## **EXPERIMENT-6**

#### **COLPITT'S OSCILLATOR**

**<u>AIM</u>**: To design a Colpitt's Oscillator with following specifications and to verify the phase shift (180°) and find the frequency of oscillations.

## **DESIGN SPECIFICATIONS:**

Vcc =12v, R1=18.3k, R2=6.8k, Re=1k, Rc=2.2k, C1=C2=1 $\mu$ F, L=1mH, NPN transistor with  $\beta$  value 100.

### **APPARATUS:**

- CRO
- Regulated DC power supply
- Decade resistance Box
- Decade capacitance Box
- Decade inductance Box
- Resistors
- Capacitors
- Transistor
- Bread board, Single strand wires

## **SOFTWARE SIMULATION:**

**Software used:** Multisim Analog Devices Edition 14.0

## **Procedure:**

- 1. Switch ON the computer and open the Multisim software
- 2. Observe Design tool box, Instrumentation tool box, component tool box and its component functionality
- 3. From above tool boxes, Connect the circuit using the designed values of each and every component
- 4. Connect the output of amplifier to input of  $\beta$ -network[LC Combination] and output of  $\beta$ -network to input of amplifier.
- 5. Connect the Cathode Ray Oscilloscope (CRO) to the input and output terminals of the circuit.
- 6. Go to simulation button click it for simulation process.
- 7. From the CRO observe the following values:
- Frequency of Oscillations
- Phase Shift =  $180^{\circ}$

### **SIMULATION OF THE DESIGN:**



Colpitt's Oscillator circuit

# **\*** OBSERVATIONS:

# Phase Shift:



## **Conclusion**:

From the above waveform we can conclude that the phase shift b/w input and output signal is 180°.

## FREQUENCY OF OCCILLATIONS GENERATED:



# **Conclusion**:

From the above values we can conclude that the frequency at which the oscillations are generated is decreased with increase in L and C.

## HARDWARE SIMULATION:

## **Procedure:**

- 1. Connect the circuit as per the circuit diagram.
- 2. Apply the supply voltage ,  $V_{\alpha}$ =12V
- 3. Make sure that the transistor is operating point in active region by keeping  $V_{CE}$  half of  $V_{CC}$ .
- 4. Now note down the frequency of oscillations generated for different inductance values.
- 5. Now calculate the theoretical frequency of oscillations generated.

## **Observations:**

Colpitt's Oscillator

| Inductance(H) | Frequency(Hz) |
|---------------|---------------|
| 1m            | 24.269k       |
| 2m            | 18.126k       |
| 3m            | 15.068k       |
| 4m            | 13.260k       |
| 5m            | 11.972k       |
| 6m            | 10.954k       |
| 7m            | 9.5617k       |
| 8m            | 9.08k         |
| 9m            | 8.70k         |
| 10m           | 7.957k        |

**Conclusion:** As L[inductance] increases the frequency of oscillations generated decreases.