

Circulant Preconditioning of the Fast Gradient Method for Predictive Control

Ian McInerney^{a,b}, Eric C. Kerrigan^{a,c}, George A. Constantinides^a

Presented at the 7th IMA Conference on Numerical Linear Algebra and Optimization

1

^aDepartment of Electrical and Electronic Engineering, Imperial College London

^bDepartment of Mathematics, The University of Manchester

^cDepartment of Aeronautics, Imperial College London

Preconditioner Features

- Horizon-independent
- Comparable performance to existing SDP-based methods
- Required design computations scale with number of states and inputs, but not horizon length
- Exploits the Toeplitz structure of the condensed Hessian

Model Predictive Control

Model Predictive Control

$$\min_{u,x} \frac{1}{2} x_N' P x_N + \frac{1}{2} \sum_{k=0}^{N-1} \begin{bmatrix} x_k \\ u_k \end{bmatrix}' \begin{bmatrix} Q & 0 \\ 0 & R \end{bmatrix} \begin{bmatrix} x_k \\ u_k \end{bmatrix}$$
s.t. $x_{k+1} = A x_k + B u_k, \ k = 0, \dots, N-1$

$$x_0 = \bar{x}_0$$

$$E u_k \le c_u, \ k = 0, \dots, N-1$$

Preconditioning First-order Methods

- Algorithm convergence rate dependent on problem conditioning
- Problem conditioning equivalent to the condition number of the Hessian
- Commonly applied as a symmetric preconditioner $L_N^{-1}H(L_N^{-1})'$

Preconditioning Strategies

- Matrix equilibration
- ullet Solve a SDP to find the L_N that minimizes the resulting condition number

Dense Prediction Matrix

$$\Gamma = \begin{bmatrix} B & 0 & 0 & 0 \\ AB & B & 0 & 0 \\ A^{2}B & AB & B & 0 \\ \vdots & & \ddots & \vdots \\ A^{N-1}B & A^{N-2}B & A^{N-3}B & \cdots & B \end{bmatrix}$$

When \mathcal{G}_s is Schur-stable, this is Toeplitz with the matrix symbol

$$\mathcal{P}_{\Gamma}(z) = \sum_{i=0}^{\infty} A^{i}Bz^{-i} = z(zI - A)^{-1}B = z\mathcal{G}_{s}(z) \qquad \forall z \in \mathbb{T}$$

What about non-Schur stable systems?

Introduce static-gain feedback controller

Let
$$u_k = Kx_k + v_k$$
, giving $A_c := A - BK$

$$\min_{v,x} \frac{1}{2} x_N' P x_N + \frac{1}{2} \sum_{k=0}^{N-1} \begin{bmatrix} x_k \\ v_k \end{bmatrix}' \begin{bmatrix} Q_c & 0 \\ 0 & R \end{bmatrix} \begin{bmatrix} x_k \\ v_k \end{bmatrix}$$
s.t. $x_{k+1} = A_c x_k + B v_k, \ k = 0, \dots, N-1$

$$x_0 = \bar{x}_0$$

 $Fv_k \leq c_v$, $k = 0, \dots, N-1$

$$\begin{bmatrix} A_c^{N-1}B & A_c^{N-2}B & A_c^{N-3}B & \cdots & B \end{bmatrix}$$

$$Q_c := Q + K'RK', \quad \bar{K} := I_N \otimes -K$$

$$\bar{Q} := \begin{bmatrix} I_{N-1} \otimes Q_c & 0 \\ 0 & P \end{bmatrix}, \quad \bar{R} := I_N \otimes R$$

 $H_c := \Gamma'_c \bar{Q}_c \Gamma_c + \Gamma'_c \bar{K}' \bar{R} + \bar{R} \bar{K} \Gamma_c + \bar{R}$

Matrix symbols

Prestabilized prediction matrix

Is Toeplitz with the matrix symbol

$$\mathcal{P}_{\Gamma_c}(z) = \sum_{i=0}^{\infty} A_c^i B z^{-i} = z (zI - A_c)^{-1} B = z \mathcal{G}_c(z) \qquad \forall z \in \mathbb{T}$$

Prestabilized condensed Hessian

Is Toeplitz with the matrix symbol

$$H_{c} = \Gamma'_{c} \bar{Q}_{c} \Gamma_{c} + \Gamma'_{c} \bar{K}' \bar{R} + \bar{R} \bar{K} \Gamma_{c} + \bar{R}$$

$$\Downarrow$$

$$\mathcal{P}_{H_{c}}(z) := \mathcal{P}_{\Gamma_{c}}(z)^{*} Q_{c} \mathcal{P}_{\Gamma_{c}}(z) + \mathcal{P}_{\Gamma_{c}}(z)^{*} K' R + R K \mathcal{P}_{\Gamma_{c}}(z) + R \qquad \forall z \in \mathbb{T}$$

8

Spectral Bounds

Bound the eigenvalues of the Hessian (and the condition number) using the eigenvalues of the symbol

$$\lambda_{min}(\mathcal{P}_{H_c}) \leq \lambda(H_c) \leq \lambda_{max}(\mathcal{P}_{H_c})$$

$$\lim_{N \to \infty} \kappa(H_c) = \kappa(\mathcal{P}_{H_c})$$

• H_{cP} with P = Q, • H_{cP} with P = DLYAP(A, Q), --- Bound for H_{cP} .

Closed-form preconditioner

Goals

- Preserve separation of the feasible sets across the horizon
- Preconditioned Hessian is symmetric
- Improve performance

Closed-form preconditioner - Design

Strang's Preconditioner

When V is Toeptliz, $W^{-1}V$ clusters eigenvalues near 1 when W is the circulant completion of V.

Example:

$$V := \begin{bmatrix} V_0 & V_1 & V_2 & V_3 & V_4 \\ V_{-1} & V_0 & V_1 & V_2 & V_3 \\ V_{-2} & V_{-1} & V_0 & V_1 & V_2 \\ V_{-3} & V_{-2} & V_{-1} & V_0 & V_1 \\ V_{-4} & V_{-3} & V_{-2} & V_{-1} & V_0 \end{bmatrix}, \qquad W := \begin{bmatrix} V_0 & V_1 & V_2 & V_{-2} & V_{-1} \\ V_{-1} & V_0 & V_1 & V_2 & V_{-2} \\ V_{-2} & V_{-1} & V_0 & V_1 & V_2 \\ V_2 & V_{-2} & V_{-1} & V_0 & V_1 \\ V_1 & V_2 & V_{-2} & V_{-1} & V_0 \end{bmatrix}.$$

Closed-form preconditioner - Design

• Use a block-diagonal symmetric preconditioner:

$$H_L = L_N^{-1} H_c (L_N^{-1})'$$

$$L_N = I_N \otimes L$$

ullet Define L as Cholesky factor of the diagonal element of H_c

$$L \coloneqq \mathsf{chol}(B'PB - B'K'R - RKB + R)$$

with P the solution to the Discrete-time Riccatti equation

Preconditioner design flow

Closed-form preconditioner - results

- H_L is Toeplitz with $\mathcal{P}_{H_L} := L^{-1}\mathcal{P}_{H_c}(L^{-1})'$
- Previous spectral bounds extend to preconditioned matrix for \mathcal{P}_{H_L} instead of \mathcal{P}_{H_c}
- Equivalent performance to SDP-based preconditioners

Closed-form preconditioner - results

Preconditioner computation time and the iterations required for cold-start convergence of the Fast Gradient Method

System	None	SDP		Proposed	
	Iter.	Iter.	Design Time (ms)	Iter.	Design Time (ms)
Schur-stable	42	16	197.4	16	0.213
III-conditioned Schur-stable	294	32	142.9	31	0.218
Inverted pendulum (non-prestabilized)	143	129	18.69	(Not computable)	
Inverted pendulum (LQR prestabilized)	18	17	17.45	18	0.218
Distillation column (non-prestabilized)	97	43	151746	43	2.543
Distillation column (LQR prestabilized)	22	3	81929	3	2.545

Conclusions

Key Contributions

- Closed-form & horizon independent preconditioner
- Equivalent performance to SDP-based preconditioners

Future Directions

- Examine preconditioning of the dual QP for MPC
- Possibly use the controller K as a preconditioner

For more information

I. McInerney, E. C. Kerrigan, and G. A. Constantinides, "Horizon-independent Preconditioner Design for Linear Predictive Control," IEEE Transactions on Automatic Control, (Accepted, in-press). arXiv: 2010.08572.