Calculus

Precalculus 0

Algebra

Fundamental Theorem of Algebra - An nth degree polynomial has n (not necessary distinct) zeroes. Although all zeroes may be complex, a real polynomial of odd degree must have at least one real zero.

Rational Zero Theorem - If $p(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$ has integer coefficients, then every rational root of p is of the form x = r/s, where r is a factor of a_0 and s is a factor of a_n .

Binomial Theorem -
$$(x+y)^n = \sum_{i=0}^n \binom{n}{i} x^{n-i} y^i = \sum_{i=0}^n \binom{n}{i} x^i y^{n-i}$$

Geometry

Heron's Formula - $A_{\Delta} = \sqrt{s(s-a)(s-b)(s-c)}$, where $s = \frac{1}{2}(a+b+c)$ Law of sines - $\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c} = \frac{2A\Delta}{abc}$ Law of cosines - $c^2 = a^2 + b^2 - 2ab\cos C$

Sector of circle - $A = \frac{1}{2}\theta r^2$ and arc length $s = r\theta$

Ellipse - $A = \pi ab$ and circumference $C \approx 2\pi \sqrt{\frac{a^2 + b^2}{2}}$

Right circular cone - $V_{cone} = \frac{1}{3}A_{base}h$ and lateral surface area $S = \pi r \sqrt{r^2 + h^2}$

Frustum of right circular cone - $V = \frac{1}{3}\pi(R^2 + Rr + r^2)h$ and lateral surface area $S = \pi s(R+r)$

Trigonometry

Trigonometric identities

	Definitions	$\sin \theta = \frac{opp}{hyp} = \frac{y}{r}$	$\cos\theta = \frac{adj}{hyp} = \frac{x}{r}$	$\tan \theta = \frac{opp}{adj} = \frac{y}{x}$		
	Reciprocal	$\sin x \csc x = 1$	$\cos x \sec x = 1$	$\tan x \cot x = 1$		
İ	Quotient	$\tan x = \frac{\sin x}{\cos x}$	$\cot x = \frac{\cos x}{\sin x}$			
	Pythagorean	$\sin^2 x + \cos^2 x = 1$	$\tan^2 x + 1 = \sec^2 x$	$1 + \cot^2 x = \csc^2 x$		
	Cofunction	$\sin(x - \frac{\pi}{2}) = \cos x$	$\cos(x - \frac{\pi}{2}) = \sin x$	$\tan(x - \frac{\pi}{2}) = \cot x$		
İ		$\csc(x - \frac{\pi}{2}) = \sec x$	$\sec(x - \frac{\pi}{2}) = \csc x$	$\cot(x - \frac{\pi}{2}) = \tan x$		
	Even / odd	$\sin(-x) = -\sin x$	$\cos(-x) = \cos x$	$\tan(-x) = -\tan x$		
İ		$\csc(-x) = -\csc x$	$\sec(-x) = \sec x$	$\cot(-x) = -\cot x$		
	Sum / difference	$\sin(x \pm y) =$	$\cos(x \pm y) =$	$\tan(x \pm y) =$		
İ		$\sin x \cos y \pm \cos x \sin y$	$\cos x \cos y \mp \sin x \sin y$	$\frac{\tan x \pm \tan y}{1 \mp \tan x \tan y}$		
	Double-angle	$\sin 2x = 2\sin x \cos x$	$\cos 2x = \cos^2 x - \sin^2 x$	$\tan x = \frac{2\tan x}{1 - \tan^2 x}$		
İ	Power-reducing	$\sin^2 x = \frac{1 - \cos 2x}{2}$	$\cos^2 x = \frac{1 + \cos 2x}{2}$	$\tan^2 x = \frac{1 - \cos 2x}{1 + \cos 2x}$		
	Sum-to-product	$\sin x \pm \sin y = 2\sin \frac{x+y}{2}$	$\cos \frac{x-y}{2}$ or $2\cos \frac{x+y}{2}\sin x$	$n\frac{x-y}{2}$		
İ		$\cos x \pm \cos y = 2\cos\frac{x+y}{2}\cos\frac{x-y}{2} \text{or} -2\sin\frac{x+y}{2}\sin\frac{x-y}{2}$				
	Product-to-sum	-sum $\sin x \sin y$ or $\cos x \cos y = \frac{1}{2} [\cos(x-y) \mp \cos(x+y)]$				
İ		$\sin x \cos y$ or $\cos x \sin x$	$\ln y = \frac{1}{2}[\sin(x-y) \pm \sin(x$	+y)]		
	Limits	$\lim_{x \to 0} \frac{\sin x}{x} = 1$	$\lim_{x \to 0} \frac{1 - \cos x}{x} = 0$	$\lim_{x \to 0} \frac{\tan x}{x} = 1$		
ı		l .				

1 Limits and continuity

Limit - $[\lim_{x\to c} f(x)]$ The value that f(x) approaches as x approaches some number c from both sides

Epsilon-delta definition	$\lim_{x\to c} f(x) = L$ if for any $\varepsilon > 0$, there exists a $\delta > 0$ such that if $0 < x-c < \delta$, then $ f(x)-L < \varepsilon$
Sum / difference property	$\lim_{x \to c} [f(x) \pm g(x)] = [\lim_{x \to c} f(x)] \pm [\lim_{x \to c} g(x)]$
Product property	$\lim_{x \to c} [f(x) \cdot g(x)] = [\lim_{x \to c} f(x)] \cdot [\lim_{x \to c} g(x)]$
Quotient property	$\lim_{x \to c} \left[f(x) / g(x) \right] = \left[\lim_{x \to c} f(x) \right] / \left[\lim_{x \to c} g(x) \right]$
Exponent property	$\lim_{x \to c} [f(x)^n] = [\lim_{x \to c} f(x)]^n$
Constant multiple property	$\lim_{x \to c} [cf(x)] = c [\lim_{x \to c} f(x)]$
Composition property	$\lim_{x\to c} [f(g(x))]$ = $f(\lim_{x\to c} g(x))$ iff $f(x)$ is continuous at $x=c$
One-sided limit	$\lim_{x\to c^{\pm}} f(x)$ (The value of $f(x)$ approached from one side only)
Unbounded limits	$\lim_{x\to c} f(x) = \pm \infty$, represented by a vertical asymptote at $x=c$
Limits at infinity	$\lim_{x\to\pm\infty} f(x) = c$, represented by a horizontal asymptote at $y=c$
Rational limits at infinity	Let $f(x) = \frac{ax^m + cx^n + \dots}{bx^n + \dots}$, where a and b are leading coefficients, then
	$\lim_{x \to \pm \infty} f(x) = \pm \infty$ if $m > n$
	$\lim_{x \to \pm \infty} f(x) = ax + c \text{if } m = n + 1$
	$\lim_{x \to \pm \infty} f(x) = \frac{a}{b} \qquad \text{if } m = n$
	$\lim_{x \to \pm \infty} f(x) = 0 \qquad \text{if } m < n$
Squeeze theorem (sandwich)	If $f(x) \leq g(x) \leq h(x)$ over an interval, and at some point c in the interval
	$\lim_{x\to c} f(x) = \lim_{x\to c} h(x) = L$, then $\lim_{x\to c} g(x) = L$

	•
--	---

Continuity and discontinuities

Continuity at a point c	iff $\lim_{x \to c} f(x) = f(c)$
Continuity over an open interval (a, b)	iff f is continuous on every point in (a, b)
Continuity over a closed interval $[a, b]$	iff f is continuous over $(a,b),\lim_{x\to a^+}f(x)=f(a)$ and
	$\lim_{x \to b^-} f(x) = f(b)$
Point discontinuity (removable)	$\lim_{x\to c} f(x) \exists \text{ but } \lim_{x\to c} f(x) \neq f(c)$
Jump discontinuity	$\lim_{x\to c} f(x) \not\equiv \text{because } \lim_{x\to c^-} f(x) \neq \lim_{x\to c^+} f(x)$
Asymptotic discontinuity (infinite)	$\lim_{x\to c} f(x) \not\equiv$ because it is unbounded

$\mathbf{2}$ Differential Calculus

Motion

Derivative - The instantaneous rate of change of a function (the slope of the tangent line) at a point

 $\frac{dy}{dx}, \frac{d^ny}{dx^n}, \frac{df}{dx}, \frac{d}{dx}[f(x)]$ (differential notation) Leibniz's notation $y', y'', f'(x), f''(x), f^{(n)}(x)$ Lagrange's notation $D_x y, D_x f(x), D_x^n y$ Euler's notation $\dot{y}, \ddot{y}, \dot{f}, \stackrel{(n)}{\dot{f}}$ (most commonly used in physics) Newton's notation $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ Definition $f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{c}$ The derivative # at discontinuities, cusps, or vertical tangent lines Differentiability Differentiability implies continuity, but not the converse $\frac{d}{dx}[c]$ Constant rule =0 $\frac{d}{dx}[cf] = cf'$ $\frac{d}{dx}[x^n] = nx^{n-1}$ $\frac{d}{dx}[f \pm g] = f' \pm g'$ Constant multiple rule Power rule Sum / difference rule $\frac{d}{dx}[fg] = f'g + fg'$ Product rule $\frac{d}{dx} \left[\frac{f}{g} \right] \qquad = \frac{gf' - fg'}{g^2}$ Quotient rule $\frac{d}{dx}[f(g(x))] = f'(g(x))g'(x) = \frac{df}{dg}\frac{dg}{dx}$ Chain rule $\frac{d}{dx}[f(y)] = f'(y)\frac{dy}{dx}$ (an application of the chain rule) Implicit differentiation $\frac{d}{dt}[f(x)] = \frac{df}{dx}\frac{dx}{dt}$ (an application of the chain rule) Related rates $\frac{d}{dx}[\sin x] = \cos x$ $\frac{d}{dx}[\cos x] = -\sin x$ $\frac{d}{dx}[\cot x] = -\csc^2 x$ $\frac{d}{dx}[\tan x] = \sec^2 x$ $\frac{d}{dx}[\sec x] = \sec x \tan x$ $\frac{d}{dx}[\csc x] = -\csc x \cot x$ Trig functions $\frac{d}{dx}[\arccos x] = -\frac{1}{\sqrt{1-x^2}}$ $\frac{d}{dx}[\arccos x] = -\frac{1}{1+x^2}$ $\frac{d}{dx}[\arccos x] = -\frac{1}{|x|\sqrt{x^2-1}}$ $\frac{d}{dx}[a^x] = \ln a \cdot a^x$ $\frac{d}{dx}[\arcsin x] = \frac{1}{\sqrt{1-x^2}}$ $\frac{d}{dx}[\arctan x] = \frac{1}{1+x^2}$ $\frac{d}{dx}[\operatorname{arcsec} x] = \frac{1}{|x|\sqrt{x^2-1}}$ $\frac{d}{dx}[e^x] = e^x$ Exponential functions $\frac{d}{dx}[\log_a x] = \frac{1}{\ln a \cdot x}, \ \{a \mid a > 0 \text{ and } a \neq 1\}$ $\frac{d}{dx}[\ln x] = \frac{1}{x}$ Logarithmic functions $f'(x)f^{-1\prime}(y) = 1$ $f(x): x \mapsto y$ and $f^{-1}(x): y \mapsto x$ Inverse functions $\frac{\Delta y}{\Delta x} = \frac{f(b) - f(a)}{b - a}$ (slope of the secant line; approximation of the derivative) Average rate of change Local linearization $f(x) \approx f(c) + f'(c)(x - c)$ Local linearity Whether a tangent line can closely approximate the function over a sufficiently small interval around a point (a function is differentiable at x=c iff it is locally linear at x = c) Approximating a real zero through repeated iterations of $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$ Newton's Method (Converges if $\left| \frac{f(x)f''(x)}{f'(x)^2} \right| < 1$ on an open interval containing the zero) The process of finding quantities that maximize or minimize a function Optimization

Finding position, velocity, and acceleration as x(t), $v(t) = \frac{dx}{dt}$, and $a(t) = \frac{d^2x}{dt^2}$

Calculus-based justification - Analysis of properties of a function using its derivative

- · · · · · · · · · · · · · · · · · · ·	S			
Interval of increase	f'(x) > 0			
Interval of decrease	f'(x) < 0			
Critical points	Defined points in the domain of $f(x)$ where $f'(x) = 0$ or undefined			
	(includes all global extrema, local extrema, and other points)			
Absolute extrema	The maximum and minimum values of a function			
	(may also occur at the endpoints of a closed interval)			
	$f(c) \ge f(x) \text{ or } f(c) \le f(x) \ \forall x$			
Relative extrema	The maximum and minimum values of an interval			
	(includes all absolute extrema and endpoints of intervals)			
	$f(c) \ge f(x)$ or $f(c) \le f(x) \ \forall x$ on an open interval containing c			
First derivative test	Finding relative extrema and absolute extrema at critical points using $f'(x)$			
	- $f'(x)$ changes from positive to negative at a relative maximum			
	- $f'(x)$ changes from negative to positive at a relative minimum			
	- $f'(x)$ has no sign changes at a non-extremum critical number			
	- Absolute extrema are found by comparing all relative extrema and end- points in the interval			
Concave upwards	Intervals where $f'(x)$ is increasing and $f''(x) > 0$			
Concave downwards	Intervals where $f'(x)$ is decreasing and $f''(x) < 0$			
Inflection points	Defined points in the domain of $f(x)$ where $f(x)$ changes concavity			
	(f''(x) = 0 or undefined and f''(x) changes signs)			
Second derivative test	Finding relative extrema and absolute extrema at critical points using $f''(x)$			
	(Given that $f'(c) = 0$ and exists in neighborhood around $x = c$)			
	- $f(x)$ has a relative maximum at $x = c$ if $f''(c) < 0$			
	- $f(x)$ has a relative minimum at $x = c$ if $f''(c) > 0$			
	- $f(x)$ is inconclusive (potential inflection point) if $f''(c) = 0$ or undefined			

Existence theorems - Theorems that guarantee a certain type of point must exist under certain conditions

Intermediate value theorem	Suppose f is continuous on $[a, b]$
	For any $\{L \mid f(a) \leq L \leq f(b)\}, \ \exists \ c \in [a,b] \text{ for which } f(c) = L$
Extreme value theorem	Suppose f is continuous on $[a, b]$
	$\exists c, d \in [a, b] \text{ where } f(c) \leq f(x) \leq f(d) \ \forall x \in [a, b]$
Mean value theorem	Suppose f is continuous on $[a,b]$ and differentiable on (a,b)
	$\exists c \in (a,b) \text{ such that } f'(c) = \frac{f(b) - f(a)}{b - a}$
Rolle's theorem	Suppose f is continuous on $[a, b]$, differentiable on (a, b) , and $f(a) = f(b)$
	$\exists c \in (a,b) \text{ such that } f'(c) = 0$

3 Integral Calculus

Riemann sum - The approximation of the area under a curve as the sum of many rectangles

Width
$$\Delta x = \frac{b-a}{n}$$
, height $f(x_i)$, endpoint $x_i = a + i\Delta x$

 $\sum_{i=1}^{n} f(x_{i-1}) \Delta x \qquad \text{(top-left corners)}$ $\sum_{i=1}^{n} f(x_i) \Delta x \qquad \text{(top-right corners)}$ Left Riemann sum Right Riemann sum $\sum_{i=1}^{n} f(x_i) \Delta x$

 $\sum_{i=1}^{n} f(\frac{x_{i-1} + x_i}{2}) \Delta x \qquad \text{(midpoints)}$ Midpoint sum $\sum_{i=1}^{n} \frac{f(x_{i-1}) + f(x_i)}{2} \Delta x \quad \text{(both endpoints)}$ Trapezoidal sum

Definite integrals - $\left[\int_a^b f(x) \ dx\right]$ The signed area bounded by the curve of a function f(x) and the x-axis, from lower bound x=a to upper bound x=b

 $\int_a^b f(x) dx = F(b) - F(a)$ Definition

 $\frac{\int_{a}^{b} f(x) \ dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i) \ \Delta x = \lim_{\|\Delta\| \to 0} \sum_{i=1}^{n} f(c_i) \ \Delta x}{\int_{a}^{b} f(x) \ dx = \int_{a}^{c} f(x) \ dx + \int_{c}^{b} f(x) \ dx}$ Riemann sum

Interval addition property

 $\int_a^a f(x) \ dx = 0$ Zero-length interval property

 $\int_{a}^{b} f(x) dx = - \int_{a}^{a} f(x) dx$ Reverse interval property

 $\int_a^b f(x) \pm g(x) \ dx = \int_a^b f(x) \ dx \pm \int_a^b g(x) \ dx$ Sum / difference property

 $\int_a^b cf(x) \ dx = c \int_a^b f(x) \ dx$ Constant multiple property

Definite integrals over an unbounded area (convergent / divergent) Improper integrals

 $\int_{a}^{\infty} f(x) dx = \lim_{n \to \infty} [F(x)]_{a}^{n}$

 $\int_{-\infty}^{\infty} f(x) \ dx = \lim_{n \to \infty} F(n) - \lim_{m \to -\infty} F(m)$

 $\int_{a}^{b} f(x) \ dx = \lim_{n \to c^{-}} [F(x)]_{a}^{n} + \lim_{m \to c^{+}} [F(x)]_{m}^{b}$

(Vertical asymptote in the interval of integration)

 $\int_a^b f'(x) \ dx = f(b) - f(a)$ Accumulation

Integration is the accumulation of net change in the described quantity

 $V := \begin{cases} \int_a^b A(x) \ dx, & A(x) \perp \text{(x-axis)} \\ \int_a^b A(y) \ dy, & A(y) \perp \text{(y-axis)} \end{cases}$ Cross-sectional volume

Solid of revolution Solid constructed by revolving a function around a line

> Axis of revolution y = cAxis of revolution x = c

 $\int_a^b \pi [f(x) - c]^2 dx$ $\int_a^b \pi [f(y) - c]^2 dy$ Disk method

Generalization of the disk method for two functions Washer method

 $\int_a^b \pi |(f(x)-c)^2 - (g(x)-c)^2| \ dx \ \Big| \ \int_a^b \pi |(f(y)-c)^2 - (g(y)-c)^2| \ dy$

Volumes of implicit functions as hollow cylinders with surface area Shell method

 $\int_{a}^{b} 2\pi |y - c| \cdot f(y) \ dy$ $\int_{a}^{b} 2\pi |y - c| \cdot |f(y) - g(y)| \ dy$ $\int_{a}^{b} 2\pi |x - c| \cdot |f(x)| \ dx$ $\int_{a}^{b} 2\pi |x - c| \cdot |f(x) - g(x)| \ dx$

 $s = \int_a^b \sqrt{1 + (\frac{dy}{dx})^2} \ dx$ for a smooth curve on the interval [a, b]Arc length

Area between two curves $A = \int_{x_1}^{x_2} f(x) - g(x) \, dx \text{ for continuous } f \text{ and } g, \ f(x) \ge g(x) \, \forall x \in [x_1, x_2]$ $A = \int_{y_1}^{y_2} f(y) - g(y) \, dy \text{ for continuous } f \text{ and } g, \ f(y) \ge g(y) \, \forall y \in [y_1, y_2]$ $(x_1, y_1) \text{ and } (x_2, y_2) \text{ are either adjacent points of intersection or points on the specified boundary lines}$

Indefinite integral - $[\int f(x) dx = F(x) + C]$ The family of antiderivatives for f(x), where F'(x) = f(x)

Antiderivative	•	$\int f(x) dx$ Differentiable function $F(x)$ where $F'(x) = f(x)$		
Integrability	Continuity of $f(x)$ implies integrability of $f(x)$ $(\exists F(x))$			
Sum / difference property	$\int f(x)g(x) dx = \int f(x) dx \pm \int g(x) dx$			
Constant multiple property	$\int cf(x) dx = c \int f(x) dx$ $\int x^n dx = \frac{x^{n+1}}{n+1} + C, \ n \neq -1$			
Reverse power rule				
	$\sin \mapsto -\cos$	$\cos \mapsto \sin$		
	$\tan \mapsto \ln \sec , \; -\ln \cos $	$\cot \mapsto \ln \sin $		
	$\sec \mapsto \ln \sec + \tan $	$\csc \mapsto -\ln \csc + \cot , \ \ln \csc - \cot $		
T.: f t:	$\sec^2 \mapsto \tan$	$\csc^2 \mapsto -\cot$		
Trig functions	$\sec \cdot \tan \mapsto \sec$	$\csc \cdot \cot \mapsto -\csc$		
	$\frac{dx}{\sqrt{a^2-x^2}} \mapsto \arcsin \frac{x}{a}$	or $-\arccos\frac{x}{a}$		
	$\frac{dx}{a^2+x^2} \mapsto \frac{1}{a} \arctan \frac{x}{a}$	or $-\frac{1}{a}\operatorname{arccot}\frac{x}{a}$		
	$\frac{dx}{x\sqrt{x^2-a^2}} \mapsto \frac{1}{a} \operatorname{arcsec} \frac{ x }{a}$	or $-\frac{1}{a} \operatorname{arccsc} \frac{ x }{a}$		
Exponential functions	$\int e^x dx = e^x + C$	$\int a^x dx = \frac{1}{\ln a} a^x + C$		
Logarithmic functions	$\int \ln x dx = x \ln x - x + C$	$\int \frac{1}{x} dx = \ln x + C$		
u-substitution	(Reverse chain rule) Integration of a composite function			
	$\int f(x) dx = \int w(u(x)) \cdot u'(x) dx$	$dx = \int w(u) du = W(u(x)) + C$		
Integration by parts	(Reverse product rule) Integra	ation of a product of functions		
	$\int f(x)g'(x) dx = f(x)g(x) - \int f'(x)g(x) dx \text{ or } \int u dv = uv - \int f(x)g'(x) dx$			
	f(x) is typically logarithmic,	x) is typically logarithmic, polynomial, exponential, or trigonometric		
Partial fraction expansion	(Rational integrals) Long division and partial fraction decomposition			
Average value	For f continuous on $[a, b]$, f_{a}	$dy_{g} = \frac{1}{b-a} \int_{a}^{b} f(x) dx = \frac{F(b) - F(a)}{b-a}$		
Mean value theorem	Mean value theorem For f continuous on $[a,b], \exists c \in [a,b]$ where $f(c) = \frac{1}{b-a} \int_a^b f(x) dx$			
Chain rule	$\frac{d}{dx}[F(g(x))] = \frac{d}{dx} \int_{a}^{g(x)} f(t) dt$			

Fundamental theorem of calculus - Relation between differentiation and integration (antidifferentiation)

Let f be a function continuous on [a,b]If $F(x) = \int_a^x f(t) \ dt, x \in [a,b]$, then F(x) is an antiderivative of f(x) and $F'(x) = \frac{d}{dx} [\int_a^x f(t) \ dt] = f(x)$ If F(x) is an antiderivative of f(x), then $\int_a^b f(x) \ dx = F(b) - F(a)$

4 Differential equations

Differential equations - Equations that relate a function with one or more of its derivatives

Solution	A function, set of functions, or class of functions
Separable differential equations	$\left[\frac{dy}{dx} = f(x)g(y) \text{ or } \frac{f(x)}{g(y)}\right]$ Class of differential equations
Separation of variables	$\int f(x) dx = \int g(y) dy$
	Method of solving differential equations for its general solution
Specific solutions	Initial conditions applied to general solutions
Slope fields	Graphical visualization of the set of general solutions
Euler's method	$f(x + \Delta x) \approx f(x) + f'(x, y)\Delta x$ Numerical approximations for particular solutions
Exponential models	$y = Ce^{kx}$ is the general solution to $\frac{dy}{dx} = ky$
Newton's Law of Cooling	$\frac{dT}{dt} = -k(T - T_{ambient})$
Logistic models	$y = \frac{L}{1 + (\frac{L}{y_0} - 1)e^{-kt}}$ is the general solution to $\frac{dy}{dt} = ky(1 - \frac{L}{y})$
	with population y , growth rate k , carrying capacity L
	$\frac{dy}{dt}$ is largest when $y(t) = \frac{L}{2}$ (inflection point);
	$\lim_{t \to \infty} \frac{dy}{dt} = 0; \lim_{t \to \infty} y(t) = L$
	Annual growth rate $A = \left(\frac{y_1}{y_0}\right)^{1/(t_1-t_0)} - 1$
	Instantaneous growth rate $r = \ln(A+1)$

5 Advanced functions

Inverse function - $[f^{(-1)'}(x)]$ A function that is strictly monotonic, one-to-one, and a reflection of the original function across the line y = x

Parametric function - [f(t) = (x, y) = (x(t), y(t))] A function that defines a group of quantities as functions of one or more independent variables called parameters

Implicitization - Converting a parametric function into a single implicit equation by eliminating t

```
Derivative \frac{dy}{dx} = \frac{dy/dt}{dx/dt} Second derivative \frac{d^2y}{dx^2} = \frac{d}{dt} \left[\frac{dy}{dx}\right] \cdot \frac{dt}{dx} = \frac{d}{dt} \left[\frac{dy}{dx}\right] / \frac{dx}{dt} Arc length s = \int_a^b \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} \ dt
```

Inverse trig functions - The inverse of the six regular trig functions, on a restricted domain

```
 \begin{vmatrix} y = \arcsin x \text{ iff } x = \sin y & x \in [-1,1] & y \in \left[-\frac{\pi}{2},\frac{\pi}{2}\right] \\ y = \arccos x \text{ iff } x = \cos y & x \in [-1,1] & y \in [0,\pi] \\ y = \arctan x \text{ iff } x = \tan y & x \in (-\infty,\infty) & y \in \left(-\frac{\pi}{2},\frac{\pi}{2}\right) \\ y = \operatorname{arccot} x \text{ iff } x = \cot y & x \in (-\infty,\infty) & y \in (0,\pi) & \cot^{-1} x = \tan^{-1}(1/x) \\ y = \operatorname{arcsec} x \text{ iff } x = \sec y & x \in (-\infty,-1] \cup [1,\infty) & y \in [0,\frac{\pi}{2}) \cup \left(\frac{\pi}{2},\pi\right] & \sec^{-1} x = \cos^{-1}(1/x) \\ y = \operatorname{arccsc} x \text{ iff } x = \csc y & x \in (-\infty,-1] \cup [1,\infty) & y \in [-\frac{\pi}{2},0) \cup \left(0,\frac{\pi}{2}\right] & \csc^{-1} x = \sin^{-1}(1/x) \\ \end{vmatrix}
```

Hyperbolic functions - Analogs of the trigonometric (circular) functions, based upon the unit hyperbola $x^2 - y^2 = 1$ formed by $(\cosh x, \sinh x)$

```
\begin{vmatrix} \sinh x = \frac{e^x - e^{-x}}{2} & x \in \mathbb{R} & y \in \mathbb{R} & \frac{d}{dx} \mapsto \cosh x & \int \mapsto \cosh x \\ \cosh x = \frac{e^x + e^{-x}}{2} & x \in \mathbb{R} & y \in \mathbb{R} \text{ and } y \geq 1 & \frac{d}{dx} \mapsto \sinh x & \int \mapsto \sinh x \\ \tanh x = \frac{\sinh x}{\cosh x} & x \in \mathbb{R} & y \in (-1,1) & \frac{d}{dx} \mapsto \operatorname{sech}^2 x & \int \mapsto \ln|\cosh x| \\ \coth x = \frac{1}{\tanh x} & x \in \mathbb{R} \text{ and } x \neq 0 & y \in \mathbb{R} \text{ and } y \neq 0 & \frac{d}{dx} \mapsto -\operatorname{csch}^2 x & \int \mapsto \ln|\tanh \frac{x}{2}| \\ \operatorname{sech} x = \frac{1}{\cosh x} & x \in \mathbb{R} & y \in [0,1] \text{ and } y \neq 0 & \frac{d}{dx} \mapsto -\operatorname{sech} x \tanh x & \int \mapsto \operatorname{arctan}(\sinh x) \\ \operatorname{csch} x = \frac{1}{\sinh x} & x \in \mathbb{R} \text{ and } x \neq 0 & y \in [-\frac{\pi}{2}, \frac{\pi}{2}] \text{ and } y \neq 0 & \frac{d}{dx} \mapsto -\operatorname{csch} x \coth x & \int \mapsto \ln|\sinh x| \end{aligned}
```

Vector-valued function - A function whose range is a set of vectors $[\mathbf{r} = \langle x(t), y(t) \rangle = x(t) \hat{\mathbf{i}} + y(t) \hat{\mathbf{j}}]$

Position vector - A standard form vector (directed from the origin $\mathbf{r}(t) = \langle x(t), y(t) \rangle$ for $a \leq t \leq b$ to $\langle x(t), y(t) \rangle$), representing a position

Derivatives $\mathbf{r}^{(n)}(t) = \langle x^{(n)}(t), y^{(n)}(t) \rangle$

Planar motion - The motion of a particle in the xy-plane at time t

Position vector
$$\mathbf{r}(t) = \langle x(t), y(t) \rangle$$
 Given a rate vector $\mathbf{v}(t) = \langle \mathbf{v}_{\mathbf{x}}(t), \mathbf{v}_{\mathbf{y}}(t) \rangle$, Velocity vector $\mathbf{v}(t) = \langle x'(t), y'(t) \rangle = \mathbf{r}'(t)$ Displacement $\Delta x = \int_a^b \mathbf{v}_{\mathbf{x}}(t) \ dt$ Acceleration vector $\mathbf{a}(t) = \langle x''(t), y''(t) \rangle = \mathbf{r}''(t)$ Displacement $\Delta y = \int_a^b \mathbf{v}_{\mathbf{y}}(t) \ dt$

Polar function - $[r = f(\theta), \text{ where } r = \sqrt{x^2 + y^2}, \theta = \arctan \frac{y}{x}, x = r \cos \theta, y = r \sin \theta]$

Derivative
$$\frac{dy}{dx} = \frac{dy}{d\theta} / \frac{dx}{d\theta}$$
Area bound by a polar curve
$$A = \int_{\alpha}^{\beta} \frac{1}{2} r^2 d\theta = \int_{\alpha}^{\beta} \frac{d\theta}{2\pi} \cdot \pi r^2 = \int_{\alpha}^{\beta} \int_{0}^{r} r dr d\theta$$
Area bounded by two polar curves
$$A = \int_{\alpha}^{\gamma} \frac{1}{2} r_1^2 d\theta + \int_{\beta}^{\beta} \frac{1}{2} r_2^2 d\theta \quad \text{or} \quad \int_{\alpha}^{\beta} \frac{1}{2} [r_2^2 - r_1^2] d\theta$$

6 Series Calculus

Infinite series - $[S = \sum_{n=k}^{\infty} a_n = \lim_{n \to \infty} S_n]$ The sum of the terms of an infinite sequence

Limit of a sequence	If for any $\varepsilon > 0$, there exists a M such that if $n > M$, then $ a_n - L < \varepsilon$, then			
	$\lim_{n\to\infty} a_n = L (\{a_n\} \text{ converges to } L)$			
Convergence	$\lim_{n\to\infty} S_n$ approaches a specific value L			
Divergence	$\lim_{n\to\infty} S_n$ does not approach a specific value			
Absolute convergence	$\sum a_n $ converges, thus $\sum a_n$ converges			
Conditional convergence	$\sum a_n $ diverges, but $\sum a_n$ converges			
Geometric series	$S = \sum_{i=1}^{\infty} ar^i = \lim_{n \to \infty} a \frac{1 - r^n}{1 - r}$			
	If $ r < 1$, S converges to $\frac{a}{1-r}$			
	If $ r \ge 1$, S diverges			
Telescoping series	$S = \sum_{n=1}^{\infty} a_n - a_{n+1} = a_1 - \lim_{n \to \infty} a_n$			
	S and $\lim_{n\to\infty} a_n$ either both converge or both diverge			
Harmonic series	The divergent series $S = \sum_{n=1}^{\infty} \frac{1}{n}$			
General harmonic series	The divergent series $S = \sum_{n=1}^{\infty} \frac{1}{an+b}, \ a > 0, \ b \ge 0$			
n^{th} term test	If $\sum_{n=k}^{\infty} a_n$ converges, then $\lim_{n\to\infty} a_n = 0$			
	If $\lim_{n\to\infty} a_n \neq 0$, then $\sum_{n=k}^{\infty} a_n$ diverges			
Integral test	Given $f(x)$ positive, continuous, and decreasing on $[k, \infty)$,			
	$\int_{k}^{\infty} f(x) dx$ and $\sum_{n=k}^{\infty} f(n)$ either both converge or both diverge			
p-series	Let $S = \sum_{n=1}^{\infty} \frac{1}{n^p}$			
	If $p > 1$, S converges			
	If $p \leq 1$, S diverges			
Direct comparison test	Given $S_a = \sum_{n=k}^{\infty} a_n$ and $S_b = \sum_{n=k}^{\infty} b_n$ where $b_n \ge a_n \ge 0 \ \forall n \ge k$,			
	If S_b converges, S_a must also converge			
T	If S_a diverges, S_b must also diverge			
Limit comparison test	Given $S_a = \sum_{n=k}^{\infty} a_n$ and $S_b = \sum_{n=k}^{\infty} b_n$ where $a_n \ge 0$, $b_n > 0 \ \forall n \ge k$			
A14 + i + +	If $0 < \lim_{n \to \infty} \frac{a_n}{b_n} < \infty$, S_a and S_b either both converge or both diverge			
Alternating series test	Given $S = \sum_{n=k}^{\infty} (-1)^n a_n$ or $(-1)^{n+1} a_n$ where $a_n \ge 0$			
	If $\lim_{n\to\infty} a_n = 0$ and $a_n > a_{n+1}$ ($\{a_n\}$ is decreasing), S converges Else, the alternating series test is inconclusive			
Alternating series	Given convergent alternating series $S = \sum_{n=k}^{\infty} (-1)^n a_n$, n^{th} partial sum S_n ,			
remainder	and remainder (error bound) R_n ,			
	$ S - S_n = R_n \le a_{n+1}$			
Ratio test	Given $S = \sum_{n=k}^{\infty} a_n$ and $L = \lim_{n \to \infty} \left \frac{a_{n+1}}{a_n} \right $,			
	If $L < 1$, S converges absolutely			
	If $L > 1$, S diverges			
	If $L = 1$, the ratio test is inconclusive			
Root test Given $S = \sum_{n=k}^{\infty} a_n$ and $L = \lim_{n \to \infty} \sqrt[n]{ a_n }$				
If $L < 1$, S converges absolutely				
	If $L > 1$, S diverges			
	If $L = 1$, the root test is inconclusive			

Riemann arrangement theorem	For a conditionally convergent series S , the sum of the positive terms is a divergent series and the sum of the negative terms is a divergent series For a conditionally convergent series S , given any real number L , there exists a permutation of S such that S converges to L ; there also exist permutations such that S diverges to $\pm \infty$ or fails to approach any limit		
Power series	$[f(x) = \sum_{n=0}^{\infty} a_n (x-c)^n]$ An infinite series of polynomials $\int \Sigma f(x) dx = \sum \int f(x) dx$ within the open interval of convergence $\frac{d}{dx} \Sigma f(x) = \sum \frac{d}{dx} f(x)$ within the open interval of convergence		
Interval of convergence	The interval I (set of all x) for which the power series $f(x)$ converges		
Radius of convergence	The radius R for the interval of convergence $I = \{x \mid x - c \le R\}$		
Geometric series	$[f(x) = \sum_{n=0}^{\infty} a(x-c)^n]$ Special case of power series which converges to $\frac{a}{1-(x-c)}$ on the interval of convergence $ x-c <1$		
Taylor polynomial	$[P_n(x) = \sum_{i=0}^n \frac{f^{(i)}(c)}{i!} (x-c)^i]$ The approximation of $f(x)$ at c , n times differentiable at $x=c$, by a n^{th} order Taylor polynomial		
Maclaurin polynomial	$[P_n(x) = \sum_{i=0}^n \frac{f^{(i)}(0)}{i!} x^i]$ The n^{th} order Taylor polynomial, centered at $x=0$		
Taylor series	$[\lim_{n\to\infty} P_n(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(c)}{n!} (x-c)^n]$ The approximation of a function $f(x)$ infinitely-differentiable at $x=c$ as an infinite series of polynomials, which converges to $f(x)$ on the interval of convergence containing $x=c$		
Maclaurin series	$[\lim_{n\to\infty} P_n(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n] \text{ The Taylor series centered at } x = 0$ $e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{1}{2} x^2 + \frac{1}{6} x^3 + \dots R = \infty$ $\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots R = \infty$ $\cos x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots R = \infty$ $\arctan x = \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} x^{2n+1} = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \dots R = 1$ $\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + \dots R = 1$ $\ln(1+x) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} x^n = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots R = 1$ $(1+x)^k = \sum_{n=0}^{\infty} {n \choose k} x^n = 1 + kx + \frac{k(k-1)}{2!} x^2 + \dots R = 1$		
Euler's Formula	$e^{ix} = \cos x + i\sin x$		
Euler's Identity	$e^{\pi i} + 1 = 0$		
Taylor's Theorem	Let f be a function $n+1$ times differentiable on $[a,b]$ containing c . Let $P_n(x)$ be the n^{th} order Taylor polynomial of f at c , $\sum_{i=0}^n \frac{f^{(i)}(c)}{i!}(x-c)^i$. Let $ R_n(x) $ be the approximation error (remainder), $f(x) = P_n(x) + R_n(x)$		
Peano form	There exists an $h_n(x)$ such that $R_n(x) = h_n(x)(x-c)^n = o(x-c ^n), \ x \to c$ and $\lim_{x\to c} h_n(x) = 0$		
Lagrange form	For each $x \in [a, b]$, $\exists z$ on the closed interval between x and c such that $R_n(x) = \frac{f^{(n+1)}(z)}{(n+1)!}(x-c)^{n+1}$		
Cauchy form	For each $x \in [a, b]$, $\exists z$ on the closed interval between x and c such that $R_n(x) = \frac{f^{(n+1)}(z)}{n!}(x-z)^n(x-c)$		
Mean Value Theorem	Taylor's theorem is a generalization of the Mean Value Theorem when $n=0$ For a differentiable function f , $\exists z$ such that $f(x) - f(c) = f'(z)(x-c)$		
Lagrange error bound	$ R_n(x) \le \left \frac{M}{(n+1)!} (x-c)^{n+1} \right $, where $M = \max f^{(n+1)}(z) $ on $[a,b]$		

_	TA /E	1. •		\sim 1	1
'7	\/ 11	1111179	ariable	Calc	11 11 C
	IVIU		ai iabic	Carc	urus