Classification (1)

POSTECH MIP Lab.

TA: Joonhyuk Park, Seunghun Baek, Soojin Hwang

Goal

- Understand classification task
- Understand the development of CNN based classification models (AlexNet, VGG, GoogLeNet, ResNet)
- Learn how to implement CNN models from architecture

Classification task

Classification task

```
def classify_image(image):
 # Some magic here?
  return class_label
                                Cat
```

Goal: Classify the label for each image

Classification task

Classification CNN: Backbone Network

CNN Architectures

- AlexNet
- VGG
- GoogLeNet
- ResNet
- . . .

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

AlexNet (2012)

- Successful CNN image classification model
 - Based on LeNet5 CNN design (Yann Lecun et al, 1989)
 - Computationally expensive, but feasible due to GPUs
 - Parallel computation
 - Winner of ILSVRC-2012 competition by a large margin,
 - ImageNet Large-Scale Visual Recognition Challenge
 - a top-5 error of 15.3%, more than 10.8 percentage points lower than that of the runner up.
 - Transfer to significant gains in a variety of domains

LeNet-5 (1998)

A very simple CNN architecture by Yann LeCun in 1998

Overall architecture: Conv – Pool – Conv – Pool – FC – FC

[Lecun89] Y. LeCun et al.: Handwritten Digit Recognition with a Back-Propagation Network. NIPS 1989

- Architecture
 - Conv1
 - Maxpool1
 - Norm1
 - Conv2
 - Maxpool2
 - Norm2
 - Conv3
 - Conv4
 - Conv5
 - Maxpool3
 - FC6
 - FC7
 - FC8

Overall architecture:

LeNet-5 vs AlexNet

- Compared to LeNet-5, AlexNet is ...
 - Bigger (more layers, more parameters)
 - Trained with a larger amount of data (ImageNet)
 - Use different activation function & regularization techniques (dropout)
 - Local Response Normalization
 - Parallel computation via GPUs

- Input: 227 * 227 * 3 images
- After Conv1 (96 11*11 filters, stride 4): **55** * **55** * **96**
- After Pool1 (3*3 filters, stride 2): 27*27*96

• ...

• Output size of convolution = $\frac{input \, size - filter \, size + (2 \times padding)}{stride} + 1$

```
Full (simplified) AlexNet architecture:
[227x227x3] INPUT
[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0
[27x27x96] MAX POOL1: 3x3 filters at stride 2
[27x27x96] NORM1: Normalization layer
[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2
[13x13x256] MAX POOL2: 3x3 filters at stride 2
[13x13x256] NORM2: Normalization layer
[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1
[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1
[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1
[6x6x256] MAX POOL3: 3x3 filters at stride 2
[4096] FC6: 4096 neurons
[4096] FC7: 4096 neurons
[1000] FC8: 1000 neurons (class scores)
```



```
Full (simplified) AlexNet architecture:
[227x227x3] INPUT
[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0
[27x27x96] MAX POOL1: 3x3 filters at stride 2
[27x27x96] NORM1: Normalization layer
[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2
[13x13x256] MAX POOL2: 3x3 filters at stride 2
[13x13x256] NORM2: Normalization layer
[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1
[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1
[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1
[6x6x256] MAX POOL3: 3x3 filters at stride 2
[4096] FC6: 4096 neurons
[4096] FC7: 4096 neurons
```

[1000] FC8: 1000 neurons (class scores)

Other Details:

- First use of ReLU
- Used Local Response Normalization
- Heavy data augmentation
- Dropout 0.5
- Batch size 128
- Learning rate 1e-2, reduced by 10 when val accuracy plateaus
- L2 weight decay 5e-4
- 7 CNN ensemble: 18.2% -> 15.4 %

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

VGG network (2014)

- Proposed by Oxford VGG team in 2014 ILSVRC (2nd rank)
- Comparison
 - More deeper network than AlexNet (Alexnet 8 layers -> 16 19 layers)
 - More simple structure than GoogleNet (1st rank)
- Filter
 - Only 3 x 3 filter & 1 x 1 filter
 - Less parameter for same receptive field -> Regularization
- 11.7% top 5 error in ILSVRC'13 -> 7.3% top 5 error in ILSVRC'14

- Why use smaller filters? (3*3 conv)
 - Stack of there 3*3 conv (stride 1) layers has the same receptive field as one 7*7 conv layer
 - Receptive field: The region in the input space that a particular CNN's feature is looking at

- Why use smaller filters? (3*3 conv)
 - Stack of there 3*3 conv (stride 1) layers has the same receptive field as one 7*7 conv layer
 - Receptive field: The region in the input space that a particular CNN's feature is looking at

- ex)

- Why use smaller filters? (3*3 conv)
 - Stack of there 3*3 conv (stride 1) layers has the same receptive field as one 7*7 conv layer
 - Receptive field: The region in the input space that a particular CNN's feature is looking at

- ex)

- Why use smaller filters? (3*3 conv)
 - Stack of there 3*3 conv (stride 1) layers has the same receptive field as one 7*7 conv layer
 - Receptive field: The region in the input space that a particular CNN's feature is looking at

- ex)

- Why use smaller filters? (3*3 conv)
 - Stack of there 3*3 conv (stride 1) layers has the same receptive field as one 7*7 conv layer
 - Receptive field: The region in the input space that a particular CNN's feature is looking at
- But we have deeper, more non-linearities
- And fewer parameters:
 - 3-(3*3) filters = 27
 - 1-(7*7) filter = 49

- Configuration
 - Image size : 224 * 224 * 3
 - All conv layer: Stride 1, Padding 1, filter
 3*3 or 1*1
 - Maintain resolution (H * W size) of feature
 - Maxpooling: 2 x 2 window, 2 stride

Input: [224*224*3]

Conv3-64: [224*224*64]

Conv3-64: [224*224*64]

Pool2: [112*112*64]

Conv3-128: [112*112*128]

Conv3-128: [112*112*128]

Pool2: [56*56*128]

Conv3-256: [56*56*256]

Conv3-256: [56*56*256]

Conv3-256: [56*56*256]

Pool2: [28*28*256]

Conv3-512: [28*28*512]

Conv3-512: [28*28*512]

Conv3-512: [28*28*512]

Pool2: [14*14*512]

Conv3-512: [14*14*512]

Conv3-512: [14*14*512]

Conv3-512: [14*14*512]

Pool2: [7*7*512]

FC: [1*1*4096]

FC: [1*1*4096]

FC: [1*1*1000]

- Other details
 - ILSVRC'14 2nd winner
 - No Local Response Normalization
 - Use VGG16 or VGG19 (VGG19 slightly better)
 - Use ensembles for best results

ConvNet Configuration					
A	A-LRN	В	С	D	Е
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight
layers	layers	layers	layers	layers	layers
input (224 × 224 RGB image)					
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64
	LRN	conv3-64	conv3-64	conv3-64	conv3-64
maxpool					
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128
		conv3-128	conv3-128	conv3-128	conv3-128
maxpool					
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256
			conv1-256	conv3-256	conv3-256
					conv3-256
maxpool					
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
			conv1-512	conv3-512	conv3-512
					conv3-512
maxpool					
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
			conv1-512	conv3-512	conv3-512
					conv3-512
maxpool					
FC-4096					
FC-4096					
FC-1000					
soft-max					

Pytorch code pipeline

- Define Dataset -> 학습하고 싶은 데이터셋을 정의
- Define DataLoader -> 데이터셋의 배치화
- Define model -> 학습할 모델 정의
- Define loss (criterion) -> loss 계산
- Define optimizer -> gradient descent 수행

-> Start Training and Testing

- Define Dataset →
- Define DataLoader →
- Define model →
- Define loss (criterion) →
- Define optimizer →
- Training and Testing →

```
from torchvision.datasets import MNIST
import torchvision.transforms as transforms

train_data = MNIST('./data/train', train=True, download=True, transform=transforms.ToTensor())
test_data = MNIST('./data/test', train=False, download=True, transform=transforms.ToTensor())
```

- Define Dataset →
- Define DataLoader →
- Define model →
- Define loss (criterion) →
- Define optimizer →
- Training and Testing →

```
from torch.utils.data import DataLoader

train_dataloader = DataLoader(train_data, batch_size=16, shuffle=True)
test_dataloader = DataLoader(test_data, batch_size=16, shuffle=False)
```

- Define Dataset →
- Define DataLoader →
- Define model →
- Define loss (criterion) →
- Define optimizer →
- Training and Testing →

```
from torch import nn
class Model(nn.Module):
    def init (self):
        super(Model, self). init ()
        self.flatten = nn.Flatten()
        self.linear layer = nn.Sequential(
            nn.Linear(28*28, 512),
            nn.ReLU(),
            nn.Linear(512, 10),
    def forward(self, x):
        x = self.flatten(x)
       logits = self.linear_layer(x)
        return logits
model = Model()
```

- Define Dataset →
- Define DataLoader →
- Define model →
- Define loss (criterion) →
- Define optimizer →
- Training and Testing →

```
import torch.optim as optim

optimizer = optim.Adam(model.parameters(), lr=0.01, weight_decay=0.001)
loss_function = nn.MSELoss()
```

- Define Dataset →
- Define DataLoader →
- Define model →
- Define loss (criterion) →
- Define optimizer →
- Training and Testing →

```
model.train()
for x, y in train_dataloader:
    prediction = model(x)
    loss = loss_function(prediction, y)

    optimizer.zero_grad()
    loss.backward()
    optimizer.step()
```

```
model.eval()
for x, y in test_dataloader:
    prediction = nn.Softmax(dim=1)(model(x))
    y_pred = prediction.argmax(1)
    print("Predicted class: {y_pred}, True label: {y}")
```

Ex) MNIST dataset

Hand-written number dataset

Total 10 class (0 ~ 9)

28X28 size, grayscale

• Training sample: 60,000

• Test sample : 10,000

Label

5

0

4

1

Ex) CIFAR-10 dataset

- 10-class dataset
- 32 x 32 size, RGB image
- Training sample: 50,000
- Test sample : 10,000

Softmax function

 Function that takes as input a vector of K real numbers, and normalizes it into a probability distribution

$$\sigma(\mathbf{z})_i = rac{e^{z_i}}{\sum_{j=1}^K e^{z_j}}$$
 for i = 1, ..., K and $\mathbf{z} = (z_1, \ldots, z_K) \in \mathbb{R}^K$

Also known as, normalized exponential function

Cross entropy loss

To measure the distance between probability p and q

$$H(P,Q) = -\sum_{x} P(x) \log Q(x)$$

Ex) Given that ground truth label P(x) = (1, 0)

if Q(x) = (0, 1),
$$-P(x)\log Q(x) = -\begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} \log 0 \\ \log 1 \end{bmatrix} = -(-\infty + 0) = \infty$$

if Q(x) = (1, 0), $-P(x)\log Q(x) = -\begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} \log 1 \\ \log 0 \end{bmatrix} = -(0 + 0) = 0$

Datasets and DataLoader

- All datasets are subclass of torch.utils.data.Dataset
 - You can make your own datasets to inherit Dataset class
 - Some famous datasets is provided in torchvision.datasets
 - CIFAR-10, MNIST, etc

DataLoader reads datasets and make the batch

torch.utils.data.DataLoader

- It reads datasets and make batch for training and inference
- Arguments
 - dataset target dataset (torch.utils.data.Dataset)
 - batch_size batch size for training or inference
 - shuffle if true, dataloader shuffle the data in datasets randomly
 - sampler, batch_sampler, num_workers, pin_memorys
- for batch_idx, (data, label) in enumerate(trainloader)

Exercise 1. Training a classifier on CIFAR-10

- · Step)
 - Load and normalizing the CIFAR 10 training and test datasets using torchvision
 - Visualize first 8 images from the train dataset
 - 1. Define a convolutional Neural Network
 - 2. Define a loss function and optimizer (CrossEntropy, SGD)
 - 3. Train the network on the training data
 - Test the network on the test data

Visualize first 8 images from the train dataset

import matplotlib.pyplot as plt from torchvision.transforms.functional import to_pil_image

import library for plotting/visualizing data

```
plt.figure(figsize=(16,4))
for i in range(8):
    img = to_pil_image(train_data[i][0]/2 + 0.5)
    plt.subplot(1,8,i+1)
    plt.imshow(img)
plt.show()

classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
print("Labels: ", end=")
for i in range(8): print(classes[train_data[i][1]], end=' | ')
```


Visualize first 8 images from the train dataset

import matplotlib.pyplot as plt from torchvision.transforms.functional import to_pil_image

```
plt.figure(figsize=(16,4))
for i in range(8):
    img = to_pil_image(train_data[i][0]/2 + 0.5)
    plt.subplot(1,8,i+1)
    plt.imshow(img)
plt.show()

classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
print("Labels: ", end=")
for i in range(8): print(classes[train_data[i][1]], end=' | ')
```


Visualize first 8 images from the train dataset

```
import matplotlib.pyplot as plt
from torchvision.transforms.functional import to_pil_image

plt.figure(figsize=(16,4))
for i in range(8):
    img = to_pil_image(train_data[i][0]/2 + 0.5)
    plt.subplot(1,8,i+1)
    plt.imshow(img)
plt.show()
```

classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck') print("Labels: ", end=") for i in range(8): print(classes[train_data[i][1]], end=' | ')

Print labels corresponding to the images

Load and normalizing the CIFAR 10 training and test datasets using torchvision

```
from torchvision.datasets import CIFAR10
   import torchvision.transforms as transforms
   transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
   train data = CIFAR10("./data", train=True, download=True, transform=transform)
   test data = CIFAR10("./data", train=False, download=True, transform=transform)
   print(len(train_data))
   print(len(test data))
Files already downloaded and verified
Files already downloaded and verified
50000
10000
```

Load and normalizing the CIFAR 10 training and test datasets using torchvision

```
from torch.utils.data import DataLoader

train_dataloader = DataLoader(train_data, batch_size=8, shuffle=True)
test_dataloader = DataLoader(test_data, batch_size=8, shuffle=False)
```

1. Define a convolutional Neural Network

```
import torch
import torch.nn as nn
import torch.nn.functional as F
class CNN(nn.Module):
    def init (self):
       super(). init ()
       self.layer1 = nn.Sequential(
           nn.Conv2d(3, 8, kernel_size=3, padding=1),
           nn.ReLU(),
           nn.MaxPool2d(2,2)
       self.layer2 = nn.Sequential(
           nn.Conv2d(8, 16, kernel_size=3, padding=1),
           nn.ReLU(),
           nn.MaxPool2d(2,2)
        self.fc layer = nn.Linear(16 * 8 * 8, 10)
   def forward(self, x):
       x1 = self.layer1(x)
       x2 = self.layer2(x1)
       x2 = torch.flatten(x2, 1)
       x3 = self.fc_layer(x2)
        out = F.softmax(x3, dim=1)
        return out
net = CNN()
```

```
if torch.cuda.is_available(): device = torch.device('cuda')
else: device = torch.device('cpu')

net = net.to(device)
```

2. Define a loss function and optimizer (CrossEntropy, SGD)

```
import torch.optim as optim

criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
```

3. Train the network on the training data

```
for epoch in range(4): # 데이터셋을 수차례 반복합니다.
   running loss = 0.0
   net.train()
   for i, data in enumerate(train dataloader, 0):
       # [inputs, labels]의 목록인 data로부터 입력을 받은 후;
       inputs, labels = data
       inputs, labels = inputs.to(device), labels.to(device)
       # 변화도(Gradient) 매개변수를 0으로 만들고
       optimizer.zero grad()
       # 순전파 + 역전파 + 최적화를 한 후
       outputs = net(inputs)
       loss = criterion(outputs, labels)
       loss.backward()
       optimizer.step()
       # 통계를 출력합니다.
       running loss += loss.item()
       if i % 2000 == 1999: # print every 2000 mini-batches
          print(f'[{epoch + 1}, {i + 1:5d}] loss: {running loss / 2000:.3f}',end=' | ')
          running loss = 0.0
```

Test the network on the test data

```
correct = 0
   total = 0
   net.eval()
   # 학습 중이 아니므로, 출력에 대한 변화도를 계산할 필요가 없습니다
   with torch.no grad():
       for data in test dataloader:
          images, labels = data
          images, labels = images.to(device), labels.to(device)
          # 신경망에 이미지를 통과시켜 출력을 계산합니다.
          outputs = net(images)
          # 가장 높은 값(energy)를 갖는 분류(class)를 정답으로 선택하겠습니다
          , predicted = torch.max(outputs.data, 1)
          total += labels.size(0)
          correct += (predicted == labels).sum().item()
   print(f'Accuracy on the 10000 test images: {100 * correct // total} %')
print('Finished Training')
```

```
[1, 2000] loss: 2.279 | [1, 4000] loss: 2.187 | [1, 6000] loss: 2.149 | Accuracy on the 10000 test images: 33 % [2, 2000] loss: 2.122 | [2, 4000] loss: 2.101 | [2, 6000] loss: 2.072 | Accuracy on the 10000 test images: 40 % [3, 2000] loss: 2.050 | [3, 4000] loss: 2.036 | [3, 6000] loss: 2.028 | Accuracy on the 10000 test images: 44 % [4, 2000] loss: 2.014 | [4, 4000] loss: 1.999 | [4, 6000] loss: 2.002 | Accuracy on the 10000 test images: 47 % Finished Training
```

Exercise 2. Train VGG (A) Network on CIFAR-10

Step:

- 1. Implement VGG11 network
- 2. Change the fully connected part (use only one fc)
- Conv input channels: 3, output channels: 64
- Maxpooling
- Conv input channels: 64, output channels: 128
- Maxpooling
- Conv input channels: 128, output channels: 256
- Conv input channels: 256, output channels: 256
- Maxpooling
- Conv input channels: 256, output channels: 512
- Conv input channels: 512, output channels: 512
- Maxpooling
- Conv input channels: 512, output channels: 512
- Conv input channels: 512, output channels: 512
- Maxpooling

	ConvNet Configuration								
Α	A-LRN	В	С	D	E				
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight				
layers	layers	layers	layers	layers	layers				
	input (224 × 224 RGB image)								
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64				
	LRN	conv3-64	conv3-64	conv3-64	conv3-64				
	maxpool								
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128				
		conv3-128	conv3-128	conv3-128	conv3-128				
	maxpool								
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256				
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256				
			conv1-256	conv3-256	conv3-256				
					conv3-256				
	maxpool								
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512				
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512				
			conv1-512	conv3-512	conv3-512				
					conv3-512				
			pool						
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512				
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512				
			conv1-512	conv3-512	conv3-512				
					conv3-512				
		maxpool							
		FC-4096							
		FC-4096							
	FC-1000								
	soft-max								

Every conv layer: kernel size: 3, padding: 1 Every max pooling layer: kernel size 2, stride 2

Exercise 2-2. Train VGG (D) Network on CIFAR-10

Step:

- 1. Implement VGG16 network
- 2. Change the fully connected part (use three fc layers)
- 3. Apply dropout of 0.5 to fc layers
- Conv input channels: 3, output channels: 64
- Conv input channels: 64, output channels: 64
- Maxpooling
- Conv input channels: 64, output channels: 128
- Conv input channels: 128, output channels: 128
- Maxpooling
- Conv input channels: 128, output channels: 256
- Conv input channels: 256, output channels: 256
- Conv input channels: 256, output channels: 256
- Maxpooling
- Conv input channels: 256, output channels: 512
- Conv input channels: 512, output channels: 512
- Conv input channels: 512, output channels: 512
- Maxpooling
- Conv input channels: 512, output channels: 512
- Conv input channels: 512 ,output channels: 512
- Conv input channels: 512 ,output channels: 512
- Maxpooling

		ConvNet C			
Α	A-LRN	В	C	D	Е
11 weight	11 weight	13 weight	16 weigh	16 weight	19 weight
layers	layers	layers	layers	layers	layers
	i	ge)			
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64
	LRN	conv3-64	conv3-64	conv3-64	conv3-64
conv3-128	conv3-128	conv3-128	conv3-12	conv3-128	conv3-128
		conv3-128	conv3-12	conv3-128	conv3-128
		pool			
conv3-256	conv3-256	conv3-256	conv3-25	conv3-256	conv3-256
conv3-256	conv3-256	conv3-256	conv3-25	conv3-256	conv3-256
			conv1-25	conv3-256	conv3-256
			pool		conv3-256
conv3-512	conv3-512	conv3-512	conv3-51	conv3-512	conv3-512
conv3-512	conv3-512	conv3-512	conv3-51	conv3-512	conv3-512
			conv1-51	conv3-512	conv3-512
					conv3-512
		pool			
conv3-512	conv3-512	conv3-512	conv3-51	conv3-512	conv3-512
conv3-512	conv3-512	conv3-512	conv3-51	conv3-512	conv3-512
			conv1-51	conv3-512	conv3-512
			pool		conv3-512
do 2					

Every conv layer: kernel size: 3, padding:

Every max pooling layer: kernel size 2, stride 2