Nome: Matricola:	
Matematica Discreta	
$Esame\ del\ 25\text{-}07\text{-}2011$	
Esercizio 1. Sia $F: \mathbb{R}^3 \to \mathbb{R}^3$ l'applicazione lineare, e la base naturale e b la base $(\vec{v}_1, \vec{v}_2, \vec{v}_3)$ dove F	(6 pt)
è data dalla matrice $[F]_e^e = \begin{pmatrix} 2 & -2 & 1 \\ -1 & 2 & -1 \\ -6 & 8 & -4 \end{pmatrix}$ e $\vec{v}_1 = \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}$, $\vec{v}_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$, $\vec{v}_3 = \begin{pmatrix} 3 \\ 1 \\ -3 \end{pmatrix}$.	
Trovare le matrici di cambiamento di base $[I]_e^b$ e $[I]_b^e$ e calcolare $[F]_b^b$.	
Esercizio 2. Calcolare la distanza tra il punto $A = (1, 1, 1)$ e la retta passante per i punti $B = (3, -3, 1)$ e $C = (-3, 1)$	(2 pt) $(1,3).$
Esercizio 3. Risolvere in \mathbb{Z} il sistema dato da $\begin{cases} x \equiv 111 \pmod{44} \\ 30x \equiv 17 \pmod{47} \\ x \equiv -222 \pmod{51} \end{cases}$	(5 pt)
Esercizio 4. Consideriamo la ricorrenza $a_n = -10a_{n-1} - 25a_{n-2} + 6n + 2$, per $n \ge 2$. a.) Dimostrare che $a_n = \frac{1}{6}n + \frac{1}{3}$, $n \ge 0$, è una soluzione della ricorrenza. b.) Trovare tutte le soluzioni della ricorrenza. c.) Trovare la soluzione con $a_0 = \frac{1}{2}$ e $a_1 = -2$, e calcolare a_0 , a_1 , a_2 e a_3 usando la ricorrenza e la rispo	(5 pt)
 Esercizio 5. Quanti bit string di lunghezza 42 ci sono tale che a.) il bit string ha al massimo trentasei 0 e al massimo nove 1, oltre si deve avere che il bit string corrispondente alle prime sette posizione contiene almeno sei 0 e il bit string corrispondente alle ultimi quattordici posizioni contiene esattamente sei 1. b.) il bit string corrispondente alle prime undici posizioni ha esattamente otto 0 e il bit string corrispondente alle ultime venticinque posizioni non contiene lo string 1100110 come sotto-string. 	(4 pt)
Esercizio 6. Sia (\vec{e}_1, \vec{e}_2) la base naturale di \mathbb{R}^2 . Sia $T : \mathbb{R}^2 \to \mathbb{R}^2$ la riflessione rispetto alla retta $x + 4y = 0$ e sia $S : \mathbb{R}^2 \to \mathbb{R}^2$ l'applicazione lineare definita tramite $S(\vec{e}_1 + \vec{e}_2) = \vec{e}_1 - 2\vec{e}_2$, $S(\vec{e}_1 - \vec{e}_2) = \vec{e}_1 + 2\vec{e}_2$. Stabilire se $S^{-1} \circ T \circ S$ è una riflessione o no. In caso di si trovare l'equazione parametrica della retta.	(2 pt)
 Esercizio 7. a.) Quanti x ∈ ZZ con 1020204040606 ≤ x ≤ 929292929292929 si può fare usando le cifre di 911223000000 tale che x è divisibile per 11 e contiene 02 come sotto espressione. b.) Quante soluzioni ci sono dell'equazione x₁ + x₂ + x₃ + x₄ + x₅ + x₆ + x₇ = 1000, dove x₁,, x₇ ∈ x₁,, x₇ ≥ 0, con x₁ ≥ 10, x₂ ≥ 23, 30 ≤ x₃ ≤ 300, 20 ≤ x₅ ≤ 200, x₂ + x₄ + x₆ = 400 e x₂ ≠ 3x₆ 	Z Z e
Esercizio 8.	(2 pt)
Il numero (111111222222000000111111222222000000222222	
8.2. Un normale del piano passante per i punti $(1,0,0)$, $(2,3,0)$ e $(1,4,6)$ è (a) $\begin{pmatrix} -9\\3\\-2 \end{pmatrix}$ (b) $\begin{pmatrix} -9\\3\\2 \end{pmatrix}$ (c) $\begin{pmatrix} -9\\-3\\2 \end{pmatrix}$ (d) $\begin{pmatrix} -9\\-3\\-2 \end{pmatrix}$	

Per gli esercizi 1, 2, 3, 4, 5 ,6 e 7 le risposte devono essere giustificate. Per l'esercizio 8, dove ogni parte vale 1 punto, basta solo rispondere. Ogni scorrettezza durante la prova comporterà l'immediato annullamento della prova e altre sanzioni in accordo con la presidenza del corso di Laurea.