Project Title: Public Transport Efficiency Analysis

Introduction:

In Phase 3, We Start To Build the Project Public Transportation Efficiency Analysis By Loading and Preprocessing the Provided dataset from Kaggle

(https://www.kaggle.com/datasets/rednivrug/unisys?select=20140711.CSV).

We can define the analysis objectives and collect transportation data from the source shared.

Process and clean the collected data to ensure its quality and accuracy.

Steps Followed:

Step 1: Import the Libraries

We need to Import the required Libraries to load and Preprocess the dataset . we have used libraries like Pandas , Matplotlib , Seaborn and Numpy.

```
In [1]: import numpy as np import pandas as pd
```

Step 2: Load the Dataset

To use the data set for our analysis we need to import the dataset. We can import it using pandas read csv() build in function.

```
In [2]: print("Load the dataset")
import pandas as pd
data = pd.read_csv('20140711.csv', low_memory=False)
data.shape
data.head(5)
Load the dataset
```

Out[2]:

	TripID	RouteID	StopID	StopName	WeekBeginning	NumberOfBoardings
0	23631	100	14156	181 Cross Rd	2013-06-30 00:00:00	1
1	23631	100	14144	177 Cross Rd	2013-06-30 00:00:00	1
2	23632	100	14132	175 Cross Rd	2013-06-30 00:00:00	1
3	23633	100	12266	Zone A Arndale Interchange	2013-06-30 00:00:00	2
4	23633	100	14147	178 Cross Rd	2013-06-30 00:00:00	1

Step 3: Check Data Types and Drop Duplicates

In This Step we drop the duplicate columns or data and then plot an heatmap using seaborn to virtualize the null values of the dataset . after we will check for the data type using

dataframe name.dtypes built-in function

Step 4: Handle Mixed Data Types

Here We will Handle the data types which are irregular and not manageable into an manageable datatype for example convert a **string** datatype but the data is in number we can convert it into an **int** datatype

```
data['RouteID'] = pd.to_numeric(data['RouteID'], errors='coerce')
In [4]:
        print("Handle mixed data types")
        print(data.dtypes)
        Handle mixed data types
        TripID
                               int64
        RouteID
                             float64
        StopID
                               int64
        StopName
                              object
        WeekBeginning
                             object
        NumberOfBoardings
                              int64
        dtype: object
```

Step 5: Handle Missing Values

In this step we will delete all the rows that having an null value by using the built-in function called dropna() function and then show the remaining data using shape function

```
In [4]: data = data.dropna()
    print("\nHandle missing values")
    print(data.shape)

Handle missing values
    (10857234, 6)
```

Step 6: Change Data Types

In this step we change the date field data which is in **string** data type to the **datetime** format which is available in the pandas dataframe

Step 7: Convert Into Convenient Data

Here we clean the data of every column which contains the **whitespace** in beginning and the end of the data given in the dataset using **strip()** function

Step 8: Check Number Of Unique Values

```
In [7]: print(data.nunique())

TripID 39282
RouteID 605
StopID 7397
StopName 4165
WeekBeginning 54
NumberOfBoardings 400
dtype: int64
```

Step 9: Check the Cleaned Dataset

```
In [8]: data.shape
         data.columns
         data.head(3)
Out[8]:
             TripID RouteID StopID
                                      StopName WeekBeginning NumberOfBoardings
          0 23631
                             14156 181 Cross Rd
                                                                               1
                       100
                                                    2013-06-30
          1 23631
                            14144 177 Cross Rd
                                                    2013-06-30
                                                                               1
                       100
          2 23632
                            14132 175 Cross Rd
                                                    2013-06-30
                                                                               1
                       100
```

Step 10: Check for NULL Values

Step 11: Check the Uniqueness

Step 12: Save the Cleaned Dataset

```
In [12]: data.to_csv('cleaned_data.csv', index=False)
    print("\nSave the cleaned dataset to a new CSV file")
    print("Cleaned dataset saved successfully.")
```

Save the cleaned dataset to a new CSV file Cleaned dataset saved successfully.