ShapeConv: 面向室内 RGB-D 语义分割的形状感知卷积 层(2021)

2022.11.22

1 技术核心

RGB-D 语义分割中,现有的方法大多采用 homogeneous convolution(所有的卷积核大小一致的标准卷积)来消耗 RGB 和深度特征,忽略了它们的内在差异。

RGB 值捕获了投影图像空间中的光影外观属性,而深度特征编码了局部几何形状以及在更大背景下的位置,与位置相比,形状可能更具有内在性,与语义的联系更强,因此对分割的准确性更关键。

Figure 1. Visual demonstration of why the *shape* of an RGB-D image matters. Regarding the images on the top, lines with the same color share a same *shape*, yet with different *base*. The corresponding patches are shown on the bottom.

图 1:

上图解释了不同 patch 的 shape 和 base 的不同,相同的颜色线条代表的部分属于同一个 shape,但是属于不同的 base,**base** 用来描述物体**在哪里**,而 **shape** 则描述物体**是什么**。

作者希望相同椅子的相同 patch 具有相同的特征,并且在学习过程中达到形状不变性(shape invariance)。当在相同 patch 中使用基础卷积算子时(vanilla convolution operator),由于其base 的差异,所得的特征会不同,从而阻碍了实现形状不变性。

因此,作者引入了 Shape-aware Convolutional layer(ShapeConv) 来处理深度特征,其中深度特征首先被分解为一个 shape 分量和一个 base 分量,然后引入了两个可学习权重来独立地配合他们,最后对这两个分量的加权组合进行卷积。

ShapeConv 是与模型无关的,可以集成到大多数 CNN 中,以取代用于语义分割的普通卷积层。

2 实施方法

2.1 ShapeConv for RGB-D Data

2.1.1 直觉法

给定输入 patch $\mathbb{P} \in R^{K_h \times K_w \times C_{in}}$, K_h 和 K_w 是通道的空间维数, C_{in} 代表输入特征图的通道数, 普通卷积的输出特征通过以下方法得到:

$$\mathbb{F} = Conv(\mathbb{K}, \mathbb{P}) \tag{1}$$

如图 2(a)所示,其中, $\mathbb{K} \in R^{K_h \times K_w \times C_{in} \times C_{out}}$ 代表卷积层中通道的可学习参数; C_{out} 代表输出特征图的通道数。 $\mathbb{F} \in R_{C_{out}}$ 的每个元素可由下式计算:

$$\mathbb{F}_{C_{out}} = \sum_{i}^{K_h \times K_w \times C_{in}} (\mathbb{K}_{i,C_{out}} \times \mathbb{P}_i)$$

由上式可以很容易看出 \mathbb{F} 随 \mathbb{P} 的不同值而变化,由普通卷积层学习到的相关的输出特征为 $\mathbb{F}_{\mathbb{F}} = Conv(\mathbb{K}, \mathbb{P}_{\mathbb{F}})$, $\mathbb{F}_{\mathbb{F}} = Conv(\mathbb{K}, \mathbb{P}_{\mathbb{F}})$, 由于 $\mathbb{P}_{\mathbb{F}}$ 和 $\mathbb{P}_{\mathbb{F}}$ 不同(距观测点的位置不同,即 base 不同),因此他们的特征不同,可能会导致不同的预测结果。

但是 $\mathbb{P}_{\mathbb{P}}$ 和 $\mathbb{P}_{\mathbb{P}}$,在图 1 的 patch 中(红色区域),属于同一个种类——椅子。普通卷积不能很好地处理这种情况。鉴于此,作者提出通过对 RGB-D 语义分割中 shape 的有效建模来填补这一空白。

2.1.2 ShapeConv Formulation

基于上述分析,本文提出将输入 patch 分解为两个分量:表示 patch 所在位置的 base 分量 \mathbb{P}_B 和表示 patch 所在位置的 shape 分量 \mathbb{P}_S 。因此,我们取 patch 得均值为 \mathbb{P}_B ,其相对值为 \mathbb{P}_S :

$$\mathbb{P}_B = m(\mathbb{P})$$
$$\mathbb{P}_S = \mathbb{P} - m(\mathbb{P})$$

这里 $m(\mathbb{P})$ 是 \mathbb{P} 上的均值函数 $\mathbb{P}_B \in R^{1 \times 1 \times C_{in}}$, $\mathbb{P}_S \in R^{K_h \times K_w \times C_{in}}$ 。 ShapeConv 引入了两个可学习权重 $\mathbb{W}_B \in R^1$ 以及 $\mathbb{W}_S \in R^{K_h \times K_w \times K_h \times K_w \times C_{in}}$,来分别对应 base 和 shape 分量,并将输出的特征采用逐元素相加的方法进行组合,形成与原始 \mathbb{P} 大小相同的 shape-aware patch。 ShapeConv 的公式由下式给出:

$$\mathbb{F} = ShapeConv(\mathbb{K}, \mathbb{W}_B, \mathbb{W}_S, \mathbb{P})
= Conv(\mathbb{K}, \mathbb{W}_B \Diamond \mathbb{P}_B + \mathbb{W}_S * \mathbb{P}_S)
= Conv(\mathbb{K}, \mathbf{P}_B + \mathbf{P}_S)
= Conv(\mathbb{K}, \mathbf{P}_{BS})$$
(2)

其中, ◇ 以及*分别代表 base-product 和 shape-product 操作, 他们各自的定义为下式:

$$\begin{cases}
\mathbf{P}_{\mathbf{B}} = \mathbb{W}_{B} \Diamond \mathbb{P}_{B} \\
\mathbf{P}_{B_{1,1,c_{in}}} = \mathbb{W}_{B} \times \mathbb{P}_{B_{1,1,c_{in}}}
\end{cases}$$
(3)

$$\begin{cases}
\mathbf{P_{S}} = \mathbb{W}_{S} * \mathbb{P}_{S} \\
\mathbf{P}_{S_{k_{h},k_{w},c_{in}}} = \sum_{i}^{K_{h} \times K_{w}} (\mathbb{W}_{S_{i,k_{h},k_{w},c_{in}}} \times \mathbb{P}_{S_{i,c_{in}}})
\end{cases}$$
(4)

其中, c_{in} , k_h , k_w , 分别代表 C_{in} , K_h , K_w 维度中元素的索引。

作者通过将 $\mathbf{P_B}$ 与 $\mathbf{P_S}$ 相加的方式构造 shape-aware patch $\mathbf{P_{BS}} \in R^{K_h \times K_w \times C_{in}}$

2.2 ShapeConv in Training and Inference

2.2.1 训练阶段

ShapeConv 可以有效地利用 patch 中的 shape 信息,但是由于公式(3)(4)中的两个乘积运算,用 ShapeConv 代替 cnn 中的普通卷积层会带来更多的计算成本。为了解决这个问题,作者将这两个操作从 patch 转移到卷积核中。

$$\begin{cases} \mathbf{K}_{\mathbf{B}} = \mathbb{W}_{B} \lozenge \mathbb{K}_{B} \\ \mathbf{K}_{B_{1,1,c_{in},c_{out}}} = \mathbb{W}_{B} \times \mathbb{K}_{B_{1,1,c_{in},c_{out}}} \end{cases}$$

$$\begin{cases} \mathbf{K}_{\mathbf{S}} = \mathbb{W}_{S} * \mathbb{K}_{S} \\ \mathbf{K}_{S_{k_{h},k_{w},c_{in},c_{out}}} = \sum_{i}^{K_{h} \times K_{w}} (\mathbb{W}_{S_{i,k_{h},k_{w},c_{in}}} \times \mathbb{K}_{S_{i,c_{in},c_{out}}}) \end{cases}$$

这里的 $\mathbb{K}_B \in R^{1 \times 1 \times C_{in} \times C_{out}}$, $\mathbb{K}_S \in R^{K_h \times K_w \times C_{in} \times C_{in}}$,它们分别代表卷积核中的 base-component 和 shape-component, $\mathbb{K} = \mathbb{K}_B + \mathbb{K}_S$ 。

因此可以重新构造 ShapeConv:

$$\mathbb{F} = ShapeConv(\mathbb{K}, \mathbb{W}_B, \mathbb{W}_S, \mathbb{P})
= Conv(\mathbb{W}_B \lozenge m(\mathbb{K}) + \mathbb{W}_S * (\mathbb{K} - m(\mathbb{K})), \mathbb{P})
= Conv(\mathbb{W}_B \lozenge \mathbb{K}_B + \mathbb{W}_S * \mathbb{K}_S, \mathbb{P})
= Conv(\mathbf{K}_B + \mathbf{K}_S, \mathbb{P})
= Conv(\mathbf{K}_{BS}, \mathbb{P})$$
(5)

其中, $m(\mathbb{K})$ 是 \mathbb{K} (除以 $K_h \times K_w$ 维数)上的均值函数, $\mathbf{K}_{BS} = \mathbf{K}_B + \mathbf{K}_S$, $\mathbf{K}_{BS} \in R^{K_h \times K_w \times C_{in} \times C_{out}}$ 。 事实上,公式(2)和公式(5)在数学上等价,即:

$$\mathbb{F} = ShapeConv(\mathbb{K}, \mathbb{W}_B, \mathbb{W}_S, \mathbb{P})
= Conv(\mathbb{K}, \mathbf{P}_{BS})
= Conv(\mathbf{K}_{BS}, \mathbb{P})$$
(6)

$$\mathbb{F}_{c_{out}} = \sum_{i}^{K_h \times K_w \times C_{in}} (\mathbb{K}_{i,c_{out}} \times \mathbf{P}_{\mathbf{BS}_i})$$

$$= \sum_{i}^{K_h \times K_w \times C_{in}} (\mathbf{K}_{\mathbf{BS}_i,c_{out}} \times \mathbb{P}_i)$$
(7)

在图 2 (b) 和 (c) 所示的实现中利用等式 5 中的形状转换。

Figure 2. Comparison of vanilla convolution and ShapeConv within a patch \mathbb{P} . In this figure, $K_h = K_w = 2$, $C_{in} = 3$, and $C_{out} = 2$, "+" denotes element-wise addition. (a) Vanilla convolution with kernel \mathbb{K} ; (b) ShapeConv with folding the \mathbb{W}_B and \mathbb{W}_S into \mathbf{K}_{BS} ; (c) The computation of \mathbf{K}_{BS} from \mathbb{K} , \mathbb{W}_B and \mathbb{W}_S .

图 2:

2.2.2 推理阶段

由于两个附加权重 \mathbb{W}_B 和 \mathbb{W}_S 固定,因此可以将它融合为 \mathbb{K}_{BS} :

$$\mathbf{K}_{BS} = \mathbb{W}_B \lozenge \mathbb{K}_B + \mathbb{W}_S * \mathbb{K}_S \tag{8}$$

 K_{BS} 与等式 1 中的 \mathbb{K} 具有相同的张量大小,因此,ShapeConv 实际上与图 2 (a) 中的普通卷积层相同。

2.3 ShapeConv 增强型网络架构

为了在语义分割中利用高级模型架构,首先需要通过 RGB 和 D 信息的级联将输入特征从 RGB 图像转换为 RGB-D 数据。在实际中,D 可以是深度值或 HHA 图像 (HHA 即将深度图像 转换为三种不同的通道 (水平差异,对地高度以及表面法向量的角度)),然后在,模型主干和分割阶段都使用 ShapeConv 替换普通卷积。

图 3:

Architecture	Back	Setting	Pixel	Mean	Mean	f.w.
	bone		Acc.(%)	Acc.(%)	IoU.(%)	IoU.(%)
Deeplabv3+	Res	Baseline	73.4	58.9	45.9	59.7
	Net	Ours	74.5	59.5	47.4	60.8
	101	+	1.1	0.6	1.5	1.1
	Res	Baseline	73.1	57.7	45.6	59.2
	Net	Ours	74.1	59.1	47.3	60.5
	50	+	1.0	1.4	1.7	1.3
Deeplabv3	Res	Baseline	73.3	57.3	45.1	59.2
	Net	Ours	73.6	58.5	46.4	59.7
	101	+	0.3	1.2	1.3	0.5
	Res	Baseline	71.6	55.5	43.2	57.2
	Net	Ours	72.8	56.6	44.9	58.5
	50	+	1.2	1.1	1.7	1.3
UNet	Res	Baseline	70.9	54.7	42.1	57.7
	Net	Ours	72.3	56.5	43.9	58.8
	101	+	1.4	1.8	1.8	1.1
	Res	Baseline	70.0	51.7	39.7	55.5
	Net	Ours	70.8	54.1	42.0	56.9
	50	+	0.8	2.4	2.3	1.4
	Res	Baseline	72.8	56.8	44.2	58.9
	Net	Ours	73.3	59.2	46.3	59.6
PSPNet	101	+	0.5	2.4	2.1	0.7
[33]	Res	Baseline	71.1	53.6	42.0	56.7
	Net	Ours	72.0	56.2	44.0	57.7
	50	+	0.9	2.6	2.0	1.0
	Res	Baseline	72.8	57.3	44.7	59.1
	Net	Ours	73.6	58.4	45.9	60.0
FPN	101	+	0.8	1.1	1.2	0.9
18	Res	Baseline	70.3	52.8	40.9	56.0
	Net	Ours	71.5	54.9	42.8	57.5
	50	+	1.2	2.1	1.9	1.5

图 4: