Project Euler #74: Digit factorial chains

Problem Statement

This problem is a programming version of Problem 74 from projecteuler.net

The number 145 is well known for the property that the sum of the factorial of its digits is equal to 145:

$$1! + 4! + 5! = 1 + 24 + 120 = 145$$

Perhaps less well known is 169, in that it produces the longest chain of numbers that link back to 169; it turns out that there are only three such loops that exist:

$$169
ightarrow 363601
ightarrow 1454
ightarrow 169 \ 871
ightarrow 45361
ightarrow 871 \ 872
ightarrow 45362
ightarrow 872$$

It is not difficult to prove that EVERY starting number will eventually get stuck in a loop. For example,

$$egin{aligned} 69 &
ightarrow 363600
ightarrow 1454
ightarrow 169
ightarrow 363601 (
ightarrow 1454) \ 78 &
ightarrow 45360
ightarrow 871
ightarrow 45361 (
ightarrow 871) \ 540 &
ightarrow 145 (
ightarrow 145) \end{aligned}$$

Starting with 69 produces a chain of five non-repeating terms, but the longest non-repeating chain with a starting number below one million is sixty terms.

For a given length L and limit N print all the integers $\leq N$ which have chain length L

Input Format

First line contains T, followed by T lines. Each line contains N and L separated by space.

Constraints

$$\begin{array}{l} 1 \leq T \leq 10 \\ 10 \leq N \leq 1000000 \\ 1 \leq L \leq 60 \end{array}$$

Output Format

Print the integers separated by space for each testcase. Where there are no such number for a given L, print -1.

Sample Input

10			
221 7			
147 1			
258 4			
265 8			
210 2			
175 7			
29 2			
24 3			
273 4			
261 4			

Sample Output

```
24 42 104 114 140 141
1 2 145
78 87 196 236
4 27 39 72 93 107 117 170 171
0 10 11 154
24 42 104 114 140 141
0 10 11
-1
78 87 196 236 263
78 87 196 236
```