B.Tech. Data Science

COURSE PLAN: THEORY COURSE

Department:	Mathema	ntics				
Course Name & code :	MATHEMATICAL FOUNDATIONS FOR DATA SCIENCE -III MAT 3135 Core					
Semester & branch :	V & DSE					
Name of the faculty :	Dr. Sandeep E M, Dr. K Arathi Bhat					
No of contact hours/week:		L	T		P	C
140 of contact hours, week.	2 1		0		3	

Course Outcomes (COs) to PO, PSO, BL Mapping

At the end of this course, the student should be able to:		No. of Contact Hours
CO1	Understand basic concepts of Number Theory	7
CO2	Using basic concepts in understanding Modern number theory	7
CO3	Apply the number theoretic concepts in Cryptography	4
CO4	Understand concepts of Graph theory and apply them.	9
CO5	Apply the measures of centrality and algorithms on graphs	9
	Total	36

Lesson Plan

L No	Topics	
0	Introduction to the course	
1	Introduction to number theory	
2	Divisibility, greatest common divisors and Euclidean algorithm.	
3	Prime numbers, Congruences and solutions of congruences	
4	Tutorial	
5	Fermat's little theorem	
6	Chinese remainder theorem	
7	Euler's phi function	
8	Quadratic residues and reciprocity	
9	Jacobi Symbol	
10	Binary quadratic forms	
11	Tutorial	
12	Equivalence and reduction of binary forms	
13	Sums of two squares	
14	Greatest integer function	
15	Arithmetic functions	
16	Combinatorial number theory	
17	Techniques of numerical calculation	
18	Tutorial	
19	Introduction to graphs and basic terminologies - Order, size, degree.	
20	Definition- Subgraphs, cliques, regular, cubic, complete graph.	
	Complement, Isomorphism, self – complementary graphs and related	
	results.	
21	Definition- Walks, paths, cycles.	
22	Definition-Distance, eccentricity, radius, diameter, girth and related	
22	results.	
23	Definition- Connectedness and connected components and related	
2.4	results	
24	Definition-Eulerian and Hamiltonian graphs and related results.	
25	Bipartite graphs	
26	Definition- Trees and spanning trees and related results.	
27	Definition-Vertex connectivity, edge connectivity and related results.	
28	Definition-Measures of centrality – degree centrality and related	
	results.	

29	Definition-closeness centrality, between ness centrality and related results.
30	Tutorial
31	Matrices associated with graphs – adjacency, incidence and related
	results.
32	Definition-Laplacian and distance matrices and related results.
33	Definition-Eigenvalues and eigenvectors and related results.
34	Definition-Directed graphs and related results.
35	Graph algorithms – spanning tree algorithm and related problems.
36	Dijkstra's algorithm and related problems.

SDL TOPICS

The inclusion-exclusion principle
Public key Cryptography
Binary trees
Floyd-Warshall algorithm and related problems.

Faculty members teaching the course (if multiple sections exist):

Faculty	Section
EMS	A
KAB	В

References:

- 1. An Introduction to theory of numbers (fifth edition), I. Niven, H.S. Zuckerman, H. L. Montgomery, John Wiley & Sons, Inc.
- 1. Chartrand, Lesniak, and Zhang. Graphs and Digraphs, Fifth Edition. CRC Press. 2010.
 - 3. D. Jungnickel. Graphs, Networks and Algorithms, Fourth Edition. Springer. 2013.
 - 4. Douglas B. West. Introduction to Graph Theory, Second Edition. Prentice Hall. 2001.
 - 5. Frank Harary. Graph Theory
 - 6. A course in Number theory and Cryptography (second edition), Neal Koblitz, Springer-Verlag.

SDL TOPICS

The inclusion-exclusion principle
Public key Cryptography
Binary trees
Floyd-Warshall algorithm and related problems.

FACULTY MEMBERS TEACHING THE COURSE (IF MULTIPLE SECTIONS EXIST):

Submitted by: Dr K Arathi Bhat

Course Coordinator