HEC 2000 II

Ce problème se compose de cinq parties : il étudie deux suites de variables aléatoires discrètes et une simulation informatique. Si le candidat ne parvient pas à établir un résultat demandé, il l'indiquera clairement, et il pourra pour la suite, admettre ce résultat.

Dans tout le problème, n désigne un entier naturel non nul.

On considère une urne U_n contenant n boules numérotées de 1 à n. On tire une boule au hasard dans U_n . On note k le numéro de cette boule. Si k est égal à 1, on arrête les tirages. Si k est supérieur ou égal à 2, on enlève de l'urne U_n les boules numérotées de k à n (il reste donc les boules numérotées de 1 à k-1), et on effectue à nouveau un tirage dans l'urne. On répète ces tirages nécessaires pour l'obtention de la boule numéro 1. On note Y_n la variable aléatoire égale au nombre de tirages nécessaires pour l'obtention de la boule numéro 1. On note Y_n la variable aléatoire égale à la somme des numéros des boules tirées. On note $\mathbb{E}(X_n)$ et $\mathbb{V}(X_n)$ (respectivement $\mathbb{E}(Y_n)$ et $\mathbb{V}(Y_n)$) l'espérance et la variance de X_n (respectivement Y_n).

Partie I

1. On pose :
$$h_n = \sum_{k=1}^n \frac{1}{k} = 1 + \frac{1}{2} + \dots + \frac{1}{n}$$

a) Montrer, pour tout entier naturel k non nul, les inégalités :

$$\frac{1}{k+1} \leqslant \ln(k+1) - \ln k \leqslant \frac{1}{k}$$

où ln désigne le logarithme népérien.

- b) En déduire les inégalités : $\ln(n+1) \leqslant h_n \leqslant 1 + \ln n$
- c) Déterminer un équivalent simple de h_n quand n tend vers l'infini.

2. On pose :
$$k_n = \sum_{k=1}^n \frac{1}{k^2} = 1 + \frac{1}{2^2} + \dots + \frac{1}{n^2}$$

a) Montrer, pour tout entier k supérieur ou égal à 2, l'inégalité

$$\frac{1}{k^2} \leqslant \frac{1}{k-1} - \frac{1}{k}$$

- b) En déduire la majoration $k_n \leq 2$
- c) Déterminer un équivalent simple de $h_n k_n$ quand n tend vers l'infini.

Partie II : Étude de la variable aléatoire X_n

On note I_n la variable aléatoire égale au numéro de la première boule tirée dans l'urne U_n .

- 1. a) Quelle est la loi de I_n ?
 - **b)** Quelle est la loi conditionnelle de X_n sachant $[I_n = 1]$?
 - c) Si n est supérieur ou égal à 2, montrer :

$$\forall j \in \mathbb{N}^*, \ \forall k \in \left\{1, 2, ..., n\right\}, \quad \mathbb{P}_{\left[I_n = k\right]}\left(\left[X_n = j\right]\right) = \mathbb{P}\left(\left[X_{k-1} = j - 1\right]\right)$$

2. a) Quelle est la loi de X_1 ?

- $\boldsymbol{b})$ Quel est l'événement $[X_2=1]$? Donner la loi de X_2 , son espérance et sa variance.
- c) Calculer $\mathbb{P}_{[I_3=1]}([X_3=2])$, $\mathbb{P}_{[I_3=2]}([X_3=2])$, $\mathbb{P}_{[I_3=3]}([X_3=2])$. Déterminer la loi de X_3 , son espérance et sa variance.
- 3. a) Montrer que X_n prend ses valeurs dans $\{1, 2, ..., n\}$.
 - **b)** Déterminer $\mathbb{P}([X_n=1])$ et $\mathbb{P}([X_n=2])$
 - c) Si n est supérieur ou égal à 2, montrer la relation :

$$\forall j \geqslant 2, \quad \mathbb{P}([X_n = j]) = \frac{1}{n} \sum_{k=1}^{n-1} \mathbb{P}([X_k = j - 1])$$

d) Si n est supérieur ou égal à 3 et j supérieur ou égal à 2, calculer :

$$n \mathbb{P}([X_n = j]) - (n-1)\mathbb{P}([X_{n-1} = j])$$

En déduire, si n est un entier supérieur ou égal à 2 :

$$\forall j \geqslant 1, \quad \mathbb{P}([X_n = j]) = \frac{n-1}{n} \mathbb{P}([X_{n-1} = j]) + \frac{1}{n} \mathbb{P}([X_{n-1} = j - 1])$$

4. a) Si n est supérieur ou égal à 2, montrer, en utilisant la question 3.d). :

$$\mathbb{E}(X_n) = \mathbb{E}(X_{n-1}) + \frac{1}{n}$$

- b) En déduire $\mathbb{E}(X_n)$ et donner un équivalent simple de $\mathbb{E}(X_n)$ quand n tend vers l'infini.
- 5. a) Si n est supérieur ou égal à 2, calculer $\mathbb{E}(X_n^2)$ en fonction de $\mathbb{E}(X_{n-1}^2)$ et de $\mathbb{E}(X_{n-1})$.
 - b) En déduire : $\mathbb{V}(X_n) = h_n k_n$ (en reprenant les notations introduites en Partie I).
 - c) Donner un équivalent de $\mathbb{V}(X_n)$ quand n tend vers l'infini.
- 6. Soit $(T_i)_{i\geqslant 1}$ une suite de variables aléatoires indépendantes telle que, pour tout i entier naturel non nul, T_i suit la loi de Bernoulli de paramètre $\frac{1}{i}$. On pose :

$$S_n = \sum_{i=1}^n T_i = T_1 + \dots + T_n$$

- a) Vérifier que X_1 et T_1 ont même loi.
- b) Si n est supérieur ou égal à 2, montrer, pour tout entier j non nul :

$$\mathbb{P}([S_n = j]) = \frac{1}{n} \mathbb{P}([S_{n-1} = j - 1]) + \frac{n-1}{n} \mathbb{P}([S_{n-1} = j])$$

En déduire que X_n et S_n ont même loi.

c) Retrouver ainsi $\mathbb{E}(X_n)$ et $\mathbb{V}(X_n)$.

Partie III : Étude de la variable aléatoire Y_n .

- 1. Donner la loi de Y_n .
 - a) Quelles sont les valeurs prises par Y_2 ?
 - **b)** Déterminer la loi de Y_2 .
- 2. a) Si n est supérieur ou égal à 2, montrer, pour tout entier j non nul et tout entier k supérieur ou égal à 2

$$\mathbb{P}_{[I_n=k]}\left([Y_n=j]\right) = \mathbb{P}\left([Y_{k-1}=j-k]\right)$$

b) Si n est supérieur ou égal à 2, en déduire, pour tout entier j supérieur ou égal à 1

$$\mathbb{P}([Y_n = j]) = \frac{n-1}{n} \mathbb{P}([Y_{n-1} = j]) + \frac{1}{n} \mathbb{P}([Y_{n-1} = j - n])$$

c) Si n est supérieur ou égal à 2, montrer $\mathbb{E}(Y_n) = \mathbb{E}(Y_{n-1}) + 1$ Que vaut $\mathbb{E}(Y_n)$ pour tout entier n supérieur ou égal à 1?

Partie IV: Simulation informatique.

Dans le langage informatique **Scilab**, la fonction **grand(1,1,'uin',1,n)** renvoie un entier aléatoire compris entre 1 et n. On donne la procédure suivante

```
1    n = input('Entrer un entier naturel : ')
2    a = 1
3    b = 1
4    alea = grand(1,1,'uin',1,n)
5    while alea > 1
6         a = a + 1
7         b = b + alea
8         alea = grand(1,1,'uin',1,(alea - 1))
9    end
10    disp(a)
11    disp(b)
```

Que fait ce programme? Que représentent a et b?

Partie V

On considère l'urne U_n contenant n boules numérotées entre 1 et n. A partir de l'urne U_n on effectue la suite de tirages décrite dans l'entête du problème. Pour i entier de $\{1, ..., n\}$, on définit $Z_i^{(n)}$ la variable aléatoire égal à 1 si, lors d'un quelconque de ces tirages, on a obtenu la boule numéro i, égale à 0 sinon.

- 1. Quelle est la loi de $Z_n^{(n)}$? Que dire de la variable $Z_1^{(n)}$?
- 2. a) Si n est supérieur ou égal à 2, et i un entier de $\{1, ..., n-1\}$, montrer la relation

$$\mathbb{P}\left(\left[Z_i^{(n)} = 1\right]\right) = \frac{1}{n} + \sum_{k=i+1}^{n} \frac{1}{n} \mathbb{P}\left(\left[Z_i^{(k-1)} = 1\right]\right)$$

- b) Montrer par récurrence que, pour tout n de \mathbb{N}^* et pour tout i de $\{1,...,n\}$, $Z_i^{(n)}$ suit la loi de Bernoulli de paramètre $\frac{1}{i}$.
- 3. Que vaut $\sum_{i=1}^{n} Z_i^{(n)}$? Retrouver ainsi $\mathbb{E}(X_n)$.
- 4. Retrouver $\mathbb{E}(Y_n)$.