Searching PAJ

RECENTER CENTER

DEC 0 6 2010

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2005-267975

(43) Date of publication of application: 29.09.2005

(51)Int.Cl.

H05H 1/46 B08B 7/00 G01N 27/447 G01N 37/00 H01L 21/304 H01L 21/3065 H05H 1/24

(21)Application number: 2004-076940

(71)Applicant: JAPAN SCIENCE & TECHNOLOGY

AGENCY

(22)Date of filing:

17.03.2004

(72)Inventor: ICHIKI TAKANORI

(54) MICROPLASMA JET GENERATOR

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a microplasma jet generator capable of excellently producing stable microplasma jet by small electric power in a very small space under the atmospheric pressure.

SOLUTION: This microplasma jet generator to produce inductively coupled microplasma jet driven by a high

inductively coupled microplasma jet driven by a high frequency power supply in a VHF band has a substrate 1 is equipped with micro antennas 2a, 2b, 2c, a discharge tube 3 installed in the vicinity of the micro antennas, and the micro antenna has a wavy shape of a plurality of rolls.

JP 3616088 B1 2005.2.2

(19) 日本国特許厅(JP)	(12)特	許	公	報(日	31)	(11) 特許 特許)	K3616088号 (P3616088)
(45) 発行日 平成17年2月2日 (2005.2.	2)			(2	24) 登録日	平成16年11月12日	
(51) Int.Cl. ^T HO5H 1/46 GO1N 37/00 HO1L 21/304 HO1L 21/3065 HO5H 1/24	C H	105H 301N 101L 105H	1/46 37/00 21/30 1/24 21/30) 1)4 6 !	L 01 45C 01E	・ 請求項の数 14	(全 11 頁)
(21) 出版番号 特願2004-76940 (22) 出版日 平成16年3月17日 平成16年3月17日 平成16年3月17日 中計法第30条第1項通用 守許法第1 asma Sources Sci. 第12号 (2003年) 第516-	∃ (2004.3. ∃ (2004.3. I条第1項 . Tecl	17) 17) 四用、P hnol	(74) f (72) ₹	納者	独立行政 埼玉県川 100096714 弁理士 2 一木 陸崎	法人科学技術振興機 日本本町4丁日1番 日本多 一郎 底 ア島市上広谷343	8号

(64) 【発明の名称】マイクロブラズマジェット発生装置

(57)【特許弱求の範囲】

【請求項1】

VHF帯の高周波電源により駆動されるマイクロ誘導結合プラズマジェットを生成するマイクロプラズマジェット発生装置において、基板と、該基板上に配設されたマイクロアンテナと、該マイクロアンテナの近傍に設置された放置管とを備え、前記マイクロアンテナが平板状に複数巻の波状形態を行することを特徴とするマイクロプラズマジェット発生装置。

【請求項2】

前記マイクロアンテナが、基板のマイクロプラズマジェット生成側縁部に近接して配設 されている請求項1記載のマイクロプラズマジェット発生装置。

【請求項3】

前記マイクロアンテナに銅、金、白金またはこれらの積層膜のメッキが施されている調 求項1または2記載のマイクロプラズマジェット発生装置。.

【調求項4】

前記メッキ厚が、次式、

 $\delta = (2 / (\omega \mu \sigma))^{1/2}$

(式中、 α は金属の導電率、 μ は透磁率、 α は髙周波の角周波数である)で表される、高周波電流が流れる導体表面からの深さ(δ)の 2 倍以上である請求項 3 記載のマイクロプラズマジェット発生装置。

【消求項5】

20

(2)

JP 3616088 B1 2005.2.2

前記基板材料がアルミナ、サファイヤ、アルミナイトライド、シリコンナイトライド、 窒化ホウ素、および炭化ケイ素からなる群から選ばれる訥求項 1 ~ 4 のうちいずれか一項 記載のマイクロプラズマジェット発生装御。

【請求項6】

前記基板材料がアルミナである湖水項5記載のマイクロプラズマジェット発生装置。

【請求項7】

高電圧発生装置を備えた請求項1~6のうちいずれか一項記載のマイクロプラズマジェット発生装置。

【韵求项8】

請求項 $1\sim7$ のうちいずれか一項記載のマイクロプラズマジェット発生装置に、プラズマガスを流量 $0.05\sim5$ s 1 mで導入し、かつ V H F 帯の高周波をマイクロアンテナに印加することを特徴とするマイクロプラズマジェットの生成方法。

【請求項9】

請求項1~7のうちいずれか一項記載のマイクロプラズマジェット発生装置を使用する ことを特徴とするマイクロ化学分析方法。

【譜求項10】

マイクロキャピラリ電気泳動を用いる請求項9記載のマイクロ化学分析方法。

【胡求項11】

お求項1~7のうちいずれか一項記載のマイクロプラズマジェット発生装置を使用することを特徴とする加工・表面処理方法。

【翻求項12】

前記加工・表面処理が被加工物の局所部位の溶断、エッチング、薄膜堆積、洗浄または 親水化処理である譜求項11記載の加工・表面処理方法。

【請求項13】

前記マイクロプラズマジェット発生装置のマイクロプラズマジェット源に近接して反応性ガスの導入機構を備えた語求項11または12記載の加工・表面処理方法。

【請求項14】

前記反応性ガスが酸素、窒素、空気、フッ化炭素、およびパフッ化硫寅からなる群から 選ばれる謂求項13記載の加工・表面処理方法。

【発明の詳細な説明】

【技術分野】

[0001]

本発明は、マイクロプラズマジェット発生装置に関し、群しくは、大気圧にてマイクロプラズマジェットを良好に生成させ、被加工物の局所部位に溶断、エッチング、薄膜堆積などの加工・表面処理を高速で行うことができ、かつ、マイクロ化学分析システム(Micro Total Analysis System)(以下、「 μ T A S」と称する)にも有用なマイクロプラズマジェット発生装置に関する。

【背承技術】

[0002]

従来より、プラズマジェットは、被加工物に溶断、エッチング、薄膜堆積等の加工・表面処理を行うのに有用とされており、また有害物質の高温処理等、他の様々な分野で利用されている。

[0003]

このようなプラズマジェットに関し、現在、直径2mm以下の精細プラズマジェットを発生させるには、直流アーク放電を用いる方法がよく知られている。しかしながら、直流アーク放電を用いる方法は、電極が劣化しやすいこと、反応性ガスの使用ができないこと、被加工材料が導体に限定されることなどの様々な問題を有している。

[0004]

一方、近年、マイクロプラズマジェット発生装置がプラズマディスプレイパネル(PD 50

20

PAGE 4/13 * RCVD AT 12/6/2010 7:59:16 PM [Eastern Standard Time] * SVR:USPTO-EFXRF-5/0 * DNIS:2738300 * CSID:USPTO * DURATION (mm-ss):00-00s):02-16

. .

30

(3)

JP 3616088 B1 2005.2.2

P) 等の実用的な応用面から非常に注目されており、更には、化学・生化学分析の分野における分析装置や、マイクロデバイスに用いられるマイクロチップ等の加工・表面処理などのプロセス装置への応用も期待されている。

[0005]

とりわけ、化学・生化学分析の分野においてシリコン、ガラス、プラスチックなどのチップ上に数十 μ m幅の満を微細加工してガスクロマトグラフィー(GC)やマイクロキャピラリ電気泳動(μ CE)などの極微量物質の高速分離を行うフロー型分析システムを形成し、レーザー誘起蛍光検出や微小電極を用いた電気化学計測などのオンチップ高感度検出方法と組み合わせ、革新的な高性能分析を実現する μ TASの研究が急速に進んでおり、遺伝子解析、医用検査、新薬開発など幅広い分野での応用が期待されている。

[0006]

また、近年、ベンチトップの分析装置ではキャピラリー電気泳動などの分離技術に極めて感度の高い元素分析法として知られる誘導結合プラズマ発光分光分析(ICP-OES: Inductively Coupled Plasma Optical Emission Spectroscopy)や I C P 質量分析を結合させた高速かつ超高感度な物質検出方法が開発されている。そこで、高密度マイクロプラズマをガラス等のチップ上で生成させ、 μ T A S に集積して高感度検出モジュールとして応用することが考えられる。

[0007]

[00008]

また、マイクロストリップアンテナを用いた 2. 45 G H z マイクロ波放電チップが、大気圧かつ無電極で動作する最初のマイクロプラズマチップとして報告され、深さ 0. 9 mm×幅 1 mm×尽さ 9 0 mmの放電室内に長さ $2\sim3$ c mの放電を 1 0 ~4 0 Wで発生させ、水銀蒸気の検出限界として 1 0 n g 2 m 1 が報告されている。

[0009]

しかしながら、微小空間での安定した髙密度プラズマを小電力で生成することは容易ではないことから、 μ TASチップへのマイクロプラズマの実現による髙感度な微量分析を可能とすることは実現不可能とされてきた。

[0010]

そのような状況の中で、本発明者は、先に、マイクロプラズマを利用したVHF駆動マイクロ誘導結合プラズマ源を用いたμTASを提案し、これにより高感度な微量分析の途を聞くことに成功した(特許文献1)。この特許文献1に開示したVHF駆動マイクロ誘導結合プラズマ源は、図10に示すような、30mm角の石英製の基板101中央に放電智103と、一巻き平板型アンテナ102を具備するマイクロプラズマチップ110である。このマイクロプラズマチップ110は、VHF帯の高周波電源により駆動され、放電智103の一方からプラズマガス104を導入し、他方からマイクロプラズマジェット105を生成させる。

【特許文献1】特開2002-257785号公報(特許請求の範囲、[図1] 等)

【発明の開示】

【発明が解決しようとする課題】

[0011]

上記特許文献1に報告されているVHF駆動マイクロ誘導結合プラズマ源によりμTASにおける高感度な微型分析が可能となったが、その有用性から、マイクロプラズマジェット発生装置については更なる性能の向上が望まれている。

50

(4)

JP 3616088 B1 2005, 2, 2

[0012]

そこで本発明の目的は、これまで以上に、大気圧にて微小空間での安定したマイクロプラズマジェットを小型力で良好に生成させることのできるマイクロプラズマジェット発生 装置を提供することにある。

【課題を解決するための手段】

[0013]

上記課題を解決するために、本発明のマイクロプラズマジェット発生装置は、VHF桁の高周波電源により駆動されるマイクロ誘導結合プラズマジェットを生成するマイクロプラズマジェット発生装置において、基板と、該基板上に配設されたマイクロアンテナと、該マイクロアンテナの近傍に設置された放置管とを備え、前記マイクロアンテナが平板状に複数巻の波状形態を有することを特徴とするものである。

[0014]

また、本発明は、前記マイクロプラズマジェット発生装置に、プラズマガスを流型 0.05~5 s ! mで導入し、かつ V H F 帯の高周波をマイクロアンテナに印加することを特徴とするマイクロプラズマジェットの生成方法である。

[0015]

本発明においては、細い放電管中でイオン及び電子の一部を捕捉することができるVHF帯を利用し、かつ、静電界により電子を加速する容量結合方式よりも、アンテナに流れる電流により生じる誘導電界を利用する誘導結合方式で効率よく電力をプラズマガスに供給することで、高密度プラズマジェットを小戦力で安定して生成させることができる。

【発明の効果】

[0016]

本発明の装置および方法によれば、マイクロプラズマ部は放電体積に反比例して電力密度が高くなることに起因して数十Wの小電力でも大気圧において極めて高密度のプラズマジェットを安定して生成させることが可能である。

[0017]

また、本発明の装置は、それ自体を小型化することができるだけでなく、駆動に必要な電力がベンチトップ型装置の 1 k W 程度と比して 1 0 分の 1 以下になるため、高周波電源の小型化につながり、装置金体の軽量化に有利である。更に、ガスの消費量も大幅に削減可能になることと、水冷が不要になることから、システム全体の携帯化が可能となる。このようなシステム全体の小型化に伴い、より微細なエッチング、薄膜堆積等の加工および装面処理を行うことが可能となる。

【発明を実施するための最良の形態】

[0018]

以下、本発明の一実施形態について図面を参照して具体的に説明する。

図1 (a) ~ (c) に示す各マイクロプラズマジェット発生装置(以下、「プラズマチップ」と略記する)10、20 および30は、基板1と、基板1上に配設されたマイクロアンテナ2a、2b および2c (図1の(a) では2巻、(b) では3巻、(c) では4巻)と、基板1に貫設された放電管3とを夫々備えている。本発明においては、かかるマイクロアンテナ2a、2b および2cが、平板状に複数巻、好ましくは2~4巻、より好ましくは4巻の波状形態を有することが重要である。かかる波状形態のマイクロアンテナとすることにより、特許文献1記載の1巻の波状形態を有するプラズマチップに比し、格段にその効果が向上し、大気圧下、微小空間で安定したマイクロプラズマジェットを極めて良好に生成させることが可能となる。

[0019]

ここで、マイクロアンテナ2a、2bおよび2cは、図1(a)~(c)に示すように、基板1のマイクロプラズマジェット生成側縁部に近接して配設されていることが好ましい。この理由は、VHF帯の高周波戦源により駆動され生成したプラズマの電子密度分布がマイクロアンテナに近接する程、より高密度となるためである。尚、プラズマの電子密度分布は、プラズマ中にわずかに添加した水素のHヵ発光線幅のシュタルク広がりから算

วบ

(5)

JP 3616088 B1 2005.2.2

出することができる。

[0020]

また、マイクロアンテナ2a、2bおよび2cは、郷田性金属、好ましくは鋼、金、白金またはこれらの租間版のメッキが施されており、そのメッキ厚は、次式、

$\delta = (2 / (\omega \mu \sigma))^{1/2}$

[0021]

更に、高密度プラズマジェットを安定して生成させる上で、マイクロアンテナ2a~2 1cの波形の波長は、好ましくは2~10mmであり、また太さ(幅)は、好ましくは0. 5~2~mmである。

[0022]

また、本発明においては、基板 1 の材料は、熱伝導率が高く絶縁物質であることが好ましく、例えば、アルミナ、サファイヤ、アルミナイトライド、シリコンナイトライド、窒化ホウ素、炭化ケイ素等を好適に挙げることができ、特に好ましくはアルミナである。

[0023]

更に、マイクロアンテナ2a~2c近傍に設置される放電管3は、マイクロアンテナ2a~2cの液状形態部分の直下に整板に貫設されていることが好ましい。但し、放電管3は、プラズマチップ10、20、30と常に一体である必要はなく、マイクロプラズマの使用用途に合わせて、適宜設置する位置を変更することが可能である。放電管3の管断面積は、高密度プラズマジェットを安定化して生成させる上で、好ましくは0.01~10mm²である。

· [0024]

上述の本発明のプラズマチップは、既知のフォトリソグラフィ法等を採用することにより製造することができる。この製造工程を図2に基づき説明する。先ず、(a)に示すように、基板1上にマイクロアンテナ形状の間口4を有するレジストマスク5を形成する。次いで、(b)に示すように、RFマグネトロンスパッタリングにより基板状にマイクロアンテナを形成する金属材料6をメッキし、この際、必要に応じ、接着層として、好ましくはクロム層を設ける。次いで、(c)に示すように、リフトオフによりアンテナ形状の金属層6を残し、電解メッキによりアンテナ形状部を所望の厚さに形成する。その後に、(d)に示すように、放電管3を封じるために基板1の裏面に基板と同じ材料の板7を接着する。

[0025]

放電管の形成方法は上述の他に、マイクロアンテナを形成した基板上にアルミナ管などの絶縁管を密着させて配置することでも可能である。

[0026]

上述のようにして形成されたプラズマチップに流電 0.05~5 slm、好ましくは 0.5~2 slmのプラズマガスを導入し、VHFの高周波電源(高電圧発生装置)から VHF市の高周波を、整合国路を介してマイクロアンテナに印加することにより、安定してプラズマジェットの生成を行うことができる。使用し得るプラズマガスとしては、アルゴン、ネオン、ヘリウムを好適に挙げることができ、また、これらガスと水素、酸素または窒素との混同ガスも使用することができる。

[0027]

本発明の装置および方法は、マイクロ化学分析方法、特にはマイクロキャピラリ電気泳動を用いるマイクロ化学分析に好適に用いることができる。

[0028]

更に、本発明の装置および方法は、加工・装面処理方法、特には被加工物の局所部位の 溶断、エッチング、薄膜堆積、洗浄または親水化処理の加工・表面処理方法に好適に用い ることができる。

JP 3616088 B1 2005.2.2

[0029]

また、本発明のマイクロプラズマジェット発生装置を用いた加工・表面処理方法においては、マイクロプラズマジェット源に近接して反応性ガスの導入機構を必要とし、その反応性ガスは、好ましくは酸素、窒素、空気、フッ化炭素、およびハフッ化硫質である。 ブラズマ源の出口近傍にリング状のノズルを設けることにより反応性ガスを供給することができる。

(6)

[0030]

例えば、シリコンウエファエッチングを行う際は、プラズマ源を基板に接近しすぎても、離れすぎてもエッチング深さが浅くなる傾向にある。また、反応性ガスの流量が増加するに従い、エッチング深さは深くなるが、ある一定以上の流量を超えるとプラズマが消滅しエッチング深さは減少する。更に、プラズマ源を走査した場合も固定した場合とほぼ同じエッチング速度を得ることができるが、ある一定の速度を超えるとエッチング速度が減少する傾向が見られる。これはプラズマによる基板の局所的加熱の効果がエッチングに影響するためと考えられる。

【実施例】

[0031]

以下、本発明を実施例に基づき説明する。

则谱例 1

図2に示す製造工程に従いプラズマチップを製造した。先ず、図2 (a) に示す工程にてアルミナ基板(縦15mm×横30mm)1上に、マイクロアンテナの巻数が2往後のマイクロアンテナ形状の開口4を有するレジストマスク5を形成した。この際、マイクロアンテナ形状の開口4をプラズマチップのマイクロジェット生成側縁部に近接させて形成した。これにより、プラズマアンテナ近傍の高密度プラズマをマイクロチップからジェット状に生成させた状態で利用することができる。尚、基板1の裏面には放電管用の凹部(縦1mm×桁1mm×長さ30mm)を予め形成しておいた。

次いで、(b)に示す工程にてRFマグネトロンスパッタリングにより基板一Cu間の接着層となるCrを約500人、後の電解Cuメッキの工程におけるシード層となるCuを約1000人堆積させた。次に、(c)に示す工程にてリフトオフによりアンテナ形状部にCr—Cuの船6を残し、電解Cuメッキによりアンテナ形状部に50~200μmのCuを堆積させた。最後に、(d)に示す工程にて放電管3を封じるためにチップ裏面にアルミナ板7を接着し、プラズマチップを製造した。

[0033]

[0032]

製造例2

製造例 1 において、アルミナ基板を石英基板に代えた以外は製造例 1 と同様にしてプラ ズマチップを製造した。

[0034]

製造例3および4

図1の(b)および(c)に示すようにマイクロアンテナの巻数を(b) 3 往復および (c) 4 往復とした以外は製造例 1 と同様にして 2 種のプラズマチップを製造した。 40

[0035]

<u>試験例1:基板材料の遊いによるマイクロアンテナの温度変化試験</u>

製造例 1 および製造例 2 のプラズマチップを夫々用い、電力 5 W、 1 O W、 2 O W および 5 O W にてプラズマを発生させたときの放射性の違いをサーモグラフィ(F L I R 社製 C P A ー 7 O O O)により可視化した。その結果、基板が石英のときとアルミナのときのいずれの場合も、電力増加に伴うアンテナ部のジュール加熱による温度上昇が確認された。チップ面内の温度分布を比較すると石英基板ではアンテナ近傍で集中的に電力増加に伴う急激な温度上昇が確認されたが、アルミナ基板ではチップ全体でほぼ均一に温度が上昇することが確認された。このことにより石英基板よりアルミナ基板の方が放熱性が良好であることが分かった。

(7) JP 3616088 B1 2005. 2. 2

[0036]

図3は、製造例)および製造例2のプラズマチップの基板材料の違いによる電力とアンテナ温度との関係を示すグラフである。供給電力の増加に伴い、アルミナ基板に比べ石英 拡板の方で大幅なアンテナ温度の上昇が確認された。一般的にプラズマに投入される軍力 は次式、

 $P_{plasen} = (R_{plasen} / (R_{plasen} + R_{system}))$ ($P_f - P_f$) (式中、 P_{plasen} : プラズマ投入電力、 R_{plasen} : プラズマ抵抗、 R_{system} : システム抵抗、 P_f : 入射電力、 P_f : 反射電力)で与えられる。従って、石英の約15倍の放熟性を行するアルミナを基板としたプラズマチップの方がアンテナにかかる温度上昇による制製アンテナの温度上昇による抵抗増大が緩和されるため、アルミナ基板のプラズマチップの方が冷却機構を伴わないマイクロプラズマジェット発生装置に適していることが分かる。【0037】

試験例2: 非板材料の遊いによるAr発光強度の電力依存性試験

図4は、アルゴン発光強度の測定装置の模式図である。基板1に設置されている放電管3に管8よりアルゴンを導入した。高周波電源および整合回路を用い、マイクロアンテナに電力を変動させて周波数144MHzの高周波を印加することによりプラズマトが発生した。発生したプラズマトを光ファイパー9を介してアルゴン発光強度を分光器にて測定した。測定条件として、アルゴン流量を0.7s1mとし、マイクロアンテナ端から2mmの位置にて、763nmのArlスペクトルの発光強度を測定した。図5は、製造例1および製造例2のプラズマチップの基板材料の違いによる電力とアルゴン発光強度の関係を示す。

[0038]

その結果、石英製チップに比ベアルミナ製チップの方が高い発光強度が得られることが 分かった。このことにより、基板材料としては熱伝導率の高い絶縁物質が好ましいことが 分かる。よって、以降の実験では製造例1のアルミナ製チップを用いた。

[0039]

試験例3:Ar発光強度のCuマイクロアンテナの順原依存性試験

アルゴン流量を 0. 7 s l m、放電時間 1 0 分間、周波数 1 4 4 M H 2、供給電力 5 0 W とし、アンテナ端から 2 m m の位置にて、 6 9 6 n m, 7 0 6 n m, 7 3 8 n m, 7 5 0 n m, 7 6 3 n m, 7 7 2 n m の A r I スペクトルの発光強度を測定した。 図 6 は、各波長の A r I スペクトルにおけるアルゴン発光強度とアンテナの銅膜厚の関係を示す。

[0040]

[0041]

試験例4:Ar発光強度の経時変化試験

アルゴン流量を Q. 7 s l m、供給 離力 5 0 W とし、アンテナ 端から 2 m m の 位置 に て、 整合 回路 内を 常温 の 状態 から 放電 を 間始 させて から 6 9 6 n m 、 7 0 6 n m 、 7 3 8 n m 、 7 5 0 n m 、 7 6 3 n m 、 7 7 2 n m の A r I スペクトルの 発光強 壁の 削定を 行った。 図 7 は、 各 波 長 の A r I スペクトル における アルゴン 発光 強度 と 放電 時間 の 関係を示す

[0042]

本実験例では冷却機構を有しない整合回路を用いたため、図7より、放電開始から5分間は回路全体に生じるジュール加熱からの温度上昇による熱抵抗の上昇によりプラズマ投入電力の低下から各Ar発光強度が低下し、放電開始5分以降は回路内の温度上昇が飽和

40

10

20

30

(8)

JP 3616088 B1 2005. 2. 2

することからプラズマ投入電力が一定となるため、Ar発光強度が一定となることが確認された。

[0043]

試験例5: A r 発光強度のガス流量依存性試験

供給電力50Wとし、アンテナ端から2mmの位置で波長763nmのArIスペクトルの発光強度の測定を行った。図8は、アルゴン発光強度とアルゴンガス流量の関係を示す。その結果、Arガス流量の.7slm付近にて最大の発光強度が得られた。この程度のガス流量であれば小型のガスボンベでも供給ができるため、マイクロプラズマジェット発生装置を可撤することが可能であると考えられる。

[0044]

試験例 6 :マイクロアンテナ形状変化による A r 発光強度の質力依存性試験

アルゴン流量を 0.7 slmとし、アンテナ端から 2 mmの位置で波長 7 6 3 nmの A rlスペクトルの発光強度の測定を、図 1 に示したようにアンテナ形状の巻数を 2、3、4と変化させて行った。図 9 は、アンテナ形状を変えた時の Ar 発光強度の電力依存性を示す。

[0045]

その結果、放電街上部に配置されるアンテナを長くすると高い発光強度が得られることが分かった。但し、アンテナの巻数が3と4の場合に、もはやあまり大きな発光強度、即ちプラズマ密度の上昇が見られなかった。更に、アンチナを長くしすぎると電力の損失が問題になると考えられ、よって、巻数が4のときが最適なアンテナ形状と判断された。

【産業上の利用可能性】

[0046]

本発明のマイクロプラズマジェット発生装置はこれまで以上に小型化が可能となるため、μTASにおいては、特に携帯可能かつ微型サンプルに対する検出感度に優れた効果を発揮し、浄水場での有害物質混入などの突発性異変探知や工場排水汚染の逐次モニタリング、食中毒や繋物汚染事故現場での緊急分析、土地売買で必要となる土壌汚染分析などの「その場分析」への利用が損待できる。また、エッチング、薄膜堆積等の加工・表面処理の利用においても、本発明の装置の小型化に伴い、プラズマジェット顔自体を動かすことが容易となり、従来より微細な加工・表面処理が可能となる。

【図面の簡単な説明】

[0047]

【図1】アンテナの巻数が(a) 2 巻、(b) 3 巻、(c) 4 巻、である各プラズマチップの斜視図である。

【図2】プラズマチップの製造の工程図である。

【図3】プラズマチップの基板材料の違いによる電力とアンテナ温度との関係を示すグラフである。

【図4】アルゴン発光強度の測定方法を示す模式図である。

【図 5】 プラズマチップの基板材料の違いによる電力とアルゴン発光強度との関係を示す グラフである。

【図6】各波長のArlスペクトルにおけるアルゴン発光強度とアンテナの銅版厚との関 40 係を示すグラフである。

【図7】 各波長のArlスペクトルにおけるアルゴン発光強度と放電時間との関係を示す グラフである。

【図8】アルゴン発光強度とアルゴンガス流量との関係を示すグラフである。

【図9】アンテナの巻数とアルゴン発光強度一触力との関係を示すグラフである。

【図10】従来のプラズマチップの斜視図である。

【符号の説明】

[0048]

1、101 菇板

2 a、2 b、2 c マイクロアンテナ

(9)

JP 3616088 B1 2005.2.2

- 3、103 放電管
- 4 閉口
- 5 レジストマスク
- 6 金凤颀(金属材料)
- 7 板
- 8 晋
- 9 光ファイバー
- 10、20、30 プラズマチップ
- 102 一巻き平板型アンテナ
- 104 プラズマガス
- 105 マイクロプラズマジェット
- 110 マイクロプラズマチップ

【塑約】

(修正有)

【課題】 大気圧にて微小空間での安定したマイクロプラズマジェットを小電力で良好に 生成させることのできるマイクロプラズマジェット発生装置を提供する。

【解決手段】 VHF帯の高周波電源により駆動されるマイクロ誘導結合プラズマジェットを生成するマイクロプラズマジェット発生装置において、基板1と、結板上に配設されたマイクロアンテナ2a,2b,2cと、マイクロアンテナの近傍に設置された放電管3とを備え、マイクロアンテナが平板状に複数巻の波状形態を有する。

[図4]

【選択図】図1

20

(10)

JP 3616088 B1 2005. 2. 2

10

0 L

30

40 50

20 10 1532 (W)

(11)

JP 3616088 B1 2005, 2. 2

フロントページの続き

(56)参考文献 特開2002-094221 (JP. A)

特用2002-257785 (JP, ∧)

特開2003-234335 (JP, A)

Takanori lchiki, Toru Koidesawa and Yasuhiro Horlike, An atmospheric-pressure micropla sna jet source for the ortical emission spectroscopic analysis.... Plasma Sources Sci. Technol., 英國, 2003年, No. 12, S16—S18

(58) 訓査した分野(Int.CI.⁷, DB名)

HO5H 1/46

GO1N 37/00 101

HOIL 21/304 645

H01L 21/3065

H05H 1/24

H05K 3/08

C23C 16/513