Modelos Gráficos Probabilísticos

Tema 4. Problemas de inferencia en modelos gráficos: Cálculo de probabilidades condicionadas de forma aproximada

Andrés Cano Utrera

Curso 2024-2025

Índice I

Introducción

- Algoritmos de Monte Carlo
 - Simulación de variables aleatorias
 - Base intuitiva de los métodos de simulación
 - Metodología general de los métodos de simulación en RBs
 - Muestreo lógico probabilístico
 - Método de ponderación por verosimilitud
 - Método de muestreo de Markov

Introducción

Definición

Sea $\mathbf{E} \subset \mathbf{X}$ un conjunto de variables observadas y $e \in \Omega_{\mathbf{E}}$ el valor concreto que toman. Un algoritmo que calcula p(X=x|e) para cada $x \in \Omega_X$, $X \in \mathbf{X} \setminus \mathbf{E}$ se llama algoritmo de propagación exacto.

Definición

En las mismas condiciones que en la definición anterior, un algoritmo que calcula $\hat{p}(X=x|e)$ para cada $x\in\Omega_X$, $X\in\mathbf{X}\setminus\mathbf{E}$ se llama algoritmo de propagación aproximado.

Clasificación de alg. de propagación para RBs

- Algoritmos exactos: Problema *NP-duro* (Cooper 90) :-)
- Algoritmos aproximados: También NP-duros (Dagum y Luby 93) :-(

Tipos de algoritmos aproximados

Métodos de Monte Carlo

Generan una muestra $\{\mathbf{x}^{(j)}\}$, $j=1,\ldots,m$ de configuraciones de las n variables a partir de la distribución conjunta de la red y luego aproximan las probabilidades de cada caso de la variable, $X_k = x_k$, como la frecuencia relativa de dicho caso en la muestra.

Métodos deterministas

Obtienen una aproximación para $p(X_k|e)$ que es siempre la misma en cualquier ejecución del algoritmo si se usan los mismos parámetros de entrada.

Precisión de la aproximación

Dada la distribución de probabilidad $p(\mathbf{X})$ y una aproximación $\hat{p}(\mathbf{X})$, ¿cómo de buena es la aproximación?

Definición

Dados $p(x_i|e)$ y su aproximación $\hat{p}(x_i|e)$, decimos que $\hat{p}(x_i|e)$ tiene un error absoluto ϵ para $p(x_i|e)$ si:

$$|p(x_i|e) - \hat{p}(x_i|e)| \le \epsilon$$

Ejemplo:
$$p_1=0.5$$
, $p_2=0.0001$, $\hat{p}_1=0.49$, $\hat{p}_2=0.000001$. $\epsilon_1=0.01$ y $\epsilon_2=0.0001$

Precisión de la aproximación

Definición

Dados $p(x_i|e)$ y su aproximación $\hat{p}(x_i|e)$, decimos que $\hat{p}(x_i|e)$ tiene un error relativo ϵ para $p(x_i|e)$ si:

$$rac{\hat{p}(x_i|e)}{p(x_i|e)} \in [1-\epsilon, 1+\epsilon]$$

Ejemplo: $\epsilon_1 = 0.02$ y $\epsilon_2 = 0.99$

Definición

El error de la distribución completa se suele medir con el root mean square error (RMSE):

$$\sqrt{\sum_{x_i \in \Omega_{X_i}} ((\rho(x_i|e) - \hat{\rho}(x_i|e))^2}$$

Precisión de la aproximación

Dada la distribución de probabilidad $p(\mathbf{X})$ y una aproximación $\hat{p}(\mathbf{X})$, ¿cómo de buena es la aproximación?

Distancia de Kullback Leibler

Dados $p(x_i|e)$ y su aproximación $\hat{p}(x_i|e)$, decimos que $\hat{p}(x_i|e)$ tiene un la distancia de Kullback-Leibler para $p(x_i|e)$

$$\sum_{x_i \in \Omega_{X_i}} p(x_i|e) \log(\frac{p(x_i|e)}{\hat{p}(x_i|e)})$$

Contenido del tema

- - Introducción
 - Algoritmos de Monte Carlo
 - Simulación de variables aleatorias

Simulación de variables aleatorias

 Para generar una muestra procedente de una determinada función de probabilidad h(x), se calcula en primer lugar la función de distribución (probabilidad acumulada)

$$H(x) = P(X \le x) = \int_{-\infty}^{x} h(x)dx$$

• Generamos ahora una sucesión de números aleatorios $\{u_1, \ldots, u_N\}$ de la distribución uniforme U(0,1) obteniendo los valores correspondientes $\{x_1, \dots, x_N\}$ resolviendo la ecuación $H(x_i) = u_i$ con $i=1,\ldots,N$ que nos da

$$x_i = H^{-1}(u_i)$$

Ejemplo de simulación de variables aleatorias

Sea la distribución de probabilidad:

		p(X)	H(X)	
	<i>x</i> ₁	0.2	0.2	
	<i>x</i> ₂	0.3	0.5	
	<i>X</i> 3	0.5	1.0	
H(X)				

Algoritmo básico de obtención de una muestra

Algorithm 1: Algoritmo básico de obtención de una muestra

```
Data: Variable X con n estados; Distribución p(X = x_i) denotada por p_i
  Result: Una muestra \{x_1, \dots, x_N\} procedente de p(X)
1 for i = 1 to N do
      Generar un valor aleatorio u \in U(0,1);
    P = p_1;
4 k = 1:
5 while k \le n y P < u do
6 k = k + 1;
7 P = P + p_k;
      Añadir x_k a la muestra;
```

9 Devolver $\{x_1, \ldots, x_N\}$;

Alg. Monte C

Obtención de probabilidades de un suceso mediante simulación de una muestra

Podemos calcular las probabilidades de ciertos sucesos de forma aproximada mediante simulación.

Obtención de probabilidades a partir de una muestra

Repetir un experimento N veces obteniendo una *muestra* de tamaño N, obteniendo la probabilidad de un suceso como

 $N^{\underline{o}}$ veces que ocurre el suceso $N^{\underline{o}}$ total de simulaciones

En una red bayesiana podríamos usar el algoritmo anterior para estimar $p(X_i = x_i)$

• Generamos una muestra a partir de la distribución conjunta de la red

En una red bayesiana podríamos usar el algoritmo anterior para estimar $p(X_i = x_i)$

- Generamos una muestra a partir de la distribución conjunta de la red
- Estimamos las probabilidades $p(X_i = x_i)$ como la proporción de las realizaciones en las que $X_i = x_i$

• La función de distribución conjunta y acumulada para cada configuración es:

Configuración	prob.	prob. acumulada
a, b, c	0.00004	0.00004
a, b, \overline{c}	0.03996	0.04
a, \overline{b}, c	0.0036	0.0436
$a, \overline{b}, \overline{c}$	0.3564	0.4
\overline{a} , b , c	0.00036	0.40036
$\overline{a}, b, \overline{c}$	0.35964	0.76
$\overline{a}, \overline{b}, c$	0.0024	0.7624
$\overline{a}, \overline{b}, \overline{c}$	0.2376	1.0

 La función de distribución conjunta y acumulada para cada configuración es:

Configuración	prob.	prob. acumulada
a, b, c	0.00004	0.00004
a, b, \overline{c}	0.03996	0.04
a, \overline{b}, c	0.0036	0.0436
$a, \overline{b}, \overline{c}$	0.3564	0.4
\overline{a} , b , c	0.00036	0.40036
$\overline{a}, b, \overline{c}$	0.35964	0.76
$\overline{a}, \overline{b}, c$	0.0024	0.7624
$\overline{a}, \overline{b}, \overline{c}$	0.2376	1.0

 Consideremos la siguiente serie de números aleatorios uniformes U(0,1): 0.723, 0.070, 0.531, 0.559, 0.458

 La función de distribución conjunta y acumulada para cada configuración es:

Configuración	prob.	prob. acumulada
a, b, c	0.00004	0.00004
a, b, \overline{c}	0.03996	0.04
a, \overline{b}, c	0.0036	0.0436
$a, \overline{b}, \overline{c}$	0.3564	0.4
\overline{a} , b , c	0.00036	0.40036
$\overline{a}, b, \overline{c}$	0.35964	0.76
$\overline{a}, \overline{b}, c$	0.0024	0.7624
$\overline{a}, \overline{b}, \overline{c}$	0.2376	1.0

- Consideremos la siguiente serie de números aleatorios uniformes U(0,1): 0.723, 0.070, 0.531, 0.559, 0.458
- Que nos dan las siguientes 5 realizaciones: $(\overline{a}, b, \overline{c}), (a, b, \overline{c}), (\overline{a}, b, \overline{c}),$ $(\overline{a}, b, \overline{c}), (\overline{a}, b, \overline{c})$

• Las 5 realizaciones anteriores nos permiten obtener:

$$\hat{p}(a) = \frac{1}{5} = 0.2; \quad \hat{p}(b) = \frac{4}{5} = 0.8; \quad \hat{p}(c) = \frac{0}{5} = 0.0$$

Las verdaderas probabilidades son p(a) = 0.4, p(b) = 0.4 y p(c) = 0.0064

• Las 5 realizaciones anteriores nos permiten obtener:

$$\hat{p}(a) = \frac{1}{5} = 0.2; \quad \hat{p}(b) = \frac{4}{5} = 0.8; \quad \hat{p}(c) = \frac{0}{5} = 0.0$$

Las verdaderas probabilidades son p(a) = 0.4, p(b) = 0.4 y p(c) = 0.0064

• Esta aproximación produce un error RMSE de 0.6325

• Las 5 realizaciones anteriores nos permiten obtener:

$$\hat{p}(a) = \frac{1}{5} = 0.2; \quad \hat{p}(b) = \frac{4}{5} = 0.8; \quad \hat{p}(c) = \frac{0}{5} = 0.0$$

Las verdaderas probabilidades son p(a) = 0.4, p(b) = 0.4 y p(c) = 0.0064

- Esta aproximación produce un error RMSE de 0.6325
- Si generamos otros 5 números aleatorios: 0.817, 0.268, 0.733, 0.301, 0.348 obtenemos las realizaciones $(\overline{a}, \overline{b}, \overline{c}), (a, \overline{b}, \overline{c}), (\overline{a}, b, \overline{c}),$ $(a, \overline{b}, \overline{c}), (a, \overline{b}, \overline{c})$

• Las 5 realizaciones anteriores nos permiten obtener:

$$\hat{p}(a) = \frac{1}{5} = 0.2; \quad \hat{p}(b) = \frac{4}{5} = 0.8; \quad \hat{p}(c) = \frac{0}{5} = 0.0$$

Las verdaderas probabilidades son p(a) = 0.4, p(b) = 0.4 y p(c) = 0.0064

- Esta aproximación produce un error RMSE de 0.6325
- Si generamos otros 5 números aleatorios: 0.817, 0.268, 0.733, 0.301, 0.348 obtenemos las realizaciones $(\overline{a}, \overline{b}, \overline{c}), (a, \overline{b}, \overline{c}), (\overline{a}, b, \overline{c}),$ $(a, \overline{b}, \overline{c}), (a, \overline{b}, \overline{c})$
- Con las 10 realizaciones obtenemos:

$$\hat{p}(a) = \frac{4}{10} = 0.4; \quad \hat{p}(b) = \frac{5}{10} = 0.5; \quad \hat{p}(c) = \frac{0}{10} = 0.0$$

• Las 5 realizaciones anteriores nos permiten obtener:

$$\hat{p}(a) = \frac{1}{5} = 0.2; \quad \hat{p}(b) = \frac{4}{5} = 0.8; \quad \hat{p}(c) = \frac{0}{5} = 0.0$$

Las verdaderas probabilidades son p(a) = 0.4, p(b) = 0.4 y p(c) = 0.0064

- Esta aproximación produce un error RMSE de 0.6325
- Si generamos otros 5 números aleatorios: 0.817, 0.268, 0.733, 0.301, 0.348 obtenemos las realizaciones $(\overline{a}, \overline{b}, \overline{c}), (a, \overline{b}, \overline{c}), (\overline{a}, b, \overline{c}),$ $(a, \overline{b}, \overline{c}), (a, \overline{b}, \overline{c})$
- Con las 10 realizaciones obtenemos:

$$\hat{p}(a) = \frac{4}{10} = 0.4; \quad \hat{p}(b) = \frac{5}{10} = 0.5; \quad \hat{p}(c) = \frac{0}{10} = 0.0$$

Y el nuevo error es 0.1417

Contenido del tema

- Introducción

Algoritmos de Monte Carlo

- Simulación de variables aleatorias
- Base intuitiva de los métodos de simulación

Sea una **Urna 1 con seis bolas numeradas** $\{1, \ldots, 6\}$ y sea X_i el resultado de la extracción i-ésima de la urna haciendo muestreo con reemplazamiento. Entonces X_i es una variable uniforme con función de probabilidad $p(X_i = x_i) = 1/6$, $x_i = 1, \dots 6$ y $i = 1, \dots N$ (donde N es el número de extracciones o tamaño de la muestra).

Sea una **Urna 1 con seis bolas numeradas** $\{1, \ldots, 6\}$ y sea X_i el resultado de la extracción i-ésima de la urna haciendo muestreo con *reemplazamiento*. Entonces X_i es una variable *uniforme* con función de probabilidad $p(X_i = x_i) = 1/6$, $x_i = 1, \ldots 6$ y $i = 1, \ldots N$ (donde N es el número de extracciones o tamaño de la muestra).

• Si $X = \{X_1, \dots, X_N\}$, entonces la función de probabilidad conjunta $p(\mathbf{x})$ se obtiene con

$$p(\mathbf{x}) = \prod_{i=1}^{N} p(x_i)$$

Sea una **Urna 1 con seis bolas numeradas** $\{1, \ldots, 6\}$ y sea X_i el resultado de la extracción i-ésima de la urna haciendo muestreo con *reemplazamiento*. Entonces X_i es una variable *uniforme* con función de probabilidad $p(X_i = x_i) = 1/6$, $x_i = 1, \ldots 6$ y $i = 1, \ldots N$ (donde N es el número de extracciones o tamaño de la muestra).

• Si $X = \{X_1, \dots, X_N\}$, entonces la función de probabilidad conjunta $p(\mathbf{x})$ se obtiene con

$$p(\mathbf{x}) = \prod_{i=1}^{N} p(x_i)$$

• En el ejemplo anterior, es sencillo calcular probabilidades de ciertos sucesos tales como $p(X_1 = 1, ..., X_N = 1)$ o p(número de pares = número de impares)

4 D > 4 D > 4 D > 4 D > 3 P 9 Q P

En situaciones más complicadas podemos calcular las probabilidades de ciertos sucesos de forma aproximada mediante simulación.

Simulación de una muestra

Repetir un experimento N veces obteniendo una muestra de tamaño N, obteniendo la probabilidad de un suceso como

> Nº veces que ocurre el suceso Nº total de simulaciones

En situaciones más complicadas podemos calcular las probabilidades de ciertos sucesos de forma aproximada mediante simulación.

Simulación de una muestra

Repetir un experimento N veces obteniendo una muestra de tamaño N, obteniendo la probabilidad de un suceso como

> Nº veces que ocurre el suceso Nº total de simulaciones

Una forma equivalente de obtener una muestra con reemplazamiento de tamaño N de la Urna 1 es lanzando un dado N veces.

- Sea Y_i el número obtenido al lanzar el dado, entonces Y_i tiene la misma función de probabilidad que X_i
- Llamemos p(x) a la función de probabilidad de X y h(y) a la función de probabilidad de Y; entonces p(x) = h(x)
- Por tanto, extraer N bolas con reemplazamiento de la Urna 1 puede simularse con el lanzamiento de un dado N veces.

• La distribución p(x) se denomina distribución de la población y h(x)distribución de simulación.

- La distribución de simulación se usa porque es más fácil obtener muestras de ésta que de la distribución de la población.
- En el ejemplo anterior la distribución de la población p(x) y la distribución de simulación h(x) coinciden.
- Pero normalmente $p(x) \neq h(x)$

Urna 2

Dado

• Aunque $p(x) \neq h(x)$, sí que podemos usar el dado para simular una muestra de extracción de bolas de Urna 2. Cuando en el dado sale 6, se ignora la tirada y se repite de nuevo: método de aceptación-rechazo (ver por ejemplo Rubinstein (1981)).

Método de aceptación-rechazo

Teorema: Método de aceptación-rechazo

Sea X una variable aleatoria con función de probabilidad p(x). Supongamos que p(x) puede expresarse como

$$p(x) = c \cdot g(x) \cdot h(x)$$

donde $c \ge 1$, $0 \le g(x) \le 1$ y h(x) es una función de probabilidad. Sea U una variable aleatoria uniforme U(0,1) y sea Y una variable aleatoria con función de probabilidad h(y) independiente de U. Entonces, la función de probabilidad condicional de Y dado que $u \leq g(y)$ coincide con la función de probabilidad de X. Por otra parte, la probabilidad de aceptar la muestra (eficiencia) es 1/c.

La probabilidad 1/c de aceptar la muestra es alta cuando h(x) es próxima a p(x)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● めぬぐ

Ejemplo: Obtención de una muestra de la Urna 2

En el caso de la Urna 2 se puede escribir $p(x) = c \cdot g(x) \cdot h(x)$, con c = 6/5 y

$$g(x) = \begin{cases} 0, & \text{si } x = 6 \\ 1, & \text{en otro caso} \end{cases}$$

Se puede obtener una muestra de p(x) (Urna 2), usando h(x) (el dado) y comprobando la condición $u \leq g(x)$ para todo valor x que se simule de h(x), donde u es un número obtenido de U(0,1).

El suceso x = 6 siempre se rechaza, ya que g(6) = 0

Ejemplo del método de aceptación-rechazo (caso continuo)

- Supongamos que queremos obtener una muestra de tamaño N de una distribución con función de densidad p(x) = 3x(2-x)/4, $0 \le x \le 2$:
- Si h(x) = 1/2, 0 < x < 2, g(x) = x(2-x) y c = 3/2

$$p(x) = c \cdot g(x) \cdot h(x)$$

• Las funciones de distribución de h(x) y p(x) son

$$H(x) = \int_0^x h(x)dx = \int_0^x (1/2)dx = x/2$$

$$P(x) = 3/4x^2 - x^3/4$$

• Es más fácil simular con H(x) que con P(X)

Ejemplo del método de aceptación-rechazo (caso continuo)

- Generamos un número aleatorio y de h(y) y un u de U(0,1).
- Si $u \le g(y)$ se acepta y como número procedente de p(x). En caso contrario se rechazan u e y

Por ejemplo,

- Si y = 1.5: g(y) = 0.75
- Si y = 1: g(y) = 1

En este caso la probabilidad 1/c de aceptar un número generado con h(y)es 2/3.

Algoritmo del método de aceptación-rechazo

Algorithm 2: El Método de rechazo

```
Data: Funciones p(x), h(x) y tamaño muestra N
  Result: Una muestra \{x_1, \dots, x_N\} procedente de p(x)
1 for i=1 to N do
      Generar un valor aleatorio u de la distribución U(0,1);
      Generar un valor aleatorio y de h(x);
      if u \leq g(y) then
         hacer x_i = y;
      else
          Ir a la etapa 2;
8 Devolver \{x_1, \ldots, x_N\};
```

Modificación del método: Muestreo por importancia

- Cuando c es grande, la eficiencia del algoritmo es baja.
- El algoritmo puede hacerse más eficiente haciendo:

$$p(x) = \frac{p(x)}{h(x)}h(x) = s(x)h(x)$$

donde s(x) = p(x)/h(x) es una función peso.

- Puede deducirse que $s(x) = c \cdot g(x)$
- Ahora, en vez de rechazar un número x generado de h(x), se le asigna una probabilidad proporcional a s(x) o g(x), normalizando los pesos al final de las simulaciones para obtener la probabilidad de cualquier suceso de interés.

Ejemplos usando muestreo por importancia

Contenido del tema

Introducción

Algoritmos de Monte Carlo

- Simulación de variables aleatorias
- Metodología general de los métodos de simulación en RBs

El problema en el caso de Redes Bayesianas

Como hemos visto, en redes bayesianas el problema es el siguiente:

- Sea $X = \{X_1, \dots, X_n\}$ un conjunto de variables con distribución de probabilidad conjunta p(x).
- Supongamos que el conjunto de variables evidenciales E toman el valor e
- Nuestro objetivo es calcular p(X = x|e) para cada $x \in \Omega_X$
- En general, dado $\mathbf{Y} \subset \mathbf{X}$, podemos calcular $p(\mathbf{Y} = y|e)$ para cada $v \in \Omega_{\mathbf{v}}$
- p(Y = y|e) puede escribirse como

$$p(\mathbf{Y} = y|e) = \frac{p_e(y)}{p(e)} \propto p_e(y)$$

donde

$$p_e(y) = \left\{ egin{array}{ll} p(y \cup e), & ext{si } y ext{ es consistente con } e \\ 0, & ext{en otro caso} \end{array}
ight.$$

Metodología general de los métodos de simulación en RBs

El cálculo aproximado de $p(x_i|e)$ lo haremos mediante:

- Generar una muestra $x^j = \{x_1^j, \dots, x_n^j\}$ de tamaño N de p(x) pero usando la función h(x)
- Calcular y normalizar los pesos
- Aproximar $p(x_i|e)$ mediante la suma de todos los pesos de las realizaciones consistentes con los sucesos x_i y e.

$$p(x) \approx \frac{\sum_{x \in x^j} s(x^j)}{\sum_{j=1}^N s(x^j)}$$

Metodología general de los métodos de simulación en RBs

El cálculo aproximado de $p(x_i|e)$ lo haremos mediante:

- Generar una muestra $x^j = \{x_1^j, \dots, x_n^j\}$ de tamaño N de p(x) pero usando la función h(x)
- Calcular y normalizar los pesos
- Aproximar $p(x_i|e)$ mediante la suma de todos los pesos de las realizaciones consistentes con los sucesos x_i y e.

$$p(x) \approx \frac{\sum_{x \in x^j} s(x^j)}{\sum_{j=1}^N s(x^j)}$$

La calidad de la aproximación depende de:

- La función h(x) elegida para obtener la muestra
- Método usado para obtener realizaciones de h(x) (pesos similares)
- Tamaño de la muestra N

Metodología general de los métodos de simulación en RBs

Algorithm 3: Algoritmo general de simulación

Data: Funciones de probabilidad real p(x) y de simulación h(x), tamaño de la muestra N, y un subconjunto $\mathbf{Y} \subset \mathbf{X}$

Result: Una aproximación de p(y) para todo $y \in \Omega_Y$

- 1 for j=1 to N do
- Generar $x^j=(x_1^j,\ldots,x_n^j)$ usando h(x) ;
 Calcular $s(x^j)=\frac{p(x^j)}{h(x^j)}$;
- 4 Para cada $\mathbf{y} \in \Omega_{\mathbf{Y}}$, aproximar $p(\mathbf{y})$ usando $p(\mathbf{y}) \approx \frac{\sum_{\mathbf{y} \in \mathbf{x}^j} s(\mathbf{x}^j)}{\sum_{i=1}^N s(\mathbf{x}^j)}$

Supongamos la siguiente red bayesiana con todas sus variables binarias

Distribuciones de probabilidad condicional

x_1	$p(x_1)$
0	0.3
1	0.7

_	<i>x</i> ₁	<i>x</i> ₂	$p(x_2 x_1)$
	0	0	0.4
	0	1	0.6
	1	0	0.1
	1	1	0.9

ĺ	x_1	<i>X</i> ₃	$p(x_3 x_1)$	<i>X</i> ₂	<i>X</i> ₄	p (
ĺ	0	0	0.2	0	0	0.3
	0	1	0.8	0	1	0.7
	1	0	0.5	1	0	0.2
	1	1	0.5	1	1	0.8

<i>X</i> 3	<i>x</i> ₆	$p(x_6 x_3)$
0	0	0.1
0	1	0.9
1	0	0.4
1	1	0.6
		II.

<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₅	$p(x_5 x_2,x_3)$
0	0	0	0.4
0	0	1	0.6
0	1	0	0.5
0	1	1	0.5
1	0	0	0.7
1	0	1	0.3
1	1	0	0.2
1	1	1	0.8

Generaremos una muestra de N realizaciones $x^j = \{x_1^j, \dots, x_6^j\}$ (26) posibles realizaciones)

Supongamos que seleccionamos cinco de las 64 realizaciones al azar y con reemplazamiento.

Distribución conjunta:

$$p(\mathbf{x}) = p(x_1)p(x_2|x_1)p(x_3|x_1)p(x_4|x_2)p(x_5|x_2,x_3)p(x_6|x_3)$$

Distribución de simulación:

$$h(x^j) = 1/64; \ j = 1, \dots, 5$$

Tabla con distribuciones real, de simulación y pesos

Realización x ^j	$p(x^j)$	$h(x^j)$	$s(x^j)$
$x^1 = (0, 1, 1, 1, 0, 0)$	0.0092	1/64	0.5898
$x^2 = (1, 1, 0, 1, 1, 0)$	0.0076	1/64	0.4838
$x^3 = (0, 0, 1, 0, 0, 1)$	0.0086	1/64	0.5529
$x^4 = (1, 0, 0, 1, 1, 0)$	0.0015	1/64	0.0941
$x^5 = (1, 0, 0, 0, 1, 1)$	0.0057	1/64	0.3629

Tabla con distribuciones real, de simulación y pesos

Realización x ^j	$p(x^j)$	$h(x^j)$	$s(x^j)$
$x^1 = (0, 1, 1, 1, 0, 0)$	0.0092	1/64	0.5898
$x^2 = (1, 1, 0, 1, 1, 0)$	0.0076	1/64	0.4838
$x^3 = (0, 0, 1, 0, 0, 1)$	0.0086	1/64	0.5529
$x^4 = (1, 0, 0, 1, 1, 0)$	0.0015	1/64	0.0941
$x^5 = (1, 0, 0, 0, 1, 1)$	0.0057	1/64	0.3629

Ejemplos suponiendo que no hay evidencia

•
$$p(X_1 = 0) \approx \frac{s(x^1) + s(x^3)}{\sum_{i=1}^5 s(x^i)} = \frac{0.5898 + 0.5529}{2.0835} = 0.5485$$

Tabla con distribuciones real, de simulación y pesos

Realización x ^j	$p(x^j)$	$h(x^j)$	$s(x^j)$
$x^1 = (0, 1, 1, 1, 0, 0)$	0.0092	1/64	0.5898
$x^2 = (1, 1, 0, 1, 1, 0)$	0.0076	1/64	0.4838
$x^3 = (0, 0, 1, 0, 0, 1)$	0.0086	1/64	0.5529
$x^4 = (1, 0, 0, 1, 1, 0)$	0.0015	1/64	0.0941
$x^5 = (1, 0, 0, 0, 1, 1)$	0.0057	1/64	0.3629

Ejemplos suponiendo que no hay evidencia

•
$$p(X_1 = 0) \approx \frac{s(x^1) + s(x^3)}{\sum_{i=1}^5 s(x^i)} = \frac{0.5898 + 0.5529}{2.0835} = 0.5485$$

•
$$p(X_2 = 0) \approx \frac{s(x^3) + s(x^4) + s(x^5)}{\sum_{i=1}^5 s(x^i)} = \frac{0.5529 + 0.0941 + 0.3629}{2.0835} = 0.4847$$

Ejemplos suponiendo
$$e = \{X_3 = 1, X_4 = 1\}$$

- Ahora $h(x^j) = 1/16$
- Seleccionemos al azar cinco de las 16 realizaciones.

Tabla con distribuciones real, de simulación y pesos

Realización x ^j	$p(x^j)$	$h(x^j)$	$s(x^j)$
$x^1 = (0, 1, 1, 1, 0, 1)$	0.0138	1/16	0.2212
$x^2 = (1, 0, 1, 1, 0, 0)$	0.0049	1/16	0.0784
$x^3 = (1, 0, 1, 1, 1, 1)$	0.0073	1/16	0.1176
$x^4 = (0, 1, 1, 1, 1, 1)$	0.0369	1/16	0.5898
$x^5 = (1, 1, 1, 1, 0, 0)$	0.0202	1/16	0.3226

•
$$p(X_1 = 0 | X_3 = 1, X_4 = 1) \approx \frac{s(x^1) + s(x^4)}{\sum_{i=1}^5 s(x^i)} = \frac{0.2212 + 0.5898}{1.3296} = 0.6099$$

•
$$p(X_2 = 0 | X_3 = 1, X_4 = 1) \approx \frac{s(x^2) + s(x^3)}{\sum_{i=1}^5 s(x^i)} = \frac{0.0784 + 0.1176}{1.3296} = 0.1474$$

4 0 1 4 4 4 5 1 4 5 1 5 37 / 73

Ejemplos suponiendo
$$e = \{X_3 = 1, X_4 = 1\}$$

- Ahora $h(x^j) = 1/16$
- Seleccionemos al azar cinco de las 16 realizaciones.

Tabla con distribuciones real, de simulación y pesos

Realización x ^j	$p(x^j)$	$h(x^j)$	$s(x^j)$
$x^1 = (0, 1, 1, 1, 0, 1)$	0.0138	1/16	0.2212
$x^2 = (1, 0, 1, 1, 0, 0)$	0.0049	1/16	0.0784
$x^3 = (1, 0, 1, 1, 1, 1)$	0.0073	1/16	0.1176
$x^4 = (0, 1, 1, 1, 1, 1)$	0.0369	1/16	0.5898
$x^5 = (1, 1, 1, 1, 0, 0)$	0.0202	1/16	0.3226

•
$$p(X_1 = 0 | X_3 = 1, X_4 = 1) \approx \frac{s(x^1) + s(x^4)}{\sum_{i=1}^5 s(x^i)} = \frac{0.2212 + 0.5898}{1.3296} = 0.6099$$

•
$$p(X_2 = 0 | X_3 = 1, X_4 = 1) \approx \frac{s(x^2) + s(x^3)}{\sum_{i=1}^5 s(x^i)} = \frac{0.0784 + 0.1176}{1.3296} = 0.1474$$

4 0 1 4 4 4 5 1 4 5 1 5 37 / 73

Ejemplo para aproximar distribuciones multivariadas

Tabla con distribuciones real, de simulación y pesos

Realización x ^j	$p(x^j)$	$h(x^j)$	$s(x^j)$
$x^1 = (0, 1, 1, 1, 0, 0)$	0.0092	1/64	0.5898
$x^2 = (1, 1, 0, 1, 1, 0)$	0.0076	1/64	0.4838
$x^3 = (0, 0, 1, 0, 0, 1)$	0.0086	1/64	0.5529
$x^4 = (1, 0, 0, 1, 1, 0)$	0.0015	1/64	0.0941
$x^5 = (1, 0, 0, 0, 1, 1)$	0.0057	1/64	0.3629

•
$$p(X_5 = 0, X_6 = 0) \approx \frac{s(x^1)}{\sum_{i=1}^5 s(x^i)} = \frac{0.5898}{2.0835} = 0.2831$$

•
$$p(X_5 = 0, X_6 = 1) \approx \frac{s(x^3)}{\sum_{i=1}^5 s(x^i)} = \frac{0.5529}{2.0835} = 0.2654$$

•
$$p(X_5 = 1, X_6 = 0) \approx \frac{s(x^2) + s(x^4)}{\sum_{i=1}^5 s(x^i)} = \frac{0.4838 + 0.0941}{2.0835} = 0.2773$$

•
$$p(X_5 = 1, X_6 = 1) \approx \frac{s(x^5)}{\sum_{i=1}^5 s(x^i)} = \frac{0.3629}{2.0835} = 0.1742$$

(Universidad de Granada) Modelos Gráficos Probabilísticos

Factorización de la función peso con el algoritmo 3

• Especialmente útil es el caso de que la distribución real y la de simulación puedan factorizarse (como en redes bayesianas)

$$p(x) = \prod_{i=1}^{n} p(x_i|\pi_i)$$

$$h(x) = \prod_{i=1}^n h(x_i|\pi_i)$$

De esta forma el peso puede también factorizarse:

$$s(x) = \frac{p(x)}{h(x)} = \prod \frac{p(x_i|\pi_i)}{h(x_i|\pi_i)} = \prod s(x_i|\pi_i)$$

Factorización de la función peso con el algoritmo 3

• Cuando hay evidencia usaremos $p_e(x)$ en lugar de p(x)

$$p_e(x) = \left\{ egin{array}{ll} p(x \cup e), & ext{si } x ext{ es consistente con } e \\ 0, & ext{en otro caso} \end{array}
ight.$$

Que también puede factorizarse teniendo en cuenta:

$$p_e(x) \propto \prod_{i=1}^n p_e(x_i|\pi_i)$$

donde

$$p_e(x_i|\pi_i) = \begin{cases} p(x_i|\pi_i), & \text{si } x_i \text{ y } \pi_i \text{ son consistentes con } e \\ 0, & \text{en otro caso} \end{cases}$$

Métodos basados en muestreo por importancia

Todo método de simulación consta de tres componentes:

- Una distribución de simulación h(x) usada para generar la muestra
- Un método para obtener realizaciones de h(x)
- Una fórmula para calcular los pesos

Ejemplos de estos métodos:

- Muestreo lógico probabilístico (Henrion, 1988)
- Ponderación por verosimilitud (Fung y Chang, 1990; Shachter y Peot, 1990)
- Muestreo de Markov (Pearl, 1987)

Contenido del tema

Introducción

Algoritmos de Monte Carlo

- Simulación de variables aleatorias
- Metodología general de los métodos de simulación en RBs
- Muestreo lógico probabilístico

Muestreo lógico probabilístico (Henrion, 1988)

- Está basado en el teorema de aceptación-rechazo.
- Es uno de los métodos de propagación hacia adelante. Se muestrea una variable solo cuando ya han sido muestreados todos sus padres (ordenación ancestral de los nodos).
- Se simulan todas las variables, incluso las evidenciales.
- La función de simulación usada para X_i es su función de probabilidad condicional:

$$h(x_i|\pi_i) = p(x_i|\pi_i), i \in \{1,\ldots,n\}$$

Muestreo lógico probabilístico (Henrion, 1988)

Los pesos se obtienen con:

$$s(x) = \frac{p_{e}(x)}{h(x)} = \frac{\prod_{X_{i} \notin \mathbf{E}} p_{e}(x_{i}|\pi_{i}) \prod_{X_{i} \in \mathbf{E}} p_{e}(x_{i}|\pi_{i})}{\prod_{X_{i} \notin \mathbf{E}} p(x_{i}|\pi_{i}) \prod_{X_{i} \in \mathbf{E}} p(x_{i}|\pi_{i})} =$$

$$= \begin{cases} 1, & \text{si } x_{i} = e_{i} \ \forall X_{i} \in \mathbf{E} \\ 0, & \text{en otro caso} \end{cases}$$
(1)

- Puede verse que si $x_i \neq e_i$ para algún $X_i \in \mathbf{E}$, entonces el peso es cero: se rechaza la muestra.
- Las probabilidades condicionales $p(x_i|e)$ se aproximan como el cociente entre los casos no rechazados consistentes con x_i y el número de casos totales N (no rechazados).
- Cuando p(e) es pequeño el método es muy ineficiente porque hay un gran porcentaje de rechazo.

Muestreo lógico probabilístico (Henrion, 1988)

Algorithm 4: Algoritmo de muestreo lógico

```
1 Ordenar los nodos ancestralmente;
2 for i = 1 to N do
      for i = 1 to n do
          x_i = \text{valor generado a partir de } p(x_i | \pi_i);
         if X_i \in \mathbf{E} y x_i \neq e_i then
            Repetir el ciclo i;
```

Sea la siguiente red bayesiana con la evidencia $\mathbf{E} = \{X_3 = 1, X_4 = 1\}$:

Distribuciones de probabilidad condicional

x_1	$p(x_1)$
0	0.3
1	0.7

	<i>x</i> ₁	<i>X</i> ₂	$p(x_2 x_1)$
	0	0	0.4
1	0	1	0.6
	1	0	0.1
	1	1	0.9

<i>x</i> ₁	<i>X</i> ₃	$p(x_3 x_1)$	<i>x</i> ₂	<i>X</i> ₄	
0	0	0.2	0	0	
0	1	8.0	0	1	
1	0	0.5	1	0	
1	1	0.5	1	1	

<i>X</i> ₃	<i>x</i> ₆	$p(x_6 x_3)$
0	0	0.1
0	1	0.9
1	0	0.4
1	1	0.6

<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₅	$p(x_5 x_2,x_3)$
0	0	0	0.4
0	0	1	0.6
0	1	0	0.5
0	1	1	0.5
1	0	0	0.7
1	0	1	0.3
1	1	0	0.2
1	1	1	0.8

0.7 0.2 8.0

• Elegimos un orden ancestral de los nodos: $\{X_1, X_2, X_3, X_4, X_5, X_6\}$

- Elegimos un orden ancestral de los nodos: $\{X_1, X_2, X_3, X_4, X_5, X_6\}$
- Muestreamos X_1 con $p(X_1)$

<i>x</i> ₁	$p(x_1)$
0	0.3
1	0.7

Suponer que obtenemos que $X_1 = 1$

- Elegimos un orden ancestral de los nodos: $\{X_1, X_2, X_3, X_4, X_5, X_6\}$
- Muestreamos X_1 con $p(X_1)$

<i>x</i> ₁	$p(x_1)$
0	0.3
1	0.7

Suponer que obtenemos que $X_1 = 1$

• Muestreamos X_2 usando $p(X_2|X_1=1)$

<i>x</i> ₁	<i>X</i> ₂	$p(x_2 x_1)$
0	0	0.4
0	1	0.6
1	0	0.1
1	1	0.9

Suponer que obtenemos $X_2 = 0$

• Muestreamos X_3 usando $p(X_3|X_1=1)$

<i>x</i> ₁	<i>X</i> 3	$p(x_3 x_1)$
0	0	0.2
0	1	8.0
1	0	0.5
1	1	0.5

• Muestreamos X_3 usando $p(X_3|X_1=1)$

x_1	<i>X</i> ₃	$p(x_3 x_1)$
0	0	0.2
0	1	8.0
1	0	0.5
1	1	0.5

• Si obtuviesemos $X_3 = 0$ se rechazaría esta realización completa y se comenzaría desde el principio.

• Muestreamos X_3 usando $p(X_3|X_1=1)$

x_1	<i>X</i> ₃	$p(x_3 x_1)$
0	0	0.2
0	1	8.0
1	0	0.5
1	1	0.5

- Si obtuviesemos $X_3 = 0$ se rechazaría esta realización completa y se comenzaría desde el principio.
- Supongamos que obtenemos $X_3 = 1$

• Muestreamos X4, X_5 y X_6 de forma similar

<i>x</i> ₂	<i>x</i> ₄	$p(x_4 x_2)$	<i>x</i> ₃	<i>x</i> ₆	$p(x_6 x_3)$
0	0	0.3	0	0	0.1
0	1	0.7	0	1	0.9
1	0	0.2	1	0	0.4
1	1	8.0	1	1	0.6

x2	<i>x</i> ₃	<i>x</i> 5	$p(x_5 x_2,x_3)$
0	0	0	0.4
0	0	1	0.6
0	1	0	0.5
0	1	1	0.5
1	0	0	0.7
1	0	1	0.3
1	1	0	0.2
1	1	1	0.8

• Muestreamos X4, X_5 y X_6 de forma similar

<i>x</i> ₂	<i>x</i> ₄	$p(x_4 x_2)$	<i>x</i> ₃	<i>x</i> ₆	$p(x_6 x_3)$
0	0	0.3	0	0	0.1
0	1	0.7	0	1	0.9
1	0	0.2	1	0	0.4
1	1	8.0	1	1	0.6

	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> 5	$p(x_5 x_2,x_3)$
	0	0	0	0.4
11	0	0	1	0.6
11	0	1	0	0.5
Ш	0	1	1	0.5
Ш	1	0	0	0.7
Ш	1	0	1	0.3
1	1	1	0	0.2
	1	1	1	0.8

• Supongamos que la primera realización es $x^1 = (1, 0, 1, 1, 1, 0)$

• Muestreamos X4, X_5 y X_6 de forma similar

<i>x</i> ₂	<i>x</i> ₄	$p(x_4 x_2)$	<i>x</i> ₃	<i>x</i> ₆	$p(x_6 x_3)$
0	0	0.3	0	0	0.1
0	1	0.7	0	1	0.9
1	0	0.2	1	0	0.4
1	1	8.0	1	1	0.6

	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> 5	$p(x_5 x_2,x_3)$
	0	0	0	0.4
	0	0	1	0.6
	0	1	0	0.5
Ш	0	1	1	0.5
Ш	1	0	0	0.7
Ш	1	0	1	0.3
-	1	1	0	0.2
	1	1	1	0.8

- Supongamos que la primera realización es $x^1 = (1, 0, 1, 1, 1, 0)$
- El proceso se repite hasta obtener N realizaciones.

• Muestreamos X4, X_5 y X_6 de forma similar

						0	0
<i>x</i> ₂	×4	$p(x_4 x_2)$	<i>x</i> ₃	<i>x</i> ₆	$p(x_6 x_3)$	0	0
0	0	0.3	0	0	0.1	0	1
0	1	0.7	0	1	0.9	0	1
1	0	0.2	1	0	0.4	1	0
1	1	0.8	1	1	0.6	1	0
	•			•		1	1
						1	1

	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₅	$p(x_5 x_2,x_3)$
	0	0	0	0.4
	0	0	1	0.6
1	0	1	0	0.5
Ш	0	1	1	0.5
Ш	1	0	0	0.7
Ш	1	0	1	0.3
-	1	1	0	0.2
	1	1	1	0.8

- Supongamos que la primera realización es $x^1 = (1, 0, 1, 1, 1, 0)$
- El proceso se repite hasta obtener N realizaciones.
- La distribución de probabilidad de cualquier variable se aproxima por el porcentaje de realizaciones en las que ocurre el suceso de interés.

Contenido del tema

- Introducción

Algoritmos de Monte Carlo

- Simulación de variables aleatorias
- Metodología general de los métodos de simulación en RBs
- Muestreo lógico probabilístico
- Método de ponderación por verosimilitud

Método de ponderación por verosimilitud

- Fue desarrollado independientemente por Fung y Chang (1990) y Shachter y Peot (1990)
- Funciona de forma parecida al algoritmo de muestreo lógico, pero cuando llega a un nodo observado $X_i = e_i$, lo hace de forma distinta:
 - En vez de simular un valor para X_i , fija el valor de $X_i = e_i$
- Con esto intenta resolver el problema del alto rechazo del muestreo lógico.
- Los nodos también se ordenan según una ordenación ancestral

Método de ponderación por verosimilitud

La distribución de la población es de nuevo:

$$p_e(x) \propto \prod_{i=1}^n p_e(x_i|\pi_i)$$

donde

$$p_e(x_i|\pi_i) = \begin{cases} p(x_i|\pi_i), & \text{si } x_i \ y \ \pi_i \ \text{son consistentes con } e \\ 0, & \text{en otro caso} \end{cases}$$

La distribución de simulación es:

$$h(x_i) = \begin{cases} p(x_i|\pi_i), & \text{si } X_i \notin \mathbf{E} \\ 1, & \text{si } X_i \in \mathbf{E} \text{ y } x_i = e_i \\ 0, & \text{en otro caso} \end{cases}$$

• El peso asociado a una realización $x^j = (x_1, \dots, x_n)$ resulta:

$$s(x) = \frac{p_e(x)}{h(x)} = \prod_{X_i \notin E} \frac{p_e(x_i | \pi_i)}{p_e(x_i | \pi_i)} \prod_{X_i \in E} \frac{p_e(x_i | \pi_i)}{1} = \prod_{X_i \in E} p_e(x_i | \pi_i) = \prod_{X_i \in E} p(e_i | \pi_i)$$

Método de ponderación por verosimilitud

Algorithm 5: Algoritmo de ponderación por verosimilitud

```
1 Ordenar los nodos ancestralmente:
```

2 foreach
$$X_i \in \mathsf{E}$$
 do

$$x_i = e_i$$

4 for
$$i = 1$$
 to N do

foreach
$$X_i \notin \mathbf{E}$$
 do

$$s_j = \prod_{X_i \in \mathbf{E}} p(e_i | \pi_i);$$

8 Normalizar los pesos;

Sea de nuevo la red bayesiana con la evidencia $\mathbf{E} = \{X_3 = 1, X_4 = 1\}$:

(Universidad de Granada)

Distribuciones de probabilidad condicional

x_1	$p(x_1)$
0	0.3
1	0.7

<i>x</i> ₁	<i>X</i> ₂	$p(x_2 x_1)$
0	0	0.4
0	1	0.6
1	0	0.1
1	1	0.9

x_1	<i>X</i> ₃	$p(x_3 x_1)$	<i>x</i> ₂	<i>X</i> ₄	p(x)
0	0	0.2	0	0	0.3
0	1	8.0	0	1	0.7
1	0	0.5	1	0	0.2
1	1	0.5	1	1	8.0

0 0 0.1 0 1 0.9	<i>X</i> ₃	<i>x</i> ₆	$p(x_6 x_3)$
	0	0	0.1
1 0 04	0	1	0.9
1 0 0.4	1	0	0.4
1 1 0.6	1	1	0.6

<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₅	$p(x_5 x_2,x_3)$
0	0	0	0.4
0	0	1	0.6
0	1	0	0.5
0	1	1	0.5
1	0	0	0.7
1	0	1	0.3
1	1	0	0.2
1	1	1	0.8

• Elegimos un orden ancestral de los nodos no evidenciales: $\{X_1, X_2, X_5, X_6\}$

- Elegimos un orden ancestral de los nodos no evidenciales: $\{X_1, X_2, X_5, X_6\}$
- Asignamos a los nodos evidenciales sus correspondientes valores observados $X_3 = 1$ y $X_4 = 1$.

- Elegimos un orden ancestral de los nodos no evidenciales: $\{X_1, X_2, X_5, X_6\}$
- Asignamos a los nodos evidenciales sus correspondientes valores observados $X_3 = 1$ y $X_4 = 1$.
- Muestreamos X_1 con $p(X_1)$

x_1	$p(x_1)$
0	0.3
1	0.7

Suponer que obtenemos que $X_1 = 0$

- Elegimos un orden ancestral de los nodos no evidenciales: $\{X_1, X_2, X_5, X_6\}$
- Asignamos a los nodos evidenciales sus correspondientes valores observados $X_3 = 1$ y $X_4 = 1$.
- Muestreamos X_1 con $p(X_1)$

x_1	$p(x_1)$
0	0.3
1	0.7

Suponer que obtenemos que $X_1 = 0$

• Muestreamos X_2 usando $p(X_2|X_1=0)$

<i>x</i> ₁	<i>X</i> ₂	$p(x_2 x_1)$
0	0	0.4
0	1	0.6
1	0	0.1
1	1	0.9

Suponer que obtenemos $X_2 = 1$

• Muestreamos X_5 con $p(X_5|X_2=1,X_3=1)$

<i>x</i> ₂	<i>x</i> ₃	<i>X</i> 5	$p(x_5 x_2,x_3)$
0	0	0	0.4
0	0	1	0.6
0	1	0	0.5
0	1	1	0.5
1	0	0	0.7
1	0	1	0.3
1	1	0	0.2
1	1	1	0.8

Suponer que obtenemos $X_5 = 0$

• Muestreamos X_5 con $p(X_5|X_2 = 1, X_3 = 1)$

>	2	<i>x</i> ₃	<i>X</i> 5	$p(x_5 x_2,x_3)$
C)	0	0	0.4
C)	0	1	0.6
C)	1	0	0.5
C)	1	1	0.5
1		0	0	0.7
1		0	1	0.3
1		1	0	0.2
1		1	1	0.8

Suponer que obtenemos $X_5 = 0$

• Muestreamos X_6 usando $p(x_6|X_3=1)$

<i>x</i> 3	<i>x</i> ₆	$p(x_6 x_3)$
0	0	0.1
0	1	0.9
1	0	0.4
1	1	0.6

Suponer que obtenemos $X_6 = 1$

• Por tanto la primera realización es $x^1 = (0, 1, 1, 1, 0, 1)$ y su peso asociado es:

$$s(x^1) = p(X_3 = 1|X_1 = 0) \cdot p(X_4 = 1|X_2 = 1) = 0.8 \times 0.8 = 0.64$$

- El proceso se repite hasta obtener N realizaciones.
- La distribución de probabilidad de la variable de interés $p(x_i|e)$ se aproxima por el cociente entre la suma de pesos de las realizaciones en las que $X_i = x_i$ y la suma total de pesos.

Contenido del tema

- Introducción

Algoritmos de Monte Carlo

- Simulación de variables aleatorias

- Método de ponderación por verosimilitud
- Método de muestreo de Markov

- Comienza asignando a las variables evidencia su correspondiente valor
- Se simula luego la red de forma estocástica:
 - Inicialmente, se genera una realización aleatoriamente, eligiendo una al azar o bien aplicando uno de los métodos previos.
 - Simular las variables no evidenciales, una a una, siguiendo un orden arbitrario, mediante su función de probabilidad condicionada a todas las demás $p(x_i|\mathbf{x} \setminus x_i)$.
- El peso asociado a cada realización es siempre igual a 1.
- La función de probabilidad condicional $p(x_i|e)$ se estima por la proporción de realizaciones en las que ocurre x_i

Teorema: Función de probabilidad de una variable condicionada a todas las demás

La función de probabilidad de una variable X_i condicionada a todas las demás, se puede obtener con

$$h(x_i) = p(x_i|\mathbf{x} \setminus x_i) \propto p(x_i|\pi_i) \prod_{X_j \in C_i} p(x_j|\pi_j)$$

donde C_i es el conjunto de hijos de X_i y $\mathbf{X} \setminus X_i$ denota todas las variables de X que no están en X_i .

- Una vez muestreadas todas las variables no evidenciales, se obtiene una realización.
- Los valores de las variables obtenidos se utilizan para generar la siguiente realización.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ◆○○

La frontera de Markov de C (nodos con fondo amarillo).

Ejemplo

Sea de nuevo la red bayesiana con la evidencia $\mathbf{E} = \{X_3 = 1, X_4 = 1\}$:

Ejemplo

Se procede de la siguiente forma:

 Inicialmente, asignamos un valor arbitrario inicial a cada variable no evidencial. Las variables observadas nuncan cambian de valor:

$${X_1 = 0, X_2 = 1, X_3 = 1, X_4 = 1, X_5 = 0, X_6 = 1}$$

- Supongamos que elegimos el siguiente orden arbitrario para simular las variables (no evidenciales): $\{X_1, X_2, X_5, X_6\}$
- Cada vez se cambia solo un valor condicionado a los anteriores y a E

N.iter.	X_1	X_2	X_3	X_4	X_5	X_6
0	0	1	1	1	0	1
1	1	1	1	1	0	1
2	1	0	1	1	0	1
3	1	0	1	1	1	1
4	1	0	1	1	1	1
5	1	0	1	1	1	1
6	1	0	1	1	1	1
7	1	0	1	1	0	1
8	1	0	1	1	0	0

Algorithm 6: Algoritmo de muestreo de Markov

```
1 foreach X_i \in E do
x_i = e_i
_3 foreach X_i ∉ E do
4 x_i = \text{valor generado con } U(0, 1);
5 for j = 1 to N do
       foreach X_i \not\in \mathbf{E} do
            foreach x_i \in X_i do
              q(x_i) = p(x_i|\pi_i) \prod_{X_i \in C_i} p(x_j|\pi_j);
             Normalizar q(x_i);
            x_i = valor generado a partir de q(x_i) normalizada;
```

Sea de nuevo la red bayesiana con la evidencia $\mathbf{E} = \{X_3 = 1, X_4 = 1\}$:

Ejemplo

Distribuciones de probabilidad condicional

x_1	$p(x_1)$
0	0.3
1	0.7

x_1	<i>x</i> ₂	$p(x_2 x_1)$
0	0	0.4
0	1	0.6
1	0	0.1
1	1	0.9

x_1	<i>X</i> ₃	$p(x_3 x_1)$	<i>x</i> ₂	<i>X</i> ₄	
0	0	0.2	0	0	
0	1	0.8	0	1	
1	0	0.5	1	0	
1	1	0.5	1	1	

<i>X</i> ₃	<i>x</i> ₆	$p(x_6 x_3)$
0	0	0.1
0	1	0.9
1	0	0.4
1	1	0.6

<i>X</i> ₂	<i>X</i> 3	<i>X</i> ₅	$p(x_5 x_2,x$
0	0	0	0.4
0	0	1	0.6
0	1	0	0.5
0	1	1	0.5
1	0	0	0.7
1	0	1	0.3
1	1	0	0.2
1	1	1	0.8

0.3 0.7 0.2 8.0

• Asignamos valores a variables evidenciales: $X_3 = 1, X_4 = 1$

- Asignamos valores a variables evidenciales: $X_3 = 1, X_4 = 1$
- Asignar un valor arbitrario inicial a cada variable no evidencial: $X_1 = 0, X_2 = 1, X_5 = 0, X_6 = 1$. Obtenemos $x^0 = (0, 1, 1, 1, 0, 1)$

- Asignamos valores a variables evidenciales: $X_3 = 1, X_4 = 1$
- Asignar un valor arbitrario inicial a cada variable no evidencial: $X_1 = 0, X_2 = 1, X_5 = 0, X_6 = 1$. Obtenemos $x^0 = (0, 1, 1, 1, 0, 1)$
- Elegir ordenación arbitraria de nodos no evidenciales: $\{X_1, X_2, X_5, X_6\}$

• Asignamos valores a variables evidenciales: $X_3 = 1, X_4 = 1$

Asignar un valor arbitrario inicial a cada variable no evidencial:

- $X_1 = 0, X_2 = 1, X_5 = 0, X_6 = 1$. Obtenemos $x^0 = (0, 1, 1, 1, 0, 1)$
- Elegir ordenación arbitraria de nodos no evidenciales: $\{X_1, X_2, X_5, X_6\}$
- Para cada variable de $\{X_1, X_2, X_5, X_6\}$ generar un valor aleatorio mediante las distribuciones de simulación $h(x_i)$

• Las distribuciones usadas para simulación de variables no evidenciales son:

$$h(x_{1}) = p(x_{1}|\mathbf{x} \setminus x_{1}) \propto p(x_{1})p(x_{2}|x_{1})p(x_{3}|x_{1})$$

$$h(x_{2}) = p(x_{2}|\mathbf{x} \setminus x_{2}) \propto p(x_{2}|x_{1})p(x_{4}|x_{2})p(x_{5}|x_{2},x_{3})$$

$$h(x_{5}) = p(x_{5}|\mathbf{x} \setminus x_{5}) \propto p(x_{5}|x_{2},x_{3})$$

$$h(x_{6}) = p(x_{6}|\mathbf{x} \setminus x_{6}) \propto p(x_{6}|x_{3})$$
(2)

• Variable X_1 :

$$\begin{aligned}
\rho(X_1 = 0 | \mathbf{x} \setminus X_1) & \propto & \rho(X_1 = 0) \rho(X_2 = 1 | X_1 = 0) \rho(X_3 = 1 | X_1 = 0) \\
&= & 0.3 \times 0.6 \times 0.8 = 0.144 \\
\rho(X_1 = 1 | \mathbf{x} \setminus X_1) & \propto & \rho(X_1 = 1) \rho(X_2 = 1 | X_1 = 1) \rho(X_3 = 1 | X_1 = 1) \\
&= & 0.7 \times 0.9 \times 0.5 = 0.315
\end{aligned}$$

- Normalizamos las anteriores probabilidades diviendo por la suma 0.459. Obtenemos $p(X_1 = 0 | \mathbf{x} \setminus x_1) = 0.144/0.459 = 0.314 \text{ y}$ $p(X_1 = 1 | \mathbf{x} \setminus x_1) = 0.315/0.459 = 0.686$
- Generamos un valor aleatorio para X_1 con la anterior distribución: $X_1 = 0$

4日 → 4周 → 4 直 → 4 直 → 9 Q @

- Variable X_2 :
 - De la misma forma que con X_1 , usando el estado actual de las variables obtenemos:

$$p(X_2 = 0 | \mathbf{x} \setminus x_2) \propto 0.4 \times 0.3 \times 0.5 = 0.06$$

$$p(X_2 = 1 | \mathbf{x} \setminus x_2) \propto 0.6 \times 0.2 \times 0.2 = 0.024$$
(3)

- Normalizamos las probabilidades anteriores. Obtenemos $p(X_2 = 0 | \mathbf{x} \setminus x_2) = 0.714$ y $p(X_2 = 1 | \mathbf{x} \setminus x_2) = 0.286$
- Generamos un valor aleatorio para X_2 con la anterior distribución: $X_2 = 1$
- Las variables X_5 y X_6 se simulan de forma similar: $X_5 = 0$ y $X_6 = 1$
- La primera realización obtenida es $x^1 = (0, 1, 1, 1, 0, 1)$
- Repetimos hasta obtener N extracciones

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ◆○○

- La distribución de probabilidad condicional $p(x_i|e)$ (por ejemplo $p(X_2 = 1|e)$) puede obtenerse con:
 - Porcentaje de realizaciones en las que $X_2 = 1$
 - Calcular la media de las $p(X_2 = 1 | \mathbf{x} \setminus x_2)$ de todas las realizaciones.