Introduction to Groups

Contents

1 Basic Axioms and Examples

2

1 Basic Axioms and Examples

Definition. (Binary Operation)

- 1. (binary operation) \star on a set G is a function \star : $G \to G$. write $a \star b$ instead of $\star(a,b)$
- 2. (associative \star) A binary operation on G is associative if for all $a, b, c \in G$ $a \star (b \star c) = (a \star b) \star c$
- 3. (commutative \star) A binary operation on G is commutative if for all $a, b \in G$, $a \star b = b \star a$
- 4. (closed under \star) \star is a binary operation on G and $H \subset H$, if $\star|_H$ is a binary operation on H, i.e. for all $a, b \in H$, $a \star b \in H$, then H is closed under \star . Associativity/Commutativity of \star is inherited on H
- (examples)
 - 1. + on $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ is a commutative binary operation
 - 2. \times on $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ is a commutative binary operation
 - 3. is not commutative on \mathbb{Z} $(a b \neq b a \ usually)$
 - 4. is not commutative on \mathbb{Z}^+ $(1, 2 \in \mathbb{Z}^+, but \ 1 2 = -1 \notin \mathbb{Z}^+)$

Definition. (Group)

- 1. (group) A group is an ordered pair (G,\star) where G is a set and \star is a binary operation on G satisfying
 - (a) (associative) $\forall a, b, c \in G, (a \star b) \star c = a \star (b \star c)$
 - (b) (identity) $\exists e \in G \ \forall a \in G \ a \star e = e \star a = a$ (e is an identity of G)
 - (c) (inverse) $\forall a \in G \ \exists a^{-1} \in G, \ a \star a^{-1} = a^{-1} \star a = e \ (a^{-1} \ is \ an \ inverse \ of \ a)$
- 2. (abelian group) A group if abelian/commutative if $a \star b = b \star a$ for all $a, b \in G$
- 3. (finite group) G is a finite group if G is a finite set
- 4. (direct product) If (A, \star) and (B, \circ) are groups, a new group $A \times B$ called direct product are defined as

$$A \times B = \{(a, b) \mid a \in A \ b \in B\}$$

with binary operation defined component-wise

$$(a_1, b_1)(a_2, b_2) = (a_1 \star a_2, b_1 \circ b_2)$$

- (examples)
 - $-\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ are groups under + $(e = 0, a^{-1} = -a, associativity by axioms of <math>+)$
 - $-\mathbb{Q}-\left\{0\right\},\mathbb{R}-\left\{0\right\},\mathbb{C}-\left\{0\right\},\mathbb{Q}^{+},\mathbb{R}^{+}\ are\ gorups\ under\times\left(e=1,\ a^{-1}=1/a,\ associativity\ by\ \times\right)\right)$
 - $-(\mathbb{Z} \{0\}, \times) \text{ is not a group } (2^{-1} = 1/2 \notin \mathbb{Z} \{0\})$
 - -(V,+) is an abelian group, where V is a vector space (commutativity by axioms of a vector space)
 - $-(\mathbb{Z}/n\mathbb{Z},+)$ is an abelian group $(e=\overline{1}, a^{-1}=\overline{-a})$
 - $-((\mathbb{Z}/n\mathbb{Z})^{\times}, \times)$ is abelian group $(e = \overline{1}, a^{-1} \text{ exists by definition of } (\mathbb{Z}/n\mathbb{Z})^{\times})$
- (theorem) direct product of two groups is a group
- (proposition) identity/inverse are unique
 - 1. identity of G is unique
 - 2. inverse a^{-1} of any a in G is unique
 - 3. $(a^{-1})^{-1} = a$ for all a in G