1장. 튜링머신과 지능형기계의 탄생

세상에서 가장 가치 있는 브랜드는 ?

The World's Most Valuable Brands 2023

Brand Values in Billions \$

source: © Brand Finance Plc 2023

Everybody in this country should learn to program a computer, because it teaches you how to think

- Steve Jobs -

200년의 축적

1장. 튜링머신과 지능형기계의 탄생

찰스 바베지 1791-1871

Difference Engine (차분엔진) 1822

Analytical Engine (해석엔진) 1837

최초의 컴퓨터 알고리즘

- 에이다 러브레이스(Ada Lovelace)
 - 1843년 베르누이 수를 계산하기 위해 제작

에이다 러브레이스 1815-1852

100년 후

● 최초의 기계식 아날로그 컴퓨터

미분해석기 (Differential Analyzer) Vannevar Bush 1931

Hilbert's Program

- 1928년 David Hilbert의 결정문제
 - 1. Was the set of mathematical rules complete?
 - 2. Was it consistent?
 - 3. Was it decidable? (Decision Problem)

David Hilbert 1862-1943

Hilbert's Program에 대한 반박

Kurt Gödel 1906-1978

Gödel's Incompleteness Theorem (1931)

- 1. No (Liar's Paradox)
- 2. No

Alan Turing 1912-1954

3. No

The Halting

Problem is not

solvable (1936)

출처: http://www.felienne.com/archives/2974

Turing Machine (1/10)

테이프에 기록되는 유한개의 심볼들: \$, *

Current State	Symbol to Read	Symbol to Write	Shift	Next State
А	*	*	>	А
А	\$	\$	>	В
В	*	*	<	С
С	\$	*	>	С
С	*	\$	>	В

테이프

기계의 작동 규칙표

Turing Machine (2/10)

Current State	Symbol to Read	Symbol to Write	Shift	Next State
А	*	*	>	A
А	\$	\$	>	В
В	*	*	<	С
С	\$	*	>	С
С	*	\$	>	В

Turing Machine (3/10)

Current State	Symbol to Read	Symbol to Write	Shift	Next State
А	*	*	>	A
А	\$	\$	>	В
В	*	*	<	С
С	\$	*	>	С
С	*	\$	>	В

Turing Machine (4/10)

Current State	Symbol to Read	Symbol to Write	Shift	Next State
А	*	*	>	A
А	\$	\$	>	В
В	*	*	<	С
С	\$	*	>	С
С	*	\$	>	В

Turing Machine (5/10)

Current State	Symbol to Read	Symbol to Write	Shift	Next State
А	*	*	>	A
А	\$	\$	>	В
В	*	*	<	С
С	\$	*	>	С
С	*	\$	>	В

Turing Machine (6/10)

Current State	Symbol to Read	Symbol to Write	Shift	Next State
А	*	*	>	A
А	\$	\$	>	В
В	*	*	<	С
С	\$	*	>	С
С	*	\$	>	В

Turing Machine (7/10)

Current State	Symbol to Read	Symbol to Write	Shift	Next State
А	*	*	>	A
А	\$	\$	>	В
В	*	*	<	С
С	\$	*	>	С
С	*	\$	>	В

Turing Machine (8/10)

Current State	Symbol to Read	Symbol to Write	Shift	Next State
А	*	*	>	A
А	\$	\$	>	В
В	*	*	<	С
С	\$	*	>	С
С	*	\$	>	В

Turing Machine (9/10)

Current State	Symbol to Read	Symbol to Write	Shift	Next State
А	*	*	>	А
А	\$	\$	>	В
В	*	*	<	С
С	\$	*	>	С
С	*	\$	>	В

Turing Machine (10/10)

Current State	Symbol to Read	Symbol to Write	Shift	Next State
А	*	*	>	А
А	\$	\$	>	В
В	*	*	<	С
С	\$	*	>	С
С	*	\$	>	В

Universal Turing Machine (1/4)

- 테이프 I
 - 튜링머신의 테이프와 읽고 쓰는 장치를 표현

Universal Turing Machine (2/4)

● 테이프 II: 튜링머신의 현재 상태 심볼 표현

Universal Turing Machine (3/4)

● 테이프 III : 튜링머신의 규칙표 담기

Universal Turing Machine (4/4)

3개의 테이프를 하나로 합쳐서 유니버설 튜링머신이 만들어짐

도구의 실현

부울대수 (1/3)

George Boole 1815-1864

An Investigation of the Laws of Thought (1854)

Truth Table

x	У	and	or
T	T	Т	Т
T	F	F	Т
F	T	F	Т
F	F	F	F

x	not
Т	F
F	Т

부울대수 (2/3)

- 부울법칙(Boolean Laws)
 - Commutative law(교환법칙)

```
A \text{ or } B = B \text{ or } A A \text{ and } B = B \text{ and } A
```

Associative law(결합법칙)

```
A or (B \text{ or } C) = (A \text{ or } B) \text{ or } C
A and (B \text{ and } C) = (A \text{ and } B) \text{ and } C
```

• Distributive law(분배법칙)

```
A and (B \text{ or } C) = A \text{ and } B \text{ or } A \text{ and } C
A or (B \text{ and } C) = (A \text{ or } B) \text{ and } (A \text{ or } C)
```

• Involution law(이중부정법칙) not(not A) = A

부울대수 (3/3)

• Identity law(항등법칙)

```
A or 1 = 1 A or 0 = A
A and 1 = A A and 0 = 0
```

• Absorption law(흡수법칙)

```
A or (A \text{ and } B) = A
A and (A \text{ or } B) = A
```

• DeMorgan's law(드모르강의 법칙)
not A or not B = not (A and B)
not A and not B = not (A or B)

Switching Circuit (1/3)

- 1857년 부울대수 ⇒ 1937년 스위칭 서킷
 - 1930년대 스위치

Switching Circuit (2/3)

스위칭 서킷
A and B

Claude Shannon 1916-2001

A Symbolic Analysis of Relay and Switching Circuits (Master's Thesis, MIT, 1937)

Switching Circuit (3/3)

- Digital Logic Circuits
 - = Switching circuits + Boolean logic

Digital Logic Circuit (1/4)

● 디지털논리회로 예제

Digital Logic Circuit (2/4)

- 두 입력이 같은지 판정하는 회로
 - $T \Rightarrow 1, F \Rightarrow 0$

Х	У	out
0	0	1
1	1	1
_	_	0

not x and not y x and y

(not x and not y) or (x and y)

Digital Logic Circuit (3/4)

● 가위바위보

Jane vs. Tom

<u>Input</u>

scissors	rock	paper
00	01	10

10

00

Output

Tom wins	01
Draws	11

Jane wins

Otherwise

Ja	Jane		Tom		ıt
W	X	У	Z	А	В
0	0	0	0	1	1
0	0	0	1	0	1
0	0	1	0	1	0
0	1	0	0	1	0
0	1	0	1	1	1
0	1	1	0	0	1
1	0	0	0	0	1
1	0	0	1	1	0
1	0	1	0	1	1
_	_	_	_	0	0

Digital Logic Circuit (4/4)

- 멀티플렉서
 - 둘 입력 중 하나를 조건에 따라 결정

Z	x	У	Out	x, y가 입력, z가
0	0	0	0	
0	0	1	0	
0	1	0	1	x and not y and
0	1	1	1	x and y and not
1	0	0	0	
1	0	1	1	not x and y and
1	1	0	0	
1	1	1	1	x and y and z

not z Z Z

선택자

x and not z or y and z

프로그램 내장방식

폰노이만 구조(von Neuman Architecture)

John von Neumann 1903-1954

프로그램 내장방식 (Stored-Program Computer)

폰 노이만 구조 (von Neuman Architecture)

First Draft of a Report on the EDVAC Electronic Discrete Variable Automatic Calculator 1945~1952

Mark I

Grace Hopper 1906-1992

- 최초로 컴파일러 개발
- 최초의 여성 프로그래머
- 프로그램 '버그' 개념의 창시자

IBM's Harvard Mark I

최초의 전기 자동 계산기 1944~1959 by Howard Aiken

ENIAC

- General-Purpose Automatic Electronic Decimal Digital Computer
 - Univ. of Penn, 1945 by John Mauchly and J.
 Presper Eckert

컴퓨터의 정의

● 현대적 의미의 컴퓨터를 정의하는 특성

since 1937

디지털 방식	이진 체계
(Digital)	(Binary)
전자회로를 사용	범용
(Electronic)	(General Purpose)

튜링테스트

- The Imitation Game
 - Computing Machinery and Intelligence Mind (1950)

The Transistor & The Microchip

Transistor

Bell Labs

John Bardeen 1908-1991

William Shockley 1910-1989

Walter Brattain 1902-1987

Microchip

- At Silicon Valley
- Texas instruments
 - 최초로 트랜지스터 라디오 생산
 - Jack Killby : 집적회로(IC, Integrated Chip) 발명
 - 반도체 소자 생산 기업으로 자리매김
- Intel
 - 1971년 general-purpose chip 마이크로프로세서 개발
 - Moore's law : 칩에 집적할 수 있는 트랜지스터의 개수는 적어도 매18개월마다 두배씩 증가

The Internet

컴퓨터 네트워크

- 컴퓨터 네트워크(Computer network)
 - 여러 컴퓨터가 각각 클라이언트와 서버로 서로 연결되어 구성된 망
- 인터넷(Internet)
 - 컴퓨터 네트워크가 전 세계적인 규모로 수없이 많이 모여서 이루어진 일종의 컴퓨터 네트워크 시스템

한 컴퓨터에서 다른 컴퓨터로 데이터를 보내는 과정

인터넷의 기반 (1/5)

- Memex(MEMory Extender)
 - 1940년 바네바 부시가 개발
 - 마이크로필름에 기록한 자료를 색인화해서 유기적으로 연결해주는 시스템
 - 웹과 HTTP 등 인터넷의 근간

Vannevar Bush 1890-1974

인터넷의 기반 (2/5)

- CSNET(Computer Science Network)
 - 1981년 승인 제한으로 인해 ARPANET에 직접 연결할 수 없는 학술 및 연구 기관의 컴퓨터 과학 부서를 위해 네트워킹 혜택을 확장하기 위한 목적
 - NSF(National Science Foundation)의 지원
 - 5곳의 슈퍼컴퓨터센터를 연결해서 네트워크를 구성

인터넷의 기반 (3/5)

- 1960년 J.C.R. Licklider
 - 오늘날의 인터넷과 유사한 네트워크 시스템인 Intergalactic Computer Network을 제안
 - PC 한대를 여러 사용자가 동시에 활용하는 시분할 시스템 개발에 영향을 줌
 - 실시간 컴퓨팅(realtime-computing) 개념
 - 가까운 미래에는 인간의 뇌와 계산 기계가 밀접하게 결합될 것이라고 언급

J.C.R. Licklider 1915-1990

인터넷의 기반 (4/5)

- ARPANET
 - 1969년 만들어진 세계 최초의 패킷스위칭 네트워크
 - 현재 인터넷의 원형
- 1964년 폴바란
 - 메시지 블록 데이터를 기반으로 하는 분산네트워크 제안
- 1960년대 말 ~ 1970년대 초
 - 다양한 프로토콜을 이용한 패킷 교환망이 개발 됨

인터넷의 기반 (5/5)

TCP/IP

- Transmission Control Protocol / Internet Protocol
- A Protocol for Packet Network Interconnection
- TCP/IP 프로토콜과 네트워크 구조를 설계하면서

인터넷이 탄생

 TCP/IP는 네트워크를 통해 데이터를 패킷으로 전송하는 현재 통신 프로토콜의 핵심 데이터 전송 기술

Vint Cerf 1943-

Bob Kahn 1938-

The Personal Computer

마우스의 개발

- Augmenting Human Intellect (1962)
 - 더글라스 엥겔바트의 "The Mother of All Demos" (1968)

The first prototype of a computer mouse

최초의 태블릿

- 앨랜케이(Alan Kay)
 - 개인용컴퓨터를 구상 => 1972년 Dynabook 개발
 - 1973년 Xerox Alto 개발 : 마우스, 키보드, 모니터를 갖춘 컴퓨터 => GUI의 기초가 됨
 - 객체지향프로그래밍 개념 정립
 - 최초의 객체지향언어인 Smalltalk 개발
 - 중첩되는 윈도우 개념 개발

Dynabook

Xerox Alto

ALTAIR 8800

- 상업적으로 성공한 최초의 개인용 컴퓨터
 - 1975년 에드워즈 로버츠가 개발
 - 인텔 8080 마이크로프로세서를 사용
 - 조립키트형 마이크로컴퓨터

do-it-yourself rocket kit
do-it-yourself pocket calculator
do-it-yourself computer
ALTAIR 8800

Apple I

- Homebrew Computer Club
 - 개인용 컴퓨터 개발을 목적
 - 클럽의 회원들을 통해 23개 컴퓨터 회사가 탄생

SOL computer

Apple I by Steve Jobs & Steve Wozniak

The three personal computers referred to by Byte Magazine as the "1977 Trinity" of home computing: The Commodore PET, the Apple II, and the TRS-80 Model I.

Software

The IBM Operating System

● IBM PC의 등장 (1981)

IBM into personal computer business contact Bill Gates, Microsoft (1980)

Microsoft bought at \$50,000 outright

then licensed it to IBM at \$186,000 non-exclusive and kept control of source code

IBM PC

GUI

- Graphical User Interface
 - envisioned by Vannevar Bush at MIT,
 J.C.R. Licklider at MIT,

Doug Engelbert at SRI,

Alan Kay at Xerox PARC

Apple

Lisa (1983)

Macintosh (1984)

Microsoft

Windows (1985)

Software free? or not free?

- Free Open-Source Software Movement
 - "소프트웨어는 공동으로 제작해서 자유롭게 공유할 수 있어야 한다"
 - Free Software Foundation : GNU 프로젝트
 - GPL(General Public License): "Copyleft"

the commercial the hacker ethics ethics proprietary free sharing

The Web

World Wide Web

- 1991년 팀 버너스 리가 개발
 - hypertext + the Internet
 - URL(Uniform Resource Locators)
 - HTTP(Hypertext Transfer Protocol)

Tim Berners-Lee

- HTML(Hypertext Markup Language)
- 1993년 W3C 재단 창설 : 웹 관련 표준과 기술버전을 제정해서 발표
- 최초의 웹브라우저 = Mosaic (1993)

Jerry Yang 1973Yahoo! 1994

David Filo 1973-

Sergey Brin 1973-

Larry Page 1973-

BackRub PageRank

The Anatomy of a Large-Scale Hyper-textual Web Search Engine (1998)

Augmented Intelligence

Collaborative Creativity