STA4003_Report

Note: You can find Direct Answers of Question 1, Question 2, Question 3 in Part III

1. Calculate $C_{\rm sum}$

We denote

$$P(t) = \text{Total Amount in the Pool at } t$$

For each day each race, Note that

$$d_i(t_{ ext{bet}}) = rac{(1-
abla)P(t_{ ext{bet}})}{b_i} \qquad d_i(t_{ ext{final}}) = rac{(1-
abla)P(t_{ ext{final}})}{b_i+C_i+f_iW}$$

We assume each time we do not make any bet (or our bet is negligible compared with the pool), thus $f_iW=0$ we can compute C_i by:

1. Compute b_i :

$$b_i = rac{(1 -
abla) P(t_{
m bet})}{d_i(t_{
m bet})}$$

2. Use b_i to compute C_i :

$$C_i = rac{(1 -
abla) P(t_{ ext{final}})}{d_i(t_{ ext{final}})} - b_i = (1 -
abla) \left(rac{P(t_{ ext{final}})}{d_i(t_{ ext{final}})} - rac{P(t_{ ext{bet}})}{d_i(t_{ ext{bet}})}
ight)$$

Then, we can have C_{sum} :

$$C_{ ext{sum}} = \sum_{i=1}^{14} C_i$$

2. Data Analysis

We use data2014 to data2017 (four data sets) as our training sample and data2018 as the testing sample.

2.1 Differencing to Stationarity

We plot the time series:

Intuitively, it is non-stationary. To justify this, we perform different unitroot testings, the result is showing as:

- 1. KPSS Test: The KPSS statistic is 12.84975 and the p-value less than 0.01, strongly rejected the null hypothesis that this series is stationary.
- 2. ndiff Test: The returned value is 1, indicating one difference is required.

Inspired by stationarity, we take differences in the time series. We try d=1, We have the testing results:

- 1. KPSS Test: The KPSS statistic is 0.004319879 and the p-value larger than 0.1, thus we cannot reject the hypothesis that this is a stationary time series
- 2. ndiff Test: The returned value is 0, indicating no seasonal difference is required.

We plot the differenced series:

Intuitively, this "looks like" stationary and it passes the two tests. We may assume it is indeed stationary.

Therefore, since our main model is ARIMA(p,d,q), we have established the value d=1.

2.2 Determine p, q

Recall the Theorem from lecture: If x_t follows MA(q), we have $\rho(h)=0, \forall h>q$. If x_t follows AR(p), we have $\phi_{hh}=0, \forall h>p$. For ARMA(p,q) with p>0, q>0, neither $\rho(h)$ and ϕ_{hh} will cut off at finite lags. This enlightens us to check the ACF and PACF plots:

From ACF, we get insights for q: Note that ACF is generally cut off (statistically indistinguishable from 0) for lag larger than 5, we primarily set $q \in [0,6]$. From PACF, for lag larger than 10, we have PACF insignificantly distinguishable from 0 generally, we primarily determine $p \in [0,10]$.

Now, we consider the range inspired by the plots for p,q and we formally conduct AIC to further determine the optimal p,q. The pair p,q that minimizes the AIC is given by p=5, q=7. We can also use BIC and getting p=5, q=7. Note that BIC is giving the same pair as AIC Therefore, we choose

$$p=5$$
 $q=7$

2.3 Use of π_i

It is expected that, if $d_i > \frac{1}{\pi_i}$, there will be more investors who want to make the bet, thus expectedly the C_{sum} will increase correspondingly. We count the number of $\pi_i d_i > 1$ where $i = 1, \cdots, 14$ as the indicator of C_{sum} , denoted as x_count. Therefore, we first regress our C_{sum} on $\sum_{i=1}^{14} \mathbb{1}(\pi_i d_i - 1)$. Then, we use the residual to do time series analysis

3. Modeling and Forecast

3.1 Training (Question 1)

By Previous Analysis, we use the ARIMA(p,d,q) model. For race 1, we have

$$p=5$$
 $d=1$ $q=7$

Therefore, we have

$$y_t = eta_0 + eta x_t + \eta_t + e_t$$

where the x_t is the external regressor

$$x_t = \sum_{i=1}^{14} \mathbb{1}(\pi_i^t d_i^t - 1)$$

and

$$\eta_t = \phi_1 \eta_{t-1} + \dots + \phi_5 \eta_{t-5} + w_t + \theta_1 w_{t-1} + \dots + \theta_7 w_{t-7}$$

and \boldsymbol{e}_t is the error term.

We train this model using data from 2014 to 2017, and we train this using arima.

The residue analysis is:

3.2 Forecasting (Question 2)

We use the data from 2018 to do the forecasting. We have the following MAPE:

$$MAPE = 22.5628\%$$

The result is given by

3.3 Forecasting Quantile (Question 3)

To obtain the forecast 95% quantile, we obtain the 90% confidence interval's upper bound of the forecasted value for every point in the test time series, stored at p95_value variable.

The Quantile Score is given by

$$Q(f,y) = egin{cases} 2(1-p)(f-y) & y < f \ 2p(y-f) & y \geq f \end{cases}$$

where p = 0.95.

The average 95% forecast quantile is given by

$$Q = 456246.2$$

This is stored at QS.