Lecture 27: Zeroes and poles

Math 660—Jim Fowler

Wednesday, July 28, 2010

Theorem

Suppose f and g are analytic functions.

If f(z) = g(z) for $z \in A \subset \Omega$, and A has an accumulation point in Ω , then f = g.

Theorem

Suppose f and g are analytic functions. If f(z) = g(z) for $z \in A \subset \Omega$, and A has an accumulation point in Ω , then f = g.

Analytic functions are determined by their values on sets with an accumulation point.

Suppose f(z) is analytic in a neighborhood of a, but perhaps not at a. (l.e., analytic in a region $0 < |z - a| < \delta$).

Suppose f(z) is analytic in a neighborhood of a, but perhaps not at a. (l.e., analytic in a region $0 < |z - a| < \delta$).

Then a is an isolated singularity of f.

Suppose f(z) is analytic in a neighborhood of a, but perhaps not at a. (l.e., analytic in a region $0 < |z - a| < \delta$).

Then a is an isolated singularity of f.

If $\lim_{z\to a} f(z) = \infty$, then we say that a is a pole of f(z); we can define the order of a pole by considering 1/f(z), which has a removable singularity at a.

Suppose f(z) is analytic in a neighborhood of a, but perhaps not at a. (l.e., analytic in a region $0 < |z - a| < \delta$).

Then a is an isolated singularity of f.

If $\lim_{z\to a} f(z) = \infty$, then we say that a is a pole of f(z); we can define the order of a pole by considering 1/f(z), which has a removable singularity at a.

Poles are isolated, because zeroes are.

Meromorphic functions

A function f which is analytic in Ω , except at points which are poles, is called *meromorphic* in Ω .

Meromorphic functions

A function f which is analytic in Ω , except at points which are poles, is called *meromorphic* in Ω .

Add, subtract, multiply, and divide (by nonzero) meromorphic functions to get new meromorphic functions.

Meromorphic functions

A function f which is analytic in Ω , except at points which are poles, is called *meromorphic* in Ω .

Add, subtract, multiply, and divide (by nonzero) meromorphic functions to get new meromorphic functions.

Think of a meromorphic function as a holomorphic function from Ω to S^2 , the Riemann sphere.

If
$$\lim_{z\to a} |z-a|^{\alpha} |f(z)| = 0$$
 for some α ,

If $\lim_{z\to a} |z-a|^{\alpha} |f(z)| = 0$ for some α , then the same is true for α replaced by a larger value,

If $\lim_{z\to a}|z-a|^{\alpha}|f(z)|=0$ for some α , then the same is true for α replaced by a larger value, so the same is true for $\alpha=$ integer.

If $\lim_{z\to a}|z-a|^{\alpha}|f(z)|=0$ for some α , then the same is true for α replaced by a larger value, so the same is true for $\alpha=$ integer.

Then $(z - a)^m f(z)$ has a removable singularity,

If $\lim_{z\to a}|z-a|^{\alpha}|f(z)|=0$ for some α , then the same is true for α replaced by a larger value, so the same is true for $\alpha=$ integer.

Then $(z-a)^m f(z)$ has a removable singularity, so either $f(z) \equiv 0$ or $(z-a)^m f(z)$ has a zero of order k.

If $\lim_{z\to a}|z-a|^{\alpha}|f(z)|=0$ for some α , then the same is true for α replaced by a larger value, so the same is true for $\alpha=$ integer.

Then $(z-a)^m f(z)$ has a removable singularity, so either $f(z) \equiv 0$ or $(z-a)^m f(z)$ has a zero of order k.

So for all $\alpha > m - k$, the limit vanishes, and if $\alpha < m - k$, the limit equals infinity.

If $\lim_{z\to a} |z-a|^{\alpha} |f(z)| = \infty$ for some α ,

If $\lim_{z\to a} |z-a|^{\alpha} |f(z)| = \infty$ for some α , then the same is true for α replaced by a smaller value,

If $\lim_{z\to a}|z-a|^{\alpha}|f(z)|=\infty$ for some α , then the same is true for α replaced by a smaller value, so the same is true for $\alpha=$ integer.

If $\lim_{z\to a} |z-a|^{\alpha} |f(z)| = \infty$ for some α , then the same is true for α replaced by a smaller value, so the same is true for $\alpha =$ integer.

Then $(z - a)^m f(z)$ has a removable singularity,

If $\lim_{z\to a}|z-a|^{\alpha}|f(z)|=\infty$ for some α , then the same is true for α replaced by a smaller value, so the same is true for $\alpha=$ integer.

Then $(z - a)^m f(z)$ has a removable singularity, and $(z - a)^m f(z)$ has a pole of order *ell*.

If $\lim_{z\to a}|z-a|^{\alpha}|f(z)|=\infty$ for some α , then the same is true for α replaced by a smaller value, so the same is true for $\alpha=$ integer.

Then $(z - a)^m f(z)$ has a removable singularity, and $(z - a)^m f(z)$ has a pole of order *ell*.

So for all $\alpha < m + \ell$, the limit equals infinity, and if $\alpha > m + \ell$, the limit vanishes.

Summarizing

So either $f(z) \equiv 0$, or there is some h so that if $\alpha > h$, then $\lim_{z \to a} |z - a|^{\alpha} |f(z)| = 0$ if $\alpha < h$, then $\lim_{z \to a} |z - a|^{\alpha} |f(z)| = \infty$ or maybe neither limit holds for any α .

in the second case, the cut-off α is an integer.

in the second case, the cut-off α is an integer.

Apply Taylor's theorem to $(z - a)^h f(z)$, to find

$$(z-a)^h f(z) = B_h + B_{h-1}(z-a) + \cdots + B_1(z-a)^{h-1} + \varphi(z)(z-a)^h$$

with $\varphi(z)$ analytic at z = a.

in the second case, the cut-off α is an integer.

Apply Taylor's theorem to $(z - a)^h f(z)$, to find

$$(z-a)^h f(z) = B_h + B_{h-1}(z-a) + \cdots + B_1(z-a)^{h-1} + \varphi(z)(z-a)^h$$

with $\varphi(z)$ analytic at z = a.

Divide both sides by $(z - a)^h$, to get

$$f(z) = \frac{B_h}{(z-a)^h} + \frac{B_{h-1}}{(z-a)^{h-1}} + \cdots + \varphi(z)$$

The part before $\varphi(z)$ is the **singular part** of f.

in the second case, the cut-off α is an integer.

Apply Taylor's theorem to $(z - a)^h f(z)$, to find

$$(z-a)^h f(z) = B_h + B_{h-1}(z-a) + \cdots + B_1(z-a)^{h-1} + \varphi(z)(z-a)^h$$

with $\varphi(z)$ analytic at z = a.

Divide both sides by $(z - a)^h$, to get

$$f(z) = \frac{B_h}{(z-a)^h} + \frac{B_{h-1}}{(z-a)^{h-1}} + \cdots + \varphi(z)$$

The part before $\varphi(z)$ is the **singular part** of f.

A pole comes with a well-defined singular part, and if you subtract off the singular part, you are left with an analytic function.

Essential singularity

If there is no such α satisfying those limits, then we say it is an essential singularity.

Theorem

An analytic function comes arbitrarily close to every complex value in a neighborhood of an essential singularity.

