

TTK4135 – Lecture 19 Practical SQP algorithms for nonlinear programming

Lecturer: Lars Imsland

Outline

- Recap: Local SQP algorithms for equality-constrained NLPs
- Extension to NLPs with inequalities
- Globalization («make it work when starting far from optimum»):
 - Computation/approximation of the Hessian of the Lagrangian
 - Linesearch
- Other issues
 - The Maratos effect
 - Infeasible linearized constraints

Reference: N&W Ch. 18.2, 18.3, 15.4

Newton's method for solving nonlinear equations (Ch. 11)

- Solve equation system r(x) = 0, $r(x) : \mathbb{R}^n \to \mathbb{R}^n$
- Assume Jacobian $J(x) \in \mathbb{R}^{n \times n}$ exists and is continuous
- Taylor: $r(x+p) = r(x) + J(x)p + O(||p||^2)$

Algorithm 11.1 (Newton's Method for Nonlinear Equations).

Choose x_0 ;

for
$$k = 0, 1, 2, \dots$$

Calculate a solution p_k to the Newton equations

$$J(x_k)p_k = -r(x_k);$$

$$x_{k+1} \leftarrow x_k + p_k$$
; end (for)

Newton's method for solving nonlinear equations (Ch. 11)

- Solve equation system r(x) = 0, $r(x) : \mathbb{R}^n \to \mathbb{R}^n$
- Assume Jacobian $J(x) \in \mathbb{R}^{n \times n}$ exists and is continuous
- Taylor: $r(x+p) = r(x) + J(x)p + O(||p||^2)$

$$J(x) = \begin{pmatrix} \frac{\partial r_1}{\partial x_1} & \frac{\partial r_1}{\partial x_2} & \cdots \\ \frac{\partial r_2}{\partial x_1} & \frac{\partial r_2}{\partial x_2} & \cdots \\ \vdots & \vdots & \ddots \end{pmatrix}$$

Algorithm 11.1 (Newton's Method for Nonlinear Equations). Choose x_0 ; for $k=0,1,2,\ldots$ Calculate a solution p_k to the Newton equations

• Convergence rate (Thm 11.2): Quadratic convergence if J(x) is invertible (quadratic convergence is very good, but only holds close to the solution)

Newton's method for solving nonlinear equations (Ch. 11)

- Solve equation system r(x) = 0, $r(x) : \mathbb{R}^n \to \mathbb{R}^n$
- Assume Jacobian $J(x) \in \mathbb{R}^{n \times n}$ exists and is continuous
- Taylor: $r(x+p) = r(x) + J(x)p + O(||p||^2)$

$$J(x) = \begin{pmatrix} \frac{\partial r_1}{\partial x_1} & \frac{\partial r_1}{\partial x_2} & \cdots \\ \frac{\partial r_2}{\partial x_1} & \frac{\partial r_2}{\partial x_2} & \cdots \\ \vdots & \vdots & \ddots \end{pmatrix}$$

Algorithm 11.1 (Newton's Method for Nonlinear Equations). Choose x_0 ; for k = 0, 1, 2, ... Calculate a solution p_k to the Newton equations

$$J(x_k)p_k = -r(x_k);$$

$$x_{k+1} \leftarrow x_k + p_k$$
; end (for)

- Convergence rate (Thm 11.2): Quadratic convergence if J(x) is invertible (quadratic convergence is very good, but only holds close to the solution)
- If we set $r(x) = \nabla f(x)$, then this method corresponds to Newton's method for minimizing f(x)

$$p_k = -J(x_k)^{-1}r(x_k) \quad \longleftarrow \quad p_k = -\left(\nabla^2 f(x_k)\right)^{-1}\nabla f(x_k)$$

Equality-constrained NLPs – Newton

 $\min_{x \in \mathbb{R}^n} f(x)$ subject to c(x) = 0

- Lagrangian: $\mathcal{L}(x,\lambda) = f(x) \lambda^{\top} c(x)$
- KKT conditions: $F(x,\lambda) = \begin{pmatrix} \nabla_x \mathcal{L}(x,\lambda) \\ c(x) \end{pmatrix} = 0$

Equality-constrained NLPs – Newton

$$\min_{x \in \mathbb{R}^n} f(x) \quad \text{subject to} \quad c(x) = 0$$

- Lagrangian: $\mathcal{L}(x,\lambda) = f(x) \lambda^{\top} c(x)$
- KKT conditions: $F(x,\lambda) = \begin{pmatrix} \nabla_x \mathcal{L}(x,\lambda) \\ c(x) \end{pmatrix} = 0$
- To solve: Use Newton's method for nonlinear equations on KKT conditions:

Very efficient method for solving equality-constrained NLPs locally

Equality-constrained NLP – QP

 $\min_{x \in \mathbb{R}^n} f(x) \quad \text{subject to} \quad c(x) = 0$

Consider now this quadratic/linear approximation:

$$\min_{p \in \mathbb{R}^n} f(x_k) + \nabla f(x_k)^\top p + \frac{1}{2} p^\top \nabla_{xx}^2 \mathcal{L}(x_k, \lambda_k) p \text{ subject to } c(x_k) + A(x_k)^\top p = 0$$

KKT conditions:

$$\begin{pmatrix} \nabla_{xx}^2 \mathcal{L}(x_k, \lambda_k) & -A^\top(x_k) \\ A(x_k) & 0 \end{pmatrix} \begin{pmatrix} p_k \\ l_k \end{pmatrix} = \begin{pmatrix} -\nabla f(x_k) \\ -c(x_k) \end{pmatrix}$$

Consider now this quadratic/linear approximation:

$$\min_{p \in \mathbb{R}^n} f(x_k) + \nabla f(x_k)^\top p + \frac{1}{2} p^\top \nabla^2_{xx} \mathcal{L}(x_k, \lambda_k) p \text{ subject to } c(x_k) + A(x_k)^\top p = 0$$

KKT conditions:

$$\begin{pmatrix} \nabla_{xx}^2 \mathcal{L}(x_k, \lambda_k) & -A^{\top}(x_k) \\ A(x_k) & 0 \end{pmatrix} \begin{pmatrix} p_k \\ l_k \end{pmatrix} = \begin{pmatrix} -\nabla f(x_k) \\ -c(x_k) \end{pmatrix}$$

- If we let $l_k=p_{\lambda_k}+\lambda_k=\lambda_{k+1}$, it is easy to show that the two KKT systems give equivalent solutions
 - Newton-viewpoint: quadratic convergence locally
 - QP-viewpoint: practical implementation and extension to inequality constraints
- Assumptions for the above:

 - 1) $A(x_k)$ full row rank (LICQ), 2) $d^{\top} \nabla^2_{xx} \mathcal{L}(x_k, \lambda_k) d > 0$ for all $d \neq 0$ s.t. $A(x_k) d = 0$ ("pos.def. on tangent space of constraints")

Local SQP-algorithm for solving NLPs

end (repeat)

Only equality constraints:

$$\min f(x)$$

subject to $c(x) = 0$

Algorithm 18.1 (Local SQP Algorithm for solving (18.1)). Choose an initial pair (x_0, λ_0) ; set $k \leftarrow 0$; repeat until a convergence test is satisfied

Evaluate f_k , ∇f_k , $\nabla^2_{xx} \mathcal{L}_k$, c_k , and A_k ; Solve (18.7) to obtain p_k and l_k ; $\text{Set } x_{k+1} \leftarrow x_k + p_k \text{ and } \lambda_{k+1} \leftarrow l_k$; subject to $A_k p + c_k = 0$.

Local SQP-algorithm for solving NLPs

Only equality constraints:

$$\min f(x) \\
\text{subject to } c(x) = 0$$

Algorithm 18.1 (Local SQP Algorithm for solving (18.1)).

Choose an initial pair (x_0, λ_0) ; set $k \leftarrow 0$; **repeat** until a convergence test is satisfied Evaluate f_k , ∇f_k , $\nabla^2_{xx} \mathcal{L}_k$, c_k , and A_k ; Solve (18.7) to obtain p_k and l_k ; Set $x_{k+1} \leftarrow x_k + p_k$ and $\lambda_{k+1} \leftarrow l_k$; subject to $A_k p + b_k$

end (repeat)

Extension to inequality constraints – IQP method:

$$\min_{x \in \mathbb{R}^n} f(x) \quad \text{subject to} \quad \begin{cases} c_i(x) = 0, & i \in \mathcal{E} \\ c_i(x) \ge 0, & i \in \mathcal{I} \end{cases}$$

$$\min_{p} \quad f_k + \nabla f_k^T p + \frac{1}{2} p^T \nabla_{xx}^2 \mathcal{L}_k p$$
subject to
$$\nabla c_i (x_k)^T p + c_i (x_k) = 0, \quad i \in \mathcal{E},$$

$$\nabla c_i (x_k)^T p + c_i (x_k) > 0, \quad i \in \mathcal{I}.$$

Convergence:

- Close to the solution, a solution to the approximation has same active set as a solution to the original problem (Thm 18.1).
- Therefore, once the optimal active set is found, Algorithm 18.1 with inequalities behaves just like a problem with only equalities. That is, very good (local) convergence.
- In addition: Far from the solution, the SQP approach is usually able to improve the estimate of the active set and guide the iterates toward a solution.

Local SQP-algorithm for solving NLPs

Only equality constraints:

$$\min f(x)$$

subject to $c(x) = 0$

```
Algorithm 18.1 (Local SQP Algorithm for solving (18.1)). Choose an initial pair (x_0, \lambda_0); set k \leftarrow 0; repeat until a convergence test is satisfied

Evaluate f_k, \nabla f_k, \nabla^2_{xx} \mathcal{L}_k, c_k, and A_k; Solve (18.7) to obtain p_k and l_k; \text{Set } x_{k+1} \leftarrow x_k + p_k \text{ and } \lambda_{k+1} \leftarrow l_k; subject to A_k p + c_k = 0. end (repeat)
```

Extension to inequality constraints – EQP method:

$$\min_{x \in \mathbb{R}^n} f(x) \quad \text{subject to} \quad \begin{cases} c_i(x) = 0, & i \in \mathcal{E} \\ c_i(x) \ge 0, & i \in \mathcal{I} \end{cases}$$

Maintain/update a "working set" (approximation of the active set) in Alg. 18.1, solve equality-constrained QP in each iteration. May be more efficient for large-scale problems.

Globalization

how to make SQP work when not starting close to the solution

Globalization: Newton unconstrained optimization

 $\min_{x \in \mathbb{R}^n} f(x)$

Quadratic approximation:

Valid direction:

How to ensure valid direction:

Line search:

Quasi-Newton for unconstrained problems

 $\min_{x \in \mathbb{R}^n} f(x)$

```
Algorithm 6.1 (BFGS Method).
  Given starting point x_0, convergence tolerance \epsilon > 0,
         inverse Hessian approximation H_0;
  k \leftarrow 0;
  while \|\nabla f_k\| > \epsilon;
         Compute search direction
                                            p_k = -H_k \nabla f_k;
         Set x_{k+1} = x_k + \alpha_k p_k where \alpha_k is computed from a line search
                 procedure to satisfy the Wolfe conditions (3.6);
         Define s_k = x_{k+1} - x_k and y_k = \nabla f_{k+1} - \nabla f_k;
         Compute H_{k+1} by means of (6.17);
         k \leftarrow k + 1;
  end (while)
                                                 H_{k+1} = (I - \rho_k s_k v_k^T) H_k (I - \rho_k v_k s_k^T) + \rho_k s_k s_k^T
```

Globalization: SQP for constrained optimization $\min_{x \in \mathbb{R}^n} f(x)$ s.t. $\begin{cases} c_i(x) = 0, & i \in \mathcal{E} \\ c_i(x) \geq 0, & i \in \mathcal{I} \end{cases}$

Quadratic approximation:

Valid solution:

How to ensure valid solution:

Line search:

Quasi-Newton for SQP

$$\min_{p} f_k + \nabla f_k^T p + \frac{1}{2} p^T \nabla_{xx}^2 \mathcal{L}_k p$$
 (18.11a)

subject to
$$\nabla c_i(x_k)^T p + c_i(x_k) = 0, \quad i \in \mathcal{E},$$
 (18.11b)

$$\nabla c_i(x_k)^T p + c_i(x_k) \ge 0, \quad i \in \mathcal{I}. \tag{18.11c}$$

- SQP needs Hessian of Lagrangian, but this require second derivatives of objective <u>and</u> constraints, which may be expensive
- Quasi-Newton (BFGS) very successful for unconstrained optimization can we do the same in the constrained case? Yes:

Unconstrained case:

$$s_{k} = x_{k+1} - x_{k} = \alpha_{k} p_{k}, \quad y_{k} = \nabla f_{k+1} - \nabla f_{k},$$
(6.5)
$$H_{k+1} = (I - \rho_{k} s_{k} y_{k}^{T}) H_{k} (I - \rho_{k} y_{k} s_{k}^{T}) + \rho_{k} s_{k} s_{k}^{T},$$

$$H_{k} \approx \left[\nabla^{2} f(x_{k}) \right]^{-1}$$

Constrained case:

$$s_{k} = x_{k+1} - x_{k}, y_{k} = \nabla_{x} \mathcal{L}(x_{k+1}, \lambda_{k+1}) - \nabla_{x} \mathcal{L}(x_{k}, \lambda_{k+1}). (18.13)$$

$$B_{k+1} = B_{k} - \frac{B_{k} s_{k} s_{k}^{T} B_{k}}{s_{k}^{T} B_{k} s_{k}} + \frac{r_{k} r_{k}^{T}}{s_{k}^{T} r_{k}}. (18.16)$$

$$B_{k} \approx \nabla_{xx}^{2} \mathcal{L}(x_{k}, \lambda_{k})$$

Quasi-Newton for SQP

$$\min_{p} \quad f_k + \nabla f_k^T p + \frac{1}{2} p^T \nabla_{xx}^2 \mathcal{L}_k p \tag{18.11a}$$

subject to
$$\nabla c_i(x_k)^T p + c_i(x_k) = 0, \quad i \in \mathcal{E},$$
 (18.11b)

$$\nabla c_i(x_k)^T p + c_i(x_k) \ge 0, \quad i \in \mathcal{I}.$$
 (18.11c)

- SQP needs Hessian of Lagrangian, but this require second derivatives of objective <u>and</u> constraints, which may be expensive
- Quasi-Newton (BFGS) very successful for unconstrained optimization can we do the same in the constrained case? Yes:

Unconstrained case:

$$s_{k} = x_{k+1} - x_{k} = \alpha_{k} p_{k}, \quad y_{k} = \nabla f_{k+1} - \nabla f_{k}, \tag{6.5}$$

$$(BFGS) \quad H_{k+1} = (I - \rho_{k} s_{k} y_{k}^{T}) H_{k} (I - \rho_{k} y_{k} s_{k}^{T}) + \rho_{k} s_{k} s_{k}^{T}, \tag{6.17}$$

$$H_{k} \approx \left[\nabla^{2} f(x_{k}) \right]^{-1}$$

Constrained case:

$$s_{k} = x_{k+1} - x_{k}, y_{k} = \nabla_{x} \mathcal{L}(x_{k+1}, \lambda_{k+1}) - \nabla_{x} \mathcal{L}(x_{k}, \lambda_{k+1}). (18.13)$$

$$r_{k} = \theta_{k} y_{k} + (1 - \theta_{k}) B_{k} s_{k}$$

$$B_{k+1} = B_{k} - \frac{B_{k} s_{k} s_{k}^{T} B_{k}}{s_{k}^{T} B_{k} s_{k}} + \frac{r_{k} r_{k}^{T}}{s_{k}^{T} r_{k}}. (18.16)$$

$$B_{k} \approx \nabla^{2}_{TT} \mathcal{L}(x_{k}, \lambda_{k})$$

- Possible problem: BFGS gives positive definite Hessian approximation, while Hessian of Lagrangian is not necessarily positive definite (not even close to a solution). That is, the approximation may be bad.
- Possible solution: Approximate "reduced Hessian" (Hessian on nullspace of constraints) instead. This
 reduced Hessian is much more likely to be positive definite (recall sufficient conditions).

I_1 merit function — measure progress in both objective and constraints

Descent direction of merit function

Line search on merit function

Line search – Merit function

$$\min_{p} \quad f_k + \nabla f_k^T p + \frac{1}{2} p^T \nabla_{xx}^2 \mathcal{L}_k p \tag{18.11a}$$

subject to
$$\nabla c_i(x_k)^T p + c_i(x_k) = 0, \quad i \in \mathcal{E},$$
 (18.11b)

$$\nabla c_i(x_k)^T p + c_i(x_k) \ge 0, \quad i \in \mathcal{I}.$$
 (18.11c)

- "Globalization"
- How far to walk along p? Linesearch (or trust region)!
- Unconstrained optimization: The Armijo (Wolfe) condition ensure sufficient decrease of objective function:

$$f(x_k + \alpha p_k) \le f(x_k) + c_1 \alpha \nabla f_k^T p_k, \tag{3.4}$$

- Constrained optimization: Must check both objective and constraint!
- Merit function (for line search): Function that measure progress in both:

$$I_1$$
 merit function:

$$I_{1} \text{ merit function:} \qquad \phi_{1}(x; \mu) = f(x) + \mu \sum_{i \in \mathcal{E}} |c_{i}(x)| + \mu \sum_{i \in \mathcal{I}} [c_{i}(x)]^{-}, \qquad (15.24)$$

$$\mu^{*} = \max\{|\lambda_{i}^{*}|, i \in \mathcal{E} \cup \mathcal{I}\}$$

Definition 15.1 (Exact Merit Function).

A merit function $\phi(x;\mu)$ is exact if there is a positive scalar μ^* such that for any $\mu>\mu^*$, any local solution of the nonlinear programming problem (15.1) is a local minimizer of $\phi(x; \mu)$.

- Thm 18.2: $D(\phi_1(x_k; \mu); p_k) \leq -p_k^T \nabla_{xx}^2 \mathcal{L}_k p_k (\mu \|\lambda_{k+1}\|_{\infty}) \|c_k\|_1$
 - That is: p_k is a descent direction for merit function if Hessian of Lagrangian is positive definite and μ is large enough

A practical line search SQP method

Algorithm 18.3 (Line Search SQP Algorithm).

Choose parameters $\eta \in (0, 0.5)$, $\tau \in (0, 1)$, and an initial pair (x_0, λ_0) ; Evaluate f_0 , ∇f_0 , c_0 , A_0 ;

If a quasi-Newton approximation is used, choose an initial $n \times n$ symmetric positive definite Hessian approximation B_0 , otherwise compute $\nabla_{xx}^2 \mathcal{L}_0$; **repeat** until a convergence test is satisfied

Compute p_k by solving (18.11); let $\hat{\lambda}$ be the corresponding multiplier;

Set
$$p_{\lambda} \leftarrow \hat{\lambda} - \lambda_k$$
;

Choose μ_k to satisfy (18.36) with $\sigma = 1$;

Set $\alpha_k \leftarrow 1$;

while $\phi_1(x_k + \alpha_k p_k; \mu_k) > \phi_1(x_k; \mu_k) + \eta \alpha_k D_1(\phi(x_k; \mu_k) p_k)$

Reset $\alpha_k \leftarrow \tau_\alpha \alpha_k$ for some $\tau_\alpha \in (0, \tau]$;

end (while)

Set $x_{k+1} \leftarrow x_k + \alpha_k p_k$ and $\lambda_{k+1} \leftarrow \lambda_k + \alpha_k p_{\lambda}$;

Evaluate f_{k+1} , ∇f_{k+1} , c_{k+1} , A_{k+1} , (and possibly $\nabla^2_{xx} \mathcal{L}_{k+1}$);

If a quasi-Newton approximation is used, set

$$s_k \leftarrow \alpha_k p_k$$
 and $y_k \leftarrow \nabla_x \mathcal{L}(x_{k+1}, \lambda_{k+1}) - \nabla_x \mathcal{L}(x_k, \lambda_{k+1})$,

and obtain B_{k+1} by updating B_k using a quasi-Newton formula;

end (repeat)

$$\min_{p} \quad f_k + \nabla f_k^T p + \frac{1}{2} p^T \nabla_{xx}^2 \mathcal{L}_k p \tag{18.11a}$$

subject to
$$\nabla c_i(x_k)^T p + c_i(x_k) = 0, \quad i \in \mathcal{E},$$
 (18.11b)

$$\nabla c_i(x_k)^T p + c_i(x_k) \ge 0, \quad i \in \mathcal{I}.$$
 (18.11c)

$$\mu \ge \frac{\nabla f_k^T p_k + (\sigma/2) p_k^T \nabla_{xx}^2 \mathcal{L}_k p_k}{(1 - \rho) \|c_k\|_1}.$$
(18.36)

(choose μ_k such that p_k is a descent direction for $\phi_1(x_k; \mu_k)$)

Maratos effect

Maratos effect: A merit function may reject good steps:

min
$$f(x_1, x_2) = 2(x_1^2 + x_2^2 - 1) - x_1$$
, subject to $x_1^2 + x_2^2 - 1 = 0$. (15.34)

 p_k good step even if both objective and constraint violation increase!

Maratos effect

Maratos effect: A merit function may reject good steps:

min
$$f(x_1, x_2) = 2(x_1^2 + x_2^2 - 1) - x_1$$
, subject to $x_1^2 + x_2^2 - 1 = 0$. (15.34)

 p_k good step even if both objective and constraint violation increase!

- Remedy:
 - Use a merit function that does not suffer from the Maratos effect
 - Use "non-monotone" strategy (temporarily allow increase in merit function)
 - Use "second-order correction" (when Maratos effect occurs)

Inconsistent linearizations

$$\min_{x \in \mathbb{R}^n} f(x) \quad \text{subject to} \quad \begin{cases} c_i(x) = 0, & i \in \mathcal{E} \\ c_i(x) \ge 0, & i \in \mathcal{I} \end{cases}$$

In each SQP iteration, solve:

$$\min_{p} \quad f_k + \nabla f_k^T p + \frac{1}{2} p^T \nabla_{xx}^2 \mathcal{L}_k p$$
subject to
$$\nabla c_i(x_k)^T p + c_i(x_k) = 0, \quad i \in \mathcal{E},$$
(18.11a)

subject to
$$\nabla c_i(x_k)^T p + c_i(x_k) = 0, \quad i \in \mathcal{E},$$
 (18.11b)

$$\nabla c_i(x_k)^T p + c_i(x_k) \ge 0, \quad i \in \mathcal{I}.$$
 (18.11c)

NLP software

SNOPT

- "solves large-scale linear and nonlinear problems; especially recommended if some of the constraints are highly nonlinear, or constraints respectively their gradients are costly to evaluate and second derivative information is unavailable or hard to obtain; assumes that the number of "free" variables is modest."
- Licence: Commercial

IPOPT

- "interior point method for large-scale NLPs"
- License: Open source

WORHP

- SQP solver for very large problems, IP at QP level, exact or approximate second derivatives, various linear algebra options, varius interfaces
- Licence: Commercial, but free for academia

KNITRO

- trust region interior point method, efficient for NLPs of all sizes, various interfaces
- License: Commercial
- (...and several others, including fmincon in Matlab Optimization Toolbox)
- «Decision tree for optimization software»: http://plato.asu.edu/sub/nlores.html

Example: optimization using CasADi

- CasADi (<u>https://casadi.org/</u>)
 - "CasADi is a symbolic framework for numeric optimization implementing automatic differentiation in forward and reverse modes on sparse matrix-valued computational graphs."

$$\min_{x,y,z} x^2 + 100z^2$$

s.t. $z + (1-x)^2 - y = 0$

Define variables

Define objective and constraints

Create solver object

Solve the opt problem

```
rosenbrock.m
import casadi.*
% Create NLP: Solve the Rosenbrock problem:
      minimize x^2 + 100 \times z^2
      subject to z + (1-x)^2 - y == 0
x = SX.sym('x');
v = SX.sym('v');
z = SX.sym('z');
nlp = struct('x', v, 'f', f, 'q', q);
% Create IPOPT solver object
solver = nlpsol('solver', 'ipopt', nlp);
% Solve the NLP
res = solver('\times0' , [2.5 3.0 0.75],... % solution guess
             'lbx', -inf,... % lower bound on x
             'ubx', inf,... % upper bound on x
            'lbg', 0,... % lower bound on g 'ubg', 0); % upper bound on g
% Print the solution
f opt = full(res.f)
                            % >> 0
x opt = full(res.x) % >> [0; 1; 0]
lam x opt = full(res.lam x) % >> [0; 0; 0]
lam g opt = full(res.lam g) % >> 0
```

Example from CasADi

Norwegian University of Science and Technology

Example Octave/Matlab

Python

C++

```
from casadi import *
x = MX.sym('x',2); # Two states
p = MX.sym('p'); # Free parameter
# Expression for ODE right-hand side
z = 1-x[1]**2;
rhs = vertcat(z*x[0]-x[1]+2*tanh(p),x[0])
# ODE declaration with free parameter
ode = {'x':x,'p':p,'ode':rhs}
# Construct a Function that integrates over 1s
F = integrator('F','cvodes',ode,{'tf':1})
# Control vector
u = MX.sym('u',4,1)
x = [0.1] # Initial state
for k in range(4):
 # Integrate 1s forward in time:
 # call integrator symbolically
 res = F(x0=x,p=u[k])
 x = res["xf"]
# NLP declaration
nlp = {'x':u,'f':dot(u,u),'g':x};
# Solve using IPOPT
solver = nlpsol('solver', 'ipopt', nlp)
res = solver(x0=0.2, lbg=0, ubg=0)
plot(res["x"])
```