1 Relation \models

We defined the relation

$$\Sigma \models \phi$$

, as the truth assignment Σ satsfies ϕ a wff.

Let \mathcal{T} be a set of wff's, we say that $\mathcal{T} \models \phi$ if whenever a truth assignment Σ satisfies every $\psi \in \mathcal{T}$ then Σ also satisfies ϕ .

2 Tautology

- φ is a tautology if every truth assignment satisfies $\varphi.\varphi$ is tautology iff $\emptyset \models \varphi$, as every truth assignment vacuously satisfies every wff in \emptyset .
- Contradiction: if no truth assignment satisfies φ
- Satisfiable: if there is at least one truth assignment satisfying φ .
- Note: φ is tautology iff $(\neg \varphi)$ is a contradiction.

3 Compactness

- 1. \mathcal{T} is satisfiable iff every finite subset of it is satisfiable
- 2. $\mathcal{T} \models \varphi$ iff there is a finite $\mathcal{T}' \subseteq \mathcal{T}$ such that $\mathcal{T} \models \varphi$

Proof: (2) \Rightarrow (1): Fact: \mathcal{T} is not satisfiable iff $\mathcal{T} \models (P \land (\neg P))$. For a sentence symbol P, as a truth assignment cannot satisfy $(P \land (\neg P))$. By (2), $\mathcal{T} \models (P \land (\neg P))$ iff there is finite $\mathcal{T}' \models (P \land (\neg P))$. So \mathcal{T} is not satisfiable iff there is a finite \mathcal{T}' which is not satisfiable. (1) \Rightarrow (2):