Một số bài tập làm thêm- dễ (Chú ý: Một số đáp án có thể chưa chính xác)

CHƯƠNG 1: PHÉP TÍNH VI PHÂN HÀM SỐ NHIỀU BIẾN SỐ

Câu 1: Cho hàm số $f(x,y)=\frac{1}{\sqrt{4-x^2-2y^2}}$. Khẳng định nào sau đây đúng?

- **A.** Miền xác định của hàm f là $D=\ (x,y)\in \mathbb{R}^2 \mid x^2+2y^2<4$.
- **B.** Miền xác định của hàm f là \mathbb{R}^2 .
- **C.** Miền xác định của hàm f là $D=\ (x,y)\in \mathbb{R}^2\mid x^2+2y^2\leq 4$.
- **D.** Miền xác định của hàm f là $D=\ (x,y)\in \mathbb{R}^2 \mid x^2+2y^2=4$.

Câu 2: Cho hàm số $f(x,y) = \ln(2x-y+1)$. Miền xác định D và miền giá trị E của hàm số là

A.
$$D = (x, y) \in \mathbb{R}^2 \mid y < 2x + 1$$
, $E = (-\infty, +\infty)$.

B.
$$D = (x,y) \in \mathbb{R}^2 \mid y \le 2x + 1$$
, $E = (-\infty, 0)$.

C.
$$D = (x,y) \in \mathbb{R}^2 \mid y < 2x + 1$$
, $E = (-\infty, 0)$.

D.
$$D = (x, y) \in \mathbb{R}^2 \mid y \le 2x + 1$$
, $E = (-\infty, +\infty)$.

Câu 3: Cho hàm hai biến f(x,y) và điểm $M(x_0,y_0)\in\mathbb{R}^2$. Khẳng định nào sau đây **đúng**?

- ${\bf A.}$ Nếu $f\,$ khả vi tại $\,M(x_0,y_0)\,$ thì $\,f$ liên tục tại $\,M(x_0,y_0)\,.$
- ${\bf B.}$ Nếu f không khả vi tại $\,M(x_0,y_0)\,$ thì $\,f\,$ không liên tục tại $\,M(x_0,y_0)\,.$
- ${\bf C.}$ Nếu f có các đạo hàm riêng cấp 1 tại $\,M(x_0,y_0)\,$ thì $\,f\,$ liên tục tại $\,M(x_0,y_0)\,.$

 ${\bf D.}$ Nếu f không liên tục tại $M(x_0,y_0)$ thì f không có các đạo hàm riêng cấp 1 tại $M(x_0,y_0)$.

Câu 4: Các đạo hàm riêng cấp một của hàm số $z=x^3-2xy^2\,$ là

$$\mathbf{A} \cdot \frac{\partial z}{\partial x} = 3x^2 - 2y^2; \ \frac{\partial z}{\partial y} = -4xy.$$

B.
$$\frac{\partial z}{\partial x} = 3x^2$$
; $\frac{\partial z}{\partial y} = -4xy$.

$$\mathbf{C} \cdot \frac{\partial z}{\partial x} = 3x^2; \ \frac{\partial z}{\partial y} = -2y^2.$$

$$\mathbf{D} \cdot \frac{\partial z}{\partial x} = 3x^2 - 2y^2; \ \frac{\partial z}{\partial y} = -4y.$$

Câu 5: Cho hàm số f(x,y) khả vi tại (x_0,y_0) . Vi phân toàn phần của f tại (x_0,y_0) là

$$\mathbf{A.} \ df(x_0,y_0) = \frac{\partial f(x_0,y_0)}{\partial x} dx + \frac{\partial f(x_0,y_0)}{\partial y} dy.$$

$$\mathbf{B.} \ df(x_0,y_0) = \frac{\partial f(x_0,y_0)}{\partial y} dx + \frac{\partial f(x_0,y_0)}{\partial x} dy.$$

$$\mathbf{C.} \ df(x_0,y_0) = \frac{\partial f(x_0,y_0)}{\partial y} + \frac{\partial f(x_0,y_0)}{\partial x}.$$

$$\mathbf{D}.\ df(x_0,y_0) = \frac{\partial f(x_0,y_0)}{\partial x} - \frac{\partial f(x_0,y_0)}{\partial y}.$$

Câu 6: Khẳng định nào sau đây về vi phân toàn phần của hàm nhiều biến u, v **không đúng**?

A.
$$d\left(\frac{u}{v}\right) = \frac{vdu + udv}{v^2}$$
.

B. d(u+v) = du + dv.

 $\mathbf{C.} \ d(uv) = vdu + udv.$

D.
$$d(u - v^2) = du - 2vdv$$
.

Câu 7: Cho hàm ẩn y = f(x) xác định bởi phương trình F(x,y) = 0. Khẳng định nào sau đây **đúng**?

A.
$$f'(x) = -\frac{F'_x}{F'_y}$$
.

B.
$$f'(x) = F'_x + F'_y$$
.

C.
$$f'(x) = -\frac{F'_y}{F'_x}$$
.

D.
$$f'(x) = \frac{F'_y}{F'_x}$$
.

Câu 8: Cho hàm số f(x,y) khả vi tại điểm (x_0,y_0) . Với $\left|\Delta x\right|,\left|\Delta y\right|$ đủ nhỏ, giá trị xấp xỉ của $f(x_0+\Delta x,y_0+\Delta y)$ là

$$\mathbf{A.} \ f(x_0 + \Delta x, y_0 + \Delta y) \approx f(x_0, y_0) + \frac{\partial f(x_0, y_0)}{\partial x} \Delta x + \frac{\partial f(x_0, y_0)}{\partial y} \Delta y \,.$$

B.
$$f(x_0 + \Delta x, y_0 + \Delta y) \approx f(x_0, y_0) + f'_y(x_0, y_0) \Delta x + f'_x(x_0, y_0) \Delta y$$
.

C.
$$f(x_0 + \Delta x, y_0 + \Delta y) \approx f(x_0, y_0) + y f_y'(x_0, y_0) \Delta x + x f_x'(x_0, y_0) \Delta y$$
.

$$\mathbf{D.} \ f(x_0 + \Delta x, y_0 + \Delta y) \approx f(x_0, y_0) + y_0 \, \frac{\partial f(x_0, y_0)}{\partial x} \, \Delta x + x_0 \, \frac{\partial f(x_0, y_0)}{\partial y} \, \Delta y \, .$$

Câu 9: Cho hàm số f(u,v) khả vi trên tập mở $U\subset\mathbb{R}^2$ và $u=u(x,y),\ v=v(x,y)$ là hai hàm số khả vi trên $V\subset\mathbb{R}^2$. Khẳng định nào dưới đây **đúng**?

A.
$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial u} \frac{\partial u}{\partial x} + \frac{\partial f}{\partial v} \frac{\partial v}{\partial x}, \ \frac{\partial f}{\partial y} = \frac{\partial f}{\partial u} \frac{\partial u}{\partial y} + \frac{\partial f}{\partial v} \frac{\partial v}{\partial y}.$$

B.
$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial u} \frac{\partial f}{\partial v} + \frac{\partial u}{\partial x} \frac{\partial v}{\partial x}, \ \frac{\partial f}{\partial y} = \frac{\partial f}{\partial u} \frac{\partial f}{\partial v} + \frac{\partial u}{\partial y} \frac{\partial v}{\partial y}.$$

$$\mathbf{C.} \ \frac{\partial f}{\partial x} = \frac{\partial f}{\partial u} \frac{\partial u}{\partial x} - \frac{\partial f}{\partial v} \frac{\partial v}{\partial x}; \ \frac{\partial f}{\partial y} = \frac{\partial f}{\partial u} \frac{\partial u}{\partial y} - \frac{\partial f}{\partial v} \frac{\partial v}{\partial y}.$$

D.
$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial u} \frac{\partial f}{\partial x} + \frac{\partial f}{\partial v} \frac{\partial f}{\partial x}, \ \frac{\partial f}{\partial u} = \frac{\partial f}{\partial u} \frac{\partial f}{\partial u} + \frac{\partial f}{\partial v} \frac{\partial f}{\partial u}.$$

Câu 10: Biết $M_0(x_0,y_0)$ là một điểm dừng của hàm số f(x,y). Đặt $A=f_{xx}^{\prime\prime}(x_0,y_0)$,

$$B=f_{xy}''(x_0,y_0)$$
 , $C=f_{yy}''(x_0,y_0)$ và $\Delta=B^2-A\,C$. Khẳng định nào sau đây **đúng**?

 ${\bf A}.$ Nếu $\Delta < 0$ và A < 0 thì M_0 là điểm cực đại của hàm số f .

 ${\bf B}.$ Nếu $\Delta>0$ và A<0 thì M_0 là điểm cực tiểu của hàm số f .

 ${\bf C}.$ Nếu $\Delta=0$ thì M_0 là một điểm cực trị của hàm số f .

 ${\bf D}.$ Nếu $\Delta>0\,$ thì $\,M_0\,$ là một điểm cực trị của hàm số $\,f\,.$

Câu 11: Cho f,g là các hàm số liên tục, có các đạo hàm riêng liên tục trên \mathbb{R}^2 . $M_0(x_0,y_0)$ là điểm cực trị của hàm số f(x,y) với điều kiện g(x,y)=0 và $g_x'(x_0,y_0),g_y'(x_0,y_0)$ không đồng thời bằng không. Gọi $L(x,y,\lambda)=f(x,y)-\lambda g(x,y)$ ($\lambda\in\mathbb{R}$) là hàm Lagrange. Khẳng định nào dưới đây **đúng**?

 ${\bf A}.$ Tồn tại số thực λ sao cho $L_x'(x_0,y_0,\lambda)=L_y'(x_0,y_0,\lambda)=0.$

 ${\bf B}.$ Với mọi số thực λ , $\; L_x'(x_0,y_0,\lambda)=L_y'(x_0,y_0,\lambda)=0.$

C. Với mọi số thực $\lambda\,,\;\;L_x'(x_0,y_0,\lambda)+\lambda L_y'(x_0,y_0,\lambda)=0$.

 ${\bf D}$. Tồn tại số thực λ sao cho $L_x'(x_0,y_0,\lambda)+\lambda L_y'(x_0,y_0,\lambda)=0$.

Câu 12: Cho hàm số
$$f(x,y)=\begin{cases} \dfrac{xy^3}{x^4+2y^4} & (x,y)\neq (0,0)\\ 0 & (x,y)=(0,0) \end{cases}$$
. Khẳng định nào sau đây **đúng**?

A. Không tồn tại giới hạn $\lim_{(x,y) \to (0,0)} f(x,y)$.

B.
$$\lim_{(x,y)\to(0,0)} f(x,y) = 0$$
.

C.
$$\lim_{(x,y)\to(0,0)} f(x,y) = 1$$
.

D.
$$\lim_{(x,y)\to(0,0)} f(x,y) = \frac{1}{3}$$
.

Câu 13: Cho hàm số $f(x,y)=x^2\arcsin y$, tính $\frac{\partial f}{\partial x}(1,\frac{1}{2})$ và $\frac{\partial f}{\partial y}(1,\frac{1}{2})$. Khẳng định nào sau đây **đúng**?

$$\mathbf{A.} \; \frac{\partial f}{\partial x}(1,\frac{1}{2}) = \frac{\pi}{3}, \, \frac{\partial f}{\partial y}(1,\frac{1}{2}) = \frac{2\sqrt{3}}{3}.$$

B.
$$\frac{\partial f}{\partial x}(1,\frac{1}{2}) = \frac{\pi}{6}, \frac{\partial f}{\partial y}(1,\frac{1}{2}) = \frac{\sqrt{3}}{3}$$

C.
$$\frac{\partial f}{\partial x}(1,\frac{1}{2}) = 2$$
, $\frac{\partial f}{\partial y}(1,\frac{1}{2}) = \frac{\pi}{3}$.

D.
$$\frac{\partial f}{\partial x}(1,\frac{1}{2}) = 2$$
, $\frac{\partial f}{\partial y}(1,\frac{1}{2}) = \frac{\pi}{6}$.

Câu 14: Cho hai hàm $u(x,y)=\frac{xy}{y^2+1};\ v(x,y)=\arctan 2x+y$. Khẳng định nào sau

đây về định thức Jacobi $\frac{D(u,v)}{D(x,y)}$ là **đúng**?

A.
$$\frac{D(u,v)}{D(x,y)} = \frac{y}{y^2+1} - \frac{2x(1-y^2)}{(1+4x^2)(y^2+1)^2}$$
.

B.
$$\frac{D(u,v)}{D(x,y)} = \frac{y}{y^2 + 1} - \frac{x(1-y^2)}{(1+4x^2)(y^2+1)^2}$$
.

C.
$$\frac{D(u,v)}{D(x,y)} = \frac{D(u,v)}{D(x,y)} = \frac{2x(1-y^2)}{(1+4x^2)(y^2+1)^2} - \frac{y}{y^2+1}$$
.

D.
$$\frac{D(u,v)}{D(x,y)} = \frac{D(u,v)}{D(x,y)} = \frac{x(1-y^2)}{(1+4x^2)(y^2+1)^2} - \frac{y}{y^2+1}$$
.

Câu 15: Cho hàm số $z=x^3-3xy+y^2; x=\cos t,\ y=e^{-2t}$. Tính $\frac{dz}{dt}(0)$. Khẳng định nào sau đây **đúng**?

$$\mathbf{A.} \ \frac{dz}{dt}(0) = 2.$$

B.
$$\frac{dz}{dt}(0) = -2$$
.

$$\mathbf{C.} \frac{dz}{dt}(0) = -4.$$

D.
$$\frac{dz}{dt}(0) = 4$$
.

Câu 16: Cho hàm số $f(x,y) = e^{-3x} \sin 5y$. Khẳng định nào sau đây **đúng**?

A.
$$f_{x^2}''(x,y) + f_{y^2}''(x,y) + 16f(x,y) = 0$$
.

B.
$$f_{x^2}''(x,y) + f_{y^2}''(x,y) = 2$$
.

C.
$$f_{x^2}''(x,y) + f_{y^2}''(x,y) = 0$$
.

D.
$$f_{x^2}''(x,y) + f_{y^2}''(x,y) + 19f(x,y) = 0$$
.

Câu 17: Cho $f(x,y,z)=x^4y-xy^2+2z^2$ và $\vec{l}=(4,0,3)$. Tính đạo hàm của f theo hướng véc tơ \vec{l} tại điểm $M_0(1,3,2)$. Khẳng định nào dưới đây **đúng**?

$$\mathbf{A.}\ \frac{\partial f}{\partial \vec{l}}(M_0) = \frac{36}{5}.$$

$$\mathbf{B.} \ \frac{\partial f}{\partial \vec{l}}(M_0) = \frac{46}{5}.$$

$$\mathbf{C}.\ \frac{\partial f}{\partial \vec{l}}(M_0) = \frac{16}{5}.$$

$$\mathbf{D}.\ \frac{\partial f}{\partial \vec{l}}(M_0) = \frac{26}{5}.$$

Câu 18: Cho hàm số $f(x,y)=x^{20}y-x^{16}y^{20}$. Khẳng định nào sau đây **đúng**?

A.
$$f^{(17)}_{x^{15}y^2}(x,y) = -380xy^{18}.16!$$

B.
$$f^{(17)}_{x^{15}y^2}(x,y) = x^{15} - x^4y^{15}$$

C.
$$f^{(17)}_{x^{15}y^2}(x,y) = 15x^{15} - 2x^4y^{15}$$

D.
$$f^{(17)}_{x^{15}y^2}(x,y) = 5x^{15} - 15x^4y^{15}$$

Câu 19: Cho hàm $f(x,y)=x^3-4x^2y+y^5$, \vec{j} là vecto đơn vị theo hướng dương của trục

$$Oy \ {
m và} \ D = \left\{ M(x,y) \in \mathbb{R}^2 \mid \overrightarrow{\frac{\partial f}{\partial j}}(M) = 0
ight\}$$
. Khẳng định nào sau đây là **đúng**?

A.
$$D = (x,y) \in \mathbb{R}^2 \mid 5y^4 - 4x^2 = 0$$
.

B.
$$D = (x,y) \in \mathbb{R}^2 \mid 3x^2 - 4xy = 0$$
.

C.
$$D = (x,y) \in \mathbb{R}^2 \mid 3x^2 - 4xy + y^5 = 0$$
.

D.
$$D = (x,y) \in \mathbb{R}^2 \mid x^3 + 5y^4 - 4x^2 = 0$$
.

Câu 20: Cho hàm số $f(x,y)=x^5+e^{2x-3y}$. và $n\in\mathbb{N}^*$. Khẳng định nào dưới đây **đúng**?

A.
$$u_{y^n}^n = (-1)^n 3^n e^{2x-3y}$$
.

B.
$$u_{y^n}^n = 3^n e^{2x-3y}$$
.

C.
$$u_{y^n}^n = e^{2x-3y}$$
.

D
$$u_{u^n}^n = 2^n e^{2x-3y}$$
.

Câu 21: Cho hàm ẩn y = y(x) xác định bởi phương trình $2x^2y + y^3 - 3 = 0$, tính y'(x). Khẳng định nào sau đây **đúng**?

A.
$$y'(x) = -\frac{4xy}{2x^2 + 3y^2}$$
.

B.
$$y'(x) = \frac{4xy}{2x^2 + 3y^2}$$

C.
$$y'(x) = \frac{y^3 + 3}{2x^2}$$

D
$$y'(x) = \frac{y^3 - 3}{2x^2}$$

Câu 22: Cho z=z(x,y) là hàm số ẩn xác định từ phương trình $2e^{xy}-y^2z^3-1=0$. Khẳng định nào dưới đây **đúng**?

A.
$$dz(0,1) = \frac{2}{3}(dx - dy).$$

B.
$$dz(0,1) = \frac{2}{3}dx - \frac{1}{3}dy$$
.

C.
$$dz(0,1) = \frac{2}{3}dx + \frac{1}{3}dy$$
.

D.
$$dz(0,1) = \frac{2}{3}(dy - dx)$$
.

Câu 23: Cho hàm số $f(x,y)=3xy+\cos^2y-e^{-x^3}$, tính $d^2f(x,y)$. Khẳng định nào dưới đây **đúng**?

A.
$$d^2 f(x,y) = (6x - 9x^4)e^{-x^3}dx^2 + 6dxdy - 2\cos 2ydy^2$$
.

B.
$$d^2 f(x,y) = (6x - 9x^4)e^{-x^3}dx^2 + 3dxdy - 2\cos ydy^2$$
.

C.
$$d^2 f(x,y) = (6x - 9x^4)e^{-x^3}dx^2 + 3dxdy - 2\cos 2ydy^2$$
.

D.
$$d^2 f(x,y) = (6x - 9x^4)e^{-x^3}dx^2 + 6dxdy - 2\cos ydy^2$$
.

Câu 24: Cho hàm số $f(x,y)=\arctan xy+\ln \frac{1}{x^2+2y^6}$, tính df(x,y). Khẳng định nào dưới đây **đúng**?

A.
$$df(x,y) = \left(\frac{y}{1+x^2y^2} - \frac{2x}{x^2+2y^6}\right)dx + \left(\frac{x}{1+x^2y^2} - \frac{12y^5}{x^2+2y^6}\right)dy$$
.

B.
$$df(x,y) = \left(\frac{y}{1+x^2y^2} + \frac{2x}{x^2+2y^6}\right)dx + \left(\frac{x}{1+x^2y^2} - \frac{12y^5}{x^2+2y^6}\right)dy.$$

C.
$$df(x,y) = \left(\frac{y}{1+x^2y^2} - \frac{2x}{x^2+2y^6}\right)dx + \left(\frac{x}{1+x^2y^2} + \frac{12y^5}{x^2+2y^6}\right)dy$$
.

D.
$$df(x,y) = \left(\frac{y}{1+x^2y^2} - \frac{2x}{x^2+2y^6}\right)dx + \left(\frac{x}{1+x^2y^2} - \frac{12y^4}{x^2+2y^6}\right)dy.$$

Câu 25: Cho hàm số $f(x,y)=\sin 3x+ye^{\frac{y}{2x}}$, tính df(x,y). Khẳng định nào dưới đây đúng?

A.
$$df(x,y) = \left(3\cos 3x - \frac{y^2}{2x^2}e^{\frac{y}{2x}}\right)dx + \left(1 + \frac{y}{2x}\right)e^{\frac{y}{2x}}dy$$
.

B.
$$df(x,y) = \left(3\cos 3x + \frac{y^2}{2x^2}e^{\frac{y}{2x}}\right)dx + \left(1 + \frac{y}{2x}\right)e^{\frac{y}{2x}}dy.$$

C.
$$df(x,y) = \left(3\cos 3x - \frac{y^2}{2x^2}e^{\frac{y}{2x}}\right)dx + \left(1 - \frac{y}{2x}\right)e^{\frac{y}{2x}}dy.$$

D.
$$df(x,y) = \left(3\cos 3x - \frac{y^2}{2x^2}e^{\frac{y}{2x}}\right)dx + \left(1 + \frac{y}{2x^2}\right)e^{\frac{y}{2x}}dy.$$

Câu 26: Cho $f(x,y) = \sqrt{x+4y^2} - 2xy^3 + y^4$, khẳng định nào dưới đây **đúng**?

A.
$$f_{xy}''(0,1) = -\frac{25}{4}$$
.

B.
$$f''_{xy}(0,1) = 6$$
.

$$\mathbf{C} \cdot f_{xy}''(0,1) = \frac{25}{4}.$$

D.
$$f''_{xy}(0,1) = -6$$
.

Câu 27: Cho hàm số $f(x,y)=2(x-1)^2+3y^4-5\,$ và điểm $M_0(1,0)\,$. Khẳng định nào sau đây không đúng?

- $\mathbf{A.}\ M_0$ là điểm cực đại của f .
- $\mathbf{B.}\ M_0$ là điểm cực tiểu của f .
- $\mathbf{C.}~M_0$ là điểm dừng của f .
- $\mathbf{D.}\ M_0$ là điểm cực trị duy nhất của f .

Câu 28: Cho hàm số $f(x,y) = x^4 + 3x^2y - y^2$. Khẳng định nào sau đây **đúng**?

- A. Hàm số không có điểm cực trị.
- **B.** Hàm số có hai điểm dừng là 0,0 và 1,0.
- C. Hàm số đạt cực đại tại điểm (0,0).
- **D.** Hàm số đạt cực tiểu tại điểm (0,0).

Câu 29: Cho hàm ẩn z=f(x,y) xác định bởi phương trình $z-ye^{\frac{3x}{z}}=0$. Chọn giá trị gần đúng của f(0,01;0,98).

A.
$$f(0,01;0,98) \approx 1,0033$$
.

B.
$$f(0,01;0,98) \approx 0,9967$$
.

C. $f(0,01;0,98) \approx 1,00006$.

D. $f(0,01;0,98) \approx 0,99994$.

Câu 30: Cho $f(x,y) = \arctan \frac{x}{\sqrt{x^2 + 2y^2}} + \ln xy$. Khẳng định nào dưới đây **đúng**?

A.
$$f'_x(x,y) = \frac{y^2}{x^2 + y^2 \sqrt{x^2 + y^2}} + \frac{1}{x}$$
 $(xy > 0).$

B.
$$f'_x(x,y) = \frac{y^2}{x^2 + y^2 \sqrt{x^2 + y^2}} + \frac{1}{xy}$$
 $(xy > 0).$

C.
$$f'_x(x,y) = \frac{y^2}{x^2 \sqrt{x^2 + y^2}} + \frac{1}{x}$$
 $(xy > 0)$.

D.
$$f'_x(x,y) = \frac{y^2}{y^2 \sqrt{x^2 + y^2}} + \frac{1}{x} \quad (xy > 0).$$

Câu 31: Cho hàm hai biến $z = x^2 + y + 3xy$. Khẳng định nào dưới đây **đúng**?

A.
$$dz = (2x + 3y)dx + (1 + 3x)dy; d^2z = 2dx^2 + 6dxdy; d^nz = 0, \forall n \ge 3$$
.

B.
$$dz = (2x + 3y)dx + (1 + 3x)dy; d^2z = 2dx^2 + 3dxdy; d^nz = 0, \forall n \ge 3$$
.

C.
$$dz = 2xdx + 3ydy; d^2z = 2dx^2 + 3dy^2; d^nz = 0, \forall n \ge 3$$
.

D.
$$dz = 2xdx + dy; d^2z = 2dx^2 + 3dxdy; d^nz = 0, \forall n \ge 3.$$

Câu 32: Cho hàm số $f(x,y) = x^5 + y^5 - \frac{5}{3}x^3 - \frac{5}{2}y^2$. Khẳng định nào dưới đây **đúng**?

A. Hàm số đạt giá trị cực tiểu tại $M_0(1,1)$.

B. Hàm số đạt giá trị nhỏ nhất tại $M_0(1,1)$.

- ${\bf C.}$ Hàm số đạt giá trị cực đại tại $\,M_0(1,1)\,.$
- $\mathbf{D.}$ Hàm số đạt giá trị lớn nhất tại $\,M_0(1,1)\,.$
- **Câu 33:** Cho hàm số $f(x,y)=x^3y+\frac{3}{2}x^2y^2-y^3$. Khẳng định nào dưới đây **đúng**?
- $\textbf{A. } \text{Điểm}\, M_0(-\frac{3}{2},\frac{3}{2}) \;\; \text{là điểm là điểm dừng nhưng không là điểm cực trị của hàm số} \; f.$
- **B.** Điểm $M_0(-\frac{3}{2},\frac{3}{2})$ là điểm cực đại của hàm số f.
- C. Điểm $M_0(-\frac{3}{2},\frac{3}{2})$ là điểm cực tiểu của hàm số f.
- $\mathbf{D.}$ Điểm $M_0(-\frac{3}{2},\frac{3}{2})$ không là điểm dừng của hàm số f.

CHƯƠNG 2: TÍCH PHÂN BỘI

Câu 1: Cho f(x,y), g(x,y) là các hàm số khả tích trên miền D. Khẳng định nào sau đây **không đúng** ?

A.
$$\iint\limits_D f(x,y).g(x,y)dxdy = \iint\limits_D f(x,y)dxdy.\iint\limits_D g(x,y)dxdy.$$

B.
$$\iint_D f(x,y)dxdy = \iint_D f(u,v)dudv.$$

C.
$$\iint\limits_{D} \lambda f(x,y) dx dy = \lambda \iint\limits_{D} f(x,y) dx dy; \ \forall \lambda \in \mathbb{R}.$$

D.
$$\forall (x,y) \in D : f(x,y) \le 0 \Rightarrow \iint_D f(x,y) dx dy \le 0$$
.

Câu 2: Cho f(x,y,z), g(x,y,z) là hàm các hàm liên tục trên miền đóng, bị chặn V. Khẳng định nào sau đây **không đúng**?

A.
$$\iiint\limits_V \left[f(x,y,z)+1\right] dx dy dz = \iiint\limits_V f(x,y,z) dx dy dz + S \ \ \text{v\'oi} \ \ S \ \ \ \text{là diện tích miền} \ \ V.$$

B. f, g khả tích trên miền V.

$$\mathbf{C.}\ f(x,y,z) \leq g(x,y,z) (\forall (x,y,z) \in V) \Rightarrow \iiint\limits_V f(x,y,z) dx dy dz \leq \iiint\limits_V \mathbf{g}(x,y,z) dx dy dz$$

D. Nếu
$$V=~(x,y,z)\big|(x,y)\in D; z_1(x,y)\leq z\leq z_2(x,y)~(z_1(x,y),z_2(x,y)$$
 liên tục trên D)

thì
$$\iiint\limits_V f(x,y,z) dx dy dz = \iint\limits_D \left(\int\limits_{z_1(x,y)}^{z_2(x,y)} f(x,y,z) dz \right) \!\! dx dy \; .$$

Câu 3: Cho D là miền giới hạn bởi các đường x=0, x=1, y=2, y=4, tính

$$I = \int \!\!\! \int \limits_{D} \sin 2x dx dy$$
. Khẳng định nào sau đây **đúng**?

A.
$$I = 1 - \cos 2$$
.

B.
$$I = 2 - 2\cos 2$$
.

C.
$$I = 1$$
.

D.
$$I = 2$$
.

Câu 4: Cho mặt cong M có phương trình z=f(x,y) và có hình chiếu xuống mặt phẳng Oxy là D. Gọi S là diện tích của mặt M. Khẳng định nào sau đây **đúng**?

A.
$$S = \iint_{D} \sqrt{1 + f_x'^2 + f_y'^2} dx dy.$$

$$\mathbf{B.} \ m = \iint_D dx dy.$$

C.
$$S = \iint_D f(x,y) \sqrt{1 + f_x'^2 + f_y'^2} dx dy$$
.

D.
$$S = \iint_D f(x,y) \sqrt{{f_x'}^2 + {f_y'}^2} dx dy$$
.

Câu 5: Cho hàm số f(x,y) xác định trên $D=(x,y)\in\mathbb{R}^2 \ |a\leq x\leq b,c\leq y\leq d$.

Khẳng định nào dưới đây đúng?

A.
$$\iint_D f(x,y)dxdy = \int_a^b \left(\int_c^d f \ x,y \ dy \right) dx.$$

B.
$$\iint_D f(x,y)dxdy = \int_c^d \left(\int_a^b f \ x,y \ dy \right) dx.$$

C.
$$\iint_D f(x,y)dxdy = \int_a^b \left(\int_c^d f \ x,y \ dx \right) dy.$$

D.
$$\iint\limits_D f(x,y)dxdy = \int\limits_a^b f(x,y)dx + \int\limits_c^d f(x,y)dy.$$

Câu 6: Xét tích phân $I = \iint_D f(x,y) dx dy$. Thực hiện phép đổi biến sang tọa độ cực bằng cách đặt $x = r \cos \varphi, y = r \sin \varphi$. Khi đó miền D tương ứng với miền D' chứa gốc O và có biên là đường cong kín $r = r(\varphi)$ bao quanh O. Khẳng định nào dưới đây **đúng**?

$$\mathbf{A}.I = \int_{0}^{2\pi} d\varphi \int_{0}^{r(\varphi)} f(r\cos\varphi, r\sin\varphi) r dr.$$

B.
$$I = \int_{0}^{2\pi} d\varphi \int_{0}^{r(\varphi)} f(r\cos\varphi, r\sin\varphi) dr.$$

C.
$$I = \int_{0}^{\pi} d\varphi \int_{0}^{r(\varphi)} f(r\cos\varphi, r\sin\varphi) dr$$
.

D.
$$I = \int_{0}^{\pi} d\varphi \int_{0}^{r(\varphi)} f(r\cos\varphi, r\sin\varphi) r dr.$$

Câu 7: Cho tích phân $I=\iint_D (x+y)dxdy, D$ là miền giới hạn bởi các đường x=0,y=x,y=1. Khẳng định nào dưới đây **đúng**?

A. I = 1.

B.
$$I = \frac{1}{2}$$
.

C.
$$I = 2$$
.

D.
$$I = \frac{1}{3}$$
.

Câu 8: Tìm khối lượng m của bản phẳng D được giới hạn bởi các đường $y=x^3, y=x~(x\geq 0),$ biết khối lượng riêng tại điểm (x,y) trên D là $\rho(x,y)=xy^{\frac{1}{3}}.$ Khẳng định nào sau đây **đúng**?

A.
$$m = \frac{1}{10}$$
.

B.
$$m = \frac{1}{11}$$
.

C.
$$m = \frac{4}{30}$$
.

D.
$$m = \frac{1}{12}$$
.

Câu 9: Đổi thứ tự lấy tích phân trong tích phân sau: $I=\int\limits_0^1 dx\int\limits_{1-\sqrt{1-x^2}}^{\sqrt{x}} f(x,y)dy$. Khẳng định nào dưới đây **đúng**?

A.
$$I = \int_{0}^{1} dy \int_{y^2}^{\sqrt{2y-y^2}} f(x,y)dx.$$

B.
$$I = \int_{0}^{1} dy \int_{0}^{1} f(x, y) dx$$
.

C.
$$\int_{1-\sqrt{1-x^2}}^{\sqrt{x}} dy \int_{0}^{1} f(x,y) dx$$
.

D.
$$I = \int_{0}^{1} dy \int_{\sqrt{y}}^{\sqrt{2y-y^2}} f(x,y) dx.$$

Câu 10: Gọi D là miền được giới hạn bởi các đường $y=1-x^2$, y=x+1. Giá trị của tích phân $I=\int_D (y-x)dxdy$ là

A.
$$I = \frac{11}{60}$$
.

B.
$$I = \frac{11}{30}$$
.

C.
$$I = \frac{4}{15}$$
.

D.
$$I = \frac{7}{30}$$
.

Câu 11: Tính tích phân sau bằng cách đổi biến sang tọa độ cầu:

$$I = \iiint\limits_{V} (x^2 + y^2 + z^2) dx dy dz, \ V = (x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 \le 1, z \ge \sqrt{x^2 + y^2} \ .$$

Khẳng định nào sau đây đúng?

A.
$$I = \frac{2\pi}{5}(1 - \frac{\sqrt{2}}{2}).$$

B.
$$I = \frac{2\pi}{5}$$
.

C.
$$I = 1 - \frac{\sqrt{2}}{2}$$
.

D.
$$I = \frac{\pi}{5}(1 - \frac{\sqrt{2}}{2}).$$

Câu 12: Trong không gian, cho vật thể $V=\ (x,y,z)\in\mathbb{R}^3\ |\ y\geq x^2,\, 0\leq z\leq 1-y\$. Biết

khối lượng riêng tại điểm (x,y,z) trên V là $\rho(x,y,z)=x^2$, tìm khối lượng m của vật thể. Khẳng định nào sau đây **đúng**?

A.
$$m = \frac{8}{105}$$
.

B.
$$m = \frac{4}{15}$$
.

C.
$$m = \frac{4}{105}$$
.

D.
$$m = \frac{7}{105}$$
.

Câu 13: Tính tích phân $I = \iiint_V z^3 dx dy dz$, V là miền được xác định bởi các mặt

 $z=1-x^2-y^2\,$ và $\,z=0\,.$ Khẳng định nào dưới đây **đúng**?

A.
$$I = \frac{\pi}{20}$$
.

B.
$$I = \frac{\pi}{10}$$
.

C.
$$I = \frac{\pi}{6}$$
.

D.
$$I = \frac{\pi}{3}$$
.

Câu 14: Tính diện tích S của miền phẳng D giới hạn bởi các đường $y=x^3, x=y^2$. Khẳng định nào sau đây **đúng**?

A.
$$S = \frac{5}{12}$$
.

B.
$$S = \frac{1}{32}$$
.

C.
$$S = \frac{3}{12}$$
.

D.
$$S = \frac{7}{32}$$
.

Câu 15: Tính tích phân $I=\iint\limits_D (x+2y)\,dxdy\,,\,\,D=(x,y)\in\mathbb{R}^2\mid x^2+y^2\leq 2x\,$.

Khẳng định nào dưới đây đúng?

- **A**. $I = \pi$.
- **B**. $I = \frac{\pi}{2}$.
- **C**. $I = \frac{3\pi}{2}$.
- **D.** $I = \frac{\pi}{32}$.

Câu 16: Tính $I = \iint_D y dx dy$, $D = \left\{ (x,y) \in \mathbb{R}^2 \mid x^2 + \frac{y^2}{4} \le 1, \ x \ge 0, y \ge 0 \right\}$.

Khẳng định nào dưới đây đúng?

- **A.** $I = \frac{4}{3}$.
- **B**. $I = \frac{1}{3}$.
- **C**. $I = \frac{3}{2}$.
- **D.** $I = \frac{5}{2}$.

Câu 17: Gọi S là diện tích hình phẳng giới hạn bởi các đường y=2x,y=2x+1,y=2-x,y=3-x. Khẳng định nào dưới đây **đúng**?

A.
$$S = \frac{1}{3}$$
.

B.
$$S = \frac{2}{3}$$
.

C.
$$S = \frac{11}{2}$$
.

D.
$$S = \frac{7}{2}$$
.

Câu 18: Tính $I=\iint_D xydxdy$, $D=\ (x,y)\in \mathbb{R}^2\Big|1\leq xy\leq 2; 0\leq x\leq 2y\leq 6x$. Khẳng

định nào sau đây đúng?

A.
$$I = \frac{3}{4} \ln 6$$
.

B.
$$I = \frac{3}{5}$$
.

C.
$$I = \frac{5}{11}$$
.

D.
$$I = \frac{2}{11} \ln 6$$
.

Câu 19: Tính tích phân $I = \iint_D \frac{1}{y^3} dx dy$., D là miền giới hạn bởi các đường

 $x=y^2, x=3y^2, 2x-y=0, 3x-y=0$. Khẳng định nào sau đây **đúng**?

A.
$$I = \frac{2}{3} \ln \frac{3}{2}$$
.

B.
$$I = \frac{3}{7}$$
.

C.
$$I = \frac{3}{4} \ln 3$$
.

D.
$$I = \frac{2}{5} \ln \frac{2}{3}$$
.

Câu 20: Cho $D=\ (x,y)\in\mathbb{R}^2\ |\ x^2+y^2\geq 1,\ x^2+y^2\leq 2x,\ x\geq 0,\ y\geq 0\$. Tính diện tích S của miền D. Khẳng định nào dưới đây **đúng**?

A.
$$S = \frac{\sqrt{3}}{4} + \frac{\pi}{6}$$
.

B.
$$S = \frac{\sqrt{3}}{2} + \frac{\pi}{12}$$
.

C.
$$S = \frac{1}{2} + \frac{\pi}{6}$$
.

D.
$$S = \frac{\sqrt{3}}{2} - \frac{\pi}{3}$$
.

CHƯƠNG 3: TÍCH PHÂN ĐƯỜNG VÀ TÍCH PHÂN MẶT

Câu 1: Cho P(x,y) và Q(x,y) là các hàm số liên tục trên cung tron AB có phương trình $y=y(x),\ x_A=a, x_B=b.$ Khẳng định nào sau đây **đúng**?

A.
$$\int_{AB} P(x,y)dx + Q(x,y)dy = \int_{a}^{b} [P(x,y(x)) + Q(x,y(x))y'(x)]dx.$$

B.
$$\int_{AB} P(x,y)dx + Q(x,y)dy = \int_{a}^{b} [P(x,y(x))y'(x) + Q(x,y(x))]dx.$$

C.
$$\int_{AB} P(x,y)dx + Q(x,y)dy = \int_{a}^{b} [P(x,y(x)) + Q(x,y(x))]y'(x)dx$$
.

D.
$$\int_{AB} P(x,y)dx + Q(x,y)dy = \int_{a}^{b} [P(x,y(x)) + Q(x,y(x))]\sqrt{1 + {y'}^{2}(x)} dx.$$

Câu 2: Gọi L là đường cong tron có phương trình trong hệ tọa độ cực là $r=r(\varphi),$ $\varphi_1 \leq \varphi \leq \varphi_2$, và f(x,y) là hàm số xác định trên L. Khẳng định nào sau đây **đúng**?

A.
$$\int_{L} f(x,y)ds = \int_{\varphi_{1}}^{\varphi_{2}} f\Big[r(\varphi)\cos\varphi, r(\varphi)\sin\varphi\Big] \sqrt{(r(\varphi))^{2} + (r'(\varphi))^{2}} d\varphi.$$

B.
$$\int_{L} f(x,y)ds = \int_{\varphi_{1}}^{\varphi_{2}} f\Big[r(\varphi)\cos\varphi, r(\varphi)\sin\varphi.r'(\varphi)\Big]d\varphi.$$

C.
$$\int_{L} f(x,y)ds = \int_{\varphi_{1}}^{\varphi_{2}} f(r(\varphi)\cos\varphi, r(\varphi)\sin\varphi)r'(\varphi)d\varphi.$$

D.
$$\int_{L} f(x,y)ds = \int_{\varphi_{1}}^{\varphi_{2}} f(r(\varphi)\cos\varphi, r(\varphi)\sin\varphi) \sqrt{1 + (r'(\varphi))^{2}} d\varphi.$$

Câu 3: Cho C là đoạn thẳng nối hai điểm A(0,0) và B(1,-1). Tính $I=\int\limits_C (x^3+5y)ds$.

Khẳng định nào sau đây đúng?

A.
$$I = -\frac{9\sqrt{2}}{4}$$
.

B.
$$I = \frac{\sqrt{2}}{3}$$
.

C.
$$I = -\frac{\sqrt{2}}{7}$$
.

D.
$$I = \frac{3\sqrt{2}}{5}$$
.

Câu 4: Tìm a và b thuộc \mathbb{R} để tích phân $\int_L (ax+3y+5)dx+(bx+y^2)dy$ không phụ thuộc đường lấy tích phân. Khẳng định nào dưới đây **đúng?**

A. b = 3, a bất kì thuộc \mathbb{R} .

 $\mathbf{B} \cdot a = 2, \ b \text{ bất kì thuộc } \mathbb{R}.$

C. Mọi giá trị của a, b thỏa mãn a = b.

D. Không tồn tại a, b.

Câu 5: Cho $I=\int\limits_{AB}(xy+x^2-2)dx-(xy^5-2x^3y^2+x^7)dy$, AB cho bởi phương trình

y=2, hướng từ điểm A(2,2) đến điểm B(1,2). Khẳng định nào dưới đây **đúng**?

A.
$$I = -\frac{10}{3}$$
.

B.
$$I = -\frac{5}{3}$$
.

$$\mathbf{C.}I = \frac{2}{5}.$$

D.
$$I = 7$$
.

Câu 6: Cho C là một đường cong tron có phương trình tham số là x=x(t), y=y(t), $t_1 \leq t \leq t_2$, và P(x,y), Q(x,y) là các hàm số liên tục trên C. Khẳng định nào sau đây đúng?

$$\mathbf{A}. \int_{C} P(x,y)dx + Q(x,y)dy = \int_{t_{1}}^{t_{2}} [P(x(t),y(t))x'(t) + Q(x(t),y(t))y'(t)]dt.$$

$$\mathbf{B}. \int_{C} P(x,y)dx + Q(x,y)dy = \int_{t_{1}}^{t_{2}} [P(x(t),y(t)) + Q(x(t),y(t)).y'(t)]dt.$$

$$\mathbf{C.} \int\limits_{C} P(x,y) dx + Q(x,y) dy = \int\limits_{t_{1}}^{t_{2}} [P(x(t),y(t)) + Q(x(t),y(t))] \sqrt{1 + {y'}^{2}(t)} dt \, .$$

D.
$$\int_C P(x,y)dx + Q(x,y)dy = \int_{t_1}^{t_2} [P(x(t),y(t)) + Q(x(t),y(t))] \sqrt{x'^2(t) + y'^2(t)} dt .$$

Câu 7: Tính
$$I=\int_D dx dy$$
 , với $D=\ (x,y)\in \mathbb{R}^2 \mid x^2-2x+y^2-4y \leq 4 \$. Khẳng định

nào dưới đây đúng?

A.
$$I = 9\pi$$
.

B.
$$I = 5\pi$$
.

C.
$$I = 3\pi$$
.

D.
$$I = 11\pi$$
.

Câu 8: Tính $I=\iint\limits_{\mathcal{S}}xdydz+2ydzdx+3zdxdy;$ trong đó S là mặt ngoài của hình trụ

giới hạn bởi các mặt $x^2+y^2=1; z=0; z=4$. Khẳng định nào sau đây **đúng**?

A.
$$I = 24\pi$$
.

B.
$$I = \pi$$
.

C.
$$I = 16\pi$$
.

D.
$$I = 5\pi$$
.

Câu 9: Tính $I= \iint_S 2x dy dz + y dz dx + 3z dx dy$; trong đó S là mặt ngoài của mặt cầu

có phương trình $x^2+y^2+z^2=4$. Khẳng định nào sau đây **đúng**?

A.
$$I = \frac{64\pi}{3}$$
.

B.
$$I = \frac{80\pi}{3}$$
.

C.
$$I = 32\pi$$
.

D.
$$I = 16\pi$$
.

Câu 10: Tính $I=\int\limits_L (x^2-xy)dx+(xy-5y^3)dy$, với L là biên của miền D xác định

bởi các đường $y=x^2,\,y=0,\,x=2.$ Khẳng định nào sau đây **đúng**?

A.
$$I = \frac{36}{5}$$
.

B.
$$I = \frac{12}{5}$$
.

C.
$$I = \frac{1}{4}$$
.

D.
$$I = \frac{3}{11}$$
.

Câu 11: Tính $I = \oint_L (e^{3x} \sin x^2 + 2x^2y) dx + (e^{-4y} + \cos^3 y - 2xy^2) dy$, L là đường tròn

 $x^2+y^2=2y$. Khẳng định nào sau đây **đúng**?

A.
$$I = -3\pi$$
.

B.
$$I = -2\pi$$
.

C.
$$I = 5\pi$$
.

D.
$$I = \frac{3\pi}{5}$$
.

Câu 12: Cho $I=\int\limits_{AB}kxdx+y^3dy$, AB có phương trình $x^2+y^2=1$, hướng từ điểm

A(-1,0) đến điểm B(0,1). Tìm $k\in\mathbb{R}$ để I=1. Khẳng định nào sau đây **đúng**?

A.
$$k = -\frac{3}{2}$$
.

B.
$$k = -\frac{1}{2}$$
.

C.
$$k = 1$$
.

D.
$$k = -\frac{4}{5}$$
.

Câu 13: Tính $I=\int\limits_C (x^3y^2+e^{2x})dx+(\frac{1}{2}x^4y+y^2)dy$, với C là đường cong $y=x^5+1$

hướng từ điểm A(-1,0) đến điểm B(0,1). Khẳng định nào sau đây **đúng**?

A.
$$I = \frac{5}{6} - \frac{1}{2e^2}$$
.

B.
$$I = \frac{3}{7} + \frac{1}{2e^2}$$
.

C.
$$I = \frac{1}{e^2}$$
.

D.
$$I = -\frac{3}{5} + \frac{1}{e^2}$$
.

Câu 14: Tính $I=\iint_S (2-y-z)^2 dy dz$, S là phía trên phần mặt phẳng x+y+z=2,

 $x \geq 0, \ y \geq 0, \ z \geq 0$. Khẳng định nào sau đây **đúng**?

A.
$$I = \frac{4}{3}$$
.

B.
$$I = \frac{1}{2}$$
.

C.
$$I = \frac{1}{3}$$
.

D.
$$I = \frac{2}{5}$$
.

Câu 15: Tính $I=\int_C x^2y^3ds$, C là biên của hình vuông $0\leq x\leq 1,\ 0\leq y\leq 1.$ Khẳng định nào dưới đây **đúng?**

A.
$$I = \frac{7}{12}$$
.

B.
$$I = -\frac{1}{2}$$
.

C.
$$I = \frac{5}{6}$$
.

D.
$$I = \frac{\sqrt{2}}{6}$$
.

Câu 16: Tính $I=\int_S y^3dzdx+x^3dydz+z^3dxdy$, S là phía ngoài của mặt cầu $x^2+y^2+z^2=4$. Khẳng định nào dưới đây **đúng?**

A.
$$I = \frac{384\pi}{5}$$
.

B.
$$I = \frac{12\pi}{5}$$
.

C.
$$I = \frac{\pi}{6}$$
.

D.
$$I = \frac{3\pi}{11}$$
.

Câu 17: Tính thông lượng Φ của trường véc tơ $\overrightarrow{F}(x,y,z)=(x,y,z)$ qua mặt cầu $x^2+y^2+z^2=4x$, hướng phía ngoài. Khẳng định nào dưới đây **đúng**?

- **A.** $I = 32\pi$.
- **B.** $I = 8\pi$.
- **C.** $I = 11\pi$.
- **D.** $I = 9\pi$.

Câu 18: Tính tích phân mặt loại hai $I=\iint_S (x^2+y^2)dxdy, S$ là phía trên phần mặt cầu $x^2+y^2+z^2=1$ trong góc phần tám thứ nhất. Khẳng định nào dưới đây **đúng**?

- **A.** $I = \frac{\pi}{2}$.
- **B.** $I = \pi$.
- **C.** $I = -3\pi$.

D.
$$I = \frac{3\pi}{2}$$
.

Câu 19: Tính $I=\int\limits_{AB}(4xy-y^2)dx+(2x^2-2xy)dy;$ với A(1,3),B(2,4). Khẳng định

nào dưới đây đúng?

- **A.** I = 9.
- **B.** I = -2.
- **C.** I = 11.
- **D.** I = 15.

Câu 20: Tính $I = \int_{OA} (xy^2 - y^3 \sin x) dx + (x^2y + 3y^2 \cos x) dy$; OA là cung có phương

trình $x=\pi y^2$, từ điểm O(0,0) đến điểm A $\pi,1$. Khẳng định nào sau đây **đúng**?

A.
$$I = \frac{\pi^2}{2} - 1$$
.

B.
$$I = \frac{\pi^2}{2} + 1$$
.

C.
$$I = \frac{3\pi^2}{2} - 2$$
.

D.
$$I = \frac{3\pi^2}{2}$$
.

Câu 21: Tính $I=\int_S (x+3z^2)dydz+(x^2z-3y)dzdx+(2+5z)dxdy;~S~$ là phía trên

của phần mặt cầu có phương trình $x^2+y^2+z^2=4; z\geq 0$. Khẳng định nào sau đây **đúng**?

- **A.** $I = 24\pi$.
- **B.** $I = 40\pi$.
- **C.** $I = 5\pi$.
- **D.** $I = 15\pi$.

Câu 22: Tính thông lượng Φ của trường véc tơ $\overrightarrow{F}(x,y,z)=(x^2,xy-x,xz)$ qua phần mặt phẳng $x+y+z=2; x\geq 0, y\geq 0, z\geq 0$, hướng lên phía trên. Khẳng định nào sau đây đúng?

A.
$$I = \frac{4}{3\sqrt{3}}$$
.

B.
$$I = \frac{1}{3\sqrt{3}}$$
.

C.
$$I = \frac{1}{2\sqrt{3}}$$
.

D.
$$I = \frac{5}{\sqrt{3}}$$
.

Câu 23: Tính $I=\iint_S (y^3-x)dydz+3ydzdx+xzdxdy$, S là phía ngoài biên của miền giới hạn bởi các mặt $z=1-y^2$, x=0, x=2 và z=0. Khẳng định nào sau đây **đúng**?

A.
$$I = 8$$
.

B.
$$I = 5$$
.

C.
$$I = 13$$
.

D.
$$I = -7$$
.

Câu 24: Cho $I=\int\limits_{AB}(\sin y+2y^2+2x^3)dx+(x\cos y+y^5)dy,\ AB$ có phương trình

 $y=\sqrt{4-x^2},\,A(2,0)\,,\,B(-2,0).$ Khẳng định nào dưới đây **đúng**?

A.
$$I = -\frac{64}{3}$$
.

B.
$$I = \frac{15}{2}$$
.

C.
$$I = -\frac{21}{8}$$
.

D.
$$I = 17$$
.

Câu 25: Tính thông lượng I của trường véc tơ $\vec{F}(x,y,z)=3x\vec{i}-y\vec{j}+2z^2\vec{k}$ qua phía ngoài mặt cầu $x^2+y^2+z^2=4z$. Khẳng định nào dưới đây **đúng**?

A.
$$I = \frac{320\pi}{3}$$
.

B.
$$I = \frac{28\pi}{3}$$
.

C.
$$I = \frac{11\pi}{5}$$
.

D.
$$I = 17\pi$$
.

CHƯƠNG 4: PHƯƠNG TRÌNH VI PHÂN

Câu 1: Cho phương trình vi phân $2y'y^2 + e^{2x}\sin 2x = 2e^{2x}\cos^2 x$. Khẳng định nào sau đây **đúng?**

A. Nghiệm của phương trình là hàm số y = y(x).

B. Đây là phương trình vi phân tuyến tính.

C. Đây là phương trình vi phân cấp 3.

D. x = 0 là một nghiệm của phương trình.

Câu 2: Cho phương trình vi phân y' + p(x)y = q(x); p(x), q(x) là hai hàm liên tục. Khẳng định nào sau đây **không đúng**?

A. Nghiệm tổng quát của phương trình là

$$y = e^{\int p(x)dx} \left(C + \int q(x) e^{-\int p(x)dx} dx \right) \quad (C: \text{h\`ang s\'o}).$$

B. Đây là phương trình vi phân tuyến tính cấp 1.

C. Phương trình tuyến tính thuần nhất tương ứng có nghiệm tổng quát

$$\stackrel{-}{y}=Ce^{-\int p(x)dx}\quad (C: {\rm h\grave{a}ng\ s\^{o}}).$$

D. Phương trình có một nghiệm riêng là $y^* = e^{-\int p(x)dx} \left[1 + \int q(x)e^{\int p(x)dx}dx\right]$.

Câu 3: Cho phương trình Bernoulli $y' + p(x)y = y^{\alpha}q(x); \alpha \in \mathbb{R}, \alpha \neq 0, \alpha \neq 1$. Khẳng định nào sau đây **đúng**?

A. Đặt $z=y^{1-\alpha} \Rightarrow z'+(1-\alpha)p(x)z=(1-\alpha)q(x)$ là phương trình tuyến tính cấp 1.

B. Đặt $z=y^{\alpha-1} \Rightarrow (1-\alpha)z'+p(x)z=q(x)$ là phương trình tuyến tính cấp 1.

C. Đặt $z = y^{1-\alpha} \Rightarrow (1-\alpha)z' + p(x)z = q(x)$ là phương trình tuyến tính cấp 1.

D. Đặt $z=y^{\alpha-1} \Rightarrow z'+p(x)z=(1-\alpha)q(x)$ là phương trình tuyến tính cấp 1.

Câu 4: Tích phân tổng quát của phương trình $\frac{dy}{dx} = \frac{2x}{y}$ là

A.
$$x^2 - \frac{y^2}{2} = C$$
, C là hằng số tùy ý.

B.
$$y = C\sqrt{x}$$
; C là hằng số tùy ý.

$$\mathbf{C}. \ y = 2x + C, \ C$$
 là hằng số tùy ý.

D.
$$y = \frac{C}{2x}$$
; C là hằng số tùy ý.

Câu 5: Cho phương trình vi phân y'' + 6y' + 5y = 0. Khẳng định nào sau đây về nghiệm tổng quát y(x) của phương trình là **đúng**?

$$\mathbf{A.}\ \overset{-}{y}(x)=C_{1}e^{-x}+C_{2}e^{-5x};C_{1},C_{2}$$
 là các hằng số tùy ý.

$$\mathbf{B.}\ \overset{-}{y}(x)=C_1e^x+C_2e^{5x};C_1,C_2$$
 là các hằng số tùy ý.

$$\mathbf{C.}\ \ \overset{-}{y}(x)=C_{1}e^{-2x}+C_{2}e^{-3x};C_{1},C_{2}$$
 là các hằng số tùy ý.

$$\mathbf{D.}\ \, \overset{-}{y}(x) = C_1 e^{2x} + C_2 e^{3x}; C_1, C_2$$
 là các hằng số tùy ý.

Câu 6: Cho phương trình vi phân 4y''+4y'+y=0. Khẳng định nào sau đây về nghiệm tổng quát y(x) của phương trình là **đúng**?

$$\mathbf{A.}\ \ \overset{-}{y}(x)=(C_1+C_2x)e^{-\frac{x}{2}};C_1,C_2\$$
 là các hằng số tùy ý.

$$\mathbf{B.}\ \overset{-}{y}(x)=C_1x+C_2e^{2x};C_1,C_2\$$
là các hằng số tùy ý.

$$\mathbf{C.}\ \ \overset{-}{y}(x)=(C_1x+C_2)e^{-2x};C_1,C_2$$
 là các hằng số tùy ý.

$$\stackrel{-}{\mathbf{D.}} \stackrel{-}{y}(x) = C_1 + C_2 e^{\frac{x}{2}}; C_1, C_2$$
 là các hằng số tùy ý.

Câu 7: Hàm số $y = x^2 + Ce^x$ (C là hằng số tùy ý) là nghiệm tổng quát của phương trình vi phân nào sau đây?

A.
$$y' - y = 2x - x^2$$
.

B.
$$y' - y = 2x + x^2$$
.

C.
$$y' - y = 2(3 - x)$$
.

D.
$$y' + y = 3(2 - x)$$
.

Câu 8: Phương trình vi phân nào sau đây là phương trình vi phân toàn phần?

A.
$$(e^{2y} - y\sin x)dx + (2xe^{2y} + \cos x)dy = 0$$
.

$$\mathbf{B.}(e^{2y} + y\sin x)dx + (2xe^{2y} + \cos x)dy = 0.$$

$$\mathbf{C} \cdot (e^{2y} + y\sin 2x)dx + (2xe^{2y} + \cos x)dy = 0.$$

$$\mathbf{D.}(e^{2y} - y\sin x)dx + (2xe^{2y} + \cos 2x)dy = 0.$$

Câu 9: Nghiệm tổng quát của phương trình vi phân y' + 5y = 0 là

A.
$$y = Ce^{-5x}$$
, C là hằng số tùy ý.

B.
$$y = C + e^{-5x}$$
, C là hằng số tùy ý.

C.
$$y = Ce^{5x}$$
, C là hằng số tùy ý.

D.
$$y=C_1e^x+C_2e^{-5x},\,C_1,C_2$$
 là các hằng số tùy ý.

Câu 10: Hàm số nào sau đây **không** là nghiệm của phương trình vi phân y'' + y' - 2y = 1 - 2x?

A.
$$y = e^x + 2x$$
.

B.
$$y = 2e^x + x$$
.

C.
$$y = e^x + x$$
.

$$\mathbf{D}. y = e^{-2x} + x.$$

Câu 11: Xét phương trình vi phân $(3x^5 + 2x)y^3 dx + y^2 x^3 dy = 0$ (1).

Khẳng định nào sau đây đúng?

A. (1) là phương trình vi phân đưa được về dạng tách biến.

B. (1) là phương trình vi phân tuyến tính cấp một.

C. (1) là phương trình đẳng cấp.

D. (1) là phương trình vi phân toàn phần.

Câu 12: Nghiệm tổng quát của phương trình vi phân $y' - \frac{5}{x}y = 0$ là

 $\mathbf{A.}\ y = Cx^5$, C là hằng số tùy ý.

B. y = Cx, C là hằng số tùy ý.

C. $y = C + x^5$, C là hằng số tùy ý.

D. $y = \frac{C}{x^5}$, C là hằng số tùy ý.

Câu 13: Tích phân tổng quát của phương trình vi phân $(x^5 + 4xy)dx + (2x^2 + y^4)dy = 0$ là:

$$\mathbf{A.} \ \frac{x^6}{6} + 2x^2y + \frac{y^5}{5} = C \ , \ C \ \text{là hằng số tùy \'y}.$$

B.
$$\frac{x^6}{6} + x^2y + \frac{y^5}{5} = C$$
, C là hằng số tùy ý.

$$\mathbf{C.} \ x^6 + x^2 y + \frac{y^5}{5} = C \ , \ C$$
 là hằng số tùy ý.

D.
$$x^6 + x^2y + y^5 = C$$
, C là hằng số tùy ý.

Câu 14: Tìm nghiệm của phương trình $x^2(y^2+1)dx-(x^3+1)(3+y)dy=0$ thỏa mãn điều kiện y(0)=0. Khẳng định nào sau đây **đúng**?

A. $3 \arctan y + \frac{1}{2} \ln(y^2 + 1) = \frac{1}{3} \ln(x^3 + 1).$

B. $\arctan y + \frac{1}{2}\ln(y^2 + 1) = \frac{1}{3}\ln(x^3 + 1).$

C. $3 \arctan y - \frac{1}{2} \ln(y^2 + 1) = \frac{1}{3} \ln(x^3 + 1)$.

D. $3 \arctan y + \frac{1}{2} \ln(y^2 + 1) = \ln(x^3 + 1).$

Câu 15: Tìm nghiệm tổng quát của phương trình vi phân $y' - \frac{2}{x}y = 1$. Khẳng định nào sau đây **đúng**?

A. $y = Cx^2 - x$, C là hằng số tùy ý.

B. $y = Cx^2 - 2x$, C là hằng số tùy ý.

C. $y = Cx^2 + 3x$, C là hằng số tùy ý.

D. $y = Cx + x^2$, C là hằng số tùy ý.

Câu 16: Tìm nghiệm tổng quát của phương trình y'' - 5y' + 4y = x. Khẳng định nào sau đây **đúng**?

 $\mathbf{A.} \ y = C_1 e^x + C_2 e^{4x} + \frac{1}{4} x + \frac{5}{16}, \ C_1, C_2 \ \text{là các hằng số tùy ý}.$

B. $y = C_1 e^x + C_2 e^{4x} - \frac{1}{4}x + \frac{5}{16}, C_1, C_2$ là các hằng số tùy ý.

 ${\bf C.} \ y = C_1 + C_2 e^{4x} + \frac{1}{4} \, x + \frac{5}{6}, \ C_1, C_2 \ \ {\rm là\ các\ hằng\ số\ tùy\ \acute{y}}.$

D. $y = C_1 e^x + C_2 + \frac{1}{4} x + \frac{5}{6}, \ C_1, C_2$ là các hằng số tùy ý.

Câu 17: Chọn cách đổi biến đúng để giải phương trình vi phân $y' - 3y = x^2y^{-3}$ (1).

A. Đặt $z = y^4$, phương trình (1) trở thành $z' - 12z = 4x^2$.

B. Đặt $z=y^3$, phương trình (1) trở thành $z'-3z=x^2$.

C. Đặt $z=y^4$, phương trình (1) trở thành $z'-3z=4x^2$.

D. Đặt $z=y^4$, phương trình (1) trở thành $z'-z=4x^2$.

Câu 18: Tìm nghiệm tổng quát của phương trình vi phân y'' + y = 2x. Khẳng định nào sau đây **đúng**?

A. $y = C_1 \cos x + C_2 \sin x + 2x$, C_1, C_2 là các hằng số tùy ý.

 $\mathbf{B.} \ y = C_1 \mathrm{cos} 2x + C_2 \sin 2x + 2x, \ C_1, C_2$ là các hằng số tùy ý.

C. $y = C_1 \text{cos} 2x + C_2 \sin 2x + x, \ C_1, C_2$ là các hằng số tùy ý.

D. $y = C_1 \text{cos} x + C_2 \sin x + x, \ C_1, C_2$ là các hằng số tùy ý.

Câu 19: Tìm nghiệm tổng quát của phương trình vi phân $y'' + 4y' + 4y = 2e^{-3x}$. Khẳng định nào sau đây **đúng**?

A. $y = (C_1 + C_2 x)e^{-2x} + 2e^{-3x}, C_1, C_2$ là các hằng số tùy ý.

B. $y=(C_1+C_2x)e^{-2x}+e^{-3x},\ C_1,C_2$ là các hằng số tùy ý.

 ${\bf C.} \ y = (C_1 + C_2 x) e^{-2x} + \frac{1}{2} e^{-3x}, \ C_1, C_2 \ \ {\rm là\ các\ hằng\ số\ tùy\ \acute{y}}.$

D. $y = C_1 + C_2 x e^{-2x} + \frac{1}{2} e^{-3x}, \ C_1, C_2$ là các hằng số tùy ý.

Câu 20: Tích phân tổng quát của phương trình

$$(\sin y + 2y\sin x)dx - (2\cos x - x\cos y)dy = 0$$

1à

A. $x \sin y - 2y \cos x = C$, C là hằng số tùy ý.

B. $x \sin y + 2y \cos x = C$, C là hằng số tùy ý.

C. $2x \sin y - y \cos x = C$, C là hằng số tùy ý.

D. $2x\sin y + y\cos x = C$, C là hằng số tùy ý.

Câu 21: Phương trình vi phân $y'' + 4y' = 2e^{4x}$ có một nghiệm riêng là

A.
$$y = \frac{1}{16}(e^{4x} + 1).$$

B.
$$y = \frac{1}{16}(e^{2x} - 1).$$

C.
$$y = \frac{1}{6}(e^{4x} + 1)$$
.

D.
$$y = \frac{1}{3}(e^{4x} + 1).$$

Câu 22: Tích phân tổng quát của phương trình vi phân $(4+y^2)dx - x \ln^2 x dy = 0$ là

$$\mathbf{A.} \ \frac{1}{\ln x} + \frac{1}{2}\arctan\frac{y}{2} = C, \ \ C \ \ \text{là hằng số tùy ý}.$$

B.
$$\frac{1}{\ln x} + \arctan \frac{y}{2} = C$$
, C là hằng số tùy ý.

C.
$$\ln x + \arctan \frac{y}{2} = C$$
, C là hằng số tùy ý.

D.
$$\ln x - 2\arctan\frac{y}{2} = C$$
, C là hằng số tùy ý.

Câu 23: Tích phân tổng quát của phương trình $(y^3 - 2x)y' = 2y$ là

A.
$$2xy - \frac{y^4}{4} = C$$
, C là hằng số tùy ý.

B. $2xy + \frac{y^4}{4} = C$, C là hằng số tùy ý.

C. $xy + \frac{y^4}{4} = C$, C là hằng số tùy ý.

D. $xy - \frac{y^4}{4} = C$, C là hằng số tùy ý.

Câu 24: Hàm số nào sau đây không phải là nghiệm của phương trình y'' + 16y = 0.

A. $y = \cos 4x \cdot \sin 4x$

 $\mathbf{B.} \ y = \cos 4x$

C. $y = 2\cos 4x + 3\sin 4x$

D. $y = 3\sin 4x$.

Câu 25: Phương trình vi phân $y' = (y + 4x - 2)^2$ có nghiệm tổng quát là

A. $x - \frac{1}{2}\arctan(y + 4x + 2) = C$, C là hằng số tùy ý.

B. $x + \frac{1}{2}\arctan(y + 4x + 2) = C$, C là hằng số tùy ý.

C. $x - \arctan(y + 4x + 2) = C$, C là hằng số tùy ý.

D. $x + \arctan(y + 4x + 2) = C$, C là hằng số tùy ý.

Câu 26: Hàm số nào sau đây là một nghiệm riêng của phương trình vi phân y'' - 4y' + 3y = 3x + 1?

A.
$$y = 2e^{3x} + x + \frac{5}{3}$$
.

B.
$$y = 2e^{3x} + x + 1$$
.

C. $y = e^x - x + 2$.

D.
$$y = e^x - e^{3x} + x + 3$$
.

Câu 27: Với giá trị nào của M và N thì $y=Mx^2+Nx$ là một nghiệm của phương trình vi phân y''+2y'=4x+3.

A.
$$M = 1, N = \frac{1}{2}$$

B.
$$M = 4, N = 3.$$

C.
$$M = 0, N = 1.$$

D.
$$M = 1, N = -2.$$

Câu 28: Tìm nghiệm của phương trình $y'=\frac{1}{\sqrt{5-4x-x^2}}$ thỏa mãn điều kiện

y(1) = 0. Khẳng định nào dưới đây **đúng**?

A.
$$y = \arcsin \frac{x+2}{3} - \frac{\pi}{2}$$
.

B.
$$y = \arcsin \frac{x+2}{3}$$
.

C.
$$y = \frac{1}{3} \arctan \frac{x+2}{3}$$
.

D.
$$y = \frac{1}{3}\arctan\frac{x+2}{3} - 1$$
.

Câu 29: Cho biết $y_1=x$ là một nghiệm riêng của phương trình vi phân $x^2y''+xy'-y=0\,.$ Nghiệm tổng quát của phương trình này là

A.
$$y=C_1x+\frac{C_2}{x},~~C_1,C_2$$
 là các hằng số tùy ý.

B.
$$y=(C_1+C_2x)e^{-x},\ C_1,C_2$$
 là các hằng số tùy ý.

$$\mathbf{C.}~y=C_{1}x+C_{2}x^{2},~C_{1},C_{2}$$
 là các hằng số tùy ý.

- $\label{eq:D.y} \textbf{D.} \ y = C_1 x + \frac{C_2}{r^2}, \quad C_1, C_2 \ \text{là các hằng số tùy ý}.$
- **Câu 30**: Tích phân tổng quát của phương trình vi phân $\left(\frac{x}{y^2}+3\right)dx-\frac{x^2}{y^3}dy=0$ là
- **A.** $\frac{x^2}{2y^2} + 3x = C$, C là hằng số tùy ý.
- **B.** $\frac{x^2}{2y} + 3x = C$, C là hằng số tùy ý.
- C. $\frac{x^2}{y} + 2x = C$, C là hằng số tùy ý.
- **D.** $\frac{x^2}{3y} + 2x = C$, C là hằng số tùy ý.
- **Câu 31**: Nghiệm tổng quát của phương trình vi phân $y'' 4y = \sin x$ là
- ${\bf A.} \,\, y = C_1 e^{2x} + C_2 e^{-2x} \frac{1}{5} \sin x, \quad C_1, C_2 \,\, {\rm là \,\, các \,\, hằng \,\, số \,\, tùy \,\, \'y}.$
- **B.** $y = C_1 e^{2x} + C_2 e^{-2x} + \frac{1}{5} \cos x$, C_1, C_2 là các hằng số tùy ý.
- $\mathbf{C.} \ y = C_1 \cos 2x + C_2 \sin 2x \frac{1}{5} \sin x, \quad C_1, C_2 \ \text{là các hằng số tùy ý}.$
- $\mathbf{D.} \ y = C_1 \cos 2x + C_2 \sin 2x + \frac{1}{5} \cos x, \quad C_1, C_2 \ \text{là các hằng số tùy ý}.$
- **Câu 32**: Nghiệm tổng quát của phương trình vi phân $y'' + y = x^2$ là
- $\mathbf{A.} \ y = C_1 \cos x + C_2 \sin x + x^2 2, \quad C_1, C_2 \ \text{là các hằng số tùy ý}.$
- **B.** $y=C_1e^x+C_2e^{-x}+x^2-2$, C_1,C_2 là các hằng số tùy ý.
- $\mathbf{C.}~y=C_{1}\cos x+C_{2}\sin x+x^{2},~C_{1},C_{2}$ là các hằng số tùy ý.

D. $y=C_1e^x+C_2e^{-x}+x^2+2, \ \ C_1,C_2$ là các hằng số tùy ý.

Câu 33: Tích phân tổng quát của phương trình $2xdx + (x^2 + y + 1)dy = 0$ là

A. $x^2e^y + ye^y = C$, C là hằng số tùy ý.

B. $x^2 e^y + e^y = C$, C là hằng số tùy ý.

C. $x^2e^y + 3ye^y = C$, C là hằng số tùy ý.

D. $x^2e^y - ye^y = C$, C là hằng số tùy ý.

Câu 34: Tích phân tổng quát của phương trình $xyy' + x^2 - y^2 = 0$ là

A.
$$\frac{y^2}{2x^2} + \ln |x| = C$$
, C là hằng số tùy ý.

B.
$$\frac{y^2}{2x^2} + 2 \ln |x| = C$$
, C là hằng số tùy ý.

C.
$$\frac{y^2}{2x^2} - 2 \ln |x| = C$$
, C là hằng số tùy ý.

D.
$$\frac{y^2}{2x^2} - \ln |x| = C$$
, C là hằng số tùy ý.

Câu 35: Tìm nghiệm tổng quát của phương trình $y'' - 3y' = -18x + e^{3x}$. Khẳng định nào sau đây **đúng**?

$$\mathbf{A.} \ y = C_1 + C_2 e^{2x} + \frac{1}{2} x e^{2x} - x^2 - \frac{1}{2} x, \quad C_1, C_2 \ \text{là các hằng số tùy ý}.$$

B.
$$y = C_1 + C_2 e^{2x} + \frac{1}{2} x e^{2x} + x^2$$
, C_1, C_2 là các hằng số tùy ý.

$$\mathbf{C.} \ y = C_1 + C_2 e^{2x} + \frac{1}{2} x e^{2x} + x^2 - \frac{1}{2} x, \quad C_1, C_2 \ \text{là các hằng số tùy ý}.$$

 $\mathbf{D.} \ y = C_1 + C_2 e^{2x} + \frac{1}{2} x e^{2x} - x^2 + \frac{1}{2} x, \quad C_1, C_2 \ \text{là các hằng số tùy ý}.$

Câu 36: Nghiệm tổng quát của phương trình vi phân $y'' + 4y = \cos x + 1$ là

 $\mathbf{A.} \ y = C_1 \cos 2x + C_2 \sin 2x + \frac{1}{3} \cos x + \frac{1}{4}, \quad C_1, C_2 \ \text{là các hằng số tùy \'y}.$

B. $y = C_1 e^{2x} + C_2 e^{-2x} + \frac{1}{3} \cos x + \frac{1}{4}, \ C_1, C_2$ là các hằng số tùy ý.

 $\mathbf{C.} \ y = C_1 \cos 2x + C_2 \sin 2x + \cos x + \frac{1}{4}, \quad C_1, C_2 \ \text{là các hằng số tùy ý}.$

 $\mathbf{D.} \ y = C_1 \cos 2x + C_2 \sin 2x - \frac{1}{3} \cos x + \frac{1}{4}, \quad C_1, C_2 \ \text{là các hằng số tùy \'y}.$

Câu 37: Tích phân tổng quát của phương trình $y' - y^3 = -\frac{y}{x+2}$ là

A. $\frac{1}{y^2} = C(x+2)^2 + 2(x+2)$, C là hằng số tùy ý.

B. $\frac{1}{y^2} = C(x+2)^2 - 2(x+2)$, C là hằng số tùy ý.

C. $\frac{1}{y^2} = C(x+2)^2 + (x+2)$, C là hằng số tùy ý.

D. $\frac{1}{y^2} = C(x+2)^2 - (x+2)$, C là hằng số tùy ý.