Energy Connections Network Design Proposal

G3 Consulting Inc.

Project Overview

Design Team

Aiden Mitchell

Team Leader, Security

Lasse Lammers

Linux & Windows Server

Peter Djordjevic

vSphere/ESXi & Windows Server Wilson Liu

Networking Parts 1 & 2, Network Security

Umair Abdullah

Networking Parts 1 & 2, Network Security **Bishmanjot Johal**

Networking Parts 1 & 2, Network Security **Brandon Huang**

Networking Parts 1 & 2, Network Security

Network Topology & Technologies

VMware vSphere and ESXi

- Type 1 Hypervisor (Bare-Metal)
- 2 Physical ESXi Hosts
 - West (142.232.253.217)
 - East (142.232.253.227)
- Linked Through vCenter Server
 - vSphere Client VM (142.232.253.195)

Backups and Redundancy

Virtual Machine Backup Process

On-Site Off-Site Cloud

VEEAM

Synology*

Azure

- Taken hourly
- Stored on a separate machine

- Connected via Tailscale VPN
- Data is fully encrypted in transit

- Located in a different geographical region
- Backed by Azure redundancy

Cisco Config Backup Process

- All start-up configs saved via TFTP
- Executed manually as necessary

- Replicated to Veeam hourly
- Easily restored by Admins

Windows Server & Active Directory

ad.energy.connections

Linux Servers

13

IP Telephony

Project Management

Work Progress

- Arranging devices
- Designing VLAN
- Assigning IP addresses
- DHCP scope
- Routing between sites
- Secure communication between sites
- VMs
- Mission critical devices
- Network security

- Work went smoothly, and consistently on time
- Milestones were reached as planned
- Work output was consistent, and no significant management was necessary
- Team worked independently of the team leader where required

Security

Report Methodology

Report Overview

Vulnerabilities Remediated

- 24% decrease in vulnerabilities after remediation.
- O critical vulnerabilities after remediation.
- O Windows vulnerabilities after remediation.

- After conducting the initial scan, we fixed the vulnerabilities that were found.
- Results from the remediation scan showed a 24% decrease in the vulnerabilities.

Security Difficulties

- Cisco hardware too old for most security patches
 - Most vulnerabilities identified were from Cisco systems and routers were identified as most vulnerable.
 - All vulnerabilities that rated High and above were from Cisco systems
 - Most vulnerabilities were ranked from medium to high for the risk exposure level, and the common reason for all of them was that hardware was too old to be fixed by a software patch.

Identifier	Source of Discovery	Current Risk Exposure	Operational Requirements Rationale
10882 – Network devices	Nessus	High	SSH version cannot be updated on Cisco IOS.
97861 – Network devices	Nessus	Medium	NTP mode 6 cannot be configured on Cisco IOS.
153953 – Network devices	Nessus	Low	SSH cannot be updated on Cisco IOS.
70658 – Network devices	Nessus	Low	SSH cannot be updated on Cisco IOS.
71049 – Network devices	Nessus	Low	SSH cannot be updated on Cisco IOS.
128051 – Routers	Nessus	High	Unable to fix, hardware is too old for software patch.
148107 – Routers	Nessus	High	Unable to fix, hardware is too old for software patch.
165675 – Routers	Nessus	High	Unable to fix, hardware is too old for software patch.
129695 – Routers	Nessus	High	Unable to fix, hardware is too old for software patch.
129943 – Routers	Nessus	High	Unable to fix, hardware is too old for software patch.
148095 – Routers	Nessus	High	Unable to fix, hardware is too old for software patch.
129537 – Routers	Nessus	Medium	Unable to fix, hardware is too old for software patch.
141119 – Routers	Nessus	Medium	Unable to fix, hardware is too old for software patch.
129827 – Routers	Nessus	Medium	Unable to fix, hardware is too old for software patch.
129531 – Routers	Nessus	Medium	Unable to fix, hardware is too old for software patch.
137332 – Routers	Nessus	Medium	Unable to fix, hardware is too old for software patch.
137631 – Routers	Nessus	Medium	Unable to fix, hardware is too old for software patch.
137408 – Routers	Nessus	Medium	Unable to fix, hardware is too old for software patch.
123793 – Routers	Nessus	Medium	Unable to fix, hardware is too old for software patch.
76474 – Routers	Nessus	Medium	Unable to fix, hardware is too old for software patch.
153953 - Routers	Nessus	Low	Unable to fix, hardware is too old for software patch.

Challenges

Redundancy was an issue due to the limitation of devices

• Implementing redundancy with few network devices was a tough decision to make as only a part of the network could be redundant with the design we came up with.

Developing the most feasible topology

• Arranging the network layout so everything is compatible while meeting all requirements and expectations.

Upgrading the old hardware

• Some devices were previously configured with older firmware, which didn't support newer security protocols, hence we had to upgrade the firmware to meet our requirements.

Troubleshooting was a lengthy process at times until the network build was nearly complete

- Router-on-a-Stick topology was difficult as it requires configuration on each sub-interface.
- A frequent issue we faced was site-to-site connectivity.

Implementing security measures was a significant challenge

• Having to ensure secure access to the network and protecting against potential threats was stressful.

Achievements

Achievements

- Hypervisor & network integration
- Configuring the hypervisors to connect to our Cisco equipment for VLAN management took less time than anticipated.
- Upgrading the old hardware
- Enabled SecurityK9 to be able to implement IPsec.

Vulnerability scan & remediation

 We were able to close all critical vulnerabilities and significantly decrease the number of vulnerabilities.

Teamwork

 The team worked efficiently and communicated clearly throughout the entire project.

Troubleshooting

 When issues arose, the team stepped up to the challenge and was able to fix any issues as we progressed.