WYZNACZANIE PRZERWY ENERGETYCZNEJ InSb

T. Fas

12 stycznia 2018

STRESZCZENIE

W doświadczeniu wyznaczono prezerwę energetyczną E_G półprzewodnika InSb. Otrzymano wartości: $E_G = 0.2819 \pm 0.0019$ eV. Wartość ta jest zgodna z wartością rzeczywistą, która wynosi 0.2511 ± 0.095 eV.

WSTEP

W przypadku półprzewodników, takich jak InSb, w paśmie przewodnictwa jest obecnych niewiele wolnych elektronów, przez co prąd praktycznie nie może płynąć. Spowodowanie jest to istnieniem przerwy energetycznej E_G między pasmem przewodnictwa, a pasmem walencyjnym. Gdy dostarczy się elektronom dodatkową energię, pozwalającą na pokonanie przerwy energetycznej, to półprzewodnik będzie zdolny do przewodzenia prądu.

Półprzewodniki charakteryzują się też dużą podatnością na zmiany temperatury. W przypadku półprzewodników samoistnych zależność oporu R od temperatury T wyraża się wzorem:

$$R(T) = R_0 \exp\left(\frac{E_G}{2k_B T}\right),\tag{1}$$

gdzie k_B jest stałą Boltzmanna. Tak więc mierząc zależność oporu od temperatury można poznać wartość przerwy energetycznej.

UKŁAD DOŚWIADCZALNY

W pomiarach wykorzystano: miernik CHY 38 do pomiaru oporu próbki, woltomierz mierzący napięcie z dokładnością do 0,001 mV, próbkę InSb przytwierdzoną do podstawki miedzianej oraz ciekły azot do chłodnienia próbki. Do półprzewodnika była podłączona termopara miedź-konstantan, której drugi koniec był zanurzony w naczyniu z ciekłym azotem. Przy pomocy woltomierza mierzono napięcie na termoparze, które następnie przeliczano na temperaturę półprzewodnika. Próbka była stopniowo zanurzana w naczyniu z ciekłym azotem, co pozwalało na jej równomierne schładzanie. Wskazania woltomierza i amperomierza były nagrywane, by później móc wybrać najbardziej wiarygodne wyniki, czyli takie, dla których próbka osiągała stan stacjonarny.

WYNIKI POMIARÓW

W Tabeli 1 przedstawiono wyniki pomiarów dla wybranych punktów.

ANALIZA DANYCH

Napięcie U na termoparze przeliczono na temperaturę T korzystając z zależności: $T = 100\sqrt{0.034U^2 + 1.07U + 0.58}$. Niepewność u_R oporu obliczono, korzystając z instrukcji miernika. Wyniki tych obliczeń są przedstawione w Tabeli 1, wraz z odpowiadającymi im wartościami napięcia i oporu.

Wartości temperatury i oporu z Tabeli 1 naniesiono na wykres przedstawiony na Rysunku 1.

Jak widać wykres ten nie podlega zależności z Równania (1). Wynika do z faktu, iż Równanie (1) jest prawdziwe tylko dla czystej próbki, tymczasem rzeczywiste półprzewodnik są zanieczyszczone różnymi innymi związkami, których udział dominuje w niskich temperaturach. Dlatego też należy ograniczyć obszar dopasowywania krzywej do wyników pomiarów do zakresu 205-300 K. W takim zakresie temperatur właściwości InSb są dominujące i punkty podlegają zależności z Równania (1).

CD 1 1	-1	TT7 .1 .	. ,
Tabela	1:	Wvniki	pomiarów.

U [mV]	T [K]	$R\left[\Omega\right]$	$u_R [\Omega]$	U [mV]	T[K]	$R [\Omega]$	$u_R [\Omega]$
6,359	295,9558	32,5	0,56	2,975	201,5979	392	6,136
6,099	289,3208	37	0,596	2,965	201,2822	394	6,152
5,889	283,9077	41,3	0,6304	2,911	199,5716	416	6,328
5,728	279,7231	45,1	0,6608	2,548	187,8057	565	7,52
5,596	276,2687	48,8	0,6904	2,524	187,0101	576	7,608
5,409	271,337	54,4	0,7352	2,404	182,9965	626	8,008
5,324	269,0801	57,3	0,7584	2,307	179,7066	667	8,336
5,005	260,5197	70,3	0,8624	2,142	174,0097	725	8,8
4,974	259,6799	71,7	0,8736	1,96	167,5653	784	9,272
4,948	258,9744	73,6	0,8888	1,782	161,081	832	9,656
4,364	242,8372	112,9	1,2032	1,627	155,2705	868	9,944
4,301	241,0606	118,6	1,2488	1,611	154,6613	871	9,968
3,699	223,677	194	4,552	1,326	143,4783	923	10,384
3,686	223,2927	197	4,576	1,238	139,8846	937	10,496
3,681	223,1448	198	4,584	0,883	124,552	992	10,936
3,678	223,0561	199	4,592	0,853	123,1848	995	10,96
3,278	211,0166	293	5,344	0,785	120,0376	1006	11,048

Rysunek 1: Zależność oporu od temperatury.

Rysunek 2: Krzywa najlepszego dopasowania.

Do dopasowania krzywej wykorzystano program gnuplot, zakres danych obejmował 17 punktów pomiarowych, a dopasowywania krzywa miała postać Równania (1). Otrzymano wartości $R_0=0,1314\pm0,0057~\Omega$, $E_G/2k_B=1636\pm11~\mathrm{K}$, a samą krzywą przedstawiono na Rysunku 2. Wartość χ^2 wynosi 17,45 i jest to wartość niższa od wartości krytycznej, która dla 15 stopni swobody i wartości p=0,05 wynosi 27,59. Tak więc dane z przedziału (205-300)K nie przeczą Równaniu (1). Z wartości $E_G/2k_B=1636~\mathrm{K}$ wyznaczono $E_G=0,2819~\mathrm{eV}$ kładąc $k_B=8,617\cdot10^{-5}~\mathrm{eV/K}$. Niepewność tej wielkości wyznaczono, korzystając z metody propagacji małych błędów. Wzór przenoszenia niepewności w tej metodzie jest następujący:

$$u_f^2 = \sum_{i=1}^n \left(\frac{\partial f}{\partial x_i} u_i\right)^2 \tag{2}$$

gdzie wielkość f zależy od wielkości x_i o niepewnościach u_i [1]. Przy założeniu, że stałą Boltzmanna znamy dokładnie, wartość niepewności przerwy energetycznej wynosi 0,0019 eV. Ostatecznie $E_G=0,2819\pm0,019$ eV. Wartość rzeczywista wynosi 0,2511 \pm 0,095 eV [2]. Różnica tych wielkości wynosi 0,031 eV, a niepewność tej różnicy, obliczona z Równania (2) wynosi 0,095 eV. Tak więc różnica jest mniejsza od trzykrotności jej niepewności, więc na mocy testu 3σ otrzymana wartość E_G jest zgodna z wartością rzeczywistą.

DYSKUSJA WYNIKÓW I WNIOSKI

Dysponując podstawowymi narzędziami, takimi jak woltomierz, omomierz oraz ciekły azot, udało się uzyskać wartości zgodne z wartościami rzeczywistymi oraz cechujące się niższą niepewnością. Nie wykryto również

żadnych anomalii, otrzymane dane były zgodne z przewidywaniami. Warto brać pod uwagę to, iż ciężko było liczyć na uzyskanie stanu stacjonarnego w doświadczeniu i wszystkie zebrane dane nie są tak naprawdę wartościami, które dokładnie sobie odpowiadają. Lecz mimo to udało się uzyskać wysoką zgodność wyników z przewidywaniami. Cały eksperyment można uznać za zakończony sukcesem.

Literatura

- [1] J. R. Taylor, Wstep do analizy błędu pomiarowego, PWN, Warszawa, 1995, s. 175.
- [2] H. Bernot, H. Hinsch Determination of the intrinsic carrier concentration in InSb by helicon waves, Applied Physics, Volume 1, Issue 3, s.147-151