mapf-gp

nguyenngockhanh.pbc

January 2021

Contents

Introduction

Our central problem is defined as follow:

Problem 1 (Problem 1). :

Given a multi directed graph G = (V, E) and a set of points of interest $V_P \subseteq V$.

Find K closed walks that cover V_P .

Objective: Minimize the sum of walk length over all walks.

Constraint 1: Maximum walk length does not exceed L

Constraint 2: No overlap between any pair of walks.

Where a walk is defined as a sequence of edges (not necessary distinct). A closed walk is defined as a walk such that the starting node and the ending node are identical.

In order to solve the problem ??, we introduce an equivalent problem as follow:

Problem 2 (Problem 2). :

Given a directed graph $G_P = (V_P, E_P)$ with triangle equality.

Find K cycles that cover V_P .

Objective: Minimize the sum of cycle length over all cycles.

Constraint 1: Maximum cycle length does not exceed L

Where a cycle is defined as a closed walk that all nodes are distinct.

Theorem 1 (Theorem 1). :

Problem ?? * (without constraint 2) and problem ?? can be reduced from each other.

Problem ??* and problem ?? are equivalent. That means we can use the results of problem ?? to solve problem ??* 1. The reduction is as follow:

 $^{^1}$ Informal proof in Appendix

Reduction 1 (problem $??^* \rightarrow \text{problem }??$). :

Given a multi directed graph G = (V, E) and a set of points of interest $V_P \subseteq V$. Let $G_P = (V_P, E_P)$ be a directed graph such that each edge $(v_i, v_j) \in E_P$ is the shortest path in G.

Using reduction ??, we can construct an instance of problem ?? that is equivalent to problem ??*. After solving G_P , we map each of the edges in the solution of G_P by its corresponding shortest path in G.

Figure 1.1: Reduction

Pipeline

We consider a variant of problem ?? as follow:

Problem 3 (Problem 3). :

Given a directed graph $G_P = (V_P, E_P)$ with triangle equality.

Find K cycles that cover V_P .

Objective: Minimize the maximum of cycle length over all cycles.

The algorithm pipeline is as follow:

Figure 2.1: Pipeline

Reduction 1 converts a graph G and a set of POIs V_P to graph G_P . After that, Algorithm 1 and Algorithm 2 find a approximate-solution for problem $\ref{eq:poisson}$??. Finally, Inverse-Reduction 1 converts the approximate-solution back to an approximate-solution for problem 1.

Preliminaries

3.1 Lower bound

A lower bound on problem ?? can be derived using a minimum assignment problem.

Problem 4 (Minimum assignment). :

Given a set of m agents and n tasks. The cost matrix $M \in \mathbb{R}_+^{m \times n}$ is given such that each entry M_{ij} is the non-negative cost of the assignment agent i to task j. Each agent is assigned to at most one task and each task is assigned to at most one agent.

Find $min\{m,n\}$ assignments A $(A \subset [m] \times [n], |A| = min\{m,n\})$ that $minimize \sum_{(i,j)\in A} M_{ij}$

Let $A \in \mathbb{R}_+^{|V_P| \times |V_P|}$ be the G_P adjacency matrix where each entry A_{ij} is the non-negative edge length from node i to node j. Define $A_{ii} = 0$. The lower bound on the total cost of k cycles can be obtained from the solution of problem ?? by treating A as the cost matrix.

3.2 Optimization Approximation

Consider the program of minimizing a function $f: X \to \mathbb{R}$. In many scenarios, it is hard to find an optimal or it is hard to compute the value of f(x). Isaac Vandermeulen, Roderich Groß, Andreas Kolling? has introduced a method that find a function $f_1: X \to \mathbb{R}$ such that $f(x) = c(f_1(x)) + v$ where c is a monotonically increasing function and v is a random variable.

Let some bounds on v as follows: $\alpha \in (0, 0.5)$ and $b_{\alpha}^{-}, b_{\alpha}^{+} \in \mathbb{R}_{+}$

$$\mathbb{P}[-b_{\alpha}^{-} \leq v] = \mathbb{P}[v \leq +b_{\alpha}^{+}] = 1 - \alpha$$

Let x^* and x_1^* be the optimal values for f and f_1 .

$$(A): f(x_1^*) \le f(x^*) + b_{\alpha}^- + b_{\alpha}^+$$

Theorem 2 (Approximation). :

$$\mathbb{P}[A] \ge (1 - \alpha)^2$$

The theorem states that if one can find f_1 with small variance on v, minimizing f_1 provides a good solution on f with high probability.

Figure 3.1: Optimization

In ?, the authors defined average cycle length as follow:

Definition 1 (Average cycle length).

$$C_a^{(k)} = \frac{\sum_{i \in V_k} \sum_{j \in V_k} A_{ij}}{|V_k| - 1}$$

Where V_k is the set of nodes in the partition k.

By choosing f_1 as maximum average cycle length, the authors approximated the solution of problem $\ref{fig:problem}$ by minimizing:

$$O_0 = max\{C_a^{(k)}\}_{k=1}^K$$

However, maximum average cycle length does not contain any information about the other K-1 smaller cycles. We have experimented with different f_1 objective functions.

From the pattern on each f_1 function to the f, we can predict that test4 and test7 tend to provide a smaller maximum cycle length and test1 and test 8 tend to provide a smaller total cycle length.

Figure 3.2: maximum tsp cycle length over test 1 objective of all 5-partitions in a 15 nodes network

Figure 3.3: maximum tsp cycle length over test4 objective of all 5-partitions in a 15 nodes network

Figure 3.4: maximum tsp cycle length over test7 objective of all 5-partitions in a 15 nodes network

Figure 3.5: maximum tsp cycle length over test8 objective of all 5-partitions in a 15 nodes network

Figure 3.6: sum tsp cycle length over test1 objective of all 5-partitions in a 15 nodes network

Figure 3.7: sum tsp cycle length over test4 objective of all 5-partitions in a 15 nodes network

Figure 3.8: sum tsp cycle length over test7 objective of all 5-partitions in a 15 nodes network

Figure 3.9: sum tsp cycle length over test8 objective of all 5-partitions in a 15 nodes network

Methods

4.1 Algorithm 1

4.1.1 test1

Inspired by derivation of Ratio cut?, we introduced method test1.

Let A be symmetric, let D be the degree matrix of A, L=D-A be the laplacian matrix. Let $x^{(1)}, x^{(2)}, ..., x^{(K)}$ be the indicator vector for each partition such that:

$$x_i^{(k)} = \{ \begin{array}{ll} 1 & \text{if } i \in V_k \\ 0 & \text{otherwise} \end{array}$$

Since K partitions are disjoint, we always have a set of K orthogonal vectors.

$$x^{(k_1)T}x^{(k_2)} = 0 \quad \forall k_1 \neq k_2$$

Ratio cut minimizes the sum of all cuts divided by its corresponding partition volume.

$$\sum_{k=1}^{K} \frac{x^{(k)T} L x^{(k)}}{x^{(k)T} x^{(k)}} = \sum_{k=1}^{K} \frac{cut(V_k, V \setminus V_k)}{|V_k|}$$

subject to $x^{(k)} \in \{0,1\}^{|V|}$ and $x^{(k_1)T}x^{(k_2)} = 0 \ \forall k_1 \neq k_2$

Furthermore, Ratio cut extends the domain the indicator vectors to real number.

$$\sum_{k=1}^{K} \frac{x^{(k)T} L x^{(k)}}{x^{(k)T} x^{(k)}}$$

subject to $x^{(k)} \in \mathbb{R}^{|V|}$ and $x^{(k_1)T}x^{(k_2)} = 0 \ \forall k_1 \neq k_2$

The problem of minimizing Rayleigh quotients with orthogonal constraints yields K-smallest eigen vectors.

In test1, we replaced laplacian matrix L by adjacency matrix A. The objective of the formulation is

$$O_1 = \sum_{k=1}^K \frac{x^{(k)T}Ax^{(k)}}{x^{(k)T}x^{(k)}} = \sum_{k=1}^K \frac{\sum_{i=1}^{|V|} \sum_{j=1}^{|V|} x_i^{(k)} x_j^{(k)} A_{ij}}{\sum_{i=1}^{|V|} x_i^{(k)2}} = \sum_{k=1}^K \frac{\sum_{i \in V_k} \sum_{j \in V_k} A_{ij}}{|V_k|} = \sum_{k=1}^K (1 - \frac{1}{|V_k|}) C_a^{(k)}$$

Which is approximately equal to the sum of average cycle length.

4.1.2 test7

test7 uses the same concept of indicator vector from test1. We modified the objective function as follow:

$$O_7 = \sum_{k=1}^K \frac{x^{(k)T} (A - \alpha D) x^{(k)}}{x^{(k)T} x^{(k)} + \beta |V|} = \sum_{k=1}^K \frac{\sum_{i \in V_k} \sum_{j \in V_k} A_{ij}}{|V_k| + \beta |V|} - \alpha \frac{\sum_{i \in V_k} D_{ii}}{|V_k| + \beta |V|}$$

Where α and β are two non-negative hyper-parameters.

Constant β makes the partitions more balanced. Let $\alpha = 0$, consider a graph that all edges have unit length. A positive constant β makes the unique minimum partition to be the balanced one. ¹

Constant α is intended to encourage large degree nodes to join the small partitions.

If $\alpha = 0$ and $\beta = 0$, we obtain the objective function of test1. If $\alpha \in \{0, 1\}$ and $\beta \to +\infty$, we obtain the objective function of MAX-CUT problem.

In the experiment, we have chosen $\alpha = 0$ and $\beta = 1$.

Instead of the orthogonal constraint, we imposed a pair of constraints for the indicator vectors.

$$x^{(k)} \succeq 0 \text{ and } \sum_{k=1}^{K} x^{(k)} = 1_{|V|}$$

The pair of constraints is a soft indicator of each node belonging to a partition. In the experiment, we changed the second constraint to be inequality.

$$x^{(k)} \succeq 0$$
 and $\sum_{k=1}^{K} x^{(k)} \succeq 1_{|V|}$

Finally, the partition for each node is taken as:

$$k_i = argmax_k \{x_i^{(k)}\}_{k=1}^K$$

¹Detailed analysis in Appendix

4.1.3 Local Search

The authors ? introduced two local search operations: transfer and swap. transfer is the operation that moves a node from one partition to another partition. swap is the operation that exchanges two nodes from a pair of partitions.

Algorithm 1 Local Search

Input::

Initial K partitions

Strategy $\in \{ \text{ first, best } \}$

Objective function

Output::

Final K partitions

Procedure::

While true:

 $var candidate_set = []$

For operation in all possible operations:

Calculate the gain of the operation

If the gain is positive:

Push the operation and gain to candidate set

If Strategy is first:

break

If candidate_set is empty:

break

Pick the best candidate, update the current K partitions

return current K partitions

The algorithm ?? is capable to use with the two proposed operations to approximately find our solution.

test4

Strategy: first

$$O_4 = O_0 = max\{C_a^{(k)}\}_{k=1}^K$$

test8

Strategy: first

$$O_8 = \sum_{k=1}^{K} C_a^{(k)}$$

4.2 Algorithm 2

In algorithm 2, we firstly convert K partitions using standard TSP algorithm for each partition. In this stage, we used a different type of operation for cycles.

Transfer2 is the operation of transferring a node from the longest cycle to another edge of a shorter cycle.

Figure 4.1: Transfer of B to $D \to E$

Algorithm 2 Local Search 2

```
Input::
```

Initial K cycles

Strategy $\in \{ \text{ first, best } \}$

Output::

Final K cycles

Procedure::

While true:

 $var candidate_set = []$

For operation in all possible operations:

Calculate the gain of the operation

If operation reduced maximum cycle length and did not induce any intersection:

Push the operation and gain to candidate set

If Strategy is first:

break

If candidate_set is empty:

break

Pick the candidate with smallest sum of cycle length, update the current K partitions

return current K partitions

Appendix

5.1 Informal proof of theorem ??

5.1.1 problem $?? \rightarrow \text{problem } ??*$

 $V_P \to V$: nodes of problem ?? become nodes of problem ??*

 $V_P \to V_P$: nodes of problem ?? become POIs of problem ??*

 $E_P \to E$: edges of problem ?? become edges of problem ??*

 $L \to L$: remains L

If S_1 is the solution problem ??*, S_1 is also a valid assignment for problem ?? $(|S_1| \ge |S_2|)$.

The claim is correct due to this procedure: let any B appears more than once in S_1 , $A \to B \to C$ becomes $A \to C$.

If S_2 is the solution of problem ??, S_2 is also a valid assignment for problem ??* $(|S_2| \ge |S_1|)$.

Hence, problem ??* is at least as hard as problem ??

5.1.2 problem $??* \rightarrow \text{problem } ??$

 $V_P \to V_P$: POIs of problem ??* become nodes of problem ?? *: shortest paths of problem ??* become edges of problem ?? $L \to L$: remains L

If S_2 is the solution of problem ??, S_2 is also a valid assignment for problem ??* $(|S_2| \ge |S_1|)$

If S_1 is the solution of problem ??*, S_1 is also a valid assignment for problem ??

The claim is correct by:

If there is no node appears more than once, trivial.

Otherwise, let any B appears more than once in S_1 , $|A \to B \to C| \ge |A \to C|$. If the inequality occurs, replacing $|A \to B \to C|$ by $|A \to C|$ yields

a shorter solution that conflicts with S_1 is the solution of problem ??*. The equality occurs, we replace $|A \to B \to C|$ by $|A \to C|$ until there is no more node appear more than once.

Hence, problem ?? is at least as hard as problem ??*

5.2 Informal proof of theorem ??

Consider the program of minimizing a function $f: X \to \mathbb{R}$. In many scenarios, it is hard to find an optimal or it is even hard to compute the value of f(x). Isaac Vandermeulen, Roderich Groß, Andreas Kolling? has introduced a method that find a function $f_1: X \to \mathbb{R}$ such that $(1)f(x) = c(f_1(x)) + v$ where c is a monotonically increasing function and v is a random variable.

Let some bounds on v as follows: $\alpha \in (0, 0.5)$ and $b_{\alpha}^-, b_{\alpha}^+ \in \mathbb{R}_+$

$$\mathbb{P}[-b_{\alpha}^{-} \leq v] = \mathbb{P}[v \leq +b_{\alpha}^{+}] = 1 - \alpha$$

Let x^* and x_1^* be the optimal values for f and f_1 . Consider 3 random events:

$$(A): f(x_1^*) \le f(x^*) + b_{\alpha}^- + b_{\alpha}^+$$

$$(B): f(x_1^*) \le c(f_1(x_1^*)) + b_\alpha^+$$

$$(C): f(x^*) \ge c(f_1(x^*)) - b_{\alpha}^-$$

Theorem 3 (Approximation). :

$$\mathbb{P}[A] \ge (1 - \alpha)^2$$

We have $f(x^*) \leq f(x_1^*)$ and $f_1(x_1^*) \leq f_1(x^*)$. c is a monotonically increasing function, so $c(f_1(x_1^*)) \leq c(f_1(x^*))$.

If (B) holds,

$$f(x_1^*) \le c(f_1(x_1^*)) + b_{\alpha}^+ \le c(f_1(x^*)) + b_{\alpha}^+$$

If (C) also holds,

$$f(x_1^*) \le c(f_1(x^*)) + b_{\alpha}^+ = (c(f_1(x^*)) - b_{\alpha}^-) + b_{\alpha}^- + b_{\alpha}^+$$

Hence,

$$(A): f(x_1^*) \le f(x^*) + b_{\alpha}^- + b_{\alpha}^+$$

(A) implies the upper-bound on how good the solution of f_1 . By assuming v, x^* and x_1^* be independent, $\mathbb{P}[B \cap C] = \mathbb{P}[B] \times \mathbb{P}[C]$. Since $B \cap C \to A$, $\mathbb{P}[A] \geq \mathbb{P}[B] \times \mathbb{P}[C]$. From (1), $\mathbb{P}[B] = \mathbb{P}[C] = 1 - \alpha$. So, $\mathbb{P}[A] \geq (1 - \alpha)^2$

In conclusion, if one can the proxy f_1 , a good solution for f can be obtained with high probability.

The error on this approximation depends on how good we can find a function f and a smoother c.

5.3 Analysis on constant β

Let $\alpha=0,\,\beta>0,$ consider a graph that all edges have unit length. Objective function is

$$O_7 = \sum_{k=1}^K \frac{x^{(k)T} (A - \alpha D) x^{(k)}}{x^{(k)T} x^{(k)} + \beta |V|} = \sum_{k=1}^K \frac{\sum_{i \in V_k} \sum_{j \in V_k} A_{ij}}{|V_k| + \beta |V|} = \sum_{k=1}^K \frac{|V_k| (|V_k| - 1)}{|V_k| + \beta |V|}$$

Subject to the constraint

$$\sum_{k=1}^{K} |V_k| = |V| \text{ and } |V_k| > 0 \ \forall k$$

Let $x_k = \frac{|V_k|}{|V|}$ be a real variable, we have the problem of minimizing

$$f(x) = \sum_{k=1}^{K} \frac{x_k(x_k - 1)}{x_k + \beta|V|}$$

Subject to

$$c_0(x) = \sum_{k=1}^K x - 1 = 0 \text{ and } c_k(x) = -x_k \le 0 \ \forall k$$

We have:

$$\frac{\partial f}{\partial x_k} = |V|(1 - \frac{\beta(\beta + 1/|V|)}{(x_k + \beta)^2})$$

 $\frac{\partial f}{\partial x_k}$ has this property if $\beta > 0$:

(1): $\frac{\partial f}{\partial x_k}$ is a monotonically increasing function for all $x_k \geq 0$

Theorem $\ref{eq:condition}$ deduces the unique minimum of O_7 at $|V_k| = |V|/K$

5.4 Theorem ??

Given the program:

Minimize:
$$f(x)$$
 subject to: $c_0(x) = \sum_{i=1}^n x_i = 1$ and $c_i(x) = -x_i \le 0 \ \forall i$

Such that $\frac{\partial f}{\partial x_i}$ has this property:

(1): $\frac{\partial f}{\partial x_i}$ is a monotonically increasing function for all $x_i \geq 0$

$$\frac{\partial f}{\partial x_i}(x_1) < \frac{\partial f}{\partial x_i}(x_2) \ \forall \ 0 \le x_1 < x_2$$

Theorem 4 (Unique solution). Program has unique solution at $x_i = \frac{1}{n} \ \forall i$

Lagrangian function is

$$L(x, \mu, \lambda) = f(x) + \sum_{i=1}^{n} \mu_i c_i(x) + \lambda c_0(x)$$

If x* is a minimum, KKT conditions:

Stationary:
$$\frac{\partial L}{\partial x}(x*) = 0_n$$

Primal feasibility: $c_0(x*) = 0$ and $c_i(x*) \le 0 \ \forall i$

Dual feasibility: $\mu_i \geq 0 \ \forall i$

Complementary slackness: $\mu_i c_i(x*) = 0 \ \forall i$

We have:

$$\frac{\partial L}{\partial x_k} = \frac{\partial f}{\partial x_k} - \mu_k + \lambda$$

Consider 2 cases:

Case 1: all $x_i > 0$, due to complementary slackness, all $\mu_i = 0$. So that, all $\frac{\partial f}{\partial x_i}$ must be equal. (1) deduces that the unique solution satisfying KKT conditions is $x_i = \frac{1}{n}$

Case 2: some $x_i = 0$, let $x_{i1} = 0$

$$\frac{\partial f}{\partial x_i}(x_{i1}) - \mu_{i1} + \lambda = 0$$

$$\lambda = \mu_{i1} - \frac{\partial f}{\partial x_i}(0)$$

Since dual feasibility, $\mu_{i1} \geq 0$, So

$$\lambda \ge -\frac{\partial f}{\partial x_i}(0)$$

There is at least one $x_i > 0$, let $x_{i2} > 0$, due to complementary slackness, $\mu_{i2} = 0$, So

$$\frac{\partial f}{\partial x_i}(x_{i2}) + \lambda = 0$$

$$\frac{\partial f}{\partial x_i}(x_{i2}) = -\lambda \le \frac{\partial f}{\partial x_i}(0)$$

(1) deduces contradiction.