Gaussian Measures in Hilbert Spaces [Da Prato, 2006, Chap. 1]

G. Chiusole

TU München

Table of Contents

- 1. Notation, Review, etc.
- 2. One-dimensional Hilbert spaces
- 3. Finite-dimensional Hilbert spaces
- 4. Separable Hilbert spaces
- 5. Closing remarks

Motivation

"There is no infinite dimensional Lebesgue measure"

Motivation

"There is no infinite dimensional Lebesgue measure"

Theorem

Let $(E, \|\cdot\|)$ be a normed space with $\dim E = \infty$. Then there is no non-trivial, translation-invariant, σ -additive Borel measure μ on $(E, \|\cdot\|)$ s.t. $\mu[B_{\varepsilon}(0)] < \infty$ for all $\varepsilon > 0$.

3

Motivation

"There is no infinite dimensional Lebesgue measure"

Theorem

Let $(E, \|\cdot\|)$ be a normed space with $\dim E = \infty$. Then there is no non-trivial, translation-invariant, σ -additive Borel measure μ on $(E, \|\cdot\|)$ s.t. $\mu[B_{\varepsilon}(0)] < \infty$ for all $\varepsilon > 0$.

Alternative: Gaussian measures

Notation, Review, etc.

Notation, Review, etc.

Unless otherwise specified, ${\cal H}$ denotes a real, separable Hilbert space.

$$\begin{split} \mathcal{B}(H) & \text{... Borel } \sigma - \text{algebra on } H \\ L(H) & := \{T \in L(H) | \text{ linear, bounded} \} \\ L^+(H) & := \{T \in L(H) | \text{ symmetric, pos. semi-definite} \} \\ L_1^+(H) & := \left\{ T \in L^+(H) \middle| \sum_{k=1}^\infty \langle e_k, Te_k \rangle < \infty, (e_k)_{k \in \mathbb{N}} \text{ ONB of } H \right\}. \end{split}$$

5

Notation, Review, etc.

Unless otherwise specified, ${\cal H}$ denotes a real, separable Hilbert space.

$$\begin{split} \mathcal{B}(H) & \text{... Borel } \sigma - \text{algebra on } H \\ L(H) & := \{T \in L(H) | \text{ linear, bounded} \} \\ L^+(H) & := \{T \in L(H) | \text{ symmetric, pos. semi-definite} \} \\ L_1^+(H) & := \left\{ T \in L^+(H) \middle| \sum_{k=1}^\infty \langle e_k, Te_k \rangle < \infty, (e_k)_{k \in \mathbb{N}} \text{ ONB of } H \right\}. \end{split}$$

For
$$H=\mathbb{R}^d$$
 we have
$$L_1^+(\mathbb{R}^d)=L^+(\mathbb{R}^d)\subset L(\mathbb{R}^d).$$

Spectral Theorem for $Q \in L_1^+(H)$

Theorem

Let $Q \in L_1^+(H)$. Then there exists an ONB $(e_k)_{k \in \mathbb{N}}$ of H and a sequence $(\lambda_k)_{k \in \mathbb{N}} \in \ell^1$ s.t.

$$\forall k \in \mathbb{N} : Qe_k = \lambda_k e_k, \quad \lambda_k \ge 0$$

in particular $\lambda_k \to 0$ as $k \to \infty$.

Product measures

Define

$$\mathcal{F} := \sigma \left(\underbrace{\{x \in \mathbb{R}^{\infty} : (x_{k_1}, \dots, x_{k_n}) \in A\}}_{C_{k_1, \dots, k_n, A}} : A \in \mathcal{B}(\mathbb{R}^n), n \in \mathbb{N} \right)$$

Product measures

Define

$$\mathcal{F}:=\sigma\Big(\underbrace{\{x\in\mathbb{R}^\infty:(x_{k_1},\ldots,x_{k_n})\in A\}}_{C_{k_1,\ldots,k_n,A}}:A\in\mathcal{B}(\mathbb{R}^n),n\in\mathbb{N}\Big)$$
 Proposition

 ${\mathcal F}$ coincides with ${\mathcal B}({\mathbb R}^\infty)$ and the σ -algebra generated by the projections.

7

Product measures

Define

$$\mathcal{F} := \sigma \Big(\underbrace{\{x \in \mathbb{R}^{\infty} : (x_{k_1}, \dots, x_{k_n}) \in A\}}_{C_{k_1, \dots, k_n, A}} : A \in \mathcal{B}(\mathbb{R}^n), n \in \mathbb{N}\Big)$$

Proposition

 ${\mathcal F}$ coincides with ${\mathcal B}({\mathbb R}^\infty)$ and the σ -algebra generated by the projections.

Theorem

Let $(\mathbb{P}_k)_{k\in\mathbb{N}}$ be a sequence of probability measures on $(\mathbb{R},\mathcal{B}(\mathbb{R}))$. Then there exists a unique probability measure on $(\mathbb{R}^{\infty},\mathcal{F})$ s.t. for every $C_{k_1,\ldots,k_n,A}$ we have

$$\mathbb{P}(C_{k_1,\ldots,k_n,A}) = (\mathbb{P}_{k_1} \times \ldots \times \mathbb{P}_{k_n})(A).$$

In particular, for every $i \in \mathbb{N}$ the projection onto the k-th coordinate $\pi_k : x \mapsto x_k$ has distribution \mathbb{P}_k and $\{\pi_k\}_{k=1}^\infty$ is a set of independent real valued random variables w.r.t. \mathbb{P} .

One-dimensional Hilbert spaces

Definition (1-dim.)

Let $a \in \mathbb{R}, \lambda \geq 0$. Then define the measure $N_{a,\lambda}$ on $\mathcal{B}(\mathbb{R})$ by

$$(\lambda=0) \quad N_{a,\lambda}(B)=\delta_a(B)=\begin{cases} 1 & a\in B,\\ 0 & a\not\in B \end{cases}, \quad \forall B\in\mathcal{B}(\mathbb{R}),$$
 and

$$(\lambda \neq 0)$$
 $dN_{a,\lambda}(x) = \frac{1}{\sqrt{2\pi\lambda}} \exp\left\{-\frac{(x-a)^2}{2\lambda}\right\} dx.$

C

Moments and characteristic function (1-dim.)

For $a \in \mathbb{R}, \lambda \geq 0$ we have

mean
$$a = \int_{\mathbb{R}} x \; \mathrm{d}N_{a,\lambda}(x)$$
 variance
$$\lambda = \int_{\mathbb{R}} (x-a)^2 \; \mathrm{d}N_{a,\lambda}(x)$$
 char. function
$$\widehat{N_{a,\lambda}}(h) = \exp\left\{iah - \frac{1}{2}\lambda h^2\right\}, \;\; h \in \mathbb{R}$$

Finite-dimensional Hilbert spaces

Definition (fin. dim.)

Definition

A measure μ on H is called Gaussian, if for every $h \in H$ the functional $x \mapsto \langle h, x \rangle$ has law $N_{a,\lambda}$ for some $a \in \mathbb{R}, \lambda \geq 0$.

Construction (fin. dim.)

1. Let H be a real Hilbert space with $\dim(H)=d$, $a\in H$, $Q\in L^+(H)$. Then let $\{e_1,\ldots,e_d\}\subseteq H$ be an ONB of H s.t.

$$\forall 1 \le k \le d : Qe_k = \lambda_k e_k, \quad \lambda_k \ge 0 .$$

Construction (fin. dim.)

1. Let H be a real Hilbert space with $\dim(H)=d$, $a\in H$, $Q\in L^+(H)$. Then let $\{e_1,\ldots,e_d\}\subseteq H$ be an ONB of H s.t.

$$\forall 1 \le k \le d : Qe_k = \lambda_k e_k, \quad \lambda_k \ge 0$$
.

2. Identify H with \mathbb{R}^d via $x \mapsto (\langle x, e_1 \rangle, \dots, \langle x, e_d \rangle)$.

Construction (fin. dim.)

1. Let H be a real Hilbert space with $\dim(H)=d$, $a\in H$, $Q\in L^+(H)$. Then let $\{e_1,\ldots,e_d\}\subseteq H$ be an ONB of H s.t.

$$\forall 1 \le k \le d : Qe_k = \lambda_k e_k, \quad \lambda_k \ge 0$$
.

- 2. Identify H with \mathbb{R}^d via $x \mapsto (\langle x, e_1 \rangle, \dots, \langle x, e_d \rangle)$.
- 3. Then define the measure $N_{a,Q}$ on $\mathcal{B}(H)$ by

$$N_{a,Q} = \underset{k=1}{\overset{d}{\times}} N_{a_k,\lambda_k}$$

Is this construction Gaussian?

Theorem

 $N_{a,Q}$ is a Gaussian measure.

Proof.

14

Figure in $H = \mathbb{R}^2$

Moments and characteristic function (fin. dim.)

For $a, \in H, Q \in L^+(H)$ we have

mean
$$a = \int_H x \, \mathrm{d}N_{a,Q}(x)$$
 covariance
$$\langle y,Qz\rangle = \int_H \langle y,(x-a)\rangle \langle z,(x-a)\rangle \, \mathrm{d}N_{a,Q}(x)$$
 char. functional
$$\widehat{N_{a,Q}}(h) = \exp\left\{i\langle h,a\rangle - \frac{1}{2}\langle h,Qh\rangle\right\}, \ \ h\in H$$

Moments and characteristic function (fin. dim.)

For $a, \in H, Q \in L^+(H)$ we have

$$a = \int_H x \; \mathrm{d}N_{a,Q}(x)$$

 $\langle y, Qz \rangle = \int_{H} \langle y, (x-a) \rangle \langle z, (x-a) \rangle dN_{a,Q}(x)$

char. functional
$$\widehat{N_{a,Q}}(h) = \exp\{i\langle h,a\rangle - \frac{1}{2}\langle h,Qh\rangle\}, h \in H$$

Proposition

covariance

If
$$\det(Q) > 0$$
 i.e. $\lambda_k > 0$ for every $k \in \{1, \dots, d\}$, then

$$dN_{a,Q}(x) = \frac{1}{\sqrt{(2\pi)^d \det Q}} \exp\left\{-\frac{1}{2}\left\langle (x-a), Q^{-1}(x-a)\right\rangle\right\} dx.$$

Separable Hilbert spaces

Definition of mean

Let μ be a measure on $(H, \mathcal{B}(H))$ s.t. $\int_H \|x\| \ \mathrm{d}\mu(x) < \infty$.

Then $h \mapsto F(h) := \int_H \langle h, x \rangle d\mu(x)$ is bounded since

$$|F(h)| \leq \int_{H} |\langle h, x \rangle| \, \mathrm{d}\mu(x) \leq \|h\| \underbrace{\int_{H} \|x\| \, \mathrm{d}\mu(x)}_{<\infty}$$

Thus by Riesz' Representation theorem $\exists! a \in H$:

$$\langle h, a \rangle = \int_{H} \langle h, x \rangle \, d\mu(x), \quad h \in H.$$

called the **mean of** μ .

Intermezzo: Bochner spaces

It is clear how to integrate $f:H\to\mathbb{R}$ when there is a measure on H. But how about $f:H\to H$, e.g. $x\mapsto x$, as in the definition of the mean?

Intermezzo: Bochner spaces

It is clear how to integrate $f:H\to\mathbb{R}$ when there is a measure on H. But how about $f:H\to H$, e.g. $x\mapsto x$, as in the definition of the mean?

Let $(\Omega,\mathcal{A},\mathbb{P})$ be a probability space. Then define the Bochner space

$$L^p(\Omega;H) := \left\{ u: \Omega \to H | u \text{ measurable}, \underbrace{\int_{\Omega} \|u(\omega)\|_H^p \ \mathrm{d}\mathbb{P}(\omega)}_{=:\|u\|_{L^p(\Omega;H)}^p} < \infty \right\}$$

where $1 \leq p < \infty$.

Intermezzo: Bochner integral

Proposition

The set $\left\{\sum_{i=1}^{n} 1_{A_i} h_i : A_i \in \mathcal{F}, h_i \in H\right\}$ of simple functions lies dense in $(L^p(\Omega; H), \|\cdot\|_{L^p(\Omega; H)})$.

Intermezzo: Bochner integral

Proposition

The set $\left\{\sum_{i=1}^{n} 1_{A_i} h_i : A_i \in \mathcal{F}, h_i \in H\right\}$ of simple functions lies dense in $(L^p(\Omega; H), \|\cdot\|_{L^p(\Omega; H)})$.

Definition

For $\sum_{i=1}^n 1_{A_i} h_i \in L^1(\Omega;H)$ define

$$\int \sum_{i=1}^{n} 1_{A_i} h_i d\mathbb{P} = \sum_{i=1}^{n} \mathbb{P}(A_i) h_i \in H$$

For $u \in L^1(\Omega; H)$, define the Bochner integral of u as

$$\int u \, d\mathbb{P} := \lim_{k \to \infty} \int \sum_{i=1}^{n^{(k)}} 1_{A_i^{(k)}} h_i^{(k)} d\mathbb{P} \in H$$

Intermezzo: Bochner integral

Proposition

Let $f: H \to \mathbb{R}$ be a bounded linear functional and $u \in L^1(\Omega; H)$. Then

$$f\left[\int u(\omega) d\mathbb{P}(\omega)\right] = \int f\left[u(\omega)\right] d\mathbb{P}(\omega)$$

Characterization of the mean

Theorem

Indeed,

$$a = \int_H x \, \mathrm{d}\mu(x).$$

Proof.

Let $a\in H$ be the mean of μ and let $h\in H$ be arbitrary. Then $x\mapsto \langle h,x\rangle$ defines a bounded linear functional on H. Hence it can be pulled into the integral and we have

$$\langle h, a \rangle = \int_{H} \langle h, x \rangle \, d\mu(x) = \left\langle h, \int_{H} x \, d\mu(x) \right\rangle$$

Uniqueness of a gives the result.

Definition the covariance

Let μ be a measure on $(H, \mathcal{B}(H))$ s.t. $\int_H \|x\|^2 d\mu(x) < \infty$.

Then $(h,k)\mapsto G(h,k):=\int_H\langle h,x-a\rangle\langle k,x-a\rangle\;\mathrm{d}\mu(x)$ is bounded since

$$|G(h,k)| \le \int_{H} |\langle h, x - a \rangle| \ |\langle k, x - a \rangle| \ d\mu(x)$$

$$\le ||h|| \ ||k|| \underbrace{\int_{H} ||x - a||^{2} \ d\mu(x)}_{<\infty}$$

Thus by Riesz' Representation theorem there exists a unique bounded linear operator $Q:H\to H$ s.t.

$$\langle h, Qk \rangle = \int_{H} \langle h, x - a \rangle \langle k, x - a \rangle d\mu(x), \quad h, k \in H.$$

called the **covariance of** μ .

Properties of the covariance

Theorem

Let μ be a measure on $(H,\mathcal{B}(H))$ s.t. a and Q exist. Then $Q\in L_1^+(H)$ i.e. Q is symmetric, positive semi-definite and of trace class.

Proof.

24

Definition of Gaussian Measures

Definition

A measure μ on $(H,\mathcal{B}(H))$ is called Gaussian if $\exists a\in H,Q\in L_1^+(H)$ s.t.

$$\int_{H} \exp\left\{i\langle h, x\rangle\right\} \ \mathrm{d}\mu(x) = \underbrace{\exp\left\{i\langle a, h\rangle - \frac{1}{2}\langle h, Qh\rangle\right\}}_{=:\widehat{N_{a,Q}}(h)}, \ h \in H.$$

 $N_{a,Q}$ is called **non-degenerate** if $\ker Q = \{0\}$.

Definition of Gaussian Measures

Definition

A measure μ on $(H,\mathcal{B}(H))$ is called Gaussian if $\exists a\in H,Q\in L_1^+(H)$ s.t.

$$\int_{H} \exp\left\{i\langle h,x\rangle\right\} \ \mathrm{d}\mu(x) = \underbrace{\exp\left\{i\langle a,h\rangle - \frac{1}{2}\langle h,Qh\rangle\right\}}_{=:\widehat{N_{a,Q}}(h)}, \ \ h \in H.$$

 $N_{a,Q}$ is called **non-degenerate** if $\ker Q = \{0\}$.

Recall: for $H=\mathbb{R}^n$ the Fourier inversion theorem asserts that two measures with the same characteristic functional are equal. This also is still true when $\dim H=\infty$. In particular, Gaussian measures are entirely characterized by their mean and covariance operator.

Existence of Gaussian measures

1. Let $a \in H$ and $Q \in L^+(H)$ with $\{e_k\}_{k \in \mathbb{N}} \subseteq H$ an ONB of H associated to Q. Then

$$\forall k \in \mathbb{N} : Qe_k = \lambda_k e_k, \quad \lambda_k \ge 0 .$$

Existence of Gaussian measures

1. Let $a\in H$ and $Q\in L^+(H)$ with $\{e_k\}_{k\in\mathbb{N}}\subseteq H$ an ONB of H associated to Q. Then

$$\forall k \in \mathbb{N} : Qe_k = \lambda_k e_k, \quad \lambda_k \ge 0 .$$

2. Identify H with ℓ^2 via $x \mapsto (\langle x, e_k \rangle)_{k \in \mathbb{N}}$.

Existence of Gaussian measures

1. Let $a\in H$ and $Q\in L^+(H)$ with $\{e_k\}_{k\in\mathbb{N}}\subseteq H$ an ONB of H associated to Q. Then

$$\forall k \in \mathbb{N} : Qe_k = \lambda_k e_k, \quad \lambda_k \ge 0$$
.

- 2. Identify H with ℓ^2 via $x \mapsto (\langle x, e_k \rangle)_{k \in \mathbb{N}}$.
- 3. Define the measure $N_{a,Q}$ on $\mathcal{B}(\mathbb{R}^{\infty})$ by

$$N_{a,Q} = \underset{k \in \mathbb{N}}{\times} N_{a_k,\lambda_k}.$$

Definition (separable)

This gives a measure on $\mathbb{R}^\infty:= extstyle _{k\in\mathbb{N}}\mathbb{R}$ and not on ℓ^2 , but

Definition (separable)

This gives a measure on $\mathbb{R}^\infty:= extstyle _{k\in \mathbb{N}}\mathbb{R}$ and not on ℓ^2 , but

Theorem

$$\mu := N_{a,Q}$$
 is concentrated on ℓ^2 i.e. $\mu(\ell^2) = 1$.

Proof.

27

Is this construction Gaussian?

Theorem

 $N_{a,Q}$ is a Gaussian measure.

Proof.

Closing remarks

What if H is less well-behaved?

More generally, how can one define a Gaussian measure?

What if H is less well-behaved?

More generally, how can one define a Gaussian measure?

- 1. via a density (needs $\dim H < \infty$)
- via cont. linear functions (needs rich enough dual theory e.g. loc. convex TVS)
- 3. via the characteristic functional (needs Fourier theory on H)
- 4. via identification $H\simeq \ell^2$ (needs H to be a separable Hilbert space)

Bibliography

Da Prato, G. (2006).

An Introduction to Infinite-Dimensional Analysis.

Springer Science & Business Media.