Teorija mere Zapiski predavanj

2023/24

Povzetek

Dokument vsebuje zapiske predavanj predmeta Teorija mere v okviru študija prvega letnika magistrskega študija matematike na FNM.

Kazalo

1	Uvodna motivacija	4
2	Kolobar množic	4

1 Uvodna motivacija

Za motivacijo bomo obravnavali en primer, pred tem pa bomo na hitro povzeli definicijo Riemannovega integrala. Naj bo $f:[a,b]\to\mathbb{R}$ realna, zvezna in omejena funkcija ter naj bo $D=\{x_0,x_1,\ldots,x_n\}$ delitev intervala [a,b]. Označimo $\Delta x_i=x_i-x_{i-1}$ ter z vsakega intervala $[x_{i-1},x_i]$ izberemo neko poljubno točko \hat{x}_i . Vsoto $\sigma_n=\sum_{i=1}^n f(\hat{x}_i)\Delta x_i$ imenujemo Riemannova vsota. Če obstaja limita $\lim_{|\Delta x_i|\to 0}\sigma_n$ in je neodvisna od izbire delitve D in testnih točk na podintervalih, ki jih določa D, ji pravimo Riemannov integral funkcije f na [a,b]. Riemannov integral lahko posplošimo za računanje integralov funkcij večih spremenljivk, pri tem pa uporabljamo t. i. Jordanovo mero. Motivacijski primer bo pokazal, da ima konstrukcija s to mero nekatere pomanjkljivosti.

Zgled 1: Naj bo $R = \mathbb{Q} \cap \mathbb{R} = \{r_1, r_2, \ldots\}$ in definiramo funkcije $f_k : [0, 1] \to [0, 1]$ s predpisi

$$f_1(x) = \begin{cases} 1; & x = r_1 \\ 0; & x \neq r_1 \end{cases}, \ f_2(x) = \begin{cases} 1; & x = r_1 \lor x = r_2 \\ 0; & x \in R \setminus \{r_1, r_2\} \end{cases}$$

itd. Vidimo, da zaporedje $\{f_k\}$ konvergira k Dirichletovi funkciji

$$f_D(x) = \begin{cases} 1; & x \in \mathbb{Q} \\ 0; & x \notin \mathbb{Q} \end{cases}$$
 in dodatno opazimo, da je $\int_0^1 f_k(x) dx = 0 \forall k$, daj gre

limita Riemannovih vrst za vsako funkcijo zaporedja proti 0. To pa ne drži za Dirichletovo funkcijo. Če vse \dot{x}_i pripadajo \mathbb{Q} , bo $\sigma_n=1$, če so izbrane točke \dot{x}_i iracionalne, pa je $\sigma_n=0$. Limita Riemannovih vsot torej ni neodvisna od izbire delitve in testnih točk, torej integral f_D ne obstaja.

Francoski matematik Lebesgue se je pa problema lotil drugače: Najprej razdelimo zalogo vrednosti omejene zvezne funkcije f z delitvijo $\{y_0, y_1, \ldots, y_n\}$ in sestavimo množice $E_k = \{x \in [a,b]; f(x)y_k\}$. Prepoznamo, da so $E_k \times \{y_k\}$ vodoravne daljice od $(f^{-1}(y_k), y_k)$ do (b, y_k) . Posledično z $|E_k|$ označimo dolžino daljice E_k . Potem je ploščina pod grafom funkcije f približno enaka vsoti $\sum_{k=1}^n (y_k - y_{k-1})|E_k|$. Izkaže pa se, da so lahko v splošnem množice E_k takšne, da koncept dolžine in prostornine za obravnavo več ne zadošča. Zato uvedemo koncept mere.

2 Kolobar množic

Začnimo ta odsek z definicijo.

Definicija 1: Naj bo X poljubna neprazna množica. Množica K podmnožic množice X je kolobar, če:

- $\forall A, B \in K : A \cup B \in K$
- $\bullet \ \ \, \forall A,B \in K: A \setminus B \in K$

Trditev 1. Če je K kolobar množic na X velja:

1. $\forall A, B \in K : A \triangle B \in K$

- $2. \ \forall A, B \in K : A \cap B \in K$
- $3. \emptyset \in K$

Dokaz. 1. Ta trditev sledi neposredno iz definicije kolobarja množice

2. Upoštevamo, da lahko zapišemo $A \cap B = (A \cup B) \setminus (A \triangle B)$ in potem ta trditev sledi po prejšnji.

3. Upoštevamo, da je $\emptyset = a \setminus A$.

Definicija 2:

- 1. Pravimo, da je množica E enota kolobarja K, če za $\forall A \in K$ velja $A \cap E = A$.
- 2. Kolobarju z enoto pravimo algebra

Zgled 2:

- 1. Če je K kolobar nad X in je $X \in K$, potem je X enota kolobarja K.
- 2. Naj bo K kolobar vseh končnih podmnožic iz \mathbb{R} . Kolobar K nima enote. To lahko vidimo tako, da predpostavimo, da obstaja enota E in vzamemo dve množici, $A \in K$ z močjo n in $B \in K$ z močjo n+1 za nek poljuben $n \in \mathbb{N}$. Ker je, po definiciji enote, $A \cap E = A$, sledi, da je $A \subseteq E$, torej je $|E| \ge n$. Po drugi strani, ker je $B \cap E = B$, sklepamo, da je $|E| \ge n+1$. To velja za poljuben n, torej moč E presega kardinalnost vsake množice iz E0, torej je E1 neskončna. To nas pa privede v protislovje s tem, da $E \in K$ 1.

Definicija 3: Naj bo $\{A_k\}_{k=1}^{\infty}$ poljubno zaporedje množic.

- Pravimo, da je množica \overline{A} zgornja limita zaporedja $\{A_k\}_{k=1}^{\infty}$, če za $\forall x \in \overline{A} \exists \{k_i\}_{i=1}^{\infty} : x \in A_{k_i} \forall i \in \mathbb{N}.$
- Pravimo, da je \underline{A} spodnja limita zaporedja $\{A_k\}_{k=1}^{\infty}$, če za $\forall x \in \underline{A} \exists k_0 \in \mathbb{N} : x \in A_k \forall k \geq k_0$

Pišemo: $\overline{A} = \overline{\lim_{n \to \infty}} A_n$ in $\underline{A} = \lim_{n \to \infty} A_n$