Treść zadań

Zadanie 1

Zbudować układ wykrywający sekwencję 110.

Zadanie 2

Zamienić jeden przerzutnik w zrealizowanym układzie do zadania 1 na przerzutnik typu D.

Zadanie 3

Zbudować generator sekwencji 110.

Zadanie 4

Zbudować układ sterujący sumatorem, który będzie zliczał liczbę osób przebywających w pomieszczeniu za pomocą dwóch czujników w drzwiach.

Zadanie 1

Siatka przejść stanów układu:

x

$Q_1^tQ_2^t$	00	01	_
00	00	01	
01	00	11	
11	10	11	
10	00	01	Q_1^{t+}
			•

 $Q_1^{t+1}Q_2^{t+1} \\$

Graf przejść dla automatu Moore'a:

 χ

 Q_1^{t+1}

 $J_1 = q_2 x = \overline{\overline{q_2 x}} = \overline{\overline{q_2} + \overline{x}}$ $K_1 = \overline{q_2}$

x

$$egin{array}{c|cccc} Q_1^tQ_2^t & 0 & 1 & & & & \\ \hline 00 & 0 & 1 & & & & \\ 01 & 0 & 1 & & & \\ 11 & 0 & 1 & & & \\ 10 & 0 & 1 & & & Q_2^{t+1} \end{array}$$

 $J_2 = x \\ K_2 = \overline{x}$

Schemat układu:

 \boldsymbol{x}

$Q_1^tQ_2^t$	0	1	
00	0	1	
01	0	1	
11	0	1	
10	0	1	Q_2^{t+1}

 $D_2 = x$

Sprawdziliśmy, że użyty przerzutnik typu JK aktywowany był zboczem upadającym, a przerzutnik typu D – zboczem narastającym. Dlatego trzeba było do wejścia zegarowego przerzutnika typu D podpiąć negację sygnału podpiętego do wejścia zegarowego przerzutnika typu JK.

Schemat układu:

Zadanie 3

Siatka przejść stanów układu:

Graf przejść dla automatu Moore'a:

 Q_2^t

 Q_2^t

$$D_1 = \overline{q_1}q_2 = \overline{\overline{q_1}q_2} = \overline{q_1 + \overline{q_2}}$$

 Q_2^t

$$D_2 = \overline{q_1}$$

 Q_2^t

$$Z = \overline{q_1}$$

Schemat układu:

Zadanie 4

nadaliśmy w j? Tego zadania nie zrobiliśmy podczas laboratorium. Zbadaliśmy w jaki sposób działa licznik następnie zaczęliśmy rysować graf przejść:

Wnioski

Podczas laboratorium zbudowaliśmy, uruchomiliśmy i przetestowaliśmy układy do zadań 1, 2, 3. Działały poprawnie. Nie zbudowaliśmy układu do zadania 4. Synchroniczne automaty sekwencyjne oferują większą stabilność i przewidywalność działania w porównaniu do asynchronicznych. Dzięki zastosowaniu zegara, wszystkie zmiany stanu odbywają się w określonych momentach czasowych,

