MAGI Algorithm Description

Kamil Hlubek

June 16, 2025

Notation

- $\mathcal{I} = \{t_1, \dots, t_n\}$: Discretization time grid.
- D: Number of dimensions (state variables).
- n: Number of discretization time points.
- k: Number of ODE parameters.
- N_{obs} : Number of distinct observation time points (may be less than n).
- $Y \in \mathbb{R}^{n \times D}$: Observation matrix on grid \mathcal{I} , with NaNs for unobserved points/times. $Y_{j,d}$ is observation for dimension d at time t_j . Let $Y_d = Y_{:,d}$ be the vector for dimension d.
- $X \in \mathbb{R}^{n \times D}$: Latent state matrix on grid \mathcal{I} . $X_{j,d} = x_d(t_j)$. Let $X_d = X_{:,d}$ be the vector for dimension d.
- $\theta \in \Theta \subset \mathbb{R}^k$: Vector of ODE parameters. Θ defines the parameter bounds $[\theta_{lower}, \theta_{upper}]$.
- $\sigma \in \mathbb{R}^{D}_{>0}$: Vector of observation noise standard deviations for each dimension. $\sigma^{2} = (\sigma_{1}^{2}, \dots, \sigma_{D}^{2})$.
- $\phi_d = (\phi_{d,1}, \phi_{d,2})$: GP hyperparameters (variance $\phi_{d,1}$, lengthscale $\phi_{d,2}$) for dimension d. $\phi \in \mathbb{R}^{2 \times D}_{>0}$.
- $\mathcal{K}_{\phi_d}(t,t')$: GP covariance kernel function for dimension d.
- $f(x, \theta, t) : \mathbb{R}^D \times \mathbb{R}^k \times \mathbb{R} \to \mathbb{R}^D$: ODE function, $dx/dt = f(x, \theta, t)$. f_d is the d-th component. Let $F_d \in \mathbb{R}^n$ be the vector where $[F_d]_j = f_d(X_{j,:}, \theta, t_j)$.
- $J_x(x, \theta, t) = \nabla_x f(x, \theta, t) \in \mathbb{R}^{D \times D}$: Jacobian of f w.r.t. state x.
- $J_{\theta}(x, \theta, t) = \nabla_{\theta} f(x, \theta, t) \in \mathbb{R}^{D \times k}$: Jacobian of f w.r.t. parameters θ .
- $C_{\phi_d} \in \mathbb{R}^{n \times n}$: GP prior covariance matrix for dim d, $[C_{\phi_d}]_{jj'} = \mathcal{K}_{\phi_d}(t_j, t_{j'})$.
- $C'_{\phi_d} \in \mathbb{R}^{n \times n}$: First time derivative matrix, $[C'_{\phi_d}]_{jj'} = \frac{\partial}{\partial t} \mathcal{K}_{\phi_d}(t,t')|_{t=t_j,t'=t_{j'}}$.
- $C''_{\phi_d} \in \mathbb{R}^{n \times n}$: Second time derivative matrix, $[C''_{\phi_d}]_{jj'} = \frac{\partial^2}{\partial t \partial t'} \mathcal{K}_{\phi_d}(t,t')|_{t=t_j,t'=t_{j'}}$.
- ϵ : Small jitter value for numerical stability ($\epsilon \approx 10^{-6}$).
- $C_{inv,d} = (C_{\phi_d} + \epsilon I)^{-1}$: Inverse of jittered prior covariance matrix.
- $m_{\phi_d} = C'_{\phi_d} C_{inv,d}$: Matrix relating X_d to the conditional mean of its derivative \dot{X}_d . $\mathbb{E}[\dot{X}_d|X_d] = m_{\phi_d} X_d$ (assuming zero prior mean).

- $K_{\phi_d} = C''_{\phi_d} m_{\phi_d}(C'_{\phi_d})^\mathsf{T}$: Conditional covariance matrix $\mathbb{V}[\dot{X}_d|X_d]$.
- $K_{inv,d} = (K_{\phi_d} + \epsilon I)^{-1}$: Inverse of jittered conditional covariance matrix (precision matrix).
- M^{Band} : Banded matrix approximation of matrix M with bandwidth b.
- $\beta = (\beta_{deriv}, \beta_{level}, \beta_{obs})$: Prior temperature vector.
- Ψ : Full parameter vector for sampling, e.g., $(\text{vec}(X), \theta, \log \sigma)$ or $(\text{vec}(X), \theta)$.
- $||\mathbf{v}||_{\mathbf{A}}^2 = \mathbf{v}^{\mathsf{T}} \mathbf{A} \mathbf{v}$: Squared Mahalanobis norm.

1 Initialization

The goal of initialization is to determine suitable starting values for the latent states $(X^{(0)})$, ODE parameters $(\theta^{(0)})$, observation noise standard deviations $(\sigma^{(0)})$, and GP hyperparameters $(\phi^{(0)})$. These serve as the initial state $\Psi^{(0)}$ for the MCMC sampler.

1.1 Handling User-Provided Initial State

If a complete initial state vector Ψ_{init} is provided by the user, it is unpacked directly into $X^{(0)}$, $\theta^{(0)}$, and possibly the log-transformed $\log \sigma^{(0)}$. The parameter vector $\theta^{(0)}$ is clamped to lie within the specified bounds $\Theta = [\theta_{lower}, \theta_{upper}]$. The flag sigma_is_fixed is determined based on whether Ψ_{init} includes the $\log \sigma$ component. If σ is sampled (i.e., sigma_is_fixed is false), the initial value is set as $\sigma^{(0)} = \exp(\log \sigma^{(0)})$. If σ is fixed, $\sigma^{(0)}$ is set to the value σ_{fixed} provided in the configuration (this is mandatory if Ψ_{init} implies fixed sigma). Similarly, if Ψ_{init} implies fixed sigma, the GP hyperparameters ϕ_{fixed} must be provided in the configuration, and $\phi^{(0)}$ is set to ϕ_{fixed} . If Ψ_{init} is provided, the subsequent initialization steps for ϕ, σ, X, θ are skipped, and the algorithm proceeds directly to pre-computing the GP covariance structures using $\phi^{(0)}$.

1.2 Initialize GP Hyperparameters (ϕ) and Noise (σ)

This step is performed if Ψ_{init} was not provided, AND either the GP hyperparameters ϕ_{fixed} were not provided or the noise standard deviations σ_{fixed} were not provided (meaning σ needs to be sampled).

The determination of whether σ is fixed relies on the configuration: sigma_is_fixed is true if and only if both σ_{fixed} and ϕ_{fixed} are provided.

The initialization proceeds dimension by dimension (d = 1, ..., D):

- 1. Identify the valid (non-NaN) observations $Y_{valid,d}$ in the d-th column of Y and their corresponding times $t_{valid,d}$.
- 2. Compute initial guesses for the log-transformed hyperparameters: $(\log \phi_{d,1}^{(guess)}, \log \phi_{d,2}^{(guess)})$ and $\log \sigma_d^{(guess)}$. These guesses are derived from basic statistics of $Y_{valid,d}$ (e.g., variance, median absolute deviation) and the time range of observations. If ϕ_{fixed} was provided (but σ_{fixed} was not), its values are used for the ϕ guess: $(\log \phi_{fixed,1,d}, \log \phi_{fixed,2,d})$.
- 3. Define the Negative Log Marginal Likelihood (NLML) objective function for dimension d. Assuming a GP prior $x_d \sim \mathcal{GP}(0, \mathcal{K}_{\phi_d})$ and observation model $y_d = x_d + \epsilon_d$ with $\epsilon_d \sim \mathcal{N}(0, \sigma_d^2 I)$, the marginal likelihood integrates out x_d . The NLML, as a function of log-parameters $\lambda = (\log \phi_{d,1}, \log \phi_{d,2}, \log \sigma_d)$, is:

$$L_{NLML}(\lambda_1, \lambda_2, \lambda_3) = \frac{1}{2} \log |\mathbf{K}_{\phi_d^*} + (\sigma_d^*)^2 \mathbf{I}| + \frac{1}{2} \mathbf{Y}_{valid,d}^\mathsf{T} (\mathbf{K}_{\phi_d^*} + (\sigma_d^*)^2 \mathbf{I})^{-1} \mathbf{Y}_{valid,d} + \text{const}$$
where $\phi_{d,1}^* = \exp(\lambda_1)$, $\phi_{d,2}^* = \exp(\lambda_2)$, $\sigma_d^* = \exp(\lambda_3)$, and $\mathbf{K}_{\phi_d^*} = [\mathcal{K}_{(\phi_{d,1}^*, \phi_{d,2}^*)}(t, t')]_{t,t' \in t_{valid,d}}$.

- 4. Minimize $L_{NLML}(\lambda)$ using a numerical optimization algorithm (e.g., Nelder-Mead), starting from the initial guess $\lambda^{(guess)}$, to obtain the optimized log-parameters $\lambda^* = (\log \phi_{d,1}^*, \log \phi_{d,2}^*, \log \sigma_d^*)$.
- 5. Store the optimized parameters:
 - If ϕ_{fixed} was not provided, store $\phi_{est,1,d} = \exp(\lambda_1^*)$ and $\phi_{est,2,d} = \exp(\lambda_2^*)$.
 - If sigma_is_fixed is false, store $\sigma_{est,d} = \exp(\lambda_3^*)$.

After iterating through all dimensions, set the final initial GP hyperparameters $\phi^{(0)}$ to ϕ_{est} (if estimated) or ϕ_{fixed} (if provided). Set the initial noise $\sigma^{(0)}$ to σ_{est} (if estimated) or σ_{fixed} (if provided and fixed).

1.3 Initialize Latent States (X)

This step is performed if Ψ_{init} and X_{init} were not provided. Initialize the latent state matrix $X^{(0)} \in \mathbb{R}^{n \times D}$. For each dimension d = 1, ..., D, identify the non-NaN observations $Y_{valid,d}$ at times $t_{valid,d}$. Linearly interpolate these values onto the full discretization grid \mathcal{I} to obtain the initial trajectory $X_{:,d}^{(0)}$. Handle cases with fewer than two observations appropriately (e.g., constant extrapolation).

If X_{init} was provided, set $X^{(0)} = X_{init}$ after checking dimensions.

1.4 Initialize ODE Parameters (θ)

This step is performed if Ψ_{init} and θ_{init} were not provided. Initialize the ODE parameter vector $\theta^{(0)} \in \mathbb{R}^k$. Typically, this is done by taking the midpoint of the provided bounds $\Theta = [\theta_{lower}, \theta_{upper}]$, or offsetting slightly from a bound if one side is infinite.

If θ_{init} was provided, set $\theta^{(0)} = \theta_{init}$.

Finally, clamp $\theta^{(0)}$ to ensure it lies within the bounds: $\theta^{(0)} = \max(\theta_{lower}, \min(\theta^{(0)}, \theta_{upper}))$.

1.5 Pre-compute GP Covariance Structures

Using the initialized or provided GP hyperparameters $\phi^{(0)}$, pre-compute the necessary covariance matrices and their banded approximations for each dimension $d=1,\ldots,D$. These matrices are essential for evaluating the GP prior terms (log $p(X_d)$) and the GP conditional derivative terms (log $p(\dot{X}_d = F_d|X_d)$) in the log-likelihood. Store these in a structure, gp_cov_all_dims.

For each dimension d:

- 1. Select the kernel function \mathcal{K}_{ϕ_d} based on the kernel type specified in the configuration and the parameters $\phi_d = \phi_{:,d}^{(0)}$.
- 2. Compute the dense $n \times n$ prior covariance matrix $C_{\phi_d} = [\mathcal{K}_{\phi_d}(t_j, t_{j'})]_{i,i'=1}^n$.
- 3. Compute the dense first time derivative matrix C'_{ϕ_d} .
- 4. Compute the dense second time derivative matrix C''_{ϕ_d} .
- 5. Compute the inverse of the jittered prior covariance: $C_{inv,d} = (C_{\phi_d} + \epsilon I)^{-1}$. This is needed for the \mathcal{L}_{level} term and its gradient.
- 6. Compute the matrix $m_{\phi_d} = C'_{\phi_d} C_{inv,d}$. This relates the level X_d to the conditional mean of the derivative $\mathbb{E}[\dot{X}_d|X_d] = m_{\phi_d} X_d$ (assuming zero prior mean).
- 7. Compute the conditional covariance matrix $K_{\phi_d} = \mathbb{V}[\dot{X}_d | X_d] = C''_{\phi_d} m_{\phi_d}(C'_{\phi_d})^\mathsf{T}$.
- 8. Compute the inverse of the jittered conditional covariance (precision matrix): $K_{inv,d} = (K_{\phi_d} + \epsilon I)^{-1}$. This is needed for the \mathcal{L}_{deriv} term and its gradient.

- 9. Create banded matrix approximations using the specified bandwidth b: $C_{inv,d}^{Band}$, $m_{\phi_d}^{Band}$, $K_{inv,d}^{Band}$. These are used for efficient computation.
- 10. Store $C_{inv,d}^{Band}$, $m_{\phi_d}^{Band}$, $K_{inv,d}^{Band}$ in the structure gp_cov_all_dims[d]. (The dense matrices K_{ϕ_d} , C_{ϕ_d} etc. may also be stored for reference).

1.6 Construct Initial Sampler State $\Psi^{(0)}$

This step constructs the final initial state vector for the MCMC sampler, unless it was provided directly as Ψ_{init} .

• If sigma_is_fixed is true:

$$\Psi^{(0)} = \begin{pmatrix} \operatorname{vec}(X^{(0)}) \\ \theta^{(0)} \end{pmatrix}$$

• If sigma_is_fixed is false: Compute the log-transformed noise $\log \sigma^{(0)} = \log(\max(\sigma^{(0)}, \text{small_val}))$ (element-wise, ensuring positivity).

$$\Psi^{(0)} = \begin{pmatrix} \operatorname{vec}(X^{(0)}) \\ \theta^{(0)} \\ \log \sigma^{(0)} \end{pmatrix}$$

This $\Psi^{(0)}$ is the starting point for the MCMC sampler described in Section 3.

2 Log-Likelihood & Gradient Calculation: $\mathcal{L}(\Psi)$ and $\nabla \mathcal{L}(\Psi)$

This section describes the calculation of the log-posterior density $\mathcal{L}(\Psi)$ and its gradient $\nabla \mathcal{L}(\Psi)$ with respect to the full parameter vector $\Psi = (\text{vec}(X), \theta, \dots)$. The log-posterior combines the log-likelihood of the observations, the log-prior density from the GP assumptions on levels X and derivatives \dot{X} , and the log-prior density of the ODE parameters θ (often assumed uniform within bounds, contributing only via the bounds). The gradient is required for HMC sampling.

2.1 Parameter Unpacking and Transformation

Given an input parameter vector Ψ :

- 1. Unpack Ψ into the latent state matrix $X \in \mathbb{R}^{n \times D}$ and the ODE parameter vector $\theta \in \mathbb{R}^k$.
- 2. Check if σ is fixed using the sigma_is_fixed flag determined during initialization.
- 3. If sigma_is_fixed is true, use the fixed value $\sigma = \sigma^{(0)}$ determined during initialization. The log-Jacobian contribution is $\mathcal{L}_{jac} = 0$.
- 4. If sigma_is_fixed is false, unpack the remaining elements of Ψ as $\log \sigma \in \mathbb{R}^D$. Transform to the original scale: $\sigma = \exp(\log \sigma)$ (element-wise). Ensure resulting $\sigma_d > 0$. The log-Jacobian determinant for this transformation is $\mathcal{L}_{jac} = \sum_{d=1}^{D} (\log \sigma)_d$. This term is added to the total log-likelihood, effectively corresponding to a $p(\sigma_d) \propto 1/\sigma_d$ prior on σ_d .

2.2 Log-Likelihood Term Calculation

Initialize the total log-likelihood $\mathcal{L} = \mathcal{L}_{jac}$. Pre-compute the ODE function values $F \in \mathbb{R}^{n \times D}$ where $F_{j,d} = f_d(X_{j,:}, \theta, t_j)$ for all j = 1..n, d = 1..D.

Iterate through each dimension d = 1, ..., D:

 $1. \ \ \text{Retrieve the pre-computed banded matrices} \ C_{inv,d}^{Band}, \ m_d^{Band}, \ K_{inv,d}^{Band} \ \text{from gp_cov_all_dims[d]}.$

- 2. Define vectors for the current dimension: $X_d = X_{:,d}$, $F_d = F_{:,d}$, $Y_d = Y_{:,d}$.
- 3. Identify the set of time indices $V_d = \{j | Y_{j,d} \text{ is not NaN} \}$ where observations are available for dimension d.
- 4. Calculate the level fit error: $fitLevelError_d = X_d Y_d$. Set entries corresponding to NaN observations in Y_d to zero.
- 5. Calculate the expected derivative based on the GP mean: $mphi_x_d = m_d^{Band} X_d$.
- 6. Calculate the derivative fit error: $fitDerivError_d = F_d mphi_x_d$.
- 7. Calculate intermediate terms needed for the likelihood components:
 - $\bullet \ \mathtt{Kinv_fitDerivError}_d = K_{inv,d}^{Band} \times \mathtt{fitDerivError}_d$
 - $\bullet \ \mathtt{Cinv}_\mathtt{x}_d = C_{inv.d}^{Band} \times X_d$
- 8. Calculate the three components of the log-likelihood for dimension d:
 - Level Log-Likelihood (log $p(X_d)$): The GP prior assumes $X_d \sim \mathcal{N}(0, C_{\phi_d})$. The log-density is:

$$\log p(X_d) = -\frac{1}{2} X_d^{\mathsf{T}} C_{\phi_d}^{-1} X_d - \frac{1}{2} \log |C_{\phi_d}| - \frac{n}{2} \log(2\pi)$$

Using the pre-computed inverse of the jittered matrix $C_{inv,d}$ and the term $\mathtt{Cinv}_{xd} = C_{inv,d}X_d$, and ignoring constant terms and log-determinants (if ϕ is fixed), this component is calculated as:

$$\mathcal{L}_{level,d} = -\frac{1}{2} X_d^\mathsf{T} C_{inv,d} X_d = -\frac{1}{2} X_d^\mathsf{T} (\mathtt{Cinv}_- \mathbf{x}_d)$$

This penalizes deviations from the zero mean prior, weighted by the prior precision $C_{inv,d}$, corresponding to $-\frac{1}{2}\mathcal{L}_{GP,d}$ in Eq. (5) of the reference PDF [71-73].

• Observation Log-Likelihood (log $p(Y_d|X_d, \sigma_d^2)$): The model assumes $Y_{j,d}|X_{j,d} \sim \mathcal{N}(X_{j,d}, \sigma_d^2)$ independently for observed points $j \in \mathcal{V}_d$. The joint log-density is:

$$\begin{split} \log p(Y_d(\mathcal{V}_d)|X_d(\mathcal{V}_d), \sigma_d^2) &= \sum_{j \in \mathcal{V}_d} \log p(Y_{j,d}|X_{j,d}, \sigma_d^2) \\ &= \sum_{j \in \mathcal{V}_d} \left[-\frac{1}{2} \log(2\pi\sigma_d^2) - \frac{(X_{j,d} - Y_{j,d})^2}{2\sigma_d^2} \right] \\ &= -\frac{|\mathcal{V}_d|}{2} \log(2\pi\sigma_d^2) - \frac{1}{2\sigma_d^2} \sum_{j \in \mathcal{V}_d} (X_{j,d} - Y_{j,d})^2 \end{split}$$

Using the pre-calculated fitLevelError_{d,j} = $X_{j,d} - Y_{j,d}$, this is computed as:

$$\mathcal{L}_{obs,d} = -rac{1}{2\sigma_d^2} \sum_{j \in \mathcal{V}_d} (\mathtt{fitLevelError}_{d,j})^2 - rac{|\mathcal{V}_d|}{2} \log(2\pi\sigma_d^2)$$

This represents the goodness-of-fit, corresponding to $-\frac{1}{2}\mathcal{L}_{Obs,d}$ in Eq. (5) [73].

• Derivative Log-Likelihood (log $p(\dot{X}_d = F_d|X_d)$): From GP properties, the conditional distribution is $\dot{X}_d|X_d \sim \mathcal{N}(m_{\phi_d}X_d, K_{\phi_d})$. The manifold constraint implies $\dot{X}_d = F_d$. Evaluating the log-density of this conditional normal distribution at F_d :

$$\log p(F_d|X_d) = -\frac{1}{2}(F_d - m_{\phi_d}X_d)^{\mathsf{T}} K_{\phi_d}^{-1}(F_d - m_{\phi_d}X_d) - \frac{1}{2}\log|K_{\phi_d}| - \frac{n}{2}\log(2\pi)$$

Using the jittered inverse $K_{inv,d} = (K_{\phi_d} + \epsilon I)^{-1}$ and the derivative error $E_d = \text{fitDerivError}_d = F_d - \text{mphi}_{-\mathbf{x}_d}$, and ignoring constants and log-determinants, this component is calculated as:

$$\mathcal{L}_{deriv,d} = -\frac{1}{2} E_d^\mathsf{T} K_{inv,d} E_d = -\frac{1}{2} (\texttt{fitDerivError}_d)^\mathsf{T} (\texttt{Kinv_fitDerivError}_d)$$

This term enforces the ODE manifold constraint by penalizing the squared Mahalanobis distance between the ODE dynamics F_d and the GP's expected derivative $m_{\phi_d}X_d$, weighted by the conditional precision $K_{inv,d}$. It corresponds to $-\frac{1}{2}\mathcal{L}_{Constraint,d}$ in Eq. (5) [74-77].

9. Add the weighted components to the total log-likelihood:

$$\mathcal{L} \leftarrow \mathcal{L} + \frac{\mathcal{L}_{obs,d}}{\beta_{obs}} + \frac{\mathcal{L}_{deriv,d}}{\beta_{deriv}} + \frac{\mathcal{L}_{level,d}}{\beta_{level}}$$

2.3 Gradient Calculation

The gradient $\nabla \mathcal{L}(\Psi)$ required for HMC is computed by summing the gradients of the weighted log-likelihood components derived above. These gradients are obtained analytically using standard matrix and vector calculus.

Analytical Gradient Components The gradient of the total log-likelihood is the sum of the gradients of its constituent parts (weighted by inverse temperatures $1/\beta$), plus the gradient of the log-Jacobian term \mathcal{L}_{iac} (if applicable). We consider the gradient of each main term:

- Gradient of $\mathcal{L}_{level,d}$: Since $\mathcal{L}_{level,d} = -\frac{1}{2}X_d^\mathsf{T}C_{inv,d}X_d + \text{const}$, its gradient w.r.t. X_d is $\nabla_{X_d}\mathcal{L}_{level,d} = -C_{inv,d}X_d$. It has no dependence on θ or σ .
- Gradient of $\mathcal{L}_{obs,d}$: Since $\mathcal{L}_{obs,d} = -\frac{1}{2\sigma_d^2} \sum_{j \in \mathcal{V}_d} (X_{j,d} Y_{j,d})^2 + \dots$, its gradient w.r.t. $X_{j,d}$ is $\nabla_{X_{j,d}} \mathcal{L}_{obs,d} = -\frac{1}{\sigma_d^2} (X_{j,d} Y_{j,d})$ for observed points $(j \in \mathcal{V}_d)$ and zero otherwise. The gradient w.r.t. σ_d is $\nabla_{\sigma_d} \mathcal{L}_{obs,d} = \frac{1}{\sigma_d^3} \sum_{j \in \mathcal{V}_d} (X_{j,d} Y_{j,d})^2 \frac{|\mathcal{V}_d|}{\sigma_d}$. It does not depend on θ .
- Gradient of $\mathcal{L}_{deriv,d}$: This term, $\mathcal{L}_{deriv,d} = -\frac{1}{2}(F_d m_{\phi_d}X_d)^\mathsf{T} K_{inv,d}(F_d m_{\phi_d}X_d) + \text{const}$, depends on X (directly via $m_{\phi_d}X_d$ and indirectly via $F_d = f(X,\theta,t)$) and θ (via F_d). Let $E_d = F_d m_{\phi_d}X_d$ be the error vector. Using the chain rule for quadratic forms $(\nabla_z(-\frac{1}{2}v^\mathsf{T}Av) = -(\nabla_z v)^\mathsf{T}Av$ for symmetric A), we get:
 - $-\nabla_{\theta} \mathcal{L}_{deriv,d} = -(\nabla_{\theta} E_d)^{\mathsf{T}} K_{inv,d} E_d. \text{ Since only } F_d \text{ depends on } \theta, \nabla_{\theta} E_d = \nabla_{\theta} F_d, \text{ where the } (j,p)\text{-th element of } \nabla_{\theta} F_d \text{ is } \frac{\partial f_d(X_{j,:},\theta,t_j)}{\partial \theta_p}. \text{ Thus, } \nabla_{\theta} \mathcal{L}_{deriv,d} = -(\nabla_{\theta} F_d)^{\mathsf{T}} K_{inv,d} (F_d m_{\theta,J} X_d).$
 - $-\nabla_{X}\mathcal{L}_{deriv,d} = -(\nabla_{X}E_{d})^{\mathsf{T}}K_{inv,d}E_{d}. \text{ Here, } \nabla_{X}E_{d} = \nabla_{X}F_{d} \nabla_{X}(m_{\phi_{d}}X_{d}). \nabla_{X}F_{d}$ involves the ODE state Jacobian J_{x} , specifically $\frac{\partial F_{j,d}}{\partial X_{j',d'}} = \delta_{jj'}J_{x}(j)[d,d'].$ The gradient $\nabla_{X}(m_{\phi_{d}}X_{d})$ involves $m_{\phi_{d}}^{\mathsf{T}}$. Combining these leads to contributions to $\nabla_{X}\mathcal{L}_{j',d'}$ involving both $J_{x}(j')[d,d']$ and $(m_{\phi_{d}})^{\mathsf{T}}$.

This term does not depend directly on σ .

• Gradient of \mathcal{L}_{jac} : If σ is sampled, $\mathcal{L}_{jac} = \sum \log \sigma_d$. Then $\nabla_{\log \sigma} \mathcal{L}_{jac} = 1$, and gradients w.r.t X, θ are zero.

The subsequent steps detail how these analytical gradient components are computed and accumulated efficiently using the pre-calculated matrices and Jacobians.

Initialize gradient components: $\nabla_X \mathcal{L} = \mathbf{0} \in \mathbb{R}^{n \times D}$, $\nabla_{\theta} \mathcal{L} = \mathbf{0} \in \mathbb{R}^k$, $\nabla_{\sigma} \mathcal{L} = \mathbf{0} \in \mathbb{R}^D$.

Accumulating Gradients:

- 1. Loop through dimensions (d = 1..D): Calculate contributions independent of ODE coupling.
 - $\nabla_X \mathcal{L}_{:,d} \leftarrow \nabla_X \mathcal{L}_{:,d} + \frac{1}{\beta_{level}} (\nabla_{X_d} \mathcal{L}_{level,d}) = \nabla_X \mathcal{L}_{:,d} \frac{1}{\beta_{level}} C_{inv,d} X_d$
 - For $j \in \mathcal{V}_d$: $\nabla_X \mathcal{L}_{j,d} \leftarrow \nabla_X \mathcal{L}_{j,d} + \frac{1}{\beta_{obs}} (\nabla_{X_{j,d}} \mathcal{L}_{obs,d}) = \nabla_X \mathcal{L}_{j,d} \frac{1}{\beta_{obs} \sigma_d^2} (\texttt{fitLevelError}_{d,j})$
 - $\nabla_X \mathcal{L}_{:,d} \leftarrow \nabla_X \mathcal{L}_{:,d} + \frac{1}{\beta_{deriv}} (\nabla_{X_d} \mathcal{L}_{deriv,d})_{mphi} = \nabla_X \mathcal{L}_{:,d} + \frac{1}{\beta_{deriv}} (m_d^{Band})^\mathsf{T} (\texttt{Kinv_fitDerivError}_d)$ (From $-m_{\phi_d} X_d$ part of $\mathcal{L}_{deriv,d}$)
 - If not sigma_is_fixed: $\nabla_{\sigma} \mathcal{L}_d \leftarrow \nabla_{\sigma} \mathcal{L}_d + \frac{1}{\beta_{obs}} (\nabla_{\sigma_d} \mathcal{L}_{obs,d}) = \nabla_{\sigma} \mathcal{L}_d + \frac{1}{\beta_{obs}} \left(\frac{\text{SSE}_d}{\sigma_d^3} \frac{|\mathcal{V}_d|}{\sigma_d} \right)$
- 2. Loop through time (j = 1..n): Calculate contributions involving ODE coupling from the F_d term in \mathcal{L}_{deriv} .
 - Compute Jacobians $J_x(j) = \nabla_x f(X_{i:}, \theta, t_i)$ and $J_{\theta}(j) = \nabla_{\theta} f(X_{i:}, \theta, t_i)$.
 - For each dimension d = 1..D (of the derivative error term):
 - Let $KFE_{d,j} = [\texttt{Kinv_fitDerivError}_d]_j$.
 - Accumulate gradient w.r.t. $X_{i,d'}$ (d' = 1..D):

$$\nabla_X \mathcal{L}_{j,d'} \leftarrow \nabla_X \mathcal{L}_{j,d'} - \frac{1}{\beta_{deriv}} J_x(j)[d,d'] \cdot KFE_{d,j}$$

(This corresponds to the $(\nabla_X F_d)^{\mathsf{T}}(-K_{inv,d}E_d)$ part, summed over d).

- Accumulate gradient w.r.t. θ :

$$\nabla_{\theta} \mathcal{L} \leftarrow \nabla_{\theta} \mathcal{L} - \frac{1}{\beta_{domin}} J_{\theta}(j) [d,:]^{\mathsf{T}} \cdot KFE_{d,j}$$

(This corresponds to the $(\nabla_{\theta} F_d)^{\mathsf{T}} (-K_{inv,d} E_d)$ part, summed over d).

Assemble Final Gradient Vector $\nabla \mathcal{L}(\Psi)$:

- 1. Combine the accumulated $\nabla_X \mathcal{L}$ (flattened) and $\nabla_{\theta} \mathcal{L}$ into the appropriate parts of the final gradient vector $\nabla \mathcal{L}$.
- 2. If sigma_is_fixed is false, calculate the gradient with respect to the sampled variable $\log \sigma$:

$$abla_{\log \sigma} \mathcal{L} = (
abla_{\sigma} \mathcal{L} \odot \sigma) + 1$$

(The first term uses the chain rule, the second is the gradient of \mathcal{L}_{jac}). Assign this $\nabla_{\log \sigma} \mathcal{L}$ to the final elements of $\nabla \mathcal{L}$.

The function returns the pair $(\mathcal{L}, \nabla \mathcal{L})$.

3 Sampling

The final stage employs a Markov Chain Monte Carlo (MCMC) algorithm, typically the No-U-Turn Sampler (NUTS), a variant of Hamiltonian Monte Carlo (HMC), to draw samples from the posterior distribution $p(\Psi|Y) \propto \exp(\mathcal{L}(\Psi))$.

3.1 Sampler Setup

- 1. Initialize the NUTS sampler, providing the log-likelihood function $\mathcal{L}(\Psi)$ and its gradient $\nabla \mathcal{L}(\Psi)$ calculated as described in Section 2.
- 2. Define the HMC metric M, which represents the mass matrix (often diagonal Euclidean, meaning M is diagonal). This influences the kinetic energy term in the Hamiltonian.
- 3. Define the numerical integrator (typically Leapfrog) used to simulate Hamiltonian dynamics, along with an initial step size ϵ_0 .
- 4. Configure an adaptor (e.g., StanHMCAdaptor) responsible for tuning the step size ϵ and potentially the metric M during the initial "burn-in" or "warmup" phase of the MCMC run. The goal is often to achieve a target acceptance ratio (e.g., 0.8).

3.2 MCMC Iteration Loop

Set the current state of the chain $\Psi_{current} = \Psi^{(0)}$ (from Section 1). Initialize storage S for accepted samples. Iterate i from 1 to N_{iter} :

- 1. Sample momentum vector p from its conditional distribution, typically $p \sim \mathcal{N}(0, M)$.
- 2. Propose a new state (Ψ^*, p^*) by simulating the Hamiltonian dynamics $H(\Psi, p) = -\mathcal{L}(\Psi) + \frac{1}{2}p^{\mathsf{T}}M^{-1}p$ starting from $(\Psi_{current}, p)$. The NUTS algorithm dynamically determines the simulation length (number of Leapfrog steps) to avoid random walks and efficiently explore the parameter space.
- 3. Calculate the Metropolis-Hastings acceptance probability:

$$\alpha = \min\left(1, \exp\left(H(\Psi_{current}, p) - H(\Psi^*, p^*)\right)\right)$$

$$\alpha = \min\left(1, \exp\left(\mathcal{L}(\Psi^*) - \mathcal{L}(\Psi_{current}) + \frac{1}{2}p^\mathsf{T}M^{-1}p - \frac{1}{2}(p^*)^\mathsf{T}M^{-1}p^*\right)\right)$$

- 4. Sample a random number $u \sim \text{Uniform}(0, 1)$.
- 5. If $u < \alpha$, accept the proposal: $\Psi_{current} = \Psi^*$. Otherwise, reject: $\Psi_{current}$ remains unchanged.
- 6. If the current iteration i is after the burn-in phase $(i > N_{burn})$, store the current state $\Psi_{current}$ in the sample collection S.
- 7. If the current iteration i is within the burn-in phase $(i \leq N_{burn})$, use the outcome of the step (acceptance statistic, proposed state) to update the step size ϵ and potentially the metric M via the configured adaptor.

3.3 Post-processing

After the MCMC loop completes, process the collected samples $\Psi^{(i)} \in \mathcal{S}$ (for $i = N_{burn} + 1, \dots, N_{iter}$):

- 1. For each sample $\Psi^{(i)}$, unpack it into its components: $X^{(i)} \in \mathbb{R}^{n \times D}$, $\theta^{(i)} \in \mathbb{R}^k$.
- 2. Determine $\sigma^{(i)}$:
 - If sigma_is_fixed was true during the run, set $\sigma^{(i)} = \sigma^{(0)}$ (the fixed value).
 - If sigma_is_fixed was false, extract the $\log \sigma^{(i)}$ component from $\Psi^{(i)}$ and transform it back: $\sigma^{(i)} = \exp(\log \sigma^{(i)})$.

The final output of the algorithm is the set of post-burn-in samples $\{(X^{(i)}, \theta^{(i)}, \sigma^{(i)})\}_{i=N_{burn}+1}^{N_{iter}}$. These samples represent draws from the posterior distribution and can be used for inference (e.g., calculating means, credible intervals).