8 SEPT 2004

[858] 485 0516

AMENDMENT

In the claims

1-29. (canceled)

30. (original) A method for inhibiting gene expression, comprising administering an oligonucleotide analogue to at least one cell or at least one organism to inhibit expression of at least one gene that comprises a nucleotide sequence that is at least partially complementary to the oligonucleotide analogue, wherein the oligonucleotide analogue comprises the structure:

wherein G is selected from a group consisting of H and is a protecting group;

wherein E is selected from a group consisting of O-, OH, a protecting group, and an activating group;

wherein n is 1 or greater;

wherein each B¹ and B² is independently selected from the group consisting of H, a naturally occurring nucleobase, a non-naturally occurring nucleobase, an aromatic

8 SEPT 2004

moiety, a DNA intercalator, a heterocyclic moiety, and a reporter group, wherein amino groups, if present, are, optionally, protected by amino protecting groups;

wherein each A^1 and A^2 is independently selected from the group of consisting of formula (Ia), and (Ib), and (Ic):

$$\begin{bmatrix}
R^{1} \\
C \\
C^{2}
\end{bmatrix}_{r} = \begin{bmatrix}
R^{1} \\
C \\
R^{2}\end{bmatrix}_{s} = \begin{bmatrix}
R^{1} \\
C \\
R^{2}\end{bmatrix}_{r} = \begin{bmatrix}
R^{1} \\
C \\
R^{2}\end{bmatrix}_{s} = \begin{bmatrix}
R^{1} \\
C \\
R^{2}\end{bmatrix}_{s} = \begin{bmatrix}
R^{1} \\
C \\
R^{2}\end{bmatrix}_{r} = \begin{bmatrix}
R^{1} \\
C \\
R^{2}\end{bmatrix}_{s} = \begin{bmatrix}
R^{1} \\
C \\
R^{$$

wherein each R^1 and R^2 is independently selected from the group of consisting of hydrogen; $(C_1 - C_6)$ alkyl; hydroxy-, alkoxy-, amino-, or alkythio-substituted $(C_1 - C_6)$ alkyl; hydroxy; alkoxy; alkythio; amino; and halogen;

wherein r and s are, for I(a), and I(b), and I(c) independently of one another, values from 0 to 5;

Y is a single bond, O, S, or NR4;

X is O, S, Se, NR⁵, CH₂, or C(CH₃)₂; and

wherein each R^4 and R^5 is independently selected from the group of consisting of hydrogen; $(C_1 - C_6)$ alkyl; hydroxy-, alkoxy-, amino-, or alkythio-substituted $(C_1 - C_6)$ alkyl; hydroxy; alkoxy; amino; aryl; aralkyl; heteroaryl; and an amino acid side chain;

wherein each R^6 is independently selected from the group of consisting of hydrogen; (C_1 - C_6)alkyl; hydroxy-, alkoxy-, amino-, or alkythio-substituted (C_1 - C_6)alkyl; aryl; aralkyl; heteroaryl; and an amino acid side chain;

wherein each \mathbb{R}^7 is independently selected from the group of consisting of hydrogen; (\mathbb{C}_1 - \mathbb{C}_6)alkyl; hydroxy-, alkoxy-, amino-, or alkythio-substituted (\mathbb{C}_1 - \mathbb{C}_6)alkyl; hydroxy; alkoxy; alkylthio; amino; aryl; aralkyl; and heteroaryl; and each \mathbb{R}^8 is independently selected from the group of consisting of hydrogen; (\mathbb{C}_1 - \mathbb{C}_6) alkyl; hydroxy-, alkoxy-, amino-, or alkythio-substituted (\mathbb{C}_1 - \mathbb{C}_6)alkyl; aryl; aralkyl; and heteroaryl; or

wherein each \mathbb{R}^7 is independently selected from the group of consisting of hydrogen; $(C_1 - C_6)$ alkyl; hydroxy-, alkoxy-, amino-, or alkythio-substituted $(C_1 - C_6)$ alkyl; aryl; aralkyl; and heteroaryl; and \mathbb{R}^8 is independently selected from the group of consisting of hydrogen; $(C_1 - C_6)$ alkyl; hydroxy-, alkoxy-, amino-, or alkythio-substituted $(C_1 - C_6)$ alkyl; hydroxy; alkoxy; alkylthio; amino; aryl; aralkyl; heteroaryl; and halogen;

wherein each R^9 is independently selected from the group of consisting of hydrogen; (C_1 – C_6) alkyl; hydroxy-, alkoxy-, amino-, or alkythio-substituted (C_1 – C_6) alkyl; alkoxy; aryl; arylkyl; and heteroaryl;

wherein each R^{10} and R^{11} is independently selected from the group of consisting of hydrogen; $(C_1 - C_6)$ alkyl; hydroxy-, alkoxy-, amino-, or alkythio-substituted $(C_1 - C_6)$ alkyl; aryl; aralkyl; heteroaryl; and an amino acid side chain;

wherein each R^{12} , R^{13} , R^{14} , R^{15} , R^{16} , and R^{17} is independently selected from the group of consisting of hydrogen; $(C_1 - C_6)$ alkyl; hydroxy-, alkoxy-, amino-, or alkythio-substituted $(C_1 - C_6)$ alkyl; hydroxy; alkoxy; alkylthio; aryl; aralkyl; heteroaryl; and an amino acid side chain; and

wherein each T is independently selected from the group of consisting of hydrogen; $(C_1 - C_6)$ alkyl; hydroxy-, alkoxy-, amino-, or alkythio-substituted $(C_1 - C_6)$ alkyl; hydroxy; alkoxy; alkylthio; aryl; aralkyl; heteroaryl; and an amino acid side chain;

- 31. (original) A method according to claim 30 wherein n is less than about 500.
- 32. (original) A method according to claim 30 wherein n is less than about 50.
- 33. (original) A method according to claim 30 wherein n is less than about 15.
- 34. (original) A method according to claim 30 wherein n is selected from the group consisting of 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, and 15.
- 35. (currently amended) A method according to claim 31 wherein said oligonucleotide analogue comprises a ratio of HypNA to pPNA monomers and wherein the ratio of HypNA to pPNA monomers in the oligonucleotide analogue is from about 2:1 to about 1:3.
- 36. (currently amended) A method according to claim 31 wherein said oligonucleotide analogue comprises a ratio of HypNA to pPNA monomers and wherein the ratio of HypNA to pPNA monomers in the oligonucleotide analogue is from about 1:1 to about 1:2.
- 37. (original) A method for inhibiting gene expression, comprising administering an oligonucleotide analogue to at least one cell or at least one organism to inhibit expression of at least one gene that comprises a nucleotide sequence that is at least partially complementary to the oligonucleotide analogue, wherein the oligonucleotide analogue comprises the structure:

wherein G is selected from a group consisting of H and is a protecting group;

wherein E is selected from a group consisting of O-, OH, a protecting group, and an activating group;

wherein n is 1 or greater;

wherein each B¹ and B² is independently selected from the group consisting of H, a naturally occurring nucleobase, a non-naturally occurring nucleobase, an aromatic moiety, a DNA intercalator, a heterocyclic moiety, and a reporter group, wherein amino groups, if present, are, optionally, protected by amino protecting groups;

wherein each A¹ and A² is independently selected from the group of consisting of formula (Ia), and (Ib), and (Ic):

$$\begin{bmatrix}
R^{1} \\
C \\
R^{2}
\end{bmatrix}_{r} & \begin{bmatrix}
R^{1} \\
C \\
R^{2}
\end{bmatrix}_{s} & \begin{bmatrix}
R^{1} \\
C \\
R^{2}
\end{bmatrix}_{r} & \begin{bmatrix}
R^{1} \\
C \\
R^{2}
\end{bmatrix}_{s} & I(c)$$

$$I(a) \qquad I(b) \qquad I(c)$$

wherein each R1 and R2 is independently selected from the group of consisting of

hydrogen; $(C_1 - C_6)$ alkyl; hydroxy-, alkoxy-, amino-, or alkythio-substituted $(C_1 - C_6)$ alkyl; hydroxy; alkoxy; alkylthio; amino; and halogen;

wherein r and s are, for I(a), and (Ib), and (Ic) independently of one another, values from 0 to 5;

Y is a single bond, O, S, or NR4;

X is O, S, Se, NR⁵, CH₂, or C(CH₃)₂; and

wherein each R^4 and R^5 is independently selected from the group of consisting of hydrogen; $(C_1 - C_6)$ alkyl; hydroxy-, alkoxy-, amino-, or alkythio-substituted $(C_1 - C_6)$ alkyl; hydroxy; alkoxy; amino; aryl; aralkyl; heteroaryl; and an amino acid side chain;

wherein each R^{12} , R^{13} , R^{14} , R^{15} , R^{16} , and R^{17} is independently selected from the group of consisting of hydrogen; ($C_1 - C_6$)alkyl; hydroxy-, alkoxy-, amino-, or alkythio-substituted ($C_1 - C_6$)alkyl; hydroxy; alkoxy; alkylthio; aryl; aralkyl; heteroaryl; and an amino acid side chain; and

wherein each T is independently selected from the group of consisting of hydrogen; $(C_1 - C_6)$ alkyl; hydroxy-, alkoxy-, amino-, or alkythio-substituted $(C_1 - C_6)$ alkyl; hydroxy; alkoxy; alkylthio; aryl; aralkyl; heteroaryl; and an amino acid side chain;

- 38. (currently amended) A method according to claim 37 wherein n is less than about 500.
- (original) A method according to claim 37 wherein n is less than about 50.
- 40. (original) A method according to claim 37 wherein n is less than about 15.

8 SEPT 2004

- 41. (original) A method according to claim 37 wherein n is selected from the group consisting of 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, and 15.
- 42. (currently amended) A method according to claim 38 wherein said oligonucleotide analogue comprises a ratio of HypNA to pPNA monomers and wherein the ratio of HypNA to pPNA monomers in the oligonucleotide analogue is from about 2:1 to about 1:3.
- 43. (currently amended) A method according to claim 38 wherein said oligonucleotide

 analogue comprises a ratio of HypNA to pPNA monomers and wherein the ratio of

 HypNA to pPNA monomers in the oligonucleotide analogue is from about 1:1 to about

 1:2.
- 44. (original) A method for inhibiting gene expression, comprising administering an oligonucleotide analogue to at least one cell or at least one organism to inhibit expression of at least one gene that comprises a nucleotide sequence that is at least partially complementary to the oligonucleotide analogue, wherein the oligonucleotide analogue comprises the structure:

wherein G is selected from a group consisting of H and is a protecting group;

8 SEPT 2004

p.9

wherein E is selected from a group consisting of O-, OH, a protecting group, and an activating group;

wherein n is 1 or greater;

wherein each B¹ and B² is independently selected from the group consisting of H, a naturally occurring nucleobase, a non-naturally occurring nucleobase, an aromatic moiety, a DNA intercalator, a heterocyclic moiety, and a reporter group, wherein amino groups, if present, are, optionally, protected by amino protecting groups;

wherein each R¹², R¹³, R¹⁴, R¹⁵, R¹⁶, and R¹⁷ is independently selected from the group of consisting of hydrogen; (C1 -C6)alkyl; hydroxy-, alkoxy-, amino-, or alkythio-substituted $(C_1 - C_6)$ alkyl; hydroxy; alkoxy; alkylthio; aryl; aralkyl; heteroaryl; and an amino acid side chain; and

wherein each T is independently selected from the group of consisting of hydrogen; $(C_1 C_6$)alkyl; hydroxy-, alkoxy-, amino-, or alkythio-substituted ($C_1 - C_6$)alkyl; hydroxy; alkoxy; alkylthio; aryl; aralkyl; heteroaryl; and an amino acid side chain;

- (original) A method according to claim 44 wherein n is less than about 500. 45.
- (original) A method according to claim 44 wherein n is less than about 50. 46.
- (original) A method according to claim 44 wherein n is less than about 15. 47.
- (original) A method according to claim 44 wherein n is selected from the group 48. consisting of 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, and 15.

- 49. (currently amended) A method according to claim 45 wherein said oligonucleotide analogue comprises a ratio of HypNA to pPNA monomers and wherein the ratio of HypNA to pPNA monomers in the oligonucleotide analogue is from about 2:1 to about 1:3.
- 50. (currently amended) A method according to claim 45 wherein said oligonucleotide analogue comprises a ratio of HypNA to pPNA monomers and wherein the ratio of HypNA to pPNA monomers in the oligonucleotide analogue is from about 1:1 to about 1:2.
- oligonucleotide analogue to at least one cell or at least one organism to inhibit expression of at least one gene that comprises a nucleotide sequence that is at least partially complementary to the oligonucleotide analogue, wherein the oligonucleotide analogue comprises the structure:

wherein G is selected from a group consisting of H and is a protecting group;

wherein E is selected from a group consisting of O-, OH, a protecting group, and an activating group;

wherein n is 1 or greater;

wherein each B¹ and B² is independently selected from the group consisting of H, a naturally occurring nucleobase, a non-naturally occurring nucleobase, an aromatic moiety, a DNA intercalator, a heterocyclic moiety, and a reporter group, wherein amino groups, if present, are, optionally, protected by amino protecting groups; and

wherein each T is independently selected from the group of consisting of hydrogen; $(C_1 - C_6)$ alkyl; hydroxy-, alkoxy-, amino-, or alkythio-substituted $(C_1 - C_6)$ alkyl; hydroxy; alkoxy; alkylthio; aryl; aralkyl; heteroaryl; and an amino acid side chain;

- 52. (original) A method according to claim 51 wherein n is less than about 500.
- 53. (original) A method according to claim 51 wherein n is less than about 50.
- 54. (original) A method according to claim 51 wherein n is less than about 15.
- 55. (original) A method according to claim 51 wherein n is selected from the group consisting of 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, and 15.
- 56. (currently amended) A method according to claim 52 wherein said oligonucleotide analogue comprises a ratio of HypNA to pPNA monomers and wherein the ratio of HypNA to pPNA monomers in the oligonucleotide analogue is from about 2:1 to about 1:3.
- 57. (currently amended) A method according to claim 52 wherein said oligonucleotide analogue comprises a ratio of HypNA to pPNA monomers and wherein the ratio of HypNA to pPNA monomers in the oligonucleotide analogue is from about 1:1 to about 1:2.