TMT4110 KJEMI

LØSNINGSFORSLAG TIL ØVING NR. 10, VÅR 2011

OPPGAVE 1

- a) (i) Na⁺ (aq) + e⁻ \rightarrow Na (s): $E^{\circ} = -2.71$ V, n = 1
 - (ii) Ca^{2+} (aq) + 2 e⁻ \rightarrow Ca (s): $E^{\circ} = -2.87 \text{ V}, n = 2$
 - (iii) Cu^{2+} (aq) + e^{-} $\rightarrow Cu^{+}$ (aq): $E^{\circ} = 0.16 \text{ V}, n = 1$
 - (iv) 2 H^+ (aq) $+ 2 \text{ e}^- \rightarrow \text{H}_2$ (g): $E^\circ = 0.0 \text{ V}$, n = 1 (pr. def. Hydrogenelektroden er referanseelektrode)
 - (v) $O_2(g) + 2 H_2O(1) + 4 e^- \rightarrow 4 OH^-(aq)$: $E^\circ = 0.40 \text{ V}$, n = 4 (Her er det flere forskjellige mulige formuleringer.)
 - (vi) MnO_2 (s) + $4H^+$ (aq) + $2e^- \rightarrow Mn^{2+}$ (aq) + $2H_2O$: $E^\circ = 1,23 \text{ V}, n = 2$
- b) (i) Na⁺ (aq) + e⁻ \rightarrow Na (s): E° = -2,71 V, n = 1 ×(-2) \Rightarrow 2 Na (s) \rightarrow 2 Na⁺ (aq) + 2e⁻: E° = 2,71 V 2 H⁺ (aq) + 2 e⁻ \rightarrow H₂ (g): E° = 0,0 V, n = 1 ×1 \Rightarrow 2 H⁺ (aq) + 2 e⁻ \rightarrow H₂ (g): E° = 0,0 V Totalreaksjon: 2 Na (s) + 2 H⁺ (aq) \rightarrow 2 Na⁺ (aq) + H₂ (g) E° = 2,71 V, n = 2

Merk: Når man snur en halvreaksjon, endres fortegnet, men man endrer ikke potensialet ved å multiplisere reaksjonsligningen med en faktor. Potensialet er nemlig ikke en molar størrelse, slik som f. eks. entalpi, entropi eller energi.

Spørsmål: Hvordan skal man vite hvilken reaksjon som skal snus?

Svar: Dersom cellereaksjonen går frivillig, skal cellepotensialet være positivt. Blir derimot E negativ, må man snu totalreaksjonen og fortegnet.

OPPGAVE 2

$$Ni(s)|Ni^{2+}(1,0 M) \parallel Sn^{2+}(1,0\cdot 10^{-4} M)|Sn(s)$$

Halvcellereaksjonene er:

OKS
$$Ni (s) = Ni^{2+} (aq) + 2e^{-}$$
 $E^{\circ} = 0,24 \text{ V}$
RED $Sn^{2+} (aq) + 2e^{-} = Sn (s)$ $E^{\circ} = -0,14 \text{ V}$
 $Sn^{2+} (aq) + Ni (s) = Sn (s) + Ni^{2+}$ $E_{celle}^{\circ} = 0,10 \text{ V}$

Cellespenningen E_{celle} følger av Nernsts lov:

$$E_{\text{celle}} = E_{\text{celle}}^{\text{o}} - \frac{0,059}{2} \log \frac{\left| \text{Ni}^{2+} \right|}{\left[\text{Sn}^{2+} \right]} = 0,10 - \frac{0,059}{2} \log \frac{1,0}{1,0 \times 10^{-4}}$$

$$E_{\text{celle}} = 0,10 - 0,12 = \underline{-0,02 \text{ V}}$$

Da $E_{\text{celle}} < 0$ vil cellereaksjonen ved de angitte betingelser være:

$$\begin{array}{c} A(s)|A^{^{+}}\parallel B^{^{+}}\mid B(s)\\ \uparrow & \uparrow\\ Anode & Katode \end{array}$$

så refererer alltid denne skrivemåte seg til hva som er anode og katode under standardbetingelser. Den refererer seg ikke til hva som er anode og katode under ikke-standardbetingelser. Fra (1) følger: Sn-elektroden er anoden.

OPPGAVE 3

I venstre kammer har vi de aktive komponentene $\operatorname{Cr_2O_7^{2-}}$, $\operatorname{Cr^{3+}og}\ \operatorname{H^+}$ sammen med ikke aktive ioner (K^+ og Cl^-) for å balansere ladningen. Siden $Cr_2O_7^{2-}$ og Cr^{3+} ikke kan fungere som en elektrode må en inert leder bli brukt. Ofte velges platina.

b) Halvcellereaksjonene er gitt på reduksjonsform, og E° er gitt i SI CD

$$1/2 \operatorname{Cr}_2 \operatorname{O}_7^{2-} + 7 \operatorname{H}^+ + 3 \operatorname{e}^- = \operatorname{Cr}^{3+} + 7/2 \operatorname{H}_2 \operatorname{O}$$
 $E^{\circ} = 1,36 \operatorname{V}$
 $\operatorname{Zn}^{2+} + 2 \operatorname{e}^- = \operatorname{Zn}$ $E^{\circ} = -0,76 \operatorname{V}$

Således får vi at den galvaniske cellens halvcellereaksjoner blir:

OKS
$$Zn = Zn^{2+} + 2e^{-}$$
 |·3 $E^{\circ} = 0.76 \text{ V}$
RED $\frac{1/2Cr_2O_7^{2-} + 7H^+ + 3e^{-} = Cr^{3+} + 7/2H_2O}{Cr_2O_7^{2-} + 14H^+ + 3Zn(s) = 2Cr^{3+} + 3Zn^{2+} + 7H_2O}$ |·2 $E^{\circ} = 2.12 \text{ V}$

Elektronene går fra Zn-elektroden til Pt-elektroden, således blir Pt-elektroden (inert elektrode) positiv pol.

Cellepotensialet E_{celle} under ikke-standard betingelser gis ved å beregne E_{celle} ved hjelp av Nernsts ligning for cellereaksjon under standard betingelser:

$$\begin{split} E_{\text{celle}} &= E_{\text{celle}}^{\text{o}} - \frac{0,059}{6} \log \frac{\left[\text{Cr}^{3+}\right]^2 \times \left[\text{Zn}^{2+}\right]^3}{\left[\text{Cr}_2\text{O}_7^{2-}\right] \times \left[\text{H}^+\right]^{14}} \\ E_{\text{celle}} &= 2,12 - \frac{0,059}{6} \log \frac{0,5^2 \times 1,0^3}{0,5 \cdot 0,1^{14}} = 1,99 \, \text{V} \end{split}$$

Cellepotensialet, $E_{\text{celle}} = 1,99 \text{ V}$

Ved anoden foregår det oksidasjon.

Anionene vandrer til anoden.

Her forlater elektronene cellen.

Anoden er negativ i en galvanisk celle.

OPPGAVE 4

a) Halvreaksjonene på reduksjonsform blir:

Pb²⁺ + 2e⁻ = Pb
$$E^{\circ}$$
 = -0,13 V (Oppgitt i SI CD)
Ag⁺ + e⁻ = Ag E° = 0,80 V

Cellereaksjon er frivillig når $E^{\circ} > 0$. Da er $\Delta G^{\circ} < 0$ siden $\Delta G^{\circ} = -nFE^{\circ}$. Således blir halvreaksjonene ved elektrodene:

OKS Pb = Pb²⁺ + 2e⁻
$$E^{\circ}$$
 = 0,13 V
RED Ag + e⁻ = Ag |·2 E° = 0,80 V

$$2 \text{ Ag}^+ + \text{ Pb} = 2 \text{ Ag} + \text{ Pb}^{2+} \qquad E_{\text{celle}}^{\text{o}} = 0.93 \text{ V}$$

Cellereaksjonen under standard betingelser blir:

$$2 \text{ Ag}^+ (\text{aq, 1 M}) + \text{Pb (s)} = 2 \text{ Ag (a)} + \text{Pb}^{2+} (\text{aq, 1 M})$$
 (1) Vi skal imidlertid finne cellepotensialet under ikke-standard betingelser (dvs. $[\text{Pb}^{2+}] = 0.10 \text{ M og } [\text{Ag}^+] = 0.10 \text{ M}$).

For å finne den korrekte cellereaksjonen under ikke-standard betingelser anvendes Nernsts ligning på (1) og $E_{\rm celle}$ beregnes: (vi ser om $E_{\rm celle}$ blir positiv eller negativ.)

Nernsts ligning:
$$E_{\text{celle}} = E^{\circ} - \frac{0.059}{n} \log \frac{\left[\text{Pb}^{2+}\right]}{\left[\text{Ag}^{+}\right]^{2}}$$
 $n = \text{mol elektroner}$

Vi får:
$$E_{\text{celle}} = 0.93 - \frac{0.059}{2} \log \frac{0.10}{0.10^2} = 0.90 \text{ V}$$

<u>Da $E_{\text{celle}} > 0$ er også cellereaksjonen under ikke-standard betingelser lik (1).</u>

Fra cellereaksjonen følger at elektroner "går" fra Pb-elektroden til Ag-elektroden. Således blir Ag-elektroden positiv pol.

Vi kan for den oppgitte galvaniske cellen skrive:

$$Pb|Pb^{2+}(0,10 M)||Ag^{+}(0,10 M)|Ag$$

- b) Når KI settes til AgNO₃ (aq) vil AgI (s) utfelles. Vi får reaksjonsligningen Ag^+ (aq) + Γ (aq) = AgI (s)
- c) Halvcellepotensialet i høyre halvcelle kan fortsatt bli bestemt ut fra halvcelle-reaksjonen $Ag^+ + e^- = Ag$ Cellepotensialet E_{celle} kan da gis ut fra Nernsts ligning

$$E_{\text{celle}} = E^{o} - \frac{0,059}{n} \log \frac{\left[\text{Pb}^{2+}\right]}{\left[\text{Ag}^{+}\right]^{2}}$$

hvor $[Pb^{2+}] = 0.10 \text{ M}$ (som tidligere), mens $[Ag^+]$ er Ag^+ -konsentrasjonen <u>etter</u> tilsats av KI. $[Ag^+]$ gis av uttrykket for løselighetsproduktet, K_{sp} .

$$\left[Ag^{+}\right] = \frac{K_{sp}}{\left[I^{-}\right]} = \frac{8.3 \times 10^{-17}}{0.020} = 4.15 \times 10^{-15}$$

[Ag $^+$] innsatt i Nernsts ligning gir E_{celle} .

$$E_{\text{celle}} = 0.93 - \frac{0.059}{2} \log \frac{0.10}{\left(4.15 \times 10^{-15}\right)^2} = \underline{0.11 \,\text{V}}$$

Alternativ løsning:

Den skarpe iakttager vil legge merke til at vi etter tilsats av KI også har AgI(s) og Γ i tillegg til Ag^+ til stede i "høyre" halvcelle. Således får vi faktisk en alternativ halvcellereaksjon som på reduksjonsform blir:

$$AgI(s) + e^{-} = Ag(s) + I$$
 $E^{\circ} = -0.15 \text{ V}$ (oppgitt i SI)

Vi får videre en alternativ cellereaksjon ut fra en tilsvarende betraktning som over.

OKS
$$Ag + \Gamma = AgI + e^{-} | \cdot 2$$
 $E^{\circ} = 0,15 \text{ V}$
RED $Pb^{2+} + 2e^{-} = Pb$ $E^{\circ} = -0,13 \text{ V}$
 $Pb^{2+} + 2 Ag + 2 \Gamma = Pb + 2 AgI$ $E^{\circ} = 0,02 \text{ V}$

Anvendes Nernsts ligning på den alternative cellereaksjon (utledet under standard betingelser) finner vi at E_{celle} blir:

$$E_{\text{celle}} = E_{\text{celle}}^{o} - \frac{0.059}{2} \log \frac{1}{\left[\text{Pb}^{2+} \right] \times \left[\text{I}^{-} \right]^{2}} = 0,02 - \frac{0,059}{2} \log \frac{1}{0,10 \times 0,020^{2}} = -0,11 \text{V}$$

Dette vil egentlig fortelle oss at etter tilsats av KI vil den virkelige celle-reaksjonen være:

$$Pb + 2 AgI = Pb^{2+} + 2 Ag + 2I^{-}$$

Pb + 2 AgI = Pb²⁺ + 2 Ag + 2 Γ Her er $E_{\text{celle}} = 0.11 \text{ V (som beregnet over!)}$

Husk at anvendelsen av Nernsts ligning på en gitt cellereaksjon forteller oss den korrekte "reaksjonsretning" til cellereaksjonene. Når $E_{\text{celle}} > 0$, går alltid celle-reaksjonen fra venstre til høyre!

Til slutt skal det nevnes at det artige med den alternative løsning for å beregne E_{celle} er at vi ikke trenger å vite løselighetsproduktet til AgI! Faktisk ved å sammenligne de to løsningsforslag ser vi at vi kan beregne løselighetsproduktet direkte. Således anvendes den galvaniske celle-type over, i likhet med konsentrasjonsceller, til å bestemme løselighetsprodukter.

OPPGAVE 5

Regner først ut halvcellepotensialet til hydrogen og jern fra Nernsts ligning:

$$E_{\rm H} = E^{\rm o} - \frac{0{,}0592}{2} \times \log \frac{P_{\rm H_2}}{\left[{\rm H}^+\right]^2} = 0 - \frac{0{,}0592}{2} \times \log \frac{1}{\left[{\rm H}^+\right]^2} = -0{,}0592 \times {\rm pH} = -0.24\,{\rm V}$$

$$Fe^{2^+} + 2e^- = Fe$$

$$E_{\rm Fe} = E^0 - \frac{0{,}0592}{2} \cdot \log \frac{1}{\left[{\rm Fe}^{2^+}\right]} = -0{,}44 - \frac{0{,}0592}{2} \cdot \log \frac{1}{1{,}0 \cdot 10^{-4}} = -0.56\,{\rm V}$$

$$2\,{\rm H}^+ + 2\,e^- = {\rm H_2}\,({\rm g})$$

$$E_{\rm H} = -0{,}24\,{\rm V}$$

$$Fe + 2\,{\rm H}^+ = {\rm H_2}\,({\rm g}) + {\rm Fe}^{2^+}$$

$$E_{\rm celle} = 0{,}32\,{\rm V}$$

$$E_{\rm Fe} = Fe^{2^+} + 2\,e^-$$

$$E_{\rm Fe} = 0{,}56\,{\rm V}$$

$$E_{\rm Fe} = 0{,}56\,{\rm V}$$

OPPGAVE 6

a) (i)
$$Fe^{3+}$$
 (aq) $+ e^{-} \rightarrow Fe^{2+}$ (aq) $E^{\circ} = 0.77 \text{ V}$ $n = 1$
(ii) Zn^{2+} (aq) $+ e^{-} \rightarrow Zn$ (s) $E^{\circ} = -0.76 \text{ V}$ $n = 2$
(iii) $2 H^{+}$ (aq) $+ 2 e^{-} \rightarrow H_{2}$ (g) $E^{\circ} = 0 \text{ V pr. def.}$ $n = 2$
(iv) Cl_{2} (aq) $+ 2 e^{-} \rightarrow 2 Cl^{-}$ (aq) (Cl_{2} er løst i vann) $E^{\circ} = 1.40 \text{ V}$ $n = 2$
(v) Cl_{2} (g) $+ 2 e^{-} \rightarrow 2 Cl^{-}$ (aq) (Cl_{2} er gassform) $E^{\circ} = 1.36 \text{ V}$ $n = 2$

b) Cellereaksjon:
$$2 \text{ Fe}^{3+}$$
 (aq) + Zn (s) $\rightarrow 2 \text{ Fe}^{2+}$ (aq) + Zn²⁺ (aq)
 $E^{\circ} = 0.77 - (-0.76) = 1.53 \text{ V}$

$$E = E^{\circ} - \frac{0,0592}{n} \log Q = 1,53 \text{ V} - \frac{0,0592}{2} \log \frac{\left[\text{Fe}^{2+}\right]^2 \left[\text{Zn}^{2+}\right]}{\left[\text{Fe}^{3+}\right]^2 \left[\text{Zn}\right]} =$$

1,53 V -
$$\frac{0,0592}{2}$$
 log $\frac{0,01^2 \times 0,01}{0,01^2 \times 1} = 1,53$ V - $\frac{0,0592}{2}$ log 0,01 = 1,53 V - 0,0592/2 (-2) = 1,59 V

c)
$$E = E^{\circ} - \frac{0,0592}{n} \log Q = -0.76 \text{ V} - \frac{0,0592}{2} \log \frac{[\text{Zn}]}{[\text{Zn}^{2+}]} = -0.76 \text{ V} - \frac{0,0592}{2} \log \frac{0.1}{1} = -0.73 \text{ V}$$

d)
$$E = E^{\circ} - \frac{0,0592}{n} \log Q = 0 \text{ V} - \frac{0,0592}{2} \log \frac{\left[\text{H}_{2}(\text{g})\right]}{\left[\text{H}^{+}\right]^{2}} = -\frac{0,0592}{2} \log \frac{1}{\left(10^{-7}\right)^{2}} = -0.41 \text{ V}$$

- e) $\Delta E/\Delta pH \approx 0.06 \text{ V}$
- f) E° endrer seg ikke

g)
$$E = E^{\circ} - \frac{0,0592}{n} \log Q = 0.04 - \frac{0,0592}{2} \log \frac{P_{\text{Cl}_2}}{[\text{Cl}_2]} = 0,04 \text{V} - \frac{0,0592}{2} \log \frac{0,01}{1} = 0,10 \text{ V}$$

h)
$$E = E^{\circ} - \frac{0,0592}{n} \log Q = 0$$
 \Rightarrow $E^{\circ} = \frac{0,0592}{n} \log Q$ \Rightarrow $0,04 = \frac{0,0592}{n} \log Q$ $\log Q = 0,04 \times \frac{2}{0,0592} = 1,35$ \Rightarrow $Q = 22,4 = \frac{P_{\text{Cl}_2}}{[\text{Cl}_2]} = \frac{1}{[\text{Cl}_2]}$ [Cl₂] = 0,045 M