

Ch1. 데이터베이스 시스템

숭실대학교 스마트시스템소프트웨어 학과 Department of Smart Systems Software

목차

- 1. 데이터베이스와 데이터베이스 시스템
- 2. 파일 시스템과 DBMS
- 3. 데이터베이스 시스템의 구성

1.1. 데이터, 정보, 지식

■ 데이터 : 관찰의 결과로 나타난 정량적 혹은 정성적인 실제 값

■ 정보 : 데이터에 의미를 부여한 것

■ 지식 : 사물이나 현상에 대한 이해

그림 1-1 데이터, 정보, 지식

1.2. 일상생활의 데이터베이스

 데이터베이스 : 조직에 필요한 정보를 얻기 위해 논리적으로 연관된 데이터를 모아 구조적으로 통합해 놓은 것

그림 1-2 일상생활에서 생성되는 데이터베이스

1.2. 일상생활의 데이터베이스

신대방삼거리역/ 대표 : 김양숙외1(10818 담당 : 점주 일자 : 2013-03-24 18:	897274) 12:38	T:02-8	12-3235 NO : 01	
	QTY	D/C	AMT	
소프트 아이스크림	1	0	500	
총매출액 합계금액 받 은 돈	과세금 부 가 카 드		273 227 500 500 500	
소비자 중심 경영 인증기업(CCM)				
<< 카	드 승인	>>		
[카드번호] 940951** [승인금액] 13,500 [승인번호] 33517480			시불]	

그림 1-3 패스트푸드 체인점과 철도청의 데이터베이스 - 간단한 거래도 많은 데이터가 포함

1.2. 일상생활의 데이터베이스

표 1-1 데이터베이스의 활용 분야

종류	특징
생활과 문화	 기상정보 : 날씨 정보를 제공 교통정보 : 교통상황 정보를 제공 문화예술정보 : 공연이나 인물에 관한 정보를 제공
비즈니스	 금융정보 : 금융, 증권, 신용에 관한 정보를 제공 취업정보 : 노동부와 기업의 채용 정보를 제공 부동산정보 : 공공기관이나 민간의 토지, 매물, 세금 정보를 제공
학술정보	 연구학술정보 : 논문, 서적, 저작물에 관한 정보를 제공 특허정보 : 특허청의 정보를 기업과 연구자에게 제공 법률정보 : 법제처와 대법원의 법률 정보를 제공 통계정보 : 국가기관의 통계 정보를 제공

1.3. 데이터베이스의 개념

● 통합된 데이터(integrated data)

데이터를 통합하는 개념으로, 각자 사용하던 데이터의 중복을 최소화하여 중복으로 인한 데이터 불일치 현상을 제거

② 저장된 데이터(stored data)

문서로 보관된 데이터가 아니라 디스크, 테이프 같은 컴퓨터 저장장치에 저장된 데이터를 의미

❸ 운영 데이터(operational data)

조직의 목적을 위해 사용되는 데이터를 의미한다. 즉 업무를 위한 검색을 할 목적으로 저장된 데이터

3 공용 데이터(shared data)

한 사람 또는 한 업무를 위해 사용되는 데이터가 아니라 공동으로 사용되는 데이터를 의미

1.3. 데이터베이스의 개념

그림 1-4 데이터베이스의 개념: 데이터베이스는 운영 데이터를 통합하여 저장하며 공용으로 사용된다

1.3. 데이터베이스의 특징

● 실시간 접근성(real time accessibility)

데이터베이스는 실시간으로 서비스된다. 사용자가 데이터를 요청하면 몇 시간이나 몇 일 뒤에 결과를 전송하는 것이 아니라 수 초 내에 결과를 서비스한다.

② 계속적인 변화(continuous change)

데이터베이스에 저장된 내용은 어느 한 순간의 상태를 나타내지만, 데이터 값은 시간에 따라 항상 바뀐다. 데이터베이스는 삽입(insert), 삭제(delete), 수정(update) 등의 작업을 통하여 바뀐 데이터 값을 저장한다.

⑤ 동시 공유(concurrent sharing)

데이터베이스는 서로 다른 업무 또는 여러 사용자에게 동시에 공유된다. 동시(concurrent)는 병행이라고도 하며, 데이터베이스에 접근하는 프로그램이 여러 개 있다는 의미다.

⁴ 내용에 따른 참조(reference by content)

데이터베이스에 저장된 데이터는 데이터의 물리적인 위치가 아니라 데이터 값에 따라 참조된다.

1.4. 데이터베이스 시스템의 구성

그림 1-5 데이터베이스 시스템의 구성 요소와 물리적인 위치

2. 파일 시스템과 DBMS의 비교

표 1-5 파일 시스템과 DBMS의 비교

구분	파일 시스템	DBMS
데이터 정의 및 저장	데이터 정의 : 응용 프로그램 데이터 저장 : 파일 시스템	데이터 정의 : DBMS 데이터 저장 : 데이터베이스
데이터 접근 방법	응용 프로그램이 파일에 직접 접근	응용 프로그램이 DBMS에 파일 접근 을 요청
사용 언어	자바, C++, C 등	자바, C++, C 등과 SQL
CPU/주기억장치 사용	적음	많음

3.1. 데이터베이스 시스템의 구성

그림 1-22 데이터베이스 시스템의 구성

3.2. 데이터베이스 언어

SQL

- 데이터 정의어(DDL, Data Definition Language)
- 데이터 조작어(DML, Data Manipulation Language)
- 데이터 제어어(DCL, Data Control Language)

질의 1-1 Book 테이블에서 모든 도서이름(bookname)과 출판사(publisher)를 검색하시오.

SELECT bookname, publisher

FROM Book;

Book 테이블

bookid	bookname	publisher	price	
1	축구의 역사	굿스포츠	7000	
2	축구아는 여자	나무수	13000	
3	축구의 이해	대한미디어	22000	
4	골프 바이블	대한미디어	35000	
5	피겨 교본	굿스포츠	8000	

bookname	publisher
축구의 역사	굿스포츠
축구아는 여자	나무수
축구의 이해	대한미디어
골프 바이블	대한미디어
피겨 교본	굿스포츠

3.2. 데이터베이스 언어

질의 1-2 가격(price)이 10,000원 이상인 도서이름(bookname)과 출판사(publisher)를 검색하시오.

SELECT bookname, publisher

FROM Book

Where price >= 10000;

Book 테이블

bookid	bookname	publisher	price
1	축구의 역사	굿스포츠	7000
2	축구아는 여자	나무수	13000
3	축구의 이해	대한미디어	22000
4	골프 바이블	대한미디어	35000
5	피겨 교본	굿스포츠	8000

bookname	publisher
축구아는 여자	나무수
축구의 이해	대한미디어
골프 바이블	대한미디어

3.2. 데이터베이스 사용자

■ 일반사용자

- 은행의 창구 혹은 관공서의 민원 접수처 등에서 데이터를 다루는 업무를 하는 사람
- 프로그래머가 개발한 프로그램을 이용하여 데이터베이스에 접근 일반인

■ 응용프로그래머

- 일반 사용자가 사용할 수 있도록 프로그램을 만드는 사람
- 자바, C, JSP 등의 프로그래밍 언어와 SQL을 사용하여 일반 사용자를 위한 사용자 인터페이스와 데이터를 관리하는 응용 로직을 개발

SQL 사용자

- SOL을 사용하여 업무를 처리하는 IT 부서의 담당자
- 응용 프로그램으로 구현되어 있지 않은 업무를 SOL을 사용하여 처리

■ 데이터베이스 관리자(DBA, Database Administrator)

- 데이터베이스 운영 조직의 데이터베이스 시스템을 총괄하는 사람
- 데이터 설계, 구현, 유지보수의 전 과정을 담당
- 데이터베이스 사용자 통제, 보안, 성능 모니터링, 데이터 전체 파악 및 관리, 데이터 이동 및 복사 등 제반 업무를 함

3.3. **DBMS**

표 1-8 DBMS의 기능

데이터 정의(Definition)	데이터의 구조를 정의하고 데이터 구조에 대한 삭제 및 변경 기능을 수행함
데이터 조작(manipulation)	데이터를 조작하는 소프트웨어(응용 프로그램)가 요청하는 데이터의 삽입, 수정, 삭제 작업을 지원함
데이터 추출(Retrieval)	사용자가 조회하는 데이터 혹은 응용 프로그램의 데이터를 추출함
데이터 제어(Control)	데이터베이스 사용자를 생성하고 모니터링하며 접근을 제어함. 백업과 회복, 동시성 제어 등의 기능을 지원함

- 계층 데이터 모델(hierarchical data model)
- 네트워크 데이터 모델(network data model)
- 객체 데이터 모델(object data model)
- 관계 데이터 모델(relational data model) → 가장 많이 쓰인다
- 객체-관계 데이터 모델(object-relational data model) _{→ 관계 데이터 모델과 객체 데이터} 모델의 장점을 결합한 모델

표 1-9 데이터 모델과 각 모델에서 관계의 표현 방법

데이터 모델	관계의 표현	데이터 구성
계층 데이터 모델 (포인터 사용)	학생 강좌	
네트워크 데이터 모델 (포인터 사용)	학생 강좌	

표 1-9 데이터 모델과 각 모델에서 관계의 표현 방법

데이터 모델	관계의 표현	데이터 구성	
관계 데이터 모델 (속성 값 사용)	학생 강좌 x		
객체 데이터 모델 (객체식별자 사용)	학생 강좌 객체 번호 oid		

표 1-10 데이터 모델의 역사

데이터 모델	1970년대	1980년대	1990년대	2000년대	2010년대
제품 종류	1970단대	1960단테	1990단대	2000 단대	2010단대
계층 데이터 모델 IMS(IBM)	⇒	\Rightarrow			
네트워크 데이터 모델 IDS(GE)	\Rightarrow	\Rightarrow			
관계 데이터 모델 Oracle(Oracle), System R(IBM)		\Rightarrow	\Rightarrow	\Rightarrow	⇒
객체 데이터 모델 GemStone, ObejectStore			\Rightarrow		
객체-관계 데이터 모델 UniSQL				⇒	⇒

- 위 표에는 해당 데이터 모델이 주로 사용되던 시기를 표시한 것이다.
- 계층 데이터 모델과 네트워크 데이터 모델은 1960년대에, 관계 데이터 모델은 1970년대에 처음 사용되기 시작하였다.

그림 1-27 ANSI의 3단계 데이터베이스 구조

■ 외부 스키마

- 일반 사용자나 응용 프로그래머가 접근하는 계층으로 전체 데이터베이스 중에서 하나의 논리적인 부분을 의미
- 여러 개의 외부 스키마(external schema)가 있을 수 있음
- 서브 스키마(sub schema)라고도 하며, 뷰(view)의 개념임

■ 개념 스키마

- 전체 데이터베이스의 정의를 의미
- 통합 조직별로 하나만 존재하며 DBA가 관리함
- 하나의 데이터베이스에는 하나의 개념 스키마(conceptual schema)가 있음

■ 내부 스키마

- 물리적 저장 장치에 데이터베이스가 실제로 저장되는 방법의 표현
- 내부 스키마(intenal schema)는 하나
- 인덱스, 데이터 레코드의 배치 방법, 데이터 압축 등에 관한 사항이 포함됨

■ 외부/개념 매핑

- 사용자의 외부 스키마와 개념 스키마 간의 매핑(사상)
- 외부 스키마의 데이터가 개념 스키마의 어느 부분에 해당되는지 대응시킴

■ 개념/내부 매핑

• 개념 스키마의 데이터가 내부 스키마의 물리적 장치 어디에 어떤 방법으로 저장되는지 대응시킴

내부 스키마

그림 1-32 수강신청 데이터베이스의 3단계 구조

그림 1-28 수강신청 데이터베이스의 개념 스키마

그림 1-29 수강등록 담당 부서에서 필요한 데이터베이스(외부 스키마1)

그림 1-30 시간표 담당 부서에서 필요한 데이터베이스(외부 스키마2)

그림 1-31 수강신청 데이터베이스의 내부 스키마