

ASSIGNMENT

Course Code 19CSC204A

Course Name Logic Design

Programme B. Tech

Department Computer Science & Engineering

Faculty Faculty of Engineering Technology

Name of the Student SUBHENDU MAJI

Reg. No 18ETCS002121

Semester/Year $3^{RD} / 2019$

Course Leader/s Mr. Narasimha Murthy K. R. and Mr.

V. Deepak

i

D	eclaration S	Sheet	
SUBHENDU MAJI			
18ETCS002121			
B. Tech		Semester/Year	3 rd / 2019
19CSC204A			
Logic Design			
	То		
Mr. Narasimha Murthy K.	R. and Mr. V.	Deepak	
	SUBHENDU MAJI 18ETCS002121 B. Tech 19CSC204A Logic Design	SUBHENDU MAJI 18ETCS002121 B. Tech 19CSC204A Logic Design To	18ETCS002121 B. Tech Semester/Year 19CSC204A Logic Design

Declaration

The assignment submitted herewith is a result of my own investigations and that I have conformed to the guidelines against plagiarism as laid out in the Student Han dbook. All sections of the text and results, which have been obtained from other sources, are fully referenced. I understand that cheating and plagiarism constitute a breach of University regulations and will be dealt with accordingly.

Signature of the Student			Date	
Submission date stamp (by Examination & Assessment Section)				
Signature of the Cours	e Leader and date	Signature of the	Reviewe	er and date

Declaration Sheet Contents Marking Scheme		
Mar	king Scheme	4
Questi 1.1	ion No. 1	
1.2	Circuit design using Logisim	
1.3	Simulation of the designed circuit	
	Changes in the circuit if you had to implement it using only NAND gates	
-	ion No. 2 Introduction to the functionality of the circuit	
This	is a combinational circuit that generates 2's complement of a 4-bit input binary	
num	nber	17
2.2 (Circuit design using Logisim	17
2.3 9	Simulation of the designed circuit	18
2.4 (Changes in the circuit if you had to implement it using only XOR gates	19
Bibliog	graphy	20

	Faculty of Engineeri	ng and Technol	ogy
Ramaiah Universit	ry of Applied Sciences		
Department	Computer Science and Engineering	Programme	B. Tech. in CSE
Semester/Batch	3 rd Semester/2018		
Course Code	19CSC204A	Course Title	Logic Design
Course Leaders	Mr. Narasimha Murthy K. R. and Mr.	. V. Deepak	

			Marks		
ns				First	
Sections	Marki	ng Scheme	Max Marks	Examiner	Moderator
Sec				Marks	
	Α	Introduction	01		
⊣	В	Circuit Design	04		
ion	С	Simulation of Circuit	03		
Question	D	Circuit using NAND Gates	02		
Qu		Question 1 Max Marks	10		
	Α	Introduction	01		
7	В	Circuit Design	03		
ion	С	Simulation of Circuit	02		
Question	D	Circuit using Ex-OR Gates	04		
Qn		Question 2 Max Marks	10		

Component-1 (C) Assignment	First Examiner	Remarks	Moderator	Remarks
Question 1				
Question 2				
Marks (out of 20)				

Solution to Question No. 1:

1.1 Introduction to the functionality of the circuit

A calculator is a device that performs arithmetic operations on numbers. The simplest calculators can do only addition, subtraction, multiplication, and division.

We are taking two 2-bit binary number as input. And getting 4-bit binary numbers output.

From fig 1:

- $\bullet \quad A = A1.A0$
- B = B1.B0

And 2-bit selector lines **S1**. **S0** choose which operations to perform.

Selecto	Selector lines	
S1	SO SO	
0	0	addition
0	1	subtraction
1	0	multiplication
1	1	division

Fig 1 shows block diagram of adder, subtractor, multiplier and divider circuit.

Figure Number	Circuit Name	Inputs	Outputs
2	Adder	A1, A0 B1, B0	\$3, \$2, \$1, \$0
3	Subtractor	A1, A0 B1, B0	D3, D2, D1, D0
4	Multiplier	A1, A0 B1, B0	P3, P2, P1, P0
5	Divider	A1, A0 B1, B0	Q1, Q0 R1, R0

1.2 Circuit design using Logisim

Figure 1 combined circuit for all the operations

Figure 2 adder circuit using basic gates

Figure 3 subtraactor using basic gates

Figure 4 multiplier using basic gates

Figure 5 divider using basic gates

1.3 Simulation of the designed circuit

Adding A = 01 and B = 11, S = 00 which is giving output S = 0100.

Figure 6 simulation of adder (adding 1 and 3)

Subtracting A = 01 and B = 11, S = 01 which is giving output S = 1110.

Figure 7 simulation of subtractor (subtracting 1 and 3)

Multiplying A = 01 and B = 11, S = 10 which is giving output S = 0011.

Figure 8 simulation of multiplying (multiplying 1 and 3)

Dividing A = 01 and B = 11, S = 11 which is giving output Q = 00, R = 01.

Figure 9 simulation of divider (dividing 1 and 3)

1.4 Changes in the circuit if you had to implement it using only NAND gates

Figure 10 adder circuit using NAND gates

Figure 11 subtractor circuit using NAND gates

Figure 12 multiplier circuit using NAND gates

Figure 13 divider circuit using NAND gates

Solution to Question No. 2:

2.1 Introduction to the functionality of the circuit

This is a combinational circuit that generates 2's complement of a 4-bit input binary number. It takes $A\ (A3\ A2\ A1\ A0)$ as input and gives $Y\ (Y3\ Y2\ Y1\ Y0)$ which is 2's complement of A as output.

Equations:

- $Y3 = \sim A0 \sim A1 \sim A2 A3 + A2 \sim A3 + A1 \sim A3 + A0 \sim A3$
- $Y2 = \sim A0 \sim A1 A2 + A1 \sim A2 + A0 \sim A2$
- $Y1 = \sim A0 A1 + A0 \sim A1$
- Y0 = A0

2.2 Circuit design using Logisim

Figure 14 2's complement calculator using basic gates

2.3 Simulation of the designed circuit

In Fig 15,

We can see for A = 0110 we are getting Y = 1010, which is the 2's complement of A.

Figure 15 simulating 2's complement calculator

2.4 Changes in the circuit if you had to implement it using only XOR gates

Figure 16 2's complement calculator using XOR gate only.

0 0 0 0 0 0 0 0	0
0 0 0 1 1 0 0 0	-
	0
0 0 1 0 1 1 0 0	0
0 0 1 1 0 1 0 0	0
0 1 0 0 1 1 1 0	0
0 1 0 1 0 1 1 0	0
0 1 1 0 1 0 1 0	0
0 1 1 1 0 0 1 0	0
1 0 0 0 1 1 1 1	1
1 0 0 1 0 1 1 1	1
1 0 1 0 1 0 1 1	1
1 0 1 1 0 0 1 1	1
1 1 0 0 1 1 0 1	1
1 1 0 1 0 1 0 1	1
1 1 1 0 1 0 0 <u>1</u>	1
1 1 1 1 0 0 0 1	1

Figure 17 truth table of 2's complement

- Class notes / ppts
- https://circuit-diagramz.com/circuit-diagram-calculator-using-logic-gates/
- https://rosettacode.org/wiki/Four bit adder
- For Logisim files,
- Refer to: https://github.com/subhendu17620/RUAS-sem-03/tree/master/LD%20lab/assignment/logisim%20files