Assignment 4

Deadline: 1st February, 11:59pm

Instructions:

- 1) This assignment consists of 3 problems. All problems are compulsory.
- 2) Mention all assumptions while answering the questions.
- 3) Be clear in your arguments. Vague arguments shall not be given full credit.
- 4) Only Handwritten Submissions are allowed. Scan and upload it on moodle.

Problems:

- 1. On \mathbb{R}^n , define two properties: $\overline{\alpha} \oplus \overline{\beta} = \overline{\alpha} \overline{\beta}$ and $c\overline{\alpha} = -c\overline{\alpha}$. Which of the axioms for the vector space are satisfied by $(\mathbb{R}^n, \oplus, \cdot)$?
- 2. Let V be the set of all complex-valued functions f on the real line such that $\forall t \in R$, $f(-t) = f((t))^* = f^*(t)$, where $f^*(t)$ denotes the complex conjugation of f(t).
 - (a) Show that V with operations (f+g)(t)=f(t)+g(t) and (cf)(t)=cf(t) is a vector space over the field R.
 - (b) Give an example of a function f_n in V which is not real-valued.
- 3. Prove the following theorem:

A non-empty subset W of vector space V is a subspace of V if and only if, for each pair of vectors $\overline{\alpha}, \beta \in W$ and each scalar $c \in F$, the vector $c\overline{\alpha} + \beta \in W$.