

FIG.1

5 GCCAGGCACCTGGTGCAGAAGTCGCGAACGGCGCGTA~~ATGGACCCGGCCCGAG~~
10 CGGGGAGAAGAAGCTGAAGGTGGGCTTCGTGGGCTGGACCCCCGGCGCGCCGA
15 CTCCACCCGGGACGGGGCGCTGCTGATCGCCGGCTCCGAGGCCCCCAAGCGCGG
20 CAGCATCCTCAGCAAACCTCGCGGGCGCGGGCGCCGGAAGCCCCAA
25 GCGAACGCCTTCTACCGCAAGCTGCAGAATTCTACAAACGTGCTGGAGCGG
30 CCGCGCGGCTGGCGTTCATCTACCACGCCTACGTGTTCCCTGGTTTCTCCTG
35 CCTCGTGTCTGTGTTTCCACCATCAAGGAGTATGAGAAGAGCTCGGAGGGG
40 GCCCTCTACATCCTGGAAATCGTGA~~CTATCGTGGTGTGTTGGCGTGGAGTACTTCG~~
45 TGCGGATCTGGGCCGCAGGCTGCTGCCGGTACCGTGGCTGGAGGGGGCGGC
50 TCAAGTTGCCCGAAACC~~GTTCTGTGATTGACATCATGGTGT~~CATCGCCTC
55 CATTGCGGTGCTGGCCGCCGGCTCCAGGGCAACGTCTTGCCACATCTCGCCTC
60 15 CGGAGCCTGCGCTTGCAGATTCTCGGGATGATCCGATGGACCGGGGGGA
65 GGCACCTGGAAGCTGCTGGCTCTGTGGTCTATGCCACAGCAAGGAGCTGGTC
70 ACTGCCTGGTACATCGGCTTCCTTGCTCATCCTGCCCTGGCTGGTACTT
75 GGCAGAGAAGGGGGAGAACGACCAC~~TTGACACCTACGCGGATGC~~ACTCTGGT
80 GGGCCTGATCACGCTGACACCATTGGCTACGGGACAAGTACCCCCAGACCTGG
85 20 AACGGCAGGCTCCTGGCAACCTCACCC~~CTCATCGGTGT~~CTCCTTCGCGCT
90 GCCTGCAGGCATCTGGGCTGGTTGCCCTGAAGGTT~~CAGGAGCAGCACAG~~
95 GCAGAACGACTTGAGAAGAGGCCGAACCCGGCAGCAGGCC~~TGATCCAGTCGGC~~
100 CTGGAGATTCTACGCCACCAACCTCTCGCGCACAGACCTGCA~~CTCCACGTGGCAG~~
105 TACTACGAGCGAACGGTCACCGTGCCATGTACAGTTGCAA~~ACTCAAACCTACG~~
110 25 GGGCCTCCAGACTTATCCCCCGCTGAACCAGCTGGAGCTGCTGAGGAACCTCAA
115 GAGTAAATCTGGACTCGCTTCAGGAAGGACCCCCCGCCGGAGCC~~GTCTCCAAG~~
120 CCAGAACGGTCAGTTGAAAGATCGTGTCTCCAGCCCCGAGGCC~~GTGGCTGCC~~
125 AAGGGGAAGGGTCCCGCAGGCCAGACTGTGAGGCC~~GTACCCAGCGCCGAC~~
130 CAGAGCCTCGAGGACAGCCCCAGCAAGGTGCCAAGAGCTGGAGCTTCGGGGAC
135 30 CGCAGCCGGCACGCCAGGCTTCCGCATCAAGGGTGCCCGTCACGGCAGAAC
140 TCAGAAGAAGCAAGCCTCCCCGGAGAGGACATTGTGGATGACAAGAGCTGCC

TGCGAGTTGTGACCGAGGACCTGACCCGGGCCTCAAAGTCAGCATCAGAGCC
GTGTGTGTCATCGGGTCTGGTGTCCAAGCGGAAGTTCAAGGAGAGCCTGCGGC
CCTACGACGTGATGGACGTCATCGAGCAGTACTCAGCCGCCACCTGGACATGCT
GTCCCAGATTAAAGAGCCTGCAGTCCAGAGTGGACCAGATCGTGGGGCGGGCCC
5 AGCGATCACGGACAAGGACCGCACCAAGGGCCCGAGGCAGCTGCCG
AGGACCCCAGCATGATGGACGGCTCGGAAGGTGGAGAAGCAGGTCTTGTCCA
TGGAGAAGAAGCTGGACTTCCTGGTAATATCTACATGCAGCGGATGGCATCC
CCCCGACAGAGACCGAGGCCTACTTGGGCCAAAGAGCCGGAGCCGGGCCGC
CGTACACAGCCCGAAGACAGCCGGAGCATGTCGACAGGCACGGCTGCATTG
10 TCAAGATCGTGCCTCAGCAGCTCCACGGGCCAGAACAGAACTTCTCGGCC
CGGCCGCGCCCCCTGTCCAGTGTCCGGCCCTCCACCTCCTGGCAGCCACAGAGCCA
CCCGGCCAGGGCCACGGCACCTCCCCGTGGGGACCACGGCTCCCTGGTGC
CATCCGCCGCGCCTGCCACGAGCGGTGCTGTCCGCTACGGGGGGCAA
CCGCGCCAGCATGGAGTTCTGCGGCAGGAGGACACCCGGCTGCAGGCC
15 CGAGGGGACCTGCGGACAGCGACACGTCCATCTCCATCCGTCCGTGGACCA
CGAGGAGCTGGAGCGTCTTCAGCGGCTTCAGCATCTCCAGTCCAAGGAGAA
CCTGGATGCTCTAACAGCTGCTACCGGCCGTGGCCCTTGCCAAAGTCAGG
CCCTACATTGCGGAGGGAGAGTCAGACACCGACTCCGACCTCTGTACCCGTGCG
GGCCCCCGCCACGCTCGGCCACCGCGAGGGTCCCTTGGTACGTGGCTGG
20 CCGGGCCCAGGAAGTGAGGCGCGCTGGCCAGTGGACCCGCCGGCC
TCAGCACGGTGCCTCCGAGGTTTGAGGCGGAACCCCTGGGGCCCTTCTTA
CAGTAACTGAGTGTGGCGGAAGGGTGGCCCTGGAGGGGCCATGTGGCTGA
AGGATGGGGCTCCTGGCAGTGCACCTTACAAAAGTTATTTCCAACAGGGCT
GGAGGGCTGGCAGGCCCTGTGGCTCCAGGAGCAGCGTGCAGGAGCAAGGCTG
25 CCCTGTCCACTCTGCTCAGGGCCGCGACATCAGCCGGTGTGAGGAGGG
CGGGAGTGTGACGGGTGTTGCCAGCGTGGCAACAGGCGGGGGTTGTCTCAG
CCGAGCCCAGGGAGGCACAAAGGGCAGGCCCTGTTCCCTGAGGACCTGCGCAA
GGCGGGCCTGTTGGTGAGGACCTGCGGCCCTGGTC

FIG.2

5 ATGGTGCAGAAGTCGCGAACGGCGCGTATACCCCGGCCGAGCGGGGAGAAG
AAGCTGAAGGTGGGCTCGTGGGCTGGACCCCGCGCCGACTCCACCCGG
GACGGGGCGCTGCTGATGCCGGCTCGAGGCCCCAAGCGCGCAGCATCCTC
AGCAAACCTCGCGGGCGGGCGCCGGGAAGCCCCCAAGCGAACGC
CTTCTACCGCAAGCTGCAGAATTCTCTACAACGTGCTGGAGCGGCCGCGGC
10 TGGCGTTCATCTACCACGCCAACGTGTTCCCTGGTTTCTCCTGCCCTCGTGC
GTCTGTGTTTCCACCATCAAGGAGTATGAGAAAGAGCTGGAGGGGCCCTCTAC
ATCCTGGAAATCGTACTATCGTGGTGGCGTGAGTACTCGTGC GGATCT
GGGCCGCAGGCTGCTGCCGGTACCGTGGCTGGAGGGGGCGGCTCAAGTTG
CCCGGAAACC GTTCTGTGTGATTGACATCATGGTGCATGCCCTCATTGCGGT
15 GCTGGCCGCCGGCTCCCAGGGCAACGTCTTGCCACATCTGCCTCCGGAGCCTG
CGCTTCCATGCAGATTCTGC GGATGATCCGCATGGACCGGCGGGAGGCACCTGG
AAGCTGCTGGCTCTGTGGTCTATGCCCACAGCAAGGAGCTGGTACTGCCTGGT
ACATCGCCTTGTCTCATCCTGCCCTCGTCTGGTACTTGGCAGAGAAG
GGGGAGAACGACCACTTGACACCTACGCCGGATGCACTCTGGTGGGCCTGATC
20 ACGCTGACCACCATTGGCTACGGGACAAGTACCCCCAGACCTGGAACGGCAGG
CTCCTGCCAACCTCACCCATCGGTGTCTCCTCTCGCGCTGCCCTGCAGG
CATCTTGGGTCTGGTTGCCCTGAAGGTT CAGGAGCAGCACAGGAGAAGCA
CTTGAGAACGAGGCGGAACCCGGCAGCAGGCCGTATCCAGTCGGCCTGGAGATT
CTACGCCACCAACCTCTCGCGCACAGACCTGCACTCCACGTGGCAGTACTACGAG
25 CGAACGGTCACCGTCCCCATGTACAGTTGCAAACACTCAAACCTACGGGCCTCCA
GACTTATCCCCCGCTGAACCAGCTGGAGCTGCTGAGGAACCTCAAGAGTAAAT
CTGGACTCGCTTCAGGAAGGACCCCCCGCCGGAGCCGTCTCCAAGCCAGAAGG
TCAGTTGAAAGATCGTGTCTCTCCAGCCCCGAGGCCTGGCTGCCAAGGGAA
GGGGTCCCCGCAGGCCAGACTGTGAGGCCGTACCCAGCGCCGACCAGAGCCT
30 CGAGGACAGCCCCAGCAAGGTGCCAAGAGCTGGAGCTTCGGGGACCGCAGCCG
GGCACGCCAGGCTTCCGCATCAAGGGTGCCCGTACGGCAGAACTCAGAAGA

AGCAAGCCTCCCCGGAGAGGACATTGTGGATGACAAGAGCTGCCCTGCGAGTT
TGTGACCGAGGACCTGACCCCGGCCTCAAAGTCAGCATCAGAGCCGTGTGT
CATGCGGTTCTGGTGTCCAAGCGGAAGTTCAAGGAGAGCCTGCGGCCCTACGA
CGTGATGGACGTCATCGAGCAGTACTCAGCCGCCACCTGGACATGCTGTCCGA
5 ATTAAGAGCCTGCAGTCCAGAGTGGACCAGATCGTGGGGCGGGGCCAGCGATC
ACGGACAAGGACCGCACCAAGGGCCCGGAGGCGGAGCTGCCGAGGACCC
CAGCATGATGGGACGGCTCGGAAGGTGGAGAAGCAGGTCTTGTCCATGGAGAA
GAAGCTGGACTTCCTGGTGAATATCTACATGCAGCGGATGGCATCCCCCGACA
GAGACCGAGGCCTACTTGGGCCAAAGAGCCGGAGCCGGCCGTACAC
10 AGCCCAGGAAGACAGCCGGAGCATGTCGACAGGCACGGCTGCATTGTCAAGATC
GTGCGCTCCAGCAGCTCCACGGGCCAGAAGAACTTCTCGCGCCCCGGCCCG
CCCCCTGTCCAGTGTCCGCCCCCTCCACCTCCTGGCAGCCACAGAGCCACCCGCGCC
AGGGCCACGGCACCTCCCCGTGGGGACCACGGCTCCCTGGTGCATCCGC
CGCCGCCTGCCACGAGCGGCTGCTGCCACGGCGGGCAACCGCGCCA
15 GCATGGAGTTCCCTGCGGCAGGAGGACACCCCGGCTGCAGGCCCCCGAGGGGA
CCCTGCGGGACAGCGACACGTCCATCTCCATCCCGTCCGTGGACCACGAGGAGC
TGGAGCGTTCTTCAGCGGCTTCAGCATCTCCAGTCCAAGGAGAACCTGGATGC
TCTCAACAGCTGCTACGCGGCCGTGGCGCCTGTGCCAAAGTCAGGCCCTACATT
GCGGAGGGAGAGTCAGACACCGACTCCGACCTCTGTACCCGTGGGGCCCCCG
20 CCACGCTCGGCCACCGCGAGGGTCCCTTGGTACGTGGCTGGGCCGGCC
AGGAAGTGA

Human Brain-Derived Potassium Channel DNA Structural Region · SEQ ID NO:2

FIG.3

- MVQKS RNGGVYPGPSGEKKLVGFGLDPGAPDSTRDGALLIAGSEAPKRGSILSKP
- 5 RAGGAGAGKPPKRNAFYRKLQNFLYNVLERPRGWAFIYHAYVFLLVFSCVL SVFS
TIKEYEKSSEGALYILEIVTIVFGVEYFVRIWAAGCCRYRGWRGRLK FARKPFCVI
DIMVLIASIAVLAAGSQGNVFATSALRSLRFLQILRMIRMDRRGGTWKLLGSVVYAH
SKELVTAWYIGFLCLILASFVYLAEKGENDHFDTYADALWWGLITLTIGYGDKYP
QTWNNGRLLAATFTLIGVSFFALPAGILGSGFALKVQEQRQKHFEKRRNPAAGLIQS
- 10 AWRFYATNLSRTDLHSTWQYYERTVTVPMYSSQTQTYGASRLIPPLNQLELLRNLSK
KSGLAFRKDPPPEPSPSQKVSLKDRVSSPRGVAAKKGKSPQAQTVRRSPSADQSLE
DSPSKVPKSWFGDRSRARQAFRIKGAASRQNSEEASLPGEDIVDDKSCPCEFVTEDL
TPGLKVSIRAVCVMRFLVSKRKFKESLRPYDVMDVIEQYSAGHLDMLSRIKSLQSRV
DQIVGRGPAITDKDRTKGPAEAEELPEDPSMMGRLGKVEKQVLSMEKKLDFLVNIYM
- 15 QRMGIPPTETEAYFGAKEPEPAPPYHSPEDSREHVDRHGCIVKIVRSSSTGQKNFSAP
PAAPPVQCPPSTSWQPQSHPRQGHGTSPVGDHGSLVRIPPPPAHERSL SAYGGNRAS
MEFLRQEDTPGCRPPEGTLRSDTSISIPSVDHEELERSFGFSISQSKENLDALNSCYA
AVAPCAKVRPYIAEGESDTSDLCTPCGPPPRSATGEGPGDVGWAGPRK*
- 20 Human Brain-Derived Potassium Channel Peptide [Residue Sequence] · SEQ ID NO:3

FIG.4

CGCGGAGCGAGGTGGCCGCAGCGTCTCCGCAGGCCAAGCCCAGGAGT
5 GCGGAACCGCCGCCTCGGCCATGCGGCTCCCGCCGGGGCCTGGCTGGGC
CCCGGCCGCCCGCTCCGCCCCCGCTGAGCCTGAGCCGACCCGGGCGC
CTCCCGCCAGGCACCATGGTGCAGAACGTCGCAACGGCGGTATACCCGGC
CCGAGCGGGGAGAAGAAGCTGAAGGTGGGCTTCGTGGGCTGGACCCGGCGC
CCCGACTCCACCCGGGACGGGCGCTGCTGATGCCGGCTCCGAGGCCCCAAG
10 CGCGGCAGCATCCTCAGCAAACCTCGCGCGGGCGCGCGCCGGGAAGCCC
CCAAGCGCAACGCCTTCTACCGCAAGCTGCAGAAATTCTCTACAACGTGCTGG
AGCGGCCGCGCGCTGGCGTTCATCTACCACGCCTACGTGTTCTCCTGGTTT
CTCCTGCCTCGTGTCTGTGTTCCACCATCAAGGAGTATGAGAAGAGCTCG
GAGGGGGCCCTCTACATCCTGAAATCGTACTATCGTGGTGTGTTGGCGTGGAGT
15 ACTTCGTGCGGATCTGGGCCGCAGGCTGCTGCTGCCGGTACCGTGGCTGGAGGG
GGCGGCTCAAGTTGCCCGAAACCGTTCTGTGATTGACATCATGGTGCAT
CGCCTCCATTGCGGTGCTGGCCGCCGGCTCCAGGGCACGTCTTGCCACATCT
GCGCTCCGGAGCCTGCCTGCAGATTCTGCGGATGATCCGCATGGACCGGC
GGGGAGGCACCTGGAAGCTGCTGGCTCTGTGGTCTATGCCACAGCAAGGAGC
20 TGGTCACTGCCTGGTACATCGGCTTCTTGTCTCATCCTGGCCTGTTCTGGT
TACTTGGCAGAGAAGGGGGAGAACGACCACTTGACACCTACGCGGATGCACTC
TGGTGGGGCCTGATCACGCTGACCACCATTGGCTACGGGACAAGTACCCCCAG
ACCTGGAACGGCAGGCTCCTGCGCAACCTCACCCCTACGGTGTCTCCTCT
TCGCGCTGCCTGCAGGCATCTGGGCTGGGTTGCCCTGAAGGTTAGGAGCA
25 GCACAGGCAGAAGCACTTGAGAAGAGGCGGAACCCGGCAGCAGGCCTGATCCA
GTCGGCCTGGAGATTCTACGCCACCAACCTCTCGCGCACAGACCTGCACCCACG
TGGCAGTACTACGAGCGAACGGTCACCGTGCCATGTACAGGTACCGCCGG
GCACCTGCCACCAAGCAACTGTTCATTTTATTTCCATTGTTCTAAACCC
ACTTTTGTGTTCATTATTGATTGATTTTTCTTAAAATGTATTTCACA
30 AAGG

-113-

Yokoyama et al cDNA Sequence (HNSPC) (Genbank accession # D82346)

SEQ ID NO:4

FIG.5

MVQKSRNGGVYPGPSGEKKLVGFVGLDPGAPDSTRDGALLIAGSEAPKRGSILSKP
5 RAGGAGAGKPPKRNAFYRKLQNFLYNVLERPRGWAFIYHAYVFLLVFSCLVLSVFS
TIKEYEKSSEGALYILEIVTIVVFGVEYFVRIWAAGCCCRYRGWRGRLKFKARKPFCVI
DIMVLIASIAVLAAGSQGNVFATSALRSLRFLQILRMIRMDRRGGTWKLLGSVVYAH
SKELVTAWYIGFLCLILASFVYLAEKGENDHFDTYADALWWGLITLTIGYGDKYP
QTWNNGRLLAATFTLIGVSFFALPAGILGSGFALKVQEQRQKHFEKRRNPAAGLIQS
10 AWRFYATNLSRTDLHSTWQYYERTVTVPMYRYRRRAPATKQLFHFLFSICS*

Yokoyama et al amino acid sequence (HNSPC) · SEQ ID NO:5

FIG.6

METRGSR LTGGQGRVYNFLERPTGWKCFVYHFAVFLIVLVCLIFSVLSTIEQYAALAT
5 GTLFWMEIVL VVFFGTEYVVRLWSAGCRSKYVGLWGRRLFARKPISIIDLIVVVASM
VVLCVGSKGQVFATS AIRGIRFLQILRMLHVDRQGGTWRLLG SVVFIHRQELITLYI
GFLGLIFSSYFVYLAEKDAVN ESGRVEFGSYADALWWGVVTVTIGYGDKVPQTWV
GKTIASCFSVFAISFFALPAGILGSGFALKVQQKQRQKHFN RQIPAAASLIQTAWR CY
AAENPDSS TWKIYIRKA PRSHTLLSPSPKPKSVVVKKKF KLDNGVTPGEKMLT
10 VPHITCDPPEERRLDHFSVDGYDSSVRKSPTLLEVSMPHFMRTNSFAEDLDLEGETLL
TPITHISQLREHH RATIKVIRRMQYFVAKKKFQQARKPYDVRDVIEQYSQGHNL MV
RIKELQRR LDQS IKGPSLFISVSEKSKDRGSNTIGARLN RVEDKV TQLDQRLA LITDML
HQLLSLHGGSTPGSGGPPREGGAHITQPCGSGGSVDPELFLPSNTLPTYEQLTVPR RG
PDEGS
15

Sanguinetti et al amino acid sequence (HKvLQT1) (Genbank Accession U40990, U71077)

SEQ ID NO:6

FIG.7

Alignment Report of FIG 7.meg, using Clustal method with PAM250 residue weight table.
Monday, November 24, 1997 10:45 AM

Page 1

FIG. 7 (p.2)

Alignment Report of FIG 7.meg, using Clustal method with PAM250 residue weight table.
 Monday, November 24, 1997 10:45 AM

Page 2

	510	520	530	540	550	
494	L P G B D I V D D K S C [P] C E F V T E D [L] T P G L K V S [T] R A V C V [M] R P L V S X R K F K E S L R [P]					SEQ ID NO 3
384	- - - - -	- - - - -	- - - - -	- L F H P L	- - - - -	SEQ ID NO 5
395	[E] G E T L L T - - - [P] I T H I S Q - [L] R E H H R A T [I] K V I R R [H] O Y F V A K E K F Q Q A R K [P]					SEQ ID NO 6
	560	570	580	590	600	
544	[Y] D V M D V I E Q Y S A G H L D M L S R I K S L Q S R V D Q I V C R G P - - - A I T D [X] D R T K [C] P					SEQ ID NO 3
389	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	SEQ ID NO 5
440	[Y] D V R D V I E Q Y S Q G H L N L M V R I K E [Q] R R L D Q S I C K P S L F I S V S E X S K D R [G] S					SEQ ID NO 6
	610	620	630	640	650	
591	A E A E L P E D P S M M G R L G K V E K Q V L S M E K R [L] D F L V N I Y M [Q] R M G I P P T E A Y					SEQ ID NO 3
389	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	SEQ ID NO 5
490	N - - - - - T I C A R L N R V E D K V T Q L D Q R [L] A L I T D M L H [Q] L L S L H - - - - -					SEQ ID NO 6
	660	670	680	690	700	
641	P [C] A K E [P] E P A P P [P] Y H S P E D S R E H V D R H G C I V K I V R S S S S T G Q K R N F S A P P A A P					SEQ ID NO 3
389	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	SEQ ID NO 5
525	- [G] S T [P] G S G G [P] - - - - -					SEQ ID NO 6
	710	720	730	740	750	
691	P V Q C P P S T S W Q P Q S H [P] R O G H G T S P V [G] D [R] G S L V R [I] P P P P P A H E R S L S A Y G [G] G					SEQ ID NO 3
389	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	SEQ ID NO 5
535	- - - - - [P] R E G - - - - - [G] A H - - - - - [I] T Q [P] C G - - - - - S G G					SEQ ID NO 6
	760	770	780	790	800	
741	N R A S M E [P] L R Q E D T P G C R P [P] E G [T] L R D S D T S I S I P S V D H E E L R S F S G F S I S					SEQ ID NO 3
389	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	SEQ ID NO 5
551	S V D P E L [P] L - - - - - [P] S N T L P - - - - - T Y E Q L T V -					SEQ ID NO 6
	810	820	830	840	850	
791	Q S K E N L D A L N S C Y A A V A P C A R V R P Y I A E G E S D T D S D L C T P C G P P P R S A T G					SEQ ID NO 3
392	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	SEQ ID NO 5
572	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	SEQ ID NO 6
	860					
841	[E] G P F G D V V G W A G P R K .					SEQ ID NO 3
394	- - - - -	- - - - -	- - - - -	- - - - -	- - - - -	SEQ ID NO 5
578	[E] G S .					SEQ ID NO 6

Decoration 'Decoration #1': Box residues that match the Consensus exactly.

FIG.8

SEQ ID NO 3.pad

Monday, November 24, 1997 11:22 AM

SEQ ID NO 5.pad

Monday, November 24, 1997 11:21 AM

SEQ ID NO 6.pad

Monday, November 24, 1997 11:21 AM

FIG.9

5

PBL=Peripheral Blood Leukocytes
C=700 bp housekeeping cyclophilin transcript, used for
normalization of RNA loading

-120-

FIG.10

5

**Human Brain Northern
Probe 1**

**Human Brain Northern
Probe 2**

C=700 bp housekeeping cyclophilin transcript, used for
normalization of RNA loading

FIG.11

5

Brain Tissue and Cell Panel Northerns

Probe 1

Probe 2

C=700 bp housekeeping cyclophilin transcript, used for
normalization of RNA loading

FIG.12

5

FIG.13

5

FIG.14

5

FIG.15

5

-126-

FIG.16

5

10

FIG.17

5 MGLKARRAAGAAGGGGGEGGGGGGGAAANPAGGDSAVAGDEERKVGLAPGDVEQ
 VTLALGTGADKGTLLEGGGRDEGQRRTPQGIGLLAKTPLSRVKRNNAKYRRIQT
 LIYDALERPRGWALLYHALVFLIVLGCLILAVLTTFKEYETVSGDWLLVPETFAIFG
 AEFALRIWAAGCCCRYKGWRGRLKFARKPLCMLDIFVLIASVPVAVGNQGNVLAT
 SLRSLRFLQILRMLRMDRRGGTWKLLGSAICAHSKELITAWYIGFLTLISSLVYLVE
 10 KDVPEMDAQGEEMKEEFETYADALWWGLITLATIGYGDKTPKTWEGRLLIAATFSLI
 GVSFFALPAGILGSGLALKVQEQRHQRKHFEEKRKPAAELIQAAWRYYATNNRLDLV
 ATWRFYESVVSFPFRKEQLEAAASQKLGLLDRVRLSNPRGSNTKGKLFTPLNVDAI
 EESPSKEPKPVGLNNKERFRTAFRMKAYAFWQSSEDAGTGDPMTEDRGYGNDFLIE
 DMIPTLKAIRAVRILQFRLYKKKFKETLRPYDVKDvieQYSAGHLDMLSRIKYLQTR
 15 IDMIFTPGPPSTPKHKKSQKGSQFTYPSQQSPRNEPYVARAATSETEDQSMMGKFVK
 VERQVHDMGKKLDFLVDMHMHQHMERLQVHVTEYYPTKGASSPAEGEREKEDNRYS
 DLKTIICNYSESGPPDPPYSFHQVPIDRVGPYGFHAHDVKLTRGGPSSTKAQANLPSS
 GSTYAERPTVLPILTLLDCSVSYHSQTELQGPYSDHISPRQRSSITRDSDTPLSLMSVN
 HEELERSPSGFSISQDRDDYVFGPSGGSSWMREKRYLAEGETDTDTPFTPSGSMPM
 20 SSTGDGISDSIWTPSNKPT

SEQ ID NO:7 · Rat KvQT3 (GENBANK Accession Number: AF087454)

25

GDVEQVTLALGAGADKGTLLEGGGRDEGQRRTPQGIGLLAKTPLSRVKRNNAK
 30 YRRIQTLYDALERPRGWALLYHALVFLIVLGCLILAVLTTFKEYETVSGDWLLLLET
 FAIFIFGAEFALRIWAAGCCCRYKGWRGRLKFARKPLCMLDIFVLIASVPVAVGNQ
 GNVLATSLRSLRFLQILRMLRMDRRGGTWKLLGSAICAHSKELITAWYIGFLTLISSL
 FLVYLVEKDVEVDAQGEEMKEEFETYADALWWGLITLATIGYGDKTPKTWEGRLLI
 AATFSLIGVSFFALPAGILGSGLALKVQEQRHQRKPAEIQAAWRYYATN
 35 PNRIDLVATWRFYESVVSFPFRKEQLEAASSQKLGLLDRVRLSNPRGSNTKGKLFTP
 LNVDAIEESPSKEPKPVGLNNKERFRTAFRMKAYAFWQSSEDAGTGDPMAEDRGYGN
 NDFPIEDMIPTLKAIRAVRILQFRLYKKKFKETLRPYDVKDvieQYSAGHLDMLSRI
 KYLQTRIDMIFTPGPPSTPKHKKSQKGSQFTPSQQSPRNEPYVARPSTSEIEDQSMM
 GKFKVERQVQDMGKKLDFLVDMHMHQHMERLQVQVTEYYPTKGTSPPAEAEKKE
 40 DNRYSDLKTIICNYSETGPPEPPYSFHQVTIDKVSPYGFHAHDVKLPRGGPSGVQ
 ATPPSSATTYVERPTVLPILTLLDSRVSCHSQADLQGPYSDRISPRQRSSITRDSDTPLS
 LMSVNHEELERSPSGFSISQDRDDYVFGPNGGSSWMREKRYLAEGETDTDTPFTPS
 GSMPLSSTGDGISDSIWTPSNKPI

45

SEQ ID NO:8 · Human KvQT3 (partial)