IACA RM L52E23

UNCLASSIFIED

CLASSIFICATION CHANGED

AUG 13 1952

RESEARCH MEMORANDUM

SAERODYNAMIC CHARACTERISTICS AT SUPERSONIC SPEEDS OF A

🐫 SERIES OF WING-BODY COMBINATIONS HAVING CAMBERED

WINGS WITH AN ASPECT RATIO OF 3.5

AND A TAPER RATIO OF 0.2

EFFECTS OF SWEEP ANGLE AND THICKNESS RATIO

ON THE STATIC LATERAL STABILITY

CHARACTERISTICS AT M = FOR REFERENCE

By Clyde V. Hamilton

Langley Aeronautical Laboratoryo BE TAKEN FROM THIS ROOM
Langley Field, Va.

CLASSIFIED DOCUMENT

This material contains information affecting the National Defeuse of the United States within the meaning of the explonage laws, Title 18, U.S.C., Secs. 783 and 794, the transmission or revelation of which in any manner to an unauthorized person is prohibited by law.

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

WASHINGTON

August 1, 1952

NACA LIBRARY

LANGLEY AERONALTICAL LABORATORY
Langley Field, Va.

NACA RM L52E23

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

RESEARCH MEMORANDUM

AERODYNAMIC CHARACTERISTICS AT SUPERSONIC SPEEDS OF A
SERIES OF WING-BODY COMBINATIONS HAVING CAMBERED
WINGS WITH AN ASPECT RATIO OF 3.5

AND A TAPER RATIO OF 0.2

EFFECTS OF SWEEP ANGLE AND THICKNESS RATIO $\mbox{ON THE STATIC LATERAL STABILITY}$ $\mbox{CHARACTERISTICS AT } \mbox{M} = 2.01$

By Clyde V. Hamilton

SUMMARY

An investigation has been conducted in the Langley 4- by 4-foot supersonic pressure tunnel at a Mach number of 2.01 and a Reynolds number of 2.2 × 10⁶ to determine the effects of sweep angle and thickness ratio on the static lateral stability characteristics of a series of wings having a taper ratio of 0.2 and an aspect ratio of 3.5. The wings, which were tested on a body of revolution, had sweep angles of 10.8°, 35°, and 47° for a thickness ratio of 4 percent and thickness ratios of 4, 6, and 9 percent for a sweep angle of 47°. In addition, the wing with a thickness ratio of 6 percent and a sweep angle of 47° was tested with and without nacelles installed.

The results of these tests indicate that at a Mach number of 2.01 both the lateral-force parameter C_{Y_ψ} and the directional-stability parameter C_{n_ψ} tend to increase with lift coefficient. The effect of increasing the sweep angle or thickness ratio is to increase the positive value of C_{Y_ψ} and decrease the positive value of C_{n_ψ} . The effect of nacelle installation is to increase the positive values of C_{Y_ψ} and C_{n_ψ} and the negative value of C_{l_ψ} .

A change in Mach number from 1.60 to 2.01 had little effect on ${\rm C}_{Y_\psi}$ but increased the positive values of ${\rm C}_{n_\psi}$.

INTRODUCTION

A research program has been in progress at the Langley Aeronautical Laboratory to determine at subsonic, transonic, and supersonic speeds, the effects of thickness and sweep on the aerodynamic characteristics of a series of wing-body combinations with cambered wings having a taper ratio of 0.2 and an aspect ratio of 3.5. The effects of thickness and sweep on the longitudinal characteristics of a series of wing-body combinations at subsonic and transonic speeds are presented in references 1 and 2, respectively. The effects of sweep and thickness on the longitudinal characteristics for the series of wing-body combinations at Mach numbers of 1.60 and 2.01 are presented in references 3 and 4, respectively. The results of tests of several nacelle installations on a 47°0 sweptback wing at Mach numbers of 1.60 and 2.01 are presented in references 5 and 6, respectively. The effects of sweep and thickness on the lateral characteristics for the series of wing-body combinations at a Mach number of 1.60 are presented in reference 7.

The present paper presents the results of tests of the same series of wing-body combinations reported in reference 7 at a Mach number of 2.01 and a Reynolds number of 2.2 x 100 based on the wing mean aerodynamic chord. For the sweep series, the wings had quarter-chord sweep angles of 10.80, 350, and 470 with a thickness ratio of 4 percent and for the thickness series, thickness ratios of 4, 6, and 9 percent with a sweep angle of 470. In addition, a wing of 470 sweep with thicknesd root sections was tested. For this wing, the thickness ratio tapered linearly from 12 percent at the root to 6 percent at the 40-percent-semispen station and was constant at 6 percent farther outboard. The effects of adding nacelles to the 6-percent-thick wing were also investigated. The results are presented with a minimum of analysis to expedite publication.

COEFFICIENTS AND SYMBOLS

The results of the tests are presented as standard NACA coefficients of forces and moments. The data are referred to the stability-axis system (fig. 1) with the reference center of gravity at 25 percent-of the wing mean aerodynamic chord.

The coefficients and symbols are defined as follows:

C _Y	lateral-force coefficient, Y/qS
$\mathtt{C_n}$	yawing-moment coefficient, N/qSb
cı	rolling-moment coefficient, L/qSb
$c^{\mathbf{L}}$	lift coefficient, $\frac{-Z}{qS}$
$\mathtt{C}_{\mathbf{X}}$	longitudinal-force coefficient, X/qS
C _m	pitching-moment coefficient, M'/qSc
x	force along X-axis
Y .	force along Y-axis
Z	force along Z-axis
L	moment about X-axis
M¹	moment about Y-axis
N	moment about Z-axis
q	free-stream dynamic pressure
S	total wing area
, b	wing span
δ .	wing mean aerodynamic chord
М .	Mach number
t/c	thickness ratio, Wing thickness/Wing chord
æ	angle of attack of body center line, deg
ψ .	angle of yaw, deg
Λ	angle of sweep of wing quarter-chord line, deg
$\mathtt{C}^{\mathbf{X}^{\boldsymbol{\psi}}}$	lateral-force parameter, rate of change of lateral-force coefficient with angle of yaw, $\delta C_Y/\delta \psi$

 C_{n} directional-stability parameter, rate of change of ψ yawing-moment coefficient with angle of yaw, $\delta C_{n}/\delta \psi$

effective-dihedral parameter, rate of change of rolling-moment coefficient with angle of yaw, $\delta C_1/\delta \psi$

APPARATUS AND MODELS

Tunnel

The tests were conducted in the Langley 4- by 4-foot supersonic pressure tunnel_which is described in reference 7.

Models

The models used in these tests were composed of an ogive-cylinder body and various midwing configurations with a ratio of body diameter to wing span of about 0.094. The wings were positioned so that the quarter-chord point of the mean aerodynamic chord was always at the same body station. The wing airfoil sections had an NACA 65A-series thickness distribution with mean-line ordinates one-third of the NACA 230 series plus an (a=1) mean line for $C_L=0.1$. The airfoil coordinates are given in table I. Details of the models are shown in figure 2.

The models were sting-supported and had a six-component internal strain-gage balance in the body. The model and sting are shown in figure 3.

TESTS

Test Conditions

The conditions for the tests were:

Mach number			•			•		•			•	•			•	•	•		2.0
Reynolds nu	mber, based on	win,	gn	ea.	n	ae	ro	đу	na	mic	cl	101	ď			2	2.2	2 >	< 10 ⁶
Stagnation	dew point, OF					•													<-30
Stagnation	pressure, lb/sq	in									•								1,1
	temperature, OF																		

A limited calibration prior to these tests has shown that the flow in the test section is reasonably uniform. The magnitudes of the variations in the flow parameters are summarized in the following table:

Mach number .			 .±0.01
Flow angle in	horizontal plane, deg	•	 . ±0.1
Flow angle in	vertical plane, deg		 . ±0.1

Test Procedure

The tests were made through an angle-of-yaw range from -4° to 8° at an angle of attack of 0° and 5.3° and through an angle-of-attack range from -2° to 13° at $\psi = 0^{\circ}$ and 5° .

Corrections and Accuracy

The angles of attack and yaw were corrected for the deflection of the balance under load. The angle corrections were determined from an in-place calibration of the balance for various lift loads, pitching moments, side loads, and yawing moments. The estimated accuracy of both the angle-of-attack and angle-of-yaw settings was ±0.10°. No corrections were applied to the data to account for flow variations in the test section.

The estimated errors in the force data obtained by comparing the results of two tests of the same configuration are as follows:

$\mathtt{C}^{\mathtt{L}}$		•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	±0.001
c^{D}	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	±0.001
C_{m}	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	.•	•	•	•	•	•	•	•	•	. •	±0.001
·C÷		•	•	•		•		•		•	•		•	•		•			•		•				•	•	•	•		•	±0.002
c_n	•	•	•	•	•	•	•	•	•	•	•	• .	•	•	•	•	•	•	•		•	•	•	•	•	•	٠	•	•	•	±0.0002
C ₇						•						٠.						•	•								•	•			±0.0002

The base pressure was measured and the drag data were corrected to correspond to a base pressure equal to the free-stream static pressure.

RESULTS

The results are presented in this paper with a minimum of analysis to expedite publication. The aerodynamic characteristics in yaw for various configurations at $\alpha = 0^{\circ}$ and $\alpha = 5.3^{\circ}$ are presented in figure 4. The effects of yaw on the lateral characteristics in pitch for

various configurations are shown in figure 5. The variation of the static lateral_stability characteristics with lift coefficient for various configurations is presented in figure 6. The static lateral stability characteristics of the various configurations at $\alpha = 0^{\circ}$ and $\alpha = 5.3^{\circ}$ are summarized in table II and are presented as functions of sweep angle and thickness ratio in figure 7. Both C_{Y_W} and C_{n_W} for most configurations tend to increase with lift coefficient. The effective dihedral is small and changes from negative to positive with increasing lift coefficient. The effect of nacelle installation is to increase the positive values of $C_{Y_{M'}}$ and $C_{n_{M'}}$ and the negative value of $C_{\mathcal{U}_{M'}}$. The effect of increasing the sweep angle or thickness ratio is to increase slightly the positive value of $C_{Y_{\frac{1}{W}}}$ and decrease the positive value of $C_{n,\nu}$. Table II shows that a change in Mach number from 1.60 to 2.01 had little effect on $C_{Y,\mu}$ but increased slightly the positive value of Cn ,

Langley Aeronautical Laboratory
National Advisory Committee for Aeronautics
Langley Field, Va.

REFERENCES

- 1. Bielat, Ralph P., Harrison, Daniel E., and Coppolino, Domenic A.:
 An Investigation at Transonic Speeds of the Effects of Thickness
 Ratio and of Thickened Root Sections on the Aerodynamic Characteristics of Wings With 47° Sweepback, Aspect Ratio 3.5, and Taper
 Ratio 0.2 in the Slotted Test Section of the Langley 8-Foot HighSpeed Tunnel. NACA RM L51104a, 1951.
- 2. Bielat, Ralph P.: Transonic Wind-Tunnel Investigation of the Aerodynamic Characteristics of Three 4-Percent-Thick Wings of Sweepback Angles 10.8°, 35°, and 47°, Aspect Ratio 3.5, and Taper Ratio 0.2 in Combination With a Body. NACA RM L52B08, 1952.
- 3. Robinson, Ross B., and Driver, Cornelius: Aerodynamic Characteristics at Supersonic Speeds of a Series of Wing-Body Combinations Having Cambered Wings With an Aspect Ratio of 3.5 and a Taper Ratio of 0.2. Effects of Sweep Angle and Thickness Ratio on the Aerodynamic Characteristics in Pitch at M = 1.60. NACA RM L51K16a, 1952.
- 4. Robinson, Ross B.: Aerodynamic Characteristics at Supersonic Speeds of a Series of Wing-Body Combinations Having Cambered Wings With an Aspect Ratio of 3.5 and a Taper Ratio of 0.2. Effects of Sweep Angle and Thickness Ratio on the Aerodynamic Characteristics in Pitch at M = 2.01. NACA RM L52E09, 1952.
- 5. Hasel, Lowell E., and Sevier, John R., Jr.: Aerodynamic Characteristics at Supersonic Speeds of a Series of Wing-Body Combinations Having Cambered Wings With an Aspect Ratio of 3.5 and a Taper Ratio of 0.2. Effect at M = 1.60 of Nacelle Shape and Position on the Aerodynamic Characteristics in Pitch of Two Wing-Body Combinations With 47° Sweptback Wings. NACA RM 151K14a, 1952.
- 6. Driver, Cornelius: Aerodynamic Characteristics at Supersonic Speeds of a Series of Wing-Body Combinations Having Cambered Wings With an Aspect Ratio of 3.5 and a Taper Ratio of 0.2. Effect at M = 2.01 of Nacelle Shape and Position on the Aerodynamic Characteristics in Pitch of Two Wing-Body Combinations With 47° Sweptback Wings. NACA RM L52F03, 1952.
- 7. Spearman, M. Leroy, and Hilton, John H., Jr.: Aerodynamic Characteristics at Supersonic Speeds of a Series of Wing-Body Combinations Having Cambered Wings With an Aspect Ratio of 3.5 and a Taper Ratio of 0.2. Effects of Sweep Angle and Thickness Ratio on the Static Lateral Stability Characteristics at M = 1.60. NACA RM L51K15a, 1952.

t	*	0.04

	c - 0.0+								
x/c	y/c . upper surface	y/c lower surface							
0 1257105000000000000000000000000000000000	0 .411 .499 .665 .962 1.435 1.776 2.423 2.800 2.803 2.	0 .245 .271 .289 .324 .367 .429 .472 .577 .682 .787 .892 .997 1.006 1.041 1.006 .945 .577 .481 .577 .481 .385 .201 .105 .105							
L.E.	L.E. radius = 0.0016c								

$$\frac{t}{c} = 0.06$$

c = 0.06								
x /c	y/c upper surface	y/c lower surface						
0 ・5 下25 ・5 ・7 ・1 ・2 ・5 ・7 ・1 ・1 ・2 ・5 ・7 ・7 ・7 ・7 ・7 ・7 ・7 ・7 ・7 ・7	0.061 .517 .717 .9304 1.872 2.668 3.482 2.668 3.482 3.705 3.981 3.987 3.983 3.	0 .376 .446 .534 .621 .761 .857 .980 1.269 1.496 1.960 2.021 2.030 1:977 1.872 1.697 1.487 1.277 1.059 .849 .639 .420						
L.E. radius = 0.0024c								

	¢	
x/c	y/c upper surface	y/c lower surface
0 5.75 1.25 7.05 10 15 20 25 30 35 40 45 50 55 60 57 75 80 59 95 90 10 10 10 10 10 10 10 10 10 10 10 10 10	0.156 .846 1.021 1.789 2.537 3.111 3.577 4.705 5.244 4.705 5.249 4.579 4.579 4.579 4.579 2.382 1.789 0	0 .574 .680 .846 1.069 1.400 1.662 1.896 2.352 2.751 3.529 3.519 3.529 3.529 3.441 3.529 3.422 3.422 3.428 2.916 2.566 2.197 1.837 1.468 1.098 .739 0

L.E.	radius	= 0	.0056c
------	--------	------------	--------

	Root B	tation
x /c	y/c upper surface	y/c lower surface
0 5 5 7 1 2 5 7 1 1 2 5 7 1 1 5 2 5 3 3 3 3 4 5 5 5 5 6 6 6 6 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0.301 1.120 1.335 1.658 2.261 3.919 4.500 5.362 5.362 5.362 6.977 6.977 6.977 6.977 8.977	0 .754 .904 1.141 1.507 2.433 2.799 3.445 3.984 4.716 4.910 5.017 4.522 4.113 3.618 3.101 2.584 2.067 1.534 2.550
T. R. 1	$\alpha = ariber$.0099c

L.E. radius = 0.0099c

TABLE II.- SUMMARY OF STATIC-LATERAL-STABILITY DERIVATIVES ($\psi = 0^{\circ}$)

Λ,	t/c	Nacelles	α,		M = 1.60		M = 2.01				
deg			deg	СY	Cn _₩	CΣψ	Сұ	$c_{n_{\psi}}$	C Z¥		
10.8 35	0.04 .04	Off Off	0 0	H			0.0018	0.00059 .00048	-0.00008		
47 47	•04 •06	Off Off	ů. O				.0020	.00043	00016 00025 00025		
47 47	.09 0.12 to 0.06	Off, Off	0			777777	.0023	.00030	00023 00025		
47 10.8	.06 .04	On Off	0 5.3	0.0012	0.00057	-0.00010	.0058	.00095	00040		
35 47	.04 .04	Off Off	5.3 5.3	.0018	.00046	0 .00003	.0018	.00055	4.00005 00006		
47 47	.06 <i>,</i> .09	Off Off	5.3 5.3	.0022 .0026	.00030 .00017	00003 -:00011	.0021	.00035	0 .00002		
47 47	0.12 to 0.06	Off On	5.3 5.3	.0076	.00122	00020	.0025 .0058	.00030 .00106	0 00050		
Во	dy alone		5.3	.0015	.00055	.00004	.0013	.00003	.00005		

VÁÇÁ,

v

Figure 1.- System of stability axes. Arrows indicate positive values.

(a) Wing-body arrangement.

Figure 2. - Details of model configurations.

Aspect Ratio	3.5
Taper Ratio	0.2
Span, inches	24
Area, sq. feet	1.143

(b) Details of wings.

Figure 2. - Continued.

Strut section NACA 65A 005 in streamwise direction

(c) Details of nacelle installation on $\Lambda=47^{\circ}$, $\frac{t}{c}=0.06$ wing. Figure 2.- Concluded.

Top view of installation

Figure 3.- Details of model sting support. All dimensions in inches unless noted.

(a) Body alone.

Figure 4.- Aerodynamic characteristics in yaw for various configurations at M=2.01.

α = 0°α = 5.3°

(b) $\Lambda = 10.8$; $\frac{t}{c} = 0.04$.

Figure 4.- Continued.

(b) Concluded.

Figure 4.- Continued.

(c)
$$\Lambda = 35^{\circ}; \frac{t}{c} = 0.04.$$

Figure 4. - Continued.

(c) Concluded.

Figure 4. - Continued.

-01

(d)
$$A = 47^{\circ}; \frac{t}{c} = 0.04.$$

Figure 4. - Continued.

(d) Concluded.

Figure 4. - Continued.

(e)
$$\Lambda = 47^{\circ}$$
; $\frac{t}{c} = 0.06$.

Figure 4. - Continued.

(e) Concluded.

Figure 4. - Continued.

(f) $\Lambda = 47^{\circ}; \frac{t}{c} = 0.09.$

-2

2 Angle of yaw, ψ, deg

4

6

Figure 4.- Continued.

(f) Concluded.

Figure 4.- Continued.

(g)
$$\Lambda = 47^{\circ}$$
; $\frac{t}{c} = 0.12$ to 0.06.

Figure 4. - Continued.

(g) Concluded.

Figure 4. - Concluded.

Figure 5.- Effect of yaw on the lateral characteristics in pitch for various configurations. Flagged symbols are values from yaw tests.

(b)
$$\Lambda = 35^{\circ}; \frac{t}{c} = 0.04.$$

Figure 5. - Continued.

(c)
$$\Lambda = 47^{\circ}; \frac{t}{c} = 0.04.$$

Figure 5. - Continued.

(d)
$$\Lambda = 47^{\circ}$$
; $\frac{t}{c} = 0.06$.

Figure 5. - Continued.

(e) $\Lambda = 47^{\circ}$; $\frac{t}{c} = 0.09$.

Figure 5. - Continued.

(f)
$$\Lambda = 47^{\circ}$$
; $\frac{t}{c} = 0.12$ to 0.06.

Figure 5. - Continued.

CONTRACTOR

(g)
$$\Lambda = 47^{\circ}$$
; $\frac{t}{c} = 0.06$; nacelles on.

Figure 5. - Concluded.

Figure 6.- Variation of the static lateral stability characteristics with lift coefficient for various wing-body combinations at M = 2.01.

NACA RM L52E23

(b) Thickness series.

Figure 6.- Concluded.

Figure 7.- Summary of the static lateral stability characteristics of various configurations at M = 2.01.

SECURITY INFORMATION

3 1176 01436 4740