NYC Weather and Trading Behavior

Connor Tree, Sam Steingard, Tara Panzarino

CSPB 4502 - Data Mining

Description

Project Goal:

To quantify the effect that weather has on the stock market

Questions:

- Does inclement weather have an effect on stock trading activity in New York City?
- Are notable weather events (e.g hurricanes, blizzards etc.)
 correlated with effects on the stock market?
- How do seasonal weather patterns affect stock trading behavior?

Prior Work

The Effect of Weather on Stock Trading

 Examines the effects of weather on stock return and trading volume specifically in New York and Chicago

Weather Effects on Stock Market Returns in the United States

- Looked at link between weather changes/average monthly temp. on returns of NYSE and NASDAQ
- 4 regions Eastern, Central, Southern, and Western

Weather vs. the Stock Market

 Tries to answer whether or not weather affects the financial markets or determine if there is a correlation between the two

Financial Data

- Obtained from <u>Kaggle</u>
- Contains full historical daily price data to 2017
- Pulled from both NYSE and NASDAQ
 - Over 7000 stocks and 1300 FTFs
 - Contains daily high, low, open/close prices, and volume

Sample Data

AAPL
Date, Open, High, Low, Close, Volume, OpenInt
1984-09-07, 0.42388, 0.42902, 0.41874, 0.42388, 23220030, 0
1984-09-10, 0.42388, 0.42516, 0.41366, 0.42134, 18022532, 0
1984-09-11, 0.42516, 0.43668, 0.42516, 0.42902, 42498199, 0
1984-09-12, 0.42902, 0.43157, 0.41618, 0.41618, 37125801, 0
1984-09-13, 0.43927, 0.44052, 0.43927, 0.43927, 57822062, 0
1984-09-14, 0.44052, 0.45589, 0.44052, 0.44566, 68847968, 0
1984-09-17, 0.45718, 0.46357, 0.45718, 0.45718, 53755262, 0
1984-09-18, 0.45718, 0.46103, 0.44052, 0.44052, 27136886, 0
1984-09-19, 0.44052, 0.44566, 0.43157, 0.43157, 29641922, 0

Weather Data

- Obtained from <u>NOAA</u>
- Daily weather data for New York City
 - o Data from 1948 2022
 - o Includes weather type (snow, rain, fog, etc.)
 - Temperature (tenths of degrees C)
 - Precipitation (10ths of mm)
 - Snowfall (mm)

Sample Data

ELEMENT	ACMH	ACSH	AWND	DAPR	FMTM	MDPR	PGTM	PRCP	SNOW	SNWD		WT13	WT14	WT15	WT16	WT17	WT18	WT19	WT21	WT22	WV01
1948-07-17	NaN	NaN	NaN	NaN	NaN	NaN	NaN	15.0	0.0	0.0		NaN	NaN	NaN	1.0	NaN	NaN	NaN	NaN	NaN	NaN
1948-07-18	NaN	NaN	NaN	NaN	NaN	NaN	NaN	0.0	0.0	0.0		NaN	NaN	NaN	1.0	NaN	NaN	NaN	NaN	NaN	NaN
1948-07-19	NaN	NaN	NaN	NaN	NaN	NaN	NaN	0.0	0.0	0.0		NaN	NaN	NaN	1.0	NaN	NaN	NaN	NaN	NaN	NaN
1948-07-20	NaN	NaN	NaN	NaN	NaN	NaN	NaN	0.0	0.0	0.0	***	NaN									
1948-07-21	NaN	NaN	NaN	NaN	NaN	NaN	NaN	622.0	0.0	0.0		NaN	NaN	NaN	1.0	NaN	NaN	NaN	NaN	NaN	NaN

Proposed Work

- Data cleaning
 - Stock data from Kaggle previously cleaned
 - Price processed to reflect stock splits and dividends
- Data preprocessing
 - Weather data cut to match frequency of stock data
 - Reduce unused data (windspeed, wind direction, etc.)
- Data integration
 - Combine weather and stocks data based on time order

List of Tools

Data Visualization

- Python
 - Matplotlib
 - Plotly
- PowerBI & Tableau

Data Analysis

- Python
 - Numpy
 - Pandas

Data Interchanging

◆ JSON

Pattern Evaluation

Clustering

- K-Means algorithm
- Partition vectors of data into groups
- Iterates to minimize euclidean distance
 between data points within clusters
- Evaluation based on distance between clusters and sphericality of individual clusters
- Visual analysis of plotted data

Pattern Evaluation (cont.)

- Least Squares Classification
 - Predict outcome based on grouped data vector
 - Outcome is True or False
 - Create classifier (model)
 - Evaluation using confusion matrix

		Predicted Class					
		Yes	No				
Actual Class	Yes	TP	FN				
	No	FP	TN				

