1	I CLAIM:
2	
3	1. Endothermic catalytic reaction apparatus
4	comprising:
5	a) a U-shaped flow through tubular reaction
6	chamber disposed upright within a combustion chamber,
7	and a catalyst contained within said reaction chamber
8	for the conversion of hydrocarbon to industrial gases
9	by reaction with steam; said reaction chamber having an
10	upper portion, and there being a convection chamber
11	extending about said upper portion to enhance the
12	transfer of heat from combustion products in the
13	reaction chamber, and
14	b) a radiant burner generally vertically
15	disposed within the combustion chamber and having a gas
16	permeable zone that promotes the flameless combustion
17	of fuel and oxidant supplied to said burner in order to
18	heat a metal fiber surface of the burner to
19	incandescence for radiating heat to the reaction
20	chamber; said radiant burner configured so that the
21	angle of radiation is predominantly incident upon the
22	surface of the tubular reaction chamber.
23	
24	
25	

1	2. The combination of claim 1 wherein said
2	tubular reaction chamber comprises a tube having outer
3	diameter or diameters ranging from about % inch to
4	about 4 inches along the tube length.
5	
6	
7	3. The combination of claim 1 wherein said
8	tubular reaction chamber is sized for creation of mass
9	velocities ranging from 400 lb/ft ² /h to 1500 lb/ft ² /h.
10	
11	
12	4. The combination of claim 1 wherein said
13	catalyst in the tubular reaction chamber has average
14	catalyst particle diameters ranging from 1/8 to 1 inch
15	for producing gas pressure drops ranging from 1 psi to
16	8 psi during flow through the reaction chamber.
17	
18	
19	5. The combination of claim 1 wherein said
20	tubular reaction chamber has a gas exit end temperature
21	ranging from 1150°F to 1400°F when heated by said
22	radiant burner, in operation.
23	
24	
25	

1	6. The combination of claim 1 wherein said
2	tubular reaction chamber has legs and an arc-shaped
3	bend connecting said legs, and said legs and bend have
4	maximum tube wall temperatures ranging from 1300°F to
5	1600°F when heated by said radiant burner, in
6	operation.
7	
8	
9	7. The combination of claim 1 wherein said
10	tubular reaction has average heat fluxes ranging from
11	$3,000 \text{ btu/ft}^2/h \text{ to } 10,000 \text{ btu/ft}^2/h, \text{ when heated by}$
12	said radiant burner in operation.
13	
14	
15	8. The combination of claim 1 wherein said
16	tubular reaction chamber is sized to have capacity to
17	generate hydrogen plus carbon monoxide product in
18	volumetric quantities ranging from 50 SCFH to between
19	500 and 1500 SCFH.
20	
21	
22	9. The combination of claim 1 wherein said
23	radiant burner comprises a supported porous ceramic
24	material having extended life at operating temperatures
25	up to 2100°F.
26	