Package 'CommonSplines'

May 13, 2018

Title Regression Spline and Smoothing Spline
Version 1.0.0
Imports MASS
Date 2018-05-11
Authors Yuchen SHI <yuchenshinus@gmail.com>, Xiaozhou Yang <yang.xiaozhou@u.nus.edu>, Xingchen LIU <e0225109@u.nus.edu></e0225109@u.nus.edu></yang.xiaozhou@u.nus.edu></yuchenshinus@gmail.com>
<pre>URL https://github.com/YuchenKid/CommonSplines</pre>
Description This is a R package that covers commonly seen nonparametric regression using spline-based methods. For regression spline, commonly seen basis functions are provided such as truncated power basis, natural cubic spline basis, and B-spline basis. For regularization, penalties on squared second-order derivative are provided, i.e., cubic smoothing spline. This package mainly refers to Chapter 5 of "Friedman, J., Hastie, T., & Tibshirani, R. (2001). The Elements of Statistical Learning (Vol. 1, pp. 337-387). New York: Springer series in statistics".
Depends R (>= $3.3.2$)
License Apache License 2.0
Encoding UTF-8
LazyData true
RoxygenNote 6.0.1
Suggests knitr, rmarkdown
VignetteBuilder knitr
R topics documented:
bs_basis bs_knots bs_predict bs_train cal_loo_cv_error css_predict css_train generate_knots ncs_basis ncs_predict ncs_train.

2 bs_basis

np_reg pbs_basis																
pbs_predict																
pbs_train								 					 			
place_knots								 					 	 		
sel_smoothing_par	a.							 					 			

bs_basis

Index

Generate an evaluated basis matrix for B-splines

16

Description

This function generates B-spline basis. The B-splines are defined following the recursive formulas due to de Boor. Only univariate input can be used.

Usage

```
bs_basis(x, order, knots)
```

Arguments

x Predictor variable vector.

order The order of basis functions. order=degree+1

knots The knots used to construct the B-splines, including innerknots, boundary knots

and phantom knots. It can be generated by bs_knots.

Value

Basis matrix evaluated at each x value.

References

De Boor, C., De Boor, C., Mathématicien, E. U., De Boor, C., & De Boor, C. (1978). A Practical Guide to Splines (Vol. 27, p. 325). New York: Springer-Verlag.

Examples

```
x<-seq(0, 1, 0.001)
knots <- seq(0, 1, 0.1)
order<-4
knots<-bs_knots(x,real_knots=knots,order=order)

basis<-bs_basis(x,order,knots)
plot(x,rep(0,length(x)),type="1",ylim=c(0,1))
for (i in 1: (length(knots)-order)){
   lines(x,basis[,i],col=i)
}</pre>
```

bs_knots 3

bs_knots	Add phantom knots for B-splines

Description

Add phantom knots for B-splines

Usage

```
bs_knots(x, df = NULL, real_knots = NULL, q = FALSE, order)
```

Arguments

x	Predictor variable vector.
df	Degrees of freedom. One can supply df rather than knots.
real_knots	The innerknots and boundary knots that define the spline. The knots can all be innerknots. The knots provided can be quantiles of x or real values. More explanation of knots, df, q can be seen in generate_knots.
q	A boolean variable define whether knots provided are quantiles or real values. When q=TRUE, real_knots are quantiles of x. When q=FALSE, real_knots are real values of x. Default is FALSE.
order	The order of basis functions. order=degree+1

Value

The knots used to construct the B-splines, including innerknots, boundary knots and phantom knots.

bs_predict	Prediction using regression spline with B-spline basis

Description

This function provides prediction at value of interest using regression spline with B-spline basis. The B-splines are generated by bs_basis and trained by the bs_train. The return value of bs_train can be used as an argument of bs_predict

Usage

```
bs_predict(x_test, order = NULL, knots = NULL, beta = NULL,
basis = NULL)
```

x_test	The input values at which evaluations are required.
order	The order of basis functions. order=degree+1
knots	Breakpoints that define the spline. knots should be in terms of real-values of x and contain innner, boundary and phantom knots. It can be the return value of bs_knots.
beta	The coefficients of nonparametric regression.
basis	The return value of function bs_train. Instead of specify knots, order and beta,One can supply basis directly.

4 bs_train

Value

The evaluated output at x_test.

See Also

```
bs_basis, bs_train, bs_knots.
```

Examples

```
x<-seq(0, 1, 0.001)
y <- x^3 * 3 - x^2 * 2 + x + exp(1)+rnorm(length(x),0,0.1)
knots \leftarrow seq(0.1, 0.9, 0.01)
order<-4
basis<-bs_train(x,y,order,knots)</pre>
x_{\text{test}} < -\text{seq}(0, 1, 0.01)
fit<-bs_predict(x_test,basis=basis)</pre>
plot(x_test,fit)
lines(x_{test}, x_{test}^3 * 3 - x_{test}^2 * 2 + x_{test} + exp(1), col="red")
```

bs_train

Train regression coefficients for B-splines.

Description

Train regression coefficients for B-splines.

Usage

```
bs_train(x, y, order, real_knots = NULL, df = NULL, q = FALSE)
```

Arguments

q

The input vector of training dataset. Χ The output vector of training dataset. У order The order of B-spline functions. The default is order=4 for cubic B-splines. real_knots The innerknots and boundary knots that define the spline. Phantom knots should not be included. Phantom knots will be generated by bs_knots The knots pro-

vided can be quantiles of x or real values. More explanation of knots, df, q can be seen in generate_knots.

df Degrees of freedom. One can supply df rather than knots.

A boolean variable define whether knots provided are quantiles or real values.

When q=TRUE, real_knots are quantiles of x. When q=FALSE, real_knots

are real values of x. Default is FALSE.

cal_loo_cv_error 5

Value

A list with the following components:

beta The coefficients of nonparametric regression.

basis The B-spline basis matrix of dimension c(length(x), df). df = length(innerknots)

+ order.

knots The knots used to construct the B-splines, including innerknots, boundary knots

and phantom knots

order The order of basis functions. order=degree+1

References

Friedman, J., Hastie, T., & Tibshirani, R. (2001). The Elements of Statistical Learning (Vol. 1, pp. 337-387). New York: Springer series in statistics. Chapter 5, Appendix.

See Also

bs_knots.

Examples

```
x<-seq(0, 1, 0.001)
y <- x^3 * 3 - x^2 * 2 + x + exp(1)+rnorm(length(x),0,0.1)
plot(x,y)
knots <- seq(0, 1, 0.1)
order<-4

basis<-bs_train(x,y,order,knots)
plot(x,rep(0,length(x)),type="1",ylim=c(0,1))
for (i in 1: (length(knots)+order)){
   lines(x,basis$basismatrix[,i],col=i)
}</pre>
```

cal_loo_cv_error

Calculte leave-one-out CV error for a linear smoother

Description

Calculte leave-one-out CV error for a linear smoother

Usage

```
cal_loo_cv_error(y, f_hat, S)
```

Arguments

y response variable values

f_hat fitted response variable values

S smoother matrix

Value

leave-one-out cross-validation error

6 css_train

css_predict	Prediction	using	smoothing	splines	with	squared	2nd	derivative	
	penalty								

Description

This function takes the coefficients trained by css_train and evaluates the output at x_test

Usage

```
css_predict(x_test, knots = NULL, beta = NULL, basis = NULL)
```

Arguments

x_test	The input values at which evaluations are required.
knots	Breakpoints that define the spline. knots should be in terms of real-values of x It can be the return value of generate_knots.
beta	The coefficients of nonparametric regression.
basis	The return value of function css_train. Instead of specify knots and beta,One can supply basis directly.

Value

The evaluated output at x_test.

Examples

```
x<-seq(0, 1, 0.0015)
y <- x^3 * 3 - x^2 * 2 + x + exp(1)+rnorm(length(x),0,0.1)
plot(x,y)
lambda<-0.001
basis<-css_train(x,y,lambda)

x_test<-seq(0, 1, 0.1)
fit<-css_predict(x_test=x_test,basis=basis)

plot(x_test,fit)
lines(x_test,x_test^3 * 3 - x_test^2 * 2 + x_test + exp(1),col="red")</pre>
```

Description

This function trains a smoothing spline with squared 2nd derivative penalty. It has an explicit, finite-dimensional, unique minimizer which is a natural cubic spline.

generate_knots 7

Usage

```
css_train(x, y, lambda)
```

Arguments

x The input vector of training dataset.
 y The output vector of training dataset.
 lambda A fixed smoothing parameter.

Value

A list with the following components:

beta The coefficients of natural splines.

S The smoother matrix.

knots The knots used to construct the B-splines, including innerknots, boundary knots

and phantom knots

References

Friedman, J., Hastie, T., & Tibshirani, R. (2001). The Elements of Statistical Learning (Vol. 1, pp. 337-387). New York: Springer series in statistics. Chapter 5.4.

Examples

```
x < -seq(0, 1, 0.001)

y < -x^3 * 3 - x^2 * 2 + x + exp(1) + rnorm(length(x), 0, 0.1)

plot(x,y)

lambda < -0.001

basis < -css\_train(x,y,lambda)

cat("the knots chosen are: ",basis knots)
```

generate_knots

Generate knots when real values are not specified.

Description

Generate knots when real values are not specified.

Usage

```
generate_knots(x_train, df = NULL, knots = NULL, q = FALSE)
```

ncs_basis

Arguments

x_train	The input vector of training dataset.
df	Degrees of freedom. One can supply df rather than knots; generate_knots then chooses $(df + 1)$ knots at uniform quantiles of x. The default, $df = 4$, sets 5 knots with 3 inner knots at uniform quantiles of x.
knots	Breakpoints that define the spline, in terms of quantiles or real value of x . The default is five knots at uniform quantiles $c(0, .25, .5, .75, 1)$. Typical values are the mean or median for one knot, quantiles for more knots.
q	A boolean variable define whether knots provided are quantiles or real values. When q=TRUE, knots provided are quantiles of x. When q=FALSE, knots provided are real values of x.

Value

A vector of knots in terms of real values of x.

ncs_basis

Generate an evaluated basis matrix for natural cubic splines

Description

Generate an evaluated basis matrix for natural cubic splines

Usage

```
ncs_basis(x, knots)
```

Arguments

x Predictor variable vector.

knots Knots location in terms of real values of x.

Value

Basis matrix evaluated at each x value.

Examples

```
x<-seq(0, 1, 0.001)
knots <- seq(0, 1, 0.1)

basis<-ncs_basis(x,knots)
plot(x,rep(0,length(x)),type="1",ylim=c(0,1))
for (i in 1: (length(knots))){
   lines(x,basis[,i],col=i)
}</pre>
```

ncs_predict 9

ncs_predict	Prediction using regression by natural cubic splines.	
-------------	---	--

Description

Prediction using regression by natural cubic splines.

Usage

```
ncs_predict(x_test, knots = NULL, beta = NULL, basis = NULL)
```

Arguments

Arguments	
x_test	The input values at which evaluations are required.
knots	Breakpoints that define the spline. knots should be in terms of real-values of x It can be the return value of generate_knots.
beta	The coefficients of nonparametric regression.
basis	The return value of function ncs_train. Instead of specify knots and beta,One can supply basis directly.
Value	
y_pred	A vector of dimension length(x), the prediction vector evaluated at x_test values.
ncs_train	Train regression coefficients for natural cubic splines.

Description

In the least square fitting of nonparametric egression coefficients, Moore-Penrose generalized inverse $(ginv\{MASS\})$ is used to aviod computational problems.

Usage

```
ncs_train(x_train, y_train, df = NULL, knots = NULL, q = FALSE)
```

x_train	The input vector of training dataset.
y_train	The output vector of training dataset.
df	Degrees of freedom. One can supply df rather than knots; ncs_train then chooses $(df + 1)$ knots at uniform quantiles of x. The default, df = 4, sets 5 knots with 3 inner knots at uniform quantiles of x.
knots	Breakpoints that define the spline, in terms of quantiles of x or real values of x. The default is five knots at uniform quantiles $c(0, .25, .5, .75, 1)$. Typical values are the mean or median for one knot, quantiles for more knots.
q	A boolean variable indicating whether knots provided are quantiles or real values. When q=TRUE, knots provided are quantiles of x. When q=FALSE, knots provided are real values of x. Default is FALSE.

np_reg

Value

A list of following components:

nknots Number of knots.

knots A vector of knot locations.

N Basis matrix evaluated at each x value.

betas Least squure fit parameters.

References

Friedman, J., Hastie, T., & Tibshirani, R. (2001). The Elements of Statistical Learning (Vol. 1, pp. 337-387). New York: Springer series in statistics. Chapter 5.2.1.

Venables, W. N. and Ripley, B. D. (1999) Modern Applied Statistics with S-PLUS. Third Edition. Springer. p.100.

Examples

```
x_train <- seq(1, 10, 0.1)
y_train <- cos(x_train)^3 * 3 - sin(x_train)^2 * 2 + x_train + exp(1)+rnorm(length(x_train),0,1)
plot(x_train,y_train)
x_test <- seq(1, 10, 0.1)
df <- 10
train_result <- ncs_train(x_train, y_train, df)
print(train_result$\text{beta})
print(train_result$\text{N[1:5,1:5]})</pre>
```

np_reg

Nonparametric regression using spline-based methods

Description

This function provides regression using spline-based methods. It finishes both the training and predicting procedure. Only univariate input can be used.

Usage

```
np_reg(x_train, y_train, x_test, func = "bs", order = 4, df = NULL,
knots = NULL, lambda = 0.001, q = FALSE)
```

x_train	The input vector of training dataset.
y_train	The output vector of training dataset.
x_test	The input values at which evaluations are required.
func	The name of regression functions. It can be "pbs" for power basis splines, "ncs" for natural cubic splines, "css" for cubic smoothing splines, "bs" for B-splines. Default is "bs".
order	The order that defines the spline. Default is 4 of a cubic order.
df	Degrees of freedom. One can supply df rather than knots.

pbs_basis 11

knots The innerknots and boundary knots that define the spline. The knots provided

can be quantiles of x or real values. More explanation of knots, df, q can be

seen in generate_knots.

lambda The smoothing parameter for css. Default is 0.001.

q A boolean variable indicating whether knots provided are quantiles or real val-

ues. When q=TRUE, knots provided are quantiles of x. When q=FALSE, knots

provided are real values of x. Default is FALSE.

Value

y_pred A vector of dimension length(x), the prediction vector evaluated at x_test val-

ues.

References

Friedman, J., Hastie, T., & Tibshirani, R. (2001). The Elements of Statistical Learning (Vol. 1, pp. 337-387). New York: Springer series in statistics. Chapter 5.

See Also

generate_knots.

Examples

```
x_{train} \leftarrow seq(1, 10, 0.1)
y\_train <- \cos(x\_train)^3 * 3 - \sin(x\_train)^2 * 2 + x\_train + \exp(1) + rnorm(length(x\_train), \emptyset, 1)
plot(x_train,y_train)
title('Comparison of Different Degrees of Freedom')
x_{\text{test}} < - \text{seq}(1, 10, 0.1)
lines(x_test, cos(x_test)^3 * 3 - sin(x_test)^2 * 2 + x_test + exp(1), col="red")
y_pred <- np_reg(x_train, y_train, x_test,func="ncs", df=df)</pre>
lines(x_test,y_pred, col='blue')
df <- 4
y_pred <- np_reg(x_train, y_train, x_test,func="ncs", df=df)</pre>
lines(x_test,y_pred, col='green')
df <- 10
y_pred \leftarrow np_reg(x_train, y_train, x_test,func="ncs", df=df)
lines(x_test,y_pred, col='black')
legends <- c("Actual", "Prediction: 2 df", "Prediction: 4 df", "Prediction: 10 df")</pre>
legend('topleft', legend=legends, col=c('red', 'blue', 'green', 'black'), lty=1, cex=0.8)
```

pbs_basis

Evaluate basis functions at each x and return the evaluated basis matrix N

Description

Evaluate basis functions at each x and return the evaluated basis matrix N

Usage

```
pbs_basis(x, order, knots)
```

12 pbs_predict

Arguments

x The input vector of training dataset.

order The order that defines the power basis spline.

knots The innerknots and boundary knots that define the spline. The knots should be

real values of x. The knots can be generated by generate_knots.

Value

Basis matrix evaluated at each x value.

See Also

```
generate_knots.
```

Examples

```
x<-seq(0, 1, 0.001)
knots <- seq(0, 1, 0.1)
order<-4
basis<-pbs_basis(x,order,knots)
plot(x,rep(0,length(x)),type="1",ylim=c(0,1))
for (i in 1: (length(knots)+order)){
   lines(x,basis[,i],col=i)
}</pre>
```

pbs_predict

Prediction using regression spline with trancated power basis

Description

This function provides prediction at value of interest using regression spline with truncated power basis. The truncated power basis are generated by pbs_basis and trained by the pbs_train. The return value of pbs_train can be used as an argument of pbs_predict

Usage

```
pbs_predict(x_test, order = NULL, knots = NULL, beta = NULL,
    basis = NULL)
```

x_test	The input values at which evaluations are required.
order	The order of basis functions. order=degree+1
knots	Breakpoints that define the spline, in terms of real values of input. It can be the return value of generate_knots.
beta	The coefficients of nonparametric regression.
basis	The return value of function pbs_train. Instead of specify knots, order and beta,One can supply basis directly.

pbs_train 13

Value

The evaluated output at x_test.

See Also

```
pbs_basis, pbs_train, generate_knots.
```

Examples

```
n <- 100
t <- seq(0,2*pi,length.out = 100)
a <- 3
b <- 2
c.unif <- runif(n)
amp <- 2
set.seed(1)
y1 <- a*sin(b*t)+c.unif*amp # uniform error
knots <- c(min(t),2*pi*c(1/4,2/4,3/4),max(t))
order <- 4
basis <- pbs_train(t,y1,order,knots=knots)
fit<-pbs_predict(t,basis=basis)
y.hat <- fit
plot(t, y1, t="1")
lines(t, y.hat, col=2)</pre>
```

pbs_train

Regression using Power Basis spline

Description

This function provides regressions using Power Basis splines. The basis are defined as $1,x,x^2,...,x^m,(x-k1)^m-1)+,(x-k2)^m-1)+,...,(x-kn)^m-1)+$ where m is the order, k1, k2 and kn are n knots, '+' denotes the positive part. Only univariate input can be used.

Usage

```
pbs\_train(x, y, order, df = NULL, knots = NULL, q = FALSE)
```

Χ	The input vector of training dataset.
у	The output vector of training dataset.
order	The order that defines the spline.
df	Degrees of freedom. One can supply df rather than knots.
knots	The innerknots and boundary knots that define the spline. The knots provided can be quantiles of x or real values of x . More explanation of knots, df, q can be seen in generate_knots.
q	A boolean variable define whether knots provided are quantiles or real values. When q=TRUE, knots provided are quantiles of x. When q=FALSE, knots provided are real values of x. Default is FALSE.
x_test	The input values at which evaluations are required.

14 place_knots

Value

A list with the following components:

beta The coefficients of nonparametric regression.

basis The spline basis matrix of dimension c(length(x), length(knots)+order)

knots The knots used to construct the power basis splines order The order of basis functions. order=degree+1

References

Friedman, J., Hastie, T., & Tibshirani, R. (2001). The Elements of Statistical Learning (Vol. 1, pp. 337-387). New York: Springer series in statistics. Chapter 5.2.1.

See Also

```
generate_knots.
```

Examples

```
n <- 100
t <- seq(0,2*pi,length.out = 100)
a <- 3
b <- 2
c.unif <- runif(n)
amp <- 2
set.seed(1)
y1 <- a*sin(b*t)+c.unif*amp # uniform error
knots <- c(min(t),2*pi*c(1/4,2/4,3/4),max(t))
order <- 4
basis <- pbs_train(t,y1,order,knots=knots)
cat("trained coeffecients for every spline are",basis$beta)</pre>
```

place_knots

Find evenly spaced knots by quantile

Description

Knots found include boundary knots at 0th and 100th quantile.

Usage

```
place_knots(nknots, x)
```

Arguments

nknots Number of knots to be located.

x Data vector on which knots are placed.

Value

A named vector with knot quantiles and values.

sel_smoothing_para 15

sel_smoothing_para Select smoothing out CV error	parameter for smoothing splines based on leave-one-
--	---

Description

Select smoothing parameter for smoothing splines based on leave-one-out CV error

Usage

```
sel_smoothing_para(x, y, cv_lambda)
```

Arguments

```
x predictor variable.y response variable.cv_lambda vector of candidate lambda values, must be between 0 and 1.
```

Value

lamdba value that minimizes leave-one-out CV error.

Examples

```
set.seed(1)
x_train <- seq(1, 10, 0.1)
y_train <- cos(x_train)^3 * 3 - sin(x_train)^2 * 2 + x_train + exp(1)+rnorm(length(x_train),0,1)
plot(x_train,y_train)
x_test <- seq(1, 10, 0.1)
lines(x_test,cos(x_test)^3 * 3 - sin(x_test)^2 * 2 + x_test + exp(1),col="red")

cv_lambda <- seq(0.0001,0.002,0.0001)
results <- sel_smoothing_para(x_train, y_train, cv_lambda)
plot(results$df$cv_lambda, results$df$error, type="o")
title('LOO CV Error of Different Lambdas')
abline(v = results$best, col='red', lty=2)
legends <- c("LOO CV Error", "Best Lambda")
legend('topleft', legend=legends, col=c('black', 'red'), lty=c(1,2), cex=0.8)</pre>
```

Index

```
bs_basis, 2
bs\_knots, 3
bs_predict, 3
bs_train, 4
cal_loo_cv_error, 5
css_predict, 6
\mathsf{ncs\_basis}, \textcolor{red}{8}
\mathsf{ncs\_predict}, \textcolor{red}{9}
\mathsf{ncs\_train}, \textcolor{red}{9}
\mathsf{np\_reg},\, \textcolor{red}{10}
{\tt pbs\_basis}, 11
pbs_predict, 12
pbs_train, 13
place_knots, 14
sel_smoothing_para, 15
```