Package 'BrazilMet'

October 27, 2022

October 27, 2022
Type Package
Title Download and Processing of Automatic Weather Stations (AWS) Data of INMET-Brazil
Version 0.2.0
Language en-US
Description A compilation of functions to download and processing AWS data of INMET-Brazil, with the purpose of reference evapotranspiration (ETo) estimation. The package aims to make meteorological and agricultural data analysis more parsimonious.
License GPL-3
Encoding UTF-8
Depends R (>= $3.2.0$)
Imports stringr, readxl, dplyr(>= 0.3.0.1)
BugReports https://github.com/FilgueirasR/BrazilMet/issues
RoxygenNote 7.1.1
NeedsCompilation no
Author Roberto Filgueiras [aut, cre] (https://orcid.org/0000-0002-0186-8907), Luan P. Venancio [aut] (https://orcid.org/0000-0002-3894-3077), Catariny C. Aleman [aut] (https://orcid.org/0000-0002-1671-1021)
Maintainer Roberto Filgueiras betofilgueiras@gmail.com>
Repository CRAN
Date/Publication 2022-10-27 21:07:52 UTC
R topics documented:
daily_eto_FAO56

daily_eto_FAO56

daily	_eto_FA056	Eto date cess	a f	ron	n d	au	tor	nai	tic	w	ea	the	er	st	ati	on	S	(A)	WS	3) (do	wi	nle			٠.		
Index																												20
	u2_calculation			•		•	•		•	•			•	•		•	•	•		•	•	•		•	•		 •	18
	sr_tair_calculation .																											
	sr_ang_calculation																											
	see_stations_info .																											
	rs_nearby_calculation	on .																										1:
	rso_calculation_2 .																											
	rso_calculation_1 .																											
	rn_calculation																											
	rns_calculation																											
	rnl_calculation																											
	rh_calculation																											
	ra_calculation																											
	psy_const radiation_conversion																											
	Patm																											
	eto_hs																											
	es_ea_calculation .																											

Description

This function will calculate the reference evapotranspiration (ETo) based on FAO-56 (Allen et al., 1998) with the automatic weather stations (AWS) data, downloaded and processed in function *daily_download_AWS_INMET*.

Usage

```
daily_eto_FAO56(lat, tmin, tmax, tmean, Rs, u2, Patm, RH_max, RH_min, z, date)
```

Arguments

lat	A numeric value of the Latitude of the AWS (decimal degrees).
tmin	A dataframe with Minimum daily air temperature (°C).
tmax	A dataframe with Maximum daily air temperature (°C).
tmean	A dataframe with Mean daily air temperature (°C).
Rs	A dataframe with mean daily solar radiation (MJ m-2 day-1).
u2	A dataframe with Wind speed at meters high (m s-2).
Patm	A dataframe with atmospheric Pressure (mB).
RH_max	A dataframe with Maximum relative humidity (percentage).
RH_min	A dataframe with Minimum relative humidity (percentage).

z A numeric value of the altitude of AWS (m).

date A data.frame with the date information (YYYY-MM-DD).

Value

Returns a data.frame with the AWS data requested

Author(s)

Roberto Filgueiras, Luan P. Venancio, Catariny C. Aleman and Fernando F. da Cunha

Examples

```
## Not run:
eto<-daily_eto_FA056(lat, tmin, tmax, tmean, Rs, u2, Patm, RH_max, RH_min, z, date)
## End(Not run)</pre>
```

download_AWS_INMET_daily

Download of hourly data from automatic weather stations (AWS) of INMET-Brazil in daily aggregates

Description

This function will download the hourly AWS data of INMET and it will aggregate the data in a daily time scale, based on the period of time selected (start_date and end_date). The function only works for downloading data from the same year.

Usage

```
download_AWS_INMET_daily(station, start_date, end_date)
```

Arguments

station The station code (ID - WMO code) for download. To see the station ID, plea	station	The station code (ID - V	WMO code)	for download.	To see the station ID, p	lease
--	---------	--------------------	--------	-----------	---------------	--------------------------	-------

see the function *see_stations_info*.

start_date Date that start the investigation, should be in the following format (1958-01-01

/Year-Month-Day)

end_date Date that end the investigation, should be in the following format (2017-12-31

/Year-Month-Day)

Value

Returns a data.frame with the AWS data requested

4 ea_dew_calculation

Author(s)

Roberto Filgueiras, Luan P. Venancio, Catariny C. Aleman and Fernando F. da Cunha

Examples

```
## Not run:
df<-download_AWS_INMET_daily(station = "A001", start_date = "2001-01-01", end_date = "2001-12-31")
## End(Not run)</pre>
```

ea_dew_calculation

Actual vapour pressure (ea) derived from dewpoint temperature

Description

Actual vapour pressure (ea) derived from dewpoint temperature

Usage

```
ea_dew_calculation(tdew)
```

Arguments

tdew

A dataframe with dewpoint temperature (°C).

Value

Returns a data.frame object with the ea from dewpoint data.

Author(s)

Roberto Filgueiras, Luan P. Venancio, Catariny C. Aleman and Fernando F. da Cunha.

```
## Not run:
ea <-ea_dew_calculation(tdew).
## End(Not run)</pre>
```

ea_rh_calculation 5

ea_rh_calculation Actual vapour pressure (ea) derived from relative humidity data	ea_rh_calculation	Actual vapour pressure (ea) derived from relative humidity data	
---	-------------------	---	--

Description

Actual vapour pressure (ea) derived from relative humidity data

Usage

```
ea_rh_calculation(tmin, tmax, rh_min, rh_mean, rh_max)
```

Arguments

tmin	A dataframe with minimum daily air temperature (°C)
tmax	A dataframe with maximum daily air temperature (°C)
rh_min	A dataframe with minimum daily relative air humidity (percentage).
rh_mean	A dataframe with mean daily relative air humidity (percentage).
rh_max	A dataframe with maximum daily relative air humidity (percentage).

Value

Returns a data.frame object with the with ea from relative humidity data.

Author(s)

Roberto Filgueiras, Luan P. Venancio, Catariny C. Aleman and Fernando F. da Cunha

Examples

```
## Not run:
ea <- ea_rh_calculation(tmin, tmax, rh_min, rh_mean, rh_max)
## End(Not run)</pre>
```

es_calculation

Mean saturation vapour pressure (es)

Description

Mean saturation vapour pressure (es)

```
es_calculation(tmin, tmax)
```

6 es_ea_calculation

Arguments

tmin A dataframe with Minimum daily air temperature (°C).

tmax A dataframe with Maximum daily air temperature (°C).

Value

Returns a data.frame object with the es data.

Author(s)

Roberto Filgueiras, Luan P. Venancio, Catariny C. Aleman and Fernando F. da Cunha.

Examples

```
## Not run:
es <-es_calculation(tmin, tmax)
## End(Not run)</pre>
```

es_ea_calculation

Vapour pressure deficit (es - ea)

Description

Vapour pressure deficit (es - ea)

Usage

```
es_ea_calculation(tmin, tmax, tdew, rh_min, rh_mean, rh_max, ea_method)
```

Arguments

tmin A dataframe with minimum daily air temperature ($^{\circ}$ C). tmax A dataframe with maximum daily air temperature ($^{\circ}$ C).

tdew A dataframe with dewpoint temperature (°C).

rh_min A dataframe with minimum daily relative air humidity (percentage).rh_mean A dataframe with mean daily relative air humidity (percentage).rh_max A dataframe with maximum daily relative air humidity (percentage).

ea_method The methodology to calculate the actual vapour pressure. Assume the "rh" (de-

fault) for relative humidity procedure and "dew" for dewpoint temperature pro-

cedure.

Value

Returns a data.frame object with the ea from relative humidity data.

eto_hs 7

Author(s)

Roberto Filgueiras, Luan P. Venancio, Catariny C. Aleman and Fernando F. da Cunha

Examples

```
## Not run:
ea <- es_ea_calculation(tmin, tmax, tdew, rh_min, rh_mean, rh_max, ea_method)
## End(Not run)</pre>
```

eto_hs

Hargreaves - Samani ETo

Description

Hargreaves - Samani ETo

Usage

```
eto_hs(tmin, tmean, tmax, ra)
```

Arguments

tmin	A dataframe with Maximum daily air temperature (°C)
tmean	A dataframe with Minimum daily air temperature (°C)
tmax	A dataframe with Maximum daily air temperature (°C)
ra	A dataframe of extraterrestrial radiation (MJ m-2 day-1)

Value

Returns a data.frame object with the ETo HS data

Author(s)

Roberto Filgueiras, Luan P. Venancio, Catariny C. Aleman and Fernando F. da Cunha

```
## Not run:
eto_hs <-eto_hs(tmin, tmean, tmax, ra)
## End(Not run)</pre>
```

psy_const

Patm

Atmospheric pressure (Patm)

Description

Atmospheric pressure (Patm)

Usage

Patm(z)

Arguments

z

Elevation above sea level (m)

Value

Returns a data.frame object with the atmospheric pressure calculated.

Author(s)

Roberto Filgueiras, Luan P. Venancio, Catariny C. Aleman and Fernando F. da Cunha

Examples

```
## Not run:
Patm <- Patm(z)
## End(Not run)</pre>
```

psy_const

Psychrometric constant

Description

Psychrometric constant (kPa/°C) is calculated in this function.

Usage

```
psy_const(Patm)
```

Arguments

Patm

Atmospheric pressure (kPa)

radiation_conversion 9

Value

A data.frame object with the psychrometric constant calculated.

Author(s)

Roberto Filgueiras, Luan P. Venancio, Catariny C. Aleman and Fernando F. da Cunha

Examples

```
## Not run:
psy_df <- psy_const(Patm)
## End(Not run)</pre>
```

radiation_conversion Conversion factors for radiation

Description

Function to convert the radiation data. The conversion name can be understand as follow:

```
• conversion_1 = MJ m-2 day-1 to J cm-2 day-1;
```

- conversion_2 = MJ m-2 day-1 to cal cm-2 day-1;
- conversion_3 = MJ m-2 day-1 to W m-2;
- conversion_4 = MJ m-2 day-1 to mm day-1;
- conversion_5 = cal cm-2 day-1 to MJ m-2 day-1;
- conversion_6 = cal cm-2 day-1 to J cm-2 day-1;
- conversion_7 = cal cm-2 day-1 to W m-2;
- conversion_8 = cal cm-2 day-1 to mm day-1;
- conversion_9 = W m-2 to MJ m-2 day-1;
- conversion_10 = W m-2 to J cm-2 day-1;
- conversion_11 = W m-2 to cal cm-2 day-1;
- conversion_12 = W m-2 to mm day-1;
- conversion_13 = mm day-1 to MJ m-2 day-1;
- conversion_14 = mm day-1 to J cm-2 day-1;
- conversion_15 = mm day-1 to cal cm-2 day-1;
- conversion_16 = mm day-1 to W m-2.

```
radiation_conversion(data_to_convert, conversion_name)
```

10 ra_calculation

Arguments

```
data_to_convert
```

A data frame with radiation values to convert.

conversion_name

A character with the conversion_name summarize in the description of this function.

Value

A data.frame object wit the converted radiation.

Author(s)

Roberto Filgueiras, Luan P. Venancio, Catariny C. Aleman and Fernando F. da Cunha

Examples

ra_calculation

Extraterrestrial radiation for daily periods (ra)

Description

```
ra is expressed in MJ m-2 day-1
```

Usage

```
ra_calculation(latitude, date)
```

Arguments

latitude A dataframe with latitude in decimal degrees that you want to calculate the ra.

date A dataframe with the dates that you want to calculate the ra.

Value

A data frame with the extraterrestrial radiation for daily periods

Author(s)

Roberto Filgueiras, Luan P. Venancio, Catariny C. Aleman and Fernando F. da Cunha

rh_calculation 11

Examples

```
## Not run:
ra <- ra_calculation(latitude, date)
## End(Not run)</pre>
```

rh_calculation

Relative humidity (rh) calculation

Description

Relative humidity is calculated in this function based on minimum air temperature of the day and the air temperature of the moment.

Usage

```
rh_calculation(tmin, tmean)
```

Arguments

tmin A dataframe with minimum daily air temperature (°C)

tmean A dataframe with mean air temperature (°C) that you want to calculate the rela-

tive humidity.

Value

A data.frame object with the relative humidity calculated

Author(s)

Roberto Filgueiras, Luan P. Venancio, Catariny C. Aleman and Fernando F. da Cunha

```
## Not run:
rh <- rh_calculation(tmin, tmean)
## End(Not run)</pre>
```

rns_calculation

(l)		
-----	--	--

Description

Net outgoing longwave radiation is calculate with this function

Usage

```
rnl_calculation(tmin, tmax, ea, rs, rso)
```

Arguments

tmin	A dataframe with Minimum daily air temperature (°C)
tmax	A dataframe with Maximum daily air temperature (°C)
ea	A dataframe with the actual vapour pressure (KPa).
rs	A dataframe with the incomimg solar radiation (MJ m-2 day-1).
rso	A dataframe with the clear-sky radiation (MJ m-2 day-1)

Value

A data.frame object with the net longwave radiation.

Author(s)

Roberto Filgueiras, Luan P. Venancio, Catariny C. Aleman and Fernando F. da Cunha

Examples

```
## Not run:
rnl_df <- rnl_calculation(tmin, tmax, ea, rs, rso)
## End(Not run)</pre>
```

rns_calculation

Net solar or net shortwave radiation (rns)

Description

The rns results form the balance between incoming and reflected solar radiation (MJ m-2 day-1).

```
rns_calculation(albedo, rs)
```

rn_calculation 13

Arguments

albedo Albedo or canopy reflectance coefficient. The 0.23 is the value used for hypo-

thetical grass reference crop (dimensionless).

rs The incoming solar radiation (MJ m-2 day-1).

Value

A data.frame object with the net solar or net shortwave radiation data.

Author(s)

Roberto Filgueiras, Luan P. Venancio, Catariny C. Aleman and Fernando F. da Cunha

Examples

```
## Not run:
ra <- rns_calculation(albedo, rs)
## End(Not run)</pre>
```

rn_calculation

Net radiation (rn)

Description

The net radiation (MJ m-2 day-1) is the difference between the incoming net shortwave radiation (rns) and the outgoing net longwave radiation (rnl).

Usage

```
rn_calculation(rns, rnl)
```

Arguments

rns The incoming net shortwave radiation (MJ m-2 day-1).

rnl The outgoing net longwave radiation (MJ m-2 day-1).

Value

A data.frame object with the net radiation data.

Author(s)

Roberto Filgueiras, Luan P. Venancio, Catariny C. Aleman and Fernando F. da Cunha

14 rso_calculation_1

Examples

```
## Not run:
rn <- rn_calculation(rns, rnl)
## End(Not run)</pre>
```

rso_calculation_1

Clear-sky solar radiation with calibrated values available

Description

Clear-sky solar radiation is calculated in this function for near sea level or when calibrated values for as and bs are available.

Usage

```
rso_calculation_1(as, bs, ra)
```

Arguments

as	A dataframe with latitude in decimal degrees that you want to calculate the ra. The values of as = 0.25 is recommended by Allen et al. (1998).
bs	A dataframe with the dates that you want to calculate the ra. The values of $bs = 0.50$ is recommended by Allen et al. (1998).
ra	Extraterrestrial radiation for daily periods (ra).

Value

A data.frame object with the clear-sky radiation data

Author(s)

Roberto Filgueiras, Luan P. Venancio, Catariny C. Aleman and Fernando F. da Cunha

```
## Not run:
rso_df <- rso_calculation_1(as, bs, ra)
## End(Not run)</pre>
```

rso_calculation_2

rso_calculation_2

Clear-sky solar radiation when calibrated values are not available

Description

Clear-sky solar radiation is calculated in this function for near sea level or when calibrated values for as and bs are available.

Usage

```
rso_calculation_2(z, ra)
```

Arguments

z Station elevation above sea level (m)

ra Extraterrestrial radiation for daily periods (ra).

Value

A data.frame object with the clear-sky solar radiation

Author(s)

Roberto Filgueiras, Luan P. Venancio, Catariny C. Aleman and Fernando F. da Cunha

Examples

```
## Not run:
rso_df <- rso_calculation_2(z, ra)
## End(Not run)</pre>
```

rs_nearby_calculation Solar radiation data from a nearby weather station

Description

The solar radiation data is calculated based in a nearby weather station.

```
rs_nearby_calculation(rs_reg, ra_reg, ra)
```

see_stations_info

Arguments

rs_reg	A dataframe with the solar radiation at the regional location (MJ m-2 day-1).
ra_reg	A dataframe with the extraterrestrial radiation at the regional location (MJ m-2 day-1).
ra	A dataframe with the extraterrestrial radiation for daily periods (ra).

Value

A data.frame object with the Solar radiation data based on a nearby weather station

Author(s)

Roberto Filgueiras, Luan P. Venancio, Catariny C. Aleman and Fernando F. da Cunha

Examples

```
## Not run:
rs_nearby_df <- rs_nearby_calculation(rs_reg, ra_reg, ra)
## End(Not run)</pre>
```

Description

Function to see the localization of the automatic weather station of INMET.

Usage

```
see_stations_info()
```

see_stations_info

Value

A data.frame with informations of OMM code, latitude, longitude and altitude of all AWS stations available in INMET.

Localization of the automatic weather station of INMET

Author(s)

Roberto Filgueiras, Luan P. Venancio, Catariny C. Aleman and Fernando F. da Cunha

```
## Not run:
see_stations_info()
## End(Not run)
```

sr_ang_calculation 17

sr_ang_calculation	Solar radiation based in Angstrom formula (sr_ang)	

Description

If global radiation is not measure at station, it can be estimated with this function.

Usage

```
sr_ang_calculation(latitude, date, n, as, bs)
```

Arguments

latitude	A dataframe with latitude in decimal degrees that you want to calculate the ra.
date	A dataframe with the dates that you want to calculate the ra.
n	The actual duration of sunshine. This variable is recorded with Campbell-Stokes sunshine recorder.
as	A dataframe with latitude in decimal degrees that you want to calculate the ra. The values of as $= 0.25$ is recommended by Allen et al. (1998).
bs	A dataframe with the dates that you want to calculate the ra. The values of bs = 0.50 is recommended by Allen et al. (1998).

Value

A data.frame object with solar radiation data

Author(s)

Roberto Filgueiras, Luan P. Venancio, Catariny C. Aleman and Fernando F. da Cunha

```
## Not run:
sr_ang <- sr_ang_calculation(latitude, date, n, as, bs)
## End(Not run)</pre>
```

18 u2_calculation

sr_tair_calculation Solar radiation data derived from air temperature differences

Description

If global radiation is not measure at station, it can be estimated with this function.

Usage

```
sr_tair_calculation(latitude, date, tmax, tmin, location_krs)
```

Arguments

latitude A dataframe with latitude in decimal degrees that you want to calculate the ra.

date A dataframe with the dates that you want to calculate the ra.

tmax A dataframe with Maximum daily air temperature (°C)

tmin A dataframe with Minimum daily air temperature (°C)

location_krs Adjustment coefficient based in location. Please decide between "coastal or

"interior". If coastal the krs will be 0.19, if interior the krs will be 0.16.

Value

A data frame object with solar radiation data

Author(s)

Roberto Filgueiras, Luan P. Venancio, Catariny C. Aleman and Fernando F. da Cunha

Examples

```
## Not run:
sr_tair <- sr_tair_calculation(latitude, date, tmax, tmin, location_krs)
## End(Not run)</pre>
```

u2_calculation

Wind speed at 2 meters high

Description

Wind speed at two meters high can be calculated with this function.

```
u2_calculation(uz, z)
```

u2_calculation

Arguments

uz	measured wind speed at z meters above ground surface
7	height of measurement above ground surface.

Value

A data.frame with the wind speed at 2 meters high calculated.

Author(s)

Roberto Filgueiras, Luan P. Venancio, Catariny C. Aleman and Fernando F. da Cunha

```
## Not run:
u2_df <- u2_calculation(uz, z)
## End(Not run)</pre>
```

Index

```
daily_eto_FAO56, 2
download_AWS_INMET_daily, 3
ea_dew_calculation, 4
ea_rh_calculation, 5
es_calculation, 5
es_ea_calculation, 6
eto_hs, 7
Patm, 8
psy_const, 8
ra\_calculation, 10
radiation_conversion, 9
rh_calculation, 11
rn_calculation, 13
rnl_calculation, 12
rns_calculation, 12
rs_nearby_calculation, 15
rso_calculation_1, 14
rso_calculation_2, 15
see_stations_info, 16
sr_ang_calculation, 17
\verb|sr_tair_calculation|, 18|
u2\_calculation, 18
```