

大规模百科知识图谱构建

徐波

复旦大学知识工场实验室

xubo@fudan.edu.cn

2017-07-13

我的工作

- 构建了世界上最大的中文开放通用知识图谱之一:CN-DBpedia http://kw.fudan.edu.cn/cndbpedia
- 涵盖数千万实体和数亿的关系
 - 百科实体数 16,584,150
 - 百科关系数 213,813,479
- 相关知识服务API累计调用量已达3.4亿次

CN-DBpedia应用一:语义搜索

entity	Search
e.g., 复旦大学、周杰伦	

Query String: fudan

点击更新页面 С

Named-Entity Disambiguation: 复旦大学

Information

复旦大学(Fudan University),简称"复旦",位于上海市,由中华人民共和国教育部直属,中央直管副部级建制,位列"211工程"、"985工程",入选"珠峰计划"、"111计划"、"2011计划"、"卓越医生教育培养计划",为"九校联盟"成员、中国大学校长联谊会成员、东亚研究型大学协会成员、环太平洋大学协会成员、21世纪大学协会成员,是一所综合性研究型的全国重点大学。

复旦大学创建于1905年,原名复旦公学,是中国人自主创办的第一所高等院校,创始人为中国近代知名教育家马相伯,首任校董为国父孙中山。校名"复旦"二字选目《尚书大传·虞夏传》名句"日月光华,旦复旦兮",意在自强不息,寄托当时中国知识分子自主办学。教育强国的希望。1917年复旦公学改名为私立复旦大学;1937年抗战爆发后,学校内迁重庆北碚,并于1941年改为"国立";1946年迁回上海江湾原址;1952年全国高等学校院系调整后,复旦大学成为以文理科为基础的综合性大学;1959年成为全国重点大学。2000年,原复旦大学与原上海医科大学合并成新的复旦大学。

复旦师生谨记"博学而笃志,切问而近思"的校训,严守"文明、健康、团结、奋发"的校风,力行"刻苦、严谨、求实、创新"的学风,发扬"爱国奉献、学术独立、海纳百川、追求卓越"的复旦精神,以服务国家为己任,以培养人才为根本,以改革开放为动力,为实现中国梦作出新贡献。

Infobox		
主管部门	中华人民共和国教育部	IQ IQ
学校代码	10246	CID (QI
学校地址	上海市杨浦区邯郸路220号	O O
学校类型	综合	QI QI
属性	111计划(2006年)	O O
_		

Tag		
	标签	211高校
	标签	985高校
	标签	上海高校
	标签	专科高校

Туре		
	rdf:type	http://dbpedia.org/ontology/Organisation
	rdf:type	http://dbpedia.org/ontology/EducationalInstitution
	rdf:type	http://dbpedia.org/ontology/University

CN-DBpedia应用二:小Cui问答

CN-DBpedia应用三:超级验证码

知識工場

随着深度学习在图像领域的快速发展,传统主流图像验证码已经不再安全

验证码: 卷 # ※ 换一个?
请输入验证码:

提交

- 但机器的语言认知能力比较弱
- 因此,我们提出了基于知识图谱的验证码系统
- 让用户做"阅读理解"

请通过验证

登录

请点击下文中该问题答案的任意部分:

艾尔伯格迪利安佐酒店的酒店星级是多/少?/

太难了,换一个

艾尔伯格迪利安佐酒店位于罗马,是家1星级酒店。艾尔伯格迪利安佐酒店让您在罗马这个陌生又熟悉的城市,感受到一丝清浅但又实在的温暖。您一定不能错过。酒店位置较好,距离罗马斗兽场步行22分钟,或打车8分钟,车程约3.6公里。

http://kw.fudan.edu.cn/ddemos/vcode/

知识图谱分类

知識工場

ID	知识图谱	构建方式	数据来源	语言	范围
1	Cyc	人工		英文	通用
2	WordNet	人工		英文	通用
3	ConceptNet	自动	知识图谱	多语言	通用
4	Freebase	半自动	百科	英文	通用
5	GeoNames	半自动	百科	多语言	领域
6	DBpedia	半自动	百科	多语言	通用
7	YAGO	自动	百科	多语言	通用
8	Open IE	自动	纯文本	英文	通用
9	BabelNet	自动	知识图谱	多语言	通用
10	WikiData	半自动	百科	多语言	通用
11	Google KG	自动	混合	多语言	通用
12	Probase	自动	纯文本	英文	通用
13	搜狗知立方	自动	百科	中文	通用
14	百度知心	自动	百科	中文	通用
15	CN-DBpedia	自动	百科	中文	通用

如何从零开始自动地构建一个中文通用百科知识图谱?

百科知识图谱

• 是一类专门从百科类网站中抽取知识构建而成的知识图谱

- 百科类网站中的页面和纯文本页面的区别:
 - 每个页面分别围绕一个实体进行全方面的介绍
 - 内容由众包编辑,质量相对较高
 - 页面格式统一,包含了许多半结构化的数据,方便抽取

- 典型代表
 - DBpedia
 - YAGO

DBpedia构建方法

- 知识图谱中的关系
 - 实体和实体
 - 概念和概念
 - 实体和概念

Fig. 1. Overview of DBpedia extraction framework.

Lehmann, Jens, et al. "DBpedia-a large-scale, multilingual knowledge base extracted from Wikipedia." *Semantic Web* 6.2 (2015): 167-195.

DBpedia构建方法

- 知识图谱中的关系
 - 实体和实体
 - 概念和概念
 - 实体和概念
- 缺点
 - 需要大量的人工来构建本体(概念与概念的关系)
 - 需要大量的人工来构建实体与概念的关系

```
{{Infobox automobilev | Ontology Classes | name = Ford GT40 | production = 1964-1969 | engine =4181 cc | • MilitaryAircraft (edit) | • Automobile (edit) | • Locomotive (edit) | • MilitaryVehicle (edit) | • MilitaryVehicle (edit) | • Motorcycle (edit) |
```

YAGO构建方法

- 实体与概念关系的自动获取
 - Wikipedia Category System
 - conceptual categories
 - E.g., Jay Chou Albums
 - administrative purposes
 - relational information
 - E.g., 1879 births
 - thematic vicinity
 - E.g., Physics

- Identifying Conceptual Categories
 - shallow linguistic parsing of the category name
 - if the head of the category name is a plural word, the category is most likely a conceptual category

Fabian, M. S., et al. . "Yago: A core of semantic knowledge unifying wordnet and wikipedia." WWW. 2007.

YAGO构建方法

- 概念与概念关系的自动获取
 - 将WordNet作为上层本体
 - 建立Wikipedia conceptual categories与WordNet概念之间的 subclassof关系

Classes in WordNet WordNet Class: Person subclassof subclassOf WordNet Class: WordNet Class: Singer Actor Match Match subclassOf 中心词抽取、词干化 subclassOf Singer Actor Wikipedia Category: Wikipedia Category: American male film actors American singers Categories in Wikipedia

Fabian, M. S., et al. . "Yago: A core of semantic knowledge unifying wordnet and wikipedia." WWW. 2007.

YAGO构建方法

- 缺点
 - 虽然说关系抽取是自动的,但由于利用了英语的语言特性,无法适用于其他语言,比如中文

总结:当前百科知识图谱构建的局限性

知識工場

- •人工代价大
 - 本体(概念-概念)通过人工构建
 - 实体分类通过人工指定方式构建
- 利用了语言的特性
 - 无法适用于其他语言
- 仅对百科类网站中的半结构化数据进行了抽取,未对数据进行进一步加工
 - 编写不规范,格式不统一
 - 存在内容缺失情况

普适型的中文通用百科知识图谱 构建方法

知識工場

抽取模块

归一化模块

学校地址

学校代码

校庆日

上海市杨浦区期

全国优秀博士论文55篇(截至2018年)

5月27日(上海解放纪念日)

所属地区

现任校长

知名校友

中国上海

李岚清、朱民、李源潮、竺可桢、于右任、邵力子、

许宁生

王沪宁等

Q InfoBox 复旦大学 中文名 1905年09月14日 创办时间 于右任 知名校友 知名校友 朱民 知名校友 李岚清 知名校友 李源潮 知名校友 王沪宁 知名校友 竺可桢 知名校友 邵力子

Fudan University

英文名称

填充模块 (Knowledge Base Population)

知識工場

填充方法

- 方法一: 利用其它知识图谱进行填充
 - e.g. YAGO利用Geonames(一个包含超过1000万地点位置信息的地理知识图谱)来增加YAGO实体的地理位置信息
- 方法二:利用百科网站的其他语种进行填充
 - e.g. Wikipedia
- 方法三:利用百科网站实体标签进行填充
 - e.g. 如"刘德华"的一个分类信息为"香港演员",可以从中得出(刘德华, 出生地,香港)和(刘德华,职业,演员)两组Infobox
- 方法四:利用百科网站实体正文进行填充
 - 百科实体正文内容是对实体最全面的介绍,包含的信息最为丰富

利用百科网站实体正文内容进行填充

知識工場

- 基本思路
 - 为每个属性构建一个抽取器(分类器)
 - 每个抽取器分别从百科文本(实体名已知)的句子中抽取出相应属性的值

序列数据标记问题

- 文本属性值抽取被认为是一个序列数据标记问题
 - 将句子当做是一个序列数据
 - 属性值抽取过程即可看作是序列数据标记过程
 - 1表示为属性值
 - 0表示不是属性值

传统方法

- 条件随机场
 - 针对序列数据进行分类的模型
 - 每个词组需要人为设定一组特征

- 缺点
 - 需要专家人为设计特征
 - 不具有通用性

Feature Description	Example
First token of sentence	Hello world
In first half of sentence	Hello world
In second half of sentence	Hello world
Start with capital	Hawaii
Start with capital, end with period	Mr.
Single capital	A
All capital, end with period	CORP.
Contains at least one digit	AB3
Made up of two digits	99
Made up of four digits	1999
Contains a dollar sign	20\$
Contains an underline symbol	km_square
Contains an percentage symbol	20%
Stop word	the; a; of
Purely numeric	1929
Number type	1932; 1,234; 5.6
Part of Speech tag	
Token itself	
NP chunking tag	
String normalization:	
capital to "A", lowercase to "a",	
digit to "1", others to "0"	$TF - 1 \Longrightarrow AA01$
Part of anchor text	Machine Learning
Beginning of anchor text	Machine Learning
Previous tokens (window size 5)	
Following tokens (window size 5)	
Previous token anchored	Machine Learning
Next token anchored	Machine Learning

Wu, Fei, and Daniel S. Weld. "Autonomously semantifying wikipedia." CIKM 2007.

基于深度学习的方法

- 优点
 - 不需要人工设计特征
- 方法
 - LSTM
 - LSTM+CRF

刘德华|(|Andy|Lau|)|,|1961年|9月|27日|出生|于|中国|香港|。|

实体分类

语义关系特征

• 特征分类

- •属性特征:"出生地"、"职业"
- •属性-值特征:"出生地-香港"、"职业-演员"
- 标签特征:"香港男演员"、"香港艺人"

• 优点

- 易于获取
- 语言无关
- 无需人工设计

基于语义关系特征的实体分类

知識工場

- 难点1: 训练集构建
 - 中文实体无法直接分类到英文 Taxonomy上
- •解决方案
 - 跨语言实体链接
 - 跨语言概念传递

Wang, Zhichun, et al. "Cross-lingual knowledge linking across wiki knowledge bases." WWW 2012.

Wang, Zhichun, et al. "Boosting Cross-Lingual Knowledge Linking via Concept Annotation." IJCAI. 2013.

基于语义关系特征的实体分类

- 难点2:训练集存在噪声,中文实体获得的分类信息存在错误
 - DBpedia知识图谱本身存在噪声
 - 实体链接错误
 - 语义关系特征缺失
- •解决方案
 - 多分类器投票过滤

表 3.2: 一个实体在训练集中的概念集合为 {A, B, C, D}, 通过不同分类器识别出不同的噪声集合

分类器	预测概念集合	噪声概念集合
1	$\{A, B, C\}$	{D}
2	{A, B}	{C, D}
3	{A, B}	{C, D}

表 3.3: 使用不同的策略对表 3.2中实体的概念集合进行过滤

过滤策略	最终噪声集合	过滤后的概念集合
大多数投票过滤	{C, D}	{A, B}
一致性过滤	{D}	{A, B, C}

Brodley, Carla E., and Mark A. Friedl. "Identifying mislabeled training data." Journal of artificial intelligence research 11 (1999): 131-167.

系统框架

Xu, Bo, et al. "Cross-lingual type inference." DASFAA 2016.

考虑概念层次结构

基于文本特征的分类

- 实体在句子中的指称项被称为mention
- 每个mention可能只能表现出实体的部分分类结果

基于文本的实体分类

• 难点1: 训练集构建

• 人工标记代价大

•解决方案

• STEP 1:基于远程监督的训练集 构建

• STEP 2: 训练集噪声过滤

• 多分类器投票过滤方法

表 4.2: 训练集过滤前后效果。

	农 4.2. 则55未及166 时 / A X / 6				
ID	包含实体指称项的句子	过滤前概念集合	过滤后概念集合		
1	刘德华 出生于 1961 年 9 月	{人物、演员、歌手}	{人物}		
2	刘德华出演了最新电影《长城》	{人物、演员、歌手}	{人物、演员}		
3	《忘情水》是刘德华的代表歌曲	{人物、演员、歌手}	{人物、歌手}		

Brodley, Carla E., and Mark A. Friedl. "Identifying mislabeled training data." Journal of artificial intelligence research 11 (1999): 131-167.

基于文本的实体分类

知識工場

• 难点2:特征选择

• 人工设计代价大

•解决方案

- 基于神经网络的实体指称项分类
- 一个句子分为三部分
 - Left Context
 - Mention
 - Right Context
- 对句子进行向量化处理
 - $[c_{-s}, ..., c_{-1}][m_1, ..., m_n][c_1, ..., c_s]$

表 4.4: TEX 系统中,中文句子的向量化表示形式

	农 4.4. TEX 尔列丁, 个 文 号 了 时间 里 化农 小 沙 八
Format	$[c_{-S}\cdots c_{-1}] [m_1\cdots m_N] [c_1\cdots c_S], S = 5 \text{ and } N = 5$
Sentence	皇家马德里的明星 克里斯蒂亚诺·罗纳尔多
	在星期天和他的家人庆祝他的第32个生日
Segmentation	皇家, 马德里, 的, 明星, 克里斯蒂亚诺・罗纳尔多 ,
	在, 星期天, 和, 他, 的, 家人, 庆祝, 他, 的, 第 32, 个, 生日
Partition	[Null, 皇家, 马德里, 的, 明星]
	[克里斯蒂亚诺・罗纳尔多, Null, Null, Null, Null]
	[在, 星期天, 和, 他, 的]
Vector	[0 334 346 75545 8456] [2478 0 0 0 0] [678 883 2793 67094 24679]

基于文本的实体分类

- 难点3:结果融合
 - 简单的合并算法无法取得良好的效果

表 4.9: 不同融合策略对实体分类效果的影响

Strategy	pЕ	rE	fE
Consider all possibilities	0.79	0.93	0.85
No Gossiping	0.98	0.46	0.63
Majority Voting	0.98	0.77	0.86
TEX-TF-Disjointness	0.90	0.92	0.91
TEX-TF-Hierarchy	0.81	0.93	0.87
TEX-TF-ALL	0.93	0.92	0.92

Maximize

$$\sum_{c \in C} \sum_{s \in S} w(c|e, s) \times x_{e,c} \qquad x_{e,c} = \begin{cases} 1 & \text{, if entity } e \text{ belongs to type } c \\ 0 & \text{, else} \end{cases}$$

Subject to

$$\forall_{ME(c_1,c_2)} \quad x_{e,c_1} + x_{e,c_2} \le 1 \forall_{IsA(c_1,c_2)} \quad x_{e,c_1} - x_{e,c_2} \le 0$$

$$w(c|e,s) = \begin{cases} P(c|e,s) &, & \text{if } P(c|e,s) > \theta \\ 0 &, & \text{else} \end{cases}$$

• 解决方案

- 将其看作是一个整数线性规划问题
- 目标函数
 - 最大化所有mention的分类结果
- 约束
 - 概念互斥约束

•
$$PMI(c_1, c_2) = log \frac{P(c_1, c_2)}{P(c_1) \times P(c_2)}$$

- 概念层次化约束
 - 一个实体如果不属于某个概念,那 么也不能属于这个概念的任意子概 念

Dong, Xin Luna, and Felix Naumann. "Data fusion: resolving data conflicts for integration." *VLDB 2009* 1654-1655.

更新模块

传统更新方法

- 基于更新日志的更新
- Wikipedia有这个功能,但百度 百科没有

- 周期性更新
 - E.g., 每半年重新爬取一遍数据并 进行解析

• 依然无法保证周期内数据的时效性

基于语义搜索引擎的更新

知識工場

- 基于用户反馈的更新
 - 用户点击更新按钮,进行更新

- 基于搜索日志的新词发现
 - 用户搜索一个词时,未在知识库中找到,即认为是一个新词

Query String: 顺丰菜鸟大战

Not Found in CN-DBpedia

主动更新方法

- 基本思路
 - 监控互联网上的热词
 - 热词分为两种情况
 - 新词
 - 旧词,但信息发生了变化
 - 更新热词以及与之相关的词条

热搜新闻词 HOT WORDS \

从1到7"数"读		习近平将对哈萨克斯		离岸人民币本周	军报批动漫迷扮
习近平扶贫方略		坦进行国事访问		涨484点	军人下跪
陈刚任 雄安新 区	高考期间全国大	菜鸟顺丰恢复数	普京自曝如何	第三代社保卡	北上广深二手房
临时党 委书 记	部气温适宜	据传输	躲过5次暗杀	年内试点发放	价和租金齐跌

热搜词条 今天 | 昨天

顺丰菜乌大战 国家邮政局宣布,菜乌与顺丰同意从6月3日12时起,全面恢复业务合 作和数据传输。 菲律宾恐怖袭击 6月2日凌晨,一名蒙面者手持长枪闯进菲律宾首都马尼拉一酒店的赌 场并开枪射击,已造成至少34人死亡。 李晨 福特号航空母舰 李晨在节目中自爆父母已离婚 美国首艘"福特"级航母交付美国 自己还有个相差18岁的妹妹。 海军。 西班牙大厦 ↑ 孙怀山 住房公积金 ↑ 星耀五洲

热点要闻 个性推荐

进入推荐版③

- ■**国际社会高度关注习近平哈萨克斯坦之行**引领上会发展共建一带一路 砥砺奋进的五年
- ■李克强出席第十九次中欧领导人会晤 专题 访德4大成果 张德江 前正声 张高丽
- ■上海等10省份今日举行事业单位招聘考试 总招录人数超4.5万、多地强调要严肃考试纪律
- ■安理会通过决议:强烈谴责朝鲜核导活动 扩大制裁
- •媒体:美国退出气候协定,中国的机遇期来了?
- · COSER穿中国军装向日式少女下跪 军媒:丢人且违法
- 内蒙古阿拉善盟阿拉善左旗附近发生5.0级左右地震
- •中国机动车近3亿辆 系PM2.5污染重要原因
- 误机掌掴工作人员女博士:我知错了 能少关几天吗
- ■境外消费超千元要"汇报" 微信支付宝不在范围内

为什么将热词作为更新的种子结点?

知識工場

- 实证分析
 - 实验
 - 统计热词的更新频率和随机选择的实体的更新频率
 - 结果
 - 80%的热词在100天内更新过了
 - 10%的随机选择的实体在100天内更新过了

为什么要做实体扩展更新?

知識工場

• 原因:"牵一发而动全身"

• 例如:王宝强离婚事件

热词:王宝强

• 知识库中的婚姻关系进行了更新

• 扩展实体:马蓉

• 同样更新其婚姻关系

- 实证分析
 - 实验
 - 统计80个种子实体扩展出来的687个实体的更新频率和随机选择的实体的更新频率
 - 结果
 - 269/687 (大约40%)的扩展实体在一个月内进行了更新
 - 而只有3%的随机实体在一个月内进行了更新

更新框架

• 步骤一: 从互联网上发现热词作为种子结点

• 步骤二:更新这些热词(从百科网站中获取新词或更新旧词)

步骤三:从这些更新的热词的页面中的超链接中获取更多的待更新实体,并为每个待更新实体设置更新优先级

• 这是由于扩展会得到非常多的实体,超过每日的更新限制K

• 步骤四:按照优先级顺序更新扩展实体

优先级如何设置?

• 原则

- 如果是一个新词,那么优先级设置为最高
- 如果是一个旧词,估计其上一次 更新结束到当前时间内<mark>可能更新的次数</mark>,该次数作为优先级指标 E[u(x)]

$$\mathbf{E}[u(x)] = P(x) \times (t_{now} - t_s(x))$$

• P(x):为实体x预期的更新频率,通过预测器得到

- 模型:回归
 - 随机森林回归
- 特征

#	Feature	χ^2	$IG(10^{-3})$
1	#Weeks of existence	41.8	19.1
2	#Total updates	481.1	55.9
3	#Times viewed by users	203.5	46.2
4	#All hyperlinks	460.9	35.8
5	#Hyperlinks to entities	444.9	32.1
6	Page length	131.9	32.9
7	Main content length	202.1	19.1
8	Historical update frequency	287.6	54.7

Liang, Jiaqing, et al. "How to Keep a Knowledge Base Synchronized with Its Encyclopedia Source". IJCAI 2017.

总结

Thank YOU!

Our LAB: Knowledge Works at Fudan University

http://kw.fudan.edu.cn