

Introduction to Inverse Problem in Imaging

EC 522 Computational Optical Imaging

Lei Tian

Admins

- » HW 2 is posted
 - » Due 2/21 (Wednesday; after Presidents' day break)

Mathematical tools & road map

- » Vector space (IIP Appx A)
 - » Key idea: think about the imaging signals as a <u>vector</u>
- » Linear operator (IIP Appx B)
 - » Key idea: think about imaging process as a linear transformation, i.e. a linear operator
 - » Later, we will perform discretization and convert the operator into a <u>matrix</u>

Linear operator

Linear operator

- » Linear operator $A: \mathcal{X} \to \mathcal{Y}$ satisfies
 - » $A(\alpha_1 f_1 + \alpha_2 f_2) = \alpha_1 A(f_1) + \alpha_2 A(f_2)$, for any complex numbers α_1 and α_2
 - » Additivity: $A(f_1 + f_2) = A(f_1) + A(f_2)$
 - » Scalability: $A(\alpha f) = \alpha A(f)$

Range space*

- » The *Range space* of a linear operator $A: \mathcal{R}(A)$
 - » The set of all elements $g \in \mathcal{Y}$ from Af = g

$$\mathcal{R}(A) = \{g = Af \in \mathcal{Y}, f \in \mathcal{X}\}\$$

Null space *

- » The **null space** of a linear operator $A: \mathcal{N}(A)$
 - » The set of all elements $f \in \mathcal{X}$ such that Af = 0

$$\mathcal{N}(A) = \{ f \in \mathcal{X}, Af = 0 \}$$

Implication of Null space

Adjoint operator *

- » The adjoint operator A* (or A^H) of a linear and bounded operator A
 - » $A^*: \mathcal{Y} \to \mathcal{X}$ is the adjoint of $A: \mathcal{X} \to \mathcal{Y}$, when

$$\langle Ax, y \rangle_{\mathcal{Y}} = \langle x, A^*y \rangle_{\mathcal{X}}$$
 for every $x \in \mathcal{X}, y \in \mathcal{Y}$

» Generalization of the Hermitian transpose (complex conjugate transpose) of a matrix

Hermitian / adjoint – can be used interchangeably https://en.wikipedia.org/wiki/Hermitian adjoint

Example: DFT

Example: deconvolution

Adjoint of a convolution operator

» Adjoint of convolution operator A*

$$(A^*g)(x) = K^*(-x) * g(x)$$

$$= \int K^*(x'-x)g(x')dx'$$

» Spectral representation

»
$$(A^*g)(x) = \int \widetilde{K}^*(u) \, \widetilde{g}(u) e^{i2\pi xu} du$$

Proof?

Side note:

- I found it is easier to work with $u = \omega/2\pi$ in FT and IFT, the textbook uses ω .
- Throughout the lecture, we will use the definition in the u-space.

Geometric relation between null space and range space

$$\mathcal{N}(A) = \mathcal{R}(A^*)^{\perp}$$

 $\mathcal{N}(A^*) = \mathcal{R}(A)^{\perp}$

Example: Relation between range and null space of a convolution operator

A is a convolution operator

$$f_1 \in \mathcal{R}(A)$$

$$f_2 \in \mathcal{N}(A)$$

»
$$f_1 \perp f_2$$

and
$$\mathcal{N}(A) = \mathcal{R}(A)^{\perp}$$

Why?

Relation between range and null space of a convolution operator

A is a convolution operator

»
$$f_1 \in \mathcal{R}(A)$$
 Only contain frequency component $u \in \mathcal{B}$

»
$$f_2 \in \mathcal{N}(A)$$
 Only contain frequency component $u \notin \mathcal{B}$

»
$$f_1 \perp f_2$$
 and $\mathcal{N}(A) = \mathcal{R}(A)^{\perp}$

Self-adjoint

» If $A = A^*$, A is self-adjoint or Hermitian

Example

Properties of Adjoint operator

- » The adjoint A* is unique
- $(A^*)^* = A$
- » The operators AA* and A*A are self-adjoint
- » If A is invertible, $(A^{-1})^* = (A^*)^{-1}$
- $(A+B)^* = A^*+B^*$
- $(BA)^* = A^*B^*$

Unitary operator

» A is unitary if and only if

$$A^{-1} = A^* \text{ or } A^*A = I$$

» If A is unitary, then $||Ax||^2 = ||x||^2$

Unitary operator

- » Preserve geometry (lengths and angles) when mapping one vector space to another
- » A bounded linear operator $A: \mathcal{X} \to \mathcal{Y}$ is unitary, when
 - » A is invertible
 - » A preserves inner product

$$\langle f, h \rangle_{\mathcal{X}} = \langle Af, Ah \rangle_{\mathcal{Y}}$$
, for every $f, h \in \mathcal{X}$

Eigenvector and eigenvalue of a linear operator

» An **eigenvector** of a linear operator $A: H \rightarrow H$ is a nonzero vector $v \in H$, such that $Av = \lambda v$

» $\lambda \in \mathbb{C}$ is the **eigenvalue**.

Example: convolution operator

Example of convolution operator: microscopes

- » Range and null space?
- » Adjoint operator?
- » Inverse operator?

Example: motion blur

- » What are Object space ${\mathcal X}$ and image space ${\mathcal Y}$?
- » What is the operator A? linear?
- » Find an element in the null space?
 - » What's the implication of this?

Example of Shift-invariant system: holography

Transfer function $H(u, v) = e^{i2\pi z/\lambda} \exp\{-i\lambda z(u^2 + v^2)\}$

complex PSF

- » Range and null space?
- » Adjoint operator?
- » Inverse operator?

Application: back-propagation using adjoint operator = inverse operator!?

Transfer function $H(u, v) = e^{i2\pi z/\lambda} \exp\{-i\lambda z(u^2 + v^2)\}$

Mathematical tools & road map

- » Vector space (IIP Appx A)
 - » Key idea: think about the imaging signals as a <u>vector</u>
- » Linear operator (IIP Appx B)
 - » Key idea: think about imaging process as a linear transformation, i.e. a linear operator
 - » Later, we will perform discretization and convert the operator into a <u>matrix</u>

From continuous to discrete model

Fully discrete LSI model

- » Sampling & Discretization
 - » Sampling of the image signal
 - » Discretize the object signal
- » What about the LSI system?
 - » How to discretize the linear operator?
- » "Transfer function" of discrete LSI system?
 - » Eigenvalues of the imaging matrix

Sampling

Why do we need sampling

- » Lenses and filters are analog optical processors
- » Camera digitizes (samples) optical field

Optical preprocessing is analog(continuous) Digital postprocessing is digital(discrete)

How sampling works on a typical optical detector?

Sampling by optical detectors

Sampling by optical detectors

How to describe square pixels?

Similar to zero-order hold sampling!

Effect of pixel sampling: pixel transfer function

$$g_{nm} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-X/2}^{X/2} \int_{-Y/2}^{Y/2} f(x, y)h(x' - x, y' - y)$$

$$\times p(x' - n\Delta, y' - m\Delta) dx' dy' dx dy$$

Pixel sampling function

$$\hat{g}(u,\,v)=\hat{f}(u,\,v)\hat{h}(u,\,v)\hat{p}(u,\,v)$$
 Pixel transfer function (PTF)

System transfer function (STF) combines optical TF and pixel TF!

$$\mathcal{F}^{-1}$$

$$\mathcal{F}^{-1} \qquad g_{nm} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{2\pi i u n \Delta} e^{2\pi i v m \Delta} \hat{f}(u, v) \hat{h}(u, v) \hat{p}(u, v) du dv$$

How different is the "rect-sampling" as compared to the "impulse sampling"?

Sampling

- » Practically
 - » Sampling relates the continuous world to discrete world

- » Mathematically
 - » Sampling can also be treated by linear decomposition!

Linear decomposition and sampling

- » Denote the (real-valued) m^{th} pixel sampling function: $p_m(x)$
 - » In practice, can assume the pixel sampling function forms an orthonormal basis: $\{p_m, m=0, ..., N-1\}$, satisfying $\langle p_m, p_n \rangle = \delta_{m,n}$
- » The pixel reading from the mth pixel is
 - $g_m = \int g(x)p_m(x)dx = (g, p_m)$
 - » which can be treated as the inner product between g and mth basis $p_{\rm m}$
- » The optical detector takes N discrete samples from a continuous object g(x) to produce a vector (an image)

$$\mathbf{g} = [g_0, g_1, \cdots, g_{N-1}]^T$$

= $[(g, p_0), (g, p_1), \cdots, (g, p_{N-1})]^T$

» In other words, the object is linearly decomposed as

$$g(x) = \sum_{m=0}^{N-1} g_m p_m$$

Semi-Discrete mapping

- » Mapping from continuous object to discrete measurement
- » Recall the continuous linear forward model $g = Af = \int h(x, x') f(x') dx'$
- $g_m = (Af, p_m) = (f, A^*p_m)$

Definition of Adjoint operator

Physical meaning?

"impulse response" from the detector point of view & reciprocity

- » Define $\phi_m(x') = (A^*p_m)(x') = \int h^*(x', x)p_m(x) dx$
 - Proof?

» Semi-discrete mapping A_M :

$$g_m = (A_M f)_m = (f, \phi_m)$$

Semi-discrete mapping

- » Measurement g_{nm} is discrete
- » Description of object f(x,y) is continuous
- » Not convenient for computation
- » Mostly useful for theoretical purpose
- » Next, fully discretized model
 - » most widely used approach for both computation and analysis!

Fully discrete LSI model

- » Sampling & Discretization
 - » Sampling of the image signal
 - » Discretize the object signal
- » What about the LSI system?
 - » How to discretize the linear operator?
- » "Transfer function" of discrete LSI system?
 - » Eigenvalues of the imaging matrix

Discretization/decomposition of object function

» Represent continuous function f(x) by a vector

$$\mathbf{f} = [f_0, f_1, \cdots, f_{N-1}]^T$$

» Assume a set of orthonormal basis functions $\{\psi_0, \psi_1, \cdots, \psi_{N-1}\}$

$$f(x) = \sum_{n=0}^{N-1} f_n \psi_n(x)$$

Idea is similar to sampling! → sampling requirement needs to be satisfied

Fully discrete LSI model

- » Sampling & Discretization
 - » Sampling of the image signal
 - » Discretize the object signal
- » What about the LSI system?
 - » How to discretize the linear operator?
- » "Transfer function" of discrete LSI system?
 - » Eigenvalues of the imaging matrix

Fully discrete linear forward model

$$g_{m} = (f, \phi_{m}) = (\sum_{n=0}^{N-1} f_{n} \psi_{n}, \phi_{m})$$
$$= \sum_{n=0}^{N-1} (\psi_{n}, \phi_{m}) f_{n}$$

» Discrete forward model

$$g = Af$$

»
$$\mathbf{A}_{mn} = (\psi_n, \phi_m) = (\psi_n, A^* p_m) = (A\psi_n, p_m)$$

Proof?

Physical interpretation?

The result of a point measurement is Impulse response of A and the then "blurred" by the pixel

Most widely used: fully discrete LSI model with ideal (impulse) sampling

» Assume ideal impulse sampling on both object and detector

$$p_m = \delta(x - x_m)$$

» Standard basis

$$\psi_n(x) = \delta(x - x_n)$$

» LSI model

$$h(x,x') = h(x-x')$$

» What is A?

$$\mathbf{A}_{mn} = h(x_m - x_n)$$

What does A matrix look like?