ROAD GRID MAPPER

REDE DE SEGMENTAÇÃO SEMÂNTICA

PREPARADO POR LUDMILA DIAS

MAPEAMENTO DE FAIXAS DE ESTRADA USANDO REMISSÃO DE LASERS E REDES NEURAIS

SOBRE O PROJETO

Treinamento de uma rede neural profunda de segmentação semântica para a segmentação de estradas em mapas de remissão. Esse projeto foi feito utilizando como referência o artigo "Mapping Road Lanes using Laser Remission and Deep Neural Networks"[1], entretanto utilizando-se uma rede neural de segmentação semântica diferente e mais atual, U-NET, ao invés da E-NET.

PRINCIPAIS ETAPAS

Pré-processamento e organização dos dados		
Geração de peso para as classes		
Definição do Modelo, parâmetros e métricas		
Divisão de lote de treino e de teste		
Treinamento do modelo		
Avaliação do modelo		

17 CLASSES X 6 CLASSES

DESCRIÇÃO DAS CLASSES

- Classe 0 (0) \rightarrow 0 que não é pista.
- Classe 1 (1,2,3,4) → Limite entre a classe 0 e a pista
- Classe 2 (5,6) → Detalhes de divisão de tipo de pista
- Classe 3 (7,8,9,10) → Área da pista mais próxima da classe 1
- Classe 4 (11,12) → Pista
- Classe 5 (13,14,15,16) → Centro da Pista

MÉTRICAS, PARÂMETROS E ESTRATÉGIAS

PARA TREINAMENTO

- Focal Categorical Crossentropy Categorical Accuracy [12] Loss Function [3][5]
- Adam Optimizer [7]
- \circ SGD Optimizer [14]
- Early Stopping [9][10]
- Model Checkpoint [11]
- Reduce LR On Plateau [2][4]
- Cross Validation [8]
- Categorical Accuracy [12]
- Class Weights [<u>6</u>]

PARA AVALIAÇÃO

- F1 [<u>12</u>]
- Precisão [<u>12</u>]
- Recall [<u>12</u>]
- IoU [<u>13</u>]
- Matriz de Confusão [12]
- Visualização visual

ESTRATÉGIA PARA APRENDIZADO DO MODELO

RESULTADOS DE TREINAMENTO

• 6 CLASSES

RESULTADOS DE TREINAMENTO

• 17 CLASSES

• 6 CLASSES

VALORES FINAIS

17 CLASSES - ENET

17 CLASSES - UNET

6 CLASSES - UNET

• Dataset Highway

VALORES FINAIS

17 CLASSES - UNET

Test Accuracy	Val Accuracy	F1	IoU
0.873	0.8535	0.6042	0.4673

6 CLASSES - UNET

Test Accuracy	Val Accuracy	F1	IoU
0.9418	0.9313	0.8280	0.7234

Classe	IoU
0	0.982995
1	0.745107
2	0.720401
3	0.784459
4	0.636177
5	0.471341

	Classes	IoU
0	1	0.982622
1	2	0.556408
2	3	0.607621
3	4	0.549765
4	5	0.541840
5	6	0.356900
6	7	0.444732
7	8	0.408301
8	9	0.422369
9	10	0.431878
10	11	0.426826
11	12	0.432764
12	13	0.420572
13	14	0.358528
14	15	0.365532
15	16	0.335394
16	17	0.302101

IMAGENS DE SAÍDA

TESTES EXTERNOS

HYDRO (POSTO AVANÇADO)

YPÊ

PORTOCEL

PROPOSTAS DE MELHORIA

Realizar Augmentation [15] nos dados para melhorar a generalização do modelo.

• CONTRASTE

NOISE

• ELASTIC

CROP ZOOM IN

Alguns outros tipos de augmentation sugeridas para a melhoria do modelo são: Zoom out, diminuição do contraste e variação de brilho.

REFERÊNCIAS BIBLIOGRÁFICAS

- [1] CARNEIRO, Raphael Vivacqua; GUIDOLINI, Ranik; CARDOSO, Vinicius
 Brito; NASCIMENTO, Rafael C. Mapping Road Lanes using Laser
 Remission and Deep Neural Networks. IEEE, [S. 1.], p. 1-8, 27 abr.
 2018.
- [2] TFKeras DNN with multiclass focal loss. Disponível em: https://www.kaggle.com/code/lucamassaron/tfkeras-dnn-with-multiclass-focal-loss.
- [3] tf.keras.losses.CategoricalFocalCrossentropy | TensorFlow
 v2.14.0. Disponível em:
 <https://www.tensorflow.org/api_docs/python/tf/keras/losses/Categori
 calFocalCrossentropy>.
- [4] TEAM, K. Keras documentation: ReduceLROnPlateau. Disponível em: https://keras.io/api/callbacks/reduce_lr_on_plateau/.
- [<u>5</u>] NIYAZ, U. Focal loss for handling the issue of class imbalance. Disponível em: https://medium.com/data-science-ecom-express/focal-loss-for-handling-the-issue-of-class-imbalance-be7addebd856.
- [6] GARG, S. Class imbalance in MultiClass classification :
 Simplified !! Disponível em:
 <https://shikhagarg0192.medium.com/class-imbalance-in-multiclassclassification-simplified-a202ee9d6bcd>.
- [7] Keras documentation: Adam. Disponível em:
 <https://keras.io/api/optimizers/adam/>.
- [8] LEITE, R. Introdução a Validação-Cruzada: K-Fold. Disponível em: https://drigols.medium.com/introdu%C3%A7%C3%A3o-a-valida%C3%A7%C3%A3o-cruzada-k-fold-2a6bced32a90.

- [9] TEAM, K. Keras documentation: EarlyStopping. Disponível em: https://keras.io/api/callbacks/early_stopping/.
- [10] GANDHI, R. Improving the Performance of a Neural Network. Disponível em: https://towardsdatascience.com/how-to-increase-the-accuracy-of-a-neural-network-9f5d1c6f407d.
- [11] TEAM, K. Keras documentation: ModelCheckpoint. Disponível em: https://keras.io/api/callbacks/model_checkpoint/.
- [12] All the segmentation metrics! Disponível em: https://www.kaggle.com/code/yassinealouini/all-the-segmentation-metrics.
- [13] JORDAN, J. Evaluating image segmentation models. Disponível em: https://www.jeremyjordan.me/evaluating-image-segmentation-models/.
- [14] TEAM, K. Keras documentation: SGD. Disponível em: https://keras.io/api/optimizers/sgd/.
- [15] MADHUGIRI, D. Learn Image Augmentation Using 3 Popular Python Libraries. Disponível em:

<https://www.analyticsvidhya.com/blog/2022/04/image-augmentationusing-3-python-libraries/>.