Requirements

Document status RELEASED

Version	Description	Author	Date (DD/MM/YYYY)
0.0	First version of the Requirements Document.	Isaac Pedroza Aguirre	26/08/2020
0.1	Added initial user story.	Che Hao Chang	27/08/2020
0.2	Edited user story, added story point.	Che Hao Chang , Sejin Kim	27/08/2020
1.0	Organised document, rewrote some sentences and released the first version of the document.	Isaac Pedroza Aguirre	30/08/2020
1.1	Update scope, desirable and optional features, and assumptions.	Isaac Pedroza Aguirre	02 Sep 2020

Background and Motivation

Background and Motivation

Goal

Locate and identify the opponent robot's armour automatically.

Scope

- · Implement an algorithm able to locate the position of the opponent robot's armour in the given picture.
- · Implement an algorithm able to identify to which armour (front, side or back) the robot is aiming in the given picture.
- The algorithms should work for pictures coming from the robot's camera and outpost camera.
- The algorithms should work for both types of targets. The target is the lighted (blue or red) armour board on the body of the robot.
- The armour location algorithm should select the exact area (by pixel) in the given picture. The algorithm should return 4 points (pixels' locations)
 which correspond to the edges of the polygon that contains the robot armour.
- The area delimited by the 4 points returned by the armour location algorithm needs to contain at least two lights (2 blues or 2 reds).
- Reach at least 70% accuracy in armour location and identification.
- · Reach at least 1fps in armour location and identification.
- The algorithms should locate and identify just the biggest robot armour in the given picture.

Out of the scope

- Transplant the algorithms to the robot computing device.
- Test using real-time input from the camera.
- Compare different algorithms.
- Design experiments.
- Analyse the performance of the algorithms.
- Locate the relative position between the robot's armour and the camera.
- The algorithms need to be convertible to Ubuntu 18.04 (arm64) and C++.
- The algorithms need to be able to run on the onboard computing device (Jetson AGX Xavier Developer Kit), with robot camera (whose resolution is 1280*720 px).

Desirable features

- Implement a GUI to run the armour location and identification algorithms.
- Integrate armour location and armour identification algorithms.

Optional features

- Implement a second algorithm for armour location.
- Implement a second algorithm for armour identification.
- Implement an algorithm able to locate multiple armours.
- · Implement an algorithm able to identify multiple armours.

Assumptions

- The algorithms can be implemented with any programming language.
- The robot's images to be processed are provided by the client.
- The client will access the developed software through a command line or a user interface.
- The given pictures provide just one robot.

Design Specifications

Design Specifications

Page Change History

Version	Published	Changed By	Comment
CURRENT (v. 28)	28 Sep, 2020 03:29	Isaac Pedroza Aguirre	
v. 27	04 Sep, 2020 12:30	Isaac Pedroza Aguirre	
v. 26	02 Sep, 2020 13:22	Isaac Pedroza Aguirre	
v. 25	31 Aug, 2020 04:47	Isaac Pedroza Aguirre	
v. 24	28 Aug, 2020 13:57	Isaac Pedroza Aguirre	

Go to Page History