Estimadores de Máxima Verossimilhança para Assimetria e Curtose usando a expansão de Gram-Charlier

Wilson Freitas
18 de abril de 2018

Resumo

A estimação da assimetria e da curtose em séries de retornos é explorada neste artigo com o objetivo de prover uma alternativa aos estimadores amostrais comumente utilizados. Os estimadores amostrais para assimetria e curtose apresentam grande sensibilidade a novas ocorrências nas séries temporais. Esta sensibilidade é inerente a estes estimadores, sendo difícil de ser explicada pela dinâmica observada nos dados. O objetivo deste texto é apresentar estimadores de assimetria e curtose menos sensíveis, que consideram uma expansão em série de momentos, a expansão Gram-Charlier. A expansão de Gram-Charlier é aplicada a distribuição Gaussiana na construção de uma função de densidade de probabilidade paramétrica com relação a assimetria e curtose. Utilizamos o método de máxima verossimilhança (MV) para obter a assimetria e curtose na expansão de Gram-Charlier. Observamos mais estabilidade nestes estimadores do que nos amostrais. Esta estabilidade é importante na aplicação da expansão de Gram-Charlier a problemas de finanças, por exemplo o apreçamento de opções.

Introdução

Qualquer função de densidade de probabilidade (FDP) pode ser aproximada por uma expansão em série de outra FDP que pertence a um grupo especial, como a distribuição Gaussiana, por exemplo. Dada uma amostra, é difícil identificar a melhor distribuição para descrevê-la, logo, a utilização expansões em séries permite associar uma FDP aproximada aos dados. A FDP aproximada é uma expansão em série de uma distribuição conhecida e em geral padronizada, esta é a distribuição base. Esta aproximação permite lidar com momentos que não estão presentes na distribuição base. Por exemplo, a distribuição Gaussiana não possui os momentos de assimetria e curtose, entretanto, na expansão em série da Gaussiana estes momentos são parâmetros. Portanto, se os dados apresentam assimetria e curtose, a distribuição Gaussiana não é uma candidata, contudo, a sua expansão é. As expansões de FDPs em séries têm aplicações em diversos campos da ciência como a Física e Finanças. Este texto explora o uso da expansão de Gram-Charlier [1] que é a expansão da distribuição Gaussiana em uma base de polinônmios de Hermite.

- Sessão 1: assimetria e curtose
- Sessão 2: expansão de Gram-Charlier
- Sessão 3: estimação da assimetria e curtose com a expansão de Gram-Charlier
- Sessão 4: resultados
- Sessão 5: conclusão

Assimetria e curtose

Seja uma amostra aleatória $\{x_i\}_{i=1...N}$, de média amostral μ e variância amostral σ^2 . Os estimadores amostrais de assimetria μ_3 e curtose μ_4 são definidos como:

Figure 1: Os gráficos de retornos padronizados do IBOVESPA (i) e suas médias móveis de dois anos: (ii) desvio padrão, (iii) curtose e (iv) assimetria.

$$\mu_3 = \frac{1}{N} \sum_{i=1}^{N} \frac{(x_i - \mu)^3}{\sigma^3}$$

$$\mu_4 = \frac{1}{N} \sum_{i=1}^{N} \frac{(x_i - \mu)^4}{\sigma^4}$$

Estes estimadores apresentam grande sensibilidade a pequenas mudanças na amostra. Em séries de retornos diários observam-se mudanças de nível devido a presença retornos atípicos causados por fortes oscilações no mercado. Há casos onde apenas um retorno atípico causa uma variação significativa. Estas fortes mudanças podem ser notadas ao se calcular a assimetria e curtose em uma janela móvel aplicada a série de retorno. Observam-se fortes mudanças de regime em períodos de aumento volatilidade no mercado. A Figura 1 apresenta os gráficos da série de retornos padronizados do IBOVESPA e os estimadores de assimetria, curtose e do desvio padrão em janela móvel. A série de retornos do IBOVESPA é referente ao período de janeiro de 2000 a dezembro de 2017 (17 anos) e os retornos são contínuos. A janela móvel de dois anos (504 dias úteis) é utilizada para o cálculo das médias móveis.

Nos gráficos de média móvel de assimetria e curtose, na Figura 1, é possível observar que em diversos momentos há mudanças de nível significativas, relacionadas a períodos de maior volatilidade nos retornos. Entretanto, o gráfico com a média móvel do desvio padrão, apresenta um comportamento mais suave, nos mesmos períodos.

A expansão de Gram-Charlier é apresentada na próxima sessão. Através desta expansão chega-se a uma distribuição paramétrica na assimetria e na curtose. A partir desta distribuição é possível obter estimadores de máxima verossimilhança para estas grandezas relacionadas a esta distribuição.

Expansão de Gram-Charlier

Sob certas condições uma função de distribuição de probabilidade (FDP) p(x), padronizada, pode ser expandida em uma série de derivadas da distribuição Gaussiana padronizada $Z(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right)$. A expansão em série

$$p(x) \sim \sum_{n=0}^{\infty} c_n \frac{d^n Z(x)}{dx^n}$$

é uma série de Gram-Charlier (de tipo-A) [REF] e de acordo com a fórmula de Rodriguez [REF]

$$He_n(x) = (-1)^n \exp\left(\frac{x^2}{2}\right) \frac{d^n}{dx^n} \exp\left(-\frac{x^2}{2}\right)$$

são polinômios de Chebyshev-Hermite de ordem n. Substituindo a fórmula de Rodriguez na equação de p(x) obtem-se uma expansão em série de polinômios de Chebyshev-Hermite e da distribuição Gaussiana.

$$p(x) \sim \sum_{n=0}^{\infty} c_n (-1)^n He_n(x) Z(x)$$

onde os coeficientes

$$c_n = \frac{(-1)^n}{n!} \int_{-\infty}^{\infty} p(t) He_n(t) dt$$

são valores esperados dos polinômios de Chebyshev-Hermite com relação a FDP p(x). Os coeficientes c_n são funções dos momentos da distribuição p(x), logo, a expansão de Gram-Charlier é uma expansão em momentos da distribuição p(x).

Assumindo uma abordagem parsimoniosa e a dificuldade em se trabalhar com séries infinitas, é razoável truncar a expansão p(x) em uma quantidade finita de termos, $n < \infty$. Uma boa escolha é n = 4, pois, a expansão vai até os polinômios de ordem 4 gerando assim os momentos de assimetria e curtose. Esta escolha produz a seguinte aproximação para p(x)

$$p(x) \sim Z(x) \left[1 + \frac{\mu_3}{3!} (x^3 - 3x) + \frac{\mu_4 - 3}{4!} (x^4 - 6x^2 + 3) \right]$$

Note que além da distribuição Gaussiana Z(x), p(x) é função dos terceiro e quarto momentos, $\mu_3 = E[x^3]$ e $\mu_4 = E[x^4]$ da variável aleatória x padronizada. Logo, estes momentos centralizados são assimetria e curtose, respectivamente. O truncamento da expansão de Gram-Charlier em termos até a ordem n=4 produz uma função paramétrica na assimetria e na curtose, logo, $p(x) \equiv p(x; \mu_3, \mu_4)$. Esta função é uma extensão da distribuição Gaussiana que incorpora assimetria e curtose, entretanto, para que p(x) seja considerada uma FDP é necessário que as seguintes restrições sejam atendidas:

- $\int_{-\infty}^{\infty} p(x)dx = 1$
- p(x) seja contínua em todo suporte
- p(x) seja não negativa, para todo x

Os dois primeiros pontos são fáceis de comprovar, integrando e derivando p(x). Contudo, o terceiro ponto não é direto. Há de fato, valores de assimetria e curtose para os quais a função p(x) é negativa. Na próxima sessão serão apresentadas as retrições de positividade para p(x), nas quais os momentos podem assumir valores onde esta função seja sempre não negativa. Uma vez atendida a restrição de positividade, podemos considerar p(x) uma FDP e ela poderá ser utilizada para descrever variáveis aleatórias como séries de retornos. Estas séries comumente apresentam desvios da normalidade, como retornos extremos e oscilações assimétricas.

Restrições de positividade para p(x)

Seja a função $p(x; \mu_3, \mu_4)$ definida na sessão anterior

$$p(x; \mu_3, \mu_4) = Z(x) \left[1 + \frac{\mu_3}{3!} (x^3 - 3x) + \frac{\mu_4 - 3}{4!} (x^4 - 6x^2 + 3) \right]$$

Esta função apresenta valores negativos de p(x) para alguns valores de assimetria e curtose. Isso pode ser observado escrevendo esta função com uma função de log-verossimilhança $l(\mu_3, \mu_4; \mathbf{x})$, que é função dos momentos e é paramétrica em $\mathbf{x} \equiv \{x_i\}_{i=1...N}$, uma amostra aleatória. Logo, a função

$$l(\mu_3, \mu_4; \mathbf{x}) = \sum_{i=1}^{N} -\log p(x_i; \mu_3, \mu_4)$$

seria uma função pseudo log-verossimilhança, onde pseudo quer dizer que esta função diverge para alguns valores dos momentos. Isso acontece porque a função log possui apenas suporte positivo e valores negativos de p(x) apresentarão descontinuidades quando calculados numericamente.

Para observar a região de validade dos momentos na função p(x) será gerado um grid com possíveis valores de μ_3 e μ_4 e para cada par será calculada a função $l(\mu_3, \mu_4; \mathbf{x})$ para uma amostra aleatória. O resultado será visualizado em um gráfico 2D onde o eixo y é a assimetria e o eixo x a curtose. Os pontos no gráfico são os valores obtidos da função $l(\mu_3, \mu_4; \mathbf{x})$ referente ao par de assimetria e curtose. Os valores da função $l(\mu_3, \mu_4; \mathbf{x})$ serão segmentados de maneira que possamos observar a região do espaço paramétrico onde a função apresenta o seu máximo. Nesta simulação considera-se uma amostra aleatória normal com 1000 elementos e os momentos gerados de acordo com os seguintes intervalos: $\mu_3 \in [-1.2, 1.2]$ e $\mu_4 \in [2, 7]$.

Observando a Figura 2 fica claro que há uma região bem definida para a qual os valores de assimetria e curtose produzem uma função p(x) não negativa e portanto, nesta região, p(x) pode ser considerada uma FDP.

A título de ilustração a Figura 3 mostra o *heatmap* onde a série de retornos padronizados do IBOVESPA é utilizada como amostra aleatória.

Para utilizarmos a função de log-verossimilhança em um processo numérico para estimar a assimetria e a curtose, é necessário encontrar uma forma funcional para p(x) na qual seja possível tratar as restrições de μ_3 e μ_4 de forma analítica e de preferência, sem condicionais. Como observa-se nas Figuras 2 e 3 há um plano de coordenadas (μ_3, μ_4) onde a região definida por uma figura oval nos gráficos é a região de validade para os parâmetros μ_3 e μ_4 . Vamos começar determinando a borda dessa região.

Queremos valores para μ_3 e μ_4 tais que p(x) seja positivo definido para qualquer x. Observando p(x) temos que o seguinte polinômio deve ser sempre positivo para qualquer x.

$$f(x) = 1 + \frac{\mu_3}{6}He_3(x) + \frac{(\mu_4 - 3)}{24}He_4(x) \ge 0$$

onde $He_3(x) = x^3 - 3x$ e $He_4(x) = x^4 - 6x^2 + 3$ são polinômios de Chebyshev-Hermite. A borda dessa região é definida por

Figure 2: O gráfico acima é um heatmap da função $l(\mu_3, \mu_4; \mathbf{x})$ para uma amostra aleatória normal. Os valores da função de log-verossimilhança são segmentados de forma que é possível identificar que a região em torno dos momentos populacionais, $\mu_3 = 0$ e $\mu_4 = 3$, apresenta a maior verossimilhança. O ponto marcado com X indica os valores amostrais de assimetria e curtose. Os pontos escuros onde a função de log-verissimilhança é NA indicam que houve divergência no cálculo. Portanto, na região definida por estes pontos a função p(x) apresenta valores negativos, assim como na região de pontos coloridos p(x) apresenta valores não negativos.

Figure 3: O gráfico mostra o extit{heatmap} da função de log-verossimilhança aplicada a série de retornos padrinizados do IBOVESPA no período de jan/2000 a dez/2017. Nota-se que a região de máxima verossimilhança desloca-se para onde a assimetria é negativa e a curtose é um pouco acima de 4, indicando uma distribuição assimétrica e com caudas pesadas. Entretanto, os estimadores amostrais ficam próximos a borda da região válida, muito distantes da região de máxima verossimilhança.

$$f(x) = 1 + \frac{\mu_3}{6}He_3(x) + \frac{(\mu_4 - 3)}{24}He_4(x) = 0$$

que define uma linha no plano (μ_3, μ_4) para cada valor de x. Derivando f(x) e igualando a zero temos uma função que é independente de x, no sentido que para qualquer valor de x essa derivada é nula.

$$f'(x) = \frac{\mu_3}{2}He_2(x) + \frac{(\mu_4 - 3)}{6}He_3(x) = 0$$

Com isso podemos construir um sistema linear para encontrar μ_3 e μ_4 como funções de x, pois na primeira equação definimos a restrição em relação a x e na segunda temos uma restrição mais geral para qualquer valor de x. As soluções μ_3 e μ_4 para este sistema determinam a borda da região oval observada nas Figuras 2 e 3. A solução do sistema é dada por:

$$\mu_3(x) = -24 \frac{He_3(x)}{d(x)}$$
$$\mu_4(x) = 72 \frac{He_2(x)}{d(x)} + 3$$

onde $d(x) = 4He_3^2(x) - 3He_2(x)He_4(x)$.

Agora é necessário analisar estas equações para determinar as regiões em x para que $\mu_3(x)$ e $\mu_4(x)$ tenham valores válidos. Sabemos que $\mu_3(x) \ge 0$ ou $\mu_3(x) < 0$ e que $\mu_4(x) \ge 3$, com base nisso chega-se as seguintes regiões para x.

Restrições	Regiões de x
$\overline{\mu_3 < 0}$	$x > \sqrt{3} \cup -\sqrt{3} < x < 0$
$\mu_3 \ge 0$	$x \le -\sqrt{3} \cup 0 < x < \sqrt{3}$
$\mu_4 < 3$	-1 < x < 1
$\mu_4 \ge 3$	$x \ge 1 \cup x \le -1$

Tomando a intercecção das restrições válidas chegamos a 2 conjuntos para x

- $x \in (-\infty, -\sqrt{3}) \cup (\sqrt{3}, \infty)$ (menor)
- $x \in (-\sqrt{3}, \sqrt{3})$ (maior admite valores inválidos para μ_4)

Note que estes conjuntos definem regiões de x onde o polinômio f(x) da expansão de Gram-Charlier é igual a zero e consequentemente, os valores de μ_3 e μ_4 são válidos dentro dessa restrição.

Como observa-se na Figura 4, a busca de parâmetros (μ_3, μ_4) deve ser restrita a região oval em que $\mu_4 \in [3, 7]$ e $\mu_3 \equiv \mu_3(\mu_4)$. Na borda dessa região tem-se que $x \in (-\infty, -\sqrt{3}) \cup (\sqrt{3}, \infty)$. Estas restrições colocadas para μ_3 e μ_4 não são desejáveis para a utilização de p(x) como uma FDP em um processo de estimação por máxima-verossimilhança. Para realizar a estimação destes parâmetros por máxima-verossimilhança seria necessário introduzir uma restrição funcional aos parâmetros. Para contornar este problema vamos aplicar uma transformação a μ_3 e μ_4 de maneira que seja possível eliminar essa restrição criando novas variáveis μ_3' e μ_4' irrestritas.

Considerando $\mu_4 = g(\mu'_4, \mu_{4,inf}, \mu_{4,sup})$ onde $g(x, l_{inf}, l_{sup}) = l_{inf} + \frac{(l_{sup} - l_{inf})}{1 - e^{-x}}$. Dessa maneira, a partir de μ'_4 (irrestrito) encontramos μ_4 e com isso aplicamos a função que delimita a região oval para encontrar os limites de μ_3 ($\mu_{3,inf}$ e $\mu_{3,sup}$ como função de μ_4). Utilizamos a função $\mu_3 = g(\mu'_3, \mu_{3,inf}, \mu_{3,sup})$ para a partir de μ'_3 encontrar μ_3 . Com essa transformação analítica elimina-se o problema de restrição da busca por μ_3 e μ_4 pois o problema passa a ser posto em termos de μ'_3 e μ'_4 . A Figura 5 mostra o gráfico da função g(x) aplicada a curtose $\mu_4 = g(\mu'_4, \mu_{4,inf}, \mu_{4,sup})$.

Figure 4: Regiões de assimetria e curtose para que a expansão de Gram-Charlier seja não negativa. A região maior (azul), onde $x \in (-\sqrt{3}, \sqrt{3})$, admite valores negativos para curtose, o que não é permitido, pois este momento é positivo. A menor região (vermelho) admite valores válidos para assimetria e curtose e $x \in (-\infty, -\sqrt{3}) \cup (\sqrt{3}, \infty)$.

Desta forma, a função de log-verossimilhança pode ser reescrita como $l(\mu_3(\mu_3'), \mu_4(\mu_4'); \mathbf{x}) \equiv l(\mu_3', \mu_4'; \mathbf{x})$. Assim a função p(x) gerada a partir da expansão de Gram-Charlier passa a atender a restrição de positividade e portanto pode ser considerada uma FDP. p(x) pode ser utilizada para encontrar os estimadores de máxima-verossimilhança para assimetria e curtose. Na próxima sessão será realizada a estimação dos parâmetros para uma amostra aleatória normal e para a série de retornos padronizados do IBOVESPA.

Estimação da assimetria e curtose com a expansão de Gram-Charlier

Para a amostra aleatória

	Assimetria	Curtose
MLE	0.0000274	3.000017
Amostra	0.0917250	2.847665

```
.x <- sort(x)
parms <- uncons_regionD(res$par[1], res$par[2])
plot(.x, dgramcharlier(.x, parms[1], parms[2]), type='l')
abline(h=0, col="red")
plot(.x, dgramcharlier(.x, timeDate::skewness(x), timeDate::kurtosis(x, method='moment')), type='l')
abline(h=0, col="red")</pre>
```


Figure 5: Função g(x) para realizar uma transformação analítica em μ_3 e μ_4 de maneira tornar um problema de busca restrito em um problema irrestrito. Aqui tem-se $g(\mu_4', 3, 7)$.

Para o IBOVESPA

Assimetria

Curtose

MLE

-0.1230408

4.340982

Amostra

-0.1353708

6.959851

```
.x <- sort(x)
parms <- uncons_regionD(res$par[1], res$par[2])
plot(.x, dgramcharlier(.x, parms[1], parms[2]), type='l')
abline(h=0, col="red")
plot(.x, dgramcharlier(.x, timeDate::skewness(x), timeDate::kurtosis(x, method='moment')), type='l')
abline(h=0, col="red")</pre>
```


Apêndice

Fórmulas importantes

Produto interno de polinômios Chebyshev-Hermite:

$$\int_{-\infty}^{\infty} e^{-x^2/2} He_n(x) He_m(x) dx = \delta_{mn} n! \sqrt{2\pi}$$

Referências

[1] S. Blinnikov and R. Moessner, Astronomy and Astrophysics Supplement Series 130, 193 (1998).