Introducción a la Bioinformática: Motif Discovery

Luis Garreta

Doctorado en Ingeniería Pontificia Universidad Javeriana – Cali

March 15, 2017

Outline

- Introduction to Motifs
- 2 The motif finding Problem
- Computational Motifs
- Position Weigh Matrix
- Motif Finding Algorithms

What are DNA sequence Motifs?

Sequence motifs are short, recurring patterns in DNA that are presumed to have a biological function

What are motifs representing?

Motifs

- Motifs represent a short common sequence
 - Regulatory motifs (Transcription Factors binding sites)
 - Functional site in proteins (DNA binding motif)

Regulatory Motifs

Introduction

Motifs

- Transcription Factors bind to regulatory motifs
 - Motifs are 6 20 nucleotides long
 - Activators and repressors
 - Usually located near target gene, mostly upstream
- Every gene contains a regulatory region (RR) typically stretching 100~1000 bp upstream of the transcriptional start site
- Located within the RR ar tge TFBS (motifs) specific for a given TF

TFs influence gene expression by binding to a specific location in the respective gene's RR (TFBS)

Motifs vs Transcription Factor Binding Sites

Motifs:

Motifs

- Statistical or Computational entities
- Predicted
- Transcription Factor Binding Sites (Cys-regulatory elements):
 - Biological entities
 - Real

The hope is that TFBS are conserved (significant computationally), so motifs can be used to find them

Motif Logos for Liver TFBS

Introduction Motifs

Introduction

Motif Finding Problem (simple)

Given n sequences, find a motif (or subsequence) present in many

A String Search Problem: XXXXXXX

• Giving a random sample of DNA sequences:

 Find the patter that is implanted in each of the individual sequences, namely, the motif

A String Search Problem: acgtacgtX

- 5 sequences of 70 nucleotidas
- Motif size: 9 nucleotides (bp)

Introduction

Motifs and Transcriptional Start Sites

Computational Motifs

Motifs Representation

- (a) Binding sites in three genes
- (b) Degenerate consensus sequence
- (c) Counts of nucleotides at each position
- (d) Sequence Logo showing Frequencies
- (e) Frequencies scaled relative to the information content

HEM13 CCCATTGTTCTC HEM13 TTTCTGGTTCTC HEM13 TCAATTGTTTAG ANB1 CTCATTGTTGTC ANB1 TCCATTGTTCTC ANB1 CCTATTGTTCTC ANB1 TCCATTGTTCGT ROX1 CCAATTGTTTTG b YCHATTGTTCTC C 002700000010 464100000505 000001800112 422087088261 e

Position Weight Matrix (PWM)

- Introduced as an alternative to consensus sequences
- Used to represent patterns in biological sequences
- Essential component in algorithms for motif discovery

PWMs or PSSMs or Profile Matrices

PSSM: Position-Specific Scoring Matrix

PWMs, PSSMs, Profile Matrices

Constructed from a set of aligned sequences and characterizing a motif of interest

Construction of a PWM:

From Binding Sites to a set of aligned sequences

GAGGTAAAC TCCGTAAGT CAGGTTGGA ACAGTCAGT TAGGTCATT TAGGTACTG ATGGTAACT CAGGTATAC TGTGTGAGT **AAGGTAAGT**

Construction of a PWM:

From aligned sequences to a Position Count Matrix (PCM)

Formally, given a set X of N aligned sequences of length I, the elements of the PPM M are calculated:

GAGGTAAAC **TCCGTAAGT** CAGGTTGGA ACAGTCAGT TAGGTCATT TAGGTACTG ATGGTAACT CAGGTATAC **TGTGTGAGT AAGGTAAGT**

$$M_{k,j} = \sum_{i=1}^{N} I(X_{i,j} = k),$$
 $M = egin{array}{c} A \ C \ G \ T \ 1 & 1 & 7 & 10 & 0 & 1 & 1 & 5 & 1 \ 4 & 1 & 1 & 0 & 10 & 1 & 1 & 2 & 6 \ \end{array}$

Construction of a PWM.

From a PCM to a PPM or PFM

- PPM: Position Probability Matrix
- PFM: Position Frequency Matrix^o

$$\begin{bmatrix} 2 & .1 \\ 1 & .2 \\ 5 & 1 \end{bmatrix}$$

$$M_{k,j} = rac{1}{N} \sum_{i=1}^{N} I(X_{i,j} = \ : k),$$

Construction of a PWM:

Calculating the probability of a sequence given the PPM

$$S = GAGGTAAAC \qquad M = \begin{bmatrix} A \\ C \\ G \\ T \end{bmatrix} \begin{bmatrix} .3 & .6 & .1 & .0 & .0 & .6 & .7 & .2 & .1 \\ .2 & .2 & .1 & .0 & .0 & .2 & .1 & .1 & .2 \\ .1 & .1 & .7 & .0 & .0 & .1 & .1 & .5 & .1 \\ .4 & .1 & .1 & .0 & .0 & .1 & .1 & .2 & .6 \end{bmatrix}$$

Probability of S given M

$$P(S|M) = 0.1 \times 0.6 \times 0.7 \times 1.0 \times 1.0 \times 0.6 \times 0.7 \times 0.2 = 0.0007056$$

Construction of a PWM:

Background Model

Represents the set of sequences having a frequency distribution different from the motif

The simplest background model assumes that each letter appears equally frequently in the dataset, that is:

$$b_k = 1/|k|$$

$$\mathsf{Background} = \begin{bmatrix} \mathsf{A} {=} 0.25 \\ \mathsf{C} {=} 0.25 \\ \mathsf{G} {=} 0.25 \\ \mathsf{T} {=} 0.25 \end{bmatrix}$$

Construction of a PWM.

Calculating the PWM values with no pseudocounts added

From a PCM to PWM

•
$$M'_{k,j} = M_{k,j}/b_k$$
 , with $b_k = 1/4$

$$\mathsf{M'=} \begin{bmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ A: & 1.20 & 2.40 & 0.40 & 0.00 & 0.00 & 2.40 & 2.80 & 0.80 & 0.40 \\ C: & 0.80 & 0.80 & 0.40 & 0.00 & 0.00 & 0.80 & 0.40 & 0.80 \\ G: & 0.40 & 0.40 & 2.80 & 4.00 & 0.00 & 0.40 & 0.40 & 2.00 & 0.40 \\ T: & 1.60 & 0.40 & 0.40 & 0.00 & 4.00 & 0.40 & 0.40 & 0.80 & 2.40 \\ \end{bmatrix}$$

Construction of a PWM:

Calculating the PWM as log likelihoods

PPM:

From a PCM to PWM

•
$$M'_{k,j} = M_{k,j}/b_k$$
 , with $b_k = 1/4$

$$\mathsf{M'=} \begin{bmatrix} \mathsf{A}: & 1.20 & 2.40 & 0.40 & 0.00 & 0.00 & 2.40 & 2.80 & 0.80 & 0.40 \\ \mathsf{C}: & 0.80 & 0.80 & 0.40 & 0.00 & 0.00 & 0.80 & 0.40 & 0.80 \\ \mathsf{G}: & 0.40 & 0.40 & 2.80 & 4.00 & 0.00 & 0.40 & 0.40 & 2.00 & 0.40 \\ \mathsf{T}: & 1.60 & 0.40 & 0.40 & 0.00 & 4.00 & 0.40 & 0.40 & 0.80 & 2.40 \\ \end{bmatrix}$$

The Problem

Motifs and PWMs: Known Motifs

Motifs and Profile Matrices: Unknown Motifs

- How can we construct the profile if the sequences aren aligned?
- In the typical case we don't know what the motif looks like

• Motif Discovery Algoritms

Brute-Force String Matching

Brute-force String Search

```
A STRING SEARCHING EXAMPLE CONSISTING OF ...
```

Gibbs Sampling

Use a simple leave-one-out sampling strategy

- First, each sequences has a motif chosen at random from it as an initial "guess".
- Next, a scoring matrix is made based on those randomly chosen sequence segments.
- Then, one sequence is chosen at random,
- And each of w-mers are compared against the initialized scoring matrix.
- The highest scoring w-mer is then throwing back into the pile of "motifs"
- And a new scoring matrix is calculated based on the new set of motifs (new because one is different).
- Repeat until "converged"
 - Then, another sequence is taken out and scanned for its highest-scoring w-mer, that w-mer is taken as that sequence's new representative motif, and it is thrown back in and a new scoring matrix is calculated

EM Approach

The EM Approach

- EM is a family of algorithms for learning probabilistic models in problems that involve hidden state
- in our problem, the hidden state is where the motif starts in each training sequence

The Meme Algorithm

The MEME Algorithm

- Bailey & Elkan, 1993
- uses EM algorithm to find multiple motifs in a set of sequences
- first EM approach to motif discovery: Lawrence & Reilly 1990

Representing Motifs

Representing Motifs

- a motif is assumed to have a fixed width, W
- a motif is represented by a matrix of probabilities: *p_{ck}* represents the probability of character *c* in column *k*
- example: DNA motif with W=3

```
p = \begin{bmatrix} 1 & 2 & 3 \\ A & 0.1 & 0.5 & 0.2 \\ C & 0.4 & 0.2 & 0.1 \\ G & 0.3 & 0.1 & 0.6 \\ T & 0.2 & 0.2 & 0.1 \end{bmatrix}
```

Representing Motifs

- we will also represent the "background" (i.e. outside the motif) probability of each character
- p_{c0} represents the probability of character c in the background
- · example:

$$p_0 = \begin{bmatrix} A & 0.26 \\ C & 0.24 \\ G & 0.23 \\ T & 0.27 \end{bmatrix}$$

Basic EM Approach

- the element Z_{ij} of the matrix Z represents the probability that the motif starts in position j in sequence I
- example: given 4 DNA sequences of length 6, where W=3

$$Z = \begin{smallmatrix} \text{seq1} & 0.1 & 0.1 & 0.2 & 0.6 \\ \text{seq2} & 0.4 & 0.2 & 0.1 & 0.3 \\ \text{seq3} & 0.3 & 0.1 & 0.5 & 0.1 \\ \text{seq4} & 0.1 & 0.5 & 0.1 & 0.3 \end{smallmatrix}$$

Basic EM Approach Algorithm

Basic EM Approach

```
given: length parameter W, training set of sequences
   set initial values for p
   do
       re-estimate Z from p
                                      (E –step)
                                      (M-step)
       re-estimate p from Z
   until change in p < \varepsilon
return: p, Z
```