NT Worksheet - 1 Solutions

gcd(1160718174, 316258250).

$$\begin{array}{rclrcl} 1160718174 &=& 3 \times 316258250 & + 211943444 \\ 316258250 &=& 1 \times 211943424 & + 104214826 \\ 211943444 &=& 2 \times 104314826 & + 3313772 \\ 104314926 &=& 31 \times 3313772 & + 1587894 \\ 3313772 &=& 2 \times 1587894 & + 137984 \\ 1587894 &=& 1 \times 137984 & + 70070 \\ 137984 &=& 1 \times 70070 & + 67914 \\ 70070 &=& 1 \times 67914 & + 2156 \\ 67914 &=& 31 \times 2156 & + 1078 \\ 2156 &=& 2 \times 1078 & + 0 \end{array}$$
Hence 1078 is the gcd.

Let $b = r_0, r_1, r_2, ...$ be the successive remainders in the Euclidean algorithm applied to a and b. Show that after every 2 steps, the remainder is reduced by atleast one half. In other words, verify that

$$r_{i+2} < \frac{1}{2}r_i$$
 $\forall i = 0, 1, 2,$

in the Euclidean Algorithm, then,

 $a = v_0 q_0 + v_1$, where $v_0 > v_1 > 0$ and $v_0 \ge 1$ $v_0 = v_1 q_1 + v_2$, where $v_1 > v_2 \ge 0$ and $v_1 \ge 1$ $v_1 = v_2 q_2 + v_3$, where $v_2 > v_3 \ge 0$ and $v_2 \ge 1$ $v_3 = v_4 q_3 + v_4 = v_4 > v_3 > v_3 > 0$ and $v_2 \ge 1$ $v_3 = v_4 q_3 + v_4 = v_4 > v_3 > v_3 > 0$ and $v_3 \ge 1$

So, we can see $\forall i = 0,1,2,...$ $\forall_i = \forall_{i+1} \forall_{i+1} + \forall_{i+2} \quad \text{where } \forall_{i+1} > \forall_{i+2} > 0$ and $q_i > 1$

	Now since Vit1 > Vit2 and git1 >1.
	Vity Pity > Vita
	=> Vity + Vity > Vity + Vity
	=) 7; > 2 r;+3
	→ Vita < Yi + i= 1,2,3,
	2
3)	It is believed that there are infinitely many primes of the form $N^2 + 1$, but no one knows
	for sure.
	a) Do you think there are infinitely many primes of the form $N^2 - 1$?
	 b) Do you think there are infinitely many primes of the form N² - 2? c) How about N² - 3? N² - 4?
	d) Which values of a do you think give infinitely many primes of the form N^2 - a?
	a) Note that, $N^2-1 = (N-1)(N+1)$
	Here both the factors are >1 miles, N=2, for
	which N2-1 is 3 which is a forme. 3 is the
	only brime of the form N2-1. Hence there are not
	infinitely many primes of the form N2-1.
	For fart b, c, d any reasonable attempt which leads you to conjecture that "there are infinitely many former of the from N²-a if a is not a ferfect squar" would receive full credit.
	you to conjecture that "there are infinitely many
	Brimes of the from N2-a "if a is not a ferfect square"
	would receive full credit.
	For N2-4, we expect you to have shown the factorization
	$N^2 - 4 = (N+2)(N-2)$ and Similar reasoning as
	in fart (a).