FORMALE SPRACHEN UND AUTOMATEN

MTV: Modelle und Theorie Verteilter Systeme

13.06.2022 - 19.06.2022

Tutorium 8

Aufgabe 1: Minimierung von DFAs

Gegeben seien das Alphabet $\Sigma \triangleq \{ a, b \}$ und der DFA

 $M \triangleq (\{\ q_0,\ q_1,\ q_2,\ q_3,\ q_4,\ q_5,\ q_6,\ q_7\ \}, \Sigma, \delta, q_0, \{\ q_0,\ q_1,\ q_2,\ q_5,\ q_6\ \})\,,$

wobei δ durch den folgenden Graphen gegeben ist:

1.a) Berechne: Minimiere den DFA M.

------(Lösung)------

Schritt 1 (eliminiere nicht erreichbare Zustände): nur q₇ ist nicht erreichbar **Schritt 2 (Table-Filling):**

q_1	0					
q_2	0	0				
q ₃ q ₄	х	х	х			
q_4	Х	Х	х	0		
$\begin{array}{c} q_5 \\ q_6 \end{array}$	х	х	х	х	х	
q_6	Х	х	х	Х	х	О
	q_0	q_1	q_2	q_3	q_4	q_5

Schritt 3 (gib alle Äquivalenzklassen von Zuständen und eine Umbenennung an):

$$[q_0] = \{ q_0, q_1, q_2 \}$$

$$[q_3] = \{ q_3, q_4 \}$$

$$[q_5] = \{ q_5, q_6 \}$$

$$s_2$$

Schritt 4 (gib den minimierten DFA an): $M' = (\{s_0, s_1, s_2\}, \Sigma, \delta', s_0, \{s_0, s_2\})$, wobei δ' durch den folgenden Graphen gegeben ist:

1.b) *Gib an:* L(M)

$$\begin{split} [\; \epsilon \;]_{\equiv_{L(M)}} &= L \big((b + \alpha b)^* \big) = \{\; b, \; \alpha b \; \}^* \\ [\; \alpha \;]_{\equiv_{L(M)}} &= L \big((b + \alpha b)^* \; \alpha \big) = \{\; x\alpha \; | \; x \in \{\; b, \; \alpha b \; \}^* \; \} \\ [\; \alpha \alpha \;]_{\equiv_{L(M)}} &= L \big((b + \alpha b)^* \; \alpha \alpha \; (\alpha + b)^* \big) = \{\; x\alpha \alpha y \; | \; x \in \{\; b, \; \alpha b \; \}^* \land y \in \Sigma^* \; \} \\ \end{split}$$

/Lösung

Aufgabe 2: Myhill-Nerode für reguläre Sprachen

Gegeben seien das Alphabet $\Sigma \triangleq \{ a, b \}$ und die Sprachen

$$A \triangleq \{ ab^{n}a \mid n \in \mathbb{N}^{+} \} \text{ und } B \triangleq \{ w \in \{ a, b \}^{*} \mid |w|_{a} \mod 2 = 0 \}$$

2.a) Gib alle Äquivalenzklassen der Myhill-Nerode-Relation bzgl. A an.

Lösung

$$\label{eq:energy_energy} \begin{split} [\; \epsilon \;]_{\equiv_A} &= \{\; \epsilon \;\} \\ [\; \alpha \;]_{\equiv_A} &= \{\; \alpha \;\} \\ [\; ab \;]_{\equiv_A} &= \{\; \alpha b^n \mid n \in \mathbb{N}^+ \;\} \\ [\; ab\alpha \;]_{\equiv_A} &= A \\ [\; b \;]_{\equiv_A} &= \{\; bx, \alpha \alpha x, \alpha b^n \alpha y \mid x \in \Sigma^* \land y \in \Sigma^+ \land n \in \mathbb{N}^+ \;\} \end{split}$$

/Lösung

2.b) Gib den A-Äquivalenzklassenautomaten M_A an.

------ [Lösung]-----

 $M_A = (\{ [\epsilon], [a], [ab], [aba], [b] \}, \Sigma, \delta_A, [\epsilon], \{ [aba] \}),$ wobei δ_A durch den folgenden Graphen gegeben ist:

$$[\epsilon]_{\equiv_B} = B$$

$$[a]_{\equiv_B} = \{ w \in \{ a, b \}^* \mid |w|_a \mod 2 = 1 \}$$

/Lösung

2.d) Gib den B-Äquivalenzklassenautomaten $M_{\rm B}$ an.

------Lösung

 $M_B = (\{ [\epsilon], [\alpha] \}, \Sigma, \delta_B, [\epsilon], \{ [\epsilon] \}), \text{ wobei } \delta_B \text{ durch den folgenden Graphen gegeben ist:}$

