More Applications The Pumping Lemma

For infinite context-free language L there exists an integer m such that for any string $w \in L$, $|w| \ge m$

The Pumping Lemma:

we can write w = uvxyz

Non-context free languages $\{a^nb^nc^n:n\geq 0\} \qquad \{vv:v\in\{a,b\}\}$ Context-free languages

 $\{a^n b^n : n \ge 0\}$ $\{ww^R : w \in \{a,b\}^*\}$

Theorem: The language

Proof: Use the Pumping Lemma for context-free languages

$$L = \{vv : v \in \{a,b\}^*\}$$
 Assume for contradiction that L is context-free
$$L = \{vv : v \in \{a,b\}^*\}$$
 Pumping Lemma gives a magic number m such that:
$$V = \{vv : v \in \{a,b\}^*\}$$
 Pumping Lemma gives a magic number m such that:
$$V = \{vv : v \in \{a,b\}^*\}$$
 Pumping Lemma gives a magic number m such that:
$$V = \{vv : v \in \{a,b\}^*\}$$
 Pumping Lemma gives a magic number m such that:
$$V = \{vv : v \in \{a,b\}^*\}$$
 Pumping Lemma gives a magic number m such that:
$$V = \{vv : v \in \{a,b\}^*\}$$
 Pumping Lemma gives a magic number m such that:
$$V = \{vv : v \in \{a,b\}^*\}$$
 Pumping Lemma gives a magic number m such that:
$$V = \{vv : v \in \{a,b\}^*\}$$
 Pumping Lemma gives a magic number m such that:
$$V = \{vv : v \in \{a,b\}^*\}$$
 Pumping Lemma gives a magic number m such that:
$$V = \{vv : v \in \{a,b\}^*\}$$
 Pumping Lemma gives a magic number m such that:
$$V = \{vv : v \in \{a,b\}^*\}$$
 Pumping Lemma gives a magic number m such that:
$$V = \{vv : v \in \{a,b\}^*\}$$
 Pumping Lemma gives a magic number m such that:
$$V = \{vv : v \in \{a,b\}^*\}$$
 Pumping Lemma gives a magic number m such that:
$$V = \{vv : v \in \{a,b\}^*\}$$
 Pumping Lemma gives a magic number m such that:
$$V = \{vv : v \in \{a,b\}^*\}$$
 Pumping Lemma gives a magic number m such that:
$$V = \{vv : v \in \{a,b\}^*\}$$
 Pumping Lemma gives a magic number m such that:
$$V = \{vv : v \in \{a,b\}^*\}$$
 Pumping Lemma gives a magic number m such that:
$$V = \{vv : v \in \{a,b\}^*\}$$
 Pumping Lemma gives a magic number m such that:
$$V = \{vv : v \in \{a,b\}^*\}$$
 Pumping Lemma gives a magic number m such that:
$$V = \{vv : v \in \{a,b\}^*\}$$
 Pumping Lemma gives a magic number m such that:
$$V = \{vv : v \in \{a,b\}^*\}$$
 Pumping Lemma gives a magic number m such that:
$$V = \{vv : v \in \{a,b\}^*\}$$
 Pumping Lemma gives a magic number m such that:
$$V = \{vv : v \in \{a,b\}^*\}$$
 Pumping Lemma gives a magic number m such that:
$$V = \{vv : v \in \{a,b\}^*\}$$
 Pumping Lemma gives a magic number m such that:
$$V = \{vv : v \in \{a,b\}^*\}$$
 Pumping Lemma gives a magic number m such that:
$$V = \{vv : v \in \{a,b\}^*\}$$
 Pumping Lemma gives a magic number m such that:
$$V = \{vv : v \in \{a,b\}$$

We can write:
$$a^m b^m a^m b^m = uvxyz$$

$$a^m b^m a^m b^m = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

 $L = \{vv : v \in \{a,b\}^*\}$

with lengths $|vxy| \le m$ and $|vy| \ge 1$

 $uv^i x y^i z \in L$ for all $i \ge 0$

 $L = \{vv : v \in \{a,b\}^*\}$

of string
$$vxy$$
 in $a^mb^ma^mb^m$

$$a^{m}b^{m}a^{m}b^{m} = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

$$a^{m}b^{m}a^{m}b^{m} = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

$$v = a^{k_1} \quad y = a^{k_2} \qquad k_1 + k_2 \ge 1$$

$$case 1: \quad vxy \quad \text{is within the first } a^{m}$$

$$v = a^{k_1} \quad y = a^{k_2} \qquad k_1 + k_2 \ge 1$$

$$m \quad m \quad m \quad m$$

$$a \dots a b \dots b a \dots a b \dots b$$

$$u \quad vxy = a^{k_2} \qquad k_1 + k_2 \ge 1$$

$$m \quad m \quad m \quad m$$

$$a \dots a b \dots b a \dots a b \dots b$$

$$u \quad vxy = a^{k_2} \qquad k_1 + k_2 \ge 1$$

$$m \quad m \quad m \quad m$$

$$a \dots a b \dots b a \dots a b \dots b$$

$$u \quad vxy = a^{k_2} \qquad k_1 + k_2 \ge 1$$

 $L = \{vv : v \in \{a,b\}^*\}$

 $L = \{vv : v \in \{a,b\}^*\}$

$$a^m b^m a^m b^m = uvxyz$$
 $|vxy| \le m$ $|vy| \ge 1$ $|vy| \ge 1$ $|vy| \ge 1$ $|vxy| \le m$ $|vy| \ge 1$ $|vxy| \le m$ $|vxy| \le m$

 $L = \{vv : v \in \{a,b\}^*\}$

Case 1: vxy is within the first a^m

 $L = \{vv : v \in \{a,b\}^*\}$

 $a^{m+k_1+k_2}b^ma^mb^m = uv^2xy^2z \notin L$ $a^{m+k_1+k_2}b^ma^mb^m = uv^2xv^2z \notin L$

$$\geq 1$$
 However, from Pumping Lemma: $uv^2xy^2z \in I$

However, from Pumping Lemma: $uv^2xy^2z \in L$ $k_1 + k_2 \ge 1$

$$L = \{vv : v \in \{a,b\}^*\}$$

$$a^m b^m a^m b^m = uvxyz \quad |vxy| \le m \quad |vy| \ge 1$$

$$a^m b^m a^m b^m = uvxyz \quad |vxy| \le m \quad |vy| \ge 1$$

$$a^m b^m a^m b^m = uvxyz \quad |vxy| \le m \quad |vy| \ge 1$$

$$v = a^{k_1} \quad y = b^{k_2} \quad k_1 + k_2 \ge 1$$

$$v = a^{k_1} \quad y = b^{k_2} \quad k_1 + k_2 \ge 1$$

$$v = a^{k_1} \quad y = b^{k_2} \quad k_1 + k_2 \ge 1$$

$$v = a^{k_1} \quad y = b^{k_2} \quad k_1 + k_2 \ge 1$$

$$v = a^{k_1} \quad y = b^{k_2} \quad k_1 + k_2 \ge 1$$

$$v = a^{k_1} \quad y = b^{k_2} \quad k_1 + k_2 \ge 1$$

$$v = a^{k_1} \quad y = b^{k_2} \quad k_1 + k_2 \ge 1$$

$$v = a^{k_1} \quad y = b^{k_2} \quad k_1 + k_2 \ge 1$$

$$L = \{vv : v \in \{a,b\}^*\}$$

$$a^m b^m a^m b^m = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

$$a^m b^m a^m b^m = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

$$a^m b^m a^m b^m = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

$$Case 2: v \text{ is in the first } a^m$$

$$v \text{ is in the first } b^m$$

$$v \text{ is in the first } b^m$$

Case 2: v is in the first a^m y is in the first b^m

 $a^{m+k_1}b^{m+k_2}a^mb^m = uv^2xv^2z \notin L$

$$a^{m+k_1}b^{m+k_2}a^mb^m = uv^2xy^2z \notin L$$

 $k_1 + k_2 \ge 1$

However, from Pumping Lemma: $uv^2xy^2z \in L$

$$L = \{vv : v \in \{a,b\}^*\}$$

$$a^m b^m a^m b^m = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

$$a^m b^m a^m b^m = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

$$a^m b^m a^m b^m = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

$$a^m b^m a^m b^m = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

$$a^m b^m a^m b^m = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

$$a^m b^m a^m b^m = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

$$a^m b^m a^m b^m = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

$$a^m b^m a^m b^m = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

$$a^m b^m a^m b^m = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

$$a^m b^m a^m b^m = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

Case 3:
$$v$$
 overlaps the first $a^m b^m$ y is in the first b^m

y is in the first b^m

$$y$$
 is in the first v
 $m_1 k_2 \quad k_{11} k_2 \quad m_1 m \qquad 2 \quad 2$

 $a^{m}b^{k_{2}}a^{k_{1}}b^{m+k_{3}}a^{m}b^{m} = uv^{2}xy^{2}z \notin L$

$$a^{m}b^{k_{2}}a^{k_{1}}b^{k_{3}}a^{m}b^{m} = uv^{2}xy^{2}z \notin L$$

$$k_1, k_2 \ge 1$$

However, from Pumping Lemma:
$$uv^2xy^2z \in L$$

$$L = \{vv : v \in \{a,b\}^*\}$$

$$a^m b^m a^m b^m = uvxyz \quad |vxy| \le m \quad |vy| \ge 1$$

$$Case 4: v \text{ in the first } a^m \\ y \text{ Overlaps the first } a^m b^m$$

$$a^m b^m a^m b^m$$

is context-free must be wrong

Context-free languages $\{a^nb^n: n \ge 0\} \qquad \{ww^R: w \in \{a,b\}^*\}$

Non-context free languages

 $\{a^{n!}: n \ge 0\}$

 $\{a^nb^nc^n:n\geq 0\}$

 $\{ww : w \in \{a,b\}\}$

Conclusion:
$$L$$
 is not context-free

Theorem:	The language	$L = \{a^{n!} : n \ge 0\}$
	$L = \{a^{n!} : n \ge 0\}$ is not context free	Assume for contradiction that \boldsymbol{L} is context-free
Proof:	Use the Pumping Lemma for context-free languages	Since L is context-free and into we can apply the pumping lemma

ext-free L is context-free and infinite apply the pumping lemma

$$L = \{a^{n!}: n \geq 0\}$$

$$L = \{a^{n!}: n \geq 0\}$$
 Pumping Lemma gives a magic number m such that:
$$a^{m!} = uvxyz$$

such that:

Pick any string of
$$\,L\,$$
 with length at least $\,m\,$

we pick:
$$a^{m!} \in L$$

 $L = \{a^{n!} : n \ge 0\}$

$$|vxy| \leq m$$
 and $|v|$

 $uv^i x y^i z \in L$ for all $i \ge 0$

$$a^{m!} = uvxyz$$
 $|vxy| \le m$ $|vy| \ge 1$ $a^{m!} = uvxyz$ $|vxy| \le m$ $|vy| \ge m!$

 $L = \{a^{n!} : n \ge 0\}$

We examine <u>all</u> the possible locations

There is only one case to consider

of string
$$vxy$$
 in $a^{m!}$

$$u v x y z$$

 $v = a^{k_1}$ $y = a^{k_2}$ $1 \le k_1 + k_2 \le m$

 $L = \{a^{n!} : n \ge 0\}$

 $L = \{a^{n!} : n \ge 0\}$

 $L = \{a^{n!} : n \ge 0\}$

 $1 \le k \le m$

$$a^{m!} = uvxyz \qquad |vxy| \le m \quad |vy| \ge 1$$

$$a^{m!+k} = uv^2 x y^2 z$$

 $1 \le k \le m$

 $L = \{a^{n!} : n \ge 0\}$

$$< m! + m! m$$
$$= m! (1+m)$$

Since $1 \le k \le m$, for $m \ge 2$ we have:

 $m!+k \le m!+m$

$$a^{m!} = uvxyz$$
 $|vxy| \le m$ $|vy| \ge 1$ $a^{m!} = uvxyz$ $|vxy| \le m$

 $L = \{a^{n!} : n \ge 0\}$

 $L = \{a^{n!} : n \ge 0\}$

However, from Pumping Lemma:
$$uv^2xy^2z \in L$$

 $a^{m!+k} = uv^2 x y^2 z \notin L$

Contradiction!!!

We obtained a contradiction Therefore:

Conclusion:

The original assumption that

$$L = \{a^{n!} : n \ge 0\}$$

is context-free must be wrong

L is not context-free

$$\{a^{n^2}b^n: n \ge 0\}$$
 $\{a^{n!}: n \ge 0\}$

 $\{a^{n!}: n \geq 0\}$

Non-context free languages

$$\{a^n b^n : n \ge 0\}$$
 $\{ww^R : w \in \{a, b\}^*\}$

 $\{a^nb^nc^n:n\geq 0\}$

 $\{ww : w \in \{a,b\}\}$

$L = \{a^{n^2}b^n : n \ge 0\}$ Theorem: The language $L = \{a^{n^2}b^n : n \ge 0\}$ Assume for contradiction that Lis **not** context free is context-free Proof: Use the Pumping Lemma

for context-free languages

Since $\,L\,$ is context-free and infinite we can apply the pumping lemma

$$L = \{a^{n^2}b^n : n \ge 0\}$$

$$L = \{a^{n^2}b^n : n \ge 0\}$$
 Pumping Lemma gives a magic number m such that:
$$a^{m^2}b^m = uvxyz$$

Pick any string of
$$\,L\,$$
 with length at least $\,m\,$

we pick: $a^{m^2}b^m \in L$

with lengths
$$|vxy| \le m$$
 and $|vy| \ge 1$
Pumping Lemma says:

 $L = \{a^{n^2}b^n : n \ge 0\}$

$$a^{m^2}b^m = uvxyz$$
 $|vxy| \le m$ $|vy| \ge 1$ $a^{m^2}b^m = uvxyz$ $|vxy| \le m$ $|vy| \ge 1$

Most complicated case: v is in a^m

 $L = \{a^{n^2}b^n : n \ge 0\}$

we examine all the possible locations of string
$$vxy$$
 in $a^{m^2}b^m$

 $L = \{a^{n^2}b^n : n \ge 0\}$

y is in b^m

$$a^{m^2}b^m = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

$$v = a^{k_1} \qquad y = b^{k_2} \qquad 1 \le k_1 + k_2 \le m$$

$$m^2 \qquad m \qquad m$$

$$a = a^{k_1} \qquad y = b^{k_2} \qquad 1 \le k_1 + k_2 \le m$$

$$m^2 \qquad m \qquad m$$

$$a = a^{k_1} \qquad m \qquad m$$

$$a = a^{k_2} \qquad m$$

$$a = a^{k_1} \qquad m$$

$$a = a^{k_2} \qquad m$$

$$a = a^{k_1} \qquad m$$

$$a = a^{k_2} \qquad m$$

$$a = a^{k_2} \qquad m$$

$$a = a^{k_1} \qquad m$$

$$a = a^{k_2} \qquad m$$

$$a = a^{k_2} \qquad m$$

 $L = \{a^{n^2}b^n : n \ge 0\}$

 $L = \{a^{n^2}b^n : n \ge 0\}$

$$L = \{a^{n^2}b^n : n \ge 0\}$$

$$a^{m^2}b^m = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

$$a^{m^2}b^m = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

$$Most complicated sub-case: k_1 \ne 0 \text{ and } k_2 \ne 0$$

$$k_1 \ne 0 \text{ and } k_2 \ne 0$$

$$k_1 \ne 0 \text{ and } k_2 \ne 0$$

$$v = a^{k_1}$$
 $y = b^{k_2}$ $1 \le k_1 + k_2 \le m$ $v = a^{k_1}$ $y = b^{k_2}$ $1 \le k_1 + k_2 \le m$

$$y = b^{n/2} \qquad 1 \le k_1 + k_2 \le m$$

$$m^2 - k_1 \qquad m - k_2$$

$$a \dots a b \dots b$$

$$u \qquad v^0 \qquad x \qquad v^0 \qquad z$$

$$a^{m^2 - k_1} b^{m - k_2} = u v^0 x y^0 z$$

$$a^{m^{2}}b^{m} = uvxyz$$

$$(m-k_{2})^{2} \le (m-1)^{2} \text{ (since } k_{2}>=1)$$

$$= m^{2}-2m+1$$

$$m^{2}-k_{1} \ne 0$$

 $L = \{a^{n^2}b^n : n \ge 0\}$

 $a^{m^2-k_1}b^{m-k_2} = uv^0xv^0z \notin L$

 $|vxy| \le m \quad |vy| \ge 1$

 $1 \le k_1 + k_2 \le m$

 $k_1 \neq 0$ and $k_2 \neq 0$

$$L = \{a^{n^2}b^n : n \ge 0\}$$

$$a^{m^2}b^m = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

When we examine the rest of the cases we also obtain a contradiction However, from Pumping Lemma: $uv^0xy^0z \in L$

$$a^{m^2}$$

$$n^2 - k_1 - m - k_2$$

$$a^{m^2-k_1}b^{m-k_2} = uv^0xy^0z \notin L$$

$$uv^0$$
.

Contradiction!!!

$$v^0xy$$

$$xv^0z$$

In all cases we obtained a contradiction

Therefore: The original assumption that

$$L = \{a^{n^2}b^n : n \ge 0\}$$

is context-free must be wrong

Conclusion: L is not context-free