PRÁCTICA DE ECONOMETRÍA FINANCIERA

Fecha de entrega: 9 de diciembre de 2020

1. Suponga el siguiente proceso generador de datos para la variable y_t :

$$T=500.$$

$$y_t = \mu + e_t, \quad \mu = 0.01$$

$$V(e_t) = \sigma_t^2, \text{ tal que } \sigma_t^2 = \begin{cases} \sigma_{t-1}^2, \text{ con prob. } \phi = 0.96 \\ a_t, \text{ con prob. } 1 - \phi = 0.04 \end{cases}$$

$$dondo a signa una distribución $\Gamma(a, b) = \Gamma(1, 0.2)$$$

donde a_t sigue una distribución $\Gamma(a, b) = \Gamma(4, 0.2)$

El siguiente código genera esos datos simulados para y_t .

```
clear;
global vyt
T=500;
mu = 0.01;
phi=0.96;
a=4;
b=0.2;
vsigma2t=[];
vyt=[];
sigma2t0=a*b;
for t=1:T
    u=rand(1,1);
    if u<phi</pre>
        sigma2t=sigma2t0;
        yt=mu+sigma2t*randn(1);
        vsigma2t=[vsigma2t;sigma2t];
        vyt=[vyt;yt];
        sigma2t0=sigma2t;
    else
        sigma2t=gamrnd(a,b);
        yt=mu+sigma2t*randn(1);
        vsigma2t=[vsigma2t;sigma2t];
        vyt=[vyt;yt];
        sigma2t0=sigma2t;
    end
end
figure;
subplot(2,1,1);
plot(vyt);
title('niveles');
subplot(2,1,2);
plot(vsigma2t);
title('varianza');
```

Construya diferentes modelos GARCH y compare las estimaciones obtenidas de la serie de volatilidades estimada con cada uno de los modelos GARCH utilizados. Los modelos GARCH pueden ser: GARCH(1,1), EGARCH(1,1), GARCH-M(1,1), GARCH(1,1) con innovaciones t de Student, y TGARCH.

Compare los Criterios de Información Akaike (AIC) y BIC (Bayesian Information Criteria) también entre los distintos modelos. Use el "comando" de MatLab: *aicbic*.

[aic,bic] = aicbic(logL,numParam,numObs)

- numParam: número de parámetros estimados en el modelo GARCH.
- numObs: número de observaciones de la variable
- logL: valor de la verosimilitud obtenida de la convergencia del algoritmo de optimización.

Se trata de usar unos datos generados con alguna característica de las series financieras (datos con rachas aleatorias de volatilidades altas y bajas), pero no generados por algún modelo GARCH específico. De esta forma pueden compararse de una forma "justa" el comportamiento de diferentes modelos GARCH.

- 2. Piense en cómo programar bandas de confianza para las sendas de volatilidades y descríbalo en detalle.
- 3. Elija un conjunto de precios de activos relacionados entre sí y i) estime la volatilidad de los rendimientos de cada activo a partir de algún modelo GARCH; ii) estime un VAR de los logaritmos de las volatilidades estimadas; y iii) realice un

análisis de conectividad mediante una identificación generalizada, en la línea de Diebold y Yilmaz.

4. Elija el precio spot y el precio futuro de un activo. Sean ∇s_t y ∇f_t los rendimientos del spot y del futuro respectivamente. El ratio de cobertura de mínima varianza es el cociente de la covarianza incondicional del rendimiento spot y futuro ente la varianza del rendimiento futuro; esto equivale a computar la pendiente de una regresión como la siguiente: $\nabla s_t = \gamma_0 + \gamma_1 \nabla f_t + u_t, \ u_t \approx (0, \sigma^2).$ Calcule el ratio de cobertura condicional a la información en t-1 como sigue:

$$\gamma_{1} \mid \Omega_{t-1} = \frac{Cov(\nabla S_{t}, \nabla f_{t} \mid \Omega_{t-1})}{Var(\nabla f_{t} \mid \Omega_{t-1})}$$

utilizando una BEKK-GARCH o un DCC-GARCH para estimar tanto la covarianza condicional como la varianza condicional. Evalúe la efectividad de la cobertura usando el modelo de regresión para estimar el ratio de cobertura frente a la efectividad obtenida cuando se evalúa el ratio de cobertura a partir de las estimaciones del modelo GARCH multivariante.