

No Free Lunch Theorem

No Free Lunch Theorem

- No Free Lunch Theorem: There is NO overall superior or inferior classification, if no prior assumptions about the problem are made
- Generate a group of base-learners which when combined has higher accuracy
- Different learners use different
 - Algorithms
 - Hyperparameters
 - Representations / Modalities / Views
 - Training sets
 - Subproblems
- Diversity vs accuracy

Bias & Variance

Unknown function fEstimator $g_i = g(X_i)$ on sample X_i

Bias:
$$b_f(g) = \mathbb{E}[g] - f$$

Variance: $\mathbb{E}[(g - \mathbb{E}[g])^2]$

Mean square error:

$$r(g,f) = \mathbb{E}[(g-f)^2]$$

$$= (\mathbb{E}[g] - f)^2 + \mathbb{E}[(g - \mathbb{E}[g])^2]$$

$$= Bias^2 + Variance$$

Bias/Variance Dilemma

$$\mathbb{E}_{D}[(g(x,D) - f(x))^{2}]$$

$$= \underbrace{(\mathbb{E}_{D}[g(x,D) - f(x)])^{2}}_{\text{bias}^{2}} + \underbrace{(\mathbb{E}_{D}[(g(x,D) - \mathbb{E}_{D}[g(x,D)])^{2}])}_{\text{variance}}$$

- Bigs: the difference between the expected value and the true value
- Variance: variations of estimated values
- \checkmark Given training set D, as we increase complexity,
 - bias decreases (a better fit to data) and variance increases (fit varies more with data)
- High bias means usually low variance, and vice versa
- Bias/Variance dilemma: (Geman et al., 1992)

Bias/Variance Dilemma

Bias/Variance Dilemma

Ensemble Learning

Ensemble Learning: Intuition

Majority Vote

- Suppose we have 5 completely independent classifiers each having 70% accuracy
 - $10 \cdot 0.7^3 \cdot 0.3^2 + 5 \cdot 0.7^4 \cdot 0.3^1 + 0.7^5 = 83.7\%$ majority accuracy
- 101 such classifiers
 - 99.9% majority vote accuracy

Ensemble Learning

- Bagging (Breiman 1994,...): Fit several classifiers to bootstrap resampled versions of the training data, and classify by majority vote.
- Boosting (Freund and Schapire 1995, Friedman et al. 1998,...):
 Fit many large or small classifiers to reweighted versions of the training data, then classify by weighted majority vote
- Random forests (Breiman 2001,...): Fancier version of bagging

Predict class label for unseen data by aggregating a set of predictions (classifiers learned from the training data)

Voting of Classifiers

Linear combination

$$y = \sum_{j=1}^{L} w_j d_j$$

$$w_j \ge 0 \text{ and } \sum_{j=1}^{L} w_j = 1$$

Classification

$$y_i = \sum_{j=1}^L w_j d_{ji}$$

Voting of Classifiers

Rule	Fusion function $f(\cdot)$
Sum	$y_i = \frac{1}{L} \sum_{j=1}^{L} d_{ji}$
Weighted sum	$y_i = \sum_j w_j d_{ji}, w_j \ge 0, \sum_j w_j = 1$
Median	$y_i = \text{median}_j d_{ji}$
Minimum	$y_i = \min_j d_{ji}$
Maximum	$y_i = \max_j d_{ji}$
Product	$y_i = \prod_j d_{ji} \qquad d_1$

	\sim_1	~2	~5
d_1	0.2	0.5	0.3
d_2	0.0	0.6	0.4
d_3	0.4	0.4	0.2
Sum	0.2	0.5	0.3
Median	0.2	0.5	0.4
Minimum	0.0	0.4	0.2
Maximum	0.4	0.6	0.4
Product	0.0	0.12	0.032

Voting of Classifiers

Bayesian perspective:

$$P(C_i|x) = \sum_{\text{all models } M_i} P(C_i|x, M_j) P(M_j)$$

If d_i are iid

$$E[y] = E\left[\sum_{j} \frac{1}{L} d_{j}\right] = \frac{1}{L} L \cdot E[d_{j}] = E[d]$$

$$Var(y) = Var\left(\sum_{j} \frac{1}{L} d_{j}\right) = \frac{1}{L^{2}} Var\left(\sum_{j} d_{j}\right) = \frac{1}{L^{2}} L \cdot Var(d_{j}) = \frac{1}{L} Var(d)$$

Bias does not change, variance decreases to 1/L

If dependent, error increases with positive correlation

$$Var(y) = \frac{1}{L^2} Var\left(\sum_j d_j\right) = \frac{1}{L^2} \left[\sum_j Var(d_j) + 2\sum_j \sum_{i < j} Cov(d_i, d_j)\right]$$

Resampling for Classifier Design: Jackknife

- Remove some point from the training set: $D_{(i)}$
- Calculate the leave-one-out statistics with the new training set

$$\mu_{(i)} = \frac{1}{n-1} \sum_{j \neq i} x_j$$

- Repeat for all points
- Calculate the jackknife (leave-one-out) statistics

Resampling for Classifier Design

- Arcing
 - Adaptive reweighting and combining
 - Reuse or select data in order to improve classification
 - Bootstrap data set
 - Randomly select n points from the training set D with replacement

Bagging

- Bootstrap AGGregation
 - Use multiple versions of a training set by drawing n < N samples from D with replacement.
 - Each of the bootstrap data sets is used to train a different component classifier
 - The final classification decision is based on the votes of the component classifiers

Bagging

- Instability
 - A classifier/learning algorithm is called "unstable" if "small" changes in the training data lead to "large" changes in accuracy
 - In general, bagging improves recognition for unstable classifiers since it effectively averages over such discontinuities

- Overview of boosting
 - Improve the accuracy of any given learning algorithm
 - First create a (weak) classifier with accuracy on the training set greater than average
 - Add new component classifiers to form an ensemble whose joint decision rule has arbitrarily high accuracy on the training set
 - The classification performance has been "boosted"

- Boosting procedure
 - Randomly select a set of $n_1 < n$ patterns from the full training set D without replacement; call this set D_1
 - Train the first component classifier C₁ with D₁; C₁ is usually a weak learner
 - A weak leaner has accuracy only slightly better than chance.
 - Seek a second training set D_2 , that is "most informative" given component classifier C_1
 - Half of the patterns in D_2 should be correctly classified by C_1
 - Half of the patterns in D_2 should be incorrectly classified by C_1 sampled from the remaining samples in D
 - Train the second component classifier C_2 with D_2

- Boosting procedure
 - Then, the third component classifier C_3 with D_3
 - The samples in D_3 are selected from the remaining samples in D that are not well classified by voting by C_1 and C_2 (i.e., the classification results are not consistent)
 - The final classification decision is based on the votes of the component classifiers.

lacktriangle How to decide n_1

- We would like to train the ensemble classifier using all patterns in D.
- A reasonable guess $n_1 \cong n_2 \cong n_3 = \frac{n}{3}$
- In practice, we need to run the overall boosting procedure a few times, adjusting n_1 to use the full training set and get roughly equal partitions of the training set, if possible.

AdaBoosting

- Overview of AdaBoosting
 - A variant of boosting
 - Adaptive Boosting
 - Add weak learners until some desired low training error has been achieved.
 - Each training pattern receives a weight that determines its probability of being selected for a training set for an individual component classifier.
 - Adaboost "focuses on" the informative or "difficult" patterns.

AdaBoosting

Algorithm 1 (AdaBoost)

```
begin initialize \mathcal{D} = \{\mathbf{x}^1, y_1, \mathbf{x}^2, y_2, \dots, \mathbf{x}^n, y_n\}, k_{max}, W_1(i) = 1/n, i = 1, \dots, n

k \leftarrow 0

do k \leftarrow k + 1

Train weak learner C_k using \mathcal{D} sampled according to distribution W_k(i)

E_k \leftarrow \text{Training error of } C_k \text{ measured on } \mathcal{D} \text{ using } W_k(i)

\alpha_k \leftarrow \frac{1}{2} \ln[(1 - E_k)/E_k]

W_{k+1}(i) \leftarrow \frac{W_k(i)}{Z_k} \times \begin{cases} e^{-\alpha_k} & \text{if } h_k(\mathbf{x}^i) = y_i \text{ (correctly classified)} \\ e^{\alpha_k} & \text{if } h_k(\mathbf{x}^i) \neq y_i \text{ (incorrectly classified)} \end{cases}

until_k = k_{max}

max = \frac{\mathbf{return}}{2} C_k \text{ and } \alpha_k \text{ for } k = 1 \text{ to } k_{max} \text{ (ensemble of classifiers with weights)}

max = \frac{\mathbf{return}}{2} C_k \text{ and } \alpha_k \text{ for } k = 1 \text{ to } k_{max} \text{ (ensemble of classifiers with weights)}
```

$$g(\mathbf{x}) = \sum_{k=1}^{k_{\text{max}}} \alpha_k h_k(\mathbf{x}),$$

$$h_k(\mathbf{x}) = +1 \text{ or } -1,$$
the category label given to \mathbf{x} by componet classifier \mathcal{C}_k

AdaBoosting

AdaBoosting for Classification

AdaBoosting for Classification

AdaBoosting for Classification

Random Forest

- Decision Tree Bagging
 - Given a training set $X = x_1, \dots, x_n$ with labels $Y = y_1, \dots, y_n$, bagging repeatedly (L times) selects a random sample with replacement of the training set and fits trees to these samples
 - For i = 1, ..., L:
 - Sample, with replacement, m training examples from X,Y; call these X_i,Y_i
 - Train a decision or regression tree f_i on X_i , Y_i
 - Prediction for an unseen x' can be made by averaging the predictions from all the individual trees on x'
- Random Forest use a random subset of the features in tree learning, called "feature bagging"

- Simple validation
 - Split the set of labeled training samples D into two parts
 - Traditional training set
 - Train the classifier
 - Validation set
 - Estimate the generalization error

- m-fold cross-validation
 - Split the training set D into m disjoint sets of equal size n/m
 - The classifier is trained m times, each time with a different set held out as a validation set
 - The estimated performance is the mean of the m errors
 - Leave-one-out approach (m = n)

- 5-fold cross-validation -> split the training data into 5 equal folds
- 4 of them for training and 1 for validation

