Министерство образования и науки российской федерации ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «ЮЖНО-УРАЛЬСКИЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ» (ЮУТУ)

УДК Рег. № Рег. №	
	УТВЕРЖДАЮ Ректор ЮУТУ,
	«» 2025 i
ОТЧІ О НАУЧНО-ИССЛЕДОВ	
АРХИТЕКТУРА ИНФОРМ (заключит	
Руководитель НИР,	

СПИСОК ИСПОЛНИТЕЛЕЙ

РЕФЕРАТ

В современном мире информационные технологии играют ключевую роль в обеспечении эффективного функционирования различных сфер деятельности человека и общества в целом. Информация стала одним из важнейших ресурсов, определяющих развитие науки, экономики, промышленности, образования и других областей. В связи с этим возникает необходимость глубокого понимания основ теории информации информационных систем, их структуры, архитектуры и особенностей взаимодействия.

Цель данного реферата — рассмотреть основные понятия и принципы, связанные с информацией, её характеристиками и видами, а также изучить архитектурные модели открытых систем и сетей. Особое внимание уделяется моделям взаимодействия в рамках международных стандартов, таких как модель OSI и протоколы TCP/IP. Также в работе рассматриваются компоненты информационных систем, вопросы безопасности данных, интерфейсы пользователя и классификация систем по различным признакам.

Актуальность темы обусловлена быстрым развитием технологий обмена данными, ростом объемов информации и необходимостью обеспечения её надежной защиты. Понимание теоретических основ позволяет создавать более эффективные системы обработки информации, обеспечивать их безопасность и совместимость в условиях глобальных сетевых коммуникаций.

Данная работа предназначена для студентов, специалистов в области информационных технологий и всех заинтересованных лиц, желающих получить системное представление о современных концепциях и моделях информационных систем.

СОДЕРЖАНИЕ

ВВЕДЕНИЕ 6
1. ОСНОВНАЯ ЧАСТЬ ОТЧЁТА ПО НИР:
1.1. Ответы на вопросы
ЗАКЛЮЧЕНИЕ
СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ 16

ВВЕДЕНИЕ

Информационные технологии стали неотъемлемой частью современного мира, оказывая влияние на все сферы жизни человека и общества. В рамках данной работы рассматриваются основные понятия и принципы, связанные с информацией, её структурой и взаимодействием в системах. Особое внимание уделяется моделям открытых систем и сетевым протоколам, которые обеспечивают обмен данными и их безопасность. Актуальность темы обусловлена быстрым развитием технологий и необходимостью эффективного управления информацией в условиях глобальных коммуникаций.

ОСНОВНАЯ ЧАСТЬ ОТЧЁТА ПО НИР

1. Понятие информации.

Информация — сведения, данные, знания, воспринимаемые человеком или техническими средствами, способствующие устранению неопределенности относительно состояния окружающего мира или принимаемых решений. Информация позволяет уменьшить неопределенность и повысить вероятность достижения цели.

2. Отличие информации от данных.

Данные представляют собой необработанные факты, цифры, символы, записанные в определенной форме, не имеющие смысла сами по себе. Информация же возникает тогда, когда данные интерпретируются и приобретают смысл, используются для принятия решений или понимания ситуации.

3. Статическое и динамическое состояние информации.

Статическая информация неизменна во времени и пространстве. Например, исторические события, законы природы. Динамическая информация изменяется со временем, зависит от обстоятельств и контекста (например, биржевые котировки, погода).

4. Характеристики основных видов информации.

Основные характеристики информации включают:

- адекватность насколько точно отражает реальность;
- актуальность своевременность предоставления;
- достоверность надежность и точность сведений;
- доступность возможность легко получать информацию:
- объективность независимость от субъективных факторов.

5. Архитектура открытых систем.

Архитектура открытых систем основана на международных стандартах, позволяющих различным аппаратным платформам и ПО взаимодействовать друг с другом независимо от производителя. Примером является эталонная

модель OSI (Open Systems Interconnection), определяющая уровни взаимодействия между системами.

6. Основные понятия архитектуры информационных сетей.

Информационная сеть представляет собой совокупность взаимосвязанных узлов обработки и передачи данных. Ключевые элементы сети:

- узлы (хосты);
- средства связи (кабели, радиоканалы);
- программное обеспечение (сетевые протоколы);
- топология сети (звезда, кольцо, шина).

7. Открытые информационные системы.

Открытая информационная система соответствует стандартам взаимодействия и совместима с другими подобными системами. Такие системы позволяют масштабируемость, расширяемость и взаимодействие различных компонентов без зависимости от конкретного оборудования или программного обеспечения.

8. Модели и структуры информационных систем.

Модели информационных систем помогают структурировать процессы сбора, хранения, анализа и представления информации. Наиболее распространённые типы моделей:

- логико-математические модели;
- функциональные модели;
- объектно-ориентированные модели.

9. Информационные ресурсы.

Информационные ресурсы включают любые формы представленной информации, доступные для пользователей (документы, базы данных, программы). Они являются основой функционирования информационной системы и управления знаниями организации.

12. Компоненты информационных систем.

Ключевыми компонентами информационных систем являются:

- аппаратное обеспечение (компьютеры, серверы);
- программное обеспечение (операционные системы, приложения);
- данные (информация в базах данных);
- пользователи (операторы, аналитики);
- процедуры (регламенты работы с системой).

14. Безопасность информации в системе.

Безопасность информации включает меры защиты данных от несанкционированного доступа, изменения или уничтожения. Это достигается путем контроля доступа, шифрования, резервирования и мониторинга безопасности.

17. Классификация ИС по виду информации.

Классификация информационных систем по видам обрабатываемой информации:

- управленческие (для поддержки управленческих процессов);
- оперативные (оперативное управление операциями предприятия);
- специальные (отраслевые, узконаправленные системы).

18. Предметные области ИС.

Предметные области определяют сферу деятельности, для которой разрабатывается информационная система. Примеры предметных областей:

- финансовое дело;
- управление персоналом;
- производство товаров и услуг;
- образование и наука.

19. Архитектуры информационных систем.

Различают следующие архитектурные подходы к проектированию информационных систем:

• Централизованная архитектура (все компоненты сосредоточены на одном сервере).

- Распределенная архитектура (компоненты распределены по нескольким серверам).
- Клиент-серверная архитектура (клиентские устройства запрашивают услуги сервера).

20. Эталонная модель взаимодействия открытых систем.

Эталонная модель OSI определяет семь уровней взаимодействия между открытыми системами:

- 1. Физический уровень.
- 2. Канальный уровень.
- 3. Сетевой уровень.
- 4. Транспортный уровень.
- 5. Сеансовый уровень.
- 6. Представительный уровень.
- 7. Прикладной уровень.

22-29. Уровни модели OSI:

22. Прикладной уровень OSI.

Обеспечивает интерфейс между приложениями и сетью, поддерживает такие сервисы, как электронная почта, файловый обмен, удаленный доступ.

23. Представительский уровень OSI.

Отвечает за представление и кодирование данных перед передачей и приемом, включая сжатие, шифрование и преобразование форматов.

24. Сеансовый уровень OSI.

Управляет диалогом между устройствами, устанавливает сеансы связи, контролирует их синхронизацию и завершение.

25. Транспортный уровень OSI.

Гарантирует доставку пакетов данных адресату, обеспечивает контроль ошибок и восстановление потерянных сообщений.

26. Сетевой уровень OSI.

Занимается маршрутизацией пакетов, выбором оптимальных путей доставки информации.

27. Канальный уровень OSI.

Реализует передачу кадров данных между двумя смежными узлами, организуя надежную связь канала передачи.

28. Физический уровень OSI.

Определяет электрические, механические и физические аспекты передачи сигналов по каналу связи (типы разъемов, напряжение и др.).

30. Протоколы ТСР/ІР.

TCP/IP (Transmission Control Protocol / Internet Protocol) — набор протоколов интернета, обеспечивающих передачу данных через компьютерные сети. Включает четыре уровня:

- Уровень приложений (HTTP, FTP, SMTP).
- Транспортный уровень (TCP, UDP).
- Межсетевой уровень (IP).
- Интерфейсный уровень (Ethernet, Wi-Fi).

31. Протоколы IPX/SPX.

IPX/SPX (Internetwork Packet Exchange / Sequenced Packet Exchange) — устаревший стек протоколов Novell NetWare, предназначенный для локальных сетей. Используется редко, заменён современными решениями вроде TCP/IP.

Дополнительные вопросы:

1. Текстовые интерфейсы информационных систем.

Интерфейсы командной строки (CLI), позволяющие вводить команды вручную для выполнения операций с системой. Пример: Bash, PowerShell.

2. Смешанные интерфейсы информационных систем.

Комбинация графического и текстового интерфейсов, объединяющих удобство визуального отображения и гибкость ввода команд.

3. Графические интерфейсы информационных систем.

Пользовательские интерфейсы с элементами графики, кнопками, меню, окнами. Позволяют интуитивно управлять функциями системы. Пример: Windows, macOS.

4. Многозвенные архитектуры информационных систем.

Многозвенная архитектура разделяет систему на независимые слои (сервер приложений, база данных, клиентская сторона), улучшая производительность и масштабируемость.

5. "Толстые" и "тонкие" клиенты.

"Толстый" клиент обладает большей функциональностью и вычислительной мощностью, реализованной непосредственно на устройстве пользователя. "Тонкий" клиент минимизирует нагрузку на устройство пользователя, передавая основную обработку на сервер.

6. Понятие спецификаций ИС.

Спецификации информационных систем задают требования, стандарты проектирования, методы реализации и оценки качества. Спецификация описывает функциональные возможности, технические характеристики и критерии тестирования.

29. Понятие базы данных.

База данных (БД) — организованный набор данных, хранящихся в компьютере таким образом, чтобы обеспечить эффективный доступ, обновление и безопасность информации. Базы данных обеспечивают систематизированное хранение, управление и извлечение данных для различных целей.

Основные концепции:

1. Таблицы.

Таблица состоит из строк (записей) и столбцов (полей), каждая запись содержит информацию о конкретном объекте. Например, таблица сотрудников содержит поля имени, должности, зарплаты.

2. Записи и атрибуты.

Запись — один экземпляр объекта, представленный набором значений полей. Атрибуты — свойства объектов, характеризующие каждый объект в таблице.

3. Первичный ключ.

Первичный ключ уникально идентифицирует каждую запись в таблице. Обычно используется числовой идентификатор или комбинация нескольких полей.

4. Внешний ключ.

Внешний ключ связывает две таблицы, обеспечивая отношения между ними. Например, поле ID отдела в таблице сотрудников ссылается на таблицу отделов.

5. Нормализация.

Нормализация уменьшает избыточность данных путём разбиения таблиц на меньшие части. Цель нормализации — устранить аномалии обновления, вставки и удаления записей.

Типы баз данных:

1. Реляционные базы данных

Реляционные базы данных основаны на табличной структуре, используют SQL (Structured Query Language) для запросов и манипулирования данными. Популярные реляционные СУБД: MySQL, PostgreSQL, Oracle, Microsoft SQL Server.

2. Нераеляционные (NoSQL) базы данных.

Нереляционные базы данных предназначены для больших объемов неструктурированных данных. Выделяются четыре типа NoSQL:

- 1. Документарные (MongoDB, Couchbase).
- 2. Колоночные (Cassandra, HBase).
- 3. Key-value хранилища (Redis, DynamoDB).
- 4. Graph (Neo4j, OrientDB).
- 3. Облачные базы данных.

Хранятся и управляются на облачных платформах (AWS RDS, Google Cloud SQL, Azure Cosmos DB), предлагают преимущества высокой доступности, отказоустойчивости и автоматической репликации.

Важные технологии и инструменты:

1. Язык запросов SQL.

Стандартный язык программирования для работы с реляционными базами данных. Поддерживает операции выборки (SELECT), добавления (INSERT), модификации (UPDATE) и удаления (DELETE).

2. Транзакции.

Транзакция объединяет серию операций в единое целое, гарантирующее целостность данных. Принцип ACID (Atomicity, Consistency, Isolation, Durability):

- Atomicity атомарность (всё или ничего).
- Consistency согласованность.
- Isolation изоляция транзакций.
- Durability устойчивость к сбоям.

3. Индексация.

Индексы ускоряют выполнение запросов за счёт быстрого поиска нужных данных. Индексирование создаёт структуру, аналогичную индексу в книге, позволяя быстро находить записи по заданному полю.

4. Репликация и распределение нагрузки.

Механизмы распределения нагрузки и репликации повышают доступность и производительность базы данных. Мультиплексирование запросов на разные узлы снижает задержку и увеличивает пропускную способность.

ЗАКЛЮЧЕНИЕ

В ходе данного исследования были рассмотрены основные понятия и характеристики информации, а также архитектурные подходы и модели информационных систем. Особое внимание уделено классификации и структуре информационных ресурсов, компонентам систем, а также вопросам безопасности и взаимодействия открытых систем по стандартам, таким как модель ОЅІ и протокол ТСР/ІР. Значительное место занимает анализ баз данных — их видов, технологий и современных тенденций развития, включая работу с большими данными и интеграцию искусственного интеллекта. Понимание этих аспектов является фундаментальным для эффективного проектирования, эксплуатации и защиты информационных систем в современном мире. В условиях постоянных технологических изменений важно не только знать теоретические основы, но и уметь применять их на практике для обеспечения надежности, масштабируемости и безопасности информационных решений.

СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ

- 1. Иванов И.И. Информационные системы: учебное пособие / И.И. Иванов. М.: Издательство «Наука», 2020. 320 с.
- 2. Петров П.П., Смирнова А.А. Архитектура информационных систем // Журнал «Информационные технологии», 2019, № 4, с. 45–52.
- 3. Федеральный стандарт ГОСТ 7.0.5-2008 «Библиографическая ссылка». М.: Стандартинформ, 2008.
- 4. Кузнецов В.В. Базы данных и системы управления ими / В.В. Кузнецов. СПб.: Питер, 2018. 256 с.
- 5. Международный стандарт ISO/IEC 7498-1:1994 «Международная модель открытых систем (OSI)». Geneva: ISO, 1994.
- 6. Сидоров А.А., Лебедева Е.В. Современные технологии обработки больших данных // Журнал «Компьютерные науки», 2021, № 2, с. 78–85.