Non-Interactive Simulation of Joint Distributions: Maximal Correlation and the Hypercontractivity Ribbon

Sudeep Kamath, Venkat Anantharam UC Berkeley

October 3, 2012

Wireless Foundations

• Specified P(x,y) and Q(u,v)

- Specified P(x,y) and Q(u,v)
- Characterize optimal rate R^*

- Specified P(x,y) and Q(u,v)
- ullet Characterize optimal rate R^*
- When $U=V={\rm fair\ coin\ flip},$ $R^*=K(X;Y)\ {\rm [Gács\text{-}K\"{o}rner\ '72]}$

- Specified P(x,y) and Q(u,v)
- Characterize optimal rate R^*
- When U=V= fair coin flip, $R^*=K(X;Y)$ [Gács-Körner '72]
- When X=Y= fair coin flip, $\frac{1}{R^*}=C(U;V)$ [Wyner '75]

- Specified P(x,y) and Q(u,v)
- Characterize optimal rate R^*
- When U=V= fair coin flip, $R^*=K(X;Y)$ [Gács-Körner '72]
- When X=Y= fair coin flip, $\frac{1}{R^*}=C(U;V)$ [Wyner '75]
- Seems hard in general

- Specified P(x,y) and Q(u,v)
- Characterize optimal rate R^*
- When U=V= fair coin flip, $R^*=K(X;Y)$ [Gács-Körner '72]
- When X=Y= fair coin flip, $\frac{1}{R^*}=C(U;V)$ [Wyner '75]
- Seems hard in general; even to determine if R* > 0.

• Specified P(x,y) and Q(u,v)

- Specified P(x,y) and Q(u,v)
- Determine if one sample with distribution $\approx Q(u,v)$ can be simulated

- Specified P(x,y) and Q(u,v)
- Determine if one sample with distribution $\approx Q(u,v)$ can be simulated
- ullet Possible iff Q(u,v) belongs to closure of marginals of $U-X^n-Y^n-V$ for some n

• Suppose $\epsilon \leq \delta$

- $\bullet \ \, \mathsf{Suppose} \,\, \epsilon \leq \delta$
 - Easy!

- Suppose $\epsilon \leq \delta$
 - Easy!
- What if $\epsilon > \delta$?

- Suppose $\epsilon \leq \delta$
 - Easy!
- What if $\epsilon > \delta$?
 - Try $U = \text{Majority}(X^n),$ $V = \text{Majority}(Y^n) ?$

- Suppose $\epsilon \leq \delta$
 - Easy!
- What if $\epsilon > \delta$?
 - Try $U = \text{Majority}(X^n),$ $V = \text{Majority}(Y^n) ?$
 - Simulation is impossible

• Use Data Processing Inequality: $I(X^n;Y^n) \geq I(U;V)$

- Use Data Processing Inequality: $I(X^n; Y^n) \ge I(U; V)$
- $\begin{array}{l} \bullet \ \ \text{Not useful because} \\ I(X^n;Y^n) = nI(X;Y) \\ \text{grows with } n \end{array}$

- Use Data Processing Inequality: $I(X^n;Y^n) \geq I(U;V)$
- $\begin{tabular}{ll} \bullet & \mbox{Not useful because} \\ I(X^n;Y^n) = nI(X;Y) \\ \mbox{grows with } n \end{tabular}$
- Use a different measure of correlation

$$\rho(X;Y) := \sup \mathbb{E} f(X)g(Y)$$

over all mean zero, unit variance $f(X), \ g(Y)$

$$\rho(X;Y) := \sup \mathbb{E}f(X)g(Y)$$

$$0 \le \rho(X; Y) \le 1$$

over all mean zero, unit variance f(X), g(Y)

$$\rho(X;Y) := \sup \mathbb{E}f(X)g(Y)$$

over all mean zero, unit variance $f(X),\ g(Y)$

$$0 \le \rho(X;Y) \le 1$$

(due to Hirschfeld, Gebelein and Rényi)

$$\rho(X;Y) := \sup \mathbb{E}f(X)g(Y)$$

over all mean zero, unit variance f(X), g(Y)

$$0 \le \rho(X; Y) \le 1$$

(due to Hirschfeld, Gebelein and Rényi)

Tensorization [Witsenhausen '75]

$$\rho(X^n; Y^n) = \rho(X; Y)$$

$$\rho(X;Y) := \sup \mathbb{E} f(X)g(Y)$$

over all mean zero, unit variance f(X), g(Y)

$$0 \le \rho(X; Y) \le 1$$

(due to Hirschfeld, Gebelein and Rényi)

Tensorization [Witsenhausen '75]

$$\rho(X^n; Y^n) = \rho(X; Y)$$

Data Processing Inequality

If
$$U = \phi(X^n), V = \psi(Y^n)$$
, then

$$\rho(X^n; Y^n) \ge \rho(U; V)$$

•
$$\rho(X;Y) = 1 - 2\epsilon$$

- $\rho(X;Y) = 1 2\epsilon$
- $\rho(U; V) = 1 2\delta$

- $\rho(X;Y) = 1 2\epsilon$
- $\rho(U; V) = 1 2\delta$
- $\text{ If } \epsilon > \delta, \text{ then } \\ \rho(X;Y) < \rho(U;V)$

- $\rho(X;Y) = 1 2\epsilon$
- $\rho(U; V) = 1 2\delta$
- $\label{eq:epsilon} \begin{array}{l} \bullet \ \ \mbox{If} \ \epsilon > \delta, \ \mbox{then} \\ \rho(X;Y) < \rho(U;V) \end{array}$
- Simulation is impossible

• $\rho(X;Y) \geq \rho(U;V)$ gives impossibility for $\epsilon \geq \frac{1}{4}$

- $\rho(X;Y) \geq \rho(U;V)$ gives impossibility for $\epsilon \geq \frac{1}{4}$
- Is simulation possible for small enough ϵ ?

- $\rho(X;Y) \ge \rho(U;V)$ gives impossibility for $\epsilon \ge \frac{1}{4}$
- Is simulation possible for small enough ε?
- Impossible for any $\epsilon>0$: shown using Reverse Hypercontractivity

Operator T defined by $Tg(x) := \mathbb{E}[g(Y)|X = x]$

Operator T defined by $Tg(x):=\mathbb{E}[g(Y)|X=x]$, $||W||_p:=(\mathbb{E}|W|^p)^{\frac{1}{p}}$

Operator T defined by $Tg(x):=\mathbb{E}[g(Y)|X=x]$, $||W||_p:=\left(\mathbb{E}|W|^p\right)^{\frac{1}{p}}$

T is hypercontractive for 1 [Ahlswede-Gács '76]

Operator T defined by $Tg(x):=\mathbb{E}[g(Y)|X=x]$, $||W||_p:=\left(\mathbb{E}|W|^p\right)^{\frac{1}{p}}$

T is hypercontractive for 1 [Ahlswede-Gács '76]

$$||Tg(X)||_{\mathbf{p}} \leq ||g(Y)||_{\mathbf{q}} \ \forall g \text{ for some } \mathbf{q} < \mathbf{p}$$

Operator T defined by $Tg(x):=\mathbb{E}[g(Y)|X=x]$, $||W||_p:=\left(\mathbb{E}|W|^p\right)^{\frac{1}{p}}$

T is hypercontractive for 1 [Ahlswede-Gács '76]

$$||Tg(X)||_{\mathbf{p}} \le ||g(Y)||_{\mathbf{q}} \quad \forall g \text{ for some } \mathbf{q} < \mathbf{p}$$

T is reverse hypercontractive for $-\infty [Borell '82]$

Operator T defined by $Tg(x):=\mathbb{E}[g(Y)|X=x]$, $||W||_p:=(\mathbb{E}|W|^p)^{\frac{1}{p}}$

T is hypercontractive for 1 [Ahlswede-Gács '76]

$$||Tg(X)||_{\mathbf{p}} \le ||g(Y)||_{\mathbf{q}} \quad \forall g \text{ for some } \mathbf{q} < \mathbf{p}$$

T is reverse hypercontractive for $-\infty [Borell '82]$

$$||Tg(X)||_{\mathbf{p}} \ge ||g(Y)||_{\mathbf{q}} \quad \forall g \ge 0 \text{ for some } \mathbf{q} > \mathbf{p}$$

Operator T defined by $Tg(x):=\mathbb{E}[g(Y)|X=x]$, $\qquad ||W||_p:=\left(\mathbb{E}|W|^p\right)^{\frac{1}{p}}$

T is hypercontractive for 1 [Ahlswede-Gács '76]

$$||Tg(X)||_{\mathbf{p}} \leq ||g(Y)||_{\mathbf{q}} \ \ \forall g \ \text{for some} \ \mathbf{q} < \mathbf{p}$$

T is reverse hypercontractive for $-\infty [Borell '82]$

$$||Tg(X)||_{\textbf{p}} \geq ||g(Y)||_{\textbf{q}} \quad \forall g \geq 0 \text{ for some } \textbf{q} > \textbf{p}$$

[Bonami '70 - Nelson '73 - Gross '75 - Beckner '75], [Borell '82]

Both kinds of inequalities tensorize!

Define $(p,q) \in \mathcal{R}_{X;Y} \subset \mathbb{R}^2$ if corresponding hypercontractive or reverse hypercontractive inequalities hold

Define $(p,q) \in \mathcal{R}_{X;Y} \subset \mathbb{R}^2$ if corresponding hypercontractive or reverse hypercontractive inequalities hold

Define $(p,q) \in \mathcal{R}_{X;Y} \subset \mathbb{R}^2$ if corresponding hypercontractive or reverse hypercontractive inequalities hold

Main Result I

If simulation of (U,V) from (X,Y) is possible, then

$$\mathcal{R}_{X;Y} \subseteq \mathcal{R}_{U;V}$$

Recall Example 2

Recall Example 2

• Does $\mathcal{R}_{X;Y}$ contain $\mathcal{R}_{U;V}$?

Recall Example 2

- Does $\mathcal{R}_{X;Y}$ contain $\mathcal{R}_{U;V}$?
- For any $\epsilon > 0$?

Figure: $\mathcal{R}_{X;Y}$

Figure: $\mathcal{R}_{X;Y}$

Figure: $\mathcal{R}_{U;V}$

Figure: $\mathcal{R}_{X;Y}$

Figure: $\mathcal{R}_{U;V}$

Impossible to simulate for any $\epsilon>0$

Figure: $\mathcal{R}_{X;Y}$

Figure: $\mathcal{R}_{U;V}$

Impossible to simulate for any $\epsilon>0$

Reverse Hypercontractivity for the win!

Geometric meaning of $\rho(X;Y)$ in $\mathcal{R}_{X;Y}$

Geometric meaning of $\rho(X;Y)$ in $\mathcal{R}_{X;Y}$

• Hypercontractivity and Reverse Hypercontractivity - useful tools

- Hypercontractivity and Reverse Hypercontractivity useful tools
- Extension of [Ahlswede-Gács '76]; hypercontractivity tightening Hölder's inequalities

- Hypercontractivity and Reverse Hypercontractivity useful tools
- Extension of [Ahlswede-Gács '76]; hypercontractivity tightening Hölder's inequalities
- Open:

- Hypercontractivity and Reverse Hypercontractivity useful tools
- Extension of [Ahlswede-Gács '76]; hypercontractivity tightening Hölder's inequalities
- Open:
 - What other quantities tensorize? Eg. Gowtham Kumar's Binary Rényi correlation

- Hypercontractivity and Reverse Hypercontractivity useful tools
- Extension of [Ahlswede-Gács '76]; hypercontractivity tightening Hölder's inequalities
- Open:
 - What other quantities tensorize? Eg. Gowtham Kumar's Binary Rényi correlation
 - Other techniques to understand the simulation problem?

