

Agenda

- Introdução à Robótica Industrial;
- Histórico da Robótica Industrial;
- Robótica Industrial Atual;
- Definição de Robô Industrial;
- Composição de um Robô Industrial;
- > Tipos de Juntas;
- Espaço de Trabalho;
- Tipos de Robôs Industriais;
- Cinemática de Robôs Industriais;
- Programação de Robô Industrial;
- Projeto de Células Robotizadas;
- Case Tupy SA;
- Referências.

Introdução à Robótica Industrial

- Cada vez mais a robótica está inserida na indústria. Hoje ela é um recurso amplamente utilizado, devido a sua grande flexibilidade de adaptação. Facilmente encontram-se robôs nas indústrias automobilísticas, farmacêuticas, alimentícias, de metalurgia entre outras tantas.
- O maciço investimento em robôs industriais no processo produtivo observado nas últimas décadas deve-se principalmente as crescentes necessidades impostas pelo mercado em se obterem sistemas de produção cada vez mais automatizados e dinâmicos.
- Devido as características de flexibilidade de programação e adaptação a sistemas integrados de manufatura, o robô industrial tornou-se um elemento importante nesse contexto.

Introdução à Robótica Industrial

- De um modo geral, as indústrias buscam os mesmos objetivos ao empregarem robôs em ambientes fabris, que são:
 - · Redução do número de pessoas envolvidas no processo produtivo, aumento da produtividade, redução de perdas, etc.;
 - Eliminação do risco de acidente em certas atividades insalubres;
 - Aumentar a qualidade dos produtos;
 - Realizar atividades impossíveis de serem controladas manualmente.
- Os robôs industriais estão sendo utilizados em muitas áreas de aplicação nas indústrias, muitas das atuais aplicações são na manufatura. As aplicações podem ser classificadas em uma das três categorias: manuseio de materiais, processamento de operações e montagem e inspeção.

Introdução à Robótica Industrial

- Nas atividades de Manuseio de Materiais, é comum o uso de robôs para transporte de peças entre esteiras transportadoras e máquinas operatrizes, ou mesmo carga e descarga de máquinas CNC.
- O uso de robôs no Processamento de Operações e Montagens é percebido quando o robô executa alguma operação sobre as peças produzidas na célula onde ele está instalado.
- As Inspeções utilizando robôs são mais cofiáveis que aquelas utilizando operadores, uma vez que o ser humano não consegue manter uma boa repetibilidade por longos períodos de tempo. As inspeções utilizando robôs podem ser verificações dimensionais utilizando sensores ou verificações utilizando sistemas de visão.

Histórico da Robótica Industrial

- Século IV a.C. (Grécia): Aristóteles relata os primeiros princípios da robótica, referentes à utilização de instrumentos dedicados a trabalhos determinados, sem o auxílio das mãos (conceito mestre e escravo) [1, 2];
- Século XVIII: Início da Revolução Industrial, evolução de fontes de energias, mecanismos e instrumentos. Máquina capaz de controlar ações seqüenciadas [1, 2];
- Século XIX: Exposições de máquinas para promover os mais recentes eventos tecnológicos. O motor elétrico é introduzido na indústria [2];
- Ano 1921: primeira utilização da palavra "robot" na peça, do dramaturgo checo Karel Capek [5], Rossum's Universal Robots (R.U.R.), criação de robôs como uma máquina humana com inteligência capaz de realizar tarefas no lugar do homem, estes robôs de rebelam e destroem todos os humanos, com exceção do seu criador [1, 2, 6];

- ➤ Meados de 1940: escritor norte americano Isaac Asimov estabelece as três leis básicas da robótica [1, 2, 6]:
 - Um robô não pode ferir ou deixar ser ferido um ser humano;
 - Um robô deve obedecer as ordens de um ser humano, com a exceção delas estarem em contradição com a primeira;
 - Um robô deve proteger sua existência, desde que não entre em contradição com a primeira ou a segunda lei;
 - Um robô não pode causar mal a humanidade nem permitir que ela própria o faça (esta lei foi escrita por Asimov em 1984) [1, 2].
- Desenvolvimento de um manipulador mestre-escravo para manusear materiais radioativos pelo *Argone National Laboratory*. O manipulador escravo duplica os movimentos produzidos pelo mestre, em um local seguro [1, 3, 6];

Histórico da Robótica Industrial

Operação de um manipulador mecânico. Fonte http://www.mechatronictips.com/2008/10/565/technology/motioncontrol/the-cutting-edge-of-haptic-research/

4

Meados de 1959: George Devol e Joseph F. Engelberger desenvolvem o primeiro robô industrial moderno pela Unimation Inc. denominado *Unimate*. Estes podiam ser reprogramados e adaptados a algumas tarefas. Utilizavam tecnologia de controle de máquinas com comando numérico [1, 2, 3, 6];

Robô Unimate da Unimation Inc. Fonte http://www.localhistory.scit.wlv.ac.uk/Museum/OtherTrades/BCN/BJB.htm

Histórico da Robótica Industrial

Meados de 1960: Instalação do primeiro *Unimate* em uma empresa, que foi a General Motors de Trenton – Nova Jersey, em uma aplicação de fundição. Flexibilidade aumenta devido ao uso de diferentes tipos de sensores. Stanford Artificial Intelligence Laboratory e MIT Lincoln Laboratory iniciam o desenvolvimento de robôs industriais utilizando sensores tácteis e visão computacional [2, 3, 6];

Unimation Inc. Unimate 1962. Fonte http://datapeak.net/robotics.htm

- Meados de 1974: Surgiu a RIA (Robot Institute of America) que em 1984 muda para Robotic Industries Association. A empresa Cincinnati Milacron lança um robo industrial controlado por computador chamado T3 (The Tomorrow Tool) [2, 3, 6]. Mais tarde a Unimation Inc. lança o PUMA (Programmable Universal Machine for Assembly) [3]. A empresa sueca ABB lança o primeiro robo com acionamento totalmente eletrico o IRB6 [6];
- Meados de 1980: Conceito do robo SCARA (Selective Compliance Assembly Robot Arm) [6];

Histórico da Robótica Industrial

Cincinnati Milacron T3. Fonte http://www.lislesurplus.com/c/Cincinnati-milacron-T3-776-robot-arm-~5000-pounds-6-axi/e http://soumya1419.wordpress.com/2009/07/25/servo-mechanism-its-applications/

Figure 5. SCARA - Selective Compliance Assembly Robot Arn

 $Rob \^o SCARA. Fonte $$http://www.galilmc.com/techtalk/motion-controllers/coordinate-transformation-options/e $$http://www.scielo.br/scielo.php?pid=S0100-73862002000300004\&script=sci_arttext$

Robótica Industrial Atual

Atualmente os robôs industriais empregam alta tecnologia de hardware e software em seu controle. A grande capacidade de processamento permite aos robôs atuais a execução, cada vez mais rápida, de trajetórias sem perder a precisão. Os cálculos de trajetórias envolvem uma matemática pesada, por isso há necessidade de um processador de alto desempenho.

Robótica Industrial Atual

Robô Kawasaki RS020N e Mitsubishi RV3SD. Fonte Kawasaki e Mitsubishi

Definição de Robô Industrial

➤ RIA (*Robot Industries Association*): Um manipulador multifuncional reprogramável, projetado para movimentar materiais, peças e ferramentas por meio de movimentos programados, para o desempenho de várias tarefas [1, 3, 4, 6].

➤ ISO 10218:

Uma máquina manipuladora, com vários graus de liberdade, controlada automaticamente, reprogramável, multifuncional, que pode ter base fixa ou móvel para utilização em aplicações de automação industrial [1].

Unidade Mecânica R2000iB/165F Fanuc.

Fonte Fanuc Robotics

Controlador Fanuc. Fonte: http://www.robots.com/fanuc.php?controller=r-30ia

Teach Pendant Fanuc. Fonte Fanuc Robotics

Composição de um Robô Industrial

- A unidade mecânica é um manipulador projetado para realizar diferentes tarefas e ser capaz de repeti-las [2].
- Consiste na combinação de elementos estruturais rígidos (elos), conectados entre si por meio de articulações (juntas) [1].
- Os elos devem ser projetados para apresentar alta rigidez aos esforços de flexão e torção [1].
- As juntas são unidades mecânicas que compõem um par cinemático formado por dois elos adjacentes [1].
- O número de graus de liberdade de um robô depende do número de juntas [1].

- A movimentação de cada elo ocorre devido a transmissão de potência mecânica (força e velocidade) originada num atuador. Os sistemas de transmissão são componentes mecânicos cuja função é transmitir potencia mecânica dos atuadores aos elos [1].
- São componentes de transmissão [1]:
 - Engrenagens (de dentes retos, helicoidais, cremalheira e pinhão, cônicas...);
 - Fusos de esferas recirculantes;
 - Correias e polias;
 - Correntes;
 - Cabos;
 - Fitas de aço;
 - Engrenagens planetárias;
 - Engrenagens harmônicas;
- As características mais importante em sistemas de transmissão são a rigidez e a eficiência mecânica [1].

REDUTOR HARMÔNICO (HARMONIC DRIVE)

Características:

- Alta taxa de redução de velocidade: 1/30 a 1/320
- Livre de backlash (mov. perdido)
- Pequeno número de componentes
- Fácilmontagem
- · Silencioso, operação sem vibração
- · Capacidade elevada de torque
- Tamanho pequeno e leve
- Alta precisão e
- Alta eficiência

Constituído somente de três peças:

- wavegenerator
- · flexspline e
- · o circular spline

- ➤ Os atuadores são componentes que convertem energia elétrica, hidráulica e pneumática em potência mecânica [1].
- > Energia elétrica:
 - Motores de corrente contínua;
 - Motores de corrente alternada;
 - Motores de passo;

- ➤ O controlador gerencia e monitora os parâmetros operacionais requeridos para realizar as tarefas do robô. Os comandos de movimentação enviados aos atuadores são baseados em informações obtidas por meio de sensores [1].
- O controlador comanda a quantidade de energia enviada aos atuadores, com a finalidade de permitir ao robô mover-se com velocidade variável e parar em qualquer posição [2].

Composição de um Robô Industrial

- ➤ Os sensores fornecem parâmetros sobre o comportamento da unidade mecânica, geralmente em termos de posição e velocidade dos elos em função do tempo e do modo de interação entre o robô e o ambiente operativo à unidade de controle [1].
 - Encoders (incremental e absoluto);
 - Resolvers;
 - Potenciômetros multivoltas;
 - Tacômetros;

Tipos de Juntas

- Rotativa: movimentos de rotação entre dois vínculos unidos por uma dobradiça comum [2,3,6, 9];
- Cilíndrica: movimentos de rotação e em linha reta (linear)
 [3,6,9];
- Prismática: movimentos lineares entre dois vínculos [2,3,6,9];
- > **Esférica:** movimentos que combinam três juntas de rotação [2,3,6,9];
- Fuso: contem um fuso e executa movimentos semelhantes a uma junta prismática [3,6,9];
- Planar: movimentos que combinam duas juntas prismáticas, realiza movimentos em duas direções [3,6,9];

Espaço de Trabalho

- O Espaço de Trabalho de um robô industrial é definido como o volume do espaço onde o efetuador final pode alcançar [3].
- Este volume, em geral, é estabelecido de acordo com os limites impostos pelo projeto mecânico do robô, ou seja, a configuração do manipulador, os limites dos movimentos das juntas, o tamanho do braço do manipulador, entre outros [8].
- > Os fabricantes de robôs industriais fornecem o espaço de trabalho em termos do alcance do manipulador e um ou mais planos. É mais interessante saber se um determinado modelo de robô alcança um ponto no espaço do que o volume contido no seu espaço de trabalho [8].

Espaço de Trabalho

- De acordo com a Federação Internacional de Robótica (IFR – International Federation of Robotics), as principais configurações relativas as estruturas mecânicas são as seguintes [1]:
 - Robô de Coordenadas Cartesianas;
 - Robô de Coordenadas Cilíndricas:
 - Robô de Coordenadas Polares (Esféricas);
 - Robô SCARA;
 - Robô Articulado ou Antropomórfico;
 - Robô Paralelo.

Tipos de Robôs Industriais

- Robô de Coordenadas Cartesianas [1,2,3,8]:
 - Se movimenta em linha reta, horizontal e verticalmente;
 - Especifica um ponto no espaço em função das coordenadas X, Y e Z;
 - Possuem três juntas prismáticas;
 - Possuem elevada rigidez mecânica, grande exatidão na localização do efetuador final;

Robô Cartesiano Sepro 4030 S3. Fonte Sepro Robotique.

Tipos de Robôs Industriais

- Robô de Coordenadas Cilíndricas [1,2,3,8]:
 - Combinam movimentos lineares com rotacionais;
 - Descrevem um espaço de trabalho cilíndrico;
 - · Possuem uma junta rotacional e duas prismáticas;

 $Fonte\ \underline{http://www.din.uem.br/ia/vida/robotica/config.htm}$

Tipos de Robôs Industriais

- Robô de Coordenadas Polares (Esféricas) [1,2,3,8]:
 - Possuem duas juntas rotacionais e uma prismática;
 - Descrevem um espaço de trabalho esférico;

Juntas do Robô Esférico. Fonte

Tipos de Robôs Industriais

- ▶ Robô SCARA [1,2,3,8]:
 - Utilizado para tarefas de montagem;
 - Possui duas juntas rotacionais e uma prismática;
 - As juntas rotacionais estão dispostas em paralelo para se obter movimento no plano;
 - O espaço de trabalho é semelhante a um cilindro;

Tipos de Robôs Industriais

- Robô Articulado ou Antropomórfico [1,2,3,8]:
 - Possuem pelo menos três juntas rotacionais;
 - A junta de rotação da base é ortogonal as outras duas, que são paralelas;
 - Essa configuração permite maior mobilidade;
 - Seu espaço de trabalho apresenta uma geometria mais complexa, se assemelhando a uma esfera;

Robô articulado PUMA. Fonte http://tegruposete7.wordpress.com/classificacao-dos-robo

Tipos de Robôs Industriais

- Robô Paralelo [1,3,8]:
 - Possuem juntas que transformam movimentos de rotação em translação:
 - Possuem velocidade de trabalho superior aos demais tipos;
 - O espaço de trabalho é semelhante a um cilindro;

Robô Fanuc M3iA/6. Fonte Fanuc Robotics.

Cinemática do Robô Industrial

- Um robô industrial é composto de elos, que também podemos chamar de eixos de rotação. Quanto mais eixos de rotação, mais complexo é o controle de um robô.
- A cinemática estuda os movimentos de um robô com relação a um sistema de referência. A posição do efetuador final de um robô é dada por meio da composição das posições e orientações de todas as juntas do robô em relação a um sistema coordenadas de referência.
- > A cinemática direta estuda a posição e a orientação do efetuador final a partir dos ângulos das juntas.
- > A cinemática inversa estuda os ângulos necessários para o efetuador final do robô alcançar uma posição conhecida no espaço.

Cinemática do Robô Industrial

- A cinemática direta estuda a posição e a orientação do efetuador final a partir dos ângulos das juntas.
- A cinemática inversa estuda os ângulos necessários para o efetuador final do robô alcançar uma posição conhecida no espaço.

Cinemática direta e inversa. Fonte [10]

Cinemática Direta

- ▶ Para robôs com n graus de liberdade, pode-se dizer que cada elo está associado a um sistema de coordenadas de referência solidário a ele e dessa forma, é utilizada a matriz de transformação homogênea para representar as rotações e translações entre os elos que compõem o robô.
- A matriz de transformação homogênea que representa a orientação dos elos de um robô pode ser representada por ⁱ⁻¹A_i, onde se pode descrever a posição e orientação do sistema de referência i-1 solidário ao sistema i. Assim um robô com seis graus de liberdade tem a posição e orientação do seu elo final dada por T:

$$T = {}^{0}A_{6} = {}^{0}A_{1} {}^{1}A_{2} {}^{2}A_{3} {}^{3}A_{4} {}^{4}A_{5} {}^{5}A_{6}$$

 $\text{A MTH do elo} \stackrel{i-1}{\sim} \mathbf{A}_i \stackrel{e}{\sim} \textit{dada por:} \quad \stackrel{i-1}{\sim} A_i = \begin{bmatrix} C\theta_i & -C\alpha_i S\theta_i & S\alpha_i S\theta_i & a_i C\theta_i \\ S\theta_i & C\alpha_i C\theta_i & -S\alpha_i C\theta_i & a_i S\theta_i \\ 0 & S\alpha_i & C\alpha_i & d_i \\ 0 & 0 & 0 & 1 \end{bmatrix}$

Cinemática Direta - Método de Denavit-Hatenberg

- O método de Denavit-Hatenberg utiliza apenas quatro parâmetros para conhecer a Matriz de Transformação Homogênea.
 - ai Distância medida ao longo da normal comum entre os eixos das juntas. Traduz o conceito de afastamento linear entre eixos.
 - di Distância entre elos, medida ao longo do eixo da junta anterior.
 - Θi Ângulo definido entre o eixo de um elo e o eixo do elo seguinte.
 - αi Ângulo de torção do elo, desde o eixo de uma junta até o eixo da junta seguinte.

Modelo de Coordenadas Robô ABB IRB140

Cinemática Direta - Método de Denavit-Hatenberg

- Algoritmo de Denavit-Hatenberg
- **1a** Numerar os elos, iniciando em **1** (primeiro elo móvel) e terminando em n (último elo móvel). A base do robô é numerada como o elo **0**.
- 1b Numerar as juntas, iniciando em 1 (ref. 1° GDL) e terminando em n.
- 1c Localizar o eixo de cada junta. Se rotacional, é o eixo de rotação; se prismática, é o eixo ao longo do qual ocorre o deslocamento.
- 2 Para i variando de 0 a n-1, situar o eixo z_i sobre o eixo da junta i+1.
- 3 Situar a origem do sistema da base $\{S_0\}$ em qualquer ponto do eixo z0. Os eixos x0 e y0 devem formar um sistema dextrógiro com z0.

Para i variando de 1 até n-1,

4a - Situar o sistema $\{S_i\}$, solidário ao elo i, na intersecção do eixo z_i com a linha normal comum a z_i -1 e z_i . Se os eixos se interceptarem, localizar O_i na intersecção. Se os eixos forem paralelos, localizar O_i na junta i+1.

Cinemática Direta - Método de Denavit-Hatenberg

- > Algoritmo de Denavit-Hatenberg (continuação...)
- 4b Definir $x_i = \pm (z_{i-1} \otimes z_i)$. Se x_i for orientado de z_{i-1} para z_i , $a_i \ge 0$. Se z_{i-1} e z_i forem paralelos, situar x_i na normal comum a z_{i-1} e z_i .
- **4c** Definir $\mathbf{y}_i = \mathbf{z}_i \otimes \mathbf{x}_i$, formando um sistema dextrógiro.
- 5 Situar o sistema $\{S_n\}$ no extremo do robô de modo que \mathbf{z}_n coincida com a direção de \mathbf{z}_{n-1} e \mathbf{z}_n seja normal a \mathbf{z}_n e \mathbf{z}_{n-1} .

Para *i* variando de 1 até *n*,

- **6a** Obter os parâmetros de D-H: θ_i , \mathbf{d}_i , \mathbf{a}_i e α_i .
- **6b** Obter as MTH's dos elos: i -1 A_{i} .
- 7 Obter a MTH que relaciona $\{S_n\}$ a $\{S_0\}$, isto é, $\mathbf{T} = {}^0\mathbf{A}_1 \, {}^1\mathbf{A}_2 \dots {}^{n-1}\mathbf{A}_n$. Com isso, obtêm-se a posição e a orientação do extremo do robô referidas à sua base em função das coordenadas das juntas.

Cinemática Direta - Exemplo IRB 140

Modelo de Coordenadas Robô ABB IRB140

Parâmetros de Denavit-Hartenberg do IRB140

i	$\alpha_{\rm i}$	a_{i}	$\theta_{\rm i}$	di
1	-90°	70	θ_1	352
2	0°	360	$-90^{\circ} + \theta_2$	0
3	90°	0	$-90^{\circ} + \theta_2$ $180^{\circ} + \theta_3$	0
4	-90°	0	θ_4	380
5	90°	0	θ_5	0
6	0	0	θ_6	65

Cinemática Direta - Exemplo IRB 140

MTH para os elos ${}^{0}A_{1}$, ${}^{1}A_{2}$, ${}^{2}A_{3}$, ${}^{3}A_{4}$, ${}^{4}A_{5}$ e ${}^{5}A_{6}$.

$${}^{0}A_{1} = \begin{bmatrix} \cos(\theta_{1}) & 0 & -1 \cdot \sin(\theta_{1}) & 70 \cdot \cos(\theta_{1}) \\ \sin(\theta_{1}) & 0 & \cos(\theta_{1}) & 70 \cdot \sin(\theta_{1}) \\ 0 & -1 & 0 & 352 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}^{3}A_{4} = \begin{bmatrix} \cos(\theta_{4}) & 0 & -1 \cdot \sin(\theta_{4}) & 0 \\ \sin(\theta_{4}) & 0 & \cos(\theta_{4}) & 0 \\ 0 & -1 & 0 & 380 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}^{4}A_{5} = \begin{bmatrix} \cos(\frac{\pi}{2} + \theta_{2}) & -1 \cdot \sin(\frac{\pi}{2} + \theta_{2}) & 0 & 360 \cdot \cos(\frac{\pi}{2} + \theta_{2}) \\ \sin(\frac{\pi}{2} + \theta_{2}) & \cos(\frac{\pi}{2} + \theta_{2}) & 0 & 360 \cdot \sin(\frac{\pi}{2} + \theta_{2}) \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}^{4}A_{5} = \begin{bmatrix} \cos(\theta_{4}) & 0 & -1 \cdot \sin(\theta_{4}) & 0 \\ \sin(\theta_{4}) & 0 & \cos(\theta_{4}) & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}^{4}A_{5} = \begin{bmatrix} \cos(\theta_{4}) & 0 & -1 \cdot \sin(\theta_{4}) & 0 \\ \sin(\theta_{5}) & 0 & -1 \cdot \cos(\theta_{5}) & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}^{5}A_{6} = \begin{bmatrix} \cos(\theta_{4}) & 0 & -1 \cdot \sin(\theta_{4}) & 0 \\ \sin(\theta_{5}) & 0 & -1 \cdot \cos(\theta_{5}) & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}^{5}A_{6} = \begin{bmatrix} \cos(\theta_{4}) & 0 & -1 \cdot \sin(\theta_{5}) & 0 \\ \sin(\theta_{5}) & \cos(\theta_{5}) & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}^{5}A_{6} = \begin{bmatrix} \cos(\theta_{4}) & 0 & -1 \cdot \sin(\theta_{5}) & 0 \\ \sin(\theta_{5}) & \cos(\theta_{5}) & 0 & 0 \\ 0 & 0 & 1 & 65 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}^{3}A_{4} = \begin{bmatrix} \cos(\theta_{4}) & 0 & -1.\sin(\theta_{4}) & 0 \\ \sin(\theta_{4}) & 0 & \cos(\theta_{4}) & 0 \\ 0 & -1 & 0 & 380 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}^{4}A_{5} = \begin{bmatrix} \cos(\theta_{5}) & 0 & \sin(\theta_{5}) & 0 \\ \sin(\theta_{5}) & 0 & -1.\cos(\theta_{5}) & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}^{5}A_{6} = \begin{bmatrix} \cos(\theta_{6}) & -1.\sin(\theta_{6}) & 0 & 0 \\ \sin(\theta_{6}) & \cos(\theta_{6}) & 0 & 0 \\ 0 & 0 & 1 & 65 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Cinemática Direta - Exemplo IRB 140

$$T = \begin{bmatrix} n_x & o_x & a_x & d_x \\ n_y & o_y & a_y & d_y \\ n_z & o_z & a_z & d_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

 $n_x = (C1C23C4 - S1S4C5 - C1S23S5)C6 - (C1C23S4 - S1C4)S6$

 $n_v = ((S1C23C4 + C1S4)C5 - S1S23S5)C6 + (-S1C23S4 + C1C4)S6$

 $n_{-} = (-S23C4C5 + C23S5)C6 + S23S4S6$

 $o_x = -((C1C23C4 - S1S4)C5 - C1S23S5)S6 + (-C1C23S4 - S1C4)C6$

 $o_v = -((S1C23C4 + C1S4)C5 + (-S1S23)S5)S6 + (-S1C23S4 + C1C4)C6$

 $o_z = -(-S23C4C5 - C23S5)S6 + S23S4C6$

 $a_r = (C1C23C4 - S1S4)S5 + C1S23C5$

 $a_v = (S1C23C4 + C1S4)S5 + S1S23C5$

 $a_z = -S23C4S5 + C23C5$

 $d_x = 65(C1C23C4 - S1S4)S5 - 65(-C1S23)C5 + 380C1S23 + 360C1C2 + 70C1$

 $d_y = 65(S1C23C4 + C1S4)S5 - 65(-S1S23)C5 + 380S1S23 + 360S1C2 + 70S1$

 $d_z = 352 + 65(-S23C4S5) + 65C23C5 + 380C23 - 360S2$

Onde S23 = $seno(\Theta2+\Theta3+90^{\circ})$ e C23 = $cosseno(\Theta2+\Theta3+90^{\circ})$.

MTH para o IRB 140:

A matriz de transformação homogênea T representa a posição e a orientação do efetuador final do robô com relação ao sistema da base, nesse caso o sistema $O_0X_0Y_0Z_0$.

Cinemática Inversa

- ➤ O objetivo da cinemática inversa consiste em encontrar os valores que as juntas do robô (q1, q2, q3, q4, q5 e q6) devem adotar para seu efetuador final se posicione e se oriente segundo uma determinada localização espacial. A obtenção da cinemática inversa não é simples como a obtenção da cinemática direta.
- ➤ Uma possibilidade é dividir o problema em duas partes, consideremos que os três últimos eixos do robô (4, 5 e 6) formam uma junta esférica (q₄₅₆), ela define apenas a orientação do efetuador final. A posição dele depende somente da orientação das três primeiras juntas (q₁, q₂ e q₃).
- Para encontrar os ângulos Θ_1 , Θ_2 e Θ_3 é utilizado o método geométrico, e para encontrar os ângulos Θ_4 , Θ_5 e Θ_6 é utilizado o método da MTH.

Cinemática Inversa - Exemplo IRB 140

$$\theta_1 = arctg \frac{P_y}{P}$$

$$\theta_2 = 90^{\circ} - arctg \frac{l_3 sen \overline{\theta_3}}{l_2 + l_3 cos \overline{\theta_3}} + arctg \frac{P_z - d_0}{r - a_0}$$

$$\theta_3 = -90^{\circ} - \arccos\left[\frac{(P_z + d_0)^2 + (r - a_0)^2 - l_2^2 - l_3^2}{2l_2 l_3}\right]$$

Cinemática Inversa – Exemplo IRB 140

$${}^{0}R_{6} = {}^{0}R_{3} {}^{3}R_{6} \quad (25)$$

$${}^{0}R_{3} = \begin{bmatrix} C1C23 & -S1 & C1S23 \\ S1C23 & C1 & S1S23 \\ -S23 & 0 & C23 \end{bmatrix} \quad \text{Onde:} \quad \begin{aligned} S23 &= sen(\theta_{2} + \theta_{3} + 90^{\circ}) \\ C23 &= \cos(\theta_{2} + \theta_{3} + 90^{\circ}) \end{aligned}$$

$${}^{3}R_{6} = \begin{bmatrix} C4C5C6 + S4S6 & -C4C5S6 + S4C6 & C4S5 \\ S4C5C6 + C4S6 & -S4C5S6 + C4C6 & S4S5 \\ -S5C6 & S5S6 & C5 \end{bmatrix}$$

$$\theta_{4} = arcsen\left(\frac{-S1a_{x} + C1a_{y}}{S5}\right)$$

$$\theta_{5} = \pm arccos(C1S23a_{x} + S1S23a_{y} + C23a_{z})$$

$$\theta_{6} = arcsen\left(\frac{C1S23o_{x} + S1S23o_{y} + C23o_{z}}{S5}\right)$$

Programação de Robô Industrial

- ➤ Para que os robôs realizem suas tarefas é necessário programálos. Os programas são elaborados diretamente no controlador do robô e empregam uma linguagem própria, que varia de fabricante para fabricante [2].
- Os programas são compostos por instruções de lógica e de movimentação.
- Após ser programado, o robô repete automaticamente os movimentos entre os pontos gravados. Os pontos podem ser regravados, bem como alterados seus parâmetros [2].

Programação de Robô Industrial

- > Parâmetros das instruções de movimento:
 - Tipo de movimento (linear, joint ou circular);
 - Posição;
 - · Velocidade;
 - Zona de aproximação;
 - Frame;
- ➤ O Teach Pendant é utilizado para criar ou editar programas no controlador do robô. Nele é possível executar movimentos no robô, bem como gravar pontos no programa.

Projeto de Células Robotizadas > Identificação das soluções alternativas [1]; Automação flexível e robôs Automação flexível e robôs Volume anual de produção Comparação das estratégias de fabricação para diferentes volumes de produção. Fonte [1].

Projeto de Células Robtizadas

- Estudo de viabilidade [1]:
 - É possível executar as tarefas seguindo o processo?
 - É possível assegurar confiabilidade, segurança e qualidade?
 - É possível reduzir estoques e manipulação de materiais?
 - O produto pode ser manipulado ou montado por robô?
- Ponderação de critérios não econômicos [1]:
 - Política da empresa;
 - Efeito sobre a motivação dos empregados;
 - Ergonomia;

Projeto de Células Robtizadas

- Coleta de dados e análise operacional [1]:
 - Projeção do volume de produção;
 - Produtividade desejada;
 - Duração da jornada de trabalho;
 - Taxa de ocupação do robô;
- Decisões sobre futuras aplicações [1]:
 - Crescimento futuro da produção;
 - Prever ampliações na célula;
 - Para novas aplicações são necessários novos equipamentos;

Projeto de Células Robtizadas

- Avaliação de período, depreciação e exigências fiscais [1]:
 - Tempo de vida útil do robô;
 - Classificação fiscal;
 - Depreciação dos equipamentos;
- > Análise do custo do projeto [1]:
 - Mão de obra;
 - Custo de aquisição e instalação;
 - Despesas de operação / manutenção;

Case Tupy SA.

> Célula de Macharia – Montagem do Pacote de Macho Bloco Eco

Layout da Célula de Montagem do Bloco Eco. Cortesia Tupy SA.

Referências

- V. F. Romano, "Robótica Industrial: aplicação na indústria de manufatura e processos". 1st ed., Ed. São Paulo: Edgard Blücher Ltda., Brasil, 2002. 256 p.
- 2. J. M. Rosário, "Principios de Mecatronica". 1
st ed., Ed. Prentice Hall, São Paulo / Brasil, 2005. 348 p.
- L-W. Tsai, "Robot Analysis: The Mechanics of Serial and Parallel Manipulators". 1st ed., Ed. Wiley-Interscience, New York / USA, 2010, 505 p.
- 4. J. M. Hollerbach, "Lecture Notes Introduction to Robotics". School of Computing, The University of UTAH, USA, 2003.
- 5. http://www.citi.pt/educacao_final/trab_final_inteligencia_artificial/karel_capek.html. Site visitado em 06/2011.
- 6. A. Barrientos, "Fundamentos de Robótica". 2nd ed., Ed. Macgrall Hill, 2007.
- ABB, Robotic Division, "Product Specification Articulated Robot". Rev.C, 3HAC028284-001.
- 8. V. Carrara, "Apostila de Robótica". Engenharia de Controle e Automação Universidade Braz Cubas.
- 9. W. F. Lages, "Notas de Aula". Escola de Engenharia UFRS, 2005.
- S. Amaral, "Notas de Aula de Robótica Industrial'. Universidade do Estado de Santa Catarina, 2008.

OBRIGADO!