Planning in the Dark: LLM-Symbolic Planning

Without Experts

Sukai Huang, Nir Lipovetzky, and Trevor Cohn

1. Limitations in Existing Pipeline

Fragile Pipeline: LLM-generated PDDL fail >99.9% of the time—requires expert!

Expert Bottleneck & Bias: Heavy expert refinement (about. 59 iterations) + single-perspective bias

2. Solvable Schemas: A Simple Fix!

Multiple LLMs + Inter Schema Set combination: the probability of not finding a solvable set becomes $(1-p^M)^{N^M} \rightarrow 0$ where N is #LLMs, M is #actions, p is the prob. of valid action schema (single LLM)

Adv: Solvable Shema Without Experts!

Disadv: brutal force, semantic misalign

3. Weaver (1952)'s assumption

Assumption in the filtering mechanism

of the set being valid $\approx 95.2\%$

4. Filtering and Ranking Inspired by Weaver (1952)

Semantic Coherence Filtering

Semantic score: Schema Filter and even Plan ranking!

5. Fine-tuning the Sentence Encoder is Convenient!

Contrastive training with hard negatives synthesized via precon & effect manipulation

Manipulation Type	Description	Example
Swap	Exchanges a predicate between preconditions and effects	Precondition: (at ?x ?y) Effect: (not (at ?x ?z)) → Precondition: (not (at ?x ?z)) Effect: (at ?x ?y)
Negation	Negates a predicate in either preconditions or effects	<pre>Precondition: (clear ?x) → Precondition: (not (clear ?x))</pre>
Removal	Removes a predicate from either preconditions or effects	Precondition: (and (on $?x ?y$) (clear $?x$)) \rightarrow Precondition: (on $?x ?y$)
Addition	Adds mutually exclusive (mutex) predicates to preconditions or effects (Helmert 2009)	Effect: (on-table ?x) \rightarrow Effect: (and (on-table ?x) (holding ?x))

6. Contributions & find out more

- 1. Address natural language ambiguity by having diverse interpretation of the action schema
- 2. Semantic validation, filtering and ranking without experts
- 3. In fact, the proposed pipeline also allows *lightweight* expert intervention to further enhance accuracy too! If you are curious, find our paper to see the details!

