AI 1 2022/23

Assignment9: First-Order Logic

- Given Jan. 12, Due Jan. 22 -

Problem 9.1 (Induction)

20 pt

Use structural induction on terms and formulas to define a function C that maps every term/formula to the number of occurrences of free variables. For example, $C(\forall x.P(x,x,y,y,z)) = 3$ because the argument has 2 free occurrences of y and 1 of z.

Hint: Use an auxiliary function C'(V,A) that takes the set V of bound variables and a term/formula A. Define C' by structural induction on A. Then define $C(A) = C'(\emptyset, A)$.

Problem 9.2 (First-Order Semantics)

30 pt

Let $=\in \Sigma_2^p$, $P \in \Sigma_1^p$ and $+\in \Sigma_2^f$. We use the semantics of first-order logic without equality.

Prove or refute the following formulas semantically. That means you must show that $I_{\varphi}(A) = T$ for all models I and assignments φ (without using a proof calculus) or to give some I, φ such that $I_{\varphi}(A) = F$.

- 1. P(X)
- 2. $\forall X. \forall Y. = (+(X, Y), +(Y, X))$
- 3. $\exists X.(P(X) \Rightarrow \forall Y.P(Y))$
- 4. $P(Y) \Rightarrow \exists X.P(X)$

Problem 9.3 (Natural Deduction)

25 pt

Let $R \in \Sigma_2^p$, $P \in \Sigma_1^p$, $c \in \Sigma_0^f$. Prove the following formula in Natural Deduction:

$$((\forall X. \forall Y. R(Y, X) \Rightarrow P(Y)) \land (\exists Y. R(c, Y))) \Rightarrow P(c)$$