0/1 knapsack problem using Branch and Bound

The 0/1 knapsack problem

□ Positive integer P₁, P₂, ..., P_n (profit)
 W₁, W₂, ..., W_n (weight)
 M (capacity)

$$\begin{array}{ll} \text{maximize} & \sum_{i=1}^n P_i \, X_i \\ \\ \text{subject to} & \sum_{i=1}^n W_i \, X_i \leq M \quad X_i = 0 \text{ or } 1, \, i=1, \, \dots, \, n. \\ \\ \end{array}$$

The problem is modified:

$$\underset{i=1}{\text{minimize}} \quad -\sum_{i=1}^{n} P_{i} X_{i}$$

The 0/1 knapsack problem

The Branching Mechanism in the Branch-and-Bound Strategy to Solve 0/1 Knapsack Problem.

How to find the upper bound?

 Ans: by quickly finding a feasible solution in a greedy manner: starting from the smallest available i, scanning towards the largest i's until M is exceeded. The upper bound can be calculated.

How to find the ranking Function

Ans: by relaxing our restriction from $X_i = 0$ or 1 to $0 \le X_i \le 1$ (knapsack problem)

Let
$$-\sum_{i=1}^{n} P_i X_i$$
 be an optimal solution for $0/1$

knapsack problem and $-\sum_{i=1}^{n} P_i X_i$ be an optimal

solution for fractional knapsack problem. Let

$$Y = -\sum_{i=1}^{n} P_{i}X_{i}, Y' = -\sum_{i=1}^{n} P_{i}X_{i}$$

$$\Rightarrow Y' < Y$$

How to expand the tree?

- By the best-first search scheme
- That is, by expanding the node with the best lower bound. If two nodes have the same lower bounds, expand the node with the lower upper bound.

0/1 Knapsack algorithm using BB

```
procedure UBOUND (p, w, k, M)
    //p, w, k and M have the same meaning as in Algorithm 7.11//
    //W(i) and P(i) are respectively the weight and profit of the ith object//
      global W(1:n), P(1:n); integer i, k, n
      b-p;c-w
      for i - k + 1 to n do
        if c + W(i) \le M then c - c + W(i); b - b - P(i) endif
      repeat
      return (b)
  end UBOUND
               Algorithm 8.5 Function u(\cdot) for knapsack problem
```

0/1 Knapsack Example using LCBB (Least Cost)

- Example (LCBB)
- Consider the knapsack instance:
- n = 4;
- (pi, p2, p3, p4) = (10, 10, 12, 18);
- \square (wi. w2, w3, w4) = (2, 4, 6, 9) and \square M = 15

0/1 Knapsack State Space tree of Example using LCBB

0/1 Knapsack State Space tree of Example using FIFO BB

