Curso de Ciência da computação Disciplina: Matemática discreta Professor: Carlos Roberto Silva

Atividade 10 - Introdução a Teoria dos Códigos

GABARITO

Atividade 10

1) Uma palavra de 6 bits em código Hamming é recebida. Verificar seu estado, detectando os erros e apresentar a palavra original enviada, corrigindo o(s) bit(s) incorretos.

Palavra recebida: 100101

P1	P2	D1	P3	D2	D3	MOD2
1	0	0/1	1	0	1	
0		0/1		0		1/0
	0	0/1			1	1/0
			1	0	1	0

Palavra original (Hamming): 100101

Mensagem enviada: 101

Erro detectado: D1

2) Uma mensagem de 4 bits precisa ser convertida em código Hamming, determine os bits de paridade e em seguida a palavra recebida.

Mensagem: 1011

001	010	011	100	101	110	111	
P1	P2	D1	P3	D2	D3	D4	MOD2
0	1	1	0	0	1	1	

$$P1 = (D1 + D2 + D3)MOD2 = (1 + 0 + 1)MOD2 = 0$$

$$P2 = (D1 + D3 + D4)MOD2 = (1 + 1 + 1)MOD2 = 1$$

$$P3 = (D2 + D3 + D4)MOD2 = (0 + 1 + 1)MOD2 = 0$$

Palavra recebida: 0110011

3) A partir da matriz geradora do código, na forma sistemática, pede-se:

$$\mathbf{G} = \begin{bmatrix} 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}$$

a) Construir uma tabela com os vetores mensagens e seus respectivos vetores códigos;

Mensagens	Palavra Código G (7,4)			
0000	0000000			
0001	1110001			
0010	1100010			
0011	0010011			
0100	1010100			
0101	0100101			
0111	1000111			
1000	0111000			
1001	1001001			
1010	1011010			
1011	0101011			
1100	1101100			
1101	0011101			
1110	0001110			
1111	1111111			

b) Obter a matriz verificadora de paridade H.

$$H = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 0 & 1 \end{bmatrix}$$

c) Verificar a condição de ortogonalidade para o vetor código correspondente ao vetor mensagem m = 1101.

$$\mathbf{c}H^T = \mathbf{m}GH^T = 0$$

$$cH^T = (0011101) \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} = 1(001) + 1(011) + 1(101) + 1(111) = 000$$

$$cH^T = 0$$
 (sem erro)

d) Verificar a condição de ortogonalidade para o vetor código correspondente ao vetor mensagem m = 1001.

$$cH^{T} = (1001001) \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} = 1(100) + 1(011) + 1(111) = 000$$

$$cH^T = 0$$
 (sem erro)