ESPECTROSCOPÍA DE RAYOS X CON DETECTOR DE Si

Juan Alejandre Farauste
TE II, Nuclear (Universidad de Sevilla)
Viernes 18 de junio de 2021

ÍNDICE

- I. OBJETIVOS
- 2. INTRODUCCIÓN TEÓRICA
- 3. MONTAJE E INSTRUMENTAL
- 4. RESULTADOS
- 5. CONCLUSIONES

OBJETIVOS

- Entender cómo se originan los rayos X y familiarizarse con varios espectros.
- Comprender el funcionamiento general de los detectores de Si.
- Realizar una calibración en energía del detector.
- Interpretar un espectro desconocido para determinar el elemento correspondiente a la representación gráfica.

INTRODUCCIÓN TEÓRICA

RAYOS X Y MECANISMOS DE EMISIÓN

- Emisión radiación electromagnética debido a una transición electrónica hacia una capa interna del átomo.
 Fotón de energía característica
- Creación de una vacante en la capa interna:
 - Proceso de captura electrónica:

$$p + e^- = n + v_e$$

• Fluorescencia de rayos X: Excitación directa de electrones con fotones suficientemente energéticos como para arrancarlo.

RAYOS X Y MECANISMOS DE EMISIÓN

La energía de la radiación depende de los niveles electrónicos del átomo que la produce:

$$E_{\gamma} = E_i - E_f$$

 $E_{\nu} = E_i - E_f$ Es característica de cada isótopo.

- → K,L,M: capa en la que se produce la vacante.
- $\rightarrow \alpha, \beta, \gamma$: subíndice, capa desde la que tuvo lugar la transición electrónica.

DETECTOR DE SILICIO (SDD)

- <u>Detector de semiconductor</u>: genera pulsos de corriente debido a la creación de pares e—ion tras el paso de la radiación (teoría de bandas en SC).
- Union PN: Región de deplexión (idealmente "muerta").

DETECTOR DE SILICIO (SDD)

- Polarización inversa: necesario para aumentar la región de deplexión.
- Las excitaciones producidas en la zona de deplexión se recolectan en el ánodo y el cátodo → pulso eléctrico por radiación ionizante detectada.
- Refrigeración para evitar el ruido electrónico (efecto Peltier).

MONTAJE E INSTRUMENTAL

MONTAJE EXPERIMENTAL

Detector de Si (SDD)

MONTAJE EXPERIMENTAL

Hacia la electrónica asociada

MUESTRAS RADIACTIVAS

Kit de muestras monoencapsuladas

(5 min de medida)

- 109Cd
- 54**M**n
- 57Co

Muestras por fluorescencia (Amersham)

- Am sobre Cu
- Am sobre Ag (2,
- (2,5 min de medida)
- Am sobre Ba
- Am sobre muestra problema

RESULTADOS

ESPECTROS

CALIBRACIÓN EN ENERGÍA

Muestra	Pico	Canal	E_{tab} (keV)
Cd-109	$K_{\alpha}(Ag)$	359	22,162
Ca-107	$K_{\beta}(Ag)$	404	24,928
	$K_{\alpha}(Fe)$	104	6,398
Co-57	$K_{\beta}(Fe)$	115	7,057
	γ ⁵⁷ Fe*	234	14,400
Mn-54	$K_{\alpha}(Pb)$	88	5,411
/VIII-54	$K_{\beta}(Pb)$	97	5,924
	$L_{\alpha}(Ba)$	73	4,465
	$L_{\beta 1}(Ba)$	79	4,827
Am(Ba)	$K_{\alpha}(Ba)$	521	32,062
	$K_{\beta}(Ba)$	588	36,354
	γ ²³⁷ N p*	963	<i>59,500</i>
	$K_{\alpha}(Cu)$	131	8,047
Am (Cu)	$K_{\beta}(Cu)$	145	8,904
	γ ²³⁷ N p*	964	59,500
	$K_{\alpha}(Ag)$	359	22,162
$\Lambda_m(\Lambda_{\sigma})$	$K_{\beta 1}(Ag)$	404	24,942
Am(Ag)	$K_{\beta 2}(Ag)$	413	25,454
	γ ²³⁷ N p*	964	59,500

CALIBRACIÓN EN ENERGÍA

Datos y parámetros de ajuste

$y(keV) = m \cdot x + b$			
$m(keV/canal)$ $(0,06136 \pm 0,00023)$			
b(keV)	$(0,243 \pm 0,92)$		
r^2	0,9998		

INTERPRETACIÓN ESPECTRO DE Co57

Pico	E_{exp} (keV)	E_{tab} (keV)	ε(%)
$K_{\alpha}(Fe)$	6,625	6,398	3,55
$K_{\beta}(Fe)$	7,300	7,057	3,44
γ — ⁵⁷ Fe *	14,603	14,400	1.52

INTERPRETACIÓN ESPECTRO DE Mn54

Pico	E_{exp} (keV)	E_{tab} (keV)	ε(%)
$K_{\alpha}(\mathcal{C}r)$	5,643	5,411	4,29
$K_{\beta}(\mathcal{C}r)$	6,196	5,924	4,59

INTERPRETACIÓN ESPECTRO DE Cd109

Pico	E_{exp} (keV)	E_{tab} (keV)	ε(%)
$K_{\alpha}(Ag)$	22,168	22,101	0,3
$K_{\beta 1}(Ag)$	25,035	24,942	0,37
$K_{\beta 2}(Ag)$	25,465	25,454	0,043

INTERPRETACIÓN ESPECTRO DE Am SOBRE Ag

Pico	$E_{exp}(keV)$	E_{tab} (keV)	ε(%)
$K_{\alpha}(Mo)$	17,578	17,478	0,57
$K_{\alpha}(Ag)$	22,213	22,162	0,23
$K_{\beta 1}(Ag)$	25,036	24,942	0,38
$K_{\beta 2}(Ag)$	25,588	25,954	1,41
y ²³⁷ Np*	59,340	59,5	0,27

INTERPRETACIÓN ESPECTRO DE Am SOBRE Ag

Pico	E_{exp} (keV)	E_{tab} (keV)	ε(%)
$K_{\alpha}(Cu)$	8,282	8,047	2,92
$K_{\beta}(Cu)$	9,141	8,904	2,66
$K_{\alpha}(Mo)$	17,672	17,478	1,11
$K_{\alpha}(Sn)$	25,281	25,270	0,044
γ ²³⁷ N p*	59,339	59,5	0,27

INTERPRETACIÓN ESPECTRO DE Am SOBRE Ba

Pico	E_{exp} (keV)	E_{tab} (keV)	ε(%)
$L_{\alpha}(Ba)$	4,723	4,465	5,78
$L_{\beta}(Ba)$	5,091	4,827	5,47
$K_{\alpha}(Ba)$	32,227	32,062	0,51
$K_{\beta 1}(Ba)$	36,327	36,354	0,074
$K_{\beta 2}(Ba)$	37,247	37,255	0,021
γ ²³⁷ Np *	59,573	59,500	0,12

INTERPRETACIÓN ESPECTRO MUESTRA PROBLEMA

Pico	$E_{exp}(keV)$	E_{tab} (keV)	ε(%)
$k_{\alpha}(Rb)$	13,560	13,394	1,24
$K_{\beta}(Rb)$	15,094	14,960	0,9
$K_{\alpha}(Mo)$	17,549	17,478	0,41
$K_{\alpha}(Ag)$	22,151	22,162	0,05
$K_{\beta}(Ag)$	25,036	24,942	0,021
$K_{\alpha}(Ba)$	32,154	32,191	0,11
$K_{\beta}(Ba)$	36,389	36,376	0,036
γ ²³⁷ N p*	59,401	59,500	0,17

CONCLUSIONES

CONCLUSIONES

- Hemos analizado varios espectros de rayos x característicos.
- Nos hemos familiarizado con el funcionamiento de los detectores de SDD y además hemos observado los distintos tipos de mecanismo de detección de fotones.
- Hemos podido calibrar el detector en energía con las muestras obteniendo un buen ajuste (contrastado con los márgenes de error).
- Finalmente hemos sido capaces de identificar la muestra y caracterizado sus picos.

FIN

Muchas gracias por su atención