Project Title: Credit Card Default Prediction

Technologies: Machine Learning

Domain: Banking

By, SIDHARTH

#### PROBLEM STATEMENT

- ★ The goal is to predict the probability of credit default based on credit card <u>owner's characteristics</u> and <u>payment history</u>.
- ★ Owner's Characteristics:
  - Sex, Education, Marriage, Age
- ★ Payment history:
  - Repayment status, Amount of bill statement, Amount of previous payment <u>for 5 months</u>.

### DATA EXPLORATION - Target variable

- ★ The dataset is an IMBALANCED dataset.
- ★ So we need to balance the dataset first.
- ★ I have used <u>SMOTE</u> oversampling technique to balance them.



## DATA EXPLORATION - Features (categorical)

- ★ University & High school graduated persons use more credit card and also default more.
- ★ Singles use credit cards more than that of Married.



# DATA EXPLORATION - Features (continuous)

- ★ Age group between 30 to 40 use Credits more.
- ★ Hence default is also more in this age group.





#### DATA CLEANING & FEATURE ENGINEERING

- Renaming the columns for better understandings (in Payments features)
- ★ Consolidating the <u>ambiguous</u> values (in Education, Marriage features)
- ★ One hot <u>encoding</u> (Education, Marriage, Pay)
- ★ Label encoding (Sex )
- ★ <u>Dropping</u> unnecessary features

# MODELLING

Logistic Regression

2. Decision tree

3. Random Forest

4. XGBoost

\_\_\_

### MODEL TESTING

|   | Classifier          | Train Accuracy | Test Accuracy | Precision Score | Recall Score | F1 Score |
|---|---------------------|----------------|---------------|-----------------|--------------|----------|
| 0 | Logistic Regression | 0.752963       | 0.754685      | 0.693385        | 0.790244     | 0.738653 |
| 1 | Decision tree Clf   | 0.708723       | 0.707866      | 0.643709        | 0.738432     | 0.687825 |
| 2 | Random Forest CLf   | 0.999010       | 0.839569      | 0.810376        | 0.860606     | 0.834736 |
| 3 | Xgboost Clf         | 0.899320       | 0.825173      | 0.781582        | 0.856209     | 0.817196 |

- → Random forest model, even though it is overfitting, gives the highest F1-score (mean of Precision & Recall).
- → Decision tree model performs poorly on this dataset.

# MODEL TESTING (AUC\_ROC curve)

- → Random Forest gives the best score of <u>91%</u> followed by XGBoost (<u>90%</u>).
- → Hence we can conclude that Random Forest is the best ML model for this dataset.



### **IMPROVEMENTS**

- ★ We can further increase the accuracy of the model using:
  - More <u>Quality</u> data
  - Better <u>fine-tuning</u> of hyperparameters
- ★ Thus, Defaulters can be predicted in advance and help company <u>reduce the losses.</u>

# THANKYOU