

Piotr Dollár Vincent Rabaud

Garrison Cottrell Serge Belongie

Antón R. Escobedo cse 252c

Outline

- I. Introduction
- II. Related Work
- III. Algorithm
- IV. Experiments
- V. Current Work

Motivation:

Sparse feature
points extended to
the spatio-temporal
case

- Motivation:
 - Behavior detection from video sequences
 - Behavior recognition faces similar issues to those seen in object recognition.
 - Posture, appearance, size, image clutter, variations in the environment such as illumination.
 - Imprecise nature of feature detectors.

- Inspiration: Sparsely detected features in object recognition.
 - Fergus et al. "Object Class Recognition by Unsupervised Scale-Invariant Learning"
 - Agarwal et al. "Learning to Detect Objects in Images via a Sparse, Part-Based Representation"
 - Leibe, Schiele "Scale invariant Object Categorization Using a Scale-Adaptive Mean-Shift Search"

Advantages of Sparse Features

- Robustness
- Very good results

example from: http://www.robots.ox.ac.uk/~fergus/research/index.html

object recognition

example from: http://www.robots.ox.ac.uk/~fergus/research/index.html

[training data & features]

Spatial-Temporal Features

- Short, local video sequence that can be used to describe a behavior.
- Behavior recognition based on features detected and compared with a rich set of features.
- 3rd dimension
 - Temporal, not spatial

- Will Show:
 - Direct 3D counterparts to feature detectors are inadequate.
 - Development and testing of descriptors used in this paper.
 - A dictionary of descriptors is all that is needed to recognize behavior.
 - Proven on human behavior, facial expressions and mouse behavior dataset

Part II: Related Work

- Articulated models
- Efros et al.
 - 30 pixel man
- Schuldt et al.
 - Spatio-Temporal features

Images from:

Part III: Proposed Algorithm

- Feature Detection
- Cuboids
- Cuboid Prototypes
- Behavior Descriptors

Feature Detection (spatial domain)

- Corner Detectors
- Laplacian of Gaussian (SIFT)
- Extensions to Spatio-Temporal Case
 - Stacks of images denoted by: I(x,y,t)
 - Detected features also have temporal extent.

Feature Detection

- Harris in 3D
 - Spatio-Temporal corners:
 - Regions where the local gradient vectors point in orthogonal directions for x,y and t.
 - Why this doesn't work
- Develop an Alternative detector
 - Err on the side of too many features
 - Why this works

Feature Detection

Response Function

$$R = (I * g * h_{ev})^{2} + (I * g * h_{od})^{2}$$

- Spatial Filter:Gaussian
- Temporal Filter:Gabor

$$h_{ev}(t;\tau,\omega) = -\cos(2\pi t\omega)e^{-t^2/\tau^2}$$

$$h_{od}(t;\tau,\omega) = -\sin(2\pi t\omega)e^{-t^2/\tau^2}$$

Feature Detection

- What this implies:
 - Any region with spatially distinguishing characteristics undergoing a complex motion will induce a strong response.
 - Pure translation will not induce a response.

Cuboids

- Extracted at each interest point
 - ~6x scale at which detected
- Descriptor: Feature Vector
 - Transformations Applied
 - Normalize Pixel Values
 - Brightness Gradient
 - Optical Flow
 - Feature Vector from local histograms

Cuboid Descriptor

- Flattened Gradient vector gave best results
- Generalization of PCA-SIFT descriptor

Cuboid Prototypes

- Unlimited cuboids are possible, but only a limited number of types exist.
- Use k-means algorithm to cluster extracted cuboids together by type.

Behavior Descriptor

- Behavior descriptor: histogram of cuboid types
 - Simple.
 - Distance measured using chi-squared distance.
 - Can easily be used in classification framework.
 - Discards spatial layout and temporal order of cuboids.

spatio-temporal features

domain 1: human activity

training examples:

test example:

domain 2: facial expressions

training examples: test example:

domain 3: mouse behavior

training examples: test example:

near vs. medium field

Efros et al. 2003

performance evaluation

- compared 4 methods:
 - CUBOIDS our approach
 - CUBOIDS+HARRIS our approach using Laptev's 3D corner detector
 - ZMI Zelnik-Manor & Irani 2001
 - Statistical measure of gross activity using histograms of spatiotemporal gradients gives activity descriptor
 - **EFROS** Efros et al. 2003
 - Normalized cross correlation of optical flow gives distance measure between activities
- analysis in terms of relative performance
- not all algorithms are always applied
 - format of data, computational complexity

facial expressions I

facial expressions II

confusion matrices, row normalized

mouse behavior full database results

mouse behavior pilot study

human activity

parameter settings

- \mathbf{k} , 50 < k < 500, number of clusters
- n, $10 \le n \le 200$, number of cuboids per clip
- ω , $0 < \omega < 1$ overlap allowed between cuboids
- σ , 2 < σ < 9, spatial scale of the detector
- Base settings used were approximately:

summary of results

- achieved good performance in all domains [typically 10-20% error]
- achieved best performance of algorithms tested in all domains
- comparison to domain specific algorithms necessary

Current Work

- Niebles et al.
 - "Unsupervised Learning of Human Action Categories Using Spatial-Temporal Words" BMVC, 2006
 - Recognizes multiple activities in a single video sequence
 - Using the same interest point detector, cluster cuboids into a set of video codewords, then use pLSA graphical model to determine probability distributions.
 - 81.50% accuracy vs 81.17% for Dollár et al.
 - However, learning is unsupervised for Niebles et al.

Questions?

Acknowledgements: Piotr Dollar