Statistics 203: Introduction to Regression and Analysis of Variance

Model Selection: General Techniques

Jonathan Taylor

Today

■ Today

- Crude outlier detection test
- Bonferroni correction
- ullet Simultaneous inference for eta
- Model selection: goals
- Model selection: general
- Model selection: strategies
- Possible criteria
- ullet Mallow's $C_{\mathcal{D}}$
- AIC & BIC
- Maximum likelihood estimation
- AIC for a linear model
- Search strategies
- Implementations in R
- Caveats

- Outlier detection / simultaneous inference.
- Goals of model selection.
- Criteria to compare models.
- (Some) model selection.

Crude outlier detection test

- Today
- Crude outlier detection test
- Bonferroni correction
- ullet Simultaneous inference for eta
- Model selection: goals
- Model selection: general
- Model selection: strategies
- Possible criteria
- ullet Mallow's $C_{\mathcal{D}}$
- AIC & BIC
- Maximum likelihood estimation
- AIC for a linear model
- Search strategies
- Implementations in R
- Caveats

- If the studentized residuals are large: observation may be an outlier.
- Problem: if n is large, if we "threshold" at $t_{1-\alpha/2,n-p-1}$ we will get many outliers by chance even if model is correct.
- Solution: Bonferroni correction, threshold at $t_{1-\alpha/2n,n-p-1}$.

Bonferroni correction

- Today
- Crude outlier detection test

Bonferroni correction

- ullet Simultaneous inference for eta
- Model selection: goals
- Model selection: general
- Model selection: strategies
- Possible criteria
- ullet Mallow's $C_{\mathcal{P}}$
- AIC & BIC
- Maximum likelihood estimation
- AIC for a linear model
- Search strategies
- Implementations in R
- Caveats

- If we are doing many t (or other) tests, say m>1 we can control overall false positive rate at α by testing each one at level α/m .
- Proof:

P (at least one false positive)

$$= P\left(\bigcup_{i=1}^{m} |T_i| \ge t_{1-\alpha/2m, n-p-1}\right)$$

$$\le \sum_{i=1}^{m} P\left(|T_i| \ge t_{1-\alpha/2m, n-p-1}\right)$$

$$m$$

$$=\sum_{i=1}^{m}\frac{\alpha}{m}=\alpha.$$

■ Known as "simultaneous inference": controlling overall false positive rate at α while performing many tests.

Simultaneous inference for β

- Today
- Crude outlier detection test
- Bonferroni correction
- ullet Simultaneous inference for eta
- Model selection: goals
- Model selection: general
- Model selection: strategies
- Possible criteria
- ullet Mallow's $C_{\mathcal{D}}$
- AIC & BIC
- Maximum likelihood estimation
- AIC for a linear model
- Search strategies
- Implementations in R
- Caveats

- Other common situations in which simultaneous inference occurs is "simultaneous inference" for β .
- Using the facts that

$$\widehat{\beta} \sim N\left(\beta, \sigma^2(X^t X)^{-1}\right)$$

$$\widehat{\sigma}^2 \sim \sigma^2 \cdot \frac{\chi_{n-p}^2}{n-p}$$

along with $\widehat{\beta} \perp \widehat{\sigma}^2$ leads to

$$\frac{(\beta - \widehat{\beta})^t (X^t X)(\widehat{\beta} - \beta)/p}{\widehat{\sigma}^2} \sim \frac{\chi_p^2/p}{\chi_{n-p}^2/(n-p)} \sim F_{p,n-p}$$

• $(1-\alpha) \cdot 100\%$ simultaneous confidence region:

$$\left\{ \beta : (\beta - \widehat{\beta})^t (X^t X) (\widehat{\beta} - \beta) \le p \widehat{\sigma}^2 F_{p, n-p, 1-\alpha} \right\}$$

Model selection: goals

- Today
- Crude outlier detection test
- Bonferroni correction
- ullet Simultaneous inference for eta
- Model selection: goals
- Model selection: general
- Model selection: strategies
- Possible criteria
- ullet Mallow's $C_{\mathcal{P}}$
- AIC & BIC
- Maximum likelihood estimation
- AIC for a linear model
- Search strategies
- Implementations in R
- Caveats

- When we have many predictors (with many possible interactions), it can be difficult to find a good model.
- Which main effects do we include?
- Which interactions do we include?
- Model selection tries to "simplify" this task.

Model selection: general

- Today
- Crude outlier detection test
- Bonferroni correction
- ullet Simultaneous inference for eta
- Model selection: goals
- Model selection: general
- Model selection: strategies
- Possible criteria
- ullet Mallow's $C_{\mathcal{D}}$
- AIC & BIC
- Maximum likelihood estimation
- AIC for a linear model
- Search strategies
- Implementations in R
- Caveats

- This is an "unsolved" problem in statistics: there are no magic procedures to get you the "best model."
- In some sense, model selection is "data mining."
- Data miners / machine learners often work with very many predictors.

Model selection: strategies

- Today
- Crude outlier detection test
- Bonferroni correction
- ullet Simultaneous inference for eta
- Model selection: goals
- Model selection: general
- Model selection: strategies
- Possible criteria
- ullet Mallow's $C_{\mathcal{D}}$
- AIC & BIC
- Maximum likelihood estimation
- AIC for a linear model
- Search strategies
- Implementations in R
- Caveats

- To "implement" this, we need:
 - a criterion or benchmark to compare two models.
 - a search strategy.
- With a limited number of predictors, it is possible to search all possible models.

Possible criteria

- Today
- Crude outlier detection test
- Bonferroni correction
- ullet Simultaneous inference for eta
- Model selection: goals
- Model selection: general
- Model selection: strategies
- Possible criteria
- ullet Mallow's $C_{\mathcal{P}}$
- AIC & BIC
- Maximum likelihood estimation
- AIC for a linear model
- Search strategies
- Implementations in R
- Caveats

- R^2 : not a good criterion. Always increase with model size —> "optimum" is to take the biggest model.
- Adjusted R^2 : better. It "penalized" bigger models.
- Mallow's C_p .
- Akaike's Information Criterion (AIC), Schwarz's BIC.

Mallow's C_p

- Today
- Crude outlier detection test
- Bonferroni correction
- ullet Simultaneous inference for eta
- Model selection: goals
- Model selection: general
- Model selection: strategies
- Possible criteria

ullet Mallow's C_p

- AIC & BIC
- Maximum likelihood estimation
- AIC for a linear model
- Search strategies
- Implementations in R
- Caveats

- $C_p(\mathcal{M}) = \frac{SSE(\mathcal{M})}{\widehat{\sigma}^2} n + 2 \cdot p(\mathcal{M}).$
- $\widehat{\sigma}^2 = SSE(F)/df_F$ is the "best" estimate of σ^2 we have (use the fullest model)
- $SSE(\mathcal{M}) = \|Y \widehat{Y}_{\mathcal{M}}\|^2$ is the SSE of the model \mathcal{M}
- $p(\mathcal{M})$ is the number of predictors in \mathcal{M} , or the degrees of freedom used up by the model.
- Based on an estimate of

$$\begin{split} \frac{1}{\sigma^2} \sum_{i=1}^n \mathbb{E}\left((Y_i - \mathbb{E}(Y_i))^2 \right) \\ &= \frac{1}{\sigma^2} \sum_{i=1}^n \mathbb{E}\left((Y_i - \widehat{Y}_i)^2 \right) + \mathsf{Var}(\widehat{Y}_i) \end{split}$$

AIC & BIC

- Today
- Crude outlier detection test
- Bonferroni correction
- ullet Simultaneous inference for eta
- Model selection: goals
- Model selection: general
- Model selection: strategies
- Possible criteria
- ullet Mallow's C_p
- AIC & BIC
- Maximum likelihood estimation
- AIC for a linear model
- Search strategies
- Implementations in R
- Caveats

■ Mallow's C_p is (almost) a special case of Akaike Information Criterion (AIC)

$$AIC(\mathcal{M}) = -2\log L(\mathcal{M}) + 2 \cdot p(\mathcal{M}).$$

- $L(\mathcal{M})$ is the likelihood function of the parameters in model \mathcal{M} evaluated at the MLE (Maximum Likelihood Estimators).
- Schwarz's Bayesian Information Criterion (BIC)

$$BIC(\mathcal{M}) = -2\log L(\mathcal{M}) + p(\mathcal{M}) \cdot \log n$$

Maximum likelihood estimation

- Today
- Crude outlier detection test
- Bonferroni correction
- ullet Simultaneous inference for eta
- Model selection: goals
- Model selection: general
- Model selection: strategies
- Possible criteria
- ullet Mallow's $C_{\mathcal{D}}$
- AIC & BIC
- Maximum likelihood estimation
- AIC for a linear model
- Search strategies
- Implementations in R
- Caveats

■ If the model is correct then the log-likelihood of (β, σ) is

$$\log L(\beta, \sigma | X, Y) = -\frac{n}{2} \left(\log(2\pi) + \log \sigma^2 \right) - \frac{1}{2\sigma^2} ||Y - X\beta||^2$$

where Y is the vector of observed responses.

- MLE for β in this case is the same as least squares estimate because first term does not depend on β
- MLE for σ^2 :

$$\left. \frac{\partial}{\partial \sigma^2} \log L(\beta, \sigma) \right|_{\widehat{\beta}, \widehat{\sigma}^2} = -\frac{n}{2\sigma^2} + \frac{1}{2\sigma^4} \|Y - X\widehat{\beta}\|^2 = 0$$

■ Solving for σ^2 :

$$\widehat{\sigma}_{MLE}^2 = \frac{1}{n} \|Y - X\widehat{\beta}\|^2 = \frac{1}{n} SSE(\mathcal{M})$$

Note that the MLE is biased.

AIC for a linear model

- Today
- Crude outlier detection test
- Bonferroni correction
- ullet Simultaneous inference for eta
- Model selection: goals
- Model selection: general
- Model selection: strategies
- Possible criteria
- ullet Mallow's $C_{\mathcal{D}}$
- AIC & BIC
- Maximum likelihood estimation
- AIC for a linear model
- Search strategies
- Implementations in R
- Caveats

■ Using $\widehat{\beta}_{MLE} = \widehat{\beta}$

$$\widehat{\sigma}_{MLE}^2 = \frac{1}{n} SSE(\mathcal{M})$$

we see that the AIC of a multiple linear regression model is

$$AIC(\mathcal{M}) = n\left(\log(2\pi) + \log(SSE(\mathcal{M})) - \log(n)\right) + 2(n + p(\mathcal{M}) + 1)$$

■ If σ^2 is known, then

$$AIC(\mathcal{M}) = n\left(\log(2\pi) + \log(\sigma^2)\right) + \frac{SSE(\mathcal{M})}{\sigma^2} + 2p(\mathcal{M})$$

which is almost $C_p(\mathcal{M}) + K_n$.

Search strategies

- Today
- Crude outlier detection test
- Bonferroni correction
- ullet Simultaneous inference for eta
- Model selection: goals
- Model selection: general
- Model selection: strategies
- Possible criteria
- ullet Mallow's $C_{\mathcal{P}}$
- AIC & BIC
- Maximum likelihood estimation
- AIC for a linear model
- Search strategies
- Implementations in R
- Caveats

- "Best subset": search all possible models and take the one with highest R_a^2 or lowest C_p .
- Stepwise (forward, backward or both): useful when the number of predictors is large. Choose an initial model and be "greedy".
- "Greedy" means always take the biggest jump (up or down) in your selected criterion.

Implementations in R

- Today
- Crude outlier detection test
- Bonferroni correction
- ullet Simultaneous inference for eta
- Model selection: goals
- Model selection: general
- Model selection: strategies
- Possible criteria
- ullet Mallow's $C_{\mathcal{D}}$
- AIC & BIC
- Maximum likelihood estimation
- AIC for a linear model
- Search strategies
- Implementations in R
- Caveats

- "Best subset": use the function leaps. Works only for multiple linear regression models.
- Stepwise: use the function step. Works for any model with Akaike Information Criterion (AIC). In multiple linear regression, AIC is (almost) a linear function of C_p .
- Here is an example.

Caveats

- Today
- Crude outlier detection test
- Bonferroni correction
- ullet Simultaneous inference for eta
- Model selection: goals
- Model selection: general
- Model selection: strategies
- Possible criteria
- ullet Mallow's $C_{\mathcal{D}}$
- AIC & BIC
- Maximum likelihood estimation
- AIC for a linear model
- Search strategies
- Implementations in R
- Caveats

- Many other "criteria" have been proposed.
- Some work well for some types of data, others for different data.
- These criteria are not "direct measures" of predictive power.
- Later we will see cross-validation which is an *estimate* of predictive power.