Module 4.1: Feedforward Neural Networks (a.k.a. multilayered network of neurons)

 \bullet The input to the network is an ${\bf n}\text{-}{\bf dimensional}$ vector

 \bullet The input to the network is an ${\bf n}\text{-}{\bf dimensional}$ vector

- \bullet The input to the network is an ${\bf n}\text{-}{\bf dimensional}$ vector
- The network contains L-1 hidden layers (2, in this case) having $\bf n$ neurons each

- The input to the network is an **n**-dimensional vector
- The network contains L-1 hidden layers (2, in this case) having n neurons each

- The network contains L-1 hidden layers (2, in this case) having n neurons each
- Finally, there is one output layer containing **k** neurons (say, corresponding to **k** classes)

- The input to the network is an **n**-dimensional vector
- The network contains L-1 hidden layers (2, in this case) having n neurons each
- Finally, there is one output layer containing **k** neurons (say, corresponding to **k** classes)

- The input to the network is an **n**-dimensional vector
- The network contains L-1 hidden layers (2, in this case) having n neurons each
- Finally, there is one output layer containing ${\bf k}$ neurons (say, corresponding to ${\bf k}$ classes)
- Each neuron in the hidden layer and output layer can be split into two parts :

- The input to the network is an **n**-dimensional vector
- The network contains L-1 hidden layers (2, in this case) having n neurons each
- Finally, there is one output layer containing \mathbf{k} neurons (say, corresponding to \mathbf{k} classes)
- Each neuron in the hidden layer and output layer can be split into two parts :

- The input to the network is an **n**-dimensional vector
- The network contains L-1 hidden layers (2, in this case) having $\bf n$ neurons each
- Finally, there is one output layer containing \mathbf{k} neurons (say, corresponding to \mathbf{k} classes)
- Each neuron in the hidden layer and output layer can be split into two parts : pre-activation

- The input to the network is an **n**-dimensional vector
- The network contains L-1 hidden layers (2, in this case) having n neurons each
- Finally, there is one output layer containing \mathbf{k} neurons (say, corresponding to \mathbf{k} classes)
- Each neuron in the hidden layer and output layer can be split into two parts: pre-activation and activation

- The input to the network is an **n**-dimensional vector
- The network contains L-1 hidden layers (2, in this case) having n neurons each
- Finally, there is one output layer containing ${\bf k}$ neurons (say, corresponding to ${\bf k}$ classes)
- Each neuron in the hidden layer and output layer can be split into two parts: pre-activation and activation (a_i and h_i are vectors)

- The input to the network is an **n**-dimensional vector
- The network contains L-1 hidden layers (2, in this case) having n neurons each
- Finally, there is one output layer containing \mathbf{k} neurons (say, corresponding to \mathbf{k} classes)
- Each neuron in the hidden layer and output layer can be split into two parts: pre-activation and activation (a_i and h_i are vectors)
- The input layer can be called the 0-th layer and the output layer can be called the (L)-th layer

- The input to the network is an **n**-dimensional vector
- The network contains L-1 hidden layers (2, in this case) having n neurons each
- Finally, there is one output layer containing ${\bf k}$ neurons (say, corresponding to ${\bf k}$ classes)
- Each neuron in the hidden layer and output layer can be split into two parts: pre-activation and activation (a_i and h_i are vectors)
- The input layer can be called the 0-th layer and the output layer can be called the (L)-th layer
- $W_i \in \mathbb{R}^{n \times n}$ and $b_i \in \mathbb{R}^n$ are the weight and bias between layers i-1 and i (0 < i < L)

- The input to the network is an **n**-dimensional vector
- The network contains L-1 hidden layers (2, in this case) having $\bf n$ neurons each
- Finally, there is one output layer containing ${\bf k}$ neurons (say, corresponding to ${\bf k}$ classes)
- Each neuron in the hidden layer and output layer can be split into two parts: pre-activation and activation (a_i and h_i are vectors)
- The input layer can be called the 0-th layer and the output layer can be called the (L)-th layer
- $W_i \in \mathbb{R}^{n \times n}$ and $b_i \in \mathbb{R}^n$ are the weight and bias between layers i-1 and i (0 < i < L)

- The input to the network is an **n**-dimensional vector
- The network contains $\mathbf{L} \mathbf{1}$ hidden layers (2, in this case) having \mathbf{n} neurons each
- b_3 Finally, there is one output layer containing **k** neurons (say, corresponding to **k** classes)
 - Each neuron in the hidden layer and output layer can be split into two parts: pre-activation and activation (a_i and h_i are vectors)
 - The input layer can be called the 0-th layer and the output layer can be called the (L)-th layer
 - $W_i \in \mathbb{R}^{n \times n}$ and $b_i \in \mathbb{R}^n$ are the weight and bias between layers i-1 and i (0 < i < L)
 - $W_L \in \mathbb{R}^{n \times k}$ and $b_L \in \mathbb{R}^k$ are the weight and bias between the last hidden layer and the output layer (L=3 in this case)

 $h_L = \hat{y} = f(x)$

 \bullet The pre-activation at layer i is given by

$$a_i(x) = b_i + W_i h_{i-1}(x)$$

$$h_L = \hat{y} = f(x)$$

$$a_i(x) = b_i + W_i h_{i-1}(x)$$

ullet The activation at layer i is given by

$$h_i(x) = g(a_i(x))$$

$$h_L = \hat{y} = f(x)$$

$$a_i(x) = b_i + W_i h_{i-1}(x)$$

ullet The activation at layer i is given by

$$h_i(x) = g(a_i(x))$$

where g is called the activation function (for example, logistic, tanh, linear, etc.)

$$a_i(x) = b_i + W_i h_{i-1}(x)$$

 \bullet The activation at layer i is given by

$$h_i(x) = g(a_i(x))$$

where g is called the activation function (for example, logistic, tanh, linear, etc.)

 \bullet The output at layer i is given by

$$f(x) = h_{L+1}(x) = O(a_{L+1}(x))$$

$$a_i(x) = b_i + W_i h_{i-1}(x)$$

ullet The activation at layer i is given by

$$h_i(x) = g(a_i(x))$$

where g is called the activation function (for example, logistic, tanh, linear, etc.)

 \bullet The output at layer i is given by

$$f(x) = h_{L+1}(x) = O(a_{L+1}(x))$$

where O is the output activation function (for example, softmax, linear, etc.)

$$a_i(x) = b_i + W_i h_{i-1}(x)$$

ullet The activation at layer i is given by

$$h_i(x) = g(a_i(x))$$

where g is called the activation function (for example, logistic, tanh, linear, etc.)

 \bullet The output at layer i is given by

$$f(x) = h_{L+1}(x) = O(a_{L+1}(x))$$

where O is the output activation function (for example, softmax, linear, etc.)

• To simplify notation we will refer to $a_i(x)$ as a_i and $h_i(x)$ as h_i

$$h_L = \hat{y} = f(x)$$

$$a_i = b_i + W_i h_{i-1}$$

 \bullet The activation at layer i is given by

$$h_i = g(a_i)$$

where g is called the activation function (for example, logistic, tanh, linear, etc.)

 \bullet The activation at layer i is given by

$$f(x) = h_{L+1} = O(a_{L+1})$$

where O is the output activation function (for example, softmax, linear, etc.)

$$h_L = \hat{y} = f(x)$$

• Data: $\{x_i, y_i\}_{i=1}^N$

$$h_L = \hat{y} = f(x)$$

- Data: $\{x_i, y_i\}_{i=1}^N$
- Model:

$$\hat{y}_i = f(x_i) = O(W^3 g(W^2 g(W^1 x + b_1) + b_2) + b_3)$$

$$h_L = \hat{y} = f(x)$$

- Data: $\{x_i, y_i\}_{i=1}^N$
- Model:

$$\hat{y}_i = f(x_i) = O(W^3 g(W^2 g(W^1 x + b_1) + b_2) + b_3)$$

• Parameters:

$$\theta = W_1, ..., W_L, b_1, b_2, ..., b_L(L=3)$$

$$h_L = \hat{y} = f(x)$$

- Data: $\{x_i, y_i\}_{i=1}^N$
- Model:

$$\hat{y}_i = f(x_i) = O(W^3 g(W^2 g(W^1 x + b_1) + b_2) + b_3)$$

• Parameters:

$$\theta = W_1, ..., W_L, b_1, b_2, ..., b_L(L=3)$$

• Algorithm: Backpropagation

$$h_L = \hat{y} = f(x)$$

- **Data:** $\{x_i, y_i\}_{i=1}^N$
- Model:

$$\hat{y}_i = f(x_i) = O(W^3 g(W^2 g(W^1 x + b_1) + b_2) + b_3)$$

• Parameters:

$$\theta = W_1, ..., W_L, b_1, b_2, ..., b_L(L=3)$$

- Algorithm: Backpropagation
- Objective/Loss/Error function: Say,

$$min \ \frac{1}{N} \sum_{i=1}^{N} (\hat{y}_i - y_i)^2$$

In general, $min \mathcal{L}(\theta)$

where $\mathcal{L}(\theta)$ is some function of the parameters