

Reachable Canonical Form

$$A = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ -a_n & -a_{n-1} & -a_{n-2} & \cdots & -a_1 \end{bmatrix}, \quad B = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix}$$

$$C = \begin{bmatrix} (b_n - b_0 a_n) & (b_{n-1} - b_0 a_{n-1}) & \cdots & (b_2 - b_0 a_2) & (b_1 - b_0 a_1) \end{bmatrix}$$

$$D = b_0$$

Observable Canonical Form

$$A = \begin{bmatrix} 0 & 0 & \cdots & 0 & -a_n \\ 1 & 0 & \cdots & 0 & -a_{n-1} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & -a_2 \\ 0 & 0 & \cdots & 1 & -a_1 \end{bmatrix} , \quad B = \begin{bmatrix} (b_n - b_0 a_n) \\ (b_{n-1} - b_0 a_{n-1}) \\ \vdots \\ (b_2 - b_0 a_2) \\ (b_1 - b_0 a_1) \end{bmatrix}$$

$$C = \begin{bmatrix} 0 & 0 & \cdots & 0 & 1 \end{bmatrix} , \quad D = b_0$$

Diagonal Canonical Form

$$A = \begin{bmatrix} p_1 & 0 & \cdots & 0 & 0 \\ 0 & p_2 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & p_{n-1} & 0 \\ 0 & 0 & \cdots & 0 & p_n \end{bmatrix} , B = \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \\ 1 \end{bmatrix}$$

$$C = \begin{bmatrix} c_1 & c_2 & \cdots & c_{n-1} & c_n \end{bmatrix} , D = b_0$$

Jordan Canonical Form