Graphs

What is a Graph?

A graph G = (V,E) is composed of:

V: a finite, nonempty set of vertices

E: set of edges connecting the vertices in V

- An edge e = (u,v) is a pair of vertices
- Example:

$$V= \{a,b,c,d,e\}$$

$$E= \{(a,b), (a,c), (a,d), (b,e), (c,d), (c,e), (d,e)\}$$

Applications

Directed Graph

A graph where edges are directed

Directed vs. Undirected Graph

- An undirected graph is one in which the pair of vertices in an edge is unordered, $(v_0, v_1) = (v_1, v_0)$
- A directed graph is one in which each edge is a directed pair of vertices, $\langle v_0, v_1 \rangle \stackrel{!}{=} \langle v_1, v_0 \rangle$

Terminology: Adjacent and Incident

- If (v_0, v_1) is an edge in an undirected graph,
 - −v₀ and v₁ are adjacent
 - The edge (v_0, v_1) is incident on vertices v_0 and v_1
- If (v₀, v₁) is an edge in a directed graph
 - $-v_0$ is adjacent to v_1 , and v_1 is adjacent from v_0
 - The edge (v_0, v_1) is incident on v_0 and v_1

Terminology: Degree of a Vertex

- The degree of a vertex is the number of edges incident to that vertex
- For directed graph,
 - the in-degree of a vertex v is the number of edges that have v as the head
 - the out-degree of a vertex v is the number of edges that have v as the tail
 - if d_i is the degree of a vertex i in a graph G with n vertices and e edges, the number of edges is

$$e = (\sum_{i=0}^{n-1} d_i) / 2$$

Why? Since adjacent vertices each count the adjoining edge, it will be counted twice

Examples

Terminology: Path

path: sequence of vertices
 v₁,v₂,...v_k such that
 consecutive vertices v_i and
 v_{i+1} are adjacent.

Not a PATH acbe

More Terminology

• simple path: no repeated vertices

• cycle: simple path, except that the last vertex is the same as the first

vertex

Even More Terminology

• Connected graph: any two vertices are connected by some path

Subgraph: subset of vertices and edges forming a graph

Connected component: maximal connected subgraph. E.g., the graph below has 3

connected components.

Subgraphs Examples

More...

- tree connected graph without cycles
- forest collection of trees

Connectivity

- Let n = #vertices, and m = #edges
- A complete graph: one in which all pairs of vertices are adjacent
- How many total edges in a complete graph?

$$-m = n(n-1)/2.$$

• Therefore, if a graph is not complete, m < n(n-1)/2

More connectivity

n = #vertices

m = #edges

• For a tree **m** = **n** - 1

$$\mathbf{n} = 5$$

$$\mathbf{m} = 4$$

If $\mathbf{m} < \mathbf{n} - 1$, G is not connected

$$\begin{array}{c}
\mathbf{n} = 5 \\
\mathbf{m} = 3
\end{array}$$

Graph Representations

- Adjacency Matrix
- Adjacency Lists

Data Structures for Graphs An Adjacency Matrix

- Let G=(V,E) be a graph with n vertices.
- The adjacency matrix of G is a two-dimensional n by n array, say adj_mat
- If the edge (v_i, v_j) is in E(G), adj_mat[i][j]=1
- If there is no such edge in E(G), adj_mat[i][j]=0

Examples for Adjacency Matrix

directed: n²

Adjacency Matrix Properties

- Diagonal entries are zero
- The adjacency matrix of an undirected graph is symmetric;
 the adjacency matrix for a digraph need not be symmetric

Adjacency Matrix

- The degree of a vertex i is $\sum_{j=0}^{n-1} A[i][j]$
- For a digraph (= directed graph), the row sum is the out_degree, while the column sum is the in_degree of a vertex i

$$ind(v_i) = \sum_{j=0}^{n-1} A[j][i]$$
 $outd(v_i) = \sum_{j=0}^{n-1} A[i][j]$

Adjacency Matrix

- n² bits of space
- All algos will require at least O(n²) time to find edges in G as n²-n
 entries of the matrix have to be examined (diagonal entries are zero)
- For an undirected graph, may store only lower or upper triangle (exclude diagonal)
 - -(n-1)n/2 bits
- O(n) time to find vertex degree and/or vertices adjacent to a given vertex
- Sparse graphs: problem
 - Speed up is possible through the use of linked lists in which only the edges that are in G are represented

Data Structures for Graphs An Adjacency List

- A list of pointers, one for each node of the graph
- These pointers are the start of a linked list of nodes that can be reached by one edge of the graph
- For a weighted graph, this list would also include the weight for each edge

Adjacency Lists (data structures)

Each row in adjacency matrix is represented as an adjacency list.

```
#define MAX_VERTICES 50

typedef struct node {
    int vertex_id;
        Node Structure
        struct node *link;
};

typedef struct node *node_pointer;
node_pointer graph[MAX_VERTICES];
```


An undirected graph with n vertices and e edges ==> n head nodes and 2e list nodes

Adjacency Lists

Consider a weighted graph

Adjacency Lists (data structures)

Each row in adjacency matrix is represented as an adjacency list.

```
#define MAX_VERTICES 50

typedef struct node {
    int vertex_id;
        Node Structure
        struct node *link;
};

typedef struct node *node_pointer;
node_pointer graph[MAX_VERTICES];
```

Some Operations

- degree of a vertex in an undirected graph
 - # of nodes in its adjacency list
- # of edges in a graph
 - determined in O(v+e)
- out-degree of a vertex in a directed graph
 - # of nodes in its adjacency list
- in-degree of a vertex in a directed graph
 - traverse the whole data structure

Graph Traversals

- We want to travel to every node in the graph.
- Traversals guarantee that we will get to each node exactly once.
- This can be used if we want to search for information held in the nodes or if we want to distribute information to each node.

Tree searches

- A tree search starts at the root and explores nodes from there, looking for a goal node (a node that satisfies certain conditions, depending on the problem)
- For some problems, any goal node is acceptable (N or J); for other problems, you want a minimum-depth goal node, that is, a goal node nearest the root (only J)

Graph Traversal

- Problem: Search for a certain node or traverse all nodes in the graph
- Depth First Search (DFS)
 - Once a possible path is found, continue the search until the end of the path
- Breadth First Search (BFS)
 - Start several paths at a time, and advance in each one step at a time

Depth-First Traversal

- We follow a path through the graph until we reach a dead end.
- We then back up until we reach a node with an edge to an unvisited node
- We take this edge and again follow it until we reach a dead end
- This process continues until we back up to the starting node and it has no edges to unvisited nodes

Depth-first searching in a Tree

- A depth-first search (DFS)
 explores a path all the way to
 a leaf before backtracking and
 exploring another path
- For example, after searching A, then B, then D, the search backtracks and tries another path from B
- Node are explored in the order A B D E H L M N I O P C F G J K Q
- N will be found before J

How to do DFS in a Tree

```
    Put the root node on a stack;
    while (stack is not empty) {
        pop a node from the stack;
        if (node is a goal node) return success;
            push all children of node onto the stack;
    }
    return failure;
```

- At each step, the stack contains a path of nodes from the root
- The stack must be large enough to hold the longest possible path, that is, the maximum depth of search

Depth-First Search Example

- Start search at vertex 1
- Label vertex 1 and do a depth first search from either 2 or 4
- Suppose that vertex 2 is selected

Depth-First Search Example

- Label vertex 2 and do a depth first search from either 3, 5, or 6
- Suppose that vertex 5 is selected

Depth-First Search Example

- Label vertex 5 and do a depth first search from either 3, 7, or 9
- Suppose that vertex 9 is selected

- Label vertex 9 and do a depth first search from either 6 or 8
- Suppose that vertex 8 is selected

- Label vertex 8 and return to vertex 9
- From vertex 9 do a dfs(6)

- Label vertex 6 and do a depth first search from either 4 or 7
- Suppose that vertex 4 is selected

- Label vertex 4 and return to 6
- From vertex 6 do a dfs(7)

- Label vertex 7 and return to 6
- Return to 9

Return to 5

Do a dfs(3)

- Label 3 and return to 5
- Return to 2

• Return to 1

Return to invoking method

Traversal: Another Example

• DFS (start vertex 1): 1, 2, 4, 8, 5, 6, 3, 7

DFS (Pseudo Code)

```
DFS(input: Graph G) {
  Stack S; Integer x, t;
  while (G has an unvisited node x){
       visit(x); push(x,S);
       while (S is not empty){
               t := peek(S);
               if (t has an unvisited neighbor y){
                       visit(y); push(y,S); }
               else
                       pop(S);
```


Adjacency Lists

A: F 6

B: A I

C: A D

D: C F

E: C D G

F: E

G:

H: B

I: H

Function call stack:

Function call stack:

Function call stack:

Nodes reachable from A: A, C, D, E, F, G

Breadth-First Traversal

- From the starting node, we follow all paths of length one
- Then we follow paths of length two that go to unvisited nodes
- We continue increasing the length of the paths until there are no unvisited nodes along any of the paths

Breadth-First Search

- Visit start vertex and put into a FIFO queue
- Repeatedly remove a vertex from the queue, visit its unvisited adjacent vertices, put newly visited vertices into the queue

Breadth-first searching in a Tree

- A breadth-first search (BFS)
 explores nodes nearest the root
 before exploring nodes further
 away
- For example, after searching A, then B, then C, the search proceeds with D, E, F, G
- Node are explored in the order A
 B C D E F G H I J K L M N O P
 Q
- J will be found before N

How to do BFS in a Tree

```
    Put the root node on a queue;
    while (queue is not empty) {
        remove a node from the queue;
        if (node is a goal node) return success;
            put all children of node onto the queue;
        }
        return failure;
```

- Just before starting to explore level i, the queue holds all the nodes at level i-1
- In a typical tree, the number of nodes at each level increases exponentially with the depth
- Memory requirements may be infeasible
- When this method succeeds, it doesn't give the path

Breadth-First Search Example

Start search at vertex 1

Breadth-First Search Example

Visit/mark/label start vertex and put in a FIFO queue

- Remove 1 from Q
- Visit adjacent unvisited vertices & put them in Q

- Remove 1 from Q
- Visit adjacent unvisited vertices & put them in Q

- Remove 2 from Q
- Visit adjacent unvisited vertices & put them in

- Remove 2 from Q
- Visit adjacent unvisited vertices & put them in Q

- Remove 4 from Q
- Visit adjacent unvisited vertices & put them in Q

- Remove 4 from Q
- Visit adjacent unvisited vertices & put them in Q

- Remove 5 from Q
- Visit adjacent unvisited vertices & put them in Q

- Remove 5 from Q
- Visit adjacent unvisited vertices & put them in Q

- Remove 3 from Q
- Visit adjacent unvisited vertices & put them in Q

- Remove 3 from Q
- Visit adjacent unvisited vertices & put them in Q

- Remove 6 from Q
- Visit adjacent unvisited vertices & put them in Q

- Remove 6 from Q
- Visit adjacent unvisited vertices & put them in Q

- Remove 9 from Q
- Visit adjacent unvisited vertices & put them in Q

- Remove 9 from Q
- Visit adjacent unvisited vertices & put them in Q

- Remove 7 from Q
- Visit adjacent unvisited vertices & put them in Q

- Remove 7 from Q
- Visit adjacent unvisited vertices & put them in Q

- Remove 8 from Q
- Visit adjacent unvisited vertices & put them in Q

■ All vertices reachable from the start vertex (including the start vertex) are visited

BFS- Flowchart

BFS (Pseudo Code)

```
BFS(input: graph G) {
  Queue Q; Integer x, z, y;
  while (G has an unvisited node x) {
       visit(x); Enqueue(x,Q);
       while (Q is not empty){
               z := Dequeue(Q);
               for all (unvisited neighbor y of z){
                      visit(y); Enqueue(y,Q);
```


front

FIFO Queue

enqueue source node

front

A

dequeue next vertex

front

A

visit neighbors of A

front

visit neighbors of A

front

B discovered front B

FIFO Queue

visit neighbors of A

front

В

I discovered B I

FIFO Queue

finished with A

front

B I

dequeue next vertex

front

B I

visit neighbors of B

front

I

visit neighbors of B

front

I

F discovered I F

FIFO Queue

visit neighbors of B

front

I F

A already discovered

front

I F

finished with B

front

I F

dequeue next vertex

front

I F

visit neighbors of I

front

F

visit neighbors of I

front

F

A already discovered

front

F

visit neighbors of I

front

F

E discovered F E

FIFO Queue

visit neighbors of I

front

F E

F already discovered

front

F E

I finished F E

FIFO Queue

dequeue next vertex

front

F E

visit neighbors of F

front

E

G discovered E G

FIFO Queue

F finished Front E G

FIFO Queue

dequeue next vertex

front

E G

visit neighbors of E

front

G

E finished G

FIFO Queue

dequeue next vertex

front

G

visit neighbors of G

front

C discovered C

visit neighbors of G

front

C

H discovered C H

FIFO Queue

G finished C H

FIFO Queue

dequeue next vertex

front

СН

visit neighbors of C

front

Н

D discovered H D

FIFO Queue

C finished front H D

FIFO Queue

get next vertex

front

H D

visit neighbors of H front D

FIFO Queue

finished H front D

FIFO Queue

dequeue next vertex front D

visit neighbors of D

front

D finished

front

dequeue next vertex

front

STOP front

FIFO Queue

Time Complexity

- Each visited vertex is put on (and so removed from) the queue exactly once
- When a vertex is removed from the queue, we examine its adjacent vertices
 - O(|V|) if adjacency matrix used
 - O(vertex degree) if adjacency lists used
- Total time
 - -O(|E||V|), where E is number of vertices in the component that is searched (adjacency matrix)= $O(|V|^2)$
 - O(|V| + sum of component vertex degrees) (adj. lists)
 - = O(|V| + number of edges in component)=O(|V|+|E|)

Applications: Finding a Path

- Find path from source vertex s to destination vertex d
- Use graph search starting at s and terminating as soon as we reach d
 - Need to remember edges traversed
- Use depth first search ?
- Use breath first search?

DFS vs. BFS

G Call DFS on G Found destination - done!
Path is implicitly stored in DFS recursion
Path is: A, B, D, G
B

Α

DFS vs. BFS

BFS Process

rear	front	
	A	
Initial call to BFS on A Add A to queue rear front		
	G	
Deque	eue D Add G	

rear	front	rear	front
	В		D C
Deque	eue A	Deque	eue B
A	Add B	Add	l C, D

D	
Dequeue C	
Nothing to add	

rear

front

found destination - done! Path must be stored separately

Path From Vertex s To Vertex d

- Time
 - $-O(|V|^2)$ when adjacency matrix used
 - -O(|V|+|E|) when adjacency lists used (|E| is number of edges)

Is The Graph Connected?

- Start a breadth-first search at any vertex of the graph
- Graph is connected iff all n vertices get visited
- Time
 - $^{\bullet}$ O($|V|^2$) when adjacency matrix used
 - O(|V|+|E|) when adjacency lists used (|E| is number of edges)

Connected Components

- Start a BFS at any as yet unvisited vertex of the graph
- Newly visited vertices (plus edges between them) define a component
- Repeat until all vertices are visited

Breadth First Spanning Tree

Breadth-first search from vertex 1

- Keep track of edges used to reach new vertices
- These edges form a spanning tree if the graph is connected

Spanning Tree

- Start a breadth-first search at any vertex of the graph
- If graph is connected, the n-1 edges used to get to unvisited vertices define a spanning tree (breadth-first spanning tree)
- Time
 - $-O(V^2)$ when adjacency matrix used
 - -O(V+E) when adjacency lists used (E is number of edges)