Solution 11 - Subtyping

* If there is any problem, please contact TA.

Name: _____ Student ID: ____ Email: _____

Problem 1. (40 points) Remember in hw5, we extent tuples to records. Now we extend subtypes to records. Please give some subtyping rules for record type, then draw a derivation showing that $\{x : Nat, y : Nat, z : Nat\}$ is a subtype of $\{y : Nat\}$.

Solution.

$$e ::= ... | \{x_1 = e_1, ..., x_n = e_n\} | e.x$$

$$v ::= ... | \{x_1 = v_1, ..., x_n = v_n\}$$

$$t ::= ... | \{(x_1, t_1), ..., (x_n, t_n)\}$$

$$\begin{array}{c} e_{i} \rightarrow e'_{i} \\ \hline \{x_{1} = v_{1}, ..., x_{i-1} = v_{i-1}, x_{i} = e_{i}, ...\} \rightarrow \{x_{1} = v_{1}, ..., x_{i-1} = v_{i-1}, x_{i} = e'_{i}, ...\} \\ \hline \frac{e \rightarrow e'}{e.x \rightarrow e'.x} \\ \hline \{x_{1} = v_{1}, ..., x_{n} = v_{n}\}. x_{i} = v_{i} \\ \hline \Gamma \vdash e_{i} : t_{i} \\ \hline \Gamma \vdash \{x_{1} = e_{1}, ..., x_{n} = e_{n}\} : \{(x_{1}, t_{1}), ..., (x_{n}, t_{n})\} \\ \hline \Gamma \vdash e : \{(x_{1}, t_{1}), ..., (x_{n}, t_{n})\} \\ \hline \Gamma \vdash e.x_{i} : t_{i} \\ \hline n \leq m \\ \hline \{l_{i} : T_{i}^{i \in 1...m}\} <= \{l_{i} : T_{i}^{1...n}\} \\ \hline \forall 0 \leq i \leq n : S_{i} <= T_{i} \\ \hline \{l_{i} : S_{i}^{i \in 1...n}\} <= \{l_{i} : T_{i}^{1...n}\} \\ \hline 0 \leq i \leq j \leq n \\ \hline \{l_{0} : S_{0}, ..., l_{i} : S_{i}, ..., l_{n} : S_{n}\} <= \{l_{0} : S_{0}, ..., l_{i} : S_{i}, ..., l_{n} : S_{n}\} \end{array}$$

$$\frac{\overline{\{x:Nat,y:Nat,z:Nat\}<=\{y:Nat,x:Nat,z:Nat\}}(S-Exchange) \quad \overline{\{y:Nat,x:Nat,z:Nat\}<=\{y:Nat\}}(S-RecordWidth)}{\{x:Nat,y:Nat,z:Nat\}<=\{y:Nat\}}$$

Problem 2. (60 points) Prove Lemma [Inversion of the subtype relation]:

1. If $S \leq T_1 \to T_2$, then S has the form $S_1 \to S_2$, with $T_1 \leq S_1$ and $S_2 \leq T_2$.

2. If $S <= \{l_i : T_i^{i \in l \dots n}\}$, then S has the form $\{k_j : S_j^{j \in l \dots m}\}$, with at least the labels $\{l_i^{i \in l \dots n}\}$ (i.e., $\{l_i^{i \in l \dots n}\}\subseteq \{k_j^{j \in l \dots m}\}$) and with $S_j <= T_i$ for each common label $l_i = k_j$.

Solution.

- 1. Prove by the derivation of $S \leq T_1 \rightarrow T_2$
 - (1.) Case $\frac{T_1 \leq =S_1}{S_1 \rightarrow S_2 \leq =T_1 \rightarrow T_2}$ (S-Function)
 - (1) $S = S_1 \rightarrow S_2$ (by assumption)
 - (2) $T_1 \ll S_1$ (by assumption)
 - (3) $S_2 \ll T_2$ (by assumption)
 - (2.) Case $\overline{S \le S}$ (S-Reflexivity)
 - (1) $S = T_1 \rightarrow T_2$ (by assumption)
 - (2) $T_1 \ll T_1$ (by S-Reflexivity)
 - (3) $T_2 \ll T_2$ (by S-Reflexivity)
 - (3.) Case $\frac{S <= Q}{S <= T}$ (S-Transitivity)
 - (1) $T = T_1 \rightarrow T_2$ (by assumption)
 - (2) $Q \ll T$ (by assumption)
 - (3) $Q \le T_1 \to T_2$ (by (1) and (2))
 - (4) $Q = Q_1 \to Q_2$ and $T_1 <= Q_1$ and $Q_2 <= T_2$ (by (3) and I.H.)
 - (5) $S \le Q$ (by assumption)
 - (6) $S \le Q_1 \to Q_2$ (by (4) and (5))
 - (7) $S = S_1 \rightarrow S_2$ and $Q_1 \le S_1$ and $S_2 \le Q_2$ (by (6) and I.H.)
 - (8) $T_1 \le Q_1 \le S_1$ and $S_2 \le Q_2 \le T_2$ (by (4), (7) and S-Transitivity)
- 2. Prove by the derivation of $S \leq \{l_i : T_i^{i \in l...n}\}$
 - (1.) Case $\frac{1}{S \leq S}$ (S-Reflexivity)
 - (1) $S \le \{l_i : T_i^{i \in l \dots n}\}$ (by assumption)
 - $(2) \{l_i^{i \in l \dots n}\} \subseteq \{l_i^{i \in l \dots n}\}$
 - (3) $\forall l_i = l_i : T_i \le T_i$ (by S-Reflexivity)
 - (2.) Case $\frac{S <= Q}{S <= T}$ (S-Transitivity)
 - (1) $T = \{l_i : T_i^{i \in l \dots n}\}$ (by assumption)
 - (2) $Q \ll T$ (by assumption)
 - (3) $Q \le \{l_i : T_i^{i \in l \dots n}\}$ (by (1) and (2))
 - (4) $Q = \{w_p : Q_p^{p \in l...r}\}$ and $\{l_i^{i \in l...n}\} \subseteq \{w_p^{p \in l...r}\}$ and $\forall l_i = w_p : Q_p <= T_i$ (by (3) and I.H.)
 - (5) $S \le Q$ (by assumption)
 - (6) $S \le \{w_p : Q_p^{p \in l \dots r}\}\$ (by (4) and (5))
 - (7) $S = \{k_j : S_j^{j \in l...m}\}$ and $\{w_p^{i \in 1...r}\} \subseteq \{k_j^{j \in 1...m}\}$ and $\forall w_p = k_j : S_j <= Q_p$ (by (6) and I.H.)
 - (8) $\{l_i^{i\in 1...n}\}\subseteq \{w_p^{p\in 1...r}\}\subseteq \{k_j^{j\in 1...m}\}$ and $\forall l_i=k_j:S_j<=T_i$ (by (4), (7) and S-Transitivity)

- (3.) Case $\frac{n \leq m}{\{l_i:T_i^{i \in 1...m}\} < = \{l_i:T_i^{1...n}\}} (\text{S-RecordWidth})$
 - (1) $S = \{l_i : T_i^{i \in 1...m}\}$ (by assumption)
 - (2) $n \le m$ (by assumption)
 - (3) $\{l_i^{i \in l...n}\} \subseteq \{l_i^{i \in l...m}\}$ (by (2))
 - (4) $\forall 0 \le i \le n : T_i \le T_i$ (by S-Reflexivity)
- (4.) Case $\frac{\forall 0 \leq i \leq n: S_i \leq =T_i}{\{l_i: S_i^{i \in 1...n}\} \leq \{l_i: T_i^{1...n}\}}$ (S-RecordDep)
 - (1) $S = \{l_i : S_i^{i \in 1...n}\}$ (by assumption)
 - $(2) \{l_i^{i \in l \dots n}\} \subseteq \{l_i^{i \in l \dots n}\}$
 - (3) $\forall 0 \le i \le n : S_i \le T_i$ (by assumption)
 - (4) $\forall l_i = l_i : S_i <= T_i \text{ (by (3))}$
- (5.) Case $\frac{0 \le i \le j \le n}{\{l_0:S_0,...,l_i:S_i,...,l_j:S_j,...,l_n:S_n\} < = \{l_0:S_0,...,l_j:S_j,...,l_n:S_n\}}$ (S-Exchange)
 - (1) $S = \{l_0 : S_0, ..., l_i : S_i, ..., l_j : S_j, ..., l_n : S_n\}$ (by assumption)
 - (2) $\{l_0, ..., l_i, ..., l_j, ..., l_n\} \subseteq \{l_0, ..., l_j, ..., l_i, ..., l_n\}$
 - (3) $\forall l_i = l_i : T_i \le T_i$ (by S-Reflexivity)