

Universidad Nacional Autónoma de México

Facultad de Ingeniería División de Ingeniería Eléctrica **Análisis de Circuitos**

Semestre 2021-1

Grupo: 7

Serie 1 de Ejercicios

Celaya González David Alejandro Hernández García Aarón

Profesora: JULIA VAZQUEZ FUENTES

Fecha de Entrega 11 de noviembre de 2020

1

Del signiente circuito dolener aì Resistencia equivalente b) Comiente o Voltaje d) Potencia de la fuente y del circuito cada uno de los resistores.

Resistencia	Voltaje	Corriente	Potencia LmWI
1001	0.8108	8,1081	6.5741
70 N	0.1672	8.1081	1.3151
1 KV	8, 1081	1801.8	65,7414
360 N	2. 9189	8.1081	20.6668
Req	12	1801.8	97.2973

Reg = (100 + 20 + 1000 + 360)[N] Reg = 1480 n

Cn un circuito en serie la corriente es la misma V=RI I=V/R= (12V)/1480[I] = 8,1087[mA]

P= 11

 $V_{1} = (1000)(8.1081 \text{ mA}) = 0.8108$ $V_{2} = (20.1)(8.1081 \text{ mA}) = 0.1622$ $V_{3} = (1K.1)(8.1081 \text{ mA}) = 8.1081$ $V_{4} = (360)(8.1081 \text{ mA}) = 2.9189$

Pr = 6.5741 [mW]
Pr = 1.3151 [mW]
Pr = 65,7414 [mW]
Pr = 20.6668 [mW]

1		`
(0	١
\	L.	- /
\	<u> </u>	/

RESISTENCIA	10LTAJ E	CORRIGHTE	
	17]	CA)	1 M]
7 08	6	0.075	0,45
60 r	6	0,1	0.6
75 A	6	0.08	0.48
200 L	6	0.03	0,18
Req = 21,0523	G	0.2850	1,71

a) Resistencia equivalente b) Corriente c) Voltaje d) Potencia

$$\text{Req} = \left(\frac{1}{80} + \frac{1}{60} + \frac{1}{75} + \frac{1}{200}\right)^{-1}$$

6 V	\$ 80 r	} 60n ;	s as a	} 200 h
	•			

Reg = 21, 0523 | N

$$1 = V/R = G/21.0523 = 0.28501A$$

 $1_1 = G/80 = 0.075$
 $1_2 = G/60 = 0.1$
 $1_3 = G/75 = 0.08$
 $1_4 = G/200 = 0.03$

POTENCIA (P=VI)

$$P_{1} = (6V)(0.075 p) = 0.45 lw$$
 $P_{2} = (6V)(0.075 p) = 0.6 lw$
 $P_{3} = (6V)(0.08) = 0.48 lw$
 $P_{4} = (6V)(0.03) = 0.18 lw$

3) Olotener a Resistencia equivalente b) Voltage c) Corriente d) Potencias

$$R_{12} = \left(\frac{1}{24} + \frac{1}{24}\right)^{-1} = 12KR$$

$$R_{12} = \left(\frac{1}{24} + \frac{1}{24}\right)^{-1} = 12KR$$
 $R_{456} = (4.5kR) + (12kR) = 16.5 | kar |$

$$l = (72142)/(9.7781kal) = 7.36351mAl$$

$$V_{3} = (12 \text{ KL})(3 \text{ mA}) = 36 \text{ NJ}$$

 $V_{12} = (12 \text{ KL})(3 \text{ mA}) = 36 \text{ NJ}$

$$l_1 = (36 \text{ V})/(24 \text{ ka}) = 1.5 \text{ mH}$$
 $l_2 = (36 \text{ V})/(24 \text{ ka}) = 1.5 \text{ mH}$

$$V_{4} = (12 \text{ K} \Omega)(4.3636 \text{ mA}) = 52.3632 \text{ V}$$

 $V_{56} = (4.5 \text{ KR})(4.3636 \text{ mA}) = 19.6362 \text{ IV}$

$$P_{1} = 0.054 \text{ W}$$
 $P_{2} = 0.054 \text{ W}$
 $P_{3} = 0.054 \text{ W}$
 $P_{4} = 0.2285 \text{ W}$
 $P_{5} = 0.0428 \text{ W}$
 $P_{6} = 0.0428 \text{ W}$
 $P_{6} = 0.5302 \text{ W}$

(9) Utilizando divisor de voltaje

$$V_{z} = \frac{(4\pi)(12V)}{14\pi}$$
 = $\frac{(3.4286IV)}{14\pi}$ $V_{y} = \frac{(2\pi)(12V)}{14\pi}$ = $\frac{(1.71431V)}{14\pi}$

Resistencia	Voltaje	Corriente C a]	Potencia L w J
R1 = Z	1,7143	0.8571	1,4693
Rat 4	3,4286	0.8571	2.9387
Ro = 6	5,1429	0.8571	4.4080
Ru = Z	1,7143	0.8571	1, 4693
Reg = 14	12	0.8571	10, 2852

$$\begin{array}{lll}
P_{1} &=& (1.7143 \text{ V})(0.8571\text{H}) = 1.46931\text{W} \\
P_{2} &=& (3.4286 \text{ V})(0.8571\text{H}) = 2.93871\text{W} \\
P_{3} &=& (5.1429 \text{ V})(0.8571\text{H}) = 4.40801\text{W} \\
P_{4} &=& (1.7143 \text{ V})(0.8571\text{H}) = 1.46931\text{W} \\
P_{1} &=& (12 \text{ V})(0.8571\text{H}) = 40.28521\text{W}
\end{array}$$

3 Utilizando el divisor de corriente

$$\text{Reg} = \left(\frac{1}{100} + \frac{1}{506} + \frac{1}{1000}\right)^{-1} = 76.923110$$

$$\tilde{l}_{1} = \frac{(2h)(1/1061h)}{(0.018181)} = (.53851h)$$

$$\sum_{i=1}^{3} / R_{i} = \left(\frac{1}{100} + \frac{1}{500} + \frac{1}{1000} \right) = 0.013$$

$$V_1 = (100 \text{ A})(1.5385\text{ B}) = 153.85\text{ N}$$

$$\int_{3} \frac{(7 \text{ A}) (\frac{1}{1000})}{(0.03 \text{ E/O})} = 0.15381\text{A}$$

Resistencia	Voltaje	Corriente	Potencia L w J
R1 = 100	153,85	1.5385	236.6982
Res 500	153,85	0.3077	47,3396
Ro = (000	153,85	0.1538	23.6621
Reg = 76.923	153,85	2	307.7

@ Utilizando Método de corriente de Mallas obtener el voltaje a Va

Nalla 1: 21=0 => 21 = 21R 8 V = (125 + 250) A I, - 125 A I, + 25 O A I 3 8 V = (375 M) I1 - 125 M I X + 250 M I3 ... (1)

Malla 2: XV=0 => XV= XIR 121= (125+250)[N] Iz - (125 N) I1 121= 375 N Fz - 125 I1 ... @

Malla 3:

(8)

12 N = (250 +500 x) I3 + 250 x I1 12 V = 750 1 F3 + 250 1 ±1 ... 3

(3) Voltages de Nodos

SIST. ec.

375In -125I2 +250 I3 = 8 -125 I1 + 375 Iz + 0 I3 = 12 250 I1+ 0 I2 + 750 I3 = 12 RESOLVIGNDO SIST.

 $I_1 = 0.032[A]_1 I_2 = 0.0427[A]_1 I_3 = 5.33[mA]_1$ =>POR LEY DE OHM V=R1 $V_{A} = R_{4} I_{3} = (500 \Omega) (5.33 \times 10^{-3} | B)$

NA = 2.665[V]

Nodo A: == V/R

$$\frac{G-VA}{1} = \frac{V_A-4V_A}{3} + \frac{V_A-V_B}{2}$$

6 (G-VA) = ZVA-8VA + 3VA - 3VB 36-6VA = -3VA-3/80 3VA = 36

NA = 15

41/4= 481

$$0.006 = \frac{2}{Pz} + \frac{V_B - V_A}{500}$$

$$\Sigma 1 = 0$$

 $\Sigma 1_{G} = \Sigma 1_{S}$
 $0.000 A:$
 $0.003 = \frac{V_{A} - V_{B}}{500} + \frac{1}{R_{1}}$

$$0.003 = -\frac{1}{500} + \frac{1}{R_1}$$

$$0.006 = \frac{1}{500} + \frac{2}{RL}$$

(R. = 20011) Rz = 500 A)

$$3A = 1z - \frac{1}{3}$$

$$3A = 1z$$

$$3A = 1z$$

$$3A = 1z$$

$$-12 + 3 \cdot 4 + 6 \cdot 4 - 6 \cdot 12 = 0$$

$$-12 + 3 \cdot 4 + 6 \cdot 4 - 6 \cdot 12 = 0$$

$$-12 + 3 \cdot 4 + 6 \cdot 4 - 6 \cdot 12 = 0$$

$$-12 + 3 \cdot 4 + 6 \cdot 4 - 6 \cdot 12 = 0$$

$$-12 + 3 \cdot 4 + 6 \cdot 14 - 6 \cdot 12 = 0$$

$$-12 + 3 \cdot 4 + 6 \cdot 14 - 6 \cdot 12 = 0$$

$$-12 + 3 \cdot 4 + 6 \cdot 14 - 6 \cdot 12 = 0$$

$$-12 + 3 \cdot 4 + 6 \cdot 14 - 6 \cdot 12 = 0$$

$$-12 + 3 \cdot 4 + 6 \cdot 14 - 6 \cdot 12 = 0$$

$$-12 + 3 \cdot 4 + 6 \cdot 14 - 6 \cdot 12 = 0$$

$$-12 + 3 \cdot 4 + 6 \cdot 14 - 6 \cdot 12 = 0$$

$$-12 + 3 \cdot 4 + 6 \cdot 14 - 6 \cdot 12 = 0$$

$$-12 + 3 \cdot 4 + 6 \cdot 14 - 6 \cdot 12 = 0$$

$$-12 + 3 \cdot 4 + 6 \cdot 14 - 6 \cdot 12 = 0$$

$$-12 + 3 \cdot 4 + 6 \cdot 14 - 6 \cdot 12 = 0$$

$$-12 + 3 \cdot 4 + 6 \cdot 14 - 6 \cdot 12 = 0$$

$$-12 + 3 \cdot 4 + 6 \cdot 14 - 6 \cdot 12 = 0$$

$$-12 + 3 \cdot 4 + 6 \cdot 14 - 6 \cdot 12 = 0$$

$$-12 + 3 \cdot 4 + 6 \cdot 14 - 6 \cdot 12 = 0$$

$$-12 + 3 \cdot 4 + 6 \cdot 14 - 6 \cdot 12 = 0$$

$$-12 + 3 \cdot 4 + 6 \cdot 14 - 6 \cdot 12 = 0$$

$$-12 + 3 \cdot 4 + 6 \cdot 14 - 6 \cdot 12 = 0$$

$$-12 + 3 \cdot 4 + 6 \cdot 14 - 6 \cdot 12 = 0$$

$$-12 + 3 \cdot 4 + 6 \cdot 14 - 6 \cdot 12 = 0$$

$$-12 + 3 \cdot 4 + 6 \cdot 14 - 6 \cdot 12 = 0$$

$$-12 + 3 \cdot 4 + 6 \cdot 14 - 6 \cdot 12 = 0$$

$$-12 + 3 \cdot 4 + 6 \cdot 14 - 6 \cdot 12 = 0$$

$$-12 + 3 \cdot 4 + 6 \cdot 14 - 6 \cdot 12 = 0$$

$$-12 + 3 \cdot 4 + 6 \cdot 14 - 6 \cdot 12 = 0$$

$$-12 + 3 \cdot 4 + 6 \cdot 14 - 6 \cdot 12 = 0$$

$$-12 + 3 \cdot 4 + 6 \cdot 14 - 6 \cdot 12 = 0$$

$$-12 + 3 \cdot 4 + 6 \cdot 14 - 6 \cdot 12 = 0$$

$$-12 + 3 \cdot 4 + 6 \cdot 14 - 6 \cdot 12 = 0$$

$$-12 + 3 \cdot 4 + 6 \cdot 14 - 6 \cdot 12 = 0$$

$$-12 + 3 \cdot 4 + 6 \cdot 14 - 6 \cdot 12 = 0$$

$$-12 + 3 \cdot 4 + 6 \cdot 14 - 6 \cdot 12 = 0$$

$$-12 + 3 \cdot 4 + 6 \cdot 14 - 6 \cdot 12 = 0$$

$$-12 + 3 \cdot 4 + 6 \cdot 14 - 6 \cdot 12 = 0$$

$$-12 + 3 \cdot 4 + 6 \cdot 14 - 6 \cdot 12 = 0$$

$$-12 + 3 \cdot 4 + 6 \cdot 14 - 6 \cdot 12 = 0$$

$$-12 + 3 \cdot 4 + 6 \cdot 14 - 6 \cdot 12 = 0$$

$$-12 + 3 \cdot 4 + 6 \cdot 14 - 6 \cdot 12 = 0$$

$$-12 + 3 \cdot 4 + 6 \cdot 14 - 6 \cdot 14 = 0$$

$$-12 + 3 \cdot 4 + 6 \cdot 14 = 0$$

$$-12 + 3 \cdot 4 + 6 \cdot 14 = 0$$

$$-12 + 3 \cdot 4 + 6 \cdot 14 = 0$$

$$-12 + 3 \cdot 4 + 6 \cdot 14 = 0$$

$$-12 + 3 \cdot 4 =$$

$$P = \frac{V^2}{R} = \frac{(2)^2}{5} = \frac{4}{5} = 0.81 \text{ m}$$

$$R_{T} = \frac{3 \times 6}{3 + 6} + 3 = 50$$

11 Resolver por Nonton y Máxima Transferencia de potencia.

Aplicando divisor de corriente

$$\pm \frac{1}{1} = \frac{11111}{11} (3A)$$

$$\pm \frac{1(1)}{1} (3) = \frac{0.5}{1} (3)$$

