# Lineare Algebra II Repetitorium

# Jendrik Stelzner

# 24. September 2016

# Inhaltsverzeichnis

| 1 | Jord | lannormalform                                          | 3  |
|---|------|--------------------------------------------------------|----|
|   | 1.1  | Nilpotente Endomorphismus                              | 3  |
|   | 1.2  | Allgemeine Jordannormalform                            | 5  |
|   | 1.3  | Existenz der Hauptraumzerlegung                        | 6  |
|   | 1.4  | Homogene, lineare, gewöhnliche Differentialgleichungen | 8  |
| 2 | Sim  | ultane Diagonalisierbarkeit                            | 9  |
| 3 | Ska  | larprodukträume                                        | 12 |
| 4 | Nor  | male Endomorphismen                                    | 17 |
|   | 4.1  | Grundlegende Definitionen und Eigenschaften            | 17 |
|   | 4.2  | Normalenformen für $\mathbb{K} = \mathbb{C}$           | 19 |
|   | 4.3  | Normalenformen für $\mathbb{K} = \mathbb{R}$           | 21 |
|   | 4.4  | Orthogonale Projektionen                               | 23 |
|   | 4.5  | Polarzerlegung                                         | 24 |
| 5 | Syn  | nmetrische Bilinearformen und quadratische Formen      | 25 |
|   | 5.1  | Definition quadratischer Formen                        | 25 |
|   | 5.2  | Darstellende Matrizen für Bilinearformen               | 25 |
|   | 5.3  | Nicht-entartete Bilinearformen                         | 26 |
|   | 5.4  | Normalenformen und Sylvesterscher Trägheitssatz        | 27 |
| 6 | Hau  | ptachsentransformation                                 | 31 |
| 7 | Тор  | ologische Eigenschaften ausgewählter Matrixgruppen     | 32 |
|   | 7.1  | Definition der Gruppen                                 | 32 |
|   | 7.2  | Gruppentheoretische Begriffe                           | 32 |
|   | 7.3  | Topologische Begriffe                                  | 34 |

|   |      | Topologie auf Matrixgruppen                       |    |
|---|------|---------------------------------------------------|----|
| 8 | Orie | entierung                                         | 37 |
|   | 8.1  | Definition von Orientierung                       | 37 |
|   | 8.2  | Normiertheit von alternierenden $n$ -Linearformen | 38 |
|   | 8.3  | Normierte, alternierende $n$ Linearformen         | 38 |

# 1 Jordannormalform

# 1.1 Nilpotente Endomorphismus

**Definition 1.1.** Ein Endomorphismus  $f\colon V\to V$  eines K-Vektorraums V heißt nilpotent, falls es ein  $n\in\mathbb{N}$  mit  $f^n=0$  gibt. Eine Matrix  $A\in\mathrm{M}_n(K)$  heißt nilpotent, falls es ein  $n\in\mathbb{N}$  mit  $A^n=0$  gibt.

**Lemma 1.2.** Ist  $f\colon V\to V$  ein Endomorphismus eines endlichdimensionalen K-Vektorraums V, so ist f genau dann nilpotent, wenn für jede geordnete Basis  $\mathcal B$  von V die Matrix  $\mathcal M_{\mathcal B}(f)$  nilpotent ist.

Notation 1.3. Für alle  $n \ge 1$  sei

$$J_n := \begin{pmatrix} 0 & 1 & & \\ & \ddots & \ddots & \\ & & \ddots & 1 \\ & & & 0 \end{pmatrix} \in \mathcal{M}_n(K).$$

**Theorem 1.4**. Es sei V ein endlichdimensionaler K-Vektorraum und  $f\colon V\to V$  ein nilpotenter Endomorphismus.

i) Es gibt eine geordnete Basis  $\mathcal{B}$  von V und  $n_1, \ldots, n_s \geq 1$ , so dass

$$\mathbf{M}_{\mathcal{B}}(f) = \begin{pmatrix} J_{n_1} & & \\ & \ddots & \\ & & J_{n_s} \end{pmatrix}.$$

- ii) Die Zahlen  $n_1, \ldots, n_s$  sind eindeutig bis auf Permutation.
- iii) Ist  $f^N = 0$  für ein  $N \ge 1$ , so ist  $n_i \le N$  für alle  $i = 1, \ldots, s$ .

**Korollar 1.5.** Ist  $A \in M_n(K)$  nilpotent, so gibt es  $S \in GL_n(K)$  und  $n_1, \ldots, n_s \ge 1$  mit

$$SAS^{-1} = \begin{pmatrix} J_{n_1} & & \\ & \ddots & \\ & & J_{n_s} \end{pmatrix}.$$

Dabei sind die Zahlen  $n_1, \ldots, n_s$  eindeutig bis auf Permutation, und ist  $A^N = 0$  für ein  $N \ge 1$ , so ist  $n_i \le N$  für alle  $i = 1, \ldots, s$ .

**Lemma 1.6.** Ist V ein endlichdimensionaler K-Vektorraum, und sind  $U,W,\subseteq V$  zwei Untervektorräume mit  $U\cap W=0$ , so gibt es einen Untervektorraum  $\overline{W}\subseteq V$  mit  $W\subseteq \overline{W}$  und  $V=U\oplus \overline{W}$ .

Beweis. Es sei  $\mathcal{B}_1=(u_1,\ldots,u_r)$  eine Basis von U und  $\mathcal{B}_2=(w_1,\ldots,w_s)$  eine Basis von W. Dann ist  $\mathcal{B}\coloneqq (u_1,\ldots,u_r,w_1,\ldots,w_s)$  eine Basis von  $U+W=U\oplus W$ . Ergänze  $\mathcal{B}$  zu einer Basis  $\mathcal{C}=(u_1,\ldots,u_r,w_1,\ldots,w_s,w_{s+1},\ldots,w_t)$  von V und setze  $\overline{W}\coloneqq \langle w_1,\ldots,w_t\rangle$ .  $\square$ 

Beweis der Existenz in Theorem 1.4. Für alle  $k \geq 0$  sei  $N_k := \ker(f^k)$ . Es sei  $p := \min\{n \geq 0 \mid f^n\} = 0$  der Nilpotenzindex von f

Behauptung A. Für alle  $k \geq 0$  ist  $N_{k+1} = f^{-1}(N_k)$ , und somit insbesondere  $f(N_{k+1}) \subseteq N_k$ .

Beweis. Es gilt

$$v \in f^{-1}(N_k) \iff f(v) \in N_k \iff f^k(f(v)) = 0 \iff f^{k+1}(v) = 0 \iff v \in N_{k+1}.$$

**Behauptung B.** Es Untervektorräume  $W_1, \ldots, W_p \subseteq V$  so dass

- i)  $N_k = N_{k-1} \oplus W_k$  für alle  $k = 1, \dots, p$ ,
- ii)  $f(W_k) \subseteq W_{k-1}$  für alle k = 2, ..., p, und
- iii) die Einschränkung  $f|_{W_k}$  ist injektiv für alle  $k=2,\ldots,p$ .

Beweis. Beginne mit  $W_p\subseteq V$ , so dass  $V=N_p=N_{p-1}\oplus W_p$ . Ist  $W_{k+1}$  für ein  $1\leq k\leq p-1$  definiert, so ist

$$f(W_{k+1}) \subseteq f(N_{k+1}) \subseteq N_k$$
,

und da

$$f^{-1}(N_{k-1}) \cap W_{k+1} = N_k \cap W_{k+1} = 0,$$

ist  $f(W_{k+1}) \cap N_{k-1} = 0$ . Nach Lemma 1.6 gibt es einen Untervektorraum  $W_k \subseteq N_k$  mit  $f(W_{k+1}) \subseteq W_k$  und  $N_k = N_{k-1} \oplus W_k$ . Die Injektivität von  $f|_{W_k}$  für  $k = 2, \ldots, p$  folgt aus

$$\ker(f|_{W_k}) = \ker(f) \cap W_k = N_1 \cap W_k \subseteq N_{k-1} \cap W_k = 0.$$

Wähle eine Basis  $\mathcal{B}_p = (v_1^p, \dots, v_{n_p}^p)$  von  $W_p$ . Wegen der Injektivität von  $f_{W_p}$  ist die Familie  $f(\mathcal{B}_p) \coloneqq (f(v_1^p), \dots, f(v_{n_p}^p))$  linear unabhängig, und damit zu einer Basis

$$\mathcal{B}_p = \left( f(v_1^p), \dots, f(v_{n_p}^p), v_1^{p-1}, \dots, v_{n_{p-1}}^{p-1} \right)$$

von  $W_{p-1}$  ergänzbar. Iteratives Fortführen liefert für  $W_{p-i}$  eine Basis  $\mathcal{B}_{p-i}$  de Form

$$f^{i}(v_{1}^{p}), \dots, f^{i}(v_{n_{p}}^{p})$$

$$f^{i-1}(v_{1}^{p}), \dots, f^{i-1}(v_{n_{p}}^{p})$$

$$\vdots \qquad \vdots$$

$$v_{1}^{p-i}, \dots, v_{n_{p-i}}^{p-i}.$$

Da

$$V = N_p = N_{p-1} \oplus W_p = N_{p-2} \oplus W_{p-1} \oplus W_p = \dots = N_0 \oplus W_1 \oplus \dots \oplus W_p$$
$$= W_1 \oplus \dots \oplus W_p$$

ergibt sich durch Zusammenfügen der einzelnen Basen  $\mathcal{B}_p,\dots,\mathcal{B}_1$  eine Basis  $\tilde{\mathcal{B}}$  von V von der Form

Trägt man nun dieses zweidimensionale Schema von oben nach unten, von links nach rechts in eine Familie  $\mathcal{B}$  ein, so ist dies die gewünschte Matrix.

[Hier das konkrete Vorgehen angeben.]

#### 1.2 Allgemeine Jordannormalform

**Definition 1.7.** Für einen Endomorphismus  $f: V \to V$  und einen Skalar  $\lambda \in K$  ist

$$V_{\lambda}^{\sim}(f) \coloneqq \{v \in V \mid \text{es gibt } n \ge 1 \text{ mit } (f - \lambda \operatorname{id}_V)^n(v) = 0\}$$

der Hauptraum von f zu  $\lambda$ .

**Lemma 1.8.** Es sei  $f: V \to V$  und  $\lambda \in K$ .

- i) Der Hauptraum  $V_{\lambda}^{\sim}(f)$  ist ein Untervektorraum von V.
- ii) Es gilt  $V_{\lambda}(f) \subseteq V_{\lambda}^{\sim}(f)$ .
- iii) Es ist genau dann  $V_{\lambda}^{\sim}(f) \neq 0$ , wenn  $\lambda$  ein Eigenwert von f ist.
- iv) Der Hauptraum  $V_{\lambda}^{\sim}(f)$  ist f-invariant.
- v) Ist V endlich dimensional, so gibt es  $N \geq 1$  mit  $(f - \lambda \operatorname{id}_V)^N(v) = 0$  für alle  $v \in V_\lambda^\sim(f)$ , und es gilt  $V_\lambda^\sim(f) = \ker(f - \lambda \operatorname{id}_V)^N$ .

Lemma 1.9. Es sei  $f\colon V\to V$  ein Endomorphismus eines endlichdimensionalen K-Vektorraums V.

Notation 1.10. Für alle  $n \geq 1$  und  $\lambda \in K$  ist

$$J(n,\lambda) \coloneqq \begin{pmatrix} \lambda & 1 & & \\ & \ddots & \ddots & \\ & & \ddots & 1 \\ & & & \lambda \end{pmatrix} \in \mathcal{M}_n(K)$$

der Jordanblock von Größe n zu<br/>(m Eigenwert)  $\lambda$ .

**Theorem 1.11.** Es sei  $f\colon V\to V$  ein Endomorphismus eines endlichdimensionalen K-Vektorraums V, so dass  $V = V_{\lambda_1}^{\sim}(f) \oplus \cdots \oplus V_{\lambda_t}^{\sim}(f)$  für die Eigenwerte  $\lambda_1, \ldots, \lambda_t \in K$ 

i) Es gibt eine geordnete Basis  $\mathcal{B}$  von V und  $n_1^{(1)}, \ldots, n_{s_1}^{(1)}, \ldots, n_1^{(t)}, \ldots, n_{s_t}^{(t)} \geq 1$ , so dass

$$\mathsf{M}_{\mathcal{B}}(f) = \begin{pmatrix} J(n_1^{(1)}, \lambda_1) & & & & & \\ & \ddots & & & & \\ & & J(n_{s_1}^{(1)}, \lambda_1) & & & & \\ & & & \ddots & & & \\ & & & J(n_1^{(t)}, \lambda_1) & & & \\ & & & & \ddots & & \\ & & & & J(n_{s_t}^{(t)}, \lambda_1) \end{pmatrix}$$

- ii) Die Zahlen  $(n_1^{(1)}, \dots, n_{s_1}^{(1)}), \dots, (n_1^{(t)}, \dots, n_{s_t}^{(t)})$  sind jeweils eindeutig bis auf Permu-
- iii) Es gilt  $n_1^{(i)}+\cdots+n_{s_i}^{(i)}=\dim V_{\lambda}^{\sim}(f)$  für alle  $i=1,\ldots,t.$
- iii) Es gilt  $n_1^{(i)}+\cdots+n_{s_i}^{(i)}=\dim V_\lambda^\sim(f)$  für alle  $i=1,\ldots,t.$  iv) Für alle  $i=1,\ldots,t$  gilt  $\max_{j=1,\ldots,s_i}n_j^{(i)}=\min\{p\geq 0\mid (f-\lambda_i\operatorname{id}_V)^p|_{V_{\lambda_i}^\sim(f)}=0\}.$

[Hier das konkrete Vorgehen angeben]

# 1.3 Existenz der Hauptraumzerlegung

Lemma 1.12. Es sei  $f \colon V \to V$  ein Endomorphismus eines endlichdimensionalen K-Vektorraums V.

- i) Für alle  $\lambda, \mu \in K$  mit  $\lambda \neq \mu$  ist die Einschränkung  $(f \lambda \operatorname{id}_V)|_{V_\mu^\infty(f)}$  invertierbar.
- ii) Für alle  $\lambda_1, \ldots, \lambda_t \in K$  ist die Summe  $V_{\lambda_1}^{\sim}(f) + \cdots + V_{\lambda_t}^{\sim}(f)$  direkt.

Lemma 1.13. Ist  $f \colon V \to V$  ein Endomorphismus eines endlichdimensionalen K-Vektorraums V und sind  $U,W\subseteq V$  zwei f-invariante Untervektorräume mit  $V=U\oplus W$ , so gilt

$$\chi_f(T) = \chi_{f|_U}(T) \cdot \chi_{f|_W}(T).$$

Lemma 1.14. Es sei  $f \colon V \to V$  ein Endomorphismus eines endlichdimensionalen Vektorraums V und  $\lambda \in K$ . Ferner sei  $U \subseteq V$  ein f-invarianter Untervektorraum mit V = $V_{\lambda}^{\sim}(f) \oplus U$ . Dann ist  $\lambda$  kein Eigenwert von  $f|_{U}$ , und es gilt

$$\chi_f(T) = (T - \lambda)^{\dim V_{\lambda}^{\circ}(f)} \cdot \chi_{f|_U}(T).$$

Lemma 1.15 (Fitting). Es sei  $f \colon V \to V$  ein Endomorphismus eines endlichdimensionalen K-Vektorraums V. Für alle k > 0 sei

$$N_k \coloneqq \ker f^k \quad \text{und} \quad R_k \coloneqq \operatorname{im} f^k.$$

i) Es gilt

$$0 = N_0 \subseteq N_1 \subseteq N_2 \subseteq N_3 \subseteq \cdots$$

und

$$V = R_0 \supset R_1 \supset R_2 \supset R_3 \supset \cdots$$

- ii) Für  $k \geq 0$  sind die folgenden Bedingungen äquivalent:
  - a)  $N_{k+1} = N_k$ ,
  - b)  $N_l = N_k$  für alle  $l \ge k$ ,
  - c)  $R_{k+1} = R_k$ ,
  - d)  $R_l = R_k$  für alle  $l \ge k$ .

(Wenn also eine der beiden Ketten einmal stabiliert, so sind beide Ketten von dort an stabil.)

iii) Die beiden Teilmengen  $N\coloneqq\bigcup_{k\geq 0}N_k$  und  $R\coloneqq\bigcap_{k\geq 0}R_k$  sind f-invariante Untervektorräume von V, und es gilt  $V=N\oplus R$ .

**Theorem 1.16** (Existenz der Hauptraumzerlegung). Es sei  $f\colon V\to V$  ein Endomorphismus eines endlichdimensionalen K-Vektorraums V. Dann gibt es genau dann eine Hauptraumzerlegung von V bezüglich f, wenn das charakteristische Polynom  $\chi_f(T)$  in Linearfaktoren zerfällt.

Beweis. Wenn es eine Hauptraumzerlegung gibt, dann ist f nach Theorem 1.11 trigonalisierbar. Somit zerfällt das charakteristische Polynom dann in Linearfaktoren.

Die umgekehrte Aussage verläuft per Induktion über die Dimension von V. Für dim V=0 ist die Aussage klar. Für dim V>0 sei  $\chi_f(T)=(T-\lambda_1)^{n_1}\cdots(T-\lambda_s)^{n_s}$ . Durch Anwenden von Fittings Lemma auf  $f-\lambda_1$  id $_V$  erhalten wir, dass

$$V = V_{\lambda_1}^{\sim} \oplus R$$
,

wobei  $R\subseteq V$  ein f-invarianter Untervektorraum ist. Nach Lemma 1.14 ist  $\chi_{f|_R}(T)=(T-\lambda_2)^{n_2}\cdots(T-\lambda_s)^{n_s}$ , und nach Induktionsvoraussetzung ist

$$R = R_{\lambda_2}^{\sim}(f|_R) \oplus \cdots \oplus R_{\lambda_s}^{\sim}(f|_R),$$

und somit insgesamt

$$V = V_{\lambda_1}^{\sim} \oplus R_{\lambda_2}^{\sim}(f|_R) \oplus \cdots \oplus R_{\lambda_s}^{\sim}(f|_R) \subseteq V_{\lambda_1}^{\sim} \oplus V_{\lambda_2}^{\sim}(f|_R) \oplus \cdots \oplus V_{\lambda_s}^{\sim}(f|_R) \subseteq V.$$

Korollar 1.17. Ist K ein algebraisch abgeschlossener Körper und  $f\colon V\to V$  ein Endomorphismus eines endlichdimensionalen K-Vektorraums V, so ist  $V=\bigoplus_{\lambda\in K}V_\lambda^\sim(f)$ .

Korollar 1.18 (Cayley-Hamilton für algebraisch abgeschlossene Körper). Ist K ein algebraisch abgeschlossener Körper und  $f\colon V\to V$  ein Endomorphismus eines endlichdimensionalen K-Vektorraums V (bzw.  $A\in \mathrm{M}_n(K)$ ), so ist  $\chi_f(f)=0$  (bzw.  $\chi_A(A)=0$ ).

Bemerkung 1.19. Für jeden Körper K gibt es einen algebraisch abgeschlossenen Körper  $\overline{K}$ , so dass K ein Unterkörper von  $\overline{K}$  ist. Der Satz von Cayley-Hamilton gilt daher für beliebige Körper. Er kann auch ohne die Jordan-Normalform bewiesen werden (siehe etwa Fischer).

Korollar 1.20 (Abstrakte Jordanzerlegung). Ist K ein algebraisch abgeschlossener Körper und  $f\colon V\to V$  ein Endomorphismus eines endlichdimensionalen K-Vektorraums V (bzw.  $A\in \mathrm{M}_n(K)$ ), so gibt es eindeutige Endomorphismen  $d,n\colon V\to V$  (bzw.  $D,N\in \mathrm{M}_n(K)$ ), so dass

- a) f = d + n (bzw. A = D + N),
- b) d (bzw. D) ist diagonalisierbar und n (bzw. N) ist nilpotent,
- c) d und n (bzw. D und N) kommutieren.

[Falls noch Zeit: Idee der Hauptraumzerlegung genauer erläutern, und allgemeines Lemma nennen.]

## 1.4 Homogene, lineare, gewöhnliche Differentialgleichungen

Ist  $A \in \mathrm{M}_n(\mathbb{C})$ , so lassen sich die komplexen Lösungen der Differentialgleichung

$$Ay = y'$$

für  $y \colon \mathbb{R} \to \mathbb{C}^n$  wie folgt finden:

Der Lösungsraum wird von den Spalten der Matrix  $\exp(At)$  aufgefasst (wenn man diese als Funktionen von t betrachtet). Ist  $S^{-1}AS=J$  eine Jordannormalform von A und J=D+N die entsprechende Jordanzerlegung, so ist

$$\exp(At) = \exp(SJtS^{-1}) = S\exp(Jt)S^{-1} = S\exp(Dt)\exp(Nt)S^{-1},$$

wobei im letzen Schritt genutzt wird, dass D und N kommutieren.

# 2 Simultane Diagonalisierbarkeit

**Lemma 2.1.** Es sei  $f:V\to V$  ein Endomorphismus eines K-Vektorraums V und  $U\subseteq V$  ein f-invarianter Untervektorraum. Ist  $u\in U$  mit  $u=v_1+\cdots+v_n$ , wobei  $v_i\in V_{\lambda_i}(f)$  für alle  $i=1,\ldots,n$  und  $\lambda_1,\ldots,\lambda_n\in K$  paarweise verschieden sind, so ist bereits  $v_1,\ldots,v_n\in V$ .

Beweis. Wir zeigen die Aussage per Induktion über n. Für n=1 gilt  $v_1=u\in U$ . Ist  $n\geq 2$ , so gilt

$$f(u) = f(v_1) + \dots + f(v_n) = \lambda_1 v_1 + \dots + \lambda_n v_n$$

und somit

$$U \ni \lambda_1 u - f(u) = \lambda_1 (v_1 + \dots + v_n) - (\lambda_1 v_1 + \dots + \lambda_n v_n)$$
  
=  $(\lambda_1 - \lambda_2) v_2 + \dots + (\lambda_1 - \lambda_n) v_n$ .

Da  $(\lambda_1-\lambda_i)v_i\in V_{\lambda_i}(f)$  für alle  $i=1,\ldots,n$  ergibt sich per Induktionsvoraussetzung, dass  $(\lambda_1-\lambda_i)v_i\in U$  für alle  $i=2,\ldots,n$ . Da  $\lambda_1-\lambda_i\neq 0$  für alle  $i=2,\ldots,n$  (denn die  $\lambda_j$  sind paarweise verschieden) gilt  $v_2,\ldots,v_n\in U$ . Somit gilt auch  $v_1=u-v_2-\cdots-v_n\in U$ .

**Lemma 2.2.** Ist  $f:V\to V$  ein Endomorphismus eines K-Vektorraums V, so ist die Summe  $\sum_{\lambda\in K}V_{\lambda}(f)$  direkt.

Beweis. Es seien  $\lambda_1,\ldots,\lambda_n\in K$  paarweise verschieden und  $v_i\in V_{\lambda_i}(f)$  für  $i=1,\ldots,n$ , so dass  $0=v_1+\cdots+v_n$ . Anwenden von Lemma 2.1 auf den Untervektorraum U=0 ergibt, dass  $v_1,\ldots,v_n\in 0$  und somit  $v_1,\ldots,v_n=0$ .

**Definition 2.3.** Ein Endomorphismus  $f\colon V\to V$  eines K-Vektorraums V heißt diagonalisierbar, falls  $V=\bigoplus_{\lambda\in K}V_\lambda$ .

Bemerkung 2.4. Es sei  $f \colon V \to V$  ein Endomorphismus eines K-Vektorraums V.

- i) Nach Lemma 2.2 ist f genau dann diagonalisierbar, wenn  $V = \sum_{\lambda \in K} V_{\lambda}(f)$ . Es genügt also, jeden Vektor als Summe, bzw. Linearkombination von Eigenvektoren zu schreiben.
- ii) Ist V endlichdimensional, so ist f genau dann diagonalisierbar, wenn V eine Basis aus Eigenvektoren von f besitzt.

Ist nämlich  $V=\bigoplus_{\lambda\in K}V_\lambda(f)$  und sind  $\lambda_1,\ldots,\lambda_n\in K$  die Eigenwerte von f, so ist  $V_\mu(f)=0$  für alle  $\mu\in K\smallsetminus\{\lambda_1,\ldots,\lambda_n\}$  und somit  $V=V_{\lambda_1}(f)\oplus\cdots\oplus V_{\lambda_n}(f).$  Wählt man nun von jeder dieser endlich vielen Eigenräume eine Basis, so ergibt sich durch Zusammenfügen dieser Basen eine Basis von V, die aus Eigenvektoren besteht.

Hat andererseits V eine Basis aus Eigenvektoren, so ist jeder Vektor  $v \in V$  eine Linearkombination von Eigenvektoren und somit  $V = \sum_{\lambda \in K} V_{\lambda}(f)$ .

**Proposition 2.5.** Ist  $f\colon V\to V$  ein diagonalisierbarer Endomorphismus eines K-Vektorraums V, so ist für jeden f-invarianten Untervektorraum  $U\subseteq V$  auch die Einschränkung  $f|_U\colon U\to U$  diagonalisierbar, und es gilt

$$U = \bigoplus_{\lambda \in K} [U \cap V_{\lambda}(f)].$$

Beweis. Es sei  $u \in U$ . Da f diagonalisierbar ist, gibt es paarweise verschiedene Eigenwerte  $\lambda_1,\ldots,\lambda_n \in K$  und  $v_i \in V_{\lambda_i}(f)$  mit  $u=v_1+\cdots+v_n$ . Nach Lemma 2.1 gilt bereits  $v_1,\ldots,v_n \in U$ . Da damit  $v_i \in U \cap V_{\lambda_i}(f) = U_{\lambda_i}(f|_U)$  für alle  $i=1,\ldots,n$  gilt, ergibt sich  $u \in \sum_{i=1}^n U_{\lambda_i}(f|_U) = \sum_{\lambda \in K} U_{\lambda}(f|_U)$ . Damit ist  $U = \sum_{\lambda} U_{\lambda}(f)$ , und somit  $U = \bigoplus_{\lambda} U_{\lambda}(f|_U)$ . Die letzte Gleichung ergibt sich mit  $U_{\lambda}(f|_U) = U \cap V_{\lambda}(f)$ .

**Definition 2.6.** Eine Kollektion von Endomorphismen  $f_1, \ldots, f_n \colon V \to V$  eines K-Vektorraums V heißt  $simultan\ diagonalisierbar$ , falls

$$V = \bigoplus_{\lambda_1, \dots, \lambda_n \in K} \left( \underbrace{V_{\lambda_1}(f_1) \cap \dots \cap V_{\lambda_n}(f_n)}_{\text{gemeinsame Eigenvektoren}} \right).$$

**Bemerkung 2.7.** Ist V endlichdimensional, so sind  $f_1, \ldots, f_n \colon V \to V$  genau dann simultan diagonalisierbar, wenn V eine Basis aus gemeinsamen Eigenvektoren von  $f_1, \ldots, f_n$  besitzt.

**Theorem 2.8.** Eine Kollektion von Endomorphismes  $f_1, \ldots, f_n \colon V \to V$  eines K-Vektorraums V ist genau dann simultan diagonalisierbar, wenn die Endomorphismen kommutieren und jeweils einzeln diagonalisierbar sind.

**Lemma 2.9.** Sind  $f, g \colon V \to V$  zwei kommutierende Endomorphismen eines K-Vektorraums V, so ist  $V_{\lambda}(f)$  für alle  $\lambda \in K$  invariant unter g.

Beweis von Theorem 2.8. Ist  $v \in V$  ein gemeinsamer Eigenvektor von  $f_1, \ldots, f_n$ , so gilt  $f_i(f_i(v)) = f_i(f_i(v))$  für alle  $i, j = 1, \ldots, n$ , denn ist  $f_i(v) = \lambda_i v$ , so gilt

$$f_i(f_j(v)) = f_i(\lambda_j v) = \lambda_j f_i(v) = \lambda_j \lambda_i v = \lambda_i \lambda_j v = \lambda_i f_j(v) = f_j(\lambda_i v) = f_j(f_i(v)).$$

Sind  $f_1, \ldots, f_n$  simultan diagonalisierbar, so ist jeder Vektor  $v \in V$  die Summe von gemeinsamen Eigenvektoren  $v_1, \ldots, v_n \in V$ , also  $v = v_1 + \cdots + v_n$ , weshalb

$$f_i(f_i(v)) = f_i(f_i(v_1)) + \dots + f_i(f_i(v_n)) = f_i(f_i(v_1)) + \dots + f_i(f_i(v_n)) = f_i(f_i(v)).$$

Also gilt dann  $f_i f_j = f_j f_i$  für alle  $i, j = 1, \dots, n$ .

Umgekehrt seien nun  $f_1,\ldots,f_n$  kommutierend und einzeln diagonalisierbar. Wir zeigen per Induktion über n, dass  $f_1,\ldots,f_n$  simultan diagonalisierbar sind. Für n=1 ist nichts zu zeigen.

Es sei nun  $n \geq 2$ . Da  $f_1$  diagonalisierbar ist, gilt  $V = \bigoplus_{\lambda \in K} V_{\lambda}(f_1)$ . Da  $f_1, \ldots, f_n$  kommutieren ist  $V_{\lambda}(f_1)$  für alle  $\lambda \in K$  invariant unter  $f_2, \ldots, f_n$ . Da  $f_2, \ldots, f_n$  diagonalisierbar sind, sind es auch die Einschränkungen  $f_i|_{V_{\lambda}(f_1)}$  für alle  $i=2,\ldots,n$  und  $\lambda \in K$ . Da  $f_2,\ldots,f_n$  kommutieren, kommutieren auch diese Einschränkungen. Per Induktionsvorraussetzung gilt daher

$$V_{\lambda}(f_{1}) = \bigoplus_{\lambda_{2}, \dots, \lambda_{n}} \left( (V_{\lambda}(f_{1}))_{\lambda_{2}} (f_{2}|_{V_{\lambda}(f_{1})}) \cap \dots \cap (V_{\lambda}(f_{1}))_{\lambda_{n}} (f_{n}|_{V_{\lambda}(f_{1})}) \right)$$
$$= \bigoplus_{\lambda_{2}, \dots, \lambda_{n}} \left( V_{\lambda}(f_{1}) \cap V_{\lambda_{2}}(f_{2}) \cap V_{\lambda_{n}}(f_{n}) \right).$$

Somit gilt

$$V = \bigoplus_{\lambda_1 \in K} V_{\lambda_1}(f_1) = \bigoplus_{\lambda_1 \in K} \bigoplus_{\lambda_2, \dots, \lambda_n \in K} \left( V_{\lambda_1}(f_1) \cap V_{\lambda_2}(f_2) \cap V_{\lambda_n}(f_n) \right)$$
$$= \bigoplus_{\lambda_1, \dots, \lambda_n \in K} \left( V_{\lambda_1}(f_1) \cap \dots \cap V_{\lambda_n}(f_n) \right).$$

# 3 Skalarprodukträume

**Definition 3.1.** Eine Abbildung  $f\colon V\to W$  zwischen  $\mathbb C$ -Vektorräumen V und W heißt  $(\mathbb C$ -) antilinear

$$f(v_1 + v_2) = f(v_1) + f(v_2)$$
 und  $f(\lambda v_1) = \overline{\lambda} f(v_1)$ 

für alle  $v_1, v_2 \in V$  und  $\lambda \in \mathbb{C}$ .

**Definition 3.2.** Es sei K ein Körper.

i) Eine Abbildung  $b \colon V \times W \to Z$  mit K-Vektorräumen V, W, Z heißt K-bilinear, falls

$$b(v_1 + v_2, w) = b(v_1, w) + b(v_2, w),$$
  

$$b(v, w_1 + w_2) = b(v, w_1) + b(v, w_2),$$
  

$$b(\lambda v, w) = \lambda b(v, w) = b(v, \lambda w)$$

für alle  $v,v_1,v_2\in V$ ,  $w,w_1,w_2\in W$  und  $\lambda\in K$ . Ist zusätzlich Z=K, so ist b eine Bilinearform. Gilt außerdem noch V=W und

$$b(v_1, v_2) = b(v_2, v_1)$$
 für alle  $v_1, v_2 \in V$ ,

so ist b eine symmetrische Bilinearform.

ii) Eine Abbildung  $s \colon V \times W \to Z$  mit  $\mathbb{C}$ -Vektorräumen V, W, Z heißt sesquilinear, falls

$$b(v_1 + v_2, w) = b(v_1, w) + b(v_2, w),$$
  

$$b(v, w_1 + w_2) = b(v, w_1) + b(v, w_2),$$
  

$$b(\lambda v, w) = \lambda b(v, w) \text{ und } b(v, \lambda w) = \overline{\lambda}(w)$$

für alle  $v,v_1,v_2\in V,\,w,w_1,w_2\in W$  und  $\lambda\in\mathbb{C}.$  Ist zusätzlich  $Z=\mathbb{C},$  so ist s eine Sesquilinearform. Gilt außerdem noch V=W und

$$s(v_1, v_2) = \overline{s(v_2, v_1)}$$
 für alle  $v_1, v_2 \in V$ ,

so heißt s heißt hermitsch.

**Lemma 3.3.** Ist  $s \colon V \times V \to \mathbb{C}$  eine hermitsche Bilinearform, so ist  $s(v,v) \in \mathbb{R}$  für alle  $v \in V$ .

**Notation 3.4.** Es ist  $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$ .

**Definition 3.5.** Eine Bilinearform (bzw. Sesquilinearform)  $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{K}$  heißt

- i) positiv definit, falls  $\langle v, v \rangle > 0$  für alle  $v \in V$  mit  $v \neq 0$ ,
- ii) positiv semidefinit, falls  $\langle v, v \rangle \geq 0$  für alle  $v \in V$ ,
- iii) negativ definit, falls  $\langle v, v \rangle < 0$  für alle  $v \in V$  mit  $v \neq 0$ ,

- iv) negativ semidefinit, falls  $\langle v, v \rangle \leq 0$  für alle  $v \in V$ , und
- v) indefinit, wenn sie keine der obigen Bedingungen erfüllt.

**Definition 3.6.** Ein *Skalarprodukt* auf einem  $\mathbb{K}$ -Vektorraum V ist eine positiv definite, symmetrische (bzw. hermitsche) Bilinearform (bzw. Sesquilinearform)  $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{K}$ .

Ein Skalarproduktraum ist ein Tupel  $(V, \langle \cdot, \cdot \rangle)$  bestehend aus einem Vektorraum V und einem Skalarprodukt  $\langle \cdot, \cdot \rangle$  auf V.

Bemerkung 3.7. Man spricht meist nur von einem Skalarproduktraum V, nennt das Skalarprodukt also nicht explizit mit. Im Falle  $\mathbb{K}=\mathbb{R}$  spricht man auch von einem *euklidischen Vektorraum*, und im Falle  $\mathbb{K}=\mathbb{C}$  von einem *unitären Vektorraum* 

**Beispiel 3.8.** Das *Standardskalarprodukt* auf  $\mathbb{R}^n$  ist durch

$$\langle x, y \rangle \coloneqq \sum_{i=1}^{n} x_i y_i = x^T y \quad \text{für alle } x, y \in \mathbb{R}^n$$

definiert. Das Standardskalarprodukt auf  $\mathbb{C}^n$  ist durch

$$\langle x, y \rangle \coloneqq \sum_{i=1}^n x_i \overline{y_i} = x^T \overline{y} \quad \text{für alle } x, y \in \mathbb{C}^n$$

definiert

**Definition 3.9.** Für einen Skalarproduktraum V und  $v \in V$  ist  $||v|| := \sqrt{\langle v, v \rangle}$ . Der Vektor v heißt *normiert*, wenn ||v|| = 1.

Proposition 3.10 (Cauchy-Schwarz). Ist V ein Skalarproduktraum, so ist

$$|\langle v, w \rangle| \le ||v|| ||w||$$
 für alle  $v, w \in V$ ,

und Gleichheit gilt genau dann, wenn v und w linear abhängig sind.

**Definition 3.11**. Ist V ein Skalarproduktraum, so ist der *(unorientierte) Winkel* zwischen zwei Vektoren  $v, w \in V$  der eindeutige Winkel  $\theta \in [0, \pi]$  mit

$$\cos(\theta) = \frac{\langle v, w \rangle}{\|v\| \|w\|},$$

und er wird mit  $\triangleleft(v, w)$  bezeichnet.

Korollar 3.12. Ist V ein Skalarproduktraum, so ist die Abbildung  $\|\cdot\|:V\to\mathbb{R}$  eine Norm auf V.

Beweis. Die Dreiecksungleichung ergibt sich durch

$$\begin{split} \|x+y\|^2 & \leq \langle x+y, x+y \rangle = \|x\|^2 + 2\operatorname{Re}(\langle x,y \rangle) + \|y\|^2 \\ & \leq \|x\|^2 + 2|\langle x,y \rangle| + \|y\|^2 \leq \|x\|^2 + 2\|x\|\|y\| + \|y\|^2 = (\|x\| + \|y\|)^2. \quad \Box \end{split}$$

Lemma 3.13 (Polarisationsformel). Ist V ein euklidischer Vektorraum, so ist

$$\langle v,w\rangle = \frac{\|v+w\|^2 - \|v\|^2 - \|w\|^2}{2} \quad \text{für alle } v,w \in V.$$

Ist V ein unitärer Vektorraum, so ist

$$\langle v,w\rangle = \frac{\|v+w\|^2 - \|v\|^2 - \|w\|^2}{2} + i\frac{\|v+iw\|^2 - \|v\|^2 - \|iw\|^2}{2} \quad \text{für alle } v,w\in V.$$

Das Skalarprodukt ist durch die Norm also eindeutig bestimmt.

Bemerkung 3.14. Ist  $v \in V$  mit  $v \neq 0$ , so ist der Vektor v/||v|| normiert. Man sagt, dass man v normiert.

**Definition 3.15**. Es sei V ein Skalarproduktraum.

- i) Zwei Vektoren  $u, w \in V$  heißen orthogonal (zueinander), geschrieben als  $u \perp w$ , wenn  $\langle u, w \rangle = 0$ .
- ii) Zwei Untervektorräume  $U,W\subseteq V$  heißen orthogonal (zueinander), wenn  $u\perp w$  für alle  $u\in U$  und  $w\in W$ .
- iii) Ist  $U \subseteq V$  ein Untervektorraum, so ist

$$U^{\perp} \coloneqq \{ v \in V \mid \langle u, v \rangle = 0 \text{ für alle } u \in U \}$$

das orthogonale Komplement von U (in V).

Bemerkung 3.16. Zwei Vektoren  $v, w \in V$  eines Skalarproduktraums V sind genau dann orthogonal zueinander, wenn  $\forall (v, w) = \pi/2 (= 90^{\circ})$ .

Lemma 3.17. Es sei V ein Skalarproduktraum.

- i) Ist ein Vektor  $v \in V$  zu jedem Vektor  $w \in V$  orthogonal, so gilt bereits v = 0.
- ii) Für jeden Untervektorraum  $U \subseteq V$  ist  $U \cap U^{\perp} = 0$ .

Definition 3.18. Es sei V ein Skalarproduktraum.

- i) Eine Familie  $(v_i)_{i\in I}$  von Vektoren  $v_i\in V$  heißt *orthogonal*, wenn  $v_i\perp v_j$  für all  $i\neq j$ . Die Familie heißt *nomiert*, falls  $v_i$  für alle  $i\in I$  normiert ist. Ist die Familie orthogonal und normiert, so heißt sie *orthonormal*.
- ii) Eine Teilmenge  $S\subseteq V$  heißt orthogonal, wenn  $v\perp w$  für alle  $v,w\in S$  mit  $v\neq w$ . Die Teilmenge heißt nomiert, falls jeder Vektor  $v\in S$  normiert ist. Ist S orthogonal und normiert, so heißt S orthogonal.

**Lemma 3.19.** Es sei V ein Skalarproduktraum.

- 1. Eine Familie  $(v_i)_{i\in I}$  von Vektoren  $v_i\in V$  ist genau dann orthonormal wenn  $\langle v_i,v_j\rangle=\delta_{ij}$  für alle  $i,j\in I$ .
- 2. Eine Teilmenge  $S \subseteq V$  ist genau dann orthonormal, wenn  $\langle v, w \rangle = \delta_{v,w}$  für alle  $v, w \in S$ .

**Lemma 3.20.** Es sei V ein Skalarproduktraum und  $(v_i)_{i\in I}$  eine orthogonale Familie von Vektoren  $v_i \in V$  mit  $v_i \neq 0$  für alle  $i \in I$ . Dann ist  $(v_i)_{i\in I}$  linear unabhängig. Insbesondere ist jede orthonormale Familie linear unabhängig.

**Definition 3.21.** Eine orthonormale Basis eines Skalarproduktraums V heißt *Orthonormal-basis* von V.

**Proposition 3.22.** Es sei  $(v_i)_{i\in I}$  eine Orthonormalbasis eines Skalarproduktraums V. Für jedes  $w\in V$  ist  $\langle w,v_i\rangle=0$  für fast alle  $i\in I$ , und es gilt

$$w = \sum_{i \in I} \langle w, v_i \rangle v_i$$
 sowie  $\|w\|^2 = \sum_{i \in I} \langle w, v_i \rangle^2$ .

für alle  $w \in V$ . Für alle  $w_1, w_2 \in V$  gilt

$$\langle w_1, w_2 \rangle = \sum_{i \in I} \langle w_1, v_i \rangle \langle v_i, w_2 \rangle.$$

**Theorem 3.23** (Gram-Schmidt). Es sei V ein Skalarproduktraum und  $(v_1,\ldots,v_n)$  eine linear unabhängige Familie von Vektoren  $v_1,\ldots,v_n\in V$ . Iterativ seien die Familien  $(\tilde{w}_1,\ldots,\tilde{w}_n)$  und  $(w_1,\ldots,w_n)$  durch

- $\tilde{w}_1 \coloneqq v_1$ ,
- $w_i := \tilde{w}_i / \|\tilde{w}_i\|$  für alle  $i = 1, \ldots, n$ , und
- $\tilde{w}_i \coloneqq v_i \langle v_i, w_1 \rangle w_1 \dots \langle v_i, w_{i-1} \rangle w_{i-1}$  für alle  $i = 2, \dots, n$

definiert. Dann ist die Familie  $(w_1, \ldots, w_n)$  orthonormal, und es gilt

$$\langle w_1, \dots, w_i \rangle = \langle v_1, \dots, v_i \rangle$$
 für alle  $i = 1, \dots, n$ .

**Bemerkung 3.24**. Das obige Gram-Schmidt-Verfahren lässt sich auch auf unendliche abzählbare Familien  $(v_1, v_2, v_3, \dots)$  anwenden.

Korollar 3.25. Es sei V ein endlichdimensionaler Skalarproduktraum.

- 1. Ist  $U \subseteq V$  ein Untervektorraum, und  $\mathcal{B} = (v_1, \dots, v_m)$  eine Orthonormalbasis von U, so lässt sich  $\mathcal{B}$  zu einer Orthonormalbasis  $\mathcal{C} = (v_1, \dots, v_m, v_{m+1}, \dots, v_n)$  von V ergänzen.
- 2. Es gibt eine Orthonormalbasis von V.
- 3. Für jeden Untervektorraum  $U \subseteq V$  ist  $V = U \oplus U^{\perp}$ .

Korollar 3.26. Ist  $U \subseteq V$  ein Untervektorraum eines endlichdimensionalen Skalarproduktraums V, so gilt dim  $U^{\perp} = \dim V - \dim U$  und  $(U^{\perp})^{\perp} = U$ .

Beweis. Dass  $\dim U^\perp=\dim V-\dim U$  ergibt sich aus  $V=U\oplus U^\perp$ . Es ergibt sich direkt, dass  $U\subseteq (U^\perp)^\perp$ , und da

$$\dim(U^\perp)^\perp = \dim V - \dim U^\perp = \dim U$$

gilt bereits Gleichheit.

Proposition 3.27. Ist V ein Skalar<br/>produktraum, so ist die Abbildung

$$\Phi \colon V \to V^*, \quad v \mapsto \langle -, v \rangle$$

injektiv und  $\mathbb{R}$ -linear (bzw.  $\mathbb{C}$ -antilinear). Ist V endlichdimensional, so ist  $\Phi$  ein Isomorphismus von  $\mathbb{R}$ -Vektorräumen (bzw. Antiisomorphismus von  $\mathbb{C}$ -Vektorräumen).

# 4 Normale Endomorphismen

Im Folgenden seien alle Vektorräume endlichdimensional, sofern nicht anders angegeben.

### 4.1 Grundlegende Definitionen und Eigenschaften

**Proposition 4.1.** Für zwei Skalarprodukträume V und W gibt es für jede  $\mathbb{K}$ -lineare Abbildung  $f:V\to W$  eine eindeutige  $\mathbb{K}$ -lineare Abbildung  $g:W\to V$  mit

$$\langle f(v), w \rangle = \langle v, g(w) \rangle$$
 für alle  $v \in V$  und  $w \in W$ .

**Definition 4.2.** In der Situation von Proposition 4.1 ist die Abbildung g die zu f adjungierte Abbildung, und wird mit  $f^*$  notiert.

**Definition 4.3.** Für 
$$A \in M(m \times n, \mathbb{K})$$
 ist  $A^* := \overline{A^t} = (\overline{A})^t \in M(n \times m, \mathbb{K})$ .

**Proposition 4.4.** Es sei V ein Skalarproduktraum mit geordneter Orthonormalbasis  $\mathcal B$  und W ein Skalarproduktraum mit geordneter Orthonormalbasis  $\mathcal C$ . Für jede  $\mathbb K$ -lineare Abbildung  $f\colon V\to W$  gilt dann

$$M_{\mathcal{C},\mathcal{B}}(f^*) = M_{\mathcal{B},\mathcal{C}}(f)^*$$
.

**Proposition 4.5.** Es seien U,V,W drei Skalarprodukträume und  $f\colon V\to W,\,g\colon U\to V$  zwei  $\mathbb K$ -lineare Abbildungen und  $\lambda\in K$ 

- i) Es gilt  $id_V^* = id_V$  und  $(fg)^* = g^*f^*$ .
- ii) Es gilt
  - a)  $(f^*)^* = f$ ,
  - b)  $(f+g)^* = f^* + g^*$  und
  - c)  $(\lambda f)^* = \overline{\lambda} f^*$ .

Insbesondere ist die Abbildung  $\operatorname{Hom}_{\mathbb{K}}(V,W) \to \operatorname{Hom}_{\mathbb{K}}(W,V), f \mapsto f^*$  ein Isomorphismus (bzw. Antiisomorphismus) von  $\mathbb{R}$ -Vektorräumen (bzw.  $\mathbb{C}$ -Vektorräumen).

iii) Die Abbildung f ist genau dann ein Isomorphismus, wenn  $f^*$  ein Isomorphismus ist.

**Definition 4.6.** Ein Endomorphismus  $f: V \to V$  eines Skalarproduktraums V heißt

- i) normal, falls f und  $f^*$  kommutieren (also  $ff^* = f^*f$ ),
- ii) selbstadjungiert, falls  $f = f^*$ ,
- iii) antiselbstadjungiert, falls  $f^* = -f$ ,
- iv) orthogonal (für  $\mathbb{K} = \mathbb{R}$ ), bzw. unitär (für  $\mathbb{K} = \mathbb{C}$ ) falls f ein Isomorphismus mit  $f^* = f^{-1}$  ist.

Für den Fall  $\mathbb{K}=\mathbb{C}$  sei

$$U(V) := \{ f \colon V \to V \mid f \text{ ist unitar} \}$$

und für den Fall  $\mathbb{K}=\mathbb{R}$  sei

$$O(V) := \{ f \colon V \to V \mid f \text{ ist orthogonal.} \}$$

Eine Matrix  $A \in M_n(\mathbb{K})$  heißt

- I) normal, falls A und  $A^*$  kommutieren (also  $AA^* = A^*A$ ),
- II) selbstadjungiert, falls  $A = A^*$ ,
- III) antiselbstadjungiert, falls  $A^* = -A$ ,
- IV) orthogonal (für  $\mathbb{K} = \mathbb{R}$ ), bzw. unitär (für  $\mathbb{K} = \mathbb{C}$ ) falls A invertierbar ist und  $A^* = A^{-1}$ .

Für alle  $n \ge 1$  seien

$$O(n) := \{ O \in M_n(\mathbb{R}) \mid O \text{ ist orthogonal} \} \text{ und } U(n) := \{ U \in M_n(\mathbb{C}) \mid U \text{ ist unitar} \}.$$

**Proposition 4.7.** i) Ist V ein Skalar produktraum, so ist  $\mathrm{O}(V)$ , bzw.  $\mathrm{U}(V)$  eine Untergruppe von  $\mathrm{GL}(V)$ .

ii) Für alle  $n \geq 1$  ist  $\mathrm{O}(n)$ , bzw.  $\mathrm{U}(n)$  eine Untergruppe von  $\mathrm{GL}_n(\mathbb{R})$ , bzw.  $\mathrm{GL}_n(\mathbb{C})$ .

**Lemma 4.8.** Es sei  $f:V\to V$  ein Endomorphismus eines Skalarproduktraums V, und  $\mathcal B$  eine geordnete Basis von V. Dann ist f genau dann normal, selbstadjungiert, antiselbstadjungiert, orthogonal, bzw. unitär, wenn  $\mathrm{M}_{\mathcal B}(f)$  normal, selbstadjungiert, antiselbstadjungiert, orthogonal, bzw. unitär ist.

**Proposition 4.9.** Es sei  $f \colon V \to V$  ein normaler Endomorphismus eines Skalarproduktraums V.

- i) Für alle  $v \in V$  ist  $||f(v)|| = ||f^*(v)||$ .
- ii) Es ist  $V_{\lambda}(f^*) = V_{\overline{\lambda}}(f)$  für alle  $\lambda \in \mathbb{K}$ , also haben f und  $f^*$  die gleichen Eigenvektoren zu jeweils konjugierten Eigenwerten.
- iii) Für alle  $\lambda, \mu \in \mathbb{K}$  mit  $\lambda \neq \mu$  ist  $V_{\lambda}(f) \perp V_{\mu}(f)$ .
- iv) Für  $v \in V$  und  $n \ge 1$  mit  $f^n(v) = 0$  ist bereits f(v) = 0.
- v) Für alle  $\lambda \in V$  ist  $V_{\lambda}^{\sim}(f) = V_{\lambda}(f)$ .
- vi) Es ist im  $f^* = (\ker f)^{\perp}$  und  $\ker f^* = (\operatorname{im} f)^{\perp}$ .
- vii) Ein Untervektorraum  $U\subseteq V$  ist genau dann f-invariant, wenn  $U^\perp$  invariant unter  $f^*$  ist.

**Proposition 4.10.** Für einen Endomorphismus  $f\colon V\to V$  eines Skalarproduktraums V sind die folgenden Bedingungen äquivalent:

- i) f ist orthogonal (für  $\mathbb{K} = \mathbb{R}$ ), bzw. unitär (für  $\mathbb{K} = \mathbb{C}$ ), d.h. f ist ein Isomorphismus mit  $f^* = f^{-1}$ .
- ii) Es ist  $ff^* = id_V$ .
- iii) Es ist  $f^*f = \mathrm{id}_V$ .
- iv) Für alle  $v \in V$  ist ||f(v)|| = ||v||.
- v) Für alle  $v_1, v_2 \in V$  ist  $\langle f(v_1), f(v_2) \rangle = \langle v_1, v_2 \rangle$ .

Korollar 4.11. Für jede Matrix  $A \in \mathrm{M}_n(\mathbb{K})$  sind die folgenden Bedingungen äquivalent:

- i) A ist orthogonal (für  $\mathbb{K}=\mathbb{R}$ ), bzw. unitär (für  $\mathbb{K}=\mathbb{C}$ ), d.h. A ist invertierbar mit  $A^*=A^{-1}$ .
- ii) Es ist  $AA^* = I$ .
- iii) Es ist  $A^*A = I$ .
- iv) Für alle  $x \in \mathbb{K}^n$  ist ||Ax|| = ||x||.
- v) Für alle  $x, y \in \mathbb{K}^n$  ist  $\langle Ax, Ay \rangle = \langle x, y \rangle$ .
- vi) Die Spalten von A sind eine Orthonormalbasis von  $\mathbb{K}^n$ .
- vii) Die Zeilen von A sind eine Orthonormalbasis von  $\mathbb{K}^n$ .

#### **4.2** Normalenformen für $\mathbb{K} = \mathbb{C}$

**Theorem 4.12.** Es sei  $f\colon V\to V$  ein Endomorphismus eines unitären Vektorraums V. Die folgenden Bedingungen sind äquivalent:

- i) f ist normal.
- ii) V hat eine Orthonormalbasis aus Eigenvektoren von f.
- iii) Für jeden f-invarianten Untervektorraum  $U \subseteq V$  ist auch  $U^{\perp}$  invariant unter f.

Beweis. [i)  $\Longrightarrow$  ii)] Da  $\mathbb C$  algebraisch abgeschlossen und V endlichdimensional ist, gibt es eine Hauptraumzerlegung  $V=\bigoplus_{\lambda\in K}V_\lambda^\sim(f)$ . Da f normal ist gilt  $V_\lambda^\sim(f)=V_\lambda(f)$  für alle  $\lambda\in K$ , we shalb bereits  $V=\bigoplus_{\lambda\in K}V_\lambda(f)$ . Also ist f diagonalisierbar. Für jedes  $\lambda\in K$  sei  $\mathcal B_\lambda$  eine Orthonormalbasis von  $V_\lambda(f)$ . Da die Summe  $V=\bigoplus_{\lambda\in K}V_\lambda(f)$  orthogonal ist ergibt sich durch Zusammenfügen der  $\mathcal B_\lambda$  eine Orthonormalbasis  $\mathcal B$  von V.

- [ii)  $\implies$  i)] Es sei  $\mathcal{B}$  eine geordnete Orthonormalbasis von V aus Eigenvektoren von f. Dann ist  $\mathcal{M}_{\mathcal{B}}(f)$  eine Diagonalmatrix. Auch  $\mathcal{M}_{\mathcal{B}}(f^*) = \mathcal{M}_{\mathcal{B}}(f)^*$  ist eine Diagonalmatrix. Deshalb kommutierne  $\mathcal{M}_{\mathcal{B}}(f)$  und  $\mathcal{M}_{\mathcal{B}}(f^*)$ , und somit auch f und  $f^*$ .
- [ii)  $\Longrightarrow$  iii)] Da f diagonalisierbar ist, ist auch die Einschränkung  $f|_U$  diagonalisierbar. Also ist  $U = \sum_{\lambda \in K} U_{\lambda}(f|_U)$ . Da jeder Eigenvektor von U auch ein Eigenvektor von  $f^*$  ist, ist U deshalb auch invariant unter  $f^*$ . Somit ist  $U^{\perp}$  invariant unter f.

[iii)  $\Longrightarrow$  ii)] Es sei  $v_1 \in V$  ein normierter Eigenvektor von V. Da  $U_1 \coloneqq \langle v_1 \rangle$  invariant unter f ist, ist auch  $U_1^{\perp}$  invariant unter f. Es sei  $v_2 \in U_1^{\perp}$  ein normierter Eigenvektor von  $f|_U$  und  $U_2 \coloneqq \langle u_1, u_2 \rangle$ . Iterativ ergeben sich somit orthonormale  $v_1, \ldots, v_n \in V$  für alle  $1 \le n \le \dim V$ . Insbesondere ist  $(v_1, \ldots, v_{\dim V})$  eine Orthonormalbasis von V.

Korollar 4.13. Für  $A\in \mathrm{M}_n(\mathbb{C})$  sind die folgenden Bedingungen äquivalent:

- i) A ist normal.
- ii) Es gibt eine unitäre Matrix  $U \in U(n)$ , so dass  $UAU^{-1} = UAU^*$  in Diagonalgestalt ist.

Beweis. Wir versehen  $\mathbb{C}^n$  mit dem Standardskalarprodukt. Die Matrix A entpsricht der linearen Abbildung  $f\colon \mathbb{C}^n \to \mathbb{C}^n$  mit f(x) = Ax für alle  $x \in \mathbb{C}^n$ . Bezüglich der Standardbasis  $\mathcal{S} = (e_1, \dots, e_n)$  von  $\mathbb{C}^n$  ist  $\mathcal{M}_{\mathcal{S}}(f) = A$  normal. Da  $\mathcal{S}$  eine Orthonormalbasis von  $\mathbb{C}^n$  ist, folgt damit, dass f normal ist.

Es gibt also eine Orthonormalbasis  $\mathcal{B}=(v_1,\ldots,v_n)$  von  $\mathbb{C}^n$ , so dass  $\mathrm{M}_{\mathcal{B}}(f)$  eine Diagonalmatrix ist. Ist  $V\in\mathrm{M}_n(\mathbb{C})$  die Matrix, deren Spalten die Vektoren  $v_1,\ldots,v_n$  sind, so gilt  $\mathrm{M}_{\mathcal{B}}(f)=V^{-1}AV$ .

Da die Spalten von V ein Orthonormalbasis von  $\mathbb{C}^n$  sind, ist V unitär. Folglich ist auch  $U \coloneqq V^{-1}$  unitär, und  $UAU^{-1} = V^{-1}AU = M_{\mathcal{B}}(f)$  ist eine Diagonalmatrix.  $\square$ 

**Proposition 4.14.** Es sei  $f\colon V\to V$  ein Endomorphismus eines unitären Vektorraums V.

- i) f ist genau dann selbstadjungiert, wenn f normal mit reellen Eigenwerten ist.
- ii) f ist genau dann antiselbstadjungiert, wenn f normal mit rein imaginären Eigenwerten ist.
- iii) f ist genau dann unitär, wenn f normal ist und alle Eigenwerte Betrag 1 haben.

Beweis. Wir zeigen beispielsweise die dritte Aussage: Da unitäre Endomorphismen normal sind, genügt es zu zeigen, dass ein normaler Endomorphismus  $f\colon V\to V$  genau dann unitär ist, wenn alle Eigenwerte von f Betrag 1 haben.

Da f normal ist gibt es eine Orthonormalbasis  $\mathcal{B}$  von V, so dass

$$M_{\mathcal{B}}(f) = \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{pmatrix}.$$

Nun ist f genau dann unitär, wenn  $M_{\mathcal{B}}(f^*)w = M_{\mathcal{B}}(f^{-1})$ . Da

$$M_{\mathcal{B}}(f^*) = M_{\mathcal{B}}(f)^* = \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{pmatrix}^* = \begin{pmatrix} \overline{\lambda_1} & & \\ & \ddots & \\ & & \overline{\lambda_n} \end{pmatrix}$$

gilt dies genau dann, wenn  $\lambda_i \overline{\lambda_i} = 1$  für alle  $i = 1, \dots n$ . Da  $\lambda_i \overline{\lambda_i} = |\lambda_i|^2$  zeigt dies die Aussage.

**Korollar 4.15.** Es sei  $A \in M_n(\mathbb{C})$ .

- i) A ist genau dann selbstadjungiert, wenn es  $U \in \mathrm{U}(n)$  gibt, so dass  $UAU^{-1}$  eine Diagonalmatrix mit reellen Diagonaleinträgen ist.
- ii) A ist genau dann antiselbstadjungiert, wenn es  $U \in \mathrm{U}(n)$  gibt, so dass  $UAU^{-1}$  eine Diagonalmatrix mit rein imaginären Diagonaleinträgen ist.
- iii) A ist genau dann unitär, wenn es  $U \in \mathrm{U}(n)$  gibt, so dass  $UAU^{-1}$  eine Diagonalmatrix ist, deren Diagonaleinträge alle Betrag 1 haben.

Korollar 4.16. Es sei  $S^1 := \{z \in \mathbb{C} \mid |z| = 1\}.$ 

- i) Ist V ein unitärer Vektorraum mit dim  $V \ge 1$ , so ist  $\det(\mathrm{U}(V)) = S^1$ .
- ii) Für alle  $n \ge 1$  ist  $det(U(n)) = S^1$ .

#### 4.3 Normalenformen für $\mathbb{K} = \mathbb{R}$

Notation 4.17. Für alle  $\varphi \in \mathbb{R}$  sei

$$D(\varphi) \coloneqq \begin{pmatrix} \cos(\varphi) & -\sin(\varphi) \\ \sin(\varphi) & \cos(\varphi) \end{pmatrix} \in \mathrm{M}_2(\mathbb{R}).$$

**Theorem 4.18**. Für einen Endomorphismus  $f \colon V \to V$  eines euklidischen Vektorraum V sind die folgenden Bedingungen äquivalent:

- i) *f* ist normal.
- ii) Es gibt eine geordnete Orthonormalbasis  $\mathcal B$  von V, so dass

$$\mathbf{M}_{\mathcal{B}}(f) = \begin{pmatrix} \lambda_1 & & & & \\ & \ddots & & & \\ & & \lambda_s & & \\ & & & r_1 D(\varphi_1) & & \\ & & & & \ddots & \\ & & & & r_t D(\varphi_t) \end{pmatrix}$$

mit  $\lambda_1, \ldots, \lambda_s \in \mathbb{R}$ ,  $r_1, \ldots, r_t > 0$  und  $\varphi_1, \ldots, \varphi_t \in (0, \pi)$ .

Dabei sind  $\lambda_1, \ldots, \lambda_s$  die Eigenwerte von f, und die Paare  $(r_1, \varphi_1), \ldots, (r_t, \varphi_t)$  sind eindeutig bis auf Permutation.

Korollar 4.19. Für einen Matrix  $A \in M_n(\mathbb{R})$  sind die folgenden Bedingungen äquivalent:

i) A ist normal.

ii) Es gibt eine Matrix  $O \in O(n)$ , so dass

$$OAO^{-1} = \begin{pmatrix} \lambda_1 & & & & \\ & \ddots & & & \\ & & \lambda_s & & \\ & & & r_1 D(\varphi_1) & & \\ & & & \ddots & \\ & & & & r_t D(\varphi_t) \end{pmatrix}$$

mit  $\lambda_1, \ldots, \lambda_s \in \mathbb{R}, r_1, \ldots, r_t > 0$  und  $\varphi_1, \ldots, \varphi_t \in (0, \pi)$ .

Dabei sind  $\lambda_1, \ldots, \lambda_s$  die Eigenwerte von A, und die Paare  $(r_1, \varphi_1), \ldots, (r_t, \varphi_t)$  sind eindeutig bis auf Permutation.

**Proposition 4.20.** Es sei  $f \colon V \to V$  ein Endomorphismus eines euklidischen Vektorraums V.

- i) f ist genau dann selbstadjungiert, wenn f normal ist und in der Normalenform von Theorem 4.18 t=0 gilt, also wenn V eine Orthonormalbasis aus Eigenvektoren von f besitzt.
- ii) f ist genau dann antiselbstadjungiert, wenn f normal ist und in der Normalenform von Theorem 4.18  $\lambda_1=\cdots=\lambda_s=0$  und  $\varphi_1=\cdots=\varphi_t=\pi/2$  gilt:

iii) f ist genau dann orthogonal, wenn f normal ist und in der Normalenform von Theorem 4.18  $\lambda_i=\pm 1$  für alle  $i=1,\ldots,s$  und  $r_1=\cdots=r_t=1$  gilt:

$$\begin{pmatrix} \pm 1 & & & & & \\ & \ddots & & & & \\ & & \pm 1 & & & \\ & & & D(\varphi_1) & & \\ & & & \ddots & \\ & & & D(\varphi_t) \end{pmatrix}$$

**Korollar 4.21**. Es sei  $A \in M_n(\mathbb{R})$ .

- i) A ist genau dann selbstadjungiert, wenn A normal ist, und in der Normalenform von Korollar 4.19 t=0 gilt, also wenn es  $O\in \mathrm{O}(n)$  gibt, so dass  $OAO^{-1}$  in Diagonalgestalt ist.
- ii) A ist genau dann antiselbstadjungiert, wenn A normal ist und in der Normalenform von Korollar 4.19  $\lambda_1 = \cdots = \lambda_s = 0$  und  $\varphi_1 = \cdots = \varphi_t = \pi/2$  gilt.
- iii) A ist genau dann orthogonal, wenn A normal ist und in der Normalenform von Korollar 4.19  $\lambda_i = \pm 1$  für alle  $i = 1, \ldots, s$  und  $r_1 = \cdots = r_t = 1$  gilt.

**Korollar 4.22.** i) Ist V ein euklidischer Vektorraum mit dim  $V \ge 1$ , so ist  $\det(\mathrm{O}(V)) = \{1, -1\}$ .

ii) Für alle  $n \ge 1$  ist  $\det(O(n)) = \{1, -1\}$ .

## 4.4 Orthogonale Projektionen

**Lemma 4.23.** Sind  $U,W\subseteq V$  Untervektorräume eines K-Vektorraums V mit  $V=U\oplus W$ , so gibt es genau eine lineare Abbildung  $P\colon V\to V$  mit

$$P(u+w)=u\quad \text{für alle }u\in U,w\in W.$$

**Definition 4.24.** i) In der Situation von Lemma 4.23 heißt P die Projektion auf U entlang W.

ii) Ist  $U\subseteq V$  ein Untervektorraum eines Skalarproduktraums V, so heißt die Projektion auf U entlang  $U^\perp$  die orthogonale Projektion auf U. Sie ist die eindeutige lineare Abbildung  $P\colon V\to V$  mit P(u+w)=u für alle  $u\in U$  und  $w\in U^\perp$ .

**Proposition 4.25.** i) Für einen Endomorphismus  $P\colon V\to V$  eines K-Vektorraums V sind die folgenden Bedingungen äquivalent:

- a) Es gilt  $P^2 = P$ .
- b) P ist die Projektion auf im(P) entlang ker(P).
- ii) Für einen Endomorphismus  $P\colon V\to V$  eines Skalarproduktraums V sind die folgenden Bedingungen äquivalent:
  - a) Es gilt  $P^2 = P$  und P ist normal.
  - b) P ist die orthogonale Projektion auf im(P).

**Korollar 4.26**. Ein Endomorphismus  $P \colon V \to V$  eines Skalarproduktraums ist genau dann die orthogonale Projektion auf im(P), wenn es eine geordnete Orthonormalbasis  $\mathcal B$  von V gibt, so dass

$$\mathsf{M}_{\mathcal{B}}(P) = \begin{pmatrix} 1 & & & & & \\ & \ddots & & & & \\ & & 1 & & & \\ & & & 0 & & \\ & & & \ddots & \\ & & & & 0 \end{pmatrix}.$$

## 4.5 Polarzerlegung

- **Definition 4.27.** i) Ein selbstadjungierter Endomorphismus  $f: V \to V$  eines Skalarproduktraums V heißt *positiv*, wenn alle Eigenwerte von f positiv sind.
  - ii) Eine selbstadjungierte Matrix  $A\in \mathrm{M}_n(\mathbb{K})$  heißt positiv, wenn alle Eigenwerte von A positiv sind.
- **Lemma 4.28.** i) Ist V ein Skalarproduktraum und  $f: V \to V$  ein Automorphismus, so sind  $ff^*$  und  $f^*f$  positiv selbstadjungiert.
  - ii) Für alle  $A \in \mathrm{GL}_n(\mathbb{K})$  sind  $AA^*$  und  $A^*A$  positiv selbstadjungiert.
- **Proposition 4.29** (Wurzeln). i) Ist  $f\colon V\to V$  ein positiver selbstadjungierter Endomorphismus, so gibt es einen eindeutigen positiven selbstadjungierten Endomorphismus  $g\colon V\to V$  mit  $f=g^2$ .
  - ii) Ist  $A\in \mathrm{M}_n(\mathbb{K})$  positiv selbstadjungiert, so gibt es eine eindeutige positive selbstadjungierte Matrix  $B\in \mathrm{M}_n(\mathbb{K})$  mit  $A=B^2$ .

**Theorem 4.30** (Polarzerlegung). Ist  $f \in \operatorname{GL}(V)$  für einen Skalarproduktraum V, so gibt es eindeutige positive selbstadjungierte Endomorphismen  $s_1, s_2 \colon V \to V$  und eindeutige  $u_1, u_2 \in \operatorname{U}(V)$  (für  $\mathbb{K} = \mathbb{C}$ ), bzw.  $u_1, u_2 \in \operatorname{O}(V)$  (für  $\mathbb{K} = \mathbb{R}$ ) mit

$$f = u_1 s_1 = s_2 u_2.$$

# 5 Symmetrische Bilinearformen und quadratische Formen

#### 5.1 Definition quadratischer Formen

**Definition 5.1.** Ist V ein K-Vektorraum, so ist eine Abbildung  $q:V\to K$  eine *quadratische Form* wenn es eine symmetrische Bilinearform  $\langle\cdot,\cdot\rangle:V\times V\to K$  gibt, so dass

$$q(v) = \langle v, v \rangle \quad \text{ für alle } v \in V.$$

**Lemma 5.2** (Polarisationsformel). Ist V ein K-Vektorraum mit  $\mathrm{char}(K) \neq 2, \langle \cdot, \cdot \rangle : V \times V \to K$  eine symmetrische Bilinearform und  $q \colon V \to K$  die zugehörige quadratische Form, so ist

$$\langle v,w\rangle = \frac{q(v+w)-q(v)-q(w)}{2} \quad \text{für alle } v,w \in V.$$

Korollar 5.3. Ist V ein K-Vektorraum mit  $char(K) \neq 2$ , so ist die Abbildung

$$\{ \text{Bilinearformen } V \times V \to K \} \to \{ \text{quadratische Formen } V \to K \}, \\ \langle \cdot, \cdot \rangle \mapsto (v \mapsto \langle v, v \rangle)$$

eine Bijektion.

**Definition 5.4.** Es sei  $\beta \colon V \times V \to K$  eine symmetrische Bilinearform.

- i) Zwei Vektoren  $u, w \in V$  sind orthogonal (zueinander) bezüglich  $\beta$  falls  $\beta(u, w) = 0$ .
- ii) Zwei Untervektorräume  $U,W\subseteq V$  heißen orthogonal (zueinander) bezüglich  $\beta$  falls  $\beta(u,w)=0$  für alle  $u\in U$  und  $w\in W$ .
- iii) Ist  $U \subseteq V$  ein Untervektorraum, so ist der Untervektorraum

$$U^{\perp} = \{ v \in V \mid \beta(u, v) = 0 \text{ für alle } u \in U \}$$

das orthogonale Komplement von U in V bezüglich  $\beta$ .

iv) Der Untervektorraum

$$rad(\beta) := \{ v \in V \mid \beta(t, v) = 0 \text{ für alle } t \in V \}$$

ist das *Radikal* von  $\beta$ .

#### 5.2 Darstellende Matrizen für Bilinearformen

Lemma 5.5. Es sei V ein endlichdimensionaler K-Vektorraum,  $\mathcal{C}=(v_1,\ldots,v_n)$  eine geordnete Basis von V und  $\mathcal{C}^*=(v_1^*,\ldots,v_n^*)$  die duale Basis von  $V^*$ . Für eine Matrix  $B\in \mathrm{M}_n(K)$  und Bilinearform  $\beta\colon V\times V\to K$  sind die folgende Bedingungen äquivalent:

i) Für alle  $i, j = 1, \ldots, n$  ist  $B_{ij} = \beta(v_i, v_j)$ .

ii) Für die lineare Abbildung  $\Phi \colon V \to V^*, v \mapsto \beta(-,v)$  ist  $B = \mathrm{M}_{\mathcal{C},\mathcal{C}^*}(\Phi)$ .

**Definition 5.6.** In der Situation von Lemma 5.5 ist B die darstellende Matrix von  $\beta$  bezüglich der Basis C, und wird mit  $M_C(\beta)$  notiert.

**Lemma 5.7.** Ist V ein endlichdimensionaler K-Vektorraum und  $\mathcal{C}$  eine geordnete Basis von V, so ist die Abbildung

$$M_{\mathcal{C}}$$
: {Bilinearformen  $V \times V \to K$ }  $\to M_n(K)$ ,  $\beta \mapsto M_{\mathcal{C}}(\beta)$ 

ein Isomorphismus von K-Vektorräumen.

**Lemma 5.8.** Es sei V ein endlichdimensionaler K-Vektorraum,  $\beta \colon V \times V \to K$  eine Bilinearform und  $\mathcal{C} = (v_1, \dots, v_n)$  eine geordnete Basis von V. Für den induzierten Isomorphismus

$$\Phi \colon V \to K^n, \quad \sum_{i=1}^n \lambda_i v_i \mapsto \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{pmatrix}$$

gilt die Identität

$$\beta(v_1, v_2) = \Phi(v_1)^T \mathbf{M}_{\mathcal{C}}(\beta) \Phi(v_2)$$
 für alle  $v_1, v_2 \in V$ .

Korollar 5.9. Ist  $\beta\colon V\times V\to K$  eine Bilinearform auf einem endlichdimensionalen K-Vektorraum V, so ist  $\beta$  genau dann symmetrisch, wenn für jede geordnete Basis  $\mathcal C$  von V die darstellende Matrix  $\mathrm{M}_{\mathcal C}(\beta)$  symmetrisch ist.

**Lemma 5.10.** Ist  $\beta \colon V \times V \to \mathbb{R}$  eine symmetrische Bilinearform auf einem  $\mathbb{R}$ -Vektorraum V und sind  $\mathcal{C}$  und  $\mathcal{D}$  zwei geordnete Basen von V, so ist

$$\mathbf{M}_{\mathcal{D}}(\beta) = (T_{\mathcal{D}}^{\mathcal{C}})^T \, \mathbf{M}_{\mathcal{C}}(\beta) \, T_{\mathcal{C}}^{\mathcal{D}}.$$

#### 5.3 Nicht-entartete Bilinearformen

**Definition 5.11.** Eine symmetrische Bilinearform  $\beta \colon V \times V \to K$  heißt *nicht-entartet*, falls es für jedes  $v \in V$  mit  $v \neq 0$  ein  $w \in V$  mit  $\beta(w,v) \neq 0$  gibt.

**Proposition 5.12**. Ist V ein K-Vektorraum und  $\beta \colon V \times V \to K$  eine symmetrische Bilinearform, so sind die folgenden Bedingungen äquivalent:

- i) Die Bilinearform  $\beta$  ist nicht-entartet.
- ii) Es gilt  $rad(\beta) = 0$ .
- iii) Die lineare Abbildung  $\Phi \colon V \to V^*, v \mapsto \beta(-,v)$  ist injektiv.

Ist V endlichdimensional, so kommen die folgenden Bedingungen hinzu:

iv)  $\Phi$  ist ein Isomorphismus.

v) Für jede geordnete Basis  $\mathcal{C}$  von V ist die darstellende Matrix  $\mathbf{M}_{\mathcal{C}}(\beta)$  invertierbar.

*Beweis.* [i)  $\iff$  ii)] Folgt direkt aus Definition von rad( $\beta$ ).

- [ii)  $\iff$  iii)] Folgt durch rad( $\beta$ ) = ker  $\Phi$ .
- [iii)  $\iff$  iv)] Folgt wegen  $\dim V < \infty$ .

[iv) 
$$\iff$$
 v)] Folgt wegen  $M_{\mathcal{C}}(\beta) = M_{\mathcal{C},\mathcal{C}^*}(\Phi)$ .

**Proposition 5.13.** Es sei V ein endlichdimensionaler K-Vektorraum,  $\beta\colon V\times V\to K$  eine symmetrische, nicht-entartete Bilinearform und  $U\subseteq V$  ein Untervektorraum. Dann gilt  $\dim U^\perp=\dim V-\dim U$  und  $(U^\perp)^\perp=U$ .

Beweis. Die Abbildung  $\rho\colon V^*\to U^*, \psi\mapsto \psi|_U$  ist surjektiv, und  $\Phi\colon V\to V^*, v\mapsto \beta(-,v)$  ist bijektiv. Also ist  $\rho\circ\Phi$  surjektiv. Da  $\ker(\rho\circ\Phi)=U^\perp$  folgt die erste Aussage wegen  $\dim U=\dim U^*$  aus der Dimensionsformel. Die zweite Aussage folgt wegen  $U\subseteq (U^\perp)^\perp$  und

$$\dim(U^{\perp})^{\perp} = \dim V - \dim U^{\perp} = \dim U.$$

**Proposition 5.14.** Es sei V ein endlichdimensionaler K-Vektorraum und  $\beta\colon V\times V\to K$  eine nicht-entartete symmetrische Bilinearform. Ist  $U\subseteq V$  ein Untervektorraum, so sind die folgenden Bedingungen äquivalent:

- i) Die Einschränkung  $\beta|_{U\times U}$  ist nicht-entartet.
- ii) Es ist  $U \cap U^{\perp} = 0$ .
- iii) Es ist  $U + U^{\perp} = V$ .
- iv) Es ist  $V = U \oplus U^{\perp}$ .

### 5.4 Normalenformen und Sylvesterscher Trägheitssatz

**Theorem 5.15**. Es sei V ein endlichdimensionaler K-Vektorraum mit  $\operatorname{char}(K) \neq 2$  und  $\beta \colon V \times V \to K$  eine symmetrische Bilinearform. Dann gibt es eine geordnete Basis  $\mathcal C$  von V, so dass

$$\mathbf{M}_{\mathcal{C}}(\beta) = \begin{pmatrix} \lambda_1 & & & & \\ & \ddots & & & \\ & & \lambda_n & & \\ & & & 0 & \\ & & & \ddots & \\ & & & & 0 \end{pmatrix}$$

mit  $\lambda_i \neq 0$  für alle  $i=1,\ldots,n$ . Die Anzahl der Nullen auf der Diagonalen ist eindeutig bestimmt und entspricht dim  $\operatorname{rad}(\beta)$ .

**Lemma 5.16.** Ist  $\beta \colon V \times V \to K$  eine nicht-entartete Bilinearform mit  $V \neq 0$  und  $\operatorname{char}(K) \neq 2$ , so gibt es für die zugehörige quadratische Form  $q \colon V \to K$  ein  $v \in V$  mit  $q(v) \neq 0$ .

Beweis von Theorem 5.15. Ist  $\beta$  nicht-entartet, so gibt es einen Untervektorraum  $U \subseteq V$  mit  $V = U \oplus \operatorname{rad}(\beta)$ . Ist  $\mathcal{C}' = (u_1, \dots, u_n)$  eine Basis von U und  $\mathcal{D} = (v_1, \dots, v_m)$  eine Basis von  $\operatorname{rad}(\beta)$ , so gilt für die Basis  $\mathcal{C} = (u_1, \dots, u_n, v_1, \dots, v_m)$  von V, dass

$$\mathbf{M}_{\mathcal{C}}(\beta) = \begin{pmatrix} \mathbf{M}_{\mathcal{C}'}(\beta|_{U \times U}) & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix}.$$

Es genügt daher die Aussage für nicht-entartete Bilinearformen zu zeigen.

Es sei also  $\beta$  nicht-entartet. Wir nutzen Induktion über dim V; für dim V=0 ist nichts zu zeigen. Es sei nun dim V>0. Dann gibt es ein  $v_1\in V$  mit  $q(v_1)\neq 0$ , und es sei  $U:=\langle v_1\rangle$ . Dann ist  $\beta|_{U\times U}$  nicht-entartet und deshalb  $V=U\oplus U^\perp$  mit dim  $U^\perp=\dim V-1$ . Per Induktionsvoraussetzung gibt es eine Basis  $\mathcal{D}=(v_2,\ldots,v_n)$  von  $U^\perp$ , so dass

$$\mathbf{M}_{\mathcal{D}}(\beta_{U^{\perp} \times U^{\perp}}) = \begin{pmatrix} \lambda_2 & & \\ & \ddots & \\ & & \lambda_n \end{pmatrix}$$

mit  $\lambda_i \neq 0$  für alle  $i=2,\ldots,n$ . Dann ist  $\mathcal{C} \coloneqq (v_1,v_2,\ldots,v_n)$  eine Basis von V, und für  $\lambda_1 \coloneqq q(v_1) \neq 0$  gilt

$$\mathbf{M}_{\mathcal{C}}(\beta) = \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{pmatrix}.$$

Korollar 5.17. Es sei V ein endlichdimensionaler K-Vektorraum, wobei  $\operatorname{char}(K) \neq 2$  und K quadratisch abgeschlossen ist. Ist  $\beta \colon V \times V \to K$  eine symmetrische Bilinearform, so

 $\mathbf{M}_{\mathcal{C}}(\beta) = \begin{pmatrix} 1 & & & & & \\ & \ddots & & & & \\ & & 1 & & & \\ & & & 0 & & \\ & & & \ddots & \\ & & & & 0. \end{pmatrix}$ 

gibt es eine geordnete Basis C von V, so dass

Die Anzahl der Nullen auf der Diagonalen ist eindeutig bestimmt und entspricht dim  $rad(\beta)$ .

Korollar 5.18 (Sylvesterscher Trägheitssatz). Es sei V ein endlichdimensionaler  $\mathbb{R}$ -Vektorraum und  $\beta\colon V\times V\to K$  eine symmetrische Bilinearform.

i) Es eine geordnete Basis C von V, so dass

$$\mathsf{M}_{\mathcal{C}}(\beta) = \begin{pmatrix} 1 & & & & & & & \\ & \ddots & & & & & & \\ & & 1 & & & & & \\ & & & -1 & & & & \\ & & & \ddots & & & \\ & & & & 0 & & \\ & & & & \ddots & & \\ & & & & 0 \end{pmatrix} = \begin{pmatrix} I_r & & & \\ & -I_s & & \\ & & 0_t \end{pmatrix}$$

 $\operatorname{mit}\, I_n\in\operatorname{M}_n(\mathbb{R})\ \mathrm{und}\ 0_m\in\operatorname{M}_m(\mathbb{R}).$ 

ii) Ist  $\mathcal{B} = (u_1, ..., u_r, v_1, ..., v_s, w_1, ..., w_t)$  und

$$D_{+} := \langle u_{1}, \dots, u_{r} \rangle,$$

$$D_{-} := \langle v_{1}, \dots, v_{s} \rangle,$$

$$S_{+} := \langle u_{1}, \dots, u_{r}, w_{1}, \dots, w_{t} \rangle,$$

$$S_{-} := \langle v_{1}, \dots, v_{s}, w_{1}, \dots, w_{t} \rangle,$$

so ist  $\beta|_{D_+ \times D_+}$  positiv definit,  $\beta|_{D_- \times D_-}$  ist negativ definit,  $\beta|_{S_+ \times S_+}$  ist positiv semidefinit und  $\beta|_{S_- \times S_-}$  ist negativ semidefinit. Außerdem ist  $\mathrm{rad}(\beta) = \langle w_1, \dots, w_t \rangle$ .

iii) Es gilt

$$r = \max \left\{ \dim W \mid W \subseteq V \text{ ist ein UVR und } \beta|_{W \times W} \text{ ist positiv definit.} \right\}$$
 
$$s = \max \left\{ \dim W \mid W \subseteq V \text{ ist ein UVR und } \beta|_{W \times W} \text{ ist negativ definit.} \right\}$$
 
$$r + t = \max \left\{ \dim W \mid W \subseteq V \text{ ist ein UVR und } \beta|_{W \times W} \text{ ist positiv semidefinit.} \right\}$$
 
$$s + t = \max \left\{ \dim W \mid W \subseteq V \text{ ist ein UVR und } \beta|_{W \times W} \text{ ist negativ semidefinit.} \right\}$$

Insbesondere ist das Tupel (r, s, t) durch  $\beta$  eindeutig bestimmt.

- iv)  $\beta$  ist genau dann
  - a) positiv definit, wenn  $r = \dim V$ ,
  - b) negativ definit, wenn  $s=\dim V$ ,
  - c) positiv semidefinit, wenn  $r + t = \dim V$ ,
  - d) negativ semidefinit, wenn  $s + t = \dim V$ ,
  - e) nicht-entwartet, wenn t = 0.

Lemma 5.19. Es sei V ein  $\mathbb{R}$ -Vektorraum,  $\beta\colon V\times V\to \mathbb{R}$  sei eine symmetrische Bilinearform und  $U,W\subseteq V$  seien zwei Untervektorräume, so dass  $\beta|_{U\times U}$  positiv definit und  $\beta|_{W\times W}$  negativ semidefinit ist, bzw.  $\beta|_{U\times U}$  positiv semidefinit und  $\beta|_{W\times W}$  negativ definit ist. Dann ist  $U\cap W=0$ .

**Definition 5.20.** Es sei  $\beta\colon V\times V\to\mathbb{R}$  eine symmetrische Bilinearform auf einem  $\mathbb{R}$ -Vektorraum V. Ist  $\mathcal{C}=(v_1,\ldots,v_n)$  eine Basis von V, so ist  $\beta$  genau dann positiv definit, wenn alle Hauptminoren der Matrix  $\mathrm{M}_{\mathcal{C}}(\beta)$  positiv sind.

# 6 Hauptachsentransformation

Handschriftliche Notizen.

# 7 Topologische Eigenschaften ausgewählter Matrixgruppen

## 7.1 Definition der Gruppen

**Definition** 7.1. Für alle  $n \geq 1$  seien

$$\begin{split} \operatorname{SL}_n(K) &\coloneqq \{S \in \operatorname{GL}_n(K) \mid \det S = 1\}, \\ \operatorname{SU}(n) &\coloneqq \{S \in \operatorname{U}(n) \mid \det S = 1\} = \operatorname{U}(n) \cap \operatorname{SL}_n(\mathbb{C}), \\ \operatorname{SO}(n) &\coloneqq \{S \in \operatorname{O}(n) \mid \det S = 1\} = \operatorname{O}(n) \cap \operatorname{SL}_n(\mathbb{R}). \end{split}$$

**Proposition 7.2.** i) Für jeden Körper K ist  $SL_n(K) \subseteq GL_n(K)$  eine Untergruppe.

- ii) Die Teilmengen  $\mathrm{SO}(n)\subseteq\mathrm{O}(n)\subseteq\mathrm{GL}_n(\mathbb{R})$  sind Untergruppen.
- iii) Die Teilmengen  $\mathrm{SU}(n)\subseteq\mathrm{U}(n)\subseteq\mathrm{GL}_n(\mathbb{C})$  sind Untergruppen.
- iv) Es gelten die folgenden Untergruppenrelationen:



Bemerkung 7.3. Man beachte die verschiedenen gegenüberliegenden Seiten des Würfels: Der Boden des Würfels entsteht aus dem Deckel durch die zusätzliche Bedingung det S=1. Der Rücken des Würfels ist die reelle Version, die Vorderseite die komplexe Version. Die linkse Seite des Würfels entsteht aus der rechten, indem man Kompatiblität mit dem Skalarprodukt fordert.

#### 7.2 Gruppentheoretische Begriffe

**Definition 7.4.** Ist  $\phi \colon G \to H$  ein Gruppenhomomorphismus, so ist

$$\ker(\phi) \coloneqq \{g \in G \mid \phi(g) = 1\}$$

der Kern von  $\phi$ .

**Lemma** 7.5. Ist  $\phi$  ein Gruppenhomomorphismus, so ist  $\ker(\phi)$  eine Untergruppe von G.

**Proposition 7.6.** Es sei G eine Gruppe und  $N \subseteq G$  eine Untergruppe. Durch

$$g_1 \sim g_2 \iff g_1^{-1}g_2 \in N \quad \text{für alle } g_1, g_2 \in N$$

wird eine Äquivalenzrelation auf G definiert, und für  $G/N \coloneqq G/\sim$  sind die folgenden Bedingungen äquivalent:

- i) Für alle  $g \in G$  ist gN = Ng.
- ii) Für alle  $q \in G$  ist  $qNq^{-1} = N$ .
- iii) Für alle  $g \in G$  ist  $gNg^{-1} \subseteq N$ .
- iv) Die Multiplikation  $\cdot: (G/N) \times (G/N) \to G/N$  mit

$$\overline{g_1} \cdot \overline{g_2} \coloneqq \overline{g_1 \cdot g_2} \quad \text{für alle } g_1, g_2 \in G$$

ist wohldefiniert. (G/N ist mit dieser Multiplikation automatisch eine Gruppe. Dies ist dann die eindeutige Gruppenstruktur auf G/N, so dass die kanonische Projektion  $\rho \colon G \to G/N, g \mapsto \overline{g}$  ein Gruppenhomomorphismus ist. Es gilt dann  $N = \ker \rho$ .)

v) Es gibt einen Gruppenhomomorphismus  $\phi \colon G \to H$  mit  $N = \ker \phi$ .

**Definition 7.7.** Es sei G eine Gruppe und  $N\subseteq G$  eine Untergruppe. Der Index von N in G ist [G:N]:=|G/N|. Ist eine der Bedingungen von Proposition 7.6 erfüllt (und damit alle Bedingungen), so ist die Untergruppe N ein Normalteiler in G.

Bemerkung 7.8. Untergruppen vom Index 2 sind immer normal.

Bemerkung 7.9. Ist  $N\subseteq G$  eine Untergruppe, so ist die Äquivalenzklasse von  $g\in G$  bezüglich der in Proposition 7.6 definierten Äquivalenzrelation genau die sogenannte  $Linksnebenklasse\ gN=\{gn\mid n\in N\}$ . Die Äquivalenzklasse von g ist also eine (um g verschobene) Kopie von N. Inbesondere ist |gN|=|N|, und somit

$$|G| = [G:N] \cdot |N|.$$

Zur Berechnung des Index einer Untergruppe wollen wir den folgenden Satz zitieren:

Theorem 7.10 (1. Isomorphiesatz). Ist  $\phi\colon G\to H$  ein Gruppenhomomorphismus, so induziert  $\phi$  einen Gruppenisomorphismus  $\psi\colon G/\ker(\phi)\to \operatorname{im}(\phi)$  mit  $\psi(\overline{g})=\phi(g)$  für alle  $g\in G$ .



**Korollar** 7.11. Ist  $\phi \colon G \to H$  ein Gruppenhomomorphismus, so ist  $[G \colon \ker \phi] = |\operatorname{im} \phi|$ .

**Proposition 7.12.** Es sei  $n \geq 1$ .

i) Für jeden Körper K ist  $SL_n(K) \subseteq GL_n(K)$  eine normale Untergruppe mit Index

$$[GL_n(K) : SL_n(K)] = |K^{\times}| = |K| - 1.$$

Inbesondere ist  $[\operatorname{GL}_n(\mathbb{R}):\operatorname{SL}_n(\mathbb{R})]=\infty$  und  $[\operatorname{GL}_n(\mathbb{C}):\operatorname{SL}_n(\mathbb{C})]=\infty$ .

- ii)  $\operatorname{GL}_n(\mathbb{R})^+ := \{S \in \operatorname{GL}_n(\mathbb{R}) \mid \det S > 0\}$  ist eine normale Untergruppe von  $\operatorname{GL}_n(\mathbb{R})$  mit  $[\operatorname{GL}_n(\mathbb{R}) : \operatorname{GL}_n(\mathbb{R})^+] = 2$ .
- iii)  $SU(n) \subseteq U(n)$  ist eine normale Untergruppe mit  $[U(n):SU(n)] = \infty$ .
- iv)  $SO(n) \subseteq O(n)$  ist eine normale Untergruppe mit [O(n) : SO(n)] = 2.

Inbesondere ist im Würfel (1) der Boden normal im Deckel.

#### 7.3 Topologische Begriffe

**Definition 7.13.** Es sei X ein metrischer Raum. Ein Weg in X ist eine stetige Abbildung  $\gamma \colon [0,1] \to X$ . Für  $x \coloneqq \gamma(0)$  und  $y \coloneqq \gamma(1)$  ist  $\gamma$  ein Weg von x nach y in X.

Lemma 7.14. Ist X ein metrischer Raum, so wird durch

$$x \sim y \iff$$
 es gibt einen Weg von  $x$  nach  $y$ .

eine Äquivalenz<br/>relation auf X definiert.

**Definition 7.15**. Es sei X ein metrischer Raum. Die Äquivalenzklassen der Äquivalenzrelation aus Lemma 7.14 heißen Wegzusammenhangskomponenten von X. X heißt wegzusammenhängend, wenn es nur eine Wegzusammenhangskomponente gibt, d.h. wenn es für alle  $x,y\in X$  einen Weg von x nach y gibt.

Eine Teilmenge  $Y\subseteq X$  heißt wegzusammenhängend, wenn Y bezüglich der Metrik  $d|_{Y\times Y}$  wegzusammenhängend ist.

**Definition 7.16.** Ein metrischer Raum X heißt unzusammenhängend, wenn es disjunkte, offene, echte Teilmengen  $U_1, U_2 \subseteq X$  gibt, so dass  $X = U_1 \cup U_2$ . Ist X heißt zusammenhängend, wenn X nicht unzusammenhängend ist.

Eine Teilmenge  $Y\subseteq X$  heißt (un)zusammenhängend, wenn Y bezüglich  $d|_{Y\times Y}$  (un)zusammenhängend ist.

**Proposition** 7.17. Es seien X und Y zwei metrische Räume.

- i) Ist X wegzusammenhängend, so ist X auch zusammenhängend.
- ii) Ist  $f\colon X\to Y$  eine stetige Abbildung und  $Z\subseteq X$  eine (weg)zusammenhängende Teilmenge, so ist auch  $f(Z)\subseteq Y$  (weg)zusammenhängend.
- iii) Sind  $Z_1, Z_2 \subseteq X$  zwei (weg)zusammenhängende Teilmengen mit  $Z_1 \cap Z_2 \neq \emptyset$ , so ist auch  $Z_1 \cup Z_2$  (weg)zusammenhängend.

iv) Durch

 $x \sim y \iff$  es gibt eine zusammenhängende Teilmenge  $Z \subseteq X$  mit  $x, y \in Z$ 

wird eine Äquivalenzrelation auf X definiert.

**Definition 7.18.** Ist X ein metrischer Raum, so sind die Äquivalenzklassen bezüglich  $\sim$  wie in Proposition 7.17 die *Zusammenhangskomponenten* von X.

Bemerkung 7.19. Die Zusammenhangskomponenten von X sind die maximalen zusammenhängenden Teilmengen von X. Jede zusammenhängende Teilmenge  $Z \subseteq X$  ist in einer der Zusammenhangskomponenten von X enthalten. Insbesondere ist jede Wegzusammenhangskomponente in einer Zusammenhangskomponente enthalten.

# 7.4 Topologie auf Matrixgruppen

Im Folgenden fixieren wir eine Norm  $\|\cdot\|$  auf dem  $\mathbb{C}$ -Vektorraum  $\mathrm{M}_n(\mathbb{C})$ . Die Norm induziert eine Metrik d auf  $\mathrm{M}_n(\mathbb{C})$  durch  $d(A,B) \coloneqq \|A-B\|$ . Jede Teilmenge  $X \subseteq \mathrm{M}_n(\mathbb{C})$  erbt durch die Einschränkung  $d|_{X\times X}$  die Struktur eines metrischen Raums.

**Lemma 7.20**. Es sei  $n \ge 1$ .

i) Die Projektionen  $p_{ij}\colon \mathrm{M}_n(\mathbb{C}) \to \mathbb{C}$  mit  $i,j=1,\ldots,n$  und

$$p_{ij}(A) \coloneqq A_{ij} \quad \text{für alle } A \in M_n(\mathbb{C}).$$

sind stetig.

ii) Ist X ein metrischer Raum, so ist eine Abbildung  $f=(f_{ij})_{i,j=1,\dots,n}\colon X\to \mathrm{M}_n(\mathbb{C})$  genau dann stetig, wenn  $f_{ij}$  für alle  $i,j=1,\dots,n$  stetig ist.

**Theorem 7.21**. Es sei  $n \geq 1$ .

- i) Die Teilmengen  $\mathrm{SL}_n(\mathbb{C}), \mathrm{U}(n), \mathrm{SU}(n), \mathrm{SL}_n(\mathbb{R}), \mathrm{O}(n), \mathrm{SO}(n) \subseteq \mathrm{M}_n(\mathbb{C})$  sind abgeschlossen.
- ii) Die Teilmengen  $GL_n(\mathbb{C})\subseteq M_n(\mathbb{C})$  und  $GL_n(\mathbb{R})\subseteq M_n(\mathbb{R})$  sind offen.
- iii) Als Teilmenge von O(n) ist SO(n) auch offen.
- iv) Die Gruppen U(n), O(n), SU(n) und SO(n) sind kompakt.

Bemerkung 7.22. Ist  $A\subseteq Y\subseteq X$  und A abgeschlossen in X, so ist A auch abgeschlossen in Y. Dementsprechende ergeben sich aus 7.21 noch weitere Aussagen. So ist etwa  $\mathrm{SL}_n(\mathbb{C})$  abgeschlossen in  $\mathrm{GL}_n(\mathbb{C})$  und  $\mathrm{SO}(n)$  abgeschlossen in  $\mathrm{O}(n)$ .

**Theorem 7.23.** Es sei  $n \geq 1$ .

- i) Die Gruppe  $\mathrm{GL}_n(\mathbb{C})$  ist wegzusammenhängend.
- ii) Die Gruppe  $\mathrm{SL}_n(\mathbb{C})$  ist wegzusammenhängend.

- iii) Die Gruppe  $\mathrm{U}(n)$  ist wegzusammenhängend.
- iv) Die Gruppe SU(n) ist wegzusammenhängend.
- v) Die Gruppe  $\mathrm{GL}_n(\mathbb{R})$  besteht aus den beiden (Weg)zusammenhangskomponenten

$$\operatorname{GL}_n(\mathbb{R})^+ := \{ S \in \operatorname{GL}_n(\mathbb{R}) \mid \det S > 0 \}$$

und

$$\operatorname{GL}_n(\mathbb{R})^- := \{ S \in \operatorname{GL}_n(\mathbb{R}) \mid \det S < 0 \}.$$

- vi) Die Gruppe  $\mathrm{SL}_n(\mathbb{R})$  ist wegzusammenhängend.
- vii) Die Gruppe  $\mathrm{O}(n)$  besteht aus den beiden (Weg)zusammenhangskomponenten

$$SO(n) = \{S \in O(n) \mid \det S = 1\}$$
 und  $SO(n)^- := \{S \in O(n) \mid \det S = -1\}.$ 

viii) Die Gruppe SO(n) ist wegzusammehängend.

#### 7.5 Koordinatenfreie Version

Ist V ein Skalarprodukt Vektorraum mit  $n \coloneqq \dim V \ge 1$ . Wir fixieren eine Norm  $\|\cdot\|$  auf  $\operatorname{End}_{\mathbb{K}}(V)$ .

Ist  $\mathcal{C}$  eine Orthonormalbasis von V, so ist der Isomorphismus

$$M_{\mathcal{C}} \colon \operatorname{End}_{\mathbb{K}}(V) \to M_n(\mathbb{K}), \quad f \mapsto M_{\mathcal{C}}(f)$$

auch ein Homöomorphismus und induziert Homöomorphismen und Gruppenisomorphismen  $\mathrm{GL}(V)\cong\mathrm{GL}_n(\mathbb{K}),\,\mathrm{SL}(V)\cong\mathrm{SL}_n(\mathbb{K})$  sowie  $\mathrm{O}(V)\cong\mathrm{O}(n)$  und  $\mathrm{SO}(V)\cong\mathrm{SO}(n)$ , bzw.  $\mathrm{U}(V)\cong\mathrm{U}(n)$  und  $\mathrm{SU}(V)\cong\mathrm{SU}(n)$ .

Inbesondere gelten die obigen Resultate für  $\mathrm{GL}(V)$  und  $\mathrm{SL}(V)$ , sowie  $\mathrm{O}(V)$  und  $\mathrm{SO}(V)$ , bzw.  $\mathrm{U}(V)$  und  $\mathrm{SU}(V)$ .

# 8 Orientierung

Im Folgenden sei V ein endlichdimensionaler  $\mathbb{R}$ -Vektorraum.

## 8.1 Definition von Orientierung

[Male Bild aus Fischer.]

Idee: Wollen zwischen positiv und negativ orietierten Basen unterscheiden.

**Lemma 8.1.** Es seien  $\mathcal{B} = (v_1, \dots, v_n)$  und  $\mathcal{C} = (w_1, \dots, w_n)$  zwei Basen von V. Dann sind die folgenden Bedingungen äquivalent:

- i) Für den eindeutigen Automorphismus  $\Phi \colon V \to V$  mit  $\Phi(v_i) = w_i$  für alle  $i = 1, \dots, n$  gilt  $\det(\Phi) > 0$ .
- ii) Für alle alternierende n-Linearformen  $\omega \colon V^{\times k} \to \mathbb{R}$  gilt

$$\omega(v_1,\ldots,v_n)>0\iff\omega(w_1,\ldots,w_n)>0.$$

Beweis. Für jede alternierende n-Linearform  $\omega \colon V^{\times k} \to \mathbb{R}$  gilt

$$\omega(w_1, \dots, w_n) = \omega(\Phi(ve_1), \dots, \Phi(v_n)) = \det(\Phi) \cdot \omega(v_1, \dots, v_n). \quad \Box$$

**Definition 8.2.** Zwei geordnete Basen von V heißen *gleichorientiert*, wenn sie die Bedingungen aus Lemma 8.1 erfüllen.

**Lemma 8.3.** Ist V ein endlichdimensionaler  $\mathbb{R}$ -Vektorraum, so ist Gleichorientiertheit eine Äquivalenzrelation auf der Menge der geordneten Basen von V.

**Definition 8.4.** Es sei A der eindimensionale  $\mathbb{R}$ -Vektorraum der alternierenden n-Linearformen  $V^{\times n} \to \mathbb{R}$ . Für alle  $\omega_1, \omega_2 \in A \setminus \{0\}$  sei

$$\omega_1 \sim \omega_2 \iff \text{es gibt } \lambda > 0 \text{ mit } \omega_2 = \lambda \omega_1.$$

**Lemma 8.5.** In der Situation von Definition 8.4 definiert  $\sim$  eine Äquivalenzrelation.

Bemerkung 8.6. Es gibt nun vier Möglichkeiten eine Orietierung auf V anzugeben:

- Man gibt eine geordnete Basis  $\mathcal B$  als positiv orientiert vor. Eine geordnete Basis  $\mathcal C$  von V heißt dann positiv orientiert, wenn sie gleichorientiert zu  $\mathcal B$  ist.
- Man wählt eine Äquivalenzklasse bezüglich der Äquivalenzrelation der Gleichorientiertheit. Eine geordnete Basis  $\mathcal C$  von V heißt dann positiv orientiert, wenn sie in dieser Äquivalenzklasse enthalten ist.
- Man gibt eine alternierende n-Linearform  $\omega \colon V^{\times n} \to \mathbb{R}$  vor. Eine geordnete Basis  $\mathcal{C} = (v_1, \dots, v_n)$  von V heißt dann positiv orientiert, wenn  $\omega(v_1, \dots, v_n)$ .
- Man gibt eine Äquivalenzklasse O von alternierenden n-Linearformen bezüglich  $\sim$  an. Eine geordnete Basis  $\mathcal{C}=(v_1,\ldots,v_n)$  von V heißt dann positiv orientiert, wenn  $\omega(v_1,\ldots,v_n)>0$  für alle  $\omega\in O$ .

**Definition 8.7.** Eine Orientierung auf V ist eine Äquivalenzklasse bezüglich  $\sim$  wie in Definition 8.4.

Bemerkung 8.8. Im Fall  $V = \mathbb{R}^n$  wählt man d meistens durch  $d(e_1, \dots, e_n) = 1$ . Dies ist die *Standardorientierung* von  $\mathbb{R}^n$ .

#### 8.2 Normiertheit von alternierenden *n*-Linearformen

**Theorem 8.9.** Es sei V ein n-dimensionaler Skalarproduktraum für dim  $V \geq 1$ . Für jede alternierende n-Linearform  $d \colon V^{\times n} \to K$  mit  $d \neq 0$  gibt es eine eindeutige positive reelle Zahl  $c_d$ , so dass

$$\begin{vmatrix} \langle v_1, w_1 \rangle & \cdots & \langle v_1, w_n \rangle \\ \vdots & \ddots & \vdots \\ \langle v_n, w_1 \rangle & \cdots & \langle v_n, w_n \rangle \end{vmatrix} = c_d d(v_1, \dots, v_n) \overline{d(w_1, \dots, w_n)}$$

für alle  $v_1, \ldots, v_n, w_1, \ldots, w_n \in V$ .

**Definition 8.10**. Eine alternierende n-Linearform auf einem n-dimensionalen Skalarproduktraum  $V \neq 0$  heißt normiert, falls  $c_d = 1$ .

**Lemma 8.11**. Ist  $V \neq 0$  ein n-dimensionaler Skalarproduktraum und  $d \colon V^{\times n} \to \mathbb{K}$  eine alternierende n-Linearform, dann sind die folgenden Bedingungen äquivalent:

- i) d ist normiert.
- ii) Es gibt eine Orthonormalbasis  $\mathcal{B}=(v_1,\ldots,v_n)$  von V mit  $|d(v_1,\ldots,v_n)|=1$ .
- iii) Füre jede Orthonormalbasis  $\mathcal{B} = (v_1, \dots, v_n)$  von V gilt  $|d(v_1, \dots, v_n)| = 1$ .

Beweis. Für jede Orthonormalbasis  $\mathcal{B}=(v_1,\ldots,v_n)$  von V gilt  $c_d=1/|d(v_1,\ldots,v_n)|^2$ .

Lemma 8.12. Es sei  $V \neq 0$  ein Skalarproduktraum und  $\omega_1 \colon V^{\times n} \to \mathbb{K}$  eine normierte alternierende n-Linearform. Dann ist eine alternierende n-Linearform  $\omega_2 \colon V^{\times n} \to \mathbb{K}$  genau dann normiert, wenn es ein  $\lambda \in \mathbb{K}$  mit  $|\lambda| = 1$  und  $\omega_1 = \lambda \omega_2$  gibt.

#### **8.3** Normierte, alternierende *n*Linearformen

Im Folgenden sei  $V \neq 0$  ein euklidischer Vektorraum und  $d \colon V^{\times n} \to \mathbb{R}$  eine normiertie, alternierende n-Linearform. Indem wir diese als positiv auszeichnen, erhalten wir eine Orientierung auf V.

**Definition 8.13**. Es sei dim V=2. Für  $v_1,v_2\in V$  mit  $v_1,v_2\neq 0$  ist der unorientierte Winkel zwischen  $v_1,v_2$  das eindeutige Element  $\theta\in[0,2\pi)$  mit

$$\cos(\theta) = \frac{\langle v, w \rangle}{\|v\| \|w\|} \quad \text{und} \quad \sin(\theta) = \frac{d(v, w)}{\|v\| \|w\|}.$$

**Lemma 8.14.** Es sei V ein dreidimensionaler orientierter, euklidischer Vektorraum. Ist d die eindeutige positive, normierte alternierende n-Linearform auf V, so gibt es für alle  $v_1, v_2 \in V$  ein eindeutiges Element  $v_1 \times v_2 \in V$  mit

$$\langle v_1 \times v_2, w \rangle = d(v_1, v_2, w)$$
 für alle  $w \in V$ .

**Definition 8.15**. In der Situation von Lemma 8.14 heißt  $v_1 \times v_2$  das Vektorprodukt von  $v_1$  und  $v_2$ .

**Theorem 8.16** (Eigenschaften des Vektorprodukts). Es sei V wie in Lemma 8.14.

- i) Die Abbildung  $V \times V \to V$ ,  $(v_1, v_2) \mapsto v_1 \times v_2$  ist bilinear und alternierend.
- ii) Ist  $(v_1, v_2, v_3)$  eine Orthonormalbasis von V, so gilt

$$v_1 \times v_2 = v_3$$
,  $v_1 \times v_3 = -v_2$ ,  $v_2 \times v_3 = v_3$ .

Allgemeiner gilt

$$(a_1v_1 + a_2v_2 + a_3v_3) \times (b_1v_1 + b_2v_2 + b_3v_3)$$
  
=  $(a_2b_3 - a_3b_2)v_1 + (a_3b_1 - a_1b_3)v_2 + (a_1b_2 - a_2b_1)v_3$ .

iii) Es gilt die Jacobi-Identität

$$u \times (v \times w) + v \times (u \times w) + w \times (u \times v) = 0$$
 für alle  $u, v, w \in V$ .

iv) Es gilt

$$\langle v_1 \times v_2, w_1 \times w_2 \rangle = \langle v_1, w_1 \rangle \langle v_2, w_2 \rangle - \langle v_1, w_2 \rangle \langle v_2, w_1 \rangle.$$

v) Es gilt

$$u \times (v \times w) = \langle u, w \rangle v - \langle u, v \rangle w.$$

vi) Ist  $\theta$  der unorienierte Winkel zwischen  $v_1, v_2 \in V$  mit  $v_1, v_2 \neq 0$ , so gilt

$$||v_1 \times v_2|| = ||v_1|| ||v_2|| \sin(\theta).$$