Linear Algebra I: Problem Set I

Youngduck Choi CIMS New York University yc1104@nyu.edu

Abstract

This work contains the solutions to the problem set I of Linear Algebra I 2015 at Courant Institute of Mathematical Sciences.

Question 1.

Solution. Let u, v, w be a basis for a three dimensional vector space V. We show that the three vectors u + v + w, v + w, and w are linearly independent. Assume that

$$a_1(u+v+w) + a_2(v+w) + a_3(w) = 0.$$

Rearranging yields

$$(a_1)u + (a_1 + a_2)v + (a_1 + a_2 + a_3)w = 0.$$

As u, v, w form a basis, they are linearly independent. Hence, we have

$$a_1 = 0$$

$$a_1 + a_2 = 0$$

$$a_1 + a_2 + a_3 = 0.$$

Solving the system yields

$$a_1 = 0$$

$$a_2 = 0$$

$$a_3 = 0.$$

Hence, the three vectors, u+v+w, v+w and w are linearly independent. Now, let $v \in V$. As u, v, w is a basis for v, v can be written as

$$v = c_1 u + c_2 v + c_3 w.$$

The above equality can be re-expressed as

$$v = c_1(u+v+w) + (c_2-c_1)(v+w) + (c_3-c_2)w.$$

Therefore v can be written as a linear combination of u+w+v, v+w and w. Since v was arbitrary, we have shown that u+v+w, v+w and w span V. Therefore, u+v+w, v+w and w form a basis of V. \square

Question 2.

Solution.

Question 3.

Solution. Consider the following two pairs of reals: (1,1) and (2,2). Then, by the given definition of addition, we have

$$(1,1) + (2,2) = (5,7)$$

 $(2,2) + (1,1) = (4,5).$

Hence, we have that $(1,1)+(2,2)\neq (2,2)+(1,1)$. The given addition fails to be commutative. Therefore, the given set of pairs do not form a vector space under the given definitions. \Box

Ouestion 4.

Solution. Let W_1 and W_2 be subspaces of V. First, assume that $W_1 \subseteq W_2$. Then, we have $W_1 \cup W_2 = W_2$. Since W_2 is a subspace, we have that $W_1 \cup W_2$ is a subspace. By symmetry, we also have that if $W_2 \subseteq W_1$, then $W_1 \cup W_2$ is a subspace.

Now, assume that $W_1 \cup W_2$ is a subspace. Suppose for sake of contradiction that $W_1 \nsubseteq W_2$ and $W_2 \nsubseteq W_1$. Then, we have $u \in W_1 \setminus W_2$ and $v \in W_2 \setminus W_1$. Since $u, v \in W_1 \cup W_2$, and $W_1 \cup W_2$ is a subspace, we have $u + v \in W_1 \cup W_2$. Hence, u + v is in either W_1 or W_2 . If $u + v \in W_1$, then $u - u + v = w \in W_1$, which is a contradiction. If $u + v \in W_2$, then $u + v - v = u \in W_2$, which is a contradiction. Hence, in both cases we get contradictions, and we have that $W_1 \subseteq W_2$ or $W_2 \subseteq W_1$. Therefore, we have shown that $W_1 \cup W_2$ is a subspace iff $W_1 \subseteq W_2$ or $W_2 \subseteq W_1$. \square

Question 5.

Solution. Let $p_1(x)$ and $p_2(x) \in P_1(\mathbb{R})$. First, note that polynomials are integrable, hence the integrals are well-defined. By the linearity of integration, we have

$$f_1(p_1(x) + p_2(x)) = \int_0^1 p_1(t) + p_2(t)dt$$

$$= \int_0^1 p_1(t)dt + \int_0^1 p_2(t)dt$$

$$= f_1(p_1(x)) + f_1(p_2(x)),$$

$$f_2(p_1(x) + p_2(x)) = \int_1^2 p_1(t) + p_2(t)dt$$

$$= \int_1^2 p_1(t)dt + \int_1^2 p_2(t)dt$$

$$= f_2(p_1(x)) + f_2(p_2(x)).$$

For a scalar α and $p(x) \in P_1(\mathbb{R})$, by the linearity of integration again,

$$f_1(\alpha p(x)) = \int_0^1 \alpha p(t)dt$$

$$= \alpha \int_0^1 p(t)dt$$

$$= \alpha f_1(p(x)),$$

$$f_2(\alpha p(x)) = \int_1^2 \alpha p(t)dt$$

$$= \alpha \int_1^2 p(t)dt$$

$$= \alpha f_2(p(x)).$$

Therefore, both f_1 and f_2 are linear functionals and are in the dual of $P_1(\mathbb{R})$.

We now claim that f_1 and f_2 are linearly independent. Assume that

$$a_1 f_1 + a_2 f_2 = 0,$$

which denotes an identically zero map, where a_1 and a_2 are the scalars. Substituting the integral yields

$$a_1 \int_0^1 a + bt dt + a_2 \int_1^2 a + bt dt = 0$$

$$a_1(a + \frac{b}{2}) + a_2(2a + 2b) = 0$$

$$a(a_1 + 2a_2) + b(\frac{a_1}{2} + 2a_2) = 0.$$

Since the above equation holds for all a, b we have that

$$\begin{array}{rcl} a_1 + 2a_2 & = & 0 \\ \frac{a_1}{2} + 2a_2 & = & 0 \end{array}$$

Solving the system gives $a_1, a_2 = 0$. Therefore, we have shown that f_1 and f_2 are linearly independent.

From the property of the dual space, we know that a dual space has the same dimension as the original space, which was proven in class. Hence, since $P_1(\mathbb{R})$ has dimension 2, the dual also has dimension 2. Now, as $\{f_1, f_2\}$ form a linear independent set with dimension exactly two, we have that $\{f_1, f_2\}$ forms a basis of the dual space. \square

Question 6.

Solution. Let V be a vector space and x_1 be a nonzero vector in V. Let V' be the dual of V. We argue that an identity map I, which is defined by $I(x) = x \ \forall x \in V$, is in V'. Let $x, y \in V$. Then, we have

$$I(x+y) = x+y$$

= $I(x) + I(y)$.

Since x, y were arbitrary, we I(x + y) = I(x) + I(y) for all x, y. Now, let k be a scalar and $x \in V$. Then, we have

$$I(kx) = kx$$
$$= kI(x).$$

Since k, x were arbitrary, we have I(kx) = kI(x) for all $x \in V$ and all scalars. Therefore, I is linear and is in V'. Notice that $I(x_1) = x_1 \neq 0$. Hence, we have found a map where x_1 mapped to a non-zero element. \square

Question 7.

Solution. We wish to show that the annihilator Y^{\perp} is a subspace of the dual V'. Let $l_1, l_2 \in Y^{\perp}$, and consider $l_1 + l_2$. Let $y \in Y$. Then, by definition of the annihilator, we have

$$l_1 + l_2(y) = l_1(y) + l_2(y)$$

= 0.

Since y was arbitrary, we have

$$l_1 + l_2(y) = 0 \ \forall y \in Y.$$

Therefore, $l_1 + l_2$ is in Y^{\perp} .

Now, let $l \in Y^{\perp}$, and consider αl , where α is a scalar. Let $y \in Y$. Then, again by definition of the annihilator, we have

$$\alpha l(y) = (\alpha)l(y)
= (\alpha)(0)
= 0.$$

Since y was arbitrary, we have

$$\alpha l(y) = 0 \ \forall y \in Y.$$

Therefore, αl is in Y^{\perp} . As we have shown that Y^{\perp} is closed under addition and scalar multiplication, we have shown that Y^{\perp} is a subspace of the dual V'. \square

Question 8.

Solution. Let V be a finite dimensional vector space with two different bases $\{x_1,...,x_n\}$ and $\{y_1,...,y_n\}$. Let $v \in V$ and denote the coordinates of v with respect to the x basis and with respect to the y basis respectively as

$$v = \sum_{i=1}^{n} a_i x_i \tag{1}$$

$$v = \sum_{i=1}^{n} b_i y_i. (2)$$

Now, observe that each y_i vector from the y basis as a determined coordinates with respect to the x basis. We write them as follows:

$$y_i = \sum_{k=1}^n c_{ik} x_k,$$

for $1 \le i \le n$. Now substituting the above equality into (2), we obtain

$$v = \sum_{i=1}^{n} (b_i \sum_{k=1}^{n} c_{ik} x_k),$$

which can be re-written as

$$v = \sum_{k=1}^{n} \left(\sum_{i=1}^{n} b_i c_{ik}\right) x_k.$$

Hence, by matching the coefficients of the above equality to (1) and agreeing the dummy variables for indices, we have

$$a_i = \sum_{k=1}^n b_k c_{ki},$$

for $1 \le i \le n$. This deduction establishes the required relation as desired. \square