Statistique : Estimation : modèle statistique, notion d'estimateur, biais / variance.

Joseph Salmon

Septembre 2014

Modèle statistique : contexte

Rappel

- ▶ On observe des réalisations $(y_1, ..., y_n)$ de variables aléatoires inconnues (éventuellement vectorielles)
- ▶ On suppose ici que les variables sont indépendantes et identiquement distribuées (*i.i.d.*) selon une loi \mathbb{P}_Y
- ▶ Selon la situation, la loi \mathbb{P}_Y a certaines caractéristiques.
 - ▶ **Exemple**: "Pile ou face" : on sait que $\mathbb{P}_Y = \mathsf{Bernoulli}(p)$ pour un certain $p \in [0,1]$ inconnu
- ▶ Reformulation : on a une famille de lois candidates pour \mathbb{P}_Y ,
 - ▶ **Exemple**: la famille des lois de Bernoulli

Modèle statistique

- ▶ La loi cible \mathbb{P}_Y est indéxée par un paramètre $\theta \in \Theta : \mathbb{P}_Y = \mathbb{P}_\theta$ pour un θ inconnu, et Θ est l'ensemble d'indexation
 - ▶ **Exemple**: "Pile ou face" $\theta = p$, $\Theta = [0, 1]$

Modèle statistique

Un modèle statistique est une famille de lois

$$\mathcal{M} = \{ \mathbb{P}_{\theta} : \theta \in \Theta \}$$

indexées par un ensemble de paramètres Θ .

Modèle statistique paramétrique

Modèle paramétrique

Un modèle paramétrique est une famille de lois $\mathcal{M}=\{\mathbb{P}_{\theta}:\theta\in\Theta\}$ indexée par un ensemble fini, disons p, de paramètres : $\Theta\subset\mathbb{R}^p$

Rem: le modèle est indéxé par un nombres ou un vecteur réel. p est la dimension du modèle

Exemple:

- "Pile ou face" (Bernoulli) $\theta = p$; $\Theta = [0, 1]$.
- ▶ Modèle gaussien : $\theta = (\mu, \sigma^2)$, $\Theta = \mathbb{R} \times \mathbb{R}^{+*}$.

Exemple

- (y_1, \ldots, y_n) un échantillon.
- ➤ Si on remarque que l'échantillon est 'symétrique' par rapport à sa moyenne empirique, avec un histogramme 'en cloche' :

Quel modèle choisir?

Exemple: cas gaussien

▶ Il peut être raisonnable de chercher la loi des données dans un modèle gaussien. Le paramètre du modèle est dans ce cas $\theta = (\mu, \sigma^2)$, $\theta \in \Theta = \mathbb{R} \times \mathbb{R}^{+*}$

Estimateur

▶ *Objectif* : Estimer une quantité $g = g(\theta)$ qui ne dépend que de la loi \mathbb{P}_{θ} des observations.

g est une constante inconnue déterministe $\emph{i.e.}$, non aléatoire.

Exemple: l'espérance, un quantile, la variance, etc.

▶ Intuition : Un estimateur \hat{g} est calculé à partir de l'échantillon (y_1, \ldots, y_n) , dans le but d'approcher $g(\theta)$.

Estimateur : définition

Un **estimateur** \hat{g} est une fonction des observations :

$$\hat{g}:(y_1,\ldots,y_n)\mapsto \hat{g}(y_1,\ldots,y_n)$$

Propriétés d'un estimateur : le biais

ightharpoonup le biais d'un estimateur \hat{g} est l'espérance de l'erreur

$$\mathsf{Biais}(\hat{g}) = \mathbb{E}(\hat{g}(y_1,\ldots,y_n)) - g$$
 (dépend de θ).

Estimateur sans biais

Un estimateur \hat{g} de g est non biaisé si, quel que soit $\theta \in \Theta$,

$$\mathbb{E}(\hat{g}(y_1,\ldots,y_n))=g(\theta)$$

<u>Rem</u>: Le biais est une mesure de l'erreur systématique d'une méthode. La vrai quantité d'intérêt est plutôt la valeur absolue du biais.

Estimateur sans biais de l'espérance

- L'espérance 'théorique' dépend de la loi \mathbb{P}_{θ} .
- on cherche à estimer $g(\theta) = \mathbb{E}(Y)$

Théorème

La moyenne empirique $\hat{g}(y_1, \dots, y_n) = \overline{y}_n = \frac{1}{n} \sum_{i=1}^n y_i$ est un estimateur sans biais de l'espérance $\mathbb{E}(Y)$

En effet,

$$\mathbb{E}(\hat{g}(y_1,\ldots,y_n)) = \mathbb{E}(\frac{1}{n}\sum_{i=1}^n y_i) = \frac{1}{n}\sum_{i=1}^n \mathbb{E}(y_i) = \mathbb{E}(Y)$$

 $\operatorname{car} \mathbb{E}(y_i) = \mathbb{E}(Y)$ (caractère *i.i.d.* des y_i)

Rem: L'estimateur $\hat{g}(y_1,\ldots,y_n)=y_1$ est aussi un estimateur sans biais de l'espérance

Estimateur sans biais de la variance

- La variance 'théorique' dépend de la loi \mathbb{P}_{θ} .
- ▶ on cherche à estimer $g(\theta) = Var(Y)$

Théorème

L'estimateur $\hat{g}(y_1,\ldots,y_n)=\frac{1}{n-1}\sum_{i=1}^n(y_i-\overline{y}_n)^2$ est un estimateur sans biais de la variance $\mathrm{Var}(Y)$

Rem: Attention au terme n-1. La variance empirique (avec un facteur 1/n) est en effet biaisée

Propriétés d'un estimateur : la variance

▶ la Variance d'un estimateur est sa variance théorique :

$$\operatorname{Var}(\hat{g}) = \operatorname{Var}(\hat{g}(y_1, \dots, y_n)) = \mathbb{E}(\hat{g} - \mathbb{E}(\hat{g}))^2$$
 (dépend de θ).

Rem: La variance mesure donc la dispersion d'un estimateur autour de sa moyenne

Biais ou variance?

Biais ou variance?

▶ Si \hat{g}_0 et \hat{g}_1 sont sans biais, on préfére celui de plus faible variance.

Biais ou variance?

▶ Si \hat{g}_0 et \hat{g}_1 ont la même variance, alors on préfére celui de biais le plus faible.

Risque quadratique / compromis biais-variance

Risque quadratique d'un estimateur de g

Le risque quadratique d'un estimateur \hat{g} est l'espérance de son erreur au carré :

$$R(\hat{g}) = \mathbb{E}\left[(\hat{g} - g)^2\right]$$

▶ On fait apparaître le biais $B = \mathbb{E}[\hat{g}] - g$ et on développe.

$$\begin{split} R(\hat{g}) &= \mathbb{E}\left[(\hat{g} - \mathbb{E}(\hat{g}) + \textcolor{red}{B})^2 \right] \\ &= \mathbb{E}\left[(\hat{g} - \mathbb{E}(\hat{g}))^2 + \textcolor{red}{B^2} + 2\textcolor{red}{B}(\hat{g} - \mathbb{E}(\hat{g})) \right] \\ &= \mathrm{Var}(\hat{g}) + \textcolor{red}{B^2} + 2\textcolor{red}{B}\underbrace{\mathbb{E}\left[\hat{g} - \mathbb{E}(\hat{g}) \right]}_{=0} \end{split}$$

$$\mathsf{Risque}\;(\hat{g}) = \mathsf{Variance}(\hat{g}) + \big(\mathsf{Biais}(\hat{g})\big)^2$$

Règle de choix : prendre l'estimateur dont le risque est le plus petit

Références I