

CS 412 Intro. to Data Mining

Chapter 8. Classification: Basic Concepts

Jiawei Han, Computer Science, Univ. Illinois at Urbana-Champaign, 2017

Chapter 8. Classification: Basic Concepts

- Classification: Basic Concepts
- Decision Tree Induction
- Bayes Classification Methods
- Linear Classifier
- Model Evaluation and Selection
- Techniques to Improve Classification Accuracy: Ensemble Methods
- Additional Concepts on Classification
- Summary

Supervised vs. Unsupervised Learning (1)

- Supervised learning (classification)
- Supervision: The training data such as observations or measurements are accompanied by labels indicating the classes which they belong to
- New data is classified based on the models built from the training set

labe	1.			
				buys compute
age	income	student	credit_rating	buya_compand
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

Supervised vs. Unsupervised Learning (2)

• Unsupervised learning (clustering)

• The class labels of training data are unknown

Given a set of observations or measurements, establish the possible existence of

classes or clusters in the data

Prediction Problems: Classification vs. Numeric Prediction

- Classification
 - Predict categorical class labels (discrete or nominal)
 - Construct a model based on the training set and the **class labels** (the values in a classifying attribute) and use it in classifying new data
- Numeric prediction
 - Model continuous-valued functions (i.e., predict unknown or missing values)
- Typical applications of classification
 - Credit/loan approval
 - Medical diagnosis: if a tumor is cancerous or benign
 - Fraud detection: if a transaction is fraudulent
 - Web page categorization: which category it is

Classification—Model Construction, Validation and **Testing** สร้าง model - วัดผล พ่ากหลายอบ เก๋า หา ไปใช้งาน Model construction

- Each sample is assumed to belong to a predefined class (shown by the **class label**)
- The set of samples used for model construction is **training set**
- Model: Represented as decision trees, rules, mathematical formulas, or other forms
- **Model Validation and Testing:**
 - **Test:** Estimate accuracy of the model
 - The known label of test sample is compared with the classified result from the model
 - Accuracy: % of test set samples that are correctly classified by the model
 - Test set is independent of training set
 - **Validation**: If the test set is used to select or refine models, it is called **validation** (or development) (test) set
- **Model Deployment:** If the accuracy is acceptable, use the model to classify new data

Chapter 8. Classification: Basic Concepts

- Classification: Basic Concepts
- Decision Tree Induction
- Bayes Classification Methods
- Linear Classifier
- Model Evaluation and Selection
- Techniques to Improve Classification Accuracy: Ensemble Methods
- Additional Concepts on Classification
- Summary

Decision Tree Induction: An Example

A top-down, recursive, divide-andconquer process

Buy

Not-buy

Training data set: Who buys computer?

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

Note: The data set is adapted from "Playing Tennis" example of R. Quinlan

Not-buy \

- 17 M • สร่างจาก root ก่อนด้วยมาใน
- . มี Data 2 ช่วน >x, y

 · เอา Data 5 ตัวมาแบ่ง root node (ตัวที่แบ่งใต้ดีที่สุด)

From Entropy to Info Gain: A Brief Review of Entropy

- Entropy (Information Theory)
 - A measure of uncertainty associated with a random number
- Calculation: For a discrete random variable Y taking m distinct values {y1, y2, ...,

$$H(Y) = -\sum_{i=1}^{m} p_i \log(p_i)$$
 where $p_i = P(Y = y_i)$

- Interpretation
 - Higher entropy → higher uncertainty
 - Lower entropy → lower uncertainty
- ${}^{\mathbf{C}}H(Y|X) = \sum p(x)H(Y|X=x)$

Information Gain: An Attribute Selection Measure

- Select the attribute with the highest information gain (used in typical decision tree induction algorithm: ID3/C4.5)
- Let pi be the probability that an arbitrary tuple in D belongs to class Ci, estimated by |Ci, D|/|D|
- Expected information (entropy) needed to classify a tuple in D:

$$Info(D) = -\sum_{i=1}^{m} p_i^{pop} \log_2(p_i) \frac{1}{1 + fo(0)}$$
 and the surface in the surface of the surface of

• Information needed (after using A to split D into v partitions) to classify D:

$$Info_A(D) = \sum_{j=1}^{N} \frac{|D_j|}{|D|} \times Info(D_j)$$
 mwwmanum mark

• Information gained by branching on attribute A

$$Gain(A) = Info(D) - Info_{A}(D)$$

 $I(h_1h_2C) = \frac{\frac{h}{5}\log h}{h} - \frac{\frac{h}{5}\log \frac{h}{5}}{h} - \frac{\frac{c}{5}\log \frac{b}{5}}{C} \cdot \frac{\frac{c}{5}\log \frac{c}{5}}{C} \cdot \frac{\text{manavery noise}}{\text{manavery noise}}$

Example: Attribute Selection with Information Gain

- Class P: buys computer = "yes"
- Class N: buys computer = "no",

Info(D) =
$$I(9,5) = \frac{9}{14} \log_2(\frac{9}{14}) - \frac{5}{14} \log_2(\frac{5}{14})$$

age $p_i \quad n_i \quad I(p_i, n_i)$

=30 2 3 0.971
31...40 4 0 0

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes

excellent

0.971

no

$$Info_{age}(D) = \frac{5}{14} \frac{\zeta = 30}{I(2,3)} + \frac{4}{14} \frac{3^{1-A0}}{I(4,0)} + \frac{5}{14} \frac{I(3,2)}{I(4,0)} = 0.694$$

 $\frac{5}{14}I(2,3)$ means "age <=30" has 5 out of 14 samples, with 2 yes'es and 3 no's.

Hence

$$Gain(age) = Info(D) - Info_{age}(D) = 0.246$$

Similarly, we can get

$$Gain(income) = 0.029$$

$$Gain(student) = 0.151$$

$$Gain(credit_rating) = 0.048$$

(#>

>40

medium

Info(p) = I($q_1 \bar{p}$) = $-\frac{q}{14} |0g_2 \frac{q}{14} - \frac{\bar{p}}{44} |0g_2 \frac{\bar{p}}{44} = 0.940$

Gaim(age)

age	Pi	n;	(Pi,ni)
4 = 30	2	3	0.971
31-40	4	0	0
740	3	2	0.991

Info _{age} (p) = $\frac{5}{14}I(2,3) + \frac{4}{14}I(4,0) + \frac{5}{14}I(3,2)$ = 0.694
Grain(age) = 0.940- 0.694
= 0.346

Gain (income)

Income	Pi	ni	(Pi ,ni)	Infomeone(p) = 4 I (2,2)+6 I (4,2)+4 I (3,1
high	2	1	1	= 1.472)+6 1(472)+41(371
high medium	4	1	0.918	Grain(incone) = 0.940- 0.911
low	3	1	0.811	= 0.029

Gam (student)

Student	Pi	•ni	(Pi,ni)
yes	6	1	0.992
110	3	4	0. 985

Infostudent(0) = 7 I(6,1) + 7 I(3,4) = 0.759

Grain(student) = 0.940 - 0.769 = 0.151

Gain (credit_rating)

credit_rating	Pi	ni	l(Pi,ni
fair	6	2	0-8111
excellent	3	3	1

Into credit_rating $(p) = \frac{7}{14}I(e_2 t) + \frac{7}{14}I(e_3 t) + \frac{7}{$

199 2 = 30

Info (0) =
$$I(x, y) = 0.971$$

Info income (0) not age(<=30)

Income	Pi	'ni	(Pi ,ni)
high	0	2	0
medium	1	1	1
low	1	0	0

$$\begin{split} & \text{Info}_{\text{bream}}(0) \text{ not aga}(<= 30) = \frac{1}{9} \, \frac{1}{3} \, (0,2) + \frac{1}{9} \, \frac{1}{3} \, (0,1) + \frac{1}{9} \, \frac{1}{3} \, (0,1) \\ & = 0.4 \\ & \text{Graim}(\text{income}) \text{ not aga}(<= 30) = 0.471 - 0.4 \end{split}$$

= 0.571

Introducent (0)

Introducent (0)

Introducent (0) novage (c= 50) =
$$\frac{1}{5}$$
 I (0,0) + $\frac{1}{5}$ I (0,1) + $\frac{3}{5}$ I (0,3)

All yes + yes (by_computer) \rightarrow The No \rightarrow No \rightarrow

Income	Pi	n i	l(Pi,n
low	1	1	1
medium	2	1	0.91

Info income (1) you ago (740) = = [(1,1)+_ [(2,1) Grain(income) 100 840 (740) = 0.471-0.951 = 0.020

Infostudent vos age (740)

Pi	n;	$ (P_i, n_i) $
2	1	0.916
1	1	1
	2	2 1

 $Info_{student}(p)$ rowage (> 40) = $\frac{1}{2}I(2,1) + \frac{1}{2}I(1,1) = 0.991$ Grain(student) 103 ago(740) = 0.471-0.951 = 0.020 Info credit-rating (D) vos age (>40)

Informedit_rating (D) vos age (>40) = 3 [(3,0) + 2 [(0,2)

excellent -No 122

