組別:A

資料來源: 某非營利組織之捐款資料(賀之綸提供)

分工:

data cleaning: B09702113 賀之綸 B10201054 鄭皓中

data visualizing: B09901061 莊政達 B10201051 廖羽翎

data analysis: B10201051 廖羽翎 B09901061 莊政達

making report and presentation: B10201026 許庭瑋

WHAT WE DO

- I.data cleaning
- 2.data visualizing
- 2.data analysis
 - 2-1 Predict whether a person regularly donates
 - 2-2 Predict whether a person needs tax deduction

DATA CLEANING:

There are 16 columns in our data, but some of them are not necessary.

ex: 'payment_id' looks like a hash ,'last_status' only has 'I' or TRUE

Also ,there are a lot of blanks in our data.

Therefore, we need to invest significant effort in data cleaning.

COLUMNS WE NEED TO CLEAN

'donater_type':定期 or not

'uid': classify person or company

'address': encode XX縣/市 to int

'date': YYYY/MM/DD to YYYY and MM

'tax' to I or 0

CLEANING:

```
def map donation type(description):
   if '定期' in description:
       return '1'
   else:
       return '0'
df['donater type'] = df['payment type'].apply(lambda x: map donation type(x))
df['date'] = pd.to_datetime(df['date'])
df['year'] = df['date'].dt.year
df['month'] = df['date'].dt.month
df.drop(columns=['date'], inplace=True)
```

COLUMNS WITH LOTS OF BLANKS

most of data have no city'

so we need to fill in some data.

FILL IN SOME NUMBER TO AVOID NAN

```
valid cities = data[data['city'] != -1]['city']
city_distribution = valid_cities.value_counts(normalize=True)
# print (city distribution)
# Create a dictionary to map each donation id to a city
donation city dict = {}
for donation id in data['donation id'].unique():
    city = data.loc[data['donation id'] == donation id, 'city']
    if all(city == -1): # If all city values are -1 for this donation id
        # print('abcdefa')
        # print (city)
        chosen_city = np.random.choice(city_distribution.index, p=city_distribution.values)
        # print(chosen citv)
    else:
        # print ('all city values are not -1')
        # print (city)
        chosen city = city[city != '-1'].iloc[0] # Take the first valid city
    donation_city_dict[donation_id] = chosen_city
# print (donation city dict)
# Replace '-1' city values in the original DataFrame using the dictionary
data['city'] = data['donation_id'].apply(lambda id: donation_city_dict[id])
```

FIND FEATURES AND COUNT

```
city_list = []
for (key,), group in city_group:
    dict city = dict()
    dict city['city'] = key
    dict_city['total_amount'] = group['amount'].sum()
    city list.append(dict city)
with open('city amount.csv', 'w', newline='') as csvfile:
    fieldnames = ['city', 'total_amount']
    writer = csv.DictWriter(csvfile, fieldnames = fieldnames)
    writer.writeheader()
    for i in range(len(city list)):
        writer.writerow(city list[i])
```

	city	total_amount		monthly	total_amount
1	-1	31692779	1	1	4557569
2	01	1796827	2	2	4352231
3	03	1383597			
4	05	481655	3	3	4301392
5	07	673914	4	4	4027810
6	11	92289	5	5	4239193
7	12	433234	6	6	3718236
8	22	186312	7	7	1454343
9	31	1399692	8	8	2628072
10	32	620083	9	9	1543392
11	33	335883			
12	34	37800	10	10	2158584
13	35	150606	11	11	2985733
14	37	192311	12	12	4091317
15	38	124300		cotogony	total amount
16	39	101568		category	total_amount
17	40	62348	1	-1	9868562
18	43	147042			
19	44	3400	2	0	17452720
20	45	69432	3	1	11361743
21	46	64400			
22	90	8400	4	2	1374847
		1.1.1.1.	1. 1. 1.		++1/+/

Total

FINALLY WE GET A CLEAN DATA SET

columns:

- I.donation_id
- 2.donater_type
- 3.category
- 4.year
- 5.month
- 6.amount
- 7.city
- 8.tax
- 9.name

DATA ANALYSIS

draw some graphs and find what we can do

WHAT WE WANT TO DO

I.Predict whether a person regularly donates

2.Predict whether a person needs tax deduction

I.PREDICT WHETHER A PERSON REGULARLY DONATES

methods:

Decision tree, random forest, SVC, XGBoost

determine which method is the best:

find Best ratio Testing Data and Best Parameters

print sklearn.metrics.classification_report

Classification	Report: Classification Report:								
	precision	recall	f1-score	support		precision	recall	f1-score	support
0	0.70	0.44	0.55	1042	0	0.75	0.32	0.45	1565
1	0.94	0.98	0.96	9023	1	0.93	0.99	0.96	13533
accuracy			0.92	10065	accuracy			0.92	15098
macro avg	0.82	0.71	0.75	10065	macro avg	0.84	0.65	0.70	15098
weighted avg	0.91	0.92	0.92	10065	weighted avg	0.91	0.92	0.90	15098
Decision tre	ee				random for	est			
Classification	Report:				Classification	n Report:			
-	precision	recall	f1-score	suppor		precision	recall	f1-score	suppor
0	0.76	0.19	0.30	540	0	0.73	0.46	0.56	1042
1	0.91	0.99	0.95	4493	1	0.94	0.98	0.96	9023
accuracy			0.91	5033	accuracy			0.93	10065
macro avg	0.83	0.59	0.63	5033	macro avg	0.84	0.72	0.76	10065
weighted avg	0.89	0.91	0.88		weighted avg	0.92	0.93	0.92	10065
SVC					XGBoost				
			1//				1.1.1		

2.PREDICT WHETHER A PERSON NEEDS TAX DEDUCTION

methods:

Decision tree, random forest, SVC, XGBoost

determine which is best:

find Best ratio Testing Data and Best Parameters

print sklearn.metrics.classification_report

	precision	recall	f1-score	support		precision	recall	f1-score	support
Not for tax deduction	0.77	0.71	0.74	2101	Not for tax deduction	0.80	0.67	0.73	2101
For tax deduction	0.81	0.85	0.83	2932	For tax deduction	0.79	0.88	0.83	2932
accuracy			0.79	5033	accuracy			0.79	5033
macro avg	0.79	0.78	0.79	5033	macro avg	0.80	0.77	0.78	5033
weighted avg	0.79	0.79	0.79	5033	weighted avg	0.79	0.79	0.79	5033
Decision tree					random forest				
	precision	recall	f1-score	support		precision	recall	f1-score	support
Not for tax deduction	0.56	0.37	0.44	2101	Not for tax deduction	0.78	0.74	0.76	2101
For tax deduction	0.64	0.80	0.71	2932	For tax deduction	0.82	0.85	0.83	2932
accuracy			0.62	5033	accuracy			0.80	5033
macro avg	0.60	0.58	0.58	5033	macro avg	0.80	0.79	0.80	5033
weighted avg	0.61	0.62	0.60	5033	weighted avg	0.80	0.80	0.80	5033
SVC					XGBoost				
						1.7.1			

Thank you for listening!