Problem 1

Part A

Let $U_1...U_n$ be *i.i.d* and Uniformly distributed on (0,b) where b > 0. Set $Z_i = -log(U_i)$; where the probability density function $p(z) = \frac{e^{-z}}{b}$. This is found using the change of density formula.

If $Y = \sum_{i=1}^{n} Z_i$, find p(y;b). It is helpful to think of the series $S_1 = Z_1, S_2 = S_1 + Z_2....S_n = S_{n-1} + Z_n$ We can then compute S_n starting from S_2 $p(s_2) = P[s_1 * z_2]$ (s) $= \int_{-\infty}^{\infty} P_{s_1}(s-y) P_{z_2}(y) dy$

The normal bounds for p(z) is $\epsilon(-log(b), \infty)$, because we change our function to be P(s-y) we get a new upper bound: $-log(b) < s-y < \infty$ and therefore y < s+log(b)

$$p(s_2) = \int_{-log(b)}^{s+log(b)} P_{s_1}(s-y) P_{z_2}(y) dy = \int_{-log(b)}^{s+log(b)} \frac{e^{-s+y}}{b} * \frac{e^{-y}}{b} dy = \frac{e^{-s}}{b^2} [2log(b) + s]$$
 (1)

Continuing on to S_3 we get

$$p(s_3) = \int_{-log(b)}^{s+2log(b)} P_{s_2}(s-y) P_{z_3}(y) dy = \int_{-log(b)}^{s+2log(b)} \frac{e^{-s+y}}{b} [2log(b) + s + y] * \frac{e^{-y}}{b} dy$$

$$= \frac{e^{-s}}{b^3} [\frac{1}{2} (3log(b) + s)^2]$$
(2)

Continuing like this we see a pattern.

$$p(y;b) = \frac{e^{-y}}{b^n} \left[\frac{1}{(n-1)!} (n\log(b) + y)^{n-1} \right]$$

$$\epsilon(-\log(b), y + n\log(b))$$
(3)

Part B

From the pdf computed in part A, find the third moment of Y.

To do this we look at the third moment equation.

$$E[X^3] = \int_{-\infty}^{\infty} X^3 F_x dx$$

Plugging in for our function we get:

$$\int_{-log(b)}^{y+nlog(b)} y^3 \frac{e^{-y}}{b^n} \left[\frac{1}{(n-1)!} (nlog(b) + y)^{n-1} \right]$$
 (4)

Here I left the bounds according to the pdf of Y. I believe this integral solved would give the correct answer however I have not been able to successfully complete this step.

Part C

To determine the maximum likelihood estimation ob be bases on the two independent observations we need to take the derivative of L such that

 $L = argmax_b p(y_1, y_2|b) = argmax_b p(y_1, |b) p(y_2, |b)$

Since P(y;b) = p(b)p(y|b)andp(b) = 1 we can plug in our equation from part A to solve this equation.

Problem 2

Part A

The parameters that must be estimated are as follows: 1.) DK 2.) 3DK 3.) 2DK 4.) DK

Part B

Problem 3