Определение 1. Терм t свободен для переменной X_i в формуле $\Phi(x_i)$, если никакое свободное вхождение переменной X_i в формулу $\Phi(x_i)$ не находится в области действия квантора по переменной, входящей в терм.

0.0.1Понятие интерпретации. Выполнимость, истинность, логическая общезначность.

Определение 2. Интерпретация - это $\mathcal{J}=(\underbrace{\mathscr{A}=(A,\Omega,\prod)}_{\text{Область интерпретации}},i_F,i_P)$

$$i_F: \mathcal{F} \to \Omega$$
, причем $(\forall n \geq 0)i_F(f^{(n)}) \in \Omega^{(n)}$

$$I_P:\mathscr{P} o \prod$$
 , причем $(\forall n \geq 1)i_P(P^{(n)}) \in \Pi^{(n)}$

Определение 3. Состояние - это $\sigma: X \to A$

Определение 4. $\sigma=\tau\leftrightharpoons$ для всех $i\neq j$ верно $\sigma(x_j)=\tau(x_j)$

Определение 5. Значение $t^{\sigma}_{\mathcal{J}}$ терма t в состоянии σ при интерпретации \mathcal{J}

- 1) Если $t = x_i \in X$, то $t^{\sigma} \leftrightharpoons \sigma(x_i)$
- 2) Если $t = c \in C = \mathcal{F}^{(0)}$, то $t^{\sigma} = i_F(c) \in A$
- 3) Если $t = f^{(n)}(s_1, \ldots, s_n)$, то $t^{\sigma} = i_F(f^{(n)})(s_1^{\sigma}, \ldots, s_n^{\sigma})$ Пусть $t=(x_1+x_2)((-x_3)+x_1x_2)$. Состояние $\sigma=\{1|x_1,2|x_2,3|x_3,\ldots\}=\{x_1:=1,x_2:=2,x_3:=3,\ldots\}$ То есть $t^{\sigma} = (3)(-1) = -3$ (просто подставили в формулу и посчитали)
- 4) (Истинностное) значение Φ^{σ} формулы Φ в состоянии σ (при заданной интерпретации)

Определение 6. Значение формулы с квантором

- 1) Если $\Phi = p^{(n)}(t_1, \dots, t_n)$, то $\Phi^{\sigma} \leftrightharpoons i_P(p^{(n)})(t_1^{\sigma}, \dots, t_n^{\sigma})$
- 2) Если $\Phi = \neg \Psi$, то $\Phi^{\sigma} = \neg (\Psi^{\sigma})$
- 3) Если $\Phi = \Theta \to \Psi$, то $\Phi^{\sigma} \leftrightharpoons \Theta^{\sigma} \to \Psi^{\sigma}$
- 4) Если $\Phi=(\forall x_i)\Psi,$ то $\Phi^\sigma=T\leftrightarrows Д$ ля любого состояния $\tau=\sigma:\ \Psi^\tau=T$

Определение 7.

 $\models \Phi \leftrightharpoons$ существует состояние σ , для которого $\Phi^{\sigma} = T$

 \mathcal{J} $\vdash \Phi \leftrightharpoons Д$ ля всех состояний $\sigma \Phi^{\sigma} = T$

Формула называется логически общезначной, если она истинна в любой интерпретации.

0.0.2Аксиомы и правила вывода ИП1

- $(1) \qquad A \to (B \to A)$ $(2) \qquad (A \to (B \to C)) \to ((A \to B) \to (A \to C))$ $(3) \qquad (\neg B \to \neg A) \to ((\neg B \to A) \to B)$ $(4) \qquad (\forall x_i) A(x_i) \to A(t|x_i) \text{ при } Free(t, x_i, A)$

- (5) $(\forall x_i)(A \to B) \to (A \to (\forall x_i)B)$ при $x_i \notin F \lor (A)$

Правило **A4:** $\frac{(\forall x_i)A(x_i)}{A(t)}$, где $Free(t, x_i, A)$.

Теорема 0.1. Всякая теорема исчисления предикатов первого порядка логически общезначима.

По определению в исчислении предикатов первого порядка считается, что тавтологией считается любая формула, выводимая исключительно из первых трех схем с применением только правила modus ponens Исчисление предикатов первого порядка не противоречиво.

Теорема 0.2. Исчисление предикатов первого порядка полно, то есть любая логически общезначимая формула доказуема в этом исчислении.

Следствие. Формула логически общезначимая тогда и только тогда, когда она доказуема в исчислении предикатов первого порядка. (Теорема Бёдаля о Полноте).