一、填空题(共6题,每题3分,共18分)

1. 若向量
$$\alpha = (3,2,1)^T$$
, $\beta = (4,1,2)^T$, $\gamma = (-1,-2,1)^T$, 则 $2\alpha - \beta + \gamma = ($).

$$\mathfrak{M}$$
: $2\alpha - \beta + \gamma = 2(3,2,1)^T - (4,1,2)^T + (-1,-2,1)^T = (1,1,1)^T$.

2. 设 A 为 n 阶矩阵,且
$$A^2 + 2A + 3I = 0$$
,则 $(A + 3I)^{-1} = ($).

$$\mathfrak{M}: A^2 + 2A + 3I = 0 \Longrightarrow (A + 3I)(A - I) = -6I$$

$$\Rightarrow (A+3I)^{-1} = -\frac{A-I}{6} = \frac{I-A}{6}.$$

- 3. 已知 $\alpha_1 = (1,2,1,2)^T$, $\alpha_2 = (1,1,3,3)^T$ 是四元非齐次线性方程组 Ax = b 的两个解,且系数矩阵的秩为 3,则方程组 Ax = b 的一般解为().
- 解: $r(A) = 3 \Rightarrow Ax = 0$ 的基础解系只含有 4 r(A) = 1 个向量 ξ ;

则
$$Ax = b$$
 的一般解 $x = x_0 + k\xi$, k 任意.

① x_0 可取 α_1 ;

$$2 \Leftrightarrow \xi = \alpha_1 - \alpha_2 = (0,1,-2,-1)^T$$
;

于是, Ax = b 的一般解

$$x = (1,2,1,2)^T + k(0,1,-2,-1)^T$$
, k 任意. (答案形式不唯一)

4. 设 A, B 均为 n 阶方阵,|A|=3, |B|=2, $|A^{-1}+B|=1$,则 $|B^{-1}+A|=($).

解:
$$|B^{-1} + A| = |B^{-1}(A^{-1} + B)A| = |B^{-1}| \cdot |A^{-1} + B| \cdot |A| = \frac{3}{2}$$
.

5. 矩阵
$$A = (a_{ij})_{3\times 3}$$
 满足 $A^T = A^*$,若 $2a_{11} = a_{12} = a_{13} > 0$,则 $a_{11} = ($).

解: (1)
$$A = (a_{ij})_{3\times 3}$$
, $A^T = (a_{ii}^T)_{3\times 3}$, 且有 $a_{ij} = a_{ii}^T$;

$$cofA = (A_{ij})_{3\times 3}$$
, $A^* = (A_{ii}^T)_{3\times 3}$,且有 $A_{ij} = A_{ii}^T$;

又已知
$$A^T = A^*$$
,有 $a_{ji}^T = A_{ji}^T$;

由上述三式可知 $a_{ij} = A_{ij}$.

(2) |A| 按第1 行展开,得

$$|A| = a_{11}A_{11} + a_{12}A_{12} + a_{13}A_{13} = a_{11}^2 + a_{12}^2 + a_{13}^2 = 9a_{11}^2 > 0.$$

(3)
$$\displant A^T = A^* \Rightarrow |A^T| = |A^*| \Rightarrow |A| = |A|^{3-1} \xrightarrow{|A| > 0} |A| = 1;$$

$$\displant 9a_{11}^2 = 1 \Rightarrow a_{11} = \frac{1}{3}.$$

6. 矩阵
$$A = \begin{pmatrix} 0 & -1 & -1 \\ 0 & 2 & 0 \\ -1 & -2 & 0 \end{pmatrix}$$
,与矩阵 B 相似,则 $|B - 3I| = ($).

解:A 的特征多项式
$$|\lambda I - A| = \begin{vmatrix} \lambda & 1 & 1 \\ 0 & \lambda - 2 & 0 \\ 1 & 2 & \lambda \end{vmatrix} = (\lambda - 2)(\lambda - 1)(\lambda + 1)$$

则 A 的特征值为 1, 2, -1;

矩阵 B 与 A 相似,则 B 的特征值也为 1, 2, -1;

从而 B-3I 的特征值为 -2, -1, -4,于是 |B-3I|=-8.

- 二、选择题(共6题,每题3分,共18分)
- 1. 设矩阵 $A = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 2 & -3 \\ 3 & 4 & a \end{pmatrix}$, 齐次线性方程组 Ax = 0 有非零解,则 a = (D).
 - (A) 0 (B) 1 (C) 2 (D) 3

解: Ax = 0 有非零解,则系数行列式 $|A| = 0 \Rightarrow a = 3$.

- 2. 已知向量组 α_1 , α_2 , α_3 线性无关,向量 β_1 可由向量 α_1 , α_2 , α_3 线性表示,向量 β_2 不能由向量 α_1 , α_2 , α_3 线性表示,则对任意常数 k 必有(A)
 - (A) α_1 , α_2 , α_3 , $k\beta_1+\beta_2$ 线性无关; (B) α_1 , α_2 , α_3 , $k\beta_1+\beta_2$ 线性相关;
 - (C) α_1 , α_2 , α_3 , $\beta_1 + k\beta_2$ 线性无关; (D) α_1 , α_2 , α_3 , $\beta_1 + k\beta_2$ 线性相关;
- 解: α_1 , α_2 , α_3 线性无关,且 β_2 不能由 α_1 , α_2 , α_3 线性表示,则 α_1 , α_2 , α_3 , β_2 线性无关;则(A)正确.
- 3. 设 A 为 3 阶方阵, B 为 2 阶方阵, C 为 3 × 2 矩阵, 且 |A| = 3, |B| = 2,

则
$$\begin{vmatrix} O & B \\ A & C \end{vmatrix} = (C).$$

(A) 3 (B) 2 (C) 6 (D) -6

解: $\begin{vmatrix} O & B \\ A & C \end{vmatrix} = (-1)^{3 \times 2} |A| \cdot |B| = 6.$

4. 设 A 为 3 阶矩阵,将 A 的第 1 列加到第 3 列得 B,再将 B 的第 3 行的 -1倍

加到第 1 行得 C, 记
$$P = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
, 则一定有(B).

(A)
$$A = PCP^{T}$$
 (B) $A = PCP^{-1}$ (C) $A = PCP$ (D) $A = P^{-1}CP$

则
$$C = E_{31}(-1)B = E_{31}(-1)AE_{31}(1) = P^{-1}AP$$

从而 $A = PCP^{-1}$

- 5. 记 r(X) 表示矩阵 X 的秩, r(X,Y) 表示分块矩阵 (X,Y) 的秩; 则对 n 阶矩阵 **A**, **B**, 下列一定成立的是(**A**).
 - (A) r(A, AB) = r(A);
- (B) r(A, BA) = r(A);
- (C) $r(A, B) = \max\{r(A), r(B)\};$ (D) $r(A, B) = r(A^T, B^T).$
- 解: (A): 矩阵 (A, AB) = A(I, B), 则 $r(A) \le r(A, AB) = r(A(I, B)) \le r(A)$, 所以r(A, AB) = r(A).
 - (B): $r(A, BA) \ge r(A)$;
 - (C): $\min\{r(A), r(B)\} \le r(A, B) \le r(A) + r(B)$;

(D): 反例:
$$A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
, $B = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$
则 $(A, B) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \Rightarrow r(A, B) = 2;$
 $(A^{T}, B^{T}) = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \Rightarrow r(A^{T}, B^{T}) = 1$

6. 设 A 为 3 阶方阵,已知存在可逆矩阵 P,使得 $PAP^{-1} = \begin{pmatrix} 1 & 2 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$,则下列

对角阵中与 A 相似的是(B).

$$\text{(A)} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} \quad \text{(B)} \begin{pmatrix} -1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix} \quad \text{(C)} \begin{pmatrix} 1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 3 \end{pmatrix} \quad \text{(D)} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -3 \end{pmatrix}$$

解: 记矩阵
$$B = PAP^{-1} = \begin{pmatrix} 1 & 2 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$
,则 $A \sim B$,二者有相同的特征值;

B 的特征多项式
$$|\lambda I - B| = \begin{vmatrix} \lambda - 1 & -2 & 0 \\ -2 & \lambda - 1 & 0 \\ 0 & 0 & \lambda - 2 \end{vmatrix} = (\lambda - 2)(\lambda - 3)(\lambda + 1)$$

则 B 的特征值为 2,3,-1; 从而 A 的特征值也为 2,3,-1;

与A合同的对角阵的主对角元也是2,3,-1.

三、计算题(共4题,每题8分,共32分)

1. 计算如下 n+1 阶行列式的值,其中 a_0 , a_1 , a_2 , …, a_n 均不为 0;

$$\begin{vmatrix} a_0 & 1 & 1 & \cdots & 1 \\ 1 & a_1 & 0 & \cdots & 0 \\ 1 & 0 & a_2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 0 & 0 & \cdots & a_n \end{vmatrix}.$$

解:
$$\begin{vmatrix} a_0 & 1 & 1 & \cdots & 1 \\ 1 & a_1 & 0 & \cdots & 0 \\ 1 & 0 & a_2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 0 & 0 & \cdots & a_n \end{vmatrix} = a_1 a_2 \cdots a_n \begin{vmatrix} a_0 & 1 & 1 & \cdots & 1 \\ 1/a_1 & 1 & 0 & \cdots & 0 \\ 1/a_2 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1/a_n & 0 & 0 & \cdots & 1 \end{vmatrix}$$

$$\frac{r_1 - r_2 - \dots - r_{n+1}}{a_1 a_2 \cdots a_n} \begin{bmatrix} a_0 - \sum_{i=1}^n \frac{1}{a_i} & 0 & 0 & \cdots & 0 \\ 1/a_1 & 1 & 0 & \cdots & 0 \\ 1/a_2 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1/a_n & 0 & 0 & \cdots & 1 \end{bmatrix}$$

$$= a_1 a_2 \cdots a_n \left(a_0 - \sum_{i=1}^n \frac{1}{a_i} \right)$$

2. 已知
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}$$
, 矩阵 B 满足 $2BA^2 = A^*BA^2 + 3A$, A^* 为 A 的伴随矩阵,

求矩阵 B.

解: |A| = 1,则A可逆;

(1)
$$2BA^2 = A^*BA^2 + 3A \Rightarrow (2I - A^*)BA^2 = 3A \Rightarrow (2I - A^*)BA = 3I$$

$$\Rightarrow B = (2I - A^*)^{-1}3IA^{-1} = 3(A(2I - A^*))^{-1} = 3(2A - I)^{-1}$$

(2)
$$2A - I = \begin{pmatrix} 1 & 4 & 6 \\ 0 & 1 & 4 \\ 0 & 0 & 1 \end{pmatrix}$$
, $\exists (2A - I)^{-1} = \begin{pmatrix} 1 & -4 & 10 \\ 0 & 1 & -4 \\ 0 & 0 & 1 \end{pmatrix}$; $\exists B = 3 \begin{pmatrix} 1 & -4 & 10 \\ 0 & 1 & -4 \\ 0 & 0 & 1 \end{pmatrix}$.

3. 设向量组 $\alpha_1 = (1,-1,1)^T$, $\alpha_2 = (-1,2,0)^T$, $\alpha_3 = (1,2,4)^T$, $\alpha_4 = (-1,1,1)^T$, 求向量组的秩及其一个极大线性无关组,并将其余向量用极大线性无关组线性 表出.

- ①秩 $\{\alpha_1, \alpha_2, \alpha_3, \alpha_4\} = 3$;
- ② α_1 , α_2 , α_4 是 α_1 , α_2 , α_3 , α_4 的一个极大线性无关组;
- 4. 已知 R^2 的两组基为 $\mathbf{B_1} = \{\alpha_1, \alpha_2\}, \ \mathbf{B_2} = \{\beta_1, \beta_2\}, \$ 其中

$$\alpha_1 = (1,1)^T$$
, $\alpha_2 = (1,-1)^T$; $\beta_1 = (3,-1)^T$, $\beta_2 = (5,-1)^T$;

- (1) 求从基 B_1 到基 B_2 的过渡矩阵;
- (2) 若向量 γ 在基 $\mathbf{B_1}$ 下的坐标为 $(3,4)^T$,求 γ 在基 $\mathbf{B_2}$ 下的坐标.

解:

(1) 仍记矩阵
$$B_1 = (\alpha_1, \alpha_2) = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$
, $B_2 = (\beta_1, \beta_2) = \begin{pmatrix} 3 & 5 \\ -1 & -1 \end{pmatrix}$, 因为 $(\beta_1, \beta_2) = (\alpha_1, \alpha_2)$ A,即 B_1 A = B_2 ,解此矩阵方程

$$(B_1, B_2) = \begin{pmatrix} 1 & 1 & 3 & 5 \\ 1 & -1 & -1 & -1 \end{pmatrix} \xrightarrow{\text{disfree}} \begin{pmatrix} 1 & 0 & 1 & 2 \\ 0 & 1 & 2 & 3 \end{pmatrix} = (I, A)$$

则从基 α_1 , α_2 到基 β_1 , β_2 的过渡矩阵 $A = \begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix}$

(2) 两种方法: 已知 γ 在基 α_1 , α_2 下的坐标为 $\gamma_{B_1} = (3,4)^{\mathrm{T}}$,设 γ 在基 β_1 , β_2 下的坐标为 γ_{B_2} ,

方法 1: 因为
$$\gamma = B_1 \gamma_{B_1} = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 3 \\ 4 \end{pmatrix} = \begin{pmatrix} 7 \\ -1 \end{pmatrix}$$
;

又有 $\gamma = B_2 \gamma_{B_2}$,则求解该方程组

$$(B_2,\gamma) = \begin{pmatrix} 3 & 5 & 7 \\ -1 & -1 & -1 \end{pmatrix} \xrightarrow{\text{institute}} \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \end{pmatrix},$$

则 γ 在基 B_2 下的坐标向量 $\gamma_{B_2} = {-1 \choose 2}$;

方法 2: 因为 $A\gamma_{B_2} = \gamma_{B_1}$,求解该非齐次线性方程组

$$\begin{pmatrix} A, \gamma_{B_1} \end{pmatrix} = \begin{pmatrix} 1 & 2 & | 3 \\ 2 & 3 & | 4 \end{pmatrix} \xrightarrow{\text{初等行变换}} \begin{pmatrix} 1 & 0 & | -1 \\ 0 & 1 & | 2 \end{pmatrix} = (I, \gamma_{B_2})$$

则 γ 在基 β_1 , β_2 下的坐标为 $\gamma_{B_2} = {-1 \choose 2}$.

四、证明题(共1题,8分)

设 α_1 , α_2 是 3 阶方阵 A 分别对应于特征值 -2, 1 的特征向量,向量 α_3 满足 $A\alpha_3 = 2\alpha_2 + \alpha_3$,证明: α_1 , α_2 , α_3 线性无关.

证: 已知
$${A\alpha_1 = -2\alpha_1 \atop A\alpha_2 = \alpha_2}$$
,从而 α_1 , α_2 线性无关;

设
$$k_1\alpha_1 + k_2\alpha_2 + k_3\alpha_3 = 0$$
 (*1)

于是 k_1 A α_1 + k_2 A α_2 + k_3 A α_3 = 0,又 A α_3 = 2 α_2 + α_3 ,

整理, 得
$$-2k_1\alpha_1 + (k_2 + 2k_3)\alpha_2 + k_3\alpha_3 = 0$$
 (*2)

(*2) - (*1),得
$$-3k_1\alpha_1 + 2k_3\alpha_2 = 0$$
,又 α_1 , α_2 线性无关

于是 $k_1 = k_3 = 0$,代入(*1),得 $k_2\alpha_2 = 0$,从而 $k_2 = 0$;

所以 α_1 , α_2 , α_3 线性无关.

五、解方程组(共1题,12分)

$$\begin{cases} x_1 + x_2 - 4x_3 + x_4 = 6 \\ x_1 + 4x_3 - x_4 = -1 \\ 2x_1 + x_2 + (a-1)x_3 + (b-3)x_4 = b + 6 \\ -2x_1 - x_2 + (b-2)x_4 = b - 2 \end{cases}$$

- (1) 讨论 a,b 取何值时,方程组无解,有无穷多解,有唯一解;
- (2) 当方程组有无穷多解时求其一般解.

解: 增广矩阵
$$(A,\beta) = \begin{pmatrix} 1 & 1 & -4 & 1 & 6 \\ 1 & 0 & 4 & -1 & -1 \\ 2 & 1 & a-1 & b-3 & b+6 \\ -2 & -1 & 0 & b-2 & b-2 \end{pmatrix}$$

原方程组 $Ax = \beta$ 与 Ux = d 同解,则

①当 $|U| = (a-1)(b-2) \neq 0$,即 $a \neq 1$,且 $b \neq 2$ 时,原方程组有唯一解;

②当
$$b=2$$
 时,增广矩阵 (A,β) $\stackrel{\overline{\eta}$ 等行变换 (A,β) (A,β)

出现矛盾方程,故原方程组无解;

③当
$$a=1$$
,且 $b \neq 2$ 时,增广矩阵 $(A,\beta) \xrightarrow{\text{初等行变换}} \begin{pmatrix} 1 & 0 & 4 & -1 & -1 \\ 0 & 1 & -8 & 2 & 7 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 7-b \end{pmatrix}$

1) 当 $7 - b \neq 0$,即 $b \neq 7$ 时,出现矛盾方程,故原方程组无解;

2) 当
$$b = 7$$
 时,增广矩阵 $(A, \beta) \xrightarrow{\overline{\eta} + \overline{\eta} + \overline{\eta}} \begin{pmatrix} 1 & 0 & 4 & 0 & 1 \\ 0 & 1 & -8 & 0 & 3 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$

取 x_3 为自由未知量,

令 $x_3 = 0$,得方程组 $Ax = \beta$ 的一个特解 $x_0 = (1,3,0,2)^T$;

令 $x_3 = 1$,得 Ax = 0 的一个基础解系 $\xi = (-4,8,1,0)^T$;

则原方程组的一般解为 $x = x_0 + k\xi = (1,3,0,2)^T + k(-4,8,1,0)^T$, k 任意.

六、二次型(共1题,12分)

- 二次型 $f(x_1, x_2, x_3) = x_1^2 + x_2^2 + cx_3^2 2x_1x_2 + 4x_1x_3 4x_2x_3$ 的秩为 1,
- (1)求c的值;
- (2)利用正交变换法将二次型化为标准形,并写出对应的正交矩阵;
- (3) 写出规范形.

解:二次型对应的矩阵为
$$A = \begin{pmatrix} 1 & -1 & 2 \\ -1 & 1 & -2 \\ 2 & -2 & c \end{pmatrix}$$
,

$$(1) A = \begin{pmatrix} 1 & -1 & 2 \\ -1 & 1 & -2 \\ 2 & -2 & c \end{pmatrix} \xrightarrow{\text{institute}} \begin{pmatrix} 1 & -1 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & c - 4 \end{pmatrix}$$

已知
$$r(A) = 1 \Rightarrow c = 4$$
; 则 $A = \begin{pmatrix} 1 & -1 & 2 \\ -1 & 1 & -2 \\ 2 & -2 & 4 \end{pmatrix}$.

(2) A 的特征多项式
$$|\lambda I - A| = \begin{vmatrix} \lambda - 1 & 1 & -2 \\ 1 & \lambda - 1 & 2 \\ -2 & 2 & \lambda - 4 \end{vmatrix} = \lambda^2 (\lambda - 6),$$

A 的特征值为 $\lambda_1 = \lambda_2 = 0$, $\lambda_3 = 6$;

①对特征值 $\lambda_1 = \lambda_2 = 0$,由 $(\lambda_1 I - A)x = 0 \Leftrightarrow Ax = 0$

即
$$\begin{pmatrix} 1 & -1 & 2 \\ -1 & 1 & -2 \\ 2 & -2 & 4 \end{pmatrix}$$
 $\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = 0$,得基础解系 $\begin{cases} \xi_1 = (1,1,0)^T \\ \xi_2 = (-2,0,1)^T \end{cases}$

1) 正交化: 取 $\beta_1 = \xi_1 = (1,1,0)^T$;

$$\Leftrightarrow \beta_2 = \xi_2 - \frac{(\xi_2, \beta_1)}{(\beta_1, \beta_1)} \beta_1 = (-1, 1, 1)^{\mathrm{T}},$$

③对于特征值 $\lambda_3 = 6$,由 $(\lambda_3 I - A)x = 0$,

即
$$\begin{pmatrix} 5 & 1 & -2 \\ 1 & 5 & 2 \\ -2 & 2 & 2 \end{pmatrix}$$
 $\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = 0$,得基础解系为 $\xi_3 = (1, -1, 2)^T$,

单位化得:
$$\eta_3 = \frac{1}{\|\xi_3\|} \xi_3 = \left(\frac{1}{\sqrt{6}}, \frac{-1}{\sqrt{6}}, \frac{2}{\sqrt{6}}\right)^T$$
;

③记矩阵
$$Q = (\eta_1, \eta_2, \eta_3) = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{3}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} & \frac{-1}{\sqrt{6}} \\ 0 & \frac{1}{\sqrt{3}} & \frac{2}{\sqrt{6}} \end{pmatrix}$$
,则 Q 为正交矩阵,

且使得
$$Q^TAQ = Q^{-1}AQ = \Lambda = \begin{pmatrix} 0 & 0 \\ 0 & 6 \end{pmatrix}$$
;

- ④令 $x = (x_1, x_2, x_3)^T$, $y = (y_1, y_2, y_3)^T$,做正交变换 x = Qy,原二次型就化成标准形 $x^T A x = y^T (Q^T A Q) y = 6y_3^2$.
- (3)二次型的正惯性指数为1,负惯性指数为0,

则二次型的规范形为: z_3^2 ; (这里 z_1^2 , z_2^2 都可以.)