A Universal Turing Machine

Turing Machines are "hardwired" they execute

A limitation of Turing Machines:

Real Computers are re-programmable

only one program

Solution: Universal Turing Machine	Universal Turing Machine simulates any other Turing Machine M
Attributes: • Reprogrammable machine • Simulates any other Turing Machine	Input of Universal Turing Machine: Description of transitions of M Initial tape contents of M

Transition Encoding

Transition:
$$\delta(q_1, a) = (q_2, b, L)$$

separator

Transitions:

Machine Encoding

Tape 1 contents of Universal Turing Machine: encoding of the simulated machine Mas a binary string of 0's and 1's

with a binary string of 0's and 1's

Therefore:

A Turing Machine is described

each string of the language is the binary encoding of a Turing Machine

The set of Turing machines forms a language:

Language of Turing Machines

```
L = { 010100101, (Turing Machine 1) 00100100101111, (Turing Machine 2) 111010011110010101, .....
```

Countable Sets

Infinite sets are either:	Countable	(
	or	
	Uncountable	

Countable set: Any finite set

or

and

Any Countably infinite set:

There is a one to one correspondence between

elements of the set Natural numbers

Example: The set of rational numbers Example: The set of even integers is countable is countable 0, 2, 4, 6, ... Even integers: Rational numbers: $\frac{1}{2}$, $\frac{3}{4}$, $\frac{7}{8}$, ... Correspondence: 1, 2, 3, 4, ... Positive integers:

2n corresponds to n+1

.

We proved:
the set of rational numbers is countable by describing an enumeration procedure

An enumeration procedure for S is a Turing Machine that generates all strings of S one by one and

Each string is generated in finite time

Definition

Let S be a set of strings

Strings
$$s_1, s_2, s_3, \ldots \in S$$

Enumeration Machine

Configuration

Time 0

Q
Q
Q
Time t_1

Finite time: t_1, t_2, t_3, \ldots

Finite time: t_1, t_2, t_3, \ldots

 $x_3 | \# | s_3$

 q_{s}

Time t_3

If for enume

Observation:

If for a set there is an enumeration procedure, then the set is countable

Naive procedure: Example: Produce the strings in lexicographic order: The set of all strings $\{a,b,c\}^+$ is countable а aa aaa aaaa Proof: Doesn't work: We will describe an enumeration procedure strings starting with bwill never be produced

Theorem: The set of all Turing Machines is countable

Proof: Any Turing Machine can be encoded with a binary string of 0's and 1's

Find an enumeration procedure for the set of Turing Machine strings

Repeat

1. Generate the next binary string of 0's and 1's in proper order

Enumeration Procedure:

Check if the string describes a
 Turing Machine
 if YES: print string on output tape
 if NO: ignore string

Definition: A set is uncountable if it is not countable

Uncountable Sets

Theorem:

Let S be an infinite countable set

The powerset 2^S of S is uncountable

Proof:

Since S is countable, we can write

$$S = \{s_1, s_2, s_3, ...\}$$
Elements of S

The new element must be some t_i of the powerset However, that's impossible: from definition of t_i the i-th bit of t_i must be the complement of itself

ContradictionIII

The powerset 2^S of S is uncountable

Since we have a contradiction:

An Application: Languages Example Alphabet : $\{a,b\}$

The set of all Strings:

$$S = \{a,b\}^* = \{\lambda,a,b,aa,ab,ba,bb,aaa,aab,...\}$$
 $S = \{a,b\}^* = \{\lambda,a,b,aa,ab,ba,bb,aaa,aab,...\}$

infinite and countable

$$S = \left\{a, b\right\}^* = \left\{a, b\right\}$$

Example Alphabet : $\{a,b\}$ The set of all Strings:

A language is a subset of
$$S$$
:
$$L = \{aa, ab, aab\}$$

Conclusion:

There are some languages not accepted by Turing Machines

(These languages cannot be described by algorithms)

Languages not accepted by Turing Machines

