Discrete Cosine Transform

Outline

- Algorithm
- Hardware behavior
- Performance

Algorithm

Discrete Cosine Transform

- 8*8 Discrete Cosine Transform(DCT) can be formulated as A^TXA
 - X is the 8*8 input signal
 - A is the 8*8 coefficient matrix, as shown below
 - a~g are constants

а	а	а	а	а	а	а	а
b	d	е	g	-g	-е	-d	-b
С	f	-f	-с	-с	-f	f	С
d	-g	-b	-е	е	b	g	-d
а	-a	-a	а	а	-a	-a	а
е	-b	g	d	-d	-g	b	-е
f	-с	С	-f	-f	С	-с	f
g	-e	d	-b	b	-d	е	-g

Decompose DCT(1)

- Define
 - Y=AX
 - Z=AXA^T=YA^T
- We first consider the computation of Y

а	а	а	а	а	а	а	а
b	d	e	g	-g	-е	-d	-b
С	f	-f	-C	-C	-f	f	C
d	ф	-b	-e	e	b	۵۵	-d
а	-a	-a	а	а	-a	-a	а
е	-b	დ	d	-d	ģ	b	-e
f	- C	С	-f	-f	С	-C	f
æ	-е	d	-b	b	-d	е	-g

X_0
X_1
X_2
X_3
X_4
X ₅
X_6
X ₇

*

• Y=

Decompose DCT(2)

By symmetry of A, we can rewrite Y=AX as

а	а	а	а
С	f	-f	-C
а	-a	-a	а
f	-C	С	-f

X ₀ +X ₇
X ₁ +X ₆
X ₂ +X ₅
X_3+X_4

Y ₁
Y ₃
Y ₅
Y ₇

)	d	е	gg
t	-g	-b	ę
و	-b	യ	d
5	-e	d	-b
	;	d -g	d -g -b

X_0-X_7
X ₁ -X ₆
X ₂ -X ₅
X_3-X_4

Decompose DCT(3)

- $Z=YA^T=(AY^T)^T$ is similar to the previous step
 - We compute Z^T=AY^T instead

Z ^T ₀
Z_2^T
Z_4^{T}
Z ^T ₆

а	а	а	а
C	f	-f	-C
а	-a	-a	а
f	-C	С	-f

$Y_0^T+Y_7^T$
$Y_1^T + Y_6^T$
$Y_2^T + Y_5^T$
$Y_3^T + Y_4^T$

Z_1^{T}
Z_3^{T}
Z_5^T
Z_{7}^{T}

b	d	е	g
d	ൻ	-b	-e
e	-b	ಹು	d
യ	-e	d	-b

Y ^T ₀ -Y ^T ₇
$Y_1^T - Y_6^T$
$Y_2^T - Y_5^T$
Y ^T ₃ -Y ^T ₄

Decompose IDCT (1)

- Define
 - Y=A^TX
 - $Z=A^TXA=YA$
- We first consider the computation of Y

а	b	С	d	a	е	f	g
а	а	f	-g	-a	-b	-C	ę
а	e	-f	-b	-a	gg	C	d
а	۵۵	-C	-е	а	d	-f	-b
а	ф	-C	e	а	-d	-f	b
а	ę	-f	b	-a	g	C	-d
а	-d	f	g	-a	b	-C	e
а	-b	С	-d	а	-е	f	-g

X_0
X_1
X ₂
X ₃
X_4
X ₅
X ₆
X ₇

• Y=

Decompose IDCT (2)

• We can rewrite Y=A^TX as

Y ₀
Y ₁
Y ₂
Y ₃

a	С	а	f
а	f	-a	-C
а	-f	-a	С
а	-C	а	-f

	b	d	е	g
•	d	œ	-b	-e
	е	-b	ಹು	d
	æ	-е	d	-b

	X ₁
*	X ₃
	X ₅
	X ₇

Y ₇	
Y ₆	
Y ₅	
Y ₄	

а	C	а	f
а	f	-a	-C
a	-f	-a	С
а	-с	а	-f

	X_0
<	X_2
	X_4
	X_6

	b	d	e	gg
_	d	ф	-b	ę
	e	-b	۵۵	d
	bg)	-e	d	-b

	X_{1}
*	X_3
	X_5
	X ₇

Decompose IDCT (3)

- $Z=YA=(A^TY^T)^T$ is similar to the previous step
 - We compute $Z^T = A^T Y^T$ instead

Z ^T ₀
Z_1^{T}
Z_2^T
Z ^T ₃

а	С	а	f
а	f	-a	- C
а	-f	-a	С
а	-C	а	-f

	Y_0^T
:	Y ^T ₂
	Y ^T ₄
	Y ^T ₆

b	d	e	g
d	þ	-b	-e
е	-b	യ	d
g	-е	d	-b

	Y_{1}^{T}
*	Υ ^Τ 3
	\mathbf{Y}^{T}_{5}
	Y ^T ₇

Z ^T ₇
Z ^T ₆
Z ^T ₅
Z ^T ₄

а	C	а	f
a	f	-a	-C
а	-f	-a	С
а	-C	а	-f

Y_0^{T}
Y ^T ₂
Y ^T ₄
Y ^T ₆

	b	d	е	gg
1	d	ф	-b	ę
	е	-b	യ	d
	യ	-e	d	-b

	Y_1^{T}
*	Y ^T ₃
	Y_5^{T}
	Y^{T}_{7}

Hardware Behavior

Data Input

- We assume the 8*8 input data follows the order below
- Input data will first go through Data Reorder Unit(DRU)

X ₀₀	X ₀₁	X ₀₂			
X ₁₀	X ₁₁	X ₁₂			
X ₂₀	X ₂₁	X ₂₂			
X ₃ ,	X _{3.}	X ₃₂			
X. ₀	X,,1	X ₄₂			
X ₅₀	У ₅₁	X ₅₂			
1 (60	K ₆₁	× ₆₂			
X ₇₀	X ₇₁	X ₇₂			

Data Reorder Unit (1)

- DRU either adds/subtracts the input or reorders them by parity
 - The behavior of DRU is shown below

	Clk ₀	Clk ₁	Clk ₂	Clk ₃	Clk ₄	Clk ₅	Clk ₆	Clk ₇	Clk ₈	Clk ₉	Clk ₁₀	Clk ₁₁	Clk ₁₂	Clk ₁₃	Clk ₁₄	Clk ₁₅	Clk ₁₆	Clk ₁₇
Input Data X	X ₀₀	X ₁₀	X ₂₀	X ₃₀	X ₄₀	X ₅₀	X ₆₀	X ₇₀	X ₀₁	X ₁₁	X ₂₁	X ₃₁	X ₄₁	X ₅₁	X ₆₁	X ₇₁	X ₀₂	X ₁₂
DRU Output Add						X ₃₀ + X ₄₀	X ₂₀ + X ₅₀	X ₁₀ + X ₆₀	X ₀₀ + X ₇₀					X ₃₁ + X ₄₁	X ₂₁ + X ₅₁	X ₁₁ + X ₆₁	X ₀₁ + X ₇₁	
DRU Output Sub						X ₃₀ - X ₄₀	X ₂₀ - X ₅₀	X ₁₀ - X ₆₀	X ₀₀ - X ₇₀					X ₃₁ - X ₄₁	X ₂₁ - X ₅₁	X ₁₁ - X ₆₁	X ₀₁ - X ₇₁	
DRU Output Even						X ₄₀	X ₂₀	X ₆₀	X _{oo}					X ₄₁	X ₂₁	X ₆₁	X ₀₁	
DRU Output Odd						X ₃₀	X ₅₀	X ₁₀	X ₇₀					X ₃₁	X ₅₁	X ₁₁	X ₇₁	

Data Reorder Unit (2)

- DRU saves the temporary values in a LIFO
 - Depth=4
 - X₀₀ enters LIFO the first
 - X₃₀ enters LIFO the last
 - X_{40} pairs with X_{30} (to compute $X_{40} \pm X_{30}$), so X_{30} leaves LIFO the first
 - Similarly, X₅₀ pairs with X₂₀, X₆₀ pairs with X₁₀, X₇₀ pairs with X₀₀.

ACF/BDEG Matrix Multiplier (1)

- After decomposition
 - Coefficient matrixes are composed of either a, c, f or b, d, e, g
 - We separate them into two modules
 - ACF/BDEG matrix multipliers
 - They share the same behavior
 - They only differ by coefficients
- Each element of Y requires 4 pairs of data from DRU
 - Data pairs are first multiplied by all of the coefficients
 - Accumulator selects the right multiplication product and adds to the sum
 - 4 values are accumulated in parallel to keep up with the data rate

ACF/BDEG Matrix Multiplier (2)

The behavior of ACF module when performing DCT is illustrated below

	Clk ₅	Clk ₆	Clk ₇	Clk ₈	Clk ₉	Clk ₁₀	Clk ₁₁	Clk ₁₂	Clk ₁₃	Clk ₁₄	Clk ₁₅	Clk ₁₆	Clk ₁₇	Clk ₁₈	Clk ₁₉	Clk ₂₀	Clk ₂₁	Clk ₂₂
DRU Output Add	X ₃₀ + X ₄₀	X ₂₀ + X ₅₀	X ₁₀ + X ₆₀	X ₀₀ + X ₇₀					X ₃₁ + X ₄₁	X ₂₁ + X ₅₁	X ₁₁ + X ₆₁	X ₀₁ + X ₇₁					X ₃₂ + X ₄₂	X ₂₂ + X ₅₂
ACF Multiply	740	(X ₃₀ + X ₄₀) *acf	(X ₂₀ + X ₅₀) *acf	(X ₁₀ + X ₆₀) *acf	(X ₀₀ + X ₇₀) *acf				741	(X ₃₁ + X ₄₁) *acf	(X ₂₁ + X ₅₁) *acf	(X ₁₁ + X ₆₁) *acf	(X ₀₁ + X ₇₁) *acf				742	(X ₃₂ + X ₄₂) *acf
ACF Multiply Sum						Y ₀₀	Y ₂₀	Y ₄₀	Y ₆₀					Y ₀₁	Y ₂₁	Y ₄₁	Y ₆₁	

ACF/BDEG Matrix Multiplier (3)

• The behavior of BDEG module when performing IDCT is illustrated below

	Clk ₅	Clk ₆	Clk ₇	Clk ₈	Clk ₉	Clk ₁₀	Clk ₁₁	Clk ₁₂	Clk ₁₃	Clk ₁₄	Clk ₁₅	Clk ₁₆	Clk ₁₇	Clk ₁₈	Clk ₁₉	Clk ₂₀	Clk ₂₁	Clk ₂₂
DRU Output Odd	X ₃₀	X ₅₀	X ₁₀	X ₇₀					X ₃₁	X ₅₁	X ₁₁	X ₇₁					X ₃₂	X ₅₂
ACF Multiply		X ₃₀ * bdeg	X ₅₀ * bdeg	X ₁₀ * bdeg	X ₇₀ * bdeg					X ₃₁ * bdeg	X ₅₁ * bdeg	X ₁₁ * bdeg	X ₇₁ * bdeg					X ₃₂ * bdeg
ACF Multiply Sum						Y ₀₀ Y ₇₀ 2 nd term	Y ₁₀ Y ₆₀ 2 nd term	Y ₂₀ Y ₅₀ 2 nd term	Y ₃₀ Y ₄₀ 2 nd term					Y ₀₁ Y ₇₁	Y ₁₁ Y ₇₁	Y ₂₁ Y ₇₁	Y ₃₁ Y ₇₁	

Y ₀]
Y ₁]
Y ₂]
Y ₃	

а	С	а	f
а	f	-a	-c
а	-f	-a	С
а	-с	а	-f

X ₀	
X ₂	
X_4	
X ₆	

	_						
		b	d	е	g		X_1
+		d	-g	-b	-е	*	X ₃
•		е	-b	g	d		X ₅
		g	-е	d	-b		X ₇
							_

2nd term

Inverse Data Reorder Unit (1)

- IDRU either adds/subtracts the input or reorders them by the data order of Y
 - The behavior of IDRU when performing IDCT is shown below
 - IDRU saves the temporary values in a buffer

	Clk ₁₀	Clk ₁₁	Clk ₁₂	Clk ₁₃	Clk ₁₄	Clk ₁₅	Clk ₁₆	Clk ₁₇	Clk ₁₈	Clk ₁₉	Clk ₂₀	Clk ₂₁	Clk ₂₂	Clk ₂₃	Clk ₂₄	Clk ₂₅	Clk ₂₆	Clk ₂₇
BDEG Multiply Sum	Y ₀₀ Y ₇₀	Y ₁₀ Y ₆₀	Y ₂₀ Y ₅₀	Y ₃₀ Y ₄₀					Y ₀₁ Y ₇₁	Y ₁₁ Y ₆₁	Y ₂₁ Y ₅₁	Y ₃₁ Y ₄₁					Y ₀₂ Y ₇₂	Y ₁₂ Y ₆₂
ACF Multiply Sum	Y ₀₀ Y ₇₀	Y ₁₀ Y ₆₀	Y ₂₀ Y ₅₀	Y ₃₀ Y ₄₀					Y ₀₁ Y ₇₁	Y ₁₁ Y ₆₁	Y ₂₁ Y ₅₁	Y ₃₁ Y ₄₁					Y ₀₂ Y ₇₂	Y ₁₂ Y ₆₂
IDRU Output Y	Y ₀₀ = Y ₀₀ + Y _{2nd} +	Y ₁₀ = Y ₁₀ t + Y _{2nd} +	Y ₂₀ = Y ₂₀ + Y ₂₀ 2nd	Y ₃₀ = Y ₃₀ + Y _{2nd} +	Y ₄₀ = Y ₄₀ - Y _{2nd} - Y ₄₀	Y ₅₀ = Y ₅₀ - Y ₅₀ 2nd	Y ₆₀ = Y ₆₀ - Y ₆₀ 2nd	Y ₇₀ = Y ₇₀ - Y ₇₀ 2nd	Y ₀₁ = Y ₀₁ + Y ₀₁ + Y ₀₁	Y ₁₁ = Y ₁₁ + Y _{2nd}	Y ₂₁ = Y ₂₁ + Y ₂₁ + Y ₂₁	Y ₃₁ = Y ₃₁ + Y _{2nd}	Y ₄₁ = Y ₄₁ - Y ₄₁ - Y ₄₁	Y ₅₁ = Y ₅₁ - Y ₅₁ 2nd	Y ₆₁ = Y ₆₁ - Y ₆₁ - Y ₆₁	Y ₇₁ = Y ₇₁ - Y ₇₁ - Y ₇₁	Y ₀₂ = Y ₀₂ + Y ₀₂ + Y ₀₂	Y ₁₂ = Y ₁₂ + Y _{2nd} + Y ₁₂

Inverse Data Reorder Unit (2)

The behavior of IDRU when performing DCT is shown below

	Clk ₁₀	Clk ₁₁	Clk ₁₂	Clk ₁₃	Clk ₁₄	Clk ₁₅	Clk ₁₆	Clk ₁₇	CIk ₁₈	Clk ₁₉	Clk ₂₀	Clk ₂₁	Clk ₂₂	Clk ₂₃	Clk ₂₄	Clk ₂₅	Clk ₂₆	Clk ₂₇
BDEG Multiply Sum	Y ₁₀	Y ₃₀	Y ₅₀	Y ₇₀					Y ₁₁	Y ₃₁	Y ₅₁	Y ₇₁					Y ₁₂	Y ₃₂
ACF Multiply Sum	Y ₀₀	Y ₂₀	Y ₄₀	Y ₆₀					Y ₀₁	Y ₂₁	Y ₄₁	Y ₆₁					Y ₀₂	Y ₂₂
IDRU Output Y	Y ₀₀	Y ₁₀	Y ₂₀	Y ₃₀	Y ₄₀	Y ₅₀	Y ₆₀	Y ₇₀	Y ₀₁	Y ₁₁	Y ₂₁	Y ₃₁	Y ₄₁	Y ₅₁	Y ₆₁	Y ₇₁	Y ₀₂	Y ₁₂

Transpose Matrix (1)

- Transpose Matrix is a 8*8 register array
 - Input Y from IDRU
 - Output Y^T to DRU
 - Reading order and writing order are different
 - As illustrated in the following page

Transpose Matrix (2)

- Input order of the first 8*8 data
- Output order of the second 8*8 data
- Input order of the third 8*8 data

- Output order of the first 8*8 data
- Input order of the second 8*8 data
- Output order of the third 8*8 data

Data Reorder Unit (3)

- To compute Z, we need Y^T
 - The output of Transpose Matrix is Y^T
- The rest of the Z computation is identical to the Y computation
 - We can reuse all of the existing components in a **4-cycle-interleaved** fashion
 - DRU receives Y^T from the transpose matrix as soon as Y₀₀~Y₀₇ is ready
 - At this time, DRU could be processing the second 8*8 input X in parallel
- After going through DRU, ACF/BDEG, and IDRU the second time, IDRU outputs Z, the final result.

Data Reorder Unit (4)

• The complete DRU behavior

Input Data X	X _{5,x}	X _{6,x}	X _{7,x}	X _{0,x+1}	X _{1,x+1}	X _{2,x+1}	X _{3,x+1}	X _{4,x+1}	X _{5,x+1}	X _{6,x+1}	X _{7,x+1}	X _{0,x+2}	X _{1,x+2}
Input Data Y	Y ₀₁	Y ₀₂	Y ₀₃	Y ₀₄	Y ₀₅	Y ₀₆	Y ₀₇	Y ₁₀	Y ₁₁	Y ₁₂	Y ₁₃	Y ₁₄	Y ₁₅
DRU Output Add	X _{3,x} + X _{4,x}	X _{2,x} + X _{5,x}	X _{1,x} + X _{6,x}	X _{0,x} + X _{7,x}	Y ₀₃ + Y ₀₄	Y ₀₂ + Y ₀₅	Y ₀₁ + Y ₀₆	Y ₀₀ + Y ₀₇	X _{3,x+1} + X _{4,x+1}	X _{2,x+1} + X _{5,x+1}	X _{1,x+1} + X _{6,x+1}	X _{0,x+1} + X _{7,x+1}	Y ₁₃ + Y ₁₄
DRU Output Sub	X _{3,x} - X _{4,x}	X _{2,x} - X _{5,x}	X _{1,x} - X _{6,x}	X _{0,x} - X _{7,x}	Y ₀₃ - Y ₀₅	Y ₀₂ - Y ₀₅	Y ₀₁ - Y ₀₆	Y ₀₀ - Y ₀₇	X _{3,x+1} - X _{4,x+1}	X _{2,x+1} - X _{5,x+1}	X _{1,x+1} - X _{6,x+1}	X _{0,x+1} - X _{7,x+1}	Y ₁₃ - Y ₁₄
DRU Output Even	X _{4,x}	X _{2,x}	X _{6,x}	X _{0,x}	Y ₀₄	Y ₀₂	Y ₀₆	Y ₀₀	X _{4,x+1}	X _{2,x+1}	X _{6,x+1}	X _{0,x+1}	Y ₁₄
DRU Output Odd	X _{3,x}	X _{5,x}	X _{1,x}	X _{7,x}	Y ₀₃	Y ₀₅	Y ₀₁	Y ₀₇	X _{3,x+1}	X _{5,x+1}	X _{1,x+1}	X _{7,x+1}	Y ₁₃

Performance

- Using TSMC 0.13um library
 - Area: 191006 um²
 - Clock cycle for post-place-and-route simulation: 5.4ns
 - Throughput: 1 number(of 8*8 output data) per cycle
 - Latency: 80 cycles