ECON 6170 Section 11

TA: Patrick Ferguson

November 22, 2024

Monotone Comparative Statics

Remark 1 (Notation for increasing differences). For $f: Z \subseteq \mathbb{R}^d \to \mathbb{R}$,

 \triangleright Increasing differences in (x, θ) means that if $x' \ge x$ and $\theta' \ge \theta$ then

$$f(x', \theta') - f(x, \theta') \ge f(x', \theta) - f(x, \theta)$$

ightharpoonup Increasing differences in $(z_i, z_j; z_{-ij})$ means that $f(\cdot, z_{-ij})$ has increasing differences in (z_i, z_j) . That is, if $z_i' \ge z_i$ and $z_j' \ge z_j$ then

$$f(z'_i, z'_i; z_{-ij}) - f(z_i, z'_i; z_{-ij}) \ge f(z'_i, z_j; z_{-ij}) - f(z_i, z_j; z_{-ij})$$

- \triangleright Increasing differences on Z means increasing differences in $(z_i, z_j; z_{-ij})$ for all i, j.
- ightharpoonup Increasing differences in (x,y), θ means increasing differences in (x,y) where w:=(x,y).

Section Exercise 1. Prove the following lemma: f has increasing differences in (x, θ) if and only if f has increasing differences in $(x_i, \theta_i; x_{-i}, \theta_{-i})$ for all $i \in \{1, ..., d\}$ and all $j \in \{1, ..., m\}$.

Suppose f has increasing differences in (x, θ) . In particular, suppose $x_i' \ge x_i$, $\theta_j' \ge \theta_j$, x' is x with x_i replaced by x_i' , and θ' is θ with θ_j replaced by θ_j' . Then $x' \ge x$ and $\theta' \ge \theta$, so

$$f(x', \theta') - f(x, \theta') \ge f(x', \theta) - f(x, \theta)$$

or equivalently

$$f(x_i', \theta_i'; x_{-i}, \theta_{-i}) - f(x_i, \theta_i'; x_{-i}, \theta_{-i}) \ge f(x_i', \theta_i; x_{-i}, \theta_{-i}) - f(x_i, \theta_i; x_{-i}, \theta_{-i})$$

Conversely, suppose f has increasing differences in $(x_i, \theta_j; x_{-i}, \theta_{-j})$ for all $i \in \{1, ..., d\}$ and all $j \in \{1, ..., m\}$. Suppose $x' \ge x$ and $\theta' \ge \theta$. Then $x'_i \ge x_i$ for all i and $\theta'_j \ge \theta_j$ for all j. Let $i \in \{1, ..., d\}$ and $x^i := (x_1, ..., x_{i-1}, x'_i, ..., x_d)$. Then

$$f(x^{i}, \theta') - f(x^{i+1}, \theta')$$

$$\geq f(x^{i}, \theta_{1}, \theta'_{2}, \dots, \theta'_{m}) - f(x^{i+1}, \theta_{1}, \theta'_{2}, \dots, \theta'_{m})$$

$$\geq f(x^{i}, \theta_{1}, \theta_{2}, \theta'_{3}, \dots, \theta'_{m}) - f(x^{i+1}, \theta_{1}, \theta_{2}, \theta'_{3}, \dots, \theta'_{m})$$

$$\geq \dots$$

$$\geq f(x^{i}, \theta) - f(x^{i+1}, \theta)$$

Each step *j* follows from increasing differences in $(x_i, \theta_i; x_{-i}, \theta_{-i})$. We can rewrite:

$$f(x^{i}, \theta') - f(x^{i}, \theta) \ge f(x^{i+1}, \theta') - f(x^{i+1}, \theta)$$

Applying this iteratively to i = 1, 2, ..., d, we have

$$f(x', \theta') - f(x', \theta) \ge f(x^2, \theta') - f(x^2, \theta)$$

$$\ge f(x^3, \theta') - f(x^3, \theta)$$

$$\ge \dots$$

$$\ge f(x, \theta') - f(x, \theta)$$

Therefore, f has increasing differences in (x, θ) .

Section Exercise 2. If f has increasing differences in $(x, \theta) \in X \times \Theta$, does f have increasing differences on $Z := X \times \Theta$?

Only if $x, \theta \in \mathbb{R}$. f does not necessarily have increasing differences in $(x_i, x_j; x_{-ij}, \theta)$ for example.

Section Exercise 3. Prove that $X \ge_S X$ if and only if X is a sublattice of \mathbb{R}^d .

X is a sublattice of $\mathbb{R}^d \iff x \vee x', x \wedge x' \in X$ for all $x, x' \in X \iff X \geq_S X$.

Theorem 4 (Milgrom and Shannon). Let (X, \ge) be a lattice and (Θ, \ge) be a partially ordered set. Suppose $f: X \times \Theta \to \mathbb{R}$ and define $X^*: \Theta \times 2^X \rightrightarrows X$ as

$$X_{\Gamma}^*(\theta) := \underset{x \in \Gamma}{\operatorname{arg\,max}} f(x, \theta)$$

Then $X_{\Gamma}^*(\theta)$ is nondecreasing in the strong set order if and only if (i) $f(\cdot, \theta)$ is quasi-supermodular in x for all $\theta \in \Theta$, and (ii) f has single-crossing differences in (x, θ) .

Section Exercise 4 (2023 Midterm 3 Q4). There are two firms: 1 and 2. Let $S \subseteq \mathbb{R}_{++}$ be a nondegenerate compact interval. Define each firm $i \in \{1,2\}$'s C^2 profit function $\pi_i : S^2 \to \mathbb{R}$ as

$$\pi_i(p_i, p_{-i}) := (p_i - c_i)D_i(p_i, p_{-i})$$

where $p_i \in S$ is the price charged by firm i, p_{-i} is the price charged by the other firm, $c_i \in (0, \min S)$ is firm i's marginal cost and $D_i(p_i, p_{-i}) > 0$ is the demand for firm i given that firm i charges p_i and the other firm charges p_{-i} .

(i) Suppose that D_i is such that the own-price elasticity falls as p_{-i} increases. Prove that π_i satisfies single-crossing differences in (p_i, p_{-i}) .

Hint: Firm *i*'s own-price elasticity is $\varepsilon_i(p_i, p_{-i}) := -\frac{p_i}{D_i(p_i, p_{-i})} \frac{\partial D_i}{\partial p_i}(p_i, p_{-i})$.

Take logs of both sides of the expression for π_i :

$$\log \pi_i(p_i, p_{-i}) = \log(p_i - c_i) + \log D_i(p_i, p_{-i})$$

Then

$$\frac{\partial \log \pi_i}{\partial p_i}(p_i, p_{-i}) = \frac{1}{p_i - c_i} + \frac{1}{D_i(p_i, p_{-i})} \frac{\partial D_i}{\partial p_i}(p_i, p_{-i})$$
$$= \frac{1}{p_i - c_i} - \frac{\varepsilon_i(p_i, p_{-i})}{p_i}$$

and

$$\frac{\partial^2 \log \pi_i}{\partial p_{-i} \partial p_i}(p_i, p_{-i}) = -\frac{1}{p_i} \frac{\partial \varepsilon_i}{\partial p_{-i}}(p_i, p_{-i})$$

We know that $\partial \varepsilon_i / \partial p_{-i}$ is negative, so we have that

$$\frac{\partial^2 \log \pi_i}{\partial p_{-i} \partial p_i}(p_i, p_{-i}) \ge 0$$

It follows that $\log \pi_i$ has increasing differences in (p_i, p_{-i}) and therefore also has single-crossing differences in (p_i, p_{-i}) . Therefore $\pi_i = \exp(\log \pi_i)$ also has single-crossing differences in (p_i, p_{-i}) .

(ii) Show that $\pi_i(\cdot; p_{-i})$ is quasi-supermodular for each $p_{-i} \in S$.

Because p_i is a scalar $x \vee x' = \max\{x, x'\}$ and $x \wedge x' = \min\{x, x'\}$. Then

$$f(x) + f(x') = f(\max\{x, x'\}) + f(\min\{x, x'\}) = f(x \lor x') + f(x \land x')$$

It follows that $\pi_i(\cdot, p_{-i})$ is supermodular and therefore quasi-supermodular.

(iii) Let $B_i: S \rightrightarrows S$ denote firm i's best-response correspondence, i.e.,

$$B_i(p_{-i}) := \underset{p_i \in S}{\operatorname{arg max}} \, \pi_i(p_i, p_{-i})$$

Suppose that B_i is nonempty- and compact-valued. Prove that $B_i(\cdot)$ is monotone in the strong set order.

S is a lattice and the conditions of the Theorem of Milgrom and Shannon are satisfied by (i) and (ii). Monotonicity follows.