Particle spectrograph

Wave operator and propagator

$\sigma_{1}^{\#1}{}_{\alphaeta}$	$\sigma_{1}^{\#2}$	$\tau_{1}^{\#1}{}_{\alpha\beta}$	$\sigma_{1^-}^{\#1}{}_{lpha}$	$\sigma_{1^-}^{\#2}{}_{lpha}$	$\mathfrak{r}_{1^{-}\alpha}^{\#1}$	$ au_1^{\#2}$
$\frac{1}{k^2 r_5}$	$-\frac{\sqrt{2}}{k^2 r_5 + k^4 r_5}$	$-\frac{i\sqrt{2}}{kr_5+k^3r_5}$	0	0	0	0
$\frac{\sqrt{2}}{k^2 r_5 + k^4 r_5}$	$\frac{3k^2 r_5 + 2t_2}{(k+k^3)^2 r_5 t_2}$	$\frac{i(3k^2r_5+2t_2)}{k(1+k^2)^2r_5t_2}$	0	0	0	0
$\frac{i\sqrt{2}}{kr_5+k^3r_5}$	$-\frac{i(3k^2r_5+2t_2)}{k(1+k^2)^2r_5t_2}$	$\frac{3k^2r_5+2t_2}{(1+k^2)^2r_5t_2}$	0	0	0	0
0	0	0	$\frac{1}{k^2 r_5}$	$\frac{\sqrt{2}}{k^2 r_5 + 2 k^4 r_5}$	0	$\frac{2i}{kr_5+2k^3r_5}$
0	0	0	$\frac{\sqrt{2}}{k^2 r_5 + 2 k^4 r_5}$	$\frac{3k^2r_5+2t_3}{(k+2k^3)^2r_5t_3}$	0	$\frac{i\sqrt{2}(3k^2r_5+2t_3)}{k(1+2k^2)^2r_5t_3}$
0	0	0	0	0	0	0
0	0	0	$-\frac{2i}{kr_5+2k^3r_5}$	$-\frac{i\sqrt{2}(3k^2r_5+2t_3)}{k(1+2k^2)^2r_5t_3}$	0	$\frac{6 k^2 r_5 + 4 t_3}{(1 + 2 k^2)^2 r_5 t_3}$

				,e	k t 3				$O_2^+ \alpha \beta V_2^+ \alpha \beta O_2^{} \alpha \beta$
$f_{1^-}^{\#2}$	0	0	0	$-\frac{2}{3}$ ikt ₃	$\frac{1}{3}\bar{l}\sqrt{2}kt_3$	0	$\frac{2k^2t_3}{3}$	#1	$O_2^{-+}\alpha \beta$
$f_{1^-}^{\#1} \alpha$	0	0	0	0	0	0	0		
$\omega_{1^{-}}^{\#2}{}_{\alpha}$	0	0	0	$-\frac{\sqrt{2}t_3}{3}$	ل عَ ع	0	$-\frac{1}{3}\bar{l}\sqrt{2}kt_3$		$\omega_{2}^{\#1}$
$\omega_{1^{-}}^{\#1}{}_{\alpha}$	0	0	0	$k^2 r_5 + \frac{2t_3}{3}$	$-\frac{\sqrt{2}t_3}{3}$	0	2 i k t 3 3	U	$f_{2}^{#1}$ $v_{2}^{#1}$
$f_1^{\#1}$	$\frac{1}{3}\bar{l}\sqrt{2}kt_2$	<u>i kt2</u> 3	$\frac{k^2 t_2}{3}$	0	0	0	0		generators
$\omega_{1}^{\#2}_{\alpha\beta}$	$\frac{\sqrt{2} t_2}{3}$	[2]	$\left -\frac{1}{3} \tilde{l} k t_2 \right $	0	0	0	0		gange (
$\omega_1^{\#1}_{+}{}_{\alpha\beta}$		$\frac{\sqrt{2}t_2}{3}$	$-\frac{1}{3}\bar{l}\sqrt{2}kt_{s}$	0	0	0	0		ource constraints/gauge generators
	$_{1}^{#1}$ $+^{\alpha\beta}$	$_{1}^{\#2} + ^{\alpha\beta}$	$_{1}^{\#1}+^{\alpha\beta}$	$o_{1}^{\#1} +^{lpha}$	$o_1^{\#^2} +^{\alpha}$	$f_{1}^{\#1} \dagger^{\alpha}$	$f_{1}^{\#2} +^{\alpha}$		ource

-							
$\tau_{2}^{\#1}_{+}\alpha\beta$	0	0	0				
$\sigma_{2}^{\#1}{}_{lphaeta}$	0	0	0				
'	$^{1}_{+}$ †	$^{1}_{+}$ †	$+^{\alpha\beta\chi}$	•			
	Q_2^*				7	41	
			αβ	$f_{2}^{\#}$	[‡] αβ	$\omega_2^{\#_1}{}_{\alpha\beta\chi}$	
				(0	0	
$f_{2}^{\#}$	‡† ^{αβ}	0		(0	0	
$\omega_2^{\sharp 1}$	$\dagger^{\alpha\beta\chi}$	0		(0	0	
	$f_2^{\#}$	$\omega_{2^{+}}^{\sharp 1} \uparrow^{\alpha\beta}$ $f_{2^{+}}^{\sharp 1} \uparrow^{\alpha\beta}$	$\omega_{2+}^{\#1} + \alpha\beta \qquad 0$ $f_{2+}^{\#1} + \alpha\beta \qquad 0$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

 $t_1^{\#2}\alpha + 2ik \sigma_1^{\#2}\alpha = 0$

 $_{0}^{\#1} - 2 i k \sigma_{0}^{\#1} = 0$

 $r_{1}^{\#1}\alpha\beta + ik \sigma_{1}^{\#2}\alpha\beta$

 $\sigma_{2}^{\#1}\alpha\beta\chi$ == 0

 $\tau_2^{\#1}\alpha\beta == 0$

 $\sigma_{2}^{\#1}{}^{\alpha\beta}==0$

0

0

Multiplicities

SO(3) irreps

0

	-	$\omega_{0}^{\#1} + \zeta_{0}^{\#1}$	$f_0^{\mp} T$ $f_0^{\#2} +$	$\omega_{0}^{\#1} \uparrow$	_
	$\sigma_{0}^{\#1}$	0	0	0	$\frac{1}{k^2 r_2 + t_2}$
	$\tau_0^{\#2}$	0	0	0	0
its: 26	${\mathfrak r}_0^{\#1}$	$-\frac{i\sqrt{2}k}{(1+2k^2)^2t_3}$	$\frac{2k^2}{(1+2k^2)^2t_3}$	0	0
Total constraints:	$\sigma_{0}^{\#1}$	$\frac{1}{(1+2k^2)^2t_3}$	$\frac{i\sqrt{2}k}{(1+2k^2)^2t_3}$	0	0
Tota		# ₁ +	#1 + 0+	#2 + 0++	# ₁ +

0

 $\sqrt{2} kt_3$

0

-i√2 kt3

 $\omega_{0}^{\#1}$

? Massive particle Pole residue:
$$-\frac{1}{r_2} > 0$$
 Polarisations: 1
Square mass: $-\frac{t_2}{r_2} > 0$
? Spin: 0
Parity: Odd

Unitarity conditions

 $r_2 < 0 \&\& t_2 > 0$