ONE WAY SLAB DESIGN (S1-A)

School: Isabela State University - City of Ilagan Campus

Course: Department of Civil Engineering

Prepared by: Ricky John C. Guittu **Submitted to:** Engr. Cesar B. Vallejo

Project Title: Modern Farm House
Project Location: District 2, Gamu, Isabela
Sheet Content: One Way Slab Design

Slab: \$1-A (One End Continuous)

DESIGN CRITERIA AND SERVICE LOADS

fc' =	20.7	MPa
fy=	276	MPa
γ c =	23.5	KN/m³
β =	0.85	
L =	1.7	m

Compressive Strength of Concrete Yield Strength of Steel Bars

Unit Weight of Concrete Reduction Factor Length of Span

LL =	1.9	KPa
$DL_{FLOOR\ FINISH} =$	5	KPa
DL _{CEILING} =	0.05	KPa
d _{bMAIN} =	12	mm
$d_{bTEMP} =$	10	mm

Live Load (Basic Floor Area)

Floor Finish (Ceramic Tile on 25 mm Bed) Ceiling Finish (Acoustical Fiber Board)

Diameter of Main Bars
Diameter of Temperature Bars

SLAB DIMENSION AND DETAILS

NSCP 2015 407.3.1, Minimum Slab Thickness for One End Continuous: L/24 407.3.1.1.1: For fy other than 420 MPa, the expression shall be multiplied by [0.4 + fy/700]

$$h_{min} = L/24 [0.4 + (fy/700)]$$

 $h_{min} = 56.262$ mm
 $h_{min} = 150$ mm

Effective depth of the stair slab considering 1 meter strip:

1 meter strip of stair slab Concrete Cover

$$d = h_{min} - CC - d_{bMAIN}/2$$

 $d = 124 mm$

DEAD LOAD, LIVE LOAD, AND FACTORED UNIFORM LOAD

A. Dead Load

B. Live Load

c. Factored Uniform Load

$$W_{slab} = h_{min} (b) (\gamma_c)$$

$$W_{slab} = 3.525 \text{ KPa}$$

 $W_{LL} = LL$ $W_{LL} = 1.900$ KPa

 $W_u = 1.2W_{DL} + 1.6W_{LL}$ $W_u = 13.330$ KPa $W_u = 13.330$ KN/m

 $W_{DL} = W_{Slob} + DL_{ROOR FINISH} + DL_{CEILING}$ $W_{DL} = 8.575 ext{KPa}$

MOMENT CAPACITY AND STEEL RATIO (AT END SUPPORT)

According to NSCP 2015 406.5.2, for slabs with L NOT exceeding 3m:

A. Spacing of 12mm Main Bars: B. Spacing of 10mm Temperature Bars:

 $A_s = \rho bd$ $A_s = 628.986 \text{ mm}^2$

 $A_{bor} = (\pi/4)(d_{bMAIN}^2)$ **A_{bor} = 113.097 mm²**

 $S = (A_{bar}/A_s)(1000)$ $S = 179.809128 \text{ mm}^2$ $Say S = 170 \text{ mm}^2$ $A_s = 0.002bh$ $A_s = 300 \text{ mm}^2$ $A_{bor} = (\pi/4)(d_{bTEMP}^2)$ $A_{bor} = 78.540 \text{ mm}^2$ $S = (A_{bor}/A_s)(1000)$ $S = 261.799388 \text{ mm}^2$ $S = 260 \text{ mm}^2$

Maximum Spacing according to NSCP 2015 Specifications:

A. 3h = 450 mm B. 450 mm A. 5h = 750 mm B. 450 mm

Therefore, use 12 mm Main Steel Bars spaced at 170 mm O.C.

Therefore, use 10 mm Temperature Steel Bars spaced at 260 mm O.C.

A. Spacing of 12mm Main Bars:

 $A_s = \rho bd$ $A_s = 628.986 \text{ mm}^2$

 $A_{bor} = (\pi/4)(d_{bMAIN}^2)$

 $A_{bar} = 113.097 \text{ mm}^2$

 $S = (A_{bor}/A_s)(1000)$ $S = 179.809128 \text{ mm}^2$

say $S = 170 \text{ mm}^2$

Maximum Spacing according to NSCP 2015 Specifications:

Therefore, use 12 mm Main Steel Bars spaced at 170 mm O.C.

450 mm

3h =450 mm B. Spacing of 10mm Temperature Bars:

 $A_s = 0.002bh$

A_s = 300 mm²

 $A_{bar} = (\pi/4) (d_{bTEMP}^{2})$

 $A_{bar} = 78.540 \text{ mm}^2$

 $S = (A_{bor}/A_s)(1000)$

 $S = 261.799388 \text{ mm}^2$

 $say S = 260 mm^2$

A. 5h =750 mm 450 mm

Therefore, use 10 mm Temperature Steel Bars spaced at 260 mm O.C.

SLAB DETAILING $d = 124 \, \text{mm}$ $h = 150 \, mm$ 12 mm main bars 10 mm temperature bars spaced at 170 mm O.C. spaced at 260 mm O.C.

REINFORCEMENTS

A. Spacing of 12mm Main Bars:

 $A_s = \rho bd$ $A_s = 628.986 \text{ mm}^2$

 $A_{bar} = (\pi/4) (d_{bMAIN}^2)$ $A_{bor} = 113.097 \text{ mm}^2$

 $S = (A_{bor}/A_s)(1000)$

 $S = 179.809128 \text{ mm}^2$

say S = 170

Α. 3h =450 mm B. Spacing of 10mm Temperature Bars:

 $A_s = 0.002bh$

mm² $A_s = 300$

 $A_{bar} = (\pi/4) (d_{bTEMP}^2)$

 $A_{bar} = 78.540 \text{ mm}^2$

 $S = (A_{bar}/A_s)(1000)$

 $S = 261.799388 \text{ mm}^2$

say S = 260

Maximum Spacing according to NSCP 2015 Specifications:

450 mm A. 5h =750 mm В. 450 mm

Therefore, use 12 mm Main Steel Bars spaced at 170 mm O.C.

Therefore, use 10 mm Temperature Steel Bars spaced at 260 mm O.C.

DESIGN OF CONCRETE STAIRWAY

School: Isabela State University - City of Ilagan Campus

Course: Department of Civil Engineering Prepared by: Ricky John C. Guittu Submitted to: Engr. Cesar B. Vallejo Project Title: Modern Farm House
Project Location: District 2, Gamu, Isabela
Sheet Content: Concrete Stairway Design

DESIGN CRITERIA AND SERVICE LOADS

STAIR DIMENSION AND DETAILS

Minimum slab thickness for simply supported slab according to NSCP 2015:

 $h_{min} = L2/20 [0.4 + (fy/700)]$ $h_{min} = 0.12$ m $h_{min} = 120$ mm

Effective depth of the stair slab considering 1 meter strip:

1 meter strip of stair slab Concrete Cover

 $d = h_{min} - cc - d_{bMAIN}/2$ d = 92 mm

DEAD LOAD, LIVE LOAD, AND FACTORED UNIFORM LOAD

A. Dead Load

c. Factored Uniform Load

$$\begin{aligned} W_{step} &= \ 1/2 \ (r) \ (\gamma_{C}) \\ W_{step} &= \ 1.763 \end{aligned} \begin{array}{l} KPa \\ W_{LL} &= \ LL + W_{MLL} \\ W_{LL} &= \ 1.900 \end{aligned} \begin{array}{l} KPa \\ KPa \\ W_{U} &= \ 9.061784 \end{aligned} \begin{array}{l} KPa \\ W_{U} &= \ 9.062 \end{aligned} \begin{array}{l} KN/m \\ W_{DL} &= \ W_{Step} + W_{Slob} + DL_{ROOR \, RNISH} + DL_{MISCALLANEOUS} \\ W_{DL} &= \ 5.018 \end{array} \begin{array}{l} KPa \\ KPa$$

B. Live Load

MOMENT CAPACITY AND STEEL RATIO C. STEEL RATIO (p) A. Moment Capacity Β. ω $\rho_{min} = 1.4/fy$ $M_U = W_U L^2 / 8$ $M_{\rm u} = \mathbf{\Phi} \, \text{fc'bd}^2 \mathbf{\omega} (1 - 0.59 \mathbf{\omega})$ $\rho_{min} = 0.005072$ $M_{\nu} = 10.195 \text{ KN-m}$ $\omega = 0.0602302$ 1.3382833 Rn = $\rho_{min} = \sqrt{(fc')/4(fy)}$ $\rho_{min} = 0.004151$ $\rho_{\text{max}} = [(0.003 + \text{fy/Es})] [(\beta) (0.85) (fc') (600)]$ [800.0] [fy (fy+600)] $\rho_{\text{max}} = 0.020615$ $\rho_{actual} = \omega f c' / f y$ $\rho_{\text{actual}} = 0.004583 < \rho_{\text{min}}$ not ok! < p_{max} Therefore, use $\rho_{min} = 0.005072$

REINFORCEMENTS

A. Spacing of 12mm Main Bars:

 $A_s = \rho_{actual}bd$ $A_s = 466.667 \text{ mm}^2$

 $A_{bor} = (\pi/4)(d_{bMAIN}^2)$ $A_{bor} = 201.062 \text{ mm}^2$

 $S = {A_{bar}/A_s}(1000)$ $S = 430.846992 \text{ mm}^2$ $S = 430 \text{ mm}^2$

Maximum Spacing according to NSCP 2015 Specifications:

A. 3h = 360 mm **B.** 450 mm

Therefore, use 16 mm Main Steel Bars spaced at 360 mm O.C.

B. Spacing of 10mm Temperature Bars:

 $A_s = 0.002bh$

 $A_s = 240 \text{ mm}^2$

 $A_{bor} = (\pi/4) (d_{bTEMP}^2)$

 $A_{bar} = 78.540 \text{ mm}^2$

 $S = (A_{bor}/A_s)(1000)$

 $S = 327.249235 \text{ mm}^2$

say $S = 320 \text{ mm}^2$

A. 5h = 600 mm **B.** 450 mm

Therefore, use 10 mm Temperature Steel Bars spaced at 320 mm O.C.

 $L_2 = 3 \, \text{m}$ $L_1 = 1.2 \, \text{m}$

BEAM DESIGN (12101)

School: Isabela State University - City of Ilagan Campus

Course: Department of Civil Engineering

Prepared by: Ricky John C. Guittu **Submitted to:** Engr. Cesar B. Vallejo

Project Title: Modern Farm House **Project Location:** District 2, Gamu, Isabela

Sheet Content: Beam Design

Beam: 12101

DESIGN CRITERIA AND SERVICE LOADS

fc' = 20.7 MPa fy = 276 MPa β = 0.85 Compressive Strength of Concrete Yield Strength of Steel Bars

Reduction Factor

 $M_{\text{USUPPORT}} = 16.45$ KN-m $M_{\text{UMIDSPAN}} = 29.01$ KN-m Moment at Support Moment at Midspan

BEAM DIMENSION AND DETAILS

Assumed beam dimensions:

250 mm Base of Beam 350 Total Depth of Beam mm 40 mm Concrete Cover CC = 16 mm Diameter of Main Bars $d_b =$ 10 mm Diameter of Stirrups d_s =

Effective depth of the beam:

$$d = h_{min} - CC - d_s - d_b/2$$

 $d = 292 mm$

STEEL RATIO (AT SUPPORT)

A. Moment at Support

 $M_{USUPPORT} = 16.45$ KN-m

B. R_n

 $M_{\rm u} = {}_{\Phi} \, {\rm R}_{\rm n} {\rm bd}^2$ ${\bf R}_{\rm n} = {\bf 0.8574675}$ C. STEEL RATIO (p)

 $\rho_{min} = 1.4/fy$ $\rho_{min} = 0.005072$

 $\rho_{min} = \sqrt{(fc')/4(fy)}$ $\rho_{min} = 0.004121$

 $\rho_{\text{max}} = \frac{[(0.003 + \text{fy/Es})]}{[0.008]} \quad \frac{[(\beta) \ (0.85) \ (\text{fc'}) \ (600)]}{[\text{fy (fy+600)}]}$

 $\rho_{\text{max}} = 0.020320$

Therefore, use $\rho_{min} = 0.005072$

REINFORCEMENTS

A. Area of Steel Bars

 $A_s = \rho bd$ $A_s = 370.290 \text{ mm}^2$

 $A_{bor} = (\pi/4)(d_b^2)$ $A_{bor} = 201.062 \text{ mm}^2$ B. Number of Steel Bars

 $N_{16} = A_s/A_{bor}$ $N_{16} = 1.8416707$ pieces say $N_{16} = 2$ pieces C. Spacing of 16 mm Diameter Steel Bars

b = N(16) + 2(ds) + 2(cc) + 1(s) 250 = 2(16) + 2(10) + 2(40) + 1(s) s = 118.000 mm

S = 118.000 mm say S = 115 mm

Therefore, use 2 pieces of 16 mm Diameter Steel Bars spaced at 115 mm O.C.

INVESTIGATION OF THE MOMENT CAPACITY (AT SUPPORT)

A. Stress acting on Steel Bars

$$A_{SACTUAL} = N_{16} (\pi/4) (d_b^2)$$

 $A_{SACTUAL} = 402 12386 \text{ mm}^2$

$$A_{\text{SACTUAL}} = N_{16} (\pi/4) (d_b^2)$$

 $A_{\text{SACTUAL}} = 402.12386 \text{ mm}^2$

$$C = T$$

$$0.85fc'ab = A_{sactual}fy$$

$$a = 25.231 mm$$

$$a = \beta c$$

$$fs = 600 \frac{[(d-c)]}{c}$$

B. Strain of Steel Bars

$$\frac{\mathbf{\epsilon}_{\cup}}{C} = \frac{\mathbf{\epsilon}_{\dagger}}{\text{d-C}}$$

Therefore, use $\phi = 0.9$

C. Moment Capacity of the Beam (at Support)

$$M_{UCAPACITY} = \Phi A_{SACTUAL} fy (d - \alpha/2)$$

$$M_{\text{UCAPACITY}} = 27.907 \text{ KN-m} > M_{\text{U}} = 16.45 \text{ KN-m}$$

STEEL RATIO (AT MIDSPAN)

A. Moment at Midspan

$$M_{u} = {}_{\Phi} R_{n} b d^{2}$$

 $R_{n} = 1.5121661$

C. STEEL RATIO (p)

$$\rho_{min} = 1.4/fy$$
 $\rho = 0.005072$

$$\rho_{min} = \sqrt{(fc')/4(fy)}$$
 $\rho_{min} = 0.004121$

$$\rho_{\text{max}} = \frac{[(0.003 + \text{fy/Es})]}{[0.008]} \quad \frac{[(\beta) \ (0.85) \ (\text{fc'}) \ (600)]}{[\text{fy (fy+600)}]}$$

ok!

$$\rho_{\text{max}} = 0.020320$$

$$\rho_{\text{actual}} = \frac{0.85(\text{fc'})}{\text{fy}} \quad \frac{[1-\sqrt{1-(2Rn)}]}{0.85(\text{fc'})}$$

$$\rho_{\text{actual}} = 0.005737 < \rho_{\text{min}}$$
 $< \rho_{\text{max}}$

Therefore, use
$$\rho_{min}$$
 = 0.005737

REINFORCEMENTS

A. Area of Steel Bars

$$A_s = \rho bd$$

 $A_s = 418.801 \text{ mm}^2$

$$A_{bar} = (\pi/4)(d_b^2)$$

 $A_{bar} = 201.062 \text{ mm}^2$

$$N_{16} = A_s/A_{bar}$$

 $N_{16} = 2.0829474$ pieces
say $N_{16} = 3$ pieces

C. Spacing of 16 mm Diameter Steel Bars

$$b = N(3) + 2(ds) + 2(cc) + 2(s)$$

250 = 3(16) + 2(10) + 2(40) + 2(s)

Therefore, use 3 pieces of 16 mm Diameter Steel Bars spaced at 50 mm O.C.

INVESTIGATION OF THE MOMENT CAPACITY (AT MIDSPAN)

A. Stress acting on Steel Bars

$$A_{\text{SACTUAL}} = N_{16} (\pi/4) (d_b^2)$$

$$A_{\text{ACTUAL}} = 603.185789 \text{ mm}^2$$

$$A_{\text{sACTUAL}} = 603.185789 \text{ mm}^2$$

$$C = T$$

$$0.85fc'ab = A_{sactual}fy$$

$$a = 37.847 mm$$

$$\frac{\epsilon_{\text{U}}}{\text{C}} = \frac{\epsilon_{\text{H}}}{\text{d-C}}$$

$$\text{et} = 0.016674 > 0.005$$

Therefore, use $\phi = 0.9$

WEB REINFORCEMENTS DESIGN (BEAM 12103)

School: Isabela State University - City of Ilagan Campus

Course: Department of Civil Engineering

Prepared by: Ricky John C. Guittu Submitted to: Engr. Cesar B. Vallejo

Project Title: Modern Farm House Project Location: District 2, Gamu, Isabela

Sheet Content: Web Reinforcements Design

Beam: 12103

DESIGN CRITERIA AND SERVICE LOADS

20.7 MPa fc' =276 MPa fyt =

Compressive Strength of Concrete Yield Strength of Steel Bars for Stirrups

210 ΚN 0.75

Ultimate Shear Strength Reduction Factor for Shear

 $V_c = [0.17\sqrt{(fc')bd}]$

56.47

Shear Strength of Concrete

 $V_s = (V_u/_{\Phi}) - V_c$

V_s = 223.53 KN

Shear Strength of Reinforcement

BEAM DIMENSION AND DETAILS

b= 250 mm Base of Beam 350 Total Depth of Beam h= mm 40 mm Concrete Cover CC = 16 mm Diameter of Main Bars dh = 10 mm Diameter of Stirrups d_s =

Effective depth of the beam:

 $d = h_{min} - cc - d_s - d_b/2$ 292 mm d =

Area of Stirrups (A_v) :

 $A_v = 2[(\pi/4)(d_s^2)]$ $A_v = 157.080 \text{ mm}^2$

WEB REINFORCEMENTS

210 ΚN V_U = 223.53

Ultimate Shear Strength Shear Strength of Reinforcement 56.47 ΚN 0.75

Shear Strength of Concrete Reduction Factor for Shear

NSCP 2015 Provisions for Web Reinforcements:

Case 1

V∪≤(**φ**Vc/2)

210 KN > 21.18 KN

Stirrups are needed.

Case 2

 $(_{\Phi}V_{c}/2) < V_{\cup} \le _{\Phi}V_{c}$ 21.18 KN < 210 KN > 42.36 KN

Not Satisfied!

Spacing of stirrups:

Avfvt 0.062√(fc')b 614.77 mm

Avfyt S = 0.35h

S =

495.47 mm C. S = d/2

D.

S = 600 mm

say S = 610 mm say S = 495 mm

S = 146.00 mm say S = 145 mm

say S = 600 mm

Case 3

3.1:

 $V_s \le [.33\sqrt{(fc')bd]}$

223.53 KN > 109.61 KN

Not satisfied!

3.2:

 $V_{u} \le 3_{\Phi}V_{c}$

COLUMN DESIGN (C1)

School: Isabela State University - City of Ilagan Campus

Course: Department of Civil Engineering

Prepared by: Ricky John C. Guittu Submitted to: Engr. Cesar B. Vallejo

Project Title: Modern Farm House Project Location: District 2, Gamu, Isabela

Sheet Content: Beam Design

Beam: C1

DESIGN CRITERIA AND SERVICE LOADS

fc' =	20.7	MPa	Compressive Strength of Concrete	P _u = 939.46	KN	Factored Axial Load
fy=	276	МРа	Yield Strength of Steel Bars	φ = 0.65		Reduction Factor

COLUMN DIMENSION AND DETAILS

Assumed column dimension:

h =	300	mm	Dimension of Tied Column
cc =	40	mm	Concrete Cover
$d_b =$	20	mm	Diameter of Longitudinal Bars
$d_t =$	10	mm	Diameter of Tie Wire

C. AREA OF STEEL (Ast)

STEEL RATIO

A. Gross area of column (Ag)

 $A_g = h^2$ $A_g = (300)(300)$ $A_g = 90000 \text{ mm}^2$ B. STEEL RATIO (ρ₉)

 $P_{u} = 0.80 \mathbf{\Phi} [0.85 \text{fc'} (A_{g} - \mathbf{\rho}_{g} A_{g}) + \text{fy} \mathbf{\rho}_{g} A_{g}]$ $\rho_g = A_{st}/A_g$ $A_{st} = 900.00 \text{ mm}^2$ $\rho_g = 0.00959 \text{ mm}^2$ < 0.01 < 0.08

Therefore, use $\rho_9 = 0.01$

REINFORCEMENTS

A. Number of Steel Bars

 $A_{bor} = (\pi/4)(d_b^2)$ $A_{bar} = 314.159 \text{ mm}^2$

 $N_{20} = A_{st}/A_{bor}$

 $N_{20} = 2.86478898$ pieces say N_{20} = 4 pieces

B. Spacing of 20 mm diameter Main Bars C. Spacing of 10 mm diameter Tie Wires

 $h = N(10) + 2(d_t) + 2(cc) + 1(s)$ 300 = 2(20) + 2(10) + 2(40) + 1(S)

S = 160.000 mm

 $1.S = 16(d_b)$

S = 320

say S = 160 mm $2. S = 48(d_t)$

> S = 480 mm

Max spacing for longitudinal bars: 3. S = least dimension S = 300 mm

 $< S = 160 \, mm$ $S_{max} =$ $\mathbf{m}\mathbf{m}$

Therefore, use S = 150 $\mathbf{m}\mathbf{m}$

Therefore, use 4 pieces of 20 mm diameter Longitudinal Steel Bars spaced at 150 mm O.C. Use 10 mm diameter Tie Wires spaced at 300 mm O.C.

INVESTIGATION OF THE AXIAL CAPACITY

A. Gross area of Column

90000 mm²

B. Actual Area of Steel

 $A_{stactual} = N_{20} (\pi/4) (d_b^2)$

A_{stACTUAL} = 1256.6371 mm²

C. Axial Capacity of the Column

 $P_{\text{UMAX}} = 0.80 \phi [0.85 \text{fc'}(A_g - A_{st}) + \text{fy}A_{st}]$ $P_{uMAX} = 992.301$ KN $> P_u = 939.46$ KN

Therefore, SAFE!

