UNIVERSITETET I OSLO

Det matematisk-naturvitenskapelige fakultet

Eksamen i	MAT-INF 1100 — Modellering og
	beregninger.
Eksamensdag:	Mandag 5. desember 2011.
Tid for eksamen:	9:00-13:00.
Oppgavesettet er på 4	sider.

Vedlegg: Formelark.

Tillatte hjelpemidler: Godkjent kalkulator.

Kontroller at oppgavesettet er komplett før du begynner å besvare spørsmålene. Husk å fylle inn kandidatnummer under.

Første del av eksamen består av 10 flervalgsoppgaver som teller 3 poeng hver. Det er bare ett riktig svaralternativ på hver av disse oppgavene. Dersom du svarer feil eller lar være å krysse av på en oppgave, får du null poeng. Du blir altså ikke "straffet" for å gjette. Andre del av eksamen består av tradisjonelle oppgaver. I denne delen teller hvert av de 7 delspørsmålene 10 poeng. Den totale poengsummen er altså maksimalt 100 poeng. I andre del av eksamen må du begrunne hvordan du har kommet fram til resultatene dine. Svar som ikke er begrunnet får 0 poeng selv om de er riktige!

Husk å levere arkene med flervalgssvarene!

Del 1: Flervalgsoppgaver								
Oppgave 1. Løsningen til differensialligningen $y'' + 4y' - 5y = 0$ med initialverdier $y(0) = 1$ og $y'(0) = 1$ er								
$ y(x) = e^{-x}$								
$y(x) = 3e^{3x} - 3e^x$								
$y(x) = e^x + xe^x$								
$ y(x) = e^x $								
$y(x) = e^{-2x}$								
Oppgave 2. Løsningen til differensialligningen $y'' - 4y' + 5y = 0$ med initialverdier $y(0) = 1$ og $y'(0) = 2$ er								
$y(x) = e^{2x} \cos x$								

(Fortsettes på side 2.)

 $y(x) = e^x \cos 2x$

 $y(x) = e^{2x}(\cos x + \sin x)$

 $y(x) = e^x(\cos 2x + \sin 2x)$

Oppgave 3. Løsningen til differensialligningen $y'+y^2x^3=0$ med initialverdi $y(0)=1$ er
Oppgave 4. Vi skal løse differensialligninger numerisk. For fire av disse ligningene kan vi få store problemer om vi velger uheldige startverdier for x og t . For hvilken ligning vil vi aldri kunne få store problemer? $\begin{array}{cccc} x' = \arcsin(t+x) \\ x' = \sin(x^2+t) \\ x' = x/(1+t) \\ x' = \sqrt{1+x} \\ x' = 1/(1+x^3) \end{array}$
Oppgave 5. Vi ser på tre numeriske metoder for å finne nullpunkter for funksjoner: halveringsmetoden, sekantmetoden og Newtons metode. Hvilke (n) av disse metodene vil alltid gi liten feil, uavhengig av antall iterasjoner, og for alle førstegradspolynom?
 □ Bare halveringsmetoden □ Bare sekantmetoden □ Bare Newtons metode □ Bare Newtons metode og halveringsmetoden □ Bare sekantmetoden og Newtons metode
Oppgave 6. En tekst er lagret i en fil med en standard koding, og et av tegnene er kodet med tre bytes. Hvilken koding er filen da kodet med? UTF-8 UTF-16 ISO Latin-1 ASCII UTF-32
Oppgave 7. Du skal bruke halveringsmetoden til å finne nullpunktet til funksjonen $f(x) = x^2 - 2$ og begynner med intervallet $[0, 2]$. Hva er intervallet etter to steg?

Oppgave 8. Vi skal beregne en tilnærming til den andrederiverte f''(0)til en funskjon f(x) ved hjelp av tilnærmingen

$$f''(0) \approx \frac{f(h) - 2f(0) + f(-h)}{h^2}.$$

Hvis	vi ser	bort	fra	avrunc	dingsfeil	${ m s} \mathring{ m a}$	fins	\det	et	naturli	g tall	d slik	at	denne
tilnæ	rming	en er	eksa	akt for	polynor	ner	av g	grad	d,	men ikŀ	e gra	dd+1	. V	erdien/
av d	er													

- \sqcap 1
- \square 2
- \square 3
- \Box 5

Oppgave 9. Differensialligningen $x''' - t^2x' + 5t = 0$ skal skrives som et system av førsteordens differensialligninger. Hvilket system er riktig?

- $x_1' = x_2, \quad x_2' = x_3, \quad x_3' = t^2 x_2 5t$
- $x_1' = x_2, \quad x_2' = x_1, \quad x_3' = t^2 x_2 5t$
- $x_1' = x_2, \quad x_2' = x_3, \quad x_3' = t^2 x_1 5t$

Oppgave 10. Hvilket av følgende utsagn om differensiallikninger er korrekt?

- Alle andreordens likninger har nøyaktig 2 løsninger
- En førsteordens differensiallikning har alltid en entydig løsning når verdien til den ukjente funksjonen er gitt i et punkt
- En lineær, andreordens likning med konstante koeffissienter har alltid en entydig løsning når verdien til den ukjente funksjonen og dens førstederiverte er gitt i ett punkt
- Eulers metode er eksakt når differensiallikningen er av første orden
- Vi kan alltid legge sammen to løsninger av en differensiallikning og få en ny løsning

Del 2

Husk at i denne delen må alle svar begrunnes!

Oppgave 1.

a) Vis at differensligningen

$$3x_{n+2} - 7x_{n+1} + 2x_n = n$$
, $x_0 = 1$, $x_1 = 0$

har løsningen

$$x_n = \frac{1}{4}(1 + 3^{-n+1} - 2n).$$

b) Anta at vi simulerer differensligningen i (a) på datamaskin med 64 bits flyttall. Hvordan vil den beregnende løsningen oppføre seg for store verdier av n?

Oppgave 2. La $\{x_n\}_{n=1}^{\infty}$ betegne Fibonacci-følgen gitt ved differensligningen

$$x_{n+2} = x_n + x_{n+1}, \quad n \ge 1, \quad x_1 = 1, \quad x_2 = 1.$$

La $y_n = x_{4n}$ betegne følgen som består av hvert fjerde ledd i Fibonaccifølgen. Vis ved induksjon at y_n inneholder 3 som faktor for alle $n \geq 1$.

Oppgave 3. Du skal kode teksten x = ABAAA med aritmetisk koding. Vis at vi kan organisere kodingen slik at den aritmetiske koden ligger i intervallet I = [a, b) = [0.64, 0.72192).

Finn tallet på formen $j/2^k$, med minst mulig heltall k, som ligger i I, og bestem fra dette en koding av teksten \boldsymbol{x} . Hvor mange bits består koden av?

Oppgave 4. I denne oppgaven er det mulig å løse (c) selv om du ikke har svart på (b).

Vi har gitt differensialligningen

$$x' = t \sin x, \quad x(0) = 1.$$

- a) Regn ut x'(0), Taylorpolynomet av første grad $p_1(t)$ til løsningen i a = 0 og regn ut $p_1(0.1)$ som en tilnærming til x(0.1).
- b) Deriver begge sider av differensialligningen med hensyn på t, regn ut x''(0) og finn det kvadratiske Taylor-polynomet p_2 til løsningen om a = 0. Bruk $p_2(0.1)$ som en annen tilnærming til x(0.1).
- c) Finn en øvre grense for den absolutte feilen i tilnærmingen i (a) (vi ser bort fra avrundingsfeil).