Neutrino interaction studies in the near detector of the T2K Experiment

Caetano Ternes¹ Chirag Verma²

Supervisor: Dr. Marcela Batkiewicz-Kwaśniak

¹UFSC, Brazil

²KMC, DU, India

IFJ PAN PPSS Programme July 30, 2021

Outline

- Brief history of Neutrinos
- 2 The T2K Experiment
- 3 Charged Current Neutrino-Nuclei interactions
- 4 The Analysis
- Summary

Brief history of neutrinos

- 1914: Chadwick's observation of continuous β decay spectrum.
- 1930: Pauli's proposal for a new particle to explain β decay spectrum.
- **1933**: Fermi's neutrino and β decay theory.
- **1956**: Reines and Cowan observed the first neutrino interaction.
- **1962**: ν_{μ} discovery at BNL, USA.
- 1975: τ lepton discovered at SLAC... ν_{τ} proposed.
- 1986: Solar Neutrino Problem.
- **1989**: LEPC's measurement of Z^0 properties... Exactly three light neutrinos.
- 1998: Atmospheric neutrino oscillations.
- **2000**: DONUT discovered ν_{τ} .
- 2001: Solar neutrino deficit explained by SNO
- 2013: First observation of high-energy astrophysical neutrinos by IceCube

The T2K Experiment

- Long baseline neutrino oscillation experiment in Japan since 2010.
- The experiment sends a beam of muon neutrinos from Tokai to Kamioka at a distance of 295 km.

https://t2k-experiment.org/t2k/

World's first off-axis neutrino experiment!

DOI: 10.1088/1367-2630/16/7/075015

Why Off-Axis?

 The average energy of the neutrino decreases with the deviation from the beam axis.

 2.5° chosen to maximize the probability of oscillation at the far detector.

DOI:10.21468/SciPostPhysProc.1.029

Near Detector and Components

- ND280 Detector
 - 3 vertical Time Projection Chambers
 - active material: plastic scintillator
 - passive materials: water, iron, lead
 - beam content before oscillations
 - neutrino interaction studies
- Fine Grain Detector-1
 - plastic scintillator bars
 - target for neutrino interactions
- Time Projection Chamber
 - Filled with Argon-based gas mixture
 - ► Used for momentum and $\frac{dE}{dX}$ measurements

ECal

- plastic and lead bars
- surrounds the inner part of ND280

Figure: ND280

Charged Current Neutrino-Nuclei interactions

CC interactions

mediated by $W^{+/-}$ bosons

NC interactions

mediated by Z^0 boson

Figure: CCQE

Figure: DIS

Figure: RES

Figure: non-RES

Aim of the project and Event Selection

- The following analysis was done using sample of events containing pre-selected $\mu^$ candidate starting in FGD1 Fiducial Volume.
- To select tracks having at least 18 hits and starting inside the **FGD1 Fiducial Volume**.
- ② To identify particles based on $\frac{dE}{dv}$ and other information.
- 3 To select $CC-1\pi^+$ interactions by choosing events with $1\pi^+$ and 1 or 0 proton candidates based on pull variables.
- To calculate kinematical properties related to selected neutrino interactions.
- To calculate purity and efficiency of the selection.

Products of CC-1 π^+ signal interaction

 μ^{-} , π^{+} , and 0 or 1 proton

Pull Variable

$$P_{a}=rac{\left(rac{dE}{dx}
ight)_{teor_{a}}-\left(rac{dE}{dx}
ight)_{exp}}{\sigma_{exp}}$$

Choosing Candidates

Proton pull, positive charge

The Chosen Candidates

Momentum of pion+ candidate (from all samples) for true particles

Momentum of muon candidate (from all samples) for true particles

Momentum of proton candidate (from sample with 1p) for true particles

(T2K)-Not always possible to distinguish particles based on $\frac{dE}{dx}$

Reactions and Topologies

True neutrino energy (from all samples) for different reactions

True neutrino energy (from all samples) for different topologies

- Reaction: Primary neutrino nucleon interaction type
- Topology: Reaction type based on the particles leaving the nucleus

Purity and Efficiency

The estimation of the quality of event selection is done by observing the following quantities.

Purity

Number of selected signal events

Number of all selected events

Efficiency

Number of selected signal events

Number of all signal events

True v/s Reconstructed Energies

The green line shows ideal reconstruction.

Kinematical Properties from Reconstruction

• Fermi Momentum of a nucleon is $\approx 250 \text{MeV/c}$

Summary

- We studied nucleon-neutrino interactions in the T2K near detector.
- We analysed the characteristics of $CC1\pi^+$ interaction with 0 and 1 proton samples.
- We also reconstructed kinematical properties for the $CC1\pi^+$ interaction.
- A similar analysis for $CC0\pi$ interactions (mainly CCQE reactions) was made for comparison, but not added in this presentation.

Acknowledgements and Thanks

We would like to thank the PPSS 2021 organising committee for providing us with this opportunity.

Special thanks to our supervisor Dr Marcela Batkiewicz-Kwaśniak for her timely help and professional guidance.

Thank You!

Backup Slides

Pontecorvo-Maki-Nakagawa-Sakata matrix

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

where $\mathbf{c}_{ij} = \cos \theta_{ij}, \mathbf{s}_{ij}' = \sin \theta_{ij}, \delta = \delta_{CP}$

black : ν_e

blue: ν_{μ}

red: $u_{ au}$

Super-Kamiokande Detector

- Located 1000m underground.
- Contains 50,220 tonnes of ultrapure water.
- A water-Cherenkov detector.
- No magnetic field to distinguish particles from anti-particles.
- particle identification based of light ring shape

u-like event

Events' display in ND280 detector

