Introduction to

Time Series Analysis

Fondren LibraryDigital Scholarship Services

WHAT ARE TIME SERIES?

- Simply, data that are collected in a certain order
- Evenly or unevenly spaced
- Any number of variables

WHAT'S SO SPECIAL ABOUT TIME?

- Many statistical models depend upon data points being independent
 - Linear Regression
 - Logistic Regression
 - Many more!
- With time series, this basic assumption underlying the entire model can be wrong!
- Disastrous results

WHY IS THIS IMPORTANT?

- Time series are extremely useful for forecasting
 - Weather
 - Stocks (although this is very hard!)
 - Sports predictions
 - Election predictions
- Well suited to a wide class of problems

ONE QUICK EXAMPLE

Simple Linear Regression vs. a Time Series Model (ARIMA)

ONE QUICK EXAMPLE

Simple Linear Regression vs. a Time Series Model (ARIMA)

TRENDS AND SEASONALITY

How to filter out the noise and model what really matters

A SAMPLE TIME SERIES

Uber Pickups by Day between January and June 2015

Uber Pickups by Day between January and June 2015 with Trend

PERIODIC COMPONENTS

- Cycles that repeat
- Commonly by month, day of week, day of year, etc.
- Also called seasonality

BY HOUR OF DAY

Uber Pickups by Hour of Day between January and June 2015

BY DAY OF MONTH

Uber Pickups by Day of Month between January and June 2015

BY MONTH

Uber Pickups by Month between January and June 2015

HOLIDAYS

LOOKING BACK AT IT

Uber Pickups by Day of Year between January and June 2015

- Not very easy to quantify, but the assumption is that there is some randomness we haven't accounted for
- The statistician's approach: assume this randomness behaves nicely so we can build some great models!

HOW TO MAKE YOUR DATA STATIONARY

Make your data appetizing for modeling

WHAT IS STATIONARY DATA?

- Intuitively, it doesn't matter where you are in the series
 - If it's Monday or Friday, you can model it the same way
- Once we have our data stationary (or at least close), we can build amazing models!
- Can't have a trend
 - If we do, we need to know when we are
- Should minimize interaction between data points

- Subtracting our estimate of the data looking at trend only
- But where do we get the trend from?
 - We have to estimate it ourselves!
 - What kind of trend is it? Trends don't have to be linear!
 - Something else that could go wrong...
 - Can we do better?

DETRENDING EXAMPLE

Subtracting our estimate of the data looking at trend only

Uber Pickups by Day between January and June 2015, Detrended

DIFFERENCING

- Subtracting values separated by some constant value
- Say we have a list of 1, 7, 10, 13, and 2
 - First order difference: 7-1, 10-7, 13-10, 2-13
 - Third order difference: 13-1, 2-7
 - Losing data at the start!
- If there's a linear trend, first order differencing will get rid of it!
 - You can do higher orders for quadratic trends, etc.
- Also used for removing some cyclic effects
 - Weekly cycle? Difference by 7!
- Can do many of these at once

DIFFERENCING EXAMPLE: 1st ORDER

Uber Pickups by Day of Year between January and June 2015

Difference Order: 1 40000 20000 differenced -40000 **-**150 100 day

DIFFERENCING EXAMPLE: 7th ORDER

Difference Order: 7 50000 -25000 differenced -25000 -150 50 100 day

DIFFERENCING EXAMPLE: BOTH!

Uber Pickups by Day of Year between January and June 2015

Difference Orders: 1 and 7

LAGGED SCATTERPLOTS

- How do you know what orders are likely to help?
- Lagged scatterplots!
 - Essentially, plotting one point versus a previous point
- If there's an obvious trend (either positive or negative) it's probably a good idea to try differencing!

LAGGED SCATTERPLOTS EXAMPLE

LAGGED SCATTERPLOTS EXAMPLE

LAGGED SCATTERPLOTS EXAMPLE

HOW DO I KNOW I'M STATIONARY?

- The Augmented Dickey-Fuller test to the rescue!
 - The p-value in the output is a measure of how stationary the series is
 - If you have less than ~0.05, you're all set to model!
- Python

from statsmodels.tsa.stattools import adfuller adfuller (Your Time Series)

• R

```
library(tseries)
adf.test(Your Time Series)
```

A FEW NOTES

On modeling, forecasting, evaluating, plus explaining what these plots mean

MY MODELING PHILOSOPHY

- "All models are wrong, but some are useful" George Box
 - You'll never get everything right
- Try a bunch of things and see what works!
- Interpretability matters
 - If we can predict well but we have absolutely no idea why, is the model really what we want?

MODELING FOR FORECASTING

- If we use all our data to model, and then "forecast" based on that, we're cheating!
 - A model could just memorize what we put in and get a perfect score
- The real test of a model is its ability to forecast on unknown data
- Solution: choose a point (usually ~70% of the way through the data set) and split the data into two chunks: before and after
- Model with the first chunk, and check forecasting ability on the second chunk

EVALUATING MODELS

- Common statistical measures don't apply well to time series
- I'm going to be using mean relative error, which measures how close our predictions are on average to the true value
 - Another common metric: Mean Root Squared Error

A SAMPLE FORECAST GRAPH

- Vertical blue line: switch from train to test
- Red: predictions
- Faint red ribbon: a prediction interval, if applicable
 - Basically, "I think it's probably in here somewhere"

A Fitted Arima Model 1e+05 · Pickup Count 50 100 150 Day

ARIMA MODELS

Interpretable, simple and speedy time series modeling

- Auto-Regressive Integrated Moving Average models
- Pros:
 - Great at producing flexible models, solid support of periodic behavior and trending
 - Parameters are fairly easy to interpret
 - Widely used and mathematically well-understood
- Cons:
 - Bit of a pain to figure out the right parameters
 - Not great at dealing with holidays, etc

WHAT IS AUTOCORRELATION?

- A measure of how much values depend on previous values
- The "autoregressive" part of ARIMA
 - So we're modeling based on the assumption that these relationships matter and aren't just random noise

WHAT'S A MOVING AVERAGE?

- Essentially, a sliding window of interest upon which we take an average
- Say we have a list of 1, 7, 10, 13, and 2
- A moving average of order 3 would take all triples of components and average them
 - (1 + 7 + 10)/3, (7 + 10 + 13)/3, (10 + 13 + 2)/3
 - Notice we're losing data points!
- A kind of smoothing to reduce the effect of massive spikes

MOVING AVERAGES IN ACTION: 1 & 3

MOVING AVERAGES IN ACTION: 5 & 7

AUTOCORRELATION PLOTS

- A plot of a range of autocorrelations for different orders
 - How far back do we look?
- Find the lag to the right of which the columns are (mostly) within the blue region

PARTIAL AUTOCORRELATION PLOTS

- A plot of a range of partial autocorrelations for different orders
 - How much smoothing do we apply?
- Estimates the moving average component
- Find the lag to the right of which the columns are (mostly) within the blue region

ARIMA COMPONENTS

- Some number of autoregressive components (p)
 - How many? Check the autocorrelation plot!
- A differencing order (d)
 - What's the order? Check the lagged scatterplots!
- Some number of moving average components (q)
 - How many? Check the partial autocorrelation plot!
- Or, you can just experiment!

BUILDING THE MODEL

• R

arima(Your Time Series, order=c(p, d, q))

Python

from statsmodels.tsa.statespace import sarimax
sarimax.SARIMAX(Your Time Series, order=(p, d, q))

A FEW THINGS ABOUT ARIMA

- Modeling is slow, especially when compared to our next class of models
- Figuring out what values to use for the orders is not an exact science
 - Our plots give us a good idea, but it's a good idea to try a few more in the general area
 - Can do a grid search, for example
 - Automatically try a bunch of models and see what works

AN ARIMA MODEL

- Mean Relative Error: 5.6%
- Follows peaks nicely!
 - Only major miss is the huge spike

ARIMA IN SUMMARY

- Explore your data with plots
 - Plot by day, day of week, day of month, month, hour, minute, etc.
 - This will help you get a feel for the data
 - Try out some lags, moving averages, and detrending
 - If you can get a stationary data series, remember what you did to get there!
- Estimate parameters
 - Use (partial)autocorrelation function to figure out the order of moving average and autoregressive components
 - Use lagged scatterplots to deal with
- Model, forecast, and repeat!

ARIMA EXTENSIONS

- Won't explore these here
- Seasonal ARIMA: better support for seasonal cycles (longer range)
 - Even more parameters to figure out
- ARIMAX: use external variables to help prediction
 - Maybe if we knew the unemployment rate, that would help us predict inflation
 - Usually pretty simple
- SARIMAX: both!

PROPHET MODELS

Facebook's in-house forecasting tool

PROPHET MODELS

- Cutting up a forecast
- Pros:
 - Fast and scalable
 - Parameters are very easy to understand
 - Deals with holidays very elegantly
 - Splitting models up allows even more flexibility
 - Performs quite well! Results often better than ARIMA
- Cons:
 - Not as widely used (released in Sept. 2017)!
 - The jury's still out on this one

- Segment data into various sections and model them differently
- Why? Maybe things actually have changed
 - In business, there can be some major shakeups
 - It doesn't always make sense to predict based on what happened twenty years ago. Is that data even still applicable?
- Automatically detected by prophet

- Large list of holidays
- Maybe things do change on a New Year's Day
 - People are going to want to be picked up after partying, but are drivers going to be working?

- The cyclic components we noted earlier
 - Do things repeat every day? week? hour?
- Extremely easy to deal with in prophet
- Just enable the seasonalities in the modeling call

SOME ANNOYING CONVENTIONS

- Prophet requires that your data be arranged in a very specific way
 - ARIMA doesn't
- Rename your date column to 'ds' and convert it to a datetime format
- Rename the variable you want to model to 'y'

BUILDING THE MODEL

• R

```
library(prophet)
prophet (dataframe, yearly.seasonality=TRUE, ...)

    Python

import fbprophet
fbprophet.Prophet (dataframe,
    yearly seasonality=TRUE, ...)
```


A PROPHET MODEL

- Mean Relative Error: 7.4%
- Very interested in cycles
- Not bad, but slightly worse than ARIMA
 - Much faster, though

DECOMPOSING

- Look at individual components of the model
 - trend, weekly and daily seasonality
- R

prophet_plot_components

Python

model.plot_components

NEURAL NETWORK APPROACHES

Breaking out the big guns

NEURAL NETWORK MODELS

- Incomprehensible but extremely powerful
- Pros:
 - Often extremely accurate
- Cons:
 - More or less impossible to understand what any of the parameters mean
 - Can take a very long time to train the model (can be days)
 - Lots of moving parts and things that can go wrong
- But depending on the problem, that one pro may outweigh all the cons

RECURRENT NEURAL NETWORKS

- Simplest time series applicable neural network model
- Neural net that feeds back into itself

LONG SHORT-TERM MEMORY

- Cells and gates
 - Forget gate
 - Input gate
 - Output gate
- Basically, LSTM models 'learn' how long they need to pay attention
- Don't worry about the details!

BUILDING AN RNN MODEL

• R library(keras) keras model sequential() %>% layer simple rnn(units) ... Python import keras.models model = models.Sequential([SimpleRNN (units) ...

BUILDING AN LSTM MODEL

• R library(keras) keras model sequential() %>% layer lstm(units) ... Python import keras.models model = models.Sequential([LSTM (units) ...

LSTM HIGHLIGHT

- If given enough data, an LSTM can produce ridiculously good results.
- Here's the best model I made on the Dow Jones data:

COMPARISON AND SUMMARY

A look back at our models

MODEL COMPARISON: ARIMA

- Mean Relative Error: 5.6%
- Follows peaks nicely!
 - Only major miss is the huge spike

MODEL COMPARISON: PROPHET

- Mean Relative Error: 7.4%
- Very interested in cycles
- Not bad, but slightly worse than ARIMA
 - Much faster, though

MODEL STRENGTHS

ARIMA

 Flexible, interpretable, not too complicated to estimate parameters, easy to tweak

Prophet

 Great for business-style forecasting (Facebook's interest), fast, interpretable, holidays, longer seasonality

Simple RNN

Somewhat less complicated than LSTM

LSTM

Highest ceiling, extreme flexibility

MODEL WEAKNESSES

- ARIMA
 - Bad at longer seasonal trends, never forgets
- Prophet
 - Annoying interface, not a mature package
- Simple RNN
 - All the drawbacks of LSTM, but also less flexibility
- LSTM
 - Can be very finicky to train, uninterpretable, extremely slow and resource-intensive, requires tons of data

MY PERSONAL ADVICE

- Visualize your data extensively
 - Lots of great insights can be found
 - Lagged scatterplots, plots by day/week/hour of day, (partial)-autocorrelation plots
- Make it stationary
 - This will help you understand the data more
- Start with a Prophet model
 - Quick and fast
- Try out a few ARIMA models
 - Tweak the parameters a little bit
- If, and only if, these models don't meet your needs, build and tune an LSTM

ACKNOWLEDGMENTS

- Plots were created using the ggplot2 package in R
- Shumway and Stoffer's Time Series Analysis and Its Applications With R Examples, Fourth Edition published by Springer was used as the main reference for the ARIMA section
- Forecasting at Scale by Sean J. Taylor and Benjamin Letham was used as the main reference for the Prophet section
- The pictures under Neural Networks are licensed for free use under Wikimedia Commons
- Uber data provided by a Rice faculty member, not made public here
- Dow Jones data (used in the exercises) downloaded from Yahoo! Finance