Knihovna pro výpočet různých typů deskriptorů

Projekt z předmětu PV162

Denisa Rudincová, Jan Škvařil

Knihovna pro výpočet různých typů deskriptorů

Kontakt: Michal Kozubek, Vladimír Ulman

Možné programovací jazyky: Bez omezení

Cílem je vytvoření knihovny, která pro daný multidimenzionální obrázek vypočítá sadu deskriptorů. Je potřeba ověřit zda platí, že lze nalézt podskupinu deskriptorů, které jsou si podobné pro konkrétní typ buněk.

Uvažujeme deskriptory textur, segmentačních masek a/nebo temporální (popisují vývoj masky v čase). Vstupem mohou být 2D,3D,2D+t či 3D+t obrazy buněk a jejich segmentací. Výstupem budou vektory čísel, jeden pro každou buňku ve vstupu.

Zadání je vhodné i pro (malou) skupinu spolupracujících studentů.

Osnova

- Motivace
- 2. Implementácia
 - a. Návrh
 - b. Rozloženie práce
 - c. Implementačná stránka
 - d. Knižnica
 - e. Exportér
 - f. Data Explorer
- 3. Reálne využitie
 - a. GUI
 - b. Analýza
- 4. Co dál?
 - a. Rozšíriteľnosť
 - b. Cell Tracking Challenge

Motivace

Deskriptory mohou být velmi užitečné:

- tracking
- fingerprinting
- klasifikace
- detekce outlierů
- pozorování života buňky
- těžké určit, které mohou být užitečné
- výpočet je časově náročný
- možnosť offline analýzy na predpočítaných dátach

Implementácia

contrast: 1003.0380 dissimilarity: 24.9026 homogeneity: 0.0535

ASM: 0.0010 energy: 0.0311 correlation: 0.5716 entropy: 7.2952 max: 0.0029

Slow computation

Fast analysis

Implementačná stránka

- Python package
- knihovna s modulmi
- možnosť importovať a používať
- CI (automatické testy na commit)
- dokumentácia (in progress)

Knihovna deskriptorů

~50 různých deskriptorů

- maskové
- histogramové
- momenty (centrální, hu)
- local binary patterns
- textura
 - o GLCM, Gabor filtry,...
- morfologické
 - o granulometria
- autokorelace, power spektrum, ...

Snadné rozšířit o další deskriptory

Exportér

- predpripravenie dát pre analýzu
- 2 možnosti vstupu (dir / .tiff)
- 2 možnosti výstupu (.json / .pkl)
- spustenie skriptu:

python ./src/DescriptorLibUtils/export.py "./tests/testdata/images"
"./tests/testdata/masks"

- spustí výpočet deskriptorov na všetkých bunkách
- pomalý, ale následná analýza rýchlejšia
 - paralelizácia

VSTUP:

✓ testdata ✓ images ≡ t000.tif ≡ t001.tif ≡ t003.tif ✓ masks ■ man_seg000.tif ≡ man_seg001.tif ≡ man_seg002.tif ≡ man_seg003.tif

VÝSTUP:

Data Explorer

Slouží pro **usnadnění a zrychlení** analýzy vyexportovaných dat Přívětivé programové rozhraní pro práci s adresářovou strukturou

```
from DescriptorLibUtils import DataExplorer

de = DataExplorer("../output/")
```

Id všech buňěk ve snímku 0:

```
In [381]:
    de.GetAllCellsInFrame(0)
Out[381]:
    dict_keys([1, 5, 7, 11, 15, 19, 23, 27, 32, 34])
```

Data Explorer

Časová linka jedné konkrétní buňky:

```
imgs, masks = de.GetCellTimeline(cell_id)
```


Descriptor konkrétní buňky ve snímku 0:

```
de.GetDescriptorsForCell(0,cell_id)["Mask descriptors"]
```

```
'elongation': 0.8187134502923976,
'compactness': 0.48861182997044317,
'circularity': 0.6127187335317562,
'convexity': 0.8929998982325366})
```

Data Explorer

Časová linka descriptoru po celý život buňky

mask_timeline = de.GetCellDescriptorTimeline(cell_id, "Mask descriptors")

Reálne využitie knižnice

GUI

- nástroj na vizualizáciu datasetu a deskriptorov buniek v ňom
- jednoduché zobrazenie dát bez programovania
- Matplot
- ovládanie klávesnicou a myšou

```
Press <h> for help.

Click on a cell in the segmentation image to show details.

keys:

p ... previous dataset/cell frame

n ... next dataset/cell frame

h ... help

t ... shows timeline of a scalar descriptor (works only in scalar descriptor figure)
```

Frame: 1/4

Frame: 4/4

Frame: 4/4

Mask descriptors
Histogram descriptors
Moments
Moments central
Moments Hu
Glcm features
Granulometry
Power spectrum
Autocorrelation
Local binary pattern
Gabor energy

100	-			023
100	1-1	CIL	Ire	-2
(4)	1.1	y.	11.50	9

area	5481
perimeter	277.6639969244288
convex_perimeter	276.8355697996826
major_axis	89.72249474846863
minor_axis	77.8740439161145
bbox_size	7360
elongation	1.15
compactness	0.8933682714718519
circularity	0.8987230592615821
convexity	0.9970164402518068

Analýza

Knihovnu lze použít pro velmi snadnou analýzu různých deskriptorů v čase.

Jako příklad jsme vyzkoušeli analýzu události, kdy se buňka dělí - dochází k mitóze

Dataset DIC-C2DH-HeLa

Analýza - deskriptory masky

0.60

Analýza - textura

Analýza - další příklady

Průměrná hodnota energie odezvy banky gabor filtrů

Co dál?

Rozšíriteľnosť

- pridávanie deskriptorov
- exportér doplniť o možnosť vybrať si exportované deskriptory
- exportér doplnit o flagy
 - výber exportu do JSON/pickle
 - nastavenie rovnakého rozlíšenia exportovaných obrázkov
 - orezávanie hodnôt podľa masky
 - ...
- paralelizácia výpočtov v exportéri
- rozšírenie o 3D, 3D + t
- viac testov
- lepšia dokumentácia
- možnosť inštalácie cez pip z repozitára

Cell Tracking Challenge

- zlepšenie trackovania buniek
- detekcia mitózy (a iných udalostí)
- analýza pomocou vizualizačných nástrojov
- mohol by byť užitočný nástroj pre súťažiacich

CELL TRACKING CHALLENGE

Participation -

Datasets -

Latest Results +

More Details -

News

Welcome

Segmenting and tracking moving cells in time-lapse sequences is a challenging task, required for many applications in both scientific and industrial settings. Properly characterizing how cells change their shapes and move as they interact with their surrounding environment is key to understanding the mechanobiology of cell migration and its multiple implications in both normal tissue development and many diseases.

In this challenge, we objectively compare and evaluate state-of-the-art whole-cell and nucleus segmentation and tracking methods using both real and computer-generated (2D and 3D) time-lapse microscopy videos of cells and nuclei. With over a decade-long history and three detailed analyses of its results published in \nearrow Bioinformatics

2014 Notice Matheda 2017 and Mature Matheda 2000 the Call Tracking Challenge has become a reference in

Zhrnutie

- vytvorenie nástroja na analýzu
- implementácia asi 50 deskriptorov
- GUI nástroj pre jednoduchý prehľad deskriptorov daných buniek
- analýza udalostí v datasetoch

contrast: 1003.0380 dissimilarity: 24.9026 homogeneity: 0.0535 ASM: 0.0010 energy: 0.0311