Processor Register

- A processor has many registers to hold instructions, addresses, data, etc.
- The processor has a register, the <u>Program Counter (PC)</u> that holds the memory address of the next instruction to be executed
 - Since the memory in the Basic Computer only has 4096 locations, the PC only needs 12 bits
- In a direct or indirect addressing, the processor needs to keep track of what locations in memory it is addressing: The <u>Address Register (AR)</u> is used for this

The AR is a 12 bit register in the Basic Computer

- ➤ When an operand is found, using either direct or indirect addressing, it is placed in the <u>Data Register (DR)</u>. The processor then uses this value as data for its operation
- ➤ The Basic Computer has a single general purpose register the <u>Accumulator (AC)</u>

Processor Register

➤ The significance of a general purpose register is that it can be referred to in instructions

e.g. load AC with the contents of a specific memory location; store the contents of AC into a specified memory location

- ➢ Often a processor will need a scratch register to store intermediate results
 or other temporary data; in the Basic Computer this is the <u>Temporary</u>
 <u>Register (TR)</u>
- The Basic Computer uses a very simple model of input/output (I/O) operations

Input devices are considered to send 8 bits of character data to the processor The processor can send 8 bits of character data to output devices

- ➤ The <u>Input Register (INPR)</u> holds an 8 bit character gotten from an input device
- ➤ The <u>Output Register (OUTR)</u> holds an 8 bit character to be send to an output device

Processor Register

In basic computer, which of the following register is called as a General Purpose Register?

- a) PC
- b) IR
- c) TR
- d) AC

- > Basic computer: 8 register, a memory unit and a control unit
- ➤ The registers in the Basic Computer are connected using a bus
- ➤ This gives a savings in circuitry over complete connections between registers
- Output of 7 register and memory connected to input of bus
- > Specific output that is selected for bus lines will be determined by selection variables S₂, S₁, S₀

 \triangleright Three control lines, S_2 , S_1 , and S_0 control which register the bus selects as its input

S ₂ S ₁ S ₀	Register
0 0 0	Х
0 0 1	AR
0 1 0	PC
0 1 1	DR
1 0 0	AC
1 0 1	IR
1 1 0	TR
1 1 1	Memory

Either one of the registers will have its load signal activated, or the memory will have its write signal activated

Will determine where the data from the bus gets loaded

➤ Memory places its 16 bit output on bus when read input is activated and S₂S₁S₀=111

- → 4 register DR, AC, IR, TR is 16 bit. The 12-bit registers, AR and PC, have 0's loaded onto the bus in the high order 4 bit positions
- ➤ When the 8-bit register OUTR is loaded from the bus, the data comes from the low order 8 bits on the bus
- INPR connected to provide information to bus
 - receives character from input device and transfer to AC
- OUTR can only receive information from bus
 - receives a character from AC and delivers to Output device
- Three types of input to AC :
 - from AC : complement AC, Shift AC
 - from DR: arithmetic and logic microoperation
 - > from INPR

> Bus lines connected to inputs of 6 registers and memory

Input/output data connected to common bus but memory address connected to AR

- What is the size of memory in basic computer?
- a) 4096 x 12
- b) 4096 x 12
- c) 4095 x 16
- d) 4096 x 16

CSE211

Computer Organization and Design

- * Computer Instructions
- Timing and Control
- * Instruction Cycles
- * Memory Reference Instructions
- * Input Output and Interrupts
- Complete Computer Description

Overview

- ➤ Instruction Codes
- Computer Registers
- > Computer Instructions
- Timing and Control
- > Instruction Cycle
- **➤ Memory Reference Instructions**
- ➤ Input-Output and Interrupt
- > Complete Computer Description

Basic Computer Instructions

Basic Computer Instruction Format

1. Memory-Reference Instructions (OP-code = 000 ~ 110)

I=0 : Direct, 15 14 12 11 0

I=1 : Indirect I Opcode Address

2. Register-Reference Instructions (OP-code = 111, I = 0)

3. Input-Output Instructions (OP-code =111, I = 1)

 In basic computer, which of the following flip flops is used to hold the addressing mode information?

- a) E
- b) I
- c) A
- d) T