

UNIVERSIDAD NACIONAL DEL LITORAL FACULTAD DE INGENIERÍA Y CIENCIAS HÍDRICAS

Mecánica Computacional Ingeniería en Informática

Final - 19 de diciembre de 2024

Autores:

Dr. Ing. Norberto NIGRO Ing. Carlos GENTILE Ing. Diego SKLAR MSc. Ing. Gerardo FRANCK

FICH UNL

EJERCICIO 1: (cada ejercicio por hojas separadas)

ARMADURAS PLANAS (2D) (ESTRUCTURAS BIDIMENSIONALES)

Dada la estructura bidimensional plana de la Figura, con los siguientes datos:

Barra (elemen to)	Módul o Elástic o [GPa]	Área (secció n) [m^2]	Limite Elástico (ơ _{admisible} tracc ión [MPa]	Limite Elástico (ơ _{admisible} comp resión [MPa]	Compresión/ Tracción (poner una T o una C)
1	1 GPa	9 * 10 ⁻⁴	110	150	
2	1 GPa	5 * 10 ⁻⁴	110	150	
3	1 GPa	$9 * 10^{-4}$	110	150	
4	1 GPa	5 * 10 ⁻⁴	110	150	
5	1 GPa	4 * 10 ⁻⁴	110	150	
6	1 GPa	7 * 10 ⁻⁴	110	150	
7	1 GPa	7 * 10 ⁻⁴	110	150	
8	1 GPa	5 * 10 ⁻⁴	110	150	
9	1 GPa	9 * 10 ⁻⁴	110	150	
10	1 GPa	5 * 10 ⁻⁴	110	150	

Se propone, en base a la Figura 1:

- Definir las coordenadas de cada nodo en función del sistema de coordenadas que adopte.
- Definir las conectividades por barra.
- SOLO CALCULAR EN FORMA SIMPLIFICADA

Responder los siguientes puntos:

- 1. Calcular: (en todos los casos expresar la solución con 4 unidades decimales)
 - Desplazamiento de cada nodo.
 - Deformaciones por barra,
 - Tensiones (Esfuerzos) por barra.
- 2. Calcular las fuerzas de Reacción.
- 3. ¿Cuál/les de las barras trabaja a compresión y cuales a tracción? Completar el cuadro de arriba
- 4. Verificar el equilibrio del sistema.
- 5. ¿Cuáles barras superan el límite elástico?

Nota: <u>Punto 1:</u> 40 pts. <u>Punto 2</u>: 20 pts. <u>Punto 3:</u> 20 pts. <u>Punto 4:</u> 10 pts. Punto 5: 10 pts.

Figura 1: Detalle de la configuración de armadura 2D.

EJERCICIO 2: FEM (cada ejercicio por hojas separadas)

En la siguiente figura vemos un dominio rectangular de dimensiones Lx y Ly en las direcciones X e Y respectivamente, centrado respecto al origen de coordenadas. Se pretende resolver con la menor cantidad de elementos posible el problema de conducción de calor estacionario con fuente y sin término reactivo, con conductividad "k", densidad "rho", calor específico "Cp" y fuente "Q", sujeto a las condiciones de contorno marcadas en las artistas con 1 y 2. En el caso de las aristas tipo 1 la condición de contorno es de tipo mixta y en las aristas marcadas como tipo 2 son Neumann no nulas.

Se pide:

- 1. Plantear el problema matemático completo en forma paramétrica, es decir por el momento sin asignar valores a los parámetros del problema.
- 2. Listar los datos necesarios para este problema y asignarle valores que sean razonables y dimensiones que sean adecuadas. Usar si se quieren datos de ejemplos ya resueltos o sino apele al sentido común. Asigne valores a Lx y Ly de forma que siga siendo un rectángulo como se muestra en la figura (Lx>Ly).
- 3. No habiendo aplicado condiciones Dirichlet, es posible arribar a una solución del problema? O el problema está indeterminado? Justifique.
- 4. Cuantos grados de libertad tiene el problema de acuerdo a cómo lo haya discretizado?
- 5. Plantear el problema discreto, en particular muestre como construye la matriz del sistema "K" y el miembro derecho "f" que finalmente queda para resolver el sistema lineal, usando los valores y dimensiones que usó para responder el punto 2 anterior.
- 6. Calcule las temperaturas en los nodos que surgen de la discretización.
- 7. Calcule el flujo en los puntos A y B, estando A en el centro del rectángulo, punto (0,0) y B en las coordenadas (Lx/4, -Ly/4)

Nota: <u>Punto 1:</u> 10 pts. <u>Punto 2:</u> 20 pts. <u>Punto 3:</u> 5 pts. <u>Punto 4:</u> 5 pts. <u>Punto 5:</u> 20 pts. <u>Punto 6:</u> 20 pts. <u>Punto 7:</u> 20 pts.

EJERCICIO 3: MDF (cada ejercicio por hojas separadas)

Nota: <u>Punto 1:</u> 35 pts. <u>Punto 2:</u> 5 pts. <u>Punto 3:</u> 35 pts. <u>Punto 4:</u> 25 pts.

Tomando de referencia el ejercicio 2, resolver por Diferencias Finitas el mismo problema utilizando la siguiente discretización:

7	8	9
4	5	6
		_
1	2	3

- 1. Usando los valores de referencia que eligió en el punto 2 del ejercicio 2, escriba el stencil de los nodos 3 y 5, lo más simplificado posible.
- 2. ¿Cuántos grados de libertad tiene el problema?
- 3. Muestre como queda la matriz global "K" del sistema y el miembro derecho "f".
- 4. Calcule las temperaturas en los nodos.