Проективные и инъективные модули.

- 1. Пусть P модуль над кольцом R. Докажите, что следующие условия эквивалентны:
 - Для любых гомоморфизма $f: P \to X$ и эпиморфизма $p: Y \to X$ существует гомоморфизм $h: P \to Y$ такой, что ph = f;
 - Существует модуль P' такой, что $P \oplus P'$ свободный;
 - Существуют $x_i \in P$, $f_i : P \to R$ (гомоморфизмы модулей), $i \in T$ для некоторого индексирующего множества T такие, что для любого $x \in P$ существует только конечное число $i \in T$ таких, что $f_i(x) \neq 0$ и $x = \sum_{i \in T} f_i(x) x_i$;
 - Для любого эпиморфизма $p:X\to P$ существует $h:P\to X$ такой, что $ph=id_P.$

Модуль P, удовлетворяющий любому (т.е. всем) условиям задачи называется *проективным*. Для любого модуля M существует эпиморфизм $P \to M$ с проективным P. Это следует из того, что любой свободный модуль проективен (почему?).

- 2. Докажите, что любой проективный модуль над областью главных идеалов свободен. Докажите, что для следующих колец не любой проективный модуль свободен:
 - $R = \mathbb{Z}/6\mathbb{Z}$;
 - $R = M_2(\mathbb{C});$
 - \bullet R кольцо верхнетреугольных матриц два на два с коэффициентами в \mathbb{C} .
- 3. Пусть Q модуль над кольцом R. Докажите, что следующие условия эквивалентны:
 - Для любых гомоморфизма $f: X \to Q$ и мономорфизма $q: X \to Y$ существует гомоморфизм $h: Y \to Q$ такой, что hq = f;
 - Для любого мономорфизма $q:Q\to X$ существует $h:X\to Q$ такой, что $hq=id_Q.$

Модуль Q, удовлетворяющий любому (т.е. всем) условиям задачи называется *инъективным*. Известны следующие факты. Модуль Q инъективен тогда и только тогда, когда для любого идеала I кольца R любой R-модульный гомоморфизм из I в Q продолжается до R-модульного гомоморфизма из R в Q (в одну сторон это очевидно, в какую?). Для любого модуля M существует мономорфизм $M \to Q$ с инъективным Q.

Последовательность гомоморфизмов $X \xrightarrow{f} Y \xrightarrow{g} Z$ называетс короткой точной, если f — мономорфизм, g — эпиморфизм и образ f совпадает с ядром g. Функтор F называется точным, если он любую корокую точную последовательность $X \xrightarrow{f} Y \xrightarrow{g} Z$ переводит в короткую точную последовательность $F(X) \xrightarrow{F(f)} F(Y) \xrightarrow{F(g)} F(Z)$. Аналогично определяется точность для контравариантного функтора.

- 4. Докажите, что модуль P проективен тогда и только тогда, когда функтор $\operatorname{Hom}_R(P,-)$ точен. Докажите, что модуль Q инъективен тогда и только тогда, когда функтор $\operatorname{Hom}_R(-,Q)$ точен. Модуль T называется плоским, если функтор $-\otimes_R T$ точен.
- 5. Докажите, что проективный модуль является плоским.
- 6. Докажите, что \mathbb{Q} не является проективным \mathbb{Z} -модулем.

Можно показать, что \mathbb{Q} — плоский \mathbb{Z} -модуль, потому не любой плоский модуль является проективным.

Подмодуль X модуля Y называется cyщественным, если из того, что Z подмодуль Y и $X\cap Z=0$ следует, что Z=0. Подмодуль X называется uзлишним, если из того, что Z подмодуль Y и X+Z=Y следует, что Z=Y. Мономорфизм $q:X\to Y$ называется существенным, если ${\rm Im}\ q$ — существенный подмодуль Y. Эпиморфизм $p:X\to Y$ называется существенным, если ${\rm Ker}\ p$ — излишний подмодуль X.

- 7. Докажите, что мономорфизм $q: X \to Y$ существенный тогда и только тогда, не существует $f: Y \to Z$, не являющегося мономорфизмом, такого, что fq мономорфизм. Докажите, что эпиморфизм $p: X \to Y$ существенный тогда и только тогда, не существует $f: Z \to X$, не являющегося эпиморфизмом, такого, что pf эпиморфизм.
- 8. Покажите, что композиция мономорфизмов q_2q_1 является существенным мономорфизмом тогда и только тогда, когда оба мономорфизма q_1 и q_2 существенны.
- 9. Покажите, что \mathbb{Z} существенный подмодуль в \mathbb{Q} . Проективное накрытие модуля M — это существенный эпиморфизм $\pi: P \to M$ с проективным модулем P. Индективная оболочка модуля M — это существенный мономорфизм $\iota: M \to Q$ с инъективным модулем Q.
- 10. Докажите, что, если $\pi: P \to M$ проективное накрытие M, а $p: P' \to M$ некий эпиморфизм с проективным P', то существует эпиморфизм $f: P' \to P$ такой, что $p = \pi f$. При этом p является проективным накрытием тогда и только тогда, когда f изоморфизм. Сформулируйте и докажите анадогичное свойство для инъективной оболочки.
- 11. Докажите, что модуль M инъективен тогда и только тогда, когда не существует существенного мономорфизма $M \to M'$, не являющегося изоморфизмом.
- 12. Пусть M подмодуль инъективного модуля Q. Докажите, что существует максимальный подмодуль Q' модуля Q, содержащий M в качестве существенного подмодуля. Докажите, что Q' инъективен и выведите, что у любого модуля существует инъективная оболочка.
- 13. Покажите, что у $\mathbb{Z}/m\mathbb{Z}$ не существует проективного накрытия.