Ch 7.2.3

Inner and outer functions

- 1. $\int (2x + 5) / \sqrt{(x^2 + 5x + 1)} dx$ outside: $\sqrt{(x)}$ inside: $x^2 + 5x + 1$
- 2. $\int dx / (\sqrt{(x)} (1 + \sqrt{(x)})^3)$ outside: x^3 inside: $1 + \sqrt{(x)}$
- 3. $\int (x^3 + x) (x^4 + 2x^2 + 7)^(3/4) dx$ outside: $x^3/4$ inside: $x^4 + 2x^2 + 7$
- 4. $\int (x dx) / \sqrt{(x + 4)}$
outside: $\sqrt{(x)}$
inside: x + 4
- 5. $\int x^3 (x^2 + 1)^9 dx$ outside: x^9 inside: $x^2 + 1$

Applying procedures for u-substitution

- 1. $\int (2x + 5) / \sqrt{(x^2 + 5x + 1)} dx$ inside: $x^2 + 5x + 1$ du: 2x + 5 dxint: $\int 1 / \sqrt{(u)} du$
- 2. $\int dx / (\sqrt{(x)} (1 + \sqrt{(x)})^3)$ inside: $1 + \sqrt{(x)}$ du: $1/\sqrt{(x)} dx$ int: $\int 1 / (u)^3 du$
- 3. $\int (x^3 + x) (x^4 + 2x^2 + 7)^(3/4) dx$ inside: $x^4 + 2x^2 + 7$ du: $4x^3 + 4x dx$ int: $1/4 \int u^(3/4) du$
- ∫ (x dx) / √(x + 4) inside: x + 4 du: dx int: ?
- ∫ x^3 (x^2 + 1)^9 dx inside: x^2 + 1 du: 2x int: 1/2 ∫ x^2 (u)^9 du?

Finding antiderivatives and definite integrals

- 1. $\int \sqrt{(x+1)} dx$ u = x+1 du = dx $\int \sqrt{(u)} du$ $(2 u^{(3/2)}) / 3$ $(2 (x+1)^{(3/2)}) / 3$
- 2. $\int 2x \sqrt{(x^2 + 1)} dx$ $u = x^2 + 1$ du = 2x dx $\int \sqrt{(u)} du$ $(2 u^3(3/2)) / 3$ $(2 (x^2 + 1)^3(3/2)) / 3$
- 3. $\int x^2 (x^3 1)^7 dx$ $u = x^3 1$ $du = 3x^2 dx$ $1/3 \int (u)^7 du$ $1/3 u^8/8$ $1/3 (x^3 1)^8/8$
- 4. $\int (x^2 + 2) / (x^3 + 6x + 1)^3 dx$ $u = x^3 + 6x + 1$ $du = 3x^2 + 6 dx$ $1/3 \int 1 / u^3 du$ $-1 / 6u^2$ $-1 / 6(x^3 + 6x + 1)^2$
- 5. $\int x^3 ^3\sqrt{(x^2 + 4)} dx$ $u = x^2 + 4$ du = 2x dx $1/2 \int x^2 ^3\sqrt{(u)} du$ $3/8 u^4/3) x^2$ $3/8 (x^2 + 4)^4/3) x^2$