Bangalore University University Visvesvaraya College of Engineering <u>Department of Computer Science and Engineering</u>

Website Fingerprinting Attacks - A Practical Threat?

Presented by

Vignesh T Prabhu (14GAMT3018)

Under the guidance Of

Dr. Thriveni JAssociate Professor

Content

- Introduction to TOR Project
- Website Fingerprinting Attack
- About the paper
- Goals
- Assumptions
- "Classify-Verify" Algorithm
- Analysis
- Adversary's Cost
- Conclusions

Big Brother is watching you?

TOR Project

- TOR THE ONION ROUTING
- Launched on 20th Sept 2002
- Most popular distributed anonymous communication systems
- More than 3 million daily users
- Initially developed by U.S. Naval Research Laboratory
- Free Software under BSD License
- Available as TOR Browser Bundle

Browsing Without TOR

Onion Peeling

Website Fingerprinting Attack

Website Fingerprinting system

- Primary tasks
 - Data Collection
 - Data Training
 - Data Testing
 - Updating Data
- Misc
 - Collecting background information

About the paper

- <u>Title:</u> A Critical Evaluation of Website Fingerprinting Attacks
- <u>Authors:</u> Marc Juarez, Sadia Afroz, Gunes Acar, Claudia Diaz and Rachel Greenstadt
- <u>Presented</u>: 21st ACM Conference on Computer Security held on November 3rd to 7th, 2014 at Scottsdale, Arizona, USA

Goals

- A critical evaluation of assumptions made by prior WF studies
- An analysis of the variables that affect the accuracy of WF attacks
- An approach to reduce false positive rates
- A model of the adversary's cost

Assumptions

- Client Settings
 - Closed World
 - Browsing behaviour
- Web
 - Template
 - No Localized versions
- Adversary
 - Page Load parsing
 - No background traffic
 - Replicability

<u>Assumptions</u>	Explicitly made by
Closed-world	[11,26]
Browsing behavior	[11]
Page load parsing	[3, 11, 23, 26, 32]
No background noise	[3, 11, 23, 26, 32]
Replicability	[11, 26]
Template websites	[3]

- [3] X. Cai, X. Zhang, B. Joshi, R. Johnson, "*Touching from a Distance: Website Fingerprinting Attacks and Defenses*"
- [11] D. Herrmann, R. Wendolsky, H. Federrath, "Website Fingerprinting: Attacking Popular Privacy Enhancing Technologies with the Multinomial Nave-Bayes Classifier"
- [23] A. Panchenko, L. Niessen, A. Zinnen, T. Engel, "Website Fingerprinting in Onion Routing Based Anonymization Networks"
- [26] Y. Shi, K. Matsuura, "Fingerprinting Attack on the Tor Anonymity System"
- [32] T. Wang, I. Goldberg, "Improved Website Fingerprinting on Tor"

Closed World Assumption

<u>Authors</u>	<u>World Size</u>	Success Rate
Herrmann et al.	775 pages	3%
Shi and Matsuura	20 pages	50%
Panchenko et al.	775 pages	54.61%
Wang and Goldberg	100 pages	90%

<u>Name</u>	<u>Model</u>	<u>Features</u>	
Н	Naive Bayes	Packet Lengths	
Р	SVM(Support Vector Machine)	Packet lengths Order Total bytes	
D	N-grams	Total time Up/Downstream bytes Bytes in traffic bursts	
W	SVM (Fast-Levenshtein)	Cell traces	
Т	Decision Tree	Packet lengths Order Total bytes	

Classify Verify Algorithm*

Algorithm 1 Modified Classify-Verify

Input: Test page D, suspect pages $A = A_1, ...A_n$ and probability scores

Output: A_D if $A_D \in \mathcal{A}$ and 'Unknown' otherwise

▶ Train a classifier

 $C_{\mathcal{A}} \to \text{classifier trained on } \mathcal{A}$

 $V_{\mathcal{A}} \to \text{verifier for } \mathcal{A}$

▷ Calculate threshold for the verifier

 $t \to \text{threshold maximizing } F_{\beta} \text{ score}$

▶ Test page D

Classify D

 $P_D \to \text{Verification score}$

if $P_D >= t$ then

Accept the classifier's output and return it

else

Reject the classifier's output and return 'Unknown' end if

^{*}Discussed by Stolerman et al.

^{**}Led to 63% reduction in False Positive

Experiment

Two steps

- k-fold cross-validation using data of the control crawl
- Evaluate classifier's accuracy training on the control crawl and testing with data from the test crawl

STATE ONLY OF THE PROPERTY OF

Staleness of data over time

Multitab Browsing Accuracies

Multitab Browsing Accuracies

For Classifier W

<u>Delay</u>	Acc test	Acc control
0.5 sec	9.8% (±3.1%)	77.08% (±2.72%)
3 sec	7.9% (±0.8%)	77.08% (±2.72%)
5 sec	8.23%(±2.32%)	77.08% (±2.72%)

Accuracy for different network locations

<u>Location</u> <u>Trained</u>	<u>Location</u> <u>Tested</u>	Acc test	Acc control
Leuven	New York	8.83% (±2.87%)	66.95% (±2.872%)
Leuven	Singapore	9.93% (±0.98%)	66.95% (±2.87%)
Singapore	New York	68.53%(±3.24%)	76.40% (±5.99%)

Classify-Verify result on ALAD* Users

ALAD User	<u>TP</u>	<u>FP</u>	New TP	New FP
User 3	38/260	362/400	31.2/260	107.6/400
User 13	56/356	344/400	26.8/356	32/400
User 42	3/208	397/400	1.0/208	41.2/400

^{*}ALAD – Active Linguistic Authentication Dataset

Adversary's Cost

- Data Collection Cost:
 - *N* training pages, *m* versions, *i* instances
- Training Cost:
 - D total pages, F features, C classifier
- Testing Cost:
 - T test data(v victims, p visited pages per day), F features, C classifier
- Updating Cost:
 - d website change frequency
- Background Information Cost

Conclusions

- Success of WF attacks also depend on
 - Temporal proximity of traces
 - TBB versions used
 - User's Browsing habits
- Non-targeted attack seems not feasible due to its sophistication
- Targetted attack is also non-trivial
 - aspects of their behavior must be observed a priori
- Future research on WF attacks should also focus on its practicality and efficacy

Thank You