Vehicle Interaction Learning

Xiaosong Jia

08/05/2019

Additional Prior Information

- Starting < Ending
- Naïve Algorithm: Confidence > threshold and Farthest Local Minima -> Changing_Lane_Time Acc > 90%
 - est Local

 g_Lane_Time

Confidence curve

Confidence curve

End

Action interval

Time

- Other Trying:
- 1. $\sigma = 5$

```
[0.056 0.089 0.135 0.198 0.278 0.375 0.487 0.607 0.726 0.835 0.923 0.98 1. 0.98 0.923 0.835 0.726 0.607 0.487 0.375 0.278 0.198 0.135 0.089 0.056]
```

$$-> \sigma = 1.2$$
 worse

```
[1.929e-22 5.670e-19 8.324e-16 6.102e-13 2.234e-10 4.083e-08 3.727e-06
1.699e-04 3.866e-03 4.394e-02 2.494e-01 7.066e-01 1.000e+00 7.066e-01
2.494e-01 4.394e-02 3.866e-03 1.699e-04 3.727e-06 4.083e-08 2.234e-10
6.102e-13 8.324e-16 5.670e-19 1.929e-22]
```

Additional Prior Information

- Other trying 2:
- Inverse Order Loss:

```
Start_Confidence = [0.3, 0.6, 0.9, 0.3]
End_Confidence = [0.7, 0.3, 1.0, 0.2]
```

```
Start_Max_After = [0.9, 0.9, 0.9, 0.3]
End_Max_Before = [0.7, 0.7, 1.0, 1.0]
```

Results:

- 1. 6X slower
- 2. Inverse Order Loss~0 after averageamong batch andlength

Inver Order Loss = max(0, Start_Confidence+ End_Max_Before -1) + max(0, End_Confidence + Start_Max_After -1)

Additional Prior Information

- Other possible way?
- 1. Tune σ

- 2. Proposal Confidence Scorer -> Train by IoU
- 3. Loss Function

4. Model Structure

About IoU

•
$$|O \cup = \frac{A \cap B}{A \cup B}$$

• As for 15 frames (fps=5):

 $IoU = 0.6 \rightarrow 25$ frames max-len or 3 frames offset (12/18 = 0.667)

IoU = 0.7 -> 21 frames max-len or 2 frames offset (13/17 = 0.765)

IoU = 0.8 -> 18 frames max-len or 1 frames offset (14/16=0.875)

IoU = 0.9 -> 16 frames max-len or 0 frames offset

Best Results

• Train on NGSIM(50s):

Validation Set: Best_IoU6_Acc 0.848 Best_IoU7_Acc 0.736 Best_IoU8_Acc 0.535 Best_IoU9_Acc 0.201, Best_Change_Lane_Acc 0.972, Best_Traj_Cls_Acc 0.895

Transfer on HighD(50s):

Exchange xy: IOU6 Acc 0.741, IOU7 Acc 0.576, IOU8 Acc 0.316, IOU9 Acc 0.087, Change_Lane_Acc 0.919, Traj_Cls_Acc 0.762

no_exchange xy:IOU6 Acc 0.630, IOU7 Acc 0.457, IOU8 Acc 0.244, IOU9 Acc 0.065, Change_Lane_Acc 0.870, Traj_Cls_Acc 0.750

Best Results

• Train on HighD(50s):

Validation Set: Best_IoU6_Acc 0.966 Best_IoU7_Acc 0.899 Best_IoU8_Acc 0.711 Best_IoU9_Acc 0.355, Best_Change_Lane_Acc 0.993, Best Traj Cls Acc 0.994

Transfer on NGSIM (10s):

Exchange xy: IOU6 Acc 0.635, IOU7 Acc 0.489, IOU8 Acc 0.304, IOU9 Acc 0.085, Change_Lane_Acc 0.873, Traj_Cls_Acc 0.842

no_exchange xy:IOU6 Acc 0.647, IOU7 Acc 0.488, IOU8 Acc 0.268, IOU9 Acc 0.075, Change_Lane_Acc 0.865, Traj_Cls_Acc 0.792

Some Visualization

Train on NGSIM:

Training Set: Samples:5339, False Positive:414, False Negative:14

Validation Set: Samples:1310, False Positive:129, False Negative:27

Transfer on HighD: Samples:12514, False Positive:2958 False

Negative:26

About Trajectory Max Length

Train Set	Length	Validation Res			Transfer (exchange xy)			Transfer (not exchange xy)		
		IoU 6 Acc	Change Lane Acc	Traj Cls Acc	IoU 6 Acc	Change Lane Acc	Traj Cls Acc	IoU 6 Acc	Change Lane Acc	Traj Cls Acc
NGSIM	10s	91.7%	98.5%	90.8%	57.0%	85.7%	86.3%	57.0%	78.7%	89.0%
NGSIM	20s									
NGSIM	50s	84.8%	97.2%	89.5%	74.1%	91.9%	76.2%	63.0%	87.0%	75.0%
HighD	10s	96.3%	99.3%	99.3%	60.8%	90.3%	80.8%	64.6%	93.1%	78.7%
HighD	20s									
HighD	50s	96.6%	99.3%	99.4%	36.4%	75.3%	70.0%	37.1%	69.7%	75.2%

About Scaling

- Scale locally by Trajectory (max) then scale globally by all frames(mean std) -> validation: worse, transfer: IoU (slightly better), traj_cls (worse)
- Scale locally by Trajectory (max) -> worse
- Scale globally by maximum of all values then rotation -> not converge (deeper model does not help as well)
- Rotation then scale(mean-std) by batch -> not converge (deeper model does not help as well)
- Use same scale factor for car1 and car2 (still training)

Data Augmentation

- xy augmentation: (x1, y1, x2, y2) -> (y1, x1, y2, x2)
- vehicle augmentation: (x1, y1, x2, y2) -> (x2, y2, x1, y1)
- Random rotation

4x samples + randomness -> Nearly No Overfitting (Maybe we could use deeper model)

Best Performance on Validation Set

• Slow (50s data) -> more than 25 hour to converge