Data

BT 3041: Analysis and interpretation of Biological Data

Outline

- Types of data
- Data visualisation

Types of Data

- Data Set is a collection of Data Objects
- Data Object: also called
 - Record, point, vector, pattern, event, case, sample, observation, entity
- Data object is represented by a set of Attributes
- Attribute: is a property or a characteristic of an object

Types of attributes

- Qualitative
 - Nominal: just a name.
 - eg. pincodes, IDs, eye color
 - Ordinal: information to order objects.
 - Eg. {good, better, best}
- Quantitative
 - Numerical value exists
 - Eg. temperature, pH

Quantitative attributes

- Discrete
 - Binary
- Continuous

Characteristics of Data sets

- Dimensionality
 - Curse of dimensionality
 - Dimensionality reduction
- Sparsity
 - Only a small fraction of attributes are non-zero
- Resolution
 - Converting continuous quantities to discrete ones

Types of data sets

- Record Data
- Graph/network Data
- Ordered data
- Spatial, image and multimedia data

Record data:

Same number of attributes

Document data

Data matrix

Market basket data

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

Graph/Network data

- Examples:
 - Internet

Signaling networks

Molecular structures

Ordered Data

Video data

Time series data

Molecular sequence data

Spatial/image data

- Examples:
 - Maps
 - Images

Basic Statistical Descriptions of Data

Motivation

- To better understand the data: central tendency and spread
- Data dispersion characteristics
 - median, max, min, quantiles, outliers, variance, etc.

Measuring the Central Tendency

• Mean (algebraic measure) (sample vs. population):

Note: *n* is sample size and *N* is population size.

- Weighted arithmetic mean:
- Trimmed mean: chopping extreme values

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \qquad \mu = \frac{\sum x}{N}$$

$$\overline{x} = \frac{\sum_{i=1}^{n} w_i x_i}{\sum_{i=1}^{n} w_i}$$

Median:

 Middle value if odd number of values, or average of the middle two values otherwise

e	age	frequency
	$\overline{1-5}$	200
	6 - 15	450
	16-20	300
Median interval	21-50	1500
	51 - 80	700
	81–110	44

• <u>Mode</u>

- Value that occurs most frequently in the data
- Unimodal, bimodal, trimodal

Symmetric vs. Skewed Data

 Median, mean and mode of symmetric, positively and negatively skewed data

Measuring the Dispersion of Data

- Quartiles, outliers and boxplots
 - Quartiles:
 - Q_1 (25th percentile): The first **quartile** (Q_1) is defined as the middle number between the smallest number and the median of the data set.
 - The second **quartile** (Q₂) is the median of the data.
 - Q₃ (75th percentile): The third quartile (Q₃) is the middle value between the median and the highest value of the data set.
 - Inter-quartile range: $IQR = Q_3 Q_1$
 - **Five number summary**: min, Q_1 , median, Q_3 , max

Boxplot

- Boxplot: ends of the box are the quartiles; median is marked; add
 whiskers, and plot outliers individually
- Outlier: usually, a value higher/lower than 1.5 x IQR

Boxplot Analysis

- Five-number summary of a distribution
 - Minimum, Q1, Median, Q3, Maximum

Boxplot

- Data is represented with a box
- The ends of the box are at the first and third quartiles, i.e., the height of the box is IQR
- The median is marked by a line within the box
- Whiskers: two lines outside the box extended to Minimum and Maximum
- Outliers: points beyond a specified outlier threshold, plotted individually

Properties of Normal Distribution Curve

- The normal (distribution) curve
 - From μ –σ to μ +σ: contains about 68% of the measurements (μ : mean, σ : standard deviation)
 - From μ -2 σ to μ +2 σ : contains about 95% of it
 - From μ -3 σ to μ +3 σ : contains about 99.7% of it

Boxplot for normal distribution

Visualization of Data Dispersion: 3-D Boxplots

Variance

- Variance and standard deviation (sample: s, population: σ)
 - Variance: (algebraic, scalable computation)

$$\sigma^{2} = \frac{1}{N} \sum_{i=1}^{n} (x_{i} - \mu)^{2} = \frac{1}{N} \sum_{i=1}^{n} x_{i}^{2} - \mu^{2}$$

- **Standard deviation** σ is the square root of variance $or \sigma^2$

Graphic Displays of Basic Statistical Descriptions

- Boxplot: graphic display of five-number summary
- Histogram: x-axis are values, y-axis repres. frequencies
- Quantile plot: each value x_i is paired with f_i indicating that approximately $100 f_i \%$ of data are $\le x_i$
- Scatter plot: each pair of values is a pair of coordinates and plotted as points in the plane

Histogram Analysis

 Histogram: Graph display of tabulated frequencies, shown as bars

It shows what proportion of cases fall³⁵ into each of several categories

Differs from a bar chart in that it is the area of the bar that denotes the value, not the height as in bar charts, a crucial distinction when the categories are not of uniform width

The categories are usually specified as non-overlapping intervals of some variable. The categories (bars) must be adjacent

Histograms Often Tell More than Boxplots

24

- The two histograms shown in the left may have the same boxplot representation
 - The same values for: min,Q1, median, Q3, max
- But they have rather different data distributions

Quantile Plot

- Displays all of the data (allowing the user to assess both the overall behavior and unusual occurrences)
- Plots quantile information
 - For a data x_i data sorted in increasing order, f_i indicates that approximately $100 f_i$ % of the data are below or equal to the value x_i

Scatter plot

- Provides a first look at bivariate data to see clusters of points, outliers, etc
- Each pair of values is treated as a pair of coordinates and plotted as points in the plane

Data Visualization

Data Visualization

- Why data visualization?
 - Gain insight into an information space by mapping data onto graphical primitives
 - Provide qualitative overview of large data sets
 - Search for patterns, trends, structure, irregularities, relationships among data
 - Help find interesting regions and suitable parameters for further quantitative analysis

VISUALIZING IN LOW DIMENSIONS

Pixel-Oriented Visualization Techniques

• 1D

Solar spectrum

• 2D

Microarray data

3D visualization

Interactive visualization of three-dimensional biological models in a CAVE. http://www.jvrb.org/past-issues/6.2009/2257

Histogram

- Ex: Iris data
- 5 kinds of Iris flowers
- 4 attributes: petal length/width, sepal length/width
- 50 samples per each flower type

Iris data: histograms of individual attributes

Pareto histogram

Pareto Chart of Late Arrivals by Reported Cause

Frequencies are sorted

Scatter plots

Correlation from scatter plots

$$r_{xy} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{(n-1)s_x s_y} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2 \sum_{i=1}^{n} (y_i - \bar{y})^2}},$$

Scatter plot in 3D

VISUALIZING SPATIO-TEMPORAL DATA

Contour plot

Surface Plot

Vector field plots

A vector is depicted at every point

Vector field plots

A vector is depicted at every point

VISUALIZING IN HIGH DIMENSIONS

Parallel Coordinates plot

Star Coordinates

Sw – sepal width

SI – sepal length

Pl – petal length

Pw – petal width

Chernoff faces

Chernoff Faces untuk Data Iris

Setosa	•	•	•	©	•
	5	4	3	2	1
Versicolour	(B)	(() () () () () () () () () ()	() () () () () () () () () ()	() () () () () () () () () ()
	55	54	53	52	51
Virginica	(F)	(8) B		(1)	(e)
	105	104	103	102	101

SL = size of face SW = forehead/jaw ratio PL = shape of forehead PW = shape of jaw

Konsep Data Mining

A more intricate use of Chernoff faces

Multiscale visualization

Wochentag / 5-Minuten-Block

(Shimabukuro et al 2004)

12 16 20

Circle segment display

Figure 1: 'Circle Segments' Technique for 8-dimensional Data

CIRCOS

http://jura.wi.mit.edu/bio/education/hot_topics/Circos/Circos.pdf

http://www.lboro.ac.uk/gawc/rb/rb421.html

Dimensional Stacking

Visualization of oil mining data with longitude and latitude mapped to the outer x-, y-axes and ore grade and depth mapped to the inner x-, y-axes

Cone trees

- Display hierarchical data as cones
- Root node = apex; children = around the base
- Nodes are transparent so that you see the nodes in the background
- Cones lower in the hierarchy are progressively smaller
- If you click on a node, the node and the entire path from the root node are highlighted

A Cone Tree

Robertson Plate 1

Another cone tree!

