EXP NO: 8

Implement SVM/Decision Tree Classification Techniques

Install and load the e1071 package (if not already installed) install.packages("e1071") library(e1071)

Load the iris dataset

data(iris)

a) SVM

Inspect the first few rows of the dataset

head(iris)

Split the data into training (70%) and testing (30%) sets
set.seed(123) # For reproducibility

sample indices <- sample(1:nrow(iris), 0.7 * nrow(iris))</pre>

train_data <- iris[sample_indices,]

test_data <- iris[-sample_indices,]

Fit the SVM model

svm_model <- svm(Species ~ ., data = train_data, kernel = "radial")</pre>

Print the summary of the model

summary(svm model)

Predict the test set

predictions <- predict(svm_model, newdata = test_data)</pre>

Evaluate the model's performance

confusion_matrix <- table(Predicted = predictions, Actual =</pre>

test_data\$Species)

print(confusion_matrix)

Calculate accuracy

accuracy <- sum(diag(confusion_matrix)) / sum(confusion_matrix)</pre>

cat("Accuracy:", accuracy * 100, "%\n")

Output:

```
# Fig. 1 | Wew Micc Pethages Windows | Help

## Commons

## Common
```

b) Decision Tree

```
# Install and load the rpart package (if not already installed)
install.packages("rpart")
library(rpart)
# Load the iris dataset
data(iris)
# Split the data into training (70%) and testing (30%) sets
set.seed(123) # For reproducibility
sample_indices <- sample(1:nrow(iris), 0.7 * nrow(iris))</pre>
train_data <- iris[sample_indices, ]</pre>
test data <- iris[-sample indices, ]
# Fit the Decision Tree model
tree_model <- rpart(Species ~ ., data = train_data, method = "class")</pre>
# Print the summary of the model
summary(tree_model)
# Plot the Decision Tree
plot(tree_model)
text(tree_model, pretty = 0)
# Predict the test set
predictions <- predict(tree_model, newdata = test_data, type = "class")</pre>
# Evaluate the model's performance
confusion_matrix <- table(Predicted = predictions, Actual =</pre>
test_data$Species)
print(confusion_matrix)
# Calculate accuracy
accuracy <- sum(diag(confusion_matrix)) / sum(confusion_matrix)</pre>
cat("Accuracy:", accuracy * 100, "%\n")
```

Output:

