Définition 1

Chapitre 13 : Polynômes

Dans tout le chapitre, $\mathbb K$ désigne $\mathbb R$ ou $\mathbb C$. Les éléments de $\mathbb K$ sont appelés des scalaires.

I. Généralités

▶ On appelle polynôme toute expression de la forme

$$P(X) = a_0 + a_1 X + a_2 X^2 + \dots + a_n X^n = \sum_{k=0}^n a_k X^k,$$

où les a_k sont des scalaires appelés coefficients de P, et X (l'indéterminée) peut désigner un scalaire, une matrice, une fonction, etc.

▶ La fonction polynomiale associée est la fonction

$$x \mapsto \sum_{k=0}^{n} a_k x^k.$$

Remarque. On étudiera uniquement la situation où X est un scalaire. On identifiera le polynôme et la fonction polynomiale. On notera donc $P(X) = \sum_{k=0}^{n} a_k X^k$ en lieu et place de $x \mapsto \sum_{k=0}^{n} a_k x^k$.

Exemples 1

- **1.** $P(X) = 2X^2 X + 1$ est un polynôme, dont les coefficients sont $a_0 = 1$, $a_1 = -1$, $a_2 = 2$.
- **2.** $Q(X) = X^3 + 1 = 1 + 0X + 0X^2 + 1X^3$ est un polynôme.

Définition 2

On appelle:

- Polynôme nul le polynôme P(X) = 0.
- Polynôme constant tout polynôme de la forme $P(X) = a_0$, où a_0 est un scalaire.
- Monôme un polynôme de la forme $P(X) = a_k X^k$, où a_k est un scalaire.

Si $P(X) = a_0 + a_1 X + a_2 X^2 + \dots + a_n X^n$, avec Par convention, le degré du polynôme nul $a_n \neq 0$, on dit que le degré de P est égal à

Le scalaire a_n est appelé coefficient dominant de P.

▶ Le polynôme *P* est dit unitaire (ou normalisé) si son coefficient dominant est égal à est égal à $-\infty$:

$$deg(0) = -\infty$$
.

► On note deg(*P*) le degré d'un polynôme *P*.

Exemples 2

- 1. Le polynôme $P(X) = 2X^2 X + 1$ est de degré 2.
- **2.** Le polynôme $Q(X) = X^3 + 1$ est un polynôme unitaire de degré 3.

Déf.

- ▶ On note $\mathbb{K}[X]$ l'ensemble des polynômes à coefficients dans \mathbb{K} .
- ▶ Si $n \in \mathbb{N}$, on note $\mathbb{K}_n[X]$ l'ensemble des polynômes à coefficients dans \mathbb{K} de degré **au plus**

Exemple 3

Soient $P(X) = 2X^2 - X + 1$ et $Q(X) = X^3 + 1$. Alors $P \in \mathbb{R}_2[X]$ et $Q \in \mathbb{R}_3[X]$.

Mais on a aussi $P \in \mathbb{R}_3[X]$, car $\deg(P) \leq 3$.

On peut ajouter, soustraire, multiplier ou composer des polynômes, comme on le fait pour n'importe qu'elle fonction. Il y a tout de même quelque chose de particulier : lorsqu'on applique ces opérations à deux polynômes, on obtient encore un polynôme.

Proposition 1

La somme, la différence, le produit et la composée de deux polynômes est un polynôme.

Exemple 4

On pose $P(X) = 2X^2 - X - 1$ et $Q(X) = X^3 + 1$. Alors:

- $P(X) + Q(X) = 2X^2 X 1 + X^3 + 1 = X^3 + 1$ $2X^2 - X$.
- Le polynôme P + Q est de degré 3.

$$P(X) \times Q(X) = (2X^{2} - X - 1)(X^{3} + 1)$$

$$= 2X^{2} \times X^{3} + 2X^{2} \times 1 - X \times X^{3}$$

$$- X \times 1 - 1 \times X^{3} - 1 \times 1$$

$$= 2X^{5} + 2X^{2} - X^{4} - X - X^{3} - 1$$

$$= 2X^{5} - X^{4} - X^{3} + 2X^{2} - X - 1.$$

Le polynôme $P \times Q$ est de degré 2 + 3 = 5.

$$P \circ Q(X) = 2(X^{3} + 1)^{2} - (X^{3} + 1) - 1$$

$$= 2X^{2} \times X^{3} + 2X^{2} \times 1 - X \times X^{3}$$

$$-X \times 1 - 1 \times X^{3} - 1 \times 1$$

$$= 2X^{6} + 4X^{3} + 2 - X^{3} - 2$$

$$= 2X^{6} + 3X^{3}$$

Le polynôme $P \circ Q$ est de degré $2 \times 3 = 6$.

Proposition 2

Si P et Q sont deux polynômes, alors :

- 1. $deg(P \times Q) = deg(P) + deg(Q)$.
- 2. $\deg(P+Q) \le \max(\deg(P), \deg(Q))$.

Remarques.

 Le point 1 de la proposition 2 précédente pose problème si l'un des deux polynômes est nul. Mais il reste vrai si l'on adopte les conventions

$$(-\infty) + n = n + (-\infty) = (-\infty) + (-\infty) = -\infty.$$

Remarques.

- \oint deg(P + Q) n'est pas forcément égal à max(deg(P), deg(Q)). Par exemple, si P(X) = X + 1 et Q(X) = -X + 1, alors P et Q sont de degré 1, mais leur somme P(X) + Q(X) = 2 est de degré 0.
- Le point 2 de la proposition 2 s'interprète en disant que $\mathbb{K}_n[X]$ est stable par addition.

II. Arithmétique des polynômes

Déf. 5

Soient A, B dans $\mathbb{K}[X]$, avec $B \neq 0$. S'il existe C dans $\mathbb{K}[X]$ tel que $A = B \times C$, on dit que A est un multiple de B, ou que B est un diviseur de A. On note B|A.

Proposition 4 (division euclidienne)

Soient A, B dans $\mathbb{K}[X]$, avec $B \neq 0$. Il existe un unique couple Q, R dans $\mathbb{K}[X]$ tel que A = BQ + R et $\deg(R) < \deg(B)$.

On dit que Q est le quotient et R le reste dans la division euclidienne de A par B.

Pour déterminer Q et R, on pose la division :

Exemple 5

 $(X+1)(X-3) = X^2 - 2X - 3$, donc X+1 et X-3 sont des diviseurs de $X^2 - 2X - 3$.

Remarque.

Tout polynôme constant non nul divise n'importe quel autre polynôme. Par exemple, 2 divise $X^2 - 2X - 3$, car

$$X^{2} - 2X - 3 = 2\left(\frac{1}{2}X^{2} - X - \frac{3}{2}\right).$$

Exemple 6

On effectue la division euclidienne de $A(X) = 2X^3 - 5X^2 + 5X - 4$ par $B(X) = X^2 - 2X + 1$:

Conclusion : A = BQ + R, avec

$$Q(X) = 2X - 1$$
 , $R(X) = X - 3$.

Proposition 3

Soient A, B dans $\mathbb{K}[X]$, avec $A \neq 0$. Si B|A alors $\deg(B) \leq \deg(A)$.

Remarques.

- On s'arrête quand le degré du reste est strictement inférieur à celui de *B*.
- On descend bien tous les termes à chaque étape dans la colonne de gauche.

Proposition 5

Dans la situation de la division euclidienne, on a l'équivalence :

A divisible par $B \iff R = 0$.

III. Racines d'un polynôme

Soit $P \in \mathbb{K}[X]$. On dit que $\alpha \in \mathbb{K}$ est une racine de P si $P(\alpha) = 0$.

Exemple 7

Le polynôme $P(X) = X^3 + X$ peut être vu comme un polynôme de $\mathbb{R}[X]$ ou comme un polynôme de $\mathbb{C}[X]$.

 $P(X) = X(X^2 + 1)$, donc *P* a:

- une seule racine dans \mathbb{R} , qui est 0;
- trois racines dans $\mathbb{C}:0$, i et -i.

Proposition 6

Soient $P \in \mathbb{K}[X]$ et $\alpha \in \mathbb{K}$. On a l'équivalence :

$$\alpha$$
 racine de $P \iff (X - \alpha)|P(X)$.

Démonstration

On pose la division euclidienne de P(X) par $X - \alpha$:

$$P(X) = (X - \alpha)Q(X) + R(X).$$

On sait que $deg(R) < deg(X - \alpha)$, donc R est un polynôme constant :

$$\exists c \in \mathbb{K}, \ R(X) = c.$$

La division euclidienne se réécrit alors :

$$P(X) = (X - \alpha)Q(X) + c.$$

Il reste à remarquer que $P(\alpha)=(\alpha-\alpha)Q(a)+c=c$ pour pouvoir conclure à l'aide d'équivalences :

$$\alpha$$
 racine de $P \iff P(\alpha) = 0 \iff c = 0 \iff R(X) = 0 \iff (X - \alpha)|P(X)$.

4

Étant donnée une racine α d'un polynôme P non nul, on définit son ordre de multiplicité comme le plus grand entier m tel que $(X-\alpha)^m$ divise P.

Exemple 9

Soit P un polynôme de degré 5 admettant :

- une 1^{re} racine, 4, d'ordre de multiplicité 3;
- une 2^e racine, -1, d'ordre de multiplicité 2.

Alors P est nécessairement de la forme

$$P(X) = \lambda (X-4)^3 (X+1)^2$$
,

avec $\lambda \in \mathbb{K}$.

Exemple 8

$$P(X) = X^3 - 2X^2 + X = X(X^2 - 2X + 1)$$

= $X(X - 1)^2$.

donc:

- 0 est d'ordre de multiplicité 1 ;
- 1 est d'ordre de multiplicité 2.

Proposition 8

Un polynôme de degré $n \ge 1$ a au maximum nracines.

Exemple 10

Si P(x) = 0 pour tout $x \in [0, 1]$, alors P a une infinité de racines; et donc P est le polynôme nul.

Proposition 7

Si un polynôme non nul $P \in \mathbb{K}[X]$ admet p racines distinctes $\alpha_1, \alpha_2, \dots, \alpha_p$, dont les ordres de multiplicité respectifs sont $m_1, m_2, ..., m_p$,

$$(X - \alpha_1)^{m_1} (X - \alpha_2)^{m_2} \cdots (X - \alpha_p)^{m_p}$$
 divise *P*. Exercices 18 à 21

Proposition 9

Si $P \in \mathbb{R}[X]$ admet une racine complexe α , alors $\overline{\alpha}$ est aussi racine de P, avec la même multiplicité.

IV. Décomposition en produit de facteurs irréductibles

Un polynôme $P \in \mathbb{K}[X]$ est dit irréductible dans $\mathbb{K}[X]$ s'il est de degré supérieur ou égal à 1 et si ses seuls diviseurs sont les λ et les λP , avec $\lambda \in \mathbb{K}^*$.

Exemples 11

- **1.** Le polynôme P(X) = 2X + 1 est irréductible dans $\mathbb{K}[X]$ comme tous les polynômes de degré
- **2.** Le polynôme $P(X) = X^2 + 1$ est irréductible dans $\mathbb{R}[X]$, mais il n'est pas irréductible dans $\mathbb{C}[X]$,

$$X^2 + 1 = (X + i)(X - i)$$
.

Proposition 10

Si $deg(P) \ge 2$ et si P admet une racine dans \mathbb{K} , alors il n'est pas irréductible.

Attention

La réciproque est fausse : par exemple, $(X^2 + 1)(X^2 + 2)$ n'admet pas de racine dans \mathbb{R} , mais il n'est pas irréductible dans $\mathbb{R}[X]$, car il est divisible par $X^2 + 1$ et par $X^2 + 2$.

Théorème 1 (théorème de d'Alembert-Gauss)

Tout polynôme de $\mathbb{C}[X]$ de degré supérieur ou égal à 1 admet au moins une racine dans \mathbb{C} .

Exemple 12

D'après le théorème 1, l'équation $z^5 + 3z - 1 = 0$ a au moins une solution dans \mathbb{C} . En revanche, le théorème 1 ne dit rien sur la valeur de cette solution.

Proposition 11

- 1. Les polynômes irréductibles de $\mathbb{C}[X]$ sont les polynômes de degré 1.
- 2. Les polynômes irréductibles de $\mathbb{R}[X]$ sont les polynômes de degré 1 et les polynômes de degré 2 n'admettant pas de racine réelle.

Théorème 2 (théorème fondamental de l'arithmétique)

Tout polynôme de $\mathbb{K}[X]$ de degré supérieur ou égal à 1 se décompose de manière unique en produit d'une constante non nulle et de polynômes irréductibles unitaires à l'ordre des facteurs près.

Exemple 13

Prenons $P(X) = X^6 - X^2$. On peut écrire les décompositions :

• dans $\mathbb{R}[X]$:

$$P(X) = X^{6} - X^{2} = X^{2} (X^{4} - 1) = X^{2} (X^{2} - 1) (X^{2} + 1) = \underbrace{X \cdot X(X + 1)(X - 1) (X^{2} + 1)}_{\text{facteurs irréductibles}},$$

• dans $\mathbb{C}[X]$:

$$P(X) = \underbrace{X \cdot X(X+1)(X-1)(X+i)(X-i)}_{\text{facteurs irréductibles}}.$$

Définition 9

Un polynôme $P \in \mathbb{K}[X]$ est dit scindé sur \mathbb{K} s'il peut s'écrire comme un produit

$$P(X) = \lambda (X - \alpha_1) \cdots (X - \alpha_n),$$

où tous les α_i sont dans \mathbb{K} et $\lambda \in \mathbb{K}^*$.

Proposition 12

Tous les polynômes non nuls $P \in \mathbb{C}[X]$ sont scindés sur \mathbb{C} .

Exemple 14

 $P(X) = X^2 + 1 = (X + i)(X - i)$ est scindé sur \mathbb{C} (mais pas sur \mathbb{R}).

Exemple 15

On sait que les solutions dans \mathbb{C} de l'équation $z^3=1$ sont $e^{i\frac{0\pi}{3}}=1$, $e^{i\frac{2\pi}{3}}$ et $e^{i\frac{4\pi}{3}}$, donc X^3-1 se factorise comme le produit de polynômes de degré 1 :

$$X^{3} - 1 = (X - 1)\left(X - e^{i\frac{2\pi}{3}}\right)\left(X - e^{i\frac{4\pi}{3}}\right).$$

Il est scindé sur \mathbb{C} , comme tous les polynômes de $\mathbb{C}[X]$.

Proposition 13

Si

$$P(X) = a_n X^n + a_{n-1} X^{n-1} + \dots + a_1 X + a_0$$

= $\lambda (X - \alpha_1) \cdots (X - \alpha_n)$

est scindé sur K, alors :

- 1. $\alpha_1 \times \cdots \times \alpha_n = (-1)^n \frac{a_0}{\lambda}$;
- $2. \quad \alpha_1 + \dots + \alpha_n = -\frac{a_{n-1}}{\lambda}.$

Exemple 16

Le polynôme $P(X) = X^3 + 3X + 1$ a trois racines α_0 , α_1 , α_2 dans $\mathbb C$ (deux d'entre elles pouvant être égales). On ne connaît pas ces racines, mais on est certain que

$$\alpha_1 + \alpha_2 + \alpha_3 = -\frac{a_2}{\lambda} = -\frac{0}{1} = 0.$$

Polynôme dérivé

Le polynôme dérivé de

 $P(X) = a_0 + a_1 X + a_2 X^2 + \dots + a_n X^n = \sum_{k=0}^{n} a_k X^k$

est

Définition 10

$$P'(X) = \begin{cases} 0 & \text{si } n = 0\\ a_1 + 2a_2X + \dots + na_nX^{n-1} = \sum_{k=1}^{n} ka_kX^{k-1} & \text{sinon.} \end{cases}$$

Remarques.

- Il y a bien sûr un lien avec la dérivée de la fonction polynomiale $x \mapsto \sum_{k=0}^{n} a_k x^k$. Toutes les formules habituelles de dérivation (somme, produit, composée, etc.) restent valables.
- On définit de même la dérivée seconde, troisième, etc. La dérivée k-ième de P peut être notée

Exemple 17

Exemple 17 Si $P(X) = X^3 - 4X^2 + 5X - 7$, alors:

$$P^{(0)}(X) = X^3 - 4X^2 + 5X - 7$$

$$P^{(1)}(X) = 3X^2 - 8X + 5$$

$$P^{(2)}(X) = 6X - 8$$

$$P^{(3)}(X) = 6$$

$$P^{(k)}(X) = 0 \text{ pour tout } k \ge 4$$

On remarque que le degré baisse de 1 unité à chaque fois que l'on dérive.

Exemple 18 Si $P(X) = X^4$, alors:

$$P^{(3)}(X) = X^{3}$$

$$P^{(1)}(X) = 4X^{3}$$

$$P^{(2)}(X) = 12X^{2}$$

$$P^{(3)}(X) = 24X$$

$$P^{(4)}(X) = 24$$

$$P^{(k)}(X) = 0 \text{ pour tout } k \ge 5$$

Proposition 14

 $\operatorname{Si} P(X) = X^n$, alors

$$P^{(k)}(X) = \begin{cases} \frac{n!}{(n-k)!} X^{n-k} & \text{si } k \in \llbracket 0, n \rrbracket \\ 0 & \text{si } k > n \end{cases}.$$

Exemple 19

Prenons $P(X) = 2 + 5X - 4X^2 + X^3$.

On a

$$P'(X) = 5 - 8X + 3X^2$$
, $P''(X) = -8 + 6X$, $P^{(3)}(X) = 6$,

donc

$$P(0) = 2$$
 , $P'(0) = 5$, $P''(0) = -8$, $P^{(3)}(0) = 6$.

On peut donc écrire:

$$\begin{split} P(X) &= 2 + 5X - 4X^2 + X^3 \\ &= P(0) + P'(0)X + \frac{P''(0)}{2}X^2 + \frac{P^{(3)}(0)}{6}X^3 \\ &= \frac{P^{(0)}(0)}{0!}(X - 0)^0 + \frac{P^{(1)}(0)}{1!}(X - 0)^1 + \frac{P^{(2)}(0)}{2!}(X - 0)^2 + \frac{P^{(3)}(0)}{3!}(X - 0)^3. \end{split}$$

Proposition 15 (formule de Taylor en 0)

Si $P \in \mathbb{K}[X]$ est de degré n, alors :

$$P(X) = \sum_{k=0}^{n} \frac{P^{(k)}(0)}{k!} X^{k}.$$

Autrement dit, $P(X) = \sum_{k=0}^{n} a_k X^k$ avec $a_k = \frac{P^{(k)}(0)}{k!}$.

Proposition 16 (formule de Taylor en α)

Si $P \in \mathbb{K}[X]$ est de degré n, alors pour tout $\alpha \in \mathbb{K}$:

$$P(X) = \sum_{k=0}^{n} \frac{P^{(k)}(\alpha)}{k!} (X - \alpha)^{k}.$$

Exemple 20

Si P est un polynôme de $\mathbb{K}_3[X]$ tel que $P(2) = P'(2) = P''(2) = P^{(3)}(2) = 0$, alors P est le polynôme nul. En effet :

$$P(X) = \sum_{k=0}^{3} \frac{P^{(k)}(2)}{k!} (X-2)^k$$

$$= P(2) + P'(2)(X-2)^1 + \frac{P''(2)}{2} (X-2)^2 + \frac{P^{(3)}(2)}{6} (X-2)^3$$

$$= 0 + 0(X-2) + 0(X-2)^2 + 0(X-2)^3 = 0.$$

La formule de Taylor a un corollaire important :

Proposition 17

On considère un polynôme non nul $P \in \mathbb{K}[X]$. Les propositions suivantes sont équivalentes :

- α est racine de P d'ordre de multiplicité m;
- $P^{(0)}(\alpha) = P^{(1)}(\alpha) = \cdots = P^{(m-1)}(\alpha) = 0$ et $P^{(m)}(\alpha) \neq 0$.

Exemple 21

1 est une racine évidente du polynôme $P(X) = X^8 - 2X + 1$. Est-ce une racine simple?

Pour le savoir, on dérive :

$$P'(X) = 8X^7 - 2,$$

puis on remplace:

$$P'(1) = 8 \times 1^7 - 2 = 6.$$

P(1) = 0 et $P'(1) \neq 0$, donc 1 est racine simple de P.

VI. Exercices

Exercice 1.

On considère le polynôme $P(X) = X^2 - X - 1$. Calculer $(P(X))^2$ et $P \circ P(X)$.

Exercice 2.

Quel est le degré du polynôme

$$P(X) = (X^5 + 1)^2 - X^{10}$$
?

Et du polynôme

$$Q(X) = (1 + X^2)(2 + X^2)(3 + X^2) - (3X + X^3)^2$$
?

Exercice 3.

Déterminer tous les polynômes $P \in \mathbb{R}_2[X]$ vérifiant P(1) = 0, P(-1) = 2.

Exercice 4 (6).

- **1. Exemple.** Soit $P(X) = X^4 3X^2 + 5$. Prouver que P est pair et déterminer un polynôme $Q \in \mathbb{R}[X]$ tel que $P(X) = Q(X^2)$.
- 2. Cas général. Montrer qu'un polynôme $P \in$ $\mathbb{R}_4[X]$ est pair si, et seulement s'il existe un polynôme $Q \in \mathbb{R}[X]$ tel que $P(X) = Q(X^2)$.

Exercice 5 ($\widehat{\mathbf{m}}$ $\widehat{\mathbf{o}}$).

Déterminer les polynômes $P \in \mathbb{C}[X]$ tels que

$$P\left(X^{2}\right) = \left(X^{2} + 1\right)P(X).$$

Exercice 6 $(\hat{\mathbf{m}})$.

Donner sans justification tous les diviseurs dans $\mathbb{R}[X]$ du polynôme

$$P(X) = (X-1)(X-2)(X-3).$$

Exercice 7 $(\hat{\mathbf{m}})$.

Effectuer la division euclidienne de :

- 1. $A(X) = 2X^3 7X^2 + 13X 5 \text{ par } B(X) = 2X 1.$ 2. $A(X) = X^4 4X^3 9X^2 + 27X + 38 \text{ par } B(X) = 2X 1.$

Exercice 8 $(\hat{\mathbf{m}})$.

Sans la poser, déterminer le reste dans la division euclidienne de $X^5 + X + 2$ par X - 1.

Sans la poser, déterminer le reste dans la division euclidienne de $X^5 - 3X + 1$ par $X^2 + 1$.

Exercice 10.

Montrer que la courbe de la fonction $f: x \mapsto \frac{2x^3 + x^2}{x^2 + 2}$ admet une asymptote oblique en $+\infty$ et en $-\infty$. Donner son équation réduite.

Exercice 11 $(\hat{\mathbf{1}})$.

Déterminer les racines dans $\mathbb{R},$ puis dans $\mathbb{C},$ du polynôme $P(X) = X^4 - 2X^3 + 2X^2 - 2X + 1$.

Exercice 12 $(\hat{\mathbf{m}})$.

Soit $P(X) = X^3 - 2X^2 + 5X - 1$.

- **1.** Prouver que P admet une seule racine dans \mathbb{R} (on ne demande pas de trouver sa valeur).
- **2.** Prouver que *P* admet deux racines conjuguées dans C.

Exercice 13 $(\hat{\mathbf{m}})$.

Rappeler les racines dans C des polynômes

$$P(X) = X^6 - 1$$
, $Q(X) = X^8 - 1$.

Exercice 14 $(\underline{\mathbf{m}})$.

Sans poser la division, démontrer que (X-1) divise $P(X) = 2 - 3X^2 + 5X^3 + X^6 - 4X^7 - X^9$.

Exercice 15 $(\hat{\mathbf{1}})$.

Déterminer tous les polynômes $P(X) = aX^3 + X^2 +$ bX + 1 divisibles par X + 1.

Exercice 16 (6).

Déterminer les polynômes $P \in \mathbb{R}_2[X]$ divisibles par (X+1) et tels que les restes dans les divisions euclidiennes de P par (X-2) et (X-3) sont égaux.

Exercice 17 (6).

1. Soient z_1 , z_2 dans \mathbb{C} . Démontrer l'équivalence des propositions a et b :

a.
$$\begin{cases} z_1 + z_2 &= 2 \\ z_1 \times z_2 &= 5 \end{cases}$$

b. z_1 et z_2 sont les solutions de l'équation

$$z^2 - 2z + 5 = 0$$

2. Déterminer tous les couples de complexes (z_1, z_2) vérifiant le système a.

Exercice 18 (11).

Déterminer tous les polynômes unitaires de degré 4 admettant :

- une 1^{re} racine, -3, d'ordre de multiplicité 2;
- une 2^e racine, 1, d'ordre de multiplicité 1.

Exercice 19 $(\underline{\hat{\mathbf{m}}})$.

Soit $P \in \mathbb{R}_3[X]$ tel que P(3) = P(2) = P(1) = P(0). On pose Q(X) = P(X) - P(0).

- **1.** Calculer Q(0), Q(1), Q(2) et Q(3).
- **2.** Que peut-on en déduire pour Q? Et pour P?

Exercice 20 (6).

Prouver que si deux polynômes P, Q de \mathbb{K}_3 [X] coïncident sur au moins 4 valeurs distinctes, alors ils sont égaux.

Exercice 21 (**6**).

Soit $P \in \mathbb{R}_4[X]$. Démontrer la proposition : si α est racine de P, alors $\overline{\alpha}$ est également racine de P.

Exercice 22 (11).

Décomposer $X^6 - 1$ en produit de facteurs irréductibles :

- 1. dans $\mathbb{R}[X]$,
- **2.** dans $\mathbb{C}[X]$.

Exercice 23 $(\hat{\mathbf{m}})$.

Vérifier que i est racine du polynôme $P(X) = X^4 + X^3 + 2X^2 + X + 1$. En déduire une décomposition de P dans $\mathbb{R}[X]$, puis dans $\mathbb{C}[X]$.

Exercice 24 (11).

Vérifier que 1 + i est racine du polynôme $P(X) = X^4 + 4$. En déduire une décomposition de P dans $\mathbb{R}[X]$, puis dans $\mathbb{C}[X]$.

Exercice 25 (11).

- 1. Démontrer que $X^{16} 2X^8 + 1$ est divisible par $X^2 1$.
- **2.** Démontrer que $X^{16} 2X^8 + 1$ est divisible par $X^2 + 1$.

Exercice 26 (11).

Soit $P(X) = X^3 - 6X^2 - 5X + 2$. Calculer la somme et le produit des racines de P.

Exercice 27 (11).

On admet que 1, $\frac{1}{2}$ et -3 sont des racines de $P(X) = 6X^4 + 11X^3 - 21X^2 + X + 3$. Déterminer la dernière racine de P de deux façons différentes :

- en utilisant la formule pour le produit des racines:
- en utilisant la formule pour la somme des racines.

Exercice 28.

Déterminer un polynôme P tel que

$$P(0) = 1$$
, $P'(0) = 2$, $P^{(2)}(0) = 4$, $P^{(3)}(0) = 8$.

Exercice 29 (11).

Montrer que le polynôme $P(X) = 1 - X + X^2 - 9X^9 + 8X^{10}$ est divisible par $(X - 1)^2$.

Exercice 30 (11).

Montrer que −1 est racine du polynôme

$$P(X) = 8X^9 + 9X^8 - 1$$

et déterminer son ordre de multiplicité.

Exercice 31 $(\hat{\mathbf{1}})$.

On considère un polynôme $P \in \mathbb{R}[X]$.

Exprimer le reste de la division euclidienne de P par $(X-1)^2$ en fonction de P(1) et de P'(1).