Differential Geometry

Module I

Chapter 4 : Surfaces

June 14, 2021

n-Surface

Definition (n-Surface)

A non-empty subset S of \mathbb{R}^{n+1} is an n-surface if it is of the form $S = f^{-1}(c)$ where $f: U \to \mathbb{R}$, U open subset of \mathbb{R}^{n+1} is a smooth function with the property that $\nabla f(p) \neq 0$ for every $p \in S$.

n = 1 plane curve

n=2 surface

n > 2 hypersurface

The n-surfaces are subspaces of dimension n.

Summary : Surface

Definition (Surface)

- ▶ The subset *S* of the level set of a smooth function *f*
- ▶ The points of the surface S are regular points of f
- Depends on S, but independent of the function f

Why independent of f?

- ▶ Level sets are independent of the function
- Different level sets can have same subset

Example : *n*-sphere

Definition (n-sphere)

The unit *n*-sphere $x_1^2 + x_2^2 + \cdots + x_{n+1}^2 = 1$ is the level set $f^{-1}(1)$ of the function $f: \mathbb{R}^{n+1} \to \mathbb{R}$ defined by

$$f(x_1, x_2, \cdots, x_{n+1}) = x_1^2 + x_2^2 + \cdots + x_{n+1}^2$$
 (1)

n-Sphere as level set

$$f(x_1, x_2, \dots, x_{n+1}) = x_1^2 + x_2^2 + \dots + x_{n+1}^2$$

$$f^{-1}(1) = \{(x_1, x_2, \dots, x_{n+1}) : f(x_1, x_2, \dots, x_{n+1}) = 1\}$$

$$= \{(x_1, x_2, \dots, x_{n+1}) : x_1^2 + x_2^2 + \dots + x_{n+1}^2 = 1\}$$

This level set is the set of all points in \mathbb{R}^{n+1} satsifying

$$x_1^2 + x_2^2 + \dots + x_{n+1}^2 = 1 \tag{2}$$

n-Spheres

The *n*-Sphere is an *n*-dimensional surface in \mathbb{R}^{n+1} .

n = 1 unit circle

$$x_1^2 + x_2^2 = 1$$

n = 2 unit sphere

$$x_1^2 + x_2^2 + x_3^2 = 1$$

n > 2 hypersphere

$$x_1^2 + x_2^2 + \dots + x_{n+1}^2 = 1$$

Example : *n*-plane

Definition (n-plane)

An *n*-plane $a_1x_1 + a_2x_2 + \cdots + a_{n+1}x_{n+1} = b$ is the level set $f^{-1}(b)$ of the function $f: \mathbb{R}^{n+1} \to \mathbb{R}$ defined by

$$f(x_1, x_2, \dots, x_{n+1}) = a_1x_1 + a_2x_2 + \dots + a_{n+1}x_{n+1}$$
 (3)

n-Plane as level set

$$f(x_1, x_2, \dots, x_{n+1}) = a_1 x_1 + a_2 x_2 + \dots + a_{n+1} x_{n+1}$$

$$f^{-1}(b) = \{(x_1, x_2, \dots, x_{n+1}) : f(x_1, x_2, \dots, x_{n+1}) = b\}$$

$$= \{(x_1, x_2, \dots, x_{n+1}) : a_1 x_1 + a_2 x_2 + \dots a_{n+1} x_{n+1} = b\}$$

This level set is the set of all points in \mathbb{R}^{n+1} satsifying

$$a_1x_1 + a_2x_2 + \cdots + a_{n+1}x_{n+1} = b$$
 (4)

n-Planes

The *n*-Plane is an *n*-dimensional surface in \mathbb{R}^{n+1} .

$$n=1$$
 line in \mathbb{R}^2

$$a_1x_1+a_2x_2=b$$

n=2 plane in \mathbb{R}^3

$$a_1x_1 + a_2x_2 + a_3x_3 = b$$

n > 2 hyperplane in \mathbb{R}^{n+1}

$$a_1x_1 + a_2x_2 + \cdots + a_{n+1}x_{n+1} = b$$

Parallel Planes

Definition (Parallel Planes)

Two *n*-planes are parallel if they are of the form, $f^{-1}(b_1)$ and $f^{-1}(b_2)$ where $f(x_1, x_2, \dots, x_{n+1}) = a_1x_1 + a_2x_2 + \dots + a_{n+1}x_{n+1}$ and $b_1, b_2 \in \mathbb{R}$.

Example

The planes P_1 and P_2 are parallel.

$$P_1: x_1 + 2x_2 - 3x_3 = 1$$

$$P_2: x_1 + 2x_2 - 3x_3 = 2$$

Cylinder over a Surface

Definition

Let S be an (n-1) surface in \mathbb{R}^n , given by $S=f^{-1}(c)$, where $f:U\to\mathbb{R}$ such that $\nabla f(p)\neq 0,\ \forall p\in S$

$$\nabla f(p) = \left(p, \frac{\partial f}{\partial x_1}(p), \frac{\partial f}{\partial x_2}(p), \cdots, \frac{\partial f}{\partial x_n}(p)\right) \neq (p, 0), \ \forall p \in S$$

Let $g: U \times \mathbb{R} \to \mathbb{R}$, where $g(x_1, x_2, \dots, x_{n+1}) = f(x_1, x_2, \dots, x_n)$.

$$\nabla g(q) = \left(q, \frac{\partial f}{\partial x_1}(q), \frac{\partial f}{\partial x_2}(q), \cdots, \frac{\partial f}{\partial x_n}(q), 0\right) \neq (q, 0), \ \forall q \in g^{-1}(c)$$

This *n*-surface $g^{-1}(c)$ is the **cylinder over** S.

Cylinder over Surface: Example

- $S: x_1^2 + x_2^2 = 1$, unit circle.
- $ightharpoonup S = f^{-1}(1)$ where $f(x_1, x_2) = x_1^2 + x_2^2$.
- $ightharpoonup
 abla f(x_1, x_2) = (x_1, x_2, 2x_1, 2x_2) \neq (x_1, x_2, 0, 0), \text{ since } (0, 0) \notin S$

Cylinder over Surface: Example

- $S: x_1^2 + x_2^2 = 1$, unit circle.
- $S = f^{-1}(1)$ where $f(x_1, x_2) = x_1^2 + x_2^2$.
- $ightharpoonup
 abla f(x_1, x_2) = (x_1, x_2, 2x_1, 2x_2) \neq (x_1, x_2, 0, 0), \text{ since } (0, 0) \notin S$
- $p(x_1, x_2, x_3) = x_1^2 + x_2^2$
- $ightharpoonup g^{-1}(1)$ is the usual cylinder in \mathbb{R}^3 and
- $\nabla g(x_1, x_2, x_3) = (x_1, x_2, x_3, 2x_1, 2x_2, 0) \neq (x_1, x_2, x_3, 0, 0, 0)$ since $(0, 0, z) \notin g^{-1}(1)$

Cylinder over Surface : Examples

Surface of Revolution

Obtained by rotating a curve about an axis

- ▶ $C = f^{-1}(c)$ where $U \subset \mathbb{R}^2$ with $x_2 > 0$ That is, C is a curve in \mathbb{R}^2 not touching the x_1 axis

Surface of Revolution

Obtained by rotating a curve about an axis

- $f: U \to \mathbb{R}, \ \nabla f(p) \neq 0, \ \forall p \in U$
- ► $C = f^{-1}(c)$ where $U \subset \mathbb{R}^2$ with $x_2 > 0$ That is, C is a curve in \mathbb{R}^2 not touching the x_1 axis
- $g: U \times \mathbb{R} \to \mathbb{R}, \ g(x_1, x_2, x_3) = f(x_1, (x_2^2 + x_3^2)^{\frac{1}{2}})$
- ▶ $S = g^{-1}(c)$ is a surface of revolution of C about x_1 axis.

Surface of revolution of Curve: Examples

Extreme Points

Definition (Extreme Point)

Let an *n*-surface $S\subset U$ and $g:U\to\mathbb{R}$ be a smooth function. Then $p\in S$ is an extreme point of g on the surface S if

- ▶ $g(p) \le g(q), \forall q \in S$ or
- ▶ $g(p) \ge g(q), \forall q \in S.$

Theorem

Let S be an n-surface in \mathbb{R}^{n+1} , $S = f^{-1}(c)$ where $f: U \to \mathbb{R}$ such that $\nabla f(q) \neq 0$, $\forall q \in S$. Let $g: U \to \mathbb{R}$ be a smooth function and $p \in S$ be an extreme point of g on S. Then there exists a real number λ such that $\nabla g(p) = \lambda \nabla f(p)$.

Extreme Points: Proof

- \triangleright $v \in S_p \implies v = \dot{\alpha}(t_0), \ \alpha : I \to S, \ \alpha(t_0) = p$
- ▶ If p is an extreme point of g, then t_0 is an extreme point of $g \circ \alpha$

$$(g \circ \alpha)'(t_0) = 0$$
$$\nabla g(\alpha(t_0)) \cdot \dot{\alpha}(t_0) = 0$$
$$\nabla g(p) \cdot v = 0$$

- $ightharpoonup
 abla g(p) \in S_p^{\perp}$
- $\triangleright [\nabla f(p)]^{\perp} = S_p$
- ▶ If $g(p) \in S_p^{\perp}$, then $\nabla g(p) = \lambda \nabla f(p)$ Since, S_p^{\perp} is 1-dimensional and is spanned by $\nabla f(p)$