

Understanding Opaque Selling from an Inventory-control Perspective

Yuan Qu

with Dr. Jian Yang (Rutgers)

Opaque Selling

Normal Market

Yellow T-shirt: \$10

Pink T-shirt: \$10

With O-good

Yellow T-shirt: \$10

Pink T-shirt: \$10

Random T-shirt: \$9

Lower price for customers
Seller decides what to deliver

Opaque Or Not Opaque?

"Hmmm... It sounds interesting and attractive, but ... "

Is it beneficial?

How does O-good help business?

How to ration products for O-good?

Pricing Strategy? Inventory Strategy?

.....

Basic Assumption: Symmetric

Two similar regular products, X-good and Y-good, only few differences, e.g. different color, and with the same

- Selling price p_R
- Holding cost h
- Ordering cost c
- Lost sales punishment l
- Poisson arrival rate λ
- Ordering together, with a fixed cost K

Basic Assumption: Replenishment Policy

Without X-Y distinction,

- Best replenishment policy: $(\mathcal{R}, \mathcal{Q})$ -policy
- Adjusted: $(s_2, 2 \times S_1)$ -policy $s_2 = \mathcal{R}, 2 \times S_1 = \mathcal{R} + \mathcal{Q}.$ When $x + y \leq s_2$, order both x and y to S_1

Seller Model: Cycle-wise Profit Rate

Given buyers' behaviors β , we can define ...

- At any inventory level (x, y), till the next replenishing moment,
 - f(x, y) total average profit
 - g(x, y) total average duration
- Seller's profit generation rate

$$r \equiv \frac{f(S_1, S_1)}{g(S_1, S_1)}$$

Seller Model: Monotonicity

At any fixed total inventory s = x + y, and given buyers' behaviors β , we have

Monotonicity Property 1

With reasonable pricing p_O , the cycle-wise profit is decreasing in the inventory difference d = |x - y|.

Monotonicity Property 2

The cycle-wise duration is increasing in d.

Seller Model: Balancedness

Takeaway (Balancedness): The seller prefers more balanced inventory layouts between the X- and Y-goods

A Balance-inducing Rationing Strategy

Takeaway (Rationing): The optimal rationing strategy for O-good is —always giving out the product with **the higher inventory level**, which promotes balancedness.

Seller Model: O-good Increases Profit Rate

With a reasonable pricing p_O ,

$$r'(\beta_O) \ge \left[\frac{(p_O - p_R) \cdot (2S_1 - S_2)}{\gamma(2S_1, 0 \mid \beta_O)} \right] \land 0$$

Takeaway (Beneficial): When p_O catches up to p_R , the long-run profit rate increases with the O-good demand ratio β_O

Seller Model: Seller's Behavior

The chance that an regular request to be granted

$$\theta_R = \Pr(X \ge 1) = \Pr(Y \ge 1)$$

can be obtained through steady-state analysis.

 θ_R is a function of (s_2, S_1) , but varies slowly $\theta_R \approx 0.9$

Estimation: A Good $(s_2, 2 \times S_1)$

Plugging θ into DP formulas, we have

$$r(s_2, \mathcal{Q}) = P(s_2) - C(\mathcal{Q}), \quad \text{where } \mathcal{Q} \equiv 2S_1 - s_2.$$

The revenue function $P(s_2)$ is decreasing in s_2 ; and $C(\mathcal{Q})$ follows the

EOQ structure. With the effective arrival rate $\tilde{\lambda}$, we have

$$2S_1 - S_2 \simeq \mathcal{Q}^* \equiv \sqrt{\frac{2\tilde{\lambda}K}{h}}$$

Takeaway (Inventory): EOQ still works for the O-good scenario.

Strategic Buyers: Overall Behaviors

O-good May Be Harmful!

Strategic Buyers: Equilibrium Existence

The earlier $\beta \to \theta$ process defined by Markov chain and steady-state analysis is continuous, so is the current $\theta \to \beta$ process

By Brouwer's fixed point theorem, there should exist (β^*, θ^*) such that

$$\beta^* \to \theta^* \to \beta^* \to \theta^* \to \cdots$$

This provides an endogenous generation of buyer behaviors $(\beta_{R/2}, \beta_O)$ that can move with parameters such as $p_O, \rho, \sigma, S_1, s_2, \dots$

Simulation: Equilibrium

Summary

- The seller prefers more balanced inventory
- The optimal rationing strategy is—always giving out the higher-inventory-level product
- Under a reasonable pricing range, the long-run profit rate increases with the O-good demand ratio
- EOQ still works for the -good scenario.
- Buyers' behavior and the seller's behavior will reach an equilibrium, which enables numerical study of the pricing strategy.

Thanks!

Understanding Opaque Selling from an Inventory-control Perspective

Yuan Qu with Jian Yang (RU)

INFORMS Annual Meeting 2022 Indianapolis, IN, Oct. 17, 2022