0.1 H9 数学必修

 \square (a) グリーンの定理から $\int_C (xdy-ydx)/2 = \int_D (1-(-1))/2dxdy = \int_D dxdy$.

囲まれる領域を D, $\partial D = C$, 求める面積を V とする.

$$\int_{C} x dy = \int_{0}^{2\pi} (1 + \cos \theta) \cos \theta (1 + \cos^{2} \theta - \sin^{2} \theta) d\theta$$

$$= \int_{0}^{2\pi} \cos \theta + \cos^{2} \theta + \cos^{3} \theta + \cos^{4} \theta - \cos \theta \sin^{2} - \cos^{2} \theta \sin^{2} d\theta$$

$$= \int_{0}^{2\pi} 2 \cos^{4} \theta d\theta$$

$$= \int_{0}^{2\pi} 2 \left(\frac{1 + \cos 2\theta}{2} \right)^{2} d\theta$$

$$= \int_{0}^{2\pi} \frac{1}{2} + \left(\frac{\cos^{2} 2\theta}{2} \right) d\theta$$

$$= \int_{0}^{2\pi} \frac{3}{4} d\theta = \frac{3\pi}{2}$$

$$\int_{C} y dx = \int_{0}^{2\pi} (1 + \cos \theta) \sin \theta (-\sin \theta - 2\sin \theta \cos \theta) d\theta$$

$$= -\int_{0}^{2\pi} \sin^{2} \theta + 3\cos \theta \sin^{2} + 2\cos^{2} \theta \sin^{2} \theta d\theta$$

$$= -\int_{0}^{2\pi} \frac{1}{2} + \frac{1}{2} \sin^{2} 2\theta d\theta$$

$$= -\int_{0}^{2\pi} \frac{1}{2} + \frac{1}{4} d\theta = -\frac{3\pi}{2}$$

よって $V = (\frac{3\pi}{2} - \frac{-3\pi}{2})/2 = \frac{3\pi}{2}$.

(b)

(A) 反例を与える.

 $a=0,b=1,f_n(x)=rac{1}{n+1}x^{n+1},g(x)=0$ とする。 $x\in[0,1]$ について $|f_n(x)-g(x)|\leqrac{1}{n+1}$ より、 $f_n(x)$ は [0,1] で g(x) に一様収束する。 $f_n'(x)=x^n$ は [0,1] で $h(x)=\begin{cases} 0 & x<1 \\ 1 & x=1 \end{cases}$ に各点収束するから、 $f_n'(x)$ は [0,1]

で g'(x) = g(x) に一様収束しない.

 $(B)f_n(x)=\int_{x_0}^x f_n'(t)dt$ とかける. $|f_n(x)-f(x)|=|\int_{x_0}^x (f_n'(t)-f'(t))dt|\leq \int_{x_0}^x |f_n'(t)-f'(t)|dt$ より、 $f_n(x)$ は f(x) は一様収束する.

② (a) は (b) において T=S とすればよい。 (b) を示す。|S|+|T|>G のとき, $g\in G$ について $|gT^{-1}|=|T|$ であるから, $|S|+|gT^{-1}|>G$ より $S\cap gT^{-1}\neq\emptyset$. $S\cap gT^{-1}\ni s$ とすると, $s=gt^{-1}$ となる $t\in T$ が存在する.すなわち $g=st\in ST$.

③ $(a)x \in \mathbb{R}$ の \mathbb{R}/\sim における同値類を [x] で表す。 $[0]\neq [1]$ である。 R/\sim の開集合 $[0]\in U,[1]\in V$ で $U\cap V=\emptyset$ となるものが存在すると仮定する。自然な全射 $\mathbb{R}\to\mathbb{R}/\sim$ を π とする。

 $0 \in \pi^{-1}(U)$ は $\mathbb R$ の開集合であるから,ある ε が存在して $(-\varepsilon,\varepsilon) \subset \pi^{-1}(U)$. 任意の $x \in \mathbb R$ に対して, $x/2^n \in (-\varepsilon,\varepsilon)$ となる n が存在する.よって $\pi^{-1}\pi(-\varepsilon,\varepsilon) = \mathbb R$ より $\pi(-\varepsilon,\varepsilon)$ は $\mathbb R/\sim$ の開集合である. $1/2^n \in (-\varepsilon,\varepsilon)$ なる n が存在するから $[1] \in \pi(-\varepsilon,\varepsilon) \subset U$.これは矛盾.

 $(b)x,y' \in \mathbb{R}$ に対して、 $|x-2^ny'|$ が最小となる n を n_0 として、 $y=2^{n_0}y',|x-y|=d$ とする。 $[x] \neq [y]$ と仮定する.必要なら x,y をいれかえることで $x \leq y$ としてよい.このとき y=x+d となる.y の取り方から $2^{-1}y+d < x$ である.

 \mathbb{R}_+ から \mathbb{R}_+/\sim への自然な全射を π とする. $x\in U=\pi((x-d/2,x+d/2)),y\in V=\pi((y-d/2,y+d/2))$ とする.

 $\pi^{-1}\pi((x-d/2,x+d/2)) = \left\{z \in \mathbb{R}_+ \mid \exists \alpha \in (x-d/2,x+d/2), \exists m \in \mathbb{Z}, z=2^m \alpha \right\} = \bigcup_{m \in \mathbb{Z}} (2^m(x-d/2),2^m(x+d/2)).$ より U は開集合、同様に V も開集合、

 $U \cap V \neq \emptyset$ とする. $[z] \in U \cap V$ とすると、 $x - d/2 < 2^m z < x + d/2, y - d/2 < 2^n z < y + d/2$ なる $m, n \in \mathbb{Z}$ が存在する.

 $2^mz < x + d/2 = y - d/2 < 2^nz$ より $m \le n-1$. $2^{n-1}z < 2^{-1}y + d/4 < x - 3d/4 < 2^mz$ より $n-1 \le m$. よって m=n-1.

 $2^m+1z < y+d/2$ より、 $2^mz-d/4 < 2^{-1}y$ であり、 $x-d/2 < 2^mz$ より、 $x-2^{-1}y < 3d/4 < d$ となり、これは y の取り方に矛盾.よって $U \cap V = \emptyset$.

 $\boxed{4}$ (a) $B_1, B_2 \in V(A), c \in \mathbb{C}$ とすると、 $A(B_1 + B_2) = AB_1 + AB_2 = B_1A + B_2A = (B_1 + B_2)A$ より $B_1 + B_2 \in V(A)$. A(cB) = cAB = cBA より $cB \in V(A)$. よって V(A) は \mathbb{C} の部分空間.

(b) 固有方程式
$$g_A(t) = \begin{vmatrix} -t & 0 & 1 \\ 1 & -t & 0 \\ 0 & 1 & -t \end{vmatrix} = -t^3 + 1 = 0$$
 より $\omega = e^{2\pi i/3}$ とすると,固有値は $1, \omega, \omega^2$.

固有値 1 に対する固有ベクトルは
$$\begin{pmatrix} -1 & 0 & 1 \\ 1 & -1 & 0 \\ 0 & 1 & -1 \end{pmatrix}$$
 \rightarrow $\begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix}$ より $\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$. $\begin{pmatrix} -\omega & 0 & 1 \end{pmatrix}$ $\begin{pmatrix} 1 & 0 & -\omega^2 \end{pmatrix}$ $\begin{pmatrix} \omega^2 \end{pmatrix}$

固有値
$$\omega$$
 に対する固有ベクトルは $\begin{pmatrix} -\omega & 0 & 1 \\ 1 & -\omega & 0 \\ 0 & 1 & -\omega \end{pmatrix}$ $\rightarrow \begin{pmatrix} 1 & 0 & -\omega^2 \\ 0 & 1 & -\omega \\ 0 & 0 & 0 \end{pmatrix}$ より $\begin{pmatrix} \omega^2 \\ \omega \\ 1 \end{pmatrix}$.

固有値
$$\omega^2$$
 に対する固有ベクトルは $\begin{pmatrix} -\omega^2 & 0 & 1 \\ 1 & -\omega^2 & 0 \\ 0 & 1 & -\omega^2 \end{pmatrix}$ $\rightarrow \begin{pmatrix} 1 & 0 & -\omega \\ 0 & 1 & -\omega^2 \\ 0 & 0 & 0 \end{pmatrix}$ より $\begin{pmatrix} \omega \\ \omega^2 \\ 1 \end{pmatrix}$.

固有値 λ とその固有ベクトル x に対して $B \in V(A)$ は $ABx = BAx = B\lambda x = \lambda Bx$ より Bx も λ に対する 固有ベクトル. $1, \omega, \omega^2$ に対応する 3 つの固有ベクトルからなる集合は \mathbb{C}^3 の基底であるから,B は 3 つ固有 ベクトルの行き先から一意に決まる.各固有ベクトルは固有空間の次元が 1 であることから, $x \in W(\lambda)$ について Bx = cx となる $c \in \mathbb{C}$ が存在する.

各固有空間について定数 c を定めれば、B が定まるから、V(A) は 3 次元.