Amendments to the Claims

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims;

(Original) A method for enhancing corrosion of an electrode in a biocompatible fluid, the method comprising:

placing a primary electrode and a counter electrode in contact with an electroconductive biocompatible fluid to form an electrochemical cell; and applying a time-varying potential, through the electrochemical cell, to the primary

electrode, wherein the potential is characterized by a waveform having a maximum potential effectively anodic to meet or exceed the corrosion potential of the primary electrode, thereby corroding the primary electrode.

- (Original) The method of claim 1, wherein the primary electrode is a metal electrode. 2.
- (Original) The method of claim 2, wherein the waveform has a minimum potential 3. effectively cathodic to be below the value where re-deposition of metal ions on the metal electrode can substantially occur.
- (Original) The method of claim 2, wherein the metal electrode comprises a metal 4. selected from the group consisting of gold, platinum, silver, aluminum, chromium, copper, molybdenum, nickel, palladium, tantalum, titanium, tungsten, and zinc.
- (Original) The method of claim 1, wherein the primary electrode has a thickness between 5. about 100 and 1000 nm.
- (Original) The method of claim 1, wherein the primary electrode comprises a reservoir 6. cap of a microchip device for the release of molecules or exposure of device reservoir contents.

- 7. (Original) The method of claim 1, wherein the primary electrode comprises a polymer.
- 8. (Original) The method of claim 1, wherein the biocompatible fluid is a biological fluid.
- 9. (Original) The method of claim 8, wherein the biological fluid is selected from the group consisting of blood, plasma, lymph, extracellular matrix, interstitial fluid, serum, saliva, cerebrospinal fluid, gastrointestinal fluids, semen, and urine.
- 10. (Original) The method of claim 1, wherein the biocompatible fluid is selected from the group consisting of saline solutions, buffer solutions, pharmaceutical carrier solutions, and fermentation broths.
- il. (Original) The method of claim 1, wherein the biocompatible fluid is in vitro.
- 12. (Original) The method of claim 1, wherein the biocompatible fluid is in vivo in a human or animal.
- 13. (Original) The method of claim 1, wherein the electrochemical cell consists of two electrodes.
- 14. (Original) The method of claim 1, wherein the electrochemical cell further comprises a reference electrode, which is placed in contact with the biocompatible fluid.
- 15. (Original) The method of claim 1, wherein the waveform is selected from the group consisting of square waves, sine waves, triangle waves, sawtooth waves, and combinations thereof.
- 16. (Canceled).

17. (Currently Amended) A microchip device for the release or exposure of reservoir contents comprising:

a substrate having reservoirs containing contents, wherein the reservoirs have reservoir caps which comprise a primary electrode; and

a means controlled-potential instrumentation for applying a time-varying potential at a frequency between about 0.1 and 10.000 Hz to the primary electrode in an amount effective to corrode the primary electrode when placed in contact with an electroconductive fluid, said means instrumentation comprising a counter electrode.

- 18. (Original) The microchip device of claim 17, wherein the time-varying potential is characterized by a waveform having a maximum potential effectively anodic to meet or exceed the corrosion potential of the primary electrode.
- 19. (Original) The microchip device of claim 17, wherein the primary electrode is a metal electrode.
- 20. (Original) The microchip device of claim 19, wherein the waveform has a minimum potential effectively cathodic to be below the value where re-deposition of metal ions on the metal electrode can substantially occur.
- 21. (Original) The microchip device of claim 19, wherein the metal electrode comprises a metal selected from the group consisting of gold, platinum, silver, aluminum, chromium, copper, molybdenum, nickel, palladium, tantalum, titanium, tungsten, and zinc.
- 22. (Original) The microchip device of claim 17, wherein the primary electrode comprises a polymer.
- 23. (Currently Amended) The microchip device of claim 17, wherein the means instrumentation for applying a time-varying potential further comprises a reference electrode.

- 24. (Original) The microchip device of claim 17, wherein the primary electrode has a thickness between about 100 and 1000 nm.
- 25. (Original) The microchip device of claim 17, wherein the reservoir contents comprise a drug, a biosensor, or a combination thereof.
- 26. (Currently Amended) A method of releasing or exposing the reservoir contents of a microchip device at a site, the method comprising:

providing the microchip device of claim 17 at a site a device which comprises

a substrate.

at least two reservoirs in the substrate,

reservoir contents in each of the at least two reservoirs,

at least two reservoir caps, each reservoir cap covering one of the at least two reservoirs and comprising a primary electrode, and

for applying a time-varying potential at a frequency between about 0.1 and 10,000 Hz to the primary electrode;

placing the primary electrode and the counter electrode in contact with an electroconductive fluid to form an electrochemical cell; and

applying a time-varying potential, through the electrochemical cell, to the primary electrode to corrode the primary electrode in an amount effective to disintegrate the reservoir cap and release or expose the reservoir contents.

- 27. (Original) The method of claim 26, wherein the potential is characterized by a waveform having a maximum potential effectively anodic to meet or exceed the corrosion potential of the primary electrode.
- 28. (Original) The method of claim 26, wherein the primary electrode is a metal electrode.

- 29. (Original) The method of claim 28, wherein the waveform has a minimum potential effectively cathodic to be below the value where re-deposition of metal ions on the metal electrode can substantially occur.
- 30. (Original) The method of claim 26, wherein the electroconductive fluid is a biocompatible fluid.
- 31. (Original) The method of claim 30, wherein the electroconductive fluid is a biological fluid.
- 32. (Original) The method of claim 31, wherein the biological fluid is selected from the group consisting of blood, plasma, lymph, extracellular matrix, interstitial fluid, serum, saliva, cerebrospinal fluid, gastrointestinal fluids, semen, and urine.
- 33. (Original) The method of claim 30, wherein the biocompatible fluid is selected from the group consisting of saline solutions, buffer solutions, pharmaceutical carrier solutions, and fermentation broths.
- 34. (Original) The method of claim 26, wherein the electroconductive fluid is in vivo in a human or animal.
- 35. (Previously Presented) A method for enhancing corrosion of an electrode in a biocompatible fluid, the method comprising:

placing a primary electrode and a counter electrode in contact with an electroconductive biocompatible fluid to form an electrochemical cell; and

applying a time-varying potential, at a frequency between about 0.1 and 10,000 Hz, through the electrochemical cell, to the primary electrode,

wherein the potential is characterized by a waveform having a maximum potential effectively anodic to meet or exceed the corrosion potential of the primary electrode, thereby corroding the primary electrode.

AO 1077385.1

- (Previously Presented) The method of claim 35, wherein the time-varying potential is 36. applied at a frequency between about 1 and 100 Hz.
- (Previously Presented) The method of claim 35, wherein the time-varying potential is 37. applied at a frequency between about 1 and 10 Hz.
- (Previously Presented) A method of releasing or exposing the reservoir contents of a 38. microchip device at a site, the method comprising:

providing at a site a microchip device which comprises (i) a substrate having reservoirs containing contents covered by reservoir caps which comprise a primary electrode, and (ii) means for applying a time-varying potential to the primary electrode in an amount effective to corrode the primary electrode when placed in contact with an electroconductive fluid, said means comprising a counter electrode;

placing the primary electrode and the counter electrode in contact with an electroconductive fluid to form an electrochemical cell; and

applying a time-varying potential at a frequency between about 0.1 and 10,000 Hz. through the electrochemical cell, to the primary electrode to corrode the primary electrode in an amount effective to disintegrate the reservoir cap and release or expose the reservoir contents.

- (Previously Presented) The method of claim 38, wherein the time-varying potential is 39. applied at a frequency between about 1 and 100 Hz.
- (Previously Presented) The method of claim 38, wherein the time-varying potential is 40. applied at a frequency between about 1 and 10 Hz.

41. (New) A device for the release or exposure of reservoir contents comprising:

a substrate;

at least two reservoirs in the substrate;
reservoir contents in each of the at least two reservoirs;
at least two reservoir caps, each reservoir cap covering one of the at least two
reservoirs and comprising a primary electrode; and
controlled-potential instrumentation for applying a time-varying potential to the

primary electrode to corrode the primary electrode when placed in contact with an electroconductive fluid, wherein the controlled-potential instrumentation comprises a waveform generator and a potentiostat.