Codificación Cuántica y Clasificación Basada en Kernels

De la lectura cuántica a la clasificación en el espacio de Hilbert

6 al 10 de Octubre de 2025

Dr. Andres A. REYNOSO, Sergio F. Flores-Correa

XXIX Escuela Internacional de Ingeniería y Computación

Introducción general

Motivación: Los algoritmos de aprendizaje cuántico aprovechan la superposición y la interferencia para representar y procesar información más allá de los límites clásicos. Al agregar un qubit al sistema, el espacio computacional se duplica.

Estructura de esta presentación:

- Protocolos de lectura cuántica (Read-in): cómo mapear datos clásicos a estados cuánticos mediante codificación en base, amplitud o ángulo.
- 2. **Codificación por bloques (Block-Encoding)**: cómo representar matrices no unitarias dentro de circuitos cuánticos para operaciones algebraicas; e.g. resolver sistemas lineales.
- 3. **Clasificación con kernels cuánticos**: cómo usar mapeos característicos cuánticos para tareas de clasificación binaria y multiclase.

Colab Notebooks

Codificación cuántica de datos

Clasificación del conjunto MNIST usando kernels cuánticos

Contenidos

Protocolos de lectura

Álgebra lineal en sistemas cuánticos

Clasificación con kernels cuánticos

Codificación en la base computacional

Idea: mapear un vector binario clásico $x \in \{0, 1\}^N$ al estado base $|x_1 \dots x_N\rangle$.

Preparación: desde $|0\rangle^{\otimes N}$, aplicar X en el qubit i si $x_i = 1$:

$$|\psi\rangle = \left(\bigotimes_{i=1}^N X^{x_i}\right) |\mathsf{o}\rangle^{\otimes N}.$$

Costo: el número de qubits escala linealmente con la longitud del vector.

Ventaja: usa un máximo de *N* compuertas lógicas, por lo que es fácilmente computable.

Ejemplo:
$$x = (1, 1, 0) \Rightarrow |110\rangle$$
.

Codificación en la amplitud

Idea: plasmar las componentes de un vector complejo $x \in \mathbb{C}^{2^N}$ en las amplitudes de un estado N-qubit.

Normalización:

$$\hat{x}_i = \frac{x_i}{\|x\|_2}, \qquad \sum_{i=0}^{2^N-1} |\hat{x}_i|^2 = 1.$$

Estado codificado:

$$|\psi
angle = \sum_{i=0}^{2^N-1} \widehat{x}_i |i
angle.$$

Ventaja: representa 2^N entradas con solo N qubits.

Reto: preparar el estado codificado $|\psi\rangle = U|o\rangle^{\otimes N}$ bajo la transformación U puede ser costoso. Algoritmo de Möttönen (preparación del estado) $\sim O(2^N)$.

Codificación en ángulo

Idea: codificar datos reales $x \in \mathbb{R}^N$ como ángulos de rotación.

Preparación típica (un qubit por componente):

$$|\psi\rangle = \bigotimes_{i=1}^{N} R_{\sigma_i}(x_i) |o\rangle, \quad \sigma_i \in \{X, Y, Z\}.$$

Escalamiento: mapear x_i a un intervalo compatible con la periodicidad (2π) de R_{σ} . En particular, desde [0, π).

Ventaja: introduce *no linealidad* vía funciones trigonométricas en los parámetros de las rotaciones; útil en QML y utiliza solo O(N) compuertas lógicas.

Contenidos

Protocolos de lectura

Álgebra lineal en sistemas cuánticos

Clasificación con kernels cuánticos

Codificación por bloques (Block-encoding)

Problema: Resolver sistemas lineales u otros problemas de optimización requiere representar una matriz A que, en general, no es unitaria. Sin embargo, los circuitos cuánticos solo admiten operadores unitarias para preservar la probabilidad total. **Objetivo**: implementar una matriz (posiblemente no unitaria) A usando un unitario más grande U.

Definición: U es un (α, a, ε) -block-encoding de A si

$$\left\|A - \alpha \left(\langle o |^{\otimes a} \otimes I\right) U \left(|o\rangle^{\otimes a} \otimes I\right)\right\| \leqslant \varepsilon.$$

Es decir, podemos aproximar la matriz A con cualquier precisión usando un espacio de qubits más grande.

Codificación por bloques mediante LCU

Suposición: asumimos que un operador no unitario A que actúa sobre N qubits puede descomponerse como combinación lineal de operadores unitarios U_k .

$$A = \sum_{k=1}^{d} \alpha_k U_k$$

Definiciones:

$$U_{\mathrm{SEL}} = \sum_{k} |k\rangle\langle k| \otimes U_{k}, \quad U_{\mathrm{PREP}}: \ U_{\mathrm{PREP}} |0\rangle^{\otimes m} = \frac{1}{\sqrt{|\vec{\alpha}|_{1}}} \sum_{k} \alpha_{k} |k\rangle.$$

El método LCU (Linear Combination of Unitaries) garantiza que:

$$U = (U_{\mathtt{PREP}}^{\dagger} \otimes \mathbb{I}) U_{\mathtt{SEL}} (U_{\mathtt{PREP}} \otimes \mathbb{I})$$

es una **codificación por bloques** de *A*.

Dimensionalidad de los operadores

La matriz original A actúa sobre N qubits, por lo que:

A,
$$U_k \in \mathbb{C}^{2^N \times 2^N}$$
.

Si la descomposición tiene d términos, se requieren $m = \lceil \log_2 d \rceil$ qubits ancilla para representar los estados $|k\rangle$.

Dimensiones:

- U_{SEL} : actúa sobre N+m qubits $\Rightarrow \dim(U_{\text{SEL}}) = 2^{N+m} \times 2^{N+m}$
- U_{PREP} : actúa solo sobre m qubits $\Rightarrow \dim(U_{PREP}) = 2^m \times 2^m$

El producto tensorial $U_{\text{PREP}} \otimes \mathbb{I}$ es necesario para igualar la dimensionalidad de U_{SEL} y completar la codificación unitaria de A.

Contenidos

Protocolos de lectura

Álgebra lineal en sistemas cuánticos

Clasificación con kernels cuánticos

Idea general

Motivación: Los **kernels cuánticos** extienden el principio de los kernels clásicos al dominio cuántico. Permiten evaluar la similitud entre datos clásicos mediante el **producto interno de estados cuánticos** generados por un circuito de codificación.

Definición del kernel cuántico:

$$k_{Q}(\mathbf{x}, \mathbf{x}') = |\langle \phi(\mathbf{x}) | \phi(\mathbf{x}') \rangle|^{2}$$

donde cada $|\phi(\mathbf{x})\rangle = U(\mathbf{x}) |o\rangle^{\otimes N}$ es una codificación cuántica del vector clásico \mathbf{x} .

Ventaja: se pueden explorar espacios característicos exponencialmente grandes, imposibles de representar explícitamente en un computador clásico.

Clasificación binaria con kernels cuánticos

Objetivo: construir una frontera de decisión entre dos clases usando la matriz del kernel

$$K_{ij} = k_{\mathcal{Q}}(\mathbf{x_i}, \mathbf{x_j})$$

obtenido al estimar los productos internos de los estados cuánticos correspondientes.

Procedimiento:

- 1. Diseñar el **mapa característico cuántico** U(x) (por ejemplo, codificación en ángulo o amplitud más otras compuertas lógicas).
- 2. Ejecutar el circuito para cada par (x_i, x_j) y calcular K_{ij} usando pruebas SWAP o Loschmidt
- 3. Entrenar un SVM (Support Vector Machine) cuántico con ese kernel para obtener la separación del espacio óptima.

Nota: la clasificación binaria cuántica puede verse como una generalización del SVM clásico, pero en un espacio de Hilbert de dimensión 2^N .

Extensión a clasificación multiclase

Estrategias comunes:

- **Uno contra todos (One-vs-All)**: entrenar un clasificador binario por clase; la clase con mayor salida positiva (mayor confianza) se selecciona.
- **Uno contra uno (One-vs-One)**: entrenar clasificadores para cada par de clases; la clase final se elige por voto mayoritario.

Implementación cuántica:

- Cada clasificador usa su propio kernel cuántico $k_{Q}^{(m)}(\mathbf{x}, \mathbf{x}')$ optimizado para distinguir un subconjunto de clases.
- El entrenamiento se realiza mediante pesos o parámetros clásicos.