Objectives

Prediction error / zero-one loss

P is a distribution over $\mathcal{X} \times \{-1, +1\}$, and $(X, Y) \sim P$.

For any classifier $f \colon \mathcal{X} \to \{-1, +1\}$,

$$\operatorname{err}(f) = P\left(f(X) \neq Y\right) = \mathbb{E}\left[\ell_{0/1}(Yf(X))\right].$$

Also works with **real-valued predictors** $f: \mathcal{X} \to \mathbb{R}$; for example:

- \triangleright k-NN: average of y-values of k nearest neighbors.
- ► **Trees**: leaf nodes with a real-valued output (e.g., average of *y*-values of training examples that reach a leaf). "Regression trees"
- ▶ Linear classifiers: $x \mapsto \langle w, x \rangle t$.
- ▶ Classifiers from generative models: $x \mapsto P_{\hat{\theta}}(Y = +1 \mid X = x) 1/2$.

Often useful to adjust threshold (e.g., t and 1/2 above).

Thresholds

Uses for adjusting threshold t

Often have different costs for different kinds of mistakes:

	$f(X) \le t$	f(X) > t
Y = -1	0	c
Y = +1	1-c	0

Also, often interested in different performance criteria.

▶ Precision:

$$P(Y = +1 | f(X) > t)$$

► Recall (a.k.a. Sensitivity, True Positive Rate):

$$P(f(X) > t \mid Y = +1)$$

▶ Specificity:

$$P(f(X) \le t \mid Y = -1)$$

► False Positive Rate:

$$P(f(X) > t \mid Y = -1)$$

3/11

Conditional probability estimation

Sometimes would like real-valued predictor f to be related to the **conditional probability function** η

$$\eta(x) = P(Y = +1 \mid X = x).$$

- ► Straightforward when using generative models.
- \blacktriangleright Can use a loss function that is minimized by η (or some invertible transformation thereof).

2/11

Eliciting conditional probabilities

Goal: loss function that is minimized by (some invertible transformation of) the conditional probability function

$$\eta(x) = P(Y = +1 \mid X = x).$$

Examples

Loss functions and their minimizers

▶ Square loss: $\ell_{\mathrm{sq}}(z)=(1-z)^2$ $\mathbb{E}[\ell_{\mathrm{sq}}(Yf(x))\mid X=x] \text{ is minimized by } f \text{ s.t. } f(x)=2\eta(x)-1.$ So $\eta(x)=(f(x)+1)/2.$

▶ Logistic loss: $\ell_{\text{logistic}}(z) = \ln(1 + \exp(-z))$ $\mathbb{E}[\ell_{\text{logistic}}(Yf(x))|X = x] \text{ is minimized by } f \text{ s.t. } f(x) = \ln\left(\frac{\eta(x)}{1 - \eta(x)}\right).$ So $\eta(x) = (1 + \exp(-f(x)))^{-1}$.

Non-example

▶ Hinge loss: $\ell_{\text{hinge}}(z) = \max\{0, 1-z\}$ $\mathbb{E}[\ell_{\text{hinge}}(Yf(x))|X=x] \text{ is minimized by } f \text{ s.t. } f(x) = \text{sign}(2\eta(x)-1).$ Cannot recover $\eta(x)$ from f(x).

5 / 11

Eliciting conditional probabilities

Using loss functions: easy with linear/affine functions whenever the loss function ℓ is a convex function:

$$\min_{oldsymbol{w} \in \mathbb{R}^d} \qquad R(oldsymbol{w}) + rac{1}{n} \sum_{i=1}^n \ell(y_i \langle oldsymbol{w}, oldsymbol{x}_i
angle) \,.$$

(Here, the regularization function R is also assumed to be convex.)

Caveat: Might not be possible to represent

$$m{x} \mapsto 2\eta(m{x}) - 1 \quad ext{or} \quad m{x} \mapsto \ln\!\left(rac{\eta(m{x})}{1 - \eta(m{x})}
ight)$$

as (say) a linear function $oldsymbol{x}\mapsto \langle oldsymbol{w}, oldsymbol{x}
angle.$

Common remedies: enhance the feature space via feature expansion or kernels, or use more flexible models (e.g., tree models).

Structured output spaces

Sometimes \mathcal{Y} is not just $\{0,1\}$ or $\{1,2,\ldots,K\}$, but rather a collection of *structured objects*.

Example: sequence tagging

 $ightharpoonup \mathcal{X}$: sequences of English words

 $ightharpoonup \mathcal{Y}$: sequences of parts-of-speech

the/D man/N saw/V the/D dog/N

(Verbs tend to follow Nouns.)

Many other examples:

- sentence parse trees
- web search result ranking
- visual scene labeling

0 / 11

7 / 11

Structured output prediction

Featurization

Create several input-output feature maps $\phi_1, \phi_2, \dots, \phi_d \colon \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$.

 $lackbox{ e.g., } \phi_{1000}(\pmb{x},\pmb{y}) = \mathbb{1}\{\emph{i-th word in }\pmb{x} \mbox{ is "the", and }\emph{i-th POS in }\pmb{y} \mbox{ is "D"}\}$

For each possible $y \in \mathcal{Y}$, consider an *input-output feature vector*:

$$oldsymbol{\Phi}(oldsymbol{x},oldsymbol{y}) \;:=\; ig(\phi_1(oldsymbol{x},oldsymbol{y}),\phi_2(oldsymbol{x},oldsymbol{y}),\dots,\phi_d(oldsymbol{x},oldsymbol{y})ig)\;\in\; \mathbb{R}^d\,.$$

Note: often d is enormous, but $\phi_i(\boldsymbol{x}, \boldsymbol{y}) = 0$ for most i.

Model

Prediction model is based on *linear functions of input-output feature vectors*:

$$m{x} \; \mapsto \; rg \max_{m{y} \in \mathcal{Y}} \left< m{w}, m{\Phi}(m{x}, m{y}) \right>$$

for weight vector $\boldsymbol{w} \in \mathbb{R}^d$.

Note: the $\arg\max$ can often be computed efficiently (e.g., via dynamic programming), even when $\mathcal Y$ is enormous.

Key takeaways

- 1. Concept of real-valued predictors and thresholds; alternative performance criteria.
- 2. Eliciting conditional probabilities with loss functions.
- 3. High-level idea of structured output prediction.

Structured Perceptron training (Collins, 2002)

Online Structured Perceptron

input Labeled examples $\{(\boldsymbol{x}_i, \boldsymbol{y}_i)\}_{i=1}^n$ from $\mathcal{X} \times \mathcal{Y}$.

- 1: initialize $\hat{w}_1 \coloneqq 0$.
- 2: **for** t = 1, 2, ..., do
- 3: Predict: $\hat{\boldsymbol{y}}_t \coloneqq \arg\max_{\boldsymbol{y} \in \mathcal{V}} \langle \hat{\boldsymbol{w}}_{t-1}, \boldsymbol{\Phi}(\boldsymbol{x}_t, \boldsymbol{y}) \rangle$
- 4: if $\hat{m{y}}_t
 eq m{y}_t$ then
- 5: Update:

$$\hat{oldsymbol{w}}_t \ \coloneqq \ \hat{oldsymbol{w}}_{t-1} + oldsymbol{\Phi}(oldsymbol{x}_t, oldsymbol{y}_t) - oldsymbol{\Phi}(oldsymbol{x}_t, \hat{oldsymbol{y}}_t)$$
 .

- 6: **else**
- 7: No update: $\hat{m{w}}_t \coloneqq \hat{m{w}}_{t-1}$
- 8: end if
- 9: end for

Can also help to make multiple passes through data, and also to employ averaging (as in Averaged Perceptron).

10 / 11

9/11