Interro24 - Force centrale

	Nom Prén		:									ľ	Vot	te	:						
	Exe	Exercice 1 – Force centrale (10 points)																			
On considère un point matériel M de masse m en tion avec le Soleil de masse M_O situé en O . On note la distance entre les deux et G la constante gravitat On étudie le mouvement dans le référentiel héliocer													e r	r = OM sionnelle.							
2	1.				er les expressions de la force d'interaction gra melle et de l'énergie potentielle dont elle dérive																
L	2.	2. Exprimer la constante des aires \mathcal{C} .																			
2	3.	3. Rappeler les deux conséquences de la conservation du moment cinétique.																			

/2 **4.** Dans le cas d'une trajectoire circulaire de rayon r_0 , retrouver l'expression de la vitesse v_0 de M.

/2 5. En déduire l'expression de l'énergie mécanique \mathcal{E}_{m} . Que devient cette expression dans le cas d'une trajectoire elliptique de demi grand-axe a?

/1 **6.** Rappeler la troisième loi de Kepler.

