Aufgabe 5

(a) Definieren Sie die zum Halteproblem für Turing-Maschinen bei fester Eingabe $m \in \mathbb{N}_0 = \{0, 1, 2, \dots\}$ gehörende Menge H_m .

 $H_m = \{ c(M) \in \mathbb{N} \mid c(M) \text{ hält auf Eingabe } m \}$, wobei c(M) der Codierung der Turingmaschine (Gödelnummer) entspricht.

(b) Gegeben sei das folgende Problem E:

Entscheiden Sie, ob es für die deterministische Turing-Maschine mit der Gödelnummer n eine Eingabe $w \in \mathbb{N}_0$ gibt, so dass w eine gerade Zahl ist und die Maschine n gestartet mit w hält.

Zeigen. Sie, dass E nicht entscheidbar ist. Benutzen Sie, dass H_m aus (a) für jedes $m \in \mathbb{N}_0$ nicht entscheidbar ist.

Wir zeigen dies durch Reduktion $H_2 \leq E$:

- Berechenbare Funktion f: lösche Eingabe, schreibe eine 2 und starte dich selbst.
- *M* ist eine Turingmaschine, die *E* entscheidet.
- $x \in H_2$ (Quellcode der Programme, die auf die Eingabe von 2 halten)
- M_x (kompiliertes Programm, TM)
- Für alle $x \in H_2$ gilt, M_x hält auf Eingabe von $2 \Leftrightarrow f(x) = c(M) \in E$. Denn sofern die ursprüngliche Maschine auf das Wort 2 hält, hält M auf alle Eingaben und somit auch auf Eingaben gerader Zahlen. Hält die ursprüngliche Maschine M nicht auf die Eingabe der Zahl 2, so hält M auf keine Eingabe.
- (c) Zeigen Sie, dass das Problem *E* aus (b) partiell-entscheidbar (= rekursiv aufzählbar) ist.