Pas oChoix				ponses	attend	lues) ou -x/(nb réponses non attendues) pour chacune des réponses cochées
environ						xité sur un graphe à n sommets est $O(n!)$. On constate que pour un graphe à 15 sommets, il faut rmine. Sur la même machine, quelle est la taille maximale de graphe que l'on peut espérer traiter en
48h? 60						
16						
15						
24						
	<i>3</i>					
On don	ne un	ensem	ble V={	a,b,c,d	,e} de	5 villes ainsi que les distances les séparant, dans la matrice ci-dessous.
	a	b	c	d	e	
a		3	5	4	2	
b	3		2	3	4	
\mathbf{c}	5	2		2	5	
d	4	3	2		2	
e	2	4	5	2		
					n dófin	it, comme dans le cours, $OPT[S,v]$ comme la longueur minimum d'un trajet qui commence en une ,
passe i	$\subseteq V$ Dar tou	∖ ≀ <i>une</i> tes les	villes d	le $S\setminus S$	$\{v\}$ (ur	The et une seule fois) et finit en v . Que vaut OPT[{b,c,e},e]?
<u></u>				(() (((((((((((((((((((((
6						
7						
8						
9						
0 10						
0 11						
12						
13						
14						
15						
0 16						
17						
18						
19						
<u> </u>						
On don	ne un	ensem	ble S={	[a,b,c,d	,e,f,g}	de 7 villes. Combien y a-t-il de tours sur ces 7 villes qui commencent par visiter g puis f puis e?
28						
24						
0 4						
4						
poids: ((5,2),(7					vec les objets suivants, chacun décrit par un couple (v,w) ou v est la valeur de l'objet et w est son 10). Quelle est la valeur maximum d'un sac à dos de poids inférieur ou égal à 14?
22						
23						
24						
25						
<u>26</u>						
<u>27</u>						
28						
29						
30						

Donnez tous les sommets x du graphe ci-dessus, distincts de e et h, tels qu'il existe un stable contenant à la fois e, h et x.

une

b

С

d

est f

h

__ je

On donne un ensemble V={a,b,c,d,e,f} de 6 villes ainsi que les distances les séparant, dans la matrice ci-dessous.

	a	b	c	d	е	f
a		3	5	4	2	5
b	3		2	3	4	2
c	5	2		2	5	2
d	4	3	2		2	4
e	2	4	5	2		5
f	5	2	2	4	5	

Pour $S \subseteq V \setminus \{une\}$ et $v \in S$, on définit, comme dans le cours, OPT[S, v] comme la longueur minimum d'un trajet qui commence en une, passe par toutes les villes de $S\setminus\{v\}$ (une et une seule fois) et finit en v. Pour S'={b,c,d,f} on donne les valeurs suivantes: OPT[S',b]=10 ; OPT[S',c]=10 ; OPT[S',d]=9 ; OPT[S',f]=10. Que vaut OPT[{b,c,d,e,f},e]?

- **10**
- **11**
- **12**
- **13**
- **14**
- **15 16**
- **17**
- **18**
- **19**
- 20
- 21
- 22
- 23
- 24

(a)———(b)
\prec
(e) (d) (c)
Combien y a-t-il de stables de cardinal maximum dans le graphe ci-dessus?
\bigcirc 1
2
○3
4
○ 5
○ 6
○7
8
○ 9
○ 10
(a) (b)
(f)——(g)——(c)
e d
Le graphe ci-dessus possède un unique stable de cardinal maximum. Donnez tous les sommets le composant.
une
□ b
□ c
d
est
f
□ g
On exécute l'algorithme List Scheduling pour le problème d'équilibrage de charges avec 4 machines, sur la liste de durée des tâches L=
(8,5,3,6,9,5,3,4). Au cours de l'algorithme, lorsque plusieurs machines ont la charge minimum, on choisit d'affecter la tâche à la machine de plus petit indice. A quelle machine est affectée la tâche de durée 4?
M1
○ M2
○ M3
○ M4
Un stable maximum dans un graphe se définit comme:
un stable auquel on ne peut pas ajouter un sommet en conservant la propriété d'être un stable
un stable ayant le plus grand nombre d'arêtes
un stable ayant le plus grand nombre de sommets
Pour un problème d'équilibrage de charges sur 3 machines, on obtient une solution dans laquelle les charges des 3 machines sont
respectivement: charge(M1)=10, charge(M2)=16, charge(M3)=10. Le makespan de cette solution vaut:
1.6
16
<u>0</u> 10
© 6

Parmi les problèmes suivants, lesquels sont NP-difficiles?									
l'équilibrage de charges									
la coupe minimum									
le sac à dos									
On donne un ensemble de n villes ainsi que la distance séparant chaque couple de villes. Quelle est la définition d'un tour minimum sur ces n villes?									
un tour dont la distance entre deux villes consécutives dans le tour est minimum									
un tour ayant un nombre minimum de villes									
Soit A un algorithme d'approximation avec un ratio r constant pour un problème de minimisation et soient I et I' deux instances du problème. Pour I, le minimum de la fonction objectif est 3 et l'algo A donne une solution réalisant un objectif de 6. Pour I', le minimum de la fonction objectif est 5 et l'algo A donne une solution réalisant un objectif de 7.5. Quelles sont les affirmations qui sont sures d'être correctes?									
	,								

QCM non ouvert