M521 HW1 Harry Luo

Problem 1.

Solution: Base Case (n=1): For n = 1, LHS = 2(1) + 1 = 3. RHS = $3(1)^2 = 3$. Since LHS = RHS, the equation holds for n = 1.

Inductive Step: Assume that for some $k \in \mathbb{N}$, $(2k+1)+(2k+3)+\ldots+(4k-1)=3k^2$ is true.

We need to prove that the equation holds for n = k + 1:

$$(2(k+1)+1)+(2(k+1)+3)+\ldots+(4(k+1)-1)=3(k+1)^2.$$

Consider the LHS for n = k + 1:

LHS =
$$(2k+3) + (2k+5) + \dots + (4k+3)$$

= $[(2k+3) + (2k+5) + \dots + (4k-1)] + (4k+1) + (4k+3)$
= $[(2k+1) + (2k+3) + \dots + (4k-1)] - (2k+1) + (4k+1) + (4k+3)$
= $3k^2 - (2k+1) + (4k+1) + (4k+3)$
= $3k^2 - 2k - 1 + 4k + 1 + 4k + 3$
= $3k^2 + 6k + 3$
= $3(k^2 + 2k + 1)$
= $3(k+1)^2 = \text{RHS}$

By mathematical induction, the equation $(2n+1)+(2n+3)+\ldots+(4n-1)=3n^2$ is true for all $n \in \mathbb{N}$.

Problem 2. Pell numbers

Solution: (a) Prove H_n is true

We will prove that H_n is true for all $n \in \mathbb{N}$ using mathematical induction, where H_n is the statement " $P_n = f(n)$ and $P_{n-1} = f(n-1)$ ", and $f(n) = \frac{(1+\sqrt{2})^n - (1-\sqrt{2})^n}{2\sqrt{2}}$.

Base Case (n=1):

We check if H_1 is true, i.e., if $P_1 = f(1)$ and $P_0 = f(0)$. $f(1) = \frac{(1+\sqrt{2})^1 - (1-\sqrt{2})^1}{2\sqrt{2}} = \frac{2\sqrt{2}}{2\sqrt{2}} = 1 = P_1$. $f(0) = \frac{(1+\sqrt{2})^0 - (1-\sqrt{2})^0}{2\sqrt{2}} = \frac{1-1}{2\sqrt{2}} = 0 = P_0$. Thus, H_1 is true.

Inductive Step:

Assume H_k is true for some $k \in \mathbb{N}$. That is, assume $P_k = f(k)$ and $P_{k-1} = f(k-1)$.

We want to prove H_{k+1} , i.e., $P_{k+1} = f(k+1)$ and $P_k = f(k)$.

Using the Pell number recurrence relation: $P_{k+1} = 2P_k + P_{k-1}$.

By the inductive hypothesis, substitute $P_k = f(k)$ and $P_{k-1} = f(k-1)$:

$$P_{k+1} = 2f(k) + f(k-1) = 2\frac{(1+\sqrt{2})^k - (1-\sqrt{2})^k}{2\sqrt{2}} + \frac{(1+\sqrt{2})^{k-1} - (1-\sqrt{2})^{k-1}}{2\sqrt{2}}.$$

Combining terms:

$$P_{k+1} = \frac{1}{2\sqrt{2}} \left[2(1+\sqrt{2})^k - 2(1-\sqrt{2})^k + (1+\sqrt{2})^{k-1} - (1-\sqrt{2})^{k-1} \right].$$

Factor out $(1+\sqrt{2})^{k-1}$ and $(1-\sqrt{2})^{k-1}$, and simplify:

$$P_{k+1} = \frac{1}{2\sqrt{2}} \left[(1+\sqrt{2})^{k-1} (2(1+\sqrt{2})+1) - (1-\sqrt{2})^{k-1} (2(1-\sqrt{2})+1) \right]$$

$$= \frac{1}{2\sqrt{2}} \left[(1+\sqrt{2})^{k-1} (1+\sqrt{2})^2 - (1-\sqrt{2})^{k-1} (1-\sqrt{2})^2 \right]$$

$$= \frac{1}{2\sqrt{2}} \left[(1+\sqrt{2})^{k+1} - (1-\sqrt{2})^{k+1} \right]$$

$$= f(k+1).$$

Thus, $P_{k+1} = f(k+1)$. Hence, H_{k+1} is true.

By mathematical induction, H_n is true for all $n \in \mathbb{N}$. Therefore, $P_n = f(n)$ and $P_{n-1} = f(n-1)$ for all $n \in \mathbb{N}$. In particular, $P_n = f(n)$ for all $n \in \mathbb{N}$. Since we verified $P_0 = f(0) = 0$ separately, we conclude $P_n = f(n)$ for all $n \in \mathbb{N} \cup \{0\}$.

(b) Why is $|\lambda - \sqrt{2}|$ small?

We have $\lambda = \frac{P_8 + P_9}{P_9} = 1 + \frac{P_8}{P_9}$. From part (a), $P_n = \frac{(1+\sqrt{2})^n - (1-\sqrt{2})^n}{2\sqrt{2}}$.

For large n, since $|1 - \sqrt{2}| < 1$, $(1 - \sqrt{2})^n \approx 0$. So, $P_n \approx \frac{(1+\sqrt{2})^n}{2\sqrt{2}}$ for large n.

$$\frac{P_8}{P_9} \approx \frac{(1+\sqrt{2})^8/(2\sqrt{2})}{(1+\sqrt{2})^9/(2\sqrt{2})} = \frac{(1+\sqrt{2})^8}{(1+\sqrt{2})^9} = \frac{1}{1+\sqrt{2}} = \frac{\sqrt{2}-1}{2-1} = \sqrt{2}-1.$$

Thus, $\frac{P_8}{P_9} \approx \sqrt{2} - 1$. Therefore,

$$\lambda = 1 + \frac{P_8}{P_9} \approx 1 + (\sqrt{2} - 1) = \sqrt{2}.$$

Hence, $|\lambda - \sqrt{2}|$ is small because λ is based on the ratio of consecutive Pell numbers, which for large indices approximates $\sqrt{2}$. More precisely, as $n \to \infty$, $\frac{P_n}{P_{n-1}} \to 1 + \sqrt{2}$, so $\frac{P_{n-1}}{P_n} \to \frac{1}{1+\sqrt{2}} = \sqrt{2}-1$. For n=9, $\frac{P_8}{P_9}$ is already a good approximation of $\sqrt{2}-1$, making $\lambda = 1 + \frac{P_8}{P_9}$ a good approximation of $\sqrt{2}$.

Problem 3. $\sqrt{2} + \sqrt{5}$ is irrational.

Solution: Proof by Contradiction:

Assume, for contradiction, that $\sqrt{2} + \sqrt{5}$ is rational. Let $r = \sqrt{2} + \sqrt{5}$, where $r \in \mathbb{Q}$. Square both sides of $r = \sqrt{2} + \sqrt{5}$:

$$r^2 = (\sqrt{2} + \sqrt{5})^2 = 7 + 2\sqrt{10}$$

Rearrange to isolate $\sqrt{10}$:

$$\sqrt{10} = \frac{r^2 - 7}{2}$$

Since $r \in \mathbb{Q}$, the expression $\frac{r^2-7}{2}$ is also rational. Thus, if $\sqrt{2} + \sqrt{5}$ is rational, then $\sqrt{10}$ must be rational.

We now prove by contradiction that $\sqrt{10}$ is irrational.

Assume $\sqrt{10}$ is rational, so $\sqrt{10} = \frac{p}{q}$ for integers p, q with $\gcd(p, q) = 1$ and $q \neq 0$. Squaring both sides gives $10 = \frac{p^2}{q^2}$, so $p^2 = 10q^2$. This means p^2 is divisible by 10, hence divisible by 2 and 5. Since 2 and 5 are prime, p must be divisible by 2 and 5, so p = 10k for some integer k. Substituting p = 10k into $p^2 = 10q^2$:

$$(10k)^2 = 10q^2$$

 $100k^2 = 10q^2$
 $q^2 = 10k^2$

This means q^2 is divisible by 10, and thus q is divisible by 10. So, both p and q are divisible by 10, contradicting $\gcd(p,q)=1$. Therefore, $\sqrt{10}$ is irrational.

In conclusion: We have shown that, if $\sqrt{2} + \sqrt{5}$ is rational, then $\sqrt{10}$ is rational. However, we then proved that $\sqrt{10}$ is irrational. This is a contradiction. Therefore, our initial assumption that $\sqrt{2} + \sqrt{5}$ is rational is false.

Thus proves $\sqrt{2} + \sqrt{5}$ is irrational.

Problem 4 (Field properties).

Solution: (a) \mathbb{N} (Natural Numbers)

Field Properties:

- Holds: A1 (Additive Associativity), A2 (Additive Commutativity), M1 (Multiplicative Associativity), M2 (Multiplicative Commutativity), M3 (Multiplicative Identity: 1), DL (Distributive Law)
- Fails: A3 (No additive identity $0 \in \mathbb{N}$), A4 (No additive inverses), M4 (No multiplicative inverses except for 1)

Order Properties (O1-O5):

- O1 (Trichotomy): Holds. For any $a, b \in \mathbb{N}$, exactly one of a < b, a = b, or a > b is true.
- **O2** (Antisymmetry): Suppose $a, b \in \mathbb{N}$ satisfy $a \leq b$ and $b \leq a$. By O1 (trichotomy), if $a \neq b$, then either a < b or a > b would hold, contradicting one of the inequalities. Thus, the only possibility is a = b.
- O3 (Transitivity): Holds. If a < b and b < c, then a < c.
- O4 (Additive Compatibility): Holds. If a < b, then a + c < b + c for all $c \in \mathbb{N}$.
- O5 (Multiplicative Compatibility): Holds. If a < b and c > 0, then $a \cdot c < b \cdot c$.

 \mathbb{N} satisfies all order properties but is missing additive identity/inverses and multiplicative inverses.

(b) \mathbb{Z} (Integers)

Field Properties:

- Holds: A1, A2, A3 (Additive Identity: 0), A4 (Additive Inverses), M1, M2, M3 (Multiplicative Identity: 1), DL
- Fails: M4 (No multiplicative inverses except for ± 1)

Order Properties (O1–O5):

- **O1**: Holds.
- **O2**: Holds by the same argument as in \mathbb{N} : if $a \leq b$ and $b \leq a$, then trichotomy forces a = b.
- **O3**: Holds.
- **O4**: Holds.
- **O5**: Holds.

 \mathbb{Z} does not satisfy M4.

(c) $\mathbb{B} = \{0, 1\}$ (Binary Numbers)

Field Properties: All field axioms hold:

- **A1**: For all $a, b, c \in \mathbb{B}$, (a + b) + c = a + (b + c)
 - -(1+1)+1=0+1=1=1+0=1+(1+1)
 - Similar for other combinations.
- **A2**: For all $a, b \in \mathbb{B}$, a + b = b + a
 - -0+0=0=0+0
 - -0+1=1=1+0
 - -1+1=0=1+1
- A3: $0 \in \mathbb{B}$ satisfies a + 0 = a for all $a \in \mathbb{B}$
- A4: For each $a \in \mathbb{B}$, there exists $-a \in \mathbb{B}$ where:
 - -0 = 0 since 0 + 0 = 0
 - -1 = 1 since 1 + 1 = 0
- M1: For all $a, b, c \in \mathbb{B}$, $(a \cdot b) \cdot c = a \cdot (b \cdot c)$
- M2: For all $a, b \in \mathbb{B}$, $a \cdot b = b \cdot a$
 - $-0\cdot 1=0=1\cdot 0$
 - $-1 \cdot 1 = 1$
- M3: $1 \in \mathbb{B}$ satisfies $a \cdot 1 = a$ for all $a \in \mathbb{B}$
- M4 : For non-zero elements:
 - $-1^{-1} = 1$ since $1 \cdot 1 = 1$
- **DL**: For all $a, b, c \in \mathbb{B}$, $a \cdot (b+c) = (a \cdot b) + (a \cdot c)$

Order Properties (O1–O5): Given $0 \le 1$:

- O1: Holds. For $a, b \in \mathbb{B}$, exactly one of the following holds: a < b, a = b, or a > b.
- **O2**: If $a \le b$ and $b \le a$, then by the trichotomy property the possibilities a < b or a > b are ruled out, leaving only a = b.

- **O3**: Trivially holds (with only two elements, no nontrivial chain exists).
- **O4**: **Fails**. For example, 0 < 1 but $0 + 1 = 1 \nleq 1 + 1 = 0$.
- O5: Vacuously holds. The only c > 0 is 1, and $0 \cdot 1 = 0 < 1 \cdot 1 = 1$.

B is a **field** but **not an ordered field** due to the failure of O4.

Problem 5.

Solution: (a) 0 < 1.

Proof:

Step 1: By the trichotomy property (O1), exactly one of the following holds: 0 < 1, 0 = 1, or 1 < 0. Since $1 \neq 0$, we exclude 0 = 1.

Step 2: Assume for contradiction that 1 < 0. Add -1 to both sides:

$$1 + (-1) < 0 + (-1) \implies 0 < -1.$$

Step 3: Multiply 1 < 0 by -1 (which is positive by Step 2):

By multiplicative compatibility : $1 \cdot (-1) < 0 \cdot (-1) \implies -1 < 0$. But Step 2 gives 0 < -1, violating antisymmetry (O2). Hence, 1 < 0 is false.

Conclusion: By trichotomy, 0 < 1 must hold.

(b) If 0 < a < b, then $0 < b^{-1} < a^{-1}$ for all $a, b \in \mathbb{R}$.

Proof:

Step 1: Prove $a^{-1} > 0$ and $b^{-1} > 0$:

Suppose $a^{-1} \le 0$. Since a > 0, multiplying $a^{-1} \le 0$ by a gives: $a \cdot a^{-1} \le 0 \implies 1 \le 0$, contradicting 0 < 1 (from part (a)). Thus, $a^{-1} > 0$. Similarly, $b^{-1} > 0$.

Step 2: Multiply a < b by $a^{-1}b^{-1} > 0$:

By multiplicative compatibility : $a \cdot (a^{-1}b^{-1}) < b \cdot (a^{-1}b^{-1}) \implies b^{-1} < a^{-1}$.

Step 3: Combine results: From $b^{-1} > 0$ (Step 1) and $b^{-1} < a^{-1}$ (Step 2), we conclude by transitivity:

$$0 < b^{-1} < a^{-1}.$$

Problem 6.

Solution: (a) Set $A = [1, 2) \cup (3, \infty)$

- Minimum: 1 (since 1 is included in the interval [1, 2)).
- Maximum: Does not exist (the set is unbounded above).
- Infimum: $\inf A = 1$.
- Supremum: $\sup A = \infty$.
- (b) **Set** $B = \{ r \in \mathbb{Q} \mid r < 2 \}$
 - Minimum: Does not exist (no smallest rational number less than 2).
 - Maximum: Does not exist (approaches 2 but never attains it).
 - Infimum: inf $B = -\infty$.
 - Supremum: $\sup B = 2$.
- (c) Set $C = \{r \in \mathbb{Q} \mid r^2 < 2\}$
 - Minimum: Does not exist (approaches $-\sqrt{2}$ but never attains it in \mathbb{Q}).
 - Maximum: Does not exist (approaches $\sqrt{2}$ but never attains it in \mathbb{Q}).
 - Infimum: inf $C = -\sqrt{2}$.
 - Supremum: $\sup C = \sqrt{2}$.
- (d) Set $D = \left\{ \frac{1}{m} + n \mid m, n \in \mathbb{N} \right\}$
 - Minimum: Does not exist (smallest term approaches 1 as $m \to \infty$, but 1 is not attained).
 - Maximum: Does not exist (unbounded above as $n \to \infty$).
 - Infimum: $\inf D = 1$.
 - Supremum: $\sup D = \infty$.
- (e) Set $E = {\sqrt{2}, e, \pi}$
 - Minimum: $\sqrt{2}$
 - Maximum: π
 - Infimum: inf $E = \sqrt{2}$.
 - Supremum: $\sup E = \pi$.
- (f) Set $F = \{2 x^2 \mid x \in \mathbb{R}\}$
 - Minimum: Does not exist (unbounded below as $x \to \pm \infty$).
 - Maximum: 2 (attained at x = 0).
 - Infimum: $\inf F = -\infty$.
 - Supremum: $\sup F = 2$.

Problem 7.

Solution: (a)

Statement: a < b if and only if $a < b + \epsilon$ for all $\epsilon > 0$.

Disprove: We will show that the statement is false by providing a counterexample.

(≠=):

Consider for a counterexample: Let a = 1 and b = 1. Then a < b is false, since $1 \nleq 1$.

Since $\epsilon > 0$, we have $1 + \epsilon > 1$, so $1 < 1 + \epsilon$ is true for all $\epsilon > 0$.

Thus, for a = 1 and b = 1, the condition $a < b + \epsilon$ for all $\epsilon > 0$ is true, but a < b is false.

Therefore, the reverse implication is false, and the statement "a < b if and only if $a < b + \epsilon$ for all $\epsilon > 0$ " is false.

Counterexample: Let a = 1 and b = 1. Then $a < b + \epsilon$ for all $\epsilon > 0$, but $a \nleq b$.

(b)

Statement: $a \le b$ if and only if $a < b + \epsilon$ for all $\epsilon > 0$.

Proof:

$$(\Longrightarrow)$$

Assume a < b.

Since $\epsilon > 0$, we know $b < b + \epsilon$.

If a < b, then $a < b < b + \epsilon$, so $a < b + \epsilon$.

If a = b, then $a = b < b + \epsilon$, so $a < b + \epsilon$.

In both cases, if $a \leq b$, then $a < b + \epsilon$ for all $\epsilon > 0$. Therefore, the forward direction is true.

(⇐=)

Assume $a < b + \epsilon$ for all $\epsilon > 0$. Suppose for contradiction that a > b.

Let $\delta = a - b$. Since a > b, we have $\delta > 0$.

Choose $\epsilon = \frac{\delta}{2} = \frac{a-b}{2}$. Since $\delta > 0$, we have $\epsilon > 0$.

By our assumption, $a < b + \epsilon$ for all $\epsilon > 0$, so it must be true for $\epsilon = \epsilon_0 = \frac{a-b}{2}$.

Thus,

$$a < b + \epsilon_0 = b + \frac{a-b}{2} = \frac{2b+a-b}{2} = \frac{a+b}{2}$$

So we have $a < \frac{a+b}{2}$. Multiplying both sides by 2 gives 2a < a+b. Subtracting a from both sides gives a < b.

We started by assuming a > b and derived a < b, which is a contradiction.

Therefore, we have $a \leq b$.

Therefore, the reverse direction is true.

Since both directions are true, the statement " $a \le b$ if and only if $a < b + \epsilon$ for all $\epsilon > 0$ " is true.

Problem 8.

Solution: Let A and B be non-empty bounded subsets of \mathbb{R} , and define the set

$$A - B = \{a - b \mid a \in A, b \in B\}.$$

We aim to prove that

$$\sup(A - B) = \sup A - \inf B.$$

Step 1: Prove that $\sup(A - B) \leq \sup A - \inf B$

Let $x \in A - B$. Then there exist $a \in A$ and $b \in B$ such that

$$x = a - b$$
.

Since $a \leq \sup A$ (as $\sup A$ is the least upper bound of A) and $b \geq \inf B$ (as $\inf B$ is the greatest lower bound of B), we obtain

$$x = a - b \le \sup A - \inf B$$
.

Since this holds for all $x \in A - B$, it follows that

$$\sup(A - B) \le \sup A - \inf B.$$

Step 2: Prove that $\sup(A - B) \ge \sup A - \inf B$

We need to show that for any $\epsilon > 0$, there exists $x \in A - B$ such that

$$x > \sup A - \inf B - \epsilon$$
.

Since $\sup A$ is the least upper bound of A, there exists $a' \in A$ such that

$$a' > \sup A - \frac{\epsilon}{2}.$$

Similarly, since inf B is the greatest lower bound of B, there exists $b' \in B$ such that

$$b' < \inf B + \frac{\epsilon}{2}.$$

Consider x = a' - b'. Then:

$$x = a' - b'$$

$$> \left(\sup A - \frac{\epsilon}{2}\right) - \left(\inf B + \frac{\epsilon}{2}\right)$$

$$= \sup A - \inf B - \epsilon.$$

Thus, for any $\epsilon > 0$, there exists $x \in A - B$ such that $x > \sup A - \inf B - \epsilon$, which implies

$$\sup(A - B) \ge \sup A - \inf B.$$

Conclusion:

Since we have shown both

$$\sup(A - B) \le \sup A - \inf B$$
 and $\sup(A - B) \ge \sup A - \inf B$,

it follows that

$$\sup(A - B) = \sup A - \inf B.$$

Problem 9.

Solution: (a)

The statement is **false**.

Counterexample: Let C = [-2, -1] and D = [3, 4].

Then:

$$\inf C = -2$$

 $\inf D = 3$
 $(\inf C)(\inf D) = (-2)(3) = -6$

However, for $M = \{cd \mid c \in C, d \in D\}$:

$$\inf M = (-2)(4) = -8$$

Since $\inf M \neq (\inf C)(\inf D)$, the statement is false.

(b)

The statement is **true**.

Proof: Assume $\sup C < \inf D$. Let $\alpha = \sup C$ and $\beta = \inf D$. Define $r = \frac{\alpha + \beta}{2}$. Then:

$$\alpha < r < \beta$$

For all $c \in C$: $c \le \sup C = \alpha < r$, so c < r.

For all $d \in D$: $d \ge \inf D = \beta > r$, so r < d.

Therefore, for all $c \in C$ and $d \in D$: c < r < d.

(c)

The statement is **true**.

Proof: Assume there exists $r \in \mathbb{R}$ such that c < r < d for all $c \in C$ and $d \in D$. Let $\alpha = \sup C$ and $\beta = \inf D$.

Since c < r for all $c \in C$, r is an upper bound of C, so $\alpha \le r$.

Since r < d for all $d \in D$, r is a lower bound of D, so $r \le \beta$.

Therefore:

$$\alpha \le r \le \beta$$

Suppose, for contradiction, that $\alpha \geq \beta$. Then:

$$\alpha \ge \beta \ge r \ge \alpha$$

implying $\alpha = \beta = r$.

But then:

- Since c < r for all $c \in C$, no element of C equals α
- Since r < d for all $d \in D$, no element of D equals β

By definition of supremum, for any $\epsilon > 0$, there exists $c_{\epsilon} \in C$ such that:

$$\alpha - \epsilon < c_{\epsilon} < \alpha$$

Similarly, there exists $d_{\epsilon} \in D$ such that:

$$\beta < d_{\epsilon} < \beta + \epsilon$$

As $\epsilon \to 0$, both sequences approach r, making $d_{\epsilon} - c_{\epsilon} \to 0$. This contradicts the requirement of a non-zero gap between C and D implied by c < r < d.

Therefore, $\alpha < \beta$, i.e., $\sup C < \inf D$.

Problem 10.

Solution: Let $a, b \in \mathbb{R}$ with a < b. We will construct an irrational number $x \in \mathbb{I}$ such that a < x < b.

Consider the interval $(a - \sqrt{2}, b - \sqrt{2})$. Since a < b, we have $a - \sqrt{2} < b - \sqrt{2}$, so this interval is non-empty.

By the density of rational numbers in \mathbb{R} , there exists $r \in \mathbb{Q}$ such that

$$a - \sqrt{2} < r < b - \sqrt{2}$$

Let $x = r + \sqrt{2}$. We claim this x satisfies our requirements:

- (a) First, $x \in \mathbb{I}$: Since $r \in \mathbb{Q}$ and $\sqrt{2} \in \mathbb{I}$, their sum $x = r + \sqrt{2}$ must be irrational. (If it were rational, then $\sqrt{2} = x r$ would be rational, a contradiction.)
- (b) Second, a < x < b: Adding $\sqrt{2}$ to each part of the inequality $a \sqrt{2} < r < b \sqrt{2}$ gives:

$$a - \sqrt{2} + \sqrt{2} < r + \sqrt{2} < b - \sqrt{2} + \sqrt{2}$$

which simplifies to

Therefore, we have constructed an irrational number $x \in \mathbb{I}$ such that a < x < b.

Problem 11.

Solution: (a) For $\frac{n^2+3}{n^2-3}$:

Dividing numerator and denominator by n^2 :

$$\frac{n^2+3}{n^2-3} = \frac{1+\frac{3}{n^2}}{1-\frac{3}{n^2}} \to 1 \text{ as } n \to \infty$$

Therefore, $\lim_{n\to\infty} \frac{n^2+3}{n^2-3} = 1$

(b) For $(-1)^n n$:

When n is even, the term is n When n is odd, the term is -n The sequence alternates between increasingly large positive and negative values. Therefore, the limit **does not exist.**

(c) For $\frac{4n+2}{3-5n^2}$:

Dividing numerator and denominator by n^2 :

$$\frac{4n+2}{3-5n^2} = \frac{\frac{4}{n} + \frac{2}{n^2}}{\frac{3}{n^2} - 5} \to 0 \text{ as } n \to \infty$$

Therefore, $\lim_{n\to\infty} \frac{4n+2}{3-5n^2} = 0$

(d) For $\sqrt{n} - \sqrt{n-1}$:

Rationalizing the numerator:

$$\sqrt{n} - \sqrt{n-1} = \frac{1}{\sqrt{n} + \sqrt{n-1}} \to 0 \text{ as } n \to \infty$$

Therefore, $\lim_{n\to\infty} (\sqrt{n} - \sqrt{n-1}) = 0$

(e) For $\sqrt{n^2 + n} - n$:

Rewriting as $n(\sqrt{1+\frac{1}{n}}-1)$ and using binomial expansion:

$$\sqrt{1+\frac{1}{n}} \approx 1 + \frac{1}{2n} - \frac{1}{8n^2} + \cdots$$

Therefore, $\lim_{n\to\infty} (\sqrt{n^2+n}-n) = \frac{1}{2}$

(f) For $\frac{n!}{8^n}$:

Using Stirling's approximation:

$$\frac{n!}{8^n} \approx \left(\frac{n}{8e}\right)^n \sqrt{2\pi n}$$

Since $\frac{n}{8e} > 1$ for large enough n, this grows without bound. Therefore, $\lim_{n \to \infty} \frac{n!}{8^n} = \infty$

Problem 12.

Solution: (A)

We will use the series expansion of the mathematical constant e to construct the sequence. Recall that the number e is defined by the infinite series:

$$e = \sum_{k=0}^{\infty} \frac{1}{k!} = 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \dots$$
 (1)

It is a well-known fact that e is irrational. We define the sequence (q_n) as the n-th partial sum of the series for e:

$$q_n = \sum_{k=0}^n \frac{1}{k!} = 1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!}$$
 (2)

Rationality of q_n :

Each term $\frac{1}{k!}$ is rational since both the numerator and denominator are integers.

A finite sum of rational numbers is rational.

Therefore, each q_n is rational.

Limit of q_n :

By the definition of e in equation (1), we have:

$$\lim_{n \to \infty} q_n = \lim_{n \to \infty} \sum_{k=0}^n \frac{1}{k!} = e$$

Since e is irrational, the limit is irrational.

In conclusion, the sequence $\{q_n\}$ consists of rational numbers and converges to the irrational number e.

(B)

We will construct a sequence converging to the rational number 1.

Define the sequence (p_n) by:

$$p_n = 1 + \frac{\sqrt{2}}{n}, \quad \text{for } n \ge 1 \tag{3}$$

Proof. We will show that each p_n is irrational.

- Since $\sqrt{2}$ is irrational and n is a positive integer, $\frac{\sqrt{2}}{n}$ is irrational.
- Suppose, for contradiction, that p_n is rational for some n.

¹Dividing an irrational number by a non-zero integer yields an irrational number because if $\frac{\sqrt{2}}{n}$ were rational, then $\sqrt{2} = n \times \text{(rational)}$ would be rational, which contradicts the irrationality of $\sqrt{2}$.

- Then $p_n 1 = \frac{\sqrt{2}}{n}$ would be rational (since the difference of two rationals is rational).
- This implies that $\sqrt{2} = n(p_n 1)$ is rational (product of an integer and a rational).
- This contradicts the fact that $\sqrt{2}$ is irrational.
- Therefore, our assumption is false, and p_n must be irrational for all n.

Limit of p_n :

$$\lim_{n \to \infty} p_n = \lim_{n \to \infty} \left(1 + \frac{\sqrt{2}}{n} \right)$$
$$= 1 + \lim_{n \to \infty} \frac{\sqrt{2}}{n}$$
$$= 1 + 0$$
$$= 1$$

The limit is the rational number 1.

Conclusion: The sequence $\{p_n\}$ consists of irrational numbers and converges to the rational number 1.