Supernova Hunters Chris Chang

Goal

Improve (decrease) the Missed Detection Rate of supernovae while keeping a False Positive Rate of 1%

Previous Models

Flat

Had a ~21% MDR for the PS1 Medium Deep Survey, but didn't generalize well to PSST data because more artifacts were present in the dataset

Convolutional Neural Net

Has a ~21% MDR on the PSST dataset @ 1% FPR and 5.2% MDR @ 5% FPR

ResNet Architecture

Advantages

Can be large without overfitting

How?

A res block can easily learn the identity function

ResNet Architecture

Alternating blocks

- Conv to increase channels, then Res
- Might not be the proper implementation

Conv 16

Res 16

Conv 32

Res 32

Conv 64

Res 64

GAP

FC 512

FC 256

OUT

Datasets

~10,000 samples Expert labels Psst 20x20

~300,000 samples ? labels on train Expert on test

Models

ResNet (50x50)

(Outlined in previous slides)

CNN (Baseline)

Original CNN model but input layer is 3 channel now

ResNet20

Architecture is identical to ResNet but input layer is 20x20x1

Flat (Baseline)

3 FC layers of size 500, 300, 10

Data methods

K-fold cross validation

K models are trained on (1-1/k)% of the training data

Predictions are averaged (Ensembling)

Data methods

Bootstrap Aggregation (Bagging)

K-bags are created

Each bag is composed of m training examples Which contains ~0.66m unique training examples

Ensembling is used

ResNet

3 channel

5-bag is best

CNN (Baseline)

3 channel

5-bag is best

ResNet20 1 channel

5-bag is best

Flat (Baseline)
1 channel

5-fold is best

New Material

Datasets

3π data

~10,000 samples Expert labels 100x100x3

3π data was rescaled for 50x50x3 and 20x20x1 models

Psst Large

~300,000 samples ? labels on train Test set is 3π data 20x20x1

Models

ResNet50x50

(Outlined in previous slides)

ResNet100x100

Architecture is identical to ResNet but input layer is 100x100x3

ResNet20x20

Architecture is identical to ResNet but input layer is 20x20x1

Flat (Baseline)

3 FC layers of size 500, 300, 10

Psst Large dataset (Not used due to poor performance)

Method 1: full dataset

Method 2: half real detections

MDR 44%

MDR 42%

ResNet 50x50 3 channel

5-bag is best

ResNet 100x100

3 channel

5-fold is best

Flat (Baseline)
1 channel

5-fold is best

n	л		- 1		
- 11	VI.		а		
-1	11	u	u	┖	ι

ResNet100x100 (120 epochs)

method MDR Standard 19 Five-fold

Five-bag

11 14 ResNet50x50

(35 epochs)

Standard

Five-fold

Five-bag

14

19

18

Flat (Baseline) (75 epochs)

Standard

Five-fold Five-bag

52

46

Best Performance

Stratified K-fold Cross validation

Each fold is guaranteed a consistent proportion of each class

Helps with stability

Was out performed by basic K-fold in my tests, however this method may be better on average across many test runs. Worth more experimentation

Soft f1 loss

Loss function is the "f1 score" without thresholding

Ex: For image i, a prediction 0.6 and a label 1.0 yields +0.6 to True Positives

Recall =
$$\underline{TP}$$
.
 $TP + FN$

Precision =
$$\frac{TP}{TP + FP}$$
.

Ideally this causes training to optimize for f1 score. Was outperformed by Binary Cross Entropy and took much longer to train. Not worth using.

Magnitude

F1 score tends to drop off slightly as magnitude increases

Very low sample size for low magnitudes

Larger magnitude usually means more noise

Earlier I had considered splitting data by magnitude or using magnitude as an input into one of the model's FC layers. 100x100 model seems to handle magnitude better than 50x50, so this might not be worth pursuing anymore

Magnitude

(50x50) plot for comparison

Future

Data augmentation

- Upscale/Downscale
- Adding noise
- Use model to generate labels for psst then train on labeled psst

Expert labeled dataset is ~10,000 examples which is fairly large. Model may benefit from training on more data w/o labelling more by hand.

Notes for reproduction

Datasets

I re-formatted data for easier use

Located on github in /datasets/ https://github.com/ctchang-png/Supernova-Hunters

3pi_20x20_small.mat 3pi_100x100_channels3_formatted.mat 3pi_50x50_channels3_formatted.mat

3pi_20x20_xpert_testset.mat Test set is 3pi_20x20_small

Notes for reproduction

Training/saving

Ensembles are saved to /saved_models/

If satisfied, copy /saved_models/ to /Ensembles/ and name folder {architecture}_{data_method}_MDR{mdr}

Tensorboard was used to watch metrics after training, logs must be cleared then sftp'd from msi to view b/c tensorboard does localhosting

I realize these things are sort of finicky so if you'd like me to change them during the next week or so I will