11. Übung Maß- und Wahrscheinlichkeitstheorie 2 WS2019

1. $f_n, n \in \mathbb{N}, f$ seien stetige Funktionen, $P_n, n \in \mathbb{N}, P$ Wahrscheinlichkeitsmaße auf $(\mathbb{R}, \mathfrak{B}), f_n \to f$ gleichmäßig, $P_n \Longrightarrow P$. Zeigen Sie

$$\lim_{n \to \infty} \int f_n dP_n = \int f dP.$$

2. Starke Konvergenz: Wir nennen die Folge von Wahrscheinlichkeitsmaßen P_n auf dem Messraum (Ω, \mathfrak{S}) stark konvergent, wenn für alle $A \in \mathfrak{S}$

$$\lim_{n \to \infty} P_n(A) = P(A)$$

gilt (also ist das eigentlich die punktweise Konvergenz, aber zur Unterscheidung von der schwachen Konvergenz...). Zeigen Sie, dass dann für jede beschränkte messbare Funktion f

$$\lim_{n \to \infty} \int f dP_n = \int f dP$$

gilt.

- 3. Zeigen Sie: Wenn die Wahrscheinlichkeitsmaße $P_n, n \in \mathbb{N}$ und P absolutstetig bezüglich des sigmaendlichen Maßes μ auf $(\mathbb{R}, \mathfrak{B})$ sind mit Dichten f_n bzw. f, und wenn die Folge f_n punktweise gegen f konvergiert, dann konvergiert P_n schwach gegen P (sogar im starken Sinn, also punktweise auf \mathfrak{B}).
- 4. Wenn $(X_n, n \in \mathbb{N})$ eine Folge von Zufallsvariablen ist, die nur ganzzahlige Werte annehmen, dann konvergiert X_n genau dann in Verteilung, wenn $p_k = \lim_n \mathbb{P}(X_n = k)$ für alle $k \in \mathbb{Z}$ existiert und $\sum_k p_k = 1$ gilt.
- 5. Zeigen Sie: wenn F eine stetige Verteilungsfunktion ist, dann konvergiert die Folge (F_n) genau dann schwach gegen F, wenn sie gleichmäßig konvergiert.
- 6. (a) Zeigen Sie: wenn X_n in Verteilung gegen X konvergiert und Y_n in Wahrscheinlichkeit gegen 0, dann konvergiert $X_n + Y_n$ in Verteilung gegen X.
 - Insbesondere folgt aus der Konvergenz in Wahrscheinlichkeit die Konvergenz in Verteilung.
 - (b) Zeigen Sie, dass die Folge X_n genau dann in Verteilung gegen 0 konvergiert, wenn sie in Wahrscheinlichkeit konvergiert.
- 7. Zeigen Sie, dass die Lévy-Prohorov Metrik

$$d(F,G) = \inf\{\epsilon > 0 : F(x - \epsilon) - \epsilon \le G(x) \le F(x + \epsilon) + \epsilon\}$$

tatsächlich eine Metrik ist.