Face Recognition

Triplet Loss (FaceNet)

Center loss

discriminative feature learning algorithm

- softmax loss 仅仅只能区分class间的异同,无法discriminate其差异的大小
- 为了 enhance intra-class compact, 和inter-class discriminative。引入 Center loss,使相同类别的class聚集在center附近
 - \circ Center Loss: $L_c = rac{1}{2} \sum ||x_i c_{yi}||_2^2$, 其中 c_{yi} 表示 yi class 的center
- Loss function: $L = L_s + \lambda L_c$

$$L = -\sum lograc{e^{W_{yi}^{T}x_{i}+b_{yi}}}{\sum e^{W_{j}^{T}x_{i}+b_{j}}} + rac{\lambda}{2}\sum\left|\left|x_{i}-c_{yi}
ight|
ight|_{2}^{2}$$

ArcFace

- 将softmax中 $W_{yi}^Tx_i=||W_j||\cdot||x_i||cos\theta_j$,通过L2正则使 ||Wj||=1 , $||x_i||$ rescale to s
- 计算 $arccos\theta_{yi}$ 得到feature x_i 和 ground truth weight W_{yi} 的角度
- ArcFace:
 - 惩罚项m用来增大种内关系和种间差异 (enhance the intra-class compactness and inter-class discrepancy)

$$L_{3} = -\frac{1}{N} \sum_{i=1}^{N} \log \frac{e^{s(\cos(\theta_{y_{i}} + m))}}{e^{s(\cos(\theta_{y_{i}} + m))} + \sum_{j=1, j \neq y_{i}}^{n} e^{s\cos\theta_{j}}}.$$
(3)

- Geometric Difference 几何差异
 - 。 虚线表示决策边界

Margin of Lost

Loss Functions	Decision Boundaries
Softmax	$(W_1 - W_2) x + b_1 - b_2 = 0$
L-Softmax [126]	$ x (W_1 \cos(m\theta_1) - W_2 \cos(\theta_2)) > 0$
A-Softmax [125]	$ x \left(\cos m\theta_1 - \cos \theta_2 \right) = 0$
CosineFace [205]	$\hat{x}\left(\cos\theta_1 - m - \cos\theta_2\right) = 0$
ArcFace [42]	$\hat{x}\left(\cos\left(\theta_1 + m\right) - \cos\theta_2\right) = 0$

