[19]中华人民共和国国家知识产权局

[51] Int. Cl7

G11B 20/04

[12] 发明专利申请公开说明书

[21] 申请号 00802033.7

EORR. TO WO 01/08/5/ A!
[11]公开号 CN 1322358A

[43]公开日 2001年11月14日

[22]申请日 2000.7.27 [21]申请号 00802033.7

[30]优先权

AN:

[32]1999.7.27 [33]US [31]60/146,101

[32]1999. 8. 17 [33]US [31]60/149,515

[32]2000.6.12 [33]US [31]09/592,599

[86]国际申请 PCT/KR00/00821 2000.7.27

[87]国际公布 WO01/08151 英 2001.2.1

[85]进入国家阶段日期 2001.5.22

[71]申请人 三星电子株式会社

地址 韩国京畿道

[72] 发明人 王冬岩 理査徳・赫普莱曼

[74]专利代理机构 柳沈知识产权律师事务所代理人 吕晓章

权利要求书4页 说明书48页 附图页数13页

[54]发明名称 家庭网络设备信息体系结构 [57] 續要

一种用于对用户提供发现和控制当前连接到一网络的各个设备的用户接口的方法和系统,能使至少一个所述设备执行包括下列步骤的步骤:(a)从当前连接到网络的一个或多个设备中获取信息,该信息包括设备信息;和(b)至少根据所获取的信息生成用户接口描述文件,该用户接口描述文件包括与当前连接到网络的每一个设备的设备信息相关联的一参考文件,因此该参考文件包括至少一个到包含在当前连接到网络的各个设备中的信息的链路。这样,可以利用用户接口描述文件中的参考文件来显示用户接口,该用户接口 用于控制当前连接到网络的各个设备。

权 利 要 求 书

4.

10

- 1. 一种用于提供控制当前连接到一网络的各个设备的用户接口的方法,该方法包括下列步骤:
- 5 (a)从当前连接到所述网络的一个或多个设备中获取信息,所述信息包括设备信息;和
 - (b)至少根据所述获取的信息生成用户接口描述文件,该用户接口描述 文件包括与当前连接到所述网络的所述各个设备中的每一个设备的设备信息 相关联的一参考文件,因此该参考文件包括至少一个到包含在当前连接到所 述网络的所述设备中的信息的链路。
 - 2. 如权利要求 1 所述的方法,其中,所述步骤(b)还包括步骤:生成所述用户接口描述文件,以使所述用户接口描述文件中的所述参考文件提供至少对每个相应设备中的信息的访问。
- 3. 如权利要求 1 所述的方法,其中,所述步骤(b)还包括步骤:根据从 15 每一个设备中获取的信息生成所述用户接口描述文件,以使所述用户接口描述文件还包括相应于每一个设备的设备数据。
 - 4. 如权利要求 1 所述的方法,其中,所述生成用户接口描述文件的步骤(b)还包括步骤:使一超文本链路与当前连接到所述网络的所述各个设备中的每一个设备的设备信息相关联。
- 20 5. 如权利要求 1 所述的方法,其中,每个设备中的所述信息包括包含 在该设备中的 HTML 页。
 - 6. 如权利要求 1 所述的方法,其中,每个设备中的所述设备信息包括设备标识信息。
- 7. 如权利要求 1 所述的方法,其中,每个设备中的所述设备信息包括 25 用于使用户与设备交互的用户控制接口描述文件。
 - 8. 如权利要求 7 所述的方法,其中,所述步骤(b)还包括步骤:生成所述用户接口描述文件,以使所述用户接口描述文件中的每一个参考文件是针对每一个相应设备中的至少用户控制接口描述文件的。
- 9. 如权利要求 7 所述的方法,其中,所述步骤(b)还包括步骤:根据从 30 每一个设备中获取的信息生成所述用户接口描述文件,以使所述用户接口描述文件还包括相应于每一个设备的设备数据,该设备数据提供对于每一个设

I

备中的用户控制接口描述文件的参考。

4

15

30

10. 一种用于执行一服务的网络系统,包括:

一物理层,其中该物理层提供可以由各设备用来相互通信的通信媒体; 连接到该物理层的一个或多个设备,每个设备存储包括设备信息的信 5 息;

在至少一个设备中的代理程序,该代理程序适用于:

- (a)从当前连接到所述网络的一个或多个设备中获取信息,所述信息包括设备信息;和
- (b)至少根据所获取的信息生成一用户接口描述文件,该用户接口描述 10 文件包括与当前连接到所述网络的所述各个设备中的每一个设备的设备信息 相关联的一参考文件,以使该参考文件包括至少一个到包含在当前连接到所 述网络的所述各个设备中的信息的链路。
 - 11. 如权利要求 10 所述的网络系统,其中,所述代理程序生成所述用户接口描述文件,以使所述用户接口描述文件中的所述参考文件提供至少对每个相应设备中的信息的访问。
 - 12. 如权利要求 10 所述的网络系统,其中,所述代理程序根据从每一个设备中获取的信息生成所述用户接口描述文件,以使所述用户接口描述文件,以使所述用户接口描述文件还包括相应于每一个设备的设备数据。
- 13. 如权利要求 10 所述的网络系统,其中,所述代理程序还使所述用 20 户接口描述文件中的一超文本链路与当前连接到所述网络的所述各个设备中的每一个设备的设备信息相关联。
 - 14. 如权利要求 10 所述的网络系统,其中,每个设备中的所述信息包括包含在该设备中的 HTML 页。
- 15. 如权利要求 10 所述的网络系统,其中,每个设备中的所述设备信 25 息包括设备标识信息。
 - 16. 如权利要求 10 所述的网络系统,其中,每个设备中的所述设备信息包括用于使用户与设备交互的用户控制接口描述文件。
 - 17. 如权利要求 16 所述的网络系统,其中,所述代理程序生成所述用户接口描述文件,以使所述用户接口描述文件中的每一个参考文件是针对每一个相应设备中的至少用户控制接口描述文件的。
 - 18. 如权利要求 16 所述的网络系统,其中,所述代理程序根据从每一

个设备中获取的信息生成所述用户接口描述文件,以使所述用户接口描述文件还包括相应于每一个设备的设备数据,该设备数据提供对于每一个设备中的用户控制接口描述文件的参考。

- 19. 如权利要求 10 所述的网络系统,还包括用于通过下列方式生成至少一个用户接口的装置:利用一用户接口描述文件中的每一个参考文件来访问每一个相应设备中的信息,并且利用每一个设备中的被访问信息来生成包括相应于每一个设备的设备数据的用户接口。
 - 20. 一种用于执行一服务的网络系统,包括:

41

- 一物理层,其中该物理层提供可以由各设备用来相互通信的通信媒体:
- 10 连接到该物理层的多种设备,所述多种设备中的一个或多个设备存储包括设备信息的信息,并且,所述一个或多个多种设备中的每一个设备都包括一代理程序,该代理程序适用于:
 - (a)从当前连接到网络的一个或多个设备中获取信息,所述信息包括设备信息;
- 15 (b)至少根据所获取的信息生成一用户接口描述文件,该用户接口描述 文件包括与当前连接到所述网络的所述各个设备中的每一个设备的设备信息 相关的一参考文件,以使该参考文件包括至少一个到包含在当前连接到所述 网络的所述各个设备中的信息的链路。
- 21. 如权利要求 20 所述的网络系统,其中,每一个代理程序生成一用 20 户接口描述文件,以使该用户接口描述文件中的所述参考文件提供至少对每 个相应设备中的信息的访问。
 - 22. 如权利要求 20 所述的网络系统,其中,每一个代理程序根据从每一个设备中获取的信息生成一用户接口描述文件,以使该用户接口描述文件还包括相应于每一个设备的设备数据。
- 25 23.如权利要求 20 所述的网络系统,其中,每一个代理程序还使一用户接口描述文件中的一超文本链路与当前连接到所述网络的所述各个设备中的每一个设备的设备信息相关联。
 - 24. 如权利要求 20 所述的网络系统,其中,每个设备中的所述信息包括包含在该设备中的 HTML 页。
- 30 25. 如权利要求 20 所述的网络系统,其中,每个设备中的所述设备信息包括设备标识信息。

26. 如权利要求 20 所述的网络系统,其中,每个设备中的所述设备信息包括用于使用户与设备交互的用户控制接口描述文件。

4

- 27. 如权利要求 26 所述的网络系统,其中,每一个代理程序生成所述用户接口描述文件,以使所述用户接口描述文件中的每一个参考文件是针对 每一个相应设备中的至少用户控制接口描述文件的。
 - 28. 如权利要求 26 所述的网络系统,其中,每一个代理程序根据从每一个设备中获取的信息生成所述用户接口描述文件,以使所述用户接口描述文件还包括相应于每一个设备的设备数据,该设备数据提供对于每一个设备中的用户控制接口描述文件的参考。

说明书

家庭网络设备信息体系结构

5

4)

技术领域

本发明涉及网络领域,尤其涉及具有与其相连的多媒体设备的家庭网络。

<受版权保护资料的范围申明>

本发明文本所公开内容的一部分包含受版权保护的资料。版权所有人不 10 反对在本发明内容公开成为专利与商标局专利文件或记录文档时由任何人传 真复制本发明内容,但除此之外,无论何种情况,都保留所有的版权。

<对相关内容的交叉引用>

本申请人申明受益于 1999 年 7 月 27 日提交的题为《网络体系结构 (Network Architecture)》的美国临时申请 No. 60/146,101 以及 1999 年 8 月 17 日提交的题为《包含在家庭网络顶层用户接口规范中的外部万维网服务器 (External Web Server Included in Home Network Top-Level User Interface Description)》的美国临时申请 No. 60/149,515,这两个申请在此被引用为参考资料。

20

25

30

背景技术

一个网络一般来说包括通信链路和连接到该通信链路并具有通信能力的多种设备。这些设备包括计算机、外部设备、路由器、存储设备、和具有处理器和通信接口的器具。网络的一个例子是用于家用装置(household)的家庭网络,其中多种设备被相互连接。通常的家用装置包含几种家电设备,包括个人计算机和通常能在家里找到的家电设备(home devices)。所述的术语"家电设备"通常包括逻辑设备或其它具有能够交换数据的功能的器件,并且,不仅可包括所有的家电设备,而且包括一般用途计算机。"家电设备"包括多种电子设备,如安全系统、家庭影院设备、电视(TV)、VCR、音响设备、以及直接广播卫星服务或(DBSS)一它也被称作数字卫星服务(DSS),"家电设备"还包括消防系统、照明系统、微波炉、洗碗机、烤箱/灶具、洗衣机/干衣机、以及汽车中的处理系统。

一般而言,家电设备的用途是提高房屋主人的生活格调和生活水平。例如,洗碗机洗刷弄脏的碗碟,使得房屋主人不必用手来洗碗。VCR 记录电视节目使得房屋主人能够以后观看特定的节目。安全系统保护房屋主人的财产,减轻了房屋主人对非法侵入的担心。

0.

20

25

家电设备,诸如家庭影院设备,常常通过单一的通用控制器件即遥控设备来控制,这种单一的通用控制器件允许房屋主人能够采用单一接口来控制和命令几种不同的家电设备。于是,许多制造商开发了通过单一接口来控制和命令几种不同家电设备的控制器件。

使用遥控器件来命令和控制家电设备的一个相关缺点是,遥控器件提供 10 用于控制和命令每个家电设备的静态控制和命令逻辑。因此,特定的遥控器 件只能控制和命令在遥控器件中包含用于家电设备的必要控制和命令逻辑的 那些家电设备。例如,如果一个遥控器件包括用于控制电视(TV)、磁带录像 机(VCR)和数字视频设备(DVD)的逻辑,但没有用于光盘(CD)器件的逻辑, 则不能采用该遥控器件来命令和控制该 CD 器件。此外,随着新的家电设备 的发展,该遥控器件将不能控制和命令新的家电设备,原因是这些新的家电 设备所要求的控制和命令逻辑在开发该遥控器件时是未知的。

此外,遙控器件通常只能被用于命令和控制在该遙控器件的信号范围之内的家电设备。因此,用户不能从房屋中的单一位置使用遙控器件来控制和命令相互连接但位于家中不同地方的家电设备。例如,位于楼上卧室中的VCR可以连接到位于楼下客厅(family room)中的电视上。如果用户想要在位于楼下客厅中的电视上播放包含在位于楼上卧室中的 VCR 中的录像带,则该用户不能从单一位置控制和命令电视和 VCR 这两者。

使用遥控器件的另一个相关缺点是,已知的遥控器件不能控制多个各种各样的设备,尤其是不能控制具有为完成多个任务或提供一服务而相互通信的不同能力的多个设备。此外,常规的网络系统不能提供用于使不同网络设备中的软件应用程序自动相互通信以在没有直接用户命令的情况下完成多个任务的机制。

为解决上述问题,有些网络模型在一个包括用于联网设备的静态设备信息的设备中提供有中心/单一用户接口(UI),该静态设备信息用于使用户控制 30 网络设备。然而,在这种网络中,设备中设备信息(例如,图标(ICON))的改变要求顶层页(top level page)的改变和重建。此外,如果设备变得不能显示

中心用户接口,则用户不能再控制网络。中心/单一页的另一个问题是,每个 UI 设备必须显示相同的页,并且,没有对每个制造商提供生成其自己的 UI 外观和感觉的范围,也不能改变 UI 设备中使用的技术。表示一设备的图标/信息的内容不能被改变,并且,UI 设备不能对设备图标(比如用于该 UI 设备本身的图标)显示更引人著目的外观。UI 创建工具不也能从外部万维网入口(Web Portal)获得电子商务(e-business)图标。这种模型不能被标准化为工业应用,因为中心/单一 UI 设备控制着 UI。

因此,需要一种在家庭网络中提供动态控制和命令设备的方法和系统。还需要这种方法和系统提供经不同的动态用户接口来控制具有不同性能的多个各种设备的能力。

10

15

20

25

30

本发明的概述

本发明能够满足上述需要。在一个实施例中,本发明提供了一种用于提供控制当前连接到一网络的各个设备的用户接口的方法和系统,以使至少一个所述设备执行包括下列步骤的步骤:(a)从当前连接到所述网络的一个或多个设备中获取信息,所述信息包括设备信息;和(b)至少根据所述获取的信息生成用户接口描述文件(description),该用户接口描述文件包括与当前连接到所述网络的所述各个设备中的每一个设备的设备信息相关联的一参考文件(reference),因此该参考文件包括至少一个到包含在当前连接到所述网络的所述各个设备中的信息的链路。这样,可以利用用户接口描述文件中的参考文件来显示用户接口,该用户接口用于控制当前连接到所述网络的所述各个设备。

在一种形式中,顶层家庭网络(home network, HN)目录页可以被全部描述在'摘要(abstract)'中,以允许各个设备自由控制由参考文件(非直接地)调用的设备图标信息。这就允许各个设备改变图标内容及内容技术,并且不会招致回到中心设备进行这些改变的命令和控制的额外开销。此外,也不需要中心设备,因为顶层 HN 目录总是使用相同的摘要参考文件,并且任何设备都可以用该参考文件来提供用户对所有设备的访问。

附图的简要说明

通过参照下面的描述、所附的权利要求和附图,将能更好地理解本发明

的这些和其它特征、方面和优点,附图中:

图 1 示出本发明网络的一个实施例的体系结构的一例框图;

图 2 示出本发明网络的另一个实施例的体系结构的一例框图;

图 3 示出本发明的可用于在家电设备之间进行通信的分层接口模型的一 5 个例子:

图 4A 示出在本发明的一个网络中,对能够显示用户接口的 DTV 客户机设备重播视频的 DVCR 服务器设备的一例体系结构图;

图 4B 示出在本发明的一个网络中,与能够显示用户接口的客户机设备 进行通信的服务器设备的另一例体系结构图;

图 5-6 示出表示联网设备对用户的各功能的顶层 GUI 例子;

图 7 示出按照本发明另一个实施例构造的家庭网络的一例体系结构框图:

图 8 示出用于在 IP 地址结构的 1394 网络和非 1394 网络之间进行通信的本发明的处理过程的一个例子;

15 图 9A-C 示出在按照本发明另一方面的一个网络中,在发现系统 (discovery system)体系结构的一个实施例中,到数据和控制位的连接关系的 功能框图例子;

图 10 示出在与图 9A-C 的功能框图连接的家庭网络中,用于发现和配置代理程序的流程图例子;

20 图 11 示出在与图 9A-C 的功能框图连接的家庭网络中,用于用户接口 代理程序的流程图例子;和

附录 1-4 是下列各项的示例: (1)顶层页描述文件 250(附录 1); (2)Background.htm(附录 2); (3)Icon.htm(附录 3); 和(4)Name.htm(附录 4)。

为便于理解,尽可能在所有附图中用相同的标号来表示相同的部件。

25

10

实现本发明的最好模式

<网络概述>

参照图 1,在本发明的一个实施例中,网络 10 包括多种设备 11,该多种设备 11 包括经通信链路 16 相互连接的至少一个客户机设备 12 和至少一个服务器设备 14。通信链路 16 可包括 1394 串行总线,提供用于在各种相连的家电设备之间发送和接收数据的物理层(媒体)。1394 串行总线支持时分

复用的音频/视频(A/V)流和标准 IP(Internet Protocol, 因特网协议)通信(例如,IETF RFC 2734)。在某些实施例中,家庭网络使用 IP 网络层作为该家庭网络的通信层。然而,其它通信协议可用于为该家庭网络提供通信。例如,本发明可使用由 IEC 61883 定义的功能控制协议(Function Control Protocol, FCP)或者任何其它适当的协议来实现。因此,一个网络一般来说可以包括两个或更多个通过物理层相互连接的设备,该物理层按照预定通信协议交换或传送数据。

5

20

25

30

在网络 10 中,每个客户机设备 12 可以与一个或多个服务器设备 14 进行通信。此外,在网络 10 中,每个服务器设备 14 可以与一个或多个其它服 10 务器设备 14 以及一个或多个客户机设备 12 进行通信。每个客户机设备 12 可包括一用户通信接口,该通信接口包括比如用于接收用户输入的鼠标和键盘等的输入设备以及用于提供使用户与联网设备交互的控制用户接口的显示器。用户接口可包括用于向用户提供信息的图形用户接口(GUI)18。每个服务器设备 14 包括作为网络中用于向用户提供服务的资源的硬件,还可以包 15 括用于控制服务器硬件的服务器或服务控制程序 20。

每个服务器设备 14 除了不能控制用户接口之外能向用户提供服务,并且,每个客户机设备 12 提供包括用于使用户与网络 10 交互的控制用户接口的服务。这样,仅有客户机设备 12 直接与用户交互,而服务器设备 14 仅与客户机设备 12 和其它服务器设备 14 交互。举例来说,服务可包括 MPEG资料提供/搜寻和显示服务。

在本发明的一个示例性实施例中,基于浏览器的网络(例如,家庭网络)利用因特网技术来控制和命令包括连接到网络的客户机设备和服务器设备的各设备。每个设备包括比如接口数据(例如,HTML、XML、JAVA、JAVA、JAVASCRIPT、GIF、JPEG、图形文件、或者任何对所需目的有用的其它格式)等的设备信息,该信息提供用于通过网络命令和控制设备的接口。在某些实施例中,每个设备都包括比如一个或多个超文本标记语言(HTML)页等的设备信息,能够对该设备提供命令和控制。利用浏览器技术,网络采用因特网标准来呈现(render)HTML 页,以向用户提供多个用于命令和控制每个设备的图形用户接口(GUI)。在一个例子中,网络被构造成内部网。

在一个实施例中,客户机设备包含向人类操作员提供控制接口服务的设备,包括用于向下通信的图形显示硬件和用于向上(或返回)通信的鼠标或其

它点击设备。服务器设备包含提供服务的一模块,所述服务可以是除了由客户机设备提供的控制接口之外的任何服务。这样,服务器/客户机设备关系是一种控制关系,其中服务器设备提供服务,但客户机设备可使用数据比如DTV显示视频数据,但不必处理或改变数据。因此这就与通常遵守的定义是一致的,即,服务器可以是信息源,而客户机(例如,浏览器)可以是信息的用户。

可由服务器设备实现的特定功能的例子包括:返回信息(数据);执行一功能(例如,机械功能)并返回状态;返回数据流和状态;接收数据流和返回状态;或者,保存用于后续动作的状态。服务器设备的例子包括 MPEG 源、信宿(sink)和显示服务器。尽管典型地服务器设备包括常规内置控制程序,用于实现其本身硬件的控制,但客户机用于与该服务器设备进行接口。然而,这里所使用的服务器设备并不意味着必须使用 web 服务器和协议堆栈 (stack)。

10

15

20

25

30

图 2 示出了按照本发明一个方面的网络 100 的一个实施例的框图。在网 络 100 上,上面所述的 1394 串行总线 114 电连接到多种设备 11, 包括服务 器设备 14(例如, DVD 108、DVCR 110)、客户机设备 12(例如, DTV 102、 103)、网桥(Bridge)116、DVCR 120、PC 105、电缆/modem(调制解调器)接入 107 和 DBS 接入 109。图 3 示出了按照本发明可用于在各设备 11 之间进行 通信的分层接口模块的一个例子。在本例中,设备(服务器)150 利用一个或 多个网络通信协议层 152-164 与客户机设备 166 进行通信。在一个例子中, 设备 150 中的应用程序通过网络层 160 与设备 166 中的应用程序进行通信。 下面的层 162 和 164 的细节不能由应用程序了解到,因此使用比如 1394 或 者以太网(Ethernet)都不会对设备 150、166 中的所述应用程序带来差别。此 外,并不是 7 层模型的所有上层都会在所有时间内使用(例如,在 Web 模型 (TCP/IP 模型)中,不使用会话层 156 和表示层 154)。这样,在一种形式中, 通过对网络层 160 采用因特网协议标准,各设备可以相互通信,但不用了解 其它通信层(即,应用层 152、表示层 154、会话层 156、传输层 158、数据 链路层 162、和物理层 164)的具体细节。因此,通过对网络层 160 采用因特 网协议标准,网络可以在不同设备的通信中使用不同通信层的组合。

单一的物理组件可包括通过如图 3 所示的经网络层逻辑联网的数个设备,这些设备不必是通过物理网络来联网(例如,这种设备可包括单一房屋

内的 VCR 和电视)。在逻辑设备访问 GUI 以使用户控制一设备的情况下,该设备和该逻辑设备可包括在同一个物理组件内。在这种实施例中,物理设备从其本身提取一 GUI。然而,在其它实施例中,网络将各个物理设备互连,其中,例如,第一设备从第二设备中提取一 GUI,以允许用户与该 GUI 进行交互从而控制第二设备。

在当前优选的实施例中,将 1394 串行总线用作物理层 164,用于在网络 100 上进行数据通信。由于其增强的带宽能力(例如,增强且有保证的带宽及同步流能力),1394 串行总线能够对网络 100 上的所有数据通信(即,音频/视频流和命令/控制)提供单一媒体。

10

15

20

25

30

此外,1394 串行总线提供自动配置复位,使得当插入/去除一设备时,所有的1394 接口复位,1394 总线重新配置并且每个设备都了解每个其它设备(包括新添加的设备或者不包括刚刚去除的设备)的存在。此外,1394 接口支持配置信息的数据空间(space),这些信息是可从任何允许其它设备写入/读取信息和进行修改(例如允许网络层协议的操作)的设备寻址的。然而,可以用不同的软件和标准来得到这些结果。因此,网络100并不限于使用1394串行总线,并且,在本发明的替代实施例中,其它总线类型,例如以太网、ATM、无线等,如果它们满足单独网络(例如,家庭网络)的特定吞吐量要求即可被用作物理层。此外,修改的形式,例如无线以太网可包括1394的主要特征。

如图 2 所示, 网络 100 包括连接到 1394 串行总线 114 的数个设备。在本例中,这些设备包括 DBSS 104,用于从卫星 122 接收用于后续显示的发送信号。与 DBSS 相关联的是网络接口单元("network interface unit, NIU"),该单元的功能之一是提供在 DBSS 卫星传输和 1394 串行总线 114 之间的接口。

数字视频设备(digital video device, DVD)108 也连接到示例性网络 100。 DVD 108 可被用于在电视上显示数字编码的视频内容。连接到示例性网络 100 的还有数字视频盒式磁带录像机(digital video cassette recorder, DVCR)110,即数字电视 102。在本例中,DTV 102 通过采用浏览器技术来提供对于网络 100 的人际接口,以允许用户控制和命令家庭网络 100 中的各设备。第二 DTV 103 通过采用浏览器技术来提供对于网络 100 的另一个人际接口,以允许用户控制和命令家庭网络 100 中的各设备。DTV 102 和 103 可提供对于网络 100

的人际接口,因为每个 DTV 都包含用于显示 HTML 页的一屏幕。然而,其它具有显示能力的设备可被用于提供人际接口。因此,在本发明的某些实施例中,诸如个人计算机 105(PC)等的设备被用于提供对于各个家庭网络的人际接口,因为 PC 105 通常被体现为一个屏幕显示单元。

1394 串行总线 114 被描述为采用 HTTP/IP 接口协议,并且最好是HTTP/TCP/IP 协议,其中 IP 提供分组格式(单向只写模型),TCP 提供 IP 的无错版本(例如,保证分组到达并且以正确的顺序到达),并且,HTTP 提供双向连接(分组到服务器将期待一响应,是'读取'模型)。某些设备可要求其它协议接口类型(例如,UPD/IP、FTP/IP、TELNET/IP、SNMP/IP、DNS/IP、SMTP/IP)。在本发明的某些实施例中,代理服务器(proxy)116 可被用于对两个网络提供接口,其中这两个网络在它们各自的媒体上采用不同的接口协议,这些网络在被相连时包括网络 100。代理服务器 116(例如,Web 代理服务器)可包括家庭自动类型协议,比如用于 X10 的 HTML/HTTP/TCP/IP 代理服务器、Lonworks、CEBus(取决于它们各自的物理技术)、或者 1394 上的非IP 协议(例如,AVC/FCP/1394)。

10

15

20

25

30

在某些实施例中,两个网络媒体是属于同一类型。例如,如图 2 所描述的,采用 HTTP/IP 接口协议的 1394 串行总线 114 是由代理服务器 116 连接到家庭自动中枢(neutral)118(例如,X10)的。通过将代理服务器 116 用作用于 VCR-命令/AVC/FCP/1394 的 HTML/HTTP/TCP/IP/1394 代理服务器,以提供 HTML/HTTP/TCP/IP 和 X10 协议之间的接口,网络 100 上的 DVCR 120 也是可访问的。在某些其它实施例中,网络可包括不同类型的两种网络媒体,例如,1394 串行总线和以太网。因此,在本发明的某些实施例中,代理服务器用于提供对两个不同媒体类型的接口,以形成单一网络。后面将描述的发现处理可被用于发现通电并连接到网络 100 的各设备。此外,可使用同样的 1394 总线,而不需要网桥盒。

如图 2 所描述的,设备 11 包括 DTV 102、DTV 103、PC 105、DVCR 110、DVD 108、DSS-NIU 104 和 DVCR 120,它们表示当前连接到包含 1394 网络的网络 100 的各设备。客户机-服务器关系存在于所连接的设备中,其中 DTV 102、DTV 103 和 PC 105 通常用作客户机,而设备 DVCR 110、DVD 108、DSS-NIU 104 和 DVCR 120 用作服务器。

典型的 1394 网络包含互连的设备,比如为设施的集合,包括提供一个

或多个被控服务的服务器设备(例如,用作 MPEG 视频记录和重播服务器的 DVCR 100),以及提供用于控制服务器设备的用户界面(UI)服务的客户机设备(例如,DTV 102)。某些设施(例如,DTV 103)可具有受控制的双重服务(例如,MPEG 解码和显示能力),以及 UI 控制器能力。按照本发明的一个方面,在网络 100 中,包括基于万维网(World Wide Web)标准(Web 模型)中所使用的技术的协议、文件描述、图像压缩和脚本语言标准的各种方法和系统用于实现 1394 WEB(万维网)用户到设备控制模型。万维网模型是一种客户机/服务器模型。受控的服务器设备(服务)包括 Web 服务器,而控制器客户机设备(即,能够显示 UI 的设备)包括 Web 客户机,该 Web 客户机包括下面将进一步描述的 GUI 表示引擎,比如 Web 浏览器(例如,ExplorerTM、NetscapeTM等)。

<用户设备控制>

10

15

20

图 4 示出了按照本发明在网络 100 中的比如 DVCR 110 等的服务器设备,DVCR 110 用于向比如 DTV 102 等的客户机设备重播 MPEG 视频,其中,DTV 102 可显示用户界面。DVCR 110 包括 Web 服务器硬件和软件,而DTV 102 包括 Web 浏览器软件。用户可利用 DTV 102 来请求使该 DTV 102 基于 DVCR 110 中所包含的信息 202 或者基于 DTV 102 中所包含的信息 204显示用户界面。例如,用户可利用 DTV 102 中的浏览器 200 来显示包含在 DVCR 110 中的 HTML 控制页 GUI 202 或者包含在 DTV 102 中的 HTML 控制页 GUI 204。每个页 202、204 包括 HTML 形式的图形用户界面描述信息,其中浏览器 200 读取该信息来生成图形用户界面。每个页 202、204 分别表示应用程序 206、212 的控制接口。每个页 202、204 可包括分级页,用来表示相应的应用程序控制接口。

每个 GUI 202 和/或 204 包括有效控制图标和/或按钮,用于让用户选择 25 和控制当前连接到网络 100 的控制设备。例如,如果用户选择通过浏览器 200 显示在 DTV 102 上的 DVCR 110 的 GUI 202 中的"播放(PLAY)"按钮,则一超链接消息返回到 DVCR 110 Web 服务器并指向 DVCR 110 中的应用软件 206(例如,MPEG 记录/重播服务应用软件),用于操作 DVCR 硬件 208。在一个例子中,DVCR 110 中的 MPEG 视频流源 208 将一 MPEG 视频流发送 30 到 DTV 102 中的 MPEG 视频解码和显示系统 210,用于在 DTV 102 中的应用控制软件 212 的控制下进行显示。DVCR 110 中的应用软件 206 还将信息

发送回 DTV 102 中的应用软件 212,例如包括当操作成功时的确认消息,或者将改变的或者不同的控制 GUI 202 发送回对用户指示状态的 DTV 102。还可以在应用软件 206 和 212 之间进行进一步的通信,例如用于建立用于视频流服务的 1394 同步视频流连接。

图 4B 示出在网络 100 中,一服务器设备与能够显示用户接口的一客户机设备进行通信的另一例体系结构图。在网络 100 中,比如 DVCR 110 等的服务器设备对比如 DTV 102 等的客户机设备重播 MPEG 视频,其中 DTV 102 可显示一用户接口。

10 <通信协议>

5

15

在本发明的一个实施例中,在网络 100 中各设备之间的通信协议是基于超文本传送协议(HTTP 1.1)、用于分布协作式超媒体信息系统的应用层协议。HTTP 是通用的、无国界的、面向对象的协议,可被用于完成许多任务。HTTP的一个特征是数据表示的键入和协商(typing and negotiation),允许各设备被与要通过各设备所连接的网络 100 传送的数据无关地建立。

<GUI 描述语言>

用于定义各种 GUI 202、204 的描述文件语言例如可以是 HTML,版本 4.0,万维网的出版语言。HTML 支持文本、多媒体和超链接特征的脚本语 20 言和样式表。HTML 4.0 是符合国际标准 ISO 8879—标准概括的标记语言的 SGML 应用程序。

<图像压缩格式>

为显示图像,在 1394 WEB 网络 100 中采用由 HTML 规范规定的三种 25 静止图像图形压缩格式,以用于 ICON、LOGO(标识语)和其它图形。这些静止图像图形压缩格式为:图形相互交换格式(Graphics Interchange Format, GIF89s)、逐行扫描联合图片专家组(Joint Photographic Experts Group, JPEG) 和可移植网络图形(Portable Network Graphics, PNG)。表 1 示出在三种静止图像图形压缩格式之间能力的差异。

	PNG	逐行扫描 JPEG	GIF89a
颜色深度	48 位	24 位	8位
支持的颜色		1.67 千万	256
支持的格式	光栅、矢量	光栅	光栅
压缩制式	LZ77 衍生物(derivative)	JPEG	LZW
	灰度及 RGB 的每像素、		单一颜色
透明度	用于索引的每种颜色、	无	2 级
	256 级		(二进制)
逐行扫描显示	是	是	是
可升级性	否	否	否
动画		否	是
无損压缩	100%		
真彩色	48 位		
灰度	16位		
有索引色彩	是		
伽马(γ)校正(光强) 是		
色度校正	两者都有		
可检索元数据	是		
可展开性	是,程序块编码		

<脚本语言>

10

此外,Web 脚本语言即 ECMA-Script-262 用于提供视觉上增强 GUI Web 页 202 以作为基于 Web 的客户机-服务器体系结构的一部分的手段。脚本语言是用于操纵各设备的设施/服务并使这些设施/服务客户化和自动化的编程语言。用户接口 200 提供基本用户接口功能,并且脚本语言用于将功能体表述为程序控制。现有系统提供用于完成脚本语言的能力的对象和设施的主机环境。Web 浏览器 200 提供用于客户机侧计算的 ECMA-脚本主机环境,例如包括表示视窗(windows)、菜单、弹出(pop-ups)、对话框(dialog boxes)、文本区(text areas)、定锚(anchors)、方框(frames)、历史记录(history)、小甜饼

(cookies)和输入/输出的对象。

Web 浏览器 200 提供用于 EXMA-脚本-262 的主机环境,该主机环境支持附加用于各事件的脚本代码,这些事件比如为改变聚焦、页和图像装入、卸载、出错和异常中止、选择、形成建议、以及鼠标动作。脚本代码包括在HTML 页 202 和 204 中,而显示的页为浏览器 200,包括用户接口部件的组合以及固定和计算的文本和图像。脚本代码对用户交互进行响应,不需要主程序。

<客户机设备规范>

在一个实施例中,用于1394WEB客户机浏览器200的规范包括HTTP1.1 10 规范,其中,该 HTTP 1.1 规范中涉及到连接持久性的'8.1.2.1 协商 (Negotiation), 章节被作了修改, 使得比如 DTV 102 等的 HTTP 1.1 客户机设 备期待经 1394 到比如 DVCR 110 的服务器设备的连接保持为断开,因为 1394WEB 用户控制的持久连接允许来自服务器设备(DVCR 110)的全状态报 告,同时GUI 202 和/或 204 保持在客户机设备(DTV 102)的浏览器 200 中的 15 可视性。HTTP 连接保持为断开(HTTP 规范 RFC 2068), 其中支持持久连接 的客户机可以"管线输送(pipeline)"其请求(即,在不等待每个响应的情况 下发送多个请求)。服务器必须以与接收到各请求的顺序相同的顺序发送对 于那些请求的响应。这就允许 Web 浏览器 200 向 DVCR 110 管线输送请求, 然后, DVCR 110 可利用比如状态响应来满足这些请求,这些响应比如为当 20 前播放、当前记录、倒带、结束、带子损坏,等。其它例子的实现形式例如 包括:来自 DVCR 110 的控制页可以含有一请求,用于请求循环(loop)GUI 描述文件 202 的 DVCR 100 请求。

GUI表示引擎 200 用在比如 DTV 102 等的客户机设备中,用于解译写 25 入 HTML 4.0 文件描述语言及相关规范(下面将描述)中的 GUI 描述文件 202、204,并用于创建用于向用户显示的图形。GUI表示引擎 200 例如包括下列属性:(1)视窗(GUI)最小缺省尺寸,例如为 H0x640 像素(480×640, 其中 480为垂直像素,640 为水平像素)。该缺省尺寸用于确保 GUI 202、204 中想要的外观,该外观传送到浏览器 200 中的用户。所传送的 GUI 202、204 显示 20 在 480×640 像素的视窗中,或者以相同的屏幕宽高比放大为更大,除非用户另有指定;(2)静止图像压缩格式:例如为 GIF89a、JPEG 和 PNG;(3)样式

表格式和字体:例如CSS1和CSS2;(4)比如下面所述的固定字体(build-in fonts) 这样的字体对客户机设备来说是需要的,它使得简单的服务器设施不必支持这些字体。每一个普通拉丁族字体中的最小的一种字体可以被选择:例如,从'serif'族中选择 Times New Roman(新罗马字体);从'sans-serif'族中选择 Helvetica;从'cursive'族中选择 Zapf-Chancery;从'fantasy'族中选择 Western;以及从'monospace'族中选择 Courier。其它的字体也可以被采用;以及(5)脚本语言,例如,ECMA-262。GUI表示引擎 200 的例子包括 ExplorerTM和 NetscapeTM等按需要配置/客户化的 Web 浏览器。

10 <服务器设备规范>

5

30

- 一个或多个服务器设备(例如, 1394WEB 网络控制的设施的 Web 服务器, 比如为 DVCR 110)包括下面六种列举的部件:
- (1) HTTP 1.1 web 服务器协议,具有 HTTP 1.1 规范中涉及被修改的连 接的 '8.1.2.1 协商,章节,修改后的连接使得 HTTP 1.1 服务器设备(例如, DVCR 110)假定 HTTP 1.1 客户机设备(例如, DTV 102)想要保持与该服务器 15 设备的持久连接。1394WEB 网络 100 中的持久连接允许例如从服务器设备 DVCR 110 到客户机设备 DTV 102 的全状态报告,同时,DVCR 110 的 GUI 202 保持在 DTV 102 的浏览器 200 中的可视性。此外,可采用利用 HTTP 条件 性 GET 来获得服务器设备的最新状态的方法。无论何时用户返回到家庭网 络目录或者使其被刷新,浏览器 200 都要重新显示本页的全部。这点是必需 20 的,因为如果已经将一设备添加到网络100中或者从网络100中除去一设备, 那么家庭网络目录下的 HTML 必须被重新生成。可以将设备图标更新,以 反映它们的设备工作状态的变化。因此,由 EIA-775.1 设备所实现的浏览器 采用 HTTP "conditional get(条件性获得)" 请求来确定是否应当从服务器中 检索 web 页或者图形的新复制件。 25
 - (2) 例如以HTML 4.0 写成的设备主页 GUI 描述文件 202、204,包括例如 icon.htm、name.htm、logo.htm、index.htm、gif 文件等的文件。文件 index.htm被包括在设备 icon.htm 和 name.htm HTML 文件中的 HTML 链路参照,其中 index.htm 可被选择性地命名为比如"INDEX.HTML"或者"INDEX.HTM"。命名为 INDEX.HTM 的文件不要求是标准化名称,因为 ICON.HTM 和 NAME.HTM 是利用对'INDEX.HTM'的超链接来形成的,因此其名称是

随机的。ICON.HTM 和 LOGO.HTM 参照同一设备中的实际图形文件,例如 LOGO.GIF 和 ICON.GIF。描述文件 202、204 可由网络 100 中的设备(例如,HTTP 设备)访问。为保证想要的外观,控制 GUI 设计可以是缺省的 GUI 尺寸,例如 480×640 像素。例如,传送的 GUI 202 可以显示在浏览器 200 的 480×640 像素的视窗中,或者以相同的宽高比被放大得更大,除非用户另有指定。

5

20

25

30

(3) 提供了至少两个设备 ICON(图标)文件,用来表示浏览器 200 中顶层 网页 220(图 5-6)中的设备,并用来说明关于连接到网络的各设备的信息。ICON 可包含一图形文件类型(例如,GIF、JPG 或 PNG)并被命名为 ICON.HTM。10 在一个例子中,ICON.HTM(DVCR)参考 HTML 页 202 中的 INDEX.HTM 文件,而 ICON.HTM(DTV)参考 HTML 页 204 中的 INDEX.HTM 文件。用于设备的控制页(例如,INDEX.HTM)的顶层链路可以是 ICON.HTM。浏览器 200中有网络 100中的多个设备的图标和链路,浏览器 200将这些图标和链路放置在顶层 HN 目录页 220中,用于让用户进行服务发现。然后,用户点击显 15 示在页 220中的 ICON,并取出设备页(例如,页 202中的 INDEX.HTM)。缺省显示的 HN 目录是顶层发现页。

可使用许多附加和不同的图形图标,例如,用来表示可替代图形图标的设备状态、用户配置偏好或者制造商格式。在下面进一步描述的发现处理中,从各设备连接到网络 100 的多个 ICON 集合在一起并显示在顶层网络设备页220 中,以便由用户选择。设备 ICON 规范的一个例子包含: 可由 HTTP 服务器访问的文件名 ICON.HTM(文件名存在于目录中、文件间隔 (file space)处,可由 Web 服务器访问,以使它们可被检索并通过网络传送到浏览器);图形文件类型,比如 GIF、JPG 或者 PNG;以及最大尺寸为 70(V)×130(H)像素的图标图形。

(4) 提供了至少两个设备 LOGO(标识语)文件,用来表示顶层网络设备页中的设备。LOGO 可包含一图形文件类型(例如,GIF、JPG 或 PNG)并被命名为 LOGO.HTM。在一个例子中,LOGO.HTM(DVCR)参考 HTML 页 202中的 INDEX.HTM,而 LOGO.HTM(DTV)参考 HTML 页 204中的INDEX.HTM。在一种形式中,用于设备的控制页(例如,INDEX.HTM)的顶层链路可以是 LOGO.HTM。所有的设备标识语可以放在顶层 HN 目录页 220中,用于让用户进行服务发现。然后,用户点击显示在页 220中的 LOGO,

并取出设备页(例如,页 202)。可以用许多用于制造商服务的附加和不同的图形来替代标识语图形格式。按照发现处理,从各设备连接到网络 100 的多个 LOGO 集合在一起并显示在顶层网络设备页 220 中,以便由用户选择。设备 LOGO 规范的一个例子包含:可由 HTTP 服务器访问的文件名 LOGO.HTM;图形文件类型,比如 GIF、JPG 或者 PNG;以及最大尺寸为大约 70(V)×130(H)像素的标识语图形。

- (5) 提供了至少一个设备 NAME(名称), 用来表示顶层网络设备页中的 设备。NAME 可包含 HTML 文件 NAME.HTM 中的 TEXT(文本)。该文本可 参考控制页(例如,页 202)。这是发现页中到设备的控制接口的顶层链路。 这种文本可以提供区别相同设备的方式,由此,例如,两个相同的 DTV 可 10 通过增加 NAME 文本'卧室电视'和'客厅电视'来区别。这种文本可包 括少许文字,用来清楚地表示设备类型,例如,DVCR 或者 DTV。按照发 现处理,从各设备连接到网络 100 的多个 NAME 与相应 ICON/LOGO 一起 被访问,并显示在顶层网络设备页 220 中的 ICON/LOGO 下。NAME 规范的 一个例子包含:可由 HTTP 服务器访问的文件名 NAME.HTM;未指定文本, 15 例如,字体大小为 10 的两行文本可以显示在相应的 ICON/LOGO 下。因此, 例如,用于 NAME.HTM 文本的空间大小可以是垂直 20 乘以水平 130,以便 能匹配 ICON/LOGO(70 垂直×130 水平)。就象如图 5-6 的例子所示的,顶层 UI 220 的格式可包含一矩阵图标,用来表示联网设备对用户的各功能。表示 设备的名称(来自 name.htm)放置在同一设备的图标(来自 icon.htm)下。标识 20 语(来自 logo.htm)例如可以放置在任何空闲的图标位置。由于顶层描述文件 250(下面将结合图 9A-C 进一步描述)是由有 UI 功能的设备独立生成的,不 必预先安排确切的设计。图标、标识语和名称的最大尺寸可被预先安排,以 便于 GUI 矩阵的设计。
- 25 (6) 可提供以 HTML 4.0 写成的设备信息汇总主页描述文件,例如被命名为"info.html"或"info.htm",并且可以在发现处理中由 HTTP 服务器访问。可通过控制页(例如控制页 202 和 204)将一链路提供给 INFO.HTM 信息。设备信息汇总主页向用户提供设备汇总而不是详细的控制接口,就象设备主页中所示出的。表 2 示出所包括的设备属性文本以及可包括的其它内容。该30 表可被扩充,以包括其它属性。

<表 2-设备信息汇总>

名称	值
设备名称	设备名称(用户可配置)
设备位置	家中的设备位置(用户可配置)
设备图标	当前设备 ICON 名称
设备类型	设备类型或者类别(VCR、DSS、TV等)
设备模型	设备模型
制造商名称	设备制造商名称
制造商标识语	制造商标识语图像名称
制造商 URL	设备制造商的 URL
流源名称缺省	服务:用于本设备目标服务的缺省源设备名称
流目标名称缺省	服务:用于本设备源服务的缺省目标设备名称
流源属性	服务设备的类型可以是交付(属性和能力)
流目标属性	服务设备的类型可以是接收(属性和能力)

表 2 包括比如制造商名称、制造商标识语图像名称等的设备汇总信息,并且还包括制造商 URL,该制造商 URL 用来在出现到制造商 Web 站点的有效因特网连接时提供帮助。表 2 还可包括用户可配置的设备名称和家中的设备位置。表示设备的不同状态的设备图标可以有几种变化形式。设备图标属性字段包括当前图标名称。因此,设备汇总信息页可通过显示表示当前状态的图标而对用户提供即时的设备状态信息。

每个设备可包括一个或多个服务,例如,视频流源或者视频流目标。每10 个源性能具有完整的缺省目标性能,而每个目标性能具有完整的缺省源性能。当 DVCR 被控制为源时,这种流缺省名称项目例如可用于自动默认最近的 DTV 为目标,以免除每次对 DTV 的选择。提供了流缺省名称对 1394 地址的背景交叉参考。视频流服务是由 1394 接口本身提供的(而不是由 Web模型提供的)。因此存在着缺省源或信宿到 1394 地址的链接机制。用户可访15 问一设备并选择默认的名称,然后,该名称存储在设备上。设备的软件代理程序必须找出 1394 地址及用于 1394 s/w 的参数,以便在需要时启动缺省流。

采用源和目标服务属性,可实现新的一个服务器/多个服务器,同时保持与现有主机或设备(节点)的兼容性及各种服务。例如,如果提供新服务的

新服务器设备研制成功并与现有服务器设备兼容,则新的和现有的服务器都可被添加到新节点的属性列表,同时保持与网络 100 中使用现有服务器的现有节点的兼容性。用户可选择购买一兼容设备。这就能给用户提供"ABOUT(大概)"信息,以便例如在购买新设备之前,在需要兼容性的情况下,检验现有设备的性能。

<网络操作>

10

15

20

25

30

用于每一个支持 1394WEB 标准的设备(例如,能够显示用户接口的设备)的发现处理从连接到网络 100 的各设备搜集设备信息,以生成用于家庭网络的顶层用户控制页描述文件,其中每个设备是由上面详述的图形图标参考文件和原文本(textual)名称参考文件来表示的。顶层描述文件可包括用于比如浏览器 200 等的表示引擎的缺省页,其中浏览器 200 在其呈现显示在该浏览器 200 中的网络顶层图形用户接口 220(GUI)时,从各设备中搜集图形图像和名称,就象图 5-6 的例子所示的。动态创建的顶层 HN 目录页 220 作为浏览器的缺省页(当启动浏览器时显示的第一页)。

参照图 4B, 举例来说,操作步骤包括:(1)启动设备 102 中的浏览器 200, (2)浏览器 200 从页 204 中提取并呈现 HN 目录 HTM(顶层 UI),(3)浏览器 200 从页 202、204 中提取 HTM 文件 icon.htm 和 names.htm,并将其呈现在顶层 UI 中,(4)浏览器 200 从页 202、204 中提取任何图形文件(例如,GIF),并将其呈现在顶层 UI 中,(5)然后,浏览器 200 能够呈现全部 HN 目录 (HN_directory)页 220(页 220 是由对'INDEX.HTM'文件的超链接制作的,用于连接到网络 100 的不同设备),以及(6)当用户例如点击 GUI 220 中的 DVCR 图标以控制 DVCR 110 时,到 DVCR 110 的'INDEX.HTM'的顶层页 220 中的相应超链接被用来从 DVCR 110 的页 202 中检索'INDEX.HTM'(DVCR 的顶控制页),并将该 DVCR 控制页呈现给用户(例如,如果所点击的方框(例如 icon.htm 方框)不够大,则图形以全方框尺寸呈现在浏览器的另一个复制件中)。然后,用户可利用由 DVCR 设备 110 的'INDEX.HTM'所提供的控制接口来命令和控制 DVCR 110,该控制接口是由 DTV 102 中的浏览器 200 呈现的。

名称'INDEX.HTM'是任意的,因为 ICON.HTM 和 NAME.HTM 是用到'INDEX.HTM'的超链接制作的。然而,ICON.HTM 和 LOGO.HTM 参

考相同设备中的实际图形文件(例如, LOGO.GIF和 ICON.GIF)。在一个实施 例中,如果用于一设备的标识语是可选择的,则 LOGO.HTM 也是可选择的。 HN 目录(HN Directory)HTML 文件可具有标准名称,以使其可从另一个设 备被访问到。

图 5-6 示出主机设备,比如客户机设备(例如,DTV 102、HDTV 1)或者 5 生成和呈现顶层 GUI 页 220 的服务器设备(例如, DVCR 110), 主机设备可 拥有优先权并将更大尺寸的图标使用于主设备的图标、名称、标识语等。在 一种形式中, 仅在 GUI 220 中显示具有服务器(提供服务)的设备("客户机设 备"包含具有客户机能力的设备,其中,如果其仅仅是客户机,则不显示在 顶层 GUI 中,因为没有服务要提供)。发现处理从 1394 地址空间数据存储器 10 件(配置 ROM 结构)中读取信息,就象在 ISO/IEC 13213 的条款 8 中定义的那 样。尽管称为'ROM',但它处于假定地址空间为可写的情况,以便允许用 户配置和修改用户相关的存储值。配置 ROM 的内容和发现处理在下文中作 了进一步描述。

用于利用因特网、Web 和 1394 技术进行的对消费设备的家庭或局域网 络控制的设备命名、寻址和发现处理可以与一般因特网空间中的要求和实践 不同。因此,按照本发明的用于消费设备的家庭或局域网络控制的一个方面, 可采用特定处理,包括设备发现、寻址和命名要求。例如,家庭网络必须是 在不需要有外部通信和服务、不需要网络管理员的情况下完成全部功能,并 且配置必须全部为自动化。用户控制可以在许多情况下完全不需要键盘进 20 行。此外, IEEE 1394 协议用于提供高级接口,包括可提供简单、有效和优 越的发现和配置功能的特点。

<1394 家庭网络>

15

图 7 示出按照本发明另一个实施例构成的网络 300 的方框图。为便于理 25 解,本文中尽可能采用相同的标号来表示所有附图中公用的相同部件。如图 7 所描述的,上面描述的 1394 串行总线 114 电连接到上面参照图 2 所描述 的网络100上的多种设备,包括服务器设备14(例如, DVD108、DVCR110) 和客户机设备 12(例如, DTV 102), 其中各设备采用如上面图 3 中所举例的 分层接口模型进行通信。 30

网络 300 并不限于采用 1394 串行总线,并且,在本发明的可替代实施

例中,其它类型的总线,比如以太网、ATM 无线等,在它们满足单独网络(例 如,家庭网络)的特定吞吐量要求时可用作物理层。如图7所描述的,网络300 包括连接到 1394 串行总线 114 的数个设备。在本例中,这些设备包括 DBSS 104, 用于从卫星 122 接收用于后续显示的传输信号。与 DBSS 相关联的是 网络接口单元("NIU"), 其功能之一是提供在 DBSS 卫星传输和 1394 串行 总线114之间的接口。数字视频设备(DVD)108也连接到示例性网络300。DVD 108 可被用于例如在数字电视上显示源数字编码的视频内容。连接到示例性 网络 300 的还有数字视频盒式磁带录像机(DVCR)110、数字电视(DTV)102。 在本例中, DTV 102 通过采用浏览器技术来提供对于网络 300 的人际接口, 以允许用户控制和命令家庭网络 300 中的各设备。第二 DTV 103 通过采用 10 浏览器技术来提供对于网络 300 的另一个人际接口,以允许用户控制和命令 家庭网络300中的各设备。DTV 102和 103可提供对于网络300的人际接口, 因为每个 DTV 都包含用于显示 HTML 页的一屏幕。然而,其它具有显示能 力的设备可被用于提供人际接口。因此,在本发明的某些实施例中,诸如个 人计算机 105(PC)等的设备被用于提供对于各个家庭网络的人际接口,因为 15 PC 105 通常被体现为一个屏幕显示单元。

5

20

25

30

1394 串行总线 114 被描述为采用 HTTP/IP 接口协议,并且最好是 HTTP/TCP/IP 协议, 其中 IP 提供分组格式(单向只写模型), TCP 提供 IP 的 无错版本(例如,保证分组到达并且以正确的顺序到达),并且,HTTP 提供 双向连接(分组到服务器将期待一响应,是'读取'模型)。某些设备可要求 其它协议接口类型(例如,TCP/IP、UPD/IP、FTP/IP、TELNET/IP、SNMP/IP、 DNS/IP、SMTP/IP)。在本发明的某些实施例中,代理服务器 116 可被用于 对两个网络提供接口,其中这两个网络在它们各自的媒体上采用不同的接口 协议,这些网络在被相连时包括网络300。

例如,如图 7 所描述的,采用 HTTP/IP 接口协议的 1394 串行总线 114 是由代理服务器 116 连接到家庭自动网络 118(例如, X10)的。通过将代理服 务器 116 用作用于 VCR-命令/AVC/FCP/1394 的 HTML/HTTP/TCP/IP/1394 代 理服务器,以提供 HTML/HTTP/TCP/IP 和 X10 协议之间的接口,网络 300 上的 DVCR 120 也是可访问的。

在本实施例中,网络 300 可以通过总线 121 连接到与 1394 串行总线不 同类型的外部网络 119(例如,以太网)。代理服务器 117 用于提供对两个不

同媒体类型的接口。为在外部网络 119 的地址方案和网络 300 的地址方案之间进行通信,网桥 117 包括网络地址解译(Network Address Translation, NAT) 界限。这项技术可被用于公司 LAN,并且是针对复杂问题的'分而克服(divide and conquer)'方法,满足各种网络的不同 IP 地址要求,并防止'用尽 IPV4'地址。外部网络例如可包括经以太网连接到电话(例如,ADSL)的有线电视网络 115,用于提供到因特网和 WWW 的宽带连接。以太网 119 对外部网络提供网桥功能。网桥 117 或者以太网 119 可提供 NAT 地址转换功能。如果以太网是提供本地专用(仅对家庭)寻址(例如,就象由 IETF 标准 RFC 1918 定义的),则 NAT 功能在以太网 119 内完成。现有的电缆调制解调器(modem) 是用环球地址以及因特网环球地址建立的,用于以太网上的 PC(在此情况下 NAT 处于网桥 117 中)。

<IP 名称/地址配置>

5

10

25

30

下面描述上面提到的设备命名、寻址和发现处理。对于设备命名,点击 Web 操作(例如,使用 GUI/Web)不要求命名服务(DNS、域名服务)。Web GUI 提供一抽象层(abstraction layer),并且,地址被隐藏为通过用户'点击'以激活 GUI 区(例如,按钮)来调用的超文本链接。局域网 300 中各设备的任何变化都会引起顶层发现 GUI 页 200(图 5-6)的重建,这是由表示当时网络 300 中各设备状态的浏览器 200(图 4A-B)通过将缺省项呈现给用户立即使用来执 20 行的。

对于设备对设备的控制,将一种不同的查找服务使用于多个名称(例如,服务查找和应用程序查找)。这样,DNS 可以不提供用于设备对设备控制的必要特征。然而,正常情况下,一设备(例如,1394 连接的 PC)可以访问 DNS 服务。DNS 不要求在家中发现或操作各设备/各服务,但对于例如从 PC 进行的外部访问来讲,要求 DNS (名称到地址)查找服务。当将一名称例如"www.yahoo.com" 键入浏览器时,则会发生对 Yahoo 计算机的 IP 地址即216.32.74.52 的查找,因为因特网(甚至家庭因特网)是利用地址来操作的。

对于包括用于生成 HN 顶层目录 GUI 描述文件的代理程序并包括对于特定公司 web 服务器的访问例如 homewide.com(IP 地址)的 775WEB UI 设备来讲,也可以有 DNS 地址知识。DNS 服务器计算机 IP 地址可以是制造商控制下的任何 IP 地址。有效的做法是将 DNS 地址内置到设备中(或者可以被

更新,其条件是代理程序(agent)为可更新的并且在其后被更新)。

10

15

20

25

对于设备寻址来讲,在本发明的一个实施例中,利用来自大的地址空间的固定 IP 地址可以提供最简单且最可靠的网络配置,并且,1394 接口中容易访问的 ROM 数据空间允许使用其中的固定 IP 地址。在本发明的另一个实施例中,可使用非固定的 IP(动态)地址,其中,采用一抽象页(例如,名称或查找机制)来保留预组织的通信。

对于 IP 地址配置,可使用下列的协议: (1)带有动态主机配置协议 (Dynamic Host Configuration Protocol, DHCP)服务器和 DHCP 客户机的 DHCP, (2)采取自动配置的 DHCP 客户机(DHCP 服务器不出现),以及(3)最好是在下面进一步描述的 FWHCP(Fire-Wire Host Configuration Protocol, 法尔-瓦尔主机配置协议)服务器代理程序以及 FWHCP 客户机。第(2)项中所述的自动配置被推荐为 IETF 草案 "draft-ietf-dhc-ipv4-autoconfig-04.txt"。

DHCP 要求 BOOTP/UDP 协议的支持,并且复制在 1394 规范中所做的一切,并提供比如租用时间(lease time)和动态寻址等特征。典型的 DHCP 要求由管理员来管理,并且必须被配置成适配于大批制作的消费电子(consumer electronics, CE)设施的网络要求,其中,例如,必须考虑带有内置的 DHCP 服务器的多个相同的 CE 设施。

1394 技术提供'插入(Plug-in)'或'加电(Power-up)'复位功能,并且之后跟随'自标识(Self-ID)'序列,非常适合于网络配置。此外,1394 规范提供内置'ROM'地址空间,非常适合于存储并访问配置数据(例如,IP 地址)。因此,在本发明的一个优选实施例中,采用 IP 地址配置代理程序(FWHCP)和发现页,用于使用户控制各 1394 设备。FWHCP 提供用于 1394WEB 和 1394设备的 IP 地址配置。FWHCP 的目的和结果类似于 DHCP(即,识别和分配本地 IP 地址的服务器),但在操作中,FWHCP 采用 1394 地址空间中的数据和 1394 命令。FWHCP 提供 1394WEB 设备在 1394 网络上的 IP 地址配置,避免与相邻连接的非 1394的网络上的设备发生冲突。各设备是利用在 10.x.x.x 范围内的内置 IP 地址制作的。在发生不希望的冲突事件时,FWHCP 设置新的 IP 地址并将其保存在设备中。

DHCP/自动配置可被用于非 1394 的网络上的设备。DHCP 协议提供给 30 客户机"请求的 IP 地址"。最好,所请求的 IP 地址空间是从 24 位 RFC 1918 范围的上面部分(从 10.128.1.1 到 10.254.254.254)选择的。通过对 1394 IP 地

址选择所允许专用地址范围的一部分以及对另一些配置方法(例如,DHCP和 DHCP/自动配置)选择另一部分,则会对不同种类的网络生成兼容和不兼容地址并允许 FWHCP和 DHCP 共存。

尽管对 1394 和相邻网络选择非重叠 IP 地址是人们所希望的,但不同种类的网络即使它们真的重叠也会利用 FWHCP 来成功配置。此外,DHCP 客户机在使用所分配的 IP 地址之前,利用测试 ARP 消息来对该地址进行检验。这样,不同的地址配置方法可以成功地共存。

<网络方案(Scenarios)和地址管理>

10

15

20

25

30

参照图 8,将描述按照本发明的用于在 IP 地址配置的 1394 网络(例如,网络 300)和非 1394 网络(例如,以太网 119)之间进行通信的处理过程的例子。在此情况下,1394 网络 300 采用 FWHCP 配置,而非 1394 网络 119 采用 DHCP 配置或其它方法。一般来说,1394 设备(比如图 7 中的 DTV 和 DVCR)不支持 DHCP。1394 DEVICE-3 用于 1394 网络到非 1394 网络通信,包括 1394 ROM空间中的 IP 地址并且为 1394 设备提供对 FWHCP 的支持。DEVICE-3 还包括用于支持非 1394 网络上的配置机构的装置,并且保持 1394 ROM空间中的扩充数据叶(leaf),用于非 1394 网络上的设备的 IP 地址。因此,1394 网络 300 上的配置处理(例如,用于顶层 UI 描述文件生成的 FWHCP)可包括通过从扩充数据叶选择 IP 地址来使用非 1394 网络上的 IP 地址。非 1394 网络配置操作时还用来为 1394 扩充数据叶提供 IP 地址。

按照发现处理(代理程序),1394 规范'插入'复位和自标识可被用来进行配置,并且可被用于 IP 地址配置。优选的是,将固定 IP 寻址方式用于家庭网络,然而,也可以使用动态 IP 寻址方式。在 1394WEB 控制中不需要DNS,因为顶层 GUI 描述文件是利用超链接来创建的,这种超链接使用 IP 地址而不是名称。优选的是,利用 1394 ROM 数据和 1394 命令,将 1394 网络的 IP 配置代理程序(FWHCP)用于 IP 配置,然而,也可以采用 DHCP。FWHCP使用 RFC 1918 10.LH.X.X 地址的下半部分,而其它家庭网络(非 1394)使用上半部分 10.UH.X.X。优选的是,FWHCP 服务器代理程序内置于任何设备中,该设备可以是客户机(控制发起者)。在有数个客户机设备连接到 1394 网络的情况下,仅仅是具有最高环球唯一标识(Global Unique Identification,GUID)的客户机设备才进行操作。GUID 包含内置到接口的一号码。如果在

1394WEB 网络上有多个可用的 FWHCP 代理程序,则由初始自选处理来确定一个即将运行的代理程序并且让所有其它代理程序保持静态。最高的 GUID 将运行。在其它形式中,最高位反相的 GUID 可被使用。

接口到非 1394 网络的设备支持该非 1394 网络上的 IP 地址的 ROM 扩充叶。这就允许将非 1394 网络上的 IP 地址包括在 1394 顶层 GUI 中(例如,图 4A-B 中,GUI 202、204)。1394 ROM 空间的控制数据位用于控制三个配置代理程序的操作:(1)1394 自标识(Self-ID)计数,(2)IP 配置 FWHCP,和(3)下面将进一步描述的 UI 描述文件生成。

起初,1394 自标识计数发现存在的设备。在总线复位(由功率上升/下降 (power up/down)或者设备连接/拆卸引起)之后,设备中的 1394 软件观测自动配置处理(1394 自标识循环),以便对设备号码计数。这是用于任何 1394 设备的 1394 软件的正常处理部分。然后,IP 配置 FWHCP(一个自选的 FWHCP)探测找到的设备并检验它们内置的 IP 地址。找到的双重(冲突)IP 地址被停用,并将新地址分配给该设备。然后,UI 描述文件生成代理程序(UI 或其它设备),读取所有的 1394WEB 设备 IP 地址,并在每个设备的顶层图标页以HTML 生成顶层设备发现图形用户接口文件,所述每个设备的顶层图标页会在之后由 Web 浏览器呈现,以使用户发现各设备进行控制。

10

15

20

25

30

按照本发明,1394 网络 400 中的每个设备可生成其自己的顶层网络 UI 描述文件 250(图 9C)。UI 描述文件 250 由客户机设备中的比如浏览器 200 等的表示引擎使用,以生成和显示比如图 5-6 中的页 220 的顶层发现页。在 1394 自标识代理程序已列举了连接到 1394 网络 300 的所有设备之后,由所有 UI 设备(以及所希望的非UI设备)单独生成顶层 UI 描述文件 250。设备(例如 DTV) 可选择更明显(例如,更大)的图标来表示该设备,并以不同外观来制作整个 GUI 220。这种技术对所有设备的操作提供实质上比中央生成的 GUI 更为可靠的操作,因为每个设备可生成其自己的 UI 描述文件 250 并基于此显示一 GUI(例如,顶层页 220),不需要依赖于另一设备。在每个 UI 描述文件 250中,当前连接到网络 300 的各设备的设备图标和标识语图像文件由图标和标识语 HTML,页,以及包容在 HTML 页中的名称文本来参考(ICON.'Graphic(图形)'参考的 ICON.HTM 是在页 202 和 204中,它们也包括用于设备的控制页;图 5 的下面也示出了顶层目录页中的 ICON.HTM、LOGO.HTM 和 NAME.HTM)。HTML 方框用于按需要在每个网络设备中创建用于各网络设

备的顶层目录 UI 描述文件 250。

因此,有益的是,提供一有用的抽象层,以允许用户修改文件名称和类型,例如,网络设备中的标识符图形,不需要改变在每个设备中生成的顶层描述文件 250。名称文本也置于 HTML 描述文件 202、204(NAME.HTM 是 6 在页 202、204 中)中,允许用户在一设备例如 DTV 上配置名称文本,以便例如通过其中的一个设备 GUI 页 220 改变 DTV-BED2。因此,当浏览器在复位之后被启动时显示页 220。用户查看并点击 DVCR ICON 图形,由此提取(利用'播放'按钮等)DVCR 顶层控制 GUI 202。用户点击其中的一个按钮,例如"配置设备名称",这是另一个具有大量供选择的不同名称的 GUI(是 10 用于 DVCR 的分层控制页的 GUI)。用户从例如"主卧室 DVCR"所提供的名称列表中点击一个名称。设备上的软件改变文件名称,以使命名为NAME.HTM 的文件包含文本"主卧室 DVCR"(原先包含在 DVCR 中的缺省 NAME.HTM 文件被改变成另外的名称)。

在具有太多或者超尺寸的文本或者超尺寸的标识语的'坏市民(bad 15 citizen)'设备的情况下,GUI 220 的外观更为稳定。在此情况下,用方框隔离该问题,并防止坏项负面影响整个顶层 GUI 220 的外观。

<设备发现体系结构>

参照图 9A 和 10,所有的设备都包括 1394 设备发现代理程序 30 (1394DDA)404,用来在复位之后列举 1394 总线上的各设备,并将值写到本地 1394 ROM 空间 402 中,用于将该值传送到其它功能性代理程序(步骤 500、

502)。对于其它配置代理程序的同步(约束)开始,1394DDA 代理程序 404 还设置'配置操作'控制位。发现代理程序/机制可使用器件而不是 ROM 空间来在配置代理程序之间传送信息,这些配置代理程序对于一个设备来说是本地的,并且,其中的信息不需要由其它设备查看。

5

10

15

20

<所有设备中的 1394 ROM 数据>

网络 300 中的所有设备包括与发现和 IP 地址代理程序 404 和 406 分别 相关的下列信息, 用于 1394 配置 ROM 402 中的 1394WEB: (1)内置 64 位 GUID(在 1394 规范中的环球唯一 ID); (2)来自范围为从 '10.1.1.1'到 '10.127.254.254'的 RFC 1918 专用地址空间的内置 IP 地址。制造商可以 从 GUID 中选择一值,以使冲突的机会最小化。专用地址空间的上半部分(即 10.128.1.1 到 10.254.254.254)保留给桥接网络上的设备; (3)在范围'10.1.1.1' 到'10.127.254.254'内分配的 IP 地址(通过操作 FWHCP 代理程序 406 分配); (4)用于桥接网络上的IP设备的IP地址扩充叶;(5)1394设备的分配的计数 (由 1394DDA 代理程序 404 分配); (6)控制/状态位,用于指示用于 1394 设备发 现代理程序 404 的配置进程同步控制,并用于指示 IP 地址配置(控制位指示 配置正在进行中,因此,在ROM数据而不是控制位中的用于1394DDA和IP 地址的各值不被检验或者写入,因此也不应当被使用)。这些位进一步指示 哪个 IP 地址为有效(分配的或者内置的), 并且 FWHCP 服务器代理程序 406 是否出现在设备中; (7)HTTP web 服务器,允许设备文件空间中的文件被远 程访问;和(8)包括实际'图标'、'名称'和'标识语'HTML 文件的设备 信息 202、204 和其它可通过 Web 服务器访问的参考图形文件。上面汇总的 信息详述在下面的 1394 ROM 空间描述文件中。

25 <IEEE 1212 配置 ROM>

通用 1394 ROM 结构 402 的内容规定在 IEEE1212r、IEEE1212 和 IEC61883 中。ROM 结构 402 是分层信息块,其中该分层结构中较高的块指 向它们下面的块。初始块的位置是固定的,而其它项目取决于零售商 (vendor),但可由更高块中的项目规定。

表 3 示出配置 ROM 402 的 Bus_Info_Block(总线信息块)和 Root Directory(根目录)。每一项目的第一字节被称为密钥(key)并识别项目的

类型。下面的各项可以在使用 EIA-775 规范的所有设备的配置 ROM 中完成,这些设备包括诸如 DTV 的显示设备和诸如 DVCR、STB 等的源设备。根据每个设备所遵守的其它协议,可以有几种所需的其它结构。表 3 包括用于也符合 IEC61883 协议的设备的信息。Root_directory包含用于一个Model_Directory(模型目录)和三个 Unit_Directory(单元目录)项目(IEC61883、EIA-775 和 1394WEB)的指针,用来指示该设备支持 EIA-775 以及 1394WEB协议。根目录项目有助于其它 1394 设备发现由该 1394 设备支持的协议和软件(也称为服务)。

10

15

<表 3 - 配置 ROM> 偏移值(基地址 FFFF F000 0000) Bus_info_block(总线信息块)

偏移值

04 0016	04	crc_l	length(crc 长度)	rom_crc_value	e(rom crc 值)
04 04 ₁₆			" 1394 "		
04 0816	标志	保留	cyc_clk_acc	max_rec	保留
04 0C ₁₆		node_vendor_	id(节点零售商标i	识符)	chip_id_hi
04 10 ₁₆			chip_id_lo		

其中,040C₁₆和0410₁₆也称为64位GUID或者环球唯一ID。

Root_directory(根目录)

偏移值

114 17			
04 14 ₁₆	ro	ot_length(根长度)	CRC
	0316	model_vendor_id(模型	零售商标识符)
	81,6	vendor_name_textual_d	escriptor(零售商名称原文本描述
		符)偏移值	
	0C ₁₆	node_capabilities(节点	生能)
	8D ₁₆	node_unique_id (节点叫	主一标识符)偏移值
·	D1 ₁₆	Unit_directory(单元目:	录)偏移值(IEC 61883)

	D1 ₁₆	Unit_directory(单元目录)偏移值(EIA-775)
	D1 ₁₆	Unit_directory(单元目录)偏移值(1394WEB)
	可选择的	
XX XX ₁₆	C3 ₁₆	Model_Directory(模型目录)偏移值

IEC_61883 单元目录示于表 4 中。该目录由根目录(即表 3)中的 Unit_Directory 偏移值参考。在 Unit_SW_Version(单元 SW 版本)字段中,最低有效位规定 AV/C(0),就象在 IEC 61883 中所规定的。

<表 5-IEC_61883 单元目录>

Unit Directory(单元目录)(IEC 61883)

5

目录长度		CRC
12,6	Unit_Spec_ID(单元规范标识符)(1394TA=00 A0 2D ₁₆)	
13,6	Unit_SW_Version(第一通过密钥=0116)	
• • •	<<其它可能的字段>>	
• • •		

EIA-775 单元目录示于表 6 中。下面的 EIA-775 规定信息出现在 EIA-775 10 单元目录中。

<表 6-EIA-775 单元目录>

	目录长度	CRC	
12 ₁₆	Unit_specification_ID(单元规范标识符)(EIA-775=00506816)		
13 ₁₆	Unit_software_version(单元软件版本)(01010016)		
•••	<<其它可能的字段>>		
•••			

Unit_specification_ID 规定负责设备的体系结构接口的组织和规范的身份(identity)。在本例的情况下,目录和身份值=005068₁₆指的是 EIA 作为负责者并且指出 EIA-775 控制体系结构规范。

Unit_software_version 标明由设备支持的 EIA-775 版本级。其格式示于表7中。

<表 7 - Unit_software_version 编码>

第一个八位字节(octet)	01 ₁₆
第二个八位字节	主要版本号(当前为0116)
第三个八位字节	次要版本号(当前为0016)

5

1394WEB 单元目录示于表 7a 中。下面的 1394WEB 具体信息出现在 1394WEB 单元目录中。

<表 7a-1394WEB 单元目录>

	目录长度	CRC
12,6	Unit_specification_ID(单元规范标识符)(1394WEB =00XXXX ₁₆)	
13,6	Unit_software_version()	户元软件版本)(010100 ₁₆)
3816	Discovery_control_bits(2	发现控制位)
39 ₁₆	Assigned_Count_of_1394_devices(分配的 1394 设备计数数值)	
3A ₁₆	IP_Address_Build_in(内置的 IP 地址)	
3B ₁₆	IP_Address_Assigned(分	配的 IP 地址)
	IP_Address_Extension_Le	eaf(IP 地址扩充叶)
₁₆	<<其它可能的字段>>	

10

Unit_specification_ID 规定负责单元的体系结构接口的组织和规范的身份。在本例的情况下,目录和身份值=00XXXXX₁₆指出负责者并且指出1394WEB控制体系结构规范。

Unit_software_version 标明由设备支持的 1394WEB 版本级。其格式示 15 于表 8 中。

<表 8 - Unit_software_version 编码>

第一个八位字节(octet)	01,6
第二个八位字节	主要版本号(当前为0116)
第三个八位字节	次要版本号(当前为0016)

<Discovery_control_bits(发现控制位)(3816)>

由 IEEE 1212R 规范章节 8.8 所允许的密钥值(38₁₆)用作 Discovery_control_bits即时值,该密钥值专用于目录和体系结构的所有者。

<表 9 – Discovery control bits >

5

		-		FWHCP Server Agent	Configuration opera	ating.Do not	Which IP address?
				(FWHCP 服务器代	use(if True) (配置主	运行.不使用	(哪个 IP 地址?)
				理程序)	(如为真))		
X				Yes=1	1394 Dev. Count	IP-Address	Assigned_1Built-
					(1394 设备计数)	(IP 地址)	in_0
31	6	5_	4	3	2	1	0(LSB)

这些是在 1394 ROM 空间 402 中可以由本地和远程设备访问的控制位。 这些控制位由 IP 地址配置代理程序 406 和用户接口描述文件生成代理程序 10 408 使用,如下面所进一步描述的。

在本发明的一个实施例中,所述控制位提供下列信息:

位 0 - Which IP address(哪个 IP 地址?) - 指示使用了或者正在使用哪个 IP 地址,即,内置地址(=FALSE(伪))或者分配的地址(=TRUE(真))。这是通过操作 IP 配置代理程序 FWHCP 406 来设定的。

位 1、2 - Configuration Operation Do not use (配置操作不使用) - 当被设定时,指示 1394 设备发现处理并且单独指示 IP 配置代理程序 404 和 406 分别运行,因此,如果它们可以改变或者尚未写入,所指出的各值为无效。这些位是由本地(设备)1394DDA 代理程序 404 设置的。1394DDA 代理程序 404 清除 1394 Dev. Count(设备计数)位,并且运行 FWHCP 代理程序 406 清除 IP 地址位。

位 3 - 出现 FWHCP 服务器代理程序 406 - 是在设备具有可操作的

FWHCP 代理程序 406 时设置的。该位和 GUID 是由 FWHCP 代理程序 406 使用的,用来确定哪一个 FWHCP 代理程序 406 将运行。

Assigned_Count_of_1394_devices(分配的 1394 设备计数) (39₁₆) - 网络 300 中各 1394 设备的计数的分配的即时值。该计数是在 1394 接口通过其自标识循环时所进行的。1394 设备发现代理程序 404 生成该值,该值被存储在 ROM 空间 403 中,用于以后分别由 IP 和 UI 配置代理程序 406 和 408 使用。

IP_Address_Build_in(内置的 IP 地址) (3A₁₆) - 分配的即时值。该地址是在制造时分配的并且被内置到设备中。如果该内置地址不能使用,则在分配的地址空间中存储替换的地址并且设置控制位来指示这种情况。

IP_Address_Assigned(分配的 IP 地址) (3B₁₆) - 分配的即时值。如果检测到相同的 IP 地址,则 IP 地址配置代理程序 FWHCP 406 分配该地址以避免冲突。此外,设置控制位来指示这种情况。

IP_Address_Extension Leaf_for attached_network(用于附加网络的 IP 地址 扩充叶)(BC₁₆) - 该目录项目是用于对于 IP 地址扩充表(参看表 10)的数据叶的地址偏移值。所述数据叶包含用于所连接的非 1394 网络(但也可以是桥接的 1394 网络)上的各设备的 IP 地址。所述表包括在连接通向外来(非 1394)网络的那些类型的通信设备(例如,网桥)中。所述表可被扩充为包括能满足需要的诸多 IP 地址。所述通信设备本身的地址不应被包括在该表中。

20

10

<表 10 − IP_Address_Extension Leaf(IP 地址扩充叶)>

叶长度 - 1(n) ₁₆	CRC-16 ₁₆
IP 地址 1	
•••	
IP 地址 n	

对于用于发现控制位的控制字,使用用于实际发现控制位字的 ROM 项目作为这里定义的字只不过是一种示例性实现方式。ROM 没有被设计成可 以有效写入(即,ROM 区域必须被擦除,并且对这些区域的写入相对于其它硬件比如寄存器来说要慢)。在 1394 硬件中提供了寄存器,用于必须被频繁写入的数据。在另一种形式中,1394 寄存器可被用于

'Discovrey_control_bits(发现控制位)'控制字。寄存器处于也可以由其它设备访问的空间中,由此,另一设备可在 ROM 中查找该寄存器的地址,然后对该寄存器进行写入。

参照图 9B,一个或多个设备包括 IP 地址配置代理程序(FWHCP)406(例如,所有的 UI 设备和网关设备以及可以作为控制发起者的任何其它设备)。 FWHCP 配置代理程序 406 访问跨越 1394 网络 300 的 1394 ROM 402 的数据中的所有设备的 IP 地址值。对于其它应用程序(例如,UI 描述文件生成程序)开始的同步开始和结束,FWHCP 代理程序 406 也访问'配置运行'控制位。

5

10

15

20

25

30

参照图 9C,能够显示用户接口的设备以及一些其它设备(例如,网关设 备)可包括用于例如以 HTML 生成顶层 UI 描述文件 250 的 UI 描述文件生成 代理程序 408。由于如上面所详述的,每个网络 300 仅有一个 IP 配置代理程 序 406 进行操作,因此不需要所有的设备都包括 IP 配置代理程序 406, 尽管 所有的设备可以包括 IP 配置代理程序 406。如果一设备具有运行中的 IP 配 置代理程序 406 并且是用户接口设备,则该 IP 配置代理程序必须在 UI 描述 文件生成代理程序之前进行操作。UI 描述文件生成代理程序(UI description generation agent, UIDGA)408 利用包括在 1394 ROM 空间 402 中所定义的控 制位的信息以及其它信息(例如,对于确定哪个 FWHCP 进行操作来说是表 3 的 Bus Info Block(总线信息块)的环球唯一 ID(GUID)), 用来确定哪个 IP 配 置代理程序 406(如果在网络中有多个的话)进行操作、使启动同步,并用于 访问使用中的 IP 地址。任何设备都可以具有并操作一 UIDGA,以便制作 HN Directory(HN 目录)页(顶层发现页)。在 IP 地址被配置之后,UIDGA 读 取这些地址,以便制作 HN Directory 页。在每个客户机设备中,当 UI 描述 文件的生成结束时,GUI 生成和运行时间环境 410(例如,图 2 中的 Web 浏 览器 200)利用 UI 描述 HTML 文件 250 来访问所有设备的用于图标、名称和 标识语的 HTTP 文件空间(Icon.HTM、Name.HTM 和 Logo.HTM 包含在多个 页 204 或者一个页 204 中), 以便在该客户机设备中生成用来显示的全顶层 GUI 220。在从各设备访问文件(例如,Icon.HTM、Name.HTM 和 Logo.HTM) 的处理过程中,以及在依次进行的访问这些文件所参考的任何附加文件(例 如,ICON.GIF和 LOGO.GIF)的过程中,Web 浏览器利用 HTML 文件 250 来 呈现实际的 GUI 图形。

<1394 设备发现代理程序(1394DDA)>

10

15

参照图 9A-9C 和 10,如前面所讨论的,网络 300 中的每个 1394WEB 设备可包括设备发现代理程序 404。设备发现代理程序 404 列举连接到 1394 总线的 1394 地址空间中的 1394 设备,其中原始的(raw)发现是在 1394 硬件中执行的。自标识和物理节点号码分配及其步骤是由接口硬件/固件执行的基本发现处理。所有的设备都监测自标识循环,并记录存在的 1394 设备。这是用于任何 1394 设备的 1394 软件的一部分:(1)复位 - 在设备加电、设备连接和设备拆卸时,总线复位传播到所有的接口,(2)树识别 - 将一简单的网络拓扑结构(net topology)转换为树,以建立一 ROOT(根),该 ROOT 是特定功能的主文件(master):总线循环主文件、总线时间的仲裁过程中的最高优先权,(3)自识别 - 分配物理节点号(地址)并且还与邻居交换速度性能。最高标号的节点具有竞争者位和链接位这两者,并且是同步资源管理器。

发现代理程序 404 将各设备的最终计数值写入 1394 ROM 空间中,以使其与其它代理程序进行通信。设备发现代理程序 404 是在 1394 复位循环之后所执行的第一个软件代理程序,而控制位(发现控制位 2 和 1、配置操作: 1394DDA 和 IP_Address(IP 地址))用于使其它代理程序延迟执行,这些代理程序包括配置代理程序 406 和 408,直到发现代理程序 404 已经执行完毕为止。

在一个实施例中,每个设备中的 1394DDA 代理程序 404 执行步骤 500、 502,包括:(1)在设备的自身 1394 ROM 空间 402 中设置同步控制位(即, 20 '1394DDA 正在进程中,以及'IP 配置正在进程中,位),用来指示 1394DDA 正在进程中以及 IP 配置正在进程中(如果 1394DDA 正在执行,则 IP 配置不 会是正在进程中), 并且指示 1394 设备计数以及 IP 地址的值无效, 由此使 所述控制位禁止其它代理程序(例如,408)永久运行;这样,1394 DDA 执行, 然后是所选出的 FWHCP 执行, 再后是(通常是对于 UI 设备)UIDGA 执行;(2) 25 在 1394 复位之后对 1394 自识别序列的数目进行计数,以找出设备的数目并 有效地找出它们的本地节点地址,以便由其它代理程序 406、408 使用;(3) 将设备计数值写入设备的自身 1394 ROM 空间 402 中;以及(4)清除(例如, 使变为伪)设备的自身 1394 ROM 空间 402 中用于'1394DDA 正在进程中' 的同步控制位,其中'IP 配置正在进程中'位保持设置值,并在后面通过操 30 作 FWHCP 代理程序 406 来清除。

利用网络通信(网桥)设备中的 IP 地址列表来进行配置的其它的体系结构是可行的。例如,桥接网络(例如,非 1394 网络)上设备的 IP 地址的 IP 地址列表可通过另外的方式被检查,即在 IP 配置阶段通过 FWHCP 代理程序 406来检查,而不是仅仅在 UIDGA 阶段由 UIDGA 代理程序 408来检查。这就允许 FWHCP 代理程序 406 检测和校正地址冲突,并因此允许进行操作,不需要具有两个独立定义的地址范围,这两个地址范围中的一个用于 1394 网络 300,另一个用于非 1394 网络 119。地址冲突的校正可以通过修改有冲突的 1394 设备的地址来完成,因为桥接网络 IP 地址列表不能由上述用于 1394网络 300的代理程序 406、408来修改。如果 FWHCP 代理程序 406 可以在地址被允许在 1394 网络 300上使用之前为检验冲突而检验桥接网络 119中的地址,则配置会更加可靠。

<IP 地址配置代理程序(FWHCP 代理程序)>

10

参照图 9A-C 和 10, IP 地址配置软件代理程序(FWHCP)406 操作时可以 15 提供 (固定, IP 地址管理并检测和校正大批量生产的 1394 设备中的 IP 地址 冲突。所有的 1394WEB UI 设备都包括(并且其它的设备可以包括)FWHCP 代理程序 406。然而,在网络中仅有一个 FWHCP 代理程序 406 进行操作。 1394DDA 404 代理程序是在 1394 复位循环之后所执行的第一个软件代理程序,并且,如上面所提到的,1394DDA 404 代理程序设置 '1394DDA 正在 20 进程中,和 'IP 配置正在进程中,位,以延迟 FWHCP 代理程序 406,直到 1394DDA 代理程序 404 已经执行完毕为止。

在一个实施例中,设备中的 IP 地址配置代理程序 406 执行一些步骤,这些步骤包括轮询 1394DDA 配置操作控制位(即,'1394DDA 正在进程中,位),以确定 1394DDA 配置软件代理程序 404 是否已经执行完毕。如果是这25 样,则 FWHCP 代理程序 406 使用由 1394 DDA 代理程序 404 确定的设备计数,并从每个设备中读取 GUID 和控制字(步骤 504),以确定网络 300 中的哪个设备被选择执行其 FWHCP 代理程序 406(步骤 506)。所选择的设备是具有 FWHCP 代理程序 406 的设备,该 FWHCP 代理程序 406 发现其具有最高的 GUID(步骤 508)。其它设备中的所有其它 FWHCP 代理程序 406 都保持休30 眠状态(步骤 510)。运行中的 FWHCP 代理程序 406 从每个本地节点(例如,出现在接口上的单元,主机)读取'在使用中(in-use)'(有效)的 IP 地址(由

Discovery_control_bits(发现控制位)位 0 确定)并列表(步骤 512)。在一种形式中,软件代理程序列出一个用于将 IP 地址以它们被读出的原样保存到'阵列'中的列表(步骤 514-518)。该列表在编译器和 OS 的控制下存储在存储器 (RAM 或者 DRAM)中。正使用状态是由设置于设备中的一位确定的,该位指示内置或者分配的地址是否在使用中。在表 7 中,IP_address_assigned(分配的 IP 地址)和 IP_address_built_in(内置的 IP 地址)在 1394Web 单元目录中。

运行中的 FWHCP 代理程序 406 在列表于其中的 IP 地址中检查所述列表中有无冲突(也可以使用其它的冲突检测和决策方法)(步骤 520-522)。如果检测到冲突,则 FWHCP 代理程序例如通过用 IP 地址的最低有效 6 位来替代它们的 6 位节点地址来改变冲突的地址(步骤 524)。仅执行最少数目的改变以避免冲突。如果冲突地址中的一个已经是分配的地址,则例如通过递增6 位替代值对冲突内置地址优先改变上述地址,并且重新检查,直到解决冲突为止。FWHCP 代理程序 406 将改变的值写回到设备,并且将控制位(Discovery_control_bits: 位 0)设置为指示所分配的 IP 地址在使用中,并且不再使用内置缺省值(步骤 526)。对每个 IP 地址重复所述处理(步骤 528)。在冲突决策处理之后,运行中的 FWHCP 代理程序 406 轮流访问每个设备,并将每个设备中的'IP 配置正在进程中'位例如设置成'伪',以指示所指示的IP地址为有效。

20 <UI 描述文件生成代理程序>

10

15

在常规的 WWW 操作中,用户访问相同的顶层页。然而,参照图 4B、7和 9-11,按照本发明的一个方面,所有的 UI 设备(例如,能够显示用户接口的设备)都包括 UI 描述文件生成代理程序(UI description generation agent, UIDGA)408,用以独立生成顶层 UI 页 220,以便由用户控制局域网(例如,25 网络 100、网络 300 等)上的设备。在一个例子中,客户机设备(例如,PC)动态生成本地保存的缺省页 220,用于让用户控制连接到网络 100 的设备。这就允许每个 UI 设备(例如,DTV 102)例如使用用于所显示的各 UI 设备的更大更明显的图标来生成家庭网络的不同视图 220。这样,用户就能真正意识到哪个 UI 设备'正在这里'(在用户前面),或者,在室外访问的情况下,30 没有设备是'正在这里'。没有 UI 的设备可以生成用于另一个设备的 UI,但不能意识到该设备的类型(例如,电缆调制解调器生成用于室外 HN 设备

的 UI)。在此情况下,实际的 UI 设备是未知的。因此,在 GUI 中没有重要的特定设备。此外,连接到网络 100 的各设备的制造商们可以按需要将他们自己的 GUI 设计 202、204 提供于每个设备中。这以后就不会由现有的技术阻碍改进的浏览器和 Web 技术设计。

5

10

15

20

25

30

无 UI 的设备,尤其是那些执行网关功能的设备,也可以包括用来生成顶层 GUI 描述文件 250 的 UI 描述文件生成代理程序 408, 不包括用以生成和显示 GUI 220 的 GUI 生成和运行时间处理程序 410(例如, Web 浏览器 200)。由于使用适当的地址(例如,使用本地 HN 上的 RFC1918 专用地址),可以允许外部 WWW 访问 1394WEB 网络设备。外部地址是分配的适合于因特网使用的'真实的'IP 地址。通常来讲,存在具有 UIDGA 408 的单元(例如,网关类型单元),表示家庭到外部因特网的连接。这种网关的 UIDGA 利用家庭的 IP 地址生成用于外部使用的不同的 UI 描述文件(远程访问情况不同于内部本地设备使用),所述家庭的 IP 地址具有扩充的链路,用来识别是哪个家电设备本地专用 IP 地址。

UI 设备执行下列软件处理,以生成和显示网络 100/300 的显示外观 220: (1)上面所述的 1394 设备发现代理程序 404, (2)UI 描述文件生成代理程序 (UIDGA)408,和(3)GUI 生成和运行时间(例如,Web 浏览器 200)处理程序 410。参照图 11,在一个实施例中,设备中的 UIDGA 代理程序 408 执行一 些步骤,其中包括:在访问任何进一步的 IP 信息之前,轮询该设备自身 1394 ROM 402 中的 IP 地址配置位,以确保完成 FWHCP 代理程序 406(步骤 600)。 当完成 FWHCP 代理程序 406 时,利用由 1394 DDA 代理程序 404 生成的设 备的计数, UIDGA 代理程序 408 访问当前连接到网络的每个设备的控制字, 以确定将'配置操作'设置为伪,并将 IP 地址位设置为'在使用中'(UIDGA 代理程序 408 制作顶层 HTML 页、HN_Directory(HN 目录)页 220, 例如在 图 5-6 中所示的页)。之后,UIDGA 代理程序 408 读取实际的在使用中的 IP 地址值,并建立当前连接到网络 300 的各设备的 IP 地址的完整列表。该 IP 地址列表包括来自每个设备的信息(例如,图标、标识语、名称等)并且是利 用每个设备的 IP 地址以 HTML 写成的。在其可包括地址之前,UIDGA 408 通过访问每个设备并检验查看哪个地址处于在使用中来找出每个设备的地 址,所述检验查看是通过读取表 9 中的 discovery control_bit 控制位(位 0)来 完成的。UIDGA 408 读取表 7 中内置或者分配的地址。对于与桥接网络通

信的设备,就象由该设备的 1394 ROM 402 中的现有的扩充 IP 地址列表项目 所确定的那样,UIDGA 代理程序 408 从列表(IP_Address_Extension Leaf(IP 地址扩充叶))中读取扩充 IP 地址,以允许那些设备被包括在 GUI 220 中。项 目 BC(IP_Address_Extension_Leaf)包含指向实际数据叶的参考链路地址。在 所连接的桥接网络上的各设备仅包括在 IP_Address_Extension_Leaf 列表中, 其条件是他们也支持 1394WEB 类型的服务,即他们具有 Web 服务器以及 Icon.HTM 等和控制页(index.htm)。

UIDGA 代理程序 408 读取 IP 地址列表(步骤 602), 并且利用该 IP 地址 列表例如以HTML(例如,附录1)生成顶层网络UI描述文件250(图9C)(UIDGA 输出 HN Directory、顶层网络 UI 页、HTML 文件)(步骤 604)。UIDGA 代理 程序 408 将超链接中的 IP 地址使用于每个设备的 icon.htm、name.htm 和 logo.htm 文件。UIDGA 将包括参考文件的 HTML 文件写入到每个找到的设 备的 HTML 页,即 ICON.HTM、NAME.HTM、LOGO.HTM(例如,附录 2、 3、4)。然后, UIDGA 代理程序 408 利用 HTML 文件而在顶层 UI 描述文件 250 中查阅包括图标和标识语图形文件以及名称数据的项目,而不是包括原 始 icon.gif 或 logo.gif 及原始名称文本的项目(步骤 606)。这就允许所述项目 被相应的设备改变,以反映由制造商客户化或者由设备的用户配置的当前状 态,并且不会造成控制 UI 设备中顶层 HTML UI 描述文件 250 中的任何变化。 尽管在示例的 GUI 页 220 中示出了每个设备有一个图形(图 5-6), 客户化能 允许包括由 ICON.HTM 或者 LOGO.HTM 参照的多于一个的图形文件,以及 NAME.HTM 中的更多个文本。在一个实施例中,各 HTML 方框(frames)被 用于完成 UI 描述文件 250, 就象下面进一步描述的例子所说明的。使用方 框能使'坏公民'设备的事件中 GUI 220 的出现更加稳定。例如,一个在其 '名称'方框中出现太多字或者过大文本的设备仅仅会影响该设备的 GUI 外观(会有一些截短和不显示的字),并且不会负面影响 UI 设备中整个顶层 25 GUI 220 的外观。然后, UIDGA调用客户机设备中的GUI 生成处理程序 410(例 如,浏览器)来生成和显示用户接口(步骤608)。

<GUI 生成和运行时间处理程序>

10

15

20

GUI 生成处理程序 410(例如, Web 浏览器 200)利用例如 HTML 的 UI 30 描述文件 250 来生成 UI 设备上的 GUI 页 220。在一个例子中,为对消费电

子设备(例如,DTV)提供无键盘的操作,浏览器 200 在开始默认读取和呈现本地生成的'top-level-devices.html(顶层设备.html)'描述文件 250,以生成网络顶层控制 GUI 220。这里所使用的"本地"意味着在相同的设备(具有生成网络设备的设备本身的 HN 目录(顶层)GUI 的 UIDGA 的 UI 设备)中。HN 目录、顶层网络 UI 和发现页是相同的。这对于具有键盘的个人计算机(PC)来说不必是默认的。对于 CE 设备来说,浏览器 200 的启动被延迟到由 UIDGA 代理程序 408 完成 UIDGA 缺省页 250 的生成之后。在 UIDGA 代理程序 408 不能完成其任务的情况下,浏览器 200 则会显示说明发生网络配置错误的另一个 UI 页 220(例如,"由于 xxxxxx 而不能生成 HN_Directory 页。请尝试断接设备 xxxxxxx。发生网络配置错误号为 xxxxxxx。联系服务为:电话服务xxx-xxxxx或者 Web 服务 http://www.service.com.")。

10

15

20

30

为生成 GUI 220,浏览器 200 在每个所参照的设备中从设备信息 202、204(即,在 UI 描述文件中,其中例如 ICON.HTM 是在 HN_Directory 页 HTML 文件中)中提取'icon.htm'、'name.htm'和'logo.htm'文件,就象由 HTML UI 描述文件 250 所定义的那样。这些页 202、204 的内容(例如,图标图形)在用户客户化之后不需要是静态的,也不能被动态改变来反映设备状态变化。为显示最新的顶层页 220,浏览器 200 不对'icon.htm'、'name.htm'和'logo.htm'文件进行高速缓冲(cache)。在另一种形式中,总是先进行检验,以确定设备是否已对其拥有的 HTML 文件 202、204 做了任何改变。HTTP"条件性获得"用于检验被控设备的状态。根据返回的状态代码,浏览器 200 从其高速缓冲存储器(cache)中进行读取,或者从设备中提取新的或已更新的HTML 文件 202、204 的复制件。HWW GUI 显示器不会受影响,除非被控设备中有任何变化。

浏览器 200 在顶层 HN 目录完全生成之前不打算显示该顶层 HN 目录。 25 如果 HTML 250 在某个合理的时间量之内没有生成,则浏览器显示一替换 页。如果网络配置错误是问题的根源,则该替换页可以提供技术支持或者用 户诊断帮助。

无论何时用户返回到顶层 HN 目录或者使其被刷新,浏览器 200 都重新显示页 220 的整体。这是必须的,因为作为顶层 HN 目录的基础的 HTML250 可能在向网络 100 添加设备或从网络 100 去除设备的情况下已被重新生成。也可能更新设备图标,以反映它们的设备操作状态的变化。这样,由 EIA-775.1

设备实现的浏览器使用 HTTP"条件性获得"请求来确定 web 页或者图形的新复制件是否是从服务器中恢复的。

在这个方面,本发明提供了一种用户接口描述文件,其中完全利用参考 文件(即在摘要中)进行设备的用户发现,其中这些参考文件是用于每个设备 的寻找信息(例如,文本和/或图形)的'容器(containers)'并且驻留在每个设 备上。每个'容器'包括实际的原文信息和/或对于一个或多个图形格式信 息文件的参考文件,其中每个文件可包括一个或多个图像和/或文本。使用 参考文件,容器,能允许每个设备选择其优选的 UI 内容或图形格式或者改 变其要显示的 UI 内容(通过改变所参照的文本或图形信息来进行),而不需 要以任何方式改变 UI 描述文件页。因此,不需要改变与发现 UI 描述文件的 生成代理软件进行的通信。在一种形式中,设备参考它们的例如 ICON 和 LOGO 图形文件,这些文件间接使用通过用 HTML 方框创建网络顶层描述 文件形成的 HTML 文件。类似地,显示在图标下的设备名称由 NAME HTML 文件来表示。HTML 文件用于参考比如图标和标识语图形文件以及名称数 据,而不包括原始 icon.gif 或者 logo.gif 和原始名称文本。这就允许该项目 被改变以反映由制造商客户化或者由设备的用户配置的当前状态,并且不会 造成顶层 HTML 描述文件中的任何变化。这种层次的抽取允许顶层 UI 描述 文件始终相同,而不管要显示的图形 ICON 和 LOGO 文件名称和类型及 NAME 文本。此外,设备也可以用于不同地、多样地或者动态地改变显示在 顶层 GUI 中的图形文件和文本,并且不需要改变与 UIDGA 的通信。每当 GUI 重新显示时都会自动包括该变化。在使用非显示图形或文本的'坏公民'设 备的情况下,使用方框也能使 GUI 显示更加稳定,因为错误被限制到特定 的方框并且不影响整个 GUI。每当 GUI 重新显示时都会自动包括该变化

10

15

20

30

参照附录 1-4, 其中提供了用于下列各项的示例: (1)顶层页描述文件 25 250(附录1);(2)Background.htm(附录2);(3)Icon.htm(附录3);和(4)Name.htm(附录4)。

尽管上面已参照本发明的优选实施例对本发明进行了描述,但本发明也可以有其它形式。因此,所附的权利要求书不应当被限定为对这里所含的优选形式的描述。

工业应用性

按照本发明的用于在连接到网络系统的多个多种设备中生成用户接口的

方法和系统可应用于具有所连接的多媒体设备的家庭网络,其中所述用户接口用于控制连接到一网络的各设备。所述多媒体设备可包括 PC、VCR、摄录机、DVD和 HDTV等。

附录1- 顶层页例子

NORESIZE>

30

<HTML> <HEAD> <TITLE>HN Devices Page</TITLE> </HEAD> <FRAMESET ROWS="2%, 47%,2%, 22.5%,2%,22.5%, 2%" border=0 color=black> <NOFRAMES>Sorry does not support frames</NOFRAMES> 10 <FRAMESET ROWS="100%,0%"> <FRAME SRC="background.htm" SCROLLING="no" NORESIZE> </FRAMESET> <FRAMESET COLS="1.2%,23.5%,1.2%.48.2%,1.2%,23.5%,1.2%"> <FRAMESET ROWS="100%,0%"> 15 <PRAME SRC="background.htm" SCROLLING="no" NORESIZE> </FRAMESET> <FRAMESET ROWS="48%,4%,48%"> <FRAMESET ROWS="73%, 27%"> SCROLLING="no" SRC="http://10.1.1.1/icon.htm" 20 <FRAME NORESIZE> <FRAME SRC=" http://10.1.1.1/name.htm" SCROLLING="no" NORESIZE> </FRAMESET> <FRAMESET ROWS="100%,0%"> 25 <FRAME SRC="background.htm" SCROLLING="no" NORESIZE> </FRAMESET> <FRAMESET ROWS="73%, 27%" > <FRAME SRC=" http://10.1.1.10/icon.htm" SCROLLING="no"


```
http://10.1.1.10/name.htm"
                          SRC="
         <FRAME
   SCROLLING="no" NORESIZE>
   </FRAMESET>
   </FRAMESET>
   <FRAMESET ROWS="100%,0%">
   <FRAME SRC="background.htm" SCROLLING="no" NORESIZE>
    </FRAMESET>
    <FRAMESET ROWS="73%, 27%" >
         <FRAME SRC=" http://10.1.22.1/icon.htm" SCROLLING="no"
10
   NORESIZE>
         <FRAME SRC=" http://10.1.22.1/name.htm" SCROLLING="no"
    NORESIZE>
    </FRAMESET>
    <FRAMESET ROWS="100%,0%">
    <FRAME SRC="background.htm" SCROLLING="no" NORESIZE>
15
    </FRAMESET>
    <FRAMESET ROWS="48%,4%,48%">
    <FRAMESET ROWS="73%, 27%" >
          <FRAME SRC=" http://10.1.229.1/icon.htm" SCROLLING="no"
20
    NORESIZE>
          <PRAME SRC=" http://10.1.229.1/name.htm" SCROLLING="no"
     NORESIZE>
     </FRAMESET>
     <FRAMESET ROWS="100%,0%">
     <FRAME SRC="background.htm" SCROLLING="no" NORESIZE>
25
     </FRAMESET>
     <FRAMESET ROWS="73%, 27%" >
          <FRAME SRC=" http://10.30.30.1/icon.htm" SCROLLING="no"
     NORESIZE>
          <FRAME SRC=" http://10.30.30.1/name.htm" SCROLLING="no"
 30
```



```
NORESIZE>
   </FRAMESET>
   </FRAMESET>
   <FRAMESET ROWS="100%,0%">
   <FRAME SRC="background.htm" SCROLLING="no" NORESIZE>
    </FRAMESET>
    </FRAMESET>
    <FRAMESET ROWS="100%,0%">
    <FRAME SRC="background.htm" SCROLLING="no" NORESIZE>
10
    </FRAMESET>
    <FRAMESET
    COLS="1.2%,23.5%,1.2%,23.5%,1.2%,23.5%,1.2%,23.5%,1.2%">
    <FRAMESET ROWS="100%,0%">
    <FRAME SRC="background.htm" SCROLLING="no" NORESIZE>
    </FRAMESET>
15
    <FRAMESET ROWS="73%, 27%" >
          <FRAME SRC=" http://10.41.1.1/icon.htm" SCROLLING="no"
    NORESIZE>
          <FRAME SRC=" http://10.41.1.1/name.htm" SCROLLING="no"
20
    NORESIZE>
     </FRAMESET>
     <FRAMESET ROWS="100%,0%">
     <FRAME SRC="background.htm" SCROLLING="no" NORESIZE>
     </FRAMESET>
     <FRAMESET ROWS="73%, 27%" >
25
          <FRAME SRC=" http://10.41.21.1/icon.htm" SCROLLING="no"
     NORESIZE>
          <FRAME SRC=" http://10.41.21.1/name.htm" SCROLLING="no"
     NORESIZE>
 30
     </FRAMESET>
```

```
<FRAMESET ROWS="100%,0%">
   <FRAME SRC="background.htm" SCROLLING="no" NORESIZE>
    </FRAMESET>
    <FRAMESET ROWS="73%, 27%" >
         <FRAME SRC=" http://10.45.1.1/icon.htm" SCROLLING="no"
5
    NORESIZE>
         <FRAME SRC=" http://10.45.1.1/name.htm" SCROLLING="no"
    NORESIZE>
    </FRAMESET>
10
    <FRAMESET ROWS="100%,0%">
    <FRAME SRC="background.htm" SCROLLING="no" NORESIZE>
    </FRAMESET>
    <FRAMESET ROWS="73%, 27%" >
         <FRAME SRC=" http://10.100.1.1/icon.htm" SCROLLING="no"
15
    NORESIZE>
         <FRAME SRC=" http://10.100.1.1/name.htm" SCROLLING="no"
    NORESIZE>
    </FRAMESET>
    <FRAMESET ROWS="100%,0%">
    <FRAME SRC="background.htm" SCROLLING="no" NORESIZE>
20
    </FRAMESET>
     </FRAMESET>
     <FRAMESET ROWS="100%,0%">
    <FRAME SRC="background.htm" SCROLLING="no" NORESIZE>
25
     </FRAMESET>
     <FRAMESET
     COLS="1.2%,23.5%,1.2%,23.5%,1.2%,23.5%,1.2%,23.5%,1.2%">
     <FRAMESET ROWS="100%,0%">
     <FRAME SRC="background.htm" SCROLLING="no" NORESIZE>
30
     </FRAMESET>
```

```
<FRAMESET ROWS="73%, 27%" >
         <FRAME SRC=" http://10.122.22.1/eia.htm" SCROLLING="no"
    NORESIZE>
         <FRAME SRC=" http://10.122.22.1/eia.htm" SCROLLING="no"
5
    NORESIZE>
    </FRAMESET>
    <FRAMESET ROWS="100%,0%">
    <FRAME SRC="background.htm" SCROLLING="no" NORESIZE>
    </FRAMESET>
    <FRAMESET ROWS="73%, 27%" >
10
         <FRAME SRC=" http://10.122.122.122/icon.htm" SCROLLING="no"
    NORESIZE>
                                    http://10.122.122.122/name.htm"
                        SRC="
          <FRAME
    SCROLLING="no" NORESIZE>
15
    </FRAMESET>
    <FRAMESET ROWS="100%,0%">
     <FRAME SRC="background.htm" SCROLLING="no" NORESIZE>
     </FRAMESET>
     <FRAMESET ROWS="73%, 27%" >
          <FRAME SRC=" http://10.122.122.123/icon.htm" SCROLLING="no"
20
     NORESIZE>
                                    http://10.122.122.123/name.htm"
                         SRC="
          <FRAME
     SCROLLING="no" NORESIZE>
     </FRAMESET>
     <FRAMESET ROWS="100%,0%">
25
     <FRAME SRC="background.htm" SCROLLING="no" NORESIZE>
     </FRAMESET>
     <FRAMESET ROWS="73%, 27%" >
           <FRAME SRC=" http://10.122.122.124/icon.htm" SCROLLING="no"
 30
     NORESIZE>
```


<FRAME SRC="

http://10.122.122.124/name.htm" SCROLLING="no" NORESIZE>

</FRAMESET>

<FRAMESET ROWS="100%,0%">

<FRAME SRC="background.htm" SCROLLING="no" NORESIZE>

</FRAMESET>

</FRAMESET>

<FRAMESET ROWS="100%,0%">

<FRAME SRC="background.htm" SCROLLING="no" NORESIZE>

10 </FRAMESET>

</FRAMESET>

<BODY BGCOLOR="#FFFFF0" TEXT="#000070" LINK="#0000ff"

ALINK="#FF0000" VLINK="#007986">

</BODY>

15 </HTML>

附录2- Background.htm 例子

<HTML>

<HEAD>

5 <TITLE>Background</TITLE>

</HEAD><BODY BGCOLOR="#007986"></BODY>

</HTML>

附录3- Icon.htm 例子

<HTML>

<HEAD>

5 <TITLE>Device Icon</TITLE>

</HEAD>

<BODY BGCOLOR="#FFFFF0" TEXT="#000070" LINK="#0000ff"
ALINK="#FF0000" VLINK="#007986">

10

<CENTER></br>

</CENTER>

</BODY>

15 </HTML>

附录4- Name.htm 例子

<HTML>

<HEAD>

5 <TITLE>Device Name</TITLE></HEAD>

<BODY BGCOLOR="#FFFFF0" TEXT="#000070" LINK="#0000ff"
ALINK="#FF0000" VLINK="#007986">

15

说 明 书 附 图

图 1

. .

2

服务器 150	20	客户机 166
应用层	152	应用层 152
表示原	154	表示层 154
会话层	156	4 法 是 156
传输层	158	传输层 158
网络原	160	160
数据链路层	162	数据链路层 162
物理层	164	- 物理层 164

感

网络顶层设备GUI的例子

2

函

6

网络顶层设备GUI的另一个例子

9

图

 ∞

函

所有设备

1394找寻代理程序 (DDA) 'TOP-LEVEL.HTM' 410 具有用户接口的设备 GUI生成和运行时间 生成代理程序 UI描述文件 文弁 404 -WEB浏览器 用于同步的接入控制位和数据 408 250 用于同步的1394接入控制位和数据 接入IP/1394的HTTP文件空间 顶层CUI 220 96 函 1394网络 1394本身中的 数据 (ROM) 402 400 **名称**) 设备HTTP文件空间 所有1394设备 中的数据 (ROM) 中的数据 (ROM) (因标,

图 11