Max sum sub-array problem

- D&C (time=O(nlogn), space=O(logn)
 - Cut input in half
 - If left bound == right bound, return max(0, arr[left])
 - o find max sum of left
 - o find max sum of right

```
def maxCross(array, low, mid, high):
    sum_left = -10000000000
    sum_right = -100000000000
    sumVar = 0
    for i in range(mid, low, -1):
        sumVar += array[i]
        if sumVar > sum_left:
            sum_left = sumVar

sumVar = 0
    for i in range(mid + 1, high, 1):
        sumVar += array[i]
        if sumVar > sum_right:
            sum_right = sumVar
```

- return sum_left + sum_right
 - Do ^^ for finding the max of things starting in one half and ending in the other.
 - Return max(left, right, maxCross)
- DP (time=O(n), space=O(1)
 - Set a current sum to -inf
 - Set max sum to -inf
 - For loop through array
 - Currsum = max(currsum + arr[i], arr[i])
 - Maxsum = max(maxSum, currSum)
 - Return maxSum

Master Theorem

$$T(n) = a T\left(\frac{n}{b}\right) + f(n)$$

- A is number of subproblems we make
- B is factor by which subproblem size decreases

$$\circ$$
 $K = log_{h} n$

- f(n) is difficulty to divide and recombine subproblems
- Geometric series reminders

• R is $\frac{a}{b^d}$ where d is the

exponent of f(n)

 So to solve T(n), we take the result from the geometric series stuff, use K+1 instead of K, and multiply by f(n).

$$T(n) = \begin{cases} \Theta(n^{\log_b a}), & \text{if } a > b^d \text{ (case 1)} \\ \Theta(n^d \log n), & \text{if } a = b^d \text{ (case 2)} \\ \Theta(n^d), & \text{if } a < b^d \text{ (case 3)} \end{cases}$$

- Limitations: Master Theor no work
 - If T(n) is not monotone
 - \blacksquare T(n) = sin(n)
 - If f(n) is not polynomial

•
$$f(n) = 2^n$$

 If b cannot be expressed as a constant

DP

- Show optimal substructure
 - Base case and recurrence relation
- Show subproblems overlap
 - # of distinct subproblems is polynomial
- Algo must construct optimal solutions for subproblems once and reuse stored results

Big-O Properties

- · Constants don't affect
- $f_1 * f_2 is O(g_1 g_2)$
- $f_1 + f_2$ is $O(max(g_1, g_2))$
- If f is O(g), and g is O(h), then f is O(h)

Log properties

• $log_b n = log_b a * log_a n$

Mergesort

- Break down array in halves until individual elements remain
- Add elements to temp array in order of magnitude, recombine array into one

Array Sorting Algorithms

Algorithm	Running time			Space Complexity
	Best	Average	Worst	Worst
Quicksort	$\Omega(n \log(n))$	$\theta(n \log(n))$	0(n^2)	0(log(n))
Mergesort	$\Omega(n \log(n))$	$\theta(n \log(n))$	0(n log(n))	0(n)
Timsort	$\Omega(n)$	$\theta(n \log(n))$	0(n log(n))	0(n)
Heapsort	$\Omega(n \log(n))$	$\theta(n \log(n))$	0(n log(n))	0(1)
Bubble Sort	<u>Ω(n)</u>	θ(n^2)	0(n^2)	0(1)
Insertion Sort	<u>Ω(n)</u>	Θ(n^2)	0(n^2)	0(1)
Selection Sort	Ω(n^2)	θ(n^2)	0(n^2)	0(1)
Tree Sort	$\Omega(n \log(n))$	$\theta(n \log(n))$	0(n^2)	0(n)
Shell Sort	$\Omega(n \log(n))$	$\theta(n(\log(n))^2)$	0(n(log(n))^2)	0(1)
Bucket Sort	$\Omega(n+k)$	θ(n+k)	0(n^2)	0(n)
Radix Sort	Ω(nk)	θ(nk)	0(nk)	0(n+k)
Counting Sort	$\Omega(n+k)$	Θ(n+k)	0(n+k)	0(k)
Cubesort	<u>Ω(n)</u>	$\theta(n \log(n))$	O(n log(n))	0(n)

Quicksort

```
def quicksort(arr):
 def partition(l, r):
   pivot = r-1
   index = 1
   print("pivot value")
   print(arr[pivot])
   print("pivot index")
   print(pivot)
   for i in range(l, pivot):
     if arr[i] < arr[pivot]:</pre>
        arr[i], arr[index] = arr[index],
arr[i]
        print("in for loop ")
       print(arr)
        index += 1
   arr[pivot], arr[index] = arr[index],
arr[pivot]
   print('after for loop')
   print(arr)
   return index
 def sort(l, r):
   if 1 < r:
      p = partition(1, r)
      # conquer
      sort(1, p)
      sort(p+1, r)
 sort(0, len(arr))
```