Forecasting Netflix Stock Price

Vivian Xia

Problem Statement

Background:

Volatile stock market

- Based on periodicity/seasonality
- Sway of news and opinions
- Earnings, expectations, and emotion

Objective:

Will investor sentiment contribute to the accurate prediction of volatility in Netflix next day closing price?

- Netflix is included in the S&P 500 and a FANNG stock
- Use LSTM to accurately predict the next day closing price and its drops and rises

Data

- Yahoo! Finance: Two-year (April 22, 2020 to April 22, 2022) historical closing prices of Netflix
- Twitter API: Query matching "\$NFLX" for the two-year period
 - Only English tweets
 - No retweets

Methodology

Methodology

- Preprocess tweet data
 - Replace emojis with words using Python package demoji
 - Took a random sample of 40,000 and 80,000 tweets
 - Used VADER to generate polarity of each tweet
 - Evaluated subset labels for no processed and processed tweets
- Hugging Face FinancialBERT fine-tuned using VADER-generated labels
- Apply original FinancialBERT model and fine-tuned FinancialBERT model to the rest of the tweets
- Build LSTM models
 - Only closing price
 - Closing price and sentiment
- Compare results using MAE score and visualizations

Summary of Results

- Fine-tuning FinancialBert with a subset of 40,000 and 80,000 had an accuracy of 0.33
- FinancialBert did not face much difficulty of classifying tweets as anticipated
- LSTM model with only closing price had the best results with a time step of 5 (using 2 year data)
- The addition of sentiment to the LSTM model improved the accuracy and ability to predict rises and falls of next day closing prices
- Best model: Experiment E.2 Bidirectional Multilayer LSTM

Experiment	Description	Training	Validation	Testing	Process Time (seconds)	Epochs	Total Parameters	Hyperparameters		
xperiment A: Input – Closing Price, Time Step – 30										
A.1	Multi-Layer LSTM	0.09	0.11	0.14	8.89	6	11 191	LSTM - 30 Dropout - 0.3 LSTM - 30 Dropout - 0.3 Dense - 1		
A.2	Multi-Layer LSTM	0.07						LSTM - 30 Dropout - 0.3 LSTM - 60 Dropout - 0.3 LSTM - 60 Dropout - 0.3 Dense - 1		
A.3	Multi-Layer Bidirectional LSTM	0.11	0.13	0.10	6.80	6	18,631	Bidirectional LSTM - 30 Dropout - 0.5 LSTM - 30 Dropout - 0.5 Dense - 1		

Experiment	Description	Training	Validation	Testing	Process Time (seconds)	Epochs	Total Parameters	Hyperparameters		
Experiment B: Input – Closing Price, Time Step – 15										
B.1	Multi-Layer LSTM	0.09	0.11	0.23	4.26	4	The Control of Control	LSTM - 30 Dropout - 0.3 LSTM - 30 Dropout - 0.3 Dense - 1		
В.2	Multi-Layer LSTM	0.06	0.09	0.14	7.52	9		LSTM - 30 Dropout - 0.3 LSTM - 60 Dropout - 0.3 LSTM - 60 Dropout - 0.3 Dense - 1		
В.3	Multi-Layer Bidirectional LSTM	0.11	0.13	0.10	8.47	6		Bidirectional LSTM - 30 Dropout - 0.5 LSTM - 30 Dropout - 0.5 Dense - 1		

Experiment C:	Input – Closing Price, Time Step – 10	0				90 g		
C.1	Multi-Layer LSTM	0.09	0.10	0.18	6.06	4	11,191	LSTM - 30 Dropout - 0.3 LSTM - 30 Dropout - 0.3 Dense - 1
C.2	Multi-Layer Bidirectional LSTM	0.11	0.13	0.12	6.46	5	18,631	Bidirectional LSTM - 30 Dropout - 0.5 LSTM - 30 Dropout - 0.5 Dense - 1
D.1	Input – Closing Price, Time Step – 5 Multi-Layer LSTM	0.08	0.10	0.11	4.45	6	11,191	LSTM - 30 Dropout - 0.3 LSTM - 30 Dropout - 0.3 Dense - 1
D.2	Multi-Layer Bidirectional LSTM	0.10	0.11	0.15	5.82	4	18,631	Bidirectional LSTM - 30 Dropout - 0.5 LSTM - 30 Dropout - 0.5 Dense - 1

E.1	Multi-Layer LSTM	0.07	0.06	0.07	6.90	17	LSTM - 30 Dropout - 0.3 LSTM - 30 Dropout - 0.3 Dense - 1
E.2	Multi-Layer Bidirectional LSTM	0.09	0.04	0.04	9.21	19	Bidirectional LSTM - 30 Dropout - 0.5 LSTM - 30 Dropout - 0.5 Dense - 1

Francisco F. Louis Clasica Date and Fish at labels Time Con. F.

Netflix Stock Price Prediction

Result Interpretation and Analysis

Dataset:

Noise from ads and non-opinion tweets

VADER-labeled dataset:

- Conversion of emojis to words may have created a bias and effected overall sentiment classification
- Manual check over not processed and processed tweets was biased

LSTM models:

- Smaller timestep was able to predict better due to the shorter time range
- Bidirectional LSTM layer was able to capture relevant patterns reading the input forwards as well as backwards
- Model with sentiment was more accurate in price range and also able to predict the rises and dips better
 than just closing price -- still lagging a bit but sentiment is also due to lag after it drops as well

Recommendations for Future Work

- Try other sentiment labelling methods:
 - Other BERT models like ones that are trained using tweet data
 - SVM and Naive Bayes
- Clean and preprocess tweet data further
 - Remove noise
 - Compare if there is a difference between sentiment labeling with emoji conversion and no emoji conversion
- Collect more tweets and historical data to have be able to train the LSTM models further and see if there is further improvement in its predictions
- Source tweets using mentions of its username or company name for more general opinions

Conclusion

- Dataset used to fine-tune needs to cleaned and labelled more accurately
- FinancialBERT model was able to accurately label dataset
- LSTM models are able to take the temporal correlations of the patterns in closing price as well as in sentiment to predict next day closing price
- Sentiment does help in the predicting more accurate and trends of next day closing prices
- Smaller time steps and bidirectional wrapper allow for more accuracy in volatility

Thank You!