

Interfacial chemical bond modulated $\text{Bi}_{19}\text{S}_{27}\text{Br}_3/\text{g-C}_3\text{N}_4$ Z-scheme heterojunction for enhanced photocatalytic CO_2 conversion

Junze Zhao ^a, Mengxia Ji ^a, Hailong Chen ^b, Yu-Xiang Weng ^b, Jun Zhong ^c, Yingjie Li ^a, Shengyao Wang ^d, Ziran Chen ^e, Jiexiang Xia ^{a,*}, Huaming Li ^a

^a School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, PR China

^b Beijing National Laboratory for Condensed Matter Physics, CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, PR China

^c Institute of Functional Nano & Soft Materials, Soochow University, Suzhou 215123, PR China

^d College of Science, Huazhong Agricultural University, Wuhan 430070, PR China

^e Department of Architecture and Environment Engineering, Sichuan Vocational and Technical College, Suining, Sichuan 629000, PR China

ARTICLE INFO

Keywords:

Z-scheme
 $\text{Bi}_{19}\text{S}_{27}\text{Br}_3/\text{g-C}_3\text{N}_4$
 Chemical bond
 CO_2 photoreduction
 Charge transfer

ABSTRACT

Direct Z-scheme heterojunction can primely facilitate separation efficiency of the photogenerated carriers and maximize the redox ability of as-prepared photocatalyst, which has been regarded as one of the promising strategies to increase photocatalytic CO_2 conversion efficiency. Herein, a novel interfacial C-S bond modulated Z-scheme heterojunction $\text{Bi}_{19}\text{S}_{27}\text{Br}_3/\text{g-C}_3\text{N}_4$ composite is constructed to accelerate the photogenerated electron transfer from $\text{g-C}_3\text{N}_4$ to $\text{Bi}_{19}\text{S}_{27}\text{Br}_3$, offering much more excited reductive electrons to the surface of $\text{Bi}_{19}\text{S}_{27}\text{Br}_3$ where owns lower CO_2 adsorption energy, which is more conducive to CO_2 reduction conversion. Without adding sacrificial agent or photosensitizer, the photocatalytic CO_2 conversion to CO yield of $\text{Bi}_{19}\text{S}_{27}\text{Br}_3/\text{g-C}_3\text{N}_4$ reaches up to $12.87 \mu\text{mol g}^{-1} \text{h}^{-1}$, which is 5 and 4-fold of $\text{Bi}_{19}\text{S}_{27}\text{Br}_3$ and $\text{g-C}_3\text{N}_4$, respectively. This study provides the new insight in precisely tailoring photogenerated charge separation direction by establishing chemical bond in direct Z-scheme structure for CO_2 photoreduction.

1. Introduction

Excessive carbon dioxide released by fossil energy consumption has brought a series of environmental problems [1–4]. Inspired by natural photosynthesis, converting CO_2 into carbohydrates by artificial photosynthetic techniques is considered as a promising green approach to solve this matter [5–8]. However, it is still challenging for artificial photosynthesis to achieve high CO_2 conversion yield and selectivity under the present condition, which rest with the construction of efficient catalysts [1,7,8]. In addition, the poor charge separation efficiency and finite electron reducing capacity in the monocomponent system are also the two main decisive factors restricting the photocatalytic CO_2 conversion activity [9–12]. Thereinto, establishing suited semiconductor heterojunction with matched structure is deemed as an empirical strategy to cope with these challenges.

Graphitic carbon nitride ($\text{g-C}_3\text{N}_4$), as recently developed two-dimensional photocatalyst, possessing adjustable solar absorption range and energy band [13–15], has been universally acknowledged as

the ideal photocatalyst for water splitting, water pollution treatment and carbon dioxide reduction in the last decade [16–19]. However, the photocatalytic activity of $\text{g-C}_3\text{N}_4$ still limited by the high recombination of electron-hole pairs due to the sluggish surface reaction kinetics, leading to low photocatalytic CO_2 conversion rate [20–25]. Up to now, great progress has been made to relieve this obstacle [24–29]. The construction of conventional type II semiconductor heterojunction with suitable energy band is considered as the feasible method to manipulate the efficiency of carrier separation [30–32]. Nevertheless, the charge-carriers redox capacity of this kind of heterojunctions was weaken with compromise of the high potential charges of $\text{g-C}_3\text{N}_4$ materials [33–35]. Different from type II heterojunction, direct Z-scheme heterojunction can effectively increase the spatially separation efficiency of photogenerated electron-hole pairs and preserve their strong redox capacity [33,34]. However, in the traditional direct Z-scheme photocatalyst system, the interaction force existing in the two different semiconductors is mainly the weak physical adsorption and stack force [31,35,36]. To further improve the directional charge separation in the

* Corresponding author.

E-mail address: xjx@ujs.edu.cn (J. Xia).

Z-scheme system, chemical bond-bridged Z-scheme heterojunctions have been reported recently, like Mo-S bond in $S_v\text{-ZnIn}_2\text{S}_4\text{/MoSe}_2$ [37], covalent bond in COF-368-TiO₂ [38], as well as In-O-Cd bond in $\text{ZnIn}_2\text{S}_4\text{/CdS}$ [39]. These chemical bond-bridged Z-scheme structures could remarkably accelerate separation and transfer of the photo-generated charge carriers, inhibiting recombination of the separated carriers [37–39]. Therefore, establishing a chemical bond-bridged g-C₃N₄-based Z-scheme heterojunction is expected to be a potential strategy for the preparation of high-performance photocatalysts. However, only few works for the g-C₃N₄-based chemical bonds Z-scheme heterojunction have been reported [40]. The hinge on fabrication of g-C₃N₄-based Z-scheme structure bridging via chemical bonding is seeking a suitable semiconductor material with matched energy band.

Bi₁₉S₂₇Br₃ as a metal chalcohalide has excellent conductivity, high light adsorption ability and sufficiently negative conduction band (CB) position, guaranteeing the photoexcited electrons with strong reduction ability [41–44]. These intrinsic characteristics make Bi₁₉S₂₇Br₃ show great application prospect in CO₂ photoreduction study [44]. However, the unduly narrowed band gap of Bi₁₉S₂₇Br₃ (~ 1.48 eV) causes a high photogenerated charge carriers recombination rate, that critically affects the photocatalytic performance [41,42,45,46]. Compare with valence band (VB) of g-C₃N₄ (~ 1.73 eV), the VB position of Bi₁₉S₂₇Br₃ is much more negative (~ 0.18 eV) which even closer to CB of g-C₃N₄ (~ -0.84 eV). Therefore, it can be expected that establishing direct Z-scheme heterojunction between Bi₁₉S₂₇Br₃ and g-C₃N₄ materials would definitely improve the transition efficiency of the interfacial charge carriers, also maximize reduction capability of excited electrons.

Based on the aforementioned advantages, a novel Z-scheme Bi₁₉S₂₇Br₃/g-C₃N₄ heterojunction bridging via C-S bonds was fabricated. The C-S bonds between Bi₁₉S₂₇Br₃ and g-C₃N₄ acted as an interfacial charge migration channel, accelerating the transition efficiency of interfacial electron from g-C₃N₄ to Bi₁₉S₂₇Br₃, thus guaranteeing much more excited electrons participating in the CO₂ photoreduction reaction. Without extra photosensitizer and sacrificial agent, the CO yield of Bi₁₉S₂₇Br₃/g-C₃N₄-5 Z-scheme heterojunction was 12.87 $\mu\text{mol g}^{-1}\text{h}^{-1}$, which is 5 and 4-folds as higher as that of Bi₁₉S₂₇Br₃ and g-C₃N₄, respectively. As the results, the chemical bond Z-scheme heterojunction improved the CO₂ photoreduction capacity effectively, which provides the new insight in precisely tailoring photogenerated charge separation direction for the high performance photocatalysts.

2. Experimental

2.1. The chemicals and materials

All the materials applied for experiments were analytical reagent and used without any purification. The ionic liquid 1-hexadecyl-3-methylimidazolium bromide ([C₁₆mim]Br) was purchased from Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences.

2.2. Materials preparation

2.2.1. The synthesis of g-C₃N₄ material

The g-C₃N₄ was synthesized by the three-step calcination method. 2 g dicyandiamide was put into the crucible and calcined in a tube furnace; the temperature was raised to 350 °C in 90 min and maintained for 2 h. Then the temperature was raised to 600 °C in 90 min and kept for another 2 h. After that, the yellow powder was obtained and prepared for the next experiment. 1 g yellow g-C₃N₄ was prepared for the next calcining process in muffle furnace. After the further 2 h calcining at 550 °C, the pale-yellow g-C₃N₄ powder will carry out. Finally, the 1 g pale yellow g-C₃N₄ was calcined at 500 °C for another 2 h and the white-color g-C₃N₄ was obtained.

2.2.2. The preparation of Bi₁₉S₂₇Br₃/g-C₃N₄ and Bi₁₉S₂₇Br₃ materials

The Bi₁₉S₂₇Br₃/g-C₃N₄-5 composite is applied as an example to

discuss the preparation of the composite materials. Above all, the 0.0350 g thiourea, 0.1549 g [C₁₆mim]Br and 0.008 g Bi(NO₃)₃•5H₂O were dispersed in 20 mL glycol. After that, 0.0836 g g-C₃N₄ was added into the mixture and stirred for 30 min. Then the mixture was poured into a 25 mL Teflon-lined autoclave and heated at 130 °C for 12 h. After cooled down to room temperature, the gray-color powder was centrifuged and washed by alcohol and distilled water. Finally, the powder was dried at 60 °C for 12 h in the vacuum environment and the Bi₁₉S₂₇Br₃/g-C₃N₄-5 composite could be obtained. The Bi₁₉S₂₇Br₃/g-C₃N₄-1, 3, 7 composites were synthesized by the same method with different added contents of g-C₃N₄ (0.4356 g, 0.1423 g and 0.0584 g, respectively). The pure Bi₁₉S₂₇Br₃ nanorod was also synthesis with the same condition without adding g-C₃N₄ and the color was black.

2.2.3. The synthesis of Bi₁₉S₂₇Br₃/g-C₃N₄-M materials

The 95 mg g-C₃N₄ and 5 mg as-prepared Bi₁₉S₂₇Br₃ materials were mixed and transferred into an agate mortar. After strong grinding for 30 min, the uniform gray powder was obtained, which was named as Bi₁₉S₂₇Br₃/g-C₃N₄-M materials.

2.3. Characterizations

The X-ray diffraction spectra (XRD) was carried out by a Shimadzu XRD-6000 X-ray diffractometer (the monochromatized Cu- $\text{K}\alpha$ radiation was applied). The morphologies of as-prepared materials were carried out by a JEOL-JSM-7001F scanning electron microscope (SEM) and a JEOL-JEM-2010 transmission electron microscopy (TEM) with the energy dispersive X-ray spectroscope. The X-ray photoelectron spectroscopy (XPS) spectra were measured on the a PHI5300 with a monochromatic Mg $\text{K}\alpha$ source. The Fourier transform infrared spectroscopy (FT-IR) and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) were detected by the Nicolet Model Nexus 470 FT-IR equipment. The UV-vis diffuse reflectance spectra (DRS) were measured on the Shimadzu UV-2450 UV-vis spectrophotometer. The Bi L₃-edge X-ray absorption near-edge structure (XANES) spectra and extended X-ray absorption fine structure spectroscopy (EXAFS) were measured by the Beamline 11B at Shanghai Synchrotron Radiation Facility (SSRF). All the electrochemical experiments were proceeded by the CHI 760E electrochemical system (Chenhua Instrument Company). The femtosecond amplifier laser system (Hurricane, Spectra Physics) was applied to measure the ultrafast spectra of as-prepared materials, and an optical fiber spectrometer (AvaSpec-ULS2048CL-EVO, Avantes) was employed to detect the excitation-induced transmission change of the probe light.

A gas chromatography-mass spectrometry (6890N Network GC system, Agilent Technologies, USA) was applied to carry out isotopic-labeling experiments with ¹³CO₂ gas as the carbon source. During this process, the two kinds of chromatographic columns were applied to detect ¹³CO (HP-MOLESIEVE, 30 m \times 0.32 mm \times 25 μm , Agilent Technologies, USA) and ¹³CO₂ (HP-PLOT/Q, 30 m \times 0.32 mm \times 20 μm , Agilent Technologies, USA) in the gas product with the same condition.

An in-situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) (Thermo fisher Nicolet iZ10, USA) was employed to analysis the CO₂ photoreduction process of Bi₁₉S₂₇Br₃/g-C₃N₄-5 material. The helium gas was applied to clean the material at 120 °C. After that, the material was first measured without the irradiation of light at first (background). Then the H₂O vapor and CO₂ were introduced and kept for 30 min to achieve the adsorption-desorption equilibrium of gas and material. Finally, the DRIFTS spectrum was measure under the irradiation of light with different times.

2.4. Measurement of photocatalytic activity

The CO₂ photoreduction equipment (Perfectlight Labsolar-6A plus) was employed to verify the CO₂ photoreduction activities of as-prepared materials. The 0.03 g catalyst was mixed with 50 mL water in a reactor

and drained of air. Then put in a certain amount of CO_2 for the 30 min dark adsorption process. The temperature and the pressure of the reaction bottle were kept at 5 °C and 80 kPa, respectively. Then turn on the Xe light (300 W, PLS-SXE 300D, Perfectlight, China) as a simulated solar source. Finally, a portion of the produced gas is injected into the gas chromatography (Zhejiang FuLi Chromatograph Instruments Co., Ltd. GC-9790II) per hour to analyze the yield of CO and O_2 with the flame ionization detector (FID) and thermal conductivity detector (TCD), respectively.

2.5. The density functional theory (DFT) calculation

The DFT calculation was applied by using the *Vienna ab initio simulation package* (VASP) with the *projector augmented wave* (PAW) method. The *Perdew-Burke-Ernzerhof* (PBE) functional of *generalized gradient approximation* (GGA) was applied as the exchange–correlation functional. To simulate the g-C₃N₄, a one-layer g-C₃N₄ model with the (0 0 2) plane was constructed as slab and the vacuum layer was 10 Å. To improve the calculation accuracy and efficiency, a Bi₁₉S₂₇Br₃ cluster model (Bi: S: Br = 19: 27: 3) was placed beyond the surface of g-C₃N₄ slab to simulate the Bi₁₉S₂₇Br₃/g-C₃N₄ composite. For the density of state (DOS) calculations of g-C₃N₄ and Bi₁₉S₂₇Br₃ models, the K-point was set as 9 × 9 × 9 and 0 × 0 × 0 × 1, respectively. The cut-off energy was set as 420 eV. To calculate the theoretical adsorption energy (E_{ads}),

a CO_2 molecule was placed beyond the surface of model to simulate the adsorption process of CO_2 molecule. The cut-off energy was 420 eV and the K-point of g-C₃N₄ and Bi₁₉S₂₇Br₃/g-C₃N₄ were set as 3 × 3 × 1 while that of Bi₁₉S₂₇Br₃ was 0 × 0 × 0 × 1. The energy convergence criteria were set at 1×10^{-4} eV per atom and the force convergence criteria were set as -0.05 eV Å⁻¹. The adsorption energy calculation was according to the equation:

$$E_{\text{ads}} = E_{\text{total}} - E_{\text{slab}} - E_{\text{gas}}$$

Among it, the E_{total}, E_{slab} and E_{gas} were the energy of slab with CO_2 molecule, slab and CO_2 molecule, respectively. Finally, the theoretical E_{ads} of g-C₃N₄, Bi₁₉S₂₇Br₃ and Bi₁₉S₂₇Br₃/g-C₃N₄ composite could be carried out.

3. Results and discussion

3.1. The design, synthesis and the characteristic of Bi₁₉S₂₇Br₃/g-C₃N₄ composites

One of the keys to construct Z-scheme heterojunction is the suitable band structures of the two semiconductors. The DOS calculation was applied to analysis the band structures of Bi₁₉S₂₇Br₃, g-C₃N₄ and Bi₁₉S₂₇Br₃/g-C₃N₄. As shown in Fig. S1 and Fig. S2, the band-gap of g-C₃N₄ is larger than that of Bi₁₉S₂₇Br₃. Clearly, the VB and CB of g-C₃N₄

Fig. 1. (a) The schematic illustration for the preparation and CO_2 photoreduction process of the Bi₁₉S₂₇Br₃/g-C₃N₄-5 composite. (b) TEM and (c) HRTEM results of Bi₁₉S₂₇Br₃/g-C₃N₄-5 composite. (d-i) Elemental mapping images of Bi₁₉S₂₇Br₃/g-C₃N₄-5 material.

are constructed by N and the C element [47]. Besides, the VB and CB of the $\text{Bi}_{19}\text{S}_{27}\text{Br}_3$ are mainly dominated by S and Bi elements, respectively. According to the band structure, a Z-scheme heterojunction can be formed by establishing an electron transport channel between the VB of $\text{Bi}_{19}\text{S}_{27}\text{Br}_3$ and CB of $\text{g-C}_3\text{N}_4$. A chemical bond between the VB of $\text{Bi}_{19}\text{S}_{27}\text{Br}_3$ and CB of $\text{g-C}_3\text{N}_4$ materials may build with the generation of CS bonds (C-S or C=S), which can act as the interfacial charge migration pathway for the photogenerated electron and ensure the striking charge transfer efficiency between two semiconductors. Thus, Z-scheme $\text{Bi}_{19}\text{S}_{27}\text{Br}_3/\text{g-C}_3\text{N}_4$ composites based on the CS bond may exhibited the promising high-efficiency CO_2 photoreduction capacity. On the other hand, the DOS of $\text{Bi}_{19}\text{S}_{27}\text{Br}_3/\text{g-C}_3\text{N}_4$ was constructed by the DOS of $\text{g-C}_3\text{N}_4$ and $\text{Bi}_{19}\text{S}_{27}\text{Br}_3$. No other new state appeared in the result of $\text{Bi}_{19}\text{S}_{27}\text{Br}_3/\text{g-C}_3\text{N}_4$.

By using the reactive ionic liquids assisted solvothermal method, the $\text{Bi}_{19}\text{S}_{27}\text{Br}_3/\text{g-C}_3\text{N}_4$ was successfully synthesized. In Fig. 1a, the forming process of $\text{Bi}_{19}\text{S}_{27}\text{Br}_3/\text{g-C}_3\text{N}_4$ composites is illustrated. The SEM and TEM (as shown in Fig. S3a and Fig. S3b) of $\text{Bi}_{19}\text{S}_{27}\text{Br}_3$ material show the uniform nanorods structure with the diameter of 50–100 nm. The high-resolution transmission electron microscope (HRTEM) of $\text{Bi}_{19}\text{S}_{27}\text{Br}_3$ nanorods (Fig. S3c) shows that the lattice fringe is calculated as 0.314

nm matching with the (211) crystal plane of $\text{Bi}_{19}\text{S}_{27}\text{Br}_3$ material (JCPDS card No.26-0813). Besides, the selected area electron diffraction (SAED) pattern illustrates that the crystal phase of as-prepared $\text{Bi}_{19}\text{S}_{27}\text{Br}_3$ material belongs to single-crystal (Fig. S3d).

The SEM (Fig. S4) and TEM (Fig. 1b) results of $\text{Bi}_{19}\text{S}_{27}\text{Br}_3/\text{g-C}_3\text{N}_4$ -5 revealed that the $\text{Bi}_{19}\text{S}_{27}\text{Br}_3$ nanorod is loaded on the surface of $\text{g-C}_3\text{N}_4$, and the morphologies of $\text{Bi}_{19}\text{S}_{27}\text{Br}_3$ and $\text{g-C}_3\text{N}_4$ maintained completely. The HRTEM image (Fig. 1c) and the elemental mapping results of $\text{Bi}_{19}\text{S}_{27}\text{Br}_3/\text{g-C}_3\text{N}_4$ -5 composite (Fig. 1d-i) indicated tight contact between two materials. The XRD were applied to reveal the phase and crystal of the materials. In Fig. 2a, it can be observed that all diffraction peaks of the $\text{Bi}_{19}\text{S}_{27}\text{Br}_3/\text{g-C}_3\text{N}_4$ composites can be well matched with the standard phase of $\text{Bi}_{19}\text{S}_{27}\text{Br}_3$ material (JCPDS card No.26-0813) and $\text{g-C}_3\text{N}_4$ [25], indicating the successful preparation of $\text{Bi}_{19}\text{S}_{27}\text{Br}_3/\text{g-C}_3\text{N}_4$ materials. The FT-IR spectroscopy of the as-prepared materials (Fig. S5) further confirmed the successful synthesis of $\text{Bi}_{19}\text{S}_{27}\text{Br}_3/\text{g-C}_3\text{N}_4$.

3.2. The insight of chemical bond between $\text{Bi}_{19}\text{S}_{27}\text{Br}_3$ and $\text{g-C}_3\text{N}_4$

To explore the chemical bonding between the two materials, the XPS (Fig. S6) was executed to reveal the chemical components of the as-

Fig. 2. (a) The XRD patterns of $\text{Bi}_{19}\text{S}_{27}\text{Br}_3/\text{g-C}_3\text{N}_4$ composites, $\text{Bi}_{19}\text{S}_{27}\text{Br}_3$ and $\text{g-C}_3\text{N}_4$ materials. (b) DRIFTS spectra of $\text{Bi}_{19}\text{S}_{27}\text{Br}_3/\text{g-C}_3\text{N}_4$ composites, pure $\text{Bi}_{19}\text{S}_{27}\text{Br}_3$ and pure $\text{g-C}_3\text{N}_4$. (c) Bi L₃-edge XANES and (d) Fourier transformed EXAFS spectra of $\text{Bi}_{19}\text{S}_{27}\text{Br}_3/\text{g-C}_3\text{N}_4$ -5 and $\text{Bi}_{19}\text{S}_{27}\text{Br}_3$ materials.

prepared materials. Comparing with the g-C₃N₄, the C 1 s of Bi₁₉S₂₇Br₃/g-C₃N₄-5 composite exhibits a striking positive shift. Besides, both Bi 4 f and S 2p of Bi₁₉S₂₇Br₃/g-C₃N₄-5 composite show obviously negative shifts compared with Bi₁₉S₂₇Br₃. All these results indicated the strong

interaction between Bi₁₉S₂₇Br₃ and g-C₃N₄ materials. The DRIFTS was employed to further figure out the force between Bi₁₉S₂₇Br₃ and g-C₃N₄. In Fig. 2b, a new peak locating at about 1038 cm⁻¹ can be attributed to the C-S stretching vibration [48].

Fig. 3. (a) The time courses of photocatalytic CO evolution and (b) the CO₂ photoreduction rate in 5 h using Bi₁₉S₂₇Br₃, g-C₃N₄ and Bi₁₉S₂₇Br₃/g-C₃N₄ materials as photocatalysts. (c) The CO₂ photoreduction experiments of the Bi₁₉S₂₇Br₃/g-C₃N₄-5 composite, Bi₁₉S₂₇Br₃/g-C₃N₄-M, the Bi₁₉S₂₇Br₃/g-C₃N₄-5 composite in Ar, the Bi₁₉S₂₇Br₃/g-C₃N₄-5 without light and without photocatalyst. (d) The stability of Bi₁₉S₂₇Br₃/g-C₃N₄-5 composite. (e) The total ion chromatography and (f) mass spectra of ¹³CO obtained from HP-MOLESIEVE in the photocatalytic reduction of ¹³CO₂.

In order to detect whether other chemical bonds were generated, the local electronic structure and coordination environment of Bi in $\text{Bi}_{19}\text{S}_{27}\text{Br}_3/\text{g-C}_3\text{N}_4\text{-}5$ were investigated by X-ray absorption measurement. In Fig. 2c, the L_3 -edge XANES spectra of $\text{Bi}_{19}\text{S}_{27}\text{Br}_3/\text{g-C}_3\text{N}_4\text{-}5$ and $\text{Bi}_{19}\text{S}_{27}\text{Br}_3$ reveal that no interaction generated on Bi atoms between g-C₃N₄ and $\text{Bi}_{19}\text{S}_{27}\text{Br}_3$ materials. The main peak at 2.2 Å is assigned to the Bi-S bond of $\text{Bi}_{19}\text{S}_{27}\text{Br}_3$ in the results of EXAFS (Fig. 2d) [49]. However, the signal intensity of $\text{Bi}_{19}\text{S}_{27}\text{Br}_3/\text{g-C}_3\text{N}_4\text{-}5$ composite is clearly weaker than that of pure $\text{Bi}_{19}\text{S}_{27}\text{Br}_3$, revealing the low coordination number of Bi-S bonds [50]. All these results indicated the different local atomic arrangement of $\text{Bi}_{19}\text{S}_{27}\text{Br}_3/\text{g-C}_3\text{N}_4\text{-}5$ relative to the $\text{Bi}_{19}\text{S}_{27}\text{Br}_3$ [50]. Combining with the results of DRIFTS and XPS, the decrease of coordination number of Bi-S bonds can be attributed to the formation of C-S bonds.

3.3. The CO_2 photoreduction performance of as-prepared materials

The photocatalytic CO_2 reduction performance of these materials were carried out in water environment at 5 °C (Fig. 3a). As shown in Fig. 3b, the reaction rates were also calculated to visualize the photocatalytic activities of materials. After 5 h Xe lamp irradiation, the pure $\text{Bi}_{19}\text{S}_{27}\text{Br}_3$ and g-C₃N₄ exhibit the poor photocatalytic CO yield which are about 12.82 and 15.30 $\mu\text{mol g}^{-1}$ with reaction rate of 2.56 and 3.06 $\mu\text{mol g}^{-1} \text{h}^{-1}$, respectively. As expected, the $\text{Bi}_{19}\text{S}_{27}\text{Br}_3/\text{g-C}_3\text{N}_4$ composites exhibit the improved CO_2 photoreduction activity. The $\text{Bi}_{19}\text{S}_{27}\text{Br}_3/\text{g-C}_3\text{N}_4\text{-}5$ shows the highest CO yield which is 64.35 $\mu\text{mol g}^{-1}$ (12.87 $\mu\text{mol g}^{-1} \text{h}^{-1}$), and is almost 5 and 4-folds yield of $\text{Bi}_{19}\text{S}_{27}\text{Br}_3$ and g-C₃N₄. Besides, the O_2 can be also detected which yield rate is about 6.12 $\mu\text{mol g}^{-1} \text{h}^{-1}$ as shown in Fig. S7. To investigate the important role of C-S bonds during the CO_2 photoreduction process of the $\text{Bi}_{19}\text{S}_{27}\text{Br}_3/\text{g-C}_3\text{N}_4$ composites, the $\text{Bi}_{19}\text{S}_{27}\text{Br}_3/\text{g-C}_3\text{N}_4\text{-M}$ catalyst was prepared by mechanical grinding method with the same mass rate. The XRD and SEM experiments identified that there is no significant difference for the crystal phase and the morphology of $\text{Bi}_{19}\text{S}_{27}\text{Br}_3/\text{g-C}_3\text{N}_4\text{-}5$ and $\text{Bi}_{19}\text{S}_{27}\text{Br}_3/\text{g-C}_3\text{N}_4\text{-M}$ (As shown in Fig. S8). The DRIFTS was applied to confirm the generation of chemical bond. In Fig. S9, there is no C-S bonds generated in the $\text{Bi}_{19}\text{S}_{27}\text{Br}_3/\text{g-C}_3\text{N}_4\text{-M}$ catalyst synthesized by mechanical grinding method. In Fig. 3c, the CO yield rate of $\text{Bi}_{19}\text{S}_{27}\text{Br}_3/\text{g-C}_3\text{N}_4\text{-M}$ is about 4.57 $\mu\text{mol g}^{-1} \text{h}^{-1}$ which is much lower than that of $\text{Bi}_{19}\text{S}_{27}\text{Br}_3/\text{g-C}_3\text{N}_4\text{-}5$ composite. That identified the C-S bonds play an important role in improving CO_2 photoreduction activity of the $\text{Bi}_{19}\text{S}_{27}\text{Br}_3/\text{g-C}_3\text{N}_4\text{-}5$ composite. Several control experiments were performed to ascertain the C source of the CO product. The photocatalytic activities are obviously inhibited under given conditions including no light, no photocatalyst or in Ar atmosphere during the CO_2 reduction process, indicating the CO is only produced by the photocatalytic CO_2 reduction reaction (Fig. 3c). To figure out the C source of CO, the $^{13}\text{CO}_2$ gas was applied as the carbon source for the CO_2 photoreduction of $\text{Bi}_{19}\text{S}_{27}\text{Br}_3/\text{g-C}_3\text{N}_4\text{-}5$ material. The results of isotope labeling measurement experiments are shown in Fig. 3e and f, the total ion chromatographic peak around 2.51 min (Obtained from HP-MOLESIEVE) can be assigned to the CO (Fig. 3e). Meanwhile, combining with the peak appears at $m/z = 29$ and the peaks of fragments produced (the peaks appeared at $m/z = 13$ and 16 can be attributed to the ^{13}C and O) in the mass spectra (Fig. 3f), it can be confirmed that the ^{13}CO is produced from $^{13}\text{CO}_2$ during the CO_2 photoreduction process [1]. The detailed is shown in Fig. S10. The further isotope experiment was sufficient to prove that the carbon source of CO is CO_2 . In Fig. 3d, the CO_2 photoreduction stability of $\text{Bi}_{19}\text{S}_{27}\text{Br}_3/\text{g-C}_3\text{N}_4\text{-}5$ composite is investigated by the 4-times recycling CO_2 photoreduction experiments. The $\text{Bi}_{19}\text{S}_{27}\text{Br}_3/\text{g-C}_3\text{N}_4\text{-}5$ represents the strong stabilization of photocatalytic activity after the long-term photocatalytic experiments. Meanwhile, there are no significant changes in the SEM and XRD of $\text{Bi}_{19}\text{S}_{27}\text{Br}_3/\text{g-C}_3\text{N}_4\text{-}5$ composite after the recycling experiments (Fig. S11), indicating the excellent stability of the $\text{Bi}_{19}\text{S}_{27}\text{Br}_3/\text{g-C}_3\text{N}_4\text{-}5$.

3.4. Explore the cause of increased photocatalytic activity

Several experiments were carried out to further understand the reasons for the improvement of catalyst performance. According to the DRS (Fig. S12a), the light adsorption edge of $\text{Bi}_{19}\text{S}_{27}\text{Br}_3/\text{g-C}_3\text{N}_4$ composite performs a clear red shift than g-C₃N₄, which indicated the $\text{Bi}_{19}\text{S}_{27}\text{Br}_3/\text{g-C}_3\text{N}_4$ composite exhibits the enhancing capture capacity of visible light. The electrochemical impedance spectroscopy (Fig. S12c) further reveals a higher photogenerated charge transfer efficiency of $\text{Bi}_{19}\text{S}_{27}\text{Br}_3/\text{g-C}_3\text{N}_4\text{-}5$ material compared with $\text{Bi}_{19}\text{S}_{27}\text{Br}_3$ and g-C₃N₄. It can be assumed that the generation of C-S bond boosts the transfer of charge carriers between g-C₃N₄ and $\text{Bi}_{19}\text{S}_{27}\text{Br}_3$. In the results of photocurrent experiments (Fig. S12d), the photocurrent intensity of $\text{Bi}_{19}\text{S}_{27}\text{Br}_3/\text{g-C}_3\text{N}_4\text{-}5$ is higher than that of $\text{Bi}_{19}\text{S}_{27}\text{Br}_3$ and g-C₃N₄, which indicates that the generation of C-S bond accelerates the separation of photogenerated carriers effectively. On the other hand, the photocurrent intensity of $\text{Bi}_{19}\text{S}_{27}\text{Br}_3/\text{g-C}_3\text{N}_4\text{-M}$ is quite lower than $\text{Bi}_{19}\text{S}_{27}\text{Br}_3/\text{g-C}_3\text{N}_4\text{-}5$. That means without the generation of C-S bond, the $\text{Bi}_{19}\text{S}_{27}\text{Br}_3/\text{g-C}_3\text{N}_4\text{-M}$ cannot exhibit the higher separation efficiency of photogenerated carriers compared with the $\text{Bi}_{19}\text{S}_{27}\text{Br}_3/\text{g-C}_3\text{N}_4\text{-}5$, and further limited the CO_2 photoreduction capacity of $\text{Bi}_{19}\text{S}_{27}\text{Br}_3/\text{g-C}_3\text{N}_4\text{-M}$.

3.5. The CO_2 photoreduction process of $\text{Bi}_{19}\text{S}_{27}\text{Br}_3/\text{g-C}_3\text{N}_4$ composite

To further figure out the photocatalytic mechanism of $\text{Bi}_{19}\text{S}_{27}\text{Br}_3/\text{g-C}_3\text{N}_4$ composite and the role of C-S bonds in this system, several experiments were carried out to confirm the band structure, surface reaction and electron transfer process of as-prepared materials. The ultraviolet photoelectron spectrometer (UPS) was employed to measure the valence band potential (E_{VB}) and work function (Φ) of $\text{Bi}_{19}\text{S}_{27}\text{Br}_3$ and g-C₃N₄ materials. A sample based of -5 V was applied to observe the secondary electron cutoff (Fig. 4a). For the $\text{Bi}_{19}\text{S}_{27}\text{Br}_3$ material, the work function Φ is calculated as $21.22 - 17.85 = 3.37$ eV (vs. vacuum). The VB top energy (vs. vacuum) can be calculated as $-3.37 - 1.21 = -4.58$ eV. Therefore, the E_{VB} of $\text{Bi}_{19}\text{S}_{27}\text{Br}_3$ material can be calculated as $-(-4.58) - 4.4 = 0.18$ V vs. normal hydrogen electrode (NHE). Because the E_g of $\text{Bi}_{19}\text{S}_{27}\text{Br}_3$ material is 1.48 eV (based on the calculation in Fig. S12b), the conduction band potential (E_{CB}) vs. NHE is calculated by $E_{VB} - E_g = -1.30$ V. Meanwhile, the E_{VB} vs. NHE and E_{CB} vs. NHE of g-C₃N₄ are calculated as 1.73 and -0.84 V. Besides, the Φ of g-C₃N₄ is determined to be 1.77 eV. The photocatalytic O_2 evolution reaction experiments of $\text{Bi}_{19}\text{S}_{27}\text{Br}_3$, g-C₃N₄, $\text{Bi}_{19}\text{S}_{27}\text{Br}_3/\text{g-C}_3\text{N}_4\text{-}5$ and $\text{Bi}_{19}\text{S}_{27}\text{Br}_3/\text{g-C}_3\text{N}_4\text{-M}$ were further carried out to identify the electron charge transfer direction (As shown in Fig. S13, and the detail was shown in [Supplementary information](#)). As the $E(\text{CO}_2/\text{CO})$ and $E(\text{H}_2\text{O}/\text{O}_2)$ are reported as -0.53 and 1.23 V vs NHE [51,52], the VB of the $\text{Bi}_{19}\text{S}_{27}\text{Br}_3$ is negative than $E(\text{H}_2\text{O}/\text{O}_2)$. Therefore, the pure $\text{Bi}_{19}\text{S}_{27}\text{Br}_3$ exhibits no O_2 evolution performance. It can be observed that the $\text{Bi}_{19}\text{S}_{27}\text{Br}_3/\text{g-C}_3\text{N}_4\text{-}5$ exhibits the higher O_2 evolution capacity than that of pure g-C₃N₄. Therefore, the type II heterojunction mechanism is impossible to generate for the $\text{Bi}_{19}\text{S}_{27}\text{Br}_3/\text{g-C}_3\text{N}_4$ composite due to the O_2 cannot be generated on the VB of $\text{Bi}_{19}\text{S}_{27}\text{Br}_3$ (As shown in Fig. S14). Combining with the DFT simulation and O_2 production during the CO_2 photoreduction process of $\text{Bi}_{19}\text{S}_{27}\text{Br}_3/\text{g-C}_3\text{N}_4$ material, a possible C-S bridged direct Z-scheme mechanism can be put forward.

As shown in Fig. 4b, when the light irradiates on the $\text{Bi}_{19}\text{S}_{27}\text{Br}_3/\text{g-C}_3\text{N}_4$ composite, the photogenerated electron gathers on the CB of $\text{Bi}_{19}\text{S}_{27}\text{Br}_3$ and g-C₃N₄. Subsequently, the electron on the CB of g-C₃N₄ transfers to $\text{Bi}_{19}\text{S}_{27}\text{Br}_3$ along the C-S bonds and recombines with the hole on the VB of $\text{Bi}_{19}\text{S}_{27}\text{Br}_3$. During this process, the C-S bond is acted as the "high-speed channel" for the transfer of photogenerated carriers. In this regard, more electron is gathered on the CB of $\text{Bi}_{19}\text{S}_{27}\text{Br}_3$ while the hole is gathered on g-C₃N₄ material's VB, the CO can be generated on CB of $\text{Bi}_{19}\text{S}_{27}\text{Br}_3$. To further identify the electron transfer direction clearly, the chloroplatinic acid solution was applied to deposit the Pt particle on the $\text{Bi}_{19}\text{S}_{27}\text{Br}_3/\text{g-C}_3\text{N}_4$ material's surface under the irradiation of light. After

Fig. 4. (a) The UPS spectra of $\text{Bi}_{19}\text{S}_{27}\text{Br}_3$ and $\text{g-C}_3\text{N}_4$ materials. (b) The schematic of electron transmission by C-S bonds between $\text{g-C}_3\text{N}_4$ and $\text{Bi}_{19}\text{S}_{27}\text{Br}_3$. (c-d) The ESR spectra of $\text{Bi}_{19}\text{S}_{27}\text{Br}_3$, $\text{g-C}_3\text{N}_4$ and $\text{Bi}_{19}\text{S}_{27}\text{Br}_3/\text{g-C}_3\text{N}_4$ composite materials. (e) DFT calculations of adsorption energies for $\text{Bi}_{19}\text{S}_{27}\text{Br}_3$, $\text{g-C}_3\text{N}_4$ and $\text{Bi}_{19}\text{S}_{27}\text{Br}_3/\text{g-C}_3\text{N}_4$ composite. (f) The in-situ DRIFTS for the CO_2 photoreduction of $\text{Bi}_{19}\text{S}_{27}\text{Br}_3/\text{g-C}_3\text{N}_4$ -5 composite.

Xe lamp light irradiation for 20 min, the TEM elements mapping images of $\text{Bi}_{19}\text{S}_{27}\text{Br}_3/\text{g-C}_3\text{N}_4$ composite exhibited the Pt particle is preferred to deposit on the $\text{Bi}_{19}\text{S}_{27}\text{Br}_3$ (Fig. S16), indicating the electron is preferred to gather on the $\text{Bi}_{19}\text{S}_{27}\text{Br}_3$ under the irradiation of light. Therefore, the photo-generated electron on the $\text{g-C}_3\text{N}_4$ transfers and accumulates to the surface of $\text{Bi}_{19}\text{S}_{27}\text{Br}_3$ effectively with the assistance of C-S bonds. Therefore, a typical Z-scheme mechanism can be carried out.

To further reveal the charge transfer process between the interface of $\text{Bi}_{19}\text{S}_{27}\text{Br}_3$ and $\text{g-C}_3\text{N}_4$, the electron spin resonance (ESR) spectra of $\text{Bi}_{19}\text{S}_{27}\text{Br}_3$, $\text{g-C}_3\text{N}_4$ and $\text{Bi}_{19}\text{S}_{27}\text{Br}_3/\text{g-C}_3\text{N}_4\text{-5}$ composite were carried out. The 5,5-dimethyl-1-pyrroline N-oxide (DMPO) was applied as a spin trap. The Fig. 4 c and d show the results of DMPO- O_2^- and DMPO- OH . According to the previous reports, the $E(\text{O}_2/\text{O}_2^-)$ is -0.33 V (vs. NHE) and the $E(\text{OH}/\text{OH}^-)$ is 2.38 V (vs. NHE) [53]. Since the VB of $\text{Bi}_{19}\text{S}_{27}\text{Br}_3$ and $\text{g-C}_3\text{N}_4$ are more positive than $E(\text{OH}/\text{OH}^-)$, both of them cannot generate the- OH during the photocatalytic activity. On the other hand, both of them can detect the generation of O_2^- due to the more negative CB than the $E(\text{O}_2/\text{O}_2^-)$. As shown in Fig. 4c, the DMPO- O_2^- signal of $\text{Bi}_{19}\text{S}_{27}\text{Br}_3/\text{g-C}_3\text{N}_4\text{-5}$ composite exhibits the significantly higher intensity than the pure $\text{Bi}_{19}\text{S}_{27}\text{Br}_3$ and $\text{g-C}_3\text{N}_4$, indicating that more electron is generated by the photocatalytic reaction of $\text{Bi}_{19}\text{S}_{27}\text{Br}_3/\text{g-C}_3\text{N}_4\text{-5}$ compared with the pure $\text{Bi}_{19}\text{S}_{27}\text{Br}_3$ and $\text{g-C}_3\text{N}_4$. The time-resolved transient absorption spectroscopy (TAS) also confirms that with the introduction of $\text{Bi}_{19}\text{S}_{27}\text{Br}_3$, the $\text{Bi}_{19}\text{S}_{27}\text{Br}_3/\text{g-C}_3\text{N}_4\text{-5}$ composite performs the enhanced charge transfer efficiency (The detail is shown in Supplementary information and Fig. S15). Based on the above discussion, with the construction of C-S bridged Z-scheme heterojunction, more electron which generate on the $\text{g-C}_3\text{N}_4$ can transfer and gather on the $\text{Bi}_{19}\text{S}_{27}\text{Br}_3$. As a result, the C-S bridged Z-scheme $\text{Bi}_{19}\text{S}_{27}\text{Br}_3/\text{g-C}_3\text{N}_4$ composites exhibit the accelerated separation and transfer efficiency of photogenerated carriers. Besides, it also maintains the excellent reduction ability inherited from the $\text{Bi}_{19}\text{S}_{27}\text{Br}_3$. Therefore, the improving CO_2 photoconversion performance of $\text{Bi}_{19}\text{S}_{27}\text{Br}_3/\text{g-C}_3\text{N}_4$ composites can be obtained.

To explore the CO_2 adsorption ability of the materials, the models of $\text{CO}_2 + \text{g-C}_3\text{N}_4$, $\text{CO}_2 + \text{Bi}_{19}\text{S}_{27}\text{Br}_3$ and $\text{CO}_2 + \text{Bi}_{19}\text{S}_{27}\text{Br}_3/\text{g-C}_3\text{N}_4$ were further established to simulate the CO_2 adsorption process by the DFT calculation. As shown in Fig. 4e, after the optimization of the material structure, the CO_2 adsorption energy (E_{ads}) of $\text{Bi}_{19}\text{S}_{27}\text{Br}_3$ is calculated as -0.27 eV, which is higher than the E_{ads} of $\text{g-C}_3\text{N}_4$ (-0.15 eV). The E_{ads} of $\text{Bi}_{19}\text{S}_{27}\text{Br}_3/\text{g-C}_3\text{N}_4$ composite is calculated as -0.21 eV which is higher than that of $\text{g-C}_3\text{N}_4$, indicating the enhanced CO_2 adsorption capacity of $\text{Bi}_{19}\text{S}_{27}\text{Br}_3/\text{g-C}_3\text{N}_4$ composite compared with $\text{g-C}_3\text{N}_4$. Although the E_{ads} of $\text{Bi}_{19}\text{S}_{27}\text{Br}_3/\text{g-C}_3\text{N}_4$ composite is lower than $\text{Bi}_{19}\text{S}_{27}\text{Br}_3$, the unsatisfied charge carrier's separation efficiency seriously inhibits the photocatalytic CO_2 reduction activity of the pure $\text{Bi}_{19}\text{S}_{27}\text{Br}_3$. The in-situ DRIFTS measurement was applied to reveal the CO_2 photoreduction process on the surface of $\text{Bi}_{19}\text{S}_{27}\text{Br}_3/\text{g-C}_3\text{N}_4$ composite. In Fig. 4f, the peaks appearing at about 1250 and 1506 cm^{-1} belong to the symmetric C-O-C of b- CO_3^{2-} and m- CO_3^{2-} groups [53,54], respectively. On the other hand, the peak at 1678 cm^{-1} can be matched with asymmetric stretching of HCO_3^{-5} . The gradually increased peak at ~ 1560 cm^{-1} can be assigned to COOH^* group (while the $*$ is the adsorption state of catalyst) [53,55], which is an important intermediate during the photoreduction process of CO_2 to CO . Therefore, the possible reaction process of CO_2 photoreduction process on the $\text{Bi}_{19}\text{S}_{27}\text{Br}_3/\text{g-C}_3\text{N}_4$ material can be proposed. While the CO_2 molecule adsorbs on the $\text{Bi}_{19}\text{S}_{27}\text{Br}_3/\text{g-C}_3\text{N}_4$ composite, it reacts with the H^+ in water and photogenerated electron to generate the COOH^* group. Then the COOH^* group further reacts with the H^+ and photogenerated electron to generate the CO^* . Finally, the CO molecule desorbs from the surface of catalyst.

4. Conclusion

In summary, a novel direct Z-scheme $\text{Bi}_{19}\text{S}_{27}\text{Br}_3/\text{g-C}_3\text{N}_4$ composite

based on C-S bridge was successfully synthesized by the ionic liquid assisted solvent-thermal method. With the assistance of CS bonds, the photo-generated charges on the CB of $\text{g-C}_3\text{N}_4$ transfers to the VB of $\text{Bi}_{19}\text{S}_{27}\text{Br}_3$ through the C-S bonds rapidly. Therefore, the $\text{Bi}_{19}\text{S}_{27}\text{Br}_3/\text{g-C}_3\text{N}_4$ composites perform an enhanced CO_2 photoreduction activity for the yield of CO , which is about 4-times for pure $\text{g-C}_3\text{N}_4$ and 5-times for $\text{Bi}_{19}\text{S}_{27}\text{Br}_3$ material. Compared with the recent $\text{g-C}_3\text{N}_4$ -based materials research (Table S3), the $\text{Bi}_{19}\text{S}_{27}\text{Br}_3/\text{g-C}_3\text{N}_4$ performs the relatively advanced CO_2 photoreduction activities without the addition of co-catalyst and sacrificial agent. Therefore, the construction of chemical bonds bridged direct Z-scheme is a promising strategy for precisely tailoring photogenerated charge separation direction of photocatalyst, providing a guidance for next-generation high efficiency photocatalyst in the field of green energy.

CRedit authorship contribution statement

J.X. Xia and J.Z. Zhao: Conceptualization, Methodology, Data curation. **J.Z. Zhao:** Data curation, Writing – original draft. **Z.R. Chen:** Validation, Formal analysis. **J. Zhong and Y.J. Li:** Validation. **M.X. Ji and S.Y. Wang:** Investigation, Writing – review & editing. **H.L. Chen and Y.X. Weng:** Visualization, Investigation. **H.M. Li and J.X. Xia:** Supervision, Project administration, Funding acquisition. All authors contributed to discussion and preparation of the manuscript.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 22138011, 21676128, and 21878134) and Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX19_1627). We thank SSRF for the support of XAS experiments.

Appendix A. Supporting information

Supplementary data associated with this article can be found in the online version at doi:10.1016/j.apcatb.2022.121162.

References

- [1] S. Wang, X. Hai, X. Ding, S. Jin, Y. Xiang, P. Wang, B. Jiang, F. Ichihara, M. Oshikiri, X. Meng, Y. Li, W. Matsuda, J. Ma, S. Seki, X. Wang, H. Huang, Y. Wada, H. Chen, J. Ye, Intermolecular cascaded pi-conjugation channels for electron delivery powering CO_2 photoreduction, *Nat. Commun.* 11 (2020) 1149.
- [2] W. Gao, S. Li, H. He, X. Li, Z. Cheng, Y. Yang, J. Wang, Q. Shen, X. Wang, Y. Xiong, Y. Zhou, Z. Zou, Vacancy-defect modulated pathway of photoreduction of CO_2 on single atomically thin AgInP_2S_6 sheets into olefiant gas, *Nat. Commun.* 12 (2021) 4747.
- [3] Y. Xi, X. Zhang, Y. Shen, W. Dong, Z. Fan, K. Wang, S. Zhong, S. Bai, Aspect ratio dependent photocatalytic enhancement of CsPbBr_3 in CO_2 reduction with two-dimensional metal organic framework as a cocatalyst, *Appl. Catal. B Environ.* 297 (2021) 20411.
- [4] Z. Wang, J. Fan, B. Cheng, J. Yu, J. Xu, Nickel-based cocatalysts for photocatalysis: hydrogen evolution, overall water splitting and CO_2 reduction, *Mater. Today Phys.* 15 (2020), 100279.
- [5] X. Li, Y. Sun, J. Xu, Y. Shao, J. Wu, X. Xu, Y. Pan, H. Ju, J. Zhu, Y. Xie, Selective visible-light-driven photocatalytic CO_2 reduction to CH_4 mediated by atomically thin CuInS_2 layers, *Nat. Energy* 4 (2019) 690–699.
- [6] G. Liu, B. Wang, X. Zhu, P. Ding, J. Zhao, H. Li, Z. Chen, W. Zhu, J. Xia, Edge-site-rich ordered macroporous BiOCl triggers C=O activation for efficient CO_2 photoreduction, *Small* (2021), 2105228, <https://doi.org/10.1002/smll.202105228>.
- [7] T. Kong, Y. Jiang, Y. Xiong, Photocatalytic CO_2 conversion: what can we learn from conventional CO_x hydrogenation? *Chem. Soc. Rev.* 49 (2020) 6579–6591.

[8] X. Lin, H. Jiang, C. Ma, Z. Zhu, X. Song, H. Wang, P. Huo, X. Li, Local surface plasma resonance effect enhanced Z-scheme $\text{ZnO}/\text{Au}/\text{g-C}_3\text{N}_4$ film photocatalyst for reduction of CO_2 to CO , *Appl. Catal. B Environ.* 283 (2021), 119638.

[9] J. Di, X. Zhao, C. Lian, M. Ji, J. Xia, J. Xiong, W. Zhou, X. Cao, Y. She, H. Liu, K. P. Loh, S.J. Pennycook, H. Li, Z. Liu, Atomically-thin Bi_2MoO_6 nanosheets with vacancy pairs for improved photocatalytic CO_2 reduction, *Nano Energy* 61 (2019) 54–59.

[10] Y. Wang, S. Wang, S. Zhang, X. Lou, Formation of hierarchical $\text{FeCoS}_2\text{-CoS}_2$ double-shelled nanotubes with enhanced performance for photocatalytic reduction of CO_2 , *Angew. Chem. Int. Ed.* 59 (2020) 11918–11922.

[11] W. Wang, C. Deng, S. Xie, Y. Li, W. Zhang, H. Sheng, C. Chen, J. Zhao, Photocatalytic C-C coupling from carbon dioxide reduction on copper oxide with mixed-valence Copper(I)/Copper(II), *J. Am. Chem. Soc.* 143 (2021) 2984–2993.

[12] B. Wang, S. Yang, H. Chen, Q. Gao, Y. Weng, W. Zhu, G. Liu, Y. Zhang, Y. Ye, H. Zhu, H. Li, J. Xia, Revealing the role of oxygen vacancies in bimetallic PbBiO_2Br atomic layers for boosting photocatalytic CO_2 conversion, *Appl. Catal. B Environ.* 277 (2020), 119170.

[13] J. Di, J. Xia, H. Li, Z. Liu, Freestanding atomically-thin two-dimensional materials beyond graphene meeting photocatalysis: opportunities and challenges, *Nano Energy* 35 (2017) 79–91.

[14] X. Jiao, K. Zheng, L. Liang, X. Li, Y. Sun, Y. Xie, Fundamentals and challenges of ultra-thin 2D photocatalysts in boosting CO_2 photoreduction, *Chem. Soc. Rev.* 49 (2020) 6592–6604.

[15] W.-J. Ong, L.-L. Tan, Y.-H. Ng, S.-T. Yong, S.-P. Chai, Graphitic carbon nitride ($\text{g-C}_3\text{N}_4$)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability? *Chem. Rev.* 116 (2016) 7159–7329.

[16] D. Huang, Z. Li, G. Zeng, C. Zhou, W. Xue, X. Gong, X. Yan, S. Chen, W. Wang, M. Cheng, Megamerger in photocatalytic field: 2D $\text{g-C}_3\text{N}_4$ nanosheets serve as support of 0D nanomaterials for improving photocatalytic performance, *Appl. Catal. B Environ.* 240 (2019) 153–173.

[17] W. Li, L. Jin, F. Gao, H. Wan, Y. Pu, X. Wei, C. Chen, W. Zou, C. Zhu, L. Dong, Advantageous roles of phosphate decorated octahedral CeO_2 {111}/ $\text{g-C}_3\text{N}_4$ in boosting photocatalytic CO_2 reduction: charge transfer bridge and Lewis basic site, *Appl. Catal. B Environ.* 294 (2021), 120257.

[18] J. Fu, Q. Xu, J. Low, C. Jiang, J. Yu, Ultra-thin 2D/2D $\text{WO}_3/\text{g-C}_3\text{N}_4$ step-scheme H_2 -production photocatalyst, *Appl. Catal. B Environ.* 243 (2019) 556–565.

[19] X. Zhang, T. Wu, C. Yu, R. Lu, Ultrafast interlayer charge separation, enhanced visible-light absorption, and tunable overpotential in twisted graphitic carbon nitride bilayers for water splitting, *Adv. Mater.* 33 (2021), 2104695.

[20] G. Liu, C. Zhen, Y. Kang, L. Wang, H. Cheng, Unique physicochemical properties of two-dimensional light absorbers facilitating photocatalysis, *Chem. Soc. Rev.* 47 (2018) 6410–6444.

[21] P. Xia, M. Antonietti, B. Zhu, T. Heil, J. Yu, S. Cao, Designing defective crystalline carbon nitride to enable selective CO_2 photoreduction in the gas phase, *Adv. Funct. Mater.* 29 (2019), 1900093.

[22] Y. Li, B. Li, D. Zhang, L. Cheng, Q. Xiang, Crystalline carbon nitride supported copper single atoms for photocatalytic CO_2 reduction with nearly 100% CO selectivity, *ACS Nano* 14 (2020) 10552–10561.

[23] M. Shen, L. Zhang, M. Wang, J. Tian, X. Jin, L. Guo, L. Wang, J. Shi, Carbon-vacancy modified graphitic carbon nitride: enhanced CO_2 photocatalytic reduction performance and mechanism probing, *J. Mater. Chem. A* 7 (2019) 1556–1563.

[24] P. Sharma, S. Kumar, O. Tomanec, M. Petr, J. Zhu Chen, J.T. Miller, R.S. Varma, M. B. Gawande, R. Zboril, Carbon nitride-based ruthenium single atom photocatalyst for CO_2 reduction to methanol, *Small* 17 (2021), 2006478.

[25] J. Di, J. Xia, X. Li, M. Ji, H. Xu, Z. Chen, H. Li, Constructing confined surface carbon defects in ultra-thin graphitic carbon nitride for photocatalytic free radical manipulation, *Carbon* 107 (2016) 1–10.

[26] L. Cheng, H. Yin, C. Cai, J. Fan, Q. Xiang, Single Ni atoms anchored on porous few-layer $\text{g-C}_3\text{N}_4$ for photocatalytic CO_2 reduction: the role of edge confinement, *Small* 16 (2020), 2002411.

[27] C. Wang, X. Yi, P. Wang, Powerful combination of MOFs and C_3N_4 for enhanced photocatalytic performance, *Appl. Catal. B Environ.* 247 (2019) 24–48.

[28] R. Zhang, P. Li, F. Wang, L. Ye, A. Gaur, Z. Huang, Z. Zhao, Y. Bai, Y. Zhou, Atomically dispersed Mo atoms on amorphous $\text{g-C}_3\text{N}_4$ promotes visible-light absorption and charge carriers transfer, *Appl. Catal. B Environ.* 250 (2019) 273–279.

[29] N. Tian, K. Xiao, Y. Zhang, X. Lu, L. Ye, P. Gao, T. Ma, H. Huang, Reactive sites rich porous tubular yolk-shell $\text{g-C}_3\text{N}_4$ via precursor recrystallization mediated microstructure engineering for photoreduction, *Appl. Catal. B Environ.* 253 (2019) 196–205.

[30] M. Ismael, A review on graphitic carbon nitride ($\text{g-C}_3\text{N}_4$) based nanocomposites: synthesis, categories, and their application in photocatalysis, *J. Alloy. Compd.* 846 (2020), 156446.

[31] Q. Xu, L. Zhang, J. Yu, S. Wageh, A. Al-Ghamdi, M. Jaroniec, Direct Z-scheme photocatalysts: principles, synthesis, and applications, *Mater. Today* 21 (2018) 1042–1063.

[32] M. Ou, W. Tu, S. Yin, W. Xing, S. Wu, H. Wang, S. Wan, Q. Zhong, R. Xu, Amino-assisted anchoring of CsPbBr_3 perovskite quantum dots on porous $\text{g-C}_3\text{N}_4$ for enhanced photocatalytic CO_2 reduction, *Angew. Chem. Int. Ed.* 41 (2018) 13570–13574.

[33] Z. Jiang, W. Wan, H. Li, S. Yuan, H. Zhao, P. Wong, A hierarchical Z-scheme $\text{alpha-Fe}_2\text{O}_3/\text{g-C}_3\text{N}_4$ hybrid for enhanced photocatalytic CO_2 reduction, *Adv. Mater.* 30 (2018), 1706108.

[34] C. Wang, Y. Zhao, H. Xu, Y. Li, Y. Wei, J. Liu, Z. Zhao, Efficient Z-scheme photocatalysts of ultrathin $\text{g-C}_3\text{N}_4$ -wrapped Au/TiO_2 -nanocrystals for enhanced visible-light-driven conversion of CO_2 with H_2O , *Appl. Catal. B Environ.* 263 (2020), 118314.

[35] W. Zhang, A. Mohamed, W. Ong, Z-Scheme photocatalytic systems for carbon dioxide reduction: where are we now? *Angew. Chem. Int. Ed.* 51 (2020) 22894–22915.

[36] P. Zhou, J. Yu, M. Jaroniec, All-solid-state Z-scheme photocatalytic systems, *Adv. Mater.* 26 (2014) 4920–4935.

[37] X. Wang, X. Wang, J. Huang, S. Li, A. Meng, Z. Li, Interfacial chemical bond and internal electric field modulated Z-scheme $\text{S}_v\text{-ZnIn}_2\text{S}_4\text{/MoSe}_2$ photocatalyst for efficient hydrogen evolution, *Nat. Commun.* 12 (2021) 4112.

[38] M. Zhang, M. Lu, Z.L. Lang, J. Liu, M. Liu, J.N. Chang, L.Y. Li, L.J. Shang, M. Wang, S.L. Li, Y.Q. Lan, Semiconductor/covalent-organic-framework Z-Scheme heterojunctions for artificial photosynthesis, *Angew. Chem. Int. Ed.* 59 (2020) 6500–6506.

[39] W. Xu, W. Tian, L. Meng, F. Cao, L. Li, Interfacial chemical bond-modulated Z-scheme charge transfer for efficient photoelectrochemical water splitting, *Adv. Energy Mater.* 11 (2021), 2003500.

[40] P. Zhang, L. Wu, W. Pan, S. Bai, R. Guo, Efficient photocatalytic H_2 evolution over NiS-PCN Z-scheme composites via dual charge transfer pathways, *Appl. Catal. B Environ.* 289 (2021), 120040.

[41] Z. Wu, Y. Liu, S. Zhang, Z. Huang, Q. Jiang, T. Zhou, J. Hu, Biomimetic structure design and construction of cactus-like $\text{MoS}_2/\text{Bi}_{19}\text{Cl}_3\text{S}_{27}$ photocatalysts for efficient hydrogen evolution, *J. Mater. Chem. A* 6 (2018) 21404–21409.

[42] L. Ai, L. Wang, M. Xu, S. Zhang, N. Guo, D. Jia, L. Jia, Defective $\text{Bi}_{333}(\text{Bi}_6\text{S}_9)\text{Br}/\text{Bi}_2\text{S}_3$ heterostructure nanorods: boosting the activity for efficient visible-light photocatalytic Cr(VI) reduction, *Appl. Catal. B Environ.* 284 (2021), 119730.

[43] Y. Chen, G. Tian, T. Feng, W. Zhou, Z. Ren, T. Han, Y. Xiao, H. Fu, Single-crystalline $\text{Bi}_{19}\text{Br}_3\text{S}_{27}$ nanorods with efficiently improved photocatalytic activity, *CrystEngComm* 17 (2015) 6120–6126.

[44] J. Li, W. Pan, Q. Liu, Z. Chen, Z. Chen, X. Feng, H. Chen, Interfacial engineering of $\text{Bi}_{19}\text{Br}_3\text{S}_{27}$ nanowires promotes metallic photocatalytic CO_2 reduction activity under near-infrared light irradiation, *J. Am. Chem. Soc.* 143 (2021) 6551–6559.

[45] Z. Chen, Z. Wu, Z. Song, X. Zhang, H. Yang, Q. Jiang, T. Zhou, N. Liu, J. Hu, Crucial effect of halogen on the photocatalytic hydrogen evolution for $\text{Bi}_{19}\text{X}_3\text{S}_{27}$ ($\text{X} = \text{Cl}, \text{Br}$) nanomaterials, *Ind. Eng. Chem. Res.* 58 (2019) 22958–22966.

[46] C. Deng, H. Guan, X. Tian, Novel $\text{Bi}_{19}\text{S}_{27}\text{Br}_3$ superstructures: facile microwave-assisted aqueous synthesis and their visible light photocatalytic performance, *Mater. Lett.* 108 (2013) 17–20.

[47] Y. Wang, Y. Tian, L. Yan, Z. Su, DFT study on sulfur-doped $\text{g-C}_3\text{N}_4$ nanosheets as a photocatalyst for CO_2 reduction reaction, *J. Phys. Chem. C* 122 (2018) 7712–7719.

[48] C. Min, Y. Yang, H. Liang, Z. He, J. Zhu, Q. Li, Covalently bonded 2D/0D $\text{g-C}_3\text{N}_4/\text{MoS}_2$ nanocomposites for enhanced tribological properties in oil, *ChemistrySelect* 6 (2021) 1661–1668.

[49] J. Li, G. Zhan, Y. Yu, L. Zhang, Superior visible light hydrogen evolution of Janus bilayer junctions via atomic-level charge flow steering, *Nat. Commun.* 7 (2016) 11480.

[50] J. Di, J. Xia, M. Chisholm, J. Zhong, C. Chen, X. Cao, F. Dong, Z. Chi, H. Chen, Y. Weng, J. Xiong, S. Yang, H. Li, Z. Liu, S. Dai, Defect-tailoring mediated electron-hole separation in single-unit-cell $\text{Bi}_3\text{O}_4\text{Br}$ nanosheets for boosting photocatalytic hydrogen evolution and nitrogen fixation, *Adv. Mater.* 31 (2019), 1807576.

[51] Y. Zhang, B. Xia, J. Ran, K. Davey, S. Qiao, Atomic-level reactive sites for semiconductor-based photocatalytic CO_2 reduction, *Adv. Energy Mater.* 10 (2020), 1903879.

[52] Y. Wang, X. Shang, J. Shen, Z. Zhang, D. Wang, J. Lin, J. Wu, X. Fu, X. Wang, C. Li, Direct and indirect Z-scheme heterostructure-coupled photosystem enabling cooperation of CO_2 reduction and H_2O oxidation, *Nat. Commun.* 11 (2020) 3043.

[53] B. Wang, J. Zhao, H. Chen, Y.-X. Weng, H. Tang, Z. Chen, W. Zhu, Y. She, J. Xia, H. Li, Unique Z-scheme carbonized polymer dots/ $\text{Bi}_4\text{O}_3\text{Br}_2$ hybrids for efficiently boosting photocatalytic CO_2 reduction, *Appl. Catal. B Environ.* 293 (2021), 120182.

[54] J. Di, C. Zhu, M. Ji, M. Duan, R. Long, C. Yan, K. Gu, J. Xiong, Y. She, J. Xia, H. Li, Z. Liu, Defect-Rich $\text{Bi}_{12}\text{O}_{17}\text{Cl}_2$ nanotubes self-accelerating charge separation for boosting photocatalytic CO_2 reduction, *Angew. Chem. Int. Ed.* 57 (2018) 14847–14851.

[55] Wu X. Li, W. Shi, P. Ling, Y. Sun, X. Jiao, S. Gao, L. Liang, J. Xu, W. Yan, C. Wang, Y. Xie, Efficient visible-light-driven CO_2 reduction mediated by defect-engineered BiOBr atomic layers, *Angew. Chem. Int. Ed.* 57 (2018) 8719–8723.