A simple mathematical relationship defines each reaction at chemical equilibrium.

$$H_{2(g)} + I_{2(g)} <===> 2 HI_{(g)}$$

$$K_{eq} = \frac{[HI_{(g)}]^2}{[H_{2(g)}][I_{2(g)}]}$$

- can always be developed from the balanced chemical equation
- K_{eq} will always have a specific value at specific environmental conditions
 - if the conditions change, the K_{eq} will also change
- units for K_{eq} will never be used

Example #1

a)
$$N_{2(g)} + 3 H_{2(g)} <===> 2 NH_{3(g)}$$

$$k_{eq} = \frac{[NH_{3(g)}]^2}{[N_{2(g)}][H_{2(g)}]^3}$$
b) $2 H_{2(g)} + O_{2(g)} <===> 2 H_2O_{(g)}$

$$k_{eq} = \frac{[H_2O_{(g)}]^2}{[H_{2(g)}]^2[O_{2(g)}]}$$
c) $2 NO_{2(g)} <===> N_2O_{4(g)}$

$$k_{eq} = \frac{[N_2O_{4(g)}]}{[NO_{2(g)}]^2}$$

How are the equilibrium laws of the following equations related?

$$i)N_{2(g)} + 3 H_{2(g)} <===> 2 NH_{3(g)}$$

ii)
$$2NH_{3(g)} <===> N_{2(g)} + 3 H_{2(g)}$$

i)
$$k_{eq} = [NH_{3(g)}]^2$$
 ii) $k_{eq} = [N_{2(g)}][H_{2(g)}]^3$ $[NH_{3(g)}]^2$

If the direction of an equation is reversed, the equilibrium constant is the reciprocal of the original equilibrium constant.

$$K_{eq forward} = 1 / K_{eq reverse}$$

How are the equilibrium laws of the following equations related?

i)
$$PCl_{3(g)} + Cl_{2(g)} <===> PCl_{5(g)}$$

ii)
$$2 \text{ PCl}_{3(g)} + 2 \text{ Cl}_{2(g)} <===> 2 \text{ PCl}_{5(g)}$$

i)
$$k_{eq} = [PCl_{5(g)}]$$

 $[PCl_{3(g)}][Cl_{2(g)}]$

ii)
$$k_{eq} = \frac{[PCl_{5(g)}]^2}{[PCl_{3(g)}]^2[Cl_{2(g)}]^2}$$

When the coefficients of a balanced equation are multiplied by a factor, the equilibrium constant is raised to the exponent of the same factor.

$$K_{eq rxn ii)} = [K_{eq rxn i)}^{x}$$

What is the equilibrium law of the sum of the following reactions?

i)
$$2 N_{2(g)} + O_{2(g)} <=> 2 N_2 O_{(g)}$$
 $k_{eq} = \frac{[N_2 O_{(g)}]^2}{[N_{2(g)}]^2[O_{2(g)}]}$
ii) $2 N_2 O_{(g)} + 3 O_{2(g)} <=> 4 NO_2 \frac{k_{eq}}{[S^q]} = \frac{[NO_{2(g)}]^4}{[N_2 O_{(g)}]^2[O_{2(g)}]^3}$

$$k_{eq} = \frac{[NO_{2(g)}]^4}{[N_{2(g)}]^2[O_{2(g)}]^4}$$

$$K_{\text{eq final}} = \frac{[N_2Q_3]^2}{[N_{2(g)}]^2[O_{2(g)}]} \times \frac{[NO_{2(g)}]^4}{[N_2Q_{(g)}]^2[O_{2(g)}]^3}$$

When chemical equilibria are added together, the equilibrium constants are multiplied together.

$$K_{eq final rxn} = K_{eq rxn 1} \times K_{eq rxn 2}$$

Example #2

At 25°C,
$$K_{eq} = 7.0 \times 10^{25}$$
 for:
 $2 SO_{2(g)} + O_{2(g)} <===> 2 SO_{3(g)}$

What is the value of K_{eq} for:

$$SO_{3(g)} <===> SO_{2(g)} + \frac{1}{2} O_{2(g)}$$

$$K_{eq} = 7.0 \times 10^{25}$$
 inversed, to the power of 0.5
= 1.195 x 10⁻¹³
= 1.2 x 10⁻¹³

EQUILIBRIUM LAW - Keq MAGNITUDE OF Keq

The value of K_{eq} (large or small) can provide a hint to the ratio of reactants to products at equilibrium.

EQUILIBRIUM LAW - Kequin MAGNITUDE OF Kequin MAGNITUD MAGNITUD

- 1. K_{eq} is very large $(K_{eq} > 1)$
 - [products] > [reactants]
- 2. $K_{eq} \approx 1$
 - [products] ≈ [reactants]
- 3. K_{eq} is very small $(K_{eq} < 1)$
 - [products] < [reactants]</pre>

EQUILIBRIUM LAW - Keq MAGNITUDE OF Keq

Example #3

Which of the following reactions will tend to proceed farthest toward completion?

a)
$$H_{2(g)}$$
 + $Br_{2(g)}$ <===> 2 $HBr_{(g)}$
 K_{eq} = 1.4 x 10^{-21}

b)2
$$NO_{(g)} <===> N_{2(g)} + O_{2(g)}$$

 $K_{eq} = 2.1 \times 10^{30}$

c)2 BrCl_(g)
$$<===>$$
 Br_{2(g)} + Cl_{2(g)}
 $K_{eq} = 0.195$

EQUILIBRIUM INVOLVING PURE SOLIDS AND LIQUIDS

EQUILIBRIUM - SOLIDS AND LIQUIDS

What is the concentration of a solid or liquid? (i.e. H₂O)

Does the concentration of these pure compounds change?

ex. 1 mol NaHCO₃ occupies 38.9 cm³ 2 mol NaHCO₃ occupies 77.8 cm³

Molar <u>concentration</u> remains the same. Solids and liquids are unaffected by concentration

EQUILIBRIUM - SOLIDS AND LIQUIDS

In the equilibrium law, solids and liquids do not need to be included as it becomes part of the equilibrium constant.

$$NH_{3(aq)} + H_2O_{(l)} <===> NH_4^+_{(aq)} + OH^-_{(aq)}$$

$$k_{eq} = \frac{[NH_4^+_{(aq)}][OH_{(aq)}^-]}{[NH_{3(aq)}]}$$

EQUILIBRIUM - SOLIDS AND LIQUIDS

Example #4

Write the equilibrium law for the following reactions:

a)CaCO_{3(s)} <===> CaO_(s) + CO_{2(g)}
$$k_{eq} = [CO_{2(g)}]$$

b)2 NaHCO_{3(s)}
$$<===>$$
 Na₂CO_{3(s)} + H₂O_(g) + CO_{2(g)}

$$k_{eq} = [H_2O_{(g)}][CO_{2(g)}]$$

c)CaO_(s) + SO_{2(g)} <===> CaSO_{3(s)}
 $k_{eq} = 1$
[SO_{2(g)}]

EQUILIBRIUM - SOLIDS AND LIQUIDS

Example #4

d)
$$2 \text{ Hg}_{(I)} + \text{Cl}_{2(g)} <===> \text{Hg}_2\text{Cl}_{2(s)}$$

$$k_{eq} = \frac{1}{[\text{Cl}_{2(g)}]}$$

e)
$$NH_{3(g)} + HCl_{(g)} <===> NH_4Cl_{(s)}$$

$$k_{eq} = \frac{1}{[NH_{3(g)}][HCl_{(g)}]}$$

EFFECT OF TEMPERATURE ON Keq

EQUILIBRIUM LAW - K_{eq}

EQUILIBRIUM - TEMPERATURE

Will temperature change the value of K_{eq} ? Why or why not?

Reactions are endothermic or exothermic and therefore will be affected by the addition or removal of heat.

EQUILIBRIUM - TEMPERATURE

$$3 H_{2(g)} + N_{2(g)} <===> 2 NH_{3(g)} + heat$$

a)What is the equilibrium law?
$$k_{eq} = \frac{[NH_{3(g)}]^2}{[H_{2(g)}]^3[N_{2(g)}]}$$

b)Which way does equilibrium shift when temperature increases? How will K_{eq} change?

Shifts to the left. Since the denominator increases, K_{eq} decreases (is smaller in value)

c)When temperature decreases?

Shifts to the right. Since the numerator increases, K_{eq} increases (is larger in value)

EQUILIBRIUM - TEMPERATURE

heat +
$$PCl_{5(g)}$$
 <===> $PCl_{3(g)}$ + $Cl_{2(g)}$

a) What is the equilibrium law?
$$k_{eq} = \frac{[PCl_{3(g)}][Cl_{2(g)}]}{[PCl_{5(g)}]}$$

b) Which way does equilibrium shift when temperature increases? How will K_{eq} change?

Shifts to the right. Since the numerator increases, K_{eq} increases (is larger in value)

c)When temperature decreases?

Shifts to the left. Since the denominator increases, K_{eq} decreases (is smaller in value)

Textbook homework:

```
Page 427 # 3
Page 428 # 1, 2, 3 a & b
Page 436 # 1, 2, 3, 5, 6
```