47	$CH_n = CH_m - COO - CH_p (m, n, p \text{ in } 03)$	Ethyl Acrylate (1)	0.2117	-0.0430	-0.0880	0.000044	0.21	-12.085	-12.509	****	-0.014
48	$CH_m = CH_n - CHO(m, n \text{ in } 02)$	Propenaldehyde (1)	-0.7191	0.1102	****	****	****	****	****	****	****
49	$CH_m = CH_n - COOH(m, n \text{ in } 02)$	Acrylic Acid (1)	2.4103	0.0667	-1.7762	-0.000763	4.36	10.194	9.090	*****	1.291
50	$aC-CH_n-X$ (n in 12) X: Halogen	Benzyl bromide (1)	0.8092	0.4537	2.2630	0.002464	-4.88	-8.081	-8.570	****	****
51	$aC-CH_n-NH_m$ (<i>n</i> in 12; <i>m</i> in 02)	Benzyl amine (1)	-1.0802	0.2590	1.4069	-0.000034	2.50	-2.044	-3.447	4.608	-0.639
52	$aC-CH_n-O-(n \text{ in } 12)$	Benzyl ethyl ether (1)	0.8607	-0.0425	0.2698	-0.000417	-7.49	6.043	5.486	*****	0.969
53	$aC-CH_n-OH$ (n in 12)	Benzyl alcohol (1)	0.8981	0.1005	-1.0107	0.002944	-0.25	*****	****	*****	-2.754
54	$aC-CH_n-CN$ (n in 12)	Benzyl cyanide (1)	0.1088	1.0587	2.4950	-0.000796	-11.01	25.157	16.950	****	****
55	aC-CH $_n$ -CHO (n in 12)	Phenyl acetaldehyde (1)	1.9470	-0.0177	*****	****	****	*****	*****	****	****
56	$aC-CH_n-SH$ (n in 12)	Phenyl methanethiol (1)	1.2057	0.1702	0.8705	0.000183	2.00	16.725	7.568	****	0.890
57	$aC-CH_n-COOH$ (n in 12)	Phenyl acetic acid (1)	0.3666	0.1584	****	****	****	****	****	****	-4.086
58	$aC-CH_n-CO-(n \text{ in } 12)$	Phenyl acetone (1)	-0.2363	0.3094	****	****	****	****	****	****	****
59	$aC-CH_n-S-(n \text{ in } 12)$	Benzyl methyl sulfide (1)	0.4506	0.1030	****	****	****	****	****	****	****
60	$aC-CH_n-OOC-H$ (n in 12)	Benzyl formate (1)	****	0.2238	1.7860	0.004195	-3.40	3.020	4.145	*****	****
61	$aC-CH_m-NO_2$ (n in 12)	Phenyl nitromethane (1)	****	0.5390	****	****	****	****	****	****	****
62	$aC-CH_n-CONH_2$ (n in 12)	Phenyl ethanamide (1)	2.2421	-0.2197	****	****	****	****	****	****	****
63	$aC-CH_n-OOC$ (n in 12)	Benzyl acetate (1)	-0.6997	0.0886	1.1629	-0.000384	-7.02	1.556	4.066	*****	****
64	$aC-CH_n-COO(n \text{ in } 12)$	Methyl phenyl acetate (1)	-0.2636	0.0352	****	****	*****	****	****	*****	****
65	aC-SO ₂ -OH	Benzenesulfonic acid (1)	-1.1057	****	****	****	****	****	****	****	****
66	aC-CH(CH ₃) ₂	Cumene (1)	0.0642	0.0196	0.1565	-0.001446	-2.04	1.238	-0.751	1.030	-0.270
67	aC-C(CH ₃) ₃	tert-Butylbenzene (1)	0.0790	0.0494	0.8016	-0.006495	-5.70	0.354	-0.192	*****	-0.878
68	aC-CF ₃	Perfluorotoluene (1)	-10.8058	-1.5974	****	****	****	****	****	*****	****
69	$(CH_n=C)(cyclic)-CHO (n in 02)$	Furfural (1)	-1.0516	0.4267	2.4070	-0.002650	0.39	-6.438	-12.517	****	-1.670
70	$(CH_n=C)_{cyc}-COO-CH_m (n, m \text{ in } 03)$	Methyl furanyrate (1)	-6.9427	0.0879	*****	****	****	*****	*****	****	****
71	$(CH_n=C)_{cyc}-CO-(n \text{ in } 02)$	2-Acetylfuran (1)	0.6572	0.6115	****	****	****	*****	*****	*****	*****
72	$(CH_n=C)_{cyc}-CH_3$ (n in 02)	1,2-Dimethylcyclopentene (2)	0.0416	0.0173	-0.2509	-0.000624	0.03	28.972	24.560	****	2.235
73	$(CH_n=C)_{cyc}-CH_2$ (n in 02)	2-Ethylfuran (1)	-0.3151	-0.0504	-1.1019	0.003921	-4.43	-22.533	-12.044	****	0.961
74	$(CH_n=C)_{cyc}-CN (n \text{ in } 02)$	3-Cyanofuran (1)	1.5819	-0.2474	****	****	****	*****	****	****	****
75	$(CH_n=C)_{cyc}-Cl (n \text{ in } 02)$	2-Chlorofuran (1)	-0.8604	-0.5736	****	****	*****	****	****	*****	****
76	CH _{cyc} -CH ₃	Methylcyclopentane (1)	-0.1326	-0.1210	-0.1233	0.000779	2.79	4.178	4.452	0.096	0.033
77	CH _{cyc} -CH ₂	Ethylcyclohexane (1)	-0.4669	-0.0148	0.3816	0.001694	-2.95	5.332	4.428	-0.428	-1.137
78	Ch _{cyc} -CH	Isopropylcyclopentane (1)	-0.3548	0.1395	0.1093	0.000124	6.19	6.084	-4.128	0.153	2.421
79	Ch _{cyc} -C	tert-Butylcyclohexane (1)	-0.1727	0.1829	****	****	*****	****	****	*****	****
80	Ch_{cyc} - CH = CH_n (n in 12)	Vinylcyclopentane (1)	0.6817	-0.1192	****	****	****	****	****	****	****
81	$Ch_{cyc}-C=CH_n \ (n \text{ in } 12)$	Limonene (1)	-1.0631	-0.0455	-0.2832	0.002114	-16.97	6.768	10.390	****	****
82	Ch _{cyc} -Cl	Chloro cyclopentane (1)	0.5124	0.2667	****	****	*****	****	****	****	****
83	Ch _{cyc} -F	Fluoro cyclohexane (1)	2.8497	-0.1899	****	****	****	****	****	****	****
84	Ch _{cyc} -OH	Cyclohexanol (1)	1.3691	-0.3179	0.8973	0.004640	-7.73	-3.024	-8.050	2.134	****
85	Ch _{cyc} -NH ₂	Cyclohexylamine (1)	1.5069	-0.3576	-0.9610	0.000039	-2.50	2.046	3.446	-4.607	0.328
86	Ch_{cyc} -NH- CH_n (n in 03)	N-methylcyclohexylamine (1)	0.0370	-0.7458	-2.0833	-0.014535	-51.50	-11.965	14.531	****	0.402
87	Ch_{cyc} -N- CH_n (n in 03)	N,N-dimethylcyclohexanamine (1)	****	0.1218	****	****	****	****	****	****	****
88	Ch _{cyc} -SH	Cyclohexanethiol (1)	-0.3312	-0.0569	-0.6447	-0.000199	-2.00	-16.723	-7.569	****	-0.878
89	Ch _{cyc} -CN	Cyanocyclopentane (1)	****	0.4649	****	****	****	****	****	****	****
90	Ch _{cyc} -COOH	Cyclopropanecarboxylic acid (1)	-2.0822	0.1506	****	****	****	****	****	****	****
91	Ch _{cyc} –CO	Methyl cyclohexyl ketone (1)	0.7743	0.1300	****	****	****	****	****	-0.616	****
92	Ch _{cyc} -NO ₂	Nitrocyclohexane (1)	-0.8578	0.6540	****	****	****	****	****	****	****
93	Ch _{cyc} -S-	Methyl cyclopentyl sulfide (1)	-0.8638	0.0043	****	****	*****	*****	****	****	****
94	Ch _{cyc} –CHO	Cyclohexanecarboxaldehyde (1)	0.5076	-0.2692	****	****	*****	*****	****	****	****
95	Ch _{cyc} –O–	Methoxycyclohexane (1)	-0.3978	-0.2787	****	****	****	****	****	****	****