Estremi vincolati, Teorema del Dini.

- 1. Da un cartone di $12m^2$ si deve ricavare una scatola rettangolare senza coperchio. Trovare il massimo volume possibile della scatola.
- 2. Trovare gli estremi assoluti di $f(x,y)=x^2+2y^2$ sulla circonferenza $x^2+y^2=1$.
- 3. Trovare gli estremi assoluti di $f(x,y) = x^2 + 2y^2$ sul cerchio $x^2 + y^2 \le 1$.
- 4. Trovare gli estremi assoluti di $f(x,y)=x^2-y^2$ sulla circonferenza $x^2+y^2=1$
- 5. Trovare gli estremi assoluti di $f(x,y) = x^2y$ sotto il voncolo $x^2 + 2y^2 = 6$.
- **6.** Trovare gli estremi assoluti di $f(x,y) = e^{-xy}$ sotto il voncolo $x^2 + 4y^2 \le 1$.
- 7. Determinare il rettangolo con i lati paralleli agli assi, inscrivibile in un' ellisse di equazione $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, a, b > 0, con area massima.
- 8. Determinare gli estremi assoluti della funzione f(x,y)=x+8y-2 sotto la condizione $x^4+y^4=2$.
- 9. Determinare gli estremi assoluti della funzione $f(x,y)=(x-2y)^2$, vincolati alla curva $\frac{x^2}{4}+\frac{y^2}{3}=1$.
- 10. Determinare gli estremi assoluti della funzione $f(x,y)=x^6+4y^6$ sul cerchio $C=\{(x,y):x^2+y^2\leq 1\}.$
- 11. Si verifichi che l'equazione $x^2 + y^2 = 2xy$ definisce implicitamente in un intorno di ogni $x_0 \in \mathbb{R}$ una e una sola funzione y = y(x).
- 12. Determinare i valori di x_0 per i quali l'equazione $x^2 y^2 = 2x 2y$ definisce implicitamente in un intorno di x_0 una e una sola funzione y = y(x).
- 13. Stabilire se l'equazione $x + 2y + x \sin y$ definisce implicitamente in un intorno di $x_0 = 0$ una e una sola funzione y = y(x). In caso affermativo calcolare y(0) e y'(0).

- **14.** Stabilire se l'equazione $xy + \log(xy) 1 = 0$ definisce implicitamente in un intorno di $x_0 = 1$ una e una sola funzione y = y(x). In caso affermativo, calcolare y(1) ey'(1).
- 15. Verificare che l'equazione $x^3 + y^3 4x^2y + 2 = 0$ definisce implicitamente in un intorno di $x_0 = 1$ una e una sola funzione y = y(x) tale che y(1) = 1. Determinare l'equazione della retta tangente alla curva di equazione data nel punto (1,1) e determinare il verso della concavità.
- **16.** Verificare che l'equazione $y^2 + x^2 + \sin x = 0$ definisce implicitamente in un intorno di $y_0 = 0$ una e una sola funzione x = x(y) tale che x(0) = 0. Verificare che x(y) ha un massimo in y = 0.
- 17. Stabilire se la funzione $f(x,y) = \frac{x+y}{x-y}$ ha massimo e minimo sulla curva xy + x + y + 4 = 0.

Soluzioni.

1. La funzione da massimizzare è f(x,y,z)=xyz, sotto il vincolo g(x,y)=2xz+2yz+xy=12. Ricavando z dall'equazione del vincolo e sostituendo nella funzione f(x,y,z), il problema si riconduce a trovare gli estremi liberi della funzione in due variabili $F(x,y)=xy\frac{12-xy}{2x+2y}$. Calcolando le derivate parziali e ponendole uguali a zero si trova:

$$\begin{cases} 2y^2(12 - x^2 - 2xy) = 0\\ 2x^2(12 - 2xy - y^2) = 0 \end{cases}$$

Tenendo conto che x e y sono entrambe positive si trova la soluzione x=y=2. La scatola di volume massimo ha dimensioni: x=2, y=2, z=1.

2. La Lagrangiana è $\mathcal{L}(x,y,\lambda) = x^2 + 2y^2 - \lambda(x^2 + y^2 - 1)$. Il massimo è 2 ed è assunto in $(0,\pm 1)$; il minimo è 1 ed è assunto in $(\pm 1,0)$. N. B. La funzione ammette massimo e minimo assoluti sulla circonferenza per il teorema di Wierstrass (funzione continua su insieme chiuso e limitato). L'esercizio si può risolvere anche così: dall'equazione del vincolo si trova che $y^2 = 1 - x^2$, dunque f sul vincolo vale $f = x^2 + 2(1 - x^2)$, con $x \in (-1,1)$; il problema è dunque ricondotto al calcolo degli estremi di una funzione di una variabile nell'intervallo [-1,1].

- **3.** All'interno del cerchio l'unico punto stazionario per f è l'origine, confrontando i valori che la funzione assume nell'origine e nei punti della circonferenza trovati nell'esercizio precedente, si conclude che il massimo è 2 ed è assunto in $(0, \pm 1)$; il minimo è 0 ed è assunto in (0, 0).
- **4.** La Lagrangiana è $\mathcal{L}(x,y,\lambda) = x^2 y^2 \lambda(x^2 + y^2 1)$. Il massimo è 1 ed è assunto in $(\pm 1,0)$; il minimo è -1 ed è assunto in $(0,\pm 1)$.
- **5.** La Lagrangiana è $\mathcal{L}(x,y,\lambda) = x^2y \lambda(x^2 + 2y^2 6)$. Il massimo è 4 ed è assunto in $(\pm 2, 1)$; il minimo è -4 ed è assunto in $(\pm 2, -1)$. N. B. Il vincolo è un sottoinsieme chiuso e limitato del piano (è un' ellisse).
- **6.** All'interno dell'ellisse l'unico punto stazionario è l'origine. Sul bordo usiamo il metodo dei moltiplicatori di Lagrange. La Lagrangiana è $\mathcal{L}(x,y,\lambda)=e^{-xy}-\lambda(x^2+4y^2-1)$. I punti stazionari della Lagrangiana sono le soluzioni del sistema:

$$\begin{cases} ye^{-xy} + 2\lambda x = 0\\ xe^{-xy} + 8\lambda y = 0\\ x^2 + 4y^2 - 1 = 0 \end{cases}$$

Moltiplicando la prima equazione per x e la seconda per y e sottraendo le due equazioni si trova $2\lambda(4y^2-x^2)=0$. Se fosse $\lambda=0$ sarebbe x=y=0, ma l'origine non soddisfa l'equazione del vincolo. Allora è $4y^2=x^2$. Tenuto conto che f(0,0)=1, si ha che il massimo è $e^{\frac{1}{4}}$ ed è assunto in $(\pm\frac{1}{\sqrt{2}},\mp\frac{1}{2\sqrt{2}})$; il minimo è $e^{-\frac{1}{4}}$ ed è assunto in $(\pm\frac{1}{\sqrt{2}},\pm\frac{1}{2\sqrt{2}})$.

7. Si tratta di massimizzare la funzione f(x,y)=xy (un quarto di area del rettangolo), sotto la condizione $g(x,y)=\frac{x^2}{a^2}+\frac{y^2}{b^2}-1=0$. Sia $\mathcal{L}(x,y)=f(x,y)-\lambda g(x,y)$. Si ha che:

$$\begin{cases} \frac{\partial \mathcal{L}}{\partial x}(x,y) = y - 2\lambda \frac{x}{a^2} = 0 \\ \frac{\partial \mathcal{L}}{\partial y}(x,y) = x - 2\lambda \frac{y}{b^2} = 0 \\ \frac{\partial \mathcal{L}}{\partial \lambda}(x,y) = -g(x,y) = 0 \end{cases}$$

Dalla I equazione si trova $y=2\lambda\frac{x}{a^2}$, sostituendo nella II e nella III equazione si trova $\lambda=\pm\frac{1}{2}ab$ e $x=\frac{\sqrt{2}}{2}a$, da cui $y=\frac{\sqrt{2}}{2}b$. L'area massima vale 2ab.

8. Per il Teorema di Weierstrass la funzione ammette estremi assoluti nell'insieme $x^4 + y^4 = 2$: è un sottoinsieme chiuso e limitato del piano (è contenuto nel quadrato $[-\sqrt[4]{2}, \sqrt[4]{2}] \times [-\sqrt[4]{2}, \sqrt[4]{2}]$). Si ha che:

$$\begin{cases} \frac{\partial \mathcal{L}}{\partial x}(x,y) = 1 - 4\lambda x^3 = 0 \\ \frac{\partial \mathcal{L}}{\partial y}(x,y) = 8 - 4\lambda y^3 = 0 \\ \frac{\partial \mathcal{L}}{\partial \lambda}(x,y) = -g(x,y) = 2 - x^4 - y^4 = 0 \end{cases}$$

Dalla I e II equazione si trova $\lambda = \frac{1}{4x^3} = \frac{2}{y^3}$, da cui $x = \frac{1}{2}y$. Sostituendo nella III equazione si trova che $\left(\sqrt[4]{\frac{2}{17}}, 2\sqrt[4]{\frac{2}{17}}\right)$ è un punto di massimo, e $\left(-\sqrt[4]{\frac{2}{17}}, -\sqrt[4]{\frac{2}{17}}\right)$ è un punto di minimo. Il massimo assoluto vale $17\sqrt[4]{\frac{2}{17}} - 2$; il minimo assoluto vale $-17\sqrt[4]{\frac{2}{17}} - 2$.

- **9.** Col metodo dei moltiplicatori di Lagrange si trovano i punti: $\left(\pm\sqrt{3},\pm\frac{\sqrt{3}}{2},0\right)$, $\left(\pm1,\mp\frac{3}{2},16\right)$; il primo è il punto di minimo e il minimo è zero, il secondo è il punto di massimo e il massimo è 16.
- **10.** Col metodo dei moltiplicatori di Lagrange si trovano i pinti: $(0, \pm 1, \frac{1}{2})$, $(\pm 1, 0, 3)$, $\left(\pm \frac{\sqrt{2}}{\sqrt{3}}, \pm \frac{1}{\sqrt{3}}, \frac{4}{3}\right)$. Il massimo assoluto è 4, il minimo assoluto è 0.
- 11. $F(x,y) = (x-y)^2 \in \mathcal{C}^1(\mathbb{R}^2), F(x,y) = 0 \Rightarrow y = x$; la curva di equazione F(x,y) = 0 è dunque la retta y = x, quindi l'equazione data definisce implicitamente una funzione y = y(x) in un intorno di ogni punto x_0 . (N.B.

applicando il Teorema del Dini si troverebbe che $F_y(x,y) = 0$ in ogni punto della bisettrice).

- **12.** La curva di equazione F(x,y)=0 è l'unione delle due rette x-y=0 e x+y-2=0, dunque graficamente si vede che l'equazione data definisce implicitamente una e una sola funzione y=y(x) in un intorno di ogni punto $x_0 \neq 1$.
- 13. $F(x,y) \in \mathcal{C}^1(\mathbb{R}^2)$, $F(0,y) = 2y = 0 \Rightarrow y = 0$. $F_y(0,0) = 2 \neq 0$, allora in un intorno di $x_0 = 0$ l'equazione F(x,y) = 0 definisce implicitamente una e una sola funzione y = y(x) tale che y(0) = 0 e $y'(0) = -\frac{F_x(0,0)}{F_y(0,0)} = -\frac{1}{2}$.
- **14.** $F(x,y) \in \mathcal{C}^1(\mathbb{A})$, dove A è l'unione del primo e del terzo quadrante di \mathbb{R}^2 , esclusi gli assi. $F(1,y) = y + \log y 1 = 0 \Rightarrow \log y = 1 y$; risolvendo graficamente quest'ultima equazione si trova y = 1. $F_y(1,1) = 2 \neq 0$, allora in un intorno di $x_0 = 1$ l'equazione F(x,y) = 0 definisce implicitamente una e una sola funzione y = y(x) tale che y(1) = 1 e $y'(1) = -\frac{F_x(1,1)}{F_y(1,1)} = -1$.
- **15.** F(1,1)=0, $F_y(1,1)=-1\neq 0$, $F_x(1,1)=-5$, y'(1)=-5. Derivando due volte la relazione $x^3+y(x)^3-4x^2y(x)+2=0$, si trova $6x-8y-16xy'+6yy'^2+(3y^2-4x^2)y''=0$. Segue che y''(1)=288. La concavità della funzione implicita è quindi verso l'alto. L'equazione della retta tangente è y=-5x+6.
- **16.** F(0,0) = 0, $F_x(0,0) = 1 \neq 0$, $F_y(0,0) = 0$, x'(0) = 0. Derivando due volte (rispetto a y) la relazione $y^2 + x(y)^2 + \sin x(y) = 0$, si trova $2 + 2x'^2 + 2xx'' x'^2 \sin x = 0$. Tenuto conto che x(0) = x'(0) = 0, segue che x''(0) = -2. Si ha quindi che y = 0 è un punto di massimo.
- 17. Esplicitando l'equazione del vincolo rispetto ad y si trova che il vincolo è un' iperbole di equazione $y=-\frac{x+4}{x+1}$ definita per $x\neq -1$; si tratta quindi di trovare gli estremi di $g(x)=\frac{x^2-4}{x^2+2x+4}$, cioè della restrizione di f al vincolo, nell'insieme aperto $\mathbb{R}\setminus\{0\}$. La derivata prima di g non si annulla mai pertanto g non ha nè massimi nè minimi.