1

Matrix Theory EE5609 Assignment 11

Vimal K B MTech Artificial Intelligence AI20MTECH12001

Abstract—This document solves a problem of linear combinations.

All the codes for the figure in this document can be found at

https://github.com/vimalkb007/EE5609/tree/master/ Assignment 11

1 Problem

Let **A** be an $m \times n$ matrix with rank r. If the linear system $\mathbf{AX} = \mathbf{b}$ has a solution for each $\mathbf{b} \in \mathbf{R}^m$, then

- 1) m = r
- 2) the column space of **A** is a proper subspace of \mathbf{R}^m
- 3) the null space of **A** is a non-trivial subspace of \mathbf{R}^n whenever m = n
- 4) $m \ge n$ implies m = n

2 Theorem

Theorem 2.1. Consider the $m \times n$ system Ax = b, with either $b \neq 0$ or b = 0. We distinguish the following cases:

- 1) Unique Solution: If $rank[A,b] = rank(A) = n \le m$, then and only then the system has a unique solution. In this case, indeed as many as m-n equations are redundant. And the solution $\mathbf{X} = \mathbf{A}^{-1}\mathbf{b}$. This is called as Exactly Determined.
- 2) No Solution: If rank[A,b] > rank(A) which necessarily implies $\mathbf{b} \neq 0$ and m > rank(A), then and only then the system has no solution. This is called as **Overdetermined**.

3 Solution

If the columns of an $m \times n$ matrix **A** span \mathbf{R}^m then the equation $\mathbf{A}\mathbf{x} = \mathbf{b}$ is consistent for each **b** in \mathbf{R}^m .

The **null space** of **A** is defined to be

$$Null(\mathbf{A}) = \{ \mathbf{x} \in \mathbf{R}^n \,|\, \mathbf{A}\mathbf{x} = 0 \}$$
 (3.0.1)

Let **A** be given as

$$\mathbf{A} = \begin{pmatrix} -3 & -2 & 4\\ 14 & 8 & -18\\ 4 & 2 & -4 \end{pmatrix} \tag{3.0.2}$$

Reduced Row Echelon form is

$$RREF(\mathbf{A}) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 (3.0.3)

 \therefore the only possible nullspace of the matrix **A** is $\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$.

Let **B** be given as

$$\mathbf{B} = \begin{pmatrix} -3 & -2 & 4 \\ 14 & 8 & -18 \\ 4 & 2 & -4 \\ 28 & 16 & -36 \\ 8 & 4 & -8 \end{pmatrix}$$
 (3.0.4)

Reduced Row Echelon form is

$$RREF(\mathbf{B}) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
(3.0.5)

 \therefore the rank of matrix **B** = 3.

Options	Observations
m = r	The rank of any matrix \mathbf{A} is the dimension of its column space. When the number of rows (m) is equal to the rank (r) of the matrix, then their linear combination gives us span of \mathbf{R}^m . \therefore This statement is True .
the column space of A is a proper subspace of R^m	Any subspace of a vector space V other than V itself is considered a proper subspace of V . Which means that linear combination of A will span less than m . That will make the resultant b span strictly less than m . But it is given that $b \in \mathbb{R}^m$, which is contradicting. \therefore This statement is False .
the null space of A is a non-trivial subsapce of \mathbf{R}^n whenever $m = n$	From (3.0.2) we see that even when $m = n$ then also we are getting a trivial nullspace. \therefore This statement is False .
$m \ge n$ implies $m = n$	It is given that the number of rows are greater than the column, and it is given that there exists a solution. If we refer to theorem (2.1) we see that the corresponding system will be Exactly Determined system. As an example, it will look like (3.0.4). ∴ This statement is True .