Particle Physics – Exercise Sheet 2 – WS 2020/21

Lecturer: Prof. Dr. Hans-Christian Schultz-Coulon discussed on Friday 20th, November in the exercise groups

2.1 Neutrinos in matter

A single 1 GeV neutrino is fired on an iron ($^{56}_{28}$ Fe) target (length l = 2 m, $\rho_{Fe} = 7.9 \cdot 10^3$ kg m⁻³). Assuming an average neutrino-nucleon interaction cross section of $\sigma = 8 \cdot 10^{-39} \ cm^2$, what is the average number of interactions for the neutrino traversing the block and what is the probability of that neutrino to interact in the block?

Hint: Assume the average mass of a nucleon to be $1.67 \cdot 10^{-27}$ kg.

2.2 Phase space integration

Consider the scattering process $a+b\to 1+2$. Hereby E_1,E_2 and $\vec{p_1},\vec{p_2}$ denotes the energies and 3-momenta of the final state particles. The magnitude of the momenta of the initial and final state particles in the CMS are p_i^* and p_f^* , respectively.

Prove that

$$\sigma = \frac{1}{(2\pi)^2} \frac{1}{4p_i^* \sqrt{s}} \int |M_{fi}|^2 \delta(\sqrt{s} - E_1 - E_2) \delta^3(\vec{p_1} + \vec{p_2}) \frac{d^3 \vec{p_1}}{2E_1} \frac{d^3 \vec{p_2}}{2E_2}$$

can be simplified to

$$\sigma = \frac{1}{64\pi^2 s} \cdot \frac{p_f^*}{p_i^*} \int |M_{fi}|^2 d\Omega^*$$

by solving the integration in the center-of-mass frame.

Hint: Exploit features of the δ -function among others

 $\delta(f(x)) = \left| \frac{df}{dx} \right|_{x=x_0}^{-1}$ with $f(x_0) = 0$; see Thompson A.3 for derivation.

2.3 Fermi's golden rule

The η_c meson is a spin-0 bound state of a c and a \bar{c} quark. Consider the following decays:

$$\eta_c \to p + \overline{p}$$
 and $\eta_c \to \Lambda + \overline{\Lambda}$.

- a) Draw the Feynman diagrams of the both decays.
- b) Calculate the magnitude of the momentum p_f^* for the daughter particles in the rest frame of η_c for both decays as the function of the mass of the η_c and the daughter particles.
- c) Use Fermi's golden rule in order to calculate the ratio $r=\frac{\Gamma_{\eta_c\to p+\overline{p}}}{\Gamma_{\eta_c\to \Lambda+\overline{\Lambda}}}$ of the partial widths of both decays. Look up the corresponding branching ratios and compare your result.
- d) The total decay width Γ_{η_c} is 28.6 MeV. Calculate the lifetime of the η_c .

Hint: Use PDG listings to look up masses and branching ratios (pdg.lbl.gov).

Use the formular for the partial decay width of a two body decay of a spin-0 particle A with mass m_A derived in the lecture

$$\Gamma = \frac{p_f^*}{32\pi^2 m_A^2} \int |M_{fi}|^2 d\Omega^*$$

where p_f^* is the magnitude of the momenta of any of the both daughter particles in the final state, M_{fi} is the matrix element of the decay.

2.4 Mandelstam variables and scattering angle

Two particles (1 and 2) scatter and produce two outgoing particles (3 and 4):

With p_i denoting the 4-momentum vector of particle i, the three Mandelstam variables s, t and u are defined.

- a) Write down the definition of the Mandelstam variables s, t and u
- b) Calculate s + t + u.

Prove the following relations for the case that the masses of all particles vanish $(m_i = 0)$:

c)
$$\frac{t^2 + u^2}{s^2} = \frac{1 + \cos^2 \theta^*}{2}$$

d)
$$t = -s \frac{1 - \cos \theta^*}{2}$$

e)
$$u = -s\frac{1 + \cos\theta^*}{2}$$

The angle θ^* is the angle between the flight directions of particles 1 and 3 in the center-of-mass frame: $\theta^* = \angle(\vec{p_1^*}, \vec{p_3^*})$.

f) Draw an example of a s, t and u channel process.