Math 220A HW 1

Zih-Yu Hsieh

October 11, 2025

1 D

Problem 1

Lang Chapter 1 #11:

Let G be a group, and A a normal abelian subgroup, show that G/A operates on A by conjugation, and in this manner get a homomorphism of G/A into Aut(A).

Solution: For all $\overline{g} \in G/A$ (with representative $g \in G$) and $a \in A$, define a map $\mu : G/A \times A \to A$ by $\mu(\overline{g}, a) = gag^{-1}$.

First, one needs to show the map is well-defined: Suppose g, g' both are representatives of $\overline{g} \in G/A$, then there exists $h \in A$, such that g' = gh (since they're representing the same left coset), then consider the conjugation of g, g' on any $a \in A$, based on the assumption that A is abelian, we get:

$$gag^{-1} = g\big(hh^{-1}a\big)g^{-1} = g\big(hah^{-1}\big)g^{-1} = (gh)a(gh)^{-1} = g'a(g')^{-1} \tag{1.1}$$

Hence, g, g' both act on a in the same manner, hence there's no ambiguity defining $\mu(\overline{g}, a) = gag^{-1}$ (since every element in the same left coset acts on a the same).

Then, to show it's indeed an action, it follows from the below equality, for all $\overline{g}, \overline{h} \in G/A$, and $a \in A$:

$$\mu \left(\overline{g}, \mu \left(\overline{h}, a \right) \right) = \mu \left(hah^{-1} \right) = g \left(hah^{-1} \right) g^{-1} = (gh)a(gh)^{-1} = \mu (gh, a) \tag{1.2}$$

So, μ is indeed a well-defined left action, hence generating a group homomorphism $\pi: G/A \to \operatorname{Aut}(A)$, by $\pi(\overline{g})(\underline{\ }) = \mu(\overline{g},\underline{\ })$.

2 D

Problem 2

Lang Chapter 1 #12:

Let G be a group and let H, N be subgropus with N normal. Let γ_x be conjugation by an element $x \in G$.

(a) Show that $x \mapsto \gamma_x$ induces a homomorphism $f: H \to \operatorname{Aut}(N)$.

(b) If $H \cap N = \{e\}$, show that the map $H \times N \to HN$ given by $(x, y) \mapsto xy$ is a bijection, and that this map is an isomorphism if and only if f is trivial, i.e. $f(x) = \mathrm{id}_N$ for all $x \in H$.

We define G to be the **semidirect product** of H and N if G = HN and $H \cap N = \{e\}$.

(c) Conversely, let N, H be groups, and let $\psi : H \to \operatorname{Aut}(N)$ be a given homomorphism. Construct a semidirect product as follows: Let G be the set of pairs (x, h) with $x \in N$ and $h \in H$. Define the composition law:

$$(x_1,h_1)(x_2,h_2)=(x_1\psi(h_1)x_2,h_1h_2) \eqno(2.1)$$

Show that this is a group law, and yields a semidrect product of N and H, identifying N with the set of elements (x, 1) and H with the set of elements (1, h).

Solution:

(a) For all $x, y \in H$, if consider γ_{xy} , it satisfies the following:

$$\forall n \in N, \quad \gamma_{xy}(n) = (xy)n(xy)^{-1} = xyny^{-1}x^{-1} = x\gamma_{y(n)}x^{-1} = \gamma_x \left(\gamma_y(n)\right) \qquad (2.2)$$

Hence, the equality demonstrates that $\gamma_{xy} = \gamma_x \circ \gamma_y$, showing that $f: H \to \operatorname{Aut}(N)$ by $f(xy) = \gamma_{xy} = \gamma_x \circ \gamma_y$, which is a group homomorphism.

(b) Given $H \cap N = \{e\}$, first regardless of this condition, it's clear that $H \times N \to HN$ by $(x,y) \mapsto xy$ is surjective (since by definition HN collects all xy, where $x \in H$ and $y \in N$). To prove that it's injective, suppose $(x,y),(x',y') \in H \times N$ satisfies xy = x'y', then it satisfies $(x')^{-1}xy = y'$, or $(x')^{-1}x = y'y^{-1}$. Notice this expression is both in H and N (since $x, x' \in H$ and $y, y' \in N$), hence $(x')^{-1}x = y'y^{-1} = e$, showing x = x' and y = y', hence the map is injective. This shows that set wise, $H \cap N = \{e\}$ implies $H \times N$ and HN are set isomorphic.

Now, to prove the equivalence statement for the two groups above being group isomorphic, consider the following:

 \Longrightarrow : Suppose $H \times N \to HN$ by $(x,y) \mapsto xy$ is an isomorphism, in particular it's a group homomorphism, then for all $(x,y), (x',y') \in H \times N$, it satisfies the following:

$$(x,y) \mapsto xy, \quad (x',y') \mapsto x'y'$$
 (2.3)

$$(x,y) \cdot (x',y') = (xx',yy') \mapsto (xx')(yy') = (xy)(x'y')$$
 (2.4)

Hence, then equality shows x'y = yx' (by canceling x and y' on the sides). Since $(x,y),(x',y') \in H \times N$ are arbitrary (which $x' \in H$, $y \in N$ are arbitrary also), then $\gamma_{x'}(y) = x'y(x')^{-1} = y$, showing that $\gamma_{x'} = \mathrm{id}_N$. So, all $x' \in H$ satisfies $\gamma_{x'} = \mathrm{id}_N$.

 $\Longleftrightarrow \text{Suppose all } x \in H \text{ satisfies } \gamma_x = \operatorname{id}_N \in \operatorname{Aut}(N), \text{ we'll show the map } H \times N \to HN \\ \text{by } (x,y) \mapsto xy \text{ is a group homomorphism (since it's a bijection with assumption } H \cap N = \{e\}, \text{ being a group homomorphism implies it's an isomorphism)}. \text{Since for all } x \in H \text{ and } n \in N \text{ satisfies } xnx^{-1} = \gamma_{x(n)} = n, \text{ hence } xn = nx \text{ (or all elements in } H \text{ and } N \text{ commutes)}. \\ \text{Hence, given any } (x,y), (x',y') \in H \times N, \text{ they satisfy:}$

$$(x,y) \cdot (x',y') = (xx',yy') \mapsto (xx')(yy') = (xy)(x'y')$$
 (2.5)

$$(x,y) \mapsto xy, \quad (x',y') \mapsto x'y'$$
 (2.6)

Hence, $(x, y) \cdot (x', y')$ gets mapped to the product of the image of (x, y) and (x', y'), hence the map $H \times N \to HN$ is indeed a group homomorphism, which is an isomorphism (given that it's a bijection).

(c) To show the given law satisfies group property, we'll first show it's associative: Given any $(x_1, h_1), (x_2, h_2), (x_3, h_3) \in G$, they satisfy:

$$((x_1,h_1)(x_2,h_2))(x_3,h_3) = (x_1\psi(h_1)x_2,h_1h_2)(x_3,h_3) = (x_1(\psi(h_1)x_2)(\psi(h_1h_2)x_3),h_1h_2h_3)$$

$$(x_1, h_1)((x_2, h_2)(x_3, h_3)) = (x_1, h_1)(x_2\psi(h_2)x_3, h_2h_3) = (x_1\psi(h_1)(x_2\psi(h_2)x_3), h_1h_2h_2)(x_1, h_2)(x_2, h_2)(x_3, h_3)$$

Notice that the second equation's first entry can be rewrite as follow:

$$x_1\psi(h_1)(x_2\psi(h_2)x_3) = \psi(h_1)(x_2)\cdot\psi(h_1)(\psi(h_2)x_3) = \psi(h_1)(x_2)\cdot\psi(h_1h_2)(x_3) \quad (2.9)$$

Where the second equality is formed by the fact that ψ is a group homomorphism. Hence, one can conclude that $((x_1,h_1)(x_2,h_2))(x_3,h_3)=(x_1,h_1)((x_2,h_2)(x_3,h_3))$, which the given law is associative.

Then, we'll explicitly show that $(e,e) \in G$ serves as an identity: Given any $(x,h) \in G$, the following is satisfied:

$$(e_N,e_H)(x,h) = (e_N \psi(e_H)(x),e_H h) = \left(e_N \operatorname{id}_{N(x)},h\right) = (e_N x,h) = (x,h) \quad \ (2.10)$$

$$(x,h)(e_N,e_H) = (x\psi(h)(e_N),he_H) = (xe_N,h) = (x,h)$$
(2.11)

Which, (e, e) is indeed an identity under this law.

Now, to compute the inverse, given any $(x,h) \in G$, consider the element $(\psi(h^{-1})(x^{-1}), h^{-1})$, which satisfies the following:

$$(x,h)(\psi(h^{-1})(x^{-1}),h^{-1}) = x(\psi(h)\psi(h^{-1})(x^{-1}),hh^{-1})$$
(2.12)

$$= \left(x \cdot \psi(e_H)\big(x^{-1}\big), e\right) = \left(x \operatorname{id}_{N(x^{-1})}, e\right) = \left(xx^{-1}, e\right) = (e, e) \tag{2.13}$$

$$(\psi(h^{-1})(x^{-1}), h^{-1})(x, h) = (\psi(h^{-1})(x^{-1}) \cdot \psi(h^{-1})(x), h^{-1}h)$$
(2.14)

$$= (\psi(h^{-1})(x^{-1}x), e_H) = (\psi(h^{-1})(e_N), e_H) = (e_N, e_H)$$
(2.15)

Hence, this shows the existence of inverse for every element. So, under this rule, G forms a group.

3 D

Problem 3

Lang Chapter 1 #20:

Let P be a p-group. Let A be a normal subgroup of order p. Prove that A is contained in the center of P.

Solution: First, since |A| = p where p is a prime, then A is automatically cyclic, or there exists $a \in A$ (which |a| = p), with $A = \langle a \rangle$.

Also, since $A \subseteq G$, then for all $g \in G$ and $a^k \in \langle a \rangle = A$, $ga^kg^{-1} \in A$. Hence, one can consider the conjugation action $G \curvearrowright A$.

To prove that A belongs to the center of G, it suffices to show that every nontrivial element $a^k \in A$ has the same stabilizer, or for all integer 0 < k < p, we have $G_{a^k} = G_a$ under conjugation action.

Suppose the contrary that A is not contained in the center of G, while every of its nontrivial element has the same stabilizer. Then, there exists $a \in A$ and $g \in G$, such that $ag \neq ga$, or $gag^{-1} \neq a$. Notice that $gag^{-1} \neq e$, since if $gag^{-1} = e$, then a = e, which $gag^{-1} = a$; so, since gag^{-1} is nontrivial in A, there exists integer 0 < k < p, such that $gag^{-1} = a^k$, where $k \neq 1$ because $gag^{-1} \neq a$ by assumption. However, recall that under a left group action, if $g \cdot a = b$, then the stabilizer $G_b = gG_ag^{-1}$. So, we get that $G_{a^k} = gG_ag^{-1}$, while $G_{a^k} = G_a$ by assumption, hence $g \in gG_ag^{-1} = G_a$. Yet, this implies that $gag^{-1} = a$, which contradicts the assumption that $gag^{-1} \neq a$. Hence, we derived that A must be contained in the center of G (if assuming all nontrivial element of A has the same stabilizer, under G's conjugation action).

Then, to prove the main lemma, for all integer 0 < k < p (where $a^k \in A$ is nontrivial), we'll show that $G_a = G_{a^k}$:

 \subseteq : Given any $g \in G_a$, since $gag^{-1} = a$, then $a^k = (gag^{-1})^k = ga^kg^{-1}$ by internal cancellation, showing that $g \in G_{a^k}$, or $G_a \subseteq G_{a^k}$.

 \supseteq : Given any $h \in G_{a^k}$, notice that since $a^k \in A = \langle a \rangle$ is not trivial, then $|a^k| = p$ (since |A| = p, if $|a^k| \neq 1$ due to the fact that $a^k \neq e$, then $|a^k| = p$ is enforced). Hence, a^k also generates A (since $|\langle a^k \rangle| = p = |A|$), so there exists $r \in \mathbb{Z}$, such that $(a^k)^r = a$. Then, $a = (a^k)^r = (ha^kh^{-1})^r = h(a^k)^rh^{-1} = hah^{-1}$, again by internal cancellation. Hence, $h \in G_a$, or $G_{a^k} \subseteq G_a$.

The two inclusion concludes that $G_a = G_{a^k}$, hence all nontrivial elements in A has the same stabilizer. Together with the claim beforehand, A must be contained in the center.

4 D

Problem 4

Lang Chapter 1 #31:

Determine all groups of order ≤ 10 up to isomorphism. In particular, show that a non-abelian group of order 6 is isomorphic to S_3 .

Solution: For n = 1, the only group of such order is $\{e\}$ (since by definition a group must need an identity, so it's the only element).

For case n=2,3,5,7 (prime numbers ≤ 10), we'll show that all group must be isomorphic to $\mathbb{Z}/n\mathbb{Z}$: Given a group G with |G|=n, since $n\neq 1$ on our list, then G is nontrivial, hence there exists $g\in G$ where $g\neq e$. Then, since |g| divides |G|=n, while n (in our list) is prime, then with $g\neq e$ (implying $|g|\neq 1$), we must have |g|=n, hence the cyclic subgroup $\langle g\rangle \leq G$ satisfies $|\angle,lg\rangle|=|g|=n=|G|$, showing that $\langle g\rangle = G$. Then, since g has order g, then $g=\langle g\rangle \cong \mathbb{Z}/n\mathbb{Z}$.

For case n=4,9 (where $4=2^2$ and $9=3^2$, both prime square), since $n=p^2$ for some prime p, we'll show that all such group must be ablian: Suppose the contrary that there exists non-abelian group G with prime square power, let G acts on itself via conjugation action, then by class equation, $|G|=|Z(G)|+|\sum_{j\in J} \left[G:G_{x_i}\right]|$, where J runs through all distinct representatives of group elements with nontrivial conjugation classes.

Since each of the nontrivial conjugation class must be proper (due to the fact that $\{e\}$ itself forms a conjugation class), then $\left[G:G_{x_i}\right] \neq 1, p^2$ (since they're assumed to not be central, which has nontrivial conjugation class; while the conjugation class is proper, therefore its stabilizer can't be the whole group). In case for $\left[G:G_{x_i}\right]$ to divide $|G|=p^2$, it enforces $\left[G:G_{x_i}\right]=p$. So, in the class equation, since $|G|=p^2$ is divisible by p, similarly $|\sum_{j\in J}\left[G:G_{x_i}\right]$ is also divisible by p (since each term is), then so is |Z(G)|, showing that $|Z(G)|\neq 1$, or $Z(G)\neq \{e\}$. Then, by the assumption that it's non-abelian, $Z(G)\neq G$, hence $|Z(G)|\neq p^2$ either, showing that |Z(G)|=p (the only order that still divides p^2), or it's cyclic. Which, there exists $g\in Z(G)$ (with |g|=p), such that $\langle g\rangle=Z(G)$.

Finally, recall that $Z(G) \subseteq G$, hence G/Z(G) has a natural quotient group structure, and $|G/Z(G)| = [G:Z(G)] = |G| Z(G)| = \frac{p^2}{p} = p$, hence G/Z(G) is also cyclic, there exists $h \in G$, such that $\overline{h} \in G/Z(G)$ satisfies $\langle \overline{h} \rangle = G/Z(G)$. Which, every $k \in G$, since $\overline{k} = \overline{h}^i$ for some $i \in \mathbb{Z}$, then $k = h^i \cdot g^j$ for some $j \in \mathbb{Z}$ (since $k \in hZ(G) = h\langle g \rangle$). So, for every $k, k' \in G$, the followign is true:

$$kk' = (h^i g^j) \left(h^{i'} g^{j'} \right) = \left(h^i h^{i'} \right) \left(g^j g^{j'} \right) = \left(h^{i'} h^i \right) \left(g^{j'} g^j \right) = \left(h^{i'} g^{j'} \right) (h^i g^j) = k'k \tag{4.1}$$

Where the qbove equation uses the fact that g is in the center, and h commutes with itself. Yet, this shows that kk' = k'k for arbitrary $k, k' \in G$, which G is abelian, contradicting our initial assumption. Hence, the assumption is wfalse, G with prime square power must be abelian.

Back to the classification, for n=4 by Classification Theorem of Finite Abelian Group, |G|=4 implies it's abelian, hence $G\cong \mathbb{Z}/4\mathbb{Z}$ or $G\cong \mathbb{Z}/2\mathbb{Z}\times \mathbb{Z}/2\mathbb{Z}$. Similarly, for |G|=9, since it's also abelian, $G\cong \mathbb{Z}/9\mathbb{Z}$ or $G\cong \mathbb{Z}/3\mathbb{Z}\times \mathbb{Z}/3\mathbb{Z}$.

For n=8, there are two cases: If G is abelian, then again by fundamental theorem of finite abelian group, $G \cong \mathbb{Z}/8\mathbb{Z}, \mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$, or $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.

Else, if it's non-abelian, then there doesn't have any element with order 8 (or else G is cyclic), and must have an element with order 4 (or else all nontrivial element with order 2 is abelian, since $(ab)^2 = e \implies abab = e = e^2 = a^2b^2$, so ba = ab).

Now, let $\sigma \in G$ be an element of order 4, the cyclic subgroup $H = \langle \sigma \rangle$ is an order 4 subgroup of G (where |G| = 8), hence with index 2, which is normal (since any $\tau \notin H$ satisfies $\tau H \sqcup H = H\tau \sqcup H$, or $\tau H = H\tau$). Then, if $\tau \notin H$, notice that $\overline{\tau} \in G/H$ must have order 2 (since G/H has order 2), then $\tau^2 \in H$.

Notice that $\tau^2 \neq \sigma, \sigma^3$. If not, with σ, σ^3 both are order 4, w getheyerate $H = \langle \sigma \rangle$. Since $G = H \sqcup \tau H$, every element in G is of the form $\tau^i \sigma^j$ (or $\tau^i (\sigma^3)^{j'}$), which can be generated by τ (by swapping σ or σ^3 with τ^2). So, we are left with two cases:

- If τ² = e, then G = D₈ the dihedral group of regular 4-gon: Given (τσ) ∈ τH, then (τσ)² ∈ (τH)² = H. However, (τσ)² ≠ σ (or else τστ = e, showing σ = e, a contradiction), (τσ)² ≠ σ² (or else τστ = σ, showing τσ = στ, then the generator of H and the generator of G/H commutes, showing G is abelian, again a contradiction), and (τσ)² ≠ σ³ (since then (τσ)² has order 4, and (τσ) has order 8, which would have order 8 and generates everything, again a contradiction). So, it enforces (τσ)² = e, showing τστ = σ⁻¹, the dihedral group relation.
 Else if τ² = σ², then notice that τ³ = τσ² ∈ τH is nontrivial, while τ⁴ = σ⁴ = e, so |τ| = 4.
- Else if $\tau^2 = \sigma^2$, then notice that $\tau^3 = \tau \sigma^2 \in \tau H$ is nontrivial, while $\tau^4 = \sigma^4 = e$, so $|\tau| = 4$. We'll relable $1 := e, i := \sigma, -1 := i^2 = \sigma^2$ and $j := \tau$ for this case.

Then, notice that now $G = H \sqcup jH$ (with $H = \langle i \rangle$) is as follow:

$$G = \{1, i, -1, i^3 = (-1) \cdot i\} \sqcup \{j, ji, j(-1), j(-1)i\}$$

$$(4.2)$$

Now, notice that $(-1)^2=(i^2)^2=i^4=1$, and the fact that $(-1)=i^2=j^2$ shows that $(-1)i=i^3=i(-1)$, and $(-1)j=j^3=j(-1)$, showing that (-1) commutes with the generators of G, hence (-1) is central with order 2. Also, if consider the fact that G is non-abelian, the i,j cannot commute (since i,j generates the whole G, if they commute everything commutes). So, with $ij\in Hj=jH$ (by the fact that $j\notin H$), the ij=j,ji,j(-1), or j(-1)i. However, $ij\neq j^{-1}=j^3$ (or else $i=j^2=i^2$ is a contradiction), $ij\neq ji$ by the statement that i,j cannot commute, and $ij\neq j$ simply because $i\neq e$. So, it enforces ij=j(-1)i=(-1)ji. Which also shows that $(ij)^2=(ij)(-1)(ji)=(-1)(ij^2i)=(-1)i(-1)i=i^6=i^2=-1$. Hence, we get the following relation:

$$i^2 = j^2 = (ij)^2 = -1, \quad j(ij) = j(-1)ji = j^4i = i$$
 (4.3)

$$(ij)i = (-1)(ji)i = (-1)j(-1) = (-1)^2j = j, \quad (-1)^2 = 1$$
 (4.4)

Hence, relable k := (ij), we get:

$$i^2 = j^2 = k^2 = -1, \quad (-1)^2 = 1, \quad ij = k, jk = i, ki = j$$
 (4.5)

$$ij = (-1)ji, \quad kj = (ij)j = i(-1) = (-1)i = (-1)jk$$
 (4.6)

$$ik = i(ij) = (-1)j = (-1)ki$$
 (4.7)

Hence, it's a quaternion group relation.

So, for non-abelian group of order 8, it's either dihedral group D_8 , or the quaternion group (formed by multiplication of 1, i, j, k).

Finally, for n=6,10, since $6=2\cdot 3$ and $10=2\cdot 5,$ both are the case of n=2p for some prime p.

If the given group G of order 2p is abelian, then $G \cong \mathbb{Z}/(2p)\mathbb{Z}$ or $G \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}$ by Fundamental Theorem of Finite Abelian group.

Else, if the group is non-abelian, we claim that it's in fact dihedral group D_{2v} : If G is nonabelian, it cannot have any order 2p elements, hence all elements are either order 1, 2, or p. But, we've proven that all nontrivial element has order 2 implies it's abelian, so there must have nontrivial element $\sigma \in G$ with order p.

Now, since $H = \langle \sigma \rangle$ is order p, with |G| = 2p, H is an index 2 subgroup, which is normal. Hence, G/H is a group of order 2, so for all $\tau \notin H$, we have $\overline{\tau} \in G/H$ with order 2, hence $\tau^2 \in H$. But notice that if $\tau^2 \neq e$ (i.e. $\tau^2 = \sigma^k$ for some integer 0 < k < p), then since σ^k has order p (since k, p are coprime), then σ^k generates H also. Hence, because $G = H \sqcup \tau H$, hence every element is in the form $\tau^i(\sigma^k)^j = \tau^i \cdot \tau^{2j}$, showing τ generates the whole group, yet this is a contradiction (since then G is abelian). So, it enforces $\tau^2 = e$.

Finally, given $(\tau \sigma) \in \tau H$, since $(\tau H)^2 = H$, then $(\tau \sigma)^2 = \sigma^k$ for some integer $0 \le k < p$. However, if $(\tau \sigma)^2 \neq e$ (or $(\tau \sigma)^2 = \sigma^k$ for some integer 0 < k < p, where σ^k generates H), since $\tau \sigma \notin H$, then $G = H \sqcup (\tau \sigma)H$. So, every element is in the form $(\tau \sigma)^k (\sigma^k)^j = (\tau \sigma)^{k+2j}$, showing again that $\tau\sigma$ generates G, which is a contradiction. So, $(\tau\sigma)^2 = e$, showing that $\tau\sigma\tau = \sigma^{-1} = e$ σ^{p-1} , hence τ, σ satisfies the dihedral group relation, or G is group isomorphic to a dihedral group. So, if G has order 2p, and not abelian, then $G \cong D_{2p}$.

In particular, since p=3 has $D_6=S_3$, then any non-abelian group of order 6 must be S_3 .

5 D

Problem 5

Lang Chapter 1 #34:

- (a) Let n be an even positive integer. Show that there exists a group of order 2n, generated by two elements σ, τ such that $\sigma^n = e = \tau^2$, and $\sigma \tau = \tau \sigma^{n-1}$. This group is called the
- (b) Let n be an odd positive integer. Let D_{4n} be the group generated by the matrices

$$\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \text{ and } \begin{pmatrix} \zeta & 0 \\ 0 & \zeta^{-1} \end{pmatrix}$$
 (5.1)

where ζ is a primitive n-th root of unity. Show that D_{4n} has order 4n, and give the commutation relations between the above generators.

Solution:

- (a) Here, assume we know dihedral group, then we're done (since the whole geometric cons-
- truction is way too tedious).

 (b) Given that $\binom{0}{1} \stackrel{-1}{0}^2 = -\operatorname{id}$, then $\binom{0}{1} \stackrel{-1}{0}$ has order 4; also, since ζ is a primitive n-th root of unity, then $\zeta^n = \zeta^{-n} = 1$ (while any integer 0 < k < n doesn't satisfy this relation). Hence, $\binom{\zeta}{0} \stackrel{0}{\zeta^{-1}}$ has order n since its power k has the form $\binom{\zeta^k}{0} \stackrel{0}{\zeta^{-k}}$). So, if D_{4n} is finite, then 4 and n (order of the two generators) must divide $|D_{4n}|$, hence lcm(4, n) = 4n divides $|D_{4n}|$ (since n is odd).

The reason why D_{4n} is finite, since if consider the multiplication of the two generators,

$$\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \zeta & 0 \\ 0 & \zeta^{-1} \end{pmatrix} = \begin{pmatrix} 0 & -\zeta^{-1} \\ \zeta & 0 \end{pmatrix} = \begin{pmatrix} \zeta^{-1} & 0 \\ 0 & \zeta \end{pmatrix} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} \zeta & 0 \\ 0 & \zeta^{-1} \end{pmatrix}^{-1} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$
 (5.2)

if consider the subgroup H generated by $\begin{pmatrix} \zeta & 0 \\ 0 & \zeta^{-1} \end{pmatrix}$, the above relation shows that it's normal (since both generators has the conjugation of elements in H staying in H). Also, since it provides that the two generators can swap position, with the cost that the one with primite n-th root is inverted), then every group element $\sigma \in D_{4n}$ in fact can be written as $\begin{pmatrix} \zeta & 0 \\ 0 & \zeta^{-1} \end{pmatrix}^k \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}^l$ for some $k, l \in \mathbb{Z}$. Since there are at most n distinct elements for $\begin{pmatrix} \zeta & 0 \\ 0 & \zeta^{-1} \end{pmatrix}^k$ and there are at most 4 distinct elements for $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}^l$, then there are at most 4n distinct elements in D_{4n} .

Hence, this enforces that $|D_{4n}| = 4n$ (since 4n divides the order, and the order is at most 4n).

6 D

Problem 6

Lang Chapter 1 #50:

- (a) Show that fiber products exist in the category of abelian groups. In fact, if X, Y are abelian groups with homomorphisms $f: X \to Z$ and $g: Y \to Z$ show that $X \times_Z Y$ is the set of all pairs (x,y) with $x \in X$ and $y \in Y$ such that f(x) = g(y). The maps p_1, p_2 are the projections on the first and second factor respectively.
- (b) Show that the pull-back of a surjective homomorphism is surjective.

Solution:

(a) First, recall that product in Grp and Ab (category of groups and abelian groups respectively) is the direct product with the associated group structure. Which, given $f:X\to Z$ and $g:Y\to Z$ two abelian group homomorphisms, let $X\times Y$ denotes the product, and $\pi_X:X\times Y\to X$ and $\pi_Y:X\times Y\to Y$ denote the two projections respectively. Then, $f\circ\pi_X,g\circ\pi_Y:X\times Y\to Z$ are two group homomorphisms.

Since Z is an abelian group, the inversion map $\iota: Z \cong Z$ is in fact a group homomorphism (since for all $a,b \in Z$, $\iota(ab) = (ab)^{-1} = b^{-1}a^{-1} = a^{-1}b^{-1} = \iota(a)\iota(b)$), consider the map $h: X \times Y \to Z$, defined as follow:

$$h(x,y)=(\iota\circ f\circ\pi_X(x,y))\cdot(g\circ\pi_Y(x,y))=(f(x))^{-1}g(y) \tag{6.1}$$

since $\iota \circ f \circ \pi_X$ and $g \circ \pi_Y$ are both group homomorphisms with codomain Z, while Z is abelian, then the above h is also a group homomorphism. Then, it's valid to consider $\ker(h) \leq X \times Y$.

Now, define $p_1 : \ker(h) \to X$ as restriction of $\pi_X : X \times Y \to X$, similarly $p_2 : \ker(h) \to Y$ as restriction of $\pi_Y : X \times Y \to Y$. We claim that $\ker(h)$ together with p_1, p_2 forms a fiber product of f and g.

First, to show it "equalizes" f and g, for all $(x,y) \in \ker(h)$, since $h(x,y) = (f(x))^{-1}g(y) = e$ in Z, then g(y) = f(x). Hence:

$$\forall (x, y) \in \ker(h), \quad f \circ p_1(x, y) = f(x) = g(y) = g \circ p_2(x, y)$$
 (6.2)

This shows that $f \circ p_1 = g \circ p_2$.

Now, to prove it's universal with fiber product property. Given any abelian group G, together with $q_1:G\to X$ and $q_2:G\to Y$ that satisfies $f\circ q_1=g\circ q_2$, by the universal property of product $X\times Y$, there exists a unique group homomorphism $(q_1,q_2):G\to X\times Y$ such that $q_1=\pi_X\circ (q_1,q_2)$ and $q_2=\pi_Y\circ (q_1,q_2)$. However, notice that (q_1,q_2) satisfies $(q_1,q_2)(a)=(q_1(a),q_2(a))\in X\times Y$ satisfies $f(q_1(a))=g(q_2(a))$ by definition, hence:

$$h(q_1(a), q_2(a)) = (f(q_1(a)))^{-1} g(q_2(a)) = e \in Z$$
 (6.3)

Hence, $(q_1(a),q_2(a))=(q_1,q_2)(a)\in\ker(h)$, showing that im $(q_1,q_2)\subseteq\ker(h)\subseteq X\times Y$, hence it restricts to a group homomorphism $(q_1,q_2):G\to\ker(h)$ that satisfies $p_1\circ(q_1,q_2)=\pi_X\circ(q_1,q_2)=q_1$, and $p_2\circ(q_1,q_2)=\pi_Y\circ(q_1,q_2)=q_2$, this shows the existence of a group homomorphism $G\to\ker(h)$.

Finally, to show this map is indeed unique, suppose $l:G\to \ker(h)$ is another group homomorphism such that $p_1\circ l=q_1$ and $p_2\circ l=q_2$. Then, for all $a\in G, p_1\circ l(a)=\pi_X(l(a))=q_1(a)$ and $p_2\circ l(a)=\pi_Y(l(a))=q_2(a)$, hence $l(a)=(q_1(a),q_2(a))=(q_1,q_2)(a)\in \ker(h)\leq X\times Y$, showing $l=(q_1,q_2)$. Hence, such map $G\to \ker(h)$ is unique.

This shows that $\ker(h)$ together with $p_1 : \ker(h) \to X$ and $p_2 : \ker(h) \to Y$ is indeed a fiber product of $f : X \to Z$ and $g : Y \to Z$, showing fiber product exists in Ab.

Now, recall that $(x,y) \in \ker(h)$ iff $h(x,y) = (f(x))^{-1}g(y) = e$, which is equivalent to f(x) = g(y). Hence, $\ker(h)$ is also characterized by all $(x,y) \in X \times Y$, such that f(x) = g(y).

(b) For definiteness, given $f: X \to Z$ and $g: Y \to Z$ two abelian group homomorphisms, and say g is surjective. Then, let the fiber product $X \times_Z Y \leq X \times Y$ collect all the element $(x,y) \in X \times Y$ satisfying f(x) = g(y) (together with $p_1: X \times_Z Y \to X$ and $p_2: X \times_Z Y \to Y$ be the two projections).

To show that p_1 (the pull-back of g) is also surjective, consider the following: For all $x \in X$, since $f(x) \in Z$ and g is surjective, there exists $y \in Y$, such that g(y) = f(x). Hence, the pair $(x,y) \in X \times_Z Y$, and $p_1(x,y) = x$, this shows that $x \in \operatorname{im}(p_1)$, or $X = \operatorname{im}(p_1)$. Hence, p_1 (the pull-back of g) is also surjective.

7 ND

Problem 7

Lang Chapter 1 #51:

- (a) Show that fiber products exist in the category of sets.
- (b) In any category \mathcal{C} , consider the category \mathcal{C}_Z of objects over Z. Let $h:T\to Z$ be a fixed object in this category. Let F be the functor such that

$$F(X) = Mor_Z(T, X) \tag{7.1}$$

where X is an object over Z, and Mor_Z denotes morphisms over Z. Show taht F transforms fiber products over Z into products in the category of sets.

Solution:

(a) Given any $f: X \to Z$ and $g: Y \to Z$ as set functions, let $X \times Y$ denote the product of the two sets, $\pi_1: X \times Y \to X$ and $\pi_2: X \times Y \to Y$ denote the two projections, while $H \subseteq X \times Y$ collects all $(x,y) \in X \times Y$, such that f(x) = g(y). We claim that H together with the restriction of π_1, π_2 onto H forms a fiber product of f, g in the category of sets.

First, for all $(x,y) \in H$, we have $f \circ \pi_1(x,y) = f(x) = g(y) = g \circ \pi_2(x,y)$, hence $f \circ \pi_1 = g \circ \pi_2 : H \to Z$, showing that it satisfies the basic properties a fiber product needs.

Then, to show its universality, suppose set A together with $q_1:A\to X$ and $q_2:A\to Y$ satisfies $f\circ q_1=g\circ q_2$. Since it maps from A to both X and Y, by the universality of direct product in sets, there exists a unique map $(q_1,q_2):A\to X\times Y$, such that $\pi_1\circ (q_1,q_2)=q_1$, and $\pi_2\circ (q_1,q_2)=q_2$ (without restricting the domain of π_1,π_2). Now, notice that for all

 $a\in A$, since $f\circ q_1(a)=g\circ q_2(a)$, then $(q_1,q_2)(a)=(q_1(a),q_2(a))\in H$ by definition, hence $(q_1,q_2):A\to H$ is a well-defined function after restriction.

Also, notice that $(q_1,q_2):A\to H$ must necessarily be unique: Suppose some other $h:A\to H$ satisfies $\pi_1\circ h=q_1$ and $\pi_2\circ h=q_2$, then $\pi_1(h(a))=q_1(a)$ and $\pi_2(h(a))=q_2(a)$, showing that $h(a)=(q_1(a),q_2(a))=(q_1,q_2)(a)$, hence $h=(q_1,q_2)$.

So, this proves that given set A with $q_1:A\to X$ and $q_2:A\to Y$ satisfying $f\circ q_1=g\circ q_2$, then this pair (A,q_1,q_2) necessarily factors through the pair (H,π_1,π_2) (where π_i are restricted to H), hence (H,π_1,π_2) does serve as a fiber product of f,g, inside the category of sets.

(b) IDK