南昌大学物理实验报告

课程名称:_	大 <u>学物理实验惠期</u>	<u> </u>
实验名称:	惠斯登电材	\$
学院: _信息	工程学院 专业班级。	:自动化 153 班
学生姓名:		学号: 6101215077
	基础实验大楼 210	

一、实验目的:

- 1.掌握电桥测电阻的原理和办法。
- 2.了解减少测电阻减少误差的方法。

二、实验原理:

$$\frac{R_{\rm x}}{R_{\rm 3}} = \frac{R_{\rm 2}}{R_{\rm 1}}$$

2. 电桥的灵敏度

电桥平衡后,将 R0 改变 \triangle R0,检流计指针偏转 \triangle n 格。如果一个很小的 \triangle R0 能引起较大的 \triangle n 偏转,电桥的灵敏度就高,电桥的平衡就能够判断得更精细。 电表(检流计)的灵敏度是以单位电流变化量所引起电表指针偏转 的格数来定义的。

同样在完全处于平衡的电桥里,若测量臂电阻 Rx 改变一个微小量 $\triangle Rx$,将引起检流计指针所偏转的格数 $\triangle n$,定义为电桥灵敏度,但是电桥灵敏度不能直接用来判断电桥在测量电阻时所产生的误差,故用其相对灵敏度来衡量电桥测量的精确程度,即有(5-4)

定义为电桥的相对灵敏度。它反映了电桥对电阻相对变化量的分辨能力,实验中可以据此测出所用电桥的灵敏度。可以证明改变任何一个桥臂,电桥的相对灵敏度都是相同的。

三、实验仪器:

线式电桥板、电阻箱、滑线变阻器、检流计、箱式惠斯通电桥、待测电阻、低压直流电源

四、实验内容和步骤:

- $1.将 R_N$ 及功能选择档均选择"单桥"。
- 2.打开电源, 按下 2mV 档,调节凋零电位,将读数调零。
- 3.按下电压表接入键, 200mV 键。
- 4.接入 R_x , 初步设定 R_3 值,根据 R_x / R_3 的比值,设定 $R_1 \times R_2$ 。
- 5.按下B、G按钮,逐步调节 R_3 ,使电压表示数为零。

五、实验数据与处理:

	51Ω			200 Ω		3 k Ω			75kΩ			
R_1 (Ω)	2417.3		4419.2		4415.1		512.6					
R_2 (Ω)	25.6		432.7		4316.5		5217.3					
R_3	200m V	20mV	2mV	200m V	20mV	2mV	200m V	20mV	2mV	200m V	20mV	2mV
(Ω)	5162.	5163.	5163.	2102.	2104.	2104.	2943.	2943.	2943.	7454.	7455.	7456.
	1	5	6	5	1	7	4	5	7	4	1	3

六、误差分析:

- 1.检流计灵敏度可导致偶然误差增大
- 2.导线电阻可使测量值偏大或偏小,跟电路中电阻分布有关,属系统误差
- 3.待测电阻两端接触电阻均可造成测量结果偏大

七、思考题:

1 在用自组电桥测电阻时,灵敏电偏一边:某个桥臂不通,查线和电阻箱、被测电阻;某个桥臂短路;甚至可能是检流计 卡针

总不偏:电源坏或未通电,查电源和线;检流计坏或不通电;相邻两臂均不通,查桥臂和连线流计总是偏向一边或总不偏转,分别说明这两种情况下电路可能在何处发生了故障?

2 惠斯通电桥测电阻时, 若比例臂选择不当, 对测量结果是否有影响?

比例臂不当: 读数有效位数下降,使测量结果不确定度增加,不能达到应有的测量精度;可能会增加某个臂的电流,甚至 损坏有些被测电阻,如传感器.

八、附上原始数据:

75kW	R2=5217.7 R3=745KV	R1=512.60 7455.1 7456.3	
3/2	Rz=4316-5 Rz=2943.4	R1 = 44151/ 2943.5 2943.)	
N_ecc(Rx=4327 Rz=2102.50	Ri-4419. Y 21041/ 21041/	
\$1.N	R3= \$162/	21-267.V 5167.5 5-164-6	
	T016	3.28.	