

EDUCACIÓN PROFESIONAL

Fundamentos Machine & Deep Learning Diplomado Big Data

y Analítica de Datos 2022-2023

Profesor:

Rodrigo Sandoval U.

Mamá:

"¿Si tus compañeros saltan al precipicio, tú también saltas?"

Hijo Machine Learning: "Por supuesto"

En Machine Learning Supervisado...

... los datos son los que hablan y cuentan la verdadera historia del fenómeno o situación, liberando a los humanos de tener que proponer las reglas lógicas de decisión.

Modelos de Machine Learning

Clasificación

Árboles Decisión

Random Forest

K-Nearest Neighbor

SVM

Naïve Bayes

Redes Neuronales

Regresión

Lineal

No-Lineal

Logística

DESCRIPCIÓN Aprendizaje No-supervisado

Asociación

Segmentación

Reglas de Asoc

Apriori

K-Means

Jerárquicos

DBSCAN

HDBSCAN

ANÁLISIS Semi-supervisado

Descripción

Word Embedding

Autoencoders

Generative Adversarial Networks (GAN)

Transformers

# Partido	Tipo Cancha	Tiempo	Resultado
1	Arcilla	Soleado	GANÓ
2	Arcilla	Soleado	GANÓ
3	Césped	Nublado	PERDIÓ
4	Sintética	Nublado	GANÓ
5	Arcilla	Nublado	GANÓ
6	Sintética	Soleado	PERDIÓ
7	Arcilla	Nublado	GANÓ
8	Césped	Soleado	PERDIÓ
9	Arcilla	Soleado	PERDIÓ
10	Sintética	Nublado	GANÓ
11	Sintética	Soleado	GANÓ
12	Sintética	Nublado	GANÓ

Siguiente Partido → ¿Gana o Pierde?

Partido 13: Césped + Soleado → ¿Gana o Pierde?

Partido 14: Arcilla + Soleado → ¿Gana o Pierde?

Partido 15: Sintético + Nublado → ¿Gana o Pierde?

Calcular la Probabilidad de Ganar

	Arcilla	Césped	Sintético
Soleado	2 1	0 1	1 0
Nublado	2 0	0 1	3 1

Partido 13: Césped + Soleado → ¿Gana o Pierde?

> Partido 14: Arcilla + Soleado → ¿Gana o Pierde?

> > Partido 15: Sintético + Nublado → ¿Gana o Pierde?

Análisis del ejemplo ...

Preguntas Esenciales

¿Soleado/Nublado y Tipo de Cancha son los únicos parámetros relevantes de analizar?

¿Qué otros podrían ser relevantes?

Entonces, si en vez de 12 partidos y 2 atributos tuviésemos mucho más ...

... es muy probable que podríamos hacer mejores predicciones: más precisas, más reales.

Podríamos resolver necesidades de negocio.

Cambiemos el tipo de pregunta

# Partido	Tipo Cancha	Tiempo	Duración
1	Arcilla	Soleado	2 horas
2	Arcilla	Soleado	2,5 horas
3	Césped	Nublado	1,5 horas
4	Sintética	Nublado	3 horas
5	Arcilla	Nublado	2 horas
6	Sintética	Soleado	3 horas
7	Arcilla	Nublado	2 horas
8	Césped	Soleado	1,5 horas
9	Arcilla	Soleado	2,5 horas
10	Sintética	Nublado	3,5 horas
11	Sintética	Soleado	2,5 horas
12	Sintética	Nublado	3 horas

Siguiente Partido → ¿Cuánto dura?

Partido 13: Césped + Soleado → ¿Cuánto dura?

Partido 14: Arcilla + Soleado → ¿Cuánto dura?

Partido 15: Sintético + Nublado → ¿Cuánto dura?

Cálculos estadísticos para poder responder

Promedio (Todos)

• 2,42 horas

Promedio (Césped)

• 1,5 horas

Promedio (Arcilla)

• 2,2 horas

Promedio (Sintético)

• 3,2 horas

Análisis del ejemplo ...

El cambio de pregunta implica y un cambio en el método de predicción.

La predicción se basa en los atributos que hay.

Resulta relevante buscar alguna correlación entre los datos conocidos y los resultados.

Resumen de técnicas de aprendizaje supervisado

X son números o categorías Y es un número

Entrada (X)

Predicción

Predicción Numérica (Y)

Predicción Categórica o Clasificación Supervisada

Predicción Numérica

Entrenamiento de Modelos de Aprendizaje Supervisado

Profesor: RodrigoSandoval.net

Desafíos en Aprendizaje Supervisado

Disponibilidad de Suficientes Datos

Calidad de los Datos Cantidad de Datos y Capacidad de Entrenamiento

Estrategias parar mejorar desempeño de modelos

Limpieza dataset Balanceo dataset Métricas para medir el desempeño

Métricas de Desempeño de Modelos

Predicción Categórica

- Accuracy
- Sensitivity/Specificity
- Otros

Matriz de Confusión

Predicción Numérica

- RMSE
- MAPE
- Otros

$$RMSE = \sqrt{\frac{1}{n} \sum_{t=1}^{n} e_t^2}$$

$$MAPE = \frac{100\%}{n} \sum_{t=1}^{n} \left| \frac{e_t}{y_t} \right|$$

Gracias

- rsandova@ing.puc.cl rodrigo@RSolver.com
- @RSandovalSolver
- in /in/RodrigoSandoval www.RodrigoSandoval.net

www.RSolver.com