Análisis de un rectificador de media onda con carga **RL**

Yosniel Agüero Universidad de Guadalajara MCIE

Guadalajara, México yosniel.aguero9368@alumnos.udg.mx Glader Hernandez MCIE

Guadalajara, México glader.hernandez9367@alumnos.udg.mx

Gary Sosa Universidad de Guadalajara Universidad de Guadalajara Universidad de Guadalajara **MCIE**

Guadalajara, México gary.sosa9369@alumnos.udg.mx Ulrik Wong **MCIE**

Guadalajara, México ulrik.wong7998@alumnos.udg.mx

Abstract—This document is a model and instructions for LATEX. This and the IEEEtran.cls file define the components of your document [title, text, heads, etc.]. *CRITICAL: Do Not Use Symbols, Special Characters, Footnotes, or Math in Document title or Abstract.

I. Introduction

This document is a model and instructions for LATEX. Please observe the report page limits.

II. ANÁLISIS DEL RECTIFICADOR MONOFÁSICO DE MEDIA ONDA CON CARGA $R\!-\!L$ Y DIODO DE CORRIDA LIBRE

La fuente sinusoidal de la entrada es:

$$v_i(t) = V_m \sin(\omega t),$$

una impedancia serie R y L (carga), y dos diodos ideales:

- D_1 : rectificador que conecta la fuente a la carga.
- D_2 : diodo de *corrida libre* en paralelo a la carga.

A. Estados asumidos de los diodos

Definición de los 4 estados considerados y denotamos ON como conducción (diodo polarizado directamente) y OFF como bloqueo (polarizado inversamente).

> $(D_1 = ON, D_2 = OFF)$ Estado A: $(D_1 = \text{OFF}, D_2 = \text{ON})$ $(D_1 = \text{OFF}, D_2 = \text{OFF})$ Estado C: $(D_1 = ON, D_2 = ON)$ Estado D:

• Operación de cada estado asumido :

1) Estado A: Ocurre cuando la tensión instantánea de la fuente tiende a polarizar positivamente D_1 y puede imponer una tensión mayor en el nodo de carga que la necesaria para forzar D_2 en conducción inversa. D_1 conduce si $v_i(t) > v_R(t)$ (ánodo de D_1 más

- positivo que su cátodo). En la práctica, con diodos ideales y caída nula, el encendido ocurre cuando $v_i(t)$ supera la tensión instantánea necesaria para mantener la corriente i(t) > 0.
- 2) Estado B: Ocurre cuando la fuente no sostiene la corriente inductiva, pero la inercia del inductor mantiene corriente positiva; entonces D_2 ofrece el camino de libre. D_2 conduce si la polaridad en la carga, hace que el ánodo de D_2 sea más positivo que su cátodo, es decir, cuando la inercia del inductor empuja la corriente y la tensión en la carga favorece la conducción por D_2 .
- 3) Estado C: Estado de no-conducción solo es válido si la corriente ha decaído a cero (i(t) = 0), pero debido a la función del inductor, este mantendrá la corriente siempre diferente de cero para el circuito, por lo que este estado en practica no se considera.
- 4) Estado D: Si los diodos son ideales y están orientados en la configuración planteada, la conducción simultánea tiende a producir una contradicción en las polaridades, por tanto en la práctica se considera no-sostenible.
- B. Análisis de estado estacionario periódico

El estado estacionario per

C. Modelo en espacio de estados de los estados válidos

En este sistema la única variable de estado es la corriente i(t) de la carga R-L. La variable de estado:

$$x(t) = i(t).$$

Las ecuaciones de estado para cada configuración válida.

a) Estado A: La ecuación diferencial y la representación en espacio de estados:

$$L\frac{di}{dt} + Ri(t) = v_s(t) = V_m \sin(\omega t).$$

$$\dot{x}(t) = -\frac{R}{L} \left[x(t) \right] + \frac{1}{L} \qquad y(t) = Rx(t).$$

Solución general (en t_0 con condición $i(t_0) = I_0$):

$$i(t) = e^{-\frac{R}{L}(t-t_0)}I_0 + \frac{V_m}{L} \int_{t_0}^t e^{-\frac{R}{L}(t-\tau)} \sin(\omega \tau) d\tau.$$

La parte forzada en régimen permanente (cuando el tiempo es mucho mayor que $\frac{L}{B}$) tiene la forma:

$$i_p(t) = \frac{V_m}{\sqrt{R^2 + (\omega L)^2}} \sin(\omega t - \phi), \qquad \phi = \arctan \frac{\omega L}{R}.$$

b) Estado B: La ecuación diferencial para este estado es:

$$L\frac{di}{dt} + Ri(t) = 0$$

$$\dot{x}(t) = \frac{R}{L}x(t) \qquad y(t) = Rx(t).$$

La solucion general es:

$$i(t) = I_1 e^{-\frac{R}{L}(t-t_1)}$$

donde I_1 es la corriente en el instante t_1 en que comienza el freewheeling, que seria el decaimiento libre de la corriente.

III. COMPORTAMIENTO EN EL RECTIFICADOR DE MEDIA ONDA CON CARGA RL Y DIODO DE CORRIDA LIBRE

En este convertidor, el voltaje del inductor está regido por la relación constitutiva $v_L(t) = L\, \frac{d}{dt} i_L$; por tanto, el signo de v_L determina si la corriente crece $(v_L>0)$ o decrece $(v_L<0)$. Durante el semiciclo positivo, D_1 conduce y la salida sigue a la fuente, de modo que el comportamiento de la rama activa se describe por:

$$v_L(t) = v_i(t) - R i_L(t).$$

Al inicio del semiciclo, v_i crece desde cero mientras i_L aún es pequeña, por lo que v_L y el inductor acumula energía; conforme avanza el periodo, la corriente ya acumulada aumenta la caída $R\,i_L$ y se alcanza un instante en el que $v_i=R\,i_L$, para el cual $v_L=0$ y la pendiente de i_L se anula, identificando el máximo de corriente. Después, aun antes del cruce por cero de la senoide, v_i se hace menor que $R\,i_L$ y v_L pasa a ser levemente negativo: el inductor comienza a devolver energía al resistor aunque D_1 siga en conducción. Cuando la fuente cruza a negativo, D_1 se bloquea y entra el modo de recirculación por el diodo D_2 ; y la KVL del lazo $L-R-D_2$ impone

$$v_L(t) = -R i_L(t),$$

por lo que v_L permanece negativo y su magnitud es proporcional a la corriente mientras ésta decae exponencialmente con constante de tiempo $\tau = L/R$. En régimen estacionario periódico, la condición de balance volt-segundo del inductor

$$\int_{t_0}^{t_0+T} v_L(t) dt = L[i_L(t_0+T) - i_L(t_0)] = 0,$$

explica que el área positiva de v_L durante la carga de L se compense exactamente con el área negativa durante su descarga.

REFERENCES

- N. Mohan, T. M. Undeland y W. P. Robbins, *Power Electronics: Converters, Applications, and Design*, 3rd ed. Hoboken, NJ, USA: John Wiley & Sons, 2003.
- [2] M. H. Rashid, Power Electronics: Circuits, Devices, and Applications, 4th ed. Boston, MA, USA: Pearson, 2014.

Fig. 1: Respuesta del rectificador de media onda con carga RL y diodo de corrida libre.