

Details

Ver. Rel. No.	Release Date	Prepared. By	Reviewed By	To be Approved	Remarks/Revision Details
1.0	04-12-2020	Krishnapriya J, Madhushree C, Nallagatla Nagateja			

Contents

CONTENTS	3
MINIPROJECT -1: CALCULATOR	4
Ageing	4
Costing	4
4W1H	4
My product	5
SWOT Analysis	5
Design	6
TEST PLAN	7
GIT LINK	14
GIT DASHBOARD	14
References	14
ACTIVITY 5	14
FIG1. HIGH LEVEL DESIGN	6
FIG2. HIGH LEVEL DESIGN	6
FIG3. HIGH LEVEL DESIGN	7
FIG4. LOW LEVEL DESIGN	7
FIG5. LOW LEVEL DESIGN	8
FIG6. LOW LEVEL DESIGN	8
FIG7. HIGH LEVEL DESIGN	9
FIG8. HIGH LEVEL DESIGN	9
FIG9. HIGH LEVEL DESIGN	9
FIG10. LOW LEVEL DESIGN	10
FIG11.LOW LEVEL DESIGN	10
FIG12.LOW LEVEL DESIGN	10
TABLE 1: COSTING	4
TABLE 2: HIGH LEVEL REQUIREMENT	5
TABLE 3: LOW LEVEL REQUIREMENTS	5
TABLE 4: SWOT ANALYSIS	5
TABLE 5: TEST PLAN	11

Miniproject -1: Calculator

Ageing

The history of the calculator began with the hand-operated Abacus in Ancient Sumeria and Egypt in around 2000-2500 BC. These are very simple devices compared to modern calculators consisting of sets of ten beads on a series of rods held in place on a quadrilateral frame usually made of wood. In 1617 a Scottish Mathematician, John Napier described the workings of a device that would come to be known as Napier's bones. The bones (rods) were very thin with each being inscribed with multiplication tables. In 1642 one Blaise Pascal created a device that could perform arithmetic operations with just two numbers. His machine comprised of geared wheels that could add and subtract two numbers directly and also multiply and divide them by repetition.

Europe saw the next stage in the development of Mechanical calculators during the 17th Century. As late as the 1980s the use of slide rules was part of many countries school curricula and was considered a fundamental requirement for millions of school children to learn. The first solid-state electronic calculator was created in the early 1960s. Pocket-sized devices became available in the 1970s, especially after the Intel 4004, the first microprocessor, was developed by Intel for the Japanese calculator company Busicom. The first calculator capable of symbolic computing was the HP-28C, released in 1987. It could solve quadratic equations symbolically.2D and 3D math plots began to appear as well as other features like data loggers from input sensors and Wi-Fi and other connectivity capabilities also began to appear.

Costing

Table 1: Costing

Year	Functionality	Cost
2020	Basic arithmetic operation	300
2022	Basic mathematical conversion	400
2024	Measurements dealing with area, perimeter and circumference	500
2026	Temperature conversions	600
2028	Banking functionalities	750

4W1H

An electronic calculator is typically a portable electronic device used to perform calculations, ranging from basic arithmetic to complex mathematics. The first solid-state electronic calculator was created in the early 1960s. Pocket-sized devices became available in the 1970s, especially after the Intel 4004, the first microprocessor, was developed by Intel. In addition to general purpose calculators, there are those designed for specific markets. For example, there are scientific calculators which include trigonometric and statistical calculations. Some calculators even have the ability to do computer algebra. Graphing calculators can be used to graph functions defined on the real line, or higher-dimensional Euclidean space.

My product

High level requirement:

Table 2: High level requirement

ID	Description
HL_01	The calculator should contain the LCD to display the operations under going
HL_02	The calculator should contain the keys such as 0-9, +, -, *, /, \pm , =, C, CE
HL_03	In any situation the calculator has to produce a correct result defined by the well-known arithmetic
	rules
HL_04	The calculator size should be 6 inches in height and 3 inches in width
HL_05	The LCD display should be 2.5 inch in width and 1 inch in length

Low level requirement:

Table 3: Low level requirements

ID	ID Description				
LL01	Numerical inputs should be of type int				
LL02	4 digits input for basic arithmetic operation				
LL03	4 digits input for banking function				
LL04	Should raise flags for exceptions				
LL05	Faster Execution				
LL06	Insert main reset key				

SWOT Analysis:

Table 4: SWOT Analysis

STRENGTH	 The ultimate strength of the scientific calculator is its user friendly. And they have all types of operations such as basic calculator, measurement related to area, perimeter, circumference and conversions between different units of distance. It also contains operations that include conversions of temperature units.
WEAKNESS	 Those who want continuous change in their electronic gadgets usually won't opt for a scientific calculator. Even though the use of calculators cannot be overlooked, it should not be used as a replacement for the manual method of mathematical problemsolving. If a student gets into the habit of using calculators to solve all their mathematical problems, he/she will never develop the math skills needed to solve basic mathematical problems.
OPPORTUNITIES	 It is easy to solve the mathematical calculations which are quite difficult. It takes very less time to compute the very difficult problem.
THREATS	To include all the operations in the desired space of the calculator.

Design

Behavioral diagram:

High level design

Fig1. High level design

Fig2. High level design

Fig3. High level design

Low level design

Fig4. Low level design

Fig5. Low level design

Fig6. Low level design

Structural diagram:

High level design

Fig7. High level design

Fig8. High level design

Fig9. High level design

Low level design

Fig10. Low level design

Fig11. Low level design

Fig12. Low level design

GENESIS - Learning Outcome and Mini-project Summary Report Test Plan

TABLE 5: Test plan

Test case ID	Action	Input	Expected output	Actual output
TC_01	Addition	10,2	12	12
TC_02	Subtraction	10,2	8	8
TC_03	Multiplication	10,2	20	20
TC_04	Division	10,2	5	5
TC_05	Modulus	10,2	0	0
TC_06	Square	2	4	4
TC_07	Cube	2	8	8
TC_08	Square root	4	2	2
TC_09	Greater than	10,2	TRUE(1)	TRUE(1)
TC_10	Lesser than	2,10	TRUE(1)	TRUE(1)
TC_11	Equal to	2,2	TRUE(1)	TRUE(1)
TC_12	Prime number	2	TRUE(1)	TRUE(1)
TC_13	Odd	3	TRUE(1)	TRUE (1)
TC_14	Even	2	TRUE(1)	TRUE (1)
TC_15	Reverse	12	21	21
TC_16	Simple interest	5000,6%,5	6500	6500
TC_17	Compound interest	5000,6%,5	6,744.25	6,744.25
TC_18	Profit	6500,5000	1500	1500
TC_19	Loss	5000,4000	1000	1000

ID	DESCRIPTION	PRE-	EXPECTED	EXPECTED	ACTUAL
		CONDITION	INPUT	OUTPUT	OUTPUT
1	The first User Entered digits	No input is given yet before	The system takes it as	Performs the expected task	Performs the expected task
	should be considered as operand1	by the user	operation to be performed		
2	The second input by user must be treated as operand2	First input is given by the user	Based on the previous input it performs the specified operation	If 1 is pressed it performs the measurement operation.	If 1 is pressed it performs the measurement operation.
				If 2 is pressed it performs the	If 2 is pressed it performs the
				temperature	temperature
				unit	unit
				conversions.	conversions.

GENESIS - Learning Outcome and Mini-project Summary Report						
3	If the user wants	User should	User should	Should specify	Should specify	
	to know the area	specify the	specify:	the area of the	the area of the	
	of the circle or	required values	If circle: Radius	required shape.	required shape.	
	square or	to calculate the	of the circle.			
	triangle or	area.	If square: Side			
	rectangle		of the square.			
			If Triangle:			
			Mention the			
			dimension of			
			base and the			
			height of the			
			triangle.			
			If Rectangle:			
			Specify the			
			dimension of			
			the adjacent			
			sides of the			
	16.1		rectangle.	0 16	0 10	
4	If the user wants	User should	Specify the	Specific	Specific	
	to know the	specify the	temperature in	operation	operation	
	temperature in	temperature in	any one unit.	entered by the	entered by the	
	different unit.	any one unit		user should be	user should be	
		and tell which		performed.	performed.	
		unit they wants				
5	User wants to	to convert. User should	Hoight - 10m	25m	25m	
3	know the area of	enter the two	Height = 10m Base = 5m	23111	23111	
		inputs height	Dase – Sili			
	the triangle.	and base values				
		and base values				
6	User wants to	User must	97F	36.11C	36.11C	
	convert the	mention the				
	temperature	temperature in				
	from Fahrenheit	Fahrenheit.				
	to Celsius.					

ID	DESCRIPTION	PRE- CONDITION	EXPECTED INPUT	EXPECTED OUTPUT	ACTUAL OUTPUT
1	The User	No input is	The system	Performs the	Performs the
	Entered digits	given yet before	takes it as Km to	expected task	expected task
	should be	by the user	m conversion.		
	considered as				
	case 1				
2	The input by	No input is	The system	Performs the	Performs the
	user case 2	given yet before	takes it as Cm to	expected task	expected task
		by the user	m conversion.		
3	If the user wants	No input is	The system	Performs the	Performs the
	to the case 3	given yet before	takes it as Km to	expected task.	expected task
		by the user	Mile conversion.		
4	If the user wants	No input is	The system	Performs the	Performs the
	to know the case	given yet before	takes it as Mile	expected task	expected task.
	4	by the user	to Km		
			conversion.		
5	User wants to	User should	Kilometers=30	30,000m	30,000m
	know the	enter the input			
	Distance a travel				
	Km to M				
6	User wants to	User must	Cm=200	2m	2m
	convert the Cm	mention the Cm			
	to M				

ID	DESCRIPTION	EXPECTED INPUT	EXPECTED	ACTUAL OUTPUT
			OUTPUT	
1	KM to M	3	3000m	3000m
2	KM to M	5	5000m	5000m
3	Miles to Km	3	4.8km	4.8km
4	Miles to Km	7	11.2km	11.2km

GENESIS - Learning Outcome and Mini-project Summary Report Git Link

https://github.com/99003154/MINI.PRO.git

Git Dashboard

References

- 1. The People's Best Friend: The Calculators' Brief History (interestingengineering.com)
- 2. Calculator Wikipedia

ACTIVITY - 5

Epics and User story:

As a banker

I want to calculate the basic functions for everyday accounts So that I know the details of all payments to be made by the account holder

- To calculate simple interest and compound interest
- o To determine profit and loss
- As a business owner

I want to calculate the daily transactions involved in my business So that I am aware of the profits and losses

- To determine profit or loss incurred in the business
- As a daily user

I want to calculate the basic arithmetic functions for daily activities So that it becomes easy for calculation

GENESIS - Learning Outcome and Mini-project Summary Report

 For users to do basic arithmetic operations like addition, Subtraction, multiplication, division, modulus, square root, square, cube and relational operations

As a student

I want to perform arithmetic operations for my studies

So that it can be used for my learning

- For students to carry out basic arithmetic operations like addition, Subtraction, multiplication, division, modulus, square root, square, cube and relational operations
- o To perform others functions like determining prime number, odd number and even number
- As an engineer

I want to perform mathematical calculations

So that it can be used for my projects

- For engineers to perform basic arithmetic operations like addition, Subtraction, multiplication, division, modulus, square root, square, cube and relational operations
- To know the temperature in different units.
 - o As a weather reporter to update the public about the temperature in their locality in different units.
 - o As a student to do the mathematical conversions of the temperature.
 - As a normal user to check the status of the AC in desired units.
- To know the measurements of different shapes.
 - As a civil engineer to do the on-site measurements.
 - As a student to do mathematical calculations.
 - As a road constructor to the construction measurements.

Epic: Distance conversation.

User Stories:

• Description -As a user I need to perform distance conversion operation.

I need to calculate km to meter conversion

Test case - A km is entered

If km was entered as 10km it should provide an output of 10,000.

• Description -As a user I need to perform distance conversion operation.

I need to calculate cm to meter

Test case - A cm is entered

If cm was entered as 100 it should provide an output of -1m

Description -As a user I need to perform distance conversion operation.

I need to calculate miles to km.

Test case - A mile is entered

If mile was entered as 10 it should provide an output of 6.25km.

GENESIS - Learning Outcome and Mini-project Summary Report

- Description -As a user I need to perform distance conversion operation.
 I need to calculate mile to m
 Test case A mile is entered
 If mile was entered as 4 it should provide an output of 6423m
- Description -As a user I need to perform distance conversion operation. I need to mile to km.

Test case - A mile is entered

If mile was entered as 1 it should provide an output of 1.69km.