

Description of Course CSE 113

PART A: General Information

1 Course Title : Data Structure & Algorithms

2 Type of Course : THEORY

3 Offered to : DEPARTMENT OF IOT AND ROBOTICS ENGINEERING (IRE)

4 Pre-requisite Course(s) : PROG 101

PART B: Course Details

1. Course Content (As approved by the Academic Council)

Introduction to Data Structures; Array; Algorithm Complexity; Solving Recurrences; Methods for the design of efficient algorithms; Linked List; Stack; Queue; Recursion; Tree; Graph; Sorting; Set Operations; String ADT.

2. Course Objectives

The students are expected to:

- 1. Allow to assess how the choice of data structures and algorithm design methods impacts the performance of programs
- 2. To understand the concepts of searching and sorting techniques.
- 3. To solve problems using data structures such as linear lists, stacks, queues, binary trees, binary search trees, and graphs and writing programs for these solutions.
- 4. To efficiently implement the different data structures and solutions for specific problems.

3. Knowledge required

Technical

Introductory knowledge on Computers is required. Knowledge on any high-level programming language such as C++/Java may be an added advantage
for the learners.

Mathematics

None

4. Course Outcomes (COs)

CO	CO Statement	Corresponding	Domains and	Delivery Method(s)	Assessment Tool(s)
No.		PO(s)*	Taxonomy	and Activity(-ies)	
			Level(s)**		
1	Understand an algorithmic approach in	PO(a), PO(b)	C2	Lectures, Tutorials,	Written exams;
	designing, implementing, and debugging			assignments,	presentation;
	programs for computational problems.			Discussions	assignment
2	Apply the appropriate data structures and	PO(c)	C3	Lectures, Tutorials,	Written exams;
	algorithm design techniques in problem-			assignments	presentation;
	solving.				assignment
3	Evaluate the efficiency and performance of	PO1(b)	C4	Lectures, Tutorials,	Written exams;
	different data structures for specific problem			assignments	presentation;
	scenarios.				assignment

*Program Outcomes (POs)

 $PO(a):\ Engineering\ knowledge;\ PO(b):\ Problem\ analysis;\ PO(c):\ Design/development\ of\ solutions;\ PO(d):\ Investigation;\ PO(e):\ Modern\ tool\ usage;$

 $PO(f): The\ engineer\ and\ society;\ PO(g):\ Environment\ and\ sustainability;\ PO(h):\ Ethics;\ PO(i):\ Individual\ work\ and\ teamwork;\ PO(j):\ Communication;$

PO(k): Project management and finance; PO(l): Life-long learning.

**Domains

C-Cognitive: C1: Knowledge; C2: Comprehension; C3: Application; C4: Analysis; C5: Synthesis; C6: Evaluation

A-Affective: A1: Receiving; A2: Responding; A3: Valuing; A4: Organizing; A5: Characterizing

P-Psychomotor: P1: Perception; P2: Set; P3: Guided Response; P4: Mechanism; P5: Complex Overt Response; P6: Adaptation; P7:

Organization

5. Lecture/ Activity Plan

Lec#	Lecture Topics	Teaching-learning Strategy(-ies)	Assessment Strategy(-ies)	Corresponding CO(s)
1	Introduction: Introduction to Data Structures, Types of Data Structures, operations on data structures, idea of abstract data type.	Lectures, Tutorials, assignments	Q/A (Class Performance), Quiz	CO2
2	Array: Linear Array, Representation of Linear array in memory, Traversing, Insertion, Deletion, Searching: Linear Search & Binary Search, Multidimensional Array, Pointer Array, Record.	Lectures, Tutorials, assignments	Q/A (Class Performance), Quiz	CO2, CO1
3	Sorting: Bubble Sort, Insertion Sort, Selection Sort. Algorithm Complexity: Preliminary idea of an algorithm, Asymptotic Notation, runtime complexity (Big Oh notation), the preliminary idea of data structure space complexity, Trade of Time & Space complexity.	Lectures, Tutorials, assignments	Q/A (Class Performance), Quiz	CO1
4	Solving Recurrences: Recursion Tree, Substitution Method, and Master Method.	Lectures, Tutorials, assignments	Q/A (Class Performance), Quiz	CO1
5	Methods for the design of efficient algorithms: Divide and conquer, Greedy method, Dynamic programming; Backtracking etc.	Lectures, Tutorials, assignments	Q/A (Class Performance), Quiz	CO1
6	Linked List: Representation of Linked Lists, Singly/doubly/circular linked lists, basic operations on linked list (insertion, deletion, traverse and searching). Header and two-way linked lists.	Lectures, Tutorials, assignments	Q/A (Class Performance), Quiz	CO2, CO3

7	Stack: Basic stack operations (push/pop/peek), stack-class implementation using Array and linked list, in-fix to postfix expressions conversion and evaluation, balancing parentheses using stack,	Lectures, Tutorials, assignments	Q/A (Class Performance), Quiz	CO2, CO3
8	Queue: basic queue operations (enqueue, dequeue), circular queue/ dequeue, queue- class implementation using array and linked list, Priority queue application- Josephus problem, palindrome checker using stack and queue, Recursion: Basic idea of recursion, tracing output of a recursive function, applications- merge sort, permutation, combination.	Lectures, Tutorials, assignments	Q/A (Class Performance), Quiz	CO1, CO2, CO3
9	Tree: General Tree: Implementation, application of general tree- file system. Binary Tree: Binary tree representation using array and pointers, traversal of Binary Tree (in-order, pre-order and postorder), BST representation, basic operations on BST (creation, insertion, deletion, querying and traversing).	Lectures, Tutorials, assignments	Q/A (Class Performance), Quiz	CO2, CO3
10	Tree: Huffman Tree, Huffman Coding: application- searching, sets, Heap: Minheap, max-heap, Fibonacci-heap, applications-priority queue, Self-balancing Binary Search Tree: AVL tree (rotation, insertion).	Lectures, Tutorials, assignments	Q/A (Class Performance), Quiz	CO2, CO3
11	Graph: Graph representation (adjacency matrix/adjacency list), basic operations on graph (node/edge insertion and deletion), traversing a graph: breadth-first search (BFS),	Lectures, Tutorials, assignments	Q/A (Class Performance), Quiz	CO2, CO3
12	Graph: Depth-first search (DFS), Topological Sort, Floyd Warshall's Algorithm, Minimum Spanning Tree.	Lectures, Tutorials, assignments	Q/A (Class Performance), Quiz	CO2, CO3
13	Sorting: merge sort, quick sort. Set Operations: Set representation using bitmask, set/clear bit, querying the status of a bit, toggling bit values, LSB, application of set operations.	Lectures, Tutorials, assignments	Q/A (Class Performance), Quiz	CO1,CO2

14	Disjoint Set: Union, find, path compression.	Lectures, Tutorials,	Q/A (Class	CO2, CO
	String ADT: The concatenation of two strings, the extraction of substrings,	assignments	Performance),	
	searching a string for a matching substring, parsing.		Quiz	

6. Assessment Strategy

- Class Attendance: Class attendance will be recorded in every class.
- Continuous Assessments: Continuous Assessments will be held during the semester as per the institutional ordinance.
- Mid-exam: A comprehensive mid-exam will be held at the mid of the semester as per the institutional ordinance.
- Final exam: A comprehensive Final exam will be held at the end of the semester as per the institutional ordinance.

7. Distribution of Marks

Attendance: 10 %
Continuous Assessments: 30%
Mid exam: 24%
Final Exam: 36%
Total: 100%

8. Textbook/Reference

Text Book:

- Schaum'S Outlines Data Structure by Seymour Lipschutz
- Introductions to Algorithms- Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein, Prentice-Hall, India

Reference Book:

- Data Structures Using C 2nd Edition by Reema Thareja
- Fundamentals of Data Structures- Horowitz E. and Sahni, S Galgotia
- Algorithms in C- Sedgewick, R (1990) (Addision Wesley)
- Data Structures and Program Design in C- Kruse/Tondo/Leung (Prentice-Hall)

Course Teacher(s):

Name:	Office/Room:	E-mail and Telephone:
Suman Saha	2 nd Floor, Academic Building	suman0001@bdu.ac.bd, and 01912127578

Prepared by:		
Name: Suman Saha		
Signature:		
Date of Preparation: July 8, 2023		
Date of Approval by BUGS:		