4-6 Wednesday – 210-GD3

# Special topics in Computer Science INT3121 20

Lecturer: Nguyen Thi Ngoc Diep, Ph.D.

Email: <a href="mailto:ngocdiep@vnu.edu.vn">ngocdiep@vnu.edu.vn</a>

Slide & Code: https://github.com/chupibk/INT3121-20

### Image classification with convolutional neural networks

| Week           | Content                                                                                         | Class hour | Self-study hour |
|----------------|-------------------------------------------------------------------------------------------------|------------|-----------------|
| 1<br>28/8/2019 | Introduction<br>Image classification problem and its applications<br>A toy problem with CIFAR10 | 2          | 1               |
| 2              | CNN model architectures and visualization                                                       | 2          | 1               |
| 3              | Training and tuning parameters Automatic parameter learning                                     | 2          | 1               |
| 4              | Data augmentation<br>Data generator                                                             | 2          | 2-6             |
| 5              | Transfer learning                                                                               | 2          | 2-6             |
| 6              | Multi-output image classification                                                               | 2          | 2-6             |
| 7              | Building a training dataset<br>How to write a report                                            | 1          | 2-6             |
| 8, 9, 10, 11   | Seminar: Bag of tricks with CNN (as mid-term tests)                                             | 1          | 2-6             |
| 12, 13, 14     | Final project presentations                                                                     | 1-3        | 2-6             |
| 15             | Class summarization                                                                             | 1          | open            |

#### Week 1: Homework checklist

- Install all necessary environments?
  - Keras, tensorflow, python 3, jupyter notebook, numpy, sklearn
- Re-run all the scripts?
- Obtain the label names of CIFAR10 classes?
- Given an image, predict the label of the image?
- → Check lecture code for answers ©

Layers in Neural Networks

### A sample net with fully connected layers





An example of a neuron showing the input (  $x_1 - x_n$  ), their corresponding weights (  $w_1 - w_n$  ), a bias ( b ) and the activation function f applied to the weighted sum of the inputs.

Visualization tool: http://alexlenail.me/NN-SVG/index.html

 ${\bf Image\ credit:}\ \underline{https://www.learnopencv.com/understanding-activation-functions-in-deep-learning/properties of the properties of th$ 

#### Code it with Keras

```
from keras.models import Sequential
from keras.layers import *
model = Sequential()
model.add(Dense(4, input_shape=(3,)))
model.add(Dense(5))
model.add(Dense(2))
model.summary()
```

| Layer (type)     | Output Shape              | Param # |
|------------------|---------------------------|---------|
|                  |                           |         |
| dense_4 (Dense)  | (None, 4)                 | 16      |
| dense_5 (Dense)  | (None, 5)                 | 25      |
| dense_6 (Dense)  | (None, 2)                 | 12      |
| Total params: 53 | Where does this come from | n?      |

Non-trainable params: 0

3

### Convolution Layers

### LeNet example



Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

Reference: LeCun, Yann, et al. "Gradient-based learning applied to document recognition." *Proceedings of the IEEE* 86.11 (1998): 2278-2324. <a href="http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf">http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf</a>





### Sobel in both directions





https://en.wikipedia.org/wiki/Sobel\_operator

### Kernel = function Convolution = operation to combine 2 functions











# Correlation operation



### Convolution layers are about kernels and their behaviors

- Having "gap" in kernels?
  - Traditional vs Dilated (a.k.a Atrous)
- Dealing with pixels at border?
  - Padding
- Moving step across images?
  - Stride
- Accelerating computation?
  - Separable
- Upsampling data?
  - Deconvolution (aka, Transposed convolution)







## Upsampling Deconvolution (Transposed convolution)



Credit: https://github.com/vdumoulin/conv\_arithmetic

### Important keywords to remember

- Filter
- Kernel
- Stride
- Pad
- Receptive field
- Downsampling
- Upsampling
- Feature map

### Types of filters

- (Traditional) Convolution
  - Too many parameters
- Dilated or Atrous convolution
  - Large receptive field
  - Less parameters
- Separable convolution
  - Even lesser parameters
- Deconvolution or transposed convolution
  - Low resolution -> high resolution
- Pooling -> not a convolution layer, but...



### Parameters of a Convolution layer

Summary. To summarize, the Conv Layer:

- Accepts a volume of size W<sub>1</sub> × H<sub>1</sub> × D<sub>1</sub>
- · Requires four hyperparameters:
  - · Number of filters K,
  - · their spatial extent F,
  - the stride S,
  - the amount of zero padding P.
- Produces a volume of size  $W_2 \times H_2 \times D_2$  where:
  - $W_2 = (W_1 F + 2P)/S + 1$
  - $\circ$   $H_2 = (H_1 F + 2P)/S + 1$  (i.e. width and height are computed equally by symmetry)
  - O  $D_2 = K$
- With parameter sharing, it introduces F · F · D<sub>1</sub> weights per filter, for a total of (F · F · D<sub>1</sub>) · K weights and K biases.
- In the output volume, the d-th depth slice (of size W<sub>2</sub> × H<sub>2</sub>) is the result of performing a valid convolution of the d-th filter over the input volume with a stride of S, and then offset by d-th bias...

A common setting of the hyperparameters is F=3, S=1, P=1. However, there are common conventions and rules of thumb that motivate these hyperparameters. See the ConvNet architectures section below.

Reference: <a href="http://cs231n.github.io/convolutional-networks/">http://cs231n.github.io/convolutional-networks/</a>

### **CNN** architectures

#### Some CNN architectures



Figure 2: **Top1** *vs.* **operations, size**  $\propto$  **parameters.** (Operations required for a single forward pass)

Reference: Canziani, Alfredo, Adam Paszke, and Eugenio Culurciello. "An analysis of deep neural network models for practical applications." *arXiv preprint arXiv:1605.07678* (2016).

#### Architectures

- LeNet-5 LeCun et al., 1998
- AlexNet Krizhevsky et al., 2012
- VGGNet Simonyan et al., 2014
- GoogleNet/Inception Szegedy et al., 2014
- Resnet Kaiming et al., 2015









### ResNet with "skip connections"



Image credit: ...