贝叶斯分类器 张俊超

中南大学航空航天学院

中南大学航空航天学院

本章主要内容:

主要讨论有监督的分类问题

- ◆最小错误率贝叶斯决策
- ◆最小风险贝叶斯决策
- ◆正态分布概率模型下的最小错误贝叶斯决策
- ◆概率密度函数的估计

通常情况下,<u>类条件密度是从大量实践中得来</u>,它是一种 经验数据的总结。针对实际问题,<u>我们更关注的是后验概</u> 率。如何求解后验概率呢?

2019-nCoV

症状

- ▶患病(结果)→症状(条件)的概率: P(B|A)
 - 3)

后验概率

类条件密度

▶ 症状(条件)→患病(结果)的概率: P(A|B)

中南大学航空航天学院

贝叶斯公式:

类条件密度

先验概率

$$P(A | B) = \frac{P(A,B)}{P(B)} = \frac{P(B | A)P(A)}{P(B)}$$

模式识别

中南大学航空航天学院

如果在路上我们看到一个人的背影,发现ta有长头发,那么ta是男士还是女士呢?

Who?

P(男士|长发)和P(女士|长发)

求P(男士|长发)和P(女士|长发):

假设:

▶P(长发|男士)=0.05, P(长发|女士)=0.7

▶P(男士)=P(女士)=0.5

则:

P(女士|长发)>P(男士|长发), ta是女士

$$P(男士|长发) = \frac{P(长发|男士)*P(男士)}{P(长发|男士)*P(男士)+P(长发|女士)*P(女士)} = 0.067$$

$$P(\pm \pm | + \pm \pm) = \frac{P(\pm \pm \pm) * P(\pm \pm)}{P(\pm \pm \pm) * P(\pm \pm) + P(\pm \pm) * P(\pm \pm)} = 0.933$$

先验概率变化了

假设:

▶P(长发|男士)=0.05, P(长发|女士)=0.7

►P(男士)=0.8, P(女士)=0.2

则:

$$P(男士|长发) = \frac{P(长发|男士)*P(男士)}{P(长发|男士)*P(男士)+P(长发|女士)*P(女士)} = 0.22$$

$$P(\pm \pm | + \pm \pm) = \frac{P(\pm \pm \pm) * P(\pm \pm)}{P(\pm \pm \pm) * P(\pm \pm) + P(\pm \pm) * P(\pm \pm)} = 0.78$$

• 最大后验概率(最小错误率)的贝叶斯分类器

决策规则:
$$\overline{z}P(\omega_i|\mathbf{x}) = \max_{j=1,2,\dots,c} P(\omega_j|\mathbf{x}), 则\mathbf{x} \in \omega_i$$

最大后验概率决策会存在误分类吗?

$$P(\omega_i \mid \mathbf{x}) = \frac{P(\mathbf{x} \mid \omega_i) P(\omega_i)}{P(\mathbf{x})}$$

模式识别

中南大学航空航天学院

- ▶误分类
- ▶错误率:
- ▶正确率:

$$P(c)=1-P(e)$$

$$P(e) = P(x \neq \Omega_2 + |\omega_1) + P(x \neq \Omega_1 + |\omega_2)$$

$$= \int_{\Omega_2} P(\omega_1) p(x | \omega_1) dx + \int_{\Omega_1} P(\omega_2) p(x | \omega_2) dx$$

$$= P(\omega_1) \int_{\Omega_2} p(x | \omega_1) dx + P(\omega_2) \int_{\Omega_1} p(x | \omega_2) dx$$

$$= P(\omega_1) P_1(e) + P(\omega_2) P_2(e)$$

ω类样本决策为 ω2类的错误率

为什么最大后验概率决策就是最小错误率决策呢?

$$P(e) = \int_{\Omega_2} P(\omega_1) p(\mathbf{x} \mid \omega_1) d\mathbf{x} + \int_{\Omega_1} P(\omega_2) p(\mathbf{x} \mid \omega_2) d\mathbf{x}$$

最小错误率贝叶斯分类器的分类边界是什么样的呢?

决策边界为: $P(\omega_i | \mathbf{x}) = P(\omega_j | \mathbf{x})$

最小错误率贝叶斯分类器的分类边界一定是线性的吗?

分类决策边界不一定是线性的,也不一定是连续的。

如何训练最小错误率贝叶斯分类器, 使其实现分类呢?

若
$$P(\omega_i | \mathbf{x}) = \max_{j=1,2,...,c} P(\mathbf{x} | \omega_j) P(\omega_j)$$
,则 $\mathbf{x} \in \omega_i$

- 》根据已知样本估计类条件密 度和先验概率(书中第3章的 内容)
- ▶计算待测样本的后验概率
- ▶根据最大后验概率决策,进 行分类

举例: [数据真实性不具参考意义, 纯为说明问题]

2019年底,新型冠状病毒(2019-nCoV)的发病率为两万分之一,普通流感的发病率可高达30%。易感人群中99%的人感染2019-nCoV病例曾出现过发热、咳嗽等急性呼吸道感染症状,而同样的易感人群中80%的普通流感患者也出现过同样症状。

Q: 现有一位患者属于易感人群,并出现了发热、咳嗽等急性呼吸道感染症状,请问是否应当按照人2019-nCoV疑似病例对待?

$$P(2019 - nCoV) = \frac{0.00005}{0.00005 + 0.3} = 0.00017$$

$$P(普通流感) = 0.99983$$

$$P(症状|2019-nCoV)=0.99$$

P(症状|普通流感)=0.8

这样做, 合理吗?如果把2019-nCoV误诊为普通流感, 后果会怎样?

$$P(2019 - nCoV | \text{fix}) = \frac{0.55 - 0.00017}{0.99*0.00017 + 0.8*0.99983} = 0.0002$$

P(普通流感|症状)=0.9998

按照最大后验概率决策的话,该患者不应当按照 2019-nCoV疑似病例对待。

- •如果把普通流感误诊为2019-nCoV,后果会怎样?
- •如果把2019-nCoV误诊为普通流感,后果会怎样?

社会风险哪个更大?

- > 仅仅考虑最小错误率是不够的
- ▶ 还应当把所采取的分类决策所带来的后果考虑进去

最小风险贝叶斯分类器

概念:

- 决策: $\alpha_1, \alpha_2, ..., \alpha_k$ α_i : 把待识别样本归到 α_i
- 损失函数:实际状态为 ω_i ,采取 α_i 决策

$$\lambda(\alpha_i, \omega_j), i = 1, 2, ..., k, \quad j = 1, 2, ..., c$$

损失函数通常以表格的形式给出(决策表)

表 2-2-1					75	
提 失 失 策	ω1	ω_2	***	ω_{j}		ω,,,
α_1	$\lambda(\alpha_1,\omega_1)$	$\lambda(\alpha_1,\omega_2)$		$\lambda(\alpha_1,\omega_j)$		$\lambda(\alpha_1,\omega_m)$
a ₂	$\lambda(\alpha_2,\omega_1)$	$\lambda(\alpha_2,\omega_2)$		$\lambda(\alpha_2,\omega_j)$		$\lambda(\alpha_2,\omega_m)$
:	17	:		:	•	:
α_i	$\lambda(\alpha_i,\omega_1)$	$\lambda(\alpha_i,\omega_2)$	***	$\lambda(\alpha_i,\omega_j)$		$\lambda(\alpha_i,\omega_m)$
:	:	:		1 - 1		:
a_a	$\lambda(\alpha_a,\omega_1)$	$\lambda(\alpha_a,\omega_2)$		$\lambda(\alpha_a,\omega_j)$		$\lambda(\alpha_a,\omega_m)$

 \triangleright 采取决策 α_i 的期望损失为:

$$R(\alpha_i \mid \mathbf{x}) = \sum_{j=1}^{c} \lambda(\alpha_i, \omega_j) P(\omega_j \mid \mathbf{x}), i = 1, 2, ..., k$$

▶最小风险贝叶斯决策:

若
$$R(\alpha_i | \mathbf{x}) = \min_{j=1,2,...,k} R(\alpha_j | \mathbf{x}), \quad 则\alpha = \alpha_i$$

>针对二分类的情况:

$$\begin{cases} \lambda_{11} P(\omega_{1} \mid \mathbf{x}) + \lambda_{12} P(\omega_{2} \mid \mathbf{x}) < \lambda_{21} P(\omega_{1} \mid \mathbf{x}) + \lambda_{22} P(\omega_{2} \mid \mathbf{x}), \mathbf{x} \in \omega_{1} \\ \lambda_{11} P(\omega_{1} \mid \mathbf{x}) + \lambda_{12} P(\omega_{2} \mid \mathbf{x}) > \lambda_{21} P(\omega_{1} \mid \mathbf{x}) + \lambda_{22} P(\omega_{2} \mid \mathbf{x}), \mathbf{x} \in \omega_{2} \end{cases}$$

$$\not \perp + , \quad \lambda_{ij} = \lambda(\alpha_{i}, \omega_{j})$$

二分类问题: 当 $\lambda_{11} = \lambda_{22} = 0$, $\lambda_{12} = \lambda_{21} = 1$ 时

$$\begin{cases} \lambda_{11} P(\omega_{1} \mid \mathbf{x}) + \lambda_{12} P(\omega_{2} \mid \mathbf{x}) < \lambda_{21} P(\omega_{1} \mid \mathbf{x}) + \lambda_{22} P(\omega_{2} \mid \mathbf{x}), \mathbf{x} \in \omega_{1} \\ \lambda_{11} P(\omega_{1} \mid \mathbf{x}) + \lambda_{12} P(\omega_{2} \mid \mathbf{x}) > \lambda_{21} P(\omega_{1} \mid \mathbf{x}) + \lambda_{22} P(\omega_{2} \mid \mathbf{x}), \mathbf{x} \in \omega_{2} \end{cases}$$

其中, $\lambda_{ij} = \lambda(\alpha_i, \omega_j)$

0-1决策表

$$\begin{cases}
P(\omega_2 \mid \mathbf{x}) < P(\omega_1 \mid \mathbf{x}), \mathbf{x} \in \omega_1 \\
P(\omega_2 \mid \mathbf{x}) > P(\omega_1 \mid \mathbf{x}), \mathbf{x} \in \omega_2
\end{cases}$$

最小风险贝叶斯决策→最大后验概率决策

小	状态		
决策	2019-nCoV	普通流感	
2019-nCoV	0	1	
普通流感	10000	0	

$$P(2019-nCoV|症状)=0.0002$$

P(普通流感|症状)=0.9998

$$R(2019-nCoV|症状)=0*P(2019-nCoV|症状)+1*P(普通流感|症状)$$
=0.9998

$$R$$
(普通流感|症状)=10000* P (2019- $nCoV$ |症状)+0* P (普通流感|症状)=2

按照最小风险贝叶斯决策的话,该患者应当按照2019-nCoV疑似病例对待。

• 小结

- ▶贝叶斯分类器
 - 1. 最小错误率决策(错误率最小化)
 - 2. 最小风险决策(风险最小化)
- ▶ 最小风险决策需要事先指定决策表,决策表不同分类结果也不同。
- > 需要事先知道(估计)类条件密度和先验概率。

先验概率:可以从大量重复实验或数据统计中得到 类条件密度估计:估计各个特征维度的联合概率分布。若 不独立,很难估计。一般假设各个特征维度相互独立,进 而估计联合概率分布,这就是"朴素贝叶斯分类器"。

- 真阳性(True Positive Rate): 阳性样本被预测正确的比例
- 假阳性(False Positive Rate): 阴性样本被预测错误的比例

真实值	预测值		
	阳性	阴性	
阳性	TP	FN	
阴性	FP	TN	

$$TPR = \frac{TP}{TP + FN}$$
 $FPR = \frac{FP}{FP + TN}$

AUC(area under ROC curves): 越接近1, 性能越好

举例:

样本类别: P(positive)和N(Negative)

样本	预测属于P的概率	真实类别
1	0.1	N
2	0.35	P
3	0.4	N
4	0.8	P

• 截断点为0.1(概率>=0.1, 就判别为P类)

样本	预测属于P的概率	真实类别
1	0.1	N
2	0.35	P
3	0.4	N
4	0.8	P

真实值	预测值		
	阳性	阴性	
阳性	TP=2	FN=0	
阴性	FP=2	TN=0	

$$TPR = \frac{TP}{TP + FN} = 1$$

$$FPR = \frac{FP}{FP + TN} = 1$$

• 截断点为0.35(概率>=0.35, 就判别为P类)

样本	预测属于P的概率	真实类别
1	0.1	N
2	0.35	P
3	0.4	N
4	0.8	P

去点什	预测值			
真实值	阳性	阴性	7	
阳性	TP=2	FN=0		
阴性	FP=1	TN =1		

$$TPR = \frac{TP}{TP + FN} = 1$$

$$FPR = \frac{FP}{FP + TN} = 0.5$$

• 截断点为0.4(概率>=0.4, 就判别为P类)

样本	预测属于P的概率	真实类别
1	0.1	N
2	0.35	P
3	0.4	N
4	0.8	P

真实值	预测值		
	阳性	阴性	
阳性	TP=1	FN=1	
阴性	FP=1	TN=1	

$$TPR = \frac{TP}{TP + FN} = 0.5$$
$$FPR = \frac{FP}{FP + TN} = 0.5$$

• 截断点为0.8(概率>=0.8, 就判别为P类)

样本	预测属于P的概率	真实类别
1	0.1	N
2	0.35	P
3	0.4	N
4	0.8	P

真实值	预测值		
	阳性	阴性	
阳性	TP=1	FN=1	
阴性	FP=0	TN=2	

$$TPR = \frac{TP}{TP + FN} = 0.5$$

$$FPR = \frac{FP}{FP + TN} = 0$$

• 截断点为0.9(概率>=0.9, 就判别为P类)

样本	预测属于P的概率	真实类别
1	0.1	N
2	0.35	P
3	0.4	N
4	0.8	P

古心法	预测值		
真实值	阳性	阴性	
阳性	TP=0	FN=2	
阴性	FP=0	TN=2	

$$TPR = \frac{TP}{TP + FN} = 0$$

$$FPR = \frac{FP}{FP + TN} = 0$$

TPR	0	0.5	0.5	1	1
FPR	0	0	0.5	0.5	1

统计决策方法-作业

1 已知两个一维模式类别的类概率密度函数为

$$p(x \mid \omega_1) = \begin{cases} x, & 0 \le x < 1 \\ 2 - x, & 1 \le x \le 2 \\ 0, & else \end{cases}$$
$$p(x \mid \omega_2) = \begin{cases} x - 1, & 1 \le x < 2 \\ 3 - x, & 2 \le x \le 3 \\ 0, & else \end{cases}$$

先验概率分别为 $p(\omega_1)=0.4$, $p(\omega_2)=0.6$ 。 试求最大后验概率判决函数以及总的分类错误概率 P(e)。

统计决策方法-作业

2 在图像识别中,假定有灌木丛和坦克两种类型,它们的先验概率分别是 0.8 和 0.2,损

失函数如下表所示,其中 ω_1 和 ω_2 分别表示灌木丛和坦克, α_1 和 α_2 表示判决为灌木丛和坦

克, α_3 表示拒绝判决。

	$\omega_{_{1}}$	ω_2
$lpha_{_1}$	0. 5	6
α_2	2	1
$\alpha_{_3}$	1. 5	1.5

现在做了三次实验,从类概率密度函数曲线上查得三个样本 X_1, X_2, X_3 的类概率密度值如

下:

$$X_1: p(X_1 \mid \omega_1) = 0.1, p(X_1 \mid \omega_2) = 0.7$$

$$X_2: p(X_2 \mid \omega_1) = 0.3, p(X_2 \mid \omega_2) = 0.45$$

$$X_3: p(X_3 \mid \omega_1) = 0.6, p(X_3 \mid \omega_2) = 0.5$$

统计决策方法-作业

- (1) 试用贝叶斯最小误判概率准则判决三个样本各属于哪一个类型。
- (2) 假定只考虑前两种判决,试用贝叶斯最小风险判决准则判决三个样本各属于哪一个类
- (3) 把拒绝判决考虑在内,重新考核三次实验的结果。

