19.10.2021

Seminar 4 – Finite Automata (FA)

1. Given the FA: $M = (Q, \Sigma, \delta, q_0, F), Q = \{q_0, q_1, q_2, q_3, q_f\}, \Sigma = \{1, 2, 3\}, F = \{q_f\}, T$

δ	1	2	3
q_0	$\{q_0,q_1\}$	$\{q_0,q_2\}$	$\{q_0,q_3\}$
q_1	$\{q_1,q_f\}$	$\{q_1\}$	$\{q_1\}$
q_2	{q ₂ }	$\{q_2, q_f\}$	{q ₂ }
q_3	$\{q_3\}$	$\{q_3\}$	$\{q_3, q_f\}$
q_f	0	Ø	0

Prove that $w = 12321 \in L(M)$

Sol.: @B Andrada T.

$$(q_0, 12321) \vdash (q_1, 2321) \stackrel{3}{\vdash} (q_1, 1) \vdash (q_f, \epsilon) \implies (q_0, w) \stackrel{5}{\vdash} (q_f, \epsilon) \implies w \in L(M)$$

2. Find the language accepted by the FA below.

Sol.: #IW Andrada T., Alexandra T., David T.

Let $L = \{a^n b^m \mid n \in \mathbb{N}, m \in \mathbb{N}^*\}$ and prove that L = L(M) by double inclusion.

I) ? $L \subseteq L(M)$ (all sequences of that shape are accepted by M)

 $? \ \forall n \in \mathbb{N}, \ \forall m \in \mathbb{N}^*, a^n b^m \in L(M)$

Let $n \in \mathbb{N}$, $m \in \mathbb{N}^*$ be fixed.

$$(p, a^n b^m) \overset{n}{\underset{(a)}{\vdash}} (p, b^m) \vdash (q, b^{m-1}) \overset{m-1}{\underset{(b)}{\vdash}} (q, \epsilon) \implies (p, a^n b^m) \overset{n+m}{\vdash} (q, \epsilon) \implies a^n b^m \in L(M)$$

(a)
$$(p, a^n) \stackrel{n}{\vdash} (p, \epsilon)$$
, $\forall n \in \mathbb{N}$ - proven by math. ind. below

(b)
$$(q, b^n) \stackrel{n}{\vdash} (q, \epsilon)$$
, $\forall n \in \mathbb{N}$ - proven by math. ind. - HW

(a) Take
$$P(n)$$
: $(p, a^n) \stackrel{n}{\vdash} (p, \epsilon), n \in \mathbb{N}$ and prove $P(n)$ is true $\forall n \in \mathbb{N}$, by math. induction.

(i) Verification step
$$\Leftrightarrow P(0)$$
 is true $(p, a^0) \stackrel{0}{\vdash} (p, \epsilon) \Rightarrow P(0)$ is true

(ii) Proof step
$$\Leftrightarrow P(k) \to P(k+1), k \in \mathbb{N}$$

$$P(k)$$
 is true => $(p, a^k) \stackrel{k}{\vdash} (p, \epsilon)$ (induction hypothesis)

$$(p, a^{k+1}) \vdash (p, a^k) \overset{k}{\underset{(ind.hyp).}{\vdash}} (p, \epsilon) \Rightarrow (p, a^{k+1}) \overset{k+1}{\vdash} (p, \epsilon) \Rightarrow P(k+1) \text{ is true}$$

$$(i) + (ii) => (a)$$

II)
$$?L(M) \subseteq L(M \text{ accepts only sequences of that shape})$$

In order to reach the final state q from the initial state p, we should read at least one b. Before the mandatory b, we can read 0 or more a's, while remaining in state p, and after the mandatory b we can read 0 or more b's, while remaining in state q. Therefore, M accepts only sequences of the shape a^nbb^m , $n \in \mathbb{N}$, $m \in \mathbb{N}$ (or a^nb^m , $n \in \mathbb{N}$, $m \in \mathbb{N}^*$).

Obs.: In order for such a reasoning to count as proof, you should make sure that you have covered all paths from initial state to all final states.

3. Build FAs that accept the following languages

- a. Integer numbers
- b. Variable declarations (Pascal, C, ...)
- c. $L = \{0^n 1^m 0^q \mid n, m \in N^*, q \in N\}$
- d. $L = \{0(01)^n \mid n \in N\}$
- e. $L = \{c^{3n} \mid n \in N^*\}$
- f. The language over $\Sigma = \{0,1\}$ having the property that all sequences have at least two consecutive 0's.

a. #IW Andrada T.

b. HW

c. #IW Andrada T.

d. #IW Andrada T.

e. #IW Andrada T.

#IW David T. (for $n \in \mathbb{N}$)

f. #IW Andrada T.

