LinkedIn GreyKite Forecast - Bronx Rolling Data

Here I will do the following:

- 1. Import necessary modules
- 2. Import the data
- 3. Prepare data to work with greykite
- 4. Forecast 30 days ahead with greykite
- 5. Note observation of what prices the model predicts

```
In [1]: import sys
         sys.path.append('../greykite')
In [2]:
        import pandas as pd
         import greykite
         from greykite.framework.templates.autogen.forecast_config import ForecastConfig
         from greykite.framework.templates.autogen.forecast_config import MetadataParam
         from greykite.framework.templates.forecaster import Forecaster
         from greykite.framework.templates.model_templates import ModelTemplateEnum
         import datetime
         import plotly
         #Supress default INFO logging
         %matplotlib inline
         import warnings
         warnings.filterwarnings('ignore')
         import logging
         logger = logging.getLogger()
         logger.setLevel(logging.CRITICAL)
         import logging, sys
         warnings.simplefilter(action='ignore', category=FutureWarning)
In [3]: df = pd.read_csv('datasets/rollingsales_bronx.xls_prepped_bare.csv', usecols=['S
In [4]: | df['SALE DATE'] = pd.to_datetime(df['SALE DATE'])
In [5]: | df.dropna(inplace=True)
         df.reset_index(drop=True)
Out[5]:
               SALE PRICE SALE DATE
            O
                   600000
                           2021-01-15
                   475000
                           2020-07-23
            1
            2
                   289000
                           2020-08-25
            3
                   526000
                           2020-09-22
            4
                   734000
                           2020-04-22
                           2021-03-04
         3977
                   290809
         3978
                   129000
                           2020-08-31
                   210000
                           2021-01-23
         3979
         3980
                   305803
                           2020-12-18
         3981
                   178000
                           2020-11-05
        3982 rows × 2 columns
```

```
In [6]: | df = df.rename(columns={'SALE DATE':'ts', 'SALE PRICE': 'y'})
          df.columns = df.columns.astype(str)
          df = df.set_index(['ts'], drop=True)
          df.index= pd.to_datetime(df.index)
 In [7]: df
 Out[7]:
                          У
                  ts
           2021-01-15 600000
           2020-07-23 475000
           2020-08-25 289000
           2020-09-22 526000
           2020-04-22 734000
           2021-03-04 290809
           2020-08-31 129000
           2021-01-23 210000
           2020-12-18 305803
           2020-11-05 178000
          3982 rows × 1 columns
 In [8]: | df = df.resample('D').mean()
 In [9]:
         df = df.reset_index()
In [10]:
          df.fillna(0)
Out[10]:
                                    у
             0 2020-04-01 1.234333e+06
             1 2020-04-02 5.502250e+05
             2 2020-04-03 6.185000e+05
             3 2020-04-04 0.000000e+00
               2020-04-05  0.000000e+00
           360 2021-03-27 0.000000e+00
           361
               2021-03-28 0.000000e+00
           362 2021-03-29 4.119000e+05
               2021-03-30 5.161438e+05
           363
               2021-03-31 5.053775e+05
          365 rows × 2 columns
In [11]: df['ts']= pd.to_datetime(df['ts'])
```

```
In [12]:
         # df = ... # your input timeseries!
         df=df
         metadata = MetadataParam(
             time_col= 'ts',
                                 # time column in `df`
             value_col='y'
                                 # value in `df`
         forecaster = Forecaster() # creates forecasts and stores the result
         result = forecaster.run_forecast_config(
              df=df,
               config=ForecastConfig(
                   # uses the SILVERKITE model template parameters
                   model_template=ModelTemplateEnum.SILVERKITE.name,
                   forecast_horizon=30, # forecasts 30 steps ahead
                                          # 95% prediction intervals
                   coverage=0.95,
                   metadata_param=metadata
          )
         # Access the result
         forecaster.forecast_result
         Fitting 3 folds for each of 1 candidates, totalling 3 fits
         [Parallel(n jobs=1)]: Using backend SequentialBackend with 1 concurrent worker
         [Parallel(n_jobs=1)]: Done
                                       3 out of 3 | elapsed:
                                                                 14.0s finished
Out[12]: ForecastResult(timeseries=<greykite.framework.input.univariate_time_series.Univ</pre>
         ariateTimeSeries object at 0x0000022CFF6F8310>, grid_search=RandomizedSearchCV
         (cv=RollingTimeSeriesSplit(expanding_window=True, forecast_horizon=30,
                      max_splits=3, min_train_periods=60, periods_between_splits=30,
                      periods_between_train_test=0, use_most_recent_splits=False),
                             estimator=Pipeline(steps=[('input',
                                                        PandasFeatureUnion(transformer li
         st=[('date',
         Pipeline(steps=[('select_date',
         ColumnSelector(column names=['ts'...
                                      'OutsideTolerance3p': make_scorer(score_func_finit
         e),
                                      'OutsideTolerance4p': make_scorer(score_func_finit
         e),
                                      'OutsideTolerance5p': make_scorer(score_func_finit
         e),
                                      'Q80': make_scorer(score_func_finite),
                                      'Q95': make_scorer(score_func_finite),
                                      'Q99': make_scorer(score_func_finite),
                                      'R2': make_scorer(score_func_finite),
                                      'RMSE': make_scorer(score_func_finite)
                                      'sMAPE': make_scorer(score_func_finite)},
                             verbose=1), model=Pipeline(steps=[('input',
                           PandasFeatureUnion(transformer_list=[('date',
                                                                  Pipeline(steps=[('select
         _date',
                                                                                   ColumnS
         elector(column_names=['ts']))])),
                                                                 ('response',
                                                                  Pipeline(steps=[('select
         _val',
                                                                                   ColumnS
         elector(column_names=['y'])),
                                                                                  ('outlie
         r',
                                                                                   Zscore0
         utlierTransformer()),
                                                                                  ('null',
                                                                                   NullTra
         nsformer(impute_algorithm='interpolate',
         impute_params={'axis': 0,
          'limit direct...
```

```
'simple_freq': <Sim</pre>
\verb|pleTimeFrequencyEnum.DAY: Frequency(default\_horizon=30, seconds\_per\_observation|)|
=86400, valid_seas={'WEEKLY_SEASONALITY', 'MONTHLY_SEASONALITY', 'YEARLY_SEASON
ALITY', 'QUARTERLY_SEASONALITY'})>,
                                                                'start_year': 202
0},
                                             uncertainty_dict={'params': {'condit
ional_cols': ['dow_hr'],
                                                                            'quanti
le_estimation_method': 'normal_fit',
                                                                            'quanti
les': [0.0250000000000000022,
0.975],
                                                                            'sample
_size_thresh': 5,
                                                                            'small
sample_size_method': 'std_quantiles',
                                                                            'small_
sample_size_quantile': 0.98},
                                                                 'uncertainty_metho
d': 'simple_conditional_residuals'}))]), backtest=<greykite.framework.output.un</pre>
ivariate_forecast.UnivariateForecast object at 0x0000022C979E6070>, forecast=<g</pre>
reykite.framework.output.univariate_forecast.UnivariateForecast object at 0x000
0022C979E4970>)
```

```
In [13]: ts = result.timeseries
fig = ts.plot()
plotly.io.show(fig)
```

```
In [15]: from plotly.offline import init_notebook_mode, iplot
    init_notebook_mode(connected=True) # for generating offline graphs within Jupy:
    backtest = result.backtest
    fig = backtest.plot()
    iplot(fig)
```

```
In [16]: from plotly.offline import init_notebook_mode, iplot
    init_notebook_mode(connected=True)

fig = backtest.plot_components()
    iplot(fig) # fig.show() if you are using "PROPHET" template
```

```
In [17]: forecast = result.forecast
fig = forecast.plot()
iplot(fig)
```

```
In [18]: | from plotly.offline import init_notebook_mode, iplot
          from greykite.common.evaluation import EvaluationMetricEnum
          init_notebook_mode(connected=True) # for generating offline graphs within Jupy
          # MAPE by day of week
          fig = backtest.plot_grouping_evaluation(
              score_func=EvaluationMetricEnum.MeanAbsolutePercentError.get_metric_func(),
              score_func_name=EvaluationMetricEnum.MeanAbsolutePercentError.get_metric_nam
              which="train", # "train" or "test" set
groupby_time_feature="dow", # day of week
              groupby_sliding_window_size=None,
              groupby_custom_column=None)
          iplot(fig)
          # RMSE over time
          fig = backtest.plot_grouping_evaluation(
              score_func=EvaluationMetricEnum.RootMeanSquaredError.get_metric_func(),
              score_func_name=EvaluationMetricEnum.RootMeanSquaredError.get_metric_name(),
              which="test", # "train" or "test" set
              groupby_time_feature=None,
              groupby_sliding_window_size=7, # weekly aggregation of daily data
              groupby_custom_column=None)
          iplot(fig)
```

In [19]: summary = result.model[-1].summary() # -1 retrieves the estimator from the pipe print(summary)

Number of observations: 365, Number of features: 92

Method: Ridge regression Number of nonzero features: 92 Regularization parameter: 1.000e+05

Residuals:

Min 1Q Median 3Q Max -9.500e+05 -4.399e+05 -3.448e+05 -9.317e+04 2.568e+07 Max

-9.500e+05	-4.399e	+05 -3.44	-8e+05 -9	.317e+04	2.568e+07	
	Pred_col	Estimate	Std. Err	Pr(>)_boot	sig. code	
	ntercept	9.538e+05	8.436e+04	<2e-16	***	(8.127e+05,
1.136e+06) events_C	New Year	-1.284	1.727	0.174		(-6.005,
0.09491) events_C	w Year-1	-4.526	4.462	0.156		(-1
4.88, 0.) events_C	w Year-2	-1.872	2.146	0.146		(-
7.995, 0.) events_C	w Year+1	-7.523	7.902	0.546		(-2
5.47, 0.) events_C	w Year+2	-6.789	6.703	0.148		(-2
3.85, 0.) events_Chris	tmas Day	-3.916	3.606	0.132		(-1
1.98, 0.) events_C	as Day-1	-3.628	3.694	0.144		(-1
2.22, 0.) events_C	as Day-2	-3.282	3.287	0.162		(-1
0.44, 0.) events_C	as Day+1	-4.208	4.404	0.166		(-1
4.11, 0.) events_C	as Day+2	-4.505	4.591	0.168		(-1
5.65, 0.) events_E	Ireland]	-4.375	4.245	0.156		(-1
4.03, 0.) events_E	eland]-1	-4.039	3.931	0.152		(-1
3.37, 0.) events_E	eland]-2	-3.706	3.808	0.138		(-1
4.27, 0.) events_E	eland]+1	-3.983	4.033	0.166		(-1
3.02, 0.) events_E 187, 6.4)	eland]+2	1.353	1.937	0.626		(-0.3
events_Goo 1.68, 0.)	d Friday	-3.378	3.536	0.142		(-1
events_Good 1.42, 0.)	Friday-1	-3.306	3.29	0.158		(-1
events_Good 2.51, 0.)	Friday-2	-8.679	6.171	0.082		(-2
events_Good 4.27, 0.)	Friday+1	-3.706	3.808	0.138		(-1
events_Good 3.37, 0.)	Friday+2	-4.039	3.931	0.152		(-1
events_I 1, 51.24)	ence Day	12.42	17.78	0.450		(-15.0
events_I 7.51, 0.)	ce Day-1	-6.376	5.01	0.108		(-1
events_I (0., 143.5)	ce Day-2	48.26	44.59	0.144		
events_I 1, 115.8)	ce Day+1	31.2	38.36	0.570		(-19.5
events_I 3, 182.7)	ce Day+2	56.03	59.72	0.540		(-11.
events_L 9.55, 0.)	abor Day	-7.33	5.469	0.102		(-1
events_Lab 3.96, 0.)	or Day-1	-4.67	3.63	0.098	•	(-1
events_Lab	or Day-2	-6.719	4.812	0.096		(-1

ĮLII	NKEDIN GREYKII	EJ Bronx Forecast	- Jupyter Noteboo	K	
7.49, 0.) events_Labor Day+1	-7.497	5.631	0.108		(-1
9.96, 0.) events_Labor Day+2	-8.476	6.037	0.096		(-2
0.65, 0.) events_Memorial Day	-3.506	4.013	0.512		(-1
3.84, 0.) events_Mal Day-1	-4.066	3.994	0.148		(-
13.4, 0.) events_Mal Day-2	-4.628	4.57	0.138		(-1
6.25, 0.) events_Mal Day+1	-2.953	3.12	0.170		(-1
	-3.996	4.166	0.514		(-1
4.31, 0.) events_New Years Day	27.66	27.68	0.576		
(0., 84.66) events_Nrs Day-1 (0., 113.5)	37.08	37.22	0.538		
•	-1.441	1.887	0.160		(-
events_Nrs Day+1 (0., 69.82)	18.23	19.71	0.512		
events_Nrs Day+2 (0., 32.04)	8.798	9.453	0.560		
events_Other 3, 80.04)	-31.94	53.83	0.552		(-127.
events_Other-1 3, 405.8)	116.8	135.3	0.412		(-94.7
events_Other-2 4, 546.7)	223.8	149.7	0.114		(-17.3
events_Other+1 3, 251.6)	82.67	79.22	0.264		(-56.6
events_Other+2 0, 93.37)	-38.85	60.06	0.506		(-145.
events_Thanksgiving (0., 11.02)	2.997	3.292	0.534		
events_Tgiving-1 (0., 27.17)	8.223	8.428	0.184		
events_Tgiving-2 (0., 766.3)	256.8	228.1	0.216		
events_Tgiving+1 8.496, 0.)	-2.229	2.425	0.134		(-
events_Tgiving+2 1.31, 0.)	-9.266	9.263	0.500		(-3
•	-4.789	4.561	0.138		(-1
events_Vns Day-1 1, 0.5143)	-0.9835	1.581	0.230		(-5.04
	-0.597	1.39	0.370		(-4.1
events_Vns Day+1 2.76, 0.)	-3.623	3.705	0.144		(-1
events_Vns Day+2 5.51, 0.)	-3.867	4.107	0.146		(-1
str_dow_2-Tue 5, 615.5)	159.8	201.3	0.518		(-119.
str_dow_3-Wed 1, 470.2)	145.9	134.3	0.262		(-54.8
str_dow_4-Thu 1, 196.4)	43.02	77.22	0.578		(-98.
str_dow_5-Fri 9, 84.23)	-57.48	70.78	0.386		(-187.
str_dow_6-Sat 1, -33.38)	-134.6	53.48	0.016	*	(-240.
str_dow_7-Sun 9, 5.355)	-111.6	59.74	0.060	•	(-221.
ct1 0, 122.9)	24.12	47.13	0.600		(-65.
is_weekend:ct1 9, -47.36)	-138.0	48.59	0.008	**	(-238.
str_dow_2-Tue:ct1 2, 429.8)	121.8	134.7	0.470		(-60.8
str_dow_3-Wed:ct1	59.84	66.39	0.350		(-41.4

[Լ	INKEDIN GREYKITE] Bro	onx Forecast - Ju	pyter Notebook		
2, 210.6)	36.50	42.02	0.510		/ 16 0
str_dow_4-Thu:ct1 3, 113.6)	26.59	43.02	0.518		(-46.8
str_dow_5-Fri:ct1 1, 74.91)	-14.94	41.31	0.718		(-88.1
str_dow_6-Sat:ct1	-72.59	29.78	0.020	*	(-131.
7, -14.54) str_dow_7-Sun:ct1	-65.43	28.35	0.018	*	(-123.
4, -14.5)					·
ct1:sin1_tow_weekly 8, 596.4)	293.5	136.2	0.034	*	(54.2
ct1:cos1_tow_weekly	-3.638	116.1	0.984		(-226.
9, 224.1) ct1:sin2_tow_weekly	92.57	160.4	0.570		(-166.
4, 427.7)	24.0	00.6	0.763		
ct1:cos2_tow_weekly 3, 150.8)	-24.9	90.6	0.762		(-204.
<pre>sin1_tow_weekly 8, 1003.0)</pre>	529.3	230.7	0.026	*	(122.
cos1_tow_weekly	-4.394	195.1	0.984		(-367.
7, 377.8) sin2_tow_weekly	64.32	257.5	0.800		(-352.
3, 608.8)					
cos2_tow_weekly 1, 230.1)	-74.9	174.3	0.644		(-451.
sin3_tow_weekly	-3.564	183.0	0.990		(-401.
3, 347.5) cos3_tow_weekly	-78.33	252.1	0.762		(-581.
2, 374.3)		102.0	0.000		
sin4_tow_weekly 5, 401.3)	3.564	183.0	0.990		(-347.
cos4_tow_weekly 2, 374.3)	-78.33	252.1	0.762		(-581.
sin1_toq_quarterly	-173.2	153.0	0.240		(-488.
3, 113.1) cos1_toq_quarterly	125.3	270.7	0.646		(-361.
9, 640.6)					·
<pre>sin2_toq_quarterly 6, 718.4)</pre>	234.5	227.8	0.318		(-166.
cos2_toq_quarterly	422.1	209.8	0.046	*	(18.8
8, 848.3) sin3_toq_quarterly	-203.0	243.3	0.432		(-713.
4, 221.8)	200.4	100 7	0.020	*	
<pre>cos3_toq_quarterly 3, 731.2)</pre>	390.4	189.7	0.030		(19.1
<pre>sin4_toq_quarterly 2, 867.6)</pre>	368.3	226.8	0.096	•	(-24.0
cos4_toq_quarterly	-11.83	212.4	0.956		(-399.
6, 409.6) sin5_toq_quarterly	25.25	152.7	0.876		(-261.
5, 338.7)					·
<pre>cos5_toq_quarterly 7, 884.8)</pre>	332.8	266.1	0.188		(-151.
, ·- /	0 001 1**! 0 01	1*1 0 05 1	10111		

Multiple R-squared: 0.0002528, Adjusted R-squared: 0.002863 F-statistic: -0.00010588 on 0 and 364 DF, p-value: nan

Signif. Code: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Model AIC: 12644.0, model BIC: 12644.0

WARNING: the F-ratio and its p-value on regularized methods might be misleadin g, they are provided only for reference purposes.

Observation:

Per the model in Linkedin Greykite, property prices will be stable around mid 900,000-1 million for Bronx