

Technology Advances

THE THE TABLE TO T

Advances in Technology

- Technology has been advancing at lightning speed
- Architecture and IT as a whole were beneficiaries
- Technology advance is summarized by Moore's Law
 - You probably heard of it at some point. Something about ...
 - "X doubles every 18-24 months at constant cost"
- Is X:
 - CPU performance?
 - CPU clock frequency?
 - Transistors per CPU chip?
 - Area of CPU chip?

Moore's Law – The number of transistors on integrated circuit chips (1971-2018)

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years. This advancement is important as other aspects of technological progress – such as processing speed or the price of electronic products – are linked to Moore's law.

Miniaturization of Transistors

Data source: Radamson, H.H.; He, X.; Zhang, Q.; Liu, J.; Cui, H.; Xiang, J.; Kong, Z.; Xiong, W.; Li, J.; Gao, J.; Yang, H.; Gu, S.; Zhao, X.; Du, Y.; Yu, J.; Wang, G. Miniaturization of CMOS. *Micromachines* **2019**, *10*, 293.

- Moore's Law has been driven by transistor miniaturization
 - CPU chip area hasn't changed much

Future of Moore's Law

- The semiconductor industry has produced roadmaps
 - Semiconductor Industry Association (SIA): 1977~1997
 - International Technology Roadmap for Semiconductors (ITRS): 1998~2016
 - International Roadmap for Devices and Systems (IRDS): 2017~Present
- IRDS Lithography Projection (2020)

Year of Production	2018	2020	2022	2025	2028	2031	2034
Technology Node (nm)	7	5	3	2.1	1.5	1.0	0.7

- Looks like Moore's Law will continue into foreseeable future
- IRDS does not project significant increase in CPU chip size
- Increases in transistors will come from transistor density

IRDS isn't Perfect

ITRS (predecessor of IRDS) has made corrections before

- After all, you are trying to predict the future
- But architects rely on the roadmap to design future processors

Moore's Law and Performance

- Million-dollar question: Did Moore's Law result in higher performance CPUs?
- We will do a Zoom breakout room session
- 1. Get to know each other (5 mins):
 - Introduce yourself and say one fun thing you did over winter
- 2. And then answer the following questions (5 mins):
 - When you decide on a CPU for your laptop, what number(s) do you look at to measure how fast the CPU is?
 - Are CPUs getting faster using that measure?
- 3. After 10 minutes, we will share discussions with class

Are CPUs getting Faster?

Measure of Performance	Is it Getting Better?			
Response time (for an app)	Depends (generally increasing)			
Number of cores	Generally upwards trajectory			
Power draw / Thermals	Getting lower			
Clock speed	Same			
Cache size	Increasing			

SEVERSITE OF

Components of Execution Time

Processor activity happens on clock "ticks" or cycles

On each tick, bits flow through logic gates and are latched

Execution time =
$$\frac{\text{seconds}}{\text{program}}$$

$$\frac{\text{seconds}}{\text{program}} = \frac{\text{cycles}}{\text{program}} \quad X \quad \frac{\text{seconds}}{\text{cycle}}$$

$$= \frac{\text{instructions}}{\text{program}} \quad X \quad \frac{\text{cycles}}{\text{instruction}} \quad X \quad \frac{\text{seconds}}{\text{cycle}}$$

Improving Execution Time

$$\frac{\text{instructions}}{\text{program}}$$
 X $\frac{\text{cycles}}{\text{instruction}}$ X $\frac{\text{seconds}}{\text{cycle}}$

- Improving $\frac{\text{seconds}}{\text{cycle}}$:

 Clock frequency = $\frac{\text{cycles}}{\text{second}}$ = reverse of $\frac{\text{seconds}}{\text{cycle}}$ Higher clock frequency (GHz) leads to shorter exec time
- Improving $\frac{\text{cycles}}{\text{instruction}}$:
 - Also known as CPI (Cycles Per Instruction)
 - IPC (Instructions Per Cycle) = $\frac{\text{instructions}}{\text{cycles}}$ = reverse of $\frac{\text{cycles}}{\text{instructions}}$ Higher IPC leads to shorter execution time
- Improving instructions program:
 - Less instructions leads to shorter execution time
 - ISAs that do a lot of work with one instruction shortens time

Moore's Law and Performance

- Million-dollar question: Did Moore's Law result in higher performance CPUs?
- Law impacts both architecture and physical layers

Instruction Set Architecture

Computer

Processor Organization

Architecture

Transistor Implementation

Physical Layer

- Processor Organization: many more transistors to use in design
- Transistor Implementation: smaller, more efficient transistors

Moore's Law Impact on Architecture

- So where did architects use all those transistors?
- Well, we will learn this throughout the semester ©
 - Pipelining
 - Parallel execution
 - Prediction of values
 - Speculative execution
 - Memory caching
 - In short, they were used to improve frequency or IPC
- Let's go on to impact on the physical layer for now

Moore's Law Impact on Physical Layer

- CPU frequency is also impacted by transistor speed
 - As well as how many transistors are in between clock ticks (which is determined by processor organization)
- So did Moore's Law result in faster transistors?
 - In other words, are smaller transistors faster?

THI CAN THE STREET

Speed of Transistors

Transistor 101: Transistors are like faucets!

- To make a transistor go fast, do one of the following:
 - Reduce distance from source to sink (channel length)
 - Reduce bucket size (capacitance) ↓
 - Increase water pressure (supply voltage) ①

Smaller Transistors are Faster!

Transistor 101: Transistors are like faucets!

- When a transistor gets smaller:
 - Channel length (channel resistance) is reduced ↓
 - Capacitance is reduced ↓
- So, given the same supply voltage, smaller is faster!
- So, did Moore's Law enjoy faster and faster frequencies?

STATE OF THE PARTY OF THE PARTY

Yes, for a while ...

Source: Computer Architecture, A Quantitative Approach (6th ed.) by John Hennessy and David Patterson, 2017

- Improvements in large part due to transistors
 - Processor design also contributed but we'll discuss later

SEVERS TO SEVER SE

But not so much lately

Source: Computer Architecture, A Quantitative Approach (6th ed.) by John Hennessy and David Patterson, 2017

Suddenly around 2003, frequency scaling stops

Dent in CPU Performance

Single-Threaded Integer Performance

Source: https://preshing.com/20120208/ a-look-back-at-single-threaded-cpu-performance/

- This caused a big dent in CPU performance at 2003
- Improvements henceforth only came from architecture
 - From improvements to IPC (instructions per cycle)

THI CAN THE STREET

So What Happened? TDP.

- TDP (Thermal Design Power):
 - Maximum power (heat) that CPU is designed to generate
 - Capped by the amount of heat cooling system can handle
 - Cooling system hasn't improved much over generations
- CPU Power = A * N * CFV² must be < TDP</p>
 - A = Activity factor (% of transistors with activity)
 - N = Number of transistors
 - C = Capacitance
 - F = Frequency
 - V = Supply Voltage

What happens to each factor with Moore's Law?

TDP and Moore's Law

- CPU Power

 A * N * CFV² with Moore's Law
 - A = Activity factor
 - N = Number of transistors ($\propto 1/\text{transistor size}^2$) 企 企

 - F = CPU frequency (

 1/transistor size) 企
 - V = CPU Supply Voltage
- Decrease in C cannot offset increases in N and F
 - Power increases quadratically with reductions in transistor size
 - That means F (frequency) needs to be decreased to meet TDP
- Q) So how did CPU frequency keep increasing up to 2003?
- A) By maintaining power through reductions in Voltage \P

THI CONTROL OF THE PARTY OF THE

Dennard Scaling

- By reducing CPU Supply Voltage

 transistor size
- CPU Power

 A * N * CFV² with Moore's Law
 - A = Activity factor
 - N = Number of transistors ($\propto 1/\text{transistor size}^2$) ☆ ☆

 - F = CPU frequency (

 1/transistor size) ☆
- Factors balance each other out to keep power constant
 - Note that reducing V (

 □ transistor size
 □ has a quadratic effect
- Dennard Scaling: Above recipe for scaling up frequency, while reducing supply voltage to keep power constant

TESBURGH

Dennard Scaling and V_{th}

- So, it's that easy? Just reduce V until you meet TDP?
- No, it's not that simple ⊗.
- Reducing V_{dd} (supply voltage) affects CPU operation
 - As V_{dd} is reduced, CPU becomes slower and slower
 - Eventually, CPU stops working altogether
- CPU (specifically transistors) needs redesigning
 - ullet V_{th} (threshold voltage) needs to be reduced along with V_{dd}
 - To understand this, we need a 101 on MOSFETs

MOSFET 101

Source

MOSFET (Metal Oxide Silicon Field Effect Transistor)

[A MOSFET transistor switched off] [A MOSFET transistor switched on]

- Gate is switched on when V_G reaches a threshold V_{th}
 - By creating a channel in depletion region through field effect
 - V_{th}: threshold voltage (minimum voltage to create channel)

MOSFET 101

RC charging curve of V_G

- \blacksquare Speed (T_{on}) is determined by V_{dd} if V_{th} is fixed
 - V_{dd} is the CPU supply voltage (the water pressure)
 - If V_{dd} is lower, V_G will reach V_{th} more slowly (low pressure)

MOSFET 101

RC Charging Curve of V_G

■ Speed (T_{on}) is maintained while reducing V_{dd} to V_{dd} , only if V_{th} is also reduced to V_{th} .

SEVERSITE OF THE PROPERTY OF T

End of Dennard Scaling

And around 2003 is when Dennard Scaling ended

THI CONTROL OF THE PARTY OF THE

Limits to Dropping V_{th}

- Subthreshold leakage
 - Transistor leaks current even when gate is off $(V_G = 0)$

- This leakage current translates to leakage power
- Leakage worsens when V_{th} is dropped (related to oxide thickness)

Leakage Power across Generations

Leakage power has increased across technology nodes

Source: L. Yan, Jiong Luo and N. K. Jha, "Joint dynamic voltage scaling and adaptive body biasing for heterogeneous distributed real-time embedded systems," in *IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems*, vol. 24, no. 7, pp. 1030-1041, July 2005

THE THE TABLE TO T

End of Dennard Scaling

- Previous power calculation was incomplete
 - CPU power is the sum of both dynamic and leakage power
- Power_{CPU} ∝ Power_{dynamic} + Power_{leakage}
 - Power_{dynamic} \propto A * N * CFV_{dd}²
 - Power_{leakage} \propto f(N, V_{dd}, V_{th}) \propto N * V_{dd} * e^{-Vth}
 - Leakage worsens exponentially when V_{th} is dropped
 - Catch-22: when dropping V_{th}, Power_{dynamic} ↓ but Power_{leakage} ûû
- $ightharpoonup V_{th}$ can't be reduced further, so V_{dd} can't be reduced
- Dennard Scaling relies on reducing V_{dd}, so it's the end

"Dark Silicon" Rears its Head

- What happens to frequency without Dennard Scaling?
- Power_{dynamic} (\propto A * N * CFV²) + Power_{leakage} (\propto N * V * e^{-Vth})
 - A = Activity factor
 - N = Number of transistors ($\propto 1/\text{transistor size}^2$) 企 企

 - $V = CPU Supply Voltage \Leftrightarrow (Due to fixed V_{th})$
 - F = CPU frequency ???
- To offset N, you actually have to decrease F
- Otherwise, if you want to maintain F, must decrease N
 - That is, you cannot power on all the transistors at any given point
 - Dark silicon: situation where chip is only partially powered

THI CAN THE STREET

Free Ride is Over

- "Free" speed improvements from transistors is over
- Now it's up to architects to improve performance
 - Moore's Law is still alive and well (although slowing down)
 - Architects are flooded with extra transistors each generation
 - But it's hard to even keep them powered without reducing F!
- Now is a good time to discuss technology constraints
 - Since we already mentioned a big one: TDP