IN THE CLAIMS:

Please amend the claims as follows.

1	1. (original) A flush-mount antenna system, to enable communication with a
2	moving vehicle via a satellite, comprising:
3	a cavity having a rectangular upper perimeter with four sides and having a
4	depth normal to said perimeter;
5	an array comprising a plurality of subarrays of rectangular form positioned
6	in a rectangular arrangement having length and width edges, each such subarray including
7	at least one waveguide having slot-type radiating elements;
8	said array positioned within said cavity and arranged for rotation about an
9	axis-of-rotation adjacent to an edge of the array and aligned with a side of the upper
10	perimeter;
11	an elevation scan actuator to mechanically tilt said array about said axis-
12	of-rotation without removing the array from said cavity;
13	a signal port; and
14	a feed configuration to couple signals between the signal port and each
15	subarray.
1	2. (original) A flush-mount antenna system as in claim 1, additionally
2	comprising:
.3	an azimuth scan assembly to mechanically rotate said array to provide
4	scanning in azimuth.

1	3. (original) A flush-mount antenna system as in claim 2, wherein the azimuth
2	scan assembly is arranged to mechanically rotate said cavity and the array positioned
3	therein.
1	4. (original) A flush-mount antenna system as in claim 1, wherein the array
2	comprises square flat-plate type subarrays contiguously positioned in a rectangular array.
1	5. (currently amended) A flush-mount antenna system as in claim 1, wherein
2	each individual subarray of said plurality of subarrays includes slotted waveguides in
3	parallel side-by-side arrangement and each waveguide includes at least one row of slot-
4	type radiating elements.
1	6. (original) A flush-mount antenna system as in claim 1, wherein said slot-type
2	radiating elements comprise crossed-slot radiating elements.
1	7. (original) A flush-mount antenna system as in claim 1, wherein a length edge
2	of the array is positioned adjacent to said axis-of-rotation.
1	8. (original) An antenna system, to enable communication via satellite,
2	comprising:
3	a cavity having an upper perimeter and a depth normal to said perimeter;
4	an array comprising a plurality of subarrays positioned in a two-
5	dimensional arrangement having an edge section and configured to provide a beam

U	pattern, each said subarray mending at least one waveguide section having slot-type
7	radiating elements;
8	said array positioned within said cavity and arranged for rotation about an
9	axis-of-rotation adjacent to said edge section of the array to scan the beam pattern in
10	elevation;
11	an elevation scan actuator to mechanically tilt said array by rotation about
12	said axis-of-rotation without removing the array from said cavity;
13	a signal port; and
14	a feed configuration to couple signals between the signal port and each
15	subarray.
1	9. (original) An antenna system as in claim 8, additionally comprising:
2	an azimuth scan assembly to mechanically rotate said array to scan the
3	beam pattern in azimuth
1	10. (original) An antenna system as in claim 9, wherein the azimuth scan
2	assembly is arranged to mechanically rotate said cavity and the array positioned therein.
1	11. (original) An antenna system as in claim 8, wherein the array comprises
2	square flat-plate type subarrays contiguously positioned in a rectangular array.
1	12. (currently amended) An antenna system as in claim 8, wherein each
2	individual subarray of said plurality of subarrays includes slotted waveguides in parallel

J	side-by-side arrangement and each waveguide includes at least one low of slot type
4	radiating elements.
1	13. (original) An antenna system as in claim 8, wherein said slot-type radiating
2	elements comprise crossed-slot radiating elements.
1	14. (original) An antenna system as in claim 8, wherein the upper perimeter
2	includes a linear side portion and said axis-of-rotation is adjacent and parallel to said
3	linear side portion and said array edge section.
1	15. (currently amended) An antenna system, to enable communication via
2	satellite, comprising:
3	a cavity having an upper perimeter including a linear side portion and a
4	depth normal to said perimeter;
5	an array comprising a plurality of radiating elements subarrays positioned
6	in a two-dimensional arrangement and configured to provide a beam pattern, the array
7	including a linear edge section each said subarray including at least one waveguide
8	section having slot-type radiating elements;
9	said array positioned within said cavity and arranged for rotation about an
10	axis-of-rotation to scan the beam pattern in elevation, said axis-of-rotation adjacent and
11	parallel to said side portion and said edge section;
12	an elevation scan actuator to mechanically tilt said array by rotation about
13	said axis-of-rotation without removing the array from said cavity;

14	a signal port; and
15	a feed configuration to couple signals between the signal port and said
16	array each subarray.
1	16. (original) An antenna system as in claim 15, additionally comprising:
2	an azimuth scan assembly to mechanically rotate said array to scan the
3	beam pattern in azimuth
1	17. (original) An antenna system as in claim 16, wherein the azimuth scan
2	assembly is arranged to mechanically rotate said cavity and the array positioned therein.
1	18. (original) An antenna system as in claim 15, wherein the array comprises
2	square flat-plate type subarrays contiguously positioned in a rectangular array.
1	19. (currently amended) An antenna system as in claim 18 15, wherein each
2	individual subarray of said plurality includes slotted waveguides in parallel side-by-side
3	arrangement and each waveguide includes at least one row of slot type radiating elements
1	20. (currently amended) An antenna system as in claim 19 15, wherein said slot-
2	type radiating elements comprise crossed-slot radiating elements.
1	21. (canceled)