

CSCI-UA-4-005

Intro to Web Design + Computer Principles

Operating Systems + Unix

Professor Emily Zhao

Class Website

bit.ly/web-with-emily-f24

Agenda

- Classroom Agreements
- What is a computer?
- Operating Systems
- Unix
- Visual Studio Code
- Setting up i6 accounts

Classroom Agreements

- Respect and Inclusivity: Treat everyone with respect, listen attentively, and value diverse perspectives.
- Active Engagement: Participate in class discussions, ask questions, and contribute to a collaborative learning environment.
- Clear Communication: Communicate clearly and respectfully, and be open to giving and receiving feedback.
- Supportive Environment: Help each other and encourage a supportive and inclusive atmosphere.
- Effort and Responsibility: Stay committed to your responsibilities,
 complete assignments on time, and engage fully in the learning process.

Today's Attendance (via PollEverywhere)

pollev.com/emilyzhao

A machine that processes information based on a program

What is a computer?

Computers:

- Laptops
- Smartphones
- Smart watches
- Cars
- Gaming devices
- Toasters
- Calculators

What is a computer?

A machine that processes information based on a program

What is a program?

Instructions written to accomplish certain tasks

It's all ones and zeros

- Everything that communicates with a computer "speaks" the same language (binary)
- Binary language: "0" and "1" (which really correspond to electrical impulses +5v / -5v)

It's all ones and zeros

- Bit: 1 | Byte: 01001011
- 1 byte has the possibility of 256 unique "states"

Early programming

Punch Card in Punch Card Machine

Bits + Bytes

- 1 Bit = Binary Digit
- 1 Byte = 8 Bits
- 1 Kilobyte (KB) = 1024 Bytes
- 1 Megabyte (MB) = 1024 KB
- 1 Gigabyte (GB) = 1024 MB
- 1 Terabyte (TB) = 1024 BG

Images

- PNG 2 4 kB GIF 6 - 8 kB
- JPG 9 12 kB

Documents

DOCX 4 – 8 kB PDF 18 – 20 kB

Media Files

- eBook 1-5 MB MP3 song 3-4 MB
- DVD Movie 4 GB
- HD Movie 5 8 GB Blu-Ray 20 – 25 GB

Early computers

- Ran on punch cards
- One program at a time
- Not user friendly
- Limited resources
- No standardization
- Minimal security + protection

Hardware

the tangible, physical parts of a computer responsible for executing and performing the actual physical operations

- → central processing unit (CPU)
- → memory (RAM)
- → hard drive
- → monitor, keyboard, mouse
- → peripheral devices (printers + scanners)

Software

the programs, data, and instructions that tell the hardware what to do

- → operating systems
- → applications (like word processors, web browsers, and games)
- → system utilities

Operating Systems

Intermediaries between software programs + hardware peripherals

Operating Systems

- Abstract the hardware
- Better resource management
- Multi-programming
- Security + protection
- User interfaces (CLI, GUI)

The User Interface

Portion of system software that allows you to interact with data

Two types

- Graphical (GUI)
- Command Line (CLI)
- * GUI is more user-friendly, but command line is faster

Unix

- An open source OS produced by AT&T Bell Labs
- Originally developed in 1969
- Command line interface
- Portable, multi-tasking, multi-user
- Free distribution, open system
- Servers (including i6), workstations, mobile devices
- Basis of Linux and MacOS

Operating System Lineage

Unix-Based:

MacOS

Android

iOS

Linux

Non-Unix:

Microsoft OS

Common Unix Commands

% ls	list directory files
% pwd	show current directory
% cd % cd ~ % cd	change directory go to home directory go to parent directory
% touch	create, change, modify timestamp of file
% mkdir	create directory

Activity: Unix Maze

Set up i6 accounts

i6 Services

http://i6.cims.nyu.edu/~NETID

- i6.cims.nyu.edu is a server that provides a Linux environment for students to develop and host their websites
- Each account is granted a home directory and a web directory:

SSH (Secure Shell)

Allows users to securely log into remote systems and execute commands on those systems

Login, change password, change file permissions

puTTY

an open-source terminal emulator and SSH client for Windows

SFTP (SSH File Transfer Protocol)

A file transfer protocol that operates over an SSH connection

- Used solely for transferring files between client and server
- File management capabilities such as uploading, downloading, renaming, and deleting files

chmod

Every file and directory has nine permissions associated with it

The Unix chmod command sets permissions of files and directories

Files and directories have three types of permissions (or none):

- r (read)
- w (write)
- x (execute)
- (no permission)

The above permissions occur for each of the following classes or users:

- u (user/owner)
- g (group)
- o (other/world)

Standard Web Permissions

Permissions U G W rwx rwx rwx rwx rwx r-x rwx r-x r-x rw- rw- r--

Unix Commands

- % chmod 777 filename
- % chmod 775 filename
- % chmod 755 filename
- % chmod 664 filename
- % chmod 644 filename

Standard **file** permission: 644

- owner can read and write file
- group can read file
- others can read file

Standard **directory** permission: 755

- owner can read, write + execute file
- group can read and execute file
- others can read and execute file

For next time

- Assignment #1
- Read Chapter 4: Creating a Simple Page