Lecture 03: Word Embeddings

Overview

- Word meaning (semantics)
- Frequency based representation
- Sparse vector representation
- Dense vector representation (Distributional semantics)

"You shall know a word by the company it keeps." Firth 1957

```
...government debt problems turning into banking crises as happened in 2009...

...saying that Europe needs unified banking regulation to replace the hodgepodge...

...India has just given its banking system a shot in the arm...
```

These context words will represent banking

Example: when center word is banking

Word2vec parameters and computation

Same predictions at each position

We want a model that gives a reasonably high probability estimate to *all* words that occur in the context (fairly often)

For each position t = 1, ..., T, predict the context word within a window of fixed size m, given the centre word w_i

The objective function $J(\theta)$ is the (average) negative log likelihood:

$$J(\theta) = -\frac{1}{T} \log L(\theta) = -\frac{1}{T} \sum_{t=1}^{T} \sum_{-m \le j \le m} \log P(w_{t+j} \mid w_t; \theta)$$

Training word2vec

- To minimize $J(\theta)$ we need to calculate $P(w_{t+j}|w_t;\theta)$
- To do this we define 2 vectors per word w:
 - $v_w \in V$ when w is a center word
 - $u_w \in U$ when w is a context word
- Then for a center word c and a context word o:

$$P(o|c) = \frac{\exp(u_o^T v_c)}{\sum_{w \in V} \exp(u_w^T v_c)}$$

• SoftMax maps arbitrary values x_i to a probability distribution p_i

$$\operatorname{softmax}(x_i) = \frac{\exp(x_i)}{\sum_{j=1}^n \exp(x_j)} = p_i$$

Training a word2vec model

To train the word2vec model we compute all vector gradients

- Recall:
 - θ represents all model parameters
 - every word has two vectors
 - total of V vectors, each of d-dimension
 - V: vocabulary size
 - *d*: dimension of dense vector
- θ is optimized using gradient descend for
 - each center vector v
 - each outside vector u

Optimization: gradient descent

Recall: Cost function to minimize $J(\theta)$

• Idea: for current θ , calculate gradient of $J(\theta)$ take small steps in direction of negative gradient.

- Update equation $\theta^{new} = \theta^{old} \alpha \nabla_{\theta} J(\theta)$
- Update equation for single parameter

$$\theta_j^{new} = \theta_j^{old} - \alpha \frac{\partial}{\partial \theta_j^{old}} J(\theta)$$

 α is the learning rate

Optimization: stochastic gradient descent

- $J(\theta)$ is a function of all windows in the corpus
 - Large vocabulary => potentially millions of words
 - Computing the gradient $\nabla_{\theta} J(\theta)$ is very expensive (common in DL models)
- Stochastic gradient descent
 - Repeatedly sample gradients in each window
 - each window have at most 2m + 1 words so $\nabla_{\theta} J(\theta)$ is sparse!

$$\nabla_{\theta} J_{t}(\theta) = \begin{bmatrix} 0 \\ \vdots \\ \nabla_{v_{like}} \\ \vdots \\ 0 \\ \nabla_{u_{I}} \\ \vdots \\ \nabla_{u_{learning}} \\ \vdots \end{bmatrix} \in \mathbb{R}^{2dV}$$

stochastic gradient descent

• $\nabla_{\theta} J(\theta)$ is a spare matrix mini batch training result to spare parameter update

We might only update the word vectors that appear!

 Solution: either you need sparse matrix update operations to only update certain rows of full embedding matrices U and V, or you need to keep around a hash for word vectors

word2vec

Two variants of word2vec algorithm:

- 1. Skip-Gram: use the current word w to predict its context
- 2. Continuous Bag of Word (CBOW): uses the context words to predict the current word w

Skip gram model

Notation:

- N: word embedding size
- *V*: vocabulary size
- $x,y \in \mathbb{R}^{Vx}$ 1: one-hot encoded words
- $U \in \mathbb{R}^{V \times N}$: word embedding matrix
- $V \in \mathbb{R}^{N \times V}$: word context matrix

CBOW model

In CBOW embedding

Skip-gram – negative sampling

- Naïve skip-gram model: modelling technique we have been discussing
- Problems:
 - Simple but expensive training method
 - With large vocabularies it might not be scalable

The normalization factor is computationally expensive

- Define positive pairs: centre word and word in its context window
- Define negative pairs: the centre word paired with a random word
 - Sample k words to decrease the number of training examples.
- Train a binary logistic regressions model to predict context words

The negative sampling objective function is given by

maximizing the probability of two words co-occurring $J(\theta) = \frac{1}{T} \sum_{t=1}^{I} J_t(\theta)$ $J_t(\theta) = \log \sigma(u_o^T v_c) + \sum_{i=1}^{k} \mathbb{E}_{j \sim P(w)} \left[\log \sigma(-u_j^T v_c)\right]$

 Maximize probability that real outside word appears, minimize probability that random words appear around centre word

Sigmoid function is used to convert the estimates to probabilities

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

 To eliminate the negative effect of very frequent words such as "in", "the" a simple subsampling approach used

$$P(w) = U(w)^{3/4}/Z$$

- U(w): is a unigram distribution of context words.
- The power ensures less frequent words be samples more often.

- Since $J_t(\theta)$ maximizes co-occurrence between words, why not measure it directly by taking the co-occurrence count?
- *U* and *V* matrix are both co-occurrence matrix

What is a co-occurrences matrix?

- Records the co-occurrence frequencies between a pair of words.
- Two type
 - Window based (commonly between 5 − 10 words)
 - Document based

Co-occurrence matrix

Two types of word co-occurrence matrix

- Row vector describes usage of word in a corpus of text
- Can be seen as coordinates of the point in an n-dimensional Euclidian space

counts	I	like	enjoy	deep	learning	NLP	flying	
L	0	2	1	0	0	0	0	0
like	2	0	0	1	0	1	0	0
enjoy	1	0	0	0	0	0	1	0
deep	0	1	0	0	1	0	0	0
learning	0	0	0	1	0	0	0	1
NLP	0	1	0	0	0	0	0	1
flying	0	0	1	0	0	0	0	1
	0	0	0	0	1	1	1	0

Problems with co-occurrences

- Left or right context is irrelevant
- Matrix size increases with vocabulary size
- Very high dimension: requires a lot of storage
- Matrix is extremely sparse since most words do not co-occur
- Models are less robust:
 - It is hard to incorporate out of sample (new) words or documents

Solutions: co-occurrences

Create low dimensional vectors

- Convert co-occurrence matrix into a dense matrix of smaller dimension that captures most information
- Scale counts in the cell to minimize bias from high frequency words
- Use correlation instead of of raw counts
- How do we reduce high-dimensional co-occurrence matrix?

Singular value decomposition – SVD (LSA)

SVD factorizes a matrix X into $U\Sigma V^T$, where U and V are orthonormal

- Retain only k singular values in order to generalize.
- \widehat{X} is the best ranked k approximation to X in terms off least square

GloVe

An objective that attempts to create a semantic space with linear structure

	x = solid	x = gas	x = water	x = fashion
P(x ice)	1.9 x 10 ⁻⁴	6.6 x 10 ⁻⁵	3.0 x 10 ⁻³	1.7 x 10 ⁻⁵
P(x steam)	2.2 x 10 ⁻⁵	7.8 x 10 ⁻⁴	2.2 x 10 ⁻³	1.8 x 10 ⁻⁵
$\frac{P(x \text{ice})}{P(x \text{steam})}$	8.9	8.5 x 10 ⁻²	1.36	0.96

Probability ratios are more important than probabilities

GloVe

 ratio gives us some insight on the co-relation of the target word to a context word

Probability and Ratio	k = solid	k = gas	k = water	k = fashion
P(k ice)	1.9×10^{-4}	6.6×10^{-5}	3.0×10^{-3}	1.7×10^{-5}
P(k steam)	2.2×10^{-5}	7.8×10^{-4}	2.2×10^{-3}	1.8×10^{-5}
P(k ice)/P(k steam)	8.9	8.5×10^{-2}	1.36	0.96

Very small or large:

solid is related to ice but not steam, or gas is related to steam but not ice

close to 1:

water is highly related to ice and steam, or fashion is not related to ice or steam.

GloVe

Try to find word embeddings such that (roughly)

$$(v_{c_1} - v_{c_2})^T u_0 = \frac{P_{c_{10}}}{P_{c_{20}}}$$

• $P_{c\ o}$ is the probability of an output word o given a centre word c

For example

$$v_{ice} - v_{stean} \approx u_{solid}$$

 $v_{steam} - v_{ice} \approx u_{gas}$

Count based vs prediction-based word vectors

SVD - LSA

- Faster to train and it efficiently use word statistics
- Primarily used to capture word similarity
- Disproportionate importance given to large counts

Word2vec

- Scales with corpus size but with Inefficient usage of statistics
- Generate improved performance on other tasks
- Can capture complex patterns beyond word similarity

Evaluating word2vec model

• Intrinsic:

- Evaluation on a specific/intermediate subtask
- Fast to compute
- Helps to understand that system
- Not clear if really helpful unless correlation to real task is established

• Extrinsic:

- Evaluation on a real task
- Can take along time to compute accuracy
- Unclear if the subsystem is the problem or its interaction or other subsystems
- If replacing exactly one subsystem with another improves accuracy

Intrinsic word vector evaluation

 Evaluate word vectors by how well their cosine distance after addition captures intuitive semantic and syntactic analogy questions.

- Discarding the input words from the search!
- Problem: What if the information is there but not linear?

Evaluation and hyperparameter

- Best dimension 300
- Asymmetric (only words to the left) context are not good
- A context window size of 8 is best for GloVe

Word2vec evaluation and hyperparameter

More training and more data help improve the word vector.

Pre-trained word embeddings

- Word2vec: https://code.google.com/archive/p/word2vec/
- Fasttext: http://www.fasttext.cc/
- Glove: http://nlp.stanford.edu/projects/glove/
- Gensim: https://radimrehurek.com/gensim/