Лабораторная работа 3.1.3 ИЗМЕРЕНИЕ МАГНИТНОГО ПОЛЯ ЗЕМЛИ

Гарина Ольга

8 сентября 2020 г.

Цель работы: исследовать свойства постоянных неодимовых магнитов; измерить с их помощью горизонтальную и вертикальную составляющие индукции магнитного поля Земли и магнитное наклонение.

В работе используются: неодимовые магниты; тонкая нить для изготовления крутильного маятника; медная проволока; электронные весы; секундомер; измеритель магнитной индукции; штангенциркуль; брусок, линейка и штатив из немагнитных материалов; набор гирь и разновесов.

Простейший магнитный диполь может быть образован витком с током или постоянным магнитом. По определению, магнитный момент \mathfrak{m} такого витка площадью S с током I равен (в системе СИ)

$$\mathfrak{m} = I\vec{S},\tag{1}$$

где $\vec{S}=\mathbf{S}\vec{n}$ – вектор площади контура, образующий с направлением тока правовинтовую систему, \vec{n} – единичный вектор нормали к площадке. Если размеры контура с током или магнитной стрелки малы по сравнению с расстоянием до диполя, то соответствующий магнитный диполь \mathfrak{m} называется элементарным, или точечным.

Магнитное поле точечного диполя определяется по формуле, аналогичной формуле для поля элементарного электрического диполя:

$$B = \frac{\mu_0}{4\pi} \left(\frac{3\vec{r}(\mathbf{m} \cdot \vec{r})}{r^5} - \frac{\mathbf{m}}{r^3} \right) \tag{2}$$

Во внешнем магнитном поле с индукцией ${\bf B}$ на точечный магнитный диполь ${\mathfrak m}$ действует механический момент сил

$$\mathcal{M} = [\mathfrak{m} \times \vec{B}]. \tag{3}$$

При этом потенциальная энергия, которой обладает диполь с постоянным \mathfrak{m} , равна

$$W = -(\mathfrak{m} \cdot \vec{B}) \tag{4}$$

Когда диполь ориентирован вдоль внешнего поля $(\mathfrak{m} \parallel \vec{B})$, он находится в состоянии равновесия $(\mathcal{M}=0)$. При этом устойчивым будет только состояние, в котором диполь сонаправлен с полем $\mathfrak{m} \uparrow \vec{B}$, поскольку его потенциальная энергия достигает минимума $(W_{min}=-mB)$. При противоположной ориентации энергия будет иметь максимум $(W_{max}=mB)$, и состояние равновесия будет неустойчивым.

В неоднородном внешнем поле выражение для энергии постояного диполя (4) сохраняется. При этом кроме момента сил на диполь действует еще и сила

$$\vec{F} = -\nabla W = (\mathfrak{m} \cdot \nabla) \vec{B}. \tag{5}$$

Выражения (2) и (5) позволяют рассчитать силу взаимодействия магнитов с моментами \mathfrak{m}_1 и \mathfrak{m}_2 в рамках модоели точных диполей. В частном случае, когда моменты двух небольших магнитов направлены вдоль соединяющей их

прямой: $\mathfrak{m}_{1,2} \mid\mid \vec{r}$, где \vec{r} – радиус-вектор между ними, магниты взаимодействуют с силой

$$F_{1,2} = -\frac{6\mathfrak{m}_1\mathfrak{m}_2}{r^4}. (6)$$

1 Экспериментальная установка

Для проведения эксперимента важно, что а) вещество, из которого изготовлены магниты, является магнитожестким материалом; б) шары намагничены однородно.

Магнитное поле однородно намагниченного шара радиусом R может быть вычислено точно. На расстоянии $r \geqslant R$ от центра шара оно совпадает с полем точечного магнитного диполя (2), расположенного в центре, магнитный момент \vec{m} которого совпадает с полным моментом шара. Внутри шара магнитное поле однородно: с помощью формулы (2) и условия непрерывности нормальной компоненты индукции на поверхности шара нетрудно получить, что при r < R

$$\vec{B_0} = \frac{\mu_0 \mathfrak{m}}{2\pi R^3} = \frac{2\mathfrak{m}}{R^3} (BC\Gamma C). \tag{7}$$

В качестве еще одной характеристики материала магнита используют остаточную намагниченность \vec{M} . По определению, намагниченность равна объемной плотности магнитного момента, поэтому для однородного намагниченного шара

$$\mathfrak{m} = \vec{M}V,\tag{8}$$

где V — объем магнита. Величину $\vec{B_r} = 4\pi \vec{M}$ называют остаточной магнитной индукцией материала.

Из (2) нетрудно видеть, что индукция $\vec{B_p}$ на полюсах однородно намагниченного шара направлена по нормали к поверхности и совпадает поэтому с индукцией внутри шара. Как следует из (7), величина B_p связана с остаточной индукцией B_r соотношением

$$B_p = B_0 = \frac{2}{3}B_r. (9)$$

2 Определение магнитного момента, намагниченности и остаточной магнитной индукции вещества магнитных шариков

Величину магнитного момента \mathfrak{m} двух одинаковых шариков можно рассчитать, зная их массу \mathfrak{m} и поределив максимальное расстояние \mathfrak{r}_{max} , на котором они еще удерживают друг друга в поле тяжести. При максимальном расстоянии сила тяжести шариков \mathfrak{m}

равна силе их магнитного притяжения. Когда векторы двух магнитных моментов ориентированы вертикально, из (6) имеет

$$\mathfrak{m} = \sqrt{\frac{mgr_{max}^4}{6}} \tag{10}$$

g m r_{max}

Рисунок 1 – Измерение магнитных моментов шариков

Величина	значение	ε
d_1 , cm	0.68 ± 0.01	0,015
d_2 , cm	0.67 ± 0.01	0,015
m_1,Γ	0.846 ± 0.001	0,001
$\mathrm{m}_2,\ \Gamma$	0.852 ± 0.001	0,001
r_{max} , cm	$2,49 \pm 0,02$	0,008
B_p (измеренное), Гс	1177 ± 5	0,004

Таблица 1 – Измеренные величины

по формуле (10)

$$\mathfrak{m} = 72, 8 \pm 2, 3 \text{ spr/}\Gamma c.$$

По формуле (8) намагниченность

$$M=rac{\mathfrak{m}}{V}=442\pm14$$
 эрг/(Гс см 3)

остаточная магнитная индукция материала

$$B_r = 4\pi M = 5556 \pm 179 \; \Gamma c$$

по сравнению с табличной для неодима

$$rac{B_{r{
m получ}}}{B_{r{
m Ta6л}}} = rac{5556}{12200} = 0,54.$$

По формуле (9)

$$B_{p \text{получ}} = 3704 \pm 120 \,\, \Gamma \text{c}$$
 $rac{B_{p \text{получ}}}{B_{p \text{измер}}} = 3,15.$

3 Определение горизонтальной составляющей магнитного поля Земли

Кол-во шариков n	период колебаний Т, с
12	$3,18 \pm 0,13$
11	$2,93 \pm 0,01$
10	$2,89 \pm 0,17$
9	$2,59 \pm 0,08$
8	$2,203 \pm 0,026$
7	$1,90 \pm 0,05$
6	$1,6230 \pm 0,0024$
5	$1,38 \pm 0.04$
4	$1,18 \pm 0,04$
3	$0,686 \pm 0,013$
кольцо	$5,31 \pm 0,17$

Таблица 2 – Зависимость периода колебаний от количества шариков, составляющий стрелку

Рисунок 2 – Крутильный маятник во внешнем магнитном поле

Угловой коэффициент наклона графика, полученный с помощью МНК

$$k = 2\pi \sqrt{\frac{mr^2}{3\mathfrak{m}B_{||}}} = 0,28 \pm 0,01,$$

отсюда

$$B_{||} = \frac{4\pi^2 mr^2}{3\mathfrak{m}k^2} = 0,234 \pm 0,018 \; \Gamma c.$$

Рисунок 3 – Магнитная стрелка, свернутая в кольцо

Рисунок 4 – График зависимости T(n)

Рисунок 5 — Измерение вертикальной составляющей поля и магнитного наклонения

4 Определение вертикальной составляющей магнитного поля Земли

кол-вое шариков n	механический момент \mathcal{M} , дин \cdot см
10	1755 ± 7
8	248.4 ± 2.3
6	162.9 ± 1.8
4	104.2 ± 1.7

Таблица 3 – Зависимость $\mathcal{M}(n)$

Коэффициент наклона графика, полученный с помощью МНК, равен

$$k_2 = 36, 0 \pm 2, 2 = \mathfrak{m}B_{\perp}.$$

$$B_{\perp} = 0,50 \pm 0,03 \text{ Fc.}$$

$$B = 0.55 \pm 0.11 \; \Gamma c$$

$$tg\beta = \frac{B_{\perp}}{B_{||}} = 2,34 \pm 0,23$$

Рисунок 6 – График зависимости $\mathcal{M}(n)$

5 Обсуждение

5.1 Задание 1

Расхождение полученных результатов с табличными и измеренными можно объяснить тем, что во время проведения эксперимента рядом с установкой находились предметы, обладающие своим магнитным полем (телефон, канцелярия), что мешало снятию показаний.

Период колебаний стрелки, свернутой в кольцо, почти в 2 раза больше, чем период колебаний горизонтальной стрелки из такого же количества шариков, поэтому в расчетах упругостью нити можно пренебречь.

5.2 Задание 3

Индукция магнитного поля Земли в Московском регионе составляет примерно 0,05 мТл, т.е. 0,5 Гс, что почти совпадает со значение В, полученным в эксперименте. Пользуясь этим значением, можно найти полный магнитный момент Земли по формуле

$$\mathfrak{m}_{\mathfrak{T}} = \frac{B_0 R^3}{2} = 6,15 \cdot 10^{16} \, \text{Дж/Тл.}$$
 (11)

6 Литература

1. Лабораторный практикум по общей физике: Учебное пособие в трех томах. Т. 2. Электричество и магнетизм. 2-е изд., перераб и дополн. / Никулин М.Г., Попов П.В, Нозик А.А. и др.; Под ред. А.В. Максимычева, М.Г. Никулина. – М.: МФТИ, 2019. – 370 с