## Regression analysis\_Homework Assignment 1

心理所碩二 R08227112 林子堯

2020/09/21

Douglas C. Montgomery, (2012). Introduction to Linear Regression Analysis, 5th ed.

1. (#2.23) Consider the simple linear regression model  $y = 50 + 10x + \varepsilon$  where  $\varepsilon$  is NID(Normally and Independently Distributed)(0, 16). Suppose that n = 20 pairs of observations are used to fit this model.

Generate 500 samples of 20 observations, drawing one observation for each level of  $x=0.5,1,1.5,\dots,10$  for each sample.

```
library(tidyverse)
```

```
# generate 500 samples with 19 observations in each sample
set.seed(9999)
nReplicate ← 500
getObservation \leftarrow function(){
  beta \leftarrow c(50, 10)
  sigma ← 4
  x \leftarrow seq(0.5, 10, by = 0.5)
  y \leftarrow rnorm(n = length(x),
              mean = beta[1]+beta[2]*x,
              sd = sigma)
  sample \leftarrow tibble(x = x, y = y)
}
samples ← replicate(nReplicate, getObservation(), simplify = FALSE)
# draw one observation
samples[[1]] %>%
  ggplot(aes(x, y)) +
    geom_point() +
    geom_smooth(method = "lm") +
    annotate("text", x = 7, y = 150,
              label = "y = 10 + 50x", color = "blue") +
    scale_x_continuous(breaks = 1:10) +
    theme classic()
```



a. For each sample compute the least - squares estimates of the slope and intercept. Construct histograms of the sample values of  $\hat{\beta}_0$  and  $\hat{\beta}_1$ . Discuss the shape of these histograms.

```
fitlms \( \to \) lapply(samples, function(.sample)\{lm(y \( \times \) 1 + x, data = .sample)\})

coefs \( \to \) lapply(fitlms, broom::tidy) %>% bind_rows(.id = "replicate")

coefs_labeller \( \to \) labeller(term = c(`(Intercept)` = "beta0", x = "beta1"))

coefs %>%

ggplot(aes(x = estimate)) +
 geom_histogram(aes(y = ..density..), color = "white") +
 facet_wrap(\( \times \) term, scales = "free", labeller = coefs_labeller) +
 labs(title = "The histogram of the coefficients") +
 theme_classic()
```



The both histograms are bell shape. The distribution of  $\hat{\beta}_0$  is centered around 50 and the one of  $\hat{\beta}_1$  is centered around 10.

b. For each sample, compute an estimate of E(y|x=5). Construct a histogram of the estimates you obtained. Discuss the shape of the histogram.

```
predictsAt5 ← lapply(fitlms, function(.fitlm){
   data.frame(yhat = predict(.fitlm, data.frame(x = 5)))
}) %>%
   bind_rows(.id = "replicate")

ggplot(predictsAt5, aes(x = yhat)) +
   geom_histogram(aes(y = ..density..), color = "white") +
   labs(title = expression(paste("The histograms of E(y|x = 5)"))) +
   theme_classic()
```



The histogram of the conditional expectation estimator  $\hat{E}(y|x=5) \equiv \hat{\mu}_{y|x=5}$  is also like bell shape, and it is centered around 100.

## c. For each sample, compute a 95% CI on the slope. How many of these intervals contain the true value $eta_1=10$ ? Is this what you would expect?

```
coef_cis ← lapply(fitlms, function(.fitlm){
   as.data.frame(confint(.fitlm, "x", level = 0.95))
}) %>%
   bind_rows(.id = "replicate")

coef_cis %>%
   mutate(contain10 = (`2.5 %` ≤ 10) & (10 ≤ `97.5 %`)) %>%
   summarise(confidence = mean(contain10))
```

```
confidence
1 0.94
```

It finds that 94% of our 500 Cl's, which were constructed from samples respectively, for  $\beta_1$  cover 10. This result is close to our expectation at 95%.

d. For each estimate of E(y|x=5) in part b, compute the 95% Cl. How many of these intervals contain the true value of E(y|x=5)=100? Is this what you would expect?

```
predictsAt5_cis ← lapply(fitlms, function(.fitlm){
  data.frame(predict(.fitlm, data.frame(x = 5), interval = "confidence"))
}) %>%
  bind_rows(.id = "replicate")

predictsAt5_cis %>%
  mutate(contain100 = (lwr ≤ 100) & (100 ≤ upr)) %>%
  summarise(confidence = mean(contain100))
```

```
confidence
1 0.974
```

It finds that 97.4% in our 500 Cl's for  $\hat{E}(y|x=5)$  cover 100. This result is close to our expectation at 95%.

- 2. (#2.25) Consider the simple linear regression model  $y=\beta_0+\beta_1x+\varepsilon$ , with  $E(\varepsilon)=0$ ,  $Var(\varepsilon)=\sigma^2$ , and  $\varepsilon$  uncorrelated.
  - a. Show that  $Cov(\hat{eta}_0,\hat{eta}_1) = -x\sigma^2/S_{xx}$

$$\begin{split} Cov(\hat{\beta}_0, \hat{\beta}_1) &= Cov(\bar{y} - \hat{\beta}_1 \bar{x}, \hat{\beta}_1) \\ &= Cov(\bar{y}, \hat{\beta}_1) - Cov(\hat{\beta}_1 \bar{x}, \hat{\beta}_1) \\ &= 0 - \bar{x} Var(\hat{\beta}_1) \\ &= -\bar{x} \sigma^2 / S_{xx} \end{split} \tag{by part b}$$

b. Show that  $Cov(ar{y},\hat{eta}_1)=0$ 

$$egin{aligned} Cov(ar{y},\hat{eta}_1) &= Cov(\sum_{i=1}^n rac{y_i}{n},\sum_{j=1}^n rac{(x_j-ar{x})y_j}{S_{xx}}) \ &= rac{1}{nS_{xx}}\sum_{i,j} (x_j-ar{x})Cov(y_i,y_j) \end{aligned}$$

Since  $y_i's$  are mutually independent,  $Cov(y_i,y_j)=0$  if  $i\neq j$  and  $Cov(y_i,y_i)=Var(y_i)=Var(arepsilon_i)=\sigma^2$ . Therefore, we have

$$egin{align} Cov(ar{y},\hat{eta}_1) &= rac{\sigma^2}{nS_{xx}} \sum_{j=1}^n (x_j - ar{x}) \ &= 0 \end{split}$$

- 3. (#2.27) Suppose that we have fit the straight-line regression model  $\hat{y}=\hat{\beta}_0+\hat{\beta}_1x_1$  but the response is affected by a second variable  $x_2$  such that the true regression function is  $E(y)=\beta_0+\beta_1x_1+\beta_2x_2$ .
  - a. Is the least-squares estimator of the slope in the original simple linear regression model unbiased?

$$egin{aligned} E(\hat{eta}_1) &= E(\sum_{i=1}^n rac{(x_{1i} - ar{x}_1)y_i}{S_{xx}}) \ &= \sum_{i=1}^n rac{(x_{1i} - ar{x}_1)}{S_{xx}} E(y_i) \ &= \sum_{i=1}^n rac{(x_{1i} - ar{x}_1)}{S_{xx}} (eta_0 + eta_1 x_{1i} + eta_2 x_{2i}) \ &= eta_1 + eta_2 rac{\sum_{i=1}^n (x_{1i} - ar{x}_1) x_{2i}}{S_{xx}} \end{aligned}$$

where  $\sum_{i=1}^n (x_{1i}-\bar{x}_1)=0$  and  $\sum_{i=1}^n (x_{1i}-\bar{x}_1)x_{1i}=\sum_{i=1}^n (x_{1i}-\bar{x}_1)(x_{1i}-\bar{x}_1)=S_{xx}$ . In this situation, the original estimator  $\hat{\beta}_1$  is a biased estimator for  $\beta_1$ .

b. Show the bias in  $\hat{\beta}_1$ 

$$egin{aligned} Bias_{eta_1}(\hat{eta}_1) &= E(\hat{eta}_1) - eta_1 \ &= (eta_1 + eta_2 rac{\sum_{i=1}^n (x_{1i} - ar{x}_1) x_{2i}}{S_{xx}}) - eta_1 \ &= eta_2 rac{\sum_{i=1}^n (x_{1i} - ar{x}_1) x_{2i}}{S_{xx}} \end{aligned}$$

- 4. (#2.32) Consider the simple linear regression model  $y=eta_0+eta_1x+arepsilon$  where the intercept  $eta_0$  is known.
  - a. Find the least-squares estimator of  $eta_1$  for this model. Does this answer seem reasonable?

The least-squares criterion is

$$LS(eta_1) = \sum_{i=1}^n (y_i - eta_0 - eta_1 x_i)^2$$

The least-square estimators of  $eta_1$ , say  $\hat{eta}_1$ , must satisfy

$$egin{aligned} 0 &= rac{d}{deta_1} LS(eta_1) \Big|_{\hat{eta}_1} \ &= -2 \sum_{i=1}^n (y_i - eta_0 - \hat{eta}_1 x_i) x_i \end{aligned}$$

one has

$$\hat{eta}_1 = rac{\sum_{i=1}^n (y_i - eta_0) x_i}{\sum_{i=1}^n x_i^2}$$

It seems reasonable because  $\hat{\beta}_1$  is depended on  $x_i$  and pure  $y_i^* = y_i - \beta_0$  effect, which minus the intercept effect. And this regression line must go through the point  $(0, \beta_0)$ .

b. What is the variance of the slope  $\left(\hat{eta}_1
ight)$  for the least-squares estimator found in part a?

$$egin{aligned} Var(\hat{eta}_1) &= Var\left(rac{\sum_{i=1}^n (y_i - eta_0) x_i}{\sum_{i=1}^n x_i^2}
ight) \ &= rac{1}{(\sum_{i=1}^n x_i^2)^2} \sum_{i=1}^n x_i^2 Var(y_i) \ &= rac{\sigma^2}{\sum_{i=1}^n x_i^2} \end{aligned}$$

c. Find a  $100(1-\alpha)$  percent CI for  $\beta_1$ . Is this interval narrower than the estimator for the case where both slope and intercept are unknown?

We can get that  $E(SS_{RES}) = E(\sum_{i=1}^n (y_i - \hat{y}_i)^2) = (n-1)\sigma^2$ , so let  $MS_{RES} = \frac{SS_{RES}}{n-1}$  be an unbiased estimator of  $\sigma^2$ . If we assume  $\varepsilon_i's$  are independently and normally distributed with mean 0 and variance  $\sigma^2$ , and it can be shown that  $\frac{(n-1)MS_{RES}}{\sigma^2} \sim \chi^2_{n-1}$ .

Furthermore,  $\hat{eta}_1$  is a linear combination of  $\{y_i\}$ , so  $\hat{eta}_1 \sim N(E(\hat{eta}_1) = eta_1, Var(\hat{eta}_1) = rac{\sigma^2}{\sum_{i=1}^n x_i^2})$ .

Therefore, the test statistic

$$T = rac{\hat{eta}_{1} - eta_{1}}{\sqrt{MS_{RES}/\sum_{i=1}^{n}x_{i}^{2}}} \ = rac{\hat{eta}_{1} - eta_{1}}{\sqrt{\sigma^{2}/\sum_{i=1}^{n}x_{i}^{2}}}}{\sqrt{rac{(n-1)MS_{RES}\sigma^{2}}{n-1}}} \ \sim rac{Z}{\sqrt{rac{\chi_{n-1}^{2}}{n-1}}} \sim t_{n-1}$$

follows a  $t_{n-1}$  distribution. One has

$$egin{aligned} 1 - lpha &= \Pr(t_{1-lpha/2,n-1} < T = rac{\hat{eta}_1 - eta_1}{\sqrt{MS_{RES}/\sum_{i=1}^n x_i^2}} < t_{lpha/2,n-1}) \ &= \Pr(\hat{eta}_1 - t_{lpha/2,n-1} \sqrt{rac{MS_{RES}}{\sum_{i=1}^n x_i^2}} < eta_1 < \hat{eta}_1 - t_{1-lpha/2,n-1} \sqrt{rac{MS_{RES}}{\sum_{i=1}^n x_i^2}}) \ &= \Pr(\hat{eta}_1 - t_{lpha/2,n-1} \sqrt{rac{MS_{RES}}{\sum_{i=1}^n x_i^2}} < eta_1 < \hat{eta}_1 + t_{lpha/2,n-1} \sqrt{rac{MS_{RES}}{\sum_{i=1}^n x_i^2}}) \end{aligned}$$

So the 100(1-lpha)% CI for  $eta_1$  is  $\hat{eta}_1\pm t_{lpha/2,n-1}\sqrt{rac{MS_{RES}}{\sum_{i=1}^n x_i^2}}.$ 

On the other hand, the  $100(1-\alpha)\%$  Cl of  $\beta_1$  for the case where both unknown slope and intercept is  $\hat{\beta}_1 \pm t_{\alpha/2,n-2}\sqrt{\frac{MS_{RES}^*}{\sum_{i=1}^n(x_i-\bar{x})^2}}$ , where  $MS_{RES}^* = \frac{SS_{RES}}{(n-2)} > \frac{SS_{RES}}{(n-1)} = MS_{RES}$ . One can check that  $t_{\alpha/2,n-2}\sqrt{\frac{1}{n-2}} > t_{\alpha/2,n-1}\sqrt{\frac{1}{n-1}} \quad \forall \alpha,n\geq 2.$ 

Finally, the  $100(1-\alpha)\%$  CI for  $\beta_1$  when  $\beta_0$  is known is narrower than one when  $\beta_0$  &  $\beta_1$  are unknown.

5. (#2.33) Consider the least-squares residuals  $e_i=y_i-\hat{y}_i, i=1,2,\ldots,n$ , from the simple linear regression model. Find the variance of the residuals  $Var(e_i)$  . Is the variance of the residuals a constant? Discuss.

$$egin{aligned} Var(e_i) &= Var(y_i - \hat{y}_i) \ &= Var(y_i) + Var(\hat{y}_i) - 2Cov(y_i, \hat{y}_i) \ &= \sigma^2 + Var(\hat{eta}_0 + \hat{eta}_1 x_i) - 2Cov(y_i, \hat{eta}_0 + \hat{eta}_1 x_i) \ &= \sigma^2 + Var(ar{y} + \hat{eta}_1 (x_i - ar{x})) - 2Cov(y_i, ar{y} + \hat{eta}_1 (x_i - ar{x}))) \end{aligned}$$

Since from Exercise 2.25 part (b), we know  $Cov(ar{y},\hat{eta}_1)=0$ . Therefore, the variance of the residual  $e_i$  is

$$\begin{split} Var(e_i) &= \sigma^2 + Var(\bar{y}) + (x_i - \bar{x})^2 Var(\hat{\beta}_1) - 2[Cov(y_i, \bar{y}) + (x_i - \bar{x})Cov(y_i, \frac{\sum_{i=1}^n (x_i - \bar{x})y_i}{S_{xx}})] \\ &= \sigma^2 + \sigma^2(\frac{1}{n} + \frac{(x_i - \bar{x})^2}{S_{xx}}) - 2[\frac{1}{n}Var(y_i) + \frac{(x_i - \bar{x})^2}{S_{xx}}Var(y_i)] \qquad (\text{since } y_i's \text{ are independent}) \\ &= \sigma^2 + \sigma^2(\frac{1}{n} + \frac{(x_i - \bar{x})^2}{S_{xx}}) - 2\sigma^2(\frac{1}{n} + \frac{(x_i - \bar{x})^2}{S_{xx}}) \\ &= \sigma^2(1 - \frac{1}{n} - \frac{(x_i - \bar{x})^2}{S_{xx}}) \end{split}$$

We can find that the variance of the residual  $e_i$  which depends on the  $x_i$  is not a constant. The  $Var(e_i)$  is decreasing as the distance  $|x_i - \bar{x}|$  increases.