ÜBUNGEN ZUR "EICHFELDTHEORIE" ABGABE: 06.07.2015

Aufgabe 22. Sei G eine zusammenhängende Lie-Gruppe und $\pi\colon P\to T$ ein G-Prinzipalbündel über dem Torus $T=S^1\times S^1$ mit flachem Zusammnhang $\omega\in\Omega^1(P,\mathfrak{g})$. Sei $p_0\in\pi^{-1}((1,1))$ und $\alpha=\operatorname{hol}_{\omega,p_0}$ wie in Aufgabe 20 definiert. Man zeige:

- (a) Die Zuordnung $\tilde{f}: \mathbb{R}^2 \times G \to P$, $(v,g) \mapsto h_{\gamma_v,p_0}(1) \cdot g$, definiert eine glatte G-äquivariante Submersion und $d\tilde{f}(T\mathbb{R}^2) \subset H$. Hierbei bezeichnet γ_v den Pfad $t \mapsto p(t \cdot v)$, wobei $p(x,y) = (\exp(2\pi i x), \exp(2\pi i y))$.
- (b) Es gilt $\tilde{f}(v+(n,m),g)=\tilde{f}(v,\alpha(n,m)\cdot g)$ und \tilde{f} induziert einen Isomorphismus von G-Prinzipalbündeln $f\colon \mathbb{R}^2\times_{\pi_1(T,m_0)}G\to P$. Ferner gilt $f^*(\omega)=\omega_\alpha$, wobei ω_α der Zusammenhang aus Aufgabe 21 ist.

Aufgabe 23. Sei G eine zusammenhängende Lie-Gruppe. Die Gruppe G wirkt auf $\operatorname{Hom}(\pi_1(T,m_0),G)$ vermöge $\alpha\mapsto g\cdot\alpha\cdot g^{-1}$. Man benutze die Aufgaben 21 und 22, um eine Bijektion zwischen $\operatorname{Hom}(\pi_1(T,m_0),G)/G$ und der Menge

 $\{G-Prinzipalbündel\ P\ "uber\ T\ mit\ flachem\ Prinzipalzusammenhang\}/Isomorphismus zu konstruieren. Was ist die Verbindung zu Aufgabe 16?$