3. a) À l'aide d'une calculatrice, obtenir pour la fonction un tableau de valeurs sur [0,4;0,5] avec : $X_{\min} = 0.4 ; X_{\max} = 0.5 ; \text{pas} = 0.01.$ b) En déduire une valeur décimale approchée à

10-2 près de
$$\alpha$$
.

Soit la fonction f définie sur $[2;20]$

par :
$$f(x) = x - 2 - 2 \ln x$$
.

- **1.** Dresser le tableau de variation de f.
- **2.** En déduire que l'équation f(x) = 0 admet une solution unique α sur [2; 20].
- 3. a) À l'écran d'une calculatrice, tracer la courbe représentative de f avec la fenêtre :

$$X_{\min}=2$$
; $X_{\max}=20$; pas = 1.
 $Y_{\min}=-5$; $Y_{\max}=15$; pas = 1.
b) À l'aide de TRACE donner une valeur décimale

approchée de α.

- Soit la fonction f définie sur [-1; 0]par:
- $f(x) = 1 + xe^{-x}$. **1.** Calculer f'(x) et dresser le tableau de variation
- de f. **2.** En déduire que l'équation f(x) = 0 admet une
- solution unique α sur [-1;0].
- 3. a) À l'écran d'une calculatrice, tracer la courbe représentative de f avec la fenêtre :
- $X_{\min} = -1$; $X_{\max} = 0$; pas = 0,1. $Y_{\min} = -2$; $Y_{\max} = 1$; pas = 0,1.
- b) À l'aide de G-Solv pour Casio, de Calcul pour TI, donner la valeur décimale arrondie à 10^{-3} de α . On pourra utiliser les indications données dans les pages de couverture de l'ouvrage.

Fiches méthodes 7 et 8

Développements limités. Études locales de fonctions

Pour les exercices 105 à 108, f est une fonction définie sur l'intervalle I de ℝ. On donne un développement limité de f en zéro.

- En déduire dans le plan rapporté à un repère orthogonal une équation de la tangente T à la courbe \mathscr{C} d'équation y = f(x) en son point d'abscisse 0 et la position de & par rapport à T au voi-
- sinage de ce point. Illustrer par un schéma cette situation.

105
$$I =]-1; +\infty[;$$
 $f(x) = \frac{1-x}{1+x}.$
À l'ordre 2, en $0: f(x) = 1-2x+2x^2+x^2 \varepsilon(x)$

avec
$$\lim_{x \to 0} \varepsilon(x) = 0$$
.
106 **C** $I =]-1; +\infty[; f(x) = \sqrt{1+x}.$

À l'ordre 2, en
$$0: f(x) = 1 + \frac{1}{2}x - \frac{1}{8}x^2 + x^2 \varepsilon(x)$$

avec
$$\lim_{x \to 0} \varepsilon(x) = 0$$
.

107 G
$$I = \mathbb{R}$$
; $f(x) = e^x + \cos x$.
À l'ordre 3, en $0: f(x) = 2 + x + \frac{x^3}{6} + x^3 \varepsilon(x)$

avec
$$\lim_{x \to 0} \varepsilon(x) = 0$$
.

108
$$I = \mathbb{R}$$
; $f(x) = e^{-x} - e^x$.

$$f(x) = e^{-x} - e^{-x}$$

À l'ordre 3, en
$$0: f(x) = -2x - \frac{x^3}{2} + x^3 \varepsilon(x)$$

avec
$$\lim_{x \to 0} \varepsilon(x) = 0$$
.