Expansión en un campo multipolar

1.1 Desarrollo dipolar del campo magnético

El potencial vector de un dipolo es

$$\mathbf{A}(\mathbf{x}) = \frac{\mathbf{v} \times (\mathbf{x} - \mathbf{x}')}{|\mathbf{x} - \mathbf{x}'|^3} = \mathbf{m} \times \nabla \frac{1}{|\mathbf{x} - \mathbf{x}'|}$$

$$\mathbf{A}(\mathbf{x}) = \int_{V'} \mathcal{M}(\mathbf{x}') \times \boldsymbol{\nabla} \left(\frac{1}{|\mathbf{x} - \mathbf{x}'|} \right) dV'$$

Es el potencial vector de una distribución de momento dipolar magnético con densidad $\mathbf{M}(\mathbf{x}')$

$$\mathbf{A}(\mathbf{x}) = \int_{V'} \frac{\mathbf{\nabla} \times \mathbf{M}}{|\mathbf{x} - \mathbf{x}'|} dV' + \int_{S'} \frac{\mathbf{M} \times \hat{n}}{|\mathbf{x} - \mathbf{x}'|} dS'$$

y se pueden pensar como corrientes \mathbf{J}_M y \mathbf{g}_M ,

$$\mathbf{A}(\mathbf{x}) = \frac{1}{c} \int_{V'} \frac{\mathbf{J}_M}{|\mathbf{x} - \mathbf{x}'|} dV' + \frac{1}{c} \int_{S'} \frac{\mathbf{g}_M}{|\mathbf{x} - \mathbf{x}'|} dS'$$

1.2 Medios materiales

- Dieléctricos
- Medios magnéticos $\begin{cases} \text{imán inducido} \\ \text{imán permanente} \end{cases}$

 $\bullet \ \, \text{Conductor} \left\{ \begin{aligned} &\text{perfecto} \\ &\text{buen conductor} \\ &\text{mal conductor} \end{aligned} \right.$

- 1.3 Desarrollo multipolar
- 1.4 Dipolo
- 1.5 Campo dipolar