Calculation of response dimes!

[T, has highest priority (DM)]

$$R_1 = C_1 = 4 \leq D_1 = 6 \Rightarrow 0k!$$

	Task	ci	Di	T;
4	て、	Ÿ	6	8
L	$ au_2$	3	14	16
M	τ_3	2	10	32

[To has medium priority (DM)] Note: ceiling function

$$R_3 = C_3 + \left\lceil \frac{R_3}{T_1} \right\rceil \cdot C_1 \qquad \left[Assume \ R_3 = C_3 = 2 \right]$$

$$R_3' = 2 + \left\lceil \frac{2}{8} \right\rceil \cdot 4 = 2 + 1 \cdot 4 = 6 \qquad \left(\text{onvergence because} \right)$$

$$R_3' = 2 + \left\lceil \frac{6}{8} \right\rceil \cdot 4 = 2 + 1 \cdot 4 = 6 \qquad \left(\frac{R_3}{8} = R_3 \right)$$

$$\leq D_3 = 10 \implies 0 \text{ K}$$

$$R_2 = C_2 + \left\lceil \frac{R_2}{T_1} \right\rceil \cdot C_1 + \left\lceil \frac{R_2}{T_3} \right\rceil \cdot C_3 \left[Assume R_2 = C_2 = 3 \right]$$

$$R_2' = 3 + \left[\frac{3}{9}\right] \cdot 4 + \left[\frac{3}{32}\right] \cdot 2 = 3 + 1 \cdot 4 + 1 \cdot 2 = 9$$

$$R_{2}^{2} = 3 + \left\lceil \frac{9}{8} \right\rceil \cdot 4 + \left\lceil \frac{9}{32} \right\rceil \cdot 2 = 3 + 2 \cdot 4 + 1 \cdot 2 = 13$$

$$Convergence$$

$$R_{2}^{3} = 3 + \left\lceil \frac{13}{8} \right\rceil \cdot 4 + \left\lceil \frac{13}{32} \right\rceil \cdot 2 = 3 + 2 \cdot 4 + 1 \cdot 2 = 13$$

$$\leq D_{2} = 14 \Rightarrow 0k$$

	Task	ci	Di	T;	
4	て、	Ų	6	8	
L	$ au_2$	3	14	16	
M	τ_3	2	10	32	

All deadlines are met

As we saw in the beginning of the lecture the resulting schedule boks like this:

Task	ci	Di	T;
て、	Ÿ	6	8
τ_2	3	14	16
τ_3	2	10	32

Consequently, the analysis calculates worst-case response times that correspond exactly to the response times of the first instance of each task.

á)	Ceiling priorities
	S1: max {H, M} = H
	52: max {+,13= H

	Task	ci	Di	T;	Hs1	$H_{\delta 2}$
H	て、	2	F	5	ι	1
M	$ au_2$	3	12	12	1	_
L	τ_3	8	24	25	_	2

Task	ci	D;	T;	H _{s1}	$H_{\delta 2}$
て、	2	4	5	ι	1
τ_{2}	3	12	12		_
τ_3	8	24	25	_	2

b) Blocking factors:

Since both semaphores have highest priority ceiling (H) tack to and to may be blocked by a tack with lower priority regardless of which semaphore that lower-priority task uses.

B1 = max {1,2}=2 { T2 may use semaphore S2 or

To may use semaphore So NOTE: To may be blodged although it does not use So

B3=0 < NOTE: lowest-priority task can never be blocked

c) Calculate response times!

[C_1 has highest DM priority] $R_1 = C_1 + B_1 = 2 + 2 = 4 \leq D_1 = 4 \Rightarrow ok!$ (but barely)

Task	ci	D;	T;	H _{s1}	H ₈₂
て、	2	7	5	ι	1
τ_{2}	3	12	12	1	_
τ_3	8	24	25	_	2

[to has medium om priority]

$$R_{2} = C_{2} + B_{2} + \left\lceil \frac{R_{2}}{T_{1}} \right\rceil \cdot C_{1} \quad \left[Assume \ R_{2}^{2} = C_{2} = 3 \right]$$

$$R_{2}^{1} = 3 + 2 + \left\lceil \frac{3}{5} \right\rceil \cdot 2 = 3 + 2 + 1 \cdot 2 = 7$$

$$R_{2}^{2} = 3 + 2 + \left\lceil \frac{7}{5} \right\rceil \cdot 2 = 3 + 2 + 2 \cdot 2 = 9 \quad \left[\text{Convergence} \right]$$

$$R_{2}^{3} = 3 + 2 + \left\lceil \frac{9}{5} \right\rceil \cdot 2 = 3 + 2 + 2 \cdot 2 = 9 \quad \left[\text{Convergence} \right]$$

$$R_{2}^{3} = 3 + 2 + \left\lceil \frac{9}{5} \right\rceil \cdot 2 = 3 + 2 + 2 \cdot 2 = 9 \quad \left[\text{Convergence} \right]$$

[To has lowest priority]

$$R_3 = C_3 + \left\lceil \frac{R_3}{T_2} \right\rceil C_7 + \left\lceil \frac{R_3}{T_i} \right\rceil C_7 \left[\frac{Assume}{R_3^2 - C_3 - 8} \right]$$

Task	ci	Di	T;	Hs1	Η _{δ2}
て、	2	7	5	ι	1
$ \tau_2 $	3	12	12	1	_
τ_3	8	24	25	_	2

$$R_3 = 8 + \left[\frac{8}{12}\right] \cdot 3 + \left[\frac{8}{5}\right] \cdot 2 = 8 + \left[\frac{1}{3} + 2 \cdot 2\right] = 15$$

$$R_3^2 = 8 + \left[\frac{15}{12}\right] \cdot 3 + \left[\frac{15}{5}\right] \cdot 2 = 8 + 2 \cdot 3 + 3 \cdot 2 = 20$$

$$R_3^3 = 8 + \left[\frac{20}{12}\right] \cdot 3 + \left[\frac{20}{5}\right] \cdot 2 = 8 + 2 \cdot 3 + 4 \cdot 2 = 22$$

$$R_3^{9} = 8 + \left[\frac{227}{12}\right] \cdot 3 + \left[\frac{227}{5}\right] \cdot 2 = 8 + 2 \cdot 3 + 5 \cdot 2 = 24$$
 $R_3^{9} = 8 + \left[\frac{247}{12}\right] \cdot 3 + \left[\frac{247}{5}\right] \cdot 2 = 8 + 2 \cdot 3 + 5 \cdot 2 = 24$
 $Convergence$
 $Convergence$

(but barely)

All deadlines are met 1