

CLAIMS

1. A heat exchanging tube provided with a flat tube main body having a predetermined length and a plurality of refrigerant passages extending in a tube longitudinal direction and arranged 5 in a tube widthwise direction, wherein the following relational equations (a) to (c) are satisfied:

$$W = 6 \text{ to } 18 \text{ mm} \quad \dots \text{(a)},$$

$$Ac/At \times 100 = 50 \text{ to } 70 \% \quad \dots \text{(b)} \text{ and}$$

$$P/L \times 100 = 350 \text{ to } 450 \% \quad \dots \text{(c)},$$

10 where "W" is a width of the tube main body, "Ac" is a total cross-sectional area of the refrigerant passages, "At" is a total cross-sectional area of the tube main body (including the refrigerant passages), "L" is an external perimeter of the tube main body and "P" is a total inner perimeter of the refrigerant 15 passages.

2. The heat exchanging tube as recited in claim 1, wherein the following relational equation (d) is satisfied:

$$P/W \times 100 = 750 \text{ to } 850 \% \quad \dots \text{(d)}.$$

20

3. The heat exchanging tube as recited in claim 1, wherein the following relational equation (e) is satisfied:

$$N/W = 3 \text{ to } 4 \quad \dots \text{(e)},$$

where "N" is the number of refrigerant passages.

25

4. The heat exchanging tube as recited in claim 1, wherein
the following relational equation is satisfied:

$$H = 0.5 \text{ to } 1.5 \text{ mm} \quad \dots(f),$$

where "H" is a height of the tube main body.

5

5. The heat exchanging tube as recited in claim 1, wherein
the following relational equation (g) is satisfied:

$$Ta = 50 \text{ to } 80 \mu\text{m} \quad \dots(g),$$

where "Ta" is a thickness of the partitioning wall partitioning
10 adjacent refrigerant passages in the tube main body.

6. The heat exchanging tube as recited in claim 1, wherein
the following relational equation (h):

$$Tb = 80 \text{ to } 250 \mu\text{m} \quad \dots(h),$$

15 where "Tb" is the thickness of the external peripheral wall in the
tube main body.

7. The heat exchanging tube as recited in claim 1, wherein
the refrigerant passage is approximately rectangular in cross-
20 section.

8. The heat exchanging tube as recited in claim 1, wherein
the width W of the tube main body is set to be 6 to 14 mm.

25 9. The heat exchanging tube as recited in claim 1, wherein

the width W of the tube main body is set to be 7 to 12 mm.

10. The heat exchanging tube as recited in claim 1, wherein
the following relational equation is satisfied:

5 $Ac/At \times 100 = 55 \text{ to } 65\%$.

11. The heat exchanging tube as recited in claim 1, wherein
the following relational equation is satisfied:

P/L $\times 100 = 360 \text{ to } 420\%$.

10

12. A heat exchanging tube provided with a plurality of
refrigerant passages in a flat tube main body having a predetermined
length, the refrigerant passage extending in a direction of a tube
longitudinal direction and being arranged in parallel in a tube
15 widthwise direction,

wherein the following relational equations (a), (f), (g) and
(h) are satisfied:

$$W = 6 \text{ to } 18 \text{ mm} \quad \dots(a),$$

$$H = 0.5 \text{ to } 1.5 \text{ mm} \quad \dots(f),$$

20 $Ta = 50 \text{ to } 80 \mu\text{m} \quad \dots(g) \text{ and}$

$$Tb = 80 \text{ to } 250 \mu\text{m} \quad \dots(h),$$

where "W" is a width of the tube main body, "H" is a height of the
tube main body, "Ta" is a thickness of a partitioning wall
partitioning adjacent refrigerant passages in the tube main body,
25 "Tb" is a thickness of an external peripheral wall of the tube main

body.

13. The heat exchanging tube as recited in claim 12, wherein the width W of the tube main body is set to be 6 to 14 mm.

5

14. The heat exchanging tube as recited in claim 12, wherein the width W of the tube main body is set to be 7 to 12 mm.

15. A heat exchanger provided with a pair of headers and a plurality of heat exchanging tubes arranged in parallel in a header length direction, opposite ends of the heat exchanging tube being connected to the headers in fluid communication,

wherein the heat exchanging tube is provided with a flat tube main body having a predetermined length and a plurality of refrigerant passages extending in a tube longitudinal direction and arranged in a tube widthwise direction, and

wherein the following relational equations(a) to (c) are satisfied:

$$W = 6 \text{ to } 18 \text{ mm} \quad \dots(a),$$

$$20 \quad Ac/At \times 100 = 50 \text{ to } 70 \% \quad \dots(b) \text{ and}$$

$$P/L \times 100 = 350 \text{ to } 450 \% \quad \dots(c),$$

where "W" is a width of the tube main body, "Ac" is a total cross-sectional area of the refrigerant passages, "At" is a total cross-sectional area of the tube main body (including the refrigerant passages), "L" is an external perimeter of the tube

main body and "P" is a total inner perimeter of the refrigerant passages.

16. The heat exchanger as recited in claim 15, wherein the
5 width W of the tube main body is set to be 6 to 14 mm.

17. The heat exchanger as recited in claim 15, wherein the
width W of the tube main body is set to be 7 to 12 mm.

10 18. The heat exchanger as recited in claim 15, wherein the
following relational equation is satisfied:

$$Ac/At \times 100 = 55 \text{ to } 65\%.$$

19. The heat exchanger as recited in claim 15, wherein the
15 following relational equation is satisfied:

$$P/L \times 100 = 360 \text{ to } 420\%.$$

20. A heat exchanger provided with a pair of headers and a
plurality of heat exchanging tubes arranged in parallel in a header
20 length direction, opposite ends of the heat exchanging tube being
connected to the headers in fluid communication,

wherein the heat exchanging tube is provided with a flat tube
main body having a predetermined length and a plurality of
refrigerant passages extending in a tube longitudinal direction
25 and arranged in a tube widthwise direction, and

wherein the following relational equations (a), (f), (g) and (h) are satisfied:

$$W = 6 \text{ to } 18 \text{ mm} \quad \dots \text{(a)},$$

$$H = 0.5 \text{ to } 1.5 \text{ mm} \quad \dots \text{(f)},$$

5 $T_a = 50 \text{ to } 80 \mu\text{m} \quad \dots \text{(g)} \text{ and}$

$$T_b = 80 \text{ to } 250 \mu\text{m} \quad \dots \text{(h)},$$

where "W" is a width of the tube main body, "H" is a height of the tube main body, "Ta" is a thickness of a partitioning wall partitioning adjacent refrigerant passages in the tube main body,
10 "Tb" is a thickness of an external peripheral wall of the tube main body.

21. The heat exchanger as recited in claim 20, wherein the width W of the tube main body is set to be 6 to 14 mm.

15

22. The heat exchanger as recited in claim 20, wherein the width W of the tube main body is set to be 7 to 12 mm.