

Final Project

Data Science Course

Our Team

Contents

Data Understanding

Dataset

Source (kaggle):
https://www.kaggle.com/
datasets/imsparsh/churnrisk-rate-hackerearth-ml

Dataset Churn Risk Rate ini kami dapatkan dari website kaggle, merupakan dataset yang di unggah oleh akun Sparsh Gupta. Dataset Churn Risk Rate ini merupakan dataset milik perusahaan HackerEarth yang bergerak dalam bidang tech dari India yang berkantor di Amerika, perusahaan tersebut menyediakan jasa untuk developing proyek perangkat lunak atau solusi teknologi menggunakan machine learning.

Dataset

Latar Belakang:

Dataset Churn Risk ini adalah data behaviour dari masing-masing customer yang churn/tidak churn dalam penggunaan akses pada sebuah website milik hackerearth, yang direpresentasikan dalam bentuk rate (-1 s/d 5). Semakin besar nilai rate churn maka semakinn besar kemungkinan customer tersebut akan meninggalkan menggunakan layanan akses website tersebut.

Dari dataset tersebut dapat dibuat sebuah model prediksi menggunakan machine learning untuk mengetahui customer mana yang akan tetap setia/ meninggalkan penggunaan layanan website tersebut

Tujuan Project:

Membuat model prediksi machine learning yang paling efektif untuk mengetahui apakah customer akan churn/no churn berdasarkan data behaviour customer dalam melakukan akses website milik hackerearth.

Business Understand

Apa itu web HackerEarth?

HackerEarth adalah perusahaan perangkat lunak India yang berkantor pusat di San Francisco, AS, yang menyediakan perangkat lunak perusahaan yang membantu organisasi dalam technical hiring. HackerEarth digunakan oleh organisasi untuk penilaian keterampilan teknis dan wawancara video jarak jauh. Selain itu HackerEarth juga menyediakan assesment bagi para developers untuk melatih skill dalam bidang pemrograman, karena perusahaan client mempekerjakan developers lebih cepat dengan HackerEarth Assessments.

Dataset Overview

Nama kolom	Deskripsi	Tipe Data
customer id	nomer identitas customer	Kategorikal
age	umur	Numerik
gender	jenis kelamin	Kategorikal
region category	Mewakili wilayah tempat seorang pelanggan berasal.	Kategorikal
membership category	kategori membership yang customer gunakan	Kategorikal
joined through referral	Mewakili apakah seorang pelanggan bergabung menggunakan kode atau ID referral apa pun.	Kategorikal
avg time spent	rata-rata waktu yang dihabiskan customer ketika mengakses website	Numerikal
avg transaction value	rata-rata nilai transaksi yang dilakukan oleh customer	Numerikal
avg frequency login days	Mewakili jumlah kali seorang pelanggan telah masuk ke situs web.	Numerikal
points in wallet	Mewakili jumlah poin yang diberikan kepada seorang pelanggan setiap kali transaksi dilakukan.	Numerikal
used special discount	Mewakili apakah seorang pelanggan menggunakan diskon khusus yang ditawarkan.	Numerikal
offer application preference	Mewakili apakah seorang pelanggan lebih memilih tawaran	Boolean
past_complaint	Mewakili apakah seorang pelanggan telah mengajukan keluhan di masa lalu.	Boolean
complaint status	Mewakili apakah keluhan yang diajukan oleh seorang pelanggan telah diselesaikan.	Kategorikal
feedback	Mewakili feedback yang diberikan oleh seorang pelanggan.	Kategorikal
churn risk score	Mewakili skor risiko pergantian pelanggan yang berkisar dari 1 hingga 5.	Numerikal

Sebelum memulai sebuah project kami mencoba untuk memahami fitur apa saja yang kami miliki, sehingga kami bisa mengambil wawasan dalam dataset churn risk score ini ada 3 jenis tipe data yaitu kategorikal, numerik, serta boolean.

selain itu kami juga memahami deskripsi value yang ada pada setiap fitur sehingga bisa lebih memahami dataset tersebut ketika akan melakukan visualisasi ataupun tahap prapemrosesan.

Exploration Data Analysis

Distribusi variabel target

Plot diatas merupakan countplot dari variabel churn-rick_score, dari visusalisasi diatas terlihat bahawa churn_risk score memiliki rate dengan rentang -1 s/d 5.Pada kolom target terdapat data -1 yang akan diubah menjadi 1 sehingga tidak terdapat nilai "-" (minus), karena churn risk score -1 memiliki arti risiko untuk berhenti berlangganan (churn) rendah sehingga disatukan/digolongkan bersama nilai 1 saat melakukan pra pemrosesan nantinya.

Distribusi variabel numerik

Plot diatas merupakan countplot dari variabel bertipe numerik, dari visualisasi diatas didapatkan wawasan dari value pada variabel avg_time_spent dan points_in_wallet ada yang bernilai negatif, kami berasumsi tidak ada nilai negatif pada kedua variabel tersebut sehingga kami akan membuat nilai negatif pada kedua fitur tersebut menjadi absolute (positif).

Distribusi variabel kategoris

Plot diatas merupakan countplot dari variabel bertipe kategoris, dari visualisasi diatas didapatkan wawasan bahwa pada kedua fitur tersebut memiliki value "?" pada gender, "unknown" pada joined_through_referral, dan "nan" pada variabel region_category. kami mengasumsikan bahwa ketiga value tersebut merupakan sebuah missing value dalam sebuah data. Sehingga nantinya kami akan mengisi missing value tersebut dengan mengunakan modus dari data masing-masing variabel.

Distribusi variabel kategoris

membership_category

Berikut merupakan kolom categorical yang mempengaruhi churn_risk_score dapat dilihat jika feedback negatif maka churn score makin tinggi yaitu makin tinggi risiko untuk berhenti berlangganan, sedangkan untuk membership category semakin rendah tingkat membership seperti contohnya basic maka semakin tinggi pula churn risk score.

Scatter Plot

gambar disamping merupakan plot dari semua data numerikal yang disajikan dalam bentuk scatter plot untuk melihat korelasi antar 2 variabel.

Scatter Plot

Dari data heatmap diatas yang memiliki korelasi tinggi dengan variabel target (churn_risk_score) adalah variabel average transaction value yaitu -0,29. Kedua variabel tersebut memiliki korelasi negatif.

Data Pre-processing

Filling Missing Value

```
1. region_category (mengisi missing value dengan modus dari variabel region_category)
[ ] df['region_category'].isna().any()
                                                                                             df["region_category"].isna().any()
    True
    def fillNan(df, col, value):
                                                                                              False
        df[col].fillna(value, inplace=True)
    # setting missing values to most occurring values
    fillNan(df, 'region_category', df['region_category'].mode()[8])
2. points_in_wallet (mengisi missing value dengan rata-rata data)
                                                                                          # setting missing values to most occurring values
                                                                                          fillNan(df, 'points_in_wallet', df['points_in_wallet'].mean())
                                                                                          df["points_in_wallet"],isna().any()
     df['points_in_wallet'].isna().any()
                                                                                          False
     True
```


Filling Missing Value

- 3. joined_through_referral (mengganti value "?" dengan "No")
- # setting missing values to most occurring values df["joined_through_referral"].unique()
- array(['No', '?', 'Yes'], dtype=object)
- 4. avg_frequency_login_days (mengganti nilai "Error" dengan "0")

```
df['avg frequency_login days']
          17(8)
          10.0
          22.8
           6.0
          16.8
36987
           5.8
36988
           28.8
36989
          Erron
36990
          28.8
          Error
36991
Name: avg_frequency_login_days, Length: 36992, dtype: object
```


Value Replacement

```
[ ] #mengubah nilai churn rate -1 jadi 1
    df['churn_risk_score'] = df['churn_risk_score'].apply(lambda x:1 if x == -1 else x)
    df['churn_risk_score'].unique()
    array({2, 1, 5, 3, 4}, dtype=int64)
```

Pada kolom target terdapat data -1 yang akan diubah menjadi 1 sehingga tidak terdapat nilai "-" (minus), karena churn risk score -1 memiliki arti risiko untuk berhenti berlangganan (churn) rendah sehingga disatukan/digolongkan bersama nilai 1

```
# Menggant1 nllai "unknown" dalam kolom "gender" dengan modus
mode_gender = df['gender'].mode()[0]
df['gender'] = df['gender'].replace('Unknown', mode_gender)
df['gender'].unique()
array(['F', 'M'], dtype=object)
```

Mengubah value "Unknown" pada variabel gender dengan modus data

Value Replacement

```
[ ] # Membuat semua nilai negatif menjadi positif pada kolom avg_time_spent dan point_in_wallet df['avg_time_spent'] = df['avg_time_spent'].apply(lambda x: abs(x)) df['points_in_wallet'] = df['points_in_wallet'].apply(lambda x: abs(x))
```

Membuat kolom avg_time_spent dan point in wallet menjadi positif (asumsi jika - adalah kesalahan) karena seharusnya nilai time spent dan point in wallet tidak negatif

Feature Transforming

H0: Distribusi Normal H1: Distribusi tidak normal

```
from scipy import stats

normaltest_result_churn = stats.normaltest(df['churn_risk_score'])[1]
normaltest_result_age = stats.normaltest(df['age'])[1]
normaltest_result_points_in_wallet = stats.normaltest(df['points_in_wallet'])[1]
normaltest_result_avg_time_spent = stats.normaltest(df['avg_time_spent'])[1]
normaltest_result_avg_transaction_value = stats.normaltest(df['avg_transaction_value'])[1]
```

```
The p-value for the null hypothesis of the Churn Risk Score not being Normally distributed is 0.0

The p-value for the null hypothesis of the Age not being Normally distributed is 0.0

The p-value for the null hypothesis of the Age not being Normally distributed is 0.0

The p-value for the null hypothesis of the Age not being Normally distributed is 0.0

The p-value for the null hypothesis of the Age not being Normally distributed is 0.0
```

Karena p-value kurang dari 0.05 maka H0 ditolak atau distribusi tidak normal. Untuk menormalisasi data dilakukan log transform dan power transform.

Distribusi Normal

churn risk score

Points in wallet

Age

Avg time spent

Avg transaction value

```
[ ] df['transf_PIW'] = log_transformed_PIW
    df['transf_ATS'] = log_transformed_ATS
    df['transf_ATV'] = log_transformed_ATV

[ ] df_transformed = df.drop(['points_in_wallet', 'avg_time_spent', 'avg_transaction_value'], axis=1)
    df=df_transformed
```

Setelah dilakukan power transform dan log transform pada ke lima fitur tersebut. variabel yang mengalami perubahan yang signifikan setelah dilakukan log transform hanyalah points_in_wallet, avg_time_spent, dan avg_transaction value. sehingga hanya ketiga variabel ini saja yang data log transform nya akan dipakai.

Feature Engineering 1

Encoding 1

LABEL ENCODING

```
ONE HOT ENCODING

[] # extract numerical and categorical for dummy and scaling later
    custom_feat = ['region_category', 'complaint_status', 'feedback']
    encode_data = df.copy() # Duplikasi data df untuk operasi one-hot encoding

for feat in cat_features.columns:
    if len(df[feat].unique()) > 2 and feat in custom_feat:
        dummyVars = pd.get_dummies(encode_data[feat], drop_first=True, prefix=feat+"_")
        encode_data = pd.concat([encode_data, dummyVars], axis=1)
        encode_data
encode_data
```


Split Data

```
[ ] response = encode_data['churn_risk_score']
    encode_data = encode_data.drop(columns='churn_risk_score')
[ ] from sklearn.model_selection import train_test_split
    X_train, X_test, y_train, y_test = train_test_split(encode_data, response,
                                                        stratify=response,
                                                        test_size = 0.2, #use 0.1 if data is huge.
                                                         random state = 0)
    #to resolve any class imbalance - use stratify parameter.
    print("Number transactions X_train encode_data: ", X_train.shape)
    print("Number transactions y_train encode_data: ", y_train.shape)
    print("Number transactions X_test encode_data: ", X_test.shape)
    print("Number transactions y_test encode_data: ", y_test.shape)
    Number transactions X_train encode_data: (29593, 25)
    Number transactions y train encode data: (29593,)
    Number transactions X test encode data: (7399, 25)
    Number transactions y_test encode_data: (7399,)
```

Data Train 80%
Data Test 20%

Data Scalling (StandardScaler)

```
[ ] from sklearn.preprocessing import StandardScaler

sc_X = StandardScaler()
X_train2 = pd.DataFrame(sc_X.fit_transform(X_train))
X_train2.columns = X_train.columns.values
X_train2.index = X_train.index.values
X_train = X_train2

X_test2 = pd.DataFrame(sc_X.transform(X_test))
X_test2.columns = X_test.columns.values
X_test2.index = X_test.index.values
X_test = X_test2
```

9	age	gender	membership_category	joined_through_referral	avg_frequency_login_days	used_special_discount	offer_application_preference	past_complaint	transf_PIW	transf_ATS
34522	0.248893	1.006339	1.014573	-0.858300	-0.344429	-1.108781	0.903062	1.004369	0.343640	1.682524
11435	-0.066020	1.006339	0.437805	1.165094	0.157836	-1.108781	0.903062	1.004369	0.293789	1.248898
7050	-1.703565	-0.993701	0.437805	-0.858300	0.157836	0.901891	-1.107343	1.004369	1.013414	-0.058454
18211	0.311875	-0.993701	1.014573	1.165094	0.760553	0.901891	-1.107343	-0.995650	0.519498	1.242043
27687	-0.884792	1.006339	0.437805	-0.858300	-0.645788	0.901891	-1.107343	1.004369	-1.935814	-0.858981
32610	0.878718	-0.993701	1.014573	-0.858300	1.262818	0.901891	-1.107343	-0.995650	0.526709	-1.592956
24030	0.689771	1.006339	-0.715733	-0.858300	0.258289	0.901891	-1.107343	1.004369	-0.054765	-0.247746
17960	-1.262687	-0.993701	-0.138964	-0.858300	0.057383	0.901891	-1.107343	-0.995650	-0.340095	-1.209687
35931	-1.073740	1.006339	-1.292501	-0.858300	1.162365	0.901891	-1.107343	1.004369	0.125465	0.006921
34063	-0.003037	-0.993701	-0.715733	1.165094	0.660100	-1.108781	0.903062	1.004369	-0.224484	-0.746051
29593 ro	ws × 25 colu	mns								

Feature Engineering 2

Encoding 2

Label Encoding

```
[ ] cols = cat_features
  encoders = {}

for c in cols:
    lbl = LabelEncoder()
    lbl.fit(list(encode_data_2[c].values))
    encode_data_2[c] = lbl.transform(list(encode_data_2[c].values))
    encoders[c] = lblcols = cat_features
encoders = {}
```

encode_d	data_2										
	age g	ender	region_category	membership_category	joined_through_referral	avg_frequency_login_days	used_special_discount	offer_application_preference	past_complaint	complaint_status	feedback cl
0	18	0	2	3	0	17.0	1	1	0	1	4
1	32	0	0	4	0	10.0	1	0	1	2	5
2	44	0	1	2	1	22.0	0	1	1	3	3
3	37	1	0	2	1	6.0	0	1	1	4	3
4	31	0	0	2	0	16.0	0	1	1	2	3
36987	46	0	1	0	0	6.0	0	1	1	0	0
36988	29	0	1	0	0	28.0	1	0	0	1	1
36989	23	0	1	0	1	0.0	0	1	1	4	3
36990	53	1	2	3	0	20.0	1	1	0	1	0
36991	35	1	1	5	0	0.0	1	0	0	1	5
36992 ro	ws × 15	columns	3								

Split Data

```
[ ] response_2 = encode_data_2['churn_risk_score']
    encode_data_2 = encode_data_2.drop(columns='churn_risk_score')
[ ] from sklearn.model selection import train test split
    X_train_2, X_test_2, y_train_2, y_test_2 = train_test_split(encode_data_2, response_2,
                                                         stratify=response 2,
                                                         test size = 0.2, #use 0.1 if data is huge.
                                                         random state = 0)
     #to resolve any class imbalance - use stratify parameter.
     print("Number transactions X_train_2 encode_data_2: ", X_train_2.shape)
     print("Number transactions y_train_2 encode_data_2: ", y_train_2.shape)
     print("Number transactions X_test_2 encode_data_2: ", X_test_2.shape)
     print("Number transactions y_test_2 encode_data_2: ", y_test_2.shape)
    Number transactions X_train_2 encode_data_2: (29593, 14)
    Number transactions y train 2 encode data 2: (29593,)
    Number transactions X test 2 encode data 2: (7399, 14)
    Number transactions y_test_2 encode_data_2: (7399,)
```

Data Train 80% Data Test 20%

Data Scalling (StandardScaler)

```
[ ] from sklearn.preprocessing import StandardScaler

sc_X2 = StandardScaler()
X_train2_2 = pd.DataFrame(sc_X2.fit_transform(X_train_2))
X_train2_2.columns = X_train_2.columns.values
X_train2_2.index = X_train_2.index.values
X_train_2 = X_train2_2

X_test2_2 = pd.DataFrame(sc_X2.transform(X_test_2))
X_test2_2.columns = X_test_2.columns.values
X_test2_2.index = X_test_2.index.values
X_test_2 = X_test2_2
```

0		age	gender	region_category	membership_category	joined_through_referral	avg_frequency_login_days	used_special_discount	offer_application_preference	past_complaint	complaint_status
	34522	0.248893	1.006339	1.871055	1.014573	-0.858300	-0.344429	-1.108781	0.903062	1.004369	0.305973
1	11435	-0.066020	1.006339	1.871055	0.437805	1.165094	0.157836	-1.108781	0.903062	1.004369	1.126291
	7050	-1.703565	-0.993701	0.334404	0.437805	-0.858300	0.157836	0.901891	-1.107343	1.004369	-1.334663
	18211	0.311875	-0.993701	0.334404	1.014573	1.165094	0.760553	0.901891	-1.107343	-0.995650	-0.514345
	27687	-0.884792	1.006339	0.334404	0.437805	-0.858300	-0.645788	0.901891	-1.107343	1.004369	0.305973
	32610	0.878718	-0.993701	-1.202246	1.014573	-0.858300	1.262818	0.901891	-1.107343	-0.995650	-0.514345
	24030	0.689771	1.006339	0.334404	-0.715733	-0.858300	0.258289	0.901891	-1.107343	1.004369	1.946609
	17960	-1.262687	-0.993701	0.334404	-0.138964	-0.858300	0.057383	0.901891	-1.107343	-0.995650	-0.514345
	35931	-1.073740	1.006339	-1.202246	-1.292501	-0.858300	1.162365	0.901891	-1.107343	1.004369	1.126291
	34063	-0.003037	-0.993701	-1.202246	-0.715733	1.165094	0.660100	-1.108781	0.903062	1.004369	1.946609
	29593 ro	ws x 14 colu	mns								

Modelling

Modelling Step

- 1. Split the data
- 2. Modelling the data with a few machine learning models using 2 types of encode
- 3. Models evaluation
- 4. Compare the models
- 5. Choose the best machine learning model
- 6. Optimize the model with hyperparameter tuning
- 7. Get the best machine learning model

Data Split

Model for classification

K Nearest Neighbour

Model with One Hot + Label Encoder

Decision Tree

	Accuracy	Precision	Recall	F1 Score	F2 Score
Data Tra	nin 0.8347	0.8581	0.8431	0.8414	0.8403
Data Tes	st 0.7443	0.7250	0.7193	0.7152	0.7160

Random Forest

Accuracy Precision Recall
Data Train 0.8950 0.9255 0.8915
Data Test 0.7551 0.7515 0.7266

Predicted

F1 Score F2 Score 0.9019 0.8942 0.7290 0.7254

SVM

- 0

Predicted

Logistic Regression

Accuracy Logistic Regression Train 0.4893 Logistic Regression Test 0.4947 Precision Recall

F1 Score

F2 Score

0.5041 0.5095

1 0.4983 5 0.5026

0.4851

0.4782

0.4920

0.4863

KNN

	Accuracy	Precision	Recall	F1 Score	F2 Score
KNN Train	0.6402	0.6571	0.6356	0.6425	0.6374
KNN Test	0.4526	0.4644	0.4528	0.4547	0.4526

Predicted

Decision Tree

Model	Accuracy	Precision	Recall	F1 Score	F2 Score
Decision Tree Train (dt_model_2)	0.8634	0.8704	0.8672	0.8640	0.8648
Decision Tree Test (dt_model_2)	0.7248	0.6955	0.6986	0.6926	0.6952

Random Forest

2

Predicted

Accuracy Precision Recall F1 Score F2 Score Random Forest Train (rf_model_2) 0.9460 0.9593 0.9367 0.9454 0.9396 Random Forest Test (rf_model_2) 0.7547 0.7505 0.7247 0.7293 0.7247

5

4

SVM

Model Accuracy Precision Recall F1 Score F2 Score Support Vector Classifier Train (svc_model_2) 0.4632 0.3871 0.4684 0.3832 0.4251 Support Vector Classifier Test (svc_model_2) 0.4644 0.3855 0.4674 0.3842 0.4254

Logistic Regression

Model Accuracy Precision Recall F1 Score F2 Score Logistic Regression Train (logistic_model_2) 0.4182 0.3865 0.4328 0.3946 0.4127 Logistic Regression Test (logistic_model_2) 0.4229 0.3875 0.4337 0.3959 0.4139

KNN

2

Predicted

	Accuracy	Precision	Recall	F1 Score	F2 Score
KNN Train	0.6320	0.6245	0.6028	0.6105	0.6051
KNN Test	0.4268	0.3955	0.3857	0.3877	0.3858

5

Compare the Model

Decision Tree	One hot					Label		
Accuracy Data Train 0.8347 Data Test 0.7443	Precision Recall 0.8581 0.8431 0.7250 0.7193	F1 Score 0.8414 0.7152	F2 Score 0.8403 0.7160	Accuracy 0.8634 0.7248	Precision 0.8704 0.6955	Recall 0.8672 0.6986	F1 Score 0.8640 0.6926	F2 Score 0.8648 0.6952
Random Forest								
Accuracy Data Train 0.8950 Data Test 0.7551	Precision Recall 0.9255 0.8915 0.7515 0.7266	F1 Score 0.9019 0.7290	F2 Score 0.8942 0.7254	Accuracy 0.9460 0.7547	Precision 0.9593 0.7505	Recall 0.9367 0.7247	F1 Score 0.9454 0.7293	F2 Score 0.9396 0.7247
SVM								
Accurac SVM Train (SVC) 0.5437 SVM Test (SVC) 0.5464	y Precision Recall 0.5056 0.5412 0.5159 0.5441	F1 Score 0.4670 0.4737	F2 Score 0.5014 0.5063	Accuracy 0.4632 0.4644	Precision 0.3871 0.3855	Recall 0.4684 0.4674	F1 Score 0.3832 0.3842	F2 Score 0.4251 0.4254
Logistic Regression								
A Logistic Regression Train 0 Logistic Regression Test 0		3 0.4782	F2 Score 0.4863 0.4920	Accuracy 0.4182 0.4229	Precision 0.3865 0.3875	Recall 0.4328 0.4337	F1 Score 0.3946 0.3959	F2 Score 0.4127 0.4139
KNN								
Accuracy KNN Train 0.6402 KNN Test 0.4526	Precision Recall 0.6571 0.6356 0.4644 0.4528	F1 Score 0.6425 0.4547	F2 Score 0.6374 0.4526	Accuracy 0.6320 0.4268	Precision 0.6245 0.3955	Recall 0.6028 0.3857	F1 Score 0.6105 0.3877	F2 Score 0.6051 0.3858

Hyperparameter Tuning Analysis

Hyper parameter -> n_estimators=100, max_depth=15 , min_samples_split=5, min_samples_leaf=1

Accur	acy Precision	Recall	F1 Score	F2 Score
Random Forest Train (rf_model_2a) 0.9	460 0.9593	0.9367	0.9454	0.9396
Random Forest Test (rf_model_2a) 0.7	547 0.7505	0.7247	0.7293	0.7247

Hyper parameter -> n_estimators=100, max_depth=20 , min_samples_split=5, min_samples_leaf=1

Accuracy	Precision	Recall	F1 Score	F2 Score
Random Forest Train (rf_model_2b) 0.9941	0.9950	0.9908	0.9928	0.9916
Random Forest Test (rf_model_2b) 0.7529	0.7490	0.7220	0.7309	0.7245

Hyper parameter -> n_estimators=100, max_depth=25 , min_samples_split=5, min_samples_leaf=1

Accuracy	Precision	Recall	F1 Score	F2 Score
Random Forest Train (rf_model_2c) 0.9965	0.9966	0.9942	0.9954	0.9947
Random Forest Test (rf_model_2c) 0.7500	0.7464	0.7179	0.7283	0.7212

Hyper parameter -> n_estimators=200, max_depth=15, min_samples_split=5, min_samples_leaf=1

		P	kccuracy -	Precision	Recall	F1 Score	F2 Score
Random	Forest	<pre>Train (rf_model_2d)</pre>	0.9943	0.9949	0.9905	0.9926	0.9913
Random	Forest	<pre>Test (rf_model_2d)</pre>	0.7524	0.7470	0.7206	0.7287	0.7226

Hyper parameter -> n_estimators=300, max_depth=15, min_samples_split=5, min_samples_leaf=1

Accuracy	Precision	Recall	F1 Score	F2 Score
Random Forest Train (rf_model_2e) 0.9491	0.9624	0.9389	0.9481	0.9420
Random Forest Test (rf_model_2e) 0.7532	0.7495	0.7234	0.7279	0.7233

The Best Model

- Berdasarkan evaluasi model menggunakan metric accuracy, precision, recall, F1&F2 score, confusion matrix dan grafik ROC, model machine learning terbaik yaitu Random Forest dengan menggunakan Label Encoding.
- Setelah mendapatkan model terbaik dilakukan hyperparameter tuning untuk optimisasi model, dan telah diperoleh bahwa model dengan jumlah n estimator 100 dan maksimal depth tree nya adalah 15. Karena jika di tinjau lebih detail model dengan depth tree 20 saja sudah dapat dikatakan overfitting.

Deploy the Model with Streamlit

```
import streamlit as st
import numpy as np
import pickle

# Nilai-nilai yang mungkin ada dalam setiap kolom
gender_options = ['F', 'M']
region_category_options = ['Village', 'City', 'Town']
membership_category_options = ['Platinum Membership', 'Premium Membership', 'No Membership', 'Gold
joined_through_referral_options = ['No', 'Yes']
used_special_discount_options = ['Yes', 'No']
offer_application_preference_options = ['Yes', 'No']
past_complaint_options = ['No', 'Yes']
complaint_status_options = ['Not Applicable', 'Solved', 'Solved in Follow-up', 'Unsolved', 'No Infeedback_options = ['Products always in Stock', 'Quality Customer Care', 'Poor Website', 'No reasons.'
```

```
# Load your pre-trained models and scalers
with open('model/scaler.pkl', 'rb') as scaler_file:
    scaler = pickle.load(scaler_file)

with open('model/log_transformed_ATV.pkl', 'rb') as log_file:
    log_transformed_ATV = pickle.load(log_file)

with open('model/log_transformed_PIW.pkl', 'rb') as log_file:
    log_transformed_PIW = pickle.load(log_file)

with open('model/log_transformed_ATS.pkl', 'rb') as log_file:
    log_transformed_ATS = pickle.load(log_file)

with open('model/random_forest_model.pkl', 'rb') as model_file:
    rf_model_2a = pickle.load(model_file)
```


This is the User Interace

```
# Streamlit UI
st.title("Churn Risk Score Prediction for HackelEarth Website")
# Create input fields for user data
customer_id = st.text_input('Customer ID', '')
age = st.slider('Age', 10, 100, 25)
gender = st.selectbox('Gender', gender options)
region category = st.selectbox('Region Category', region category options)
membership category = st.selectbox('Membership Category', membership category options)
joined_through_referral = st.selectbox('Joined Through Referral', joined_through_referral_options)
avg_time_spent = st.number_input('Average Time Spent', min_value=0)
avg transaction value = st.number input('Average Transaction Value', min value=0)
avg_frequency_login_days = st.number_input('Average Frequency Login Days', min_value=0)
points_in_wallet = st.number_input('Points in Wallet', min_value=0)
used special discount = st.selectbox('Used Special Discount', used special discount options)
offer application preference = st.selectbox('Offer Application Preference', offer application preference options)
past_complaint = st.selectbox('Past Complaint', past_complaint_options)
complaint_status = st.selectbox('Complaint Status', complaint_status_options)
feedback = st.selectbox('Feedback', feedback options)
```


Converting categorical data to numerical data

```
# Make prediction when the user clicks the "Submit" button
if st.button('Submit'):
   # Prepare input data
   # Apply LabelEncoder to membership category
   MC = 0 if membership category== 'Basic Membership' else (1 if membership category=='Gold Membership'
                                                               else (2 if membership category=='No Membership'
                                                                     else(3 if membership category=='Platinum Membership'
                                                                          else(4 if membership category=='Premium Membership'
                                                                               else 5 ))))
    # Apply LabelEncoder to gender
   GEN = 0 if gender== 'F' else 1
   # Apply LabelEncoder to region category
   RC = 0 if region category=='City'else (1 if region category=='Town'else 2)
   # Apply LabelEncoder to joined through referral
   JTR = 0 if joined through referral=='No' else 1
   # Apply LabelEncoder to used special discount
   USD = 0 if used special discount=='No' else 1
   # Apply LabelEncoder to offer application preference
   OAP = 0 if offer application preference=='No' else 1
        # Apply LabelEncoder to past complaint
   PC = 0 if past complaint=='No' else 1
```


Scaling the data, and Perform Prediction with Random Forest Model

```
# Combine input data
input_data=[age, GEN, RC, MC, JTR, avg_frequency_login_days, USD, OAP, PC, CS,
            fb, points in wallet, avg time spent, avg transaction value
scaled input data = scaler.transform(np.array([input data]))
# Perform prediction with the Random Forest model
predicted churn risk score = rf model 2a.predict(scaled input data)[0]
# Display the predicted Churn Risk Score to the user
st.write('Predicted Churn Risk Score:', predicted churn risk score)
```


Result

Streamlit Link \longrightarrow https://fc45f26r9zptzfuzxlhta8.streamlit.app/

Average Frequency Login Days	
0	- +
Points in Wallet	
0	- +
Used Special Discount	
Yes	~
Offer Application Preference	
Yes	~
Past Complaint	
No	~
Complaint Status	
Not Applicable	~
Feedback	
Products always in Stock	~
Submit	
Predicted Churn Risk Score: 1	

Conclusion

- I. Berdasarkan visualisai distribusi variabel kategoris dan heatmap correlation, dapat diambil wawasan bahwa fitur yang memiliki peran besar dalam hasil prediksi churn rate score adalah membership category, feedback, avg transaction value, dan points in wallet.
- 2. Pemodelan berjalan lebih efektif pada dataset yang dilakukan label encoder saja
- 3. Dari proses pemodelan yang dilakukan pada dataset churn, pemodelan yang paling cocok digunakan untuk memprediksi churn rate score adalah pemodelan dengan algoritma Random Forest
- 4. Pada pemodelan Random Forest didapatkan nilai akurasi: 94%, Precision: 95%, dan Recall: 93% untuk Data Train
- 5. Pada pemodelan Random Forest didapatkan nilai akurasi: 75%, Precision: 75%, dan Recall: 72% untuk Data Test
- 6. Dengan n_estimator = 100, max_depth = 15, min_samples_spill= 5, min samples_leaf = 1 didapatkan nilai akurasi: 94%, Precision : 95%, dan Recall: 93% untuk Data Train
- 7. Dengan n_estimator = 100, max_depth = 15, min_samples_spill= 5, min samples_leaf = 1 didapatkan nilai akurasi: 75%, Precision : 75%, dan Recall: 72% untuk Data Test
- 8. Model akan lebih bagus jika dilakukan cross validation dan Grid Search untuk hyperparameter tuning.

Thank you

Any Questions?

Pembagian Tugas

Fajar: EDA & Data Pre-Processing

Melani: Modelling & Model Deployment