Linear Regression: Assumption Checking

Assumptions of the linear regression model

The assumptions for the linear regression model are:

- Linearity.
- Constant spread of residuals.
- Normality of the residuals.
- ► Independence of the residuals.

Assumption checking

The assumptions of the linear regression model are checked using the:

- Fitted values.
- Residuals.

Residuals

The residual for the *i*th point is defined as

$$r_i = y_i - f_i,$$

where y_i is the value of the response variable for the i observation, and f_i is the fitted value for the ith point.

Assumption 1: Linearity

- ▶ Where: We check this by looking at the residual versus fitted plot.
- Expect: We expect to see the points symmetrically scattered around the zero line if this assumption is reasonable.

Example of reasonable linearity

An example of unreasonable linearity

Assumption 2: Constant spread

- ▶ Where: We check this by looking at the residual versus fitted plot.
- **Expect:** We expect to see **roughly equal spread** of the points as we go from left to right.

Example of reasonable constant spread

Example of unreasonable constant spread

Another example of unreasonable constant spread

Reasonable

Assumption 3: Normality

- ▶ Where: We check this by looking at the normal quantile-quantile plot of the residuals.
- ► **Expect:** We expect to see **roughly linear** points, i.e., the points lie close to the line (fat pen test).

Example of reasonable normality

Example of unreasonable normality

Another example of unreasonable normality

Example of small sample dataset

Assumption 4: Independence of residuals

- ▶ Where: We check this by looking at the experimental design.
- ► **Expect:** We expect to see that one observation should not give us information about the other observations.

Examples of unreasonable independence

- ► Clustering: For example, if we had closely related subjects (twins, litter of puppies).
- ▶ **Spatial relationship:** For example, two neighbouring fields.
- ► **Temporal relationship:** For example, manufacturing process deteriorating over time.

Summary

Linearity:

- Where: Residual versus fitted plot.
- Good: Symmetrically scattered around zero line.
- Bad: Obvious pattern.

Constant spread:

- ▶ Where: Residual versus fitted plot.
- Good: Roughly equal spread left to right (use boxes).
- Bad: Very different spread at different places.

Summary

Normality:

Where: Normal quantile plot of residuals.

Good: Roughly linear.

Bad: Obvious pattern.

Independence:

► Where: Story.

Good: Observations do not give information about others, randomness.

Bad: Relationship between some observations.