Burak Yesil

"I pledge my honor that I have abided by the Stevens Honor System."

Instruction Types:					
R-Type Instructions (ADD, SUB, AND, ORR)					
LDUR					
STUR					
CBZ					
В					

Problem #1:

- A. CBZ, B
- B. LDUR, STUR
- C. LDUR, R-Type Instructions

Problem #2:

A. You need **two** additions: A **second write port** and a **second ALU** in order to read and write at the same time.

Problem #3:

```
A. With ALU: CT = 200 + 250 + 150 + 300 + 200 + 200 = 1300ps
Without ALU: CT = 200 + 250 + 150 + 300 + 200 = 1100ps
```

- B. Speed Up: (Old CPU Time) / (New CPU Time) = (1*1*1100)/(.8*1*1300) = 1.0576923 = 5.7 percent faster
- C. 1/(new time) > 1/(old time) -> 1/(.8*1*(1100+**X**) > 1/(1*1*1100) 1100 > .8(1100 + **X**) (1100/.8) - 1100 > **X** 275 PS > X

Problem #4:

A.)

- In a <u>pipelined processor</u>, the cycle time is determined by the longest stage, so (300 PS).
- In a <u>non-pipelined processor</u>, the cycle time is determined by completing all of the stages so, 200 + 250 + 150 + 300 + 200 = (1100 PS).

B.)

- Pipelined: (LDUR uses all 5 stages)
 - (5 cycles) * (300 PS) = **1500 PS**
- Non-pipelined: (you have to complete the full set)

- 200 + 250 + 150 + 300 + 200 = **1100 PS**

C.)

We would split the MEM stage in half because it takes the longest. So it will be in the following format:

Original:	IF (200)	ID (250)	EX (150)	MEM (300)	WB (200)	
New:	IF (200)	ID (250)	EX (150)	MEM1 (150)	MEM2 (150)	WB (200)

New Clock Time:

(pipelined) = 250 PS

(Non-pipelined) = 1100 PS

Problem #5:

	1	2	3	4	5	6	7	8	9
LDUR X20, [X19, #0]	IF	ID	EX	MEM	WB				
LDUR X21, [X19, #8]		IF	ID	EX	MEM	WB			
NOP					EX	MEM	WB		
ADD X22, X21, X20				IF	ID	EX	MEM	WB	
SUB X23, X23, X22					IF	ID	EX	MEM	WB

- The X21 register in the MEM stage in the (LDUR X21, [X19, #8]) instruction gets forwarded to the EX stage of the (ADD 22, X21, X20) instruction.
- The value of X22 in the EX stage in the (ADD X22, X21, X20) instruction gets forwarded to the EX stage of the (SUB X23, X23, X22) instruction.

Problem #6:

a.)

```
LDUR X1, [X6, #8]
NOP
NOP
ADD X0, X1, X0
NOP
NOP
STUR X0, [X10, #4]
LDUR X2, [X6, #12]
NOP
NOP
SUB X3, X0, X2
NOP
NOP
STUR X3, [X8, #24]
CBZ X2, 40
```

b.)

LDUR X1, [X6, #8]
LDUR X2, [X6, #12]
ADD X0, X1, X0
SUB X3, X0, X2
STUR X0, [X10, #4]
STUR X3, [X8, #24]
CBZ X2, 40