Dihedral actions on preprojective algebras of type A

Jason Gaddis
(Joint work with Jacob Barahona Kamsvaag)

Special Session on Quiver Representations AMS Fall Central Sectional Meeting, "Omaha"

2108.03939

The McKay correspondence

The classical McKay correspondence provides connections between

- finite subgroups of $SL_2(\mathbb{C})$,
- simple Lie algebras of type ADE,
- Kleinian singularities,
- preprojective algebras of reduced McKay quivers.

Definition (The Auslander Map)

Let V be a finite dimensional vector space and G a finite group acting linearly on $R = \mathbb{C}[V]$. The Auslander map $\eta_{R,G} : \underbrace{R \# G}_{R} \to \underline{\mathsf{End}}_{R^G} R$ is defined by

$$\alpha # g \longrightarrow \begin{pmatrix} R \longrightarrow R \\ b \longrightarrow \alpha g(b) \end{pmatrix}$$

The McKay correspondence

Theorem (Auslander's Theorem) V5.6. vsp 6 acts W/O reflections on V (6 small) men 22,6 is an iso.

Suppose G is small, so that $\eta_{R,G}: R\#G \to \operatorname{End}_{R^G} R$ is an isomorphism. Then there

- indecomposable finitely generated, projective, initial left End $\widehat{A}_{R}^{G}(\widehat{A})$ -modules, indecomposable finitely generated, projective, initial $\widehat{A}_{R}^{G}G$ -modules, and
- simple left G-modules.

Pertinency

Let R be an algebra and G a finite group acting on R. Set

The *pertinency* of the *G*-action on *R* is defined as

$$P(R,G) = Gkdim((R\#G)) - \frac{Ghdim((R\#G)/(f_G))}{2}$$

Theorem (Bao, He, Zhang)

Let R be a Noetherian locally-finite graded algebra and G a finite subgroup of $\operatorname{Aut}_{\operatorname{gr}}(R)$. Assume further that R is GKdim - CM of global dimension 2 with $\operatorname{GKdim} R \geq 2$. Then $\eta_{R,G}$ is a graded algebra isomorphism if and only if $\operatorname{p}(R,G) \geq 2$.

Examples of Auslander's Theorem

The Auslander map is an isomorphism in each of the following situations:

- (1) The algebra A is noetherian and AS regular of (global) dimension two and H is a semisimple Hopf algebra acting linearly and inner faithfully on A with trivial homological determinant. (Chan, Kirkman, Walton, Zhang)
- (2) The algebra is a two-dimensional Artin-Schelter regular algebra and G is a small group (in the noncommutative sense). (Crawford)
- (3) The algebra is $\mathbb{C}_{-1}[x_1,\ldots,x_n]$ and G is any subgroup of S_n acting linearly as permutations of the generators (i.e., $\sigma(x_i) = x_{\sigma(i)}$). (G, Kirkman, Moore, Won)
- (4) The algebra is a (generic) graded down-up algebra and H is a finite group coacting homogeneously and inner faithfully. (Chen, Kirkman, Zhang)

We are interested in cases where the the algebra is \mathbb{N} -graded (as in all examples above) but non-connected.

Preprojective algebras

Definition (Double quiver)

Let Q be a quiver. For each $\alpha \in Q_1$ with $s(\alpha) = e_i$ and $t(\alpha) = e_j$, set α^* to be an arrow $s(\alpha^*) = e_j$ and $t(\alpha^*) = e_i$, and let Q_1^* be the set of such arrows. Define the double of Q to be the quiver \overline{Q} with $\overline{Q}_0 = Q_0$ and $\overline{Q}_1 = Q_1 \cup Q_1^*$.

Definition (Preprojective algebra)

The preprojective algebra $\Pi_{A_{n-1}}$

For the remainder, we fix $Q = \widetilde{A_{n-1}}$, $n \ge 3$, and $R = \Pi_Q$.

▶ If P is a nonconstant monomial in R, then there exist nonstar arrows $\beta_1, \ldots, \beta_\ell$ and star arrows $\gamma_1, \ldots, \gamma_m$ such that

$$p = \underbrace{\beta_1 \cdots \beta_\ell \gamma_1 \cdots \gamma_m}.$$

- \triangleright R is a locally finite graded noetherian algebra of global and GK dimension 2.
- R is GKdim-CM.
- ► The matrix-valued Hilbert series of R is

$$H_R(t) = rac{1}{(1-M_{\overline{Q}}t)^2}.$$

Let G be a finite subgroup of $\operatorname{Aut}_{\operatorname{gr}}(R)$ and let R' be the image of R in the composition

$$R \rightarrow R \# G \rightarrow (R \# G) (f_G)$$

Then $\mathsf{GKdim}(R') = \mathsf{GKdim}((R\#G)/(f_G))$. Hence, $\eta_{R,G}$ is a graded algebra isomorphism if and only if $\mathsf{dim}_{\Bbbk}(R') < \infty$.

The preprojective algebra $\Pi_{\widetilde{A_{n-1}}}$ - Scalar automorphisms

Theorem

Let

$$F = \{\sigma \in \operatorname{Aut}_{\operatorname{gr}}(R) : |\sigma| < \infty \text{ and } \sigma(e_i) = e_i \text{ for all } i = 0, \ldots, n-1\}.$$

Let $\sigma \in F$ with $m = |\sigma|$, $1 < m < \infty$, and let $G = \langle \sigma \rangle$. As above, write $\sigma(\alpha_i) = \xi_i \alpha_i$ and $\sigma(\alpha_i^*) = \xi_i^* \alpha_i^*$, $i = 0, \ldots, n-1$, with $\xi_1 \xi_1^* = 1$. In each of the following cases, $\eta_{R,G}$ is an isomorphism.

- 1. There is some primitive mth root of unity ζ such that $\xi_i = \zeta$ for $i = 0, \ldots, n-1$.
- 2. There is some primitive mth root of unity ζ such that $\xi_0 \xi_1 \cdots \xi_{n-1} = \zeta$.
- 3. For all $i, j = 0, \ldots, n-1$ with $i \neq j$, we have $gcd(|\xi_i|, |\xi_j|) = 1$.

$$p = d_0 d_1 \cdots d_{m-1} \quad \text{indices moden}$$

$$f_{\sigma} p + d_0 f_{\sigma} d_1 d_2 \cdots d_{m-1} + \dots + p + f_{\sigma} = m p \# 1$$

The preprojective algebra $\Pi_{\widetilde{A_{n-1}}}$ - Dihedral actions

We identify two quiver automorphisms of \overline{Q} which extend to automorphisms of R.

1. Define $\rho: \overline{Q} \to \overline{Q}$ by $\rho(e_i) = e_{i+1}$, where the index is taken mod n. Hence,

$$\underline{\rho(\alpha_i)} = \alpha_{i+1}$$
 and $\rho(\alpha_i^*) = \alpha_{i+1}^*$.

2. Define $r_0:\overline{Q}\to \overline{Q}$ by $r_0(e_i)=e_{n-i}$. Hence,

$$r_0(\alpha_i) = \alpha_{n-i-1}^*$$
 and $r_0(\alpha_i^*) = \alpha_{n-i-1}$.

The subgroup (ρ, r_0) of $Aut_{gr}(R)$ is isomorphic to D_n and so we identify D_n with this group acting on R by graded automorphisms.

The preprojective algebra $\Pi_{\widetilde{A_{n-1}}}$ - Dihedral actions

Theorem

Let G be a subgroup of D_n . Suppose there is some reflection through a vertex not contained in G. Then $\dim_{\mathbb{R}}(R') < \infty$ and so $\eta_{R,G}$ is an isomorphism.

$$S+ab_{G}(e_{i})=\{1\}$$

$$e_{i} f_{G} e_{i} = (e_{i} # 1)$$

$$l(p) \ge d_{\Lambda} \Longrightarrow p f(f_{G})$$

The preprojective algebra $\Pi_{\widetilde{A_{n-1}}}$ - The case $G=D_n$

For $\ell \geq k \geq 0$, set

$$B_{\ell,k} = Q_\ell Q_k^* \cup Q_k Q_\ell^*.$$

For any $p \in B_{\ell,k}$, $\mathcal{O}(p) = B_{\ell,k}$.

The corresponding orbit sums $\mathbb{O}(\ell,k)=\sum_{p\in B_{\ell,k}}p$ form a k-basis for R^{D_n} , so that

$$H_{R^{D_n}}(t) = 1 + t + 2t^2 + 2t^3 + 3t^4 + 3t^5 + \cdots = \frac{1}{(1-t)(1-t^2)}.$$

The orbit sums $\mathbb{O}(\ell, k)$ satisfy the following relations:

$$\mathbb{O}(1,0)\mathbb{O}(\ell,k) = egin{cases} \mathbb{O}(\ell+1,k) + \mathbb{O}(\ell,k+1) & ext{if } \ell > k \ \mathbb{O}(\ell+1,k) & ext{if } \ell = k \end{cases}$$
 $\mathbb{O}(1,1)^m = \mathbb{O}(m,m).$

The preprojective algebra $\Pi_{\widetilde{A_{n-1}}}$ - The case $G=D_n$

Set $s_0=\mathbb{O}(0,0)=1$, $s_1=\mathbb{O}(1,0)$, and $s_2=\mathbb{O}(2,0)$. Then one can show that

- 1. s_1 and s_2 commute,
- 2. for all $\ell \geq k \geq 0$, $\mathbb{O}(\ell, k) \in \mathbb{k}[s_1, s_2]$,
- 3. $\mathbb{k}[s_1, s_2]$ and \mathbb{R}^{D_n} have the same Hilbert series.

It follows that $R^{D_n} = \mathbb{k}[s_1, s_2]$. Putting this together gives the following result.

Theorem

The Auslander map is not an isomorphism for the pair (R, D_n) .

The preprojective algebra $\Pi_{\widetilde{A_{n-1}}}$ - The case $G=W_n$

Let W_n be the subgroup of G generated by reflections through a vertex. If n is odd, then $W_n = D_n$, but if n is even, then W_n is a proper subgroup of index 2 in D_n . Assuming n is even, we can follow a similar strategy as above. The key difference is that the invariant ring is no longer connected graded.

Theorem

The Auslander map is not an isomorphism for the pair (R, W_n) .

Corollary

Let $G = D_n$ or $G = W_n$. Then p(R, G) = 1.

Auslander's Theorem for $\Pi_{\widetilde{A_{n-1}}}$

Theorem

Let G be a subgroup of D_n . Then $\eta_{R,G}$ is an isomorphism if and only if there is some reflection through a vertex not contained in G.

Mar you.

