Examination of the teaching unit $Repr\'esentations\ des\ signaux$ - TSIA201

Roland Badeau, Marco Cagnazzo

Friday, November 6, 2020

Duration: 1:30

All documents are permitted. However electronic devices (including calculators) are forbidden.

1 Rejector filter

Let us consider the transfer function $H(z) = \frac{1-2\cos(\theta)z^{-1}+z^{-2}}{1-2\rho\cos(\theta)z^{-1}+\rho^2z^{-2}}$, with $0 < \rho < 1$. Check that H(z) can be factorized in the form $H(z) = \frac{(1-z_0z^{-1})(1-z_0^*z^{-1})}{(1-\rho z_0z^{-1})(1-\rho z_0^*z^{-1})}$, where z_0 is to be expressed as a function of θ . What is the normalized frequency rejected by this filter? What is the domain of convergence of its stable implementation? Is this implementation causal? Write the corresponding input/output relationship.

2 Hilbert filter

Let $x_a(t)$ be a continuous time (analog) real signal. The analytic signal associated to $x_a(t)$ is the signal $z_a(t)$ whose the CTFT is expressed as $Z_a(f) = 2U_a(f)X_a(f)$, where $U_a(f)$ is the unit step function, whose value is 1 for f > 0, and 0 for f < 0. For continuity reasons, we assume that $U_a(0) = \frac{1}{2}$. The filter of frequency response $2U_a(f)$ is referred to as the analytic filter.

- 1. Which property does function $X_a(f)$ satisfy? Deduce the expression of $\frac{1}{2}(Z_a(f)+Z_a^*(-f))$ as a function of $X_a(f)$, and prove that the real part of $z_a(t)$ is equal to $x_a(t)$. We can then write $z_a(t) = x_a(t) + iy_a(t)$, where the real signal $y_a(t)$ is defined as the imaginary part of $z_a(t)$.
- 2. Prove that $y_a(t)$ can be obtained from $x_a(t)$ by linear filtering of frequency response $H_a(f) = -i \operatorname{sign}(f)$, where $\operatorname{sign}(f) = 1$ for f > 0, $\operatorname{sign}(f) = -1$ for f < 0, and $\operatorname{sign}(0) = 0$. Filter $H_a(f)$ is referred to as the *Hilbert filter*, and $y_a(t)$ is called the *Hilbert transform* of $x_a(t)$.

Let us assume that the signal $x_a(t)$ satisfies the assumptions of the sampling theorem: there exists a frequency F_s such that the support of $X_a(f)$ is included in $]-\frac{F_s}{2},\frac{F_s}{2}[$. We then consider the sampled signals $x(n)=x_a(nT_s)$ and $y(n)=y_a(nT_s)$, where $T_s=1/F_s$. We remind the relationship between the DTFT $X(e^{2i\pi\nu})$ and the CTFT $X_a(f)$:

$$X(e^{2i\pi\nu}) = \frac{1}{T_s} \sum_{k \in \mathbb{Z}} X_a \left(\frac{\nu + k}{T_s}\right) \tag{1}$$

3. Simplify the expression (1) when $\nu \in]-\frac{1}{(2)}\frac{1}{2}[$. Check that $Y(e^{2i\pi\nu})$ satisfies a similar expression. Deduce that the signal y(n) can also be expressed as the output of the discrete filter of frequency response $H(e^{2i\pi\nu})=-i\operatorname{sign}(\nu)$ for $\nu \in]-\frac{1}{2},\frac{1}{2}[$ (and $H(e^{2i\pi\nu})=0$ for $\nu=\pm\frac{1}{2}$), applied to the input signal x(n).

Remark: the discrete filter $H(e^{2i\pi\nu})$ allows us to directly compute the samples y(n) of the Hilbert transform from the samples x(n), without having to perform a digital/analog conversion.

- 4. By applying the inverse DTFT, prove that the impulse response h(n) satisfies $h(n) = \frac{2}{\pi n}$ if n is odd, and 0 if n is even.
- 5. Is this filter causal? Stable? Of finite (FIR) or infinite (IIR) impulse response?
- 6. For a discrete filter of impulse response g(n) and of transfer function G(z), what is the impulse response of the filter of transfer function $G(z^2)$? By using the fact that the even coefficients of h(n) are zero, deduce that there exists a transfer function G(z), such that $H(z) = z^{-1}G(z^2)$. What is the impulse response g(n)?
- 7. We want to approximate the ideal filter G(z) by using the window method, in order to synthesize a linear phase FIR filter, of type 4 (even length N, antisymmetric impulse response g(n)). Quickly summarize the principle of the window method, its advantages and its drawbacks.
- 8. Now, we want to prove that the following diagram provides an efficient implementation of the discrete Hilbert filter H(z):

We remind that $U_1(z) = \frac{1}{2}(X(z^{\frac{1}{2}}) + X(-z^{\frac{1}{2}}))$. Express $U_2(z)$ as a function of X(z), then $V_1(z)$ and $V_2(z)$ as a function of $U_1(z)$ and $U_2(z)$, then $W_1(z)$ and $W_2(z)$ as a function of $V_1(z)$ and $V_2(z)$, and finally Y(z) as a function of $W_1(z)$ and $W_2(z)$. By substitution, retrieve the relationship Y(z) = H(z)X(z).

3 MRA and Wavelet transform

- 1. Show that, for the Haar filter $(h_0[0] = h_0[1] = \frac{\sqrt{2}}{2}$, the other coefficients are zero), a suitably scaled indicator function of the interval (0,1) is the father wavelet for an MRA (hint: use the dilation equation). Propose a mother wavelet function and show that with such a choice of ψ the wavelet equation holds.
- 2. Let $\phi(t)$ be following function, see also Fig.3:

$$\phi(t) = \begin{cases} t & \text{if } t \in (0,1) \\ 2 - t & \text{if } t \in (12) \\ 0 & \text{otherwise} \end{cases}$$

It can be shown that this ϕ is the father wavelet of an MRA. We say that $\phi \in V_0$ and that the integer-shifts of ϕ produce a basis of V_0 . By using the dilation equation, show (by sketching the graphs of $c_k\phi(2t-k)$) that, with suitable normalization, the representation of ϕ on V_1 is given with coefficients c_k as follows:

$$c_k = egin{cases} 1/2 & ext{if } k = 0 \ 1 & ext{if } k = 1 \ 1/2 & ext{if } k = 2 \ 0 & ext{otherwise} \end{cases}$$

Find the coefficients d_k from the coefficients c_k (normalization can be ignored for simplicity); finally, find the corresponding mother wavelet ψ by using the wavelet equation.

Figure 1: Father wavelet $\phi(t)$

3. We want to compute the projection of a signal $x:t\in\mathbb{R}\to\mathbb{R}$ onto a MRA, but we only have access to the samples $x[n]=x(t)|_{t=n\in\mathbb{Z}}$. Is it correct to use these samples as input of the analysis filterbank? Is there any implicit assumption in doing this, in particular on the father wavelet function ϕ ?