Análisis y Diseño de Algoritmos

Tema 2: Especificación

Contenido

- Especificación vs Implementación
- Especificación formal: Motivación
- Especificación pre/post
- Predicados lógicos
- Semántica
- Especificación de predicados
- Especificación de problemas
- Conclusiones
- Referencias

Especificación vs Implementación

- La especificación de un algoritmo es la descripción de qué es lo que hace y bajo qué condiciones lo hace
- La implementación de un algoritmo es la descripción de la secuencia de instrucciones que hacen que la especificación se satisfaga
- La especificación de un algoritmo es un paso necesario para su implementación
- Una especificación precisa descrita en un lenguaje lógico matemático permite la demostración de que el algoritmo satisface la especificación (verificación)

Especificación vs Implementación

Ejemplo Supongamos que dados dos números naturales $a \ge 0$ y b > 0 queremos encontrar el cociente q y el resto r resultantes al dividir a entre b. Una posible especificación sería:

Especificación pre/post

$$\{a \ge 0, b > 0\}$$

$$Algoritmo\ Division \longrightarrow$$

$$\{a = qb + r\}$$

Implementación

- La especificación está descrita con asertos que son expresiones con un valor booleano (ciertas o falsas)
- La implementación puede aparecer o no.
- La especificación es importante para los usuarios del programa/algoritmo, que pueden ser los programadores, u otros programas que hagan uso del descrito.

Una posible implementación sería

```
a = 5, b = 2
      \{a \ge 0, b>0\}
(1) int q = 0;
                                           (3) a = 5, b = 2, q = 0, r = 5
(2) int r = a;
(3) while (r > b)
                                           (4) a = 5, b = 2, q = 0, r = 5
     r = r - b;
(4)
                                           (5) a = 5, b = 2, q = 0, r = 3
(5) q++;
                                           (3) a = 5, b = 2, q = 1, r = 3
    \{a = qb + r\}
                                           (4) a = 5, b = 2, q = 1, r = 3
                                           (5) a = 5, b = 2, q = 1, r = 1
                                           (3) a = 5, b = 2, q = 2, r = 1
                                            a = 5, b = 2, q = 2, r = 1
```

Estados del programa

```
{a ≥ 0, b>0}
(1) int q = 0;
(2) int r = a;
(3) while (r > b){
(4)    r = r - b;
(5)    q++;
    }
{a = qb + r}
```

La división no está bien calculada

a = 6, b = 2

(3)
$$a = 6$$
, $b = 2$, $q = 0$, $r = 6$

$$(4)$$
 a = 6, b = 2, q = 0, r = 6

$$(5)$$
 a = 6, b = 2, q = 0, r = 4

(3)
$$a = 6$$
, $b = 2$, $q = 1$, $r = 4$

$$(4)$$
 a = 6, b = 2, q = 1, r = 4

$$(5)$$
 a = 6, b = 2, q = 1, r = 2

$$(3)$$
 a = 6, b = 2, q = 2, r = 2

a = 6, b = 2, q = 2, r = 2???

```
{a ≥ 0, b>0}

(1) int q = 0;

(2) int r = a;

(3) while (r >= b) {

(4) r = r - b;

(5) q++;

}

{a = qb + r, r < b}
```

Modificamos la expresión booleana y el aserto

$$a = 6, b = 2$$

(3)
$$a = 6$$
, $b = 2$, $q = 0$, $r = 6$

$$(4)$$
 a = 6, b = 2, q = 0, r = 6

(5)
$$a = 6$$
, $b = 2$, $q = 0$, $r = 4$

(3)
$$a = 6$$
, $b = 2$, $q = 1$, $r = 4$

$$(4)$$
 a = 6, b = 2, q = 1, r = 4

$$(5)$$
 a = 6, b = 2, q = 1, r = 2

(3)
$$a = 6$$
, $b = 2$, $q = 2$, $r = 2$

$$(4)$$
 a = 6, b = 2, q = 2, r = 2

$$(5)$$
 a = 6, b = 2, q = 2, r = 0

(3)
$$a = 6$$
, $b = 2$, $q = 3$, $r = 0$

$$a = 6$$
, $b = 2$, $q = 3$, $r = 0$

```
{a \geq 0, b > 0}

(1) int q = 0;

(2) int r = a;

(3) while (r >= b){

(4) r = r - b;

(5) q++;

}

{a = qb + r, r < b}
```

Si hubiéramos especificado correctamente el resultado, seguramente el código se habría implementado correctamente desde el principio

Especificación pre/post

Definición: Sea Var el conjunto de variables de un programa, y T el conjunto de todos los valores que estas variables pueden tomar, un **estado** es una función $\sigma: Var \to T$ que asocia a cada variable un valor de su tipo.

Ejemplo Dado el programa *División*, $\{a=6,b=2,q=1,r=4\}$ representa el estado del programa $\sigma: \{a,b,q,r\} \to int$ tal que $\sigma(a) = 6, \sigma(b) = 2,$ $\sigma(q) = 1, \sigma(r) = 4.$

```
{a ≥ 0, b>0}
(1) int q = 0;
(2) int r = a;
(3) while (r >= b){
(4)  r = r - b;
(5)  q++;
}
{a = qb + r,r < b}
```

```
a = 5, b = 2

a = 5, b = 2, q = 0, r = 5

a = 5, b = 2, q = 0, r = 5

a = 5, b = 2, q = 0, r = 3

a = 5, b = 2, q = 1, r = 3

a = 5, b = 2, q = 1, r = 3

a = 5, b = 2, q = 1, r = 1

a = 5, b = 2, q = 2, r = 1

a = 5, b = 2, q = 2, r = 1
```

Estados del programa

La ejecución de un programa puede definirse como una secuencia de estados

Especificación pre/post

Definición: Un aserto A es una expresión sobre las variables de un programa que se evalúa a cierto o a falso.

Un estado σ satisface un aserto A ($\sigma \models A$) si A es cierto cuando se sustituyen las variables del aserto por los valores definidos en σ .

```
a = 5, b = 2
      \{a \ge 0, b>0\}
                                                                             a = 5, b = 2, q = 0, r = 5
(1) int q = 0;
                                                                             a = 5, b = 2, q = 0, r = 5
                                                   Asertos
(2) int r = a;
                                                                             a = 5, b = 2, q = 0, r = 3
(3) while (r >= b)
                                                                             a = 5, b = 2, q = 1, r = 3
(4) r = r - b;
                                                                             a = 5, b = 2, q = 1, r = 3
(5) q++;
                                                                              a = 5, b = 2, q = 1, r = 1
    {a = qb + r,r < b}
                                                                              a = 5, b = 2, q = 2, r = 1
                                                                              a = 5, b = 2, q = 2, r = 1
```

Ejemplo El estado $\sigma = \{a = 5, b = 2, q = 2, r = 1\}$ satisface el aserto $\{a = qb + r, r < b\}$ porque 5 = 2 * 2 + 1, y 1 < 2

Nota: Observa que la coma (,) en el aserto representa la conjunción "y".

Especificación pre/post

Definición: Una especificación pre/post es una terna del tipo $\{Q\}S\{R\}$ donde

- 1. $\{Q\}$ es el aserto **precondición**, que caracteriza los estados iniciales válidos
- 2. $\{R\}$ es el aserto **postcondición**, que establece la relación válida entre los datos de entrada y los de salida
- 3. S es un programa, algoritmo o una secuencia de instrucciones

Ejemplo

$$\{a>=0,b>0\}\ Division\ \{a=qb+r,r< b\}$$

Una especificación pre/post $\{Q\}S\{R\}$ se lee como:

Si S empieza a ejecutarse en un estado que satisface $\{Q\}$, **termina** su ejecución, y lo hace en un estado que satisface $\{R\}$.

La **especificación pre/post** $\{Q\}S\{R\}$ puede utilizarse:

- 1. para establecer las condiciones bajo las cuales hay que diseñar el código S
- 2. como un medio para verificar que el código S satisface las condiciones de entrada/salida $\{Q\}$ y $\{R\}$

Predicados lógicos

Un predicado lógico se construye con

- 1. Expresiones algebraicas construidas con las variables del programa relacionadas con un operador relacional:
 - \bullet <, \leq , >, \geq , =, \neq
 - Los predicados construidos sólo con estos operadores se llaman **atómicos**
- 2. Uno o varios predicados relacionados con un operador lógico:
 - \bullet $\neg, \lor, \land, \Rightarrow, \Leftrightarrow, \cdots$
- 3. Cuantificadores sobre predicados:
 - \forall , \exists , \sum , \prod , \cdots
 - Los cuantificadores llevan asociadas variables que se denominan *ligadas* en contraposición al resto de variables que se llaman *libres*

Ejemplo Algunos predicados

$$\begin{array}{ll} (b^2-4ac \geq 0) & b^2-4ac \ es \ positivo \ o \ cero \\ (\exists n: n \geq 0: j=2^n) & j \ es \ una \ potencia \ de \ 2 \\ (\forall i: 0 \leq i < a.length: a[i] = 0) & todas \ las \ componentes \ del \ array \ a \ son \ cero \end{array}$$

Predicados lógicos

Si Var(P) es el conjunto de variables que aparecen en el predicado P, los conjuntos libres(P), y ligadas(P) de variables libres y ligadas de P se definen como sigue:

- 1. libres(P) = Var(P) y $ligadas(P) = \emptyset$, si P es atómico
- 2. $libres(\neg P) = libres(P)$ y $ligadas(\neg P) = ligadas(P)$
- 3. $libres(P \diamond Q) = libres(P) \cup libres(Q)$, $si \diamond \in \{\lor, \land, \Rightarrow, \Leftrightarrow\}$ $ligadas(P \diamond Q) = ligadas(P) \cup ligadas(Q)$, $si \diamond \in \{\lor, \land, \Rightarrow, \Leftrightarrow\}$ $Si\ libres(P) \cap ligadas(Q) \neq \emptyset$, o $libres(Q) \cap ligadas(P) \neq \emptyset$, las variables ligadas deben **renombrarse**
- 4. $libres(\delta x : D : P) = libres(P) \{x\}$ $ligadas(\delta x : D : P) = ligadas(P) \cup \{x\}$ siendo δ un cuantificador y D el rango que recorre.

Ejemplo. Algunos predicados

$$P \equiv (x+y+z>0) \quad libres(P) = \{x,y,z\}, ligadas(P) = \emptyset$$

$$Q \equiv (\exists y: y \in \mathbb{N}: P) \quad libres(Q) = \{x,z\}, ligadas(Q) = \{y\}$$

$$R \equiv (\forall x: x \in \mathbb{N}: Q\} \quad libres(R) = \{z\}, ligadas(R) = \{x,y\}$$

Predicados lógicos

Definición: Si Var(P) es el conjunto de variables que aparecen en el predicado P, los conjuntos libres(P), y ligadas(P) de variables libres y ligadas de P se definen como sigue:

- 1. libres(P) = Var(P) y $ligadas(P) = \emptyset$, si P es atómico
- 2. $libres(\neg P) = libres(P)$ y $ligadas(\neg P) = ligadas(P)$
- 3. $libres(P \diamond Q) = libres(P) \cup libres(Q)$, $si \diamond \in \{ \lor, \land, \Rightarrow, \Leftrightarrow \}$ $ligadas(P \diamond Q) = ligadas(P) \cup ligadas(Q)$, $si \diamond \in \{ \lor, \land, \Rightarrow, \Leftrightarrow \}$

Si $libres(P) \cap ligadas(Q) \neq \emptyset$, o $libres(Q) \cap ligadas(P) \neq \emptyset$, las variables ligadas deben **renombrarse**

4. $libres(\delta x \in D.P) = libres(P) - \{x\}$ $ligadas(\delta x \in D.P) = ligadas(P) \cup \{x\}$

Ejemplo Considera el siguiente predicado

$$Q \equiv (\forall x : x \in D_1 : (f(x) \lor \exists x : x \in D_2 : g(x)))$$

Definición: Dado un predicado P, y $x \in Var(P)$, denotamos con P[y/x] al predicado resultante de sustituir todas las apariciones de x en P por y.

Ejemplo El predicado Q es equivalente a

$$Q \equiv (\forall x : x \in D_1 : (f(x) \lor \exists y : y \in D_2 : g(y)))$$

Semántica

Definición. Dado P un predicado $y \sigma$ un estado, denotamos con $[P] \sigma$ al resultado de evaluar P en el estado σ , que puede ser cierto o falso.

Ejemplo Sean $x,y \in Var$ dos variables, y $\sigma = \{x = 9, y = 1\}$ un estado entonces:

$$[[x \ div \ y > 0]]\sigma = cierto; \ [[x > y + 7]]\sigma = cierto; \ [[x < 0]]\sigma = falso;$$

Definición: Dado P un predicado y un estado σ , decimos que P **está bien definido en** σ sii todas las variables del dominio de σ tienen un valor de su tipo, y todas las funciones de P están definidas en σ . En otro caso, decimos que P está **indefinido** en σ .

Ejemplo Las siguientes funciones son *parciales*:

 $div, mod : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z};$ no estan definidas si el segundo argumento es cero cima : $Pila \to Elem;$ no esta definida si la pila esta vacia

Semántica

Definición: Sea Σ el conjunto de todos los estados σ y P un predicado/aserto, entonces

- 1. P es satisfacible sii $\exists \sigma : \sigma \in \Sigma : \sigma \models P$
- 2. P es **válido** sii $\forall \sigma : \sigma \in \Sigma : \sigma \models P \ (\models P)$
- 3. P es una **contradicción** sii $\forall \sigma : \sigma \in \Sigma : \sigma \not\models P$

$$\begin{array}{ll} (a>b^2) \ es \ satisfacible & \sigma=\{a=5,b=2\} \\ \textbf{Ejemplo} & (b\neq 0\Rightarrow b^2>0) \ es \ valida & - \\ & (b^2<0) \ es \ contradiccion & - \end{array}$$

Semántica

Definición: Sean P y Q dos predicados, entonces

1. Q es una consecuencia lógica de P ($P \models Q$) sii

$$\forall \sigma : \sigma \in \Sigma : (\sigma \models P \Rightarrow \sigma \models Q)$$

2. \models es una relación de orden parcial entre predicados (asertos), que puede extenderse a conjuntos de predicados: $\{P_1, \dots, P_n\} \models P$ sii

$$\models P_1 \land \cdots \land P_n \Rightarrow P$$

Ejemplo Dados los asertos P y Q

$$P \equiv (a = bq + r \land r < 0); \quad Q \equiv (a = bq + r); \quad P \models Q$$

Especificación con predicados

Definición: Dado un predicado P, el conjunto de estados definidos por P es:

$$estados(P) = \{ \sigma \in \Sigma \mid [[P]]\sigma = cierto \}$$

Definición: Dados dos predicados P y Q

- 1. P es más fuerte que Q, sii $estados(P) \subseteq estados(Q)$ sii $P \Rightarrow Q$
- 2. P es más débil que Q, sii $estados(P) \supseteq estados(Q)$ sii $Q \Rightarrow P$

Ejemplo Dados los predicados x > 0 y $x \ge 0$:

$$x > 0 \Rightarrow x \ge 0$$
$$x > 0 \not\Rightarrow x > 0$$

Ejemplo Ordenar los siguientes predicados:

$$P_1 \equiv x > 0$$

$$P_2 \equiv (x > 0 \land y > 0)$$

$$P_3 \equiv (x > 0 \lor y > 0)$$

$$P_4 \equiv (y \ge 0)$$

$$P_5 \equiv (x \ge 0 \land y \ge 0)$$

Especificación con predicados

Definición: Dos predicados P y Q son equivalentes $(P \equiv Q)$ sii los satisfacen los mismos estados, es decir, sii $\forall \sigma : \sigma \in \Sigma : [[P]]\sigma = [[Q]]\sigma$. La relación \equiv es una relación de equivalencia.

Notación: Si E_1, \dots, E_n, E son predicacos lógicos, la regla de inferencia

$$\frac{E_1,\cdots,E_n}{E}$$

quiere decir que si se puede probar que E_1, \dots, E_n son ciertos, entonces se puede deducir que E es cierto.

Regla 1: Transitividad

$$\frac{P_1 \equiv P_2, P_2 \equiv P_3}{P_2 \equiv P_3}$$

Regla 2: Sustitución

$$\frac{P_1 \equiv P_2}{Q(P_1) \equiv Q(P_2)}$$

donde Q(P) representa un predicado Q que tiene a un predicado P anidado.

Especificación de problemas

```
/**
 * @param a array arbitrario
 * @return max el mayor valor
 */

//pre \{true\}

int maximo(int[] a)

//post \{\exists 0 \leq j \leq a.length: (max = a[j], \forall 0 \leq i \leq a.length: a[j] \geq a[i])\}
```

```
* @param a array arbitrario  
* @return b = true, si alguna de sus componentes es igual a la suma  
* de las que la preceden, o b = false, en otro caso  
*/

//pre \{a.length > 0\}
boolean suma(int[] a)

//post\{b = (\exists 0 \leq j \leq a.length : (a[j] = \sum_{i=0}^{j-1} a[i]))\}
```

Especificación de problemas

Definición: Las siguientes definiciones son útiles:

- 1. **Reforzar** un predicado A consiste en construir a partir de él otro aserto F más fuerte que él $(F \Rightarrow A)$. De forma dual, **debilitar** un predicado A es construir a partir de él otro predicado D más débil $(A \Rightarrow D)$. En los extremos, tenemos que para todo predicado A, $falso \Rightarrow A$ y $A \Rightarrow cierto$
- 2. Siempre podemos reforzar por conjunción $P \wedge Q \Rightarrow P$, y debilitar por disyunción $(P \Rightarrow P \vee Q \text{ y } Q \Rightarrow P \vee Q)$
- 3. Una técnica para debilitar consiste en sustituir una constante por una variable cuyo rango de valores contenga a la variable:

$$P \equiv s = \sum_{i=1}^{10} a[i]$$

puede debilitarse como

$$P' \equiv s = \sum_{i=1}^{n} a[i] \land 0 \le n \le 10$$

Especificación de problemas

Convenios y notación

•
$$\{a..b\} = \begin{cases} \emptyset & si \ a > b \\ \{a\} \cup \{a+1..b\} & si \ a \leq b \end{cases}$$

• Si $D = \emptyset$ entonces $(\forall \alpha \in D : P) \equiv cierto \ y \ (\exists \alpha \in D : P) \equiv falso$

•
$$\sum_{\alpha \in \{a..b\}} E(\alpha) = \begin{cases} 0 & si \ a > b \\ E(a) + \sum_{\alpha \in \{a+1..b\}} E(\alpha) & si \ a \le b \end{cases}$$

•
$$\prod_{\alpha \in \{a..b\}} E(\alpha) = \begin{cases} 1 & si \ a > b \\ E(a) * \prod_{\alpha \in \{a+1..b\}} E(\alpha) & si \ a \le b \end{cases}$$

$$\bullet \ N_{\alpha \in \{a..b\}}P(\alpha) = \begin{cases} 0 & si \ a > b \\ 1 + N_{\alpha \in \{a+1..b\}}P(\alpha) & si \ a \le b \ y \ [[P(a)]] = cierto \\ N_{\alpha \in \{a+1..b\}}P(\alpha) & si \ a \le b \ y \ [[P(a)]] = falso \end{cases}$$

Consejos prácticos

- Antes de implementar, especificar el programa lo más formalmente que se pueda
- Ser informal en lo obvio, y riguroso en lo complejo
- Pensar en los invariantes antes de escribir nada
- Documentar el texto con asertos intermedios :
 - Invariantes de los bucles
 - Pre y post condiciones de cada método

Conclusiones

- Aplicar estas teorías habitualmente es necesario para ahorrar costes debidos al mal funcionamiento del programa...
- Pero puede ser inabordable por la complejidad y lentitud que conlleva.
- Además, sólo hemos trabajado con enteros, booleanos y con algunos aspectos de los vectores....

Conclusiones

- Además de los tipos estructurados, objetos,...
 quedan algunas otros aspectos que estudiar:
 - Paso de parámetros
 - Programas concurrentes
 - Derivación de programas
 - Otro tipo de propiedades
 - Automatización de la verificación

–

Referencias

- Diseño de Programas: Formalismo y Abstracción. R. Peña. Ed. Prentice-Hall
- The Science of Programming. D. Gries. Ed.
 Springer-Verlag