Algebra Lineal

Abel Doñate Muñoz

abel.donate@estudiant at.upc.edu

Contents

1	Matrices y sistemas			
	1.1	Matrices elementales	2	
	1.2	Rouché-Frobenius	2	
	1.3	Gauss-Jordan	2	
	1.4	Determinante	3	
2	Espacios vectoriales			
	2.1	Subespacios vectoriales	3	
	2.2	Cambio de base	3	
	2.3	Suma de espacios vectoriales	3	
	2.4	Buscando espacios vectoriales	4	
3	Apl	icaciones lineales	4	
	3.1	Trabajando con bases	4	
	3.2	Espacio Dual	4	
4	Diagonalización			
	4.1	Encontrar un endomorfismo diagonal	5	
	4.2	Teoremas de diagonalización y descomposición	5	
	4.3	Matrices positivas	5	
	4.4	Matrices estocásticas	6	
	4.5	Algunas propiedades	6	
5	Ort	ogonalidad	6	
	5.1	Algunas definiciones	6	
	5.2	Algoritmo de Gram-Schmidt	6	
	5.3	Subespacio complementario ortogonal	7	
	5.4	Proyección ortogonal	7	
	5.5	Teorema espectral	7	
	5.6	Descomposición SVD	7	
	5.7	Teorema Fundamental del Álgebra	8	
	5.8	Norma de una matriz	8	

1 Matrices y sistemas

1.1 Matrices elementales

•
$$E_1: f_i \to f_j$$
 $E_1 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$

•
$$E_2: f_i \leftarrow cf_j$$
 $E_1 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & c & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$

•
$$E_3: f_i \leftarrow cf_j + f_i$$
 $E_1 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & c & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$

Ahora podemos expresar $\tilde{A} = REF(A)$ (the Row Echelon Form of A REF) como:

$$\tilde{A} = EA$$

con E como producto de matrices elementales.

Podemos también transformar esta matriz en una REF (los pivotes son unos y encima hay ceros) como:

$$RREF(A) = \tilde{E}\tilde{A} = \tilde{E}EA = E'A$$

1.2 Rouché-Frobenius

Rank(A) := # pivotes en la REF.

- $Rank(A) = rank(A') \implies Consistence con n rank(A)$ variables libres
- $Rank(A) \neq rank(A') \implies$ No consistente (sin solución)

1.3 Gauss-Jordan

Transformar una matriz a REF:

$$Ax = b, A' = \begin{pmatrix} a_{11} & a_{21} & a_{31} & a_{41} & b_1 \\ a_{12} & a_{22} & a_{32} & a_{42} & b_2 \\ a_{13} & a_{23} & a_{33} & a_{43} & b_3 \end{pmatrix} \implies \begin{pmatrix} a_{11} & a_{21} & a_{31} & a_{41} & b_1 \\ 0 & a_{22} & a_{32} & a_{42} & b_2 & hange of basis \\ 0 & 0 & 0 & a_{43} & b_3 \end{pmatrix}$$

2

Columnas sin pivotes son las variables libres (x_3 en el ejemplo).

1.4 Determinante

Teorema de Laplace

$$\det A = \sum_{j=1}^{n} (-1)^{i+j} a_{i,j} \det A_{i,j} \quad \forall i \in \{1, 2, ..., n\}$$

Propiedades del determinante:

- Intercambiando dos filas $|A| = -|A^*|$ (Multiplicar por E_1)
- Si A, B, C solo difieren en una fila $C_i = A_i + B_i$. Entonces |C| = |A| + |B|
- Multiplicar por E_3 no cambia el determinante
- |AB| = |A||B|

2 Espacios vectoriales

2.1 Subespacios vectoriales

El subespacio vectorial (s.e.v.) W de V se define como:

$$W = [u_1, ..., u_n] := \{\lambda_1 u_1, ..., \lambda_n u_n : \lambda_i \in K\}$$

donde u_i son vectores en V.

Para determinar si es subespacio de un espacio:

- 1. Transformar el problema en una matriz.
- 2. Hacer REF de la matriz y resolver el sistema con variables libres.
- 3. Dar una base factorizando las variables libres de la solución.

2.2 Cambio de base

Si tenemos dos bases $B : \{u_1, ..., u_n\}$ y $C : \{v_1, ..., v_n\}$ podemos cambiar las coordenadas por medio de una matriz de cambio de base $A_{B\to C}$:

$$M_{B\to C} = ((u_1)_C, ..., (u_n)_C)$$

$$M_{B\to C}(u_1,...,u_n)=(v_1,...,v_n)$$

2.3 Suma de espacios vectoriales

La suma de dos espacios vectoriales se define como $V_1 + V_2 = \{v_1 + v_2 : v_1 \in V_1, v_2 \in V_2\}$ Si $V_1 \cap V_2 = \emptyset \implies$ la suma es directa $V_1 \oplus V_2$

Fórmula de Grassmann

$$\dim(V_1 + V_2) = \dim(V_1) + \dim(V_2) - \dim(V_1 \cap V_2)$$

2.4 Buscando espacios vectoriales

Para encontrar el espacio vectorial:

- $\mathbf{F} + \mathbf{G}$ Entonces $F + G = [u_1, \dots, u_n, v_1, \dots v_m]$, donde u_i, v_i son elementos de la base de F y G respectivamente.
- $\mathbf{F} \cap \mathbf{G}$ Pon F y G como sistemas homogéneos y resuelve con variables libres. El subespacio de soluciones es el deseado.
 - \mathbf{E}/\mathbf{F} Usa el que E/F es el complementario de F. Comprueba que combinación de los vectores unitarios de la base lo complementa.

3 Aplicaciones lineales

Una aplicación lineal $f: E \to F$ se puede pensar como una matriz A tal que f(v) = Av.

Distinguimos los siguientes tipos de aplicaciones:

- Monomorfismo \implies f inyectiva \implies Ker(f) = 0
- ullet Epimorfismo $\Longrightarrow f$ exhaustiva/sobreyectiva $\Longrightarrow Im(f) = F$
- Isomorfismo \implies f biyectiva

También tenemos los subespacios Ker(f)/Nuc(f) and Im(f). Se relacionan por la siguiente fórmula:

$$\dim(Ker(f)) + \dim(Im(f)) = \dim(E)$$

Primer teorema de isomorfismo Sea $f: E \to F$ una aplicación lineal:

$$f: E/Ker(f) \to Im(f) \implies E/Ker(f) \cong Im(f)$$

es un isomorfismo

3.1 Trabajando con bases

Sea $f: E \to F$, $\dim(E) = n, \dim(F) = m \text{ y } \mathcal{B}_E = \{u_1, ..., u_n\}, \mathcal{B}_F = \{v_1, ..., v_m\}$:

$$M_{\mathcal{B}_E,\mathcal{B}_F}(f) = (f(u_1)_{\mathcal{B}_F}, ..., f(u_n)_{\mathcal{B}_F})$$

3.2 Espacio Dual

Definimos el espacio dual E^* de E de la siguiente manera:

Sea u_i^* una aplicación lineal $u_i^*: E \to \mathbb{R}$

Let
$$\mathcal{B}_E = \{u_1, ..., u_n\}, \ \mathcal{B}_{E^*} = \{u_1^*, ..., u_n^*\}$$

$$u_i^* u_j = \delta_i^j \implies u = u_1^*(u)u_1 + \dots + u_n^*(u)u_n$$

Estas aplicaciones lineales u_i^* podemos pensarlas como productos escalares $u^*(v) = \langle u, v \rangle$, donde u es un vector columna de la misma dimensión que v.

4 Diagonalización

4.1 Encontrar un endomorfismo diagonal

Queremos encontrar una base cuya matriz del endomorfismo sea diagonal. Si no es posible, recurriremos a la forma de Jordan:

- 1) Encontrar los VAP's $\implies P_f(x) = |M xI| = 0 \implies \lambda_i$
- 2) Encontrar los VEP's $\implies Nuc(M \lambda_i I)$
- 3) $1 \leq g_{\lambda} \leq a_{\lambda}$

El **Polinomio característico** $P_f(x)$ es el polinomio tal que $P_f(x) = |M - \lambda I|$

El **Polinomio mínimo** $m_f(x)$ es el polinomio mónico de menor grado que anula f. $m_f(x) = (x - \lambda_1)^{n_1} \cdots (x - \lambda_r)^{n_r}$, donde n_i es el menor exponente k tal que

$$Nuc(f - \lambda_i I)^k = Nuc(f - \lambda_i I)^{k+1}$$

Teorema de Cayley-Hamilton

$$P_f(M) = 0$$

4.2 Teoremas de diagonalización y descomposición

Primer teorema de diagonalización

f diagonaliza sobre \mathbb{K} si y solo si:

- $P_f(x)$ descompone en factores simples en \mathbb{K}
- $g_1 + \cdots + g_r = n \iff a_i = g_i \ \forall i$

Si queremos que diagonalize sobre \mathbb{C} la única condición que hace falta es la segunda, ya que la primera siempre se cumple.

Segundo teorema de diagonalización

f diagonaliza $\iff m_f(x)$ descompone en factores lineales

Primer teorema de descomposición

Si $P_f(x)$ descompone en factores simples:

$$\dim Ker((M-\lambda_i I)^{a_i}) = a_i \iff E = Ker((M-\lambda_1 I)^a_1) \oplus \cdots \oplus Ker((M-\lambda_r I)^a_r)$$

4.3 Matrices positivas

Una matriz A es positiva $(A > 0) \iff a_{ij} > 0 \ \forall i, j$

Teorema de Perron-Frobenius Sea A una matriz positiva, entonces se cumple:

- Tiene un VAP $\lambda_1 > 0$ dominante
- El VEP de λ_1, v_1 es positivo
- No hay otros VEP's positivos

4.4 Matrices estocásticas

Se trata de matrices donde las columnas sumen 1. Su propiedades son:

- $\lambda_1 = 1$ VAP dominante con VEP positivo por Perron-Frobenius
- Si x suma $1 \Rightarrow Ax$ también

4.5 Algunas propiedades

- |A| y tr(A) no dependen de la elección de la base
- u, v son VEP's de diferentes VAP's \Rightarrow son l.i.

5 Ortogonalidad

5.1 Algunas definiciones

Producto escalar. Forma bilineal $\langle u, v \rangle$ tal que:

- Bilineal $\langle u + \lambda v, t \rangle = \langle u, t \rangle + \lambda \langle v, t \rangle$
- Simétrica $\langle u, v \rangle = \langle v, u \rangle$
- Definida positiva (Criterio de Sylvester \Rightarrow Todos los determinantes principales son positivos) \iff $< u, u > \ge 0 \ \forall u$

En \mathbb{R}^n el producto escalar viene definido por:

$$\langle u, v \rangle = \begin{pmatrix} u_1 & u_2 & u_3 \end{pmatrix} \begin{pmatrix} \langle u_1, v_1 \rangle & \langle u_1, v_2 \rangle & \langle u_1, v_3 \rangle \\ \langle u_2, v_1 \rangle & \langle u_2, v_2 \rangle & \langle u_2, v_3 \rangle \\ \langle u_3, v_1 \rangle & \langle u_3, v_2 \rangle & \langle u_3, v_3 \rangle \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$$

Norma. La norma $||v|| = \sqrt{\langle v, v \rangle}$ debe cumplir:

- $\bullet ||v|| \ge 0$
- $\bullet \|\lambda v\| = |\lambda| \|v\|$
- $||v|| ||u|| \ge \langle u, v \rangle$
- ||v|| + ||u|| > ||u + v||

Dinstancia d(u, v) = ||u - v||

Ángulo
$$cos\alpha = \frac{\langle u, v \rangle}{\|u\|}$$

Ortogonales $u \perp v \iff \langle u, v \rangle = 0$

5.2 Algoritmo de Gram-Schmidt

Se usa para convertir una base u_1, \dots, u_n en otra ortogonal v_1, \dots, v_n :

$$v_d = u_d - \frac{\langle v_1, u_d \rangle}{\langle v_1, v_1 \rangle} u_1 - \dots - \frac{\langle v_{d-1}, u_d \rangle}{\langle v_{d-1}, v_{d-1} \rangle} u_{d-1}$$

5.3 Subespacio complementario ortogonal

Este espacio se define como:

$$F^{\perp} = \{ u \in E : \langle u, v \rangle = 0 \ \forall v \in F \}$$

Algunas propiedades son:

- a) $F \subset G \Rightarrow G^{\perp} \subset F^{\perp}$
- b) $(F+G)^{\perp} = F^{\perp} \cap G^{\perp}$
- c) $(F \cap G)^{\perp} = F^{\perp} + G^{\perp}$
- d) $Ker(A)^{\perp} = Im(A^T)$

5.4 Proyección ortogonal

Podemos escribir de una única forma cada vector de E como v=w+w' con $w\in F$ y $w'\in F^{\perp}$.

De esta forma $w = proj_F(v)$ y $w' = proj_{F^{\perp}}(v)$.

Como tenemos que $w \in F$ y $(v - w) \in F^{\perp}$ $\Rightarrow \langle u_i, w \rangle = \langle u_i, v \rangle$. Por tanto si $w = c_1 u_1 + \dots + c_d u_d$

$$\begin{pmatrix} \langle u_1, u_1 \rangle & \langle u_1, u_2 \rangle & \langle u_1, u_3 \rangle \\ \langle u_2, u_1 \rangle & \langle u_2, u_2 \rangle & \langle u_2, u_3 \rangle \\ \langle u_3, u_1 \rangle & \langle u_3, u_2 \rangle & \langle u_3, u_3 \rangle \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix} = \begin{pmatrix} \langle u_1, v \rangle \\ \langle u_2, v \rangle \\ \langle u_3, v \rangle \end{pmatrix}$$

5.5 Teorema espectral

Sea $A = A^T$ simétrica:

- A tiene todos los VAP'S reales
- A diagonaliza
- \bullet \exists base ortogonal formada por VEP's de A

5.6 Descomposición SVD

Sea A una matriz $m \times n$, queremos encontrar las siguientes matrices:

- $U m \times m$ ortogonal
- $D m \times n$ diagonal con $\sigma_1 \ge \cdots \ge \sigma_r$ y r = Rank(A)
- $V n \times n$ ortogonal

Con ellas podemos expresar $A = UDV^T$. Para encontrar estas matrices seguimos los siguientes pasos

- 1) $A^TA = VD^TDV^T \Rightarrow$ podemos diagonalizar A^TA (simétrica), obteniendo V, V^T y D, dado que $\sigma_i = \sqrt{\lambda_i}$
- 2) Los vectores columna que forman U son $u_i = \frac{1}{\sigma_i} A v_i$

5.7 Teorema Fundamental del Álgebra

Sea $f: \mathbb{R}^n \to \mathbb{R}^m$ una aplicación lineal definida por la matriz A. Entonces tenemos los siguientes espacios:

- $Im(A) = [u_1, \cdots, u_r]$
- $Ker(A) = [v_{r+1}, \cdots, v_n]$
- $Im(A^T) = [v_1, \cdots, v_r]$
- $Ker(A^T) = [u_{r+1}, \cdots, u_n]$

Con los que se cumple $\mathbb{R}^n=Ker(A)\otimes Im(A^T)$ y $\mathbb{R}^m=Ker(A^T)\otimes Im(A).$

Además se cumple por las propiedades de 5.3 que los espacios son complementos ortogonales.

5.8 Norma de una matriz

La norma de una matriz se define como

$$||A||_2 = \max_{||x||=1} ||Ax|| = \max \frac{||Ax||}{||x||}$$

Algunas propiedades son:

- $||A|| \ge 0$
- $\bullet \ \|\lambda A\| = \lambda \, \|A\|$
- $||AB|| \le ||A|| \, ||B||$ igaldad cuando B es ortogonal
- $||A|| = \sigma_1 \text{ (SVD)} \Rightarrow ||A^{-1}|| = \frac{1}{\sigma_r}$

Torema de Eckart-Young.

Sea A = UDV, sabemos que $||A|| = \sigma_1$. Sea A_k la matriz SVD de rango k:

- $\bullet \|A M_k\| = \sigma_{k+1}$
- $||A M|| \ge ||A M_k|| \ \forall M$ de rango k