길목탐지 스마트 지팡이

1반 2조

2016 김ㅇㅇ

2016 정ㅇㅇ

2016 정지민

2016 장ㅇㅇ

목차

- 주제선정
- 설계
- 제작과정
- ●결과

주제선정

스마트 지팡이 관련 국내 특허

□ 翻 [1] 시각 장애인용 초음파 센서와, 진동모터가 부착된 지팡이(a blind man sensor stick)

IPC: A61H 3/06 A45B 3/00

출원번호: 2020060028117

등록번호:

공개번호: 2020080000484

대리인: 김영지

출원인 : 김경식

출원일자: 2006.10.09

등록일자:

공개일자: 2008.04.16

발명자: 김경식

□ 3 [10] 시각장애인용 탈·부착식 스마트 기기 초음파센서 손잡이(Removable smart devices for ultrasonic sensors handle blind)

IPC: A61H 3/06 G01S 15/08

출원번호: 1020150094459

등록번호:

공개번호: 1020170004295

대리인:

출원인 : 김경진

출원일자: 2015.07.02

등록일자:

공개일자: 2017.01.11

발명자: 김경진

□ ■ [11] 높낮이 측정이 가능한 시각장애인용 지팡이 및 이를 이용한 안내방법(Cane for the blind)

IPC: A61H 3/06 A45B 3/08

출원번호: 1020140003288

등록번호: 1014881320000

공개번호:

대리인 : 한복연

출원인 : 전북대학교산학협력단

출원일자: 2014.01.10 등록일자: 2015.01.23

공개일자:

발명자: 김정무 김보경 박찬희 고승계 한용신 심성민 이연수

- 초음파 센서를 통해 근처에 장애물이 있을 시에 진동을 발생시켜 사용자가 즉각 감지할 수 있도록 도와준다.
- 지팡이에 GPS모듈과 사물을 탐지하는 초음파 모듈,사물인식용 카메라부와 그 흔들림을 제어하 는 자이로스코프를 구비.
- 거리감지부(적외선 센서), 각도감지부 (기울기 센서) 이를 통해 사용자에게 알려주는 경보부(경보음 및 진동)로 구성되어져 있다.

스마트 지팡이 관련 해외 특허

[알에프아이디 태그를 인지하기 위한 시각적으로 장애가 있는 것을 위한 전자 회초리]

(13) 구분	A2 국가별 특허문헌코드		
(65) 공개번호/일자	2011081347 (2011.07.07)		
(21) 출원번호/일자	PCT/KR2010/009215 (2010, 12, 22)	공개전문土	
(71) 출원인	PUSUNG RECYCLING CO., LTD. (주) 부성 리싸 이클링 KIM, Sung Jae 김성제		
(30) 우선권번호(Priority No.)	KR 10-2009-0133528 2009.12.30		
(51) IPC(Int. Cl.)	A61H 3/06 (2006.01.01) A61H 3/02 (2006.01.01)		
(*) CPC	A45B3/00 A45B9/00 A45B19/08 A45B2009/007 A61H3/061 A61H3/068 A61H2201/0161		
(86) 국제출원번호(PCT No.)			

- 이는 RFID 태그가 내장된 점자 블록을 감지하는 판독기가 장착 되어있는 보행지팡이의 특허이 다.

기존 스마트 지팡이

- 이전에 제작한 지팡이는 짧은 탐지거리를 보완하기 위해 라이다 센서를 사용하였고 측면 턱 감지 기능까지 추가하였다.
- 하지만 측면 골목의 대해서는 감 지하지 못하였고, 아두이노 메가보 드의 크기가 상당히 크고 거추장스 러웠다.

설계목표 - 개선된 스마트 지팡이

- 주위의 장애물을 감지하여 위험을 알려주는 기존의 기능을 유지하고, 나아가 아무이노메가프로 사용자가 원할 때 <u>길목의 유무와 방향을 미니보드</u> 알려주는 지팡이를 만들 것이다.

목표 기능 및 성능

	기능	탐지범위
	전방 장애물 탐지	전방 0.1 ~ 5 m
	전방 턱 탐지	센서로부터 0.2m이상
		센서로부터 0.2m이상
측면 턱	측면 턱 탐지	탐지 각도 30° ~ 45°, 탐지범위 25cm
		센서로부터 0.2m이상
	점자 블록 탐지	탐지 각도 30° ~ 45°, 탐지범위 25cm
		탐지 각도 30°~45°, 탐지범위 25cm
	길목 탐지	$r \ge 500$, $g \ge 500$, $b \le 100$
		좌, 우측 각각 30°~120°, 탐지범위 0.1~12m

라이다 센서를 이용한 측면 턱 탐지

- 센서 2개를 각각 다른 각도를 주어 장착하여

높이차를 구한다.

$$h_1 = l_1 cos\theta_1$$
$$h_2 = l_2 cos\theta_2$$

$$h = h_2 - h_1$$

전방 장애물 탐지

- 라이다 센서를 이용해 전방 장애물까지의 거리를 측정하여 사용자에게 알림.

전방 턱 탐지

- 초음파 센서를 이용해 **지면까지의 거리**를 측정하여 사용자에게 알림.

초음파 센서 비교

	센서	크기	측정거리	가격 (₩)	비고
1		28 * 41mm	0.2 ~ 6 m	11,000	방수 가능
2	HY-SDE05 120203	20.7 * 45.6 * 15.2 mm	0.02 ~ 4.5 m	1,980	
3	SRO1	45 * 20 * 15mm	0.02 ~ 4m	1,100	

선정 이유

- 전방 턱 감지에 라이다 센서와 같이 탐지범위가 넓을 필요가 없다.
- 주어진 예산안에서 라이다 센서가 많은 비중을 차지하기 때문에 가격과 측정범위를 고려하여 가장 적합한 ③를 선정하였다.

점자블록 탐지

- 지팡이와 바닥에서 일정거리 떨어 진 곳에 장착.

- 보도 블록의 RGB값을 만족하는 색 상이 감지되면 사용자에게 알림.

컬러 센서 비교

	센서	크기	측정거리	가격(₩)
1	SCL SDA SCL SDA SUA	15.25 * 15.25 * 2.16 mm	1cm 내외	14,300
2		33.2 * 33.2 * 25 mm	3cm 내외	5,470
3	TCS34725 ORGB Sensor O	20.44 * 20.28 mm	1cm 내외	14,300

선정 이유

- 경제성을 고려했을 때는 ②가 가장 저렴하지만 지팡이에 장착하기에는 형상이 부적합하다.
- 지팡이 장착을 위해서는 크기가 작고 얇은 형상인 ①가 가장 적합하다 판단해 선정하였다.

알림 배치

- 전방을 주시하는 라이다 센서로 측정한 거리에 따라 진동 과 부저로 알림.
- 전방에 장애물이 감지되면 거리에 따라 음높이와 진동세기가 달라진다.
- 전방의 깊이가 20cm 보다 커지면 부저를 통해 알림.
- 양쪽 측면에 장애물이 감지되면 진동으로 알림.

길목 감지

- 서보 모터가 회전함에 따라 측 정한 거리 값을 그래프로 표현 했다.
- 길목이 존재할 때 그래프가 급 상승, 급감 하는 거리 값의 차이 를 이용하여 길목을 판별한다.

서보 모터 비교

	센서	크기	회전각	가격(₩)
1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	22.2 * 11.8 * 31 mm	0 ~ 180°	5,500
2		23.2 * 12.5 * 22 mm	120°	6,930
3	© 270° A DNS-10000-A	22.9 * 12.2 * 32.5 mm	0 ~ 270°	8,600

선정 이유

- ①은 구현하고자 하는 기능을 수행하기에는 회전각이 작다.
- ②도 마찬가지로 회전각이 작아 부적합하다.
- ③은 기능을 구현하기에 회전각이 적합하고, 각도 제어가 가능하다.
- 위 사항들을 고려해 ③를 최종 선정하였다.

길목 감지 플로우 차트

초기 구상도

사용 부품 목록

- AAA 건전지 4개 직렬
- 라이다 센서 5개
- 서보 모터 1개
- 초음파 센서 1개
- 색상 감지 센서 1개
- 진동 모터 3개
- 부저 모듈 1개
- 아두이노 메가 프로 미니 보드

	SIG	NAL	Vcc	GND
컬러 센서	SCL – D21(SCL)	SDA – D20(SDA)		
초음파 센서	Trig – D3	Echo – D2		
진동 모터 L	Out	– D4		
진동 모터 R	Out	– D5		
진동 모터 F	Out	– D6		
부저	In/Ou	t – D7		
라이다 센서 R1 (45)	RX – D10 TX – D11		5V	GND
라이다 센서 R2 (30)	RX – D12 TX – D13			
라이다 센서 L1 (45)	RX – 50 TX – 51			
라이다 센서 L2 (30)	RX - 52 TX – 53			
라이다 센서 F	RX – A8 TX – A9			
서보 모터	PWM – D8 AF – A7			
버튼 모듈	In –	- D9		

초기 배선표

제작과정

모델링 수정

- 이전의 하우징들을 바뀐 부품에 맡게 수정하였다.

하우징 제작

- 수정한 모델링을 적용하여

3D 프린터를 이용해 출력하였다.

적용결과

- 모든 센서들을 지팡이에 단단히 고 정시킬 수 있었다.
- 기존 스마트 지팡이 보다 크기를 많이 줄일 수 있었고, 경량화 또한 이 루어 냈다.

라이다센서 + 서보 모터 조합

- 서보 모터로 라이다 센서를 회 전시키며 측정한 값들의 그래프 이다.
- 그래프에서 0값은 센서의 최대 측정거리인 12m를 넘는 경우이 다.

레귤레이터 추가 및 배터리팩 교체

- 아두이노에서 전원을 공급받아 작동시에 전원이 부족해 작동이 불안정해지는 현상이 발생했다.
- 서보 모터에 전원을 따로 연결하기 위해 레귤레이터를 추가로 구매했다.
- 레귤레이터는 배터리팩에서 외부전원을 받아 서보 모터에 전원을 공급해준다.

최종 배선표

	SIG	NAL	Vcc	GND
컬러 센서	SCL - D21(SCL)	SDA - D20(SDA)		
초음파 센서	Trig - D3	Echo - D2		
진동 모터 L	Out	: - D4		
진동 모터 R	Out	– D5		
진동 모터 F	Out	– D6		
부저	In/Ou	ıt – D7	5V	
라이다 센서 R1 (45)	RX - D10	TX - D11		_
라이다 센서 R2 (30)	RX - D12	TX - D13		GND
라이다 센서 L1 (45)	RX - 50	TX - 51		
라이다 센서 L2 (30)	RX - 52	TX - 53		
라이다 센서 F	RX - A8	TX - A9		
버튼 모듈	In - D9			
서보 모터	PWM - D8	AF - A7	레귤레이터 (5V)	
레귤레이터		_	Vi - 9V	
็내ᇋ내에디		_	Vo - 5V	

배선작업

- 연결된 선들을 감추고 배선을 간편하게 하기 위해 수축튜브와 터미널 블록을 이용하여 작업을 마쳤다.

결과

기능

기능명	작동 조건	탐지 범위	알림 조건	사용자 알림
전방 장애물 탐지	상시	0.1 ~ 5.5m	범위 내 장애물이 있 을 때	장애물이 가까워질수록 진동이 강해지고, 부저의 음높이가 높아진다.
전방 턱 탐지	상시	센서 하단 15°	센서로부터 30cm이상	부저가 지속적으로 울린다.
측면 턱 탐지	상시	탐지각 30°~45°, 25cm	높이차 10cm이상	턱이 탐지되는 방향의 진동모터가 울린다.
점자 유도 블록 탐지	상시	최대 1cm	$r \ge 500$, $g \ge 500$, $b \le 300$	상단 진동모터가 울린다.
길목 탐지	버튼 작동 시	좌우 30° ~ 120°, 0.1 ~ 12m	탐지 범위 내 길목이 존재할 때	길목이 탐지되는 방향의 진동모터와 부저가 동 시에 울린다.(방향에 따라 음높이가 다르다.)

전방 턱 탐지 성능 검사

거리(cm)	탐지여부
0 cm ~	X
5 cm ~	X
10 cm ~	0
15 cm ~	0
20 cm ~	0
25 cm ~	\circ

- 센서로부터 30cm 즉, 10cm 이상의 턱을 감지하고자 했던 목표 성능에 만족하는 결과가 나왔다.

거리(cm)	탐지여부
0 cm ~	X
10 cm ~	0
20 cm ~	0
30 cm ~	0

- 측면 턱 탐지 기능도 마찬가지로 목표성능 인 높이차가 10cm 이상에서 알림을 주는데 성공하였다.

측면 턱 탐지 성능 검사

길목 탐지 성능 검사

- 탐지 범위를 측정하기 위해 두 군데의 장소 에서 세 종류의 검사를 시행하였다.
- ① : 정면을 바라보고 벽에서 부터 50cm 의 간격으로 떨어져 길목을 탐지.
- ② : ①과 위치는 동일, 오른쪽으로 30° 회전 해 길목을 탐지.
- ③ :마찬가지로 위치는 동일, 왼쪽으로 30° 회 전해 길목을 탐지.

① 모식도

길목

	탐지여부	방향
a	0	
b	0	
С	\circ	
d	0	
е	0	
f	0	
g	0	
h	X	기준이 되는
i	0	벽과 평행
j	0	
k	0	
T	Χ	
m	X	
n	0	
0	0	
р	X	
,		

O

	탐지여부	방향
а	0	
b	\circ	
С	0	
d	0	
е	O O O O	
f	0	
g	0	
h	0	정면에서 좌 로 30° 회전
i	0	로 30° 회전
j		
k	0	
I	X	
m	0	
n	0	
0	0	
р	X	

③모식도

	탐지여부	방향
a	0	
b	0	
С	0	
d	0	
е	O O O O	
f	0	
g	0	
h	0	정면에서 우
i	0	로 30° 회전
j		
k	0	
I	0	
m	0	
n	0 0	
0	0	
р	0	

참조 및 출처

특허자료: http://link.kipris.or.kr/link/AJAX/CTOTAL.jsp 키프리스에서 국내, 해외 모두 검색

AAA (3x2) 배터리 홀더: https://www.devicemart.co.kr/goods/view?no=3084

LM2596 레귤레이터:

https://front.wemakeprice.com/product/1489741352?utm_source=google_ss&utm_medium=cpc&utm_campaign=r_sa&gclid=CjwKCAiAq8f-BRBtEiwAGr3DgfhQpyw_kFHr9sp6W1GYzNbRW-urO5rbBwld0XE4Lj2CMOMggt8PGhoCY5oQAvD_BwE

컬러 센서 비교

http://mechasolution.com/shop/goods/goods_view.php?goodsno=1345&category=

http://mechasolution.com/shop/goods/goods_view.php?goodsno=8926&category=

http://mechasolution.com/shop/goods/goods_view.php?goodsno=401&category=

참조 및 출처

초음파 센서 비교

https://www.devicemart.co.kr/goods/view?no=1076851

http://mechasolution.com/shop/goods/goods_view.php?goodsno=583208&category=

http://mechasolution.com/shop/goods/goods_view.php?goodsno=539649&category=

서보 모터 비교

http://mechasolution.com/shop/goods/goods_view.php?goodsno=587413&category=

http://mechasolution.com/shop/goods/goods_view.php?goodsno=9155&category=

https://www.devicemart.co.kr/goods/view?no=12521872