Problem Set 2

Student: Brando Miranda

Problem 1 Please write your analysis on Problem 1 here

Problem 2 Please write your analysis on Problem 2 here

Problem 3 Please write your analysis on Problem 3 here

Problem 4 Please write your analysis on Problem 4 here a)

Lemma 1: Let $X_i = I_S[f_i]$, then $\mathbb{E}[X_i] = I[f]$ and by chebyshev's bound therefore:

$$Pr[|I_s[f_i] - I[f_i]| \ge \epsilon|] \le \frac{Var[X_i]}{\epsilon^2}$$

Proof: Let $X_i = I_S[f_i] = \frac{1}{n} \sum_{j=1}^n V(f_i, z_j)$, where z_j is the random samples/data and f_i is a non random (and fixed) function in \mathcal{H} . Then, if we take the expectation of X_i wrt to the distribution of z we get:

$$\mathbb{E}[X_i] = \mathbb{E}\left[\frac{1}{n}\sum_{j=1}^n V(f_i, z_j)\right] = \frac{1}{n}\sum_{j=1}^n \mathbb{E}[V(f_i, z_j)] = \mathbb{E}[V(f_i, z_j)] = I[f_i]$$

Thus, we can use chebyshev's and thus the following statement is true (concluding proof of lemma):

$$Pr[|I_s[f_i] - I[f_i]| \ge \epsilon|] \le \frac{Var[X_i]}{\epsilon^2}$$

Theorem: Given the conditions in the question, the the upper bound we are looking for is as follows:

$$Pr[\sup_{f \in \mathcal{H}} |I_s[f] - I[f]| \ge \epsilon|] \le \frac{N(c^2 - 2cM + M^2)^2}{n\epsilon^2}$$

Proof: If the largest difference between the empirical risk and the expected risk is larger than ϵ , then that means that the defect (i.e. difference of empirical risk and generalization error) of one of the functions in this finite set is larger than ϵ . i.e. At least one of the defects is larger than ϵ . In equations it reads as follows:

$$Pr[\sup_{f \in \mathcal{H}} |I_s[f] - I[f]| \ge \epsilon|] = Pr[\cup_{i=1}^N |I_s[f_i] - I[f_i]| \ge \epsilon|]$$

1

by the union bound:

$$Pr[\sup_{f \in \mathcal{H}} |I_s[f] - I[f]| \ge \epsilon|] \le \sum_{i=1}^N Pr[|I_s[f_i] - I[f_i]| \ge \epsilon|]$$

By Lemma 1 we know:

$$Pr[|I_s[f_i] - I[f_i]| \ge \epsilon|] \le \frac{Var[X_i]}{\epsilon^2}$$

Therefore using this upper bound we can further upper bound our equation above by:

$$\sum_{i=1}^{N} Pr[|I_{s}[f_{i}] - I[f_{i}]| \ge \epsilon|] \le \sum_{i=1}^{N} \frac{Var[I_{s}[f_{i}]]}{\epsilon^{2}}$$

Now if we can upper bound the variance, we are done.

$$Var[I_s[f_i]] = Var[\frac{1}{n} \sum_{i=1}^{n} V(f_i, z_j)]$$

Since the function f_i is fixed (i.e. it was NOT chosen based on the training data) and the only randomness involved is with selecting samples/data from z, then z is the only random variable. However, since its part of the training data and it was sampled in an iid way, then z's are independent. Which makes the cost functions $V(f_i, z_j)$ independent. Therefore, we can use the "linearity" of variance when the random variables are independent to yield the following statement:

$$Var[\frac{1}{n}\sum_{j=1}^{n}V(f_{i},z_{j})] = \frac{1}{n^{2}}\sum_{j=1}^{n}Var[V(f_{i},z_{j})] = \frac{1}{n}Var[V(f_{i},z_{j})]$$

Now lets use the definition variance to upper bound the above:

$$Var[V(f_i, z_i)] = \mathbb{E}[V(f_i, z_i)^2] - \mathbb{E}[V(f_i, z_i)]^2$$

To upper bound the above we need to upper bound $\mathbb{E}[V(f_i,z_j)^2]$ and lower bound $\mathbb{E}[V(f_i,z_j)]^2$.

It is easy to lower bound $\mathbb{E}[V(f_i, z_j)]^2$ because according to the question, it is the squared loss function, which can never be less than zero. Therefore, the lower bound is:

$$\mathbb{E}[V(f_i, z_i)]^2 \ge 0$$

To upper bound $\mathbb{E}[V(f_i, z_j)]^2$ we need to substitute in the definition of the squared loss function:

$$\mathbb{E}[V(f_i, z_i)^2] = \mathbb{E}[f_i(x)^2 - 2f_i(x)y + y^2]$$

Since $\sup_{x \in X} |f(x)| \leq C$ and the max value of any y is M, then we have:

$$\mathbb{E}[V(f_i, z_j)^2] \le \mathbb{E}[(C^2 - 2CM + M^2)^2] = (C^2 - 2CM + M^2)^2$$

Setting the terms we desired to be their maximum value and minimum value respectively, we get:

$$Var[V(f_i, z_j)] = \mathbb{E}[V(f_i, z_j)^2] - \mathbb{E}[V(f_i, z_j)]^2 \le (C^2 - 2CM + M^2)^2 - 0 = (C^2 - 2CM + M^2)^2$$

$$Var[V(f_i, z_i)] \le (C^2 - 2CM + M^2)^2$$

Yielding:

$$Var[I_s[f_i]] \le \frac{1}{n}(C^2 - 2CM + M^2)^2$$

However, our goal is to bound the following:

$$Pr[\sup_{f \in \mathcal{H}} |I_s[f] - I[f]| \ge \epsilon|] \le \sum_{i=1}^{N} \frac{Var[I_s[f_i]]}{\epsilon^2}$$

Now that we have an upper bound on the variance of the empirical risk, lets upper bound the desired probability:

$$Pr[\sup_{f \in \mathcal{H}} |I_s[f] - I[f]| \ge \epsilon|] \le \sum_{i=1}^{N} \frac{1}{n} \frac{(C^2 - 2CM + M^2)^2}{\epsilon^2} = \frac{N}{n} \frac{(C^2 - 2CM + M^2)^2}{\epsilon^2}$$

Yielding the desired upper bound.

Problem 5 (MATLAB) Please write your analysis on Problem 5 here