2014—2015 学年第一学期《高等数学 AIII》答案 2015 年 1 月 14 日

一、填空题(共 5 小题,每小题 3 分,共 15 分) 1. π . 2. 4π . 3. -1 。 4. $\vec{0}$. 5. x^2 。

- 二、选择题(共 5 小题,每小题 3 分,共 15 分)1. (A)。2. (B)。3. (D)。4. (C)。5. (C)。
- 三、计算题(共4小题,每小题9分,共36分)
 - **1.** 计算 $\int_{L} x^{2} dy 3y dx$, 其中 L 是抛物线 $y = x^{2}$ 上从点 A(1,1) 到 B(-1,1) 对应的一段曲线。

$$\widehat{AB}: \begin{cases} x = x \\ y = x^2 \end{cases} \quad x: 1 \to -1 \quad \int_L x^2 dy - 3y dx = \int_1^{-1} x^2 dx^2 - 3x^2 dx = \int_1^{-1} (3x^3 - 3x^2) dx = 2$$

2. 判别级数 $\sum_{n=1}^{\infty} \frac{2^n \ln n}{n!}$ 的敛散性.

$$\lim_{n \to \infty} \sqrt[n]{\frac{2^n \ln n}{n!}} = 0 < 1, \quad \text{if } \lim_{n \to \infty} \frac{a_{n+1}}{a_n} = 0 < 1$$

3. 求微分方程 $y'-2\sqrt{\frac{y}{x}} = \frac{y}{x}$ 的通解。

$$u = \frac{y}{x}$$
 $y' = xu' + u$ 代入方程化简得 $x \frac{du}{dx} = 2\sqrt{u}$

解得
$$\frac{y}{x} = u = \left(\ln|x| + C\right)^2$$

4. 将函数 $f(x) = \cos^2 x$ 展为 x 的幂级数, 并求 $\sum_{n=0}^{\infty} (-1)^n \frac{4^n}{(2n)!}$ 的和。

$$f(x) = \cos^2 x = \frac{1}{2} (1 + \cos 2x) = \frac{1}{2} + \frac{1}{2} \sum_{n=0}^{\infty} (-1)^n \frac{(2x)^{2n}}{(2n)!} \qquad x \in \mathbb{R}$$

$$\sum_{n=0}^{\infty} (-1)^n \frac{4^n}{(2n)!} = 2\cos^2 1 - 1$$

四、计算题(共4小题,第1、2、3题各9分,4题7分,共34分)

1. 求常微分方程 $y''' - 8y = 24xe^{2x}$ 的通解。

解:
$$r^3 - 8 = (r - 2)(r^2 + 2r + 4) = 0$$
, $r_1 = 2$, $r_{2,3} = -1 \pm \sqrt{3}i$

$$Y = C_1 e^{2x} + C_2 e^{-x} \cos \sqrt{3}x + C_3 e^{-x} \sin \sqrt{3}x$$

设 $y^* = x(ax+b)e^{2x}$ 代入方程化简得 $(24ax+12a+12b)e^{2x} = 24xe^{2x}$,

解得
$$a=1$$
, $b=-1$, 则 $y^*=(x^2-x)e^{2x}$

$$y = Y + y^* = C_1 e^{2x} + C_2 e^{-x} \cos \sqrt{3}x + C_3 e^{-x} \sin \sqrt{3}x + (x^2 - x)e^{2x}$$

2. 计算 $I = \oint_{\Gamma} y^2 dx - x dy - z^2 dz$,其中 Γ 是平面 y + z = 2 与柱面 $x^2 + y^2 = 1$ 的交线,从 z 轴的正向向负向看 Γ 取顺时针方向.

设
$$\Sigma: y+z=2. x^2+y^2 \le 1$$
,取上侧 $\oint_r y^2 dx-x dy-z^2 dz=-\iint_{\Sigma} \begin{vmatrix} dy dz & dz dx & dx dy \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ y^2 & -x & -z^2 \end{vmatrix}$

$$= \iint\limits_{\Sigma} (1+2y) \mathrm{d}x \mathrm{d}y = \iint\limits_{D_{xy}} (1+2y) \mathrm{d}x \mathrm{d}y = \iint\limits_{D_{xy}} 1 \mathrm{d}x \mathrm{d}y + \iint\limits_{D_{xy}} 2y \mathrm{d}x \mathrm{d}y = \pi \cdot 1^2 = \pi \; .$$

3. 计算
$$I = \int_L 3x^2ydx + (x^3 + x - 2y)dy$$
, 其中 L 是第一象限从点 $O(0,0)$ 沿圆周 $x^2 + y^2 = 2x$ 到点 $A(2,0)$, 再

沿圆周 $x^2 + y^2 = 4$ 到点 B(0,2) 的曲线弧。

$$I = \oint_{L \cup \overline{BO}} + \oint_{\overline{OB}} = \iint_{D} \left\{ \left(x^{3} + x - 2y \right)'_{x} - \left(3x^{2}y \right)'_{y} \right\} dxdy + \int_{0}^{2} -2ydy$$
$$= \iint_{D} 1 dxdy + \int_{0}^{2} -2ydy = \frac{\pi}{2} - 4$$

4. 计算
$$I = \bigoplus_{\Sigma} \frac{\cos(\vec{r}, \vec{n})}{\left|\vec{r}\right|^2} dS$$
, 其中 $M(x, y, z)$ 为简单封闭光滑闭曲面 Σ 上一点, $M_0(x_0, y_0, z_0)$ 为曲面 Σ 的

内点, $\vec{r} = \overrightarrow{M_0 M}$, \vec{n} 为 Σ 上点M(x, y, z)处的外法向量。

解: 设
$$\vec{n} = (\cos \alpha, \cos \beta, \cos \gamma), \cos(\vec{r}, \vec{n}) = \frac{(x - x_0)\cos \alpha + (y - y_0)\cos \beta + (z - z_0)\cos \gamma}{|\vec{r}|}$$

$$I = \iint\limits_{\Sigma} \frac{\left(x - x_0\right)\cos\alpha + \left(y - y_0\right)\cos\beta + \left(z - z_0\right)\cos\gamma}{\left|\vec{r}\right|^3} dS = \iint\limits_{\Sigma} \frac{\left(x - x_0\right)dydz + \left(y - y_0\right)dzdx + \left(z - z_0\right)dxdy}{\left|\vec{r}\right|^3}$$

$$\frac{\partial P}{\partial x} = \frac{|\vec{r}|^2 - 3(x - x_0)^2}{|\vec{r}|^5}, \quad \frac{\partial Q}{\partial y} = \frac{|\vec{r}|^2 - 3(y - y_0)^2}{|\vec{r}|^5}, \quad \frac{\partial R}{\partial z} = \frac{|\vec{r}|^2 - 3(z - z_0)^2}{|\vec{r}|^5}$$

$$I = \iint_{\Sigma \cup \Sigma_{1}} - \iint_{\Sigma_{1}} = \iiint_{\Omega} \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} \right) dV + \iint_{\Sigma_{1}^{+}} \frac{(x - x_{0}) dy dz + (y - y_{0}) dz dx + (z - z_{0}) dx dy}{\left| \overrightarrow{r} \right|^{3}}$$

$$= \frac{1}{\varepsilon^{3}} \iint_{\Sigma_{1}^{+}} (x - x_{0}) dy dz + (y - y_{0}) dz dx + (z - z_{0}) dx dy = 4\pi$$