

Blood Components

Whole Blood

- Storage: 1-6°C
- Expiration: depends on anticoagulant
- Dosing: 1 unit increases
 Hct 3% and Hgb 1 g/dL
- Can take 48-72 hours to see results

Hemoglobin (Hgb): protein in red blood cells that carries oxygen throughout the body

Hematocrit (Hct): proportion of blood that consists of red cells

Hematocrit

RED CELL COMPONENTS

Preparation of RBCs from Whole Blood

- Use centrifuge or sedimentation
- Can prepare anytime during normal storage
- CPDA-1: remove 200-250mL plasma
- AS: remove 300 mL plasma
- Final volume: 160-275 mL of red cell
 - Anticoagulant added to total volume of about 300mL
- Also prepared by apheresis
- Whole blood used to make platelets must be cooled toward 20-24C otherwise cooled toward 1-10C
- RBCs must have a hematocrit of ≤80% without additive

Red Blood Cells

- Storage: 1-6°C (transport storage 1-10°C)
- Expiration: Depends on anticoagulant

Red Cells in Storage:

- Glucose:
 - needed for ATP production
 - decreases
- ATP:
 - keep membrane flexible, less deformable
 - decreases
- Lactic Acid:
 - end product of glycolysis/anaerobic respiration
 - Accumulates during ATP production
- pH:
 - decreases with lactic acid build-up

2,3-DPG

- 2,3-DPG:
 - by-product of glycolysis
 - decreases due to decreased pH activating enzyme to breakdown 2,3-DPG
 - Amount present has effect on affinity of Hgb for oxygen
 - Affects how well RBCs function posttransfusion

Red Cells in Storage

- Oxygen Dissociation curve:
 - Decreased 2,3-DPG causes increase affinity of hemoglobin to oxygen
 - This means less oxygen is delivered to the tissues
- Plasma K+:
 - Usually is actively transported into cell and transports Na+ out
 - ATP depletion causes Na+ to accumulate and K+ to be pumped out to plasma
- Plasma hemoglobin:
 - increased due to increased hemolysis of RBCs, releasing hemoglobin

Effect of Storage on RBCs (Storage Lesion)

RBCs normal life span= 120 days

Characteristic	Change Observed
% Viable Cells	Decreased
Glucose	Decreased
ATP	Decreased
Lactic Acid	Increased
рН	Decreased
2,3-DPG	Decreased
Oxygen dissociation curve	Shift to the left (increase in hemoglobin and
	oxygen affinity; less oxygen delivered to tissues
Plasma K+	Increased
Plasma hemoglobin	Increased

Effect of Storage on RBCs (Storage Lesion)

Chemicals in Anticoagulant Solutions

Chemical	Function	
Citrate (sodium citrate/citric acid)	Chelates calcium; prevents clotting	
Monobasic sodium phosphate	Maintains pH during storage;	
	necessary for maintenance of	
	adequate levels of 2,3-DPG	
Dextrose	Substrate for ATP production	
	(glucose)	
Adenine	Production of ATP (extends shelf-life	
	from 21-35 days)	

RBC Anticoagulants

Name	Abbreviation	Chemicals	Expiration
Acid Citrate- Dextrose	ACD-A	Citrate, sodium phosphate, dextrose	21 days
Citrate-phosphate dextrose	CPD	Citrate, sodium phosphate, dextrose	21 days
Citrate-phosphate double-dextrose	CP2D	Citrate, sodium phosphate, dextrose	21 days
Citrate-phosphate- dextrose-adenine	CPDA-1	Citrate, sodium phosphate, dextrose, adenine	35 days

Additive Solutions (AS)

- Preserving solution added to RBC after plasma removal
- Removing plasma removes adenine and glucose
- 4 solutions:
 - Adsol (AS-1)- mannitol
 - Nutricel (AS-3)- citrate and phosphate
 - Optisol (AS-5)- mannitol
 - SOLX (AS-7)- mannitol
- All contain saline, adenine, and glucose
- Expiration: 42 days

RBC Rejuvenation

- Process to restore ATP and 2,3-DPG levels with metabolic alterations
- Liquid RBCs can be rejuvenated at their outdate for up to 3 days

Rejuvenation Solution contains:

- Phosphate
- Inosine
- Pyruvate
- Adenine

Frozen Deglycerolized RBCs

- RBCs frozen for long term storage
- Clinical Indications:
 - Rare blood units
 - Autologous units (many times for rare antibodies)
 - Units for special purpose (ex. Intrauterine transfusion)

U Negative

Bombay

Rh Null

Jk(a)- Jk(b)-

Frozen Deglycerolized RBCs

- Remove cryoprotective agents to level of <1% when using (can cause RBC lysis)
- Storage: -65°C
- Expiration: 10 years frozen
 - 24 hours after thawing

PLASMA COMPONENTS

Plasma

- Noncellular portion
- Primary source of coagulation factors (control blood clotting)
- Storage:
 - Frozen: -18° C
 - Thawed: 1-6° C
 (thawed in 30 37° C waterbath)

CLOTTING FACTORS

Factor I Fibrinogen

Factor II Prothrombin

Factor III Tissue Thromboplastin

Factor IV Calcium Ions

Factor V Labile Factor

Factor VII Stable Factor

Factor VIII Antihemophilic Factor

Factor IX Christmas Factor, or

Plasma Thromboplastin

Component (PTC)

Factor X Stuart-Prower Factor

Factor XI Plasma Thromboplastin

Antecedent (PTA)

Factor XII Hageman Factor

Factor XIII Fibrin Stabilizing Factor

Types of Plasma

- Fresh Frozen Plasma (FFP)
 - Separated and frozen within 8 hours of collection
 - Thawed FFP: can be used for 24 hours
 - After 24 hours becomes
 Thawed Plasma: used
 for 4 more days (reduced
 Factor V and VIII)

Types of Plasma

- Plasma Cryoprecipitate
 Reduced/Cryopoor plasma:
 - Thaw frozen plasma at 1-6° C, precipitate (cryo) is removed, remainder of plasma refrozen
 - Removes Factors VIII, XIII fibrinogen, vWF, cryoglobulin, fibronectin
 - Frozen within 24 hours
 - Rarely used

Types of Plasma

- Plasma Frozen within 24 hours of collection (FP24)
 - Slightly reduced levels of Factor VIII
 - Stored, thawed, transfused same as FFP

Liquid Plasma:

- Rarely used
- Never frozen, kept at 1-6° C
- Transfused up to 5 days after whole blood expiration

Preparation of Plasma

From whole blood:

- Centrifuge for a short light spin (2-3 min, 3,200 rpm)
- Separate plasma from RBCs- must leave some plasma on RBCs to maintain Hct of 70-80% in RBC
- Centrifuge plasma with heavy spin (5 min, 3,600 rpm)
 - Separates plasma from platelets
- Take off plasma and freeze
 - 50-70 mL of platelets are left at the bottom and collected
- Can also be apheresis

Plasma Preparation

Expiration of Plasma

- Frozen: 1 year
- Thawed:
 - 24 hours for labile clotting factors
 - 5 days (for stable clotting factors)

PLATELET COMPONENTS

Forms hemostatic plug- aids in clotting to stop bleeding

- **Storage:** 20-24°C
 - Constant agitation- facilitates oxygen transfer/consumption
 - Max. time without agitation during transport is 30 hours
- Expiration: 5 days (some cases 7 days)

Platelets

Preparation of Platelets

- Same as plasma
- The platelet pellet left at the bottom is resuspended in a small amount of plasma
- Pool 4-5 platelet concentrates to make one pooled platelet
- Must be separated from whole blood within 8 hours of collection

Preparation of Platelets

Types of Platelets

Apheresis Platelets

- From a single donor
- Filter platelets from blood while collecting
- Each platelet must contain 3x10¹¹ platelets
- Increase platelet count by
 20,000-60,000 per μL

Types of Platelets

Platelet Pool or Random Platelet:

- 4-6 platelet concentrates pooled together
- Must have 5.5x10¹⁰ platelets from one whole blood unit
- Should have total of 3x10¹¹ once pooled
- One platelet concentrate increases platelet count 5,000-10,000 platelets/µL
- One platelet pool increases platelet count 20,000-60,000 platelets/µL
- Suspended in 40-70 mL of plasma

Platelet Testing

- Platelet count ensure > 3x10¹¹
- WBC count leukoreduced <5x10⁶
- pH ≥6.2
- Bacterial testing ensure no bacterial contamination (LVDS platelets and PR platelets being used to reduce bacterial contamination)

Pathogen Reduced (PR) Platelets

- Treat platelet components to reduce or inactivate any residual pathogens
- Adds an additional level of safety
- Uses amotosalen (psoralen)- a molecule that is activated by ultraviolet A light and binds to nucleic acid base pairs of pathogens preventing replication
- Don't need to be cultured for bacterial testing
- Also removes the need for irradiation since it inactivates WBC replication

Reducing Bacterial Contamination Risk

HLA Platelet

- Patient who has made HLA antibodies can destroy donor platelets
- Cause platelet refractoriness- failure to achieve desired platelet count after platelet transfusion
- Receive HLA matched platelets with the same haplotype
- If none available give pooled platelets
 - 5 different donors
 - 5 chances of having matched platelets

CRYOPRECIPITATE

Cryoprecipitate

 Part of whole blood containing concentrate of fibrinogen, factor VIII, vWF, Factor XIII, and fibronectin

Storage:

- Frozen: -18° C
- Thawed: 20-24° C (in 30-37° C water bath)
- Expiration: 1 year frozen

Preparation of Cryoprecipitate

- Only prepared from whole blood
- FFP is frozen and then thawed at 1-6°C
- Separate insoluble precipitate from plasma
- Centrifuge plasma at 4°C for hard spin
- Take plasma off- cryo is left at the bottom
- Resuspend cryo in 10-15mL of plasma
- Refreeze cryo within an hour

Types of Cryoprecipitate

- Cryoprecipitate Concentrate-Cryo removed from one plasma unit
 - Expiration after thawing: 6 hours
- Pooled Cryoprecipitate- pool cryo from 5 plasma units
 - Expiration after thawing: 6 hours for closed system, 4 hours for open system

GRANULOCYTES

Granulocytes

- White blood cells characterized by presence of granules in cytoplasm (neutrophils, eosinophils, basophils)
- Usually contains large number of RBCs (>2 mL)
- Storage: 20-24°C No agitation
- Expiration: 24 hours from collection
 - Granulocyte function decreases very rapidly
- Collection: Apheresis
- Testing: contain at least 1 x 10¹⁰ granulocytes

BLOOD PRODUCT MODIFICATIONS

Leukocyte-Reduced RBCs

- Remove leukocytes from RBCs
- Average unit of RBCs: 2x10⁹ leukocytes
- Leukocytes can cause:
 - Febrile non-hemolytic transfusion reactions
 - Transfusion associated Grafts-vs.-Host Disease (TA-GVHD)
 - Transfusion related immune suppression
 - May harbor cytomegalovirus (CMV)

Leukocyte-Reduced RBCs

- Must reduce leukocytes to 5x10⁶
- Filters used to leuko-reduce
- Usually end with <1x10⁶ leukocytes
- Almost all RBCs are now leukoreduced

Irradiation

- Decreases mitogenic capacity of transfused T-cells making them immunoincompetent
- Use: prevent Transfusion Associated Graft-vs-Host Disease
- Three conditions necessary for TA-GVHD:
 - Transfuse immunocompetent Tlymphocytes
 - Histocompatibility differences between donor and recipient
 - Immunocompromised patient

TA-GVHD Disease Cause

- Transfused T-lymphocytes mount immune response against foreign (recipient) HLA host tissues
- Normally: host lymphocytes counterattack, neutralizing
- Immunocompromised patients: no counterattack, continued Tlymphocyte attack on host causing TA-GVHD

Clinical Indications for Irradiation

- Congenital immunodeficiencies
- Hodgkin's Lymphoma, leukemia
- Bone Marrow Transplant
- Intrauterine/Neonatal Transfusion
- HLA matched platelets
- Donation from blood relatives
- Oncology patients/chemotherapy

Donation from Blood Relatives

- Donor:
 - homozygous for HLA haplotype shared with heterozygous recipient
- Recipient
 - doesn't recognize homozygous HLA haplotype as foreign
 - doesn't eliminate donor T-lymphocytes
- Donor T-lymphoctyes:
 - recognize recipient non-shared haplotype as foreign
 - Mount immune attack

Irradiated Blood Products

- Only red cells, platelets, and granulocytes need to be irradiated
- Plasma and cryoprecipitate do not contain white blood cells
- Irradiation decreases RBC expiration date to 28 days from collection
- Platelet and granulocyte expiration remain the same due to their short expiration periods

Washed RBCs

- Removes plasma and proteins
- Clinical Indications
 - Patients with severe allergic reactions (usually to proteins)
 - IgA deficient patients- make anti-IgA which attaches to IgA in donor plasma

Washed RBCs

- RBCs are centrifuged, storage solution removed, saline added, and supernatant purged repeatedly until only RBCs left
- Expiration: changes to 24 hours

PLASMA DERIVATIVES

Plasma Derivatives

- Concentrates of specific plasma proteins prepared from pools of plasma
- Rh Immune Globulin (RhIG or Rhogam):
 - Concentrated IgG anti-D
 - Protect Rh negative female from Rh posinfant
 - Attaches to D+ RBCs making it into mother's system
 - Prevents sensitization to D antigen

Plasma Derivatives

- Activated Factor VII-Hemophilia A and congenital factor VII deficiency
- Factor VIII Concentrate-Hemophilia A, classical hemophilia
- Factor IX Concentrate-Hemophilia B
 - Significant levels of vitamin
 K-dependent factors

Adapted from: Human Disease: Blood Clot Disease (Hemophilia). Jan 26, 2015. Accessed at: http://humansanatomy.org/2015/01/26/blood-clot-disease-hemophilia/ on 02.26.2015.

Plasma Derivatives

- Albumin- hypovolemia, hypoproteinemia, shock and burn patients
 - 96% albumin, 4% globulins
- Immune Globulins- immunodeficiency disease, ITP, post-transfusion purupura, HIV-related thrombocytopenia, passive antibody prophylaxis against hepatitis and herpes
 - Concentrate of plasma gamma globulins

Blood Component Labeling Requirements

- Name of blood component
- Collection facility
- Unique facility identifier (FDA registration number)
- Donation identification number
- Anticoagulant or preservative
- Approximate volume
- Storage temperature
- Expiration date, and if needed, expiration time
- ABO and Rh
- Volunteer or Paid donor
- Number of units in pool if needed
- Instructions to the transfusionist:
 - Rx only
 - May transmit infectious agents
 - Identify intended recipient
 - See Circular of Information

Cleveland Clinic

Every life deserves world class care.