BAC S2 2004 1er groupe

EXERCICE 1

Soit (Un) $n \in \mathbb{N}$ la suite géométrique de premier terme $U_0 = 4$, de raison $\frac{1}{2}$.

Soit (Vn) $n \in \mathbb{N}$ la suite arithmétique de premier terme $V_0 = \frac{\pi}{4}$, de raison $\frac{\pi}{2}$.

Pour tout entier naturel n, on note \mathbb{Z}_n le nombre complexe de module \mathbb{U}_n et dont un argument est $\mathbb{V}n$.

- 1°) a) Exprimer Un et Vn en fonction de n.
- **b)** En déduire Z_n .
- **2°)** Démontrer que (Z_n) est une suite géométrique de raison $\frac{1}{2}i$ et de premièr terme $Z_0 = 2\sqrt{2} + i 2\sqrt{2}$.
- **3°)** Soit (P) le plan complexe rapporté à un repère ortho normal direct $(0, \overrightarrow{u}, \overrightarrow{v})$ et M_n le point d'affixe Z_n .
- **a)** Déterminer la nature de la transformation F qui au point M_n associe le point M_{n+1} d'affixe Z_{n+1} .
- b) Donner ses éléments caractéristiques.
- 4°) Pour tout entier naturel n, on pose Zn = z0 z1 z2.... zn.
- a) Exprimer en fonction de n un argument de Zn.
- b) Démontrer que si n est impair, alors Zn est réel.

EXERCICE 2

Un porte-monnaie contient quatre pièces de 500 F CFA et six pièces de 200 F CFA. Un enfant tire au hasard et simultanément 3 pièces de ce porte-monnaie.

- 1°) Calculer la probabilité de l'événement A : « tirer trois pièces de 500F ».
- **2°)** soit X la variable aléatoire égale au nombre de pièces de 500F figurant parmi les trois pièces tirées.
- a) Déterminer la loi de probabilité de X.
- b) Calculer l'espérance mathématique et l'écart-type de X.

3°) L'enfant répète cinq fois l'expérience en remettant chaque fois les trois pièces tirées dans le porte-monnaie.

Quelle est la probabilité que l'événement A se réalise trois fois à l'issue des cinq tirages ?

PROBLEME

Soit f la fonction définie par :
$$f(x) = \frac{(2x-1)e^x - 2x + 2}{e^x - 1}$$

- 1°) Déterminer l'ensemble de définition Df de la fonction f et trouver les trois réels
- a, b et c tels que pour tout x de Df, on ait $f(x) = ax + b + e^{x} 1$
- 2°) Déterminer les limites de f aux bornes de Df.
- 3°) a) Déterminer la fonction dérivée de f.
- **b)** Résoudre dans R l'équation : $2e^{2x} 5e^x + 2 = 0$.
- c) En déduire le sens de variation de f et dresser le tableau de variation de f.
- **4°)** On appelle (C) la représentation graphique de la fonction f dans un plan muni d'un repère ortho normal $(0,\vec{\imath},\vec{\jmath})$ dont l'unité est 2 cm.
- Démontrer que les droites d'équations respectives y=2x-1 et y=2x-2 sont des asymptotes de (C) respectivement en $+\infty$ et $-\infty$.

Préciser l'autre asymptote.

- **5°)** Soit x un réel de Df .On considère les deux points M et M ' de (C) d'abscisses respectives x et -x. Déterminer les coordonnées du milieu Ω du segment [M M '] . Que peut-on en déduire pour la courbe (C) ?
- 6°) Tracer la courbe (C).
- **7°) a)** Trouver les réels α et β tels que, pour tout réel x de l'ensemble Df on ait :

$$f(x) = 2x + \alpha + \frac{\beta e^x}{e^x - 1}.$$

b) Soit k un réel supérieur ou égal à 2.

Déterminer l'aire A(k) en cm2 de l'ensemble des points du plan dont les coordonnées (x ;y) vérifient : $\ln 2 \le x \le \ln k \ et \ 2x - 1 \le y \le f(x)$.

c) Calculer $\lim_{k \to +\infty} A(k)$.

