

PIANO DI QUALIFICA

Versione 0.0.1 in data 17-12-2017 Gruppo 353 - Progetto Marvin

Informazioni sul documento

Parwinder Singh Responsabili Redazione Elena Mattiazzo Gianluca Marraffa Valentina Marcon Verifica Stato In corso Uso Esterno Destinato a Red Babel Gruppo 353 Prof. Tullio Vardanega Prof. Riccardo Cardin Email di contatto 353swe@gmail.com

Diario delle modifiche

Versione	Data	Descrizione	Autore	Ruolo
0.0.2	27-12-2017	Stesura qualità di prodotto	Elena Mat- tiazzo	Amministratore
0.0.1	6-12-2017	Creazione scheletro del documento	Riccardo E. Giorato	Amministratore

Indice

1	Intr	roduzione	1
	1.1	Scopo del documento	1
	1.2	Scopo del prodotto	1
	1.3	Glossario	1
	1.4	Riferimenti	1
		1.4.1 Riferimenti Normativi	1
		1.4.2 Riferimenti Informativi	2
2	Qua	alità di processo	3
	2.1	Scopo	3
	2.2	Procedure di controllo di qualità di processo	3
	2.3		3
		± ±	3
			4
$\mathbf{A}_{\mathbf{l}}$	ppen	dice A Ciclo di Deming o PDCA	5
${f A}_1$	ppen	dice B ISO/IEC 15504	6
3	_	,	8
J	3.1	-	8
	3.1	1	8
	5.2	•	8
	3.3	1	9
	5.5		9
			5 01
			1
			12
			13
			14
	3.4		15
4	G	.'C 1.' 44	•
4	-	cifica dei test 1	
	4.1	Scopo	
	4.2 4.3	Tipi di test	16
	/1 ≺	LOGE OF MOUGONION	r
	4.0		16

		4.3.2 tabella test	16
	4.4	Test di Sistema	16
	4.5	Test di integrazione	16
	4.6	Test di unità	16
5	Tra	cciamento dei test	L 7
	5.1	Test di Validazione	17
	5.2	Test di Sistema	17
	5.3	Test di integrazione	17
	5.4		
6	Res	oconto attività di verifica	L 8
	6.1	Revisione dei Requisiti	18
		6.1.1 Tracciamento	
		6.1.2 Analisi Statica documenti	18
		6.1.3 Verifiche automatiche	18

Elenco delle figure

A.1 Ciclo di Deming

Elenco delle tabelle

	qualità di prodotto		15
--	---------------------	--	----

1. Introduzione

1.1 Scopo del documento

Lo scopo di questo documento consiste nel documentare le norme utilizzate dal Gruppo 353 adottate per la verifica e la validazione dei prodotti e dei processi. Per ottenere lo scopo proposto, i processi attuati e i prodotti realizzati saranno continuamente verificati, affinché non vengano introdotti errori che minano il risultato finale.

1.2 Scopo del prodotto

Lo scopo del prodotto è quello di realizzare una piattaforma web chiamata *Marvin* che simuli le funzionalità di base per studenti, docenti e università di Uniweb. L'applicativo al posto del database dovrà utilizzare la rete Ethereum interagendo con degli smart contract.

1.3 Glossario

All'interno del documento sono presenti termini che presentano significati ambigui a seconda del contesto. Per evitare questa ambiguità è stato creato un documento di nome Glossario che conterrà tali termini con il loro significati specifico. Per segnalare che un termine del testo è presente all'interno del $Glossario\ v\ 1.0.0$ verrà aggiunta una G a pedice a fianco del termine.

1.4 Riferimenti

1.4.1 Riferimenti Normativi

• Norme di progetto v 1.0.0;

• Standard ISO/IEC 9126

https://it.wikipedia.org/wiki/ISO/IEC_9126

- Modello di qualità.

1.4.2 Riferimenti Informativi

• Verifica e validazione: introduzione - Slide del corso di Ingegneria del Software

http://www.math.unipd.it/~tullio/IS-1/2017/Dispense/L17.pdf

• Indice di Gulpese

https://it.m.wikipedia.org/wiki/Indice_Gulpease

- Descrizione e formula di calcolo.
- Formula di Flesch

https://it.m.wikipedia.org/wiki/Formula_di_Flesch

- Descrizione e formula di calcolo.
- Qualità del software Slide del corso di Ingegneria del Software http://www.math.unipd.it/~tullio/IS-1/2017/Dispense/L13.pdf
- Qualità di processo Slide del corso di Ingegneria del Software http://www.math.unipd.it/~tullio/IS-1/2017/Dispense/L15.pdf
- Processi SW Slide del corso di Ingegneria del Software http://www.math.unipd.it/~tullio/IS-1/2017/Dispense/L03.pdf
- ISO/IEC 15504 Pagina Wikipedia https://en.wikipedia.org/wiki/ISO/IEC_15504

2. Qualità di processo

2.1 Scopo

Per garantire la qualità del prodotto è necessario perseguire la qualità dei processi che lo definiscono. Per raggiungere questo obiettivo, si è deciso di seguire il principio di miglioramento continuo (PDCA) e di adottare lo standard ISO/IEC 15504 denominato SPICE (Software Process Improvement and Capability Determination).

2.2 Procedure di controllo di qualità di processo

La qualità dei processi verrà garantita dall'applicazione del principio PDCA, descritto dell'appendice A. Grazie a questo principio, sarà possibile ottenere un miglioramento continuo della qualità di tutti i processi, inclusa la verifica, e come diretta conseguenza si otterrà il miglioramento dei prodotti risultanti.

Per ottenere qualità dei processi, bisogna:

- Definire il processo: affinché sia controllabile;
- Controllare il processo: in funzione dell'ottenimento di efficacia, efficienza ed esperienza;
- Usare buoni strumenti di valutazione: SPICE e PDCA;

2.3 Metriche per i processi

2.3.1 Schedule Variance (SV)

Indica se si è in linea, in anticipo o in ritardo rispetto alla schedulazione delle attività di progetto pianificate nella baseline.

E un indicatore di efficacia soprattutto nei confronti del Cliente.

Se SV è positivo, significa che il progetto sta producendo con maggior velocità rispetto a quanto pianificato, viceversa se negativo.

2.3.2 Budget Variance (BV)

Indica se alla data corrente si è speso di più o di meno rispetto a quanto previsto a budget alla data corrente.

È un indicatore che ha un valore unicamente contabile e finanziario.

Se BV è positivo significa che il progetto sta spendendo il proprio budget con minor velocità di quanto pianificato, viceversa se negativo.

A. Ciclo di Deming o PDCA

Ogni processo deve essere organizzato basandosi sul principio del miglioramento continuo (o ruota di Deming):

Plan (pianificare): viene definito un piano che parte dalla definizione di problemi e obiettivi, pianifica compiti, assegna responsabilità, studia il caso, analizza le cause della criticità, definisce azioni correttive;

Do (eseguire): vengono implementate le attività secondo le linee definite durante la fase Plan;

Check (valutare): viene verificato l'esito delle azioni di miglioramento rispetto alle attese;

Act (agire): vengono applicate le correzioni necessarie per colmare le carenze rilevate, e vengono standardizzate le attività correttamente eseguite.

Figura A.1: Ciclo di Deming

B. ISO/IEC 15504

Lo standard ISO/IEC 15504 contiene un modello di riferimento che definisce

- Process dimension;
- Capability dimension.

La dimensione di processo divide i processi in cinque categorie:

- Customer-supplier;
- Engineering;
- Supporting;
- Management;
- Organization.

Per ogni processo, lo standard ISO/IEC 15504 definisce dei livelli di capacità:

- Livello 5 Optimizing process: il processo è continuamente migliorato;
- Livello 4 **Predictable process**: il processo è adottato sistematicamente, entro limiti definiti;
- Livello 3 **Established process**: un processo stabilito si basa su un processo standard;
- Livello 2 Managed process: il processo è gestito e i prodotti sono stabiliti, controllati e mantenuti;
- Livello 1 **Performed process**: il processo è implementato e raggiunge lo scopo stabilito;
- Livello 0 **Incomplete process**: il processo non è implementato o non raggiunge lo scopo stabilito.

La capacità dei processi viene misurata attraverso degli attributi di processo.

- Process performance: capacità di un processo di raggiungere gli obiettivi trasformando input identificabili in output identificabili;
- Performance management: capacità del processo di elaborare un prodotto coerente con gli obiettivi fissati;
- Work product management: capacità del processo di elaborare un prodotto documentato, controllato e verificato;
- **Process definition:** l'esecuzione del processo si basa su standard di processo per raggiungere i propri obiettivi;
- Process deployment: capacità del processo di attingere a risorse tecniche e umane appropriate per essere attuato efficacemente;
- **Process measurement:** gli obiettivi e le misure di prodotto e di processo vengono usati per garantire il raggiungimento dei traguardi definiti in supporto ai target aziendali;
- **Process control:** il processo viene controllato tramite misure di prodotto e processo per effettuare correzioni migliorative al processo stesso;
- **Process innovation:** i cambiamenti strutturali, di gestione e di esecuzione vengono gestiti in modo controllato per raggiungere i risultati fissati;
- **Process optimization:** le modifiche al processo sono identificate e implementate per garantire il miglioramento continuo nella realizzazione degli obiettivi di business dell'organizzazione.

Ogni attributo consiste di una o più pratiche generiche che sono ulteriormente elaborate in indicatori pratici per aiutare la valutazione delle performance, sotto forma di indici N-P-L-F:

- Non soddisfatto (0 15%);
- Parzialmente soddisfatto (>15% 50%);
- Largamente soddisfatto (>50% 85%);
- Totalmente soddisfatto (>85% 100%)

3. Qualità di prodotto

3.1 Scopo

Per garantire una buona qualità di prodotto, il gruppo 353 ha individuato dallo standard ISO/IEC 9126 le qualità che ritiene più importanti nell'arco del ciclo di vita del prodotto e le ha istanziate individuando obiettivi e metriche coerenti con i livelli di qualità perseguiti.

3.2 Qualità dei documenti

I documenti prodotti dal gruppo 353 dovranno essere leggibili, comprensibili e corretti dal punto di vista ortografico, sintattico, logico e semantico.

3.2.1 Comprensione

Obiettivi di qualità

- Leggibilità: i documenti prodotti dovranno essere leggibili e comprensibili a persone con licenza di istruzione media;
- Correttezza ortografica: i documenti prodotti non dovranno contenere errori ortografici.

Metriche

• Indice di Gulpease: è l'indice di leggibilità tarato sulla lingua italiana. Considera due variabili linguistiche: la lunghezza della parola e la lunghezza della frase rispetto al numero di lettere. La formulata per il suo calcolo è la seguente:

$$IG = 89 + \frac{300 * N_F - 10 * N_L}{N_P}$$

dove N_F è il numero delle frasi, N_P il numero delle lettere e N_P il numero delle parole. Il risultato I è un numero compreso tra 0 e 100. In generale risulta che i testi con indice inferiore a:

- 80 sono difficili da leggere per chi ha una licenza elementare;
- 60 sono difficili da leggere per chi ha una licenza media;
- 40 sono difficili da leggere per chi ha un diploma superiore.
- Formula di Flesch: è una formula che serve per misurare la leggibilità di un testo in inglese:

$$F = 206,835 - (0,846 * S) - (1,015 * P)$$

dove S è il numero delle sillabe, calcolato su un campione di 100 parole e P è il numero medio di parole per frase. La leggibilità è alta se F è superiore a 60, media se fra 50 e 60, bassa sotto a 50;

• Errori ortografici: gli errori ortografici possono essere identificati tramite lo strumento 'Controllo ortografico' presente in TexStudio. Sarà poi compito del Verificatore correggerli.

3.3 Qualità del software

3.3.1 Funzionalità

Rappresenta la capacità del prodotto di fornire tutte le funzioni che sono state individuate attraverso l'Analisi dei requisiti.

Obiettivi qualità

Il gruppo 353 si impegnerà affinché:

- Adeguatezza: le funzionalità fornite siano conformi rispetto le aspettative;
- Accuratezza: il prodotto fornisca i risultati attesi, con il livello di dettaglio richiesto.

Metriche

• Copertura requisiti obbligatori: indica la percentuale dei requisiti obbligatori coperti dall'implementazione. La formula di misurazione è

$$CRO = (\frac{N_{ROS}}{N_{RO}}) * 100$$

dove N_{ROS} è il numero di requisiti obbligatori soddisfatti e N_{RO} è il numero totale dei requisiti obbligatori;

• Copertura requisiti accettati: indica la percentuale dei requisiti desiderabili e facoltativi coperti dall'implementazione. La formula di misurazione è

$$CRA = \left(\frac{N_{RAS}}{N_{RA}}\right) * 100$$

dove N_{RAS} è il numero di requisiti accettati soddisfatti e N_{RA} è il numero totale dei requisiti accettati;

• Accuratezza rispetto alle attese: indica la percentuale di risultati concordi alle attese. La formula di misurazione è

$$ARA = (1 - \frac{N_{TD}}{N_{TE}}) * 100$$

dove N_{TD} è il numero di test che producono risultati discordi alle attese e N_{TE} è il numero di test-case eseguiti.

3.3.2 Affidabilità

Rappresenta la capacità del prodotto software di svolgere correttamente le sue funzioni durante il suo utilizzo, anche in caso in cui si presentino situazioni anomale.

Obiettivi di qualità

L'esecuzione del prodotto dovrà presentare le seguenti caratteristiche:

- Maturità: evitare che si verifichino malfunzionamenti, operazioni illegali e failure in seguito a fault;
- Tolleranza agli errori: nel caso in cui si presentino degli errori, dovuti a guasti o ad un uso scorretto dell'applicativo, questi devo essere gestiti in modo da mantenere alto il livello di prestazioni.

Metriche

• Densità di failure: indica la percentuale di testing che si sono concluse in failure. La sua formula di misurazione è

$$DF = (\frac{N_{FR}}{N_{TE}}) * 100$$

dove N_{FR} è il numero di failure rilevati durante l'attività di testing e N_{TE} è il numero di test-case eseguiti;

• Blocco di operazioni non corrette: indica la percentuale di funzionalità in grado di gestire correttamente i fault che potrebbero verificarsi . La sua formula di misurazione è

$$BNC = (\frac{N_{FE}}{N_{ON}}) * 100$$

dove N_{FE} è il numero di failure evitati durante i test effettuati e N_{ON} è il numero di test-case eseguiti che prevedono l'esecuzione di operazioni non corrette, causa di possibili failure.

3.3.3 Usabilità

Rappresenta la capacità del prodotto di essere facilmente comprensibile e attraente in ogni sua parte per qualsiasi utente che lo andrà ad utilizzare.

Obiettivi di qualità

Il prodotto dovrà puntare ai seguenti obiettivi di usabilità:

- Comprensibilità: l'utente deve essere in grado di riconoscere le funzionalità offerte dal software e deve comprendere le modalità di utilizzo per raggiungere i risultati attesi;
- Apprendibilità: deve essere data la possibilità all'utente di imparare ad utilizzare l'applicazione senza troppo impegno;
- Operabilità: le funzioni presenti devono essere coerenti con le aspettative dell'utente;
- Attrattiva: il software deve essere piacevole per chi ne fa uso.

Metriche

• Comprensibilità delle funzioni offerte: indica la percentuale di operazioni comprese in modo immediato dall'utente, senza la consultazione del manuale. La sua formula di misurazione è

$$CFC = (\frac{N_{FC}}{N_{FO}}) * 100$$

dove N_{FC} è il numero di funzionalità comprese in modo immediato dall'utente durante l'attività di testing del prodotto e N_{FO} è il numero di funzionalità offerte dal sistema;

- Facilità di apprendimento delle funzionalità: indica il tempo medio impiegato dall'utente nell'imparare ad usare correttamente una data funzionalità. Si misura tramite un indicatore numerico, che indica i minuti impiegati da un utente per apprendere il funzionamento di una certa funzionalità;
- Consistenza operazionale in uso: indica la percentuale di messaggi e funzionalità offerte all'utente che rispettano le sue aspettative riguardo al comportamento del software. La sua formula di misurazione è

$$COU = \left(\frac{N_{MFU}}{N_{MFO}}\right) * 100$$

dove N_{MFU} è il numero di messaggi e funzionalità che non rispettano le aspettative dell'utente e N_{MFO} è il numero di messaggi e funzionalità offerte dal sistema.

3.3.4 Efficienza

Rappresenta la capacità di eseguire le funzionalità offerte dal software nel minor tempo possibile utilizzando al tempo stesso il minor numero di risorse disponibili.

Obiettivi di qualità

Il prodotto dovrà essere efficiente, in particolare:

- Comportamento rispetto al tempo: per svolgere le sue funzioni il software deve fornire adeguati tempi di risposta ed elaborazione;
- Utilizzo delle risorse: il software quando esegue le sue funzionalità deve utilizzare un appropriato numero e tipo di risorse.

Metriche

• Tempo di risposta: indica il tempo medio che intercorre fra la richiesta software di una determinata funzionalità e la restituzione del risultato all'utente. La sua formula di misurazione è

$$TR = \frac{\sum_{i=1}^{n} T_i}{n}$$

dove T_i è il tempo intercorso fra la richiesta i di una funzionalità ed il comportamento delle operazioni necessarie a restituire un risultato a tale richiesta.

3.3.5 Manutenibilità

Rappresenta la capacità del prodotto di essere modificato, tramite correzioni, miglioramenti o adattamenti del software a cambiamenti negli ambienti, nei requisiti e nelle specifiche funzionali.

Obiettivi di qualità

Le operazioni di manutenzione andranno agevolate il più possibile adottando le seguenti caratteristiche:

- Analizzabilità: il software deve consentire una rapida identificazione delle possibili cause di errori e malfunzionamenti;
- Modificabilità: il prodotto originale deve permettere eventuali cambiamenti in alcune sue parti;
- Stabilità: non devono insorgere effetti indesiderati in seguito a modifiche effettuate sul software;
- **Testabilità:** il software deve poter essere facilmente testato per valiare le modifiche effettuate.

Metriche

• Capacità di analisi di failure: indica la percentuale di modifiche effettuate in risposta a failure che hanno portato all'introduzione di nuove failure in altre componenti del sistema. La sua formula di misurazione è

$$CAF = (\frac{N_{FI}}{N_{FR}}) * 100$$

dove N_{FI} è il numero di failure delle quali sono state individuate le cause e N_{FR} è il numero di failure rilevate;

• Impatto delle modifiche: indica la percentuale di modifiche effettuate in risposta a failure che hanno portato all'introduzione di nuove failure in altre componenti del sistema. La sua formula i misurazione è

$$IM = (\frac{N_{FRF}}{N_{FR}}) * 100$$

dove N_{FRF} è il numero di failure risolte con l'introduzione di nuove failure e N_{FR} è il numero di failure risolte.

3.3.6 Portabilità

Rappresenta la capacità del software di poter essere utilizzato su diversi ambienti.

Obiettivi di qualità

Sarò agevolata la portabilità del prodotto adottando i seguenti obiettivi:

- Adattabilità: il prodotto deve adattarsi a tutti quelli ambienti di lavoro nei quali è stato previsto un suo utilizzo, senza dover apportare modifiche dello stesso;
- Sostituibilità: l'applicativo deve poter sostituire un altro software che ha lo stesso scopo e lavora nel medesimo ambiente.

Metriche

• Versioni dei browser supportate: indica la percentuale di versioni di browser attualmente supportate, fra quelle individuate dai requisiti. La sua formula di misurazione è

$$VB = (\frac{N_{VS}}{N_{VI}}) * 100$$

dove N_{VS} è il numero di versioni di browser supportate dal prodotto e N_{VI} è il numero di versioni di browser che devono essere supportate dal prodotto;

• Inclusione di funzionalità da altri prodotti: indica la percentuale del software utilizzato in precedenza dall'utente che produce risultati simili a quelli ottenuti dal prodotto in oggetto. La sua formula di misurazione è

$$IFP = (\frac{N_{FPA}}{N_{FPP}}) * 100$$

dove N_{FPA} è il numero di funzionalità del software utilizzato in precedenza dall'utente che produce risultati simili a quelli ottenuti dal prodotto in oggetto e N_{FPP} è il numero di funzionalità offerte dal software utilizzato in precedenza dall'utente.

3.4 Tabella delle metriche

Questa tabella indica i **range** di accettazione e di ottimalità per le metriche utilizzate per la qualità di prodotto:

Nome	Range di accettazione	Range di ottimalità
Indice di Gulpease	50 - 100	60 - 100
Formula di Flesch	40 - 60	50 - 60
Errori ortografici	100% corretti	100% corretti
Copertura requisiti obbligatori	100%	100%
Copertura requisiti accettati	60% - $100%$	80% - 100%
Accuratezza rispetto alle attese	90% - 100%	100%
Densità di failure	0% - 10%	0%
Blocco di operazioni non corrette	80% - 100%	100%
Comprensibilità delle funzioni offerte	80% - 100%	90% - 100%
Facilità di apprendimento delle funzionalità	0 - 20 min	0 - 10 min
Consistenza operazionale in uso	80% - 100%	90% - 100%
Tempo di risposta	0 - 8 sec	0 - 3 sec
Capacità di analisi di failure	60% - $100%$	80% - 100%
Impatto delle modifiche	0% - 20%	0% - 10%
Versioni di browser supportate	70% - $100%$	100%
Inclusione di funzionalità da altri prodotti	80% - 100%	90% - 100%

Tabella 3.1: Tabella delle metriche della qualità di prodotto

4. Specifica dei test

4.1 Scopo

4.2 Tipi di test

Sono stati individuati quattro livelli di testing e sono rispettivamente:

- Test di unità [TU]: con questa tipologia di test si cerca di verificare la più piccola parte di lavoro prodotta da un programmatore. Questo si traduce tendenzialmente a verificare i metodi e le funzioni scritte;
- Test di integrazione [TI]: con questa tipologia di test si cerca di verificare le componenti di sistema;
- Test di sistema [TS]: con questa tipologia di test si cerca di verificare che il comportamento e il funzionamento dell'architettura siano corretti;
- Test di validazione [TV]: con questa tipologia di test si vuole verificare che il lavoro prodotto soddisfi quanto richiesto dal proponente.

4.3 Test di Validazione

- 4.3.1 caratteristiche e organizzazione
- 4.3.2 tabella test
- 4.4 Test di Sistema
- 4.5 Test di integrazione
- 4.6 Test di unità

5. Tracciamento dei test

- 5.1 Test di Validazione
- 5.2 Test di Sistema
- 5.3 Test di integrazione
- 5.4 Test di unità

6. Resoconto attività di verifica

- 6.1 Revisione dei Requisiti
- 6.1.1 Tracciamento
- 6.1.2 Analisi Statica documenti
- 6.1.3 Verifiche automatiche