Mémento numérique Python 3

```
import matplotlib.pyplot as plt → charge le module pyplot sous le nom plt

plt.figure('titre') → crée une fenêtre de tracé vide

plt.plot(LX, LY, 'o-b') → trace le graphique défini par les listes LX et LY (abscisses et ordonnées)

| couleur: 'b' (blue), 'g' (green), 'r' (red), 'c' (cyan), 'm' (magenta), 'y' (yellow), 'k' (black)
| type de ligne: '-' (trait plein), '--' (pointillé), '-.' (alterné)...
| marque: 'o' (rond), 'h' (hexagone), '+' (plus), 'r' (croix), '*' (étoile)...

plt.xlim(xmin, xmax) → fixe les bornes de l'axe x

plt.ylim(ymin, ymax) → fixe les bornes de l'axe y

plt.axis('equal') → change les limites des axes x et y pour un affichage avec des axes orthonormés (le tracé d'un cercle plt.show() → affichage de la fenêtre donne un cercle)

plt.savefig(fichier)→ sauve le tracé dans un fichier (le suffixe du nom fichier peut donner le format; par exemple, 'image.png')
```

import numpy as np -> charge le module numpy sous le nom np

```
Construction de tableaux (de type ndarray)
```

 $np.zeros(n) \rightarrow crée un vecteur dont les n$ composantes sont nulles

np.zeros ((n, m)) \rightarrow crée une matrice $n \times m$, dont les éléments sont nuls

 $np.eye(n) \rightarrow crée la matrice identité d'ordre n$

np.linspace $(a,b,n) \rightarrow$ crée un vecteur de n valeurs régulièrement espacées de a à bnp.arange $(a,b,dx) \rightarrow$ crée un vecteur de

valeurs de a incluse à b exclue avec un pas dx

M. shape \rightarrow tuple donnant les dimensions de M

 $\begin{array}{ll} \mathbf{M.size} & \rightarrow \text{le nombre d'éléments de } M \\ \mathbf{M.ndim} & \rightarrow \text{le nombre de dimensions de } M \\ \end{array}$

M. sum () \rightarrow somme de tous les éléments de M

M.min() \rightarrow plus petit élément de M **M.max()** \rightarrow plus grand élément de M

argument **axis** optionnel : $0 \rightarrow \text{lignes}$, $1 \rightarrow \text{colonnes}$:

M. sum (0) \rightarrow somme des lignes

 $M.min(0) \rightarrow plus petits éléments, sur chaque colonne$

M. max (1) → plus grands éléments, sur chaque ligne

import numpy.linalg as la

la.det (M) \rightarrow déterminant de la matrice carrée M

la.inv (M) \rightarrow inverse de M

la.eig (M) \rightarrow valeurs propres de M

la.matrix_rank (M) \rightarrow rang de M

la.matrix_power $(M, n) \rightarrow M^n$ (n entier)

la.solve $(\overline{\mathbf{A}}, \mathbf{B}) \rightarrow \text{renvoie } X \text{ tel que } A X = B$

import scipy.integrate as spi

spi.odeint(F,Y0,LT)

 \rightarrow renvoie une solution numérique du problème de Cauchy $\mathbf{Y}'(t) = \mathbf{F}(\mathbf{Y}(t),t)$, où \mathbf{Y} est un vecteur d'ordre n, avec la condition initiale $\mathbf{Y}(t_0) = \text{Y0}$, pour les valeurs de t dans la liste LT de longueur k commençant par t_0 , sous forme d'une matrice $n \times k$

spi.quad(f,a,b) \rightarrow renvoie une évaluation numérique de l'intégrale : $\int_{-a}^{b} f(t)dt$

Conversion ndarray <-> liste

 $V = np.array([1, 2, 3]) \rightarrow V : vecteur(1 2 3)$

 $L = V.tolist() \rightarrow L: liste[1, 2, 3]$

M = **np.array**([[1,2],[3,4]]) $\rightarrow M$: matrice $\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$

L = $M.tolist() \rightarrow L : liste [[1, 2], [3,4]]$

Extraction d'une partie de matrice

M[i], $M[i,:] \rightarrow ligne de M d'index i$

M[:, \dot{j}] \rightarrow colonne de M d'index j

 $M[i:i+h, j:j+1] \rightarrow sous-matrice h \times l$

Copier un tableau avec la méthode copy :

M2 = M1.copy()

```
^{\prime} M1+M2, M1*M2, M**2 \rightarrow opérations « terme-à-terme »
```

 $\mathbf{C}^{\star}\mathbf{M} \longrightarrow \text{multiplication de la matrice } M \text{ par le scalaire } c$

M+c \rightarrow matrice obtenue en ajoutant le scalaire c à chaque terme de M

V1. dot (V2) → renvoie le produit scalaire de deux vecteurs

np.dot (V1, V2)

M.dot(V) np.dot(M,V) \rightarrow renvoie le produit d'une matrice par un vecteur

M1.dot (M2)
np.dot (M1, M2) → renvoie le produit de deux matrices

M.transpose () \rightarrow renvoie une copie de M transposée np.transpose (M) \rightarrow (ne modifie pas M)

M.trace()

np.trace(M) \rightarrow renvoie la trace de M

Fonctions mathématiques usuelles

np.exp, np.sin, np.cos, np.sqrt etc.

→ fonctions qui s'appliquent sur des réels ou des complexes, mais aussi sur des vecteurs et des matrices (s'appliquent à chaque terme), qui sont optimisées en durée de calcul.

<u>Rappel</u>: ce mémento est fourni à titre indicatif. Il ne faut le considérer ni comme exhaustif, ni comme exclusif, ni comme un minimum à connaître absolument (l'examinateur n'attend pas du candidat qu'il connaisse parfaitement toutes ces fonctions et ces commandes).