플랜트 현장 관리 개선방안

김기만*

* 한양사이버대학교 기계자동차공학부

Plant Site Management Improvement Method

Kim Ki Man*

* Mechanical & Automotive Engineering, Hanyang Cyber Univ.

(Received November 18, 2021)

Key Words: EPC(C)(설계, 조달, 시공, 시운전), Power Plant(발전 플랜트), Petro chemistry Plant (석유 화학 플랜트), Civil(토목), Architecture(건축), Mechanical(기계), Piping(배관), Electrical/Instrument(전기/계장)Non-Working Days(비작업일수), Working Days(작업 가능 일수)

초록: 이 논문은 플랜트의 정의와 종류, 구성과 공정관리 절차에 대한 항목을 서술하였음. 또한 공정 계획 작성 시 흔히 발생하는 오류에 대하여 개선방안을 제시함.

Abstract: In this paper, items on the definition and type of plant, configuration, and process management procedures are described. In addition, improvement measures are suggested for common errors in preparing a process plan.

- Nomenclature -

E: Engineering(설계)

P: Procurement(조달)

C: Construction(시공)

(C): Commissioning (시운전)

FEED: Front-End Engineering Design(기본설계의 끝과 상세설계의 앞을 연결해주는 단계)

PMC: Project Management Consultancy(프로젝트 총괄 관리)

O & M : Operating & Maintenance(운영 및 유지관리)

1. 서 론

1.1 플랜트의 정의

플랜트(Plant)란 발전소, 정유공장 등과 전력, 석유, 가스, 담수 등을 생산할 수 있는 설비를 공급하는 공장을 짓는 산업을 말한다.

플랜트는 설계(E), 조달(P), 시공(C) 등이 복합 된 산업이다.

플랜트는 목적과 규모에 따라 다양한 특성을 가 진다. 하나의 프로젝트로 건설하거나 여러 개의 패키지로 나누어 수행하며 기존 플랜트에 추가 로 설치하거나 새로 플랜트를 건설한다.

플랜트 공정에 따라 설치되는 설비의 종류도 다양하다. 설계, 시공, 시운전까지 전 과정에서 발주처의 승인을 받는 증 까다로운 절차를 통과해야 한다.

1.2 플랜트의 종류

1.2.1 오일 & 가스 플랜트(Oil & Gas Plant) : 석유 및 가스를 생산하는 플랜트

1.2.2 정유 플랜트(Refinery Plant) : 오일 & 가스 플랜트에서 생산된 원유를 증류하여 다양한 원 료를 만드는 플랜트

1.2.3 석유 화학 플랜트(Petro chemistry Plant) : 정 유 플랜트에서 생산된 나프타를 이용하여 제품 을 생산하는 플랜트

1.2.4 발전 플랜트(Power Plant)

1.2.5 해수담수플랜트 플랜트(Desalination Plant) : 바닷물을 담수로 만드는 플랜트

1.2.6 환경 플랜트(Environment Plant)

[†] Corresponding Author, E-mail: H201875009@hycu.ac.kr

[©] Mechanical & Automotive Engineering, Hanyang Cyber Univ

1.3 플랜트사업의 구성

- 1.3.1 End User(Owner)
- 1.3.2 FEED(Front-End Engineering Design)
- 1.3.3 PMC(Project Management Consultancy)
- 1.3.4 EPC(C(Commissioning))
- 1.3.5 O & M(Operating & Maintenance)

1.4 본 논문에서는 플랜트의 정의와 종류, 구성에 대해 설명하고 실제로 수행된 Project의 현장관리 문제점을 도출하고 현장관리방안의 개선점을 제시하고자 한다.(대상 현장을 유추할 수있는 부분에 대해서는 명기를 생략함)

2. 플랜트 공정관리

2.1 플랜트 공정 관리 계획서 작성 예시1. 공사 범위(사업개요, 인력/장비투입계획 등)

↓ 2. 시공 계획 ↓

- 3. 건설장비 운영 계획
- 4. 주요공사 대표물량
- 5. 비작업일수 산정
- 6. 작업가능일수 산정
- 7. 주요 Milestone 계획 ↓
- 8. 예정(상세)공정표 작성

공 종	품 명	단 위	물 량	비고
	Con'c	M3	14,530	
	Re-Bar	Ton	802	
토 목	Excavation	M3	105,747	
	Form	M2	39,407	
	파일	М	8,176	
	기계	Ton	8,147	
기계/배관/철골	배관	D/I	396,500	
	철골	Ton	4,902	
	Pipe	М	30,897	
보온	기계	M2	13,054	
	Fitting	Ea	15,627	
E.T.	Piping Paint	M2	116,030	
도장	Touch-Up	M2	5,277	
	Equipment	Set	240	
소방	Piping	D/I	30,495	
내화	Fireproofing	M2	27,209	
Tower Internal	Tower Internal Tray	Set	29	
전기	Cable	М	212,622	
계장	Cable	М	248,100	

Fig. 1 Major Construction Volume(Sample)

공종	작업불능 기후조건										
	기온	혹서	강우	적설							
토목공사	일최저–10℃이하	일최고 33℃이상	일 10mm이상	신적설 1㎝이상							
골조 및 외장	일최저 -10℃이하	일최고 33℃이상	일 10mm이상	신적설 1㎝이상							
내부마감(습식)	일평균 -12℃미만	일최고 33℃이상	일 50mm이상	신적설 1㎝이상							
내부마감(건식)	-	일최고 33℃이상	일 50mm이상	신적설 1㎝이상							
옥외포장공사	일최고 0℃이하	일최고 33℃이상	일 10mm이상	신적설 1㎝이상							
조경식재공사	-	일최고 33℃이상	일 10mm이상	신적설 1㎝이상							

Fig. 2 Calculation of Non-Working Days(Sample)

Fig. 3 Calculation of Working Days(Sample)

- 2.2 플랜트 현장관리 개선방안
- 2.2.1 발전 플랜트 현장 중 당초 수행 계획

2.2.1.1 공정별 생산성

2:2:::: 000 000									
공	정	작업 생산성							
Civil	Pile	9 EA / Day							
Architecture	골조	0.7 m3 / 인							
	철골	7 Ton / 일 (팀 당)							
Mechanical	배관	38~40 DI / 인 (팀 당)							
	(Shop)								
	배관	14~15 DI / 인 (팀 당)							
	(Field)	14~13 D1/ 한 (함 정)							
Electrical /	Pulling	100m / 인							
Instrument	Tray	20m / 인							

2.2.1.2 주요 공정 시공 일정

공정	일정						
Civil	13 개월 소모 예정						
Architecture	8 개월 소모 예정						
Mechanical	14 개월 소모 예정						
Electrical / Instrument	13 개월 소모 예정						

Civil

Architecture

Mechanical

Electrical

Fig. 4 Major Construction Flow Chart(Plan)

2.2.2 발전 플랜트 현장 수행 결과 2.2.2.1 공정별 생산성(완료)

2:2:2:1 0 0 2 0 2 0 (2 22)											
공	정	작업 생산성									
Civil	Pile	10 EA / Day									
Architecture	골조	1.3 m3 / 인									
Mechanical	철골	9.9 Ton / 일 (팀 당)									
	배관	56.9 DI / 인 (팀 당)									
	(Shop)										
	배관	23.8 DI / 인 (팀 당)									
	(Field)	23.8 D17 년 (日 8)									
Electrical /	Pulling	67.6m/ 인									
Instrument	Tray	3.5m / 인									

2.2.2.2 주요 공정 시공 일정(완료)

공정	일정						
Civil	15 개월 소모						
Architecture	11 개월 소모						
Mechanical	18 개월 소모						
Electrical / Instrument	18 개월 소모						

Civil

Architecture

Mechanical

Electrical

Fig. 5 Major Construction Flow Chart(Actual)

2.2.3 발전 플랜트 현장 수행 중 발생한 문제점 2.2.3.1 문제점: 기 시공 완료한 고압호스에서 Leak 발생.

2.2.3.2 결과: 기존 Teflon Type 의 호스에서 보다 외부 Damage 에 강한 Rubber Type 의 호스로 변 경함.

손실: 시공 완료한 호스를 전량 교체함에 따라 추가 비용 발생

2.2.3.3 발생 원인: 선 수행한 타 현장의 자료를 참조하였지만 당 현장 적용 시 지역의 기상 및 외부 특성을 고려하지않아 발생함.

2.2.3.4 고압호스 Test 방법 및 결과

현장 파괴 시험

각 Type 별 고압호스를 현장에 설치한 후 상하좌우, 비틀림 등 외력을 가하여 Leak 발생 여부를 확인함.

Teflon Type 의 호스: Leak 발생 Rubber Type 의 호스: 이상 없음

2.2.4 발전 플랜트 현장 계획 및 결과 비교 2.2.4.1 공정별 생산성 비교

각 공정별로 전체적인 생산성은 계획 대비 높게 나왔으나 Project 수행 당시 짧은 공사기간으로 인하여 근로자 확보에 어려움을 겪었으며, 이로 인하여 연장 작업 수행 등 출력 인원 대비 높은 생산성을 확보함. 배관의 경우 Shop Welding 물량을 보다 계획대비 높게 설정하여 Field Welding 물량을 줄임. (Field Welding 대비하여 Shop Welding 이 작업 환경 및 생산성이 월등히 높음

Electrical / Instrument 의 경우, 타 공정 대비 생산성이 계획보다 떨어지는데 이는 복합 공정(한 작업 구역 내 여러가지의 공정의 작업이 있는 것을 의미함.)이 발생함에 따라 출력인원 대비작업 생산성이 떨어짐. 시공사의 내 각 공정 간원활한 의사소통으로 해소할 수 있는 문제임.

2.2.4.2 주요 물량 소화 일정

	<u> </u>	1 2 0						
Civil	Plan	13 개월 소모						
Civii	Actual	15 개월 소모						
Architecture	Plan	8 개월 소모						
Architecture	Actual	11 개월 소모						
	주.	요 공사 시공 완료 이후						
지연 사유	잔손보기 등 마감작업을 위하여							
시선 사표	최소인력을 제외한 나머지 인원은							
	계획된 일정에 따라 철수 완료함.							
Mechanical	Plan	14 개월 소모						
Wiechanicai	Actual	18 개월 소모						
Electrical /	Plan	13 개월 소모						
Instrument	Actual 18 개월 소모							
	시운전 기간 중 발생되는 보수							
al 어디	작업 및 지원으로 인하여 필수							
지연사유	인력을 제외한 나머지 인력은							
	주요 공사 완료 후 철수 완료함.							

2.2.5 시공 당시 문제점 및 개선방안

문제점: 초기 시공 계획 작성 시 예정 투입 인 력과 작업 생산성 만을 염두하고 시공 계획을 작성함.

개선방안: 향후 초기 시공 계획 작성 시 시공에 있어 지연될 수 있는 변수들을 고려하여 시공 계획을 작성하여야 변수 발생이 유연한 대처가 가능함.

예상 불가한 지연 사유	적용 주기
노조 파업	월 1회
감리단 Claim	월 1회
발주처 Claim	월 1회

상기 사유들은 예상이 불가능 하며 실제로 발생시 공정 지연에 막대한 영향을 끼치므로 공정계획 작성이 월 1 회 발생할 것을 염두하고 계획을 작성하는 것이 현장 공정 관리에 효과적임.

2.2.6 추가 사례

배경: 석유 화학 플랜트 현장 중 Shut Down Work(기존 설비와 연결을 위함으로 기존 설비를 Shut Down 시키는 것을 의미함. 한정(짧은)공사기간 중 공사 범위를 완료 시켜야함)

발생사유

Shut Down 기간 전 가능한 많은 물량을 소화 수행했어야 함에도 불구하고 해당 지역 내 대규모 Project 가 발생하여 근로자 확보에 어려 움을 겪음. 이로인하여 Shut Down 기간 전 물량 을 계획대로 수행하지 못함. 공정 계획 작성 시 예정 투입 인력, 작업 생산성을 가지고만 작성하여 실제 시공 시 계획과는 일치하지않는 사례가 있음.

(지역 노조 특성 및 작업 근로자 수급(대형 Project 발생 여부 확인), 발주처 Claim, 기상 등을 고려치 않음)

-	일일 계획	745	745	745	745	745	1,557	1,557	1,557	1,557	1,557	1,611	1,611	1,611	1,611	1,845	1,845
Plan	계획 누계	745	1,490	2,235	2,980	3,725	5,282	6,839	8,396	9,953	11,510	13,121	14,732	16,343	17,954	19,799	21,644
Actual	일일 실적	704	686	596			744	585	616	749	803	392	560	773	1,150	1,237	1,211
ACTUBI	실적 누계	704	1,390	1,986	1,986	1,986	2,729	3,314	3,929	4,678	5,481	5,873	6,432	7,205	8,355	9,592	10,803
	Balance	-41	-59	-149	-745	-745	-814	-973	-942	-808	-755	-1,219	-1,052	-838	-461	-608	-634
Balance 누계		-41	-100	-249	-994	-1,739	-2,553	-3,525	-4,467	-5,275	-6,029	-7,248	-8,300	-9,138	-9,599	-10,207	-10,841
Weld	ler Plan	68	68	68	68	68	68	68	68	68	68	68	68	68	68	68	68
Welde	er Actual	69	73	80			79	90	89	92	93	29	36	87	88	91	92
인당	생산성	10	9	7			9	6	7	8	9	14	16	9	13	14	13
Plan	일일 계획	600	600	600	600	1,308	1,308	1,308	1,452	1,452	1,452	1,452	1,453	1,453	1,453	1,453	1,453
rian	계획 누계	600	1,200	1,800	2,400	3,708	5,016	6,324	7,776	9,228	10,680	12,132	13,585	15,038	16,491	17,944	19,397
Actual	일일 실적	196	196	196	196	196	196	197	198	230	667	164	226	710	963	877	626
ACIDAL	실적 누계	196	392	588	784	980	1,176	1,373	1,571	1,800	2,468	2,631	2,857	3,567	4,530	5,406	6,032
Balance	Balance	-404	-404	-404	-404	-1,112	-1,112	4,111	-1,255	-1,222	-785	-1,288	-1,227	-743	-490	-577	-828
Delletite	Balance 누계	-404	-818	-1,212	-1,616	-2,728	-3,840	4,951	-6,206	-7,428	-8,213	-9,501	-10,728	-11,471	-11,961	-12,538	-13,365
Weld	ler Plan	36	36	36	36	50	50	50	50	50	50	50	50	50	50	50	50
Welde	er Actual	46	46	46	46	46	46	46	46	47	45	6	9	43	43	43	45
인당	생산성	4	4	4	4	4	4	4	4	5	15	27	25	17	22	20	14
Plan	일일 계획	192	192	192	192	192	192	192	192	192	192	192	192	192	192	192	192
Plan	계획 누계	192	384	576	768	960	1,152	1,344	1,536	1,728	1,920	2,112	2,304	2,496	2,688	2,880	3,072
	일일 실적	154	279	284			271	153	156	79	153	182	134	130	84	138	217
Actual	실적 누계	690	969	1,253	1,253	1,253	1,524	1,677	1,833	1,912	2,065	2,247	2,381	2,511	2,595	2,733	2,950
	Balance	-38	87	92	-192	-192	79	-39	-36	-113	-39	-10	-58	-62	-108	-54	25
Balance	Balance 누계	498	585	677	485	293	372	333	297	184	145	135	77	15	-93	-147	-122
Weld	ler Plan	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16
Welde	er Actual	25	25	25			21	21	21	21	21	11	9	16	16	16	16
인당	생산성	6	11	11			13	7	7	4	7	17	15	8	5	9	14
Plan	일일 계획	272	272	272	272	272	272	272	272	272	272	272	272	272	272	272	272
Plan	계획 누계	272	544	816	1,088	1,360	1,632	1,904	2,176	2,448	2,720	2,992	3,264	3,536	3,808	4,080	4,352
	일일 실적	34	102	84			124	133	171	238	220	30	83	474	220	474	323
Actual	실적 누계	34	136	219	219	219	343	476	647	885	1,104	1,134	1,217	1,691	1,911	2,384	2,707
Balance	Balance	-239	-170	-188	-272	-272	-148	-139	-102	-34	-53	-242	-189	202	-52	202	51
Balance	Balance 누계	-239	-409	-597	-869	-1,141	-1,289	-1,428	-1,529	-1,564	-1,616	-1,858	-2,047	-1,846	-1,898	-1,696	-1,645
Weld	ler Plan	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20
Welde	er Actual	15	14	15			15	16	16	19	18	1	2	19	19	21	18
인당	생산성	2	7	6			8	8	11	13	12	30	42	25	12	23	18
Plan	일일 계획	1,809	1,809	1,809	1,809	2,517	3,329	3,329	3,473	3,473	3,473	3,527	3,528	3,528	3,528	3,762	3,762
rian	계획 누계	1,809	3,618	5,427	7,236	9,753	13,082	16,411	19,884	23,357	26,830	30,357	33,885	37,413	40,941	44,703	48,465
	일일 실적	1,087	1,263	1,160	196	196	1,334	1,068	1,140	1,296	1,842	768	1,003	2,086	2,417	2,725	2,377
Actual	실적 누계	1,623	2,886	4,046	4,242	4,438	5,772	6,840	7,979	9,275	11,117	11,885	12,887	14,974	17,390	20,116	22,492
Beleven	Balance	-722	-546	-650	-1,613	-2,321	-1,995	-2,261	-2,334	-2,178	-1,631	-2,759	-2,526	-1,442	-1,111	-1,037	-1,385
Balance	Balance 누계	-186	-732	-1,381	-2,994	-5,315	-7,310	-9,571	-11,905	-14,082	-15,713	-18,472	-20,998	-22,439	-23,551	-24,588	-25,973
Weld	ler Plan	140	140	140	140	154	154	154	154	154	154	154	154	154	154	154	154
인당 생	산성(Plan)	13	13	13	13	16	22	22	23	23	23	23	23	23	23	24	24
Welde	er Actual	155	158	166	46	46	161	173	172	179	177	47	56	165	166	171	171
										-				-	_		
인당 생선	분성(Actul)	7	8	7	- 1		8	6	7	7	10	16	18	13	15	16	14

Fig. 5 Instance of Piping Welding Work Delay (Red marks are delay item)

개선방안

인근지역 대규모 Project 발생은 예상이 됨에도 불구하고 근로자 확보에 대하여 적극적인 대처를 하지않아 발생한 부분에 대해서는 향후 비슷한 사례가 발생시 적극적으로 대처해야함.

공정 계획 작성 시 인근 지역 10 년간 기후데이 터를 종합하여 기간 중 예상 우천일을 산정하여 계획에 반영 해야함.

노조 파업(민노총 및 플랜트 노조)을 감안하여 여유를 두고 계획을 작성 후 End User(Owner)와 협의를 해야함.

3. 결 론

공정 계획 작성 시 과거 데이터로 추정 가능한 비작업 일수(기후 데이터 활용)외에 예상 불가능 한 비작업에 대해서도 고려하고 계획을 작성해야 함. 단순히 예상 투입 인원과 작성 생산성을 가지고 계획을 작성 했을 시 시공 중 변수 발생에 대하여 유연한 대처가 힘들며, 이를 보완하기 위하여 야간 작업 투입 등 안전과 비용에 대한 Risk를 가지게 됨으로 공정 계획 작성 시 여러가지 변수를 고려하여 작성해야함.

후 기

이 논문은 실제 수행한 발전 플랜트와 석유화학 플랜트에서 수집된 자료를 가지고 작성한 논문임.