Defo:

Let fet) be a function of t defin

for all possible positive Value of t. Then

the Laplace transforms of fet? is denoted by L[f(t)] is defined by

F(s) = L[f(t)] = Jestelt, & is Think may be a seek or conf

L[feti] being cleary - ferrein -+ & is briefly written as FCS). That is L[feti] = Fee) which can also be watter as fet) = L'[FCS]), is carred the inverse capica transform of Transforms

• 7

Element

intery functions

Laplace transform - Power Function

	f(t)	$\bar{F}(s) = L\{f(t)\}\$
Integer powers	1 .	1/s
	t	1/s ²
	t ²	2!/s³
	:	i
	t^n	$n!/s^{n+1}$
	t ^p , p > 0	$\Gamma(p+1)/s^{p+1}$, where $\Gamma(p+1) = \int_0^\infty x^p e^{-x} dx$
Positive real powers	\sqrt{t}	$\Gamma\left(\frac{3}{2}\right)\frac{1}{s^{3/2}} = \frac{1}{2}\Gamma\left(\frac{1}{2}\right)\frac{1}{s^{3/2}} = \frac{\sqrt{\pi}}{2 s^{3/2}}$

TO+0 = n:

Laplace transform - Exponential and Trigonometric Functions

	f(t)	$\bar{F}(s) = L\{f(t)\}\$
Exponential	e ^{at}	$\frac{1}{s-a}$
	e ^{-at}	$\frac{1}{s+a}$
Trigonometric	sin at	$\frac{a}{s^2 + a^2}$
	cosat	$\frac{s}{s^2 + a^2}$

Sinhat
$$S^{2}-3^{2}$$

$$C-Shet$$

$$S^{2}-3^{2}$$

$$= \int_{0}^{\infty} e^{-st} c(t) dt \leq \int_{0}^{\infty} f(t) dt = 1$$

$$=\int_{0}^{\infty}e^{-c(x)}dx^{2}$$

=) ~	
_st ·	
= _	= - /s

•	
-st -	$ = \frac{-1}{s} \begin{bmatrix} 0 - 1 \end{bmatrix} $

$$\begin{array}{ccc} (at & b=st\Rightarrow) & t=b/s \\ & \frac{df}{dp} = \frac{1}{s} \\ & \frac{df}{dp} = \frac{af}{s} \end{array}$$

$$L \subseteq Y_2 = \prod_{s=1}^{r-1} = \prod_{s=1}^{r} = \prod_$$

Resolution of the set of the set

$$= \frac{1}{s-a} \left\{ \begin{array}{c} s - 1 \\ s - a \end{array} \right\} = \frac{1}{s-a}$$

L[Sinat] =

Sinhet =
$$e^{\frac{\pi}{2}}$$

= 1 5 5 =	e at - Je	

 $= \frac{1}{2} \left[\frac{4+q-1}{5^2-a^2} \right] = \frac{a}{5^2-a^2}$

Properoses of Laplace Toursfooms 1. Lineary Property.

It a, b, e be any constants and fig. h and functions of t,

L[=fet)+b3ct)-chct] = a L(fet) +b L(pet)-el[heb]

2. First Shiffing Property: It L[Ht]] = Fcs) Han

(S-9)

3. L[est sinbt] =
$$\frac{6}{(s-s)^2+6^2}$$
 :: L[sinbt] = $\frac{6}{(s-s)^2+6^2}$

(S-5)2-62

4. L[eqt coshbt] = S-9

the Laplace transforms = 7

Sinat Sinat .

L[sinatsinat] = L[=[cost-cosst]]

= = { L[cost] - L[cosse]}

 $=\frac{1}{2}\left\{\frac{3}{3^{2}+1}-\frac{3}{(3^{2}+25)}\right\}$

$$= \frac{s}{2} \left\{ \frac{s^2 + 2s - s^2 - 1}{s^2 + 1} \right\}$$

$$= \frac{12S}{(S^{2}+1)(S^{2}+25)}$$

$$= \frac{12S}{(S^{2}+1)(S^{2}+25)}$$

Find
$$L \left[\cos^2 2t \right]$$

$$3017 \cdot \left[\cos^2 2t \right] = 1 + \cos 2t$$

$$2$$

$$L[cos^2at] = \frac{1}{2}L(1+cos4t)$$