The group G is isomorphic to the group labelled by [120, 5] in the Small Groups library. Ordinary character table of $G \cong SL(2,5)$:

	1a	2a	4a	3a	6a	5a	10a	5b	10b		
χ_1	1	1	1	1	1	1	1	1	1		
χ_2	3	3	-1	0	0	$-E(5) - E(5)^4$	$-E(5) - E(5)^4$	$-E(5)^2 - E(5)^3$	$-E(5)^2 - E(5)^3$		
χ_3	3	3	-1	0	0	$-E(5)^2 - E(5)^3$	$-E(5)^2 - E(5)^3$	$-E(5) - E(5)^4$	$-E(5) - E(5)^4$		
χ_4	4	4	0	1	1	-1	-1	-1	-1		
χ_5	5	5	1	-1	-1	0	0	0	0		
χ_6	2	-2	0	-1	1	$E(5) + E(5)^4$	$-E(5) - E(5)^4$	$E(5)^2 + E(5)^3$	$-E(5)^2 - E(5)^3$		
χ_7	2	-2	0	-1	1	$E(5)^2 + E(5)^3$	$-E(5)^2 - E(5)^3$	$E(5) + E(5)^4$	$-E(5) - E(5)^4$		
χ_8	4	-4	0	1	-1	-1	1	-1	1		
χ_9	6	-6	0	0	0	1	-1	1	-1		

Trivial source character table of $G \cong SL(2,5)$ at p = 5:

(/ / 1									
Normalisers N_i	N_1					N_2			
p-subgroups of G up to conjugacy in G	P_1					P_2			
Representatives $n_j \in N_i$	1a	3a	4a	6a	2a	1a	4a	2a	4b
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	5	2	1	2	5	0	0	0	0
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	10	1	-2	1	10	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	5	-1	1	-1	5	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9$	10	-2	0	2	-10	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 1 \cdot \chi_9$	10	1	0	-1	-10	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	1	1	1	1	1	1	1	1	1
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	6	0	-2	0	6	1	-1	1	-1
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9$	6	0	0	0	-6	1	E(4)	-1	-E(4)
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9$	6	0	0	0	-6	1	-E(4)	-1	E(4)

 $P_1 = Group([()]) \cong 1$ $P_2 = Group([(2, 8, 11, 15, 7)(3, 9, 16, 6, 4)(10, 18, 23, 19, 14)(12, 17, 21, 20, 13)]) \cong C5$

 $N_1 = Group([(1,2,5,4)(3,6,8,7)(9,13,11,14)(10,15,12,16)(17,19,18,20)(21,24,23,22),(1,3,2)(4,5,8)(6,9,10)(7,11,12)(13,16,17)(14,15,18)(19,21,22)(20,23,24)]) \cong SL(2,5)$ $N_2 = Group([(2,8,11,15,7)(3,9,16,6,4)(10,18,23,19,14)(12,17,21,20,13),(1,5)(2,3,11,16,7,4,8,9,15,6)(10,17,23,20,14,12,18,21,19,13)(22,24),(1,22,5,24)(2,10,4,12)(3,13,8,14)(6,17,7,18)(9,20,11,19)(15,23,16,21)]) \cong C5 : C4$