1. Ejercicio 1

2. Ejercicio 2

Se tiene la siguiente expresión en maxtérminos $f(d; c; b; a) = \prod (M_0; M_1; M_5; M_7; M_8; M_{10}; M_{14}; M_{15})$

De aquí se desprende la siguiente tabla de verdad, de la cual se derivan las expresiones completas en función de las entradas.

d	c	b	a	-	f	M_i
0	0	0	0	-	0	M_0
0	0	0	1	-	0	M_1
0	0	1	0	-	1	M_2
0	0	1	1	-	1	M_3
0	1	0	0	-	1	M_4
0	1	0	1	-	0	M_5
0	1	1	0	-	1	M_6
0	1	1	1	-	0	M_7
0	0	0	0	-	0	M_8
0	0	0	1	-	1	M_9
0	0	1	0	-	0	M_{10}
0	0	1	1	-	1	M_{11}
0	1	0	0	-	1	M_{12}
0	1	0	1	-	1	M_{13}
0	1	1	0	-	0	M_{14}
0	1	1	1	-	0	M_{15}

Expandiendo la expresión, f = $(d+c+b+a) \cdot (d+c+b+\overline{a}) \cdot (d+\overline{c}+b+\overline{a}) \cdot (d+\overline{c}+\overline{b}+\overline{a}) \cdot (\overline{d}+c+\overline{b}+\overline{a}) \cdot (\overline{d}+c+\overline{b}+\overline{a}) \cdot (\overline{d}+\overline{c}+\overline{b}+\overline{a})$

1. Simplificamos mediante el uso del álgebrea booleana:

Agrupando a los maxtérminos anteriores de a dos y en orden, aplicando la propiedad 14.b del álgebra de Boole de la página del libro "Fundamentals of Digital Logic with Verilog Design" propuesto por la cátedra, la expresión queda simplificada a:

$$\mathbf{f} = (d+c+b) \cdot (d+\overline{c}+\overline{a}) \cdot (\overline{d}+c+a) \cdot (\overline{d}+\overline{c}+\overline{b})$$

Luego, aplicando los siguientes cambios de variable y la propiedad 17.a del libro:

$$\begin{cases} y = c + b \\ z = \overline{c} + \overline{a} \\ y' = c + a \\ z' = \overline{c} + \overline{b} \end{cases}$$

$$(1)$$

$$f = (d + y \cdot z) \cdot (\overline{d} + y' \cdot z')$$

Aplicamos propiedad distributiva y de nuevo la propiedad 17.a para llegar a:

$$\mathbf{f} = \!\! d \cdot y^{'} \cdot z^{'} + \overline{d} \cdot y \cdot z + y^{'} \cdot z^{'} \cdot y \cdot z$$

$$f = d \cdot y' \cdot z' + \overline{d} \cdot y \cdot z$$

Volviendo a las variables originales:

$$f = a \cdot d \cdot () + \overline{a}\overline{d} \cdot (c+b) + d \cdot c \cdot \overline{b} + \overline{d} \cdot \overline{c} \cdot b$$

que resulta ser la mínima expresión de f.

2. Simplificamos mediante el uso de mapas de Karnaugh:

c,d a,b	00	01	11	10
00	M_0	M_2	M_3	M_1
01	M_8	M_{10}	M_{11}	M_9
11	M_{12}	M_{14}	M_{15}	M_{13}
10	M_4	M_6	M_7	M_5

f

c,d a, b	00	01	11	10
00	0	1	1	0
01	0	0	1	1
11	1	0	0	1
10	1	1	0	0

3. Ejercicio 3

Se desea realizar un circuito que convierta un número binario de 4 bits en su complemento a dos.

1. Expresamos el valor de cada bit de salida en función de los mintérminos de los bits de entrada.

Sean b_3 , b_2 , b_1 y b_0 los bits de entrada, donde b_3 es el bit más significativo y b_0 el menos significativo.

A su vez, sean y_3 , y_2 , y_1 e y_0 los bits de salida (complemento a dos de la entrada), donde y_3 es el bit más significativo e y_0 el menos significativo.

Luego, se considera cada bit de salida por separado como una función f de los bit de entrada de forma tal que $y_j = f(b_3; b_2; b_1; b_0)$, con j = 3,2,1,0. Cada y_j tendrá 16 posibles valores, que serán identificados como $y_{j,i}$, con i=0;1;...;15

Es sabido que cada y_j puede ser vista como una suma (operación lógica OR) de los mintérminos de los bits de entrada. Así, $y_j = \sum_{i=0}^n m_{j,i} \cdot y_{j,i}$, con n = 15 por ser 16 las posibles entradas de 4 bits y siendo $m_{j,i}$ el mintérmino correspondiente al i-ésimo valor posible del j-ésimo bit de salida.

b_3	b_2	b_1	b_0	-	y_3	y_2	y_1	y_0	
0	0	0	0	-	0	0	0	0	$m_{j,0}$
0	0	0	1	-	1	1	1	1	$m_{j,1}$
0	0	1	0	-	1	1	1	0	$m_{j,2}$
0	0	1	1	-	1	1	0	1	$m_{j,3}$
0	1	0	0	-	1	1	0	0	$m_{j,4}$
0	1	0	1	-	1	0	1	1	$m_{j,5}$
0	1	1	0	-	1	0	1	0	$m_{j,6}$
0	1	1	1	-	1	0	0	1	$m_{j,7}$
1	0	0	0	-	1	0	0	0	$m_{j,8}$
1	0	0	1	-	0	1	1	1	$m_{j,9}$
1	0	1	0	-	0	1	1	0	$m_{j,10}$
1	0	1	1	-	0	1	0	1	$m_{j,11}$
1	1	0	0	-	0	1	0	0	$m_{j,12}$
1	1	0	1	-	0	0	1	1	$m_{j,13}$
1	1	1	0	-	0	0	1	0	$m_{j,14}$
1	1	1	1	-	0	0	0	1	$m_{j,15}$

De la tabla anterior, se observa que:

$$\begin{cases} y_3 = m_{3,1} + m_{3,2} + m_{3,3} + m_{3,4} + m_{3,5} + m_{3,6} + m_{3,7} + m_{3,8} \\ y_2 = m_{2,1} + m_{2,2} + m_{2,3} + m_{2,4} + m_{2,9} + m_{2,10} + m_{2,11} + m_{2,12} \\ y_1 = m_{1,1} + m_{1,2} + m_{1,5} + m_{1,6} + m_{1,9} + m_{1,10} + m_{1,13} + m_{1,14} \\ y_0 = m_{0,1} + m_{0,3} + m_{0,5} + m_{0,7} + m_{0,9} + m_{0,11} + m_{0,13} + m_{0,15} \end{cases}$$
(2)

2. Expresamos el valor de cada bit de salida en forma simplificada. El método elegido para realizar la simplificación es el de mapas de Karnaugh:

Así, para cada y_j , el mapa de Karnaugh de 4 variables/bits queda definido como:

■ *y_j*

$ b_2,b_3 b_0, b_1$	00	01	11	10
00	$m_{j,0}$	$m_{j,2}$	$m_{j,3}$	$m_{j,1}$
01	$m_{j,8}$	$m_{j,10}$	$m_{j,11}$	$m_{j,9}$
11	$m_{j,12}$	$m_{j,14}$	$m_{j,15}$	$m_{j,13}$
10	$m_{j,4}$	$m_{j,6}$	$m_{j,7}$	$m_{j,5}$

Los siguientes mapas aparecerán con los valores de sus mintérminos reemplazados y los grupos ya formados:

■ y₃

$b_2,b_3 b_0, b_1$	00	01	11	10
00	0	1	1	1
01	1	0	0	0
11	0	0	0	0
10	1	1	1	1

Figura 1: Mapa de Karnaugh para y_3

De este mapa se puede obtener $y_3=\overline{b_3}\cdot b_2+\overline{b_3}\cdot b_1+\overline{b_3}\cdot b_0+b_3\cdot \overline{b_2\cdot b_1\cdot b_0}$ Así, $y_3=\overline{b_3}\cdot (b_2+b_1+b_0)+b_3\cdot \overline{b_2\cdot b_1\cdot b_0}$

■ y₂

$b_2,b_3 b_0, b_1$	00	01	11	10
00	0	1	1	1
01	0	1	1	1
11	1	0	0	0
10	1	0	0	0

Figura 2: Mapa de Karnaugh para y_2

De este mapa se puede obtener $y_2=\overline{b_2}\cdot b_1+\overline{b_2}\cdot b_0+b_2\cdot \overline{b_1}\cdot \overline{b_0}$ Así, $y_2=\overline{b_2}\cdot (b_1+b_0)+b_3+b_2\cdot \overline{b_1}\cdot \overline{b_0}$

■ y₁

$b_2,b_3 b_0, b_1$	00	01	11	10
00	0	1	0	1
01	0	1	0	1
11	0	1	0	1
10	0	1	0	1
II.				

Figura 3: Mapa de Karnaugh para y_1

De este mapa se puede obtener $y_1=\overline{b_1}\cdot b_0+\overline{b_0}\cdot b_1$ Así, y_1 resulta ser la xor entre b_1 y b_0 .

00	01	11	10
0	0	1	1
0	0	1	1
0	0	1	1
0	0	1	1
	00 0 0 0	00 01 0 0 0 0 0 0 0 0	$\begin{array}{c cccc} 00 & 01 & 11 \\ \hline 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \\ \end{array}$

Figura 4: Mapa de Karnaugh para y_0

De este mapa se puede obtener $y_0 = b_0$

Así, el bit menos significativo de la entrada resulta ser el bit menos significativo de la salida (conexión directa).

4. Ejercicio 5

5. Ejercicio 6