完全单调性

in \leq 60 minutes

郭晓旭

http://icpc-camp.org

ICPCCamp 2016 Day 7

Roadmap

- 1. 基础定义
- **2.** $O(n \log n)$ Row Minima
- 3. 应用
- 4. O(n) Row Minima (SMAWK)
- 5. Online Row Minima

Monge Property

$$n \times m$$
 的矩阵 $M_{n \times m}$ $orall a \leq b, orall c \leq d$ $M(a,c) + M(b,d) \leq M(a,d) + M(b,c)$

Geometric Explanation

Test

$$\forall a \leq b, \forall c \leq d \ M(a,c) + M(b,d) \leq M(a,d) + M(b,c)$$
$$\iff M(i,j) + M(i+1,j+1) \leq M(i,j+1) + M(i+1,j)$$

Proof

Total Monotonicity

$$\forall a \le b, \forall c \le d$$

$$M(a, c) \ge M(a, d) \implies M(b, c) \ge M(b, d)$$

$MP \implies TM$

如果
$$M(a,c) \ge M(a,d)$$
 and $M(b,d) \ge M(b,c)$ $M(a,c) + M(b,d) \ge M(a,d) + M(b,c)$ 和 MP 矛盾 所以 $M(b,c) \ge M(b,d)$

Row Minima

Proof

$$\forall c \leq A(a) \ M(a,c) \geq M(a,A(a))$$
$$\forall b \geq a \ M(b,c) \geq M(b,A(a))$$
$$\Longrightarrow A(b) A(a)$$

Proof

$$\forall c \leq A(a) \ M(a, c) \geq M(a, A(a))$$
$$\forall b \geq a \ M(b, c) \geq M(b, A(a))$$
$$\Longrightarrow A(b) \geq A(a)$$

$O(m \log n)$ for RM

Find
$$A(\lfloor \frac{n}{2} \rfloor)$$
 in $O(m)$
 $A(i) \le A(\lfloor \frac{n}{2} \rfloor)$ for $1 \le i \le \frac{n}{2}$
 $A(\lfloor \frac{n}{2} \rfloor) \le A(j)$ for $1 \le j \le n$

$O(m \log n)$ for RM

Find
$$A(\lfloor \frac{n}{2} \rfloor)$$
 in $O(m)$
$$A(i) \le A(\lfloor \frac{n}{2} \rfloor) \text{ for } 1 \le i \le \frac{n}{2}$$

$$A(\lfloor \frac{n}{2} \rfloor) \le A(j) \text{ for } \frac{n}{2} \le j \le n$$

Analysis

$$T(n,m) = T(\lfloor \frac{n}{2} \rfloor, i) + T(\lceil \frac{n}{2} \rceil, m - i) + O(m)$$

$$\implies T(n,m) = O(m \log n)$$

Application: Ciel and Gondolas¹

给出
$$n \times n$$
 的矩阵 $U_{n \times n}$
把 $[0, n)$ 分成 k 段 $[p_1 = 0, p_2), [p_2, p_3), \dots, [p_k, p_{k+1} = n)$
使得 $\sum_{i=1}^k \sum_{p_i \leq x < y < p_{i+1}} U_{x,y}$ 最小
 $n \leq 4000, k \leq 800$

¹Codeforces Round #190 E

Analysis

记
$$w(i,j) = \sum_{i \leq x < y < j} U_{x,y}$$
 w 满足四边形不等式

Proof

Analysis (Con'd)

设
$$f_k(i)$$
 表示将 $[0,i)$ 划分成 k 段的最小代价 则 $f_k(i) = \min_{0 \le j < i} f_{k-1}(j) + w(j,i)$

Analysis (Con'd)

Analysis (Con'd)

$$M$$
 满足四边形不等式 \Longrightarrow M 满足完全单调性 $f_{k+1}(i) = \min_j M(i,j)$ $O(n \log n)$ 求解 $f_{k+1}(\cdot)$

Application: All-Pair Farthest Points²

给出
$$n$$
 个点的凸包 $p_1p_2...p_n$ 求 $D(i) = \max_j ||p_ip_j||$ $n \le 30,000$

Lovers

²Rujia Liu's Present 4: A Contest Dedicated to Geometry and CG

Analysis

Analysis

$$d$$
 满足(反)四边形不等式
$$d(a,c) + d(b,d) \ge d(a,d) + d(b,c)$$
 $O(n \log n)$ 求解 $D(\cdot)$

O(n) Row Minima

Aggarwal, Alok, et al. "Geometric applications of a matrix-searching algorithm." Algorithmica 2.1-4 (1987): 195-208.

The SMAWK Algorithm (reduce)

Step 1: Reduce the number of columns to n

Analysis of reduce

We go backwards only when a column is deleted \rightarrow (m-n) times \rightarrow go forward n + (m - n) times \rightarrow total 2m-n steps

Reduce:

Recur

SMAWK (analysis)

$$T(n) = O(n) + T(n/2) = O(n)$$

Online Row Minima

$$f(i) = \min_{j < i} f(j) + w(j, i)$$

w 满足四边形不等式 $\Longrightarrow M(j, i) = f(j) + w(j, i)$ 满足完
全单调性
无法使用 SMAWK

Alternative Approaches

- ▶ Galil, Zvi, and Kunsoo Park. "A linear-time algorithm for concave one-dimensional dynamic programming." Information Processing Letters 33.6 (1990): 309-311.
- ▶ Larmore, Lawrence L., and Baruch Schieber. "On-line dynamic programming with applications to the prediction of RNA secondary structure." Journal of Algorithms 12.3 (1991): 490-515.

Thanks!