

Введение в Машинное обучение Метрики качества/ матрица ошибок Простейший KNN алгоритм классификации

Преподаватель: Герард Костин

План

- Введение
- Постановка задачи машинного обучения
- Задача классификации
- Метрики качества классификации
- KNN

Типы ML алгоритмов

Основные категории (по типу обучения)

- о с учителем (supervised)
- о без учителя (unsupervised)
- о с частичным привлечением учителя (semisupervised)
- о с подкреплением (reinforcement)
- Организация техники обучения
- о пакетная техника обучения, batch (offline) learning
- о онлайновое обучение, online learning
- Типы алгоритмов
- о машинное обучение на примерах, instance-based
- о машинное обучение на основе моделей, model-based

Постановка Задачи

• Пусть

- $\sim X$ множество описаний объектов,
- \circ Y множество допустимых ответов.
- Существует неизвестная целевая зависимость у*
 - о отображение $y^*: X \to Y$
 - \circ значения y^* известны только на объектах конечной обучающей выборки X^n
 - $X^n = \{(x_1, y_1), ..., (x_n, y_n)\}$
- Требуется построить алгоритм a, который приближал бы неизвестную целевую зависимость как на элементах выборки X^n , так и на всём множестве X.

Функционал качества и функция потерь

- Вводится функция потерь L(y, y'), характеризующая величину отклонения ответа y = a(x) от правильного ответа y' на произвольном объекте $x \in X$.
- Типичный выбор функции потерь:
 - \cup В задачах классификации $L(y,y')=[y\neq y']$ (т.е. число ошибок классификации);
 - \circ В задачах регрессии $L(y, y') = (y y')^2$.
- Функционал качества
 - \circ характеризует среднюю ошибку (эмпирический риск) алгоритма a на произвольной выборке X^n

$$Q(a, X^n) = \frac{1}{n} \sum_{i=1}^n L(a(x_i), y^*(x_i)).$$

- Метод минимизации эмпирического риска
 - \circ Требуется найти алгоритм a^* , минимизирующий среднюю ошибку на обучающей выборке:

$$a^* = \arg\min_{a \in A} Q(a, X^n)$$
.

Признаки

Типы признаков

```
"бинарный" признак: ;
```

"номинальный" признак: — конечное множество;

"порядковый" признак: — конечное упорядоченное множество;

"количественный" признак: — множество действительных чисел.

Тестирование модели

Единственный способ узнать, насколько хорошо модель будет обобщаться на новые случаи, это фактически опробовать ее на новых примерах.

- Лучший вариант состоит в том, чтобы разделить ваши данные на два набора: обучающий набор данных и тестовый набор данных
- Тренируем модель с помощью обучающего набора и тестируем ее с помощью тестового набора
- Частота ошибок на новых примерах называется ошибкой обобщения (или ошибкой вне выборки), и, оценивая свою модель на тестовом наборе, вы получаете оценку этой ошибки.

С Какими трудностями сталкиваемся в процессе Машинного Обучения

низкое качество данных	некорректное использование методов	субъективные метрики качества
нерелевантные признаки	нерепрезентативные данные	недообучение
переобучение	масштабирование метода с ростом числа пользователей/ запросов	недостаток данных

Идеальное обучение?

Классификация

- Задача классификации
- о Имеется множество объектов (ситуаций), разделённых некоторым образом на классы.
- Задано конечное множество объектов, для которых известно, к каким классам они относятся. Это множество называется выборкой.
- о Классовая принадлежность остальных объектов неизвестна.
- Требуется построить алгоритм, способный классифицировать произвольный объект изисходного множества
- Типы классов
- о Двухклассовая классификация
- Многоклассовая классификация
- о Непересекающиеся классы vs пересекающиеся классы
- Нечёткие классы

Метрики качества

- Метрики
- точность Accuracy
- о матрица расхождений Confusion matrix
- о точность и полнота Precision and Recall
- **F1-мера**
- ROC-кривая ROC Curve
- ROC AUC (area under ROC curve)
- Почему Accuracy не лучшая метрика для классификации?
- о при несбалансированных классах 95 / 5
- Accuracy для "простого" классификатора будет 95%

Confusion матрица

n=165	Predicted: NO	Predicted: YES	
Actual: NO	TN = 50	FP = 10	60
Actual: YES	FN = 5	TP = 100	105
	55	110	

- TN true negatives
- TP true positives
- FN false negatives
- FP false positives

Recall u Precision

Сколько выбранных объектов корректны

Как много корректных объектов выбрано?

F1 и ROC кривая

• F1-мера: гармоническое среднее точности и полноты (чувствительности)

$$_{\circ}$$
 $F_{1} = \frac{2PR}{P+R} = \frac{2}{\frac{1}{P} + \frac{1}{R}}$

- ROC-кривая
 - (ROC = receiver operating characteristic, рабочая характеристика приёмника)
 - ROC AUC площадь под ROC-кривой

KNN

Расстояние

• Расстояние Минковского

$$D(\mathbf{x}, \mathbf{x}') = \sqrt[p]{\sum_{i} |x_{i} - x'_{i}|^{p}}$$

- o p=2
- o p=1
- o p=0
- o p=∞

