات إلى مسجلات محددة من ذاكرة eeprom متصلة مع المتحكم عبر الناقل 12C نستخدم الدوال التالية:

(polling لاستقبال البيانات (نمط

HAL_I2C_Mem_Read(I2C_HandleTypeDef * hi2c, uint16_t
DevAddress,uint16_t MemAddress,uint16_t MemAddSize,uint8_t *
pData,uint16_t Size, uint32_t Timeout)

حیث: dross

MemAddress: عنوان الذاكرة الداخلية ضمن الجهاز المرسل له

MemAddSize: حجم الذاكرة الداخلية

ومن أجل نمط المقاطعة نستخدم الدالة: HAL_I2C_Mem_Read_IT ومن أجل نمط الـ DMA نستخدم الدالة DMA ومن أجل نمط الـ DMA

Hexabitz - Spring 2023

دوال مكتبة HAL المستخدمة للتعامل مع وحدة 12C

الرسال البيانات (نمط polling)

HAL_I2C_Mem_Write (I2C_HandleTypeDef * hi2c, uint16_t
DevAddress,uint16_t MemAddress,uint16_t MemAddSize,uint8_t *
pData,uint16_t Size, uint32_t Timeout)

يث:

ومن أجل نمط المقاطعة نستخدم الدالة: HAL_I2C_Mem_Write_IT ومن أجل نمط الـ DMA نستخدم الدالة كالمالية المالية ا

ضبط إعدادات وحدة I2C في متحكمات STM32

- تفعيل وحدة I2C:

I2C1 Mode and Configuration

	Mode	
2C	I2C	~
83	Disable	
	I2C	
	SMBus-Alert-mode	
	SMBus-two-wire-Interface	

ضبط إعدادات وحدة I2C في متحكماتSTM32

ضبط بارامترات وحدة 12C وتتضمن حالتين:

1) عندما تكون الوحدة تعمل بنمط Master عندها يجب ضبط كل من سرعة نقل البيانات إما standard أو Fast كما يجب ضبط

		Co	unformation.		*	A 47	دد س
			onfiguration				
Reset Configuration							
Parameter Settings	User Constants	NVIC Settings	DMA Settings	GPIO Settings			
onfigure the below param	neters :		30				
Q Search (Crt1+F) (ດ ດ					0	
√ /laster Features							
I2C Speed Mod	de		Standard Mode				
I2C Clock Spee	ed (Hz)		100000				
✓ Slave Features						_	
Clock No Stret	ch Mode		Disabled				
Primary Addres	ss Length selection		7-bit				
Dual Address A	Acknowledged		Disabled				
Primary slave a	address		0				
General Call ad	ddress detection		Disabled				

ضبط إعدادات وحدة I2C في متحكمات STM32

ضبط بارامترات وحدة I2C وتتضمن حالتين:

عندما تكون الوحدة تعمل بنمط Slave عندها يمكن ضبط كل من عدد بتات العنونة وإعطاء الوحدة عنوان محدد بالإضافة إلى تفعيل أو تعطيل خاصية clock stretching والتي عند تفعيلها تقوم

نهاية المحاضرة

Thank you for listening