INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR Department of Electronics and Electrical Communication Engineering

End Spring Semester Examination 2016 Subject name: Electromagnetic Engineering

Full Marks: 100 Time: 3Hrs

Subject No: EC21006

Answer all the questions The marks for each question is indicated on the right.

1. In an air-filled rectangular waveguide operating at 6 GHz, the y-component of the electric field E_y of the TE mode is given by :

$$E_{y} = 5 \sin\left(\frac{2\pi x}{a}\right) \cos\left(\frac{\pi y}{b}\right) \sin\left(\omega t - 12z\right) V / m.$$

Determine:

- (a) the mode of operation.
- (b) the cut off frequency of the mode.
- (c) the intrinsic impedance of the mode.
- (d) the x-component of the magnetic field (H_x).

[2+6+5+7=20]

- 2. A transmission line of length 2 m operating at $\omega=10^6~rad/sec$ possesses the following line parameters : $\alpha=8~dB/m$, $\beta=1~rad/m$ and $Z_0=60+j40~\Omega$. The line is connected to a source of complex amplitude $10\angle0^0{\rm V}$ and source impedance of $Z_{\rm g}=40~\Omega$ and terminated by a load of $20+j50~\Omega$. Determine :
 - (a) the input impedance seen by the source.
 - (b) the sending-end current.
 - (c) the current at the middle of the line.

[7+4+9=20]

- 3. Two λ / 4 transformers in tandem are to connect a $50\,\Omega$ line to a $75\,\Omega$ ($Z_{\rm L}$) load as in Fig. 1.
 - (a) Determine the characteristic impedance Z_{01} if $Z_{02}=30\Omega$ and there is no reflected wave to the left of A.

(b) If the best results are obtained when

$$\left[\frac{Z_0}{Z_{01}}\right]^2 = \frac{Z_{01}}{Z_{02}} = \left[\frac{Z_{02}}{Z_L}\right]^2$$

determine $Z_{\rm 01}$ and $\,Z_{\rm 02}$ for this case.

[8+12=20]

4. (a) Show that in a rectangular waveguide :

$$u_p = \frac{u'}{\sqrt{1 - \left[\frac{f_c}{f}\right]^2}} \text{ and } \lambda = \frac{\lambda'}{\sqrt{1 - \left[\frac{f_c}{f}\right]^2}}$$

where

 $\boldsymbol{u}_{\boldsymbol{p}}$ is the phase velocity inside the waveguide.

u' is the phase velocity in unbounded medium.

 $\boldsymbol{\lambda}$ is the guided wavelength inside the waveguide.

 λ' is the wavelength in unbounded medium.

fc is the cut-off frequency of the mode.

(b) For a waveguide operating at 20 GHz with dimensions 'a' and 'b' such that a=2b=2.5~cm , calculate u_p and λ for the TE₁₁ and TE₂₁ modes.

[6+14=20]

5. A plane wave with the transverse magnetic field given by :

$$\overrightarrow{H}_i = 10\cos(10^8 \text{ t} - \beta z) \overrightarrow{a}_x \text{ mA/m}$$

is incident normally from free space ($z \le 0$) on a lossless medium with material parameters $\varepsilon = 2\varepsilon_0, \ \mu = 8\mu_0$ in the region z>0 .

Determine:

- (a) the reflected electric field $\overrightarrow{E_r}$.
- (b) the reflected magnetic field $\overrightarrow{H_r}$.
- (c) the transmitted electric field $\overrightarrow{E_t}$.
- (d) the transmitted magnetic field $\overrightarrow{H_{t}}$.

[7+3+7+3=20]