Hochwasserstände vorhersagen mittels Kleinste-Quadrate-Lösung

Marisa Breßler und Anne Jeschke (PPI27)

21.01.2020

- Einleitung
- 2 Theorie
- 3 Experimente
 - Einfache lineare Regression
 - Lineare Mehrfachregression
- 4 Ausblick

Vorstellung des Ausgleichsproblems

Ziel: in Daten Zusammenhang erkennen, um Prognosen zu erstellen

	172											
												144
<i>p</i> ₂	120	258	255	238	317	246	265	304	292	242	272	191

Tabelle: Pegelstände an den Stellen p_0 , p_1 und p_2

Aufstellen eines überbestimmten Gleichungssystems

Tabelle: Pegelstände an den Stellen p_0 und p_1

$$p_{0,i} = x_1 p_{1,i} + x_2 \ \forall i = 1, ..., N$$

Aufstellen eines überbestimmten Gleichungssystems

Tabelle: Pegelstände an den Stellen p_0 und p_1

$$p_{0,i} = x_1 p_{1,i} + x_2 \ \forall i = 1, ..., N$$

$$\begin{pmatrix} p_{0,1} \\ p_{0,2} \\ \vdots \\ p_{0,N} \end{pmatrix} = \begin{pmatrix} p_{1,1} & 1 \\ p_{1,2} & 1 \\ \vdots & \vdots \\ p_{1,N} & 1 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

$$\iff$$
 $b = A \cdot b$

Methode der kleinsten Quadrate

gesucht: Lösungsvektor x von Ax = b, s.d. $||Ax - b||_2$ minimal

Abbildung: Beispiel einer Kleinste-Quadrate-Lösung, https://commons.wikimedia.org/w/index.php?curid=12879531

$$Ax = b \iff QRx = b \iff Rx = Q^T b$$

$$R = \begin{pmatrix} R_1 \\ R_2 \end{pmatrix} \text{ mit } R_1 = \begin{pmatrix} * & * \\ 0 & * \end{pmatrix} \in \mathbb{R}^{2 \times 2} \text{ und } R_2 = 0 \in \mathbb{R}^{(N-2) \times 2}$$

$$Ax = b \iff QRx = b \iff Rx = Q^T b$$

$$R = \begin{pmatrix} R_1 \\ R_2 \end{pmatrix}$$
 mit $R_1 = \begin{pmatrix} * & * \\ 0 & * \end{pmatrix} \in \mathbb{R}^{2 \times 2}$ und $R_2 = 0 \in \mathbb{R}^{(N-2) \times 2}$

$$Ax = b \iff QRx = b \iff Rx = Q^T b$$

$$R = \begin{pmatrix} R_1 \\ R_2 \end{pmatrix}$$
 mit $R_1 = \begin{pmatrix} * & * \\ 0 & * \end{pmatrix} \in \mathbb{R}^{2 \times 2}$ und $R_2 = 0 \in \mathbb{R}^{(N-2) \times 2}$

- ② löse $R_1x = z_1$ mittels Rückwärtseliminierung

$$Ax = b \iff QRx = b \iff Rx = Q^T b$$

$$R = \begin{pmatrix} R_1 \\ R_2 \end{pmatrix}$$
 mit $R_1 = \begin{pmatrix} * & * \\ 0 & * \end{pmatrix} \in \mathbb{R}^{2 \times 2}$ und $R_2 = 0 \in \mathbb{R}^{(N-2) \times 2}$

- ② löse $R_1x = z_1$ mittels Rückwärtseliminierung
- **3** $||Ax b||_2 = ||z_2||_2$ ist minimal

Lineare Regression (unmodifizierte Daten)

Abbildung: Ergebnis mit unmodifizierten Daten

$$p_0 = 1.450333p_1 + 30.302158, ||Ax - b||_2 = 32.904232$$

Lineare Regression (modifizierte Daten)

Abbildung: Ergebnis mit verschiedenen modifizierten Daten

Nr. der Modifikation	$cond_2(A)$	$ Ax - b _2$
0	820.140820	32.904232
1	857.010517	114.146281
2	665.277296	1.542414

Lineare Regression (andere Messung)

Abbildung: Ergebnis mit p_1 vs. p_2

Nr. des Pegels	$cond_2(A)$	$ Ax - b _2$
1	820.140820	32.904232
2	1288.744531	78.768276

11

Lineare Mehrfachregression

$$p_{0,i} = x_1 p_{1,i} + x_2 p_{2,i} + x_3 \ \forall i = 1,...,N$$

Abbildung: Ergebnis der linearen Mehrfachregression

$$cond_2(A) = 1787.633757, ||Ax - b||_2 = 32.091986$$

Alternativer Lösungsweg mit Normalengleichung

viel mehr Messwerte als Variablen \Rightarrow QR-Zerlegung aufwändig

Normalengleichung: $A^T Ax = A^T b$

Alternativer Lösungsweg mit Normalengleichung

viel mehr Messwerte als Variablen \Rightarrow QR-Zerlegung aufwändig

Normalengleichung:
$$A^T Ax = A^T b$$

Nr. der Modifikation	$cond_2(A)$	$cond_2(A^TA)$
0	≈ 820	≈ 672631
1	≈ 857	≈ 734467
2	≈ 665	≈ 442594

13

Alternativer Lösungsweg mit Normalengleichung

viel mehr Messwerte als Variablen \Rightarrow QR-Zerlegung aufwändig

Normalengleichung:
$$A^T Ax = A^T b$$

Nr. der Modifikation	$cond_2(A)$	$cond_2(A^TA)$
0	≈ 820	≈ 672631
1	≈ 857	≈ 734467
2	≈ 665	≈ 442594

⇒ Ergebnisse dann evtl. viel ungenauer

Quellen

Hella Rabus.

Projektpraktikum I.

Lehrveranstaltung, Humboldt-Universität zu Berlin, 2019/20.

Caren Tischendorf.

Vorlesung Numerische Lineare Algebra.

Vorlesungsskript, Humboldt-Universität zu Berlin, 2019/20.