

1. Базовая задача МНК.

Теоретический вопрос 1.

Пусть дана выборка точек η_s . Решите аналитически задачу МНК, моделируя данные постоянной величиной $\tilde{\eta}_s$ что отвечает минимизации функции потерь

$$\mathcal{L} = \sum_{i=1}^l \left(y_i - \check{y}\right)^2
ightarrow \min_{\check{y}} \left(y_i - \check{y}\right)^2$$

Теоретический вопрос 2.

Покажите, что прямая, построенная по методу МНК, всегда проходит через точку (ar x,ar u), где ar x и ar u - выборочные средние. Обобщите на случай многомерной регресси

Odgii
$$l = \frac{\xi}{\xi_1}(y_1 - \hat{y})^2 \rightarrow min$$

$$\frac{\partial l}{\partial g} = -\sum_{i=1}^{n} 2(y_i - \hat{y})^2 = 0 \Rightarrow \frac{\xi}{\xi_1}(y_1 - \hat{y}) = 0 = \frac{\xi}{\xi_2}(y_1 - \xi y_1 = 0) \Rightarrow \hat{y} = \frac{\xi}{\xi_2}(y_1 - \xi y_2 - \xi y_1 - \xi y_2 -$$

2. Централизация признаков и МНК.

Покажите, что следующие две процедуры приводят к одинаковому результату:

- 1. В матрице объект-признак X из каждого столбца вычитается среднее по столбцу (централизация признаков). После этого вычисляется $ig(X^TXig)^{-1}$
- 2. К матрице X дописывается в конец столбец, состоящий из одних единиц. Вычисляется $\left(X^TX\right)^{-1}$ и в получившейся матрице вычеркивается последний столбец и последня: строка.

Recensorbline
$$u = \frac{1}{n} \begin{pmatrix} \tilde{\xi} \chi_{11} \\ \vdots \\ \tilde{\xi} \chi_{1m} \end{pmatrix} - mbauen embaua co effective year. No emandial

$$\chi_{1} = \chi - 4 \ln \mu^{T} \Rightarrow \chi_{1}^{T} = \chi^{T} - \mu \cdot 1 \int_{n}^{\infty} (\chi - \mu \cdot 1) \int_{n}^{\infty} (\chi -$$$$

Paceu
$$\lambda_{\lambda} = (x/1/n)_{i}$$
 λ_{i} - emonouse χ
 $\lambda_{\alpha}^{T} \times \lambda_{\lambda} = (x^{T})_{i} (x^{T} 1/n)_{i} = (x^{T})_{i} (x^{T})_{i} (x^{T})_{i} (x^{T})_{i} (x^{T})_{i} (x^{T})_{i} (x^{T})_{i} (x^{T})_{i} = (x^{T})_{i} (x^{T})_{i} (x^{T})_{i} (x^{T})_{i} (x^{T})_{i} = (x^{T})_{i} (x^{$

Torda
$$(x^{T}X)$$
 + $\frac{n}{n-n^{2}\mu^{T}(x^{T}X)^{-1}\mu}$ | $(x^{T}X)^{-1}\mu^{T}$ | $(x^{T}X)^{$

3. Геометрический смысл псевдообратной матрицы.

На лекции обсуждалось, что метод наименьших квадратов - это способ поставить задачу о решении переопределенной системы Xw=y, которая имеет явный ответ, выражающийся через левую псевдообратную матрицу для X. Для недоопределенной системы Xw=y (имеющей бесконечно много решений) можно поставить задачу о поиске решения с минимальной l_2 -нормой весов $\|w\|^2=w^Tw$. Решите такую задачу и покажите, что ответ выражается через правую псевдообратную матрицу для X. Считайте, что прямоугольная матрица X имеет полный ранг (максимально возможный).

4. Матрица объект-признак.

Теоретический вопрос 1.

Пусть X - матрица объект-признак (размерность l imes F), для которой сингулярное разложение имеет вид $X = V \sqrt{\Lambda} U^T$. После понижения размерности данных с помощью метода главных компонент, в диагональной матрице $\Lambda = \mathrm{diag}\,\{\lambda_1 \ge \cdots \ge \lambda_F\}$ оставляются только \tilde{F} наибольших сингулярных чисел: $\tilde{\Lambda} = \mathrm{diag}\,\{\lambda_1 \ge \cdots \ge \lambda_{\tilde{F}}\}$. При этом данные, как правило, можно восстановить только с некоторой ошибкой: $\tilde{X} = V \sqrt{\tilde{\Lambda}} U^T \ne X$. Покажите, что L_2 норма ошибки выражается через сумму по оставшимся сингулярным числам:

$$\frac{1}{l} \|X - \tilde{X}\|^2 = \sum_{i=\tilde{F}+1}^F \lambda_i$$

Теоретический вопрос 2.

Покажите, что сингулярный вектор матрицы X, отвечающий наибольшему сингулярному числу, является решением задачи

$$u = \operatorname{argmax}_{||u||=1} (Xu)^2,$$

где подразумевается матричное умножение X на $oldsymbol{u}$

5. Геометрический смысл сингулярного разложения.

Теоретический в<mark>опрос 1</mark>.

Пусть дан набор точек на плоскости (x_i, y_i) , для которых выборочные средние x_i и y_i равны нулю. Покажите, что сингулярный вектор для матрицы объектпризнак, отвечающий наибольшему сингулярному числу, задает прямую a (проходящую через начало координат), которая является решением следующей задачи оптимизации:

$$L' = \sum_{i=1}^{N} \operatorname{distance}^2\left[\left(x_i, y_i
ight); a
ight] \quad \longrightarrow \quad \min_a,$$

где distance $[(x_i,y_i);a]$ - расстояние от точки (x_i,y_i) до прямой a (равное длине перпендикуляра). Обратите внимание, что такая задача отличается от задачи МНК, в которой расстояние от точки до аппроксимирующей прямой вычисляется не по перпендикуляру, а вдоль оси y, отвечающей целевой переменной.

где distance $[(x_i,y_i);a]$ - расстояние от точки (x_i,y_i) до прямой a (равное длине перпендикуляра). Обратите внимание, что такая задача отличается от задачи МНК, в которой расстояние от точки до аппроксимирующей прямой вычисляется не по перпендикуляру, а вдоль оси y, отвечающей целевой переменной.

Теоретический вопрос 2.

Пусть дан набор из N точек в трехмерном пространстве $X_{i\alpha}, i \in \{1,\dots,N\}, \alpha \in \{1,2,3\}$. Покажите, что задача нахождения сингулярных чисел матрицы X эквивалентна нахождению главных моментов инерции твердого тела, составленного из набора точечных масс, расположенных в точках (X_{i1}, X_{i2}, X_{i3}) (можно представлять себе, что точечные массы соединены между собой невесомыми и абсолютно жесткими стержнями).

1) $\lambda_{my} = \|X\|_F^2 - \Im_{mx \times} \Rightarrow \text{ Maneumoronomy chermy rucky coomb-em rucky in Morient uneflyed$ $B inabuse 069% havemostive DO one <math>X = y^2 + y^2 = J_X = 2 + m \delta$