« »

\_\_\_\_12 .

« » 2012 .

- 2012-

,

,

,

·

: . .

: . .

```
».
                                                                                                      afce
                                          Pascal.

    1.
    2.
    3.

                                                       ),
                                                                                                         19002-
                 19003-80 "
80
                , 1
```



5 . 5 ( 5 ).

> · : ,

· -

.( .1.)

1. , - ,

D=A\*C

D1=D/A

D1=D/B

D1

. 2.

 $1=a+\sin 2b,$ 



. 2

|          |                      |                                | <u></u>                                |
|----------|----------------------|--------------------------------|----------------------------------------|
|          |                      |                                |                                        |
| 1        | $Y1=(a+c)^2+(a+c)^3$ |                                |                                        |
|          |                      | $2^{*}$ <sup>2</sup> +4* -48=0 | 10                                     |
|          |                      |                                | $f = \sum (a_i^2 + 56 * c_i * fg_i)$   |
|          |                      |                                | i=0                                    |
| 2        | Y1=(a-z)+(a-z)/6     |                                |                                        |
|          |                      | $=2^{2}+$ >10, $y=2a^{2}-x$    | $F = \prod_{i=1}^{5} (a_i + b_i)$      |
|          |                      |                                | $\Gamma = \prod_{i=1}^{n} (a_i + b_i)$ |
|          |                      |                                |                                        |
| 3        | $Y1=(a*c)^2+(a*c)^3$ | $b/z>d$ $f=\sin(wf)$           |                                        |
|          |                      |                                | =10!*a23                               |
| 4        | $Y1=(a/c)^2+(a/c)^3$ | f=0,                           |                                        |
|          |                      | h=lg(lk)+d*sin(wer)            |                                        |
| <u> </u> |                      | I                              |                                        |

|    |                                       |                                                   | 2 3                                                                                               |
|----|---------------------------------------|---------------------------------------------------|---------------------------------------------------------------------------------------------------|
|    |                                       |                                                   | $K=a^2+2*a*b*c^3$                                                                                 |
|    | 3                                     | 26 \ 1                                            | <u>-4 18 1</u>                                                                                    |
| 5  | $Y1=(a+x)/5+(a+c)^3$                  | $kc>p y=sin^2(a) kc$                              |                                                                                                   |
|    |                                       |                                                   |                                                                                                   |
| 6  | $Y1=(2*a)^{C}+(2*c)^{H}$              | w=(rt*4-                                          | •                                                                                                 |
|    |                                       | 24*x)/(25*x-rt*cf),                               | $Y = \sum_{i=1}^{10} (a^2 + a^3)$                                                                 |
|    | 2                                     | 2                                                 | a=2 $(a + a)$                                                                                     |
| 7  | $k1=(a*c)/7+(a*c)^3$                  | $y=k*x^2$ $x=[3-7]$                               | 10                                                                                                |
|    |                                       |                                                   | $Y = \prod_{a=1}^{n-1} \left( a^4 + a \right)$                                                    |
| 8  | $Y1=(t1/5)^2+(t1/5)^3$                | $y=k*x^2$ $x=[3-$                                 | <i>u</i> -1                                                                                       |
| 9  | $z1=(5+f1*c)^2+(a+f1*c)^3$            | 7]                                                | Y=r+kx/6!                                                                                         |
|    | 21 (8 / 11 8) (8 / 11 8)              | y 11 11 0 11 1                                    |                                                                                                   |
| 10 | Z2=r1+21+(r1+21)/j                    | y=k*x <sup>2</sup> 3>x>7                          | •                                                                                                 |
|    | , , , , , , , , , , , , , , , , , , , | ·                                                 |                                                                                                   |
| 11 | A1=sin(a/6)+2*sin(a/6)                | $y=k*x^2*lg(f*g),$                                | •                                                                                                 |
|    |                                       | ,                                                 | $Y = \prod^{40} \left( a^4 + a \right)$                                                           |
|    |                                       |                                                   | a=1 4                                                                                             |
| 12 | A1=2*cos1/2-sin1/2                    |                                                   | T                                                                                                 |
|    |                                       | $k = \sqrt{\frac{d = b - kj}{23 * qf + 6 * vc}},$ | $\int \int $ |
|    |                                       | $\bigvee 23 * gf + 6 * vc$ $\vdots$               | i=0 $i=0$ $i=0$                                                                                   |
|    |                                       |                                                   | 3                                                                                                 |
|    |                                       | · ;                                               |                                                                                                   |
|    |                                       | -                                                 |                                                                                                   |
| 13 | $A3=(a/b)^2+(a/b)^3$                  | g1=fd*kx <sup>kx</sup>                            | _                                                                                                 |
|    |                                       |                                                   |                                                                                                   |
| 14 | $D7=(a+bx)^2*(a+bx)^5$                | g1=fd*kx <sup>kx</sup>                            |                                                                                                   |
|    |                                       |                                                   | $a^2+b^2$ $a$ , $b$ .                                                                             |
|    |                                       |                                                   | $a^2+b^2$                                                                                         |

|    | 2                          |                                                                       |                                              |
|----|----------------------------|-----------------------------------------------------------------------|----------------------------------------------|
| 15 | $D6=(a+b/x)^2+(a+b/x)^8$   |                                                                       | a b                                          |
|    |                            | df=m*5-k1/7                                                           | u v                                          |
| 16 | S1=(h/s+8)*(h/s+8)/k       |                                                                       |                                              |
|    |                            | $z43=d*m^5$                                                           | $f = \sum_{\alpha} a^2 + 56 * c * fa$        |
|    |                            | kl/7*dg                                                               | $f = \sum_{a=0} a^2 + 56 * c * fg$           |
|    |                            |                                                                       | a                                            |
| 17 | S2=(h/s-5)/2+(h/s+8)*k     | ah                                                                    | 0,5                                          |
| 1, | 52-(11/5 3)/2 + (11/5+6) K | $a=rac{g^{gh}}{nb^{kj}}$                                             | 5                                            |
|    |                            | $no^{\circ}$                                                          | $Y = \prod_{a=1}^{5} \left( a^4 + a \right)$ |
|    |                            | •                                                                     | 0,25                                         |
| 18 | M3=sin(a+2)-               | $g^{gh}$                                                              |                                              |
|    | $\left(\sin(a+2)\right)^3$ | $a = \frac{g^{gh}}{nb^{kj}}$                                          | 10<br>a b.                                   |
|    |                            | ,                                                                     | u v.                                         |
| 19 | $M6=lg(s/u)+(s/u)^7$       | ·                                                                     |                                              |
|    | <i>S</i> ( ) ( )           | $\mathrm{a}{=}rac{g^{gh}}{nb^{kj}}$                                  | 25                                           |
|    |                            | 160                                                                   | •                                            |
| 20 | C4 1 ( .1) 1 ( 1)          |                                                                       |                                              |
| 20 | $C4=\lg(a+b)-\ln(a-b)$     | $a=rac{g^{gh}}{nb^{kj}}$                                             | 100                                          |
|    |                            | $nb^{\kappa \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$ | df                                           |
|    |                            |                                                                       |                                              |
| 21 | C4=lg(h-f)/ln(h-f)         | $g^{gh}$                                                              |                                              |
|    |                            | $\mathrm{a}{=}rac{g^{gh}}{nb^{kj}}$                                  | ty=5!+12!                                    |
|    |                            |                                                                       |                                              |
| 22 | C4=sin(f/h)/cos(f/h)       | •                                                                     |                                              |
|    |                            |                                                                       | ty=5!/9!                                     |
|    |                            | lk = (x+24*x)/rt*dg,                                                  |                                              |
|    |                            | •                                                                     |                                              |
|    |                            |                                                                       |                                              |
| 23 | $F1=\sin(n/k)+\ln(n/k)$    | ,                                                                     | 10                                           |
|    |                            | ,                                                                     | $Y = \prod_{10}^{10} a^4 + 5!$               |
|    |                            |                                                                       | a=1                                          |
|    |                            |                                                                       | 1                                            |

| 24 | $F1 = \cos(n*f/y) - \lg(n*f/y)$           | , ,                                         | $f = \sum_{i=1}^{50} a_i^2 + 6!$                                                                      |
|----|-------------------------------------------|---------------------------------------------|-------------------------------------------------------------------------------------------------------|
| 25 | $F1=(d+r/g)^F/(d+r/g)^D$                  |                                             | i=0                                                                                                   |
|    |                                           | er=ctg(gh)                                  |                                                                                                       |
| 26 | B1= $(z+2)^{g+h}/(z+2)^{(g+h)/3}$         | $s = \sqrt{24 * gh - sd * b - yt / vb}$     |                                                                                                       |
| 27 | $B2=s^{c+sd}+fg^{c+sd}$                   | cv=27*tg(z/3)                               | $n_1  n_2  n_m = 15$                                                                                  |
|    |                                           |                                             | $\begin{aligned} \text{Kl} &= \frac{n_1 * n_2 * n_m}{n_1 + n_2 + + n_m} \\ \text{m=45} \end{aligned}$ |
| 28 | B2=(c+2fg)/7-<br>(g+k) <sup>(c+2fg)</sup> |                                             | 5                                                                                                     |
|    |                                           |                                             | $ ut = \frac{\sum_{a=1}^{3} a^3}{\prod_{b=1}^{5} b^6} $                                               |
| 29 | B52=(c+27gd) <sup>(c+27gd)</sup>          | 1,<br>25,                                   | 1 1000 ,                                                                                              |
|    |                                           | , <u> </u>                                  |                                                                                                       |
| 30 | F15=sin <sup>2</sup> (a+d)-               |                                             | •                                                                                                     |
|    | sin <sup>3</sup> (a+d)                    | "truth",<br>re+21*j+5/kj<br>=45 , "false" – |                                                                                                       |
|    |                                           |                                             |                                                                                                       |

:

1.
 2.
 3.

4. 1.
 2.
 3. 4. 5. 6. 7. 8. 1. 2. ? 3. 4. 5. ) Algo2000.exe,  $A = \left\{a_0, a_1, ..., a_m\right\}$  $A=\left\{ a_{0},a_{1},a_{2}\right\} ,$  " (  $a_1 = 0, \, a_1 = 1, \qquad a_0 = \lambda$ 1). 0,

1:

| 1. |       |                |         |                  |  |
|----|-------|----------------|---------|------------------|--|
|    |       | 0              | 1       | $\lambda$        |  |
|    | $q_1$ | $\lambda Lq_1$ | $0LQ_0$ | UUQ <sub>1</sub> |  |

:  $q_1, q_0$ .  $q_1$ .  $q_0$ 

: 0, 1,  $\lambda$ .  $\lambda$ 

0.  $q_1$ .

-  $\lambda Lq_1$ . "0"  $q_1$ 

L

(  $q_1$ 

). 1. 1

 $q_1$ 0 :  $0Lq_1$  . 1;

:  $\lambda\lambda q_0$ .

 $\lambda$ ), (  $\lambda$ ),  $q_0$  .

1 0.

?"

```
"·
?"
```

 $M = (A, Q, q_1, q_0, a_0, p),$ A-Q- $\eta_c$ ,  $q_0\in Q$  ,  $q_0$  – ,  $q_f \in Q$  ,  $q_f$  –  $a_0 :A\times Q\to A\big\{L,R,E\big\}Q,$ p – L –  $\stackrel{-}{R}$   $\stackrel{-}{E}$   $\stackrel{-}{-}$ 1. 2.

6. ( ),

1.  $Y = (X \mod 3), X, Y - .L=20$ 

3. 4. 5.











**».** ( , , ( - « »). ( ). , « **>>** , ( , : ,

$$f\!\left(x\right)$$
 
$$y_{j} = f\!\left(x_{j}\right)$$
 
$$x_{j}, \; j = 0, ..., m \; .$$

$$x \in \left(x_{j}, x_{j+1}\right). \tag{,}$$

. 1.



$$P_n(x) = \sum_{i=0}^n a_i x^i \,. \tag{1.1}$$

$$P_n(x)$$

$$\sum_{i=0}^n a_i x_j^i = y_j, \quad j=k,\ldots,k+n$$
 
$$a_1 \ (k-1)$$
 
$$(1.2)$$
 
$$m \ge n+k,$$

),  $x_{j}$ 

:

$$P_n(x) = L_n(x) = \sum_{j=k}^{k+n} y_j \prod_{\substack{i=k\\i \neq j}}^{k+n} \frac{x - x_i}{x_j - x_i}.$$
 (1.3)

$$n=1 \ ( \hspace{1cm} )$$

$$L_1(x) = \frac{x - x_{k+1}}{x_k - x_{k+1}} y_k + \frac{x - x_k}{x_{k+1} - x_k} y_{k+1}$$

n=2

$$\begin{split} L_2 \left( \, x \, \right) &= \frac{\left( \, x \, - \, x_{k+1} \, \right) \left( \, x \, - \, x_{k+2} \, \right)}{\left( \, x_k \, - \, x_{k+1} \, \right) \left( \, x_k \, - \, x_{k+2} \, \right)} y_k \, + \frac{\left( \, x \, - \, x_k \, \right) \left( \, x \, - \, x_{k+2} \, \right)}{\left( \, x_{k+1} \, - \, x_k \, \right) \left( \, x_{k+1} \, - \, x_{k+2} \, \right)} y_{k+1} \, + \\ &\quad + \frac{\left( \, x \, - \, x_k \, \right) \left( \, x \, - \, x_{k+1} \, \right)}{\left( \, x_{k+2} \, - \, x_k \, \right) \left( \, x_{k+2} \, - \, x_{k+1} \, \right)} y_{k+2} \end{split}$$

,

$$x = x_j$$

x - x

, 
$$L_{n}\left(x_{j}\right)=y_{j}. \label{eq:equation:equation}$$

$$: f_k = f(x_k) .$$

 $x_k$ 

$$\Delta f_k = f_{k+1} - f_k$$

$$n - \left(n - 1\right)$$

$$\Delta^n f_k = \Delta^{n-1} f_{k+1} - \Delta^{n-1} f_k$$

$$(1.4)$$

$$f\left(x_{k},x_{k+1}\right) = f\left(x_{k+1},x_{k}\right) = \frac{f_{k+1} - f_{k}}{x_{k+1} - x_{k}} = \frac{f_{k}}{x_{k} - x_{k+1}} + \frac{f_{k+1}}{x_{k+1} - x_{k}}$$

$$n - \left(n - 1\right) - \left(n -$$

$$f(x_k, x_{k+1}, x_{k+n}) = \frac{f(x_{k+1}, x_{k+2}, x_{k+n}) - f(x_k, x_{k+1}, x_{k+n-1})}{x_{k+n} - x_k}$$
(1.5)

$$f(x_k, x_{k+1}, x_{k+n}) = \sum_{j=k}^{k+n} f_j \left( \prod_{\substack{i=k\\i \neq j}}^{k+n} (x_j - x_i) \right)^{-1}$$
 (1.6)

$$l_{n}(x) = f(x_{k}) + (x - x_{k})f(x_{k}, x_{k+1}) + (x - x_{k})(x - x_{k+1})f(x_{k}, x_{k+1}, x_{k+2}) + \dots \dots + (x - x_{k})(x - x_{k+1})\dots(x - x_{k+n-1})f(x_{k}, x_{k+1}, \dots, x_{k+n})$$

$$n -$$

$$(1.7)$$

$$f(x) = P_n(x) + \frac{\prod_{j=k}^{k+n} (x - x_j)}{(n+1)!} f^{(n+1)}(\xi)$$

$$x_j - \xi \in [x_k, x_{n+k}], x - ,$$
(1.8)

(n+1)-

 $\cos x$  ,  $\omega_n \left( x 
ight)$  ,  $x_j$  ,  $\omega_n \left( x 
ight)$  ,  $\omega_n \left( x 
ight)$  , .  $\sin x$ 

1.2 ). . 1.2 , **«** ( ).  $y_1$  $y_1$  $y_0$  $y_0$  $x_0$   $x_1$  $x_m$  $x_0 x_1$  $x_m$ б) a) .2. ), (1.8) $P_n^1\left(x\right) - f\left(x\right) = c \prod_{j=k_1}^{k_1+n} \left(x - x_j^1\right) + \delta_1\left(x\right)$ (1.9);  $j = 0, ..., N_1, c$   $x_j^1$ -;  $k_1$  - ;  $\delta_1(x)$   $x_j^2, \ j=0,...,N_2.$ 

 $c \quad f(x).$ 

$$P_n^2(x) - f(x) = c \prod_{j=k_0}^{k_2+n} (x - x_j^2) + \delta_2(x)$$
 (1.10)

(1.9) (1.10) , 
$$c$$
 ,  $c$  
$$c = \frac{P_n^2(x) - P_n^1(x)}{\Pi_2 - \Pi_1}, \Pi_i = \prod_{j=k}^{k_i + m} (x - x_j^i)$$
 (1.11)

$$P_n^{1}(x) - f(x) = \frac{\left(P_n^{2}(x) - P_n^{1}(x)\right)\Pi_1}{\Pi_2 - \Pi_1}$$
 (1.12)

$$f(x) \approx \frac{P_n^1(x)\Pi_2 - P_n^2(x)\Pi_1}{\Pi_2 - \Pi_1}.$$

$$(1.13)$$

$$(1.13)$$

.

, 
$$x_j^2 \qquad x_j^1 \qquad x_j^1 \qquad \qquad x_j^1$$
 
$$k+1 \qquad n+k+1 \ ( \qquad k_1=k \, , \ k_2=k+1 \ ).$$

(1.12)

2

$$P_{n}^{1}(x) - f(x) \approx \frac{\left[P_{n}^{2}(x) - P_{n}^{1}(x)\right] \prod_{j=k}^{k+n} (x - x_{j})}{\prod_{j=k+1}^{k+n+1} (x - x_{j}) - \prod_{j=k}^{k+n} (x - x_{j})} =$$

$$= -\left[P_{n}^{2}(x) - P_{n}^{1}(x)\right] \frac{x - x_{k}}{x_{k+n+1} - x_{k}}, \qquad (1.14)$$

(1.13)

$$f(x) \approx \frac{x_{k+n+1} - x}{x_{k+n+1} - x_k} P_n^1(x) + \frac{x - x_k}{x_{k+n+1} - x_k} P_n^2(x) = P_{n+1}(x)$$
(1.15)
$$n + 1, \qquad :$$

$$-P_{n+1}(x)$$
  $n+1;$ 

$$\begin{array}{lll} & i=k+1 & i=k+n & P_n^1\left(x_i\right) \ , \\ P_n^2\left(x_i\right), & , & P_{n+1}\left(x_i\right), & f\left(x_i\right); \\ & & P_{n+1}\left(x_k\right) = P_n^1\left(x_k\right) = f\left(x_k\right); \end{array}$$

$$P_{n+1}(x_{n+k+1}) = P_n^2(x_{n+k+1}) = f(x_{n+k+1})$$
(1.15)

$$P_{n+1}(x)$$
  $P_n(x)$ 

 $P_{n+1}(x)$ 

$$\Delta_n(x) = \sum_{j=k}^{k+n} \sigma_j A_j, \quad A_j = \left| \prod_{\substack{i=k\\i\neq j}}^{k+n} \frac{x - x_i}{x_j - x_i} \right|$$
 (1.16)

$$\Delta_{n+1}(x) = \left| \frac{x_{k+n+1} - x}{x_{k+n+1} - x_k} \Delta_n^1(x) \right| + \left| \frac{x - x_k}{x_{k+n+1} - x_k} \Delta_n^2(x) \right|$$

$$\Delta_0^1(x) = \sigma_k, \quad \Delta_0^2(x) = \sigma_{k+1}$$
(1.17)

 $\sigma_j$  -

$$y_j. y_j = f(x_j) -$$

$$\sigma_j \le \left| y_j \right| \cdot 10^{-M+1},\tag{1.18}$$

(M -

$$n$$
 , , (1.16) (1.18).

10,

,  $(1.12) - (1.15) \qquad , \qquad \delta_i\left(x\right)$  ,  $P_n\left(x\right) \qquad , \qquad (1.15)$  ,  $\left(n+1\right) - \qquad P_{n+1}\left(x\right). \qquad P_{n+2}\left(x\right). \quad \Delta_n = P_n\left(x\right) - P_{n+1}\left(x\right) P_n\left(x\right).$ 

 $\Delta_{\Delta n} = P_{n+1}(x) - P_{n+2}(x) \tag{1.3}$   $\delta_n = \left| \Delta_{\Delta n} / \Delta_n \right|$   $\delta_n \ll 1, \tag{1.3}$ 

.  $\delta_n > 0.3 - 0.4 \,, \label{eq:delta_n}$ 

 $f(x) = \sin x, \ x_j = \frac{j}{m} \frac{\pi}{2}, \quad y_j = f(x_j), \quad j = 0, ..., m.$ 

 $-\lg\left|P_n-P_{n+1}\right| \ ($  (1.14))  $\overline{x}=\left(x-x_j\right)\!\!/\!\!\left(x_{j+1}-x_j\right). \qquad .3$   $n \ (\qquad j=2).$ 

,

 $\sin x - \sin x$ 

x

10





. 3.

10-13

m = 20

 $\sin x$ .

. 3 ,

$$\sigma_{\cdot} = \sin x \cdot 10$$

 $\sigma_j = \sin x_j \cdot 10^{-15} \quad ($ ).

 $\sigma_j$  . ( .4).





. 4.

. 1.1 
$$\Delta_{n} = P_{n}(x) - P_{n+1}(x)$$

$$\Delta_n = P_n \left( x \right) - P_{n+1} \left( x \right) \label{eq:delta_n} ,$$
 
$$\vdots \quad \Delta_n^{exact} -$$
 
$$\vdots \quad k_\Delta = 1 - \Delta_n^{exact} \middle/ \Delta_n -$$

(1.14),(1.14).

| n | $\Delta_n$             | $\Delta_n^{exact}$    | $k_{\Delta}$ |
|---|------------------------|-----------------------|--------------|
| 1 | -1.2·10 <sup>-4</sup>  | -1.5·10 <sup>-4</sup> | 0.25         |
| 2 | $-3.0 \cdot 10^{-5}$   | $-3.0 \cdot 10^{-5}$  | 0.01         |
| 3 | $-1.4 \cdot 10^{-7}$   | -1.7·10 <sup>-7</sup> | 0.25         |
| 4 | $-3.4 \cdot 10^{-8}$   | $-3.4 \cdot 10^{-8}$  | 0.01         |
| 5 | $-2.7 \cdot 10^{-10}$  | $-2.2 \cdot 10^{-10}$ | -0.16        |
| 6 | -4.3·10 <sup>-11</sup> | 4.4·10- <sup>11</sup> | 0.01         |
| 7 | $6.1 \cdot 10^{-13}$   | $5.2 \cdot 10^{-13}$  | -0.15        |

|    | `                      | ŕ                      |              |
|----|------------------------|------------------------|--------------|
| n  | $\Delta_n$             | $\Delta_n^{exact}$     | $k_{\Delta}$ |
| 8  | -9.0·10 <sup>-14</sup> | -9.1·10 <sup>-14</sup> | 0.02         |
| 9  | -1.8·10 <sup>-15</sup> | -1.6·10 <sup>-15</sup> | -0.13        |
| 10 | $1.9 \cdot 10^{-16}$   | $2.4 \cdot 10^{-16}$   | 0.22         |
| 11 | $5.6 \cdot 10^{-17}$   | $4.3 \cdot 10^{-17}$   | -0.22        |
| 12 | $2.8 \cdot 10^{-17}$   | -1.2·10 <sup>-17</sup> | -1.44        |
| 13 | $8.3 \cdot 10^{-17}$   | -4.0·10 <sup>-17</sup> | -1.48        |
|    |                        |                        |              |

, 
$$k_{\Delta}=0.01 \qquad \Delta_n \qquad \Delta_n^{exact}$$
 , 
$$0.2 < k_{\Delta} < 0.3 \qquad \Delta_n \qquad \Delta_n^{exact} \qquad ,$$
 , 
$$k_{\Delta}>0.3 \qquad \Delta_n \qquad \Delta_n^{exact} \qquad ,$$

(

**«** 

$$y_i = f(x_i)$$

$$x_i = a + hi,$$
  $h = \frac{(b-a)}{10}, i = 0,1,...,10,$ 

$$\begin{bmatrix} a, b \end{bmatrix}$$
.

4)

$$\sin x$$
 ( . »).

6)

$$\begin{array}{ccc} 7) & & & & & \\ & x & & & 1. & & \end{array}$$

|   | f(x)                   | [ <i>a</i> , <i>b</i> ] |    | f(x)                                     | [a, b] |
|---|------------------------|-------------------------|----|------------------------------------------|--------|
|   |                        |                         |    |                                          |        |
| 1 | $\sin x^2$             | [0, 2]                  | 9  | $x \cdot \cos(x + \ln(1+x))$             | [1, 5] |
| 2 | $\cos x^2$             | [0, 2]                  | 10 | $10 \cdot \ln 2x / (1+x)$                | [1, 5] |
| 3 | $e^{\sin x}$           | [0, 5]                  | 11 | $\sin x^2 \cdot e^{-\left(x/2\right)^2}$ | [0, 3] |
| 4 | $1/(0.5+x^2)$          | [0, 2]                  | 12 | $\cos(x + \cos^3 x)$                     | [0, 2] |
| 5 | $e^{-(x+\sin x)}$      | [2, 5]                  | 13 | $\cos(x + e^{\cos x})$                   | [3, 6] |
| 6 | $1/(1+e^{-x})$         | [0, 4]                  | 14 | $\cos(2x+x^2)$                           | [0, 1] |
| 7 | $\sin(x + e^{\sin x})$ | [0, 3]                  | 15 | $e^{\cos x}\cos x^2$                     | [0, 2] |
| 8 | $e^{-(x+1/x)}$         | [1, 3]                  |    |                                          |        |

:
1)
2)
3)
(
4)
5)
,
1)
2)
3)
4,
5)

•

• ,

•

 $\phi(x) = g(x), \tag{1}$ 

$$f(x) = 0 (2)$$

 $\phi(x), \ g(x) \qquad f(x) = 0 - \qquad ,$  X,

(1) (2) ... (1)



. 1.

.

, ,

,

 $\overline{X} = \left\{x_1, x_2, \dots, x_n\right\},\,$ 

$$a_0 x^n + a_1 x^{n-1} + a_2 x^{n-2} + \dots + a_{n-1} x + a_n = 0$$
 (3)

$$\overline{X} = \left\{ x_1, x_2, \dots, x_n \right\} \qquad i - \frac{1}{a_1, a_2, \dots, a_m} - \frac{1}{a_1, a_2, \dots, a_m} = \frac{1}{a_1, a_2, \dots, a_m} - \frac{1}{a_2, \dots, a_m} = \frac{1}{a_1, a_2, \dots, a_m} - \frac{1}{a_2, \dots, a_m} = \frac{1}{a_1, a_2, \dots, a_m} = \frac{1}{a_2, \dots, a_m} = \frac{1$$

. 2.

,

$$f(x) = 0, \quad f(x)$$

$$[a,b], \qquad \xi$$

$$f(a) \cdot f(b) < 0.$$

,  $\left[ a,b\, 
ight]$ 

f(x) ab, . Ox( .3 ).

$$\frac{y - f(x)}{f(b) - f(a)} = \frac{x - a}{b - a} \tag{4}$$

 $x_1, y = 0, :$ 

$$x_1 = a - \frac{f(a) \cdot (b - a)}{f(b) - f(a)} \tag{5}$$

 $\begin{bmatrix} x_1, b \end{bmatrix}. & x_1 \\ \begin{bmatrix} x_1, b \end{bmatrix}, & x_2 \end{bmatrix}$ 

 $x_2 = x_1 - \frac{f(x_1) \cdot (b - x_1)}{f(b) - f(x_1)}.$ 

 $\xi$  :

(i+1)-

2

$$x_{i+1} = x_i - \frac{f(x_i) \cdot (b - x_i)}{f(b) - f(x_i)}$$
(6)

 $\begin{vmatrix} x_{i+1}-x_i | < \varepsilon & \\ x_{i+1},x_i - & \\ (i+1) \quad i- & \\ , & \\ \end{cases} \quad \begin{array}{c} f(x)=0 \,, \\ \\ \vdots \quad \varepsilon - \\ \\ ( \quad .3 \ ) & \\ \end{array} \quad (7)$ 

$$\left[\,a,b\,
ight]$$
 .

, ,

y = f(a)f(b) < 0 f'(x) > 0 f''(x) > 0 f''(x) < 0

 $A \qquad y = f(x)$ a)



.3.

1.

$$f(b) \cdot f''(x) > 0,$$
  $b,$   $\xi$   $a.$   $f(a) \cdot f''(x) > 0,$ 

2. - , , ,

3.

,



(

,

,

.

$$f(x) = 0 [a,b],$$

$$f(x)$$

$$f'(x) f''(x)$$

[a,b].[a,b]y = f(x)Ox,  $x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}.$ f(a) < 0, f(b) > 0, f'(x) > 0, f''(x) > 0f(a) > 0, f(b) < 0, f'(x) < 0, f''(x) < 0 ( . 5). ( .5)  $y = f(x) B_0(b; f(b))$  $: y - f(b) = f'(b) \cdot (x - b).$  $B_0(b; f(b))$  $y = 0, x = x_1,$  $x_1 = b - \frac{f(b)}{f'(b)}$ (8)  $[a,x_1].$  $B_1\left(x_1;f\left(x_1\right)\right)$  $x_2 = x_1 - \frac{f(x_1)}{f'(x_1)},$ . 5). n $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}.$ (9) $x_1, x_2, \dots, x_n, \dots,$  $\left|x_{i+1} - x_i\right| < \varepsilon,$ f(x) = 0(i + 1)



$$f(a) < 0, \quad f(b) > 0, \quad f'(x) > 0, \quad f''(x) < 0$$

$$(a) > 0, \quad f(b) < 0, \quad f'(x) < 0, \quad f''(x) > 0 \quad (a) < 0.$$

$$y = f(x) \qquad B,$$

$$[a,b].$$

 $A_0(a; f(a))$  y - f(a) = f'(a)(x - a).

 $y = 0, x = x_1,$ 

$$x_1 = a - \frac{f(a)}{f'(a)}$$

$$\left[x_1; b\right].$$

$$A_1\left(x_1; f\left(x_1\right)\right)$$

$$f(x_1)$$

$$x_2 = x_1 - \frac{f(x_1)}{f'(x_1)},$$

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}. {(11)}$$

 $f\left(b\right)\cdot f''\!\left(x\right)>0 \qquad \qquad b=x_0, \qquad \qquad f\!\left(a\right)\cdot f''\!\left(x\right)>0$   $a=x_0.$ 



.6
) , 
$$(f'(x) > 0, f''(x) < 0),$$
) ,  $(f'(x) < 0, f''(x) > 0).$ 

$$\left|\xi - x_n\right| \le \frac{|f(x_n)|}{m},\tag{12}$$

$$m = \min_{[a, b]} |f'(x)|$$
 ( ).

, 
$$\begin{bmatrix} a,b \end{bmatrix} ,$$
 
$$M_2 < 2m_1, \qquad M_2 = \min_{[a,\ b]} \left| \ f''(x) \ \right|, \qquad m_1 = \min_{[a,\ b]} \left| \ f'(x) \ \right|,$$
 
$$n - \\ \vdots \qquad \left| x_n - x_{n-1} \right| \ < \varepsilon \ , \qquad \left| \xi - x_n \ \right| \ < \varepsilon^2.$$
 
$$\left[ a,b \right],$$

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_0)}, (13)$$

$$\begin{aligned} \left|x_{i+}-x_i\right|<\varepsilon\,, & \varepsilon\,-\\ f(x)=0\,, & (i+1)\quad i\,- \end{aligned} \qquad ,$$



. 7.

$$\left[ a,b\, 
ight] .$$
  $\xi$  (1) .

$$f(x) = 0, f(x) - \xi ($$
 
$$f(a) \cdot f(b) < 0). \xi .$$



$$f'\big(x\big)f''\big(x\big)<0\,, \\ , & - & ( & .7. \; , \, ). \\ \xi & & , \\ a< x_n < \xi < \overline{x}_n < b \, , \quad x_n - & , & \\ & & , & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$$

, - ,

 $\begin{bmatrix} a, b \end{bmatrix}$  $\begin{bmatrix} a, b \end{bmatrix}$ 

Ox.

:

1. f(x)

: 
$$f'(x)f''(x) > 0$$
, ( . 7 , )

i

$$\overline{x}_{n+1} = a_n - \frac{f(a_n) \cdot (b_n - a_n)}{f(b_n) - f(a_n)}.$$
 (14)

:

$$= x_{n+1} = b_n - \frac{f(b_n)}{f'(b_n)}.$$
 (15)

f(x)

: 
$$f'(x)f''(x) < 0$$
 ( . 7 , ),

b

a .

:

$$\overline{x}_{n+1} = a_n - \frac{f(a_n)}{f'(a_n)}. (3.17)$$

$$\begin{aligned} \left| \overline{\overline{x_n}} - \overline{x_n} \right| < \varepsilon \,. \\ \overline{x_n} \quad \overline{\overline{x_n}} - \end{aligned} \qquad \xi = \frac{1}{2} \left( \overline{x_n} + \overline{\overline{x_n}} \right),$$

. 9.



(

.9.

$$f(x) = 0 ag{18}$$

$$x = \phi(x), \tag{19}$$

$$f(x) = 0, f(x) - \xi , [a,b]$$

 $\varepsilon$  .

(10); 
$$x_0 \in \left[ \, a,b \, \right] \\ x_1 = \phi(x_0) \, . \qquad x_1$$

$$(9) \hspace{1cm} x_2 = \phi(x_1) ( \hspace{0.5cm} .\hspace{0.5cm} 10 \\ \hspace{0.5cm} x_n = \phi(x_{n-1}). \\ \hspace{0.5cm} \vdots \\ \hspace{0.5cm} x_{0,}x_1, \ldots, x_n, \ldots \\ \hspace{0.5cm} (10). \\ \hspace{0.5cm} x_{0,}x_1, \ldots, x_n, \ldots \\ \hspace{0.5cm} , \hspace{0.5cm} , \hspace{0.5cm} . \\ \hspace{0$$



[a,b]  $x = \phi(x)$   $|\phi'(x)| \le q < 1.$   $a \le \phi(x) \le b,$   $x_0$ 

,  $x_0$   $\begin{bmatrix} a,b \end{bmatrix}.$   $x_{n-1},$   $y=\phi(x_{n-1}).$   $\begin{vmatrix} y-x_{n-1} |>\varepsilon,\\ & |y-x_{n-1}|<\varepsilon,\\ & & x_n=y.$ 

 $\phi(x) \qquad \qquad x = \phi(x)\,, \qquad \qquad , \qquad \left|\phi'(x)\right| \leq q < 1$   $\left\{x_n\right\} \qquad \qquad \xi \qquad \qquad ,$   $q\,. \qquad \qquad . 11.$ 



. 11.

| 1.<br>2.<br>3. | 1 |   | , | , |            |  |
|----------------|---|---|---|---|------------|--|
| 4.             | 1 |   | , | · | ,          |  |
| 5.             | • |   |   | , | . (        |  |
| 6.<br>7        |   | , |   | ٠ | <i>)</i> • |  |

8. - , Pascal.

9.

1) 2) 3)

4) 5)

|    |                                | 1 –                     |
|----|--------------------------------|-------------------------|
|    |                                |                         |
| 1  | $x^3 - x + 1 = 0$              | -1.325                  |
| 2  | $x^3 + 2x - 4 = 0$             | 1.180                   |
| 3  | $x^4 + 5x - 3 = 0$             | -1.876; 0.578           |
| 4  | $2.2x - 2^x = 0$               | 0.781; 2.401            |
| 5  | $2^x - 2x^2 - 1 = 0$           | 0.0;0.399;6.352         |
| 6  | $2^x - 4x = 0$                 | 0.310; 4.0              |
| 7  | $x^3 - x - 3 = 0$              | 1.213                   |
| 8  | $x^3 + 8x - 6 = 0$             | 0.703                   |
| 9  | $x^3 + 10x - 9 = 0$            | 0.841                   |
| 10 | $x^2 - \cos \pi x = 0$         | -0.438; 0.438           |
| 11 | $x^2 - \sin \pi x = 0$         | 0.0; 0.787              |
| 12 | $\lg x - \frac{1}{x^2} = 0$    | 1.897                   |
| 13 | $x^3 - 6x^2 + 9x - 3 = 0$      | -4.071; 0.466;<br>0.993 |
| 14 | $x^3 - 12x - 8 = 0$            | -0.695;<br>-3.067;3.757 |
| 15 | $2\lg x - \frac{x}{2} + 1 = 0$ | 0.398; 4.682            |
| 16 | $x^2 - 20\sin x = 0$           | 0.0; 2.753              |

| 17 | $x - \cos x = 0$            | 0.739              |
|----|-----------------------------|--------------------|
| 18 | $x^3 + 6x - 5 = 0$          | 0.760              |
| 19 | $x^3 - 2x + 7 = 0$          | -2.258             |
| 20 | $x^3 - 2x^2 + x + 1 = 0$    | -0.465             |
| 21 | $1.8x^2 - \sin 10x = 0$     | -0.567;-0.335; 0.0 |
| 22 | $gx - \frac{7}{(2x+6)} = 0$ | 3.473              |
| 23 | $2x \ln x - 1 = 0$          | 1.422              |
| 24 | $\ln x + (x+1)^3 = 0$       | 0.187              |
| 25 | $x + \lg x = 0.5$           | 0.672              |
| 26 | tg1.5x - 2.3x = 0           |                    |
| 27 | $5\sin 5x - x = 0$          |                    |
| 28 | $0.83e^{-0.54x} - x = 0$    |                    |

15.

16.  $x^3 + 3x^2 - 3 = 0;$ )  $x^3 + 3x^2 - 24x + 1 = 0$ ; )  $x^3 - 6x^2 + 9x - 3 = 0$ ;  $x^3 - x - 3 = 0$  $) x - \cos x = 0$ Pascal. )

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1m}x_m = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2m}x_m = b_2 \\ a_{31}x_1 + a_{32}x_2 + \dots + a_{3m}x_m = b_3 \\ \dots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nm}x_m = b_n \end{cases}$$

$$x_i, (i = \overline{1, n}) - \qquad ; b_i, (i = \overline{1, n}) - \qquad ;$$

$$i, (i, j = \overline{1, n}) - \qquad ; b_i, (i = \overline{1, n}) - \qquad ;$$

$$x_i, (i = 1, n) - ; b_i, (i = 1, n) -$$
 
$$a_{ij}, (i, j = \overline{1, n}) - .$$
 
$$(1)$$

 $A \times X = B$ ,

```
 \mathbf{X} = \begin{pmatrix} x_1, x_2, \dots, x_n \end{pmatrix}^T - & ; \quad \mathbf{B} = \begin{pmatrix} b_1, b_2, \dots, b_n \end{pmatrix}^T - \\ ; \quad \mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1m} \\ a_{21} & a_{22} & a_{23} & \cdots & a_{2m} \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ a_{n1} & a_{n2} & a_{n3} & \cdots & a_{nm} \end{pmatrix} - 
                                                                                                                                                                                                                                                      (1)
                                                                                        x_1, x_2, \dots, x_n
X,
                                                                                                                     m
                                                                                                                                                                                                                                                                                                                 (1)
                         \overline{x} = \lim \{ \overline{x}^0, \overline{x}^1, \overline{x}^2 ... \overline{x}^k \},
                                                                                                                                                                                                                                                                                                                                 1-
                                                                                                                                                                                              .1:
```

' (1)

 $\lim_{k \to \infty} \left\{ X^0, X^1, X^2, ..., X^k \right\},$ , (1)

$$X^0 = \begin{bmatrix} x_1^{(0)} \\ x_2^{(0)} \\ \vdots \\ x_n^{(0)} \end{bmatrix}, \quad X^1 = \begin{bmatrix} x_1^{(1)} \\ x_2^{(1)} \\ \vdots \\ x_n^{(1)} \end{bmatrix}, \quad \dots \quad X^k = \begin{bmatrix} x_1^{(k)} \\ x_2^{(k)} \\ \vdots \\ x_n^{(k)} \end{bmatrix}$$



. 1.

(1) (1), $\begin{cases} a_{11} \cdot x_1 & +a_{12} \cdot x_2 & +\ldots + & a_{1n} \cdot x_n & = b_1 \\ 0 \cdot x_1 & +a_{22} \cdot x_2 & +\ldots + & a_{2n} \cdot x_n & = b_2 \\ \hline 0 \cdot x_1 & +0 \cdot x_2 & +\ldots + & a_{nn} \cdot x_n & = b_n \end{cases}$ (2) (2)  $\begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1 \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2 \\ a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = b_3 \end{cases}$ (3) 1)  $a_{11}, a_{21}, a_{31}$  $, a_{11} = 0,$ 

 $\mathbf{x}_1$ 

2)

 $x_1$  $x_2$ 

$$a_{22} = 0, \quad a_{32} \neq 0,$$

$$a_{22} \neq 0,$$

 $a_{22} \neq 0$ .

7)

$$M_3'' = \frac{a_{32}}{a_{22}}. (2.15)$$

(11) 8) 3-

 $(a_{32} - M_3 a_{22}) x_2 + (a_{33} - M_3 a_{23}) x_3 = b_3 - b_2 M_2.$ (16)

$$a'_{32} - M_3 a'_{22} = 0, (17)$$

$$a''_{33} = a'_{33} - M_3 a'_{23},$$
 (18)

$$b''_{3} = b'_{3} - M_{3}b'_{2}, (19)$$

$$a"_{33} x_3 = b"_3. (20)$$

(14)(20),

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1 \\ 0 * x_1 + a'_{22}x_2 + a'_{23}x_3 = b'_2 \\ 0 * x_1 + 0 * x_2 + a''_{33}x_3 = b''_3 \end{cases}$$
 (21)

(3).

3 $x_2$ ,  $x_2$ 

(21)  $x_1$  $x_3$ 

$$x_3 = \frac{b"_3}{a"_{33}},\tag{22}$$

$$x_2 = \frac{b'_2 - a'_{23} x_3}{a'_{22}},\tag{23}$$

$$x_{1} = \frac{b_{1} - a_{12}x_{2} - a_{13}x_{3}}{a_{11}}.$$
 (24) 
$$. . . 2$$
 
$$. N N$$

 $a_{nn} \neq 0 \quad " \qquad , \label{eq:ann}$  " 0".

,



. 2.

,

•

$$M = \frac{a_{ik}}{a_{kk}}$$
 (25) 
$$a_{ik}$$
 
$$a_{kk}$$

,

1) (1) k-

 $a_{kj}$  ;

k- :

(25),  $a_{kk}$  –

) . 3.

, k -

 $a_{kk}$  ,  $x_k = 1$ ,

, (1),

 $\begin{cases} 1 * x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ 0 * x_1 + 1 * x_2 + \dots + a_{2n}x_n = b_2 \\ 0 * x_1 + 0 * x_2 + \dots + 1 * x_n = b_n \end{cases}$  (26)



(2),

:

1 N-1 (k = 1, 2, ..., N-1). 1.

2. l-

3.

k -4.

l , k , N ). k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k , k  $a_{kk}$  ( 5.

k. 6. (26)

> $x_n = b_n$ (27) $x_2 = b_2 - a_{2n} x_n$

 $x_1 = b_1 - a_{1n} x_n - a_{12} x_2$ 

. 4.

(28)

 $\begin{cases} a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n = b_2 \\ a_{31}x_1 + a_{32}x_2 + \ldots + a_{3n}x_n = b_3 \\ \ldots \\ a_{n1}x_1 + a_{n2}x_2 + \ldots + a_{nn}x_n = b_n \end{cases}$ 

(28)



. 4.

1)  $a_{kk}$ ,

k = 1, 2, ..., n, n -

$$\begin{cases} x_1 = \frac{b_1}{a_{11}} - (\frac{a_{12}}{a_{11}}x_2 + \frac{a_{13}}{a_{11}}x_3 + \dots + \frac{a_{1n}}{a_{11}}x_n) \\ x_2 = \frac{b_2}{a_{22}} - (\frac{a_{21}}{a_{22}}x_1 + \frac{a_{23}}{a_{22}}x_3 + \dots + \frac{a_{2n}}{a_{22}}x_n) \\ x_3 = \frac{b_3}{a_{33}} - (\frac{a_{31}}{a_{33}}x_1 + \frac{a_{32}}{a_{33}}x_2 + \dots + \frac{a_{1n}}{a_{33}}x_n) \\ \dots \\ x_n = \frac{b_n}{a_{nn}} - (\frac{a_{n1}}{a_{nn}}x_1 + \frac{a_{n2}}{a_{nn}}x_2 + \dots + \frac{a_{nn-1}}{a_{nn}}x_{n-1}) \end{cases}$$

$$(29)$$

2) 
$$\frac{b_k}{a_{kk}} = \beta_k, \quad -\frac{a_{ki}}{a_{kk}} = \alpha_{ki}, \quad k = 1, 2, ..., n; \ i = 1, 2, ..., n.$$

$$\begin{cases} x_{1} = \beta_{1} + \alpha_{11}x_{2} + \alpha_{12}x_{2} + \dots + \alpha_{1n}x_{n} \\ x_{2} = \beta_{2} + \alpha_{11}x_{1} + \alpha_{22}x_{2} + \dots + \alpha_{2n}x_{n} \\ x_{3} = \beta_{3} + \alpha_{11}x_{1} + \alpha_{22}x_{2} + \dots + \alpha_{3n}x_{n} \end{cases}$$

$$(30)$$

$$x_{n} = \beta_{n} + \alpha_{11}x_{1} + \alpha_{22}x_{2} + \dots + \alpha_{nn}x_{n}$$

3)

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \dots \\ x_n \end{bmatrix} = \begin{bmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \\ \dots \\ \beta_n \end{bmatrix} + \begin{bmatrix} \alpha_{11} & \alpha_{12} & \alpha_{13} & \dots & \alpha_{1n} \\ \alpha_{21} & \alpha_{22} & \alpha_{23} & \dots & \alpha_{n2} \\ \alpha_{311} & \alpha_{32} & \alpha_{33} & \dots & \alpha_{3n} \\ \dots & \dots & \dots & \dots & \dots \\ \alpha_{n11} & \alpha_{n2} & \alpha_{n3} & \dots & \alpha_{nn} \end{bmatrix} * \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \dots \\ x_n \end{bmatrix},$$
(31)

$$\bar{x} = \bar{\beta} + \bar{\alpha}^* \bar{x}. \tag{32}$$

$$\overline{x}^{(0)}, \tag{32},$$

x.

```
\overline{x}^{(0)}
                                                                                                                                                                                                                                                                                                                                                 0;
                                                                                                                                                                                                                                                                                                        \overline{x}^{(0)}
4)
                                                        (31) (32),
                        \begin{bmatrix} x_1^{\ (1)} \\ x_2^{\ (1)} \\ x_3^{\ (1)} \\ \vdots \\ x_n^{\ (1)} \end{bmatrix} = \begin{bmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \\ \vdots \\ \beta_n \end{bmatrix} + \begin{bmatrix} \alpha_{11} & \alpha_{12} & \alpha_{13} & \dots & \alpha_{1n} \\ \alpha_{21} & \alpha_{22} & \alpha_{23} & \dots & \alpha_{n2} \\ \alpha_{311} & \alpha_{32} & \alpha_{33} & \dots & \alpha_{3n} \\ \vdots \\ \alpha_{n11} & \alpha_{n2} & \alpha_{n3} & \dots & \alpha_{nn} \end{bmatrix} * \begin{bmatrix} x_1^{\ (0)} \\ x_2^{\ (0)} \\ x_3^{\ (0)} \\ \vdots \\ x_n^{\ (0)} \end{bmatrix}
                                        \overline{x}^{(1)} = \overline{\beta} + \overline{\alpha}^* \, \overline{x}^{(0)},
                                                                                     \overline{x}^{(1)}
               5)
                                                                                                                                                                                                                     (28)
                                                                                                                                                                                                                                   |\overline{x}^{(1)} - \overline{x}^{(0)}| \leq \varepsilon,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                33),
                                            \varepsilon -
                                                                                                                            (33)
                                                                                                                                                                                     x^{(2)}
(31)
                                                       (32)
                                                                                                         \begin{bmatrix} x_1^{\ (2)} \\ x_2^{\ (2)} \\ x_3^{\ (2)} \\ \vdots \\ x_n^{\ (2)} \end{bmatrix} = \begin{bmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \\ \vdots \\ \beta_n \end{bmatrix} + \begin{bmatrix} \alpha_{11} & \alpha_{12} & \alpha_{13} & \dots & \alpha_{1n} \\ \alpha_{21} & \alpha_{22} & \alpha_{23} & \dots & \alpha_{n2} \\ \alpha_{311} & \alpha_{32} & \alpha_{33} & \dots & \alpha_{3n} \\ \vdots \\ \alpha_{n11} & \alpha_{n2} & \alpha_{n3} & \dots & \alpha_{nn} \end{bmatrix} * \begin{bmatrix} x_1^{\ (1)} \\ x_2^{\ (1)} \\ x_3^{\ (1)} \\ \vdots \\ x_n^{\ (1)} \end{bmatrix}
```

 $\overline{x}^{(2)} = \overline{\beta} + \overline{\alpha}^* \, \overline{x}^{(1)}$ .

6) 
$$|\overline{x}^{(28)}| \leq \varepsilon.$$

$$|\overline{x}^{(2)} - \overline{x}^{(1)}| \leq \varepsilon.$$

$$|\overline{x}^{(3)}| \leq |\beta_1| + |\alpha_{12} \alpha_{13} \dots \alpha_{1n}| + |\alpha_{12} \alpha_{13} \alpha_{22} \alpha_{23} \dots \alpha_{n2}| + |\alpha_{11} \alpha_{12} \alpha_{13} \alpha_{32} \alpha_{33} \dots \alpha_{nn}| + |\alpha_{11} \alpha_{n2} \alpha_{n3} \dots \alpha_{nn}| + |\alpha_{n1} \alpha_{n2} \alpha_{n3} \dots \alpha_{nn}| + |\alpha_{n1} \alpha_{n2} \alpha_{n3} \dots \alpha_{nn}| + |\alpha_{n2} \alpha_{n3$$

 $\|\alpha\|_{1} = \max_{i} \sum_{j=1}^{n} |\alpha_{ij}|, \tag{34}$ 

 $\alpha$ 

$$\|\alpha\|_2 = \max_j \sum_{i=1}^n |\alpha_{ij}|, \tag{35}$$

 $\alpha$ :

$$\|\alpha\|_{3} = \sqrt{\sum_{i} \sum_{j} |\alpha_{ij}|^{2}}.$$
1:
(2.30)

$$\max_{i} \sum_{j=1}^{n} \left| \alpha_{ij} \right| < 1 \qquad \qquad \max_{j} \sum_{i=1}^{n} \left| \alpha_{ij} \right| < 1. \tag{36}$$

2:

, 
$$|\alpha_{ii}| > \max_{i} \sum_{j=1}^{n} |\alpha_{ij}| \qquad |\alpha_{jj}| > \max_{j} \sum_{i=1}^{n} |\alpha_{ij}|.$$
 (37)

$$\begin{cases} 8x_1 + x_2 + x_3 = 20 \\ x_1 + 5x_2 - x_3 = 7 \\ x_1 - x_2 + 5x_3 = 7 \end{cases} \begin{cases} x_1 = 3,25 - 0,125x_2 - 0,125x_3 \\ x_2 = 1,4 - 0,2x_1 + 0,2x_3 \\ x_3 = 1,4 - 0,2x_1 + 0,2x_2 \end{cases}$$

$$\alpha = \begin{bmatrix} 0 & -0.125 & -0.125 \\ -0.2 & 0 & 0.2 \\ -0.2 & 0.2 & 0 \end{bmatrix}$$

$$\begin{split} & \left\| \alpha \right\|_{1} = \max \left\{ \begin{vmatrix} \alpha_{11} | + |\alpha_{12}| + |\alpha_{13}| \\ |\alpha_{21} | + |\alpha_{22}| + |\alpha_{23}| \\ |\alpha_{31} | + |\alpha_{32}| + |\alpha_{33}| \end{vmatrix} = \\ & = \max \left\{ \begin{aligned} 0 + 0.125 + 0.125 \\ 0.2 + 0 + 0.2 \\ 0.2 + 0.2 + 0 \end{aligned} \right\} = \max \left\{ \begin{aligned} 0.25 \\ 0.4 \\ 0.4 \end{aligned} \right\} = 0.4 < 1 \end{split}$$

$$\begin{split} \left\|\alpha\right\|_{2} &= \max \left\{ \begin{vmatrix} \alpha_{11} | + |\alpha_{21}| + |\alpha_{31}| \\ |\alpha_{12}| + |\alpha_{22}| + |\alpha_{23}| \\ |\alpha_{31}| + |\alpha_{32}| + |\alpha_{33}| \end{vmatrix} \right\} = \max \left\{ \begin{aligned} 0 + 0, 2 + 0, 2 \\ 0, 125 + 0 + 0, 2 \\ 0, 125 + 0, 2 + 0 \end{aligned} \right\} = \\ &= \max \left\{ \begin{aligned} 0, 4 \\ 0, 325 \\ 0, 325 \\ 0, 325 \end{aligned} \right\} = 0, 4 < 1 \end{split} \right. \end{split}$$

.

•

(31)

 $\overline{\alpha}$ , , , (34)–(36)

 $\varepsilon$  . (34) – (36)

(34) - (36).

. (34)–(36)

.

 $\overline{x}^{(0)}$ ,

$$\begin{bmatrix} x_{1}^{(1)} \\ x_{2}^{(1)} \\ x_{3}^{(1)} \\ \vdots \\ x_{n}^{(1)} \end{bmatrix} = \begin{bmatrix} \beta_{1} \\ \beta_{2} \\ \beta_{3} \\ \vdots \\ \beta_{n} \end{bmatrix} + \begin{bmatrix} \alpha_{11} & \alpha_{12} & \alpha_{13} & \dots & \alpha_{1n} \\ \alpha_{21} & \alpha_{22} & \alpha_{23} & \dots & \alpha_{n2} \\ \alpha_{311} & \alpha_{32} & \alpha_{33} & \dots & \alpha_{3n} \\ \vdots \\ \alpha_{n11} & \alpha_{n2} & \alpha_{n3} & \dots & \alpha_{nn} \end{bmatrix} * \begin{bmatrix} x_{1}^{(0)} \\ x_{2}^{(0)} \\ x_{3}^{(0)} \\ \vdots \\ x_{n}^{(0)} \end{bmatrix}, \quad (38)$$

,

 $\overline{x}^{(1)}$ ,

 $\vdots \mid \overline{x}^{(1)} - \overline{x}^{(0)} \mid \leq \varepsilon ,$ 

 $\varepsilon$  -

$$x^{(2)}: (31)$$

$$\begin{bmatrix} x_1^{\ (2)} \\ x_2^{\ (2)} \\ x_3^{\ (2)} \\ \vdots \\ x_n^{\ (2)} \end{bmatrix} = \begin{bmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \\ \vdots \\ \beta_n \end{bmatrix} + \begin{bmatrix} \alpha_{11} & \alpha_{12} & \alpha_{13} & \dots & \alpha_{1n} \\ \alpha_{21} & \alpha_{22} & \alpha_{23} & \dots & \alpha_{n2} \\ \alpha_{311} & \alpha_{32} & \alpha_{33} & \dots & \alpha_{3n} \\ \vdots \\ \alpha_{n11} & \alpha_{n2} & \alpha_{n3} & \dots & \alpha_{nn} \end{bmatrix} * \begin{bmatrix} x_1^{\ (1)} \\ x_2^{\ (1)} \\ x_3^{\ (1)} \\ \vdots \\ x_n^{\ (1)} \end{bmatrix}$$

 $: \mid \overline{x}^{(2)} - \overline{x}^{(1)} \mid \leq \varepsilon.$ 

- (k+1)-e

:

ε-

$$x^{(k+1)} = \bar{\beta} + \bar{\alpha}^* x^{(k)}, \qquad k = 1, 2, \dots$$

$$x^{(0)}, x^{(1)}, x^{(2)}, \dots, x^{(k)},$$

$$x = \lim_{k \to \infty} x^k,$$
(39)

.

$$|x^{\overline{(k+1)}} - x^{(k)}| < \varepsilon,$$

$$(40)$$

 $\overline{x}^{(k)}$   $\overline{x}^{(k-1)}$ 

 $\varepsilon$  .



. 5.

, 
$$x_j^{(k)}-k-$$
 , 
$$||x_j-x_j^k|| \leq \frac{\|\alpha\|}{1-\|\alpha\|}^{(k+1)} \|\beta\|,$$

$$\left\|x_{j}-x_{j}^{k}\right\| \leq \frac{\left\|\alpha\right\|}{1-\left\|\alpha\right\|}^{(k+1)}\left\|\beta\right\|,\tag{41}$$

$$\|\alpha\|$$
 - 3  $\alpha$ ;  $\|\beta\|$  -  $\beta$ ;

\_

$$i$$
 -  $ig(i-1ig)$ 

(k+1)- .

:

$$\begin{cases} x_{1} = \beta_{1} + \alpha_{11}x_{1} + \alpha_{12}x_{2} + \dots + \alpha_{1n}x_{n}; \\ x_{2} = \beta_{2} + \alpha_{21}x_{1} + \alpha_{22}x_{2} + \dots + \alpha_{2n}x_{n}; \\ \dots \\ x_{n} = \beta_{n} + \alpha_{n1}x_{1} + \alpha_{n2}x_{2} + \dots + \alpha_{nn}x_{n}. \end{cases}$$

$$(42)$$

1. 
$$\overline{x} = \left\{ x_1^{(0)}, \dots, x_n^{(0)} \right\}$$

2.  $x_1^{(1)}$ 

$$x_1^{(1)} = \beta_1 + \alpha_{11} x_1^{(0)} + \alpha_{12} x_2^{(0)} + \ldots + \alpha_{1n} x_n^{(0)}.$$

3.  $x_1^{(1)}$ ,

$$x_2^{(1)} = \beta_1 + \alpha_{21} x_1^{(1)} + \alpha_{22} x_2^{(0)} + \dots + \alpha_{2n} x_n^{(0)}.$$

 $x_1^{(1)}, x_2^{(1)}$ 

(39)
$$x_3^{(1)} = \beta_1 + \alpha_{21} x_1^{(1)} + \alpha_{22} x_2^{(1)} + \alpha_{23} x_3^{(0)} + \dots + \alpha_{2n} x_n^{(0)}$$

5.  $x_n^{(1)} \qquad \qquad \left( n-1 \right)$ 

$$(x_1^{(1)}, x_2^{(1)}, x_{3,...}^{(1)}, x_{n-1}^{(1)}),$$

$$x_n^{(1)} = \beta_n + \alpha_{n1} x_1^{(1)} + \alpha_{n2} x_2^{(1)} + \ldots + \alpha_{n,n-1} x_{n-1}^{(1)} + \alpha_{nn} x_n^{(0)}.$$

(k+1)-

$$\begin{cases} x_1^{(k+1)} = \beta_1 + \sum_{j=1}^n \alpha_{1j} x_j^{(k)}; \\ x_2^{(k+1)} = \beta_2 + \sum_{j=2}^n \alpha_{2j} x_j^{(k)} + \alpha_{21} x_j^{(k+1)}; \\ x_3^{(k+1)} = \beta_3 + \alpha_{31} x_1^{(k+1)} + \alpha_{32} x_2^{(k+1)} + \sum_{j=3}^n \alpha_{3j} x_j^{(k)}; \\ x_n^{(k+1)} = \beta_n + \sum_{j=1}^{n-1} \alpha_{nj} x_j^{(k+1)} + \alpha_{nn} x_n^{(k)}. \end{cases}$$

$$(43)$$

- ,

$$\overline{x} = \overline{\beta} + \overline{\alpha}x \qquad , \qquad \varepsilon$$

$$\left\|\alpha\right\|_{1} = \max \sum_{i=1}^{n} \left|\alpha_{ij}\right| < 1 \tag{44}$$

$$\left\|\alpha\right\|_{2} = \max \sum_{i=1}^{n} \left|\alpha_{ij}\right| < 1 \tag{45}$$

$$\left\|\alpha\right\|_{3} = \sqrt{\sum_{i} \sum_{j} \left|\alpha_{ij}\right|^{2}} < 1 \tag{46}$$

,

$$\overline{\alpha} = \begin{bmatrix} 0.24 & -0.05 & -0.24 \\ -022 & 0.09 & -0.44 \\ 0.13 & -0.02 & 0.42 \end{bmatrix}$$

$$\|\alpha\|_{1} = \max_{j} \sum_{j=1}^{n} |\alpha_{ij}| = \max\{0.53; 0.75; 0.57\} = 0.75 < 1.$$

$$\|\alpha\|_{2} = \max_{i} \sum_{j=1}^{n} |\alpha_{ij}| = \max\{0,59; 0,16; 1,1\}=1,1>1.$$

 $\overline{x}^{(k)}$  - -

$$\|\overline{x} - \overline{x}^{(k)}\|_{1} \le \frac{\|\alpha\|_{1}^{(k)}}{1 - \|\alpha\|_{1}} \|\overline{x}^{(1)} - \overline{x}^{(0)}\|_{1}$$
(47)

k -  $x_i^{(k+1)} = x_i^{(k)} + \varpi(\overline{x}_i^{(k+1)} - x_i^{(k)}),$ 

$$x_i^{(k+1)} = x_i^{(k)} + \varpi(\overline{x}_i^{(k+1)} - x_i^{(k)}), \tag{48}$$

 $\overline{x}_i^{(k+1)}$  -

1.

2.

3.

4.

5.

7.

?

? 9. 10.

```
11.
                                                                                   9,9 <sub>1</sub>-1,5 <sub>2</sub>+2,6 <sub>3</sub>=0;
0,4 <sub>1</sub>+13,6 <sub>2</sub>-4,2 <sub>3</sub>=8,2;
0,7 <sub>1</sub>+0,4 <sub>2</sub>+7,1 <sub>3</sub>=-13;
        12.
          1.
                                                                                                                                ).
        2.
         3.
                                                        Pascal.
         4.
                                                                                                                                                                 .1),
                                                                                                                                           ).
                (
        5.
1)
2)
3)
                                                                                            (
4)
5)
                                                                                                                                                          1.
                                                                                                                                                                           1 –
```

| 1 | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                      | -1<br>-4<br>2 | $x_1 = 1$ $x_2 = 2$ $x_3 = -2$ |
|---|----------------------------------------------------------------------------|---------------|--------------------------------|
| 2 | $ \begin{array}{cccc} 1 & -3 & 2 \\ 3 & -4 & 0 \\ 2 & -5 & 3 \end{array} $ | 1<br>2<br>2   | $x_1 = 2$ $x_2 = 1$ $x_3 = 1$  |
| 3 | $ \begin{array}{cccc} 1 & -3 & 2 \\ 3 & -4 & 0 \\ 2 & -5 & 3 \end{array} $ | 5<br>7<br>9   | $x_1 = 5$ $x_2 = 2$ $x_3 = 3$  |

| 4  | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                             | 4<br>9<br>-2                 | $x_1 = 1$ $x_2 = 2$ $x_3 = 1$                                         |
|----|---------------------------------------------------------------------------------------------------|------------------------------|-----------------------------------------------------------------------|
| 5  | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                             | -5<br>-2<br>-7               | $x_1 = 6$ $x_2 = 5$ $x_3 = 2$                                         |
| 6  |                                                                                                   | 2,08<br>0,17<br>1,28<br>0,05 | $x_1 = 0.4026$<br>$x_2 = 1.5016$<br>$x_3 = 0.5862$<br>$x_4 = -0.2678$ |
| 7  | 7,09 $1,17$ $-2,23$ $0,43$ $1,40$ $-0,62$ $3,21$ $-4,25$ $2,13$                                   | -4,75<br>-1,05<br>-5,06      | $x_1 = 0.2386$ $x_2 = 0.5945$ $x_3 = 3.2019$                          |
| 8  | 1,84 2,25 2,58<br>2,32 2,00 2,82<br>1,83 2,06 2,24                                                | -6,09<br>-6,96<br>-5,52      |                                                                       |
| 9  | $\begin{array}{ccccc} 2,36 & 2,37 & 2,13 \\ 2,51 & 2,40 & 2,10 \\ 2,59 & 2,41 & 2,06 \end{array}$ | 1,48<br>1,92<br>2,16         |                                                                       |
| 10 | 6,1 	 0,7 	 -0,05  -1,3 	 -2,05 	 0,87  2,5 	 -3,12 	 -5,03                                       | 6,97<br>0,10<br>2,04         | $x_1 = 1.22$<br>$x_2 = -0.67$<br>$x_3 = 0.35$                         |
| 11 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                              | -9,7<br>13,1<br>6,9<br>25,1  | $x_1 = -0.72$ $x_2 = 1.88$ $x_3 = -0.92$ $x_4 = -1.94$                |
| 12 | 2,58 2,98 3,13<br>1,32 1,55 1,58<br>2,09 2,25 2,84                                                | -6,66<br>-3,58<br>-5,01      |                                                                       |

| 13 | 1,54 1,70 1,62<br>3,69 3,73 3,59<br>2,45 2,43 2,25                                                       | -1,97<br>-3,69<br>-5,98 |                                                  |
|----|----------------------------------------------------------------------------------------------------------|-------------------------|--------------------------------------------------|
| 14 | 7,6 $0,5$ $2,4$ $2,2$ $9,1$ $4,4$ $-1,3$ $0,2$ $5,8$                                                     | 1,9<br>9,7<br>-1,4      | $x_1 = 0.248$ $x_2 = 1.114$ $x_3 = -0.224$       |
| 15 | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                    | 26<br>7<br>7            | $x_1 = 3$ $x_2 = 1$ $x_3 = 1$                    |
| 16 | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                    | 7<br>-5<br>-14          | $x_1 = 0$ $x_2 = -1$ $x_3 = 2$                   |
| 17 | $ \begin{array}{cccc} 11 & 3 & -1 \\ 2 & 5 & -5 \\ 1 & 1 & 1 \end{array} $                               | 15<br>-11<br>1          | $x_1 = 2$ $x_2 = -2$ $x_3 = 1$                   |
| 18 | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                    | 6<br>-1<br>-1<br>3      | $x_1 = 1$ $x_2 = -1$ $x_3 = 1$ $x_4 = -1$        |
| 19 | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                    | -8<br>-1<br>-6<br>7     | $x_1 = -1$ $x_2 = 2$ $x_3 = 0$ $x_4 = 3$         |
| 20 | $ \begin{array}{ccccc} 1,14 & -2,15 & -5,11 \\ 0,42 & -1,13 & 7,05 \\ -0,71 & 0,81 & -0,02 \end{array} $ | 2,05<br>0,80<br>-1,07   | $x_1 = 1.12$ $x_2 = -0.341$ $x_3 = -0.008$       |
| 21 | 0,61 $0,71$ $-0,05$ $-1,03$ $-2,05$ $0,87$ $2,5$ $-3,12$ $5,03$                                          | -0,16<br>0,50<br>0,95   | $x_1 = 0.008$<br>$x_2 = -0.231$<br>$x_3 = 0.042$ |