Sage Reference Manual: General Rings, Ideals, and Morphisms

Release 8.9

The Sage Development Team

CONTENTS

1	Base Classes for Rings, Algebras and Fields	1
	1.1 Rings	1
2		25
	2.1 Ideals of commutative rings	
	2.2 Monoid of ideals in a commutative ring	
	2.3 Ideals of non-commutative rings	39
3	Ring Morphisms	43
	3.1 Homomorphisms of rings	43
	3.2 Space of homomorphisms between two rings	54
4	Quotient Rings	57
	4.1 Quotient Rings	57
	4.2 Quotient Ring Elements	68
5	Fraction Fields	73
	5.1 Fraction Field of Integral Domains	73
	5.2 Fraction Field Elements	78
6	Utilities	85
	6.1 Big O for various types (power series, p-adics, etc.)	85
	6.2 Signed and Unsigned Infinities	86
	6.3 Support Python's numbers abstract base class	94
7	Berranon	97
	7.1 Derivations	97
8	Indices and Tables	111
Ру	ython Module Index	113
ſn	ndex	115

BASE CLASSES FOR RINGS, ALGEBRAS AND FIELDS

1.1 Rings

This module provides the abstract base class *Ring* from which all rings in Sage (used to) derive, as well as a selection of more specific base classes.

Warning: Those classes, except maybe for the lowest ones like *Ring*, *CommutativeRing*, *Algebra* and *CommutativeAlgebra*, are being progressively deprecated in favor of the corresponding categories. which are more flexible, in particular with respect to multiple inheritance.

The class inheritance hierarchy is:

- Ring
 - Algebra
 - CommutativeRing
 - * NoetherianRing
 - * CommutativeAlgebra
 - * IntegralDomain
 - · DedekindDomain
 - · PrincipalIdealDomain

Subclasses of PrincipalIdealDomain are

- EuclideanDomain
- Field
 - FiniteField

Some aspects of this structure may seem strange, but this is an unfortunate consequence of the fact that Cython classes do not support multiple inheritance. Hence, for instance, Field cannot be a subclass of both NoetherianRing and PrincipalIdealDomain, although all fields are Noetherian PIDs.

(A distinct but equally awkward issue is that sometimes we may not know *in advance* whether or not a ring belongs in one of these classes; e.g. some orders in number fields are Dedekind domains, but others are not, and we still want to offer a unified interface, so orders are never instances of the <code>DedekindDomain</code> class.)

AUTHORS:

• David Harvey (2006-10-16): changed CommutativeAlgebra to derive from CommutativeRing instead of from Algebra.

- David Loeffler (2009-07-09): documentation fixes, added to reference manual.
- Simon King (2011-03-29): Proper use of the category framework for rings.
- Simon King (2011-05-20): Modify multiplication and _ideal_class_ to support ideals of non-commutative rings.

class sage.rings.ring.Algebra Bases: sage.rings.ring.Ring

Generic algebra

characteristic()

Return the characteristic of this algebra, which is the same as the characteristic of its base ring.

See objects with the base_ring attribute for additional examples. Here are some examples that explicitly use the Algebra class.

EXAMPLES:

```
sage: A = Algebra(ZZ); A
<sage.rings.ring.Algebra object at ...>
sage: A.characteristic()
0
sage: A = Algebra(GF(7^3, 'a'))
sage: A.characteristic()
7
```

has_standard_involution()

Return True if the algebra has a standard involution and False otherwise. This algorithm follows Algorithm 2.10 from John Voight's *Identifying the Matrix Ring*. Currently the only type of algebra this will work for is a quaternion algebra. Though this function seems redundant, once algebras have more functionality, in particular have a method to construct a basis, this algorithm will have more general purpose.

EXAMPLES:

```
sage: B = QuaternionAlgebra(2)
sage: B.has_standard_involution()
True
sage: R.<x> = PolynomialRing(QQ)
sage: K.<u> = NumberField(x**2 - 2)
sage: A = QuaternionAlgebra(K,-2,5)
sage: A.has_standard_involution()
True
sage: L.<a,b> = FreeAlgebra(QQ,2)
sage: L.has_standard_involution()
Traceback (most recent call last):
...
NotImplementedError: has_standard_involution is not implemented for this_
→algebra
```

class sage.rings.ring.CommutativeAlgebra

```
Bases: sage.rings.ring.CommutativeRing
```

Generic commutative algebra

is_commutative()

Return True since this algebra is commutative.

EXAMPLES:

Any commutative ring is a commutative algebra over itself:

```
sage: A = sage.rings.ring.CommutativeAlgebra
sage: A(ZZ).is_commutative()
True
sage: A(QQ).is_commutative()
True
```

Trying to create a commutative algebra over a non-commutative ring will result in a TypeError.

```
class sage.rings.ring.CommutativeRing
```

```
Bases: sage.rings.ring.Ring
```

Generic commutative ring.

derivation (arg=None, twist=None)

Return the twisted or untwisted derivation over this ring specified by arg.

Note: A twisted derivation with respect to θ (or a θ -derivation for short) is an additive map d satisfying the following axiom for all x, y in the domain:

$$d(xy) = \theta(x)d(y) + d(x)y.$$

INPUT:

- arg (optional) a generator or a list of coefficients that defines the derivation
- twist (optional) the twisting homomorphism

EXAMPLES:

```
sage: R.<x,y,z> = QQ[]
sage: R.derivation()
d/dx
```

In that case, arg could be a generator:

```
sage: R.derivation(y)
d/dy
```

or a list of coefficients:

```
sage: R.derivation([1,2,3])
d/dx + 2*d/dy + 3*d/dz
```

It is not possible to define derivations with respect to a polynomial which is not a variable:

```
sage: R.derivation(x^2)
Traceback (most recent call last):
...
ValueError: unable to create the derivation
```

Here is an example with twisted derivations:

```
sage: R.<x,y,z> = QQ[]
sage: theta = R.hom([x^2, y^2, z^2])
sage: f = R.derivation(twist=theta); f
0
```

(continues on next page)

```
sage: f.parent()
Module of twisted derivations over Multivariate Polynomial Ring in x, y, z
over Rational Field (twisting morphism: x \mid --> x^2, y \mid --> y^2, z \mid --> z^2)
```

Specifying a scalar, the returned twisted derivation is the corresponding multiple of $\theta - id$:

```
sage: R.derivation(1, twist=theta)
[x |--> x^2, y |--> y^2, z |--> z^2] - id
sage: R.derivation(x, twist=theta)
x*([x |--> x^2, y |--> y^2, z |--> z^2] - id)
```

derivation module (codomain=None, twist=None)

Returns the module of derivations over this ring.

INPUT:

- codomain an algebra over this ring or a ring homomorphism whose domain is this ring or None (default: None); if it is a morphism, the codomain of derivations will be the codomain of the morphism viewed as an algebra over self through the given morphism; if None, the codomain will be this ring
- twist a morphism from this ring to codomain or None (default: None); if None, the coercion map from this ring to codomain will be used

Note: A twisted derivation with respect to θ (or a θ -derivation for short) is an additive map d satisfying the following axiom for all x, y in the domain:

$$d(xy) = \theta(x)d(y) + d(x)y.$$

EXAMPLES:

We can specify a different codomain:

Here is an example with a non-canonical defining morphism:

```
sage: ev = R.hom([QQ(0), QQ(1), QQ(2)])
sage: ev
Ring morphism:
  From: Multivariate Polynomial Ring in x, y, z over Rational Field
```

(continues on next page)

```
To: Rational Field

Defn: x |--> 0

y |--> 1

z |--> 2

sage: M = R.derivation_module(ev)

sage: M

Module of derivations from Multivariate Polynomial Ring in x, y, z over_

Rational Field to Rational Field
```

Elements in M acts as derivations at (0, 1, 2):

```
sage: Dx = M.gen(0); Dx
d/dx
sage: Dy = M.gen(1); Dy
d/dy
sage: Dz = M.gen(2); Dz
d/dz
sage: f = x^2 + y^2 + z^2
sage: Dx(f) # = 2*x evaluated at (0,1,2)
0
sage: Dy(f) # = 2*y evaluated at (0,1,2)
2
sage: Dz(f) # = 2*z evaluated at (0,1,2)
4
```

An example with a twisting homomorphism:

```
sage: theta = R.hom([x^2, y^2, z^2])
sage: M = R.derivation_module(twist=theta); M
Module of twisted derivations over Multivariate Polynomial Ring in x, y, z
over Rational Field (twisting morphism: x |--> x^2, y |--> y^2, z |--> z^2)
```

See also:

```
derivation()
```

extension (poly, name=None, names=None, **kwds)

Algebraically extends self by taking the quotient self[x] / (f(x)).

INPUT:

- poly A polynomial whose coefficients are coercible into self
- name (optional) name for the root of f

Note: Using this method on an algebraically complete field does *not* return this field; the construction self[x] / (f(x)) is done anyway.

EXAMPLES:

```
sage: P.<x> = PolynomialRing(GF(5))
sage: F.<a> = GF(5).extension(x^2 - 2)
sage: P.<t> = F[]
sage: R.<b> = F.extension(t^2 - a); R
Univariate Quotient Polynomial Ring in b over Finite Field in a of size 5^2
with modulus b^2 + 4*a
```

fraction field()

Return the fraction field of self.

EXAMPLES:

```
sage: R = Integers(389)['x,y']
sage: Frac(R)
Fraction Field of Multivariate Polynomial Ring in x, y over Ring of integers_
→modulo 389
sage: R.fraction_field()
Fraction Field of Multivariate Polynomial Ring in x, y over Ring of integers_
→modulo 389
```

$frobenius_endomorphism(n=1)$

INPUT:

• n – a nonnegative integer (default: 1)

OUTPUT

The n-th power of the absolute arithmetic Frobenius endomorphism on this finite field.

EXAMPLES:

We can specify a power:

```
sage: f = K.frobenius_endomorphism(2); f
Frobenius endomorphism x |--> x^(5^2) of Power Series Ring in u over Finite_
→Field of size 5
sage: f(1+u)
1 + u^25
```

ideal_monoid()

Return the monoid of ideals of this ring.

EXAMPLES:

```
sage: ZZ.ideal_monoid()
Monoid of ideals of Integer Ring
sage: R.<x>=QQ[]; R.ideal_monoid()
Monoid of ideals of Univariate Polynomial Ring in x over Rational Field
```

is_commutative()

Return True, since this ring is commutative.

EXAMPLES:

```
sage: QQ.is_commutative()
True
sage: ZpCA(7).is_commutative()
True
sage: A = QuaternionAlgebra(QQ, -1, -3, names=('i','j','k')); A
Quaternion Algebra (-1, -3) with base ring Rational Field
sage: A.is_commutative()
False
```

krull dimension()

Return the Krull dimension of this commutative ring.

The Krull dimension is the length of the longest ascending chain of prime ideals.

```
class sage.rings.ring.DedekindDomain
```

```
Bases: sage.rings.ring.IntegralDomain
```

Generic Dedekind domain class.

A Dedekind domain is a Noetherian integral domain of Krull dimension one that is integrally closed in its field of fractions.

This class is deprecated, and not actually used anywhere in the Sage code base. If you think you need it, please create a category <code>DedekindDomains</code>, move the code of this class there, and use it instead.

integral_closure()

Return self since Dedekind domains are integrally closed.

EXAMPLES:

```
sage: K = NumberField(x^2 + 1, 's')
sage: OK = K.ring_of_integers()
sage: OK.integral_closure()
Gaussian Integers in Number Field in s with defining polynomial x^2 + 1
sage: OK.integral_closure() == OK
True

sage: QQ.integral_closure() == QQ
True
```

is_integrally_closed()

Return True since Dedekind domains are integrally closed.

EXAMPLES:

The following are examples of Dedekind domains (Noetherian integral domains of Krull dimension one that are integrally closed over its field of fractions).

```
sage: ZZ.is_integrally_closed()
True
sage: K = NumberField(x^2 + 1, 's')
sage: OK = K.ring_of_integers()
sage: OK.is_integrally_closed()
True
```

These, however, are not Dedekind domains:

```
sage: QQ.is_integrally_closed()
True
sage: S = ZZ[sqrt(5)]; S.is_integrally_closed()
```

(continues on next page)

```
False
sage: T.<x,y> = PolynomialRing(QQ,2); T
Multivariate Polynomial Ring in x, y over Rational Field
sage: T.is_integral_domain()
True
```

is noetherian()

Return True since Dedekind domains are Noetherian.

EXAMPLES:

The integers, **Z**, and rings of integers of number fields are Dedekind domains:

```
sage: ZZ.is_noetherian()
True
sage: K = NumberField(x^2 + 1, 's')
sage: OK = K.ring_of_integers()
sage: OK.is_noetherian()
True
sage: QQ.is_noetherian()
True
```

krull_dimension()

Return 1 since Dedekind domains have Krull dimension 1.

EXAMPLES:

The following are examples of Dedekind domains (Noetherian integral domains of Krull dimension one that are integrally closed over its field of fractions):

```
sage: ZZ.krull_dimension()
1
sage: K = NumberField(x^2 + 1, 's')
sage: OK = K.ring_of_integers()
sage: OK.krull_dimension()
1
```

The following are not Dedekind domains but have a krull_dimension function:

```
sage: QQ.krull_dimension()
0
sage: T.<x,y> = PolynomialRing(QQ,2); T
Multivariate Polynomial Ring in x, y over Rational Field
sage: T.krull_dimension()
2
sage: U.<x,y,z> = PolynomialRing(ZZ,3); U
Multivariate Polynomial Ring in x, y, z over Integer Ring
sage: U.krull_dimension()
4
sage: K.<i> = QuadraticField(-1)
sage: R = K.order(2*i); R
Order in Number Field in i with defining polynomial x^2 + 1 with i = 1*I
sage: R.is_maximal()
False
sage: R.krull_dimension()
1
```

class sage.rings.ring.EuclideanDomain

Bases: sage.rings.ring.PrincipalIdealDomain

Generic Euclidean domain class.

This class is deprecated. Please use the EuclideanDomains category instead.

parameter()

Return an element of degree 1.

EXAMPLES:

```
sage: R.<x>=QQ[]
sage: R.parameter()
x
```

class sage.rings.ring.Field

Bases: sage.rings.ring.PrincipalIdealDomain

Generic field

algebraic_closure()

Return the algebraic closure of self.

Note: This is only implemented for certain classes of field.

EXAMPLES:

```
sage: K = PolynomialRing(QQ,'x').fraction_field(); K
Fraction Field of Univariate Polynomial Ring in x over Rational Field
sage: K.algebraic_closure()
Traceback (most recent call last):
...
NotImplementedError: Algebraic closures of general fields not implemented.
```

divides (x, y, coerce=True)

Return True if x divides y in this field (usually True in a field!). If coerce is True (the default), first coerce x and y into self.

EXAMPLES:

```
sage: QQ.divides(2, 3/4)
True
sage: QQ.divides(0, 5)
False
```

fraction_field()

Return the fraction field of self.

EXAMPLES:

Since fields are their own field of fractions, we simply get the original field in return:

```
sage: QQ.fraction_field()
Rational Field
sage: RR.fraction_field()
Real Field with 53 bits of precision
sage: CC.fraction_field()
Complex Field with 53 bits of precision
```

(continues on next page)

```
sage: F = NumberField(x^2 + 1, 'i')
sage: F.fraction_field()
Number Field in i with defining polynomial x^2 + 1
```

ideal (*gens, **kwds)

Return the ideal generated by gens.

EXAMPLES:

```
sage: QQ.ideal(2)
Principal ideal (1) of Rational Field
sage: QQ.ideal(0)
Principal ideal (0) of Rational Field
```

integral_closure()

Return this field, since fields are integrally closed in their fraction field.

EXAMPLES:

```
sage: QQ.integral_closure()
Rational Field
sage: Frac(ZZ['x,y']).integral_closure()
Fraction Field of Multivariate Polynomial Ring in x, y over Integer Ring
```

is field(proof=True)

Return True since this is a field.

EXAMPLES:

```
sage: Frac(ZZ['x,y']).is_field()
True
```

is_integrally_closed()

Return True since fields are trivially integrally closed in their fraction field (since they are their own fraction field).

EXAMPLES:

```
sage: Frac(ZZ['x,y']).is_integrally_closed()
True
```

is_noetherian()

Return True since fields are Noetherian rings.

EXAMPLES:

```
sage: QQ.is_noetherian()
True
```

krull_dimension()

Return the Krull dimension of this field, which is 0.

EXAMPLES:

```
sage: QQ.krull_dimension()
0
```

(continues on next page)

```
sage: Frac(QQ['x,y']).krull_dimension()
0
```

prime_subfield()

Return the prime subfield of self.

EXAMPLES:

```
sage: k = GF(9, 'a')
sage: k.prime_subfield()
Finite Field of size 3
```

class sage.rings.ring.IntegralDomain

Bases: sage.rings.ring.CommutativeRing

Generic integral domain class.

This class is deprecated. Please use the sage.categories.integral_domains.IntegralDomains category instead.

is_field(proof=True)

Return True if this ring is a field.

EXAMPLES:

```
sage: GF(7).is_field()
True
```

The following examples have their own is_field implementations:

```
sage: ZZ.is_field(); QQ.is_field()
False
True
sage: R.<x> = PolynomialRing(QQ); R.is_field()
False
```

is_integral_domain (proof=True)

Return True, since this ring is an integral domain.

(This is a naive implementation for objects with type IntegralDomain)

EXAMPLES:

```
sage: ZZ.is_integral_domain()
True
sage: QQ.is_integral_domain()
True
sage: ZZ['x'].is_integral_domain()
True
sage: R = ZZ.quotient(ZZ.ideal(10)); R.is_integral_domain()
False
```

$\verb|is_integrally_closed|()$

Return True if this ring is integrally closed in its field of fractions; otherwise return False.

When no algorithm is implemented for this, then this function raises a NotImplementedError.

Note that $is_integrally_closed$ has a naive implementation in fields. For every field F, F is its own field of fractions, hence every element of F is integral over F.

EXAMPLES:

```
sage: ZZ.is_integrally_closed()
True
sage: QQ.is_integrally_closed()
True
sage: QQbar.is_integrally_closed()
True
sage: GF(5).is_integrally_closed()
True
sage: Z5 = Integers(5); Z5
Ring of integers modulo 5
sage: Z5.is_integrally_closed()
Traceback (most recent call last):
...
AttributeError: 'IntegerModRing_generic_with_category' object has no_
→attribute 'is_integrally_closed'
```

class sage.rings.ring.NoetherianRing

Bases: sage.rings.ring.CommutativeRing

Generic Noetherian ring class.

A Noetherian ring is a commutative ring in which every ideal is finitely generated.

This class is deprecated, and not actually used anywhere in the Sage code base. If you think you need it, please create a category NoetherianRings, move the code of this class there, and use it instead.

is noetherian()

Return True since this ring is Noetherian.

EXAMPLES:

```
sage: ZZ.is_noetherian()
True
sage: QQ.is_noetherian()
True
sage: R.<x> = PolynomialRing(QQ)
sage: R.is_noetherian()
True
```

class sage.rings.ring.PrincipalIdealDomain

Bases: sage.rings.ring.IntegralDomain

Generic principal ideal domain.

This class is deprecated. Please use the PrincipalIdealDomains category instead.

class_group()

Return the trivial group, since the class group of a PID is trivial.

EXAMPLES:

```
sage: QQ.class_group()
Trivial Abelian group
```

content (x, y, coerce=True)

Return the content of x and y, i.e. the unique element c of self such that x/c and y/c are coprime and integral.

EXAMPLES:

```
sage: QQ.content(ZZ(42), ZZ(48)); type(QQ.content(ZZ(42), ZZ(48)))
6
<type 'sage.rings.rational.Rational'>
sage: QQ.content(1/2, 1/3)
1/6
sage: factor(1/2); factor(1/3); factor(1/6)
2^-1
3^-1
2^-1 * 3^-1
2^-1 * 3^-1
sage: a = (2*3)/(7*11); b = (13*17)/(19*23)
sage: factor(a); factor(b); factor(QQ.content(a,b))
2 * 3 * 7^-1 * 11^-1
13 * 17 * 19^-1 * 23^-1
7^-1 * 11^-1 * 19^-1 * 23^-1
```

Note the changes to the second entry:

```
sage: c = (2*3)/(7*11); d = (13*17)/(7*19*23)
sage: factor(c); factor(d); factor(QQ.content(c,d))
2 * 3 * 7^-1 * 11^-1
7^-1 * 13 * 17 * 19^-1 * 23^-1
7^-1 * 11^-1 * 19^-1 * 23^-1
sage: e = (2*3)/(7*11); f = (13*17)/(7^3*19*23)
sage: factor(e); factor(f); factor(QQ.content(e,f))
2 * 3 * 7^-1 * 11^-1
7^-3 * 13 * 17 * 19^-1 * 23^-1
7^-3 * 11^-1 * 19^-1 * 23^-1
```

gcd(x, y, coerce = True)

Return the greatest common divisor of x and y, as elements of self.

EXAMPLES:

The integers are a principal ideal domain and hence a GCD domain:

```
sage: ZZ.gcd(42, 48)
6
sage: 42.factor(); 48.factor()
2 * 3 * 7
2^4 * 3
sage: ZZ.gcd(2^4*7^2*11, 2^3*11*13)
88
sage: 88.factor()
2^3 * 11
```

In a field, any nonzero element is a GCD of any nonempty set of nonzero elements. In previous versions, Sage used to return 1 in the case of the rational field. However, since trac ticket #10771, the rational field is considered as the *fraction field* of the integer ring. For the fraction field of an integral domain that provides both GCD and LCM, it is possible to pick a GCD that is compatible with the GCD of the base ring:

```
sage: QQ.gcd(ZZ(42), ZZ(48)); type(QQ.gcd(ZZ(42), ZZ(48)))
6
<type 'sage.rings.rational.Rational'>
sage: QQ.gcd(1/2, 1/3)
1/6
```

Polynomial rings over fields are GCD domains as well. Here is a simple example over the ring of polynomials over the rationals as well as over an extension ring. Note that gcd requires x and y to be coercible:

```
sage: R.<x> = PolynomialRing(QQ)
sage: S.<a> = NumberField(x^2 - 2, 'a')
sage: f = (x - a) * (x + a); g = (x - a) * (x^2 - 2)
sage: print(f); print(g)
x^2 - 2
x^3 - a*x^2 - 2*x + 2*a
sage: f in R
True
sage: g in R
False
sage: R.gcd(f,g)
Traceback (most recent call last):
TypeError: Unable to coerce 2*a to a rational
sage: R.base_extend(S).gcd(f,g)
x^2 - 2
sage: R.base_extend(S).gcd(f, (x - a)*(x^2 - 3))
х - а
```

is_noetherian()

Every principal ideal domain is noetherian, so we return True.

EXAMPLES:

```
sage: Zp(5).is_noetherian()
True
```

class sage.rings.ring.Ring

Bases: sage.structure.parent_gens.ParentWithGens

Generic ring class.

base extend (R)

EXAMPLES:

```
sage: QQ.base_extend(GF(7))
Traceback (most recent call last):
...
TypeError: no base extension defined
sage: ZZ.base_extend(GF(7))
Finite Field of size 7
```

category()

Return the category to which this ring belongs.

Note: This method exists because sometimes a ring is its own base ring. During initialisation of a ring R, it may be checked whether the base ring (hence, the ring itself) is a ring. Hence, it is necessary that R.category () tells that R is a ring, even *before* its category is properly initialised.

EXAMPLES:

Since a quotient of the integers is its own base ring, and during initialisation of a ring it is tested whether the base ring belongs to the category of rings, the following is an indirect test that the category ()

method of rings returns the category of rings even before the initialisation was successful:

```
sage: I = Integers(15)
sage: I.base_ring() is I
True
sage: I.category()
Join of Category of finite commutative rings
    and Category of subquotients of monoids
    and Category of quotients of semigroups
    and Category of finite enumerated sets
```

epsilon()

Return the precision error of elements in this ring.

EXAMPLES:

```
sage: RDF.epsilon()
2.220446049250313e-16
sage: ComplexField(53).epsilon()
2.22044604925031e-16
sage: RealField(10).epsilon()
0.0020
```

For exact rings, zero is returned:

```
sage: ZZ.epsilon()
0
```

This also works over derived rings:

```
sage: RR['x'].epsilon()
2.22044604925031e-16
sage: QQ['x'].epsilon()
0
```

For the symbolic ring, there is no reasonable answer:

```
sage: SR.epsilon()
Traceback (most recent call last):
...
NotImplementedError
```

ideal(*args, **kwds)

Return the ideal defined by x, i.e., generated by x.

INPUT:

- *x list or tuple of generators (or several input arguments)
- coerce bool (default: True); this must be a keyword argument. Only set it to False if you are certain that each generator is already in the ring.
- ideal_class callable (default: self._ideal_class_()); this must be a keyword argument. A constructor for ideals, taking the ring as the first argument and then the generators. Usually a subclass of Ideal_generic or Ideal_nc.
- Further named arguments (such as side in the case of non-commutative rings) are forwarded to the ideal class.

EXAMPLES:

```
sage: R.<x,y> = QQ[]
sage: R.ideal(x,y)
Ideal (x, y) of Multivariate Polynomial Ring in x, y over Rational Field
sage: R.ideal(x+y^2)
Ideal (y^2 + x) of Multivariate Polynomial Ring in x, y over Rational Field
sage: R.ideal([x^3,y^3+x^3])
Ideal (x^3, x^3 + y^3) of Multivariate Polynomial Ring in x, y over Rational_
→Field
```

Here is an example over a non-commutative ring:

```
sage: A = SteenrodAlgebra(2)
sage: A.ideal(A.1,A.2^2)
Twosided Ideal (Sq(2), Sq(2,2)) of mod 2 Steenrod algebra, milnor basis
sage: A.ideal(A.1,A.2^2,side='left')
Left Ideal (Sq(2), Sq(2,2)) of mod 2 Steenrod algebra, milnor basis
```

ideal_monoid()

Return the monoid of ideals of this ring.

EXAMPLES:

is commutative()

Return True if this ring is commutative.

EXAMPLES:

```
sage: QQ.is_commutative()
True
sage: QQ['x,y,z'].is_commutative()
True
sage: Q.<i,j,k> = QuaternionAlgebra(QQ, -1,-1)
sage: Q.is_commutative()
False
```

is exact()

Return True if elements of this ring are represented exactly, i.e., there is no precision loss when doing arithmetic.

Note: This defaults to True, so even if it does return True you have no guarantee (unless the ring has properly overloaded this).

EXAMPLES:

```
sage: QQ.is_exact() # indirect doctest
True
sage: ZZ.is_exact()
True
sage: Qp(7).is_exact()
False
sage: Zp(7, type='capped-abs').is_exact()
False
```

is_field(proof=True)

Return True if this ring is a field.

INPUT:

• proof – (default: True) Determines what to do in unknown cases

ALGORITHM:

If the parameter proof is set to True, the returned value is correct but the method might throw an error. Otherwise, if it is set to False, the method returns True if it can establish that self is a field and False otherwise.

EXAMPLES:

```
sage: QQ.is_field()
True
sage: GF(9,'a').is_field()
True
sage: ZZ.is_field()
False
sage: QQ['x'].is_field()
False
sage: Frac(QQ['x']).is_field()
```

This illustrates the use of the proof parameter:

```
sage: R.<a,b> = QQ[]
sage: S.<x,y> = R.quo((b^3))
sage: S.is_field(proof = True)
Traceback (most recent call last):
...
NotImplementedError
sage: S.is_field(proof = False)
False
```

is_integral_domain (proof=True)

Return True if this ring is an integral domain.

INPUT:

• proof – (default: True) Determines what to do in unknown cases

ALGORITHM:

If the parameter proof is set to True, the returned value is correct but the method might throw an error. Otherwise, if it is set to False, the method returns True if it can establish that self is an integral domain and False otherwise.

EXAMPLES:

```
sage: QQ.is_integral_domain()
True
sage: ZZ['x,y,z'].is_integral_domain()
True
sage: Integers(8).is_integral_domain()
False
sage: Zp(7).is_integral_domain()
True
sage: Qp(7).is_integral_domain()
True
sage: R.<a,b> = QQ[]
sage: S.<x,y> = R.quo((b^3))
sage: S.is_integral_domain()
False
```

This illustrates the use of the proof parameter:

```
sage: R.<a,b> = ZZ[]
sage: S.<x,y> = R.quo((b^3))
sage: S.is_integral_domain(proof = True)
Traceback (most recent call last):
...
NotImplementedError
sage: S.is_integral_domain(proof = False)
False
```

is_noetherian()

Return True if this ring is Noetherian.

EXAMPLES:

```
sage: QQ.is_noetherian()
True
sage: ZZ.is_noetherian()
True
```

is prime field()

Return True if this ring is one of the prime fields \mathbf{Q} or \mathbf{F}_p .

EXAMPLES:

```
sage: QQ.is_prime_field()
True
sage: GF(3).is_prime_field()
True
sage: GF(9,'a').is_prime_field()
False
sage: ZZ.is_prime_field()
False
sage: QQ['x'].is_prime_field()
False
sage: Qp(19).is_prime_field()
False
```

is_ring()

Return True since self is a ring.

EXAMPLES:

```
sage: QQ.is_ring()
True
```

is_subring(other)

Return True if the canonical map from self to other is injective.

Raises a NotImplementedError if not known.

EXAMPLES:

```
sage: ZZ.is_subring(QQ)
True
sage: ZZ.is_subring(GF(19))
False
```

one()

Return the one element of this ring (cached), if it exists.

EXAMPLES:

```
sage: ZZ.one()
1
sage: QQ.one()
1
sage: QQ['x'].one()
1
```

The result is cached:

```
sage: ZZ.one() is ZZ.one()
True
```

order()

The number of elements of self.

EXAMPLES:

```
sage: GF(19).order()
19
sage: QQ.order()
+Infinity
```

principal_ideal (gen, coerce=True)

Return the principal ideal generated by gen.

EXAMPLES:

```
sage: R.<x,y> = ZZ[]
sage: R.principal_ideal(x+2*y)
Ideal (x + 2*y) of Multivariate Polynomial Ring in x, y over Integer Ring
```

quo (I, names=None)

Create the quotient of R by the ideal I. This is a synonym for quotient()

EXAMPLES:

```
sage: R.<x,y> = PolynomialRing(QQ,2)
sage: S.<a,b> = R.quo((x^2, y))
sage: S
Quotient of Multivariate Polynomial Ring in x, y over Rational Field by the
ideal (x^2, y)
sage: S.gens()
(a, 0)
sage: a == b
False
```

quotient (I, names=None)

Create the quotient of this ring by a twosided ideal I.

INPUT:

- I a twosided ideal of this ring, R.
- names (optional) names of the generators of the quotient (if there are multiple generators, you can specify a single character string and the generators are named in sequence starting with 0).

EXAMPLES:

```
sage: R.<x> = PolynomialRing(ZZ)
sage: I = R.ideal([4 + 3*x + x^2, 1 + x^2])
sage: S = R.quotient(I, 'a')
sage: S.gens()
(a,)

sage: R.<x,y> = PolynomialRing(QQ,2)
sage: S.<a,b> = R.quotient((x^2, y))
sage: S
Quotient of Multivariate Polynomial Ring in x, y over Rational Field by the
ideal (x^2, y)
sage: S.gens()
(a, 0)
sage: a == b
False
```

quotient_ring(I, names=None)

Return the quotient of self by the ideal I of self. (Synonym for self.quotient (I).)

INPUT:

- I an ideal of R
- names (optional) names of the generators of the quotient. (If there are multiple generators, you can specify a single character string and the generators are named in sequence starting with 0.)

OUTPUT:

• R/I – the quotient ring of R by the ideal I

EXAMPLES:

```
sage: R.<x> = PolynomialRing(ZZ)
sage: I = R.ideal([4 + 3*x + x^2, 1 + x^2])
sage: S = R.quotient_ring(I, 'a')
sage: S.gens()
(a,)
```

(continues on next page)

random_element (bound=2)

Return a random integer coerced into this ring, where the integer is chosen uniformly from the interval [-bound, bound].

INPUT:

• bound – integer (default: 2)

ALGORITHM:

Uses Python's randint.

unit_ideal()

Return the unit ideal of this ring.

EXAMPLES:

```
sage: Zp(7).unit_ideal()
Principal ideal (1 + O(7^20)) of 7-adic Ring with capped relative precision 20
```

zero()

Return the zero element of this ring (cached).

EXAMPLES:

```
sage: ZZ.zero()
0
sage: QQ.zero()
0
sage: QQ['x'].zero()
0
```

The result is cached:

```
sage: ZZ.zero() is ZZ.zero()
True
```

zero ideal()

Return the zero ideal of this ring (cached).

EXAMPLES:

```
sage: ZZ.zero_ideal()
Principal ideal (0) of Integer Ring
sage: QQ.zero_ideal()
Principal ideal (0) of Rational Field
sage: QQ['x'].zero_ideal()
Principal ideal (0) of Univariate Polynomial Ring in x over Rational Field
```

The result is cached:

```
sage: ZZ.zero_ideal() is ZZ.zero_ideal()
True
```

zeta (n=2, all=False)

Return a primitive n-th root of unity in self if there is one, or raise a ValueError otherwise.

INPUT:

- n positive integer
- all bool (default: False) whether to return a list of all primitive n-th roots of unity. If True, raise a ValueError if self is not an integral domain.

OUTPUT:

Element of self of finite order

EXAMPLES:

```
sage: QQ.zeta()
-1
sage: QQ.zeta(1)
sage: CyclotomicField(6).zeta(6)
zeta6
sage: CyclotomicField(3).zeta(3)
zeta3
sage: CyclotomicField(3).zeta(3).multiplicative_order()
sage: a = GF(7).zeta(); a
sage: a.multiplicative_order()
sage: a = GF(49, 'z').zeta(); a
Z
sage: a.multiplicative_order()
48
sage: a = GF(49, 'z').zeta(2); a
sage: a.multiplicative_order()
sage: QQ.zeta(3)
Traceback (most recent call last):
ValueError: no n-th root of unity in rational field
sage: Zp(7, prec=8).zeta()
3 + 4*7 + 6*7^2 + 3*7^3 + 2*7^5 + 6*7^6 + 2*7^7 + O(7^8)
```

zeta order()

Return the order of the distinguished root of unity in self.

EXAMPLES:

```
sage: CyclotomicField(19).zeta_order()
38
sage: GF(19).zeta_order()
18
sage: GF(5^3,'a').zeta_order()
124
```

(continues on next page)

```
sage: Zp(7, prec=8).zeta_order()
6
```

sage.rings.ring.is_Ring(x)

Return True if x is a ring.

EXAMPLES:

```
sage: from sage.rings.ring import is_Ring
sage: is_Ring(ZZ)
True
sage: MS = MatrixSpace(QQ,2)
sage: is_Ring(MS)
True
```


CHAPTER

TWO

IDEALS

2.1 Ideals of commutative rings

Sage provides functionality for computing with ideals. One can create an ideal in any commutative or non-commutative ring R by giving a list of generators, using the notation R.ideal([a,b,...]). The case of non-commutative rings is implemented in $noncommutative_ideals$.

A more convenient notation may be R*[a,b,...] or [a,b,...]*R. If R is non-commutative, the former creates a left and the latter a right ideal, and R*[a,b,...]*R creates a two-sided ideal.

```
sage.rings.ideal.Cyclic (R, n=None, homog=False, singular=Singular)

Ideal of cyclic n-roots from 1-st n variables of R if R is coercible to Singular.
```

INPUT:

- R base ring to construct ideal for
- n number of cyclic roots (default: None). If None, then n is set to R. ngens ().
- homog (default: False) if True a homogeneous ideal is returned using the last variable in the ideal
- singular singular instance to use

Note: R will be set as the active ring in Singular

EXAMPLES:

An example from a multivariate polynomial ring over the rationals:

```
sage: P.<x,y,z> = PolynomialRing(QQ,3,order='lex')
sage: I = sage.rings.ideal.Cyclic(P)
sage: I
Ideal (x + y + z, x*y + x*z + y*z, x*y*z - 1) of Multivariate Polynomial
Ring in x, y, z over Rational Field
sage: I.groebner_basis()
[x + y + z, y^2 + y*z + z^2, z^3 - 1]
```

We compute a Groebner basis for cyclic 6, which is a standard benchmark and test ideal:

```
sage: R.<x,y,z,t,u,v> = QQ['x,y,z,t,u,v']
sage: I = sage.rings.ideal.Cyclic(R,6)
sage: B = I.groebner_basis()
sage: len(B)
45
```

```
sage.rings.ideal.FieldIdeal(R)
```

Let $q = R.base_ring()$.order() and $(x_0, ..., x_n) = R.gens()$ then if q is finite this constructor returns

$$\langle x_0^q - x_0, ..., x_n^q - x_n \rangle$$
.

We call this ideal the field ideal and the generators the field equations.

EXAMPLES:

The field ideal generated from the polynomial ring over two variables in the finite field of size 2:

```
sage: P.<x,y> = PolynomialRing(GF(2),2)
sage: I = sage.rings.ideal.FieldIdeal(P); I
Ideal (x^2 + x, y^2 + y) of Multivariate Polynomial Ring in x, y over
Finite Field of size 2
```

Another, similar example:

```
sage: Q.<x1,x2,x3,x4> = PolynomialRing(GF(2^4,name='alpha'), 4)
sage: J = sage.rings.ideal.FieldIdeal(Q); J
Ideal (x1^16 + x1, x2^16 + x2, x3^16 + x3, x4^16 + x4) of
Multivariate Polynomial Ring in x1, x2, x3, x4 over Finite
Field in alpha of size 2^4
```

sage.rings.ideal.Ideal(*args, **kwds)

Create the ideal in ring with given generators.

There are some shorthand notations for creating an ideal, in addition to using the Ideal () function:

- R.ideal(gens, coerce=True)
- gens*R
- R*gens

INPUT:

- R A ring (optional; if not given, will try to infer it from gens)
- gens list of elements generating the ideal
- coerce bool (optional, default: True); whether gens need to be coerced into the ring.

OUTPUT: The ideal of ring generated by gens.

EXAMPLES:

```
sage: R.<x> = ZZ[]
sage: I = R.ideal([4 + 3*x + x^2, 1 + x^2])
sage: I
Ideal (x^2 + 3*x + 4, x^2 + 1) of Univariate Polynomial Ring in x over Integer_
\rightarrowRing
sage: Ideal(R, [4 + 3*x + x^2, 1 + x^2])
Ideal (x^2 + 3*x + 4, x^2 + 1) of Univariate Polynomial Ring in x over Integer_
\rightarrowRing
sage: Ideal((4 + 3*x + x^2, 1 + x^2))
Ideal (x^2 + 3*x + 4, x^2 + 1) of Univariate Polynomial Ring in x over Integer_
\rightarrowRing
```

26 Chapter 2. Ideals

```
sage: ideal(x^2-2*x+1, x^2-1)

Ideal (x^2-2*x+1, x^2-1) of Univariate Polynomial Ring in x over Integer.

\RightarrowRing

sage: ideal([x^2-2*x+1, x^2-1])

Ideal (x^2-2*x+1, x^2-1])

Ideal (x^2-2*x+1, x^2-1] of Univariate Polynomial Ring in x over Integer.

\RightarrowRing

sage: 1 = [x^2-2*x+1, x^2-1]

sage: ideal(1 = [x^2-2*x+1], 1 = [x^2-
```

This example illustrates how Sage finds a common ambient ring for the ideal, even though 1 is in the integers (in this case).

```
sage: R.<t> = ZZ['t']
sage: i = ideal(1,t,t^2)
sage: i
Ideal (1, t, t^2) of Univariate Polynomial Ring in t over Integer Ring
sage: ideal(1/2,t,t^2)
Principal ideal (1) of Univariate Polynomial Ring in t over Rational Field
```

This shows that the issues at trac ticket #1104 are resolved:

```
sage: Ideal(3, 5)
Principal ideal (1) of Integer Ring
sage: Ideal(ZZ, 3, 5)
Principal ideal (1) of Integer Ring
sage: Ideal(2, 4, 6)
Principal ideal (2) of Integer Ring
```

You have to provide enough information that Sage can figure out which ring to put the ideal in.

```
sage: I = Ideal([])
Traceback (most recent call last):
...
ValueError: unable to determine which ring to embed the ideal in
sage: I = Ideal()
Traceback (most recent call last):
...
ValueError: need at least one argument
```

Note that some rings use different ideal implementations than the standard, even if they are PIDs.:

```
sage: R.<x> = GF(5)[]
sage: I = R*(x^2+3)
sage: type(I)
<class 'sage.rings.polynomial.ideal_1poly_field'>
```

You can also pass in a specific ideal type:

```
sage: from sage.rings.ideal import Ideal_pid
sage: I = Ideal(x^2+3,ideal_class=Ideal_pid)
sage: type(I)
<class 'sage.rings.ideal.Ideal_pid'>
```

```
class sage.rings.ideal.Ideal_fractional (ring, gens, coerce=True)
    Bases: sage.rings.ideal.Ideal_generic
```

Fractional ideal of a ring.

```
See Ideal().
```

class sage.rings.ideal.Ideal_generic(ring, gens, coerce=True)

Bases: sage.structure.element.MonoidElement

An ideal.

See Ideal().

absolute_norm()

Returns the absolute norm of this ideal.

In the general case, this is just the ideal itself, since the ring it lies in can't be implicitly assumed to be an extension of anything.

We include this function for compatibility with cases such as ideals in number fields.

Todo: Implement this method.

EXAMPLES:

```
sage: R.<t> = GF(9, names='a')[]
sage: I = R.ideal(t^4 + t + 1)
sage: I.absolute_norm()
Traceback (most recent call last):
...
NotImplementedError
```

apply_morphism(phi)

Apply the morphism phi to every element of this ideal. Returns an ideal in the domain of phi.

EXAMPLES:

```
sage: psi = ZZ['x'].hom([-ZZ['x'].0])
sage: J = ideal([ZZ['x'].0, 2]); J
Ideal (x, 2) of Univariate Polynomial Ring in x over Integer Ring
sage: psi(J)
Ideal (-x, 2) of Univariate Polynomial Ring in x over Integer Ring
sage: J.apply_morphism(psi)
Ideal (-x, 2) of Univariate Polynomial Ring in x over Integer Ring
```

associated_primes()

Return the list of associated prime ideals of this ideal.

EXAMPLES:

28 Chapter 2. Ideals

```
sage: R = ZZ['x']
sage: I = R.ideal(7)
sage: I.associated_primes()
Traceback (most recent call last):
...
NotImplementedError
```

base ring()

Returns the base ring of this ideal.

EXAMPLES:

```
sage: R = ZZ
sage: I = 3*R; I
Principal ideal (3) of Integer Ring
sage: J = 2*I; J
Principal ideal (6) of Integer Ring
sage: I.base_ring(); J.base_ring()
Integer Ring
Integer Ring
```

We construct an example of an ideal of a quotient ring:

```
sage: R = PolynomialRing(QQ, 'x'); x = R.gen()
sage: I = R.ideal(x^2 - 2)
sage: I.base_ring()
Rational Field
```

And *p*-adic numbers:

```
sage: R = Zp(7, prec=10); R
7-adic Ring with capped relative precision 10
sage: I = 7*R; I
Principal ideal (7 + O(7^11)) of 7-adic Ring with capped relative precision 10
sage: I.base_ring()
7-adic Ring with capped relative precision 10
```

category()

Return the category of this ideal.

Note: category is dependent on the ring of the ideal.

EXAMPLES:

```
sage: P.<x> = ZZ[]
sage: I = ZZ.ideal(7)
sage: J = P.ideal(7,x)
sage: K = P.ideal(7)
sage: I.category()
Category of ring ideals in Integer Ring
sage: J.category()
Category of ring ideals in Univariate Polynomial Ring in x
over Integer Ring
sage: K.category()
Category of ring ideals in Univariate Polynomial Ring in x
over Integer Ring
```

embedded primes()

Return the list of embedded primes of this ideal.

EXAMPLES:

```
sage: R.<x, y> = QQ[]
sage: I = R.ideal(x^2, x*y)
sage: I.embedded_primes()
[Ideal (y, x) of Multivariate Polynomial Ring in x, y over Rational Field]
```

gen(i)

Return the i-th generator in the current basis of this ideal.

EXAMPLES:

```
sage: P.<x,y> = PolynomialRing(QQ,2)
sage: I = Ideal([x,y+1]); I
Ideal (x, y + 1) of Multivariate Polynomial Ring in x, y over Rational Field
sage: I.gen(1)
y + 1

sage: ZZ.ideal(5,10).gen()
```

gens()

Return a set of generators / a basis of self.

This is the set of generators provided during creation of this ideal.

EXAMPLES:

```
sage: P.<x,y> = PolynomialRing(QQ,2)
sage: I = Ideal([x,y+1]); I
Ideal (x, y + 1) of Multivariate Polynomial Ring in x, y over Rational Field
sage: I.gens()
[x, y + 1]
```

```
sage: ZZ.ideal(5,10).gens()
(5,)
```

gens_reduced()

Same as gens () for this ideal, since there is currently no special gens_reduced algorithm implemented for this ring.

This method is provided so that ideals in **Z** have the method gens_reduced(), just like ideals of number fields.

EXAMPLES:

```
sage: ZZ.ideal(5).gens_reduced()
(5,)
```

is_maximal()

Return True if the ideal is maximal in the ring containing the ideal.

Todo: This is not implemented for many rings. Implement it!

EXAMPLES:

30 Chapter 2. Ideals

```
sage: R = ZZ
sage: I = R.ideal(7)
sage: I.is_maximal()
True
sage: R.ideal(16).is_maximal()
False
sage: S = Integers(8)
sage: S.ideal(0).is_maximal()
False
sage: S.ideal(2).is_maximal()
True
sage: S.ideal(4).is_maximal()
False
```

is primary (*P*=*None*)

Returns True if this ideal is primary (or *P*-primary, if a prime ideal *P* is specified).

Recall that an ideal I is primary if and only if I has a unique associated prime (see page 52 in [AM1969]). If this prime is P, then I is said to be P-primary.

INPUT:

• P - (default: None) a prime ideal in the same ring

EXAMPLES:

```
sage: R.<x, y> = QQ[]
sage: I = R.ideal([x^2, x*y])
sage: I.is_primary()
False
sage: J = I.primary_decomposition()[1]; J
Ideal (y, x^2) of Multivariate Polynomial Ring in x, y over Rational Field
sage: J.is_primary()
True
sage: J.is_prime()
False
```

Some examples from the Macaulay2 documentation:

```
sage: R.<x, y, z> = GF(101)[]
sage: I = R.ideal([y^6])
sage: I.is_primary()
True
sage: I.is_primary(R.ideal([y]))
True
sage: I = R.ideal([x^4, y^7])
sage: I.is_primary()
True
sage: I = R.ideal([x*y, y^2])
sage: I.is_primary()
False
```

Note: This uses the list of associated primes.

is_prime()

Return True if this ideal is prime.

EXAMPLES:

```
sage: R. \langle x, y \rangle = QQ[]
sage: I = R.ideal([x, y])
sage: I.is_prime()
                          # a maximal ideal
True
sage: I = R.ideal([x^2-y])
                          # a non-maximal prime ideal
sage: I.is_prime()
sage: I = R.ideal([x^2, y])
sage: I.is_prime()
                          # a non-prime primary ideal
False
sage: I = R.ideal([x^2, x*y])
sage: I.is_prime()
                     # a non-prime non-primary ideal
False
sage: S = Integers(8)
sage: S.ideal(0).is_prime()
False
sage: S.ideal(2).is_prime()
sage: S.ideal(4).is_prime()
False
```

Note that this method is not implemented for all rings where it could be:

```
sage: R.<x> = ZZ[]
sage: I = R.ideal(7)
sage: I.is_prime()  # when implemented, should be True
Traceback (most recent call last):
...
NotImplementedError
```

Note: For general rings, uses the list of associated primes.

is_principal()

Returns True if the ideal is principal in the ring containing the ideal.

Todo: Code is naive. Only keeps track of ideal generators as set during initialization of the ideal. (Can the base ring change? See example below.)

EXAMPLES:

```
sage: R = ZZ['x']
sage: I = R.ideal(2,x)
sage: I.is_principal()
Traceback (most recent call last):
...
NotImplementedError
sage: J = R.base_extend(QQ).ideal(2,x)
sage: J.is_principal()
True
```

is_trivial()

Return True if this ideal is (0) or (1).

32 Chapter 2. Ideals

minimal associated primes()

Return the list of minimal associated prime ideals of this ideal.

EXAMPLES:

```
sage: R = ZZ['x']
sage: I = R.ideal(7)
sage: I.minimal_associated_primes()
Traceback (most recent call last):
...
NotImplementedError
```

ngens()

Return the number of generators in the basis.

EXAMPLES:

```
sage: P.<x,y> = PolynomialRing(QQ,2)
sage: I = Ideal([x,y+1]); I
Ideal (x, y + 1) of Multivariate Polynomial Ring in x, y over Rational Field
sage: I.ngens()
2
sage: ZZ.ideal(5,10).ngens()
1
```

norm()

Returns the norm of this ideal.

In the general case, this is just the ideal itself, since the ring it lies in can't be implicitly assumed to be an extension of anything.

We include this function for compatibility with cases such as ideals in number fields.

EXAMPLES:

primary_decomposition()

Return a decomposition of this ideal into primary ideals.

EXAMPLES:

```
sage: R = ZZ['x']
sage: I = R.ideal(7)
sage: I.primary_decomposition()
Traceback (most recent call last):
...
NotImplementedError
```

random_element(*args, **kwds)

Return a random element in this ideal.

```
sage: P.<a,b,c> = GF(5)[[]]
sage: I = P.ideal([a^2, a*b + c, c^3])
sage: I.random_element() # random
2*a^5*c + a^2*b*c^4 + ... + O(a, b, c)^13
```

reduce(f)

Return the reduction of the element of f modulo self.

This is an element of R that is equivalent modulo I to f where I is self.

EXAMPLES:

```
sage: ZZ.ideal(5).reduce(17)
2
sage: parent(ZZ.ideal(5).reduce(17))
Integer Ring
```

ring()

Returns the ring containing this ideal.

EXAMPLES:

```
sage: R = ZZ
sage: I = 3*R; I
Principal ideal (3) of Integer Ring
sage: J = 2*I; J
Principal ideal (6) of Integer Ring
sage: I.ring(); J.ring()
Integer Ring
Integer Ring
```

Note that self.ring() is different from self.base_ring()

```
sage: R = PolynomialRing(QQ, 'x'); x = R.gen()
sage: I = R.ideal(x^2 - 2)
sage: I.base_ring()
Rational Field
sage: I.ring()
Univariate Polynomial Ring in x over Rational Field
```

Another example using polynomial rings:

```
sage: R = PolynomialRing(QQ, 'x'); x = R.gen()
sage: I = R.ideal(x^2 - 3)
sage: I.ring()
Univariate Polynomial Ring in x over Rational Field
sage: Rbar = R.quotient(I, names='a')
sage: S = PolynomialRing(Rbar, 'y'); y = Rbar.gen(); S
Univariate Polynomial Ring in y over Univariate Quotient Polynomial Ring in a
    →over Rational Field with modulus x^2 - 3
sage: J = S.ideal(y^2 + 1)
sage: J.ring()
Univariate Polynomial Ring in y over Univariate Quotient Polynomial Ring in a
    →over Rational Field with modulus x^2 - 3
```

```
class sage.rings.ideal.Ideal_pid(ring, gen)
    Bases: sage.rings.ideal.Ideal_principal
```

An ideal of a principal ideal domain.

34 Chapter 2. Ideals

```
See Ideal().
```

gcd (other)

Returns the greatest common divisor of the principal ideal with the ideal other; that is, the largest principal ideal contained in both the ideal and other

Todo: This is not implemented in the case when other is neither principal nor when the generator of self is contained in other. Also, it seems that this class is used only in PIDs-is this redundant?

Note: The second example is broken.

EXAMPLES:

An example in the principal ideal domain **Z**:

```
sage: R = ZZ
sage: I = R.ideal(42)
sage: J = R.ideal(70)
sage: I.gcd(J)
Principal ideal (14) of Integer Ring
sage: J.gcd(I)
Principal ideal (14) of Integer Ring
```

is_maximal()

Returns whether this ideal is maximal.

Principal ideal domains have Krull dimension 1 (or 0), so an ideal is maximal if and only if it's prime (and nonzero if the ring is not a field).

EXAMPLES:

```
sage: R.<t> = GF(5)[]
sage: p = R.ideal(t^2 + 2)
sage: p.is_maximal()
True
sage: p = R.ideal(t^2 + 1)
sage: p.is_maximal()
False
sage: p = R.ideal(0)
sage: p.is_maximal()
False
sage: p = R.ideal(1)
sage: p.is_maximal()
False
```

is_prime()

Return True if the ideal is prime.

This relies on the ring elements having a method is_irreducible() implemented, since an ideal (a) is prime iff a is irreducible (or 0).

EXAMPLES:

```
sage: ZZ.ideal(2).is_prime()
True
sage: ZZ.ideal(-2).is_prime()
```

In fields, only the zero ideal is prime:

```
sage: RR.ideal(0).is_prime()
True
sage: RR.ideal(7).is_prime()
False
```

reduce(f)

Return the reduction of f modulo self.

EXAMPLES:

```
sage: I = 8*ZZ
sage: I.reduce(10)
2
sage: n = 10; n.mod(I)
2
```

residue field()

Return the residue class field of this ideal, which must be prime.

Todo: Implement this for more general rings. Currently only defined for **Z** and for number field orders.

EXAMPLES:

```
sage: P = ZZ.ideal(61); P
Principal ideal (61) of Integer Ring
sage: F = P.residue_field(); F
Residue field of Integers modulo 61
sage: pi = F.reduction_map(); pi
Partially defined reduction map:
 From: Rational Field
       Residue field of Integers modulo 61
sage: pi(123/234)
sage: pi(1/61)
Traceback (most recent call last):
ZeroDivisionError: Cannot reduce rational 1/61 modulo 61: it has negative,
⇔valuation
sage: lift = F.lift_map(); lift
Lifting map:
 From: Residue field of Integers modulo 61
```

(continues on next page)

36 Chapter 2. Ideals

```
To: Integer Ring
sage: lift(F(12345/67890))
33
sage: (12345/67890) % 61
33
```

class sage.rings.ideal.Ideal_principal(ring, gens, coerce=True)

Bases: sage.rings.ideal.Ideal_generic

A principal ideal.

See Ideal().

divides (other)

Return True if self divides other.

EXAMPLES:

```
sage: P.<x> = PolynomialRing(QQ)
sage: I = P.ideal(x)
sage: J = P.ideal(x^2)
sage: I.divides(J)
True
sage: J.divides(I)
False
```

gen()

Returns the generator of the principal ideal. The generators are elements of the ring containing the ideal.

EXAMPLES:

A simple example in the integers:

```
sage: R = ZZ
sage: I = R.ideal(7)
sage: J = R.ideal(7, 14)
sage: I.gen(); J.gen()
7
7
```

Note that the generator belongs to the ring from which the ideal was initialized:

```
sage: R.<x> = ZZ[]
sage: I = R.ideal(x)
sage: J = R.base_extend(QQ).ideal(2,x)
sage: a = I.gen(); a
x
sage: b = J.gen(); b
1
sage: a.base_ring()
Integer Ring
sage: b.base_ring()
Rational Field
```

is_principal()

Returns True if the ideal is principal in the ring containing the ideal. When the ideal construction is explicitly principal (i.e. when we define an ideal with one element) this is always the case.

Note that Sage automatically coerces ideals into principal ideals during initialization:

```
sage: R.<x> = ZZ[]
sage: I = R.ideal(x)
sage: J = R.ideal(2,x)
sage: K = R.base_extend(QQ).ideal(2,x)
sage: I
Principal ideal (x) of Univariate Polynomial Ring in x
over Integer Ring
sage: J
Ideal (2, x) of Univariate Polynomial Ring in x over Integer Ring
sage: K
Principal ideal (1) of Univariate Polynomial Ring in x
over Rational Field
sage: I.is_principal()
True
sage: K.is_principal()
True
```

sage.rings.ideal.**Katsura** (*R*, *n=None*, *homog=False*, *singular=Singular*) n-th katsura ideal of R if R is coercible to Singular.

INPUT:

- R base ring to construct ideal for
- n (default: None) which katsura ideal of R. If None, then n is set to R. ngens ().
- homog if True a homogeneous ideal is returned using the last variable in the ideal (default: False)
- singular singular instance to use

EXAMPLES:

```
sage: P.<x,y,z> = PolynomialRing(QQ,3)
sage: I = sage.rings.ideal.Katsura(P,3); I
Ideal (x + 2*y + 2*z - 1, x^2 + 2*y^2 + 2*z^2 - x, 2*x*y + 2*y*z - y)
of Multivariate Polynomial Ring in x, y, z over Rational Field
```

```
sage: Q.<x> = PolynomialRing(QQ, implementation="singular")
sage: J = sage.rings.ideal.Katsura(Q,1); J
Ideal (x - 1) of Multivariate Polynomial Ring in x over Rational Field
```

sage.rings.ideal.is_Ideal(x)

Return True if object is an ideal of a ring.

EXAMPLES:

A simple example involving the ring of integers. Note that Sage does not interpret rings objects themselves as ideals. However, one can still explicitly construct these ideals:

```
sage: from sage.rings.ideal import is_Ideal
sage: R = ZZ
sage: is_Ideal(R)
False
sage: 1*R; is_Ideal(1*R)
Principal ideal (1) of Integer Ring
True
sage: 0*R; is_Ideal(0*R)
Principal ideal (0) of Integer Ring
True
```

38 Chapter 2. Ideals

Sage recognizes ideals of polynomial rings as well:

```
sage: R = PolynomialRing(QQ, 'x'); x = R.gen()
sage: I = R.ideal(x^2 + 1); I
Principal ideal (x^2 + 1) of Univariate Polynomial Ring in x over Rational Field
sage: is_Ideal(I)
True
sage: is_Ideal((x^2 + 1)*R)
True
```

2.2 Monoid of ideals in a commutative ring

WARNING: This is used by some rings that are not commutative!

```
sage: MS = MatrixSpace(QQ,3,3)
sage: type(MS.ideal(MS.one()).parent())
<class 'sage.rings.ideal_monoid.IdealMonoid_c_with_category'>
```

```
sage.rings.ideal_monoid.IdealMonoid(R)
```

Return the monoid of ideals in the ring R.

EXAMPLES:

```
sage: R = QQ['x']
sage: sage.rings.ideal_monoid.IdealMonoid(R)
Monoid of ideals of Univariate Polynomial Ring in x over Rational Field
```

```
class sage.rings.ideal_monoid.IdealMonoid_c(R)
```

Bases: sage.structure.parent.Parent

The monoid of ideals in a commutative ring.

Element

```
alias of sage.rings.ideal.Ideal_generic
```

ring(

Return the ring of which this is the ideal monoid.

EXAMPLES:

```
sage: R = QuadraticField(-23, 'a')
sage: M = sage.rings.ideal_monoid.IdealMonoid(R); M.ring() is R
True
```

2.3 Ideals of non-commutative rings

Generic implementation of one- and two-sided ideals of non-commutative rings.

AUTHOR:

• Simon King (2011-03-21), <simon.king@uni-jena.de>, trac ticket #7797.

```
sage: MS = MatrixSpace(ZZ, 2, 2)
sage: MS*MS([0,1,-2,3])
Left Ideal
 [ 0 1]
 [-2 3]
of Full MatrixSpace of 2 by 2 dense matrices over Integer Ring
sage: MS([0,1,-2,3]) * MS
Right Ideal
  [ 0 1]
  [-2 \ 3]
of Full MatrixSpace of 2 by 2 dense matrices over Integer Ring
sage: MS * MS ([0,1,-2,3]) * MS
Twosided Ideal
 [ 0 1]
  [-2 3]
of Full MatrixSpace of 2 by 2 dense matrices over Integer Ring
```

See letterplace_ideal for a more elaborate implementation in the special case of ideals in free algebras.

```
class sage.rings.noncommutative_ideals.IdealMonoid_nc(R)
    Bases: sage.rings.ideal_monoid.IdealMonoid_c
```

Base class for the monoid of ideals over a non-commutative ring.

Note: This class is essentially the same as *IdealMonoid_c*, but does not complain about non-commutative rings.

EXAMPLES:

```
sage: MS = MatrixSpace(ZZ,2,2)
sage: MS.ideal_monoid()
Monoid of ideals of Full MatrixSpace of 2 by 2 dense matrices over Integer Ring
```

Generic non-commutative ideal.

All fancy stuff such as the computation of Groebner bases must be implemented in sub-classes. See LetterplaceIdeal for an example.

EXAMPLES:

```
sage: MS = MatrixSpace(QQ,2,2)
sage: I = MS*[MS.1,MS.2]; I
Left Ideal
(
   [0 1]
   [0 0],
```

(continues on next page)

40 Chapter 2. Ideals

```
[0 0]
  [1 0]
of Full MatrixSpace of 2 by 2 dense matrices over Rational Field
sage: [MS.1,MS.2]*MS
Right Ideal
 [0 1]
 [0 0],
 [0 0]
 [1 0]
of Full MatrixSpace of 2 by 2 dense matrices over Rational Field
sage: MS*[MS.1,MS.2]*MS
Twosided Ideal
  [0 1]
  [0 0],
  [0 0]
 [1 0]
of Full MatrixSpace of 2 by 2 dense matrices over Rational Field
```

side()

Return a string that describes the sidedness of this ideal.

```
sage: A = SteenrodAlgebra(2)
sage: IL = A*[A.1+A.2,A.1^2]
sage: IR = [A.1+A.2,A.1^2]*A
sage: IT = A*[A.1+A.2,A.1^2]*A
sage: IL.side()
'left'
sage: IR.side()
'right'
sage: IT.side()
'twosided'
```

42 Chapter 2. Ideals

CHAPTER

THREE

RING MORPHISMS

3.1 Homomorphisms of rings

We give a large number of examples of ring homomorphisms.

EXAMPLES:

Natural inclusion $\mathbf{Z} \hookrightarrow \mathbf{Q}$:

There is no homomorphism in the other direction:

```
sage: H = Hom(QQ, ZZ)
sage: H([1])
Traceback (most recent call last):
...
ValueError: relations do not all (canonically) map to 0 under map determined by
→images of generators
```

EXAMPLES:

Reduction to finite field:

```
sage: H = Hom(ZZ, GF(9, 'a'))
sage: phi = H([1])
sage: phi(5)
2
sage: psi = H([4])
sage: psi(5)
```

Map from single variable polynomial ring:

```
sage: R.<x> = ZZ[]
sage: phi = R.hom([2], GF(5))
sage: phi
Ring morphism:
  From: Univariate Polynomial Ring in x over Integer Ring
  To: Finite Field of size 5
  Defn: x |--> 2
sage: phi(x + 12)
4
```

Identity map on the real numbers:

```
sage: f = RR.hom([RR(1)]); f
Ring endomorphism of Real Field with 53 bits of precision
  Defn: 1.00000000000000 |--> 1.0000000000000
sage: f(2.5)
2.500000000000000
sage: f = RR.hom([2.0])
Traceback (most recent call last):
...
ValueError: relations do not all (canonically) map to 0 under map determined by images of generators
```

Homomorphism from one precision of field to another.

From smaller to bigger doesn't make sense:

```
sage: R200 = RealField(200)
sage: f = RR.hom( R200 )
Traceback (most recent call last):
...
TypeError: natural coercion morphism from Real Field with 53 bits of precision to
→Real Field with 200 bits of precision not defined
```

From bigger to small does:

```
sage: f = RR.hom( RealField(15) )
sage: f(2.5)
2.500
sage: f(RR.pi())
3.142
```

Inclusion map from the reals to the complexes:

```
sage: i = RR.hom([CC(1)]); i
Ring morphism:
    From: Real Field with 53 bits of precision
    To:    Complex Field with 53 bits of precision
    Defn: 1.00000000000000 |--> 1.000000000000
sage: i(RR('3.1'))
3.100000000000000
```

A map from a multivariate polynomial ring to itself:

```
sage: R.<x,y,z> = PolynomialRing(QQ,3)
sage: phi = R.hom([y,z,x^2]); phi
Ring endomorphism of Multivariate Polynomial Ring in x, y, z over Rational Field
```

```
Defn: x |--> y
y |--> z
z |--> x^2

sage: phi(x+y+z)
x^2 + y + z
```

An endomorphism of a quotient of a multi-variate polynomial ring:

The reduction map from the integers to the integers modulo 8, viewed as a quotient ring:

```
sage: R = ZZ.quo(8*ZZ)
sage: pi = R.cover()
sage: pi
Ring morphism:
 From: Integer Ring
 To: Ring of integers modulo 8
 Defn: Natural quotient map
sage: pi.domain()
Integer Ring
sage: pi.codomain()
Ring of integers modulo 8
sage: pi(10)
sage: pi.lift()
Set-theoretic ring morphism:
 From: Ring of integers modulo 8
 To: Integer Ring
 Defn: Choice of lifting map
sage: pi.lift(13)
```

Inclusion of GF (2) into GF (4, 'a'):

```
sage: k = GF(2)
sage: i = k.hom(GF(4, 'a'))
sage: i
Ring morphism:
  From: Finite Field of size 2
  To: Finite Field in a of size 2^2
  Defn: 1 |--> 1
sage: i(0)
0
sage: a = i(1); a.parent()
Finite Field in a of size 2^2
```

We next compose the inclusion with reduction from the integers to GF (2):

```
sage: pi = ZZ.hom(k)
sage: pi
Natural morphism:
 From: Integer Ring
 To: Finite Field of size 2
sage: f = i * pi
sage: f
Composite map:
 From: Integer Ring
 To: Finite Field in a of size 2^2
 Defn: Natural morphism:
         From: Integer Ring
         To: Finite Field of size 2
       then
         Ring morphism:
         From: Finite Field of size 2
         To: Finite Field in a of size 2^2
         Defn: 1 |--> 1
sage: a = f(5); a
sage: a.parent()
Finite Field in a of size 2^2
```

Inclusion from **Q** to the 3-adic field:

```
sage: phi = QQ.hom(Qp(3, print_mode = 'series'))
sage: phi
Ring morphism:
  From: Rational Field
  To:   3-adic Field with capped relative precision 20
sage: phi.codomain()
3-adic Field with capped relative precision 20
sage: phi(394)
1 + 2*3 + 3^2 + 2*3^3 + 3^4 + 3^5 + O(3^20)
```

An automorphism of a quotient of a univariate polynomial ring:

```
sage: R.<x> = PolynomialRing(QQ)
sage: S.<sqrt2> = R.quo(x^2-2)
sage: sqrt2^2
2
sage: (3+sqrt2)^10
993054*sqrt2 + 1404491
sage: c = S.hom([-sqrt2])
sage: c(1+sqrt2)
-sqrt2 + 1
```

Note that Sage verifies that the morphism is valid:

```
sage: (1 - sqrt2)^2
-2*sqrt2 + 3
sage: c = S.hom([1-sqrt2])  # this is not valid
Traceback (most recent call last):
...
ValueError: relations do not all (canonically) map to 0 under map determined by 
→ images of generators
```

Endomorphism of power series ring:

```
sage: R.<t> = PowerSeriesRing(QQ); R
Power Series Ring in t over Rational Field
sage: f = R.hom([t^2]); f
Ring endomorphism of Power Series Ring in t over Rational Field
Defn: t |--> t^2
sage: R.set_default_prec(10)
sage: s = 1/(1 + t); s
1 - t + t^2 - t^3 + t^4 - t^5 + t^6 - t^7 + t^8 - t^9 + O(t^10)
sage: f(s)
1 - t^2 + t^4 - t^6 + t^8 - t^10 + t^12 - t^14 + t^16 - t^18 + O(t^20)
```

Frobenius on a power series ring over a finite field:

```
sage: R.<t> = PowerSeriesRing(GF(5))
sage: f = R.hom([t^5]); f
Ring endomorphism of Power Series Ring in t over Finite Field of size 5
    Defn: t |--> t^5
sage: a = 2 + t + 3*t^2 + 4*t^3 + O(t^4)
sage: b = 1 + t + 2*t^2 + t^3 + O(t^5)
sage: f(a)
2 + t^5 + 3*t^10 + 4*t^15 + O(t^20)
sage: f(b)
1 + t^5 + 2*t^10 + t^15 + O(t^25)
sage: f(a*b)
2 + 3*t^5 + 3*t^10 + t^15 + O(t^20)
sage: f(a)*f(b)
2 + 3*t^5 + 3*t^10 + t^15 + O(t^20)
```

Homomorphism of Laurent series ring:

```
sage: R.<t> = LaurentSeriesRing(QQ, 10)
sage: f = R.hom([t^3 + t]); f
Ring endomorphism of Laurent Series Ring in t over Rational Field
    Defn: t |--> t + t^3
sage: s = 2/t^2 + 1/(1 + t); s
2*t^-2 + 1 - t + t^2 - t^3 + t^4 - t^5 + t^6 - t^7 + t^8 - t^9 + O(t^10)
sage: f(s)
2*t^-2 - 3 - t + 7*t^2 - 2*t^3 - 5*t^4 - 4*t^5 + 16*t^6 - 9*t^7 + O(t^8)
sage: f = R.hom([t^3]); f
Ring endomorphism of Laurent Series Ring in t over Rational Field
    Defn: t |--> t^3
sage: f(s)
2*t^-6 + 1 - t^3 + t^6 - t^9 + t^12 - t^15 + t^18 - t^21 + t^24 - t^27 + O(t^30)
```

Note that the homomorphism must result in a converging Laurent series, so the valuation of the image of the generator must be positive:

```
sage: R.hom([1/t])
Traceback (most recent call last):
...
ValueError: relations do not all (canonically) map to 0 under map determined by
...
sage: R.hom([1])
Traceback (most recent call last):
...
ValueError: relations do not all (canonically) map to 0 under map determined by
...
...
valueError: relations do not all (canonically) map to 0 under map determined by
...
...
continues on next page)
```

Complex conjugation on cyclotomic fields:

```
sage: K.<zeta7> = CyclotomicField(7)
sage: c = K.hom([1/zeta7]); c
Ring endomorphism of Cyclotomic Field of order 7 and degree 6
  Defn: zeta7 |--> -zeta7^5 - zeta7^4 - zeta7^3 - zeta7^2 - zeta7 - 1
sage: a = (1+zeta7)^5; a
zeta7^5 + 5*zeta7^4 + 10*zeta7^3 + 10*zeta7^2 + 5*zeta7 + 1
sage: c(a)
5*zeta7^5 + 5*zeta7^4 - 4*zeta7^2 - 5*zeta7 - 4
sage: c(zeta7 + 1/zeta7)  # this element is obviously fixed by inversion
-zeta7^5 - zeta7^4 - zeta7^3 - zeta7^2 - 1
sage: zeta7 + 1/zeta7
-zeta7^5 - zeta7^4 - zeta7^3 - zeta7^2 - 1
```

Embedding a number field into the reals:

```
sage: R.<x> = PolynomialRing(QQ)
sage: K.<beta> = NumberField(x^3 - 2)
sage: alpha = RR(2)^(1/3); alpha
1.25992104989487
sage: i = K.hom([alpha], check=False); i
Ring morphism:
  From: Number Field in beta with defining polynomial x^3 - 2
  To: Real Field with 53 bits of precision
  Defn: beta |--> 1.25992104989487
sage: i(beta)
1.25992104989487
sage: i(beta^3)
2.00000000000000
sage: i(beta^2 + 1)
2.58740105196820
```

An example from Jim Carlson:

```
sage: K = QQ # by the way :-)
sage: R.\langle a,b,c,d\rangle = K[]; R
Multivariate Polynomial Ring in a, b, c, d over Rational Field
sage: S.<u> = K[]; S
Univariate Polynomial Ring in u over Rational Field
sage: f = R.hom([0,0,0,u], S); f
Ring morphism:
 From: Multivariate Polynomial Ring in a, b, c, d over Rational Field
 To: Univariate Polynomial Ring in u over Rational Field
  Defn: a |--> 0
        b |--> 0
        c I--> 0
        d |--> u
sage: f(a+b+c+d)
sage: f((a+b+c+d)^2)
u^2
```

class sage.rings.morphism.FrobeniusEndomorphism_generic

Bases: sage.rings.morphism.RingHomomorphism

A class implementing Frobenius endomorphisms on rings of prime characteristic.

power()

Return an integer n such that this endomorphism is the n-th power of the absolute (arithmetic) Frobenius.

EXAMPLES:

```
sage: K.<u> = PowerSeriesRing(GF(5))
sage: Frob = K.frobenius_endomorphism()
sage: Frob.power()
1
sage: (Frob^9).power()
9
```

class sage.rings.morphism.RingHomomorphism

```
Bases: sage.rings.morphism.RingMap
```

Homomorphism of rings.

$inverse_image(I)$

Return the inverse image of the ideal *I* under this ring homomorphism.

EXAMPLES:

This is not implemented in any generality yet:

```
sage: f = ZZ.hom(Zp(2))
sage: f.inverse_image(ZZ.ideal(2))
Traceback (most recent call last):
...
NotImplementedError
```

lift(x=None)

Return a lifting homomorphism associated to this homomorphism, if it has been defined.

If x is not None, return the value of the lift morphism on x.

EXAMPLES:

```
sage: R.<x,y> = QQ[]
sage: f = R.hom([x,x])
sage: f(x+y)
2*x
sage: f.lift()
Traceback (most recent call last):
...
ValueError: no lift map defined
sage: g = R.hom(R)
sage: f._set_lift(g)
sage: f._set_lift() == g
True
sage: f.lift(x)
x
```

pushforward(I)

Returns the pushforward of the ideal *I* under this ring homomorphism.

class sage.rings.morphism.RingHomomorphism_coercion

Bases: sage.rings.morphism.RingHomomorphism

A ring homomorphism that is a coercion.

class sage.rings.morphism.RingHomomorphism_cover

Bases: sage.rings.morphism.RingHomomorphism

A homomorphism induced by quotienting a ring out by an ideal.

EXAMPLES:

```
sage: R.<x,y> = PolynomialRing(QQ, 2)
sage: S.<a,b> = R.quo(x^2 + y^2)
sage: phi = S.cover(); phi
Ring morphism:
  From: Multivariate Polynomial Ring in x, y over Rational Field
  To: Quotient of Multivariate Polynomial Ring in x, y over Rational Field by
  →the ideal (x^2 + y^2)
  Defn: Natural quotient map
sage: phi(x+y)
a + b
```

kernel()

Return the kernel of this covering morphism, which is the ideal that was quotiented out by.

EXAMPLES:

```
sage: f = Zmod(6).cover()
sage: f.kernel()
Principal ideal (6) of Integer Ring
```

class sage.rings.morphism.RingHomomorphism_from_base

Bases: sage.rings.morphism.RingHomomorphism

A ring homomorphism determined by a ring homomorphism of the base ring.

AUTHOR:

• Simon King (initial version, 2010-04-30)

EXAMPLES:

We define two polynomial rings and a ring homomorphism:

```
sage: R.<x,y> = QQ[]
sage: S.<z> = QQ[]
sage: f = R.hom([2*z,3*z],S)
```

Now we construct polynomial rings based on R and S, and let f act on the coefficients:

```
sage: PR.<t> = R[]
sage: PS = S['t']
sage: Pf = PR.hom(f,PS)
sage: Pf
```

```
Ring morphism:

From: Univariate Polynomial Ring in t over Multivariate Polynomial Ring in x, y, over Rational Field

To: Univariate Polynomial Ring in t over Univariate Polynomial Ring in z over, Rational Field

Defn: Induced from base ring by Ring morphism:

From: Multivariate Polynomial Ring in x, y over Rational Field

To: Univariate Polynomial Ring in z over Rational Field

Defn: x |--> 2*z

y |--> 3*z

sage: p = (x - 4*y + 1/13)*t^2 + (1/2*x^2 - 1/3*y^2)*t + 2*y^2 + x

sage: Pf(p)

(-10*z + 1/13)*t^2 - z^2*t + 18*z^2 + 2*z
```

Similarly, we can construct the induced homomorphism on a matrix ring over our polynomial rings:

```
sage: MR = MatrixSpace(R,2,2)
sage: MS = MatrixSpace(S,2,2)
sage: M = MR([x^2 + 1/7*x*y - y^2, -1/2*y^2 + 2*y + 1/6, 4*x^2 - 14*x, 1/2*y^2 + ...
\hookrightarrow 13/4 * x - 2/11 * y)
sage: Mf = MR.hom(f,MS)
sage: Mf
Ring morphism:
From: Full MatrixSpace of 2 by 2 dense matrices over Multivariate Polynomial.
→Ring in x, y over Rational Field
 To: Full MatrixSpace of 2 by 2 dense matrices over Univariate Polynomial Ring.
→in z over Rational Field
 Defn: Induced from base ring by
        Ring morphism:
          From: Multivariate Polynomial Ring in x, y over Rational Field
          To: Univariate Polynomial Ring in z over Rational Field
          Defn: x \mid --> 2*z
                y |--> 3*z
sage: Mf(M)
            -29/7*z^2 -9/2*z^2 + 6*z + 1/6
        16*z^2 - 28*z 	 9/2*z^2 + 131/22*z
```

The construction of induced homomorphisms is recursive, and so we have:

```
sage: MPR = MatrixSpace(PR, 2)
sage: MPS = MatrixSpace(PS, 2)
sage: M = MPR([(-x + y)*t^2 + 58*t - 3*x^2 + x*y, (-1/7*x*y - 1/40*x)*t^2 + ___
\leftrightarrow (5*x^2 + y^2)*t + 2*y, (-1/3*y + 1)*t^2 + 1/3*x*y + y^2 + 5/2*y + 1/4, (x + ...)*
\hookrightarrow6*y + 1)*t^2])
sage: MPf = MPR.hom(f,MPS); MPf
Ring morphism:
 From: Full MatrixSpace of 2 by 2 dense matrices over Univariate Polynomial Ring,
→in t over Multivariate Polynomial Ring in x, y over Rational Field
 To: Full MatrixSpace of 2 by 2 dense matrices over Univariate Polynomial Ring_
→in t over Univariate Polynomial Ring in z over Rational Field
 Defn: Induced from base ring by
        Ring morphism:
          From: Univariate Polynomial Ring in t over Multivariate Polynomial Ring.
\hookrightarrowin x, y over Rational Field
               Univariate Polynomial Ring in t over Univariate Polynomial Ring,
          To:
→in z over Rational Field
```

```
Defn: Induced from base ring by Ring morphism:

From: Multivariate Polynomial Ring in x, y over Rational Field

To: Univariate Polynomial Ring in z over Rational Field

Defn: x \mid --> 2*z
y \mid --> 3*z

sage: MPf(M)

[
z*t^2 + 58*t - 6*z^2 (-6/7*z^2 - 1/20*z)*t^2 + 29*z^2*t + 3*z^2 + 5*z^2
[
(-z + 1)*t^2 + 11*z^2 + 15/2*z + 1/4
(20*z + 1)*t^2
```

underlying_map()

Return the underlying homomorphism of the base ring.

EXAMPLES:

```
sage: R.<x,y> = QQ[]
sage: S.<z> = QQ[]
sage: f = R.hom([2*z,3*z],S)
sage: MR = MatrixSpace(R,2)
sage: MS = MatrixSpace(S,2)
sage: g = MR.hom(f,MS)
sage: g.underlying_map() == f
True
```

class sage.rings.morphism.RingHomomorphism_from_quotient

Bases: sage.rings.morphism.RingHomomorphism

A ring homomorphism with domain a generic quotient ring.

INPUT:

- parent a ring homset Hom (R, S)
- phi a ring homomorphism C --> S, where C is the domain of R.cover ()

OUTPUT: a ring homomorphism

The domain R is a quotient object $C \to R$, and R.cover () is the ring homomorphism $\varphi: C \to R$. The condition on the elements $\operatorname{im_gens}$ of S is that they define a homomorphism $C \to S$ such that each generator of the kernel of φ maps to 0.

EXAMPLES:

Validity of the homomorphism is determined, when possible, and a TypeError is raised if there is no homomorphism sending the generators to the given images:

```
sage: S.hom([b^2, c^2, a^2])
Traceback (most recent call last):
...
TypeError: images do not define a valid homomorphism
```

morphism_from_cover()

Underlying morphism used to define this quotient map, i.e., the morphism from the cover of the domain.

EXAMPLES:

class sage.rings.morphism.RingHomomorphism_im_gens

Bases: sage.rings.morphism.RingHomomorphism

A ring homomorphism determined by the images of generators.

im gens()

Return the images of the generators of the domain.

OUTPUT:

• list – a copy of the list of gens (it is safe to change this)

EXAMPLES:

```
sage: R.<x,y> = QQ[]
sage: f = R.hom([x,x+y])
sage: f.im_gens()
[x, x + y]
```

We verify that the returned list of images of gens is a copy, so changing it doesn't change f:

```
sage: f.im_gens()[0] = 5
sage: f.im_gens()
[x, x + y]
```

class sage.rings.morphism.RingMap

Bases: sage.categories.morphism.Morphism

Set-theoretic map between rings.

${\bf class} \ {\tt sage.rings.morphism.RingMap_lift}$

Bases: sage.rings.morphism.RingMap

Given rings R and S such that for any $x \in R$ the function x.lift() is an element that naturally coerces to S, this returns the set-theoretic ring map $R \to S$ sending x to x.lift().

EXAMPLES:

```
sage: R.<x,y> = QQ[]
sage: S.<xbar,ybar> = R.quo( (x^2 + y^2, y) )
sage: S.lift()
```

```
Set-theoretic ring morphism:

From: Quotient of Multivariate Polynomial Ring in x, y over Rational Field by

the ideal (x^2 + y^2, y)

To: Multivariate Polynomial Ring in x, y over Rational Field

Defn: Choice of lifting map

sage: S.lift() == 0

False
```

Since trac ticket #11068, it is possible to create quotient rings of non-commutative rings by two-sided ideals. It was needed to modify <code>RingMap_lift</code> so that rings can be accepted that are no instances of <code>sage.rings.ring.Ring</code>, as in the following example:

```
sage: MS = MatrixSpace(GF(5),2,2)
sage: I = MS*[MS.0*MS.1,MS.2+MS.3]*MS
sage: Q = MS.quo(I)
sage: Q.0*Q.1 # indirect doctest
[0 1]
[0 0]
```

sage.rings.morphism.is_RingHomomorphism(phi)

Return True if phi is of type RingHomomorphism.

EXAMPLES:

3.2 Space of homomorphisms between two rings

```
sage.rings.homset.RingHomset(R, S, category=None)
```

Construct a space of homomorphisms between the rings R and S.

For more on homsets, see ${\tt Hom}$ ().

EXAMPLES:

```
sage: Hom(ZZ, QQ) # indirect doctest
Set of Homomorphisms from Integer Ring to Rational Field
```

```
class sage.rings.homset.RingHomset_generic(R, S, category=None)
```

Bases: sage.categories.homset.HomsetWithBase

A generic space of homomorphisms between two rings.

```
sage: Hom(ZZ, QQ)
Set of Homomorphisms from Integer Ring to Rational Field
sage: QQ.Hom(ZZ)
Set of Homomorphisms from Rational Field to Integer Ring
```

$has_coerce_map_from(x)$

The default for coercion maps between ring homomorphism spaces is very restrictive (until more implementation work is done).

Currently this checks if the domains and the codomains are equal.

EXAMPLES:

```
sage: H = Hom(ZZ, QQ)
sage: H2 = Hom(QQ, ZZ)
sage: H.has_coerce_map_from(H2)
False
```

natural_map()

Returns the natural map from the domain to the codomain.

The natural map is the coercion map from the domain ring to the codomain ring.

EXAMPLES:

```
sage: H = Hom(ZZ, QQ)
sage: H.natural_map()
Natural morphism:
  From: Integer Ring
  To: Rational Field
```

zero()

Return the zero element of this homset.

EXAMPLES:

Since a ring homomorphism maps 1 to 1, there can only be a zero morphism when mapping to the trivial ring:

```
sage: Hom(ZZ, Zmod(1)).zero()
Ring morphism:
   From: Integer Ring
   To: Ring of integers modulo 1
   Defn: 1 |--> 0
sage: Hom(ZZ, Zmod(2)).zero()
Traceback (most recent call last):
...
ValueError: homset has no zero element
```

```
class sage.rings.homset.RingHomset_quo_ring(R, S, category=None)
```

```
Bases: sage.rings.homset.RingHomset_generic
```

Space of ring homomorphisms where the domain is a (formal) quotient ring.

EXAMPLES:

```
sage: R.<x,y> = PolynomialRing(QQ, 2)
sage: S.<a,b> = R.quotient(x^2 + y^2)
sage: phi = S.hom([b,a]); phi
```

```
Ring endomorphism of Quotient of Multivariate Polynomial Ring in x, y over

→Rational Field by the ideal (x^2 + y^2)

Defn: a |--> b

b |--> a

sage: phi(a)

b

sage: phi(b)

a
```

 $sage.rings.homset.is_RingHomset(H)$

Return True if H is a space of homomorphisms between two rings.

```
sage: from sage.rings.homset import is_RingHomset as is_RH
sage: is_RH(Hom(ZZ, QQ))
True
sage: is_RH(ZZ)
False
sage: is_RH(Hom(RR, CC))
True
sage: is_RH(Hom(FreeModule(ZZ,1), FreeModule(QQ,1)))
False
```

CHAPTER

FOUR

QUOTIENT RINGS

4.1 Quotient Rings

AUTHORS:

- · William Stein
- Simon King (2011-04): Put it into the category framework, use the new coercion model.
- Simon King (2011-04): Quotients of non-commutative rings by two sided ideals.

Todo: The following skipped tests should be removed once trac ticket #13999 is fixed:

```
sage: TestSuite(S).run(skip=['_test_nonzero_equal', '_test_elements', '_test_zero'])
```

In trac ticket #11068, non-commutative quotient rings R/I were implemented. The only requirement is that the two-sided ideal I provides a reduce method so that I.reduce(x) is the normal form of an element x with respect to I (i.e., we have I.reduce(x) == I.reduce(y) if $x-y \in I$, and x - I.reduce(x) in I). Here is a toy example:

```
sage: from sage.rings.noncommutative ideals import Ideal nc
sage: from itertools import product
sage: class PowerIdeal(Ideal_nc):
        def __init__(self, R, n):
              self.\_power = n
              self.\_power = n
              Ideal_nc.__init__(self, R, [R.prod(m) for m in product(R.gens(),...
→repeat=n)])
...: def reduce(self,x):
              R = self.ring()
              return add([c*R(m) for m,c in x if len(m) < self._power],R(0))</pre>
sage: F. \langle x, y, z \rangle = FreeAlgebra(QQ, 3)
sage: I3 = PowerIdeal(F,3); I3
Two sided Ideal (x^3, x^2*y, x^2*z, x*y*x, x*y^2, x*y*z, x*z*x, x*z*y,
x*z^2, y*x^2, y*x*y, y*x*z, y^2*x, y^3, y^2*z, y*z*x, y*z*y, y*z^2,
z*x^2, z*x*y, z*x*z, z*y*x, z*y^2, z*y*z, z^2*x, z^2*y, z^3) of
Free Algebra on 3 generators (x, y, z) over Rational Field
```

Free algebras have a custom quotient method that serves at creating finite dimensional quotients defined by multiplication matrices. We are bypassing it, so that we obtain the default quotient:

```
sage: Q3.<a,b,c> = F.quotient(I3)
sage: Q3
Quotient of Free Algebra on 3 generators (x, y, z) over Rational Field by
the ideal (x^3, x^2*y, x^2*z, x*y*x, x*y^2, x*y*z, x*z*x, x*z*y, x*z^2,
y*x^2, y*x*y, y*x*z, y^2*x, y^3, y^2*z, y*z*x, y*z*y, y*z^2, z*x^2, z*x*y,
z*x*z, z*y*x, z*y^2, z*y*z, z^2*x, z^2*y, z^3)
sage: (a+b+2)^4
16 + 32*a + 32*b + 24*a^2 + 24*a*b + 24*b*a + 24*b^2
sage: Q3.is_commutative()
False
```

Even though Q_3 is not commutative, there is commutativity for products of degree three:

```
sage: a*(b*c)-(b*c)*a==F.zero()
True
```

If we quotient out all terms of degree two then of course the resulting quotient ring is commutative:

```
sage: I2 = PowerIdeal(F,2); I2
Twosided Ideal (x^2, x*y, x*z, y*x, y^2, y*z, z*x, z*y, z^2) of Free Algebra
on 3 generators (x, y, z) over Rational Field
sage: Q2.<a,b,c> = F.quotient(I2)
sage: Q2.is_commutative()
True
sage: (a+b+2)^4
16 + 32*a + 32*b
```

Since trac ticket #7797, there is an implementation of free algebras based on Singular's implementation of the Letterplace Algebra. Our letterplace wrapper allows to provide the above toy example more easily:

 $\verb|sage.rings.quotient_ring.QuotientRing|(R,I,names=None)|$

Creates a quotient ring of the ring R by the two ideal I.

Variables are labeled by names (if the quotient ring is a quotient of a polynomial ring). If names isn't given, 'bar' will be appended to the variable names in *R*.

INPUT:

- R a ring.
- I a twosided ideal of R.
- names (optional) a list of strings to be used as names for the variables in the quotient ring R/I.

OUTPUT: R/I - the quotient ring R mod the ideal I

ASSUMPTION:

I has a method I.reduce (x) returning the normal form of elements $x \in R$. In other words, it is required that I.reduce (x) == I.reduce (y) $\iff x - y \in I$, and x-I.reduce (x) in I, for all $x, y \in R$.

EXAMPLES:

Some simple quotient rings with the integers:

```
sage: R = QuotientRing(ZZ,7*ZZ); R
Quotient of Integer Ring by the ideal (7)
sage: R.gens()
(1,)
sage: 1*R(3); 6*R(3); 7*R(3)
3
4
0
```

```
sage: S = QuotientRing(ZZ,ZZ.ideal(8)); S
Quotient of Integer Ring by the ideal (8)
sage: 2*S(4)
0
```

With polynomial rings (note that the variable name of the quotient ring can be specified as shown below):

```
sage: P.<x> = QQ[]
sage: R.<xx> = QuotientRing(P, P.ideal(x^2 + 1))
sage: R
Univariate Quotient Polynomial Ring in xx over Rational Field with modulus x^2 + 1
sage: R.gens(); R.gen()
(xx,)
xx
sage: for n in range(4): xx^n
1
xx
-1
-xx
```

```
sage: P.<x> = QQ[]
sage: S = QuotientRing(P, P.ideal(x^2 - 2))
sage: S
Univariate Quotient Polynomial Ring in xbar over Rational Field with
modulus x^2 - 2
sage: xbar = S.gen(); S.gen()
xbar
sage: for n in range(3): xbar^n
1
xbar
2
```

Sage coerces objects into ideals when possible:

```
sage: P.<x> = QQ[]
sage: R = QuotientRing(P, x^2 + 1); R
Univariate Quotient Polynomial Ring in xbar over Rational Field with
modulus x^2 + 1
```

By Noether's homomorphism theorems, the quotient of a quotient ring of R is just the quotient of R by the sum of the ideals. In this example, we end up modding out the ideal (x) from the ring $\mathbf{Q}[x,y]$:

class sage.rings.quotient_ring.QuotientRing_generic(R, I, names, category=None)

Bases: sage.rings.quotient_ring.QuotientRing_nc, sage.rings.ring.
CommutativeRing

Creates a quotient ring of a *commutative* ring R by the ideal I.

EXAMPLES:

```
sage: R.<x> = PolynomialRing(ZZ)
sage: I = R.ideal([4 + 3*x + x^2, 1 + x^2])
sage: S = R.quotient_ring(I); S
Quotient of Univariate Polynomial Ring in x over Integer Ring by the ideal (x^2 + 3*x + 4, x^2 + 1)
```

class sage.rings.quotient_ring.QuotientRing_nc(R, I, names, category=None)

Bases: sage.rings.ring.Ring, sage.structure.parent_gens.ParentWithGens

The quotient ring of R by a two-sided ideal I.

This class is for rings that do not inherit from CommutativeRing.

EXAMPLES:

Here is a quotient of a free algebra by a twosided homogeneous ideal:

```
sage: F.<x,y,z> = FreeAlgebra(QQ, implementation='letterplace')
sage: I = F*[x*y+y*z,x^2+x*y-y*x-y^2]*F
sage: Q.<a,b,c> = F.quo(I); Q
Quotient of Free Associative Unital Algebra on 3 generators (x, y, z) over_
→Rational Field by the ideal (x*y + y*z, x*x + x*y - y*x - y*y)
sage: a*b
-b*c
sage: a^3
-b*c*a - b*c*b - b*c*c
```

A quotient of a quotient is just the quotient of the original top ring by the sum of two ideals:

```
sage: J = Q*[a^3-b^3]*Q
sage: R.<i,j,k> = Q.quo(J); R
Quotient of Free Associative Unital Algebra on 3 generators (x, y, z) over_

Actional Field by the ideal (-y*y*z - y*z*x - 2*y*z*z, x*y + y*z, x*x + x*y -

y*x - y*y)

(continues on next page)
```

```
sage: i^3
-j*k*i - j*k*j - j*k*k
sage: j^3
-j*k*i - j*k*j - j*k*k
```

For rings that do inherit from CommutativeRing, we provide a subclass QuotientRing_generic, for backwards compatibility.

EXAMPLES:

```
sage: R.<x> = PolynomialRing(ZZ,'x')
sage: I = R.ideal([4 + 3*x + x^2, 1 + x^2])
sage: S = R.quotient_ring(I); S
Quotient of Univariate Polynomial Ring in x over Integer Ring by the ideal (x^2 + 3*x + 4, x^2 + 1)
```

```
sage: R.<x,y> = PolynomialRing(QQ)
sage: S.<a,b> = R.quo(x^2 + y^2)
sage: a^2 + b^2 == 0
True
sage: S(0) == a^2 + b^2
True
```

Again, a quotient of a quotient is just the quotient of the original top ring by the sum of two ideals.

```
sage: R.<x,y> = PolynomialRing(QQ,2)
sage: S.<a,b> = R.quo(1 + y^2)
sage: T.<c,d> = S.quo(a)
sage: T
Quotient of Multivariate Polynomial Ring in x, y over Rational Field by the ideal_
\hookrightarrow (x, y^2 + 1)
sage: T.gens()
(0, d)
```

Element

alias of sage.rings.quotient_ring_element.QuotientRingElement

ambient()

Returns the cover ring of the quotient ring: that is, the original ring R from which we modded out an ideal, I.

EXAMPLES:

```
sage: Q = QuotientRing(ZZ,7*ZZ)
sage: Q.cover_ring()
Integer Ring
```

```
sage: P.<x> = QQ[]
sage: Q = QuotientRing(P, x^2 + 1)
sage: Q.cover_ring()
Univariate Polynomial Ring in x over Rational Field
```

characteristic()

Return the characteristic of the quotient ring.

Todo: Not yet implemented!

EXAMPLES:

```
sage: Q = QuotientRing(ZZ,7*ZZ)
sage: Q.characteristic()
Traceback (most recent call last):
...
NotImplementedError
```

construction()

Returns the functorial construction of self.

EXAMPLES:

```
sage: R.<x> = PolynomialRing(ZZ,'x')
sage: I = R.ideal([4 + 3*x + x^2, 1 + x^2])
sage: R.quotient_ring(I).construction()
(QuotientFunctor, Univariate Polynomial Ring in x over Integer Ring)
sage: F.<x,y,z> = FreeAlgebra(QQ, implementation='letterplace')
sage: I = F*[x*y+y*z,x^2+x*y-y*x-y^2]*F
sage: Q = F.quo(I)
sage: Q.construction()
(QuotientFunctor, Free Associative Unital Algebra on 3 generators (x, y, z)_
→over Rational Field)
```

cover()

The covering ring homomorphism $R \to R/I$, equipped with a section.

EXAMPLES:

```
sage: R = ZZ.quo(3*ZZ)
sage: pi = R.cover()
sage: pi
Ring morphism:
   From: Integer Ring
   To: Ring of integers modulo 3
   Defn: Natural quotient map
sage: pi(5)
2
sage: l = pi.lift()
```

```
sage: 1(x+y^3)
x
```

cover_ring()

Returns the cover ring of the quotient ring: that is, the original ring R from which we modded out an ideal, I.

EXAMPLES:

```
sage: Q = QuotientRing(ZZ,7*ZZ)
sage: Q.cover_ring()
Integer Ring
```

```
sage: P.<x> = QQ[]
sage: Q = QuotientRing(P, x^2 + 1)
sage: Q.cover_ring()
Univariate Polynomial Ring in x over Rational Field
```

defining_ideal()

Returns the ideal generating this quotient ring.

EXAMPLES:

In the integers:

```
sage: Q = QuotientRing(ZZ,7*ZZ)
sage: Q.defining_ideal()
Principal ideal (7) of Integer Ring
```

An example involving a quotient of a quotient. By Noether's homomorphism theorems, this is actually a quotient by a sum of two ideals:

```
sage: R.<x,y> = PolynomialRing(QQ,2)
sage: S.<a,b> = QuotientRing(R,R.ideal(1 + y^2))
sage: T.<c,d> = QuotientRing(S,S.ideal(a))
sage: S.defining_ideal()
Ideal (y^2 + 1) of Multivariate Polynomial Ring in x, y over Rational Field
sage: T.defining_ideal()
Ideal (x, y^2 + 1) of Multivariate Polynomial Ring in x, y over Rational Field
```

gen(i=0)

Returns the *i*-th generator for this quotient ring.

EXAMPLES:

```
sage: R = QuotientRing(ZZ,7*ZZ)
sage: R.gen(0)
1
```

```
sage: R.<x,y> = PolynomialRing(QQ,2)
sage: S.<a,b> = QuotientRing(R,R.ideal(1 + y^2))
sage: T.<c,d> = QuotientRing(S,S.ideal(a))
sage: T
Quotient of Multivariate Polynomial Ring in x, y over Rational Field by the
ideal (x, y^2 + 1)
sage: R.gen(0); R.gen(1)
x
```

```
y
sage: S.gen(0); S.gen(1)
a
b
sage: T.gen(0); T.gen(1)
0
d
```

ideal(*gens, **kwds)

Return the ideal of self with the given generators.

EXAMPLES:

```
sage: R.<x,y> = PolynomialRing(QQ)
sage: S = R.quotient_ring(x^2+y^2)
sage: S.ideal()
Ideal (0) of Quotient of Multivariate Polynomial Ring in x, y over Rational

→Field by the ideal (x^2 + y^2)
sage: S.ideal(x+y+1)
Ideal (xbar + ybar + 1) of Quotient of Multivariate Polynomial Ring in x, y

→over Rational Field by the ideal (x^2 + y^2)
```

is_commutative()

Tell whether this quotient ring is commutative.

Note: This is certainly the case if the cover ring is commutative. Otherwise, if this ring has a finite number of generators, it is tested whether they commute. If the number of generators is infinite, a NotImplementedError is raised.

AUTHOR:

• Simon King (2011-03-23): See trac ticket #7797.

EXAMPLES:

Any quotient of a commutative ring is commutative:

```
sage: P.<a,b,c> = QQ[]
sage: P.quo(P.random_element()).is_commutative()
True
```

The non-commutative case is more interesting:

```
sage: F.<x,y,z> = FreeAlgebra(QQ, implementation='letterplace')
sage: I = F*[x*y+y*z,x^2+x*y-y*x-y^2]*F
sage: Q = F.quo(I)
sage: Q.is_commutative()
False
sage: Q.1*Q.2==Q.2*Q.1
False
```

In the next example, the generators apparently commute:

```
sage: J = F*[x*y-y*x,x*z-z*x,y*z-z*y,x^3-y^3]*F
sage: R = F.quo(J)
sage: R.is_commutative()
True
```

is field(proof=True)

Returns True if the quotient ring is a field. Checks to see if the defining ideal is maximal.

is_integral_domain (proof=True)

With proof equal to True (the default), this function may raise a NotImplementedError.

When proof is False, if True is returned, then self is definitely an integral domain. If the function returns False, then either self is not an integral domain or it was unable to determine whether or not self is an integral domain.

EXAMPLES:

```
sage: R.<x,y> = QQ[]
sage: R.quo(x^2 - y).is_integral_domain()
True
sage: R.quo(x^2 - y^2).is_integral_domain()
False
sage: R.quo(x^2 - y^2).is_integral_domain(proof=False)
False
sage: R.<a,b,c> = ZZ[]
sage: Q = R.quotient_ring([a, b])
sage: Q.is_integral_domain()
Traceback (most recent call last):
...
NotImplementedError
sage: Q.is_integral_domain(proof=False)
False
```

is_noetherian()

Return True if this ring is Noetherian.

EXAMPLES:

```
sage: R = QuotientRing(ZZ, 102*ZZ)
sage: R.is_noetherian()
True

sage: P.<x> = QQ[]
sage: R = QuotientRing(P, x^2+1)
sage: R.is_noetherian()
True
```

If the cover ring of self is not Noetherian, we currently have no way of testing whether self is Noetherian, so we raise an error:

```
sage: R.<x> = InfinitePolynomialRing(QQ)
sage: R.is_noetherian()
False
sage: I = R.ideal([x[1]^2, x[2]])
sage: S = R.quotient(I)
sage: S.is_noetherian()
Traceback (most recent call last):
...
NotImplementedError
```

lift (*x*=*None*)

Return the lifting map to the cover, or the image of an element under the lifting map.

Note: The category framework imposes that Q.lift(x) returns the image of an element x under the

lifting map. For backwards compatibility, we let Q.lift() return the lifting map.

EXAMPLES:

lifting map()

Return the lifting map to the cover.

EXAMPLES:

```
sage: R. \langle x, y \rangle = PolynomialRing(QQ, 2)
sage: S = R.quotient(x^2 + y^2)
sage: pi = S.cover(); pi
Ring morphism:
 From: Multivariate Polynomial Ring in x, y over Rational Field
 To: Quotient of Multivariate Polynomial Ring in x, y over Rational Field,
\rightarrowby the ideal (x^2 + y^2)
Defn: Natural quotient map
sage: L = S.lifting_map(); L
Set-theoretic ring morphism:
 From: Quotient of Multivariate Polynomial Ring in x, y over Rational Field.
\rightarrowby the ideal (x^2 + y^2)
 To: Multivariate Polynomial Ring in x, y over Rational Field
 Defn: Choice of lifting map
sage: L(S.0)
sage: L(S.1)
```

Note that some reduction may be applied so that the lift of a reduction need not equal the original element:

```
sage: z = pi(x^3 + 2*y^2); z
-xbar*ybar^2 + 2*ybar^2
sage: L(z)
-x*y^2 + 2*y^2
sage: L(z) == x^3 + 2*y^2
False
```

Test that there also is a lift for rings that are no instances of Ring (see trac ticket #11068):

```
[0 1]
[0 0],
[0 0]
[1 1]
)

To: Full MatrixSpace of 2 by 2 dense matrices over Finite Field of size 5
Defn: Choice of lifting map
```

ngens()

Returns the number of generators for this quotient ring.

Todo: Note that ngens counts 0 as a generator. Does this make sense? That is, since 0 only generates itself and the fact that this is true for all rings, is there a way to "knock it off" of the generators list if a generator of some original ring is modded out?

EXAMPLES:

```
sage: R = QuotientRing(ZZ,7*ZZ)
sage: R.gens(); R.ngens()
(1,)
1
```

```
sage: R.<x,y> = PolynomialRing(QQ,2)
sage: S.<a,b> = QuotientRing(R,R.ideal(1 + y^2))
sage: T.<c,d> = QuotientRing(S,S.ideal(a))
sage: T
Quotient of Multivariate Polynomial Ring in x, y over Rational Field by the
ideal (x, y^2 + 1)
sage: R.gens(); S.gens(); T.gens()
(x, y)
(a, b)
(0, d)
sage: R.ngens(); S.ngens(); T.ngens()
2
2
2
```

retract(x)

The image of an element of the cover ring under the quotient map.

INPUT:

• x - An element of the cover ring

OUTPUT:

The image of the given element in self.

```
sage: R.<x,y> = PolynomialRing(QQ, 2)
sage: S = R.quotient(x^2 + y^2)
sage: S.retract((x+y)^2)
2*xbar*ybar
```

```
term order()
```

Return the term order of this ring.

EXAMPLES:

```
sage: P.<a,b,c> = PolynomialRing(QQ)
sage: I = Ideal([a^2 - a, b^2 - b, c^2 - c])
sage: Q = P.quotient(I)
sage: Q.term_order()
Degree reverse lexicographic term order
```

sage.rings.quotient_ring.is_QuotientRing(x)

Tests whether or not x inherits from QuotientRing_nc.

EXAMPLES:

```
sage: from sage.rings.quotient_ring import is_QuotientRing
sage: R.<x> = PolynomialRing(ZZ,'x')
sage: I = R.ideal([4 + 3*x + x^2, 1 + x^2])
sage: S = R.quotient_ring(I)
sage: is_QuotientRing(S)
True
sage: is_QuotientRing(R)
False
```

```
sage: F.<x,y,z> = FreeAlgebra(QQ, implementation='letterplace')
sage: I = F*[x*y+y*z,x^2+x*y-y*x-y^2]*F
sage: Q = F.quo(I)
sage: is_QuotientRing(Q)
True
sage: is_QuotientRing(F)
False
```

4.2 Quotient Ring Elements

AUTHORS:

· William Stein

Bases: sage.structure.element.RingElement

An element of a quotient ring R/I.

INPUT:

- parent the ring R/I
- rep a representative of the element in R; this is used as the internal representation of the element
- \bullet reduce bool (optional, default: True) if True, then the internal representation of the element is repreduced modulo the ideal I

EXAMPLES:

```
sage: R.<x> = PolynomialRing(ZZ)
sage: S.<xbar> = R.quo((4 + 3*x + x^2, 1 + x^2)); S
```

```
Quotient of Univariate Polynomial Ring in x over Integer Ring by the ideal (x^2 + 3*x + 4, x^2 + 1)

sage: v = S.gens(); v (xbar,)
```

```
sage: loads(v[0].dumps()) == v[0]
True
```

```
sage: R.<x,y> = PolynomialRing(QQ, 2)
sage: S = R.quo(x^2 + y^2); S
Quotient of Multivariate Polynomial Ring in x, y over Rational Field by the ideal_
(x^2 + y^2)
sage: S.gens()
(xbar, ybar)
```

We name each of the generators.

```
sage: S.<a,b> = R.quotient(x^2 + y^2)
sage: a
a
sage: b
b
sage: a^2 + b^2 == 0
True
sage: b.lift()
y
sage: (a^3 + b^2).lift()
-x*y^2 + y^2
```

is_unit()

Return True if self is a unit in the quotient ring.

TODO: This is not fully implemented, as illustrated in the example below. So far, self is determined to be unit only if its representation in the cover ring R is also a unit.

EXAMPLES:

1c()

Return the leading coefficient of this quotient ring element.

EXAMPLES:

```
sage: R.<x,y,z>=PolynomialRing(GF(7),3,order='lex')
sage: I = sage.rings.ideal.FieldIdeal(R)
```

```
sage: Q = R.quo(I)
sage: f = Q(z*y + 2*x)
sage: f.lc()
2
```

lift()

If self is an element of R/I, then return self as an element of R.

EXAMPLES:

lm()

Return the leading monomial of this quotient ring element.

EXAMPLES:

```
sage: R.<x,y,z>=PolynomialRing(GF(7),3,order='lex')
sage: I = sage.rings.ideal.FieldIdeal(R)
sage: Q = R.quo( I )
sage: f = Q( z*y + 2*x )
sage: f.lm()
xbar
```

lt()

Return the leading term of this quotient ring element.

EXAMPLES:

```
sage: R.<x,y,z>=PolynomialRing(GF(7),3,order='lex')
sage: I = sage.rings.ideal.FieldIdeal(R)
sage: Q = R.quo( I )
sage: f = Q( z*y + 2*x )
sage: f.lt()
2*xbar
```

monomials()

Return the monomials in self.

OUTPUT:

A list of monomials.

EXAMPLES:

```
sage: R.zero().monomials()
[]
```

reduce(G)

Reduce this quotient ring element by a set of quotient ring elements G.

INPUT:

• G - a list of quotient ring elements

EXAMPLES:

```
sage: P.<a,b,c,d,e> = PolynomialRing(GF(2), 5, order='lex')
sage: I1 = ideal([a*b + c*d + 1, a*c*e + d*e, a*b*e + c*e, b*c + c*d*e + 1])
sage: Q = P.quotient( sage.rings.ideal.FieldIdeal(P) )
sage: I2 = ideal([Q(f) for f in I1.gens()])
sage: f = Q((a*b + c*d + 1)^2 + e)
sage: f.reduce(I2.gens())
```

variables()

Return all variables occurring in self.

OUTPUT:

A tuple of linear monomials, one for each variable occurring in self.

CHAPTER

FIVE

FRACTION FIELDS

5.1 Fraction Field of Integral Domains

AUTHORS:

- William Stein (with input from David Joyner, David Kohel, and Joe Wetherell)
- · Burcin Erocal
- Julian Rüth (2017-06-27): embedding into the field of fractions and its section

EXAMPLES:

Quotienting is a constructor for an element of the fraction field:

```
sage: R.<x> = QQ[]
sage: (x^2-1)/(x+1)
x - 1
sage: parent((x^2-1)/(x+1))
Fraction Field of Univariate Polynomial Ring in x over Rational Field
```

The GCD is not taken (since it doesn't converge sometimes) in the inexact case:

```
sage: Z.<z> = CC[]
sage: I = CC.gen()
sage: (1+I+z)/(z+0.1*I)
(z + 1.00000000000000 + I)/(z + 0.10000000000000*I)
sage: (1+I*z)/(z+1.1)
(I*z + 1.00000000000000)/(z + 1.100000000000)
```

sage.rings.fraction field.FractionField(R, names=None)

Create the fraction field of the integral domain R.

INPUT:

- R an integral domain
- names ignored

EXAMPLES:

We create some example fraction fields:

```
sage: FractionField(IntegerRing())
Rational Field
sage: FractionField(PolynomialRing(RationalField(),'x'))
Fraction Field of Univariate Polynomial Ring in x over Rational Field
```

```
sage: FractionField(PolynomialRing(IntegerRing(),'x'))
Fraction Field of Univariate Polynomial Ring in x over Integer Ring
sage: FractionField(PolynomialRing(RationalField(),2,'x'))
Fraction Field of Multivariate Polynomial Ring in x0, x1 over Rational Field
```

Dividing elements often implicitly creates elements of the fraction field:

```
sage: x = PolynomialRing(RationalField(), 'x').gen()
sage: f = x/(x+1)
sage: g = x**3/(x+1)
sage: f/g
1/x^2
sage: g/f
x^2
```

The input must be an integral domain:

```
sage: Frac(Integers(4))
Traceback (most recent call last):
...
TypeError: R must be an integral domain.
```

class sage.rings.fraction field.FractionFieldEmbedding

Bases: sage.structure.coerce_maps.DefaultConvertMap_unique

The embedding of an integral domain into its field of fractions.

EXAMPLES:

```
sage: R.<x> = QQ[]
sage: f = R.fraction_field().coerce_map_from(R); f
Coercion map:
   From: Univariate Polynomial Ring in x over Rational Field
   To: Fraction Field of Univariate Polynomial Ring in x over Rational Field
```

is_injective()

Return whether this map is injective.

EXAMPLES:

The map from an integral domain to its fraction field is always injective:

```
sage: R.<x> = QQ[]
sage: R.fraction_field().coerce_map_from(R).is_injective()
True
```

is_surjective()

Return whether this map is surjective.

EXAMPLES:

```
sage: R.<x> = QQ[]
sage: R.fraction_field().coerce_map_from(R).is_surjective()
False
```

section()

Return a section of this map.

```
sage: R.<x> = QQ[]
sage: R.fraction_field().coerce_map_from(R).section()
Section map:
   From: Fraction Field of Univariate Polynomial Ring in x over Rational Field
   To: Univariate Polynomial Ring in x over Rational Field
```

class sage.rings.fraction_field.FractionFieldEmbeddingSection

```
Bases: sage.categories.map.Section
```

The section of the embedding of an integral domain into its field of fractions.

EXAMPLES:

```
sage: R.<x> = QQ[]
sage: f = R.fraction_field().coerce_map_from(R).section(); f
Section map:
   From: Fraction Field of Univariate Polynomial Ring in x over Rational Field
   To: Univariate Polynomial Ring in x over Rational Field
```

class sage.rings.fraction_field.FractionField_1poly_field(R,

ele-

'sage.rings.fraction_field_element.FractionField

ment_class=<type

Bases: sage.rings.fraction_field.FractionField_generic

The fraction field of a univariate polynomial ring over a field.

Many of the functions here are included for coherence with number fields.

class number()

Here for compatibility with number fields and function fields.

EXAMPLES:

```
sage: R.<t> = GF(5)[]; K = R.fraction_field()
sage: K.class_number()
1
```

function_field()

Return the isomorphic function field.

EXAMPLES:

```
sage: R.<t> = GF(5)[]
sage: K = R.fraction_field()
sage: K.function_field()
Rational function field in t over Finite Field of size 5
```

See also:

```
sage.rings.function_field.RationalFunctionField.field()
```

maximal_order()

Return the maximal order in this fraction field.

```
sage: K = FractionField(GF(5)['t'])
sage: K.maximal_order()
Univariate Polynomial Ring in t over Finite Field of size 5
```

ring_of_integers()

Return the ring of integers in this fraction field.

class sage.rings.fraction_field.FractionField_generic(R,

EXAMPLES:

```
sage: K = FractionField(GF(5)['t'])
sage: K.ring_of_integers()
Univariate Polynomial Ring in t over Finite Field of size 5
```

R, element_class=<type 'sage.rings.fraction_field_element.FractionFieldEleme category=Category of aug.

category=Category of quotient fields)

Bases: sage.rings.ring.Field
The fraction field of an integral domain.

base ring()

Return the base ring of self.

This is the base ring of the ring which this fraction field is the fraction field of.

EXAMPLES:

```
sage: R = Frac(ZZ['t'])
sage: R.base_ring()
Integer Ring
```

characteristic()

Return the characteristic of this fraction field.

EXAMPLES:

```
sage: R = Frac(ZZ['t'])
sage: R.base_ring()
Integer Ring
sage: R = Frac(ZZ['t']); R.characteristic()
0
sage: R = Frac(GF(5)['w']); R.characteristic()
5
```

construction()

EXAMPLES:

```
sage: Frac(ZZ['x']).construction()
(FractionField, Univariate Polynomial Ring in x over Integer Ring)
sage: K = Frac(GF(3)['t'])
sage: f, R = K.construction()
sage: f(R)
Fraction Field of Univariate Polynomial Ring in t over Finite Field of size 3
sage: f(R) == K
True
```

gen(i=0)

Return the i-th generator of self.

```
sage: R.0
z0
sage: R.gen(3)
z3
sage: R.3
z3
```

is_exact()

Return if self is exact which is if the underlying ring is exact.

EXAMPLES:

```
sage: Frac(ZZ['x']).is_exact()
True
sage: Frac(CDF['x']).is_exact()
False
```

is_field(proof=True)

Return True, since the fraction field is a field.

EXAMPLES:

```
sage: Frac(ZZ).is_field()
True
```

is_finite()

Tells whether this fraction field is finite.

Note: A fraction field is finite if and only if the associated integral domain is finite.

EXAMPLES:

```
sage: Frac(QQ['a','b','c']).is_finite()
False
```

ngens()

This is the same as for the parent object.

EXAMPLES:

random_element (*args, **kwds)

Return a random element in this fraction field.

The arguments are passed to the random generator of the underlying ring.

```
sage: F = ZZ['x'].fraction_field()
sage: F.random_element() # random
(2*x - 8)/(-x^2 + x)
```

```
sage: f = F.random_element(degree=5)
sage: f.numerator().degree()
5
sage: f.denominator().degree()
5
```

ring()

Return the ring that this is the fraction field of.

EXAMPLES:

```
sage: R = Frac(QQ['x,y'])
sage: R
Fraction Field of Multivariate Polynomial Ring in x, y over Rational Field
sage: R.ring()
Multivariate Polynomial Ring in x, y over Rational Field
```

some elements()

Return some elements in this field.

EXAMPLES:

```
sage: R.<x> = QQ[]
sage: R.fraction_field().some_elements()
[0,
    1,
    x,
    2*x,
    x/(x^2 + 2*x + 1),
    1/x^2,
    ...
    (2*x^2 + 2)/(x^2 + 2*x + 1),
    (2*x^2 + 2)/x^3,
    (2*x^2 + 2)/(x^2 - 1),
2]
```

sage.rings.fraction_field.is_FractionField(x)

Test whether or not x inherits from FractionField_generic.

EXAMPLES:

```
sage: from sage.rings.fraction_field import is_FractionField
sage: is_FractionField(Frac(ZZ['x']))
True
sage: is_FractionField(QQ)
False
```

5.2 Fraction Field Elements

AUTHORS:

- William Stein (input from David Joyner, David Kohel, and Joe Wetherell)
- Sebastian Pancratz (2010-01-06): Rewrite of addition, multiplication and derivative to use Henrici's algorithms [Hor1972]

class sage.rings.fraction_field_element.FractionFieldElement

Bases: sage.structure.element.FieldElement

EXAMPLES:

```
sage: K = FractionField(PolynomialRing(QQ, 'x'))
sage: K
Fraction Field of Univariate Polynomial Ring in x over Rational Field
sage: loads(K.dumps()) == K
True
sage: x = K.gen()
sage: f = (x^3 + x)/(17 - x^19); f
(-x^3 - x)/(x^19 - 17)
sage: loads(f.dumps()) == f
True
```

denominator()

Return the denominator of self.

EXAMPLES:

```
sage: R.<x,y> = ZZ[]
sage: f = x/y+1; f
(x + y)/y
sage: f.denominator()
y
```

is one()

Return True if this element is equal to one.

EXAMPLES:

```
sage: F = ZZ['x,y'].fraction_field()
sage: x,y = F.gens()
sage: (x/x).is_one()
True
sage: (x/y).is_one()
False
```

is_square(root=False)

Return whether or not self is a perfect square.

If the optional argument root is True, then also returns a square root (or None, if the fraction field element is not square).

INPUT:

• root – whether or not to also return a square root (default: False)

OUTPUT:

- bool whether or not a square
- object (optional) an actual square root if found, and None otherwise.

EXAMPLES:

```
sage: R.<t> = QQ[]
sage: (1/t).is_square()
False
sage: (1/t^6).is_square()
```

```
True
sage: ((1+t)^4/t^6).is_square()
True
sage: (4*(1+t)^4/t^6).is_square()
True
sage: (2*(1+t)^4/t^6).is_square()
False
sage: ((1+t)/t^6).is_square()
False
sage: (4*(1+t)^4/t^6).is_square(root=True)
(True, (2*t^2 + 4*t + 2)/t^3)
sage: (2*(1+t)^4/t^6).is_square(root=True)
(False, None)
sage: R. < x > = QQ[]
sage: a = 2*(x+1)^2 / (2*(x-1)^2); a
(x^2 + 2*x + 1)/(x^2 - 2*x + 1)
sage: a.is_square()
True
sage: (0/x).is_square()
```

is_zero()

Return True if this element is equal to zero.

EXAMPLES:

```
sage: F = ZZ['x,y'].fraction_field()
sage: x,y = F.gens()
sage: t = F(0)/x
sage: t.is_zero()
True
sage: u = 1/x - 1/x
sage: u.is_zero()
True
sage: u.parent() is F
True
```

nth root (n)

Return a n-th root of this element.

EXAMPLES:

```
sage: R = QQ['t'].fraction_field()
sage: t = R.gen()
sage: p = (t+1)^3 / (t^2+t-1)^3
sage: p.nth_root(3)
(t + 1)/(t^2 + t - 1)

sage: p = (t+1) / (t-1)
sage: p.nth_root(2)
Traceback (most recent call last):
...
ValueError: not a 2nd power
```

numerator()

Return the numerator of self.

EXAMPLES:

```
sage: R.<x,y> = ZZ[]
sage: f = x/y+1; f
(x + y)/y
sage: f.numerator()
x + y
```

reduce()

Reduce this fraction.

Divides out the gcd of the numerator and denominator. If the denominator becomes a unit, it becomes 1. Additionally, depending on the base ring, the leading coefficients of the numerator and the denominator may be normalized to 1.

Automatically called for exact rings, but because it may be numerically unstable for inexact rings it must be called manually in that case.

EXAMPLES:

```
sage: R.<x> = RealField(10)[]
sage: f = (x^2+2*x+1)/(x+1); f
(x^2 + 2.0*x + 1.0)/(x + 1.0)
sage: f.reduce(); f
x + 1.0
```

specialization (D=None, phi=None)

Returns the specialization of a fraction element of a polynomial ring

valuation(v=None)

Return the valuation of self, assuming that the numerator and denominator have valuation functions defined on them.

EXAMPLES:

```
sage: x = PolynomialRing(RationalField(),'x').gen()
sage: f = (x^3 + x)/(x^2 - 2*x^3)
sage: f
(-1/2*x^2 - 1/2)/(x^2 - 1/2*x)
sage: f.valuation()
-1
sage: f.valuation(x^2+1)
```

class sage.rings.fraction_field_element.FractionFieldElement_1poly_field Bases: sage.rings.fraction_field_element.FractionFieldElement

A fraction field element where the parent is the fraction field of a univariate polynomial ring over a field.

Many of the functions here are included for coherence with number fields.

is_integral()

Returns whether this element is actually a polynomial.

EXAMPLES:

```
sage: R.<t> = QQ[]
sage: elt = (t^2 + t - 2) / (t + 2); elt # == (t + 2)*(t - 1)/(t + 2)
t - 1
sage: elt.is_integral()
```

```
True

sage: elt = (t^2 - t) / (t+2); elt # == t*(t - 1)/(t + 2)

(t^2 - t)/(t + 2)

sage: elt.is_integral()

False
```

reduce()

Pick a normalized representation of self.

In particular, for any a == b, after normalization they will have the same numerator and denominator.

EXAMPLES:

For univariate rational functions over a field, we have:

```
sage: R.<x> = QQ[]
sage: (2 + 2*x) / (4*x) # indirect doctest
(1/2*x + 1/2)/x
```

Compare with:

```
sage: R.<x> = ZZ[]
sage: (2 + 2*x) / (4*x)
(x + 1)/(2*x)
```

support()

Returns a sorted list of primes dividing either the numerator or denominator of this element.

EXAMPLES:

sage.rings.fraction_field_element.is_FractionFieldElement(x)

Return whether or not x is a FractionFieldElement.

EXAMPLES:

```
sage: from sage.rings.fraction_field_element import is_FractionFieldElement
sage: R.<x> = ZZ[]
sage: is_FractionFieldElement(x/2)
False
sage: is_FractionFieldElement(2/x)
True
sage: is_FractionFieldElement(1/3)
False
```

 $\verb|sage.rings.fraction_field_element.make_element| (parent, numerator, denominator)|$

Used for unpickling FractionFieldElement objects (and subclasses).

EXAMPLES:

```
sage: from sage.rings.fraction_field_element import make_element
sage: R = ZZ['x,y']
sage: x,y = R.gens()
```

```
sage: F = R.fraction_field()
sage: make_element(F, 1+x, 1+y)
(x + 1)/(y + 1)
```

sage.rings.fraction_field_element.make_element_old (parent, cdict)
Used for unpickling old FractionFieldElement pickles.

Sage Reference Manual: General Rings, Ideals, and Morphisms, Release 8.9

CHAPTER

SIX

UTILITIES

6.1 Big O for various types (power series, p-adics, etc.)

See also:

- · asymptotic expansions
- p-adic numbers
- · power series
- · polynomials

```
sage.rings.big_oh.O(*x, **kwds)
```

Big O constructor for various types.

EXAMPLES:

This is useful for writing power series elements:

```
sage: R.<t> = ZZ[['t']]
sage: (1+t)^10 + O(t^5)
1 + 10*t + 45*t^2 + 120*t^3 + 210*t^4 + O(t^5)
```

A power series ring is created implicitly if a polynomial element is passed:

```
sage: R.<x> = QQ['x']
sage: O(x^100)
O(x^100)
sage: 1/(1+x+O(x^5))
1 - x + x^2 - x^3 + x^4 + O(x^5)
sage: R.<u,v> = QQ[[]]
sage: 1 + u + v^2 + O(u, v)^5
1 + u + v^2 + O(u, v)^5
```

This is also useful to create p-adic numbers:

```
sage: O(7^6)
O(7^6)
sage: 1/3 + O(7^6)
5 + 4*7 + 4*7^2 + 4*7^3 + 4*7^4 + 4*7^5 + O(7^6)
```

It behaves well with respect to adding negative powers of p:

```
sage: a = 0(11^-32); a
0(11^-32)
sage: a.parent()
11-adic Field with capped relative precision 20
```

There are problems if you add a rational with very negative valuation to an O-Term:

```
sage: 11^-12 + O(11^15)
11^-12 + O(11^8)
```

The reason that this fails is that the constructor doesn't know the right precision cap to use. If you cast explicitly or use other means of element creation, you can get around this issue:

```
sage: K = Qp(11, 30)
sage: K(11^-12) + O(11^15)
11^-12 + O(11^15)
sage: 11^-12 + K(O(11^15))
11^-12 + O(11^15)
sage: K(11^-12, absprec = 15)
11^-12 + O(11^15)
sage: K(11^-12, 15)
11^-12 + O(11^15)
```

We can also work with asymptotic expansions:

6.2 Signed and Unsigned Infinities

The unsigned infinity "ring" is the set of two elements

- 1. infinity
- 2. A number less than infinity

The rules for arithmetic are that the unsigned infinity ring does not canonically coerce to any other ring, and all other rings canonically coerce to the unsigned infinity ring, sending all elements to the single element "a number less than infinity" of the unsigned infinity ring. Arithmetic and comparisons then take place in the unsigned infinity ring, where all arithmetic operations that are well-defined are defined.

The infinity "ring" is the set of five elements

- 1. plus infinity
- 2. a positive finite element
- 3. zero
- 4. a negative finite element
- 5. negative infinity

The infinity ring coerces to the unsigned infinity ring, sending the infinite elements to infinity and the non-infinite elements to "a number less than infinity." Any ordered ring coerces to the infinity ring in the obvious way.

86 Chapter 6. Utilities

Note: The shorthand oo is predefined in Sage to be the same as +Infinity in the infinity ring. It is considered equal to, but not the same as Infinity in the *UnsignedInfinityRing*.

EXAMPLES:

We fetch the unsigned infinity ring and create some elements:

```
sage: P = UnsignedInfinityRing; P
The Unsigned Infinity Ring
sage: P(5)
A number less than infinity
sage: P.ngens()
1
sage: unsigned_oo = P.0; unsigned_oo
Infinity
```

We compare finite numbers with infinity:

```
sage: 5 < unsigned_oo
True
sage: 5 > unsigned_oo
False
sage: unsigned_oo < 5
False
sage: unsigned_oo > 5
True
```

Demonstrating the shorthand oo versus Infinity:

```
sage: oo
+Infinity
sage: oo is InfinityRing.0
True
sage: oo is UnsignedInfinityRing.0
False
sage: oo == UnsignedInfinityRing.0
True
```

We do arithmetic:

```
sage: unsigned_oo + 5
Infinity
```

We make 1 / unsigned_oo return the integer 0 so that arithmetic of the following type works:

```
sage: (1/unsigned_oo) + 2
2
sage: 32/5 - (2.439/unsigned_oo)
32/5
```

Note that many operations are not defined, since the result is not well-defined:

```
sage: unsigned_oo/0
Traceback (most recent call last):
...
ValueError: quotient of number < oo by number < oo not defined</pre>
```

What happened above is that 0 is canonically coerced to "A number less than infinity" in the unsigned infinity ring. Next, Sage tries to divide by multiplying with its inverse. Finally, this inverse is not well-defined.

```
sage: 0/unsigned_oo
0
sage: unsigned_oo * 0
Traceback (most recent call last):
...
ValueError: unsigned oo times smaller number not defined
sage: unsigned_oo/unsigned_oo
Traceback (most recent call last):
...
ValueError: unsigned oo times smaller number not defined
```

In the infinity ring, we can negate infinity, multiply positive numbers by infinity, etc.

```
sage: P = InfinityRing; P
The Infinity Ring
sage: P(5)
A positive finite number
```

The symbol oo is predefined as a shorthand for +Infinity:

```
sage: oo
+Infinity
```

We compare finite and infinite elements:

```
sage: 5 < 00
True
sage: P(-5) < P(5)
True
sage: P(2) < P(3)
False
sage: -00 < 00
True</pre>
```

We can do more arithmetic than in the unsigned infinity ring:

```
sage: 2 * oo
+Infinity
sage: -2 * oo
-Infinity
sage: 1 - oo
-Infinity
sage: 1 / oo
0
sage: -1 / oo
0
```

We make 1 / 00 and 1 / 00 return the integer 0 instead of the infinity ring Zero so that arithmetic of the following type works:

```
sage: (1/oo) + 2
2
sage: 32/5 - (2.439/-oo)
32/5
```

If we try to subtract infinities or multiply infinity by zero we still get an error:

88 Chapter 6. Utilities

```
sage: oo - oo
Traceback (most recent call last):
...
SignError: cannot add infinity to minus infinity
sage: 0 * oo
Traceback (most recent call last):
...
SignError: cannot multiply infinity by zero
sage: P(2) + P(-3)
Traceback (most recent call last):
...
SignError: cannot add positive finite value to negative finite value
```

Signed infinity can also be represented by RR / RDF elements. But unsigned infinity cannot:

```
sage: oo in RR, oo in RDF
(True, True)
sage: unsigned_infinity in RR, unsigned_infinity in RDF
(False, False)
```

```
class sage.rings.infinity.AnInfinity
```

Bases: object

lcm(x)

Return the least common multiple of 00 and x, which is by definition oo unless x is 0.

EXAMPLES:

```
sage: oo.lcm(0)
0
sage: oo.lcm(oo)
+Infinity
sage: oo.lcm(-oo)
+Infinity
sage: oo.lcm(10)
+Infinity
sage: (-oo).lcm(10)
+Infinity
```

```
class sage.rings.infinity.FiniteNumber(parent, x)
```

Bases: sage.structure.element.RingElement

Initialize self.

sqrt()

EXAMPLES:

```
sage: InfinityRing(7).sqrt()
A positive finite number
sage: InfinityRing(0).sqrt()
Zero
sage: InfinityRing(-.001).sqrt()
Traceback (most recent call last):
...
SignError: cannot take square root of a negative number
```

sage.rings.infinity.InfinityRing = The Infinity Ring

```
class sage.rings.infinity.InfinityRing_class
```

Bases: sage.misc.fast_methods.Singleton, sage.rings.ring.Ring

Initialize self.

fraction field()

This isn't really a ring, let alone an integral domain.

gen(n=0)

The two generators are plus and minus infinity.

EXAMPLES:

```
sage: InfinityRing.gen(0)
+Infinity
sage: InfinityRing.gen(1)
-Infinity
sage: InfinityRing.gen(2)
Traceback (most recent call last):
...
IndexError: n must be 0 or 1
```

gens()

The two generators are plus and minus infinity.

EXAMPLES:

```
sage: InfinityRing.gens()
[+Infinity, -Infinity]
```

is_commutative()

The Infinity Ring is commutative

EXAMPLES:

```
sage: InfinityRing.is_commutative()
True
```

is_zero()

The Infinity Ring is not zero

EXAMPLES:

```
sage: InfinityRing.is_zero()
False
```

ngens()

The two generators are plus and minus infinity.

EXAMPLES:

```
sage: InfinityRing.ngens()
2
sage: len(InfinityRing.gens())
2
```

class sage.rings.infinity.LessThanInfinity(parent=The Unsigned Infinity Ring)

Bases: sage.rings.infinity._uniq, sage.structure.element.RingElement

Initialize self.

```
sage: sage.rings.infinity.LessThanInfinity() is UnsignedInfinityRing(5)
class sage.rings.infinity.MinusInfinity
             sage.rings.infinity._uniq,
                                           sage.rings.infinity.AnInfinity, sage.
    structure.element.InfinityElement
    Initialize self.
    sqrt()
        EXAMPLES:
        sage: (-00).sqrt()
        Traceback (most recent call last):
        SignError: cannot take square root of negative infinity
class sage.rings.infinity.PlusInfinity
    Bases:
             sage.rings.infinity._uniq,
                                           sage.rings.infinity.AnInfinity, sage.
    structure.element.InfinityElement
    Initialize self.
    sqrt()
        The square root of self.
        The square root of infinity is infinity.
        EXAMPLES:
        sage: oo.sqrt()
        +Infinity
exception sage.rings.infinity.SignError
    Bases: exceptions.ArithmeticError
    Sign error exception.
class sage.rings.infinity.UnsignedInfinity
             sage.rings.infinity._uniq,
                                           sage.rings.infinity.AnInfinity, sage.
    structure.element.InfinityElement
    Initialize self.
sage.rings.infinity.UnsignedInfinityRing = The Unsigned Infinity Ring
class sage.rings.infinity.UnsignedInfinityRing_class
    Bases: sage.misc.fast_methods.Singleton, sage.rings.ring.Ring
    Initialize self.
    fraction field()
        The unsigned infinity ring isn't an integral domain.
        EXAMPLES:
        sage: UnsignedInfinityRing.fraction_field()
        Traceback (most recent call last):
        TypeError: infinity 'ring' has no fraction field
```

gen(n=0)

The "generator" of self is the infinity object.

EXAMPLES:

```
sage: UnsignedInfinityRing.gen()
Infinity
sage: UnsignedInfinityRing.gen(1)
Traceback (most recent call last):
...
IndexError: UnsignedInfinityRing only has one generator
```

gens()

The "generator" of self is the infinity object.

EXAMPLES:

```
sage: UnsignedInfinityRing.gens()
[Infinity]
```

less_than_infinity()

This is the element that represents a finite value.

EXAMPLES:

```
sage: UnsignedInfinityRing.less_than_infinity()
A number less than infinity
sage: UnsignedInfinityRing(5) is UnsignedInfinityRing.less_than_infinity()
True
```

ngens()

The unsigned infinity ring has one "generator."

EXAMPLES:

```
sage: UnsignedInfinityRing.ngens()
1
sage: len(UnsignedInfinityRing.gens())
1
```

sage.rings.infinity.is_Infinite(x)

This is a type check for infinity elements.

EXAMPLES:

```
sage: sage.rings.infinity.is_Infinite(oo)
True
sage: sage.rings.infinity.is_Infinite(-oo)
True
sage: sage.rings.infinity.is_Infinite(unsigned_infinity)
True
sage: sage.rings.infinity.is_Infinite(3)
False
sage: sage.rings.infinity.is_Infinite(RR(infinity))
False
sage: sage.rings.infinity.is_Infinite(ZZ)
False
```

$\verb|sage.rings.infinity.test_comparison| (\textit{ring})$

Check comparison with infinity

92 Chapter 6. Utilities

INPUT:

• ring – a sub-ring of the real numbers

OUTPUT:

Various attempts are made to generate elements of ring. An assertion is triggered if one of these elements does not compare correctly with plus/minus infinity.

EXAMPLES:

```
sage: from sage.rings.infinity import test_comparison
sage: rings = [ZZ, QQ, RR, RealField(200), RDF, RLF, AA, RIF]
sage: for R in rings:
...:     print('testing {}'.format(R))
...:     test_comparison(R)
testing Integer Ring
testing Rational Field
testing Real Field with 53 bits of precision
testing Real Field with 200 bits of precision
testing Real Double Field
testing Real Lazy Field
testing Algebraic Real Field with 53 bits of precision
```

Comparison with number fields does not work:

```
sage: K.<sqrt3> = NumberField(x^2-3)
sage: (-oo < 1+sqrt3) and (1+sqrt3 < oo) # known bug
False</pre>
```

The symbolic ring handles its own infinities, but answers False (meaning: cannot decide) already for some very elementary comparisons:

```
sage: test_comparison(SR) # known bug
Traceback (most recent call last):
...
AssertionError: testing -1000.0 in Symbolic Ring: id = ...
```

```
sage.rings.infinity.test_signed_infinity(pos_inf)
```

Test consistency of infinity representations.

There are different possible representations of infinity in Sage. These are all consistent with the infinity ring, that is, compare with infinity in the expected way. See also trac ticket #14045

INPUT:

• pos_inf - a representation of positive infinity.

OUTPUT:

An assertion error is raised if the representation is not consistent with the infinity ring.

Check that trac ticket #14045 is fixed:

```
sage: InfinityRing(float('+inf'))
+Infinity
sage: InfinityRing(float('-inf'))
-Infinity
sage: oo > float('+inf')
False
```

```
sage: oo == float('+inf')
True
```

EXAMPLES:

```
sage: from sage.rings.infinity import test_signed_infinity
sage: for pos_inf in [oo, float('+inf'), RLF(oo), RIF(oo), SR(oo)]:
....: test_signed_infinity(pos_inf)
```

6.3 Support Python's numbers abstract base class

See also:

PEP 3141 for more information about numbers.

```
sage.rings.numbers_abc.register_sage_classes()
```

Register all relevant Sage classes in the numbers hierarchy.

EXAMPLES:

```
sage: import numbers
sage: isinstance(5, numbers.Integral)
True
sage: isinstance(5, numbers.Number)
True
sage: isinstance(5/1, numbers.Integral)
False
sage: isinstance(22/7, numbers.Rational)
True
sage: isinstance(1.3, numbers.Real)
True
sage: isinstance(CC(1.3), numbers.Real)
False
sage: isinstance(CC(1.3 + I), numbers.Complex)
True
sage: isinstance(RDF(1.3), numbers.Real)
True
sage: isinstance(CDF(1.3, 4), numbers.Complex)
True
sage: isinstance(AA(sqrt(2)), numbers.Real)
True
sage: isinstance(AA(sqrt(2)), numbers.Real)
True
sage: isinstance(QQbar(I), numbers.Complex)
True
```

This doesn't work with symbolic expressions at all:

```
sage: isinstance(pi, numbers.Real)
False
sage: isinstance(I, numbers.Complex)
False
sage: isinstance(sqrt(2), numbers.Real)
False
```

Because we do this, NumPy's isscalar () recognizes Sage types:

94 Chapter 6. Utilities

```
sage: from numpy import isscalar
sage: isscalar(3.141)
True
sage: isscalar(4/17)
True
```

96 Chapter 6. Utilities

CHAPTER

SEVEN

DERIVATION

7.1 Derivations

Let A be a ring and B be an bimodule over A. A derivation $d:A\to B$ is an additive map that satisfies the Leibniz rule

$$d(xy) = xd(y) + d(x)y.$$

If B is an algebra over A and if we are given in addition a ring homomorphism $\theta: A \to B$, a twisted derivation with respect to θ (or a θ -derivation) is an additive map $d: A \to B$ such that

$$d(xy) = \theta(x)d(y) + d(x)y.$$

When θ is the morphism defining the structure of A-algebra on B, a θ -derivation is nothing but a derivation. In general, if $\iota: A \to B$ denotes the defining morphism above, one easily checks that $\theta - \iota$ is a θ -derivation.

This file provides support for derivations and twisted derivations over commutative rings with values in algebras (i.e. we require that B is a commutative A-algebra). In this case, the set of derivations (resp. θ -derivations) is a module over B.

Given a ring A, the module of derivations over A can be created as follows:

```
sage: A.<x,y,z> = QQ[]
sage: M = A.derivation_module()
sage: M
Module of derivations over Multivariate Polynomial Ring in x, y, z over Rational Field
```

The method *gens* () returns the generators of this module:

```
sage: A.<x,y,z> = QQ[]
sage: M = A.derivation_module()
sage: M.gens()
(d/dx, d/dy, d/dz)
```

We can combine them in order to create all derivations:

```
sage: d = 2*M.gen(0) + z*M.gen(1) + (x^2 + y^2)*M.gen(2)
sage: d
2*d/dx + z*d/dy + (x^2 + y^2)*d/dz
```

and now play with them:

```
sage: d(x + y + z)
x^2 + y^2 + z + 2
sage: P = A.random_element()
sage: Q = A.random_element()
sage: d(P*Q) == P*d(Q) + d(P)*Q
True
```

Alternatively we can use the method derivation() of the ring A to create derivations:

```
sage: Dx = A.derivation(x); Dx
d/dx
sage: Dy = A.derivation(y); Dy
d/dy
sage: Dz = A.derivation(z); Dz
d/dz
sage: A.derivation([2, z, x^2+y^2])
2*d/dx + z*d/dy + (x^2 + y^2)*d/dz
```

Sage knows moreover that M is a Lie algebra:

```
sage: M.category()
Join of Category of lie algebras with basis over Rational Field
and Category of modules with basis over Multivariate Polynomial Ring in x, y, z over

→Rational Field
```

Computations of Lie brackets are implemented as well:

```
sage: Dx.bracket(Dy)
0
sage: d.bracket(Dx)
-2*x*d/dz
```

At the creation of a module of derivations, a codomain can be specified:

```
sage: B = A.fraction_field()
sage: A.derivation_module(B)
Module of derivations from Multivariate Polynomial Ring in x, y, z over Rational Field
to Fraction Field of Multivariate Polynomial Ring in x, y, z over Rational Field
```

Alternatively, one can specify a morphism f with domain A. In this case, the codomain of the derivations is the codomain of f but the latter is viewed as an algebra over A through the homomorphism f. This construction is useful, for example, if we want to work with derivations on A at a certain point, e.g. (0,1,2). Indeed, in order to achieve this, we first define the evaluation map at this point:

```
sage: ev = A.hom([QQ(0), QQ(1), QQ(2)])
sage: ev
Ring morphism:
  From: Multivariate Polynomial Ring in x, y, z over Rational Field
  To: Rational Field
  Defn: x |--> 0
        y |--> 1
        z |--> 2
```

Now we use this ring homomorphism to define a structure of A-algebra on \mathbf{Q} and then build the following module of derivations:

```
sage: M = A.derivation_module(ev)
sage: M
Module of derivations from Multivariate Polynomial Ring in x, y, z over Rational
→Field to Rational Field
sage: M.gens()
(d/dx, d/dy, d/dz)
```

Elements in M then acts as derivations at (0, 1, 2):

```
sage: Dx = M.gen(0)
sage: Dy = M.gen(1)
sage: Dz = M.gen(2)
sage: f = x^2 + y^2 + z^2
sage: Dx(f) # = 2*x evaluated at (0,1,2)
0
sage: Dy(f) # = 2*y evaluated at (0,1,2)
2
sage: Dz(f) # = 2*z evaluated at (0,1,2)
4
```

Twisted derivations are handled similarly:

Over a field, one proves that every θ -derivation is a multiple of $\theta - id$, so that:

```
sage: d = M.gen(); d
[x |--> y, y |--> z, z |--> x] - id
```

and then:

```
sage: d(x)
-x + y
sage: d(y)
-y + z
sage: d(z)
x - z
sage: d(x + y + z)
0
```

AUTHOR:

• Xavier Caruso (2018-09)

```
class sage.rings.derivation.RingDerivation
    Bases: sage.structure.element.ModuleElement
```

An abstract class for twisted and untwisted derivations over commutative rings.

7.1. Derivations 99

codomain()

Return the codomain of this derivation.

EXAMPLES:

```
sage: R.<x> = QQ[]
sage: f = R.derivation(); f
d/dx
sage: f.codomain()
Univariate Polynomial Ring in x over Rational Field
sage: f.codomain() is R
True
```

```
sage: S.<y> = R[]
sage: M = R.derivation_module(S)
sage: M.random_element().codomain()
Univariate Polynomial Ring in y over Univariate Polynomial Ring in x over_
→Rational Field
sage: M.random_element().codomain() is S
True
```

domain()

Return the domain of this derivation.

EXAMPLES:

```
sage: R.<x,y> = QQ[]
sage: f = R.derivation(y); f
d/dy
sage: f.domain()
Multivariate Polynomial Ring in x, y over Rational Field
sage: f.domain() is R
True
```

class sage.rings.derivation.RingDerivationModule (domain, codomain, twist=None)

 $Bases: \verb| sage.modules.module.Module|, \verb| sage.structure.unique_representation|. UniqueRepresentation|$

A class for modules of derivations over a commutative ring.

basis()

Return a basis of this module of derivations.

EXAMPLES:

```
sage: R.<x,y> = ZZ[]
sage: M = R.derivation_module()
sage: M.basis()
Family (d/dx, d/dy)
```

codomain()

Return the codomain of the derivations in this module.

EXAMPLES:

```
sage: M.codomain()
Multivariate Polynomial Ring in x, y over Integer Ring
```

defining_morphism()

Return the morphism defining the structure of algebra of the codomain over the domain.

EXAMPLES:

```
sage: R. < x > = QQ[]
sage: M = R.derivation_module()
sage: M.defining_morphism()
Identity endomorphism of Univariate Polynomial Ring in x over Rational Field
sage: S. < y > = R[]
sage: M = R.derivation_module(S)
sage: M.defining_morphism()
Polynomial base injection morphism:
 From: Univariate Polynomial Ring in x over Rational Field
 To: Univariate Polynomial Ring in y over Univariate Polynomial Ring in x.
→over Rational Field
sage: ev = R.hom([QQ(0)])
sage: M = R.derivation_module(ev)
sage: M.defining_morphism()
Ring morphism:
 From: Univariate Polynomial Ring in x over Rational Field
 To: Rational Field
 Defn: x \mid --> 0
```

domain()

Return the domain of the derivations in this module.

EXAMPLES:

dual_basis()

Return the dual basis of the canonical basis of this module of derivations (which is that returned by the method basis ()).

Note: The dual basis of (d_1, \ldots, d_n) is a family (x_1, \ldots, x_n) of elements in the domain such that $d_i(x_i) = 1$ and $d_i(x_j) = 0$ if $i \neq j$.

EXAMPLES:

```
sage: R.<x,y> = ZZ[]
sage: M = R.derivation_module()
sage: M.basis()
Family (d/dx, d/dy)
sage: M.dual_basis()
Family (x, y)
```

7.1. Derivations 101

gen(n=0)

Return the n-th generator of this module of derivations.

INPUT:

• n – an integer (default: 0)

EXAMPLES:

gens()

Return the generators of this module of derivations.

EXAMPLES:

We check that, for a nontrivial twist over a field, the module of twisted derivation is a vector space of dimension 1 generated by twist - id:

```
sage: K = R.fraction_field()
sage: theta = K.hom([K(y),K(x)])
sage: M = K.derivation_module(twist=theta); M
Module of twisted derivations over Fraction Field of Multivariate Polynomial
Ring in x, y over Integer Ring (twisting morphism: x |--> y, y |--> x)
sage: M.gens()
([x |--> y, y |--> x] - id,)
```

ngens()

Return the number of generators of this module of derivations.

EXAMPLES:

Indeed, generators are:

```
sage: M.gens()
(d/dx, d/dy)
```

We check that, for a nontrivial twist over a field, the module of twisted derivation is a vector space of dimension 1 generated by twist - id:

```
sage: K = R.fraction_field()
sage: theta = K.hom([K(y),K(x)])
sage: M = K.derivation_module(twist=theta); M
Module of twisted derivations over Fraction Field of Multivariate Polynomial
Ring in x, y over Integer Ring (twisting morphism: x |--> y, y |--> x)
sage: M.ngens()
1
sage: M.gen()
[x |--> y, y |--> x] - id
```

random_element (*args, **kwds)

Return a random derivation in this module.

EXAMPLES:

```
sage: R.<x,y> = ZZ[]
sage: M = R.derivation_module()
sage: M.random_element() # random
(x^2 + x*y - 3*y^2 + x + 1)*d/dx + (-2*x^2 + 3*x*y + 10*y^2 + 2*x + 8)*d/dy
```

ring of constants()

Return the subring of the domain consisting of elements x such that d(x) = 0 for all derivation d in this module.

EXAMPLES:

```
sage: R.<x,y> = QQ[]
sage: M = R.derivation_module()
sage: M.basis()
Family (d/dx, d/dy)
sage: M.ring_of_constants()
Rational Field
```

some_elements()

Return a list of elements of this module.

EXAMPLES:

```
sage: R.<x,y> = ZZ[]
sage: M = R.derivation_module()
sage: M.some_elements()
[d/dx, d/dy, x*d/dx, x*d/dy, y*d/dx, y*d/dy]
```

twisting_morphism()

Return the twisting homomorphism of the derivations in this module.

EXAMPLES:

When the derivations are untwisted, this method returns nothing:

7.1. Derivations 103

```
sage: M = R.derivation_module()
sage: M.twisting_morphism()
```

```
\verb|class| sage.rings.derivation.RingDerivationWithTwist\_generic| (parent, scalar=0)
```

Bases: sage.rings.derivation.RingDerivation

The class handles θ -derivations of the form $\lambda(\theta - \iota)$ (where ι is the defining morphism of the codomain over the domain) for a scalar λ varying in the codomain.

list()

Return the list of coefficient of this twisted derivation on the canonical basis.

EXAMPLES:

```
sage: R.<x,y> = QQ[]
sage: K = R.fraction_field()
sage: theta = K.hom([y,x])
sage: M = K.derivation_module(twist=theta)
sage: M.basis()
Family (twisting_morphism - id,)
sage: f = (x+y) * M.gen()
sage: f
(x + y)*(twisting_morphism - id)
sage: f.list()
[x + y]
```

postcompose (morphism)

Return the twisted derivation obtained by applying first this twisted derivation and then morphism.

INPUT:

• morphism – a homomorphism of rings whose domain is the codomain of this derivation or a ring into which the codomain of this derivation

EXAMPLES:

```
sage: R.<x,y> = ZZ[]
sage: theta = R.hom([y,x])
sage: D = R.derivation(x, twist=theta); D
x*([x |--> y, y |--> x] - id)

sage: f = R.hom([x^2, y^3])
sage: g = D.precompose(f); g
x*([x |--> y^2, y |--> x^3] - [x |--> x^2, y |--> y^3])
```

Observe that the g is no longer a θ -derivation but a $(\theta \circ f)$ -derivation:

precompose (morphism)

Return the twisted derivation obtained by applying first morphism and then this twisted derivation.

INPUT:

• morphism – a homomorphism of rings whose codomain is the domain of this derivation or a ring that coerces to the domain of this derivation

```
sage: R.<x,y> = ZZ[]
sage: theta = R.hom([y,x])
sage: D = R.derivation(x, twist=theta); D
x*([x |--> y, y |--> x] - id)

sage: f = R.hom([x^2, y^3])
sage: g = D.postcompose(f); g
x^2*([x |--> y^3, y |--> x^2] - [x |--> x^2, y |--> y^3])
```

Observe that the g is no longer a θ -derivation but a $(f \circ \theta)$ -derivation:

class sage.rings.derivation.RingDerivationWithoutTwist

Bases: sage.rings.derivation.RingDerivation

An abstract class for untwisted derivations.

is zero()

Return True if this derivation is zero.

EXAMPLES:

```
sage: R.<x,y> = ZZ[]
sage: f = R.derivation(); f
d/dx
sage: f.is_zero()
False
sage: (f-f).is_zero()
True
```

list()

Return the list of coefficient of this derivation on the canonical basis.

EXAMPLES:

```
sage: R.<x,y> = QQ[]
sage: M = R.derivation_module()
sage: M.basis()
Family (d/dx, d/dy)

sage: R.derivation(x).list()
[1, 0]
sage: R.derivation(y).list()
[0, 1]

sage: f = x*R.derivation(x) + y*R.derivation(y); f
x*d/dx + y*d/dy
sage: f.list()
[x, y]
```

monomial coefficients()

Return dictionary of nonzero coordinates (on the canonical basis) of this derivation.

7.1. Derivations 105

More precisely, this returns a dictionary whose keys are indices of basis elements and whose values are the corresponding coefficients.

EXAMPLES:

```
sage: R.<x,y> = QQ[]
sage: M = R.derivation_module()
sage: M.basis()
Family (d/dx, d/dy)

sage: R.derivation(x).monomial_coefficients()
{0: 1}
sage: R.derivation(y).monomial_coefficients()
{1: 1}

sage: f = x*R.derivation(x) + y*R.derivation(y); f
x*d/dx + y*d/dy
sage: f.monomial_coefficients()
{0: x, 1: y}
```

postcompose (morphism)

Return the derivation obtained by applying first this derivation and then morphism.

INPUT:

 morphism – a homomorphism of rings whose domain is the codomain of this derivation or a ring into which the codomain of this derivation coerces

EXAMPLES:

```
sage: A.<x,y>= QQ[]
sage: ev = A.hom([QQ(0), QQ(1)])
sage: Dx = A.derivation(x)
sage: Dy = A.derivation(y)
```

We can define the derivation at (0,1) just by postcomposing with ev:

```
sage: dx = Dx.postcompose(ev)
sage: dy = Dy.postcompose(ev)
sage: f = x^2 + y^2
sage: dx(f)
0
sage: dy(f)
2
```

Note that we cannot avoid the creation of the evaluation morphism: if we pass in QQ instead, an error is raised since there is no coercion morphism from A to QQ:

```
sage: Dx.postcompose(QQ)
Traceback (most recent call last):
...
TypeError: the codomain of the derivation does not coerce to the given ring
```

Note that this method cannot be used to compose derivations:

```
sage: Dx.precompose(Dy)
Traceback (most recent call last):
...
TypeError: you must give an homomorphism of rings
```

precompose (morphism)

Return the derivation obtained by applying first morphism and then this derivation.

INPUT:

 morphism – a homomorphism of rings whose codomain is the domain of this derivation or a ring that coerces to the domain of this derivation

EXAMPLES:

```
sage: A.<x> = QQ[]
sage: B.<x,y> = QQ[]
sage: D = B.derivation(x) - 2*x*B.derivation(y); D
d/dx - 2*x*d/dy
```

When restricting to A, the term d/dy disappears (since it vanishes on A):

```
sage: D.precompose(A)
d/dx
```

If we restrict to another well chosen subring, the derivation vanishes:

```
sage: C.<t> = QQ[]
sage: f = C.hom([x^2 + y]); f
Ring morphism:
  From: Univariate Polynomial Ring in t over Rational Field
  To: Multivariate Polynomial Ring in x, y over Rational Field
  Defn: t |--> x^2 + y
sage: D.precompose(f)
0
```

Note that this method cannot be used to compose derivations:

```
sage: D.precompose(D)
Traceback (most recent call last):
...
TypeError: you must give an homomorphism of rings
```

pth_power()

Return the p-th power of this derivation where p is the characteristic of the domain.

Note: Leibniz rule implies that this is again a derivation.

EXAMPLES:

```
sage: R.<x,y> = GF(5)[]
sage: Dx = R.derivation(x)
sage: Dx.pth_power()
0
sage: (x*Dx).pth_power()
x*d/dx
sage: (x^6*Dx).pth_power()
x^26*d/dx

sage: Dy = R.derivation(y)
sage: (x*Dx + y*Dy).pth_power()
x*d/dx + y*d/dy
```

7.1. Derivations 107

An error is raised if the domain has characteristic zero:

or if the characteristic is not a prime number:

 $\textbf{class} \ \texttt{sage.rings.derivation.RingDerivationWithoutTwist_fraction_field} \ (\textit{parent}, \\$

arg=None)

 $\textbf{Bases: } \textit{sage.rings.derivation.RingDerivationWithoutTwist_wrapper}$

This class handles derivations over fraction fields.

Bases: sage.rings.derivation.RingDerivationWithoutTwist

A class for untwisted derivations over rings whose elements are either polynomials, rational fractions, power series or Laurent series.

is_zero()

Return True if this derivation is zero.

EXAMPLES:

```
sage: R.<x,y> = ZZ[]
sage: f = R.derivation(); f
d/dx
sage: f.is_zero()
False

sage: (f-f).is_zero()
```

list()

Return the list of coefficient of this derivation on the canonical basis.

EXAMPLES:

```
sage: R.<x,y> = GF(5)[[]]
sage: M = R.derivation_module()
sage: M.basis()
Family (d/dx, d/dy)

sage: R.derivation(x).list()
[1, 0]
sage: R.derivation(y).list()
```

(continues on next page)

(continued from previous page)

```
[0, 1]
sage: f = x*R.derivation(x) + y*R.derivation(y); f
x*d/dx + y*d/dy
sage: f.list()
[x, y]
```

 ${\tt class} \ \, {\tt sage.rings.derivation.RingDerivationWithoutTwist_quotient} \ \, ({\it parent},$

arg=None

Bases: sage.rings.derivation.RingDerivationWithoutTwist_wrapper

This class handles derivations over quotient rings.

Bases: sage.rings.derivation.RingDerivationWithoutTwist

This class is a wrapper for derivation.

It is useful for changing the parent without changing the computation rules for derivations. It is used for derivations over fraction fields and quotient rings.

list()

Return the list of coefficient of this derivation on the canonical basis.

EXAMPLES:

```
sage: R.<X,Y> = GF(5)[]
sage: S.<x,y> = R.quo([X^5, Y^5])
sage: M = S.derivation_module()
sage: M.basis()
Family (d/dx, d/dy)

sage: S.derivation(x).list()
[1, 0]
sage: S.derivation(y).list()
[0, 1]

sage: f = x*S.derivation(x) + y*S.derivation(y); f
x*d/dx + y*d/dy
sage: f.list()
[x, y]
```

class sage.rings.derivation.RingDerivationWithoutTwist_zero (parent, arg=None)

Bases: sage.rings.derivation.RingDerivationWithoutTwist

This class can only represent the zero derivation.

It is used when the parent is the zero derivation module (e.g., when its domain is ZZ, QQ, a finite field, etc.)

is_zero()

Return True if this derivation vanishes.

EXAMPLES:

```
sage: M = QQ.derivation_module()
sage: M().is_zero()
True
```

list()

Return the list of coefficient of this derivation on the canonical basis.

7.1. Derivations 109

EXAMPLES:

```
sage: M = QQ.derivation_module()
sage: M().list()
[]
```

CHAPTER

EIGHT

INDICES AND TABLES

- Index
- Module Index
- Search Page

PYTHON MODULE INDEX

r

```
sage.rings.big_oh, 85
sage.rings.derivation, 97
sage.rings.fraction_field, 73
sage.rings.fraction_field_element, 78
sage.rings.homset, 54
sage.rings.ideal, 25
sage.rings.ideal_monoid, 39
sage.rings.infinity, 86
sage.rings.morphism, 43
sage.rings.noncommutative_ideals, 39
sage.rings.numbers_abc, 94
sage.rings.quotient_ring, 57
sage.rings.quotient_ring_element, 68
sage.rings.ring, 1
```

Sage Reference Manual: General Rings, Ideals, and Morphisms, Release 8.	Sage	Reference	Manual:	General	Rinas.	Ideals.	and Mor	phisms.	Release	8.8
---	------	-----------	---------	---------	--------	---------	---------	---------	---------	-----

114 Python Module Index

INDEX

Α absolute norm() (sage.rings.ideal.Ideal generic method), 28 Algebra (class in sage.rings.ring), 2 algebraic_closure() (sage.rings.ring.Field method), 9 ambient() (sage.rings.quotient_ring.QuotientRing_nc method), 61 AnInfinity (class in sage.rings.infinity), 89 apply_morphism() (sage.rings.ideal.Ideal_generic method), 28 associated_primes() (sage.rings.ideal.Ideal_generic method), 28 В base_extend() (sage.rings.ring.Ring method), 14 base_ring() (sage.rings.fraction_field.FractionField_generic method), 76 base_ring() (sage.rings.ideal.Ideal_generic method), 29 basis () (sage.rings.derivation.RingDerivationModule method), 100 C category() (sage.rings.ideal.Ideal_generic method), 29 category() (sage.rings.ring.Ring method), 14 characteristic() (sage.rings.fraction_field.FractionField_generic method), 76 characteristic() (sage.rings.quotient_ring.QuotientRing_nc method), 61 characteristic() (sage.rings.ring.Algebra method), 2 class_group() (sage.rings.ring.PrincipalIdealDomain method), 12 class_number() (sage.rings.fraction_field.FractionField_1poly_field method), 75 codomain () (sage.rings.derivation.RingDerivation method), 99 codomain() (sage.rings.derivation.RingDerivationModule method), 100 CommutativeAlgebra (class in sage.rings.ring), 2 CommutativeRing (class in sage.rings.ring), 3 construction() (sage.rings.fraction_field.FractionField_generic method), 76 construction() (sage.rings.quotient ring.QuotientRing nc method), 62 content () (sage.rings.ring.PrincipalIdealDomain method), 12 cover() (sage.rings.quotient_ring.QuotientRing_nc method), 62 cover_ring() (sage.rings.quotient_ring.QuotientRing_nc method), 63 Cyclic() (in module sage.rings.ideal), 25 DedekindDomain (class in sage.rings.ring), 7 defining_ideal() (sage.rings.quotient_ring.QuotientRing_nc method), 63

```
defining_morphism() (sage.rings.derivation.RingDerivationModule method), 101
denominator() (sage.rings.fraction_field_element.FractionFieldElement method), 79
derivation() (sage.rings.ring.CommutativeRing method), 3
derivation module() (sage.rings.ring.CommutativeRing method), 4
divides () (sage.rings.ideal.Ideal_principal method), 37
divides () (sage.rings.ring.Field method), 9
domain() (sage.rings.derivation.RingDerivation method), 100
domain() (sage.rings.derivation.RingDerivationModule method), 101
dual_basis() (sage.rings.derivation.RingDerivationModule method), 101
F
Element (sage.rings.ideal_monoid.IdealMonoid_c attribute), 39
Element (sage.rings.quotient_ring.QuotientRing_nc attribute), 61
embedded_primes() (sage.rings.ideal.Ideal_generic method), 29
epsilon() (sage.rings.ring.Ring method), 15
EuclideanDomain (class in sage.rings.ring), 8
extension() (sage.rings.ring.CommutativeRing method), 5
F
Field (class in sage.rings.ring), 9
FieldIdeal() (in module sage.rings.ideal), 25
FiniteNumber (class in sage.rings.infinity), 89
fraction field() (sage.rings.infinity.InfinityRing class method), 90
fraction_field() (sage.rings.infinity.UnsignedInfinityRing_class method), 91
fraction_field() (sage.rings.ring.CommutativeRing method), 6
fraction_field() (sage.rings.ring.Field method), 9
FractionField() (in module sage.rings.fraction_field), 73
FractionField_1poly_field (class in sage.rings.fraction_field), 75
FractionField_generic (class in sage.rings.fraction_field), 76
FractionFieldElement (class in sage.rings.fraction_field_element), 78
FractionFieldElement 1poly field (class in sage.rings.fraction field element), 81
FractionFieldEmbedding (class in sage.rings.fraction_field), 74
FractionFieldEmbeddingSection (class in sage.rings.fraction_field), 75
frobenius endomorphism() (sage.rings.ring.CommutativeRing method), 6
FrobeniusEndomorphism_generic (class in sage.rings.morphism), 48
function_field() (sage.rings.fraction_field.FractionField_1poly_field method), 75
G
gcd() (sage.rings.ideal.Ideal pid method), 35
gcd() (sage.rings.ring.PrincipalIdealDomain method), 13
gen () (sage.rings.derivation.RingDerivationModule method), 101
gen () (sage.rings.fraction_field.FractionField_generic method), 76
gen () (sage.rings.ideal.Ideal_generic method), 30
gen () (sage.rings.ideal.Ideal_principal method), 37
gen () (sage.rings.infinity.InfinityRing_class method), 90
gen () (sage.rings.infinity.UnsignedInfinityRing class method), 91
gen () (sage.rings.quotient ring.QuotientRing nc method), 63
gens () (sage.rings.derivation.RingDerivationModule method), 102
gens () (sage.rings.ideal.Ideal_generic method), 30
gens () (sage.rings.infinity.InfinityRing_class method), 90
```

```
gens () (sage.rings.infinity.UnsignedInfinityRing class method), 92
gens_reduced() (sage.rings.ideal.Ideal_generic method), 30
Н
has coerce map from () (sage.rings.homset.RingHomset generic method), 55
has standard involution() (sage.rings.ring.Algebra method), 2
Ideal () (in module sage.rings.ideal), 26
ideal() (sage.rings.quotient ring.QuotientRing nc method), 64
ideal() (sage.rings.ring.Field method), 10
ideal() (sage.rings.ring.Ring method), 15
Ideal_fractional (class in sage.rings.ideal), 27
Ideal generic (class in sage.rings.ideal), 28
ideal_monoid() (sage.rings.ring.CommutativeRing method), 6
ideal_monoid() (sage.rings.ring.Ring method), 16
Ideal_nc (class in sage.rings.noncommutative_ideals), 40
Ideal_pid (class in sage.rings.ideal), 34
Ideal_principal (class in sage.rings.ideal), 37
IdealMonoid() (in module sage.rings.ideal monoid), 39
IdealMonoid_c (class in sage.rings.ideal_monoid), 39
IdealMonoid nc (class in sage.rings.noncommutative ideals), 40
im gens () (sage.rings.morphism.RingHomomorphism im gens method), 53
InfinityRing (in module sage.rings.infinity), 89
InfinityRing class (class in sage.rings.infinity), 89
integral_closure() (sage.rings.ring.DedekindDomain method), 7
integral_closure() (sage.rings.ring.Field method), 10
IntegralDomain (class in sage.rings.ring), 11
inverse_image() (sage.rings.morphism.RingHomomorphism method), 49
is_commutative() (sage.rings.infinity.InfinityRing_class method), 90
is commutative() (sage.rings.quotient ring.QuotientRing nc method), 64
is_commutative() (sage.rings.ring.CommutativeAlgebra method), 2
is_commutative() (sage.rings.ring.CommutativeRing method), 6
is_commutative() (sage.rings.ring.Ring method), 16
is_exact() (sage.rings.fraction_field.FractionField_generic method), 77
is_exact() (sage.rings.ring.Ring method), 16
is_field() (sage.rings.fraction_field.FractionField_generic method), 77
is_field() (sage.rings.quotient_ring.QuotientRing_nc method), 64
is_field() (sage.rings.ring.Field method), 10
is field() (sage.rings.ring.IntegralDomain method), 11
is_field() (sage.rings.ring.Ring method), 17
is finite() (sage.rings.fraction field.FractionField generic method), 77
is_FractionField() (in module sage.rings.fraction_field), 78
is_FractionFieldElement() (in module sage.rings.fraction_field_element), 82
is_Ideal() (in module sage.rings.ideal), 38
is_Infinite() (in module sage.rings.infinity), 92
is_injective() (sage.rings.fraction_field.FractionFieldEmbedding method), 74
is integral() (sage.rings.fraction field element.FractionFieldElement 1poly field method), 81
is_integral_domain() (sage.rings.quotient_ring.QuotientRing_nc method), 65
is_integral_domain() (sage.rings.ring.IntegralDomain method), 11
```

```
is_integral_domain() (sage.rings.ring.Ring method), 17
is_integrally_closed() (sage.rings.ring.DedekindDomain method), 7
is_integrally_closed() (sage.rings.ring.Field method), 10
is integrally closed() (sage.rings.ring.IntegralDomain method), 11
is_maximal() (sage.rings.ideal.Ideal_generic method), 30
is_maximal() (sage.rings.ideal.Ideal_pid method), 35
is_noetherian() (sage.rings.quotient_ring.QuotientRing_nc method), 65
is_noetherian() (sage.rings.ring.DedekindDomain method), 8
is_noetherian() (sage.rings.ring.Field method), 10
is_noetherian() (sage.rings.ring.NoetherianRing method), 12
is noetherian() (sage.rings.ring.PrincipalIdealDomain method), 14
is noetherian() (sage.rings.ring.Ring method), 18
is_one() (sage.rings.fraction_field_element.FractionFieldElement method), 79
is_primary() (sage.rings.ideal.Ideal_generic method), 31
is prime() (sage.rings.ideal.Ideal generic method), 31
is_prime() (sage.rings.ideal.Ideal_pid method), 35
is_prime_field() (sage.rings.ring.Ring method), 18
is principal() (sage.rings.ideal.Ideal generic method), 32
is_principal() (sage.rings.ideal.Ideal_principal method), 37
is_QuotientRing() (in module sage.rings.quotient_ring), 68
is_Ring() (in module sage.rings.ring), 23
is ring() (sage.rings.ring.Ring method), 18
is_RingHomomorphism() (in module sage.rings.morphism), 54
is_RingHomset() (in module sage.rings.homset), 56
is_square() (sage.rings.fraction_field_element.FractionFieldElement method), 79
is subring() (sage.rings.ring.Ring method), 19
is_surjective() (sage.rings.fraction_field.FractionFieldEmbedding method), 74
is_trivial() (sage.rings.ideal.Ideal_generic method), 32
is unit() (sage.rings.quotient ring element.QuotientRingElement method), 69
is_zero() (sage.rings.derivation.RingDerivationWithoutTwist method), 105
is_zero() (sage.rings.derivation.RingDerivationWithoutTwist_function method), 108
is zero() (sage.rings.derivation.RingDerivationWithoutTwist zero method), 109
is zero() (sage.rings.fraction field element.FractionFieldElement method), 80
is_zero() (sage.rings.infinity.InfinityRing_class method), 90
K
Katsura() (in module sage.rings.ideal), 38
kernel() (sage.rings.morphism.RingHomomorphism cover method), 50
krull_dimension() (sage.rings.ring.CommutativeRing method), 7
krull_dimension() (sage.rings.ring.DedekindDomain method), 8
krull_dimension() (sage.rings.ring.Field method), 10
L
1c() (sage.rings.quotient_ring_element.QuotientRingElement method), 69
lcm () (sage.rings.infinity.AnInfinity method), 89
less_than_infinity() (sage.rings.infinity.UnsignedInfinityRing_class method), 92
LessThanInfinity (class in sage.rings.infinity), 90
lift () (sage.rings.morphism.RingHomomorphism method), 49
lift() (sage.rings.quotient_ring.QuotientRing_nc method), 65
lift() (sage.rings.quotient_ring_element.QuotientRingElement method), 70
```

```
lifting map() (sage.rings.quotient ring.QuotientRing nc method), 66
list() (sage.rings.derivation.RingDerivationWithoutTwist method), 105
list() (sage.rings.derivation.RingDerivationWithoutTwist_function method), 108
list() (sage.rings.derivation.RingDerivationWithoutTwist wrapper method), 109
list() (sage.rings.derivation.RingDerivationWithoutTwist_zero method), 109
list() (sage.rings.derivation.RingDerivationWithTwist_generic method), 104
lm() (sage.rings.quotient_ring_element.QuotientRingElement method), 70
lt () (sage.rings.quotient_ring_element.QuotientRingElement method), 70
M
make_element() (in module sage.rings.fraction_field_element), 82
make_element_old() (in module sage.rings.fraction_field_element), 83
maximal_order() (sage.rings.fraction_field.FractionField_1poly_field method), 75
minimal_associated_primes() (sage.rings.ideal.Ideal_generic method), 32
MinusInfinity (class in sage.rings.infinity), 91
monomial_coefficients() (sage.rings.derivation.RingDerivationWithoutTwist method), 105
monomials () (sage.rings.quotient_ring_element.QuotientRingElement method), 70
morphism_from_cover() (sage.rings.morphism.RingHomomorphism_from_quotient method), 53
Ν
natural_map() (sage.rings.homset.RingHomset_generic method), 55
ngens () (sage.rings.derivation.RingDerivationModule method), 102
ngens () (sage.rings.fraction_field.FractionField_generic method), 77
ngens () (sage.rings.ideal.Ideal_generic method), 33
ngens () (sage.rings.infinity.InfinityRing_class method), 90
ngens () (sage.rings.infinity.UnsignedInfinityRing_class method), 92
ngens () (sage.rings.quotient_ring.QuotientRing_nc method), 67
NoetherianRing (class in sage.rings.ring), 12
norm() (sage.rings.ideal.Ideal generic method), 33
nth_root() (sage.rings.fraction_field_element.FractionFieldElement method), 80
numerator() (sage.rings.fraction_field_element.FractionFieldElement method), 80
0
○ () (in module sage.rings.big_oh), 85
one () (sage.rings.ring.Ring method), 19
order () (sage.rings.ring.Ring method), 19
Р
parameter() (sage.rings.ring.EuclideanDomain method), 9
PlusInfinity (class in sage.rings.infinity), 91
\verb"postcompose" () \textit{ (sage.rings.derivation.RingDerivationWithoutTwist method)}, 106
postcompose() (sage.rings.derivation.RingDerivationWithTwist_generic method), 104
power () (sage.rings.morphism.FrobeniusEndomorphism_generic method), 49
precompose () (sage.rings.derivation.RingDerivationWithoutTwist method), 106
precompose () (sage.rings.derivation.RingDerivationWithTwist_generic method), 104
primary decomposition() (sage.rings.ideal.Ideal generic method), 33
prime subfield() (sage.rings.ring.Field method), 11
principal_ideal() (sage.rings.ring.Ring method), 19
PrincipalIdealDomain (class in sage.rings.ring), 12
pth power () (sage.rings.derivation.RingDerivationWithoutTwist method), 107
```

```
pushforward() (sage.rings.morphism.RingHomomorphism method), 49
Python Enhancement Proposals
    PEP 3141,94
Q
quo () (sage.rings.ring.Ring method), 19
quotient() (sage.rings.ring.Ring method), 20
quotient_ring() (sage.rings.ring.Ring method), 20
QuotientRing() (in module sage.rings.quotient_ring), 58
QuotientRing_generic (class in sage.rings.quotient_ring), 60
QuotientRing_nc (class in sage.rings.quotient_ring), 60
QuotientRingElement (class in sage.rings.quotient_ring_element), 68
R
random_element() (sage.rings.derivation.RingDerivationModule method), 103
random_element() (sage.rings.fraction_field.FractionField_generic method), 77
random_element() (sage.rings.ideal.Ideal_generic method), 33
random_element() (sage.rings.ring.Ring method), 21
reduce() (sage.rings.fraction_field_element.FractionFieldElement method), 81
reduce() (sage.rings.fraction field element.FractionFieldElement 1poly field method), 82
reduce() (sage.rings.ideal.Ideal_generic method), 34
reduce() (sage.rings.ideal.Ideal_pid method), 36
reduce() (sage.rings.quotient_ring_element.QuotientRingElement method), 71
register_sage_classes() (in module sage.rings.numbers_abc), 94
residue_field() (sage.rings.ideal.Ideal_pid method), 36
retract() (sage.rings.quotient_ring.QuotientRing_nc method), 67
Ring (class in sage.rings.ring), 14
ring() (sage.rings.fraction field.FractionField generic method), 78
ring() (sage.rings.ideal.Ideal_generic method), 34
ring() (sage.rings.ideal monoid.IdealMonoid c method), 39
ring of constants () (sage.rings.derivation.RingDerivationModule method), 103
ring_of_integers() (sage.rings.fraction_field.FractionField_1poly_field method), 75
RingDerivation (class in sage.rings.derivation), 99
RingDerivationModule (class in sage.rings.derivation), 100
RingDerivationWithoutTwist (class in sage.rings.derivation), 105
RingDerivationWithoutTwist_fraction_field (class in sage.rings.derivation), 108
RingDerivationWithoutTwist_function (class in sage.rings.derivation), 108
RingDerivationWithoutTwist_quotient (class in sage.rings.derivation), 109
RingDerivationWithoutTwist_wrapper (class in sage.rings.derivation), 109
RingDerivationWithoutTwist_zero (class in sage.rings.derivation), 109
RingDerivationWithTwist_generic (class in sage.rings.derivation), 104
RingHomomorphism (class in sage.rings.morphism), 49
RingHomomorphism_coercion (class in sage.rings.morphism), 50
RingHomomorphism_cover (class in sage.rings.morphism), 50
RingHomomorphism from base (class in sage.rings.morphism), 50
RingHomomorphism_from_quotient (class in sage.rings.morphism), 52
RingHomomorphism_im_gens (class in sage.rings.morphism), 53
RingHomset () (in module sage.rings.homset), 54
RingHomset_generic (class in sage.rings.homset), 54
RingHomset_quo_ring (class in sage.rings.homset), 55
```

```
RingMap (class in sage.rings.morphism), 53
RingMap_lift (class in sage.rings.morphism), 53
S
sage.rings.big_oh (module), 85
sage.rings.derivation (module), 97
sage.rings.fraction_field (module), 73
sage.rings.fraction_field_element (module), 78
sage.rings.homset (module), 54
sage.rings.ideal (module), 25
sage.rings.ideal_monoid(module), 39
sage.rings.infinity (module), 86
sage.rings.morphism (module), 43
sage.rings.noncommutative_ideals (module), 39
sage.rings.numbers_abc (module), 94
sage.rings.quotient_ring (module), 57
sage.rings.quotient ring element (module), 68
sage.rings.ring (module), 1
section() (sage.rings.fraction_field.FractionFieldEmbedding method), 74
side() (sage.rings.noncommutative_ideals.Ideal_nc method), 41
SignError, 91
some_elements() (sage.rings.derivation.RingDerivationModule method), 103
some_elements() (sage.rings.fraction_field.FractionField_generic method), 78
specialization() (sage.rings.fraction_field_element.FractionFieldElement method), 81
sqrt () (sage.rings.infinity.FiniteNumber method), 89
sgrt () (sage.rings.infinity.MinusInfinity method), 91
sqrt () (sage.rings.infinity.PlusInfinity method), 91
support () (sage.rings.fraction_field_element.FractionFieldElement_Ipoly_field method), 82
Т
term_order() (sage.rings.quotient_ring.QuotientRing_nc method), 67
test_comparison() (in module sage.rings.infinity), 92
test_signed_infinity() (in module sage.rings.infinity), 93
twisting_morphism() (sage.rings.derivation.RingDerivationModule method), 103
U
underlying_map() (sage.rings.morphism.RingHomomorphism_from_base method), 52
unit_ideal()(sage.rings.ring.Ring method), 21
UnsignedInfinity (class in sage.rings.infinity), 91
UnsignedInfinityRing (in module sage.rings.infinity), 91
UnsignedInfinityRing_class (class in sage.rings.infinity), 91
V
valuation() (sage.rings.fraction_field_element.FractionFieldElement method), 81
variables () (sage.rings.quotient ring element.QuotientRingElement method), 71
7
zero() (sage.rings.homset.RingHomset_generic method), 55
zero() (sage.rings.ring.Ring method), 21
zero_ideal() (sage.rings.ring.Ring method), 21
```

Sage Reference Manual: General Rings, Ideals, and Morphisms, Release 8.9

zeta() (sage.rings.ring.Ring method), 22
zeta_order() (sage.rings.ring.Ring method), 22