

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»

КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»

Лабораторная работа № 6 по дисциплине "Вычислительные алгоритмы"

Тема Построение и программная реализация алгоритмовчисленного дифференцирования.
Студент Мицевич М. Д.
Группа <u>ИУ7-41Б</u>
Оценка (баллы)
Преподаватель Градов В.М.

1. Цель работы

Получение навыков построения алгоритмавычисления производных от сеточных функций

2. Исходные данные

Задана табличная (сеточная) функция. Имеется информация, что закономерность, представленная этой таблицей, может быть описана формулой

$$y = \frac{a_0 x}{a_1 + a_2 x}$$

X	У	1	2	3	4	5
1	0.571					
2	0.889					
3	1.091					
4	1.231					
5	1.333					
6	1.412					

Вычислить первые разностные производные от функции и занести их в столбцы (1)-(4) таблицы:

- 1 односторонняяразностная производная,
- 2 -центральнаяразностная производная,
- 3-2-я формула Рунге с использованием односторонней производной,
- 4 -введены выравнивающие переменные.
- В столбец 5 занестивторую разностную производную.

3. Код программы

Листинг main.py:

```
def right(y, h, i):
    return (y[i + 1] - y[i]) / h if i < len(y) - 1 else ""

def center(y, h, i):
    return (y[i + 1] - y[i - 1]) / (2 * h) if i > 0 and i < len(y) - 1 else ""

def double_diff(y, h, i):
    return (y[i + 1] - 2 * y[i] + y[i - 1]) / (h * h) if i > 0 and i < len(y) -
    1 else ""

def right_double(y, h, i):
    return (y[i + 2] - y[i]) / h if i < len(y) - 2 else ""

def runge(y, h, i): # p == 1; m == 2
    if i >= len(y) - 2:
        return ""

f2h = right_double(y, h, i)
    return 2 * fh - f2h

def align_vars(y, x, i): #eta = 1 / y eps = 1 / x
```

4. Результаты

	x y	1	2	3	4	5
Ĺ	1 0.571	0.318	ĺ	0.116	0.408	İ
ĺ	2 0.889	0.202	0.26	0.062	0.247	-0.116
ĺ	3 1.091	0.14	0.171	0.038	0.165	-0.062
Ĺ	4 1.231	0.102	0.121	0.023	0.118	-0.038
Ĺ	5 1.333	0.079	0.0905	Ì	0.0895	-0.023
ĺ	6 1.412					

Рис. 1. Таблица результатов

4.1. Правая разностная производная

Формула:

$$y'_{n} = \frac{y_{n+1} - y_{n}}{h} + O(h)$$

Точность: первый порядок точности относительно шага h

4.2. Центральная разностная производная

Формула:

$$y_n' = \frac{y_{n+1} - y_{n-1}}{2h} + O(h^2)$$

<u>Точность:</u> второй порядок точности относительно шага h

4.3. 2-я формула Рунге с использованием односторонней производной

Формула:

$$\Omega = \Phi(h) + \frac{\Phi(h) - \Phi(mh)}{m^p - 1} + O(h^{p+1})$$

Точность: точность формулы Рунге повышается за счет расчет на 2 сетках с отличающимеся шагами. Точность формулы - p+1. В программе я использовал формулу Рунге для правой разностной производной, поэтому m=2 - удвоенный шаг, p=1.

4.4. Введение выравнивающих переменных

Требуется подобрать такие $\eta(y)$ и $\xi(x)$, чтобы функция $\eta(\xi)$ была линейной. Исходя из заданной формы фунцкии в условии задачи, зададим $\eta(y)=\frac{1}{y}$ и $\xi(x)=\frac{1}{x}$, тогда $\eta(\xi)=\frac{a_1}{a_0}\xi+\frac{a_0}{a_2},$ что и требовалось. Тогда для возврата к исходным переменным используется формула:

$$y_x' = y_\eta' \eta_\xi' \xi_x' = \frac{\eta_\xi' \xi_x'}{\eta_y'}$$

Воспользуемся формулой правой разностной производной и получим:

$$y_n' = \frac{\frac{1}{y_{n+1}} - \frac{1}{y_n}}{\frac{1}{x_{n+1}} - \frac{1}{x_n}} \frac{y_n^2}{x_n^2}$$

Точность: Формула абсолютно точная

4.5. Вторая разностная производная

Формула:

$$y_n'' = \frac{y_{n-1} - 2y_n + y_{n+1}}{h^2} + O(h^2)$$

Точность: второй порядок точности относительно шага h

5. Контрольные вопросы

5.1. Получить формулу порядка точности (h^2) для первой разностной производной y'_N в крайнем правом узле x_N .

Запишем ряды Тейлора в точках n-1 и n-2:

$$y_{n-1} = y_n + \frac{h}{1!}y'_n + \frac{h^2}{2!}y''_n + \dots$$
 (1)

$$y_{n-2} = y_n + \frac{2h}{1!}y_n' + \frac{(2h)^2}{2!}y_n'' + \dots$$
 (2)

Вычтем из 4 первых второе:

$$4y_{n-1} - y_{n-2} = 3y_n + 2hy'_n + O(h^2)$$

Отсюда:

$$y_n' = \frac{4y_{n-1} - y_{n-2} - 3y_n}{2h} + O(h^2)$$

5.2. Получить формулу порядка точности O(h2) для второйразностной производной y_0'' в крайнем левом узле x_0 .

Запишем ряды Тейлора в точках 1 и 2:

$$y_1 = y_0 + \frac{h}{1!}y_0' + \frac{h^2}{2!}y_0'' + \frac{h^3}{3!}y_0''' \dots$$
 (3)

$$y_2 = y_0 + \frac{2h}{1!}y_0' + \frac{(2h)^2}{2!}y_0'' + \frac{(2h)^3}{3!}y_0''' \dots$$
 (4)

Вычтем из 8 третьих четвертое:

$$8y_1 - y_2 = 7y_0 + 6hy_0' + 2h^2y_0'' + O(h^2)$$

Отсюда:

$$y_0'' = \frac{8y_1 - y_2 - 7y_0 - 6h^{\frac{-3y_0 + 4y_1 - y_2}{2h}}}{2h^2} + O(h^2)$$

5.3. Используя 2-ую формулу Рунге, дать вывод выражения(9) из Лекции №7 для первой производной y_0' в левом крайнем узле

$$\Omega = \Phi(h) + \frac{\Phi(h) - \Phi(2h)}{2^1 - 1} + O(h^{1+1})$$

$$\Phi(h) = \frac{y_1 - y_0}{h}$$

$$\Phi(2h) = \frac{y_2 - y_0}{2h}$$

$$y'_0 = \frac{4(y_1 - y_0) - (y_2 - y_0)}{2h}$$

$$y'_0 = \frac{4y_1 - y_2 - 3y_0}{2h}$$

5.4. Любым способом из Лекций №7, 8 получить формулу порядка точности $O(h^3)$ для первой разностной производной y_0' в крайнем левом узле x_0 .

Поступим аналогично пункту 2. Выпишем ряды Тейлора в точках 1, 2, 3. (1, 2 см. в 5.2)

$$y_3 = y_0 + \frac{3h}{1!}y_0' + \frac{(3h)^2}{2!}y_0'' + \frac{(3h)^3}{3!}y_0''' \dots$$
 (5)

Вычтем из 18 (3) 9 (4) и прибавим 2(5):

$$18y_1 - 9y_2 + 2y_3 = 11y_0 + 6hy_0' + O(h^3)$$

Отсюда,

$$y_0' = \frac{8y_1 - 9y_2 + 2y_3 - 11y_0}{6h} + O(h^3)$$