Álgebra Linear — Aula 18

Josefran de Oliveira Bastos

Universidade Federal do Ceará

Mostre que dado um vetor não nulo \overrightarrow{t} do \mathbb{R}^2 o conjunto $W = \{ \alpha \overrightarrow{t} : \alpha \in \mathbb{R} \}$ é o "menor" subespaço de \mathbb{R}^2 que contém \overrightarrow{t} .

Mostre que dado vetores não nulos \overrightarrow{t} e \overrightarrow{u} de \mathbb{R}^3 o conjunto

$$W = \{ \alpha \overrightarrow{t} + \beta \overrightarrow{u} : \alpha, \beta \in \mathbb{R} \}$$

é o "menor" subespaço de \mathbb{R}^3 que contém \overrightarrow{t} e \overrightarrow{u} .

Teorema 4.2.3

Seja $S=\{\overrightarrow{w}_1,\ldots,\overrightarrow{w}_r\}$ um conjunto não vazio de vetores num espaço vetorial V.

- 1. O conjunto W de todas as combinações lineares possíveis dos vetores em S é um subespaço de V.
- 2. O conjunto W acima é o "menor" subespaço de V que contém todos os vetores de S.

Qual é o menor subespaço de \mathbb{R}^3 que contém os vetores (1,1,0),(1,0,1) e (0,1,1)?

Conjunto gerador

Um espaço vetorial que é gerado por todas as combinações lineares dos vetores em um conjunto não vazio de vetores S é gerado por S. Em particular dizemos que os vetores em S geram esse espaço vetorial. Denotamos por $\operatorname{ger}\{S\}$ o espaço gerado por S.

Mostre que os conjuntos $S_1 = \{(1,0,0), (0,1,0), (0,0,1)\}$ e $S_2 = \{(0,1,1), (1,0,1), (1,1,0)\}$ geram o mesmo espaço vetorial.

Teorema 4.2.5

Sejam $S_1=\{\overrightarrow{w}_1,\ldots,\overrightarrow{w}_r\}$ e $S_2=\{\overrightarrow{u}_1,\ldots,\overrightarrow{u}_k\}$ conjuntos não vazios de um espaço vetorial V, então

$$ger\{S_1\} = ger\{S_2\}$$

se, e só se, cada vetor em S_1 é uma combinação linear dos vetores em S_2 , e cada vetor em S_2 é uma combinação linear dos vetores em S_1 .

Mostre que o conjunto $S=\{(1,0,0),(1,1,0),(2,1,0)\}$ não gera o $\mathbb{R}^3.$

Mostre que $S = \{(1,0,0), (1,1,0), (2,1,0), (0,0,1)\}$ gera o $\mathbb{R}^3.$

Mostre que $S = \{(1,0,0), (1,1,0), (2,1,0), (0,0,1)\}$ gera o \mathbb{R}^3 .

Pergunta

Por que $S \setminus \{(0,0,1)\}$ não gera \mathbb{R}^3 ?

Independência/Dependência linear

Seja $S=\{\overrightarrow{u}_1,\ldots,\overrightarrow{u}_r\}$ um conjunto não vazio de vetores num espaço vetorial V. Se a equação vetorial

$$k_1 \overrightarrow{u}_1 + \dots + k_r \overrightarrow{u}_r = 0$$

possuir infinitas soluções então dizemos que S é um conjunto linearmente dependente (L.D.). Caso contrário, se possuir apenas a solução trivial $k_1 = \cdots = k_r = 0$ dizemos que S é um conjunto linearmente independente (L.I.).

Mostre que os vetores canônicos do \mathbb{R}^3 são L.I.

Mostre que os polinômios

$$1, x, x^2, x^3, \dots, x^n$$

formam um conjunto linearmente independente em P_n .

Mostre que $S=\{(1,0,0),(1,1,0),(2,1,0),(0,0,1)\}$ é L.D.

Teorema 4.3.1

Um conjunto S de dois ou mais vetores é

- 1. L.D. se, e só se, pelo menos um dos vetores de S pode ser expresso como uma combinação linear dos demais vetores em S;
- 2. L.I se, e só se, nenhum vetor de S pode ser expresso como uma combinação linear dos demais vetores em S.

1.
$$S_1 = \{\overrightarrow{0}, \overrightarrow{t}_1, \dots, \overrightarrow{t}_r\};$$

- 1. $S_1 = \{\overrightarrow{0}, \overrightarrow{t}_1, \dots, \overrightarrow{t}_r\};$
- $2. \ S_2 = \{\overrightarrow{t}\};$

- 1. $S_1 = \{\overrightarrow{0}, \overrightarrow{t}_1, \dots, \overrightarrow{t}_r\};$
- $2. S_2 = \{\overrightarrow{t}\};$
- 3. $S_3 = \{\overrightarrow{t}_1, \overrightarrow{t}_2\};$

Teorema 4.3.2

- 1. Um conjunto finito que contenha $\overrightarrow{0}$ é L.D..
- 2. Um conjunto de exatamente um vetor é L.I. se, e só se, esse vetor não é $\overrightarrow{0}$.
- 3. Um conjunto de exatamente dois vetores é L.I. se, e só se, nenhum dos dois vetores é múltiplo do outro.

Mostre que $S=\{(1,0,0),(1,1,1),(2,1,0),\overrightarrow{t}\}$ é L.D.

Mostre que $S = \{(1,0,0), (1,1,1), (2,1,0), \overrightarrow{t}\}$ é L.D.

Teorema 4.3.3

Seja $S=\{\overrightarrow{u}_1,\ldots,\overrightarrow{u}_r\}$ um conjunto de vetores em \mathbb{R}^n . Se r>n então S é L.D..

As funções $f_1=x$ e $f_2=\sin x$ são L.I..

As funções $f_1=x$ e $f_2=\sin x$ são L.I..

Exemplo

As funções $g_1 = \sin 2x$ e $g_2 = \sin x \cos x$ são L.D..

Mostre que $f_1(x)=6, f_2(x)=3\sin^2 x$ e $f_3(x)=2\cos^2 x$ são L.D..

Pergunta

Como se joga batalha naval?

Pergunta

Como se joga batalha naval?

Pergunta

Como representamos um ponto no plano/espaço?

Considere o conjunto $S_1 = \{\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k}\}$ e $S_2 = \{(1,0,0), (1,1,0), (1,1,1)\}$. Escreva o vetor (1,2,3) como combinação linear dos vetores em cada conjunto.

Definição: Base (finita)

Seja V um espaço vetorial e $B\subseteq V$ um conjunto finito de vetores. Dizemos que B é uma base de V se

Definição: Base (finita)

Seja V um espaço vetorial e $B\subseteq V$ um conjunto finito de vetores. Dizemos que B é uma base de V se

1. *B* é L.I..

Definição: Base (finita)

Seja V um espaço vetorial e $B\subseteq V$ um conjunto finito de vetores. Dizemos que B é uma base de V se

- **1**. *B* é L.I..
- 2. B gera V.

O conjunto formado por vetores $e_i \in \mathbb{R}^n$ no qual somente a i-ésima entrada do vetor é igual a 1 e todas as demais iguais a 0 é chamado base canônica do \mathbb{R}^n .

Os vetores $1, x, \ldots, x^n$ são a base canônica do P_n .

O conjunto matrizes $m \times n$

$$B = \{M_{ij}\}_{i \in [m]; j \in [n]},$$

no qual apenas $(M_{ij})_{ij}=1$ e todas as demais posições são nulas é a base canônica do espaço vetorial das matrizes $m\times n$.

Qual a base do espaço vetorial $\{\overrightarrow{0}\}$?

Exemplo

O espaço P_{∞} tem uma base finita?

Exemplo

Suponha que $B = \{b_1, b_2, b_3\}$ é uma base do \mathbb{R}^3 . De quantas formas distintas podemos escrever um vetor v como combinação linear dos vetores em B?

Teorema 4.4.1

Se $B=\{b_1,\dots,b_r\}$ uma base de um espaço vetorial V então para cada $v\in V$ existe um único $c\in\mathbb{R}^r$ tal que

$$v = c_1 b_1 + \dots + c_r b_r.$$

Teorema 4.4.1

Se $B=\{b_1,\dots,b_r\}$ uma base de um espaço vetorial V então para cada $v\in V$ existe um único $c\in\mathbb{R}^r$ tal que

$$v = c_1 b_1 + \dots + c_r b_r.$$

Definição: Coordenadas

Dado uma base $B=\{b_1,\ldots,b_r\}$ de um espaço vetorial V. Para um vetor $v\in V$, dizemos que o vetor $c\in\mathbb{R}^r$ como descrito acima, é a coordenada do vetor v em V com relação a base B.

$$(v)_B = c.$$

Observação

• Apesar de B ser um conjunto, em geral pensamos nos elementos de B sempre de forma ordenada, assim não temos ambiguidade quanto a notação $(v)_B$.

Pergunta

O que os conjuntos de vetores abaixo tem em comum?

- $\{(0,0,1),(1,0,0),(0,1,0)\};$
- $\{(1,1,0),(0,1,1),(1,0,1)\};$
- $\{(0,1,2),(0,2,1),(0,1,1)\};$
- $\{(0,3,2),(0,3,3),(1,1,1),(1,0,0)\};$
- $\{(0,2,2),(17,3,0)\};$
- $\{(1,2,1),(5,3,0),(0,0,1)\};$

Pergunta

O que os conjuntos de vetores abaixo tem em comum?

- $\{(0,0,1),(1,0,0),(0,1,0)\};$
- $\{(1,1,0),(0,1,1),(1,0,1)\};$

- $\{(0,2,2),(17,3,0)\};$
- $\{(1,2,1),(5,3,0),(0,0,1)\};$

Problema

É possível obter 4 vetores LI em \mathbb{R}^3 ?

Problema

É possível obter 2 vetores em \mathbb{R}^3 que gere o \mathbb{R}^3 ?

Teorema 4.5.2

Sejam V um espaço vetorial de dimensão finita e $\{v_i\}_{i\in[n]}$ uma base qualquer de V.

- 1. Um conjunto com mais de n vetores é linearmente dependente;
- 2. Um conjunto com menos de n vetores não gera V.

Teorema 4.5.1

Todas as bases de um espaço vetorial de dimensão finita tem o mesmo número de vetores.

Teorema 4.5.1

Todas as bases de um espaço vetorial de dimensão finita tem o mesmo número de vetores.

Dimensão

A dimensão de um espaço vetorial de dimensão finita V, denotado por $\dim(V)$ é definida como o número de vetores em uma base de V. Caso $V=\{\overrightarrow{0}\}$ então $\dim(V)=0$.

Exemplos

Calcule a dimensão dos espaços abaixo.

- 1. \mathbb{R}^{3} ;
- 2. \mathbb{R}^n ;
- 3. M_{mn} ;
- **4**. P_n ;
- 5. O conjunto ger(S), onde S é LI;
- 6. O conjunto das soluções do sistema composto pelas equações $x_1 + x_2 + x_3 = 0$ e $x_1 + x_3 = 5$;

Exemplos

Calcule a dimensão dos espaços abaixo.

- 1. \mathbb{R}^{3} ;
- 2. \mathbb{R}^n ;
- 3. M_{mn} ;
- **4**. P_n ;
- 5. O conjunto ger(S), onde S é LI;
- 6. O conjunto das soluções do sistema composto pelas equações $x_1 + x_2 + x_3 = 0$ e $x_1 + x_3 = 0$;