Rapport

Projet Validation numérique

Réalisé par :

Dekkal Dyhia

Année universitaire : 2022/2023

Data1:

Pour Data 1:

on déduit que pour tout les algorithmes qu'on perd des chiffres significatis à partir de la valeur de cond $\geq 10^{15}$, la courbe croit jusqu'à 2.62×10^{15}

Data2:

on déduit que pour tout les algorithmes qu'on perd des chiffres significatis à partir de la valeur de cond $\geq 10^{15}$, la courbe croit jusqu'à 8.21×10^{15}

Data3

on déduit que pour tout les algorithmes qu'on perd des chiffres significatis à partir de la valeur de cond $\geq 10^{15}$, la courbe croit jusqu'à 2.37×10^{15}

Data4:

Pour Data 4 : on déduit que pour tout les algorithmes qu'on perd des chiffres significatis à partir de la valeur de cond $\geq 10^{15}$, la courbe croit jusqu'à 4.07×10^{15}

Conclusion

On voit que le data3 y a une certaine amélioration on voyant la pente de la courbe y a une certaine amélioration en terme de perte de présision

1.1 Conclusion

Il n'existe pas d'algorithme qui calcule la somme universsellement meilleur qu'un autre