Maurizio Filippone

maurizio.filippone@kaust.edu.sa

جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

 ${\bf Statistics\ Program} \\ {\bf King\ Abdullah\ University\ of\ Science\ and\ Technology} \\$

February 19, 2025

Maurizio Filippone Bayesian Deep Learning February 19, 2025

Decision-Making

Decision-making is a critical step in several domains [Norvig and Russell, 1995]:

- ► Policy-making for the environment
- Healthcare
- Society
- **.**..

Decision-making is a critical step in several domains [Norvig and Russell, 1995]:

- ► Policy-making for the environment
- Healthcare
- Society
- **.** . . .

 $Decision Theory = \frac{Probabilistic reasoning}{Probabilistic reasoning} + Utility theory$

Decision-Making

Decision-making is a critical step in several domains [Norvig and Russell, 1995]:

- ▶ Policy-making for the environment
- Healthcare
- Society
- **▶** ...

Decision Theory = Probabilistic reasoning + Utility theory

Is Deep Learning effective in assisting decision-making?

Over-confidence of Deep Learning Models - Online Meme

Image prediction: ping-pong ball

Confidence: 99.99%

Illustration: Dianna "Mick" McDougall, Photo: ResNeXtGuesser

Over-confidence of Deep Learning Models - Online Meme

Image prediction: pineapple

Confidence: 99.3%

Illustration: Dianna "Mick" McDougall, Photo: ResNeXtGuesser

- ► Inputs : $X = \{x_1, \dots, x_N\}$
- ightharpoonup Labels : $m Y = \{y_1, \ldots, y_N\}$
- $\blacktriangleright \text{ Weights}: \mathbf{W} = \{\mathbf{W}^{(1)}, \dots, \mathbf{W}^{(L)}\}\$

► Inputs :
$$X = \{x_1, \dots, x_N\}$$

$$ightharpoonup$$
 Labels : $m Y = \{y_1, \ldots, y_N\}$

$$\blacktriangleright \text{ Weights}: \mathbf{W} = \{\mathbf{W}^{(1)}, \dots, \mathbf{W}^{(L)}\}\$$

$$\mathbf{w}_i \sim \mathcal{N}(0, \mathbf{I})$$

$$p(\mathbf{W}|\mathbf{Y},\mathbf{X}) = \frac{p(\mathbf{Y}|\mathbf{X},\mathbf{W})p(\mathbf{W})}{\int p(\mathbf{Y}|\mathbf{X},\mathbf{W})p(\mathbf{W})d\mathbf{W}}$$

▶ Predictions consider an infinite number of parameter configurations (e.g., [Bishop, 2006])

$$p(\mathbf{y}^*|\mathbf{x}^*, \mathbf{Y}, \mathbf{X}) = \int p(\mathbf{y}^*|\mathbf{x}^*, \mathbf{W})p(\mathbf{W}|\mathbf{Y}, \mathbf{X})d\mathbf{W}$$

▶ Predictions consider an infinite number of parameter configurations (e.g., [Bishop, 2006])

$$p(\mathbf{y}^*|\mathbf{x}^*,\mathbf{Y},\mathbf{X}) = \int p(\mathbf{y}^*|\mathbf{x}^*,\mathbf{W})p(\mathbf{W}|\mathbf{Y},\mathbf{X})d\mathbf{W}$$

Combining the flexibility of Deep Learning with sound uncertainty quantification!

<ロ > < 回 > < 回 > < 差 > < 差 > 差 釣 < ②

February 19, 2025

► The normalization term in Bayes theorem can be used for model selection (e.g., [Bishop, 2006; Gelman et al., 2013])

$$p(\mathbf{Y}|\mathbf{X},\mathcal{H}) = \int p(\mathbf{Y}|\mathbf{X},\mathbf{W},\mathcal{H})p(\mathbf{W}|\mathcal{H})d\mathbf{W}$$

► The normalization term in Bayes theorem can be used for model selection (e.g., [Bishop, 2006; Gelman et al., 2013])

$$p(\mathbf{Y}|\mathbf{X}, \mathcal{H}) = \int p(\mathbf{Y}|\mathbf{X}, \mathbf{W}, \mathcal{H}) p(\mathbf{W}|\mathcal{H}) d\mathbf{W}$$

▶ Illustration of different hypotheses \mathcal{H} for a simple linear model:

$$p(\mathbf{Y}|\mathbf{X}, \mathcal{H}) = \int p(\mathbf{Y}|\mathbf{X}, \mathbf{W}, \mathcal{H}) p(\mathbf{W}|\mathcal{H}) d\mathbf{W}$$

▶ Illustration of different hypotheses \mathcal{H} for a simple linear model:

Unfortunately, for Deep Learning models this is intractable!

▶ Leverage statistical connections [Akaike, 1973] between the model selection problem:

$$\arg\max_{\mathcal{H}} \{ \log \left[p(\mathbf{Y}|\mathbf{X}, \mathcal{H}) \right] \}$$

and the minimization of the following Kullback-Leibler divergence [Tran et al., NeurIPS 2021]:

$$\arg\min_{\mathcal{H}} \left\{ \mathcal{D}_{\mathsf{KL}}[\pi_{\mathsf{TRUE}}(\mathbf{Y}|\mathbf{X}) \parallel p(\mathbf{Y}|\mathbf{X}, \mathcal{H})] \right\}$$

to obtain simple and tractable objectives for model selection.

▶ Leverage statistical connections [Akaike, 1973] between the model selection problem:

$$\arg\max_{\mathcal{H}} \{ \log \left[p(\mathbf{Y}|\mathbf{X}, \mathcal{H}) \right] \}$$

and the minimization of the following Kullback-Leibler divergence [Tran et al., NeurIPS 2021]:

$$\arg\min_{\mathcal{H}} \left\{ \mathcal{D}_{\text{KL}}[\pi_{\text{TRUE}}(\mathbf{Y}|\mathbf{X}) \parallel p(\mathbf{Y}|\mathbf{X}, \mathcal{H})] \right\}$$

to obtain simple and tractable objectives for model selection.

This can be leveraged for architecture search!

Research Project Idea - Why does it matter?

- ► Occam's razor [Solomonoff, 1964] for Deep Learning
- ► Efficient (compute and size) Deep Learning models
- Parsimonious probabilistic foundation models

Research Project Idea - Why KAUST?

► New foundation models for applications in Statistics

Research Project Idea - Why KAUST?

▶ Key collaborations in Deep Learning and Statistics worldwide

Position: Bayesian Deep Learning is Needed in the Age of Large-Scale AI

Theodore Papamarkoni Maria Skoudaridoni ¹ Konstantina Palla ¹ Laurneca Aitchioni ¹ Jalyan Arbeli Dussoni ¹ Maria Filipponi ¹ Victori Fortiani ¹ ¹ ¹ Pilippi Hennigi ¹ ¹ José Miguel Hernández-Lobalo ¹ ¹ Alkaskandr Hubini ^{1,11} Alexandre Immer ¹ Theodani Karaletoni ¹ Mohammad Entitya Khani ¹ Agustima Kristini ¹ Nigaban Maria ¹ Circhispher Nemeni¹ Michael A, Osbornes ² Tim G. J. Rudner ² David Rügamer ^{20,2} Yee Way Teh ^{2,2,5} Max Welling ²⁷ Andrew Gordon Wilson ²⁸ Roul Zhanig ²⁸ Maria Maria ^{28,8} Max Welling ²⁷ Andrew Gordon Wilson ²⁸ Roul Zhanig ^{28,8} Max Welling ^{27,8} Andrew Gordon Wilson ^{28,8} Roul Zhanig ^{28,8} Max Welling ^{28,8} Andrew Gordon Wilson ^{28,8} Roul Zhanig ^{28,8} Max Welling ^{28,8} Andrew Gordon Wilson ^{28,8} Roul Zhanig ^{28,8} Max Welling ^{28,8} Andrew Gordon Wilson ^{28,8} Roul Zhanig ^{28,8} Max Welling ^{28,8} Andrew Gordon Wilson ^{28,8} Roul Zhanig ^{28,8} Max Welling ^{28,8} Andrew Gordon Wilson ^{28,8} Roul Zhanig ^{28,8} Max Welling ^{28,8} Andrew Gordon Wilson ^{28,8} Roul Zhanig ^{28,8} Roul

Abstract

In the current landscape of deep learning research, there is a predominant emphasis on achieving high predictive accuracy in supervised tasks involving large image and language datasets. However, a broader perspective reveals a multitude of overuncertainty, active and continual learning, and scientific data, that demand attention. Buyesian deep learning (BDL) constitutes a promising avenue, offering advantages across these diverse settings. This paper posits that BDL can elevate the capabilities of deep learning. It revisits the strengths of BDL, acknowledges existing challenges, and

Spatial Bayesian neural networks

Andrew Zammit-Mangion ***, Michael D. Kaminski *, Ba-Hien Tran b,

⁶ School of Mathematics and Applied Statistics, University of Wollengong, Australia ⁵ Paris Research Centre, Husseel Technologies, France ⁶ Satistics Programs, Eur. Aduldah University of Science and Technology, Saudi Arabia

ARTICLE INFO ABSTRACT

Gaussian process Hamiltonian Monte Carlo Statistical models for spatial processes play a central role in analyses of spatial data. Yet, it is the simple, interpretable, and well understood models that are routinely employed even though.

- Unique World-class Al and Statistics research environment!
- ► Vision 2030 drives methodological questions!

Thank you!

Questions?