Automated Optimisation of Suction Caisson Foundations using a Computationally Efficient Elastoplastic Winkler Model

Suryasentana, S. K., **Byrne, B. W.** and Burd, H. J. University of Oxford

Offshore Wind – Coastal Structures Ursted

Structural Options

(d) 🖶

(b) #

Images from various websites

Suction Installation

Suction Installed Caissons

Oxford Research

- Limit States (ULS, SLS)
- Weight / Cost
- Installation

Industrialised Design

Automated Design Approach

Cast as a constrained optimisation problem

minimise	Volume of Caisson	
subject to	SLS requirements	
	ULS requirements	
	Installation requirements	

Iterative
requires fast caisson design method

OxCaisson

Elastoplastic Winkler model that can efficiently approximate the 3D finite element (3DFE) predictions of suction caisson behaviour in von Mises soil for any 6DoF loading conditions

Accuracy of 3DFE

Efficiency of Winkler

Suction Caisson Design

Orsted

- Full 6DoF loading
- OxCaisson: Family of fast design methods calibrated by 3D FE
 - FLS analysis in linear elastic soil
 - SLS analysis in non-linear elastic soil
 - ULS analysis in elasto-plastic soil

Design suction caisson foundation for wind turbine in offshore wind farm

Objective: find the optimal values of skirt length L and diameter D

Case Study Assumptions

- Water depth = 25m
- Cowden clay profile (PISA Project)

Factored design loads	SLS	ULS
Max. lateral load at RP	5.33 MN	7.2 MN
Max. bending moment at RP	219 MNm	295.65 MNm

Orsted

 $\pi D^3(0.004975 L/D + 0.0125)$ minimise

subject to

$$\theta_M \leq 0.5^{\circ}$$

 $p_{\text{suction}} \leq 350 \text{kPa}$

Volume of caisson

Suction pressure as per Houlsby & Byrne (2005)

Feasible Solutions

Contour plots of $d_{\rm IILS}$

Contour plots of θ_M

Contour plots of p_{suction}

Search space: $0 \le \frac{L}{D} \le 2$, $6 \le D \le 18$

Shaded regions: Feasible regions

Overlay the constraints for SLS, ULS & installation

- Optimisation of offshore wind farm designs require fast design methods
- oxCaisson is a fast design method for suction caissons that approximates the 3DFE predictions for ULS and SLS assessments
- Case study demonstrates the use of oxCaisson-LEPP to optimise the suction caisson design automatically and quickly

2019 Design Guidelines

$$\sqrt{\left(\frac{H}{h_0 V_0}\right)^2 + \left(\frac{M}{m_0 D V_0}\right)^2 - \frac{2aHM}{h_0 m_0 D V_0^2} - 4\frac{V}{V_0} \left(1 - \frac{V}{V_0}\right) = 0}$$

