CIR₂CNB₂

TD de Maths – Séries(2)

1/ Soit $\varphi = \frac{1+\sqrt{5}}{2}$ le nombre d'or.

Le côté du carré C_0 est 1, celui de C_1 $\frac{1}{\varphi}$,

celui de $C_2 \frac{1}{\varphi^2}$, etc...

Calculer
$$\frac{1}{\varphi} + \frac{1}{\varphi^2}$$
.

Remarquer que cela justifie la construction.

Calculer la somme de la série $[C_n]$. Calculer la longueur de la spirale.

2/ Soit $a \in \mathbb{C}$ tel que |a| < 1.

Pour tout $n \in \mathbb{N}$, et tout $k \le n$, calculer $S_k = a^k + a^{k+1} + ... + a^{n-1} + a^n$ Calculer de 2 manières la somme $S_0 + S_1 + ... + S_n$.

Montrer que $(n+1)a^{n+1} \xrightarrow[n\to\infty]{} 0$.

En déduire que la série $\sum_{n \in \mathbb{N}} (n+1)a^n$ converge et calculer sa somme.

3/ Étudier la convergence et calculer éventuellement la somme de la série $[u_n]_{n\in\mathbb{N}}$ dans les cas suivants :

$$u_{n} = \frac{1}{5^{n}}, \ u_{n} = \left(\frac{-1}{3}\right)^{n}, \ u_{n} = \frac{2^{n}}{3^{n+1}}, \ u_{n} = \frac{n^{2}}{n^{2} + n + 1}, \ u_{n} = \frac{\exp(n)}{2^{n}}, \ u_{n} = \frac{2^{n+1}}{n!}, \ u_{n} = 2^{n} \exp(-2n)$$

$$u_{n} = \frac{1}{n!} + \frac{1}{(n+1)!}, \ u_{n} = \frac{2^{n+1} + 3^{n+2}}{5^{n}}, \ u_{n} = \frac{9}{(3n+1)(3n+4)}, \ u_{n} = \frac{1}{\sqrt{n+1} + \sqrt{n}}, \ u_{n} = \sqrt{n^{2} + n} - n$$

4/ Étudier la convergence et calculer éventuellement la somme de la série $[u_n]_{n\in\mathbb{N}}$ dans les cas suivants :

$u_n = \left(\frac{n-1}{n}\right)^n$	$u_n = \frac{n!}{n^n}$	$u_n = \frac{2^n}{n^2}$	$u_n = \frac{1}{2^n} \left(1 + \frac{1}{n} \right)^n$
$u_n = \int_n^{n+1} \frac{dt}{\sqrt{1+t^4}}$	$u_n = \frac{1}{n \ln(n)}$	$u_n = \frac{\ln(2) \times \ln(3) \times \times \ln(n)}{n!}$	$u_n = \sqrt{1 + \frac{(-1)^n}{n}} - 1$
$u_n = -1 + \exp\left(\frac{\left(-1\right)^n}{\sqrt{n}}\right)$	$u_n = \frac{1}{n} \sin\left(\frac{4 n - 3}{6} \pi\right)$	$u_n = \sin\left(\frac{n^2 + n + 1}{n + 1}\pi\right)$	$u_n = (-1)^n \frac{\ln(n)}{n}$

5/ Pour chacune des 6 figures ci-dessous, quelle est l'aire en noir ? Si on continuait ? limite ?

Wacław Franciszek Sierpiński (1882-1969)

Problème : la série harmonique alternée

a/ Pour des entiers 0 < n < p, soit $S_{n,p} = \sum_{k=n+1}^{p} \frac{1}{k}$.

Encadrer $S_{n,p}$ à l'aide d'intégrales. Montrer que $\ln\left(\frac{p+1}{n+1}\right) < S(n,p) < \ln\left(\frac{p}{n}\right)$

- b/ On pose $H_n = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots + \frac{1}{n}$, $A_n = \frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2n}$ et $B_n = 1 + \frac{1}{3} + \frac{1}{5} + \frac{1}{7} + \dots + \frac{1}{2n-1}$ Écrire A_n et B_n en fonction des H
- c/ Écrire $U_n = 1 \frac{1}{2} + \frac{1}{3} \frac{1}{4} + \dots + \frac{1}{2n-1} \frac{1}{2n}$ en fonction des H_{\dots} puis en fonction des $S_{\dots,\dots}$

Encadrer U_n . En déduire que la série $\sum_{n \ge 1} \frac{(-1)^n}{n}$ est convergente et calculer sa somme

- d/ Encadrer de même $V_n = \left(1 + \frac{1}{3}\right) \frac{1}{2} + \left(\frac{1}{5} + \frac{1}{7}\right) \frac{1}{4} + \left(\frac{1}{9} + \frac{1}{11}\right) \frac{1}{6} + \dots + \left(\frac{1}{4n 3} + \frac{1}{4n 1} \frac{1}{2n}\right)$ En déduire que la série $\left(1 + \frac{1}{3}\right) - \frac{1}{2} + \left(\frac{1}{5} + \frac{1}{7}\right) - \frac{1}{4} + \left(\frac{1}{9} + \frac{1}{11}\right) - \frac{1}{6} + \dots$ est convergente et calculer sa somme
- e/ Étudier la série $\left(1+\frac{1}{3}+\frac{1}{5}\right)+\left(-\frac{1}{2}-\frac{1}{4}\right)+\left(\frac{1}{7}+\frac{1}{9}+\frac{1}{11}\right)+\left(-\frac{1}{6}-\frac{1}{8}\right)+\left(\frac{1}{13}+\frac{1}{15}+\frac{1}{17}\right)+\left(-\frac{1}{10}-\frac{1}{12}\right)+\dots$ puis la série $\left(1-\frac{1}{2}\right)+\left(\frac{1}{3}-\frac{1}{4}-\frac{1}{6}\right)+\left(\frac{1}{5}-\frac{1}{8}-\frac{1}{10}...-\frac{1}{14}\right)+\left(\frac{1}{7}-\frac{1}{16}-\frac{1}{18}...-\frac{1}{30}\right)+\dots$

