Questions de cours

1 - Exercice 39 banque CCINP:

On note ℓ^2 l'ensemble des suites $x=(x_n)_{n\in\mathbb{N}}$ de nombres réels telles que la série $\sum_n x_n^2$ converge.

- a) Démontrer que, pour $x=(x_n)_{n\in\mathbb{N}}\in\ell^2$ et $y=(y_n)_{n\in\mathbb{N}}\in\ell^2$, la série $\sum_{n\in\mathbb{N}}x_ny_n$
- b) Démontrer que ℓ^2 est un sous-espace vectoriel de l'espace vectoriel des suites de nombres réels.

Dans la suite de l'exercice, on pose $(x|y) = \sum_{n=0}^{+\infty} x_n y_n$ et on admet que $(\ |\)$ est un

produit scalaire dans ℓ^2 . On suppose que ℓ^2 est muni de ce produit scalaire et de la norme euclidienne associée, notée $\|\cdot\|$.

c) Soit $p \in \mathbb{N}$. Pour tout $x = (x_n)_{n \in \mathbb{N}} \in \ell^2$, on pose $\varphi(x) = x_p$.

Démontrer que φ est une application linéaire et continue de ℓ^2 dans \mathbb{R} .

- d) On considère l'ensemble F des suites réelles presque nulles c'est-à-dire l'ensemble des suites réelles dont tous les termes sont nuls sauf peut-être un nombre fini de termes. Déterminer F^{\perp} (au sens de $(\cdot|\cdot)$) puis comparer F et $(F^{\perp})^{\perp}$.
 - 2 Exercice 77 banque CCINP:

Soit E un espace euclidien.

a) Soit A un sous-espace vectoriel de E.

Démontrer que $(A^{\perp})^{\perp} = A$.

b) Soient F et G deux sous-espaces vectoriels de E.

Démontrer que $(F+G)^{\perp}=F^{\perp} \cap G^{\perp}$ puis que $(F\cap G)^{\perp}=F^{\perp}+G^{\perp}$.

3 - Exercice 79 banque CCINP:

Soient a et b deux réels tels que a < b.

a) Soit h une fonction continue et positive de [a;b] dans \mathbb{R} .

Démontrer que $\int_a^b h(x) dx = 0 \implies h = 0$. b) Soit E le \mathbb{R} -espace vectoriel des fonctions continues de [a;b] dans \mathbb{R} .

On pose : $\forall (f,g) \in E^2$, $(f|g) = \int_a^b f(t)g(t)dt$.

Démontrer que l'on définit ainsi un produit scalaire sur E.

c) Majorer $\int_{a}^{1} \sqrt{x}e^{-x} dx$ en utilisant l'inégalité de Cauchy-Schwarz.

Exercices

Exercice 1:

Soient $(E, \langle \cdot; \cdot \rangle)$ un espace vectoriel euclidien, $(a, b) \in E^2$ et $u \in \mathcal{L}(E)$.

La question 1 est indépendante des deux autres questions.

1 - Déterminer l'adjoint f^* de $f \in \mathcal{L}(E)$ défini par :

$$\forall x \in E, \ f(x) = \langle a; x \rangle b - \langle b; x \rangle a$$

2 - Montrer que

$$\operatorname{Ker}(u^*) = \operatorname{Im}(u)^{\perp} \text{ et } \operatorname{Im}(u^*) = \operatorname{Ker}(u)^{\perp}$$

puis en déduire que $rg(u) = rg(u^*)$.

3 - Montrer que $\operatorname{Ker}(u) = \operatorname{Ker}(u^* \circ u)$ puis que $\operatorname{Im}(u^*) = \operatorname{Im}(u^* \circ u)$

Exercice 2:

Caractériser géométriquement l'endomorphisme f de \mathbb{R}^3 dont la matrice dans la base canonique est

$$A = \frac{1}{3} \begin{pmatrix} 2 & -1 & 2\\ 2 & 2 & -1\\ -1 & 2 & 2 \end{pmatrix}$$

Exercice 3:

Justifier que la matrice

$$A = \begin{pmatrix} 1 & -2 & -2 \\ -2 & 1 & -2 \\ -2 & -2 & 1 \end{pmatrix}$$

est diagonalisable, et trouver $P \in \mathcal{O}_3(\mathbb{R})$ tel que $P^{\mathsf{T}}AP$ soit diagonale.

Soient $m \in \mathbb{N} \setminus \{0, 1\}$ et $A \in \mathcal{M}_m(\mathbb{R})$. On dit que A est de type n lorsque $A^{\mathsf{T}} = A^n$.

- 1 Quelles sont les matrices de type 1? Donner une matrice de type -1 non diagonale.
- 2 Pour $x \in \mathbb{R}$, on pose

$$N(x) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & \cos(x) & -\sin(x) \\ 0 & \sin(x) & \cos(x) \end{pmatrix}$$

- a) Montrer que pour tout $k \in \mathbb{N}^*$, $N^k(x) = N(kx)$.
- b) Soit $n \in \mathbb{N}^*$. Pour quels x la matrice N(x) est-elle de type n?
- 3 Dans toute cette question, on suppose m > 3, $n \in \mathbb{N}^*$ et A de type n et on pose $B = A^{n+1}$.
 - a) Montrer que $A^{n^2} = A$ et $B^n = B$.
 - b) Montrer que B est symétrique. Quelles sont les valeurs propres possibles pour B?
 - c) Montrer que -1 n'est pas valeur propre de B.
 - d) Montrer que B est la matrice d'un projecteur orthogonal.

Exercice 5:

Soient $(E, \langle \cdot; \cdot \rangle)$ un espace euclidien et u un endomorphisme de E.

- 1 Montrer que les assertions suivantes sont équivalentes :
 - i) Pour tout $x \in E$, $\langle u(x); x \rangle = 0$.
 - ii) $u^* = -u$ (on dit que u est antisymétrique).
 - iii) La matrice de u dans une base orthonormée est antisymétrique.
- 2 Montrer que le spectre d'un endomorphisme antisymétrique est soir \emptyset soit $\{0\}$.
- 3 En déduire qu'un endomorphisme antisymétrique non nul n'est jamais diagonalisable.

Exercice 6:

Soit $(E, \langle \cdot; \cdot \rangle)$ un espace euclidien.

- 1 Montrer que si u et v sont deux vecteur unitaires de E, alors $\langle u+v; u-v \rangle = 0$.
- 2 Soit f un endomorphisme de E conservant l'orthogonalité (c'est-à-dire que si deux vecteurs sont orthogonaux, alors leurs images par f sont orthogonales).
 - a) Montrer que si u et v sont unitaires, alors ||f(u)|| = ||f(v)||.
 - b) Montrer qu'il existe $k \in \mathbb{R}$ tel que pour tout $x \in E$, ||f(x)|| = k ||x||.