Baseball Speed Rating v. Offensive Production

DASI Project

Introduction:

For me, the surest sign of spring is the return of baseball—an American pastime that stretches throughout the warm days of summer. In addition to enjoying televised games and attending local games, I participate in a fantasy league. This is an on-line, recreational game in which various members of my family choose players throughout the league and compare statistics of players in a categorical, head-to-head competition.

My family plays for fun. However, many Americans put more stake in fantasy games. A 2012 article on MSN Money estimated the number of participants of fantasy baseball at 12.2 million. Large media sports networks such as CBS Sports, ESPN, Yahoo Sports, USA Today, and NBC Sports host fantasy leagues for various sports (American football, baseball, basketball, golf, hockey, and racing). In all, MSN Money projects over \$2 billion dollars in yearly "economic impact". There are leagues that people may pay to join in order to win cash prices (some payouts in excess of thousands of dollars).

Personally, I am content just to beat my sons in the fantasy standings. There are 20 offensive categories that each team must win in a weekly match up. Three of these categories (15%) comprise baseball players "stealing bases." I am wondering, if I select (i.e., draft) players for my team who are very fast, will they lower the overall team offensive production of home runs, RBIs, batting average, etc? Therefore, my research question is:

Is there a negative association between a player's speed and his offensive production?

Data:

The baseball data I collected comes from www.rotochamp.com. This is a fantasy baseball site for statistics of past, current, and future (projections) of MLB (Major League Baseball) data. I had to scrape several web pages for projections of fielding position players (those who create offensive statistics). I gathered the 2014 "composite" projections into a csv file (see attached page). This citation is for one subset of the data (Position = Out_Fielders)
http://www.rotochamp.com/baseball/PlayerRankings.aspx?Position=OF.

Each case or observation has the following form:

names(baseball2014)

```
"PosRank" "Player"
                                                                   "R"
         "Pos"
                                                        "AB"
##
     Г17
                                            "Team"
"HR"
    [8]
                     "SB"
                                "AVG"
                                            "0BP"
                                                        "SLG"
                                                                   "Value"
##
         "RBI"
"SBAB"
## [15]
                     "OPI"
         "SPD"
```

This table summarize the relevant (not all) variable for this project:

Variable	Description	Туре
Player	Player's Name	Categorical
AB	Number of "at bats" or opportunities	Numeric-Discrete
R	Number of runs scored	Numeric-Discrete
HR	Number of home runs	Numeric-Discrete
RBI	Number of runs batted in	Numeric-Discrete
SB	Number of stolen bases	Numeric-Discrete
AVG	Ratio of hits to at bats	Numeric-Continuous
OBP	Ratio of reaching first base per at bats	Numeric-Continuous
SLG	Ratio composite of number of bases times hits per at bats	Numeric-Continuous

In order to complete this project, I had to create three additional variables: SBAB, SPD, and OPI.

SBAB is a continuous, numerical ratio of SB / AB (stolen base count to "at bats" or opportunities).

SPD (Speed rating) is a categorical rating based on SBAB quantiles:

OPI (Offensive Production Index) is a composite index of offensive stats times efficiency of chance that I created from the rotochamp data.

$$OPI = sqrt((R + HR + RBI) * (sqrt (AB) * (AVG + OBP + SLG) / 3))$$

The square root transformations shape the data into nearly a normal distribution.

One complete observation looks like:

```
baseball2014[5, ]
```

```
Player Team AB R HR RBI SB
##
     Pos PosRank
                                                        AVG
                                                              OBP
SLG
    Value
              13 Albert Pujols
## 5
                                LAA 484 75 24
                                                    4 0.277 0.348
      1B
                                               83
0.483 $19.00
##
         SBAB
               SPD
                     0PT
## 5 0.008264 Slow 38.46
```

Analysis for this project is based upon the categorical variable "SPD" and numerical variable "OPI"

This is an observational study. There is no experimental design or treatment. The data is based on statistical projections for actual professional baseball players. Since the data is based upon observed (though, projected) data, the project cannot show causality, only an association. Moreover, the sampling (using inference function) will be generalizable to the entire data set of professional baseball players. The inference function will randomly select observations from each of the 5 categories to compare their respective OPI means.

Exploratory data analysis:

For starters, I looked at the relationship between speed and each offensive variable (SLG, HR, RBI, and AVG. For brevity, I have included just the summary boxplots below.

This is a purely speculative examination. For the most part, each fantasy team consists of the best players in the league. Team owners look to pick up the top players at each position. Since there are 30 clubs in MLB and the fantasy league consists of 8 teams, I am going to quickly investigate how the top 25% of each offensive category would be modeled as proportions of each speed category. Again, this is merely a rough estimation as how offensive stats are related to speed and will help me formulate a hypothesis later.

##	HR	Very	Slow 26	Slow 31	Average 26	Fast	Very	Fast
	SLG		20	33	27	19		17
	AVG RBI		14 21	21 29	25 30	30 23		32 14

Speed Proportions per HR, SLG, AVG, RBI top 75%

From the above exploration, I can see that each offensive stat has a different relationship with speed. Batting average appears to be the least affected by speed; whereas, HR and SLG are inversely related to speed. Although these data relationships are interesting, they are too fragmented to make a clear and concise statement about the relationship of speed with offense. In order to tell the overall impact of speed on offensive production, I am going to need the OPI to SPD analysis of variance below.

Inference:

Since I have one numeric and one categorical variable, I am going to use ANOVA with the inference function.

My hypothesis for the ANOVA is:

 $H_0 = mean(SPD = "Very Slow") = mean(SPD = "Slow") = mean(SPD = "Average") = mean(SPD = "Fast") = mean(SPD = "Very Fast")$

H_A= at least two categorical means are different from each other

```
## Response variable: numerical, Explanatory variable: categorical
## ANOVA
## Summary statistics:
## n_Average = 91, mean_Average = 23.68, sd_Average = 11.16
\#\# n_Fast = 89, mean_Fast = 24.2, sd_Fast = 9.995
## n_Slow = 94, mean_Slow = 24.4, sd_Slow = 10.22
## n_Very Fast = 87, mean_Very Fast = 25.26, sd_Very Fast = 10.24
## n_Very Slow = 84, mean_Very Slow = 21.43, sd_Very Slow = 10.97
## H_0: All means are equal.
## H A: At least one mean is different.
## Analysis of Variance Table
##
## Response: y
              Df Sum Sq Mean Sq F value Pr(>F)
##
## x
               4
                    704
                            176
                                   1.59
                                          0.18
## Residuals 440 48731
                            111
```



```
boxplot(baseball2014$0PI ~ baseball2014$SPD, main = "OPI by Speed
Rating", col = "#33669925",
    at = c(0, 1, -1, 2, -2))
abline(h = mean(baseball2014$0PI, na.rm = T), col = "blue", lty = 2, lwd = 2)
```

OPI by Speed Rating

Conditions for ANOVA and hypothesis testing: From the OPI by Speed Rating plot above, I can tell the conditions for ANOVA were met. There is independence within each group and between each group. Each baseball player is independent of another and is only listed in one SPD category. Furthermore, each boxplot shows approximate normality and equal variance for each group.

From the inference function and ANOVA analysis, the F value (1.59) is small and the p-value (0.18) is larger than a small significant value. Therefore, I cannot reject the null hypothesis. In other words, the means across the SPD (speed rating) categories are not significantly different.

Conclusion:

In the end, it seems much to do about nothing. The p-value of .18 > .05 tells me that I cannot dismiss the hypothesis that states that the mean OPIs across the SPD categories are the same. A look at the side-by-side boxplots shows how similar each group is. As far as my fantasy draft is concerned, I should be able to find speedy players who will not hurt my overall offensive production. That said, I should probably start to worry about my pitching now...

Appendices: Data Page and Descriptive Stats

```
## baseball2014$SPD: Average
   var n mean sd median trimmed mad min max range skew
##
kurtosis se
## 1 1 91 0.26 0.02 0.25 0.26 0.02 0.19 0.3 0.11 -0.38
1.14
            _____
## -----
## baseball2014$SPD: Fast
   var n mean sd median trimmed mad min max range skew
##
kurtosis se
## 1 1 92 0.26 0.02 0.26 0.26 0.02 0.17 0.3 0.13 -1.14
2.41
## -----
## baseball2014$SPD: Slow
## var n mean sd median trimmed mad min max range skew
kurtosis se
## 1 1 94 0.25 0.02 0.25 0.02 0.21 0.32 0.11 0.67
1.26 0
## -----
## baseball2014$SPD: Very Fast
## var n mean sd median trimmed mad min max range skew
kurtosis se
## 1 1 93 0.26 0.02 0.26 0.26 0.02 0.16 0.31 0.14 -0.65
2.7 0
## -----
## baseball2014$SPD: Very Slow
## var n mean sd median trimmed mad min max range skew
kurtosis se
## 1 1 93 0.24 0.04 0.24 0.24 0.02 0.08 0.3 0.22 -2.04
5.7 0
```

by(baseball2014\$RBI, baseball2014\$SPD, describe)

```
## baseball2014$SPD: Average
   var n mean sd median trimmed mad min max range skew
##
kurtosis se
## 1 1 91 43.75 26.41 41 42.64 34.1 7 97 90 0.27
-1.32 2.77
            _____
## -----
## baseball2014$SPD: Fast
   var n mean sd median trimmed mad min max range skew
##
kurtosis se
## 1 1 92 41.24 23.72 36.5 40.2 27.43 3 101 98 0.35
-0.96 2.47
## -----
## baseball2014$SPD: Slow
## var n mean sd median trimmed mad min max range skew
kurtosis se
## 1 1 94 46.21 24.94 47 44.71 34.1 11 114 103 0.38
-0.87 2.57
## -----
## baseball2014$SPD: Very Fast
## var n mean sd median trimmed mad min max range skew
kurtosis se
## 1 1 93 39.34 23.43 40 38.39 25.2 1 91 90 0.24
-0.79 2.43
## -----
## baseball2014$SPD: Very Slow
## var n mean sd median trimmed mad min max range skew
kurtosis
      se
## 1 1 93 37.13 27.34 34 35.21 34.1 1 98 97 0.46
-0.97 2.83
```

by(baseball2014\$HR, baseball2014\$SPD, describe)

```
## baseball2014$SPD: Average
   var n mean sd median trimmed mad min max range skew
##
kurtosis se
## 1 1 91 10.89 8.68 8 9.95 7.41 0 33 33 0.81
-0.4 0.91
            _____
## -----
## baseball2014$SPD: Fast
   var n mean sd median trimmed mad min max range skew
##
kurtosis se
## 1 1 92 9.41 7.31 7 8.54 6.67 0 31 31 0.91
-0.02 0.76
## -----
## baseball2014$SPD: Slow
   var n mean sd median trimmed mad min max range skew
##
kurtosis se
## 1 1 94 11.91 8.5 9 11.03 7.41 1 41 40
0.72 0.88
## -----
## baseball2014$SPD: Very Fast
## var n mean sd median trimmed mad min max range skew
kurtosis se
## 1 1 93 8.45 7.36 7 7.49 7.41 0 29 29 1
0.27 0.76
## -----
## baseball2014$SPD: Very Slow
## var n mean sd median trimmed mad min max range skew
kurtosis se
## 1 1 93 9.77 8 10 9.09 10.38 0 29 29 0.54
-0.76 0.83
```

by(baseball2014\$SLG, baseball2014\$SPD, describe)

```
## baseball2014$SPD: Average
   var n mean sd median trimmed mad min max range skew
##
kurtosis se
## 1 1 91 0.4 0.05 0.4 0.4 0.06 0.25 0.53 0.28 0.07
-0.14 0.01
              _____
## -----
## baseball2014$SPD: Fast
   var n mean sd median trimmed mad min max range skew
##
kurtosis se
## 1 1 92 0.4 0.05 0.39 0.39 0.04 0.26 0.52 0.26 0.13
0.35
## -----
## baseball2014$SPD: Slow
## var n mean sd median trimmed mad min max range skew
kurtosis se
## 1 1 94 0.41 0.05 0.41 0.41 0.04 0.29 0.59 0.3 0.56
0.98 0.01
## -----
## baseball2014$SPD: Very Fast
## var n mean sd median trimmed mad min max range skew
kurtosis se
## 1 1 93 0.38 0.06 0.38 0.38 0.05 0.19 0.55 0.36 0.23
1.04 0.01
## -----
## baseball2014$SPD: Very Slow
## var n mean sd median trimmed mad min max range skew
kurtosis se
## 1 1 93 0.38 0.08 0.4 0.39 0.05 0.08 0.51 0.43 -1.67
```

3.75 0.01

ro	w.names	Pos	PosRank	Player	Team	AB	R	HR	RBI	SB	AVG	OBP	SLG	Value	SBAB
1 16	60	3B	1	Miguel Cabrera	DET	550	98	38	114	3	0.322	0.414	0.593	\$52.00	0.00545454
2 37	72	OF	1	Mike Trout	LAA	566	112	27	89	35	0.306	0.405	0.535	\$53.00	0.06183745
3 52	2	1B	1	Paul Goldschmidt	ARI	561	91	31	101	14	0.280	0.376	0.517	\$38.00	0.02495543
4 54	4	1B	4	Prince Fielder	TEX	557	83	29	98	1	0.285	0.382	0.497	\$30.00	0.00179533
5 25		0F	3	Andrew McCutchen	PIT	569	95	22	87	23	0.292	0.378	0.482	\$36.00	0.04042179
6 17	7	1B	2	Chris Davis	BAL	547	83	41	102	3	0.267	0.342	0.552	\$34.00	0.00548446
7 13		3B	2	Edwin Encarnacion	TOR	537	86	33	97	8	0.276	0.367	0.520	\$31.00	0.01489757
8 32		1B	5	Joey Votto	CIN	519	88	25	82	6	0.295	0.423	0.511	\$28.00	0.01156069
9 39		0F	2	Ryan Braun	MIL	518	85	29	91	18	0.297	0.369	0.539	\$36.00	0.03474903
		3B	3	Adrian Beltre	TEX	559	79	28	94	1	0.302	0.351	0.512	\$29.00	0.00178890
		2B	1	Robinson Cano	SEA	572	84	23	88	5	0.297	0.362	0.490	\$29.00	_
							-	-	-	-					0.00874125
12 27		0F	4	Carlos Gonzalez	COL	506	84	29	87	21	0.298	0.365	0.553	\$36.00	0.04150197
L3 41		0F	5	Yasiel Puig	LAD	563	94	27	75	19	0.284	0.353	0.496	\$32.00	0.03374778
L4 4		1B	7	Adrian Gonzalez	LAD	576	78	22	95	1	0.285	0.345	0.460	\$23.00	0.00173613
15 25	5	1B	6	Freddie Freeman	ATL	532	80	23	90	2	0.289	0.368	0.483	\$24.00	0.00375939
16 24	46	0F	6	Adam Jones	BAL	578	81	28	90	12	0.285	0.323	0.491	\$30.00	0.02076124
14	40	3B	5	Evan Longoria	ТВ	538	83	27	91	3	0.260	0.345	0.478	\$20.00	0.00557620
.8 24	40	DH	2	Billy Butler	KAN	580	71	19	88	1	0.288	0.367	0.447	\$16.00	0.0017241
9 34	40	0F	8	Jose Bautista	TOR	464	85	32	84	7	0.265	0.377	0.530	\$26.00	0.01508620
20 26	68	0F	7	Bryce Harper	WAS	521	88	25	76	15	0.278	0.366	0.497	\$26.00	0.0287907
21 36	63	0F	12	Matt Holliday	STL	514	85	21	85	5	0.278	0.363	0.465	\$22.00	0.0097276
2 46	61	SS	1	Troy Tulowitzki	COL	481	74	26	84	4	0.306	0.380	0.538	\$28.00	0.0083160
3 32	27	0F	11	Jay Bruce	CIN	533	78	30	92	7	0.257	0.333	0.492	\$23.00	0.0131332
24 7		1B	12	Anthony Rizzo	CHC	567	74	26	87	6	0.265	0.345	0.473	\$19.00	0.0105820
5 24	4	1B	9	Eric Hosmer	KAN	578	77	18	79	12	0.289	0.350	0.446	\$21.00	0.0207612
6 24		0F	21	Alex Gordon	KAN	591	87	17	75	10	0.271	0.340	0.431	\$18.00	0.0169204
27 13		3B	4	David Wright	NYM	527	79	20	81	16	0.279	0.363	0.465	\$21.00	0.0303605
		1B	11	Allen Craig	STL	527	75	18	90	3	0.287	0.343	0.455	\$19.00	0.0056926
				-			-	-	-	-					
29 12		1B	14	Buster Posey	SF	525	72	18	85	2	0.291	0.369	0.461	\$24.00	0.0038095
31		0F	14	Hunter Pence	SF	569	80	20	87	12	0.267	0.326	0.438	\$20.00	0.0210896
31 24		DH	1	David Ortiz	BOS	460	74	24	86	2	0.289	0.380	0.520	\$19.00	0.0043478
32 31		0F	13	Giancarlo Stanton	MIA	491	76	32	83	4	0.261	0.361	0.525	\$20.00	0.0081466
33 33	3	1B	8	Jose Dariel Abreu	CWS	487	80	30	78	5	0.273	0.354	0.513	\$22.00	0.0102669
34 39	99	0F	18	Shin-Soo Choo	TEX	544	89	17	63	19	0.270	0.382	0.430	\$18.00	0.0349264
35 43	37	SS	2	Hanley Ramirez	LAD	505	79	23	81	18	0.275	0.341	0.477	\$27.00	0.0356435
6 40	08	OF	24	Wil Myers	TB	550	77	22	83	8	0.260	0.329	0.442	\$16.00	0.0145454
37 14	4	1B	16	Carlos Santana	CLE	523	77	20	80	4	0.254	0.367	0.438	\$19.00	0.0076481
38 5		1B	13	Albert Pujols	LAA	484	75	24	83	4	0.277	0.348	0.483	\$19.00	0.00826446
39 80	0	2B	3	Dustin Pedroia	BOS	542	77	12	73	15	0.295	0.367	0.435	\$19.00	0.0276752
10 35	51	0F	20	Justin Upton	ATL	517	85	22	70	12	0.265	0.353	0.455	\$18.00	0.0232108
1 10	00	2B	7	Matt Carpenter	STL	551	89	10	65	4	0.283	0.363	0.428	\$14.00	0.0072595
12 46	6	1B	10	Michael Cuddyer	COL	504	70	21	78	9	0.296	0.357	0.498	\$19.00	0.01785714
13 14	45	3B	6	Josh Donaldson	OAK	546	77	20	76	6	0.267	0.343	0.443	\$13.00	0.0109890
14 87		2B	2	Jason Kipnis	CLE	544	81	16	75	24	0.267	0.347	0.423	\$21.00	0.0441176
45 20		С	3	Joe Mauer	MIN	533	77	11	68	3	0.296	0.384	0.428	\$19.00	0.0056285
16 99		2B	6	Martin Prado	ARI	583	75	13	73	6	0.286	0.339	0.425	\$14.00	0.01029159
7 27		0F	23	Carlos Beltran	NYY	500	72	23	81	5	0.276	0.339	0.474	\$17.00	0.0102313
		0F	22	Mark Trumbo	ARI	_	71	29	89	5			0.475	\$17.00	0.0095419
						524	-	-	_	-	0.252	0.307			
19 86		2B	4	Ian Kinsler	DET	559	88	16	63	17	0.267	0.340	0.420	\$18.00	0.0304114
68		2B	5	Brandon Phillips	CIN	559	76	17	79	8	0.270	0.319	0.415	\$16.00	0.0143112
51 32		0F	10	Jacoby Ellsbury	NYY	571	87	14	59	38	0.284	0.339	0.431	\$25.00	0.0665499
52 66		2B	9	Ben Zobrist	ТВ	554	81	14	70	12	0.258	0.349	0.408	\$14.00	0.0216606
32	25	0F	27	Jason Heyward	ATL	522	81	22	64	10	0.264	0.351	0.456	\$14.00	0.0191570
54 25	58	0F	32	Austin Jackson	DET	563	86	13	60	12	0.274	0.343	0.423	\$12.00	0.0213143
55 27	73	0F	9	Carlos Gomez	MIL	536	78	23	72	36	0.265	0.316	0.468	\$25.00	0.0671641