Ciencia de Datos Igeniería Industrial UTN FRBA curso 15521

clase_00

agenda_clase00

- Consignas de la materia, presentación del equipo docente
- Features, samples, the curse of dimensionality
- Tipos de Aprendizaje, Supervisado vs No Supervisado
- Tipos de Datos
- Formato de los datos
- Data Science Workflow
- Primeras prácticas con Python

Propuesta de valor del curso

Preparar a los futuros ingenieros, profesionales, entusiastas y emprendedores para lidiar con complejidad en el contexto de la 4ta revolución industrial*.

^{*}https://www.weforum.org/agenda/2016/01/the-fourth-industrial-revolution-what-it-means-and-how-to-respond/

Misión del curso

Lograr que el estudiante termine el curso incorporando:

- 1. Conocimiento básico-intermedio de análisis de datos con Python
- 2. Fundamentos y métodos clásicos (y no tanto) de machine learning.
- 3. Realización y comunicación de un proyecto con modelos y técnicas de data science y machine learning sobre datos reales.
- 4. Incorporarse a una comunidad activa y creciente de ciencia de datos.

Herramientas del curso

- Comunicación semanal: por medio del google groups del curso.
- Comunicación diaria y comunitaria: server de Discord.
- Contexto del contenido: Slides de clase (apuntes solamente de soporte) + jupyter notebooks + canal de youtube.
- Programar: Python (Anaconda, Jupyter) para programar.
- Teoría de base: Libros.
- Ejercitación: Guía de ejercicios.

Equipo Docente

Nicolas Aguirre
Machine Learning Engineer
Phd Engineering
UTN-Université de Technologie de Troyes
Master OSS (UTN-UTT)
Ingeniero Industrial UTN BA

Santiago Chas
Data Scientist AlixPartners
Master candidate UBA-Data mining
Ingeniero Industrial UTN BA

Lucas Mareque
Becario de Investigación GIAR-GIBIO
Ingeniero Industrial UTN BA

Cluster online

cienciadedatosutnfrba@gmail.com

github.com/clusterai

Ciencia-de-Datos-UTN-FRBA

Bibliografia

Python Data Science handbook
https://jakevdp.github.io/PythonDataScienceHandbook/

An introduction to statistical learning https://www.statlearning.com/

Probabilistic Machine Learning: An Introduction https://probml.github.io/pml-book/book1.html
Probabilistic Machine Learning: Advanced Topics https://probml.github.io/pml-book/book2.html

Deep Learning book
https://www.deeplearningbook.org

Elements of Statistical Learning (Tibshirani)

Hands on Machine Learning with Scikit Learn (Geron)

Machine Learning & Pattern Recognition (Bishop)

Estructura del curso

Datos Estructurados Análisis **Exploratorio**de Datos

Aprendizaje Supervisado: Clasificación y regresión.

Reducciòn de dim. + regularizacion Aprendizaje No supervisado: clustering

Arboles

Redes Neuronales: Clasificación Redes
Neuronales:
Autoencoders

Estructura del curso

- 1. Análisis Exploratorio de Datos
 - Python
 - Datos Estructurados
- 2. Aprendizaje Supervisado
 - Clasificacion y Regresion
 - Linear and Logistic Regression
 - SVM and SVR
 - Arboles
 - Redes Neuronales
- 3. Aprendizaje No Supervisado
 - Clustering
 - Reducción de Dimensionalidad

Requisitos de aprobación

- Asistencia y seguimiento de las clases (4 faltas máximo).
- Trabajos prácticos (20%)
- Parcial teórico (40%)
- Trabajo práctico final (40%)

Machine Learning in a nutshell

Aprender y construir modelos desde los datos.

Modelado matematico

Machine Learning in a nutshell

^{*} Deep Learning with Python, Francoise Coillet

Samples (instancia) & Features (atributos)

Un dataset es un conjunto de samples (instancias) obtenidas a partir de un sensor.

Samples

Las samples corresponden a las instancias que obtenemos de una **muestra** de datos a partir de un sensor. Dicha muestra pertenece a una población que generalmente no conocemos por completo. Nuestro set de datos tendrá una cantidad *n* de samples.

Samples & Features

$x \in \mathbb{R}^d$ $x_i^T = [x_{i1}, x_{i2}, x_{i3}, ..., x_{id},]$

Dimensiones

Features/variables/atributos/dimensiones

Denominamos features (atributos o mediciones) a las **variables** que definen y caracterizan a cada sample (instancia). La cantidad de features/variables que posea un sample es equivalente a la cantidad de **dimensiones** que describen a esa instancia en un espacio vectorial de **d** dimensiones. Entonces cada sample podemos considerarla un vector de **d** dimensiones. Nuestros datos "viven" en un espacio d-dimensional. Además, cada una de la dimensiones es considerada una variable aleatoria que sigue una distribución de probabilidad conocida o desconocida.

Muestreo desde una función de densidad de probabilidad (desconocida)

Mediante sensores vamos a realizar multiples mediciones de un sistema, es decir vamos a **muestrear** multiples veces una variable aleatoria y obtener distintas realizaciones.

^[1] https://en.wikipedia.org/wiki/Maximum likelihood estimation

^[2] https://en.wikipedia.org/wiki/Kernel density estimation.

Samples (instancia) & Features (atributos)

¿Cuántas features/variables/dimensiones y cuantas instancias/samples hay en este ejemplo?

Data matrix

$$oldsymbol{\mathcal{A}}: \{x_0, x_1, ..., x_n\}$$
 $\mathbf{x}_{(n,d)} = egin{bmatrix} x_{00} & x_{01} & ... & x_{0d} \ x_{10} & x_{11} & ... & x_{1d} \ ... & ... & ... \ x_{n0} & x_{n1} & ... & x_{nd} \end{bmatrix}$

Data matrix

$$A: \{(x_0, y_0), (x_1, y_1), ..., (x_i, y_i), ..., (x_n, y_n)\}$$

$$\mathbf{X}_{(n,d)} = egin{bmatrix} x_{00} & x_{01} & \dots & x_{0d} \ x_{10} & x_{11} & \dots & x_{1d} \ \dots & \dots & \dots & \dots \ x_{n0} & x_{n1} & \dots & x_{nd} \end{bmatrix}$$

Sample-to-feature ratio

Cuando el número *n* de samples < número de features *d* la relación entre instancias y dimensiones es menor a uno y eso implica mayor dificultad para poder explicar y describir la distribución de las muestras/instancias.

^{*}Indyk, P., & Motwani, R. (1998, May). Approximate nearest neighbors: towards removing the curse of dimensionality. In Proceedings of the thirtieth annual ACM symposium on Theory of computing (pp. 604-613).

Distribuciones de Probabilidad y variables aleatorias

Primer caso: univariadas

Distribución de probabilidad

La distribución de probabilidad es la **función** que asigna probabilidades de ocurrencia a distintos estados posibles de un experimento [1]. Es la **descripción** de un fenómeno **aleatorio** en términos de un espacio de muestreos y probabilidades de eventos.

Variable aleatoria

Funciones de densidad de probabilidad

Función de densidad de probabilidad discreta (izq) y continua (der).

$$\sum_{i=1}^{n} p(x_i) = 1 \qquad \int_{\mathcal{X}} f(x) dx = 1$$

Funciones acumuladas de probabilidad

Función de densidad acumulada

$$F(x) = P(X \le x) \quad \forall \ x \in \mathbb{R}$$

Función de densidad acumulada discreta

$$F(x) = \sum_{x_k \le x} P(x_k)$$

Función de densidad acumulada continua

$$F(b) = P(x \le b) = \int_{-\infty}^{b} f(x)dx$$

Esperanza y Varianza de una VA

Valor Esperado de una variable aleatoria discreta (izq) y continua (der):

$$E(X) = \sum x P(x)$$

$$E(X) = \int_{-\infty}^{+\infty} x \cdot f(x) dx$$

Varianza: Se utilizan para describir la variabilidad de una variable aleatoria en referencia a su esperanza.

$$var(X) = E(X - E(x))^2$$

Función de probabilidad empírica

$$P_{\text{teorica}}(x=a) = f(x=a)$$

$$P_{\text{empirica}}(x=a) = \frac{\sum_{i=1}^{n} \delta(x_i = a)}{n}$$

Ejemplo probabilidad empírica

Supongamos que tenemos una moneda con 2 caras perfectamente balanceada donde la probabilidad teórica de obtener una cara es P(x = C) = 0.5.

Vamos a estimar en Python la probabilidad teórica con la probabilidad empírica mediante experimentos. En este caso n = 20.

```
Experimentos: C C S C S C S C C C S S S S S S S C
Numero de caras: 8
P(x=C) = 0.4 (Numero de caras/Total experimentos)
```

Luego de 20 iteraciones/sampleos del fenómeno a estudiar (moneda) observamos que la probabilidad empírica P(x = C) = 0.4. Que sucedio?

Ejemplo probabilidad empírica

Proba empirica luego de 50 iteraciones

Proba empírica luego de 200 iteraciones

Distribución uniforme

Distribución de probabilidad acumulada.

Rango de valores posibles.

$$f(x) = \begin{cases} \frac{1}{b-a} & \text{if } a \le x \le b \\ 0 & \text{else} \end{cases}$$

$$F(x) = \begin{cases} 0 & \text{if } x < a \\ \frac{x-a}{b-a} & \text{if } a \le x \le b \\ 1 & \text{if } x > b \end{cases}$$

La distribución de probabilidad uniforme asigna la misma probabilidad de ocurrencia a cada valor dentro del rango que puede generar una variable aleatoria.

Distribución gaussiana - normal

Distribución de densidad (verde) y acumulada (roja) de probabilidad.

Rango de valores posibles de la VA.

Distribución simétrica de VA continua. El parámetro mu define la esperanza y el sigma el desvío standard.

Suele utilizarse para modelar procesos reales en ciencias naturales, sociales, etc.

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right)$$

Muestreo desde una función de densidad de probabilidad

Suponiendo que **conocemos** la función de densidad de probabilidad de una variable aleatoria, vamos a **muestrear** multiples veces dicha funcion y obtener distintos valores de la variable aleatoria a observar. En el caso contrario si solo tenemos los datos y no conocemos la funcion de densidad que los genero se abordaran estrategias de maxima verosimilitud o metodos de estimacion no parametrica de la densidad [2]

^[1] https://en.wikipedia.org/wiki/Maximum_likelihood_estimation

^[2] https://en.wikipedia.org/wiki/Kernel_density_estimation .

Distribuciones de Probabilidad y variables aleatorias

Segundo caso: multivariadas

Variables aleatorias multivariadas

$$p(x = \text{cancer}) = f(???) = f(x_1, x_2, ..., x_n)$$

$$p(x = + \text{ covid}) = f(???) = f(x_1, x_2, ..., x_n)$$

$$p(x = \text{cruzarte a un conocido}) = f(x_1, x_2, ..., x_n)$$

En los problemas reales existen variables aleatorias multi-variadas con distribuciones de densidad de probabilidad complejas.

Variables aleatorias multivariadas

Basic Idea of GAN

• The data we want to generate has a distribution $P_{x,x}(x)$

Distribución gaussiana bivariada

$$p(X) \sim (2\pi)^{-d/2} |\Sigma^{-1/2}| \exp\left[-\frac{1}{2}(X - M)^t \Sigma^{-1}(X - M)\right]$$

$$X = [x_1, x_2] \qquad M_1 = [\mu_1, \mu_2] \quad \Sigma = \begin{bmatrix} \sigma_{00}^2 & \sigma_{01}^2 \\ \sigma_{10}^2 & \sigma_{11}^2 \end{bmatrix}$$

Muestreando una PDF gaussian bi-variada

Scatterplot para visualizar las muestras/instancias obtenidas de una distribución de probabilidad gaussiana bivariada (d =2) para distintos valores de n.

Muestreando una PDF gaussian bi-variada

Density map realizado a partir de muestras obtenidas de una distribución de probabilidad gaussiana bivariada (d =2) con distintos valores de n.

Aprender de datos

Aprender de datos

Nuestro problema tendrá una característica particular: no conocemos la distribución de densidad de probabilidad (PDF) que genera nuestros datos. Los datos difícilmente coincidan con una distribución normal o una exponencial. Lo más probable es que pertenezcan a una distribución compleja en alta dimensión.

- Una opción es aproximarlos a distribuciones que ya conozcamos (metodo de maxima verosimilitud) aunque no necesariamente esa es la mejor opción.
- La alternativa de **Aprendizaje Estadístico / Machine Learning** es aprender la distribución de los datos datos y/o su estructura en el espacio donde habitan con el fin de facilitar una tarea "aguas abajo" (downstream task).

Aprender de datos

Caso aprendizaje supervisado:

- Partiendo de un set de datos S aprenderemos una función "f(x)" desconocida y será el estimador que utilizaremos.
- Nunca llegaremos a una "f(x)" ideal que explique a la perfección nuestros datos, por ende tendremos cierto grado de error. La función f(x) supone una distribución de probabilidad "p(x)" que es incierta.
- Vamos a querer aprender una función que **generalice** bien para futuros datos nunca vistos. Es decir, una vez que encontramos el patrón en los datos disponibles de *entrenamiento*, esperamos que la f(x) siga encontrando los mismos patrones para datos futuros nunca vistos.

Tipos de Aprendizaje Automático

Aprendizaje:

- Supervisado
- No Supervisado
- Semi-supervisado
- Por refuerzo

Aprendizaje Supervisado

$$\mathcal{A} = \{(x_0, y_0), (x_1, y_1), ..., (x_n, y_n)\}$$

Suponemos un dataset A como pares de muestras (xi,yi) compuesto de características/etiquetas.

Solemos denominar a cada observación Xi como sample y a cada etiqueta Yi como label.

Aprendizaje Supervisado

Suponemos que la variable Y es dependiente de X. Esto quiere decir que Y está condicionada y es consecuencia de X. Lo que no conocemos es la función y = f(x) y es f(x) lo que queremos aprender desde los datos.

Tipos de Aprendizaje: Supervisado

Cada instancia (sample) viene acompañada de una etiqueta (label).

Tipos de Aprendizaje: Supervisado

Tipos de Aprendizaje: No supervisado

Cada instancia (sample) <u>no posee</u> etiqueta (izq). Los modelos a aplicar en estos casos buscan encontrar estructuras o grupos implícitas en los datos (ej. clusters)

Supervisado vs No supervisado

Izquierda: Datos etiquetados. Derecha: Datos sin etiquetar estructurados en clusters.

Tipos de Datos

- Estructurados / tabulares
- Imàgenes
- Grafos-redes
- Lenguaje Natural (texto)
- Audio / Series de tiempo

Formato de los datos

- .CSV
 - o .xlsx
 - .txt
 - .tsv
 - .jpeg
 - SQL query

Tipos de Datos

4	Α	В	C	D	E
1	Record Id	Date	Month	High	Low
2	4450	1	6	31	22
3	4451	15	6	35	21
4	4452	30	6	28	21
5	4453	1	7	34	25
6	4454	15	7	33	26
7	4455	30	7	30	21
8	4456	1	8	32	20
9	4457	15	8	36	23
10	4458	30	8	36	24
11	4459	1	9	37	20
12	4460	15	9	40	25
13	4461	30	9	37	22
14	4462	1	10	35	23
15	4463	15	10	32	25
16	4464	30	10	35	21
17	4465	1	11	32	24
18	4466	15	11	39	24
19	4467	30	11	33	23
20	4468	1	12	33	21
21	4469	15	12	34	24
22	4470	30	12	38	24

Data Science Workflow

The Data Science Process

*Development Workflows for Data Scientists

1) Data Science Workflow: get the data

Datos Argentina

Portal de datos abiertos del Gobierno de la República Argentina. Acá encontrarás información pública, herramientas y recursos para desarrollar aplicaciones, visualizaciones y más.

Buenos Aires Data

Iniciativa de Datos Públicos y Transparencia de la Ciudad Autónoma de Buenos Aires.

Durante el curso trataremos de utilizar repositorios de datos abiertos, principalmente aquellos de la Ciudad de Buenos Aires, Provincia de Buenos Aires o Nación.

2) Data Science Workflow: Explore

Pre-processing

- Clean samples with NaNs
- Transform features
- Normalize data

Exploratory Data Analysis

- Realizar estadìsticas descriptivas
- Quitar outliers estadísticos
- Visualizar con Bar-plots, Box-plots, Scatter-plots, Count-plots

2) Exploratory Data Analysis (EDA)

- Importar datos.
- Revisar si hay NaNs o valores faltantes.
- Filtrar los datos de interés.
- Transformar los datos (ej, tabla pivote)
- Computar estadísticas descriptivas (media, dev. std, percentiles)
- Medir correlación entre variables de interés
- Visualizar:

3) Data Science: statistical learning

clasificación regresión

Reducción de dimensionalidad

Detección de anomalías

clustering

4) Communicate Results

Poster explicando el proyecto

Reporte técnico del proyecto

IMPLEMENTACION DE MODELOS DE APRENDIZAJE SUPERVISADO PARA PREDECIR VICTIMAS DE ACCIDENTES DE TRÁNSITO EN **AUTOPISTAS AUSA**

Malena Ruan Barés

KNN (K Nearest Neighbors)

condiciones dadas, predecir si hay lesionados Este objetivo es planteado desde la premisa

Eduardo Andino

que sólo conseguimos datos de accidentes, no encontramos un data set que contenga los datos de las condiciones de la autopista o condiciones meteorológicas de días que no hava habido

Exposición de posters

Repositorio en github del proyecto

Tecnologías que utilizaremos

Librerias:

Numpy vs Pandas

Calculo con matrices

- No admite nombres en cols
- No admite nombres en filas
- Diversidad en aplicaciones de cálculo
- Útil para lidiar con álgebra y operaciones matriciales

Atajos de Numpy acá:

https://s3.amazonaws.com/assets.datacamp.com/blog_assets/Numpy_Python_Cheat_Sheet.pdf

Gestor de datasets en Dataframes (DFs)

- Admite nombre de columnas
- Admite nombre de filas
- Diversas funciones sobre DFs.
- Util para lidiar con datos, limpiar, pre procesar.

Atajos de Pandas acá:

https://pandas.pydata.org/Pandas Cheat Sheet.pdf

Pandas Dataframe

Visualización

Librerías de visualización de datos

- Matplotlib es la principal librería de visualización en Python.
- Seaborn corre sobre matplotlib y posee algunas mejoras de estética.
- Tipos de gráficos a realizar:
 - Countplot (graficos de barra)
 - Heatmap (mapas de calor)
 - Boxplot (diagrama de cajas y bigote)
 - Series de tiempo
 - Scatter plot (diagrama de puntos)
 - Distplot (distribuciones y densidades)

Atajos de Matplotlib acá:

https://s3.amazonaws.com/assets.datacamp.com/blog_assets/Python_Matplotlib_Cheat_Sheet.pdf

Tipos de variables en Python

```
a = 3
b = 0.4
c = False
d = "Quiero analizar datos"
e = [2,3,4,5,6]
f = [[2,3,4],[1,0,40]]
```

a = Integerb = Floatc = Boolean

d = String

e = Numpy Array (1,5)

f = Numpy Array (2,3)

A agarrar la PyLA

Exploratory Data Analysis

