CONTENTS

Final Secondary Analysis

Tianshu Liu, Lincole Jiang, Jiong Ma

Contents

1	\mathbf{Mo}	Model Training		
	1.1	Second	dary Analysis	2
			Logistic Regression	
		1.1.2	Penalized Logistic Regression	3
		1.1.3	Generalized Additive Model (GAM) for classification	5
		1.1.4	Multivariate Adaptive Regression Splines (MARS) for classification	7
		1.1.5	Linear Discriminant Analysis (LDA)	
		1.1.6	Quadratic Discriminant Analysis (QDA)	
		1.1.7	Naive Bayes (NB)	10
		1.1.8	Bagging	11
		1.1.9	Random Forest	13
		1.1.10	Boosting	15
		1.1.11	Classification Trees	17
		1.1.12	Support Vector Machine (SVM)	19
	1.2		Selection	
	1.3	Traini	ng / Testing Error	22

```
library(tidyverse)
library(summarytools)
library(corrplot)
library(caret)
library(vip)
library(rpart.plot)
library(ranger)
```

1 Model Training

1.1 Secondary Analysis

```
ctrl1 <- trainControl(method = "cv", number = 5)</pre>
```

1.1.1 Logistic Regression

height ## race4 smoking1 smoking2 weight ## 0.502637208 -0.545510559 ## bmi hypertension1 diabetes1 SBP ## ## vaccine1 severity1 studyB studyC ## -0.600151829 0.761039467 -1.066825060 -0.031460504

vip(glm.fit\$finalModel) + theme_bw()

1.1.2 Penalized Logistic Regression

```
glmnGrid <- expand.grid(.alpha = seq(0, 1, length = 21),</pre>
                         .lambda = exp(seq(-10, -5, length = 15)))
set.seed(1)
glmn.fit <- train(train.x,</pre>
                   train.bin.y,
                   method = 'glmnet',
                   tuneGrid = glmnGrid,
                   trControl = ctrl1)
glmn.fit$bestTune
      alpha
                   lambda
## 83 0.25 0.0005530844
myCol<- rainbow(25)</pre>
myPar <- list(superpose.symbol = list(col = myCol),</pre>
              superpose.line = list(col = myCol))
ggplot(glmn.fit, highlight = TRUE) +
  labs(title="Penalized Logistic Regression CV Result") +
  theme_bw()
```

Penalized Logistic Regression CV Result

ggsave("./figure/penal_logi_cv.jpeg", dpi = 500)

#coef(glmn.fit\$finalModel)

vip(glmn.fit\$finalModel) + theme_bw()

1.1.3 Generalized Additive Model (GAM) for classification

GAM Classification CV Result


```
ggsave("./figure/gam_binned_cv.jpeg", dpi = 500)
gam.bin.fit$bestTune
```

```
## select method
## 2 TRUE GCV.Cp
par(mfrow=c(2, 3))
plot(gam.bin.fit$finalModel)
```


1.1.4 Multivariate Adaptive Regression Splines (MARS) for classification

ggsave("./figure/mars_binned_cv.jpeg", dpi = 500)
mars.bin.fit\$bestTune

nprune degree ## 9 10 1

coef(mars.bin.fit\$finalModel) %>%

broom::tidy() %>%
knitr::kable()

names	X
(Intercept)	1.1021073
studyB	-1.0784308
h(bmi-26.9)	0.2906422
h(26.9-bmi)	0.2906009
vaccine1	-0.6182904
severity1	0.8024101
gender1	-0.3318841
hypertension1	0.3034198
smoking1	0.3860960
smoking2	0.5281300

```
summary(mars.bin.fit$finalModel)
```

```
## Call: earth(x=matrix[2900,18], y=factor.object, keepxy=TRUE,
## glm=list(family=function.object, maxit=100), degree=1, nprune=10)
```

```
##
## GLM coefficients
##
                       gt30
## (Intercept)
                  1.1021073
## gender1
                 -0.3318841
## smoking1
                  0.3860960
## smoking2
                  0.5281300
## hypertension1 0.3034198
## vaccine1
                 -0.6182904
## severity1
                  0.8024101
## studyB
                 -1.0784308
## h(26.9-bmi)
                  0.2906009
## h(bmi-26.9)
                  0.2906422
##
## GLM (family binomial, link logit):
## nulldev
             df
                       dev
                             df
                                  devratio
                                               AIC iters converged
## 3571.35 2899
                   3209.82 2890
                                     0.101
                                              3230
                                                        4
##
## Earth selected 10 of 14 terms, and 8 of 18 predictors (nprune=10)
## Termination condition: RSq changed by less than 0.001 at 14 terms
## Importance: studyB, bmi, vaccine1, severity1, gender1, smoking1, smoking2, ...
## Number of terms at each degree of interaction: 1 9 (additive model)
## Earth GCV 0.1908237
                          RSS 546.1611
                                          GRSq 0.1018244
                                                             RSq 0.1129434
```


1.1.5 Linear Discriminant Analysis (LDA)

1.1.6 Quadratic Discriminant Analysis (QDA)

1.1.7 Naive Bayes (NB)

```
## fL usekernel adjust
## 14 1  TRUE  0.2

ggplot(nb.fit, highlight = TRUE) +
  labs(title ="Naive Bayes Classification CV Result") +
  theme_bw()
```

Naive Bayes Classification CV Result

ggsave("./figure/nb_cv.jpeg", dpi = 500)

1.1.8 Bagging

```
bag.grid2 <- expand.grid(mtry = ncol(train.x),</pre>
                        splitrule = "gini",
                        min.node.size = 1:20)
set.seed(1)
bag.fit2 <- train(train.x,</pre>
                 train.bin.y,
                 method = "ranger",
                  tuneGrid = bag.grid2,
                  trControl = ctrl1)
bag.fit2$bestTune
      mtry splitrule min.node.size
##
       18
                gini
ggplot(bag.fit2, highlight = TRUE) +
  labs(title = "Bagging Classification CV Result") +
  theme_bw()
```

Bagging Classification CV Result

1.1.9 Random Forest

```
rf.grid2 <- expand.grid(mtry = 1:ncol(train.x),</pre>
                       splitrule = "gini",
                       min.node.size = seq(10, 20, by=2))
set.seed(1)
rf.fit2 <- train(train.x,</pre>
                train.bin.y,
                method = "ranger",
                tuneGrid = rf.grid2,
                trControl = ctrl1)
rf.fit2$bestTune
      mtry splitrule min.node.size
##
## 18 3
                gini
ggplot(rf.fit2, highlight = TRUE) +
  labs(title = "Random Forest Classification CV Result") +
 theme_bw()
```


1.1.10 Boosting

```
set.seed(1)
bst.grid2 <- expand.grid(n.trees = c(5000, 6000, 7000, 8000),
                        interaction.depth = 1:4,
                        shrinkage = c(0.0005, 0.001, 0.002),
                        n.minobsinnode = c(1,10)
bst.fit2 <- train(train.x,</pre>
                 train.bin.y,
                 method = "gbm",
                 tuneGrid = bst.grid2,
                 trControl = ctrl1,
                 verbose = FALSE)
bst.fit2$bestTune
      n.trees interaction.depth shrinkage n.minobsinnode
## 74
         6000
                                    0.002
ggplot(bst.fit2, highlight = TRUE) +
  labs(title = "Boosting Classification CV Result") +
 theme_bw()
```


ggsave("./figure/boosting_classification_cv.jpeg", dpi = 500)
Variable Importance
summary(bst.fit2\$finalModel, las = 2, cBars = ncol(train.x), cex.names = 0.6)

var rel.inf

```
## bmi
                        bmi 24.27996796
## studyB
                     studyB 18.07482490
## height
                     height 9.27741014
## SBP
                        SBP 7.37997245
## vaccine1
                   vaccine1 7.31766352
## LDL
                        LDL 7.26693577
## weight
                     weight 7.01275278
## age
                        age 5.83057254
## severity1 severity1 4.08846656
## gender1
                  gender1 3.34607451
## smoking1
                  smoking1 2.59108804
## smoking2
                   smoking2 2.04775125
## hypertension1 hypertension1 0.62685044
## diabetes1
                  diabetes1 0.24890993
## race2
                      race2 0.20737303
                      race3 0.20408588
## race3
## race4
                     race4 0.12758383
## studyC
                      studyC 0.07171648
```

1.1.11 Classification Trees

ggsave("./figure/rpart2_cv.jpeg", dpi = 500)
rpart.plot(rpart.fit2\$finalModel)


```
jpeg("./figure/rpart2.jpeg", width = 8, height = 6, units="in", res=500)
rpart.plot(rpart.fit2$finalModel)
dev.off()

## pdf
## 2
```

1.1.12 Support Vector Machine (SVM)

SVM Linear CV result

SVM Radial Kernal CV result


```
ggsave("./figure/svmr_cv.jpeg", dpi = 500)
confusionMatrix(svmr.fit)
### Cross-Validated (5 fold) Confusion Matrix
```

```
## Cross-Validated (5 fold) Confusion Matrix
##
## (entries are percentual average cell counts across resamples)
##
## Reference
## Prediction 1t30 gt30
## 1t30 7.0 5.8
## gt30 23.6 63.7
```

1.2 Model Selection 21

```
## ## Accuracy (average) : 0.7069
```

1.2 Model Selection

```
set.seed(1)
resamp <- resamples(list(glm = glm.fit,</pre>
                         glmnet = glmn.fit,
                         gam = gam.bin.fit,
                         mars = mars.bin.fit,
                         lda = lda.fit,
                         qda = qda.fit,
                         nb = nb.fit,
                         bagging = bag.fit2,
                         rf = rf.fit2,
                         boosting = bst.fit2,
                         tree = rpart.fit2,
                          svml <- svml.fit,</pre>
                         svmr = svmr.fit))
summary(resamp)
##
## Call:
## summary.resamples(object = resamp)
## Models: glm, glmnet, gam, mars, lda, qda, nb, bagging, rf, boosting, tree, Model12, svmr
## Number of resamples: 5
##
## Accuracy
##
                         1st Qu.
                                    Median
                                                        3rd Qu.
                                                                     Max. NA's
                 Min.
                                                Mean
            0.6879310 0.7068966 0.7068966 0.7068966 0.7086207 0.7241379
## glm
            0.6965517 \ 0.7051724 \ 0.7051724 \ 0.7096552 \ 0.7137931 \ 0.7275862
## glmnet
## gam
            0.6965517 0.7086207 0.7189655 0.7151724 0.7258621 0.7258621
            0.6948276\ 0.7155172\ 0.7189655\ 0.7162069\ 0.7206897\ 0.7310345
## mars
## lda
            0.6913793 0.7034483 0.7068966 0.7058621 0.7068966 0.7206897
            0.6517241 0.6586207 0.6620690 0.6627586 0.6672414 0.6741379
## qda
            0.6896552 0.6982759 0.7000000 0.6989655 0.7017241 0.7051724
## nb
## bagging 0.6534483 0.6844828 0.6879310 0.6858621 0.6982759 0.7051724
            0.6948276 0.7034483 0.7068966 0.7082759 0.7155172 0.7206897
## boosting 0.6965517 0.7000000 0.7068966 0.7117241 0.7189655 0.7362069
                                                                             0
            0.6844828 0.6879310 0.7034483 0.6996552 0.7086207 0.7137931
                                                                              0
## tree
## Model12 0.6931034 0.6931034 0.6948276 0.6941379 0.6948276 0.6948276
                                                                              0
            0.6775862 0.7051724 0.7120690 0.7068966 0.7172414 0.7224138
## symr
##
## Kappa
##
                  Min.
                           1st Qu.
                                       Median
                                                     Mean
                                                             3rd Qu.
            0.13193755 0.16300233 0.16457670 0.17180013 0.16951910 0.22996498
## glm
            0.14160780 0.14328657 0.15161158 0.16500024 0.16343731 0.22505793
## glmnet
            0.15120069 0.18948866 0.20205942 0.20642269 0.24188616 0.24747854
## gam
                                                                                    0
            0.14158138 0.20810159 0.20867236 0.20786109 0.22614439 0.25480571
## mars
            0.13833743 0.13995551 0.15495372 0.16208589 0.15977844 0.21740434
## lda
                                                                                    0
## qda
            0.20859227 0.21475849 0.24387746 0.23693725 0.25432987 0.26312818
            0.01857562\ 0.03259626\ 0.04323094\ 0.04096494\ 0.04365231\ 0.06676954
## nb
```

```
## bagging 0.08030925 0.14962901 0.16765997 0.16157987 0.20209421 0.20820693
           0.12519599 0.14989348 0.15652962 0.16181846 0.18678922 0.19068399
## rf
                                                                            0
## boosting 0.13507028 0.13509117 0.18183779 0.18203883 0.19592434 0.26227055
                                                                            0
           0.14650407 0.18862646 0.19061127 0.18622778 0.20132325 0.20407387
                                                                            0
0
## svmr
           0.10647202 0.18162915 0.18314068 0.17578391 0.18558504 0.22209264
p1=bwplot(resamp, metric = "Accuracy")
p2=bwplot(resamp, metric = "Kappa")
grid.arrange(p1, p2 ,ncol=2)
  mars
                                              qda
                                                                        •
   gam
                                             mars
                                                               0
                                                                         0
   svmr
                                             gam
     rf
                                              tree
    lda
                                             svmr
    glm
                                          boosting
boosting
                                          bagging
 glmnet
                             0
                                              glm
   tree
                                                rf
    nb
                                              lda
Model12
                                            glmnet
                                                                       O
bagging
                                               nb
    qda
                                          Model12
                    0.70
                                                  0.00 0.05 0.10 0.15 0.20 0.25
               0.68
                         0.72
                              0.74
          0.66
                Accuracy
                                                            Kappa
jpeg("./figure/resample2.jpeg", width = 8, height=6, units="in", res=500)
p1=bwplot(resamp, metric = "Accuracy")
p2=bwplot(resamp, metric = "Kappa")
grid.arrange(p1, p2, ncol=2)
dev.off()
## pdf
```

1.3 Training / Testing Error

##

2