REPORT

Sreevatsav B
Chaitanya Sreenivas
Siddharth Reddy
P L Sravanthi
Lohit Garge

<u>AIM</u>: To develop a parallel code for the following problem using OpenMP and to report the speedup of your implementations by varying the number of threads from 1 to 16 (i.e., 1, 2, 4, 6, 8, 10, 12, 14, and 16). Use gettimeofday() for calculating runtime and consider the average of 5 runs. Finally, draw appropriate plots using the GNU plot

OBSERVATIONS:

For each power, matrix size vs time all graphs are present in the ipynb file.

Average of 5 runs were considered.

Q3
GRAPH FOR 512*512 MATRIX SIZE

GRAPH FOR 1024*1024 MATRIX SIZE

GRAPH FOR 2048*2048 MATRIX SIZE

Q1

GRAPH FOR 512*512 MATRIX SIZE

GRAPH FOR 1024*1024 MATRIX SIZE

GRAPH FOR 2048*2048 MATRIX SIZE

Q2 and Q4, graphs are plotted in the ipynb file

INFERENCE:

Through this lab we have inferred the following:

- The run time decreases as no. of threads increase.
- The runtime increases as power increases
- As block size increase, time decreases