香港科技大學(廣州)
THE HONG KONG
UNIVERSITY OF SCIENCE AND
TECHNOLOGY (GUANGZHOU)

High Dynamic Range Image Reconstruction via Deep Explicit Polynomial Curve Estimation

Jiaqi Tang, Xiaogang Xu, Sixing Hu and Ying-Cong Chen*

Internal U-shape Transformer

Contribution

Implicit Modeling

We propose a new **framework** for explicitly modeling and estimating tone-mapping function parameters, which is capable of handling diverse tone-mapping functions, providing more accurate reconstructions in the process.

Explicit Modeling

- We have constructed a new **dataset** specifically designed for this task, featuring a clear relationship between LDR images and their corresponding tone mapping functions.
- Our approach achieves **SOTA performance** in both synthesis and real dataset and clarifies a corresponding relationship between the tone-mapping function and the generated HDR image.

Problem Formulation

☐ HDR-to-LDR conversion (Camera Pipeline):

☐ Reversing HDR-to-LDR conversion:

$$H = \tau^{-1}(\zeta^{-1}(L))$$

- ☐ Two Goals:
 - Reversing tone mapping function (Key)
 - > Removing other degradations

Method

☐ Parameterizing the Tone-Mapping Function

What is structures of Tone mapping function? Simple structure, monotonic or semi-monotonic curve.

To parameterizing it as a polynomial curve: $H = \tau^{-1}(\zeta^{-1}(L)) = \sum_{n=0}^{N} M_n \zeta^{-1}(L)^n$

Polynomial
Coefficient Maps
(PCMs)

Network Architecture Learning the Polynomial Coefficient Maps

☐ Quantitative Comparison in Test-Real.

	PSNR	μ -PSNR	SSIM	μ -SSIM	HDR-VDP-2.2	AvgPSNR
ExpandNet [18]	10.06	22.20	0.5203	0.6498	38.48	13.70
HDRUNET [4]	27.29	17.15	0.9337	0.6199	45.73	24.25
Uformer [32]	26.77	16.65	0.9109	0.6017	45.99	23.74
Ours	28.24	21.49	0.9406	0.6577	47.09	26.23

☐ Qualitative Comparison in Test-Real.

☐ Qualitative result and Curve Estimation in Test-Gamma.

By Jiaqi Tang (HKUST(GZ) & HKUST)

@ No.1 Du Xue Rd, Nansha District, Guangzhou@ Clear Water Bay, Sai Kung, New Territories, Hong Kong

Acknowledgement

This work is partially supported by National Natural Science Foundation of China (*No. 62206068*). Besides, part of this work belongs to Jiaqi Tang's undergraduate thesis at Northwestern Polytechnical University.