Basics

Fundamental Assumption

Data is iid for unknown $P: (x_i, y_i) \sim P(X, Y)$

True risk and estimated error

True risk: $R(w) = \int P(x,y)(y-w^Tx)^2 \partial x \partial y = \mathbb{E}_{x,y}[(y-w^Tx)^2]$

Est. error: $\hat{R}_D(w) = \frac{1}{|D|} \sum_{(x,y) \in D} (y - w^T x)^2$

Standardization

Centered data with unit variance: $\tilde{x}_i = \frac{x_i - \hat{\mu}}{\hat{\sigma}}$ $\hat{\mu} = \frac{1}{n} \sum_{i=1}^n x_i, \ \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \hat{\mu})^2$

Cross-Validation

For all models m, for all $i \in \{1,...,k\}$ do:

- 1. Split data: $D = D_{train}^{(i)} \uplus D_{test}^{(i)}$ (Monte-Carlo or k-Fold)
- 2. Train model: $\hat{w}_{i,m} = \operatorname{argmin} \hat{R}_{train}^{(i)}(w)$
- 3. Estimate error: $\hat{R}_m^{(i)} = \hat{R}_{test}^{(i)}(\hat{w}_{i,m})$ Select best model: $\hat{m} = \underset{m}{\operatorname{argmin}} \frac{1}{k} \sum_{i=1}^k \hat{R}_m^{(i)}$

Parametric vs. Nonparametric models

Parametric: have finite set of parameters. e.g. linear regression, linear perceptron Nonparametric: grow in complexity with the size

Nonparametric: grow in complexity with the of the data, more expressive. e.g. k-NN

Gradient Descent

- 1. Pick arbitrary $w_0 \in \mathbb{R}^d$
- 2. $w_{t+1} = w_t \eta_t \nabla \hat{R}(w_t)$

Stochastic Gradient Descent (SGD)

- 1. Pick arbitrary $w_0 \in \mathbb{R}^d$
- 2. $w_{t+1} = w_t \eta_t \nabla_w l(w_t; x', y')$, with u.a.r. data point $(x', y') \in D$

Regression

Solve $w^* = \underset{w}{\operatorname{argmin}} \hat{R}(w) + \lambda C(w)$

Linear Regression

 $\hat{R}(w) = \sum_{i=1}^{n} (y_i - w^T x_i)^2 = ||Xw - y||_2^2$ $\nabla_w \hat{R}(w) = -2\sum_{i=1}^{n} (y_i - w^T x_i) \cdot x_i$ $w^* = (X^T X)^{-1} X^T y$

Ridge regression

 $\hat{R}(w) = \sum_{i=1}^{n} (y_i - w^T x_i)^2 + \lambda ||w||_2^2$ $\nabla_w \hat{R}(w) = -2 \sum_{i=1}^{n} (y_i - w^T x_i) \cdot x_i + 2\lambda w$ $w^* = (X^T X + \lambda I)^{-1} X^T y$

L1-regularized regression (Lasso)

 $\hat{R}(w) = \sum_{i=1}^{n} (y_i - w^T x_i)^2 + \lambda ||w||_1$

Classification

Solve $w^* = \underset{w}{\operatorname{argmin}} l(w; x_i, y_i)$; loss function l

0/1 loss

 $l_{0/1}(w;y_i,x_i) = 1$ if $y_i \neq \text{sign}(w^T x_i)$ else 0

Perceptron algorithm

Use $l_P(w;y_i,x_i) = \max(0,-y_iw^Tx_i)$ and SGD

$$\nabla_{w} l_{P}(w; y_{i}, x_{i}) = \begin{cases} 0 & \text{if } y_{i} w^{T} x_{i} \geq 0 \\ -y_{i} x_{i} & \text{otherwise} \end{cases}$$

Data lin. separable \Leftrightarrow obtains a lin. separator (not necessarily optimal)

Support Vector Machine (SVM)

Hinge loss: $l_H(w;x_i,y_i) = \max(0,1-y_iw^Tx_i)$

$$\nabla_{w} l_{H}(w; y, x) = \begin{cases} 0 & \text{if } y_{i} w^{T} x_{i} \ge 1 \\ -y_{i} x_{i} & \text{otherwise} \end{cases}$$

$$w^{*} = \underset{w}{\operatorname{argmin}} l_{H}(w; x_{i}, y_{i}) + \lambda ||w||_{2}^{2}$$

Kernels

efficient, implicit inner products

Properties of kernel

 $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}, k$ must be some inner product (symmetric, positive-definite, linear) for some space \mathcal{V} . i.e. $k(\mathbf{x}, \mathbf{x}') = \langle \varphi(\mathbf{x}), \varphi(\mathbf{x}') \rangle_{\mathcal{V}} \stackrel{Eucl.}{=} \varphi(\mathbf{x})^T \varphi(\mathbf{x}')$ and $k(\mathbf{x}, \mathbf{x}') = k(\mathbf{x}', \mathbf{x})$

Kernel matrix

$$K = \begin{bmatrix} k(x_1, x_1) & \dots & k(x_1, x_n) \\ \vdots & \ddots & \vdots \\ k(x_n, x_1) & \dots & k(x_n, x_n) \end{bmatrix}$$

Positive semi-definite matrices \Leftrightarrow kernels k

Important kernels

Linear: $k(x,y) = x^T y$

Polynomial: $k(x,y) = (x^Ty+1)^d$

Gaussian: $k(x,y) = exp(-||x-y||_2^2/(2h^2))$ Laplacian: $k(x,y) = exp(-||x-y||_1/h)$

Composition rules

Valid kernels k_1, k_2 , also valid kernels: $k_1 + k_2$; $k_1 \cdot k_2$; $c \cdot k_1$, c > 0; $f(k_1)$ if f polynomial with pos. coeffs. or exponential

Reformulating the perceptron

Ansatz: $w^* \in \text{span}(X) \Rightarrow w = \sum_{j=1}^n \alpha_j y_j x_j$ $\alpha^* = \underset{\alpha \in \mathbb{R}^n}{\operatorname{argmin}} \sum_{i=1}^n \max(0, -\sum_{j=1}^n \alpha_j y_i y_j x_i^T x_j)$

Kernelized perceptron and SVM

Use $\alpha^T k_i$ instead of $w^T x_i$, use $\alpha^T D_y K D_y \alpha$ instead of $||w||_2^2$ $k_i = [y_1 k(x_i, x_1), ..., y_n k(x_i, x_n)], D_y = \text{diag}(y)$ Prediction: $\hat{y} = \text{sign}(\sum_{i=1}^n \alpha_i y_i k(x_i, \hat{x}))$ SGD update: $\alpha_{t+1} = \alpha_t$, if mispredicted: $\alpha_{t+1,i} = \alpha_{t,i} + \eta_t$ (c.f. updating weights towards mispredicted point)

Kernelized linear regression (KLR)

Ansatz: $w^* = \sum_{i=1}^n \alpha_i x$ $\alpha^* = \underset{\alpha}{\operatorname{argmin}} ||\alpha^T K - y||_2^2 + \lambda \alpha^T K \alpha$ $= (K + \lambda I)^{-1} y$ Prediction: $\hat{y} = \sum_{i=1}^n \alpha_i k(x_i, \hat{x})$

k-NN

 $y = \text{sign} \left(\sum_{i=1}^{n} y_i [x_i \text{ among } k \text{ nearest neighbours of } x] \right)$ – No weights \Rightarrow no training! But depends on all data :(

Imbalance

up-/downsampling

Cost-Sensitive Classification

Scale loss by cost: $l_{CS}(w;x,y) = c_{\pm}l(w;x,y)$

Metrics

 $n=n_{+}+n_{-}, n_{+}=TP+FN, n_{-}=TN+FP$ Accuracy: $\frac{TP+TN}{n}$, Precision: $\frac{TP}{TP+FP}$

Recall/TPR: $\frac{TP}{n_+}$, FPR: $\frac{FP}{n_-}$ F1 score: $\frac{2TP}{2TP+FP+FN} = \frac{2}{\frac{1}{prec} + \frac{1}{rec}}$

ROC Curve: y = TPR, x = FPR

Multi-class

one-vs-all (c), one-vs-one $(\frac{c(c-1)}{2})$, encoding

Multi-class Hinge loss

 $l_{MC-H}(w^{(1)},\dots,w^{(c)};x,y) = \max_{j \in \{1,\dots,y-1,y+1,\dots,c\}} w^{(j)T}x - w^{(y)T}x)$

Neural networks

Parameterize feature map with θ : $\phi(x,\theta) = \varphi(\theta^T x) = \varphi(z)$ (activation function φ) $\Rightarrow w^* = \underset{w,\theta}{\operatorname{argmin}} \sum_{i=1}^n l(y_i; \sum_{j=1}^m w_j \phi(x_i, \theta_j))$

 $f(x; w, \theta_{1:d}) = \sum_{j=1}^{m} w_j \varphi(\theta_j^T x) = w^T \varphi(\Theta x)$

Activation functions

Sigmoid: $\frac{1}{1+exp(-z)}$, $\varphi'(z) = (1-\varphi(z)) \cdot \varphi(z)$

tanh: $\varphi(z) = \tanh(z) = \frac{\exp(z) - \exp(-z)}{\exp(z) + \exp(-z)}$

ReLU: $\varphi(z) = \max(z,0)$

Predict: forward propagation

 $\begin{array}{l} v^{(0)}\!=\!x; \ \text{for} \ l\!=\!1,\!...,\!L\!-\!1; \\ v^{(l)}\!=\!\varphi(z^{(l)}), \ z^{(l)}\!=\!W^{(l)}v^{(l-1)} \\ f\!=\!W^{(L)}v^{(L-1)} \end{array}$

Predict f for regression, sign(f) for class.

Compute gradient: backpropagation

Output layer: $\delta_j = l'_j(f_j)$, $\frac{\partial}{\partial w_{j,i}} = \delta_j v_i$ Hidden layer l = L - 1, ..., 1: $\delta_j = \varphi'(z_j) \cdot \sum_{i \in Layer_{l+1}} w_{i,j} \delta_i$, $\frac{\partial}{\partial w_{i,i}} = \delta_j v_i$

Learning with momentum

 $a \leftarrow m \cdot a + \eta_t \nabla_W l(W; y, x); W_{t+1} \leftarrow W_t - a$

Clustering

k-mean

 $\hat{R}(\mu) = \sum_{i=1}^{n} \min_{j \in \{1, \dots k\}} ||x_i - \mu_j||_2^2$

 $\hat{\mu} = \underset{\mu}{\operatorname{argmin}} \hat{R}(\mu)$...non-convex, NP-hard

Algorithm (Lloyd's heuristic): Choose starting centers, assign points to closest center, update centers to mean of each cluster, repeat

Dimension reduction

PCA

 $D = x_1, ..., x_n \subset \mathbb{R}^d, \ \Sigma = \frac{1}{n} \sum_{i=1}^n x_i x_i^T, \ \mu = 0$ $(W, z_1, ..., z_n) = \underset{i=1}{\operatorname{argmin}} \sum_{i=1}^n ||W z_i - x_i||_2^2,$ $W = (v_1 | ... | v_k) \in \mathbb{R}^{d \times k}, \text{ orthogonal}; \ z_i = W^T x_i$ $v_i \text{ are the eigen vectors of } \Sigma$

Kernel PCA

Kernel PC: $\alpha^{(1)}, ..., \alpha^{(k)} \in \mathbb{R}^n$, $\alpha^{(i)} = \frac{1}{\sqrt{\lambda_i}} v_i$, $K = \sum_{i=1}^n \lambda_i v_i v_i^T$, $\lambda_1 \ge ... \ge \lambda_d \ge 0$ New point: $\hat{z} = f(\hat{x}) = \sum_{i=1}^n \alpha_i^{(i)} k(\hat{x}, x_i)$

Autoencoders

Find identity function: $x \approx f(x;\theta)$ $f(x;\theta) = f_{decode}(f_{encode}(x;\theta_{encode});\theta_{decode})$

Probability modeling

Find $h: X \to Y$ that min. pred. error: $R(h) = \int P(x,y)l(y;h(x))\partial yx\partial y = \mathbb{E}_{x,y}[l(y;h(x))]$

For least squares regression

Best $h: h^*(x) = \mathbb{E}[Y|X = x]$

Pred.: $\hat{y} = \hat{\mathbb{E}}[Y|X = \hat{x}] = \int \hat{P}(y|X = \hat{x})y\partial y$

Maximum Likelihood Estimation (MLE)

 $\theta^* = \underset{\rho}{\operatorname{argmax}} \hat{P}(y_1, ..., y_n | x_1, ..., x_n, \theta)$

E.g. lin. + Gauss: $y_i = w^T x_i + \varepsilon_i, \varepsilon_i \sim \mathcal{N}(0, \sigma^2)$ i.e. $y_i \sim \mathcal{N}(w^T x_i, \sigma^2)$, With MLE (use argmin $-\log$): $w^* = \operatorname{argmin} \sum (y_i - w^T x_i)^2$

Bias/Variance/Noise

Prediction error = $Bias^2 + Variance + Noise$

Maximum a posteriori estimate (MAP)

Assume bias on parameters, e.g. $w_i \in \mathcal{N}(0,\beta^2)$ Bay.: $P(w|x,y) = \frac{P(w|x)P(y|x,w)}{P(y|x)} = \frac{P(w)P(y|x,w)}{P(y|x)}$

Logistic regression

Link func.: $\sigma(w^Tx) = \frac{1}{1 + exp(-w^Tx)}$ (Sigmoid) $P(y|x, w) = Ber(y; \sigma(w^Tx)) = \frac{1}{1 + exp(-yw^Tx)}$ Classification: Use P(y|x, w), predict most likely class label.

MLE:
$$\underset{w}{\operatorname{argmax}} P(y_{1:n}|w,x_{1:n})$$

 $\Rightarrow w^* = \underset{i=1}{\operatorname{argmin}} \sum_{i=1}^n log(1 + exp(-y_i w^T x_i))$

SGD update:
$$w = w + \eta_t yx \hat{P}(Y = -y|w,x)$$

$$\hat{P}(Y = -y|w,x) = \frac{1}{1 + exp(yw^Tx)}$$

MAP: Gauss. prior $\Rightarrow ||w||_2^2$, Lap. p. $\Rightarrow ||w||_1$ SGD: $w = w(1 - 2\lambda \eta_t) + \eta_t yx \hat{P}(Y = -y|w,x)$

Bayesian decision theory

- Conditional distribution over labels P(y|x)
- Set of actions \mathcal{A}
- Cost function $C: Y \times \mathcal{A} \to \mathbb{R}$ $a^* = \operatorname{argmin} \mathbb{E}[C(y,a)|x]$

Calculate \mathbb{E} via sum/integral.

Classification: $C(y,a) = [y \neq a]$; asymmetric:

$$C(y,a) = \begin{cases} c_{FP} , & \text{if } y = -1, a = +1 \\ c_{FN} , & \text{if } y = +1, a = -1 \\ 0 , & \text{otherwise} \end{cases}$$

Regression: $C(y, a) = (y - a)^2$; asymmetric: $C(y,a) = c_1 \max(y-a,0) + c_2 \max(a-y,0)$ E.g. $y \in \{-1, +1\}$, predict + if $c_{+} < c_{-}$, $c_{+} = \mathbb{E}(C(y,+1)|x) = P(y=1|x) \cdot 0 + P(y=1|x) \cdot 0$ $-1|x)\cdot c_{FP}$, c_{-} likewise

Discriminative / generative modeling

Discr. estimate P(y|x), generative P(y,x)Approach (generative): $P(x,y) = P(x|y) \cdot P(y)$ -Estimate prior on labels P(y)

- Estimate cond. distr. P(x|y) for each class y
- Pred. using Bayes: $P(y|x) = \frac{P(y)P(x|y)}{P(x)}$ $P(x) = \sum_{y} P(x,y)$

MLE for $P(y) = p = \frac{n_+}{n_-}$

MLE for $P(x_i|y) = \mathcal{N}(x_i; \mu_{i,y}, \sigma_{i,y}^2)$:

$$\hat{\mu}_{i,y} = \frac{1}{n_y} \sum_{x \in D_{x_i|y}} x$$

$$\hat{\sigma}_{i,y}^2 = \frac{1}{n_y} \sum_{x \in D_{x_i|y}} (x - \hat{\mu}_{i,y})^2$$

MLE for Poi.: $\lambda = \operatorname{avg}(x_i)$

 \mathbb{R}^d : $P(X = x | Y = y) = \prod_{i=1}^d Pois(\lambda_u^{(i)}, x^{(i)})$

Deriving decision rule

 $P(y|x) = \frac{1}{Z}P(y)P(x|y), Z = \sum_{y} P(y)P(x|y)$

 $y^* = \max_{y} P(y|x) = \max_{y} P(y) \prod_{i=1}^{d} P(x_i|y)$

Gaussian Bayes Classifier

$$\begin{split} \hat{P}(x|y) &= \mathcal{N}(x; \hat{\mu}_y, \hat{\Sigma}_y) \\ \hat{P}(Y &= y) &= \hat{p}_y = \frac{n_y}{n} \\ \hat{\mu}_y &= \frac{1}{n_y} \sum_{i: y_i = y} x_i \in \mathbb{R}^d \end{split}$$

$$\hat{\Sigma}_y = \frac{1}{n_y} \sum_{i:y_i = y} (x_i - \hat{\mu}_y) (x_i - \hat{\mu}_y)^T \in \mathbb{R}^{d \times d}$$

Fisher's lin. discrim. analysis (LDA, c=2)

Assume: p=0.5: $\hat{\Sigma}_{-}=\hat{\Sigma}_{+}=\hat{\Sigma}$ discriminant function: $f(x) = \log \frac{p}{1-p} +$

 $\frac{1}{2} \left[\log \frac{|\hat{\Sigma}_{-}|}{|\hat{\Sigma}_{-}|} + \left((x - \hat{\mu}_{-})^{T} \hat{\Sigma}_{-}^{-1} (x - \hat{\mu}_{-}) \right) - \right]$

 $((x-\hat{\mu}_+)^T\hat{\Sigma}_+^{-1}(x-\hat{\mu}_+))$

Predict: $y = \text{sign}(f(x)) = \text{sign}(w^T x + w_0)$

 $w = \hat{\Sigma}^{-1}(\hat{\mu}_{+} - \hat{\mu}_{-});$ $w_0 = \frac{1}{2} (\hat{\mu}_-^T \hat{\Sigma}^{-1} \hat{\mu}_- - \hat{\mu}_+^T \hat{\Sigma}^{-1} \hat{\mu}_+)$

Outlier Detection

 $P(x) \leq \tau$

Categorical Naive Bayes Classifier

MLE for feature distr.: $\hat{P}(X_i = c|Y = y) = \theta_{c|y}^{(i)}$ $\theta_{c|y}^{(i)} = \frac{Count(X_i = c, Y = y)}{Count(Y = y)}$

Prediction: $y^* = argmax \hat{P}(y|x)$

Missing data

Mixture modeling

Model each c. as probability distr. $P(x|\theta_i)$

$$P(D|\theta) = \prod_{i=1}^{n} \sum_{j=1}^{k} w_{j} P(x_{i}|\theta_{j})$$

$$L(w,\theta) = -\sum_{i=1}^{n} \log \sum_{j=1}^{k} w_{j} P(x_{i}|\theta_{j})$$

Gaussian-Mixture Bayes classifiers

Estimate prior $\bar{P}(y)$; Est. cond. for each class: P(x|y) $\sum_{i=1}^{k_y} w_i^{(y)} \mathcal{N}(x; \mu_i^{(y)}, \Sigma_i^{(y)})$

Hard-EM algorithm

Initialize parameters $\theta^{(0)}$

E-step: Predict most likely class for each point: $z_i^{(t)} = \operatorname{argmax} P(z|x_i, \theta^{(t-1)})$

= argmax $P(z|\theta^{(t-1)})P(x_i|z,\theta^{(t-1)})$;

Compute the MLE: $\theta^{(t)}$ $\operatorname{argmax} P(D^{(t)}|\theta)$, i.e. $\mu_i^{(t)} = \frac{1}{n} \sum_{i:z_i=i} x_i$

Soft-EM algorithm

E-step: Calc p for each point and cls.: $\gamma_i^{(t)}(x_i)$ M-step: Fit clusters to weighted data points:

$$w_{j}^{(t)} = \frac{1}{n} \sum_{i=1}^{n} \gamma_{j}^{(t)}(x_{i}); \ \mu_{j}^{(t)} = \frac{\sum_{i=1}^{n} \gamma_{j}^{(t)}(x_{i})x_{i}}{\sum_{i=1}^{n} \gamma_{j}^{(t)}(x_{i})}$$
$$\sigma_{j}^{(t)} = \frac{\sum_{i=1}^{n} \gamma_{j}^{(t)}(x_{i})(x_{i} - \mu_{j}^{(t)})^{T}(x_{i} - \mu_{j}^{(t)})}{\sum_{i=1}^{n} \gamma_{i}^{(t)}(x_{i})}$$

Soft-EM for semi-supervised learning

labeled y_i : $\gamma_i^{(t)}(x_i) = [j = y_i]$, unlabeled: $\gamma_i^{(t)}(x_i) = P(Z = j | x_i, \mu^{(t-1)}, \Sigma^{(t-1)}, w^{(t-1)})$

Useful math

Probabilities

$$\begin{split} \mathbb{E}_x[X] = & \begin{cases} \int x \cdot p(x) \partial x & \text{if continuous} \\ \sum_x x \cdot p(x) & \text{otherwise} \end{cases} \\ & \text{Var}[X] = \mathbb{E}[(X - \mu_X)^2] = \mathbb{E}[X^2] - \mathbb{E}[X]^2 \\ & P(A|B) = \frac{P(B|A) \cdot P(A)}{P(B)}; \ p(Z|X,\theta) = \frac{p(X,Z|\theta)}{p(X|\theta)} \\ & P(x,y) = P(y|x) \cdot P(x) = P(x|y) \cdot P(y) \end{split}$$

Bayes Rule

$$P(A|B) = \frac{P(B|A) \cdot P(A)}{P(B)}$$

P-Norm

$$||x||_p = (\sum_{i=1}^n |x_i|^p)^{\frac{1}{p}}, 1 \le p < \infty$$

Some gradients

 $\nabla_x ||x||_2^2 = 2x$ $f(x) = x^T A x; \nabla_x f(x) = (A + A^T) x$ E.g. $\nabla_w \log(1 + \exp(-y\mathbf{w}^T\mathbf{x})) = \frac{1}{1 + \exp(-y\mathbf{w}^T\mathbf{x})} \cdot \exp(-y\mathbf{w}^T\mathbf{x}) \cdot (-y\mathbf{x}) = \frac{1}{1 + \exp(-y\mathbf{w}^T\mathbf{x})} \cdot \exp(-y\mathbf{w}^T\mathbf{x}) \cdot (-y\mathbf{x}) = \frac{1}{1 + \exp(-y\mathbf{w}^T\mathbf{x})} \cdot (-y\mathbf{w}^T\mathbf{x}) \cdot (-y\mathbf{x}) = \frac{1}{1 + \exp(-y\mathbf{w}^T\mathbf{x})} \cdot (-y\mathbf{w}^T\mathbf{x}) \cdot (-y\mathbf{w}^T\mathbf{x}) = \frac{1}{1 + \exp(-y\mathbf{w}^T\mathbf{x})} \cdot (-y\mathbf{w}^T\mathbf{x}) = \frac{1}{1$ $\frac{1}{1+\exp(yw^Tx)}\cdot(-yx)$

Convex / Jensen's inequality

g(x) convex $\Leftrightarrow g''(x) > 0 \Leftrightarrow x_1, x_2 \in \mathbb{R}, \lambda \in [0,1]$: $g(\lambda x_1 + (1-\lambda)x_2) \leq \lambda g(x_1) + (1-\lambda)g(x_2)$

Gaussian / Normal Distribution

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} exp(-\frac{(x-\mu)^2}{2\sigma^2})$$

Multivariate Gaussian

 Σ = covariance matrix, μ = mean $f(x) = \frac{1}{2\pi\sqrt{|\Sigma|}} e^{-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)}$

Empirical: $\hat{\Sigma} = \frac{1}{n} \sum_{i=1}^{n} x_i x_i^T$ (needs centered data points)

Positive semi-definite matrices

 $M \in \mathbb{R}^{n \times n}$ is psd \Leftrightarrow

 $= \forall x \in \mathbb{R}^n : x^T M x > 0 \Leftrightarrow$

all eigenvalues of M are positive: $\lambda_i > 0$