FINALE: RL REINFORCEMENT LEARNING

martin @ reddragon.ai sam @ reddragon.ai

27 November 2017

WiFi : SG-Guest

Problems with Installation? ASK!

PLAN OF ACTION

TODAY

- Reinforcement Learning
- ~1 minute summaries
- Group picture!
- Finalize Projects

PLAN OF ACTION

30-NOV

- Project Deadline
- Feedback Forms!

REINFORCEMENT LEARNING

- Learning to choose actions ...
- ... which cause environment to change

REINFORCEMENT LEARNING

- Techniques that focus on decision-making processes ...
 - ... where each decision/action affects the future options available
- Standard setting :
 - Playing Checkers & Backgammon
 - Playing Chess
 - Playing Atari 2600
 - Playing Go
 - Playing Poker + Dota2 + Starcraft

GOOGLE DEEPMIND'S ALPHAGO

REINFORCEMENT LEARNING

- Other application examples :
 - Deciding which advertisements to show
 - Dynamic pricing policies
 - Control of unknown `plant' (e.g. air conditioning)
 - Robots "learning-by-example"

AGENT LEARNING SET-UP

Q-LEARNING1

- Estimate value of entire future from current state
- ... to estimate value of next state, for all possible actions
- Determine the 'best action' from estimates

Q-LEARNING 2

- ... do the best action
- Observe rewards, and new state
- * Update Q(now) to be closer to R+Q(next) *

Q-LEARNING DIAGRAM

DEEP Q-LEARNING

- Set Q() to be the output of a deep neural network
- ... where the input is the state
- Train network input/output pairs from observed steps
- ... over *many* games

TODAY'S STRATEGY GAME

Classic game: No superfluous features

BUBBLE BREAKER: YOU

- How-to-play
- 5 mins test...

BUBBLE BREAKER: YOU

- Clicking on 'joined' bubbles kills group
- Bubbles fall down from the top to fill space
- Empty columns filled by shifting columns over from left
- No special bubbles: 5 colours only
- Game ends when there are no moves left

REINFORCEMENT LEARNING NOTEBOOK

Deep Reinforcement Learning for Bubble Breaker

BUBBLE BREAKER LESSONS

- Planning
- Strategies
- Failure modes

BUBBLE BREAKER (RL)

- Turning the Board into Features
- Choosing which move to make
- Choosing a reward function
- Batch Learning

BOARD → FEATURES

- Using colours of blobs as features is possible
- ... but wasteful, due to symmetry
- Encode position as several feature layers:
 - Board silhouette
 - colour[i, j] == colour[i+a, j]
 - colour[i, j] == colour[i, j+b]
- Symmetry speedup: 120x (=5!)

CHOICE OF MOVE

- Game code can 'run' an action against the board
- Evaluate each separate resulting board
- Choose from ranked list:
 - Exploit : Choose best move
 - Explore : Choose random move (10%)

REWARD FUNCTION

- Pros/cons of using 'change in score':
 - Using the 'score' promotes short-term gains
 - Using new-columns-added leads to 'better' play

BATCH LEARNING

- Normally, networks train on same data repeatedly
- But past actions may become irrelevant to training
- Retain some memory of previous actions
- But 'roll forward' with newer examples continuously

REINFORCEMENT LEARNING DEMO

Deep Reinforcement Learning for Bubble Breaker

NETWORK PICTURE

ALPHAGO RECORD

- May 2016: Defeat of Lee Sedol
- Jan 2017: 'Master' played 60 games online
- May 2017 : Defeat of Ke Jie
- Aug 2017 : AlphaGo Zero is better
- ... retired from match-play

ALPHAGO EXTRAS

- Monte-Carlo Tree Search
- Policy Network to hone search space
- Self-play
- ... and running on 1202 CPUs and 176 GPUs

ALPHAGO ZERO

- Only self-play
- Policy network and value network share weights
- Stability problems didn't affect learning
- ... and running 4 TPUs

WRAP-UP

- Explore structure vs accuracy tradeoffs
- Even tiny models work 'well enough'
- Lots more behind all this

* Please add a star... *

- QUESTIONS -

MARTIN.ANDREWS@REDDRAGON.AI

My blog: http://mdda.net/

GitHub: mdda

