Math 450 Homework 2

Dr. Fuller

Due February 6

- 1. Let U be an open set in \mathbb{R}^n and C be a closed set in \mathbb{R}^n , with $C \subset U$. Prove that U C is open.
- 2. (\Box) Give the interior, exterior, and boundary for the following subsets of \mathbb{R}^n . No proofs, just give answers.
 - (a) $\{(x,y): xy = 0\} \subset \mathbf{R}^2$
 - (b) $\{(x,y) : xy \neq 0\} \subset \mathbf{R}^2$
 - (c) $\{(x, y, z) : x^2 + y^2 < 1 \text{ and } z = 0\} \subset \mathbf{R}^3$
 - (d) $\{(x,y,z): x^2+y^2<1\}\subset \mathbb{R}^3$
 - (e) $\{(x_1,\ldots,x_n): \text{each } x_i \in \mathbf{Q}\} \subset \mathbf{R}^n$
- 3. Decide if the following subsets of \mathbf{R}^n are closed, bounded, and compact.
 - (a) A finite set of points in \mathbf{R}^n
 - (b) $\overline{B}(0,2) B(0,1)$
 - (c) $\{(x_1,\ldots,x_n)\in \overline{B}(\mathbf{0},1): x_n=0\}$
 - (d) $\{(x_1,\ldots,x_n)\in \overline{B}(\mathbf{0},10): \text{each } x_i\in \mathbf{Z}\}\subset \mathbf{R}^n$
 - (e) $\{(x_1,\ldots,x_n)\in \overline{B}(\mathbf{0},10): \text{each } x_i\in \mathbf{Q}\}\subset \mathbf{R}^n$
- 4. (a) (\square) Suppose A is a closed subset of \mathbb{R}^n , and $\mathbf{x} \notin A$. Prove that there is a $\delta > 0$ such that $\|\mathbf{x} \mathbf{y}\| \ge \delta$ for all $\mathbf{y} \in A$.
 - (b) Suppose that A and C are closed subsets of \mathbf{R}^n , with C compact, and $A \cap C = \emptyset$. Prove that there exists $\delta > 0$ such that $\|\mathbf{x} \mathbf{y}\| \ge \delta$ for all $\mathbf{y} \in A$ and $\mathbf{x} \in C$. (Hint: For each $\mathbf{w} \in C$, find an open ball such that this inequality holds for all $\mathbf{x} \in B(\mathbf{w}, r(\mathbf{w}))$.)
 - (c) (\square) Give a counterexample in \mathbb{R}^2 to part (b) when A and B are closed, but neither is compact.
- 5. Determine if the following examples are continuous on the indicated domain. Justify your answers.

(a)
$$f : \mathbf{R}^2 - \{\mathbf{0}\} \to \mathbf{R}$$
 given by $f(x, y) = \frac{xy}{x^2 + y^2}$

(b)
$$f: \mathbf{R}^2 \to \mathbf{R}$$
 given by $f(x, y) = \begin{cases} \frac{xy}{x^2 + y^2} & \text{if } (x, y) \neq (0, 0) \\ 0 & \text{if } (x, y) = (0, 0). \end{cases}$

(c)
$$f: \mathbf{R}^2 \to \mathbf{R}$$
 given by $f(x,y) = \begin{cases} \frac{x^2y}{x^2 + y^2} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$

- 6. Prove that $f : \mathbf{R}^n \to \mathbf{R}$ given by f(x) = ||x|| is continuous.
- 7. Suppose that $f: U \subset \mathbb{R}^n \to \mathbb{R}^m$ and $g: U \subset \mathbb{R}^n \to \mathbb{R}^m$ are continuous at $\mathbf{a} \in \mathbb{R}^n$. Prove that $\langle f, g \rangle : U \subset \mathbb{R}^n \to \mathbb{R}$ defined by $(\langle f, g \rangle)(\mathbf{x}) = \langle f(\mathbf{x}), g(\mathbf{x}) \rangle$ is continuous at \mathbf{a} .