Measures

Definition 1

A set function on an algebra \mathcal{F} in Ω is a measure if

- $\mu(A) \in [0, \infty] \text{ for } A \in \mathcal{F},$
- ii. $\mu(\emptyset) = 0$,
- iii. if $\{A_n\}$ is a disjoint collection of sets in \mathcal{F} with $\bigcup_{n=1}^{\infty} A_n \in \mathcal{F}$ then

$$\mu\left(\bigcup_{n=1}^{\infty} A_n\right) = \sum_{n=1}^{\infty} \mu(A_n) .$$

If μ is a measure on a σ -algebra \mathcal{F} then the triple $(\Omega, \mathcal{F}, \mu)$ is called a measure space.

Definition 2

Let μ be a measure on \mathcal{F} . Then μ is called

- i. finite if $\mu(\Omega) < \infty$,
- ii. σ -finite if there is a sequence $\{A_n\}$ of elements of \mathcal{F} such that $\mu(A_n) < \infty$ for all n and $\bigcup A_n = \Omega$,
- iii. a probability measure if $\mu(\Omega) = 1$.

Example 1

A measure μ on (Ω, \mathcal{F}) is discrete if there are countably many points ω_i in Ω and numbers m_i in $[0, \infty]$ such that $\mu(A) = \sum_{\omega_i \in A} m_i$ for A in \mathcal{F} . If \mathcal{F} contains each singleton $\{\omega_i\}$, then μ is σ -finite if and only if $m_i < \infty$ for all i.

Example 2

Let \mathcal{F} be the σ -algebra of all subsets of Ω , and let $\mu(A)$ be the number of elements in A, where $\mu(A) = \infty$ if A is not finite. This μ is counting measure; it is finite if and only if Ω is finite and is σ -finite if and only if Ω is countable.

Example 3

Let $\Omega = (0,1]$. For $A \subset \Omega$, say that $A \in \mathcal{F}$ if it may be written as a finite union

$$A = (a_1, b_1] \cup (a_2, b_2] \cup \cdots \cup (a_n, b_n]$$

where $0 \le a_1 \le b_1 \le \cdots \le a_n \le b_n \le 1$. Then \mathcal{F} is an algebra on (0,1]. For $A \subseteq \mathcal{F}$ define

$$\mu(A) = \sum_{k=1}^{n} (b_k - a_k)$$
.

Then μ is a measure on \mathcal{F} .

Theorem

Let $(\Omega, \mathcal{F}, \mu)$ be a measure space. Then

i.
$$\mu(A) \leq \mu(B)$$
 if $A \subseteq B$

ii.
$$\mu(\bigcup_{i\leq n} A_i) \leq \sum_{i\leq n} \mu(A_i) \quad (A_1, \dots, A_n \in \mathcal{F}).$$

Furthermore, if $\mu(\Omega) < \infty$, then

iii. for
$$A_1, A_2, ..., A_n$$
 in \mathcal{F} ,

$$\mu\left(\bigcup_{i\leq n} A_i\right) = \sum_{i\leq n} \mu(A_i) - \sum_{i< j\leq n} \mu(A_i \cap A_j)$$

$$+ \sum_{i< j< k\leq n} \mu(A_i \cap A_j \cap A_k) - \cdots + (-1)^{n-1} \mu(A_1 \cap A_2 \cap \cdots \cap A_n)$$