

Exercise-1

Marked questions are recommended for Revision.

PART - I: SUBJECTIVE QUESTIONS

MOLE-I: Law of Chemical Combination

Section (A): Molar volume of ideal gases at STP, Average molar mass

Commit to memory: Y-map: Interconversion of mole - volume, mass and number of particles: Number Number Number Number

÷ mol. wt. ÷ At. wt. × mol. wt. × At. wt.

Mass

- A-1. What is the volume of following at STP (i) 2 g of H₂ (ii) 16 g of O₃.
- **A-2.** A gaseous mixture of H₂ and N₂O gas contains 66 mass % of N₂O. What is the average molecular mass of mixture :

Section (B): Empirical Formula, % Composition of a given compound by mass, % By mole, Minimum molecular mass determination.

Commit to memory:

The molecular formula is an integral multiple of the empirical formula.

- **B-1.** In a gaseous mixture 2mol of CO₂, 1 mol of H₂ and 2 mol of He are present than determine mole percentage of CO₂.
- B-2. A compound has haemoglobin like structure. It has one Fe. It contain 4.6% of Fe. Determine its molecular mass.
- **B-3.** A compound contains 25% hydrogen and 75% carbon by mass. Determine the empirical formula of the compound.

MOLE-II : Basic Stoichiometry

Section (C): Stoichiometry, Equation based calculations (Elementary level single equation or 2)

Commit to memory:

Now for any general balance chemical equation like

$$aA + bB \longrightarrow cC + dD$$

You can write.

 $\frac{\text{Moles of A reacted}}{\text{a}} = \frac{\text{Moles of B reacted}}{\text{b}} = \frac{\text{Moles of C reacted}}{\text{c}} = \frac{\text{Moles of D reacted}}{\text{d}}$

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

 $\textbf{Website}: www.resonance.ac.in \mid \textbf{E-mail}: contact@resonance.ac.in$

C-1. Calculate the residue obtained on strongly heating 2.76 g Ag₂CO₃.

$$Ag_2CO_3 \xrightarrow{\Delta} 2Ag + CO_2 + \frac{1}{2}O_2$$

C-2. Calculate the weight of iron which will be converted into its oxide by the action of 18g of steam.

Unbalanced reaction : Fe + $H_2O \xrightarrow{\Delta} Fe_3O_4 + H_2$.

C-3. A sample of KCIO₃ on decomposition yielded 448 mL of oxygen gas at NTP.

Calculate (i) Weight of oxygen product, (ii) Weight of KClO₃ originally taken, and (iii) Weight of KCl produced.

(K = 39, Cl = 35.5 and O = 16)

Section (D): Limiting reagent, % Excess, % Yield / Efficiency

D-1.^ 50 g of CaCO₃ is allowed to react with 73.5 g of H₃PO₄.

$$CaCO_3 + H_3PO_4 \longrightarrow Ca_3(PO_4)_2 + H_2O + CO_2$$

Calculate :

- (i) Amount of Ca₃(PO₄)₂ formed (in moles)
- (ii) Amount of unreacted reagent (in moles)

D-2.^> The percent yield for the following reaction carried out in carbon tetrachloride (CCl₄) solution is 80%

$$Br_2 + Cl_2 \longrightarrow 2BrCl$$

- (a) How many moles of BrCl is formed from the reaction of 0.025 mol Br2 and 0.025 mol Cl2?
- (b) How many moles of Br₂ is left unreacted?

Section (E): Reactions in sequence & parallel, Principle of atom conservation (POAC), Mixture analysis, % Purity

- **E-1.** KClO₃ decomposes by two parallel reaction
 - (i) $2KCIO_3 \xrightarrow{\Delta} 2KCI + 3O_2$
- (ii) $4KCIO_3 \xrightarrow{\Delta} 3KCIO_4 + KCI$

If 3 moles of O_2 and 1 mol of $KCIO_4$ is produced along with other products then determine initial moles of $KCIO_3$.

- E-2.^> What mass of CaO will be produced by 1 g of Calcium?
- **E-3.** A 2 g sample containing Na₂CO₃ and NaHCO₃ loses 0.248 g when heated to 300⁰ C, the temperature at which NaHCO₃ decomposes to Na₂CO₃, CO₂ and H₂O. What is the mass percentage of Na₂CO₃ in the given mixture ?
- E-4. A sample of chalk contains clay as impurity. The clay impurity loses 11% of its weight as moisture on prolong heating. 5 gram sample of chalk on heating shows a loss in weight (due to evolution of CO₂ and water) by 1.1 g. Calculate % of chalk (CaCO₃) in the sample. [Hint: Chalk (CaCO₃) releases CO₂ on heating]

MOLE-III : Oxidation Reduction & Balancing Redox Equations

Section (F): Basics of oxidation number

- F-1. Calculate the oxidation number of underlined elements in the following compounds:
 - (a) $K[Co(C_2O_4)_2(NH_3)_2]$
- (b) K₄P₂O₇
- (c) <u>Cr</u>O₂Cl₂

- (d) $Na_2[Fe(CN)_5(NO^+)]$ (g) $[Fe(NO^+) (H_2O)_5]SO_4$
- (e) Mn₃O₄ (h) ZnO₂²⁻
- (f) Ca(<u>C</u>IO₂)₂ (i) Fe_{0.93}O
- **F-2.** Identify the oxidant and the reductant in the following reactions :
 - (a) $KMnO_4 + KCl + H_2SO_4 \longrightarrow MnSO_4 + K_2SO_4 + H_2O + Cl_2$
 - (b) $FeCl_2 + H_2O_2 + HCl \longrightarrow FeCl_3 + H_2O$
 - (c) $Cu + HNO_3$ (dil) $\longrightarrow Cu(NO_3)_2 + H_2O + NO$
 - (d) Na₂HAsO₃ + KBrO₃ + HCl \longrightarrow NaCl + KBr + H₃AsO₄
 - (e) $I_2 + Na_2S_2O_3 \longrightarrow Na_2S_4O_6 + NaI$

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

Section (G): Balancing redox reactions

- G-1. Write balanced net ionic equations for the following reactions in acidic solution:
 - (a) IO_3^- (aq) + Re(s) \longrightarrow ReO₄⁻ (aq) + I⁻ (aq)
 - (b) $S_4O_6^{2-}(aq) + Al(s) \longrightarrow H_2S(aq) + Al^{3+}(aq)$
 - (c) $S_2O_3^{2-}(aq) + Cr_2O_7^{2-}(aq) \longrightarrow S_4O_6^{2-}(aq) + Cr_3^{3+}(aq)$
 - (d) CIO_3^- (aq) + $As_2S_3(s) \longrightarrow CI^-$ (aq) + $H_2AsO_4^-$ (aq) + HSO_4^- (aq)
 - (e) HSO_4^- (aq) + $As_4(s)$ + $Pb_3O_4(s)$ \longrightarrow $PbSO_4(s)$ + $H_2AsO_4^-$ (aq)
 - (f) $HNO_2(aq) \longrightarrow NO_3^- + NO(q)$
- **G-2.** Write balanced net ionic equations for the following reactions in basic solution:
 - (a) $TI_2O_3(s) + NH_2OH(aq) \longrightarrow TIOH(s) + N_2(g)$
 - (b) $C_4H_4O_6^{2-}(aq) + CIO_3^{-}(aq) \longrightarrow CO_3^{2-}(aq) + CI^{-}(aq)$
 - (c) $H_2O_2(aq) + Cl_2O_7(aq) \longrightarrow ClO_2^-(aq) + O_2(g)$
 - (d) $Al(s) + BiONO_3(s) \longrightarrow Bi(s) + NH_3(aq) + [Al(OH)_4]^- (aq)$
 - (e) $[Cu(NH_3)_4]^{2+}$ (aq) + $S_2O_4^{2-}$ (aq) $\longrightarrow SO_3^{2-}$ (aq) + Cu(s) + NH_3 (aq)
 - (f) $Mn(OH)_2(s) + MnO_4^-$ (aq) $\longrightarrow MnO_2(s)$

MOLE-IV: Concentration Measurement

Section (H): Units of concentration measurement, Interconversion of concentration units

Commit to memory:

Molarity of solution =
$$\frac{\text{number of moles of solute}}{\text{volume of solution in litre}}$$

molality =
$$\frac{\text{number of moles of solute}}{\text{mass of solvent in gram}} \times 1000$$

Let number of moles of solute in solution = n

Number of moles of solvent in solution = N

... Mole fraction of solute
$$(x_1) = \frac{n}{n+N}$$
 ... Mole fraction of solvent $(x_2) = \frac{N}{n+N}$

% w/w =
$$\frac{\text{mass of solute in g}}{\text{mass of solution in g}} \times 100$$

% w/v =
$$\frac{\text{mass of solute in g}}{\text{volume of solution in ml}} \times 100$$

$$\% \text{ v/v} = \frac{\text{volume of solute in ml}}{\text{volume of solution in ml}} \times 100$$

$$ppm_A = \frac{mass of A}{Total mass} \times 10^6 = mass fraction \times 10^6$$

- **H-1.** Find the mass of KOH needed to prepare 100 ml 1 M KOH solution. [At. mass K = 39]
- **H-2.** Calculate the molality of KCl solution prepared by dissolving 7.45 g of KCl to make 500 mL of the solution. $(d_{sol} = 1.2 \text{ g mL}^{-1})$

H-3.^>

- (i) If you are given a 2M NaOH solution having density 1 g/mL, then find the molality of solution.
- (ii) Find the molarity of 5m (molal) NaOH solution having density 1.5 g/ml.
- (iii) Find the mole fraction of solute in problem (i)
- (iv) Find the mole fraction of solute in problem (ii)
- (v) Find the % (w/w) of NaOH in solution in problem (i)
- (vi) Find the % (w/w) of NaOH in solution in problem (ii)
- (vii) Find the % (w/v) of NaOH in solution in problem (ii)

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

Section (I): Dilution & Mixing of two liquids

- I-1. Find the CI⁻ concentration in solution which is obtained by mixing one mole each of BaCl₂. NaCl and HCl in 500 ml water.
- What volume of water should be added to 50 ml of HNO₃ having density 1.5 g ml⁻¹ and 63.0% by I-2.3 weight to have one molar solution.
- What maximum volume of 3 M solution of KOH can be prepared from 1 L each of 1 M KOH and 6 M I-3. KOH solutions by using water?

I-4.^>

- (i) A 300 g, 30% (w/w) NaOH solution is mixed with 500 g, 40% (w/w) NaOH solution. Find the mass percentage (w/w) of final solution.
- (ii) What is % (w/v) NaOH in problem (i) if density of final solution is 2 g/ml?
- (iii) What is the molality of final solution obtained in problem (i)?

PART - II: ONLY ONE OPTION CORRECT TYPE

MOLE-I: Law of Chemical Combination

Section (A): Molar volume of ideal gases at STP, Average molar mass

- A-1. Under the same conditions, two gases have the same number of molecules. They must
 - (A) be noble gases

(B) have equal volumes

(C) have a volume of 22.4 dm³ each

- (D) have an equal number of atoms
- 16 g of an ideal gas SO_x occupies 5.6 L. at STP. The value of x is : A-2.

(A) x = 3

(B) x = 2

(C) x = 4

(D) none

Section (B): Empirical Formula, % Composition of a given compound by mass, % By mole, Minimum molecular mass determination.

B-1. The empirical formula of a compound of molecular mass 120 u is CH₂O. The molecular formula of the compound is:

(A) C₂H₄O₂

(B) C₄H₈O₄

(C) C₃H₆O₃

(D) all of these

B-2. Calculate the molecular formula of compound which contains 20% Ca and 80% Br (by wt.) if molecular weight of compound is 200 u. (Atomic wt. Ca = 40, Br = 80)

(A) Ca_{1/2}Br

(B) CaBr₂

(C) CaBr

(D) Ca₂Br

B-3. A compound possess 8% sulphur by mass. The least molecular mass is :

(A) 200 u

(B) 400 u

(C) 155 u

(D) 355 u

Cortisone is a molecular substance containing 21 atoms of carbon per molecule. The mass percentage B-4. of carbon in cortisone is 69.98%. Its molar mass is :

(A) 176.5 g

(B) 252.2 g

(C) 287.6 g

(D) 360.1 g

MOLE-II: Basic Stoichiometry

Section (C): Stoichiometry, Equation based calculations (Elementary level single equation or 2)

C-1. How many moles of potassium chlorate need to be heated to produce 11.2 litre oxygen at N.T.P.

 $KCIO_3 \longrightarrow KCI + \frac{3}{2}O_2$

(A) $\frac{1}{2}$ mol (B) $\frac{1}{3}$ mol

(C) $\frac{1}{4}$ mol

(D) $\frac{2}{3}$ mol

C-2. \searrow For the reaction 2P + Q \rightarrow R, 8 mol of P and excess of Q will produce :

(A) 8 mol of R

(B) 5 mol of R

(C) 4 mol of R

(D) 13 mol of R

Mole	Concept /							
C-3.		combine with Al to form A	Al_2O_3 , the weight of Al us (C) 54 g	ed in the reaction is : (D) 81 g				
C-4.	How many liters of CO ₂ Na ₂ CO ₃ + H ₂ SO ₄ ————————————————————————————————————		when 0.01 mol of H_2SO_4 r (C) 0.224 L	eacts with excess of Na ₂ CO ₃ . (D) 1.12 L				
C-5.2s.	` ,	e polymerises entirely to	,	of polyethene formed as per the (D) 100ng				
C-6.	12 g of alkaline earth m (A) 12	etal gives 14.8 g of its ni (B) 20	tride. Atomic weight of m	netal is - (D) 14.8				
Section	n (D) : Limiting reagent	, % Excess, % Yield / E	Efficiency					
D-1.	0.5 mole of H ₂ SO ₄ is formed is	mixed with 0.2 mole of	Ca (OH) ₂ . The maximu	m number of moles of CaSO ₄				
	(A) 0.2	(B) 0.5	(C) 0.4	(D) 1.5				
D-2.	How many mole of Zn(F (A) 2 mole	FeS ₂) can be made from (B) 3 mole	2 mole zinc, 3 mole iron (C) 4 mole	and 5 mole sulphur. (D) 5 mole				
D-3.3x	(A) X is the limiting read(B) Y is the limiting read	gent gent	= 24) are reacted to form	of 'X' taken				
D-4.	Calculate the amount o	f Ni needed in the Mond'	s process given below					
	Ni + 4CO							
		ess is obtained through a	process, in which 6 g of	carbon is mixed with 44 g CO ₂ .				
	(Ni = 59 u) (A) 14.675 g	(B) 29 g	(C) 58 g	(D) 28 g				
Section % Puri		quence & parallel, Princ	ciple of atom conservat	ion (POAC), Mixture analysis,				
E-1.	convert 21.2 kg of Na ₂ 0	What weight of CaCO ₃ must be decomposed to produce the sufficient quantity of carbon dioxide to convert 21.2 kg of Na ₂ CO ₃ completely in to NaHCO ₃ . [Atomic mass Na = 23, Ca = 40] CaCO ₃ ——— CaO + CO ₂						
	Na ₂ CO ₃ + CO ₂ (A) 100 Kg	2 + H ₂ O→ 2NaHCC (B) 20 Kg)₃ (C) 120 Kg	(D) 30 Kg				
E-2.	NX is produced by the f	following step of reaction	S					

$$\begin{array}{l} M+X_2 & \longrightarrow & M \ X_2 \\ 3MX_2+X_2 & \longrightarrow & M_3X_8 \\ M_3 \ X_8+N_2CO_3 & \longrightarrow & NX+CO_2+M_3O_4 \end{array}$$

How much M (metal) is consumed to produce 206 g of NX. (Take at wt of M = 56, N=23, X = 80)

(A) 42 g (B) 56 g (C) $\frac{14}{3}$ g (D) $\frac{7}{4}$ g

E-3. The following process has been used to obtain iodine from oil-field brines in California.

How many grams of AgNO $_3$ are required in the first step for every 254 kg $_{\rm I_2}$ produced in the third step. (A) 340 kg (B) 85 kg (C) 68 kg (D) 380 kg

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

E-4. 25.4 g of iodine and 14.2 g of chlorine are made to react completely to yield a mixture of ICl and ICl₃. Calculate the number of moles of ICl and ICl3 formed.

(A) 0.1 mole, 0.1 mole (B) 0.1 mole, 0.2 mole (C) 0.5 mole, 0.5 mole (D) 0.2 mole, 0.2 mole

E-5. What weights of P₄O₆ and P₄O₁₀ will be produced by the combustion of 31g of P₄ in 32g of oxygen leaving no P₄ and O₂.

(A) 2.75 g, 219.5 g

(B) 27.5 g, 35.5 g

(C) 55 g, 71 g

(D) 17.5 g, 190.5 g

E-6. 0.05 mole of LiAlH₄ in ether solution was placed in a flask containing 74g (1 mole) of t-butyl alcohol. The product LiAIHC₁₂H₂₇O₃ weighed 12.7 g. If Li atoms are conserved, the percentage yield is:

(Li = 7, Al = 27, H = 1, C = 12, O = 16).

(A) 25%

(B) 75%

(C) 100%

In a gravimetric determination of P, an aqueous solution of dihydrogen phosphate ion H₂PO₄⁻ is treated E-7. with a mixture of ammonium and magnesium ions to precipitate magnesium ammonium phosphate, Mg(NH₄)PO₄.6H₂O. This is heated and decomposed to magnesium pyrophosphate, Mg₂P₂O₇, which is weighed. A solution of H₂PO₄ vielded 1.054 g of Mg₂P₂O₇. What weight of NaH₂PO₄ was present originally?

(A) 1.14 g

(B) 1.62 g

(C) 2.34 q

(D) 1.33 q

10 g of a sample of a mixture of CaCl₂ and NaCl is treated to precipitate all the calcium as CaCO₃. This E-8. Ca CO₃ is heated to convert all the Ca to CaO and the final mass of CaO is 1.62 g. The percent by mass of CaCl₂ in the original mixture is.

(A) 32.1 %

(B) 16.2 %

(C) 21.8 %

(D) 11.0 %

E-9. ★ The mass of 70% pure H₂SO₄ required for neutralisation of 1 mol of NaOH is

(A) 49 g

(B) 98 g

(C) 70 g

(D) 34.3 g

MOLE-III: Oxidation Reduction & **Balancing Redox Equations**

Section (F): Basics of oxidation number

F-1. The oxidation number of Oxygen in Na₂O₂ is:

(A) + 1

(B) + 2

(C) - 2

(D) - 1

The oxidation number of Phosphorus in Mg₂P₂O₇ is : F-2.

(A) + 3

(B) + 2

(C) + 5

(D) - 3

The oxidation states of Sulphur in the anions SO_3^{2-} , $S_2O_4^{2-}$ and $S_2O_6^{2-}$ follow the order : F-3.5a

(A) $S_2O_6^{2-} < S_2O_4^2 < SO_3^{2-}$

(B) $S_2O_4^{2-} < SO_3^{2-} < S_2O_6^{2-}$

(C) $SO_3^{2-} < S_2O_4^{2-} < S_2O_6^{2-}$

(D) $S_2O_4^2 < S_2O_6^{2-} < SO_3^{2-}$

F-4. Match List-I (Compounds) with List-II (Oxidation states of Nitrogen) and select answer using the codes given below the lists:

List-I (a)

NaN₃

List-II (1)+5

(b) N_2H_2 (c) NO

(2)+2 (3)-1/3

(d)

 N_2O_5

_1

Code:

- (d) (a) (b) (c) (A) 3 2 3 4 1 2 (C)
- 4 3 3 (D)

(d) (c) 2 1 2

F-5. The average oxidation state of Fe in Fe₃O₄ is:

(B) 8/3

(C) 2

(D) 3

1 mole of N₂H₄ loses ten moles of electrons to form a new compound Y. Assuming that all the nitrogen appears in the new compound, what is the oxidation state of nitrogen in Y? (There is no change in the oxidation state of hydrogen).

(A) - 1

(B) - 3

(C) + 3

(D) + 5

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

Section (G): Balancing redox reactions

G-1. In the reaction $xHI + yHNO_3 \longrightarrow NO + I_2 + H_2O$, upon balancing with whole number coefficients:

(A) x = 3, y = 2

(B) x = 2. v = 3

(C) x = 6. y = 2

(D) x = 6, y = 1

G-2. For the redox reaction $MnO_4^- + C_2O_4^{2-} + H^+ \longrightarrow Mn^{2+} + CO_2 + H_2O_3$

the correct whole number stoichiometric coefficients of MnO₄-, C₂O₄²⁻ and H⁺ are respectively:

(A) 2, 5, 16

(B) 16, 5, 2

(C) 5, 16, 2

(D) 2, 16, 5

G-3. For the redox reaction $xP_4 + yHNO_3 \longrightarrow H_3PO_4 + NO_2 + H_2O_1$, upon balancing with whole number coefficients:

(A) x = 1, y = 5

(B) x = 2, v = 10

(C) x = 1, y = 20

(D) x = 1, v = 15

G-4. In the reaction $X^- + XO_3^- + H^+ \longrightarrow X_2 + H_2O$, the molar ratio in which X^- and XO_3^- react is :

(B) 5:1

(C) 2:3

(D) 3:2

G-5. CN⁻ is oxidised by NO₃⁻ in presence of acid:

 $aCN^- + bNO_3^- + cH^+ \longrightarrow (a + b) NO + aCO_2 + \frac{c}{2}H_2O$

What are the whole number values of a, b, c in that order:

(A) 3, 7, 7

(B) 3, 10, 7

(C) 3, 10, 10

(D) 3, 7, 10

MOLE-IV: Concentration Measurement

Section (H): Units of concentration measurement, Interconversion of concentration units

H-1. 500 mL of a glucose solution contains 6.02×10^{22} molecules. The concentration of the solution is

(A) 0.1 M

(B) 1.0 M

(C) 0.2 M

(D) 2.0 M

H-2. What volume of a 0.8 M solution contains 100 milli moles of the solute?

(A) 100 mL

(B) 125 mL

(C) 500 mL

(D) 62.5 mL

A solution of FeCl₃ is $\frac{M}{30}$ its molarity for Cl⁻ ion will be : H-3.

(A) $\frac{M}{90}$

(B) $\frac{M}{30}$

(D) $\frac{M}{5}$

Equal moles of H₂O and NaCl are present in a solution. Hence, molality of NaCl solution is: H-4.

(A) 0.55

(B) 55.5

(C) 1.00

(D) 0.18

H-5. Mole fraction of A in H₂O is 0.2. The molality of A in H₂O is:

(A) 13.9

(B) 15.5

(C) 14.5

(D) 16.8

H-6.≥ What is the molarity of H₂SO₄ solution that has a density of 1.84 g/cc and contains 98% by mass of H_2SO_4 ? (Given atomic mass of S = 32)

(A) 4.18 M

(B) 8.14 M

(C) 18.4 M

(D) 18 M

H-7. The molarity of the solution containing 2.8% (mass / volume) solution of KOH is: (Given atomic mass of K = 39) is:

(A) 0.1 M

(B) 0.5 M

(C) 0.2 M

(D) 1 M

H-8. Decreasing order of mass of pure NaOH in each of the aqueous solution.

(i) 50 g of 40% (W/W) NaOH

(ii) 50 ml of 50% (W/V) NaOH ($d_{sol} = 1.2 \text{ g/ml}$).

(iii) 50 g of 15 M NaOH ($d_{sol} = 1 \text{ g/ml}$). (A) i, ii, iii

(B) iii, ii, i

(C) ii, iii, i

(D) iii = ii = i

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

Section (I): Dilution & Mixing of two liquids

I-1. If 500 ml of 1 M solution of glucose is mixed with 500 ml of 1 M solution of glucose final molarity of solution will be:

(A) 1 M

(B) 0.5 M

(C) 2 M

(D) 1.5 M

I-2. The volume of water that must be added to a mixture of 250 ml of 0.6 M HCl and 750 ml of 0.2 M HCl to obtain 0.25 M solution of HCl is:

(A) 750 ml

(B) 100 ml

(C) 200 m ℓ

(D) 300 m ℓ

- **I-3.** The molarity of Cl^- in an aqueous solution which was (w/V) 2% NaCl, 4% $CaCl_2$ and 6% NH₄Cl will be (A) 0.342 (B) 0.721 (C) 1.12 (D) 2.18
- **I-4.** 2M of 100 ml Na₂ SO₄ is mixed with 3M of 100 ml NaCl solution and 1M of 200 ml CaCl₂ solution. Then the ratio of the concentration of cation and anion.

(A) 1/2

(B) 2

(C) 1.5

(D) 1

I-5. What volume (in ml) of 0.2 M H_2SO_4 solution should be mixed with the 40 ml of 0.1 M NaOH solution such that the resulting solution has the concentration of H_2SO_4 as $\frac{6}{55}$ M?

(A) 70

(B) 45

(C) 30

(D) 58

PART - III: MATCH THE COLUMN

1.

	Column – I		Column - II
(A)	A gaseous organic compound containing C = 52.17%, H = 13.04% & O = 34.78% (by weight) having molar mass 46 g/mol.	(p)	One mole of compound contains $4N_A$ atoms of Hydrogen.
(B)	A hydrocarbon containing 10.5 g carbon per gram of hydrogen having vapour density 46.	(q)	The empirical formula of the compound is same as its molecule formula.
(C)	A hydrocarbon containing C = 42.857% and H = 57.143% (by mole) containing 3C atoms per molecule.	(r)	Combustion products of one mole of compound contains larger number of moles of CO ₂ than that of H ₂ O.
(D)	0.3 g of an organic compound containing C, H and O on combustion yields 0.44 g of CO ₂ and 0.18 g of H ₂ O, with two O atoms per molecule.	(s)	CO ₂ gas produced by the combustion of 0.25 mole of compound occupies a volume of 11.2 L at NTP.

2.3

	Column – I		Column - II
(A)	$Zn(s) + 2HCl(aq) \rightarrow ZnCl_2(s) + H_2(g)$	(p)	50% of excess reagent left
	above reaction is carried out by taking 2 moles		
	each of Zn and HCl		
(B)	$AgNO_3(aq) + HCl(aq) \rightarrow AgCl(s) + HNO_3(g)$	(q)	22.4 L of gas at STP is liberated
	above reaction is carried out by taking 170 g		
	AgNO ₃ and 18.25 g HCl (Ag = 108)		
(C)	$CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$	(r)	1 moles of solid (product) obtained.
	100 g CaCO₃ is decomposed		
(D)	$2KCIO_3(s) \rightarrow 2KCI(s) + 3O_2(g)$	(s)	HCl is the limiting reagent
	2/3 moles of KClO ₃ decomposed		

3. 🖎

	Column – I		Column - II
(A)	100 ml of 0.2 M AlCl ₃ solution + 400 ml of	(p)	Total concentration of cation(s) = 0.12 M
	0.1 M HCl solution		
(B)	50 ml of 0.4 M KCl + 50 ml H ₂ O	(q)	$[SO_4^{2-}] = 0.06 \text{ M}$
(C)	30 ml of 0.2 M K ₂ SO ₄ + 70 ml H ₂ O	(r)	$[SO_4^{2-}] = 2.5 M$
(D)	200 ml 24.5% (w/v) H ₂ SO ₄	(s)	$[Cl^{-}] = 0.2 \text{ M}$

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

Exercise-2

> Marked questions are recommended for Revision.

P	ΔRT	- 1 -	ONI	Υ	ONE	OPTIC	NC	CORRECT TYPE	=
	Δ IV I	- 1 .	OIAL		CIAL		JIN	CONNECTOR	_

1.	A sample of Calcium plin the sample is:	nosphate Ca ₃ (PO ₄) ₂ cont	ains 8 mol of O atoms.	The number of mol of Ca atoms
	(A) 4	(B) 1.5	(C) 3	(D) 8
2.	64 g of an organic comformula of the compour		and 8 g hydrogen and th	ne rest is oxygen. The empirical
	(A) CH ₄ O	(B) CH ₂ O	(C) C ₂ H ₄ O	(D) None
3.	sucrose (C ₁₂ H ₂₂ O ₁₁) are space capsule to meet	e burnt in his body. How his requirement for one o	many gram of oxygen w day :	energy released when 34 g of rould be needed to be carried in
_	(A) 916.2 g	(B) 91.62 g	(C) 8.162 g	(D) 9.162 g.
4.æ	If 10 g of Ag reacts with (A) 7.75 g	1 g of sulphur, the amou (B) 0.775 g	unt of Ag ₂ S formed will b (C) 11 g	e : (D) 10 g
5.^		and O_2 did not enter into moles of O_2		
6.≿ <u>x</u>	that has rusted is:	-		O ₃ , the percentage of total iron
-	(A) 23	(B) 13	(C) 23.3	(D) 25.67
7.		e from calcium carbide to $Ca(OH)_2 + C_2H_2$; C_2H_2	•	
		lene possibly obtainable		
	(A) 28 kg	(B) 14 kg	(C) 21 kg	(D) 42 kg
3. zs.	1 mol of iron (Fe) reac ratio of ferrous oxide to (A) 3:2		mol O_2 to give a mixture (C) 20 : 13	e of only FeO and Fe ₂ O ₃ . Mole (D) none of these
9. zs.		` '	,	d vessel, no solid residue is left
		llowing statements is corn 1.33 and 2.67		than or equal 2.67.
10.				re of CO_2 and SO_2 is produced, e carbon in the mixture is : (D) 1.54 g
11.		ith strong nitric acid, the hanges in the oxidation r $(B) + 2, + 6, -2$	numbers of Zn, S and N :	tte, sulphuric acid and nitrogen (D) $0, +8, -1$
12.	$xNO_3^- + yl^- + zH^+ \rightarrow 2N$ (A) 2, 6, 8	$1O + 3I_2 + 4H_2O x, y, z$ (B) 1, 6, 4	respectively in the above (C) 0, 6, 8	e equation are : (D) 2 , 3 , 4
13.	When arsenic sulphide according to reaction:	e is boiled with NaOH,	sodium arsenite and s	odium thioarsenite are formed
	$x As_2S_3+ y NaOH \longrightarrow$	xNa ₃ AsO ₃ + xNa ₃ AsS ₃ +	$\frac{y}{2}$ H ₂ O. What are the va	lues of x and y?
	(A) 1, 6	(B) 2, 8	(C) 2, 6	(D) 1, 4

Mole Concept

14. Balance the following equation and choose the quantity which is the sum of the coefficients of reactants and products :

...... KMnO₄ +...... H₂O₂ +...... H₂SO₄ \longrightarrow MnSO₄ +...... O₂ +...... H₂O +...... K₂SO₄ (A) 26 (B) 23 (C) 28 (D) 22

15.^ The following equations are balanced atomwise and chargewise.

(i) $Cr_2O_7^{2-} + 8H^+ + 3H_2O_2 \longrightarrow 2Cr^{3+} + 7H_2O + 3O_2$

(ii) $Cr_2O_7^{2-} + 8H^+ + 5H_2O_2 \longrightarrow 2Cr^{3+} + 9H_2O + 4O_2$

(iii) $Cr_2O_7^{2-} + 8H^+ + 7H_2O_2 \longrightarrow 2Cr^{3+} + 11H_2O + 5O_2$

The precise equation/equations representing the oxidation of H₂O₂ is/are:

(A) (i) only

(B) (ii) only

(C) (iii) only

(D) all the three

16. ★ A solution of glucose received from some research laboratory has been marked mole fraction x and molality (m) at 10°C. When you will calculate its molality and mole fraction in your laboratory at 24°C you will find

(A) mole fraction (x) and molality (m)

(B) mole fraction (2x) and molality (2m)

(C) mole fraction (x/2) and molality (m/2)

- (D) mole fraction (x) and (m \pm dm) molality
- 17. 36.5 % HCl has density equal to 1.20 g mL⁻¹. The molarity (M) and molality (m), respectively, are

(A) 15.7, 15.7

(B) 12, 12

(C) 15.7, 12

(D) 12, 15.7

18. An aqueous solution of ethanol has density 1.025 g/mL and it is 2M. What is the molality of this solution?

(A) 1.79

(B) 2.143

(C) 1.951

(D) None of these.

19. Mole fraction of ethyl alcohol in aqueous ethyl alcohol (C₂H₅OH) solution is 0.25. Hence percentage of ethyl alcohol by weight is :

(A) 54%

(B) 25%

(C) 75%

(D) 46%

- Calculate the mass percent (w/w) of sulphuric acid in a solution prepared by dissolving 4 g of sulphur trioxide in a 100 ml sulphuric acid solution containing 80 mass percent (w/w) of H₂SO₄ and having a density of 1.96 g/ml. (molecular weight of H₂SO₄ = 98). Take reaction SO₃ + H₂O → H₂SO₄
 (A) 80.8%
 (B) 84%
 (C) 41.65%
 (D) None of these
- 21. On mixing 15.0 ml of ethyl alcohol of density 0.792 g ml⁻¹ with 15 ml of pure water at 4^o C, the resulting solution is found to have a density of 0.924 g ml⁻¹. The percentage contraction in volume is:

(A) 8 %

(B) 2 %

(C) 3 %

(D) 4 %

PART - II: NUMERICAL VALUE QUESTIONS

- 1. How many gram ions of SO₄⁻² are present in 1.25 mole of K₂SO₄.Al₂(SO₄)₃.24H₂O:
- 2. A certain organic substance used as a solvent in many reactions contains carbon, hydrogen, oxygen and sulphur. Weight % of hydrogen in the compound is 7.7. The weight ratio C : O : S = 3 : 2 : 4. What is the least possible molar mass (in g) of the compound?
- 3. Consider the following reaction involved in the preparation of teflon polymer $\leftarrow CF_2 CF_2 \rightarrow_p$.

 $XeF_6 + \underbrace{+ CH_2 - CH_2}_{n} \longrightarrow \underbrace{+ CF_2 - CF_2}_{n} + HF + XeF_4.$

- Determine the moles of XeF₆ required for preparation of 100 g Teflon.
- 4. In the reaction : $2AI + Cr_2O_3 \longrightarrow AI_2O_3 + 2Cr$, 49.8 g of AI reacted with 200.0 g Cr_2O_3 . How much grams of reactant remains at the completion of the reaction ?
- 5.3 A 3 : 2 molar ratio mixture of FeO and Fe₂O₃ react with oxygen to produce a 2 : 3 molar ratio mixture of FeO and Fe₂O₃. Find the mass (in g) of O₂ gas required per mole of the initial mixture.

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

A fluorine disposal plant was constructed to carryout the reactions: 6.3

$$F_2 + 2NaOH \longrightarrow \frac{1}{2}O_2 + 2NaF + H_2O$$

$$2NaF + CaO + H_2O \longrightarrow CaF_2 + 2NaOH$$

As the plant operated, excess lime was added to bring about complete precipitation of the fluoride as CaF2. Over a period of operation, 1900 kg of fluorine was fed into a plant and 10,000 kg of lime was required. What was the percentage utilisation of lime ? [Lime : CaO]

 $Cl_2 + KOH \xrightarrow{60\%} KCl + KClO + H_2O$ 7.

KCIO
$$\xrightarrow{50\%}$$
 KCI + KCIO₃

$$KCIO_3 \xrightarrow{80\%} KCIO_4 + KCI$$

112 L Cl₂ gas at STP is passed in 10 L KOH solution, containing 1 mole of potassium hydroxide per

Calculate the total moles of KCl produced, rounding it off to nearest whole number. (Yield of chemical reactions are written above the arrow (\rightarrow) of respective reaction)

If 240 g of carbon is taken in a container to convert it completely to CO2 but in industry it has been 8. S found that 280 g of CO was also formed along with CO2. Find the mole percentage yield of CO2. The reactions occurring are:

$$C + O_2 \longrightarrow CO_2 \; ; \; C + \; \frac{1}{2}O_2 \longrightarrow CO$$

When 1 mole of A reacts with $\frac{1}{2}$ mole of B₂ (A + $\frac{1}{2}$ B₂ \rightarrow AB), 100 Kcal heat is liberated and when 1 9.3

mole of A reacted with 2 mole of B₂ (A + 2B₂ → AB₄), 200 Kcal heat is liberated. When 1 mole of A is completely reacted with excess, of B2 to form AB as well as AB4, 140 Kcal heat is liberated calculate the mole of B_2 used. [Write your answer as number of mole of B_2 used \times 10]

- 92 g mixture of CaCO₃, and MgCO₃ heated strongly in an open vessel. After complete decomposition of 10. the carbonates it was found that the weight of residue left behind is 48 g. Find the mass of MgCO₃ in grams in the mixture.
- 11. Among the following compounds given below, what is the sum of the oxidation states of all underlined elements? CO₂, K₂MnO₄
- 12. Find the sum of average oxidation number of S in H₂SO₅ (peroxy monosulphuric acid) and Na₂S₂O₃ (sodium thiosulphate).
- The reaction Cl_2 (g) + $S_2O_3^{2-} \longrightarrow SO_4^{2-} + Cl^-$ is to be carried out in basic medium. Starting with 1.5 13. mole of Cl₂, 0.1 mole S₂O₃²⁻ and 3 mole of OH⁻. How many moles of OH⁻ will be left in solution after the reaction is complete. Assume no other reaction occurs.
- 14.5 In the following reaction

$$xZn + yHNO_3(dil) \longrightarrow aZn(NO_3)_2 + bH_2O + cNH_4NO_3$$

What is the sum of the coefficients (a + b + c)?

What is the sum of the coefficients (a + b + c)?

- 15.3 What is the quantity of water (in g) that should be added to 16 g methanol to make the mole fraction of methanol as 0.25?
- H₃PO₄ (98 g mol⁻¹) is 98% by mass of solution. If the density is 1.8 g/ml, calculate the molarity. 16. 🖎
- What volume (in mL) of 90% alcohol by weight (d = 0.8 g mL⁻¹) must be used to prepare 80 mL of 10% 17.5 alcohol by weight ($d = 0.9 \text{ g mL}^{-1}$)?
- 18. 3.0 litre of water are added to 2.0 litre of 5 M HCl. What is the molarity of HCl (in M) the resultant solution?
- A solution containing 0.1 mol of a metal chloride MCI_x requires 500 ml of 0.8 M AgNO₃ solution for 19. 🖎 complete reaction $MCl_x + xAgNO_3 \rightarrow xAgCl + M(NO_3)_x$. Then the value of x is :

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

PART - III: ONE OR MORE THAN ONE OPTIONS CORRECT TYPE

- 1. Which is/are correct statements about 1.7 g of NH₃:
 - (A) It contain 0.3 mol H atom
- (B) it contain 2.408×10^{23} atoms
- (C) Mass % of hydrogen is 17.65%
- (D) It contains 0.3 mol N-atom
- 2. The density of air is 0.001293 g/cm³ at STP. Identify which of the following statement is correct
 - (A) Vapour density is 14.48
 - (B) Molecular weight is 28.96
 - (C) Vapour density is 0.001293 g/cm³
 - (D) Vapour density and molecular weight cannot be determined.

3. $(CH-COOH)_n + AgNO_3 (Excess) \longrightarrow Silver salt \longrightarrow Ag (metal)$ C_2H_3

If 0.5 mole of silver salt is taken and weight of residue obtained is 216 g. (Ag = 108 g/mol).

Then which the following is correct:

(A) n = 4

(B) n = 2

(C) M.wt. of silver salt is 718 g/mol

- (D) M.wt. of silver salt is 388 g/mol
- 4. If 27 g of Carbon is mixed with 88 g of Oxygen and is allowed to burn to produce CO₂, then:
 - (A) Oxygen is the limiting reagent.
- (B) Volume of CO₂ gas produced at NTP is 50.4 L.
- (C) C and O combine in mass ratio 3:8.
- (D) Volume of unreacted O2 at STP is 11.2 L.
- 5. For the following reaction : $Na_2CO_3 + 2HCI \longrightarrow 2NaCI + CO_2 + H_2O$

106.0 g of Na₂CO₃ reacts with 109.5 g of HCl.

Which of the following is/are correct.

- (A) The HCl is in excess.
- (B) 117.0 g of NaCl is formed.
- (C) The volume of CO₂ produced at NTP is 22.4 L.
- (D) None of these
- 6. (i) $K_4Fe(CN)_6 + 3H_2SO_4 \longrightarrow 2K_2SO_4 + FeSO_4 + 6HCN$
 - (ii) 6HCN + 12H₂O → 6HCOOH + 6NH₃
 - (iii) (a) $6NH_3 + 3H_2SO_4 \longrightarrow 3(NH_4)_2SO_4$
 - (b) 6HCOOH $\xrightarrow{\text{H}_2\text{SO}_4}$ 6CO + 6H₂O

Above steps of reactions occur in a container starting with one mole of K₄[Fe(CN)₆], 5 mole of H₂SO₄ and enough water. Find out the limiting reagent in step (i) and calculate maximum moles of CO gas and (NH₄)₂ SO₄ that can be produced.

- (A) $LR = H_2SO_4$
- (B) $LR = K_4Fe(CN)_6$,
- (C) 6 moles of CO, 2 moles of (NH₄)₂SO₄
- (D) 5 moles of CO, 2.5 moles of (NH₄)₂SO₄
- 7. \triangle A + B \rightarrow A₃B₂ (unbalanced)

 $A_3B_2 + C \rightarrow A_3B_2C_2$ (unbalanced)

Above two reactions are carried out by taking 3 moles each of A and B and one mole of C. Then which option is/are correct?

- (A) 1 mole of A₃B₂C₂ is formed
- (B) 1/2 mole of A₃B₂C₂ is formed
- (C) 1/2 mole of A₃B₂ is formed
- (D) 1/2 mole of A₃B₂ is left finally
- 8. A sample of a mixture of CaCl₂ and NaCl weighing 4.44 g was treated to precipitate all the Ca as CaCO₃, which was then heated and quantitatively converted to 1.12g of CaO. (At . wt. Ca = 40, Na = 23, Cl = 35.5)
 - (A) Mixture contains 50% NaCl
- (B) Mixture contains 60% CaCl₂

(C) Mass of CaCl2 is 2.22 g

(D) Mass of CaCl₂ 1.11 g

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

9. Which of the following statements is/are correct? 1.0 g mixture of CaCO₃(s) and glass beads liberate 0.22 g of CO₂ upon treatment with excess of HCl. Glass does not react with HCl.

$$CaCO_3 + 2HCI \longrightarrow CO_2 + H_2O + CaCl_2$$

[M.wt. of CaCO₃ = 100, M.wt. of CO₂ = 44, [Atomic weight of Ca = 40]

- (A) The weight of CaCO₃ in the original mixture is 0.5 g
- (B) The weight of calcium in the original mixture is 0.2 g
- (C) The weight percent of calcium in the original mixture is 40% Ca.
- (D) The weight percent of Ca in the original mixture is 20% Ca.
- 10.≿ 21.2 g sample of impure Na₂CO₃ is dissolved and reacted with a solution of CaCl₂, the weight of precipitate of CaCO₃ is 10.0 g. Which of the following statements is/are correct?
 - (A) The % purity of Na₂CO₃ is 50%
 - (B) The percentage purity of Na₂CO₃ is 60%
 - (C) The number of moles of $Na_2CO_3 = CaCO_3 = 0.1$ mol.
 - (D) The number of moles of NaCl formed is 0.1 mol.
- 100 g sample of clay (containing 19% H₂O, 40% silica, and inert impurities as rest) is partially dried so 11.5 as to contain 10% H₂O

Which of the following is/are correct statement(s)?

- (A) The percentage of silica in paritially dried clay is 44.4%
- (B) The mass of paritially dried clay is 90.0 g.
- (C) The percentage of inert impurity in paritially dried clay is 45.6%
- (D) The mass of water evaporated is 10.0 g
- 12. Which of the following reactions is not a redox reaction?

(A)
$$H_2O_2 + KOH \longrightarrow KHO_2 + H_2O$$

(B)
$$Cr_2O_7^{2-} + 2OH^- \longrightarrow 2CrO_4^{2-} + H_2O$$

(C)
$$Ca(HCO_3)^2 \xrightarrow{\Delta} CaCO_3 + CO_2 + H_2O$$
 (D) $H_2O_2 \longrightarrow H_2O + \frac{1}{2}O_2$

(D)
$$H_2O_2 \longrightarrow H_2O + \frac{1}{2}O_2$$

- Consider the redox reaction $2S_2O_3^{2-} + I_2 \longrightarrow S_4O_6^{2-} + 2 I^-$: 13. 🖎
 - (A) $S_2O_3^{2-}$ gets reduced to $S_4O_6^{2-}$
- (B) $S_2O_3^{2-}$ gets oxidised to $S_4O_6^{2-}$

(C) I₂ gets reduced to I⁻

- (D) I₂ gets oxidised to I⁻
- 14. Which of the following are examples of disproportionation reaction:
 - (A) HqO \longrightarrow Hq + O₂

(B) KCIO₃
$$\longrightarrow$$
 KCI + O₂

(C)
$$KCIO_3 \longrightarrow KCIO_4 + KCI$$

(D)
$$Cl_2 + OH^- \longrightarrow ClO^- + Cl^- + H_2O$$

- In the following reaction : $Cr(OH)_3 + OH^- + IO_3^- \rightarrow CrO_4{}^{2-} + H_2O + I^-$ 15.5
 - (A) IO₃⁻ is oxidising agent

- (B) Cr(OH)₃ is oxidised
- (C) 6e⁻ are being taken per iodine atom
- (D) None of these
- 16. Which of the following statements is/are correct?

In the reaction
$$xCu_3P + yCr_2O_7^{2-} + zH^+ \longrightarrow Cu^{2+} + H_3PO_4 + Cr^{3+}$$

- (A) Cu in Cu₃P is oxidised to Cu²⁺ whereas P in Cu₃P is also oxidised to PO₄³⁻
- (B) Cu in Cu₃P is oxidised to Cu²⁺ whereas P in Cu₃P is reduced to H₃PO₄
- (C) In the conversion of Cu₃P to Cu²⁺ and H₃PO₄, 11 electrons are involved
- (D) The value of x is 6.
- 17. Select dimensionless quantity(ies):
 - (A) vapour density
- (B) molality
- (C) specific gravity
- (D) mass fraction
- 18. Which of the following solutions contains same molar concentration?
 - (A) 166 g. KI/L solution

- (B) 33.0 g (NH₄)₂ SO₄ in 200 mL solution
- (C) 25.0 g CuSO₄.5H₂O in 100mL solution
- (D) 27.0 mg Al3+ per mL solution

Mole Concept

- 19. Solutions containing 23 g HCOOH is/are:
 - (A) 46 g of 70% $\left(\frac{w}{v}\right)$ HCOOH (d_{solution} = 1.40 g/mL)
 - (B) 50 g of 10 M HCOOH (d_{solution} = 1 g/mL)
 - (C) 50 g of 25% $\left(\frac{W}{W}\right)$ HCOOH
 - (D) 46 g of 5 M HCOOH (d_{solution} = 1 g/mL)
- 20. If 100 ml of 1M H_2SO_4 solution is mixed with 100 ml of 9.8%(w/w) H_2SO_4 solution (d = 1 g/ml) then :
 - (A) concentration of solution remains same
- (B) volume of solution become 200 ml
- (C) mass of H₂SO₄ in the solution is 98 g
- (D) mass of H₂SO₄ in the solution is 19.6 g
- **21.** Equal volume of 0.1M NaCl and 0.1M FeCl₂ are mixed with no change in volume due to mixing. Which of the following will be true for the final solution. (No precipitation occurs). Assume complete dissociation of salts and neglect any hydrolysis.
 - (A) $[Na^+] = 0.05 M$
- (B) $[Fe^{2+}] = 0.05M$
- (C) $[CI^{-}] = 0.3M$
- (D) $[CI^{-}] = 0.15M$

PART - IV : COMPREHENSION

Read the following comprehension carefully and answer the questions.

Comprehension #1

A chemist decided to determine the molecular formula of an unknown compound. He collects following information :

- (I) Compounds contains 2: 1 'H' to 'O' atoms(number of atoms).
- (II) Compounds has 40% C by mass
- (III) Molecular mass of the compound is 180 g
- (IV) Compound contains C, H and O only.
- 1. What is the % by mass of oxygen in the compound
 - (A) 53.33%
- (B) 88.88%
- (C) 33.33%
- (D) None of these

- 2. What is the empirical formula of the compound
 - (A) CH₃O
- (B) CH₂O
- (C) C_2H_2O
- (D) CH₃O₂
- 3. Which of the following could be molecular formula of compound
 - (A) $C_6H_6O_6$
- (B) C₆H₁₂O₆
- (C) $C_6H_{14}O_{12}$
- (D) C₆H₁₄O₆

Comprehension # 2

According to the Avogadro's law, equal number of moles of gases occupy the same volume at identical condition of temperature and pressure. Even if we have a mixture of non-reacting gases then Avogadro's law is still obeyed by assuming mixture as a new gas.

Now let us assume air to consist of 80% by volume of Nitrogen (N_2) and 20% by volume of oxygen (O_2). If air is taken at STP then its 1 mol would occupy 22.4 L. 1 mol of air would contain 0.8 mol of N_2 and 0.2 mol of O_2 hence the mole fractions of N_2 and O_2 are given by $X_{N_2} = 0.8$, $X_{O_2} = 0.2$.

- **4.** Volume occupied by air at NTP containing exactly 11.2 g of Nitrogen :
 - (A) 22.4 L
- (B) 8.96 L
- (C) 11.2 L
- (D) 2.24 L
- **5.** If air is treated as a solution of O_2 and N_2 then % W/W of oxygen is :
 - (A) $\frac{10}{9}$
- (B) $\frac{200}{9}$
- (C) $\frac{700}{9}$
- (D) $\frac{350}{9}$

- **6.** Density of air at NTP is:
 - (A) 1 g/L
- (B) $\frac{9}{7}$ g/L
- (C) $\frac{2}{7}$ g/L
- (D) can't be determined

Comprehension #3

In chemistry, oxidation and reduction are taken as two mutually exclusive events. For example, if life is oxidation then death is taken as reduction, taking off a flight is oxidation then standing would be reduction and so many other. In brief it is used as redox in chemical science.

There are so many conceptual facts regarding redox such as adding oxygen or oxygenation, removing hydrogen or dehydrogenation, removing electron or dielectronation are fixed for oxidation and their corresponding antonyms would be reduction processes. Simple way of judging whether a monatomic species has under gone oxidation or reduction is to note if the charge number of species has changed. It is possible to assign to an atom in polyatomic species an operative charge number called their oxidation number or state. (O.N. or O.S.). There is no standard symbol for this quantity so we say it is φ. An O.N. is assigned to an element in a compound by assuming that it is present as ion with a characteristic charge for instance oxygen is present as O(-II) and fluorine as F(-I) and some time it may be hypothetical also. For example

In continuation to our study, species promoting oxidation are named as oxidant and those promoting reduction are termed as reductant. At the same time their equivalent weights is the ratio of their molecular weight and change is O. N. $(\Delta \phi)$ involving one molecule/formula unit of the reactant i.e., molecular weight divided by number of electrons lost or gained by one molecule/formula during their respective action.

Based on the above discussion answer the following objective question having one best answer.

7. Which corresponds to oxidation action

$$(A) \phi = 0$$

(B)
$$\Delta \phi = 0$$

(C)
$$\Delta \phi > 0$$

(D)
$$\Delta \phi < 0$$

A compound contain P(II), Q(V) R(-II). The possible formula of the compound is 8.

(A) PQR₂

(B)
$$Q_2(PR_3)_2$$

(C)
$$P_3[QR_4]_2$$

(D)
$$P_3(Q_4R)_2$$

A compound has θ number of carbon, ϕ number of hydrogen and ψ number of oxygen their equation of 9. finding oxidation number (x) of carbon will be

(A)
$$w^3 + 4x\theta^2 + \phi = 0$$

(B)
$$x\theta + \phi - 2\psi = 0$$

$$(A) \ \psi^3 + 4x\theta^2 + \phi = 0 \qquad (B) \ x\theta + \phi - 2\psi = 0 \qquad (C) \ \theta x + \frac{\phi}{x} - \frac{2\psi}{3} = 0 \quad (D) \ \text{none of these}$$

Comprehension #4

The concentrations of solutions can be expressed in number of ways; viz: mass fraction of solute (or mass percent), Molar concentration (Molarity) and Molal concentration (molality). These terms are known as concentration terms and also they are related with each other i.e. knowing one concentration term for the solution, we can find other concentration terms also. The definition of different concentration terms are given below:

Molarity: It is number of moles of solute present in one litre of the solution. Molality: It is the number of moles of solute present in one kg of the solvent

moles of solute Mole Fraction = moles of solute + moles of solvent

If molality of the solution is given as 'a' then mole fraction of the solute can be calculated by

Mole Fraction =
$$\frac{a}{a + \frac{1000}{M_{solvent}}}; = \frac{a \times M_{solvent}}{(a \times M_{solvent} + 1000)}$$

where a = molality and M_{solvent} = Molar mass of solvent

We can change: Mole fraction ↔ Molality ↔ Molarity

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

Mole Concept

10. 60 g of solution containing 40% by mass of NaCl are mixed with 100 g of a solution containing 15% by mass NaCl. Determine the mass percent of sodium chloride in the final solution.

(A) 24.4%

(B) 78%

(C) 48.8%

(D) 19.68%

11. What is the molality of the above solution.

(A) 4.4 m

(B) 5.5 m

(C) 24.4 m

(D) none

12. What is the molarity of solution if density of solution is 1.6 g/ml

(A) 5.5 M

(B) 6.67 M

(C) 2.59 M

(D) none

Comprehension #5

Answer Q.13, Q.14 and Q.15 by appropriately matching the information given in the three columns of the following table.

Salt and water is formed by acid-base neutralisation reaction. If ratio of moles of acid & base taken is not similar to the ratio of their stoichiometric coefficient, then one of the component is limiting reagent. Assume no dissociation of water in following reactions. (Base is 80% pure only, take impurity present as inert & non electrolytic) (Molecular mass of Cs = 133, I = 127, Rb = 85.5, Sr = 88)

	Column-1	Column-2			Column-3
(1)	CsOH + HI → CsI + H ₂ O 37.5 g in 500 mL 500mL of 0.8M	(i)	Acid is limiting reagent	(P)	Molarity of H ⁺ in resulting solution = 0.2M
(II)	RbOH + HNO ₃ → RbNO ₃ + H ₂ O 51.25 g in 500 mL 500 mL of 0.2M	(ii)	Base is limiting reagent	(Q)	Molarity of cation in resulting solution = 0.4M
(III)	$Sr(OH)_2 + H_2SO_4 \longrightarrow SrSO_4 + 2H_2O$ 61 g in 500 mL 500 mL of 0.8M	(iii)	Molarity of cation in resulting solution = 0.8M	(R)	Molarity of cation in resulting solution = 1.6M
(IV)	Ba(OH) ₂ + 2HBr → BaBr ₂ + 2H ₂ O 342 g in 500 mL 500 mL of 6.4M	(iv)	Molarity of anion in resulting solution = 3.2M	(S)	Molarity of anion in resulting solution = 0.4 M

13. Select correct combination for the resulting basic solution.

(A) (I) (iii) (S)

(B) (I) (iv) (R)

(C) (II) (i) (Q)

(D) (III) (ii) (S)

14. Select correct combination for the resulting acidic solution.

(A) (I) (iii) (S)

(B) (I) (iv) (S)

(C) (I) (ii) (P)

(D) (II) (i) (R)

15*. Select incorrect combination(s)

(A) (I) (ii) (P)

(B) (II) (i) (R)

(C) (IV) (iv) (R)

(D) (III) (ii) (S)

Exercise-3

PART - I: JEE (ADVANCED) / IIT-JEE PROBLEMS (PREVIOUS YEARS)

- * Marked Questions may have more than one correct option.
- 1. Amongst the following, the pair having both the metals in their highest oxidation state is:

[JEE 2004, 3/84]

(A) $[Fe(CN)_6]^{3-}$ and $[Co(CN)_6]^{3-}$

(B) CrO₂Cl₂ and MnO₄⁻

(C) TiO₂ and MnO₂

(D) $[MnCl_4]^{2-}$ and $[NiF_6]^{2-}$

2. Paragraph for Question Nos. (i) to (iii)

Chemical reactions involve interaction of atoms and molecules. A large number of atoms/molecules (approximately 6.023×10^{23}) are present in a few grams of any chemical compound varying with their atomic/molecular masses. To handle such large numbers conveniently, the mole concept was introduced. This concept has implications in diverse areas such as analytical chemistry, biochemistry, electrochemistry and radiochemistry. The following example illustrates a typical case, involving chemical / electrochemical reaction, which requires a clear understanding of the mole concept.

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

A 4.0 molar aqueous solution of NaCl is prepared and 500 mL of this solution is electrolysed. This leads to the evolution of chlorine gas at one of the electrodes (atomic mass: Na = 23, Hg = 200; 1 Faraday = 96500 coulombs).

**[At the anode : $2CI^- \rightarrow CI_2 + 2e^-$ At the cathode : $Na^+ + e^- \rightarrow Na$

Na + Hg → NaHg (sodium amalgam)]

** (These reactions were not present in IIT-JEE paper)

(i) The total number of moles of chlorine gas evolved is :

[JEE-2007, 4/162]

(A) 0.5

(B) 1.0

(C) 2.0

(D) 3.0

(ii) If the cathode is a Hg electrode, the maximum weight (g) of amalgam formed from this solution is:

[JEE-2007, 4/162]

(A) 200

(B) 225

(C) 400

(D) 446

(iii) The total charge (coulombs) required for complete electrolysis is :

[JEE-2007, 4/162]

(A) 24125

(B) 48250

(C) 96500

(D) 193000

- A student performs a titration with different burettes and finds titre values of 25.2 mL, 25.25 mL, and 25.0 mL. The number of significant figures in the average titre value is : [JEE 2010, 3/163]
- 4. The difference in the oxidation numbers of the two types of sulphur atoms in $Na_2S_4O_6$ is

[JEE 2011, 4/180]

- 5. Reaction of Br₂ with Na₂CO₃ in aqueous solution gives sodium bromide and sodium bromate with evolution of CO₂ gas. The number of sodium bromide molecules involved in the balanced chemical equation is [JEE 2011, 4/180]
- 6. Dissolving 120 g of urea (mol. wt. 60) in 1000 g of water gave a solution of density 1.15 g/mL. The molarity of the solution is:

 [JEE 2011, 3/160]

(A) 1.78 M

(B) 2.00 M

(C) 2.05 M

(D) 2.22 M

7. 29.2% (w/w) HCl stock solution has a density of 1.25 g mL⁻¹. The molecular weight of HCl is 36.5 g mol⁻¹. The volume (mL) of stock solution required to prepare a 200 mL solution of 0.4 M HCl is :

[JEE 2012, 4/136]

8.* For the reaction : $\Gamma + ClO_3^- + H_2SO_4 \longrightarrow Cl^- + HSO_4^- + I_2$

The correct statement(s) in the balanced equation is/are:

[JEE(Advanced) 2014, 3/120]

- (A) Stoichiometric coefficient of HSO₄ is 6.
- (B) lodide is oxidized.
- (C) Sulphur is reduced.
- (D) H₂O is one of the products.
- 9. A compound H_2X with molar weight of 80 g is dissolved in a solvent having density of 0.4 g ml⁻¹. Assuming no change in volume upon dissolution, the **molality** of a 3.2 molar solution is

[JEE(Advanced) 2014, 3/120]

10. The mole fraction of a solute in a solution is 0.1. At 298 K, molarity of this solution is the same as its molality. Density of this solution at 298 K is 2.0 g cm⁻³. The ratio of the molecular weights of the solute

and solvent, $\left(\frac{\text{MW}_{\text{solute}}}{\text{MW}_{\text{solvent}}}\right)$, is

[JEE(Advanced) 2016, 3/124]

11. The order of the oxidation state of the phosphorus atom in H₃PO₂, H₃PO₄, H₃PO₃, and H₄P₂O₆ is [JEE(Advanced) 2017, 3/122]

(A) $H_3PO_4 > H_3PO_2 > H_3PO_3 > H_4P_2O_6$

(B) $H_3PO_4 > H_4P_2O_6 > H_3PO_3 > H_3PO_2$

(C) $H_3PO_2 > H_3PO_3 > H_4P_2O_6 > H_3PO_4$

(D) $H_3PO_3 > H_3PO_2 > H_3PO_4 > H_4P_2O_6$

12. The Mole fraction of urea in an aqueous urea solution containing 900 g of water is 0.05. If the density of the solution is 1.2 g/cm³, the molarity of urea solution is _____`. [JEE(Advanced) 2019, 3/124] (Given data: Molar masses of urea and water are 60 g mol⁻¹ and 18 g mol⁻¹, respectively)

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

Toll Free: 1800 258 5555 | CIN: U80302RJ2007PLC024029

ADVMOL - 42

ADVMOL - 43

PART - II : JEE (MAIN) ONLINE PROBLEMS (PREVIOUS YEARS)

1.	Dissolving 120 g of a g/mL. The molarity of t (1) 1.00 M			gave a solution of density 1.12 2014 Online (09-04-14), 4/120] (4) 4.00 M
2.	The amount of oxygen (1) 115.2 g	in 3.6 moles of water is (2) 57.6 g	: [JEE(Main) (3) 28.8 g) 2014 Online (09-04-14), 4/120] (4) 18.4 g
3.			molecular formula of the	ass) of hydrogen. The density of compound is: 2014 Online (11-04-14), 4/120]
	(1) NH ₂	(2) N ₃ H	(3) NH ₃	(4) N ₂ H ₄
4.		formed upon mixing 100 137, Cl = 35.5, S = 32, I	H = 1 and O = 16) :	ution with 50 mL of 9.8% H ₂ SO ₄ 2014 Online (12-04-14), 4/120]
	(1) 23.3 g	(2) 11.65 g	(3) 30.6 g	(4) 33.2 g
5.	Amongst the following	, identify the species with	h an atom in +6 oxidation	
	(1) [MnO ₄] ⁻	(2) [Cr(CN) ₆] ³⁻	(3) Cr ₂ O ₃) 2014 Online (19-04-14), 4/120] (4) CrO ₂ Cl ₂
6.	Consider the reaction			
	Which of the following	$n_{(aq)}^{4+} + H_2O_{(I)} \rightarrow Sn_{(aq)}^{2+} + H_3O_{(I)}$ statements is correct ?	[JEE(Main)) 2014 Online (19-04-14), 4/120]
	(3) H ₂ SO ₃ is the reduc	g agent because it under ing agent because it und ing agent because it und	dergoes oxidation	
7.	How many electrons a	re involved in the followi		
	Cr ₂ O-2- + F ₀ 2+	+ + C ₂ O ₄ 2> Cr ³⁺ + Fo ³⁺	[JEE(Main]) 2014 Online (19-04-14), 4/120]
	(1) 3	$f + C_2O_4^{2-} \rightarrow Cr^{3+} + Fe^{3+}$ (2) 4	(3) 6	(4) 5
8.	removed. The dried sa amu, Cl = 35.5 amu)	ample weighed 52 g. The	e formula of the hydrated	until all the water of hydration is d salt is: (atomic mass, Ba = 137 2015 Online (10-04-15), 4/120] (4) BaCl ₂ + 2H ₂ O
9.	A + 2B + 3C ← AB ₂ 6			
		C are 60 and 80 amu, re	espectively, the atomic m	3 4.8 g of compound AB ₂ C ₃ . If the leass of B is 2015 Online (11-04-15), 4/120] (4) 40 amu
10.	The non-metal that do	es not exhibit positive ox		
	(1) Fluorine	(2) Oxygen	[JEE(Main) (3) Chlorine	2016 Online (09-04-16), 4/120] (4) lodine
11.		ires 25 L of oxygen for and pressure, the alkane (2) Isobutane		a. If all volumes are measured at 2016 Online (09-04-16), 4/120] (4) Propane
12.		contains C, H and S. The weight of $S = 32$ amu) (2) 400 g mol ⁻¹		eight of the compound containing 2016 Online (09-04-16), 4/120] (4) 600 g mol ⁻¹
13.			uming 100% conversion)	.5 g arsenic acid is treated with
	(1) 0.25 mol	(2) 0.125 mol	[JEE(Main) (3) 0.333 mol	2016 Online (09-04-16), 4/120] (4) 0.50 mol
			. ,	ty Mall, Jhalawar Road, Kota (Raj.) – 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

-111010	/ Concopt			,				
14.	Excess of NaOH (a of FeCl ₃ (aq) is:	aq) was added to 100 mL	* **	g into 2.14 g of Fe(OH) ₃ . The molarity [/ain] 2017 Online (08-04-17), 4/120]				
	(Given molar mass	of Fe = 56 g mol^{-1} and m	olar mass of CI = 35.	5 g mol ⁻¹)				
	(1) 1.8 M	(2) 0.2 M	(3) 0.6 M	(4) 0.3 M				
15.	The pair of compou	unds having metals in their	r highest oxidation sta	ate is :				
			[JEE(M	ain) 2017 Online (08-04-17), 4/120]				
	(1) MnO ₂ and CrO ₂	Cl ₂	(2) [FeCl ₄] ⁻ and ((2) [FeCl ₄] ⁻ and Co ₂ O ₃				
	(3) [Fe(CN) ₆] ³⁻ and	[Cu(CN) ₄] ²⁻	(4) [NiCl ₄] ²⁻ and	[CoCl ₄] ²⁻				
16.		and precipitated as AgCI.	. The mass of AgCl	NaCl with a loss of 0.16 g of oxygen. The residue is ne mass of AgCl (in g) obtained will be : (Given: Molar [JEE(Main) 2018 Online (15-04-18), 4/120] (3) 0.41 (4) 0.48				
17.	chlorine atom only	phydrocarbon has 3.55 %; chlorine atoms present ir 35.5 u; Avogadro constar	n 1 g of chlorohydrocant = 6.023×10^{23} mol-	⁻¹)				
	$(1) 6.023 \times 10^9$	(2) 6.023×10^{23}		(4) 6.023 × 10 ²⁰				
18.	A solution of sodium that solution in mole (1) 16			m of water. The molality of Na ⁺ ions in in 2019 Online (09-01-19)S1, 4/120] (4) 4				
19.	For the following re	eaction, the mass of water	produced from 445 g	of C ₅₇ H ₁₁₀ O ₆ is :				
	2C ₅₇ H ₁₁₀ O ₆	$_{6}(s) + 163O_{2}(g) \longrightarrow 114$	$4CO_2(g) + 110H_2O(l)$					
	(4) 400 ~	(0) 445 ~	_ `	Main) 2019 Online (09-01-19), 4/120]				
	(1) 490 g	(2) 445 g	(3) 495 g	(4) 890 g				
20.	The amount of sugar (C ₁₂ H ₂₂ O ₁₁) required to prepare 2 L of its 0.1 M aqueous solutions is: [JEE(Main) 2019 Online (10-01-19)S2, 4/120]							
	(1) 68.4 g	(2) 34.2 g	(3) 17.1 g	(4) 136.8 g				
21.		und is estimated through [1 mole of nitrogen gas. The	e formula of the comp	vas found to evolve 6 moles of CO ₂ , 4 pound is: in) 2019 Online (11-01-19)S1, 4/120]				
	(1) C ₆ H ₈ N	(2) $C_6H_8N_2$	(3) C ₁₂ H ₈ N ₂	(4) C ₁₂ H ₈ N				
22.	T = 298.15 K and	•	ume of CO ₂ is 25.0 blet ? [Molar mass of	exalic acid releases 0.25 ml of CO ₂ at L under such condition, what is the NaHCO ₃ = 84 g mol ⁻¹] sin) 2019 Online (11-01-19)S1, 4/120]				
	(1) 0.84	(2) 33.6	(3) 8.4	(4) 16.8				
23.				um hydroxide solution. The amount of ain) 2019 Online (12-01-19)S1, 4/120] (4) 20 g				
24.	8 g of NaOH is dis the solution respec (1) 0.2, 11.11			n solution and molality (in mol kg ⁻¹) of in) 2019 Online (12-01-19)S2, 4/120] (4) 0.2, 22.20				
25.	The percentage co	mposition of carbon by mo						
	(1) 80%	(2) 20%	[JEE(Ma (3) 75%	in) 2019 Online (08-04-19)\$2, 4/120] (4) 25%				
26.	For a reaction, N ₂ (reaction mixtures.	g) + $3H_2(g) \rightarrow 2NH_3(g)$; id	lentify dihydrogen (H ₂	$(9)^{-1}$ as a limiting reagent in the following $(9)^{-1}$ and $(9)^{-1}$ and $(9)^{-1}$ and $(9)^{-1}$ are $(9)^{-1}$ are $(9)^{-1}$ and $(9)^{-1}$ are $(9)^{-1}$ and $(9)^{-1}$ are $(9)^{-1}$ are $(9)^{-1}$ and $(9)^{-1}$ are $(9)^{-1}$ are $(9)^{-1}$ and $(9)^{-1}$ are $(9)^{-1}$ are $(9)^{-1}$ are $(9)^{-1}$ and $(9)^{-1}$ are $(9)^{-1}$ and $(9)^{-1}$ are $(9)^{-1}$ and $(9)^{-1}$ are $(9)^{-1}$ and $(9)^{-1}$ are				

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

Mole	Conce	pt
------	-------	----

27.	What would be the n mol ⁻¹)	nolality of 20% (mass/mass/mass/mass/mass/mass/mass/mass		ion of KI? (molar mass of KI = 166 g ain) 2019 Online (09-04-19)S2, 4/120]
	(1) 1.35	(2) 1.08	(3) 1.48	(4) 1.51
28.		ospheric pressure, 10 m $_{ m nL}$ of CO $_{ m 2}$ is formed. The	formula of the hydr	n required 55 mL of O ₂ for complete ocarbon is: ain) 2019 Online (10-04-19)\$1, 4/120]
	(1) C ₄ H ₇ Cl	(2) C ₄ H ₆	(3) C ₄ H ₁₀	(4) C ₄ H ₈
29.	(Given atomic mass :	t of $O_2(g)$ consumed per Fe = 56, O = 16, Mg = 2	4, P = 31, C= 12, H [JEE(M a	= 1) ain) 2019 Online (10-04-19)S2, 4/120]
	(1) 4 Fe(s) + $3O_2(g)$ – (3) $C_3H_8(g)$ + $5O_2(g)$ –	• •	(2) $2Mg(s) + O_2(s)$ (4) $P_4(s) + 5O_2(g)$	
30.	•	roportionation reaction is $6H^+ \rightarrow 2Mn^{2+} + 5I_2 + 8H_2$ $O_4 + MnO_2 + O_2$		
31.	U	s of B(M _B) in kg mol ⁻¹ are d M _B = 5 × 10 ⁻³	$=$ [JEE(Max) (2) $M_A = 25 \times 10^{\circ}$	gh 300 \times 10 ⁻³ kg. The molar mass of hin) 2019 Online (12-04-19)S1, 4/120] $^{-3}$ and $M_B = 50 \times 10^{-3}$ $^{-3}$ and $M_B = 25 \times 10^{-3}$
32.	The mole fraction of aqueous solution is $(1) 13.88 \times 10^{-3}$	a solvent in aqueous so (2) 13.88		5 0.8. The molality (in mol kg ⁻¹) of the hin) 2019 Online (12-04-19)S1, 4/120] $(4)13.88 \times 10^{-1}$
33.	25 g of an unknown hydrocarbon contains (1) 22 g of carbon and (3) 20 g of carbon and	: d 3g of hydrogen	[JEE(Ma (2) 24 g of carbo	f CO ₂ and 9 g of H ₂ O. This unknown hin) 2019 Online (12-04-19)S2, $4/120$] n and 1g of hydrogen n and 7g of hydrogen
34.	Oxidation number of p	ootassium in K ₂ O, K ₂ O ₂ a		ly, is: ain) 2020 Online (07-01-20)S1, 4/120]
	(1) +1, +2 and +4	(2) +1, +4 and +2	(3) +1, +1 and +	1 (4) +2, +1 and + $\frac{1}{2}$
35.	(NaOH) can be neutra	alized by :	[JEE(Ma	ea (NH ₂ CONH ₂) with sodium hydroxide eain) 2020 Online (07-01-20)S2, 4/120] N HCl (4) 100 ml of 0.2 N HCl
36.	(1) reaction of [Co(H₂(2) formation of ozone	nong the following is : O)6]Cl3 with AgNO3 e from atmospheric oxygo itrogen with dioxygen at	en in the presence o	ain) 2020 Online (07-01-20)S2, 4/120] of sunlight ion of H_2SO_4 with NaOH
37.		otahydrate is used to fo O ppm of iron in 100 kg o	f wheat is	n. The amount (in grams) of the salt
	Atomic weight : Fe =	55.85 ; S = 32.00 ; O = 1	- '	nin) 2020 Online (08-01-20)S1, 4/120]
38.	NaClO₃ is used, ever 492L at 1 atm, 300 k consumption of a per	in spacecrafts, to produ	uces O ₂ .The daily c NaClO ₃ , in grams, i [JEE(M a	onsumption of pure O ₂ by a person is is required to produce O ₂ for the daily ain) 2020 Online (08-01-20)S2, 4/120] mol ⁻¹ K ⁻¹
39.	·	annot act both as oxidisir	[JEE(Ma	ent is : ain) 2020 Online (09-01-20)S1, 4/120]
	(1) HNO ₂	(2) H ₃ PO ₄	(3) H ₂ SO ₃	(4) H ₂ O ₂
40.		D₃ in a sample which h llar Weight of HNO₃ = 63		mL and mass percentage of 63% is ain) 2020 Online (09-01-20)S1, 4/120]
41.	10.30 mg of O ₂ disso is	lved into a liter of sea wa		g/mL. The concentration of O ₂ in ppm ain) 2020 Online (09-01-20)S2, 4/120]

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

Answers

EXERCISE - 1

PART - I

A-1. (i) 22.4 L (ii) 7.466 L

A-2. 5.40

B-1. % $CO_2 = 40\%$.

B-2.

1217 g mole⁻¹

CH₄ B-3.

C-1. 2.16 g C-2. 42 g

C-3.

(i) 0.64 g,

(ii) 1.64 g,

(iii) 0.993 g.

D-1.

(i) 1/6 mole (ii) 5/12 mole

D-2.

F-1.

(a) 0.04 mole

(b) 0.005 mole

E-1. $\frac{10}{3}$ mole

E-2.

m = 1.4 g

E-3. 66.4 %.

E-4. (c) +6

(d) +2

33.33 %

(e) + 8/3

(a) +3(f) +3

(b) +5(a) +1

(h) +2

(i) 200/93 = 2.15

F-2.

 $\overset{(+7)}{\mathsf{KMnO}_4} \,\, + \, \overset{(-1)}{\mathsf{KCI}} \,\, + \, \mathsf{H}_2\mathsf{SO}_4 \longrightarrow \overset{(+2)}{\mathsf{MnSO}_4} \,\, + \, \mathsf{K}_2\mathsf{SO}_4 \, + \, \mathsf{H}_2\mathsf{O} \, + \, \overset{(0)}{\mathsf{CI}_2} \,\, .$ (a)

 KMnO_4 (oxidant) \longrightarrow MnSO_4 (reduction half).

 KCI (reductant) \longrightarrow CI_2 (oxidation half).

(b)

 $FeCl_2$ (reductant) \longrightarrow $FeCl_3$ (oxidation half).

 $H_2\overset{(-1)}{O_2} \mbox{ (oxidant)} \longrightarrow H_2O^{2-} \mbox{ (reduction half)}.$

(c)

 $\overset{(0)}{\text{Cu}} + \overset{(+5)}{\text{HNO}_3} \text{ (dil)} \longrightarrow \overset{2+}{\text{Cu}} \text{ (NO}_3)_2 + \text{H}_2\text{O} + \overset{2+}{\text{NO}} \text{.}$

Cu (reductant) \longrightarrow Cu (NO₃)₂ (oxidation half).

 HNO_3 (oxidant) \longrightarrow NO (reduction half).

(d)

 $Na_2HAsO_3 + KBrO_3 + HCI \longrightarrow NaCI + KBr + H_3AsO_4$

 Na_2HAsO_3 (reductant) $\longrightarrow H_3AsO_4$ (oxidation half).

 $KBrO_2$ (oxidant) $\longrightarrow KBr$.

(e)

 $\stackrel{0}{\mathrm{I}_{2}} \,\, + \, \mathrm{Na_{2}} \stackrel{+2}{\mathrm{S}_{2}} \stackrel{-2}{\mathrm{O}_{3}} \, \longrightarrow \,\, \mathrm{Na_{2}} \stackrel{+\, 2\, .5}{\mathrm{S}_{4}} \stackrel{-\, 1}{\mathrm{O}_{6}} \, + \, \stackrel{-1}{\mathrm{NaI}} \, .$

 $\stackrel{\scriptscriptstyle{0}}{\mathrm{I}_{2}}$ (oxidant) \longrightarrow NaI (reduction half).

 $Na_2 \stackrel{+2}{S_2}O_3$ (reductant) $\longrightarrow Na_2 \stackrel{+2.5}{S_4}O_6$ (oxidation half).

G-1.

(a) $7IO_3^-$ (aq) + 6Re(s) + $3H_2O \longrightarrow 6ReO_4^-$ (aq) + $7I^-$ (aq) + $6H^+$

(b) $S_4O_6^{2-}(aq) + 6 Al(s) + 20 H^+ \longrightarrow 4H_2S(aq) + 6Al^{3+}(aq) + 6H_2O$

(c) $6S_2O_3^{2-}(aq) + Cr_2O_7^{2-}(aq) + 14 H^+ \longrightarrow 3S_4O_6^{2-}(aq) + 2Cr^{3+}(aq) + 7H_2O_7^{2-}(aq) + 14 H^+ \longrightarrow 3S_4O_6^{2-}(aq) + 2Cr^{3+}(aq) + 3C_4O_8^{2-}(aq) + 3C_4O_8^{2-}(aq)$

(d) $14CIO_3^-$ (aq) + $3As_2S_3$ (s) + $18H_2O \longrightarrow 14CI^-$ (aq) + $6H_2AsO_4^-$ (aq) + $9HSO_4^-$ (aq) + $15H^+$

(e) $26H^+ + 30HSO_4^-$ (aq) $+ As_4(s) + 10 Pb_3O_4(s) \longrightarrow 30 PbSO_4(s) + 4H_2AsO_4^-$ (aq) $+ 24H_2O_4$

(f) $3HNO_2(aq) \longrightarrow NO_3^- + 2NO(q) + H_2O + H^+$

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

Mole Concept

- G-2. (a) $TI_2O_3(s) + 4NH_2OH(aq) \longrightarrow 2TIOH(s) + 2N_2(g) + 5H_2O$
 - (b) $3C_4H_4O_6^2$ -(aq) + $5CIO_3$ -(aq) + 18OH- \longrightarrow 12 CO_3^2 -(aq) + 5 CI-(aq) + $15H_2O$
 - (c) $4H_2O_2(aq) + Cl_2O_7(aq) + 2OH^- \longrightarrow 2ClO_2^-(aq) + 4O_2(q) + 5H_2O$

 - (d) $11AI(s) + 3BiONO_3(s) + 21H_2O + 11OH^- \longrightarrow 3Bi(s) + 3NH_3(aq) + 11AI(OH)_4^- (aq)$ (e) $[Cu(NH_3)_4]^{2+}$ (aq) $+ S_2O_4^{2-}$ (aq) $+ 4OH^- \longrightarrow 2SO_3^{2-}$ (aq) $+ Cu(s) + 4NH_3(aq) + 2H_2O$
 - (f) $3Mn(OH)_2(s) + 2MnO_4(aq) \longrightarrow 5MnO_2(s) + 2H_2O + 2OH^-$
- H-1. 5.6 a
- H-2. 0.168 m
- H-3. (i) 2.17 m (ii) 6.25 M
- (iii) 0.0376
- (iv) 0.0826
- (v) 8% (vi) 16.67%
- (vii) 25%

- I-1. 8 M
- I-2. 700 ml.
- I-3. 2.33 L

- I-4. (i) 36.25%,
- (ii) 72.5%,
- (iii) 14.2 m.

PART - II

- A-1. (B)
- A-2.
- (B)
- B-1. (B)
- B-2. (B)
- B-3. (B)

- B-4. (D)
- C-1.
- (B)
- C-2. (C)

(A)

(A)

(B)

- C-3. (C)
- C-4. (C)

- C-5. (B)
- C-6.
- (C)
- D-1.
- (A) D-2.
- (C) D-3.

- D-4. (A)
- E-1.

F-2.

H-1.

(B)

(D)

E-2. (A)

E-7.

H-2.

- E-3. (A) E-8. (A)
- (A) E-9. (C)

E-4.

G-4.

- E-5. (B) F-1. (D)
- E-6. (C)
 - (C)
- F-3. (B)
- F-4. (A)
- F-5. (B)

- F-6. (C)
- (C) G-1. (C)
- G-2. (A)
- G-3. (C) H-3. (C)
- H-4. (B)

(B)

- G-5. (D) H-5. (A)
- (C) H-6.
- H-7. (B)
- H-8. (B)

- I-2. (C)
- I-3.
- **I-4**. (D)

I-5.

I-1. (A)

- PART III
- 1. (A - q,s); (B - q, r); (C - p, q, r); (D - p, s)
- 2.
 - (A p,q,r,s; (B p,s; (C q,r); (D q))

(A)

(A - p,s); (B - s); (C - p,q); (D - r)3.

EXERCISE - 2

PART - I

1. (C)

(C)

(D)

(A)

- 2.
- (A)
- 3. (A)
- 4.
 - (A)

(D)

(D)

60

11

5. (A)

- 6.
- 7.
- (A)
- 8. (B)

13.

9.

19.

10. (B)

11.

16.

- 12. 17.
- (A) (D)
- 18. (B)
- 14. (A)
- 15. (A)

(A)

2

42

21. (C)

PART - II

(A)

- 1. 5
- 2.
 - 78

10

- 3.
 - 4
- 4.

5.

20.

- 28 6.
- 7.
- 4
- 50
- 9.

19.

10.

- 11. 10
- 12. 8
- 8.
- 14.
- 27

- 16.
- 18
- 17.
- 13. 18.
- 2 2
- 8
- 15.

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

Toll Free: 1800 258 5555 | CIN: U80302RJ2007PLC024029

ADVMOL - 47

Mol	a Concept /								————	
Mole Concept PART - III										
1.	(ABC)	2.	(AB)	3.	(AC)	4.	(BCD)	5.	(ABC)	
6.	(BC)	7.	(BD)	8.	(AC)	9.	(ABD)	10.	(AC)	
11.	(ABCD)	12.	(ABC)	13.	(BC)	14.	(CD)	15.	(ABC)	
16.	(ACD)	17.	(ACD)	18.	(ACD)	19.	(AB)	20.	(ABD)	
21.	(ABD)									
	PART - IV									
1.	(A)	2.	(B)	3.	(B)	4.	(C)	5.	(B)	
6.	(B)	7.	(C)	8.	(C)	9.	(B)	10.	(A)	
11.	(B)	12.	(B)	13.	(C)	14.	(C)	15.	(BD)	
			E	XER	CISE - 3					
				PA	RT - I					
1.	(B)	2.	(i) (B)	(ii)	(D) (iii)	(D)		3.	3	
4.	5	5.	5	6.	(C)	7.	8 mL.	8.	(ABD)	
9.	8	10.	(9)	11.	(B)	12.	(2.98)			
				PA	RT - II					
1.	(2)	2.	(2)	3.	(4)	4.	(2)	5.	(4)	
6.	(3)	7.	(3)	8.	(4)	9.	(1)	10.	(1)	
11.	(4)	12.	(2)	13.	(2)	14.	(2)	15.	(3)	
16.	(4)	17.	(4)	18.	(4)	19.	(3)	20.	(1)	
21.	(2)	22.	(3)	23.	BONUS	24.	(2)	25.	(2)	
26.	(4)	27.	(3)	28.	(2)	29.	(1)	30.	(2)	
31.	(3)	32.	(2)	33.	(2)	34.	(3)	35.	(4)	
36.	(3)	37.	4.95 to 4.97	38.	2120.00 to 21	40.00		39.	(2)	

40.

14.00 to 14.00 **41.** 10.00 to 10.00

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) – 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in