-Studying group-W1

asd135441

May 2019

Abstract

Reading Notes for Week 1, "Introduction to Machine Learning"

1 Terminologies

- \bullet Machine Learning: Algorithms + statistical models \to computer systems performing tasks based on patterns and inference
- Supervised Learning: Training with data labeled by classification and regression
- Unsupervised Learning: Training without data labeled by clustering. ¹
- Hypothesis Space: A set of functions $\{f|f:S_{input}\to S_{output}\}$
- Occam's razor: Simple models are better when having same outcome

2 Model Evaluation

2.1 Empirical Error

The error resulted from data training. Error rate is defined as: $\frac{N_{errors}}{N_{total}}$. Notice the difference between empirical error and generalization error

2.2 Learning State

Overfitting: the state that the model takes too many features of the testing data, which can not be used in general ways. Underfitting: the state of taking too few features. Solution of overfitting is adding weight-decay, and for underfitting we add more branches to the decision tree, or increase the rounds of learning.

¹clustering: dividing training set into groups. Each subset owns some intrinsic attributes

2.3 Cross Validation

Dividing data into k subsets (mutually exclusive) and randomly choose one for testing set, the other as training set. Usually we choose k = 10.

2.4 Hold-Out

How many data should we use in training while the other use in testing? There is a dilemma that more training data might receive better model, less accurate in testing, however. Usually, we take $\frac{2}{3} - \frac{4}{5}$ data for training.

2.5 Bootstapping

See "Appendix 1" for algorithm. Randomly choosing one sample from the dataset into the training set, and repeat for $|S_{sample}|$ times. Those samples which are not chosen will be the testing set. The following equation shows that about 36.8% of data will be in the testing set.

$$\lim_{m\to\inf}(1-\frac{1}{m})^m=\frac{1}{e}\approx 0.368$$

3 Performance measure

3.1 Mean squared error

In statistic, there are two kinds of Mean squared error.

• Discrete

$$E(f; D) = \frac{1}{m} \sum_{i=1}^{m} (f(x_i) - y_i)^2$$

• Continous

$$E(f;D) = \int_{x \in D} (f(x) - y)^2 p(x) dx$$

3.2 Bias-variance decomposition

Notice that y_D stands for the label in dataset, and y stands for the real label of x.(The difference between the two leads to noise)

• Expectation of the learning algorithm

$$\overline{f}(x) = E_D[f(x); D]$$

• Variance

$$var(x) = E_D[(f(x; D) - \overline{f}(x))^2]$$

• Noise

$$\epsilon^2 = E_D[(y_D - y)^2]$$

• Bias(Difference between expected output and actual label)

$$bias^{2}(x) = (\overline{f}(x) - y)^{2}$$

By the above equations, we can get the Bias-variance decomposition:

$$E(f; D) = bias^{2}(x) + var(x) + \epsilon^{2}$$

4 Decision Tree

See "Appendix 2" for Algorithm. It is a way to decide the attribute sequence to classify a data.

• Information entropy: Similar to Thermodynamics. Quantify whether a feature is decisive.

$$Ent(D) = -\sum_{k=1}^{|y|} p_k \log_2 p_k$$

• Information Gain: Evaluate the target attribute a

$$Gain(D, a) = Ent(D) - \sum_{v=1}^{V} \frac{|D^v|}{|D|} Ent(D^v)$$

Acknowledgments

Thanks for the speecher, Xiao YiJia, and every one in our reading group. Additionally, thanks for all the learning materials provided from our leading teacher, Pro. Su Hang.

References

[1] Murphy, K. P. (2012). Machine learning: a probabilistic perspective. MIT press. [2] Goodfellow, I., Bengio, Y., Courville, A. (2016). Deep learning. MIT press.

Appendix 1

Bootstrapping [1] Bootstrapping D Input: Dataset D Output: Training Set T $m \leftarrow D.size()$ $T \leftarrow \phi$ i in range m x = random(D); T.add(x) T

Appendix 2

Decision Tree [1] TreeGenerate D, AInput: Training Set $D = \{(x_i, y_i)\}$; Attribute Set $A = \{y_i\}$ Create new node N All tuples in D are of same Atrribute C $N \leftarrow$ leaf node labeled with C $A = \phi$ tuples in D have same values over A $N \leftarrow$ a leaf node labeled with the majority attribute in D Calculating Information Gain to select the best splitting criterion a_* $N \leftarrow a_*$ a_*^v in a_* Add a new branch after node N with node M let D_v be a subset containing all tuples satisfying a_*^v in D $D_v = \phi$ $M \leftarrow$ a leaf node labeled with the majority attribute in D $M \leftarrow$ TREEGENERATE(D_v , $A - \{a_*\}$)

References