2021 C 프로그래밍 과제 4

- 1. 4 행 5 열의 배열 2 개를 생성하고, 두 배열의 합 또는 차를 계산하는 프로그램 작성
 - a. main 함수는 2 차원 배열 2 개를 생성하고 임의의 값을 할당
 - i. a 배열에 입력되는 값의 범위 1~10
 - ii. b 배열에 입력되는 값의 범위 21~30
 - b. Print_matrix() 함수
 - i. 생성된 배열 2 개의 값을 화면에 출력하는 함수
 - ii. 파라미터: 2 차원 배열 2 개
 - c. Matrixoper() 함수
 - i. 2 차원 배열 2 개를 받아 연산과 연산결과를 출력하는 함수
 - ii. 파라미터: 2 차원 배열 2 개, 문자 1 개

input	operato	r:-							
10	6	10	3	8	23	22	28	27	22
10	4	10	8	4	25	25	26	25	22
9	3	4	6	1	26	26	24	28	28
1	7	8	5	5	26	23	27	27	24
		== RESUL	T =====						
-13	-16	-18	-24	-14					
-15	-21	-16	-17	-18					
-17	-23	-20	-22	-27					
-25	-16	-19	-22	-19					

2. 2 차원 배열의 행렬 변환

- a. main 함수
 - i. 배열을 생성하기 위해 row 값을 입력 받는다.
 - ii. 열의 크기는 5 로 고정되어 있는 2 차원 배열
 - iii. 입력 받은 크기의 배열을 생성
 - iv. 배열에 임의의 값을 할당 입력 데이터 범위: 0~10
 - v. 화면에 배열을 출력
 - vi. Transmatrix() 호출
- b. transMatrix()함수
 - i. 행과 열중에 큰 값을 항상 행(row)으로 하도록 2 차원 배열을 변환하여 출력
 - ii. 파라미터: 2 차원 배열, 정수

실행예시

```
행의 크기 입력:4
배열 생성 결과 출력.
10
   7 10
       0 1
  8
     5
       4
8 8
     7
       4 10
10 10
     0
       4
          3
_____
  7 8 10
   8
     8 10
10
       0
  4 4
       4
 0
  4 10 3
 1
```

```
행의 크기 입력:6
배열 생성 결과 출력.
    1 1
5 7
          3
             9
    1
          8 10
 8
    8
          8
             4
 8
    0
       3
          2
 1 10
      3
          0 2
배열을 변환할 필요가 없습니다.
```

입력:5 행의 크기 배열 생성 결과 출력. 3 5 6 9 4 10 7 6 3 4 10 5 4 3 8 8 10 10 배열을 변환할 필요가 없습니다.

3. Rocket motor thrust

- a. 로켓 모터의 추진력 평균을 계산하는 프로그램 작성
- b. main 함수, 2 개의 sub 함수 필요.
- c. Main()함수
 - i. Input: 로켓의 무게, 추진 1 단계동안 평균 속도, 시간 output: weight, velocity, time
 - ii. funcForce() 함수 호출
 - iii. funcThrust() 함수 호출
 - iv. 계산 결과 출력(Force, Thrust)
- d. funcForce(): 로켓의 전체 force 계산
 - i. force 를 계산하는 계산식

$$f = \frac{wv}{gt}$$

- w: 로켓의 무게(pound)
- v: 로켓의 평균속도(feet/second)
- t: 시간(second)
- g: 중력가속도(feet/sec2)
- ii. force 를 계산하여 return
- e. funcThrust(): 전체 추진력을 계산하는 함수
 - i. 추진력(thrust) 계산식

$$t = w + f$$

t: 전체 추진력

w: 로켓의 무게

f: force

f. 중력가속도(상수): 32.2 ft/sec2

실행예시

INPUT DATA(ex. weight velocity time):5000.0 2000.0 10.0
OUTPUT DATA:

5000.00

2000.00

10.00

Force due to acceleration: 31055.90

Total thrust due to acceleration: 36055.90

4. Fibonacci 수열 계산- recursive function

피보나치 수열이란?

피보나치 수 F_n는 다음과 같은 초기값 및 점화식으로 정의되는 수열

$$F_1 = F_2 = 1$$

$$F_n = F_{n-1} + F_{n-2} \qquad (n \in \{3, 4, \ldots\})$$

0 번째 항부터 시작할 경우 다음과 같이 정의된다.

$$F_0 = 0$$

 $F_1 = 1$
 $F_n = F_{n-1} + F_{n-2}$ $(n \in \{2, 3, 4, \ldots\})$

피보나치 수의 처음 몇 항은 (0 번째 항부터 시작할 경우) 다음과 같다. 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181,...

- a. Recursion 을 이용하여 피보나치 수열의 결과를 계산
- b. Main() 수열에서 몇 번째 자리의 숫자를 구하는 지 입력
- c. Fibo()
 Fibonacci 수열을 계산하여 반환(위의 수식 참고)

실행예시

fibonaci number: 8

8번째 피보나치 수열의 값은 21