# Homework #4 Elliptic Curves

CNS Course Sapienza

#### Riccardo Prinzivalle, 1904064

November 20, 2020

#### 1 Homework Goal

This homework contains a basic introduction on Elliptic Curves (EC), the general idea on the math basis, the Discrete Logarithm Problem with EC and the practical utilize of EC in cryptography.

## 2 Elliptic Curves Motivation

Elliptic Curves are the main trend in asymmetric encryption today: why is their usage so spread? This question has a simple answer: it is sufficient to look at table 1, where there is a comparison of the key length needed to guarantee the same level of security.

| Algorithm Family      | Cryptosystems    | Security Level (bit) |      |      |       |
|-----------------------|------------------|----------------------|------|------|-------|
|                       |                  | 80                   | 128  | 192  | 256   |
| Integer Factorization | RSA              | 1024                 | 3072 | 7680 | 15360 |
| Discrete Logarithm    | DH, DSA, Elgamal | 1024                 | 3072 | 7680 | 15360 |
| Elliptic Curves       | ECDH, ECDSA      | 160                  | 256  | 384  | 512   |
| Symmetric key         | AES, 3DES        | 80                   | 128  | 192  | 256   |

Table 1: Key length comparison in public key and symmetric key algorithm

The bare minimum number of bits is defined by the symmetric key encryption scheme, we cannot have a smaller key with respect to the symmetric case and

have the same level of security; then asymmetric schemes need, in general, a large number of bits to guarantee the same level of security, the fact is that elliptic curves cryptography needs less than  $\frac{1}{10}$  of the bits needed for another asymmetric scheme supposed the same level of security, and this relationship become smaller as the level of security grows. Indeed, if one wants to use a public key cryptography scheme, elliptic curves are the suggested choice to guarantee security without using much computational effort.

### 3 Mathematical background

The base idea besides elliptic curves lies on common calculus background: everyone knows the circumference equation, isn't it? It is  $x^2 + y^2 = r^2$ , but what if we add coefficients in front of the variables? We end up with an ellipse:  $ax^2 + by^2 = r^2$ , whose graph can be seen in Fig. 1a.



Figure 1: Graphical comparison of ellipse and elliptic curve

Well, an elliptic curve is something much similar: the general equation is  $y^2 = x^3 + ax + b$ , and an example of it can be seen in Fig. 1b. We can easily see from the plot that this family of curves has symmetry with respect to x axis. In order to perform cryptography with elliptic curves, we need to reduce their

usage to a special family of them: instead of defining them over the real domain  $\mathbb{R}$ , we use the integer group  $\mathbb{Z}_p$  (which is a set of integer numbers with a group operator and is closed w.r.t. this operation), with p > 3. In addition, the elliptic curve equation is reduced in modp, and the coefficient must satisfy the following equation to remove useless or too easy to break curves:  $4a^3 + 27b^2 \neq 0$ . To fulfill the group operation, we need to add an imaginary point at infinity,  $\mathscr{O}$ .

Now that we have defined the elliptic curves of interest, we need to define a group over them, which is the basis of cryptography: in order to fulfill this task, we need a set of elements, which are the points belonging to the elliptic curves, and then we need a group operator to fulfill the group law. It is possible to have both a geometrical analytical interpretation of this operator; here we start with the geometrical one since it is easier to understand and more explicative.



Figure 2: Graphical interpretation of group operator

## 4 Discrete Logarithm Problem with Elliptic Curves

(a) Core (b) Preprocessing

Figure 3: Mix columns base functions

- 5 Use of Elliptic Curves in Cryptography
- 6 Conclusion