parameter. Instead, it comprises sensing a piston parameter, namely, a relative displacement of the piston 25, see col. 4, lines 31-36.

The tension variables are calculated based on the measurement of X. An initial tensioning force T_i is a predetermined value stored in the ROM, col. 6, lines 9-15. An optimum tensioning force T_R is selected from a characteristic curve, col. 8, lines 19-24. A maximum tensioning force T_{max} is stored in the ROM for comparison with T, col. 8, lines 51-61. A minimum tensioning force T_{min} is stored in the ROM for comparison with T as well, col. 8, lines 66-68. Each of these tension variable are either calculated or selected from memory, none are measured by a sensor. Since none of these variables are measured by a sensor, none comprise a sensor signal generated by a sensor.

The inventive system claims sensing a drive member parameter. A sensor signal is generated by a sensor sensing the drive member parameter, and this signal is used to adjust a drive member tension. For example, sensor 22 comprises a load cell for detecting a belt load, page 6, lines 7-9. Sensor 46 detects a load exerted on an idler, page 6, lines 9-10.

Therefore, Applicant respectfully disagrees with the Examiner's over-broad characterization of Hayakawa at col. 4, lines 40-65 by arguing it teaches the limitation relating to a sensor detecting the drive member parameter. A close inspection of the disclosed variables in col. 4, lines 40-65 reveals they only comprise a fluid pressure P generated from the power steering pump, col. 4, lines 43-46; an electric load current I_A from the alternator, col. 4, lines 46-49; and piston displacement X. None of these comprises a drive member parameter, but instead comprise a power steering pump parameter, an alternator parameter and a piston parameter. The piston parameter is discussed above. Hence, the claimed limitation is not taught.

Claims 2-7 either depend directly or ultimately from claim 1.

Claim 9 depends from claim 8.

As to claim 10, Hayakawa does not teach sensing a belt tension using a sensor as argued above. Claims 11-12 and 14-16 depend directly or ultimately from claim 10.

As to claim 17, Hayakawa does not teach sensing a drive member tension using a sensor as argued above. Claims 18-20 depend directly or ultimately from claim 17.

Claims 22-28 depend directly or ultimately from claim 21.

Claims 30-32 depend directly or ultimately from claim 29.

As to claim 33, in addition to the foregoing arguments, Hayakawa does not teach measuring a first accessory hubload nor does it teach measuring a second accessory hubload. The Examiner cites col. 7, lines 22-42, however, the cited section only refers to the variables noted above, namely, P, I_A and X. Per the foregoing argument, none of these variables represent or comprise a hubload, "Hubload" refers to the load imposed on a pulley by a belt tension, application page 11, lines 23-24.

Claims 34-39 depend directly or ultimately from claim 33.

Applicant requests withdrawal of the rejection as to all claims.

2. Claim 5-7 and 13 are rejected under 35 USC 103(a) as being unpatentable over Hayakawa et al in view of Kouno et al (US 5,085,104).

Claims 5-7 depend from claim 1.

Claim 13 depends from claim 10.

V. Fees

Any fees applicable to this amendment should be deducted from deposit account 07-0475 in the name of the Gates Corporation. Applicant respectfully requests that the Examiner pass this application to allowance.

Thank you for your attention to this case.

Sincerely

Date: Jan 22, 2004

Jeffrey Thurnau

Attorney for Applicant

Reg. No. 42,183 303 744-4743

26683

PATENT TRADEMARY OFFICE