

SERVICE MANUAL

TABLE OF CONTENTS

Section		<u>Title</u>	<u>Page</u>	Section		<u>Title</u>	. Page
1.	TECHI	NICAL DESCRIPTION			3-3.	Level Check at Crossover	
	1-1.	Technical Specifications.	1		3-4.	Bass Boost Check	11
	1-2.	Detailed Circuit Analysis			3-5.	Crosstalk Measurement.	
	1-3.	Block Diagram	4		3-6.	Noise Level Measuremen	t 12
2.		SSEMBLY AND REPLAC			3-7.	Harmonic-Distortion Me and Clipping-Point Adjustment	
	PROC	EDUKES			3-8.	Channel Selector Switch	
	2-1. 2-2.	Tools Required Hardware Identification (Operational Check .	
	2-3.	Top Cover and Front Pan		4.	PERF	ORMANCE CURVES	15~17
	2-3.	Removal					
	2-4.	Pilot Lamp Replacement		5.	REPA	CKING	
	2-5.	Filter Amplifier Board R					
	2-6.	Control and Switch		6.	DIAG	RAMS	
		Replacement	6~7				
	2-7.	Rear Panel Removal			6-1.	Schematic Diagram	19~20
	2-8.	Replacement of Compon Secured to The Rear I			6-2.	Mounting Diagram	21~24
		By Rivets		7.	EXPL	ODED VIEW	25
3.	OVE	RALL CHECKS AND ME	ASUREMENTS	8.	ELEC	TRICAL PARTS LIST	26~28
	3-1.	Test Equipment Require	_	4-C	HANN	IEL ADAPTOR TAD-431	F 29~46

SECTION 1 TECHNICAL DESCRIPTION

1-1. TECHNICAL SPECIFICATIONS

Technical specifications for the TA-4300F are given in Table 1-1.

TABLE 1-1. TECHNICAL SPECIFICATIONS

Frequency response: $10 \text{ Hz to } 100 \text{ kHz } \pm \frac{10}{1} \text{ dB}$ Crossover frequency: LOW: 150, 250, 400, 600,

800, 1000 Hz

HIGH: 1.5k, 2.5k, 3.5k, 4.5k,

6k. 8k Hz

Input impedance

90 k ohms

Output impedance : Less than 5 k ohms Harmonic distortion: 0.03% at 1 V output

0.1 % at 4 V output

(at each frequency passband)

0.05% at 1 V output 0.1 % at 2.5 V output (at crossover frequency)

Signal-to-Noise

Ratio

85 dB shorted circuit (1 V input)

Maximum input

signal

4.5 V

Bass boost control : 0, 3, 6, 12, 18, dB at 20 Hz

Power consumption: Approx. 5 watts

Power requirement: 100, 120, 220, or 240 volts ac

Dimensions

: 200mm (width) X 149mm (height) X 316mm (depth)

 $7^{7}/8''$ (width) $\times 5^{7}/8''$ (height)

 $\times 12^{7/16}$ " (depth)

Net weight

: 3.8 kg (8 lb 6 oz)

Shipping weight

: 5.5 kg (12 lb 2 oz)

1-2. DETAILED CIRCUIT ANALYSIS

The following describes the functions of all stages and controls. The text sequence follows signal paths. Stages are listed by transistor reference designation at left margin; major components are also listed in a similar manner. Refer to the block diagram on page 4 and schematic diagram on pages 19 and 20.

Stage/Control

Buffer amplifier Q101, Q102

Function

Presents the input signal with a high input impedance and drives the following filters. Q101 and Q102 form a modified source follower circuit in which Q102 acts not only as constant-current source, but also as a drive amplifier for the negative-going half cycle.

combination This FET-PNP amplifier has the advantage of low harmonic distortion and wide dynamic range. In addition, the, FET generates less noise than conventional silicon transistors. Therefore, this combination amplifier is employed in all of the filter circuits. The FETs used in this type of circuit are selected according to their Idss rank, and care should be taken to use replacement FETs with the exact same Idss rank.

Idss rank is indicated by the identification number, as illustrated in Fig. 1-1.

Before studying the following circuit, note that the filter circuits consist of two pairs of high- and low-pass filters having variable crossover frequencies. The high crossover frequency (fH) can be 1.5 kHz, 2.5 kHz, 3.5 kHz, 4.5 kHz, 6 kHz, or 8 kHz, and the low crossover frequency (fL) can be 150 Hz, 250 Hz, 400 Hz, 600 Hz, 800 Hz, or 1 kHz, as shown in Fig. 1-2. By combining these filters, the TA-4300F provides various kinds of filter characteristics, such as two-channel or three-channel filtering having a crossover frequency of fL or fH, or both. See Fig. 1-2.

voltage

Stage/Control

Function

characteristic is changed according to S5's setting.

At the 2 CH LOW position of S5, the input is a full range signal. Only the high-frequency component having the crossover frequency of "fL" appear at the MID-RANGE output jack.

At the 2 CH HIGH position, no signal is supplied to this filter, therefore no signal appears at the MID-RANGE output jack. At the 3 CH or 4 CH positions, S5 supplies the LPF-1 output signal to this filter. Therefore, the overall frequency response obtained by combining the low and high-pass filters is that of a bandpass filter having a frequency characteristic between fL and fH as shown in Fig. 1-4.

Low-pass filter LPF-2

FET-FET buffer amplifier (Q501, Q502) and the RC network consisting of C501, C502, C503, C511 and the resistors connected to switch wafers \$4-7, \$4-9 and S4-11, comprise a lowpass filter having a crossover frequency of "fL" and a rolloff of about 18 dB/octave. Input signal is fed through the first buffer amplifier (Q101, Q102), and the output is routed to the low-boost amplifier through Channel Selector switch S5.

LOW CHANNEL **FREQUENCY** SHIFT control

Switches S1-1, S1-3 and S1-5 are paralleled across S4-7, S4-9 and S4-11 respectively, to change the rolloff frequency of low-pass filter LPF-2 slightly to match the characteristics of the lowfrequency speaker.

Bass-boost amplifier Q503, Q504

This direct-coupled three-stage amplifier boosts the output signal of low-pass filter LPF-1 or LPF-2 to the level required at the LOW outputs.

Stage/Control

Function

low-frequency characteristics by using frequency-selective negative feedback techniques. The resistances connected at S2 change the feedback voltage, thus controlling the low boost value from zero to +18 dB at 20 Hz. The low-boost frequency response

This amplifier also controls the

is shown in Fig. 1-5.

Negative feedback is provided from the emitter circuit of Q505 to the source of Q503 through BASS BOOST switch S2. Potenti-

ometer R566 in the source circuit of Q503 determines the bias current in Q503. This in turn sets the bias current in Q504 and Q505, ensuring the distortionless boost operation at low frequen-

cies. The output is fed to the LOW-FREQUENCY output jack through LEVEL control R517.

It also supplied to the CENTER CHANNEL output jack through R508 or R608 for use in centerwoofer systems. Note that the

frequency components are mixed

right channel low-

at this jack.

left and

4 CH CONNECTOR

CENTER

CHANNEL

Output jack J701

This socket is provided for connecting optional accessory TAD-43F, (4-channel adaptor). It delivers dc power and the high-pass filter's output to the TAD-43F.

Power Supply

Rectifier circuit

Line input is supplied to the transformer through POWER switch S6. The output from the power transformer is rectified by bridge rectifier D701 produce about +42 volts dc.

Stage/Control

Function

Stage/Control

Function

Voltage regulator Q701, Q702

Dc output from the rectifier is filtered by C706 and applied to series regulator transistor Q701. Transistor Q702 compares a sample of the output voltage, picked off the junction of R704 and R705, with a reference

voltage supplied by zener diode D703.

A change in output voltage, is detected by Q702, amplified and applied to Q701 in a manner that offsets the original voltage shift.

1-3. BLOCK DIAGRAM

SECTION 2 DISASSEMBLY AND REPLACEMENT PROCEDURES

WARNING

Unplug the ac power cord before starting any disassembly or replacement procedures.

2-1. TOOLS REQUIRED

The following tools and materials are required to perform disassembly and replacement procedures on the TA-4300F.

- 1. Screwdriver
- 2. Phillips head screwdriver
- 3. Soldering iron, 30 to 50 watts, equipped with solder sucker
- 4. Wrench
- 5. Long-nose pliers
- 6. Electric drill and drill bit
- 7. Solder, rosin core

2-2. HARDWARE IDENTIFICATION GUIDE

The following chart will help you to decipher the hardware codes given in the service manual.

Note: All screws in the TA-4300F are manufactured to the specifications of the International Organization for Standardization (ISO). This means that the new and old screws are not interchangeable. ISO screws have a different number of threads per mm compared to the old ones.

The ISO screws have an identification mark on their heads as shown in Fig. 2-1.

Fig. 2-1 ISO screw

	Hardware Nomenciature
	P - Pan Head Screw
	PS - Pan Head Screw with Spring Washer
	K - Flat Countersunk Head Screw 📀 🗀
	B - Binding Head Screw
	RK - Oval Countersunk Head Screw 🔷
	T - Truss Head Screw
	R - Round Head Screw
1	F - Flat Fillister Head Screw
	SC - Set Screw 🖨 🔄
	E - Retaining Ring (E Washer)
	W - Washer SW - Spring Washer LW - Lock Washer N - Nut
	– Example –
	Type of Slot
	P 3x10 Length in mm (L) Diameter in mm (D) Type of Head

2-3. TOP COVER AND FRONT PANEL REMOVAL

- Remove the two machine screws at each side of the case, and lift off the top cover.
- 2. Remove all control knobs except the POWER switch knob by loosening the set screws, and pull off the POWER switch knob.
- 3. Remove the two screws (+P 4 × 6) securing the front panel from the back of the front subchassis as shown in Fig. 2-2.
- 4. Remove the two self-tapping screws (+B 3 X 6) securing the panel at the front edge of the bottom plate as shwon in Fig. 2-3. This frees the front panel.

+B 3 x 6 rear panel removal

Fig. 2-2 Front panel removal

Fig. 2-3 Bottom view

2-4. PILOT LAMP REPLACEMENT

- Remove the top cover as described in Procedure 2-3.
- 2. Straighten the tab of the meter-lampholder to permit the removal of the meter-lamp socket.
- Pull out the meter-lamp socket, and then unscrew the lamp from the socket and install the new lamp.

2-5. FILTER AMPLIFIER BOARD REMOVAL

- 1. Remove the top cover as described in Procedure 2-3.
- 2. Remove the control knob at the rear panel by loosening the set screw, and then remove the hex nut securing the CROSSOVER FREQUENCY switch to the rear panel.
- 3. Remove the two screws (+B 3 X 6) securing the filter amplifier board to the mounting bracket. This frees the filter amplifier board.

2-6. CONTROL AND SWITCH REPLACEMENT

Prepare for replacing any of the controls by removing the top cover or front panel as described in Procedure 2-3.

POWER Switch

- Remove the two screws (+PS 3 × 6) securing the switch to the front subchassis as shown in Fig. 2-4.
- Remove the defective switch, and then resolder the lead wires to the new switch's lugs one by one.
- 3. Install the replacement switch.

LOW CHANNEL FREQUENCY SHIFT Switch (S1)

- Remove the hex nut securing the LOW CHANNEL FREQUENCY SHIFT switch to the front subchassis as shown in Fig. 2-4.
- With a soldering-iron having a solder-sucking tip, clean the solder from each lug of the defective switch and the printed board. This frees the switch.
- 3. Install the replacement switch.

Fig. 2-4 Switch and control replacement

BASS BOOST Switch (S2)

- Remove the hex nut securing the defective switch to the front subchassis. See Fig. 2-4.
- 2. Unsolder the lead wires and resistors from the defective switch, and then install the replacement switch.

LEVEL Control

- Remove the hex nut securing each control to the front subchassis. See Fig. 2-4.
- Unsolder the lead wires from the defective control, and then install the replacement control.

CROSSOVER FREQUENCY Switches (S3, S4)

- 1. Remove the filter amplifier board as described in Procedure 2-5.
- With a soldering-iron having a solder-sucking tip, clean the solder from each lug of the defective switch and the printed board.
 This frees the switch.
- 3. Install the replacement switch.

Channel Selector Switch (S5)

- 1. Remove the two screws (+B 3 × 6) securing the switch mouting bracket to the bottom plate as shown in Fig. 2-5.
- Remove the hex nut securing the defective switch to the bracket.
- 3. Unsolder the lead wires from the defective switch, and then install the replacement switch.

2-7. REAR PANEL REMOVAL

- 1. Remove the top cover as described in Procedure 2-3.
- 2. Remove the filter amplifier board as described in Procedure 2-5.

Fig. 2-5 Channel Selector switch removal

- 3. Remove the two screws (+B 3 X 6) at each side of the rear panel as shown in Fig. 2-2.
- Remove the four self-tapping screws (+B 3 X
 from the bottom edge of the chassis as shown in Fig. 2-6. This frees the rear panel.

2-8. REPLACEMENT OF COMPONENTS SECURED TO THE REAR PANEL BY RIVETS

- Remove the rear panel as described in Procedure 2-7.
- 2. Bore out the rivets using a drill bit slightly larger in diameter than the rivet. See Fig. 2-7.

Fig. 2-6 Rear panel removal

- 3. Punch out the remainder of the rivets with a nail set or prick punch.
- 4. Remove the defective component, and then install a new one.
- 5. Secure the new component with suitable screws and nuts or repair rivet screws (part number 3-701-402).

Fig. 2-7 Rivet replacement

SECTION 3 **OVERALL CHECKS AND MEASUREMENTS**

3-1. TEST EQUIPMENT REQUIRED

5. Oscilloscope

1. Audio Oscillator

Bandwidth 1 MHz or more

Frequency range 10 Hz to 100 kHz

Note: 0 dB= 0.775 V (rms)

1 kHz

3-2. LEVEL CHECK WITHIN PASSBAND

2. Distortion Meter

Capable of measuring of 0.015% distortion or less at 1 kHz.

Frequency range 20 Hz to 100 kHz Input impedance 1 megohm or more

3. Ac VTVM

Capable of measuring rms voltage of 0.5 mV or less within a frequency range from 10 Hz to 100 kHz.

Input impedance 500 k ohms or

m.ore

Preparation

Set the controls and switches as follows: LOW CHANNEL FREQUENCY SHIFT switch (S1)NORMAL BASS BOOST switch (S2) 0 dB CHANNEL SELECT switch (S5)...3 CH

LEVEL control maximum

Procedure

With the equipment connected as shown in Fig. 3-1, follow the procedures given in Table 3-1.

4. Attenuator

Capable of attenuating signals 60 dB or more. Characteristic impedance 600 ohms unbalanced.

TABLE 3-1 LEVEL CHECK WITHIN PASSBAND

OUTPUT Jack	CROSSOVER QUENCY Set		Input Signal Level	Output Level	
	S3(HIGH) S4(LOW)		and Frequency		
LOW	8 kHz	1 kHz	10 Hz, 0 dB 100 Hz, 0 dB.	-1.3 ±1 dB -0.5 ±0.5dB	
MID	8 kHz	150 HZ	1 kHz, 0 dB	0.5 ±0.5 dB	
нісн	1.5 kHz	150 Hz	10 kHz, 0 dB 100 kHz, 0 dB	-0.5 ±0.5 dB 0~1.5 dB	
4P Socket for 4 CH ADAPTOR ② or ④ to ground See Fig. 3-2.	1.5 kHz	150 Hz	10 kHz, 0 dB	-0.5 ±0.5 dB	

Fig. 3-1 Level check test setup

Fig. 3-2 Detail of 4 CH connector

3-3. LEVEL CHECK AT CROSSOVER FREQUENCY

Preparation

Connect the equipment as shown in Fig. 3-1. Then, set the controls and switches as follows:

Position

LOW CHANNEL FREQUE	ENCY
SHIFT switch	NORMAL
DASS BOOST switch	ብ ላ ወ

Description

High-Frequency Output Level Adjustment

Channel Selector switch 3 CH

Set CROSSOVER FREQUENCY selector switch S3(HIGH) to 1.5 kHz, and S4 (LOW) to 150 Hz. Feed a 10 kHz 2 dB signal to the INPUT jacks, and then adjust the "HIGH" LEVEL controls to obtain 0 dB readings at the HIGH OUTPUT jacks.

Mid-Frequency Output Level Adjustment

Set CROSSOVER FREQUENCY selector switch S3 (HIGH) to 8 kHz, and S4 (LOW) to 150 Hz. Feed a 1 kHz, 2 dB signal to the INPUT jack, and then adjust the "MID" LEVEL controls to obtain 0 dB readings at the MID RANGE OUTPUT jacks.

Low-Frequency Output Level Adjustment

Set CROSSOVER FREQUENCY selector switch S3 (HIGH) to 8 kHz, and S4 (LOW) to 1 kHz. Feed a 50 Hz, 2 dB signal to the INPUT jacks and then adjust the "LOW" LEVEL controls to obtain 0 dB readings at the LOW OUTPUT jacks.

Procedure

- With the equipment connected as shown in Fig. 3-1, feed a 1 kHz, 2 dB signal to the INPUT connectors.
- Set CROSSOVER FREQUENCY selector switch S4 (LOW) to 150 Hz.
- 3. Measure the output levels of the HIGH and MID RANGE outputs, while simultaneously changing the crossover frequency and input signal frequency from 1.5 kHz to 8 kHz. The outputs should be within the limit of -3.2 ±0.8 dB.
- 4. Set CROSSOVER FREQUENCY selector switch S3 (HIGH) to 8 kHz.
- Measure the output levels of the MID RANGE and LOW outputs while simultaneously changing the crossover frequency and input signal frequency from 150 Hz to 1 kHz. The outputs should be within the limit of -3.2 ±0.8 dB.

3-4. BASS BOOST CHECK

Preparation

Description

Set the controls and switches as follows:

Position

selector switch-LOW (S4) 1 kHz

Channel Selector switch (S5) ... 3 CH

Procedure

- With the equipment connected as shown in Fig. 3-1, adjust the LOW LEVEL control to obtain a 0 dB output signal level when supplying a 20 Hz,+2 dB signal and the BASS BOOST switch (S2) is set to 0 dB.
- 2. Change the BASS BOOST switch (S2) setting as indicated in Table 3-2, and then increase the attenuation to obtain a 0 dB level at the LOW OUTPUT jack. The attenuation required indicates the bass boost value, and should within the limits given in Table 3-2.

TABLE 3-2 BASS BOOST CHECK

S2 Position	3	6	12	18
Bass boost	3 ±1 dB	6 ±1.5 dB	12 ±2 dB	18 ±2 dB

3-5. CROSSTALK MEASUREMENT

Preparation

Description

Set the controls and switches as follows:

Position

LOW CHANNEL FREQUENCY
SHIF switch (S1)NORMAL
BASS BOOST switch (S2) 0 dB
Channel Selector switch (S5) 3 CH
LEVEL controls maximum

Procedure

- 1. With the equipment connected as shown in Fig. 3-3, feed a signal to the left channel INPUT jack as specified in Table 3-3 to obtain a 0 dB output.
- Switch the signal to the right channel INPUT and read the residual signal level in the left channel output.
- 3. The 0 dB output-level to residual-level ratio represents the channel crosstalk. Check the crosstalk according to the procedures given in Table 3-3.

Fig. 3-3 Crosstalk measurement test setup

Description

Position

Procedure

- With the equipment connected as shown in Fig. 3-5, feed a signal as specified in Table 3-5, to obtain a 15.2 dB (4.5 V rms) output.
- 2. Measure the harmonic distortion.

Clipping Point Adjustment for LOW Channel

Preparation

Same as harmonic distortion measurement.

Procedure

1. Feed in a 100 Hz signal to obtain a 19 dB (7.0 V) output level at the LOW output jack.

- 2. Adjust potentiometer R566 (R666) (semifixed resistor) See Fig. 3-6, so th 51 the positive and negative peaks of the output waveform are simultaneously clipped.
- 3. After completing this adimstment, apply a drop of lock paint to R566.

Fig. 3-6 Parts location

Fig. 3-5 Harmonic distortion test setup

TABLE 3-5 HARMONIC DISTORTION MEASUREMENT

OUTPUT Jack	CROSSOVER FRE- QUENCY Selector Switch		Input Signal	Harmonic Distortion	
	S3(HIGH)	S4(LOW)	Frequency		
LOW	8 kHz	1 kHz	100 Hz	0.1% or less	
MID	8 kHz	150 Hz	1 kHz	0.1% or less	
HIGH	1.5 kHz	150 Hz	10 Hz	0.1% or less	

3-8. CHANNEL SELECTOR SWITCH OPERATIONAL CHECK

Preparation

Set the controls and switches as follows:

Description

Position

LOW CHANNEL FREQUENCY
SHIFT switch (S1) NORMAL
BASS BOOST switch 0 dB

Procedure

1. With the equipment oconnected as shown in Fig. 3-1, check the output level while changing the input signal frequency as directed in the Table 3-6.

TABLE 3-6 CHANNEL SELECTOR SWITCH OPERATIONAL CHECK

Channel Selector Switch Position	2 CH LOW	2 CH HIGH	4 (СН
Input Signal Frequency OUTPUT Jack	150 Hz 0 dB	8 kHz 0 dB	150 Hz 0 dB	8 kHz 0 dB
Low	-3.0 ±1 dB	-3.0 ±1 dB	-3.0 ±1 dB	
MID	-3.0 ±1 dB		-3.0 ±1 dB	-3.0 ±1 dB
HIGH		-3.0 ±1 dB		

SECTION 4 PERFORMANCE CURVES

HARMONIC DISTORTION vs OUTPUT VOLTAGE CURVES (within the passband)

LOW CHANNEL FREQUENCY	
SHIFT switch	NORMAL
BASS BOOST switch	0 dB
· -	
	10kHz
	1kHz
	100Hz
Channel Galatte G. (1.1	2 677
Channel Selector Switch	3 CH
IEVEL controls	Marrimanna

LOW CHANNEL FREQUENCY SHIFT RESPONSE

CROSSOVER FREQUENCY switch (LOW)	150 Hz
CROSSOVER FREQUENCY switch (HIGH)	.8 kHz
BASS BOOST switch	0 dB
Channel Selector switch	3 CH
LEVEL controls	. Maximum

BASS BOOST RESPONSE.

LOW CHANNEL	FREQUENCY SHIFT switch	NORMAL
CROSSOVER FF	REQUENCY switch (LOW)	1 kHz

FREQUENCY RESPONSE

Note:

1 150Hz

2 250Hz

3 400Hz

4 600Hz5 800Hz

6 1kHz

(Set the CROSSOVER FREQUENCY switch-HIGH to 8 kHz)

CROSSOVER FREQUENCY (HIGH)

7 1.5kHz

8 2.5kHz

3.5kHz

10 4.5kHz

11 6 kHz

12 8 kHz

(Set the CROSSOVER FREQUENCY switch-LOW to 150 Hz)

LOW CHANNEL FREQUENCY SHIFT switch	NORMAL
BASS BOOST switch	0 dB
Channel Selector switch	
LEVEL controls	Maximum

SECTION 5 REPACKING

The TA-4300F's original shipping carton and packing material are the ideal containers for shipping the unit. However, to secure the maximum protection the TA-4300F must be repacked in these materials precisely as before. The proper repacking procedure is shown in Fig. 5-1.

SECTION 6 DIAGRAMS

Ref. No.	Description	Position
S1	LOW CHANNEL FREQ, SHIFT sw. (-1, NORMAL +1 +2)	+1
S2	BASS BOOST sw. (0, 3, 6, 12, 18 dB)	3 dB
S3	CROSSOVER FREQ. selector sw (HIGH) (1.5 kHz, 2.5 kHz, 3.5 kHz, 4 (6 kHz, 8 kHz)	1.5 kHz
S4	CROSSOVER FREQ. (150 Hz, 250 Hz, 400 Hz, 600 800 Hz, 1 kHz)	400 Hz 0 Hz,
S5	Channel Selector sw (2 CH (LOW), 2 CH (HIGH), 4 CH)	2 CH. LOW 3 CH,

Note:

All resistance values are in ohms, k=1000, M=1000 k All capacitance values are in μ F except as indicated with p, which means $\mu\mu$ F.

All voltages represent an average value and should hold within $\pm 20\%$.

All voltages are dc measured with a VOM which has an input impedance of 20 k ohms/volt. No signal in.

ROTARY SWITCH INDEX (\$2, \$5)

SONY TA-4300F

© 1970

Q101(Q201), 2SK23-23 Q102(Q202), 2SA611 Q103(Q203), 2SK23-22 Q104(Q204). 2SA611 Q105(Q205), 2SK23-22 Q106(Q206), 2SA611 Q301(Q401), 2SK23-22 Q302(Q402), 2SK23-27 Q303(Q403), 2SK23-22 Q304(Q404), 2SK23-27 Q305(Q405), 2SK23-22 Q306(Q406), 2SA611 Q307(Q407), 2SK23-22 Q308(Q408), 2SA611 Q501 (Q601), 2SK23-22 Q502(Q602), 2SK23-27 Q503(Q603), 2SK23-23 Q504(Q604), 2SA611 Q505(Q605). 2SC632 Q701 2SD-28 Q702 2SC634

6-2. MOUNTING DIAGRAM

-Component Side-

!

C513 and C613 are mounted on conductor side.

Q101(Q201),	2SK23-23
Q102(Q202),	2SA611
Q103(Q203),	2SK23-22
Q104(Q204),	2SA611
Q105(Q205),	2SK23-22
Q106(Q206),	2SA611
Q301(Q401),	2SK23-22
Q302(Q402),	2SK23-27
Q303(Q403),	2SK23-22
Q304(Q404),	2SK23-27
Q305(Q405),	2SK23-22
Q306(Q406),	2SA611
Q307(Q407),	2SK23-22
Q308(Q408),	2SA611
Q501(Q601),	2SK23-22
Q502(Q602),	2SK23-27
Q503(Q603),	2SK23-23
Q504(Q604),	2SA611
Q505(Q605),	2SC632
Q701	2SD-28
Q702	2SC634

SECTION 7 EXPLODED VIEW

SECTION 8

ELECTRICAL PARTS LIST escription Ref. No. Part No.

Ref. No.	Part No.	Desc	ription	Ref. No.	Part No.	Description
	Mounted Circuit	t Boards		C301(C401)	1-109-213	1100p ±5% 100V mica
				C302(C402)	1-109-215	4400p ±5% 100V mica
	8-982-565-20	filter amplif	ier circuit board	C303(C403)	1-109-214	2200p ±5% 100V mica
	8-982-565-17	-	i, frequency shift	C304(C404)	1-106-029-12	0.015 ±5% 50V mylar
				C305(C405)	1-106-029-12	0.015 ±5% 50V mylar
	Semic	onductors		C306(C406)	1-105-689-12	0.22 ±10% 50V mylar
	•			C307(C407)	1-106-029-12	0.015 ±5% 50V mylar
D701		diode,	CD-2	C308(C408)	1-105-689-12	0.22 ±10% 50V mylar
D702		diode,	CDR-2	C309(C409)	1-105-689-12	0.22 ±10% 50V mylar
D703		diode,	1T243M			
2,00	•	Í		C501(C601)	1-106-029-12	0.015 ±5% 50V mylar
Q101(Q201))	FET,	2SK23-23	C502(C602)	1-109-216	7500p ±5% 100V mica
Q102(Q202		transistor,	2SA611	C503(C603)	1-106-029-12	0.015 ±5% 50V mylar
Q103(Q203		FET,	2SK23-22	C504(C604)	1-105-689-12	0.22 ±10% 50V mylar
Q104(Q204		transistor,	2SA611	C505(C605)	1-106-057-12	0.22 ±5% 50V mylar
Q105(Q205		FET,	2SK23-22 ·	C506(C606)	1-106-057-12	0.22 ±5% 50V mylar
Q106(Q206		transistor,	2SA611	C507(C607)	1-121-408	47 +150-10%10V electrolytic
Q100(Q200		,		C508(C608)	1-107-109	12p ±10% 50V silvered mica
Q301(Q401)	FET,	2SK23-22	C509(C609)	1-121-344	3.3 +150-10% 25V electrolytic
Q302(Q402		FET,	2SK23-27	C510(C610)	1-121-344	3.3 +150-10% 25V electrolytic
Q303(Q403		FET,	2SK23-22	C511(C611)	1-106-029-12	0.015 ±5% 50V mylar
Q303(Q103		FET,	2SK23-27	C512(C612)	1-105-661-12	0.001 ±10% 50V mylar
Q305(Q405		FET,	2SK23-22	C513(C613)	1-107-123	47p ±10% 50V silvered mica
Q305(Q105) Q306(Q406)		transistor,	2SA611			
Q300(Q400		FET,	2SK23-22	C701	1-105-917-12	0.022 ±20% 200V mylar
Q308(Q408		transistor,	2SA611	C702	1-105-917-12	0.022 ±20% 200V mylar
Q500(Q100	,,			C703	1-105-917-12	0.022 ±20% 200V mylar
Q501(Q601)	FET,	2SK23-22	C704	1-105-917-12	0.022 ±20% 200V mylar
Q502(Q602		FET,	2SK23-27	C706	1-121-753	1000 50V electrolytic
Q502(Q602 Q503(Q603		FET,	2SK23-23	C707	1-121-388	1000 +150-10% 35Velectrolytic
Q503(Q604 Q504(Q604		transistor,	2SA611	C708	1-121-395	4.7 +150-10% 25V electrolytic
Q505(Q605		transistor,	2SC632	C709	1-121-388	1000 +150-10% 35V electrolytic
Q701		transistor,	2SD28		Resisto	ors
Q702		transistor,	2SC634			
				All resistan	ice values are in Ω	$2, \pm 5\%, 1/4$ W and carbon type
	Transf	ormer		unless othe	rwise indicated	
T	1-441-299	transforme	r, power	R101(R201)	1-244-745	1M
•				R102(R202)	1-242-655	180
	Capaci	tors		R103(R203)	1-244-727	180K
				R104(R204)	1-244-729	220K
All capa	citance values are in	μF, except as	indicated with p,	R105(R205)	1-242-643	56
	neans μμF.	•		R106(R206)	1-242-709	33K
77111-011 11				R107(R207)	1-242-682	2.4K
C101(C201) 1-105-691-12	0.33 ±10	% 200V mylar	R108(R208)	1-242-655	180
C102(C202			50V mylar	R109(R209)	1-244-732	300K
C103(C203	•	1500p ±5%		R110(R210)	1-242-733	330K
C104(C204	<i>f</i>	•	% 50V mylar	R111(R211)	1-242-643	56
C105(C205		1500p ±5%		R112(R212)	1-242-730	240K
C106(C206		-	% 50V mylar	R113(R213)	1-242-706	24K
C107(C207			% 50V mylar	R114(R214)	1-242-655	180

Ref. No.	Part No.	Description	Ref. No.	Part No.	Description
R115(R215)	1-242-727	180K	R315(R415)	1-242-733	330K
R116(R216)	1-244-729	220K	R316(R416)	1-242-643	56
R117(R217)	1-244-643	56	R317(R417)	1-242-730	240K
R119(R219)	1-222-359	20K (B), variable	R318(R418)	1-242-706	24K
R120(R220)	1-242-714	51K	R319(R419)	1-242-655	180
R121(R221)	1-242-680	2K	R320(R420)	1-242-727	180K
R122(R222)	1-242-706	24K	R321(R421)	1-242-729	220K
R123(R223)	1-242-682	2.4K	R322(R422)	1-242-643	56
R124(R224)	1-242-701	15K	R323(R423)	1-222-359	20K (B), variable
R125(R225)	1-242-683	2.7K	R324(R424)	1-242-716	62K
R126(R226)	1-242-697	10K	R325(R425)	1-242-688	4.3K
R127(R227)	1-242-679	1.8K	R326(R426)	1-242-709	33K
R128(R228)	1-242-695	8.2K	R327(R427)	1-242-705	22K
R129(R229)	1-242-728	200K	R328(R428)	1-242-700	13K
R130(R230)	1-242-700	13K	R329(R429)	1-242-697	10K
R131(R231)	1-242-721	100K	R330(R430)	1-242-716	62K
R132(R232)	1-242-692	6.2K	R331(R431)	1-242-688	4.3K
R133(R233)	1-242-717	68K	R332(R432)	1-242-709	33K
R134(R234)	1-242-683	2.7K	R333(R433)	1-242-705	22K
R135(R235)	1-242-712	43K	R334(R433)	1-242-701	15K
R136(R236)	1-242-692	6.2K	R335(R435)	1-242-697	10K
R137(R237)	1-242-707	27K	R336(R436)	1-242-716	62K
R138(R238)	1-242-693	6.8K	R337(R437)	1-242-688	4.3K
R139(R239)	1-242-721	100K	R338(R438)	1-242-709	33K
R140(R240)	1-242-692	6.2K	R339(R439)	1-242-705	22K
R141(R241)	1-242-714	51K	R340(R440)	1-242-701	15k
R142(R242)	1-242-680	2.0K	R341(R441)	1-242-697	10K
R143(R243)	1-242-709	33K	R342(R442)	1-242-714	51K
R144(R244)	1-242-682	2.4K	R343(R443)	1-242-680	2K
R145(R245)	1-242-705	22K	R344(R444)	1-242-704	20K
R146(R246)	1-242-678	1.6K	R345(R445)	1-242-675	1.2K
R147(R247)	1-242-701	15K	R346(R446)	1-242-697	10K
R148(R248)	1-242-676	1.3K	R347(R447)	1-242-679	1.8K
R149(R249)	1-244-625	10	R348(R448)	1-242-695	8.2K
R150(R250)	1-244-625	10	R349(R449)	1-242-692	6.2K
R151(R251)	1-244-625	10	R350(R450)	1-242-728	200K
R152(R252)	1-242-625	10	R351(R451)	1-242-700	13K
			R352(R452)	1-242-719	82K
R301(R401)	1-242-713	47K	R353(R453)	1-242-684	3.0K
R302(R402)	1-242-675	1.2K	R354(R454)	1-242-712	43K
R303(R403)	1-242-713	47K	R355(R455)	1-242-688	4.3K
R304(R404)	1-242-675	1.2K	R356(R456)	1-242-707	27K
R305(R405)	1-242-655	180	R357(R457)	1-242-691	5.6K
R306(R406)	1-242-667	560	R358(R458)	1-242-705	22K
R307(R407)	1-242-713	47K	R359(R459)	1-242-687	3.9K
R308(R408)	1-242-675	1.2K	R360(R460)	1-242-721	100K
R309(R409)	1-242-655	180	R361(R461)	1-242-692	6.2K
R310(R410)	1-242-667	560	R362(R462)	1-242-711	39K
R311(R411)	1-242-709	33K	R363(R463)	1-242-686	3.6K
R312(R412)	1-242-682	2.4K	R364(R464)	1-242-705	22K
R313(R413)	1-242-655	180	R365(R465)	1-242-678	1.6K
R314(R413)	1-242-732	300K	R366(R466)	1-242-701	15K

d (1)

4

(()

Ref. No.	Part No.	Description	Ref. No.	Part No.	Description
R367(R467)	1-242-676	1.3K	R552(R652)	1-242-717	68K
R368(R468)	1-242-698	11K	R553(R653)	1-242-683	2.7K
R369(R469)	1-242-677	1.5K	R554(R654)	1-242-712	43K
R370(R470)	1-242-625	10	R555(R655)	1-242-707	27K
R371(R471)	1-242-625	10	R556(R656)	1-242-734	360K
			R557(R657)	1-242-725	150K
R505(R605)	1-242-655	180	R558(R658)	1-242-717	68K
R506(R606)	1-242-667	560	R559(R659)	1-242-683	2.7K
R508(R608)	1-242-704	20K	R560(R660)	1-242-712	43K
R509(R609)	1-242-745	1 M	R561(R661)	1-242-707	27K
R510(R610)	1-242-655	180	R562(R662)	1-242-677	1.5K
R511(R611)	1-242-711	39K	R563(R663)	1-242-677	1.5K
R512(R612)	1-242-709	33K	R564(R664)	1-242-677	1.5K
R513(R613)	1-242-703	18K	R565(R665)	1-242-697	10K
R514(R614)	1-242-687	3.9K	R566(R666)	1-221-638	100K (B) semi-fixed
R515(R615)	1-242-731	270K	R567(R667)	1-244-667	560
R516(R616)	1-242-633	22	,		
R517(R617)	1-222-359	20K (B), variable	R701	1-242-686	3.6K
R518(R618)	1-242-721	100K	R702	1-242-632	20
R519(R619)	1-242-692	6.2K	R703	1-242-683	2.7K
R520(R620)	1-242-711	39K	R704	1-242-703	18K
R521(R621)	1-242-685	3.3K	R705	1-242-693	6.8K
R522(R622)	1-242-706	24K	R706	1-242-697	10K
R523(R623)	1-242-701	15K			
R524(R624)	1-242-697	10K		Switches	
R525(R625)	1-242-721	100K			
R526(R626)	1-242-692	6.2K	S1	1-514-744	switch, LOW CHANNEL
R527(R627)	1-242-710	36K			FREQUENCY SHIFT
R528(R628)	1-242-685	3.3K	S2	1-513-328	switch, BASS BOOST
R529(R629)	1-242-705	22K	\$3	1-514-743	switch, CROSSOVER
R529(R629)	1-242-701	15K	53	131,773	FREQUENCY SELECTOR
R530(R630)	1-242-697	10K			(HIGH)
R531(R631)	1-242-721	100K		1 51 4 7 4 2	
R532(R632)	1-242-692	6.2K	S4	1-514-743	switch, CROSSOVER
R534(R634)	1-242-711	39K			FREQUENCY SELECTOR
R535(R635)	1-242-685	3.3K			(MID-RANGE)
R535(R635)	1-242-705	22K	S 5	1-514-742	switch, CHANNEL SELECTOR
R537(R637)	1-242-702	16K	S 6	1-514-270	switch, POWER
R538(R638)	1-242-697	10K			
R539(R639)	1-244-725	150K		Miscellaneous	
R540(R640)	1-244-667	560			
R541(R641)	1-244-701	15K		1-509-145	connector, 7-p
R542(R642)	1-244-707	27K		1-509-015	AC outlet
R542(R642)	1-244-718	75K		1-231-057	encapsulated component
R544(R644)	1-242-734	360K			$(120\Omega + 0.033 \mu F)$
R545(R645)	1-242-725	150K		1-507-268	phono jack, 4-p
R546(R646)	1-242-717	68K		1-518-052	lamp, pilot
R547(R647)	1-242-683	2.7K		1-526-165	voltage changeover block
R548(R648)	1-242-712	43K		1-517-021	socket, pilot lamp
R549(R649)	1-242-712	27K		1-533-066	socket, fuse
	1-242-707	360K		1-534-487	cord, power
R550(R650) R551(R651)	1-242-734	150K		1-507-176	phono jack, 1-p
K331(K031)	1-272-123	130K		1-532-091	fuse 0.2A

4-CHANNEL ADAPTOR TAD-43F

SONY

1.30

TABLE OF CONTENTS

Section	<u>Title</u>	<u>Page</u>	Section	<u>on</u>	<u>Title</u>	Page
1. TE	CHNICAL DESCRIPTION		3.	OVE	RALL CHECKS AND ME	EASUREMENTS
1-	1. Technical Specifications	31		3-1.	Test Equipment Required	1 37
1-	2. Detailed Circuit Analysis	. 31~32		3-2.	Level Check Within Passb	and 37
1-	3. Block Diagram	33		3-3.	Level Check at Crossover	
					Frequency	37~38
2. D	SASSEMBLY AND REPLACEME	ENT		3-4.	Crosstalk Measurement	38
PF	ROCEDURES			3-5.	Noise Level Measurement	38~39
	•			3-6.	Harmonic Distortion	
2-	1. Tools Required	34			Measurement	39~40
2-	2. Hardware Identification Guid	e 34			•	•
2-	3. Top Cover and Front Panel		4.	REP	ACKING	40
	Removal	34~35				
2-	4. Filter Amplifier Board	•	5.	DIA	GRAMS	
	Removal	35				
2-	5. Control and Switch Replacen	nent 36		5-1.	Schematic Diagram	41
2-	6. Rear Panel Removal	36		5-2.	Mounting Diagram	42~43
2-	7. Replacement of Components					.2 .0
	Secured to the Rear Panel		6.	EXP	LODED VIEW	44
	by Rivets	36				•
			7.	ELE	CTRICAL PARTS LIST	45~46

SECTION 1 TECHNICAL DESCRIPTION

1-1. TECHNICAL SPECIFICATIONS

Technical specifications for the TAD-43F are given in Table 1-1.

TABLE 1-1. TECHNICAL SPECIFICATIONS

Frequency response: fc to 100 kHz $\pm \frac{10}{1}$ dB

fc: crossover frequency

Crossover frequency: 3k, 4.5k, 6k, 8k, 10k, 12kHz

Output impedance : Less than 5k ohms

Harmonic distortion: 0.03% at 1 V output

0.1 % at 4 V output (each passband frequency) 0.05% at 1 V output 0.1 % at 2.5 V output

(at crossover frequency)

Signal-to-noise ratio: 85 dB, shorted circuit (1 V input)

Maximum input

: . 4.5 V signal level

Power consumption: Approx. 1 watt

Power requirement: 30 volts dc (from TA-4300F)

: 100mm (width) X 149mm Dimensions

(height) X 316mm depth)

 $3^{15}/_{16}$ " (width) $\times 5^{7/8}$ " (height) \times

127/16" (depth)

1.85 kg (4 lb) Net weight

Shipping weight 2.35 kg (5 lb 1 oz)

1-2. DETAILED CIRCUIT ANALYSIS

The following describes the functions of all stages and controls. The text sequence follows signal paths. Stages are listed by transistor reference designation at left margin; major components are also listed in a similar manner. Refer to the block diagram on page 33 and schematic diagram on page 41.

Stage/Control

Function

Input connector **CNP**

This socket is provided for connecting the TAD-43F to the TA-4300F. This socket accepts the dc power and the output of the high-pass filter (HPF-1) in the TA-4300F. Before describing the following circuit, note that following filter circuit consists of a pair of high-and-low pass filters having a variable crossover frequency fH' (3 kHz, 4.5 kHz. 6 kHz, 8 kHz, 10 kHz, or 12 kHz). Combining these filters and those in the TA-4300F, various kinds of 4-channel filters, having the crossover frequencies fL, fH, and fH' are obtained. See Fig. 1-1.

Fig. 1-1 Outputs of each of the four sections

High-pass filter HPF-3

Three RC filters and two FET-PNP buffer amplifiers (Q101, Q102, Q103 and Q104) comprise a high-pass filter having six possible crossover frequencies. The RC networks for the highpass filter (HPF-3) are composed of C101, C102 and C104 and the resistors connected to switch wafers S1-1, S1-3 and S1-5. FET-PNP buffer amplifiers are inserted between each RC filter to eliminate interaction between each RC filter. The positive feedback applyed from the source of Q101 to C102 through R101 provides a sharp knee characteristic at the crossover frequency. To obtain a sharp rolloff of approximately 18 dB/octave, the design crossover frequencies of

three RC filters are 1/2 the crossover, twice the crossover, and the crossover frequency respectively as shown in Fig. 1-2. The same is true for the other filters used in the TAD-43F.

Fig. 1-2 Design of the sharp-cutoff RC filter

FET-PNP buffer amplifier Q101, Q102 Presents the input signal with a high input impedance and drives the following filters. Q101 and Q102 form a modified source follower circuit in which Q102 acts not only as a constant-current source but also as a negative-going half-cycle drive amplifier. This combination amplifier has the advantage of low harmonic distortion and wide dynamic range. In addition, the FET generates less noise than conventional silicon transistors.

The FETs used in this type of circuit are selected according to their Idss rank, and care should be taken to use replacement components with the same Idss. Idss rank is indicated by the identification number as illustrated in Fig. 1-3.

The output of the high-pass filter containing highest frequency component is fed to the UPPER HIGH connector through R113 (LEVEL control).

2SK23-22

† Idss rank

Fig. 1-3 Example of Idss rank

voltage

ldss rank

Stage/Control

Function

Low-pass filter LPF-3

Three RC filters and two FET-FET buffer amplifiers (Q301, Q302, Q303 and Q304) comprise a low-pass filter (LPF-3) having six crossover frequencies.

The RC network for the low-pass filter consists of C301, C302, C303 and C304 and the resistors connected to switch wafers S1-7, S1-9 and S1-11 (CROSSOVER FREQUENCY selector switch). This low-pass filter provides a crossover frequency of "fH" and rolloff of about 18 dB/octave. Direct coupling is employed in this circuit to eliminate popping noise when changing the crossover frequency.

FET-FET buffer amplifier Q301, Q302 Presents the input signal with a high-impedance and drives the following filters. Q301 and Q302 form a modified source follower circuit in which Q302 acts as a constant current source. This increases the dynamic range. In addition, the FET generates less noise than conventional silicon tranistors. The output of the low-pass filter is fed to the LOWER HIGH connector through R313 (LEVEL control).

As the input signal is supplied through high-pass filter HPF-1 in the TA-4300F, the overall frequency characteristic obtained by combining this low-pass filter HPF-1 becomes that of a band-pass filter having a frequency characteristic between fH and fH' as shown in Fig. 1-1.

1-3. BLOCK DIAGRAM

- 4. Remove the two self-tapping screws (+B 3 × 6) at each side of the chassis as shown in Fig. 2-3. Now the front subchassis can be tilted forward and down with front panel as shown in Fig. 2-4.
- 5. Remove the two screws (+PS 4 X 6) securing the front subchassis to the front panel as shown in Fig. 2-4. This frees the front panel.

Fig. 2-3 Front subchassis removal

Ĵ

2-4. FILTER AMPLIFIER BOARD REMOVAL

- 1. Remove the top cover as described in Procedure 2-3.
- Remove the control knob at the rear panel by loosening the set screw, and then remove the hex nut securing the CROSSOVER FREQUEN-CY switch to the rear panel. See Fig. 2-5.
- 3. Remove the two screws (+PS 3 × 5) securing the filter amplifier board to the mounting bracket. This frees the filter amplifier board. See Fig. 2-5.

Fig. 2-4 Front panel removal

Fig. 2-5 Filter amplifier board and rear panel removal

2-5. CONTROL AND SWITCH REPLACEMENT

Prepare for replacing any of the controls by removing the top cover

LEVEL Controls

- 1. Remove the front panel as described in Procedure 2-3.
- 2. Remove the hex nut securing the defective controls to the front subchassis.
- 3. Unsolder the lead wires from the defective control, and then install the replacement control.

CROSSOVER FREQUENCY Switch

- 1. Remove the filter amplifier board as described in Procedure 2-4.
- 2. With a soldering-iron having a solder-sucking tip, clean the solder from each lug of the defective switch and the printed circuit board, This frees the switch.
- 3. Install the replacement switch.

2-6. REAR PANEL REMOVAL

- 1. Remove the top cover as described in Procedure 2-3.
- 2. Remove the filter amplifier board as described in Procedure 2-4.
- Remove the two self-tapping screws (+B 3 X
 at each side of the rear panel as shown in
 Fig. 2-5. This frees the rear panel.

2-7. REPLACEMENT OF COMPONENTS SECURED TO THE REAR PANEL BY RIVETS

- 1. Remove the rear panel as described in Procedure 2-6.
- 2. Bore out the rivets using a drill bit slightly larger in diameter than the rivet. See Fig. 2-6.
- 3. Punch out the remainder of the rivets with a nail set-or prick punch.
- 4. Remove the defective component, and then install a new one.
- 5. Secure the new component with suitable screws and nuts, or repair rivet screws (part number 3-701-402).

Fig. 2-6 Rivet replacement

SECTION 3 OVERALL CHECKS AND MEASUREMENTS

3-1. TEST EQUIPMENT REQUIRED

1. Audio Oscillator

Frequency range 10 Hz to 100 kHz
Distortion 0.03% or less at

2. Distortion Meter

Capable of measuring of 0.015% distortion or less at 1 kHz.

Frequency range 20 Hz to 100 kHz Input impedance 1 megohm or more.

3. Ac VTVM

Capable of measuring rms voltage of 0.5 mV or less within a frequency range from 10 Hz to 100 kHz.

Input impedance 500 k ohms or more

4. Attenuator

Capable of attenuating signals 60 dB or more.

Characteristic impedance . . . 600 ohms unbalanced

5. Oscilloscope

Bandwidth 1 MHz or more

Note: 0 dB = 0.775 V (rms)

6. TA-4300F

3-2. LEVEL CHECK WITHIN PASSBAND

Preparation

Set the TA-4300F's controls and switches as follows:

Procedure

With the equipment connected as shown in Fig. 3-1, check the output level according to the procedures given in Table 3-1.

3-3. LEVEL CHECK AT CROSSOVER FREQUENCY

Preparation

- 1. Set the TA-4300F's switches and controls as described in Procedure 3-2.
- 2. Calibrate the upper and lower output levels as follows:
 - (a) With the equipment connected as shown in Fig. 3-1, set the CROSSOVER FREQUENCY selector switch to 12 kHz. Feed a 5 kHz, 2 dB signal to the INPUT jacks of the TA-4300F, and then adjust the LOWER HIGH LEVEL controls to obtain 0 dB readings at the LOWER HIGH OUTPUT jacks.

TABLE 3-1. LEVEL CHECK WITHIN PASSBAND

OUTPUT Jacks CROSSOVER FRE- QUENCY Selector Switch S1		Input Signal Level and Frequency	Output Level
LOWER HIGH	12 kHz	5 kHz, 0 dB	-1 ±0.5 dB
UPPER HIGH	3 kHz	20 kHz, 0 dB	-1 ±0.5 dB

Note: Set the TAD-43F's LEVEL control fully clockwise.

3-6. HARMONIC DISTORTION MEASUREMENT

Preparation

- 1. Set the TA-4300F's crossover frequency as described in Procedure 3-2.
- 2. Set the TAD-43F's LEVEL controls fully clockwise.

Procedure

- 1. With the equipment connected as shown in Fig. 3-4, feed a signal as specified in Table 3-4, to obtain a 14.2 dB (4.0 V rms) output.
- 2. Follow the procedures given in Table 3-4.

TABLE 3-2 CROSSTALK MEASUREMENT

OUTPUT Jack CROSSOVER FRE- QUENCY selector Switch		Input Signal Frequency	Channel Crosstalk
LOWER HIGH	12 kHz	5 kHz	43 dB or more
UPPER HIGH	3 kHz	20 kHz	40 dB or more

TABLE 3-3 NOISE LEVEL MEASUREMENT

OUTPUT Jack	CROSSOVER FRE- QUENCY Selector Switch	Noise Level (With the TA-4300F's INPUT Jacks shorted
LOWER HIGH	12 kHz	-80 dB or less
UPPER HIGH	3 kHz	-80 dB or less

Fig. 3-3 Noise level check test setup

Fig. 3-4 Harmonic distortion test setup

TABLE 3-4 HARMONIC DISTORTION MEASUREMENT

OUTPUT Jacks	CROSSOVER FRE- QUENCY Selector Switch	Input Signal Frequency	Harmonic Distortion
LOWER HIGH	12 kHz	5 kHz	0.1% or less
UPPER HIGH	3 kHz	20 kHz	0.1% or less

SECTION 4 REPACKING

The TAD-43F's original shipping carton and packing material are the ideal containers for shipping the unit. However, to secure the maximum protection the

TAD-43F must be repacked in these materials precisely as before. The proper repacking procedure is shown in Fig. 4-1.

Fig. 4-1 Repacking

SECTION 5 DIAGRAMS

5-1. SCHEMATIC DIAGRAM

5-2. MOUNTING DIAGRAM.

5-2. MOUNTING DIAGRAM

-Component Side-

SECTION 6 EXPLODED VIEW

SECTION 7 ELECTRICAL PARTS LIST

Ref. No.	Part No.	Descri	ption	Ref. No.	Part No.	Description
	Mounted Circuit	t Board		R111(R211)	1-242-727	180K
				R112(R212)	1-242-643	56
	8-982-573-15	mainamplifier	circuit board	R113(R213)	1-222-359	20K (B) variable
				R114(R214)	1-242-713	47K
	Semiconductors			R115(R215)	1-242-706	24K
				R116(R216)	1-242-700	13K
Q101(Q201)		FET,	2SK 23-22	R117(R217)	1-242-677	1.5K
Q102(Q202)		transistor,	2SA611	R118(R218)	1-242-695	8.2K
Q103(Q203)	1	FET,	2SK23-22	R119(R219)	1-242-681	2.2K
Q104(Q204)		transistor,	2SA611	R120(R220)	1-242-689	4.7K
Q301(Q401)		FET,	2SK23-22	R121(R221)	1-242-685	3.3K
Q302(Q402)		FET,	2SK 23-26	R122(R222)	1-242-728	200K
Q303(Q403)		FET,	2SK 23-22	R123(R223)	1-242-721	100K
Q304(Q404)		FET,	2SK23-26 .	R124(R224)	1-242-715	56K
				R125(R225)	1-242-679	1.8K
	Cap	acitors		R126(R226)	1-242-711	39K
				R127(R227)	1-242-687	3.9K
All capaci	tance values are in	μ F except as ind	licated with	R128(R228)	1-242-708	27K
p, which mea	ns			R129(R229)	1-242-690	5.1K
				R130(R230)	1-242-721	100K
C101(C201)	1-106-002-12	0.0011 ±5%	50V mylar	R131(R231)	1-242-713	47K
C102(C202)	1-106-002-12	0.0011 ±5%	50V mylar	R132(R232)	1-242-705	22K
C103(C203)	1-105-685-12	0.1 ±10%	50V mylar	R133(R233)	1-242-693	6.8K
C104(C204)	1-106-002-12	0.0011 ±5%	50V mylar	R134(R234)	1-242-703	18K
C105(C205)	1-105-685-12	0.1 ±10%	50V mylar	R135(R235)	1-242-683	2.7K
C106(C206)	1-105-685-12	0.1 ±10%	50V mylar	R136(R236)	1-242-701	15K
				R137(R237)	1-242-677	1.5K
C301(C401)	1-106-008-12	0.002 ±5%	50V mylar			
C302(C402)	1-106-001-12	0.001 ±5%	50V mylar	R301(R401)	1-242-713	47K
C303(C403)	1-106-001-12	0.001 ±5%	50V mylar	R302(R402)	1-242-685	3.3K
C304(C404)	1-106-001-12	0.001 ±5%	50V mylar	R303(R403)	1-242-713	47K
C305(C405)	1-105-685-12	0.1 ±10%	50V mylar	R304(R404)	1-242-685	3.3K
				R305(R405)	1-244-655	180
C501	1-121-411	47 +100-10%	%50V electrolytic	R306(R406)	1-244-625	10
				R307(R407)	1-242-667	560
	Resi	istors	•	R308(R408)	1-242-713	47K
				R309(R409)	1-242-685	3.3K
All resista	nce values are in Ω	2, ±5%, 1/4 W an	nd	R310(R410)	1-242-655	180
carbon ty	pe unless otherwise	indicated.		R311(R411)	1-244-625	10
				R312(R412)	1-242-667	560
R101(R201)	1-242-706	24K		R313(R413)	1-222-359	20K (B) variable
R102(R202)	1-244-655	180		R314(R414)	1-242-720	91K
R103(R203)	1-242-729	220K		R315(R415)	1-242-692	6.2K
R104(R204)	1-244-728	200K		R316(R416)	1-242-713	47K
R105(R205)	1-242-643	56		R317(R417)	1-242-673	1K
R106(R206)	1-244-625	10		R318(R418)	1-242-707	27K
R107(R207)	1-242-691	5.6K		R319(R419)	1-242-679	1.8K
R108(R208)	1-242-720	91K		R320(R420)	1-242-702	16K
R109(R209)	1-242-655	180		R321(R421)	1-242-688	4.3K
R110(R210)	1-242-730	240K		R322(R422)	1-242-700	13K

Ref. No.	Part No.	Description	Ref. No.	Part No.	Description
		•			
R323(R423)	1-242-683	2.7K	R336(R436)	1-242-713	47K
R324(R424)	1-242-720	91K	R337(R437)	1-242-673	1K
R325(R425)	1-242-692	6.2K	R338(R438)	1-242-707	27K
R326(R426)	1-242-713	47K	R339(R439)	1-242-679	1.8K
R327(R427)	1-242-673	1K	R340(R440)	1-242-702	16K
R328(R428)	1-242-707	27K	R341(R441)	1-242-688	4.3K
R329(R429)	1-242-679	1.8K	R342(R442)	1-242-700	13K
R330(R430)	1-242-702	16K	R343(R443)	1-242-683	2.7K
R331(R431)	1-242-688	4.3K			
R332(R432)	1-242-700	13K		Miscellaneou	S
R333(R433)	1-242-683	2.7K			
R334(R434)	1-242-720	91K	1-507-163	phono jack, 4-	p
R335(R435)	1-242-691	6.2K	1-534-652	connecting cor	d

SONY CORPORATION

General Export Model

SERVICE MANUAL SUPPLEMENT

No. 1 July, 1971

Subject: Knob Change on Model TA-4300F and TAD-43F

1. INTRODUCTION

SONY has changed the design of knobs equipped in TA-4300F and TAD-43F as given in Table below. Note that the new knob is a serrated type as illustrated.

2. APPLICABLE SERIAL NUMBERS

Model	For General Export Model
TA-4300F	500,201 and later
TAD-43F	500,021 and later

3. INTERCHANGEABILITY

New and old knobs are not interchangeable.

TABLE 1 PARTS CHANGED

Model	Description	Part Number	
	Description	Former	New
TA-4300F	LOW CHANNEL FREQUENCY SHIFT SW, BASS BOOST SW knobs CROSSOVER FREQUENCY (HIGH, LOW) SW knobs	X-20320-03	X-48049-05
·	LEVEL control knobs (HIGH, MID-RANGE, LOW)	X-20519-03	X-48066-11
TAD-43F	LEVEL control knobs (LOWER HIGH, UPPER HIGH)	X-20519-03	X-48066-11
	CROSSOVER FREQUENCY SW knob	X-20320-03	X-48049-05