System Design Document (SDD)

Применение сверточных нейронных сетей для сегментации сосудов при наличии стеноза с использованием данных рентгеновской коронарографии

1. Введение

1.1 Цель проекта

Цель проекта — автоматизировать процесс сегментации коронарных сосудов для обнаружения стенозов, что является ключевым для диагностики и лечения сердечнососудистых заболеваний.

1.2 Описание проекта

Этот проект фокусируется на использовании сверточных нейронных сетей (СНС) для анализа изображений, полученных методом рентгеновской коронарографии. СНС способны обучаться на большом объеме данных, выявляя сложные паттерны и особенности, что делает их идеальными для задач сегментации изображений, особенно в медицинской сфере, где точность критически важна.

2. Обзор системы

2.1 Архитектура системы

- Входные данные: Рентгеновские изображения коронарных ангиограмм.
- Обработка данных: Предварительная обработка изображений для улучшения контраста и выделения сосудов.
- **Модель сегментации**: СНС, реализованная с использованием архитектуры U-Net с остаточными блоками.
- **Вывод**: Сегментированные изображения с выделенными коронарными сосудами и обнаруженными стенозами.
- **Оценка модели**: Метрики точности, полноты и F1-score для оценки производительности модели.

2.2 Компоненты системы

1. Датасет:

- Изображения и маски коронарных сосудов.
- Аннотации в формате COCO JSON.

Модель:

• U-Net с остаточными блоками.

3. Процесс обучения:

- Генераторы данных для загрузки и предварительной обработки.
- Обучение модели с использованием функции потерь.

4. Процесс оценки:

- Оценка производительности модели на тестовом наборе данных.
- Визуализация результатов.

3. Подготовка данных

3.1 Сбор и организация данных

- Сбор рентгеновских изображений коронарных ангиограмм.
- Организация данных в директории: images и masks.

3.2 Аннотирование данных

- Создание масок для сосудов и областей стеноза.
- Сохранение аннотаций в формате COCO JSON.

4. Разработка модели

4.1 Создание архитектуры модели

- Определение архитектуры U-Net с остаточными блоками.
- Реализация функции для создания модели U-Net.

4.2 Настройка гиперпараметров

- Выбор оптимальных параметров для слоев сверточных нейронных сетей.
- Настройка параметров обучения (количество эпох, скорость обучения).

5. Обучение модели

5.1 Подготовка генераторов данных

- Создание класса MyGenerator для загрузки и предварительной обработки данных.
- Разделение данных на тренировочный, валидационный и тестовый наборы.

5.2 Запуск процесса обучения

- Обучение модели на тренировочном наборе данных.
- Валидация модели на валидационном наборе данных.
- Сохранение наилучшей модели по результатам валидации.

6. Оценка и тестирование модели

6.1 Оценка производительности модели

• Расчет метрик точности, визуальная оценка масок.

6.2 Тестирование модели на тестовом наборе данных

• Запуск модели на тестовых изображениях.

6.3 Визуализация результатов

- Визуализация предсказанных масок на тестовых изображениях.
- Создание отчетов по результатам тестирования.

7. Развертывание модели

7.1 Подготовка модели для развертывания

• Сохранение обученной модели в формате, подходящем для развертывания.

8. Документация и презентация результатов

8.1 Подготовка документации проекта

- Написание технической документации по каждому этапу проекта.
- Создание инструкций по развертыванию и использованию модели.

8.2 Презентация результатов

- Подготовка презентации с результатами проекта.
- Демонстрация работы модели и обсуждение результатов.