$\operatorname{MAE5763}$ - Modelos Lineares Generalizados - Resolução da Lista 1

Guilherme Marthe - 8661962

9/21/2020

Exercício 1

em progresso

Exercício 2

em progresso

Exercício 3

 $em\ progresso$

Exercício 4

em progresso

Exercício 5

 $em\ progresso$

Exercício 6

A seguir iremos analisar a base **fuel2001.txt**. Conforme o enunciado, são descritas as seguintes variáveis referentes aos 50 estados norte-americanos mais o Distrito de Columbia no ano de 2001:

- i) UF, unidade da federação
- ii) Drivers, número de motoristas licenciados
- iii) FuelC, total de gasolina vendida (em mil galões)
- iv) Income, renda per capita em 2000 (em mil USD)
- v) Miles, total de milhas em estradas federais
- vi) MPC, milhas per capita percorridas
- vii) Pop, população >= 16 anos
- viii) Tax, taxa da gasolina (em cents por galão)

Abaixo mostro as 6 primeiras linhas da base.

State	Drivers	FuelC	Income	Miles	MPC	Pop	Tax
AL	3559897	2382507	23471	94440	12737.00	3451586	18.0
AK	472211	235400	30064	13628	7639.16	457728	8.0
AZ	3550367	2428430	25578	55245	9411.55	3907526	18.0
AR	1961883	1358174	22257	98132	11268.40	2072622	21.7
CA	21623793	14691753	32275	168771	8923.89	25599275	18.0
CO	3287922	2048664	32949	85854	9722.73	3322455	22.0

Conforme sugerido, realizaremos as transformações Fuel = 1000 Fuel C/Pop e Dlic = 1000 Drivers/Pop para possibilitar a comparação entre estados com diferentes populações. Em seguida criamos a variável lMiles = $\log(\text{Miles})$.

Com essas transformações, partimos para uma análise descritiva da base, antes de partirmos para a modelagem.

Análise univariada

Primeiramente, a partir de algumas estatísticas descritivas de cada uma das variáveis estudadas que mostro abaixo, podemos postular algumas carcterísticas das variáveis:

- a variável fuel mostra uma leve assimetria á esquerda uma vez que sua média é menor que a mediana
- a variável income mostra uma assimetria à direita uma vez que sua média é maior que a mediana

variável	média	desvio padrão	quartil 1	mediana	quartil 3
dlic	904	73	864	909	943
fuel	613	89	575	626	667
income	28404	4452	25323	27871	31208
lmiles	11	1	11	11	12
tax	20	5	18	20	23

Neste exercício, a variável fuel é a variável resposta. Por isso à inspecionaremos primeiro. o gráfico abaixo mostra a densidade estimada dela. Podemos ver que ela possui uma tendência gaussiana, apesar de possuir caudas ligeiramente pesadas.

plot(density(mdata\$fuel), xlab="Fuel", ylab="Densidade", main="Densidade estimada de Fuel")

Densidade estimada de Fuel

Abaixo mostramos os boxplots comum (criado através das estatísticas usuais como mediana e quartis) e robusto para a variável fuel. No boxplot comum estão 3 pontos que poderiam ser considerados extremos á esquerda, sendo mais baixo que o esperado para essa variável, e a extremo à direita. Com o boxplot robusto os pontos extremos à esquerda não são tão evidenciados, porém à direita um ponto novo aparece.

```
par(mfrow=c(2, 1))
boxplot(mdata$fuel, horizontal = T, main='Fuel - boxplot comum')
adjbox(mdata$fuel, horizontal = T, main='Fuel - boxplot robusto')
```

Fuel - boxplot comum

Fuel - boxplot robusto

Por completude, mostro as densidades empiricas das variáveis explicativas do estudo. Como sob a construção de modelos elas são consideradas fixas, suas distribuições não são importantes para o ajuste de modelos de regressão linear múltipla.

Motoristas/pop

Milhas de estradas

Renda per capita

Imposto na Gasolina

Análise bivariada

```
panel.cor <- function(x, y, ...)
{
par(usr = c(0, 1, 0, 1))
txt <- as.character(format(cor(x, y), digits=2))
text(0.5, 0.5, txt, cex = 1.57)
}
pairs(mdata, pch=16,cex=0.6, lower.panel = panel.cor)</pre>
```


Exercício 7

em progresso