Unidad 2 – Cálculo Integral

30/3

El problema del área

Surgio

En principio, nuestro objetivo será, pues así históricamente el concepto de integral, calcular el área de S regiones del plano como la de la figura. Más precisamente, si f está definida en [a,b] y $f(x) \geq 0$ en [a,b] sea $S = \{(x,y) \in \mathbb{R} : a \leq x \leq b, 0 \leq y \leq f(x)\}$.

Primero deberíamos preguntarnos cuál es el significado de la palabra "área". En cursos avanzados de Análisis Matemático, se da una definción axiomática de área.

Idea: El área es una función \mathcal{A} que asigna a ciertas regiones del plano ("regiones medibles") un número real. Veamos algunas condiciones que debe verificar esta función para ser un área. Sea \mathcal{M} el conjunto de regiones medibles (familia de subconjuntos del plano que continene a los rectángulos):

$$\mathcal{A}:\mathcal{M}
ightarrow \mathbb{R}_0^+$$

tal que:

- 1) $A(R) \ge 0 \ \forall R \in \mathcal{M}$.
- 2) Si R es un rectángulo de base b y altura h, A(R) = bh.
- 3) Si $R_1 \subseteq R_2$ entonces $\mathcal{A}(R_1) \leq \mathcal{A}(R_2) \ \forall R_1, R_2 \in \mathcal{M}$.
- 4) $\forall R_1, R_2 \in \mathcal{M}, \mathcal{A}(R_1 \cup R_2) = \mathcal{A}(R_1) + \mathcal{A}(R_2) \mathcal{A}(R_1 \cap R_2)$
- 5) Si R_1 es congruente con R_2 entonces $\mathcal{A}(R_1) = \mathcal{A}(R_2)$.

Para ciertas figuras ya conocemos la fórmula que permite calcular su área a partir de ciertos datos de éstas, por ejemplo:

$$\mathcal{A}(R) = bh$$

$$\mathcal{A}(T) = \frac{bh}{2}$$

$$\mathcal{A}(P) = \mathcal{A}(T_1) + \mathcal{A}(T_2) + \mathcal{A}(T_3) + \mathcal{A}(T_4)$$

Para regiones más generales, que contengan lados curvos, la idea es aproximar su área a través de regiones poligonales.

Ejemplo: Área de C_r un círculo de radio r.

 1°) Consideramos la sucesión de polígonos P_n , regulares, de n lados, inscriptos en C_r .

Si
$$\alpha_n = \frac{2\pi}{n}$$
, $\sin\left(\frac{\alpha_n}{2}\right) = \frac{b_n/2}{r} \Rightarrow b_n = 2r\sin\left(\frac{\alpha_n}{2}\right)$ y $\cos\frac{\alpha_n}{2} = \frac{h_n}{r} \Rightarrow h_n = r\cos\left(\frac{\alpha_n}{2}\right)$. Por lo tanto

$$\mathcal{A}(P_n) = n\mathcal{A}(T_n) = n\frac{b_n h_n}{2} = n\frac{1}{2}2r\sin\left(\frac{\alpha_n}{2}\right)r\cos\left(\frac{\alpha_n}{2}\right)$$
$$= nr^2\sin\left(\frac{\alpha_n}{2}\right)\cos\left(\frac{\alpha_n}{2}\right) = nr^2\frac{1}{2}\sin\left(\alpha_n\right)$$
$$= \frac{1}{2}nr^2\sin\left(\frac{2\pi}{n}\right)$$

6 A(TA) = A(PB)

2º) Consideramos ahora la sucesión de polígonos Q_n , regulares, de n lados, circunscriptos a C_r .

Y sean T_n los n triángulos cuya unión es Q_n .

Si
$$\alpha_n = \frac{2\pi}{n}$$
, $\tan \frac{\alpha_n}{2} = \frac{b_n/2}{h_n} \underset{h_n=r}{=} \frac{b_n}{2r} \Rightarrow b_n = 2r \tan \frac{\alpha_n}{2} \text{ y } h_n = r$
Por lo tanto

$$\mathcal{A}(Q_n) = n\mathcal{A}(T_n) = n\frac{b_n h_n}{2} = n\frac{1}{2}2r\tan\left(\frac{\alpha_n}{2}\right)r$$
$$= nr^2\tan\left(\frac{\alpha_n}{2}\right) = nr^2\tan\left(\frac{\pi}{n}\right)$$

Claramente, para cada n

$$\mathcal{A}(P_n) \le \mathcal{A}(C_r) \le \mathcal{A}(Q_n)$$

Además

$$\lim_{n \to \infty} \mathcal{A}(P_n) = \lim_{n \to \infty} \frac{1}{2} n r^2 \sin\left(\frac{2\pi}{n}\right)$$
$$= \lim_{n \to \infty} \pi r^2 \underbrace{\frac{\sin\left(\frac{2\pi}{n}\right)}{\pi \frac{2}{n}}}_{1} = \pi r^2$$

у

$$\lim_{n \to \infty} \mathcal{A}(Q_n) = \lim_{n \to \infty} nr^2 \tan\left(\frac{\pi}{n}\right) = \lim_{n \to \infty} nr^2 \frac{\sin\left(\frac{\pi}{n}\right)}{\cos\left(\frac{\pi}{n}\right)}$$
$$= \lim_{n \to \infty} \frac{\pi r^2}{\cos\left(\frac{\pi}{n}\right)} \frac{\sin\left(\frac{\pi}{n}\right)}{\sum_{1}^{n}} = \pi r^2$$

Luego (Terema del sandwich) por principio de intercalación

$${\cal A}(C_r)=\pi r^2$$

Volvamos al problema original de calcular el área de la región

$$S = \{(x,y) \in \mathbb{R} : a \le x \le b, \ 0 \le y \le f(x)\}$$

Hagámoslo primero para caso particular de $f(x) = x^2$ en [a, b] = [0, 1], siendo $f(x) \ge 0$. 1°) Subdividimos el intervalo [0, 1] en n subintervaloes de igual tamaño y calculemos la suma de las áreas de los rectángulos R_i , cuyas bases son las longitudes de los subintervalos $\frac{1}{n}$ y las alturas son los valores que asume f en los extremos derechos de cada subintervalo, por ejemplo, para n=4 y n = 8:

Si
$$n = 4$$
, $\sum_{i=1}^{4} \mathcal{A}(R_i) = \sum_{i=1}^{8} \frac{1}{4} \left(\frac{i}{4}\right)^2 = \frac{1}{4} \left(\frac{1}{4}\right)^2 + \frac{1}{4} \left(\frac{2}{4}\right)^2 + \frac{1}{4} \left(\frac{3}{4}\right)^2 + \frac{1}{4} \left(\frac{4}{4}\right)^2 = \frac{15}{32} \simeq 0.46875$
Si $n = 8$, $\sum_{i=1}^{8} \mathcal{A}(R_i) = \sum_{i=1}^{8} \frac{1}{8} \left(\frac{i}{8}\right)^2 = \frac{51}{128} \simeq 0.398438$

Si dividimos el intervalo [0,1] en n partes iguales tendremos que cada subintervalo es de la forma $[\frac{i-1}{n},\frac{i}{n}]$ para $i=1,\dots,n$ y

$$A(R_i) = \frac{1}{n} f\left(\frac{i}{n}\right) = \frac{1}{n} \left(\frac{i}{n}\right)^2 \qquad \text{para } i = 1, \dots, n$$

Observemos que esta división del [0,1] divide a la región S en n subregiones S_i y que para cada $i=1,\ldots,n$ es $S_i\subseteq R_i$ luego

$$\mathcal{A}(S_i) \leq \mathcal{A}(R_i)$$
 para $i = 1, \dots, n$

y por lo tanto,

$$\mathcal{A}(S) = \sum_{i=1}^{n} \mathcal{A}(S_i) \le \sum_{i=1}^{n} \mathcal{A}(R_i) = \sum_{i=1}^{n} \frac{1}{n} \left(\frac{i}{n}\right)^2 = \frac{1}{n^3} \sum_{i=1}^{n} i^2$$

$$= \frac{1}{n^3} \frac{n(n+1)(2n+1)}{6} = \frac{(n+1)(2n+1)}{6n^2} = U_n$$
(2)

Notaremos con U_n a dicha suma $\sum_{i=1}^{n} \mathcal{A}(R_i)$ y llamaremos suma superior de la función f asociada a la división del intervalo [0,1] en n partes iguales.

 $2^{\rm o})$ Volvamos a hacer un trabajo similar al hecho en $1^{\rm o})$ pero tomando rectángulos $r_i,$ cuyas bases son las longitudes de los subintervalos $\frac{1}{n}$ y las alturas son los valores que asume f en los extremos izquierdos de cada subintervalo, por ejemplo, para n=4:

Tenemos para n=4 que $\sum\limits_{i=1}^4 \mathcal{A}(r_i)=\frac{1}{4}\left(0\right)^2+\frac{1}{4}\left(\frac{1}{4}\right)^2+\frac{1}{4}\left(\frac{2}{4}\right)^2+\frac{1}{4}\left(\frac{3}{4}\right)^2=\frac{7}{32}\simeq 0.21875$ Para n cualquiera, cada $r_i\subseteq S_i$ para $i=1,\ldots,n$ entonces $\mathcal{A}(r_i)\leq \mathcal{A}(S_i)$ Por lo tanto $\sum\limits_{i=1}^n \mathcal{A}(r_i)\leq \sum\limits_{i=1}^n \mathcal{A}(S_i)=\mathcal{A}(S)$

$$\mathcal{A}(r_i) \leq \mathcal{A}(S_i)$$

$$\sum_{i=1}^{n} \mathcal{A}(r_i) \le \sum_{i=1}^{n} \mathcal{A}(S_i) = \mathcal{A}(S)$$

у

$$\sum_{i=1}^{n} \mathcal{A}(r_i) = \sum_{i=1}^{n} \frac{1}{n} (\frac{i-1}{n})^2 = \frac{1}{n^3} \sum_{i=1}^{n} (i-1)^2 = \frac{1}{2(n-1)+1}$$

$$= \frac{1}{n^3} \sum_{j=0}^{n-1} j^2 = \frac{1}{n^3} \frac{(n-1)n(2n-2+1)}{6}$$

$$= \frac{(n-1)(2n-1)}{6n^2} = L_n$$

Notaremos con L_n a dicha suma $\sum_{i=1}^{n} \mathcal{A}(r_i)$ y la llamaremos suma inferior de la función f asociada a la subdivisión de [0,1] en n subintervalos iguales. Por (2) y (3), tenemos entonces que

$$L_n \le \mathcal{A}(S) \le U_n \quad \forall n \in \mathbb{N}$$

Cada una de las sumas L_n y U_n es una aproximación del área de S que "mejora" a medida que aumenta n. Estimemos

$$\lim_{n \to \infty} U_n = \lim_{n \to \infty} \frac{(n+1)(2n+1)}{6n^2} = \lim_{n \to \infty} \frac{2n^2 + 3n + 1}{6n^2} = \frac{1}{3}$$

$$\lim_{n \to \infty} L_n = \lim_{n \to \infty} \frac{(n-1)(2n-1)}{6n^2} = \lim_{n \to \infty} \frac{2n^2 - 3n + 1}{6n^2} = \frac{1}{3}$$

Resulta natural decir que

$$\mathcal{A}(S) = \frac{1}{3}$$

Pero, cabe preguntarse si para toda f será $\lim_{n\to\infty}U_n=\lim_{n\to\infty}L_n$? o siempre existirán dichos límites?

Suma superior e inferior de una funcioón continua. Sea $f:[a,b] \to \mathbb{R}$ continua en [a,b]. Particionamos el [a,b] en n puntos

$$a = x_0 < x_1 < x_2 < \ldots < x_{n-1} < x_n = b$$

De manera tal que cada subintervalo $[x_{i-1}, x_i]$ tenga (igual) longitud $\Delta x_i = x_i - x_{i-1} = \frac{b-a}{r}$ para

Como f es continua (también, por serlo en [a,b]) en cada $[x_{i-1},x_i]$ para $i=1,\ldots,n$ por Teorema de Weierstrass existen $\alpha_i,\beta_i\in[x_{i-1},x_i]$ donde f asume el mínimo y el máximo respectivamente en dicho subintervalo es decir $\alpha_i,\beta_i \in [x_{i-1},x_i]$ tales que

$$f(\alpha_i) \leq f(x) \quad \forall x \in [x_{i-1}, x_i]$$

 $f(\beta_i) \geq f(x) \quad \forall x \in [x_{i-1}, x_i]$

Definimos

$$U_n(f) = \sum_{i=1}^n f(\beta_i) \Delta x_i \quad \text{suma superior de } f$$

$$L_n(f) = \sum_{i=1}^n f(\alpha_i) \Delta x_i \quad \text{suma inferior de } f$$

$$X_i \in \beta_i \times X_i$$

Teorema: Si f es continua en [a, b] entonces

- i) existen $\lim_{n\to\infty} U_n$ y $\lim_{n\to\infty} L_n$ ii) $\lim_{n\to\infty} U_n = \lim_{n\to\infty} L_n$ Dem: no la hacemos.

Observación: Sea $c_i \in [x_{i-1}, x_i]$, cualquiera, para cada $i=1,\dots,n$ se tiene

$$f(\alpha_i) \leq f(c_i) \leq f(\beta_i) \quad \forall i = 1, \dots, n.$$

Luego

$$L_n(f) \le \sum_{i=1}^n f(c_i) \, \Delta x_i \le U_n(f)$$

Si f es continua en [a,b], por teorema anterior $\lim_{n\to\infty}U_n=\lim_{n\to\infty}L_n=I$ sigue que

$$\lim_{n \to \infty} \sum_{i=1}^{n} f(c_i) \, \Delta x_i = I$$

Definición: Sea f continua y no negativa en [a,b] y sea $S=\{(x,y)\in\mathbb{R}:a\leq x\leq b,\ 0\leq y\leq f(x)\}$ definimos $\mathcal{A}\left(S\right)=\sum_{i=1}^{n}f\left(c_{i}\right)\Delta x_{i}=\sum_{i=1}^{n}f\left(c_{i}\right)\frac{b-a}{n}$

$$A(S) = \sum_{i=1}^{n} f(c_i) \Delta x_i = \sum_{i=1}^{n} f(c_i) \frac{b-c}{n}$$

cualquiera sea $c_i \in [x_{i-1}, x_i]$ para $i = 1, \dots, n$ con $x_i = a + i \frac{b-a}{n}$.

De ahora en más buscaremos obtener resultados que nos permitan un cálculo más sencillo que el procedimiento anterior.

La integral definida.

Las sumas que se obtuvieron en el ejemplo $f(x) = x^2$ en [0,1] son ejemplos de una clase más general llamada sumas de Riemann.

Definición: Sea $\mathcal{P} = \{x_0, x_1, \dots, x_n\}$ un conjunto de puntos de [a,b] tales que $a = x_0 < x_1 < x_2 < x_3 < x_4 < x_4 < x_5 < x_5$ $\dots < x_{n-1} < x_n = b$. Decimos que es una partición de [a, b].

Ejemplo: $f = \{x_0, x_1, x_2, x_3, x_4\}$ es una partición de [a, b] si $a = x_0 < x_1 < x_2 < x_3 < x_4 = b$.

Definición: Llamamos [a, b] al conjunto de todas las particiones posibles de [a, b].

Una partición $\mathcal{P} \in \mathcal{P}[a,b]$ divide al intervalo [a,b] en n subintervalos $[x_{i-1},x_i]$ para $i=1,\ldots,n$ cuyas longitudes (no necesariamente iguales entre si) son

$$\Delta x_i = \log([x_{i-1}, x_i]) = x_i - x_{i-1}$$

Definición: Si para una partición $\mathcal{F} \in [a,b]$ se tiene que $\Delta x_i = \frac{b-a}{n} \ \forall i$, decimos que es regular (puede notarsen), en ese caso

$$x_i = a + i \frac{b-a}{n}$$
 $\forall i = 1, \dots, n$

Definición: Sea $= \{x_0, x_1, \dots, x_n\}$ una partición de [a, b] y $c_i \in [x_{i-1}, x_i]$. Llamamos a la suma

$$\sum_{i=1}^{n} f\left(c_{i}\right) \Delta x_{i} \qquad \text{Suma de Riemann de } f \text{ en } [a,b] \text{ asociada a } \mathcal{P}$$

Observación: Para $f(x)=x^2$ en $[0,1],\,U_n$ y L_n son ejemplos de sumas de Riemann asociadas a la partición regular \mathcal{P}_n .

¿Les parece que funcionará todo lo hecho en otro ejemplo, si las particiones no fuesen regulares?

Definición: Llamamos norma de la partición P, al número

$$\|\mathcal{P}\| = \max\{ |\Delta x_i| : i = 1, \dots, n\}\|$$

Notas:

1) Si \mathcal{P} es regular $\|\mathcal{P}\| = \frac{b-a}{n}$. Por lo tanto

$$\|\mathcal{P}\| \to 0 \Leftrightarrow n \to \infty$$

2) Si $\mathcal P$ no es regular, lo anterior no es cierto, por ejemplo en [a,b]=[0,2] consideramos las particiones

donde $\|\mathcal{P}_{\mathbf{j}}\|=1$ y n=2; $\|\mathcal{P}_{\mathbf{j}}\|=1$ y n=3; $\|\mathcal{P}_{\mathbf{j}}\|=1$ y n=4 y así podemos agregar tantos puntos como quisiéramos, sin modificar la norma de la partición.

 Definición: Sea $f:[a,b] \to \mathbb{R}$ y $\mathcal{P} \in \mathcal{P}[a,b], \mathcal{P} = \{x_0,x_1,\ldots,x_n\}$ y sean $c_i \in [x_{i-1},x_i]$, para $i=1,\ldots,n$. Decimos que $\lim_{\|\mathcal{P}\|\to 0}\sum_{i=1}^n f(c_i)\Delta x_i=I$ si y sólo si $\forall \epsilon>0,\ \exists \delta>0$ tal que si $\|\mathcal{P}\|<\delta$ entonces $|\sum_{i=1}^{n} f(c_i)\Delta x_i - I| < \epsilon$ independientemente de la elección de los c_i . **Definición:** Sea $f:[a,b]\to\mathbb{R}$, decimos que f es integrable en [a,b] si existe

$$\lim_{\|\mathcal{P}\|\to 0} \sum_{i=1}^{n} f(c_i) \Delta x_i \qquad \qquad \text{integral definida de } f \text{ desde a hasta b y lo notamos}$$

y en este caso, llamamos a ese número integral definida de $\ f$ desde $\overset{\bullet}{a}$

$$\int_{a}^{b} f(x)dx = \lim_{\|\mathcal{P}\| \to 0} \sum_{i=1}^{n} f(c_i) \Delta x_i$$

Observación:

- 1) $\int_a^b f(x)dx$ se conoce también con el nombre de integral de Riemann. (1826-1866).
- 2) Nombres

3) Podemos poner:

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} f(t) dt = \int_{a}^{b} f(t) dt$$

queriendo significar lo mismo, pues $\int_a^b f(x) dx$ es un número y no depende de x. Extendemos la definición de integral definida para a > b y a = b.

Definición:

Si
$$a > b$$
, $\int_a^b f(x)dx = -\int_b^a f(x)dx$.
Si $a = b$, $\int_a^b f(x)dx = 0$.
Teorema: Si f es integrable en $[a,b]$ entonces

Si
$$a = b$$
. $\int_a^b f(x)dx = 0$.

$$\int_a^b f(x)dx = \lim_{n \to \infty} \sum_{i=1}^n f\left(a + i\frac{b-a}{n}\right) \left(\frac{b-a}{n}\right) = \lim_{n \to \infty} \sum_{i=0}^{n-1} f\left(a + i\frac{b-a}{n}\right)$$

Dem: Si f es integrable en [a,b], por definición, las sumas de Riemann tienden a $\int_a^b f$ para toda partición $\mathcal P$ tal que $\|\mathcal P\| \to 0$ y cualesquiera sean los puntos c_i elegidos en cada subintervalo. En particular, si tomamos \mathcal{P}_n regular, será $\|\mathcal{P}\| = \frac{b-a}{n} = \Delta x_i \ \forall i \ y \ \text{cuando} \ \|\mathcal{P}\| \to 0 \Leftrightarrow n \to \infty.$ además, $x_i = a + i \frac{b-a}{n}$ para $i = 1, \dots, n$ y podemos elegir $c_i = x_{i-1}$ o $c_i = x_i$.

Nota: Relación de la integral definida con el área. No toda integral definida representa un área. $b, \ 0 \le y \le f(x)$

· Si no, por ejemplo

 $\int_a^b f(x) dx = A_1 - A_2$, donde A_1 es el área de la región por debajo de la \mathcal{G}_f y por encima del eje x, donde f es positiva y A_2 es el área de la región por debajo del eje x y por encima de la \mathcal{G}_f , donde fes negativa.

Condiciones necesarias y suficientes de integrabilidad.

Teorema (Condiciones sufficientes de integrabilidad): Si f es continua o mónotona en [a,b]entonces es integrable.

Dem: no la hacemos.

Ejemplo: Calcular $\int_0^3 (x^2 - 5x) dx$. Sea $f(x) = x^2 - 5x$ es continua por tanto integrable. Por teorema

$$\int_{0}^{3} (x^{2} - 5x) dx = \lim_{n \to \infty} \frac{3}{n} \sum_{i=1}^{n} f\left(i\frac{3}{n}\right) = \lim_{n \to \infty} \frac{3}{n} \sum_{i=1}^{n} \left(\left(i\frac{3}{n}\right)^{2} - 5\left(i\frac{3}{n}\right)\right) =$$

$$= \lim_{n \to \infty} \left(\frac{27}{n^{3}} \sum_{i=1}^{n} i^{2} - \frac{45}{n^{2}} \sum_{i=1}^{n} i\right) =$$

$$= \lim_{n \to \infty} \left(\frac{27}{n^{3}} \frac{n(n+1)(2n+1)}{6} - \frac{45}{n^{2}} \frac{n(n+1)}{2}\right) =$$

$$= \lim_{n \to \infty} \left(\frac{9}{2} \frac{(n+1)(2n+1)}{n^{2}} - \frac{45}{2} \frac{(n+1)}{n}\right) = 9 - \frac{45}{2} = -\frac{27}{2} \text{ no es un área!!}$$

Teorema (Condición necesaria de integrabilidad): Si f es integrable en [a,b] entonces f es acotada en [a, b]. Es decir, existe M > 0 tal que $||f(x)| \le M \ \forall x \in [a, b]$. El teorema nos dice que si f no es acotada en [a,b] no es integrable. Por ejemplo

$$f(x) = \begin{cases} \frac{1}{x} & x \in (0, 1] \\ 0 & x = 0 \end{cases}$$

no es integrable en [0,1].

El recíproco del teorema anterior no es cierto. Es decir,

f acotada $\Rightarrow f$ integrable

Por ejemplo: Función de Dirichlet $f:[0,1] \to \mathbb{R}$ definida por

$$f(x) = \begin{cases} 1 & \text{si } x \in \mathbb{Q} \\ 0 & \text{si } x \notin \mathbb{Q} \end{cases}$$

no es integrable aunque acotada, en efecto, $U_n(f) = \sum_{i=1}^n \frac{1}{n} 1 = n \frac{1}{n} = 1$ y $L_n(f) = \sum_{i=1}^n \frac{1}{n} 0 = 0$ luego $\lim_{n\to\infty} U_n \neq \lim_{n\to\infty} L_n$ por lo tanto f no es integrable aunque acotada $|f(x)| \leq 1 \forall x$.

Propiedades de la integral definida.

Teorema: Sean f y g integrables en [a,b]. Entonces:

- sorema: Sean f g integrables en [a, b]. Encorces.

 a) $\int_a^b cdx = c(b-a) \quad \forall c \in \mathbb{R}$.

 b) $\int_a^b (f+g)(x) dx = \int_a^b f(x) dx + \int_a^b g(x) dx$ (linealidad)

 c) $\int_a^b cf(x) dx = c \int_a^b f(x) dx \quad \forall c \in \mathbb{R}$ (homogeneidad)

 d) $\int_a^b (f-g)(x) dx = \int_a^b f(x) dx \int_a^b g(x) dx$ e) $\int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx$ cualquiera sea c y siempre que exista $\int_a^c f$ o $\int_c^b f$

Dem: a) Como f(x) = c es continua, es integrable en [a,b], sea \mathcal{P}_n una partición regular y $c_i \in [x_{i-1}, x_i], \lim_{\|\mathcal{P}\| \to 0} \sum_{i=1}^n f(c_i) \Delta x_i = \sum_{i=1}^n c \frac{b-a}{n} = c(b-a).$

b) Sabemos que $\int_a^b f(x)dx = \lim_{\|\mathcal{P}\| \to 0} \sum_{i=1}^n f\left(c_i\right) \Delta x_i = I_1\left(1\right)$ y que $\int_a^b g(x)dx = \lim_{\|\mathcal{P}\| \to 0} \sum_{i=1}^n g\left(d_i\right) \Delta x_i = I_1\left(1\right)$ $I_2(2)$.

Queremos ver que $\int_a^b (f(x) + g(x))dx = \lim_{\|\mathcal{P}\| \to 0} \sum_{i=1}^n (f(r_i) + g(r_i)) \Delta x_i = I_1 + I_2$ (3) independientemente de la elección de los $r_i \in [x_{i-1}, x_i]$. Sea $\varepsilon > 0$, consideremos $\varepsilon' = \frac{\varepsilon}{2}$.

Por (1) existe $\delta_1 > 0$ tal que si $\|\mathcal{P}\| < \delta_1 \Rightarrow \left|\sum_{i=1}^n f(c_i) \Delta x_i - I_1\right| < \frac{\varepsilon}{2}$, cualesquiera sean $c_i \in [x_{i-1}, x_i].$

Por (2) existe $\delta_2 > 0$ tal que si $\|\mathcal{P}\| < \delta_2 \Rightarrow \left| \sum_{i=1}^n g\left(d_i\right) \Delta x_i - I_2 \right| < \frac{\varepsilon}{2}$, cualesquiera sean $d_i \in [x_{i-1}, x_i].$

Tomando $\delta = \min(\delta_1, \delta_2)$ tenemos que si \mathcal{P} es una partición tal que $\|\mathcal{P}\| < \delta$, entonces

$$I_1 - \frac{\varepsilon}{2} < \sum_{i=1}^n f(c_i) \Delta x_i < I_1 + \frac{\varepsilon}{2}$$

$$I_2 - \frac{\varepsilon}{2} < \sum_{i=1}^n g(d_i) \Delta x_i < I_2 + \frac{\varepsilon}{2}$$

tomando $c_i = d_i = r_i \in [x_{i-1}, x_i]$ y sumando miembro a miembro se tiene

$$I_1 + I_2 - \varepsilon < \sum_{i=1}^{n} (f(r_i) + g(r_i)) \Delta x_i < I_1 + I_2 + \varepsilon$$

o sea

$$\left| \sum_{i=1}^{n} \left(f\left(r_{i} \right) + g(r_{i}) \right) \Delta x_{i} - \left(I_{1} + I_{2} \right) \right| < \varepsilon$$

y luego vale (3).

- c) ejercicio de práctica
- d) se deduce de b) y c), queda como ejercicio.

que $x_k=c$. Llamamos $\mathcal{P}_1=\{\ddot{x}_0,...,x_k\}$ y $\mathcal{P}_2=\{x_k,...,x_n\}$ que serán particiones de [a,c] y de [c,b] respectivamente y $\mathcal{P}_1\cup\mathcal{P}_2=\mathcal{P}$

Es claro que si $\|\mathcal{P}\| \to 0$ también $\|\mathcal{P}_1\| \to 0$ y $\|\mathcal{P}_2\| \to 0$.

Renombremos los puntos de $\mathcal{P}_2 = \{t_0, ..., t_m\}, \ m = n - k, \ t_0 = x_k = c, \ t_m = x_{k+m} = x_n = b.$

$$\int_{a}^{b} f(x)dx = \lim_{\|\mathcal{P}\| \to 0} \sum_{i=1}^{n} f(c_{i}) \Delta x_{i} = \lim_{\|\mathcal{P}\| \to 0} \left(\sum_{i=1}^{k} f(c_{i}) \Delta x_{i} + \sum_{i=k+1}^{n} f(c_{i}) \Delta x_{i} \right)$$

$$= \underbrace{\lim_{\|\mathcal{P}_{1}\| \to 0} \sum_{i=1}^{k} f(c_{i}) \Delta x_{i}}_{\|\mathcal{P}_{2}\| \to 0} + \underbrace{\lim_{\mathcal{P}_{2}\| \to 0} \sum_{i=1}^{m} f(c'_{i}) \Delta t_{i}}_{\text{i}}$$

con $c_i' \in [t_{i-1}, t_i]$. Si existe alguno de los límites L_1 o L_2 entonces existe el otro y vale

$$\int_a^b f = \int_a^c f + \int_c^b f$$

 2° caso: c < a < b. Por 1° caso,

$$\int_c^b f = \int_c^a f + \int_a^b f \Rightarrow \int_a^b f = -\int_c^a f + \int_c^b f \Rightarrow \int_a^b f = \int_a^c f + \int_c^b f$$

<u>3º caso</u>: a < b < c Se demuestra de manera análoga al 2º.

Ejemplos:

$$f(x) = \begin{cases} k & \text{si } x = c \\ 0 & \text{si } x \neq c \end{cases}$$

рага $c \in [a,b]$. Probar que $\int_a^b f = 0$. Para toda $\mathcal P$ se tiene que

$$0 \leq \sum_{i=1}^{n} f(c_i) \Delta x_i \leq 1 \underbrace{\Delta x_k}_{\text{donde está } c} \leq \|\mathcal{P}\|$$

Luego si $\|\mathcal{P}\| \to 0 \Rightarrow \sum_{i=1}^{n} f(c_i) \Delta x_i \to 0 \Rightarrow \int_a^b f(x) dx = 0$ 2) Sea f continua en [a, b] excepto en c donde tiene una discontinuidad evitable.

Entonces podemos definir g continua en [a,b] y por tanto integrable,

$$g(x) = \begin{cases} f(x) & \text{si } x \neq c \\ \lim_{x \to c} f(x) & \text{si } x = c \end{cases}$$

entonces

$$f(x) - g(x) = \begin{cases} 0 & \text{si } x \neq c \\ f(c) - \lim_{x \to c} f(x) & \text{si } x = c \end{cases}$$

Luego por 1) resulta f-g integrable y $\int_a^b (f-g) = 0$, además por prop b) y teniendo en cuenta que f = (f - g) + g resulta f integrable y

$$\int_{a}^{b} f = \int_{a}^{b} (f - g) + \int_{a}^{b} g = \int_{a}^{b} g$$

3) Repitiendo este razonamiento, se puede probar que si f tiene un número finito de discontinuidades evitables, f es integrable.

 Definición: Se dice que f es seccionalmente continua en [a,b], si f tiene un número finito de discontinuidades en [a,b], del tipo evitable o del tipo salto finito. Es decir, existe una partición $\mathcal P$ de

[a,b] tal que f es continua en cada subintervalo abierto de $\mathcal P$ y existen los límites laterales para cada uno de los extremos de los subintervalos.

Teorema (Condición suficiente de integrabilidad): Si f es seccionalmente continua en [a,b]entonces f es integrable en [a,b]. Además

$$\int_{a}^{b} f(x)dx = \sum_{i=1}^{n} \int_{x_{i-1}}^{x_i} f(t)dt$$

 $\int_{a}^{b} f(x)dx = \sum_{i=1}^{n} \int_{x_{i-1}}^{x_{i}} f(t)dt$ Sieudo (XI, -- ×n) $\lim_{t \to \infty} \int_{x_{i-1}}^{x_{i-1}} f(t)dt$ Un plus discord.

Propiedades de orden de la integral definida.

Teorema: Sean f, g integrables en [a, b]. Entonces

- a) si $f(x) \ge 0$ en $[a,b] \Rightarrow \int_a^b f(x)dx \ge 0$ b) si $f(x) \ge g(x)$ en $[a,b] \Rightarrow \int_a^b f(x)dx \ge \int_a^b g(x)dx$ c) si $m \le f(x) \le M$ en $[a,b] \Rightarrow m(b-a) \le \int_a^b f(x)dx \le M(b-a)$
- d) $\left| \int_a^b f(x) dx \right| \le \int_a^b |f(x)| dx$

Dem: a) f integrable entonces $\int_a^b f(x)dx = \lim_{\|\mathcal{P}\| \to 0} \sum_{i=1}^n f(c_i) \Delta x_i \ \forall c_i \in [x_{i-1}, x_i]$. Pero $f(c_i) \geq 0$,

 $\Delta x_i \geq 0 \ \forall i \ \text{luego} \ \sum_{i=1}^n f\left(c_i\right) \Delta x_i \geq 0 \ \text{para toda partición y por tanto} \ \lim_{\|\mathcal{P}\| \to 0} \sum_{i=1}^n f\left(c_i\right) \Delta x_i = 0$

- $\int_a^b f(x) dx \ge 0.$ b) Sea h(x) = f(x) g(x), como f y g son integrables es h integrable y $h(x) \ge 0$ luego por a) $0 \le \int_a^b h = \int_a^b f \int_a^b g$. c) ejercicio práctica.

d) Sabemos que
$$-|f| \le f \le |f|$$
 luego por b) es $-\int_a^b |f| = \int_a^b -|f| \le \int_a^b f \le \int_a^b |f|$ por lo tanto $\left| \int_a^b f(x) dx \right| \le \int_a^b |f(x)| dx$

Definición: Sea f integrable en [a, b], se define el valor promedio (o valor medio) de f en [a, b] al número

$$VP(f) = rac{1}{b-a} \int_a^b f(x) dx$$

Nos preguntamos, existe algún $\xi \in [a, b]$ para el cual $f(\xi)$ sea el VP(f)?

Teorema del Valor Medio para el cálculo integral: Sea f continua en [a, b]. Entonces existe $\xi \in [a, b]$ tal que $f(\xi) = VP(f)$. Es decir,

$$f(\xi)(b-a) = \int_{a}^{b} f(x)dx$$

Dem: ejercicio de práctica.