Ford Fulkerson Analysis

Sidhant Panda 2011A7PS225H

1 About the algorithm

The algorithm was published in 1956 by L. R. Ford, Jr. and D. R. Fulkerson.

The idea behind the algorithm is as follows: As long as there is a path from the source (start node) to the sink (end node), with available capacity on all edges in the path, we send flow along one of these paths. Then we find another path, and so on. A path with available capacity is called an augmenting path.

2 Observations (time in miliseconds)

Number of Vertex: 6

Number of Edges	T1	T2	T3	Average Time
7	202	211	232	215
8	270	289	267	275.33
9	379	371	415	388.33
10	422	332	354	369.33

Number of Vertex: 7

Number of Edges	T1	T2	T3	Average Time
7	111	131	127	123
8	289	255	248	264
9	264	305	242	270.33
10	2264	1622	1929	1938.33

Number of Vertex: 8

Number of Edges	T1	T2	T3	Average Time
10	223	207	210	213.33
11	602	588	573	587.67
12	2155	2351	2085	2197

Figure 1: A simple caption

3 Conclusions

The runtime of Ford-Fulkerson is bounded by O(Ef), where E is the number of edges in the graph and f is the maximum flow in the graph