

CS3243 Tutorial 4 Local Search

Gu Zhenhao

February 15, 2023

Notes

- **Project 1** due this week.
- Midterm exam will be on Monday, Week 7.
 - You will get your feedback for this tutorial assignment during the recess week, through telegram.

Proving Admissibility

How to prove if a heuristic is good?

Building Heuristics

Idea 1: Find the *optimal cost* of a relaxed (simplified) problem.

Strategies:

- Relax the rules.
- Solve a sub-problem.
- Learn the heuristics.

Idea 2: Combine several heuristics together.

If h_1, h_2 admissible/consistent, then $\max\{h_1, h_2\}$ is also admissible/consistent and dominates h_1 and h_2 .

Proving Properties of Heuristics

To prove admissibility:

- show that for all state n, we have $h(n) \leq h^*(n)$, or
- show that h is the optimal cost to a goal of a relaxed problem, or
- show that h is dominated by another admissible heuristic h'.

To disprove admissibility:

• find just one state s, such that $h(s) > h^*(s)$.

Similar strategy applies to consistency, dominance, etc.

Figure. Pac-man.

- **State**: position of pac-man and positions remaining pallets.
 - Initial state: starting position of pac-man and grid entirely filled with pallets.
 - goal state: no pallets left on field.
- Action: move up/down/left/right.
 - Action cost: 1.
- Transition model: returns the field after the pac-man moved and consumed pallet.

• $h_1(n) = \#$ remaining pallets,

Admissible! This is a relaxation of rule "Pac-man can only move up/down/left/right".

Figure. Pac-man.

Proof. **Observation**: an action reduces $h_1(n)$ by either 0 or 1.

- \Rightarrow we need at least $h_1(n)$ steps to get from state n to a goal.
- $\Rightarrow h_1(n) \leq h^*(n)$ for all n.

• $h_2(n) = \#$ remaining pallets + Manhattan distance to closest pallet,

Not admissible! Be careful with addition of two heuristics...

Figure. Pac-man.

Proof. Consider a state s where there's only one remaining pallet in the neighbourhood of Pac-man.

$$h_2(s) = 1 + 1 = 2$$
, while $h^*(s) = 1$.

Figure. Pac-man.

• $h_3(n) = \max \text{imum Manhattan distance to a}$ remaining pallet,

Admissible! This is both a relaxation of rule "cannot pass through obstacles" and a relaxation of goal "Pac-man must consume all pallets".

Proof. We need at least $h_3(n)$ steps to consume the farthest pallet.

- \Rightarrow At least $h_3(n)$ steps to get to a goal.
- $\Rightarrow h_3(n) \leq h^*(n)$ for all n.

• $h_4(n)$ = average Euclidean distance to all pallets.

Admissible! This is again both a relaxation of rule and a relaxation of goal.

Figure. Pac-man.

Proof. $h_4(n) \le \max$ Euclidean distance to all pallets (max is at least average)

≤ max Manhattan distance to all pallets (by triangle inequality)

 $\leq h_3(n)$ for all n. h_3 dominates h_4 .

Local Search

What if we only care about reaching a goal?

Local Search Overview

Figure. Maximizing a function.

Target problem:

- Very large state space,
- can be formulated as an optimization problem (find solution with maximum f).

General Strategy:

- move from one solution to (neighbouring) solutions.
- hope to find the optimal one.

Hill Climbing Algorithm

Figure. Hill Climbing Algorithm.

• Intuition: always look for the best neighbour.

• Pros:

- Possibly fast for well defined f.
- Memory-saving.

• Cons:

- Not complete.
- Easily stuck in local maximum of f.

Some Variants

Figure. Hill Climbing Algorithm.

- Stochastic hill climbing.
 randomly choose among all uphill moves.
- Random-restart hill climbing.
 try multiple initial states.
- Sideway moves.
 Continue search when there is a neighbor with equal f value.

Other Popular Variants

General idea: Allow more diversity in paths explored.

- **Simulated annealing***. Combine hill climbing and random walk (choose next successor randomly).
- Gradient descent*. Choose the neighbour with the steepest increase in f, based on ∇f .
- Local (stochastic) beam search. Keep the best (random) k successors and explores more paths.
- Genetic algorithm*.

Building Local Search Problems

Intuition: we no longer care about cost and the path, but care about how to get closer to the goal.

- 1. What should a node contain? Determine state representation s_i .
- 2. How to find a node's neighbours? Identify the rules and define the valid actions A that (potentially) get you closer to the goal.
- 3. Where should we start? Generate a random initial state s_0 that satisfies the rules.
- **4.** How to judge if a neighbour is good? Define an objective function $f(s_i) := \text{how close } s_i \text{ is to the global best state}$.

Figure. The classical "bin packing" problem.

Source: An efficient cloudlet scheduling via bin packing in cloud computing

Given:

- n items $a_1, ..., a_n$, each with size $s(a_i) > 0$.
- m boxes $b_1, ..., b_m$, each with capacity $c(b_i) > 0$.

Goal:

Pack all items into as few boxes as possible.

Figure. The classical "bin packing" problem.

State: Boolean matrix,

$$x_{i,j} = \begin{cases} 1 & \text{if } a_i \text{ is in box } b_j \\ 0 & \text{otherwise} \end{cases}$$

Rules:

- Every item is in a box: $\sum_{j=1}^{m} x_{i,j} = 1 \text{ for all } i.$
- Capacity is not exceeded: $\sum_{i=1}^{n} x_{i,j} s(a_i) \le c(b_j) \text{ for all } j.$

Objective: Number of used boxes minimized, i.e. maximize #unused boxes.

Figure. The classical "bin packing" problem.

State: Boolean matrix,

$$x_{i,j} = \begin{cases} 1 & \text{if } a_i \text{ is in box } b_j \\ 0 & \text{otherwise} \end{cases}$$

Initial state:

random approach

- randomly assign items to boxes, or
- the first-fit strategy: sort the box in decreasing capacity, assign each item to the first box that fits it.

Greedy approach

Figure. The classical "bin packing" problem.

Question: which one would you choose?

State: Boolean matrix,

$$x_{i,j} = \begin{cases} 1 & \text{if } a_i \text{ is in box } b_j \\ 0 & \text{otherwise} \end{cases}$$

Action:

- Move an assigned item a_i from box b_j to $b_{j'}$.
- Swap two assigned items a_i , a_j .
- Remove all items in box b_j and fill the items into other non-empty boxes using first-fit strategy.

State: Boolean matrix,

$$x_{i,j} = \begin{cases} 1 & \text{if } a_i \text{ is in box } b_j \\ 0 & \text{otherwise} \end{cases}$$

Action: Remove all items in box b_j and fill the items into other non-empty boxes using *first-fit strategy*.

Figure. The classical "bin packing" problem.

Objective function: f(n) = #unused boxes.

Question: what is the potential problem of this f?

Usually, f(n') = f(n) - 1 for all valid successor n' of n.

State: Boolean matrix,

$$x_{i,j} = \begin{cases} 1 & \text{if } a_i \text{ is in box } b_j \\ 0 & \text{otherwise} \end{cases}$$

Action: Remove all items in box b_j and fill the items into other non-empty boxes using *first-fit strategy*.

Figure. The classical "bin packing" problem.

Objective function: f(n) = how full the used boxes are.

Maximize $f(n) \Rightarrow$ make full use of boxes \Rightarrow minimize number of boxes used.

State: Boolean matrix,

$$x_{i,j} = \begin{cases} 1 & \text{if } a_i \text{ is in box } b_j \\ 0 & \text{otherwise} \end{cases}$$

Action: Remove all items in box b_j and fill the items into other non-empty boxes using *first-fit strategy*.

Figure. The classical "bin packing" problem.

Objective function:
$$f(n) = \sum_{j} \left(\frac{\sum_{i} x_{i,j} s(a_i)}{c(b_j)} \right)^2$$
. [Hyde et. al., '09]

More full boxes, higher f(n).

Figure. The "traveling salesman" problem (TSP). Source: Wikipedia.

Given:

An undirected, weighted and complete graph.

Goal:

Find the shortest possible route that visits each vertex exactly once and returns to the starting vertex.

Problem 2.a, b

Figure. The minimum spanning tree (MST) of the graph. Source: Wikipedia.

Given:

An undirected, weighted and complete graph.

Goal: Find a set of edges that

- is a cycle.
- connects all vertices.
- visits each vertex only once.
- has the smallest total edge weights.

$$h(n) \coloneqq \text{cost of MST!}$$

Figure. The "traveling salesman" problem (TSP). Source: Wikipedia.

State: A path in the graph.

Rules:

- The path is a cycle that starts at A and ends at A, and The choice is arbitrary.
- visits each node once.

Objective:

Minimize the total cost of the path.

State: A path in the graph.

Initial state:

Randomly choose a cycle in graph, or

e.g.
$$A \rightarrow B \rightarrow D \rightarrow C \rightarrow A$$
.

Figure. The "traveling salesman" problem (TSP). Source: Wikipedia.

Figure. Greedy way of constructing solution to TSP.

Source: The Design of Approximation Algorithms.

State: A path in the graph.

Initial state:

- Randomly choose a cycle in graph, or
- Construct the cycle* by
 - starting with a pair of closest vertices,
 - adding other vertices one by one.
 Each time we choose the vertex that is closest to a vertex in the cycle.

Figure. The "traveling salesman" problem (TSP). Source: Wikipedia.

State: A path in the graph.

e.g.
$$A \rightarrow B \rightarrow D \rightarrow C \rightarrow A$$
.

Action: alter the path (by swapping the order of visiting vertices).

- swap(B, D), f(n) = -35 34 30 42 = -141
- swap(B, C), f(n) = -42 12 34 20 = -108
- swap(D, C). f(n) = -20 30 12 35 = -97

Objective function:

f(n) = - total path cost.

Figure. Initial state.

Rules: each node is assigned a color in {RED, YELLOW, BLUE}.

Goal: No two adjacent vertices are assigned the same color.

Problem 3.a

Figure. A goal state.

State: color assignment of each node.

Rules: each node is assigned a color in {RED, YELLOW, BLUE}.

Goal: No two adjacent vertices are assigned the same color.

Problem 3.b

Figure. A goal state.

State: color assignment of each node.

Action: Change the color of a single vertex.

Objective function: f(n) = # pairs of adjacent vertices that have different color.

	f(n)		f(n)
$B \rightarrow YELLOW$		B o BLUE	
$C \to RED$		C → BLUE	
H o RED		H o BLUE	
$A \to RED$		$A \rightarrow BLUE$	
G o RED		G o BLUE	
$D \to RED$		D o BLUE	
$F \to RED$		F o BLUE	
$E \to RED$		$E \rightarrow BLUE$	

Problem 3.b

Figure. A goal state.

State: color assignment of each node.

Action: Change the color of a single vertex.

Objective function: f(n) = # pairs of adjacent vertices that have different color.

	f(n)		f(n)
$B \rightarrow YELLOW$	0	B o BLUE	2
$C \to RED$	5	C → BLUE	6
H o RED	5	H o BLUE	5
$A \to RED$	3	$A \rightarrow BLUE$	4
G o RED	7	G o BLUE	7
$D \to RED$	6	D o BLUE	6
$F \to RED$	5	F o BLUE	5
$E \to RED$	5	$E \rightarrow BLUE$	5

Figure. A goal state.

Action: Change the color of a single vertex.

Objective function: f(n) = # pairs of adjacent vertices that have different color.

- Among all actions, find the one that resolves the most collisions!
- Changing G to RED or BLUE increases f(n) by 5!

Figure. A goal state.

Action: Change the color of a single vertex.

- Among all actions, find the one that resolves the most collisions!
- Changing A to BLUE increases f(n) by 3!

Figure. A goal state.

Action: Change the color of a single vertex.

- Among all actions, find the one that resolves the most collisions!
- Changing D to BLUE increases f(n) by 3!

Problem 3.b

Figure. A goal state.

State: color assignment of each node.

Action: Change the color of a single vertex.

- Among all actions, find the one that resolves the most collisions!
- Changing H to RED increases f(n) by 2!

Figure. A goal state.

Action: Change the color of a single vertex.

- Among all actions, find the one that resolves the most collisions!
- Changing F to BLUE increases f(n) by 1!

Problem 3.b

Figure. A goal state.

State: color assignment of each node.

Action: Change the color of a single vertex.

Objective function: #pairs of adjacent vertices that have different color (collision).

 Among all actions, find the one that resolves the most collisions!

All collisions resolved! :-D

End of File

Thank you very much for your attention!

References

- D. Ler, "Local Search: Goal Versus Path Search", 2023. [Online].
- Matthew Hyde, Gabriela Ochoa, T Curtois, and JA Vazquez-Rodrguez.
 "A hyflex module for the one dimensional bin-packing problem". School of Computer Science, University of Nottingham, Technical Report, 2009
- S. Russell and P. Norvig, "Artificial Intelligence: A Modern Approach,"
 3rd ed., Prentice Hall, 2010.