Cryptography Assignment - 1 Pramod Aravind Byakod

- 1. Treat your OUID number as a decimal integer.
- 1) Find its representation in base 26 (A = 0, B=1, ..., Z = 25)

Divider	Dividend	Quotient	Reminder
26	113436879		
		4362956	23
		167806	0
		6454	2
		248	6
		9	14

$$(113436879)_{10} = 9 14 6 2 0 23 -> (JOGCAX)_{26}$$

2) Multiply the result of 1) by DALLAS, and output the product in base 26

$$(DALLAS)_{26} = S*26^{0} + A*26^{1} + L*26^{2} + L*26^{3} + A*26^{4} + D*26^{5}$$

$$= 18*26^{0} + 0*26^{1} + 11*26^{2} + 11*26^{3} + 0*26^{4} + 3*26^{5}$$

$$= (35844918)_{10}$$

$$(DALLAS)_{26} * (JOGCAX)_{26} = (35844918)_{10} * (113436879)_{10}$$

= $(4066135625930922)_{10}$

Divider	Dividend	Quotient	Reminder
26	4066135625930922		
		156389831766573	24
		6014993529483	15
		231345904980	3
		8897919422	8
		342227670	2
		13162602	18
		506253	24
		19471	7
		748	23
		28	20
		1	2

 $(4066135625930922)_{10} = 1 2 20 23 7 24 18 2 8 3 15 24$ = $(BCUXHYSCIDPY)_{26}$

 $(DALLAS)_{26} * (JOGCAX)_{26} = (BCUXHYSCIDPY)_{26}$

3) Divide the result of 2) by OKC, and find the remainder and quotient, all in base 26.

$$(OKC)_{26} = C*26^2 + K*26^1 + O*26^0$$

= $2*26^2 + 10*26^1 + 14*26^0$
= $(9726)_{10}$

(BCUXHYSCIDPY)₂₆ / (OKC)₂₆ = $(4066135625930922)_{10}$ / $(9726)_{10}$ = $(418068643422)_{10}$

Divider	Dividend	Quotient	Reminder
26	418068643422		
		16079563208	14
		618444738	20
		23786336	2
		914859	2
		35186	23
		1353	8
		52	1
		2	0

$$(418068643422)_{10}$$
 = 2 0 1 8 23 2 2 20 14
= (CABIXCCUO)₂₆

 $(BCUXHYSCIDPY)_{26}/(OKC)_{26} = (CABIXCCUO)_{26}$

2. Read a few articles online about the Great Internet Mersenne Prime Search (GIMPS). Argue that if n is a composite integer, then 2ⁿ - 1 is also a composite integer.

Method 1

Let n be composite.

Then there exist a and b, both greater than 1, such that n=ab. Note that $2^n-1=2^{ab}-1$ = $(2^a)^b-1$

Let $x=2^a$

Note that x-1 divides x^b-1 , for $x^b-1=(x-1)$ ($x^{b-1}+x^{b-2}+....+1$). We still need to check that 2^a-1 is a proper divisor of 2^n-1 . Below is the proof

Let $m=2^a-1$. Then $2^a=1 \pmod{m}$ It follows that $(2^a)^b=1 \pmod{m}$, so m divides $(2^a)^b-1$.

Hence proved that if n is a composite integer, so is $2^{n}-1$.

Lets look at another way of proving this.

Method 2

Suppose n is composite.

Then n = ab for some integers a, $b \ge 2$.

Since $2^a \equiv 1 \mod (2^a - 1)$, we have $2^n = (2^a)^b \equiv 1^b = 1 \mod (2^a - 1)$.

Thus, $2^n - 1$ is divisible by $2^a - 1$, and since 1 < a < n.

The integer $2^a - 1$ is a proper divisor of $2^n - 1$ (i.e., strictly greater than 1 and less than n). Hence $2^n - 1$ is composite.