Learning rate decay

• fixed learning rate, and noise in mini-batches lead to wandering around the optimal point

Learning rate decay

- slowly reduce learning rate
 - o at first it is ok to take bigger steps
 - when come close to the optimal point, take smaller step

Implement learning decay

- 1 **epoch** = 1 pass through the network
- $\alpha = \frac{1}{1 + decay_rate*epoch_num} \alpha_0$
- $Hyperparameters: decay_rate \& \alpha_0$

Other learning rate decay methods

- $\alpha = 0.95^{epoch_num} \alpha_0$
- $ullet \ \ lpha = rac{k}{\sqrt{epoch_num}}lpha_0 \ or rac{k}{\sqrt{t}}lpha_0$
- discrete staircase