La idea de l'anàlisi de la variància Model d'un factor

$$y_{ij} = \mu + \alpha_i + e_{ij}$$

Exemple 1: situació experimental

- Es desitja comparar l'eficàcia de tres fàrmacs = tractaments
- la variable resposta és una mesura d'eficàcia (major valor major eficàcia)
- una mostra de 24 pacients s'aleatoritza totalment respecte al tractament.

Resultats experiment

Trat 1	Trat 2	Trat 3
4	7	9
2	6	12
6	5	6
6	7	11
5	6	10
6	4	11
2	7	9
6	5	10

- en terminologia de l'anàlisis de la variància s'anomena:
 - nivell a cada grup
 - factor al conjunt de tots els grups

Descriptiva bàsica de les dades

```
> by(dades$resp, dades$tract, summary)
dades$tract: 1
  Min. 1st Qu. Median Mean 3rd Qu.
                                       Max.
 2.000 3.500 5.500 4.625 6.000
                                       6.000
dades$tract: 2
                      Mean 3rd Qu.
  Min. 1st Qu. Median
                                       Max.
 4.000 5.000 6.000
                        5.875 7.000
                                      7.000
dades$tract: 3
  Min. 1st Qu. Median Mean 3rd Qu.
                                       Max.
         9.00
              10.00
                         9.75
                                       12.00
  6.00
                               11.00
> boxplot(resp~tract, dades)
                                                 \infty
                                                 9
```


Comentaris a l'exemple 1

- Es vol comparar l'eficàcia de 3 tractaments.
- Acceptant normalitat, i considerant 3 contrastos t-Student per parelles consecutius:
 - fàrmac 1 contra fàrmac 2 (α=5%)
 - fàrmac 1 contra fàrmac 3 (α=5%)
 - fàrmac 2 contra fàrmac 3 (α=5%)
- aparentment es resol la qüestió plantejada. Però ...
- aquesta forma directa de plantejar el problema comporta un error metodològic: el nivell de significació de las 3 proves juntes és superior a α

Nivell de significació global

- si plantegem els dos testos següents
 - fàrmac 1 contra fàrmac 2 (α=5%)
 - fàrmac 1 contra fàrmac 3 (α=5%)

les proves són independents essent l'error de tipus I global:

 α_G = nivell de significació global = 1-(1-0.05)² = 0.0975

- si plantegem les 3 alhora, en no ser independents, només podem afirmar que α_G està entre 0.0975 i 0.1426.
- en general, quant més gran sigui el número de grups, més gran serà
 α_G acostant-se a 1!. Cal doncs una tècnica alternativa.

El model completament aleatoritzat

- Generalització a k mostres del test t de Student para 2 mostres normals independents.
- Objectiu del test: comprovar si existeixen diferencies significatives entre k grups experimentals.
- Els individus han estat assignats a l'atzar a un dels possibles tractaments
- Aquesta aleatorització dels individus als tractaments dona un nom alternatiu al disseny: completament aleatoritzat

Codificació amb R

- Es requereixen dues variables
 - 1a variable: codi, per cada rèplica, del tractament aplicat
 - 2a variable: variable resposta per cada rèplica

Trat 1	Trat 2	Trat 3
4	7	9
2	6	12
6	5	6
6	7	11
5	6	10
6	4	11
2	7	9
6	5	10

	tract	÷	resp	÷
1		1		4
2		1		2
3		1		б
4		1		б
5		1		5
6		1		6
7		1		2
8		1		б
9		2		7
10		2		б
11		2		5
12		2		7
13		2		б
14		2		4
15		2		7
16		2		5
17		3		9

Resultats de l'ANOVA 1F

- Prenent un α del 5%:
 - L'estadístic de test es F = 22.113
 - el p-valor subministrat per R és 0.0000068
 - com p-valor < α , podem rebutjar H₀

Model ANOVA 1 Factor

El model lineal assumit per a les dades és

$$y_{ij} = \mu + \tau_i + \varepsilon_{ij}$$
 $i = 1, \dots, a; \quad j = 1, \dots, n_i$

 μ = mitjana general; τ_i = efecte tractament i; ε_{ij} = error aleatori

- Cada grup experimental s'associa a una $N(\mu_i, \sigma)$.
- El nombre de tractaments a = T (total tractaments possibles). Si a < T, el model és d'efectes *aleatoris*
- L'efecte del tractament i és la diferència entre $\tau_i = \mu_i \mu$

Terminologia elemental

- Rèplica: observacions de la variable resposta fetes sota les mateixes condicions experimentals.
- Disseny balancejat: situació experimental on es presenten el mateix nombre de rèpliques en cada grup/tractament.
- Aleatorització: un requisit bàsic. Cada unitat observada (cada rèplica) s'ha d'assignar aleatòriament a un tractament.
- El disseny Anova 1F es designa també com disseny completament aleatoritzat.

Contrast de hipòtesis

 L'Anova de 1 factor contrasta la hipòtesis que no hi ha efecte dels tractaments. En forma paramètrica, H₀ es:

$$y_{ij} = \mu + \tau_i + \varepsilon_{ij}$$

$$\longrightarrow H_0: \quad \tau_1 = \tau_2 = \cdots = \tau_a = 0$$

- Si rebutgem H₀, el test només indica que existeix una diferència global en els grups, però no concretament entre quins d'ells.
- Una forma equivalent d'expressar la hipòtesi nul·la és mitjançant les mitjanes poblacionals de cada grup μ_i

$$H_0: \quad \mu_1 = \mu_2 = \cdots = \mu_a$$

Paràmetres del model i estimacions

Paràmetres que intervenen

Tractament	Mitjana	Var.	Efecte tract.
1	μ_1	$\sigma_1^{\ 2}$	$\tau_1 = \mu_1 - \mu$
2	μ_2	$\sigma_2^{\ 2}$	τ ₂ =μ ₂ -μ
a=T	μ_{a}	$\sigma_a^{\ 2}$	τ _a =μ _a -μ
Mitjana	μ		0

• i les seves estimacions:

Tractament	Mitjana	Var.	Efecte tract.
1	$\overline{y}_{1\bullet}$	s ₁ ²	$\overline{y}_{1\bullet} - \overline{y}_{\bullet \bullet}$
2	\overline{y}_{2ullet}	s_2^2	$\overline{y}_{2ullet} - \overline{y}_{ullet}$
a=T	$\overline{\mathcal{Y}}_{a\bullet}$	s _a ²	$\overline{y}_{aullet} - \overline{y}_{ullet}$
Mitjana	$\overline{y}_{\bullet \bullet}$		0

Per què el nom d'anàlisi de la variància?

Hi ha diferències significatives entre μ_A , μ_B i μ_C ?

Idea intuitiva de l'anàlisi de la variància

Idea intuitiva de l'anàlisi de la variància

Veure si les mitjanes poblacionals són iguals:

$$\mu_1 = \mu_2 = ... = \mu_K$$

és equivalent a comprovar si...

les diferències (variabilitat) entre les mitjanes de les mostres són superiors al que s'hauria d'esperar a partir de la variabilitat dins de cada mostra.

La tècnica d'anàlisi per comparar les mitjanes poblacionals és, per tant, una anàlisi de les variabilitats o anàlisi de la variança (ANOVA).

El mètode ANOVA permet dividir la variabilitat observada en components independents, que poden atribuir-se a diferents causes. Volem determinar si la variabilitat d'una variable és atribuible al tractament.

Departament d'Estadística

Passos que cal seguir per comparar més de 2 mitjanes

1. Plantejar les hipòtesis

Ara, la hipòtesi nul·la serà que totes les mitjanes són iguals, i l'alternativa que alguna és diferent.

Recollir les dades

Cal aleatoritzar o bloquejar, segons el cas en què ens trobem.

Anàlisi exploratori de les dades.

Per veure quin aspecte tenen les dades, detectar possibles valors anòmals, etc.

- 4. Verificació dels supòsits en que es basa la metodologia.
- Construcció de la taula ANOVA.
- 6. Decisió.

Rebutgem o no la hipòtesi nul·la segons el p-valor obtingut.

Comparació de k tractaments

1. Plantejar les hipòtesis

Hipòtesis nul·la
$$\mathbf{H_0}: \mu_1 = \mu_2 = \ldots = \mu_k$$

Hipòtesis alternativa H_1 : alguna és diferent

2. Recollir les dades

Tractament 1
$$\mathbf{y}_{11}, \mathbf{y}_{12}, \dots, \mathbf{y}_{1n_1} \rightarrow \mathbf{y}_{1}$$

Tractament 2
$$\mathbf{y}_{21}, \mathbf{y}_{22}, \dots, \mathbf{y}_{2n_2} \rightarrow \mathbf{y}_{2}$$
.

Tractament t $\mathbf{y}_{t1}, \mathbf{y}_{t2}, \dots, \mathbf{y}_{tn_t} \rightarrow \mathbf{y}_{t}$.

.

Tractament k
$$y_{k1}, y_{k2}, \dots, y_{kn_k} \rightarrow y_k$$

Tenim k tractaments. El tractament t té n_t observacions

Mitjana global
$$\overline{y}_{..}$$

$$N = n_1 + n_2 + ... + n_k$$

Comparació de k tractaments

- 3. Fer anàlisi exploratòria de dades:
 - Diagrama de punts.
 - Boxplot...
- 4. Verificar els supòsits en que es basa la metodologia
 - Les poblacions de les que venen les dades són normals.
 - Les poblacions són independents.
 - Les mostres són m.a.s.
 - Les variances poblacionals són iguals.

Comparació de k tractaments

5. Construir la taula ANOVA:

Font de Variacio	Suma Quadrats	g,I,	Quadrats Mitjans	F	p-valor
Entre tractaments	SS _T	k – 1	S _T ²	S_T^2/S_R^2	
Error	SS _R	N – k	S _R ²		
Total	SS _{Tot}	N – 1			,

Veurem com "omplir" aquesta taula amb números...

6. Decidir en base al p-valor obtingut.

Petit \rightarrow rebutgem H₀, alguna mitjana és diferent

Gran \rightarrow no rebutgem H₀, no podem dir que les mitjanes siguin diferents

Construcció de la taula ANOVA

Si els supòsits del model són vàlids,

Tractament 1
$$y_{11}, y_{12}, \dots, y_{1n_1} \sim N(\mu_1; \sigma)$$

Tractament 2 $y_{21}, y_{22}, \dots, y_{2n_2} \sim N(\mu_2; \sigma)$
 \vdots

Tractament t $y_{t1}, y_{t2}, \dots, y_{tn_t} \sim N(\mu_t; \sigma)$

 $y_{k1}, y_{k2}, \dots, y_{kn_k} \sim N(\mu_K; \sigma)$

Tractament K

S_R² i SS_R

Estimar σ² mitjançant una mesura ponderada de les s², És a dir estimar la variació dintre dels tractaments

$$s_{R}^{2} = \frac{\sum_{t=1}^{k} (n_{t} - 1)s_{t}^{2}}{\sum_{t=1}^{k} (n_{t} - 1)} = \frac{\sum_{t=1}^{k} (n_{t} - 1)\frac{\sum_{i=1}^{n_{t}} (y_{ti} - \overline{y}_{t.})^{2}}{n_{t} - 1}}{N - k} = \frac{\sum_{t=1}^{k} \sum_{i=1}^{n_{t}} (y_{ti} - \overline{y}_{t.})^{2}}{N - k} = \frac{SS_{R}}{N - k}$$

És com la scombinada en comparació de 2 tractaments S_R² se l'anomena variabilitat residual, perquè no és atribuible a cap causa en concret (és la variabilitat deguda a causes comuns),

SS_R se l'anomena Suma de Quadrats Residuals

S_T² i SS_T

Estimar σ^2 basant-nos en les variacions entre tractaments,

Si H_0 certa $y_{ti} \sim N(\mu; \sigma)$ (la μ és la mateixa per tots els tractaments)

Per tant, si les mostres tenen el mateix tamany:

$$\overline{y}_{t.} \sim N(\mu; \frac{\sigma}{\sqrt{n}})$$
 $\frac{\sum_{t=1}^{k} (\overline{y}_{t.} - \overline{y}_{..})^{2}}{k-1}$ és un estimador de $\frac{\sigma^{2}}{n}$

I llavors:

$$n\sum_{t=1}^{k} (\overline{y}_{t} - \overline{y}_{..})^{2}$$

$$k - 1$$
és un estimador de σ^{2}

En general, si el tamany de les mostres és diferent:

$$\mathbf{S}_{\mathsf{T}}^{2} = \frac{\sum_{t=1}^{k} \mathbf{n}_{t} (\overline{\mathbf{y}}_{t} - \overline{\mathbf{y}}_{..})^{2}}{k-1} = \frac{\mathbf{S} \mathbf{S}_{\mathsf{T}}}{k-1}$$

S_T² és la variabilitat entre tractaments, i

SQ_T és la Suma de Quadrats dels Tractaments

Dues formes d'estimar σ² quan H₀ és certa

Si H₀ és falsa llavors:

 H_0 : $\mu_1 = \mu_2 = ... = \mu_k$ H_1 : alguna és diferent

S_T² serà més gran que S_R² ja que en aquest cas no estarà només afectada per la variabilitat dintre dels tractaments sino també per la variabilitat entre tractaments

 S_R^2 sempre és bon estimador de σ^2

 S_T^2 només és bon estimador de σ^2 si H_0 és certa

Càlcul del p-valor a la taula ANOVA

Per tant, cal comparar 2 variances.

$$H_0: \sigma_T^2 = \sigma_R^2$$

$$H_1: \sigma_T^2 > \sigma_R^2$$

Atenció, aquí el p-valor és només una àrea de cua!

L'estadístic de prova és:

$$\mathsf{F}_0 = \frac{\mathsf{S}_\mathsf{T}^2}{\mathsf{S}_\mathsf{R}^2}$$

La distribució de referència és una F_{k-1; N-k}

Així doncs,
$$H_0: \mu_1 = \mu_2 = \dots = \mu_k$$
 és equivalent a $H_0: \sigma_T^2 = \sigma_R^2$
 $H_1: \text{alguna \'es diferent}$ $H_1: \sigma_T^2 > \sigma_R^2$

Taula ANOVA

Font de Variació	Suma Quadrats	g.l.	Quadrats Mitjans	F	p-valor
Entre tractaments	$SS_{T} = \sum_{t=1}^{k} \sum_{i=1}^{n_{t}} (\overline{y}_{t.} - \overline{y}_{})^{2}$	k – 1	$\boldsymbol{S_{T}^{2}} = \frac{\sum_{t=1}^{k} \sum_{i=1}^{n_{t}} (\overline{\boldsymbol{y}}_{t} - \overline{\boldsymbol{y}}_{})^{2}}{k-1}$	S_T^2/S_R^2	
Error	$SS_R = \sum_{t=1}^{k} \sum_{i=1}^{n_t} (y_{ti} - \overline{y}_{t.})^2$	N – k	$\boldsymbol{S_{R}^{2}} = \frac{\sum_{t=1}^{k} \sum_{i=1}^{n_{t}} (\boldsymbol{y}_{ti} - \overline{\boldsymbol{y}}_{t\cdot})^{2}}{N - k}$		
Total	$SS_{Tot} = \sum_{t=1}^{k} \sum_{i=1}^{n_t} (y_{ti} - \overline{y}_{})^2$	N – 1			

Error = variabilitat dins de cada tractament, la "tremolor" que sempre tenen les dades... El p-valor surt d'enfrontar l'estadístic de prova (S_T^2/S_R^2) a la distribució de referència, que en aquest cas és una $F_{k-1;\,N-k}$

Exemple 2

Suposem que es vol comparar la *productivitat mitjana per hora* en el muntatge d'un cert mecanisme, segons sigui el procediment de muntatge emprat:

A, B o C

Com es resoldrà el problema?

Plantejar hipòtesis i recollir dades

1. Plantejar les hipòtesis

Hipòtesis nul·la

$$H_0: \mu_A = \mu_B = \mu_C$$

Hipòtesis alternativa

H₁: alguna és diferent

2. Recollir les dades

Α	В	С
2,6(6)	3,2(12)	2,6(4)
2,1 ⁽¹⁰⁾	2,7 ⁽¹⁾	2,1 ⁽⁸⁾
3,5(2)	3,9 ⁽³⁾	3,1 ⁽¹¹⁾
2,6 ⁽⁹⁾	3,4 ⁽⁷⁾	2,7 ⁽⁵⁾
$\overline{Y}_A = 2.7$	$\overline{Y}_{B} = 3,3$	\overline{Y}_{C} = 2,625
$S_A = 0.58$	$S_{B} = 0,5$	$S_{C} = 0,41$

Anàlisi exploratòria i supòsits

3. Anàlisi exploratoria de dades

- 4. Verificació dels supòsits
 - Poblacions normals
 - Poblacions independents
 - Aleatorietat
 - Amb la mateixa variança

Queda pendent comprovar-ho!

Construcció de la taula ANOVA

5. Construcció de la taula ANOVA

$$\begin{split} S_{R}^{2} &= \frac{SS_{R}}{N-k} = \frac{(n_{A}-1)S_{A}^{2} + (n_{B}-1)S_{B}^{2} + (n_{C}-1)S_{C}^{2}}{N-k} = \\ &= \frac{3(0,34+0,247+0,169)}{9} = \frac{2,268}{9} = 0,252 \\ S_{T}^{2} &= \frac{SS_{T}}{K-1} = \frac{\sum_{t=1}^{k} n_{t} (\overline{y}_{t\bullet} - \overline{y}_{\bullet\bullet})^{2}}{k-1} = \frac{4 \cdot (2,7-2,875)^{2} + 4 \cdot (3,3-2,875)^{2} + 4 \cdot (2,625-2,875)^{2}}{3-1} = \\ &= \frac{1,095}{2} = 0,5475 \\ SS_{Tot} &= SS_{R} + SS_{T} = \sum_{t=1}^{k} \sum_{i=1}^{n_{t}} (y_{ti} - \overline{y}_{\bullet\bullet})^{2} = 3,362 \end{split}$$

Font de Variacio	Suma Quadrats	g.l.	Quadrats mitjans	F	p-valor
Entre tractaments	SS _T =1,095	2	S _T ² =0,5475	S _T ² /S _R ² =2,17	0,17
Error	SS _R =2,268	9	S _R ² =0,252		
Total	SS _{Tot} =3,362	11			

La Taula ANOVA

Font de variació	Suma de quadrats	g.1.	Quadrats mitjans	F
Entre grups (tractament)	SS_{T}	k-1	$MS_{T} = \frac{SS_{T}}{k-1}$	$\frac{\mathrm{MS}_{\mathrm{T}}}{\mathrm{MS}_{\mathrm{R}}}$
Dins grups (Error)	SS_R	N-k	$MS_{R} = \frac{SS_{R}}{N - k}$	
Total	\overline{SS}_{Tot}	$\overline{N-1}$		

- SS_{Tot} recull la variabilitat **total** de les dades
- SS_T recull la variabilitat entre tractaments
- SS_R recull la variabilitat dins dels tractaments
- H₀ es rebutja si la variabilitat entre (SS_T) supera significativament la variabilitat dins dels grups (SS_R).
- En les taules ANOVA la variabilitat

$$MS = Quadrats \ mitjans = \frac{variació}{graus \ de \ llibertat} = \frac{SS}{g. \ l.}$$

