COMP 3331/9331 Assignment T2 2021

All details are in the specification

- READ THE SPECIFICATION
- READ THE SPECIFICATION (AGAIN)
- Information about deadlines, file names, submission instructions, marking guidelines, example interactions and various other specifics are in the specification
- Choice of programming languages: C, Java, Python
- This talk provides a high-level overview

Padawan Transport Protocol

Goal: Implement a stripped-down version of TCP for reliable uni-directional transfer of data from Sender to Receiver

Must use UDP

PTP - Inclusions

- 3-way connection setup (SYN, SYN+ACK, ACK)
- 4-way connection termination (FIN, ACK, FIN, ACK)
 - Possible to combine the ACK and FIN from the Receiver in one message (effectively making it a 3-way process)
- Sender must maintain a single timer and transmit the oldest unacknowledged segment
- Receiver should buffer out of order segments
- Fast retransmit (i.e., retransmission on reception of triple duplicate ACKs)
- Include sequence and ack numbers like TCP
- Use MWS (command-line argument) as window size
- Use MSS (command-line argument) as the size of the data payload in PTP segment
 - MWS >= MSS and exactly divisible by MSS

PTP - Exclusions

- No need to randomize initial sequence number
- No need to implement timeout estimation (timeout value provided as command line argument)
- No need to double timeout interval
- No need to implement delayed ACKs
- No need to implement any flow control or congestion control
- No need to deal with corrupted packets
- No need to deal with abnormal behaviour (e.g., RST)

PTP Segment Format

- You will need to decide on the format of the PTP headers. You can draw inspiration from TCP.
- PTP Segments will be encapsulated within UDP segments. No need to include port #'s in the PTP header. You will have to fill the port numbers in the UDP headers.
- Same format for data and ACK segments
 - ACK segment contains no data

PL Module

- Purpose: simulate packet loss
- Implemented at the Sender
- You can assume that packets will never be delayed or corrupted
- Exclude PTP segments for connection establishment or teardown
- Exclude acknowledgments
- PTP data segments are dropped with a probability pdrop
- Code fragments provided for pseudo-random generation
- You are required to use a fixed seed, provided as command line argument

Execution

- Receiver
 - Command line arguments:
 - receiver_port (use a value greater than 1023 and less than 65536)
 - FileReceived.txt (to be created by your program into which received data is written)
 - Executed first waits for Sender to connect
- Sender
 - Command line arguments:
 - receiver host ip (use "127.0.0.1" as Sender and Receiver will be executed on same machine)
 - Receiver port (should match the first argument for the Receiver)
 - FileToSend.txt (text file to be sent to receiver, file exists in current working directory)
 - MWS: maximum window size in bytes
 - MSS: maximum segment size in bytes
 - Timeout: value of timeout in milliseconds
 - Pdrop: packet drop probability, between 0 and 1
 - Seed: random number generation seed (an integer)
 - Let the OS pick an unused port
 - Sender should send UDP segments to Receiver ("127.0.0.1", receiver_port)
- You may assume that the correct number of command line arguments in the expected format will be always provided

Execution

Receiver Design

- 1. Connection setup
- 2. Data Transmission (repeat until end of file)
 - a) Receive PTP segment
 - b) Send ACK segment
 - c) Buffer data or write data into file
- 3. Connection teardown

Sender Design

- 1. Connection setup
- 2. Data Transmission (repeat until end of file)
 - a. Read file
 - b. Create PTP segment
 - c. Start Timer if required (retransmit oldest unacknowledged segment on expiry)
 - d. Send PTP segment to PL module
 - e. If PTP segment is not dropped, transmit to Receiver
 - f. Process ACK if received
- 3. Connection teardown

Note: Sender needs to deal with multiple events, so you wish to explore the use of – (i) multiple threads (ii) non-blocking or asynchronous IO using polling, i.e., select()

Logs – Very Important

- Sender_log.txt
 - <snd/rcv/drop> <time> <type of packet> <seq-number> <number-of-bytes> <ack-number>
 - Statistics at the end of the file transfer
- Receiver_log.txt
 - Similar format
 - Statistics at the end of the file transfer
- Samples provided in the spec
- Fields should be tab-separated
- IMPORTANT: If logs are missing, then your submission will only be marked out of 25% of the marks

Marking Criteria

- Simple stop-and-wait (5 marks)
 - MWS = MSS
 - Pdrop = 0
 - Pdrop = different values
- Pipelining (12 marks)
 - MWS > MSS
 - Pdrop = 0
 - Pdrop = different values
 - Varying MWS, pdrop, timeout
- Report (3 marks)
- Non-CSE Students may opt for a reduced-functionality spec
 - MUST request approval check spec for details

How to start and progress

- Start with a stop-and-wait protocol one packet at a time (similar to RDT 3.0) without the PL module
 - Make sure you can transfer a file correctly from Sender to Receiver
- Next introduce the PL module
 - Make sure you can transfer a file correctly from Sender to Receiver
- Extend to a window-based protocol (i.e., sending MWS bytes at a time)
 - First disable PL module and ensure that a file can be transferred correctly
 - Next enable PL module and ensure that a file can be transferred correctly
- STRONGLY SUGGEST TO DEVELOP YOUR IMPLEMENTATION IN VLAB ENVIRONMENT (NOT ON YOUR NATIVE MACHINE)
 - Added benefit CSE accounts are backed up
- IF you develop on your machine, make sure you TEST EXTENSIVELY IN VLAB

Resources

- Many program snippets are on the web page
 - Including multi-threading code snippets
- Your socket programming experience in Labs 2 and 3 will be useful
- Repository of resources is here

Testing

- Test, Test, Test
- Server and client(s) executing on same machine
- Emphasis on correct behaviour
- MUST Test In VLAB environment
- If we cannot run your code, then we cannot award you any marks
- Your assignment will be MANUALLY marked by your tutors

Plagiarism

DO NOT DO IT

- If caught
 - You will receive zero marks (and there may be further repercussions if this is not your first offence)
 - Your name will be added to the school plagiarism register

Seeking Help

- Assignment specific consults (for all 3 programming languages) from Weeks 7-10
 - Schedule is available on assignment page
- Course message forum
 - Read posts from other students before posting your question
- Read the spec very often your answer will be in there