Contents

Cla	asses	
1.1	poly.n	nultiutil – 多変数多項式に対するユーティリティ
	1.1.1	RingPolynomial
		1.1.1.1 getRing
		1.1.1.2 getCoefficientRing
		1.1.1.3 leading_variable
		1.1.1.4 nest
		1.1.1.5 unnest
	1.1.2	DomainPolynomial
		1.1.2.1 pseudo_divmod
		1.1.2.2 pseudo_floordiv
		1.1.2.3 pseudo_mod
		1.1.2.4 exact_division
	1.1.3	UniqueFactorizationDomainPolynomial
		1.1.3.1 gcd
		1.1.3.2 resultant
	1.1.4	polynomial - さまざまな多項式に対するファクトリ関数
	1.1.5	prepare indeterminates — 不定元連立宣言

Chapter 1

Classes

- 1.1 poly.multiutil 多変数多項式に対するユーティ リティ
 - Classes
 - RingPolynomial
 - DomainPolynomial
 - $\ Unique Factorization Domain Polynomial$
 - OrderProvider
 - NestProvider
 - PseudoDivisionProvider
 - GcdProvider
 - RingElementProvider
 - Functions
 - polynomial

1.1.1 RingPolynomial

可換環係数を持つ一般の多項式.

Initialize (Constructor)

```
egin{align*} 	ext{RingPolynomial} (	ext{coefficients: } terminit, ** \texttt{keywords: } dict) \ &
ightarrow RingPolynomial \end{aligned}
```

keywords は以下を含まなければならない:

coeffring 可換環 (CommutativeRing)

number of variables 変数の数 (integer)

order 項順序 (Term Order)

このクラスはBasicPolynomial, OrderProvider, NestProvider and RingElementProvider を継承する.

Attributes

order:

項順序.

Methods

1.1.1.1 getRing

 $\operatorname{getRing}(\operatorname{ ext{self}}) o extit{Ring}$

多項式が所属する Ring のサブクラスのオブジェクトを返す. (このメソッドは RingElementProvider 内の定義をオーバーライドする)

1.1.1.2 getCoefficientRing

 $\operatorname{getCoefficientRing}(\operatorname{self}) o \mathit{Ring}$

すべての係数が所属する Ring のサブクラスのオブジェクトを返す. (このメソッドは RingElementProvider 内の定義をオーバーライドする)

1.1.1.3 leading variable

 $leading variable(self) \rightarrow integer$

主変数 (全ての全次数が 1 の項の中での主項) の位置を返す. 主項は結果として項順序に変化する. 項順序は属性 order によって指定される. (このメソッドは NestProvider から継承される)

1.1.1.4 nest

 $nest(self, outer: integer, coeffring: CommutativeRing) \rightarrow polynomial$

与えられた位置の変数 outer を引き出すことにより多項式をネスト. (このメソッドは NestProvider から継承される)

1.1.1.5 unnest

 $ext{nest(self, q: polynomial, outer: integer, coeffring: } CommutativeRing)} \ o polynomial$

与えられた位置の変数 outer を挿入することによりネストされた多項式 q をアンネストします.

(このメソッドは NestProvider から継承されます)

1.1.2 DomainPolynomial

整域の係数を持つ多項式.

Initialize (Constructor)

```
 \begin{aligned} \mathbf{DomainPolynomial}(\texttt{coefficients:} \ terminit, \ \texttt{**keywords:} \ dict) \\ &\rightarrow \mathbf{DomainPolynomial} \end{aligned}
```

keywords は以下を含まなければならない:

coeffring 可換環 (CommutativeRing)

number_of_variables 変数の数 (integer)

order 項順序 (Term Order)

このクラスは RingPolynomial と PseudoDivisionProvider を継承する.

Operations

operator	explanation
f / g	除算 (結果は有理関数)

Methods

1.1.2.1 pseudo divmod

 $pseudo divmod(self, other: polynomial) \rightarrow polynomial$

以下となる多項式 Q,R を返す:

$$d^{deg(self)-deg(other)+1}self = other \times Q + R$$

固定値として other の主係数である d.

結果として主係数は項の係数に変わる. 項順序は属性 order によって指定される.

(このメソッドは PseudoDivisionProvider から継承される.)

1.1.2.2 pseudo floordiv

pseudo floordiv(self, other: polynomial) o polynomial

以下となる多項式 Q を返す:

$$d^{deg(self)-deg(other)+1}self = other \times Q + R$$

固定値として other の主係数 d と 多項式 R.

結果として主係数は項順序に変わる. 項順序は属性 order によって指定される.

(このメソッドは Pseudo Division Provider から継承される.)

1.1.2.3 pseudo mod

 $pseudo_mod(self, other: polynomial) o polynomial$ 以下となる多項式 R を返す:

$$d^{deg(self)-deg(other)+1} \times self = other \times Q + R$$

d は other の主係数で Q は多項式.

結果として主係数は項の位数に変わる. 項順序は属性 order によって指定される.

(このメソッドは Pseudo Division Provider から継承される.)

1.1.2.4 exact division

 $ext{exact division(self, other: } polynomial)
ightarrow polynomial$

(割り切れるときのみ) 除算で商を返す. (このメソッドは PseudoDivisionProvider から継承される.)

1.1.3 UniqueFactorizationDomainPolynomial

一意分解聖域 (UFD) 係数を持つ多項式.

Initialize (Constructor)

 $\begin{array}{ll} \textbf{UniqueFactorizationDomainPolynomial(coefficients:} & \textit{terminit}, \\ **keywords: \textit{dict}) \\ & \rightarrow \textit{UniqueFactorizationDomainPolynomial} \end{array}$

keywords は以下を含まなければならない:

coeffring 可換環 (CommutativeRing)

number_of_variables 変数の数 (integer)

order 項順序 (Term Order)

このクラスは DomainPolynomial と GcdProvider を継承する.

Methods

1.1.3.1 gcd

gcd(self, other: *polynomial*) → *polynomial* gcd を返す. ネストされた多項式の gcd が使われる. (このメソッドは GcdProvider から継承される.)

1.1.3.2 resultant

 $resultant(self, other: polynomial, var: integer) \rightarrow polynomial$

その位置 var によって指定された変数についての、同じ環上の二つの多項式の終結式を返す。

1.1.4 polynomial – さまざまな多項式に対するファクトリ関数

polynomial(coefficients: terminit, coeffring: CommutativeRing, number_of_variables: integer=None)

 \rightarrow polynomial

多項式を返す

†関数が呼ばれる前に次の設定をすることにより、係数環から多項式の型を選ぶ方法をオーバーライドできる:

special_ring_table[coeffring_type] = polynomial_type

1.1.5 prepare indeterminates – 不定元連立宣言

 $\rightarrow None$

不定元な names によって分けられた空間から, 不定元を表す変数を用意する. 結果は辞書 ctx に格納される.

変数はすぐに用意されるべきである。さもなくば間違った変数のエイリアスが 計算を遅くし混乱させるだろう。

もし任意引数の coeffring が与えられなければ、不定元は整数係数多項式として初期化される.

Examples

>>> prepare_indeterminates("X Y Z", globals())
>>> Y
UniqueFactorizationDomainPolynomial({(0, 1, 0): 1})

Bibliography