5. Construct a truth table for each of the following compound statements and hence find simpler propositions to which each is equivalent.

(a)
$$p \vee F$$
; (b) $p \wedge T$.

6. Let p, q, r be the following propositions concerning an integer n.

$$p: n = 20;$$
 $q: n \text{ is even};$ $r: n \text{ is positive.}$

Express each of the following conditional statements symbolically, using the symbol →.

- (a) If n = 20, then n is positive.
- (b) n is even if n = 20.
- (c) n = 20 only if n is even.
- 7. Let q and r be the propositions defined in the previous exercise. Complete the following table by giving the truth value of each of the statements $q, r, q \to r, r \to q$ and $q \leftrightarrow r$ corresponding to each value of n.

1	n	q	r	$q \rightarrow r$	r o q	$q \leftrightarrow r$
1	-8					
İ	-3					
١	10					
	17			l		

- 8. Use truth tables to prove that $\neg p \leftrightarrow \neg q$ is logically equivalent to $p \leftrightarrow q$.
- 9. Write the contrapositive of each of the following statements.
 - (a) If n = 12, then n is divisible by 3.
 - (b) If n = 5, then n is positive.
 - (c) If the quadrilateral is a square, then its four sides are equal.
- 10. The basis for logical argument is that given propositions p, q, r such that p implies q and q implies r, then we can deduce that p implies r. The validity of this argument depends upon the fact that the statement $[(p \to q) \land (q \to r)] \to (p \to r)$ is always true, that is, it is a tautology.

Construct a truth table with columns for p,q,r and $p \to q,q \to r, (p \to q) \land (q \to r), p \to r, [(p \to q) \land (q \to r)] \to (p \to r)$. Hence prove that

$$[(p \to q) \land (q \to r)] \to (p \to r)$$

is indeed a tautology.

11. The following logic network accepts inputs p and q, which may each independently have the value 0 or 1.

- (a) Copy the network and label each of the gates appropriately with one of the words "NOT", "AND" or "OR". Label the diagram also with a symbolic expression for the output from each gate.
- (b) Construct a logic table to show the value of the output corresponding to each combination of values (0 or 1) for the inputs p and q.
- (c) Find a simpler expression that is logically equivalent to the final output.