Cahier d'entraînement

— réponses —

Margarita Philosophica de Gregor Reisch (1503)

Cette gravure représente Claude Ptolémée (100 – 168) aux côtés d'une femme symbolisant l'astronomie.

L'œuvre de Ptolémée, grand astronome, constitue un aboutissement des pratiques scientifiques de l'Antiquité : observation des astres, réflexion mathématique, pratique du calcul et mesures.

Page web du *Cahier d'entraînement*, dernières versions

Ce cahier d'entraînement a été écrit collectivement par des professeurs en classes préparatoires scientifiques.

Coordination

Colas Bardavid et Jimmy Roussel

Équipe des participants

Stéphane Bargot, Claire Boggio, Cécile Bonnand, Alexis Brès, Geoffroy Burgunder, Erwan Capitaine, Caroline Chevalier, Maxime Defosseux, Raphaëlle Delagrange, Alexis Drouard, Gaelle Dumas, Alexandre Fafin, Jean-Julien Fleck, Aéla Fortun, Florence Goutverg, Chahira Hajlaoui, Mathieu Hebding, Lucas Henry, Didier Hérisson, Jean-Christophe Imbert, Fanny Jospitre, Tom Kristensen, Emmanuelle Laage, Catherine Lavainne, Maxence Miguel-Brebion, Anne-Sophie Moreau, Louis Péault, Isabelle Quinot, Valentin Quint, Alain Robichon, Caroline Rossi-Gendron, Nancy Saussac, Anthony Yip

Le pictogramme • de l'horloge a été créé par Ralf SCHMITZER (The Noun Project). Le pictogramme • du bulldozer a été créé par Ayub IRAWAN (The Noun Project). L'illustration de la couverture vient de WIKIMEDIA.

Version 1.2.0 — 17 août 2024

Sommaire

1.	Conversions	1
2.	Signaux	2
3.	Étude des circuits électriques I	3
4.	Étude des circuits électriques II	4
5 .	Étude des filtres	6
6.	Énergie et puissance électriques	8
7.	Amplificateurs linéaires intégrés	10
8.	Sources lumineuses et lois de Snell-Descartes	. 11
9.	Lentilles	. 12
10.	Cinématique	13
11.	Principe fondamental de la dynamique	. 15
12.	Approche énergétique en mécanique	16
13.	Moment cinétique	17
14.	Champ électrique	. 18
15.	Particule dans un champ électromagnétique	20
16.	Champ magnétique	. 21
17.	Induction	23
18.	Gaz parfaits	. 25
19.	Premier Principe	26
20.	Second principe et machines thermiques	27
21.	Statique des fluides	. 29
22.	Fondamentaux de la chimie des solutions	31
23.	Fondamentaux de la chimie en phase gazeuse	32
24.	Réactions chimiques	33
25 .	Cinétique chimique.	35
26.	Chiffres significatifs et incertitudes	36

Fiche nº 1. Conversions

D	,		
КŒ	épo	ms	ses

•		
1.1 a) $1 \cdot 10^{-1}$ m	1.6 h) $1,67 \cdot 10^6 \text{ qg}$	1.13 a)
1.1 b) $2.5 \cdot 10^3 \mathrm{m}$	1.6 i) $9,10 \cdot 10^{-1} \mathrm{rg}$	1.13 b) $\boxed{4,33 \cdot 10^{13} \mathrm{km}}$
1.1 c) $3 \cdot 10^{-3}$ m	1.6 j) $9,10 \cdot 10^2 \mathrm{qg}$	1.14 a) $10 000 \text{m}^2$
1.1 d) $\boxed{7,2 \cdot 10^{-9} \mathrm{m}}$	1.7 a)	1.14 b) $\boxed{0.01 \mathrm{km}^2}$
1.1 e) $5.2 \cdot 10^{-12} \mathrm{m}$	1.7 b)	1.14 c) $\boxed{6.72 \cdot 10^{11} \mathrm{m}^2}$
1.1 f) $1.3 \cdot 10^{-14} \mathrm{m}$	1.7 c)	1.14 d) $\boxed{6,72 \cdot 10^7 \mathrm{ha}}$
1.2 a) $1,50 \cdot 10^5 \mathrm{m}$	1.7 d)	1.14 e)
1.2 b) $7 \cdot 10^{-13}$ m	1.8 a)	1.14 f)
1.2 c)	1.8 b)	1.15 a)oui
1.2 d) $1,20 \cdot 10^{-7}$ m	1.8 c)	1.15 b)
1.2 e)	1.8 d)	1.16 a) $1 \cdot 10^3 \mathrm{kg/m^3}$
1.2 f) $4,1 \cdot 10^{-10}$ m	1.8 e)	1.16 b) $625 \mathrm{kg/m^3}$
1.3 a) $7.3 \cdot 10^6 \mathrm{m/s}$	1.8 f)	1.17 a)
1.3 b) $2.6 \cdot 10^7 \mathrm{km/h}$	1.9 5,2%	1.17 b) $1.6 \times 10^3 \mathrm{kg/m^3}$
1.4 2,4 MJ	1.10 a) $1,03 \times 10^3 \text{ TWh}$	1.18 La boule en or
1.5 $5.5 \cdot 10^{-2} \Omega$	1.10 b)	1.19 non
1.6 a) $1.99 \cdot 10^6 \mathrm{Rg}$	1.10 c)	1.20 voiture
1.6 b)	1.10 e)	1.21 a)
1.6 c) $1,99 \cdot 10^3 \text{ Rg}$	1.10 f)	1.21 b) 1 année-lumière/an
1.6 d)	1.10 g)	1.22 a)
,	1.10 h)	1.22 b)
1.6 e)	1.11	1.22 c) $1,90 \cdot 10^{-6} \text{ tr/min}$
1.6 f) $5,97 \cdot 10^{-3}$ Qg	1.12 a)	1.22 d) $1,99 \cdot 10^{-7} \mathrm{rad/s}$
1.6 g)	1.12 b) [0,000 000 000 1 m]	

Fiche n° 1. Conversions

Fiche nº 2. Signaux

•	
2.1 a) $-\sin(\alpha)$	2.8 a) En retard
2.1 b) $-\sin(\alpha)$	2.8 b)
2.1 c) $\cos(\alpha)$	2.8 c)
2.1 d) $\cos(\alpha)$	2.9 a)
2.2 a)	2.9 b)
2.2 b) $ -2\sin(t+4)\cos(t+4) = -\sin(2t+8) $	2.9 c)
2.2 c) $\cos^2(t) - \sin^2(t) = \cos(2t)$	2.10 a)
2.3 a) $2A\cos\left(\frac{\omega_1-\omega_2}{2}t\right)\cos\left(\frac{\omega_1+\omega_2}{2}t\right)$	2.10 b)
2.3 b) $2A\sin\left(\frac{\omega_2-\omega_1}{2}t\right)\sin\left(\frac{\omega_1+\omega_2}{2}t\right)$	2.11 a)
	2.11 b)
2.4 $A\sin(\varphi)\cos(\omega t) + A\cos(\varphi)\sin(\omega t)$	2.12 a)
2.5 a)	2
2.5 b)	2.12 b) $ \frac{U_0}{\sqrt{2}} $
2.5 c)	2.13 a)
2.5 d)	<u> </u>
2.6	2.13 b)
2.7 a)	2.13 c)
	2.14
$2.7 \text{ b}) \dots \qquad \qquad \boxed{\frac{\pi}{2} \text{ rad}}$	2.15 a)
2.7 c)	2.15 b)
2.7 d)	2.15 c) $2\sin(3.9t - 13x + 0.3\pi)$
$2.7 \; \mathrm{e}) \ldots \ldots \qquad \boxed{\pi \; \mathrm{rad} \cdot \mathrm{s}^{-1}}$	

Fiche n° 3. Étude des circuits électriques I

reponses		
3.1 b	3.8 b)	3.14 a) $\left[\frac{E}{R}\right]$
3.2 $2,5 \cdot 10^{17}$ 3.3 a) $2i$	3.8 c)	3.14 b) $ \frac{3E}{4R} $
3.3 b)	3.8 d) $R\left(\frac{1-a^2}{3-a^2}\right)$	3.15 a) $\boxed{\frac{ER_1}{R_1 + R_2 + R_3 + R_4}}$
3.4 a)	3.9 a)	3.15 b) $\boxed{\frac{E(R_2 + R_3)}{R_1 + R_2 + R_3 + R_4}}$
3.4 b)	3.9 b)	3.15 c) $ \frac{-ER_4}{R_1 + R_2 + R_3 + R_4} $
3.5 a) $E - U_1$	3.10 $\frac{4R(R+R')}{2R+R'}$	3.16 a)
3.5 b) $U_1 - E$ 3.5 c) $E - U_1$	3.11 a)	3.16 b)
3.6 a)	3.11 b)	3.17 a) $\left[\frac{3}{4}R\right]$
3.6 b)	3.11 c)	3.17 b)
3.6 c)	3.12 b) $\frac{R_2}{R_1 + R_2} I_0$	3.17 c) $\left[-\frac{E}{4} \right]$
$3.7 \text{ b})$ $\frac{u}{2R}$	$\begin{array}{c} R_1 + R_2 \\ \hline 3.13 \text{ a)} \dots \end{array}$	3.18 a)
3.7 c)	3.13 b)	3.18 b) $\boxed{\frac{E}{4R}}$
3.8 a) $\boxed{\frac{5}{6}R}$	4 - 3201	3.18 c) $\left[-\frac{E}{8R} \right]$

Fiche nº 4. Étude des circuits électriques II

200p 011500	
4.1	4.10 b)
4.2 a) $u = L \frac{\mathrm{d}i}{\mathrm{d}t} + L' \frac{\mathrm{d}i}{\mathrm{d}t}$	4.10 c) $\left \frac{E}{R} \right $
4.2 b) $L + L'$	4.10 d)
4.2 c) $\frac{\mathrm{d}i}{\mathrm{d}t} = \frac{u}{L} + \frac{u}{L'}$	4.10 e) $\left\lfloor \frac{E}{R} \right\rfloor$
	4.11 a)
4.2 d) $\frac{LL'}{L+L'}$	4.11 b)
4.3 L	4.11 c)
$4.4 \text{ a)} \dots \qquad \frac{\mathrm{d}u}{\mathrm{d}t} = \left(\frac{1}{C} + \frac{1}{C'}\right)i$	4.11 d) $\boxed{\frac{1}{3}E}$
4.4 b) $\frac{CC'}{C+C'}$	4.12 a)
4.4 c) $i = (C + C') \frac{\mathrm{d}u}{\mathrm{d}t}$	4.12 b) $\boxed{\frac{RC}{2}}$
4.4 d) $C + C'$ 4.5 (a)	4.13 a) $ \frac{\mathrm{d}i}{\mathrm{d}t} + \frac{R}{L}i = \frac{E}{L} $
$egin{array}{cccccccccccccccccccccccccccccccccccc$	4.13 b) $ \frac{\mathrm{d}u_C}{\mathrm{d}t} + \frac{1}{RC}u_C = \frac{1}{RC}E $
4.7 a)	4.13 c)
4.7 b)	4.13 d) $i = \frac{u}{R} + C \frac{du}{dt}$
4.8b	4.13 e) $ \frac{\mathrm{d}u}{\mathrm{d}t} + \frac{2}{RC}u = \frac{E}{RC} $
4.9 a)	4.14 a) $u_C(t) = E(1 - e^{-t/\tau})$
4.9 b)	
4.9 c)	4.14 b) $i(t) = \frac{E}{R} e^{-t/\tau}$
4.9 d)	4.14 c) $u_C(t) = \frac{1}{2}E$
4.9 e)	4.15 a)
4.10 a)	

4.15 b)	4.17 a) $ \frac{\mathrm{d}^2 u}{\mathrm{d}t^2} + \frac{R}{L} \frac{\mathrm{d}u}{\mathrm{d}t} + \frac{1}{LC} u = \frac{E}{LC} $
4.15 c)	4.17 b) $\frac{\mathrm{d}^2 u}{\mathrm{d}t^2} + \frac{1}{RC}\frac{\mathrm{d}u}{\mathrm{d}t} + \frac{1}{LC}u = 0$
4.15 d)	4.18 a) $E \times (1 - \cos(\omega_0 t))$
4.15 f)	4.18 b) $\left \frac{E}{L\omega_0} \sin(\omega_0 t) \right $
4.16 b) Q est sans dimension	4.19 a)
4.16 c) $ \frac{1}{\sqrt{LC}} $	4.19 b)
4.16 d) $R\sqrt{\frac{C}{L}}$	4.19 d)
	4.19 e)

Fiche nº 5. Étude des filtres

Reponses	
5.1 a) $\sqrt{a^2 + b^2}$	5.7 c)
5.1 b)	5.7 d)
5.1 c)	5.7 e)
5.1 d)	5.7 f)
5.2 a)	5.8 a)
5.2 b)	5.8 b)
5.2 c) $L\omega$	5.8 c)
5.2 d)	5.8 d)
5.2 e)	
5.2 f)	5.9 a) $ \frac{\frac{1}{3}}{1 + \frac{1}{3jRC\omega} + \frac{jRC\omega}{3} } $
5.3 a) $R + \frac{1}{jC\omega}$	5.9 b)
	5.9 c)
5.3 b) $\frac{RjL\omega}{R+jL\omega}$	5.9 d)
5.3 c) $\frac{RjL\omega}{R+iL\omega-RLC\omega^2}$	5.10 a) $[\underline{i}_1 + \underline{i}_2]$
$5.3 \text{ c}) \dots \overline{R + jL\omega - RLC\omega^2}$	5.10 b) $\underline{u}(2 + jRC\omega) - \underline{u}_s$
5.3 d) $\frac{R(1 - LC\omega^2)}{1 - LC\omega^2 + jRC\omega}$	5.10 c) $\boxed{\frac{1}{1 + 3jRC\omega - (RC\omega)^2}}$
5.4	5.10 d)
5.5 a)	5 10 0
5.5 b)	
5.6 d	5.10 f)
	5.11 a)
5.7 a) $ \frac{1}{2}\cos(a+b) + \frac{1}{2}\cos(a-b) $ $S_0\cos(2\pi f_p t) $	5.11 b)
5.7 b) $+\frac{mS_0}{2} \left(\cos(2\pi(f_p + f_0)t)\right)$	$ \begin{array}{c c} \hline & \\ & \\ \hline & \\ \end{array} $
$+\cos(2\pi(f_p-f_0)t)$	5.11 c) $10 \log \left(1 + \left(\frac{\omega}{\omega_1}\right)^2\right)$

5.11 d) $10 \log \left(9 + \left(\frac{\omega}{\omega_0}\right)^2\right)$	5.13 a) $\pi/4$
$ \begin{array}{c} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 &$	5.13 b)
5.11 e) $20 \log \left(\frac{\omega}{\omega_0}\right) - 10 \log \left(1 + \left(\frac{\omega}{\omega_1}\right)^2\right)$	5.13 c) $ \frac{\pi}{2} $
(20)	5.14 a)
5.11 f) $20 \log \left(\frac{\omega}{\omega_0} \right) + 10 \log \left(1 + \left(\frac{\omega}{\omega_1} \right)^2 \right)$	5.14 b)
	5.14 c)
5.12 a)	5.15 a)
5.12 b) $\pi/2$	5.15 b)
5.12 c) $\arctan\left(\frac{\omega}{\omega_1}\right)$	5.15 c)
	$5.15 \; \mathrm{d}) \dots +20 \mathrm{dB/d\acute{e}cade}$
5.12 d)	5.16 a)
5.12 e)	5.16 b)
	5.16 c)
5.12 f)	

Fiche nº 6. Énergie et puissance électriques

Réponses **6.1** a)..... $16.5 \,\mathrm{kJ}$ $ln(2)R_0$ E - e**6.10** a)..... $\overline{R+r}$ $513\,\mathrm{km}$ eR + ErHyundai Ioniq 6 **6.10** b)..... R + rHyundai Ioniq 6 $\overline{R+r}$ $(E - e)^{2}$ **6.10** d)..... **6.3** c)..... $\overline{R+r}$ **6.4** | 3,75 W u_0i_0 $\frac{u_0 i_0}{\cos(\varphi)}$ 16 W $\frac{CE^2}{\tau} \left(\exp(-t/\tau) - \exp(-2t/\tau) \right)$ r + R**6.13** e)..... $(r + R)^2$ **6.14** a).....

6.14 b) $\boxed{\frac{\mathrm{d}\left(\frac{1}{2}Cu_C^2(t)\right)}{\mathrm{d}t}}$	6.15 a) $R_u I^2$
6.14 c) $ \frac{d(\frac{1}{2}Li^2(t))}{dt} $	6.15 b) $\frac{E}{\sqrt{(R_G + R_u)^2 + (X_G + X_u)^2}}$
6.14 d)	6.15 c) $ -R_u E^2 \frac{2(X_G + X_u)}{\left((R_G + R_u)^2 + (X_G + X_u)^2 \right)^2} $
6.14 e)	6.15 d) $E^{2} \frac{(R_{G}^{2} - R_{u}^{2}) + (X_{G} + X_{u})^{2}}{\left((R_{G} + R_{u})^{2} + (X_{G} + X_{u})^{2}\right)^{2}}$
6.14 g)	6.15 e)

Fiche nº 7. Amplificateurs linéaires intégrés

-		
7.1ad	7.6 f)	7.11 b) $-\frac{E}{RC}t + K$
7.2 a)	7.6 g)	7.11 c)
7.2 c)	7.7	7.12 a)
7.2 d) Faux Faux 7.3 a) Oui	7.8 c'est un temps	7.12 b)
	7.9 a)	7.12 c) $R_1 = R_2$
7.3 b) $V^+ = V^-$	7.9 b)	,
7.3 c)	7.9 c) v_s	7.12 d) $\alpha = 1$
7.4 a)	7.9 d) $i_R = i_C$	7.13 a) $i_1 = i_2$
7.4 b)	7.9 e) $\underline{i_C = -jC\omega\underline{U_C}}$	7.13 b) $\boxed{\frac{R_1}{R_1 + R_2} v_s}$
7.4 c) $0 V$ 7.4 d) v_e	7.9 f) $\left -\frac{1}{jRC\omega} \right $	7.13 c) v_e
7.4 e) v_s 7.5 a) Faux	7.9 g) $RC \frac{dv_s}{dt} = -v_e(t)$	7.13 d) $1 + \frac{R_2}{R_1}$
7.5 b)	7.10 a) $\frac{1}{RC\omega}$	7.13 e)
7.5 c)	$RC\omega$	7.14d
7.5 d)	7.10 b) $ \frac{\pi}{2} $	7.15 a) $v_s = v_e$
7.5 e) Faux	E	7.15 b)
7.6 a) $i_1 = i_2$	7.10 c) $\left[-\frac{E}{RC\omega} \sin(\omega t) \right]$	7.15 c)
7.6 b) $U_1 = v_e$	7.10 d)	7.15 d)
7.6 c) $U_2 = -v_s$	7.10 e)	7.16 a)
7.6 d) $i_1 = \frac{v_e}{R_1}$	7.10 f)	7.16 b)
	7.11 a) $RC \frac{\mathrm{d}v_s}{\mathrm{d}t} = -v_e$	7.16 c)
7.6 e) $i_2 = -\frac{v_s}{R_2}$	dt	7.16 d)
		7.16 e)

Fiche nº 8. Sources lumineuses et lois de Snell-Descartes

8.1 a)
$$\frac{\pi}{180} \times \alpha_{\text{deg}}$$

8.1 b).....
$$60 \times \alpha_{\text{deg}}$$

8.3 b)
$$\frac{\pi}{2} - i$$

8.3 c)
$$\arcsin\left(\frac{n_1}{n_2}\sin(i)\right)$$

8.3 d) ..
$$\left| \frac{\pi}{2} - \arcsin\left(\frac{n_1}{n_2}\sin(i)\right) \right|$$

8.5 a)
$$r - i$$

8.5 b)
$$\pi - 2i$$

8.6 a)
$$(\alpha_1 + \alpha_2) - \pi$$

8.6 b)
$$r + r'$$

8.9 a)
$$\sqrt{1 - \frac{\sin^2(\theta_i)}{n_1^2}}$$

8.9 b)
$$\cos(\theta_r) > \frac{n_2}{n_1}$$

8.9 c) . . .
$$\sin(\theta_i) < \sqrt{n_1^2 - n_2^2}$$

8.10 b)
$$3.74 \times 10^{-19}$$
 J

8.12 a)
$$2.26 \times 10^8 \,\mathrm{m \cdot s^{-1}}$$

Fiche nº 9. Lentilles

9.1 a) $\arctan\left(\frac{AB}{OA}\right)$
9.1 b) $arctan\left(\frac{AB}{OA}\right) \times \frac{180}{\pi}$
9.1 c)
9.1 d)
9.1 e)
9.1 f)
9.2 a) $\left[\frac{\overline{OA'}}{\overline{OA}} = \frac{\overline{A'B'}}{\overline{AB}} \right]$
9.2 b)
9.3 a)
9.3 b)
9.3 c)
9.3 d)
9.4 a) $ \frac{A_1B_1}{f_1'} $
9.4 b) $ \overline{ \frac{ \overline{ { m A}_1 \overline{ { m B}_1} } }{ f_2' } $
9.4 c)

9.4 d)	9.11 a)
9.5b	
9.6 a)	9.11 b) $\overline{FA} - f'$
9.6 b) Incorrect	9.11 c) réel
9.6 c) Incorrect	9.12 a)
9.6 d)	9.12 b)
9.7 a)	9.13 a) $\overline{OA} = -5.02 \mathrm{cm}$
9.7 b) $+20 \delta$	9.13 b) $10.8 \mathrm{m} \times 7.2 \mathrm{m}$
9.8	
9.9 a)	9.14 a)
9.9 b)	9.14 b)
$\overline{\overline{OA} \times \overline{OF'}}$	9.15 a) $\overline{OA'} = -15 \mathrm{cm}$
9.10 a) $\left \frac{OA \times OF'}{\overline{OA} + \overline{OF'}} \right $	9.15 b) virtuelle
	9.15 c)
9.10 b) $\left \frac{\overline{OA'} \times f'}{f' - \overline{OA'}} \right $	9.15 d) droite
9.10 c) $\overline{\overline{OA} \times \overline{OA'}}$	9.16 a) $\boxed{\frac{D^2 - d^2}{4D}}$
$\overline{\mathrm{OA}} - \overline{\mathrm{OA}'}$	15 <i>D</i>
9.10 d) après	9.16 b) $\left \frac{15D}{64} \right $

Fiche nº 10. Cinématique

•	
10.1 a)	10.9 b) $\sqrt{(a\omega)^2 + b^2}$
10.1 b)	10.9 c)
10.2 a)	
10.2 b)	10.9 d) $a\omega^2$ 10.10 a) $\cos\theta \overrightarrow{e_x} + \sin\theta \overrightarrow{e_y}$
10.2 c) $a_0 \times \tau_1 \times \left(\frac{\tau_1}{2} + \tau_2\right)$	10.10 b) $\frac{d\overrightarrow{e_r}}{dt} = \dot{\theta}(-\sin\theta\overrightarrow{e_x} + \cos\theta\overrightarrow{e_y})$
10.3	10.10 c) $\overrightarrow{e_x} = \cos\theta \overrightarrow{e_r} - \sin\theta \overrightarrow{e_\theta}$
10.4	10.10 d) $\overrightarrow{e_y} = \sin\theta \overrightarrow{e_r} + \cos\theta \overrightarrow{e_\theta}$
10.5 a) $a(\cos(\theta)\overrightarrow{e_x} + \sin(\theta)\overrightarrow{e_y})$	10.10 e) $\boxed{\frac{\overrightarrow{\mathrm{d}}\overrightarrow{e_r}}{\overrightarrow{\mathrm{d}}t} = \dot{\theta}\overrightarrow{e_{\theta}}}$
10.5 b)	10.11 a)
10.5 c) $a\left(2\cos(\theta)\overrightarrow{e_x} + \left(2\sin(\theta) + \frac{b}{a}\right)\overrightarrow{e_y}\right)$	10.11 b)
10.5 d) $-b\vec{e_y}$	10.11 c) $a\vec{e_r}$
10.6 a) $r(\cos(\theta)\overrightarrow{e_x} + \sin(\theta)\overrightarrow{e_y})$	10.11 d) $2abt^2\overrightarrow{e_{\theta}}$
10.6 b) $r\vec{e_r}$	10.11 e) $a\vec{e_r} + 2abt^2\vec{e_\theta}$
10.6 c) $r(\cos(\theta)\overrightarrow{e_x} + \sin(\theta)\overrightarrow{e_y}) + z\overrightarrow{e_z}$ 10.6 d) $r\overrightarrow{e_r} + z\overrightarrow{e_z}$	10.12 a) $r_0 e^{-t/\tau} \left(-\frac{1}{\tau} \overrightarrow{e_r} + \omega \overrightarrow{e_\theta} \right)$
10.7 a)	10.12 b) $r_0 e^{-t/\tau} \left(\left(\frac{1}{\tau^2} - \omega^2 \right) \overrightarrow{e_r} - \left(2 \frac{\omega}{\tau} \right) \overrightarrow{e_\theta} \right)$
10.7 b) $r \sin(\theta) (\cos(\varphi) \overrightarrow{e_x} + \sin(\varphi) \overrightarrow{e_y})$	10.12 c) orthoradiale
10.7 c) $r \sin(\theta)(\cos(\varphi)\overrightarrow{e_x} + \sin(\varphi)\overrightarrow{e_y}) + r \cos(\theta)\overrightarrow{e_z}$	
$10.7 \text{ d}) \dots \overline{re_r}$	10.12 d)
10.7 e) $\cos(\theta) \vec{e_r} - \sin(\theta) \vec{e_\theta}$	10.12 e)
	10.13 a)
10.8 a)	10.13 b)
10.8 b)	10.13 c)
10.9 a) $a\omega(-\sin(\omega t)\overrightarrow{e_x} + \cos(\omega t)\overrightarrow{e_y}) + b\overrightarrow{e_z}$	10.13 d) $ \frac{1}{2}at^2 + L $
	2

10.13 e)	10.14 c)	$z = -\frac{g}{2}x^2 + \frac{v_{0z}}{2}x$
10.14 b)	10.15 a)	1,7 s
10.14 b)	10.15 b)	2,9 m

Fiche n° 11. Principe fondamental de la dynamique

11.1 $\frac{p + m_1 v_1 + m_2 v_2}{m_1 + m_2}$	11.9 c)
11.2 a) $\sqrt{(mR\omega^2 - T)^2 + (mg)^2}$	11.10 a) $\cos(\theta) \overrightarrow{e_x} + \sin(\theta) \overrightarrow{e_y}$
	11.10 b) $-\sin(\theta)\overrightarrow{e_x} + \cos(\theta)\overrightarrow{e_y}$
11.2 b) $\arctan\left(\frac{mR\omega^2 - T}{mg}\right)$	11.10 c) $ \boxed{ -\dot{\theta}\sin(\theta)\vec{e_x} + \dot{\theta}\cos(\theta)\vec{e_y} } $
11.3 a)	11.10 d) $ \boxed{ -\dot{\theta}\cos(\theta)\vec{e_x} - \dot{\theta}\sin(\theta)\vec{e_y} } $
11.3 b)	11.10 e)
11.3 c) $\left[\frac{a_0}{k}\left[1 - e^{-k(t-t_0)}\right]\right]$	11.10 f) $-\dot{\theta}\vec{e_r}$
11.4 a) $ [\cos(\alpha)\vec{e_x} + \sin(\alpha)\vec{e_y}] $	11.11
11.4 b)	11.12 a) $\left[\dot{r} \overrightarrow{e_r} + r \dot{\theta} \overrightarrow{e_{\theta}} \right]$
11.4 c) $\left[\cos(\alpha)\overrightarrow{e_x} + \sin(\alpha)\overrightarrow{e_y}\right]$	11.12 b) $\left[(\ddot{r} - r\dot{\theta}^2)\vec{e_r} + (2\dot{r}\dot{\theta} + r\ddot{\theta})\vec{e_{\theta}} \right]$
11.4 d)	11.13 a)
11.5 a)	11.13 b)
11.5 b) $N\vec{e_y}$	11.14 a) $ (T'-T)\cos\theta $
11.6 a) $P\cos(\theta)\vec{e_r} - P\sin(\theta)\vec{e_\theta}$	11.14 b) $(T'+T)\sin\theta - F$
11.6 b)	11.14 c)
11.6 c) $ [(P\cos(\theta) - T)\overrightarrow{e_r} - P\sin(\theta)\overrightarrow{e_\theta}] $	11.15 1,6 N
11.7 a) $P\overrightarrow{e_x}$	11.16
11.7 b) $ \boxed{-T\cos(\theta)\overrightarrow{e_x} - T\sin(\theta)\overrightarrow{e_y}} $	11.17 a) $P \cos \alpha$
11.7 c) $(P - T\cos(\theta))\overrightarrow{e_x} - T\sin(\theta)\overrightarrow{e_y}$	11.17 b) $ \boxed{-m\frac{\mathrm{d}v}{\mathrm{d}t} + P\sin\alpha} $
11.8 a) $ \left[\left(\frac{1}{2} a_0 t^2 + x_0 \right) \overrightarrow{e_x} - v_0 t \overrightarrow{e_y} + z_0 \overrightarrow{e_z} \right] $	11.18 a) $ \frac{T_1}{2m} $
11.8 b) $a_0 t \overrightarrow{e_x} - v_0 \overrightarrow{e_y}$	11.18 b)
11.8 c) $a_0 \overrightarrow{e_x}$	
11.9 a) $g\vec{e_z}$	11.18 c) $\left[\frac{g}{3}\right]$
11.9 b) $v_0 \overrightarrow{e_x} + gt \overrightarrow{e_z}$	

Fiche nº 12. Approche énergétique en mécanique

responses	
12.1	12.9 a) $ [\ddot{z} + \frac{\alpha}{m} \dot{z} + \frac{k}{m} z = g + \frac{k\ell_0}{m}] $
12.2 a)	$\alpha : k \in \mathbb{R}$
12.2 b) $mg(x\sin(\alpha) - H)$	12.9 b) $ \zeta + \frac{\alpha}{m}\dot{\zeta} + \frac{k}{m}\zeta = 0 $
12.2 c) $ -mgR\cos(\theta) $	12.10 a)
12.2 d) $mgr(cos(\psi) - 1) + E_0$	12.10 b)
12.3	12.10 c)
12.4 a) $\boxed{\frac{1}{2}k(y-\ell_0)^2 - \frac{k\ell_0^2}{2}}$	12.10 d)
	12.11 a)
12.4 b) $ \frac{1}{2}k\left(\frac{x}{\cos(\beta)} - \ell_0\right)^2 - \frac{1}{2}k\left(\frac{L}{\sin(\beta)} - \ell_0\right)^2 $	12.11 b)
	12.11 c)
12.4 c)	12.11 d)
12.5 a)	12.12 a)
12.5 b)	12.12 b)
12.5 c)	12.12 c)
12.5 e)	12.12 d)
12.6	12.12 e)
	12.12 f)
12.7 a)	12.13 a)
12.7 b)	12.13 b)
12.8 a)	
12.8 b)	12.13 c)
12.8 c)	12.13 d)
	12.14

Fiche nº 13. Moment cinétique

13.1 a)	13.4 e)
13.1 c)	13.4 f) $\begin{pmatrix} -6 \\ -33 \\ 24 \end{pmatrix}$
13.1 d)	13.5 la Terre
13.1 f)	13.6 $m r v \sin(\alpha) \overrightarrow{e_z}$
13.2 a) $\overrightarrow{P} = -\ \overrightarrow{P}\ \overrightarrow{e_y}$	$13.7 \dots \qquad \left\lfloor \frac{1}{3} M L^2 \right\rfloor$
13.2 b) $ \overrightarrow{P} (-\sin(\theta) \overrightarrow{e_r} - \cos(\theta) \overrightarrow{e_\theta}) $	13.8
13.2 c) $ - \ \overrightarrow{T} \ \overrightarrow{e_y} $	13.9 $\cdots \qquad \boxed{\frac{2}{5} M R^2}$
13.2 d) $\overrightarrow{T} = \overrightarrow{T} (-\cos(\gamma)\overrightarrow{e_r} + \sin(\gamma)\overrightarrow{e_\theta}) $	13.10 a) $-\ell F \sin \alpha \cos \alpha$
13.2 e) $\ \vec{R}\ (\cos(\theta+\alpha)\vec{e_x}+\sin(\theta+\alpha)\vec{e_y})\ $	13.10 b)
13.2 f) $\ \vec{R}\ (\cos(\alpha)\vec{e_r} + \sin(\alpha)\vec{e_\theta})\ $	13.11 a) $\boxed{\frac{mgL}{2}\cos\alpha\overrightarrow{e_z}}$
13.2 g) $ \vec{N} (-\sin(\beta + \gamma) \vec{e_x} + \cos(\beta + \gamma) \vec{e_y}) $ 13.2 h) $ \vec{N} (\cos(\beta) \vec{e_r} + \sin(\beta) \vec{e_\theta}) $	13.11 b) $\left[-mg\left(\ell - \frac{L}{2}\cos\alpha\right)\overrightarrow{e_z}\right]$
13.3 a)	13.11 c) $\left[-mg\left(\ell - \frac{L}{2}\cos\alpha\right)\overrightarrow{e_z}\right]$
13.3 b) $ - \ \overrightarrow{T} \ \sin(\gamma) \overrightarrow{e_z} $	13.12 a) $\boxed{\frac{a}{2}\overrightarrow{e_X} + a\overrightarrow{e_Y}}$
13.3 c) $\ \overrightarrow{N} \ \cos(\gamma + \beta) \overrightarrow{e_z} \ $	13.12 b) $\left[\frac{a}{2}\overrightarrow{e_X} + \frac{a}{3}\overrightarrow{e_Y}\right]$
13.4 a)	13.12 c) $P(-\sin\alpha \overrightarrow{e_X} - \cos\alpha \overrightarrow{e_Y})$
(-7)	13.12 d) $F(-\cos\alpha \overrightarrow{e_X} + \sin\alpha \overrightarrow{e_Y})$
$13.4 \text{ b}) \dots \qquad \left \begin{pmatrix} 7 \\ -14 \\ 7 \end{pmatrix} \right $	13.12 e) $aF\left(\frac{\sin\alpha}{2} + \cos\alpha\right)\overrightarrow{e_z}$
13.4 c)	13.12 f) $aP\left(-\frac{\cos\alpha}{2} + \frac{\sin\alpha}{3}\right) \vec{e_z}$
13.4 d)	13.12 g) $\frac{3P - 6F}{3F + 2P}$

Fiche nº 14. Champ électrique

14.1 a)......
$$\sqrt{a^2 + y^2}$$

14.1 b)
$$\frac{a}{\sqrt{a^2 + y^2}}$$

14.1 c)
$$\frac{y}{\sqrt{a^2 + y^2}}$$

14.1 d)
$$\frac{\|\vec{F}\|}{\sqrt{a^2 + y^2}} (-a\vec{e_x} + y\vec{e_y})$$

14.3 a)
$$\overrightarrow{e_y}$$

14.3 b)
$$-\overrightarrow{e_x}$$

14.3 c)
$$\overrightarrow{e_x}$$

14.3 d)
$$\boxed{-\overrightarrow{e_y}}$$

14.4 b)
$$qV_0$$

14.4 c)
$$\sqrt{\frac{2qV_0}{m}}$$

14.5 a)
$$\sqrt{(x-a)^2 + y^2}$$

14.5 c)
$$\sqrt{r^2 - 2ax + a^2}$$

14.5 e)
$$\sqrt{r^2 - 2ar\cos(\theta) + a^2}$$

14.5 f)
$$\frac{1}{4\pi\varepsilon_0} \frac{q}{\sqrt{r^2 - 2ar\cos(\theta) + a^2}}$$

14.5 g).....
$$\sqrt{(x+a)^2+y^2}$$

14.5 h)
$$\sqrt{r^2 + 2ax + a^2}$$

14.5 i).....
$$\sqrt{r^2 + 2ar\cos(\theta) + a^2}$$

14.5 j)
$$-\frac{1}{4\pi\varepsilon_0} \frac{q}{\sqrt{r^2 + 2ar\cos(\theta) + a^2}}$$

14.5 k)....
$$\frac{1}{4\pi\varepsilon_0} q \left(\frac{1}{\sqrt{r^2 - 2ar\cos(\theta) + a^2}} - \frac{1}{\sqrt{r^2 + 2ar\cos(\theta) + a^2}} \right)$$

14.6 a)
$$\frac{1}{4\pi\varepsilon_0} \frac{q}{r} \left(1 - \frac{2a}{r} \right)$$

14.6 b)
$$\frac{1}{4\pi\varepsilon_0} \frac{qa\cos(\theta)}{r^2}$$

14.6 c)
$$\left| \frac{1}{4\pi\varepsilon_0} \frac{qa}{r^2} \left(1 - \frac{1}{2}\theta^2 \right) \right|$$

14.6 d)
$$\frac{1}{4\pi\varepsilon_0} \frac{qa}{r^2}$$

14.6 e)
$$\frac{1}{4\pi\varepsilon_0} \frac{q}{r} \ln\left(1 + \frac{r^2}{a^2}\right)$$

14.7 a)
$$\frac{1}{4\pi\varepsilon_0} \frac{q}{r^2} (\sin(2\theta) \overrightarrow{e_r} - 2\cos(2\theta) \overrightarrow{e_\theta})$$

14.7 b)
$$-\frac{8}{4\pi\varepsilon_0} \frac{q}{a^2} \overrightarrow{e_{\theta}}$$

14.7 c)
$$2.7 \cdot 10^5 \, \text{V.m}^{-1}$$

14.8 a)
$$\frac{1}{4\pi\varepsilon_0} \frac{qa}{r^3} (2\cos(\theta)\vec{e_r} + \sin(\theta)\vec{e_\theta})$$

14.8 b)
$$\frac{1}{4\pi\varepsilon_0} \frac{q}{a^2} \overrightarrow{e_{\theta}}$$

14.8 c)
$$3.4 \cdot 10^4 \, \mathrm{V.m^{-1}}$$

14.9 a)
$$\frac{1}{2}E_0c$$

14.9 b) $ \frac{1}{3} E_0 d $	14.10 b)
14.9 c) $ \frac{2}{3\pi} E_0 d $	14.10 c) $ \frac{16}{5} R^3 \rho_0 $
14.9 d)	14.11 a) $3\pi R^2 h$
14.10 a)	14.11 b) $\boxed{\frac{4}{5}\pi R^2 h}$
	14.11 c) $ \frac{8}{15}R^2h $

Fiche nº 15. Particule dans un champ électromagnétique

15.1 a) $\boxed{6.3 \times 10^{18} \mathrm{eV}}$	15.6 a) $\boxed{ q vB\overrightarrow{e_y} }$	15.9 b)
15.1 b)	15.6 b) $qvB\cos(\alpha)\overrightarrow{e_z}$	15.9 c)
15.1 c) $5.0 \times 10^{-19} \mathrm{J}$	15.6 c). $ -qvB(\cos(\alpha)\overrightarrow{e_x} + \sin(\alpha)\overrightarrow{e_y}) $	$15.9 \text{ d}) \dots \boxed{nqU}$
15.1 d) violet		15.9 e) 5
15.2 tau	15.7 a)	15.9 e)
15.3 a)	15.7 b)	15.10 a) $\left[\frac{q}{m}\overrightarrow{v}\wedge\overrightarrow{B}\right]$
15.3 b)	15.7 c) $ \frac{3\sqrt{2}}{2}qEv $	15.10 b) $R\dot{\theta}\overrightarrow{e_{\theta}}$
		15.10 c) $qRB\dot{\theta}\overrightarrow{e_r}$
15.4 a) $\left[-Ex + C \right]$	15.7 d) $\left -\frac{qEv}{2} \right $	15.10 d) $R\ddot{\theta}\vec{e_{\theta}} - R\dot{\theta}^2\vec{e_r}$
15.4 b) $\left\lfloor \frac{\alpha}{r} + C \right\rfloor$	15.8 a) $\sqrt{3} \frac{m v_0}{q E}$	15.10 e) $ \frac{mv_0}{ q B} $
15.4 c)	qE	q B
15.4 d) $-\gamma xy + C$	15.8 b) $\sqrt{3} \frac{m v_0}{q E}$	15.10 f)
15.5 a)	15.8 c) $\frac{\pi}{3}$	15.11 a) $q(E - v_0 B) \overrightarrow{e_y}$
15.5 b) $ qE \vec{e_x} $		
15.5 c). $qE(\cos(\beta)\overrightarrow{e_y} - \sin(\beta)\overrightarrow{e_x})$	15.9 a)	15.11 b) $v_0 = \frac{E}{B}$
$-\sin(\beta)\vec{e_x}$		

Fiche nº 16. Champ magnétique

Réponses 16.1 oui **16.10** b)..... 16.1 oui **16.10** c)..... (d) 16.2 **16.11** a)..... $\mu_0 I$ $2\pi d \tan(\alpha)$ **16.11** b)..... $20.8 \, \mu T$ **16.3** b)..... **16.12** a)..... $\sqrt{R^2 + z^2}$ 16.4 **16.12** b)..... 16.5 $4\sqrt{2}R$ μIa^2 $R\sqrt{2^{5/3}-1}$ **16.12** d)..... **16.13** a)..... **16.13** b)..... **16.7** a) $B_0(1+\cos(\alpha))\overrightarrow{e_x} + B_0\sin(\alpha)\overrightarrow{e_y}$ **16.7** b)..... $B_0\sqrt{2(1+\cos(\alpha))}$ $34.6\,\mathrm{mT}$ **16.14** a) . . . **16.8** a)..... **16.8** b) $\left| -\sin(\theta) \overrightarrow{e_x} + \cos(\theta) \overrightarrow{e_y} \right|$ $\mu_0 n I \ell$ **16.14** b)..... $\sqrt{4R^2 + \ell^2}$ **16.8** c) $\left| -\sin(\theta) \overrightarrow{e_x} - \cos(\theta) \overrightarrow{e_y} \right|$ $-2B_0\sin(\theta)\vec{e_x}$ **16.8** e)..... **16.14** d)..... $\mu_0 nI$ cosh (**16.10** a).....

16.15 c) $\frac{B(0)}{B_0} \approx 9 \times 10^{-5}$ 16.16 a) $r^2 + \frac{\omega_0 r}{Q} + \omega_0^2 = 0$	16.16 e) $B_0 + e^{-\frac{\omega_0}{2Q}t} \left(\lambda \cos\left(\frac{\omega_0}{2Q} \sqrt{4Q^2 - 1} \cdot t\right) + \mu \sin\left(\frac{\omega_0}{2Q} \sqrt{4Q^2 - 1} \cdot t\right) \right)$
16.16 b)	16.16 f) $B_0 \left(1 - e^{-\frac{\omega_0}{Q}t} \left(\cos\left(\frac{\omega_0}{Q}\sqrt{4Q^2 - 1} \cdot t\right) + \frac{1}{\sqrt{4Q^2 - 1}} \sin\left(\frac{\omega_0}{Q}\sqrt{4Q^2 - 1} \cdot t\right) \right)$
16.16 c) $\Delta < 0$ 16.16 d) B_0	16.17

Fiche nº 17. Induction

Réponses	
17.1 a)	17.7 a) $i > 0$
17.1 b)	17.7 b) $i < 0$
17.1 c)	17.7 c) $i > 0$
17.1 d)	17.7 d) $i < 0$
17.2 a)	17.7 e)
17.2 b) Oui	17.7 f)
,	17.8 a) le flux diminue
,	17.8 b)
17.3 a)	17.8 c)
17.3 c)	17.8 d) $i > 0$
17.3 d)	17.8 e)
,	17.8 f)
17.3 e) <i>Bac</i>	17.9 a) $B_0 S_0 \omega \sin(\omega t + \varphi)$
17.4 a)	
17.4 b)	17.9 b)
17.4 c)	17.9 c) $\left[-8B_0S_0\omega\cos(\omega t)\sin^3(\omega t) \right]$
Ba^2	17.9 d) $-B_0 S_0 \omega [2\cos(4\omega t) + \cos(2\omega t)]$
17.4 d) $\frac{2\alpha}{4}$	17.10 a)
17.4 e)	17.10 b) $\left[-\frac{IBd}{m}t + v_0 \right]$
$17.4 \text{ f}) \dots \qquad \boxed{\frac{Ba^2}{4}}$	17.10 c) $ \frac{mv_0^2}{2IBd} $
17.5 a)	17.11 a) $\boxed{-IaB\overrightarrow{e_y}}$
17.5 b)	$\sqrt{\sqrt{3}}$, 1 ,
17.5 c)	17.11 b) $\left IaB\left(\frac{\sqrt{3}}{2}\overrightarrow{e_x} + \frac{1}{2}\overrightarrow{e_y}\right) \right $
17.5 d)	17.11 c) $\boxed{IaB\left(-\frac{\sqrt{3}}{2}\overrightarrow{e_x} + \frac{1}{2}\overrightarrow{e_y}\right)}$
17.5 e) Ba^2	
$17.5 \text{ f}) \dots Ba(b-a)$	17.11 d)
17.6	17.12 a) $\boxed{IaB\overrightarrow{e_z}}$

17.12 b)	17.12 h) $-Ia^2B\overrightarrow{e_x}$
17.12 c) $-IaB\overrightarrow{e_z}$	17.13 a) $iab\overrightarrow{e_{\theta}}$
17.12 d)	17.13 b) [$iabB\cos\theta$]
17.12 e)	17.13 c) $ \boxed{ -\frac{a}{2} mg \sin \theta } $
17.12 f) $-Ia^2B\overrightarrow{e_x}$	(2ibB)
17.12 g) $Ia^2\overrightarrow{e_z}$	17.13 d) $\arctan\left(\frac{2ibB}{mg}\right)$

Fiche n° 17. Induction

Fiche no 18. Gaz parfaits

Réponses

18.1 a)	1
18.1 b)	1
18.1 c) $\boxed{6.8 \times 10^2 \mathrm{L}}$	_
18.2 a) $ [58 \mathrm{g \cdot mol}^{-1}] $	1
18.2 b) $1.8 \times 10^2 \mathrm{bar}$	1
18.2 c) 5,5 m ³	1
18.3 a) $24.8 \mathrm{L \cdot mol^{-1}}$	1
18.3 b) $13.4 \mathrm{L \cdot mol^{-1}}$	1
18.4 64 °C	1
18.5 a)	_
18.5 b)	1

18.6 a)	18.11 a)
18.6 b)	18.11 b)
18.7 a) $\boxed{\frac{MP}{RT}}$,
18.7 b)	18.12 a)
18.8 a) $4\rho_1$	18.12 b)
18.8 b)	18.13 a)
18.9 a)	18.13 b)
$\begin{bmatrix} n_1 & P_1 \end{bmatrix}$	18.14
18.9 b) $\boxed{\frac{2P_1}{P_1 + P_2}V}$	18.15 a)
	18.15 b)
$egin{array}{cccccccccccccccccccccccccccccccccccc$	

18.11 a) $\boxed{\frac{4}{3}\pi r^3}$
18.11 b) $\boxed{\frac{4\pi P_0 r^3 + 16\pi \gamma r^2}{3RT_0}}$
18.12 a) $18,2 \mathrm{g \cdot mol^{-1}}$
18.12 b)
18.13 a) $30.6 \mathrm{g \cdot mol^{-1}}$
18.13 b)
18.14 [5,5 kg]
18.15 a)
18.15 b)

25

Fiche no 19. Premier Principe

19.1 a)	19.9 c)
19.1 b)	19.10268 kJ
19.1 c)	
19.2 a)	19.11 $T_i + \frac{n^2 a}{C_V} \left(\frac{1}{V_f} - \frac{1}{V_i} \right)$
19.2 b)	
19.3 <i>B</i>	19.12 a)
19.4 a) $-P_0(V_{\text{final}} - V_{\text{initial}})$	19.12 b) $T_i e^{\frac{Q}{A}}$
19.4 b) $\frac{-(P_2 + P_1)(V_{\text{final}} - V_{\text{initial}})}{2}$	19.12 c)
19.5 a) $-nRT_0 \ln \left(\frac{V_f}{V_i} \right)$	19.13 a) $nRT_i \ln \left(\frac{V_f}{V_i} \right)$
19.5 b) $ \frac{P_f V_f - P_i V_i}{k-1} $	19.13 b) $ \frac{nR}{\gamma - 1} (T_f - T_i) $
19.6 a)	
19.6 b)	19.13 c)
19.7 a) $\boxed{mc(T_f - T_i)}$	19.14 a)
	19.14 b) $Q_1 - Q_2$
19.7 b)	19.14 c) $W_1 - Q_2$
19.8 a)	19.15
19.8 b)	19.16 a)
19.8 c)	19.16 b) $T_a + (T_0 - T_a)e^{-\frac{ht}{C}}$
19.8 d) $8.7 \times 10^2 \mathrm{J}$	19.17 <u>b</u>
19.9 a) $C_V(T_f - T_i)$	19.18 a) $ \frac{m_1T_1 + m_2T_2}{m_1 + m_2} $
19.9 b)	19.18 b) $ \frac{m_1T_1 + m_2T_2}{m_1 + m_2} + \frac{Q}{(m_1 + m_2)c} $

Fiche n^{o} 20. Second principe et machines thermiques

Réponses	
20.1	20.9 c)
20.2 <u>b</u>	20.10 $nR \ln(2)$
20.3 a) $dH = T dS + V dP$	20.11 a)
20.3 b) $dU = 0$	20.11 b)
20.3 c) $dS = nR \frac{dV}{V}$	20.11 c)
20.4 a) $dU = \delta W = -P_{\text{ext}} dV$	20.11 d)
20.4 b) $dU = \delta W = -P dV$	20.11 e)
$20.4 \text{ c)} \dots \qquad \qquad \boxed{\mathrm{d}U = \delta Q}$	20.12 a) $393 \mathrm{J\cdot K^{-1}\cdot kg^{-1}}$
20.5 a)	20.12 b) $447 \mathrm{J \cdot K^{-1} \cdot kg^{-1}}$
20.5 b) $dS = 0$	20.12 c) $ \frac{ m_1 c_1 T_1 + m_2 c_2 T_2 }{ m_1 c_1 + m_2 c_2 } $
20.5 c) $dS = \frac{\delta Q}{T} + \delta S_c$	20.12 d)
20.6 a) $T_f V_f^{\gamma - 1} = T_i V_i^{\gamma - 1}$	20.12 e)
20.6 b) $T_f^{\gamma} P_f^{1-\gamma} = T_i^{\gamma} P_i^{1-\gamma}$	20.12 f)
20.6 c) $P_f V_f^{\ \gamma} = P_i V_i^{\ \gamma}$	20.13 a)
20.7 a) $x = \gamma - 1$	20.13 b)
20.7 b) $x = \frac{\gamma}{(1 - \gamma)}$	20.13 c)
20.7 c) $x = \frac{(1-\gamma)}{\gamma}$	20.14 a)
	20.14 b) $\eta = 33 \%$
20.7 d) $x = \frac{\gamma^2}{(1 - \gamma)}$	20.15 a) $ \frac{-Q_C}{\text{COP}} $
20.7 e)	20.15 b)
20.8 a)	20.15 c)
20.8 b) $0.31 \mathrm{J \cdot K^{-1}}$	20.15 d) $1,2 \times 10^3 \mathrm{euros}$
20.9 a)	20.16 a)
20.9 b)	20.16 b) $ \frac{\eta Q_F}{(1-\eta)} $

20.16 c)	20.17 b)
20.16 d)	
20.17 a) $ \frac{1}{P} $	20.17 c)

Fiche nº 21. Statique des fluides

Réponses **21.1** a)..... $75\,\mathrm{N}\cdot\mathrm{cm}^{-2}$ **21.11** c)..... $7,5 \, \mathrm{bar}$ **21.1** c)..... **21.12** b) 21.2 **21.13** a) $| [\rho_s h - \rho_\ell (h-x)] S \overrightarrow{g} |$ 21.3 21.4 **21.13** b)..... **21.5** a)..... $p_0 + \rho g z_1$ **21.5** b) $p_0 + \rho g(H - h - z_2)$ **21.5** c) $\rho g(H - z_3 \sin(\alpha)) + p_0$ **21.14** b)..... **21.6** a)..... **21.6** c)..... **21.15** a)..... **21.15** b)..... **21.15** c)..... **21.7** b)..... **21.7** c)..... **21.16** b) $|By^2\vec{e_x} + 2Bxy\vec{e_y} + 2Ce^{2z}\vec{e_z}|$ $ho_{ m h} V_{ m h}$ **21.7** d)..... $43.6 \,\mathrm{g \cdot mol^{-1}}$ **21.17** c)..... 51 N 2p $z_{\rm max}$ 21.10

21.19 b)	21.21 a) $ \frac{1}{2} \rho g L h^2 $
21.19 c)	21.21 b) $ \frac{1}{6} \rho g L h^3 $
21.20 a)	21.21 c) $\frac{1}{-h}$
21.20 b) $z = \frac{a}{g}y$	3"

Fiche nº 22. Fondamentaux de la chimie des solutions

Réponses	
22.1 a)	22.11 b) $ \frac{C_1V_1 + C_2V_2}{V_1 + V_2} $
22.1 b)	22.12 a)
22.2 b)	$egin{array}{cccccccccccccccccccccccccccccccccccc$
22.2 c)	$22.12 \text{ c)} \dots \qquad \boxed{V = \frac{m}{C \times M}}$
22.3 b)	22.13 a)
22.3 c)	22.13 b)
22.5 a)	22.14 b)
22.5 b) $[H_3O^+] = 10^{-7} \text{mol} \cdot L^{-1}$ 22.5 c) $[pH_0 - 2]$	22.15 a)
22.6 a)	22.15 c)
22.6 b) (a) = H_2A , (b) = HA^- et (c) = A^{2-}	22.16 a)
22.6 c)	22.16 c)
22.6 e)	22.17 a)
22.7 a) Le premier 22.7 b) Le premier	22.17 c)
22.8 a)	22.18 a)
22.8 b)	22.18 c)
C_1V_1	22.19 a)
22.9 b)	22.19 b)
22.10 b)	22.20
22.11 a)	22.2 1

Fiche nº 23. Fondamentaux de la chimie en phase gazeuse

reponses		
23.1 $\boxed{\frac{RT}{P}}$	23.9 a) $\frac{1}{V_0} \sum_{k=0}^{N} P_k V_k$	23.12 f) $0.21 \mathrm{bar}$ 23.13 a) $4n - 2\xi$
23.2 a) $12.5 \mathrm{L \cdot mol^{-1}}$	23.9 b) P_0	23.13 b)
23.2 b) $24.9 \mathrm{L \cdot mol^{-1}}$ 23.2 c) $495 \mathrm{L \cdot mol^{-1}}$	23.9 c) $\left\lceil \frac{N(N+1)}{2} P_0 \right\rceil$	$ \begin{array}{c c} 2n \\ \hline & \\ & \\$
23.2 d) $24.9 \mathrm{L \cdot mol^{-1}}$	23.9 d) $\left\lceil \frac{Nn_0RT_0}{V_0} \right\rceil$	_
23.3	23.10 a)	23.13 d) $\left\lfloor \frac{(n-\xi)}{4n} P_i \right\rfloor$
23.4 a)	23.10 b)	23.13 e) $\left[\frac{3(n-\xi)}{4n} P_i \right]$
23.4 b)	23.10 d)	23.14
23.4 d)	23.10 e)	23.15 b)
23.5	23.10 g)	23.15 d)
23.6 a)	23.10 h)	$P_{NH_3}^2(P^\circ)^2$
23.6 b) $24.8 \mathrm{L \cdot mol^{-1}}$ 23.6 c) $2 \mathrm{g \cdot mol^{-1}}$	23.11 b) faux	$P_{\rm N_2} P_{\rm H_2}^3$
23.6 d)	23.11 c)	23.16 b) $\left[\frac{\binom{I}{I}}{P_{\text{H}_2}^4 P_{\text{O}_2}}\right]$
23.7 a) <i>RT</i>	23.12 a) 4 bar	23.16 c) $\left[\frac{[\text{CO}_2](P^{\circ})^3}{P_{\text{CH}_4} P_{\text{O}_2}^2 C^{\circ}} \right]$
23.7 b) $RT + bP - \frac{a}{V_m} + \frac{ab}{V_m^2}$	23.12 b)	23 16 d) $[H_2CO_3]P^{\circ}$
23.7 c)	23.12 d) 9×10^{1} bar	$P_{\text{CO}_2}C^{\circ}$ 23.17 $\boxed{}$
	23.12 e) 6×10^{-3} bar	

Fiche nº 24. Réactions chimiques

24.1 a)		$\dots \boxed{2 \mathrm{CO} + \mathrm{O}_2 = 2 \mathrm{CO}_2}$
24.1 b)	2 A	$g^+ + Cu = 2 Ag + Cu^{2+}$
24.1 c)	2 NO	$O + 2 CO = N_2 + 2 CO_2$
24.1 d)	$$ S_2	$O_8^{2-} + 2I^- = 2SO_4^{2-} + I_2$
24.1 e)	$2 C_8 H_{18} +$	$25O_2 = 16CO_2 + 18H_2O$
24.1 f)	$MnO_4^- + 8H^+ + 5Fe^{2+} =$	$= 5 \mathrm{Fe^{3+}} + \mathrm{Mn^{2+}} + 4 \mathrm{H_2O}$
24.2		$n_1 - \xi$
24.2		$\dots \qquad \boxed{n_2 - 3\xi}$
24.2		2ξ
24.3		
24.4		<u>e</u>
24.5 a)		$ \frac{a(\text{NH}_3)_{\text{eq}} \times a(\text{H}_2\text{O})_{\text{eq}}}{a(\text{NH}_4^+)_{\text{eq}} \times a(\text{HO}^-)_{\text{eq}}} $
24.5 b)		$\boxed{\frac{a(\mathrm{NH_3})_{\mathrm{eq}} \times a(\mathrm{H_3O}^+)_{\mathrm{eq}}}{a(\mathrm{NH_4}^+)_{\mathrm{eq}} \times a(\mathrm{H_2O})_{\mathrm{eq}}}}$
24.5 c)		$\boxed{\frac{a(\mathrm{HO^-})_{\mathrm{eq}} \times a(\mathrm{H_3O^+})_{\mathrm{eq}}}{a(\mathrm{H_2O})_{\mathrm{eq}}^2}}$
24.5 d)		$\dots \qquad \boxed{K^{\circ} = \frac{K_A}{K_e}}$
24.5 e)		$\dots \qquad \boxed{10^{4,75}}$
24.6 a)		
24.6 b)		
24.6 c)		<u>b</u>
24.6 d)		<u>©</u>
24.7		
24.8 a)		$\dots \qquad \boxed{5.0 \times 10^{-2} \mathrm{mol}}$

24.8 b)
24.9 a)
24.9 b)
24.10 a)
24.10 b) $ \xi^2 - \xi(C_1V_1 + C_2V_2) + C_1C_2V_1V_2 - \frac{[C^{\circ}(V_1 + V_2)]^2}{K^{\circ}} = 0 $
24.11 a)
24.11 b)
24.11 c)
24.11 d)
24.11 e) $\left[\xi^2(4K^{\circ}P + P^{\circ}) - \xi(4nK^{\circ}P + nP^{\circ}) + K^{\circ}n^2P = 0\right]$
24.12 a)
24.12 b)
24.13 a)
24.13 b)
24.14 a)
24.14 b)
24.14 c)
24.14 d)
24.15 a)
24.15 b)
24.16 a)
24.16 b)
24.16 c)

Fiche nº 25. Cinétique chimique

Réponses **25.7** b)..... (a) **25.1** b)..... $\left(\mathbf{d}\right)$ **25.8** a)..... v = k[A](c) $k[{\bf A}]^2$ **25.9** a)..... (a) $+\alpha kt$ (b) $\overline{1+\alpha}[A]_0kt$ $[A]_0$ $2\alpha k$ **25.3** a) | Oui : 2 ln(2)Oui: αk **25.10** c)..... **25.3** c) Non $[A]_0 \alpha k$ **25.11** a)..... **25.4** c) $3.3 \,\mathrm{mmol \cdot L^{-1} \cdot min^{-1}}$ **25.12** a)..... **25.5** a) $|RT(\ln(A) - \ln(k))|$ **25.12** c)..... $53 \,\mathrm{kJ} \cdot \mathrm{mol}^{-1}$ **25.12** d)..... ln(A) -**25.13** a)..... m=1**25.13** b) $\left| \ln \left(k \times [H_2]_0^m \right) + n \ln \left([S]_0 \right) \right|$ **25.6** b) $1.8 \times 10^2 \,\mathrm{kJ \cdot mol^{-1}}$ **25.6** c) $5.3 \times 10^{11} \,\mathrm{L \cdot mol^{-1} \cdot s^{-1}}$ **25.13** c)..... 1 d[A] $\alpha \ \mathrm{d}t$

Fiche n^o 26. Chiffres significatifs et incertitudes

•	
26.1 a)	26.7 a)
26.1 b)	26.7 b) $(1,175 \pm 0,059) \mathrm{W}$
26.1 c)	26.7 c)
26.1 d) $1,600002 \times 10^6$	26.8 a)
26.1 e)	26.8 b)
26.1 f)	26.8 c)
26.1 g)	
26.1 h)	26.9 a) $\left d\sqrt{\left(\frac{u(\lambda)}{\lambda}\right)^2 + \left(\frac{u(D)}{D}\right)^2 + \left(\frac{u(\ell)}{\ell}\right)^2} \right $
26.2 a)	26.9 b)
26.2 b)	
26.2 c)	26.10 a)
26.2 d)	26.10 b)
26.3 a)	26.10 c)
26.3 b)	26.11 $(25,017 \pm 0,092) \mathrm{cm}$
26.3 c)	26.12
26.4	26.13 a)
26.5 a)	26.13 b) $(2,49 \pm 0,14) \text{mm}^2$
26.5 b) $(0.90 \pm 0.36) \mathrm{m}$	26.14 a)
26.5 c) $(91.0 \pm 3.5) \mathrm{m}^2$	26.14 b)
26.5 d) 0.910 ± 0.035	26.14 c)
26.6 $(59.0 \pm 1.4) \text{mmol} \cdot \text{L}^{-1}$,