Lying Aversion and Vague Communication: An Experimental Study

Keh-Kuan Sun and Guangying Chen

ESA Job-market Candidates Seminar Series

November 4th, 2020

Why and when should one use a vague message over a blatant lie?

- Why and when should one use a vague message over a blatant lie?
- Strategic and behavioral aspects

- Why and when should one use a vague message over a blatant lie?
- Strategic and behavioral aspects
 - ▶ Belief about the state of the world
 - Belief about how honest the sender is

- Why and when should one use a vague message over a blatant lie?
- Strategic and behavioral aspects
 - Belief about the state of the world
 - Belief about how honest the sender is
 - Attitude toward different method or degree of misleading behavior

- Why and when should one use a vague message over a blatant lie?
- Strategic and behavioral aspects
 - Belief about the state of the world
 - Belief about how honest the sender is
 - Attitude toward different method or degree of misleading behavior
- Many applications: disclosure game, public-good provision game, ...

We present a model of information transmission with lying costs(guilt/reputation).

- We present a model of information transmission with lying costs(guilt/reputation).
- We test the theoretical predictions through an online experiment.

- We present a model of information transmission with lying costs(guilt/reputation).
- We test the theoretical predictions through an online experiment.
- The use of vague messages arises endogenously from the lying aversion.

- We present a model of information transmission with lying costs(guilt/reputation).
- We test the theoretical predictions through an online experiment.
- The use of vague messages arises endogenously from the lying aversion.
- 2. People prefer to be vague and truthful.

- We present a model of information transmission with lying costs(guilt/reputation).
- We test the theoretical predictions through an online experiment.
- The use of vague messages arises endogenously from the lying aversion.
- 2. People prefer to be vague and truthful.
- There exists a group of people who do not use vague messages even when that means they have to let go of potential monetary gain.

Literature

- Monetary vs non-monetary utility: Becker (JPE 1968)
- Psychological game: Geanakoplos, Pearce, and Stacchetti (GEB 1989)
- Signaling game: Crawford and Sobel (ECMA 1982)
- Rolling-a-die: Fischbacher and Föllmi-Heusi (JEEA 2013)
 - Abeler, Nosenzo, and Raymond (ECMA 2019)
 - Gneezy, Kajackaite, and Sobel (AER 2018)
 - Khalmetski and Sliwka (AEJ Micro 2019)

Model

- A population of agents and one audience
- ► Each individual agent observes the state of the world $i \stackrel{i.i.d.}{\sim} Unif[Ω]$ where $Ω = \{1, 2, ..., 10\}$
- ► The agent sends a message J after observing the true state of the world i.
- A message J is a non-empty subset of Ω .
 - ▶ A message J is truthful if $i \in J$, and is a lie otherwise.
 - A message is called precise if it is a singleton set, and vague otherwise.
- The agent receives the monetary payoff proportional to a number randomly drawn from her message.
 - ightharpoonup Receives x for reporting a precise message x.
- One shot; no repeated interaction

Model: utility

- ▶ When the message is a lie $(i \notin J)$ she incurs the internal cost of guilt
 - ▶ intrinsic aversion type $t \in [0, T]$ (fixed cost)
 - ▶ the size of the lie: $|i \overline{J}|$ (variable cost)
- The agent also cares about her reputation
 - ► The audience is a rational Bayesian: *P*(honest|*J*)
- ► The agent's utility can be written by:

$$U(i,J,t) = \text{monetary payoff}(J)$$

- $\mathbb{1}(i \notin J) \cdot \text{internal guilt}(|i - \overline{J}|, t)$
+ $\gamma \cdot \text{external reputation}(J)$

A Bayesian equilibrium exists: Schmeidler 1973

Experiment design: precise vs vague

- Subjects first observe a random number between 1-10 on their web browser
- Subjects report the number to the experimenter by clicking boxes on screen.
- Two stages: within-subject analysis
 - Precise: can select only one box at a time
 - Vague: can select multiple boxes at a time
- Randomized order of the two stages

Experiment design: precise vs vague

Experiment design: precise vs vague

Experiment design: anonymity

- Anonymity of agents: between-subject analysis
 - ▶ Identifiable: real name, student ID, video on
 - Anonymous: screen name, no student ID, video off
- Observability of the true state
 - Identifiable: the random number is generated outside the experiment software.
 - Anonymous: the random number is generated inside the software and the experimenter can observe the true state.

Experiment design: treatments

Identifiable & Unobs. Anonymous &						
Precise	IP	AP				
Vague	IV	AV				

- two dimensions, four treatments
- Online environment: zoom meetings for the instructions,
 Qualtrics for the main experiment

Hypothesis 1 (IP-AP).

Under the precise (restricted) communication,

- i. more agents lie in the anonymous environment: $lie_{IP} \leq lie_{AP}$;
- ii. agents earn more monetary payoff on average in the anonymous environment: earning_{IP} \leq earning_{AP}.
- ► Intuition: place an agent in two different games. The agent should feel more comfortable to lie when there is no reputation concern.

Hypothesis 2.

In the AV environment,

- i. all truth-tellers in AV uses optimal vague messages: $\{i, x^*, x^* + 1, ... 10\}$;
- ii. no message contains a number less than the true observation;
- iii. no precise message except {10} is truthful.
- ▶ Intuition: if one feels the internal guilt only when the message is a lie, the agent's problem becomes a comparison between constrained vs unconstrained optimization problem: $\max_{j:i \in J} U(i, J, t)$ vs $\max_{j} U(i, J, t)$

Hypothesis 3 (AP-AV).

- i. more agents lie when the communication is restricted (precise): $lie_{AP} \ge lie_{AV}$;
- ii. an agent who is truthful in AP is also truthful in AV conditional on the same observation;
- some agents who lie in AP reports truthfully in AV conditional on the same observation;
- iv. agents earn more monetary payoff on average when the communication is not restricted (vague): earning_{AP} \leq earning_{AV};

Hypothesis 4.

In both the IV and the AV environment, people use vague messages.

- ► Intuition:
 - AV: straightforward from the use of optimal vague messages
 - ▶ IV: proof by contraposition; some type of agents benefit by using a truthful and vague message.

Hypothesis 5 (Conjecture).

- i. Under the vague (unrestricted) communication, agents earn more monetary payoff on average in the anonymous environment: earning_{IV} \leq earning_{AV};
- ii. In the identifiable environment, agents earn more monetary payoff on average when the communication is not restricted (vague): earning $_{IP} \leq earning_{IV}$;

Data Summary

	Average Report		Lie			
	Precise	Vague	Precise	Vague	Size	Ν
Identifiable	6.556	8.208			3.72	36
Anonymous	6.788	8.285	12	6	3.06	33
			(36.36%)	(18.18%)		

- ▶ 69 subjects recruited.
- 4 Anonymous sessions and 7 Identifiable sessions, with the average size of 8.3 and 5.1 participants in each session, respectively.
- Each session lasted approximately 30 minutes.
- Subjects received \$9.46 on average, including \$2 show-up fee

Result 1: IP-AP

	Average Report		Lie			
	Precise	Vague	Precise	Vague	Size	Ν
Identifiable	6.556	8.208			3.72	36
Anonymous	6.788	8.285	12	6	3.06	33
			(36.36%)	(18.18%)		

Hypothesis 1 (IP-AP).

Under the precise (restricted) communication,

- i. agents lie in the anonymous environment: $lie_{IP} \leq lie_{AP}$;
- ii. agents earn more monetary payoff on average in the anonymous environment: earning $_{IP} \leq earning_{AP}$.
 - Under the precise (restricted) communication, participants reported higher in the anonymous environment.
 - ► The one-sided t-test is not very significant: p-value = 0.3876

Result 2: AV

Hypothesis 2.

In the AV environment,

i. all truth-tellers in AV uses optimal vague messages:

$$\{i, x^*, x^* + 1, ...10\};$$

- 44.4% (12 of 27) of truth-tellers used OVM, 18.5% (5 of 27) used a pair of the true observation and 10, and 33.3% (9 of 27) used a precise message
- ii. no message contains a number less than the true observation;
 - only 1 out of 33 participant included a number less than the true observation in the report
- iii. no precise message except {10} is truthful.
 - all precise messages (except {10}) were truthful

	Average Report		Lie			
	Precise	Vague	Precise	Vague	Size	Ν
Identifiable	6.556	8.208			3.72	36
Anonymous	6.788	8.285	12	6	3.06	33
			(36.36%)	(18.18%)		

Hypothesis 3 (AP-AV).

- i. more agents lie when the communication is restricted (precise): $lie_{AP} \ge lie_{AV}$;
 - more participants lied when the communication is restricted (p-value = 0.006)

	Average Report		Lie			
	Precise	Vague	Precise	Vague	Size	Ν
Identifiable	6.556	8.208			3.72	36
Anonymous	6.788	8.285	12	6	3.06	33
			(36.36%)	(18.18%)		

Hypothesis 3 (AP-AV).

- ii. an agent who is truthful in AP is also truthful in AV conditional on the same observation;
 - participants reported higher on average when the communication is not restricted (p-value = 0.005)

	Average Report		Lie			
	Precise	Vague	Precise	Vague	Size	Ν
Identifiable	6.556	8.208			3.72	36
Anonymous	6.788	8.285	12	6	3.06	33
			(36.36%)	(18.18%)		

Hypothesis 3 (AP-AV).

- iii. some agents who lie in AP reports truthfully in AV conditional on the same observation;
 - all participants who were truthful in AP remained truthful in AV

	Average Report		L	Lie		
	Precise	Vague	Precise	Vague	Size	Ν
Identifiable	6.556	8.208			3.72	36
Anonymous	6.788	8.285	12	6	3.06	33
			(36.36%)	(18.18%)		

Hypothesis 3 (AP-AV).

- iv. agents earn more monetary payoff on average when the communication is not restricted (vague): earning_{AP} \leq earning_{AV};
 - 6 out of 12 liars in AP reported switches to truthful messages in AV despite lower expected monetary payoff

Result 4: IV-AV

	Average Report		Lie			
	Precise	Vague	Precise	Vague	Size	Ν
Identifiable	6.556	8.208			3.72	36
Anonymous	6.788	8.285	12	6	3.06	33
			(36.36%)	(18.18%)		

Hypothesis 4.

In both the IV and the AV environment, people use vague messages.

- ► In the IV environment, 25 out of 36 participants (69.4%) used a vague message.
- ► In the AV environment, 18 out of 33 participants (54.5%) used a vague message.
- More people use vague messages in IV, and the size of the vague message is also larger in IV.

Result 5-1: IV-AV

	Average Report		Lie			
	Precise	Vague	Precise	Vague	Size	Ν
Identifiable	6.556	8.208			3.72	36
Anonymous	6.788	8.285	12	6	3.06	33
			(36.36%)	(18.18%)		

Hypothesis 5.

- i. Under the vague (unrestricted) communication, agents earn more monetary payoff on average in the anonymous environment: earning_{IV} \leq earning_{AV};
- ▶ The result supports Hypothesis 5-1.
- ► However, the one-sided t-test is inconclusive with a p-value of 0.4154.

Result 5-2: IP-IV

	Average Report		Lie			
	Precise	Vague	Precise	Vague	Size	Ν
Identifiable	6.556	8.208			3.72	36
Anonymous	6.788	8.285	12	6 (18.18%)	3.06	33
			(30.36%)	(10.10%)		

Hypothesis 5.

- ii. In the identifiable environment, agents earn more monetary payoff on average when the communication is not restricted (vague): earning $_{IP} \leq earning_{IV}$;
- ▶ The result supports Hypothesis 5-2.
- ▶ The one-sided t-test is significant with a p-value of 0.0098.

Concluding remarks

- The vagueness of a message only costs the reputation and does not affect the internal cost of lying.
- The use of vague messages endogenously arises from the lying aversion.
- Overall, participants reported much higher on average when the vague communication is allowed.
- Some portion of the observed aversion for monetary-payoff-maximization in previous experiments could be attributed to the restriction on the message space.
- Analogous to the "warm glow" giving: as long as they can signal that their goodwill, no extra cost seems necessary.

Concluding remarks

- The existence of precise truth-tellers in the anonymous environment
- A possible alternative: the existence of another motivation for truth-telling
- A concern for accuracy or a concern for the self-image of good intention?

Work in progress

- likelihood estimation for the lying probability in the identifiable environments
- a possible concern for a meta-game: are the precise and the vague treatments independent?
 - 1. a logit regression:

$$\label{eq:lie_AV} \mbox{lie}_{\mbox{\tiny AV}} = \begin{cases} 1 & \mbox{if } \beta_0 + \beta_1 \theta_{\mbox{\tiny AV}} + \beta_2 \theta_{\mbox{\tiny AP}} + \beta_3 \mbox{lie}_{\mbox{\tiny AP}} + \epsilon > 0 \\ 0 & \mbox{otherwise}. \end{cases}$$

- 2. order of the precise / vague treatments
- better characterization of the equilibria in the identifiable environments

Thank you!

For more information, please visit https://kehkuansun.github.io or email me at sun.k@wustl.edu.

