DIGITAL LOGIC

SOLUTIONS

1. In the following truth table, V = 1 if and only if the input is valid.

Inputs				Outputs			
D_0	D_1	D_2	D_3	X_0	X_1	V	
0	0	0	0	Х	X	0	
1	0	0	0	0	0	1	
X	1	0	0	0	1	1	
X	X	1	0	1	0	1	
X	X	X	1	1	1	1	

What function does the truth table represent?

(a) Priority encoder

(b) Decoder

(c) Multiplexer

(d) Demultiplexer

Solution: Option (a)

Explanation:

Since there are more than one outputs and number of outputs are less than inputs, it is a Priority encoder.

1

2. Which one of the following expressions does NOT represent exclusive NOR of x and y?

(a)
$$xy + x'y'$$

(c)
$$x' \wedge y$$
 where \wedge is XOR

(d)
$$x' \wedge y'$$
 where \wedge is XOR

Solution: Option (d)

Explanation:

It is a simple De Morgan's laws question.

3. The truth table

X	Y	f (X, Y)
0	0	0
0	1	0
1	0	1
1	1	1

represents the Boolean function:

(a) X

(b) X + Y

(c) X xor Y

(d) Y

Solution: Option (a)

Explanation:

The value of f(X, Y) is same as X for all input pairs.

4. What is the minimal form of the Karnaugh map shown below? Assume that X denotes a don't care term.

cd ab	00	01	11	10
00	1	X	X	1
01	X			1
11				
10	1			X

(a) b'd'

(b) b'd' + b'c'

(c) b'd' + a'b'c'd'

(d) b'd' + b'c' + c'd'

Solution: Option (b)

Explanation:

al	00	01	11	10	
00 00	1	X	Χ	1	
01	Х			1	
11					
10	1			X	
					•

5. Which one of the following circuits is NOT equivalent to a 2-input XNOR (exclusive NOR) gate?

(b)

(d)

Solution: Option (d)

Explanation:

All options except D produce XOR.

6. The simplified SOP (Sum Of Product) form of the boolean expression (P + Q' + R'). (P + Q' + R). (P + Q + R') is

(a)
$$(P'.Q + R')$$

(b)
$$(P + Q'.R')$$

(c)
$$(P'.Q + R)$$

$$(d) (P.Q + R)$$

Solution: Option (b)

7. Consider the following circuit involving three D-type flip-flops used in a certain type of counter configuration.

If at some instance prior to the occurrence of the clock edge, P, Q and R have a value 0, 1 and 0 respectively, what shall be the value of PQR after the clock edge?

(a) 000

(b) 001

(c) 010

(d) 011

Solution: Option (d)

Explanation:

$$P' = R$$

$$Q' = (P + R)'$$

$$R' = QR'$$

Given that (P, Q, R) = (0, 1, 0), next state P', Q', R' = 0, 1, 1

8. Consider the data given in previous question. If all the flip-flops were reset to 0 at power on, what is the total number of distinct outputs (states) represented by PQR generated by the counter?

(c) 5

(d) 6

Solution: Option (b)

Explanation:

There are four distinct states, $000 \rightarrow 010 \rightarrow 011 \rightarrow 100 (\rightarrow 000)$

9. The minterm expansion of f(P, Q, R) = PQ + QR' + PR' is

(a) $m_2 + m_4 + m_6 + m_7$

(b) $m_0 + m_1 + m_3 + m_5$

(c) $m_0 + m_1 + m_6 + m_7$

(d) $m_2 + m_3 + m_4 + m_5$

Solution: Option (a)

10. The Boolean expression for the output 'f' of the multiplexer shown below is

(a) (P(XOR) Q(XOR) R)

(b) P(XOR) Q(XOR) R

(c) (P+Q+R)'

(d) P+Q+R

Solution: Option (b)

11. What is the Boolean expression for the output f of the combinational logic circuit of NOR gates given below?

(a) (Q+R)'

(b) (P+Q)'

(c) (P+R)

(d) (P+Q+R)'

Solution: Option (a)

12. In the sequential circuit shown below, if the initial value of the output Q_1Q_0 is 00, what are the next four values of Q_1Q_0 ?

(a) 11, 10, 01, 00

(b) 10, 11, 01, 00

(c) 10, 00, 01, 11

(d) 11, 10, 00, 01

Solution: Option (d)

13. In the Karnaugh map shown below, X denotes a don't care term. What is the minimal form of the function represented by the Karnaugh map?

ab						
cd	00	01	11	10		
00	1	1		1		
01	x					
11	х					
10	1	1		Х		

(a) \bar{b} . $\bar{d} + \bar{a}$. \bar{d}

(b) a'b'+ b'd'+ a'bd'

(c) b'd'+ a'bd'

(d) a'b'+ b'd'+a'd'

Solution: Option (a)

14. What is the minimum number of gates required to implement the Boolean function (AB+C) if we have to use only 2-input NOR gates?

(a) 2

(b) 3

(c) 4

(d) 5

Solution: Option (b)

Explanation:

$$AB + C = (A+C)(B+C) = ((A+C)' + (B+C)')'$$

So, '3' 2-input NOR gates are required.

15. Let r denote number system radix. The only value(s) of r that satisfy the equation $\sqrt{121_r} = 11_r$ is/are

(a) decimal 10

(b) decimal 11

(c) decimal 10 and 11

(d) any value > 2

Solution: Option (d)

16. Given f₁, f₃ and f in canonical sum of products form (in decimal) for the circuit

 $f_1 = \Sigma m(4, 5, 6, 7, 8)$

$$f_3 = \Sigma m(1,6,15)$$

$$f = \Sigma m(1,6,8,15)$$

then f₂ is

(a) Σ m(4,6)

(b) Σ m(4,8)

(c) Σ m(6,8)

(d) Σ m(4,6,8)

Solution: Option (c)

17. If P, Q, R are Boolean variables, then (P + Q')(PQ' + PR)(P'R' + Q') simplifies

7

(a) PQ'

(b) PR'

(c) PQ' + R

(d) PR" + Q

Solution: Option (a)

18. How many 3-to-8 line decoders with an enable input are needed to construct a 6-to-64 line decoder without using any other logic gates?

(a) 7

(b) 8

(c) 9

(d) 10

Solution: Option (c)

19. Consider the following Boolean function of four variables:

$$f(w,x,y,z) = \sum (1,3,4,6,9,11,12,14)$$

The function is:

(a) independent of one variables.

(b) independent of two variables.

(c) independent of three variables.

(d) dependent on all the variables.

Solution: Option (b)

20. Let $f(w, x, y, z) = \sum (0, 4, 5, 7, 8, 9, 13, 15)$. Which of the following expressions are NOT equivalent to f?

(a) x'y'z' + w'xy' + wy'z + xz

(b) w'y'z' + wx'y' + xz

(c) w'y'z' + wx'y' + xyz + xy'z

(d) x'y'z' + wx'y' + w'y

Solution: Option (d)