

Tutorial 4

Biological Data Analysis Spring 2023

Outline

- Comparison between two groups
- Confidence interval
- Effect size
- Hypothesis testing

Experiment was conducted to determine effect of children participating in meal preparation on caloric intake.

Group 1: 25 children participated in meal preparation

Group 2: 22 children did not participate

	~~~·	calories
_	group	
0	kid_cooks	435.16
1	kid_cooks	338.99
2	kid_cooks	488.73
3	kid_cooks	590.28
4	kid_cooks	582.59
5	kid_cooks	635.21
6	kid_cooks	249.86
7	kid_cooks	441.66
8	kid_cooks	572.43
9	kid_cooks	357.78
10	kid_cooks	396.79
11	kid_cooks	298.38
12	kid cooks	282.99
رر	pai בוונ_נטטגэ	201
34	parent_cooks	295.28
35	parent_cooks	139.69
36	parent cooks	462.78
37		
	parent_cooks	179.59
38	parent_cooks	301.75
39	parent_cooks	436.58
40	parent_cooks	371.39
41	parent_cooks	469.02
42	parent_cooks	378.09
43	parent_cooks	287.31
44	parent_cooks	448.55
45	parent_cooks	332.64
46	parent_cooks	403.98

#### Distribution of data in two groups and mean values



Boxplot presentation of data in two groups



Create bootstrap sample using non-parametric bootstrap unpaired



#### Difference of means



## Confidence Interval

- A range with  $100(1-\alpha)\%$  of estimator distribution
- Probability that the real population parameter is outside the CI range is low



95% Confidence Interval = (26.92814954545 , 141.2248704545)



## Simulation: Confidence Interval





## Simulation: Confidence Interval

Confidence interval of mean estimator from one sample using bootstrap



## Effect size

Difference between means normalized by common SD

#### Cohen's d

$$\frac{\overline{x}_1 - \overline{x}_2}{s_{comb}}$$

$$s_{comb} = \sqrt{\frac{(N_1 - 1)s_1^2 + (N_2 - 1)s_2^2}{N_1 + N_2 - 2}}$$

	Small	Medium	Large
Effect size	0.2	0.5	0.8

# Simulation: significance of spread on CI and effect size



effect size = 0.8225

large effect



# Hypothesis testing

#### To prove a certain assertion:

- Population mean is higher/lower than zero (comparison of population with single number)
- Means of two populations are different

Sample the population, estimate the parameter, define and compare two models:

- Null Model (Null Hypothesis): assertion that we want to prove is false
- Effects Model (Alternative Hypothesis): assertion is true

# Hypothesis testing algorithm

Assume the Null Model is true

Try to reject the Null Model using the data

If the Null Model is rejected -> assume the Effects Model is true -> assertion is true (probability that assertion is not true is low)

If the Null Model is not rejected -> do not assume the Effects Model is true -> no conclusion about the assertion Null Model is never accepted

# Errors in Hypothesis Testing

Alpha Error – Type I error - rejection of correct Null Model (conclusions about the existing effect are not correct)

Alpha error - Test significance (p-value is compared to alpha)

Beta Error – Type II error - failing to reject the incorrect Null Model (miss the real existing effect)



# Confidence interval and Hypothesis testing

 Statistical question: what is the probability of getting a null model value if the population has the same distribution as the sample

 What is the probability of getting a value as the Null Model (or more extreme) from the estimator distribution we found using bootstrap

Define wanted alpha error – 0.05

Sum number of extreme samples (difference of means smaller than 0)

Divide by the number of samples Compare to alpha error

```
p-value = 0.002
p_value<alpha_error? True</pre>
```

Null model rejected

Data – reaction time to two types of stimuli: auditory and visual. 23 subjects reacted to both stimuli



Is there a difference between the reaction types in different conditions?

Null Model: there is no difference between the conditions

Effects Model: there is a difference between the condition

Statistic: mean of differences between two groups

Significance level: alpha = 0.05

#### Non-parametric bootstrap paired



Calculate significance (p-value) and effect size

Reject the null model and accept effects model

```
effect size = 0.7652
```

Medium effect

In an experiment to test the effect of ginkgo biloba on memory. 203 subjects were randomly assigned to take ginkgo biloba supplements or a placebo and took a memory test. 99 took the supplement and 104 – the placebo.

Does ginko supplement has an effect on memorization abilities?

Null Model: supplement has no effect on memory

Effects Model: supplement has an effect on memory

Statistic: difference between the means of two groups

Significance level: 0.05

#### Present using histogram and boxplot





#### Non-parametric bootstrap unpaired



Calculate significance (p-value) and effect size

```
p-value = 0.186
p_value<alpha_error? False</pre>
```

Failed to reject the null model

effect size = -0.131

Small effect