```
#importing libraries
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.preprocessing import LabelEncoder
from sklearn.model selection import train test split
from sklearn.linear model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.svm import SVC
from sklearn.neighbors import KNeighborsClassifier
from sklearn.naive bayes import MultinomialNB
from sklearn.metrics import
confusion matrix, roc auc score, classification report
#importing datasets
df= pd.read csv('drug200.csv')
df.head()
   Age Sex
                BP Cholesterol
                                Na to K
                                          Drug
0
    23
        F
             HIGH
                          HIGH
                                 25.355
                                         DrugY
    47
1
        М
               LOW
                          HIGH
                                 13.093
                                         drugC
2
    47
        М
               LOW
                          HIGH
                                 10.114
                                         drugC
3
    28
        F NORMAL
                          HIGH
                                  7.798
                                         drugX
4
        F
    61
               LOW
                          HIGH
                                 18.043
                                         DrugY
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 200 entries, 0 to 199
Data columns (total 6 columns):
#
     Column
                 Non-Null Count
                                  Dtype
- - -
     -----
                  _____
 0
                  200 non-null
                                  int64
     Age
 1
     Sex
                  200 non-null
                                  object
 2
                  200 non-null
                                  object
 3
    Cholesterol 200 non-null
                                  object
 4
                  200 non-null
     Na to K
                                  float64
 5
     Drug
                  200 non-null
                                  object
dtypes: float64(1), int64(1), object(4)
memory usage: 9.5+ KB
#categorical columns
categ column=[column for column in df.columns if
df[column].dtype=='object']
#numerical columns
numeric column=df.drop(categ column,axis=1).columns
import warnings
warnings.filterwarnings('ignore')
```

```
for column in categ_column:
    sns.countplot(df[column],hue=df['Drug'])
    plt.show()
```


for column in numeric_column:
 sns.boxplot(df[column])
 plt.show()


```
#first quartile
Q1=df['Na_to_K'].quantile(0.25)
# 3rd quartile
Q3=df['Na_to_K'].quantile(0.75)
#Inter quartile range
IQR=Q3-Q1
#upper fence = Q3+1.5*IQR
upper=Q3+ 1.5*IQR
```

```
# lower fence= Q1-1.5*IQR
lower= Q1 - 1.5*IQR

#putting conditions
df=df[(df['Na_to_K']<upper) & (df['Na_to_K']>lower)]
sns.boxplot(df['Na_to_K'])

<AxesSubplot:xlabel='Na_to_K'>
```



```
for column in categ_column:
    le=LabelEncoder()
    df[column]=le.fit_transform(df[column])
```

df.head()

	Age	Sex	BP	Cholesterol	Na_to_K	Drug
0	23	0	0	0	$2\overline{5}.3\overline{5}$	0
1	47	1	1	0	13.093	3
2	47	1	1	0	10.114	3
3	28	0	2	0	7.798	4
4	61	0	1	0	18.043	0

df.shape

(192, 6)

```
x = df.iloc[:,:-1].values
y = df.iloc[:, 1].values
```

print(x)	
----------	--

[[23.	0.	0.	0.	25.355]
[47.	1.	1.	0.	13.093]
[47.	1.	1.	0.	10.114]
[28.	0.	2.	0.	7.798]
[61.	0.	1.	0.	18.043]
[22.	0.	2.	0.	8.607]
[49.	0.	2.	0.	16.275]
[41.	1.	1.	0.	11.037
[60.	1.	2.	0.	15.171]
[43.	1.	1.	1.	19.368]
[47.	0.	1.	0.	11.767]
[34.	0.	0.	1.	19.199]
[43.	1.	1.	0.	15.376]
[74.	0.	1.	0.	20.942]
[50.	0.	2.	0.	12.703]
[16.	0.	0.	1.	15.516]
[69.	1.	1.	1.	11.455]
[43.	1.	0.	0.	13.972]
[23.	1.	1.	0.	7.298]
[32.	0.	0.	1.	25.974]
[57.	1.	1.	1.	19.128]
[63.	1.	2.	0.	25.917]
[47.	1.	1.	1.	30.568]
[48.	0.	1.	0.	15.036]
[28.	0.	0.	1.	18.809]
[31.	1.	0.	0.	30.366]
[49.	0.	2.	1.	9.381]
[39.	0.	1.	1.	22.697]
[45.	1.	1.	0.	17.951]
[18.	0.	2.	1.	8.75]
[74.	1.	0.	0.	9.567]
[49.	1.	1.	1.	11.014]
[65.	0.	0.	1.	31.876]
[53.	1.	2.	0.	14.133]
[46.	1.	2.	1.	7.285]
[32.	1.	0.	1.	9.445]
[39.	1.	1.	1.	13.938]
[39.	0.	2.	1.	9.709]
[15.	1.	2.	0.	9.084]
[73.	0.	2.	0.	19.221]
[58.	0.	0.	1.	14.239]
[50.	1.	2.	1.	15.79]
[23.	1.	2.	0.	12.26]
[50.	0.	2.	1.	12.295]
[66.	0.	2.	1.	8.107]
[37.	0.	0.	0.	13.091]
[68.	1.	1.	0.	10.291]
[23.	1.	2.	0.	31.686]

[28. [58. [67. [62. [68. [68. [69. [60. [34. [60. [34. [45. [41. [26. [32. [36. [32. [36. [37. [38. [38. [41. [38. [41. [38. [41.	0. 0. 1. 0. 0. 1. 1. 0. 1. 0. 1. 0. 0. 1. 0. 0. 1. 0. 0. 1. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	1. 0. 2. 1. 0. 1. 0. 1. 0. 2. 0. 2. 0. 1. 0. 2. 0. 1. 0. 1. 0. 2. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	0. 0. 11. 10. 10. 10. 10. 10. 10. 10. 10	19.796] 19.416] 10.898] 27.183] 18.457] 10.189] 14.16] 11.34] 27.826] 10.091] 18.703] 29.875] 20.693] 8.37] 13.303] 27.05] 12.856] 10.832] 24.658] 24.276] 13.967] 19.675] 10.605] 22.905] 17.069] 20.909] 11.198] 19.161] 13.313] 10.84] 13.934] 7.761] 9.712] 11.326] 10.067] 13.935]
[41. [29. [42. [56. [36. [56.	1. 0. 0. 1. 1. 0.	0. 0. 1. 1. 0.	1. 0. 1. 0. 1.	15.156] 29.45] 29.271] 15.015] 11.424] 25.395] 16.725]
[31.	1.	0.	1.	11.871]

```
[37.
            1.
                      1.
                               1.
                                      16.724]
 [49.
             1.
                     1.
                              0.
                                      10.537]
 [31.
            1.
                     0.
                               1.
                                      11.227]
 [53.
            1.
                     1.
                              0.
                                      22.963]
 [59.
            0.
                     1.
                              0.
                                      10.444]
 [34.
            0.
                     1.
                              1.
                                      12.923]
 [30.
            0.
                     2.
                                      10.443]
                              0.
 [57.
            0.
                     0.
                               1.
                                       9.945]
 [43.
            1.
                     2.
                               1.
                                      12.859]
 [21.
            0.
                     0.
                               1.
                                      28.6321
 [16.
             1.
                     0.
                               1.
                                      19.007]
                              0.
 [38.
             1.
                     1.
                                      18.2951
 [58.
            0.
                     1.
                                      26.645]
                               0.
            0.
 [57.
                     2.
                              0.
                                      14.216]
 [51.
            0.
                     1.
                               1.
                                      23.0031
 [20.
            0.
                     0.
                              0.
                                      11.262]
 [28.
            0.
                     2.
                              0.
                                      12.879]
 [45.
            1.
                     1.
                               1.
                                      10.017]
                     2.
 [39.
                                      17.225]
            0.
                               1.
            0.
                               1.
                                      18.739]
 [41.
                      1.
 [42.
            1.
                     0.
                               1.
                                      12.766]
 [73.
            0.
                     0.
                              0.
                                      18.348]
 [48.
            1.
                     0.
                               1.
                                      10.446]
 [25.
             1.
                     2.
                                      19.011]
                              0.
                     2.
 [39.
             1.
                              0.
                                      15.9691
                     2.
                                      15.891]
 [67.
            0.
                              0.
 [22.
            0.
                     0.
                               1.
                                      22.818]
                     2.
 [59.
            0.
                              0.
                                      13.884]
 [20.
            0.
                     1.
                               1.
                                      11.686]
 [36.
            0.
                     0.
                               1.
                                      15.49 ]
                     2.
                                      25.8931
 [57.
            0.
                               1.
            1.
 [70.
                     0.
                               0.
                                       9.849]
 [47.
             1.
                     0.
                               0.
                                      10.403]
 [64.
            1.
                     0.
                               1.
                                      20.932]
 [58.
             1.
                     0.
                              0.
                                      18.991]
 [23.
            1.
                     0.
                              0.
                                       8.011]
            1.
 [72.
                     1.
                              0.
                                      16.31 ]
 [72.
                     1.
             1.
                              0.
                                        6.769
 [56.
            0.
                     1.
                              0.
                                      11.567]
 [16.
                     1.
                                      12.0061
            1.
                              0.
 [52.
            1.
                     2.
                               0.
                                       9.894]
 [23.
            1.
                     2.
                                      14.02 ]
                               1.
 [40.
            0.
                     1.
                               1.
                                      11.349]]
print(y)
[0\ 1\ 1\ 0\ 0\ 0\ 0\ 1\ 1\ 1\ 0\ 0\ 1\ 0\ 1\ 1\ 1\ 0\ 1\ 1\ 1\ 0\ 0\ 1\ 0\ 1\ 1\ 0\ 1\ 1
 0\ 1\ 0\ 0\ 1\ 1\ 0\ 0\ 0\ 1\ 1\ 0\ 0\ 0\ 1\ 1\ 1\ 1\ 0\ 0\ 1\ 1\ 1\ 0\ 0\ 0
0 1
```

[72.

0.

1.

1.

14.6421

```
1 0
1 1 0 1 1 1 0]
from sklearn.model selection import train test split
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.25)
print(x train)
[[37.
         1.
                1.
                       1.
                             8.968]
 [49.
                1.
                       0.
                             10.5371
         1.
 [45.
         1.
                1.
                       1.
                             8.37 1
 [31.
         1.
                0.
                       1.
                             11.8711
 [60.
         1.
                0.
                       1.
                             8.6211
 [61.
         0.
                1.
                       1.
                             7.34 1
 [39.
         1.
                0.
                       0.
                             9.664]
 [23.
                2.
         1.
                       0.
                             12.26 ]
 [42.
                             12.766]
         1.
                0.
                       1.
 [24.
         0.
                2.
                       0.
                             10.605]
 [21.
                0.
         0.
                       1.
                             28.6321
         1.
                2.
 [17.
                       1.
                             10.832]
 [62.
         1.
                1.
                       1.
                             27.183]
 [51.
         0.
                2.
                       0.
                             13.597]
 [20.
         0.
                2.
                       1.
                             9.281]
 [37.
         0.
                0.
                       0.
                             13.091]
 [32.
         0.
                0.
                       1.
                             25.9741
 [39.
         1.
                2.
                             15.9691
                       0.
 [28.
         0.
                2.
                       0.
                             7.7981
 [24.
         1.
                2.
                       0.
                             25.7861
 [54.
         1.
                2.
                       0.
                             24.6581
 [72.
         1.
                1.
                       0.
                             6.769]
 [18.
         0.
                2.
                       1.
                             8.75 ]
         0.
                1.
 [20.
                       1.
                             11.686]
 [62.
         1.
                2.
                       0.
                             16.594]
 [49.
         0.
                2.
                       1.
                             9.381]
                             12.0061
 [37.
         0.
                1.
                       1.
 [31.
         1.
                0.
                       1.
                             17.069]
 [53.
         1.
                2.
                       0.
                             14.133]
                1.
 [58.
         0.
                       0.
                             26.6451
                             10.443]
 [30.
         0.
                2.
                       0.
                             13.3031
 [60.
         0.
                0.
                       0.
 [57.
         1.
                1.
                       1.
                             19.1281
                2.
 [55.
         1.
                       1.
                             7.261]
 [56.
         0.
                1.
                       0.
                             11.567]
 [47.
         1.
                0.
                       0.
                             10.4031
 [69.
         0.
                2.
                       0.
                             10.0651
 [47.
         1.
                1.
                       0.
                             13.093]
```

```
[72.
          1.
                         0.
                                16.31 1
                  1.
                                13.935]
 [59.
          1.
                  0.
                         0.
 [28.
          0.
                  2.
                         0.
                                12.879]
 [70.
          1.
                  0.
                         0.
                                13.967]
 [69.
          1.
                  1.
                         0.
                                15.478]
 [43.
          1.
                  0.
                         0.
                                13.972]]
print(y train)
[1\ 1\ 1\ 1\ 1\ 0\ 1\ 1\ 1\ 0\ 0\ 1\ 1\ 0\ 0\ 0\ 1\ 1\ 1\ 0\ 0\ 1\ 1\ 0\ 0\ 0\ 1\ 1\ 0
 1 0
 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 0 1 1 0 1 0 0 1 0 1 1 1 1 1 1 1 0 1 1 1
print(x test)
[[16.
          1.
                  1.
                         0.
                                12.006]
                  1.
                         1.
 [65.
          0.
                                13.769]
 [58.
          0.
                  0.
                         1.
                                14.239]
 [37.
          1.
                  1.
                         1.
                                16.724]
 [31.
          1.
                  0.
                         0.
                                30.366]
                  2.
 [56.
          1.
                                 8.966]
                         0.
 [18.
          0.
                  0.
                         1.
                                24.2761
 [35.
          1.
                  2.
                         1.
                                 7.845]
 [19.
          0.
                  0.
                         0.
                                13.313]
 [36.
          1.
                  1.
                         1.
                                11.424]
          0.
 [28.
                  1.
                         0.
                                19.796]
                  2.
 [73.
          0.
                         0.
                                19.221]
 [23.
          0.
                  0.
                         0.
                                25.3551
                                18.295]
 [51.
          1.
                  0.
                         0.
 [66.
          1.
                  0.
                         0.
                                16.347]
 [32.
          0.
                  2.
                         0.
                                 7.477]
 [52.
          1.
                  2.
                         0.
                                 9.894]
 [45.
                  1.
                         1.
                                10.017]
          1.
 [59.
          0.
                  1.
                         0.
                                10.444]
          0.
                  1.
                         1.
                                23.003]
 [51.
 [39.
          0.
                  1.
                         1.
                                22.697]
 [29.
          1.
                  0.
                         0.
                                12.8561
 [34.
          1.
                  0.
                         0.
                                18.703]
 [72.
          1.
                  0.
                         1.
                                 9.677]
 [34.
          0.
                  1.
                         1.
                                12.9231
 [56.
          0.
                  0.
                         0.
                                25.3951
 [32.
          0.
                  0.
                         1.
                                10.292]
                  2.
                                 7.761]
 [64.
          1.
                         0.
 [49.
          1.
                  0.
                         1.
                                 6.269
 [68.
          1.
                  1.
                         0.
                                10.291]
 [36.
          0.
                  2.
                         0.
                                16.753]
 [16.
          0.
                  0.
                         1.
                                15.516]
```

```
[67.
                                20.6931
          1.
                  1.
                          1.
 [26.
          0.
                  1.
                          0.
                                14.16
 [26.
          1.
                  1.
                          1.
                                20.909]
 [51.
                          1.
                                11.3431
          1.
                  0.
 [47.
          0.
                  1.
                          0.
                                10.0671
 [74.
          0.
                  1.
                          0.
                                20.942]
          0.
                  1.
 [61.
                          0.
                                18.0431
 [47.
          1.
                  1.
                                30.568]
                          1.
 [74.
          1.
                  0.
                          1.
                                15.436]
 [39.
          0.
                  2.
                                 9.709]
                          1.
 [40.
          0.
                  1.
                          1.
                                11.3491
 [15.
          1.
                  0.
                          1.
                                17.2061
 [45.
          1.
                  1.
                          0.
                                17.9511
 [35.
          0.
                  0.
                                12.8941
                          0.
 [29.
          0.
                  0.
                          0.
                                29.45 ]
 [20.
          0.
                  0.
                          0.
                                11.26211
print(y test)
[1\ 0\ 0\ 1\ 1\ 1\ 0\ 1\ 0\ 1\ 0\ 0\ 0\ 1\ 1\ 0\ 0\ 0\ 1\ 1\ 1\ 0\ 0\ 0\ 1\ 1\ 1\ 0\ 0\ 1\ 0\ 1
1 0
0 0 1 1 0 0 1 1 0 0 0]
from sklearn.linear model import LinearRegression
model = LinearRegression()
model.fit(x_train,y_train)
LinearRegression()
y_pred=model.predict(x test)
y pred
array([ 1.00000000e+00, -4.97054830e-16, -6.47220551e-16,
1.00000000e+00,
                          1.00000000e+00, -1.95589616e-15,
        1.00000000e+00,
1.00000000e+00,
       -1.37999663e-18, 1.00000000e+00, -8.66617878e-16, -
8.40435507e-16,
       -1.76193617e-15, 1.00000000e+00, 1.00000000e+00,
1.01245868e-15,
        1.00000000e+00, 1.00000000e+00,
                                             3.75713393e-16, -
1.78455462e-15,
       -1.69622936e-15, 1.00000000e+00,
                                             1.00000000e+00,
1.00000000e+00,
       -2.60834604e-16, -1.88862559e-15, 2.02798046e-17,
1.00000000e+00,
        1.00000000e+00, 1.00000000e+00, -3.47070483e-16, -
6.78505646e-16,
        1.00000000e+00, -4.21588063e-17, 1.00000000e+00,
1.00000000e+00,
        4.74332550e-16, -1.20128346e-15, -7.33350169e-16,
```

```
1.0000000e+00,
        1.00000000e+00,
                         2.94495138e-16, -5.46090758e-17,
1.00000000e+00,
        1.00000000e+00, 7.55136032e-19, -2.37762753e-15,
2.92319791e-16])
x pred = model.predict(x train)
x pred
array([ 1.00000000e+00, 1.0000000e+00, 1.00000000e+00,
1.00000000e+00.
        1.00000000e+00.
                         4.49703586e-16, 1.00000000e+00,
1.0000000e+00,
        1.00000000e+00.
                         5.88253978e-16, -2.59843846e-15,
1.00000000e+00,
        1.00000000e+00, 5.55504447e-17, 4.26151845e-16, -
3.51334715e-17,
       -2.25336646e-15,
                         1.00000000e+00, 9.80572011e-16,
1.00000000e+00,
        1.00000000e+00,
                         1.00000000e+00, 5.10465261e-16, -
3.02021442e-17,
        1.00000000e+00, 3.05416693e-16, -1.38873860e-16,
1.0000000e+00,
        1.00000000e+00, -1.96951647e-15, 5.89761452e-16, -
1.50126874e-16,
        1.00000000e+00, 1.00000000e+00, 2.23885851e-16,
1.00000000e+00,
        5.01695524e-16, 1.00000000e+00, -7.48002744e-16,
1.00000000e+00,
        1.00000000e+00, 1.00000000e+00, 8.85259593e-16,
1.0000000e+00,
        1.00000000e+00, -1.27842343e-15, -1.24360734e-15, -
1.91854102e-15,
       -1.02909019e-15, 2.05423647e-16, 1.00000000e+00, -
7.41408390e-16,
        1.00000000e+00, -1.75916216e-15, 1.000000000e+00,
1.0000000e+00,
       -3.25391263e-16, 1.00000000e+00, -8.33474944e-16, -
5.61749426e-17,
        1.00000000e+00, 1.00000000e+00, -2.32591704e-15,
1.00000000e+00.
                         1.00000000e+00, -8.50128520e-16,
        1.00000000e+00.
1.0000000e+00,
        1.00000000e+00, 1.00000000e+00, -2.20501818e-15,
6.02422821e-16,
        1.00000000e+00, -1.53667721e-17, -3.35657256e-16,
1.00000000e+00.
        5.80752052e-16, 1.00000000e+00, -1.20731351e-16, -
2.73326446e-15,
       -3.00788325e-17, -2.66034719e-15, -9.66668451e-17,
1.00000000e+00,
```

```
-1.51614133e-16, 1.00000000e+00, 4.84946905e-17,
1.00000000e+00,
        1.00000000e+00, -7.95208044e-16, -1.19989948e-15,
1.00000000e+00,
       -2.22914542e-15, 1.00000000e+00, 1.00000000e+00,
1.00283469e-16,
        1.00000000e+00. -1.12970755e-15. -1.01328580e-15.
1.00000000e+00.
       -3.22995477e-15, -9.29196813e-16, -1.13421161e-15,
1.00000000e+00,
       -1.20535166e-15, 1.00000000e+00, -2.11787335e-15,
1.00000000e+00,
       -2.09939559e-17, -1.62604643e-15, -2.49883869e-16,
1.00000000e+00,
        1.00000000e+00, 1.00000000e+00, 1.00000000e+00,
1.00000000e+00,
        1.00000000e+00, 1.00000000e+00, 1.00000000e+00,
1.00000000e+00,
        2.42985441e-16, -2.49758554e-16, -1.85369294e-15, -
3.76050984e-16.
        1.00000000e+00, -6.49269604e-16, 1.00000000e+00,
1.00000000e+00,
        1.88829884e-16, 1.00000000e+00, 7.03911428e-16,
2.27858972e-16,
        1.00000000e+00, 4.27850202e-16,
                                          1.00000000e+00,
1.00000000e+00,
        1.00000000e+00, 1.0000000e+00,
                                          1.00000000e+00,
1.00000000e+00,
        2.43905983e-16, 1.00000000e+00,
                                          1.00000000e+00,
1.00000000e+001)
y test[:6]
array([1, 0, 0, 1, 1, 1])
model.predict(x test[:6])
array([ 1.00000000e+00, -4.97054830e-16, -6.47220551e-16,
1.00000000e+00,
        1.00000000e+00, 1.0000000e+00])
model.score(x test,y test)
1.0
X train, X test, y train,
y test=train test split(df.drop('Drug',axis=1),df['Drug'],test size=0.
2,stratify=df['Drug'])
#loaistic rearession
model = LogisticRegression()
model.fit(X train,y train)
```

LogisticRegression()

```
print(f"Accuracy score for logistic regression model is
{model.score(X_test,y_test)*100}")
```

Accuracy score for logistic regression model is 82.05128205128204

Plotting the confusion matrix for this model

predict = model.predict(X_test)
cf = confusion_matrix(y_test,predict)
sns.heatmap(cf, cmap='Reds',annot=True)

<AxesSubplot:>

Classification report for Logistic Regression

from sklearn import metrics
print(metrics.classification_report(y_test,predict))

support	f1-score	recall	precision	
17 5 3 3 11	0.86 0.75 0.75 0.00 0.91	0.94 0.60 1.00 0.00 0.91	0.80 1.00 0.60 0.00 0.91	0 1 2 3 4
39 39 39	0.82 0.65 0.79	0.69 0.82	0.66 0.78	accuracy macro avg weighted avg

```
model = RandomForestClassifier()
model.fit(X_train,y_train)
RandomForestClassifier()
print(classification_report(y_test,ypred_dt))
                            recall f1-score
              precision
                                               support
           0
                   1.00
                              1.00
                                        1.00
                                                    17
           1
                   1.00
                              1.00
                                        1.00
                                                     5
           2
                                                     3
                   1.00
                              1.00
                                        1.00
           3
                   1.00
                              1.00
                                        1.00
                                                     3
           4
                                                    11
                   1.00
                              1.00
                                        1.00
                                                    39
                                        1.00
    accuracy
   macro avq
                   1.00
                              1.00
                                        1.00
                                                    39
weighted avg
                   1.00
                              1.00
                                        1.00
                                                    39
print(f"Accuracy score for Random Forest model is
{model.score(X test,y test)*100}")
Accuracy score for Random Forest model is 97.43589743589743
model = DecisionTreeClassifier()
model.fit(X train,y train)
DecisionTreeClassifier()
print(f"Accuracy score for Decision Tree Classifier is
{model.score(X_test,y_test)*100}")
Accuracy score for Decision Tree Classifier is 100.0
scores = {}
from sklearn.model selection import GridSearchCV
grid = {
    'C':[0.01,0.1,1,10],
    'kernel' : ["linear", "poly", "rbf", "sigmoid"],
    'degree' : [1,3,5,7],
    'gamma': [0.01,1]
}
svm = SVC ();
svm_cv = GridSearchCV(svm, grid, cv = 5)
svm_cv.fit(X_train,y_train)
print("Best Parameters:",svm cv.best params )
print("Train Score:",svm_cv.best_score_)
print("Test Score:",svm_cv.score(X_test,y_test))
```

```
Best Parameters: {'C': 10, 'degree': 1, 'gamma': 0.01, 'kernel':
'linear'}
Train Score: 1.0
Test Score: 1.0
from sklearn.linear model import Lasso, LassoCV
lasso cv = LassoCV(alphas = None, cv = 10, max iter = 100000,
normalize = True)
lasso_cv.fit(X_train, y_train)
LassoCV(cv=10, max iter=100000, normalize=True)
# best alpha parameter
alpha = lasso cv.alpha
alpha
0.003243748941942202
lasso = Lasso(alpha = lasso_cv.alpha_)
lasso.fit(X train, y train)
Lasso(alpha=0.003243748941942202)
lasso.score(X train, y train)
0.6299201075742547
lasso.score(X_test, y_test)
0.6409608228247142
from sklearn.model selection import train test split
from sklearn.linear model import *
from sklearn.metrics import r2 score
x_train, x_test, y_train, y_test = train_test_split(x, y,
test size=0.8, random state=1)
rid = Ridge()
rid.fit(x_train,y_train)
Ridge()
x test pred rd = rid.predict(x test)
r2_score(y_test, x_test_pred_rd)
0.9839109320556412
```