STP08DP05

Low voltage 8-bit constant current LED sink with full outputs error detection

Datasheet - production data

Features

- Low voltage power supply down to 3 V
- · 8 constant current output channels
- Adjustable output current through external resistor
- · Short and open output error detection
- Serial data IN/parallel data OUT
- 3.3 V micro driver-able
- Output current: 5-100 mA
- 30 MHz clock frequency
- Available in high thermal efficiency TSSOP exposed pad
- ESD protection 2.5 kV HBM, 200 V MM

Description

The STP08DP05 is a monolithic, low voltage, low current power 8-bit shift register designed for LED panel displays. The STP08DP05 contains a 8-bit

serial-in, parallel-out shift register that feeds a 8-bitD-type storage register. In the output stage, eight regulated current sources were designed to provide 5-100 mA constant current to drive the LEDs.

The STP08DP05 is backward compatible in the functionality and footprint with STP8C/L596 and extends its functionality with open and short detection on the outputs. The detection circuit checks 3 different conditions that can occur on the output line: short to GND, short to $V_{\rm O}$ or open line. The data detection results are loaded in the shift register and shifted out via the serial line output.

The detection functionality is implemented without increasing the pin number, through a secondary function of the output enable and latch pin (DM1 and DM2 respectively), a dedicated logic sequence allows the device to enter or leave from detection mode. Through an external resistor, users can adjust the STP08DP05 output current, controlling in this way the light intensity of LEDs, in addition, user can adjust LED's brightness intensity from 0% to 100% via $\overline{\text{OE}/\text{DM2}}$ pin.

The STP08DP05 guarantees a 20 V output driving capability, allowing users to connect more LEDs in series. The high clock frequency, 30 MHz, also satisfies the system requirement of high volume data transmission. The 3.3 V of voltage supply is well useful for applications that interface any micro from 3.3 V. Compared with a standard TSSOP package, the TSSOP exposed pad increases heat dissipation capability by a 2.5 factor.

Table 1. Device summary

Order codes	Package	Packaging
STP08DP05B1R	DIP-16	25 parts per tube
STP08DP05MTR	SO-16 (Tape and reel)	2500 parts per reel
STP08DP05TTR	TSSOP16 (Tape and reel)	2500 parts per reel
STP08DP05XTTR	TSSOP16 exposed-pad (Tape and reel)	2500 parts per reel

July 2013 DocID13405 Rev 5 1/34

Contents STP08DP05

Contents

1	Sum	mary description	3
	1.1	Pin connection and description	3
2	Bloc	k diagram	4
3	Maxi	mum rating	5
	3.1	Absolute maximum ratings	5
	3.2	Thermal data	5
	3.3	Recommended operating conditions	6
4	Elect	rical characteristics	7
5	Swite	ching characteristics	8
6	Equi	valent circuit and outputs	9
7	Truth	n table and timing diagram	10
	7.1	Truth table	10
	7.2	Timing diagram	10
8	Туріс	cal characteristics	13
9	Test	circuit	16
10	Dete	ction mode functionality	18
	10.1	Phase one: "entering in detection mode"	18
	10.2	Phase two: "error detection"	19
	10.3	Phase three: "resuming to normal mode"	20
	10.4	Error detection conditions	21
11	Pack	age mechanical data	22
12	Pack	aging mechanical data	31
13	Revi	sion history	33
2/34		DocID13405 Rev 5	

1 Summary description

Table 2. Typical current accuracy

Output voltage	Current	Output current	
Output voitage	Between bits	Between ICs	Output current
≥1.3 V	±1.5%	±5%	20 to 100 mA

1.1 Pin connection and description

Figure 1. Connections diagram

Note: The exposed pad should be electrically connected to a metal land electrically isolated or connected to ground.

Table 3. Pin description

Pin n°	Symbol	Name and function	
1	GND	Ground terminal	
2	SDI	Serial data input terminal	
3	CLK	Clock input terminal	
4	LE/DM1	Latch input terminal	
5-12	OUT 0-7	Output terminal	
13	OE/DM2	Output enable input terminal (active low)	
14	SDO	Serial data out terminal	
15	R-EXT	Constant current programming	
16	V_{DD}	5 V supply voltage terminal	

Block diagram STP08DP05

2 Block diagram

Figure 2. Normal mode - block diagram

STP08DP05 Maximum rating

3 Maximum rating

Stressing the device above the rating listed in the "absolute maximum ratings" table may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

3.1 Absolute maximum ratings

Table 4. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V_{DD}	Supply voltage I _{GND}	0 to 7	V
Vo	Output voltage	-0.5 to 20	V
Io	Output current	100	mA
I _{GND}	GND terminal current	800	mA
f _{CLK}	Clock frequency	50	MHz
T _{OPR}	Operating temperature range	-40 to +125	°C
T _{STG}	Storage temperature range	-55 to +150	°C

3.2 Thermal data

Table 5. Thermal data

Symbol	Parameter	DIP-16	SO-16	TSSOP-16	TSSOP-16 ⁽¹⁾ (exposed pad)	Unit
R _{thJA}	Thermal resistance junction-ambient	90	125	140	37.5	°C/W

^{1.} The exposed-pad should be soldered to the PBC to realize the thermal benefits

Maximum rating STP08DP05

3.3 Recommended operating conditions

Table 6. Recommended operating conditions

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V_{DD}	Supply voltage		3.0	-	5.5	V
Vo	Output voltage			-	20	V
Io	Output current	OUTn	5	-	100	mA
I _{OH}	Output current	SERIAL-OUT		-	+1	mA
I _{OL}	Output current	SERIAL-OUT		-	-1	mA
V _{IH}	Input voltage		0.7V _{DD}	-	V _{DD} +0.3	V
V _{IL}	Input voltage		-0.3	-	0.3V _{DD}	V
t _{wLAT}	LE/DM1 pulse width		20	-		ns
t _{wCLK}	CLK pulse width		20	-		ns
t _{wEN}	OE/DM2 pulse width	V _{DD} = 3.0 to 5.0V	200	-		ns
t _{SETUP(D)}	Setup time for DATA	V _{DD} = 3.0 to 3.0 v	7	-		ns
t _{HOLD(D)}	Hold time for DATA		4	-		ns
t _{SETUP(L)}	Setup time for LATCH		15	-		ns
f _{CLK}	Clock frequency	Cascade operation (1)		-	30	MHz

^{1.} If the device is connected in cascade, it may not be possible achieve the maximum data transfer. Please consider the timings carefully.

4 Electrical characteristics

 V_{DD} = 3.3 V to 5 V, T = 25 °C, unless otherwise specified.

Table 7. Electrical characteristics

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{IH}	Input voltage high level		0.7 V _{DD}		V_{DD}	V
V _{IL}	Input voltage low level		GND		0.3 V _{DD}	V
I _{OH}	Output leakage current	V _{OH} = 20 V		0.5	10	μΑ
V _{OL}	Output voltage (Serial-OUT)	I _{OL} = 1 mA		0.03	0.4	V
V _{OH}	Output voltage (Serial-OUT)	I _{OH} = -1 mA	V _{OH} - V _{DD} =- 0.4V			V
I _{OL1}		$V_{O} = 0.3 \text{ V}, R_{ext} = 3.9 \text{ k}\Omega$	4.25	5	5.75	
I _{OL2}	Output current	$V_{O} = 0.3 \text{ V}, R_{ext} = 970 \Omega$	19	20	21	mA
I _{OL3}		$V_{O} = 1.3 \text{ V}, R_{ext} = 190 \Omega$	96	100	104	
Δl _{OL1}	Output current error	$V_O = 0.3 \text{ VR}_{EXT} = 3.9 \text{ k}\Omega$		± 5	± 8	
Δl _{OL2}	between bit	$V_{O} = 0.3 \text{ VR}_{EXT} = 970 \Omega$		± 1.5	± 3	%
Δl _{OL3}	(All Output ON)	$V_{O} = 1.3 \text{ VR}_{EXT} = 190 \Omega$		± 1.2	± 3	
R _{SIN(up)}	Pull-up resistor		150	300	600	$k\Omega$
R _{SIN(down)}	Pull-down resistor		100	200	400	kΩ
I _{DD(OFF1)}	- Supply current (OFF)	R _{EXT} = 980 OUT 0 to 7 = OFF		4	5	
I _{DD(OFF2)}	Supply current (Or 1)	R _{EXT} = 250 OUT 0 to 7 = OFF		11.2	13.5	mA
I _{DD(ON1)}	Supply ourrant (ON)	R _{EXT} = 980 OUT 0 to 7 = ON		4.5	5	IIIA
I _{DD(ON2)}	Supply current (ON)	R _{EXT} = 250 OUT 0 to 7 = ON		11.7	13.5	
Thermal	Thermal protection (1)			170		°C

Guaranteed by design (not tested)
 The thermal protection switches OFF only the outputs current

5 Switching characteristics

 V_{DD} = 5 V, T = 25 °C, unless otherwise specified.

Table 8. Switching characteristics

Symbol	Parameter	Test conditions			Min.	Тур.	Max.	Unit
t _{PLH1}	Propagation delay time, CLK-OUTn, LE\DM1 = H, OE\DM2 = L			$V_{DD} = 3.3 \text{ V}$ $V_{DD} = 5 \text{ V}$		36 19	46.8	ns
	Propagation delay time,			$V_{DD} = 3.3 \text{ V}$		38	49.4	
t _{PLH2}	LE\DM1 - OUTn, OE\DM2 = L			V _{DD} = 5 V		21	27.3	ns
	Propagation delay time,			V _{DD} = 3.3 V		42	54	
t _{PLH3}	OE\DM2-OUTn, LE\DM1 = H			V _{DD} = 5 V		23	30	ns
t _{PLH}	Propagation delay time,			V _{DD} = 3.3 V		22	28.6	ns
PLH	CLK-SDO			$V_{DD} = 5 V$		18	23.4	113
	Propagation delay time,	.,	$V_{DD} = 3.3 \text{ V}$ $V_{IH} = V_{DD}$ $V_{IL} = \text{GND}$ $C_L = 10 \text{pF}$	$V_{DD} = 3.3 \text{ V}$		9	11.7	
t _{PHL1}	$\frac{\text{CLK-OUTn}, \text{LE}\backslash\text{DM1} = \text{H},}{\text{OE}\backslash\text{DM2} = \text{L}}$			V _{DD} = 5 V		5	6.5	ns
	Propagation delay time,	$I_0 = 20 \text{ mA}$	_	V _{DD} = 3.3 V		4	5.2	
t _{PHL2}	LE\DM1 -OUTn, OE\DM2 = L	$R_{EXT} = 1 K\Omega$	$R_{\rm XT} = 1 \text{ K}\Omega$ $R_{\rm L} = 60 \Omega$	V _{DD} = 5 V		3	3.9	ns
	Propagation delay time,			V _{DD} = 3.3 V		6	7.8	
t _{PHL3}	OE\DM2-OUTn, LE\DM1 = H			V _{DD} = 5 V		3	3.9	ns
+	Propagation delay time,			V _{DD} = 3.3 V		25	32.5	nc
t _{PHL}	CLK-SDO			V _{DD} = 5 V		20	26	ns
	Output rise time			V _{DD} = 3.3 V		30	39	
t _{ON}	10~90% of voltage waveform			V _{DD} = 5 V		15	19.5	ns
_	Output fall time			V _{DD} = 3.3 V		7	9.1	
t _{OFF}	90~10% of voltage waveform			V _{DD} = 5 V		6	7.8	ns
t _r	CLK rise time (1)						5000	ns
t _f	CLK fall time (1)						5000	ns

^{1.} In order to achieve high cascade data transfer, please consider tr/tf timings carefully.

8/34 DocID13405 Rev 5

6 Equivalent circuit and outputs

Figure 3. OE/DM2 terminal

Figure 4. LE/DM1 terminal

Figure 5. CLK, SDI terminal

Figure 6. SDO terminal

Truth table and timing diagram 7

Truth table 7.1

Table 9. Truth table

Clock	LE/DM1	OE/DM2	SDI	OUT0 OUT0 OUT7	SDO
_ <u></u>	Н	L	Dn	Dn Dn -5 Dn -7	Dn -7
_ _ _	L	L	Dn + 1	No change	Dn -7
_ _ _	Н	L	Dn + 2	Dn +2 Dn -3 Dn -5	Dn -5
	Х	L	Dn + 3	Dn +2 Dn -3 Dn -5	Dn -5
_ _	Х	Н	Dn + 3	OFF	Dn -5

OUT0 to OUT7 = ON when Dn = H; OUT0 to OUT7 = OFF when Dn = L. Note:

7.2 **Timing diagram**

Figure 7. Timing diagram - normal mode

Figure 8. Clock, serial-in, serial-out

Figure 10. Outputs

8 Typical characteristics

Figure 11. Output current-R_{EXT} resistor

Table 10. Output current- R_{EXT} resistor

Output current (mA)	3	5	10	20	50	80	130
Rext (Ω)	6740	3930	1913	963	386	241	124

Note: Maximum output current capabilities setting was 130 mA applying a Rext = 124 Ω

Figure 12. I_{SET} vs drop out voltage (V_{DROP})

Table 11. I_{SET} vs drop out voltage (V_{DROP})

Vdd (V)	I set (mA)	Rext (Ω)	Vdrop min (mV)	Vdrop max (mV)	Vdrop AVG (mV)
	3	6470	30.6	31.2	30.93
	5	3930	46.5	52.9	48.63
	10	1910	80.9	100	82.26
3	20	963	150	161	157
	50	386	392	396	394.3
	80	241	636	646	640.3
	100	192	846	850	848
	3	6470	25.6	29	26.96
	5	3930	40.8	41.7	41.16
	10	1910	80.1	105	89.2
5	20	963	153	154	154
	50	386	379	386	382
	80	241	618	626	621
	100	192	825	830	827

Figure 13. Power dissipation vs temperature package

Note:

The exposed-pad should be soldered to the PBC to realize the thermal benefits.

STP08DP05 **Test circuit**

Test circuit 9

I_{DD} ↓ V_{DD} OUTO OE/DM2 $I_{\mathsf{IL}}, I_{\mathsf{IH}}$ CLK LE/DM1 OUT7 SDI SDO R-EXT GND I_{REF} ↓

Figure 14. DC characteristics

Figure 15. AC characteristics

CS19790

STP08DP05 Test circuit

Figure 16. Timing example for open and/or short detection

10 Detection mode functionality

10.1 Phase one: "entering in detection mode"

From the "normal mode" condition the device can switch to the "error mode" by a logic sequence on the OE/DM2 and LE/DM1 pins as showed in the following table and diagram:

Table 12. Entering in detection truth table

CLK	1°	2°	3°	4°	5°
OE/DM2	Н	L	Н	Н	Н
LE/DM1	L	L	L	Н	L

Figure 17. Entering in detection timing diagram

After these five CLK cycles the device goes into the "error detection mode" and at the 6th rise front of CLK the SDI data are ready for the sampling.

18/34 DocID13405 Rev 5

10.2 Phase two: "error detection"

The eight data bits must be set "1" in order to set ON all the outputs during the detection. The data are latched by LE/DM1 and after that the outputs are ready for the detection process. When the micro controller switches the OE/DM2 to LOW, the device drives the LEDs in order to analyze if an OPEN or SHORT condition has occurred.

Figure 18. Detection diagram

The LEDs status will be detected at least in 1 microsecond and after this time the microcontroller sets $\overline{OE\slash\hspace{-0.05cm}DM2}$ in HIGH state and the output data detection result will go to the microprocessor via SDO.

Detection mode and normal mode use both the same format data. As soon as all the detection data bits are available on the serial line, the device may go back to normal mode of operation. To re-detect the status the device must go back in normal mode and reentering in error detection mode.

10.3 Phase three: "resuming to normal mode"

The sequence for re-entering in normal mode is showed in the following table and diagram:

Table 13. Resuming to normal mode timing diagram

CLK	1°	2°	3°	4°	5°
OE/DM2	Н	L	Н	Н	Н
LE/DM1	L	L	L	L	L

Figure 19. Resuming to normal mode timing diagram

Note: For proper device operation the "entering in detection" sequence must be follow by a "resume mode" sequence, isn't possible to insert consecutive equal sequence.

10.4 Error detection conditions

 V_{DD} = 3.3 to 5 V temperature range 25 °C.

Table 14. Detection condition

SW-1 or SW-3b	Open line or output short to GND detected	==> I _{ODEC} ≤ 0.5 x I _O	No error detected	==> I _{ODEC} ≥ 0.5 x I _O
SW-2 or SW-3a	Short on LED or short to V-LED detected	==> V _O ≥ 2.5V	No error detected	==> V _O ≤ 2.2 V

Note:

Where: I_O = the output current programmed by the R_{EXT}, I_{ODEC} = the detected output current in detection mode.

Figure 20. Detection circuit

11 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark.

Table 15. DIP16 mechanical data

Dim.	mm			
Dilli.	Min.	Тур.	Max.	
a1	0.51			
В	0.77		1.65	
b		0.5		
b1		0.25		
D			20	
E		8.5		
е		2.54		
e3		17.78		
F			7.1	
I			5.1	
L		3.3		
Z			1.27	

22/34 DocID13405 Rev 5

Figure 21. DIP16 drawing

Table 16. HTSSOP16 exposed pad mechanical data

Dim.	(mm)			
Dilli.	Min.	Тур.	Max.	
А			1.20	
A1			0.15	
A2	0.80	1.00	1.05	
b	0.19		0.30	
С	0.09		0.20	
D	4.90	5.00	5.10	
D1	2.8	3	3.2	
E	6.20	6.40	6.60	
E1	4.30	4.40	4.50	
E2	2.8	3	3.2	
е		0.65		
L	0.45	0.60	0.75	
L1		1.00		
k	0.00		8.00	
aaa			0.10	

Figure 22. HTSSOP16 exposed pad drawing

Table 17. HTSSOP16 mechanical data

Dim	(mm)			
Dim.	Min.	Тур.	Max.	
A			1.20	
A1			0.15	
A2	0.80	1.00	1.05	
b	0.19		0.30	
С	0.09		0.20	
D	4.90	5.00	5.10	
D1	2.8	3	3.2	
E	6.20	6.40	6.60	
E1	4.30	4.40	4.50	
E2	2.8	3	3.2	
е		0.65		
L	0.45	0.60	0.75	
L1		1.00		
k	0.00		8.00	
aaa			0.10	

Figure 23. HTSSOP16 mechanical drawing

Table 18. SO16N dimensions

Dim.		mm				
	Min.	Тур.	Max.			
Α			1.75			
A1	0.10		0.25			
A2	1.25					
b	0.31		0.51			
С	0.17		0.25			
D	9.80	9.90	10.00			
Е	5.80	6.00	6.20			
E1	3.80	3.90	4.00			
е		1.27				
h	0.25		0.50			
L	0.40		1.27			
k	0		8°			
ccc			0.10			

С SEATING PLANE 0,25 mm GAGE PLANE С hx45° Ε Α2 Ε1 Α1 $\exists \vdash \infty$ Φ \bigcirc 0016020_F

Figure 24. Package drawing

Figure 25. Recommended footprint (dimensions are in mm)

577

12 Packaging mechanical data

Table 19. HTSSOP16 EP tape and reel mechanical data

Dim.	(mm)			
Dilli.	Min.	Тур.	Max.	
А			330	
С	12.8		13.2	
D	20.2			
N	60			
Т			22.4	
Ao	6.7		6.9	
Во	5.3		5.5	
Ко	1.6		1.8	
Po	3.9		4.1	
Р	7.9		8.1	

Figure 26. Tape and reel for HTSSOP16 EP

577

STP08DP05 Revision history

13 Revision history

Table 20. Document revision history

Date	Revision	Changes
3-Apr-2007	1	First release
21-May-2007	2	Updated Table 7 on page 7
08-Aug-2008	3	Updated Section 8: Typical characteristics on page 13 added Figure 12 and Figure 11 on page 14 updated Figure 13 on page 15
22-Oct-2009	4	Updated Note: on page 3
29-Jul-2013	5	Updated Section 11: Package mechanical data, Figure 3: OE/DM2 terminal and Figure 4: LE/DM1 terminal. Added Section 12: Packaging mechanical data.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT AUTHORIZED FOR USE IN WEAPONS. NOR ARE ST PRODUCTS DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2013 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

77

34/34 DocID13405 Rev 5