QXD0133 - Arquitetura e Organização de Computadores II

Universidade Federal do Ceará - Campus Quixadá

Thiago Werlley thiagowerlley@ufc.br

18 de outubro de 2025

Capítulo 1

Capítulo 1

• O núcleo do processador ARM é um componente chave de muitos sistemas embarcados de 32 bits.

- O núcleo do processador ARM é um componente chave de muitos sistemas embarcados de 32 bits.
 - Exemplo: núcleos ARM são amplamente usados em telefones celulares

- O núcleo do processador ARM é um componente chave de muitos sistemas embarcados de 32 bits.
 - Exemplo: núcleos ARM são amplamente usados em telefones celulares
- Longo caminho desde primeiro protótipo ARM1 em 1985.

- O núcleo do processador ARM é um componente chave de muitos sistemas embarcados de 32 bits.
 - Exemplo: núcleos ARM são amplamente usados em telefones celulares
- Longo caminho desde primeiro protótipo ARM1 em 1985.
 - Exemplo: ARM7TDMI

- O núcleo do processador ARM é um componente chave de muitos sistemas embarcados de 32 bits.
 - Exemplo: núcleos ARM são amplamente usados em telefones celulares
- Longo caminho desde primeiro protótipo ARM1 em 1985.
 - Exemplo: ARM7TDMI
 - Fornece até 120 Dhrystone MIPS

- O núcleo do processador ARM é um componente chave de muitos sistemas embarcados de 32 bits.
 - Exemplo: núcleos ARM são amplamente usados em telefones celulares
- Longo caminho desde primeiro protótipo ARM1 em 1985.
 - Exemplo: ARM7TDMI
 - Fornece até 120 Dhrystone MIPS
 - Alta densidade de código

- O núcleo do processador ARM é um componente chave de muitos sistemas embarcados de 32 bits.
 - Exemplo: núcleos ARM são amplamente usados em telefones celulares
- Longo caminho desde primeiro protótipo ARM1 em 1985.
 - Exemplo: ARM7TDMI
 - Fornece até 120 Dhrystone MIPS
 - Alta densidade de código
 - Baixo consumo de energia

- O núcleo do processador ARM é um componente chave de muitos sistemas embarcados de 32 bits.
 - Exemplo: núcleos ARM são amplamente usados em telefones celulares
- Longo caminho desde primeiro protótipo ARM1 em 1985.
 - Exemplo: ARM7TDMI
 - Fornece até 120 Dhrystone MIPS
 - Alta densidade de código
 - Baixo consumo de energia
 - Ideal para dispositivos embarcados móveis.

• Computador com conjunto de instruções reduzido

- Computador com conjunto de instruções reduzido
 - do inglês, Reduced Instruction Set Computer (RISC)

- Computador com conjunto de instruções reduzido
 - do inglês, Reduced Instruction Set Computer (RISC)
 - O núcleo ARM usa uma arquitetura RISC.

- Computador com conjunto de instruções reduzido
 - do inglês, Reduced Instruction Set Computer (RISC)
 - O núcleo ARM usa uma arquitetura RISC.
 - Instruções mais simples

- Computador com conjunto de instruções reduzido
 - do inglês, Reduced Instruction Set Computer (RISC)
 - O núcleo ARM usa uma arquitetura RISC.
 - Instruções mais simples
 - 1 ciclo de *clock* por instrução

- Computador com conjunto de instruções reduzido
 - do inglês, Reduced Instruction Set Computer (RISC)
 - O núcleo ARM usa uma arquitetura RISC.
 - Instruções mais simples
 - 1 ciclo de *clock* por instrução
 - Maior flexibilidade

- Computador com conjunto de instruções reduzido
 - do inglês, Reduced Instruction Set Computer (RISC)
 - O núcleo ARM usa uma arquitetura RISC.
 - Instruções mais simples
 - 1 ciclo de *clock* por instrução
 - Maior flexibilidade
 - Unidades de processamento mais simples

- Computador com conjunto de instruções reduzido
 - do inglês, Reduced Instruction Set Computer (RISC)
 - O núcleo ARM usa uma arquitetura RISC.
 - Instruções mais simples
 - 1 ciclo de *clock* por instrução
 - Maior flexibilidade
 - Unidades de processamento mais simples
 - Frequências maiores

- Computador com conjunto de instruções reduzido
 - do inglês, Reduced Instruction Set Computer (RISC)
 - O núcleo ARM usa uma arquitetura RISC.
 - Instruções mais simples
 - 1 ciclo de *clock* por instrução
 - Major flexibilidade
 - Unidades de processamento mais simples
 - Frequências maiores
 - Operações complexas implementadas em software

- Computador com conjunto de instruções reduzido
 - do inglês, Reduced Instruction Set Computer (RISC)
 - O núcleo ARM usa uma arquitetura RISC.
 - Instruções mais simples
 - 1 ciclo de *clock* por instrução
 - Maior flexibilidade
 - Unidades de processamento mais simples
 - Frequências maiores
 - Operações complexas implementadas em software
- Implementada com quatro regras:

- Computador com conjunto de instruções reduzido
 - do inglês, Reduced Instruction Set Computer (RISC)
 - O núcleo ARM usa uma arquitetura RISC.
 - Instruções mais simples
 - 1 ciclo de *clock* por instrução
 - Maior flexibilidade
 - Unidades de processamento mais simples
 - Frequências maiores
 - Operações complexas implementadas em software
- Implementada com quatro regras:
 - Instructions

- Computador com conjunto de instruções reduzido
 - do inglês, Reduced Instruction Set Computer (RISC)
 - O núcleo ARM usa uma arquitetura RISC.
 - Instruções mais simples
 - 1 ciclo de *clock* por instrução
 - Maior flexibilidade
 - Unidades de processamento mais simples
 - Frequências maiores
 - Operações complexas implementadas em software
- Implementada com quatro regras:
 - Instructions
 - Pipelines

- Computador com conjunto de instruções reduzido
 - do inglês, Reduced Instruction Set Computer (RISC)
 - O núcleo ARM usa uma arquitetura RISC.
 - Instruções mais simples
 - 1 ciclo de *clock* por instrução
 - Maior flexibilidade
 - Unidades de processamento mais simples
 - Frequências maiores
 - Operações complexas implementadas em software
- Implementada com quatro regras:
 - Instructions
 - Pipelines
 - Registers

- Computador com conjunto de instruções reduzido
 - do inglês, Reduced Instruction Set Computer (RISC)
 - O núcleo ARM usa uma arquitetura RISC.
 - Instruções mais simples
 - 1 ciclo de *clock* por instrução
 - Major flexibilidade
 - Unidades de processamento mais simples
 - Frequências maiores
 - Operações complexas implementadas em software
- Implementada com quatro regras:
 - Instructions
 - Pipelines
 - Registers
 - Load-store architecture

Figura: CISC \times RISC. O CISC depende mais do hardware para a funcionalidade da instrução. RISC exige mais do compilador.

• Advanced RISC Machine (ARM)

- Advanced RISC Machine (ARM)
 - Foco em baixo consumo de energia, com redução da área no chip

- Advanced RISC Machine (ARM)
 - Foco em baixo consumo de energia, com redução da área no chip
 - Ideal para dispositivos móveis e sistemas embarcados em geral.

- Advanced RISC Machine (ARM)
 - Foco em baixo consumo de energia, com redução da área no chip
 - Ideal para dispositivos móveis e sistemas embarcados em geral.
 - Código de alta densidade

- Advanced RISC Machine (ARM)
 - Foco em baixo consumo de energia, com redução da área no chip
 - Ideal para dispositivos móveis e sistemas embarcados em geral.
 - Código de alta densidade
 - Mais dados processados com menos memória

• Segue a filosofia RISC, mas não de forma "pura"

- Segue a filosofia RISC, mas não de forma "pura"
 - Nem todas as instruções são completadas em apenas 1 ciclo

- Segue a filosofia RISC, mas não de forma "pura"
 - Nem todas as instruções são completadas em apenas 1 ciclo
 - **2** Utilizar um **componente de hardware** que pré-processa um dos **registros** de entrada antes de ser usado por uma instrução.

- Segue a filosofia RISC, mas não de forma "pura"
 - Nem todas as instruções são completadas em apenas 1 ciclo
 - Utilizar um componente de hardware que pré-processa um dos registros de entrada antes de ser usado por uma instrução.
 - 3 Instruções Thumb (16 bits)

- Segue a filosofia RISC, mas não de forma "pura"
 - 1 Nem todas as instruções são completadas em apenas 1 ciclo
 - Utilizar um componente de hardware que pré-processa um dos registros de entrada antes de ser usado por uma instrução.
 - 3 Instruções Thumb (16 bits)
 - 4 Execução condicional

- Segue a filosofia RISC, mas não de forma "pura"
 - 1 Nem todas as instruções são completadas em apenas 1 ciclo
 - Utilizar um componente de hardware que pré-processa um dos registros de entrada antes de ser usado por uma instrução.
 - 3 Instruções Thumb (16 bits)
 - 4 Execução condicional
 - 6 Algumas instruções complexas

Software em Sistemas Embarcados

Figura: Camadas de abstração de software em execução no hardware.

Figura: Remapeamento de memória.

QXD0133 - Arquitetura e Organização de Computadores II

Universidade Federal do Ceará - Campus Quixadá

Thiago Werlley thiagowerlley@ufc.br

18 de outubro de 2025

Capítulo 1