Binärzahl dekrementieren

Sei $\Sigma=\{0,1\}$ und $\Gamma=\{0,1,\square\}$. Konstruiere eine Turingmaschine M, die eine in Binärform gegebene, natürliche Zahl $(\neq 0)$ um 1 dekrementiert (und wieder in Binärform ausgibt). Der Schreib-/Lesekopf steht zu Beginn der Berechnung auf dem ersten Leerzeichen links von der Eingabe und soll auch am Ende wieder dort stehen. Beachte, dass führende Nullen in der Eingabe/Ausgabe nicht vorkommen dürfen.

	dezimal	binär
·	0	0
	1	1
	2	10
	3	11
	4	100
	5	101
	6	110
	7	111
	8	1000
	9	1001
	10	1010
	11	1011
	12	1100
	13	1101
	14	1110
	15	1111
	16	10000

Die Maschine geht zunächst ans rechte Ende des Wortes, dann invertiert sie alle 0 Bits, bis sie auf eine 1 trifft. Diese wird durch 0 ersetzt. Damit ist der Dekrementierungsvorgang beendet. Nun sucht Sie das linke Ende des Wortes und löscht eventuell entstandene führende Nullen. Trifft Sie dabei auf das Leerzeichen, so war die Ausgabe die Zahl 0 und diese wird wieder aufs Band geschrieben. Insgesamt ergibt sich

$$TM = (\{z_0, z_1, z_2, z_3, z_4, z_5\}, \Sigma, \Gamma, \delta, z_0, \square, \{z_5\})$$

mit unten angegebener Übergangsfunktion:

