

NOTATKA ROBOCZA

Sterowniki i Regulatory

Zajęcia nr 5 – sterowanie wentylatorem, regulacja PID

Skład grupy:	Aleksander Łyskawa 275462 Daniel Malczyk 275424
Wydział i kierunek studiów:	W12N, Automatyka i Robotyka
Termin zajęć:	wtorek 17:05 – 18:35
Prowadzący:	dr inż. Włodzimierz Solnik
Data:	05.11.2024

1 Dokończenie pisania programu oraz testowanie

Zajęcia rozpoczęto od dokończenia pisania programu na sterowniku SIEMENS S7-1200 w TIA PORTAL oraz przetestowania. Program przedstawiono w poprzedniej notatce roboczej. Uzupełniono jedynie program MAIN. Program działał poprawnie. Funkcja "licz"steruje licznikiem. Gdy wejście start/stop jest aktywne - liczymy w górę, w przeciwnym przypadku w dół. Program mnożenie zapewnia mnożenie dwóch liczb binarnych. Układ działał poprawnie. Konwersja sygnału wejściowego analogowego z wartości 0-27700 do 1-16400 dwoma sposobami również dała oczekiwane rezultaty.

Rysunek 1: Program MAIN

Rysunek 2: Konwersja wejścia analogowego

2 Konfiguracja S7-1200 do regulacji PID pracy wentylatora

Rozpoczęto tworzenie oprogramowania do sterownika SIMATIC S7-1200 w TIA PORTAL. Skonfigurowano sterownik analogicznie jak na poprzednich zajęciach. Wyszukanie modelu sterownika oraz znalezienie go w sieci. Ustawnowienie adresu IP.

Rysunek 3: Wyszukanie modelu sterownika

Rysunek 4: Konfigurtacja steriownika

Rysunek 5: Ustawienie adresu IP

3 Pisanie programu do regulacji PID pracy wentylatora

Rysunek 6: Stworzenie tablicy zmiennych pod PID COMPACT

Rysunek 7: Tworzenie bloku typu cyclic interrupt"

Rysunek 8: Blok PID COMPACT

3.1 Wykorzystane zmienne

- Setpoint (SP): wartość zadana wyrażona w procentach (0.0% 100.0%), przypisana do adresu %MD46. Wartość ta określa cel procesu.
- Input_PER: wejście peryferyjne, reprezentujące wartość aktualnej zmiennej procesowej (PV) w zakresie od 5530 do 27648, przypisane do adresu %IW66.
- Output_PER: wyjście peryferyjne, odpowiadające wartości zmiennej sterującej (CV) w zakresie od 0 do 27648, przypisane do adresu %QW80.
- State (%MW54): wyjście używane do wskazywania bieżącego trybu działania regulatora. Dostępne tryby pracy to:
 - -0 nieaktywny (inactive),
 - 1 wstępne dostrajanie (pretuning),
 - 2 reczne precyzyjne dostrajanie (manual fine tuning),
 - -3 tryb automatyczny (automatic mode),
 - 4 tryb ręczny (manual mode).
- Error (%MD50): wyjście informujące o stanie błędu. Domyślna wartość (DW#16#0000) oznacza brak błędów.

Wnioski

- Testy funkcji z poprzednich zajęc, takich jak licz, mnożenie oraz konwersja, wykazały, że ich logika jest poprawnie zbudowana. Funkcja licz umożliwi odpowiednie naliczanie wartości w górę lub w dół w zależności od aktywności wejścia start/stop, natomiast funkcja mnożenie zapewni prawidłową operację mnożenia dwóch liczb binarnych. Poprawnie działająca konwersja sygnału analogowego z zakresu 0–27700 do wartości od 1 do 16400 pozwoli na uzyskanie danych wejściowych, dostosowanych do wymagań.
- Konfiguracja sterownika SIMATIC S7-1200 oraz ustawienie parametrów IP i wyszukanie modelu przebiegły poprawnie, co pozwoli na skuteczne przygotowanie sterownika do realizacji regulacji PID.
- Implementacja funkcji PID dla sterowania pracą wentylatora w środowisku TIA POR-TAL pozwoli na regulację zgodną z wymaganiami. Wykorzystanie zmiennych takich jak Setpoint, Input_PER, Output_PER, State oraz Error umożliwi elastyczne dostosowanie trybów pracy regulatora oraz zarządzanie błędami.
- Poprawne przypisanie zmiennych Setpoint (wartość zadana), Input_PER (wartość procesowa) i Output_PER (wartość sterująca) do odpowiednich adresów pamięci pozwoli na płynne kontrolowanie pracy wentylatora. Działające wyjścia State oraz Error zapewnią dostęp do informacji o bieżącym trybie pracy oraz występujących błędach, co ułatwi monitorowanie i diagnostykę procesu.