CS 5321: Advanced Algorithms – Analysis Using Recurrence

Dr. Ali Ebnenasir Department of Computer Science Michigan Technological University

Acknowledgement

- Eric Torng
- Moon Jung Chung
- · Charles Ofria

Outline

- Recursive algorithms vs. recurrence relations
- Specifying recurrence relations
- · Solution techniques
 - Substitution method
 - Recursion-tree
 - Master theorem
 - Characteristic equations

Example: Towers of Hanoi

Problem Definition:

- Three pegs: A,B,C
- n disks
- Move n disks from A to B using C as a working peg
- Constraints:
 - One disk at a time
 - A larger disk cannot be on top of a smaller disk

Can we do one better? A C B

Recurrence Relation

- T(n): minimum number of moves needed for n disks
- T(n-1): minimum number of moves needed for n-1disks
- What is the relation between these two?
 - Try to calculate the number of moves from small values of n

Where do recurrence relations come from?

- Analysis of a divide and conquer algorithm
 Towers of Hanoi, Merge Sort, Binary Search
- Analysis of a combinatorial object
 up-down permutations
- This is the key analysis step you should master
- Use small cases to check correctness of your recurrence relation

Can recurrence relations be solved?

- No general procedure for solving recurrence relations is known, which is why it is an art.
- However, linear, finite history, constant coefficient recurrences always can be solved
- Example: $a_n = 2a_{n-1} + 2a_{n-2} + 1$; $a_1 = 1$; $a_2 = 1$
 - degree = 1
 - history = 2
 - coefficients = 2, 2, and 1

Recurrence Formulas

- T(n) = a T(n/b) + f(n)
- <u>Divide</u> the problem into a subproblems
 The size of each subproblem is n/b
- The function f(n) often represents the cost of dividing the problem to subproblems and then composing the solutions of subproblems; f(n) = D(n) + C(n)

Solution Techniques: Substitution Method

Substitution Method

- 1. Guess a solution
 - Try back-substituting until you know what is going on
 - Draw a recursion tree
- 2. Use **induction** to verify your guess

Recursion *and* Mathematical Induction

In both, we have general and boundary conditions:

The **general** conditions break the problem into smaller and smaller pieces.

The **initial** or **boundary** condition(s) terminate the recursion.

Both take a **Divide and Conquer** approach to solving mathematical problems.

First Step

- Using the base case and the recursive case, calculate small values
- Use these values to help guess a solution
- Use induction to verify the correctness of your solution

Guessing a Solution

We can use mathematical induction to prove that a general function solves for a recursive one.

$$T_n = 2T_{n-1} + 1 \; ; \; T_0 = 0$$

$$n = 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8$$

$$T = 0 \quad 1 \quad 3 \quad 7 \quad 15 \quad 31 \quad 63 \quad 127 \quad 25$$

Guess what the solution is?

Prove by Induction

Prove: $T_n = 2^n - 1$ by induction:

1. Base Case: n=0: $T_0 = 2^0 - 1 = 0$

2. Inductive hypothesis: assume $T_n = 2^n - 1$ for $n \ge 0$

3. Inductive Step: Show $T_{n+1} = 2^{n+1} - 1$ for $n \ge 0$

$$T_{n+1} = 2T_n + 1$$

= 2 (2ⁿ - 1) + 1
= 2ⁿ⁺¹ -1

Substitution Method Drawbacks

- Sometimes it is difficult to guess a solution
- We need systematic approaches for coming up with a guess
 - Back-substitution
 - Recursion tree

Back-Substitution

Example:
$$T(n) = 3T(\lfloor n/4 \rfloor) + n$$
, $T(1) = 1$

$$= 3(3T(\lfloor n/16 \rfloor) + n/4) + n$$

$$= 9T(\lfloor n/16 \rfloor) + 3n/4 + n$$

$$= 9(3T(\lfloor n/64 \rfloor) + n/16) + 3n/4 + n$$

$$= 27T(\lfloor n/64 \rfloor) + 9n/16 + 3n/4 + n$$

$$= n \cdot \sum_{i=0}^{7} \left(\frac{3}{4} \right)^{i} \le \frac{1}{1 - 3/4} n = 4n$$

Recursion Trees

$$T(n) = 2 T(n/2) + n^2, T(1) = 1$$

Example Problem

Use induction to prove that MergeSort is an $O(n \log n)$ algorithm.

Mergesort(array)

n = size(array)

if (n == 1) return array

array1 = Mergesort(array[1 .. n/2])

array2 = Mergesort(array[n/2 .. n])

return Merge(array1, array2)

Induction Proof

Example: Prove that $T(n) = 2T(\lfloor n/2 \rfloor) + n$, T(1) = 1 is $O(n \log n)$.

We need to prove that $T(n) \le c n \log n$, for all n greater than some value.

- 1. Base cases: $T(2) = 4 \le c$ 2 and $T(3) = 5 \le c$ 3 log_2 3 $c \ge 2$ suffices
- 2. Inductive hypothesis: Assume $T(\lfloor n/2 \rfloor) \le c(\lfloor n/2 \rfloor)$ log $(\lfloor n/2 \rfloor)$

What is happening to the quantifications?

Induction Step

Given:
$$T(\lfloor n/2 \rfloor) \le c(\lfloor n/2 \rfloor) \log(\lfloor n/2 \rfloor)$$

 $T(n) = 2T(\lfloor n/2 \rfloor) + n$
 $\le 2(c(\lfloor n/2 \rfloor) \log(\lfloor n/2 \rfloor)) + n$
 $\le 2(c(n/2) \log(n/2)) + n$ (dropping floors makes it bigger!)
 $= c n \log(n/2) + n$
 $= c n (\log(n) - \log(2)) + n$
 $= c n \log(n) - c n + n$ ($\log_2 2 = 1$)
 $= c n \log(n) - (c - 1) n$
 $< c n \log(n)$ ($c > 1$)

Example Problem 2

$$T(n) = T(n/3) + T(2n/3) + n$$

 $T(1) = 1$

Show T(n) is $\Omega(n \log n)$ by appealing to the recursion tree

Recursion Tree

What is the length of the longest path from root to a leaf?

Solution Techniques: Master Theorem

Master Theorem

- T(n) = a T(n/b) + f(n)
 - Ignore floors and ceilings for n/b
 - $\ \ constants \ a \geq 1 \ and \ b > 1 \ and \ \epsilon > 0$
- f(n) an asymptotically positive function
- Case 1:
- $\ \ \text{If } f(n) = O(n^{(\log_- b \ a) \epsilon}) \text{ for constant } \epsilon {>} 0, \ T(n) = \Theta(n^{\log_- b \ a})$
- Case 2:
 - If $f(n) = \Theta(n^{\log_b a})$, $T(n) = \Theta(n^{\log_b a} \log n)$
- Case 3: If
 - $f(n) = \Omega(n^{(\log_b a) + \epsilon})$ for some constant $\epsilon > 0$, and
 - a.f(n/b) \leq c.f(n) for some constant c < 1 and all sufficiently large n,
 - Then, we have $T(n) = \Theta(f(n))$.
 - Regularity condition: a.f(n/b) \leq c.f(n) for some constant c \leq 1 and all sufficiently large n

Key idea: Compare nlog_b a with f(n)

Examples

- T(n) = 9 T(n/3) + n
 - $-a=9, b=3, n^{\log_{b} a} = n^{\log_{a} 3} = \Theta(n^{2})$
 - Thus, we have $f(n) = O(n^{\log_2 3} e^{-\epsilon})$, case 1 applies
 - $T(n) = \Theta(n^2)$
- T(n) = T(2n/3) + 1
 - $-a=1, b=3/2, n^{\log_b 1}=n^0=1$
 - Thus, we have $f(n) = \Theta(n^{\log_b b})$; case 2 applies
 - $\ T(n) = \Theta(n^{\log_b a} \lg n) = \Theta(\lg n)$
- $T(n) = 3T(n/4) + n \log n$
 - $-a=3, b=4, n^{\log_{-}43} = O(n^{0.79})$
 - we have $f(n) = \Omega(n^{log_b} \ ^{a+\epsilon})$ for $\epsilon \cong 0.2,$ and
 - $-3(n/4) \log (n/4) \le (3/4) \text{ n log n, for c} = \frac{3}{4}$; case 3 applies
 - $\ T(n) = \Theta(f(n)) = \Theta(n \ log \ n)$

Examples

- $T(n) = 2T(n/2) + n \log n$
 - $-a = 2, b = 2, n^{\log_b a} = n^{\log_2 2} = \Theta(n)$
 - f(n) is asymptotically larger than $(n^{1+\epsilon})$
 - Thus case 3 applies
 - Wrong! Why?
 - f(n) is not polynomially larger; f(n)/n = log n, which is asymptotically smaller than n^ϵ for any $\epsilon > 0$
 - Therefore, the regularity condition does not hold.

Solution Techniques: Characteristics Equations

Characteristic Equation Approach

•
$$t_n = 3t_{n-1} + 4t_{n-2}$$
 for $n > 1$
- $t_0 = 0$, $t_1 = 5$

$$-t_{n}-3t_{n-1}-4t_{n-2}=0$$

- · Properties
 - Homogeneous: no terms not involving t_n
 - Linear: t_n terms have no squares or worse
 - Constant coefficients: 1, -3, -4

Characteristic Equation

- $t_n 3t_{n-1} 4t_{n-2} = 0$
- Rewrite assuming solution of the form $t_n = x^n$
- $x^n 3x^{n-1} 4x^{n-2} = 0$
- $x^{n-2}(x^2-3x-4)=0$
- Find roots of $(x^2 3x 4)$
 - -(x+1)(x-4) → roots are -1 and 4
- Solution is of form $c_1(-1)^n + c_2 4^n$

Solving for Constants

- $t_n = c_1(-1)^n + c_24^n$
- Use base cases to solve for constants

$$-t_0 = 0 = c_1(-1)^0 + c_2 4^0 = c_1 + c_2$$

$$-t_1 = 5 = c_1(-1)^1 + c_2 4^1 = -c_1 + 4c_2$$

$$-5c_2 = 5 \Rightarrow c_2 = 1 \Rightarrow c_1 = -1$$

- $t_n = (-1)^{n+1} + 4^n$
- Always test solution on small values!

Repeated Roots for Characteristic Equations

- $t_n 5t_{n-1} + 8t_{n-2} 4t_{n-3} = 0$
 - boundary conditions: $t_n = n$ for n = 0, 1, 2
- $x^3 5x^2 + 8x 4 = 0$
- $(x-1)(x-2)^2 \rightarrow \text{roots are } 1, 2, 2$
- Solution is of form $c_1(1)^n + c_2 2^n + c_3 n 2^n$
 - If root is repeated third time, then n^22^n term, and so on

Solving for Constants

- $t_n = c_1(1)^n + c_2 2^n + c_3 n 2^n$
- Use base cases to solve for constants

$$- t_0 = 0 = c_1(1)^0 + c_2 2^0 + c_3 0 \ 2^0 = c_1 + c_2$$

$$- t_1 = 1 = c_1(1)^1 + c_2 2^1 + c_3 1 \ 2^1 = c_1 + 2c_2 + 2c_3$$

$$- t_2 = 2 = c_1(1)^2 + c_2 2^2 + c_3 2 2^2 = c_1 + 4c_2 + 8c_3$$

$$-c_1 = -2, c_2 = 2, c_3 = -1/2$$

- $t_n = 2^{n+1} n2^{n-1} 2$
- Test the solution on small values!

Inhomogeneous Equation

- $t_n 2t_{n-1} = 3^n$
 - base case value for t₀ only
- (x-2)(x-3)=0
 - (x-2) term comes from homogeneous solution
 - If rhs is of form bⁿ poly(n) of degree d
 - In this case, b = 3, poly (n) = 1 is of degree 0
 - Plug (x-b)^{d+1} into characteristic equation

Solving for constants

- (x-2)(x-3)=0
- $t_n = c_1 2^n + c_2 3^n$
- Solve for c₁ and c₂ with only t₀ base case
- This is only 1 equation and 2 unknowns
- Use recurrence to generate extra equations
 - $t_n 2t_{n-1} = 3^n \rightarrow t_1 = 2t_0 + 3$ Now we have two equations
 - $\quad t_0 = c_1 2^0 + c_2 3^0 = c_1 + c_2$

 - $t_1 = 2t_0 + 3 = 2 c_1 + 2 c_2 + 3 = 2c_1 + 3c_2$ results in $c_2 = 3$
- $-c_1 = t_0 3$ and $c_2 = 3$
- $t_n = (t_0-3)2^n + 3^{n+1}$

Changing variable

- $t_n 3t_{n/2} = n$ if n is a power of 2 $-t_1 = 1$
- Let $n = 2^i$ and $s_i = t_n$
- $s_i 3s_{i-1} = 2^i$ for i >= 1
- $s_0 = 1$
- (x-3)(x-2) = 0
 - x-3 from characteristic equation
 - x-2 bⁿpoly(n) rhs

Solving for constants

- (x-3)(x-2) = 0
- $s_i = c_1 3^i + c_2 2^i$
- · Generating two equations

$$- t_1 = s_0 = 1 = c_1 3^0 + c_2 2^0 = c_1 + c_2$$

$$- t_2 = s_1 = 3t_1 + 2 = 5 = c_1 3^1 + c_2 2^1 = 3c_1 + 2c_2$$

$$-c_1 = 3, c_2 = -2$$

- $s_i = 3^{i+1} 2^{i+1}$ for i >= 0
- $t_n = 3n^{\lg 3} 2n$ for n a power of 2 >= 1

Example: Towers of Hanoi

- Suppose we have two disks of each size.
- Let n be the number of sizes of disks
 - What is recurrence relation?
 - What is solution?

Example: Merge Sort

- Merge sort breaking array into 3 pieces
 - What is recurrence relation?
 - What is solution?
 - How does this compare to breaking into 2 pieces?