Using Transformers for Automatic Short Answer Grading (ASAG)

Midterm Presentation

Period: 20.11.2019—20.05.2020

Yantao Shi Yantao.shi.thomas@gmail.com

Supervisor Anna Marie Filighera KOM – Multimedia Communications Lab Technical University of Darmstadt Prof. Dr.-Ing. Ralf Steinmetz (Director) Dept. of Electrical Engineering and Information Technology Dept. of Computer Science (adjunct Professor) www.KOM.tu-darmstadt.de

Overview

- Background Knowledge
- Target Dataset
- Related Models & Motivation
- Targets and Approaches of this work
- Next steps

Automatic Short Answer Grading

"Automatic short answer grading (ASAG) is the task of assessing short natural language responses to objective questions using computational methods." [BGS15]

Transformer

- Attentional mechanism
- Embedding matrix of each word
- All words were calculated by matrix operation
- Feedforward neural network to get a new representation

Advantages

- Take context information into account
- Attention can be achieved in one step of matrix calculationmore efficient

Target Dataset SemEval-2013

Recognizing Textual Entailment Challenge at Semantic Evaluation 2013(SemEval) workshop

Transformer for ASAG

On the traget dataset of SemEval-2013, Transformer has up to 10% absolute improvement in macro-average-F1 over state-of-the-art(non-transformer) results.

Non-Transformer method vs Transformer method on SemEval-2013

	U	Inseen answe	er	Uı	nseen questic	on	Unseen domain			
	acc	M-F1	W-F1	acc	M-F1	W-F1	acc	M-F1	W-F1	
Saha et al. (feature encoding method)	71.8	66.6	71.4	61.4	49.1	62.8	63.2	47.9	61.2	
Bert-base (State-of- the-art)	75.0	72.0	75.8	65.3	57.5	64.8	63.8	57.9	63.4	

Bidirectional Encoder Representations from Transformers (BERT)

State-of-the-Art Transformer Model

SuperGLUE Leaderboard as of Feb 2020. Note: CB evaluation is done via F1 score / accuracy

Motivation

BERT v.s. RoBERTa v.s. T5

	BERT	RoBERTa	T5			
Size(Millions)	Base: 110 Large: 340	Base: 110 Large: 340	Base: 220 Large: 770			
Training Time	Base: 8* V100*12days Large: 64 TPU Chips*4days	Large: 1024*V100*1day; 4-5times more than BERT	Not mentioned			
Data	16GB BERT data	160GB(16GB BERT data+additional)	750GB C4 data			

Target: Better, Smaller, Faster

Better: Improve the acc/W-F1/M-F1 scores on the target dataset SemEval-2013.

Smaller: Reduce the number of parameters.

Faster: Reduce the fine-tuning time.

acc/W-F1/M-F1

Fine-tuning time

Number of parameters

A Lite BERT (ALBERT)

Factorized embedding parameterization:

The large word embedding matrix is decomposed into two small matrices, thus significantly reducing the number of parameters.

Cross-layer parameter sharing:

Reduce the number of parameters by sharing parameters between layers. This technique prevents the number of parameters from increasing as the depth of the network increases.

ALBERT v.s. BERT

1.1 SQuAD2.0 MNLI SST-2 RACE Avg Speed	MN	SOuAD2 0	SQuAD1.1	Parameters	lel	Mod
1 0 1			90.5/83.3	108M	base	WIOC
			92.4/85.8	334M	large	BERT
			86.3/77.9	1270M	xlarge	
.1 79.1/76.1 81.9 89.4 63.5 80.1 21.1	81.	79.1/76.1	89.3/82.1	12M	base	
.1 82.1/79.0 83.8 90.6 68.4 82.4 6.5	83.	82.1/79.0	90.9/84.1	18M	large	ALDEDT
.5 85.9/83.1 85.4 91.9 73.9 85.5 2.4	85.	85.9/83.1	93.0/86.5	59M	xlarge	ALBERT
.3 88.1/85.1 88.0 95.2 82.3 88.7 1.2	88.	88.1/85.1	94.1/88.3	233M	xxlarge	
.5 85.9/83.1 85.4 91.9 73.9 85.5	85.	85.9/83.1	93.0/86.5	59M	xlarge	ALBERT

The effect of controlling for training time, BERT-large vs ALBERT-xxlarge configurations.[LCG+19]

ALBERT v.s. BERT

BERT vs ALBERT on SemEval-2013

	U	nseen answ	er	Ur	nseen questi	on	Unseen domain				
	acc M-F1		W-F1	acc	M-F1	W-F1	acc	M-F1	W-F1		
ALBERT- base	74.2	68.6	74.5	62.6	48.9	63.7	66.5	59.0	67.4		
Bert- base (State-of- the-art)	75.0	72.0	75.8	65.3	57.5	64.8	63.8	57.9	63.4		

Better: Using More Data

MNLI(Multi-Genre Natural Language Inference): 3-way Classification Dataset.

Better: Result of Using More Data

BERT vs ALBERT on SemEval-2013

	U	nseen answ	er	Ur	nseen questi	on	Unseen domain				
	acc M-F1		W-F1	acc	M-F1	W-F1	acc	M-F1	W-F1		
ALBERT- base	74.2	68.6	74.5	62.6	48.9	63.7	66.5	59.0	67.4		
Bert- base (State-of- the-art)	75.0	72.0	75.8	65.3	57.5	64.8	63.8	57.9	63.4		
Albert- pruned- v1+mnli(2 e-5_90.3)	75.5	72.8	75.6	68.7	58.8	69.2	66.7	60.7	67.2		

Next Step

Next Step

Better: Add LSTM + Mixture of Softmaxes(MoS)

Mixture of Softmaxes(MoS): Address the problem that the standard Softmax-based language model for word embeddings not good at model natural language.

Smaller & Faster: Head(Layer) pruning

Layer Hea	d 1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
1				-0.06												
2	0.01	0.04	0.10	0.20	0.06	0.03	0.00	0.09	0.10	0.04	0.15	0.03	0.05	0.04	0.14	0.04
3				0.09												
4																-0.06
5																-0.02
6	0.06	0.07	-0.31	0.15	-0.19	0.15	0.11	0.05	0.01	-0.08	0.06	0.01	0.01	0.02	0.07	0.05

Difference in BLEU score for each head of the encoder's self attention mechanism. Underlined numbers indicate that the change is statistically significant with p < 0.01. The base BLEU score is 36.05.

Questions?

Sources

- [BGS15] Burrows, S., Gurevych, I. & Stein, B. The Eras and Trends of Automatic Short Answer Grading. Int J Artif Intell Educ 25, 60–117 (2015).
- [YDSC17] Yang Z, Dai Z, Salakhutdinov R, et al. Breaking the softmax bottleneck: A high-rank RNN language model[J]. arXiv preprint arXiv:1711.03953, 2017.
- [LOG+ 19] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692, 2019
- [DCLT18] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre- training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.
- [LCG+19] Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, and Radu Soricut.

 Albert: A lite bert for self-supervised learning of language representations. arXiv preprint arXiv:1909.11942, 2019.
- [VSP+17] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural informa- tion processing systems, pages 5998–6008, 2017.