Concours commun Centrale

MATHÉMATIQUES 1. FILIERE MP

I - Préliminaires

 $\textbf{\textit{Q 1.} On pose } A = (a_{i,j})_{1\leqslant i,j\leqslant n} \text{ et } B = (b_{i,j})_{1\leqslant i,j\leqslant n}. \text{ Pour tous } X = (x_i)_{1\leqslant i\leqslant n} \text{ et } Y = (y_i)_{1\leqslant i\leqslant n} \text{ éléments de } \mathcal{M}_{n,1}(\mathbb{R}),$

$$X^{\mathsf{T}}AY = \sum_{i=1}^{n} x_i \left(\sum_{j=1}^{n} \alpha_{i,j} y_j \right) = \sum_{1 \leqslant i,j \leqslant n} x_i \alpha_{i,j} y_j.$$

En particulier, si $(E_1, ..., E_n)$ est la base canonique de $\mathcal{M}_{n,1}(\mathbb{R})$, pour tout $(i,j) \in [1,n]^2$, $E_i^T A E_j = a_{i,j}$. Ainsi,

$$\begin{split} \forall (X,Y) \in \left(\mathscr{M}_{n,1}(\mathbb{R}) \right)^2, \ X^TAY &= X^TBY \Rightarrow \forall (i,j) \in [\![1,n]\!]^2, \ E_i^TAE_j = E_i^TBE_j \\ &\Rightarrow \forall (i,j) \in [\![1,n]\!]^2, \ \alpha_{i,j} = b_{i,j} \Rightarrow A = B. \end{split}$$

Q 2. Soient $M \in GL_n(\mathbb{R})$ puis $A = M^TM$. $A^T = M^T (M^T)^T = M^TM = A$ et donc A est symétrique réelle. D'après le théorème spectral, χ_A est scindé sur \mathbb{R} .

Soient $\lambda \in \mathbb{R}$ une valeur propre de A puis $X \in \mathcal{M}_{n,1}(\mathbb{R}) \setminus \{0\}$ un vecteur propre associé.

$$\lambda \|X\|^2 = \lambda X^\mathsf{T} X = X^\mathsf{T} (\lambda X) = X^\mathsf{T} A X = X^\mathsf{T} M^\mathsf{T} M X = (MX)^\mathsf{T} (MX) = \|MX\|^2$$

et donc $\lambda = \frac{\|MX\|^2}{\|X\|^2} \geqslant 0$ (car $\|X\|^2 > 0$). De plus, A est inversible en tant que produit de deux matrices inversibles et donc A n'admet pas 0 pour valeur propre. Ainsi, les valeurs propres de M^TM sont toutes des réels strictement positifs.

D'après le théorème spectral, il existe $P \in O_n(\mathbb{R})$ et $D = \operatorname{diag}(\lambda_1, \dots, \lambda_n) \in \mathscr{D}_n\left(\mathbb{R}_+^*\right)$ telles que $M^TM = PDP^T$. Soient $\Delta = \operatorname{diag}\left(\sqrt{\lambda_1}, \dots, \sqrt{\lambda_n}\right)$ puis $S = P\Delta P^T$. S est orthogonalement semblable à une matrice diagonale (réelle) et donc S est symétrique réelle. De plus, les valeurs propres de S sont les $\sqrt{\lambda_i}$, $1 \leqslant i \leqslant n$, et sont donc toutes des réels strictement positifs. Enfin,

$$S^2 = P\Delta P^T P\Delta P^T = P\Delta^2 P^T = PDP^T = M^T M.$$

II - Objets symplectiques

II.A - Structure d'espace vectoriel symplectique réel

Q 3. Pour tout $(x, y) \in E^2$, $\omega(x, y) = -\omega(y, x)$. En particulier, pour tout $x \in E$, $\omega(x, x) = -\omega(x, x)$ puis $2\omega(x, x) = 0$ et donc $\omega(x, x) = 0$.

Q 4. Soit ω une forme symplectique sur E. Soit F un sous-espace vectoriel de E. Pour tout $y \in F$, l'application $x \mapsto \omega(x,y)$ est linéaire et donc pour tout $y \in F$, $\omega(0,y) = 0$. Ceci montre que $0 \in F^{\omega}$. Soient $(x_1, x_2) \in (F^{\omega})^2$ et $(\lambda, \mu) \in \mathbb{R}^2$. Pour tout $y \in F$,

$$\omega (\lambda x_1 + \mu x_2, y) = \lambda \omega (x_1, y) + \mu \omega (x_2, y) = 0.$$

Donc, $\lambda x_1 + \mu x_2 \in F^{\omega}$. On a montré que F^{ω} est un sous-espace vectoriel de E.

Q 5. Soit $\omega = \det \operatorname{sur} E = \mathbb{R}^2$. ω est bilinéaire et anti-symétrique. Soit $x \in E$ tel que pour tout $y \in E$, $\det(x,y) = 0$. Alors, x est colinéaire aux deux vecteurs e_1 et e_2 de la base canonique de \mathbb{R}^2 et donc x = 0. ω est donc aussi non dégénérée et finalement ω est une forme symplectique sur \mathbb{R}^2 .

Soit $D = \mathrm{Vect}\,(e_1)$. D^ω est l'ensemble des vecteurs colinéaires à tous les vecteurs de D c'est-à-dire $D^\omega = D$. En particulier, $D \cap D^\omega = D \neq \{0\}$ et la somme $D + D^\omega$ n'est pas directe.

Q 6. d_{ω} est une application de E dans $\mathcal{L}(E,\mathbb{R})$. Soient $(x_1,x_2)\in E^2$ et $(\lambda,\mu)\in \mathbb{R}^2$. Pour tout $y\in E$,

$$\left(d_{\omega}\left(\lambda x_{1}+\mu x_{2}\right)\right)\left(y\right)=\omega\left(\lambda x_{1}+\mu x_{2},y\right)=\lambda\omega\left(x_{1},y\right)+\mu\omega\left(x_{2},y\right)=\left(\lambda d_{\omega}\left(x_{1}\right)+\mu d_{\omega}\left(x_{2}\right)\right)\left(y\right)$$

et donc $d_{\omega}(\lambda x_1 + \mu x_2) = \lambda d_{\omega}(x_1) + \mu d_{\omega}(x_2)$. Par suite, $d_{\omega} \in \mathcal{L}(E, \mathcal{L}(E, \mathbb{R}))$.

Soit $x \in E$ tel que $d_{\omega}(x) = 0$. Alors, pour tout $y \in E$, $\omega(x,y) = 0$ puis x = 0 par non dégénérescence de ω . Donc, $\operatorname{Ker}(d_{\omega}) = \{0\}$ puis d_{ω} est injective. Enfin, $\dim(\mathcal{L}(E,\mathbb{R})) = \dim(E) \times \dim(E) = \dim(E) < +\infty$ et donc d_{ω} est un isomorphisme de E sur $\mathcal{L}(E,\mathbb{R})$.

Q 7. Soit G un supplémentaire de F dans E. Soit $\mu \in \mathcal{L}(F, \mathbb{R})$. Il existe $\ell \in \mathcal{L}(E, \mathbb{R})$ telle que $\ell_{/F} = \mu$ et $\ell_{/G} = 0$. Par construction, $r_F(\ell) = \mu$. Ainsi, $\forall \mu \in \mathcal{L}(F, \mathbb{R})$, $\exists \ell \in \mathcal{L}(E, \mathbb{R}) / r_F(\ell) = \mu$ et donc r_F est surjective.

Q 8. r_F est linéaire et donc $r_F \circ d_{\omega} \in \mathcal{L}(E, \mathcal{L}(F, \mathbb{R}))$. Soit $x \in E$.

$$x \in \operatorname{Ker}(r_F \circ d_\omega) \Leftrightarrow (d_\omega(x))_{/F} = 0 \Leftrightarrow \forall y \in F, \ \omega(x,y) = 0 \Leftrightarrow x \in F^\omega.$$

Donc, $\operatorname{Ker}(r_F \circ d_{\omega}) = F^{\omega}$. D'autre part, puisque d_{ω} est un isomorphisme et que r_F est surjective, $\operatorname{Im}(r_F \circ d_{\omega}) = \mathscr{L}(F, \mathbb{R})$. D'après le théorème du rang,

$$\dim\left(\mathsf{F}^{\omega}\right) = \dim\left(\mathrm{Ker}\left(\mathsf{r}_{\mathsf{F}} \circ \mathsf{d}_{\omega}\right)\right) = \dim\left(\mathsf{E}\right) - \dim\left(\mathrm{Im}\left(\mathsf{r}_{\mathsf{F}} \circ \mathsf{d}_{\omega}\right)\right) = \dim\left(\mathsf{E}\right) - \dim\left(\mathscr{L}(\mathsf{F},\mathbb{R})\right) = \dim\left(\mathsf{E}\right) - \dim\left(\mathsf{E}\right) - \dim\left(\mathsf{F}\right).$$

 \mathbf{Q} 9. ω_{F} est une forme bilinéaire anti-symétrique sur F . Donc,

$$\begin{split} \omega_F \ \mathrm{est} \ \mathrm{symplectique} &\Leftrightarrow \omega_F \ \mathrm{est} \ \mathrm{non} \ \mathrm{d\acute{e}g\acute{e}n\acute{e}r\acute{e}e} \Leftrightarrow \{x \in F/ \ \forall y \in F, \ \omega(x,y) = 0\} = \{0_E\} \\ &\Leftrightarrow F \cap F^\omega = \{0_F\}. \end{split}$$

Puisque d'autre part, on a toujours $\dim(F) + \dim(F^{\omega}) = \dim(E)$, cette dernière condition est équivalente à $E = F \oplus F^{\omega}$.

 $\emph{II.B}$ - $\emph{Structure symplectique standard sur} \ \mathbb{R}^n$

Q 10. Posons $x = \sum_{i=1}^{n} x_i e_i$ et $y = \sum_{j=1}^{n} y_j e_j$. Par bilinéarité (et avec l'identification usuelle entre un nombre et une matrice de format (1,1)),

$$\omega(x,y) = \omega\left(\sum_{i=1}^{n} x_{i}e_{i}, \sum_{j=1}^{n} y_{j}e_{j}\right) = \sum_{1 \leqslant i,j \leqslant n} x_{i}\omega\left(e_{i}, e_{j}\right)y_{j} = X^{T}\Omega Y,$$

d'après la question Q1.

Q 11. Pour tout $(x,y) \in (\mathbb{R}^n)^2$.

$$\begin{split} X^T \Omega Y &= \omega(x,y) = -\omega(y,x) = -Y^T \Omega X = -\left(Y^T \Omega X\right)^T = -X^T \Omega^T Y \\ &= X^T \left(-\Omega^T\right) Y. \end{split}$$

Ainsi, pour tout $(X,Y) \in (\mathcal{M}_{n,1}(\mathbb{R}))^2$, $X^T\Omega Y = X^T (-\Omega^T) Y$. D'après la question Q1, $\Omega = -\Omega^T$ et donc Ω est antisymétrique.

Soit $Y \in \mathcal{M}_{n,1}(\mathbb{R})$ représentant le vecteur $y \in E$ dans la base canonique. Puisque ω est non dégénérée

$$\Omega Y = 0 \Rightarrow \forall X \in \mathcal{M}_{n,1}(\mathbb{R}), \ X^T \Omega Y = 0 \Rightarrow \forall x \in \mathbb{E}, \ \omega(x,y) = 0 \Rightarrow y = 0 \Rightarrow Y = 0.$$

Ainsi, $Ker(\Omega) = \{0\}$ et donc $\Omega \in GL_n(\mathbb{R})$.

Q 12. $\det(\Omega) = \det(\Omega^T) = \det(-\Omega) = (-1)^n \det(\Omega)$ puis $(1 - (-1)^n) \det(\Omega) = 0$ et donc $1 - (-1)^n = 0$ car $\det(\Omega) \neq 0$. Mais alors, n est nécessairement pair.

 $\mathbf{Q} \ \mathbf{13.} \ b_s \ \mathrm{est} \ \mathrm{bilin\acute{e}aire} \ \mathrm{par} \ \mathrm{lin\acute{e}arit\acute{e}} \ \mathrm{de} \ j \ \mathrm{et} \ \mathrm{bilin\acute{e}arit\acute{e}} \ \mathrm{de} \ \langle \ , \ \rangle. \ \mathrm{Soit} \ (X,Y) \in (\mathcal{M}_{n,1}(\mathbb{R}))^2. \ \mathrm{On} \ \mathrm{pose} \ X = \left(\begin{array}{c} X_1 \\ X_2 \end{array} \right) \ \mathrm{et}$ $Y = \left(\begin{array}{c} Y_1 \\ Y_2 \end{array} \right) \ \mathrm{avec} \ (X_1,X_2,Y_1,Y_2) \in \left(\mathcal{M}_{m,1}(\mathbb{R}) \right)^4. \ \mathrm{Un} \ \mathrm{calcul} \ \mathrm{par} \ \mathrm{blocs} \ \mathrm{fournit}$

$$X^TJY = \left(\begin{array}{cc} X_1^T & X_2^T \end{array}\right) \left(\begin{array}{cc} 0 & -I_m \\ I_m & 0 \end{array}\right) \left(\begin{array}{c} Y_1 \\ Y_2 \end{array}\right) = \left(\begin{array}{cc} X_1^T & X_2^T \end{array}\right) \left(\begin{array}{c} -Y_2 \\ Y_1 \end{array}\right) = -X_1^TY_2 + X_2^TY_1,$$

puis

$$b_s(y,x) = -Y_1^TX_2 + Y_2^TX_1 = \left(-Y_1^TX_2 + Y_2^TX_1\right)^T = -X_2^TY_1 + X_1^TY_2 = -b_s(x,y).$$

Donc, b_s est anti-symétrique.

Soit $x \in E$ tel que pour tout $y \in E$, $b_s(x,y) = 0$. Avec les notations précédentes, on a donc pour tout $(Y_1,Y_2) \in (\mathcal{M}_{m,1}(\mathbb{R}))^2$, $-X_1^TY_2 + X_2^TY_1 = 0$ ou encore $-\langle X_1,Y_2 \rangle + \langle X_2,Y_1 \rangle = 0$. En particulier, en prenant $Y_1 = 0$ (resp. $Y_2 = 0$), pour tout $Y_2 \in \mathcal{M}_{n,1}(\mathbb{R})$ (resp. $Y_1 \in \mathcal{M}_{n,1}(\mathbb{R})$), $\langle X_1,Y_2 \rangle = 0$ (resp. $\langle X_2,Y_1 \rangle = 0$). Donc $X_1 \in (\mathcal{M}_{m,1}(\mathbb{R}))^{\perp} = \{0\}$ et $X_2 \in (\mathcal{M}_{m,1}(\mathbb{R}))^{\perp} = \{0\}$ puis X = 0 puis X = 0. Ceci montre que $y_1 \in \mathcal{M}_{n,1}(\mathbb{R})$

Finalement, b_s est une forme symplectique sur \mathbb{R}^n .

II.C - Endomorphismes et matrices symplectiques réels

Q 14. Soient λ et μ deux valeurs propres éventuelles) réelles de u telles que $\lambda\mu\neq 1$. Soient $x\in E_{\lambda}(u)$ et $y\in E_{\mu}(u)$. Par bilinéarité,

$$\lambda \mu \omega(x, y) = \omega(\lambda x, \mu y) = \omega(u(x), u(y)) = \omega(x, y)$$

puis $(1-\lambda\mu)\omega(x,y)=0$. Puisque $1-\lambda\mu\neq 0$, il reste $\omega(x,y)=0$. On a ainsi montré que $E_{\lambda}(u)$ et $E_{\mu}(u)$ sont ω -orthogonaux.

Q 15. Soit $\mathfrak{u} \in \mathscr{L}(\mathsf{E})$.

$$\begin{split} \textbf{u} \; \mathrm{est} \; \mathrm{symplectique} \; \mathrm{pour} \; b_s \; & \; \forall (x,y) \in \left(\mathbb{R}^n\right)^2, \; b_s(\textbf{u}(x),\textbf{u}(y)) = b_s(x,y) \\ & \; \Leftrightarrow \forall (X,Y) \in \left(\mathcal{M}_{n,1}(\mathbb{R})\right)^2, \; (MX)^T J(MY) = X^T MY \\ & \; \Leftrightarrow \forall (X,Y) \in \left(\mathcal{M}_{n,1}(\mathbb{R})\right)^2, \; X^T (M^T J M) Y = X^T MY \\ & \; \Leftrightarrow M^T J M = J \; (\mathrm{d'après} \; \mathrm{la} \; \mathrm{question} \; \mathrm{Q1}). \end{split}$$

Q 16. Si M est symplectique, $M^TJM = J$ puis $(\det(M))^2\det(J) = \det(J)$ puis $(\det(M))^2 = 1$ car $\det(J) \neq 0$ d'après les questions Q11 et Q13. Mais alors $\det(M) \neq 0$. Ceci montre que $\operatorname{Sp}_n(\mathbb{R}) \subset \operatorname{GL}_n(\mathbb{R})$.

 $I_n^TJI_n=J \ {\rm et \ donc} \ I_n\in {\rm Sp}_n(\mathbb{R}). \ {\rm Soit \ alors} \ (M_1,M_2)\in ({\rm Sp}_n(\mathbb{R}))^2.$

$$\left(M_{1}M_{2}^{-1}\right)^{T}J\left(M_{1}M_{2}^{-1}\right)=\left(M_{2}^{-1}\right)^{T}\left(M_{1}^{T}JM_{1}\right)M_{2}^{-1}=\left(M_{2}^{-1}\right)^{T}JM_{2}^{-1}=\left(M_{2}^{-1}\right)^{T}M_{2}^{T}JM_{2}M_{2}^{-1}=JM_{2}^{T}JM_{2}M_{2}^{-1}=JM_{2}^{T}JM_{2}M_{2}^{T}JM_{2}M_{2}^{T}=JM_{2}^{T}JM_{2}M_{2}^{T}JM_{2}M_{2}^{T}=JM_{2}^{T}JM_{2}M_{2}^{T}JM_{2}M_{2}^{T}=JM_{2}^{T}JM_{2}M_{2}^{T}JM_{2}M_{2}^{T}JM_{2}M_{2}^{T}=JM_{2}^{T}JM_{2}M_{2}^{T}JM_{2}M_{2}^{T}JM_{2}M_{2}^{T}JM_{2}M_{2}^{T}=JM_{2}^{T}JM_{2}M_{2}^{T}JM_{2}M_{2}^{T}JM_{2}M_{2}^{T}JM_{2}M_{2}^{T}=JM_{2}^{T}JM_{2}M_{2}^{T}JM_{2}M_{2}^{T}JM_{2}M_{2}^{T}JM_{2}M_{2}^{T}=JM_{2}^{T}JM_{2}^{T}JM_{2}^{T$$

et donc $M_1M_2^{-1}\in \operatorname{Sp}_n(\mathbb{R}).$ On a montré que $\operatorname{Sp}_n(\mathbb{R})$ est un sous-groupe du groupe $(GL_n(\mathbb{R}),\times).$

Soit $M \in \operatorname{Sp}_n(\mathbb{R})$. M^{-1} est aussi dans $\operatorname{Sp}_n(\mathbb{R})$ et donc $\left(M^{-1}\right)^T J M^{-1} = J$. En transposant, on obtient $\left(M^T\right)^{-1} J^T M^{-1} = J^T$ puis, la matrice J étant orthogonale car les colonnes de J forment une base orthonormée de $\mathcal{M}_{n,1}(\mathbb{R})$ pour le produit scalaire canonique, $\left(M^T\right)^{-1} J^{-1} M^{-1} = J^{-1}$. En prenant l'inverse des deux membres, on obtient $MJM^T = T$ et donc $M^T \in \operatorname{Sp}_n(\mathbb{R})$. Ainsi, $\operatorname{Sp}_n(\mathbb{R})$ est stable par transposition.

Enfin, puisque $J \in O_n(\mathbb{R})$, $J^TJJ = I_nJ = J$ et donc $J \in \operatorname{Sp}_n(\mathbb{R})$.

Q 17. Un calcul par blocs fournit

$$\begin{split} M^T J M &= \left(\begin{array}{cc} A^T & C^T \\ B^T & D^T \end{array} \right) \left(\begin{array}{cc} 0 & -I_m \\ I_m & 0 \end{array} \right) \left(\begin{array}{cc} A & B \\ C & D \end{array} \right) = \left(\begin{array}{cc} A^T & C^T \\ B^T & D^T \end{array} \right) \left(\begin{array}{cc} -C & -D \\ A & B \end{array} \right) \\ &= \left(\begin{array}{cc} -A^T C + C^T A & -A^T D + C^T B \\ D^T A - B^T C & D^T B - B^T D \end{array} \right) \end{split}$$

$$\begin{aligned} \text{puis, } M^\mathsf{T} M J = J &\Leftrightarrow \begin{cases} -A^\mathsf{T} C + C^\mathsf{T} A = 0 \\ D^\mathsf{T} B - B^\mathsf{T} D = 0 \\ -A^\mathsf{T} D + C^\mathsf{T} B = -I_\mathfrak{m} \end{cases} \text{. La première condition \'equivaut \`a } \left(A^\mathsf{T} C\right)^\mathsf{T} = A^\mathsf{T} C, \text{ la deuxi\`eme \`a } \left(B^\mathsf{T} D\right)^\mathsf{T} = D^\mathsf{T} A - B^\mathsf{T} C = I_\mathfrak{m} \end{cases} \end{aligned}$$

 B^TD , la troisième à $\dot{A}^TB-C^TB=I_n$ de même que la quatrième en transposant les deux membres.

On a montré que $M \in \operatorname{Sp}_n(\mathbb{R}) \Leftrightarrow A^\mathsf{T} C \in \mathscr{S}_n(\mathbb{R}), \ B^\mathsf{T} D \in \mathscr{S}_n(\mathbb{R}) \text{ et } A^\mathsf{T} D - C^\mathsf{T} B = I_m.$

III - Déterminant d'une matrice symplectique réelle

III.A - Le cas de la dimension 2

Q 18. Soit $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{R})$. D'après la question Q17, M est symplectique si et seulement si les matrices (ac) et (bd) de format (1,1) sont symétriques, ce qui est vrai, et (ad-bc)=(1). Donc,

$$M \in \operatorname{Sp}_2(\mathbb{R}) \Leftrightarrow ad - bc = 1 \Leftrightarrow M \in \operatorname{SL}_2(\mathbb{R}).$$

On a montré que $\mathrm{Sp}_2(\mathbb{R}) = \mathrm{SL}_2(\mathbb{R})$.

III.B - Commutant de J

Q 19. Soit $M = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \mathcal{M}_{2m}(\mathbb{R})$. Un calcul par blocs fournit

$$MJ = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \begin{pmatrix} 0 & -I_m \\ I_m & 0 \end{pmatrix} = \begin{pmatrix} B & -A \\ D & -C \end{pmatrix}$$

et

$$JM = \left(\begin{array}{cc} 0 & -I_m \\ I_m & 0 \end{array} \right) \left(\begin{array}{cc} A & B \\ C & D \end{array} \right) = \left(\begin{array}{cc} -C & -D \\ A & B \end{array} \right).$$

 $\mathrm{Par} \; \mathrm{suite} \; M \in \mathscr{C}_J \Leftrightarrow A = D \; \mathrm{et} \; B = -C \Leftrightarrow \exists (u, V) \in \left(\mathscr{M}_\mathfrak{m}(\mathbb{R})\right)^2 / \; M = \left(\begin{array}{cc} u & -V \\ V & u \end{array}\right).$

 $\mathbf{Q} \ \mathbf{20.} \ \mathrm{Soit} \ M \in \mathscr{C}_J. \ \mathrm{Posons} \ M = \left(\begin{array}{cc} U & -V \\ V & U \end{array} \right) \ \mathrm{où} \ (U,V) \in \left(\mathscr{M}_{\mathfrak{m}}(\mathbb{R}) \right)^2. \ \mathrm{Un \ calcul \ par \ blocs \ fournit}$

$$\left(\begin{array}{cc} I_m & 0 \\ iI_m & I_m \end{array} \right) \left(\begin{array}{cc} U & -V \\ V & U \end{array} \right) \left(\begin{array}{cc} I_m & 0 \\ -iI_m & I_m \end{array} \right) = \left(\begin{array}{cc} I_m & 0 \\ iI_m & I_m \end{array} \right) \left(\begin{array}{cc} U+iV & -V \\ -iU+V & U \end{array} \right)$$

$$= \left(\begin{array}{cc} U+iV & -V \\ 0 & U-iV \end{array} \right).$$

Ensuite, $\det \begin{pmatrix} I_m & 0 \\ iI_m & I_m \end{pmatrix} = \left(\det (I_m)\right)^2 = 1$ (déterminant triangulaire par blocs) et de même $\det \begin{pmatrix} I_m & 0 \\ -iI_m & I_m \end{pmatrix} = 1$. Le membre de gauche a donc un déterminant égal à $\det(M)$ puis

$$\begin{split} \det(M) &= \det \left(\begin{array}{cc} U + iV & -V \\ 0 & U - iV \end{array} \right) = \det(U + iV) \times \det(U - iV) \\ &= \det(U + iV) \times \overline{\det(U + iV)} \; (\text{car } U \text{ et } V \text{ sont r\'eelles}) \\ &= \left| \det(U + iV) \right|^2 \geqslant 0. \end{split}$$

Ainsi, le déterminant de tout élément de \mathscr{C}_{I} est un réel positif ou nul.

III.C - Décomposition polaire d'une matrice symplectique réelle

Q 21. $\mathrm{OSp}_n(\mathbb{R})$ est un sous-groupe du groupe $(GL_n(\mathbb{R}), \times)$ en tant qu'intersection de deux sous-groupes et $\mathrm{OSp}_n(\mathbb{R})$ est contenu dans $\mathrm{Sp}_n(\mathbb{R})$. Donc, $\mathrm{OSp}_n(\mathbb{R})$ est un sous-groupe du groupe $(\mathrm{Sp}_n(\mathbb{R}), \times)$.

On munit alors $\mathcal{M}_n(\mathbb{R})$ de la norme $\| \|_{\infty}$ (toutes les normes sur $\mathcal{M}_n(\mathbb{R})$ étant équivalentes).

 $\bullet \text{ Pour tout } M \in \mathrm{OSp}_n(\mathbb{R}), \text{ puisque } M \in \mathrm{O}_n(\mathbb{R}), \ \|M\|_\infty \leqslant 1. \text{ Donc, } \mathrm{OSp}_n(\mathbb{R}) \text{ est une partie bornée de } \mathscr{M}_n(\mathbb{R}).$

dimension finie $\left(\left(\mathcal{M}_n(\mathbb{R})\right)^2,+,.\right)$ car bilinéaire. Donc, $f=h\circ g$ est continue sur $\mathcal{M}_n(\mathbb{R})$.

Puisque $\operatorname{Sp}_n(\mathbb{R}) = f^{-1}(\{J\}), \operatorname{Sp}_n(\mathbb{R})$ est un fermé de $\mathscr{M}_n(\mathbb{R})$ en tant qu'image réciproque d'un fermé $(\{J\})$ est la boule fermée de centre J et de rayon 0) par une application continue.

De même, l'application $k: M \mapsto M^T M$ est continue et $O_n(\mathbb{R}) = k^{-1}(\{I_n\})$ est un fermé de $\mathcal{M}_n(\mathbb{R})$. Finalement, $\mathrm{OSp}_n(\mathbb{R}) = \mathrm{Sp}_n(\mathbb{R}) \cap \mathrm{O}_n(\mathbb{R})$ est un fermé de $\mathcal{M}_n(\mathbb{R})$ en tant qu'intersection de fermés.

- Ainsi, $OSp_n(\mathbb{R})$ est un fermé, borné de l'espace de dimension finie $(\mathcal{M}_n(\mathbb{R}), +, .)$ et donc un compact de cet espace d'après le théorème de Borel-Lebesgue.
- **Q 22.** Soit $M \in \mathrm{OSp}_n(\mathbb{R})$. Alors, $J = M^T J M = M^{-1} J M$ et donc MJ = J M. Ceci montre que $\mathrm{OSp}_n(\mathbb{R}) \subset \mathscr{C}_J$.
- **Q 23.** Soit $M \in OSp_n(\mathbb{R})$. Alors, $det(M) \in \{-1, 1\}$ et d'autre part, $det(M) \ge 0$ d'après la question Q20. Donc, det(M) = 1.
- Q 24. Soit s l'endomorphisme de \mathbb{R}^n canoniquement associé à S. Puisque S est symétrique et que la base canonique de \mathbb{R}^n est orthonormée pour le produit scalaire canonique \langle , \rangle , s est un endomorphisme symétrique de l'espace $(\mathbb{R}^n, \langle , \rangle)$. Soit $\mathscr{B}=(e_1,\ldots,e_n)$ une base orthonormée de \mathbb{R}^n constituée de vecteurs propres de s puis $(\lambda_1,\ldots,\lambda_n)$ la famille des valeurs propres associée.

M est symplectique et donc M^T est symplectique puis $S^2 = M^T M$ est symplectique d'après la question Q16. Mais alors s^2 est un endomorphisme symplectique de l'espace (\mathbb{R}^n, b_s) d'après la question Q15. Donc, pour $(k, l) \in [1, n]^2$,

$$b_{s}(e_{k}, e_{l}) = b_{s}(s^{2}(e_{k}), s^{2}(e_{l})) = \lambda_{k}^{2}\lambda_{l}^{2}b_{s}(e_{k}, e_{l}).$$

Pour $(k, l) \in [1, n]^2$, ou bien $b_s(e_k, e_l) \neq 0$ et dans ce cas, $\lambda_k^2 \lambda_l^2 = 1$ puis $\lambda_k \lambda_l = 1$ car $\lambda_k \lambda_l > 0$, ou bien $b_s(e_k, e_l) = 0$. Pour $(k, l) \in [1, n]^2$.

$$b_{s}\left(s\left(e_{k}\right),s\left(e_{l}\right)\right) = \left\langle s\left(e_{k}\right),j\left(s\left(e_{l}\right)\right)\right\rangle = \lambda_{k}\lambda_{l}\left\langle e_{k},j\left(e_{l}\right)\right\rangle = \lambda_{k}\lambda_{l}b_{s}\left(e_{k},e_{l}\right).$$

Si $b_s(e_k, e_l) \neq 0$, alors $\lambda_k \lambda_l = 1$ puis $b_s(s(e_k), s(e_l)) = b_s(e_k, e_l)$. Sinon, $b_s(e_k, e_l) = 0$ et dans ce cas, $b_s(s(e_k), s(e_l)) = 0$ $0 = b_s (e_k, e_l)$. En résumé,

$$\forall (k,l) \in [1,n]^2, \ b_s(s(e_k),s(e_l)) = b_s(e_k,e_l).$$

Soient enfin $x = \sum_{k=1}^{n} x_k e_k$ et $y = \sum_{l=1}^{n} y_l e_l$ deux éléments de E.

$$b_{s}\left(s(x),s(y)\right) = \sum_{(k,l)\in\llbracket1,n\rrbracket^{2}} x_{k}y_{l}b_{s}\left(s\left(e_{k}\right),s\left(e_{l}\right)\right) = \sum_{(k,l)\in\llbracket1,n\rrbracket^{2}} x_{k}y_{l}b_{s}\left(e_{k},e_{l}\right) = b_{s}(x,y).$$

Ainsi, s est un endomorphisme symplectique de l'espace ($\mathbb{R}^n, \mathfrak{b}_s$) et donc S est une matrice symplectique.

Q 25. 0 n'est pas valeur propre de S et donc S est inversible.

 $O^{\mathsf{T}}O = S^{-1}M^{\mathsf{T}}MS^{-1} = S^{-1}S^2S = I_n \text{ et donc } O \in O_n(\mathbb{R}). \text{ Ensuite, } O^{\mathsf{T}}JO = S^{-1}M^{\mathsf{T}}JMS^{-1} = S^{-1}JS^{-1} = \left(S^{-1}\right)^{\mathsf{T}}JS^{-1} = J_n(S^{-1}S^{ O \in \mathrm{Sp}_n(\mathbb{R})$. Finalement, $O \in \mathrm{OSp}_n(\mathbb{R})$.

 $(\lambda_k)_{\substack{1 \leq k \leq n \\ \text{odd}}} = \operatorname{Sp}(S)). \ \operatorname{Donc} \ \det(M) > 0. \ \operatorname{Comme} \ \operatorname{d'autre} \ \operatorname{part} \ \det(M) \in \{-1,1\} \ \operatorname{d'après} \ \operatorname{la} \ \operatorname{question} \ \operatorname{Q16}, \ \operatorname{on} \ \operatorname{a} \ \operatorname{montr\'e} \ \operatorname{question} \ \operatorname{Q16}, \ \operatorname{on} \ \operatorname{a} \ \operatorname{montr\'e} \ \operatorname{question} \ \operatorname{Q16}, \ \operatorname{on} \ \operatorname{a} \ \operatorname{montr\'e} \ \operatorname{Q16}, \ \operatorname{on} \ \operatorname{a} \ \operatorname{montr\'e} \ \operatorname{Q16}, \ \operatorname{on} \ \operatorname{a} \ \operatorname{montr\'e} \ \operatorname{Q16}, \ \operatorname{on} \ \operatorname{Q16}, \ \operatorname{Ontr\'e} \ \operatorname{Q16}, \ \operatorname{Q16}$ $\det(\mathbf{M}) = 1.$

III.D - Génération du groupe symplectique par les transvections symplectiques

III.D.1) Transvection symplectique

Q 27. L'application $\ell: x \mapsto \lambda \omega(a, x)$ est une forme linéaire sur E par linéarité de ω par rapport à sa deuxième variable. De plus, $\omega(\mathfrak{a},\mathfrak{a})=0$ d'après la question Q3 et donc $\ell(\mathfrak{a})=0$ puis $\mathfrak{a}\in \mathrm{Ker}(\ell)$. Ceci montre que $\tau_{\mathfrak{a}}^{\lambda}$ est une transvection de

Soit $(x, y) \in E^2$. Par bilinéarité de ω ,

$$\begin{split} \omega\left(\tau_{\alpha}^{\lambda}(x),\tau_{\alpha}^{\lambda}(y)\right) &= \omega\left(x+\lambda\omega(\alpha,x)\alpha,y+\lambda\omega(\alpha,y)\alpha\right) \\ &= \omega(x,y)+\lambda\omega(\alpha,x)\omega(\alpha,y)+\lambda\omega(\alpha,y)\omega(x,\alpha)+\lambda^{2}\omega(\alpha,x)\omega(\alpha,y)\omega(\alpha,\alpha) \\ &= \omega(x,y)+\lambda\omega(\alpha,x)\omega(\alpha,y)-\lambda\omega(\alpha,y)\omega(\alpha,x) \text{ (par anti-symétrie)} \\ &= \omega(x,y). \end{split}$$

Donc, τ_{α}^{λ} est un endomorphisme symplectique de l'espace (E, ω)).

Q 28. $\omega(\alpha, \alpha) = 0$ et donc $\tau_{\alpha}^{\mu}(\alpha) = \alpha$. Pour $x \in E$,

$$\begin{split} \tau_{\alpha}^{\mu} \circ \tau_{\alpha}^{\lambda}(x) &= \tau_{\alpha}^{\mu}(x + \lambda \omega(\alpha, x)\alpha) = \tau_{\alpha}^{\mu}(x) + \lambda \omega(\alpha, x) \\ \tau_{\alpha}^{\mu}(\alpha) &= x + \mu \omega(\alpha, x)\alpha + \lambda \omega(\alpha, x)\alpha \\ &= x + (\lambda + \mu)\omega(\alpha, x)\alpha = \tau_{\alpha}^{\lambda + \mu}(x). \end{split}$$

Donc, $\tau_{\alpha}^{\mu} \circ \tau_{\alpha}^{\lambda} = \tau_{\alpha}^{\lambda + \mu}$.

 $\mathbf{Q} \ \mathbf{29.} \ \mathrm{Soit} \ \lambda \in \mathbb{R}. \ \det \left(\tau_{\alpha}^{\lambda}\right) = \det \left(\tau_{\alpha}^{\frac{\lambda}{2}} \circ \tau_{\alpha}^{\frac{\lambda}{2}}\right) = \left(\det \left(\tau_{\alpha}^{\frac{\lambda}{2}}\right)\right)^{2} \geqslant 0.$ De plus, $\tau_{\alpha}^{\lambda} \circ \tau_{\alpha}^{-\lambda} = \tau_{\alpha}^{0} = \mathrm{Id}_{E} \ \mathrm{et} \ \mathrm{donc} \ \tau_{\alpha}^{\lambda} \in \mathsf{GL}(E) \ \mathrm{puis} \ \det \left(\tau_{\alpha}^{\lambda}\right) \neq 0.$ Finalement, $\det \left(\tau_{\alpha}^{\lambda}\right) > 0.$

Q 30. D'après la question précédente, $(\tau_a^{\lambda})^{-1} = \tau_a^{-\lambda}$ et en particulier, $(\tau_a^{\lambda})^{-1}$ est une transvection symplectique.

III.D.2) Un lemme

Q 31. Soient $(x,y) \in E^2$ tel que $\omega(x,y) \neq 0$ et $\lambda \in \mathbb{R}$. En particulier, $y - x \neq 0$ puis $\omega(y - x, x) = \omega(y, x) - \omega(x, x) = -\omega(x, y)$ et donc

$$\begin{split} \tau_{y-x}^{\lambda}(x) &= y \Leftrightarrow x + \lambda \omega(y-x,x)(y-x) = y \Leftrightarrow -(1+\lambda \omega(x,y))(y-x) = 0 \Leftrightarrow 1 + \lambda \omega(x,y) = 0 \\ & \Leftrightarrow \lambda = -\frac{1}{\omega(x,y)}. \end{split}$$

Ceci montre l'existe (et l'unicité) de λ tel que $\tau_{y-x}^{\lambda}(x)=y$.

Q 32. Supposons par l'absurde que, pour tout $z \in E$, $\omega(x,z) = 0$ ou $\omega(y,z) = 0$. Si on pose $D = \mathrm{Vect}(x)$ et $D' = \mathrm{Vect}(y)$, on a donc $E = D^{\omega} \cup D'^{\omega}$. D^{ω} et D'^{ω} sont deux sous-espaces de E (d'après la question Q4) dont la réunion est un sous-espace de E et il est connu que dans ce cas, l'un des deux contient l'autre. Supposons par exemple que $D'^{\omega} \subset D^{\omega}$. On a alors $E = D^{\omega}$ et en particulier, x est un vecteur non nul de E tel que, pour tout $z \in E$, $\omega(x,z) = 0$. Ceci contredit le caractère non dégénéré de ω . Donc, il existe $z \in E$, $\omega(x,z) \neq 0$ ou $\omega(y,z) \neq 0$.

$$\mathbf{Q} \ \mathbf{33.} \ \mathrm{Si} \ \omega(x,y) \neq 0, \ \mathrm{il} \ \mathrm{existe} \ \lambda \in \mathbb{R} \ \mathrm{et} \ \alpha \in E \ (\mathrm{\grave{a}} \ \mathrm{savoir} \ \alpha = y - x \ \mathrm{et} \ \lambda = -\frac{1}{\omega(x,y)}) \ \mathrm{tel} \ \mathrm{que} \ \tau_{\alpha}^{\lambda}(x) = y.$$

Sinon $\omega(x,y)=0$. Soit $z\in E$ tel que $\omega(x,z)\neq 0$ et $\omega(z,y)\neq 0$. Soit τ_1 (resp. τ_2) une transvection symplectique telle que $\tau_1(x)=z$ (resp. $\tau_2(z)=y$). Mais alors, si $\gamma=\tau_2\circ\tau_1$, γ est un produit de deux transvections symplectiques tel que $\gamma(x)=y$.

Dans tous les cas, il existe γ , produit d'au plus deux transvections symplectiques, telle que $\gamma(x) = y$.

III.D.3) Le théorème

Q 34. Puisque $e_1 \neq 0$ et que ω est non dégénérée, il existe au moins un vecteur e_1' tel que ω $(e_1, e_1') \neq 0$. Soit $f_1 = \frac{1}{\omega(e_1, e_1')} e_1'$. Alors,

$$\omega\left(e_{1},f_{1}\right)=\frac{1}{\omega\left(e_{1},e_{1}'\right)}\omega\left(e_{1},e_{1}'\right)=1.$$

En particulier, $\omega\left(e_1,f_1\right)\neq0$ et donc f_1 n'est pas colinéaire à e_1 (car sinon, il existe $\lambda\in\mathbb{R}$ tel que $f_1=\lambda e_1$ puis $\omega\left(e_1,f_1\right)=\lambda\omega\left(e_1,e_1\right)=0$).

Q 35. Puisque $\mathfrak u$ est un automorphisme de E (d'après les questions Q15 et Q16) et que $\mathfrak e_1 \neq 0$, $\mathfrak u(\mathfrak e_1) \neq 0$. Le lemme de III.D)2) fournit un endomorphisme symplectique δ_1 , produit d'au plus deux transvections symplectiques, tel que $\delta_1(\mathfrak u(\mathfrak e_1)) = \mathfrak e_1$.

Q 36.

 $\text{\bf 1er cas. Supposons } \omega\left(\widetilde{f_1},f_1\right) \neq 0. \text{ Donc, } f_1 \text{ et } \widetilde{f_1} \text{ ne sont pas nuls de même que } f_1-\widetilde{f_1} \text{ (car sinon } f_1=\widetilde{f_1} \text{ puis } \omega\left(\widetilde{f_1},f_1\right)=0).$

D'après la question Q31, il existe $\lambda \in \mathbb{R}$ et lque $\tau_{f_1 - \widetilde{f_1}}^{\lambda} \left(\widetilde{f_1}\right) = f_1$. Mais alors,

$$\tau_{f_{1}-\widetilde{f_{1}}}\left(\widetilde{f_{1}}\right)\left(e_{1}\right)=e_{1}+\lambda\omega\left(f_{1}-\widetilde{f_{1}},e_{1}\right)\left(f_{1}-\widetilde{f_{1}}\right).$$

Puisque \mathfrak{u} et δ_1 sont symplectiques, il en est de même de $\delta_1 \circ \mathfrak{u}$ puis

$$\omega\left(\widetilde{f_{1}},e_{1}\right)=\omega\left(\delta_{1}\circ u\left(f_{1}\right),\delta_{1}\circ u\left(e_{1}\right)\right)=\omega\left(f_{1},e_{1}\right)\left(=-1\right).$$

 $\mathrm{On} \; \mathrm{en} \; \mathrm{d\acute{e}duit} \; \mathrm{que} \; \omega \left(f_1 - \widetilde{f_1}, e_1 \right) = \omega \left(f_1, e_1 \right) - \omega \left(\widetilde{f_1}, e_1 \right) = 0 \; \mathrm{puis} \; \mathrm{que} \; \tau_{f_1 - \widetilde{f_1}} \left(\widetilde{f_1} \right) \left(e_1 \right) = e_1.$

 $\mathrm{Ainsi},\,\delta_{2}=\tau_{f_{1}-\widetilde{f_{1}}}\,\,\mathrm{est}\,\,\mathrm{un}\,\,\mathrm{endomorphisme}\,\,\mathrm{symplectique}\,\,\mathrm{tel}\,\,\mathrm{que}\,\,\delta_{2}\left(e_{1}\right)\,\mathrm{et}\,\,\delta_{2}\left(\widetilde{f_{1}}\right)=f_{1}.$

 $\textbf{2\`eme cas.} \ \mathrm{Supposons} \ \omega\left(\widetilde{f_1},f_1\right) = 0. \ \mathrm{Posons} \ f_2 = \varepsilon_1 + f_1. \ \mathrm{Alors}, \\ \omega\left(f_2,f_1\right) = \omega\left(\varepsilon_1,f_1\right) = 1 \ \mathrm{et} \ \omega\left(f_2,\widetilde{f_1}\right) = \omega\left(\varepsilon_1,\widetilde{f_1}\right) = 1.$

D'après le premier cas, il existe alors une transvection symplectique τ_1 , laissant e_1 invariant telle que $\tau_1\left(\widetilde{f_1}\right) = f_2$ et une transvection symplectique τ_2 , laissant e_1 invariant telle que $\tau_2\left(f_2\right) = f_1$.

Mais alors, $\delta_2 = \tau_2 \circ \tau_1$ est un produit de deux transvections symplectiques laissant e_1 invariant tel que $\delta_2\left(\widetilde{f_1}\right) = f_1$.

Dans tous les cas, $\delta = \delta_2 \circ \delta_1$ est un produit d'au plus quatre transvections symplectiques tel que $\delta \circ \mathfrak{u}(e_1) = e_1$ et $\delta \circ \mathfrak{u}(f_1) = f_1$.

Q 37. Pour tout $(\lambda, \mu) \in \mathbb{R}^2$, $\nu(\lambda e_1 + \mu f_1) = \lambda \nu(e_1) + \mu \nu(f_1) = \lambda e_1 + \mu f_1$ et donc, pour tout x de P, $\nu(x) = x$. Ceci montre que P est stable par ν et que l'endomorphisme de P induit par ν est $\nu_P = Id_P$.

Q 38. Soit $x \in P^{\omega}$. Alors, pour tout $y \in P$, puisque v est un endomorphisme symplectique de l'espace (E, ω) (en tant que composée d'endormophismes symplectiques de cet espace),

$$0 = \omega(x, y) = \omega(\nu(x), \nu(y)) = \omega(\nu(x), y).$$

Par suite, $v(x) \in P^{\omega}$. Ceci montre que P^{ω} est stable par v.

Q 39. Soit $(\lambda, \mu) \in \mathbb{R}^2$. En tenant compte de $\omega(e_1, f_1) = 1$,

$$\begin{split} \lambda e_1 + \mu f_1 \in P^\omega &\Leftrightarrow \omega \left(\lambda e_1 + \mu f_1, e_1\right) = \omega \left(\lambda e_1 + \mu f_1, f_1\right) = 0 \\ &\Leftrightarrow \left\{ \begin{array}{l} \lambda \omega \left(e_1, e_1\right) + \mu \omega \left(f_1, e_1\right) = 0 \\ \lambda \omega \left(e_1, f_1\right) + \mu \omega \left(f_1, f_1\right) = 0 \end{array} \right. \\ &\Leftrightarrow \lambda = \mu = 0. \end{split}$$

Donc, $P \cap P^{\omega} = \{0\}$. Ensuite, $(P^{\omega})^{\omega} = \{x \in E / \forall y \in P^{\omega}, \ \omega(x,y) = 0\}$. En particulier, $P \subset (P^{\omega})^{\omega}$. Puisque d'autre part, d'après la question Q8,

$$\dim (P^{\omega})^{\omega} = \dim(E) - \dim (P^{\omega}) = \dim(P),$$

On en déduit que $(P^{\omega})^{\omega} = P$. Mais alors, $P^{\omega} \cap (P^{\omega})^{\omega} = \{0\}$ puis $E = P^{\omega} \oplus (P^{\omega})^{\omega}$ (car de plus, $\dim(P^{\omega}) + \dim((P^{\omega})^{\omega}) = \dim(E)$). La question Q9 montre alors $\omega_{P^{\omega}}$ est une forme symplectique sur P^{ω} .

 P^{ω} est stable par ν et donc ν induit un endomorphisme $\nu_{P^{\omega}}$ de P^{ω} vérifiant de plus pour tout $(x,y) \in (P^{\omega})^2$

$$\omega_{P^{\omega}}(v_{P^{\omega}}(x),v_{P^{\omega}}(y)) = \omega(v(x),v(y)) = \omega(x,y) = \omega_{P^{\omega}}(x,y).$$

Ainsi, $v_{P^{\omega}}$ est un endomorphisme symplectique de l'espace symplectique $(P^{\omega}, \omega_{P^{\omega}})$.

Q 40. Montrons alors le théorème par récurrence sur $n = 2m = \dim(E)$.

• Soit (E, ω) un \mathbb{R} -espace vectoriel symplectique de dimension 2. Soit $\mathfrak u$ un endomorphisme symplectique de E. Comme à la question Q34, il existe une base (e_1, f_1) de E telle que ω $(e_1, f_1) = 1$. Ensuite, d'après la question Q36, il existe δ , produit d'au plus quatre transvections symplectiques tel que $\delta \circ \mathfrak u$ $(e_1) = e_1$ et $\delta \circ \mathfrak u$ $(f_1) = f_1$.

L'endomorphisme $\delta \circ u$ coïncide avec Id_E sur une base de E et donc $\delta \circ u = Id_E$ puis $u = \delta^{-1}$. Puisque la réciproque d'une transvection symplectique d'après la question Q30, u est un produit d'au plus

quatre transvections symplectiques. Le résultat est donc vrai quand m = 1.

• Soient $m \ge 1$ puis n = 2m. Supposons que tout endomorphisme symplectique d'un espace symplectique de dimension n = 2m soit un produit d'au plus 2n = 4m transvections symplectiques.

Soient (E, ω) un \mathbb{R} -espace vectoriel symplectique de dimension 2(m+1) = 2m+2 puis u un endomorphisme symplectique de cet espace. Il existe (e_1, f_1) famille libre de E telle que $\omega(e_1, f_1) = 1$. Soit $P = \text{Vect}(e_1, f_1)$.

Il existe δ produit d'au plus quatre transvections symplectiques tel que $(\delta \circ \mathfrak{u})_{/P} = \mathrm{Id}_{P}$. On pose $\mathfrak{v} = \delta \circ \mathfrak{u}$.

D'après les questions Q38 et Q39, ν induit un endomorphisme $\nu_{P^{\omega}}$ de P^{ω} qui est un endomorphisme symplectique de l'espace symplectique $(P^{\omega}, \omega_{P^{\omega}})$.

Puisque $\dim (P^{\omega}) = \dim(E) - 2 = 2n$, par hypothèse de récurrence, ν_P est produit de $p \leqslant 4m$ transvections symplectiques de P^{ω} . Chaque transvection τ'_i de ce produit peut s'écrire $(\tau^{\lambda_i}_{\alpha_i})'$ où $\alpha_i \in P^{\omega}$.

Pour chaque i, on définit la transvection τ_i de E par : $\forall x \in E$, $\tau_i(x) = x + \lambda_i \omega (a_i, x) a_i$.

Puisque pour tout $x \in P$, $\omega(x, a_i) = 0$, chaque τ_i est l'identité de P et donc $\tau_p \circ \ldots \circ \tau_1$ est l'identité de P.

Les endomorphismes ν et $\tau_p \circ \ldots \circ \tau_1$ coïncident sur les sous-espaces supplémentaires P et P^{ω} . Donc, $\nu = \tau_p \circ \ldots \circ \tau_1$ puis $u = \delta^{-1} \circ \tau_p \circ \ldots \circ \tau_1$. Mais alors, u est un produit d'au plus 4m + 4 transvections symplectiques.

Le théorème est démontré par récurrence.

III.D.4) Une conséquence topologique

Q 41. Soient f et g deux endomorphismes symplectiques d'un espace symplectique (E, ω) de dimension n = 2m. Il existe des transvections symplectiques $\tau_1, \ldots, \tau_{2n}$, (quite à continuer à composer des transformations du type $\tau \circ \tau^{-1}$) et $\tau 1'$, $\ldots,\,\tau_{2n}' \text{ telles que } f = \tau_1 \circ \ldots \circ \tau_{2n} \text{ et } g = \tau_1' \circ \ldots \circ \tau_{2n}'.$

 $\mathrm{Pour}\ i \in \llbracket 1, 2n \rrbracket, \ \mathrm{posons}\ \tau_i = \tau_{\alpha_i}^{\lambda_i} \ \mathrm{et}\ \tau_i' = \tau_{\alpha_i'}^{\lambda_1'} \ \mathrm{où}\ \alpha_1, \ \ldots, \ \alpha_{2n}, \ \alpha_1', \ \ldots \alpha_{2n}' \ \mathrm{sont}\ \mathrm{des}\ \mathrm{\acute{e}l\acute{e}ments}\ \mathrm{de}\ \mathsf{E}\ \mathrm{et}\ \lambda_1, \ \ldots, \ \lambda_{2n}, \ \lambda_1', \ \ldots, \ \lambda_1', \$ λ'_{2n} sont des réels.

 $\mathrm{Pour}\ t\ \in\ [0,1],\ \mathrm{posons}\ \gamma(t)\ =\ \tau_{(1-t)\alpha_1+t\alpha_1'}^{(1-t)\lambda_1+t\lambda_1'}\circ\ldots\circ\tau_{(1-t)\alpha_2_n+t\alpha_{2n}'}^{(1-t)\lambda_2_n+t\lambda_{2n}'}.\ \mathrm{Pour}\ \mathrm{tout}\ \mathrm{r\'eel}\ t\ \in\ [0,1],\ \gamma(t)\ \mathrm{est}\ \mathrm{un}\ \mathrm{produit}\ \mathrm{de}$ transvections symplectiques et donc $\gamma(t)$ est un endomorphisme symplectique de l'espace symplectique (E,ω) . Ensuite, $\gamma(0) = f$ et $\gamma(1) = g$. Enfin, γ est continue sur [0, 1] en vertu de théorèmes généraux entre autre car ω est continue sur [0, 1]en tant qu'application bilinéaire sur un espace de dimension finie.

On a montré que $\mathrm{Sp}_{\mathfrak{n}}(\mathbb{R})$ est connexe par arcs.

III.D.5) Deuxième conséquence

Q 42. Déterminant d'une transvection symplectique. Si a=0 ou $\lambda=0$, $\det\left(\tau_{\alpha}^{\lambda}\right)=\det\left(Id_{E}\right)=1$.

Soit $\tau = \tau_{\mathfrak{a}}^{\lambda}$ une transvection symplectique où $\mathfrak{a} \in E \setminus \{0\}$ et $\lambda \in \mathbb{R}^*$. On pose $e_1 = \mathfrak{a}$.

 (e_1) est une famille libre de E. On la complète en $\mathscr{B}=(e_1,\ldots,e_n)$ base de E. Dans cette base, la matrice de τ_α^λ est

de la forme
$$T = \begin{pmatrix} 1 & \times & \dots & \times \\ 0 & 1 & 0 & \dots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \dots & \dots & 0 & 1 \end{pmatrix}$$
. Donc, $\det(\tau_{\alpha}^{\lambda}) = \det(T) = 1$. Mais alors, puisque qu'un endomorphisme symplectique f est produit de transvection symplectique, toutes de déterminant 1, on a encore $\det(f) = 1$ (car (SL(E), o) est un groupe). On en déduit encore que le déterminant d'une matrice symplectique est égal à 1 d'après la question O15.

est un groupe). On en déduit encore que le déterminant d'une matrice symplectique est égal à 1 d'après la question Q15.

On a redémontré que $Sp_n(\mathbb{R}) \subset SL_n(\mathbb{R})$.

IV - Exemples de problèmes de plongements symplectiques

IV.A - Injection par $u \in SL(\mathbb{R}^{2m})$ d'une boule dans un cylindre

 ${f Q}$ 43. Soit r>0. On note ${\mathscr B}=(e_1,\ldots,e_n)$ la base canonique de ${\mathbb R}^n$. Puisque $n\geqslant 4$, on peut considérer l'endomorphisme \mathfrak{u} de matrice diag $\left(r,r,\frac{1}{r},\frac{1}{r},1,1,\ldots,1\right)$ dans \mathscr{B} . $\det(\mathfrak{u})=r^2\times\frac{1}{r^2}=1$ et donc $\mathfrak{u}\in SL\left(\mathbb{R}^{2\mathfrak{m}}\right)$. De plus, si $(x_1,\ldots,x_n,y_1,\ldots,y_m)\in B^{2\mathfrak{m}}(1)$, en posant $(x_1',\ldots,x_n',y_1',\ldots,y_m')=\mathfrak{u}(x_1,\ldots,x_n,y_1,\ldots,y_m)$, on a

$$x_1'^2 + y_1'^2 = r^2(x_1^2 + y_1^2) \leqslant r^2$$

et donc $(x_1',\ldots,x_n',y_1',\ldots,y_m')\in Z^{2m}(r)$. u est un élément de $SL\left(\mathbb{R}^{2m}\right)$ tel que $u\left(B^{2m}(1)\right)\subset Z^{2m}(r)$.

IV.B - Injection par $u \in SL(\mathbb{R}^{2m})$ d'une boule dans une autre

Q 44. Soit λ une (éventuelle) valeur propre réelle de U et $X \in \mathcal{M}_{2m}(\mathbb{R})$ un vecteur propre unitaire associé. En particulier, $X \in B^{2m}(1)$ puis UX est dans $B^{2m}(r)$. Mais alors

$$|\lambda| = |\lambda| ||X|| = ||\lambda X|| = ||UX|| \le r.$$

Soit maintenant λ une (éventuelle) valeur propre non réelle de U. Soit $Z \in \mathcal{M}_{2m,1}(\mathbb{C}) \setminus \{0\}$ un vecteur propre associé. On pose Z = P + iQ où $(P,Q) \in (\mathcal{M}_{2m,1}(\mathbb{R})^2$. On pose aussi $\lambda = a + ib$ où $(a,b) \in \mathbb{R}^2$. L'égalité $UZ = \lambda Z$ s'écrit encore

$$UP + iUO = (a + ib)(P + iO) = (aP - bO) + i(bP + aO).$$

Par identification des parties réelles et imaginaires, on obtient : UP = aP - bQ et UQ = bP + aQ. Par suite,

$$\begin{split} \|UP\|^2 + \|UQ\|^2 &= \|aP - bQ\|^2 + \|bP + aQ\|^2 = a^2\|P\|^2 - 2ab\langle P, Q\rangle + b^2\|Q\|^2 + b^2\|P\|^2 + 2ab\langle P, Q\rangle + a^2\|Q\|^2 \\ &= \left(a^2 + b^2\right)\left(\|P\|^2 + \|Q\|^2\right) = |\lambda|^2\left(\|P\|^2 + \|Q\|^2\right). \end{split}$$

 $\begin{aligned} & \text{Maintenant, si } P \neq 0, \ \frac{1}{\|P\|} P \in B^{2m}(1) \text{ puis } \left\| U \times \frac{1}{\|P\|} P \right\| \leqslant r \text{ et donc } \|UP\|^2 \leqslant r^2 \|P\|^2, \text{ cette dernière égalité restant vraie } \\ & \text{quand } P = 0. \text{ De même, } \|UQ\|^2 \leqslant r^2 \|Q\|^2. \text{ On en déduit que } \end{aligned}$

$$|\lambda|^2 (\|P\|^2 + \|Q\|^2) = \|UP\|^2 + \|UQ\|^2 \le r^2 (\|P\|^2 + \|Q\|^2).$$

Enfin, puisque $Z \neq 0$, on a $\|P\|^2 + \|Q\|^2 > 0$ (car $\|P\|^2 + \|Q\|^2 = 0 \Rightarrow P = Q = 0 \Rightarrow Z = 0$). Après simplification par le réel strictement positif $\|P\|^2 + \|Q\|^2$, il reste $|\lambda|^2 \leqslant r^2$ et finalement, $|\lambda| \leqslant r$.

 ${\bf Q}$ 45. Supposons par l'absurde que toutes les valeurs propres de ${\bf U}$ soient de module strictement inférieur à 1. Alors, le déterminant de ${\bf U}$ qui est le produit de ces valeurs propres, chacune comptée un nombre de fois égal à son ordre de multiplicité, est encore de module strictement inférieur à 1. Ceci contredit le fait que $\det({\bf U}) = 1$.

Donc, il existe une valeur propre λ_0 de U dans $\mathbb C$ telle que $|\lambda_0|\geqslant 1$. D'après la question précédente, $r\geqslant |\lambda_0|\geqslant 1$.

Q 46. Ainsi, s'il existe $\mathfrak{u} \in SL\left(\mathbb{R}^{2m}\right)$ tel que $\mathfrak{u}\left(B^{2m}(1)\right) \subset B^{2m}(r)$, alors $r \geqslant 1$. Inversement, si $r \geqslant 1$, $\mathfrak{u} = Id_{\mathbb{R}^{2m}}$ est un élément de $SL\left(\mathbb{R}^{2m}\right)$ tel que $\mathfrak{u}\left(B^{2m}(1)\right) \subset B^{2m}(r)$.

La condition nécessaire et suffisante cherchée est : $r \ge 1$.

IV.C - Injection symplectique d'une boule dans un cylindre

 ${f Q}$ 47. ${f \psi}$ est symplectique. Donc, ${\cal M}$ est symplectique d'après la question Q15, puis ${\cal M}^T$ est symplectique d'après la question Q16 et finalement ${f \psi}^T$ est symplectique. Mais alors,

$$b_{s}\left(\psi^{T}\left(e_{1}\right),\psi^{T}\left(f_{1}\right)\right)=b_{s}\left(e_{1},f_{1}\right)=\left\langle e_{1},j\left(f_{1}\right)\right\rangle =\left\langle e_{1},-e_{1}\right\rangle =-\left\Vert e_{1}\right\Vert ^{2}=-1.$$

Donc, $|b_s(\psi^T(e_1), \psi^T(f_1))| = 1$. Ensuite, d'après l'inégalité de Cauchy-Schwarz,

$$1 = \left|b_s\left(\psi^T\left(e_1\right), \psi^T\left(f_1\right)\right)\right| = \left|\left\langle\psi^T\left(e_1\right), \mathfrak{j}\left(\psi^T\left(f_1\right)\right)\right\rangle\right| \leqslant \left\|\psi^T\left(e_1\right)\right\| \times \left\|\mathfrak{j}\left(\psi^T\left(f_1\right)\right)\right\|.$$

D'autre part, j est un automorphisme orthogonal de l'espace $(\mathbb{R}^{2m}, \langle \ , \ \rangle)$ (car $J \in O_{2m}(\mathbb{R})$ et car la base canonique est orthonormée pour \times). Par suite, $\|j(\psi^T(f_1))\| = \|\psi^T(f_1)\|$ et donc

$$\left\| \psi^{T}\left(e_{1}\right) \right\| \times \left\| \psi^{T}\left(f_{1}\right) \right\| \geqslant 1.$$

On en déduit encore que $\left\|\psi^{T}\left(e_{1}\right)\right\|\geqslant1$ ou $\left\|\psi^{T}\left(f_{1}\right)\right\|\geqslant1$ (car si $\left\|\psi^{T}\left(e_{1}\right)\right\|<1$ ou $\left\|\psi^{T}\left(f_{1}\right)\right\|<1$, alors $\left\|\psi^{T}\left(e_{1}\right)\right\|\times\left\|\psi^{T}\left(f_{1}\right)\right\|<1$ ce qui est faux.

Q 48. Pour tout $(x,y) \in (\mathbb{R}^{2m})^2$, en notant X et Y les vecteurs colonnes représentant respectivement les vecteurs colonnes X et Y dans la base canonique,

$$\left\langle \psi^T(x),y\right\rangle = \left(M^TX\right)^TY = X^TMY = \langle x,\psi(y)\rangle.$$

Soit $x \in B^{2m}(1)$. Alors, $\psi(x) \in B^{2m}(r)$ puis, d'après l'inégalité de CAUCHY-SCHWARZ,

$$\left|\left\langle \psi^{\mathsf{T}}\left(e_{1}\right),x\right\rangle \right|=\left|\left\langle e_{1},\psi(x)\right\rangle \right|\leqslant\left\|e_{1}\right\|\mathrm{l}\psi(x)\right\|=\left\|\psi(x)\right\|\leqslant r.$$

On applique cette inégalité au vecteur $x=\frac{1}{\|\psi^{T}\left(e_{1}\right)\|}\Psi^{T}\left(e_{1}\right)\left(\psi^{T}\left(e_{1}\right)\neq0\text{ car }e_{1}\neq0\text{ et }\psi^{T}\in\text{GL}\left(\mathbb{R}^{2m}\right)\right)$ qui est dans $B^{2m}(1).$ On obtient $\left|\left\langle\psi^{T}\left(e_{1}\right),\frac{1}{\|\psi^{T}\left(e_{1}\right)\|}\Psi^{T}\left(e_{1}\right)\right\rangle\right|\leqslant r$ ou encore $\left\|\psi^{T}\left(e_{1}\right)\right\|\leqslant r$. De même, $\left\|\psi^{T}\left(f_{1}\right)\right\|\leqslant r$.

Puisque l'un des deux réels $\left\|\psi^{T}\left(e_{1}\right)\right\|$ ou $\left\|\psi^{T}\left(f_{1}\right)\right\|$ est supérieur ou égal à 1, on a montré que $r\geqslant1$.

 $\mathbf{Q} \ \mathbf{49.} \ \mathrm{Supposons} \ \mathrm{qu'il} \ \mathrm{existe} \ \psi \in \mathrm{Symp}_{\mathfrak{b}_s} \left(\mathbb{R}^{2\mathfrak{m}} \right) \ \mathrm{tel} \ \mathrm{que} \ \psi \left(\mathrm{B}^{2\mathfrak{m}}(\mathsf{R}) \right) \subset \mathrm{B}^{2\mathfrak{m}} \left(\mathsf{R}' \right). \ \mathrm{Alors}, \ \psi \left(\mathrm{B}^{2\mathfrak{m}}(\mathsf{1}) \right) \subset \mathrm{B}^{2\mathfrak{m}} \left(\frac{\mathsf{R}'}{\mathsf{R}} \right). \ \mathrm{D'après}$ la question précédente, $\frac{\mathsf{R}'}{\mathsf{R}} \geqslant 1 \ \mathrm{puis} \ \mathsf{R}' \geqslant \mathsf{R}.$

 $\mathrm{Inversement\ si\ }R'\geqslant R,\, \psi=\mathrm{Id}_{\mathbb{R}^{2\,m}}\ \mathrm{est\ un\ endomorphisme\ symplectique\ tel\ que\ }\psi\left(B^{2\,m}(R)\right)\subset B^{2\,m}(R').$

Le théorème de non tassement linéaire est démontré.