LÒGICA I LLENGUATGES

Curso 2022-23

Examen final de problemas

<u>Problema 4</u>. La siguiente gramática incontextual G genera una clase de instrucciones en un lenguaje de programación.

1.
$$S \longrightarrow \underline{do} Y \underline{while} (C)$$

$$2. Y \longrightarrow \{L\}$$

3.
$$L \longrightarrow L$$
; $id = E$

4.
$$L \longrightarrow \underline{id} = E$$

5.
$$E \longrightarrow E + T$$

6.
$$E \longrightarrow E - T$$

7.
$$E \longrightarrow T$$

8.
$$T \longrightarrow \underline{id}$$

9.
$$T \longrightarrow \underline{int}$$

10.
$$T \longrightarrow float$$

11.
$$C \longrightarrow E \iff E$$

12.
$$C \longrightarrow E < E$$

Se pide entonces:

(a) Dar una derivación en G para la palabra $\underline{do} \{\underline{id} = \underline{int} - \underline{float} + \underline{id} \; ; \; \underline{id} = \underline{id} - \underline{id} \; ; \; \underline{id} = \underline{float} \} \; while \; (\underline{id} - \underline{int} < \underline{id}).$

(1,5 puntos)

- (b) Siguiendo el método visto en clase, construir el autómata con pila M asociado a G. (2,5 puntos)
 - (c) Explicar por qué G no es una gramática LL(1).

(1 punto)

- (d) Aplicar las reglas de factorización y recursión a la gramática G. (2 puntos)
- (e) Construir la tabla de análisis de la gramática obtenida en (d). (3 puntos)

SOLUCIÓN:

- (a) $S \Rightarrow^1 \underline{do} Y \underline{while} (C) \Rightarrow^{12} \underline{do} Y \underline{while} (E < E) \Rightarrow^{7,8} \underline{do} Y \underline{while} (E < \underline{id}) \Rightarrow^6 \underline{do} Y \underline{while} (E T < \underline{id}) \Rightarrow^7 \underline{do} Y \underline{while} (T T < \underline{id}) \Rightarrow^{8,9} \underline{do} Y \underline{while} (\underline{id} \underline{int} < \underline{id}) \Rightarrow^3 \underline{do} \{L; \underline{id} = E\} \underline{while} (\underline{id} \underline{int} < \underline{id}) \Rightarrow^3 \underline{do} \{L; \underline{id} = E; \underline{id} = E\} \underline{while} (\underline{id} \underline{int} < \underline{id}) \Rightarrow^4 \underline{do} \{\underline{id} = E; \underline{id} =$
- (b) Tenemos que $M=(K,\Sigma,\Gamma,\Delta,q_0,F)$, donde el conjunto de los estados es $K=\{q_0,f\}$, el vocabulario de la cinta es $\Sigma=\{\underline{do},\underline{while},\underline{id},\underline{int},\underline{float},$ =,;,+,-,(,),<,<=,{,}}, el vocabulario de la pila es $\Gamma=\Sigma\cup V$ siendo $V=\{S,Y,L,E,T,C\}$, el estado inicial es q_0 , el único estado aceptador es f y Δ está formado por las siguientes transiciones:
 - 1. $((q_0, \lambda, \lambda), (f, S))$.
 - 2. $((f, \lambda, S), (f, \underline{do} \{Y\} \underline{while} (C)))$.
 - 3. $((f, \lambda, Y), (f, \{L\}).$
 - 4. $((f, \lambda, L), (f, L; \underline{id} = E)).$
 - 5. $((f, \lambda, L), (f, id = E))$.

- 6. $((f, \lambda, E), (f, E + T))$.
- 7. $((f, \lambda, E), (f, E T))$.
- 8. $((f, \lambda, E), (f, T))$.
- 9. $((f, \lambda, T), (f, \underline{id}))$.
- 10. $((f, \lambda, T), (f, \underline{int}))$.
- 11. $((f, \lambda, T), (f, float))$.
- 12. $((f, \lambda, C), (f, E \le E))$.
- 13. $((f, \lambda, C), (f, E < E))$.
- 14. $((f, \underline{do}, \underline{do}), (f, \lambda))$.
- 15. $((f, \underline{while}, \underline{while}), (f, \lambda)).$
- 16. $((f, \underline{id}, \underline{id}), (f, \lambda)).$
- 17. $((f, \underline{int}, \underline{int}), (f, \lambda))$.
- 18. $((f, float, float), (f, \lambda))$.
- 19. $((f, =, =), (f, \lambda))$.
- 20. $((f, ; , ;), (f, \lambda))$.
- 21. $((f, +, +), (f, \lambda))$.
- 22. $((f, -, -), (f, \lambda))$.
- 23. $((f, (, (), (f, \lambda)))$.
- 24. $((f,),),(f,\lambda)$.
- 25. $((f, \{, \{), (f, \lambda)).$
- 26. $((f, \}, \}), (f, \lambda)$).
- 27. $((f, <=, <=), (f, \lambda))$.
- 28. $((f, <, <), (f, \lambda))$.

- (c) La gramática G no es LL(1), porque hay conflictos al construir su tabla de análisis. Por ejemplo, las producciones $5,6,7\in \mathrm{TABLA}[E,\underline{id}]$, ya que $\underline{id}\in\mathrm{Primeros}(E+T),\,\underline{id}\in\mathrm{Primeros}(E-T)$ e $\underline{id}\in\mathrm{Primeros}(T)$.
- (d) Aplicando la regla de recursión, reemplazamos las producciones $L \longrightarrow L$; $\underline{id} = E$ y $L \longrightarrow \underline{id} = E$ por las producciones $L \longrightarrow \underline{id} = EL'$, $L' \longrightarrow ; \underline{id} = EL'$ y $L' \longrightarrow \lambda$.

Aplicando de nuevo la regla de recursión, reemplazamos las producciones $E \longrightarrow E + T, \ E \longrightarrow E - T \ y \ E \longrightarrow T$ por las producciones $E \longrightarrow TE', \ E' \longrightarrow +TE', \ E' \longrightarrow -TE' \ y \ E' \longrightarrow \lambda.$

Por último, aplicando la regla de factorización, reemplazamos las producciones $C \longrightarrow E <= E \text{ y } C \longrightarrow E < E \text{ por las producciones } C \longrightarrow EC',$ $C' \longrightarrow <= E \text{ y } C' \longrightarrow < E.$

Por tanto, obtenemos la siguiente gramática G' equivalente a G:

- 1. $S \longrightarrow \underline{do} Y \underline{while}(C)$
- $2. Y \longrightarrow \{L\}$
- 3. $L \longrightarrow id = EL'$
- 4. $L' \longrightarrow : id = EL'$
- 5. $L' \longrightarrow \lambda$
- 6. $E \longrightarrow TE'$
- 7. $E' \longrightarrow +TE'$
- 8. $E' \longrightarrow -TE'$
- 9. $E' \longrightarrow \lambda$
- 10. $T \longrightarrow \underline{id}$
- 11. $T \longrightarrow int$
- 12. $T \longrightarrow float$
- 13. $C \longrightarrow EC'$
- 14. $C' \longrightarrow \langle = E$
- 15. $C' \longrightarrow \langle E$

(e) La tabla de análisis de G' es la siguiente:

TABLA	\underline{do}	while	$\underline{\mathrm{id}}$	$\underline{\mathrm{int}}$	float	()	=	;	+	_	<=	<	{	}
S	1														
Y														2	
L			3												
L'									4						5
E			6	6	6										
E'							9		9	7	8	9	9		9
T			10	11	12										
C			13	13	13										
C'												14	15		

Obsérvese que $1 \in \text{TABLA}[S,\underline{do}]$, porque \underline{do} es el primer símbolo de la parte derecha de la regla 1. Por el mismo motivo, tenemos que $2 \in \text{TABLA}[Y,\}]$, $3 \in \text{TABLA}[L,\underline{id}]$, $4 \in \text{TABLA}[L',;]$, $7 \in \text{TABLA}[E',+]$, $8 \in \text{TABLA}[E',-]$, $10 \in \text{TABLA}[T,\underline{id}]$, $11 \in \text{TABLA}[T,\underline{int}]$, $12 \in \text{TABLA}[T,\underline{float}]$, $14 \in \text{TABLA}[C',<=]$ y $15 \in \text{TABLA}[C',<]$.

Tenemos que 6 pertenece a TABLA $[E, \underline{id}]$, a TABLA $[E, \underline{int}]$ y a TABLA $[E, \underline{float}]$, porque Primeros $(T) = \{\underline{id}, \underline{int}, \underline{float}\}$. Y tenemos que $13 \in \text{TABLA}[C, \underline{id}]$, a TABLA $[C, \underline{int}]$ y a TABLA $[T, \underline{float}]$, porque Primeros $(E) = \text{Primeros}(T) = \{\underline{id}, \underline{int}, float\}$.

Por otra parte, de la derivación

 $S \Rightarrow^1 \underline{do} Y \underline{while}(C) \Rightarrow^2 \underline{do}\{L\} \underline{while}(C) \Rightarrow^3 \underline{do}\{\underline{id} = EL'\} \underline{while}(C)$ se deduce que } Siguientes(L') y, por tanto, tenemos que la producción $5 \in TABLA[L',\}]$.

Y de la derivación

$$S \Rightarrow^1 \underline{do} \ Y \ \underline{while} \ (C) \Rightarrow^2 \underline{do} \ \{L\} \ \underline{while} \ (C) \Rightarrow^3 \underline{do} \ \{\underline{id} = EL'\} \ \underline{while} \ (C) \Rightarrow^5 \underline{do} \ \{\underline{id} = E\} \ \underline{while} \ (C) \Rightarrow^3 \underline{do} \ \{\underline{id} = TE'\} \ \underline{while} \ (C)$$

se deduce que $\} \in \text{Siguientes}(E')$ y, por tanto, tenemos que la producción $9 \in \text{TABLA}[E', \}].$

Por otra parte, de la derivación

$$S \Rightarrow^1 \underline{do} Y \underline{while}(C) \Rightarrow^2 \underline{do}\{L\} \underline{while}(C) \Rightarrow^3 \underline{do}\{\underline{id} = EL'\} \underline{while}(C) \Rightarrow^4 \underline{do}\{\underline{id} = E; \underline{id} = EL'\} \underline{while}(C) \Rightarrow^6 \underline{do}\{\underline{id} = TE'; \underline{id} = EL'\} \underline{while}(C)$$

se deduce que \in Siguientes(E') y, por tanto, la producción $9 \in TABLA[E', :]$.

También, de la derivación

$$S \Rightarrow^1 \underline{do} Y \underline{while}(C) \Rightarrow^{13} \underline{do} Y \underline{while}(EC') \Rightarrow^{14} \underline{do} Y \underline{while}(E <= E) \Rightarrow^6 \underline{do} Y \underline{while}(E <= TE')$$

se deduce que) \in Siguientes(E') y, por tanto, tenemos que la producción $9 \in TABLA[E',)$].

Además, de la derivación

$$S \Rightarrow^1 \underline{do} Y \underline{while}(C) \Rightarrow^{13} \underline{do} Y \underline{while}(EC') \Rightarrow^{14} \underline{do} Y \underline{while}(E <= E) \Rightarrow^6 \underline{do} Y \underline{while}(TE' <= E)$$

se deduce que $<= \in$ Siguientes(E') y, por tanto, tenemos que la producción $9 \in TABLA[E', <=]$.

Por último, de la derivación

$$S \Rightarrow^1 \underline{do} Y \underline{while} (C) \Rightarrow^{13} \underline{do} Y \underline{while} (EC') \Rightarrow^{15} \underline{do} Y \underline{while} (E < E) \Rightarrow^6 \underline{do} Y \underline{while} (TE' < E)$$

se deduce que < \in Siguientes(E') y, por tanto, tenemos que la producción $9 \in TABLA[E',<]$.