

Think. Pair. Share.

cs50.ly/questions

- What are the key trade-offs between data structures we should consider in decisions about which to use?
- What some of primary operations we should know how to do on a linked list?
- How can use data structures to represent real-world processes, such as genetic inheritance?

Scenario

- Imagine you work for a company that has created a personal digital assistant that runs on a mobile device's OS.
- Customer reports lead you think that the assistant often has trouble recognizing its "wake word", especially when users have non-English accents.

- As a potential solution, your Product Manager has proposed that your team gather, store, and make available for review more representative voice data.
- Your job is to determine which data structure will be best to store voice data, and to implement a prototype of the structure to show to your team.

Linked List

'A' 'B' 'C' 'D' 'E' 'F' 'G' 'H' 'I' 'J' 'K' ...

'A' 'B' 'C' 'D' 'E' 'F' 'G' <mark>'H'</mark> 'I' 'J' 'K' ...

'A' 'B' 'C' 'D' 'E' 'F' 'G' <mark>'H'</mark> 'I' 'J' 'K' ...

'A' 'B' 'C' 'D' 'E' 'F' 'G' 'H' <mark>'I'</mark> 'J' 'K' ...

Think. Pair. Share.

cs50.ly/tradeoffs

Linked List

malloc(sizeof(node))

new_node->phrase = "Bye";

new node->next = NULL;

new_node->next = list;

list = new_node;

Linked List Prototype: Add

Download and open **list.c** from the <u>course's section resources</u>.

Find the first TODO, on line 28.

Starting on line 29, implement code to add a node, **new_node** to the linked list. Ensure that **list** always points to the head of the linked list. Also ensure **new_node** contains a phrase.

list = list->next;

list = list->next;

list = list->next;

Linked List Prototype: Search

Open the same **list.c** file.

Find the **search** function below **main**.

Implement **search** such that it returns **true** when **phrase** is found in a node. Return **false** when **phrase** is not found in any node.

Linked List Prototype: Unload

Open the same **list.c** file.

Find the unload function below main.

Implement **unload** such that all nodes in the linked list are **free**'d when the function is called. Return **true** when successful.

ethiCS

How Does Ethics Factor into the Trade-off?

- 1. **Identify relevant ethical considerations** in the scenario. What are the ethically relevant aspects of this situation that we should pay attention to?
- 2. **Examine how ethical considerations factor into the trade-off**. What ethical considerations count in favor of/against using each data structure?
- 3. **Re-evaluate your decision** about which data structure to use. Would you still use the same data structure in light of these considerations?

Scenario

- Imagine you work for a company that has created a personal digital assistant that runs on a mobile device's OS.
- Customer reports lead you think that the assistant often has trouble recognizing its "wake word", especially when users have non-English accents.

- As a potential solution, your Product Manager has proposed that your team gather, store, and make available for review more representative voice data.
- Your job is to determine which data structure will be best to store voice data, and to implement a prototype of the structure to show to your team.

Think. Pair. Share.

cs50.ly/tradeoffs

Small Group Activity

- I. In small groups, consider:
 - Which data structure is better for preserving users' privacy?
 - O Which is worse?
 - Which data structure is better for addressing unfairness?
 - Which is worse?
- II. Once you've filled in the boxes, consider together with your group: (1) Having seen the ethical trade-offs involved, which solution do you think is best all things considered? (2) Did the ethical considerations change your initial decision about which data structure to implement in this scenario?

Some key takeaways

- Just as there are technical trade-offs involved in making this choice, there
 are ethical trade-offs to consider as well.
- Thinking about these ethical trade-offs should factor into your decision-making process.
- Even if there is no easy answer about what to do, the most important thing
 is that you recognize there are ethical considerations at play.
- Since individual programmers are often the ones actually making these (tough and important!) decisions, it is up to you to choose *well*.

Midterm Check-in on Ethics Mini-modules

Please take ~5 minutes to give feedback on how the ethics lessons are going so far in CS50.

https://tinyurl.com/4fzhycpd

Thank you!

Lab

Person

person *parents[2]	0x04	0x08
char alleles[2]	A	O

0x40	0x80
Α	0

0x04	0x08
Α	0

Parent (Generation 1): blood type AO

Grandparent (Generation 2): blood type OA

Grandparent (Generation 2): blood type BO

Parent (Generation 1): blood type OB

Grandparent (Generation 2): blood type AO

Parent (Generation 1): blood type AO

Grandparent (Generation 2): blood type OA

Grandparent (Generation 2): blood type BO

Parent (Generation 1): blood type OB

Grandparent (Generation 2): blood type AO

Parent (Generation 1): blood type AO

Grandparent (Generation 2): blood type OA Grandparent (Generation 2): blood type BO

Parent (Generation 1): blood type OB

Grandparent (Generation 2): blood type AO

Parent (Generation 1): blood type AO

Grandparent (Generation 2): blood type OA

Grandparent (Generation 2): blood type BO

Parent (Generation 1): blood type OB

Grandparent (Generation 2): blood type AO

Office Hours

Tutorials

cs50.ly/attend

