Exame especial de Mecânica Newtoniana

Licenciatura em Física e Mestrado Integrado em Engenharia Física
Universidade do Minho — Julho de 2016 (2/107/16)

I

1- O movimento de um corpo de massa m que se desloca ao longo de uma trajetória retilínea com velocidade v é descrito pela equação,

$$m\frac{dv}{dt} = F - Av - Bv^2, \tag{1}$$

em que F é uma força cujo valor depende apenas da posição do corpo.

- (a) Que tipo de forças são $-Av = -Bv^2$? Justifique a sua resposta.
- (b) Considere que o movimento do corpo é vertical e de queda livre. O que designará r e qual a forma que terá o corpo se na sua equação de movimento acima dada se tiver que $A = C_1 r$ e $B = C_2 r^2$?
- (c) Indique no caso da alínea anterior qual a velocidade crítica v_c tal que a força a que está submetido o corpo é dada por $\approx F Av$ e $\approx F Bv^2$ quando $v \ll v_c$ e $v \gg v_c$, respetivamente. Justifique as sua resposta.
- (d) Considere agora que o movimento retilíneo da massa m não é de queda livre e se realiza segundo o eixo dos x numa zona do espaço onde existe uma energia potencial U(x). Sabendo que a equação de movimento tem a forma acima dada, relacione a força a que a massa está sujeita com U(x). Justifique a sua resposta.
- 2- Considere um objeto em equilíbrio.
 - (a) Quais as condições para que o objeto esteja em equilíbrio translacional?
- (b) Quais as condições para que o objeto esteja em equilíbrio rotacional ou de rotação?
- (c) Considere que uma força \vec{F} é aplicada a um ponto do objeto de vetor posição $\vec{r_1}$ e que o mesmo pode rodar em torno de um eixo que passa por um seu ponto de vetor posição $\vec{r_0}$. Qual a expressão do torque que resulta da aplicação da força?

- 1. Uma caixa de massa m desce ao longo de uma calha, como se vê na figura.
- a) Qual a altura mínima, h, da qual deverá ser solto para que rode ao longo de toda a calha circular de raio R?
- b) A força exercida pela calha sobre a caixa quando ela passa no ponto mínimo da trajetória

- 2. A massa da Terra vale 5.976×10^{24} Kg e a da Lua vale 7.36×10^{22} Kg. O raio da Terra vale 6370km e o da Lua vale 1740km ($G = 6.673 \times 10^{-11}$ Nm²kg⁻²). Determine:
 - a) A razão entre a aceleração da gravidade à superfície da Terra e da Lua.
- b) Se a força da gravidade atua sobre todos os corpos proporcionalmente à sua massa, porque é que um corpo pesado não cai mais depressa que um corpo leve ?
- 3. Uma bala de 60g de massa movendo-se no plano horizontal segundo o eixo dos xx, com velocidade 100m/s, choca com uma pedra de massa 1.2kg que se encontrava inicialmente em repouso. Após o choque, a bala segue numa direção paralela ao eixo dos yy com velocidade 80m/s. Determine o módulo e direção da velocidade adquirida pela pedra
- 4. Um homem de 90 kg está de pé sobre uma prancha de madeira com 5 m de comprimento e

peso desprezável. O homem foi substituído por duas pessoas que se colocaram nos pontos A e C. Determine o peso dessas duas pessoas sabendo que as reações nos apoios dos extremos da prancha são as mesmas que as provocadas pelo homem da figura.

