The LLL Algorithm

Liam Hardiman

May 29, 2019

- Motivation
- @ Gram-Schmidt
- Basis Reduction
- 4 The LLL algorithm
- 6 An application

• Recall that the **lattice**, L, generated by the linearly independent vectors $x_1, x_2, \ldots, x_n \in \mathbb{R}^n$ is the \mathbb{Z} -span of these vectors:

$$L = \{c_1x_1 + c_2x_2 + \cdots + c_nx_n : c_i \in \mathbb{Z}, 1 \le i \le n\}.$$

• Recall that the **lattice**, L, generated by the linearly independent vectors $x_1, x_2, \ldots, x_n \in \mathbb{R}^n$ is the \mathbb{Z} -span of these vectors:

$$L = \{c_1x_1 + c_2x_2 + \cdots + c_nx_n : c_i \in \mathbb{Z}, 1 \le i \le n\}.$$

 Consider the lattices, L and M, generated by the rows of the matrices X and Y, respectively.

$$X = \begin{bmatrix} -168 & 602 & 58 \\ 157 & -564 & -57 \\ 594 & -2134 & -219 \end{bmatrix}, \quad Y = \begin{bmatrix} -6 & 6 & -4 \\ 9 & 4 & 1 \\ -1 & 8 & 6 \end{bmatrix}.$$

• Each row of X is an integer linear combination of the rows of Y, so $L \subseteq M$:

• Each row of X is an integer linear combination of the rows of Y, so $L \subseteq M$:

$$\begin{bmatrix} -168 \\ 602 \\ 58 \end{bmatrix}^{T} = 14 \begin{bmatrix} 4 \\ 2 \\ -9 \end{bmatrix}^{T} + 50 \begin{bmatrix} -1 \\ 8 \\ 6 \end{bmatrix}^{T} - 29 \begin{bmatrix} 6 \\ -6 \\ 4 \end{bmatrix}^{T},$$

$$\begin{bmatrix} 157 \\ -564 \\ -57 \end{bmatrix}^{T} = -13 \begin{bmatrix} 4 \\ 2 \\ -9 \end{bmatrix}^{T} - 47 \begin{bmatrix} -1 \\ 8 \\ 6 \end{bmatrix}^{T} + 26 \begin{bmatrix} 6 \\ -6 \\ 4 \end{bmatrix}^{T},$$

$$\begin{bmatrix} 594 \\ -2134 \\ -219 \end{bmatrix} = -49 \begin{bmatrix} 4 \\ 2 \\ -9 \end{bmatrix}^{T} - 178 \begin{bmatrix} -1 \\ 8 \\ 6 \end{bmatrix} + 102 \begin{bmatrix} 6 \\ -6 \\ 4 \end{bmatrix}^{T}.$$

In particular, we have the matrix equation

$$UY = X,$$

$$\begin{bmatrix} 14 & 50 & -29 \\ -13 & -47 & 27 \\ -49 & -178 & 102 \end{bmatrix} \begin{bmatrix} 4 & 2 & -9 \\ -1 & 8 & -6 \\ 6 & -6 & 4 \end{bmatrix} = \begin{bmatrix} -168 & 602 & 58 \\ 157 & -564 & -57 \\ 594 & -2134 & -219 \end{bmatrix}.$$

• In particular, we have the matrix equation

$$UY = X,$$

$$\begin{bmatrix} 14 & 50 & -29 \\ -13 & -47 & 27 \\ -49 & -178 & 102 \end{bmatrix} \begin{bmatrix} 4 & 2 & -9 \\ -1 & 8 & -6 \\ 6 & -6 & 4 \end{bmatrix} = \begin{bmatrix} -168 & 602 & 58 \\ 157 & -564 & -57 \\ 594 & -2134 & -219 \end{bmatrix}.$$

• det U = -1, so U^{-1} is an integer matrix as well. This gives us another matrix equation, $Y = U^{-1}X$.

• In particular, we have the matrix equation

$$UY = X,$$

$$\begin{bmatrix} 14 & 50 & -29 \\ -13 & -47 & 27 \\ -49 & -178 & 102 \end{bmatrix} \begin{bmatrix} 4 & 2 & -9 \\ -1 & 8 & -6 \\ 6 & -6 & 4 \end{bmatrix} = \begin{bmatrix} -168 & 602 & 58 \\ 157 & -564 & -57 \\ 594 & -2134 & -219 \end{bmatrix}.$$

- det U = -1, so U^{-1} is an integer matrix as well. This gives us another matrix equation, $Y = U^{-1}X$.
- Since the entries of U^{-1} are integers, this equation expresses the rows of Y as integer linear combinations of the rows of X, so $M \subseteq L$.

 Even though the rows of X and Y generate the same lattice, something about the Y-basis "feels" nicer.

$$X = \begin{bmatrix} -168 & 602 & 58 \\ 157 & -564 & -57 \\ 594 & -2134 & -219 \end{bmatrix}, \quad Y = \begin{bmatrix} -6 & 6 & -4 \\ 9 & 4 & 1 \\ -1 & 8 & 6 \end{bmatrix}.$$

• Even though the rows of *X* and *Y* generate the same lattice, something about the *Y*-basis "feels" nicer.

$$X = \begin{bmatrix} -168 & 602 & 58 \\ 157 & -564 & -57 \\ 594 & -2134 & -219 \end{bmatrix}, \quad Y = \begin{bmatrix} -6 & 6 & -4 \\ 9 & 4 & 1 \\ -1 & 8 & 6 \end{bmatrix}.$$

- Two qualities that make a basis desirable are:
 - Length: how long are the basis vectors?
 - Orthogonality: are the basis vectors nearly orthogonal to each other?

• Suppose $x_1, x_2, \dots, x_n \in \mathbb{R}^n$ are pairwise orthogonal.

- Suppose $x_1, x_2, \dots, x_n \in \mathbb{R}^n$ are pairwise orthogonal.
- If $x = c_1x_1 + c_2x_2 + \cdots + c_nx_n$, $c_i \in \mathbb{Z}$, is in the lattice L generated by x_1, \ldots, x_n then

$$|x|^2 = c_1^2 |x_1|^2 + c_2^2 |x_2|^2 + \dots + c_n^2 |x_n|^2.$$

- Suppose $x_1, x_2, \dots, x_n \in \mathbb{R}^n$ are pairwise orthogonal.
- If $x = c_1x_1 + c_2x_2 + \cdots + c_nx_n$, $c_i \in \mathbb{Z}$, is in the lattice L generated by x_1, \ldots, x_n then

$$|x|^2 = c_1^2 |x_1|^2 + c_2^2 |x_2|^2 + \dots + c_n^2 |x_n|^2.$$

This completely solves the shortest vector problem (SVP) since

$$\arg\min_{x\in L}|x| = \arg\min_{x\in \{\pm x_1,\pm x_2,\dots,\pm x_n\}}|x|.$$

• Say we want to find a vector in L that is closest to

$$x = t_1x_1 + t_2x_2 + \cdots + t_nx_n,$$

where the t_i are real numbers.

• Say we want to find a vector in L that is closest to

$$x = t_1x_1 + t_2x_2 + \cdots + t_nx_n,$$

where the t_i are real numbers.

• If $y = c_1x_1 + c_2x_2 + \cdots + c_nx_n$, $c_i \in \mathbb{Z}$, is any vector in L then by the orthogonality of the x_i we have

$$|x-y|^2 = (t_1-c_1)^2|x_1|^2 + (t_2-c_2)^2|x_2|^2 + \cdots + (t_n-c_n)^2|x_n|^2.$$

Say we want to find a vector in L that is closest to

$$x=t_1x_1+t_2x_2+\cdots+t_nx_n,$$

where the t_i are real numbers.

• If $y = c_1x_1 + c_2x_2 + \cdots + c_nx_n$, $c_i \in \mathbb{Z}$, is any vector in L then by the orthogonality of the x_i we have

$$|x-y|^2 = (t_1-c_1)^2|x_1|^2 + (t_2-c_2)^2|x_2|^2 + \cdots + (t_n-c_n)^2|x_n|^2.$$

• If we take c_i to be the closest integer to t_i then we solve the closest vector problem (CVP).

Measuring orthogonality

Definition

Let x_1, \ldots, x_n be a basis for the lattice $L \subset \mathbb{R}^n$. We define the determinant of L, det L to be the volume of the n-dimensional parallelepiped with sides defined by x_1, \ldots, x_n :

$$\det L = |\det X|,$$

where the rows of X are the basis vectors x_1, \ldots, x_n .

Measuring orthogonality

Definition

Let x_1, \ldots, x_n be a basis for the lattice $L \subset \mathbb{R}^n$. We define the determinant of L, det L to be the volume of the n-dimensional parallelepiped with sides defined by x_1, \ldots, x_n :

$$\det L = |\det X|,$$

where the rows of X are the basis vectors x_1, \ldots, x_n .

Theorem

The determinant of L is independent of basis.

Measuring Orthogonality

• The volume of the parallelepiped defined by x_1, \ldots, x_n is maximized when when the basis vectors are pairwise orthogonal to one another.

Measuring Orthogonality

• The volume of the parallelepiped defined by x_1, \ldots, x_n is maximized when when the basis vectors are pairwise orthogonal to one another.

Theorem (Hadamard's Inequality)

Let x_1, \ldots, x_n be a basis for the lattice $L \subset \mathbb{R}^n$. Then

$$\det L \leq |x_1||x_2|\cdots|x_n|.$$

Measuring Orthogonality

• The volume of the parallelepiped defined by x_1, \ldots, x_n is maximized when when the basis vectors are pairwise orthogonal to one another.

Theorem (Hadamard's Inequality)

Let x_1, \ldots, x_n be a basis for the lattice $L \subset \mathbb{R}^n$. Then

$$\det L \leq |x_1||x_2|\cdots|x_n|.$$

 If the basis vectors are closer to being orthogonal, then Hadamard's inequality is closer to an equality.

- @ Gram-Schmidt

- 6 An application

Definition

Let $x_1, \ldots, x_m \in \mathbb{R}^n$ be a basis for a nonzero subspace, H. The **Gram-Schmidt process** produces an orthogonal basis for H:

$$x_{1}^{*} = x_{1}$$

$$x_{2}^{*} = x_{2} - \mu_{2,1}x_{1}^{*}$$

$$x_{3}^{*} = x_{3} - \mu_{3,1}x_{1}^{*} - \mu_{3,2}x_{2}^{*}$$

$$\vdots$$

$$x_{m}^{*} = x_{m} - \mu_{m,1}x_{1}^{*} - \dots - \mu_{m,m-1}x_{m-1}^{*},$$

where $\mu_{i,j} = \frac{x_i \cdot x_j^*}{x_j^* \cdot x_j^*}$. We call $\{x_1^*, \dots, x_m^*\}$ the **Gram-Schmidt** orthogonalization (GSO) of $\{x_1, \dots, x_m\}$.

Figure: The first step of the Gram-Schmidt process. Image modified from https://en.wikipedia.org/wiki/Gram-Schmidt_process

Figure: The second step of the Gram-Schmidt process. Image modified from D. Lay, S. Lay, and J. McDonald. *Linear Algebra and its Applications*. Fifth Edition. 2016.

Proposition

Let $x_1, x_2, ..., x_n$ be a basis for the lattice $L \subset \mathbb{R}^n$ and let $x_1^*, x_2^*, ..., x_n^*$ be its Gram-Schmidt orthogonalization. For any nonzero $y \in L$ we have

$$|y| \ge \min\{|x_1^*|, |x_2^*|, \dots, |x_n^*|\}.$$

That is, any nonzero lattice vector is at least as long as the shortest vector in the Gram-Schmidt orthogonalization.

Proof

• We can write

$$y = \sum_{i=1}^n c_i x_i, \quad c_i \in \mathbb{Z}.$$

Proof

We can write

$$y=\sum_{i=1}^n c_i x_i, \quad c_i \in \mathbb{Z}.$$

• Since $y \neq 0$, at lease one c_i is nonzero. Let k be the largest index with $c_k \neq 0$.

Proof

Motivation

We can write

$$y = \sum_{i=1}^n c_i x_i, \quad c_i \in \mathbb{Z}.$$

• Since $y \neq 0$, at lease one c_i is nonzero. Let k be the largest index with $c_k \neq 0$.

$$y = \sum_{i=1}^{k} \sum_{j=1}^{i} c_{i} \mu_{ij} x_{j}^{*} = \sum_{j=1}^{k} \left(\sum_{i=j}^{k} c_{i} \mu_{ij} \right) x_{j}^{*}$$
$$= c_{k} x_{k}^{*} + \sum_{j=1}^{k-1} \nu_{j} x_{j}^{*},$$

for some real ν_i .

Proof contd...

• Take the norm-squared on both sides.

$$|y|^{2} = \left| c_{k} x_{k}^{*} + \sum_{j=1}^{k-1} \nu_{j} x_{j}^{*} \right|^{2}$$

$$= c_{k}^{2} |x_{k}^{*}|^{2} + \sum_{j=1}^{k-1} \nu_{j}^{2} |x_{j}^{*}|^{2}$$

$$\geq |x_{k}^{*}|^{2}$$

$$\geq \min\{|x_{1}^{*}|^{2}, |x_{2}^{*}|^{2}, \dots, |x_{n}^{*}|^{2}\}.$$

A useful equality

Proposition

If x_1, \ldots, x_n is a basis for the lattice $L \subset \mathbb{R}^n$ and x_1^*, \ldots, x_n^* is its GSO then

$$\det L = \prod_{i=1}^{n} |x_i^*|.$$

Proof

• We have that $\det L = \det X$, where the rows of X are the basis vectors x_1, \ldots, x_n .

A useful equality

Proof contd...

• By the definition of the GSO we have $X = MX^*$ where the rows of X^* are the vectors x_1^*, \ldots, x_n^* and M consists of the GSO coefficients:

$$M = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 & 0 \\ \mu_{2,1} & 1 & 0 & \cdots & 0 & 0 \\ \mu_{3,1} & \mu_{3,2} & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ \mu_{n,1} & \mu_{n,2} & \mu_{n_3} & \cdots & \mu_{n,n-1} & 1 \end{bmatrix}.$$

Motivation

Proof contd...

• By the definition of the GSO we have $X = MX^*$ where the rows of X^* are the vectors x_1^*, \ldots, x_n^* and M consists of the GSO coefficients:

$$M = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 & 0 \\ \mu_{2,1} & 1 & 0 & \cdots & 0 & 0 \\ \mu_{3,1} & \mu_{3,2} & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ \mu_{n,1} & \mu_{n,2} & \mu_{n_3} & \cdots & \mu_{n,n-1} & 1 \end{bmatrix}.$$

Since M has determinant 1 we have

$$\det L = |\det X| = |\det M| |\det X^*| = \prod_{i=1}^n |x_i^*|.$$

• Given a basis x_1, \ldots, x_n for a lattice $L \subset \mathbb{R}^n$, the GSO vectors x_1^*, \ldots, x_n^* need not live in L since the coefficients $\frac{x_i \cdot x_j^*}{x_j^* \cdot x_j^*}$ need not be integers.

- Given a basis x_1, \ldots, x_n for a lattice $L \subset \mathbb{R}^n$, the GSO vectors x_1^*, \ldots, x_n^* need not live in L since the coefficients $\frac{x_i \cdot x_j^*}{x_j^* \cdot x_j^*}$ need not be integers.
- Can we salvage the Gram-Schmidt process and come up with a (nearly) orthogonal basis for *L*?

- @ Gram-Schmidt
- Basis Reduction
- 6 An application

Basis reduction

Definition

Let α , $\frac{1}{4} < \alpha < 1$ be a real number. Let x_1, \ldots, x_n be a basis for the lattice $L \subset \mathbb{R}^n$ and let x_1^*, \ldots, x_n^* be its Gram-Schmidt orthogonalization. We say that the basis x_1, \ldots, x_n is α -reduced if

- (size condition) $|\mu_{ij}| \leq \frac{1}{2}$ for all $i \leq j < i \leq n$,
- ② (Lovász condition) $|x_i^*|^2 \ge (\alpha \mu_{i,i-1}^2)|x_{i-1}^*|^2$ for $2 \le i \le n$.

Size condition

• $x_2 - \mu_{2,1}x_1$ is orthogonal to x_1 , but might not be in the lattice spanned by x_1, x_2, \dots, x_n .

Size condition

- $x_2 \mu_{2,1}x_1$ is orthogonal to x_1 , but might not be in the lattice spanned by x_1, x_2, \dots, x_n .
- $x_2 \lceil \mu_{2,1} \rfloor x_1$, where $\lceil x \rfloor$ is the integer closest to x (rounded down when $x = \frac{1}{2}$), is in the lattice and is nearly orthogonal to x_1 .

Size condition

- $x_2 \mu_{2,1}x_1$ is orthogonal to x_1 , but might not be in the lattice spanned by x_1, x_2, \dots, x_n .
- $x_2 \lceil \mu_{2,1} \rfloor x_1$, where $\lceil x \rfloor$ is the integer closest to x (rounded down when $x = \frac{1}{2}$), is in the lattice and is nearly orthogonal to x_1 .
- The size condition, $|\mu_{ij}| \leq \frac{1}{2}$, then says that $\lceil \mu_{ij} \rfloor = 0$: x_i is already nearly orthogonal to x_i .

Lovász condition

• Assuming the size condition is met, the Lovász condition, $|x_i^*|^2 \geq (\alpha - \mu_{i,i-1}^2)|x_{i-1}^*|^2$ for all $i \geq 2$, says that x_i^* isn't isn't "too much" shorter than x_{i-1} .

Lovász condition

- Assuming the size condition is met, the Lovász condition, $|x_i^*|^2 \ge (\alpha \mu_{i,i-1}^2)|x_{i-1}^*|^2$ for all $i \ge 2$, says that x_i^* isn't isn't "too much" shorter than x_{i-1} .
- Rearranging gives $|x_i^* + \mu_{i,i-1}x_{i-1}^*|^2 \ge \alpha |x_{i-1}^*|^2$. This says

|Projection of
$$x_i$$
 onto $\mathrm{Span}\{x_1,\ldots,x_{i-2}\}|$
 $\geq \alpha |\mathrm{Projection} \text{ of } x_{i-1} \text{ onto } \mathrm{Span}\{x_1,\ldots,x_{i-2}\}|.$

• Let x_1, x_2, \ldots, x_n be an α -reduced basis and let $\beta = \frac{1}{\alpha - 1/4}$.

- Let x_1, x_2, \ldots, x_n be an α -reduced basis and let $\beta = \frac{1}{\alpha 1/4}$.
- Combining the size and Lovász conditions gives

$$|x_i^*|^2 \ge (\alpha - \mu_{i,i-1}^2)|x_{i-1}^*|^2 \ge \frac{1}{\beta}|x_{i-1}^*|^2.$$

- Let x_1, x_2, \ldots, x_n be an α -reduced basis and let $\beta = \frac{1}{\alpha 1/4}$.
- Combining the size and Lovász conditions gives

$$|x_i^*|^2 \ge (\alpha - \mu_{i,i-1}^2)|x_{i-1}^*|^2 \ge \frac{1}{\beta}|x_{i-1}^*|^2.$$

• Repeatedly applying this to $x_1^* = x_1$ gives

$$|x_1|^2 \le \beta |x_2^*|^2 \le \beta^2 |x_3^*|^2 \le \dots \le \beta^{n-1} |x_n^*|^2.$$

• For any $2 \le i \le n$ we have $|x_i^*|^2 \ge \beta^{-(i-1)}|x_1|^2$.

- For any $2 \le i \le n$ we have $|x_i^*|^2 \ge \beta^{-(i-1)}|x_1|^2$.
- If we let y be any nonzero vector in the lattice spanned by x_1, \ldots, x_n we then have

$$|y| \ge \min\{|x_1^*|, \dots, |x_n^*|\} \ge \beta^{-(n-1)/2}|x_1|.$$

- For any $2 \le i \le n$ we have $|x_i^*|^2 \ge \beta^{-(i-1)}|x_1|^2$.
- If we let y be any nonzero vector in the lattice spanned by x_1, \ldots, x_n we then have

$$|y| \ge \min\{|x_1^*|, \dots, |x_n^*|\} \ge \beta^{-(n-1)/2}|x_1|.$$

• This gives a bound on the first vector in an α -reduced basis in terms of the shortest nonzero vector y in L:

$$|x_1| \le \beta^{(n-1)/2} |y|.$$

• If x_1, \ldots, x_n is α -reduced, the Lovász condition gives us

$$|x_i^*|^2 \ge (\alpha - \mu_{i,i-1}^2)|x_{i-1}^*|^2 \ge \frac{1}{\beta}|x_{i-1}^*|^2.$$

• If x_1, \ldots, x_n is α -reduced, the Lovász condition gives us

$$|x_i^*|^2 \ge (\alpha - \mu_{i,i-1}^2)|x_{i-1}^*|^2 \ge \frac{1}{\beta}|x_{i-1}^*|^2.$$

• Repeated application gives $|x_i^*|^2 \le \beta^{i-j} |x_i^*|^2$.

• If x_1, \ldots, x_n is α -reduced, the Lovász condition gives us

$$|x_i^*|^2 \ge (\alpha - \mu_{i,i-1}^2)|x_{i-1}^*|^2 \ge \frac{1}{\beta}|x_{i-1}^*|^2.$$

- Repeated application gives $|x_i^*|^2 \le \beta^{i-j} |x_i^*|^2$.
- Writing x_i in terms of the GSO, x_1^*, \dots, x_n^* and applying the above inequality gives

$$|x_i|^2 \le \beta^{i-1} |x_i^*|^2$$
.

• Multiplying this inequality by itself for $1 \le i \le n$ gives

$$\prod_{i=1}^{n} |x_i|^2 \le \beta^{n(n-1)/2} \prod_{i=1}^{n} |x_i^*|^2 = \beta^{n(n-1)/2} (\det L)^2.$$

• Multiplying this inequality by itself for $1 \le i \le n$ gives

$$\prod_{i=1}^{n} |x_i|^2 \le \beta^{n(n-1)/2} \prod_{i=1}^{n} |x_i^*|^2 = \beta^{n(n-1)/2} (\det L)^2.$$

Taking the square root and using Hadamard's inequality we have

$$\det L \le \prod_{i=1}^n |x_i| \le \beta^{n(n-1)/4} \det L.$$

The LLL algorithm •000000000

- @ Gram-Schmidt
- 4 The LLL algorithm
- 6 An application

Can we find a reduced basis?

 Reduced bases are nice. Their vectors are short and nearly orthogonal.

Can we find a reduced basis?

- Reduced bases are nice. Their vectors are short and nearly orthogonal.
- Does every lattice admit a reduced basis? If it does, can we compute it efficiently?

The LLL algorithm

Motivation

Algorithm 1 The LLL Algorithm

Input: A basis $\{x_1, \ldots, x_n\}$ of the lattice $L \subset \mathbb{R}^n$ and a reduction parameter $\alpha \in (\frac{1}{4}, 1)$.

Output: An α -reduced basis $\{y_1, \ldots, y_n\}$ of the lattice L.

- 1: Copy $x_1, ..., x_n$ into $y_1, ..., y_n$.
- 2: Set $k \leftarrow 2$
- 3: while $k \le n$ do
- 4: **for** $j = k 1, k 2, \dots, 2, 1$ **do**
- 5: Set $y_k \leftarrow y_k \lceil \mu_{k,j} \rfloor y_j$.
- 6: **if** $|y_k^*|^2 \ge (\alpha \mu_{k,k-1}^2)|y_{k-1}^*|^2$ **then**
- 7: Set $k \leftarrow k + 1$.
- 8: **else**
- 9: Swap y_{k-1} and y_k .
- 10: Set $k \leftarrow \max(k-1,2)$.

return $\{y_1,\ldots,y_n\}$.

• If we let L_k be the lattice spanned by y_1, \ldots, y_k , then swapping y_k and y_{k-1} changes the sublattices L_k and L_{k-1} .

- If we let L_k be the lattice spanned by y_1, \ldots, y_k , then swapping y_k and y_{k-1} changes the sublattices L_k and L_{k-1} .
- If the Lovász condition isn't met then

$$|y_k^*|^2 < (\alpha - \mu_{k,k-1}^2)|y_{k-1}^*|^2.$$

- If we let L_k be the lattice spanned by y_1, \ldots, y_k , then swapping y_k and y_{k-1} changes the sublattices L_k and L_{k-1} .
- If the Lovász condition isn't met then

$$|y_k^*|^2 < (\alpha - \mu_{k,k-1}^2)|y_{k-1}^*|^2.$$

• Since $\det L_{k-1} = |y_1^*| \cdots |y_{k-1}^*|$, replacing y_{k-1}^* with the shorter y_k^* will decrease $\det L_{k-1}$.

- If we let L_k be the lattice spanned by y_1, \ldots, y_k , then swapping y_k and y_{k-1} changes the sublattices L_k and L_{k-1} .
- If the Lovász condition isn't met then

$$|y_k^*|^2 < (\alpha - \mu_{k,k-1}^2)|y_{k-1}^*|^2.$$

- Since $\det L_{k-1} = |y_1^*| \cdots |y_{k-1}^*|$, replacing y_{k-1}^* with the shorter y_k^* will decrease $\det L_{k-1}$.
- The swapping step attempts to order the vectors y_i so that the determinants of the sublattices, det L_i , are minimized.

• Let $L \subset \mathbb{R}^n$ be the \mathbb{Z} -span of the rows of the matrix X:

$$X = \begin{bmatrix} 4 & 5 & 1 \\ 4 & 8 & 2 \\ 6 & 2 & 6 \end{bmatrix}.$$

• Let $L \subset \mathbb{R}^n$ be the \mathbb{Z} -span of the rows of the matrix X:

$$X = \begin{bmatrix} 4 & 5 & 1 \\ 4 & 8 & 2 \\ 6 & 2 & 6 \end{bmatrix}.$$

• Running the LLL algorithm with $\alpha = \frac{3}{4}$ gives the reduced basis

$$Y = \begin{bmatrix} 0 & 3 & 1 \\ 4 & -1 & -1 \\ 2 & -3 & 5 \end{bmatrix}.$$

• Let $L \subset \mathbb{R}^n$ be the \mathbb{Z} -span of the rows of the matrix X:

$$X = \begin{bmatrix} 4 & 5 & 1 \\ 4 & 8 & 2 \\ 6 & 2 & 6 \end{bmatrix}.$$

• Running the LLL algorithm with $\alpha = \frac{3}{4}$ gives the reduced basis

$$Y = \begin{bmatrix} 0 & 3 & 1 \\ 4 & -1 & -1 \\ 2 & -3 & 5 \end{bmatrix}.$$

 It's clear that the vectors in the Y basis are shorter: the longest row vector in Y is shorter than the shortest row vector in X!

• Let $L \subset \mathbb{R}^n$ be the \mathbb{Z} -span of the rows of the matrix X:

$$X = \begin{bmatrix} 4 & 5 & 1 \\ 4 & 8 & 2 \\ 6 & 2 & 6 \end{bmatrix}.$$

• Running the LLL algorithm with $\alpha = \frac{3}{4}$ gives the reduced basis

$$Y = \begin{bmatrix} 0 & 3 & 1 \\ 4 & -1 & -1 \\ 2 & -3 & 5 \end{bmatrix}.$$

- It's clear that the vectors in the Y basis are shorter: the longest row vector in Y is shorter than the shortest row vector in X!
- ullet The Y basis is more orthogonal than the X basis:

$$\det L = 76, \quad |x_1||x_2||x_3| \approx 518, \quad |y_1||y_2||y_3| \approx 83$$

• Because we swap the vectors in the y_i basis, it's not obvious that the LLL algorithm terminates.

- Because we swap the vectors in the y_i basis, it's not obvious that the LLL algorithm terminates.
- For simplicity, let's assume our basis vectors x_i have integer entries. Define the quantities

$$d_{\ell} = \prod_{i=1}^{\ell} |x_i^*|^2, \qquad D = \prod_{i=1}^{n} d_i = \prod_{i=1}^{n} |x_i^*|^{2(n+1-i)}.$$

- Because we swap the vectors in the y_i basis, it's not obvious that the LLL algorithm terminates.
- For simplicity, let's assume our basis vectors x_i have integer entries. Define the quantities

$$d_{\ell} = \prod_{i=1}^{\ell} |x_i^*|^2, \qquad D = \prod_{i=1}^{n} d_i = \prod_{i=1}^{n} |x_i^*|^{2(n+1-i)}.$$

• D changes when we swap x_k and x_{k-1} , so the only terms that will contribute to this change are $|x_k^*|^2$ and $|x_{k-1}^*|^2$.

- Because we swap the vectors in the y_i basis, it's not obvious that the LLL algorithm terminates.
- For simplicity, let's assume our basis vectors x_i have integer entries. Define the quantities

$$d_{\ell} = \prod_{i=1}^{\ell} |x_i^*|^2, \qquad D = \prod_{i=1}^{n} d_i = \prod_{i=1}^{n} |x_i^*|^{2(n+1-i)}.$$

- D changes when we swap x_k and x_{k-1} , so the only terms that will contribute to this change are $|x_k^*|^2$ and $|x_{k-1}^*|^2$.
- We swap when the Lovász condition isn't met, i.e. when

$$|x_k^*|^2 < (\alpha - \mu_{k,k-1}^2)|x_{k-1}^*|^2 \le \alpha |x_{k-1}^*|^2.$$

• Swapping x_k and x_{k-1} changes only d_{k-1} and it changes by:

$$\begin{split} d_{k-1}^{new} &= |x_1^*|^2 \cdots |x_{k-2}^*|^2 \cdot |x_k^*|^2 \\ &= |x_1^*|^2 \cdots |x_{k-2}^*|^2 \cdot |x_{k-1}^*|^2 \cdot \frac{|x_k^*|^2}{|x_{k-1}^*|^2} \\ &= d_{k-1}^{old} \cdot \frac{|x_k^*|^2}{|x_{k-1}^*|^2} \leq \alpha \cdot d_{k-1}^{old}. \end{split}$$

• If we execute N swaps then D must be reduced by a factor of at least α^N , since each swap changes exactly one d_i , reducing it by a factor of α , and D is the product of all the d_i 's.

• Swapping x_k and x_{k-1} changes only d_{k-1} and it changes by:

$$\begin{split} d_{k-1}^{new} &= |x_1^*|^2 \cdots |x_{k-2}^*|^2 \cdot |x_k^*|^2 \\ &= |x_1^*|^2 \cdots |x_{k-2}^*|^2 \cdot |x_{k-1}^*|^2 \cdot \frac{|x_k^*|^2}{|x_{k-1}^*|^2} \\ &= d_{k-1}^{old} \cdot \frac{|x_k^*|^2}{|x_{k-1}^*|^2} \leq \alpha \cdot d_{k-1}^{old}. \end{split}$$

• If we execute N swaps then D must be reduced by a factor of at least α^N , since each swap changes exactly one d_i , reducing it by a factor of α , and D is the product of all the d_i 's.

Does the algorithm terminate?

• Since our lattice vectors live in \mathbb{Z}^n , each d_i is a positive integer, so

$$D=\prod_{i=1}^n d_i\geq 1.$$

Does the algorithm terminate?

• Since our lattice vectors live in \mathbb{Z}^n , each d_i is a positive integer, so

$$D=\prod_{i=1}^n d_i\geq 1.$$

ullet D is a positive integer bounded away from zero that decreases by a factor of at least lpha after each swap.

Does the algorithm terminate?

• Since our lattice vectors live in \mathbb{Z}^n , each d_i is a positive integer, so

$$D=\prod_{i=1}^n d_i\geq 1.$$

- D is a positive integer bounded away from zero that decreases by a factor of at least α after each swap.
- ullet Such a positive integer can be multiplied by lpha only finitely many times before dropping below 1, so we must execute only finitely many swaps: the LLL algorithm terminates.

• The LLL algorithm is only practical if it finishes execution in a reasonable amount of time.

- The LLL algorithm is only practical if it finishes execution in a reasonable amount of time.
- Say the algorithm terminates after N swaps and let D_{init} be the value of D in the input basis. Since D decreases by a factor of α after each swap, we have that

$$1 \leq D_{final} \leq \alpha^N D_{init}$$
.

- The LLL algorithm is only practical if it finishes execution in a reasonable amount of time.
- Say the algorithm terminates after N swaps and let D_{init} be the value of D in the input basis. Since D decreases by a factor of α after each swap, we have that

$$1 \leq D_{final} \leq \alpha^N D_{init}$$
.

• Taking logarithms and using $\log \alpha < 0$ gives

$$N = O(\log D_{init}).$$

• How large is D_{init} in terms of the input basis?

- How large is *D_{init}* in terms of the input basis?
- Since $|x_i^*| \leq |x_i|$ for all i by the Pythagorean theorem we have

$$D_{init} = \prod_{i=1}^{n} |x_i^*|^{2(n+1-i)}$$

$$\leq \prod_{i=1}^{n} |x_i|^{2(n+1-i)}$$

$$\leq (\max_{1 \leq i \leq n} |x_i|)^{2(1+2+\cdots+n)}$$

$$= B^{n^2+n},$$

where B is the length of the longest vector in the input basis, x_1, \ldots, x_n .

Putting it all together

We have proved the following theorem.

Theorem (Lenstra, Lenstra, Lovász (1982))

Let x_1, x_2, \ldots, x_n be a basis for the lattice $L \subset \mathbb{R}^n$ and let $\alpha \in (1/4, 1)$. There exists an α -reduced basis for L that can be computed in time

$$O(n^2 \log B)$$
,

where $B = \max_{1 \le i \le n} |x_i|$.

- Motivation
- @ Gram-Schmidt
- Basis Reduction
- 4 The LLL algorithm
- 6 An application

Small roots of polynomials mod M (D. Coppersmith '96)

• Suppose we know that $f(x) \in \mathbb{Z}[x]$ has a small root, x_0 modulo M and we want to find x_0 : think $f(x) = x^e - c$ where M is an RSA modulus.

Small roots of polynomials mod M (D. Coppersmith '96)

- Suppose we know that $f(x) \in \mathbb{Z}[x]$ has a small root, x_0 modulo M and we want to find x_0 : think $f(x) = x^e c$ where M is an RSA modulus.
- We can use Newton's method to approximate the roots to f(x), but these roots might not be roots mod M unless the coefficients of f(x) are small.

Small roots of polynomials mod M (D. Coppersmith '96)

- Suppose we know that $f(x) \in \mathbb{Z}[x]$ has a small root, x_0 modulo M and we want to find x_0 : think $f(x) = x^e c$ where M is an RSA modulus.
- We can use Newton's method to approximate the roots to f(x), but these roots might not be roots mod M unless the coefficients of f(x) are small.
- Plan: build a polynomial $g(x) \in \mathbb{Z}[x]$ that has the same root x_0 modulo M as f(x), but with coefficients small enough that $g(x_0) = 0$ as well.

• Suppose we know that $|x_0| < X$ for some integer X. Write $f(x) = a_0 + a_1x + \cdots + a_dx^d$, $a_i \in \mathbb{Z}$. Consider the matrix

$$B = \begin{bmatrix} M & 0 & \cdots & 0 & 0 \\ 0 & MX & \cdots & 0 & 0 \\ \vdots & & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & MX^{d-1} & 0 \\ a_0 & a_1X & \cdots & a_{d-1}X^{d-1} & a_dX^d \end{bmatrix}.$$

• Suppose we know that $|x_0| < X$ for some integer X. Write $f(x) = a_0 + a_1x + \cdots + a_dx^d$, $a_i \in \mathbb{Z}$. Consider the matrix

$$B = \begin{bmatrix} M & 0 & \cdots & 0 & 0 \\ 0 & MX & \cdots & 0 & 0 \\ \vdots & & & \vdots & \vdots \\ 0 & 0 & \cdots & MX^{d-1} & 0 \\ a_0 & a_1X & \cdots & a_{d-1}X^{d-1} & a_dX^d \end{bmatrix}.$$

• The rows of B are linearly independent and span a lattice $L \subset \mathbb{R}^{d+1}$.

• Suppose we know that $|x_0| < X$ for some integer X. Write $f(x) = a_0 + a_1x + \cdots + a_dx^d$, $a_i \in \mathbb{Z}$. Consider the matrix

$$B = \begin{bmatrix} M & 0 & \cdots & 0 & 0 \\ 0 & MX & \cdots & 0 & 0 \\ \vdots & & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & MX^{d-1} & 0 \\ a_0 & a_1X & \cdots & a_{d-1}X^{d-1} & a_dX^d \end{bmatrix}.$$

- The rows of B are linearly independent and span a lattice $L \subset \mathbb{R}^{d+1}$.
- Each row vector in L is of the form $(b_0, b_1 X, \dots, b_d X^d)$, $b_i \in \mathbb{Z}$.

ullet Identify elements of L with polynomials in $\mathbb{Z}[x]$ by

$$(b_0, b_1 X, \ldots, b_d X^d) \mapsto b_0 + b_1 X + \cdots + b_d X^d.$$

ullet Identify elements of L with polynomials in $\mathbb{Z}[x]$ by

$$(b_0, b_1 X, \dots, b_d X^d) \mapsto b_0 + b_1 X + \dots + b_d X^d.$$

Under this identification, each row of B corresponds to a
polynomial with root x₀ modulo M. Consequently, every
element in L corresponds to a polynomial with the same
property.

How small should the coefficients be?

Theorem (N. Howgrave-Graham ('97))

Let b_F be a vector in $L \subset \mathbb{R}^d$ and let F(x) be the corresponding polynomial in $\mathbb{Z}[x]$. If $|b_F| \leq M/\sqrt{d+1}$ then $F(x_0) = 0$.

How small should the coefficients be?

Theorem (N. Howgrave-Graham ('97))

Let b_F be a vector in $L \subset \mathbb{R}^d$ and let F(x) be the corresponding polynomial in $\mathbb{Z}[x]$. If $|b_F| \leq M/\sqrt{d+1}$ then $F(x_0) = 0$.

• This tells us how small the coefficients of F(x) need to be in order for x_0 to be a root of F(x) mod M and $F(x_0) = 0$.

• The lattice L generated by B has determinant $M^d X^{d(d+1)/2}$.

- The lattice L generated by B has determinant $M^d X^{d(d+1)/2}$.
- Apply the LLL algorithm to the matrix B to obtain an α -reduced basis for the lattice L, y_1, \ldots, y_d .

- The lattice L generated by B has determinant $M^d X^{d(d+1)/2}$.
- Apply the LLL algorithm to the matrix B to obtain an α -reduced basis for the lattice L, y_1, \ldots, y_d .
- Recall that $|y_1|^2 \le \beta^{i-1}|y_i^*|^2$ for all $1 \le i \le d+1$. Using this (and $\beta \le 2$) we obtain the bound

$$|y_1| \le 2^{d/4} (\det L)^{1/(d+1)} = 2^{d/4} M^{d/(d+1)} X^{d/2}.$$

• Howgrave-Graham's theorem tells us how small y_1 needs to be in order for it to correspond to a polynomial g(x) such that $g(x_0) = 0$. This lets us solve for X to obtain:

$$|y_1| < M/\sqrt{d+1}$$

 $\iff 2^{d/4} M^{d/(d+1)} X^{d/2} < M/\sqrt{d+1}$
 $\iff X < 2^{-1/2} (d+1)^{-1/d} M^{2/d(d+1)}.$

Coppersmith's theorem

Theorem (D. Coppersmith ('96))

Let f(x) be an integer polynomial with small root x_0 modulo M and $|x_0| < X$. If $X < 2^{-1/2}(d+1)^{-1/d}M^{2/d(d+1)}$ then there exists an algorithm that computes x_0 in time polynomial in the size of the coefficients of f(x) and the degree of f.

Coppersmith's theorem

Theorem (D. Coppersmith ('96))

Let f(x) be an integer polynomial with small root x_0 modulo M and $|x_0| < X$. If $X < 2^{-1/2}(d+1)^{-1/d}M^{2/d(d+1)}$ then there exists an algorithm that computes x_0 in time polynomial in the size of the coefficients of f(x) and the degree of f.

 This gives an efficient attack on RSA implementations with small encryption exponents.