MATH 426

11.1 8.

$$a_1 = \frac{-1}{2}$$
 $a_2 = \frac{z}{3}$ $a_3 = \frac{-3}{7}$
 $a_4 = \frac{4}{25}$ $a_5 = \frac{-5}{121}$

14.
$$\xi + \frac{1}{1}, \frac{1}{4}, \frac{1}{16}, \frac{1}{64}$$
 $\xi + \frac{1}{16}, \frac{1}{64}$ $\xi + \frac{1}{16}, \frac{1}{16}, \frac{1}{64}$ $\xi + \frac{1}{16}, \frac{1}{16}, \frac{1}{64}$ $\xi + \frac{1}{16}, \frac{$

32.
$$a_n = Cos \left(\frac{n\pi}{n+1}\right) \frac{y_n}{y_n} \qquad \left(\frac{\pi}{1+\frac{1}{n}}\right) \frac{\pi}{1+0} = \frac{\pi}{1} \quad converges \quad on \quad |$$

36.
$$a_{n}^{2} = \frac{(-1)^{n+1} n}{(n+1)^{n}} = \frac{(-1)^{n+1}}{(-1)^{n+1}} = \frac{(-1)^{n+1}}{(-1)^{n}} = \frac{(-1)^{n+1}}{(n+1)^{n}} = \frac$$

$$2+\frac{1}{4}=2\frac{1}{4}$$
 $2+\frac{1}{5}=1\frac{4}{5}$ $2+\frac{1}{6}=2\frac{1}{6}$ $2+\frac{1}{4}=1\frac{8}{4}$ $2+\frac{1}{4}=1\frac{8}{4}$

Marman bounded

MATH 426