

Table of Contents

How to use the guide:	4
Introduction	5
Purpose of the module	7
Contact Hours and Indicative Student Workload	7
Teaching and Learning Methods	7
Module Resources	7
Prescribed Resources	8
Prescribed reading:	8
Recommended Additional Resources	8
Textbook(s)	8
Video(s)	8
Software	8
Webinars	8
Assessment Details	9
Formative assessment breakdown	9
Summative assessment:	9
Assessment Preparation Guidelines	9
Assessment Release and Submission Week	10
Assessment Strategy	10
Progression	10
Weekly Planner	11
Module Content	11
LU 1	11
Programmable Logic Controllers	11
LU 2	11
Input/Output Devices	11
LU 3	12
Digital Systems	12
LU 4	12
I/O Processing	12
LU 5	12
Ladder and Functional Block Programming	12
LU 6	12
REDBOARD & LIGHT	12
LU 7	13

SOUND & MOTION	13
LU 8	13
DISPLAY & ROBOT	13
Bibliography	15

How to use the guide:

The guide will provide an overview of the syllabus and will deliver the learning outcomes of the module. It will indicate each major topic that will be covered, as well as the learning outcomes of each topic.

The study guide is NOT a replacement of textbooks and should be used in conjunction with the required textbooks.

At the end of each study unit there will be a summary, followed by a number of self-assessment questions. These questions will assist you to prepare for the tests and exams. The following icons will be used in the study guide:

Indicates the sections in the prescribed textbook that the student needs to study
Indicates activities to be completed
Indicates group activities to be completed
Indicates exercises to be completed
Indicates revision questions to be completed
 Indicates projects to be completed

Introduction

Welcome to Robotic Development RD412 module. Robotics systems are a way of automating manufacturing applications while reducing the amount of labour and production costs and time associated with the process.

ICT Programming Department Information

The Programming Department is part of the School of Information Technology, which focuses on providing comprehensive and innovative ICT education, training, and research programs to benefit both the industry and society at large. Our department is committed to fostering Passion, Quality, and Professionalism in all aspects of programming and IT education.

Query Resolution Structure:

The College/Department's contact information per Campus is as follows: (This should be followed when there is a query)

• Bloemfontein

San- Mari Wiese

san-marif@ctutraining.co.za

Boksburg

Liana Vosloo

liana.vosloo@ctutraining.co.za

Cape Town

Daphne Roets

daphner@ctutraining.co.za

Durban

Miranda Govender

miranda.govender@ctutraining.co.za

Gqeberha

Elmarie du Plessis

elmariedp@ctutraining.co.za

Polokwane

Phokeng Motuku

phokeng.motuku@ctutraining.co.za

Pretoria

Estelle van der Walt

estellevdw@ctutraining.co.za

Rooderpoort

Lance Krasner

lance.krasner@ctutraining.co.za

Stellenbosch

Adelaide Kuster
adelaide.kuster@ctutraining.co.za

Vereeniging

Marco Ebersohn

marco.ebersohn@ctutraining.co.za

Purpose of the module

The purpose of this module is to provide students with the fundamental and technical knowledge as well as the applicable skill set on robotic development. Further, the module introduces PLC programming language called ladder logic or ladder diagram (LD). The great thing about ladder logic is that it's much more visual than most programming languages, so people often find it a lot easier to learn.

Contact Hours and Indicative Student Workload

Proposed Roll Out Strategy	Credits	Total Notional Hours	Number of	Theory Hours	Practical Hours	Total Contact Sessions Total Hours per week	Formative Assessments (45%):	Summative Assessments (15%): Total Hours
Semester	14	140	13	3	7	10	10	10

Teaching and Learning Methods

Lectures, Flipped Classroom, Webinars, Group and Research, practical classes (role play), and Gamification.

Module Resources

The module introduction with the facilitator will cover:

- Overview of the module, including tasks and activities expectations
- Timetable
- The Learner Guide
- The Learner Electronic Portfolio of Evidence
- Practical's
- Research

- LABS
- International exams (if applicable)
- Assessments
- The importance of completing all tasks in the EPoE; the neat and orderly submission of evidence in the EPoE; all forms completed and signed
- WIL Component
- The Summative Assessment
- Programme Assessment timetable schedule
- Assessment Policy
- Self-Study time

Please note: Hand out and submission days are clearly indicated on the lesson planner. Students neglecting to submit projects by stated submission days will be penalized as per assessment policy

The semester is divided in sixteen (16) weeks of formal class time. Class sessions are divided into the theoretical, practical, group assignments and research sessions. As part of students' development, there will also be homework as given by the trainer

Prescribed Resources

Prescribed reading:

• Title: Programmable Logic Controller, 6th Edition

ISBN: 9780128029299

• Title: The Arduino Inventor's Guide

ISBN: 9781593276522

Recommended Additional Resources

Textbook(s)

- PLC Ladder Logic Programming Tutorial
- https://learning.oreilly.com/library/view/programmable-logic-controllers/9780128029299/
- https://learn.sparkfun.com/tutorials/sparkfun-inventors-kit-experiment-guide---v41

Video(s)

https://learn.sparkfun.com/tutorials/sparkfun-inventors-kit-experiment-guide---v41

Software

• Tinkercad | Create 3D digital designs with online CAD | Tinkercad

Webinars

Assessment Details

The students will need a pass mark of 80% on the Prelim exam to qualify for admission to the international certification exams.

Formative assessment breakdown

Formative 1	Formative 2	Formative 3
Weighting: 33%	Weighting: 33%	Weighting: 35%
Open Book	Open Book	Group Activities
Theory and Practical	Theory and Practical	Theory and Practical

Summative assessment:

Theory and Practical exam Closed Book	
50%	

Formative assessments (50%) + Summative assessment (50%) = Final mark

Assessment Preparation Guidelines

	Format of the Assessment	Resources required	Learning Units covered
Formative Assessment 1:	Theory and Practical oriented	Campus Online and O'Reilly Textbook	Unit1: Programmable Logic Controllers Unit2: Input/Output Devices Unit3: Digital Systems Unit4: I/O Processing Unit5: Ladder and Functional Block Programming
Formative Assessment 2:	Theory and Practical oriented	Campus Online and O'Reilly Textbook	Unit6: Redboard and Lights Unit7: Sound and Motion Unit8: Display and Robot
Summative Exam	Theory and Practical oriented	Campus Online and O'Reilly Textbook	From Unit 1 to Unit 8

Assessment Release and Submission Week

Formative assessment:	Release Week	Submission Week
Formative Assessment 1	Week 1	Week 2
Formative Assessment 2	Week 3	Week 5
Formative Assessment 3	Week 5	Week 7

International Exam:	Boot camp & Prelim	International
N/A	N/A	N/A

Summative assessment:	Release Week	Submission Week
Summative Assessment	Week 17	Week 18

Please note – There are two (2) steps in the submission process.

- Step 1: Required evidence in the specified formats are submitted on Campus Online to the designated assignment description.
- Step 2: Complete and submit document of authenticity for every formative and summative assessment submitted.

Assessment Strategy

The following assessment activities are applicable to each module:

- Knowledge assessments
- Practical / Research Assignments
- CCFOs (Critical Cross Field Outcomes) / Simulated case studies
- Work Integrated Logbooks

Progression

Students need to achieve a minimum final mark of 70%, to be deemed competent. A final mark of less than 70%, deems a student to fail and the student will be required to repeat the module in the following academic year.

Weekly Planner

Week	Learning Units to be covered	Resources required	Class activity
Week 1 to Week 6	UNIT 1: Programmable Logic Controllers UNIT 2: Input/Output Devices UNIT 3: Digital Systems UNIT 4: I/O Processing UNIT 5: Ladder and Functional Block Programming	Campus Online and Prescribed Textbook (O'Reilly)	Group Activities on Campus Online (GA1 and GA2)
Week 7 to Week 10	UNIT 6: RedBoard and Lights UNIT 7: Sound and Motion UNIT 8: Display and Robot	Campus Online and Prescribed Textbook (O'Reilly)	Group Activities on Campus Online (GA3 and GA4)
Week 11 to Week 12	From Unit 1 to Unit 8	Campus Online and Prescribed Textbook (O'Reilly)	Revision and Summative

Module Content

LU 1	Programmable Logic Controllers
	Learning Objectives:
LU 2	Input/Output Devices

	Learning Objectives:
	Input Devices
	Output DevicesExamples of Applications
LU 3	Digital Systems
	Learning Objectives:
	 The Binary System Octal and Hexadecimal Binary Coded Decimals Numbers in the Binary, Octal, Hex, and BCD Systems Binary Arithmetic PLC Data Combinational Logic Systems Sequential Logic Systems
LU 4	I/O Processing
	 Learning Objectives: Input/Output Units Signal Conditioning Remote Connections Networks Examples of Commercial Systems Processing Inputs I/O Addresses Combinational Logic Systems
LU 5	Ladder and Functional Block Programming
	Learning Objectives:
	 Ladder Diagrams Logic Functions Latching Multiple Outputs Entering Programs Function Blocks Program Examples
LU 6	REDBOARD & LIGHT
	Learning Objectives:
	 The RedBoard Platform Baseplate Assembly RedBoard Anatomy

	 Breadboard Anatomy The Arduino IDE Inventory of Parts Circuit 1A: Blinking an LED Circuit 1B: Potentiometer Circuit 1C: Photoresistor Circuit 1D: RGB Night-Light
LU 7	SOUND & MOTION
	Learning Objectives:
	 Circuit 2A: Buzzer Circuit 2B: Digital Trumpet Circuit 2C: "Simon Says" Game Circuit 3A: Servo Motors Circuit 3B: Distance Sensor Circuit 3C: Motion Alarm
LU 8	DISPLAY & ROBOT
	Learning Objectives:
	 Circuit 4A: LCD "Hello, World!" Circuit 4B: Temperature Sensor Circuit 4C: "DIY Who Am I?" Game Circuit 5A: Motor Basics Circuit 5B: Remote-Controlled Robot Circuit 5C: Autonomous Robot

Group Activity

Students will complete 4 group activities for this module. The group activities will be available on Campus Online and release in a set of 2. The first 2 will be released in week 1 together with formative assessment 2 and the last two will further be released in week 6 with formative assessment 2.

Exercise

- 1. List and explain the types of PLC 2 inputs & 3 Outputs?
- 2. What does a Power Supply used for in PLC.?
- 3. Explain and describe the basic elements in Ladder logic programming.
- 4. Which role does PLC play in automation?
- 5. Which general functions use PLC?
- 6. How do you test and commission a PLC system?
- 7. What are two types of PLC?
- 8. What is the main difference Between Fixed and Modular PLCs?
- 9. Convert the following binary numbers to denary numbers:
- 10. Convert the following denary numbers to binary numbers: (a) 100, (b) 146, (c) 255.

Revision

Revision will take place in Week 13 [All units to be covered]

Group Project

Briefly discuss the bellow:

- 1. Function Block Diagram?
- 2. Function Blocks
- 3. Bit Logic Function Blocks

- 4. OR Logic Operation
- 5. Assignment Operation
- 6. AND Logic Operation
- 7. Negation Operation
- 8. Exclusive OR Operation
- 9. NAND, NOR etc.
- 10. Bistable Function Blocks
- 11. Edge Detection
- 12. Timer Function Blocks

Bibliography

Huang, B., 2017. The Arduino Inventor's Guide: Learn Electronics by Making 10 Awesome Projects. No Starch Press.

Telagam, N., Nanjundan, M., Kandasamy, N. and Naidu, S., 2017. Cruise Control of Phase Irrigation Motor Using SparkFun Sensor. Int. J. Online Eng., 13(8), pp.192-198.