

圖 4-12 V_T 對 $\sqrt{2\psi_B - V_B}$ 的作圖,直線斜率即為基底效應係數(body effect factor) γ (註:在業界,常以 \sim 0.6V 來估計 $2\psi_B$ 值)。

因為 V_T 值與 ϕ_{ms} (金屬閘極與矽基底間的功函數差)有關,經由選擇適當的閘極材料來調整功函數差是一種控制 V_T 的方法。舉例,圖 3-10 中之 p 型矽基版的掺雜濃度為 $10^{15}cm^{-3}$,則選閘極材料為 n^+ poly-Si、Al、Au 或 p^+ poly-Si 時,分別有 ϕ_{ms} 值約等於-1.02、-0.88、0、或 0.37eV。在早期,MOSFET的閘極材料為 Al 金屬;但因其低熔點無法承受後續的高溫製程(例如離子植入後的高溫回火),因此改用高熔點的 n^+ poly-Si;之後,又希望藉由 ϕ_{ms} 來調整 V_T ,因此目前常使用的製造技術為 n-MOSFET 使用 n^+ poly-Si 而 p-MOSFET 使用 p^+ poly-Si。

(4-33)式告訴我們,藉由改變氧化層的電容 C_{ox} 亦可控制 V_{T} 。又 C_{ox} 可表示為: