Inteligencia Artificial II Curso 2004–2005

Tema 4: Aprendizaje de conceptos

José A. Alonso Jiménez Francisco Jesús Martín Mateos José Luis Ruiz Reina

Dpto. de Ciencias de la Computación e Inteligencia Artificial
UNIVERSIDAD DE SEVILLA

Contenido

- Introducción al aprendizaje automático
- Aprendizaje de conceptos
 - Notación y terminología
 - Aprendizaje como búsqueda
 - Orden de generalidad
 - Algoritmo Find-S
 - Espacio de versiones
 - Eliminación de candidatos
 - Clasificación de nuevas instancias
 - Sesgo inductivo

Aprendizaje

- Definiciones de aprendizaje:
 - Cualquier cambio en un sistema que le permita realizar la misma tarea de manera m'as eficiente la próxima vez $(H.\ Simon)$
 - Modificar la representación del mundo que se está percibiendo (R. Michalski)
 - Realizar cambios útiles en nuestras mentes (M. Minsky)
- Aprendizaje automático: construir programas que mejoran automáticamente con la experiencia
- Ejemplos de tareas:
 - Construcción de bases de conocimiento a partir de la experiencia

 $\mathbf{C}_{\mathbf{C}}\mathbf{I}_{\mathbf{A}}$

- Clasificación y diagnóstico
- Minería de datos, descubrir estructuras desconocidas en grandes grupos de datos
- Resolución de problemas, planificación y acción

Agente con aprendizaje (Russel y Norvig, 1998)

- Sistema de aprendizaje: realiza cambios al sistema en función del rendimiento
- Agente: actúa
- Crítico: evalúa el rendimiento
- Generador de Problemas: sugiere nuevas experiencias que "entrenan"

Tipos de aprendizaje y paradigmas

- Tipos de aprendizaje
 - Supervisado
 - No supervisado
 - Con refuerzo
- Paradigmas
 - Aprendizaje por memorización
 - Clasificación (Clustering)
 - Aprendizaje inductivo
 - Aprendizaje por analogía
 - Descubrimiento
 - Algoritmos genéticos, <u>redes neuronales</u>

Aprendizaje de conceptos (ejemplo)

- Ejemplos de días en los que hacer (o no hacer) deportes acuáticos:
 - Representación como una lista de pares atributo-valor

Cielo	Temperatura	Humedad	Viento	Agua	Previsión	Hacer_Deporte
Soleado	Templada	Normal	Fuerte	Templada	Igual	Sí
Soleado	Templada	Alta	Fuerte	Templada	Igual	Sí
Lluvia	Fría	Alta	Fuerte	Templada	Cambio	No
Soleado	Templada	Alta	Fuerte	Fría	Cambio	Sí

• Objetivo: aprender el concepto "Días en los que se hace deporte"

 $\mathbf{C}_{\mathbf{C}}\mathbf{I}_{\mathbf{A}}$

Notación y terminología (I)

- ullet Conjunto X de instancias
 - Ejemplos de instancias:

```
< Sol, Templada, Normal, Fuerte, Templada, Igual > 
< Nublado, Fria, Alta, Fuerte, Templada, Cambio > 
< Lluvia, Alta, Baja, Sin\_viento, Caliente, Igual >
```

- Un concepto es un subconjunto de X, usualmente dado por su función característica $c: X \to \{1,0\}$
 - Instancias positivas y negativas
 - Ejemplo de concepto: si x es un día en el que se hace deporte, c(x)=1. En caso contrario c(x)=0
- Concepto (o función) objetivo: el que se desea aprender
 - En principio, no se conoce
 - Sólo se conoce el valor de c para algunas instancias (ejemplos)

Notación y terminología (II)

• Conjunto de entrenamiento D:

- ejemplos de instancias x para las que se conoce el valor de la función objetivo c(x) (representado por $\langle x, c(x) \rangle$)
- En la tabla anterior, 3 ejemplos positivos y 1 negativo

• Espacio de hipótesis H:

- Conjunto de funciones $h:X\to\{1,0\}$ que en el proceso de aprendizaje se pueden considerar como posibles definiciones del concepto objetivo
- Usualmente, en H no están todos los posibles conceptos. Sesgo inductivo

Objetivo del aprendizaje:

- Encontrar $h \in H$ tal que para cualquier ejemplo $< x, c(x) > \in D$, se tenga h(x) = c(x) (hipótesis consistente con los ejemplos)
- Ejemplo de hipótesis aprendida: < Soleado, Templada, ?, Fuerte, ?, ? >

 $\mathbf{C}_{\mathbf{C}}\mathbf{I}_{\mathbf{A}}$

• Hipótesis del Aprendizaje Inductivo

Ejemplo de espacio de hipótesis

- Un posible espacio de hipótesis:
 - Conjunción de restricciones sobre los valores de los atributos
 - Ejemplo de hipótesis: "Los días para hacer deporte son los de cielo soleado, viento fuerte y con previsión de que el tiempo siga igual"
- Representación compacta:
 - \bullet usar ? para representar un valor cualquiera
ó \emptyset para representar que ningún valor es posible
 - Ejemplos:

```
< Soleado, Templada, ?, Fuerte, ?, ?>, <?, Fria, Alta, ?, ?, ?>, <\emptyset, \emptyset, \emptyset, \emptyset, \emptyset >
```

• Atención: los algoritmos y definiciones de este tema *NO* son específicos de este tipo de espacio de hipótesis

Aprendizaje como búsqueda

- Aprendizaje de conceptos:
 - búsqueda en el espacio de hipótesis de una o varias hipótesis consistentes con los ejemplos del conjunto de entrenamiento.
- ¿Aprendizaje por enumeración?
- Problema: espacio de hipótesis exponencialmente grande

 $\mathbf{C}_{\mathbf{C}}\mathbf{I}_{\mathbf{A}}$

- Solución: estructurar el espacio de hipótesis
 - Permite explorar el espacio de hipótesis de manera exhaustiva sin necesidad de enumerarlo

El orden de generalidad

- Una instancia $x \in X$ satisface la hipótesis h si h(x) = 1
- Dadas $h_1, h_2 \in H$, h_1 es más general que h_2 (y h_2 es más específica que h_1) si cualquier instancia que satisface h_2 satisface h_1 .

 $\mathbf{C}_{\mathbf{C}}\mathbf{I}_{\mathbf{A}}$

- Notación: $h_1 \ge_g h_2$. Generalidad estricta: $h_1 >_g h_2$
- Ejemplo:

El algoritmo Find-S

• Pseudocódigo:

- 1. Inicialmente, h es la hipótesis más específica de H.
- 2. Por cada ejemplo positivo x del conjunto de entrenamiento:
 - Si h(x)=1, no hacer nada.
 - En otro caso, reemplazar h por la menor generalización h' de h, tal que h'(x)=1
- 3. Devolver h

Find-S (ejemplo)

• Paso 0:

$$h0 = \langle \emptyset, \emptyset, \emptyset, \emptyset, \emptyset \rangle$$

• Paso 1:

• Paso 2:

• Paso 3:

• Paso 4:

Comentarios sobre Find-S

- Propiedades de Find-S sobre espacios de hipótesis como conjunción de atributos:
 - Find-S encuentra una hipótesis de máxima especificidad que es consistente con todos los ejemplos positivos
 - Los ejemplos negativos se ignoran
- ¿Consistente con los ejemplos negativos?
 - Sí, si el concepto objetivo está en H (expresividad del espacio de hipótesis) y los ejemplos de entrenamiento son correctos (ausencia de ruido)
 - Ejemplo problemático

```
Positivos: < Sol, Templ, Fuerte >, < Lluvia, Fria, Fuerte > Negativos: < Luvia, Templ, Fuerte >
```

• ¿Por qué devolver sólo una hipótesis de las consistentes?

Espacio de versiones

• Espacio de versiones: $VS_{H,D} \equiv \{h \in H | h \text{ es consistente con } D\}$

• Ejemplo:

Cielo	Temperatura	Humedad	Viento	Agua	Previsión	Hacer_Deporte
Soleado	Templada	Normal	Fuerte	Templada	Igual	Sí
Soleado	Templada	Alta	Fuerte	Templada	Igual	Sí
Lluvia	Fría	Alta	Fuerte	Templada	Cambio	No
Soleado	Templada	Alta	Fuerte	Fría	Cambio	Sí

Espacio de versiones:

Una representación compacta del espacio de versiones

Definiciones

- $h \in H$ es una hipótesis de máxima generalidad (resp. de máxima especificidad) de H si no existe $h' \in H$ tal que $h' >_g h$ (resp. $h >_g h'$)
- Cota general G de un espacio de hipótesis respecto de D: elementos de máxima generalidad del espacio de versiones
- Cota específica S de un espacio de hipótesis respecto de D: elementos de máxima especificidad del espacio de versiones
- Teorema de representación del espacio de versiones
 - El espacio de versiones es el conjunto de hipótesis que están entre la cota general y la cota específica

 $\mathbf{C}_{\mathbf{C}}\mathbf{I}_{\mathsf{A}}$

• $VS_{H,D} = \{ h \in H | (\exists s \in S) (\exists g \in G) (g \geq_q h \geq_q s) \}$

Ejemplo de espacio de versiones

Algoritmo de eliminación de candidatos

- 1. Sea G el conjunto de elementos de máxima generalidad de H.
- 2. Sea S el conjunto de elementos de máxima especificidad de H.
- 3. Para cada ejemplo d del conjunto de entrenamiento D:
 - 3.1 Si d es un ejemplo positivo, entonces:
 - 3.1.1 Eliminar de G cualquier hipótesis inconsistente con d.
 - 3.1.2 Para cada hipótesis s de S inconsistente con d:
 - * Eliminar s de S.
 - * Incluir en S todas las generalizaciones minimales h de s, tales que h es consistente con d y existe una hipótesis en G más general que h.
 - * Eliminar de S aquellas hipótesis tales que exista en S otra hipótesis más específica.
 - 3.2 Si d es un ejemplo negativo, entonces:
 - 3.2.1 Eliminar de S cualquier hipótesis inconsistente con d.
 - 3.2.2 Para cada hipótesis g de G inconsistente con d:
 - * Eliminar g de G.
 - * Incluir en G todas las especializaciones minimales h de g, tales que h es consistente con d y existe una hipótesis en S más específica que h.
 - * Eliminar de G aquellas hipótesis tales que exista en G otra hipótesis más general.

Eliminación de candidatos (ejemplo)

- **Paso 0:** S0 = $\{<\emptyset,\emptyset,\emptyset,\emptyset,\emptyset>\}$, G0 = $\{<?,?,?,?,?,?,\}$
- Paso 1:
 - Ejemplo positivo: < Sol, Templ, Normal, Fuerte, Templ, Igual >
 - Nada que eliminar de GO
 - Generalización minimal de S0: < Sol, Templ, Normal, Fuerte, Templ, Igual > Esta generalización es más específica que la hipótesis de G0
 - Luego: S1 = {< Sol, Templ, Normal, Fuerte, Templ, Igual >} G1 = {<?,?,?,?,?,? >}

• Paso 2:

- Ejemplo positivo: < Sol, Templ, Alta, Fuerte, Templ, Igual >
- Nada que eliminar de G1
- Generalización minimal de S1: < Sol, Templ, ?, Fuerte, Templ, Igual > Esta generalización es más específica que la hipótesis de G1
- Luego:

```
S2 = \{ < Sol, Templ, ?, Fuerte, Templ, Igual > \}

G2 = \{ <?, ?, ?, ?, ?, ? > \}
```

Eliminación de candidatos (ejemplo)

• Paso 3:

- Ejemplo negativo: $\langle Lluvia, Fria, Alta, Fuerte, Templada, Cambio \rangle$
- Nada que eliminar de S2.
- Especializaciones minimales de G2 que son más generales que la hipótesis de S2: < Sol, ?, ?, ?, ?, ? >, <?, Templ, ?, ?, ?, ? > y <?, ?, ?, ?, ?, ? | Iqual >.
- Luego:

```
\label{eq:sol} \begin{array}{ll} \mathtt{S3} &= \{ < Sol, Templ, ?, Fuerte, Templ, Igual > \} \\ \mathtt{G3} &= \{ < Sol, ?, ?, ?, ?, ?, >, < ?, Templ, ?, ?, ?, >, < ?, ?, ?, ?, ?, ?, Igual > \} \\ \end{array}
```

• Paso 4:

- Ejemplo positivo: < Sol, Templ, Alta, Fuerte, Fria, Cambio >
- Eliminamos de G3 la hipótesis <?,?,?,?,?,Igual>
- Generalización minimal de S3: < Sol, Templ, ?, Fuerte, ?, ?> Esta generalización es más específica que hipótesis de G3.
- Luego:

```
S4 = \{ \langle Sol, Templ, ?, Fuerte, ?, ? \rangle \}
G4 = \{ \langle Sol, ?, ?, ?, ?, ?, . \rangle, . \langle ?, Templ, ?, ?, ?, ?, . \rangle \}
```

Algoritmo de eliminación de candidatos (propiedades)

- Sean S y G obtenidos por eliminación de candidatos
 - \bullet Si S y G son no vacíos, resultan ser respectivamente la cota específica y cota general del espacio de versiones (respecto del conjunto de entrenamiento)
 - Si $S = G = \{h\}$, entonces h es la única hipótesis de H consistente con todos los ejemplos
 - Si $S = G = \emptyset$, no existe $h \in H$ consistente con los ejemplos
- Convergencia hacia el concepto objetivo, siempre que:

 $\mathbf{C}_{\mathbf{C}}\mathbf{I}_{\mathsf{A}}$

- Conjunto de entrenamiento suficientemente grande
- Ejemplos sin errores (ausencia de *ruido*)
- ullet El concepto objetivo está en H

Elección de ejemplos

- Supongamos posible elegir el siguiente ejemplo
 - Estrategia óptima: requerir un ejemplo satisfecho por la mitad del espacio de versiones
- ullet Ejemplo: < Soleado, Templado, Normal, Ligero, Templado, Igual >
- Convergencia hacia el concepto objetivo (siempre que sea posible)
 - Con $log_2|VS|$ nuevos ejemplos

Clasificación de nuevas instancias

- Usamos S y G obtenidos por eliminación de candidatos para clasificar nuevas instancias:
 - Si es consistente con todo S, positivo
 - Si no es consistente con ninguno de G, negativo
 - En otro caso, voto mayoritario o simplemente no se clasifica

• Ejemplos:

```
 < Sol, Templ, Normal, Fuerte, Fria, Cambio > & -> Si \\ < Lluvia, Fria, Normal, Suave, Templ, Igual > & -> No \\ < Sol, Fria, Normal, Fuerte, Templ, Igual > & -> Si (por mayoría) \\ < Sol, Templ, Normal, Suave, Templ, Igual > & -> ? \\ \end{aligned}
```

 $\mathbf{C}_{\mathbf{C}}\mathbf{I}_{\mathbf{A}}$

Sesgo inductivo

- Siempre que $H \neq 2^X$, se tiene un sesgo en el tipo de conceptos que se pueden aprender
- Sesgo inductivo: cualquier medio que el sistema de aprendizaje pueda usar para tener preferencia entre dos hipótesis consistentes con los ejemplos
- Tipos de sesgo inductivo:
 - Sesgo en el lenguaje: el lenguaje disponible para expresar las hipótesis define un espacio de hipótesis que excluye conceptos (por ejemplo, conjunción de restricciones)
 - Sesgo preferencial: el algoritmo de búsqueda en el espacio de hipótesis incorpora implícitamente alguna preferencia de algunas hipótesis sobre otras

 $\mathbf{C}_{\mathbf{C}}\mathbf{I}_{\mathsf{A}}$

Sesgo inductivo y aprendizaje

- Inutilidad del aprendizaje insesgado
 - Espacio de versiones en un espacio de hipótesis insesgado
 - Eliminación de candidatos obtendría $S = \{(p_1 \lor \ldots \lor p_n)\}, G = \{\neg (n_1 \lor \ldots \lor n_m)\}$
 - Una instancia nueva sería clasificada como positiva por la mitad del espacio de versiones y negativa por la otra mitad
- Un sistema de aprendizaje que no asume conocimiento *a priori* sobre el concepto objetivo no puede clasificar nuevas instancias

 $\mathbf{C}_{\mathbf{C}}\mathbf{I}_{\mathsf{A}}$

• Concimiento a priori en eliminación de candidatos: el concepto objetivo está en el espacio de hipótesis

Bibliografía

- Mitchell, T.M. Machine Learning (McGraw-Hill, 1997)
 - Cap. 1: "Introduction"
 - Cap. 2: "Concept Learning and the General-to-Specific Ordering"
- Russell, S. y Norvig, P. *Inteligencia artificial (Un enfoque moderno)* (Prentice–Hall Hispanoamericana, 1996)
 - Cap. 18: "Aprendiendo de observaciones"