

Drosophila hits Machine Learning - A new algorithm for similarity search derived from the olfactory processing of fruit flies

Meetup: Berlin Machine Learning Group 03-12-2018

Dr. Daniela Schmidt

The Fruit Fly Brain Improves Our Search Algorithms

Written by Mike James Wednesday, 15 November 2017

REPORT

FRUIT FLY BRAINS INFORM SEARCH ENGINES OF THE FUTURE A neural algorithm for a fundamental computing

problem

Lessons From the Fly Brain Improve

Lessons From the Fly Brain Improve

Search Algorithms (3 of 3) (IMAGE)

Search Algorithms (3 of 53) (IMAGE)

MERICAN ASSOCIATION FOR THE ADVANCEMENT OF SCIENCE

Sanjoy Dasgupta1, Charles F. Stevens2,3, Saket Navlakha4,* + See all authors and affiliations

Science 10 Nov 2017: Vol. 358, Issue 6364, pp. 793-796 DOI: 10.1126/science aam9868

Flies use an algorithmic neuronal strategy to sense and categorize odors. Dasgupta et al. applied insights from the fly system to come up with a solution to a computer science problem. On the basis of the algorithm that flies use to tag an odor and categorize similar ones, the authors generated a new solution to the nearest-neighbor search problem that underlies tasks such as searching for similar images on the web.

OVERVIEW

SIMILARITY SEARCH / k-NEAREST NEIGHBOR

Applications:

- Classification
- Recommendation
- Near-Duplicates
- ...

SIMILARITY SEARCH / k-NEAREST NEIGHBOR

Advantages

- No assumptions about data
- Simple
- Quite high accuracy

Drawbacks

- Computationally expensive
- All training data need to be saved
 → high memory requirements
- Bad scalability
- Sensitive to irrelevant features and scaling of data

SIMILARITY SEARCH / k-NEAREST NEIGHBOR

Advantages

- No assumptions about data
- Simple
- Quite high accuracy

Approximate
Nearest Neighbor

Drawbacks

- Computationally expensive
- All training data need to be saved
 → high memory requirements
- Bad scalability
- Sensitive to irrelevant features and scaling of data

APPROXIMATE NEAREST NEIGHBOR

- **Idea:** Estimation of Nearest Neighbors is sufficient
 - → no guarantee to identify real nearest neighbor
 - → faster and less memory expensive
- Hashing: most popular solution for Approximate Nearest Neighbor

Excursus 1

HASH CODE / HASH FUNCTIONS

WHAT IS A HASH?

• Synonyms: fingerprint, checksum, signature, tag

Hashing:

- Mapping of data into a low-dimensional representation
- short code = bit sequence (e.g. 00111001)

Applications:

- Data bases
- Checksum for data integrity
- Cryptography

HASH FUNCTION ADLER32

- Aim: 32-bit code for document/text
- Example: Drosophila hits Machine Learning A new algorithm for similarity search derived from the olfactory processing of fruit flies

		D	r	0	S	0	р		S
ASCII-Code		68	114	111	115	111	112		115
CumSum A	1	69	183	294	409	520	632	•••	11'888
CumSum B	0	69	252	546	955	1475	2107		740'229

HASH FUNCTION ADLER 32

Division of each CumSum by highest 16-bit prime number (i.e. 65'521)
 → modulo as binary number

	final sum modulo 65'521	binary number (16-bit)
CumSum A	11'888 % 65'521 = 11'888	0010 1110 0111 0000
CumSum B	740'229 % 65'521 = 19'498	0100 1100 0010 1010

Combination of both 16-bit codes to 32-bit code:

→ Adler32 hash code: 0100 1100 0010 1010 0010 1110 0111 0000

(as hexadecimal number: 4c2a2e70)

HASH FUNCTION ADLER 32

 Drosophila hits Machine Learning - A new algorithm for similarity search derived from the olfactory processing of fruit flies

0100 1100 0010 1010 0010 1110 0111 0000 (4c2a2e70)

 Drosophila hits machine learning - A new algorithm for similarity search derived from the olfactory processing of fruit flies

0110 0110 0110 1010 0010 1110 1011 0000 (666a2eb0)

Small differences lead to a completly different hash!!!

GENERAL HASHING

Source: https://0110.be/Software

APPROXIMATE NEAREST NEIGHBOR

HASHING IN APPROXIMATE NEAREST NEIGHBOR

LOCALITY SENSITIVE HASHING

Hash functions fulfilling the "locality sensitive property":

Higher probability that similar items are mapped to the same hash code than dissimilar items.

HASHING IN APPROXIMATE NEAREST NEIGHBOR

LSH - HASH TABLE LOOKUP

- 1. Training data: Generation of hash table with LSH
 - →Similar items have same hash code
- 2. Calculate hashcode for query item
- 3. Extract near neighbors of query item (same hash code)
- 4. Calculate **exact distance** (query item near neighbors)

LSH – FAST DISTANCE APPROXIMATION

- 1. Training data and query item: generate hash code with LSH
 - → Similar data items have similar hash code
- 2. Hash code distances between query item and training data

Unit Sphere

- Unit Sphere
- Generate random hyperplanes
 h1, h2, h3

- Unit Sphere
- Generate random hyperplanes
 h1, h2, h3

- Unit Sphere
- Generate random hyperplanes
 h1, h2, h3

- Unit Sphere
- Generate random hyperplanes
 h1, h2, h3

Hash (Bucket)	Data Items	
• • •		
1 01	q, a, c Ne	ar neighbors of q
000	d	
100		
001	b	
011		

Hash Table

- Unit Sphere
- Generate random hyperplanes
 h1, h2, h3

Hash (Bucket)	Data Items		
101	q, a, c	Ne	ar neighbors of q
000	d		
100			
001	b		
011			

Several hash tables with other random hyperplanes

Hash Table

RANDOM GAUSSIAN PROJECTION

- s = Input vector (feature-vector, zero mean) with d dimensions
- R = projection matrix
 - Number of columns: length of input vector (input dimension d)
 - Number of rows: number of hyperplanes (m = hash length k)
- r = Output vector with m dimensions (m = hash length k)

$$r = s \times R$$

• $r \rightarrow$ Hash f(x) = 1 if x > 0 else 0

RANDOM GAUSSIAN PROJECTION - EXAMPLE

s (d= 7)	x R (d x m)	=	r (m = 3)	→ 1 → 1	Hash (k=3)
-0.24			0 007		
-0.14	h1 0.756 0.945 0.675 0.488 0.105	0.694 0.326	-0.087		0
	h2 0.063 0.797 0.562 0.961 0.753	0.181 0.913	0.230		1
-0.04	h3 0.778 0.734 0.912 0.303 0.595	0.749 0.547	-0.225		0
0.56					
-0.04					
0.06					
-0.14					

LSH - FRAMEWORK

- For different distance and similarity measures
 - z.B. Jaccard coefficient (\rightarrow Min Hash), Hamming distance, angle based distance, $\chi 2$ -distance, ...
- Variants: learning LSH from data
- Overview: Hashing for Similarity Search (Wang et al. 2014): https://arxiv.org/pdf/1408.2927.pdf
- Introduction to LSH:

https://www.youtube.com/watch?v=356GoYkmYKg (sequence of 12 movies made by Victor Lavrenko)

SIMILARITY SEARCH IN BIOLOGY

Our brain is confronted with similarity search all the time!

X looks like Y

X sounds like Y

X tastes like Y

X feels like Y

X smells like Y

How does the brain do similarity search?

SIMILARITY SEARCH – OLFACTORY PERCEPTION

Source: https://3c1703fe8d.site.internapcdn.net/newman/gfx/news/hires/2017/1-fruitflybrai.jpg

Excursus 2

OLFACTORY CIRCUIT DROSOPHILA

INSECT OLFACTORY SYSTEM

ANTENNAL LOBE (WITH GLOMERULI) AND MUSHROOM BODY

MARR MOTIV

MARR MOTIV

3 7

SIGNAL DECODING

 Each PN transmits signal to about 10 KCs

 $1 \text{ PN} \rightarrow 10 \text{ KCs}$

 Each KC receives and sums up signal of 6 PNs

6 PN ← 1 KCs

WTA - WINNER-TAKE-ALL (SPARSIFICATION)

- 1 inhibitory neuron inhibits all Kenyon cells
 - → Tag: only 5% of KCs with highest firing rates transmit signal further

ARGSORT(5%)

WTA - WINNER-TAKE-ALL (SPARSIFICATION)

- 1 inhibitory neuron inhibits all Kenyon cells
 - → Tag: only 5% of KCs with highest firing rates transmit signal further

ARGSORT(5%)

~5% KCs active for each odor = "tag"

SPARSE RANDOM PROJECTION

s: Input vector with d dimensions (50 PNs)

R: Projection matrix with d columns und m rows (2000 KCs) (random matrix, sensing matrix)

r: output vector with m dimensions

 $r = s \times R$

r → Hash f(x) = 1 if x ∈ top 5% of {xi} else 0 = binary vector (length m mit k non-zeros)

SPARSE RANDOM PROJECTION - EXAMPLE

										WT	A Top 3	
s (d= 7)	X	R (2 PN	ls pe	r KC)				=	r (m = 14)		Hash (k=3)
-0.24		0	1	0	0	0	1	0		-0.086		0
		1	0	0	1	0	0	0		0.314		0
-0.14		0	1	0	1	0	0	0		0.414		1
-0.04		0	0	1	0	0	1	0		0.014		0
		0	0	0	0	1	0	1		-0.186		0
0.56		0	1	0	0	1	0	0		-0.186		0
-0.04		0	0	1	0	0	0	1		-0.186		0
0.06		1	0	0	0	0	0	1		-0.386		0
		0	0	0	0	1	1	0		0.014		0
-0.14		0	0	1	1	0	0	0		0.514		1
		0	1	0	0	0	1	0		-0.086		0
		0	0	1	0	1	0	0		-0.086		0
		0	0	0	1	0	1	0		0.614		1
		0	0	1	0	0	0	1		-0.186		0

RANDOM GAUSSIAN PROJECTION - EXAMPLE

s (d= 7)	x R (d x m)	=	r (m = 3)	> 0 \rightarrow 1	Hash (k=3)
-0.24	h1 0.756 0.945 0.675 0.488 0.105	0 604 0 336	-0.087		0
-0.14	h2 0.063 0.797 0.562 0.961 0.753		0.230		1
0 0 4	h3 0.778 0.734 0.912 0.303 0.595				
-0.04	ns 0.778 0.734 0.912 0.303 0.393	0.749 0.347	-0.225		0
0.56					
-0.04					
0.06					
-0.14					

FLY-LSH

- "Sparse connected network"
- Random sparse projection
- Enhanced dimensionality after projection: d << m
- Activation function:
 ARGSORT() (WTA)
 f(x) = 1 if x ∈ top 5% of {xi} else 0

TRADITIONAL LSH

- "Dense connected network"
- Random gaussian projection
- Reduced dimensionality after projection: d >> m
- Activation function:
 Step function
 f(x) = 1 if x>0 else 0

COMPARISON TRADITIONAL LSH — FLY-LSH

Datasets:

MNIST: handwritten digits (d=784)

SIFT (d = 128)

GLOVE (d = 300)

COMPARISON TRADITIONAL LSH — FLY-LSH

- Same computational costs (same number of mathematical operations)
 - Fly-LSH: 20x faster
- Better performance by WTA
 → WTA: best preserves relative distances between inputs

SIMILAR CONDITIONS LIKE FRUIT FLY

Dimensionality expansion (~fruit fly)
 10*784 (d << m)

• Improved performance especially for small hash lengths

Further Information

 Preliminary Python-Implementation: https://github.com/dataplayer12/Fly-LSH

New AI strategy mimics how brains learn to smell:

https://www.quantamagazine.org/new-ai-strategy-mimics-how-

brains-learn-to-smell-20180918

