

1/77

Linguagens Formais e Autómatos / Compiladores Autómatos Finitos (AF)

Artur Pereira <artur@ua.pt>,
Miguel Oliveira e Silva <mos@ua.pt>

DETI, Universidade de Aveiro

Sumário

- Autómato finito determinista (AFD)
- 2 Redução de autómato finito determinista
- 3 Autómato finito não determinista (AFND)
- 4 Equivalência entre AFD e AFND
- 6 Operações sobre autómatos finitos (AF)
- 6 Equivalência entre ER e AF

Autómato finito

Um autómato finito é um mecanismo reconhecedor das palavras de uma linguagem regular

- A unidade de controlo é baseada na noção de estado e na de transição entre estados
 - número finito de estados
- A fita de entrada é só de leitura, com acesso sequencial
- A saída indica se a palavra é ou não aceite (reconhecida)
- Os autómatos finitos podem ser deterministas, não deterministas ou generalizados

Autómato finito determinista

Um autómato finito determinista é um autómato finito

onde

- as transições estão associadas a símbolos individuais do alfabeto;
- de cada estado sai uma e uma só transição por cada símbolo do alfabeto;
- há um estado inicial;
- há 0 ou mais estados de aceitação, que determinam as palavras aceites;
- os caminhos que começam no estado inicial e terminam num estado de aceitação representam as palavras aceites (reconhecidas) pelo autómato.

Autómato finito determinista: exemplo (1)

Q Que palavras binárias são reconhecidas pelo autómato seguinte?

 \mathcal{R} Todas as palavras terminadas em 11.

Autómato finito determinista: exemplo (2)

Q Que palavras binárias são reconhecidas pelo autómato seguinte?

 ${\cal R}\,$ Todas as palavras com apenas 1 ou 2 zeros.

Autómato finito determinista: exemplo (3)

Q Que palavras binárias são reconhecidas pelo autómato seguinte?

 ${\cal R}\,$ as sequências binárias com um número par de zeros.

Definição de autómato finito determinista

- \mathcal{D} Um autómato finito determinista (AFD) é um quíntuplo $M=(A,Q,q_0,\delta,F)$, em que:
 - A é o alfabeto de entrada;
 - Q é um conjunto finito não vazio de estados;
 - $q_0 \in Q$ é o estado inicial;
 - $\delta: Q \times A \rightarrow Q$ é uma função que determina a transição entre estados; e
 - $F \subseteq Q$ é o conjunto dos estados de aceitação.

- $A = \{0, 1\}$
- $Q = \{A, B, C, D\}$
- $q_0 = A$
- $F = \{B, C\}$
- Como representar δ ?

Definição de autómato finito determinista

- ${\mathcal D}$ Um autómato finito determinista (AFD) é um quíntuplo $M=(A,Q,q_0,\delta,F),$ em que:
 - A é o alfabeto de entrada;
 - Q é um conjunto finito não vazio de estados;
 - $q_0 \in Q$ é o estado inicial;
 - $\delta: Q \times A \rightarrow Q$ é uma função que determina a transição entre estados; e
 - $F \subseteq Q$ é o conjunto dos estados de aceitação.
- \mathcal{Q} Como representar a função δ ?
 - Conjunto de triplos $\in Q \times A \times Q$
 - Matriz de |Q| linhas por |A| colunas. As células contêm elementos de Q.

Autómato finito determinista: exemplo (4)

Represente textualmente o AFD seguinte.

$$\mathcal{R}$$
 $M = (A, Q, q_0, \delta, F) \text{ com}$

- $A = \{0, 1\}$
- $Q = \{A, B, C, D\}$
- $q_0 = A$
- $F = \{B, C\}$

- δ = { (A, 0, B), (A, 1, A),(B, 0, C), (B, 1, B),
 - (C, 0, D), (C, 1, C),
 - (D, 0, D), (D, 1, D)

	0	1
A	B	A
B	C	B
C	D	C
\mathcal{L}	ת	ת

Autómato finito determinista: exemplo (5)

Q Represente textualmente o AFD seguinte.

 \mathcal{R}

$$M = (A, Q, q_0, \delta, F)$$
 com

- $A = \{0, 1\}$
- $Q = \{A, B, C\}$
- $q_0 = A$
- $F = \{C\}$

- $\delta = \{$ (A, 0, A), (A, 1, B), (B, 0, A), (B, 1, C),
 - (C, 0, A), (C, 1, C),

•	δ	=

	0	1
A	A	B
B	A	C
C	A	C

Linguagem reconhecida por um AFD (1)

- Diz-se que um AFD $M=(A,Q,q_0,\delta,F)$, **aceita** uma palavra $u\in A^*$ se u se puder escrever na forma $u=u_1u_2\cdots u_n$ e existir uma sequência de estados s_0,s_1,\cdots,s_n , que satisfaça as seguintes condições:
 - $\mathbf{1} \ s_0 = q_0;$
 - 2 qualquer que seja o $i=1,\cdots,n,\quad s_i=\delta(s_{i-1},u_i);$
 - $3 s_n \in F$.

Caso contrário diz-se que M rejeita a sequência de entrada.

- A palavra $\omega_1=$ 0101 faz o caminho $A\stackrel{0}{\longrightarrow} A\stackrel{1}{\longrightarrow} B\stackrel{0}{\longrightarrow} A\stackrel{1}{\longrightarrow} B$
 - como B não é de aceitação, ω_1 não pertence à linguagem
- A palavra $\omega_2 = 0.011$ faz o caminho $A \stackrel{0}{\longrightarrow} A \stackrel{0}{\longrightarrow} A \stackrel{1}{\longrightarrow} B \stackrel{1}{\longrightarrow} C$
 - como C é de aceitação, ω_2 pertence à linguagem

Linguagem reconhecida por um AFD (2)

- Seja $\delta^*: Q \times A^* \to Q$ a extensão de δ definida indutivamente por
 - $\bullet \delta^*(q,\varepsilon) = q$
 - $2 \delta^*(q, av) = \delta^*(\delta(q, a), v), \quad \text{com} \quad a \in A \land v \in A^*$
- M aceita u se $\delta^*(q_0, u) \in F$.
- $L(M) = \{u \in A^* : M \text{ aceita } u\} = \{u \in A^* : \delta^*(q_0, u) \in F\}$
- $\delta^*(A,0101) = \delta^*(\delta(A,0),101) = \delta^*(A,101)$ = $\delta^*(\delta(A,1),01) = \delta^*(B,01)$ = $\delta^*(\delta(B,0),1) = \delta^*(A,1) = B$
- $\delta^*(A,0011) = \delta^*(\delta(A,0),011) = \delta^*(A,011)$ = $\delta^*(\delta(A,0),11) = \delta^*(A,11)$ = $\delta^*(\delta(A,1),1) = \delta^*(B,1) = C$

Autómato finito determinista: exemplo (6a)

 $\mathcal Q$ Sobre o alfabeto $A = \{a,b,c\}$ considere a linguagem

$$L = \{\omega \in A^* \, : \, (\omega_i = \mathbf{b}) \, \Rightarrow \, ((\omega_{i-1} = \mathbf{a}) \, \wedge \, (\omega_{i+1} = \mathbf{c}))\}$$

Projecte um autómato que reconheça L.

Autómato finito determinista: exemplo (7)

 $\mathcal Q$ Sobre o alfabeto $A=\{\mathtt{a},\mathtt{b},\mathtt{c}\}$ considere a linguagem

$$L = \{ \omega \in A^* : (\omega_i = \mathbf{a}) \Rightarrow (\omega_{i+2} \neq \mathbf{b}) \}$$

Projecte um autómato que reconheça L.

 \mathcal{R}

Autómato finito determinista: exemplo (8)

 $\mathcal Q$ Sobre o alfabeto $A=\{\mathtt{a},\mathtt{b},\mathtt{c}\}$ considere a linguagem

$$L = \{ \omega \in A^* : (\omega_i = \mathbf{a}) \Rightarrow (\omega_{i+2} = \mathbf{b}) \}$$

Projecte um autómato que reconheça ${\cal L}.$

 \mathcal{R}

???

Redução de autómato finito determinista (1)

 ${\mathcal Q}$ Considere o autómato seguinte e compare os estados A e D. Que pode concluir ?

Que s\(\tilde{a}\)o equivalentes, pelo que podem ser fundidos

Redução de autómato finito determinista (2)

 O que resulta em a, bb

Este, pode provar-se que n\u00e3o tem estados redundantes.

a, b, c

Algoritmo de Redução de AFD (1)

Pretende-se reduzir o AFD 0 0 0

 Primeiro, dividem-se os estados em duas classes, uma contendo os estados de aceitação e outra os de não-aceitação.

Algoritmo de Redução de AFD (2)

• Em C_1 , as transições em 0 são todas internas, mas as em 1 podem ser internas ou provocar uma ida para C_2 . Logo, não está bem formada e tem de ser dividida.

Algoritmo de Redução de AFD (3)

• Dividindo C_1 em $C_{1,1}=\{A,B,C,F\}$ e $C_{1,2}=\{D,E\}$ obtem-se

 Pode verificar-se que as 3 classes estão bem formadas, pelo que se chegou à versão reduzida do autómato.

Algoritmo de Redução de AFD (4)

Autómato reduzido

Nos apontamentos encontra uma versão não gráfica do algoritmo.

Autómato finito não determinista

Um autómato finito não determinista é um autómato finito

onde

- as transições estão associadas a símbolos individuais do alfabeto ou à palavra vazia (ε);
- de cada estado saem $\it zero ou mais transições por cada símbolo do alfabeto ou <math>\it \varepsilon;$
- há um estado inicial;
- há 0 ou mais estados de aceitação, que determinam as palavras aceites;
- os caminhos que começam no estado inicial e terminam num estado de aceitação representam as palavras aceites (reconhecidas) pelo autómato.
- As transições múltiplas ou com ε permitem alternativas de reconhecimento.
- As transições ausentes representam quedas num estado de morte (estado não representado).

AFND: caminhos alternativos

Analise o processo de reconhecimento da palavra abab ?

- Há 3 caminhos alternativos

 - $2 A \xrightarrow{a} A \xrightarrow{b} A \xrightarrow{a} A \xrightarrow{b} A$

AFND: caminhos alternativos

• Analise o processo de reconhecimento da palavra abab?

• Que se podem representar de forma arbórea

AFND: exemplo

Q Que palavras são reconhecidas pelo autómato seguinte?

 ${\cal R}\,$ Todas as palavras que terminarem em ab ou ac

$$L=\{\omega \mathtt{a} x \,:\, \omega \in A^* \,\wedge\, x \in \{\mathtt{b},\mathtt{c}\}\}.$$

 Percebe-se uma grande analogia entre este autómato e a expressão regular (a|b|c)*a(b|c)

AFND com transições- ε

Considere o AFND seguinte que contém uma transição-ε.

A palavra 101 é reconhecida pelo autómato através do caminho

$$A \stackrel{1}{\longrightarrow} B \stackrel{0}{\longrightarrow} C \stackrel{1}{\longrightarrow} D$$

A palavra 11 é reconhecida pelo autómato através do caminho

$$A \xrightarrow{1} B \xrightarrow{\varepsilon} C \xrightarrow{1} D$$

Este autómato reconhece todas as palavras terminadas em 11 ou 101

$$L = \{\omega_1 \omega_2 : \omega_1 \in A^* \land \omega_2 \in \{11, 101\}\}.$$

AFND: definição

- ${\cal D}$ Um autómato finito não determinista (AFND) é um quíntuplo $M=(A,Q,q_0,\delta,F)$, em que:
 - A é o alfabeto de entrada;
 - Q é um conjunto finito não vazio de estados;
 - $q_0 \in Q$ é o estado inicial;
 - $\delta\subseteq (Q\times A_{\varepsilon}\times Q)$ é a relação de transição entre estados, com $A_{\varepsilon}=A\cup\{\varepsilon\};$
 - $F \subseteq Q$ é o conjunto dos estados de aceitação.

- Apenas a definição de δ difere em relação aos AFD.
- Se se representar δ na forma de uma tabela, as células são preenchidas com elementos de $\wp(Q)$, ou seja, sub-conjuntos de Q.

AFND: Exemplo (3)

Q Represente analiticamente o AFND

 \mathcal{R}

- $A = \{0, 1\}$
- $Q = \{A, B, C, D\}$
- $q_0 = A$
- $F = \{D\}$
- $\bullet \ \ \delta = \{(A,0,A), (A,1,A), (A,1,B), (B,\varepsilon,C), (B,0,C), (C,1,D)\}$

AFND: linguagem reconhecida

- Diz-se que um AFND $M=(A,Q,q_0,\delta,F)$, aceita uma palavra $u\in A^*$ se u se puder escrever na forma $u=u_1u_2\cdots u_n$, com $u_i\in A_{\varepsilon}$, e existir uma sequência de estados s_0,s_1,\cdots,s_n , que satisfaça as seguintes condições:
 - $\mathbf{1}$ $s_0 = q_0;$
 - 2 qualquer que seja o $i=1,\cdots,n, (s_{i-1},u_i,s_i)\in \delta;$
 - $s_n \in F$.
- Caso contrário diz-se que M rejeita a entrada.
- Note que n pode ser maior que |u|, porque alguns dos u_i podem ser ε .
- Usar-se-á a notação $q_i \stackrel{u}{\longrightarrow} q_j$ para representar a existência de uma palavra u que conduza do estado q_i ao estado q_j .
- Usando esta notação tem-se $L(M) = \{u : q_0 \xrightarrow{u} q_f \land q_f \in F\}.$

Equivalência entre AFD e AFND

- A classe das linguagens cobertas por um AFD é a mesma que a classe das linguagens cobertas por um AFND
- Se M é um AFD, então $\exists_{M' \in AFND} : L(M') = L(M)$.
- Se M é um AFND, então $\exists_{M' \in AFD} : L(M') = L(M)$.
- Como determinar um AFND equivalente a um AFD dado ?
- Como determinar um AFD equivalente a um AFND dado ?
- Pelas definições de AFD e AFND, um AFD é um AFND. Porquê?
 - Q, q_0 e F têm a mesma definição.
 - Nos AFD $\delta: Q \times A \rightarrow Q$.
 - Nos AFND $\delta \subset Q \times A_{\varepsilon} \times Q$
 - Mas, se $\delta:Q\times A\to Q$ então $\delta\subseteq Q\times A\times Q\subset Q\times A_{\varepsilon}\times Q$
 - Logo, um AFD é um AFND

Equivalente AFD de um AFND (1)

Como determinar um AFD equivalente ao AFND seguinte ?

A árvore de reconhecimento aponta para sub-conjuntos de estados

Abril de 2020

Equivalente AFD de um AFND (2)

- Dado um AFND $M=(A,Q,q_0,\delta,F)$, considere o AFD $M'=(A,Q',q'_0,\delta',F')$ onde:
 - $Q' = \wp(Q)$
 - q_0' é o subconjunto de Q constituído pelo estado inicial de M mais todos os alcançáveis a partir dele por ocorrências de ε^+
 - $F' = \{ f' \in \wp(Q) : f' \cap F \neq \emptyset \}$
 - $\delta'=\wp(Q)\times A\to\wp(Q)$, com $\delta'(q',a)=\bigcup_{q\in q'}\{\delta(q,a)\}$ fechado em ε .
- M e M' reconhecem a mesma linguagem.

Note que:

- O estado inicial (q'_0) pode conter 1 ou mais elementos de Q
- Cada elemento do conjunto de chegada ($f' \in F'$) por conter elementos de F e $Q \setminus F$

Equivalente AFD de um AFND: exemplo

Q Determinar um AFD equivalente ao AFND seguinte ?

 \mathcal{R}

$$\begin{array}{lll} \bullet & Q' = \{X_0, X_1, X_2, X_3, X_4, X_5, X_6, X_7, X_8, X_9, x_{10}, X_{11}, X_{12}, X_{13}, X_{14}, X_{15}\}, \\ & \mathsf{com} \\ & X_0 = \{\} & X_1 = \{A\} & X_2 = \{B\} & X_3 = \{A, B\} \\ & X_4 = \{C\} & X_5 = \{A, C\} & X_6 = \{B, C\} & X_7 = \{A, B, C\} \\ & X_8 = \{D\} & X_9 = \{A, D\} & X_{10} = \{B, D\} & X_{11} = \{A, B, D\} \\ & X_{12} = \{C, D\} & X_{13} = \{A, C, D\} & X_{14} = \{B, C, D\} & X_{15} = \{A, B, C, D\} \end{array}$$

- $q_0' = X_1$
- $F' = \{X_8, X_9, X_{10}, X_{11}, X_{12}, X_{13}, X_{14}, X_{15}\}$

Equivalente AFD de um AFND: exemplo

Q Determinar um AFD equivalente ao AFND seguinte ?

 \mathcal{R}

• $\delta' =$

estado	0	1	estado	0	1
$X_0 = \{\}$	X_0	X_0	$X_1 = \{A\}$	X_1	X_7
$X_2 = \{B\}$	X_4	X_0	$X_3 = \{A, B\}$	X_5	X_7
$X_4 = \{C\}$	X_0	X_8	$X_5 = \{A, C\}$	X_1	X_{15}
$X_6 = \{B, C\}$	X_4	X_8	$X_7 = \{A, B, C\}$	X_5	X_{15}
$X_8 = \{D\}$	X_0	X_0	$X_9 = \{A, D\}$	X_1	X_7
$X_{10} = \{B, D\}$	X_4	X_0	$X_{11} = \{A, B, D\}$	X_5	X_7
$X_{12} = \{C, D\}$	X_0	X_8	$X_{13} = \{A, C, D\}$	X_1	X_{15}
$X_{14} = \{B, C, D\}$	X_4	X_8	$X_{15} = \{A, B, C, D\}$	X_5	X_{15}

Serão todos estes estados necessários?

Equivalente AFD de um AFND: exemplo

Q Determinar um AFD equivalente ao AFND seguinte ?

 \mathcal{R}

δ' =

estado	0	1	estado	0	1
$X_0 = \{\}$	X_0	X_0	$X_1 = \{A\}$	X_1	X_7
$X_2 = \{B\}$	X_4	X_0	$X_3 = \{A, B\}$	X_5	X_7
$X_4 = \{C\}$	X_0	X_8	$X_5 = \{A, C\}$	X_1	X_{15}
$X_6 = \{B, C\}$	X_4	X_8	$X_7 = \{A, B, C\}$	X_5	X_{15}
$X_8 = \{D\}$	X_0	X_0	$X_9 = \{A, D\}$	X_1	X_7
$X_{10} = \{B, D\}$	X_4	X_0	$X_{11} = \{A, B, D\}$	X_5	X_7
$X_{12} = \{C, D\}$	X_0	X_8	$X_{13} = \{A, C, D\}$	X_1	X_{15}
$X_{14} = \{B, C, D\}$	X_4	X_8	$X_{15} = \{A, B, C, D\}$	X_5	X_{15}

[•] Analisemos a evolução a partir do estado inicial (X_1) : vai para X_7

Q Determinar um AFD equivalente ao AFND seguinte ?

 \mathcal{R}

• $\delta' =$

estado	0	1	estado	0	1
$X_0 = \{\}$	X_0	X_0	$X_1 = \{A\}$	X_1	X_7
$X_2 = \{B\}$	X_4	X_0	$X_3 = \{A, B\}$	X_5	X_7
$X_4 = \{C\}$	X_0	X_8	$X_5 = \{A, C\}$	X_1	X_{15}
$X_6 = \{B, C\}$	X_4	X_8	$X_7 = \{A, B, C\}$	X_5	X_{15}
$X_8 = \{D\}$	X_0	X_0	$X_9 = \{A, D\}$	X_1	X_7
$X_{10} = \{B, D\}$	X_4	X_0	$X_{11} = \{A, B, D\}$	X_5	X_7
$X_{12} = \{C, D\}$	X_0	X_8	$X_{13} = \{A, C, D\}$	X_1	X_{15}
$X_{14} = \{B, C, D\}$	X_4	X_8	$X_{15} = \{A, B, C, D\}$	X_5	X_{15}

[•] De X_7 vai para X_5 e X_{15}

Q Determinar um AFD equivalente ao AFND seguinte ?

 \mathcal{R}

•
$$\delta' =$$

estado	0	1	estado	0	1
$X_0 = \{\}$	X_0	X_0	$X_1 = \{A\}$	X_1	X_7
$X_2 = \{B\}$	X_4	X_0	$X_3 = \{A, B\}$	X_5	X_7
$X_4 = \{C\}$	X_0	X_8	$X_5 = \{A, C\}$	X_1	X_{15}
$X_6 = \{B, C\}$	X_4	X_8	$X_7 = \{A, B, C\}$	X_5	X_{15}
$X_8 = \{D\}$	X_0	X_0	$X_9 = \{A, D\}$	X_1	X_7
$X_{10} = \{B, D\}$	X_4	X_0	$X_{11} = \{A, B, D\}$	X_5	X_7
$X_{12} = \{C, D\}$	X_0	X_8	$X_{13} = \{A, C, D\}$	X_1	X_{15}
$X_{14} = \{B, C, D\}$	X_4	X_8	$X_{15} = \{A, B, C, D\}$	X_5	X_{15}

E é tudo. Os restantes estados são inúteis, podendo ser descartados

Q Determinar um AFD equivalente ao AFND seguinte ?

 \mathcal{R}

• M' =

Sendo não alcançáveis, os estados a cinzento podem ser removidos.

37/77

Q Determinar um AFD equivalente ao AFND seguinte ?

 \mathcal{R}

Consegue-se o mesmo resultado através de um processo construtivo.

Q Determinar um AFD equivalente ao AFND seguinte ?

 \mathcal{R}

$$X_1 = \{A\}$$

• Comece-se com o estado inicial $(X_1 = \{A\})$

Q Determinar um AFD equivalente ao AFND seguinte ?

 \mathcal{R}

A transição em 0 não introduz qualquer novo estado

Q Determinar um AFD equivalente ao AFND seguinte ?

 \mathcal{R}

• A transição em 1 introduz o estado $X_7 = \{A, B, C\}$

Q Determinar um AFD equivalente ao AFND seguinte ?

 \mathcal{R}

38/77

[•] De X_7 com 0 é introduzido o estado $X_5 = \{A, C\}$

Q Determinar um AFD equivalente ao AFND seguinte ?

 \mathcal{R}

$$X_1 = \{A\}$$

 $X_7 = \{A, B, C\}$
 $X_5 = \{A, C\}$
 $X_{15} = \{A, B, C, D\}$

• Com 1 é introduzido o $X_{15} = \{A, B, C, D\}$, que é de aceitação porque contém D

Q Determinar um AFD equivalente ao AFND seguinte ?

 \mathcal{R}

$$X_1 = \{A\}$$

 $X_7 = \{A, B, C\}$
 $X_5 = \{A, C\}$
 $X_{15} = \{A, B, C, D\}$

• De X_5 há transições para X_1 e X_{15}

38/77

Q Determinar um AFD equivalente ao AFND seguinte ?

 \mathcal{R}

$$X_1 = \{A\}$$

 $X_7 = \{A, B, C\}$
 $X_5 = \{A, C\}$
 $X_{15} = \{A, B, C, D\}$

• E de X_{15} para X_5 e X_{15}

Operações sobre AFD e AFND

- Os automátos finitos (AF) são fechados sobre as operações de:
 - Reunião
 - Concatenação
 - Fecho
 - Interceção
 - Complementação

Reunião de AF

Como criar um AF que represente a reunião destes dois AF?

Reunião de AF

acrescenta-se um novo estado que passa a ser o inicial

Reunião de AF

• e acrescentam-se transições- ε deste novo estado para os estados iniciais originais

Reunião de AF: definição

 ${\cal D}$ Seja $M_1=(A,Q_1,q_1,\delta_1,F_1)$ e $M_2=(A,Q_2,q_2,\delta_2,F_2)$ dois autómatos (AFD ou AFND) quaisquer. O AFND $M=(A,Q,q_0,\delta,F)$, onde

$$\begin{split} Q &= Q_1 \cup Q_2 \cup \{q_0\}, \quad \text{com } q_0 \not\in Q_1 \land q_0 \not\in Q_2 \\ F &= F_1 \cup F_2 \\ \delta &= \delta_1 \cup \delta_2 \cup \{(q_0, \varepsilon, q_1), (q_0, \varepsilon, q_2)\} \end{split}$$

implementa a reunião de M_1 e M_2 , ou seja, $L(M) = L(M_1) \cup L(M_2)$.

 $\mathcal Q$ Sobre o alfabeto $A=\{\mathtt{a},\mathtt{b},\mathtt{c}\},$ sejam L_1 e L_2 as duas linguagens seguintes:

$$L_1 = \{ \omega \mathbf{a} \mid \omega \in A^* \}$$

$$L_2 = \{ \mathbf{a} \omega \mid \omega \in A^* \}$$

Determine um AF que reconheça $L = L_1 \cup L_2$.

 \mathcal{R}

Como criar um AF que represente a reunião de L₁ e L₂?

 $\mathcal Q$ Sobre o alfabeto $A=\{\mathtt{a},\mathtt{b},\mathtt{c}\},$ sejam L_1 e L_2 as duas linguagens seguintes:

$$L_1 = \{ \omega \,|\, \omega \in A^* \} \qquad \qquad L_2 = \{ a\omega \,|\, \omega \in A^* \}$$

Determine um AF que reconheça $L = L_1 \cup L_2$.

 \mathcal{R}

• Constroi-se um AF para a linguagem L_1

 $\mathcal Q$ Sobre o alfabeto $A=\{\mathtt{a},\mathtt{b},\mathtt{c}\},$ sejam L_1 e L_2 as duas linguagens seguintes:

$$L_1 = \{ \omega \,|\, \omega \in A^* \} \qquad \qquad L_2 = \{ a\omega \,|\, \omega \in A^* \}$$

Determine um AF que reconheça $L = L_1 \cup L_2$.

 \mathcal{R}

Constroi-se um AF para a linguagem L₂

 $\mathcal Q$ Sobre o alfabeto $A=\{\mathtt{a},\mathtt{b},\mathtt{c}\},$ sejam L_1 e L_2 as duas linguagens seguintes:

$$L_1 = \{ \omega \,|\, \omega \in A^* \} \qquad \qquad L_2 = \{ a\omega \,|\, \omega \in A^* \}$$

Determine um AF que reconheça $L = L_1 \cup L_2$.

 \mathcal{R}

• Acrescenta-se um novo estado (S_0) , que passa a ser o inicial

 $\mathcal Q$ Sobre o alfabeto $A=\{\mathtt{a},\mathtt{b},\mathtt{c}\},$ sejam L_1 e L_2 as duas linguagens seguintes:

$$L_1 = \{ \omega \mathbf{a} \mid \omega \in A^* \}$$
 $L_2 = \{ \mathbf{a}\omega \mid \omega \in A^* \}$

Determine um AF que reconheça $L = L_1 \cup L_2$.

 \mathcal{R}

Abril de 2020

43/77

[•] E acrescentam-se transições- ε de S_0 (novo estado inicial) para S_1 e S_2 (os estados iniciais originais)

 $\mathcal Q$ Sobre o alfabeto $A=\{\mathtt{a},\mathtt{b},\mathtt{c}\},$ sejam L_1 e L_2 as duas linguagens seguintes:

$$L_1 = \{\omega \, | \, \omega \in A^*\} \qquad \qquad L_2 = \{\mathrm{a}\omega \, | \, \omega \in A^*\}$$

Determine um AF que reconheça $L = L_1 \cup L_2$.

$$\mathcal{R} \\ M_1 = (A,Q_1,q_1,\delta_1,F_1) \text{ com} \\ Q_1 = \{S_1,S_2\}, \quad q_1 = S_1, \quad F_1 = \{S_2\} \\ \delta_1 = \{(S_1,a,S_1),(S_1,b,S_1),(S_1,c,S_1),(S_1,a,S_1) \\ M_2 = (A,Q_2,q_2,\delta_2,F_2) \text{ com} \\ Q_2 = \{S_3,S_4\}, \quad q_2 = S_3, \quad F_2 = \{S_4\} \\ \delta_2 = \{(S_3,a,S_4),(S_4,a,S_4),(S_4,b,S_4),(S_4,c,S_4) \\ M = M_1 \cup M_2 = (A,Q,q_0,\delta,F) \text{ com} \\ Q = \{S_0,S_1,S_2,S_3,S_4\}, \quad q_0 = S_0, \quad F = \{S_2,S_4\}, \\ \delta = \{(S_0,\varepsilon,S_1),(S_0,\varepsilon,S_3),(S_1,a,S_1),(S_1,b,S_1),(S_1,c,S_1),\\ (S_1,a,S_2),(S_3,a,S_4),(S_4,a,S_4),(S_4,b,S_4),(S_4,c,S_4+9) \}$$

Alternativamente, pode ser escrito de forma textual

Concatenação de AF

• Como criar um AF que represente a concatenação destes dois AF?

Concatenação de AF

- O estado inicial passa a ser o estado inicial do AF da esquerda
- Ace (Univ. Aveiro)

 Ace (Univ. Aveiro)

Concatenação de AF

e acrescentam-se transições- ε dos (antigos) estados de aceitação do AF da esquerda para o estado inicial do AF da direita ACP (Univ. Aveiro)

45/77

Concatenação de AF: definição

 $\mathcal D$ Seja $M_1=(A,Q_1,q_1,\delta_1,F_1)$ e $M_2=(A,Q_2,q_2,\delta_2,F_2)$ dois autómatos (AFD ou AFND) quaisquer. O AFND $M=(A,Q,q_0,\delta,F)$, onde

$$Q = Q_1 \cup Q_2$$

$$q_0 = q_1$$

$$F = F_2$$

$$\delta = \delta_1 \cup \delta_2 \cup (F_1 \times \{\varepsilon\} \times \{q_2\})$$

implementa a concatenação de M_1 e M_2 , ou seja, $L(M) = L(M_1) \cdot L(M_2)$.

Concatenação de AF: exemplo

 $\mathcal Q$ Sobre o alfabeto $A=\{\mathtt{a},\mathtt{b},\mathtt{c}\},$ sejam L_1 e L_2 as duas linguagens seguintes:

$$L_1 = \{ \omega \mathbf{a} \mid \omega \in A^* \}$$

$$L_2 = \{ \mathbf{a} \omega \mid \omega \in A^* \}$$

Determine um AF que reconheça $L = L_1 \cdot L_2$.

 \mathcal{R}

Como criar um AF que represente a concatenação de L1 com L2?

Concatenação de AF: exemplo

 $\mathcal Q$ Sobre o alfabeto $A=\{\mathtt{a},\mathtt{b},\mathtt{c}\},$ sejam L_1 e L_2 as duas linguagens seguintes:

$$L_1 = \{ \omega \,|\, \omega \in A^* \} \qquad \qquad L_2 = \{ \mathrm{a}\omega \,|\, \omega \in A^* \}$$

Determine um AF que reconheça $L = L_1 \cdot L_2$.

 \mathcal{R}

• Constroi-se AF para as linguagens L_1 e L_2

Concatenação de AF: exemplo

 $\mathcal Q$ Sobre o alfabeto $A=\{\mathtt{a},\mathtt{b},\mathtt{c}\},$ sejam L_1 e L_2 as duas linguagens seguintes:

$$L_1 = \{ \omega \mathbf{a} \mid \omega \in A^* \}$$
 $L_2 = \{ \mathbf{a} \omega \mid \omega \in A^* \}$

Determine um AF que reconheça $L = L_1 \cdot L_2$.

 \mathcal{R}

- S_2 deixa de ser de aceitação; S_3 deixa de ser de entrada
- acrescenta-se uma transição-arepsilon de S_2 para S_3

ACP (Univ. Aveiro) LFA-2019/2020

47/77

Fecho de AF

• Como criar um AF que represente a concatenação destes dois AF?

48/77

Fecho de AF

- · acrescenta-se um novo estado que passa a ser o inicial
- o novo estado inicial é de aceitação

Fecho de AF

- e acrescentam-se transições-ε dos estados de aceitação do AF para o (novo) estado inicial
- os antigos estados de aceitação podem deixar de o ser
- Note que em geral não se pode fundir o novo estado inicial com o antigo

Fecho de AF: definição

 ${\cal D}$ Seja $M_1=(A,Q_1,q_1,\delta_1,F_1)$ um autómato (AFD ou AFND) qualquer. O AFND $M=(A,Q,q_0,\delta,F)$, onde

$$\begin{aligned} Q &= Q_1 \cup \{q_0\} \\ F &= \{q_0\} \\ \delta &= \delta_1 \cup (F_1 \times \{\varepsilon\} \times \{q_0\}) \cup \{(q_0, \varepsilon, q_1)\} \end{aligned}$$

implementa o fecho de M_1 , ou seja, $L(M) = L(M_1)^*$.

• Em alternativa poder-se-á considerar que $F=F_1\cup\{q_0\}$ e que de F_1 as novas transições- ε se dirigem a q_1

ACP (Univ. Aveiro) LFA-2019/2020 Abril de 2020 49/77

Fecho de AF: exemplo

 \mathcal{Q} Sobre o alfabeto $A = \{a, b, c\}$, seja

$$L_1 = \{ a\omega \mid \omega \in A^* \}$$

Determine o AFND que reconhece a linguagem L_1^* .

 \mathcal{R}

Como criar um AF que represente o fecho de L₁?

Fecho de AF: exemplo

Q Sobre o alfabeto $A = \{a, b, c\}$, seja

$$L_1 = \{ a\omega \mid \omega \in A^* \}$$

Determine o AFND que reconhece a linguagem L_1^* .

 \mathcal{R}

$$\longrightarrow S_1 \longrightarrow S_2$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow$$

Constroi-se um AF para L₁

Fecho de AF: exemplo

 $\mathcal Q$ Sobre o alfabeto $A = \{a,b,c\}$, seja

$$L_1 = \{ a\omega \mid \omega \in A^* \}$$

Determine o AFND que reconhece a linguagem L_1^* .

 \mathcal{R}

• acrescenta-se um novo estado (S_0) , que passa a ser o inicial e é de aceitação

50/77

• liga-se este estado ao S_1 (inicial anterior) por uma transição-arepsilon

Fecho de AF: exemplo

Q Sobre o alfabeto $A = \{a, b, c\}$, seja

$$L_1 = \{ a\omega \mid \omega \in A^* \}$$

Determine o AFND que reconhece a linguagem L_1^* .

 \mathcal{R}

- liga-se o estado S_2 (aceitação anterior) ao S_0 (novo inicial)
- S_2 deixa (pode deixar) de ser de aceitação

 \mathcal{Q} Sobre o alfabeto $A = \{a, b, c\}$, sejam L_1 e L_2 as duas linguagens seguintes:

$$L_1 = \{ \omega \mathbf{a} \mid \omega \in A^* \}$$

$$L_2 = \{ \mathbf{a} \omega \mid \omega \in A^* \}$$

$$L_2 = \{ a\omega \mid \omega \in A^* \}$$

Determine um AFD ou AFND que reconheça $L = L_1 \cap L_2$.

 \mathcal{R}

Como criar um AF que represente a intersecção de L₁ e L₂?

 \mathcal{Q} Sobre o alfabeto $A = \{a, b, c\}$, sejam L_1 e L_2 as duas linguagens seguintes:

$$L_1 = \{ \omega \mathbf{a} \mid \omega \in A^* \}$$

$$L_2 = \{ \mathbf{a} \omega \mid \omega \in A^* \}$$

$$L_2 = \{ a\omega \mid \omega \in A^* \}$$

Determine um AFD ou AFND que reconheça $L = L_1 \cap L_2$.

 \mathcal{R}

Constroi-se AF para as linguagens L₁ e L₂

 \mathcal{Q} Sobre o alfabeto $A = \{a, b, c\}$, sejam L_1 e L_2 as duas linguagens seguintes:

$$L_1 = \{ \omega \mathbf{a} \mid \omega \in A^* \}$$

$$L_2 = \{ \mathbf{a} \omega \mid \omega \in A^* \}$$

$$L_2 = \{ a\omega \mid \omega \in A^* \}$$

Determine um AFD ou AFND que reconheça $L = L_1 \cap L_2$.

 \mathcal{R}

- Definem-se os estados que resultam do produto cartesiano $\{S_1, S_2\} \times \{S_3, S_4\}$
- Mas, alguns podem não ser alcançáveis

 \mathcal{Q} Sobre o alfabeto $A = \{a, b, c\}$, sejam L_1 e L_2 as duas linguagens seguintes:

$$L_1 = \{ \omega \mathbf{a} \mid \omega \in A^* \}$$

$$L_2 = \{ \mathbf{a} \omega \mid \omega \in A^* \}$$

$$L_2 = \{ a\omega \mid \omega \in A^* \}$$

Determine um AFD ou AFND que reconheça $L = L_1 \cap L_2$.

 \mathcal{R}

Pelo que comecemos apenas pelo S_{1,3}

 \mathcal{Q} Sobre o alfabeto $A = \{a, b, c\}$, sejam L_1 e L_2 as duas linguagens seguintes:

$$L_1 = \{ \omega \mathbf{a} \mid \omega \in A^* \}$$

$$L_2 = \{ \mathbf{a} \omega \mid \omega \in A^* \}$$

$$L_2 = \{ a\omega \mid \omega \in A^* \}$$

Abril de 2020

51/77

Determine um AFD ou AFND que reconheça $L = L_1 \cap L_2$.

 \mathcal{R}

- de $S_1 \stackrel{a}{\longrightarrow} S_2$ e $S_3 \stackrel{a}{\longrightarrow} S_4$ aparece $S_{1,3} \stackrel{a}{\longrightarrow} S_{2,4}$
- de $S_1 \stackrel{a}{\longrightarrow} S_1$ e $S_3 \stackrel{a}{\longrightarrow} S_4$ aparece $S_{1,3} \stackrel{a}{\longrightarrow} S_{1,4}$

 \mathcal{Q} Sobre o alfabeto $A = \{a, b, c\}$, sejam L_1 e L_2 as duas linguagens seguintes:

$$L_1 = \{ \omega \mathbf{a} \mid \omega \in A^* \}$$

$$L_2 = \{ \mathbf{a} \omega \mid \omega \in A^* \}$$

$$L_2 = \{ a\omega \mid \omega \in A^* \}$$

Determine um AFD ou AFND que reconheça $L = L_1 \cap L_2$.

 \mathcal{R}

- de $S_1 \xrightarrow{x} S_1$ e $S_4 \xrightarrow{x} S_4$ aparece $S_{1,4} \xrightarrow{x} S_{1,4}$, para $x \in \{a,b,c\}$
- de $S_1 \stackrel{a}{\longrightarrow} S_2$ e $S_4 \stackrel{a}{\longrightarrow} S_4$ aparece $S_{1,4} \stackrel{a}{\longrightarrow} S_{2,4}$,

Intersecção de AF: definição

 ${\cal D}$ Seja $M_1=(A,Q_1,q_1,\delta_1,F_1)$ e $M_2=(A,Q_2,q_2,\delta_2,F_2)$ dois autómatos (AFD ou AFND) quaisquer. O AFND $M=(A,Q,q_0,\delta,F)$, onde

$$Q = Q_1 \times Q_2$$

$$q_0 = (q_1, q_2)$$

$$F = F_1 \times F_2$$

$$\delta \subseteq (Q_1 \times Q_2) \times A_{\varepsilon} \times (Q_1 \times Q_2)$$

sendo δ definido de modo que

 $((q_i,q_j),a,(q_i',q_j'))\in \delta$ se e só se $(q_i,a,q_i')\in \delta_1$ e $(q_j,a,q_j')\in \delta_2$, implementa intersecção de M_1 e M_2 , ie., $L(M)=L(M_1)\cap L(M_2)$.

Complementação de AF

Q Sobre o alfabeto $A = \{a, b, c\}$, seja

$$L_1 = \{ a\omega \mid \omega \in A^* \}$$

Determine um AF que reconheça a linguagem $\overline{L_1}$.

 \mathcal{R}

- Para se obter o complementar de um autómato finito determinista (em sentido estrito, ie. com todos os estados representados) basta complementar o conjunto de aceitação
- Para o caso de um autómato finito não determinista é preciso calcular o determinista equivalente e complementá-lo.

 $\mathcal Q$ Sobre o alfabeto $A=\{\mathtt{a},\mathtt{b},\mathtt{c}\},$ sejam L_1 e L_2 as duas linguagens seguintes:

$$L_1 = \{ \omega \mathbf{a} \mid \omega \in A^* \}$$

Determine um AFD ou AFND que reconheça $L = \overline{L_1}$.

 \mathcal{R}

Como criar um AF que represente a intersecção de L₁ e L₂?

 $\mathcal Q$ Sobre o alfabeto $A=\{\mathtt{a},\mathtt{b},\mathtt{c}\},$ sejam L_1 e L_2 as duas linguagens seguintes:

$$L_1 = \{ \omega \mathbf{a} \mid \omega \in A^* \}$$

Determine um AFD ou AFND que reconheça $L = \overline{L_1}$.

 \mathcal{R}

Considere-se um AFND para a linguagem L₁

 $\mathcal Q$ Sobre o alfabeto $A=\{\mathtt{a},\mathtt{b},\mathtt{c}\},$ sejam L_1 e L_2 as duas linguagens seguintes:

$$L_1 = \{ \omega \mathbf{a} \mid \omega \in A^* \}$$

Determine um AFD ou AFND que reconheça $L = \overline{L_1}$.

 \mathcal{R}

Obtenha-se um determinista equivalente

 $\mathcal Q$ Sobre o alfabeto $A=\{\mathtt{a},\mathtt{b},\mathtt{c}\},$ sejam L_1 e L_2 as duas linguagens seguintes:

$$L_1 = \{ \omega \mathbf{a} \mid \omega \in A^* \}$$

Determine um AFD ou AFND que reconheça $L = \overline{L_1}$.

 \mathcal{R}

Complemente-se os estados de aceitação

Operações sobre AF: exercício

 $\mathcal Q$ Sobre o alfabeto $A=\{\mathtt{a},\mathtt{b},\mathtt{c}\},$ sejam L_1 e L_2 as duas linguagens seguintes:

$$L_1 = \{v\omega \mid v \in \{a,b\} \land \omega \in A^*\}$$

$$L_2 = \{\omega \in A^* \mid \#(a,\omega)\%2 = 0\}$$

Determine AF que reconheçam as linguagens

$$L_{3} = L_{1} \cup L_{2},$$

$$L_{4} = L_{1} \cdot L_{2},$$

$$L_{5} = L_{1}^{*},$$

$$L_{6} = L_{1} \cap L_{2}$$

$$L_{7} = \overline{L_{2}}$$

$$L_{8} = \overline{(L_{4} \cup L_{3})^{*}}$$

Equivalência entre ER e AF

- A classe das linguagens cobertas por expressões regulares (ER) é a mesma que a classe das linguagens cobertas por autómatos finitos (AF)
- Logo:
 - Se e é uma ER, então $\exists_{M \in AF} : L(M) = L(e)$.
 - Se M é um AF, então $\exists_{e \in ER} : L(e) = L(M)$.
- Isto introduz duas operações:
 - Como determinar um AF equivalente a uma ER dada ?
 - · Como determinar uma ER equivalente a um AF dado ?

Conversão de uma ER num AF Abordagem

 $\overline{\mathcal{A}}$

Dada uma expressão regular qualquer ela é:

- ou um elemento primitivo;
- ou uma expressão do tipo e^* , sendo e uma expressão regular qualquer;
- ou uma expressão do tipo e₁e₂, sendo e₁ e e₂ duas expressões regulares quaisquer;
- ou uma expressão do tipo e₁|e₂, sendo e₁ e e₂ duas expressões regulares quaisquer;
- Se se identificar os autómatos equivalentes das expressões primitivas, tem-se o problema da conversão de uma expressão regular para um autómato finito resolvido, visto que se sabe como fazer a reunião, a concatenação e o fecho de autómatos.

Conversão de uma ER num AF

Autómatos dos elementos primitivos

expressão regular	autómato finito
()	\rightarrow
ε	→
a	$\longrightarrow \bigcirc \longrightarrow \bigcirc$

• Na realidade, o autómato referente a ε pode ser obtido aplicando o fecho ao autómato de ().

Conversão de uma ER num AF Algoritmo de conversão

- Se a expressão regular é do tipo primitivo, o autómato correspondente pode ser obtido da tabela anterior.
- Se é do tipo e^* , aplica-se este mesmo algoritmo na obtenção de um autómato equivalente à expressão regular e e, de seguida, aplica-se o fecho de autómatos.
- Se é do tipo e_1e_2 , aplica-se este mesmo algoritmo na obtenção de autómatos para as expressões e_1 e e_2 e, de seguida, aplica-se a concatenação de autómatos.
- Finalmente, se é do tipo $e_1|e_2$, aplica-se este mesmo algoritmo na obtenção de autómatos para as expressões e_1 e e_2 e, de seguida, aplica-se a reunião de autómatos.

 Na realidade, o algoritmo corresponde a um processo de decomposição arbórea a partir da raiz seguido de um processo de construção arbórea a partir das folhas.

 $\mathcal Q$ Construa um autómato equivalente à expressão regular $e=a|a(a|b|c)^*a$.

 \mathcal{R}

1 Decomposição:

 $\mathcal Q\,$ Construa um autómato equivalente à expressão regular $e=a|a(a|b|c)^*a.$

 \mathcal{R}

① Decomposição:

4 Simplificando

Abril de 2020

6 Simplificando

7 Concatenação (já com simplificação) para obter $a(a|b|c)^*a$

8 Finalmente obtenção de $a|a(a|b|c)^*a$

Simplificando

Autómato finito generalizado (AFG) Definição

- \mathcal{D} Um autómato finito generalizado (AFG) é um quíntuplo $M=(A,Q,q_0,\delta,F)$, em que:
 - A é o alfabeto de entrada;
 - Q é um conjunto finito não vazio de estados;
 - $q_0 \in Q$ é o estado inicial;
 - $\delta \subseteq (Q \times E \times Q)$ é a relação de transição entre estados, sendo E o conjunto das expressões regulares definidas sobre A; e
 - $F \subseteq Q$ é o conjunto dos estados de aceitação.

- A diferença em relação ao AFD e AFND está na definição da relação δ. Neste caso as etiquetas são expressões regulares.
- Com base nesta definição os AFD e os AFND são autómatos finitos generalizados.

Autómato finito generalizado (AFG) Exemplo

• O AFG seguinte representa o conjunto das palavras, definidas sobre o alfabeto $A = \{a, b, c\}$, que contêm a sub-palavra aba.

Note que a etiqueta das transições A → A e B → B é a|b|c (uma expressão regular) e não a, b, c (que representa 3 transições, uma em a, uma em b e uma em c).

Autómato finito generalizado (AFG) Exemplo

• O AFG seguinte representa as constantes reais em C.

 Note que se usou '.' e n\u00e3o ., porque o \u00faltimo \u00e9 uma express\u00e3o regular que representa qualquer letra do alfabeto.

Conversão de um AFG numa ER Abordagem

D UM AFG com a forma

designa-se por autómato finito generalizado reduzido.

- Note que:
 - O estado A não é de aceitação e não tem transições a chegar.
 - O estado B é de aceitação e não tem transições a sair.
- Se se reduzir um AFG à forma anterior, e é uma expressão regular equivalente ao autómato.
- O processo de conversão resume-se assim à conversão de AFG à forma reduzida

Conversão de um AFG numa ER Algoritmo de conversão

- 1 transformação de um AFG noutro cujo estado inicial não tenha transições a chegar.
 - Se necessário, acrescenta-se um novo estado inicial com uma transição em ε para o antigo.
- 2 transformação de um AFG noutro com um único estado de aceitação, sem transições de saída.
 - Se necessário, acrescenta-se um novo estado, que passa a ser o único de aceitação, que recebe transições em ε dos anteriores estados de aceitação, que deixam de o ser.
- 3 Eliminação dos restantes estados.
 - Os estados são eliminados um a um, em processos de transformação que mantêm a equivalência.

Ilustração com um exemplo

- transformação de um AFG noutro cujo estado inicial não tenha transições a chegar.
 - Se necessário, acrescenta-se um novo estado inicial com uma transição em ε para o antigo.

antes

depois

Ilustração com um exemplo

- 2 transformação de um AFG noutro com um único estado de aceitação e sem transições de saída.
 - Se necessário, acrescenta-se um novo estado, que passa a ser o único de aceitação, que recebe transições em ε dos anteriores estados de aceitação, que deixam de o ser.

antes

depois

Ilustração com um exemplo

- 3 Eliminação dos restantes estados.
 - Os estados são eliminados um a um, em processos de transformação que mantêm a equivalência. (Comece-se pelo estado A.)

antes

depois da eliminação de ${\cal A}$

Ilustração com um exemplo

- 3 Eliminação dos restantes estados.
 - Os estados são eliminados um a um, em processos de transformação que mantêm a equivalência. (Remova-se agora o estado B.)

depois da eliminação de ${\cal A}$

depois da eliminação de B

• Sendo $(a|b|c)^*aba(a|b|c)^*$ a expressão regular pretendida.

Conversão de um AFG numa ER Algoritmo de eliminação de um estado

• Caso em que o estado a eliminar (B) não tem transições de si para si

- Pode acontecer que haja $A_i = C_j$
- Para ir de A_i para C_j através de B, para $i=1,2,\cdots,n$ e $j=1,2,\cdots,m$, é preciso uma palavra que encaixe na expressão regular $(e_{a,i})(e_{b,j})$.
- Então, se se retirar B, é preciso acrescentar uma transição de A_i para C_j que contemple essas palavras, ou seja, com a etiqueta $(e_{a,i})(e_{b,j})$.
- Esta transição fica em paralelo com uma que já exista.

Algoritmo de eliminação de um estado

• Caso em que o estado a eliminar (B) **tem** transições de si para si

- Pode acontecer que haja $A_i = C_j$
- Para ir de A_i para C_j através de B, para $i=1,2,\cdots,n$ e $j=1,2,\cdots,m$, é preciso uma palavra que encaixe na expressão regular $(e_{a,i})(e_c)^*(e_{b,j})$.
- Então, se se retirar B, é preciso acrescentar uma transição de A_i para C_j que contemple essas palavras, ou seja com etiqueta $(e_{a,i})(e_c)^*(b,j)$.
- Esta transição fica em paralelo com uma que já exista.

Q Obtenha uma ER equivalente ao AF seguinte

- ${\cal R}$ Aplique-se passo a passo o algoritmo de conversão.
- Porque o estado inicial possui uma transição a entrar, deve-se substituir o estado inicial, de acordo com o passo 1 do algoritmo:

Exemplo de conversão de um AFG numa ER Exercício

 Porque o estado de aceitação possui uma transição a sair, deve-se aplicar o passo 2 do algorimo de conversão

 Elimine-se o estado A. Para isso é preciso ver os segmentos de caminhos que passam por A.

Note que B aparece à esquerda e à direita.

Exemplo de conversão de um AFG numa ER Exercício

 Porque o estado de aceitação possui uma transição a sair, deve-se aplicar o passo 2 do algorimo de conversão

Eliminando o estado A obtém-se

• Finalmente, eliminando o estado *B* obtém-se a ER 0*1(0|10*1)*.