1.2 概率 (Probability)

概念: 给定一个试验及其样本空间 Ω , 概率的目标是对每一个事件 A 分配一个数 P(A) (唯一的),称为事件 A 的概率,如果 P(A) 满足如下三个公理:

公理 1: 对任意事件 $A, P(A) \ge 0$;

非负性

公理 2: 对必然事件 S或 (Ω) , $P(\Omega) = 1$. 规范性

公理 3: 对于互不相容的可数无穷多个事件 $A_1, A_2, ...$,有 $P(A_1 \cup A_2 \cup ...) = \sum_{i=1}^{\infty} P(A_i)$ 可数可加性

概率是事件A发生的机会或几率的一个准确测度或测量

概率的含义:

- 三条公理并没有确定一个事件对应概率的方法(如何 计算概率)
- ➤ 一个最常用和最容易理解的用来解释概率的概念就是相对频率(relative frequency)。

考虑一个可以在相同条件且相对独立情形下重复进行的试验。 令 A 表示由该试验的某些固定结果构成的事件.

如:投针、掷骰子、抛硬币

假定试验进行了n次,其中事件A发生了 n_A 次

事件 A 在这n 次试验中发生的相对频率: $f_n(A) = \frac{n_A}{n}$

满足如下条件:

- 1: 对任意事件 $A, 0 \leq f_n(A) \leq 1$;
- 2: 对必然事件 $S(或\Omega)$, $f_n(S) = 1$.
- 3: 若事件A, B互不相容,则 $f_n(A \cup B) = f_n(A) + f_n(B)$

例 1: 考虑抛硬币试验,记录正面(H)朝上的次数.硬币分别抛5次, 50次,和500次.独立将上述试验重复进行10次.

	n = 5			n = 50			n = 500		
Experiment ID	n_H	$F_n(H)$	$ F_n(H)$ -0.5	n_H	$F_n(H)$	$ F_n(H)-0.5 $	n_H	$F_n(H)$	$ F_n(H)$ -0.5
1	2	0.4	0.1	22	0.44	0.06	251	0.502	0.002
2	3	0.6	0.1	25	0.50	0.00	249	0.498	0.002
3	1	0.2	0.3	21	0.42	80.0	256	0.512	0.012
4	5	1.0	0.5	25	0.50	0.00	253	0.506	0.006
5	1	0.2	0.3	24	0.48	0.02	251	0.502	0.002
6	2	0.4	0.1	21	0.42	80.0	246	0.492	0.008
7	4	8.0	0.3	18	0.36	0.14	244	0.488	0.012
8	2	0.6	0.1	24	0.48	0.02	258	0.516	0.016
9	3	0.6	0.1	27	0.54	0.06	262	0.524	0.024
10	3	0.6	0.1	31	0.62	0.12	247	0.494	0.006

The first column (n = 5) shows how the relative frequency n_H/n fluctuates rather substantially over the course of the first 5 replications.

But as the number of replications continues to increase, see the third column for n = 500, the relative frequency stabilizes.

Empirical(经验的) evidence, based on the results of many such repeatable experiments, indicates that any relative frequency of this sort will stabilize as n increases.

That is, as n gets arbitrarily large, n_A/n approaches a limiting value (in probability 1) referred to as the limiting (or long-run) relative frequency of the event A.

概率的性质:

性质 1: $P(\emptyset) = 0$, 这里 \emptyset 为空事件、或不可能事件

注1: 不可能 事件的概率为 0, 但是其逆命题不一定成立。

$$P(\bigcup_{i=1}^k A_i) = \sum_{i=1}^k P(A_i)$$

或
$$P(A_1 \cup A_2 \cdots \cup A_k) = P(A_1) + P(A_2) + \cdots + P(A_k)$$

注2: 有限可加性

注3:事件并(和)的概率等于其概率的和.错误

注4: 互不相容事件的和的概率等于其概率的和. 正确

性质 3: 设A, B为两个事件,则 P(B-A) = P(B) - P(AB).

证明: 由于
$$AB \subset B$$
, 且 $B = AB \cup (B - A)$,

而
$$AB \cap (B-A) = \emptyset$$
, $AB, B-A$ 互斥

故有
$$P(B) = P(AB) + P(B - A)$$
,

即
$$P(B-A) = P(B) - P(AB)$$
.

思考
$$P(A - B) = ?$$
?

$$P(A - B) = P(A) - P(AB)$$

性质 3': 设 A 和 B 为两个事件, 如果 $A \subset B$, 则 P(B - A) = P(B) - P(A) 且 $P(B) \ge P(A)$.

性质 4: 对任意事件 $A, P(A) \leq 1$.

性质 5: 对任意事件 A, $P(\bar{A}) = 1 - P(A)$.

性质 6: 对任意两事件 A 和 B,则

$$P(A \cup B) = P(A) + P(B) - P(AB)$$

$$A \cup B = A \cup (B - A), \quad A \cap (B - A) = \emptyset$$

故 $P(A \cup B) = P(A \cup (B - A)) = P(A) + P(B - A)$
 $= P(A) + P(B) - P(AB)$

性质 7: 对任意三个事件 A, B 和 C, $P(A \cup B \cup C)$ = P(A) + P(B) + P(C) - P(AB) - P(AC) - P(BC) + P(ABC).

一般地,对任意n个事件, $A_1,A_2,...,A_n$

 $P(A_1 \cup A_2 \cup \dots \cup A_n)$ $= \sum_{i=1}^n P(A_i) - \sum_{1 \le i < j \le n} P(A_i A_j) + \sum_{1 \le i < j < k \le n} P(A_i A_j A_k) + \dots + (-1)^{n-1} P(A_1 A_2 \dots A_n).$

注: 奇数个事件,符号为正; 偶数个事件,符号为负

例 1: 设事件A 和 B 互不相容,相应的概率分别为 P(A) = 0.4, P(B) = 0.5. 计算 $P(\overline{A})$, $P(\overline{B})$, P(AB), $P(A \cup B)$, $P(\overline{A}B)$ 。

解:

$$P(\overline{A}) = 1 - P(A) = 0.6,$$

 $P(\overline{B}) = 1 - P(B) = 0.5,$
 $AB = \emptyset$, so $P(AB) = 0$,
 $P(A \cup B) = P(A) + P(B) = 0.9,$
 $P(\overline{A}B) = P(B - A) = P(B) - P(AB) = P(B) = 0.5,$
 $P(\overline{A}B) = P(\overline{A} \cap \overline{B}) = P(\overline{A} \cup \overline{B}) = 1 - P(A \cup B) = 0.1,$
 $P(\overline{A} \cup \overline{B}) = P(\overline{A} \cap \overline{B}) = 1 - P(AB) = 1.$
 $P(\overline{AB}) = 1 - P(AB) = 1$

例 2: 设A和B为两事件,P(A) = 0.5,P(B) = 0.3,P(AB) = 0.1. 求:

- (1) A 发生 B 不发生的概率
- (2) A 不发生 B 发生的概率
- (3) 至少有一个事件发生的概率
- (4) 都不发生的概率
- (5) 至少有一个事件不发生的概率

M (1) $P(A\overline{B}) = P(A - B) = P(A - AB) = P(A) - P(AB) = 0.4;$

- (2) $P(\overline{AB}) = P(B AB) = P(B) P(AB) = 0.2$;
- (3) $P(A \cup B) = P(A) + P(B) P(AB) = 0.5 + 0.3 0.1 = 0.7$;
- (4) $P(\overline{A}\overline{B}) = P(\overline{A \cup B}) = 1 P(A \cup B) = 1 0.7 = 0.3;$
- (5) $P(\overline{A} \cup \overline{B}) = P(\overline{AB}) = 1 P(AB) = 1 0.1 = 0.9.$

古典概型 (等可能事件)

考虑掷骰子(质地均匀)的试验: 1-6点出现的概率应该是相同的。直觉告诉我们,每一个面出现的概率是 1/6.

事实上,由概率的3个公理:

$$1 = P(S)$$

$$= P(\{1,2,3,4,5,6\}) = P(\{1\} \cup \{2\} \cup \{3\} \cup \{4\} \cup \{5\} \cup \{6\})$$

$$= P(\{1\}) + P(\{2\}) + P(\{3\}) + P(\{4\}) + P(\{5\}) + P(\{6\})$$

如果所有的 $P(\{j\})$ 相同,那么, $1 = 6P(\{j\})$,则, $P(\{j\}) = 1/6$ 对每一个j

出现奇数 (odd) 点的概率是:

$$P(\{1,3,5\}) = P(\{1\}) + P(\{3\}) + P(\{5\}) = \frac{1}{6} + \frac{1}{6} + \frac{1}{6} = \frac{1}{2}$$

定义 1.4 若随机试验 E 满足以下条件:

 1° 试验的样本空间 Ω 只有有限个样本点,即

$$\Omega = \{\omega_1, \omega_2, \cdots, \omega_n\};$$

2° 试验中每个基本事件的发生是等可能的,即

$$P(\lbrace \omega_1 \rbrace) = P(\lbrace \omega_2 \rbrace) = \cdots = P(\lbrace \omega_n \rbrace),$$

则称此试验为古典概型,或称为等可能概型.

得到古典概型中事件 A 的概率计算公式为

$$P(A) = \frac{k}{n} = \frac{A \text{ 所包含的样本点数}}{\Omega \text{ 中样本点总数}},$$

称古典概型中事件 A 的概率为古典概率.

一般地,可利用排列、组合、乘法原理、加法原理来计算上式中的k,n,再计算相应的概率。

例 3. 将一枚硬币连续抛3 次 A_1 : 恰好出现一次正面. A_2 : 至少出现一次正面. 计算 $P(A_1)$, $P(A_2)$.

解: 样本空间为 $\Omega = \{HHH, HHT, HTH, THH, HTT, THT, TTH, TTT\}$ $A_1 = \{HTT, THT, TTH\};$ $A_2 = \{HHH, HHT, HTH, THH, HTT, TTH, TTH\}$ So, $P(A_1) = \frac{3}{8}$, $P(A_2) = \frac{7}{8}$.

当样本空间的元素较多时,我们一般不再将 Ω 中的元素一一列出,而只需分别求出 Ω 中与A中包含的元素的个数(即基本事件的个数),再求出A的概率.

排列 (Permutation) & 组合(Combination)

$$m$$
的阶乘: $m! = m \times (m-1) \times \cdots \times 2 \times 1$.

特别地 1! = 1, 0! = 1.

有用的公式

$$P_{n}^{k} = \frac{n!}{(n-k)!};$$
 $C_{n}^{k} = \frac{P_{n}^{k}}{k!} = \frac{n!}{k!(n-k)!};$
 $C_{n}^{k} = C_{n}^{n-k}$

- 例 1.6 一口袋装有6只球,其中4只白球,2只红球.从袋中取球两次,每次随机地取一只. 考虑两种取球方式:
- (a) 第一次取一只球,观察其颜色后放回袋中,搅匀后再任取一球. 这种取球方式叫做有放回抽取.
- (b) 第一次取一球后不放回袋中,第二次从剩余的球中再取一球.这种取球方式叫做不放回抽取.

试分别就上面两种情形求:

- (1) 取到的两只球都是白球的概率;
- (2) 取到的两只球颜色相同的概率;
- (3) 取到的两只球中至少有一只是白球的概率.

4只白球, 2只红球

 \mathbf{M} : 令事件 A: "两个球都是白球",

B: "两个球都是红球";

 $A \cup B = ?$, $A \cap B = ?$ $\overline{B} = ?$

C: "至少一只白球".

 $A \cup B$ "两只球的颜色相同"; $A \cap B = \emptyset$; $\overline{B} = C$,

	有放回	无放回
样本空间元素个数:	$6 \times 6 = 36$	$6 \times 5 = 30$
A中元素个数:	$4 \times 4 = 16$	$4 \times 3 = 12$
P(A) =	$\frac{4\times4}{6\times6} = \frac{4}{9}$	$\frac{4\times3}{6\times5} = \frac{2}{5}$

	有放回	无放回
样本空间容量:	$6 \times 6 = 36$	$6 \times 5 = 30$
B 的容量:	$2 \times 2 = 4$	$2 \times 1 = 2$
P(B) =	$\frac{2 \times 2}{6 \times 6} = \frac{1}{9}$	$\frac{2 \times 1}{6 \times 5} = \frac{1}{15}$
$P(A \cup B) = P(A) + P(B)$	$\frac{4}{9} + \frac{1}{9} = \frac{5}{9}$	$\frac{2}{5} + \frac{1}{15} = \frac{7}{15}$
P(C) = 1 - P(B)	$1 - \frac{1}{9} = \frac{8}{9}$	$1 - \frac{1}{15} = \frac{14}{15}$

例 5: 将 n 个不同的小球随机放入 N ($N \ge n$) 个盒子中. 求每个盒子里最多有1个球的概率(假定每个盒子能容纳所有的小球).

解析: 任务将 n 个不同的小球随机放入 N 个盒子中,可以分为 n 步:每一步(每个小球)都有 N 种方法. 样本空间的容量为 $N \times N \times \cdots \times N = N^n$ (乘法原理)

$$\underbrace{N \times N \times \cdots \times N}_{n \text{ times}} = N^n$$
. (乘法原理)

- 事件A: 每个盒子里最多有1个球, 分两步:

 - (2): 每个盒子放入一个球, 共有 n! 种不同的方法

故A 的样本点的容量为n! C_N^n . 所求概率为

$$P(A) = \frac{n! C_N^n}{N^n} = \frac{P_N^n}{N^n}$$

很多问题都具有和上述问题相同的数学模型. 例如,生日问题,假定每个人出生在一年365天中每一天的概率都是1/365. $n (n \le 365)$ 个人生日各不相同的概率是

$$\frac{P_{365}^n}{365^n} = \frac{365 \cdot 364 \cdots (365 - n + 1)}{365^n}$$

n 个人中至少有两个人生日相同(每个人的生日互不相同的反面)

$$p = 1 - \frac{P_{365}^n}{365^n} = 1 - \frac{365 \cdot 364 \cdots (365 - n + 1)}{365^n}.$$

n	20	23	30	40	50	64	100
\overline{p}	0.411	0.507	0.706	0.891	0.970	0.997	0.999 999 7

例 6: N 件产品中有 D件次品. 从中随机抽取 n 个产品. 计算恰有 k 个次品的概率.

解: 样本空间 S 的容量: C_N^n (Combination).

令事件 A: 恰有 k 件次品: 分两步

step 1: C_D^k 种不同的方法;

step 2: E(N-D) 正品中随机抽取 n-k 件: C_{N-D}^{n-k} 种不同的方法

A 含有的样本点数: $C_D^k C_{N-D}^{n-k}$.

故 A 的概率是: $P(A) = \frac{C_D^k C_{N-D}^{n-k}}{C_N^n}$

例 7: 一个盒子中有 a + b 个球, 其中 蓝球 a 个, 红球b 个. 依次从中抽取k个 球。求 (1) 若是有放回抽样,求第 i 个人抽到红球的概率 (2) 若是不放回抽样,求第 i 个人抽到红球的概率

解: 令 A 表示第 k个人抽到红球

情形 (1): 有放回抽样,每次抽球情况一样 故 $P(A) = \frac{b}{a+b}$.

情形 (2): 无放回抽样: 样本空间容量

$$|S| = (a+b)(a+b-1)\cdots[a+b-(i-1)][a+b-i]\cdots[a+b-(k-1)]$$

为了使第 k 次抽到红球(设为事件 A),先选择一个红球($C_b^1 = b$ 种方法), 其他 k-1 次任意从 a+b-1 中抽取一个球.

事件 A 的容量

$$(a+b-1)(a+b-2)\cdots[(a+b-(i-1)]b(a+b-i)\cdots[a+b-(k-1)]$$

所以
$$P(A) = \frac{b}{a+b}$$

抓阄问题:如跑道抽取;刮彩票等都是公平的

例 8: 一个盒子中有 a + b 个球, 其中 蓝球 a 个, 红球 b 个. 现做不 放回抽样. 每次取一只。求

- (1) 任取 m+n 只球, 恰有m 只蓝球和n只红球的概率, $m \le a$, $n \le b$;
- (2) 第 k 次才取到蓝球的概率($k \le b + 1$)
- (3) 第 k 次恰取到蓝球的概率 $(k \le a + b)$

解:
$$P_1 = \frac{C_a^m C_b^n}{C_{a+b}^{m+n}};$$

$$P_2 = \frac{P_b^{k-1} P_a^1}{P_{a+b}^k};$$

$$P_3 = \frac{P_{a+b-1}^{k-1} P_a^1}{P_{a+b}^k} = \frac{a}{a+b};$$

- 例 1.9 12 名新生中有 3 名优秀生,将他们随机地平均分配到 3 个班中去,试求:
- (1) 每班各分配到一名优秀生的概率;
- (2) 3 名优秀生分配到同一个班的概率.
- 解 12 名新生平均分配到 3 个班的可能分法总数为 $C_{12}^4 C_8^4 C_4^4 = \frac{12!}{(4!)^3}$.
- (1) 设 A 表示"每班各分配到一名优秀生".3 名优秀生每一个班分配一名共有 3!种
- 其他 9 名学生平均分配到 3 个班共有 $\frac{9!}{(3!)^3}$ 种分法 A 的容量 $3! \cdot \frac{9!}{(3!)^3} = \frac{9!}{(3!)^2}$.

$$P(A) = \frac{9!}{(3!)^2} / \frac{12!}{(4!)^3} = \frac{16}{55}.$$

(2) 设 B 表示"3 名优秀生分到同一班".3 名优秀生分到同一班共有 3 种分法,

其他 9 名学生分法总数为 $C_9^1C_8^4C_4^4 = \frac{9!}{1! \cdot 4! \cdot 4!}$,

$$P(B) = \frac{3 \cdot 9!}{(4!)^2} / \frac{12!}{(4!)^3} = \frac{3}{55}.$$

几何概型

古典概型中样本空间中样本点为有限个,如果试验结果有无穷多个,则不是古典概型。

设试验具有以下特点:

- 1° 样本空间 Ω 是一个几何区域,这个区域大小可以度量(如长度、面积、体积等),并把 Ω 的度量记作 $m(\Omega)$.
- 2° 向区域 Ω 内任意投掷一个点,落在区域内任一个点处都是"等可能的". 或者设落在 Ω 中的区域A 内的可能性与A 的度量m(A) 成正比,与A 的位置和形状无关.

事件 A 的 概率 $P(A) = \frac{m(A)}{m(\Omega)}$, 称它为几何概率

什么是无穷大?

无穷大是否有大小?

自然数集、整数集、偶数集、奇数集、有理数集,哪个集合含有的元素多?

一样多!

什么是可数的无穷?

什么是不可数的无穷?

无穷是否有大小?

• 可数集合(可列集):如自然数集,整数集,有理数集对应的基数被定义为阿列夫0(%),他们含有的元素为可数无穷(countable infinite),相等的。能与自然数集建立一一对应关系。

• 不可数集合:比可数集合"大"的称之为不可数集合,如实数集,其基数与自然数的幂集相同。

无穷是否有大小?

- 集合论中对无穷有不同的定义。
- 德国数学家康托尔提出,对应于不同无穷集合的元素的个数(基数),有不同的"无穷"。
- 比较不同的无穷的"大小"的时候唯一的办法就是通过是否可以建立"一一对应关系"来判断
- 抛弃了欧几里得"整体大于部分"的看法。
- 例如整数集和自然数集由于可以建立一一对应的关系, 它们就具有相同的无穷基数。

例 9: 从闭区间 [0,2] 中随机抽取一点

事件 A_1 : 这个点落在闭区间 [0,1], 则 $P(A_1) = 0.5$

事件 A_2 : 这个点落在开区间 (0,1),则 $P(A_2) = 0.5$

事件 A_3 : 这个点落在开区间 (0,2),则 $P(A_3) = 1$

问: A_3 是必然事件吗?? 不是!! However, 其概率为1

事件 A_4 : 这个点是 0, 或 1, 甚至任意有理数, 则 $P(A_4) = 0$

问: A_4 是不可能事件吗??不是!! However, 其概率为 0

概率为0的事件一般称为零概率事件,或几乎不可能事件

概率为1的事件一般称为1概率事件,或几乎必然事件

例 10: 在区间 (0,1) 中随机抽取两个点,求两个点的坐标乘积小于1/4 的概率.

解: 令 x, y 分别表示两个点的坐标,则有

$$0 < x < 1$$
, $0 < y < 1$.

样本空间的面积等于 1.

 $\diamondsuit A$:"两个点的坐标小于 $\frac{1}{4}$ "

则
$$A = \{(x,y) | 0 < xy < \frac{1}{4}, 0 < x < 1, 0 < y < 1\};$$

A的面积 =
$$1 \times \frac{1}{4} + \int_{1/4}^{1} \frac{1}{4x} dx = \frac{1}{4} + \frac{1}{4} \ln x \Big|_{\frac{1}{4}}^{1} = \frac{1}{4} - \frac{1}{4} \ln \frac{1}{4} = \frac{1}{4} + \frac{1}{2} \ln 2$$

所以,
$$P(A) = \frac{1}{4} + \frac{1}{2} \ln 2$$
.

例 11. 两人相约在某天下午 2:00—3:00 在预定地点见面,先到者要等候 20 min,过时则离去.如果每人在这指定的1h内任一时刻到达是等可能的,求约会的两人能会到面的概率.

解 设x,y为两人到达预定地点的时刻,那么,两人到达时间的一切可能结果落在边长为 60 的正方形内,这个正方形就是样本空间 Ω ,而两人能会面的充要条件是 $|x-y| \leq 20$,即

$$x - y \leq 20$$
 $\exists y - x \leq 20$.

令事件 A 表示"两人能会到面",这区域如图 1-8 中的 A,则

$$P(A) = \frac{m(A)}{m(\Omega)} = \frac{60^2 - 40^2}{60^2} = \frac{5}{9}.$$

