Sinusoidal Frequency Response

- Behavior of circuits under sinusoidal excitation having *varying frequency*
- Since inductive and capacitive reactances change with frequency, hence, the circuit response would also change with frequency
- Need to have the concept of *Transfer* Function and Bode Plot
- Also, to understand various types of *filter* topologies: *Low-Pass*, *High-Pass*, *Band-Pass*

Transfer Function:

* Expressed as:

$$H(j\omega) = \frac{X_0(j\omega)}{X_i(j\omega)}$$

X: either voltage (V) or current (I)

- * Four different topologies possible:
 - *Voltage Gain* = V_0/V_i (dimensionless)
 - Current Gain = I_0/I_i (dimensionless)
 - Transresistance Gain = V_0/I_i (Ω)
 - Transconductance Gain = $I_0/V_i(\mho)$

* In *polar* form:

$$H(j\omega) = |H| \angle \theta$$

|H|: *Magnitude* and θ : *Phase* of the transfer function

* Note: H(jw) is not a phasor

It simply is a *complex number*

* Example: Consider a voltage amplifier (X = V)

Let V_i and V_0 be expressed in phasor form as:

$$\begin{split} & \overline{V}_{i} (j\omega) = \left| V_{i} \right| \angle \phi_{i} \text{ and } \overline{V}_{0} (j\omega) = \left| V_{0} \right| \angle \phi_{0} \\ & \Rightarrow \overline{V}_{0} (j\omega) = H(j\omega) \overline{V}_{i} (j\omega) \\ & \Rightarrow \left| V_{0} \right| = \left| H \right| \left| V_{i} \right| \quad \text{and} \quad \phi_{0} = \theta + \phi_{i} \end{split}$$

Sinusoidal Frequency Response:

$$\begin{split} Z_{\text{eq}} &= \left(\frac{1}{R_{\text{L}}} + j\omega C\right)^{-1} = \frac{R_{\text{L}}}{1 + j\omega R_{\text{L}}C} & + \frac{1}{10} \frac{1}{\mu} \frac$$

• Filters:

- Pass signals of desired frequency and block all others
- Immensely useful module in all kinds of circuit design
- Four Types:
 - Low-Pass Filter (LPF)
 - High-Pass Filter (HPF)
 - Band-Pass Filter (BPF)
 - Band-Reject (or Notch) Filter (BRF)

Low-Pass Filter (LPF):

* As $\omega \to 0$, $X_C = 1/(j\omega C) \to \infty$ \Rightarrow C behaves like an *open-circuit* $\Rightarrow V_0$ *follows* V_i

- * As $\omega \to \infty$, $X_C \to 0$
 - ⇒ C behaves like a *short-circuit*

$$\Rightarrow$$
 V₀ = 0

* Thus, low frequency signals are *passed* (known as *pass-band*) while high frequency signals are *blocked* (known as *stop-band*) \Rightarrow *LPF*

* Transfer function:

$$H(j\omega) = \frac{V_0}{V_i} = \frac{1/(j\omega C)}{R + 1/(j\omega C)} = \frac{1}{1 + j\omega/\omega_C}$$

$$\omega_C = 1/(RC) \text{ is known as the } \textit{upper cutoff}$$

$$\textit{frequency}$$

* Note: As $\omega \to 0$, $|H| \to 1$; as $\omega \to \infty$, $|H| \to 0$. and at $\omega = \omega_C$, $|H| = |H|_{max} / \sqrt{2} = 0.707 |H|_{max}$ \Rightarrow This is the definition of cutoff frequency

For LPFs, pass-band extends from 0 to ω_c and stop-band extends from ω_c to ∞

High-Pass Filter (HPF):

- * Just *interchanging* R and C *converts* an *LPF* to an *HPF*
- * As $\omega \to 0$, $X_C = 1/(j\omega C) \to \infty$

$$\Rightarrow$$
 V₀ = 0

* As
$$\omega \to \infty$$
, $X_C \to 0$ (short-circuit)
 $\Rightarrow V_0$ follows V_i

- * Thus, low frequency signals are *blocked* (*stop-band*) while high frequency signals are *passed* (*pass-band*) $\Rightarrow HPF$
- * Transfer function:

$$H(j\omega) = \frac{V_0}{V_i} = \frac{R}{R + 1/(j\omega C)} = \frac{j\omega/\omega_C}{1 + j\omega/\omega_C}$$

 $\omega_{\rm C} = 1/({\rm RC})$ is known as the *lower cutoff frequency*

* Note: As
$$\omega \to 0$$
, $|H| \to 0$; as $\omega \to \infty$, $|H| \to 1$; and at $\omega = \omega_c$, $|H| = 1/\sqrt{2}$

For HPFs, pass-band extends from ω_c to ∞ and stop-band extends from 0 to ω_c

Band-Pass Filter (BPF):

- * Extremely useful circuit to pass signals within a certain range of frequencies bounded between two *cutoff* frequencies ω₁ and ω₂, with ω₂ > ω₁ ω₁: Lower Cutoff Frequency (0 to ω₁: stop-band) ω₂: Upper Cutoff Frequency (ω₂ to ∞: stop-band) ω₁ to ω₂: pass-band
- * Can be constructed simply by putting an *LPF* and an *HPF* in *series*!

Simplest Construction of a BPF:

* Connect an *LPF* (with *upper* cutoff frequency f_2) in series with an *HPF* (with *lower* cutoff frequency f_1)

- * Make sure that $f_2 > f_1$
- * The *LPF* would *pass* all signals *till* f_2
- * The HPF would block all signals $below f_1$
- * Thus, all signals *below* f_1 and *above* f_2 will be *blocked* (*stop-bands*), while *passing* signals *within a range* between f_1 and f_2 (*pass-band*) \Rightarrow *BPF*

Band-Pass Filter Response

Implementation of a BPF Using RLC 2nd-Order Circuit:

- * For *very low frequency*, C behaves like *open-circuit*, and V_i gets blocked $\Rightarrow V_0 = 0$
- * For *very high frequency*, L behaves like *open-circuit*, and again V_i gets blocked $\Rightarrow V_0 = 0$

RLC Circuit Implementation for a Band-Pass Filter

* In between, V_0 *increases* with ω initially, reaches a *peak*, and then starts to *drop* again

Series Resonance:

* Transfer function:
$$H(j\omega) = \frac{V_0}{V_i} = \frac{R}{R + j(X_L - X_C)}$$

with $X_L = \omega L$ and $X_C = 1/(\omega C)$

$$\Rightarrow |H(j\omega)| = \frac{R}{\sqrt{R^2 + (X_L - X_C)^2}}$$
and $\angle \theta = -\tan^{-1}\left(\frac{X_L - X_C}{R}\right)$

- * If $X_L > X_C$, the circuit is *inductive* and $\angle \theta$ is *negative*
- * If $X_C > X_L$, the circuit is *capacitive* and $\angle \theta$ is *positive*

- * *Note*: At a certain frequency ω_0 , X_L would become *equal* to X_C
 - \Rightarrow $|H(j\omega)| = 1$ and $\angle \theta = 0^{\circ}$
- * Thus, the circuit becomes *purely resistive*
 - ⇒ Known as *series resonance*
- * Under this condition, V_0 attains its *maximum* value and occurs at $\omega_0 = resonance$ frequency $= 1/\sqrt{LC}$
- * For $\omega < \omega_0$, the circuit response is *capacitive*
- * For $\omega > \omega_0$, the circuit response is *inductive*

- * Second-order circuit with two roots (ω_1 and ω_2)
- * To find them, put $|H(j\omega)| = 1/\sqrt{2}$

$$\Rightarrow \omega_1 = -\frac{R}{2L} + \sqrt{\left(\frac{R}{2L}\right)^2 + \frac{1}{LC}}$$

and
$$\omega_2 = \frac{R}{2L} + \sqrt{\left(\frac{R}{2L}\right)^2 + \frac{1}{LC}}$$

- * Note: ω_1 and ω_2 are perfectly symmetric around ω_0 \Rightarrow The response is a mirror image around ω_0
- * Actually, ω_0 is a **geometric mean** of ω_1 and ω_2

$$\Rightarrow \omega_0 = \sqrt{\omega_1 \omega_2}$$

- * **Bandwidth** BW = $\omega_2 \omega_1 = R/L$
- * The *sharpness* of the peak is defined by the *Quality Factor* (QF):

$$QF = \frac{\omega_0}{BW} = \frac{\omega_0 L}{R} = \frac{1}{R} \sqrt{\frac{L}{C}}$$

- * A high QF implies a very narrow and sharp response
- * *Note*: For given values of L and C, QF is an *inverse* function of R
 - ⇒ Small R gives sharp response, and vice versa
- * Application: Selectively picking up a narrow band of signal \Rightarrow tuning circuits

Parallel RLC Circuit (Parallel Resonance):

- * Tank Circuit: L and C in parallel
- * Admittance method works best for this circuit

- * Note: All currents are sinusoids
- * Net admittance $Y = G + j(B_C |B_L|)$ G = 1/R, $|B_L| = 1/(\omega L)$, $B_C = \omega C$ $\Rightarrow Y = G + j(\omega C - \frac{1}{\omega L})$
- * Note: For $\omega C = 1/(\omega L)$, imaginary part of Y vanishes

- * Known as parallel resonance, with the parallel resonance frequency $\omega_0 = 1/\sqrt{LC}$ (same as series resonance)
- * Transfer function:

$$H(j\omega) = \frac{I_R}{I_S} = \frac{1/R}{1/R + 1/(j\omega L) + j\omega C} = \frac{j\omega L}{R(1 - \omega^2 LC) + j\omega L}$$

$$\Rightarrow |H(j\omega)| = \frac{\omega L}{\sqrt{R^2 (1 - \omega^2 LC)^2 + (\omega L)^2}}$$

- * *Note*: At resonance, $|H(j\omega)| = 1$
 - ⇒ Current through R is *maximum* under this condition

- * Again a *second-order circuit* with two roots (ω_1 and ω_2)
- * To find them, put $|H(j\omega)| = 1/\sqrt{2}$

$$\Rightarrow \omega_1 = -\frac{1}{2RC} + \sqrt{\left(\frac{1}{2RC}\right)^2 + \frac{1}{LC}}$$

and
$$\omega_2 = \frac{1}{2RC} + \sqrt{\left(\frac{1}{2RC}\right)^2 + \frac{1}{LC}}$$

* Again note that ω_1 and ω_2 are perfectly *symmetric* around ω_0

*
$$\boldsymbol{BW} = \omega_2 - \omega_1 = 1/(RC)$$

*
$$\mathbf{QF} = \omega_0 / \mathrm{BW} = \omega_0 \mathrm{RC} = \mathrm{R} \sqrt{\frac{\mathrm{C}}{\mathrm{L}}}$$

Observations:

- * In series RLC circuit at resonance:
 - Net impedance is minimum
 - ⇒ Current drawn from the voltage source is maximum
 - ⇒ Voltage drop across R is maximum
 - Voltage drops across L and C are equal in magnitude but opposite in phase
 - \Rightarrow They *cancel out*, making the entire source voltage *drop across R*
 - As R decreases, the response becomes sharper

- * In *parallel* RLC circuit at *resonance*:
 - Net admittance is minimum
 - \Rightarrow Net impedance is maximum
 - ⇒ *Current* drawn from the voltage source is *minimum*
 - ⇒ *Current* through R is *maximum*
 - Currents flowing through L and C are equal in magnitude but opposite in phase
 - ⇒ known as *circulating current*
 - \Rightarrow Entire current supplied by source *flows through R*
 - As R *increases*, the response becomes *sharper*

Band-Reject (or Notch) Filter:

* Simplest implementation: put an LPF having upper cutoff frequency f_1 and an HPF having lower cutoff frequency f_2 (with $f_2 > f_1$) in parallel

- * It will *pass* frquencies below f_1 and above f_2 (*pass-bands*), while *blocking* frequencies within the band $(f_2 f_1)$ (*stop-band*)
 - \Rightarrow Band-reject filter
- * If $(f_2 f_1)$ is made extremely *narrow*, then we arrive at the *notch filter*

Band-Reject Filter Response
Note: Upper cutoff frequency of LPF =
Lower cutoff frequency of BRF
Lower cutoff frequency of HPF =
Upper cutoff frequency of BRF

Notch Filter Response

Simplest RLC Implementation of a Notch Filter:

* Z = Impedance of parallel combination of L and C

$$= \frac{j\omega L}{1 - \omega^2 LC}$$

$$\Rightarrow$$
 V_i gets **blocked** and V₀ = 0

$$\omega_{\rm C}$$
, and is given by $\omega_{\rm C} = \frac{1}{\sqrt{\rm LC}}$

* Transfer function:

$$H(j\omega) = \frac{V_0}{V_i} = \frac{R}{R+Z} = \frac{R}{R + \frac{j\omega L}{1 - \omega^2 LC}}$$

- * Ex: Find ω_1 and ω_2 by substituting $|H(j\omega)| = \frac{1}{\sqrt{2}}$ and show that $\omega_C = \sqrt{\omega_1 \omega_2}$
- * $\boldsymbol{BW} = \boldsymbol{\omega}_2 \boldsymbol{\omega}_1$

*
$$QF = \frac{\omega_{\rm C}}{\rm BW}$$

Bode Plot:

- * The most convenient way to plot a transfer function
- * Conceived by *Hendrik W. Bode* of the *Bell Telephone Laboratories*
- * Provides a very easy and convenient method of extracting information regarding variation of *magnitude* and *phase* of any transfer function as a function of *frequency*
- * Can be made even simpler by a technique known as the *Asymptotic Bode Plot*

* |H| is plotted in *decibels* (dB), while $\angle \theta$ is plotted in *degrees* (°), both in *linear scale*, while the *frequency* is plotted in *log scale*, in a *semilog graph*

*
$$|H|(dB) = 20 \log_{10} |H(j\omega)|$$

* Inverse operation:

$$|H(j\omega)| = 10^{[|H|(dB)]/20}$$

* Note: In Bode plot, the frequency ω is always plotted in log scale

$ H(j\omega) $	H (dB)	$ H(j\omega) $	H (dB)
0.001	-60	0.01	-40
0.1	-20	$1/\sqrt{2}$	-3
1	0	$\sqrt{2}$	3
5	14	10	20
100	40	1000	60

Bode Magnitude Plot:

* Consider the transfer function:

$$H(j\omega) = 1 + j\frac{\omega}{a}$$

$$\Rightarrow |H(j\omega)| = \sqrt{1 + \frac{\omega^2}{a^2}} \text{ and}$$

$$|H|(dB) = 20 \log_{10} \left(\sqrt{1 + \frac{\omega^2}{a^2}}\right)$$

Observations:

* For $\omega \ll a$, $|H(j\omega)| \approx 1$, and |H|(dB) = 0

- * For $\omega \gg a$, $|H(j\omega)| \simeq \omega/a$, and $|H|(dB) = 20\log_{10}(\omega/a)$, which is *linear* with respect to ω (: ω is plotted in *log scale*), and increases at the rate of +20 dB/decade
- * At $\omega = a$, $|H(j\omega)| = \sqrt{2}$, and |H|(dB) = 3
- * The angular frequency a has several names: corner frequency, cutoff frequency, break-point frequency, +3-dB frequency, etc.
- * It is also known as the *zero* of the transfer function

Concept of Asymptotes:

- * Simplification of the actual Bode plot
- * For $\omega \leq a$, it is taken to be equal to **zero**
- * For $\omega > a$, it is assumed to be a *straight line*, starting from a, with a slope of $+20 \, dB/decade$
- * *Note*: Maximum error occurs at $\omega = a$, which is equal to 3 dB
 - \Rightarrow a is known as the 3-dB frequency

Bode Phase Plot:

* *Phase* ϕ of the transfer function:

$$\phi = \tan^{-1} \left(\frac{\omega}{a} \right)$$

Observations:

- * At $\omega = a$, $\phi = 45^\circ$; $\omega = 0.1a$, $\phi = 6^\circ$; $\omega = 10a$, $\phi = 84^\circ$; and as $\omega \to \infty$, $\phi = 90^\circ$
- * Can be adequately described by three asymptotes:
 - 1.0° for $\omega \leq 0.1a$
 - 2. 90° for $\omega \geq 10a$
 - 3. Between 0.1a and 10a, changing *linearly* with a slope of +45°/decade

Note: Actual phase at 0.1a and 10a is equal to 6° and 84° respectively, hence, these two frequencies are known as *lower and upper 6*° *frequencies*

* Consider another transfer function:

$$H(j\omega) = \frac{1}{1 + j\omega/b}$$

$$\Rightarrow |H(j\omega)| = 1/\sqrt{1 + \omega^2/b^2} \text{ and}$$

$$|H|(dB) = -20\log_{10}\left(\sqrt{1 + \omega^2/b^2}\right)$$

Observations:

- * For $\omega \ll b$, $|H(j\omega)| \approx 1$, and |H|(dB) = 0
- * For $\omega \gg b$, $|H(j\omega)| \simeq b/\omega$, and $|H|(dB) = 20\log_{10}(b/\omega)$, which is *linear* with respect to ω , and changes at the rate of $-20 \, dB/decade$

- * Also, at $\omega = b$, $|H(j\omega)| = 1/\sqrt{2}$, and |H|(dB) = -3
- * Similar to a, the angular frequency b also has several names: corner frequency, cutoff frequency, break-point frequency, -3-dB frequency, etc.
- * It is also known as the *pole* of the transfer function
- * Asymptotes:
 - For $\omega \leq b$, it is taken to be equal to *zero*
 - For $\omega >$ b, it is assumed to be a *straight line*, starting at b, with a slope of $-20 \, dB/decade$

Note: Maximum error occurs at $\omega = b$, which is equal to -3 dB

Hence, b is known as the -3-dB frequency

* *Phase* ϕ of the transfer function:

$$\phi = -\tan^{-1}\left(\frac{\omega}{b}\right)$$

Observations:

- * At $\omega = b$, $\phi = -45^\circ$; $\omega = 0.1b$, $\phi = -6^\circ$; $\omega = 10b$, $\phi = -84^\circ$; and as $\omega \rightarrow \infty$, $\phi = -90^\circ$
- * Can be adequately described by *three asymptotes*:
 - 1.0° for $\omega \leq 0.1b$
 - 2. -90° for $\omega \geq 10b$
 - 3. Between 0.1b and 10b, changing *linearly* with a slope of $-45^{\circ}/decade$

Note: Actual phase at 0.1b and 10b is equal to -6° and -84° respectively, hence, these two frequencies are known as *lower and upper 6° frequencies*

- * Consider another simple transfer function: $H(j\omega) = j\omega$
 - \Rightarrow |H| = ω , and |H|(dB) = 20 log(ω), and a constant phase of 90°
 - \Rightarrow |H|(dB) versus ω is a *straight line* in the asymptotic Bode plot, having a positive slope of 20 dB/decade, and crossing the 0 dB line at $\omega = 1$ rad/sec
- * Similarly, the asymptotic Bode plot of the function $H(j\omega) = (j\omega)^{-1}$ is another *straight line* having a slope of $-20 \, dB/decade$, crossing the 0 dB line at $\omega = 1$ rad/sec, and having a constant phase of -90°

Ex: Asymptotic magnitude and phase Bode plots for the

function:
$$H(j\omega) = \frac{j\omega(1+j\omega/100)}{(1+j\omega/10)(1+j\omega/1000)}$$

Magnitude Plot:

 $j\omega$: straight line with a slope of +20 dB/decade, crossing 0 dB at $\omega = 1$ rad/sec (*plot a*)

 $(1+j\omega/100)$: 0 for $\omega \le 100$ rad/sec, then increasing $\omega+20$ dB/decade (*plot b*)

 $(1+j\omega/10)$: 0 for $\omega \le 10$ rad/sec, then decreasing $(\omega - 20)$ dB/decade (plot c)

 $(1+j\omega/1000)$: 0 for $\omega \le 1000$ rad/sec, then decreasing $(\omega - 20)$ dB/decade (*plot d*)

The net plot is an algebraic sum of all the individual plots

Phase Plot:

 $j\omega$: constant phase of 90° (a) $(1 + j\omega/100)$: 0° for $\omega \le 10$ rad/sec, 45° at $\omega = 100$ rad/sec, and 90° for $\omega \ge 1000 \text{ rad/sec}(b)$ $(1+j\omega/10)$: 0° for $\omega \leq 1$ rad/sec, -45° at $\omega = 10$ rad/sec, and -90° for $\omega \geq 100$ rad/sec (c) $(1+j\omega/1000)$: 0° for $\omega \le 100 \text{ rad/sec}, -45^{\circ} \text{ at } \omega = 1000$ rad/sec, and -90° for $\omega \ge 10^{4}$ rad/sec (d) The net plot is an *algebraic sum* of all the individual plots

Note: If the transfer function contains any constant K, then it will add a constant offset of $20\log_{10}K$ to the magnitude plot, while the phase plot will remain unaffected