Week6 轉寶自走車

107-2 電資工程入門設計與實作

授課教師:李建模教授

課程助教:陳界宇、周武堂、趙冠豪

本週目標

- 自行探索並整合先前所學之軟硬體系統,利用Arduino完成尋寶 自走車。
- 能力提升:「進度規劃」、「團隊合作」、「系統整合」

Figure: http://img.bimg.126.net/photo/EVjrOlRUeMkSU8t2ygmH8Q==/585467951558860138.jpg, access 12-27-2018.

本日進度

- 尋寶自走車 期末競賽介紹 (期望達成)
- 尋寶自走車專題引導(現有的→分工合作)

Figure: http://img.bimg.126.net/photo/EVjrOlRUeMkSU8t2ygmH8Q==/585467951558860138.jpg, access 12-27-2018.

教案設計者:周武堂

時間表

DATE	TODO
W6 3/25 & 3/27	Project 介紹
W7 4/01 & 4/3	放假
W8 4/08 & 4/10	進度報告
W9 4/15 & 4/17	期中考
W10 4/22 & 4/24	進度報告
W11 4/29 & 5/01	Checkpoint 小迷宮
W12 5/06 & 5/08	補救教學
W13 5/13 & 5/15	進度報告
W14 5/20 & 5/22	進度報告
W15 5/27 & 5/29	Final contest 大迷宮
W16 6/03 & 6/05	Presentation
W17 6/10 & 6/12	補考、自選題demo
W18 6/17 & 6/19	放假

介紹

- 自走車尋寶之路
 - 在地圖上循跡行走
 - 感測藏在地圖下的RIFD卡片們
 - 將其代碼傳回電腦
 - 1. 拿到總數越高越好
 - 2. 時間越快越好

Demo

元件規格

元件	大小/mm	功率	Pin腳 / 接腳	工作溫度	其他
電池	65		N/A	10°C ~ 45°C	儲存電量: 2400 mAh 規格: 3.7 V
Arduino UNO R3	68.6 x 53.4	5W, 5V	數位 14 (40mA) 類比 6 (40mA) 電源 3.3V, 5V (50mA)	-40°C ~ 85°C	Clock speed: 16MHz Flash: 32kB Microcontroller: ATmega328
Arduino 擴充板 Sensor Shield v5.0	58 x 55	5V	電源 Vcc 20 (5V) 地 Gnd 20 訊號 20 (14數位・6類比)		其他模組接口: LCD, APC220, Bluetooth, RS232, HC port, URF01, SD
降壓電源模組 LM2596 DC-DC	43 x 21 x 14	Vin 3.2~40V Vout 1.25~32V/3A	Vin+, Vin- Vout+, Vout-	-40°C ~ 85°C	最高效率: 92%
5* 循跡感測器 IRS-90	32 x 14	3.3~5V/15mA	訊號: D0, A0 供電: Vcc, Gnd		適用距離: 1~25mm 使用LM393比較器
RFID RC522	40 x 60	3.3V/13~26mA	訊號: SDA, SCK, MOSI, MISO, RST, IRQ 供電: Gnd, Vcc (3.3V)	-20°C ~ 80°C	工作頻率 13.56MHz 適用距離 50mm 傳輸速度 1.25MB/s
2* 直流減速馬達	37 x 64 x 23	DC 3V-6V 160-220mA	供電: V+ [,] V-		減速比: 最大扭力:
馬達驅動模組 LM298N	55 x 60 x 30	20W 5~35V/2A	訊號: 4 (數位) 供電: 3 輸出: 2組 (V- V+)	-25°C ~ 130°C	
藍芽模組 HC-05?	27 x 13 x 2	3.3V/ 10mA	?		包率: 9600
直流接頭	5.5 x 2.1				

尋寶車系統

會用到的技術

- 循跡
- 基礎圖論
- 藍牙模組
- 順序功能流程圖

Map Dimensions

- 每張地圖會用一個.csv檔表示
- 單位格: 10×10 cm²
 - 路寬: 2.2 cm
 - 轉彎提示:1 cm
- 最大地圖尺寸比賽前公布
 - 例如: 9×12 單位格

實際尺寸以發放地圖為準

地圖規格

	А	В	С	D	Е	F
1	index	North	South	West	East	
2	1		2	5		
3	2	1	3	6		
4	3	2				
5	4			9		
6	5		6		1	
7	6	5		8	2	
8	7		8			
9	8	7	9		6	
10	9	8			4	
11						

測資

- 各組發放小型地圖測資(8×5 = 40 單位格)
- 明達402 open lab有公用大型地圖測資(9×12 單位格)
- 隱藏地圖測資於比賽當天公布,三班不同
 - 實體地圖和其.csv檔會同時釋出

寶藏 Treasure

- 地圖下的RFID卡片
- 卡片代碼需回傳電腦才能計分
- 寶藏位置皆在死路
- 寶藏價值為機率函數(但是會告知期望值)
 - 離起點越遠的寶藏分數期望值越高
 - Manhattan distance X+Y

GAME # 1 規則說明

- 時間限制: 200秒
- 得分: 感測死巷下的RFID們
 - 越遠的RFID得分越高(Manhattan distance)
- 扣分: 人為輔助 (一次扣4分)
- 每組2次機會

GAME # 2 規則說明

- 指定5個地點(下有RFID),依序走完
- 得分比重:
 - 1. 指定點到達數,越多越好
 - 2. 使用時間,越短越好
- 人為輔助必須回脫軌地點
- 每組2次機會

排名

• 各班自己排名,兩個GAME獨立排名

Game 1

得分	組別
286	2
250	3
210	5

Game 2

到達指定點	組別	使用時間
5	3	4 min 30 sec
4	4	3 min 10 sec
4	1	3 min 50 sec

報告

- Deadline: demo當週週日6/2 23:59:59
 - PDF上傳CEIBA
- Required content:
 - 車體設計
 - 程式架構
 - 演算法設計
 - 遇到的問題以及解決方式
 - 創意技術
 - 組員分工

線上筆記本 - HackMD

- 線上網站
- 及時共同編輯
- 功能介紹 (youtube)

線上筆記本

- 格式
 - 進度: 分成預計與實際進度
 - 遇到的問題: 分成已解決以及未解決
 - 分工狀況: 每位成員都要寫
 - **課程建議** (非強制)
- 模板連結:

https://hackmd.io/vCqxB7p_RyWDNQH C5pscMg?both

保存

尋寶 自走車 進度規劃引導

教案設計者:陳界宇

自走尋寶-整合兩系統

Arduino執行流程圖

Arduino:要做什麼? 数的順序?

Python執行流程圖

Python:要做什麼? 要的順序?

進度規劃 - 甘特圖

分工 Project Management

進度規劃 - 簡單範例

遇到 Bug 怎麼辦

- 先找出發生bug的地方!
 - 軟體部分有bug嗎?
 - cout 大法
 - debugger
 - 硬體部分有bug嗎?
 - 工具小程式(只測試一個元件)
 - 電線接觸不良
 - 換車
 - 換零件

祝大家順利完成調算!

聯絡資料

- 助教信箱:
 - 陳界宇 <u>r07921016@ntu.edu.tw</u>
 - 趙冠豪 <u>b05901180@ntu.edu.tw</u>
 - 周武堂 <u>b05901121@ntu.edu.tw</u>
- 請不要私訊助教