Exercises Category Theory and Coalgebra Lecture 5

The items labelled with (*) are optional. If you have any questions, email mark. szeles@ru.nl. The deadline is 04 March 23:59, CET. Solutions may only be submitted in Brightspace. In case you upload hand-written notes, please use a scanner app (instead of photos). Explain your answers! Think carefully about all the properties that you need to prove in each exercise.

- 1. If $\mathbb C$ has coproducts, show that we can extend the assignment $(X,Y)\mapsto X+Y$ to a functor $(+):\mathbb C\times\mathbb C\to\mathbb C$:
 - (a) Define explicitly the functorial action on morphisms $(f,g)\mapsto f+g$
 - (b) Verify carefully the functor axioms (preservations of identities and composition) using the categorical structure of $\mathbb{C} \times \mathbb{C}$
- 2. Let $F: \mathbb{C} \to \mathbb{C}$ be a functor.
 - (a) Show that if \mathbb{C} has products, then so does Alg(F).
 - (b) Show that if \mathbb{C} has coproducts, then so does CoAlg(F).
- 3. Let $F : \mathbf{Sets} \to \mathbf{Sets}$ be the functor F(X) = X + 1.
 - (a) Write out the functorial action of F(f) on morphisms $f: X \to Y$
 - (b) The natural numbers $\mathbb{N} = \{0, 1, \ldots\}$ have the structure of an F-algebra by means of the map $\alpha : F(\mathbb{N}) \to \mathbb{N}$ where $\alpha(n) = n+1$ for $n \in \mathbb{N}$, and $\alpha(\star) = 0$. Show that (\mathbb{N}, α) is an initial F-algebra.
 - (c) By Lambek's Lemma, α must be an isomorphism (in **Sets**). In this exercise, we will see that the converse of Lambek's lemma does not hold in general: Consider the map $\beta: F(\mathbb{N}) \to \mathbb{N}$ defined by

$$\beta(*) = 0,$$
 $\beta(n) = \begin{cases} n+2, & \text{if } n \text{ even} \\ n, & \text{if } n \text{ odd} \end{cases}$

Show that β is an isomorphism, but the *F*-algebra (\mathbb{N}, β) is *not* initial.

4. Show that the powerset functor $\mathcal{P}:\mathbf{Sets}\to\mathbf{Sets}$ cannot admit initial algebras or final coalgebras.