A Review of "Training data-efficient image" transformers & distillation through attention" 1

Connor Malley

Moazam Soomro, Fatemah Najafali, Alec Kerrigan, and

Overview

- Introduction
- Related work
- Method
- Experiments
- Conclusion

Data Efficient Image Transformers (DeiT)

 Reduces power consumption to produce high performance

 Different training strategies and added distillation token to the model

 Trained on a single node with 4 GPUs in 3 days

Related work: Image classification

- Evolution of convnets since 2012
- Vision Transformers (ViT) used state of the art ImageNet without using any convolution

Related work: Transformer Architecture

 Convnets for image classification inspired by transformers

What is distillation?

- Distillation is the process in which the knowledge from a larger cumbersome model is transferred to a smaller model, typically for ease of deployment.²

Use a weighted average of two objective functions; the larger models'
 predictions and the correct labels (can set weight for correct labels to 0)

 Allows for the larger model to be compressed since all neurons may not be utilized

Soft vs. Hard Distillation

 Predictions are made in the form of probabilistic distributions using softmax (hard labels will have a 1 for correct class and 0 for all others)

 Previous papers minimize Kullback-Leibler divergence between student and teacher models (in the "soft" case)^{2,11}

 This paper minimizes cross entropy between student logits and the hard teacher prediction (after argmax)

Soft vs. Hard Distillation

$$\mathcal{L}_{CE}$$
 = Cross Entropy Loss λ = balancing coefficient KL = Kullback-Leibler Divergence Z_s = student logits Z_t = teacher logits T_t = KL temperature T_t = KL temperature T_t = Cross Entropy Loss T_t = balancing coefficient T_t = student logits T_t = teacher logits T_t = teacher logits

$$\mathcal{L}_{soft} = (1 - \lambda)\mathcal{L}_{CE}(\psi(Z_s), y) + \lambda \tau^2 KL(\psi(Z_s/\tau), \psi(Z_t/\tau))$$

$$\mathcal{L}_{hard} = \frac{1}{2} \mathcal{L}_{CE}(\psi(Z_s), y) + \frac{1}{2} \mathcal{L}_{CE}(\psi(Z_s), y_t)$$

Vision Transformer (ViT)³

Vision Transformer (ViT)³

https://ai.googleblog.com/2020/12/transformers-for-image-recognition-at.html

Distillation Token

- Similar to CLS token used for final image classification

- Loss calculated using pseudo-label (prediction) from teacher model

- Goal of distillation embedding is to mimic teacher predictions

DelT → Architecture¹

True Label

Size 16 x 16 patches

Vision Transformer

RegNet Y-16GF Prediction (84M Params)⁴

Class and distillation tokens are learned by backprop.

Datasets

- ImageNet-1k
 - 1.2 Million images
 - 1,000 classes
 - Used to pretrain/finetune both student and teacher models

- JFT-300M
 - 300 Million images
 - 18,291 classes
 - Used to pretrain other models

Pretraining and Finetuning Method

- Pretrain on ImageNet-1k at low resolution (224x224)
Finetune on ImageNet-1k at higher resolution (384x384)

 Authors use extensive data augmentation to give the illusion of a large dataset while processing less images (Rand-Augment)

 Idea is to use the authors distillation method to beat state-of-the-art while utilizing much less data (compared to JFT-300M)

RandAugment⁵

- identity
- rotate
- posterize
- sharpness
- translate-x

- autoContrast
- solarize
- contrast
- shear-x
- translate-y

- equalize
- color
- brightness
- shear-y

- Choose magnitude of augmentation
- 2. Choose *n* out of 14 augmentations

Other Data Augmentations

CutMix⁶

MixUp⁷

Regularization

- Stochastic Depth8
 - Drop a subset of layers and bypass with identity function

- Repeated Augment⁹
 - Replicate instances in same batch with different augmentations

- Label Smoothing¹⁰
 - Set true label to 0.9 and split remaining 0.1 across all other labels

Experiments - Transformer Models

- DeiT-B: reference model (same as ViT-B)
- DeiT-B↑384: fine-tune DeiT at a larger resolution
- DeiT

 : DeiT with distillation (using distillation tokens)
- Deit-S(small), DeiT-Ti(Tiny): smaller models of DeiT

Model	embedding dimension	#heads	#layers	#params	training resolution	throughput (im/sec)
DeiT-Ti	192	3	12	5M	224	2536
DeiT-S	384	6	12	22M	224	940
DeiT-B	768	12	12	86M	224	292

Experiment - Distillation

Teacher	Student: DeiT-B			
Models	acc.	pretrain	↑384	
DeiT-B	81.8	81.9	83.1	
RegNetY-4GF	80.0	82.7	83.6	
RegNetY-8GF	81.7	82.7	83.8	
RegNetY-12GF	82.4	83.0	83.9	
RegNetY-16GF	82.9	83.0	84.0	

Experiment - Distillation

	supe	ervision	Ima	ageNet	top-1 (%)
DeiT: method ↓	label	teacher	Ti 224	S 224	B 224	B↑384
no distillation	✓	Х	72.2	79.8	81.8	83.1
usual distillation	X	soft	72.2	79.8	81.8	83.2
hard distillation	X	hard	74.3	80.9	83.0	84.0
class embedding	✓	hard	73.9	80.9	83.0	84.2
distil. embedding	✓	hard	74.6	81.1	83.1	84.4
DeiTa: class+distil.	✓	hard	74.5	81.2	83.4	84.5

Experiment - Disagreement Analysis

	no distil	lation	DeiT [*] student			
	convnet	DeiT	class	distil.	DeiT?	
groundtruth	0.171	0.182	0.170	0.169	0.166	
convnet (RegNetY)	0.000	0.133	0.112	0.100	0.102	
DeiT	0.133	0.000	0.109	0.110	0.107	
DeiT₂- class only	0.112	0.109	0.000	0.050	0.033	
DeiT₂– distil. only	0.100	0.110	0.050	0.000	0.019	
DeiT ² — class+distil.	0.102	0.107	0.033	0.019	0.000	

Analysis of the Tokens

- The distillation and class tokens converge to different vectors.

 As the training progresses class and distillation embeddings become similar through the network.

- Authors verified by initializing both randomly and independently yet they converge to same vector.

Efficiency of ViT and EfficientNet vs. DelT

- Most of the gains in performance from ViT are from the training method
- With no distillation, accuracy is slightly below EfficientNet
- With hard distillation, accuracy is better than EfficientNet

Experiment - Throughput vs Accuracy

- One of DeiT's main advantages is efficiency
- DeiT is faster than its teacher at a similar accuracy
- While small DeiTs are slower than equivilantly accurate CNNs, it scales better

		image	throughput	ImNet	Real	V2			
Network	#param.	size	(image/s)	top-1	top-1	top-1			
Convnets									
ResNet-18 [21]	12M	224^{2}	4458.4	69.8	77.3	57.1			
ResNet-50 [21]	25M	224^{2}	1226.1	76.2	82.5	63.3			
ResNet-101 [21]	45M	224^{2}	753.6	77.4	83.7	65.7			
ResNet-152 [21]	60M	224^{2}	526.4	78.3	84.1	67.0			
RegNetY-4GF [40]*	21M	224^{2}	1156.7	80.0	86.4	69.4			
PogNotV SCE [40].	30M	994^{2}	501.6	917	97.4	70.8			
RegNetY-16GF [40]∗	84M	224^{2}	334.7	82.9	88.1	72.4			
EfficientNet-B0 [48]	5M	224^{2}	2694.3	77.1	83.5	64.3			
EfficientNet-B1 [48]	8M	240^{2}	1662.5	79.1	84.9	66.9			
EfficientNet-B2 [48]	9M	260^{2}	1255.7	80.1	85.9	68.8			
EfficientNet-B3 [48]	12M	300^{2}	732.1	81.6	86.8	70.6			
EfficientNet-B4 [48]	19M	380^{2}	349.4	82.9	88.0	72.3			
EfficientNet-B5 [48]	30M	456^{2}	169.1	83.6	88.3	73.6			
EfficientNet-B6 [48]	43M	528^{2}	96.9	84.0	88.8	73.9			
EfficientNet-B7 [48]	66M	600^{2}	55.1	84.3	-	-			
EfficientNet-B5 RA [12]	30M	456^{2}	96.9	83.7		I .			
EfficientNet-B7 RA [12]	66M	600^{2}	55.1	84.7					
KDforAA-B8	87M	800^{2}	25.2	85.8	-	-			

	Trans	formers				
ViT-B/16 [15] ViT-L/16 [15]	86M 307M	384^{2} 384^{2}	85.9 27.3	77.9 76.5	83.6 82.2	-
DeiT-Ti DeiT-S DeiT-B	5M 22M 86M	224^{2} 224^{2} 224^{2}	2536.5 940.4 292.3	72.2 79.8 81.8	80.1 85.7 86.7	60.4 68.5 71.5
DeiT-B↑384	86M	384^{2}	85.9	83.1	87.7	72.4
DeiT-Ti ⁻ A DeiT-S ⁻ A DeiT-B ⁻ A	6M 22M 87M	224^{2} 224^{2} 224^{2}	2529.5 936.2 290.9	74.5 81.2 83.4	82.1 86.8 88.3	62.9 70.0 73.2
DeiT-Tic / 1000 epochs	6M	224^{2}	2529 5	76.6	83.0	65.4
DeiT-Sૠ / 1000 epochs	22M	224^{2}	936.2	82.6	87.8	71.7
Del1-b.w / 1000 epocns	8/ IVI	224	290.9	84.2	88.7	73.9
DeiT-B7A↑384	87M	384^{2}	85.8	84.5	89.0	74.8
DeiT-B↑↑384 / 1000 epochs	87M	384^{2}	85.8	85.2	89.3	75.2

Generalizing DeiT

 DeiT outperforms other methods on a wide variety of datasets when pretrained on ImageNet

Table 7: We compare Transformers based models on different transfer learning task with ImageNet pre-training. We also report results with convolutional architectures for reference.

Model	ImageNet	CIFAR-10	CIFAR-100	Flowers	Cars	iNat-18	iNat-19	im/sec
Grafit ResNet-50 [49]	79.6		-	98.2	92.5	69.8	75.9	1226.1
Grafit RegNetY-8GF [49]	-	_	-	99.0	94.0	76.8	80.0	591.6
ResNet-152 [10]	-		-	-	-	69.1	-	526.3
EfficientNet-B7 [48]	84.3	98.9	91.7	98.8	94.7	-	-	55.1
ViT-B/32 [15]	73.4	97.8	86.3	85.4	1 - 1	-	-	394.5
ViT-B/16 [15]	77.9	98.1	87.1	89.5	1-1	-	-	85.9
ViT-L/32 [15]	71.2	97.9	87.1	86.4	-	188		124.1
ViT-L/16 [15]	76.5	97.9	86.4	89.7	-	-	-	27.3
DeiT-B	81.8	99.1	90.8	98.4	92.1	73.2	77.7	292.3
DeiT-B↑384	83.1	99.1	90.8	98.5	93.3	79.5	81.4	85.9
DeiT-B?	83.4	99.1	91.3	98.8	92.9	73.7	78.4	290.9
DeiT-B [™] ↑384	84.4	99.2	91.4	98.9	93.9	80.1	83.0	85.9

 On a smaller dataset (CIFAR), when not pretrained, DeiT underperforms CNNs

Method	RegNetY-16GF	DeiT-B	DeiT-B [™]
Top-1	98.0	97.5	98.5

Strengths

- Accuracy beats state of the art convnets with similar throughput (EfficientNet).

- Even without distillation, their training method produces better results than the original ViT, with an identical architecture.
- Combination of data augmentation and regularization methods could prove to be useful on other tasks or in other architectures.
- Introduces a new type of 'hybrid' architecture, since the knowledge from the convnet is learned within the transformer.

Weaknesses

- Paper focuses entirely on softmax probabilities
 - No consideration of distilling logits or image encoding
- Only CLS token for distillation was considered
 - Transformers can pool information in a variety of ways.
 - Mean pooling
 - 1D conv
- Are gains from the paper's method, or from ViT just being better?
 - Again, would help to try other distillation methods
- Rather handwavey on why ConvNets are better teachers than other ViT nets
 - Defeats the purpose if we need an entirely different architecture for teacher

Conclusion

- Distillation is the process of using a pre-trained model to teach a different, typically smaller, model
- DeiT designed an efficient method for distillation
- Uses a single distillation token, rather than distilling on normal output
- Outperformed previous state of the art in both accuracy and images per second
- Generalized to perform strongly on a variety of datasets

References

- 1. Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A., & Jégou, H. (2021). Training data-efficient image transformers & distillation through attention. arXiv [cs.CV]. Opgehaal van http://arxiv.org/abs/2012.12877
- 2. Hinton, G., Vinyals, O., & Dean, J. (2015). Distilling the Knowledge in a Neural Network. arXiv [stat.ML]. Opgehaal van http://arxiv.org/abs/1503.02531
- 3. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., ... Houlsby, N. (2020). An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. CoRR, abs/2010.11929. Opgehaal van https://arxiv.org/abs/2010.11929
- 4. Radosavovic, I., Kosaraju, R. P., Girshick, R. B., He, K., & Dollár, P. (2020). Designing Network Design Spaces. CoRR, abs/2003.13678. Opgehaal van https://arxiv.org/abs/2003.13678
- 5. Cubuk, E. D., Zoph, B., Shlens, J., & Le, Q. V. (2019). RandAugment: Practical data augmentation with no separate search. CoRR, abs/1909.13719. Opgehaal van http://arxiv.org/abs/1909.13719
- 6. Yun, S., Han, D., Oh, S. J., Chun, S., Choe, J., & Yoo, Y. (2019). CutMix: Regularization Strategy to Train Strong Classifiers with Localizable Features. CoRR, abs/1905.04899. Opgehaal van http://arxiv.org/abs/1905.04899
- 7. Zhang, H., Cissé, M., Dauphin, Y. N., & Lopez-Paz, D. (2017). mixup: Beyond Empirical Risk Minimization. CoRR, abs/1710.09412. Opgehaal van http://arxiv.org/abs/1710.09412

References

- 8. Huang, G., Sun, Y., Liu, Z., Sedra, D., & Weinberger, K. Q. (2016). Deep Networks with Stochastic Depth. CoRR, abs/1603.09382. Opgehaal van http://arxiv.org/abs/1603.09382
- 9. Hoffer, E., Ben-Nun, T., Hubara, I., Giladi, N., Hoefler, T., & Soudry, D. (2019). Augment your batch: better training with larger batches. CoRR, abs/1901.09335. Opgehaal van http://arxiv.org/abs/1901.09335
- 10. Müller, R., Kornblith, S., & Hinton, G. E. (2019). When Does Label Smoothing Help? CoRR, abs/1906.02629. Opgehaal van http://arxiv.org/abs/1906.02629
- 11. Wei, L., Xiao, A., Xie, L., Chen, X., Zhang, X., & Tian, Q. (2020). Circumventing Outliers of AutoAugment with Knowledge Distillation. CoRR, abs/2003.11342. Opgehaal van https://arxiv.org/abs/2003.11342