REPUBLIQUE TUNISIENNE

Ministère de l'Enseignement Supérieur, de la Recherche Scientifique et de la Technologie.

Concours Nationaux d'Entrée aux Cycles de Formation d'Ingénieurs Session : 2008

الجمهورية التونسية وزارة التعليم العالي و البحث العلمي و التكنولوجيا المناظرات الوطنية للدخول الى مراحل تكوين المهندسين

دورة 2008

Concours Mathématiques et physique Corrigé de l'épreuve de Chimie

Partie I: Chimie générale (2 pts)

0.5 pt I-1) La structure électronique externe de l'élément manganèse : 4s² 3d⁵

0.5 pt I-2) La sous couche « d » de l'élément manganèse est en cours de remplissage donc c'est un élément de transition

0.5 pt I-3) (4s²): cet élément appartient à la 4ème période

4s² 3d⁵:(5+2=7) cet élément appartient au groupe 7 du tableau périodique

0.5 pt I-4) L'état d'oxydation +II est le plus stable car il correspond à une sous couche 3d⁵ à moitié garnie

Partie II: Empilements compacts (2,5 pts)

II-1) Voir figure a

0.5 pt II-2) Voir figure b

0.5 pt

0.5 pt II-3) Coordinance = 12

0.5 pt II-4) Compacité=0,74

0.5 pt II-5) $r_{Mn} = a \frac{1}{2\sqrt{2}} r_{Mn} = 1,234 \text{ Å}$

Partie III: Diagramme d'Ellingham (3,5 pts)

0.25 pt III-1) $2M_{(s)} + O_{2(g)} \rightleftharpoons 2MO_{(s)}$

0.25 pt III-2) L'expression des capacités calorifiques standard en fonction de la température est nécessaire: Cp°=f(T)

0.5 pt III-3) $\Delta_r G^\circ = (2.\Delta_f H_{MO}^\circ - 2.\Delta_f H_{M}^\circ - \Delta_f H_{O_2}^\circ) - T.(2.S_{MO}^\circ - 2.S_{M}^\circ - S_{O_2}^\circ)$

0.25 pt III-4) $K_p^0 = \frac{P^\circ}{(P_{O_2})_{eq}}$

0.25 pt III-5) $K_p^0 = e^{-\Delta_r G^\circ}$ RT III-6)

0.25 pt a) Pour T \leq T_f Δ_r G_I (T) = -400 + T.(0,143) kJ.mol⁻¹

0.25 pt b) Pour $T_f^{\circ} \le T \le T_v^{\circ}$ $\Delta_r G_{II}^{\circ}(T) = -510 + T.(0,300) \text{ kJ.mol}^{-1}$

0.25 pt c) $\Delta_f H^{\circ}_{MO}$ = -200 kJ.mol⁻¹ (Ordonnée à l'origine de la demi droite T≤T_f)

0.5 pt d) $\Delta_{\text{fus}} H^{\circ}_{\text{M}} = 55 \text{ kJ.mol}^{-1}$ (Différence entre les ordonnées à l'origine des deux demi droites $T \le T_{\text{f}}^{\circ}$ et $T \ge T_{\text{f}}^{\circ}$)

0.25 pt **e**)
$$\Delta_{\text{fus}}$$
S°_M = 78,6 J.mol⁻¹.K⁻¹ (Pente de la demi droite T≤T_f°)
0.25 pt **III-7**) (P_{O2})_{eq} = 7,34.10⁻⁶³ bar

Partie IV: Structures ioniques (2,5 pts)

$$0.25 \text{ pt} \quad \mathbf{R_{Mn}} = \frac{\mathbf{a}}{2} - \mathbf{R_{O}}$$

$$0.25 \text{ pt} \Rightarrow \mathbf{R_{Mn}} = \mathbf{0.903} \text{ Å}$$

$$0.25 \text{ pt}$$
 \Rightarrow 0,41< $\frac{R_{Mn}}{R_0}$ < 0,73 l'oxyde MnO cristallise selon le type NaCl

0.25 pt IV-6) Compacité du réseau :
$$C = \frac{4\frac{4}{3}\pi(R_{O^{2}}^3 + R_{Mn^{2+}}^3)}{a_i^3}$$

$$0.25 \text{ pt} \qquad \Rightarrow \mathbf{C} = \mathbf{0.58}$$

Partie V: Diagramme de Pourbaix (5 pts)

En considérant à 298 K:

- Les espèces solides suivantes : Mn; MnO₂ et Mn(OH)₂
- Les ions en solution une fois molaire : Mn²⁺ et MnO₄

V-1) Equations E=f(pH) des courbes frontières

• pH de précipitation de Mn(OH)2

$$Mn(OH)_2 \rightleftharpoons Mn^{2+} + 2 OH^{-1}$$

Pour une solution molaire en Mn^{2+} , $Mn(OH)_2$ précipite si : $[Mn^{2+}][OH^-]^2 \ge Ks$

or
$$Ke=[OH^*][H^+] \Rightarrow [OH^*]^2 = \frac{Ke^2}{\left[H^+\right]^2} \Rightarrow [Mn^{2+}] \frac{Ke^2}{\left[H^+\right]^2} \ge Ks$$

$$\Rightarrow \ [H^{^{+}}] \leq \tfrac{1}{2} ([Mn^{2^{+}}] \frac{Ke^2}{Ks}) \quad \Rightarrow \ -log[H^{^{+}}] \geq - \ \tfrac{1}{2} log([Mn^{2^{+}}] \frac{Ke^2}{Ks})$$

0.25 pt
$$pH \ge \frac{1}{2}(-\log[Mn^{2+}] - 2.\log Ke + \log Ks)$$

0.25 pt
$$\Rightarrow$$
 pH \geq 7,3

0.25	pt
------	----

Nombre d'oxydation	pН	7,3
+VII	MnO_4^-	
+IV	MnO_2	
+II	Mn ²⁺	Mn(OH) ₂
0	Mn	

Couple MnO₄ / MnO₂ quelque soit pH 0.25 pt $\mathbf{MnO_4}^- + 3\mathbf{e} + 4\mathbf{H}^+ \rightleftarrows \mathbf{MnO_2} + 2\mathbf{H_2O}$ $E_{MnO_4/MnO_2} = E_{MnO_4/MnO_2}^{\circ} - 0.08pH + 0.02.log[MnO_4]$ 0.25 pt \Rightarrow E_{MnO₄/MnO₂} =1,69 - 0,08.pH V Couple MnO_2/Mn^{2+} quelque soit pH ≤ 7.3 0.25 pt $MnO_2 + 2e - + 4H^+ \rightleftharpoons Mn^{2+} + 2H_2O$ $E_{MnO_2/Mn^{2+}} = E_{MnO_2/Mn^{2+}}^{\circ} - 0.12 \text{ pH} + 0.03.\log \frac{1}{[Mn^{2+}]}$ \Rightarrow E_{MnO₂/Mn²⁺} =1,23 - 0,12.pH V 0.25 pt Couple Mn^{2+}/Mn quelque soit pH $\leq 7,3$ $Mn^{2+} + 2e \rightarrow Mn$ 0.25 pt $E_{Mn^{2+}/Mn} = E_{Mn^{2+}/Mn}^{\circ} + 0.03.\log[Mn^{2+}] \Rightarrow E_{Mn^{2+}/Mn} = -1.19 \text{ V}$ 0.25 pt Couple $MnO_2/Mn(OH)_2$ quelque soit $pH \ge 7,3$ 0.25 pt $MnO_2 + 2e - + 2H^+ \rightleftharpoons Mn(OH)_2$ $E_{MnO_2/Mn(OH)_2} = E_{MnO_2/Mn(OH)_2}^{\circ} - 0.06pH \Rightarrow E_{MnO_2/Mn(OH)_2} = E_{MnO_2/Mn(OH)_2}^{\circ} - 0.06pH$ Calcul du potentiel standard E_{MnO₂/Mn(OH)₂} $E_{MnO_2/Mn^2} + (7,3) = E_{MnO_2/Mn(OH)_2}(7,3)$ Par continuité à pH=7,3 $\Rightarrow E_{MnO_2/Mn(OH)_2}^{\circ} = 0.792V \Rightarrow E_{MnO_2/Mn(OH)_2} = 0.79 - 0.06.pH V$ 0.25 pt Couple $Mn(OH)_2 / Mn$ quelque soit $pH \ge 7.3$ 0.25 pt $Mn(OH)_2 + 2e - + 2H^+ \rightleftharpoons Mn + 2H_2O$ $E_{Mn(OH)_2/Mn} = E_{Mn(OH)_2/Mn}^{\circ} - 0.06.pH$ Calcul du potentiel standard E_{Mn(OH)2/Mn} par continuité à pH=7,3 $E_{Mn(OH)_2/Mn}(7,3) = E_{Mn^2+/Mn}(7,3)$ $\Rightarrow E_{Mn(OH)_2/Mn}^{\circ} = -0.75V \Rightarrow E_{Mn(OH)_2/Mn} = -0.75 - 0.06.pH$ 0.25 pt V-2) Tracé du diagramme potentiel-pH du manganèse simplifié en solution 1 pt aqueuse:

0.5 pt V-3) Indexation : voir diagramme potentiel-pH

0.5 pt	V-4) La courbe de réduction de l'eau (en pointillé) montre qu'une lame de
	manganèse plongée dans une solution acide sera attaquée. Le potentiel du
	couple H ⁺ /H ₂ est supérieur à celui du couple Mn ²⁺ /Mn

Partie VI: Diagramme d'équilibre entre phases (4,5 pts)

Sur la figure 2 est représentée une portion du diagramme d'équilibre entre phases solide-liquide du binaire Aluminium – Manganèse

- 0.25 pt VI-1) La présence d'une courbe de miscibilité solide-solide du coté de l'aluminium montre que le manganèse solide est partiellement soluble dans l'aluminium solide
- 0.25 pt VI-2) Le composé intermédiaire C est non congruent. A 710°C il se 0.25 pt décompose pour donner un solide et un liquide de composition 4,1
- $\boxed{0.25 \text{ pt}} \quad \text{VI-3) Formule de C} : X_{Mn} = \frac{1}{1 + (\frac{1}{W_{Mn}} 1) \frac{M_{Mn}}{M_{Al}}} \Rightarrow X_{Mn} = 0,14 \Rightarrow C : Al_6Mn$
- 0.25 pt VI-4) Point eutectique : (2; 659) Point péritectique : (4,1; 710)
- 0.5 pt VI-5) Domaine I : liquide+ solution solide α (manganèse dans aluminium)
 - Domaine II : solution solide α Domaine III : liquide + solide C
 - Domaine IV : solution solide α + solide C
- 0.5 pt VI-6) Le point Z de coordonnées (1,8; 659) représente la solution solide α la plus riche en manganèse
- 0.5 pt VI-7) A 695°C, le mélange de composition pondérale en manganèse de 15% contient trois phases en équilibre : liquide (E), solution solide α (Z), solide C
- 0.5 pt **VI-8**)

VI-9)
$$\frac{m^{C}}{m^{Z}} = \frac{21,5-1,8}{25-21,5} = 5,63$$

FIN DU CORRIGE