Compressed Transformer

Taras Khakhulin Irina Saparina Aleksandr Shevchenko Michael Konobeev

Transformer

model for state-of-the-art results in NLP:

- neural machine translation
- Q&A
- NER
- POS-tagging

Up to 213×10⁶ parameters

Transformer

model for state-of-the-art results in NLP:

- neural machine translation
- Q&A
- NER
- POS-tagging

Up to 213×10⁶ parameters

221≈ 2×106 parameters in one Feed Forward block!

Output

Vaswani et al. "Attention Is All You Need", 2017.

Problem Formulation

The goals are:

- to study of different compression methods for Feed Forward NN
- to compress Feed Forward NN in Transformer

Methods

Explicit structure:

- Tensor-train
- SVD + finetune

Sparsification:

- ullet Magnitude pruning $w_i = \mathbb{I}[|w_i| > \lambda]w_i$
- Sparse Variational Dropout¹

Idea: ELBO maximization, with variational posterior induced by:

$$w_{ij} = \theta_{ij} + \sigma_{ij}\varepsilon_{ij}$$
$$\varepsilon_{ij} \sim \mathcal{N}(0,1)$$

and prior $p(w_{ij}) \propto \frac{1}{|w_{ij}|}$

¹ Molchanov et al. "Variational Dropout Sparsifies Deep Neural Networks", 2017.

Results on MNIST

Network: one hidden layer NN, a.k.a. FeedForward block of Transformer

Method	Accuracy	Compress ratio
Original Model	0.9770	1.00
Magnitude Pruning	0.9546	8.15
SVD	0.9669	7.54
SVD + fine tuning	0.9641	12.68
Variational Dropout	0.9841	23.39
Tucker	0.9247	28.82
Tensor Train	0.9643	56.95
Tensor Train + fine tuning	0.9620	72.02

Seems like TT is the best choice

TT in Transformer

- Number of blocks: N = 6
- Number of Linear blocks in FeedForward NN 2×N = 12
- Target embeddings: 15M
- Source embeddings: 22M

Total in full model: 65M

multi-gpu mode for training

Novikov et al. "Tensorizing Neural Networks", 2015.

Results: Multi30k

Method	BLEU	Compression ratio	Time
original model	0.442	1.0	41.38
all tt-compressed	0.434	1.64	76.89
small-transformer	0.403	1.6	-
% tt-compressed	0.489	1.484	75.24
½ tt-compressed	0.412	1.243	71.36
% tt-compressed	0.414	1.069	40.97
all Tucker-compressed	0.447	1.64	43.83

Feed-forward block:

2×TTLayer(ranks=[1, 2, 2, 2, 2, 1]) Tucker ranks equal to 2

Results: IWSLT'14

Model	BLEU	Time
transformer	0.291	154.23
all tt-compressed	0.292	241.24
½ tt-compressed	0.297	180.81
Tucker-compressed	0.283	198.3

Conclusion

We did:

- Comparison of various algorithms for compression of FeedForward NN (SVD, pruning, VarDrop, TT and Tucker) on small data: TT works better
- Implementation an original and compressed Transformer model with multi-gpu training

We archived:

- Compressed Transformer converges faster than original
- TT-compressed Transformer **slower** for inference
- TT-compressed Transformer is bad for multi-gpu mode (but not other option)
- Tucker-compressed Transformer hasn't these disadvantages, but BLEU is worse

References

- 1. Vaswani, Ashish, et al. "<u>Attention is all you need.</u>" *Advances in Neural Information Processing Systems*. 2017.
- 2. Novikov, Alexander, et al. "<u>Tensorizing neural networks.</u>" Advances in Neural Information Processing Systems. 2015.
- Dmitry, Molchanov et al. "<u>Variational Dropout Sparsifies Deep Neural Networks.</u>" International Conference on Machine Learning. 2017.