Problems from Hartshorne Chapter 2.2

Isaac Martin

Last compiled January 24, 2023

EXERCISE 1. Let A be an abelian group and defined the *constant presheaf* associated to A on the topological space X to be the presheaf $U \mapsto A$ for all $U \neq \emptyset$, with restriction maps the identity. Show that the constant sheaf A defined in the text is the sheaf associated to this presheaf.

Proof: Let \mathcal{C} be the constant sheaf on X, i.e. the sheaf defined as follows: for any open $U \subseteq X$, $\mathcal{C}(U)$ is the group of all continuous maps of U into A (where A is endowed with the discrete topology). Let \mathcal{G} be any other sheaf on X.

Define $\theta: \mathcal{F} \to \mathcal{C}$ as follows. For an open set U, let $\theta(U): \mathcal{F}(U) = A \to \mathcal{C}(U)A$ send a point $a \in A$ to the constant map $(x \mapsto a) \in \mathcal{C}(U)$.

Now suppose we have some morphism $\alpha: \mathcal{F} \to \mathcal{G}$. We would like to define $\beta: \mathcal{C} \to \mathcal{G}$ such that $\beta \circ \theta = \alpha$.

Fix an open subset $U \subseteq X$ and a section $f: U \to A$ of $\mathcal{C}(U)$. Notice that $\{f^{-1}(a)\}_{a \in A}$ is an open cover of U and $f|_{f^{-1}(a)} = (x \mapsto a) = \theta(U)(a)$ for all $a \in A$. Consider the collection $\{\alpha(U)(a)\}_{a \in A}$ of sections in $\mathcal{G}(U)$. These satisfy the gluing compatibility condition, namely

$$\alpha(U)(a)|_{f^{-1}(a)\cap f^{-1}(b)} = \alpha(U)(b)|_{f^{-1}(a)\cap f^{-1}(b)}$$

and hence there is some element $g_f \in \mathcal{G}(U)$ such that $g_f|_{f^{-1}(a)} = \alpha(U)(a)|_{f^{-1}(a)}$ for all $a \in A$. We simply define $\beta(U)(f) = g_f$ to obtain a map $\beta(U) : \mathcal{C}(U) \to \mathcal{G}(U)$. This satisfies the restriction requirements and hence β is a map of schemes. Furthermore, if $f = \theta(U)(a)$ for some $a \in A$, then f is the constant map $x \mapsto a$ and hence $f^{-1}(a) = U$, so $\beta(f) = \alpha(U)(a)$. This shows that $\alpha = \beta \circ \theta$, meaning \mathcal{C} satisfies the universal property of the sheaf associated to \mathcal{F} .

Exercise 2.

- (a) For any morphism of sheaves $\varphi: \mathcal{F} \to \mathcal{G}$ show that for each point P, $(\ker \varphi)_P = \ker(\varphi_P)$ and $(\operatorname{im} \varphi)_P = \operatorname{im}(\varphi_P)$
- (b) Show that φ is injective (respectively, surjective) if and only if the induced map on the stalks φ_P is injective (respectively, surjective) for all P.
- (c) Show that a sequence ... $\to \mathcal{F}^{i-1} \xrightarrow{\varphi^{i-1}} \mathcal{F}^i \xrightarrow{\varphi^i} \mathcal{F}^{i+1} \to ...$ of sheaves and morphisms is exact if and only if for each $P \in X$ the corresponding sequence of stalks is exact as a sequence of abelian groups.

Proof:

(a) Recall that for any $V \subseteq X$ containing a point P we have the diagram

$$\begin{array}{ccc}
\mathcal{F}(V) & \xrightarrow{\varphi(V)} & \mathcal{G}(V) \\
\downarrow^{\pi} & & \downarrow^{\pi} \\
\mathcal{F}_{P} & \xrightarrow{\varphi_{P}} & \mathcal{G}_{P}
\end{array}$$

Start with an element $(t,V) \in \ker(\varphi_P)$. Then t is a section of $\mathcal{F}(V)$ by definition and by commutativity of the diagram we have that $\pi(\varphi(V)(t)) = (\varphi(V)(t),V) = 0$ in \mathcal{G}_P . This means that there is some open neighborhood $W \subset V$ of P such that $\varphi(U)(t)|_W = 0$ by the equivalence relation on \mathcal{G}_P , and since $\varphi(U)(t)|_W = \varphi(W)(t)$ we have that $\varphi(W)(t|_W) = 0$. Hence $t|_W = 0$ and so $t \in \ker \varphi(W)$. Hence $(t|_W,W) \in (\ker \varphi)_P$, and because $(t|_W,W)$ and (t,V) represent the same element in $\ker(\varphi_P)$, this shows the inclusion $\ker(\varphi_P) \subseteq (\ker \varphi)_P$.

For the other inclusion, take an element $(t,V) \in (\ker \varphi)_P$. This means that $t \in (\ker \varphi)(V) = \ker(\varphi(V))$ and hence $\varphi(V)(t) = 0$ in $\mathcal{G}(V)$. Composing with π gives $\pi(\varphi(V)(t)) = (\varphi(V)(t),V) = 0$ in \mathcal{G}_P . By commutativity, $\pi((t,V)) = (t,V) \in \mathcal{F}_P$ maps to 0 under φ_P , so $(t,V) \in \ker(\varphi_P)$. This gives us the other inclusion.

Now let's consider $im(\varphi)$.

Exercise 3.

- (a) Let $\varphi: \mathcal{F} \to \mathcal{G}$ be a morphism of sheaves on X. Show that φ is surjective if and only if the following condition holds: for every open set $U \subseteq X$, and for every $s \in \mathcal{G}(U)$, there is a covering $\{U_i\}$ of U and there are elements $t_i \in \mathcal{F}(U_i)$ such that $\varphi(t_i) = s|_{U_i}$ for all i.
- (b) Give an example of a surjective morphism of sheaves $\varphi: \mathcal{F} \to \mathcal{G}$ and an open set U such that $\varphi(U): \mathcal{F}(U) \to \mathcal{G}(U)$ is not surjective.