Vectors

Derek, Vignesh

2020

VECTORS [150 Marks]

- 1 Solve the following:
 - **a**) $\overrightarrow{OA} = \mathbf{a}$ and $\overrightarrow{OB} = \mathbf{b}$, where O is the origin. Given that lines OA and OB are parallel, $|\mathbf{a}| = 2$ and $\mathbf{a} \cdot \mathbf{b} = -2$, express \mathbf{b} in terms of \mathbf{a} .
 - **b**) A vector **a** is such that $\mathbf{a} = (\sqrt{2}\cos\alpha)\mathbf{i} (\cos\alpha)\mathbf{j} + (\sqrt{2}\sin\alpha)\mathbf{k}$, where $0 \le \alpha \le 2\pi$ and $|\mathbf{a}| = \sqrt{2}$. Find the value(s) of α .
 - c) The points A, B and C with respect to the origin are represented by the vectors \mathbf{a} , \mathbf{b} and \mathbf{c} respectively. It is given that $|\mathbf{b}| = 2$, $\mathbf{a} \cdot \mathbf{b} = k$ and $\mathbf{b} \cdot \mathbf{c} = 2$. Given further that point C divides the line AB such that AC : CB = 2 : 1, find k. [3]
 - d) Four vectors \mathbf{a} , \mathbf{b} , \mathbf{c} and \mathbf{d} exist such that $\mathbf{a} + \mathbf{b} + \mathbf{c} + \mathbf{d} = \mathbf{0}$. Show that $\mathbf{b} \times (\mathbf{a} + \mathbf{c}) = \mathbf{d} \times \mathbf{b}$.
 - e) Point A referred from the origin has vector $\mathbf{a} = \mathbf{i} + 2\mathbf{j} 2\mathbf{k}$. The line OA makes an angle of α with the y-axis and β with the z-axis, where $\alpha, \beta < \pi$. Show that $\alpha + \beta = \pi$.
- **2** Referred to the origin O, points A and B have position vectors given by **a** and **b** respectively. C_0 is the foot of perpendicular from A to OB with position vector \mathbf{c}_0 . The angle between lines OA and OB is α , where $0 < \alpha < \frac{\pi}{2}$.
 - **a**) By considering $\cos \alpha$, show that $|\mathbf{c}_0| = \mathbf{a} \cdot \hat{\mathbf{b}}$. [2]
 - **b**) The foot of perpendicular from C_0 to OA is C_1 . Show that $|\mathbf{c_1}| = \mathbf{a} \cdot \hat{\mathbf{b}}(\cos \alpha)$. [1]
 - **c**) C_n is the *n*th foot of perpendicular. State $|\mathbf{c}_n|$ in terms of a, b, n and α . [1]

- d) State the sum to infinity of scalar projections $|\mathbf{c}_0| + |\mathbf{c}_1| + \dots + |\mathbf{c}_n| + \dots$ [1]
- **3** Referred to the origin O, points A and B have position vectors given by: $\mathbf{a} = \mathbf{i} p^2 \mathbf{k}$ and $\mathbf{b} = \frac{2}{p} \mathbf{i} \mathbf{j} + \mathbf{k}$ respectively, where p is to be found. Given that $|\mathbf{a} \times \mathbf{b}|^2 = 4p^2 + 2$, find the value(s) that p can take.
- **4** The vector equation of l is given by $l : \mathbf{r} = \mathbf{a} + \lambda \mathbf{b}$, $\lambda \in \mathbb{R}$. Point F is the foot of perpendicular from origin O to the line l. If $|\mathbf{b}| = 1$ and $\mathbf{a} \cdot \mathbf{b} = 1$, express the position vector \overrightarrow{OF} in terms of \mathbf{a} and \mathbf{b} .
- 5 The equations of l and m are given by $l : \mathbf{r} = \mathbf{a} + \lambda \mathbf{b}$, $\lambda \in \mathbb{R}$ and $m : \mathbf{r} = \mathbf{b} + \mu \mathbf{a}$, $\mu \in \mathbb{R}$, where \mathbf{a} and \mathbf{b} are co-planar vectors. State the conditions such that lines l and m are skew lines.
- 6 Points A and B have position vectors \mathbf{a} and \mathbf{b} with respect to the origin O. It is given that $(\mathbf{a} 3\mathbf{b}) \times (5\mathbf{a} + 7\mathbf{b}) = 11$. Find the perpendicular distance from point A to line OB if $|\mathbf{b}| = 11$.
- 7 Points A and B have position vectors **a** and **b** with respect to the origin O. It is given that $|\mathbf{a}| = 3$, $|\mathbf{b}| = 1$ and $\mathbf{a} \cdot \mathbf{b} = 2$.
 - a) State the vector equation of line AB. [1]
 - $\mathbf{b)} \text{ Find } |\mathbf{b} \mathbf{a}|.$
 - c) Find the position vector of F, the foot of perpendicular from O to AB, in terms of
 a and b.
 - d) Find $|7\mathbf{b} \mathbf{a}|$. Hence, find the exact area of triangle OAB. [3]
- 8 Referred to the origin O, points A and B have the position vectors $\overrightarrow{OA} = \mathbf{i} 2\mathbf{k}$ and $\overrightarrow{OB} = -\mathbf{i} + 2\mathbf{j} + 2\mathbf{k}$ respectively.
 - a) Verify that P(3, -2, -6) lies on line AB. [2]
 - b) Find the position vector of F, the foot of perpendicular from P to AB. [3]

 \mathbf{c}) Hence, find the equation of line PF.

9 The equations of lines l_1 and l_2 are given by:

$$l_1: \mathbf{r} = \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 3 \\ 1 \end{pmatrix}, \ \lambda \in \mathbb{R} \text{ and } l_2: \frac{x+1}{9} = \frac{y}{7} = \frac{4-z}{3} \text{ respectively.}$$

Point A has coordinates (2, -1, 1) while the foot of perpendicular from A to l_2 is F.

a) Find the position vector of P, the point of intersection between l_1 and l_2 . [2]

[3]

- **b**) Find vector \overrightarrow{AF} . [3]
- c) Hence, find the vector equation of l_3 , the reflection of l_1 in l_2 . [3]
- 10 Points A and B with position vectors $-\mathbf{i} + 2\mathbf{j} \mathbf{k}$ and $3\mathbf{i} + \mathbf{k}$ respectively both lie on l_1 . The line l_2 has Cartesian equation $l_2: x = 7, y - 3 = z$.
 - a) Show that l_1 and l_2 are skew lines. [2]
 - b) Find a vector that is perpendicular to both l_1 and l_2 . [1]
 - c) Hence, find the shortest distance between l_1 and l_2 . [3]
- 11 Referred to an origin O, points A and B have coordinates (-1,2,2) and (0,1,2) respectively. The point P on OA is such that $OP : PA = \lambda : 1$ and the point Q on OB is such that $OQ : QB = \lambda : 1 \lambda$, where λ is a real constant to be determined.
 - a) Find the area of $\triangle OAB$. [2]
 - b) Express the ratio $\frac{\text{Area of }\Delta OAB}{\text{Area of }\Delta OPQ}$ in terms of λ . [3]
 - c) Deduce if PQ is ever parallel to AB for some value of λ . [3]
- 12 Line l has the equation $-x = \frac{y-3}{2} = \frac{z+4}{2}$. Line m, which is parallel to $\begin{pmatrix} c \\ 0 \\ 1 \end{pmatrix}$ where c is some real constant, is obtained by rotating line l 45° about the point A(0,3,-4). Find the possible vector equations of line m.

- 13 Three points A, B and C referred from the origin O have position vectors given by: $\mathbf{a} = 2\mathbf{i} + 4\mathbf{j} \mathbf{k}$, $\mathbf{b} = -2\mathbf{i} + 5\mathbf{j} + 2\mathbf{k}$ and $\mathbf{c} = \frac{3}{2}\mathbf{i} + \frac{5}{2}\mathbf{j} 3\mathbf{k}$.
 - a) Find the vector equations of lines AB and AC. [2]
 - **b**) Find two vector equations of l, where l is the line representing the all the midpoints of lines AB and AC.
- 14 Point A with position vector \mathbf{a} lies on plane π with normal parallel to vector \mathbf{n} . Given that $|\mathbf{a} \mathbf{n}|^2 = 3$ and $|\mathbf{n}|^2 = 4 |\mathbf{a}|^2$, find the value of d if the equation of plane π is $\mathbf{r} \cdot \mathbf{n} = d$. [4]
- 15 The equations of parallel planes p and q are given by $p: \mathbf{r} \cdot \mathbf{n} = d$ and $q: \mathbf{r} \cdot \mathbf{n} = kd$. Line l given by equation $\mathbf{r} = \mathbf{a} + \lambda \mathbf{b}$, $\lambda \in \mathbb{R}$ intersects planes p and q at points A and B respectively.
 - a) Show that $\overrightarrow{AB} = \mathbf{b} \left(\frac{d(k-1)}{\mathbf{b} \cdot \mathbf{n}} \right)$. [4]
 - **b**) Hence, or otherwise, show that the perpendicular distance between planes p and q is equal to $\frac{d(k-1)}{|\mathbf{n}|}$ units. [2]
- **16** The equations of plane π and l are given by:

$$\pi: \mathbf{r} \cdot \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} = -1 \text{ and } l: \mathbf{r} = \begin{pmatrix} -1 \\ 0 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} 3 \\ 2 \\ k \end{pmatrix}, \ \lambda, k \in \mathbb{R} \text{ respectively.}$$

a) Show that, for π and l to intersect, $k \neq -\frac{7}{2}$. [1]

For the rest of the question, assume k=1.

- **b**) Find the coordinates of point P, the point of intersection of π and l. [2]
- c) Find the shortest distance from A(-1,0,2) to π . [3]
- d) Find the acute angle between π and l. [2]

17 Plane π has a normal parallel to $\begin{pmatrix} -1\\1\\3 \end{pmatrix}$ and has the equation:

$$\pi: \mathbf{r} = \begin{pmatrix} 7\\4\\3 \end{pmatrix} + t \begin{pmatrix} 3\\0\\1 \end{pmatrix} + s \begin{pmatrix} a\\2\\1 \end{pmatrix}, \ t, s \in \mathbb{R},$$

where a is some real constant to be determined.

a) Find the value of
$$a$$
. [2]

- **b**) Find the scalar product equation of plane π . [1]
- c) Line l passes through π , the origin O and A(3,2,5). Find the position vector of P, the point of intersection between line l and plane π .
- d) Find $|\overrightarrow{PF}|$, where F is the foot of perpendicular from A to plane π . [3]
- e) Hence find $|\overrightarrow{PG}|$, where G is the foot of perpendicular from O to plane π . [2]

18 The equations of planes π_1 , π_2 and π_3 are such that:

$$\pi_1: 2x + 3y + 4z = -1, \quad \pi_2: -2x + y - z = 5 \quad \text{and} \quad \pi_3: \mathbf{r} \cdot \begin{pmatrix} a \\ -5 \\ -a \end{pmatrix} = k.$$

- a) Find the vector equation of l, the line of intersection between π_1 and π_2 . [3]
- **b**) Given that a = 2, find the value of k such that π_3 contains l. [2]
- c) Given that a = 1, k = 3, find the point of intersection of π_1 , π_2 and π_3 . [2]

19 An incident beam of light was reflected perfectly $(\theta_1 = \theta_2)$ on a round mirror.

Figure 1: Mirror

A student modelled the scenario such that the incident beam is l_1 , the reflected beam is l_2 and the mirror is π , where π contains the vectors $\mathbf{i} + \mathbf{j} + \mathbf{k}$, $\mathbf{i} - \mathbf{j}$ and $2\mathbf{i} + \mathbf{j} - \mathbf{k}$.

- a) Find the equation of the plane π in the form $\mathbf{r} \cdot \mathbf{n} = d$. [3]
- **b**) Show that P(1,3,2), the point of intersection between l_1 and l_2 lies on π . [1]
- c) State the vector equation of l_3 , the axis of reflection between l_1 and l_2 . [1]
- d) Given that A(t, 1, 1) lies on l_1 , where t > 0, find t such that $\theta_1 = \theta_2 = \frac{\pi}{4}$. [4]

For the rest of the question, take t = 4.

- e) Find the shortest distance from A to π .
- f) Find the coordinates of F, the foot of perpendicular from A to l_3 . Hence, or otherwise, find the equation of l_2 . [6]

20 A professional card stacker stacks two cards P and Q as follows:

Figure 2: Card Stack

Mr Poh models the scenario such that the two cards are planes P and Q, where the equation of plane P is $P: \mathbf{r} \cdot \begin{pmatrix} 3 \\ -1 \\ 1 \end{pmatrix} = 1$, where line l_1 is a normal to plane P that contains A(-3,3,2). Line l_2 , a normal to plane Q, also contains point A and is parallel to the vector $\begin{pmatrix} 3 \\ -1 \\ a \end{pmatrix}$ where a < 0. l_3 is the line of intersection between planes P and Q.

- a) Find the coordinates of B, the point of intersection between l_1 and plane P. [2]
- b) Given that l_2 is obtaining by rotating $l_1 \cos^{-1} \frac{9}{11}$ about point A, find a; Hence, find the vector equation of l_2 . [4]
- c) The point of intersection between l_2 and plane Q is point B'. Given that $|\overrightarrow{AB'}| = |\overrightarrow{AB'}|$, find the position vector of B' given that the x-coordinate of B' < 0. [3]
- **d**) Find the equation of the plane Q in the form $\mathbf{r} \cdot \mathbf{n} = d$. [2]
- e) Find the vector equation of l_3 . [2]

The equation of plane R is such that it reflects the image of plane P to form plane Q.

f) Find the vector \overrightarrow{AF} , where F is the foot of perpendicular from A to l_3 . Hence, find the equation of plane R in the form $\mathbf{r} \cdot \mathbf{n} = d$.