L y c é e B I L L E S Bilingual Lycee of Excellence in Sciences Lycée Bilingue d'Excellence pour les Sciences

Mathématiques

Devoir de vacances

Classe de TS2

Décembre 2022

Problème 1 (12 points)

Partie A (3,75 points)

Soit **g** la fonction définie par $\mathbf{g}(\mathbf{x}) = -x^3 + 3x - 6$.

1) Etudier les variations de g puis dresser son tableau de variation.

(1 pt + 0.5 pt)

2) Montrer que l'équation g(x) = 0 admet une solution unique α .

(1 pt)

- 3) Montrer que $\alpha \in]-3;-2[$ puis déterminer une valeur approchée de α à 10^{-1} près. (0,25pt+0,5pt)
- 4) Déterminer le signe de g(x) pour tout x de l'ensemble de définition de g.

(0,5 pt)

Partie B (8,25 points)

Soit f la fonction définie par $f(x) = \frac{-x^3 + 3}{x^2 - 1}$.

1. Etudier la dérivabilité de f.

(0,5 pt)

2. Calculer f'(x) pour tout x de l'ensemble de dérivabilité de f.

Montrer que
$$f'(x) = \frac{x g(x)}{(x^2 - 1)^2}$$
 (0,5 pt+25pt)

3. Etudier le sens de variation de \mathbf{f} puis dresser son tableau de variation.

(0,5 pt + 0,75 pt)

- **4.** Soit (C_f) la courbe représentative de f dans un plan muni du repère orthonormal $(0, \vec{\iota}, \vec{j})$.
- a) Montrer que la droite (D) d'équation y = -x est asymptote à (C_f) .

(0,5 pt)

b) Préciser les autres branches infinies de $(\mathcal{C}_{\mathbf{f}})$.

(0,5 pt)

c) Étudier la position relative de (C_f) par rapport à (D).

(0,75 pt)

d) Construire (\mathcal{C}_{f}).

(1, 5 pt)

- **4.** Soit **h** la restriction de **f** à l'intervalle $]1; +\infty[$.
- a) Montrer que **h** est une bijection de]1; $+\infty[$ sur un intervalle **J** à déterminer.

(0,5 pt)

b) Etudier la dérivabilité de h^{-1} .

(0,75 pt)

c) Calculer h(2) et $(h^{-1})'(\frac{-5}{3})$.

(0,25 pt + 0,5 pt)

d) Construire $(\mathcal{C}_{\mathbf{h}^{-1}})$ la courbe représentative de \mathbf{h}^{-1} dans le plan muni du repère $(\mathbf{0},\vec{\imath},\vec{\jmath})$. (0,5 pt)

Problème 2 (8 points)

Partie 1 (1,5 points)

Soit la fonction g définie par $g(x) = x \ln x + (2 - x) \ln(2 - x)$.

Partie 2 (3,5 points)

Le plan est muni du repère orthonormé $(0, \vec{t}, \vec{j})$. Unité graphique 5 cm.

$$\text{Soit la fonction } f \text{ définie par}: \ f(x) = \begin{cases} \frac{ln(2-x)}{ln\,x} & \text{si } x \in]0\,; 1[\cup]1\,; 2[\\ 0 & \text{si} \quad x = 0\\ -1 & \text{si} \quad x = 1 \end{cases}$$

3) En remarquant que
$$f(x) = -\frac{\ln[1+(1-x)]}{1-x} \cdot \frac{x-1}{\ln x}$$
 pour x élément de $]0;1[U]1;2[$, étudier la continuité de f en f .

4) Etudier la dérivabilité de f en 0. Interpréter graphiquement le résultat. (0,5 pt + 0,5pt)

5) En posant
$$t = x - 1$$
, montrer que $\frac{f(x) + 1}{x - 1} = \frac{\ln(1 - t^2)}{t^2} \cdot \frac{t}{\ln(1 + t)}$ (0,5 pt)

6) Déduire de la question précédente que f est dérivable en f'(1) = -1. (0,5 pt + 0,5pt)

7) Montrer que pour tout
$$x$$
 élément de $]$ 0 ; 1 [\cup] 1 ; 2 [on a : et $f'(x) = \frac{-g(x)}{x(2-x)(\ln x)^2}$ ·(0,5 pt)

8) En déduire le tableau de variation de
$${f f}$$
 . (1 pt)

9) Tracer la courbe de f en mettant en évidence tous les résultats des questions précédentes. (1 pt)