```
In []: #Importing all important libraies
   import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
   %matplotlib inline
   import seaborn as sns
In [4]: #Loading the dataset csv file
   df=pd.read_csv('Diwali Sales Data.csv', encoding='unicode_escape')
In [5]: df.shape
Out[5]: (11251, 15)
```

In [8]: df.head(20)

Out[8]:

	User_ID	Cust_name	Product_ID	Gender	Age Group	Age	Marital_Status	State	Zc
0	1002903	Sanskriti	P00125942	F	26-35	28	0	Maharashtra	West
1	1000732	Kartik	P00110942	F	26-35	35	1	Andhra Pradesh	South
2	1001990	Bindu	P00118542	F	26-35	35	1	Uttar Pradesh	Cen
3	1001425	Sudevi	P00237842	М	0-17	16	0	Karnataka	South
4	1000588	Joni	P00057942	М	26-35	28	1	Gujarat	West
5	1000588	Joni	P00057942	M	26-35	28	1	Himachal Pradesh	North
6	1001132	Balk	P00018042	F	18-25	25	1	Uttar Pradesh	Cen
7	1002092	Shivangi	P00273442	F	55+	61	0	Maharashtra	West
8	1003224	Kushal	P00205642	М	26-35	35	0	Uttar Pradesh	Cen
9	1003650	Ginny	P00031142	F	26-35	26	1	Andhra Pradesh	South
10	1003829	Harshita	P00200842	М	26-35	34	0	Delhi	Cen
11	1000214	Kargatis	P00119142	F	18-25	20	0	Andhra Pradesh	South
12	1004035	Elijah	P00080342	F	18-25	20	1	Andhra Pradesh	South
13	1001680	Vasudev	P00324942	М	26-35	26	1	Andhra Pradesh	South
14	1003858	Cano	P00293742	M	46-50	46	1	Madhya Pradesh	Cen
15	1000813	Lauren	P00289942	F	18-25	24	0	Andhra Pradesh	South
16	1005447	Amy	P00275642	F	46-50	48	1	Andhra Pradesh	South
17	1001193	Mick	P00004842	F	26-35	29	0	Andhra Pradesh	South
18	1001883	Praneet	P00029842	М	51-55	54	1	Uttar Pradesh	Cen
19	1001883	Praneet	P00029842	М	51-55	54	1	Uttar Pradesh	Cen
4									+

```
In [10]: df.info(10)
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 11251 entries, 0 to 11250
         Data columns (total 15 columns):
              Column
                               Non-Null Count Dtype
         --- -----
                                -----
          0
              User_ID
                               11251 non-null int64
          1
             Cust_name
                               11251 non-null object
          2
                               11251 non-null object
              Product ID
          3
              Gender
                               11251 non-null object
          4
                               11251 non-null object
              Age Group
          5
              Age
                               11251 non-null int64
              Marital_Status
                               11251 non-null int64
          6
          7
              State
                               11251 non-null object
          8
            Zone
                               11251 non-null object
          9
                               11251 non-null object
              Occupation
          10 Product_Category 11251 non-null object
          11 Orders
                               11251 non-null int64
          12 Amount
                               11239 non-null float64
          13 Status
                                0 non-null
                                               float64
          14 unnamed1
                                               float64
                                0 non-null
         dtypes: float64(3), int64(4), object(8)
         memory usage: 1.3+ MB
In [11]:
         #Removing or droping empty columns
         df.drop(['Status', 'unnamed1'], axis=1, inplace=True)
In [13]:
         #Checking the null values
         pd.isnull(df).sum()
Out[13]: User ID
                              0
         Cust_name
                              0
         Product_ID
                              0
         Gender
         Age Group
         Age
         Marital_Status
                              0
         State
                              0
         Zone
                              0
         Occupation
         Product_Category
         Orders
                              0
         Amount
                             12
         dtype: int64
In [14]:
         #Droping null columns
         df.dropna(inplace=True)
In [17]:
Out[17]: dtype('int32')
```

```
#Changing the datatype of Amount attribute
In [42]:
         df['Amount'] = df['Amount'].astype('int')
In [16]: | df['Amount'].dtypes
Out[16]: dtype('int32')
In [18]: | df.columns
Out[18]: Index(['User_ID', 'Cust_name', 'Product_ID', 'Gender', 'Age Group', 'Age',
                 'Marital_Status', 'State', 'Zone', 'Occupation', 'Product_Category',
                 'Orders', 'Amount'],
               dtype='object')
In [19]: | #Renaming the column Marital_Status with Shaadi
         df.rename(columns={'Marital_Status':'Shaadi'})
```

Out[19]:

	User_ID	Cust_name	Product_ID	Gender	Age Group	Age	Shaadi	State	Zone
0	1002903	Sanskriti	P00125942	F	26-35	28	0	Maharashtra	Western
1	1000732	Kartik	P00110942	F	26-35	35	1	Andhra Pradesh	Southern
2	1001990	Bindu	P00118542	F	26-35	35	1	Uttar Pradesh	Central
3	1001425	Sudevi	P00237842	М	0-17	16	0	Karnataka	Southern
4	1000588	Joni	P00057942	M	26-35	28	1	Gujarat	Western
									•••
11246	1000695	Manning	P00296942	М	18-25	19	1	Maharashtra	Western
11247	1004089	Reichenbach	P00171342	М	26-35	33	0	Haryana	Northern
11248	1001209	Oshin	P00201342	F	36-45	40	0	Madhya Pradesh	Central
11249	1004023	Noonan	P00059442	М	36-45	37	0	Karnataka	Southern
11250	1002744	Brumley	P00281742	F	18-25	19	0	Maharashtra	Western

11239 rows × 13 columns

localhost:8889/notebooks/Data analytics/Diwali_sales_Analysis.ipynb

In [20]: df.describe()

Out[20]:

	User_ID	Age	Marital_Status	Orders	Amount
count	1.123900e+04	11239.000000	11239.000000	11239.000000	11239.000000
mean	1.003004e+06	35.410357	0.420055	2.489634	9453.610553
std	1.716039e+03	12.753866	0.493589	1.114967	5222.355168
min	1.000001e+06	12.000000	0.000000	1.000000	188.000000
25%	1.001492e+06	27.000000	0.000000	2.000000	5443.000000
50%	1.003064e+06	33.000000	0.000000	2.000000	8109.000000
75%	1.004426e+06	43.000000	1.000000	3.000000	12675.000000
max	1.006040e+06	92.000000	1.000000	4.000000	23952.000000

In [21]: df[['Age','Orders','Amount']].describe()

Out[21]:

	Age	Orders	Amount
count	11239.000000	11239.000000	11239.000000
mean	35.410357	2.489634	9453.610553
std	12.753866	1.114967	5222.355168
min	12.000000	1.000000	188.000000
25%	27.000000	2.000000	5443.000000
50%	33.000000	2.000000	8109.000000
75%	43.000000	3.000000	12675.000000
max	92.000000	4.000000	23952.000000

Exploratory Data Analysis

Gender

```
In [22]: #Plotting a bar chart for gender and it's count
    ax=sns.countplot(x='Gender',data=df)
    for bars in ax.containers:
        ax.bar_label(bars)
```



```
In [23]: #Plotting a bar chart for gender vs total amount
sales_gen = df.groupby(['Gender'], as_index= False)['Amount'].sum().sort_values
sns.barplot(x = 'Gender',y='Amount',data = sales_gen)
```

Out[23]: <Axes: xlabel='Gender', ylabel='Amount'>

From above graphs we can see that most of the buyers are females and even the purchasing power of females are gender than men

Age

```
In [25]: ax = sns.countplot(data = df, x = 'Age Group', hue = 'Gender')
for bars in ax.containers:
    ax.bar_label(bars)
```



```
In [29]: #Total amount vs Age Group
sales_age =df.groupby(['Age Group'], as_index=False)['Amount'].sum().sort_value
sns.barplot(x= 'Age Group',y='Amount', data= sales_age)
```

Out[29]: <Axes: xlabel='Age Group', ylabel='Amount'>

From the above graphs we can see that most of the buyers are of age group between 26-35 yrs female

State

```
In [31]: #Total number of orders from top 10 states
    sales_state = df.groupby(['State'], as_index=False)['Orders'].sum().sort_value:
    sns.set(rc={'figure.figsize':(15,5)})
    sns.barplot(data = sales_state,x='State',y='Orders')
```

Out[31]: <Axes: xlabel='State', ylabel='Orders'>

From above graphs we can see that most of the orders & total sales/amount are from uttat pradesh, Maharastra and karnataka respectively

Marital_Status

```
In [33]: ax = sns.countplot(data = df, x ='Marital_Status')
    sns.set(rc={'figure.figsize':(7,5)})
    for bars in ax.containers:
        ax.bar_label(bars)
```



```
In [34]: sales_state= df.groupby(['Marital_Status','Gender'], as_index=False)['Amount']
sns.set(rc={'figure.figsize':(6,5)})
sns.barplot(data= sales_state, x='Marital_Status',y='Amount', hue='Gender')
```

Out[34]: <Axes: xlabel='Marital_Status', ylabel='Amount'>

From above graphs we can see that most of the buyers are married (women) and they have high purchasing power

Occupation

```
In [35]: sns.set(rc={'figure.figsize':(20,5)})
    ax = sns.countplot(data = df, x = 'Occupation')

for bars in ax.containers:
    ax.bar_label(bars)
```



```
In [36]: sales_state = df.groupby(['Occupation'], as_index=False)['Amount'].sum().sort_v
sns.set(rc={'figure.figsize':(20,5)})
sns.barplot(data = sales_state, x = 'Occupation',y= 'Amount')
```


From above graphs we can see that most of the buyers are working in IT, Healthcare and Aviation sector

Product Category

```
In [38]: sns.set(rc={'figure.figsize':(20,5)})
    ax= sns.countplot(data=df,x= 'Product_Category')
    for bars in ax.containers:
        ax.bar_label(bars)
```


Out[39]: <Axes: xlabel='Product_Category', ylabel='Amount'>

From above graphs we can see that most of the sold product ar from food, Clothing and Electronics category

```
In [ ]:
```

```
In [40]: sales_state = df.groupby(['Product_ID'], as_index=False)['Orders'].sum().sort_v
sns.set(rc={'figure.figsize':(20,5)})
sns.barplot(data = sales_state, x = 'Product_ID',y= 'Orders')
```

Out[40]: <Axes: xlabel='Product_ID', ylabel='Orders'>


```
In [41]: # top 10 most sold products (same thing as above)
fig1, ax1 = plt.subplots(figsize=(12,7))
df.groupby('Product_ID')['Orders'].sum().nlargest(10).sort_values(ascending=Faller)
```


Conclusion

Married women age group 26-35 yrs from UP, Maharastra and Karnataka working in IT, Healthcare and Aviation are more likely to buy products from Food, Clothing and Electronics category.

In []:	