Programming Paradigms

Lecture 1. Programming paradigms overview. Lambda calculus

Outline

- What is a programming paradigm?
- Declarative vs Imperative
- Overview of common programming paradigms
- Functional Programming
- Lambda calculus recap

What is a programming paradigm?

A **programming paradigm** is a style of programming.

Programming languages can make it easier to write programs in some programming paradigms, but not others.

```
result = [];
for (i = 0; i < length(students); i++) {</pre>
    student = students[i];
    if (student.points >= 85) {
        addToList(result, toUpper(student.name));
return sort(result);
```

```
select toUpper(student.name) as name
from students
where students.points >= 85
order by name
```

```
result = []
for i in range(len(students)):
    student = students[i]
    if student.points >= 85:
       result.append(toUpper(student.name))

return sorted(result)
```

Imagine a program that prints out a list of students, who get an A in a course.

sorted([student.name for student in students if student.points >= 85])

```
def students_with_A(students):
    if len(students) == 0: return []
    student = students[0]
    result = students_with_A(students[1:])
    if student.points >= 85:
        result.append(student.name)
    return result
```

```
do
  put
  forM_ [0 .. length students - 1] $ \i -> do
    let student = students ! i
   when (points student >= 85) $ do
      modify $ \result ->
        Vector.cons (name student) result
 result <- get
  return (sort result)
```

```
let step result i =
    let student = students ! i
    in if (points student >= 85)
        then Vector.cons (name student) result
    else result
in foldl' step [] students
```

```
students
  .filter(function(student) {return student.points >= 85;})
  .map(function(student) {return student.name; })
  .sort()
```

Imagine a program that prints out a list of students, who get an A in a course.

[name student | student <- students, points student >= 85]

Imagine a program that prints out a list of students, who get an A in a course.

SUM f_x =SORT(FILTER(A2:B100;B2:B100>=85);1)				
A	В	С	D	E
1 Name	Points		«A» students	
2 Olivia Gentry	34		1)	95
3 Gordon Stewart	88		Bailey Schmidt	91
4 Frank Mcdonald	45		Beau Watkins	86
5 Yoselin Valdez	87		Derrick Estrada	89
6 Dylan Reyes	101		Dylan Reyes	101
7 Lucia Snow	23		Gordon Stewart	88
8 Grace Freeman	0		Harley Combs	90
9 Scarlet Fuller	83		Jayvon Raymond	95
10 Dayami Drake	23		Johnathan Strickland	110
11 Xiomara Klein	99		Nyla Mccarty	93
12 Carson Montgomery	78		Rodolfo Barber	88
13 Bailey Schmidt	91		Xiomara Klein	99
14 Alejandro Macdonald	95		Yoselin Valdez	87
15 Harold Woodard	12			

SORT(FILTER(A2:B100;B2:B100>=85);1)

Common programming paradigms: an overview

- 1. Imperative
- 2. Structural programming
- 3. Procedural programming
- 4. Object-oriented programming
- 5. Declarative
- 6. Functional programming
- 7. Logical programming
- 8. Array programming
- 9. and more...

Common programming paradigms: an overview

- 1. Imperative
- 2. Structural programming
- 3. Procedural programming
- 4. Object-oriented programming
- 5. Declarative
- 6. Functional programming
- 7. Logical programming
- 8. Array programming
- 9. and more...

Functional Programming

Why Functional Programming Matters

John Hughes The University, Glasgow

Abstract

As software becomes more and more complex, it is more and more important to structure it well. Well-structured software is easy to write and to debug, and provides a collection of modules that can be reused to reduce future programming costs. In this paper we show that two features of functional languages in particular, higher-order functions and lazy evaluation, can contribute significantly to modularity. As examples, we manipulate lists and trees, program several numerical algorithms, and implement the alpha-beta heuristic (an algorithm from Artificial Intelligence used in game-playing programs). We conclude that since modularity is the key to successful programming, functional programming offers important advantages for software development.

https://www.cs.kent.ac.uk/people/staff/dat/miranda/whyfp90.pdf

Functional features in non-functional languages

- 1. map, filter, reduce in many languages
- 2. **list comprehensions** in Python, LINQ in C#
- 3. lambda expressions in Java 8+, anonymous functions
- 4. enumeration cases in Swift, enums in Rust (already in Go?)
- 5. **generics** in Java, C#
- 6. etc.

factorial(n) = if n=0 then 1 else n * factorial(n-1)

factorial(n) = if n=0 then 1 else n * factorial(n-1)

factorial = λn . if n=0 then 1 else n * factorial(n-1)

```
factorial(n) = if n=0 then 1 else n * factorial(n-1) factorial = \lambda n. if n=0 then 1 else n * factorial(n-1) factorial 0
```

```
factorial(n) = if n=0 then 1 else n * factorial(n-1) factorial = \lambda n. if n=0 then 1 else n * factorial(n-1) factorial 0
```

= $(\lambda n. \text{ if } n=0 \text{ then } 1 \text{ else } n * \text{factorial}(n-1)) 0$

```
factorial(n) = if n=0 then 1 else n * factorial(n-1)
factorial = \lambda n. if n=0 then 1 else n * factorial(n-1)
factorial 0
= (\lambda n. \text{ if } n=0 \text{ then } 1 \text{ else } n * \text{ factorial}(n-1)) 0
= if 0=0 then 1 else 0 * factorial(0-1)
```

```
factorial(n) = if n=0 then 1 else n * factorial(n-1)
factorial = \lambda n. if n=0 then 1 else n * factorial(n-1)
factorial 0
= (\lambda n. \text{ if } n=0 \text{ then } 1 \text{ else } n * \text{ factorial}(n-1)) 0
= if 0=0 then 1 else 0 * factorial(0-1)
```

Lambda calculus — Syntax

t ::= terms:
$$x$$
 variable $\lambda x.t$ abstraction tt application

Lambda calculus — Syntax conventions

s t u is the same as (s t) u

Lambda calculus — Syntax conventions

 λx . λy . x y x is the same as λx . $(\lambda y$. ((x y) x))

$$\lambda z. \lambda x. \lambda y. x (y z)$$

$$\lambda z. \lambda x. \lambda y. x (y z)$$

$$\lambda z. \lambda x. \lambda y. x (y z)$$

Lambda calculus — Scopes

Occurrence of a variable x is **bound** when it occurs in a body t of λx .t Occurrence of a variable x is **free** if it is not bound by any λ -abstraction

$$\lambda z$$
. λx . λy . x (y z)

Lambda calculus — Scopes

A term is **closed** if it has no free variables.

$$id = \lambda x. x$$

$$(\lambda x.t)u \rightarrow [x \mapsto u]t$$

x is a metavariable ranging across all variables t and u are metavariables ranging across all terms

$$(\lambda x.t)u \rightarrow [x \mapsto u]t$$

Replace every free occurrence of x in term t with term u

$$(\lambda x.t)u \rightarrow [x \mapsto u]t$$

$$(\lambda x.x)y \rightarrow [x \mapsto y]x$$

$$(\lambda x.t)u \rightarrow [x \mapsto u]t$$

$$(\lambda x.x)y \rightarrow [x \mapsto y]x$$

$$= y$$

$$(\lambda x.t)u \rightarrow [x \mapsto u]t$$

$$(\lambda x. x (\lambda x.x)) (u r)$$

$$(\lambda x.t)u \rightarrow [x \mapsto u]t$$

$$(\lambda x. x (\lambda x.x)) (u r)$$

$$(\lambda x.t)u \rightarrow [x \mapsto u]t$$

$$(\lambda x. x (\lambda x.x)) (u r)$$

 $\rightarrow [x \mapsto (u r)] (x (\lambda x.x))$

$$(\lambda x.t)u \rightarrow [x \mapsto u]t$$
 $(\lambda x. x (\lambda x.x)) (u r)$

 \rightarrow [x \mapsto (u r)] (x (λ x.x))

$$(\lambda x.t)u \rightarrow [x \mapsto u]t$$

$$(\lambda x. x (\lambda x.x)) (u r)$$

$$\rightarrow [x \mapsto (u r)] (x (\lambda x.x))$$

$$= (u r) (\lambda x.x)$$

Full beta-reduction — any redex can be reduced at any time.

id (id $(\lambda z. id z)$)

Full beta-reduction — any redex can be reduced at any time.

id (id (
$$\lambda z$$
. id z))
id (id (λz . id z))
id (id (λz . id z))

Full beta-reduction — any redex can be reduced at any time.

id (id (
$$\lambda z$$
. id z))
 $\rightarrow \underline{id}$ (id (λz . z))
 $\rightarrow \underline{id}$ (λz . z)
 $\rightarrow \lambda z$. z

Normal order — leftmost outermost redex is reduced first

id (id (
$$\lambda z$$
. id z))

→ id (λz . id z)

→ λz . id z

→ λz . z

Call-by-name — like normal order but does not reduce under λ -abstraction

id (id (
$$\lambda z$$
. id z))

→ id (λz . id z)

→ λz . id z

Call-by-value — outermost first, arguments first, does not reduce under λ -abstraction

id (id (
$$\lambda z$$
. id z))
$$\rightarrow \frac{\text{id }(\lambda z . \text{id } z)}{\lambda z . \text{id } z}$$

Lambda calculus — Substitution (wrong, attempt 1)

$$[x \mapsto s]x = s$$

$$[x \mapsto s]y = y \qquad \text{if } x \neq y$$

$$[x \mapsto s](\lambda y.t_1) = \lambda y. [x \mapsto s]t_1$$

$$[x \mapsto s](t_1 t_2) = ([x \mapsto s]t_1) ([x \mapsto s]t_2)$$

What is wrong with this definition?

Lambda calculus — Substitution (wrong, attempt 2)

$$[x \mapsto s]x = s$$

$$[x \mapsto s]y = y \qquad \text{if } y \neq x$$

$$[x \mapsto s](\lambda y. t_1) = \begin{cases} \lambda y. t_1 & \text{if } y = x \\ \lambda y. [x \mapsto s]t_1 & \text{if } y \neq x \end{cases}$$

$$[x \mapsto s](t_1 t_2) = ([x \mapsto s]t_1) ([x \mapsto s]t_2)$$

What is wrong with this definition?

Lambda calculus — Substitution (attempt 3)

What is missing in this definition?

Lambda calculus — Alpha-equivalence

$$\lambda z. \lambda x. \lambda y. x (y z)$$

is the alpha-equivalent to

 $\lambda a. \lambda b. \lambda c. b (c a)$

Names of bound variables do not matter!

Lambda calculus

Figure 5-3: Untyped lambda-calculus (λ)

Homework (self-study)

- 1. Install **DrRacket** https://download.racket-lang.org
- 2. Read **Quick: An Introduction to Racket with Pictures**https://docs.racket-lang.org/quick/index.html
- Read about Racket Essentials 2.1–2.2
 https://docs.racket-lang.org/guide/to-scheme.html
- 4. Test yourself by implementing a program that renders a rainbow:

Mud cards

References

1. Lambda calculus — TaPL 5.1–5.3