Лабораторная работа 5

Численное дифференцирование и интегрирование

- 1. Найти приближенные значения производных первого и второго порядков функции f(x) в точке x_0 , используя: а) функцию **D** системы **Mathematica**;
 - **б)** формулы численного дифференцирования $y_i' \approx \frac{1}{h} \left(\Delta y_i \frac{1}{2} \Delta^2 y_i + \frac{1}{3} \Delta^3 y_i \right)$ и $y_i'' \approx \frac{1}{L^2} \left(\Delta^2 y_i - \Delta^3 y_i \right)$ для шага $h_1 = 0,1$ и шага $h_2 = 0,01$. Сравнить полученные

1.1.
$$f(x) = \operatorname{tg} \ln 3x$$
, $x_0 = 2.13$

значения.

1.1.
$$f(x) = \lg \ln 3x$$
, $x_0 = 2,13$.
1.2. $f(x) = 2\sin \sqrt[3]{x+1}$, $x_0 = 4,71$.

1.3.
$$f(x) = \sqrt[3]{\ln^2(\cos 5x + 4)}$$
, $x_0 = 1.82$ 1.4. $f(x) = \text{ctg}^3(\sinh(2x - 1))$, $x_0 = 9.04$

1.4.
$$f(x) = \operatorname{ctg}^3(\operatorname{sh}(2x-1)), x_0 = 9,04$$

1.5.
$$f(x) = (x-3)e^{\sqrt[3]{\sin(x^2+2)}}, \quad x_0 = 5,12$$

1.5.
$$f(x) = (x-3)e^{\sqrt[3]{\sin(x^2+2)}}$$
, $x_0 = 5,12$. 1.6. $f(x) = \frac{\log_2^2(3x+2)}{x+4}$, $x_0 = 1,13$.

1.7.
$$f(x) = \text{ch}^2 \text{tg} \sqrt{x+7}$$
, $x_0 = 2,21$

1.7.
$$f(x) = \text{ch}^2 \text{tg} \sqrt{x+7}$$
, $x_0 = 2.21$. 1.8. $f(x) = \cos^3(x^2 + \sqrt{x})$, $x_0 = 5.37$.

1.9.
$$f(x) = \sqrt[3]{\ln \sin(x^3 + 2x)}$$
, $x_0 = 0.42$

1.10.
$$f(x) = \operatorname{ctg} \sqrt{x+2}$$
, $x_0 = 4.31$.

1.11.
$$f(x) = 2^{\sin(\ln^2(x+1))}, x_0 = 3.07$$

1.11.
$$f(x) = 2^{\sin(\ln^2(x+1))}$$
, $x_0 = 3.07$. 1.12. $f(x) = \sin(2\sin 3x^2)$, $x_0 = 2.24$.

1.13.
$$f(x) = \sqrt{5x + \ln(x^3 + 1)}$$
,
 $x_0 = 2,47$.

1.14.
$$f(x) = \lg \cos \sqrt{x^2 + 1}$$
,
 $x_0 = 0.75$.

1.15.
$$f(x) = \sqrt{x^2 + \sqrt{x^2 + x}}$$
, $x_0 = 7,17$ 1.16. $f(x) = \sin^2 \ln(x+2)$, $x_0 = 4,23$

1.16.
$$f(x) = \sin^2 \ln(x+2)$$
, $x_0 = 4.23$

- 2. а) Вычислить с помощью формулы второго порядка точности и составить таблицу приближенных значений y_i' производной функции f(x) на отрезке [-1, 3] с шагом h = 0, 2.
 - **б)** Изобразить на одном чертеже (на отрезке [-1, 3]) график функции f'(x), полученной с помощью функции **D** пакета **Mathematica**, и точки (x_i, y_i') ,

2.1.
$$f(x) = \text{sh}(\ln \cosh x)$$
.

2.3.
$$f(x) = tg^2 \left(1 + ch \frac{1}{x+2}\right)$$
.

2.5.
$$f(x) = (\cos(2x+3)+1)^{\ln(3x+7)}$$
.

2.7.
$$f(x) = \ln \frac{\cosh x}{\sqrt{1 + x^2 + \sqrt{(1 + x^2)^3}}}$$
.

2.9.
$$f(x) = (\log_3(5x^2 + 1))^{5x+3}$$

2.11.
$$f(x) = 3^{\sin^2(2x-1)}$$

2.13.
$$f(x) = \frac{\sqrt[3]{12x^3 + x}}{\sqrt{1 + (x^3 + 2)^{-1}}}$$
.

2.15.
$$f(x) = \sqrt[5]{\sin^2 \sinh(3x+1)}$$
.

2.2.
$$f(x) = (\log_2(x+4))^{\sqrt[3]{2x+5}}$$

2.4.
$$f(x) = \sqrt[5]{\sinh(2 + \cot^3\sqrt{x+3})}$$
.

2.6.
$$f(x) = \sin(x + \cos x)$$
.

2.8.
$$f(x) = \frac{\sqrt{1+x^3}}{\sin^2(7x+1)}$$
.

2.10.
$$f(x) = \sqrt[4]{\text{tg}(5x^2 + 7)}$$
.

2.12.
$$f(x) = (5 + x^3)^{3x+1}$$
.

2.14.
$$f(x) = \operatorname{ctg}^2 \sqrt{2x^2 + 7}$$
.

2.16.
$$f(x) = (x + \cos x^2)^{\ln(2x^2 + 5)}$$

3. Вычислить определенный интеграл: **a)** по формуле средних прямоугольников; **б)** по формуле трапеций. В обоих случаях использовать двойной просчет при $n_1 = 8$ и $n_2 = 10$ для уточнения значения интеграла по Ричардсону.

$$3.1. \int_{0.7}^{1.5} \frac{\sqrt[3]{x^2 + 6}}{3x + \sqrt{x^2 + 0.6}} dx.$$

3.3.
$$\int_{0.3}^{0.9} \frac{2 + \sqrt[4]{3x + 1,7}}{x + \sqrt{1,5x^2 + 1}} dx.$$

3.5.
$$\int_{1.2}^{2} \frac{\sqrt{4x^2 + 1.5}}{4x + \sqrt{0.6x^2 + 3}} dx.$$

3.7.
$$\int_{0.8}^{2.4} \frac{0.1x + \sqrt[4]{x + 2.7}}{5 + \sqrt{3x + 0.1}} dx.$$

3.9.
$$\int_{0.4}^{1.2} \frac{\sqrt{3x^2 + 4.1}}{0.2x + \sqrt{1.5x^2 + 6}} dx.$$

3.2.
$$\int_{1,4}^{2,2} \frac{\sqrt{0.8x+1}}{0.4+\sqrt{2x^2+1.3}} dx.$$

3.4.
$$\int_{3}^{4.2} \frac{x + 2\sqrt[5]{x^2 + 0.8}}{0.2x^2 + \sqrt{3x + 1}} dx.$$

3.6.
$$\int_{0.7}^{2.1} \frac{1 + \sqrt{2.3x^2 + 0.2}}{2.4 + \sqrt{1.6x + 1.7}} dx.$$

3.8.
$$\int_{0.8}^{1.6} \frac{\sqrt{2x+2.8}}{0.7x^2 + \sqrt{x^2+1.3}} dx.$$

3.10.
$$\int_{0.3}^{1.1} \frac{x + \sqrt[3]{5x^2 + 1.6}}{0.4x^2 + \sqrt{1.9x + 2}} dx.$$

3.11.
$$\int_{1,3}^{2,7} \frac{\sqrt{1,2x^2 + 0,7}}{1,5x + \sqrt{2x^2 + 0,9}} dx.$$
3.12.
$$\int_{1,1}^{2,5} \frac{2,4 + \sqrt[4]{x^2 + 1,5}}{0,8x + \sqrt{5x + 0,4}} dx.$$
3.13.
$$\int_{0,8}^{1,6} \frac{x + \sqrt{1,4x + 3,1}}{3 + \sqrt{x^2 + 2,7}} dx.$$
3.14.
$$\int_{0,9}^{2,1} \frac{\sqrt{4x^2 + 0,6}}{2x + \sqrt{0,3x^2 + 1,3}} dx.$$
3.15.
$$\int_{1,2}^{1,9} \frac{1,1 + \sqrt[3]{x^2 + 4,8}}{2x + \sqrt{x + 3,1}} dx.$$
3.16.
$$\int_{0,4}^{1,2} \frac{x + \sqrt{5x + 2,4}}{2 + \sqrt{4x^2 + 0,9}} dx.$$

4. Вычислить определенный интеграл от таблично заданной функции по формуле Симпсона (парабол) для разбиений отрезка интегрирования на 8 и на 16 частей.

No	4	4.1		4.2		4.3		1.4
JN⊻	X	у	X	у	$\boldsymbol{\mathcal{X}}$	у	x	у
1	1.2	0.1823	1.1	2.1591	-1.	0.3499	0.3	-1.1052
2	1.3	0.2624	1.175	1.7421	-0.95	0.4055	0.348	-1.0799
3	1.4	0.3365	1.25	1.2749	-0.9	0.3886	0.396	-1.1225
4	1.5	0.4055	1.325	0.7737	-0.85	0.4459	0.444	-1.0598
5	1.6	0.4700	1.4	0.2616	-0.8	0.4317	0.492	-1.0678
6	1.7	0.5306	1.475	-0.2309	-0.75	0.4904	0.54	-0.9782
7	1.8	0.5878	1.55	-0.6672	-0.7	0.4795	0.588	-0.9554
8	1.9	0.6419	1.625	-1.0064	-0.65	0.5392	0.636	-0.8462
9	2.	0.6931	1.7	-1.2056	-0.6	0.5325	0.684	-0.7949
10	2.1	0.7419	1.775	-1.2249	-0.55	0.5930	0.732	-0.6713
11	2.2	0.7885	1.85	-1.0324	-0.5	0.5915	0.78	-0. 5930
12	2.3	0.8329	1.925	-0.6103	-0.45	0.6521	0.828	-0.4594
13	2.4	0.8755	2.	0.0391	-0.4	0.6570	0.876	-0.3548
14	2.5	0.9163	2.075	0.8881	-0.35	0.7171	0.924	-0.2147
15	2.6	0.9555	2.15	1.8807	-0.3	0.7297	0.972	-0.0844
16	2.7	0.9933	2.225	2.9330	-0.25	0.7885	1.02	0.0593
17	2.8	1.0296	2.3	3.9381	-0.2	0.8105	1.068	0.2150

No	4.5		4.6		4.7		4.8	
110	\boldsymbol{x}	У	$\boldsymbol{\mathcal{X}}$	у	X	y	X	у
1	0.2	1.2336	0.5	1.2506	0.5	0.4431	1.04	0.9519
2	0.25	1.2680	0.552	1.2938	0.56	0.4697	1.1	0.9181
3	0.3	1.3702	0.604	1.3828	0.62	0.5096	1.16	0.8534
4	0.35	1.3944	0.656	1.4115	0.68	0.5234	1.22	0.8278
5	0.4	1.5219	0.708	1.4927	0.74	0.5519	1.28	0.7734
6	0.45	1.5334	0.76	1.5111	8.0	0.5517	1.34	0.7537
7	0.5	1.6904	0.812	1.5877	0.86	0.5667	1.4	0.7071
8	0.55	1.6862	0.864	1.5993	0.92	0.5517	1.46	0.6917
9	0.6	1.8776	0.916	1.6742	0.98	0.5513	1.52	0.6513

10	0.65	1.8542	0.968	1.6819	1.04	0.5212	1.58	0.6392
11	0.7	2.0854	1.02	1.7575	1.1	0.5039	1.64	0.6036
12	0.75	2.0390	1.072	1.7640	1.16	0.4586	1.7	0.5941
13	8.0	2.3163	1.124	1.8428	1.22	0.4234	1.76	0.5625
14	0.85	2.2423	1.176	1.8501	1.28	0.3633	1.82	0.5549
15	0.9	2.5728	1.228	1.9344	1.34	0.3095	1.88	0.5265
16	0.95	2.4657	1.28	1.9446	1.4	0.2355	1.94	0.5206
17	1.	2.8576	1.332	2.0366	1.46	0.1630	2.	0.4950

№	4.9		4.10		4.11		4.12	
145	$\boldsymbol{\mathcal{X}}$	у	X	у	X	у	х	у
1	0.1	0.4664	-0.5	-0.6966	-0.2	0.3437	0.484	0.2159
2	0.156	0.5356	-0.42	-0.5420	-0.124	0.2474	0.56	0.2887
3	0.212	0.5992	-0.34	-0.4175	-0.048	0.1327	0.636	0.3566
4	0.268	0.6415	-0.26	-0.2996	0.028	0.0917	0.712	0.4449
5	0.324	0.6902	-0.18	-0.1994	0.104	0.2222	0.788	0.5206
6	0.38	0.7206	-0.1	-0.1048	0.18	0.3172	0.864	0.6218
7	0.436	0.7620	-0.02	-0.0203	0.256	0.4051	0.94	0.7021
8	0.492	0.7854	0.06	0.05797	0.332	0.4770	1.016	0.8140
9	0.548	0.8224	0.14	0.1316	0.408	0.5528	1.092	0.8965
10	0.604	0.8410	0.22	0.1978	0.484	0.6133	1.168	1.0177
11	0.66	0.8750	0.3	0.2636	0.56	0.6827	1.244	1.1006
12	0.716	0.8901	0.38	0.3204	0.636	0.7358	1.32	1.2298
13	0.772	0.9219	0.46	0.3803	0.712	0.8013	1.396	1.3118
14	0.828	0.9343	0.54	0.4296	0.788	0.8488	1.472	1.4481
15	0.884	0.9645	0.62	0.4848	0.864	0.9116	1.548	1.5282
16	0.94	0.9746	0.7	0.5279	0.94	0.9547	1.624	1.6711
17	0.996	1.0036	0.78	0.5794	1.016	1.0156	1.7	1.7487

№	4.13		4.14		4.15		4.16	
742	$\boldsymbol{\mathcal{X}}$	y	$\boldsymbol{\mathcal{X}}$	у	X	у	X	у
1	-0.5	0.5359	-1.3	4.8232	0.292	0.3799	1.	1.0100
2	-0.42	0.4851	-1.228	3.3376	0.38	0.3990	1.04	0.9153
3	-0.34	0.4371	-1.156	2.7039	0.468	0.4055	1.08	0.8659
4	-0.26	0.3716	-1.084	1.9866	0.556	0.4319	1.12	0.7892
5	-0.18	0.3017	-1.012	1.6670	0.644	0.4449	1.16	0.7505
6	-0.1	0.2073	-0.94	1.2484	0.732	0.4800	1.2	0.6875
7	-0.02	0.0735	-0.868	1.0554	0.82	0.5004	1.24	0.6568
8	0.06	0.1555	-0.796	0.7886	0.908	0.5458	1.28	0.6042
9	0.14	0.2839	-0.724	0.6593	0.996	0.5748	1.32	0.5796
10	0.22	0.3901	-0.652	0.4827	1.084	0.6326	1.36	0.5352
11	0.3	0.4977	-0.58	0.3913	1.172	0.6714	1.4	0.5153
12	0.38	0.5925	-0.508	0.2743	1.26	0.7438	1.44	0.4774
13	0.46	0.6981	-0.436	0.2092	1.348	0.7937	1.48	0.4611
14	0.54	0.7899	-0.364	0.1345	1.436	0.8829	1.52	0.4284
15	0.62	0.8984	-0.292	0.0904	1.524	0.9447	1.56	0.4150
16	0.7	0.9905	-0.22	0.0477	1.612	1.0524	1.6	0.3867
17	0.78	1.1044	-0.148	0.0227	1.7	1.1261	1.64	0.3755

5. Вычислить определенный интеграл с помощью квадратурной формулы Гаусса с *n* узлами.

5.1.
$$\int_{1.1}^{2} \frac{\ln 2x}{4x+1} dx, \quad n = 4.$$

5.3.
$$\int_{0.8}^{2.1} \frac{\cos(5x+2)}{x} dx, \quad n=7.$$

5.5.
$$\int_{1}^{2.1} \sqrt{2x+1} \ln(x+3) \, dx, \quad n=6.$$

5.7.
$$\int_{0.4}^{3} \frac{\sinh(2x-3)}{x+1} dx, \quad n=4.$$

5.9.
$$\int_{0.2}^{1.1} \frac{e^{2x-1}}{4x+2.8} dx, \quad n=7.$$

5.11.
$$\int_{1.7}^{3.1} \frac{x + \ln(x + 1.2)}{1.5x^2 + 1} dx, \quad n = 6.$$

5.13.
$$\int_{0.6}^{2.5} (x+1)\cos(x^2+2) dx, \quad n=4.$$
 5.14.
$$\int_{2}^{3.2} \frac{\sin(3x-1)}{2x+3} dx, \quad n=6.$$

5.15.
$$\int_{0,2}^{1} \frac{\ln 3x^2}{x^2 + 1} dx, \quad n = 7.$$

5.2.
$$\int_{1,3}^{2,7} \sqrt{x+1} \sin^2(2x-1) \, dx, \quad n = 6.$$

5.4.
$$\int_{1.4}^{2.9} \frac{e^{-x^2+5x}}{3x+0.8} dx, \quad n=4.$$

5.6.
$$\int_{13}^{2.6} \frac{\cosh(x+3)}{5x+2} dx, \quad n=7.$$

5.8.
$$\int_{1,6}^{3,2} \frac{3 + \cos(x+2)}{x+2,4} dx, \quad n = 6.$$

5.10.
$$\int_{1.5}^{2.9} \frac{x - 2\sin(4x + 3)}{1.6x + 0.7} dx, \quad n = 4.$$

5.12.
$$\int_{0.8}^{2.4} \frac{\sinh(3x+0.4)}{5x+4.1} dx, \quad n=7.$$

5.14.
$$\int_{2}^{3.2} \frac{\sin(3x-1)}{2x+3} dx, \quad n = 6$$

5.16.
$$\int_{1,5}^{2,8} \sqrt{x+2.5} \, \text{ch}(x-0.8) \, dx, \quad n=4$$