HERRAMIENTAS MODERNAS EN REDES NEURONALES: LA LIBRERÍA TENSORFLOW DE GOOGLE

Antonio Mejías Gil

14 de junio de 2017

Contenido

- Introducción
- 2 TensorFlow
 - Contexto
 - Funcionamiento
- Iris
 - Enfoque
 - Resultados
- MNIST
 - Redes convolucionales
 - Experimentos
- Conclusiones

Introducción y objetivos

- Redes neuronales profundas (DNNs)
 - Redes neuronales artificiales (1940s) con varias capas ocultas
 - Ahora posibilidad real gracias a: hardware, técnicas y datos
 - Nueva moda de machine learning: Google, Facebook, etc.
- Objetivos
 - Conocer los fundamentos de las redes profundas (convnets en particular)
 - Entender el funcionamiento de TensorFlow
 - 3 Aplicar TensorFlow a un problema real

Recorrido de TensorFlow

- Librería de Google abierta al público hace 1,5 años
- Un año después: versión 1.0 y DevSummit
- Actualmente usado por más 6000 proyectos de software libre

Grafo de operaciones

Grafo TensorFlow

El grafo de flujo de datos está compuesto de nodos (ops) que operan con tensores.

```
import tensorflow as tf

W = tf.Variable(tf.random_normal((3, 4)), name="W")
b = tf.Variable(tf.random_normal((3, 1)), name="b")
i = tf.placeholder(tf.float32, (4, 1), name="i")
o = tf.sigmoid(tf.matmul(W, i) + b)
```


Sesiones de ejecución

Sesiones TensorFlow

Permiten calcular el valor de ciertos nodos (fetches) a partir de unos valores de entrada (feeds).

- 1 grafo \Leftrightarrow *n* sesiones
- Uso:

```
session_name.run([lista_outputs], feed_dict={diccio_inputs})
op_name.run(feed_dict=None, session=None)
tensor_name.eval(feed_dict=None, session=None)
```

Variables

Variables TensorFlow

Las variables son nodos que no pierden su valor en los cambios de contexto entre TensorFlow y el programa principal.

Gestión de variables:

- Creación de la variable: 3 nuevos nodos
- Inclusión automática en la colección GraphKeys.TRAINABLE_VARIABLES

3 Dentro de la sesión, ejecutar nodo:

tf.global_variables_initializer

El dataset Iris

Crédito de imagen: Kaggle

- 150 muestras de flor = 50×3 subespecies: Iris Setosa, Iris Versicolor e Iris Virginica
- 4 datos de cada muestra: anchura y longitud de pétalo y sépalo
- Red elegida

• Activación: $\sigma(x) = \frac{1}{1+e^{-x}}$

• Unidades: 4, 4, 3, 3

• Coste: cross-entropy

• Regularización: L2

Enfoque

Perceptrón multicapa para Iris

Resultados

Sin regularización

Resultados

Sin regularización

Regularización L2, $\lambda=0.01$

Sin regularización

Regularización L2, $\lambda=0.01$

Early stopping (50 iteraciones)

loss

Resultados

Sin regularización

Regularización L2, $\lambda=0.01$

Early stopping (50 iteraciones)

Comparación con/sin early stopping

Tasa de aprendizaje

α original: 1,0

Tasa de aprendizaje baja, lpha=0,1

Tasa de aprendizaje alta, lpha= 10

El dataset MNIST

- Reunido y curado por **Yann LeCun** en 1998
- Train + Val: 60k imágenes (55k + 5k).
 Test: 10k.
- Imágenes: 28 × 28, escala de grises
- Record actual: 0,21 % error en test
- 01234567890123456789

Redes convolucionales

Fundamentos de ConvNets

LeNet-5. Crédito de la imagen: Yann LeCun

Preparación para MNIST

Ajuste de hiperparámetros

Entrenamiento (parámetros)

Feed-forward de input

TensorFlow Slim

- Capas (convoluciones, pooling)
- Costes (cross-entropy y L2)
- ArgScopes

Experimentos

Arquitecturas empleadas

architectures.py

• Tres funciones que insertan cada una de las redes en el grafo:

lenet: 61 470 pesos tfnet: 3 273 504 pesos vishnet: 1 117 760 pesos

Arquitecturas empleadas

Arquitecturas empleadas

- architectures.py
 - Tres funciones que insertan cada una de las redes en el grafo:

lenet: 61 470 pesos tfnet: 3 273 504 pesos vishnet: 1 117 760 pesos

- 4 tuner.py
 - Carcasa para architectures.py
 - Elementos comunes: cross-entropy, regularización L2, mini-batches de 50 elementos, etc.
 - *Grid search* sobre λ (regularización L2) y ρ (dropout)
 - Ejecutado en el CCC UAM

Resultados

- Valores hallados para los hiperparámetros: lenet (42 redes entrenadas): $\lambda = 4 \cdot 10^{-4}$ tfnet (25 redes entrenadas): $\lambda = 5 \cdot 10^{-5}, \rho = 0.75$ vishnet (25 redes entrenadas): $\lambda = 3 \cdot 10^{-7}, \rho = 0.4$
- Resultados del entrenamiento:

	5 000	10 000	20 000	40 000	60 000
lenet (0,064)	97,82 %	98,32 %	98,80 %	98,85 %	98,82 %
tfnet (0,59)	98,92 %	99,27 %	99,27 %	99,22 %	99,36 %
vishnet (1,75)	99,16 %	99,33 %	99,45 %	99,48 %	99,51 %

• Coste temporal: 4 \times 135 000 pasos \times 1,75 s/paso \approx 262h (*vishnet*). Total: 360h

Conclusiones sobre TensorFlow

- A plantearse:
 - Funcionamiento propio, tiempo de aprendizaje
 - API poco estable
 - Documentación mejorable
- A favor:
 - Potencia (versión GPU, distribuida...)
 - Portabilidad multiplataforma
 - Google + colaborativo = éxito

← → ← → ← ៑ → ← _ →

Gracias por su atención