James Munkres - Topology Carter Hinsley's notes Last edited May 8, 2022

29 Local Compactness

Definition. A space X is locally compact at x if there is some compact subspace C of X that contains a neighborhood of x. If X is locally compact at each of its points, X is said to be locally compact.

We ask: "Under what conditions is a space homeomorphic with a subspace of a compact Hausdorff space?"

Theorem 29.1. Let X be a space. X is locally compact Hausdorff iff there exists a space Y satisfying the following conditions:

- X is a subspace of Y.
- Y X comprises a single point.
- Y is a compact Hausdorff space.

Definition. If Y is a compact Hausdorff space and X is a proper subspace of Y dense in Y, then Y is said to be a *compactification* of X. If Y - X equals a single point, then Y is called the *one-point* compactification of X.

Theorem 29.2. Let X be a Hausdorff space. Then X is locally compact iff given $x \in X$ and a neighborhood U of x, there is a neighborhood V of x such that \overline{V} is compact and $\overline{V} \subset U$.

Corollary 29.3. Any open or closed subspace of a locally compact Hausdorff space is itself locally compact.

Corollary 29.4. A space X is homeomorphic to an open subspace of a compact Hausdorff space iff X is locally compact Hausdorff.

Exercises

(1) Show that the rationals \mathbb{Q} are not locally compact.

Proof. It will be sufficient to show that \mathbb{Q} is not locally compact at 0; i.e., that there is no compact subspace of \mathbb{Q} containing a neighborhood of 0.

Suppose for the sake of contradiction that there existed a compact subspace C of $\mathbb Q$ and an open neighborhood U of 0 in C. Then there would be some open neighborhood $(-\varepsilon,\varepsilon)\cap\mathbb Q\subseteq U$ of 0. Note that the inclusion $\mathbb Q\stackrel{\iota}{\hookrightarrow}\mathbb R$ is continuous; this map preserves compactness. Hence $\iota(C)$ is compact in $\mathbb R$. As $\mathbb R$ is Hausdorff, $\iota(C)$ is closed in $\mathbb R$. Thus $[-\varepsilon,\varepsilon]=\overline{(-\varepsilon,\varepsilon)}\cap\mathbb Q\subseteq\iota(C)$. Since $[-\varepsilon,\varepsilon]$ is uncountable while $\iota(C)$ is countable, we obtain a contradiction. Hence $\mathbb Q$ is not locally compact. \square

Supplementary Exercises: Nets

Nets are generalizations of sequences that characterize limit points, continuous functions, and compact sets not only in metric topologies, but in *all* topologies.

Definition. A directed set J is a poset wherein for each pair $\alpha, \beta \in J$, there exists an element $\gamma \in J$ such that $\alpha \leq \gamma$ and $\beta \leq \gamma$.

- (1) Show that the following are directed sets:
- Any simply ordered set, under the relation \leq .

Proof. We take \leq to be \leq . Let S be a simply (totally) ordered set with elements x, y. Then, as S is simply ordered, either $x \leq y$ or $y \leq x$. By reflexivity, $x \leq x$ and $y \leq y$ in either case, so y or x serves as γ respectively. \square

• The collection of all subsets of a set S, partially ordered by inclusion.

Proof. We are speaking of the power set $\mathcal{P}(S)$. Let $U, V \in \mathcal{P}(S)$. Then there are inclusions $U \hookrightarrow \mathcal{P}(S)$ and $V \hookrightarrow \mathcal{P}(S)$. As the identity map $\mathcal{P}(S) \hookrightarrow \mathcal{P}(S)$ is an inclusion, $\mathcal{P}(S)$ serves as γ .

• A collection $\mathscr A$ of subsets of S that is closed under finite intersections, partially ordered by reverse inclusion.

Proof. We use \leq to denote \leftarrow . Let $U, V \in \mathcal{A}$. As $U \cap V \in \mathcal{A}$, we have $U \leq U \cap V, V \leq U \cap V$. \square

 \bullet The collection of all closed subsets of a space X, partially ordered by inclusion.

Proof. X itself is closed; hence for all U, V closed subsets of $X, U \leq X$ and $V \leq X$. \square

(2) A subset K of J is said to be *cofinal* in J if for each $\alpha \in J$, there exists $\beta \in K$ such that $\alpha \leq \beta$. Show that if J is a directed set and K is cofinal in J, then K is a directed set.

Proof. We must show that for every pair of elements $x, y \in K$, there exists an element $z \in K$ such that $x \leq z$ and $y \leq z$. Because $K \subseteq J$, we know that $x, y \in J$. Consequently, there exists $\beta \in J$ such that $x \leq \beta$ and $y \leq \beta$. As K is cofinal in J, there exists $\gamma \in K$ such that $\beta \leq \gamma$. By transitivity, we have $x \leq \gamma$ and $y \leq \gamma$; that is, K is a directed set. \square

(3) Let X be a topological space. A net in X is a function f from a directed set J into X. If $\alpha \in J$, we usually denote $f(\alpha)$ by x_{α} . We denote the net f itself by the symbol $(x_{\alpha})_{\alpha \in J}$, or merely by (x_{α}) if the index set is understood.

The net (x_{α}) is said to *converge* to the point $x \in X$ (written $x_{\alpha} \to x$) if for each neighborhood U of x, there exists $\alpha \in J$ such that $\alpha \leq \beta \implies x_{\beta} \in U$. Show that these definitions reduce to familiar ones when $J = \mathbb{Z}^+$

Proof. Of course, \mathbb{Z}^+ is a directed set (Z^+) is a totally ordered set). We say that the sequence $(x_n)_{n\in\mathbb{Z}^+}$ converges to the point $x\in X$ if for each neighborhood U of x, there exists $M\in\mathbb{Z}^+$ such that $M\leq n\Longrightarrow x_n\in U$. This is the usual definition, compatible with the net definition. \square

(4) Suppose that $(x_{\alpha})_{\alpha \in J} \to x \in X$ and $(y_{\alpha})_{\alpha \in J} \to y \in Y$. Show that $(x_{\alpha} \times y_{\alpha}) \to x \times y \in X \times Y$. **Proof.** As $(x_{\alpha}) \to x$ and $(y_{\alpha}) \to y$, we may say that for any neighborhoods U and V of x and y respectively, there exist $\alpha, \beta \in J$ such that $\alpha \leq \gamma \implies x_{\gamma} \in U$ and $\beta \leq \delta \implies x_{\delta} \in V$.

We would like to show that for any neighborhood $U \times V$ of $x \times y$, there's a $\eta \in J$ such that whenever $\eta \preceq \alpha$, we have $x_{\alpha} \times y_{\alpha} \in U \times V$. Because U and V are themselves open neighborhoods of x and y respectively, we may use the $\alpha, \beta \in J$ from the convergence of the corresponding nets. As J is a directed set, there exists $\phi \in J$ such that $\alpha \preceq \phi$ and $\beta \preceq \phi$. By transitivity of the relation \preceq , we have $\phi \preceq \psi \implies x_{\psi} \in U, y_{\psi} \in V$. It follows that $\phi \preceq \psi \implies x_{\psi} \times y_{\psi} \in U \times V$. Hence $(x_{\alpha} \times y_{\alpha}) \to x \times y \in X \times Y$. \square

(5) Show that if X is Hausdorff, a net in X converges to at most one point.

Proof. Suppose a net $(x_{\alpha})_{{\alpha}\in J}$ in X converges to two points $x, x'\in X$. We must show that x=x'. Convergence means that we may take any neighborhood U of x or U' of x' and find some $\alpha\in J$ such that $\alpha\preceq\beta$ implies $x_{\beta}\in U$ and $x_{\beta}\in U'$. Because X is Hausdorff, if $x\neq x'$ we may take disjoint neighborhoods U,U' and obtain a contradiction. Hence x=x'. \square

(6) **Theorem.** Let $A \in X$. Then $x \in \overline{A}$ iff there is a net of points of A converging to x.

Proof. The case wherein $x \in A$ is trivial, so we consider only when $x \notin A$.

- (\Longrightarrow) Assuming $x\in\overline{A}$, every deleted neighborhood of x contains another point y of A. We would like to construct a net $(x_{\alpha})_{\alpha\in J}$ so that we can select any neighborhood U of x in X and find $\alpha\in J$ so that $\alpha\preceq\beta\Longrightarrow x_{\beta}\in U\cap X$. As A is a subspace of X, we may take any two neighborhoods U,V of x in X and we will have $x\in U\cap V$; it follows that the set of "neighborhoods" of x in A endowed with the relation of reverse inclusion form a directed set, denoted J. We construct a net $f:J\to A$ by letting f(U)=y be that element of which we are guaranteed existence by x's status as a limit point of A. The convergence of this net to x is automatic.
- (\Leftarrow) Let $(x_{\alpha})_{x\in J}$ be a net of points of A converging to x; that is, for any neighborhood $U\subseteq X$ of x there exists some $\alpha\in J$ such that $\alpha\preceq\beta\implies x_{\beta}\in U$. As $\alpha\preceq\alpha$ so that $x_{\alpha}\in A$, we see that every neighborhood of x contains at least one point of A. Hence $x\in\overline{A}$. \square
- (7) **Theorem.** Let $f: X \to Y$. Then f is continuous iff for every convergent net $(x_{\alpha}) \to x$ in X, the net $(f(x_{\alpha}))$ converges to f(x).
- (8) Let $f: J \to X$ be a net in X; let $f(\alpha) = x_{\alpha}$. If K is a directed set and $g: K \to J$ is a function such that

- $i \leq j \implies g(i) \leq g(j)$,
- g(K) is cofinal in J,

then the composite function $f \circ g : K \to X$ is called a *subnet* of (x_{α}) . Show that if the net (x_{α}) converges to x, so does any subnet.

(9) Let $(x_{\alpha})_{\alpha \in J}$ be a net in X. x is an accumulation point of the net (x_{α}) if for each neighborhood U of x, the set of those α for which $x_{\alpha} \in U$ is cofinal in J.

Lemma. The net (x_{α}) has the point x as an accumulation point iff some subnet of (x_{α}) converges to x.

- (10) **Theorem.** X is compact iff every net in X has a convergent subnet.
- (11) **Corollary.** Let G be a topological group; let A and B be subsets of G. If A is closed in G and B is compact, then $A \cdot B$ is closed in G.
- (12) Check that the preceding exercises remain correct if condition (2) is omitted from the definition of directed set.