!pip install matplotlib

 $! g down\ https://d2beiqkhq929f0.cloudfront.net/public_assets/assets/000/000/940/original/netflix.csv\ -O\ netflix.csv$

Downloading...

From: https://d2beiqkhq929f0.cloudfront.net/public_assets/assets/000/000/940/original/netflix.csv

To: /content/netflix.csv

100% 3.40M/3.40M [00:00<00:00, 4.62MB/s]

#importing libraries

 ${\tt import\ matplotlib.pyplot\ as\ plt}$

import seaborn as sns
import pandas as pd
import numpy as np

import copy

#reading/loading the dataset netflix.csv
data = pd.read_csv('netflix.csv')

data.head(3)

s	how_id	type	title	director	cast	country	date_added	release_year	rating	duration	listed_in	description	year_added	month_added	wee
0	s1	Movie	Dick Johnson Is Dead	Kirsten Johnson	Unknown cast	United States	2021-09-25	2020	PG-13	90 min	Documentaries	As her father nears the end of his life, filmm	2021.0	9.0	
1	s2	TV Show	Blood & Water	Unknown director	Ama Qamata	South Africa	2021-09-24	2021	TV-MA	2 Seasons	International TV Shows	After crossing paths at a party, a Cape Town t	2021.0	9.0	
1	s2	TV Show	Blood & Water	Unknown director	Ama Qamata	South Africa	2021-09-24	2021	TV-MA	2 Seasons	TV Dramas	After crossing paths at a party, a Cape Town t	2021.0	9.0	

data.shape

(8807, 12)

data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 8807 entries, 0 to 8806
Data columns (total 12 columns):

Non-Null Count Dtype # Column -----0 show_id 8807 non-null object 8807 non-null object 1 type 8807 non-null object 6173 non-null object 2 title director 3 7982 non-null object cast country 7976 non-null object date_added 8797 non-null object 5 6 release_year 8807 non-null int64 7 8 rating 8803 non-null object 8804 non-null duration object 8807 non-null 10 listed_in object 11 description 8807 non-null object dtypes: int64(1), object(11)

data.describe(include = 'object')

memory usage: 825.8+ KB

show_id type title date_added rating duration listed_in descri director country cast 8807 8807 8807 6173 7982 7976 8797 8803 8804 count 8807 7692 8807 220 unique 8807 2 4528 748 1767 17 514 Dramas, International Dick Johnson Is Rajiv David United January 1, Paranormal activity at top s1 Movie TV-MA 1 Season Dead Chilaka Attenborough States 2020 Movies abandoned p 2818 362 1 6131 1 19 19 109 3207 1793 freq

data.duplicated().value_counts()

False 8807

Name: count, dtype: int64

Basic Analysis

- 1. Un-nesting the columns
 - a. Un-nest the columns those have cells with multiple comma separated values by creating multiple rows.

```
cols_to_unnest = ['cast', 'listed_in', 'country', 'director']
for col in cols_to_unnest:
   data[col] = data[col].str.split(', ')
   data = data.explode(col)

data.head(3)
```

	show_id	type	title	director	cast	country	date_added	release_year	rating	duration	listed_in	description	year_added	month_added	wee
0	s 1	Movie	Dick Johnson Is Dead	Kirsten Johnson	Unknown cast	United States	2021-09-25	2020	PG-13	90 min	Documentaries	As her father nears the end of his life, filmm	2021.0	9.0	
1	s2	TV Show	Blood & Water	Unknown director	Ama Qamata	South Africa	2021-09-24	2021	TV-MA	2 Seasons	International TV Shows	After crossing paths at a party, a Cape Town t	2021.0	9.0	
1	s2	TV Show	Blood & Water	Unknown director	Ama Qamata	South Africa	2021-09-24	2021	TV-MA	2 Seasons	TV Dramas	After crossing paths at a party, a Cape Town t	2021.0	9.0	

2. Handling null values

a. For categorical variables with null values, update those rows as unknown_column_name. Example: Replace missing value with Unknown Actor for missing value in Actors column.

```
data['director'].fillna('Unknown director',inplace = True)
data['cast'].fillna('Unknown cast',inplace = True)
data['country'].fillna('Unknown country',inplace = True)
data.head()
```

	show_id	type	title	director	cast	country	date_added	release_year	rating	duration	listed_in	de
0	s 1	Movie	Dick Johnson Is Dead	Kirsten Johnson	Unknown cast	United States	September 25, 2021	2020	PG-13	90 min	Documentaries	A:
1	s2	TV Show	Blood & Water	Unknown director	Ama Qamata, Khosi Ngema, Gail Mabalane, Thaban	South Africa	September 24, 2021	2021	TV-MA	2 Seasons	International TV Shows, TV Dramas, TV Mysteries	рғ
2	s3	TV Show	Ganglands	Julien Leclercq	Sami Bouajila, Tracy Gotoas, Samuel	Unknown country	September 24, 2021	2021	TV-MA	1 Season	Crime TV Shows, International TV Shows, TV Act	To fa
`												,

b. Replace with 0 for continuous variables having null values.

```
# checking the value counts for columns
for i in ['rating', 'duration']:
    print('Value count in',i, 'column are :-')
    print(data[i].value_counts())
    print('-'*70)

#replace unknown values in ratings columns to nan
data['rating'].replace({'74 min' : np.nan, '84 min' : np.nan, '66 min' : np.nan, '0' : np.nan}, inplace = True)

#Fill nan values to unknown rating
data['rating'].fillna('Unknown rating',inplace = True)
data['rating'].value_counts()
```

rating TV-MA 3207 TV-14 2160 TV-PG 863 799 R PG-13 490 TV-Y7 334 TV-Y 307 PG 287 TV-G 220 G Unknown rating TV-Y7-FV NC-17 UR Name: count, dtype: int64

```
data['duration'].fillna(0,inplace = True)
data.head(3)
```

	show_id	type	title	director	cast	country	date_added	release_year	rating	duration	listed_in	descr:
0	s 1	Movie	Dick Johnson Is Dead	Kirsten Johnson	Unknown cast	United States	2021-09-25	2020	PG-13	90 min	Documentaries	As he ne en life, t
1	s2	TV Show	Blood & Water	Unknown director	Ama Qamata	South Africa	2021-09-24	2021	TV-MA	2 Seasons	International TV Shows	cı pat party, ; Tı
1	s2	TV Show	Blood & Water	Unknown director	Ama Qamata	South Africa	2021-09-24	2021	TV-MA	2 Seasons	TV Dramas	cı pat party, ; Tı

1. Find the counts of each categorical variable both using graphical and non - graphical analysis.

a. For Non-graphical Analysis:

```
#listed_in
data.groupby('listed_in').nunique()['title'].sort_values(ascending = False)
```

listed_in International Movies 2752 2427 Dramas Comedies 1674 International TV Shows 1351 Documentaries 869 Action & Adventure 859 TV Dramas 763 Independent Movies 756 Children & Family Movies 641 Romantic Movies 616 TV Comedies 581 Thrillers 577 Crime TV Shows 470 Kids' TV 451 Docuseries 395 Music & Musicals 375 Romantic TV Shows 370 Horror Movies 357 Stand-Up Comedy 343 Reality TV 255 British TV Shows 253 Sci-Fi & Fantasy 243 Sports Movies 219 Anime Series 176 Spanish-Language TV Shows 174 TV Action & Adventure 168 Korean TV Shows 151 Classic Movies 116 LGBTQ Movies 102 TV Mysteries Science & Nature TV 92 TV Sci-Fi & Fantasy 84 TV Horror 75 Anime Features 71 Cult Movies 71 Teen TV Shows 69 Faith & Spirituality 57 TV Thrillers Movies 57 Stand-Up Comedy & Talk Shows 56 Classic & Cult TV 28 TV Shows 16 Name: title, dtype: int64

Analysis: Upon checking the above data, we can see that there are top 4 categories listed in; International Movies(2752), Dramas (2427), Comedies(1674), International TV Shows(1351) and least watched categories are; Classic & Cult TV(28), TV Shows(16).

```
#Rating
data.groupby('rating').nunique()['title'].sort_values(ascending = False)
```

rating TV-MA 3207 TV-14 2160 TV-PG 863 799 PG-13 490 TV-Y7 334 307 TV-Y PG 287 TV-G 220 NR 80 Unknown rating 7 TV-Y7-FV NC-17 3 UR Name: title, dtype: int64

 $Analysis: Top\ ratings\ which\ people\ has\ given\ are:\ TV-MA(3207),\ TV-14(2160),\ TV-PG(863),\ R(799).$

```
b. For graphical analysis:
```

```
import warnings
warnings.filterwarnings("ignore")

#listed_in
plt.figure(figsize=(12, 8))
sns.countplot(x='listed_in', data=data, palette='Set2')
plt.xticks(rotation = 90)
plt.show()
```



```
#rating
plt.figure(figsize=(12, 8))
sns.countplot(x='rating', data=data, palette='Set2')
plt.show()
```


a. Find the number of movies produced in each country and pick the top 10 countries.

```
#Movies
movies = data[data['type'] == 'Movie']
numberofmovies = movies.groupby('country').size().reset_index(name = 'Number_of_Movies')
numberofmovies.sort_values(by='Number_of_Movies', ascending=False).head(10)
```

	country	Number_of_Movies
114	United States	40811
43	India	20109
112	United Kingdom	8118
34	France	5872
122	unknown country	5708
20	Canada	5035
100	Spain	3250
36	Germany	3149
51	Japan	2803
75	Nigeria	2186

Analysis: Most of the people watch movies are from UNITED STATES(40811) AND INDIA(20109). They have majority of movie watchers compartively from other countries.

```
b. Find the number of Tv-Shows produced in each country and pick the top 10 countries.
```

```
#TV shows
tv_shows = data[data['type']== 'TV Show']
numberoftv_shows = tv_shows.groupby('country').size().reset_index(name='Number_of_Tv_shows')
numberoftv_shows.sort_values(by='Number_of_Tv_shows', ascending=False).head(10)
```

	country	Number_of_Tv_shows
63	United States	13408
66	unknown country	5437
30	Japan	5137
62	United Kingdom	4286
52	South Korea	3682
8	Canada	2133
38	Mexico	2018
53	Spain	1798
19	France	1542
57	Taiwan	1446

Analysis: Majority of people are from united states which prefer watching Tv shows and followed by other countries.

Most watched duration for movies and tv-shows

```
#Tv shows
tv_shows = data[data['type'] == 'TV Show']
tv_shows['duration'].value_counts()
    duration
    1 Season
                  33444
                   9470
    2 Seasons
     3 Seasons
                   5084
                   2134
    4 Seasons
     5 Seasons
    7 Seasons
                    843
    6 Seasons
                    633
    8 Seasons
                    286
                    257
    9 Seasons
    10 Seasons
                    220
    13 Seasons
                    132
    12 Seasons
                    111
    15 Seasons
                     96
    17 Seasons
                     30
    11 Seasons
                     30
```

Analysis: People would prefer to watch 1-2 seasons for a tv show and do not prefer no. of season in just 1 tv show. As the Number of seasons increases the watchers decreases. There might be multiple reasons such as it gets boring further or they loose interest.

```
#Movies
movies = data[data['type'] == 'Movie']
movies['duration'].value_counts().head(10)

duration
```

```
94 min 3591
97 min 3434
93 min 3356
95 min 3192
106 min 3052
```

Name: count, dtype: int64

```
90 min
               2948
    102 min
               2912
    96 min
               2911
    105 min
               2903
    107 min
               2886
    Name: count, dtype: int64
movies['duration'].value_counts().tail()
    duration
    5 min
              3
              2
    9 min
    3 min
              2
    11 min
              2
    8 min
              1
    Name: count, dtype: int64
```

Analysis: People are generally fine with watching around 1.5-1.7 hours of movies. It shouldn't be too short or too long in terms of duration.

3. What is the best time to launch a TV show?

Number_of_TV_Shows Name: 0, dtype: Int64

Name: 0, dtype: float64

Name: 0, dtype: float64

```
a. Find which is the best week to release the Tv-show or the movie. Do the analysis separately for Tv-shows and Movies
```

```
#converting date_added col to date time format and creating three new columns; Year, Month and Week
data['date_added'] = pd.to_datetime(data['date_added'],errors='coerce')
data['year_added'] = data['date_added'].dt.month
data['week_added'] = data['date_added'].dt.isocalendar().week

#TV Shows
tv_shows = data.loc[data['type']== 'TV Show']
tv_show_counts = tv_shows['week_added'].value_counts().reset_index()
tv_show_counts.columns = ['week_added', 'Number_of_TV_Shows']
best_tv_show_week = tv_show_counts.loc[tv_show_counts['Number_of_TV_Shows'].idxmax()]
print(best_tv_show_week)
```

Analysis: According to the above analysis, the best week to release a TV show is 'week 27'.

Analysis: According to the data above, the best week to release a movie is 'week 01'.

```
b. Find which is the best month to release the Tv-show or the movie. Do the analysis separately for Tv-shows and Movies
```

Analysis: The best month to release a TV show would be last month as there will be a moderate traffic.

Analysis: The best month to release a TV show would be 7th month as there will be a moderate traffic.

4. Analysis of actors/directors of different types of shows/movies.

```
a. Identify the top 10 directors who have appeared in most movies or TV shows.
```

	director	count_of_director
0	Unknown director	2634
1	Rajiv Chilaka	22
2	Jan Suter	21
3	Raúl Campos	19
4	Marcus Raboy	16
5	Suhas Kadav	16
6	Jay Karas	15
7	Cathy Garcia-Molina	13
8	Jay Chapman	12
9	Martin Scorsese	12

Analysis: From above data we could identify the top 10 directors who have appeared in most movies or TV shows. Rajiv Chilaka(22), Jan Suter(21), Raul Campos(19) are the top 3.

```
b. Identify the top 10 Actors who have appeared in most movies or TV shows.
```

data.groupby('cast')['title'].nunique().sort_values(ascending = False)[0:10].reset_index(name = 'Count_of_Actors')

	cast	Count_of_Actors
0	Unknown cast	825
1	Anupam Kher	43
2	Shah Rukh Khan	35
3	Julie Tejwani	33
4	Naseeruddin Shah	32
5	Takahiro Sakurai	32
6	Rupa Bhimani	31
7	Om Puri	30
8	Akshay Kumar	30
9	Yuki Kaji	29

Analysis: From above data we could identify the top 10 actors who have appeared in most movies or TV shows. Anupam Kher(43), Shah Rukh Khan(35), Julie Tejwani(33) are the top 3.

5. Which genre movies are more popular or produced more

```
text = ' '.join(data['listed_in'])
wordcloud = WordCloud(width=800, height=400, background_color='lavender').generate(text)
plt.figure(figsize=(10, 5))
```

wordcloud = WordCloud(width=800, height=400, bac
plt.figure(figsize=(10, 5))
plt.imshow(wordcloud, interpolation='lanczos')
plt.axis('off')
plt.show()

from wordcloud import WordCloud
import matplotlib.pyplot as plt

Analysis: The best genre of movies are Comedies, International movies, International TV, Romantic movies, Action Adventure, Family movies, Dramas.

Note: The plot is in the text editor saved as an image but this code can be run.

6. Find after how many days the movie will be added to Netflix after the release of the movie (you can consider the recent past data).

```
import pandas as pd
# Read the CSV file
data = pd.read_csv('netflix.csv')
# Strip leading and trailing spaces from the 'date_added' column
data['date_added'] = data['date_added'].str.strip()
# Convert 'date_added' column to datetime format
data['date_added'] = pd.to_datetime(data['date_added'], format='%B %d, %Y')
# Extract the year from 'date_added'
data['year'] = data['date_added'].dt.year
# Calculate the delay in years between 'date_added' and 'release_year'
data['delay'] = data['year'] - data['release_year']
data['delay']
     0
             1.0
              0.0
    1
     2
              0.0
     3
             0.0
             0.0
     8802
            12.0
     8803
             1.0
     8804
             10.0
           14.0
     8805
     8806
             4.0
     Name: delay, Length: 8807, dtype: float64
# Find the mode of the delay
mode_delay = data['delay'].mode()
print(mode_delay.values[0])
    0.0
```

Analysis: Majority of movies/tv shows are added and released in the same year itself.

4

Understanding what content is available in different countries.

West Germany Thrillers 10
Zimbabwe Comedies 12
Documentaries 3
International Movies 15

International Movies 15
Romantic Movies 12

Name: title, Length: 1464, dtype: int64

TV Dramas