

Transform in Computer Vision

分享人: 梁瑛平 时间: 2021-04-11

- **1** Introduction
 Please Enter Your Title Here
- 2 Image Classification
 Please Enter Your Title Here
- 3 Object Detection
 Please Enter Your Title Here
- 4 Semantic Segmentation
 Please Enter Your Title Here

《Attention Is All You Need》

《Attention Is All You Need》

Encoder:

$$LayerNorm(x + Sublayer(x))$$

Attention:

$$Attention(Q,K,V) = softmax(rac{Q^TK}{\sqrt{d_k}})V$$
 $Q \in R^{m imes d_k}$, $K \in R^{m imes d_k}$, $V \in R^{m imes d_v}$

《Attention Is All You Need》

$$Attention(Q,K,V) = softmax(rac{Q^TK}{\sqrt{d_k}})V$$
 $Q \in R^{m imes d_k}$, $K \in R^{m imes d_k}$, $V \in R^{m imes d_v}$

《Attention Is All You Need》

Input:

Self-Attention:

Encoders:

《Attention Is All You Need》

Self-Attention:

《Attention Is All You Need》

《Attention Is All You Need》

Skip Connection:

Multi-Head:

《Attention Is All You Need》

Position Embedding:

$$PE(pos, 2i) = sin(rac{pos}{10000^{rac{2i}{d_{model}}}})$$

$$PE(pos, 2i+1) = cos(rac{pos}{10000^{rac{2i}{d_{model}}}})$$

Image Classification: Introduction

General image classification

Fine-grained image classification

Image Classification: Challenge

Image Classification: classical model

The most common form of a ConvNet architecture stacks a few CONV-RELU layers, follows them with POOL layers, and repeats this pattern until the image has been merged spatially to a small size.

ConvNet Architecture

 $INPUT \rightarrow [[CONV \rightarrow RELU] *N \rightarrow POOL?] *M \rightarrow [FC \rightarrow RELU] *K \rightarrow FC$ where the *indicates repetition, and the POOL? indicates an optional pooling layer.

Image Classification: classical model

VGG:

GoogleNet:

ResNet:

Image Classification: using transformer

《An Image is Worth 16x16 Words:Transformers for Image Recognition at Scale》

Image Classification: using transformer

《An Image is Worth 16x16 Words:Transformers for Image Recognition at Scale》

Object Detection: Introduction

Problems to be solved:

- 1. Positions
- 2. Classifications
- 3. Unordered set

Object Detection: classical model

Faster-RCNN:

Figure 2: Faster R-CNN is a single, unified network for object detection. The RPN module serves as the 'attention' of this unified network.

Object Detection: classical model

SSD & YOLO:

Object Detection: classical model

Loss Function:

$$\begin{split} t_{\rm x} &= (x-x_{\rm a})/w_{\rm a}, \quad t_{\rm y} = (y-y_{\rm a})/h_{\rm a}, \\ t_{\rm w} &= \log(w/w_{\rm a}), \quad t_{\rm h} = \log(h/h_{\rm a}), \\ t_{\rm x}^* &= (x^*-x_{\rm a})/w_{\rm a}, \quad t_{\rm y}^* = (y^*-y_{\rm a})/h_{\rm a}, \\ t_{\rm w}^* &= \log(w^*/w_{\rm a}), \quad t_{\rm h}^* = \log(h^*/h_{\rm a}), \end{split}$$

$$L(\{p_i\}, \{t_i\}) = \frac{1}{N_{cls}} \sum_{i} L_{cls}(p_i, p_i^*) + \lambda \frac{1}{N_{reg}} \sum_{i} p_i^* L_{reg}(t_i, t_i^*).$$

Object Detection: using transformer

《End-to-End Object Detection with Transformers》

Object Detection: using transformer

《End-to-End Object Detection with Transformers》

$$\hat{\sigma} = \underset{i=1}{\operatorname{arg\,min}} \sum_{i=1}^{N} \mathcal{L}_{\operatorname{match}}(y_i, \hat{y}_{\sigma(i)}),$$

$$\mathcal{L}_{\operatorname{Hungarian}}(y, \hat{y}) = \sum_{i=1}^{N} \left[-\log \hat{p}_{\hat{\sigma}(i)}(c_i) + \mathbb{1}_{\{c_i \neq \varnothing\}} \mathcal{L}_{\operatorname{box}}(b_i, \hat{b}_{\hat{\sigma}}(i)) \right],$$

Object Detection: using transformer

《End-to-End Object Detection with Transformers》

Fig. 3: Encoder self-attention for a set of reference points. The encoder is able to separate individual instances. Predictions are made with baseline DETR model on a validation set image.

Semantic Segmentation: Introduction

predict

Person Bicycle Background

Semantic Segmentation: classical model

FCN:

1,1	1,0	1,1	0	0
0,0	1,	1,0	1	0
0,1	0,0	1,1	1	1
0	0	1	1	0
0	1	1	0	0

Image

4	0.20	-0
		-8
92 929		8
83	83	8

Convolved Feature

Semantic Segmentation: classical model

《Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers》

Semantic Segmentation: classical model

《Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers》

query =
$$Z^{l-1}\mathbf{W}_Q$$
, key = $Z^{l-1}\mathbf{W}_K$, value = $Z^{l-1}\mathbf{W}_V$,

$$SA(Z^{l-1}) = Z^{l-1} + \operatorname{softmax}(\frac{Z^{l-1}\mathbf{W}_Q(Z\mathbf{W}_K)^\top}{\sqrt{d}})(Z^{l-1}\mathbf{W}_V).$$

and project their concatenated outputs: $MSA(Z^{l-1}) = [SA_1(Z^{l-1}); SA_2(Z^{l-1}); \cdots; SA_m(Z^{l-1})]\mathbf{W}_O$, where $\mathbf{W}_O \in \mathbb{R}^{md \times C}$. d is typically set to C/m . The output of

$$Z^l = MSA(Z^{l-1}) + MLP(MSA(Z^{l-1})) \in \mathbb{R}^{L \times C}.$$

Figure 3. **Qualitative results on Pascal Context:** SETR (right column) vs. dilated FCN baseline (left column) in each pair. Best viewed in color and zoom in.

谢谢观看 有疑问的同学可以提问

