Plan du cours de probabilités

Probabilités

Espérance, espérance conditionnelle

Semaine 3

- Probabilités discrètes
- Variables et vecteurs aléatoires discrets
- ► Espérance, espérance conditionnelle

Semaine 4

- ► Indépendance, variance, covariance
- Variables aléatoires continues
- Vecteurs aléatoires continus

Espérance, espérance conditionnelle

Probabilités

Espérance : définition

Changement de variable

Propriétés de l'espérance

Espérance conditionnel

Espérance : définition intuitive, cadre

 $X:\Omega \to \mathcal{X} \subset \mathbb{R}$ une v.a. discrète. On tire x au hasard selon \mathbb{P}_X .

Combien obtient-on « en moyenne »?

Convention: v.a. « positive ou sommable »

- ▶ X est positive si $\mathbb{P}(X \ge 0) = 1$, *i.e.* $\forall x \in \mathcal{X}$, $x \mathbb{P}_X \{x\} \ge 0$.
- **▶ sommable** si

$$\sum_{x \in \mathcal{X}} |x| \mathbb{P}_X \{x\} \text{ est finie.} \quad \text{(Attention : valeurs absolues !)}$$

Espérance : définition intuitive, cadre

 $X:\Omega \to \mathcal{X} \subset \mathbb{R}$ une v.a. discrète. On tire x au hasard selon \mathbb{P}_X .

Combien obtient-on « en moyenne »?

Convention: v.a. « positive ou sommable »

- ▶ X est positive si $\mathbb{P}(X \ge 0) = 1$, *i.e.* $\forall x \in \mathcal{X}$, $x \mathbb{P}_X \{x\} \ge 0$.
- **▶ sommable** si

 $\sum_{x \in \mathcal{X}} |x| \mathbb{P}_X \{x\} \text{ est finie.} \quad \text{(Attention : valeurs absolues !)}$

De même, si \mathcal{X} discret, quelconque et $g:\mathcal{X}\to\mathbb{R}$,

- ▶ g(X) est positive si $\mathbb{P}(g(X) \ge 0) = 1$, *i.e.* $\forall x \in \mathcal{X}$, $g(x) \mathbb{P}_X \{x\} \ge 0$.
- ▶ sommable si $\sum_{x \in \mathcal{X}} |g(x)| \mathbb{P}_X \{x\}$ est finie.

Probabilités

Espérance, espérance conditionnelle

Espérance : définition
Changement de variable
Propriétés de l'aspérance

Anne Sabourin

Espérance d'une v.a. discrète

Combien obtient-on « en moyenne »?

Idée : prendre la moyenne pondérée par les $\mathbb{P}_X\{x\}$.

def : Espérance, espérance d'un transformée

 $X:\Omega \to \mathcal{X}$ une v.a. discrète, $g:\mathcal{X} \to \mathbb{R}$.

On suppose X est à valeurs réelles, positive ou sommable (resp. g(X) positive ou sommable).

L'espérance de X (resp. g(X)) est

$$\mathbb{E}(X) = \sum_{x \in \mathcal{X}} x \, \mathbb{P}_X \{x\}$$

$$\left(\text{resp.}\quad \mathbb{E}\left(g(X)\right) = \sum_{x \in \mathcal{X}} g(x) \mathbb{P}_X\{x\} \right)$$

Probabilités

Espérance, espérance conditionnelle

Espérance : définition

Changement de variable

Espérance, espérance conditionnelle

Espérance : définition

Changement de variable

Propriétés de l'espérance

Espérance conditionnelle

Exemple: dé

- \triangleright $\mathcal{X} = \{1, \dots, 6\}$, fini, donc X est évidemment sommable.
- ► Dé équilibré :

$$\mathbb{E}(X) = \sum_{i=1}^{6} i \mathbb{P}_X \{i\} = \frac{1+2+3+4+5+6}{6} = 3.5$$

▶ Dé faussé :

Mines-Télécom

Exemple: dé

- $\mathcal{X} = \{1, \dots, 6\}$, fini, donc X est évidemment sommable.
- Dé équilibré :

$$\mathbb{E}(X) = \sum_{i=1}^{6} i \mathbb{P}_X \{i\} = \frac{1+2+3+4+5+6}{6} = 3.5$$

Dé faussé :

$$\mathbb{E}(X) = \sum_{i=1}^{6} i \mathbb{P}_X \{ i \}$$

$$= 1.\frac{1}{12} + 2.\frac{2}{12} + 3.\frac{3}{12} + 4.\frac{2}{12} + 5.\frac{1}{12} + 6.\frac{3}{12}$$

$$= 3.75$$

Probabilités

Espérance, espérance conditionnelle

Espérance : définition

4/14

Changement de variable : exemple

$$X$$
 : dé équilibré $\;$; $\;$ $g(X) = -10\,\mathbb{1}_{\{1,\ldots,5\}}(X) + 20\,\mathbb{1}_{\{6\}}(X)$

où
$$\mathbb{1}_A(x) = \begin{cases} 1 & \text{si } x \in A \\ 0 & \text{sinon} \end{cases}$$
 (fonction indicatrice)

▶ En utilisant uniquement \mathbb{P}_X et la définition de $\mathbb{E}(g(X))$:

$$\mathbb{E}(g(X)) = \sum_{i=1}^{6} g(x_i) \underbrace{\mathbb{P}_X\{i\}}_{p_i = \frac{1}{6}}$$
$$= -10 p_1 + \dots + -10 p_5 + 20 p_6 = -5.$$

Probabilités

Espérance, espérance conditionnelle

Changement de variable

Mines-Télécom

Changement de variable : exemple

$$X$$
 : dé équilibré $\ \ ;\ g(X)=-10\,\mathbb{1}_{\{1,\ldots,5\}}(X)+20\,\mathbb{1}_{\{6\}}(X)$

où
$$\mathbb{1}_A(x) = \begin{cases} 1 & \text{si } x \in A \\ 0 & \text{sinon} \end{cases}$$
 (fonction indicatrice)

▶ En utilisant uniquement \mathbb{P}_X et la définition de $\mathbb{E}(g(X))$:

$$\mathbb{E}(g(X)) = \sum_{i=1}^{6} g(x_i) \underbrace{\mathbb{P}_X\{i\}}_{p_i = \frac{1}{6}}$$

$$= -10 p_1 + \dots + -10 p_5 + 20 p_6 = -5.$$

► En posant
$$Y = g(X)$$
 : $\mathbb{P}_Y\{-10\} = 5/6$, $\mathbb{P}_Y\{20\} = 1/6$,

$$\mathbb{E}(g(X)) = \mathbb{E}(Y) = -10 \mathbb{P}_Y \{-10\} + 20 \mathbb{P}_Y \{20\} = -5$$

Probabilités

Espérance, espérance conditionnelle

Espérance : définition

Changement de variable

Propriétés de l'espérance

Théorème de changement de variable

X une v.a. discrète, $g: \mathcal{X} \to \mathcal{Y}$, g(X) positive ou sommable.

Alors
$$\mathbb{E}(g(X)) = \sum_{y \in \mathcal{Y}} y \, \mathbb{P}_Y \{y\}$$

où l'on a posé Y = g(X) et \mathbb{P}_Y la loi de Y.

preuve. $\mathcal{X} = \bigcup_{y \in \mathcal{Y}} g^{-1}\{y\}$ (disjointe) : car $x \in g^{-1}\{g(x)\}$ et $x \in g^{-1}\{y_i\} \cap g^{-1}\{y_i\}$ » est impossible.

$$\mathbb{E}(g(X)) = \sum_{x \in \mathcal{X}} g(x) \mathbb{P}_X \{x\} \quad \text{(par définition)}$$

$$= \sum_{y \in \mathcal{Y}} \sum_{x \in g^{-1} \{y\}} \underbrace{g(x)}_{=y} \mathbb{P}_X \{x\} \quad \text{(c.f. ci-dessus)}$$

$$= \sum_{y \in \mathcal{Y}} \sum_{x \in g^{-1} \{y\}} \mathbb{P}_X \{x\}$$

Probabilités

Espérance, espérance conditionnelle

Espérance : définition

Changement de variable

Propriétés de l'espérance

Espérance conditionnelle

Anne Sabourin

 $y \in \mathcal{Y}$ $x \in g^{-1}\{y\}$

Espérance, espérance conditionnelle

Espérance : définition

Propriétés de l'esp<u>érance</u>

Espérance conditionnell

Propriétés de l'espérance 1 : linéarité

prop : Si X, Y sont deux v.a. discrètes, chacune sommable, et si $a,b\in\mathbb{R}$, (ou si X, Y, a, b sont ≥ 0), alors, aX+bY est sommable et

$$\mathbb{E}(aX + bY) = a\mathbb{E}(X) + b\mathbb{E}(Y)$$

FIU

Propriétés de l'espérance 1 : linéarité

prop : Si X, Y sont deux v.a. discrètes, chacune sommable, et si $a, b \in \mathbb{R}$, (ou si X, Y, a, b sont ≥ 0), alors, aX + bY est sommable et

$$\mathbb{E}(aX + bY) = a\mathbb{E}(X) + b\mathbb{E}(Y)$$

$$\mathbb{E}(aX + bY) = \sum_{i,j} (ax_i + by_j) \mathbb{P}_{(X,Y)}(x_i, y_j)$$

$$= a \sum_i x_i \sum_j \mathbb{P}_{(X,Y)}(x_i, y_j) + b \sum_j y_j \sum_i \mathbb{P}_{(X,Y)}(x_i, y_j)$$

$$= a \sum_i x_i \mathbb{P}_X(x_i) + b \sum_j y_j \mathbb{P}_Y(y_j)$$

$$= a \mathbb{E}(X) + b \mathbb{E}(Y)$$

Preuve rigoureuse si \mathcal{X}, \mathcal{Y} finis, encore vrai par passage à la limite (admis)

Probabilités

Espérance, espérance conditionnelle

Espérance : définition

Propriétés de l'espérance

Espérance conditionnelle

Anne Sabourin

linéarité, exemple : loi binomiale

Loi binomiale : n jeux de pile ou face (0,1), somme des résultats.

$$S = \sum_{i=1}^{n} X_i$$
, où X_i : Bernoulli(p)

 $ightharpoonup \mathbb{E}(S)$?

Probabilités

Espérance, espérance conditionnelle

Espérance : définition

Changement de variable

Propriétés de l'espérance

linéarité, exemple : loi binomiale

Loi binomiale : n jeux de pile ou face (0,1), somme des résultats.

$$S = \sum_{i=1}^{n} X_i$$
, où X_i : Bernoulli(p)

- $ightharpoonup \mathbb{E}(S)$?
- ▶ Par linéarité, $\mathbb{E}(S) = \sum_{i=1}^{n} \mathbb{E}(X_i)$
- Espérance d'une Bernoulli : $E(X_i) = p.1 + 0.(1 p) = p.$ (... en moyenne, on gagne p)
- Conclusion

$$\mathbb{E}(S) = \sum_{i=1}^{n} \mathbb{E}(X_i) = \sum_{i=1}^{n} p = np.$$

Probabilités

Espérance, espérance conditionnelle

Espérance : définition

Propriétés de l'espérance

Propriétés de l'espérance 2 : monotonie

L'espérance est 'monotone'

- 1. Si $X \ge 0$ (positive), $\mathbb{E}(X) \ge 0$
- 2. Si $X \ge Y$ (i.e. X Y positive), X et Y sommables, alors $\mathbb{E}(X) \ge \mathbb{E}(Y)$

Probabilités

Espérance, espérance conditionnelle

Espérance : définition

Changement de variable

Propriétés de l'espérance

Espérance conditionnelle

Mines-Télécom

Propriétés de l'espérance 2 : monotonie

L'espérance est 'monotone'

- 1. Si $X \ge 0$ (positive), $\mathbb{E}(X) \ge 0$
- 2. Si $X \ge Y$ (i.e. X Y positive), Xet Y sommables, alors $\mathbb{E}(X) \ge \mathbb{E}(Y)$

preuve:

- 1. L'hypothèse signifie : $\forall i, x_i p_i \geq 0$. Donc $\mathbb{E}(X) = \sum x_i p_i \geq 0$.
- 2. On pose g(X, Y) = (Y X). g(X, Y) est positive, *i.e.* $g(x, y) \mathbb{P}_{(X, Y)} \{(x, y)\} \ge 0$.

$$\mathbb{E}(X) - \mathbb{E}(Y) \stackrel{\text{linéarité}}{=} \mathbb{E}(X - Y) = \mathbb{E}(g(X, Y))$$
$$= \sum_{(x,y) \in \mathcal{X} \times \mathcal{Y}} \underbrace{g(x,y)}_{\geq 0} \mathbb{P}(\omega)$$
$$\geq 0$$

Probabilités

Espérance, espérance conditionnelle

Espérance : définition

Changement de variable

Propriétés de l'espérance

Une inégalité classique

Soit X une v.a. discrète, sommable, on a

$$|\mathbb{E}(X)| \leq \mathbb{E}(|X|)$$

exemple pile ou face (-1,1) : $\mathbb{P}_X(-1) = 1/2$, $\mathbb{P}_X(1) = 1/2$:

- $|\mathbb{E}(X)| = |-1/2 + 1/2| = 0$
- $\mathbb{E}(|X|) = 1/2 |-1| + 1/2 |1| = 1.$

preuve : inégalité triangulaire pour les valeurs absolues

$$|\mathbb{E}(X)| = \left| \sum_{i} x_{i} \, \mathbb{P}_{X} \{x_{i}\} \right|$$

$$\leq \sum_{i} |x_{i}| \, \mathbb{P}_{X} \{x_{i}\}$$

$$= \mathbb{E}(|X|)$$

Probabilités

Espérance, espérance conditionnelle

Espérance : définition

Changement de variable

Propriétés de l'espérance

Espérance conditionnelle

On observe X = x. Qu'attendre de Y en moyenne?

Rappel: loi conditionnelle de Y sachant $\{X = x\}$ (vidéo 2):

$$\mathbb{P}_{Y|X}(\{y\}|\{X=x\}) = \frac{\mathbb{P}_{(X,Y)}\{(x,y)\}}{\mathbb{P}_{X}\{x\}}$$

déf : Espérance conditionnelle de Y sachant $\{X = x\}$

« Espérance de Y » calculée avec la loi conditionnelle

$$\mathbb{E}(Y \mid \{X = x\}) = \sum_{y \in \mathcal{Y}} y \mathbb{P}_{Y|X}(\{y\}|x)$$

C'est une fonction de x! donc « l'Espérance de Y sachant X »

$$E(Y|X): \omega \mapsto E(Y|\{X=X(\omega)\})$$
 est une variable aléatoire.

Probabilités

Espérance, espérance conditionnelle

Espérance, espérance conditionnelle

Espérance : définition

Changement de variable

Propriétée de l'espérance

Espérance conditionnelle

Espérance conditionnelle et espérance : exemple

On tire une boule au hasard parmi 2 blanches et 8 noires.

- ► Si « noire », on perd 10.
- ightharpoonup Si « blanche », on joue au dé. On gagne $20\times$ le dé obtenu.

Doit on jouer? (Combien gagne-t-on en moyenne?)

Espérance, espérance conditionnelle

Espérance conditionnelle

Espérance conditionnelle et espérance : exemple

On tire une boule au hasard parmi 2 blanches et 8 noires.

- ► Si « noire », on perd 10.
- ► Si « blanche », on joue au dé. On gagne 20× le dé obtenu. Doit on jouer? (Combien gagne-t-on en moyenne?)

$$X = \{0, 1\}, \mathbb{P}_X\{1\} = 2/10.$$

Y = gain à la fin de la partie.

- ► Sachant $\{X = 0\}$: $\mathbb{E}(Y | \{X = 0\}) = -10 * 1 = -10$.
- ► Sachant $\{X = 1\}$: $\mathbb{E}(Y | \{X = 1\}) = 20 * 3.5 = 70$.

Moyenne des deux espérances , pondérée par les
$$\mathbb{P}_X\{i\}$$
 $\mathbb{E}(Y) = 0.8(-10) + (0.2*70) = -8 + 14 = 6$

On a calculé l'espérance (sous \mathbb{P}_X) de l'espérance conditionnelle.

Espérance conditionnelle et espérance $\mathbb{E}(Y | X = x)$: étape pour calculer l'espérance $\mathbb{E}(Y)$

$$\mathbb{E}(Y) = \sum_{y \in \mathcal{Y}} y \underbrace{\sum_{x \in \mathcal{X}} \mathbb{P}_{(X,Y)} \{(x,y)\}}_{\mathbb{P}_Y \{y\}}$$

Probabilités

Espérance, espérance conditionnelle

Espérance conditionnelle et espérance $\mathbb{E}(Y | X = x)$: étape pour calculer l'espérance $\mathbb{E}(Y)$

$$\mathbb{E}(Y) = \sum_{y \in \mathcal{Y}} y \sum_{x \in \mathcal{X}} \mathbb{P}_{(X,Y)}\{(x,y)\}$$

$$= \sum_{y \in \mathcal{Y}} y \sum_{x \in \mathcal{X}} \mathbb{P}_{Y|X}(\{y\}|\{X=x\}) \mathbb{P}_X\{x\}$$

Probabilités

Espérance, espérance conditionnelle

Espérance conditionnelle et espérance $\mathbb{E}(Y | X = x)$: étape pour calculer l'espérance $\mathbb{E}(Y)$

$$\mathbb{E}(Y) = \sum_{y \in \mathcal{Y}} y \sum_{x \in \mathcal{X}} \mathbb{P}_{(X,Y)}\{(x,y)\}$$

$$= \sum_{y \in \mathcal{Y}} y \sum_{x \in \mathcal{X}} \mathbb{P}_{Y|X}(\{y\}|\{X = x\}) \mathbb{P}_X\{x\}$$

$$= \sum_{x \in \mathcal{X}} \mathbb{P}_X\{x\} \sum_{y \in \mathcal{Y}} y \mathbb{P}_{Y|X}(\{y\}|\{X = x\})$$

$$\mathbb{E}(Y \mid \{X = x\}): \text{ fonction de } x$$

Probabilités

Espérance, espérance conditionnelle

Espérance, espérance conditionnelle

Espérance conditionnelle

Espérance conditionnelle et espérance $\mathbb{E}(Y | X = x)$: étape pour calculer l'espérance $\mathbb{E}(Y)$

$$\mathbb{E}(Y) = \sum_{y \in \mathcal{Y}} y \sum_{x \in \mathcal{X}} \mathbb{P}_{(X,Y)}\{(x,y)\}$$

$$= \sum_{y \in \mathcal{Y}} y \sum_{x \in \mathcal{X}} \mathbb{P}_{Y|X}(\{y\}|\{X = x\}) \mathbb{P}_X\{x\}$$

$$= \sum_{x \in \mathcal{X}} \mathbb{P}_X\{x\} \sum_{y \in \mathcal{Y}} y \mathbb{P}_{Y|X}(\{y\}|\{X = x\})$$

$$= \mathbb{E}_X(\mathbb{E}(Y \mid X))$$

- $ightharpoonup \ll \mathbb{E}_X[\cdot] \gg$: espérance par rapport à la loi \mathbb{P}_X .
- « $\mathbb{E}_X \Big(\mathbb{E} (Y \mid X) \Big)$ » signifie

Conclusion de la semaine

Probabilités

Espérance, espérance conditionnelle

Espérance : définition
Changement de variable
Propriétés de l'espérance
Espérance conditionnelle

- ► Variables discrètes : presque terminé, reste le cas d'indépendance.
- ► La semaine prochaine :
 - Variables discrètes, suite et fin
 - Cas des variables continues.

