VLS | Design - Lecture 6

16 Aug 2022

The Tap = 0

$$\lambda = \frac{k_P V_{DSATP}}{k_N V_{DSATP}}$$

$$\lambda = \frac{k_P V_{DSATP}}{k_N V_{DSATP}}$$

$$V_{1N} - V_{TN} - V_{DSATR} + \lambda \left(V_{1N} - V_{DD} - V_{TP} - V_{DSATP}\right) = 0$$

$$V_{1N} = V_{TN} + V_{DSATR} + \lambda \left(V_{DD} + V_{TP} + V_{DSATP}\right)$$

$$V_{1N} = V_{DSATR} + \lambda \left(V_{DD} + V_{TP} + V_{DSATP}\right)$$

$$V_{1N} = V_{DSATR} + \lambda \left(V_{DD} + V_{TP} + V_{DSATP}\right)$$

$$V_{1N} = V_{DSATR} + \lambda \left(V_{DD} + V_{TP} + V_{DSATP}\right)$$

$$V_{1N} = V_{DSATR}$$

Noise Marging V_{out} V_{1H} = ? 293 g = Vm - V₆L Vm - V₁H V_{OH} V. H = Vm - Vm =1-25 + 1.25 : 1.29 30 V₁₂ = V_M + V_{DD} - V_M V_{OL} V_{IL} Piecewice linear opprox. VDD = 1.8 9 - - 1+9 (Vm - VTn - VOSAFN) (Nn - Ap) NM2 = 1.21 Vm = 0.9 NMH = 1.21 0.15 gain = -1 VTV = 0.43 VDO min = UTu + (VTP) VTP = - 0.4

Dynamic Performance Vont Vont tpHL = 0.69 RC

R fixed? R = VDS IDC Rey = 1 (VDD + VDD/2 TDSAT (I+XVDD) TDSAT (I+ XVDD/2) $= \frac{1}{2} \frac{V_{DD}}{T_{OSA}} \left(1 - \lambda V_{DD} + 1 - \lambda V_{DD} \right)$ Reg, $M = \frac{3V_{DD}}{4T_{DSAT}} \int_{0.063}^{0.06} \frac{3V_{DD}}{4T_{DSAT}} = \frac{131LN}{4T_{DSAT}}$ = 127 MAW 21

