

Contents

1	Line	ear Sys	stems & 0	Gaussian Elimination	17
	1.1	Linear	Systems &	& Their Solutions	17
		1.1.1	Linear Ed	quations	17
			1.1.1.1	Zero Equation	17
			1.1.1.2	Nonzero Equation	17
			1.1.1.3	Inconsistent Equation	17
		1.1.2	Solutions	of a Linear Equation	17
			1.1.2.1	Solution Set	18
			1.1.2.2	General Solution	18
		1.1.3	Solution	Set of Zero Equation	18
		1.1.4	Solution	Set of Inconsistent Linear Equation	18
		1.1.5	General S	Solution of Consistent Nonzero Equation	18
		1.1.6	Geometri	cal Interpretation of Linear Equations	18
			1.1.6.1	In Two Variables	18
			1.1.6.2	In Three Variables	19
		1.1.7	Linear Sy	vstems	19
			1.1.7.1	Zero System	19
			1.1.7.2	Nonzero System	19
		1.1.8	Solution	of Linear Systems	19
			1.1.8.1	Solution Set	19
			1.1.8.2	General Solution	19
		1.1.9	Consister	ncy of Linear Systems	20
		1.1.10	Number o	of Solutions to Linear Systems	20
		1.1.11	Geometri	c Interpretation of Linear Systems	20
			1.1.11.1	In Two Variables of Two Equations	20
			1.1.11.2	In Three Variables of Two Equations	20
	1.2	Elemen	ntary Row	Operations	21
		1.2.1	Augment	ed Matrix Representation of a Linear System	21
		1.2.2	Elementa	ry Row Operations on Augmented Matrices	21
			1.2.2.1	Correspondence to Operations on Equations in Linear System .	21
			1.2.2.2	Interchanging two rows can be decomposed further	22
			1.2.2.3	Inverse Elementary Row Operations	22

		1.2.3	Row Equivalent Matrices	22					
		1.2.4	Row Equivalence as an Equivalence Relation	22					
		1.2.5	Row Equivalence Implies Same Solution Set	22					
	1.3	Row-E	Echelon Form	23					
		1.3.1	Leading Entry	23					
		1.3.2		23					
		1.3.3	Pivot Points, Pivot Columns, and Non-pivot Columns	23					
				23					
			1.3.3.2 Pivot and Non-pivot Columns	23					
			1.3.3.3 Each Pivot Column Contains Exactly One Pivot Point	23					
		1.3.4	Reduced Row-Echelon Form (RREF)	23					
		1.3.5	General Solution From Row-echelon Form	24					
		1.3.6	General Solution From Reduced Row-echelon Form	24					
	1.4	Gauss	ian Elimination	24					
		1.4.1	REF/RREF of Augmented Matrics	24					
		1.4.2	Gaussian Elimination: Finding REF of Augmented Matrices	24					
		1.4.3	Gauss-Jordan Elimination: Finding RREF of Augmented Matrices	25					
		1.4.4	Infinitely Many REFs	25					
		1.4.5	Uniqueness of RREF	25					
		1.4.6	Deducing Consistency of Linear Systems from its REF	25					
			1.4.6.1 Inconsistent With No Solutions	25					
			1.4.6.2 Consistent With One Solution	26					
			1.4.6.3 Consistent With Infinitely Many Solutions & Arbitrary Parameters	26					
		1.4.7	Geometrical Interpretation of Linear Systems with RREF	26					
			1.4.7.1 Linear System in Three Variables of Three Equations	26					
	1.5	Homog	geneous Linear Systems	26					
		1.5.1	Homogeneous Linear Equation	26					
			1.5.1.1 Remarks	27					
		1.5.2	Geometrical Interpretation of Homogeneous Linear Equations	27					
			1.5.2.1 In Two Variables	27					
			1.5.2.2 In Three Variables	27					
		1.5.3	Homogeneous Linear System	27					
		1.5.4	Trivial Solution of Homogeneous Linear Systems	27					
		1.5.5	Geometric Interpretation of Homogeneous Linear Systems	28					
			1.5.5.1 In Two Variables of Two Equations	28					
			1.5.5.2 In Three Variables of Two Equations	28					
2	Mat	rices		29					
_	2.1								
		2.1.1		2929					
				29					

	2.1.2	Notation of Matrices	30
	2.1.3	Row Matrix	30
	2.1.4	Column Matrix	30
	2.1.5	Square Matrix	30
		2.1.5.1 Order of Square Matrix	30
		2.1.5.2 Diagonal / Diagonal Entries of Square Matrix	30
	2.1.6	Diagonal Matrix	31
	2.1.7	Scalar Matrix	31
	2.1.8	Identity Matrix	31
		2.1.8.1 Notation for Identity Matrix	31
	2.1.9	Zero Matrix	31
		2.1.9.1 Notation for Zero Matrix	31
	2.1.10	Symmetric Square Matrix	31
	2.1.11	Upper Triangular Square Matrix	32
	2.1.12	Lower Triangular Square Matrix	32
	2.1.13	Triangular Square Matrix	32
	2.1.14	Diagonal and Triangular Square Matrices	32
2.2	Matrix	Operations	32
	2.2.1	Identical Matrices	32
	2.2.2	Matrix Addition, Subtraction & Scalar Multiplication	33
	2.2.3	Properties of Matrix Addition, Subtraction & Scalar Multiplication	33
	2.2.4	Matrix Multiplication	34
		2.2.4.1 Matrix Multiplication Explained in Words	34
	2.2.5	Noncommutativity of Matrix Multiplication	34
	2.2.6	Properties of Matrix Multiplication	34
	2.2.7	Nonnegative Integer Powers of Square Matrices	35
		2.2.7.1 Multiplying a Matrix With Itself	35
		2.2.7.2 Nonnegative Integer Powers of Square Matrices	35
	2.2.8	Properties of Nonnegative Integer Powers of Square Matrices	35
	2.2.9	Matrix Representation	35
		2.2.9.1 Matrix as a Column of Row Vectors	36
		2.2.9.2 Matrix as a Row of Column Vectors	36
	2.2.10	Decomposing Matrix Multiplication	36
		2.2.10.1 Decomposing Into Entries	37
		2.2.10.2 Decomposing Into Rows	37
		2.2.10.3 Decomposing Into Columns	37
		2.2.10.4 Decomposing Into Blocks	37
	2.2.11	Matrix Representation of Linear Equation	37
	2.2.12	Matrix Representation of Linear System	38
		2.2.12.1 Solution Vector to Linear System	38

		2.2.12.2 Alternative Matrix Representation of Linear System					
	2.2.13	Transpose of Matrix					
	2.2.14	Properties of Transpose of Matrix					
2.3	Inverse	e of Square Matrices					
	2.3.1	Additive Inverse of Matrices					
	2.3.2	Inverse of Square Matrices					
	2.3.3	Uniqueness of Inverse of Invertible Matrices					
	2.3.4	Cancellation Law for Invertible Matrices					
	2.3.5	Inverse of Square Matrix of Order Two					
	2.3.6	Properties of Invertible Matrices					
	2.3.7	Negative Integer Powers of Square Matrices					
	2.3.8	Properties of Integer Powers of Square Matrices					
2.4	Eleme	ntary Matrices					
	2.4.1	Definition of Elementary Matrices					
	2.4.2	Connection of Elementary Matrices to Pre-Matrix Multiplication					
	2.4.3	Elementary Matrices are Invertible					
	2.4.4	Row Equivalent Matrices are Linked by Elementary Matrices					
	2.4.5	Main Theorem for Invertible Matrices					
	2.4.6	Checking Whether a Square Matrix is Invertible					
	2.4.7	Finding Inverse of an Invertible Matrix					
	2.4.8	Weaker Requirement for Invertible Matrices					
	2.4.9	Invertibility of Product of Matrices					
	2.4.10	Elementary Column Operations					
	2.4.11	Performing a Single Elementary Column Operation on Identity Matrix					
		Gives an Elementary Matrix					
	2.4.12	Connection of Elementary Matrices to Matrix Post-Multiplication $\ . \ . \ .$					
2.5	Deterr	ninant					
	2.5.1	(i,j)-cofactor					
	2.5.2	Definition of Determinant of Square Matrix					
	2.5.3	Determinant of 2×2 Matrix					
	2.5.4	Broken Diagonal Formula for Determinant of 3×3 Matrix					
	2.5.5	Properties of Determinant					
		2.5.5.1 Properties of Determinant					
		2.5.5.2 Change in Determinant by Elementary Row Operations \dots .					
		2.5.5.3 Change in Determinant by Elementary Matrices					
		$2.5.5.4 \hbox{Change in Determinant Between Row Equivalent Matrices} \ . \ . \ .$					
		2.5.5.5 Determinant of Square Matrix With Zero Row					
		2.5.5.6 Invertibility and Determinant					
		2.5.5.7 Determinant of Triangular Matrix					
	2.5.6	Cofactor Expansion					

		2.5.7	Finding Determinant Efficiently
		2.5.8	Adjoint Matrix
			2.5.8.1 Definition of Adjoint Matrix
			2.5.8.2 Properties of Adjoint Matrix
		2.5.9	Cramer's Rule
3	Vec	tor Sp	aces 49
	3.1	Euclid	lean n -Spaces
		3.1.1	Introduction to <i>n</i> -vectors
			3.1.1.1 Definition of n -vector
			3.1.1.2 Zero Vector
		3.1.2	n-vector Operations
			3.1.2.1 Equal n -vectors
			3.1.2.2 n -vector Addition, Subtraction & Scalar Multiplication 49
		3.1.3	Properties of <i>n</i> -vectors
		3.1.4	n-vectors as Matrices
		3.1.5	Vectors in xy -Plane
			3.1.5.1 Vectors as Points on the xy -Plane
			3.1.5.2 Vectors as Change from Initial Point to End Point 51
			3.1.5.3 Length of Vectors
			3.1.5.4 Properties of Length of Vectors
			3.1.5.5 Geometrical Interpretation of Scalar Multiplication 51
			3.1.5.6 Geometrical Interpretation of Vector Addition
			3.1.5.7 Geometrical Interpretation of Vector Subtraction 51
		3.1.6	Vectors in xyz -Space
			3.1.6.1 Vectors as Points on the xyz -Space
		3.1.7	Euclidean Spaces
		3.1.8	Implicit and Explicit Forms of Linear Systems
			3.1.8.1 Definition of Implicit and Explicit Forms
			3.1.8.2 Lines in \mathbb{R}^2
			3.1.8.2.1 Vector Equation for line in \mathbb{R}^2
			3.1.8.2.2 Implicit to Explicit Form
			3.1.8.2.3 Explicit to Implicit Form
			3.1.8.3 Planes in \mathbb{R}^3
			3.1.8.3.1 Vector Equation for plane in \mathbb{R}^3
			3.1.8.3.2 Implicit to Explicit Form
			3.1.8.3.3 Explicit to Implicit Form
			3.1.8.4 Lines in \mathbb{R}^3
			3.1.8.4.1 Vector Equation for line in \mathbb{R}^3
			3.1.8.4.2 Implicit to Explicit Form
			3.1.8.4.3 Explicit to Implicit Form

3.2	Linear	Combinations and Linear Spans
	3.2.1	Definition of Linear Combination
	3.2.2	Definition of Linear Span
	3.2.3	Criterion for span $(S) = \mathbb{R}^n \dots \dots$
		3.2.3.1 When $k \ge n$
		3.2.3.2 When $k < n$
	3.2.4	Properties of Linear Spans
		3.2.4.1 Linear Spans Always Contains Zero Vector
		3.2.4.2 Linear Spans Are Closed Under Linear Combination 56
		3.2.4.3 When a Span is a Subset of Another Span
		3.2.4.4 Linear Spans with Redundant Vectors
	3.2.5	Criterion for Vector Belongs to Span
3.3	Subsp	aces
	3.3.1	Definition of Subspaces
	3.3.2	Zero Space
	3.3.3	Euclidean n-Space is a Subspace
	3.3.4	Showing That a Subset is a Subspace
	3.3.5	Showing That a Subset is Not a Subspace
	3.3.6	Subspaces of $\mathbb{R}^1, \mathbb{R}^2, \mathbb{R}^3$
		3.3.6.1 Subspaces of $\mathbb{R}^1 = \mathbb{R}$
		3.3.6.2 Subspaces of \mathbb{R}^2
		3.3.6.3 Subspaces of \mathbb{R}^3
	3.3.7	Solution Set of Homogeneous Linear System is a Subspace of \mathbb{R}^n 58
	3.3.8	Solution Space
	3.3.9	A Subspace of \mathbb{R}^n is Always The Solution Space of a Homogeneous Linear
		System
3.4	Vector	r Spaces
	3.4.1	Definition of Vector Space
	3.4.2	Expanded Definition of Subspace
3.5		Independence 59
	3.5.1	Definition of Linear Independence
	3.5.2	Linear Independence of Subset/Superset
		3.5.2.1 Superset Preserves Linear Dependence
		3.5.2.2 Subset Preserves Linear Independence
	3.5.3	Linear Independence of Sets Containing Zero Vector
	3.5.4	Linear Independence of Sets Containing Only One Vector
	3.5.5	Linear Independence and Linear Combinations
	3.5.6	Cardinality Upper Bound for Linear Independence
	3.5.7	Adding Vectors to a Linearly Independent Set
3.6	Bases	60

		3.6.1	Definition of Bases
			3.6.1.1 Remarks
		3.6.2	Basis and Unique Linear Combination
		3.6.3	Coordinate Vector
			3.6.3.1 Remark
		3.6.4	Standard Basis
		3.6.5	Properties of Coordinate Vector
			3.6.5.1 Zero Coordinate Vector
			3.6.5.2 Homogeneity of Degree One / Scalar Multiplication Preserving 61
			3.6.5.3 Additivity / Addition Preserving
			3.6.5.4 Equal Coordinate Vectors
			3.6.5.5 Linear Combination Preserving
			3.6.5.6 Linear Independence Preserving
			3.6.5.7 Span Preserving
	3.7	Dimer	sions
		3.7.1	Dimension Theorem for Vector Spaces
			3.7.1.1 Corollary
		3.7.2	Definition of Dimension
			3.7.2.1 Examples
		3.7.3	Dimension of Solution Space
		3.7.4	Easier Criterion for Basis
		3.7.5	Dimension for Subspaces
			3.7.5.1 Corollary
		3.7.6	Invertibility and Rows and Columns as Basis
	3.8	Transi	tion Matrices
		3.8.1	Coordinate Vector As a Column Vector
		3.8.2	Definition of Transition Matrix
		3.8.3	Pre-Multiplication of Transition Matrix
		3.8.4	Inverse of Transition Matrices
			3.8.4.1 Transition Matrices Are Invertible
			3.8.4.2 Inverse is a Transition Matrix
4	1 7	4 a C	and Appricated With Matrices
4		-	aces Associated With Matrices 65
	4.1		Spaces and Column Spaces
		4.1.1	1
			1
		4.1.2	4.1.1.2 Column Space
		4.1.2	•
			4.1.2.1 Row Equivalence Implies Same Row Space
			4.1.2.2 Nonzero Rows of REF are Linearly Independent

			4.1.2.3 Finding Basis/Dimension For Row Space
		4.1.3	Row Equivalent Matrices And Their Columns
			4.1.3.1 Row Equivalence Preserve Linear Relations Between Columns . 6
			4.1.3.2 Pivot Columns of REF is a Basis For Column Space 6
			4.1.3.3 Finding Basis/Dimension For Column Space
		4.1.4	Finding Basis for Vector Space Spanned By a Set of Vectors
			4.1.4.1 Method 1: From New Vectors Using Row Space
			4.1.4.2 Method 2: Select From Original Vectors Using Column Space . 6
		4.1.5	Consistency of Linear Systems And Column Space of Coefficient Matrix . 6
	4.2	Rank	
		4.2.1	The Dimension of Row Space And Column Space Are The Same 6
		4.2.2	Definition of Rank
		4.2.3	Properties of Rank
		4.2.4	Rank & Consistency of Linear System
			4.2.4.1 Remark
		4.2.5	Row/Column Spaces and Matrix Multiplication
			4.2.5.1 Ranks and Matrix Multiplication
	4.3	Nullsr	paces and Nullities
		4.3.1	Definition of Nullspace
		4.3.2	Definition of Nullity
		4.3.3	Finding Nullity of a Matrix
		4.3.4	Dimension Theorem
		4.3.5	Solution to Inhomogeneous Linear System and Nullspace
			4.3.5.1 Condition for Linear System to have Unique Solution 6
			4.3.5.2 Condition for the Solution Set of a Linear System to be a Vector
			Space
5	Ort	hogon	ality 7
	5.1	The D	Oot Product
		5.1.1	Pythagoras' Theorem
		5.1.2	Cosine Rule
		5.1.3	Definitions
			5.1.3.1 Dot Product (Inner Product)
			5.1.3.2 Norm (Length)
			5.1.3.3 Unit Vector
			5.1.3.4 Distance
			5.1.3.5 Angle
		5.1.4	Dot Product and Matrix Multiplication
			5.1.4.1 Dot Product As Matrix Multiplication
			5.1.4.2 Matrix Multiplication As Dot Products
		5.1.5	Properties of Dot Product and Norm

		5.1.5.1 Dot Product is Commutative	72
		5.1.5.2 Dot Product is Distributive Over Vector Addition	72
		5.1.5.3 Dot Product and Scalar Multiplication	72
		5.1.5.4 Absolute Homogeneity of Norm	73
		5.1.5.5 Dot Product of a Vector with Itself	73
		5.1.5.6 Norm and Dot Product	73
		5.1.5.7 Nonnegativity of Norm and When Norm is Zero	73
	5.1.6	Inequalities of Norm and Distance	73
		5.1.6.1 Cauchy-Schwarz Inequality	73
		5.1.6.2 Triangle Inequality (Norm Version)	73
		5.1.6.3 Triangle Inequality (Distance Version)	73
	5.1.7	Results for Multiplying a Matrix with its Transpose	73
		5.1.7.1 When Multiplying a Matrix with its Transpose Gives the Zero	
		Matrix	73
		5.1.7.2 When the Trace of Multiplying a Matrix with its Transpose is Zero	73
5.2	Ortho	gonality, Orthogonal and Orthonormal Sets	74
	5.2.1	Definition of Orthogonal for Two Vectors	74
		5.2.1.1 Zero Vector is Orthogonal to Every Vector in \mathbb{R}^n	74
	5.2.2	Definition of Orthogonal / Orthonormal Sets	74
		5.2.2.1 Definition of Orthogonal for a Subset of \mathbb{R}^n	74
		5.2.2.2 Definition of Orthonormal for a Subset of \mathbb{R}^n	74
	5.2.3	Properties of Orthogonal / Orthonormal Sets	74
	5.2.4	Normalizing: Converting an Orthogonal Set to an Orthonormal Set $$	74
	5.2.5	Using Matrix Multiplication to Check for Orthogonal / Orthonormal Set	75
		5.2.5.1 Standard Basis is An Orthonormal Set	75
		5.2.5.2 An Orthonormal Subset of \mathbb{R}^n with n Vectors is a Basis for \mathbb{R}^n .	75
	5.2.6	Orthogonal Nonzero Sets are Linearly Independent	75
		5.2.6.1 Orthonormal Sets are Linearly Independent	75
5.3	Ortho	gonal and Orthonormal Bases	75
	5.3.1	Orthogonal / Orthonormal Bases	75
	5.3.2	Criterion for Orthogonal / Orthonormal Set to be Basis	76
	5.3.3	Simpler Formula for Coordinate Vectors Relative to Orthogonal / Or-	
		thonormal Bases	76
		5.3.3.1 Orthogonal Bases	76
		5.3.3.2 Orthonormal Bases	76
	5.3.4	Orthogonality between a Vector and a Subspace	76
		5.3.4.1 Example: Normal Vector of a Plane in \mathbb{R}^3	76
	5.3.5	Easier Criterion for Vector to be Orthogonal to a Vector Space	76
	5.3.6	The Set of All Vectors Orthogonal to a Subspace is a Subspace	76
	5.3.7	Projection of a Vector Onto a Vector Space	77

		5.3.7.1	With Or	thonormal Basis	77			
		5.3.7.2	With Or	thogonal Basis	77			
	5.3.8	Gram-S	chmidt Pr	ocess: Generating Orthogonal / Orthonormal Basis	77			
	5.3.9	Solving	a Linear S	ystem whose Coefficient Matrix's Columns are Linearly				
		Indepen	dent		77			
		5.3.9.1	Decompo	osition	77			
		5.3.9.2	Algorith	m	78			
		5.3.9.3	Remark		78			
5.4	Best Approximations							
	5.4.1	The Pro	ojection of	a Vector on a Subspace is its Best Approximation in				
		that Sul	bspace		78			
	5.4.2	Least So	quares Sol	ution	78			
		5.4.2.1	Definitio	n of Least Squares Solution	78			
		5.4.2.2	Least Sq	uares Solution and Projection	78			
	5.4.3	Method	ology: Fin	ding Least Squares Solution	79			
		5.4.3.1	Tedious	Method	79			
		5.4.3.2	Easy Me	thod	79			
5.5	Ortho	gonal Ma	trices		79			
	5.5.1	Definition	on of Orth	ogonal Matrices	79			
		5.5.1.1	Example	: Identity Matrix is an Orthogonal Matrix	79			
	5.5.2	Propert	ies of Orth	nogonal Matrices	79			
		5.5.2.1	Rows and	d Columns of Orthogonal Matrix Form an Orthonormal				
			Basis for	\mathbb{R}^n	79			
		5.5.2.2	The Trai	nspose or Inverse of an Orthogonal Matrix is Orthogonal	80			
		5.5.2.3	The Pro	duct of Two Orthogonal Matrices is Orthogonal	80			
		5.5.2.4	Conditio	n for Rows/Columns of a Matrix to Form an Orthonor-				
			mal Set		80			
		5	.5.2.4.1	Condition for Columns of a Matrix to Form an Or-				
				thonormal Set	80			
		5	.5.2.4.2	Condition for Rows of a Matrix to Form an Orthonormal				
				Set	80			
		5.5.2.5	Pre-Mult	tiplication of an Orthogonal Matrix to an Orthonormal				
			Set		80			
	5.5.3	Transiti	on Matrice	es Between Orthonormal Bases	80			
		5.5.3.1		for Transition Matrices Between Orthonormal Bases .	80			
		5.5.3.2		on Matrices Between Orthonormal Bases are Orthogonal	80			
	5.5.4	Classific		Orthogonal Matrices	80			
		5.5.4.1	Table of	Orthogonal Matrices By Order	80			
	5.5.5	Geomet	ric Repres	entation of Orthogonal Matrix	81			
		5.5.5.1	Rotation	Matrix	81			

			5.5.5.2 Composition of Rotation Matrices	81
			5.5.5.3 Deriving Sum Laws for Sine and Cosine	81
6	Dia	gonaliz	zation	83
	6.1	_	values and Eigenvectors	83
		6.1.1	Definition of Eigenvalues and Eigenvectors	83
		6.1.2	Characteristic Polynomial	83
			6.1.2.1 Definition of Characteristic Polynomial	83
			6.1.2.2 Characteristic Polynomial is a Monic Polynomial of Degree n .	83
		6.1.3	Definition of Characteristic Equation	83
		6.1.4	Eigenvalues are the Roots to the Characteristic Equation	83
		6.1.5	Eigenvalue and Invertibility	84
		6.1.6	Eigenvalues of Triangular Matrices are its Diagonal Entries	84
		6.1.7	Eigenspace	84
			6.1.7.1 Definition of Eigenspace	84
			6.1.7.2 Properties of Eigenspace	84
			6.1.7.2.1 Vectors in Eigenspace	84
			6.1.7.2.2 Dimension of Eigenspace	84
			6.1.7.2.3 Eigenspace Associated To Eigenvalue Zero	84
	6.2	Diago	nalization	84
		6.2.1	Definition of Diagonalizable Matrix	84
		6.2.2	Criterion for Diagonalizability	84
		6.2.3	Eigenvectors associated to Distinct Eigenvalues are Linearly Independent	85
		6.2.4	Algorithm of Diagonalization	85
		6.2.5	Matrix with n Distinct Eigenvalues is Diagonalizable	85
		6.2.6	Application of Diagonalization	86
			6.2.6.1 Matrix Exponentiation	86
			6.2.6.2 Example: Fibonacci Numbers	86
	6.3	Ortho	gonal Diagonalization	86
		6.3.1	Definition of Orthogonally Diagonalizable Matrix	86
			6.3.1.1 Remarks	86
		6.3.2	Only Symmetric Matrices are Orthogonally Diagonalizable	87
		6.3.3	Algorithm of Orthogonal Diagonalization	87
	6.4	Quadr	ratic Forms and Conic Sections	87
		6.4.1	Quadratic Forms	87
			6.4.1.1 Definition of Quadratic Form	87
			6.4.1.2 Matrix Representation of Quadratic Forms	87
			6.4.1.3 Simplification of Quadratic Forms	88
		6.4.2	Quadratic Equation	88
			6.4.2.1 Quadratic Equation in One Variable	88
			6.4.2.2 Quadratic Equation in Two Variables	88

			6.4.2.2.1 Matrix Representation	8
			6.4.2.2.2 Quadratic Form Associated With Quadratic Equation 8	8
			6.4.2.3 Graph of a Quadratic Equation	8
		6.4.3	Classification of Conic Sections	9
			6.4.3.1 Table of Conics	59
			6.4.3.2 Algorithm to Classify Conic Sections	9
			6.4.3.2.1 Determinant of Symmetric Matrix and Type of Conic	
			Sections	,9
			6.4.3.2.2 Rotating and Reflecting Conic Sections 8	9
			6.4.3.2.3 Can Always Orthogonally Diagonalize by Matrix with	
			Determinant One	0
7	Line	ear Tra	nsformation 9	1
•	7.1		Transformations from \mathbb{R}^n to \mathbb{R}^m	
	1.1	7.1.1	Definition of Linear Transformation	
		1.1.1	7.1.1.1 Linear Operator	
		7.1.2	Linear Transformation As Matrix Form	
		7.1.3	Examples of Linear Transformation	
		,,,,,	7.1.3.1 Identity Transformation	
			7.1.3.2 Zero Transformation	
		7.1.4	Standard Matrix of a Linear Transformation is Unique	
		7.1.5	To Prove that a Mapping is a Linear Transformation	
		7.1.6	Linearity of Linear Transformations	2
		7.1.7	To Prove that a Mapping is Not a Linear Transformation	2
		7.1.8	Representation of Linear Transformations	3
			7.1.8.1 Linear Transformations are Completely Determined by a Basis	
			of \mathbb{R}^n and its Images	3
			7.1.8.2 Columns of Standard Matrix are Images of Standard Basis of \mathbb{R}^n 9)3
		7.1.9	Linear Combination Preserving Implies Linear Transformation 9	3
			7.1.9.1 With k vectors	3
			7.1.9.2 With Two Vectors	3
		7.1.10	General Definition of Linear Transformations	3
		7.1.11	Change of Bases	4
			7.1.11.1 Change Between the Images of Two Bases	4
			7.1.11.2 Change Basis for Linear Operator	4
		7.1.12	Composition	4
			7.1.12.1 Definition of Function Composition	4
			7.1.12.2 Function Composition is not Commutative in General 9	4
			7.1.12.3 Linear Transformation Composition	
			7.1.12.4 Linear Transformation Composition is not Commutative in General 9	14

		(.1.12.5 Composition of Linear Transformations is a Linear Transforma-				
		tion and Formula for its Standard Matrix				
		7.1.12.6 Properties of Linear Transformation Composition				
7.2	Range	Ranges and Kernels				
	7.2.1	Range				
		7.2.1.1 Range of Function				
		7.2.1.2 Range of Linear Transformation				
		7.2.1.3 Representation of Range				
		7.2.1.3.1 Range as Subspace Spanned by the Images of Any Basis				
		for \mathbb{R}^n				
		7.2.1.3.2 Range as Column Space of Standard Matrix				
	7.2.2	Rank of Linear Transformation				
	7.2.3	Kernel				
		7.2.3.1 Definition of Kernel of Linear Transformation				
		7.2.3.2 Representation of Kernel				
		7.2.3.2.1 Kernel as Nullspace of Standard Matrix and Subspace				
		of \mathbb{R}^n				
		7.2.3.2.2 Finding General Solution for Kernel				
	7.2.4	Nullity of Linear Transformation				
	7.2.5	Dimension Theorem for Linear Transformations				
	7.2.6	Linear Transformation Between Vector Spaces				
		7.2.6.1 Range				
		7.2.6.2 Rank				
		7.2.6.3 Kernel				
		7.2.6.4 Nullity				
		7.2.6.5 Dimension Theorem				
7.3	Geom	etric Linear Transformations				
	7.3.1	Geometric Interpretation Completely Determined by Effect on a Basis for				
		its Domain				
	7.3.2	Scaling				
		7.3.2.1 Scaling in \mathbb{R}^2				
		7.3.2.1.1 Dilation & Contraction				
		7.3.2.2 Scaling in other Axes in \mathbb{R}^2				
		7.3.2.3 Scaling in \mathbb{R}^3				
		7.3.2.3.1 Dilation & Contraction				
		7.3.2.4 Scaling in other Axes in \mathbb{R}^3				
	7.3.3	Reflection				
		7.3.3.1 Reflection in \mathbb{R}^2				
		7.3.3.1.1 Reflection w.r.t. x -axis				
		7.3.3.1.2 Reflection w.r.t. y -axis				

	7.3.3.1.3	Reflection w.r.t. the line $y = x$	100	
	7.3.3.1.4	Reflection w.r.t. a Line Through the Origin	100	
	7.3.3.2 Reflec	ctions in \mathbb{R}^3	101	
	7.3.3.2.1	Reflections w.r.t. Planes Formed by Coordinate Axes .	101	
	7.3.3.2.2	Reflections w.r.t. Any Plane	101	
7.3.4	Rotation		101	
	7.3.4.1 Rotat	zion in \mathbb{R}^2	101	
	7.3.4.1.1	Orthogonal Matrices of Determinant 1	101	
	7.3.4.2 Rotat	zion in \mathbb{R}^3	101	
7.3.5	Reflections and	l Rotations in \mathbb{R}^2	102	
	7.3.5.1 Deter	minant Determines Rotation vs Reflection	102	
	7.3.5.2 Reflec	ction about a Line can be Decomposed into Reflection and		
	Rotat	ion	102	
7.3.6	Shears		103	
	7.3.6.1 Shear	s in \mathbb{R}^2	103	
	7.3.6.1.1	Shear in x -direction	103	
	7.3.6.1.2	Shear in y -direction	103	
	7.3.6.2 Shear	s in \mathbb{R}^3	103	
7.3.7	$Translations \ .$		103	
7.3.8	2D Computer Graphic System			
	7.3.8.1 Repre	esentation of 2D Figures	104	
	7.3.8.2 Scalin	ng, Reflection, Rotation, Shearing of 2D Figures	104	
	7.3.8.3 Trans	slating 2D Figure with Homogeneous Coordinate System .	104	

Chapter 1

Linear Systems & Gaussian Elimination

1.1 Linear Systems & Their Solutions

1.1.1 Linear Equations

Definition. A linear equation in n variables (unknowns) x_1, x_2, \ldots, x_n is an equation of the form

$$a_1x_1 + a_2x_2 + \ldots + a_nx_n = b$$

where a_1, a_2, \ldots, a_n and b are real constants.

1.1.1.1 Zero Equation

Definition. A linear equation is a **zero equation** if

$$a_1 = a_2 = \ldots = a_n = b = 0$$

1.1.1.2 Nonzero Equation

Definition. A linear equation is a **nonzero equation** if it is not a zero equation

1.1.1.3 Inconsistent Equation

Definition. A linear equation is **inconsistent** if

$$a_1 = a_2 = \ldots = a_n = 0 \text{ but } b \neq 0$$

1.1.2 Solutions of a Linear Equation

Let $a_1x_1 + a_2x_2 + \ldots + a_nx_n = b$ be a linear equation in n variables x_1, x_2, \ldots, x_n .

Definition. For all $s_1, s_2, \ldots, s_n \in \mathbb{R}$, if

$$a_1s_1 + a_2s_2 + \ldots + a_ns_n = b$$

then $x_1 = s_1, x_2 = s_2, \dots, x_n = s_n$ is a solution to the given linear equation.

1.1.2.1 Solution Set

Definition. The set of all solutions is called the **solution set**.

1.1.2.2 General Solution

Definition. An expression that gives the entire solution set is a **general solution**.

1.1.3 Solution Set of Zero Equation

The zero equation in n variables x_1, x_2, \ldots, x_n is satisfied by any values of x_1, x_2, \ldots, x_n .

1.1.4 Solution Set of Inconsistent Linear Equation

An inconsistent linear equation in n variables x_1, x_2, \ldots, x_n is not satisfied by any values of x_1, x_2, \ldots, x_n .

1.1.5 General Solution of Consistent Nonzero Equation

The general solution of a consistent nonzero equation $a_1x_1 + a_2x_2 + \ldots + a_nx_n = b$ in n variables x_1, x_2, \ldots, x_n has n-1 arbitrary parameters and is of the following form: For any integer $i \in [1, n]$,

$$\begin{cases} x_1 = & s_1, \\ x_2 = & s_2, \\ \vdots \\ x_{i-1} = & s_{i-1}, \\ x_i = \frac{1}{a_i}(b - a_1s_1 - a_2s_2 - \dots - a_{i-1}s_{i-1} - a_{i+1}s_{i+1} - \dots - a_ns_n), \\ x_{i+1} = & s_{i+1}, \\ \vdots \\ x_n = & s_n \end{cases}$$

where $s_1, s_2, \ldots, s_{i-1}, s_{i+1}, \ldots, s_n$ are arbitrary parameters.

1.1.6 Geometrical Interpretation of Linear Equations

1.1.6.1 In Two Variables

The solution set of the linear equation

$$ax + by = c \text{ (in } x, y)$$

where a and b are not both zero represents a **straight line** in the xy-plane.

1.1.6.2 In Three Variables

The solution set of the linear equation

$$ax + by + cz = d$$
 (in x, y, z)

where a, b, c are not all zero represents a **plane** in the xyz-space.

1.1.7 Linear Systems

Definition. A linear system (system of linear equations) of m linear equations in n variables x_1, x_2, \ldots, x_n is

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n = b_1, \\ a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n = b_2, \\ \vdots & \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \ldots + a_{mn}x_n = b_m, \end{cases}$$

where a_{ij} and b_i are real constants.

- a_{ij} is the **coefficient** of x_j in the *i*th equation,
- b_i is the **constant term** of the *i*th equation.

1.1.7.1 Zero System

Definition. If all a_{ij} and b_i are zero, the linear system is a **zero system**.

1.1.7.2 Nonzero System

Definition. If some a_{ij} or b_i is nonzero, the linear system is a **nonzero system**.

1.1.8 Solution of Linear Systems

Given a linear system in n variables x_1, x_2, \ldots, x_n , if $x_1 = s_1, x_2 = s_2, \ldots, x_n = s_n$ is a solution to **every equation** of the linear system, then it is a **solution** to the system.

1.1.8.1 Solution Set

Definition. The set of all solutions to the linear system is called the **solution set**.

1.1.8.2 General Solution

Definition. An expression that gives the entire solution set of the linear system is a **general** solution.

1.1.9 Consistency of Linear Systems

Definition. A linear system is

- consistent if it has at least one solution;
- inconsistent if it has no solution.

1.1.10 Number of Solutions to Linear Systems

A linear system has either

- no solution, or
- exactly one solution, or
- infinitely many solutions

1.1.11 Geometric Interpretation of Linear Systems

1.1.11.1 In Two Variables of Two Equations

Given a linear system in variables x, y of two equations

$$\begin{cases} a_1 x + b_1 y = c_1, & (L_1) \\ a_2 x + b_2 y = c_2, & (L_2) \end{cases}$$

where a_1, b_1 are not both zero and a_2, b_2 are not both zero. The system has

- no solution $\iff L_1$ and L_2 are parallel but distinct;
- exactly one solution $\iff L_1$ and L_2 are not parallel;
- infinitely many solutions $\iff L_1$ and L_2 are the same line.

1.1.11.2 In Three Variables of Two Equations

Given a linear system in variables x, y, z of two equations

$$\begin{cases} a_1x + b_1y + c_1z = d_1, & (P_1) \\ a_2x + b_2y + c_2z = d_2, & (P_2) \end{cases}$$

where a_1, b_1, c_1 are not all zero and a_2, b_2, c_2 are not all zero. The system has

• no solution $\iff P_1$ and P_2 are parallel but distinct

$$\iff \frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2};$$

• infinitely many solutions $\iff P_1$ and P_2 intersect at a straight line

$$\iff \frac{a_1}{a_2}, \frac{b_1}{b_2}, \frac{c_1}{c_2}$$
 are not all the same;

• infinitely many solutions $\iff P_1$ and P_2 are the same plane

$$\iff \frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2} = \frac{d_1}{d_2}.$$

1.2 Elementary Row Operations

1.2.1 Augmented Matrix Representation of a Linear System

Definition. Given a linear system in variables x_1, x_2, \ldots, x_n :

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1, \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2, \\ \vdots & \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m, \end{cases}$$

The rectangular array of constants

$$\begin{pmatrix}
a_{11} & a_{12} & \dots & a_{1n} & b_1 \\
a_{21} & a_{22} & \dots & a_{2n} & b_2 \\
\vdots & \vdots & & \vdots & \vdots \\
a_{m1} & a_{m2} & \dots & a_{mn} & b_m
\end{pmatrix}$$

is called the **augmented matrix** of the linear system.

1.2.2 Elementary Row Operations on Augmented Matrices

Definition. The **elementary row operations** are the following operations on rows of an augmented matrix:

Description of Operation	Notation
Multiply the i th row by a nonzero constant k	kR_i
Interchange the i th and j th rows	$R_i \leftrightarrow R_j$
Add k times the i th row to the j th row	$R_j + kR_i$

1.2.2.1 Correspondence to Operations on Equations in Linear System

Each elementary row operation corresponds to operations on the equations of the linear system as follows:

Elementary Row Operation	Equation Operation
kR_i	Multiply the i th equation by a nonzero constant k
$R_i \leftrightarrow R_j$	Interchange the i th and j th equations
$R_j + kR_i$	Add k times the i th equation to the j th equation

1.2.2.2 Interchanging two rows can be decomposed further

Interchanging two rows can be obtained by using the other two operations.

$$\begin{pmatrix} a \\ b \end{pmatrix} \xrightarrow{R_1 + R_2} \begin{pmatrix} a+b \\ b \end{pmatrix} \xrightarrow{R_2 - R_1} \begin{pmatrix} a+b \\ -a \end{pmatrix}$$

$$\xrightarrow{R_1 + R_2} \begin{pmatrix} b \\ -a \end{pmatrix} \xrightarrow{-R_2} \begin{pmatrix} b \\ a \end{pmatrix}$$

1.2.2.3 Inverse Elementary Row Operations

Each elementary row operation has an inverse operation, which undoes the said elementary row operation and is also an elementary row operation, as follows:

Elementary Row Operation	Its Inverse
$m{A} \xrightarrow{kR_i} m{B}$	$oldsymbol{B} \stackrel{rac{1}{k}R_i}{-\!-\!-\!-\!-\!-} oldsymbol{A}$
$oldsymbol{A} \xrightarrow{R_i \leftrightarrow R_j} oldsymbol{B}$	$m{B} \xrightarrow{R_i \leftrightarrow R_j} m{A}$
$m{A} \xrightarrow{R_j + kR_i} m{B}$	$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$

1.2.3 Row Equivalent Matrices

Definition. Two **augmented matrices** are **row equivalent** if one can be obtained from the other by a **series** of **elementary row operations**.

1.2.4 Row Equivalence as an Equivalence Relation

Theorem. Let A, B, C be any augmented matrices.

- A is row equivalent to A (reflexive);
- A is row equivalent to $B \iff B$ is row equivalent to A (symmetric);
- A is row equivalent to B and B is row equivalent to $C \implies A$ is row equivalent to C (transitive).

Therefore row equivalence is an equivalence relation.

1.2.5 Row Equivalence Implies Same Solution Set

Theorem. Let A and B be augmented matrices of two linear systems. Suppose A and B are row equivalent.

• Then the corresponding linear systems have the same solution set.

1.3 Row-Echelon Form

1.3.1 Leading Entry

Definition. The **leading entry** for any **nonzero row** of any **augmented matrix** is the first nonzero number of that row, from leftmost to rightmost column.

1.3.2 Row-Echelon Form (REF)

Definition. An **augmented matrix** is in **row-echelon form (REF)** if the following properties are satisfied:

- The **zero rows** are grouped together at the bottom;
- For any two successive **nonzero rows**, the **leading entry** in the lower row appears to the right of the **leading entry** in the higher row.

1.3.3 Pivot Points, Pivot Columns, and Non-pivot Columns

Definition. Suppose an augmented matrix is in row-echelon form.

1.3.3.1 Pivot Point

Then the leading entry of a nonzero row is a pivot point.

1.3.3.2 Pivot and Non-pivot Columns

A column of the **augmented matrix** is called a

- pivot column if it contains a pivot point;
- non-pivot column if it contains no pivot point.

1.3.3.3 Each Pivot Column Contains Exactly One Pivot Point

By the second property of the **row-echelon form**, every **pivot column** contains exactly one **pivot point**.

1.3.4 Reduced Row-Echelon Form (RREF)

Definition. Suppose an augmented matrix is in row-echelon form. It is in reduced row-echelon form (RREF) if

- The leading entry, or equivalently the pivot point, of every nonzero row is 1;
- In each **pivot column**, all entries except the **pivot point** are 0.

1.3.5 General Solution From Row-echelon Form

Suppose that the **augmented matrix** corresponding to a **linear system** is in **row-echelon** form. Then the **general solution** of the **linear system** can be obtained by the following algorithm:

- 1. **Set** the variables corresponding to **non-pivot columns** to be arbitrary parameters.
- 2. Solve the variables corresponding to pivot columns by back substitution (from the bottom equation to the top).

1.3.6 General Solution From Reduced Row-echelon Form

Suppose that the **augmented matrix** corresponding to a **linear system** is in **reduced row-echelon form**. Then the **general solution** of the **linear system** can be obtained by the following algorithm:

- 1. **Set** the variables corresponding to **non-pivot columns** to be arbitrary parameters.
- 2. Solve the variables corresponding to pivot columns in any order.

1.4 Gaussian Elimination

1.4.1 REF/RREF of Augmented Matrics

Definition. Let A and R be augmented matrices. Suppose that A is row equivalent to R.

- If *R* is in row-echelon form,
 - 1. then R is a row-echelon form of A;
- If *R* is in reduced row-echelon form,
 - 1. then R is a reduced row-echelon form of A.

Therefore, by section 1.16 and 1.21, solving a linear system with augmented matrix $A \iff$ solving a linear system with augmented matrix that is the REF/RREF of A.

1.4.2 Gaussian Elimination: Finding REF of Augmented Matrices

Given an **augmented matrix**, we can find its **row-echelon form** by an algorithm called **Gaussian Elimination**. The algorithm is as follows:

- 1. Find the **leftmost column** which is not entirely zero.
- 2. Check the **top entry** of such column. If it is 0,

- replace it by a nonzero number by interchanging the top row with another row below.
- 3. For **each row below** the top row,
 - add a suitable multiple of the **top row** to it so that its **leading entry** becomes 0.
- 4. If the entire matrix is not in **row-echelon form**,
 - then cover the top row and repeat steps 1-3 to the remaining matrix.

1.4.3 Gauss-Jordan Elimination: Finding RREF of Augmented Matrices

Given an **augmented matrix**, we can find its **reduced row-echelon form** by an algorithm called **Gauss-Jordan Elimination**. The algorithm is as follows:

- 1. Use Gaussian Elimination to get a row-echelon form.
- 2. For each nonzero row, multiply a suitable constant so that the pivot point becomes 1.
- 3. For each row, starting from the last nonzero row and working backwards,
 - Add a suitable multiple of the current row to each of the rows above to introduce 0 above the **pivot point** of the current row.

1.4.4 Infinitely Many REFs

Every nonzero matrix has infinitely many non-reduced **row-echelon forms**.

1.4.5 Uniqueness of RREF

Every matrix has a unique reduced row-echelon form.

1.4.6 Deducing Consistency of Linear Systems from its REF

Suppose that A is the **augmented matrix** of a **linear system**, and R is a **row-echelon form** of A.

1.4.6.1 Inconsistent With No Solutions

The linear system is inconsistent, i.e. no solution if

• the last column is a **pivot column** \iff the last nonzero row has a **pivot point** in the last column.

1.4.6.2 Consistent With One Solution

The linear system is consistent with exactly one solution if

- the last column is a **non-pivot column**, and
- all other columns are **pivot columns**.

1.4.6.3 Consistent With Infinitely Many Solutions & Arbitrary Parameters

The linear system is consistent with infinitely many solution if

- the last column is a non-pivot column, and
- some other column(s) is/are non-pivot column(s).

The number of arbitrary parameters = the number of **non-pivot columns** excluding the last column.

1.4.7 Geometrical Interpretation of Linear Systems with RREF

1.4.7.1 Linear System in Three Variables of Three Equations

Given a linear system in variables x, y, z of three equations:

$$\begin{cases} a_{11}x + a_{12}y + a_{13}z = b_1 & (P_1), \\ a_{21}x + a_{22}y + a_{23}z = b_2 & (P_2), \\ a_{31}x + a_{32}y + a_{33}z = b_3 & (P_3) \end{cases}$$

where a_{i1}, a_{i2}, a_{i3} are not all zero for i = 1, 2, 3. The **reduced row-echelon form** R has three rows and four coloumns. The following table summarises the possible solutions sets:

Consistent	Last Column	Other Pivot	Other Non-	Intersection
		Columns	pivot Columns	
			/ Arbitrary	
			Parameters	
No	Pivot	0-2	1-3	null set
Yes	Non-pivot	1	2	plane (three planes coincide)
Yes	Non-pivot	2	1	line
Yes	Non-pivot	3	0	point

1.5 Homogeneous Linear Systems

1.5.1 Homogeneous Linear Equation

Definition. A linear equation in variables x_1, x_2, \ldots, x_n is homogeneous if it is of the form

$$a_1x_1 + a_2x_2 + \ldots + a_nx_n = 0$$

1.5.1.1 Remarks

A linear equation is homogeneous $\iff x_1 = 0, x_2 = 0, \dots x_n = 0$ is a solution.

1.5.2 Geometrical Interpretation of Homogeneous Linear Equations

1.5.2.1 In Two Variables

The solution set of the linear equation

$$ax + by = 0$$
 (in x, y)

where a and b are not both zero represents a **straight line**, in the xy-plane, that passes through the origin O(0,0).

1.5.2.2 In Three Variables

The solution set of the linear equation

$$ax + by + cz = 0$$
 (in x, y, z)

where a, b, c are not all zero represents a **plane**, in the xyz-space, that contains the origin O(0,0,0).

1.5.3 Homogeneous Linear System

Definition. A **linear system** is **homogeneous** if every linear equation of the system is homogeneous. That is the linear system is of the form

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n = 0, \\ a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n = 0, \\ \vdots & \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \ldots + a_{mn}x_n = 0, \end{cases}$$

1.5.4 Trivial Solution of Homogeneous Linear Systems

A linear system in x_1, x_2, \ldots, x_n is homogeneous \iff $x_1 = 0, x_2 = 0, \ldots, x_n = 0$ is a solution.

- This is the trivial solution of a homogeneous linear system
- Other solutions are called **non-trivial solutions**.

1.5.5 Geometric Interpretation of Homogeneous Linear Systems

1.5.5.1 In Two Variables of Two Equations

Given a homogeneous linear system in variables x, y of two equations

$$\begin{cases} a_1 x + b_1 y = 0, & (L_1) \\ a_2 x + b_2 y = 0, & (L_2) \end{cases}$$

where a_1, b_1 are not both zero and a_2, b_2 are not both zero. The system has

- only the **trivial solution** \iff L_1 and L_2 are different;
- non-trivial solutions $\iff L_1 \text{ and } L_2 \text{ are the same.}$

1.5.5.2 In Three Variables of Two Equations

Given a linear system in variables x, y, z of two equations

$$\begin{cases} a_1x + b_1y + c_1z = 0, & (P_1) \\ a_2x + b_2y + c_2z = 0, & (P_2) \end{cases}$$

where a_1, b_1, c_1 are not all zero and a_2, b_2, c_2 are not all zero. The system has infinitely many solutions with only two cases

- The two planes are the same, or
- The two planes intersect at a straight line passing through O(0,0,0).

Chapter 2

Matrices

2.1 Introduction to Matrices

2.1.1 Definition of Matrix

Definition. A matrix (plural matrices) is a rectangular array of numbers

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$

where

- m is the number of **rows** in the matrix.
- n is the number of **columns** in the matrix.
- The size of the matrix is given by $m \times n$.
- The (i, j)-entry is the entry in the *i*th row and *j*th column.
 - In the given matrix, the (i, j)-entry is a_{ij} .

2.1.1.1 Remarks

- Some books use [...] instead of (...).
- A 1×1 matrix is usually treated as a real number in computation.

2.1.2 Notation of Matrices

A matrix is usually denoted by capital letters A, B, C, \ldots Given a

$$m \times n \text{ matrix } A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix},$$

- a_{ij} is the (i, j)-entry of A.
- ullet The matrix is denoted by $A=(a_{ij})_{m imes n}$
- If the size of **A** is known (or not important)
 - \circ The matrix can also be denoted by $A = (a_{ij})$.

2.1.3 Row Matrix

Definition. A row matrix (row vector) is a matrix with only one row.

2.1.4 Column Matrix

Definition. A column matrix (column vector) is a matrix with only one column.

2.1.5 Square Matrix

Definition. A square matrix is a matrix with the same number of rows and columns.

2.1.5.1 Order of Square Matrix

Definition. An $n \times n$ matrix is a square matrix of order n.

2.1.5.2 Diagonal / Diagonal Entries of Square Matrix

Definition. Let $A = (a_{ij})$ be a square matrix of order n.

- The diagonal/principle diagonal/major diagonal of A is the sequence of entries
 - $a_{11}, a_{22}, \ldots, a_{nn}$
- The entries a_{ii} , for i = 1, ..., n are the diagonal entries
- The entries a_{ij} , $i \neq j$ are the non-diagonal entries
- The anti-diagonal/minor diagonal of *A* is the sequence of entries from the right top to the left bottom

$$\circ \ a_{1n}, a_{2,n-1}, \ldots, a_{n1}$$

2.1.6 Diagonal Matrix

Definition. A square matrix is a diagonal matrix if all its non-diagonal entries are zero.

•
$$A = (a_{ij})_{n \times n}$$
 is **diagonal** $\iff a_{ij} = 0$ for all $i \neq j$

2.1.7 Scalar Matrix

Definition. A diagonal matrix is a scalar matrix if all its diagonal entries are the same.

•
$$\mathbf{A} = (a_{ij})_{n \times n}$$
 is scalar $\iff a_{ij} = \begin{cases} c & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$

2.1.8 Identity Matrix

Definition. A scalar matrix is an identity matrix if all its diagonal entries are 1.

•
$$\mathbf{A} = (a_{ij})_{n \times n}$$
 is identity $\iff a_{ij} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$

Note: There is exactly one identity matrix of order n.

2.1.8.1 Notation for Identity Matrix

- The identity matrix of order n is denoted by I_n .
- If no confusion in order, we may write I instead of I_n .

2.1.9 Zero Matrix

Definition. A matrix with all entries equal to zero is a zero matrix.

•
$$\mathbf{A} = (a_{ij})_{m \times n}$$
 is **zero** \iff $a_{ij} = 0$ for all i, j

Note: There is exactly one zero matrix of size $m \times n$.

2.1.9.1 Notation for Zero Matrix

- The **zero matrix** of **size** $m \times n$ is denoted by $\mathbf{0}_{m \times n}$.
- If no confusion in size, we may write **0** instead of $\mathbf{0}_{m \times n}$.

2.1.10 Symmetric Square Matrix

Definition. A square matrix is symmetric if it is symmetric with respect to the diagonal.

- $A = (a_{ij})_{n \times n}$ is symmetric $\iff a_{ij} = a_{ji}$ for all i, j
 - There is no restriction to the **diagonal entries**.

2.1.11 Upper Triangular Square Matrix

Definition. A square matrix is upper triangular if all the entries below the diagonal are zero.

- $A = (a_{ij})_{n \times n}$ is upper triangular $\iff a_{ij} = 0$ if i > j
 - There is no restriction to the **diagonal entries**.

2.1.12 Lower Triangular Square Matrix

Definition. A square matrix is lower triangular if all the entries above the diagonal are zero.

- $A = (a_{ij})_{n \times n}$ is lower triangular $\iff a_{ij} = 0$ if i < j
 - There is no restriction to the **diagonal entries**.

2.1.13 Triangular Square Matrix

Definition. Both upper triangular matrices and lower triangular matrices are triangular matrices.

2.1.14 Diagonal and Triangular Square Matrices

A square matrix is both upper and lower triangular \iff it is diagonal.

2.2 Matrix Operations

2.2.1 Identical Matrices

- A matrix is completely determined by its **size** and **entries**.
- **Definition.** Two matrices are **equal** if
 - they have the same size (same number of rows and same number of columns), and
 - all the corresponding entries are the same.

Let
$$\mathbf{A} = (a_{ij})_{m \times n}$$
 and $\mathbf{B} = (b_{ij})_{p \times q}$. Then

$$\circ \mathbf{A} = \mathbf{B} \iff m = p \& n = q \& a_{ij} = b_{ij} \text{ for all } i, j$$

2.2.2 Matrix Addition, Subtraction & Scalar Multiplication

Definition. Let $\mathbf{A} = (a_{ij})_{m \times n}$ and $\mathbf{B} = (b_{ij})_{m \times n}$ be matrices, and c a constant. The following operations are defined:

- Addition: $A + B = (a_{ij} + b_{ij})_{m \times n}$
- Substraction: $A B = (a_{ij} b_{ij})_{m \times n}$
- Scalar Multiplication: $c\mathbf{A} = (ca_{ij})_{m \times n}$

Remarks.

- (-1)A is usually denoted by -A.
- It can be proved that A B = A + (-B).
 - In the discussion we usually only consider addition and scalar multiplication.

2.2.3 Properties of Matrix Addition, Subtraction & Scalar Multiplication

Theorem. Let A, B, C be matrices of the same size, and c, d be constants. Then

- A B = A + (-B)
- Commutative Law for Matrix Addition:

$$o A + B = B + A$$

• Associative Law for Matrix Addition:

$$\circ (A + B) + C = A + (B + C)$$

• Let $\mathbf{0}$ be the zero matrix of the same size as \mathbf{A} . Then

$$0 + A = A; \quad A - A = 0; \quad 0A = 0; \quad c0 = 0.$$

• Distributive Law for Scalar Multiplication over Addition:

$$\circ c(\mathbf{A} + \mathbf{B}) = c\mathbf{A} + c\mathbf{B}$$

$$\circ (c+d)\mathbf{A} = c\mathbf{A} + d\mathbf{A}$$

•
$$c(d\mathbf{A}) = (cd)\mathbf{A}$$
, $1\mathbf{A} = \mathbf{A}$

2.2.4 Matrix Multiplication

Definition. Let $\mathbf{A} = (a_{ij})_{m \times p}$ and $\mathbf{B} = (b_{ij})_{p \times n}$. Then \mathbf{AB} is the $m \times n$ matrix such that its (i, j)-entry is

$$a_{i1}b_{1j} + a_{i2}b_{2j} + \ldots + a_{ip}b_{pj} = \sum_{k=1}^{p} a_{ik}b_{kj}$$

Note: No. of columns of A = the no. of rows of B.

2.2.4.1 Matrix Multiplication Explained in Words

In order to get the (i, j)-entry of the **product** matrix:

- 1. Find the *i*th **row** of the first matrix;
- 2. Find the jth **column** of the second matrix;
- 3. Multiply the corresponding entries;
- 4. Add the products together.

2.2.5 Noncommutativity of Matrix Multiplication

Matrix Multiplication is **not commutative** in general. For example, let $\mathbf{A} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ and

$$\boldsymbol{B} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}. \ \boldsymbol{A}\boldsymbol{B} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \neq \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \boldsymbol{B}\boldsymbol{A}.$$

- AB is the pre-multiplication of A to B (to B by A).
- BA is the post-multiplication of A to B (to B by A).

2.2.6 Properties of Matrix Multiplication

Theorem.

- Let A, B, C be $m \times p, p \times q, q \times n$ matrices, resp. Then
 - Associative Law: A(BC) = (AB)C.
- Let \boldsymbol{A} be a $m \times p$ matrix, $\boldsymbol{B}_1, \boldsymbol{B}_2$ be $p \times n$ matrices. Then
 - Distributive Law: $A(B_1 + B_2) = AB_1 + AB_2$.
- Let A_1, A_2 be $m \times p$ matrices, B be a $p \times n$ matrix. Then
 - Distributive Law: $(A_1 + A_2)B = A_1B + A_2B$.
- Let A, B be $m \times p, p \times n$ matrices resp. and c be a constant. Then

$$\circ \ c(\mathbf{A}\mathbf{B}) = (c\mathbf{A})\mathbf{B} = \mathbf{A}(c\mathbf{B}).$$

• Let \boldsymbol{A} be a $m \times n$ matrix. Then

$$\circ \ \boldsymbol{A}\boldsymbol{0}_{n\times p} = \boldsymbol{0}_{m\times p}; \quad \boldsymbol{0}_{p\times m}\boldsymbol{A} = \boldsymbol{0}_{p\times n}.$$

$$\circ AI_n = A; I_mA = A.$$

2.2.7 Nonnegative Integer Powers of Square Matrices

2.2.7.1 Multiplying a Matrix With Itself

Let **A** be a $m \times n$ matrix. Then

• AA is well-defined $\iff m = n \iff A$ is a square matrix.

2.2.7.2 Nonnegative Integer Powers of Square Matrices

Definition. Let A be a square matrix of order n. For nonnegative integers k, the powers of A are defined as

$$\mathbf{A}^k = \begin{cases} \mathbf{I}_n & \text{if } k = 0\\ \underbrace{\mathbf{A}\mathbf{A}\dots\mathbf{A}}_{k \text{ times}} & \text{if } k \ge 1 \end{cases}$$

2.2.8 Properties of Nonnegative Integer Powers of Square Matrices

Let A, B be square matrices of the same size, and m, n nonnegative integers. Then

- $\bullet \ \boldsymbol{A}^{m}\boldsymbol{A}^{n}=\boldsymbol{A}^{m+n}.$
- In general, $(AB)^n \neq A^nB^n$ for $n = 2, 3, \dots$
 - Since matrix multiplication is not commutative,

$$(AB)^n = \underbrace{(AB)(AB)\dots(AB)}_{n ext{ times}}$$
 $\neq \underbrace{AA\dots A}_{n ext{ times}}\underbrace{BB\dots B}_{n ext{ times}}$
 $= A^n B^n$

- However, suppose that AB = BA. Then
 - $\circ (AB)^n = A^nB^n$ for all nonnegative integers n.

2.2.9 Matrix Representation

Let
$$\mathbf{A} = (a_{ij})_{m \times n} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$

2.2.9.1 Matrix as a Column of Row Vectors

• Let a_i denote the *i*th row of A, for i = 1, 2, ..., m.

$$\mathbf{a}_1 = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \end{pmatrix}$$

$$\mathbf{a}_2 = \begin{pmatrix} a_{21} & a_{22} & \dots & a_{2n} \end{pmatrix}$$

$$\vdots$$

$$\mathbf{a}_m = \begin{pmatrix} a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$

- Then each a_i is a $1 \times n$ matrix (row vector).
- \bullet Then A can be represented as

$$oldsymbol{A} = \left(egin{array}{c} oldsymbol{a}_1 \ oldsymbol{a}_2 \ dots \ oldsymbol{a}_m \end{array}
ight)$$

2.2.9.2 Matrix as a Row of Column Vectors

• Let \boldsymbol{b}_j denote the jth column of \boldsymbol{A} , for $j=1,2,\ldots,n$.

$$m{b}_1 = \left(egin{array}{c} a_{11} \ a_{21} \ dots \ a_{m1} \end{array}
ight), m{b}_2 = \left(egin{array}{c} a_{12} \ a_{22} \ dots \ a_{m2} \end{array}
ight), \ldots, m{b}_n = \left(egin{array}{c} a_{1n} \ a_{2n} \ dots \ a_{mn} \end{array}
ight)$$

- Then each b_j is a $m \times 1$ matrix (column vector).
- \bullet Then A can be represented as

$$oldsymbol{A} = \left(egin{array}{cccc} oldsymbol{b}_1 & oldsymbol{b}_2 & \dots & oldsymbol{b}_n \end{array}
ight)$$

2.2.10 Decomposing Matrix Multiplication

Suppose $\mathbf{A} = (a_{ij})_{m \times p}$.

• Let $\mathbf{a}_i = \begin{pmatrix} a_{i1} & a_{i2} & \dots & a_{ip} \end{pmatrix}$ be the *i*th row of \mathbf{A} .

Suppose $\boldsymbol{B} = (b_{ij})_{p \times n}$.

$$ullet$$
 Let $m{b}_j = \left(egin{array}{c} b_{1j} \ b_{2j} \ dots \ b_{pj} \end{array}
ight)$ be the j th column of $m{B}$.

Then

$$oldsymbol{AB} = \left(egin{array}{cccc} oldsymbol{a}_1oldsymbol{b}_1 & oldsymbol{a}_1oldsymbol{b}_2 & \ldots & oldsymbol{a}_1oldsymbol{b}_1 \ oldsymbol{a}_2oldsymbol{b}_1 & oldsymbol{a}_2oldsymbol{b}_2 & \ldots & oldsymbol{a}_2oldsymbol{b}_n \ oldsymbol{a}_moldsymbol{b}_1 & oldsymbol{a}_moldsymbol{b}_2 & \ldots & oldsymbol{a}_moldsymbol{b}_n \end{array}
ight)$$

2.2.10.1 Decomposing Into Entries

$$(i, j)$$
-entry of $\mathbf{AB} = a_{i1}b_{1j} + a_{i2}b_{2j} + \ldots + a_{ip}b_{pj}$
= $\mathbf{a}_i\mathbf{b}_j$

2.2.10.2 Decomposing Into Rows

$$i$$
th row of $m{A}m{B} = egin{pmatrix} m{a}_im{b}_1 & m{a}_im{b}_2 & \dots & m{a}_im{b}_n \end{pmatrix} \ &= m{a}_iigg(m{b}_1 & m{b}_2 & \dots & m{b}_nigg) \ &= m{a}_im{B}$

Thus,
$$m{A}m{B} = egin{pmatrix} m{a}_1 \ m{a}_2 \ dots \ m{a}_m \end{pmatrix} m{B} = egin{pmatrix} m{a}_1 m{B} \ m{a}_2 m{B} \ dots \ m{a}_m m{B} \end{pmatrix}$$

2.2.10.3 Decomposing Into Columns

$$j ext{th column of } oldsymbol{AB} = egin{pmatrix} oldsymbol{a}_1oldsymbol{b}_j \ oldsymbol{a}_2oldsymbol{b}_j \ oldsymbol{a}_moldsymbol{b}_j \end{pmatrix} = egin{pmatrix} oldsymbol{a}_1 \ oldsymbol{a}_2 \ dots \ oldsymbol{a}_m \end{pmatrix} oldsymbol{b}_j \ = oldsymbol{Ab}_j$$

Thus,
$$AB = A \begin{pmatrix} b_1 & b_2 & \dots & b_n \end{pmatrix} = \begin{pmatrix} Ab_1 & Ab_2 & \dots & Ab_n \end{pmatrix}$$

2.2.10.4 Decomposing Into Blocks

Matrices can be multiplied in blocks (provided that the sizes are matched).

2.2.11 Matrix Representation of Linear Equation

Given a linear equation in n variables x_1, \ldots, x_n

$$a_1x_1 + a_2x_2 + \ldots + a_nx_n = b$$

The corresponding matrix representation is

$$\begin{pmatrix} a_1 & a_2 & \dots & a_n \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = b$$

2.2.12 Matrix Representation of Linear System

Given a linear system of m equations in n variables x_1, \ldots, x_n

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n = b_2 \\ \vdots & \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \ldots + a_{mn}x_n = b_m \end{cases}$$

Then the corresponding matrix representation is as follows:

• The coefficient matrix is
$$\boldsymbol{A} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$

• The variable matrix is
$$\boldsymbol{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

• The constant matrix is
$$\boldsymbol{b} = \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix}$$

• Then Ax = b

2.2.12.1 Solution Vector to Linear System

Let
$$\boldsymbol{u} = \begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix}$$
. Then

$$x_1 = u_1, \dots, x_n = u_n$$
 is a solution to the system $\iff \mathbf{A}\mathbf{u} = \mathbf{b}$ $\iff \mathbf{u}$ is a solution to $\mathbf{A}\mathbf{x} = \mathbf{b}$

2.2.12.2 Alternative Matrix Representation of Linear System

Let a_j denote the jth column of A. Then

$$\mathbf{b} = \mathbf{A}\mathbf{x} = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} a_{11}x_1 + \dots + a_{1n}x_n \\ \vdots \\ a_{m1}x_1 + \dots + a_{mn}x_n \end{pmatrix}$$

$$= x_1 \begin{pmatrix} a_{11} \\ \vdots \\ a_{m1} \end{pmatrix} + \dots + x_n \begin{pmatrix} a_{1n} \\ \vdots \\ a_{mn} \end{pmatrix} = x_1 \mathbf{a}_1 + \dots + x_n \mathbf{a}_n$$

$$= \sum_{j=1}^n x_j \mathbf{a}_j$$

2.2.13 Transpose of Matrix

Definition. Let $\mathbf{A} = (a_{ij})_{m \times n}$ be a matrix. The transpose of \mathbf{A} is the $n \times m$ matrix \mathbf{A}^T (or \mathbf{A}^t)

• whose (i, j)-entry is a_{ji} .

Remarks.

- The *i*th row of A^T is the *i*th column of A.
- The jth column of A^T is the jth row of A.

2.2.14 Properties of Transpose of Matrix

Theorem. Let **A** be an $m \times n$ matrix. Then

- $\bullet \ (\boldsymbol{A}^T)^T = \boldsymbol{A}.$
- \mathbf{A} is symmetric $\iff \mathbf{A} = \mathbf{A}^T$.
- Let c be a scalar. Then $(c\mathbf{A})^T = c\mathbf{A}^T$.
- Let \boldsymbol{B} be $m \times n$. Then $(\boldsymbol{A} + \boldsymbol{B})^T = \boldsymbol{A}^T + \boldsymbol{B}^T$.
- Let \boldsymbol{B} be $n \times p$. Then $(\boldsymbol{A}\boldsymbol{B})^T = \boldsymbol{B}^T \boldsymbol{A}^T$.
 - $\circ \text{ Note: In general, } (\boldsymbol{A}\boldsymbol{B})^T \neq \boldsymbol{A}^T\boldsymbol{B}^T.$

2.3 Inverse of Square Matrices

2.3.1 Additive Inverse of Matrices

Let A be a matrix. Then -A is the additive inverse of A.

2.3.2 Inverse of Square Matrices

Definition. Let A be a square matrix of order n.

• If there exists a square matrix B of order n so that

$$\circ AB = I_n \text{ and } BA = I_n,$$

then A is invertible, and B is an inverse of A.

• If *A* is not invertible, then *A* is singular.

Note: Non-square matrix is neither invertible nor singular.

2.3.3 Uniqueness of Inverse of Invertible Matrices

Theorem. Let A be a square matrix. If A is invertible

- then its **inverse** is unique.
- Notation. The unique inverse of A, is denoted by A^{-1}

$$A A^{-1} = A^{-1} A = I$$

2.3.4 Cancellation Law for Invertible Matrices

Theorem. Let A be an invertible matrix. Then

$$\bullet \ AB_1 = AB_2 \implies B_1 = B_2.$$

$$\bullet \ C_1 A = C_2 A \implies C_1 = C_2.$$

Remark. The cancellation law fails if A is singular.

2.3.5 Inverse of Square Matrix of Order Two

Theorem. Let
$$\mathbf{A} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
. Then

- \mathbf{A} is invertible $\iff ad bc \neq 0$.
- If **A** is **invertible**, then $\mathbf{A}^{-1} = \frac{1}{ad bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$.

2.3.6 Properties of Invertible Matrices

Theorem. Let A, B be invertible matrices of same size. Then

- Let $c \neq 0$. $c\mathbf{A}$ is **invertible**, and $(c\mathbf{A})^{-1} = \frac{1}{c}\mathbf{A}^{-1}$.
- \mathbf{A}^T is invertible, and $(\mathbf{A}^T)^{-1} = (\mathbf{A}^{-1})^T$.
- A^{-1} is invertible, and $(A^{-1})^{-1} = A$.
- AB is invertible, and $(AB)^{-1} = B^{-1}A^{-1}$.

Let A_1, A_2, \ldots, A_k be invertible matrices of the same size. Then

•
$$(A_1A_2...A_k)^{-1} = A_k^{-1}...A_2^{-1}A_1^{-1}$$
.

In particular, $(\underbrace{AA \dots A}_{k \text{ times}})^{-1} = \underbrace{A^{-1} \dots A^{-1}A^{-1}}_{k \text{ times}}$. Thus,

•
$$(\mathbf{A}^k)^{-1} = (\mathbf{A}^{-1})^k$$
.

2.3.7 Negative Integer Powers of Square Matrices

Definition. Let \boldsymbol{A} be an **invertible matrix**. For any positive integer k, $\boldsymbol{A}^{-k} = (\boldsymbol{A}^{-1})^k$.

2.3.8 Properties of Integer Powers of Square Matrices

Theorem. Let A be an invertible matrix. For any integers m and n,

•
$$\mathbf{A}^{m+n} = \mathbf{A}^m \mathbf{A}^n$$
 and $(\mathbf{A}^m)^n = \mathbf{A}^{mn}$.

Note: If A is singular, then A^{-1} is undefined.

2.4 Elementary Matrices

2.4.1 Definition of Elementary Matrices

Definition. A square matrix is called an **elementary matrix** if it can be obtained from the **identity matrix** by performing a single **elementary row operation**.

2.4.2 Connection of Elementary Matrices to Pre-Matrix Multiplication

Theorem. Let E be an elementary matrix obtained by performing an elementary row operation on I_m . Then for any $m \times n$ matrix A, EA can be obtained by performing the same elementary row operation to A.

• Let \boldsymbol{A} be an $m \times n$ matrix.

$$\circ \ \boldsymbol{I}_{m} \xrightarrow{cR_{i}} \boldsymbol{E} \implies \boldsymbol{A} \xrightarrow{cR_{i}} \boldsymbol{E} \boldsymbol{A}.$$

$$\circ \ \boldsymbol{I}_{m} \xrightarrow{R_{i} \leftrightarrow R_{j}} \boldsymbol{E} \implies \boldsymbol{A} \xrightarrow{R_{i} \leftrightarrow R_{j}} \boldsymbol{E} \boldsymbol{A}.$$

$$\circ \ \boldsymbol{I}_{m} \xrightarrow{R_{i} + cR_{j}} \boldsymbol{E} \implies \boldsymbol{A} \xrightarrow{R_{i} + cR_{j}} \boldsymbol{E} \boldsymbol{A}.$$

2.4.3 Elementary Matrices are Invertible

Theorem.

- Every elementary matrix is invertible.
- The inverse of an elementary matrix is elementary.

Let E be an elementary matrix.

•
$$I \xrightarrow{cR_i} E \implies I \xrightarrow{\frac{1}{c}R_i} E^{-1}$$
.

•
$$I \xrightarrow{R_i \leftrightarrow R_j} E \implies I \xrightarrow{R_i \leftrightarrow R_j} E^{-1}$$
. (So $E = E^{-1}$).

•
$$I \xrightarrow{R_i + cR_j} E \implies I \xrightarrow{R_i - cR_j} E^{-1}$$
.

2.4.4 Row Equivalent Matrices are Linked by Elementary Matrices

Theorem. Two matrices A and B are row equivalent \iff there exist elementary matrices E_1, E_2, \ldots, E_k such that $B = E_k E_{k-1} \ldots E_2 E_1 A$.

Remarks. Suppose that
$$\mathbf{B} = \mathbf{E}_k \mathbf{E}_{k-1} \dots \mathbf{E}_2 \mathbf{E}_1 \mathbf{A}$$
. Then $\mathbf{A} = \mathbf{E}_1^{-1} \mathbf{E}_2^{-1} \dots \mathbf{E}_{k-1}^{-1} \mathbf{E}_k^{-1} \mathbf{B}$

2.4.5 Main Theorem for Invertible Matrices

Theorem. Let A be a square matrix. Then the following are equivalent:

- 1. A is an invertible matrix.
- 2. Linear system Ax = b has a unique solution.
- 3. Linear system Ax = 0 has only the trivial solution.
- 4. The reduced row-echelon form of A is I.
- 5. **A** is the product of **elementary matrices**.

2.4.6 Checking Whether a Square Matrix is Invertible

• A square matrix is invertible

- \iff Its reduced row-echelon form is I
- ← All the columns in its row-echelon form are pivot.
- ⇔ All the rows in its row-echelon form are nonzero.

• A square matrix is singular

- \iff Its reduced row-echelon form is not I
- ⇔ Some columns in its row-echelon form are non-pivot.
- ⇐⇒ Some rows in its row-echelon form are zero.

2.4.7 Finding Inverse of an Invertible Matrix

Theorem. Let A be an invertible matrix. The reduced row-echelon form of $(A \mid I)$ is $(I \mid A^{-1})$.

2.4.8 Weaker Requirement for Invertible Matrices

Theorem. Let A and B be square matrices of the same size. If AB = I, then A and B are invertible, and $A^{-1} = B$, $B^{-1} = A$.

2.4.9 Invertibility of Product of Matrices

Corollary. Let A_1, A_2, \ldots, A_k be square matrices of the same size. Then

- $A_1 A_2 \dots A_k$ is invertible \iff all A_i are invertible.
- $A_1 A_2 \dots A_k$ is singular \iff some A_i are singular.

2.4.10 Elementary Column Operations

Definition. The **elementary column operations** are the following operations on columns of a matrix:

Description of Operation	Notation
Multiply the i th column by a nonzero constant k	kC_i
Interchange the i th and j th columns	$C_i \leftrightarrow C_j$
Add k times the j th column to the i th column	$C_i + kC_j$

2.4.11 Performing a Single Elementary Column Operation on Identity Matrix Gives an Elementary Matrix

Let E be the matrix obtained from I by a single elementary column operation. Then E is an elementary matrix (i.e. E can be obtained from I by a single elementary row operation).

•
$$I \xrightarrow{kC_i} E \iff I \xrightarrow{kR_i} E$$
.

•
$$I \xrightarrow{C_i \leftrightarrow C_j} E \iff I \xrightarrow{R_i \leftrightarrow R_j} E$$
.

•
$$I \xrightarrow{C_i + kC_j} E \iff I \xrightarrow{R_j + kR_i} E$$
.

2.4.12 Connection of Elementary Matrices to Matrix Post-Multiplication

Theorem. Let E be an elementary matrix obtained by performing an elementary column operation on I_n . Then for any $m \times n$ matrix A, AE can be obtained by performing the same elementary column operation to A.

$$\bullet \ I \xrightarrow{kC_i} E \implies A \xrightarrow{kC_i} AE.$$

$$\bullet \ \ I \xrightarrow{C_i \leftrightarrow C_j} E \implies A \xrightarrow{C_i \leftrightarrow C_j} AE.$$

•
$$I \xrightarrow{C_i + kC_j} E \implies A \xrightarrow{C_i + kC_j} AE$$
.

2.5 Determinant

2.5.1 (i, j)-cofactor

Definition. Let $\mathbf{A} = (a_{ij})_{n \times n}$. Let \mathbf{M}_{ij} be the **submatrix** obtained from \mathbf{A} by deleting the *i*th row and *j*th column. Then for $1 \le i, j \le n$, the (i, j)-cofactor of \mathbf{A} is

$$A_{ij} = (-1)^{i+j} \det(\boldsymbol{M}_{ij})$$

2.5.2 Definition of Determinant of Square Matrix

Definition. Let $\mathbf{A} = (a_{ij})_{n \times n}$. Its **determinant** is:

- If n = 1, define $\det(\mathbf{A}) = a_{11}$.
- If n > 1, let A_{ij} be its (i, j)-cofactor, define

$$\circ \det(\mathbf{A}) = a_{11}A_{11} + a_{12}A_{12} + \ldots + a_{1n}A_{1n}$$

2.5. DETERMINANT 45

2.5.3 Determinant of 2×2 Matrix

Let
$$\mathbf{A} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
. Then $\det(A) = ad - bc$.

2.5.4 Broken Diagonal Formula for Determinant of 3×3 Matrix

Let
$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$
. Then

$$\det(\mathbf{A}) = (a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32}) - (a_{11}a_{23}a_{32} + a_{12}a_{21}a_{33} + a_{13}a_{22}a_{31})$$

- The positive terms come from the
 - o 3 (broken) diagonals from the top left to the bottom right.
- The negative terms come from the
 - 3 (broken) diagonals from the top right to the bottom left.

Warning: The "diagonal expansion" of det(A) for 2×2 or 3×3 matrices is not valid if the order ≥ 4 .

2.5.5 Properties of Determinant

2.5.5.1 Properties of Determinant

Theorem. For any square matrices A and B of the same size and any scalar c,

- For $n \in \mathbb{N}$, $\det(\mathbf{I}_n) = 1$.
- $\det(\mathbf{A}) = \det(\mathbf{A}^T)$.
- $\det(\mathbf{A}\mathbf{B}) = \det(\mathbf{A})\det(\mathbf{B})$.
- $\det(c\mathbf{A}) = c^n \det(\mathbf{A})$, where \mathbf{A} is $n \times n$.
- $\det(\mathbf{A}^{-1}) = \det(\mathbf{A})^{-1}$ if \mathbf{A} is invertible.

2.5.5.2 Change in Determinant by Elementary Row Operations

Theorem. For any square matrices A and B,

•
$$A \xrightarrow{cR_i} B \implies \det(B) = c \det(A)$$
.
• In particular, $I \xrightarrow{cR_i} E \implies \det(E) = c$.

•
$$\mathbf{A} \xrightarrow{R_i \leftrightarrow R_j} \mathbf{B} \implies \det(\mathbf{B}) = -\det(\mathbf{A}).$$

• In particular,
$$I \xrightarrow{R_i \leftrightarrow R_j} E \implies \det(E) = -1$$
.

$$\bullet \ \boldsymbol{A} \xrightarrow{R_i + cR_j} \boldsymbol{B} \implies \det(\boldsymbol{B}) = \det(\boldsymbol{A}).$$

• In particular,
$$I \xrightarrow{R_i + cR_j} E \implies \det(E) = 1$$
.

2.5.5.3 Change in Determinant by Elementary Matrices

Theorem. Let **A** be a square matrix. For any elementary matrix of the same order,

$$\det(\mathbf{E}\mathbf{A}) = \det(\mathbf{E})\det(\mathbf{A})$$

2.5.5.4 Change in Determinant Between Row Equivalent Matrices

Theorem. Suppose square matrices A and B are row equivalent. Then there exist elementary matrices E_1, E_2, \ldots, E_k such that

$$B = E_k \dots E_2 E_1 A$$

Then

$$\det(\boldsymbol{B}) = \det(\boldsymbol{E}_k) \dots \det(\boldsymbol{E}_2) \det(\boldsymbol{E}_1) \det(\boldsymbol{A})$$

Since $det(\mathbf{E}) \neq 0$ for every **elementary matrix** \mathbf{E} ,

- $\det(\mathbf{A}) = 0 \iff \det(\mathbf{B}) = 0;$
- Equivalently, $det(\mathbf{A}) \neq 0 \iff det(\mathbf{B}) \neq 0$.

2.5.5.5 Determinant of Square Matrix With Zero Row

Theorem. Suppose a square matrix A has a zero row. Then det(A) = 0.

2.5.5.6 Invertibility and Determinant

Theorem. For any square matrix A

- $det(\mathbf{A}) = 0 \iff \mathbf{A} \text{ is singular};$
- Equivalently, $det(A) \neq 0 \iff A$ is invertible,

2.5.5.7 Determinant of Triangular Matrix

Theorem. Suppose $\mathbf{A} = (a_{ij})_{n \times n}$ is triangular. Then

$$\det(\mathbf{A}) = a_{11}a_{22}\dots a_{nn}$$

Remarks.

- Note that a row-echelon form of a square matrix is always upper triangular.
 - To find the **determinant** using **elementary row operation**, it suffices to use **Gaussian elimination** to get a **row-echelon form**.

2.5. DETERMINANT 47

2.5.6 Cofactor Expansion

Theorem. Let $\mathbf{A} = (a_{ij})_{n \times n}$ and A_{ij} denote the (i,j)-cofactor of \mathbf{A} . Then for $1 \leq i \leq n$,

- $\det(\mathbf{A}) = a_{i1}A_{i1} + a_{i2}A_{i2} + \ldots + a_{in}A_{in}$
- This is called the **cofactor expansion along the** *i***th row**.

and for $1 \le j \le n$,

- $\det(\mathbf{A}) = a_{1i}A_{1i} + a_{2i}A_{2i} + \ldots + a_{ni}A_{ni}$
- This is called the **cofactor expansion along the** *j*th **column**.

Remarks.

- In evaluating the **determinant** using **cofactor expansion**,
 - expand along the row or column with the most zeros.

2.5.7 Finding Determinant Efficiently

Given $\mathbf{A} = (a_{ij})_{n \times n}$, $\det(\mathbf{A})$ may be found as follows:

- \mathbf{A} has a zero row/column $\implies \det(\mathbf{A}) = 0$.
- \mathbf{A} is triangular $\implies \det(\mathbf{A}) = a_{11}a_{22}\dots a_{nn}$.
- Suppose that *A* is not **triangular**.

$$oegin{array}{l} n = 2 \implies \det(\mathbf{A}) = a_{11}a_{22} - a_{12}a_{21} \end{array}$$

- If a row/column has many 0, use **cofactor expansion**.
- Otherwise, use elementary row operations to get row-echelon form.

*
$$\det(\mathbf{E}\mathbf{A}) = \det(\mathbf{E}) \det(\mathbf{A}).$$

2.5.8 Adjoint Matrix

2.5.8.1 Definition of Adjoint Matrix

Definition. Let A be a square matrix of order n. The (classical) adjoint (or adjugate, or adjunct) of A is

$$\mathbf{adj}(\mathbf{A}) = (A_{ji})_{n \times n}$$

where A_{ij} is the (i, j)-cofactor of \boldsymbol{A} .

2.5.8.2 Properties of Adjoint Matrix

Theorem. Let A and B be square matrices of order n. Then

- A[adj(A)] = det(A)I.
- $[\mathbf{adj}(\mathbf{A})]\mathbf{A} = \det(\mathbf{A})\mathbf{I}$.
- If **A** is **invertible**, then

$$\circ \ \boldsymbol{A}^{-1} = \frac{1}{\det(\boldsymbol{A})} \operatorname{adj}(\boldsymbol{A})$$

$$\circ \ [\mathbf{adj}(\boldsymbol{A})]^{-1} = \frac{1}{\det(\boldsymbol{A})} \boldsymbol{A}$$

$$\circ \operatorname{adj}(A^{-1}) = [\operatorname{adj}(A)]^{-1}$$

$$\circ \ \det(\mathbf{adj}(\boldsymbol{A})) = [\det(\boldsymbol{A})]^{n-1}$$

$$\circ \operatorname{adj}(AB) = \operatorname{adj}(B)\operatorname{adj}(A)$$

2.5.9 Cramer's Rule

Let A be an invertible matrix of order n. Then for every column matrix b of size $n \times 1$, the linear system Ax = b has a unique solution:

$$m{x} = rac{1}{\det(m{A})} egin{pmatrix} \det(m{A}_1) \ \det(m{A}_2) \ dots \ \det(m{A}_n) \end{pmatrix}$$

where A_j is obtained from A by replacing its jth column by b. Therefore, for j = 1, 2, ..., n,

$$x_j = \frac{\det(\boldsymbol{A}_j)}{\det(\boldsymbol{A})}$$

Chapter 3

Vector Spaces

3.1 Euclidean *n*-Spaces

3.1.1 Introduction to *n*-vectors

3.1.1.1 Definition of n-vector

Definition. An *n*-vector or ordered *n*-tuple of real numbers is

$$\boldsymbol{v} = (v_1, v_2, \dots, v_n)$$

where $v_i \in \mathbb{R}$ is the *i*th component or *i*th coordinate of v.

3.1.1.2 Zero Vector

Definition. The *n*-vector $\mathbf{0} = (0, 0, \dots, 0)$ is the **zero vector**.

3.1.2 *n*-vector Operations

3.1.2.1 Equal n-vectors

Definition. Let $\mathbf{u} = (u_1, u_2, \dots, u_n)$ and $\mathbf{v} = (v_1, v_2, \dots, v_n)$. Then \mathbf{u} and \mathbf{v} are equal if $u_i = v_i$ for all $i = 1, \dots, n$.

3.1.2.2 n-vector Addition, Subtraction & Scalar Multiplication

Definition. Let $\mathbf{u} = (u_1, u_2, \dots, u_n)$, $\mathbf{v} = (v_1, v_2, \dots, v_n)$, and $c \in \mathbb{R}$. The following operations are defined:

- Scalar Multiplication: $cv = (cv_1, cv_2, \dots, cv_n)$
- Negative: $-\mathbf{v} = (-1)\mathbf{v}$
- Addition: $u + v = (u_1 + v_1, u_2 + v_2, \dots, u_n + v_n)$
- Subtraction: $u v = (u_1 v_1, u_2 v_2, \dots, u_n v_n)$

3.1.3 Properties of *n*-vectors

Theorem. Let u, v, w be n-vectors and $c, d \in \mathbb{R}$. Then

- $\bullet \ \boldsymbol{u} \boldsymbol{v} = \boldsymbol{u} + (-\boldsymbol{v})$
- Commutative Law for Vector Addition:

$$\circ u + v = v + u$$

• Associative Law for Vector Addition:

$$\circ (u + v) + w = u + (v + w)$$

• Additive Identity and Additive Inverse:

$$v + 0 = v \text{ and } v + (-v) = 0$$

• Distributive Law for Scalar Multiplication over Addition:

$$\circ c(\boldsymbol{u} + \boldsymbol{v}) = c\boldsymbol{u} + c\boldsymbol{v}$$

$$\circ (c+d)\mathbf{v} = c\mathbf{v} + d\mathbf{v}$$

•
$$c(d\mathbf{v}) = (cd)\mathbf{v} = d(c\mathbf{v})$$

$$\circ$$
 In particular, $-c \boldsymbol{v} = (-c) \boldsymbol{v} = c(-\boldsymbol{v})$ and $-(-\boldsymbol{v}) = \boldsymbol{v}$

•
$$1\boldsymbol{v} = \boldsymbol{v}$$

3.1.4 *n*-vectors as Matrices

An *n*-vector (v_1, v_2, \ldots, v_n) can be viewed as

• a row matrix (row vector)
$$(v_1 \ v_2 \ \dots \ v_n)$$
, or

• a column matrix (column vector)
$$\begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix}$$

3.1.5 Vectors in xy-Plane

3.1.5.1 Vectors as Points on the xy-Plane

Every point P on the xy-plane is represented by a vector $\mathbf{v} = (a, b)$ where

- a is the x-coordinate and b is the y-coordinate; and
- v is the arrow from the origin O to the point P, denoted by \overrightarrow{OP}

3.1.5.2 Vectors as Change from Initial Point to End Point

A vector (a, b) represents the change from the **initial point** (x_1, y_1) to the **end point** (x_2, y_2) where $a = x_2 - x_1, b = y_2 - y_1$.

3.1.5.3 Length of Vectors

Definition. Let $v = (v_1, v_2)$ be a vector in xy-plane. Its length is

$$\|\boldsymbol{v}\| = \sqrt{v_1^2 + v_2^2}$$

3.1.5.4 Properties of Length of Vectors

Theorem.

- $\bullet ||c\boldsymbol{v}|| = |c|||\boldsymbol{v}||$
- $v = 0 \iff ||v|| = 0$

3.1.5.5 Geometrical Interpretation of Scalar Multiplication

Let $\mathbf{v} = (v_1, v_2)$ and $c \in \mathbb{R}$. Then

- cv is a vector **parallel** to v such that
 - \circ its length is |c| times the length of \boldsymbol{v}
 - 1. $c = 0 \implies c\mathbf{v} = 0\mathbf{v} = \mathbf{0}$ is the **zero vector**.
 - 2. $c > 0 \implies c \boldsymbol{v}$ has the same direction as \boldsymbol{v}
 - 3. $c < 0 \implies c\mathbf{v}$ has the opposite direction of \mathbf{v}

3.1.5.6 Geometrical Interpretation of Vector Addition

Let $\mathbf{u} = (u_1, u_2)$ and $\mathbf{v} = (v_1, v_2)$. Then $\mathbf{u} + \mathbf{v}$ is the vector obtained as follows:

- 1. Parallel shift v so that its initial point is the same as the end of u.
- 2. Then u + v is the vector from the intial point of u to the end point of v.

3.1.5.7 Geometrical Interpretation of Vector Subtraction

Let $\mathbf{u} = (u_1, u_2)$ and $\mathbf{v} = (v_1, v_2)$. Then $\mathbf{u} - \mathbf{v}$ is the vector obtained as follows:

- 1. Parallel shift v so that u and v have the same initial point.
- 2. Then u v is the vector from the end point of v to the end point of u.

3.1.6 Vectors in xyz-Space

3.1.6.1 Vectors as Points on the xyz-Space

Every point P on the xyz-space is represented by a vector $\mathbf{v} = (a, b, c)$ where

- a is the x-coordinate, b is the y-coordinate, and c is the z-coordinate; and
- v is the arrow from the origin O to the point P, denoted by \overrightarrow{OP}

3.1.7 Euclidean Spaces

Definition. The Euclidean n-space (or simply n-space) is the set of all n-vectors of real numbers, denoted by \mathbb{R}^n where

$$\mathbb{R}^n = \{(v_1, v_2, \dots, v_n) \mid v_1, v_2, \dots, v_n \in \mathbb{R}\}$$

 $\boldsymbol{v} \in \mathbb{R}^n \iff \boldsymbol{v}$ is of the form $\boldsymbol{v} = (v_1, v_2, \dots, v_n)$ for real numbers v_1, v_2, \dots, v_n

• In particular,

$$\circ n = 1 \implies \mathbb{R} = \mathbb{R}^1$$
 is the real line.

$$n = 2 \implies \mathbb{R}^2$$
 is the xy-plane.

$$n = 3 \implies \mathbb{R}^3$$
 is the xyz -space.

- Given a linear system Ax = b in m equations and n variables
 - \circ \boldsymbol{x} as be viewed as an *n*-vector, i.e. $\boldsymbol{x} \in \mathbb{R}^n$
 - Then the solution set of Ax = b is a subset of \mathbb{R}^n

3.1.8 Implicit and Explicit Forms of Linear Systems

3.1.8.1 Definition of Implicit and Explicit Forms

Definition.

• A linear system is given in the implicit form as follows:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1, \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2, \\ \vdots & \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m, \end{cases}$$

• Its general solution is in the **explicit form**.

3.1.8.2 Lines in \mathbb{R}^2

3.1.8.2.1 Vector Equation for line in \mathbb{R}^2

A **straight line** in \mathbb{R}^2 is determined by a point (x_0, y_0) on the line, and its direction vector $(a, b) \neq \mathbf{0}$.

• A point on the line is of the form $(x_0, y_0) + t(a, b)$, where $t \in \mathbb{R}$

3.1.8.2.2 Implicit to Explicit Form

Refer to Chapter 1.1.5 on how to convert implicit form to explicit form.

3.1.8.2.3 Explicit to Implicit Form

Given an explicit form of a line in \mathbb{R}^2 :

$$\{(x_0 + at, y_0 + bt) \mid t \in \mathbb{R}\}\$$

where x_0, y_0, a, b are real constants. An implicit form may be obtained as follows:

1. Let
$$x = x_0 + at$$
, and $y = y_0 + bt$

2. Then
$$t = \frac{x - x_0}{a}$$
 and $t = \frac{y - y_0}{b} \implies \frac{x - x_0}{a} = \frac{y - y_0}{b}$

- 3. Cross multiply to get $bx bx_0 = ay ay_0 \implies bx ay = bx_0 ay_0$
- 4. Hence, the implicit form is $\{(x,y) \mid bx ay = bx_0 ay_0\}$

3.1.8.3 Planes in \mathbb{R}^3

3.1.8.3.1 Vector Equation for plane in \mathbb{R}^3

A **plane** in \mathbb{R}^3 is determined by a point (x_0, y_0, z_0) on the plane, and two non-parallel vectors parallel to the plane (a_1, b_1, c_1) and (a_2, b_2, c_2) .

• A point on the plane is of the form $(x_0, y_0, z_0) + s(a_1, b_1, c_1) + t(a_2, b_2, c_2)$, where $s, t \in \mathbb{R}$

3.1.8.3.2 Implicit to Explicit Form

Refer to Chapter 1.1.5 on how to convert implicit form to explicit form.

3.1.8.3.3 Explicit to Implicit Form

Given an explicit form of a plane in \mathbb{R}^3 :

$$\{(x_0 + a_1s + a_2t, y_0 + b_1s + b_2t, z_0 + c_1s + c_2t) \mid t \in \mathbb{R}\}$$

where $x_0, y_0, z_0, a_i, b_i, c_i$ are real constants. An implicit form may be obtained as follows:

1. Let
$$x = x_0 + a_1s + a_2t$$
, $y = y_0 + b_1s + b_2t$, and $z = z_0 + c_1s + c_2t$

2. Then we obtain the following **linear system** in s, t:

$$\begin{cases} a_1s + a_2t = x - x_0 \\ b_1s + b_2t = y - y_0 \\ c_1s + c_2t = z - z_0 \end{cases}$$

- 3. Perform Gaussian Elimination to its corresponding augmented matrix.
- 4. The (3,3)-entry of its **row-echelon form** is a function f in variables x,y,z
- 5. Since the system is **consistent**, f(x, y, z) = 0.
- 6. Hence, the implicit form is $\{(x, y, z) \mid f(x, y, z) = 0\}$

3.1.8.4 Lines in \mathbb{R}^3

3.1.8.4.1 Vector Equation for line in \mathbb{R}^3

A **straight line** in \mathbb{R}^3 is determined by a point (x_0, y_0, z_0) on the line, and its direction vector $(a, b, c) \neq \mathbf{0}$.

• A point on the line is of the form $(x_0, y_0, z_0) + t(a, b, c)$, where $t \in \mathbb{R}$

3.1.8.4.2 Implicit to Explicit Form

Solve the **linear system** of two equations (each representing a plane) in three variables to convert implicit form to explicit form.

3.1.8.4.3 Explicit to Implicit Form

Given an explicit form of a line in \mathbb{R}^3 :

$$\{(x_0 + at, y_0 + bt, z_0 + ct) \mid t \in \mathbb{R}\}\$$

where x_0, y_0, z_0, a, b, c are real constants. An implicit form may be obtained as follows:

- 1. Let $x = x_0 + at$, $y = y_0 + bt$, and $z = z_0 + ct$
- 2. Find the relation between x and y, say f(x,y) = 0
- 3. Find the relation between x and z, say g(x,z)=0
- 4. Then, the implicit form is $\{(x, y, z) \mid f(x, y) = 0 \& g(x, z) = 0\}$

3.2 Linear Combinations and Linear Spans

3.2.1 Definition of Linear Combination

Definition. Let v_1, v_2, \ldots, v_k be vectors in \mathbb{R}^n . A linear combination of v_1, v_2, \ldots, v_k has the form

$$c_1 \boldsymbol{v}_1 + c_2 \boldsymbol{v}_2 + \ldots + c_k \boldsymbol{v}_k$$

where $c_1, c_2, \ldots, c_k \in \mathbb{R}$

Remarks. In particular, **0** is a linear combination of v_1, v_2, \ldots, v_k :

$$\mathbf{0} = 0\mathbf{v}_1 + 0\mathbf{v}_2 + \ldots + 0\mathbf{v}_k$$

3.2.2 Definition of Linear Span

Definition. Let $S = \{v_1, v_2, \dots, v_k\}$ be a subset of \mathbb{R}^n . The set of all linear combinations of v_1, v_2, \dots, v_k is

$$\{c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \ldots + c_k \mathbf{v}_k \mid c_1, c_2, \ldots, c_k \in \mathbb{R}\}$$

and is called the **linear span** of S (or v_1, v_2, \ldots, v_k), denoted by span(S) or span $\{v_1, v_2, \ldots, v_k\}$ respectively.

Remarks. \boldsymbol{v} is a linear combination of $\boldsymbol{v}_1, \boldsymbol{v}_2, \ldots, \boldsymbol{v}_k \iff \boldsymbol{v} \in \operatorname{span}\{\boldsymbol{v}_1, \boldsymbol{v}_2, \ldots, \boldsymbol{v}_k\}$

3.2.3 Criterion for span $(S) = \mathbb{R}^n$

3.2.3.1 When $k \ge n$

Let $S = \{v_1, v_2, \dots, v_k\} \subseteq \mathbb{R}^n$. The following steps allow us to check whether span $(S) = \mathbb{R}^n$:

- 1. View each \boldsymbol{v}_i as a column vector
- 2. Let $\mathbf{A} = \begin{pmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \dots & \mathbf{v}_k \end{pmatrix}$
- 3. Find a row-echelon form R of A
 - If **R** has a zero row, then span $(S) \neq \mathbb{R}^n$
 - If **R** has no zero row, then span $(S) = \mathbb{R}^n$

3.2.3.2 When k < n

Theorem. Let $S = \{v_1, v_2, \dots, v_k\} \subseteq \mathbb{R}^n$. $k < n \implies \operatorname{span}(S) \neq \mathbb{R}^n$

3.2.4 Properties of Linear Spans

3.2.4.1 Linear Spans Always Contains Zero Vector

Theorem. Let $S = \{\boldsymbol{u}_1, \boldsymbol{u}_2, \dots, \boldsymbol{u}_k\} \subseteq \mathbb{R}^n$. Then

- $\mathbf{0} \in \operatorname{span}(S)$, where $\mathbf{0}$ is the zero vector in \mathbb{R}^n
 - \circ Hence, span $(S) \neq \emptyset$

3.2.4.2 Linear Spans Are Closed Under Linear Combination

Theorem. Let $S = \{u_1, u_2, \dots, u_k\} \subseteq \mathbb{R}^n$, $v_1, v_2, \dots, v_r \in \text{span}(S)$, and $c_1, c_2, \dots, c_r \in \mathbb{R}$. Then

$$c_1 \boldsymbol{v}_1 + c_2 \boldsymbol{v}_2 + \ldots + c_r \boldsymbol{v}_r \in \operatorname{span}(S)$$

In particular,

• $\operatorname{span}(S)$ is **closed** under scalar multiplication.

$$\circ \ \boldsymbol{v} \in \operatorname{span}(S) \text{ and } c \in \mathbb{R} \implies c\boldsymbol{v} \in \operatorname{span}(S)$$

• $\operatorname{span}(S)$ is **closed** under addition.

$$\circ \ \boldsymbol{u} \in \operatorname{span}(S) \text{ and } \boldsymbol{v} \in \operatorname{span}(S) \implies \boldsymbol{u} + \boldsymbol{v} \in \operatorname{span}(S)$$

3.2.4.3 When a Span is a Subset of Another Span

Theorem. Given two subsets of \mathbb{R}^n :

$$S_1 = \{ \boldsymbol{u}_1, \boldsymbol{u}_2, \dots, \boldsymbol{u}_k \}, S_2 = \{ \boldsymbol{v}_1, \boldsymbol{v}_2, \dots, \boldsymbol{v}_m \}$$

Then

$$\operatorname{span}(S_1) \subseteq \operatorname{span}(S_2) \iff \operatorname{Every} \boldsymbol{u}_i \text{ is a linear combination of } \boldsymbol{v}_1, \boldsymbol{v}_2, \dots, \boldsymbol{v}_m$$

3.2.4.4 Linear Spans with Redundant Vectors

Theorem. Let $v_1, v_2, \ldots, v_{k-1}, v_k \in \mathbb{R}^n$. Then

$$\boldsymbol{v}_k$$
 is a linear combination of $\boldsymbol{v}_1, \boldsymbol{v}_2, \dots, \boldsymbol{v}_{k-1} \implies \operatorname{span}\{\boldsymbol{v}_1, \boldsymbol{v}_2, \dots, \boldsymbol{v}_{k-1}\} = \operatorname{span}\{\boldsymbol{v}_1, \boldsymbol{v}_2, \dots, \boldsymbol{v}_{k-1}, \boldsymbol{v}_k\}$

3.2.5 Criterion for Vector Belongs to Span

Let $S = \{v_1, v_2, \dots, v_k\} \subseteq \mathbb{R}^n$. The following steps allow us to check whether a vector $v \in \text{span}(S)$:

- 1. View each v_i as a column vector.
- 2. Let $\mathbf{A} = \begin{pmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \dots & \mathbf{v}_k \end{pmatrix}$
- 3. Check if the linear system Ax = v is consistent.
 - If Ax = v is consistent, then $v \in \text{span}(S)$
 - If $\mathbf{A}\mathbf{x} = \mathbf{v}$ is inconsistent, then $\mathbf{v} \notin \operatorname{span}(S)$

3.3. SUBSPACES 57

3.3 Subspaces

3.3.1 Definition of Subspaces

Definition. Let V be a subset of \mathbb{R}^n . Then V is called a **subspace** of \mathbb{R}^n if there exist $v_1, v_2, \ldots, v_k \in \mathbb{R}^n$ such that:

$$V = \operatorname{span}\{\boldsymbol{v}_1, \boldsymbol{v}_2, \dots, \boldsymbol{v}_k\}$$

More precisely,

- V is the subspace spanned by $S = \{v_1, v_2, \dots, v_k\};$
- $S = \{v_1, v_2, \dots, v_k\}$ spans the subspace V.

3.3.2 Zero Space

Let $\mathbf{0} \in \mathbb{R}^n$ be the zero vector. Then

 $\{0\} = \operatorname{span}\{0\}$ is a subspace of \mathbb{R}^n called the **zero space**

3.3.3 Euclidean n-Space is a Subspace

Let e_i denote the *n*-vector whose *i*th coordinate is 1 and elsewhere 0. Then

$$\mathbb{R}^n = \operatorname{span}\{\boldsymbol{e}_1, \boldsymbol{e}_2, \dots, \boldsymbol{e}_n\}$$
 is a subspace of \mathbb{R}^n

3.3.4 Showing That a Subset is a Subspace

To show that a subset V of \mathbb{R}^n is a subspace:

- 1. Find $\boldsymbol{v}_1, \boldsymbol{v}_2, \dots, \boldsymbol{v}_k \in \mathbb{R}^n$ such that
 - V is the set containing all vectors of the form:

$$\boldsymbol{v} = c_1 \boldsymbol{v}_1 + c_2 \boldsymbol{v}_2 + \ldots + c_k \boldsymbol{v}_k$$

where $c_1, c_2, \ldots, c_k \in \mathbb{R}$

3.3.5 Showing That a Subset is Not a Subspace

A subset V of \mathbb{R}^n is not a subspace if any of the following fails:

- $0 \in V$
- $c \in \mathbb{R} \& \mathbf{v} \in V \implies c\mathbf{v} \in V$
- $\boldsymbol{u} \in V \& \boldsymbol{v} \in V \implies \boldsymbol{u} + \boldsymbol{v} \in V$

3.3.6 Subspaces of \mathbb{R}^1 , \mathbb{R}^2 , \mathbb{R}^3

3.3.6.1 Subspaces of $\mathbb{R}^1 = \mathbb{R}$

Let the nonzero vector $v = v \in \mathbb{R}$. The following are the subspaces of \mathbb{R}^1 :

- $\{0\}$,
- $\mathbb{R} = \operatorname{span}\{\boldsymbol{v}\}.$

3.3.6.2 Subspaces of \mathbb{R}^2

Let the nonzero vectors $\boldsymbol{u}=(u_1,u_2)\in\mathbb{R}^2, \boldsymbol{v}=(v_1,v_2)\in\mathbb{R}^2$. The following are the **subspaces** of \mathbb{R}^2 :

- $\{\mathbf{0}\} = \{(0,0)\},\$
- $\operatorname{span}\{v\}$ (straight line passing through the origin),
- $\mathbb{R}^2 = \text{span}\{u, v\}$ if u and v are not parallel.

3.3.6.3 Subspaces of \mathbb{R}^3

Let the nonzero vectors $\mathbf{u} = (u_1, u_2, u_3) \in \mathbb{R}^3$, $\mathbf{v} = (v_1, v_2, v_3) \in \mathbb{R}^3$. The following are the subspaces of \mathbb{R}^3 :

- $\{0\} = \{(0,0,0)\},\$
- span $\{v\}$ (straight line passing through the origin or intersection of two planes containing the origin),
- span $\{u,v\}$ if u and v are not parallel (a plane containing the origin),
- $\bullet \mathbb{R}^3$

3.3.7 Solution Set of Homogeneous Linear System is a Subspace of \mathbb{R}^n

Theorem. The solution set of a homogeneous linear system of n variables is a subspace of \mathbb{R}^n .

3.3.8 Solution Space

Definition. The solution set of a homogeneous linear system is called the solution space of the system.

3.3.9 A Subspace of \mathbb{R}^n is Always The Solution Space of a Homogeneous Linear System

59

Theorem. The subspace of \mathbb{R}^n is always the solution space of a homogeneous linear system.

3.4 Vector Spaces

3.4.1 Definition of Vector Space

Definition. A set V is a vector space if V is a subspace of \mathbb{R}^n for some $n \in \mathbb{N}$.

3.4.2 Expanded Definition of Subspace

Definition. If W and V are vector spaces such that $W \subseteq V$, then W is a subspace of V.

3.5 Linear Independence

3.5.1 Definition of Linear Independence

Definition. Let $S = \{v_1, v_2, \dots, v_k\} \subseteq \mathbb{R}^n$. If the equation $c_1v_1 + c_2v_2 + \dots + c_kv_k = 0$ has a non-trivial solution, then

- S is a linearly dependent set,
- v_1, v_2, \ldots, v_k are linearly dependent.

If the equation has only the trivial solution, then

- S is a linearly independent set,
- v_1, v_2, \ldots, v_k are linearly independent.

3.5.2 Linear Independence of Subset/Superset

Theorem. Let S_1, S_2 be finite subsets of \mathbb{R}^n such that $S_1 \subseteq S_2$. Then

3.5.2.1 Superset Preserves Linear Dependence

 S_1 linearly dependent $\Longrightarrow S_2$ linearly dependent.

3.5.2.2 Subset Preserves Linear Independence

 S_2 linearly independent $\Longrightarrow S_1$ linearly independent.

3.5.3 Linear Independence of Sets Containing Zero Vector

Theorem. $0 \in S \subseteq \mathbb{R}^n \implies S$ is linearly dependent.

3.5.4 Linear Independence of Sets Containing Only One Vector

Theorem. Let $v \in \mathbb{R}^n$. Then $\{v\}$ is linearly independent $\iff v \neq 0$.

3.5.5 Linear Independence and Linear Combinations

Theorem. Let $S = \{v_1, v_2, \dots, v_k\} \subseteq \mathbb{R}^n, k \geq 2$. Then S is linearly dependent \iff there exists v_i such that $v_i \in \text{span}\{v_1, \dots, v_{i-1}, v_{i+1}, \dots, v_k\}$.

3.5.6 Cardinality Upper Bound for Linear Independence

Theorem. Let $S \subseteq \mathbb{R}^n$. $|S| > n \implies S$ is linearly dependent.

3.5.7 Adding Vectors to a Linearly Independent Set

Theorem. Suppose $S \subseteq \mathbb{R}^n$ is linearly independent, $\boldsymbol{v} \in \mathbb{R}^n$, and $\boldsymbol{v} \notin \operatorname{span}(S)$. Then $S \cup \{\boldsymbol{v}\}$ is linearly independent.

3.6 Bases

3.6.1 Definition of Bases

Definition. Let S be a finite subset of a **vector space** V. Then S is a **basis** (plural **bases**) for V if

- S is linearly independent, and
- $\operatorname{span}(S) = V$.

3.6.1.1 Remarks

- A basis for a vector space V contains
 - \circ the smallest possible number of vectors that spans V, and
 - the largest possible number of vectors that are linearly independent
- For convenience, the **basis** for $\{0\}$ is defined to be \emptyset .
- Other than $\{0\}$, any vector space has infinitely many different bases.

3.6. BASES 61

3.6.2 Basis and Unique Linear Combination

Theorem. Let S be a finite subset of a vector space V. Then the following are equivalent

- S is a **basis** for V.
- Every $v \in V$ can be uniquely expressed (there is exactly one $c_1, \ldots, c_k \in \mathbb{R}$) as

$$\circ \mathbf{v} = c_1 \mathbf{v}_1 + \dots + c_k \mathbf{v}_k$$

3.6.3 Coordinate Vector

Definition. Let S be a finite subset of a **vector space** V.

• For every $v \in V$, there exist unique $c_1, \ldots, c_k \in \mathbb{R}$ such that

$$\circ \mathbf{v} = c_1 \mathbf{v}_1 + \dots + c_k \mathbf{v}_k$$

- c_1, \ldots, c_k are the **coordinates** of v relative to S.
- (c_1, \ldots, c_k) is the **coordinate vector** of v relative to the basis S, denoted by $(v)_S$.

3.6.3.1 Remark

The order of $\boldsymbol{v}_1, \ldots, \boldsymbol{v}_k$ is fixed.

3.6.4 Standard Basis

Definition. Let $E = \{e_1, \dots, e_n\} \subseteq \mathbb{R}^n$ where

•
$$e_1 = (1, 0, \dots, 0), e_2 = (0, 1, \dots, 0), \dots, e_n = (0, 0, \dots, 1)$$

E is the standard basis for \mathbb{R}^n .

• For any $\mathbf{v} = (v_1, \dots, v_n) \in \mathbb{R}^n$,

$$\circ (\boldsymbol{v})_E = (v_1, \dots, v_n) = \boldsymbol{v}$$

3.6.5 Properties of Coordinate Vector

Theorem. Let S be a basis for a vector space V. Suppose |S| = k. Let $v_1, \ldots, v_r \in V$

3.6.5.1 Zero Coordinate Vector

$$(\boldsymbol{v})_S = \mathbf{0} \Leftrightarrow \boldsymbol{v} = \mathbf{0}$$

3.6.5.2 Homogeneity of Degree One / Scalar Multiplication Preserving

For any $c \in \mathbb{R}$ and $\mathbf{v} \in V$, $(c\mathbf{v})_S = c(\mathbf{v})_S$.

3.6.5.3 Additivity / Addition Preserving

For any
$$\boldsymbol{u}, \boldsymbol{v} \in V$$
, $(\boldsymbol{u} + \boldsymbol{v})_S = (\boldsymbol{u})_S + (\boldsymbol{v})_S$.

3.6.5.4 Equal Coordinate Vectors

For any
$$u, v \in V$$
, $u = v \Leftrightarrow (u)_S = (v)_S$.

3.6.5.5 Linear Combination Preserving

For any
$$c_1, \ldots, c_r \in \mathbb{R}$$
, $(c_1 \boldsymbol{v}_1 + \cdots + c_r \boldsymbol{v}_r)_S = c_1(\boldsymbol{v}_1)_S + \cdots + c_r(\boldsymbol{v}_r)_S$.

3.6.5.6 Linear Independence Preserving

 v_1, \ldots, v_r are linearly independent $\Leftrightarrow (v_1)_S, \ldots, (v_r)_S$ are linearly independent.

3.6.5.7 Span Preserving

$$\operatorname{span}\{\boldsymbol{v}_1,\ldots,\boldsymbol{v}_r\}=V\Leftrightarrow \operatorname{span}\{(\boldsymbol{v}_1)_S,\ldots,(\boldsymbol{v}_r)_S\}=\mathbb{R}^k.$$

3.7 Dimensions

3.7.1 Dimension Theorem for Vector Spaces

Theorem. Let V be a vector space having a basis with k vectors. Then

- Any subset of V of > k vectors is linearly dependent.
- Any subset of V of < k vectors cannot span V.

3.7.1.1 Corollary

All bases of a vector space have the same cardinality.

• To be more precise, if S_1 and S_2 are two bases of a vector space V,

$$\circ$$
 then $|S_1| = |S_2|$

3.7.2 Definition of Dimension

Definition. Let V be a vector space and S a basis for V. Then

• the **dimension** of V, denoted by $\dim(V)$, is |S|

3.7. DIMENSIONS 63

3.7.2.1 Examples

- $\dim(\{\mathbf{0}\}) = 0$
- $\dim(\mathbb{R}^n) = n$
- Straight Line Through the Origin in \mathbb{R}^2 and \mathbb{R}^3
 - $\circ \dim(\operatorname{span}(\boldsymbol{v})) = 1 \text{ with } \boldsymbol{v} \neq \boldsymbol{0}.$
- Plane Containing Origin in \mathbb{R}^3
 - \circ dim(span(u, v)) = 2 where u and v are linearly independent.

3.7.3 Dimension of Solution Space

Let Ax = 0 be a homogeneous linear system and V be its solution space. Let R be a row-echelon form of A. Then

no. of non-pivot colns of
$$\mathbf{R}=$$
 no. of aribitrary parameters in soln
$$=\dim(V)$$

3.7.4 Easier Criterion for Basis

Theorem. Let S be a subset of a vector space V. The following are equivalent:

- 1. S is a **basis** for V.
- 2. S is linearly independent, and $|S| = \dim(V)$.
- 3. $\operatorname{span}(S) = V$ and $|S| = \dim(V)$.

3.7.5 Dimension for Subspaces

Let U be a subspace of a vector space V. Then

•
$$U = V \Leftrightarrow \dim(U) = \dim(V)$$
.

3.7.5.1 Corollary

Let U be a subspace of a vector space V. Then

•
$$U \neq V \Leftrightarrow \dim(U) < \dim(V)$$
.

3.7.6 Invertibility and Rows and Columns as Basis

Theorem. Let A be a square matrix of order n. Then the following are equivalent:

- 1. A is invertible.
- 2. The rows of **A** form a basis for \mathbb{R}^n .
- 3. The columns of A form a basis for \mathbb{R}^n .

3.8 Transition Matrices

3.8.1 Coordinate Vector As a Column Vector

Definition. Let S be a basis for a vector space V and $\mathbf{v} \in V$ such that $(\mathbf{v})_S = (c_1, \dots, c_k)$. Then the **column vector** $[\mathbf{v}]_S = \begin{pmatrix} c_1 \\ \vdots \\ c_k \end{pmatrix}$ is also called the **coordinate vector** of \mathbf{v} relative to

S.

3.8.2 Definition of Transition Matrix

Definition. Let V be a vector space, and $S = \{u_1, \dots, u_k\}$ and T be bases for V. Then the transition matrix from S to T is

$$oldsymbol{P} = \Big([oldsymbol{u}_1]_T \quad \cdots \quad [oldsymbol{u}_k]_T \Big)$$

3.8.3 Pre-Multiplication of Transition Matrix

Theorem. Let S and T be bases for a vector space V, and \mathbf{P} be the transition matrix from S to T. Then $\forall \mathbf{w} \in V \quad \mathbf{P}[\mathbf{w}]_S = [\mathbf{w}]_T$.

3.8.4 Inverse of Transition Matrices

Theorem. Let S and T be bases for a vector space V, and P be the transition matrix from S to T. Then

3.8.4.1 Transition Matrices Are Invertible

P is **invertible**.

3.8.4.2 Inverse is a Transition Matrix

 P^{-1} is the **transition matrix** from T to S.

Chapter 4

Vector Spaces Associated With Matrices

4.1 Row Spaces and Column Spaces

4.1.1 Definition of Row Spaces and Column Spaces

Definition. Let $\mathbf{A} = (a_{ij})_{m \times n}$.

4.1.1.1 Row Space

For $1 \le i \le m$, let

$$r_i = i \text{th row of } A$$

$$= \begin{pmatrix} a_{i1} & \cdots & a_{in} \end{pmatrix} \in \mathbb{R}^n$$

Then the row space of $A = \text{span}\{r_1, \dots, r_m\}$ is a subspace of \mathbb{R}^n .

4.1.1.2 Column Space

For $1 \le j \le n$, let

$$c_j = j$$
th column of A

$$= \begin{pmatrix} a_{1j} \\ \vdots \\ a_{mj} \end{pmatrix} \in \mathbb{R}^m$$

Then the column space of $A = \text{span}\{c_1, \dots, c_n\}$ is a subspace of \mathbb{R}^m .

4.1.2 Row Equivalent Matrices And Their Rows

4.1.2.1 Row Equivalence Implies Same Row Space

Theorem. Suppose A and B are row equivalent matrices. Then row space of A = row space of B.

4.1.2.1.1 Remark

Let R be a row-echelon form of A. Then the row space of A = row space of R.

4.1.2.2 Nonzero Rows of REF are Linearly Independent

Theorem. Let R be a row-echelon form of a matrix A. Then the nonzero rows of R are linearly independent.

4.1.2.3 Finding Basis/Dimension For Row Space

Theorem. Let \mathbf{R} be a row-echelon form of a matrix \mathbf{A} . Then

- the nonzero rows of R form a basis for the row space of A, and
- $\dim(\text{row space of } A) = \text{no. of nonzero rows of } R.$

4.1.3 Row Equivalent Matrices And Their Columns

4.1.3.1 Row Equivalence Preserve Linear Relations Between Columns

Theorem. Let A and B be row equivalent matrices. Then

- There is a linear relation among a given set of columns of $A \Leftrightarrow$ the same linear relation exists among the corresponding set of columns of B.
- A given set of columns of A is linearly independent ⇔ the corresponding set of columns of B is linearly independent.
- A given set of columns of A is a basis for the column space of $A \Leftrightarrow$ the corresponding set of columns of B is a basis for the column space of B

4.1.3.2 Pivot Columns of REF is a Basis For Column Space

Theorem. Let R be a row-echelon form of a matrix A. Then the pivot columns of R is a basis for the column space of R.

4.1.3.3 Finding Basis/Dimension For Column Space

Theorem. Let R be a row-echelon form of a matrix A. The pivot columns of R is a basis for the column space of R. Then

- the corresponding columns of A is a basis for the column space of A, and
- $\dim(\text{column space of } A) = \text{no. of pivot columns of } R.$

4.1.4 Finding Basis for Vector Space Spanned By a Set of Vectors

To find a basis for a vector space $V = \text{span}\{v_1, \dots, v_m\}$, choose either one of the methods below:

4.2. RANK 67

4.1.4.1 Method 1: From New Vectors Using Row Space

1. Let each v_1, \ldots, v_m be a row vector

2. Let matrix
$$\boldsymbol{A} = \begin{pmatrix} \boldsymbol{v}_1 \\ \vdots \\ \boldsymbol{v}_m \end{pmatrix}$$

3. The problem is now equivalent to finding the **basis** for the **row space** of A (refer to section 1.1.2.3).

4.1.4.2 Method 2: Select From Original Vectors Using Column Space

- 1. Let each v_1, \ldots, v_m be a column vector
- 2. Let matrix $\mathbf{A} = \begin{pmatrix} \mathbf{v}_1 & \cdots & \mathbf{v}_m \end{pmatrix}$
- 3. The problem is now equivalent to finding the **basis** for the **column space** of \boldsymbol{A} (refer to section 1.1.3.3).

4.1.5 Consistency of Linear Systems And Column Space of Coefficient Matrix

Theorem. Let A be a $m \times n$ matrix. The linear system Ax = b is consistent $\Leftrightarrow b \in \{Av \mid v \in \mathbb{R}^n\} = \text{column space of } A$.

4.2 Rank

4.2.1 The Dimension of Row Space And Column Space Are The Same

Theorem. Let A be a matrix. Then

 $\dim(\text{row space of } \mathbf{A}) = \dim(\text{column space of } \mathbf{A})$

4.2.2 Definition of Rank

Definition. Let A be a matrix. The rank of A, denoted by rank(A) is

$$rank(\mathbf{A}) = dim(row space of \mathbf{A}) = dim(column space of \mathbf{A})$$

4.2.3 Properties of Rank

Theorem. Let **A** be a $m \times n$ matrix. Then

•
$$rank(\mathbf{A}) = rank(\mathbf{A}^T)$$

- $rank(\mathbf{A}) = 0 \Leftrightarrow \mathbf{A} = \mathbf{0}$
- $rank(\mathbf{A}) \leq m$ and $rank(\mathbf{A}) \leq n$
 - $\circ \operatorname{rank}(\mathbf{A}) \leq \min\{m, n\}$
 - \circ **A** is **full rank** if rank(**A**) = min{m, n}
- A square matrix A is full rank $\Leftrightarrow A$ is invertible.

4.2.4 Rank & Consistency of Linear System

Theorem. Let Ax = b be a linear system. Let $(R \mid b')$ be the row-echelon form of $(A \mid b)$. Then

$$m{A}m{x} = m{b} ext{ is consistent} \Leftrightarrow ext{rank}(m{A}) = ext{rank}\left(m{A} \mid m{b}\right)$$
 $\Leftrightarrow ext{rank}(m{R}) = ext{rank}\left(m{R} \mid m{b}'\right)$

4.2.4.1 Remark

In general, $\operatorname{rank}(\boldsymbol{A}) \leq \operatorname{rank}\left(\left.\boldsymbol{A} \mid \boldsymbol{b}\right.\right) \leq \operatorname{rank}(\boldsymbol{A}) + 1$

4.2.5 Row/Column Spaces and Matrix Multiplication

Theorem. Let **A** be a $m \times n$ matrix and **B** be a $n \times p$ matrix. Then

- column space of $AB \subseteq$ column space of A;
- row space of $AB \subseteq \text{row space of } B$.

4.2.5.1 Ranks and Matrix Multiplication

In particular,

- $\operatorname{rank}(\boldsymbol{A}\boldsymbol{B}) \leq \operatorname{rank}(\boldsymbol{A});$
- $\operatorname{rank}(\boldsymbol{A}\boldsymbol{B}) \leq \operatorname{rank}(\boldsymbol{B})$.

That is, $rank(AB) \leq min\{rank(A), rank(B)\}.$

- A is invertible \implies rank(AB) = rank(B)
- B is invertible \implies rank(AB) = rank(A)

4.3 Nullspaces and Nullities

4.3.1 Definition of Nullspace

Definition. Let A be a $m \times n$ matrix. The nullspace of A is the solution space of Ax = 0, which is

$$\{ \boldsymbol{v} \in \mathbb{R}^n \mid \boldsymbol{A}\boldsymbol{v} = \boldsymbol{0} \}.$$

4.3.2 Definition of Nullity

Definition. The dimension of the nullspace of a matrix A is the nullity of A, denoted by nullity (A).

4.3.3 Finding Nullity of a Matrix

Let R be a row-echelon form of A. Then

- $\bullet \ \ \boldsymbol{A}\boldsymbol{x}=\boldsymbol{0} \Leftrightarrow \boldsymbol{R}\boldsymbol{x}=\boldsymbol{0}$
- nullspace of A = nullspace of R
- $\operatorname{nullity}(A) = \operatorname{nullity}(R) = \operatorname{no.} \text{ of non-pivot columns of } R.$

4.3.4 Dimension Theorem

Theorem. Let **A** be a $m \times n$ matrix. Then

$$rank(\mathbf{A}) + nullity(\mathbf{A}) = n$$

4.3.5 Solution to Inhomogeneous Linear System and Nullspace

Theorem. Suppose Ax = b has a solution v. Let W = nullspace of A. Then the solution set of Ax = b is

$$\boldsymbol{v} + W = \{ \boldsymbol{v} + \boldsymbol{w} \mid \boldsymbol{w} \in W \}$$

Hence

(A general solution of $\boldsymbol{A}\boldsymbol{x}=\boldsymbol{b}$) = (A particular solution of $\boldsymbol{A}\boldsymbol{x}=\boldsymbol{b}$)+(A general solution of $\boldsymbol{A}\boldsymbol{x}=\boldsymbol{0}$)

4.3.5.1 Condition for Linear System to have Unique Solution

Theorem. Suppose that a linear system Ax = b is consistent. Then

Ax = b has a unique solution $\Leftrightarrow Ax = 0$ has only the trivial solution

$$\Leftrightarrow$$
 nullspace of A is $\{0\}$

$$\Leftrightarrow \text{nullity}(\mathbf{A}) = 0$$

 $\Leftrightarrow \operatorname{rank}(\mathbf{A}) = \operatorname{no.} \text{ of columns of } \mathbf{A}$

4.3.5.2 Condition for the Solution Set of a Linear System to be a Vector Space Theorem. The solution set of a linear system Ax = b is a vector space $\Leftrightarrow b = 0$.

Chapter 5

Orthogonality

5.1 The Dot Product

5.1.1 Pythagoras' Theorem

Theorem. In a right-angled triangle, let c be the length of the **hypotenuse**, and a and b be the lengths of the other two sides. Then

$$a^2 + b^2 = c^2$$

5.1.2 Cosine Rule

Theorem. Given any triangle with sides of length a, b, and c. Let θ be the angle contained between the sides of lengths a and b. Then

$$c^2 = a^2 + b^2 - 2ab\cos\theta$$

5.1.3 Definitions

Definition. Let $\boldsymbol{u} = (u_1, \dots, u_n), \boldsymbol{v} = (v_1, \dots, v_n) \in \mathbb{R}^n$.

5.1.3.1 Dot Product (Inner Product)

The dot product (inner product) of u and v is

$$\boldsymbol{u} \cdot \boldsymbol{v} = u_1 v_1 + \dots + u_n v_n$$

5.1.3.2 Norm (Length)

The **norm** (**length**) of \boldsymbol{v} is

$$\|\boldsymbol{v}\| = \sqrt{v_1^2 + \dots + v_n^2}$$

5.1.3.3 Unit Vector

Definition. v is a unit vector if ||v|| = 1.

5.1.3.4 Distance

The **distance** between \boldsymbol{u} and \boldsymbol{v} is

$$d(u, v) = \|u - v\| = \sqrt{\sum_{i=1}^{n} (u_i - v_i)^2}$$

5.1.3.5 Angle

The **angle** between u and v ($u \neq 0$ and $v \neq 0$) is

$$\theta = \cos^{-1}\left(\frac{\boldsymbol{u}\cdot\boldsymbol{v}}{\|\boldsymbol{u}\|\|\boldsymbol{v}\|}\right), \quad 0 \le \theta \le \pi$$

5.1.4 Dot Product and Matrix Multiplication

5.1.4.1 Dot Product As Matrix Multiplication

Theorem. Let $\boldsymbol{u}, \boldsymbol{v} \in \mathbb{R}^n$.

- If u and v are viewed as row vectors, then $u \cdot v = uv^T$.
- If u and v are viewed as column vectors, then $u \cdot v = u^T v$.

5.1.4.2 Matrix Multiplication As Dot Products

Theorem. Let A be a $m \times n$ matrix and B be a $n \times p$ matrix. Let the row vector $a_i \in \mathbb{R}^n$ be the ith row of A and the column vector $b_j \in \mathbb{R}^n$ be the jth column of B. Then

$$(i,j)$$
-entry of $\mathbf{AB} = \mathbf{a}_i \mathbf{b}_j = \mathbf{a}_i \cdot \mathbf{b}_j$

5.1.5 Properties of Dot Product and Norm

Theorem. Let $\boldsymbol{u}, \boldsymbol{v} = (v_1, \dots, v_n), \boldsymbol{w} \in \mathbb{R}^n$ and $c \in \mathbb{R}$.

5.1.5.1 Dot Product is Commutative

$$\bullet \ u \cdot v = v \cdot u$$

5.1.5.2 Dot Product is Distributive Over Vector Addition

$$\bullet \ (\boldsymbol{u} + \boldsymbol{v}) \cdot \boldsymbol{w} = \boldsymbol{u} \cdot \boldsymbol{w} + \boldsymbol{v} \cdot \boldsymbol{w}$$

$$\bullet \ \boldsymbol{w} \cdot (\boldsymbol{u} + \boldsymbol{v}) = \boldsymbol{w} \cdot \boldsymbol{u} + \boldsymbol{w} \cdot \boldsymbol{v}$$

5.1.5.3 Dot Product and Scalar Multiplication

$$\bullet (c\mathbf{u}) \cdot \mathbf{v} = \mathbf{u} \cdot (c\mathbf{v}) = c(\mathbf{u} \cdot \mathbf{v})$$

73

5.1.5.4 Absolute Homogeneity of Norm

$$\bullet ||c\boldsymbol{v}|| = |c|||\boldsymbol{v}||$$

5.1.5.5 Dot Product of a Vector with Itself

- $\boldsymbol{v} \cdot \boldsymbol{v} \ge 0$
- $\mathbf{v} \cdot \mathbf{v} = 0 \Leftrightarrow \mathbf{v} = \mathbf{0}$

5.1.5.6 Norm and Dot Product

•
$$\|\boldsymbol{v}\| = \sqrt{v_1^2 + \dots + v_n^2} = \sqrt{\boldsymbol{v} \cdot \boldsymbol{v}}$$

5.1.5.7 Nonnegativity of Norm and When Norm is Zero

- $\bullet \|v\| \ge 0$
- $\|\mathbf{v}\| = 0 \Leftrightarrow \mathbf{v} = \mathbf{0}$

5.1.6 Inequalities of Norm and Distance

Theorem. Let $u, v, w \in \mathbb{R}^n$

5.1.6.1 Cauchy-Schwarz Inequality

•
$$|\boldsymbol{u} \cdot \boldsymbol{v}| \leq \|\boldsymbol{u}\| \|\boldsymbol{v}\|$$

5.1.6.2 Triangle Inequality (Norm Version)

•
$$\|u + v\| \le \|u\| + \|v\|$$

5.1.6.3 Triangle Inequality (Distance Version)

•
$$d(\boldsymbol{u}, \boldsymbol{w}) \leq d(\boldsymbol{u}, \boldsymbol{v}) + d(\boldsymbol{v}, \boldsymbol{w})$$

5.1.7 Results for Multiplying a Matrix with its Transpose

5.1.7.1 When Multiplying a Matrix with its Transpose Gives the Zero Matrix

Theorem. Let A be a $m \times n$ matrix.

$$AA^T = \mathbf{0}_{m \times m} \implies A = \mathbf{0}_{m \times n}$$

5.1.7.2 When the Trace of Multiplying a Matrix with its Transpose is Zero

Theorem. Let \boldsymbol{A} be a $m \times n$ matrix. Then

$$\operatorname{tr}(\boldsymbol{A}\boldsymbol{A}^T) = 0 \Leftrightarrow \boldsymbol{A} = \boldsymbol{0}_{m \times n}$$

5.2 Orthogonality, Orthogonal and Orthonormal Sets

5.2.1 Definition of Orthogonal for Two Vectors

Definition. Let $u, v \in \mathbb{R}^n$. They are **orthogonal**, denoted by $u \perp v$, if $u \cdot v = 0$.

5.2.1.1 Zero Vector is Orthogonal to Every Vector in \mathbb{R}^n

Theorem. Let $\mathbf{0} \in \mathbb{R}^n$. Then $\forall \boldsymbol{v} \in \mathbb{R}^n \quad \mathbf{0} \perp \boldsymbol{v}$

5.2.2 Definition of Orthogonal / Orthonormal Sets

5.2.2.1 Definition of Orthogonal for a Subset of \mathbb{R}^n

Definition. Let
$$S = \{v_1, \dots, v_k\} \subseteq \mathbb{R}^n$$
. S is **orthogonal** if $v_i \perp v_j$ for all $i \neq j$, that is $v_i \cdot v_j = 0$ for all $i \neq j$

5.2.2.2 Definition of Orthonormal for a Subset of \mathbb{R}^n

Definition. Let $S = \{v_1, \dots, v_k\} \subseteq \mathbb{R}^n$. S is orthonormal if S is orthogonal and $\forall v_i \in S \mid |v_i| = 1$, that is

$$m{v}_i \cdot m{v}_j = egin{cases} 0 & ext{if } i
eq j \ 1 & ext{if } i = j \end{cases}$$

5.2.3 Properties of Orthogonal / Orthonormal Sets

- S is orthonormal $\implies S$ is orthogonal.
- S is **orthogonal** \Longrightarrow a subset of S is **orthogonal**.
- S is **orthonormal** \implies a subset of S is **orthonormal**.
- S is orthogonal $\Longrightarrow S \cup \{0\}$ is orthogonal.
- S is orthonormal \Longrightarrow $\mathbf{0} \notin S$.

5.2.4 Normalizing: Converting an Orthogonal Set to an Orthonormal Set

The following process of converting an **orthogonal** set of nonzero vectors to an **orthonormal** set of vectors, is called **normalizing**:

- 1. Let $S = \{u_1, \dots, u_k\} \subseteq \mathbb{R}^n$ be an **orthogonal** set of **nonzero vectors**
- 2. For all $u_i \in S$, set $v_i = \frac{u_i}{\|u_i\|}$.
- 3. Then $\{v_1, \ldots, v_k\}$ is an **orthonormal** set.

5.2.5 Using Matrix Multiplication to Check for Orthogonal / Orthonormal Set

Theorem. To check whether a set $S = \{v_1, \dots, v_k\} \subseteq \mathbb{R}^n$ is **orthogonal** / **orthonormal**, let $A = \begin{pmatrix} v_1 & \cdots & v_k \end{pmatrix}$. Then

- S is orthogonal $\Leftrightarrow v_i \cdot v_j = 0$ for all $i \neq j \Leftrightarrow A^T A$ is diagonal
- S is orthonormal $\Leftrightarrow \boldsymbol{v}_i \cdot \boldsymbol{v}_j = \begin{cases} 0 & \text{if } i \neq j \\ 1 & \text{if } i = j \end{cases} \Leftrightarrow \boldsymbol{A}^T \boldsymbol{A} = \boldsymbol{I}_k.$

5.2.5.1 Standard Basis is An Orthonormal Set

Theorem. The standard basis $E = \{e_1, \dots, e_n\} \subseteq \mathbb{R}^n$ is an orthonormal set.

5.2.5.2 An Orthonormal Subset of \mathbb{R}^n with n Vectors is a Basis for \mathbb{R}^n

Theorem. Let
$$\{u_1,\ldots,u_n\}\subseteq\mathbb{R}^n$$
. Let $A=\begin{pmatrix}u_1&\cdots&u_n\end{pmatrix}$. Then

$$A^T A = I_n \implies A$$
 is invertible
 $\implies \{u_1, \dots, u_n\}$ is a basis for \mathbb{R}^n (refer to section 3.7.6)

5.2.6 Orthogonal Nonzero Sets are Linearly Independent

Theorem. Let $S = \{v_1, \dots, v_k\}$ be an orthogonal set of nonzero vectors in \mathbb{R}^n . Then S is linearly independent.

5.2.6.1 Orthonormal Sets are Linearly Independent

Corollary. Let $S = \{v_1, \dots, v_k\}$ be an orthonormal set in \mathbb{R}^n . Then S is linearly independent.

5.3 Orthogonal and Orthonormal Bases

5.3.1 Orthogonal / Orthonormal Bases

Definition. Let S be a basis for a vector space.

- S is an **orthogonal basis** if it is **orthogonal**.
- S is an **orthonormal basis** if it is **orthonormal**.

5.3.2 Criterion for Orthogonal / Orthonormal Set to be Basis

Theorem. Suppose S is a subset of vector space V, where S is an orthogonal/orthonormal set and $\mathbf{0} \notin S$, then

 $|S| = \dim(V)$ or span $(S) = V \implies S$ is an **orthogonal/orthonormal** (respectively) **basis** for V

5.3.3 Simpler Formula for Coordinate Vectors Relative to Orthogonal / Orthonormal Bases

5.3.3.1 Orthogonal Bases

Theorem. Let $S = \{u_1, \dots, u_k\}$ be an **orthogonal basis** for a **vector space** V. Then

$$\forall \boldsymbol{w} \in V \quad (\boldsymbol{w})_S = \left(\frac{\boldsymbol{w} \cdot \boldsymbol{u}_1}{\boldsymbol{u}_1 \cdot \boldsymbol{u}_1}, \dots, \frac{\boldsymbol{w} \cdot \boldsymbol{u}_k}{\boldsymbol{u}_k \cdot \boldsymbol{u}_k}\right)$$

5.3.3.2 Orthonormal Bases

Theorem. Let $S = \{u_1, \dots, u_k\}$ be an **orthonormal basis** for a **vector space** V. Then

$$\forall \boldsymbol{w} \in V \quad (\boldsymbol{w})_S = (\boldsymbol{w} \cdot \boldsymbol{u}_1, \dots, \boldsymbol{w} \cdot \boldsymbol{u}_k)$$

5.3.4 Orthogonality between a Vector and a Subspace

Definition. Let V be a subspace of \mathbb{R}^n . $u \in \mathbb{R}^n$ is orthogonal (perpendicular) to V if $\forall v \in V \mid u \perp v$.

5.3.4.1 Example: Normal Vector of a Plane in \mathbb{R}^3

Let $V = \{(x, y, z) \mid ax + by + cz = 0\}$ be a plane in \mathbb{R}^3 containing the origin. Then $\mathbf{n} = (a, b, c)$ is **orthogonal** to V and is a **normal vector** of the plane V.

5.3.5 Easier Criterion for Vector to be Orthogonal to a Vector Space

Theorem. Let $V = \operatorname{span}\{v_1, \dots, v_k\}$ be a vector space. Then

 \boldsymbol{w} is **orthogonal** to $V \Leftrightarrow \boldsymbol{w} \perp \boldsymbol{v}_i$ for all $\boldsymbol{v}_i \in V$

5.3.6 The Set of All Vectors Orthogonal to a Subspace is a Subspace

Theorem. Let W be a subspace of \mathbb{R}^n . Then $W^{\perp} = \{ \boldsymbol{v} \in \mathbb{R}^n \mid \boldsymbol{v} \text{ is orthogonal to } W \}$ is a subspace of \mathbb{R}^n .

5.3.7 Projection of a Vector Onto a Vector Space

5.3.7.1 With Orthonormal Basis

Theorem. Let $\{v_1, \ldots, v_k\}$ be an orthonormal basis for a vector space V. Then the projection of w onto V is

$$(\boldsymbol{w}\cdot\boldsymbol{v}_1)\boldsymbol{v}_1+\cdots+(\boldsymbol{w}\cdot\boldsymbol{v}_k)\boldsymbol{v}_k$$

5.3.7.2 With Orthogonal Basis

Theorem. Let $\{u_1, \ldots, u_k\}$ be an orthogonal basis for a vector space V. Then the projection of w onto V is

$$\left(rac{oldsymbol{w}\cdotoldsymbol{u}_1}{oldsymbol{u}_1\cdotoldsymbol{u}_1}
ight)oldsymbol{u}_1+\cdots+\left(rac{oldsymbol{w}\cdotoldsymbol{u}_k}{oldsymbol{u}_k\cdotoldsymbol{u}_k}
ight)oldsymbol{u}_k$$

Remarks. It is the sum of projections of w onto u_1, \ldots, u_k .

5.3.8 Gram-Schmidt Process: Generating Orthogonal / Orthonormal Basis

Let $\{u_1, \ldots, u_k\}$ be a basis for a vector space V. Define

$$egin{aligned} m{v}_1 &= m{u}_1 \ m{v}_2 &= m{u}_2 - rac{m{u}_2 \cdot m{v}_1}{m{v}_1 \cdot m{v}_1} m{v}_1 \ m{v}_3 &= m{u}_3 - rac{m{u}_3 \cdot m{v}_1}{m{v}_1 \cdot m{v}_1} m{v}_1 - rac{m{u}_3 \cdot m{v}_2}{m{v}_2 \cdot m{v}_2} m{v}_2 \ &dots &dots \ m{v}_k &= m{u}_k - rac{m{u}_k \cdot m{v}_1}{m{v}_1 \cdot m{v}_1} m{v}_1 - rac{m{u}_k \cdot m{v}_2}{m{v}_2 \cdot m{v}_2} m{v}_2 - \cdots - rac{m{u}_k \cdot m{v}_{k-1}}{m{v}_{k-1} \cdot m{v}_{k-1}} m{v}_{k-1} \end{aligned}$$

- Then $\{v_1, \ldots, v_k\}$ is an **orthogonal basis** for V.
- $\{v_1, \ldots, v_k\}$ can be **normalized** to obtain an **orthonormal basis** for V (refer to section 5.2.4).

5.3.9 Solving a Linear System whose Coefficient Matrix's Columns are Linearly Independent

5.3.9.1 Decomposition

Theorem. Let A be a $m \times n$ matrix whose columns are linearly independent. Then there exists

• A $m \times n$ matrix Q whose columns form an orthonormal set, and

• An invertible $n \times n$ uppper triangular matrix R such that A = QR.

5.3.9.2 Algorithm

To solve a linear system Ax = b where the columns of A are linearly independent.

- 1. (QR)x = b
- 2. $\mathbf{R}\mathbf{x} = \mathbf{I}\mathbf{R}\mathbf{x} = \mathbf{Q}^T\mathbf{Q}\mathbf{R}\mathbf{x} = \mathbf{Q}^T\mathbf{b}$
- 3. Solve x by back-substitution.

5.3.9.3 Remark

There exists a R such that the **diagonal entries** are all positive.

5.4 Best Approximations

5.4.1 The Projection of a Vector on a Subspace is its Best Approximation in that Subspace

Theorem. Let V be a subspace of \mathbb{R}^n . $\forall u \in \mathbb{R}^n$, let p be the projection of u onto V. Then

- p is the **best approximation** of u in V, i.e.
 - $\circ \forall \boldsymbol{v} \in V \quad d(\boldsymbol{u}, \boldsymbol{p}) < d(\boldsymbol{u}, \boldsymbol{v})$
- Moreover, p is the only best approximation of u in V.

$$\circ d(\boldsymbol{u}, \boldsymbol{p}) = d(\boldsymbol{u}, \boldsymbol{v}) \Leftrightarrow \boldsymbol{v} = \boldsymbol{p}$$

5.4.2 Least Squares Solution

5.4.2.1 Definition of Least Squares Solution

Definition. Let A be a $m \times n$ matrix and $b \in \mathbb{R}^m$. $u \in \mathbb{R}^n$ is a least squares solution to the linear system Ax = b if

$$\forall oldsymbol{v} \in \mathbb{R}^n \quad \|oldsymbol{b} - oldsymbol{A} oldsymbol{u}\| < \|oldsymbol{b} - oldsymbol{A} oldsymbol{v}\|$$

5.4.2.2 Least Squares Solution and Projection

Theorem. Let A be a $m \times n$ matrix and $b \in \mathbb{R}^m$. Let p be the projection of b onto the column space of A. Then

- $ullet \ orall oldsymbol{v} \in \mathbb{R}^n \quad \|oldsymbol{b} oldsymbol{p}\| \leq \|oldsymbol{b} oldsymbol{A}oldsymbol{v}\|$
- u is a least squares solution to $Ax = b \Leftrightarrow u$ is a solution to Ax = p.

5.4.3 Methodology: Finding Least Squares Solution

5.4.3.1 Tedious Method

To find a least squares solution to Ax = b, proceed as follows:

- 1. Find an orthogonal (orthonormal) basis for V =column space of A.
- 2. Find the **projection** p of b onto V.
- 3. Solve the linear system Ax = p.
 - A solution to Ax = p is a least squares solution to Ax = b.

Remarks.

- The linear system Ax = p is always consistent since p lies in the column space of A.
- If Ax = b is already consistent, then

$$\circ$$
 $\boldsymbol{b} = \boldsymbol{p} \in V$

 \circ (solution to Ax = b) = (least squares solution to Ax = b).

5.4.3.2 Easy Method

Theorem. u is a least squares solution to $Ax = b \Leftrightarrow u$ is a solution to $A^TAx = A^Tb$.

5.5 Orthogonal Matrices

5.5.1 Definition of Orthogonal Matrices

Definition. Let A be a square matrix. Then

$$A$$
 is an orthogonal matrix $\Leftrightarrow A^T A = I$

$$\Leftrightarrow \boldsymbol{A}^{-1} = \boldsymbol{A}^T$$

$$\Leftrightarrow \boldsymbol{A}\boldsymbol{A}^T = \boldsymbol{I}$$

5.5.1.1 Example: Identity Matrix is an Orthogonal Matrix

Theorem. The identity matrix I_n is an orthogonal matrix.

5.5.2 Properties of Orthogonal Matrices

5.5.2.1 Rows and Columns of Orthogonal Matrix Form an Orthonormal Basis for \mathbb{R}^n

Theorem. Let A be a square matrix of order n. Then

A is an orthogonal matrix \Leftrightarrow columns of A form an orthonormal basis for \mathbb{R}^n

 \Leftrightarrow rows of **A** form an **orthonormal basis** for \mathbb{R}^n

5.5.2.2 The Transpose or Inverse of an Orthogonal Matrix is Orthogonal

Theorem. If A is an orthogonal matrix, then $A^T = A^{-1}$ is an orthogonal matrix.

5.5.2.3 The Product of Two Orthogonal Matrices is Orthogonal

Theorem. If A and B are orthogonal matrices of the same size, then AB is an orthogonal matrix.

- 5.5.2.4 Condition for Rows/Columns of a Matrix to Form an Orthonormal Set
- **5.5.2.4.1** Condition for Columns of a Matrix to Form an Orthonormal Set Refer to section 5.2.5.

5.5.2.4.2 Condition for Rows of a Matrix to Form an Orthonormal Set

Theorem. For any $m \times n$ matrix A, $AA^T = I_m \Leftrightarrow \text{the rows of } A$ form an orthonormal set.

5.5.2.5 Pre-Multiplication of an Orthogonal Matrix to an Orthonormal Set

Theorem. Let $S = \{u_1, \dots, u_k\}$ be an orthonormal subset of \mathbb{R}^n and P be a $n \times n$ orthogonal matrix. Then $\{Pu_1, \dots, Pu_k\}$ is an orthonormal set.

5.5.3 Transition Matrices Between Orthonormal Bases

5.5.3.1 Formula for Transition Matrices Between Orthonormal Bases

Theorem. Let $S = \{u_1, \dots, u_k\}$ and $T = \{v_1, \dots, v_k\}$ be orthonormal bases for a vector space V. Let $\mathbf{A} = \begin{pmatrix} \mathbf{u}_1 & \cdots & \mathbf{u}_k \end{pmatrix}$ and $\mathbf{B} = \begin{pmatrix} \mathbf{v}_1 & \cdots & \mathbf{v}_k \end{pmatrix}$. Then

- $P = B^T A$ is the transition matrix from S to T.
- $Q = A^T B$ is the transition matrix from T to S.

5.5.3.2 Transition Matrices Between Orthonormal Bases are Orthogonal

Theorem. Let S and T be orthonormal bases for a vector space V and P be the transition matrix from S to T. Then P is an orthogonal matrix.

5.5.4 Classification of Orthogonal Matrices

5.5.4.1 Table of Orthogonal Matrices By Order

Theorem. The following table lists all the **orthogonal matrices** in increasing **order**:

Order	Determinant	Formulae
1	1	(1)
	-1	$\begin{pmatrix} -1 \end{pmatrix}$
2	1	$ \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} $
	-1	$ \begin{pmatrix} \cos\theta & \sin\theta \\ \sin\theta & -\cos\theta \end{pmatrix} $

5.5.5 Geometric Representation of Orthogonal Matrix

5.5.5.1 Rotation Matrix

• Let
$$u_1 = \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix}$$
, $u_2 = \begin{pmatrix} -\sin \theta \\ \cos \theta \end{pmatrix}$.

 \circ Then $\{u_1, u_2\}$ is an **orthonormal basis** for \mathbb{R}^2 .

• Let
$$P_{\theta} = \begin{pmatrix} u_1 & u_2 \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$
. Then

- \circ P_{θ} is **orthogonal**, and
- \circ P_{θ} is the transition matrix from $\{u_1, u_2\}$ to $\{e_1, e_2\}$.
- $\forall u \in \mathbb{R}^2$ $P_{\theta}u$ is the **rotation** of u about the **origin** by θ anticlockwise.

5.5.5.2 Composition of Rotation Matrices

• Moreover, $P_{\beta}P_{\alpha} = P_{\alpha+\beta}$

5.5.5.3 Deriving Sum Laws for Sine and Cosine

- $\cos(\alpha + \beta) = \cos \alpha \cos \beta \sin \alpha \sin \beta$
- $\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$

Chapter 6

Diagonalization

6.1 Eigenvalues and Eigenvectors

6.1.1 Definition of Eigenvalues and Eigenvectors

Definition. Let A be a square matrix of order n. Suppose that for some $\lambda \in \mathbb{R}$ and nonzero $v \in \mathbb{R}^n$, $Av = \lambda v$. Then

- λ is an eigenvalue of \boldsymbol{A} .
- v is an eigenvector of A associated with λ .

6.1.2 Characteristic Polynomial

6.1.2.1 Definition of Characteristic Polynomial

Definition. Let A be a square matrix. $det(\lambda I - A)$ is the characteristic polynomial of A.

6.1.2.2 Characteristic Polynomial is a Monic Polynomial of Degree n

Theorem. Let A be a square matrix. Then the characteristic polynomial of A is a monic polynomial in λ of degree n:

$$\lambda^n + c_{n-1}\lambda^{n-1} + \dots + c_1\lambda + c_0$$

6.1.3 Definition of Characteristic Equation

Definition. Let \mathbf{A} be a square matrix. $\det(\lambda \mathbf{I} - \mathbf{A}) = 0$ is the characteristic equation of \mathbf{A} .

6.1.4 Eigenvalues are the Roots to the Characteristic Equation

Theorem. Let A be a square matrix. Then the eigenvalues of A are all the roots to the characteristic equation of A.

6.1.5 Eigenvalue and Invertibility

Theorem. Let A be a square matrix of order n. Then

0 is not an eigenvalue of $\mathbf{A} \Leftrightarrow \det(\mathbf{A}) \neq 0 \Leftrightarrow \mathbf{A}$ is invertible

6.1.6 Eigenvalues of Triangular Matrices are its Diagonal Entries

Theorem. Let A be a triangular matrix. Then its eigenvalues are all the diagonal entries of A.

6.1.7 Eigenspace

6.1.7.1 Definition of Eigenspace

Definition. Let A be a square matrix and λ an eigenvalue of A. Then the eigenspace of A associated to λ , denoted by E_{λ} (or $E_{A,\lambda}$), is the nullspace of $\lambda I - A$.

6.1.7.2 Properties of Eigenspace

6.1.7.2.1 Vectors in Eigenspace

Theorem. $E_{A,\lambda}$ consists of all the eigenvectors of A associated to λ and the zero vector $\mathbf{0}$.

6.1.7.2.2 Dimension of Eigenspace

Theorem. Since $\lambda I - A$ is singular, $\dim(E_{\lambda}) \geq 1$.

6.1.7.2.3 Eigenspace Associated To Eigenvalue Zero

Theorem. If A is singular, then $E_0 = \text{nullspace}$ of A.

6.2 Diagonalization

6.2.1 Definition of Diagonalizable Matrix

Definition. Let A be a square matrix. A is diagonalizable if \exists an invertible matrix P such that $P^{-1}AP$ is a diagonal matrix.

6.2.2 Criterion for Diagonalizability

Theorem. Let A be a square matrix of order n. Then

A is diagonalizable \Leftrightarrow A has n linearly independent eigenvectors

6.2.3 Eigenvectors associated to Distinct Eigenvalues are Linearly Independent

Theorem. Let $\lambda_1, \ldots, \lambda_k$ be distinct eigenvalues of \boldsymbol{A} and \boldsymbol{v}_i be an eigenvector of \boldsymbol{A} associated to λ_i . Then $\boldsymbol{v}_1, \ldots, \boldsymbol{v}_k$ are linearly independent.

6.2.4 Algorithm of Diagonalization

Let A be a square matrix of order n.

- 1. Find the characteristic polynomial $det(\lambda I A)$.
- 2. Factorise $\det(\lambda I A)$ over \mathbb{R} (not \mathbb{C}) to find eigenvalues of A.
 - If $\det(\lambda I A)$ cannot be completely factorised, then A is not diagonalizable.
 - If $\det(\lambda \boldsymbol{I} \boldsymbol{A})$ can be completely factorised, say $\det(\lambda \boldsymbol{I} \boldsymbol{A}) = \prod_{i=1}^{k} (\lambda \lambda_i)^{r_i}$ where $\lambda_1, \dots, \lambda_k$ are all distinct. Then
 - \circ algebraic multiplicity of λ_i , denoted by $a(\lambda_i)$, is r_i
 - \circ geometric multiplicity of λ_i , denoted by $g(\lambda_i)$, is dim (E_{λ_i})
 - Moreover, $1 \le g(\lambda_i) \le a(\lambda_i)$, and $\sum_{i=1}^k a(\lambda_i) = n$.
- 3. For each eigenvalue λ_i of A, find a basis S_i for the eigenspace E_{λ_i} .
 - $\exists i \quad g(\lambda_i) < a(\lambda_i) \Rightarrow \sum_{i=1}^k \dim(E_{\lambda_i}) < n \Rightarrow A$ is not **diagonalizable**.
- 4. $\forall i \quad g(\lambda_i) = a(\lambda_i) \Rightarrow \sum_{i=1}^k \dim(E_{\lambda_i}) = n \Rightarrow \mathbf{A} \text{ is diagonalizable, then}$
 - $\bigcup_{i=1}^k S_i = \{ \boldsymbol{v}_1, \dots, \boldsymbol{v}_n \}$ is a basis for \mathbb{R}^n .
 - $P = \begin{pmatrix} v_1 & \cdots & v_n \end{pmatrix}$ diagonalizes A, i.e. $P^{-1}AP = D$ is diagonal.
 - v_i is an eigenvector of A associated to the *i*th diagonal entry (eigenvalue) of D.

6.2.5 Matrix with n Distinct Eigenvalues is Diagonalizable

Theorem. Let A be a square matrix of order n. A has n distinct eigenvalues $\Rightarrow A$ is diagonalizable.

6.2.6 Application of Diagonalization

6.2.6.1 Matrix Exponentiation

Theorem. Suppose that P diagonalizes A such that $P^{-1}AP = \begin{pmatrix} \lambda_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_n \end{pmatrix}$. Then for

$$\begin{cases} m \in \mathbb{Z}, m \geq 0, & \boldsymbol{A} \text{ is singular} \\ m \in \mathbb{Z}, & \boldsymbol{A} \text{ is invertible} \end{cases} \boldsymbol{A}^m = \boldsymbol{P} \begin{pmatrix} \lambda_1^m & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_n^m \end{pmatrix} \boldsymbol{P}^{-1}$$

6.2.6.2 Example: Fibonacci Numbers

- The fibonacci numbers are defined as $a_n = \begin{cases} n, & n = 0 \text{ or } n = 1 \\ a_{n-1} + a_{n-2}, & n \geq 2 \end{cases}$
- Note that $a_{n+1} = a_{n-1} + a_n$ for $n \ge 1$

• Let
$$\mathbf{x}_n = \begin{pmatrix} a_n \\ a_{n+1} \end{pmatrix} = \begin{pmatrix} a_n \\ a_{n-1} + a_n \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} a_{n-1} \\ a_n \end{pmatrix}$$
 and $\mathbf{A} = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$. Then

•
$$\boldsymbol{x}_n = \boldsymbol{A}\boldsymbol{x}_{n-1} = \boldsymbol{A}^2\boldsymbol{x}_{n-2} = \cdots = \boldsymbol{A}^n\boldsymbol{x}_0$$
, where $\boldsymbol{x}_0 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

• To find A^n for large n, it will be easier to diagonalize A.

6.3 Orthogonal Diagonalization

6.3.1 Definition of Orthogonally Diagonalizable Matrix

Definition. A square matrix A is orthogonally diagonalizable if it can be diagonalized by an orthogonal matrix, i.e.,

- \exists an orthogonal matrix P such that $P^TAP = P^{-1}AP$ is a diagonal matrix.
- P is said to orthogonally diagonalize A.

6.3.1.1 Remarks

- For any eigenvalue λ of A, we can always choose an orthonormal basis for E_{λ} .
- \bullet Suppose further that A is **orthogonally diagonalizable**. Then
 - for distinct eigenvalues $\lambda \neq \mu$, every eigenvector of λ is orthogonal to that of μ .

6.3.2 Only Symmetric Matrices are Orthogonally Diagonalizable

Theorem. A square matrix is orthogonally diagonalizable \Leftrightarrow it is a symmetric matrix.

6.3.3 Algorithm of Orthogonal Diagonalization

Let A be a symmetric matrix of order n.

- 1. Find the characteristic polynomial $det(\lambda I A)$.
- 2. Factorise $det(\lambda I A)$ over \mathbb{R} to find eigenvalues of A.
 - $\det(\lambda \boldsymbol{I} \boldsymbol{A})$ can definitely be completely factorised, say $\det(\lambda \boldsymbol{I} \boldsymbol{A}) = \prod_{i=1}^{k} (\lambda \lambda_i)^{r_i}$ where $\lambda_1, \dots, \lambda_k$ are all distinct.

$$\circ \sum_{i=1}^{k} a(\lambda_i) = n.$$

- 3. For each **eigenvalue** λ_i of \boldsymbol{A} , find an **orthonormal basis** T_{λ_i} for E_{λ_i} .
 - (a) Find a basis S_{λ_i} for E_{λ_i} .

•
$$\forall i \quad 1 \leq g(\lambda_i) = a(\lambda_i) \Rightarrow \sum_{i=1}^k \dim(E_{\lambda_i}) = n$$

- (b) Use Gram-Schmidt process to transfer S_{λ_i} to an **orthonormal basis** T_{λ_i} for E_{λ_i} .
- 4. $\forall i \quad g(\lambda_i) = a(\lambda_i) \Rightarrow \sum_{i=1}^k \dim(E_{\lambda_i}) = n \Rightarrow \mathbf{A} \text{ is diagonalizable, then}$
- 5. $\bigcup_{i=1}^k T_{\lambda_i} = \{ \boldsymbol{v}_1, \dots, \boldsymbol{v}_n \}$ is an **orthonormal basis** for \mathbb{R}^n .
 - ullet $oldsymbol{P} = egin{pmatrix} oldsymbol{v}_1 & \cdots & oldsymbol{v}_n \end{pmatrix}$ orthogonally diagonalizes $oldsymbol{A}$

6.4 Quadratic Forms and Conic Sections

6.4.1 Quadratic Forms

6.4.1.1 Definition of Quadratic Form

Definition. A quadratic form/homogeneous polynomial in degree 2 in n variables x_1, \ldots, x_n is

$$Q(x_1, \dots, x_n) = \sum_{i=1}^n q_{ii} x_i^2 + \sum_{i < j} q_{ij} x_i x_j$$

6.4.1.2 Matrix Representation of Quadratic Forms

Theorem. Let $Q(x_1, ..., x_n) = \sum_{i=1}^n q_{ii} x_i^2 + \sum_{i < j} q_{ij} x_i x_j$ be a quadratic form. Let $\mathbf{x} = (x_1, ..., x_n)^T$ and $\mathbf{A} = (a_{ij})_{n \times n}$ where $a_{ii} = q_{ii}$ and $a_{ij} = a_{ji} = \frac{1}{2} q_{ij}$ for i < j. Then $Q(\mathbf{x}) = \mathbf{x}^T \mathbf{A} \mathbf{x}, \mathbf{x} \in \mathbb{R}^n$.

6.4.1.3 Simplification of Quadratic Forms

Theorem. Suppose $Q(\boldsymbol{x}) = \boldsymbol{x}^T \boldsymbol{A} \boldsymbol{x}$ is a quadratic form where $\boldsymbol{x} = (x_1, \dots, x_n)^T \in \mathbb{R}^n$ and \boldsymbol{A} is a symmetrix matrix of order n. Then

1.
$$\exists$$
 an **orthogonal matrix** P such that $P^TAP = \begin{pmatrix} \lambda_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_n \end{pmatrix}$

2. Let
$$\mathbf{y} = \mathbf{P}^T \mathbf{x} = (y_1, \dots, y_n)^T \in \mathbb{R}^n$$
. Then

3.
$$Q(\mathbf{x}) = \sum_{i=1}^{n} \lambda_i y_i^2$$
.

6.4.2 Quadratic Equation

6.4.2.1 Quadratic Equation in One Variable

Definition. A quadratic equation in variable x is of the form $ax^2 + bx = c$.

6.4.2.2 Quadratic Equation in Two Variables

Definition. A quadratic equation in variables x and y is

$$ax^2 + bxy + cy^2 + dx + ey = f$$

6.4.2.2.1 Matrix Representation

Let
$$\mathbf{x} = \begin{pmatrix} x \\ y \end{pmatrix}$$
, $\mathbf{A} = \begin{pmatrix} a & \frac{1}{2}b \\ \frac{1}{2}b & c \end{pmatrix}$, and $\mathbf{b} = \begin{pmatrix} d \\ e \end{pmatrix}$. Then $\mathbf{x}^T \mathbf{A} \mathbf{x} + \mathbf{b}^T \mathbf{x} = f$.

6.4.2.2.2 Quadratic Form Associated With Quadratic Equation

Definition. $ax^2 + bxy + cy^2 = \mathbf{x}^T \mathbf{A} \mathbf{x}$ is the quadratic form **associated** with the quadratic equation.

6.4.2.3 Graph of a Quadratic Equation

Theorem. The graph of a quadratic equation is a conic section.

6.4.3 Classification of Conic Sections

6.4.3.1 Table of Conics

Degeneracy	Name	Equation / Standard Form
Degenerated	The whole plane \mathbb{R}^2	0 = 0
	Empty Set	$x^2 + y^2 = -1$
	A point	$x^2 + y^2 = 0$
	A line	$x = 0 \text{ or } x^2 = 0$
	A pair of distinct lines	$x^2 - y^2 = 0$
	Circle	$\frac{x^2}{\alpha^2} + \frac{y^2}{\alpha^2} = 1, \alpha > 0$
Non-degenerated	Ellipse	$\frac{x^2}{\alpha^2} + \frac{y^2}{\beta^2} = 1, \alpha > 0, \beta > 0$
	Hyperbola	$\pm \frac{x^2}{\alpha^2} \mp \frac{y^2}{\beta^2} = 1, \alpha > 0, \beta > 0$
	Parabola	$x^2 = \alpha y \text{ or } y^2 = \alpha x$

6.4.3.2 Algorithm to Classify Conic Sections

Given a quadratic equation $x^T A x + b^T x = f, x \in \mathbb{R}^2$.

1. Orthogonally diagonalize A.

•
$$P^T A P = \begin{pmatrix} \lambda & 0 \\ 0 & \mu \end{pmatrix}$$
, P an orthogonal matrix.

2. Let $\boldsymbol{y} = \boldsymbol{P}^T \boldsymbol{x}$. Then

$$\bullet \ \boldsymbol{y}^T \begin{pmatrix} \lambda & 0 \\ 0 & \mu \end{pmatrix} \boldsymbol{y} + \boldsymbol{b}^T \boldsymbol{P} \boldsymbol{y} = f$$

3. Complete the squares.

6.4.3.2.1 Determinant of Symmetric Matrix and Type of Conic Sections Suppose the conic section is non-degenerate. Since $\lambda \mu = \det(\mathbf{A})$, then

- $det(\mathbf{A}) > 0 \Leftrightarrow ellipse (or circle).$
- $\det(\mathbf{A}) < 0 \Leftrightarrow \text{hyperbola}.$
- $det(\mathbf{A}) = 0 \Leftrightarrow parabola.$

6.4.3.2.2 Rotating and Reflecting Conic Sections

Let **P** be orthogonal of order 2. Then $det(\mathbf{P}) = \pm 1$.

•
$$\det(\mathbf{P}) = 1 \Rightarrow \mathbf{P} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$
. Let $\mathbf{y} = \mathbf{P}^T \mathbf{x}$. Then

 \circ the new axes are obtained by rotating the original axes about origin anticlockwise by θ .

•
$$\det(\mathbf{P}) = -1 \Rightarrow \mathbf{P} = \begin{pmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
. Let $\mathbf{y} = \mathbf{P}^T \mathbf{x}$. Then

- the new axes are obtained by first rotating the original axes about origin anticlockwise by θ , then reflecting w.r.t. the x'-axis.
- 6.4.3.2.3 Can Always Orthogonally Diagonalize by Matrix with Determinant One By multiplying the 2nd column of P by -1 if necessary, we can always diagonalize a symmetric matrix A by an orthogonal matrix with determinant 1.

Chapter 7

Linear Transformation

7.1 Linear Transformations from \mathbb{R}^n to \mathbb{R}^m

7.1.1 Definition of Linear Transformation

Definition. The mapping $T: \mathbb{R}^n \to \mathbb{R}^m$ defined by

$$T\left(\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}\right) = \begin{pmatrix} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n \\ \vdots & \vdots & \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n \end{pmatrix}$$

a linear transformation from \mathbb{R}^n to \mathbb{R}^m .

7.1.1.1 Linear Operator

T is a **linear operator** on \mathbb{R}^n if m=n.

7.1.2 Linear Transformation As Matrix Form

A linear transformation is viewed as the matrix form:

$$T\begin{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$

 $T: \mathbb{R}^n \to \mathbb{R}^m$ such that $\forall \boldsymbol{x} \in \mathbb{R}^n \quad T(\boldsymbol{x}) = \boldsymbol{A}\boldsymbol{x}$

• $A = (a_{ij})_{m \times n}$ is the standard matrix for T.

7.1.3 Examples of Linear Transformation

7.1.3.1 Identity Transformation

Definition. Let $I: \mathbb{R}^n \to \mathbb{R}^n$ be the linear transformation $\forall x \in \mathbb{R}^n \mid I(x) = x$.

- It is the
 - o identity transformation; or
 - \circ identity operator on \mathbb{R}^n .
- $I(x) = x = I_n x \Rightarrow I_n$ is the standard matrix for I.

7.1.3.2 Zero Transformation

Definition. Let $O: \mathbb{R}^n \to \mathbb{R}^m$ be the linear transformation $\forall x \in \mathbb{R}^n \quad O(x) = 0$.

- It is the zero transformation.
- $O(x) = 0 = \mathbf{0}_{m \times n} x \Rightarrow \mathbf{0}_{m \times n}$ is the standard matrix for O.

7.1.4 Standard Matrix of a Linear Transformation is Unique

Theorem. The standard matrix of a linear transformation is unique.

7.1.5 To Prove that a Mapping is a Linear Transformation

To show that $T: \mathbb{R}^n \to \mathbb{R}^m$ is a **linear transformation**, it suffices to find a **matrix** A so that $\forall x \in \mathbb{R}^n \quad T(x) = Ax$.

7.1.6 Linearity of Linear Transformations

Theorem. Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Then

- T(0) = 0
- $\forall c \in \mathbb{R}, \forall \boldsymbol{v} \in \mathbb{R}^n, \quad T(c\boldsymbol{v}) = cT(\boldsymbol{v})$
- $\forall \boldsymbol{u}, \boldsymbol{v} \in \mathbb{R}^n$, $T(\boldsymbol{u} + \boldsymbol{v}) = T(\boldsymbol{u}) + T(\boldsymbol{v})$
- $\forall c_1, \ldots, c_k \in \mathbb{R}, \forall \mathbf{v}_1, \ldots, \mathbf{v}_k \in \mathbb{R}^n, \quad T(c_1\mathbf{v}_1 + \cdots + c_k\mathbf{v}_k) = c_1T(\mathbf{v}_1) + \cdots + c_kT(\mathbf{v}_k)$

7.1.7 To Prove that a Mapping is Not a Linear Transformation

To show that a mapping $T: \mathbb{R}^n \to \mathbb{R}^m$ is **not** a **linear transformation**,

- Show that $T(\mathbf{0}) \neq \mathbf{0}$; or
- Find $c \in \mathbb{R}, \boldsymbol{v} \in \mathbb{R}^n$ such that $T(c\boldsymbol{v}) \neq cT(\boldsymbol{v})$; or
- Find $\boldsymbol{u}, \boldsymbol{v} \in \mathbb{R}^n$ such that $T(\boldsymbol{u} + \boldsymbol{v}) \neq T(\boldsymbol{u}) + T(\boldsymbol{v})$.

7.1.8 Representation of Linear Transformations

7.1.8.1 Linear Transformations are Completely Determined by a Basis of \mathbb{R}^n and its Images

Suppose that $T: \mathbb{R}^n \to \mathbb{R}^m$ is a **linear transformation** and $S = \{v_1, \dots, v_n\}$ is a **basis** for \mathbb{R}^n . Then $\forall v \in \mathbb{R}^n \quad (v)_S = (c_1, \dots, c_n)$, and

$$T(\mathbf{v}) = T(c_1\mathbf{v}_1 + \dots + c_n\mathbf{v}_n)$$
$$= c_1T(\mathbf{v}_1) + \dots + c_nT(\mathbf{v}_n)$$

 $T(\mathbf{v})$ is completely determined by $T(\mathbf{v}_1), \dots, T(\mathbf{v}_n)$. Let

- A be the standard matrix for T,
- $\boldsymbol{B} = (T(\boldsymbol{v}_1) \cdots T(\boldsymbol{v}_n))$, and
- ullet $oldsymbol{P}=egin{pmatrix} oldsymbol{v}_1 & \cdots & oldsymbol{v}_n \end{pmatrix}$

Then $\mathbf{A} = \mathbf{B}\mathbf{P}^{-1}$.

7.1.8.2 Columns of Standard Matrix are Images of Standard Basis of \mathbb{R}^n

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a **linear transformation** and A be the **standard matrix** for T. Then $A = (T(e_1) \cdots T(e_n))$.

7.1.9 Linear Combination Preserving Implies Linear Transformation

7.1.9.1 With k vectors

Theorem. A mapping $T: \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation, i.e., $T(\boldsymbol{x}) = \boldsymbol{A}\boldsymbol{x} \Leftrightarrow \forall c_1, \ldots, c_k \in \mathbb{R}, \forall \boldsymbol{v}_1, \ldots, \boldsymbol{v}_k \in \mathbb{R}^n, \quad T(c_1\boldsymbol{v}_1 + \cdots + c_k\boldsymbol{v}_k) = c_1T(\boldsymbol{v}_1) + \cdots + c_kT(\boldsymbol{v}_k)$

7.1.9.2 With Two Vectors

Theorem. A mapping $T: \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation, i.e., $T(\boldsymbol{x}) = \boldsymbol{A}\boldsymbol{x} \Leftrightarrow \forall c, d \in \mathbb{R}, \forall \boldsymbol{u}, \boldsymbol{v} \in \mathbb{R}^n, \quad T(c\boldsymbol{u} + d\boldsymbol{v}) = cT(\boldsymbol{u}) + dT(\boldsymbol{v}).$

7.1.10 General Definition of Linear Transformations

Definition. Let V and W be vector spaces. A mapping $T:V\to W$ is a linear transformation if

$$\forall \boldsymbol{u}, \boldsymbol{v} \in \mathbb{R}^n, \forall c, d, \in \mathbb{R}, \quad T(c\boldsymbol{u} + d\boldsymbol{v}) = cT(\boldsymbol{u}) + dT(\boldsymbol{v})$$

7.1.11 Change of Bases

7.1.11.1 Change Between the Images of Two Bases

Theorem. Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Let

- $S = \{ \boldsymbol{u}_1, \dots, \boldsymbol{u}_n \}$ and $R = \{ \boldsymbol{v}_1, \dots, \boldsymbol{v}_n \}$ be bases for \mathbb{R}^n ,
- $\boldsymbol{B} = (T(\boldsymbol{u}_1) \cdots T(\boldsymbol{u}_n))$ and $\boldsymbol{C} = (T(\boldsymbol{v}_1) \cdots T(\boldsymbol{v}_n))$, and
- P be the transition matrix from S to R and $Q = P^{-1}$

Then B = CP and C = BQ.

7.1.11.2 Change Basis for Linear Operator

Theorem. Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be a linear operation on \mathbb{R}^n and \boldsymbol{A} be the standard matrix. Let $S = \{\boldsymbol{v}_1, \dots, \boldsymbol{v}_n\}$ be a basis for \mathbb{R}^n and $\boldsymbol{P} = \begin{pmatrix} \boldsymbol{v}_1 & \cdots & \boldsymbol{v}_n \end{pmatrix}$. Then

- $[T(\boldsymbol{v})]_S = \boldsymbol{B}[\boldsymbol{v}]_S$, where $\boldsymbol{B} = \boldsymbol{P}^{-1}\boldsymbol{A}\boldsymbol{P}$
- T can be represented by $[\boldsymbol{v}]_S \mapsto \boldsymbol{B}[\boldsymbol{v}]_S$
- \bullet **A** and **B** are similar.

7.1.12 Composition

7.1.12.1 Definition of Function Composition

Definition. Let $f: X \to Y$ and $g: Y \to Z$ be two functions. The **composition** of g with f, denoted by $g \circ f$, is the function $X \to Z$ such that $\forall x \in X \quad (g \circ f)(x) = g(f(x))$

7.1.12.2 Function Composition is not Commutative in General

Note: In general, $g \circ f \neq f \circ g$.

7.1.12.3 Linear Transformation Composition

Definition. Let $S: \mathbb{R}^n \to \mathbb{R}^m$ and $T: \mathbb{R}^m \to \mathbb{R}^k$ be **linear transformations**. The **composition** of T with S, denoted by $T \circ S$, is the mapping $\mathbb{R}^n \to \mathbb{R}^k$ such that $\forall \boldsymbol{u} \in \mathbb{R}^n$, $(T \circ S)(\boldsymbol{u}) = T(S(\boldsymbol{u}))$

7.1.12.4 Linear Transformation Composition is not Commutative in General

Note: In general, $T \circ S \neq S \circ T$.

7.1.12.5 Composition of Linear Transformations is a Linear Transformation and Formula for its Standard Matrix

Theorem. Let $S: \mathbb{R}^n \to \mathbb{R}^m$ and $T: \mathbb{R}^m \to \mathbb{R}^k$ be linear transformations. Then

• $T \circ S : \mathbb{R}^n \to \mathbb{R}^k$ is a linear transformation

Let \boldsymbol{A} and \boldsymbol{B} be the standard matrices for S and T respectively. Then

• the standard matrix for $T \circ S$ is BA.

7.1.12.6 Properties of Linear Transformation Composition

Theorem. Let $S, T, T_1, T_2, S_1, S_2, U$ be linear transformations and $c \in \mathbb{R}$. Then

- Identity & Zero Composition: $I \circ S = S \circ I = S$; $O \circ S = S \circ O = O$
- Constant Multiple: $c(T \circ S) = (cT) \circ S = T \circ (cS)$
- Associativity: $U \circ (T \circ S) = (U \circ T) \circ S$
- Distributive Over Addition:

$$\circ (T_1 + T_2) \circ S = T_1 \circ S + T_2 \circ S$$

$$\circ T \circ (S_1 + S_2) = T \circ S_1 + T \circ S_2$$

7.2 Ranges and Kernels

7.2.1 Range

7.2.1.1 Range of Function

Definition. Let $f: X \to Y$ be a **function**. The **range** of f, denoted by R(f), is the set of all **images** of f:

$$R(f) = \{ f(x) \mid x \in X \} \subseteq Y$$

7.2.1.2 Range of Linear Transformation

Definition. Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a **linear transformation**. The **range** of T, denoted by R(T), is the set of all **images** of T:

$$R(T) = \{T(\boldsymbol{v}) \mid \boldsymbol{v} \in \mathbb{R}^n\} \subset \mathbb{R}^m$$

7.2.1.3 Representation of Range

7.2.1.3.1 Range as Subspace Spanned by the Images of Any Basis for \mathbb{R}^n

Theorem. Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation and $\{v_1, \ldots, v_n\}$ be any basis for \mathbb{R}^n . Then

- $R(T) = \operatorname{span}\{T(\boldsymbol{v}_1), \dots, T(\boldsymbol{v}_n)\}.$
- R(T) is a subspace of \mathbb{R}^m .

7.2.1.3.2 Range as Column Space of Standard Matrix

Theorem. Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation and A be the standard matrix for T. Then R(T) =column space of A.

7.2.2 Rank of Linear Transformation

Definition. Let T be a linear transformation. The rank of T, denoted by rank(T), is defined as

$$rank(T) = dim(R(T))$$

Let A be the standard matrix for T. Then

$$rank(T) = dim(R(T)) = dim(column space of A) = rank(A)$$

7.2.3 Kernel

7.2.3.1 Definition of Kernel of Linear Transformation

Definition. Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a **linear transformation**. The **kernel** of T, denoted by Ker(T), is

$$\operatorname{Ker}(T) = \{ \boldsymbol{v} \in \mathbb{R}^n \mid T(\boldsymbol{v}) = \boldsymbol{0} \} \subseteq \mathbb{R}^n$$

Recall that $T(\mathbf{0}) = \mathbf{0} \Rightarrow \mathbf{0} \in \text{Ker}(T) \subset \mathbb{R}^n$.

7.2.3.2 Representation of Kernel

7.2.3.2.1 Kernel as Nullspace of Standard Matrix and Subspace of \mathbb{R}^n

Theorem. Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation and \mathbf{A} be the standard matrix for T. Then $\text{Ker}(T) = (\text{nullspace of } \mathbf{A})$ which is a subspace of \mathbb{R}^n .

7.2.3.2.2 Finding General Solution for Kernel

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation and A be the standard matrix for T. To find a general solution for Ker(T), solve the linear system Ax = 0.

7.2.4 Nullity of Linear Transformation

Definition. Let T be a linear transformation. The nullity of T, denoted by nullity (T), is defined as

$$\operatorname{nullity}(T) = \dim(\operatorname{Ker}(T))$$

Let \boldsymbol{A} be the standard matrix for T. Then

$$\operatorname{nullity}(T) = \dim(\operatorname{Ker}(T)) = \dim(\mathbf{nullspace} \text{ of } \mathbf{A}) = \operatorname{nullity}(\mathbf{A})$$

7.2.5 Dimension Theorem for Linear Transformations

Theorem. Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Then $\operatorname{rank}(T) + \operatorname{nullity}(T) = n$.

7.2.6 Linear Transformation Between Vector Spaces

Let $T: V \to W$ be a linear transformation between vector spaces.

7.2.6.1 Range

Definition. $R(T) = \{T(\boldsymbol{v} \mid \boldsymbol{v} \in V) \text{ is a subspace of } W.$

7.2.6.2 Rank

Definition. rank(T) = dim(R(T)).

7.2.6.3 Kernel

Definition. Ker $(T) = \{ v \in V \mid T(v) = 0 \}$ is a subspace of V.

7.2.6.4 Nullity

Definition. nullity $(T) = \dim(\operatorname{Ker}(T))$.

7.2.6.5 Dimension Theorem

Definition. rank(T) + nullity(T) = dim(V).

7.3 Geometric Linear Transformations

7.3.1 Geometric Interpretation Completely Determined by Effect on a Basis for its Domain

Since the images of any basis for \mathbb{R}^n completely determines a linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$, to study the geometric interpretation of a linear transformation, it suffices to check the effect of the linear transformation on a basis for its domain.

7.3.2 Scaling

7.3.2.1 Scaling in \mathbb{R}^2

Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a **linear transformation** and $\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$ be the **standard matrix** for T, where $\lambda_1, \lambda_2 > 0$.

$$T\left(\begin{pmatrix} x \\ y \end{pmatrix}\right) = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \lambda_1 x \\ \lambda_2 y \end{pmatrix}$$

Then T is a scaling in \mathbb{R}^2 ,

- along the x-axis by a factor of λ_1 , and
- along the y-axis by a factor of λ_2 .

7.3.2.1.1 Dilation & Contraction

Suppose further that $\lambda_1 = \lambda_2$. Let $\lambda = \lambda_1 = \lambda_2$. Then

- T is a **dilation** if $\lambda > 1$.
- T is a **contraction** if $0 < \lambda < 1$.

7.3.2.2 Scaling in other Axes in \mathbb{R}^2

Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation and \boldsymbol{A} be the standard matrix.

- Suppose \boldsymbol{A} is diagonalizable, say $\exists \boldsymbol{P}$ such that $\boldsymbol{P}^{-1}\boldsymbol{A}\boldsymbol{P} = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}, \lambda_1, \lambda_2 > 0$
- Suppose $P = (v_1 \ v_2)$. Let $S = \{v_1, v_2\}$. Then S is a basis for \mathbb{R}^2 .
- $\forall \boldsymbol{v} \in \mathbb{R}^2$, $[T(\boldsymbol{v})]_S = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} [\boldsymbol{v}]_S$ (from section 7.1.11.2)
- Then T can be viewed as a scaling
 - \circ along the direction of v_1 by factor λ_1 ,
 - \circ along the direction of v_2 by factor λ_2 ,

7.3.2.3 Scaling in \mathbb{R}^3

Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be a **linear transformation** with **standard matrix** $\begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{pmatrix}$, where $\lambda_1, \lambda_2, \lambda_3 > 0$.

$$T\left(\begin{pmatrix} x \\ y \\ z \end{pmatrix}\right) = \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} \lambda_1 x \\ \lambda_2 y \\ \lambda_3 z \end{pmatrix}$$

Then T is a scaling,

- along the x-axis by a factor of λ_1 ,
- along the y-axis by a factor of λ_2 ,
- along the z-axis by a factor of λ_3 .

7.3.2.3.1 Dilation & Contraction

Suppose further that $\lambda_1 = \lambda_2 = \lambda_3 = \lambda$. Then

- T is a **dilation** if $\lambda > 1$.
- T is a **contraction** if $0 < \lambda < 1$.

7.3.2.4 Scaling in other Axes in \mathbb{R}^3

Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation with standard matrix A.

- Suppose \boldsymbol{A} is diagonalizable, say $\exists \boldsymbol{P}$ such that $\boldsymbol{P}^{-1}\boldsymbol{A}\boldsymbol{P} = \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{pmatrix}, \lambda_1, \lambda_2, \lambda_3 > 0$
- Suppose $P = (v_1 \ v_2 \ v_3)$. Let $S = \{v_1, v_2, v_3\}$. Then S is a basis for \mathbb{R}^3 .
- $\forall \boldsymbol{v} \in \mathbb{R}^3$, $[T(\boldsymbol{v})]_S = \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{pmatrix} [\boldsymbol{v}]_S$ (from section 7.1.11.2)
- Then T can be viewed as a scaling
 - \circ along the direction of v_1 by factor λ_1 ,
 - \circ along the direction of v_2 by factor λ_2 ,
 - \circ along the direction of v_3 by factor λ_3 .

7.3.3 Reflection

7.3.3.1 Reflection in \mathbb{R}^2

7.3.3.1.1 Reflection w.r.t. x-axis

Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation with standard matrix $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$

$$T\left(\begin{pmatrix} x \\ y \end{pmatrix}\right) = \begin{pmatrix} x \\ -y \end{pmatrix}$$

T is the **reflection** w.r.t. the x-axis.

7.3.3.1.2 Reflection w.r.t. y-axis

Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation with standard matrix $\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$

$$T\left(\begin{pmatrix} x \\ y \end{pmatrix}\right) = \begin{pmatrix} -x \\ y \end{pmatrix}$$

T is the **reflection** w.r.t. the y-axis.

7.3.3.1.3 Reflection w.r.t. the line y = x

Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation with standard matrix $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$

$$T\left(\begin{pmatrix} x \\ y \end{pmatrix}\right) = \begin{pmatrix} y \\ x \end{pmatrix}$$

T is the **reflection** w.r.t. the line y = x.

7.3.3.1.4 Reflection w.r.t. a Line Through the Origin

T is the **reflection** w.r.t. the line ℓ passing through the origin where θ is the angle and the x-axis.

Orthogonal Matrices of Determinant -1

Every **orthogonal matrix** of det = -1 is in this form.

Representation with Unit Vector Parallel to Line

- Let $\mathbf{n} = (\cos \theta, \sin \theta)^T$ be a unit vector on ℓ .
- p is the projection of v onto span $\{n\}$

$$\circ \ \boldsymbol{p} = (\boldsymbol{v} \cdot \boldsymbol{n})\boldsymbol{n}$$

• \boldsymbol{p} is the midpoint of \boldsymbol{v} and $T(\boldsymbol{v})$

$$\circ T(\boldsymbol{v}) = 2\boldsymbol{p} - \boldsymbol{v} = 2(\boldsymbol{v} \cdot \boldsymbol{n})\boldsymbol{n} - \boldsymbol{v}$$

Representation with Unit Vector Orthogonal to Line

- Let $\mathbf{n} = (\sin \theta, -\cos \theta)^T$ be a unit vector orthogonal to ℓ .
- p is the projection of v onto span $\{n\}$

$$\circ \ \boldsymbol{p} = (\boldsymbol{v} \cdot \boldsymbol{n}) \boldsymbol{n}$$

• Note that $T(\mathbf{v}) + 2\mathbf{p} = \mathbf{v}$

$$\circ T(\boldsymbol{v}) = \boldsymbol{v} - 2\boldsymbol{p} = \boldsymbol{v} - 2(\boldsymbol{v} \cdot \boldsymbol{n})\boldsymbol{n}$$

7.3.3.2 Reflections in \mathbb{R}^3

7.3.3.2.1 Reflections w.r.t. Planes Formed by Coordinate Axes

Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation.

- If the standard matrix is $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$,
 - \circ then T is the reflection w.r.t. the xy-plane.
- If the standard matrix is $\begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$,
 - \circ then T is the reflection w.r.t. the xz-plane.
- If the standard matrix is $\begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$,
 - \circ then T is the reflection w.r.t. the yz-plane.

7.3.3.2.2 Reflections w.r.t. Any Plane

Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the reflection w.r.t. the plane ax + by + cz = 0, where a, b, c not all zero. Then $\mathbf{n} = (a, b, c)^T$ and $\forall \mathbf{v} \in \mathbb{R}^3$, $T(\mathbf{v}) = \mathbf{v} - \left(2\frac{\mathbf{v} \cdot \mathbf{n}}{\|\mathbf{n}\|^2}\right)\mathbf{n}$.

7.3.4 Rotation

7.3.4.1 Rotation in \mathbb{R}^2

Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the **rotation** about the origin by θ .

- Then T is a linear transformation.
- The standard matrix for T is $\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$

7.3.4.1.1 Orthogonal Matrices of Determinant 1

Every **orthogonal matrix** of det = 1 is in this form.

7.3.4.2 Rotation in \mathbb{R}^3

- Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the **rotation** about the z-axis anticlockwise by angle θ .
 - \circ The z-coordinate does not change
 - It is the rotation about the origin on the plane $z=z_0$ anticlockwise by θ .

$$\circ \mathbf{Standard} \mathbf{Matrix} \begin{pmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

- Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the **rotation** about the x-axis anticlockwise by angle θ .
 - The x-coordinate does not change
 - It is the rotation about the origin on the plane $x = x_0$ anticlockwise by θ .

$$\circ \mathbf{Standard} \mathbf{Matrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{pmatrix}$$

- Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the **rotation** about the y-axis anticlockwise by angle θ .
 - The y-coordinate does not change
 - It is the rotation about the origin on the plane $y = y_0$ anticlockwise by θ .

$$\circ \ \, \mathbf{Standard} \ \, \mathbf{Matrix} \begin{pmatrix} \cos \theta & 0 & -\sin \theta \\ 0 & 1 & 0 \\ \sin \theta & 0 & \cos \theta \end{pmatrix}$$

7.3.5 Reflections and Rotations in \mathbb{R}^2

7.3.5.1 Determinant Determines Rotation vs Reflection

Suppose standard matrix A for $T : \mathbb{R}^2 \to \mathbb{R}^2$ is orthogonal.

- If $det(\mathbf{A}) = 1$, T represents a **rotation** about the origin.
- If $det(\mathbf{A}) = -1$, T represents the **reflection** w.r.t. a line passing through the origin.

7.3.5.2 Reflection about a Line can be Decomposed into Reflection and Rotation

Since the **standard matrix** for **reflection** about a line ℓ passing through the origin where θ is the angle between ℓ and the x-axis is

$$\begin{pmatrix} \cos(2\theta) & \sin(2\theta) \\ \sin(2\theta) & -\cos(2\theta) \end{pmatrix} = \begin{pmatrix} \cos(2\theta) & -\sin(2\theta) \\ \sin(2\theta) & \cos(2\theta) \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Reflection w.r.t. ℓ can be decomposed into

- 1. Reflection w.r.t. x-axis
- 2. Rotation about the origin anticlockwise by 2θ .

7.3.6 Shears

7.3.6.1 Shears in \mathbb{R}^2

7.3.6.1.1 Shear in x-direction

Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be defined by

$$T\left(\begin{pmatrix} x \\ y \end{pmatrix}\right) = \begin{pmatrix} x + ky \\ y \end{pmatrix}$$

Then T is a **shear** in the x-direction by a factor k.

7.3.6.1.2 Shear in y-direction

Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be defined by

$$T\left(\begin{pmatrix} x \\ y \end{pmatrix}\right) = \begin{pmatrix} x \\ kx + y \end{pmatrix}$$

Then T is a **shear** in the y-direction by a factor k.

7.3.6.2 Shears in \mathbb{R}^3

Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be defined by

$$T\left(\begin{pmatrix} x \\ y \\ z \end{pmatrix}\right) = \begin{pmatrix} x + k_1 z \\ y + k_2 z \\ z \end{pmatrix}$$

Then T is a **shear** in the x-direction by a factor k_1 , and in the y-direction by factor k_2 .

- On yz-plane x = 0, it is a shear in y-direction by k_2 .
- On xz-plane y = 0, it is a shear in x-direction by k_1 .
- On the plane z = 1,

$$\circ T\left(\begin{pmatrix} x \\ y \\ 1 \end{pmatrix}\right) = \begin{pmatrix} x + k_1 \\ y + k_2 \\ 1 \end{pmatrix}.$$

7.3.7 Translations

Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be defined by

$$T\left(\begin{pmatrix} x \\ y \end{pmatrix}\right) = \begin{pmatrix} x+a \\ y+b \end{pmatrix}, a,b \in \mathbb{R}$$

- T is a **translation** by $(a,b)^T$.
- T is not a linear transformation unless a = b = 0.

7.3.8 2D Computer Graphic System

7.3.8.1 Representation of 2D Figures

- In 2D computer graphic, a figure is drawn by connecting points $(a_1, b_1), (a_2, b_2), \ldots, (a_n, b_n)$.
- It can be written as an $2 \times n$ matrix:

$$\circ \mathbf{M} = \begin{pmatrix} a_1 & a_2 & \cdots & a_n \\ b_1 & b_2 & \cdots & b_n \end{pmatrix}.$$

7.3.8.2 Scaling, Reflection, Rotation, Shearing of 2D Figures

- Let T be a scaling/reflection/rotation/shearing on \mathbb{R}^2
 - \circ Then T is a linear transformation with standard matrix A.
- Let $M = \begin{pmatrix} v_1 & v_2 & \cdots & v_n \end{pmatrix}$ be a 2D figure.
- \bullet Then the resulting figure by T is

$$\circ$$
 $\left(T(\boldsymbol{v}_1) \cdots T(\boldsymbol{v}_n)\right) = \left(\boldsymbol{A}\boldsymbol{v}_1 \cdots \boldsymbol{A}\boldsymbol{v}_n\right) = \boldsymbol{A}\left(\boldsymbol{v}_1 \cdots \boldsymbol{v}_n\right) = \boldsymbol{A}\boldsymbol{M}.$

7.3.8.3 Translating 2D Figure with Homogeneous Coordinate System

• Homogeneous coordinate system is formed by identifying \mathbb{R}^2 with plane z=1 in \mathbb{R}^3 :

$$\begin{pmatrix} a \\ b \end{pmatrix} \leftrightarrow \begin{pmatrix} a \\ b \\ 1 \end{pmatrix}$$

- A figure $(a_1, b_1), \ldots, (a_n, b_n)$ is identified by $(a_1, b_1, 1), \ldots, (a_n, b_n, 1)$.
- The associated matrix $\mathbf{M} = \begin{pmatrix} a_1 & \cdots & a_n \\ b_1 & \cdots & b_n \\ 1 & \cdots & 1 \end{pmatrix}$
- Suppose we want to do a translation by $(a, b)^T$.
- Define shear $T\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x + az \\ y + bz \\ z \end{pmatrix}$ with **standard matrix** $\mathbf{A} = \begin{pmatrix} 1 & 0 & a \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix}$
- $\mathbf{AM} = \begin{pmatrix} a_1 + a & \cdots & a_n + a \\ b_1 + b & \cdots & b_n + b \\ 1 & \cdots & 1 \end{pmatrix}$ represent the translation by $(a, b)^T$.