This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problems Mailbox.

日本国特許庁 PATENT OFFICE JAPANESE GOVERNMENT

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日 Date of Application:

2000年 2月28日

出 願 番 号 Application Number:

特願2000-056001

出 願 人 Applicant (s):

ソニー株式会社

2000年11月 6日

特許庁長官 Commissioner, Patent Office

【書類名】

特許願

【整理番号】

0000029009

【提出日】

平成12年 2月28日

【あて先】

特許庁長官 近藤 隆彦 殿

【国際特許分類】

G13B 17/18

【発明者】

【住所又は居所】

東京都品川区北品川6丁目7番35号 ソニー株式会社

内

【氏名】

小澤 未生

【特許出願人】

【識別番号】

000002185

【氏名又は名称】 ソニー株式会社

【代表者】

出井 伸之

【代理人】

【識別番号】

100082762

【弁理士】

【氏名又は名称】 杉浦 正知

【電話番号】

03-3980-0339

【手数料の表示】

【予納台帳番号】

043812

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【包括委任状番号】 9708843

【プルーフの要否】

【書類名】 明細書

【発明の名称】 ディジタル画像記録装置および方法、並びに伝送方法 【特許請求の範囲】

【請求項1】 記録メディアに画像をディジタル信号として記録するディジタル画像記録装置において、

カラー画像を取り込む画像取り込み手段と、

取り込まれたカラー画像を2値画像に変換する画像処理手段と、

上記画像処理手段の出力を記録メディアに記録する記録手段とを備え、

上記画像処理手段は、取り込まれたカラー画像を一定のサイズまたは画素数の画像に変換し、上記変換後の画像に基づいてしきい値を決定し、上記しきい値によって 2 値画像を生成することを特徴とするディジタル画像記録装置。

【請求項2】 記録メディアに画像をディジタル信号として記録するディジタル画像記録装置において、

カラー画像を取り込む画像取り込み手段と、

取り込まれたカラー画像を2値画像に変換する画像処理手段と、

上記画像処理手段の出力を記録メディアに記録する記録手段とを備え、

上記画像処理手段は、取り込まれたカラー画像を間引き処理することによって 間引き画像を生成し、上記間引き画像に基づいてしきい値を決定し、上記しきい 値によって2値画像を生成することを特徴とするディジタル画像記録装置。

【請求項3】 記録メディアに画像をディジタル信号として記録するディジタル画像記録装置において、

カラー画像を取り込む画像取り込み手段と、

取り込まれたカラー画像を2値画像に変換する画像処理手段と、

上記画像処理手段の出力を記録メディアに記録する記録手段とを備え、

上記画像処理手段は、取り込まれたカラー画像内で、2値化の対象となる被写体を含む部分画像に基づいてしきい値を決定し、上記しきい値によって2値画像を生成することを特徴とするディジタル画像記録装置。

【請求項4】 請求項1、2または3において、

取り込まれたカラー画像を選択したサイズまたは画素数の記録画像に変換する

ことが可能なことを特徴とするディジタル画像処理装置。

【請求項5】 請求項1、2または3において、

上記画像処理手段は、上記変換後の画像中の輝度データの画素数の分布を表す ヒストグラムを生成し、上記ヒストグラムの最大値および最小値を検出し、上記 最大値および最小値の中間値を上記しきい値とすることを特徴とするディジタル 画像記録装置。

【請求項6】 請求項2において、

上記間引き処理は、行を間引く処理であることを特徴とするディジタル画像記録装置。

【請求項7】 請求項2において、

上記間引き処理は、被写体によって変更可能なことを特徴とするディジタル画 像記録装置。

【請求項8】 請求項3において、

上記部分画像に対応する表示を行い、上記部分画像の位置および大きさを変更 可能としたことを特徴とするディジタル画像記録装置。

【請求項9】 記録メディアに画像をディジタル信号として記録するディジタル画像記録方法において、

取り込まれたカラー画像をしきい値によって2値画像へ変換するステップと、 上記2値画像を記録メディアに記録するステップとを備え、

取り込まれたカラー画像を一定のサイズまたは画素数の画像に変換し、上記変換後の画像に基づいてしきい値を決定し、上記しきい値によって2値画像を生成することを特徴とするディジタル画像記録方法。

【請求項10】 記録メディアに画像をディジタル信号として記録するディジタル画像記録方法において、

取り込まれたカラー画像をしきい値によって2値画像へ変換するステップと、 上記2値画像を記録メディアに記録するステップとを備え、

取り込まれたカラー画像を間引き処理することによって間引き画像を生成し、 上記間引き画像に基づいてしきい値を決定し、上記しきい値によって2値画像を 生成することを特徴とするディジタル画像記録方法。 【請求項11】 記録メディアに画像をディジタル信号として記録するディジタル画像記録方法において、

取り込まれたカラー画像をしきい値によって2値画像へ変換するステップと、 上記2値画像を記録メディアに記録するステップとを備え、

取り込まれたカラー画像内で、2値化の対象となる被写体を含む部分画像に基づいてしきい値を決定し、上記しきい値によって2値画像を生成することを特徴とするディジタル画像記録方法。

. 【請求項12】 通信メディアに画像をディジタル信号として送出するディジタル画像伝送方法において、

取り込まれたカラー画像をしきい値によって2値画像へ変換するステップと、 上記2値画像を通信メディアに送出するステップとを備え、

取り込まれたカラー画像を一定のサイズまたは画素数の画像に変換し、上記変換後の画像に基づいてしきい値を決定し、上記しきい値によって2値画像を生成することを特徴とするディジタル画像伝送方法。

【請求項13】 通信メディアに画像をディジタル信号として送出するディジタル画像伝送方法において、

取り込まれたカラー画像をしきい値によって2値画像へ変換するステップと、 上記2値画像を通信メディアに送出するステップとを備え、

取り込まれたカラー画像を間引き処理することによって間引き画像を生成し、 上記間引き画像に基づいてしきい値を決定し、上記しきい値によって2値画像を 生成することを特徴とするディジタル画像伝送方法。

【請求項14】 通信メディアに画像をディジタル信号として送出するディジタル画像伝送方法において、

取り込まれたカラー画像をしきい値によって2値画像へ変換するステップと、 上記2値画像を通信メディアに送出するステップとを備え、

取り込まれたカラー画像内で、2値化の対象となる被写体を含む部分画像に基づいてしきい値を決定し、上記しきい値によって2値画像を生成することを特徴とするディジタル画像伝送方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

この発明は、例えばディジタルカメラ装置に適用することができるディジタル 画像記録装置および方法、並びに伝送方法に関する。

[0002]

【従来の技術】

最近では、フラッシュメモリ等の不揮発性半導体記憶素子やハードディスクやフロッピーディスク等の記録媒体を用い、この記録媒体に対して被写体像を画像データとして記録するディジタルスチルカメラ等のディジタル画像記録装置が急速に普及しつつある。ディジタ画像記録装置は、撮影した被写体像をディジタル画像信号に変換して圧縮し、圧縮した画像情報を記録媒体に記録する構成とされている。ディジタル画像記録装置において、自然画像をカラー画像として取り込み、JPEGで圧縮するものが知られている。

[0003]

文字原稿、ホワイトボード等を撮影する時には、カラー画像として記録する方法よりも、撮影したカラー画像を2値化して記録することが好ましい。すなわち、図16Aは、文字原稿を撮影したカラー画像を示し、図16Bは、カラー画像を2値画像に変換した画像を示す。図から分かるように、2値画像は、カラー画像に比して被写体の文字と背景とが鮮明に区別され、文字が読みやすくなる。

[0004]

カラー画像を2値化するには、撮影したカラー画像をしきい値によって各画素を白と黒とに弁別する必要がある。図16Bは、最適なしきい値を使用した場合である。若し、しきい値が最適しきい値よりも高すぎると図16Cに示すように、2値化画像が全体的に暗くなり、また、しきい値が最適しきい値よりも低すぎると図16Dに示すように、2値化画像が全体的に明るくなり、文字が見にくくなる。

[0005]

【発明が解決しようとする課題】

特に、ディジタルカラー画像記録装置により画像を撮影した場合には、文字および背景画像の一方が常に固定値をとるわけではなく、両者とも色空間内のどの値もとりうるので、予め固定のしきい値を設定することはできない。したがって、撮影した画像の全画素データを使用してしきい値を求めることが必要となる。その場合には、次のような問題が生じる。

[0006]

記録する画像の画素数またはサイズが複数種類あるときに、処理するデータ量が異なり、しきい値の導出処理に要する時間が異なり、また、全画素数が異なるために、しきい値導出のアルゴリズムを共通化できない。全画素データを使用することは、処理時間が長くなる問題が生じる。さらに、全画素データを使用すると、画像周辺に含まれるノイズ、劣化、周辺の不要不用な物体等の情報がしきい値の導出に影響し、正しいしきい値を求めることができない。例えば2値化したい文字原稿、ホワイトボード等の被写体以外の周辺の物体が画像内に含まれてしまうこともあり、正しいしきい値の導出が妨げられる。

[0007]

したがって、この発明の目的は、取り込まれた画像毎に2値化のしきい値を求める際に、上述した問題を解決することを可能とするディジタル画像記録装置および方法、並びに伝送方法を提供することにある。

[0008]

【課題を解決するための手段】

上述した課題を解決するために、請求項1の発明は、記録メディアに画像をディジタル信号として記録するディジタル画像記録装置において、

カラー画像を取り込む画像取り込み手段と、

取り込まれたカラー画像を2値画像に変換する画像処理手段と、

画像処理手段の出力を記録メディアに記録する記録手段とを備え、

画像処理手段は、取り込まれたカラー画像を一定のサイズまたは画素数の画像 に変換し、変換後の画像に基づいてしきい値を決定し、しきい値によって 2 値画 像を生成することを特徴とするディジタル画像記録装置である。請求項9の発明 は、このようにカラー画像を2値画像へ変換して記録する方法である。

[0009]

請求項2の発明は、記録メディアに画像をディジタル信号として記録するディジタル画像記録装置において、

カラー画像を取り込む画像取り込み手段と、

取り込まれたカラー画像を2値画像に変換する画像処理手段と、

画像処理手段の出力を記録メディアに記録する記録手段とを備え、

画像処理手段は、取り込まれたカラー画像を間引き処理することによって間引き画像を生成し、間引き画像に基づいてしきい値を決定し、しきい値によって2値画像を生成することを特徴とするディジタル画像記録装置である。請求項10の発明は、このようにカラー画像を2値画像へ変換して記録する方法である。

[0010]

請求項3の発明は、記録メディアに画像をディジタル信号として記録するディジタル画像記録装置において、

カラー画像を取り込む画像取り込み手段と、

取り込まれたカラー画像を2値画像に変換する画像処理手段と、

画像処理手段の出力を記録メディアに記録する記録手段とを備え、

画像処理手段は、取り込まれたカラー画像内で、2値化の対象となる被写体を含む部分画像に基づいてしきい値を決定し、しきい値によって2値画像を生成することを特徴とするディジタル画像記録装置である。請求項11の発明は、このようにカラー画像を2値画像へ変換して記録する方法である。

[0011]

請求項12の発明は、通信メディアに画像をディジタル信号として送出するディジタル画像伝送方法において、

取り込まれたカラー画像をしきい値によって2値画像へ変換するステップと、

2 値画像を通信メディアに送出するステップとを備え、

取り込まれたカラー画像を一定のサイズまたは画素数の画像に変換し、変換後の画像に基づいてしきい値を決定し、しきい値によって 2 値画像を生成すること

を特徴とするディジタル画像伝送方法である。

[0012]

請求項13の発明は、通信メディアに画像をディジタル信号として送出するディジタル画像伝送方法において、

取り込まれたカラー画像をしきい値によって2値画像へ変換するステップと、 2値画像を通信メディアに送出するステップとを備え、

取り込まれたカラー画像を間引き処理することによって間引き画像を生成し、 間引き画像に基づいてしきい値を決定し、しきい値によって 2 値画像を生成する ことを特徴とするディジタル画像伝送方法である。

[0013]

請求項14の発明は、通信メディアに画像をディジタル信号として送出するディジタル画像伝送方法において、

取り込まれたカラー画像をしきい値によって2値画像へ変換するステップと、 2値画像を通信メディアに送出するステップとを備え、

取り込まれたカラー画像内で、2値化の対象となる被写体を含む部分画像に基づいてしきい値を決定し、しきい値によって2値画像を生成することを特徴とするディジタル画像伝送方法である。

[0014]

請求項1、9、12の発明に依れば、記録する画像のサイズにかかわらず、リサイズした画像を用いてしきい値を求めるので、しきい値導出のアルゴリズムを一貫して適用することが可能となり、また、処理時間が変動することを防止できる。

[0015]

請求項2、10、13の発明に依れば、間引き画像を用いてしきい値を求めるので、しきい値導出に支障を生じることなく、処理の高速化が可能となる。間引きの処理を被写体に応じて可変することによって、最小限のデータ数で正しいしきい値を導出することが可能となる。

[0016]

請求項3、11、14の発明に依れば、全画像のデータを用いるのではなく、

部分画像の情報を用いてしきい値を導出することによって、不要な情報の影響を 受けずに意図した部分を最適に 2 値化するための正しいしきい値の導出が可能と なる。また、使用する部分画像の設定をユーザが任意に行うことを可能とするこ とによって、ユーザが 2 値化したい部分を任意に選択することが可能となる。

[0017]

【発明の実施の形態】

以下、この発明の一実施形態について説明する。図1は、本実施形態のシステム構成を示し、1がCCD (Charge Coupled Device)を示す。CCD1の画素数 (水平画素数×垂直画素数)は、例えばUXGA(1600 ×1280)画素とされている。撮影画像(カラー画像)の画素数に対して記録画像の画素数は、UXGAに加えて、SXGA(1280 ×1024)画素、XGA(1024 ×768)画素、VGA(640×480)画素が選択可能とされている。CCD1は、図示しないレンズ部を介された被写体像を撮像信号として出力する。レンズ部においては、自動絞り制御動作や自動焦点制御動作がなされる。撮像信号がカメラブロック2に供給される。

[0018]

なお、CCD1がイメージスキャナと同様に文書を読み取る動作を行うことが可能とされていても良い。また、CCD以外に他の装置、通信メディアから受け取ったディジタルカラー画像を処理する場合にも、この発明を適用できる。さらに、処理後の画像を記録メディアに記録するのに限らず、通信メディアに対して送出する場合にもこの発明を適用することができる。

[0019]

カメラブロック 2 は、クランプ回路、輝度信号処理回路、輪郭補正回路、欠陥 補償回路、自動絞り制御回路、自動焦点制御回路、自動ホワイトバランス補正回 路等が含まれる。カメラブロック 2 から例えば R G B 信号から変換された輝度信 号および色差信号からなるコンポーネント信号の形式でディジタル撮像信号が発 生する。ディジタル撮像信号がメモリコントロールブロック 3 に供給される。

[0020]

メモリコントロールブロック3は、信号切り換え部、表示用バッファメモリ、 D/A変換器等を有する。メモリコントロールブロック3に表示装置4およびデ ータ伝送路5が接続される。メモリコントロールブロック3において、生成されたRGB信号がD/A変換器を介して表示装置4に供給される。表示装置4は、カメラと一体に設けられたLCD (Liquid Crystal Display) 等の表示デバイスで構成されたものである。カメラブロック2からの画像信号が表示装置4に供給されることによって、撮影中の画像が表示され、また、データ伝送路5を介して供給される記録メディア9の読み出し画像が表示される。表示装置4は、VGA(640×480)画像を表示する。

[0021]

データ伝送路 5 に対しては、DRAM (Dynamic Random Access Memory) 6 およびマイコン (マイクロコンピュータ) で構成された画像処理ブロック 7 が接続される。DRAM 6 は、メモリコントロールブロック 3 または画像処理ブロック 7 によって制御され、メモリコントロールブロック 3 を介された原画像を蓄える領域と、画像処理ブロック 7 による画像処理後の画像データを蓄える領域とを有する。

[0022]

画像処理ブロック7には、操作入力部8および記録メディア9がそれぞれインターフェースを介して接続される。画像処理ブロック7から制御情報が各部に供給されることによって、画像データの処理がなされ、DRAM6へのデータの書込みおよび読み出しがなされ、記録メディア9への書込み、読み出しが実行される。

[0023]

操作入力部8は、シャッターボタン、モード指定スイッチ、その他の撮影者が 操作する各種のスイッチを有する。例えば主として自然画像を撮影する時に指定 される第1モードと、主として文字原稿、ホワイトボード等の文字からなる画像 を撮影する時に指定される第2モードとが選択可能とされている。操作入力部8 からの操作入力が画像処理ブロック7に供給される。記録メディア9は、メモリ カード(ICカード)、フロッピーディスク、書き換え可能な光ディスク等であ り、スチルカメラ本体に対して着脱自在とされたものである。記録メディア9以 外に、インターネット等の通信メディアを使用しても良い。

[0024]

[0025]

JPEGは、カラー静止画像を圧縮する標準的符号化方法であり、可逆符号化方式と非可逆符号化方式とがある。可逆符号化方式として、空間内予測符号化方式が採用され、非可逆符号化方式として、DCT(Discrete Cosine Transform)による圧縮方法が採用されている。通常は、非可逆符号化方式による多少の画質の劣化は、実用上問題ないものとされ、DCTによる符号化方式がJPEGとして使用されている。本明細書においても、JPEGの用語は、DCTとDCTで発生した係数データを量子化し、量子化出力をエントロピー符号化で符号化する非可逆符号化を指すものとする。

[0026]

また、画像処理ブロック7は、記録メディア9に対するデータの書き込みと読み出しを制御する。DRAM6に蓄えられている画像データ、すなわち、第1モードで得られたJPEGファイル、または第2モードで得られたGIFファイルを記録メディア9に対して出力する。記録メディア9から読み出したこれらの画像ファイルが画像処理ブロック7によってDRAM6に記憶される。

[0027]

さらに、解像度変換部10が設けられ、解像度変換部10によって撮影画像を 選択された記録画像の解像度に変換する処理がなされる。DRAM6には、解像 度変換された画像がはられる。解像度変換処理は、画像処理ブロック7で行うよ うにしても良い。

[0028]

上述した一実施形態において、撮影者がシャッターボタン(操作入力部8)を

押すと、CCD1で撮像されたカラー画像信号がカメラブロック2に供給され、カメラ信号処理がされ、解像度変換後の原画像データがメモリコントロールブロック3の制御によってDRAM6に記憶される。

[0029]

原画像データがDRAM6に格納されると、画像処理ブロック7のによって原画像データが処理され、圧縮画像データ(JPEGファイルまたはGIFファイル)がDRAM6の他の領域に格納される。そして、画像処理ブロック7によってDRAM6から読み出された圧縮画像データが記録メディア9に書き込まれる

[0030]

圧縮画像データを記録する場合にファイル名が画像処理ブロック7において付けられる。記録メディア9がメモリカードの場合には、静止画用ディレクトリ(DCIM)には、MSDCF等のサブディレクトリが規定されている。サブディレクトリは、アルバムに相当するものである。JPEGで圧縮した1枚の画像であれば、サブディレクトリ例えば100MSDCFに対してDSC00001. Jpgのファイル名と拡張子とが付加される。次にメモリカードに記録される画像データがGIFファイルであれば、ディレクトリおよびサブディレクトリが同じで、TXT00002. gifのファイル名と拡張子とが付加される。DSC0およびTXT0のそれぞれの後に、(0001)から(9999)までの番号が付加される。

[0031]

記録メディア9に記憶されている画像を再生する時には、ファイル名を指定することによって所望の圧縮画像データを記録メディア9から読み出し、画像処理ブロック7によって伸張する。伸張した画像データをDRAM6に書き込む。そして、DRAM6に格納されている画像データをメモリコントロールブロック3を介して表示装置4に表示する。

[0032]

上述した一実施形態において、文字原稿等の撮影に主として使用される第2モードにおける画像処理についてより詳細に説明する。第2モードにおいては、画

像処理ブロック7によって画像の2値化処理がなされる。すなわち、DRAM6に取り込まれたカラー画像データに基づいて最適なしきい値が算出され、このしきい値を用いて、カラー画像データを2値(白および黒)に変換する。カラー画像データの内の輝度データが2値化される。CCD1において2値化する処理も可能であるが、画像処理ブロック7において2値化の処理を行う方法は、しきい値の設定等の処理を画像処理ブロック7において行うことが可能となる。

[0033]

後で詳細に説明するように、処理の対象の画像の1枚毎に輝度データの分布を調べ、その分布に基づいて文字と背景とを弁別することができるしきい値が算出される。しきい値算出のために、原画像のデータを使用すると、画素数が多いので、原画像を間引き処理した画像データ、または原画像中の例えば中央部付近の画像データのみを使用することが好ましい。

[0034]

次に、GIFファイル化のために、LZW方式によるデータ圧縮がなされる。 LZW方式は、データストリーム中に表れる任意の長さのパターンを辞書(コードテーブル)に登録し、次にそれと同じパターンが表れたときには、登録番号(可変長符号)を符号化出力とするものである。符号化に先立ってパターンを登録する辞書を編集する必要がなく、データを読み込みながら辞書を作成するようになされる。

[0035]

圧縮データからGIFファイルが作成される。GIFファイルの構造について 具体的に説明する。図2は、一般的なGIFファイルのファイル構造の一例を示 す。GIFファイルは、大別してヘッダブロック11、論理画面記述ブロック1 2、アプリケーション拡張ブロック13、グラフィック制御拡張ブロック14、 イメージデータブロック15、トレーラブロック16により構成される。これら のブロックを作成することによって、GIFファイルが作成される。

[0036]

ヘッダブロック11は、例えば、6バイトで構成され、先頭に配される。この ヘッダブロック11によりデータストリームがGIF形式であることが示される 。ヘッダブロック11は、データストリームの開始を示すシグニチャフィールド と、デコード処理を完全に行うのに必要なバージョンフィールドからなる。なお 、ヘッダブロックは、データストリームに一つ必須である。

[0037]

ヘッダブロック11の次に配されているのが論理画面記述ブロック12である。この論理画面記述ブロック12は、イメージをレンダリングするイメージプレーン(表示デバイス)の領域を定義するのに必要なパラメータ(サイズ、縦横比、色の深さ)を定義する。また、論理画面記述ブロック12は、グローバルカラーテーブルの有無およびその各種のパラメータを定義する。この論理画面記述ブロックも必須であり、データストリームには必ず一つだけ存在しなければならない。

[0038]

論理画面記述ブロック12の次に配されているのがグローバルカラーテーブルブロック12aである。カラーテーブルとは、その画像に使用される全ての色を3バイト(24ビット)を1組としてRGB値を表すパレットである。GIFは、最大256色をサポートしているため、グローバルカラーテーブルは、最高で256×3バイトを含む。これは、デフォルトパレットであり、以降のイメージに専用のローカルパレットがない場合に使用される。また、このブロックはオプションであるが一つのデータストリームに指定できるグローバルカラーテーブル数は、最高一つである。

[0039]

グローバルカラーテーブルブロック12aの次に配されているのがアプリケーション拡張ブロック13である。アプリケーション拡張ブロック13は、特定のアプリケーションのみがイメージデータに対して特別な処理を行うための固有の情報を含む。

[0040]

アプリケーション拡張ブロック 1 3 の次に配されているのがグラフィック制御 拡張ブロック 1 4 である。グラフィック制御拡張ブロック 1 4 は、イメージの表 示方法を制御するためのパラメータを含む。適応範囲は、直後に続く先頭のイメ ージのみである。なお、このブロック13を配することなくGIFファイルを構成することが可能であり、イメージデータの前に配することができるグラフィック制御拡張ブロック14は、一つである。

[0041]

グラフィック拡張ブロック14の次に配されているのがイメージデータブロック15であり、データストリームの個々のイメージは、イメージ記述子ブロック15aと、圧縮データ15cとにより構成されている。

[0042]

イメージ記述子ブロック15aは、テーブルベースのイメージを処理するのに必要なパラメータを含む。このブロックで指定される座標は、論理画面の座標を示し、ピクセル単位である。また、イメージ記述子ブロック15aは、グラフィックレンダリングブロックであり、この前に一つあるいはそれ以上のグラフィック制限拡張などの制御ブロックがある場合や、後ろにローカルカラーテーブルが続く場合がある。なお、イメージ記述子ブロック15aの後ろには、必ず圧縮データ15cが続く。つまり、イメージ記述子ブロック15aは、イメージにとって必須であり、各データストリームに存在するイメージに対して指定できるイメージ記述子は、一つだけである。なお、データストリームに存在するイメージの数に制限はない。

[0043]

テーブルベースの圧縮データ15cは、サブブロックの並びから構成されている。圧縮データ15cを構成する各サブブロックは、最大で255バイトであり、カラーテーブルに対するインデックスを含む。

[0044]

そして、上述したグラフィック制御拡張ブロック14と、イメージデータブロック15が連続画像として表示する枚数分繰り返され、ファイルの最後には、トレーラブロック16が配される。トレーラブロック16は、GIFデータストリームの終わりを示す単一のフィールドから構成されているブロックである。なお、GIFファイルの場合は、必ずトレーラブロック16で終了するように構成され、このトレーラブロック16は、変更不可能とされている。

[0045]

イメージデータブロック15を作成するためには、原画像を2値画像に変換し、2値画像をGIFのカラーパレット番号を指すインデックス値に変換する。後述するように、この2値化の処理と、インデックス値への変換を一度に行うようにしても良い。その場合には、2値化処理に使用するメモリを有効に利用することができる。

[0046]

上述したように、一実施形態では、LZW方式によるデータ圧縮がなされる。 LZW方式では、データストリーム中に表れるパターンの数が少ないほど、辞書 の登録内容と一致する可能性が高くなり、圧縮率を高くすることができる。2値 画像は、2つの値(0および1)のみからなるデータストリームであり、表れる パターン数は、カラー画像に比して頗る少なくなり、圧縮率を高くすることがで きる。言い換えると、圧縮後の画像データのデータサイズが小さくなる。

[0047]

一例として、(640×480)画素の場合では、取り込まれた原力ラー画像データの約370kB(キロバイト)のデータサイズである。このカラー画像を、若し、JPEGで圧縮すると、約70kBのデータサイズとなる。一実施形態のように、LZW方式によるデータ圧縮を行い、GIFファイルとすることで、約10kBのデータサイズとなる。このように、JPEG圧縮では、約1/4~1/5程度の圧縮率が、LZWでは、約1/30にまで圧縮される。

[0048]

また、LZW方式は、辞書の登録番号の並びから圧縮前のデータストリームを完全に復元することができる、すなわち、圧縮データから元のデータと同じものを復元できる、可逆圧縮方法である。一方、JPEGは、非可逆圧縮である。2値画像は、色数が極端に少なく、且つシャープなエッジが多い画像であるため、JPEGを使用して圧縮、伸張した時には、伸張画像中に画像ノイズが多く含まれる欠点がある。画質の点でも、GIFファイル化が有利である。

[0049]

次に、画像を2値化した2値画像をGIF形式に変換する処理の一例について

説明する。GIFファイルは、図2に示すようなブロックを生成することである。 の理の一例について図3を参照して説明する。

[0050]

図3 Aは、取り込まれたカラー画像データストリームを示す。 RGBの3バイトのデータによって1 画素が表現される。次に、カラー画像が2 値化処理され、図3 Bに示すように、2 値化した画像データのストリームが得られる。2 値化処理では、黒を表す画素データを(R=G=B=0)に変換し、白を表す画素データを(R=G=B=255)に変換する。そして、図3 Cに示すように、カラーパレットを指すインデックス値の0(黒)または1(白)に変換する。

[0051]

図3に示す処理は、元のカラー画像から2値画像への変換処理と、2値画像からインデックス値への変換処理とを必要とする。2回の変換処理によって、処理時間が長くなり、また、メモリ(DRAM6)の有効利用の点で問題が生じる。そこで、一実施形態では、以下に述べる方法によって、2値化とGIFファイルの作成処理を行うものである。

[0052]

図2中のグローバルカラーテーブルブロック12 a におけるカラーテーブルは、2値画像であるために、画像に使用される色は、白および黒の2色のみからなるものと、予め決めることができる。つまり、カラーテーブルの構成は、図4に示すように、インデックス値0が黒(R、G、B=0)に対応し、インデックス値1が白(R、G、B=255)に対応するものと、予め決めることができる。カラー画像の各コンポーネントがY(輝度信号)、Cb(青の色差信号)、Cr(赤の色差信号)で表す場合にも、この発明を適用できる。その場合には、黒を表す情報が(Y=0,Cb=Cr=128)となり、白を表す情報が(Y=255,Cb=Cr=128)となる。

[0053]

次に、データブロック15において、実際にLZWによって圧縮されているストリームは、元の画像データストリームそのものではなく、元の画像の各画素の色を示すカラーパレット番号を指すインデックス値のストリームである。図4に

示すカラーテーブルを持つ白黒の2値画像であれば、図5に示すように、インデックス値"0"および"1"の2値からなるストリームが圧縮される。

[0054]

このように、2値画像の場合には、白および黒の画素を予めインデックス値の "1" および"0" に決めることができるので、図6Aに示すような元のカラー画像 データストリームを2値化する処理と、インデックス値に変換する処理とを一度 に行うことによって、図6Bに示すようなインデックス値のストリームが得られる。したがって、図3に示す処理と比較すると、処理を簡略化することができ、 処理時間を短縮することができる。また、図3Aに示すように、元の画像情報が 1 画素当たりで3バイトで表現されているので、1回目の変換後のデータも、図3Bに示すように、1 画素当たりで3バイトのメモリ領域を必要とする。これに対して、図6に示す処理によれば、1回目の変換後のデータは、インデックス値のストリームとなるので、1 画素当たりで1バイトのメモリ領域しか必要とせず、メモリ(DRAM6)の有効利用を図ることができる。

[0055]

ここで、この発明の理解の助けとするため、既存の2値化処理について、図7を参照して説明する。ステップS11では、キャプチャ画像がDRAM6にはりつけられる。キャプチャ画像は、記録画像、すなわち、選択されたサイズまたは画素数の画像である。そして、ステップS13では、キャプチャ画像のカラー画像データをもとに最適なしきい値を導出する。ステップS14で、求めた最適しきい値を用いてキャプチャ画像のカラー画像データを2値化する。

[0056]

記録できる画像サイズまたは画素数は、ユーザの操作によって選択可能であり、同じシステム内で複数種類の画像を記録できる。例えばSXGA、XGA、VGAのいずれかを記録画像のサイズとして選択可能とされる。解像度変換部10によって画素数の変換がなされる。したがって、DRAM6にはられる画像は、撮影時に選択されたサイズによって異なり、画素数が異なる。解像度変換部10ではなく、画像処理ブロック7によって画素数変換を行うようにしても良い。

[0057]

既存の方法は、DRAM6にはられる画像を使用するために、しきい値を導出する処理において、画素数の相違によって演算回数が異なり、処理時間も異なる。また、画像サイズが異なる場合、しきい値を導出するアルゴリズムを共通とすることができない。例えばしきい値の導出にヒストグラムを使用する場合において、サイズの相違のために総画素数が異なり、ヒストグラムの正規化等の処理が必要となる。

[0058]

これらの問題を解決できるこの発明の一実施形態の処理を図8に示す。ステップS21で、キャプチャ画像をDRAM6にはりつけた後で、最適なしきい値を 導出するステップS23に移行する前に、キャプチャ画像を決まった一定サイズ にリサイズし、DRAM6上に、キャプチャ画像の領域と別の領域に格納する(ステップS22)。リサイズとは、元の画像を高精度に縮小し、画像の色情報等 は変化させずに、全体のデータ数を相対的に削減する画像処理を意味する。

[0059]

図9は、DRAM6上にキャプチャ画像とリサイズした画像の両者が格納されている状態を示している。リサイズは、解像度変換部10によって例えばVGAのサイズにキャプチャ画像のサイズを変換する。この例では、記録画像のサイズがVGAである場合には、特にリサイズの処理を行う必要がない。

[0060]

ステップS23では、リサイズした画像のカラー画像データをもとに最適しきい値を導出する。元の画像とリサイズした画像の色情報の分布が相対的に同一であるので、何れの画像を使用しても同一のしきい値を求めることができる。予め決まったサイズの画像にリサイズしてからしきい値を導出するので、選択される記録画像のサイズにかかわらず、常に同じアルゴリズムを適用することができ、しきい値の導出に要する処理時間も一定とすることができる。また、リサイズした画像をDRAM6の取り込んだ画像とは別の領域に格納するので、取り込んだ画像が壊されないので、しきい値導出後の処理は、既存のアルゴリズムを使用した場合と変更する必要がない。

[0061]

画像処理ブロック7でなされる2値化に使用するしきい値の導出処理の一例について説明する。図10は、しきい値を導出する処理のフローチャートである。しきい値導出の開始のステップS1ではリサイズした画像がDRAM6にはりつけられる。DRAM6に取り込まれた画像の輝度データのヒストグラムが作成される(ステップS2)。作成されたヒストグラムは、例えば画像処理ブロック7のメモリに蓄えられる。

[0062]

図11は、作成されたヒストグラムの一例を示す。横軸が輝度データのレベル (8ビットデータの場合で、0から255までの値)を示し、縦軸が画素数を示す。白地に黒文字を撮影した場合、図11に示すように、白側に背景に対応した高いピークと、黒側に文字に対応した低いピークが現れる。黒板に白墨で書いた文字の画像では、図11とピークの高さが反対となるが、以下のしきい値の導出 処理を何ら変更する必要がない。

[0063]

ステップS3では、ヒストグラムから輝度の最小値Ymin と最大値Ymax が求められる。この場合、画像に含まれるノイズや無効画素データを取り除くために、黒側のオフセット値offset1 と白側のオフセット値offset2 とを設定した上で、最小値Ymin と最大値Ymax が求められる。より具体的には、(Y=0)からヒストグラムを上向き(図11では、右向き)にたどり、画素数がオフセットoffset1 を越えた時点でYmin が求まり、(Y=255)からヒストグラムを下向き(図11では、左向き)にたどり、画素数がオフセットoffset2 を越えた時点でYmax が求まる。

[0064]

そして、ステップS4では、差Ydiff(=Ymax -Ymin)が求められ、差Ydiffが予め設定されているリミット範囲Yrange と比較される。Ydiff>Yrange の場合には、ステップS5において、しきい値Thrが次の式(1)で計算される。

[0065]

Thr = (Ymin + Ymax) / 2 (1)

しきい値は、この式(1)によってほぼ正確に求められるが、カメラ部における撮影画像の設定方法によっては、しきい値に微調整を加えることによってより鮮明な2値画像が得られる場合がある。その場合には、式(1)に対して調整値の項を追加して、しきい値Thrとする。調整値の範囲を±Adjとすると、

Thr = $(Ymin + Ymax) / 2 \pm Adj$ (2) でしきい値が計算される。

[0066]

取り込んだ画像毎にヒストグラムを作成し、最大値および最小値を画像毎に求めなおし、しきい値Thrを式(2)によって決定する。したがって、カメラ部の設定の変更例えば全体の明るさの調整によって、取り込んだ画像のヒストグラムのピークの位置が変動しても、その画像に応じた最適しきい値を導出することができる。

[0067]

さらに、ステップS4において、求めた差Ydiffが設定した範囲Yrange 以下の場合には、しきい値を固定値に設定する(ステップS6)。差YdiffがYrange 以下となる画像は、図12に示すように、一つのピークのみからなるヒストグラムを生じさせる画像、すなわち、文字が無く、背景のみの画像であると推定される。そのような画像に関しては、式(1)または式(2)によりしきい値を導出することは、不適切であるので、予め設定している固定値をしきい値として使用する。例えば8ビットの輝度信号の中間値(128)が固定値として使用される。

[0068]

以上の処理でしきい値導出処理が終了し、求められたしきい値Thrによって取り込んだ画像が2値化される(ステップS7)。上述したしきい値導出の処理において、オフセット値および中間値からの調整値は、撮影画像の特徴に依存しているので、ディジタル画像記録装置によって異なる値に設定する必要がある。したがって、ディジタル画像記録装置の依存性を少なくし、汎用性を持たせるため

に、これらの値は、任意の値に設定可能とされている。

[0069]

次に、この発明の他の実施形態について説明する。上述した一実施形態では、 キャプチャ画像を一定のサイズの画像にリサイズするようにしたが、他の実施形態は、画像の間引き処理を行い間引き画像を生成するものである。間引き処理は、色情報の分布を元の画像と変えない程度に、画素数を間引くものである。例えば垂直方向に行(ライン)を均等間隔で間引くものである。

[0070]

キャプチャ画像を2値化するためのしきい値を導出する際に、重要なことは、 キャプチャ画像における色情報の分布を把握することである。したがって、全画 素のデータを忠実に考慮する必要がなく、適度の行数を間引いても、ヒストグラ ムを使用して、正しくしきい値を導出することができ、処理の高速化を達成する ことができる。また、被写体によって間引く行数を変化させることによって、最 小限のデータ数で正しいしきい値を導出することができる。

[0071]

この発明のさらに他の実施形態について説明する。さらに他の実施形態は、撮影画像の内部に、枠を設定し、枠内部の情報のみを用いてしきい値を導出するものである。この処理によって、画像周辺部のノイズ、並びに文字と背景以外の不要な周辺画像の影響を排除でき、しきい値を正しく導出することができる。

[0072]

すなわち、カメラ信号処理の不具合によって、画像周辺部に劣化が発生し、ノイズ等が発生したときに、ノイズ等を含む情報をしきい値導出に用いると、正しいしきい値を求めることができない。さらに、ホワイトボード、または離れた所にある文字原稿を撮影すると、ホワイトボード、文字原稿以外の周辺の不要な物体が撮影画像中に含まれてしまい、しきい値を正しく求めることができない。

[0073]

図13Aは、ホワイトボードを撮影した画像の一例である。ホワイトボード以外に、その周辺の不要な物体が撮影されている。この撮影画像の全データを使用すると、正しいしきい値を導出できないので、2値化した画像は、図13Bに示

すように、文字が不鮮明となってしまう。さらに他の実施形態では、図13Aにおいて、点線で示すような画像中央の部分画像をカバーする枠を設定し、枠内の画像情報のみを使用してしきい値を導出する。それによって、周辺画像の影響を受けずにしきい値を正しく導出することが可能となり、2値画像は、図13Cに示すように、鮮明なものとなり、文字の判読が容易となる。

[0074]

しきい値の導出に使用する情報を示す枠は、撮影画像の略中央部の所定の大きさとされる。しかしながら、実際の撮影画像は、種々のものがありうるので、枠の位置と大きさを被写体に合わせて設定できることがより好ましい。図14AおよびB、図15AおよびBは、撮影画像中の文字が書かれているホワイトボードの位置と大きさに合わせて枠(点線で示す)を設定し、枠内の情報を使用してしきい値を求め、そのしきい値によって2値化された画像の例を示している。

[0075]

枠を設定するには、撮影画像を表示装置4に表示するときに、枠の位置と大きさを示す表示例えば点線の枠を撮影画像に重ねて表示する。枠の位置を操作入力部8の方向キーによって移動可能とし、枠の大きさを画像拡大または縮小用のキーで調整可能とする。枠の表示は、点線以外のものを使用しても良く、その位置と大きさを変える操作方法は、種々のものを使用できる。このように、必要な被写体に合わせてしきい値導出に利用する部分画像を選択可能とすることによって、しきい値をより高精度に求めることができる。

[0076]

この発明は、上述した実施形態等に限定されるものでは無く、この発明の要旨を逸脱しない範囲内で様々な変形や応用が可能である。例えば上述した3個の実施形態を組み合わせることで、処理時間をより短縮でき、より正確なしきい値の導出が可能となる。例えば、一定のサイズにリサイズするときに、行の間引きを行うようにしても良い。また、枠による部分画像の選択処理とリサイズとを組み合わせるようにしても良い。また、この発明は、ディジタルカメラに限らず、他のディジタル画像記録装置に対しても適用できる。例えば動画記録用のディジタル画像記録装置の1つの機能としてスチル画像記録機能を持たせる場合、CCD

を備える携帯型パーソナルコンピュータによって、撮影画像を処理する場合等に この発明を適用できる。

[0077]

【発明の効果】

この発明に依れば、記録する画像のサイズにかかわらず、リサイズした画像を 用いてしきい値を求めるので、しきい値導出のアルゴリズムを一貫して適用する ことが可能となり、また、処理時間が変動することを防止できる。

[0078]

また、この発明に依れば、間引き画像を用いてしきい値を求めるので、しきい 値導出に支障を生じることなく、処理の高速化が可能となる。間引きの処理を被 写体に応じて可変することによって、最小限のデータ数で正しいしきい値を導出 することが可能となる。

[0079]

さらに、この発明に依れば、全画像のデータを用いるのではなく、部分画像の情報を用いてしきい値を導出することによって、不要な情報の影響を受けずに意図した部分を最適に2値化するための正しいしきい値の導出が可能となる。また、使用する部分画像の設定をユーザが任意に行うことを可能とすることによって、ユーザが2値化したい部分を任意に選択することが可能となる。

【図面の簡単な説明】

【図1】

この発明の一実施形態の全体構成を示すブロック図である。

【図2】

この発明の一実施形態におけるGIFファイルの構造を示す略線図である。

【図3】

文字原稿等の撮影画像の2値化処理とGIFファイルへの変換処理の一例の説明に用いる略線図である。

【図4】

文字原稿等の撮影画像のGIFファイルへの変換処理の一例の説明に用いる略 線図である。 【図5】

GIFデータブロックにおいて圧縮するデータストリームの説明に用いる略線 図である。

【図6】

この発明の一実施形態における文字原稿等の撮影画像の2値化処理とGIFファイルへの変換処理の説明に用いる略線図である。

【図7】

既存の2値化の処理を説明するためのフローチャートである。

【図8】

この発明の一実施形態における2値化の処理を説明するためのフローチャートである。

【図9】

この発明の一実施形態におけるリサイズされた画像をDRAMに格納した状態を概略的に示す略線図である。

【図10】

この発明の一実施形態におけるしきい値導出処理を説明するためのフローチャートである。

【図11】

しきい値導出処理に使用するヒストグラムの一例の略線図である。

【図12】

しきい値導出処理に使用するヒストグラムの他の例の略線図である。

【図13】

この発明のさらに他の実施形態を説明するための略線図である。

【図14】

この発明のさらに他の実施形態を説明するための略線図である。

【図15】

この発明のさらに他の実施形態を説明するための略線図である。

【図16】

文字原稿を2値化するためのしきい値を説明するための略線図である。

特2000-056001

【符号の説明】

1 · · · CCD、2 · · · カメラブロック、3 · · · メモリコントロールブロッ

ク、4·・・表示装置、6·・・DRAM、7·・・画像処理ブロック、8·・

・操作入力部、9・・・記録メディア

【書類名】 図面

【図1】

【図2】

【図3】

【図4】

【図5】

【図6】

【図7】

【図8】

【図9】

【図10】

【図11】

【図12】

【図13】

ABCDEFG HIJKI MNO

C ABCDEFG HIJKLMNO PQRSTUV

【図14】

【図16】

ABCDEFGHIJKLMFOPQRSTUVWXYZ 0123456789 ABCDEFGHIJKLMFOPQRSTUVWXYZ 0123456789 ABCDEFGHIJKLMFOPQRSTUVWXYZ 0123456789 ABCDEFGHIJKLMFOPQRSTUVWXYZ 0123456789 ABCDEFGHIJKLMFOPORSTUVWXYZ 0123458789 ABCDEFGHIJKLMFOPGRSTUVWXYZ 0123456789 ABCDEFGHIJKLMFOPGRSTUVWXYZ 0123456789 ABCDEFGHIJKLMFOPQRSTUVWXYZ 0123456789 ABCDEFGHIJKLMFOPQRSTUVWXYZ 0123458789 ABCDEFGHIJKLMFOPQRSTUVWXYZ 0123456789 ABCDEFGHIJKLMFOPQRSTUVWXYZ 0123456789 ABCDEFGHIJKLMFOPORSTUVWXYZ 0123456789 ABCDEFGHIJKLMFOPQRSTUVWXYZ 0123458789 ABCDEFGHIJKI,MFOPQRSTUVWXYZ 0123456789 ABCDEFGHIJKLMFOPQRSTUVWXYZ 0123456789 ABCDEFGHIJKLMFOPGRSTUVWXYZ 0123456789 ABCDEFGHIJKLMFOPQRSTUVWXYZ 0123456789 ABCDEFGHIJKLMFOPGRSTUVWXYZ 0123456789 ABCDEFGHIJKLMFOPQRSTUVWXYZ 0123456789 ABCDEFGHIJKLMFOPGRSTUVWXYZ 0123456789 GHJALMFOPGRST GHLKLMFORGRES GHUKUMFORDA

【書類名】 要約書

【要約】

【課題】 取り込んだカラー画像を2値化するためのしきい値を正しく且つ一 定の処理時間で求める。

【解決手段】 ステップS21で、キャプチャ画像をDRAMにはりつけた後で、しきい値を導出するステップS23に移行する前に、キャプチャ画像を決まった一定サイズにリサイズし、DRAM上に、キャプチャ画像の領域と別の領域に格納する(ステップS22)。ステップS23では、リサイズした画像のカラー画像データをもとに最適しきい値を導出する。元の画像とリサイズした画像の色情報の分布が相対的に同一であるので、何れの画像を使用しても同一のしきい値を求めることができる。予め決まったサイズの画像にリサイズしてからしきい値を導出するので、選択される記録画像のサイズにかかわらず、常に同じアルゴリズムを適用することができ、しきい値の導出に要する処理時間も一定とすることができる。

【選択図】 図8

識別番号

[000002185]

1. 変更年月日 1

1990年 8月30日

[変更理由] 新規登録

住 所 東京都品川区北品川6丁目7番35号

氏 名 ソニー株式会社