A Seamless Integration of Gretl and R

Sagiru Mati (PhD)

1 About gretlR

gretlR is an R package that can run gretl program from R Markdown.

2 Installation

gretlR can be installed using the following commands in R.

3 Usage

```
Please load the gretlR package as follows:
```

```
```{r gretlR}
library(gretlR)
Then create a chunk for gretl as shown below:
```{gretl gretlR1,eval=T,echo=T,comment=NULL,results='hide'}
nulldata 500
set seed 13
gretl1 = normal()
gret12 = normal()
setobs 12 1980:01 --time-series
gnuplot gretl1 --time-series --with-lines --output="line.png"
gnuplot gret12 gret11 --output="scatter.png"
ols gretl1 const gretl2
modeltab add
tabprint --output="ols.Rmd"
tabprint --output="ols.tex"
eqnprint --output="olsmodel.Rmd"
eqnprint --output="olsmodel.tex"
tabprint --output="ols.csv"
```

The above chunk creates an gretl program with the chunk's content, then automatically gretl, which will save gretl outputs in the current directory.

We can dynamically and reproducibly fetch the gretl graph object we created with the gretl chunk using the following R chunk:

For the scatter graph:

```
library(knitr)
knitr::include_graphics("gretlr/gretlr1/scatter.png")
```


Figure 1: Scatter graph produced by gretl chunk

or the line graph:

```
knitr::include_graphics("gretlr/gretlr1/line.png")
```

we can also include the equation of the OLS generated by the gretl chunk using the following R chunk; Remember the OLS equation output is saved by the gretl chunk as olsmodel. Rmd. The entire OLS equation model:

```
```{r child, child='olsmodel.Rmd'}
```

%%% the following needs the amsmath LaTeX package



Figure 2: Line graph produced by gretl chunk

$$\widehat{\text{gretl1}} = \underset{(0.043179)}{0.0610266} + \underset{(0.042056)}{0.0239587} \, \text{gretl2}$$
 
$$T = 500 \quad \bar{R}^2 = -0.0014 \quad F(1,498) = 0.32454 \quad \hat{\sigma} = 0.96025 \quad \text{(standard errors in parentheses)}$$

Remember the OLS table output is saved by gretl chunk as ols.Rmd. The entire OLS table output: ```{r child1, child="ols.Rmd"}

. . .

Model 1: OLS, using observations 1980:01–2021:08 (T=500) Dependent variable: gretl1

	Coefficient	Std. Error	$t\operatorname{-ratio}$	p-value
const	0.0610266	0.0431785	1.413	0.1582
gretl2	0.0239587	0.0420559	0.5697	0.5691

Mean dependent var	0.058464	S.D. dependent var	0.959598
Sum squared resid	459.1937	S.E. of regression	0.960248
$R^2$	0.000651	Adjusted $\mathbb{R}^2$	-0.001355
F(1,498)	0.324542	P-value $(F)$	0.569148
Log-likelihood	-688.1853	Akaike criterion	1380.371
Schwarz criterion	1388.800	Hannan-Quinn	1383.678
$\hat{ ho}$	-0.046001	Durbin-Watson	2.091190

```
include_tex(chunk = "gretlr1",tex = "ols",start = 7,end = 24)
 {\bf Coefficient}
 Std. Error
 t-ratio
 p-value
 0.0610266
 0.0431785
 0.1582
 const
 1.413
 gretl2
 0.0239587
 0.0420559
 0.5697
 0.5691
include_graph(chunk = "gretlr1",graph = "line.png")
```



Figure 3: some cap

```
import_kable(chunk = "gretlr1",file = "ols.csv",caption="some table caption")
```

Please visit my Github for a better explanation and example files.

Table 1: some table caption

Model 1: OLS, using observations 1980:01-2021:08 ( $T = 500$ )			
Dependent variable: gretl1			
,coefficient,std. error,t-ratio,p-value			
const, 0.0610266481635362, 0.0431785076222895, 1.41335705016431, 0.158175505715966			
gretl2, 0.0239586676119215, 0.0420559191662618, 0.569685982066032, 0.569147581664115			
Mean dependent var, 0.0584641954142006, S.D. dependent var, 0.959597610597147			
Sum squared resid,459.193707151256,S.E. of regression,0.960247737394469			
R-squared, 0.000651266575759979, Adjusted R-squared, -0.00135545778854573			
F(1, 498), 0.324542118162484, P-value(F), 0.569147581664154			
Log-likelihood,-688.185277239927,Akaike criterion,1380.37055447985			
Schwarz criterion, 1388.7997706767, Hannan-Quinn, 1383.67816514226			
rho,-0.04600111222224,Durbin-Watson,2.09118953376046			