

UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA DEPARTAMENTO DE ENGENHARIA ELÉTRICA

DEPARTAMENTO DE ENGENHARIA ELETRICA INSTRUMENTAÇÃO ELETRÔNICA

RELATÓRIO SOBRE MEDIÇÃO DE INCLINAÇÃO

Aluno: Filipe Soares Donato - 120111402

SUMÁRIO

1 Introdução	3
2 Fundamentação Teórica	3
3 Sensor ADXL202	4
4 Atividade Experimental	6
5 Resultados Obtidos	7
6 Considerações Finais	9
7 Referências Bibliográficas	10
Anexos	11

1 Introdução

O termo transdutor é utilizado para o elemento que converte a informação sentida pelo sensor em um sinal detectável. Um bom ponto de partida na escolha do instrumento mais adequado é quanto às especificações como parâmetros de precisão de medição, sensibilidade, desempenho e condições a que o sensor será submetido. Existe no mercado uma ampla variedade de sensores disponíveis. Um transdutor utilizado na captação de vibrações é o acelerômetro, que gera um sinal de tensão proporcional à aceleração, que ao ser integrado, obtém-se a velocidade e o deslocamento realizado.

2 Fundamentação Teórica

O acelerômetro é um dispositivo que mede vibração ou aceleração do movimento de uma estrutura. Seu princípio de funcionamento consiste em uma força ou movimento externo que provoca a alteração do movimento. O dispositivo possui uma massa que traduz esse movimento, produzindo uma carga elétrica proporcional à força exercida sobre ele. Como a carga é proporcional à força e a massa é uma constante, a carga também é proporcional à aceleração. Os modelos mais comuns medem vibração apenas em um eixo, e devem ser fixados de modo que a direção ou sentido de medição coincida com o seu eixo principal de sensibilidade.

Em smartphones os acelerômetros medem em mais de um sentido e pode retornar valores segundo uma, duas ou três direções, utilizando acelerômetros uni, bi ou triaxiais, respectivamente. Eles também são utilizados para medir inclinação, rotação, constituindo assim um aparelho que também é utilizado na área de eletrônica e robótica. Existem vários tipos de acelerômetros, mas do tipo mecânico os mais comuns são os capacitivos, piezoelétricos e piezoresistivos. Recentemente, os acelerômetros mecânicos começaram a ser substituídos por um novo tipo de acelerômetro, os eletromecânicos.

Segundo a lei de Hooke, o deslocamento da mola é proporcional à força aplicada, ou seja:

```
F = k*x onde,

F = \text{Força aplicada } [N];

x = \text{Deslocamento da mola } [m];
```

k = constante elástica da mola [N/m].

Figura 1. Exemplificação de um sistema massa e mola.

Já a segunda lei de Newton nos diz que:

F = m*a

onde,

F =Força resultante aplicada [N];

m = Massa[kg];

 $a = \text{Aceleração } [m/s^2].$

Igualando as duas equações obtém-se: ma = kx.

Portanto podemos perceber que uma aceleração causa um deslocamento da massa de x = (ma)/k, ou, a = (kx)/m. Desta maneira o problema de medir aceleração tornou-se um problema de medir o deslocamento de uma massa.

3 Sensor ADXL202

O acelerômetro ADXL202 é um sensor de baixo custo, baixa potência e com os dois eixos coordenados sensíveis às variações. O ADXL202 pode medir tanto aceleração dinâmica (vibrações) como aceleração estática (gravidade). As saídas são sinais digitais cujo duty cycle é proporcional à aceleração em cada um dos 2 eixos sensíveis. Estas saídas podem ser medidas diretamente com um contador de um microprocessador nos pinos 9 e 10 ou através dos pinos 11 e 12, onde encontra-se os filtros RC para cada eixo (Analog Devices, 1999).

Figura 2. Diagrama de bloco funcional do ADXL202 (Analog Devices, 1999).

O período de saída é ajustável de 0,5 ms a 10 ms através de um único resistor (RSET). Se uma saída de tensão for desejada, uma saída de tensão proporcional à aceleração está disponível nos pinos XFILT e YFILT, ou pode ser reconstruída filtrando as saídas do duty cycle.

Figura 3. Pinagem do ADXL202.

Pode ser utilizado em aplicações b<u>iomecânica</u>: Estudo da avaliação da atividade física diária nos humanos, a qual está associada com qualquer movimento ou postura que é produzida pelos músculos e que resulta num gasto de energia. Como também na eletrônica, onde em um computador, por exemplo, uma das funções do acelerômetro é evitar que o disco rígido seja danificado durante uma queda, parando o HD durante movimentos bruscos.

4 Atividade Experimental

O sistema já estava com as conexões feitas (Figura 4). Iniciamos o programa que contém a interface LabVIEW (Figura 5), ajustando inicialmente os valores de tensão referentes a cada eixo do sensor para deixá-los em um nível de referência de 0°.

Figura 4. Foto da plataforma do Acelerômetro.

Figura 5. Interface criada no LabVIEW.

As medições são feitas variando-se a inclinação da régua de -90° a 90° em intervalos de 5°. Enquanto isso, outro aluno vai gravando os dados da turma correspondente.

5 Resultados Obtidos

Os respectivos valores de tensão visualizados no painel frontal do instrumento virtual, referentes ao experimento realizado na turma 1 (segunda às 16h), para os eixos "x" e "y" são anotados na Tabela 1 e gravados em um arquivo html presente na página http://sites.google.com/site/instrueletronica.

Tabela 1

Ângulo (°)	Tensão no Eixo Y (V)	Tensão no Eixo X (V)
-90	-1,6871	1,5895
-85	-1,6365	1,5944
-80	-1,6133	1,5774
-75	-1,5825	1,5430
-70	-1,5356	1,5035
-65	-1,4806	1,4465
-60	-1,4163	1,3857
-55	-1,2765	1,3082
-50	-1,1663	1,2274
-45	-1,0666	1,1321
-40	-0,9598	1,0313
-35	-0,8472	0,9207
-30	-0,7228	0,8071
-25	-0,6030	0,6910
-20	-0,4788	0,5613
-15	-0,3446	0,4334
-10	-0,2247	0,3026
-5	-0,0825	0,1730
0	-0,0000	0,0332
5	0,0380	-0,1006
10	0,1624	-0,2308
15	0,2971	-0,3626
20	0,4343	-0,4936
25	0,5608	-0,6186

30	0,6832	-0,7332
35	0,7892	-0,8461
40	0,8951	-0,9499
45	0,9958	-1,0602
50	1,0870	-1,1459
55	1,1701	-1,2347
60	1,2374	-1,3012
65	1,3015	-1,3731
70	1,3536	-1,4256
75	1,3957	-1,4694
80	1,4205	-1,4972
85	1,4372	-1,5182
90	1,4485	-1,5171

A partir da Tabela 1 partimos para o MATLAB utilizando as funções *polyfit e polyval*.

Inicialmente editamos os arquivos de texto para serem lidos no matlab. Deixando somente valores numéricos e substituindo as vírgulas por pontos. Em seguida carregamos os arquivos "TensaoY_turma01.txt" e "TensaoX_turma01.txt" com o comando *load*. Após isso atribuímos esses valores a variáveis "x" e "y" e também criamos uma variável z_grau com os ângulos em graus e uma variável z que converte para radianos.

Daí utilizamos a função *polyfit(x,y,4)*, escolhemos o grau 4 porque já nos dá uma boa aproximação.

A função polyfit permite que os dados da tabela possam ser modelados por uma função polinomial de grau especificado, de forma que haja a melhor interpolação dos pontos medidos.

A função *polyval* serve para plotar as curvas referentes à medida real e à aproximação polinomial obtida. Nas figuras 6 e 7temos o plot.

Figura 6. Resultados obtidos do modelo 1.

$$Y(z) = 0.0055 * z^4 - 0.1642 * z^3 - 0.0551 * z^2 + 1.4121 * z - 0.0141$$

Temos para o modelo 2 da tensão em X:

Temos para o modelo 1 da tensão em Y:

$$X(z) = -0.0022 * z^4 - 0.2185 * z^3 + 0.0060 * z^2 + 1.5269 * z + 0.0352$$

6 Considerações Finais

Analisando-se as curvas características, pode-se observar a validação do modelo matemático na medida em que a curva estimada e a curva experimental ficaram bem sobrepostas uma em relação a outra. Poderíamos ter obtido uma aproximação maior, aumentando o grau do polinômio, porém isso não foi necessário visto que o objetivo era entender a relação linear que envolve o acelerômetro e o ângulo em que ele se encontra.

Erros no experimento como erro de paralaxe e o ajuste manual da régua tiveram baixa influência nos resultados, uma vez que obtivemos uma boa aproximação.

Uma das maneiras de eliminar a imprecisão dos ajustes, seria a implementação de um circuito de controle com um motor de passo controlado por PIC, de forma que pudesse percorrer em intervalos discretos toda extensão do transferidor.

7 Referências Bibliográficas

ANALOG DEVICES. Disponível em:

http://www.analog.com/media/en/technicaldocumentation/obsolete-data sheets/ADXL202_ 210.pdf>.

Anexos

```
%Filipe Soares Donato - Medição de inclinação
clear;
clc;
%Ler os dados e atribuir as variáveis
load TensaoY turma01.txt;
load TensaoX turma01.txt;
y = TensaoY turma01
x = TensaoX turma01
z graus = [90, 85, 80, 75, 70, 65, 60, 55, 50, 45, 40, 35,...
   30, 25, 20, 15, 10, 5, 0, -5, -10, -15, -20, -25,...
   -30, -35, -40, -45, -50, -55, -60, -65, -70,...
   -75, -80, -85, -90];
z = z \text{ graus*}(pi/180);
%Inseri os valores em graus e depois converti para radianos
%Encontramos os valores do polinômio característico
% que representa os pontos com a polyfit e polyval
p1 = polyfit(z, y, 4)
                           %Grau 4 já dá uma boa aproximação
                           %Grau 4 já dá uma boa aproximação
p2 = polyfit(-z, x, 4)
p3 = polyval(p1, y);
p4 = polyval(p2, x);
%Plotando o grafico dos pontos obtidos e da reta
figure(1);
plot(z,x,'o');
hold on;
                                %travar a primeira exibição
plot(x, p3, 'r--');
title('Modelo 1');
grid on;
```