Automazione

Leonardo Ganzaroli

Indice

	Intr	roduzione	1
1	Pro	cessi industriali	3
	1.1	Sistemi di produzione (discreti)	4
		1.1.1 Linee di trasferta	5
		1.1.2 Flow Shop	7
		1.1.3 Altri tipi	8
	1.2		9
	1.2	1.2.1 Livelli	10
		1.2.2 Reti di comunicazione	10
		1.2.2 Reti di comunicazione	10
2	Att	uazione e controllo del moto	12
3	Sist	emi di controllo Real-time	13
	3.1	Scheduling	14
		-	15
	3.2		16
	0.2	impionionoziono	10
4	Ling	guaggi per PLC	17
	4.1		17
		4.1.1 Strutture di collegamento	18
		iiii strattara di conegamento	
5	DE	DS	20
	5.1	Reti di Petri	21
		5.1.1 Analisi matriciale	25
		5.1.2 Modellazione con reti	26

Introduzione

Questi appunti sono derivanti principalmente dalle dispense del corso di Auto-mazione che ho seguito durante la laurea Triennale di informatica all'università "La Sapienza".

N.B Alcune parti del programma non sono presenti.

1 Processi industriali

Un sistema di produzione automatizzato è composto da:

• Processo produttivo

Una combinazione di operazioni e trasformazioni fisico/chimiche che permettono di ottenere il prodotto finale

• Sistema di controllo

Dispositivo che scambia informazioni e azioni con il processo per cambiarne il comportamento, lo fa con:

- Sensori
- Trasduttori
- Attuatori

Un impianto industriale è composto da:

- Macchinari
- Strutture
- Edifici
- Componenti

Definizione Il manufacturing è l'insieme dei processi produttivi applicati alle materie prime per ottenere il prodotto finale.

Un processo produttivo è composto da una sequenza di operazioni elementari raggruppabili come:

- Di lavorazione
- Di assemblaggio
- Di trasporto e stoccaggio
- Di test
- Di coordinamento e controllo

Un'altra classificazione riguarda la gestione dell'I/O:

I sistemi di controllo invece possono essere:

a lotti

• Logici

Lavorano con variabili logiche che assumono valori in un insieme numerabile (solitamente finito).

a lotti

• Diretti

Lavorano direttamente con i segnali.

1.1 Sistemi di produzione (discreti)

I principali tipi sono:

- Linee di trasferta
- Flow Shop
- Job Shop
- Celle di produzione
- FMS

1.1.1 Linee di trasferta

- Insieme di macchine/stazioni connesse in linea da un sistema di trasporto
- Sequenza prefissata di lavorazioni
- Flusso continuo di singoli pezzi
- Linee sincrone o asincrone

La legge di Little si può applicare a linee deterministiche e mono-prodotto:

$$WIP = Throughput \times Tempo di attraversamento$$

(In regime stazionario)

Per dimensionare opportunamente una linea di trasferta si segue questo procedimento:

- Data un linea con N stazioni, ognuna con il suo carico C_i (tempo necessario)
- 1. Il tasso di produzione è dato dalla stazione con il carico massimo
- 2. Il carico massimo teorico (CMT) è dato dal prodotto richiesto nel periodo
- 3. Si crea un grafo delle precedenze delle lavorazioni
- 4. Si trova un'assegnazione ammissibile delle lavorazioni alle stazioni tale che:
 - I vincoli di precedenza del grafo siano rispettati
 - Il numero di stazioni venga minimizzato
 - $\forall i \in [1, N] \ C_i \leq CMT$

Per fare ciò si usa l'euristica RPWT:

- (a) Per ogni lavorazione si crea l'insieme S_i delle lavorazioni ad essa successive
- (b) Per ogni lavorazione si calcola il peso $PW_i = T_i + \sum_{k \in S_i} T_k$
- (c) Si ordina per peso decrescente
- (d) Fino ad esaurimento si assegna la lavorazione con peso maggiore alla prima stazione disponibile

Esempio:

Una linea di assemblaggio di computer richiede 14 lavorazioni e si vogliono 300 computer ogni 7 ore.

lavorazione	Α	В	С	D	Е	F	G	Н	1	J	K	L	M	N
tempo	55	30	50	42	20	25	45	60	36	42	30	40	36	40
S_i	S _i BCD H G N I N			. N	H I N	I N	N	L M N	N	N	N	-		
PW_i (sec)	506	314	334	326	349	354	329	284	76	158	70	80	76	40

Figura 1: Costi e grafo

- $CMT = (\frac{300}{7*3600})^{-1} = 84 [s/pezzo]$
- $T_{TOT} = 551 \ s$
- Macchine minime = $\frac{551}{84} \approx 7$

lavorazione	Α	F	Е	С	G	D	В	Н	J	L	ı	M	K	N
tempo	55	25	20	50	45	42	30	60	42	40	36	36	30	40
PW _i	506	354	349	334	329	326	314	284	158	80	76	76	70	40
stazione	1	1	2	2	3	4	4	5	6	6	7	7	8	8

Figura 2: Assegnamenti

Sommando il tempo mancante ad ogni stazione per raggiungere il CMT e dividendolo per il numero di stazioni si ottiene lo sbilanciamento medio:

$$\frac{111}{8} = 13.875 \ s = 16.5\%$$

1.1.2 Flow Shop

- Stazioni/macchine disposte in linea
- Più prodotti ma stesse lavorazioni
- Una macchina esegue una lavorazione

In questo caso è importante minimizzare il tempo totale di completamento, nel caso di 2 macchine si segue la regola di Johnson per ogni macchina:

- $\bullet \ t_{i1}, t_{i2}$ sono i tempi di lavorazione del prodotto i sulle macchine 1 e 2
- 1. Si crea l'insieme 1 con i jobs $t_{i1} \leq t_{i2}$
- 2. Si crea l'insieme 2 con i jobs $t_{i1} > t_{i2}$
- 3. Si eseguono quelli nel primo in ordine crescente
- 4. Si eseguono quelli nel secondo in ordine decrescente

Esempio:

$\operatorname{Job}\backslash\operatorname{Prodotti}$	A	В	C	D	\mathbf{E}	T_{TOT}
t_{i1}	5	3	8	10	7	33
t_{i2}	2	6	4	7	12	31

- $S_1 = \{B, E\}$
- $S_2 = \{A, C, D\}$
- $\bullet \;$ Sequenza B,E,D,C,A

Figura 3: Diagrammi di Gantt delle macchine

- $T_{MAX} = 35$
- $t_{idle,1} = 0$
- $t_{idle,2} = 4$

Si può generalizzare con 3 macchine se $max(t_{i2}) \leq min(t_{i1}) \vee max(t_{i2}) \leq min(t_{i3})$, si creano 2 macchine equivalenti con durate $\tau_{i1} = t_{i1} + t_{i2}$, $\tau_{i2} = t_{i2} + t_{i3}$ e si procede come visto, alla fine la sequenza ottenuta si applicherà con le macchine originali.

1.1.3 Altri tipi

Job Shop:

- Prodotti diversi con lavorazioni diverse
- Divisione in reparti
- Routing tra i reparti

Produzione per celle:

- Famiglie di prodotti con lavorazioni abbastanza omogenee
- Raggruppamento di gruppi di macchine in celle
- Flussi più semplici

FSM:

- Simile al precedente
- Uso di trasporto automatico
- Uso di calcolatori per il controllo del processo

quantità di prodotto annua

1.2 CIM

Definizione Il sistema di supporto alla produzione è l'insieme di attività di gestione delle informazioni riguardanti la produzione.

Definizione L'Enterprise Resource Planning è un insieme di applicazioni informatiche volte all'automazione di attività amministrative, logistiche,

Definizione Il Decision Support System è un software che fornisce delle funzionalità atte a migliorare il processo decisionale.

Definizione Il Computer Aided Design è un insieme di software che assistono i progettisti nelle attività di progettazione.

Definizione Il Computer Aided Engineering è un software per la verifica delle funzionalità del progetto.

Definizione Il Computer Aided Manufacturing è un software che permette di automatizzare le prove di fattibilità del processo produttivo.

Definizione Il Computer Aided Process Planning è un software che permette di automatizzare la pianificazione della produzione.

Definizione Il Computer Integrated Manufacturing è un modello teorico di un sistema produttivo che integra i processi produttivi con i sistemi di automazione e i sistemi informativi gestionali.

1.2.1 Livelli

Figura 4: Gerarchia CIM

• Campo

Contiene i componenti hardware che eseguono le attività produttive ed il loro controllo.

• Macchina

Raggruppa gli elementi del livello precedente in gruppi atti a svolgere una certa funzionalità.

• Cella

Raggruppa gli elementi del livello precedente in celle.

• Stabilimento

Racchiude tutte le celle e le linee produttive facenti parte di un impianto industriale.

• Azienda

Qui avvengono i processi gestionali di supporto ai livelli inferiori.

1.2.2 Reti di comunicazione

Ad ogni livello della piramide :

- Si acquisiscono informazioni
- Si elaborano strategie
- Si attuano azioni correttive

Diventa quindi di vitale importanza il sistema di comunicazione.

• Supervisione

- Informazioni gestionali
- Client e Server standard
- Non Real-time
- Ethernet

• Controllo/Campo

- Client e Server non standard
- Dati piccoli ma frequenti
- Vincoli Real-time
- Serve determinismo
- Serve robustezza

Usare il modello ISO-OSI risulterebbe troppo oneroso, quindi si usa il modello Fieldbus che presenta solamente i livelli:

- 1. Fisico
- 2. Data Link
- 3. Applicazione

2 Attuazione e controllo del moto

Gli azionamenti elettrici sono dispositivi che convertono in modo controllato l'energia elettrica in meccanica, sono formati da 3 componenti:

- 1. Amplificatore/Convertitore di potenza
- 2. Motore elettrico
- 3. Controllore

I motori elettrici hanno 2 schemi realizzativi:

In particolare quelli a corrente continua si possono rappresentare con il seguente modello:

- Modello elettrico $L_a \frac{d \ i_a}{d \ t} = V_a R_a i_a k_m \omega$
- Modello meccanico $J \frac{d \ \omega}{d \ t} = k_m i_a b \omega \tau_r, \ \frac{d \ \theta}{d \ t} = \omega$

3 Sistemi di controllo Real-time

Un sistema di controllo può definirsi Real-time sse:

- Può elaborare le informazioni in modo da dare risposte logicamente corrette
- Può elaborare le informazioni in modo da dare risposte temporalmente corrette

Definizione Il Quality of Service esprime la capacità del sistema di rispettare entrambi i vincoli di correttezza logica e temporale.

Definizione Un sistema è Hard Real-time se rispetta **SEMPRE** i vincoli di correttezza.

Definizione Un task è un'unita atomica di lavoro.

Figura 5: Task A_i

Parametri caratteristici:

- a_i , istante di attivazione
- s_i , istante di prima esecuzione
- \bullet e_i , istante di fine esecuzione
- d_i , deadline assoluta

- $\bullet \ C_i = e_i s_i$
- $\bullet \ D_i = d_i a_i$
- $R_i = e_i a_i$
- $L_i = e_i d_i$

3.1 Scheduling

Definizione Un insieme di task è schedulabile se esiste un algoritmo di scheduling che permetta di rispettare tutti i vincoli.

Classificazione degli algoritmi di scheduling:

- Guaranteed se rispetta sempre i vincoli temporali, Best effort altrimenti
- **Preemptive** se può interrompere l'esecuzione di un task in favore di un altro con priorità maggiore, **Non preemptive** altrimenti
- Offline se lo scheduling è noto a priori, Online altrimenti
- Statico se il dispatching dipende da parametri immutabili, Dinamico altrimenti

Nel caso dell'automazione ha senso considerare dei task attivati periodicamente, si parla quindi di istanze dei task.

Definizione Il tempo di attivazione $T_i(k)$ dell'istanza k di A_i è l'intervallo di tempo tra l'attivazione dell'istanza k e l'attivazione di k+1.

Definizione Un task è detto periodico se il tempo di attivazione resta costante.

Definizione Il fattore di utilizzazione è pari a:

$$\sum_{i=1}^{n} \frac{C_i}{T_i}$$

Se è maggiore di 1 non esiste uno scheduling.

Esempio:

- $A_1, T_1 = 8 \ t.u., C_1 = 2 \ t.u.$
- $A_2,T_2=12 \ t.u., C_2=8 \ t.u.$
- Fattore = $\frac{2}{8} + \frac{8}{12} \approx 0.917,$ potenzialmente schedulabile

Definizione Il limite superiore minimo del fattore di utilizzazione di un algoritmo di scheduling è il minimo tra i fattori calcolati per ogni possibile insieme di task periodici.

3.1.1 Algoritmi

In presenza di soli task periodici:

• RMPO

Assegna ad ogni task una priorità inversamente proporzionale al periodo di attivazione, schedulabilità garantita fino ad un fattore di 69.3%.

• EDF

Assegna ad ogni task una priorità inversamente proporzionale alla sua deadline assoluta, in caso di parità si guarda il numero d'istanza minore. Schedulabilità possibile fino ad un fattore ≤ 1 .

• DMPO

Assegna la priorità in modo inversamente proporzionale a D_i , schedulabilità possibile solo con fattore $\leq n(2^{0.5} - 1)$.

• TS

Divisione del tempo in *slices*, assegnazione arbitraria.

In caso siano presenti anche task aperiodici:

• Servizio in background

I task aperiodici vengono eseguiti negli istanti liberi.

• Server

Si inserisce un task periodico detto Server, i task aperiodici vengono eseguiti quando esso è in esecuzione.

• Polling Server

Variante del precedente in cui il tempo di computazione dell'istanza dipende dai task in attesa.

• Deferrable Server

Ulteriore variante in cui il tempo di computazione è sempre al massimo.

3.2 Implementazione

Oggigiorno qualsiasi sistema di controllo è implementato via software, per disaccopiarlo dall'hardware si usa uno strato di astrazione detto HAL, esso si occupa dei task non real-time in modo best effort. Quelli real-time vengono gestiti tramite lo scheduler ed è presente un timer per il controllo delle deadline.

Definizione Un s.o. è detto Event Driven se può schedulare un task nello stesso istante che viene attivato.

Un approccio puramente Event Driven non è realizzabile se l'unità di elaborazione è digitale, in questo caso si fa una rilevazione periodica. A livello implementativo questo metodo è migliore.

In base al tipo di caratteristiche richieste i sistemi di controllo possono essere implementati in diversi modi:

- SCADA
- DCS
- Sistemi embedded
- PLC e SoftPLC

4 Linguaggi per PLC

Secondo normativa esistono 5 linguaggi per i PLC:

- Grafici
- 1. **SFC** (quello approfondito)
- 2. **FBD**
- 3. **LD**
- Testuali
- 1. **ST**
- 2. **IL**

4.1 SFC

Figura 6: Diagramma SFC

Il passaggio da uno stato al successivo può avvenire sse:

- La condizione è verificata
- Lo stato precedente è attivo

Questo fa diventare lo stato successivo attivo e interrompe quello precedente.

Ogni stato ha 2 variabili associate:

- 1. Marker, indica se lo stato è attivo (nome-stato.X)
- 2. **Timer**, indica da quanto tempo è attivo (nome-stato.T)

All'avvio del PLC tutti i timer vengono azzerati e solamente i marker degli stati iniziali sono posti ad 1.

Ogni stato ha associata un'azione, essa ha la forma:

- A_m , identificatore dell'azione Semplici:
 - -N, azione ripetuta ciclicamente finché lo stato è attivo
 - -P, azione eseguita una volta finché lo stato è attivo
 - S, ripete l'azione finché non incontra R in uno stato successivo
 - -B
 - -L, come N o fino al tempo fornito
 - -D, come N ma dopo un tempo di delay

Composti:

- -SD
- -DS
- -SL
- Q_m , qualificatore che definisce il tipo d'azione
- $\bullet~V_m,$ variabile che indica se l'azione è finita

4.1.1 Strutture di collegamento

Nel caso ci siano sequenze diverse in base a diverse condizioni si usa la divergenza:

Questa struttura deve soddisfare il vincolo della mutua esclusione per funzionare correttamente, ad ogni condizione viene aggiunto implicitamente il NAND di tutte le altre condizioni:

$$cond(n+1) = cond(n+1) * \prod_{j=1}^{k-1} ! cond(n+i-j) \text{ con } i \in [1, k-1]$$

Quando si usa una divergenza bisogna sempre ritornare ad un'unica sequenza, per fare ciò si usa la convergenza:

Se invece c'è necessità di svolgere sequenze di azioni parallele si usa il parallelismo:

L'equivalente della convergenza in questo caso è la sincronizzazione:

N.B. questa struttura "scatta" quando tutti gli stati a monte sono attivi e si verifica la condizione, in caso di necessità si possono inserire stati di attesa.

In presenza di risorse condivise si può usare un semaforo (uno stato) per garantire la mutua esclusione:

Si può anche usare per sincronizzare le sequenze parallele:

Generalmente viene impostato come stato stato iniziale per indicare che all'avvio la risorsa è disponibile.

5 DEDS

Definizione Un sistema è un insieme di componenti cooperanti ed interagenti che realizzano una funzionalità complessiva, si distinguono:

- Guidati dal tempo
- Guidati dagli eventi

Definizione Un sistema dinamico ad eventi discreti evolve in base agli eventi ed ha uno spazio degli stati discreto.

Per rappresentare questi sistemi si usano diversi modelli formali:

- Operazionali
 - Automi
 - Reti di Petri
 - SFC
- Dichiarativi
 - Basati su equazioni
 - Basati su regole

5.1 Reti di Petri

Definizione Un grafo di Petri è un grafo orientato e bipartito (P,T,A,w) in cui:

- P è l'insieme dei posti (nodi)
- \bullet T è l'insieme delle transizioni
- $A \subseteq (T \times P) \cup (P \times T)$ (archi)
- $w: A \to \mathbf{N} \setminus \{0\}$

Per esprimere la topologia si usano 2 matrici $|P| \times |T|$:

- $1.\ I$ contiene i pesi degli archi posti-transizioni
- 2. O contiene i pesi degli archi transizioni-posti

Figura 7: Esempio

Definizione Una rete di Petri è un grafo di Petri con una funzione di marcatura che associa ad ogni posto un numero di token $x: P \to \mathbf{N}$.

Per rappresentare lo stato della rete si usa il vettore di marcatura con |P| elementi, nel caso visto sopra potrebbe essere:

$$\begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \subseteq \mathbf{N^3}$$

Una transizione t_j è abilitata se:

$$\forall p_i \in I(t_j) \ x(p_i) \ge w(p_i, t_j)$$

Se è abilitata allora può "scattare", questo comporta un cambiamento dello stato rappresentabile con la funzione $\mathbf{N}^{|P|} \times T \to \mathbf{N}^{|P|}$.

Figura 8: Esempio

Definizione La matrice di incidenza è C=O-I, rappresenta l'andamento della rete.

Definizione Una sequenza di scatti S è una sequenza di transizioni tali che:

- La prima è abilitata nella marcatura corrente
- Ogni scatto porta ad una marcatura in cui è abilitata la transizione successiva

Definizione Il vettore delle occorrenze di una sequenza è un vettore |T| in cui l'elemento k è pari al numero di occorrenze della transizione t_k in S.

L'evoluzione della rete data una sequenza S con vettore delle occorrenze s è x'=x+Cs.

Proprietà strutturali delle reti:

- Una marcatura x è raggiungibile dalla marcatura y se esiste una sequenza di scatti che porta dalla seconda alla prima
- Una marcatura è detta di base se è raggiungibile da tutte le altre marcature, se è anche iniziale la rete è reversibile
- $\bullet\,$ Una transizione t è viva se per ogni marcatura ne esiste un'altra raggiungibile da essa che abilita t
- La rete è viva se tutte le sue transizioni sono vive
- La rete è bloccante se esiste una marcatura che non abilita alcuna transizione
- Un posto è k-limitato se in ogni marcatura raggiunge un numero di token al massimo pari a k, illimitato altrimenti
- \bullet La rete è limitata se ogni suo posto è k-limitato con k finito, se k=1 è anche binaria
- La rete è illimitata se esiste un posto illimitato
- La parte conservativa della rete è un sottoinsieme di posti in cui ogni possibile evoluzione mantiene una combinazione lineare di token

Tipi di transizioni:

• In conflitto

Uno o più posti d'ingresso in comune ma con token non sufficienti a farle scattare tutte.

• In concorrenza con successiva sincronizzazione

No posti in comune, tutte abilitate e seguite da posti d'uscita che sono d'ingresso per un'altra transizione comune.

• In alternativa

In concorrenza tra loro ma in conflitto con altre.

Figura 9: In ordine

Classi di reti:

• SM

- Ogni transizione ha un solo posto d'ingresso ed un solo posto d'uscita
- Numero di token fisso
- Viva sse esiste almeno un token ed il grafo è fortemente connesso
- Presenta solo conflitti

• MG

- Ogni transizione ha un solo posto d'ingresso ed un solo posto d'uscita
- Viva sse ogni ciclo ha almeno un posto marcato
- No conflitti

• FC

- Concorrenza e conflitti presenti ma non si influenzano tra loro
- Per ogni arco p-t o il posto è l'unico d'ingresso ad essa o essa è l'unica d'uscita a quel posto

Se 2 o più posti hanno una o più transizioni in comune si distinguono:

– Estesa

Hanno tutte le transizioni d'uscita in comune.

- Asimmetrica

Tutte le transizioni d'uscita di uno lo sono anche dell'altro.

Alcune estensioni delle reti sono:

• Reti temporizzate

Aggiunta di una struttura di clock ad ogni transizione, scatto dopo la raggiunta del relativo tempo.

• Reti colorate

Uso di diversi token, ognuno con il suo colore.

• Reti con inibitori

Aggiunta di archi speciali verso le transizioni, se il posto con l'arco ha almeno un token la transizione puntata non può scattare.

5.1.1 Analisi matriciale

(Con R(PN) si intende l'insieme delle marcature raggiungibili dalla marcatura iniziale x_0)

Definizione Un vettore colonna γ è detto P-invariante se:

$$\forall x \in R(PN) \ \gamma^T * x = \text{costante} \ \text{con } \gamma \in \mathbf{N}^{|P|} \land \gamma \neq 0$$

Si cercano tra le soluzioni del sistema lineare:

$$C^T \gamma = 0$$
 (o $\gamma^T C = 0^T$)

Definizione Il supporto di γ è l'insieme dei posti in esso non nulli.

Si distinguono:

- Supporto minimo se il supporto non contiene quello di nessun'altro P-invariante
- Canonico se il MCD dei suoi elementi non nulli è 1

Figura 10: Esempio

Definizione Un vettore delle occorrenze η è detto T-invariante se:

$$x_0 + C\eta = x_0$$

Si cercano tra le soluzioni del sistema lineare:

$$C\eta = 0$$

Figura 11: Esempio

In breve:

- Un P-invariante rappresenta un insieme di posti in cui il numero di token resta costante
- Un T-invariante indica quante volte ogni transizione deve scattare per tornare alla marcatura iniziale partendo dalla stessa, bisogna associargli una sequenza di scatti

5.1.2 Modellazione con reti

2 metodi:

- 1. Fisico
 - Suddivisione del sistema in sottoinsiemi elementari
 - $\bullet\,$ Modellazione degli stessi con reti elementari
 - Composizione tra le reti ottenute

2. Funzionale

- Individuazione delle fasi logiche di funzionamento del sistema
- Identificazione delle risorse fisiche che le eseguono
- Allocazione delle fasi sulle risorse

Figura 12: Esempio di modellazione

Gli archi all'indietro rappresentano la disponibilità delle macchine e il numero di posti liberi sul nastro.

Si può implementare una struttura di controllo nelle reti che permetta di modificare l'andamento in base alla marcatura:

• Con posti di controllo opportunamente marcati

Nell'esempio precedente si vogliono sul nastro 2 pezzi di M1 seguiti da uno di M2:

• Tramite invarianti e monitor

Si assume che il comportamento desiderato sia descrivibile con la disequazione:

$$h^T x \le k \quad \text{con } h \in \mathbf{Z}^{|P|}, \ k \in \mathbf{N}$$

2 casi:

1. Transizioni tutte controllabili Si aggiunge un posto monitor p_i^m tale che:

$$C_i^m = -h_i^T C, \ x_0(p_i^m) = k - h_i^T x_0$$

 C_i^m viene aggiunto come riga a C.

2. Presenza di transizioni non controllabili

Si usa il metodo precedente ma bisogna verificare che nessun monitor vada a disabilitare una delle transizioni non controllabili:

$$x(p_i^m) \ge w(p_i^m, t_j)$$
 per ogni t_j non controllabile

Una condizione sufficiente è che nessuna delle transizioni non controllabili abbia dei monitor in ingresso.

si vuole evitare di fare arrivare altri pezzi ai buffer di ingresso dell'impianto quando il nastro di uscita è già saturo (con tre pezzi): si vuole quindi imporre il vincolo $x(p_1) + x(p_6) + x(p_{12}) \le 3$ **PN originale:** 15 posti, 11 transizioni \Rightarrow C:(15×11); **PN supervisore** con 1 posto monitor

Figura 13: Esempio primo caso

se le transizioni t_4 e t_8 sono **non controllabili**, la precedente soluzione non è realizzabile e va modificata; scegliamo che il numero totale di pezzi e semilavorati presenti nell'impianto fino al nastro sia limitato dalla sua capacità: $x(p_1)+x(p_2)+x(p_4)+x(p_6)+x(p_7)+x(p_9)+x(p_{12}) \le 3$

Figura 14: Esempio secondo caso