

Systèmes d'exploitation

Introduction

Sd'E

L'equipe

- Cours:
 - Cristiana Andrei
 - Alexandru Radovici
- TP & Devoir:
 - Cristiana Andrei
 - Adrian Popescu
- Ressources
 - Răzvan Deaconescu, Mihai Carabaş et l'équipe USO et SO de ACS

Règles du cours

- Nous vous conseillons de venir au cours
- Si vous venez en classe, vous devez respecter ces règles
 - soyez attentif et posez le plus de questions possible

Les courses de systèmes

Deux parcours

- Cours
 - **-** 14
- Programmation
 - Programmation en Java
 - **-** POO
 - Pointeurs
- Langage utilisée
 - Rust

Bibliographie

Andrew Tanenbaum, Modern Operating Systems, 4th Edition

A. Silberschatz, P. Baer Galvin, G. Gagne, Operating Systems Concepts, 9th Edition

Steve Klabnic, Carol Nichols, *The Rust Programming Language*, https://doc.rust-lang.org/book/

Ressources pour le cours SdE2

- Site web: https://upb-fils-sde2.github.io/
- GitHub issues: <u>https://github.com/UPB-FILS-SdE2/questions/issues</u>
 <u>ues</u>
- Diapositives de cours
- La bibliographie

Vous avez besoin

- Compte sur Github
 - nom real et photo real

- Linux
 - Windows Subsystem for Linux

Contenu

Cours

- 14 courses
- diapositives
- bibliographie
 - Très important de lire

TP

- 12 TP
- Linux
- Programmation en Rust
- C'est important de collabores avec votre collègues

Devoirs

Contenu

- Intro en Rust
- Appel du system
- Planificateur
- Mémoire Virtuelle
- Serveur web (bonus)

Développent

- Linux, Github Codespace ou Windows Subsystem for Linux
- 8-20 heures pur une devoir
 - Test des devoirs avec github classroom
- Questions sur Github Issues

Les devoirs sont individuelles

Vous saurez

Linux

Examen

- Semestre
 - Tests de cours (2p)
 - Tests de TP (2p)
 - 4 devoirs (7p)
- Session d'examen
 - épreuve écrite (4p)
- Note
 - > 5 passer
 - 12 présence au TP

Règles

- Vous n'avez pas de devoirs copiés
- Vous pouvez vous absenter sans motivation pendant un maximum de 2 TPs

Hall of Fame

Irina Bardu 2021

Student

Student

Informatique

Understanding Computer Technology

Outils logiciels recommandés

Visual Studio Code

Chrome ou Edge

Ubuntu Linux

Windows 10
Windows Subsystem for Linux

VirtualBox

Andrew S. Tanenbaum

- Américain
- Physicien
- Livre de SdE
- Minix OS
 - Mini-OS
 - Intel ManagementEngine

Contenu

- Quelques mots sur SdE
- Introduction en Systèmes d'exploitation
- Sujets

- Modern Operating Systems
 - Chapitre 1
- Operating Systems Concepts
 - Chapitre 1

MATERIEL

Materiel

- Processeur (CPU)
 - exécute le code (instructions)
- Mémoire du travail (RAM)
 - mémorise les données et le code pour les programmes
- Bus des données
 - fait la connexion entre le CPU, le RAM et les périphériques E/S
- Périphériques (entrée/sorties E/S, input/output I/O)
 - communication avec l'extérieur: utilisateur, autres systèmes, etc.
- Espace de stockage (disque, flash, ROM, NVRAM)
 - programmes (à partir de laquelle les processus seront faits)
 - données pour les processus
 - information pour les utilisateurs (fichiers)

Types de systèmes informatiques

Microcontrôleur

- Fréquence basse (MHz)
- Petit espace de stockage (Mo)
- RAM limitée (Ko)
- Faible consommation d'énergie
- Pas cher

L'ordinateur

- Fréquence élevée (GHz)
- Grand espace de stockage (dizaines de Go)
- Grande RAM (Go)
- Consommation d'énergie plus élevée
- Chers

SYSTEME D'EXPLOITATION

Qu'est-ce qu'un SE?

- un programme
- vue de haut en bas: extension de la machine physique
- vue de bas en haut: gestionnaire des ressources physiques
- écrit en C ou Rust
- transparent pour l'utilisateur (il marche)

La structure de SE

Noyau (kernel)

- gérer les ressources physiques
- fournit une interface standard pour les applications

Programmes de base

- fournit une interaction utilisateur avec le noyau et le matériel
- exemples: creation de fichiers, access des donnes sur la resaeu

Windows

- Microsoft
- le plus utilisé pour les systèmes de bureau
- La version plus récente: Windows 11 (pour PC, tablettes et mobiles)
- Windows Server 2025 (pour serveurs)

macOS

- Apple
- Seulement pour les systèmes Mac (Mac Pro, Mac Mini, MacBook)
- Approximative 9-10% pour Desktop
- La version plus récente: macOS 15 "Sequoia"

Linux

- Linus Torvalds et Greg Kroah-Hartman (personnes principales)
- open source
- distributions de Linux
- approximative 1-2% pour Desktop
- Utilisé pour les serveurs
- Utilisé pour dispositifs intégrée et mobiles (Android et autres)

Autres SE

Zephyr

- Open source
- Linux en miniature
 - pour les dispositifs
- Binaire unique
- Lancé en 2016
- zephyrproject.org

Tock

- Open source
- Mini système
 - pour les dispositifs
 - développé à Rust
- · Lancé en 2016
- www.tockos.org

STRUCTURE DE SE

La pile de systèmes informatiques

La structure de SE (monolithique)

SE monolithique vs. SE micronoyau

SE monolithique

SE micronoyau

https://en.wikipedia.org/wiki/Microkernel

SE monolithique vs. SE micronoyau

Monolitique

- Efficient
- Communication par appel de fonction entre les components
- Moins flexible
- Grand TCB (*Trusted* Computing Base) design
 moins sécurisé

Micronoyau

- est plus lent (communication entre services)
- plus modulaire
- Réduite TCB (design plus sécurise)

MS DOS

Tock

Linux

Ressources pour le cours SdE2

- Site web: https://upb-fils-sde2.github.io/
- GitHub issues: <u>https://github.com/UPB-FILS-SdE2/questions/issues</u>
- Diapositives de cours
- La bibliographie

Mot clés

- SE
- Noyau (kernel)
- Mode superviseur
- Mode utilisateur
- CPU
- Mémoire
- Bus de données
- Processus

- Mémoire virtuelle
- Espace utilisateur
- Espace noyau
- Appel de système
- Noyau monolithique
- Micronoyau
- Programmes de base
- Interface Utilisateur

Questions

