CS2040S Data Structures and Algorithms

Graphs!

COURSE STRUCTURE

POST-MIDTERM: MODELLING AND SOLVING PROBLEMS

Roadmap

Today: Graph Basics

- What is a graph?
- Modeling problems as graphs.
- Graph representations (list vs. matrix)
- Searching graphs (DFS / BFS)

Shortest Pathfinding for Unweighted Graphs

Roadmap

Next: Searching Graphs

- Searching graphs
- More Shortest path problems
- Bellman-Ford Algorithm
- Dijkstra's Algorithm

Roadmap

Next next:

- Connected component problem
 - Union-Find data structure
- The Minimum Spanning Tree Problem
 - Kruskal's Algorithm
 - Prim's Algorithm

- ✓1. Yes
 - 2. No.

- ✓1. Yes
 - 2. No.

- 1. Yes
- **√**2. No.

- 1. Yes
- 2. No.

Graph consists of two types of elements:

- Nodes (or vertices)
 - At least one.

- Edges (or arcs)
 - Each edge connects two nodes in the graph
 - Each edge is unique.

Graph consists of two types of elements:

- Nodes (or vertices)
 - At least one.

- Edges (or arcs)
 - Each edge connects two nodes in the graph
 - Each edge is unique.

No two edges share the same two endpoints No self loops

Graph consists of two types of elements:

- Nodes (or vertices)
 - At least one.

- Edges (or arcs)
 - Each edge connects two nodes in the graph
 - Each edge is unique.

No two edges share the same two endpoints
No self loops
I.e. Simple

What is a multigraph?

Graph consists of two types of elements:

- Nodes (or vertices)
 - At least one.

Two nodes may be connected by more than one edge.

What is a hypergraph?

Graph consists of two types of elements:

- Nodes (or vertices)
 - At least one.

- Edges (or arcs)
 - Each edge connects >= 2 nodes in the graph
 - Each edge is unique.

Graph
$$G = \langle V, E \rangle$$

V is a set of nodes

- At least one: |V| > 0.

E is a set of edges:

- $E \subseteq \{ (v,w) : (v \in V), (w \in V) \}$
- e = (v,w)
- For all e_1 , $e_2 \in E : e_1 \neq e_2$

(Simple) Path:

Set of edges connecting two nodes.

Path intersects each node at most once.

Connected:

Every pair of nodes is connected by a path.

Connected:

A graph is **connected** if every pair of nodes is connected by a path.

Disconnected:

Exists some pair of nodes that is not connected by

Two connected components.

Disconnected:

Some pair of nodes is not connected by a path.

Two connected components.

Cycle:

"Path" where first and last node are the same.

(**Not actually a path, since one node appears twice.)

(Unrooted) Tree:

Connected graph with no cycles.

Forest:

Graph with no cycles.

Degree of a node:

Number of adjacent edges.

Degree of a graph:

Maximum number of adjacent edges.

Diameter:

 Maximum distance between two nodes, following the shortest path.

Special Graphs

Special Graphs

Star

One central node, all edges connect center to edges.

Degree of n-node star is:

- 1. 1
- 2. 2
- 3. n/2
- 4. n-2
- √5. n-1
 - 6. n

Special Graphs

Star

One central node, all edges connect center to edges.

Diameter of n-node star:

- 1. 1
- **√**2. 2
 - 3. n/2
 - 4. n-2
 - 5. n-1
 - 6. n

Special Graphs

Star

One central node, all edges connect center to edges.

Special Graphs diameter = 1 degree = n-1Clique (Complete Graph)

All pairs connected by edges.

Line (or path)

diameter = n-1 degree = 2

Cycle

diameter = n/2 or diameter = n/2-1

degree = 2

Bipartite Graph

Nodes divided into two sets with no edges between nodes in the same set.

Max. diameter of n-node bipartite graph is:

- 1. 1
- 2. 2
- 3. n/2-1
- 4. n/2
- √5. n-1
 - 6. n

Bipartite Graph

Nodes divided into two sets with no edges between nodes in the same set.

Roadmap

Today: Graph Basics

- What is a graph?
- Modeling problems as graphs.
- Graph representations (list vs. matrix)
- Searching graphs (DFS / BFS)

(How to model real problems as a graph!)

Social network:

- Nodes are people
- Edge = friendship

facebook

Social network:

- Nodes are people
- Edge = friendship

- Connected?
- Diameter?
- Degree?

Social network:

- Nodes are people
- Edge = friendship

- Connected?
- Diameter?
- Degree?

Six degrees of separation

文A 26 languages ∨

Article Talk Read Edit View history Tools ✓

From Wikipedia, the free encyclopedia

For other uses, see Six degrees (disambiguation). Not to be confused with Six degrees of freedom.

Six degrees of separation is the idea that all people are six or fewer social connections away from each other. As a result, a chain of "friend of a friend" statements can be made to connect any two people in a maximum of six steps. It is also known as the **six handshakes rule**.^[1] Mathematically it means that a person shaking hands with 30 people, and then those 30 shaking hands with 30 other people, would after repeating this 6 times allow every person in a population as large as the United States to have shaken hands (7 times for the whole world).

The concept was originally set out in a 1929 short story by Frigyes Karinthy, in which a group of people play a game of trying to connect any person in the world to themselves by a chain of five others. It was popularized in John Guare's 1990 play *Six Degrees of Separation*.

A map of several branches and degrees of a small social group: Ryan is six degrees of separation from Pablo

Social network:

- Nodes are people
- Edge = friendship

- Connected?
- Diameter?
- Degree?

Social network:

- Nodes are people
- Edge = friendship

- Connected?
- Diameter?
- Degree?

Social network:

- Nodes are people
- Edge = friendship

- Connected?
- Diameter?
- Degree?

Social network:

- Nodes are people
- Edge = friendship

- Connected?
- Diameter?
- Degree?

Social network:

- Nodes are people
- Edge = friendship

Questions:

- Connected
- Diameter?
- Degree?

What does big mean?
Probably very small
compared to number of
nodes. (Graph is sparse.)

Transportation Network

Internet / Computer Networks

- How to find routes for packets?
- How to maximise data flow rate from multiple servers to multiple clients?

Optimization: 4-Coloring

Can you color a map using only 4-colors so that no two adjacent countries/states have the same color?

4-Coloring Theorem:

For any planar graph, you can color it using only 4-colors so that no two adjacent countries/states have the same color?

Can be drawn on a 2d-plane with no crossing edges.

Sliding Puzzle is a Graph

Nodes:

- State of the puzzle
- Permutation of nine tiles

Edges:

 Two states are edges if they differ by only one move.

What is the maximum degree of the Sliding Puzzle graph?

- 1. 1
- 2. 2
- 3. 3
- **4**. 4
 - 5. n/2
 - 6. n
 - 7. n!

Can either slide from above/below/left/right

Nodes:

- State of the puzzle
- Permutation of nine tiles+ 1 blank tile

Edges:

 Two states are edges if they differ by only one move.

Nodes = 9! = 362880

Edges < 4*9! < 1451520

Number of moves to solve the puzzle?

Initial, scrambled state:

4	1	5
	3	7
8	2	6

Final, unscrambled state:

1	2	3
4	5	6
7	8	

Number of moves to solve the puzzle?

Number of moves to solve the puzzle?

Sliding Puzzle

Number of moves to solve = Shortest path from the puzzle? starting state to final state

Sliding Puzzle

Maximum number of moves needed to solve puzzle from **any** possible input?

Initial, scrambled state:

4	1	5
	3	7
8	2	6

Final, unscrambled state:

1	2	3
4	5	6
7	8	

Sliding Puzzle

Maximum number of moves needed to solve puzzle from **any** possible input?

≤ diameter of graph

Initial, scrambled state:

Final, unscrambled state:

1	2	3
4	5	6
7	8	

Record solve time: 0.69 seconds

Configuration Graph

- Vertex for each possible state
- Edge for each basic move
 - 90 degree turn
 - 180 degree turn

Puzzle: given initial state, find a path to the solved state.

How many vertices?

$$8! \cdot 3^8 = 264,539,520$$

Each cubelet is in one of 8 positions.

cubelets

Each of the 8 cubelets can be in one of three orientations

How many vertices?

$$7! \cdot 3^7 = 11,022,480$$

Symmetry:

Fix one cubelet. As reference

Each of the 8 cubelets can be in one of three orientations

Geography of Rubik's configurations:

reachable in two moves, but not one

Reachable configurations

Distance	90 deg. turns	90/180 deg. turns
0	1	1
1	6	9
2	27	54
3	120	321
4	534	1,847
5	2,256	9,992
6	8,969	50,136
7	33,058	227,536
8	114,149	870,072
9	360,508	1,887,748
0	930,588	623,800
11	1,350,852	2,644
12	782,536	
13	90,280	
14	276	

diameter

Reachable configurations

Distance	90 deg. turns	90/120 deg. turns
0	1	1
1	6	9
2	27	54

Challenge: How do you generate this table?

9	360,508	1,887,748
0	930,588	623,800
11	1,350,852	2,644
12	782,536	
13	90,280	
14	276	

diameter

3 x 3 x 3 Rubik's Cube

Configuration Graph

- 43 quintillion vertices (approximately)
- Diameter: 20
 - 1995: require at least 20 moves.
 - 2008: 20 moves is enough from every position.
 - Using Google server farm.
 - 35 CPU-years of computation.
 - 20 seconds / set of 19.5 billion positions.
 - Lots of mathematical and programming tricks.

3 x 3 x 3 Rubik's Cube

What is the diameter of an $(n \times n \times n)$ cube?

$$\Theta(n^2 / \log n)$$

Representing a Graph

Question: How should we represent a graph?

- What data structures should we create?
- Which operations on the graph should we support?

Representing a Graph

- Nodes
- Edges

Representing a Graph

- Nodes: typically ID ranges from [0, n-1]
- Edges

Adjacency List

- Nodes: stored in an array
- Edges: linked list per node

Adjacency List

Graph consists of:

Nodes: stored in an array

Edges: array as large as degree of node

Adjacency List

Graph consists of:

Nodes: stored in an array

Edges: array as large as degree of node

Adjacency List in Java

```
1 class NeighborList extends LinkedList<Integer> {
 3 }
 5 class Node {
 6
     NeighborList nbrs;
 8 }
 9
10 class Graph {
       Node[] nodeList;
11
12 }
```

Adjacency List in Java

```
1 class NeighborList extends ArrayList<Integer> {
 2 }
 4 class Node {
    NeighborList nbrs;
 7 }
  class Graph {
10
       Node[] nodeList;
11 }
12
```

Adjacency List in Java

```
1 class Graph {
2     ArrayList<ArrayList<Integer>> adjacency_list;
3 }
```

Given some node ID, how long will it take to print out all the neighbouring IDs?

- 1. O(1)
- 3. O(V)

V = number of vertices/nodes

deg(v) = degree of input vertex v

Given two nodes x, y. Determining whether x and y are neighbours takes:

- 1. O(1)
- 2. O(min(deg(x), deg(y))
- 3. O(V)

V = number of vertices/nodes

deg(v) = degree of input vertex v

- Nodes
- Edges = pairs of nodes

	0	1	2	3	4	5
0	0	0	0	0	1	1
1	0	0	1	1	1	0
2	0	1	0	0	0	0
3	0	1	0	0	0	0
4	1	1	0	0	0	0
5	1	0	0	0	0	0

Graph represented as:

 $A[v][w] = 1 \text{ iff } (v,w) \subseteq E$

	0	1	2	3	4	5
0	0	0	0	0	1	1
1	0	0	1	1	1	0
2	0	1	0	0	0	0
3	0	1	0	0	0	0
4	1	1	0	0	0	0
5	1	0	0	0	0	0

Graph represented as:

```
A[v][w] = 1 \text{ iff } (v,w) \in E
```

- Undirected graphs:
 - o A is symmetric!

	0	1	2	3	4	5
0	0	0	0	0	1	1
1	0	0	1	1	1	0
2	0	1	0	0	0	0
3	0	1	0	0	0	0
4	1	1	0	0	0	0
5	1	0	0	0	0	0

Graph represented as:

$$A[v][w] = 1 \text{ iff } (v,w) \subseteq E$$

Neat property:

• A^2 = length 2 paths

	0	1	2	3	4	5
0	0	0	0	0	1	1
1	0	0	1	1	1	0
2	0	1	0	0	0	0
3	0	1	0	0	0	0
4	1	1	0	0	0	0
5	1	0	0	0	0	0

To find out if c and d are 2-hop neighbors:

- Let $B = A^2$
- B[c][d] = (A[c][0]*A[0][d] + A[c][1]*A[1][d] + ... + A[c][n 1] * A[n-1][d])

• B[c, d] >= 1 iff A[c, x] == A[x, d] for some x.

Graph represented as:

$$A[v][w] >= 1 \text{ iff } (v,w) \subseteq E$$

Neat properties:

- A^2 = length 2 paths
- A^4 = length 4 paths

Neat way to figure out connectivity...

Neat way to figure out diameter...

Not always the most efficient...

Parallelizes well....

Old Google Pagerank Idea:

Webpages are nodes.

If a webpage a links to webpage b

Old Google Pagerank Idea:

Webpages are nodes.

If a webpage a links to webpage b

add edge from a to b

So now we have a directed graph:

Intuition: If we randomly picked a page, and did a random walk on it

Intuition: If we randomly picked a page, and did a random walk on it

Intuition: If we randomly picked a page, and did a random walk on it

As the length t of our random walk approaches infinity, find the **stationary distribution** of the walk.

In linear algebra terms: The pagerank vector, is the vector that describes the distribution.

This is the eigenvector of the matrix, with eigenvalue 1

In linear algebra terms: The pagerank vector, is the vector that describes the distribution.

This is the eigenvector of the matrix, with eigenvalue 1

Read: https://pi.math.cornell.edu/~mec/Winter2009/RalucaRemus/Lecture3/lecture3.html

Graph represented as:

$$A[v][w] = 1 \text{ iff } (v,w) \subseteq E$$

Neat properties:

- A^2 = length 2 paths
- A^4 = length 4 paths
- $A^{\infty} \approx$ Google pagerank?

(Simulate random walk by replacing '1' with probability.)

	0	1	2	3	4	5
0	0	0	0	0	1	1
1	0	0	1	1	1	0
2	0	1	0	0	0	0
3	0	1	0	0	0	0
4	1	1	0	0	0	0
5	1	0	0	0	0	0

Adjacency Matrix in Java

```
1 class Graph {
2     ArrayList<ArrayList<Integer>> adjacency_matrix;
3 }
```

Trade-offs

Adjacency Matrix vs. Array?

Given some node ID, how long will it take to print out all the neighbouring IDs?

- 1. O(1)
- 2. O(deg(v))
- **3**∕. O(V)

V = number of vertices/nodes

deg(v) = degree of input vertex v

Given two nodes x, y. Determining whether x and y are neighbours takes:

- **4**. O(1)
 - 2. $O(\min(\deg(x), \deg(y)))$
 - 3. O(V)

V = number of vertices/nodes

deg(v) = degree of input vertex v

For a cycle, which representation uses less space?

- ✓1. Adjacency list
 - 2. Adjacency matrix
 - 3. Equivalent

Adjacency List

Memory usage for graph G = (V, E):

- array of size |V|
- array lists of size deg(v)

Total: O(|V| + |E|)

Memory usage for graph G = (V, E):

• matrix of size |V|*|V|

Total: $O(|V|^2)$

	0	1	2	3	4	5
0	0	0	0	0	1	1
1	0	0	1	1	1	0
2	0	1	0	0	0	0
3	0	1	0	0	0	0
4	1	1	0	0	0	0
5	1	0	0	0	0	0

For a complete graph, which representation uses asymptotically less space?

- 1. Adjacency matrix
- 2. Adjacency list
- Equivalent

Memory usage for graph G = (V, E):

- array of size |V|
- array lists of size deg(v)

Total: O(|V| + |E|)

Since for a complete graph: $|E| = \Theta(|V|^2)$

Total: $O(|V|^2)$

If space usage is at a premium and |E| is much smaller than $|V|^2$, consider using an adjacency list.

If space usage is at a premium and |E| is much smaller than $|V|^2$, consider using an adjacency list.

If we need to compute something like PageRank, adjacency matrix is the way to go.

If space usage is at a premium and |E| is much smaller than $|V|^2$, consider using an adjacency list.

If we need to compute something like PageRank, adjacency matrix is the way to go.

Other choices will depend on what graph algorithm we use.

Trade-offs

Adjacency Matrix:

- Fast query: are v and w neighbors?
- Slow query: find me any neighbor of v.
- Slow query: enumerate all neighbors.

Adjacency List:

- Fast query: find me any neighbor.
- Fast query: enumerate all neighbors.
- Slower query: are v and w neighbors?

Edge List

Graph consists of:

Nodes: stored in an array

Edges: array as long as degree of node

(5, 0) (4, 0) (1, 4) (1, 2) (1, 3) (3, 1)

Given some node ID, how long will it take to print out all the neighbouring IDs?

- 1. O(1)
- 2. O(deg(v))
- 3. O(V)
- 4. O(E)

V = number of vertices/nodes

E = number of edges

deg(v) = degree of input vertex v

Given two nodes x, y. Determining whether x and y are neighbours takes:

- 1. O(1)
- 2. $O(\min(\deg(x), \deg(y)))$
- 3. O(V)
- 4. O(E)

```
V = number of vertices/nodesE = number of edgesdeg(v) = degree of input vertex v
```

Edge List

Graph consists of:

Nodes: stored in an array

Edges: array as long as degree of node

Space usage:

O(|E|)

(5, 0) (4, 0) (1, 4) (1, 2) (1, 3) (3, 1)

Edge List

Graph consists of:

Nodes: stored in an array

Edges: array as long as degree of node

Space usage:

O(|E|)

Will later see an algorithm where this is best representation.

(5, 0) (4, 0) (1, 4) (1, 2) (1, 3) (3, 1)

Goal:

- Start at some vertex s = start.
- Find some other vertex \mathbf{f} = finish.

Or: visit all the nodes in the graph;

Two basic techniques:

- Breadth-First Search (BFS)
- Depth-First Search (DFS)

Assume:

For **n** nodes, the node IDs are in the range [0, n-1]

BFS & DFS

Simple, but very, very important:

Recent* conversation with CS2109S instructor (Introduction to AI and Machine Learning):

"It is really, really important that every student who take CS2109S can easily code up a simple BFS or DFS. Critical foundation before we can do anything more interesting."

Breadth-First Search:

Explore level by level

2 x 2 x 2 Rubik's Cube

Geography of Rubik's configurations:

reachable in two moves, but not one

Breadth-First Search:

- Explore level by level
- Frontier: current level
- Initially: {s}

Advance frontier.

Don't go backward!

Finds <u>shortest</u> paths.

Breadth-First Search:

- Build levels.
- Calculate level[i] from level[i-1]

Pseudocode:

- 1. Set queue to contain only source node.
- 2. while queue is not empty.
 - a. Take next node out of queue.
 - b. Go through all neighbours of node
 - c. If they have already been visited, skip.
 - d. Otherwise, mark them as visited, enqueue them as well.

First in first out

Pseudocode:

- 1. Set queue to contain only source node.
- 2. while queue is not empty.
 - a. Take next node out of queue.
 - b. Go through all neighbours of node
 - c. If they have already been visited, skip.
 - d. Otherwise, mark them as visited, enqueue them as well.

Operation on our graph data structure

Pseudocode:

- 1. Set queue to contain only source node.
- 2. while queue is not empty.
 - a. Take next node out of queue.
 - b. Go through all neighbours of node
 - c. If they have already been visited, skip.
 - d. Otherwise, mark them as visited, enqueue them as well.

Which data structure should we use to go through all neighbours?

- Adjacency list
- 2. Adjacency matrix
- 3. Edge list
- 4. Node list

Checking whether a node has been visited.

Pseudocode:

- 1. Set queue to contain only sourde node.
- 2. while queue is not empty.
 - a. Take next node out of quele.
 - b. Go through all neighbours of node
 - c. If they have already been visited, skip.
 - d. Otherwise, mark them as visited, enqueue them as well.

Which data structure should we use to check for being visited?

- ArrayList
 - 2. Hashtable
 - 3. Balanced BST
 - 4. Priority Queue
 - 5. Stack
 - 6. Queue

Recall:

Assume:

For **n** nodes, the node IDs are in the range [0, n-1]

Recall:

Assume:

For **n** nodes, the node IDs are in the range [0, n-1]

true	true	false	true	false	true
------	------	-------	------	-------	------

Recall:

Assume:

For **n** nodes, the node IDs are in the range [0, n-1]

Recall:

Assume:

For **n** nodes, the node IDs are in the range [0, n-1]

Recall:

Assume:

For **n** nodes, the node IDs are in the range [0, n-1]

Pseudocode:

- 1. Set queue to contain only source node.
- 2. while queue is not empty.
 - a. Take next node out of queue.
 - b. Go through all neighbours of node
 - c. If they have already been visited, skip.
 - d. Otherwise, mark them as visited, enqueue them as well.

When queue is empty, check whether destination node was marked as visited.

```
1 void bfs(ArrayList<ArrayList<Integer>> adjacency list, int src, int dst){
     int num nodes = adjacency list.size();
    Oueue<Integer> queue = new LinkedList<>();
 4
                                                             initial state
 5
     // values defaulted to false
    boolean[] visited = new boolean[num nodes];
    queue.add(src);
    visited[src] = true;
    while(!queue.isEmpty()){
10
11
      int current node = queue.poll();
      for(int neighbour node : adjacency list.get(current node)){
12
         if(visited[neighbour node]){
13
           continue;
14
15
         visited[neighbour node] = true;
16
         queue.offer(neighbour node);
17
18
19
     return visited[dst];
20
21 }
22
```

```
1 void bfs(ArrayList<ArrayList<Integer>> adjacency list, int src, int dst){
     int num nodes = adjacency list.size();
    Oueue<Integer> queue = new LinkedList<>();
 4
                                                            next node to
 5
    // values defaulted to false
    boolean[] visited = new boolean[num nodes];
                                                            consider
 7
 8
    queue.add(src);
    visited[src] = true;
 9
    while(!queue.isEmpty()){
10
      int current node = queue.poll();
11
      for(int neighbour node . adjacency list.get(current node)){
12
        if(visited[neighbour node]){
13
           continue;
14
15
        visited[neighbour node] = true;
16
        queue.offer(neighbour node);
17
18
19
     return visited[dst];
20
21 }
22
```

```
1 void bfs(ArrayList<ArrayList<Integer>> adjacency list, int src, int dst){
     int num nodes = adjacency_list.size();
    Oueue<Integer> queue = new LinkedList<>();
 4
                                                            go through all
 5
    // values defaulted to false
    boolean[] visited = new boolean[num nodes];
                                                            neighbours
 7
 8
    queue.add(src);
    visited[src] = true;
 9
     while(!queue.isEmpty()){
10
       int current node = queue.poll();
11
12
      for(int neighbour node : adjacency list.get(current node)){
        if(visited[neighbour node]){
13
           continue;
14
15
        visited[neighbour node] = true;
16
17
        queue.offer(neighbour node);
18
19
     return visited[dst];
20
21 }
22
```

```
1 void bfs(ArrayList<ArrayList<Integer>> adjacency list, int src, int dst){
     int num nodes = adjacency list.size();
    Queue<Integer> queue = new LinkedList<>();
 4
                                                             skip if visited
 5
    // values defaulted to false
    boolean[] visited = new boolean[num nodes];
 6
 7
 8
    queue.add(src);
 9
    visited[src] = true;
    while(!queue.isEmpty()){
10
       int current node = queue.poll();
11
      for(int neighbour node : adjacency_list.get(current_node)){
12
         if(visited[neighbour_node]){
13
           continue;
14
15
16
        visited|neighbour node| = true;
         queue.offer(neighbour node);
17
18
19
     return visited[dst];
20
21 }
22
```

```
1 void bfs(ArrayList<ArrayList<Integer>> adjacency list, int src, int dst){
    int num nodes = adjacency list.size();
    Queue<Integer> queue = new LinkedList<>();
 4
                                                           otherwise mark as
 5
    // values defaulted to false
    boolean[] visited = new boolean[num nodes];
                                                           visited, enqueue
 7
                                                           neighbour node
 8
    queue.add(src);
    visited[src] = true;
 9
    while(!queue.isEmpty()){
10
      int current node = queue.poll();
11
      for(int neighbour node : adjacency list.get(current node)){
12
        if(visited[neighbour node]){
13
          continue;
14
15
        visited[neighbour node] = true;
16
17
        queue.offer(neighbour node);
18
19
    return visited[dst];
20
21 }
22
```

```
1 void bfs(ArrayList<ArrayList<Integer>> adjacency list, int src, int dst){
    int num nodes = adjacency_list.size();
    Queue<Integer> queue = new LinkedList<>();
 4
 5
    // values defaulted to false
    boolean[] visited = new boolean[num nodes];
 7
 8
    queue.add(src);
    visited[src] = true;
 9
    while(!queue.isEmpty()){
10
      int current node = queue.poll();
11
      for(int neighbour node : adjacency list.get(current node)){
12
        if(visited[neighbour node]){
13
          continue;
14
15
        visited[neighbour node] = true;
16
        queue.offer(neighbour node);
17
18
                                                 check whether dst
19
    return visited[dst];
20
                                                 was visited
21
22
```



```
Red = active frontier
Purple = next
Gray = visited
Blue = unvisited
```



```
Red = active frontier
Purple = next
Gray = visited
Blue = unvisited
```



```
Red = active frontier
Purple = next
Gray = visited
Blue = unvisited
```


Red = active frontier Purple = next

Gray = visited


```
Red = active frontier
Purple = next
```

Gray = visited


```
Red = active frontier
Purple = next
```

Gray = visited

Red = active frontier
Purple = next
Gray = visited
Blue = unvisited


```
Red = active frontier
Purple = next
Gray = visited
Blue = unvisited
```



```
Red = active frontier
Purple = next
Gray = visited
Blue = unvisited
```



```
Red = active frontier
Purple = next
Gray = visited
Blue = unvisited
```


Red = active frontier Purple = next Gray = visited


```
Red = active frontier
Purple = next
Gray = visited
Blue = unvisited
```



```
Red = active frontier
Purple = next
Gray = visited
Blue = unvisited
```



```
Red = active frontier
Purple = next
Gray = visited
Blue = unvisited
```

When does BFS fail to visit every node?

- 1. In a clique.
- 2. In a cycle.
- In a graph with two components.
- 4. In a sparse graph.
- 5. In a dense graph.
- 6. Never.

BFS on Disconnected Graph

Example:

The running time of BFS (using adjacency list) is:

- 1. O(V)
- 2. O(E)
- \checkmark 3. O(V+E)
 - 4. O(VE)
 - 5. (V^2)
 - 6. I have no idea.

Pseudocode:

- 1. Set queue to contain only source node.
- 2. while queue is not empty.
 - a. Take next node out of queue.
 - b. Go through all neighbours of node
 - c. If they have already been visited, skip.
 - d. Otherwise, mark them as visited, enqueue them as well.

When queue is empty, check whether destination node was marked as visited.

Analysis:

- Claim: Every node is enqueued and dequeued once.
- Claim: Every edge is visited at most twice.

Analysis:

- Claim: Every node is enqueued and dequeued once.
- Claim: Every edge is visited at most twice.

Easy way to see this:

When a node is first visited, we iterate through its neighbour list.

Analysis:

- Claim: Every node is enqueued and dequeued once.
- Claim: Every edge is visited at most twice.

Analysis:

- Claim: Every node is enqueued and dequeued once.
- Claim: Every edge is visited at most twice.

correction from lecture: every edge is visited at most once

Analysis:

- Claim: Every node is enqueued and dequeued once.
- Claim: Every edge is visited at most once.

Total cost:

deg(0) + deg(1) + ... + deg(n - 1)

The sum of all node degrees in any graph is:

- 1. O(V)
- **₹.** O(E)
- 3. O(VE)
- 4. (V^2)
- 5. I have no idea.

Handshake lemma

addition from lecture:

Analysis:

- Claim: Every node is enqueued and dequeued once.
- Claim: Every edge is visited at most once.

Total cost:

deg(0) + deg(1) + ... + deg(n - 1)

Based on claim:

Cost is O(V + E)

What if we wanted to know what is the shortest path from any node to node 0?

Pseudocode:

- 1. Set queue to contain only source node.
- 2. while queue is not empty.
 - a. Take next node out of queue.
 - b. Go through all neighbours of node
 - c. If they have already been visited, skip.
 - d. Otherwise, mark them as visited, enqueue them as well.
 - e. (New step) Set neighbour's parent to be node

addition from lecture: this is the shortest path graph

Which is true? (More than one may apply.)

- 1. Shortest path graph is a cycle.
- ✓2. Shortest path graph is a tree.
 - 3. Shortest path graph has low-degree.
 - 4. Shortest path graph has low diameter.
 - 5. None of the above.

What if we wanted to know what is the **length of the** shortest path to any node from node 0?

Pseudocode:

- 1. Set queue to contain only source node.
- 2. while queue is not empty.
 - a. Take next node out of queue.
 - b. Go through all neighbours of node
 - c. If they have already been visited, skip.
 - d. Otherwise, mark them as visited, enqueue them as well.
 - e. (New step) Set neighbour's parent to be node
 - f. (New step) Set neighbour's distance to be node's distance + 1

Goal:

- Start at some vertex s = start.
- Find some other vertex $\mathbf{f} = \text{finish}$.

Or: visit **all** the nodes in the graph;

Two basic techniques:

- Breadth-First Search (BFS)
- Depth-First Search (DFS)

Graph representation:

Adjacency list

Depth-First Search

Exploring a maze:

- Follow path until stuck.
- Backtrack along breadcrumbs until reach unexplored neighbor.
- Recursively explore.

Depth-First Search:

- Follow path until you get stuck
- Backtrack until you find a new edge
- Recursively explore it
- Don't repeat a vertex.

Depth-First Search:

- Follow path until you get stuck
- Backtrack until you find a new edge
- Recursively explore it

Don't repeat a vertex.

Depth-First Search:

- Follow path until you get stuck
- Backtrack until you find a new edge
- Recursively explore it
- Don't repeat a vertex.

Depth-First Search

```
1 void dfs(ArrayList<ArrayList<Integer>> adjacency list, int src, int dst){
   int num nodes = adjacency list.size();
    Stack<Integer> stack = new LinkedList<>();
 3
 4
 5
    // values defaulted to false
                                                        Just change
    boolean[] visited = new boolean[num nodes];
7
    stack.push(src);
                                                        it to a stack
8
    visited[src] = true;
    while(!stack.isEmpty()){
10
11
      int current node = stack.pop();
12
      for(int neighbour node : adjacency list.get(current node)){
13
        if(visited[neighbour node]){
14
          continue;
15
        visited[neighbour node] = true;
16
17
        queue.push(neighbour node);
18
19
20
    return visited[dst];
21 }
22
```



```
Red = active frontier
Purple = next
Gray = visited
Blue = unvisited
```


Red = active frontier
Purple = next
Gray = visited
Blue = unvisited


```
Red = active frontier
Purple = next
Gray = visited
Blue = unvisited
```



```
Red = active frontier
Purple = next
Gray = visited
Blue = unvisited
```



```
Red = active frontier
Purple = next
Gray = visited
Blue = unvisited
```



```
Red = active frontier
Purple = next
Gray = visited
Blue = unvisited
```



```
Red = active frontier
Purple = next
Gray = visited
```

Blue = unvisited


```
Red = active frontier
Purple = next
Gray = visited
Blue = unvisited
```



```
Red = active frontier
Purple = next
Gray = visited
Blue = unvisited
```



```
Red = active frontier
Purple = next
Gray = visited
Blue = unvisited
```



```
Red = active frontier
Purple = next
Gray = visited
Blue = unvisited
```



```
Red = active frontier
Purple = next
```

Gray = visited

Blue = unvisited


```
Red = active frontier
Purple = next
Gray = visited
Blue = unvisited
```



```
Red = active frontier
Purple = next
Gray = visited
Blue = unvisited
```



```
Red = active frontier
Purple = next
Gray = visited
Blue = unvisited
```



```
Red = active frontier
Purple = next
Gray = visited
Blue = unvisited
```



```
Red = active frontier
Purple = next
Gray = visited
Blue = unvisited
```

DFS parent edges

Red = Parent Edges
Purple = Non-parent edges

Which is true? (More than one may apply.)

- 1. DFS parent graph is a cycle.
- . DFS parent graph is a tree.
 - 3. DFS parent graph has low-degree.
 - 4. DFS parent graph has low diameter.
 - 5. None of the above.

DFS parent edges = tree

Red = Parent Edges
Purple = Non-parent edges

Note: not shortest paths!

The running time of DFS (using an adjacency list) is:

- 1. O(V)
- 2. O(E)
- \checkmark 3. O(V+E)
 - 4. O(VE)
 - 5. $O(V^2)$
 - 6. I have no idea.

Depth-First Search

Analysis:

DFS visits each node at most once.

DFS enumerates each neighbour at most once.

If the graph is stored as an adjacency matrix, what is the running time of DFS?

- 1. O(V)
- 2. O(E)
- 3. (V+E)
- 4. O(VE)
- \checkmark 5. $O(V^2)$
 - 6. $O(E^2)$

Graph Search

BFS and DFS are the similar algorithms:

- BFS: use a queue
 - Every time you visit a node, add all unvisited neighbors to the queue.

- DFS: use a stack
 - Every time you visit a node, add all unvisited neighbors to the stack.

How do we visit every node?

How do we count connected components?

Example:

Idea:

Try BFS from node 0 to n - 1

Trying node 0

false	false	false	false	false	false
0	1	2	3	4	5

Idea:

Try BFS from node 0 to n - 1

Trying node 0

new component!

false	false	false	false	false	false
0	1	2	3	4	5

Idea:

Try BFS from node 0 to n - 1

Trying node 0

true	false	false	false	false	false
0	1	2	3	4	5

Idea:

Try BFS from node 0 to n - 1

Trying node 0

true	true	false	true	false	false
0	1	2	3	4	5

Idea:

Try BFS from node 0 to n - 1

BFS done!

true	true	false	true	false	false
0	1	2	3	4	5

Idea:

Try BFS from node 0 to n - 1

Trying node 1

true	true	false	true	false	false
0	1	2	3	4	5

Idea:

Try BFS from node 0 to n - 1

Trying node 1

Idea:

Try BFS from node 0 to n - 1

Trying node 2

true	true	false	true	false	false
0	1	2	3	4	5

Idea:

Try BFS from node 0 to n - 1

Trying
node 2
new
component!

Idea:

Try BFS from node 0 to n - 1

Trying node 2

true	true	true	true	false	false
0	1	2	3	4	5

Idea:

Try BFS from node 0 to n - 1

Trying node 2

true	true	true	true	true	true
0	1	2	3	4	5

Idea:

Try BFS from node 0 to n - 1

Trying node 3

true	true	true	true	true	true
0	1	2	3	4	5

Idea:

Try BFS from node 0 to n - 1

Trying node 4

true	true	true	true	true	true
0	1	2	3	4	5

Idea:

Try BFS from node 0 to n - 1

Trying node 5

true	true	true	true	true	true
0	1	2	3	4	5

Roadmap

Today: Graph Basics

- What is a graph?
- Modeling problems as graphs.
- Graph representations (list vs. matrix)
- Searching graphs (DFS / BFS)

Shortest Pathfinding for Unweighted Graphs