Simplification of Combinatorial Digital Logic

CS 64: Computer Organization and Design Logic
Lecture #12
Winter 2020

Ziad Matni, Ph.D.

Dept. of Computer Science, UCSB

This Week on "Didja Know Dat?!"

One of the first commercially available microprocessors (CPUs) was Intel's 8008 in the early 1970s and its follow-up the 8080 (1976).

The 8080 is STILL in production!

The size of the 8080 semiconductor (i.e. inside the ceramic package with all the pins) is 4.2 x 4.8 mm²

 (20.16 mm^2)

By comparison, the Intel i7 Dual Core is 9.2 x 13.5 mm²

 (124.2 mm^2)

BUT THAT'S NOT A FAIR COMPARISON!

8088: 16-bit CPU.

Cannot run Windows 1.0!

i7 Core: 64-bit CPU<u>s</u>.

Have a TON more features.

How do they do that?
Moore's Law

The number of *transistors* on a microchip doubles every two years, though the cost of computers is halved.

More transistors means higher capabilities. Smaller transistors mean higher speeds.

Moore's Law – The number of transistors on integrated circuit chips (1971-2018)

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years. This advancement is important as other aspects of technological progress – such as processing speed or the price of electronic products – are linked to Moore's law.

Administrative

Lab 6 due Thursday

You have 3 more labs after this...

Midterm Exam Grades are On GauchoSpace

Reviewing Your Midterm Exams

You can review your midterm with a TA during office hours

• Last name: A thru P Kunlong Liu Tu 3 pm – 5 pm

• Last name: Q thru Z Michael Christensen Tu 10 am – 12 pm

 If you can't go to these o/hs, you can see me instead, but let me know many days ahead of time first so I can get your exam from the TA...

- When reviewing your exams:
 - Do <u>not</u> take pictures, do not copy the questions
 - TA cannot change your grade
 - If you have a legitimate case for grade change, the prof. will decide
 - Legitimate = When we graded, we added the total points wrong
 - Not legitimate = Why did you take off N points on this question????

CS64, W20, Midterm Exam Grade Distribution

Lecture Outline

Simplifying Binary Functions using Karnaugh Maps

Using "Don't Cares" for further simplification

Multiplexers (i.e. Muxes)

Digital Circuit Design Process

Scaling Up Simplification

 When we get to more than 3 variables, it becomes challenging to use truth tables

 We can instead use Karnaugh Maps to make it immediately apparent as to what can be simplified

Example of a K-Map

A	В	f(A,B)
0	0	а
0	1	b
1	0	С
1	1	d

B	A 0	1
0	a	С
1	b	d

A	В	f(A,B)
0	0	0
0	1	1
1	0	1
1	1	1

K-Maps with 3 or 4 Variables

Note the adjacent placement of: **00 01 11 10**

It's NOT: **00 01 10 11**

- 1. Group together adjacent cells containing "1"
- 2. Groups should **not include** anything containing "0"

3. Groups may be horizontal or vertical, but not diagonal

2/24/2020

4. Groups must contain 1, 2, 4, 8, or in general 2ⁿ cells.

5. Each group must be as large as possible

(Otherwise we're not being as minimal as we can be, even though we're not breaking any Boolean rules)

6. Each cell containing a "1" must be at least in one group

7. Groups may overlap esp. to maximize group size

8. Groups may wrap around the table.

The leftmost cell in a row may be grouped with the rightmost cell and the top cell in a column may be grouped with the bottom cell.

Example 1: 2 variables

Example 2: 3 variables

Example 3: 3 variables

!A!B!C + !A!BC + !ABC + !AB!C + A!B!C + AB!C

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	AB				
		00	01	11	10
	0	1	1	1	1
	1	1	1		

$$F(X,Y,Z) = !C + !A <$$

Example 4: 4 variables

Example 4: 4 variables

F(A,B,C,D)

= ABC!D + ABC!D + CD + !A!B + !CD

K-Map Rules Summary

- 1. Groups can contain only 1s
- 2. Only 1s in adjacent groups are allowed
- 3. Groups may ONLY be horizontal or vertical (no diagonals)
- 4. The number of 1s in a group must be a power of two (1, 2, 4, 8...)
- 5. Groups must be as large AND as few in no.s as "legally" possible
- 6. All 1s must belong to a group, even if it's a group of one element
- 7. Overlapping groups are permitted
- 8. Wrapping around the map is permitted

Exploiting "Don't Cares"

An output variable that's designated
 "don't care" (symbol = X) means that it could be
 a 0 or a 1 (i.e. we "don't care" which)

That is, it is unspecified,
 usually because of invalid inputs

• In K-Maps, "Don't Cares" Can Be Advantageous!!

Example of a Don't Care Situation

- Consider coding all decimal digits:
 - 0 thru 9 --- requires how many bits?
 - 4 bits
 - But! 4 bits convey more numbers than that!
 - 4 bits is 16 numbers!

Example Continued...

Binary	Decimal
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7

Binary	Decimal	
1000	8	
1001	9	
1010	X	
1011	X	
1100	Х	
1101	X	
1110	Х	
1111	X	

These combination of input binaries will never be used, so their outcome is "don't care"!

2/24/2020 13 WOIT CUTC : 26

Don't Care: So What?

Recall that in a K-map, we can only group 1s

 Because the value of a don't care is irrelevant, we can treat it as a 1 if it is convenient to do so (or a 0 if that would be more convenient)

Example

 A circuit that calculates if the 4-bit binary coded single digit decimal input % 2 == 0

 So, although 4-bits will give me numbers from 0 to 15, I don't care about the ones that yield 10 to 15.

13	12	I1	10	R
0	0	0	0	1
0	0	0	1	0
0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	1
0	1	1	1	0
1	0	0	0	1
1	0	0	1	0
1	0	1	0	X
1	0	1	1	X
1	1	0	0	X
1	1	0	1	Х
1	1	1	0	Х
1	1	1	1	Х

Example as a K-Map

I_1	Ιo			
I_3I_2	00	01	11	10
00	1	0	0	1
01	1	0	0	1
11	X	X	X	X
10	1	0	X	X

If We **Don't Exploit** "Don't Cares"

If We DO Exploit "Don't Cares"

Combinatorial Logic Designs

 When you combine multiple logic blocks together to form a more complex logic function/circuit

What is its truth table?

Α	В	С	F
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

2/24/2020 Matni, CS64, Wi20

YOUR TO-DOs

Lab 6 due this Thursday!

New Lab 7 will be out by Wednesday...

