Three types of (strong) Al approaches

Probabilistic Logics

AIMA 14.6 Additional materials

Additional reference materials

- L. Getoor and B. Taskar (eds.), Introduction to Statistical Relational Learning, 2007. Cambridge, MA: MIT Press.
 - Ch 5: Probabilistic Relational Models
 - Ch 12: Markov Logic

Logics vs. Probabilistic Models

- Symbolic logics
 - FOL is very expressive
 - relations between objects, quantifiers
 - But it cannot model uncertainty
- Probabilistic Models
 - BN/MN model uncertainty in a concise manner
 - But limited in expressiveness
 - BN/MN is essentially propositional

Probabilistic Logics

- Goal
 - Combine (subsets of) logic and probability into a single language
- A.k.a. Statistical Relational Learning
- Lots of approaches. We will cover two of them:
 - Probabilistic Relational Models
 - Markov Logic

Probabilistic Relational Models

Probabilistic Relational Models

- Logical language
 - Frame (typed relational knowledge)
 - A subclass of FOL
- Probabilistic language
 - Bayes nets

Typed relational knowledge

Why is this a subclass of FOL?

Typed relational knowledge

Ontology / Schema

The types of objects and their valid relations and attributes

Probabilistic Relational Model

Probabilistic Relational Model

Probabilistic Relational Model

Relational Skeleton

Fixed relational skeleton σ:

- set of objects in each class
- relations between them
- attribute values unknown

PRM with Attribute Uncertainty

PRM unrolled wrt. the relational skeleton produces a BN that models the distribution over instantiations of attributes.

PRM with Attribute Uncertainty

PRM unrolled wrt. the relational skeleton produces a BN that models the distribution over instantiations of attributes.

PRM: Aggregate Dependencies

PRM: Aggregate Dependencies

PRM with Attribute Uncertainty

probability distribution over instantiations of attributes I:

$$P(I \mid \sigma, S, \Theta) = \prod_{x \in \sigma} \prod_{x.A} P(x.A \mid parents_{S,\sigma}(x.A))$$
Objects Attributes

Structural Uncertainty

- PRM with AU only well-defined when the relational skeleton is known
- What if we are uncertain about the relational structure?
 - How many objects does an object relate to?
 - Which object is an object related to?
 - Does an object actually exist?
 - Are two objects identical?

Structural Uncertainty

- Need probabilistic models that capture structural uncertainty
- Types of SU:
 - Existence uncertainty

- Reference uncertainty
- Number uncertainty
- Type uncertainty
- Identity uncertainty

Existence Uncertainty

Papers Papers

Citation Schema

PRM with Existence Uncertainty

Introduce the **Exists** attribute for **Cites**

PRM with Existence Uncertainty

Object skeleton

Fixed object skeleton σ:

- set of objects in each class
- unknown relations between them
- unknown attribute values

PRM with Existence Uncertainty

PRM w/ EU unrolled wrt. the object skeleton produces a BN

A more complicated example

PRM with Attribute Uncertainty

PRM with Existence Uncertainty

Unrolling

Unrolling

Author

Research Area

Institution

Unrolling

Markov Logic

Markov Logic

- Logical language
 - First-order logic
- Probabilistic language
 - Markov networks

Review: Markov networks

A Markov network (or Markov random field) encodes a joint distribution with an undirected graph

$$p(\mathbf{x}) = \frac{1}{Z} \prod_{C} \psi_{C}(\mathbf{x}_{C})$$

where $\psi_C(\mathbf{x}_C)$ is the potential over clique C and

$$Z = \sum_{\mathbf{x}} \prod_{C} \psi_C(\mathbf{x}_C)$$

is the normalization coefficient.

Maximal Clique

Markov Logic: Intuition

- A logical KB is a set of hard constraints on the set of possible worlds
 - If a world violates a formula, it becomes impossible
- Let's make them **soft constraints**: When a world violates a formula, it becomes less probable, not impossible
- ▶ Give each formula a weight (Higher weight ⇒ Stronger constraint)

P(world)
$$\propto \exp(\sum \text{weights of formulas it satisfies})$$

Markov Logic: Definition

- A Markov Logic Network (MLN) is a set of pairs (F, w) where
 - F is a formula in first-order logic
 - w is a real number

Smoking causes cancer.

Friends have similar smoking habits.


```
1.5 \forall x \ Smokes(x) \Rightarrow Cancer(x)

1.1 \forall x, y \ Friends(x, y) \Rightarrow \left(Smokes(x) \Leftrightarrow Smokes(y)\right)
```


Markov Logic: Definition

- A Markov Logic Network (MLN) is a set of pairs (F, w) where
 - F is a formula in first-order logic
 - w is a real number
- Together with a set of constants, it defines a Markov network with
 - One node for each grounding of each predicate in the MLN
 - ▶ This is exactly propositionalization (remember?)


```
\forall x \; Smokes(x) \Rightarrow Cancer(x)
       \forall x, y \ Friends(x, y) \Rightarrow (Smokes(x) \Leftrightarrow Smokes(y))
Two constants: Anna (A) and Bob (B)
                                Friends(A,B)
                       Smokes(A)
                                          Smokes(B)
Friends(A,A)
                                                             Friends(B,B)
           Cancer(A)
                                                       Cancer(B)
                                Friends(B,A)
```

Markov Logic: Definition

- A Markov Logic Network (MLN) is a set of pairs (F, w) where
 - F is a formula in first-order logic
 - w is a real number
- Together with a set of constants, it defines a Markov network with
 - One node for each grounding of each predicate in the MLN
 - ▶ This is *propositionalization* (remember?)
 - One clique for each grounding of each formula F in the MLN, with the potential being:
 - exp(w) for node assignments that satisfy F
 - 1 otherwise


```
1.5 \forall x \ Smokes(x) \Rightarrow Cancer(x)

1.1 \forall x, y \ Friends(x, y) \Rightarrow \left(Smokes(x) \Leftrightarrow Smokes(y)\right)
```



```
1.5 \forall x \ Smokes(x) \Rightarrow Cancer(x)

1.1 \forall x, y \ Friends(x, y) \Rightarrow \left(Smokes(x) \Leftrightarrow Smokes(y)\right)
```

Two constants: **Anna** (A) and **Bob** (B)

Markov Logic Networks

- MLN is template for ground Markov nets
- Probability of a world x:

$$P(x) = \frac{1}{Z} \exp\left(\sum_{i} w_{i} n_{i}(x)\right)$$
Weight of formula *i*
No. of true groundings of formula *i* in *x*

1.5 $\forall x \ Smokes(x) \Rightarrow Cancer(x)$ 1.1 $\forall x, y \ Friends(x, y) \Rightarrow \left(Smokes(x) \Leftrightarrow Smokes(y)\right)$

Two constants: **Anna** (A) and **Bob** (B)

 $P(x) \propto \exp(1.1 + 1.1 + 1.5)$

Relation to First-Order Logic

- ▶ Infinite weights ⇒ First-order logic
 - P(x)>0 iff. x satisfies KB
- Markov logic allows contradictions between formulas

Relation to PRM

- MLN is More general and flexible than PRM
- In principle, a PRM can be converted into a MLN by writing a formula for each entry of each CPT and setting the weight to be the logarithm of the conditional probability

Inference

- A naive approach
 - Unroll the model to a BN or MN and run inference algorithms (such as VE)
 - Problem: the BN/MN may be very large and highly interconnected
- Lifted inference
 - ▶ Lots of repeated structures in the unrolled model ⇒ repeated computation in inference
 - Group similar random variables at the FOL level and handle them at the same time

Summary

- Probabilistic Relational Models
 - Logical language: Frame
 - Probabilistic language: Bayes nets
 - Bayes net template for object classes
 - Object's attrs. can depend on attrs. of related objs.
- Markov Logic
 - Logical language: First-order logic
 - Probabilistic language: Markov networks
 - Syntax: First-order formulas with weights
 - Semantics: Templates for Markov net cliques