

Introduction to Deep Learning Final Project

Group 7

2020313223 Kim Sang Jun 2017310869 Lee Jin Mo

Contents

- 1 Introduction & Background
- 2 Methods
- 3 Evaluation & Results
- 4 Challenges
- 5 Conclusion

1 Introduction & Background

Problem Tackled

Fake News Detection

Misinformation spreads ??

faster, farther, deeper, and more widely

Vosoughi et al., 2018

Early Detection

1 Introduction & Background

Previous Challenges

New Approach: Publisher & User Credibility Prediction

Credibility as Supervised Information

Publisher & User Credibility + News Heterogeneous Graph

Structure-Aware Multi-head Attention Network

Attention & CNN Combined Structure

Publisher Credibility Prediction

Attention Module to Predict Credibility

$$Attention(Q, K, K) = Z_h = softmax \left(\frac{QW_h K^T}{\sqrt{d}} \odot (D^p)^{-\frac{1}{2}} A^{pn} (D^n)^{-\frac{1}{2}} \right) K$$

: Publisher Embeddings

: News Embeddings

: Adjacency Matrix

: Credibility Scores _ Unreliable(0) / Uncertain(1) / Reliable(2)

$$p_i(c|\mathcal{G}(V_p, E), \mathcal{P}; \theta_1) = softmax(\tilde{P_i}W_p + b_p)$$

$$\tilde{P} = ELU([Z_1; Z_2; ...; Z_H]W_o) + P$$

: Publishers' Representations

Same Procedure Applied to User Credibility Prediction

User Credibility Prediction

Attention Module to Predict Credibility

$$Attention(Q, K, K) = Z_h = softmax \left(\frac{QW_h K^T}{\sqrt{d}} \odot (D^p)^{-\frac{1}{2}} A^{pn} (D^n)^{-\frac{1}{2}} \right) K$$

: User Embeddings

: News Embeddings

: Adjacency Matrix

: Credibility Scores _ Unreliable(0) / Uncertain(1) / Reliable(2)

$$p_{ij}(c|\mathcal{G}(V_u, E), \mathcal{U}; \theta_2) = softmax(\tilde{R}_{ij}W_r + b_r)$$

$$\widetilde{R_j} = ELU([Z_1; Z_2; \dots; Z_H]W_o) + R_j -$$

: User j's Representations

$$R' = \sum_{k=1}^{K} \alpha_k \tilde{R}_k$$

: K different user's representation who had reposted the same news

Fusion Attention Unit

News Representation + Credibility Prediction

Semantic Difference between Fake and True News

 $\widetilde{\boldsymbol{m}}_{j} = [\widetilde{P}; R'; \widetilde{P} \odot R'; \widetilde{P} - R'] W_{F} + b_{F}$

Captures Differences between Fake and True News From the Diffusion Graph

Fake

UR

Unverified

TR

True

NR

Non-Fake

Combined Cross Entropy Loss

Optimizing Every Tasks Together

Simultaneously Optimize Credibility Prediction & Fake News Detection

- : Objective Function for Publisher Credibility Prediction
- : Objective Function for User Credibility Prediction
- : Objective Function for Fake News Detection

Data Preprocessing

Natural Language Process


```
def clean_str_cut(string, task):
   Tokenization/string cleaning for all datasets except for SST.
   Original taken from https://github.com/yoonkim/CNN_sentence/blob/master/process_data.py
    if task != "weibo":
        string = re.sub(r"[^A-Za-z0-9(),!?#@\'\`]", " ", string)
        string = re.sub(r"\'m", " am", string)
        string = re.sub(r"\'s", " \'s", string)
        string = re.sub(r"\'ve", " have", string)
                                                      def pad_sequence(X, max_len=50):
        string = re.sub(r"n\'t", " not", string)
                                                         X_pad = []
        string = re.sub(r"\'re", " are", string)
                                                         for doc in X:
        string = re.sub(r"\'d", " had", string)
                                                             if len(doc) >= max_len:
                                                                doc = doc[:max_len]
        string = re.sub(r"\'ll", " will", string)
                                                                doc = [0] * (max_len - len(doc)) + doc
                                                            X_pad.append(doc)
                                                         return X_pad
```

	User ID	Publisher ID	News	Class
1	1575	7247	american family association	unverified
2	1407	3585	this week's top story: george wins florida	false
3	2648	7756	clinton hides failing health?	unverified
4	2793	3645	fukushima: highly radioactive water	false

Data Preprocessing

Natural Language Process

	User ID	Publisher ID	News	Class
1	1575	7247	american family association	unverified
2	1407	3585	this week's top story: george wins florida	false
3	2648	7756	clinton hides failing health?	unverified
4	2793	3645	fukushima: highly radioactive water	false

Converted into Embedding Vector Suitable for training


```
def vocab_to_word2vec(fname, vocab):
    """
    Load word2vec from Mikolov
    """
    word_vecs = {}
    model = gensim.models.KeyedVectors.load_word2vec_format(fname, binary=True)
    count_missing = 0
    for word in vocab:
        if model.__contains__(word):
            word_vecs[word] = model[word]
    else:
        #add unknown words by generating random word vectors
        count_missing += 1
        word_vecs[word] = np.random.uniform(-0.25, 0.25, w2v_dim)
        # print(word)

print(str(len(word_vecs) - count_missing)+" words found in word2vec.")
print(str(count_missing)+" words not found, generated by random.")
return word_vecs
```

```
def build_vocab_word2vec(sentences, w2v_path='numberbatch-en.txt'):
    """
    Builds a vocabulary mapping from word to index based on the sentences.
    Returns vocabulary mapping and inverse vocabulary mapping.
    """
    # Build vocabulary
    vocabulary_inv = []
    word_counts = Counter(itertools.chain(*sentences))
    # Mapping from index to word
    vocabulary_inv += [x[0] for x in word_counts.most_common() if x[1] >= 2] #
    # Mapping from word to index
    vocabulary = {x: i for i, x in enumerate(vocabulary_inv)}

    print("embedding_weights generation.....")
    word2vec = vocab_to_word2vec(w2v_path, vocabulary) #
    embedding_weights = build_word_embedding_weights(word2vec, vocabulary_inv)
    return vocabulary, embedding_weights
```


Datasets Overview

Datasets

	# news	# non-fake news(NR)	# fake news (FR)	# unverified news (UR)	# true news (TR)	# users	# retweets
Twitter15	1490	374	370	374	372	276,663	331,612
Twitter16	818	205	205	203	205	173,487	204,820
Weibo	4664	2351	2313	0	0	2,746,818	3,805,656

Evaluation Metrics

F1-score

Cted C			Real	Class		TP -
be cted			True	False		
FN TN		True	TP	FP		F1-8
	Predict	False	FN	TN		T

TP + FN

Fake News Detection Evaluation

Twitter15

SMAN Model proposed from the paper

	Precision	Recall	F1-Score
NR	0.865	0.988	0.922
FR	0.975	0.917	0.945
TR	0.938	0.893	0.915
UR	0.951	0.917	0.933
ACC	0.929		

GLAN State-of-the-art before SMAN

	F1-Score	
NR	0.924	
FR	0.917	
TR	0.852	
UR	0.927	
ACC	0.905	

Fake News Detection Evaluation

Twitter16

SMAN Model proposed from the paper

	Precision	Recall	F1-Score
NR	0.936	0.957	0.946
FR	0.976	0.870	0.920
TR	0.857	0.933	0.894
UR	0.979	0.979	0.979
ACC	0.935		

GLAN State-of-the-art before SMAN

	F1-Score	
NR	0.921	
FR	0.869	
TR	0.847	
UR	0.968	
ACC	0.902	

Fake News Detection Evaluation

----- Weibo

SMAN Model proposed from the paper

	Precision	Recall	F1-Score
NR	0.967	0.936	0.951
FR	0.937	0.967	0.952
ACC		0.951	

GLAN State-of-the-art before SMAN

	F1-Score
NR	0.946
FR	0.945
ACC	0.946

Fake News Detection Evaluation

Accuracy Comparison among Datasets

Credibility Prediction Validity

Ablation Study Result

Models	Twitter15 Accuracy	Twitter16 Accuracy	Weibo Accuracy
SMAN w/ Publisher & User Credibility	0.929	0.935	0.951
SMAN w/o Publisher Credibility	0.887	0.913	0.930
SMAN w/o User Credibility	0.905	0.880	0.938
SMAN w/o Publisher & User Credibility	0.863	0.851	0.911

Early Detection Evaluation

Comparison between Previous Studies

Twitter 15 Twitter 16 Weibo

4 Challenges

Concept of the paper

Several tasks going on simultaneously

Overall Concept of the paper itself was unfamiliar

It was not about only implementing one method to one task, but rather implement many methods to many tasks simultaneously. Therefore, we had to go through previous studies in order to get knowledge about the domain and methodologies for this problem.

4 Challenges

Mathematical Structure

Multi-head Attention Module

It was necessary to understand mathematical structure of the model in order to best explain the whole paper

Multi-head attention was also an unfamiliar model to us at first.

Therefore, we had to re-read the paper several times and conduct additional research about the model and its mathematical formulas.

4 Challenges

Pre-processed Data

Data given were already pre-processed

Data were all already pre-processed before given to us Even the embedded vectors were not able to modify

Basic pre-processing steps were provided, but it was very unfriendly.

Therefore, it was nearly impossible to check out the dataset, and get any insights necessary to understand the performance of the model

5 Conclusion

Key Points Revisiting

Fake News Detection with Publisher & User Credibility Prediction

Introduction to Deep Learning Final Project

Thank You!