

Aproximación Numérica de la Ecuación de Laplace en un Cuarto de Anillo Circular

Daniel Fabian Serrano Galvis Carlos Andrés Ordóñez Cerón

Introducción

La ecuación de Laplace, $\Delta u = 0$, es una ecuación diferencial clave en física y matemáticas aplicadas, modelando fenómenos como el flujo de calor en equilibrio, el potencial eléctrico y la distribución de temperaturas. En este trabajo, se resuelve numéricamente en un cuarto de anillo circular en el primer cuadrante $(1 < x^2 + y^2 < 4, x, y > 0)$. Utilizamos un esquema de diferencias finitas en coordenadas polares para aproximar u(x,y), evaluando la precisión del método frente a la solución exacta y analizando su convergencia numérica.

Definición del Problema

Resolver $\Delta u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ en el dominio $\Omega = \{(x,y) \in \mathbb{R}^2 : x,y>0, 1 < x^2+y^2 < y < 0\}$ 4}, con condiciones de borde Dirichlet:

•
$$u(x,0) = \ln(x), x \in [1,2],$$

•
$$u(x,y) = 0$$
, en $x^2 + y^2 = 1$,

•
$$u(0,y) = \ln(y), y \in [1,2],$$

•
$$u(x,y) = 0$$
, en $x^2 + y^2 = 1$,
• $u(x,y) = \ln(2)$, en $x^2 + y^2 = 4$.

La solución exacta es $u(x,y) = \frac{1}{2} \ln(x^2 + y^2)$.

Método Numérico

Cambio a coordenadas polares: Se transforma el problema a coordenadas polares (r, θ) con $x = r\cos(\theta)$, $y = r\sin(\theta)$, definiendo $\Omega = \{(r, \theta) : 1 < r < 2, 0 < \theta < \pi/2\}$. La ecuación de Laplace se convierte en:

$$\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} = 0.$$

Y las condiciones de borde:

•
$$u(r,0) = \ln(r), \quad r \in [1,2],$$

•
$$u(1,\theta) = 0, \quad \theta \in [0,\pi/2],$$

•
$$u(r, \pi/2) = \ln(r), \quad r \in [1, 2].$$

•
$$u(2,\theta) = \ln(2), \quad \theta \in [0,\pi/2].$$

Esquema de diferencias finitas: Se discretiza en una malla $r_i=1+ih_r,\,\theta_i=jh_\theta,\,$ con $h_r = 1/N_r, h_\theta = \pi/(2N_\theta), i = 0, \dots, N_r, j = 0, \dots, N_\theta$. Las derivadas se aproximan mediante diferencias centradas:

$$\frac{\partial^2 u}{\partial r^2} \approx \frac{u_{i+1,j} - 2u_{i,j} + u_{i-1,j}}{h_r^2}, \quad \frac{\partial u}{\partial r} \approx \frac{u_{i+1,j} - u_{i-1,j}}{2h_r}, \quad \frac{\partial^2 u}{\partial \theta^2} \approx \frac{u_{i,j+1} - 2u_{i,j} + u_{i,j-1}}{h_\theta^2}.$$

Sistema de ecuaciones: Sustituyendo en la ecuación, para nodos interiores (i = 1) $1, \ldots, N_r - 1, j = 1, \ldots, N_{\theta} - 1$), se obtiene:

$$a_{i,j}u_{i+1,j} + b_{i,j}u_{i-1,j} + c_{i,j}u_{i,j+1} + d_{i,j}u_{i,j-1} + e_{i,j}u_{i,j} = 0,$$

donde $a_{i,j} = h_{\theta}^2 r_i^2 + \frac{h_r h_{\theta}^2 r_i}{2}$, $b_{i,j} = h_{\theta}^2 r_i^2 - \frac{h_r h_{\theta}^2 r_i}{2}$, $c_{i,j} = d_{i,j} = h_r^2$, $e_{i,j} = -(2h_{\theta}^2 r_i^2 + 2h_r^2)$, ajustado por condiciones de borde.

Sistema matricial: El sistema se expresa como $A\mathbf{u} = \mathbf{b}$, con \mathbf{u} las incógnitas interiores y A una matriz de cinco diagonales:

$$A = \begin{bmatrix} D_1 & T_1 & 0 & \cdots & 0 \\ S_2 & D_2 & T_2 & \ddots & \vdots \\ 0 & S_3 & D_3 & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & T_{N_r-2} \\ 0 & \cdots & 0 & S_{N_r-1} & D_{N_r-1} \end{bmatrix},$$

donde D_i es tridiagonal de tamaño $(N_{\theta}-1)\times(N_{\theta}-1)$:

$$D_{i} = \begin{bmatrix} e_{i,1} & c_{i,1} & 0 & \cdots & 0 \\ d_{i,2} & e_{i,2} & c_{i,2} & \ddots & \vdots \\ 0 & d_{i,3} & e_{i,3} & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & c_{i,N_{\theta}-2} \\ 0 & \cdots & 0 & d_{i,N_{\theta}-1} & e_{i,N_{\theta}-1} \end{bmatrix},$$

 $T_i = \operatorname{diag}(a_{i,1}, \dots, a_{i,N_{\theta}-1}), \quad S_i = \operatorname{diag}(b_{i,1}, \dots, b_{i,N_{\theta}-1}).$ El vector $\mathbf{b} = [b_1, b_2, \dots, b_{(N_r-1)(N_{\theta}-1)}]^T$ incorpora las condiciones de borde en los nodos correspondientes a nodos exteriores, mientras que es 0 en los no-Por otro lado, las incógnitas a encontrar son *u* $\begin{bmatrix} u_{1,1} & u_{1,2} & \dots & u_{1,N_{\Theta}-1} & \dots & u_{N_r-1,1} & u_{N_r-1,2} & \dots & u_{N_r-1,N_{\Theta}-1} \end{bmatrix}$ Finalmente cando por -1, el sistema se reformula como $-A\mathbf{u} = -\mathbf{b}$. El sistema a resolver es $\mathbf{u} = (-A)^{-1}(-\mathbf{b})$, y en la siguiente sección se demostrará que -A es monótona.

Condición de Monotonía

Se demuestra que -A es monótona usando el Teorema 2: -A debe ser una matriz L irreducible, débilmente diagonal dominante y estrictamente diagonal dominante en alguna fila.

- Propiedades de -A: Dado que A tiene $e_{i,j} < 0$, $a_{i,j}, b_{i,j}, c_{i,j}, d_{i,j} \ge 0$: Elementos de $-A: -e_{i,j} > 0$ (diagonal), $-a_{i,j}, -b_{i,j}, -c_{i,j}, -d_{i,j} \leq 0$ (fuera de diagonal).
- Dominancia: Para nodos interiores, $|-e_{i,j}| = a_{i,j} + b_{i,j} + c_{i,j} + d_{i,j}$ (débil); para i = 1 $\forall i = N_r - 1, |-e_{i,j}| > \sum |-a_{i,j} - b_{i,j} - c_{i,j} - d_{i,j}|$ (estricta).
- Irreducibilidad: El grafo de -A es conexo, idéntico al de A. Ejemplo con $N_r - 1 = N_\theta - 1 = 3$:

$$A = \begin{bmatrix} e_{1,1} & c_{1,1} & 0 & a_{1,1} & 0 & 0 & 0 & 0 & 0 \\ d_{1,2} & e_{1,2} & c_{1,2} & 0 & a_{1,2} & 0 & 0 & 0 & 0 \\ 0 & d_{1,3} & e_{1,3} & 0 & 0 & a_{1,3} & 0 & 0 & 0 \\ b_{2,1} & 0 & 0 & e_{2,1} & c_{2,1} & 0 & a_{2,1} & 0 & 0 \\ 0 & b_{2,2} & 0 & d_{2,2} & e_{2,2} & c_{2,2} & 0 & a_{2,2} & 0 \\ 0 & 0 & b_{2,3} & 0 & d_{2,3} & e_{2,3} & 0 & 0 & a_{2,3} \\ 0 & 0 & 0 & b_{3,1} & 0 & 0 & e_{3,1} & c_{3,1} & 0 \\ 0 & 0 & 0 & 0 & b_{3,2} & 0 & d_{3,2} & e_{3,2} & c_{3,2} \\ 0 & 0 & 0 & 0 & 0 & b_{3,3} & 0 & d_{3,3} & e_{3,3} \end{bmatrix},$$

con conexiones: (i,j) a (i+1,j) $(a_{i,j})$, (i-1,j) $(b_{i,j})$, (i,j+1) $(c_{i,j})$, (i,j-1) $(d_{i,j})$. El grafo asociado (malla 3×3) es:

El grafo es conexo, confirmando que A es monótona para $h_r < 4$.

Resultados y Análisis

Descripción general: Se implementó un esquema de diferencias finitas en coordenadas polares para resolver numéricamente la ecuación de Laplace en $\Omega = \{(x,y): x,y>$ $0, 1 < x^2 + y^2 < 4$ }. La solución u_{num} se comparó con la exacta $u(x, y) = \frac{1}{2} \ln(x^2 + y^2)$, evaluando errores y convergencia en varias normas.

Implementación del esquema numérico: En Python, se discretizó el dominio en una malla (r,θ) con $N_r = N_\theta = N$ (N = 9, 17, 33, 65, 129), usando $h_r = 1/(N-1)$, $h_\theta = 1/(N-1)$ $\pi/(2(N-1))$. La matriz A se construyó como dispersa con SciPy (lil_matrix y csr_matrix), y el sistema $-A\mathbf{u} = -\mathbf{b}$ se resolvió con un método directo (spsolve), incorporando las condiciones de borde.

Resultados numéricos y análisis de errores: Se calcularon errores en normas L_2 , L_{∞} , y energía ($\|\cdot\|_h = h_r\|\cdot\|_2$), con tasas de convergencia estimadas como $\log(e_{k-1}/e_k)/\log(h_{k-1}/h_k)$. Resultados en la tabla siguiente:

	Nr	N_{θ}	h	L_2 Error	L_{∞} Error	$\ \cdot\ _h$ Error	r_{L_2}	$r_{L_{\infty}}$	$r_{\ .\ _h}$
	9	9	1.25×10^{-1}	3.914891×10^{-5}	7.651278×10^{-5}	4.89361×10^{-6}	NaN	NaN	NaN
	17	17	6.25×10^{-2}	1.052465×10^{-5}	1.932953×10^{-5}	6.5779×10^{-7}	2.0336	2.0767	3.0749
3	33	33	3.125×10^{-2}	2.72096×10^{-6}	4.85019×10^{-6}	8.503×10^{-8}	2.0655	2.1632	3.1554
6	65	65	1.5625×10^{-2}	6.9134×10^{-7}	1.21409×10^{-6}	1.08×10^{-8}	2.0394	2.0844	3.0844
12	29	129	7.8125×10^{-3}	1.7421×10^{-7}	3.0357×10^{-7}	1.36×10^{-9}	2.0211	2.0431	3.0436

Los errores disminuyen con N, con tasas de convergencia pprox 2 para L_2 y L_{∞} (esperado para diferencias centradas de orden 2), y ≈ 3 para $\|\cdot\|_h$ por el factor h_r .

Visualización: Se generaron mapas de contorno 2D para N=65, transformando (r,θ) a (x,y), mostrando la solución numérica (u_{num}) , la solución exacta (u_{exact}) , y el error absoluto (Figuras 1-3).

Figure 1. Soluciones 2D: numérica, exacta y error absoluto.

Conclusiones

El esquema de diferencias finitas en coordenadas polares aproximó con éxito la ecuación de Laplace, con convergencia de orden 2 en L_2 y L_∞ , y 3 en $\|\cdot\|_h$. Los errores se concentran cerca de el centro, validando el método para dominios radiales. Este trabajo refuerza la utilidad de métodos numéricos en problemas aplicados.