Learning Deep Heuristic for Robot Planning

Supervisor: Tianyu Ren

Sample-based Planner: making sequential decisions on

robot base pose

grasping direction

Universal Heuristic: guiding the search of decision variables

- Learn a approximator that predicts the feasibility
- The scene is encoded by deep visual data

What is

Task and Motion Planning (TAMP)?

of task plans (skeletons)

Sampling

of variables for motion plans Extended root decision

skeleton1

Approach and pick	Sample-grasp-direction(·,·)→#
	Inverse-kinematics $(\cdot,\cdot,\#) \rightarrow \#,\#$
	Plan-free-motion(·,#)→#
	Move-free(·,#,#)
	Pick(·,·,#,#,#)
	Sample-place(·,·)→#
1 '	Inverse-kinematics(·,·,#)→#,#
place	Inverse-kinematics(\cdot , \cdot , $\#$) $\to \#$, Plan-holding-motion($\#$, $\#$, $\#$) $\to \#$
1 '	(, , , , , , , , , , , , , , , , , , ,
place	Plan-holding-motion(#,#,⋅,#)→#
place	Plan-holding-motion(#,#, \cdot ,#) \rightarrow # Move-holding(#,#, \cdot ,#,#)

skeleton2

decision

e.g., dir = top

e.g., pose = (0.1, 0.1, 0.3)

What is heuristic doing here?

skeleton =

$$\begin{split} &[\texttt{grasps}(\texttt{D}) \underline{\rightarrow} \textbf{\textit{g}}_{\texttt{D}}, \texttt{inv-reach}(\texttt{D}, \boxed{p_{\texttt{D}}^{0}}, \textbf{\textit{g}}_{\texttt{D}}) \underline{\rightarrow} \textbf{\textit{q}}_{\texttt{b}}^{1}, \\ &\texttt{inv-kin}(\texttt{D}, p_{\texttt{D}}^{0}, \textbf{\textit{g}}_{\texttt{D}}, \textbf{\textit{q}}_{\texttt{b}}^{1}) \rightarrow \textbf{\textit{q}}_{\texttt{a}}^{1}, \texttt{motion}(\texttt{base}, q_{\texttt{b}}^{0}, \textbf{\textit{q}}_{\texttt{b}}^{1}) \rightarrow \textbf{\textit{t}}_{\texttt{b}}^{1}, \\ &\texttt{motion}(\texttt{arm}, q_{\texttt{a}}^{0}, \textbf{\textit{q}}_{\texttt{a}}^{1}) \rightarrow \textbf{\textit{t}}_{\texttt{a}}^{1}]. \end{split}$$

skeleton =

$$\begin{split} &[\texttt{grasps}(\texttt{D}) \underline{\rightarrow} \textbf{\textit{g}}_{\texttt{D}}, \texttt{inv-reach}(\texttt{D}, \textbf{\textit{p}}_{\texttt{D}}^{0}, \textbf{\textit{g}}_{\texttt{D}}) \underline{\rightarrow} \textbf{\textit{q}}_{\texttt{b}}^{1}, \\ &\texttt{inv-kin}(\texttt{D}, p_{\texttt{D}}^{0}, \textbf{\textit{g}}_{\texttt{D}}, \textbf{\textit{q}}_{\texttt{b}}^{1}) \rightarrow \textbf{\textit{q}}_{\texttt{a}}^{1}, \texttt{motion}(\texttt{base}, q_{\texttt{b}}^{0}, \textbf{\textit{q}}_{\texttt{b}}^{1}) \rightarrow \textbf{\textit{t}}_{\texttt{b}}^{1}, \\ &\texttt{motion}(\texttt{arm}, q_{\texttt{a}}^{0}, \textbf{\textit{q}}_{\texttt{a}}^{1}) \rightarrow \textbf{\textit{t}}_{\texttt{a}}^{1}]. \end{split}$$

Huge search space

Prune unpromising branches by heuristics

Huge search space

Toy problem (scen1):

[grasps(D) $\rightarrow g_{\text{D}}$, inv-reach(D, p_{D}^{0} , g_{D}) $\rightarrow q_{\text{b}}^{1}$, inv-kin(D, p_{D}^{0} , g_{D} , q_{b}^{1}) $\rightarrow q_{\text{a}}^{1}$, motion(base, q_{b}^{0} , q_{b}^{1}) $\rightarrow t_{\text{b}}^{1}$, motion(arm, q_{a}^{0} , q_{a}^{1}) $\rightarrow t_{\text{a}}^{1}$].

Work content

? feasibility

Task scenario 1 with Tiago robot operators: streams, actions

UCT for motion variables

Evaluation in scen1 and scen2

train heuristic and optimize encoder compare accuracy with baseline [1]

object-oriented scene encoder

robot simulation: objective function deep heuristic: decision scene