

TEORIA DOS GRAFOS

Prof^a Laura Pacifico

2025 | AGOSTO

O problema do menor caminho

- "Qual caminho oferece uma trajetória de menor comprimento?"
- Um dos algoritmos mais tradicionais para resolver esse problema foi criado por Dijkstra (Holanda), em 1952
- No problema do menor caminho, as arestas são valoradas
 - Custo, distância

O algoritmo de Dijkstra aqui descrito identifica o menor caminho entre dois vértices de um grafo.

Se desejamos calcular o menor caminho de a para z em um grafo conexo simples com pesos, primeiro encontramos um menor caminho entre a e um primeiro vértice, depois entre a e um segundo vértice, esse procedimento é repetido até que seja encontrado um menor caminho entre a e z.

Um conjunto S de vértices é construído inserindo-se um vértice a cada iteração.

A cada iteração também é adotado um procedimento para rotular vértices: um vértice w é rotulado com o tamanho do menor caminho de a até ele, e que contem somente vértices do conjunto S.

O vértice a ser inserido em S é aquele com o menor rótulo.

	Passo 1	Passo 2	Passo 3	Passo 4	Passo 5
А	(0, A)				
В	(2, A)				
С	(4, A)				
D	(6, A)				
Е	-				

	Passo 1	Passo 2	Passo 3	Passo 4	Passo 5
А	(0, A)	*	*	*	*
В	(2, A)	(2, A)	*	*	*
С	(4, A)	(4, A)			
D	(6, A)	(5, B)			
Е	-	(9, B)			

	Passo 1	Passo 2	Passo 3	Passo 4	Passo 5
А	(0, A)	*	*	*	*
В	(2, A)	(2, A)	*	*	*
С	(4, A)	(4, A)	(4, A)	*	*
D	(6, A)	(5, B)	(5, B)		
Е	-	(9, B)	(9, B)		

	Passo 1	Passo 2	Passo 3	Passo 4	Passo 5
А	(0, A)	*	*	*	*
В	(2, A)	(2, A)	*	*	*
С	(4, A)	(4, A)	(4, A)	*	*
D	(6, A)	(5, B)	(5, B)	(5, B)	*
Е	-	(9, B)	(9, B)	(6, D)	

	Passo 1	Passo 2	Passo 3	Passo 4	Passo 5
А	(0, A)	*	*	*	*
В	(2, A)	(2, A)	*	*	*
С	(4, A)	(4, A)	(4, A)	*	*
D	(6, A)	(5, B)	(5, B)	(5, B)	*
E	-	(9, B)	(9, B)	(6, D)	(6, D)

Atividade

 Utilizando o algoritmo de Dijkstra, calcule a menor distância entre os vértices S e T

Atividade

	1	2	3	4	5	6
S	(0, S)	*	*	*	*	*
В	(4, S)	(3, C)	(3, C)	*	*	*
С	(2, S)	(2, S)	*	*	*	*
D	8	(10, C)	(8, B)	(8, B)	*	*
Е	8	(12, C)	(12, C)	(10, D)	(10, D)	*
Т	8	8	8	(14, D)	(12, E)	(12, E)

- Para cada vértice v do grafo, mantemos um atributo d[v] que é um limite
 superior para o peso do caminho mais curto do nó inicial s a v
 - o Dizemos que d[v] é uma **estimativa do caminho mais curto**, inicialmente feito ∞
- Também armazenamos o vértice que precede v(p[v] **precedente** de v) no caminho mais curto de s a v

- Faça a estimativa de distância de s a qualquer vértice ser infinita
 - Exceto, claro, a distância de s a s, que é 0
 - Ou seja, d[s] = 0 e $d[v] = \infty$ para todo v! = s
- Faça os precedentes dos nós serem um valor qualquer
 - \circ Na prática, podemos fazer p[v] = -1, já que não temos vértice de índice -1 na estrutura grafo
- Marque todos os vértices como "abertos"

- Enquanto houver vértice aberto:
 - Escolha o vértice aberto u cuja estimativa seja a menor dentre os demais abertos
 - o Feche u
 - o Para todo nó aberto v na adjacência de u:
 - Some d[u] ao peso da aresta (u, v)
 - Caso a soma seja menor que d[v], atualize d[v] e faça p[v] = u
 - Procedimento chamado de relaxamento da aresta (u, v)

Algoritmo de Dijkstra - Resumo

- Inicialize o grafo com d[s] = 0, $d[v] = \infty$, para todo v! = s, e p[v] = -1 para todo v
- Faça aberto[v] = true para todo v no grafo
- Enquanto houver vértice aberto:
 - Escolha u cuja estimativa seja a menor dentre os abertos
 - Feche u
 - Para todo nó aberto v na adjacência de u:
 - Relaxe a aresta (u, v)

Algoritmo de Dijkstra - Observações

- O algoritmo de Dijkstra tem uma limitação importante
 - Os pesos das arestas devem ser não-negativos
- A implementação das funções auxiliares influencia diretamente na eficiência do algoritmo
 - o Implementação com **filas de prioridade** normalmente alcança resultados mais rápidos

- O algoritmo encontra o menor caminho de um dado vértice a todos os outros nós
 - Ele n\u00e3o encontra o menor caminho entre dois v\u00e9rtices quaisquer

Atividade

 Use o algoritmo de Dijkstra para descobrir qual o menor caminho do vértice A a todos os outros vértices

Dúvidas?

Laura Alves Pacifico
laps@cesar.school
Slack: Laura Pacifico