kd education academy (9582701166)

Time: 5 Hour

STD 11 Maths kd 90+ ch-12 limits

Total Marks: 320

* Choose the right answer from the given options. [1 Marks Each]

[105]

1. If
$$y = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$$
, then $\frac{dy}{dx} = \frac{1}{2!} + \frac{x^3}{3!} + \dots$

$$(A) y + 1$$

(D)
$$y^2$$

2. If
$$y = \frac{\sin x + \cos x}{\sin x - \cos x}$$
, then $\frac{dy}{dx}$ at $x = 0$ is:

(C)
$$\frac{1}{2}$$

$$\lim_{x\to\pi}\frac{x^2\cos x}{1-\cos x}$$
 is equal to:

(B)
$$\frac{3}{2}$$

(C)
$$-\frac{3}{2}$$

4. Choose the correct answer.

If
$$f(x) = \begin{cases} x^2 - 1 & 0 < x < 2 \\ 2x + 3, & 2 > 3 < 3 \end{cases}$$

If $f(x) = \begin{cases} x^2 - 1 & 0 < x < 2 \\ 2x + 3, & 2 \ge 3 < 3 \end{cases}$ then the quadeatic equation whose roots are

 $\lim_{x\to 2^-}f(x)$ and $\lim_{x\to 2^+}f(x)$ is:

(A)
$$x^2 - 6x + 9 = 0$$

(B)
$$x^2 - 7x + 8 = 0$$

(C)
$$x^2 + 14x + 49 = 0$$

(D)
$$x^2 - 10x + 21 = 0$$

5. Find the derivative of
$$e^{x^2}$$
:

6.
$$\lim_{x\to 0} x \sin \frac{1}{x}$$
 is equal to:

(C)
$$\frac{1}{2}$$

7. If
$$y = \sqrt{x} + \frac{1}{\sqrt{x}}$$
, then $\frac{dy}{dx}$ at $x = 1$ is

(B)
$$\frac{1}{2}$$

(C)
$$\frac{1}{\sqrt{2}}$$

8. Choose the correct answer.

$$\lim_{x\to 0} \frac{\left(\sqrt{x}-1\right)\left(2x-3\right)}{2x^2+x-3} \text{ is:}$$

(A)
$$\frac{1}{10}$$

(B)
$$-\frac{1}{10}$$

9. Evaluate the following limit
$$\lim_{x\to 0}\frac{1-\cos 2x}{x^2}$$
 :

$$10. \lim_{x\to 0} \frac{\sin 5x}{\tan 3x}$$

(A)
$$-\frac{5}{3}$$

(B)
$$\frac{5}{3}$$

(C)
$$-\frac{7}{3}$$

11.	Choose the correct ar $\lim_{x\to\pi} \frac{\sin x}{x-\pi}$ is:	nswer.		
	(A) 1	(B) 2	(C) -1	(D) -2
12.	Choose the correct ar	nswer.		
	$\lim_{x \to 0} rac{\sin x}{\sqrt{x+1}-\sqrt{1-x}}$ is:			
	(A) 2	(B) 0	(C) 1	(D) -1
13.	$\lim_{x \to \infty} \sin x$ equals:		6	·
	(A) 1	(B) 0	(C) ∞	(D) does not exist
14.	Find the derivative of	e ^{x²} :		
	(A) e ^{x²}	(B) 2x	(C) 2e ^{x²}	(D) 2xe ^{x²}
15.		differentiable function at f(2) = 5.Then f(3) is	on of x and that f(x) equal to?	f(y) = f(x)
	(A) 6	(B) 24	(C) 15	(D) 19
16.	Choose the correct ar	nswer.		
	$\lim_{ ext{x} o 0}rac{\sec^2 ext{x}-2}{ an ext{x}-1}$ is:	2		
	(A) 3	(B) 1	(C) 0	(D) 2
17.	$\lim_{\mathrm{x} o 1}(1+\cos\pi)\cot^2\pi\mathrm{x}:$	T		
	(A) 1	(B) −1	(C) $\frac{1}{2}$	(D) 0
18.	Choose the correct ar			
	If $y = \frac{\sin x + \cos x}{\sin x - \cos x}$ then $\frac{dy}{dx}$		1	(=) =
	(A) -2	(B) 0	(C) $\frac{1}{2}$	(D) Does not exist.
19.	f(x) = x - 1 + x - 3 ther (A) -2	n f (2) =: (B) 2	(C) 0	(D) 1
20	Choose the correct ar		(6) 0	
20.				
	If $\begin{cases} \overline{[x]} & x \neq 0 \\ 0, & [x] = 0 \end{cases}$ equal to :	re [.] denotes the grea	atest integer function. t	then $\lim_{{ m x} o 0} { m f}({ m x})$ is
	(A) 1	(B) 0	(C) -1	(D) None of these.
21.	Find the value of $\lim_{x\to 0} \frac{2}{x}$	$\frac{x^2+3x+4}{2}$		
	(A) 2	(B) 1	(C) $3\sqrt{5}$	(D) $2\sqrt{5}$
22.	What is the value of d	dx (sin x tan x)?		
	(A) sin x + tan x sec x		(B) $\cos x + \tan x \sec x$	

\					
(C)	sin	Х	+	tan	Х

(D) $\sin x + \tan x \sec^2 x$

23.
$$\lim_{x\to 0} \frac{\sin 7x}{\sin 3x}$$
 equals:

(A)
$$\frac{7}{3}$$

(B)
$$\frac{10}{3}$$

(C)
$$\frac{14}{3}$$

(D)
$$\frac{1}{3}$$

24.
$$\lim_{n\to\infty} \frac{\operatorname{npsin}^2(n!)}{n+1}$$
, $0 is equal to:$

(D) None

25. The value of
$$\lim_{x\to 3^+} \frac{|x-3|}{x-3}$$
 equals:

(D) Does not exist

26. Choose the correct answer.

 $\lim_{x\to 0} \frac{1-\cos 4\theta}{1-\cos 6\theta}$ is equal to:

(A)
$$\frac{4}{9}$$

(B)
$$\frac{1}{2}$$

(C)
$$\frac{-1}{2}$$

(D)
$$-1$$

27. If
$$y = \frac{1 + \frac{1}{x^2}}{1 - \frac{1}{x^2}}$$
, then $\frac{dy}{dx} =$

(A)
$$-\frac{4x}{(x^2-1)^2}$$
 (B) $-\frac{4x}{x^2-1}$

(B)
$$-\frac{4x}{x^2-1}$$

(C)
$$\frac{1-x^2}{4x}$$

(D)
$$\frac{4x}{x^2-1}$$

28. Evaluate:
$$\lim_{x\to 2} x^2 - 5x + 6$$

29.
$$\lim_{x\to 0} \frac{t^x - e \sin x}{2(x - \sin x)} =$$

(A)
$$-\frac{1}{2}$$

(B)
$$\frac{1}{2}$$

(C)
$$1$$

(D)
$$\frac{3}{2}$$

30. Choose the correct answer.

 $\lim_{x\to 0}\frac{x^m-1}{x^n-1}$ is equal to:

(B)
$$\frac{m}{n}$$

(C)
$$\frac{-m}{n}$$

(D)
$$m^2n^2$$

31. Derivative of the function f(x) = (x - 1)(x - 2) is:

(A)
$$2x + 3$$

$$(B) 3x - 2$$

(C)
$$3x + 2$$

32. If
$$f(x) = 2x - 3$$
, $a = 2$, $I = 1f(x) = 2x - 3$, $a = 2$, $I = 1$ and $\epsilon = 0.001$ then $\delta > 0$ satisfying $0 < |x - a| < \delta$, $|f(x) - I| < \epsilon$, is:

(A) 0.0050

(B) 0.0005

(C) 0.001

(D) 0.0001

33. The limit of
$$\left[\frac{1}{x^2}+\frac{(2013)^x}{e^x-1}-\frac{1}{e^x-1}\right]$$
 as $x\to 0$:

(A) Approaches +∞

(B) Approaches -∞

(C) Is equal to $log_e(2013)$

(D) Does not exist

34. Evaluate
$$\lim_{x \to 3} (4x^2 + 3)$$

	(A) 36	(B) 39	(C) 40	(D) None of these
35.	$\lim \tan x = x \rightarrow \frac{\pi}{2}$			
	(A) 1	(B) 0	(C) $\frac{1}{\pi}$	(D) does not exisz
36.	If $y = 5x^2 + 8x$ find $\frac{dy}{dx}$			
	(A) 10x + 8	(B) 5x + 8	(C) $10x^2 + 8x$	(D) None of these
37.	Let $3f(x) - 2f(\frac{1}{x}) = x$ th	en f(2) is equal to:		
	(A) $\frac{2}{7}$	(B) $\frac{1}{2}$	(C) 2	(D) 7
38.	What is the value of th	ne limit $\mathrm{f}(\mathrm{x}) = rac{\sin^2 \! \mathrm{x} + 2\sqrt{\sin \! \mathrm{x}}}{\mathrm{x}^2 - 4\mathrm{x}}$	if x approaches 0?	
	(A) $\frac{1}{\sqrt{2}}$	(B) $\frac{-1}{\sqrt{2}}$	(C) $\frac{-1}{2\sqrt{2}}$	(D) $\frac{-1}{\sqrt{-2}}$
39.	Choose the correct an	iswer.		
		x ⁹⁹ + x ¹⁰⁰ , then f'(1		
	(A) 150	(B) -50	(C) -150	(D) -50
40.		ial equation $rac{\mathrm{dy}}{\mathrm{dx}} = \cos x$	Then we observe that:	
	(A) $y = \sin x$	(B) $y = \sin x + 2$	(C) $y = \sin x - \frac{1}{2}$	(D) $y = \sin x + c$
41.		hat is the value of (1	4	
	(A) 2	(B) 4	(C) 6	(D) 8
42.	What is the value of li		(0)	(D) a
40	(A) 2	(B) 4	(C) 1	(D) 0
43.	The coefficient of y in	the expansion of $\left(y^2 + \right)$	$\frac{c}{y}$)5 is	
	(A) 10c	(B) 10c ²	(C) 10c ³	(D) None of these
44.	What is the value of li	$\mathrm{my}_{\mathrm{y} o \infty} rac{2}{\mathrm{y}}$?		
	(A) 0	(B) 1	(C) 2	(D) Infinity
45.	What is the value of t			
	(A) 6.2	(B) 6.4	(C) 6.3	(D) 6.1
46.	If $\lim_{x \to 5} \frac{Xk - 5K}{x - 5} = 500$ then	k is equal to:		
	(A) 3	(B) 4	(C) 5	(D) 6
47.	Evaluate: $\lim_{x\to 1} \frac{2x^2+4x-7}{2x-1}$	$\frac{+4}{}$:		
	(A) 1	(B) 10	(C) 20	(D) 5
48.	Choose the correct an			
	If $f(x) = \frac{x^n - a^n}{x - a}$ for some	e constant, a, then f'(a)	is equal to:	

	(A) 1	(B) 0	(C) Does not exist	(D) $\frac{1}{2}$
49.	The derivative of $f(x)$	= sin ² x is:		
	(A) cos 2x	(B) tan 2x	(C) sin 2x	(D) cosec 2x
50.	Choose the correct ar	nswer.		
	If $f(x) = \frac{x-4}{2\sqrt{x}}$ then f'(1)	is equal to:		
	(A) $\frac{5}{4}$	(B) $\frac{4}{5}$	(C) 1	(D) 0
51.	Identify the value of $\lim_{x \to x} x = \int_{x}^{x} (x - x)^{-1} dx$	$\max_{ ightarrow 2} -5\mathrm{x}+6$,6	S
	(A) 1	(B) -5	(C) 0	(D) 4
52.	What is the derivative	of $\lim_{x \to \infty} \left(x sinx(\frac{2}{x}) \right)$?		
	(A) 2	(B) 1	(C) 3	(D) ∞
53.	$f f(x) = 3\cos x$, then $f $	(x) at $x = \frac{\Pi}{2} = is$:	100V	
	(A) -3	(B) 3	(C) 0	(D) -1
54.	Choose the correct ar			
	_	$+\frac{x^{100}}{100}$ then f'(1) is equ		(D) c
	(A) $\frac{1}{100}$	(B) 100	(C) does not exist	(D) 0
55.	If $\lim_{x\to 0} (\cos x + a \sin bx)^{\frac{1}{x}}$	$\overline{\epsilon}=\mathrm{e}^2$ then		
		a & amp; bare:′a′&am		
	(A) a = 1, b = 2	(B) a = 2, b = 1	(C) $a = 3, b = 2$	(D) a = 2, b = 3
56.	What is the value of d			
	(A) $3x^2 \cos x^2 \cos x^3 +$	2xsin x ³ sin x ²	(B) $3x^2\cos 2 \cos x^3-2x$	sin x ³ sin x ²
	(C) $2x \cos x^2 \cos x^3 - 2x$		(D) $2x \cos^2 \cos x^3 + 3$	$x^2 \sin x^3 \sin x^2$
57.	If $f(x) = x^{100} + x^{99} +$	+ x + 1, then f(1) is equ	ual to:	
	• •	(B) 5049	(C) 5051	(D) 50051
58.	$\lim_{\mathrm{x}\to 3} \ 2\mathrm{x}^2 - 3\mathrm{x} - 5 = \angle$	2.1		
	(A) 4	(B) 3	(C) -4	(D) -3
59.	if $f(x)=x^{100}+x^{99}+\cdots$	+x+1, then f'(1) is eq	ıual to	
	(A) 5050	(B) 5049	(C) 5051	(D) 50051
60.	What is the value of the	he limit $\mathrm{f(x)} = \mathrm{x2} + \sqrt{2\mathrm{x}}$	$\sqrt{\mathrm{x}2}-4\mathrm{x}$ if x approache	es infinity?
	(A) 0	(B) 2	(C) 5	(D) 4
61.	Choose the correct ar	nswer.		

	If $f(x) = \sqrt{x} + \frac{1}{\sqrt{x}}$ then	$\frac{dy}{dx}$ at x = 1 is equal to:		
	(A) 1	(B) $\frac{1}{2}$	(C) $\frac{1}{\sqrt{2}}$	(D) 0
62.	What is the value of l	$ ext{im}_{ ext{y} orac{\pi}{2}}rac{\sin}{ ext{x}}?$		
	(A) $\frac{2}{\pi}$	(B) $\frac{\pi}{2}$	(C) 1	(D) 0
63.	If $L = \lim_{x \to 0} \frac{a \sin x - \sin^2 x}{\tan^3 x}$ is	finite, then the value of	of L is:	
	(A) 1	(B) 2	(C) 3	(D) -1
64.	What is the number of $(0, 2\pi)$?	f critical points for f(x)	= max(sinx, cosx) for x	belonging to
	(A) 2	(B) 5	(C) 3	(D) 4
65.	What is the value of -	$rac{\mathrm{d}}{\mathrm{d}\mathrm{x}}(\mathrm{e}^{\mathrm{x}}\tan\mathrm{x})\mathrm{at}\;\mathrm{x}=0?$		
	(A) 0	(B) 1	(C) -1	(D) 2
66.	What is the value of V	What is the value of $\lim_{ m x}$	$x \to \infty \frac{x^2 - 9}{x^2 - 3x + 2}$	
	(A) 1		(B) 2	
	(C) 0		(D) Limit does not exis	t
67.	if $f(x) = 1 + x + \frac{x^2}{2} + \cdots$	$+\frac{x^{100}}{100}$, then f'(1) is equ	al to:	
	(A) $\frac{1}{100}$	(B) 100	(C) 50	(D) 0
68.	What is the value of line < 2).	$\mathrm{m}_{\mathrm{y} o 4}\mathrm{f}(\mathrm{y})$? It is given th	at $f(y) = y^2 + 6y (y \ge 2)$	and $f(y) = 0(y)$
	(A) 40	(B) 16	(C) 0	(D) 30
69.	$\lim_{\mathrm{x} o 1}(1+\cos\pi)\cot^2\pi\mathrm{x}:$			
	(A) 1	(B) −1	(C) $\frac{1}{2}$	(D) 0
70.	If $z_{\mathrm{r}} = \cos rac{\mathrm{r} \alpha}{\mathrm{n}^2} + \mathrm{i} \sin rac{\mathrm{r} \alpha}{\mathrm{n}^2}$ V	where r = 1, 2, 3,n th	en $\lim_{n o\infty}(\mathbf{z}_1.\mathbf{z}_2\mathbf{z}_n)$ is ϵ	equal to:
	(A) $\cos \frac{\alpha}{2}$	(B) $\sin \frac{\alpha}{2}$	(C) $\mathrm{e}^{\mathrm{i}lpha}$	(D) $\sqrt{\mathrm{e}^{\mathrm{i} lpha}}$
71.	What is the value of (x	$(x + y)^2$ y if $x = \text{et sint an}$	id y = et cost?	
	(A) 12(y + y)	~/	(C) $2(xy + y)$	(D) 2(xy - y)
72.	Choose the correct ar	iswer.		
	If $y = \frac{\sin(x+9)}{\cos x}$ then $\frac{dy}{dx}$ a	at $x = 0$ is equal to:		
	(A) cos 9	(B) sin 9	(C) 0	(D) 1
73.	If $y = \frac{\sin(x+9)}{\cos x}$, then $\frac{dy}{dx}$	at x = 0 is:		
	(A) cos 9	(B) sin 9	(C) 0	(D) 1

74.	$\lim_{\mathrm{x} o 0} rac{\mathrm{a}\mathrm{e}^{\mathrm{x}} + \mathrm{b}\cos\mathrm{x} + \mathrm{c.e}^{\mathrm{x}}}{\sin^2\mathrm{x}} = 4 \; \mathrm{the}$	en b:		
	(A) 2	(B) 4	(C) 2	(D) -4
75.	What is the value $\lim_{x \to 0}$	$x \rightarrow 4$ $\frac{x^2 - 2x - 8}{x \rightarrow 4}$:		
	(A) 0	(B) 2	(C) 8	(D) 6
76.	Evaluate: $\lim_{x\to 0} \frac{\sin x + \cos x}{\sin x - \cos x}$	SX SX		
	(A) 0	(B) 1	(C) -1	(D) ∞
77.	What is the value of li	$\mathrm{m_{x o3}}rac{\mathrm{x}^2-9}{\mathrm{x}-3}$		
	(A) 0	(B) 3	(C) Infinity	(D) 6
78.	Choose the correct ar	nswer.		
	If $y = \frac{1 + \frac{1}{x^2}}{1 - \frac{1}{x^2}}$ then $\frac{dy}{dx}$ is	equal to:		
	(A) $\frac{-4x}{(x^2-1)^2}$	(B) $\frac{-4x}{(x^2-1)^2}$	(C) $\frac{1-x^2}{4x}$	(D) $\frac{4x}{x^2-1}$
79.	Derivative of the func	tion $f(x) = 7x^{-3}$ is:		
	(A) 21x ⁻⁴	(B) -21x ⁻⁴	(C) 21x ⁴	(D) -21x ⁴
80.	Evaluate: $\lim_{n\to\infty} \frac{1}{(n+1)^n}$	$\frac{\mathbf{n}!}{\mathbf{l})! - \mathbf{n}!}$		
	(A) 0	(B) 1	(C) 2	(D) 3
81.	Choose the correct ar			
	$\lim_{x\to 0} \frac{\csc-\cot x}{x}$ is equal to	0:		
	(A) $-\frac{1}{2}$	(B) 1	(C) $\frac{1}{2}$	(D) -1
82.	If $f'(x) = g(x)$ and $g'(x)$	= -f(x) for all x and $f(2)$	$f^2(24) = 4 = g(2)$, then $f^2(24)$)+g ² (24) is:
	(A) 32	(B) 24	(C) 64	(D) 48
83.	The value of $\lim_{x \to a} \frac{\sqrt{x}}{a}$	$rac{\overline{a \cdot b} - \sqrt{a \cdot b}}{x^2 - a^2} \; (a > b):$ (B) $rac{1}{a\sqrt{a - b}}$		
	(A) $\frac{1}{4a}$	(B) $\frac{1}{a\sqrt{a-b}}$	(C) $\frac{2}{a\sqrt{a-b}}$	(D) $\frac{1}{4a\sqrt{a-b}}$
84.	Choose the correct ar			
	$\lim_{x\to 0} \frac{\tan 2x - x}{3x - \sin x}$ is equal to:			
	(A) 2	(B) $\frac{1}{2}$	(C) $-\frac{1}{2}$	(D) $\frac{1}{4}$
85.	If $f(x) = \frac{x^n - a^n}{x - a}$, then $f'(a)$			
	(A) 1	(B) 0	(C) $\frac{1}{2}$	(D) dose not exist

86.	What is	the	value	٥f	lim	$(32v^2)$	cosec	2/ v \?
00.	vviiat 15	uie	value	Οī	$\mu_{v\to 0}$	(JZX	cosec	4X):

(A) 1

n_{y→0} (8 (B) 4

(C) 2

(D) 3

87. If
$$f(x) = x \sin x$$
, then $f\left(\frac{\Pi}{2}\right)$ is equal to:

(A) 0

(B) 1

(C) 1

(D) $\frac{1}{2}$

If $f(x) = x^{100} + x^{99}$ + x + 1, then f'(1) is equal to:

- (A) 5050
- (B) 5049
- (C) 5051
- (D) 50051

89. Let
$$f(x)=x-[x], x\in R,$$
 then $f'\left(\frac{1}{2}\right)$ is:

(A) $\frac{3}{2}$

(B) ¹

(C) 0

(D) -1

90. If
$$f(x) = 1 - x + x^2 - x^3 + \dots - x^{99} + x^{100}$$
, then f'(1) equals

(A) 150

(B) -50

- (C) -150
- (D) 50

91.
$$\lim_{x \to \pi} \frac{x^2 \cos x}{1 - \cos x}$$
 is equal to:

- a. 2
- b. $\frac{3}{2}$
- c. $-\frac{3}{2}$
- d. 1

92. If
$$f(x) = \begin{cases} x^2-1 & 0 < x < 2 \\ 2x+3, & 2 \geq 3 < 3 \end{cases}$$
 then the quadeatic equation whose roots are

 $\lim_{x\to 2^-}f(x)$ and $\lim_{x\to 2^+}f(x)$ is:

- a. $x^2 6x + 9 = 0$
- b. $x^2 7x + 8 = 0$
- c. $x^2 + 14x + 49 = 0$
- d. $x^2 10x + 21 = 0$

93.
$$\lim_{x\to 0} \frac{\left(\sqrt{x}-1\right)\left(2x-3\right)}{2x^2+x-3} \text{ is: }$$

- a. $\frac{1}{10}$
- b. $-\frac{1}{10}$
- c. 1
- d. None of these.

94. If
$$y = \frac{\sin x + \cos x}{\sin x - \cos x}$$
 then $\frac{dy}{dx}$ at x = 0 is equal to:

- a. -2
- b. 0
- c. $\frac{1}{2}$
- d. Does not exist.

- 95. $\lim_{x\to 0} \frac{1-\cos 4\theta}{1-\cos 6\theta}$ is equal to:
 - a. $\frac{4}{9}$
 - b. $\frac{1}{2}$
 - c. $\frac{-1}{2}$
 - d. -1
- 96. $\lim_{x\to 0}\frac{x^m-1}{x^n-1}$ is equal to:
 - a. 1
 - b. $\frac{m}{n}$
 - C. $\frac{-m}{n}$
 - d. m^2n^2
- 97. If $f(x) = 1 x + x^2 x^3 + \dots x^{99} + x^{100}$, then f'(1) is equal to:
 - a. 150
 - b. -50
 - c. -150
 - d. -50
- 98. If $f(x) = \frac{x^n a^n}{x a}$ for some constant, a, then f'(a) is equal to:
 - a. 1
 - b. 0
 - c. Does not exist
 - d. $\frac{1}{2}$
- 99. If $f(x) = \frac{x-4}{2\sqrt{x}}$ then f'(1) is equal to:
 - a. $\frac{5}{4}$
 - b. $\frac{4}{5}$
 - **c.** 1
 - **d.** 0
- 100. If $f(x) = 1 + x + \frac{x^2}{2} + \dots + \frac{x^{100}}{100}$ then f'(1) is equal to:
 - a. $\frac{1}{100}$
 - b. 100
 - c. does not exist
 - **d.** 0
- 101. If $y = \frac{1 + \frac{1}{x^2}}{1 \frac{1}{x^2}}$ then $\frac{dy}{dx}$ is equal to:
 - a. $\frac{-4x}{(x^2-1)^2}$
 - b. $\frac{-4x}{(x^2-1)^2}$
 - $\mathsf{C.} \qquad \frac{1-\mathsf{x}^2}{4\mathsf{x}}$

٦	4x
u.	2 1

- 102. $\lim_{x\to 0} \frac{\csc-\cot x}{x}$ is equal to:
 - a. $-\frac{1}{2}$
 - b. 1
 - c. $\frac{1}{2}$
 - d. -1
- 103. $\lim_{x\to 0}\frac{(1+x)^n-1}{x}$ is equal to:
 - a. n
 - b. 1
 - c. -n
 - d. 0
- 104. $\lim_{x\to 0}\frac{\tan 2x-x}{3x-\sin x}$ is equal to:
 - a. 2
 - b. $\frac{1}{2}$
 - c. $-\frac{1}{2}$
 - d. $\frac{1}{4}$
- 105. If $f(x) = x^{100} + x^{99} \dots + x + 1$, then f'(1) is equal to:
 - a. 5050
 - b. 5049
 - c. 5051
 - d. 50051
 - * Answer the following questions in one sentence. [1 Marks Each]

[23]

106. Find the derivative of

$$(5x^3+3x-1)(x-1)$$

- 107. Find the derivative of x^{-3} (5 + 3x)
- 108. Find the derivative of x^5 (3 $6x^{-9}$)
- 109. Find the derivative of $x^{-4}(3 4x^{-5})$
- 110. Find the derivative of the function $5 \sec x + 4 \cos x$
- 111. Find the derivative of function $\sin(x + 1)$ from first principle.
- 112. Find the derivative of function $f(x) = \cos \left(x \frac{\pi}{8}\right)$ from first principle.
- ¹¹³. Find the derivative of function $\frac{\sin(x+a)}{\cos x}$ (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers).
- 114. Find the derivative of the function x^4 (5 sin x 3 cos x).

- 115. Find the derivative of function $(ax^2 + \sin x)(p + q \cos x)$ (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers).
- 116. Find the derivative of function $\frac{x}{1+\tan x}$ (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers).
- 117. Find the limit: $\lim_{x\to 1} \left[x^3 x^2 + 1\right]$
- 118. Find the limit: $\lim_{x \to -1} \left[1 + x + x^2 + \ldots + x^{10} \right]$
- 119. Find the limit: $\lim_{x\to 2} \left[\frac{x^3 2x^2}{x^2 5x + 6} \right]$
- 120. Find the limit: $\lim_{x\to 1}\left[\frac{x-2}{x^2-x}-\frac{1}{x^3-3x^2+2x}\right]$
- 121. Evaluate: $\lim_{x\to 1} \frac{x^{15}-1}{x^{10}-1}$
- 122. Find the derivative at x = 2 of the function f(x) = 3x.
- 123. Find the derivative of the function $f(x) = 2x^2 + 3x 5$ at x = -1. Also, prove that f'(0) + 3f'(-1) = 0.
- 124. Find the derivative of $f(x) = x^2$.
- 125. Find the derivative of $f(x) = 1 + x + x^2 + x^3 + ... + x^{50}$ at x = 1.
- 126. Compute the derivative of $f(x) = \sin^2 x$.
- 127. Find the derivative of f from the first principle, where f is given by $f(x) = \frac{2x+3}{x-2}$
- 128. Find the derivative of f from the first principle, where f is given by $f(x) = x + \frac{1}{x}$
 - * Given section consists of questions of 2 marks each.

[86]

- 129. Evaluate $\lim_{x\to 4} \frac{4x+3}{x-2}$
- 130. Evaluate $\lim_{x \to -1} \frac{x^{10} + x^5 + 1}{x 1}$
- 131. Evaluate $\lim_{x\to 0} \frac{(X+1)^5-1}{x}$
- 132. Evaluate $\lim_{x\to 2} \frac{3x^2-x-10}{x^2-4}$
- 133. Evaluate $\lim_{x\to 3} \frac{x^4-81}{2x^2-5x-3}$
- 134. Evaluate $\lim_{z\to 1} \frac{z^{1/3}-1}{z^{1/6}-1}$
- 135. Evaluate $\lim_{x \to 1} \frac{ax^2 + bx + c}{cx^2 + bx + a}, \ a + b + c \neq 0$
- 136. Evaluate $\lim_{x \to -2} \frac{\frac{1}{x} + \frac{1}{2}}{x+2}$

- 137. Evaluate $\lim_{x\to 0} \frac{\sin ax}{bx}$
- 138. Evaluate $\lim_{x\to 0} \frac{\sin ax}{\sin bx}, \ a, \ b\neq 0$
- 139. Evaluate $\lim_{x\to\pi} \frac{\sin(\pi-x)}{\pi(\pi-x)}$
- 140. Evaluate $\lim_{x\to 0} \frac{\cos x}{\pi x}$
- 141. Evaluate $\lim_{x\to 0} \frac{\cos 2x-1}{\cos x-1}$
- 142. Evaluate $\lim_{x\to 0} \frac{ax + x\cos x}{b\sin x}$
- 143. Evaluate $\lim_{x\to 0} x \sec x$
- 144. Evaluate $\lim_{x\to 0} \frac{\sin ax + bx}{ax + \sin bx}$; a, b, a + b \neq 0.
- 145. Evaluate $\lim_{x\to 0} (\csc x \cot x)$
- 146. Evaluate $\lim_{x \to \frac{\pi}{2}} \frac{\tan 2x}{x \frac{\pi}{2}}$
- Evaluate $\lim_{x\to 0}$ f(x), where f(x) = $\begin{cases} \frac{|x|}{x}, & x\neq 0 \\ 0, & x=0 \end{cases}$ 147.
- Find $\lim_{x\to 0}f(x)$ where $f(x)=egin{cases} rac{x}{|x|},&x
 eq 0 \ 0,&x=0 \end{cases}$ Find $\lim_{x\to 0}f(x)$, where f(x)=|x|148.
- 149. Find $\lim_{x\to 5} f(x)$, where f(x) = |x| 5
- 150. If the function f(x) satisfies $\lim_{x\to 1} \frac{f(x)-2}{x^2-1} = \pi$, then evaluate $\lim_{x\to 1} f(x)$.
- 151. Find the derivative of $1/x^2$ from the first principle.
- 152. Find the derivative of $\left(\frac{x+1}{x-1}\right)$ from the first principle.
- 153. For the function $f(x) = \frac{x^{100}}{100} + \frac{x^{99}}{99} + \dots + \frac{x^2}{2} + x + 1$ prove that f'(1) = 100f'(0)
- ^{154.} Find the derivative of $x^n + ax^{n-1} + a^2x^{n-2} + ...+ a^{n-1}x + a^n$ for some fixed real number a.
- 155. For some constants a and b, find the derivative of (x a)(x b)
- 156. Find the derivative of $\frac{x^n-a^n}{x-a}$ for some constant a.
- 157. Find the derivative of the function $5\sin x 6\cos x + 7$
- Find the derivative of function $\frac{1+\frac{1}{x}}{1-\frac{1}{x}}$ (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers).

- 159. Find the derivative of function $\frac{1}{ax^2+bx+c}$ (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers).
- 160. Find the derivative of function $\frac{a}{x^4} \frac{b}{x^2} + \cos x$ (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers).
- 161. Find the derivative of function $4\sqrt{x}-2$ (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers).
- 162. Find the derivative of function $\frac{\sin x + \cos x}{\sin x \cos x}$ (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers).
- ¹⁶³. Find the derivative of function $\frac{\sec x 1}{\sec x + 1}$ (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers)
- 164. Find the derivative of function $\frac{a+b\sin x}{c+d\cos x}$ (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers)
- 165. Find the derivative of the function $f(x) = \frac{4x + 5 \sin x}{3x + 7 \cos x}$
- 166. Find the derivative of the function $\frac{x^2\cos\left(\frac{\pi}{4}\right)}{\sin x}$ (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers)

[66]

167. Evaluate:

$$\lim_{x\to\frac{\pi}{4}}\,\tfrac{\sin x-\cos x}{x-\frac{\pi}{4}}$$

168. Evaluate:

$$\lim_{x\to 0} \frac{1-\cos 2x}{x^2}$$

169. Differentiate the following functions.

$$\frac{x^4+x^3+x^2+1}{x}$$

170. Evaluate:

$$\lim_{x\to 0} \frac{\sin x - 2\sin 3x + \sin 5x}{x}$$

- 171. Find 'n' if $\lim_{x\to 2}\frac{x^n-2^n}{x-2}=80, x\in N$
 - * Given section consists of questions of 3 marks each.
- 172. Find the derivative of $\frac{2}{x+1} \frac{x^2}{3x-1}$
- 173. Find the derivative of function cosec x cot x.
- 174. Evaluate:

$$\lim_{x \to \frac{\pi}{3}} \frac{\sqrt{1 - \cos 6}}{\sqrt{2} \left(\frac{\pi}{3} - x\right)}$$

$$\lim_{x \to 3} \frac{x^3 + 27}{x^5 + 243}$$

176. Evaluate:

$$\lim_{x\to 1} \frac{x^7 \!-\! 2x^5 \!+\! 1}{x^3 \!-\! 3x^2 \!+\! 2}$$

177. Evaluate:

$$\lim_{x\to 0} \frac{\sqrt{1+x^3}-\sqrt{1-x^3}}{x^2}$$

178. Evaluate:

$$\lim_{x \to \sqrt{2}} \frac{x^2 - 4}{x^2 + 3\sqrt{2x} - 8}$$

179. If
$$\lim_{x\to 1}\frac{x^4-1}{x-1}=\lim_{x\to k}\frac{x^3-k^3}{x^2-k^2}$$
 then find the value of K.

180. Evaluate:

$$\lim_{h\to 0} \frac{\sqrt{x\!+\!h}\!-\!\sqrt{x}}{h}$$

181. Evaluate:

$$\lim_{x\to a} \frac{(2+x)^{\frac{5}{2}} - (a+2)^{\frac{5}{2}}}{x-a}$$

182. Differentiate the following functions.

$$\frac{x^5 - \cos x}{\sin x}$$

183. Evaluate:

$$\lim_{x \, \to \, 1} \, \tfrac{x^4 - \sqrt{x}}{\sqrt{x} - 1}$$

184. Evaluate:

$$\lim_{\mathbf{x} \to \frac{\pi}{6}} \frac{\cot^2 \mathbf{x} - 3}{\csc \mathbf{x} - 2}$$

185. Evaluate:

$$\lim_{x \to 0} \frac{1 - \cos mx}{1 - \cos nx}$$

186. Evaluate:

$$\lim_{x \to 0} \frac{(x+2)^{\frac{1}{3}} - 2^{\frac{1}{3}}}{x}$$

187. Evaluate:

$$\lim_{x\to 0} \frac{(1+x)^6 - 1}{(1+x)^2 - 1}$$

188. Evaluate:

$$\lim_{x\to 0} \tfrac{\sin 3x}{\sin 7x}$$

400 D:CC	
189. Differentiate the following function	C

$$\frac{a+b\sin x}{c+d\cos x}$$

190. Differentiate the following functions.

$$\frac{x^5 - \cos x}{\sin x}$$

$$\sin^3 x \cos^3 x$$

192. Evaluate:

$$\lim_{x \to \frac{\pi}{6}} \frac{\sqrt{3} \sin x - \cos x}{x - \frac{\pi}{6}}$$

193. Differentiate the following functions.

$$\frac{x^2 \cos \frac{\pi}{4}}{\sin x}$$

* Given section consists of questions of 5 marks each.

[40]

$$\lim_{\mathbf{x}\to 0} \frac{(\sin(\alpha+\beta)\mathbf{x} + \sin(\alpha-\beta)\mathbf{x} + \sin 2\alpha \cdot \mathbf{x}}{\cos 2\beta \mathbf{x} - \cos 2\alpha \mathbf{x}}$$

$$\lim_{x\to\pi}\frac{1{-}\sin\frac{x}{2}}{\cos\frac{x}{2}\bigg(\cos\frac{x}{4}{-}\sin\frac{x}{4}\bigg)}$$

196. Evaluate:

$$\lim_{x\to a} \tfrac{\sin x - \sin a}{\sqrt{x} - \sqrt{a}}$$

197. Evaluate the following limits.

$$\lim_{x \to \frac{\pi}{4}} \frac{\tan^3 x - \tan x}{\cos \left(x + \frac{\pi}{4}\right)}$$

198. Evaluate the following limits.

$$\lim_{y\to 0} \frac{(x+y)\sec(x+y) - x\sec x}{y}$$

199. Evaluate the following limits.

Let
$$\begin{cases} rac{k\cos x}{\pi-2x}, \\ 3, x = rac{\pi}{2} ext{and } f(x) = f(rac{\pi}{2}) \end{cases}$$
 Find the value of k.

200. Evaluate:

$$\lim_{x\to 0} \frac{\sqrt{2} - \sqrt{1 + \cos x}}{\sin^2 x}$$

201. Evaluate:

$$\lim_{x\to 0} \frac{2\sin x - \sin 2x}{x^3}$$

TO FOURTH MARIE MA