

planetmath.org

Math for the people, by the people.

pullback of a k-form

Canonical name PullbackOfAKform
Date of creation 2013-03-22 14:00:34
Last modified on 2013-03-22 14:00:34

Owner bwebste (988) Last modified by bwebste (988)

Numerical id 7

Author bwebste (988)
Entry type Definition
Classification msc 53-00
Related topic Pullback2
Related topic TangentMap

If X is a manifold, let $\Omega^k(X)$ be the vector space of k-forms on X.

Definition Suppose X and Y are smooth manifolds, and suppose f is a smooth mapping $f: X \to Y$. Then the **pullback** induced by f is the mapping $f^*: \Omega^k(Y) \to \Omega^k(X)$ defined as follows: If $\omega \in \Omega^k(Y)$, then $f^*(\omega)$ is the k-form on X defined by the formula

$$(f^*\omega)_x(X_1,\ldots,X_k) = \omega_{f(x)}((Df)_x(X_1),\ldots,(Df)_x(X_k))$$

where $x \in X$, $X_1, \ldots, X_k \in T_x(X)$, and Df is the tangent map $Df : TX \to TY$.

0.0.1 Properties

Suppose X and Y are manifolds.

- If id_X is the identity map on X, then $(id_X)^*$ is the identity map on $\Omega^k(X)$.
- If X, Y, Z are manifolds, and f, g are mappings $f: X \to Y$ and $g: Y \to Z$, then

$$(g \circ f)^* = f^* \circ g^*.$$

• If f is a diffeomorphism $f: X \to Y$, then f^* is a diffeomorphism with inverse

$$(f^{-1})^* = (f^*)^*.$$

• If f is a mapping $f: X \to Y$, and $\omega \in \Omega^k(Y)$, then

$$df^*\omega = f^*d\omega,$$

where d is the exterior derivative.

• Suppose f is a mapping $f: X \to Y, \, \omega \in \Omega^k(Y)$, and $\eta \in \Omega^l(Y)$. Then

$$f^*(\omega \wedge \eta) = f^*(\omega) \wedge f^*(\eta).$$

- If g is a 0-form on Y, that is, g is a real valued function $g: Y \to \mathbb{R}$, and f is a mapping $f: X \to Y$, then $f^*(g) = f \circ g$.
- Suppose U is a submanifold (or an open set) in an manifold X, and $\iota: U \hookrightarrow X$ is the inclusion mapping. Then ι^* restricts k-forms on X to k-forms on U.