

Data Storage Formats in Pandas

The different data storage formats available to be manipulated by Pandas library are text, binary and SQL.

Format Type	Data Description	Reader	Writer
text	CSV	read_csv	to_csv
text	JSON	read_json	to_json
text	HTML	read_html	to_html
text	Local clipboard	read_clipboard	to_clipboard
binary	MS Excel	read_excel	to_excel
binary	HDF5 Format	read_hdf	to_hdf
binary	Feather Format	read_feather	to_feather
binary	Parquet Format	read_parquet	to_parquet
binary	Msgpack	read_msgpack	to_msgpack
binary	Stata	read_stata	to_stata
binary	SAS	read_sas	1
binary	Python Pickle Format	read_pickle	to_pickle
SQL	SQL	read_sql	to_sql
SQL	Google Big Query	read_gbq ps://blos	Losd to gbg on 42642945

Reference: https://www.programmersought.com/article/4943826582

CSV file and JSON file

https://pngtree.com/freepng/csv-file-document-icon 4175842.html

https://pngtree.com/freepng/json-file-document-icon_4172477.html

What is CSV file?

A CSV is a commaseparated values file, which allows data to be saved in a tabular format.

Reference: https://www.goanywhere.com/managed-file-transfer/more/tutorials/how-to-import-csv-file-into-database

Why are .CSV files used?

- CSV files are plain-text files, making them easier for the website developer to create
- Since they're plain text, they're easier to import into a spreadsheet or another storage database, regardless of the specific software you're using.
- To better organize large amounts of data.

Reference: https://www.shanelynn.ie/python-pandas-read-csv-load-data-from-csv-files

How do I save CSV files?

Under the "File name" section in the "Save As" tab, you can select "Save as type" and change it to "CSV (Comma delimited) (*.csv).

Reference: https://docs.workstars.com/en/latest/howto/save-csv-utf8.html

What is a JSON file?

A JSON file is a file that stores simple data structures and objects in JavaScript Object Notation (JSON) format, which is a standard data interchange format.

```
"Product": {
   "0": "Desktop Computer",
"1": "Tablet",
   "2": "iPhone"
   "3": "Laptop"
         250.
   "2": 800,
```

Reference: https://datatofish.com/export-pandas-dataframe-json

Structures of JSON

JSON supports two widely used (amongst programming languages) data structures.

- A collection of name/value pairs.
- An ordered list of values.

Reference: https://www.w3resource.com/JSON/introduction.php

Reading data from files

Reference: https://realpython.com/pandas-read-write-files

The basic process of loading data from a CSV file into a Pandas DataFrame is achieved using the "read_csv" function in Pandas.

Reference: https://www.geeksforgeeks.org/python-read-csv-using-pandas-read_csv

Delimiters in Text Fields – Quotechar

The quote character can be specified in Pandas read_csv using the quotechar argument.

Semi-colon separated data in text file

Reference: https://www.shanelynn.ie/python-pandas-read-csv-load-data-from-csv-files

Jonathan Swift Celbridge Abbey, Celbridge, Ireland

Python – Paths, Folders, Files

When you specify a filename to Pandas.read_csv, Python will look in your "current working directory".

```
In [26]: pd.read csv('file not in right place.csv')
                                                    Traceback (most recent call last)
         <ipython-input-26-f3609a36b9ff> in <module>()
         ---> 1 pd.read csv('file not in right place.csv')
         -/Envs/analysis/lib/python3.6/site-packages/pandas/io/parsers.py in parser f(filepath or buffer, sep, delimiter, head
         er, names, index col, usecols, squeeze, prefix, mangle dupe cols, dtype, engine, converters, true values, false value
         s, skipinitialspace, skiprows, nrows, na values, keep default na, na filter, verbose, skip blank lines, parse dates,
         infer datetime format, keep date col, date parser, dayfirst, iterator, chunksize, compression, thousands, decimal, li
         neterminator, quotechar, quoting, escapechar, comment, encoding, dialect, tupleize cols, error bad lines, warn bad li
         nes, skipfooter, doublequote, delim whitespace, low memory, memory map, float precision)
                                     skip blank lines=skip blank lines)
             677
         --> 678
                         return _read(filepath_or_buffer, kwds)
                     parser f. name = name
         -/Envs/analysis/lib/python3.6/site-packages/pandas/io/parsers.py in read(filepath or buffer, kwds)
                     # Create the parser.
                     parser = TextFileReader(filepath or buffer, **kwds)
         --> 440
             441
                     if chunksize or iterator:
         -/Envs/analysis/lib/python3.6/site-packages/pandas/io/parsers.py in __init__(self, f, engine, **kwds)
                              self.options['has index names'] = kwds['has index names']
         --> 787
                         self._make_engine(self.engine)
                     def close(self):
```

Reference: https://www.shanelynn.ie/python-pandas-read-csv-load-data-from-csv-files

Pandas CSV File Loading Errors

FileNotFoundError

UnicodeDecodeError

pandas.parser.CParserError

Step 1: Prepare the JSON String

Product	Price
Desktop Computer	700
Tablet	250
iPhone	800
Laptop	1200

Step 2: Create the JSON File.

```
Untitled - Notepad
File Edit Format View Help
{"Product":{"0":"Desktop Computer","1":"Tablet","2":"iPhone","3":"Laptop"}
                                            Windows (CRLF) Ln 1, Col 119
                                                                       100%
```

https://datatofish.com/load-json-pandas-dataframe

Step 2: Create the JSON File.

https://datatofish.com/load-json-pandas-dataframe

Finally, load your JSON file into Pandas DataFrame.

		Product	Price
0	Desktop	Computer	700
1	-	Tablet	250
2		iPhone	800
3		Laptop	1200

3 different JSON strings

Below are 3 different ways that you could capture the data as JSON strings.

Index orientation

Values orientation

Column's orientation

Groupby Methods

Pandas dataframe.groupby() function is used to split the data into groups based on some criteria. pandas objects can be split on any of their axes.

Reference: https://towardsdatascience.com/pandas-groupby-explained-453692519d0

Groupby output format – Series or DataFrame?

As a rule of thumb, if you calculate more than one column of results, your result will be a Dataframe. For a single column of results, the agg function, by default, will produce a Series.

Reference: https://www.shanelynn.ie/summarising-aggregation-and-grouping-data-in-python-pandas

Pivot Tables

It's a table of statistics that helps summarize the data of a larger table by "pivoting" that data.

df.pivot(index='foo', columns='bar' df foo bar baz **ZOO** В С Α bar 0 Α one 1 В 2 one foo 2 С 3 one Z 1 2 3 3 one two Α В 4 two 4 5 6 two 5 two

Pivot

https://pandas.pydata.org/pandas-docs/version/0.25.3/user_guide/reshaping.html

How to Build a Pivot Table in Python

In Pandas, we can construct a pivot table using the following syntax:

pandas.pivot_table(data, values=None, index=None, columns=None, aggfunc='mean', fill_value=None, margins=False, dropna=True, margins_name='All', observed=False)

Pandas Plotting

Plotting in pandas utilises the matplotlib API so in order to create visualisations, you will need to also import this library alongside pandas.

https://towardsdatascience.com/the-best-pandas-plotting-features-c9789e04a5a0

Plot a Scatter Diagram using Pandas

Scatter plots are used to depict a relationship between two variables.

Step 1: Prepare the data

Unemployment_Rate	Stock_Index_Price
6.1	1500
5.8	1520
5.7	1525
5.7	1523
5.8	1515
5.6	1540
5.5	1545
5.3	1560
5.2	1555
5.2	1565

Plot a Scatter Diagram using Pandas

Step 2: Create the DataFrame

	Unemployment_Rate	Stock_Index_Price
0	6.1	1500
1	5.8	1520
2	5.7	1525
3	5.7	1523
4	5.8	1515
5	5.6	1540
6	5.5	1545
7	5.3	1560
8	5.2	1555
9	5.2	1565

Plot a Scatter Diagram using Pandas

Step 3: Plot the DataFrame using Pandas

Plot a Line Chart using Pandas

Line charts are often used to display trends overtime.

Step 1: Prepare the data

Year	Unemployment_Rate
1920	9.8
1930	12
1940	8
1950	7.2
1960	6.9
1970	7
1980	6.5
1990	6.2
2000	5.5
2010	6.3

Plot a Line Chart using Pandas

Step 2: Create the DataFrame

	Year	Unemployment_Rate
0	1920	9.8
1	1930	12.0
2	1940	8.0
3	1950	7.2
4	1960	6.9
5	1970	7.0
6	1980	6.5
7	1990	6.2
8	2000	5.5
9	2010	6.3

Plot a Line Chart using Pandas

Step 3: Plot the DataFrame using Pandas

Plot a Bar Chart using Pandas

Bar charts are used to display categorical data.

Step 1: Prepare the data

Country	GDP_Per_Capita	
USA	45000	
Canada	42000	
Germany	52000	
UK	49000	
France	47000	

Plot a Bar Chart using Pandas

Step 2: Create the DataFrame

	Country	GDP_Per_Capita
0	USA	45000
1	Canada	42000
2	Germany	52000
3	UK	49000
4	France	47000

Plot a Bar Chart using Pandas

Step 3: Plot the DataFrame using Pandas

Plot a Pie Chart using Pandas

A pie chart (or a circle chart) is a circular statistical graphic, which is divided into slices to illustrate numerical proportion.

Step 1: Prepare the data

Tasks Pending	300
Tasks Ongoing	500
Tasks Completed	700

Thombson

Plot a Pie Chart using Pandas

Step 2: Create the DataFrame

		lasks
Tasks	Pending	300
Tasks	Ongoing	500
Tasks	Completed	700

Plot a Pie Chart using Pandas

Step 3: Plot the DataFrame using Pandas

REFERENCES

- https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html
- https://www.bigcommerce.com/ecommerce-answers/what-csv-file-and-what-does-it-mean-my-ecommerce-business/#:~:text=A%20CSV%20is%20a%20comma,Microsoft%20Excel%20or%20Google%20Spreadsheets.
- 3. https://fileinfo.com/extension/json
- 4. https://www.w3resource.com/JSON/structures.php
- 5. https://www.shanelynn.ie/python-pandas-read-csv-load-data-from-csv-files/

REFERENCES

- 6. https://datatofish.com/load-json-pandas-dataframe
- 7. https://www.shanelynn.ie/summarising-aggregation-and-grouping-data-in-python-pandas
- https://towardsdatascience.com/pandas-groupby-explained-453692519d0
- 9. https://towardsdatascience.com/a-step-by-step-guide-to-pandas-pivot-tables-e0641d0c6c70
- 10. https://pandas.pydata.org/docs/reference/api/pandas.pivot_tab le.html
- 11. https://datatofish.com/plot-dataframe-pandas

THANK YOU