

# **HTG-777 User Manual**

Version 1.0 Copyright © HiTech Global 2003-2015



#### Disclaimer

HiTech Global does not assume any liability arising out of the application or use of any product described or shown herein; nor does it convey any license under its patents, copyrights, or mask work rights or any rights of others. HiTech Global reserves the right to make changes, at any time, in order to improve reliability and functionality of this product. HiTech Global will not assume responsibility for the use of any circuitry described herein other than circuitry entirely embodied in its products. HiTech Global provides any design, code, or information shown or described herein "as is." By providing the design, code, or information as one possible implementation of a feature, application, or standard, HiTech Global makes no representation that such implementation is free from any claims of infringement. End users are responsible for obtaining any rights they may require for their implementation. HiTech Global expressly disclaims any warranty whatsoever with respect to the adequacy of any such implementation, including but not limited to any warranties or representations that the implementation is free from claims of infringement, as well as any implied warranties of merchantability or fitness for a particular purpose.

HiTech Global will not assume any liability for the accuracy or correctness of any engineering or software support or assistance provided to a user. HiTech Global products are not intended for use in life support appliances, devices, or systems. Use of a HiTech Global product in such applications without the written consent of the appropriate HiTech Global officer is prohibited.

The contents of this manual are owned and copyrighted by HiTech Global Copyright 2002-2015 HiTech Global All Rights Reserved. Except as stated herein, none of the material may be copied, reproduced, distributed, republished, downloaded, displayed, posted, or transmitted in any form or by any means including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise, without the prior written consent of HiTech Global. Any unauthorized use of any material contained in this manual may violate copyright laws, trademark laws, the laws of privacy and publicity, and communications regulations and statutes.

#### **Revision History**

| Date      | Version | Notes |
|-----------|---------|-------|
| 9/30/2013 | 1.0     |       |
|           |         |       |
|           |         |       |
|           |         |       |

### **Table Of Contents**

| Chapter 1 - Introduction to Virtex-7             |    |
|--------------------------------------------------|----|
| 1.1) Overview                                    | 5  |
| 1.2) Virtex-7 Family Serial I/O Protocol Support | 6  |
| Chapter 2 – Development Platform Introduction    |    |
| 2.1 Introduction                                 | 8  |
| 2.2) HTG-777 Platform's Features                 | 9  |
| 2.3) Platform Block Diagram                      | 9  |
| 2.4) FPGA Bank Assignment                        | 10 |
| 2.5) Clock Distribution                          | 11 |
| 2.6) DDR-III Interfaces                          | 14 |
| 2.7) FPGA Mezzanine Card (FMC) Interfaces        | 17 |
| 2.8) Additional Board To Board Connectors        | 33 |
| 2.9) User Interfaces                             | 34 |
| 2.10) IP Protection                              | 35 |
| 2.11) USB To UART Port                           | 35 |
| 2.12 ) Configuration                             | 36 |
| 2.13) I2C Bus Switch                             | 38 |
| Chapter 3 – FMC Modules                          |    |

- Table (1): Summary of Virtex-7 FPGA Features
- Table (2): Supported Serial Protocols
- Table (3): Clock Summary
- Table (4): DDR3 SODIMM FPGA Pin Assignment
- Table (5): Vita57 FMC Pin Assignment
- Table (6.a): FPGA Mezzanine Connectors pin assignment (A)
- Table (6.b): FPGA Mezzanine Connectors pin assignment (B)
- Table (6.c): FPGA Mezzanine Connectors pin assignment (C)
- Table (7): Additional Board To Board Connection FPGA Pin Assignment
- Table (8): User Interface FPGA Pin Assignment
- Table (9): USB/UART Interface FPGA Pin Assignment
- Table (10): Flash Interface FPGA Pin Assignment
- Table (11): I2C Bus FPGA Pin Assignment
- Figure (1): Block Diagram & Placement
- Figure (2) FFG1761 Package I/O Banks
- Figure (3): FPGA Bank Assignment
- Figure (4): Clock Diagram
- Figure (5): DDR3 Clock Circuit
- Figure (6): Carrier Card Connector Grid Labeling
- Figure (7): FMC Module Connector Grid Labeling
- Figure (8): V Adjust Setting For FMC "B" & "C"

# Figure (9): I2C Bus Switch

Image (1): Stackable Option

Image (2): Host Option

Image (3): Daughter Card Option

Image (4): FMC To FMC Cable

Image (5): Dual SFP+ FMC Module

Image (6): Dual CX4 FMC Module

Image (7): Serial Connectivity FMC Module

Image (8): PCI Express FMC Module

Image (9): 8-Port FMC Module

Image (10): Quade SFP/SATA FMC Module

Image (11): 8-Port SMA/LVDS FMC Module

Image (12): Quade SFP/SFP+ FMC Module

Image (13): QSFP/QSFP+/SFP/SFP+ FMC Module

Image (14): Dual QSFP/QSFP+ FMC Module

### Chapter 1: Introduction to Xilinx Virtex-7

#### 1.1) Overview

The Virtex®-7 FPGAs are the programmable silicon foundation for Targeted Design Platform that deliver integrated software and hardware components to enable designers to focus on innovation as soon as their development cycle begins.

Optimized for applications that require ultra high-speed serial connectivity, Virtex®-7 FPGAs offer the industry's highest serial bandwidth through a combination of GTX and GTH transceivers to enable next-generation packet and transport, switch fabric, video switching, and imaging equipment.

Xilinx's Virtex-7 2000T FPGA enabled by <u>Stacked Silicon Interconnect (SSI)</u> technology delivers 2 million logic cells, 6.8 billion transistors and 12.5Gb/s serial transceivers, making it ideally suited for the ASIC prototyping and emulation applications.



#### The Virtex-7 2000T device:

- Eliminates the need for multi-chip partitioning
- Provides equivalent capacity and performance to high density ASIC and ASSPs
- Mitigates development risks for large ASIC and ASSP designs
- Reduces board space requirements and complexity
- Delivers flexible IO to create a contiguous device to match very large ASICs
- Reduces system level power consumption

Table (1) illustrates key features of the Virtex-7 devices (V585T, V2000T, and X690T) supported by the HTG-777 platforms.

|                     | Part Number                                       | XC7V585T  | XC7V2000T  | XC7VX690T  |
|---------------------|---------------------------------------------------|-----------|------------|------------|
|                     | EasyPath™ Cost Reduction Solutions <sup>(1)</sup> | XCE7V585T | XCE7V2000T | XCE7VX690T |
|                     | Slices                                            | 91,050    | 305,400    | 108,300    |
| Logic<br>Resources  | Logic Cells                                       | 582,720   | 1,954,560  | 693,120    |
| 11000011000         | CLB Flip-Flops                                    | 728,400   | 2,443,200  | 866,400    |
|                     | Maximum Distributed RAM (Kb)                      | 6,938     | 21,550     | 10,888     |
| Memory<br>Resources | Block RAM/FIFO w/ ECC (36 Kb each)                | 795       | 1,292      | 1,470      |
| 11000011000         | Total Block RAM (Kb)                              | 28,620    | 46,512     | 52,920     |
| Clocking            | CMTs (1 MMCM + 1 PLL)                             | 18        | 24         | 20         |
| I/O Resources       | Maximum Single-Ended I/O                          | 850       | 1,200      | 1,000      |
| I/O Resources       | Maximum Differential I/O Pairs                    | 408       | 576        | 480        |
|                     | DSP48E1 Slices                                    | 1,260     | 2,160      | 3,600      |
|                     | PCI Express Gen2                                  | 3         | 4          | _          |
|                     | PCI Express Gen3                                  | _         | _          | 3          |
| Embedded IP         | Agile Mixed Signal (AMS) / XADC                   | 1         | 1          | 1          |
| Resources           | Configuration AES / HMAC Blocks                   | 1         | 1          | 1          |
|                     | GTX 12.5 Gb/s Transceivers <sup>(2)</sup>         | 36        | 36         | _          |
|                     | GTH 13.1 Gb/s Transceivers <sup>(3)</sup>         | _         | _          | 80         |
|                     | GTZ 28.05 Gb/s Transceivers                       | _         | _          | _          |
|                     | Commercial                                        | -1, -2    | -1, -2     | -1, -2     |
| Speed Grades        | Extended <sup>(4)</sup>                           | -2L, -3   | -2L, -2G   | -2L, -3    |
|                     | Industrial                                        | -1, -2    | -1         | -1, -2     |

**Table (1) Summary of Virtex-7 FPGA Features** 

# 1.2) Virtex-7 Family Serial I/O Protocol Support

GTX and GTH serial transceivers of the Virtex-7 devices support different ranges of serial protocol standards. Table (2) illustrates the supported standards and protocols.

| Protocol      | Virtex-7 GTX                             | Virtex-7 GTH                             |
|---------------|------------------------------------------|------------------------------------------|
| PCI Express®  | Gen 1,2,3                                | Gen 1,2,3                                |
| QPI           | <b>*</b>                                 | <b>*</b>                                 |
| Fibre Channel | <b>~</b>                                 | <b>→</b>                                 |
| SATA/SAS      | <b>*</b>                                 | <b>→</b>                                 |
| Aurora        | ✓                                        | ✓                                        |
| Ethernet      | 1000BASE-X/SGMII, QSGMII, XAUI,<br>RXAUI | 1000BASE-X/SGMII, QSGMII, XAUI,<br>RXAUI |
|               | 10GBase-R, 10GBASE-KR, 40GBASE-R,        | 10GBase-R, 10GBASE-KR, 40GBASE-R,        |

# **HTG-777 Platform User Manual**

|                                                          | (XLAUI), 40GBASE-KR4, 100GBASE-R<br>(CAUI), 100GBASE-CR10 | (XLAUI), 40GBASE-KR4, 100GBASE-R<br>(CAUI), 100GBASE-CR10 |
|----------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|
| OTU                                                      | ✓                                                         | ✓                                                         |
| SONET                                                    | <b>~</b>                                                  | ✓                                                         |
| Interlaken                                               | <b>*</b>                                                  | ✓                                                         |
| SFI-S                                                    | ✓                                                         | ✓                                                         |
| CEI Back Plane                                           | ✓                                                         | ✓                                                         |
| BPON GPON<br>GEPON GEPON<br>10GGPON (up to<br>2.5G BCDR) | BPON, GPON, GEPON, 10GEPON  10GGPON (up to 2.5G BCDR)     | BPON, GPON, GEPON  10GEPON, 10GGPON                       |
| OBSAI                                                    | <b>√</b>                                                  | J                                                         |
| CPRI                                                     | <b>→</b>                                                  | <b>✓</b>                                                  |
| Serial Rapid IO                                          | ✓                                                         | ✓                                                         |
| JESD204                                                  | ✓                                                         | ✓                                                         |
| SDI                                                      | 4                                                         | ✓                                                         |
| V By One                                                 | <b>→</b>                                                  | <b>✓</b>                                                  |

**Table (2) Supported Serial Protocols** 

# Chapter 2:Development Platform Introduction

# 2.1) Introduction

Powered by four Xilinx Virtex-7 <u>V2000T, V585T, or X690</u> FPGAs, the HTG-777 is ideal for ASIC/SOC prototyping, emulation, and high-performance computing requiring large FPGA gate counts.

Available resources such as three high pin count (HPC) FPGA Mezzanine Connectors (FMC), one DDR3 memory, and flexible high performance clocking scheme enable the HTG-777platofm for using in different applications requiring high speed interfaces.

Special form factor of the HTG-777 platform allows Stackable, Host, and Daughter Card use options.



Image (1): **Stackable Option:** connecting multiple boards to each other through FMC connectors expanding logic density



Image (2): Host Option: hosting multiple FMC daughter cards expanding functionality



Image (3): Daughter Card Option: mating with another FPGA carrier board expanding logic density

#### 2.2) HTG-777 Platform's Features

- ▶ x1 Virtex-7 V2000T, X690T, or V585T FPGA in FHG1761 package
- ▶x3 High Pin Count (HPC) FMC
- FMC #B & C: Each providing 160 Single-end (80 LVDS) + 8 GTX/GTH Serial Transceivers used for hosting FMC daughter cards or another HTG-777 card expanding the total density of the design
- FMC #A: 160 Single-end (80 LVDS) + 8 GTX/GTH Serial Transceivers used for mating with FPGA carrier cards
- ▶ x2 Samtec QSE and QTE connectors each with 6 GXT/GTX Serial Transceivers used for I/O expansion or stack up of multiple V7-FMC module
- ▶ x1 DDR3 SODIMM socket supporting up to 8GB of memory (shipped with 1GB module)
- ► Flash for configuration
- ▶ x1 USB/UART port
- ▶ I2C Bus Control Switch
- ► Size: 5 1/2" x 4 1/2"

# 2.3) Platform Block Diagram

Figure (1) illustrates high-level block diagram and component placement of the HTG-777 platform



Figure (1): Block Diagram & Placement

### 2.4) FPGA Bank Assignment

Figure (2) illustrates utilization of the I/O banks for the Virtex-7 FPGAs.



Figure (2) FFG1761 Package - I/O Banks

| Bank 19<br>FMC 'C' | Bank 39<br>FMC 'A' | GTX 119<br>FMC 'B' |
|--------------------|--------------------|--------------------|
| Bank 18<br>FMC 'C' | Bank 38<br>FMC 'A' | GTX 118<br>FMC 'B' |
| Bank 17<br>FMC 'C' | Bank 37<br>FMC 'A' | GTX 117<br>FMC 'C' |
| Bank 16<br>FMC 'B' | Bank 36<br>FMC 'B' | GTX 116<br>FMC 'C' |
| Bank 15<br>FLASH   | Bank 35<br>FMC 'B' | GTX 115<br>B2B     |
| Bank 14<br>FLASH   | Bank 34<br>FMC 'B' | GTX 114<br>B2B     |
| Bank 13<br>FMC 'C' | Bank 33<br>DDR3    | GTX 113<br>B2B     |
| Bank 12<br>FMC 'A' | Bank 32<br>DDR3    | GTX 112<br>FMC 'A' |
|                    | Bank 31<br>DDR3    | GTX 111<br>FMC 'A' |

Figure (3): FPGA Bank Assignment

# 2.5) Clock Distribution

For providing high performance of different onboard resources, the HTG-777 platform is supported by different low-jitter crystal oscillators and synthesizers manufactured by IDT and Silicon Labs. These clock resources have default factory start up frequencies but are programmable to wide range of different values through I2C bus. Figure (5) illustrates the entire platform's clock diagram.



Figure (4): Clock Diagram

Table (3) illustrates summary of all clock components on the HTG-777 platform:

| Ref.<br>Designator | Part Number                 | Description                                                                                                                                                                                                                                          |
|--------------------|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| U5                 | 8N4Q001EG-1020CDI           | I2C Programmable XO, LVDS, 2.5V, 20ppm with start up frequency of 156.25MHz. Provides reference clocks to MGT 113 and 114 for QTE/QSE board to board connectors (vertical stack up). It also provides clock to the J1 (QTE) and J11 (QSE) connectors |
| U17                | 8N4Q001EG-1020CDI           | I2C Programmable XO, LVDS, 2.5V, 20ppm with start up frequency of 156.25MHz . Provides reference clocks to MGT 111, and 112 for FMC "A",                                                                                                             |
| U16                | 8N4Q001LG-0102CDI           | I2C Programmable XO, LVDS, 2.5V, 20ppm with start up frequency of 25MHz . Provides reference clocks for FMC "A"                                                                                                                                      |
| U22                | 8N4Q001LG-0102CDI           | I2C Programmable XO, LVDS, 2.5V, 20ppm with start up frequency of 25MHz . Provides reference clocks for DDR3 memory                                                                                                                                  |
| U6                 | 8N4Q001EG-1015CDI           | 2C Programmable XO, LVDS, 2.5V, 20ppm with start up frequency of 200MHz. Provides clocks for DDR3 interface                                                                                                                                          |
| U4                 | SY89832U                    | 1:4 LVDS Fanout Buffer (used with U5 to provide clock for QSE and QTE board to board connectors)                                                                                                                                                     |
| U14                | SY89832U                    | 1:4 LVDS Fanout Buffer (used with U17 to provide clock for FMC "A"                                                                                                                                                                                   |
| U13                | SY89832U                    | 1:4 LVDS Fanout Buffer (used with U17 to provide clock for FMC "A"                                                                                                                                                                                   |
| U32                | XG-1000CA<br>100.0000M-EBL3 | EMCC clock for faster configuration                                                                                                                                                                                                                  |

|             | FSEL1       | FSEL0       | Selects                 |
|-------------|-------------|-------------|-------------------------|
| U5, U17     | 0 (default) | 0 (default) | Frequency 0 (156.25MHz) |
| 8N4Q001EG-  | 0           | 1           | Frequency 1 (125.00MHz) |
| 1020CDI     | 1           | 0           | Frequency 2 (100.00MHz) |
|             | 1           | 1           | Frequency 3 (25.175MHz) |
|             | FSEL1       | FSEL0       | Selects                 |
| U16,U22     | 0 (default) | 0 (default) | Frequency 0 (25.00MHz)  |
| (8N4Q001LG- | 0           | 1           | Frequency 1 (50.00MHz)  |
| 0102CDI)    | 1           | 0           | Frequency 2 (100.00MHz) |
|             | 1           | 1           | Frequency 3 (125.00MHz) |
|             | FSEL1       | FSEL0       | Selects                 |
| U6          | 0           | 0           | Frequency 0 (170.00MHz) |
| (8N4Q001EG- | 0 (default) | 1 (default) | Frequency 1 (200.00MHz) |
| 1015CDI)    | 1           | 0           | Frequency 2 (220.00MHz) |
|             | 1           | 1           | Frequency 3 (250.00MHz) |

Table (3): Clock Summary

# **2.6)** DDR-III Interfaces

The HTG-777 platform is populated with one 204-pin DDR3 SODIMM socket supporting up to 8 GB of memory density.

Table (4) illustrates FPGA pin assignment for the DDR3 interfaces.

| DDR3 Signal Name | Virtex 7 FPGA Pin Number |
|------------------|--------------------------|
| DDR3_A[0]        | AN18                     |
| DDR3_A[1]        | BB16                     |
| DDR3_A[10]       | AN19                     |
| DDR3_A[11]       | AU18                     |
| DDR3_A[12]       | AR17                     |
| DDR3_A[13]       | AW20                     |
| DDR3_A[14]       | AW17                     |
| DDR3_A[15]       | AV18                     |
| DDR3_A[2]        | AT20                     |
| DDR3_A[3]        | AR18                     |
| DDR3_A[4]        | AV20                     |
| DDR3_A[5]        | AR19                     |
| DDR3_A[6]        | AU19                     |
| DDR3_A[7]        | AV19                     |
| DDR3_A[8]        | AU16                     |
| DDR3_A[9]        | AT16                     |
| DDR3_BA[0]       | AY19                     |
| DDR3_BA[1]       | BA16                     |
| DDR3_BA[2]       | AP17                     |
| DDR3_CAS_N       | AY20                     |
| DDR3_CK0_N       | AM17                     |
| DDR3_CK0_P       | AM18                     |
| DDR3_CK1_N       | AM19                     |
| DDR3_CK1_P       | AL19                     |
| DDR3_CKE0        | AW18                     |
| DDR3_CKE1        | AV16                     |
| DDR3_CS0_N       | AY18                     |
| DDR3_CS1_N       | AT19                     |
| DDR3_DM[0]       | BB13                     |
| DDR3_DM[1]       | AV13                     |
| DDR3_DM[2]       | AM11                     |
| DDR3_DM[3]       | AK14                     |
| DDR3_DM[4]       | AK23                     |
| DDR3_DM[5]       | AN24                     |
| DDR3_DM[6]       | AW22                     |
| DDR3_DM[7]       | AY24                     |
| DDR3_DQ[0]       | AY12                     |
| DDR3_DQ[1]       | AW12                     |
| DDR3_DQ[10]      | AV15                     |
| DDR3_DQ[11]      | AR15                     |

| DDR3_DQ[12]         | AT12  |
|---------------------|-------|
| DDR3_DQ[13]         | AU12  |
| DDR3_DQ[14]         | AU14  |
| DDR3_DQ[15]         | AT15  |
| DDR3_DQ[16]         | AN13  |
| DDR3_DQ[17]         | AR14  |
| DDR3_DQ[18]         | AM12  |
| DDR3_DQ[19]         | AM13  |
| DDR3_DQ[2]          | AY13  |
| DDR3_DQ[20]         | AP11  |
| DDR3_DQ[21]         | AN11  |
| DDR3_DQ[22]         | AP13  |
| DDR3_DQ[23]         | AT14  |
| DDR3_DQ[24]         | AJ12  |
| DDR3_DQ[25]         | AK13  |
| DDR3_DQ[26]         | AL15  |
| DDR3_DQ[27]         | AL16  |
| DDR3_DQ[28]         | AK12  |
| DDR3_DQ[29]         | AJ13  |
| DDR3_DQ[3]          | BB14  |
| DDR3_DQ[30]         | AJ15  |
| DDR3_DQ[31]         | AJ16  |
| DDR3_DQ[32]         | AL21  |
| DDR3_DQ[33]         | AK20  |
| DDR3_DQ[34]         | AJ21  |
| DDR3_DQ[35]         | AJ20  |
| DDR3_DQ[36]         | AL20  |
| DDR3_DQ[37]         | AM21  |
| DDR3_DQ[38]         | AL22  |
| DDR3_DQ[39]         | AJ23  |
| DDR3_DQ[4]          | BA12  |
| DDR3_DQ[40]         | AN21  |
| DDR3_DQ[41]         | AN23  |
| DDR3_DQ[42]         | AM23  |
| DDR3_DQ[43]         | AM24  |
| DDR3_DQ[44]         | AP21  |
| DDR3_DQ[45]         | AT22  |
| DDR3_DQ[46]         | AR23  |
| DDR3_DQ[47]         | AR22  |
| DDR3_DQ[48]         | AU23  |
| DDR3_DQ[49]         | AW23  |
| DDR3_DQ[5]          | BB12  |
| DDR3_DQ[50]         | AV23  |
| DDR3_DQ[51]         | AR24  |
| DDR3_DQ[52]         | AW21  |
| DDR3_DQ[53]         | AV21  |
| DDR3_DQ[54]         | AT24  |
| DDR3_DQ[55]         | AU24  |
| 2510_5 <u>X[33]</u> | 11021 |

| DDR3_DQ[56]    | BA21 |
|----------------|------|
| DDR3_DQ[57]    | AY25 |
| DDR3_DQ[58]    | BB23 |
| DDR3_DQ[59]    | BA24 |
| DDR3_DQ[6]     | AY14 |
| DDR3_DQ[60]    | BB21 |
| DDR3_DQ[61]    | AY23 |
| DDR3_DQ[62]    | BB24 |
| DDR3_DQ[63]    | BA25 |
| DDR3_DQ[7]     | AW15 |
| DDR3_DQ[8]     | AU13 |
| DDR3_DQ[9]     | AW13 |
| DDR3_DQS_N[0]  | BA14 |
| DDR3_DQS_N[1]  | AR12 |
| DDR3_DQS_N[2]  | AN14 |
| DDR3_DQS_N[3]  | AL14 |
| DDR3_DQS_N[4]  | AK22 |
| DDR3_DQS_N[5]  | AP22 |
| DDR3_DQS_N[6]  | AU21 |
| DDR3_DQS_N[7]  | BB22 |
| DDR3_DQS_P[0]  | BA15 |
| DDR3_DQS_P[1]  | AP12 |
| DDR3_DQS_P[2]  | AN15 |
| DDR3_DQS_P[3]  | AK15 |
| DDR3_DQS_P[4]  | AJ22 |
| DDR3_DQS_P[5]  | AP23 |
| DDR3_DQS_P[6]  | AT21 |
| DDR3_DQS_P[7]  | BA22 |
| DDR3_EVENT_N   | AP20 |
| DDR3_ODT0      | BA19 |
| DDR3_ODT1      | BA20 |
| DDR3_RAS_N     | AY17 |
| DDR3_RST_N     | AW16 |
| DDR3_WE_N      | BB19 |
| SYS_CLK_DDR3_N | AU17 |
| SYS_CLK_DDR3_P | AT17 |
|                |      |

Table (4): DDR3 SODIMM FPGA Pin Assignment

### 2.6.1) DDR3 Clock

As illustrated by figure (5), the DDR3 clock for the SODIMM is generated by high-performance low-jitter IDT 8N4Q001EG-1015CDI programmable Oscillator. Each oscillator can hold up to 4 factory pre-programmed frequencies. As shown by table (3), pre-programmed values of the U6 are 170, 200, 220 and 250MHz (selectable by R18 and R20). The default setting is for output frequency of 200MHz. Although the default frequencies are set, this oscillator can be controlled by FPGA through I2C interface for different clock values.



Figure (5): DDR3 Clock Circuit

The ICS8N4Q001 is a Quad-Frequency Programmable Clock Oscillator with very flexible frequency programming and delivers excellent phase noise performance at <0.5 ps rms 1kHz - 20MHz. The device uses IDT's fourth generation FemtoClock® NG technology for an optimum of high clock frequency and low phase noise performance, combined with high power supply noise rejection. The device accepts 2.5V or 3.3V supply and is packaged in a small, lead-free (RoHS 6) 10-lead ceramic 5mm x 7mm x 1.55mm package. Besides the 4 default power-up frequencies set by the FSEL0 and FSEL1 pins, the ICS8N4Q001 can be programmed via the I2C interface to output clock frequencies between 15.476 to 866.67MHz and from 975 to 1,300MHz to a very high degree of precision with a frequency step size of 435.9Hz  $\div$  N (N: PLL post divider). Since the FSEL0 and FSEL1 pins are mapped to 4 independent PLL M and N divider registers (P, MINT, MFRAC and N), reprogramming those registers to other frequencies under control of FSEL0 and FSEL1 is supported.

# **2.7) FPGA Mezzanine Card FMC) Interfaces**

The HTG-777 development platform is populated with <u>three</u> 400-pin <u>Samtec connector</u> for High Pin Count (HPC) implementation of <u>Vita 57</u> FPGA Mezzanine Card (FMC) interface. The Vita57 calls for fixed location of IOs, Power, Clocks, and Jtag signals so any compliant module can easily be pluggable into any compliant carrier card.

Each FMC connector provides access to **160** single-ended I/Os and **8** GTX/GTH Serial Transceivers. The HTG-777 provides access to total of 480 single-ended and 24 Serial I/Os through three FMC connectors.

Figure (6) illustrates carrier card connector (Samtec Part # **ASP-134486-01**) grid labeling (used for hosting FMC daughter cards – FMC "A" & B)



Figure (6): Carrier Card Connector Grid Labeling

Figure (7) illustrates FMC Module connector (Samtec Part # **ASP-134488-01**) grid labeling (used for connecting the HTG-777 as daughter card to carrier cards – FMC "A")



Figure (7): FMC Module Connector Grid Labeling

To increase FPGA gate count of the HTG-777 platform, the FMC connectors can be used in conjunction with additional HTG-777 modules.

FMC to FMC cables are also available for connecting the HTG-777 platforms to each other or similar Vita57 compliant carrier boards or modules. Additional information is available at <a href="http://hitechglobal.com/FMCModules/FMC\_Cable.htm">http://hitechglobal.com/FMCModules/FMC\_Cable.htm</a>



Image (4): FMC To FMC Cable

Table (5) illustrates the exact location of the fixed functional pins on a High Pin Count (HPC) FMC connector.

| K            | J            | Н             | G             | F         | Е         | D             | С                | В             | A         |
|--------------|--------------|---------------|---------------|-----------|-----------|---------------|------------------|---------------|-----------|
| VREF_B_M2C   | GND          | VREF_A_M2C    | GND           | PG M2C    | GND       | PG C2M        | GND              | CLK DIR       | GND       |
| GND          | CLK3 BIDIR P | PRSNT M2C L   | CLK1 M2C P    | GND       | HA01 P CC | GND           | DP0 C2M P        | GND           | DP1 M2C P |
| GND          | CLK3 BIDIR N | GND           | CLK1 M2C N    | GND       | HA01 N CC | GND           | DP0 C2M N        | GND           | DP1 M2C N |
| CLK2 BIDIR P | GND          | CLK0 M2C P    | GND           | HA00 P CC | GND       | GBTCLK0 M2C P | GND              | DP9 M2C P     | GND       |
| CLK2 BIDIR N | GND          | CLK0 M2C N    | GND           | HA00 N CC | GND       | GBTCLK0 M2C N | GND              | DP9 M2C N     | GND       |
| GND          | HA03 P       | GND           | LA00_P_CC     | GND       | HA05 P    | GND           | DP0 M2C P        | GND           | DP2 M2C P |
| HA02 P       | HA03 N       | LA02 P        | LA00 N CC     | HA04 P    | HA05 N    | GND           | DP0_M2C_N        | GND           | DP2 M2C N |
| HA02_N       | GND          | LA02 N        | GND           | HA04 N    | GND       | LA01 P CC     | GND              | DP8 M2C P     | GND       |
| GND          | HA07 P       | GND           | LA03 P        | GND       | HA09 P    | LA01 N CC     | GND              | DP8 M2C N     | GND       |
| HA06 P       | HA07 N       | LA04 P        | LA03 N        | HA08 P    | HA09 N    | GND           | LA06 P           | GND           | DP3 M2C P |
| HA06 N       | GND          | LA04_N        | GND           | HA08 N    | GND       | LA05 P        | LA06_N           | GND           | DP3 M2C N |
| GND          | HA11 P       | GND           | LA08 P        | GND       | HA13 P    | LA05 N        | GND              | DP7 M2C P     | GND       |
| HA10 P       | HA11 N       | LA07 P        | LA08 N        | HA12 P    | HA13 N    | GND           | GND              | DP7 M2C N     | GND       |
| HA10 N       | GND          | LA07 N        | GND           | HA12 N    | GND       | LA09 P        | LA10 P           | GND           | DP4 M2C P |
| GND          | HA14 P       | GND           | LA12 P        | GND       | HA16 P    | LA09 N        | LA10 N           | GND           | DP4 M2C N |
| HA17 P CC    | HA14 N       | LA11 P        | LA12 N        | HA15 P    | HA16 N    | GND           | GND              | DP6 M2C P     | GND       |
| HA17 N CC    | GND          | LA11 N        | GND           | HA15_N    | GND       | LA13 P        | GND              | DP6 M2C N     | GND       |
| GND          | HA18 P       | GND           | LA16_P        | GND       | HA20 P    | LA13 N        | LA14 P           | GND           | DP5 M2C P |
| HA21 P       | HA18 N       | LA15 P        | LA16_N        | HA19 P    | HA20 N    | GND           | LA14 N           | GND           | DP5 M2C N |
| HA21 N       | GND          | LA15 N        | GND           | HA19 N    | GND       | LA17 P CC     | GND              | GBTCLK1_M2C_P | GND       |
| GND          | HA22 P       | GND           | LA20 P        | GND       | HB03 P    | LA17 N CC     | GND              | GBTCLK1_M2C_N | GND       |
| HA23 P       | HA22 N       | LA19 P        | LA20 N        | HB02 P    | HB03 N    | GND           | LA18 P CC        | GND           | DP1 C2M P |
| HA23 N       | GND          | LA19 N        | GND           | HB02 N    | GND       | LA23 P        | LA18 N CC        | GND           | DP1 C2M N |
| GND          | HB01_P       | GND           | LA22_P        | GND       | HB05_P    | LA23_N        | GND              | DP9_C2M_P     | GND       |
| HB00_P_CC    | HB01_N       | LA21_P        | LA22_N        | HB04_P    | HB05_N    | GND           | GND              | DP9_C2M_N     | GND       |
| HB00_N_CC    | GND          | LA21_N        | GND           | HB04_N    | GND       | LA26_P        | LA27_P           | GND           | DP2_C2M_P |
| GND          | HB07_P       | GND           | LA25_P        | GND       | HB09_P    | LA26_N        | LA27_N           | GND           | DP2_C2M_N |
| HB06_P_CC    | HB07_N       | LA24_P        | LA25_N        | HB08_P    | HB09_N    | GND           | GND              | DP8_C2M_P     | GND       |
| HB06_N_CC    | GND          | LA24_N        | GND           | HB08_N    | GND       | TCK           | GND              | DP8_C2M_N     | GND       |
| GND          | HB11_P       | GND           | LA29_P        | GND       | HB13_P    | TDI           | SCL              | GND           | DP3_C2M_P |
| HB10_P       | HB11_N       | LA28_P        | LA29_N        | HB12_P    | HB13_N    | TDO           | SDA              | GND           | DP3_C2M_N |
| HB10_N       | GND          | LA28_N        | GND           | HB12_N    | GND       | 3P3VAUX       | GND              | DP7_C2M_P     | GND       |
| GND          | HB15_P       | GND           | LA31_P        | GND       | HB19_P    | TMS           | GND              | DP7_C2M_N     | GND       |
| HB14_P       | HB15_N       | LA30_P        | LA31_N        | HB16_P    | HB19_N    | TRST_L        | GA0              | GND           | DP4_C2M_P |
| HB14_N       | GND          | LA30_N        | GND           | HB16_N    | GND       | GA1           | 12P0V            | GND           | DP4_C2M_N |
| GND          | HB18_P       | GND           | LA33_P        | GND       | HB21_P    | 3P3V          | GND              | DP6_C2M_P     | GND       |
| HB17_P_CC    | HB18_N       | LA32_P        | LA33_N        | HB20_P    | HB21_N    | GND           | 12P0V            | DP6_C2M_N     | GND       |
| HB17_N_CC    | GND          | LA32_N        | GND           | HB20_N    | GND       | 3P3V          | GND              | GND           | DP5_C2M_P |
| GND          | VIO_B_M2C    | GND           | VADJ          | GND       | VADJ      | GND           | 3P3V             | GND           | DP5_C2M_N |
| VIO_B_M2C    | GND          | VADJ          | GND           | VADJ      | GND       | 3P3V          | GND              | RES0          | GND       |
|              |              | LPC Connector | LPC Connector |           |           | LPC Connector | LPC<br>Connector |               |           |

Table (5): Vita57 FMC Pin Assignment

Table (6a, b, and c) illustrate FPGA pin assignments for the FMC Connectors <u>J3</u>, <u>J6</u>, <u>and J10</u>

| FMC "A" Signal Name (J10) | Virtex-7 FPGA Pin Number |
|---------------------------|--------------------------|
| FMC_A_CLK[2]_BI_N         | H14                      |
| FMC_A_CLK[2]_BI_P         | H15                      |
| FMC_A_CLK[3]_BI_N         | G18                      |
| FMC_A_CLK[3]_BI_P         | H19                      |
| FMC_A_DP[0]_C2M_N         | BA5                      |
| FMC_A_DP[0]_C2M_P         | BA6                      |
| FMC_A_DP[0]_M2C_N         | BA1                      |
| FMC_A_DP[0]_M2C_P         | BA2                      |
| FMC_A_DP[1]_C2M_N         | BB7                      |
| FMC_A_DP[1]_C2M_P         | BB8                      |

| FMC_A_DP[1]_M2C_N | BB3 |
|-------------------|-----|
| FMC_A_DP[1]_M2C_P | BB4 |
| FMC_A_DP[2]_C2M_N | AY7 |
| FMC_A_DP[2]_C2M_P | AY8 |
| FMC_A_DP[2]_M2C_N | AY3 |
| FMC_A_DP[2]_M2C_P | AY4 |
| FMC_A_DP[3]_C2M_N | AW5 |
| FMC_A_DP[3]_C2M_P | AW6 |
| FMC_A_DP[3]_M2C_N | AW1 |
| FMC_A_DP[3]_M2C_P | AW2 |
| FMC_A_DP[4]_C2M_N | AU5 |
| FMC_A_DP[4]_C2M_P | AU6 |
| FMC_A_DP[4]_M2C_N | AU1 |
| FMC_A_DP[4]_M2C_P | AU2 |
| FMC_A_DP[5]_C2M_N | AP7 |
| FMC_A_DP[5]_C2M_P | AP8 |
| FMC_A_DP[5]_M2C_N | AR1 |
| FMC_A_DP[5]_M2C_P | AR2 |
| FMC_A_DP[6]_C2M_N | AR5 |
| FMC_A_DP[6]_C2M_P | AR6 |
| FMC_A_DP[6]_M2C_N | AT3 |
| FMC_A_DP[6]_M2C_P | AT4 |
| FMC_A_DP[7]_C2M_N | AV7 |
| FMC_A_DP[7]_C2M_P | AV8 |
| FMC_A_DP[7]_M2C_N | AV3 |
| FMC_A_DP[7]_M2C_P | AV4 |
| FMC_A_HA[0]_CC_N  | F27 |
| FMC_A_HA[0]_CC_P  | F26 |
| FMC_A_HA[1]_CC_N  | F31 |
| FMC_A_HA[1]_CC_P  | F30 |
| FMC_A_HA[10]_N    | C26 |
| FMC_A_HA[10]_P    | C25 |
| FMC_A_HA[11]_N    | D26 |
| FMC_A_HA[11]_P    | D25 |
| FMC_A_HA[12]_N    | A25 |
| FMC_A_HA[12]_P    | A24 |
| FMC_A_HA[13]_N    | C29 |
| FMC_A_HA[13]_P    | C28 |
| FMC_A_HA[14]_N    | B27 |
| FMC_A_HA[14]_P    | B26 |
| FMC_A_HA[15]_N    | D28 |
| FMC_A_HA[15]_P    | D27 |
| FMC_A_HA[16]_N    | A32 |
| FMC_A_HA[16]_P    | A31 |
| FMC_A_HA[17]_CC_N | A27 |
| FMC_A_HA[17]_CC_P | A26 |
| FMC_A_HA[18]_CC_N | B29 |
| FMC_A_HA[18]_CC_P | B28 |

| FMC_A_HA[19]_N    | B31  |
|-------------------|------|
| FMC_A_HA[19]_P    | C31  |
| FMC_A_HA[2]_N     | E22  |
| FMC_A_HA[2]_P     | F22  |
| FMC_A_HA[20]_N    | C30  |
| FMC_A_HA[20]_P    | D30  |
| FMC_A_HA[21]_N    | A30  |
| FMC_A_HA[21]_P    | A29  |
| FMC_A_HA[22]_N    | B24  |
| FMC_A_HA[22]_P    | C24  |
| FMC_A_HA[23]_N    | D31  |
| FMC_A_HA[23]_P    | E30  |
| FMC_A_HA[3]_N     | E25  |
| FMC_A_HA[3]_P     | F25  |
| FMC_A_HA[4]_N     | E28  |
| FMC_A_HA[4]_P     | E27  |
| FMC_A_HA[5]_N     | E29  |
| FMC_A_HA[5]_P     | F29  |
| FMC_A_HA[6]_N     | B23  |
| FMC_A_HA[6]_P     | C23  |
| FMC_A_HA[7]_N     | D23  |
| FMC_A_HA[7]_P     | D22  |
| FMC_A_HA[8]_N     | E24  |
| FMC_A_HA[8]_P     | E23  |
| FMC_A_HA[9]_N     | A22  |
| FMC_A_HA[9]_P     | B22  |
| FMC_A_HB[0]_CC_N  | BA27 |
| FMC_A_HB[0]_CC_P  | BA26 |
| FMC_A_HB[1]_N     | BB29 |
| FMC_A_HB[1]_P     | BB28 |
| FMC_A_HB[10]_N    | AV28 |
| FMC A HB[10] P    | AU28 |
| FMC_A_HB[11]_N    | AT26 |
| FMC_A_HB[11]_P    | AT25 |
| FMC_A_HB[12]_N    | AP28 |
| FMC_A_HB[12]_P    | AN28 |
| FMC_A_HB[13]_N    | AM27 |
| FMC A HB[13] P    | AM26 |
| FMC A HB[14] N    | AN26 |
| FMC_A_HB[14]_P    | AN25 |
| FMC_A_HB[15]_N    | AT27 |
| FMC_A_HB[15]_P    | AR27 |
| FMC_A_HB[16]_N    | AU27 |
| FMC_A_HB[16]_P    | AU26 |
| FMC_A_HB[17]_CC_N | AJ26 |
| FMC_A_HB[17]_CC_P | AJ25 |
| FMC_A_HB[18]_N    | AK25 |
| FMC_A_HB[18]_P    | AK24 |
| [+0]_+            | ·    |

| FING A VIDITAL V  | 44.05 |
|-------------------|-------|
| FMC_A_HB[19]_N    | AL27  |
| FMC_A_HB[19]_P    | AK27  |
| FMC_A_HB[2]_N     | AW28  |
| FMC_A_HB[2]_P     | AW27  |
| FMC_A_HB[20]_N    | AL26  |
| FMC_A_HB[20]_P    | AL25  |
| FMC_A_HB[21]_N    | AR25  |
| FMC_A_HB[21]_P    | AP25  |
| FMC_A_HB[3]_N     | AT29  |
| FMC_A_HB[3]_P     | AR29  |
| FMC_A_HB[4]_N     | AY28  |
| FMC_A_HB[4]_P     | AY27  |
| FMC_A_HB[5]_N     | AV29  |
| FMC_A_HB[5]_P     | AU29  |
| FMC_A_HB[6]_CC_N  | AW26  |
| FMC_A_HB[6]_CC_P  | AW25  |
| FMC_A_HB[7]_N     | AV26  |
| FMC_A_HB[7]_P     | AV25  |
| FMC_A_HB[8]_N     | BB27  |
| FMC_A_HB[8]_P     | BB26  |
| FMC_A_HB[9]_N     | AR28  |
| FMC_A_HB[9]_P     | AP27  |
| FMC_A_LA[0]_CC_N  | N20   |
| FMC_A_LA[0]_CC_P  | P20   |
| FMC_A_LA[1]_CC_N  | H20   |
| FMC_A_LA[1]_CC_P  | J20   |
| FMC_A_LA[10]_N    | C20   |
| FMC_A_LA[10]_P    | D20   |
| FMC_A_LA[11]_N    | D17   |
| FMC_A_LA[11]_P    | D18   |
| FMC_A_LA[12]_N    | E17   |
| FMC_A_LA[12]_P    | F17   |
| FMC_A_LA[13]_N    | A17   |
| FMC_A_LA[13]_P    | B17   |
| FMC_A_LA[14]_N    | A19   |
| FMC_A_LA[14]_P    | A20   |
| FMC_A_LA[15]_N    | A15   |
| FMC_A_LA[15]_P    | A16   |
| FMC_A_LA[16]_N    | B19   |
| FMC_A_LA[16]_P    | C19   |
| FMC_A_LA[17]_CC_N | J15   |
| FMC_A_LA[17]_CC_P | K15   |
| FMC_A_LA[18]_CC_N | L15   |
| FMC_A_LA[18]_CC_P | L16   |
| FMC_A_LA[19]_N    | N14   |
| FMC_A_LA[19]_P    | N15   |
| FMC_A_LA[2]_N     | N18   |
| FMC_A_LA[2]_P     | N19   |
|                   | 111/  |

| FMC_A_LA[20]_N                   | M16  |
|----------------------------------|------|
| FMC_A_LA[20]_P                   | N16  |
| FMC_A_LA[21]_N                   | M11  |
| FMC_A_LA[21]_P                   | M12  |
| FMC_A_LA[22]_N                   | M13  |
| FMC_A_LA[22]_P                   | N13  |
| FMC_A_LA[23]_N                   | L14  |
| FMC_A_LA[23]_P                   | M14  |
| FMC_A_LA[24]_N                   | H13  |
| FMC_A_LA[24]_P                   | J13  |
| FMC_A_LA[25]_N                   | J12  |
| FMC_A_LA[25]_P                   | K12  |
| FMC_A_LA[26]_N                   | K13  |
| FMC_A_LA[26]_P                   | K14  |
| FMC A LA[27] N                   | G13  |
| FMC_A_LA[27]_P                   | G14  |
| FMC_A_LA[27]_F FMC_A_LA[28]_N    | E13  |
|                                  |      |
| FMC_A_LA[28]_P                   | E14  |
| FMC_A_LA[29]_N                   | F12  |
| FMC_A_LA[29]_P                   | G12  |
| FMC_A_LA[3]_N                    | L17  |
| FMC_A_LA[3]_P                    | M17  |
| FMC_A_LA[30]_N                   | C13  |
| FMC_A_LA[30]_P                   | D13  |
| FMC_A_LA[31]_N                   | D15  |
| FMC_A_LA[31]_P                   | D16  |
| FMC_A_LA[32]_N                   | A14  |
| FMC_A_LA[32]_P                   | B14  |
| FMC_A_LA[33]_N                   | C14  |
| FMC_A_LA[33]_P                   | C15  |
| FMC_A_LA[4]_N                    | L19  |
| FMC_A_LA[4]_P                    | L20  |
| FMC_A_LA[5]_N                    | J17  |
| FMC_A_LA[5]_P                    | K17  |
| FMC_A_LA[6]_N                    | M18  |
| FMC_A_LA[6]_P                    | M19  |
| FMC_A_LA[7]_N                    | G17  |
| FMC A LA[7] P                    | H18  |
| FMC_A_LA[8]_N                    | J18  |
| FMC_A_LA[8]_P                    | K19  |
| FMC_A_LA[9]_N                    | F19  |
| FMC_A_LA[9]_N                    | G19  |
| FMC_A_PG_C2M_F                   | L37  |
| FMC_A_PG_C2M_T<br>FMC_A_PG_M2C_F | M37  |
| CLK_MRCC_FMC_A_N                 | AW40 |
|                                  |      |
| CLK_MRCC_FMC_A_P                 | AV40 |
| CLK0_MGT_FMC_A_N                 | AT7  |
| CLK0_MGT_FMC_A_P                 | AT8  |

# **HTG-777 Platform User Manual**

| CLK1_MGT_FMC_A_N | AW9  |
|------------------|------|
| CLK1_MGT_FMC_A_P | AW10 |
| CLK MRCC FMC A N | AW40 |

Table (6.a): FPGA Mezzanine Connectors pin assignment (FMC "A")

| FMC "B" Signal Name (J3) | Virtex-7 FPGA Pin Number |
|--------------------------|--------------------------|
| FMC_B_CLK[0]_M2C_N       | L24                      |
| FMC_B_CLK[0]_M2C_P       | M24                      |
| FMC_B_CLK[1]_M2C_N       | E35                      |
| FMC_B_CLK[1]_M2C_P       | E34                      |
| FMC_B_DP[0]_C2M_N        | K3                       |
| FMC_B_DP[0]_C2M_P        | K4                       |
| FMC_B_DP[0]_M2C_N        | J5                       |
| FMC_B_DP[0]_M2C_P        | J6                       |
| FMC_B_DP[1]_C2M_N        | L1                       |
| FMC_B_DP[1]_C2M_P        | L2                       |
| FMC_B_DP[1]_M2C_N        | L5                       |
| FMC_B_DP[1]_M2C_P        | L6                       |
| FMC_B_DP[2]_C2M_N        | M3                       |
| FMC_B_DP[2]_C2M_P        | M4                       |
| FMC_B_DP[2]_M2C_N        | N5                       |
| FMC_B_DP[2]_M2C_P        | N6                       |
| FMC_B_DP[3]_C2M_N        | N1                       |
| FMC_B_DP[3]_C2M_P        | N2                       |
| FMC_B_DP[3]_M2C_N        | P7                       |
| FMC_B_DP[3]_M2C_P        | P8                       |
| FMC_B_DP[4]_C2M_N        | R1                       |
| FMC_B_DP[4]_C2M_P        | R2                       |
| FMC_B_DP[4]_M2C_N        | U5                       |
| FMC_B_DP[4]_M2C_P        | U6                       |
| FMC_B_DP[5]_C2M_N        | U1                       |
| FMC_B_DP[5]_C2M_P        | U2                       |
| FMC_B_DP[5]_M2C_N        | W5                       |
| FMC_B_DP[5]_M2C_P        | W6                       |
| FMC_B_DP[6]_C2M_N        | T3                       |
| FMC_B_DP[6]_C2M_P        | T4                       |
| FMC_B_DP[6]_M2C_N        | V3                       |
| FMC_B_DP[6]_M2C_P        | V4                       |
| FMC_B_DP[7]_C2M_N        | P3                       |
| FMC_B_DP[7]_C2M_P        | P4                       |
| FMC_B_DP[7]_M2C_N        | R5                       |
| FMC_B_DP[7]_M2C_P        | R6                       |
| FMC_B_GBTCLK[0]_M2       | K7                       |
| FMC_B_GBTCLK[0]_M2       | K8                       |
| FMC_B_GBTCLK[1]_M2       | T7                       |
| FMC_B_GBTCLK[1]_M2       | T8                       |
| FMC_B_HA[0]_CC_N         | M31                      |

| FMC D HAIOL CC D  | N20  |
|-------------------|------|
| FMC_B_HA[0]_CC_P  | N30  |
| FMC_B_HA[1]_CC_N  | N31  |
| FMC_B_HA[1]_CC_P  | P30  |
| FMC_B_HA[10]_N    | W31  |
| FMC_B_HA[10]_P    | W30  |
| FMC_B_HA[11]_N    | L35  |
| FMC_B_HA[11]_P    | L34  |
| FMC_B_HA[12]_N    | M29  |
| FMC_B_HA[12]_P    | M28  |
| FMC_B_HA[13]_N    | L30  |
| FMC_B_HA[13]_P    | L29  |
| FMC_B_HA[14]_N    | K30  |
| FMC_B_HA[14]_P    | K29  |
| FMC_B_HA[15]_N    | P28  |
| FMC_B_HA[15]_P    | R28  |
| FMC_B_HA[16]_N    | N29  |
| FMC_B_HA[16]_P    | N28  |
| FMC_B_HA[17]_CC_N | K32  |
| FMC_B_HA[17]_CC_P | L31  |
| FMC_B_HA[18]_CC_N | L32  |
| FMC_B_HA[18]_CC_P | M32  |
| FMC_B_HA[19]_N    | U29  |
| FMC_B_HA[19]_P    | V29  |
| FMC_B_HA[2]_N     | P31  |
| FMC_B_HA[2]_P     | R30  |
| FMC_B_HA[20]_N    | T30  |
| FMC_B_HA[20]_P    | T29  |
| FMC_B_HA[21]_N    | Y30  |
| FMC_B_HA[21]_P    | Y29  |
| FMC_B_HA[22]_N    | T31  |
| FMC_B_HA[22]_P    | U31  |
| FMC_B_HA[23]_N    | H35  |
| FMC_B_HA[23]_P    | H34  |
| FMC_B_HA[3]_N     | M34  |
| FMC_B_HA[3]_P     | M33  |
| FMC_B_HA[4]_N     | J33  |
| FMC_B_HA[4]_P     | J32  |
| FMC_B_HA[5]_N     | K34  |
| FMC_B_HA[5]_P     | K33  |
| FMC_B_HA[6]_N     | V31  |
| FMC_B_HA[6]_P     | V30  |
| FMC_B_HA[7]_N     | J35  |
| FMC_B_HA[7]_P     | K35  |
| FMC_B_HA[8]_N     | H30  |
| FMC_B_HA[8]_P     | J30  |
| FMC_B_HA[9]_N     | H31  |
| FMC_B_HA[9]_P     | J31  |
| FMC_B_HB[0]_CC_N  | AD33 |
|                   | •    |

| EMC D HDIOL CC D    | AD22 |
|---------------------|------|
| FMC_B_HB[0]_CC_P    | AD32 |
| FMC_B_HB[1]_N       | AE30 |
| FMC_B_HB[1]_P       | AE29 |
| FMC_B_HB[10]_N      | AF36 |
| FMC_B_HB[10]_P      | AF35 |
| FMC_B_HB[11]_N      | AE35 |
| FMC_B_HB[11]_P      | AE34 |
| FMC_B_HB[12]_N      | AA37 |
| FMC_B_HB[12]_P      | Y37  |
| FMC_B_HB[13]_N      | AA36 |
| FMC_B_HB[13]_P      | Y35  |
| FMC_B_HB[14]_N      | AC29 |
| FMC_B_HB[14]_P      | AB29 |
| FMC_B_HB[15]_N      | AA35 |
| FMC_B_HB[15]_P      | AA34 |
| FMC_B_HB[16]_N      | AB32 |
| FMC_B_HB[16]_P      | AB31 |
| FMC_B_HB[17]_CC_N   | AC33 |
| FMC_B_HB[17]_CC_P   | AB33 |
| FMC_B_HB[18]_N      | AD30 |
| FMC_B_HB[18]_P      | AC30 |
| FMC_B_HB[19]_N      | AA32 |
| FMC_B_HB[19]_P      | AA31 |
| FMC_B_HB[2]_N       | AE33 |
| FMC_B_HB[2]_P       | AE32 |
| FMC_B_HB[20]_N      | AD31 |
| FMC_B_HB[20]_P      | AC31 |
| FMC_B_HB[21]_N      | AA30 |
| FMC_B_HB[21]_P      | AA29 |
| FMC_B_HB[3]_N       | AG34 |
| FMC_B_HB[3]_P       | AF34 |
| FMC_B_HB[4]_N       | AD37 |
| FMC_B_HB[4]_P       | AD36 |
| FMC_B_HB[5]_N       | AF37 |
| FMC_B_HB[5]_P       | AE37 |
| FMC_B_HB[6]_CC_N    | AD35 |
| FMC_B_HB[6]_CC_P    | AC34 |
| FMC_B_HB[7]_N       | AF32 |
| FMC B HB[7] P       | AF31 |
| FMC_B_HB[8]_N       | AB37 |
| FMC_B_HB[8]_P       | AB36 |
| FMC_B_HB[9]_N       | AC36 |
| FMC_B_HB[9]_P       | AC35 |
| FMC_B_LA[0]_CC_N    | C36  |
| FMC_B_LA[0]_CC_P    | C35  |
| FMC_B_LA[1]_CC_N    | D36  |
| FMC_B_LA[1]_CC_P    | D35  |
| FMC_B_LA[10]_N      | G33  |
| 1 1/1C_D_L/1[10]_1( | 055  |

| FMC_B_LA[10]_P    | H33 |
|-------------------|-----|
| FMC_B_LA[11]_N    | F35 |
| FMC_B_LA[11]_P    | F34 |
| FMC_B_LA[12]_N    | C34 |
| FMC_B_LA[12]_P    | C33 |
| FMC_B_LA[13]_N    | F37 |
| FMC_B_LA[13]_P    | F36 |
| FMC_B_LA[14]_N    | G37 |
| FMC_B_LA[14]_P    | G36 |
| FMC_B_LA[15]_N    | G38 |
| FMC_B_LA[15]_P    | H38 |
| FMC_B_LA[16]_N    | H36 |
| FMC_B_LA[16]_P    | J36 |
| FMC_B_LA[17]_CC_N | J26 |
| FMC_B_LA[17]_CC_P | J25 |
| FMC_B_LA[18]_CC_N | K25 |
| FMC_B_LA[18]_CC_P | K24 |
| FMC_B_LA[19]_N    | J28 |
| FMC_B_LA[19]_P    | K28 |
| FMC_B_LA[2]_N     | C39 |
| FMC_B_LA[2]_P     | C38 |
| FMC_B_LA[20]_N    | L26 |
| FMC_B_LA[20]_P    | L25 |
| FMC_B_LA[21]_N    | H26 |
| FMC_B_LA[21]_P    | H25 |
| FMC_B_LA[22]_N    | G27 |
| FMC_B_LA[22]_P    | G26 |
| FMC_B_LA[23]_N    | H29 |
| FMC_B_LA[23]_P    | H28 |
| FMC_B_LA[24]_N    | G24 |
| FMC_B_LA[24]_P    | H24 |
| FMC_B_LA[25]_N    | J23 |
| FMC_B_LA[25]_P    | K23 |
| FMC_B_LA[26]_N    | G29 |
| FMC_B_LA[26]_P    | G28 |
| FMC_B_LA[27]_N    | J27 |
| FMC_B_LA[27]_P    | K27 |
| FMC_B_LA[28]_N    | G22 |
| FMC_B_LA[28]_P    | G21 |
| FMC_B_LA[29]_N    | J22 |
| FMC_B_LA[29]_P    | K22 |
| FMC_B_LA[3]_N     | A36 |
| FMC_B_LA[3]_P     | A35 |
| FMC_B_LA[30]_N    | L22 |
| FMC_B_LA[30]_P    | M22 |
| FMC_B_LA[31]_N    | H21 |
| FMC_B_LA[31]_P    | J21 |
| FMC_B_LA[32]_N    | P23 |
|                   |     |

| FMC_B_LA[32]_P     | P22 |
|--------------------|-----|
| FMC_B_LA[33]_N     | L21 |
| FMC_B_LA[33]_P     | M21 |
| FMC_B_LA[4]_N      | A39 |
| FMC_B_LA[4]_P      | B39 |
| FMC_B_LA[5]_N      | D33 |
| FMC_B_LA[5]_P      | E33 |
| FMC_B_LA[6]_N      | D32 |
| FMC_B_LA[6]_P      | E32 |
| FMC_B_LA[7]_N      | B33 |
| FMC_B_LA[7]_P      | B32 |
| FMC_B_LA[8]_N      | A34 |
| FMC_B_LA[8]_P      | B34 |
| FMC_B_LA[9]_N      | F32 |
| FMC_B_LA[9]_P      | G32 |
| FMC_B_PG_C2M_F     | K38 |
| FMC_B_PG_M2C_F     | M36 |
| FMC_B_PRSNT_M2C_L_ | K37 |

Table (6.b): FPGA Mezzanine Connectors pin assignment (FMC "B")

| FMC "C" Signal Name (J6) | Virtex-7 FPGA Pin Number |
|--------------------------|--------------------------|
| FMC_C_CLK[0]_M2C_N       | L40                      |
| FMC_C_CLK[0]_M2C_P       | L39                      |
| FMC_C_CLK[1]_M2C_N       | T37                      |
| FMC_C_CLK[1]_M2C_P       | U36                      |
| FMC_C_DP[0]_C2M_N        | В3                       |
| FMC_C_DP[0]_C2M_P        | B4                       |
| FMC_C_DP[0]_M2C_N        | A5                       |
| FMC_C_DP[0]_M2C_P        | A6                       |
| FMC_C_DP[1]_C2M_N        | C1                       |
| FMC_C_DP[1]_C2M_P        | C2                       |
| FMC_C_DP[1]_M2C_N        | В7                       |
| FMC_C_DP[1]_M2C_P        | B8                       |
| FMC_C_DP[2]_C2M_N        | D3                       |
| FMC_C_DP[2]_C2M_P        | D4                       |
| FMC_C_DP[2]_M2C_N        | C5                       |
| FMC_C_DP[2]_M2C_P        | C6                       |
| FMC_C_DP[3]_C2M_N        | E1                       |
| FMC_C_DP[3]_C2M_P        | E2                       |
| FMC_C_DP[3]_M2C_N        | D7                       |
| FMC_C_DP[3]_M2C_P        | D8                       |
| FMC_C_DP[4]_C2M_N        | G1                       |
| FMC_C_DP[4]_C2M_P        | G2                       |
| FMC_C_DP[4]_M2C_N        | F7                       |
| FMC_C_DP[4]_M2C_P        | F8                       |
| FMC_C_DP[5]_C2M_N        | J1                       |
| FMC_C_DP[5]_C2M_P        | J2                       |

| FMC_C_DP[5]_M2C_N  | H7           |
|--------------------|--------------|
| FMC_C_DP[5]_M2C_P  | Н8           |
| FMC_C_DP[6]_C2M_N  | Н3           |
| FMC_C_DP[6]_C2M_P  | H4           |
| FMC_C_DP[6]_M2C_N  | G5           |
| FMC_C_DP[6]_M2C_P  | G6           |
| FMC_C_DP[7]_C2M_N  | F3           |
| FMC_C_DP[7]_C2M_P  | F4           |
| FMC_C_DP[7]_M2C_N  | E5           |
| FMC_C_DP[7]_M2C_P  | E6           |
| FMC_C_GBTCLK[0]_M2 | A9           |
| FMC_C_GBTCLK[0]_M2 | A10          |
| FMC_C_GBTCLK[1]_M2 | E9           |
| FMC_C_GBTCLK[1]_M2 | E10          |
| FMC_C_HA[0]_CC_N   | AF40         |
| FMC_C_HA[0]_CC_P   | AF39         |
| FMC_C_HA[1]_CC_N   | AG41         |
| FMC_C_HA[1]_CC_P   | AF41         |
| FMC_C_HA[10]_N     | AH39         |
| FMC_C_HA[10]_P     | AG39         |
| FMC_C_HA[11]_N     | AE42         |
| FMC_C_HA[11]_P     | AD42         |
| FMC_C_HA[12]_N     | AA39         |
| FMC_C_HA[12]_P     | Y39          |
| FMC_C_HA[13]_N     | AC41         |
| FMC_C_HA[13]_P     | AC40         |
| FMC_C_HA[14]_N     | AB42         |
| FMC_C_HA[14]_P     | AB41         |
| FMC_C_HA[15]_N     | AA42         |
| FMC_C_HA[15]_P     | Y42          |
| FMC_C_HA[16]_N     | AB39         |
| FMC_C_HA[16]_P     | AB38         |
| FMC_C_HA[17]_CC_N  | AD41         |
| FMC_C_HA[17]_CC_P  | AD40         |
| FMC_C_HA[18]_CC_N  | AE40         |
| FMC_C_HA[18]_CC_P  | AE39         |
| FMC_C_HA[19]_N     | AC39         |
| FMC C HA[19] P     | AC38         |
| FMC_C_HA[2]_N      | AH38         |
| FMC_C_HA[2]_P      | AG38         |
| FMC_C_HA[20]_N     | Y40          |
| FMC_C_HA[20]_P     | W40          |
| FMC_C_HA[21]_N     | AE38         |
| FMC_C_HA[21]_P     | AD38         |
| FMC_C_HA[22]_N     | AA41         |
| FMC_C_HA[22]_P     | AA40         |
| FMC_C_HA[23]_N     | AL40         |
| FMC_C_HA[23]_P     | AK40         |
|                    | <del>_</del> |

| FMC_C_HA[3]_N                 | AK38         |
|-------------------------------|--------------|
| FMC_C_HA[3]_P                 | AJ38         |
| FMC_C_HA[4]_N                 | AJ41         |
| FMC_C_HA[4]_P                 | AJ40         |
| FMC_C_HA[5]_N                 | AK42         |
| FMC_C_HA[5]_P                 | AJ42         |
| FMC_C_HA[6]_N                 | AL39         |
| FMC_C_HA[6]_P                 | AK39         |
| FMC_C_HA[7]_N                 | AL42         |
| FMC_C_HA[7]_P                 | AL41         |
| FMC_C_HA[8]_N                 | AG42         |
| FMC_C_HA[8]_P                 | AF42         |
| FMC_C_HA[9]_N                 | AH41         |
| FMC_C_HA[9]_P                 | AH40         |
| FMC_C_HB[0]_CC_N              | AW33         |
| FMC_C_HB[0]_CC_P              | AW32         |
| FMC_C_HB[1]_N                 | AW31         |
| FMC_C_HB[1]_P                 | AV30         |
| FMC_C_HB[10]_N                | AV33         |
| FMC_C_HB[10]_P                | AU32         |
| FMC_C_HB[11]_N                | BB34         |
| FMC_C_HB[11]_P                | BA34         |
| FMC_C_HB[12]_N                | AU36         |
| FMC_C_HB[12]_P                | AT36         |
| FMC_C_HB[13]_N                | AW36         |
| FMC_C_HB[13]_P                | AV36         |
| FMC_C_HB[14]_N                | AP30         |
| FMC_C_HB[14]_P                | AN30<br>AN30 |
| FMC_C_HB[15]_N                | AU34         |
| FMC_C_HB[15]_P                | AT34         |
| FMC_C_HB[16]_N                | AR33         |
| FMC_C_HB[16]_P                | AP33         |
| FMC_C_HB[17]_CC_N             | AV35         |
| FMC_C_HB[17]_CC_P             | AV34         |
| FMC_C_HB[18]_N                | AP31         |
| FMC_C_HB[18]_N FMC_C_HB[18]_P | AN31         |
| FMC_C_HB[18]_F FMC_C_HB[19]_N | AT35         |
|                               |              |
| FMC_C_HB[19]_P                | AR34         |
| FMC_C_HB[2]_N                 | AY30         |
| FMC_C_HB[2]_P                 | AW30         |
| FMC_C_HB[20]_N                | AR32         |
| FMC_C_HB[20]_P                | AP32         |
| FMC_C_HB[21]_N                | AU33         |
| FMC_C_HB[21]_P                | AT32         |
| FMC_C_HB[3]_N                 | BB31         |
| FMC_C_HB[3]_P                 | BA30         |
| FMC_C_HB[4]_N                 | BB33         |
| FMC_C_HB[4]_P                 | BB32         |

| FMC_C_HB[5]_N     | BA32 |
|-------------------|------|
| FMC_C_HB[5]_P     | BA31 |
| FMC_C_HB[6]_CC_N  | AY33 |
| FMC_C_HB[6]_CC_P  | AY32 |
| FMC_C_HB[7]_N     | AV31 |
| FMC_C_HB[7]_P     | AU31 |
| FMC_C_HB[8]_N     | BB36 |
| FMC_C_HB[8]_P     | BA36 |
| FMC_C_HB[9]_N     | BA35 |
| FMC_C_HB[9]_P     | AY34 |
| FMC_C_LA[0]_CC_N  | T39  |
| FMC_C_LA[0]_CC_P  | U39  |
| FMC_C_LA[1]_CC_N  | V36  |
| FMC_C_LA[1]_CC_P  | V35  |
| FMC_C_LA[10]_N    | T42  |
| FMC_C_LA[10]_P    | U41  |
| FMC_C_LA[11]_N    | R35  |
| FMC_C_LA[11]_P    | T34  |
| FMC_C_LA[12]_N    | R37  |
| FMC_C_LA[12]_P    | T36  |
| FMC_C_LA[13]_N    | R39  |
| FMC_C_LA[13]_P    | R38  |
| FMC_C_LA[14]_N    | P38  |
| FMC_C_LA[14]_P    | P37  |
| FMC_C_LA[15]_N    | N34  |
| FMC_C_LA[15]_P    | N33  |
| FMC_C_LA[16]_N    | P36  |
| FMC_C_LA[16]_P    | P35  |
| FMC_C_LA[17]_CC_N | K40  |
| FMC_C_LA[17]_CC_P | K39  |
| FMC_C_LA[18]_CC_N | L41  |
| FMC_C_LA[18]_CC_P | M41  |
| FMC_C_LA[19]_N    | P40  |
| FMC_C_LA[19]_P    | R40  |
| FMC_C_LA[2]_N     | W33  |
| FMC_C_LA[2]_P     | W32  |
| FMC_C_LA[20]_N    | P42  |
| FMC_C_LA[20]_P    | R42  |
| FMC_C_LA[21]_N    | J42  |
| FMC_C_LA[21]_P    | K42  |
| FMC_C_LA[22]_N    | M39  |
| FMC_C_LA[22]_P    | N38  |
| FMC_C_LA[23]_N    | L42  |
| FMC_C_LA[23]_P    | M42  |
| FMC_C_LA[24]_N    | E42  |
| FMC_C_LA[24]_P    | F42  |
| FMC_C_LA[25]_N    | G42  |
| FMC_C_LA[25]_P    | G41  |
| <b>L</b>          |      |

| FMC_C_LA[26]_N     | H41 |
|--------------------|-----|
| FMC_C_LA[26]_P     | H40 |
| FMC_C_LA[27]_N     | J41 |
| FMC_C_LA[27]_P     | J40 |
| FMC_C_LA[28]_N     | D42 |
| FMC_C_LA[28]_P     | D41 |
| FMC_C_LA[29]_N     | G39 |
| FMC_C_LA[29]_P     | H39 |
| FMC_C_LA[3]_N      | V34 |
| FMC_C_LA[3]_P      | V33 |
| FMC_C_LA[30]_N     | B42 |
| FMC_C_LA[30]_P     | B41 |
| FMC_C_LA[31]_N     | F41 |
| FMC_C_LA[31]_P     | F40 |
| FMC_C_LA[32]_N     | D40 |
| FMC_C_LA[32]_P     | E40 |
| FMC_C_LA[33]_N     | A41 |
| FMC_C_LA[33]_P     | A40 |
| FMC_C_LA[4]_N      | W37 |
| FMC_C_LA[4]_P      | W36 |
| FMC_C_LA[5]_N      | V38 |
| FMC_C_LA[5]_P      | W38 |
| FMC_C_LA[6]_N      | U38 |
| FMC_C_LA[6]_P      | U37 |
| FMC_C_LA[7]_N      | U42 |
| FMC_C_LA[7]_P      | V41 |
| FMC_C_LA[8]_N      | W42 |
| FMC_C_LA[8]_P      | W41 |
| FMC_C_LA[9]_N      | T41 |
| FMC_C_LA[9]_P      | T40 |
| FMC_C_PG_C2M_F     | C40 |
| FMC_C_PG_M2C_F     | M38 |
| FMC_C_PRSNT_M2C_L_ | N39 |

Table (6.c): FPGA Mezzanine Connectors pin assignment (FMC "C")

# **FMC Vadjust**

V\_Adjust for FMC "B" and "C" (hosting FMC modules) can be set to different values below 1.8V (supported by Virtex-7 FPGAs) by using the changing value of RFB as shown by the following formula:

$$V_{OUT} = 0.8V \bullet \frac{60.4k + R_{FB}}{R_{FB}}$$

Figure (8) illustrates RFB resistor setting for FMC "B" and "C"



Figure (8): V\_Adjust Setting For FMC "B" & "C"

# **2.8)** Additional Board To Board Connectors

In addition to stacking option through the FMC connectors, two or more HTG-777 boards can be connected through twelve serial I/Os available on J1 (QTE) and J11 (QSE) connectors. These connectors can also be used for additional daughter card or cable interface.

Table (7) illustrates pin assignment for the J1 and J11 connectors.

| Signal Name       | Virtex-7 FPGA Pin Number |
|-------------------|--------------------------|
| B2B_Gb_MGT1_CLK_N | AH7                      |
| B2B_Gb_MGT1_CLK_P | AH8                      |
| B2B_Gb_MGT2_CLK_N | Y7                       |
| B2B_Gb_MGT2_CLK_P | Y8                       |
| B2B_Gb_MGT3_CLK_N | AD7                      |
| B2B_Gb_MGT3_CLK_P | AD8                      |
| B2B_Gb_QSE_RX0_N  | AN5                      |
| B2B_Gb_QSE_RX0_P  | AN6                      |
| B2B_Gb_QSE_RX1_N  | AM7                      |
| B2B_Gb_QSE_RX1_P  | AM8                      |
| B2B_Gb_QSE_RX2_N  | AL5                      |
| B2B_Gb_QSE_RX2_P  | AL6                      |
| B2B_Gb_QSE_RX3_N  | AJ5                      |
| B2B_Gb_QSE_RX3_P  | AJ6                      |
| B2B_Gb_QSE_RX4_N  | AG5                      |
| B2B_Gb_QSE_RX4_P  | AG6                      |
| B2B_Gb_QSE_RX5_N  | AF3                      |
| B2B_Gb_QSE_RX5_P  | AF4                      |
| B2B_GB_QSE_TX0_N  | AP3                      |
| B2B_Gb_QSE_TX0_P  | AP4                      |
| B2B_Gb_QSE_TX1_N  | AN1                      |
| B2B_GB_QSE_TX1_P  | AN2                      |

| B2B_Gb_QSE_TX2_N | AM3 |
|------------------|-----|
| B2B_Gb_QSE_TX2_P | AM4 |
| B2B_Gb_QSE_TX3_N | AL1 |
| B2B_Gb_QSE_TX3_P | AL2 |
| B2B_Gb_QSE_TX4_N | AK3 |
| B2B_Gb_QSE_TX4_P | AK4 |
| B2B_Gb_QSE_TX5_N | AJ1 |
| B2B_Gb_QSE_TX5_P | AJ2 |
| B2B_Gb_QTE_RX0_N | AC5 |
| B2B_Gb_QTE_RX0_P | AC6 |
| B2B_Gb_QTE_RX1_N | AB3 |
| B2B_Gb_QTE_RX1_P | AB4 |
| B2B_Gb_QTE_RX2_N | AA5 |
| B2B_Gb_QTE_RX2_P | AA6 |
| B2B Gb QTE RX3 N | Y3  |
| B2B_Gb_QTE_RX3_P | Y4  |
| B2B_Gb_QTE_RX4_N | AE5 |
| B2B_Gb_QTE_RX4_P | AE6 |
| B2B_Gb_QTE_RX5_N | AD3 |
| B2B_Gb_QTE_RX5_P | AD4 |
| B2B_Gb_QTE_TX0_N | AE1 |
| B2B_Gb_QTE_TX0_P | AE2 |
| B2B_Gb_QTE_TX1_N | AC1 |
| B2B_Gb_QTE_TX1_P | AC2 |
| B2B_Gb_QTE_TX2_N | AA1 |
| B2B_Gb_QTE_TX2_P | AA2 |
| B2B_Gb_QTE_TX3_N | W1  |
| B2B_Gb_QTE_TX3_P | W2  |
| B2B_Gb_QTE_TX4_N | AH3 |
| B2B_Gb_QTE_TX4_P | AH4 |
| B2B_Gb_QTE_TX5_N | AG1 |
| B2B_Gb_QTE_TX5_P | AG2 |

Table (7): Additional Board To Board Connection FPGA Pin Assignment

# 2.9) User Interfaces

The HTG-777 provides series of user LEDs, user I/Os and Push Buttons. Table (8) illustrates FPGA pin assignments and reference designators for each interface.

| Signal Name     | Virtex-7 FPGA Pin Number | Reference Designator |
|-----------------|--------------------------|----------------------|
| FPGA_USER_IO0_F | AY40                     | J4 - Pin # 1         |
| FPGA_USER_IO1_F | AY39                     | J4 - Pin # 3         |
| FPGA_USER_IO2_F | AT37                     | J4 - Pin # 5         |
| FPGA_USER_IO3_F | BA37                     | J4 - Pin # 7         |
| FPGA_USER_IO4_F | BB37                     | J4 - Pin # 9         |
| FPGA_USER_IO5_F | AR37                     | J4 - Pin # 11        |
| FPGA_USER_IO6_F | AY42                     | J4 - Pin # 13        |

| EDGA LIGED 107 E | A D20 | J4 - Pin # 15  |
|------------------|-------|----------------|
| FPGA_USER_IO7_F  | AP38  | J4 - PIII # 13 |
| FPGA_USER_LED0   | AU38  | D12            |
| FPGA_USER_LED1   | AM34  | D14            |
| FPGA_USER_LED2   | AV38  | D16            |
| FPGA_USER_LED3   | AK32  | D17            |
| FPGA_USER_LED4   | AN34  | D19            |
| FPGA_USER_LED5   | AW38  | D21            |
| FPGA_USER_LED6   | AL32  | D23            |
| FPGA_USER_LED7   | AW37  | D25            |
| FPGA_USER_PB     | AP18  | S3             |
| FPGA_USER_SW1    | AJ18  | S2: Pin # 16   |
| FPGA_USER_SW2    | AN16  | S2: Pin # 15   |
| FPGA_USER_SW3    | BB17  | S2: Pin # 14   |
| FPGA_USER_SW4    | AM16  | S2: Pin # 13   |
| FPGA_USER_SW5    | AL17  | S2: Pin # 12   |
| FPGA_USER_SW6    | AK18  | S2: Pin # 11   |
| FPGA_USER_SW7    | AK19  | S2: Pin # 10   |
| FPGA_USER_SW8    | AK17  | S2: Pin # 9    |

Table (8): User Interface FPGA Pin Assignment

# 2.10) IP Protection

The HTG-777 provides a special 1-wire circuit (connected to the FPGA pin # AL31) for protection of intellectual properties loaded to the FPGAs by using one Maxim DS2432 chips

The DS2432 combines 1024 bits of EEPROM, a 64-bit secret, an 8-byte register/control page with up to five user read/write bytes, a 512-bit SHA-1 engine, and a fully-featured 1-Wire interface in a single chip. Each DS2432 has its own 64-bit ROM registration number that is factory lasered into the chip to provide a guaranteed unique identity for absolute traceability. Data is transferred serially via the 1-Wire protocol, which requires only a single data lead and a ground return. The DS2432 has an additional memory area called the scratchpad that acts as a buffer when writing to the main memory, the register page or when installing a new secret. Data is first written to the scratchpad from where it can be read back. After the data has been verified, a copy scratchpad command will transfer the data to its final memory location, provided that the DS2432 receives a matching 160-Bit MAC. The computation of the MAC involves the secret and additional data stored in the DS2432 including the device's registration number. Only a new secret can be loaded without providing a MAC. The SHA-1 engine can also be activated to compute 160-bit message authentication codes (MAC) when reading a memory page or to compute a new secret, instead of loading it. Applications of the DS2432 include intellectual property security, after-market management of consumables, and tamper-proof data carriers.

Additional information is available at <a href="http://datasheets.maximintegrated.com/en/ds/DS2432.pdf">http://datasheets.maximintegrated.com/en/ds/DS2432.pdf</a>

#### 2.11) USB To UART Port

The HTG-777 board provides one UART port through a peripheral USB connector. The port is supported by the Silicon labs CP2103 USB to UART controller chip.

The CP2103 is a highly-integrated USB-to-UART Bridge Controller providing a simple solution for updating RS-232/RS-485 designs to USB using a minimum of components and PCB space. The CP2103 includes a USB 2.0 full-speed function controller, USB transceiver, oscillator, EEPROM, and asynchronous serial data bus (UART) with full modem control signals in a compact 5x5 mm QFN-28 package (sometimes called "MLF" or "MLP"). No other external USB components are required. The on-chip EEPROM may be used to customize the USB Vendor ID, Product ID, Product Description String, Power Descriptor, Device Release Number, and Device Serial Number as desired for OEM applications. The EEPROM is programmed on-board via the USB, allowing the programming step to be easily integrated into the product manufacturing and testing process.

Royalty-free Virtual COM Port (VCP) device drivers provided by Silicon Laboratories allow a CP2103-based product to appear as a COM port to PC applications. The CP2103 UART interface implements all RS-232/RS-485 signals, including control and handshaking signals; so, existing system firmware does not need to be modified. The device also features up to four GPIO signals that can be user-defined for status and control information. Support for I/O interface voltages down to 1.8 V is provided via a VIO pin. In many existing RS-232 designs, all that is required to update the design from RS-232 to USB is to replace the RS-232 level-translator with the CP2103.

Direct access driver support is available through the Silicon Laboratories USBXpress driver set. Go to www.silabs.com for the latest application notes and product support information for CP2103.

| Table (9) illustrates FPGA |  |  |
|----------------------------|--|--|
|                            |  |  |

| UART/USB Signal Name | Virtex-7 FPGA Pin Number |
|----------------------|--------------------------|
| UART_CTS             | AR42                     |
| UART_DCD             | AV39                     |
| UART_DSR             | AU39                     |
| UART_DTR             | AN39                     |
| UART_GPIO0           | AP40                     |
| UART_GPIO1           | AP41                     |
| UART_GPIO2           | AP42                     |
| UART_GPIO3           | AN40                     |
| UART_RI              | AN38                     |
| UART_RST_N           | AT40                     |
| UART_RTS             | AR40                     |
| UART_RXD             | AR39                     |
| UART_SUSPEND_N       | AT39                     |
| UART_TXD             | AT42                     |
| USB_PERI_PWR         | AR38                     |

Table (9): USB/UART Interface FPGA Pin Assignment

#### 2.12) Configuration

Xilinx FPGAs are CMOS configurable latch (CCL) based and must be configured at power-up from a non-volatile source. FPGA configuration is traditionally accomplished with a JTAG interface, a microprocessor, or the Xilinx PROMs (Platform Flash PROMs).

The onboard FPGA can be programmed either through JTAG connector (J7) or 1Gb (PC28F00AG18FE) Micron Flash device. Upon successful configuration of the onboard FPGA, the D10 LED illuminates.

The Flash device can also be used for storage.

Table (10) illustrates FPGA pin assignment for the Flash interface.

| Flash Signal Name      | Virtex-7 FPGA Pin Number |  |
|------------------------|--------------------------|--|
| FPGA_A[0]              | AJ28                     |  |
| FPGA_A[1]              | AH28                     |  |
| FPGA_A[10]             | AH29                     |  |
| FPGA_A[11]             | AL30                     |  |
| FPGA_A[12]             | AL29                     |  |
| FPGA_A[13]             | AN33                     |  |
| FPGA_A[14]             | AM33                     |  |
| FPGA_A[15]             | AM32                     |  |
| FPGA_A[16]             | AV41                     |  |
| FPGA_A[17]             | AU41                     |  |
| FPGA_A[18]             | BA42                     |  |
| FPGA_A[19]             | AU42                     |  |
| FPGA_A[2]              | AG31                     |  |
| FPGA_A[20]             | AT41                     |  |
| FPGA_A[21]             | BA40                     |  |
| FPGA_A[22]             | BA39                     |  |
| FPGA_A[23]             | BB39                     |  |
| FPGA_A[3]              | AF30                     |  |
| FPGA_A[4]              | AK29                     |  |
| FPGA_A[5]              | AK28                     |  |
| FPGA_A[6]              | AG29                     |  |
| FPGA_A[7]              | AG29<br>AK30             |  |
| FPGA_A[8]              | AJ30                     |  |
| FPGA_A[9]              | AH30                     |  |
| FPGA_ADV_N             | AY37                     |  |
| FPGA DONE              | AL11                     |  |
| FPGA_DQ[0]             | AM36                     |  |
| FPGA_DQ[1]             | AN36                     |  |
| FPGA_DQ[10]            | AH33                     |  |
| FPGA_DQ[11]            | AK35                     |  |
| FPGA_DQ[12]            | AL35                     |  |
| FPGA_DQ[13]            | AJ31                     |  |
| FPGA_DQ[14]            | AH34                     |  |
| FPGA_DQ[15]            | AJ35                     |  |
| FPGA_DQ[2]             | AJ36                     |  |
| FPGA_DQ[3]             | AJ37                     |  |
| FPGA_DQ[4]             | AK37                     |  |
| FPGA_DQ[4]             | AK37<br>AL37             |  |
| FPGA_DQ[5]             |                          |  |
| FPGA_DQ[0]  FPGA_DQ[7] | AN35                     |  |
| FPGA_DQ[7]  FPGA_DQ[8] | AP35                     |  |
| FPGA_DQ[8]  FPGA_DQ[9] | AM37<br>AG33             |  |
|                        |                          |  |
| FPGA_FCS_N             | AL36                     |  |
| FPGA_FOE_N             | BA41                     |  |

| FPGA_FWE_N | BB41 |
|------------|------|
| FPGA_INIT  | AG11 |
| FPGA_RS0   | AW42 |
| FPGA_RS1   | AW41 |

Table (10): Flash Interface FPGA Pin Assignment

## **2.13**) I2C Bus Switch

The HTG-777 platform is supported by one I2C bus switch for controlling different onboard I2C Device. The PCA9548A is an octal bidirectional translating switch controlled via the I<sup>2</sup>C-bus. The SCL/SDA upstream pair fans out to eight downstream pairs, or channels. Any individual SCx/SDx channel or combination of channels can be selected, determined by the contents of the programmable control register.

Figure (9) and table (11) illustrate the I2C system diagram and FPGA pin assignment for the I2C control signals



Figure (9): I2C Bus Switch

# **HTG-777 Platform User Manual**

| Signal Name    | Virtex-7 FPGA Pin Number |
|----------------|--------------------------|
| I2C_MAIN_RST_F | AM42                     |
| I2C_MAIN_SCL_F | AM41                     |
| I2C_MAIN_SDA_F | AN41                     |

Table (11): I2C Bus FPGA Pin Assignment

### Chapter 3:Mezannine Cards

Vita 57 provides a mechanical standard for I/O mezzanine modules. This standard introduces a methodology that shall allow the front panel IO of IEEE 1101 form factor cards to be configured via mezzanine boards. Vita 57 modules have fixed locations for serial/parallel IOs, clocks, Jtag signals, VCC, and GND. HiTech Global's Vita 57 modules work with any Vita 57 compliant carrier boards.

The FMC standard specifies Samtec's SEARAY™ connector set. The VITA 57 SEAM/SEAF Series system provides 400 I/Os in a 40 x 10 configuration or 160 I/Os in a selectively loaded 40 x 10 configuration, in 8.5mm and 10mm stack heights.

HiTech Global offers a wide range of FMC daughter cards which can be used for expanding functionality of the main board. All of these FMC Modules should be used in conjunction with the HTG-AIRMAX-FMC conversion module when used with the HTG-777 platform.

### **2 3.1**) Dual SFP+ (with external PHY)

The Dual SFP+ FMC daughter card provides access to two SFP+ ports (10Gbps each) interfacing to total of 8 serial transceivers (XUAI).

The onboard 10Gig PHY device is a physical layer transceiver with an integrated Electronic Dispersion Compensation (EDC) engine - compliant with IEEE802.3aq specifications. The device integrates industry-leading SerDes/PHY technology with low-power EDC engine with up to 5db of margin over the symmetric stress test pulse sensitivity specifications defined in the 10GASE-LRM standard.

Each PHY device provides full PCS, PMA, and XGXS sub-layer functionality through the consolidation of the receiver and transmitter PHY functions on a single chip along with the integration of encode/decode/alignment logic, FIFOs, on-chip clock drivers, multiple loop-back features and PRBS & Ethernet frame generation & verification for both the line side and the system side.

More information is available at http://www.hitechglobal.com/FMCModules/FMC\_SFP+.htm



Image (5): Dual SFP+ FMC Module

### **3.2**) Dual CX4

The dual CX4 FMC daughter card provides access to two CX4 ports (10Gbps) interfacing to total of 8 serial transceivers (XUAI).

More information is available at <a href="http://www.hitechglobal.com/FMCModules/FMC\_Dual\_CX4.htm">http://www.hitechglobal.com/FMCModules/FMC\_Dual\_CX4.htm</a>



Image (6): Dual CX4 FMC Module

# **■** 3.3) CX4/SATA/SMA Serial Connectivity

The Serial Connectivity FMC daughter card provides access to one CX4, two SATA, and two SMA ports (interfacing to total of 8 serial transceivers). Each port has its own on-board dedicated clock for maximum flexibility and ease of use.

More information is available at <a href="http://www.hitechglobal.com/FMCModules/FMC">http://www.hitechglobal.com/FMCModules/FMC</a> CX4-SMA-SATA.htm

The state of the s

**Image (7): Serial Connectivity FMC Module** 

### **□** 3.4) PCI Express Root Complex

The PCI Express Root FMC daughter card provides access to 8 lanes of PCI Express Gen 1 and port. The module is supported by 100MHz and 250MHz low-jitter clocks.

More information is available at http://www.hitechglobal.com/FMCModules/FMC\_PCIExpress.htm



Image (8): PCI Express FMC Module

## **3.5) 8-Port SMA**

The 8-Port SMA FMC daughter card provides access to 32 SMA connecters providing access to 8 Serial Transceivers. The module is supported by on-board and external clocks.

More information is available at <a href="http://www.hitechglobal.com/FMCModules/FMC\_SMA.htm">http://www.hitechglobal.com/FMCModules/FMC\_SMA.htm</a>



Image (9): 8-Port FMC Module

# **■** 3.6) Quad SFP/SATA

The Quad SFP/SATA FMC daughter card provides access to four SFP and four SATA connectors. Each interface is supported by its own independent clock.

More information is available at <a href="http://www.hitechglobal.com/FMCModules/FMC\_x4SFP\_x4SATA.htm">http://www.hitechglobal.com/FMCModules/FMC\_x4SFP\_x4SATA.htm</a>



Image (10): Quad SFP/SATA FMC Module

# 3.7) 8-port SMA/LVDS

The FMC SMA/LVDSt (HTG-FMC-SMA-LVDS) is a single-size FPGA Mezzanine Connector (FMC) daughter card with support for 8 SMA ports through 32 SMA connectors and 33 pairs of LVDS signals through standard pin headers.

More information is available at <a href="http://hitechglobal.com/FMCModules/FMC\_SMA\_LVDS.htm">http://hitechglobal.com/FMCModules/FMC\_SMA\_LVDS.htm</a>



Image (11): 8-Port SMA/LVDS FMC Module

## 3.8) Quad SFP/SFP+

The Quad SFP/SFP+ FMC module is supported by four SFP/SFP+ ports and high-performance low-jitter Silicon Labs programmable clock (default = 156.25Mhz). The I2C interface between the oscillator and FPGA allows direct control of the SFP/SFP+ ports for wide range of different frequencies. The SFP/SFP+ ports are directly connected to four multi-gigabit serial transceivers of the FPGA carrier board.

More information is available at http://hitechglobal.com/FMCModules/FMC\_4SFP+\_Module.htm



Image (12): Quad SFP/SFP+ FMC Module

# 3.9) QSFP/QSFP+/SFP/SFP+

The CPRI/OBSAI FMC module is supported by one QSFP+ and two SFP+ connectors. The required 122.88MHz and 153.60MHz crystal oscillators for CPRI/OBSAI standards are available on the module. Different gigabit standards can also be supported by changing crystal value (i.e. 10G and 40G Ethernet)

More information is available at <a href="http://hitechglobal.com/FMCModules/FMC\_QSFP+.htm">http://hitechglobal.com/FMCModules/FMC\_QSFP+.htm</a>



Image (13): QSFP/QSFP+/SFP/SFP+ FMC Module

# 3.10) Dual QSFP/QSFP+

The Dual QSFP/QSFP+ FMC module is supported by two QSFP/QSFP+ ports and high-performance low-jitter Silicon Labs programmable clock (default = 156.25Mhz). The I2C interface between the oscillator and FPGA allows direct control of the SFP/SFP+ ports for wide range of different frequencies. The QSFP/QSFP+ ports are directly connected to eight multi-gigabit serial transceivers of the FPGA carrier board.



Image (14): Dual QSFP/QSFP+ FMC Module

# **Technical Support:**

Technical support can be provided by contacting <a href="mailto:support@HiTechGlobal.com">support@HiTechGlobal.com</a> Support requests are responded in less than 24 hours.

# **Sales Support:**

Sales support can be provided by contacting <u>info@HiTechGlobal.com</u> or +1 408 781-7778 (8:00 AM – 6:00 PM Pacific Standard Time)