Machine Learning, 2021 Spring Homework 2 and Solution

Due on 23:59 MAR 28, 2021

Problem 1

Prove that $f: \mathbb{R}^n \to \mathbb{R}$ is affine if and only if f is both convex and concave. [2pts]

Solution 1

 \Rightarrow : If f is affine, then it has form $f(x) = \mathbf{w}^T x + b$. $\forall x, y \in \mathbb{R}^n, \forall \theta \in [0, 1]$

$$f(\theta \boldsymbol{x} + (1 - \theta)\boldsymbol{y}) = \boldsymbol{w}^{T}(\theta \boldsymbol{x} + (1 - \theta)\boldsymbol{y}) + b$$
(1)

$$= \theta \left(\boldsymbol{w}^T \boldsymbol{x} + b \right) + (1 - \theta) \left(\boldsymbol{w}^T \boldsymbol{y} + b \right) \tag{2}$$

$$= \theta f(\mathbf{x}) + (1 - \theta)f(\mathbf{y}) \tag{3}$$

the equality means both the convexity and concavity.

 \Leftarrow : If f is both convex and concave, according to the definition, we have $\forall x, y \in \mathbb{R}^n, \forall \theta \in [0, 1]$

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y) \le f(\theta x + (1 - \theta)y)$$
(4)

where the first inequality is from the convexity, the second inequality is from the concavity. Thus we have

$$f(\theta x + (1 - \theta)y) = \theta f(x) + (1 - \theta)f(y)$$
(5)

let y = 0, we have

$$f(\theta \mathbf{x}) = \theta f(\mathbf{x}) \tag{6}$$

let $\theta = \frac{1}{2}$, we have

$$f\left(\frac{\boldsymbol{x}+\boldsymbol{y}}{2}\right) = \frac{1}{2}f(\boldsymbol{x}+\boldsymbol{y}) = \frac{1}{2}f(\boldsymbol{x}) + \frac{1}{2}f(\boldsymbol{y}) \Rightarrow f(\boldsymbol{x}+\boldsymbol{y}) = f(\boldsymbol{x}) + f(\boldsymbol{y})$$
(7)

where the first equation is from (6). Function satisfies (6) and (7) is a linear function, which has the form : $f(x) = w^T x$, thus is affine.

Problem 2

Suppose A and B are both convex sets, prove that $C = A \cap B$ is also convex. [1pts]

^aFurther details are omitted, see definition of linear function.

Solution 2

 $C \subseteq A$ means that $\forall x, y \in C$, $x, y \in A$, similarly, $x, y \in B$. Thus, $\forall \theta \in [0, 1]$, by the convexity of A and B, we have:

$$\begin{cases}
\theta x + (1 - \theta)y \in A \\
\theta x + (1 - \theta)y \in B
\end{cases} \Rightarrow \theta x + (1 - \theta)y \in A \cap B = C$$
(8)

which implies that C is also convex.

Problem 3

Suppose your algorithm for solving the problem:

$$\min_{\boldsymbol{x} \in \mathbb{R}^n} f(\boldsymbol{x}) \tag{9}$$

takes iteration:

$$\boldsymbol{x}^{k+1} = \boldsymbol{x}^k + \alpha_k \boldsymbol{p}^k \tag{10}$$

where $p^k = H^k \nabla f(x^k)$. What kind of H^k can guarantee that p^k is a descent direction? [2pts]

Solution 3

 p^k is a descent direction if and only if $\langle p^k, \nabla f(x^k) \rangle < 0$, which is equivalent to

$$\langle \boldsymbol{H}^k \nabla f(\boldsymbol{x}^k), \nabla f(\boldsymbol{x}^k) \rangle = \nabla f(\boldsymbol{x}^k)^T \boldsymbol{H}^k \nabla f(\boldsymbol{x}^k) < 0$$
 (11)

thus when \mathbf{H}^k is **negative definite**, \mathbf{p}^k is a descent direction.

Problem 4

Suppose $f: \mathbb{R}^n \to \mathbb{R}$ is differentiable. For a given $x \in \mathbb{R}^n$, show that moving along $-\nabla f(x) \neq 0$ with sufficiently small stepsize causes decrease on f, that is,

$$f(x - \alpha \nabla f(x)) < f(x) \tag{12}$$

for sufficiently small $\alpha > 0$. [2pts]

Solution 4

By Taylor Theorem, we have

$$f(\boldsymbol{x} - \alpha \nabla f(\boldsymbol{x})) = f(\boldsymbol{x}) - \alpha \|\nabla f(\boldsymbol{x})\|_{2}^{2} + o(\alpha)$$
(13)

where $o(\alpha)$ is the residual term such that $\lim_{\alpha\to 0} \frac{o(\alpha)}{\alpha} = 0$. Thus for sufficiently small α ,

$$o(\alpha) < \frac{1}{2}\alpha \|\nabla f(\boldsymbol{x})\|_2^2 \tag{14}$$

which means that

$$f(\boldsymbol{x} - \alpha \nabla f(\boldsymbol{x})) < f(\boldsymbol{x}) \tag{15}$$

Problem 5

Use gradient descent to solve the *underdetermined* linear system:

$$\min_{\boldsymbol{x} \in \mathbb{R}^n} \frac{1}{2} \|\boldsymbol{A}\boldsymbol{x} - \boldsymbol{b}\|_2^2 \tag{16}$$

with stepsize chosen as exact line search, initial point $x^0 = 0$ and maximum iteration 1000. Plot:

- 1. The objective value against the iteration. (Use \log scale for y-axis)
- 2. The ℓ_2 norm of gradient against the iteration.(Use log scale for y-axis)
- 3. The stepsize against the iteration.

The data $A \in \mathbb{R}^{500 \times 1000}$, $b \in \mathbb{R}^{500 \times 1}$ is attached in <u>data/A.csv</u> and <u>data/b.csv</u> with comma-separated (delimiter=','). [*Hint:* what is the solution to the exact line search for quadratic function?][3pts]

Solution 5

Let $f(x) = \frac{1}{2} ||Ax - b||_2^2$, we first derive the solution of exact line search for least square problem:

$$\alpha_k = \arg\min_{\alpha > 0} f(\boldsymbol{x}^k - \alpha \nabla f(\boldsymbol{x}^k)) \tag{17}$$

$$= \arg\min_{\alpha>0} \left[\|\boldsymbol{A}\nabla f(\boldsymbol{x}^k)\|_2^2 \alpha^2 - 2\|\nabla f(\boldsymbol{x}^k)\|_2^2 \alpha + f(\boldsymbol{x}^k) \right]$$
(18)

$$= \frac{\|\nabla f(\mathbf{x}^k)\|_2^2}{\|\mathbf{A}\nabla f(\mathbf{x}^k)\|_2^2}$$
(19)

The pesudo code for solving the LS problem is given in Algorithm [1]. The results are shown as follows:

Algorithm 1: Steepest Descent for Least Square problem

Input: $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, maximum iterations M > 0;

Initialization: $x^0 = \mathbf{0}_{n \times 1}$;

- ${\bf 1} \ \ {\bf for} \ k=0,2,\ldots,M-1 \ {\bf do}$
- 2 Gradient: $\nabla f(\mathbf{x}^k) = \mathbf{A}^T (\mathbf{A}\mathbf{x}^k \mathbf{b});$
- 3 Exact line search:

$$\alpha_k = \frac{\|\nabla f(\boldsymbol{x}^k)\|_2^2}{\|\boldsymbol{A}\nabla f(\boldsymbol{x}^k)\|_2^2}$$

4 Update the current point:

$$\boldsymbol{x}^{k+1} = \boldsymbol{x}^k - \alpha \nabla f(\boldsymbol{x}^k)$$

- 5 end
- 6 return x^M .

