

高等数学

考研数学阶段总结1

作者: YGM

时间: 2023/6/20

版本: 1.0

目录

第一章	函数、极限、连续	1
第二章	一元函数微分学及其应用	2
第三章	一元函数积分学及其应用	3
第四章	空间解析几何	5
第五章	多元函数微分学及其应用	6
第六章	重积分及其应用	7
第七章	微分方程	8
第八章	无穷级数	9
第九章	曲线积分与曲面积分	10

第一章 函数、极限、连续

本章内容较为基础,由于精力有限,本章仅选两道题目作为本章内容

题目 1.1

证明: 设 f(x) 在 (a,b) 内连续, 且 $\lim_{x\to a^+} = -\infty$, $\lim_{x\to b^-} f(x) = -\infty$, 证明: f(x) 在 (a,b) 内有最大值

解 1.1

题目 1.2

证明: $\ln(n+1) \le \sum_{k=1}^{n} \frac{1}{k} \le 1 + \ln n$

解 1.2

令 $f(x) = \frac{1}{x}$, 由于 f(x) 是单调递减的函数,所以有

$$\int_{k}^{k+1} \frac{1}{x} dx \le \int_{k-1}^{k} \frac{1}{k} dx \le \int_{k-1}^{k} \frac{1}{x} dx$$

不等式左边k=1到k=n求和,右边由于k=1时是被积函数的瑕点,所以从k=2开始求和,于是就有

$$\sum_{k=1}^{n} \int_{k}^{k+1} \frac{1}{x} dx \le \sum_{k=1}^{n} \int_{k-1}^{k} \frac{1}{k} dx \le 1 + \sum_{k=2}^{n} \int_{k-1}^{k} \frac{1}{x} dx$$

合并可有

$$\int_{1}^{n+1} \frac{1}{x} dx \le \sum_{k=1}^{n} \frac{1}{k} \le 1 + \int_{1}^{n} \frac{1}{x} dx$$

即

$$\ln(n+1) \le \sum_{k=1}^{n} \frac{1}{k} \le 1 + \ln n$$

第二章 一元函数微分学及其应用

内容提要

□ 拐点

□ 拉格朗日中值定理

□ 曲率

□ 柯西中值定理

总结 2.1 (拐点)

曲线凹凸性变化的点,即二阶导为0且在该点左右函数值异号的点

总结 2.2 (曲率与曲率半径)

曲率
$$k = \frac{d\alpha}{ds}$$
,
$$\begin{cases} \tan \alpha = y' \Rightarrow \frac{d\alpha}{1+y'} = y'' \Rightarrow \frac{d\alpha}{dx} = \frac{y''}{1+y'^2} \\ \frac{ds}{dx} = \sqrt{1+y'^2} \end{cases}$$
, 故 $k = \left| \frac{d\alpha/dx}{ds/dx} \right| = \left| \frac{y''}{(1+y'^2)^{\frac{3}{2}}} \right|$, 若是参数方程

$$\begin{cases} x = u(t) \\ y = v(t) \end{cases}, 根据参数方程的求导法则可以得到 $k = \left| \frac{v''u' - v'u''}{(v'^2 + u'^2)^{\frac{3}{2}}} \right|,$ 曲率半径 $R = \frac{1}{k}$$$

题目 2.1 (拉格朗日中值定理)

设 f(x) 在 [a,b] 上连续, 在 (a,b) 内可导, 0 < a < b, 且 f(a) = 0, 证明 \exists 一点 $\xi \in (a,b)$, 使得 $af(\xi) + (\xi - b)f'(\xi) = 0$

解 2.1

构造 $h(x) = (x-b)^a f(x), h'(x) = a(x-b)^{a-1} f(x) + (x-b)^a f'(x)$, 易知 h(a) = 0, h(b) = 0, 故 日一点 $\xi \in (a,b)$ 使得 $h'(\xi) = 0$

$$a(\xi - b)^{a-1} f(\xi) + (\xi - b)^a f'(\xi) = 0$$

两边约分, 即 $af(\xi) + (\xi - b)f'(\xi) = 0$

题目 2.2 (柯西中值定理)

设 f(x) 在 [a,b] 上连续, 在 (a,b) 内可导, 0 < a < b, 证明: $\exists \xi, \eta \in (a,b)$, 使得 $2\eta f'(\xi) = (b+a)f'(\eta)$

解 2.2

设
$$g(x) = x^2$$
, 有 $\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f(b) - f(a)}{b^2 - a^2} = \frac{f'(\eta)}{2\eta} = \frac{(b - a)f'(\xi)}{b^2 - a^2}$, 整理即为结果

第三章 一元函数积分学及其应用

内容提要

□ 弧长

□ 柯西积分不等式

□ 定积分计算

□ 泰勒不等式

□ 旋转体体积和侧面积

总结 3.1 (弧长)

孫长: $ds = \sqrt{1 + y'^2} dx = \sqrt{\rho^2 + \rho'^2} d\theta = \sqrt{x'(t)^2 + y'(t)^2} dt$

面积 (极坐标): $dS = \frac{1}{2}\rho^2 d\theta$

总结 3.2 (定积分计算)

非常常用的两种计算技巧

$$\int_{a}^{b} f(x)dx = \frac{1}{2} \int_{a}^{b} f(x) + f(a+b-x)dx$$
 (3.1)

$$\int_{-a}^{a} f(x)dx = \frac{1}{2} \int_{0}^{a} f(x) + f(-x)dx$$
 (3.2)

总结 3.3 (旋转体体积和侧面积)

旋转曲线以y = f(x)为例

旋转体积 (绕 x 轴): $dV = \pi f^2(x) dx$

旋转体积 (绕 y 轴): $dV = \pi x^2 dy$

旋转侧面积 (绕 x 轴): $dS = 2\pi f(x)ds$

旋转侧面积 (绕 y 轴): $dS = 2\pi g(y)ds$

总结 3.4 (柯西积分不等式)

$$\left(\int_{a}^{b} f(x)dx \int_{a}^{b} g(x)dx\right)^{2} \le \int_{a}^{b} f^{2}(x)dx \int_{a}^{b} g^{2}(x)dx$$

证明:

$$(f(x)t + g(x))^2 \ge 0$$
 (3.3)

$$f^{2}(x)t^{2} + 2f(x)g(x)t + g^{2}(x) \ge 0$$
(3.4)

$$\left(\int_{a}^{b} f^{2}(x)dx\right)t^{2} + \left(\int_{a}^{b} 2f(x)g(x)dx\right)t + \int_{a}^{b} g^{2}(x)dx \ge 0$$
(3.5)

$$b^2 - 4ac \le 0 \tag{3.6}$$

$$\left(\int_{a}^{b} 2f(x)g(x)dx\right)^{2} - 4\int_{a}^{b} f^{2}(x)dx \int_{a}^{b} g^{2}(x)dx \le 0$$
(3.7)

$$\left(\int_{a}^{b} f(x)dx \int_{a}^{b} g(x)dx\right)^{2} \le \int_{a}^{b} f^{2}(x)dx \int_{a}^{b} g^{2}(x)dx \tag{3.8}$$

总结 3.5 (泰勒不等式)

这个不等式主要利用了曲线在某一段的凹凸性构建而成, 我们假设 f(x) 在某段(假设包含原点)是凸曲线, 那么有

$$f''(x) < 0 \tag{3.9}$$

$$f(x) = f(0) + f'(0)x + \frac{f''(\xi)x^2}{2}$$
(3.10)

$$f(x) < f(0) + f'(0)x \tag{3.11}$$

第四章 空间解析几何

内容提要

□ 空间曲面

□ 空间直线的距离

总结 4.1 (空间曲面)

1. 椭圆锥面:
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = z^2$$

2. 椭球面:
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

思 4.1 (空间曲面)

1. 椭圆锥面:
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = z^2$$

2. 椭球面: $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$

3. 单叶双曲面: $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$

4. 双叶双曲面: $\frac{x^2}{a^2} - \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$

5. 椭圆抛物面: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = z$

4. 双叶双曲面:
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$$

5. 椭圆抛物面:
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = z$$

6. 双曲抛物面 (马鞍面):
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = z$$

总结 4.2 (空间直线的距离)

求直线 A 与直线 B 之间的距离,应先求过直线 B 且与直线 A 平行的平面,转化为线面距离

第五章 多元函数微分学及其应用

- 1. 切向量与法平面
- 2. 法向量与切平面
- 3. 多元函数极值点求法($AC B^2$)
- 4. 拉格朗日乘数法 (解决条件极值)
- 5. 全微分是否存在: $\Delta z = A\Delta x + B\Delta y + o(\rho) \left(\rho = \sqrt{\Delta^2 x + \Delta^2 y} \right)$

第六章 重积分及其应用

- 1. 重积分的计算经常利用积分区域的对称性
- 2. 面面所围的体积,适当的情况下可以转化到二重积分上去 3. 质心坐标: $\bar{x} = \frac{\iint x f(x,y) dx dy}{\iint f(x,y) dx dy}$, $\bar{y} = \frac{\iint y f(x,y) dx dy}{\iint f(x,y) dx dy}$

第七章 微分方程

内容提要

□ 伯努利方程

□ 欧拉方程

总结 7.1 (伯努利方程)

形如 $y'+p(x)y=q(x)y^n$,令 $u=y^{1-n}$,可以化为 $\frac{u'}{1-n}+p(x)u=q(x)$,即将伯努利方程转化为一阶微分方程

总结 7.2 (欧拉方程)

形如 $x^2y+pxy'+qy=f(x)$,令 $x=e^t$,使用微分算子的表达形式为 $D^2Y+(p-1)DY+qY=f(e^t)$,即将 欧拉方程化为常系数微分方程

第八章 无穷级数

内容提要

□ 级数判定

□ 傅里叶级数

□ 函数项级数

总结 8.1 (级数判定)

正向级数:比较审敛法,比值审敛法,极限审敛法

交错级数: 莱布尼茨判定法

总结 8.2 (函数项级数)

$$\frac{1}{1-x}=1+x+x^2+\cdots+x^n$$
 ($|x|<1$),表达式很好看,也是个人认为最重要的一个展开

总结 8.3 (傅里叶级数)

$$f(x) = \frac{a_0}{2} + \sum_{i=1} n a_i \cos \frac{n\pi x}{l} + b_i \sin \frac{n\pi x}{l}, \quad \sharp + \begin{cases} a_i = \frac{1}{l} \int_{-l}^{l} f(x) \cos \frac{n\pi x}{l} dx \\ b_i = \frac{1}{l} \int_{-l}^{l} f(x) \sin \frac{n\pi x}{l} dx \end{cases}$$

第九章 曲线积分与曲面积分

- 1. 一二类曲线积分的转化: $\int_L f(x,y)ds = \int_L P\cos\alpha + Q\sin\beta ds$
- 2. 格林公式使用时注意曲线所围内部是否有奇点
- 3. 第一类曲面积分 $\iint f(x,y,z)dS = \iint f(x,y,z(x,y))\sqrt{1+z_x^2+z_y^2}dxdy$ 4. 第二类曲面积分可利用高斯公式转化为三重积分