Markov Chains and Unemployment

Jesse Perla University of British Columbia January 12, 2018

1 Markov Chains

A model of a stochastic process with discrete number of states.

1.1 Random Variable and Mathematical Expectation

Notation for discrete states:

- n = 1, ..., N represents for possible "states of the world" (e.g. individual unemployed, employed,...)
- $\pi_n = \mathbb{P}$ (state of the world is n) $\pi_n \geq 0, \sum_{n=1}^N \pi_n = 1$, i.e. world must be in one of the states Stack as a vector: $\pi \equiv \begin{bmatrix} \pi_1 & \dots & \pi_N \end{bmatrix}$
- Random variable $Y \in \{y_1, \dots y_N\}$
- • Values mapping states of the world for r.v. Y: $y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{bmatrix}$

e.g. If event n is unemployed, then income if unemployed is y_n

- $\mathbb{E}[Y] = \sum_{n=1}^{N} \mathbb{P}(Y = y_n) y_n = \sum_{n=1}^{N} \pi_n y_n = \pi \cdot y$ (i.e., inner product)
 - i.e. weight the realizations with the probabilities

• e.g., if the probability of unemployment is $\pi_1 = 0.1$, income from unemployment insurance is $y_1 = 15,000$; probability of employment is $\pi_2 = 0.9$, income from employment is $y_2 = 40,000$. Then expected income (or average across states of world):

$$\mathbb{E}[Y] = (0.1 \times 15,000) + (0.9 \times 40,000)$$

- We could use this to find an individuals expected income at some point in the future. Alternatively, we can use this to find averages for a continuum of population. A step towards aggregation.
- e.g., if 10 % of population is unemployed at \$15,000 and 90 % of population is employed at \$40,000. Then the average income is $\mathbb{E}[Y]$

1.2 Transitions

For example, Let ϕ = probability to become employed. Let State $1 \leftrightarrow E$, State $2 \leftrightarrow U$

Figure 1: Markov Chain

Transition Matrix:

$$P = \begin{cases} state_{1,t+1} & state_{2,t+1} \\ state_{1,t} \begin{pmatrix} 1 - \alpha & \alpha \\ \phi & 1 - \phi \end{pmatrix} \end{cases}$$

$$(1)$$

Let π_t be the probability mass function (pmf) of a random variable of an agent's employment status at time t. This is a probability mass function (pmf) since the possible events is discrete.

- If employed at time 0, $\pi_0 = \begin{bmatrix} 1 & 0 \end{bmatrix}$
- If 50% chance of employment at time 3, $\pi_3 = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \end{bmatrix}$

1.3 Evolution of Probability Distribution

Find the evolution of the probability mass function for the random variable with the transition matrix P. A property of markov chains:

$$\pi_{t+1} = \pi_t \cdot P \tag{2}$$

Careful with the order of the matrix product!

<u>Iterate forward:</u>

$$\pi_{t+j} = \pi_t \cdot P^j \tag{3}$$

Example:

- Started employed at t=0, i.e. $\pi_0=\begin{bmatrix} 1 & 0 \end{bmatrix}$
- Probability of unemployment/employment at t = 1:

$$\pi_1 = \pi_0 \cdot P = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} 1 - \alpha & \alpha \\ \phi & 1 - \phi \end{bmatrix} = \begin{bmatrix} 1 - \alpha & \alpha \end{bmatrix}$$
 (4)

At time 2:

$$\pi_2 = \pi_1 \cdot P \tag{5}$$

$$= \begin{bmatrix} 1 - \alpha & \alpha \end{bmatrix} \cdot \begin{bmatrix} 1 - \alpha & \alpha \\ \phi & 1 - \phi \end{bmatrix} \tag{6}$$

$$= \begin{bmatrix} (1-\alpha)^2 + \alpha\phi \\ (1-\alpha)\alpha + \alpha(1-\phi) \end{bmatrix}' \tag{7}$$

Interpret:

$$= \begin{bmatrix} \mathbb{P}(E \to E, E \to E) + \mathbb{P}(E \to U, U \to E) \\ \mathbb{P}(E \to E, E \to U) + \mathbb{P}(E \to U, U \to U) \end{bmatrix}$$
(8)

Iterating Forward:

$$\pi_{t+j} = \pi_t \cdot \underbrace{P \cdot P \dots P}_{\text{j times}} = \pi_t \cdot P^j \tag{9}$$

Stationarity and asymptotics. One possibility:

$$\pi_{\infty} = \lim_{j \to \infty} \pi_{t+j} = \lim_{j \to \infty} \pi_t \cdot P^j \tag{10}$$

Another is to find a π_{∞} which doesn't change, i.e.

$$\pi_{\infty} = \pi_{\infty} P \tag{11}$$

Questions:

- Does a unique limit exist? Is it independent of π_t ?
- Is there an absorbing state? (e.g., all end up unemployed forever)
- These answers depend on P.
- In some cases, we will refer to π_{∞} as the stationary distribution.

2 Example

2.1 Non-Degenerate Stationary Distribution

What if:

$$P = \begin{bmatrix} 1 - \alpha & \alpha \\ \phi & 1 - \phi \end{bmatrix}, \ 0 < \alpha < 1, \ 0 < \phi < 1$$
 (12)

Definition of stationary random variable, π_{∞} :

$$\pi_{\infty} = \pi_{\infty} \cdot P \tag{13}$$

- i.e. It's the R.V. associated with P such that it doesn't change between periods.

Remark: In linear algebra, the <u>left</u> eigenvector associated with the unit eigenvalue.

To find π_{∞} :

- Use software to find the left eigenvector, or
- Solve system for simple examples:

Let $\bar{\pi} = \text{prob of being employed}; \ \pi_{\infty} = \begin{bmatrix} \bar{\pi} & 1 - \bar{\pi} \end{bmatrix}$.

Then:

$$\begin{bmatrix} \bar{\pi} & 1 - \bar{\pi} \end{bmatrix} = \begin{bmatrix} \bar{\pi} & 1 - \bar{\pi} \end{bmatrix} \cdot \begin{bmatrix} 1 - \alpha & \alpha \\ \phi & 1 - \phi \end{bmatrix}$$
 (14)

$$\Rightarrow \begin{bmatrix} \bar{\pi} \\ 1 - \bar{\pi} \end{bmatrix}' = \begin{bmatrix} \bar{\pi}(1 - \alpha) + (1 - \bar{\pi})\phi \\ \bar{\pi} \cdot \alpha + (1 - \bar{\pi})(1 - \phi) \end{bmatrix}' \leftrightarrow \text{ equation } 1 \\ \leftrightarrow \text{ equation } 2$$
 (15)

1st Equation:

$$\bar{\pi} = (1 - \alpha)\bar{\pi} - \phi\bar{\pi} + \phi \tag{16}$$

$$\Rightarrow (1 - (1 - \alpha) + \phi)\bar{\pi} = \phi \tag{17}$$

$$\Rightarrow \bar{\pi} = \frac{\phi}{\alpha + \phi} \tag{18}$$

$$\Rightarrow \bar{\pi} = \frac{\phi}{\alpha + \phi}$$

$$\Rightarrow \pi_{\infty} = \begin{bmatrix} \frac{\phi}{\alpha + \phi} \\ \frac{\alpha}{\alpha + \phi} \end{bmatrix}'$$
(18)

2nd Equation: would find identical solution. (luckily, since there is only 1 variable and 2 equations)

Example: Unemployment

Assume:
$$P = \begin{bmatrix} 1 - \alpha & \alpha \\ \phi & 1 - \phi \end{bmatrix} \leftrightarrow E \leftrightarrow U$$

Invariant Distribution (i.e. "long run")

$$\bar{\pi} = \mathbb{P}(E), 1 - \bar{\pi} = \mathbb{P}(U)$$
 (20)

Solves:

$$\begin{bmatrix} \bar{\pi} & 1 - \bar{\pi} \end{bmatrix} \begin{bmatrix} 1 - \alpha & \alpha \\ \phi & 1 - \phi \end{bmatrix} = \begin{bmatrix} \bar{\pi} & 1 - \bar{\pi} \end{bmatrix}$$
 (21)

Equation:

$$\bar{\pi}(1-\alpha) + \phi(1-\bar{\pi}) = \bar{\pi} \tag{22}$$

$$\Rightarrow \bar{\pi} = \frac{\phi}{\alpha + \phi} \tag{23}$$

$$1 - \bar{\pi} = \frac{\alpha}{\alpha + \phi} \tag{24}$$

Dividing top and bottom by $\phi \alpha$:

$$1 - \bar{\pi} = \frac{1/\phi}{1/\phi + 1/\alpha} \tag{25}$$

What is the average unemployment spell?

- In each period an unemployed person gets a job with probability $1 - \phi$. Otherwise, stays unemployed. - Let N be the random variable "length of time it takes to find a job". N=1

Figure 2: Employment Chain

means 1 person.

- Let
$$p_j = \mathbb{P}(N = j)$$
.

Then:

$$p_1 = \phi,$$
 (success) (26)

$$p_2 = \phi(1 - \phi), \text{ (fail, success)}$$
 (27)

$$p_3 = \phi(1 - \phi)^2$$
, (fail, fail, success) (28)

$$p_j = \phi(1 - \phi)^{j-1} \tag{29}$$

$$p_3 = \phi(1 - \phi)^2, \text{ (fail, fail, success)}$$

$$p_j = \phi(1 - \phi)^{j-1}$$

$$\Rightarrow \sum_{j=1}^{\infty} p_j = \phi \sum_{j=1}^{\infty} (1 - \phi)^{j-1} = \phi \sum_{j=0}^{\infty} (1 - \phi)^j = \frac{\phi}{1 - (1 - \phi)}$$

i.e., a proper probability distribution.

Another Geometric Series Result:

$$\sum_{j=1}^{\infty} j a^{j-1} = \frac{1}{(1-a)^2} \text{ for } |a| < 1, \text{ (can derive from } Z\text{-transforms)}$$
 (30)

Back to the question:

$$p_j = \mathbb{P}(N = j) = \phi(1 - \phi)^{j-1}$$
 (31)

$$\mathbb{E}[N] = \text{expected / mean time to find a job} \tag{32}$$

$$= \sum_{j=1}^{\infty} j \cdot p_j = \phi \sum_{j=1}^{\infty} j(1-\phi)^{j-1} = \phi \cdot \frac{1}{(1-(1-\phi))^2} = \frac{1}{\phi}$$
 (33)

- So the average # of periods in unemployment = $\frac{1}{\phi}.$
- More generally, this is the mean waiting time for a geometric distribution, i.e., if arrivals happen with probability a, then the expected wait time $=\frac{1}{a}$.

Summarizing Formula:

- $\bar{\pi}$ =proportion employed, $1 - \bar{\pi}$ = proportion unemployed.

$$-\phi = \frac{\phi}{\alpha + \phi}, \ 1 - \bar{\pi} = \frac{\alpha}{\alpha + \phi} = \frac{1/\phi}{1/\phi + 1/\alpha}.$$

- $\mathbb{E}\left[\# \text{ of periods to become employed} \mid \text{start unemployed}\right] = \frac{1}{\phi}$
- $\mathbb{E}\left[\# \text{ of periods to become unemployed} \mid \text{start employed}\right] = \frac{1}{\alpha}$

2.2.1 Example with Data (approx. 2007 US Data)

- Average unemployment duration = 16.8 weeks = 3.87 months.
- Civilian unemployment: 4.7%
- Employment / population: 63%
- Labour force / population: 66%
- Civilian population: 231 million
- Civilian labour force: 153 million = 231 \times 66% (not institutional military, etc.)
- Unemployment: 7 million = 153 million × 4.7%

Stationary Distribution:

$$1 - \bar{\pi} = 0.47 \text{ (proportion unemployed)} \tag{34}$$

$$\frac{1}{\phi} = 3.87 \text{ (average unemployment length, in months)}$$
 (35)

Equation for stationary distribution:

$$1 - \bar{\pi} = \frac{1/\phi}{1 + \phi + 1/\alpha} \tag{36}$$

$$\Rightarrow 0.047 = \frac{3.87}{3.87 + 1/\alpha} \tag{37}$$

Solve for $\frac{1}{\alpha}$:

$$\frac{1}{\alpha} = 78.8\tag{38}$$

i.e., average job length is 78 months.

So, the transition matrix is:

$$P = \begin{bmatrix} 1 - \frac{1}{78.8} & \frac{1}{78.8} \\ \frac{1}{3.87} & 1 - \frac{1}{3.87} \end{bmatrix} \approx \begin{bmatrix} 0.987 & 0.013 \\ 0.258 & 0.742 \end{bmatrix}$$
 (39)

Stationary:

$$\pi_{\infty} = \begin{bmatrix} 0.953 & 0.047 \end{bmatrix} \tag{40}$$

Question

- (a) Total Jobs Destroyed/Month: 0.013×146 million ≈ 1.85 million
- (b) If employed worker today, what is the probability to be employed in j months?

$$\mathbb{P}\left(E \text{ at } j\right) = \underbrace{\begin{bmatrix}1 & 0\end{bmatrix}}_{\text{need employment}} \cdot \underbrace{\begin{bmatrix}1 & 0\end{bmatrix}}_{\pi_0 = E} P^j\right)' \tag{41}$$

What about as $j \to \infty$? $\mathbb{P}(E \text{ at } j \to \infty) = \bar{\pi}$

(c) The economy is away from its stationary equilibrium: $\pi_0 \neq \pi_{\infty}$.

What is the predicted sequence of unemployment rates?

$$\pi_j = \begin{bmatrix} 0 & 1 \end{bmatrix} \cdot \left[\pi_0 P^j \right]'$$

Appendix A Degenerate Markov Chains

A.1 Example: Absorbing State of Unemployment

Let
$$P = \begin{bmatrix} 1 - \alpha & \alpha \\ 0 & 1 \end{bmatrix}$$
,

i.e. α chance to stay employed, and in unemployment never get a job ("absorbing"). Let $\pi_0 = \begin{bmatrix} a & 1-a \end{bmatrix}$

$$\bullet \ \pi_1 = \pi_0 P \tag{A.1}$$

$$= \begin{bmatrix} a & 1-a \end{bmatrix} \begin{bmatrix} 1-\alpha & \alpha \\ 0 & 1 \end{bmatrix} \tag{A.2}$$

$$= \begin{bmatrix} \alpha(1-a) \\ \alpha a + 1 - a \end{bmatrix}' \tag{A.3}$$

$$= \begin{bmatrix} \text{kept job} \\ \text{lost job or never had one} \end{bmatrix}' \tag{A.4}$$

$$\bullet \ \pi_2 = \pi_1 P \tag{A.5}$$

$$= \begin{bmatrix} \alpha a & (1-\alpha)a + (1-a) \end{bmatrix} \begin{bmatrix} \alpha & 1-\alpha \\ 0 & 1 \end{bmatrix}$$
(A.6)

$$= \begin{bmatrix} \alpha^2 a \\ (1-\alpha) \cdot \alpha a + (1-\alpha)a + (1-a) \end{bmatrix}'$$
(A.7)

Note:

- $\alpha^2 a$ represents for kept job twice
- Nominator and denominator must sum to 1

Example continued

$$\pi_j = \pi_0 \cdot P^j \tag{A.8}$$

$$= \begin{bmatrix} \alpha^j \cdot a \\ 1 - \alpha^j \cdot a \end{bmatrix} \tag{A.9}$$

$$\lim_{j \to \infty} \pi_j = \begin{bmatrix} 0 & 1 \end{bmatrix}, \text{ (i.e. all end up unemployed, independent of } \pi_0)$$
 (A.10)

or:
$$P \cdot P = \begin{bmatrix} \alpha & 1 - \alpha \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \alpha & 1 - \alpha \\ 0 & 1 \end{bmatrix}$$
 (A.11)

$$= \begin{bmatrix} \alpha^2 & \alpha(1-\alpha) + (1-\alpha) \\ 0 & 1 \end{bmatrix}$$
 (A.12)

$$= \begin{bmatrix} \alpha^2 & 1 - \alpha^2 \\ 0 & 1 \end{bmatrix} \tag{A.13}$$

Generalize:

$$P^{j} = \begin{bmatrix} \alpha^{j} & 1 - \alpha^{j} \\ 0 & 1 \end{bmatrix} \tag{A.14}$$

$$\lim_{j \to \infty} P^j = \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix} \tag{A.15}$$

$$\pi_{\infty} = \lim_{j \to \infty} \pi_0 P^j = \begin{bmatrix} \alpha & 1 - \alpha \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}$$
(A.16)

$$=\begin{bmatrix}0&1\end{bmatrix}$$
, (i.e. all unemployed independent of π_0) (A.17)

Alternatively:

$$\pi_{\infty} = \begin{bmatrix} \bar{\pi} & 1 - \bar{\pi} \end{bmatrix} \tag{A.18}$$

$$\Rightarrow \pi_{\infty} = \pi_{\infty} \cdot P \tag{A.19}$$

$$= \begin{bmatrix} \bar{\pi} & 1 - \bar{\pi} \end{bmatrix} \begin{bmatrix} \alpha & 1 - \alpha \\ 0 & 1 \end{bmatrix}$$
 (A.20)

Equation:

$$\bar{\pi} = \alpha \cdot \bar{\pi} + 0 \tag{A.21}$$

If $\alpha < 1$, then this

$$\Rightarrow \bar{\pi} = 0, \Rightarrow \pi_{\infty} = \begin{bmatrix} 0 & 1 \end{bmatrix} \tag{A.22}$$

A.2 Example: No Ergodic Distribution

$$P = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \text{ (i.e., switch from whatever you had)}$$
 (A.23)

$$P^{2} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \tag{A.24}$$

$$P^{3} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \tag{A.25}$$

$$\dots P^{j} = \begin{cases} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} & \text{if j even} \\ \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} & \text{if j odd} \end{cases}$$
(A.26)

(A.27)

 $\lim_{j\to\infty} P^j$ doesn't exist in general.

Alternatively:

$$\begin{bmatrix} a & 1-a \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} a & 1-a \end{bmatrix}$$
 (A.28)

Equations:

$$\begin{bmatrix} 1 - a \\ a \end{bmatrix}' = \begin{bmatrix} a \\ 1 - a \end{bmatrix}' \Rightarrow \pi_{\infty} = \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}'$$
(A.29)

i.e. must start out with 50/50% probability.