

TMSCA HIGH SCHOOL MATHEMATICS

OCTOBER 20, 2018

TEST #1 ©

GENERAL DIRECTIONS

- 1. About this test:
- A. You will be given 40 minutes to take this test.
- B. There are 60 problems on this test.
- 2. All answers must be written on the answer sheet/Scantron form/Chatsworth card provided. If you are using an answer sheet, be sure to use **BLOCK CAPITAL LETTERS**. Clean erasures are necessary for accurate grading.
- 3. If using a scantron answer form, be sure to correctly denote the number of problems not attempted.
- 4. You may write anywhere on the test itself. You must write only answers on the answer sheet.
- 5. You may use additional scratch paper provided by the contest director.
- 6. All problems have **ONE** and **ONLY ONE** correct [BEST] answer. There is a penalty for all incorrect answers.
- 7. Calculators used on this test must be conform to the UIL standards. Graphing calculators are allowed. Calculators need not be cleared.
- 8. All problems answered correctly are worth **SIX** points. **TWO** points will be deducted for all problems answered incorrectly. No points will be added or subtracted for problems not answered.
- 9. In case of ties, percent accuracy will be used as a tie breaker.

TMSCA TMSCA

- 1. Evaluate: $\sqrt[4]{104976} \div (81)^{3/4} + 6 \times 2^{-1} 4$.
 - (A) $-1\frac{5}{6}$
- **(B)** 1
- (C) 5
- (D) $-\frac{1}{3}$
- 2. The city of Denton, TX grew from a population of 361 in 1870 to 113,383 in 2010. What was the average annual growth rate for the population of Denton during that 140-year period? (nearest tenth of a percent)
 - (A) 2.2%
- (B) 3.8%
- (C) 4.8%
- **(D)** 4.2%
- (E) 5.1%

3. Which of the inequalities is best represented by the graph below?

(B)
$$x-3y \le -11$$
 (C) $x+3y \le 11$

(C)
$$x + 3y \le 11$$

- (D) $x+3y \le 1$
- (E) $x-3y \ge 1$
- 4. Write this expression as a simplified proper fraction: $0+\frac{1}{1+\frac{1}{3+\frac{1}{5+\frac{1}{0}}}}$
 - (A)
- **(B)**
- (C) $\frac{913}{1380}$
- (D) $\frac{329}{1051}$
- 1910 **(E)**
- 5. Holly's Holiday Ice Cream Shop serves 8 flavors of specialty ice cream and 3 flavors of cones. How many distinct 2-scoop ice cream cone orders are possible?
 - (A) 108
- **(B)** 135
- (C) 165
- (D) 36
- (E) 45

- 6. Divide and simplify: $\frac{x^2-16}{x^2-6x+9} \div \frac{3x-12}{x^2-2x-3}$

- (A) $\frac{x^2 + 5x + 4}{3x 9}$ (B) $\frac{x + 4}{3x 9}$ (C) $\frac{x^2 + 5x + 4}{3x 9}$ (D) $\frac{x^2 + 5x + 4}{3x + 9}$ (E) $\frac{x^2 3x 4}{3x + 9}$
- 7. Let $O = \{1,3,5,7,...29\}$, $T = \{1,3,6,10,15,...66\}$ and $F = \{1,2,3,5,8,13,...89\}$. How many elements are in $(O \cup F) \cap T$?
 - (A) 4
- **(B)** 5
- (C) 6
- **(D)** 7
- (\mathbf{E}) 8

- 8. If 48% of A is $2\frac{3}{4}$ of B, then B is what percent of A?

- (A) $16\frac{2}{3}\%$ (B) $15\frac{6}{11}\%$ (C) $17\frac{2}{3}\%$ (D) $17\frac{5}{11}\%$ (E) $17\frac{6}{11}\%$

9. Find the surface area of the prism shown. (nearest square inch)

- (A) 56 in^2
- (B) 30 in^2
- (C) 96 in^2
- (D) 42 in^2
- (E) 69 in^2
- 10. Given the circle with center O shown with BC = 12 cm and DC = 9 cm, find AB. (nearest tenth)
 - (A) 10.4 cm
- (B) 15.9 cm
- (C) 13.9 cm

- (D) 16.2 cm
- (E) 13.3 cm
- 11. If $\int_{3}^{7} f(x)dx = 32$, evaluate $\int_{3}^{7} [2f(x) + 3x]dx$.
 - (A) 124
- **(B)** 102
- (C) 72
- **(D) 62**
- 128
- 12. Two standard dice are rolled. What are the odds that the numbers on the two dice are different?
 - (A) 5:2
- (B) 5:1
- (C) 6:1
- (D) 3:1
- **(E)** 4:1

- 13. Simplify: $b^3 \left(\frac{(b)^{-8} \sqrt{b^3}}{b^{-2}} \right)$
- (A) $\left(\sqrt{b}\right)^3$ (B) $\left(\sqrt{b}\right)^{-1}$ (C) $\left(\sqrt{b}\right)^{-5}$ (D) $\left(\sqrt{b}\right)^{-3}$ (E) $\left(\sqrt{b}\right)$
- 14. If p and q are the roots of the function $f(x) = 6x^2 + 11x 10$, then $p^3 + 3p^2q + 3pq^2 + q^3 = ?$
 - (A) $-\frac{1331}{1728}$ (B) $-\frac{1331}{216}$ (C) $-\frac{343}{216}$ (D) $-\frac{125}{27}$ (E) $\frac{6856}{216}$

- 15. The circle $x^2 10x + y^2 + 6y = -9$ has a radius r and center (h,k). Find r + h + k.
 - (A) 13
- (B) 7
- (C) 3
- (\mathbf{D}) 4
- (E) 27
- 16. Using the following pattern of numbers, which of the following numbers will NOT be in row 12?

row 0
 1
 2
 1

 1
 3
 3
 1

 1
 4
 5
 4
 1

 1
 5
 7
 7
 5

 6
 9
 10
 9
 6

- (A) 12
- **(B)** 65
- (C) 220
- **(D)** 495
- (E) 792

17. If <i>p</i> is a	prime number and	12p+1	is a prime	number then	2p+1 is	called a sa	afe prime	and <i>p</i> is	called
a	prime.								

- (A) Mersenne
- (B) Pythagorean (C) Germain
- (D) Hypatian
- (E) Euclidean

18. The point of concurrency of the perpendicular bisectors of the sides of a of a triangle is called the:

- (A) Incenter
- (B) Centroid
- (C) Orthocenter (D) Origin
- **(E)** Circumcenter

19. The Real value solution set for $-2x^2 + 18 \ge 9x$ is:

- (A) $\left(-\infty, -6\right] \cup \left[\frac{3}{2}, \infty\right]$ (B) $\left[-\frac{3}{2}, 6\right]$

(C) No Solutions

- (D) $\left(-\infty, -\frac{3}{2}\right] \cup \left[6, \infty\right)$ (E) $\left[-6, \frac{3}{2}\right]$

20. How many positive proper fractions in lowest terms have a denominator of 52?

- **(B)** 24
- (C) 25
- **(D)** 26
- (E) 20

21. Angela tossed a fair nickel until she got heads. What is the probability that she first got heads on the 6th toss?

- (B) $\frac{1}{64}$ (C) $\frac{3}{64}$ (D) $\frac{1}{32}$

22. If the dots on the grid shown below are 3 cm apart both vertically and horizontally, find the area of the shaded region.

- (A) 74
- **(B)** 72
- (C) 99
- (D) 90
- (E) 81

23. Let $f(x) = x^3 - 27$ and g(x) = x - 3. Find (f/g)(x) simplified where $g(x) \neq 0$.

(A) $r^2 - 9$

- (B) $r^2 + 3r + 9$
- (C) $r^2 3r + 9$

(D) $r^2 + 6r + 9$

(E) $r^2 - 6r + 9$

24. The vertex of a parabola is located at (5,3) and the focus is located at (8,3). Find the directrix of the parabola.

- $(A) \quad x=2$
- (B) x = -5 (C) y = 3 (D) x = 5

- (E) x = 3

25. Given that $z^5 = -38 - 41i$ and $z^4 = -7 - 24i$, where z = a + bi and $a, b \in \mathbb{Z}$, find the value of a + b.

- (A) 1
- (B) -1
- (C) 2
- (\mathbf{D}) -2
- $(\mathbf{E}) \quad \mathbf{0}$

TM	ISCA	18-19 HSMA 7	Test O	ne						Page 4
26.		h of the followi book on calcult	_	athematicians i ics?	s knov	wn as the first	woma	n to write a m	athem	atical
	(A)	Erastothenes		(B) Euclid	(C)	Diophantus	(D)	Angnesi	(E)	Fermat
27.	How	many three-dig	git nu	mbers have all	three	digits as differ	ent ev	en numbers?		
	(A)	125	(B)	48	(C)	100	(D)	60	(E)	24
28.	An ic	osidodecahedro	on has	s F faces, $30 ve$	rtices	and 60 edges.	Calcu	late $F + E + V$	•	
	(A)	118	(B)	124	(C)	120	(D)	92	(E)	122
29.	The 2	e nd term of an i	nfinite	e geometric seq	uence	is $\frac{27}{40}$. The 5	th tern	n is $\frac{1}{5}$. Find t	he sur	m of the terms
	in the	infinite geome	etric s	equence.						
	(A)	$\frac{2}{3}$	(B)	$\frac{81}{30}$	(C)	$\frac{211}{80}$	(D)	$\frac{13}{2}$	(E)	$\frac{243}{80}$
30		· ·		9 in the equation				_	e of A	
50.										
	(A)		(B)		(C)		(D)		(E)	
									ated 3	60° around the
	x-axis	s. Calculate the	e volu	me of the solid	gener	ated. (nearest	cubic	unit)		
	(A)	9944	(B)	2742	(C)	12056	(D)	909	(E)	8614
32.	Giver	the sequence	2, 9, 1	8, 29, 42, 57,	. , find	l the 20 th term.	•			
	(A)	434	(B)	834	(C)	477	(D)	522	(E)	501
33.	If log	$s_2(x-7) + \log_2$	(x)=	$\log_2(6) + \log_2$	(5), tl	hen x equals	.			
	(A)	10	(B)	5	(C)	3	(D)	6	(E)	7
34.	$\sum_{k=1}^{3} \left[\left(\right. \right.$	$\left(-1\right)^{k}\left(kx-\left(k+\right)\right)^{k}$	·1) y +	-k $] = ?$						
	(A)	2x - 3y + 2	(B)	-2x+3y	(C)	-2x+3y-2	(D)	2x-3y	(E)	-4x + 6y - 4
35.	Giver	f(x) = 4 - 50	$\cos\left[\frac{\pi}{3}\right]$	(x+2), find	the su	ım of the perio	d and	amplitude.		
	(A)	10	(B)	11	(C)	1	(D)	6	(E)	9
36.	A fun	ection, $f(x)$, e	xists s	such that $f''(x)$	x)=6.	$x^2 + 18x - 8$,	f (2) =	= 21 and $f(-2)$	2) = -3	39. Find $f(4)$.
	(A)	256	(B)	208	(C)	267	(D)	285	(E)	251
37.	$\frac{1}{6}$ +	$\frac{1}{10} + \frac{1}{15} + \frac{1}{21} + .$	$+\frac{1}{17}$	$\frac{1}{1} + \frac{1}{190} = ?$						
	(A)	$\frac{32}{57}$	(B)	9 10	(C)	$\frac{10}{11}$	(D)	$\frac{17}{30}$	(E)	$\frac{13}{15}$

- 38. When Jerri received her paycheck, she immediately paid 1/3 of it for rent and \$150 to her phone company. The next day, she spent 25% of what was left for her car payment. Finally, she put half of the remaining money in savings and was left with \$450. How much was she paid?
 - **(A)** \$1710
- **(B)** \$2880
- (C) \$2160
- (D) \$2025
- **(E)** \$1265
- 39. Morgan folds the net shown into a cube. She rolls the cube as if it were a fair 6-sided die then adds the number on the top and bottom of the die. What is the expected value for the sum?

- (A) 9
- **(B)** 11
- (C) 8
- **(D)** 10
- (E) 12
- 40. Point P (3,-8) lies on the x-y plane. P is reflected across the line y=3 to the point Q. Point Q is rotated 90° clockwise about the origin to point R. Point R is translated horizontally +6 units to point S. Point S is reflected over the x-axis to point T (x, y). Find x + y.
 - (A) 23
- **(B)** 17
- (C) 20
- (\mathbf{D}) 18
- (E) 26

- 41. Let $2x^3 5x^2y = 6y$. Find $\frac{dy}{dx}$.

- (A) $\frac{6-10y}{5}$ (B) $\frac{x^2-2}{1-x^2}$ (C) 6-2y (D) $\frac{6x^2-10xy}{6+5x^2}$ (E) $\frac{3x^2}{8}$

- 42. Given f(x) = 2x 3 and g(x) = 7 x find $(f/g)^{-1}(x)$.

- (A) $\frac{7x+3}{7}$ (B) $\frac{7x-3}{2+r}$ (C) $\frac{7x+3}{2+r}$ (D) $\frac{7x+3}{2-r}$ (E) $\frac{7x-3}{2-r}$
- 43. A caramel corn recipe calls for $6\frac{1}{3}$ cups of sugar and serves 20 people. How many cups of sugar would be needed to make enough for 50 people? (nearest tenth)
 - (A) 15.8 c.
- (B) 16.2 c.
- (C) 16.0 c.
- (D) 16.7 c.
- (E) 15.3 c.

- 44. Let x + y = 18 and xy = 11. Calculate $x^2 + y^2$.
- **(B)** 313
- (C) 335
- (D) 346
- (E) 302
- 45. Given the function $f(x) = x^3 5x^2 8$, find the slope of the secant line between the points on f(x)where x = -2 and x = 3
 - (A) 15
- **(B)** 2
- (C) 18
- (D) $\frac{1}{2}$
- (E) 3
- 46. Find the sum of the coefficients of the 2^{nd} and 3^{rd} terms in the polynomial expansion of $(2x-3)^9$.
 - (A) 41,472
- (B) -6912
- (C) 324
- (D) 34,560 (E) -1944

47. Let $f(x) = \frac{3x^4 - 5x^2 + 8}{x^3 + 8x}$ and s(x) be the slant asymptote of f. Find the value of s(-1).

- (A) 1
- (B) 2
- (C) **-3**
- (D) -2
- (E) 3

48. The weather forecast calls for an 80% chance of rain for 5 days in a row. If the forecast is accurate, what is the probability that it will rain at least 3 of the days? (nearest hundredth)

- (A) 0.74
- (B) 0.26
- (C) 0.94
- (D) 0.51
- (E) **0.49**

49. Let $f(x) = ax^5 - bx^3 + cx + 9$ where f(3) = -32, then f(-3) = -32

- (A) 50
- **(B)** 25
- (C) 32
- (D) 59
- (E) 41

50. Let $f(x) = \begin{cases} nx^4 + 3x & \text{if } x < 2 \\ mx^2 - 5x & \text{if } x \ge 2 \end{cases}$ be continuous and differentiable everywhere. Find n.

- (A) 5.25
- (B) 0.5
- (C) 3.25
- (D) 1.5
- (E) 0.75

51. What is the instantaneous rate of change at x = -1 of the function f given by $f(x) = \frac{4 - x^2}{3x + 2}$.

- (A) -3
- (B) **-6**
- (C) -4
- (D) -11
- (E) -5

52. An investor invested \$1000 for 5 years. The chart below shows the percentage growth each year. What was the average percentage growth for the 5-year period? (nearest hundredth percent)

-	· · · · · · · · · · · · · · · · · · ·					
	Year	1	2	3	4	5
	Growth %	3.7%	1.85%	2.31%	- 6.15%	0.75%

- (A) 2.95%
- (B) 0.49%
- (C) 0.43%
- (D) 0.59%
- (E) 2.17%

53. The graph of $f(x) = \frac{8x^3 - 125}{2x - 5}$ suggests that the *discontinuity* at x = 2.5 is *removable* by defining f(2.5) to be_____.

- (A) 25
- (B) 100
- (C) 6.25
- $(\mathbf{D}) \quad \mathbf{0}$
- (E) 75

54. Given PQ = 8 cm, find $m\angle PRQ$ on the equilateral triangle shown below. (nearest degree)

- (A) 15°
- (B) 12°
- (C) 17°
- (D) 22°
- (E) 11°

55. How many ordered pairs (a,b) exist such that the four-digit number, 2a3b, is divisible 2 and 3 both?

- (A) 16
- **(B)** 17
- (C) 12
- **(D)** 10
- (E) 11

56. Which of the following words has exactly 362,880 unique permutations of its letters?

- (A) Rectangle
- (B) Square
- (C) Trapezoid (D) Parallelogram (E)

57. Find the area of the shaded region enclosed by the graph of the line and parabola shown.

- (A) 45
- **(B)**
- (C) 60
- (D) 120
- **(E)** 66

58. The infinite series $1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\dots$ converges to _____.

- (A) *e*
- (B) e^2
- (C) 1
- **(D)** ln2

59. What is the digit in the tens place of 7^{4581} .

- (A) 0
- **(B)** 7
- (C) 6
- (\mathbf{D}) 3

60. If $f(x) = 4\sin(3x)$, then $\lim_{h\to 0} \frac{f\left(\frac{\pi}{6} + h\right) - f\left(\frac{\pi}{6} - h\right)}{2h} =$

- (A) 3
- **(B) -6**
- (C) 0
- (E) 6

2018-2019 TMSCA Mathematics Test One Answers

1. D	21. B	41. D
2. D	22. D	42. C
3. C	23. B	43. A
4. B	24. A	44. E
5. A	25. A	45. B
6. C	26. D	46. D
7. B	27. B	47. C
8. D	28. E	48. C
9. E	29. E	49. A
10. B	30. B	50. B
11. A	31. A	51. D
12. B	32. C	52. C
13. D	33. A	53. E
14. B	34. C	54. C
15. B	35. B	55. A
16. B	36. C	56. C
17. C	37. D	57. B
18. E	38. D	58. D
19. E	39. B	59. A
20. B	40. A	60. C

2018-2019 TMSCA Mathematics Test One Solutions

2.
$$113383 = 361(1+r)^{140}$$
 for $1+r = \left(\frac{113383}{361}\right)^{1/140}$ for $r \approx 4.2\%$

5.
$$_{8+2-1}C_2 \times 3 = 108$$

10.
$$12(9+12) = (AB)^2$$
 for $AB \approx 15.9$

11.
$$2(32) + \left[\frac{3x^2}{2}\right]_{-3}^7 = 124$$

14. (sum of the roots)³ for
$$\left(-\frac{11}{6}\right)^3 = -\frac{1331}{216}$$

16. Binomial expansion of $(1+1)^{12}$ contains all of the numbers except 65.

22.
$$\frac{2I+P-2}{2} = \frac{10+12-2}{2} = 10$$
 squares on the grid for the area, but each square on the grid represents an area of 9 square units for a total area of 90 square units.

25.
$$\frac{-38-41i}{-7-24i} = 2-i$$
 for a sum of $a+b=2+(-1)=1$

27. Even digits are 0, 2, 4, 6, and 8, but 0 cannot be the first digit, so $4 \times 4 \times 3 = 48$.

28. V + F - E = 2 for 30 + F - 60 = 2 and F = 32 for a sum of 122.

31.
$$\pi \int_{-\frac{5}{2}}^{\frac{7}{3}} (f(x))^2 dx \approx 34686$$

36. Take the anti-derivative twice for

$$f(x) = \frac{x^4}{2} + 3x^3 - 4x^2 + Ax + B$$
, then substitute the values given to get the system $2A + B = 5$ and $-2A + B = -7$ for $B = -1$ and $A = 3$, then $f(4) = 267$.

39. 4+5=9, 8+4=12 and 5+7=12 all of which are equally likely for an expected outcome of $\frac{1}{3}(9+12+12)=11$

41. Solve:
$$6x^2 - 5x^2 \frac{dy}{dx} - 10xy = 6\frac{dy}{dx}$$
 for $\frac{dy}{dx} = \frac{6x^2 - 10xy}{5x^2 + 6}$

42. solve
$$x = \frac{2y-3}{7-y}$$
 for $y = \frac{7x+3}{2+x}$

45. Evaluate the function at each of the x values to obtain the points (-2,-36) and (3,-26), then find the slope of the line containing those two points which is 2.

46.
$$9(2)^{8}(-3)+({}_{9}C_{2})(2)^{7}(-3)^{2}=34560$$

50. The slope of each side and the function value of each side must match as they approach 2, so 32n+3=4m-5 and

$$16n+6=4m-10$$
 then solve the system for $n=\frac{1}{2}$.

54. Use the law of cosines to get the length of the central segment:

$$\sqrt{8^2 + 27^2 - 2(8)(27)\cos 60^\circ} = \sqrt{577}$$
 then use the law of sines to find the missing angle:

$$\frac{\sin 60^{\circ}}{\sqrt{577}} = \frac{\sin \theta}{8} \text{ for } \theta \approx 17^{\circ}$$

55. b has to be even and the sum of the digits has to be divisible by 3, so

b	a
0	1, 4 or 7
2	2, 5 or 8
4	0, 3, 6, 9
6	1, 4 or 7
8	2, 5 or 8

for a total of 16 ordered pairs.

58. This is the Maclaurin series expansion of ln2

60. This is the definition of the derivative of the original function at $x = \frac{\pi}{6}$ which is 0.