

Скадовська гімназія Кабінет фізики

Основні формули з шкільного курсу фізики

Назва	Величина, її визначення	Одиниця вимірювання
	Основи кінематики	•
Нерівномірний рух		
$x = x_0 + S_x$	$v_{\text{мит}}$ - миттєва швидкість;	M/C
$y = y_0 + S_v$	$v_{\text{сер}}$ - середня шляхова швидкість;	м/с
* ,	t - час;	c
$v_{Mum} = \lim_{\Delta t \to 0} \frac{\Delta S}{\Delta t}$	$v_{\rm cep}$ - середня швидкість переміщення;	м/с
$\Delta \iota$	х - координата	M
$v_{cep} = \frac{S_1 + S_2 + \dots + S_n}{t_1 + t_2 + \dots + t_n}$	x — початкова координата	M
$\upsilon_{cep} = \frac{S_1 + S_2 + \dots + S_n}{t_1 + t_2 + \dots + t_n}$ $\upsilon_{cep} = \frac{\vec{S}}{t}$	S- переміщення.	М
Рівномірний прямолінійний р	yx -	
$\vec{S} = \vec{v}t x = x_0 + v_x t$	S- переміщення;	M
	υ- швидкість;	м/с
$S_x = v_x t$ $\vec{v} = \frac{\vec{S}}{t}$	t - час	c
$S_x - O_x t$ $O = \frac{t}{t}$	x - координата;	M
$\overrightarrow{v}_{\text{\tiny BHC}} = \overrightarrow{v}_{\text{\tiny BPC}} + \overrightarrow{v}_{\text{\tiny DC}}$	v_x - проекція вектора швидкості на вісь Ох;	м/с
	S_x - проекція вектора переміщення	M
Рівнозмінний прямолінійний	- •	
$\vec{S} = \overrightarrow{v_0}t + \frac{\vec{a}t^2}{2}$	S- переміщення;	M
<u>-</u>	v_0 - швидкість; t - час;	м/с с
$S = \upsilon_{0x}t + \frac{a_xt^2}{2}$	<i>i</i> - час, <i>a</i> - прискорення;	M/c^2
$S = U_{0x}I + \frac{\pi}{2}$	$S_{\rm x}$ - проекція вектора переміщення;	M
$a t^2$	$a_{\rm x}$ - проекція прискорення на вісь Ox ;	M/c^2
$x = x_0 + \upsilon_{0x}t + \frac{a_x t^2}{2}$	v_{0x} - проекція вектора швидкості на вісь Ox ;	M/C
$\vec{a} = \frac{\vec{v} - \vec{v_0}}{t};$ $\vec{v} = \vec{v_0} + \vec{a}t$		
v	r - roonihilata.	M
$\upsilon_x = \upsilon_{0x} + a_x t$ $\upsilon^2 - \upsilon_0^2 = 2aS$	x - координата;	IVI
$S = \frac{\upsilon^2 - \upsilon_0^2}{2a}$		
Рівномірний рух по колу		
$\upsilon = \frac{2\pi R}{T} = 2\pi n n = \frac{1}{T}$	R - радіус кола,	M
$C = \frac{T}{T} = 2\pi n \cdot n = \frac{T}{T}$	T - період обертання,	c
N - N - t	<i>n</i> - частота обертання,	1/c
$n = \frac{N}{t} T = \frac{t}{N}$	N - кількість обертів	
$\varphi = 2\pi$	t - час	C no.H/o
$\omega = \frac{\varphi}{t} = \frac{2\pi}{T} = 2\pi n$	ω - кутова швидкість,ω - кут повороту	рад/с
$v = \omega R$	arphi - кут повороту,	радіан
$a_{\delta} = \frac{4\pi^2 R}{T^2} = 4\pi^2 n^2 R$	a_{∂} - доцентрове прискорення	M/c^2

$$a_o = \frac{v^2}{R}$$

Другий закон Ньютона

$\vec{F} = m\vec{a}$ $\vec{a} = \frac{\vec{F}}{m}$ $\vec{F}t = m\vec{v} - m\vec{v_0}$

Третій закон Ньютона

$$\overrightarrow{F}_1 = -\overrightarrow{F}_2$$

Закон Гука

$$(F_{\pi p})_x = -kx$$

Закон всесвітнього тяжіння

$$F = G \frac{m_1 m_2}{r^2}$$

$$\vec{g} = G \frac{M_{nланети}}{R_{nланетu}^2}$$

Сила тяжіння, вага тіла

$$\overrightarrow{F}_{\mathrm{T}} = m\overrightarrow{g}$$

$$\overrightarrow{P} = m\overrightarrow{g}$$

$$\overrightarrow{P} = m\left(\overrightarrow{g} \pm \overrightarrow{a}\right)$$

Рух під піє сили тяжіння

$$h = \overrightarrow{v_0}t + \frac{gt^2}{2}$$
$$h = v_{0x}t + \frac{g_x t^2}{2}$$

$$y = y_0 + v_{0x}t + \frac{g_x t^2}{2}$$

$$v_x = v_{0x} + g_x t$$

$$v^2 - v_0^2 = 2gh$$

$$h = \frac{v^2 - v_0^2}{2g}$$

$$t_{\text{nonsomy}} = \frac{2v_0 \sin \alpha}{g}$$

$$h_{\text{max}} = \frac{\upsilon_0^2 \sin^2 \alpha}{2g}$$

$$l = \frac{2v_0^2 \sin \alpha \cos \alpha}{g}$$

Основи динаміки

F- сила, що діє на тіло;	Н
<i>m</i> - маса тіла;	ΚΓ
а- прискорення	M/c^2
<i>t</i> - час дії сили;	c
v- швидкість тіла, набута після дії сили	M/C
v- початкова швидкість тіла.	M/C

$$F_1, F_2$$
- сили, що діють на тіла під час на взаємодії.

$$(F_{\rm пр})_x$$
 - проекція сили пружності; Н k - коефіцієнт жорсткості пружного тіла; Н/м x - величина деформації (абсолютне видовження).

$$F$$
 - сила притягання тіл; H $G = 6,67 \cdot 10^{-11} \frac{H \cdot M^2}{\kappa z^2}$ - стала всесвітнього

тяжіння;

$$m_1, m_2$$
 - маси тіл; кг r - відстань м

$$\overrightarrow{F}_{_{\rm T}}$$
 - сила тяжіння; H \overrightarrow{P} - вага тіла; H m - маса тіла; кг $\overrightarrow{g}=9,8$ м/с 2 - прискорення вільного падіння. м/с 2

$$h$$
- висота м $\vec{g} = 9.8 \text{ м/c}^2$ - прискорення вільного падіння. м/c²

y - координата; м

Рух штучних супутників Зем		
	v_I - перша космічна швидкість	м/с
$\upsilon_I = \sqrt{gR} = \sqrt{G\frac{M}{R+h}}$	\vec{g} = 9,8 м/c ² - прискорення вільного падіння.	$\mathrm{m/c}^2$
$O_I = \sqrt{gR} = \sqrt{O_{R+h}}$	R — радіус планети	M
	M – маса планети	ΚΓ
Сила тертя		
$F_{\text{rep}} = \mu_0 N$	$F_{\text{тер}}$ - сила тертя;	Н
	μ_0 - коефіцієнт тертя спокою;	
$\mu_0 = \frac{F_T}{N}$	N - сила нормальної реакції.	Н
Елементи статики. Момент о	СИЛИ	
	F - модуль сили;	Н
M = Fd	d - плече сили;	M
	M - момент сили.	Н·м
Умови рівноваги тіла		
$\overrightarrow{F_1} + \overrightarrow{F_2} + \dots + \overrightarrow{F_n} = 0$	$F_1, F_2,, F_n$ - сили, що діють на тіло;	Н
$M_1 + M_2 + \ldots + M_n = 0$	$M_1, M_2,, M_n$ - моменти цих сил.	Н∙м
ŗ	Закони збереження в механіці	
Імпульс тіла		
	\vec{p} - імпульс тіла (кількість руху);	$\kappa_{\mathcal{E}} \cdot M$
→ →	p - IMITY/IBC TIJIA (KIJIBKICTB PYXY),	$\frac{}{c}$
$p = m\dot{\upsilon}$	<i>m</i> - маса тіла;	ΚГ
	$\vec{\upsilon}$ - швидкість тіла.	м/с
Закон збереження імпульсу		
	\rightarrow \rightarrow	$\kappa_{\mathcal{E}} \cdot M$
$\overrightarrow{p_1} + \overrightarrow{p_2} + \overrightarrow{p_n} = const$	p_1, p_2, p_n - імпульси тіл замкненої системи;	
(для безлічі тіл замкненої	→ →	кг · м

→ →	$\overrightarrow{p_1}$, $\overrightarrow{p_2}$, $\overrightarrow{p_n}$ - імпульси тіл замкненої системи;	$\kappa_{\mathcal{E}} \cdot M$
$p_1 + p_2 + \dots p_n = const$	p_1, p_2, p_n - will yilder this same tenor energy,	c
(для безлічі тіл замкненої	$m_1 \stackrel{\longrightarrow}{\upsilon_1}, m_2 \stackrel{\longrightarrow}{\upsilon_2}$ імпульси тіл до взаємодії;	$\kappa_{\mathcal{E}} \cdot \mathcal{M}$
системи);	$m_1 \mathcal{O}_1, m_2 \mathcal{O}_2$ initiyiben tiji do bsacmodii,	c
$m_1\overrightarrow{\upsilon_1} + m_2\overrightarrow{\upsilon_2} = m_1\overrightarrow{\upsilon_1'} + m_2\overrightarrow{\upsilon_2'}$	$m_1\overrightarrow{\upsilon_1'},m_2\overrightarrow{\upsilon_2'}$ - імпульси тіл після взаємодії.	$\kappa_{\mathcal{E}} \cdot M$
	$m_1 o_1, m_2 o_2$ willy siden this mean backword.	C

Механічна робота

Michail III pooota		
$A = F \cdot S \cdot \cos\alpha;$ $A = E_2 - E_1 = \Delta E$	F - модуль сили, що діє на тіло;	Н
	S - модуль переміщення;	M
	α- кут між напрямом сили і переміщенням;	рад
	A - робота сталої сили;	Дж
	ΔE - зміна енергії.	Дж

Потужність

$N = \frac{A}{}$	N - потужність;	Вт
$N = \frac{1}{t}$	F - модуль сили тяги;	Н
$N = F \upsilon \cos \alpha$	υ - модуль швидкості руху тіла;	м/с

Кінетична і потенціальна енергія

	$E_{\rm K}$ - кінетична енергія;	Дж
2	<i>m</i> - маса тіла;	КΓ
$E_k = \frac{mv^2}{2}$	υ - швидкість тіла;	M/C
" 2	E_{π} - потенціальна енергія;	Дж
$E_{\Pi} = mgh$	g - прискорення вільного падіння;	$\mathrm{M/c}^2$
	h - різниця висот.	M

Теорема про кінетичну енергію

Потенціальна енергія пружно	деформованого тіла	
1 11	$E_{\rm n}$ - потенціальна енергія пружно-	Поча
$E_n = \frac{kx^2}{2}$	деформованого тіла;	Дж
$E_n = \frac{1}{2}$	k - коефіцієнт жорсткості тіла;	H/M
	x - абсолютне видовження.	M
Закон збереження енергії в ме	ханіці	
$E_{\Pi 1} + E_{\kappa 1} = E_{\kappa 2} + E_{\Pi 2}$	E_{κ} - кінетична енергія;	Дж
	K · · · · · · · · · · · · · · · · · · ·	
	$E_{\rm n}$ - потенціальна енергія.	Дж
If a a kind are many are a will		
Коефіцієнт корисної дії	η - ККД;	0/
$\eta = \frac{A_k}{A_3}$	• * * * *	% H.z.
$A_1 = A_3$	A_{κ} - корисна робота;	Дж
	A_3 - затрачена робота	Дж
T	Механіка рідин та газів	
Гідростатичний тиск		$\kappa\Gamma/M^3$
	ρ_p - густина рідини; g - прискорення вільного падіння;	$\frac{KI/M}{M/c^2}$
$p = \rho_{\rm p}gh$	<i>g</i> - прискорення вывного падіння, <i>h</i> - висота стовпа рідини;	
	n - висота стовна рідини, p - тиск рідини на глибині h .	м Па
Закон сполучених посудин	р - тиск рідини на глибині п.	11a
, ·	h_1, h_2 - висоти стовпів рідини в стані спокою;	M
$\frac{h_1}{h_2} = \frac{\rho_2}{\rho_1}$		$\kappa\Gamma/M^3$
	ρ_1, ρ_2 - густини рідин.	KI / M
Гідравлічний прес	F F average was sixone was somewhile	TT
$\frac{F_1}{F_2} = \frac{S_2}{S_1}$	F_1, F_2 - сили, що діють на поршні;	H
$F_2 S_1$	S_1, S_2 - площі цих поршнів.	M^2
Закон Архімеда		2
	$ ho_{ m p}$ - густина рідини;	$K\Gamma/M^3$
$F_{\rm A} = ho_{ m p} g V_{\scriptscriptstyle m T}$	g - прискорення вільного падіння;	$\frac{M/c^2}{M^3}$
	$V_{\rm T}$ - об'єм зануреної частини тіла.	M
	и молекулярно-кінетичної теорії	
Кількість речовини		
N m	v - кількість молів молекул (або інших	моль
$v = \frac{N}{N_A}$ $v = \frac{m}{M}$	структурних одиниць)	
Л	N - кількість частинок $N_{\rm A} = 6.02 \cdot 10^{23} {\rm моль}^{-1}$ - число Авогадро	моль⁻¹
$m=m_0N$,	•	
$N = \frac{m}{M} N_A$	m - маса речовини M - молярна маса	кг кг/моль
M	m_0 - маса молекули (атома)	кт/моль
Основне рівняння молекулярі		KI
	<i>p</i> - тиск газу	Па
$p = \frac{1}{3}m_0n\upsilon^{-2}$	т - маса молекули (атома)	КГ
_	<i>n</i> - концентрація молекул	M^{-3}
$p = \frac{2}{3}n\overline{E}$ $p = \frac{1}{3}\rho\overline{v^2}$	$\overline{v^2}$ - середній квадрат швидкості молекул	$\mathrm{m}^2/\mathrm{c}^2$
3	р - густина газу	$\kappa\Gamma/M^3$
$n = \frac{1}{2} \frac{1}{\alpha v^2}$	\overline{E} - середня кінетична енергія молекул	Дж
	T - абсолютна температура	К
p = nkT	$k = 1,38 \cdot 10^{-23}$ Дж/К - стала Больцмана	Дж/К
Середня кінетична енергія руг		дми
	E - середня кінетична	Дж ж
$E = \frac{3}{2}kT$	k - стала Больцмана	Дж/К
4	т - маса молекули	КГ
	•	

_	<u></u>	
$E = \frac{m_0 \overline{v^2}}{2}$	v^2 - середній квадрат швидкості молекул	$\mathrm{m}^2/\mathrm{c}^2$
$E = \frac{0}{2}$	T - абсолютна температура або температура в	~-
Z = (4.0C + 272.15) W	кельвінах	К
$T = (t {}^{\circ}\text{C} + 273,15) \text{K}$		°C
$t = (T - 273,15) ^{\circ}\text{C}$	t - температура в градусах Цельсія	
Середня квадратична швидкіс	ть молекул	
	v- середня квадратична швидкість молекул	м/с
$\sqrt{3kT}$	n :	Дж
$U = \sqrt{\frac{m}{m}}$	R - універсальна газова стала	$K \cdot $ моль
$\upsilon = \sqrt{\frac{3kT}{m_0}}$ $\upsilon = \sqrt{\frac{3RT}{M}}$	k - стала Больцмана	Дж/К
$\sqrt{3RT}$		дж/к К
$U = \sqrt{\frac{311}{M}}$	T - абсолютна температура	
V M	т - маса молекул	KΓ
	M- молярна маса	кг/моль
Рівняння стану ідеального газ	Y	
	р - тиск газу	Па
	V - об'єм газу	\mathbf{M}^3
$pV = \frac{m}{M}RT$	т - маса речовини	КГ
171	<i>n</i> - кількість молів молекул газу	МОЛЬ
pV = nRT	n- RIJIBRICIB MOJIB MOJICKYJI I dasy	
	R - універсальна газова стала	Дж
$\frac{p_1 V_1}{T_1} = \frac{p_2 V_2}{T_2}$	Te fill openibila 1 asoba o 1 asia	$K \cdot$ моль
$I_1 \qquad I_2$	M- молярна маса	кг/моль
	T - абсолютна температура	К
Газові закони	1 docomorna remneparypa	10
	n THOM POOM	По
Закон Бойля-Маріотта	<i>p</i> - тиск газу	\prod_{3}
$p_1V_1 = p_2V_2$	V - об'єм газу	M^3
Закон Гей-Люссака		
V. V .		
$\frac{V_1}{T_1} = \frac{V_2}{T_2}$		
$I_1 \qquad I_2$	T - абсолютна температура	К
Закон Шарля	i uooomoma romnoparypa	
p_1 p_2		
$\frac{p_1}{T_1} = \frac{p_2}{T_2}$		
$I_1 \qquad I_2$		
	Основи термодинаміки	
Внутрішня енергія ідеального	одноатомного газу	
	U - внутрішня енергія газу	Дж
	<i>m</i> - маса газу	КГ
3 m	<i>M</i> - молярна маса	кг/моль
$U = \frac{3}{2} \frac{m}{M} RT$	111 MOMAPHA MACA	
2 <i>M</i>	R - універсальна газова стала	Дж
$U = \frac{3}{2} \frac{m}{M} RT$ $U = \frac{3}{2} pV$	J -1	$K \cdot$ моль
$c - \frac{1}{2} P^r$	T - абсолютна температура	К
-	р - тиск газу	Па
	V - об'єм газу	M^3
Робота в термодинаміці	, 00 cm 143 y	171
тоота в термодинамиці	1 - п обота нио виконана нап системото	Поте
$A = n \Lambda V$	А - робота, що виконана над системою	Дж
$A = p\Delta V$	<i>p</i> - тиск газу	Па
$A = \frac{m}{M} R\Delta T$	ΔV - зміна об'єму газу	M^3
M	M - молярна маса	кг/моль
		KI / WUJID
Кількість теплоти. Теплообмін	I	
$Q = cm(T_2 - T_1)$	T_1 і T_2 - початкова і кінцева температури тіла	К
Q = rm	Q - кількість теплоти	Дж
Q = Im $Q = Lm$	Z WINKIGID ICHINOIN	
	с - питома теплоємність	<u>Дж</u>
Q = qm		$\kappa_{\mathcal{E}} \cdot K$

	M MOCO POHODUHUI	ICE
	m - маса речовини r - питома теплота пароутворення	кг Дж/кг
	L - питома теплота плавлення	дж/кг Дж/кг
		дж/кг Дж/кг
Перший закон термодинаміки	q - питома теплота згоряння палива	дж кі
першин закон термодинаміки	ΔU - зміна внутрішньої енергії	Дж
$\Delta U = A' + Q$	Q - кількість теплоти	дж Дж
$Q = \Delta U + A$	A' - робота зовнішніх сил над газом	Дж Дж
$\mathcal{Q} = \Delta \mathcal{O} + \mathcal{H}$	А - робота газу над зовнішніми тілами	дж Дж
ККД теплового двигуна	л - рооота тазу пад зовишиний тыами	дж
ккд теплового двигупа	A' - корисна робота	Дж
n = A'	η - ККД	%
$ \eta = \frac{A'}{Q_1} $ $ \eta = \frac{Q_1 - Q_2}{Q_1} $	Q_1 - кількість теплоти, яку одержало робоче	
O = O	тіло від нагрівника	Дж
$\eta = \frac{\mathcal{Q}_1}{\mathcal{Q}_2}$	Q_2 - кількість теплоти, яку віддало робоче тіло	
\mathcal{Q}_{l}	холодильнику	Дж
Відносна вологість повітря	лолодиянику	
эдиони вология	φ - відносна вологість	%
	p- парціальний тиск водяної пари	Па
p_{1000} ρ_{1000}	p_0 - тиск насиченої водяної пари	Па
$\varphi = \frac{p}{p_0} \times 100\% = \frac{\rho}{\rho_0} \times 100\%$	ρ - густина ненасиченої водяної пари при	
	даній температурі	$\kappa\Gamma/M^3$
	$ ho_0$ - густина насиченої водяної пари	$\kappa\Gamma/M^3$
Поверхневий натяг		
•	s - коефіцієнт поверхневого натягу	H/M
_	F - сила поверхневого натягу	Н
$\sigma = \frac{F}{I}$	l - довжина периметру змочування	M
l	h - висота підняття або опускання рідини в	
$h = 2\sigma$	капілярі	M
$\sigma = \frac{F}{l}$ $h = \frac{2\sigma}{\rho gr}$	ho - густина рідини	$\kappa\Gamma/M^3$
, 0	r - радіус капіляру	M
	g - прискорення вільного падіння	$\mathrm{m/c}^2$
Закон Гука		
	$F_{\rm np}$ - сила пружності матеріалу	Н
$\sigma = E \varepsilon $	$(F_{\rm np})_x$ - проекція сили пружності матеріалу на	Н
! !	вісь Ox	
$(F_{\rm np})_x = -kx$	Е - модуль Юнга	Па
$\varepsilon = \frac{x}{}$	S - площа поперечного перерізу тіла	M^2
\mathcal{X}_0	x_0 - початкова довжина тіла	M
$\sigma = \frac{F_{np}}{S}$	х - абсолютна деформація	M 11/
$\sigma = \frac{1}{S}$	к - коефіцієнт жорсткості	Н/м
~	є- відносне видовження	По
	σ - механічна напруга	Па
2	Електростатика	
Закон збереження електричног		1/_
	<i>q</i> - електричний заряд	Кл
$q_1 + q_2 + q_3 + \dots + q_n = const$	F - модуль сили електростатичної взаємодії	Н
$F = k \frac{ q_1 \cdot q_2 }{r^2}$	<i>r</i> - відстань між зарядами	M
$F = K \frac{1}{r^2}$	$\varepsilon_0 = 8,85 \cdot 10^{-12} \frac{K\pi^2}{H \cdot M^2}$ - електрична стала	$\frac{K\pi^2}{H \cdot M^2}$
	11 /11	$H \cdot M^2$
$k = \frac{1}{4\pi\varepsilon_0} = 9 \cdot 10^9 \frac{H \cdot M^2}{K\pi^2}$	ε - діелектрична проникність середовища	
$4\pi\varepsilon_0$ $K\pi^-$	k - коефіцієнт пропорційності	$\frac{H \cdot M^2}{K \pi^2}$
	и косфицент пропорциності	$\overline{Kn^2}$

Напруженість електричного і	\rightarrow	****** = '	
$\vec{E} = \frac{\vec{F}}{}$	E - напруженість електричного поля	Н/Кл, В/м	
$E=q_0$	q_0 - пробний заряд	Кл	
Q_0 $E = k \frac{ q }{r^2}$	<i>q</i> - заряд, який створює електричне поле	Кл	
$E = k \frac{1}{r^2}$	r - відстань від заряду до довільної точки поля	M	
$\overrightarrow{E} = \overrightarrow{E_1} + \overrightarrow{E_2} + \dots + \overrightarrow{E_n}$	$E_1, E_2,, E_n$ - напруженості електричних полів заряджених частинок замкненої системи тіл	Н/Кл, В/м	
Потенціал і напруга	<u>.</u>	_	
W	φ - потенціал електричного поля	В	
$arphi = rac{W_p}{q}$ $arphi = Ed$	$W_{\rm p}$ - потенціальна енергія електричного заряду	Дж	
q	в заданій точці поля		
$\varphi = Ed$	q - електричний заряд	Кл В	
$U = \frac{A}{q}$	U - напруга A - робота сил електричного поля		
	A - росота сил слектричного поля d - відстань, на яку перемістився заряд	Дж м	
$U = E \Delta d$	a - відстань, на яку перемістився заряд Δd - відстань між точками електричного поля	M M	
Робота під час переміщення з	•	WI	
1 0001 mg tue nepemmenm s	A - робота сил електричного поля	Дж	
	E - напруженість електричного поля	Н/Кл, В/м	
$A = qE\Delta d = qU$	Δd - відстань між точками електричного поля	M	
1	q - електричний заряд	I/ w	
		Кл	
Електроємність. Енергія заря			
$C = \frac{ q }{U}$ $C = \frac{\varepsilon \varepsilon_0 S}{d}$	C - електроємність провідника, конденсатора	Φ	
$C = \frac{1}{U}$ $C = \frac{1}{d}$	або системи конденсаторів		
1 1 1 1 1 1	q - електричний заряд конденсатора	Кл	
$\frac{1}{C} = \frac{1}{C_1} + \frac{1}{C_2} + \dots + \frac{1}{C_n}$	U - напруга між обкладками конденсатора	В	
$C = C_1 + C_2 + \ldots + C_n$	S - площа однієї із пластин плоского	M^2	
	конденсатора d - відстань між пластинами	M	
$W_e = \frac{qU}{2}$	$W_{\rm e}$ - енергія зарядженого конденсатора	м Дж	
2	ε - діелектрична проникність середовища	ДЖ	
$W_e = \frac{q^2}{2C}$	о демектри на произкитеть середовища	$K\pi^2$	
e $2C$	$arepsilon_0$ - електрична стала	$\frac{K\pi^2}{H \cdot M^2}$	
$W_e = \frac{CU^2}{2}$ $W = \frac{\varepsilon \varepsilon_0 E^2}{2}$		$H \cdot M$	
\mathcal{L}	$C_1, C_2,, C_n$ - ємності послідовно і паралельно	Φ	
$W = \frac{\mathcal{E}\mathcal{E}_0 E}{2}$	з'єднаних конденсаторів	-	
2	n •v		
E	Закони постійного струму		
Електричний струм	I CHIIO CTOVAVI	A	
$I = \frac{\Delta q}{\Delta t}$ $I = q_0 n v S$ $j = \frac{I}{S}$	I - сила струму Δq - кількість електрики	Кл	
Δt	Δt - інтервал часу	C	
$I = q_0 n v S$	q_0 - заряд електрона (ioна)	Кл	
$i = \frac{I}{I}$	n - концентрація зарядів	M ⁻³	
$J = \frac{1}{S}$	v- середня швидкість носіїв заряду	M/C	
$j = q_0 nv$	S - площа поперечного перерізу провідника	M^2	
	ј - густина струму	A/M^2	
Закон Ома для ділянки кола і для повного кола			
	<i>I</i> - сила струму	A	
$I = \frac{U}{R}$	U - напруга на кінцях ділянки	В	
	R - опір ділянки кола	Ом	
	arepsilon - електрорушійна сила	В	
	Q		

$I = \frac{\varepsilon}{R + r}$	R - опір зовнішньої ділянки кола	Ом
	r - опір джерела струму q - кількість електрики	Ом Кл
$\varepsilon = \frac{A_{cm}}{}$	-	
q	A_{cm} —робота сторонніх с u л	Дж
Послідовне з'єднання провідни		
$I = I_1 = I_2 = \dots = I_n$	I - сила струму	A B
$U = U_1 + U_2 + \dots + U_n$	U - напруга на кінцях ділянки	
$R = R_1 + R_2 + \ldots + R_n$	R - опір	Ом
Паралельне з'єднання провідн		
$I = I_1 + I_2 + \ldots + I_n$	<i>I</i> - сила струму	A
$U = U_1 = U_2 = \dots = U_n$	U - напруга на кінцях ділянки	В
$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_n}$	R - опір	Ом
Робота і потужність струму		
$A = UI\Delta t; A = I^2 R \Delta t$	A - робота електричного струму	Дж
$A = \frac{U^2 \Delta t}{R}$	<i>I</i> - сила струму	A
$A \equiv \frac{R}{R}$	U - напруга	В
$P = IU; P = I^2R$	R - опір провідника	Ом
U^2	Δt - \forall ac	c
$P = \frac{U^2}{R}$	P - потужність електричного струму	Вт
_	чний струм в різних середовищах	
Об'єднаний закон електролізу	- · · · · · · · · · · · · · · · · · · ·	
	R – опір при даній температурі	Ом
	R_0 — опір при початковій температурі ρ — питомий опір при даній температурі	Ом Ом·м
	ρ — питомий опір при даній температурі ρ_0 — питомий опір при початковій температурі	Ом·м
- (.)		1
$R = R_0 \left(1 + \alpha t \right)$	α- температурний коефіцієнт опору	$\frac{1}{K} = K^{-1}$
$\rho = \rho_0 \left(1 + \alpha t \right)$	т - маса речовини, що виділилась	КГ
$_{m}$ 1 M_{TA}	M - молярна маса речовини	кг/моль
$m = \frac{1}{F} \frac{M}{Z} I \Delta t$	F = 96500 Кл/моль - число Фарадея	
m = kIt	Z - валентність	
	I - сила струму Δt - час	A c
	k – електрохімічний еквівалент	C
	и слектромии ини скывшент	<u>K2</u>
		Кл
	Магнітне поле струму	
Індукція магнітного поля		
	M - магнітний момент рамки	Н·м
14 E	<i>I</i> - сила струму	$\frac{A}{M^2}$
$B = \frac{M}{I \cdot S} = \frac{F}{I\Delta l}$	S - площа рамки	
$I \cdot S = I\Delta l$	В - магнітна індукція	Тл
	F - максимальна сила, що діє на ділянку провідника Δl з боку магнітного поля	Н
Магнітний потік	npobignimu 24 5 ooky mui mimoro nom	
$\Phi = BScos\alpha$	Φ - потік магнітної індукції	Вб
	В - магнітна індукція	Тл
	S - площа контуру	M^2
		171

	α - кут між вектором індукції і нормаллю до	град
	поверхні	трид
Сила Ампера		
	F - сила, що діє на провідник із струмом з	Н
	боку магнітного поля	
	I - сила струму в провіднику	A
$F = BIl\sin\alpha$	l - активна довжина провідника	M
	α - кут між напрямом сили струму і вектором	
	магнітної індукції	град
G H		
Сила Лоренца		
	F - сила, яка діє на електричний заряд, що	Н
	рухається в магнітному полі	TC
$F = q_0 vB\sin\alpha$	q_0 - заряд частинки	Кл
11-1	v- швидкість частинки	м/с
	α - кут між напрямами швидкості руху заряду	град
3.6	і вектором магнітної індукції	1
Магнітна проникність середов		
u = B	B - індукція магнітного поля в довільному	Тл
$\mu = \frac{B}{B_0}$	середовищі	T
·	B_0 - індукція магнітного поля у вакуумі	Тл
	Електромагнітна індукція	
Закон електромагнітної індукц		D
	ε_i - EPC індукції контуру	В
	$\Delta \Phi$ - зміна магнітного потоку	Вб
۸Ф	Δt - час зміни потоку	c
$\varepsilon = -rac{\Delta\Phi}{\Delta t}$	N - кількість витків в котушці	
	ε_i - EPC індукції, що виникає в	В
$\varepsilon = -N \frac{\Delta \Phi}{\Delta t}$	прямолінійному провіднику	T
	В - індукція магнітного поля	Тл
$\varepsilon_i = Blvsin\alpha$	l - активна довжина провідника	M
	<i>v</i> - швидкість руху провідника	M/C
	α - кут між напрямами вектора магнітної	град
EDC aasaissassi	індукції і швидкістю руху провідника	-
ЕРС самоіндукції	$arepsilon_{si}$ - EPC самоіндукції	В
$\Delta\Phi$	$\Delta \Phi$ - зміна магнітного потоку	Вб
$\varepsilon_{si} = -\frac{\Delta\Phi}{\Delta t}$	Φ - магнітний потік, що пронизує контур	Вб
$\Phi = LI$	I - сила струму, що проходить в контурі	A
Ψ LI ΛI	L - індуктивність контуру	Гн
$\varepsilon_{si} = -L \frac{\Delta I}{\Delta t}$	ΔI - зміна сили струму	A
Δl	Δt - ac	c
Енергія магнітного поля струм		·
	$W_{\rm M}$ - енергія магнітного поля струму	Дж
$W_{\scriptscriptstyle M} \frac{LI^2}{2}$	<i>I</i> - сила струму	À
^M 2	L - індуктивність контуру	Гн
M	[еханічні коливання і хвилі	
Рівняння гармонічного колива		
$x = x_{\rm m} cos(\omega_0 t + \varphi_0)$	х - зміщення	M
	$x_{ m m}$ - амплітуда коливань	M
$v_x = \omega x_{\text{max}} \cos \left(\omega t + \frac{\pi}{2} \right)$	$arphi=\omega_0 t+arphi_0$ - фаза	рад
	$arphi_0$ - початкова фаза	рад
$v_{\max} = \omega x_{\max}$	ω_0 - циклічна частота	рад/с
	t - час	c
	10	

$a_x = \omega^2 x_{\text{max}} \cos(\omega t + \pi)$	v_x - проекція швидкості на вісь OX	_M /c	
Частота і період коливань			
$v = \frac{1}{2}$	<i>v</i> - частота коливань	Гц	
$v = \frac{1}{T}$	N - число повних коливань		
$v = \frac{N}{t}$;	T - період коливань	c	
$\omega = 2\pi v = \frac{2\pi}{T}$			
$\omega = 2\pi v = \frac{T}{T}$	ω - кругова (циклічна) частота	рад/с	
\sqrt{k}			
$\omega = \sqrt{\frac{k}{m}}$			
Період коливань пружинного і	математичного маятників		
	т - маса вантажу	КГ	
$T = 2\pi \sqrt{\frac{m}{k}}$	<i>k</i> - жорсткість пружини	H/M	
	l - довжина маятника	M	
$T = 2\pi \sqrt{\frac{l}{g}}$	G. HPMARADAMIA DITI MADA HATIMIA	M/c^2	
\sqrt{g}	g - прискорення вільного падіння	M/C	
Довжина і швидкість хвилі			
	λ - довжина хвилі	M	
l = vT	<i>T</i> - період коливань	c	
$v = \lambda n$	v- швидкість розповсюдження хвилі	м/с	
_	<i>n</i> - частота коливань в джерелі	Гц	
	громагнітні коливання і хвилі		
Період і частота електромагніт			
Формула Томсона	L - індуктивність	Гн	
$T = 2\pi\sqrt{LC}$	C - ϵ мність T - період коливань	Φ	
$\omega_0 = \frac{1}{\sqrt{IC}}$	•	c	
\sqrt{LC}	ω_0 - циклічна частота коливань в контурі	рад/с	
Енергія у коливальному конту			
$W_e = \frac{qU}{2}$	С - електроємність провідника, конденсатора	Φ	
4	або системи конденсаторів	TC	
$W_e = \frac{q^2}{2C}$	q - електричний заряд конденсатора	Кл В	
$W_e = \frac{1}{2C}$	U - напруга між обкладками конденсатора $W_{\rm M}$ - енергія магнітного поля струму		
CU^2	I - сила струму	Дж А	
$W_e = \frac{CU^2}{2}$	1 Child Cipymy	71	
L^2	L - індуктивність контуру	Гн	
$W_{\scriptscriptstyle M} \frac{LI^2}{2}$	L - індуктивнють контуру	1 п	
Електромагнітні гармонічні ко	THE STATE OF THE S		
Електромагний гармонічні ко	q - миттєве значення заряду	Кл	
	$q_{\rm m}$ - амплітудне значення заряду	Кл	
	Φ - магнітний потік	Вб	
$q = q_{\rm m} cos \omega t$	В - магнітна індукція	Тл	
$\Phi = BScos\omega t$	S - площа контуру	\mathbf{M}^2	
$\varepsilon = BS\omega sin\omega t$ $U = U_{m}sin\omega t$	ε- миттєве значення ЕРС індукції	В	
$I = I_{\rm m} sin(\omega t + \varphi_0)$	$U_{ m m}$ - амплітудне значення напруги	В	
$1 \text{ Imanifor } \phi_{ij}$	U - миттєве значення напруги	В	
	I - миттєве значення сили струму	A	
П'	$I_{\rm m}$ - амплітудне значення сили струму	A	
діюче значення сили струму і н	Діюче значення сили струму і напруги		
I	і - діюче значення сили змінного струму	A	
$i = \frac{I_m}{\sqrt{2}}$	11		
\ 1 /	11		

$u = \frac{U_m}{\sqrt{2}}$	$I_{ m m}$ - амплітудне значення сили змінного	A
$\sqrt{2}$	струму	В
	u - діюче значення змінної напруги $U_{ m m}$ - амплітудне значення змінної напруги	В
Індуктивний і ємнісний опори		Ъ
$X_{\rm L} = \omega L$	$X_{\rm L}$ - індуктивний опір	Ом
	$X_{\rm L}$ - індуктивний опір $X_{\rm C}$ - ємнісний опір	Ом
$X_{C} = \frac{1}{C} = \frac{1}{2C}$	Z – повний опір кола	Ом
$\omega C = 2\pi v C$	ω - циклічна частота коливань в контурі	рад/с
$X_C = \frac{1}{\omega C} = \frac{1}{2\pi \nu C}$ $Z = \sqrt{R^2 + (X_L - X_c)^2}$	v - частота коливань в контург	Гц
Трансформатор	у - частота коливань	тц
	N_1 - кількість витків у первинній обмотці	
$k = \frac{U_1}{U_2} = \frac{N_1}{N_2}$	N_2 - кількість витків у вторинній обмотці	
$U_2 N_2$	I_1 ; U_1 - струм і напруга в первинній обмотці	A; B
I_2U_2 1000/	I_2 ; U_2 - струм і напруга у вторинній обмотці	A; B
$\eta = \frac{I_2 U_2}{I_1 U} \times 100\%$	к - коефіцієнт трансформації	,
I_1U	η - ККД трансформатора	%
Поширення радіохвиль. Радіол		
	<i>l</i> - відстань до предмета	M
a t	$c = 3.10^8$ м/с - швидкість електромагнітних	/ -
$l = \frac{c \cdot t}{2}$	ХВИЛЬ	M/C
2	t - час проходження електромагнітних хвиль в	
	прямому і зворотному напрямах	c
	Геометрична оптика	
Заломлення хвилі і світла	1	
	n_{21} - відносний показник заломлення	
$n_{21} = \frac{\sin \alpha}{\sin \beta}$	α - кут падіння	град
$\sin \beta$	eta - кут заломлення	град
$n = \frac{U_1}{U_1}$	v_1 - швидкість світла в першому середовищі	м/с
$n_{21} = \frac{\upsilon_1}{\upsilon_2}$	v_2 - швидкість світла в другому середовищі	м/с
_	с - швидкість світла в вакуумі	м/с
$n = \frac{c}{c}$	$v_{\rm серед}$ - швидкість світла в середовищі	м/с
$u = \frac{1}{U_{ceped}}$	п - абсолютний показник заломлення	
Формула тонкої лінзи		
$\frac{1}{d} \pm \frac{1}{f} = \pm \frac{1}{F}$	d - відстань від предмета до лінзи	M
$\frac{1}{d} \pm \frac{1}{f} = \pm \frac{1}{F}$	f - відстань від лінзи до зображення	M
H f	F - фокусна відстань лінзи	M
$\Gamma = \frac{H}{h} = \frac{f}{d}$ $D = \frac{1}{F}$	Γ - збільшення лінзи	M
<i>η α</i>	h - висота предмету	M
$D = \frac{1}{F}$	Н - висота зображення	M
F	D - оптична сила лінзи	M
	Хвильова оптика	
Інтерференція хвилі і світла		
умова максимуму $\Delta d = 2k\frac{\lambda}{2}$	Δd - різниця ходу	M
умова мінімуму $\Delta d = (2k+1)\frac{\lambda}{2}$	λ - довжина хвилі	M
Дифракція хвилі і світла		
максимум	d - період дифракційної гратки	M
$dsin\varphi = k\lambda$	φ - кут спостереження	град
	, J 1	I

$$d\sin\varphi = (2k+1)\frac{\lambda}{2}$$

Теорія відносності

Зв'язок між масою і енергією

эв язок між масою і енерілею		
$\upsilon_{_{\mathit{BHC}}} = \frac{\upsilon_{_{\mathit{BPC}}} + \upsilon_{_{\mathit{pC}}}}{1 + \frac{\upsilon_{_{\mathit{GPC}}} \cdot \upsilon_{_{\mathit{pC}}}}{c^2}}$	$v_{\it внс}$ - швидкість відносно нерухомої системи	м /с
$U_{\rm ghc} = \frac{U_{\rm enc} \cdot U_{\rm nc}}{U_{\rm enc} \cdot U_{\rm nc}}$	v_{phc} - швидкість відносно рухомої системи	м /с
$1 + \frac{-6pc - pc}{c^2}$	$v_{\it внc}$ - швидкість рухомої системи	м /с
C	t_0 – час тіла у стані спокою	c
$m = \frac{m_0}{m_0}$	t – $4ac$	c
$m = \frac{m_0}{\sqrt{1 - \frac{v^2}{a^2}}}$	т - маса тіла	ΚГ
$\sqrt{1-\frac{c^2}{c^2}}$	m_0 - маса спокою тіла	ΚΓ
t	E - повна енергія (тіла, випромінювання, поля)	град
$t = \frac{\iota_0}{\sqrt{1 - \iota_0}}$	$c = 3.10^8 \text{м/c}$ - швидкість світла у вакуумі	м/с
$t = \frac{t_0}{\sqrt{1 - \frac{v^2}{c^2}}}$	$E_{\mathbf{k}}$ - кінетична енергія	Дж
$\sqrt{1-\frac{c^2}{c^2}}$	$E_{\rm cn}$ - енергія спокою тіла	Дж
$m c^2$	υ- швидкість тіла	м/с
$E = mc^{2} = \frac{m_{0}c^{2}}{\sqrt{1 - \frac{v^{2}}{c^{2}}}}$	<i>l</i> - лінійні розміри тіла	M
$E_k = E - E_{cn}$		
$E_k = m_0 c^2 \left(\frac{1}{\sqrt{1 - \frac{v^2}{c^2}}} - 1 \right)$	l_0 - лінійні розміри тіла у стані спокою	M
$l = l_0 \sqrt{1 - \frac{v^2}{c^2}}$		

Світлові кванти

hv h	<i>m</i> - маса фотона	КГ
$m = \frac{nv}{c^2} = \frac{n}{c\lambda}$	p - імпульс фотона	
	E - енергія кванта (фотона)	Дж
$p = mc = \frac{hv}{c} = \frac{h}{\lambda}$	n - частота світла $h = 6,63 \cdot 10^{-34}$ Дж·с - стала Планка	Гц
E = hn	n = 0,03 10 Дж с - стала планка	
$E = \frac{hc}{\lambda}$	λ - довжина світлової хвилі	M

Рівняння Ейнштейна для фотоефекту

$A_{\text{вих}}$ - робота виходу електрона	Дж
v - частота випромінювання світла	Γц
$\frac{mv^2}{2}$ - кінетична енергія електрона	Дж
$m = 9,1 \cdot 10^{-31}$ кг - маса електрона	
λ_{max} - максимальна довжина світлової хвилі, при якій ще можливий фотоефект;	M
v- швидкість електрона	M/c
v_{\min} - частота світлової хвилі, при якій ще можливий фотоефект;	Гц
	v - частота випромінювання світла $\frac{mv^2}{2}$ - кінетична енергія електрона $m=9,1\cdot 10^{-31}$ кг - маса електрона λ_{\max} - максимальна довжина світлової хвилі, при якій ще можливий фотоефект; v - швидкість електрона v_{\min} - частота світлової хвилі, при якій ще

Основи атомної фізики

Правило квантування орбіт

1 1		
e^2	т - маса електрона	ΚΓ
$E = -\frac{1}{4\pi\varepsilon_0 r}$	υ- швидкість електрона	M/c
4	r - радіус n -ї орбіти	M
$E = \frac{1}{me^4}$	<i>n</i> - номер орбіти	
$E = -\frac{1}{(4\pi\varepsilon_0)^2} \cdot \frac{1}{2\hbar^2 n^2}$	$\hbar = 1,05\cdot 10^{-34}$ Дж·с - зведена стала Планка	Дж∙с
$m \circ r = n \hbar$	e — заряд електрона	Кл
$\hbar^2 n^2$		$K_{\mathcal{I}}^2$
$r_n = 4\pi\varepsilon_0 \frac{n}{2}$	ε_0 - електрична стала	$\frac{1}{H}$ μ^2
" $m \cdot e^2$		$II \cdot M$

Частота випромінювання і поглинання світла

p(1,1)	$R = 3,27 \cdot 10^{15} \text{ c}^{-1}$ - стала Рідберга	c^{-1}
$v_{kn} = R\left(\frac{1}{n^2} + \frac{1}{k^2}\right)$	n; k - номери орбіт	
(1 1)	n_{kn} - частота випромінювання	Γц
$v_{nk} = R\left(\frac{1}{k^2} - \frac{1}{n^2}\right)$	n_{nk} - частота поглинання	Гц
$v_{kn} = \frac{E_k - E_n}{h}$	E_k, E_n - енергії відповідних стаціонарних станів атомів k і n ;	Дж

Основи ядерної фізики

Закон радіоактивного розпаду

N - кількість радіоактивних ядер, що не розпалися в момент часу t $N = N_0 \cdot 2^{-\frac{t}{T}}$ N_0 - кількість радіоактивних ядер, що не розпалися в момент часу t = 0T - період піврозпаду c

Правила зміщення

$_{Z}^{A}X \rightarrow _{2}^{4}He + _{Z-2}^{A-4}Y$	A — атомне число
α розпад	
$_{Z}^{A}X \rightarrow _{-1}^{0}e + _{Z+1}^{A}Y$	Z – зарядове число
β розпад	

Енергія зв'язку атомних ядер

A.F. A 2	$\Delta E_{\scriptscriptstyle 3B}$ - енергія зв'язку атомного ядра	MeB
$\Delta E_{3B} = \Delta mc^{2}$ $\Delta m = (Zm_{p} + Nm_{n}) - m_{s}$ $m_{s} = A - Zm_{e}$	Z - кількість протонів у ядрі N - кількість нейтронів в ядрі	
	$m_{\rm s}$ — маса ядра	a.o.m
$E_{num} = \frac{E_{_{36}}}{A}$	m_{e} -маса електрона	a.o.m
11	$E_{\it 36}$ — енергія зв'язку $E_{\it num}$ - питомаенергія зв'язку	MeB MeB