

CLIP and Image Generation

MENG Xiangqiao 22041201r

Motivation of CLIP

- What problems exist in the research of CV?
 - Labeling datasets is labor-intensive and expensive;
 - General visual network is hard to migrate to a new task;
 - Poor generalization ability.
- What did OpenAI do?
 - Bring abstract concepts in NLP to CV;
 - 400M dataset;

CLIP Contrastive Language-Image Pre-Training

Advantages of CLIP

- Why can CLIP do image generation?
 - Excellent generalization ability

Picasso "Le Taureau"

Pipeline

Pipeline

◆ Initial input: A series of Bezier curves' control points.

$$S(t) = P_0(1 - t)^3 + 3P_1t(1 - t)^2 + 3P_2t^2(1 - t) + P_3t^3$$

Geometric Loss

$$L_{geometric} = \sum_{l} \|CLIP_{l}(I) - CLIP_{l}(R(\lbrace S_{i} \rbrace))\|_{2}^{2}$$

Semantics Loss

$$L_{semantic} = dist(CLIP(I), CLIP(R(\{S_i\})))$$

- Initialization
 - Using ViT to generation attention map.

Result Selection

CLIP in Image Generation – DALL-E.2

CLIP in Image Generation – DALL-E.2

vibrant portrait painting of Salvador Dalí with a robotic half face

a shiba inu wearing a beret and black turtleneck

a close up of a handpalm with leaves growing from it

a propaganda poster depicting a cat dressed as french emperor napoleon holding a piece of cheese

an espresso machine that makes coffee from human souls, artstation

panda mad scientist mixing sparkling chemicals, artstation

a corgi's head depicted as an explosion of a nebula

a teddy bear on a skateboard in times square

- NLP Supervision
 - Compared with single label, a sentence consists of multi concepts;
 - Multi-concepts help minimize the ambiguity.

"Remote" vs "A photo of remote"

- NLP Supervision
 - Compared with single label, a sentence consists of multi concepts;
 - Multi-concepts help minimize the ambiguity.
 - More robust to distribution shift.

Limitation

◆ Lack of understanding of attributes.

Geometric Loss is necessary in CLIPasso

Conclusion

- Data Preparation:
 - The labels can be non-fixed;
 - Web-scale pre-training is used in multi-modal tasks;
- Data Processing:
 - The result of CLIP's image encoder is treated as ground truth in DALL-E 2.
 - The result of CLIP's similarity score is used in Loss of CLIPasso.

Reference

- [1] Radford A, Kim J W, Hallacy C, et al. Learning transferable visual models from natural language supervision[C]//International Conference on Machine Learning. PMLR, 2021: 8748-8763.
- [2] Ramesh A, Dhariwal P, Nichol A, et al. Hierarchical text-conditional image generation with clip latents[J]. arXiv preprint arXiv:2204.06125, 2022.
- [3] Vinker Y, Pajouheshgar E, Bo J Y, et al. Clipasso: Semantically-aware object sketching[J]. arXiv preprint arXiv:2202.05822, 2022.

Thank you!

Limitation

- ◆ CLIPasso's performance reduced for images with background.
- ◆ The number of strokes is determined, and the model cannot be adjusted adaptively. In order to draw more like a human, the strokes should be generated sequentially.