Homework 6

March 3, 2017

(804501476)

Problem 1.0:

Prove

$$COMP_{TM} = \{ \langle M_1, M_2 \rangle \mid L(M_1) = \overline{L(M_2)} \}$$
 (1.1)

Proof. Towards contradiction assume $COMP_{TM}$ is recognizable

- \exists turing machine R which recognizes $COMP_{TM}$.
- \bullet Build turing machine N
- N(y):
 - Let $x = \langle N \rangle //$ By Recursion Theorem
 - Let $\langle P \rangle$ be a turing machine that recognizes prime numbers.
 - If y = 4 Accept.
 - $\operatorname{Run} R(x, < P >)$
 - 1. $R(x, \langle P \rangle)$: Accepts
 - $\cdot \operatorname{Run} P(y)$
 - 2. $R(x, \langle P \rangle)$: Rejects
 - · Run $\bar{P}(y)$

Analysis:

- Case 1: $R(x, \langle P \rangle)$: $Accepts \implies L(N) = L(\bar{P})$.
 - By construction if R accepts then we run $P(y) \implies L(N) = L(P) \implies \iff$
- Case 2: $R(x, \langle P \rangle)$: $Rejects \implies L(N) \neq L(\bar{P})$.
 - By construction if R rejects then we run $\bar{P}(y) \implies L(N) = L(\bar{P}) \Longrightarrow \longleftarrow$
- Case 3: $R(x, \langle P \rangle)$: Loops $\implies L(N) \neq L(\bar{P})$.
 - By construction $L(N) = 4 \in L(\bar{P}) \Longrightarrow \longleftarrow$

Problem 2.0:

Prove

$$NEQ_{TM} = \{ \langle M_1, M_2 \rangle \mid L(M_1) \neq L(M_2) \}$$
 (2.2)

Proof. Towards contradiction assume NEQ_{TM} is recognizable

- \exists turing machine R which recognizes NEQ_{TM} .
- \bullet Build turing machine N
- N(y):
 - Let $x = \langle N \rangle //$ By Recursion Theorem
 - Let < M > be a turing machine that rejects everything.
 - If $y = \varepsilon$, accept.
 - $\operatorname{Run} R(x, < M >)$
 - 1. $R(x, \langle M \rangle)$: Accepts
 - \cdot Reject all y
 - 2. $R(x, \langle M \rangle)$: Rejects
 - · Accept all y

Analysis:

- Case 1: $R(x, \langle M \rangle)$: $Accepts \implies L(N) \neq L(M) \implies L(N) \neq \emptyset$.
 - By construction if R accepts then we reject all $y \implies L(N) = \emptyset \Longrightarrow \longleftarrow$
- Case 2: $R(x, \langle M \rangle)$: $Rejects \implies L(N) = L(M) \implies L(N) = \emptyset$.
 - By construction if R rejects then we accept all $y \implies L(N) = \Sigma^* \implies \longleftarrow$
- Case 3: $R(x, \langle M \rangle)$: $Loops \implies L(N) = L(M) \implies L(N) = \emptyset$.
 - By construction $L(N) = \varepsilon \implies L(N) \neq \emptyset \implies \longleftarrow$

Problem 3.0:

A certified language is a language over $\{0,1\}$ s.t there exists a turing machine M satisfying the following conditions:

- $\forall x \in L, \exists y \in \{0,1\}^* \text{ s.t } M(x,y) : accepts$
- $\forall x \notin L$, and $\forall y \in \{0,1\}^*$ s.t M(x,y) : Rejects

a: Show $Halt_{\varepsilon}$ is a certified language

Let $L' = \{w \mid w \text{ is the number of steps in TM which halts on } \varepsilon\}$ and let $y \in L'$. We construct M(x, y):

- Run $x(\varepsilon)$ one step at at time.
 - If $x(\varepsilon)$ is in accept state after y steps: **accept**
 - If the number of steps in $x(\varepsilon)$ is greater than y: reject

The machine satisfies property 1) if $x \in L$ then $\exists y \in L'$ which contains the number of steps to compute $x(\varepsilon)$.

The machine also satisfies property 2) since if $x \notin L$ then there is no solution to $x(\varepsilon)$ since x does not halt. Therefore M(x,y) will reject for all y.

b)

The number of inputs to machine x is infinite and each one of these inputs produces a different number of steps for a computation path. Therfore the number of steps is also infinite so we would never be able to verify if $x \in Halt_{all}$

c)

Proof. Assume for contradiction that $Halt_{all}$ is certifiable then \exists M that certifies it. Construct N(x):

- Let z = < N > / / by Recursion Theorem
- Run M(z,x)
 - 1 M:accepts \implies M certifies N, so N halts.
 - * Loop ⇒ <==
 - 2 M:rejects \implies M does not certify N, so N loops.
 - * Halt $\Longrightarrow \Leftarrow =$

Therefore $Halt_{all}$ is not certifiable.