

Open-File Report 94-68

RAINFALL, STREAMFLOW, AND WATER-QUALITY DATA FOR FIVE SMALL WATERSHEDS, NASHVILLE, TENNESSEE, 1990-92

Prepared by the U.S. GEOLOGICAL SURVEY

in cooperation with the
METROPOLITAN GOVERNMENT OF
NASHVILLE AND DAVIDSON COUNTY

maintaining the data needed, and c including suggestions for reducing	election of information is estimated to completing and reviewing the collect this burden, to Washington Headquuld be aware that notwithstanding aromb control number.	ion of information. Send comments arters Services, Directorate for Info	regarding this burden estimate rmation Operations and Reports	or any other aspect of the 1215 Jefferson Davis	nis collection of information, Highway, Suite 1204, Arlington
1. REPORT DATE 1994		2. REPORT TYPE N/A		3. DATES COVE	RED
4. TITLE AND SUBTITLE				5a. CONTRACT	NUMBER
· · · · · · · · · · · · · · · · · · ·	ow, and Water-Qual ville, Tennessee, 199	•	nall	5b. GRANT NUM	/IBER
watersneus, masn	vine, Tennessee, 199	U-92		5c. PROGRAM E	LEMENT NUMBER
6. AUTHOR(S)				5d. PROJECT NU	JMBER
				5e. TASK NUMB	ER
				5f. WORK UNIT	NUMBER
	ZATION NAME(S) AND AE f the Interior 1849 (` '	ngton, DC	8. PERFORMING REPORT NUMB	G ORGANIZATION ER
9. SPONSORING/MONITO	RING AGENCY NAME(S) A	AND ADDRESS(ES)		10. SPONSOR/M	ONITOR'S ACRONYM(S)
				11. SPONSOR/M NUMBER(S)	ONITOR'S REPORT
12. DISTRIBUTION/AVAILABLE Approved for publ	LABILITY STATEMENT ic release, distributi	on unlimited			
13. SUPPLEMENTARY NO	OTES				
14. ABSTRACT					
15. SUBJECT TERMS					
16. SECURITY CLASSIFIC	CATION OF:		17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	SAR	47	RESPONSIBLE PERSON

Report Documentation Page

Form Approved OMB No. 0704-0188

RAINFALL, STREAMFLOW, AND WATER-QUALITY DATA FOR FIVE SMALL WATERSHEDS, NASHVILLE, TENNESSEE, 1990-92

By GEORGE S. OUTLAW, ANNE B. HOOS, and JOHN T. PANKEY

U.S. GEOLOGICAL SURVEY
Open-File Report 94-68

Prepared in cooperation with the METROPOLITAN GOVERNMENT OF NASHVILLE AND DAVIDSON COUNTY

Nashville, Tennessee 1994

U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary

U.S. GEOLOGICAL SURVEY Robert M. Hirsch, Acting Director

Any use of trade, product, or firm name in this report is for identification purposes only and does not constitute endorsement by the U.S. Geological Survey.

For additional information write to:

District Chief U.S. Geological Survey 810 Broadway, Suite 500 Nashville, Tennessee 37203 Copies of this report may be purchased from:

U.S. Geological Survey
Earth Science Information Center
Open-File Reports Section
Box 25286, MS 517
Denver Federal Center
Denver, Colorado 80225

CONTENTS

Abstract 1 Introduction 1 Purpose and scope 1 Description of monitored watersheds 2 Methods of study 4 Data collection procedures 4 Quality assurance procedures 9 Rainfall and streamflow 10 Water quality 11 References cited 26 Supplemental data 27
FIGURE
 Map showing general location of watersheds and monitoring stations in the stormwater monitoring network for Nashville, Tennessee
TABLES
 Watersheds in the stormwater monitoring network for Nashville, Tennessee 4 Minimum reporting level for constituents and physical properties 5 Date and time of storm and sampling; rainfall amounts before, during, and after sampling for storm; volume of storm runoff; and volume of runoff sampled 10 Daily rainfall amounts for 4 days preceding the day of sample collection 11 Event mean concentrations of volatile organic compounds for sampled storms 12 Event mean concentrations of acidic organic compounds for sampled storms 14 Event mean concentrations of base/neutral organic compounds for sampled storms 15 Event mean concentrations of organic pesticides and polychlorinated biphenyls (PCB's) for sampled storms 18
 Event mean concentrations of trace metals, cyanide, and total phenols for sampled storms Event mean concentrations of conventional pollutants, pH values, and water temperature for sampled storms Event mean concentrations and values of additional constituents and physical properties for sampled storms Storm loads for constituents and physical properties with event mean concentrations above minimum reporting level 23

CONVERSION FACTORS

Multiply	Ву	To obtain
inch (in.)	25.4	millimeter
square mile (mi²)	259.0	hectare
square mile (mi²)	2.590	square kilometer
cubic foot (ft ³)	0.02832	cubic meter
cubic foot (ft ³)	28.32	liter
cubic foot (ft ³)	28,320	cubic centimeter
cubic foot per second (ft ³ /s)	0.02832	cubic meter per second
pound, avoirdupois (lb)	0.4536	kilogram
microsiemens per centimeter	1.0	microhms per
at 25° Celsius (μS/cm)		centimeter at 25° Celsius

Temperature in degrees Celsius (°C) may be converted to degrees Fahrenheit (°F) as follows:

$$^{\circ}F = 1.8 * ^{\circ}C + 32$$

Rainfall, Streamflow, and Water-Quality Data for Five Small Watersheds, Nashville, Tennessee, 1990-92

By George S. Outlaw, Anne B. Hoos, and John T. Pankey

Abstract

Rainfall, streamflow, and water-quality data were collected during storm conditions at five urban watersheds in Nashville, Tennessee. These data can be used to build a database for developing predictive models of the relations between stormwater quality and land use, storm characteristics, and seasonal variations. The primary land use and mix of land uses was different for each watershed. Stormwater samples were collected during three storms at each watershed and analyzed for selected volatile, acidic and base/neutral organic compounds; organic pesticides; trace metals; conventional pollutants; and several physical properties. Storm loads were computed for all constituents and properties with event mean concentration above the minimum reporting level.

None of the samples contained acidic organic compounds at concentrations above the minimum reporting levels. Several constituents in each of the other categories, however, were present at concentrations above this level. For 21 of these, water-quality criteria have been promulgated by the State of Tennessee. For only 8 of the 21 did the value exceed the most restrictive of the criteria: pyrene, dieldrin, and mercury concentrations and counts of fecal coliform exceeded the criteria for recreational use, copper and zinc concentrations and pH

value exceeded the criteria for fish and aquatic life, and lead concentrations exceeded for domestic supply.

INTRODUCTION

Contamination of water resources from stormwater is now recognized as a major problem. Many human activities contribute to this problem by producing pollutants that are mobilized by the energy of rainfall and transported in stormwater to streams, rivers, lakes, and ground water. Generally, the pollution carried by storm runoff does not come from a single identifiable source. This type of pollution is referred to as nonpoint source pollution. In recent years, government regulations have been implemented to reduce the severity of nonpoint-source pollution caused by urban stormwater.

Current Federal stormwater regulations (U.S. Environmental Protection Agency, 1990) apply to cities having more than 100,000 residents. These cities are required to identify the type, concentration, and amount of pollutants present in stormwater. Such an analysis is accomplished in part by monitoring the quantity of precipitation and the quantity and quality of storm runoff from watersheds with differing land-use characteristics.

Purpose and Scope

To assist with characterizing stormwater quantity and quality at Nashville, Tennessee, the

U.S. Geological Survey (USGS), in cooperation with the Metropolitan Government of Nashville and Davidson County, established a stormwater monitoring network consisting of five urban watersheds (fig. 1). Each watershed was selected to represent a different type of land use in the Nashville area. Fifteen samples were collected, three at each of the five sites. This report presents rainfall, streamflow, and water-quality data collected at these sites during 1990-92. The waterquality characteristics for which data are reported can be grouped into seven categories: volatile organic compounds; acidic organic compounds; base/neutral organic compounds; organic pesticides; trace metals, cyanide, and phenols; conventional pollutants and pH; and additional constituents and physical properties.

Description of Monitored Watersheds

Land use in the metropolitan Nashville area is composed of approximately 40-percent developed land and 60-percent undeveloped land. The developed land is approximately 70-percent residential; 12-percent commercial; 7-percent industrial; 7-percent public facilities, roads, and streets; and 4-percent other urban, including parks and golf courses. Watersheds selected for the stormwater monitoring network (table 1) allow for characterization of storm runoff from areas of residential, commercial, and industrial land use.

Storm runoff from an area of concentrated commercial development was monitored at Spring Branch near Spring Branch Drive (watershed 1). The monitoring station was located 200 feet upstream from the bridge at Spring Branch Drive about 200 feet from the intersection of Spring Branch Drive and Edgefield Junction Road. Approximately 50 percent of the 1.02-square-mile watershed is occupied by a commercial retail mall and strip commercial development. About 30 percent of the watershed is medium- and high-density residential development. The remaining 20 percent of the watershed is divided

equally between industrial development and undeveloped land.

Storm runoff from an area of industrial and wholesale commercial development was monitored at a small tributary to Browns Creek near Lester Avenue (watershed 2). The monitoring station was located at a footbridge approximately 500 feet upstream from the culvert on Lester Avenue about 2,000 feet from the intersection of Lester Avenue and Lafayette Street. Approximately 40 percent of the 0.48-square-mile watershed is industrial development; including chemical storage, truck fueling and maintenance yards, and warehousing. The remaining 60 percent of the watershed is commercial development.

Storm runoff from an area of medium-density residential and strip commercial development was monitored at a tributary to Mill Creek (watershed 3). The monitoring station was located at the bridge on Glenrose Avenue 500 feet west of the Interstate 24 overpass. Approximately 70 percent of the 1.17-square-mile watershed is occupied by medium-density residential development, 15 percent is strip commercial development, and 10 percent is transportation and railroad development. The remaining 5 percent of the watershed is industrial development and warehousing.

Storm runoff from an area of low-density residential development was monitored at West Fork Browns Creek (watershed 4). The monitoring station was located at the bridge on Glendale Lane about 0.5 mile east of the intersection of Glendale Lane and Granny White Pike. The 1.51-square-mile watershed is fully occupied by low-density residential development.

Storm runoff from an area of industrial-transportation development was monitored at McCrory Creek (watershed 5). The monitoring station was located at the bridge on Ironwood Drive. Approximately 25 percent of the 7.31-square-mile watershed is occupied by industrial-transportation development and 20 percent is medium-density residential development with strip commercial development. The remaining 55 percent of the watershed is undeveloped land.

Figure 1. General location of watersheds and monitoring stations in the stormwater monitoring network for Nashville, Tennessee.

Table 1. Watersheds in the stormwater monitoring network for Nashville, Tennessee

Watershed identifi- cation number (fig. 1)	Station number	Station name	Drainage area, in square miles	Primary land use
1	03426460	Spring Branch at Edenwold.	1.02	Concentrated commercial
2	03431353	Browns Creek tributary at Nashville.	.48	Industrial with chemical storage and warehousing and wholesale commercial.
3	03431062	Mill Creek tributary at Glenrose Avenue.	1.17	Medium-density residential and commercial.
4	03431100	West Fork Browns Creek at Glendale Lane.	1.51	Low-density residential
5	03430118	McCrory Creek at Ironwood Drive.	7.31	Industrial (transportation) and undeveloped.

METHODS OF STUDY

Collection of hydrologic data during storms and for the purpose of meeting Federal regulations requires specialized procedures. The following is a description of the data collection and quality assurance procedures used for this study.

Data Collection Procedures

Each of the five sites was instrumented with a rain gage and streamflow gage (fig. 1, table 1). Rainfall hyetographs and discharge hydrographs were recorded with automatic instruments. The instruments record rainfall amounts and streamflow discharge every 5 minutes. Rainfall data are used to characterize storm duration, storm intensity, and antecedent moisture conditions. Streamflow data are used with water-quality data to determine event-mean constituent concentrations and storm loads.

Discrete water samples were manually collected at approximately 15-minute intervals for a period from 2 to 4 hours depending on the duration of runoff. A flow-weighted composite sample was prepared for each storm by combining the discrete samples in equivalent proportion to the volume of storm runoff represented by the discrete sample.

The samples were analyzed for numerous constituents and several properties (table 2). The flow-weighted composite sample was analyzed for all constituents except volatile organic compounds, cyanide, phenols, fecal bacteria, field pH, water temperature, oil and grease, field specific conductance, and suspended sediment. Values of the latter constituents were determined from one or more of the discrete samples. Results of these laboratory analyses were assumed to be representative of the mean value for the total amount of runoff produced by the storm.

Samples of stormwater were sent to the USGS National Water Quality Laboratory in Arvada, Colorado, for analysis of all constituents

Table 2. Minimum reporting level for constituents and physical properties

[Laboratory code refers to analytical procedure described by Fishman and Friedman, 1989; μ g/L, micrograms per liter; mg/L, milligrams per liter; μ S/cm, microsiemens per centimeter; cols./100 mL, colonies per 100 milliliters; NA, not applicable]

Constituent	Laboratory code	Minimum reporting level
Volatile organ	nic compounds	
Acrolein, total, in µg/L	1650	20
Acrylonitrile, total, in μg/L	1651	20
Benzene, total, in $\mu g/L$	1287	.2
Bromoform, total, in µg/L	1288	.2
Carbontetrachloride, total, in µg/L	1289	
Chlorobenzene, total, in µg/L	1290	.2 .2 .2 .2
Chlorodibromomethane, total, in $\mu g/L$	1291	.2
Chloroethane, total, in $\mu g/L$	1292	.2
² 2-Chloroethylvinylether, total, in μ g/L	1293	.2
yy , , po	1658	1
Chloroform, total, in µg/L	1294	.2
Dichlorobromomethane, total, in $\mu g/L$	1295	
1,1-Dichloroethane, total, in µg/L	1297	.2
1,2-Dichloroethane, total, in µg/L	1298	.2 .2 .2
1,1-Dichloroethylene, total, in µg/L	1299	.2
1,2-Dichloropropane, total, in µg/L	1301	.2
1,3-Dichloropropene, total, in $\mu g/L$	1302	.2
Ethylbenzene, total, in $\mu g/L$	1303	.2 .2
Methylbromide, total, in $\mu g/L$	1304	.2
Methylchloride, total, in µg/L	1318	.2
Methylenechloride, total, in μg/L	1305	.2
1,1,2,2-Tetrachloroethane, total, in μg/L	1306	.2
Tetrachloroethylene, total, in $\mu g/L$	1307	.2 .2 .2 .2 .2 .2
Toluene, total, in $\mu g/L$	1308	.2
1,2-Transdichloroethene, total, in $\mu g/L$	1300	.2
1,1,1-Trichloroethane, total, in μ g/L	1309	.2
1,1,2-Trichloroethane, total, in μ g/L	1310	.2
Trichloroethylene, total, in $\mu g/L$	1311	.2
Vinylchloride, total, in μg/L	1313	.2
Acidic organ	ic compounds	
2-Chlorophenol, total, in µg/L	1056	5
2,4-Dichlorophenol, total, in µg/L	1057	5
2,4-Dimethylphenol, total, in μg/L	1059	5
4,6-Dinitroorthocresol, total, in μg/L	1060	30
2,4-Dinitrophenol, total, in μg/L	1061	20
2-Nitrophenol, total, in µg/L	1062	5
4-Nitrophenol, total, in μg/L	1063	30
Parachlorometacresol, total, in µg/L	1055	30
Pentachlorophenol, total, in $\mu g/L$	1064	30
Phenol, total, in µg/L	1065	5
2,4,6-Trichlorophenol, total, in μg/L	1058	20

Table 2. Minimum reporting level for constituents and physical properties--Continued

Constituent	Laboratory code	Minimum reporting level
Base/neutral orga	nic compounds	
Acenaphthylene, total, in μg/L	1067	5
Acenaphthene, total, in μg/L	1066	5
Anthracene, total, in µg/L	1068	5
Benzidine, total, in μg/L	1069	40
Benzo (A) anthracene, total, in μg/L	1070	10
Benzo (A) pyrene, total, in $\mu g/L$	1073	10
Benzo (B) fluoranthene, total, in μg/L	1071	10
Benzo (GHI) perylene, total, in μg/L	1074	10
Benzo (K) fluoranthene, total, in µg/L	1072	10
BIS (2-Chloroethoxy) methane, total, in $\mu g/L$	1076	5
BIS (2-Chloroethyl) ether, total, in µg/L	1077	5
BIS (2-Chloroisopropyl) ether, total, in µg/L	1078	5
BIS (2-Ethylhexyl) phthalate, total, in µg/L	1094	5
1-Bromophenyl phenyl ether, total, in µg/L	1079	5
N-Butyl benzyl phthalate, total, in µg/L	1075	5
2-Chloronaphthalene, total, in µg/L	1080	5
4-Chlorophenyl phenyl ether, total, in $\mu g/L$	1081	5
Chrysene, total, in μg/L	1082	10
1,2,5,6-Dibenzanthracene, total, in µg/L	1083	10
1,2-Dichlorobenzene, total, in $\mu g/L$	1085	5
, , , ,	1314	.2
1,3-Dichlorobenzene, total, in $\mu g/L$	1086	5
	1315	.2
1,4-Dichlorobenzene, total, in $\mu g/L$	1087	5
. •	1316	.2
3,3-Dichlorobenzidine, total, in μg/L	1088	20
Diethyl phthalate, total, in $\mu g/L$	1089	5
Dimethyl phthalate, total, in µg/L	1090	5
Di-N-butyl phthalate, total, in μg/L	1084	5
2,4-Dinitro toluene, total, in $\mu g/L$	1091	5
2,6-Dinitro toluene, total, in $\mu g/L$	1092	5
Di-N-octyl phthalate, total, in μg/L	1093	10
Fluoranthene, total, in $\mu g/L$	1096	5
Fluorene, total, in µg/L	1095	5
Hexachlorobenzene, total, in μg/L	1097	5
Hexachlorobutadiene, total, in μg/L	1098	5
• • • • • • • • • • • • • • • • • • • •	1675	.2
fexachlorocyclopentadiene, total, in μg/L	1099	5
Hexachloroethane, total, in μg/L	1100	5
ndeno (1,2,3) pyrene, total, in $\mu g/L$	1101	10
sophorone, total, in $\mu g/L$	1102	5
Naphthalene, total, in µg/L	1103	5
• • • • • • • • • • • • • • • • • • •	1677	.2
Nitrobenzene, total, in μg/L	1104	5
N-Nitrosodimethylamine, total, in $\mu g/L$	1105	5
N-Nitrosodi-N-propylamine, total, in μg/L	1107	5
N-Nitrosodiphenylamine, total, in $\mu g/L$	1106	5

⁶ Rainfall, Streamflow, and Water-Quality Data for Five Small Watersheds, Nashville, Tennessee, 1990-92

Table 2. Minimum reporting level for constituents and physical properties--Continued

Constituent	Laboratory code	Minimum reporting level
Base/neutral organic con	npoundsContinued	
Phenanthrene, total, in μg/L	1108	5
Pyrene, total, in μg/L	1109	5
^a 1,2,4-Trichlorobenzene, total, in μg/L	1111	5
, , , , ,	1673	.2
Organic pe	sticides	
^a Aldrin, total, in μg/L	0350	0.01
ritorin, vour, in pg. 2	1624	.04
^a Alpha benzene hexachloride, total, in μg/L	0806	.01
	1619	.03
^a Beta benzene hexachloride, total, in μg/L	0807	.03
beta benzene nexacinoride, total, in µg/L	1620	.03
^a Lindane, total, in μg/L	0359	.03
Dilicano, wai, ili pgrb	1621	.03
^a Delta benzene hexachloride, total, in µg/L	0808	.03
Delia benzene nexacinoride, total, in µg/L	1622	.09
Chlordane, cis isomer, total, in µg/L	1622	.1
Chlordane, test isomer, total, in $\mu g/L$ Chlordane, trans isomer, total, in $\mu g/L$	1626	.1
Chlordane, total, in $\mu g/L$	0351	.1
Chlordanc, war, in µg/L	1637	.1
P,P' DDT, total, in $\mu g/L$	1636	.1
P,P' DDE, total, in μ g/L	1630	.04
P,P' DDD, total, in μ g/L	1633	.1
^a Dieldrin, total, in µg/L	0355	.01
Dictaini, tour, in µg/D	1629	.02
Endosulfan I alpha, total, in μg/L	1627	.1
Endosulfan II beta, total, in $\mu g/L$	1632	.04
Endosulfan sulfate, total, in $\mu g/L$	1635	.6
Endosular surface, total, in $\mu g/L$ ^a Endrin, total, in $\mu g/L$	0356	.01
Ending, court, in pg.D	1631	.06
Endrin aldehyde, total, in μg/L	1634	.2
^a Heptachlor, total, in µg/L	0357	.01
	1623	.03
^a Heptachlor epoxide, total, in μg/L	0358	.01
reputation operates, want, in MBID	1625	.8
^a Arochlor 1016 PCB, total, in μg/L	0809	.1
. ποτιποί 1010 1 0D, τοιαί, in με/D	1641	.1
^a Arochlor 1221 PCB, total, in µg/L	0810	.1
	1639	1
^a Arochlor 1232 PCB, total, in μg/L	0811	0.1
Thousand 1202 (CD, tour, in µg/D	1640	.1
^a Arochlor 1242 PCB, total, in μg/L	0812	.1
Thousand 1272 1 CD, total, in µg/D	1642	.1
^a Arochlor 1248 PCB, total, in μg/L	0813	.1
mound 1240 l CD, total, in µg/L	1643	.1

Table 2. Minimum reporting level for constituents and physical properties--Continued

Constituent	Laboratory code	Minimum reporting level
Organic pesticide	sContinued	
^a Arochlor 1254 PCB, total, in µg/L	0814	.1
	1644	.1
Arochlor 1260 PCB, total, in $\mu g/L$	0815	.1
	1645	.1
Toxaphene, total, in µg/L	0360	1
	1638	2
Toxic metals, cyanic	de, and phenols	
Antimony, total, in µg/L as Sb	0080	1
	1646	10
Arsenic, total, in μg/L as As	1584	1
Beryllium, total, in μg/L as Be	0236	10
Cadmium, total, in μg/L as Cd	1555	1
Chromium, total, in $\mu g/L$ as Cr	0762	1
Copper, total, in μg/L as Cu	1559	1
Cyanide, total, in mg/L as Cn	0023	.01
and total in ua/I on Dh	1648	.01
Lead, total, in μg/L as Pb	1561	1
Mercury, total, in μg/L as Hg Nickel, total, in μg/L as Ni	0227 1563	.1
Phenols, total, in $\mu g/L$ as N1	0052	1 1
Selenium, total, in $\mu g/L$ as Se	0286	1
orionian, wait, in pg.D as oc	1585	1
Silver, total, in μg/L as Ag	1553	1
	1647	.5
Γhallium, total, in μg/L as Tl	1569	5
Zinc, total, in $\mu g/L$ as Zn	0296	10
Conventional pollutants, pH,	and water temperature	
Biological oxygen demand, in mg/L	NA	NA
Chemical oxygen demand, in mg/L	0076	10
Coliform, fecal, cols./100 mL	NA	NA
Streptococci, fecal, cols./100 mL	NA	NA
Residue at 180° Celsius, dissolved, in mg/L	0027	1
Residue at 105° Celsius, suspended, in mg/L	0169	1
H, field, standard units	NA	NA
H, laboratory, standard units	0068	.1
Vater temperature, field, degrees Celsius	NA 0204	NA of
Vitrogen, NO2 + NO3, total, in mg/L as N Nitrogen, NH4 + organic, total, in mg/L as N	0304	.05
ranogen, 14114 + organie, total, in mg/L as iv	0084 1688	.2
Phosphorus, dissolved, in mg/L as P	0128	.2 .01
	1685	.01
Phosphorus, total, in mg/L as P	0129	.01
L,,	1686	.01
Dil and grease, total, in mg/L	0127	1

⁸ Rainfall, Streamflow, and Water-Quality Data for Five Small Watersheds, Nashville, Tennessee, 1990-92

Table 2. Minimum reporting level for constituents and physical properties--Continued

Constituent	Laboratory code	Minimum reporting level
Additional constituents	and physical properties	
Specific conductance, field, in μS/cm	NA	NA
Specific conductance, laboratory, in μS/cm	0069	1
Alkalinity, laboratory, in mg/L as CaCO3	0070	1
Calcium, dissolved, in mg/L as Ca	0659	.02
Chloride, dissolved, in mg/L as Cl	0015	.1
	1571	.1
Magnesium, dissolved, in mg/L as Mg	0663	.01
Potassium, dissolved, in mg/L as K	0054	.1
Sodium, dissolved, in mg/L as Na	0675	.2
Sulfate, dissolved, in mg/L as SO4	1551	.1
-	1572	.1
Carbon, organic, total, in mg/L as C	0114	.1
Sediment, suspended, in mg/L	NA	NA

^a Two laboratory methods were used to analyze this constituent.

presented in this report except suspended sediment, biological oxygen demand, and fecal bacteria. Suspended-sediment concentrations were measured at the USGS Alabama District sediment laboratory; biological oxygen demand was determined at the Metropolitan Nashville Central Wastewater Treatment Plant Laboratory; and fecal bacteria counts were determined by the USGS Tennessee District.

Laboratory codes and minimum reported values (table 2) are provided to document methods used to determine constituent values presented in this report (Fishman and Friedman, 1989). During this study, several constituents were analyzed using two methods. The change in laboratory methods was the result of a revision of laboratory analytical schedules, which was implemented in late 1991 to provide a more thorough and economical water-quality testing program. In most instances where a constituent was analyzed by two methods, the first laboratory code applies to storms sampled from January 1990 through August 1991 and the second laboratory code applies to storms sampled from September 1991 through the end of the study.

Quality Assurance Procedures

A program of quality control and quality assurance of the field and laboratory methods used to collect and analyze all water samples was executed throughout this study. A procedures manual was developed to provide field personnel with a standard operating procedure for collecting, handling, processing, and shipping water samples. Standard forms were developed and used for field data collection, to request analytical services, and to provide a chain of custody when shipping water samples. The purpose of the quality assurance and control program is to ensure the accuracy of the data presented in this report.

Quality-control samples collected during the course of this study included field-equipment blanks, trip blanks, and replicate samples. These samples were collected, handled, processed, and shipped to the laboratory following guidelines set forth in the procedures manual.

Field equipment blanks had concentrations below the minimum reporting level (MRL) for all constituents, indicating there was no field contamination of the samples. Trip blanks also had concentrations below the MRL for all constituents, indicating no contamination occurred during transport of the sample from the field to the analytical laboratory. There was no significant difference between regular storm samples and replicate samples, indicating that the field techniques used to prepare the sample were performed with precision. Furthermore, the U.S. Geological Survey National Water Quality Laboratory performs continuous quality assurance and quality control of the laboratory equipment and techniques used to determine the values presented in this report.

Laboratory spikes for organochlorine pesticides were done to evaluate potential analytical

recoveries. Average percent recovery was 92 percent, indicating possible matrix effects on certain spiked concentrations, or slight variation in the degree of precision of the analytical technique used in the analysis.

RAINFALL AND STREAMFLOW

The location; date and time of storm and sampling; rainfall amounts before, during, and after sampling for storm; volume of storm runoff; and the volume of runoff sampled are provided for each storm (table 3). Storm-runoff volume was computed as the area under the streamflow hydrograph during the period considered to be a

Table 3. Date and time of storm and sampling; rainfall amounts before, during, and after sampling for storm; volume of storm runoff; and volume of runoff sampled

[e, estimated; SP, Spring Branch; BR, Browns Creek tributary; ML, Mill Creek tributary; WB, West Fork Browns Creek; MC, McCrory Creek; see Supplemental Data for incremental rainfall and discharge values]

Watershed identifi- cation				e of orm	Time of sampling																				Rainfall	amounts, i	n inches	Volume of storm runoff,	Volume of runoff samp- led, in
number (fig. 1)	Storm number	Date of storm	Start	End	Start	End	Before sampling	During sampling	After sampling	in cubic feet	cubic feet																		
1	SP1	06-18-90	0900	1255	0940	1240	0.52e	0.00	0.00	222,000	69,600																		
	SP2	03-09,10-92	1740	0500	1800	2145	.09	1.05	1.95	1,820,000	293,000																		
	SP3	09-02-92	1130	1505	1215	1430	.05	.15	0	66,000	60,900																		
2	BR1	02-09-90	1130	1435	1150	1410	.08	.01	0	41,200	38,700																		
	BR2	02-15-90	1210	1425	1215	1405	.02	.06	0	27,000	26,600																		
	BR3	11-05-90	0730	1130	0830	1130	.07	.16	0	20,700	19,500																		
3	ML1	01-17-90	1405	2400	1420	1725	.04	.32	.38	337,000	84,500																		
	ML2	12-09-91	0530	1555	0610	0955	.19e	.45e	.33e	375,000	201,000																		
	ML3	05-19-92	1515	2000	1535	1835	.27	.15	0	106,000	98,200																		
4	WB1	06-03-92	1320	1920	1320	1620	.56	.72	0	132,000	66,400																		
	WB2	09-26-92	0810	1420	0945	1330	.47	.57	0	173,000	145,000																		
	WB3	11-12-92	0610	1600	0800	1200	.33e	.46e	.20e	240,000	111,000																		
5	MC1	06-18-90	0925	1505	0935	1300	.54	.32	.01	688,000	634,000																		
	MC2	12-13-91	0230	1350	0425	0810	.22	.51	.17	2,100,000	723,000																		
	MC3	06-18-92	0530	0835	0545	0800	.81	.13	0	189,000	186,000																		

storm event, minus volume of baseflow. Baseflow was assigned the value of streamflow immediately before storm runoff began, and was held constant throughout the storm. Daily rainfall amounts for 4 days preceding the day of sample collection (table 4) provide information about antecedent moisture conditions.

Table 4. Daily rainfall amounts for 4 days preceding the day of sample collection

[e, estimated; SP, Spring Creek; BR, Browns Creek tributary; ML, Mill Creek tributary; WB, West Fork Browns Creek; MC, McCrory Creek]

Watershed identification		Daily rainfall amounts for preceding days, in inches				
number (fig. 1)	Storm number	1	2	3	4	
1	SP1	0	0.00	0.00	0.30e	
	SP2	0	0	0	0	
	SP3	0	0	0	0	
2	BR1	0	.08	0	0	
	BR2	0	0	0	0	
	BR3	0	0	0	0	
3	ML1	0	.08	0	0	
	ML2	0	0	0	0	
	ML3	0	0	0	0	
4	WB1	0	0	0	0	
	WB2	0	0	.43	.45	
	WB3	0	0	0	0	
5	MC1	0	0	0	.60	
	MC2	0	0	0	.94	
	MC3	0	0	.17	0	

The Supplemental Data section in this report provides incremental rainfall and instantaneous streamflow values for the monitored storms. Information about rainfall amount, duration, and intensity, and volume of storm runoff is provided by these values.

WATER QUALITY

Event mean concentrations and values determined from laboratory and field analyses are reported for 28 volatile organic compounds (table 5), 11 acidic organic compounds (table 6), 45 base/neutral organic compounds (table 7), 27 organic pesticides and polychlorinated biphenyls (table 8), 13 trace metals, cyanide, and phenols (table 9), 11 conventional pollutants, pH, and water temperature (table 10), and 11 additional constituents and physical properties (table 11).

None of the samples contained acidic organic compounds at concentrations above the minimum reporting levels. Several constituents in each of the other categories, however, were present at concentrations above this level. For 21 of these, water-quality criteria for waters of the State have been promulgated by the State of Tennessee. For only 8 of the 21, did the value exceed the most restrictive of the criteria: pyrene, dieldrin, and mercury concentrations and counts of fecal coliform exceeded the criteria for recreational use, copper and zinc concentrations and pH value exceeded the criteria for fish and aquatic life, and lead concentrations exceeded the criteria for domestic supply.

Storm loads (table 12) are provided for constituents with event mean concentrations above minimum reported values. These loads, reported in pounds, were computed by multiplying the constituent concentration by the volume of storm runoff (table 3) and a conversion factor.

Table 5. Event mean concentrations of volatile organic compounds for sampled storms

[All concentrations were determined from discrete samples and are reported as micrograms per liter; <, below minimum reporting level; --, no data; SP, Spring Branch; BR, Browns Creek tributary; ML, Mill Creek tributary; WB, West Fork Browns Creek; MC, McCrory Creek; Water-quality criteria limits are cited only for those constituents with one or more values above the minimum reporting level and for which numerical limits have been promulgated by the Tennessee Department of Environment and Conservation (1991); all cited limits are for recreational use, except in cases where limits for another use are more restrictive; DS, criteria for domestic supply]

Storm	Acro- lein, total	Acrylo- nitrile, total	Benzene, total	Bromo- form, total	Carbon tetra- chlo- ride, total	Chloro- benzene, total	Chloro- di- bromo- methane, total	Chloro- ethane, total	2-Chloro- ethyl- vinyl- ether, total	Chloro- form, total	Di- chloro- bromo- methane, total	1,1-Di- chloro- ethane, total	1,2-Di- chloro- ethane, total	1,1-Di- chloro- ethyl- ene, total
SP1 SP2 SP3	- <20 <20	- <20 <20		<pre></pre>										

Table 5. Event mean concentrations of volatile organic compounds for sampled storms--Continued

Storm number	1,2-Di- chloro- propane, total	1,3-Di- chloro- propene, total	Ethyl- benzene, totaľ	Methyl- bromide, totai	Methyl- chlo- ride, total	Methyl- ene- chlo- ride, total	1, 1, 2, 2 Tetra- chloro- ethane,	Tetra chloro- ethyl- ene, total	Toluene, total	1,2- Transdi- chloro- ethene, total	1,1,1- Tri- chloro- ethane, total	1,1,2- Tri- chloro- ethane, total	Tri- chloro- ethyl- ene, total	Vinyl- chlo- ride, total
SP1 SP2 SP3		<0.2		0.2 4.2 5.2 5.2 5.2 5.3	<a href="https://www.new.new.new.new.new.new.new.new.new.</th><th><0.2
<.2
<.2
<.2</th><th><pre></th><th>< 0.2</p> < 2.2</p> < 2.2</p> < 2.2</p></th><th>< 0.2</p> < 2.2</p> < 2.2</p> < 2.2</p></th><th><pre></th><th>< 0.2</p> < 2.2</p> < 2.2</p> < 2.2</p></th><th></th><th><a href=" https:="" th="" www.new.new.new.new.new.new.new.new.new.<=""><th>0 V 2: 2: X 5: 2: X</th>	0 V 2: 2: X 5: 2: X								
BR1 BR2 BR3	^ ^ ^ \(\delta \) \(\delta \) \(\delta \) \(\delta \) \(\delta \)	^ ^ ^ '' '' ''	^ ^ ^ 4 4 4	^ ^ ^ ^ '' '' ''	^ ^ ^ 	^ ^ 	, , , ,	\	^ ^ ^ 4 4 4	, , , ,	9 9 9 V V V	^ ^ ^ 4 4 4	r. 2	^ ^ ^ \ \(\(\(\(\) \) \(\(\) \
ML1 ML2 ML3	^ ^ ^ 4 4 4	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	^ ^ ^ ^ 4 4 4	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	^ ^ ^ \(\delta \) \(\delta \) \(\delta \) \(\delta \) \(\delta \)	^ ^ ^ 5 5 5 5	^ ^ ^ 	\	^ ^ ^ 4 4 4	^ ^ ^ 4 4 4	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	^ ^ ^ ^ ;;;;;	<pre></pre>	^ ^ ^ ¼ ¼ ¼
WB1 WB2 WB3	^ ^ ^ 4 4 4 4	1 1 1	^ ^ ^ ^ 4 4 4	^ ^ ^ 6 6 6	^ ^ ^ 5 5 5 5		<pre></pre>	^ ^ ^ % % %	^ ^ ^ ^ \(\text{i \text{i \text{i}}}	<pre></pre>	, , , ,	^ ^ ^ ^ % % % %	>	^ ^ ^ % % %
MC1 MC2 MC3	^ ^ ^ 4 4 4	^	^ ^ ^ ^ 4 4 4 4	A A A A A A A A A A A A A A A A A A A	^ ^ ^ ¼ ¼ ¼	^ ^ ^ 5 5 5 5	^ ^ ^ 5; 5; 5;	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	^ ^ ^ ^ % % %	^ ^ ^ 4 4 4	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	^ ^ ^ ^ 4 4 4		^ ^ ^ % % %
Water-quality criteria	ality												5 DS	

Table 6. Event mean concentrations of acidic organic compounds for sampled storms

[All concentrations were determined from flow-weighted composite samples and are reported as micrograms per liter; <, below minimum reporting level; --, no data; SP, Spring Branch; BR, Browns Creek tributary; ML, Mill Creek tributary; WB, West Fork Browns Creek; McCrory Creek]

Storm	2. Chloro- phenol, total	2,4-Di- chloro- phenol, total	2,4-Di- methyl- phenol, total	4,6-Di- nitro- ortho- cresol, total	2,4-Di- nitro- phenol, total	2- Nitro- phenol, total	4- Nitro- phenol, total	Para- chloro- meta- cresol, total	Penta- chloro- phenol, total	Phenol, total	2,4,6- Tri- chloro- phenol, total
SP1	\$	< > <	<>>	<30	< 20	\$	<30	< 30	<30	\$	<20
7	<5	<5	<\$	<30	<20	< \$	<30	<30	<30	<\$	< 20
	\$	< \$	\	<30	<20	\$	<30	<30	<30	\$	<20
BR1	\$	<5	<>	<30	<20	< \$	<30	<30	<30	< <u>\$</u>	< 20
2	<5	<5	<5	<30	<20	< \$>	<30	<30	<30	<5	< 20
e	\$ \$	< \$	`	<30	<20	\$	<30	<30	<30	<\$	< 20
,1	\$	<>>	\$	<30	<20	\$	<30	<30	<30	< >	<20
7	< \$	<5	<5	<30	< 20	< \$	<30	<30	<30	<\$	< 20
ML3	\$	\$	\$	<30	<20	\$	<30	<30	<30	<\$	<20
WB1	< 5	\$	ζ.	<30	<20	\$	<30	<30	<30	<\$	<20
22	< 5	<5	<5	<30	<20	< \$	<30	<30	<30	<\$	< 20
8	\$ \$	< \$	~	<30	<20	\$	<30	<30	<30	<\$	<20
MC1	< \$	< \$	\$ \$	<30	<20	\$	<30	<30	<30	<\$	<20
?;	<5	< 5	<\$	<30	<20	<\$	<30	<30	<30	<5	< 20
EJ.	< \$	< 5	~	<30	<20	< 5	<30	<30	<30	<5	< 20

Table 7. Event mean concentrations of base/neutral organic compounds for sampled storms

[All concentrations were determined from flow-weighted composite samples and are reported as micrograms per liter; <, below minimum reporting level; —, no data; SP, Spring Creek; BR, Browns Creek; BR, Browns Creek; Water-quality criteria limits are cited only for those constituents with one or more values above the minimum reporting level and for which numerical limits have been promulgated by the Tennessee Department of Environment and Conservation (1991); all cited limits are for recreational use]

SPI <5	\$	Ace- naphth- Anthra- ene, cene, total total	Benzi- dine, total	Benzo (A) anthra- cene, total	Benzo (A) pyrene, total	Benzo (B) fluo- ran- thene, total	Benzo (GHI) peryl- ene, total	Benzo (K) fluo- ran- thene, total	BIS (2- Chloro- ethoxy) methane, total	BIS (2- Chloro- ethyl) ether,	BIS (2- Chloro- iso- propyl) ether, total	BIS (2- Ethyl- hexyl) phthal- ate, total	4. Bromophenyl phenyl ether,	N-Butyl benzyl phtha- late, total	2- Chloro- naphth- alene, total
Color Colo	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	2	1	10	100	10	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\	\$	\$	\$	\	\$	\$
<5	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$; >	<40	< 10	< 10	< 10	< 10	<10	\$	<\$	<>	7	\$ \$	< \$	< 5
\$ < \stacks \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\$	<> >	<40	< 10	<10	<10	< 10	<10	^	<\$	< 5	<>	< > >	<>>	\$ \$
\$ <5 <5 <5	\$\times \times \	< 5	1	< 10	<10	< 10	< 10	<10	< ?	\$	\$	17	\$ \$	< \$	< 5
\$ <5 <5 <5	\$ \$\$\$\$ \$\$\$\$	<5	1	< 10	< 10	<10	< 10	<10	< > 5	< 5	<5	∞	\$	>	<5
5 <5	222 222	<5	!	< 10	< 10	<10	< 10	<10	<>>	<\$	<\$	2	>	\$	\$
5 <5	22 22 2	< 5	1	< 10	< 10	< 10	< 10	<10	\ \$	<>	\$	16	\$\	\$	<>>
5 <5	\$ \$\$\$\$	<5	< 40	< 10	< 10	< 10	< 10	<10	< 5	^	\$	\$	\$	>	>
5 <5	\$ \$ \$	< 5	<40	<10	< 10	<10	< 10	<10	<>>	\$	<\$	7	>	<\$	\$
5 <5	\$ \$ \$	<\$	< 40	<10	< 10	< 10	< 10	<10	<>>	< \$	\$	<\$	\$	\$	>
5 <5	\$,	<5	<40	< 10	< 10	<10	< 10	<10	< 5	<\$	~	<	<>	< ?	>
5 <5	i,	<5	<40	< 10	< 10	<10	< 10	<10	\ \ \ \	\$	^	>	\$	>	\$
5 <5 <5 <40 <10 <10 <10 <10 <10 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5	Ç	< >	1	<10	< 10	< 10	< 10	<10	<>	<>>	\$	<>>	\$	\$	< 5
5 <5 <5 <40 <10 <10 <10 <10 <10 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5	<5	<\$	< 40	< 10	< 10	<10	< 10 	<10	<5	\$	\$	^	< <	\$	>
	<\$	<5	<40	< 10	< 10	< 10	< 10	<10	\ \ \	< >	<5	<5	\$	<>>	~
	Water-quality											59			

Table 7. Event mean concentrations of base/neutral organic compounds for sampled storms--Continued

Hexa- chloro- benzene, total	') '	\$ \$	~	\$ >	\$ \$	\$ >	\$ 5	\$ \$	~	, ,	\$ \$	~	; S	< >	
Fluor c ene, be total	"	,	\$ \S	<5	. \$>	< > <	<5	5.5	\$ \$	\$; >	< > >	٠ ۲	5 5	<5	
Fluor- F anthene, total	7		< 5 .			<5>						< > <	, ,		< 5	54
Di-N- octyl phthal- ate, a	01	01 >	<10	<10	<10	< 10	<10	< 10	< 10	010	10	<10	0	< 10	< 10	
2,6-Dinitro- toluene, total	\ \sqrt{\sq}}\sqrt{\sq}}}}}}}}\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sq}}}}}}}}}\signt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sq}}}}}}}}}}\signt{\sqrt{\sq}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}	\$ \$	< > >	\$ \$			\$ \$				< ×		\$			
2,4-Di- nitro- toluene, total	\$	< ?	<\$	<5	<5	<5	\$	<\$	<5	< 5	<5	<5	<>>	<\$	<5	
Di-N- butyl phthal- ate, t total	\	< >	<5	< \$	<5	<\$	\$	<\$	<\$	\$	<5	<5	\$		<5	
Di- methyl phthal- ate, total	\ ∴	<5	< 5	\$	< 5	< 5	< ?	<5	< 5	<u>ې</u>	<>>	< 5	< 5	<5	<5	
Diethyl phthal- ate, total	\	<>	< 5	\$ \$	<5	< 5	< \$	<5	<5	\$	<5	<5	\$	<5	<5	
3,3- Di- chloro- benzi- dine,	1	<20	< 20	i	ł	!	!	< 20	< 20	< 20	< 20	<20	ı	< 20	<20	
1,4-Di- chloro- benzene, total	\$	<\$	< 5	\$	<\$	<\$	<>>	<\$	<5	< >	< 5	<5	< >	<.2	<\$	
1,3-Di- chloro- benzene, total	<5	< 5	<5	< 5	<5	<5	<>>	<5	<5	< 5	<5	<5	<5	<.2	< 5	
1,2-Di- chloro- benzene, total	<5	<5	<5	<5	< 5	<5	\$	<\$	<\$	<5	\$	<\$	<\$	<.2	<\$	
1,2,5,6- Dibenz- anthra- cene, I	<10	<10	< 10	<10	< 10	<10	< 10	< 10	<10	< 10	< 10	< 10	<10	< 10	<10	
Chry- sene, total	< 10	< 10	< 10	. < 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	
4. Chlorophenyl phenyl ether, total	\ \ \	<5	~	<>	< <	>	< 5	< \$	Ş	\$	< <	< > 5	\$	<\$	< > 5	lity
Storm	SP1	SP2	SP3	BR1	BR2	BR3	ML1	ML2	ML3	WB1	WB2	WB3	MC1	MC2	MC3	Water-quality criteria

Table 7. Event mean concentrations of base/neutral organic compounds for sampled storms--Continued

Storm	Hexa- chloro- buta- diene,	Hexa- chloro- cyclo- penta- diene,	Hexa- chloro- ethane, total	Indeno (1,2,3) pyrene, total	lso- pho- rone, total	Naphth- alene, total	Nitro- benzene, total	N-Nitro sodi- methyl- amine, total	N. Nitro- sodi-N- propyl- amine,	N. Nitro- sodi- phenyl- amine, total	Phen- anthrene, total	Pyrene, total	1,2,4- Tri- chloro- benzene, total
SP!	\\ \% \	\$ 4	\$ 5	V 10	\$ 7	\$ < \$	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\$ \ \	\$ \	\$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\$ \$ 4
SP3	\$ \$	\$ \$	\$	< 10 < 10	\$ \$	\$ \$	\$ \$	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\) ?	\ \ \ \	\$ \$	\$ \$	ζ (
BR1	\$;	\$	\$5.	<10	\$	\$	<5	\$	\$	\$	\$	9 1	\$
BR3	\$ \$	ζ ζ	\$ \$	\(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\$ \$	\$ \$	\$ \$	ζ. ζ.	\$ \$	\$ \$	% %	\$ \$	% %
ML1 ML2 ML3	%	\$ \$ \$	<pre></pre>	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\$ \$ \$	\$ \$ \$		\$ \$ \$	\$ \$ \$	\$ \$ \$ \$	%	\$ \$ \$ \$ \$ \$ \$ \$	\$ \$ \$
WB1 WB2 WB3	\$ \$ \$	\$ \$ \$	\$ \$ \$ \$ \$ \$	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\$ \$ \$, , , , , ,	\$ \$ \$ \$ \$		\$ \$ \$	\$ \$ \$ \$	\$ \$ \$	\$ \$ \$	\$ \$ \$
MC1 MC2 MC3	<pre><</pre>	\$ \$ \$	<pre></pre>	<pre></pre>	\$ \$ \$	<pre></pre>	<pre></pre>	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\$ \$ \$	\$ \$ \$ \$ \$ \$ \$ \$	\$ \$ \$	\$ \$ \$ \$	<pre></pre>
Water-quality criteria	ality		,									.03	!

Table 8. Event mean concentrations of organic pesticides and polychlorinated biphenyls (PCB's) for sampled storms

[All concentrations were determined from flow-weighted composite samples and are reported as micrograms per liter; <, less than minimum reporting level; a, sample diluted for analysis; --, no data; SP, Spring Creek; Browns Creek tributary; ML, Mill Creek tributary; WB, West Fork Browns Creek; MC, McCrory Creek; Water-quality criteria limits are cited only for those constituents with one or more values above the minimum reporting level and for which numerical limits have been promulgated by the Tennessee Department of Environment and Conservation (1991); all cited limits are for recreational use, except in cases where limits for another use are more restrictive; AL, criteria on maximum concentrations (CMC) for fish and aquatic life]

Storm Aldrin, number total	benzene hexa- chlor-	Beta benzene hexa- chlor-		Delta benzene hexa- chlor-	Chlor- dane, cis	Chlor- dane, trans	Chlor-	à م	à	à. م	ة	Endo- sul- fan t	Endo- sul- fan II	Endo- sulfan	End.
		ide, total	Lindane, total	ide, total	isomer, total	isomer, total	dane, total	DDT, total	DDE, total	DDD, total	eldrin, total	alpha, totai	beta, total	sulfate, total	rin, total
SP1 <0.0	1 < 0.01	<0.01	<0.01	< 0.01	1		<0.1	,	+	'	<0.01	'	;		<0.01
		< .03	<.03	6 0. ×	<0.1	< 0.1	\ -:-	< 0.1	<0.04	< 0.1	<.02	<0.1	<0.04		90. V
SP3 < .04	4 <.03	<.03	<.03	< .09	× 	<.1	×.1	×	×.04	× .1	< .02	<.1	40.	9.	>.06
	a <.1a	<.1a	<.1a	<.1a	1	1	<1a	ł	ı	:	<.1a	I	ŀ		<.1a
		<1a	<.1a	< 1a	ł	:	< la	!	i	ł	<.1a	:	1		Τ:
BR3 <.1a		<.1a	<.1a	<.1a	1	ŀ	<10a	1	1	ı	<1a	ł	1	!	<1a
		<.01	<.01	< .01	:	;		!	1	1	.01	1	1	1	<.01
fL2 < .04	4 < .03	<.03	< .03	60. V	<. 1.	1.	×.1	×.	40.	×.1	<.02	.1	.04	9.>	9. V
ML3 <.0		<.03	<.03	< .09	×	× .1	<.1	×.1	.04	×.1	<.02	<. 1.	40.	9.>	90° >
		<.03	<.03	60. 	^		 	.1	^ 40.	<.1 1	<.02	^ .1.	4	9: >	90· V
		<.03	<.03	60· ×	<.1 1	<. 1.	<.1	.1	40.	^	<.02	^ 1	.04	9. >	99. V
WB3 < .04	4 <.03	<.03	<.03	<.09	× .1	×.1	× 	<.1 	20.40.	× .1	<.02	<.1 1.	40.	9. >	> .06
		<.01	<.01	< .01	1	1	<.1	I	ŀ	ŀ	<.01	ł	1	i	<.01
MC2 < .04	4 < .03	<.03	<.03	< .09	<.1 1.	× .1	×.1	 	40.	×.1	<.02	<.1	40. 	9.>	9 V
		<.03	<.03	<0.0	<.1	<.1	×.1.	1.	0. 	. .	<.02	· <.1	0. 40.	9. >	% .0 %

Table 8. Event mean concentrations of organic pesticides and polychlorinated biphenyls (PCB's) for sampled storms--Continued

Storm	Endrin alde- hyde, total	Hepta- chlor, total	Hepta- chlor epoxide, total	Aroclor 1016 PCB, total	Aroclor 1221 PCB, total	Aroclor 1232 PCB, total	Aroclor 1242 PCB, total	Aroclor 1248 PCB, total	Aroclor 1254 PCB, total	Aroclor 1260 PCB, total	Toxa- phene, total
SP1	}	< 0.01	<0.01	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	7
SP2	<0.2	×.03	8. V	\ .1.	<1	<.1	.1	.1	<.1 .1	^	7
SP3	<.2	< .03	% : ∨	. .1	~	<. <u>1</u>	<.1	^ 	<.1	v	~
BR1	ı	<.1a	<.1a	\ .1	 	< .1	<.1 	<.1	<.1	. .	< 10a
BR2	I	<.1a	<.1a	<. 1.	<.1	<.1	<.11	×.1	<10a
BR3	1	<.1a	<.1a	< .1	<.1	<.11	^ .1	- .	< 10a
ML1	!	<.01	<.01	<.1	^ 	^ 1.1	<.1 1.>	<.1 1.>	<.1 1.>	 	~
ML2	<.2	< .03	8 . \	<.1	~	1.	<.1	<.1	×.1	 	7 °
ML3	<.2	<.03	% . ∨	<.1	~	<.1	^	. .	× 1		7
WB1	<.>	< .03	% .	^	\ \	1.1	<. 1.	×.1	<.1	×	?
WB2	<.2	< .03	8 . >	<.1	<1	<.1	. .	^ .1	^ .1	 	7 9
WB3	<.2	< .03	8 . ×	^	×	\ 1	^ .1	. .	V.1	. .	7
MC1	ı	<.01	<.01	. .1	× 	. .	 	.1	. .1	×.1	⊽ '
MC2	<.2	< .03	8 . >	. 1	<1	<.1	×.	×:1		 V	7 9
MC3	<.2	<.03	8 . ^	<.1	-	~ .1	. .	^	^	 V	7

Table 9. Event mean concentrations of trace metals, cyanide, and total phenols for sampled storms

Storm	Anti- mony, total (µg/L as Sb)	Arsenic, total (µg/L as As)	Beryl- lium, total (µg/L as Be)	Cadmium, total (µg/L as Cd)	Chrom- ium, total (µg/L as Cr)	Copper, total (u/L as Cu)	Cyanide, total (µg/L as Cn)	Lead, total (µg/L as Pb)	Mercury, total (µg/L as Hg)	Nickel, total (µg/L as Ni)	Phenols, total (µg/L)	Sele- nium, total (wg/L as Se)	Silver, total (µg/L as Ag)	Thal- lium, total (µg/L as Ti)	Zinc, total (µg/L as Zn)
SPI	⊽		<10	1	22	11	< 0.01	23	0.2	27	٥	\ __	7	\$	158
SP2 SP3	< 20a < 20a	7 -	<10 <10	∵ ∵	2 0	16	<.01 <.01	32 15	× ×	2 2	o !	<2a	<pre></pre> < 1a < .5	<10a	170
BR1	2	3	<10	4	12	45	<.01	65	^ 	11	ъ	۲ ۲	<u>~</u>	< 5	326
BR2 BR3	0 c	- "	\(\times \) \(4 c	18	39	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	22 5	<u>.</u>	= =	4 č	77	7 7	\$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	378
	1	י	2	1	-	1	5./	}	7	1	71	7.	7	V 10a	201
ML1	-	1	<10	× 1	7	12	<.01	34	т.	4	۲ ۲	× 1	<u>^</u>	<> <	188
ML2	< 10	7	<10	7	7	6	<.01	27	^ .1	e	_	<2a	< 1a	S	109
N.L3	< 10	-	<10	∵	က	~ 1	<.01	^		~	10	<2a	< 1a	<10a	130
WB1	<20a	~	<10	<u>~</u>	4		<10a	4	×.1	ю	-	<2	< 1a	\$	<10
WB2	< 10	7	<10	<u>~</u>	ю	က	.01	2	×. <u>1</u> .	ო	4	7	<.5	<>>	20
WB3	< 10	۲ ۲	<10	~	7	3	<.01	73	<.1	7	-	<2	<.5	< 5	70
MC1	1	-	<10		24	12	<.01	43	4	24	ν.	~	~	<10a	139
MC2	<10	ю.	<10	7	S.		<.01	∞	×.1	S	۲ ۲	<2a	<2 a	<5	40
MC3	< 20a	V	<10	-	9	6	< 10a	-	. . 1	က	4	<2a	< 1a	<10a	100
Water-quality criteria	4310	50 DS		4b AL	50 DS	18b AL	22 AL	50 DS	.15	1400b AL					117 AL

Table 10. Event mean concentrations of conventional pollutants, pH values, and water temperature for sampled storms

limits are for recreational use, except in cases where limits for another use are more restrictive; DS, criteria for domestic water supply; AL, criteria on maximum concentration (CMC) [All concentrations were determined from flow-weighted composite samples, except fecal bacteria, and oil and grease, which were determined from discrete samples; pH was determined from flow-weighted composite samples, unless otherwise noted; <, below minimum reporting level; K, results based on colony count outside the acceptable range; G, values above the minimum reporting level and for which numerical limits have been promulgated by the Tennessee Department of Environment and Conservation (1991); all cited milligrams per liter; mL, milliliters; µS/cm; microsiemens per centimeter; °C, degrees Celsius; Water-quality criteria limits are cited only for those constituents with one or more greater than; L, less than; --, no data; SP, Spring Branch; BR, Browns Creek tributary; ML, Mill Creek tributary; WB, West Fork Browns Creek; MC, McCrory Creek; mg/L, fish and aquatic life]

13 90 94,000 160,000 163 – 120 76 2,000 K120,000 67 96 96 95 77 26,000 41,000 110 47 95 228 3,260 14,400 178 – 122 201 G100,000 G100,000 139 – 10 89 420 463 189 – 10 89 420 463 189 – 10 89 420 84,700 110,000 199 74 97 108 240 48,000 110,000 199 74 97 11,400 198,000 217 81 81 81 87 22,000 740,000 165 116 91 17,400 199,000 198,000 217 81 81 82 82 84 41,000 110,000 171 592 9	Bio ic oxy Storm den number (m	Biolog- Cical oxygen ox	Chemical oxygen demand (mg/L)	Coli-Strepto-form, cocci, fecal fecal colonies colonies (per 100 mL) (per 100 mL)	Strepto- cocci, fecal colonies (per 100 mL)	Residue at 180° Celsius, dis- solved (mg/L)	Residue at 105° Celsius, sus- pended (mg/L)	pH, field units	pH, labor- atory units	Water temper- ature, field,	Nitrogen NO2+NO3, total (mg/L as N)	Nitrogen, NH4 and organic, total (mg/L as N)	Phos- phorus, dis- solved (mg/L as P)	Phos- phorus, total (mg/L as P)	Oil and grease, total (mg/L)
L20 70 2,000 41,000 110 47 7.5 7.5 7.5 1 G28 228 3,260 14,400 178 7.4 7.8 16.0 1 2 201 G100,000 7,500 141 7.2 7.2 16.5 1 22 201 G100,000 G100,000 139 7.2 7.2 16.5 2 5 51 11,000 54,700 137 109 9.7.7 7.9 14.7 1 3 2.6 130 90,000 500,000 181 82 97.6 7.3 21.5 1 1 108 240 48,000 110,000 189 74 88.1 7.4 17.9 1 2 14 57 22,000 740,000 165 116 87.5 7.7 18.9 3 18 61 17,400 198,000 217 81 87.5 7.7 15.6 2 250 260 <td></td> <td><u> </u></td> <td>8 %</td> <td>94,000</td> <td>160,000</td> <td>163</td> <td>- Y</td> <td>8.6</td> <td>7.9</td> <td>24.5</td> <td>0.82</td> <td>0.6</td> <td>0.23</td> <td>0.47</td> <td></td>		<u> </u>	8 %	94,000	160,000	163	- Y	8.6	7.9	24.5	0.82	0.6	0.23	0.47	
G28 228 3,260 14,400 178 - 7.4 7.8 16.0 22 201 G100,000 7,500 141 - 7.2 7.2 16.5 38 162 G100,000 G100,000 139 - - 7.3 16.5 10 89 420 46.3 189 - 8.0 8.3 14.5 1 26 130 90,000 50,000 181 82 97.6 7.3 21.5 1 108 240 48,000 110,000 189 74 98.1 7.4 17.9 14 57 22,000 740,000 165 116 97.5 7.7 18.9 18 61 17,400 199,000 217 81 7.4 25.0 250 260 K2,200 14,800 269 215 97.9 7.7 13.6 250 260 K2,200 110,000 171 592 97.1 7.3 23.0 1-quality 3 4<		3 0	57	26,000	41,000	110	47	87.5	7.2	23.8	.56		71.	50.	4
22 201 G100,000 7,500 141 - 7.2 7.2 16.5 38 162 G100,000 G100,000 139 - 7.3 16.5 5 51 11,000 54,700 137 109 77.7 7.9 14.7 108 240 48,000 110,000 181 82 7.6 7.3 21.5 14 57 22,000 740,000 165 116 87.5 7.7 18.9 18 61 17,400 199,000 217 81 87.5 7.7 18.9 17 108 214,000 190,000 198 - 8.4 7.4 25.0 250 260 K2,200 110,000 171 592 87.1 7.3 23.0 1-quality		%	228	3,260	14,400	178	1	7.4	7.8	16.0	1.0	1.8	1.	.20	7
10 89 420 463 189 - - 7.3 16.5 5 51 11,000 54,700 137 109 *7.7 7.9 14.7 1 26 130 90,000 500,000 181 82 *7.6 7.3 21.5 1 108 240 48,000 110,000 199 74 *8.1 7.4 17.9 14 57 22,000 740,000 165 116 *7.5 7.7 18.9 18 61 17,400 198,000 217 81 *7.5 7.7 18.9 17 108 214,000 198,000 217 81 7.4 25.0 250 260 K2,200 14,800 269 215 *7.4 7.4 25.0 250 260 K2,200 110,000 171 592 *7.1 7.3 23.0 1-quality 7.3 21.5 *7.1 7.3 23.0		22	201	G100,000	7,500	141	ŀ	7.2	7.2	16.5	.50	7.	36	4.7	\$
10 89 420 463 189 8.0 8.3 14.5 1 1 2		∞	162	G100,000	G100,000	139	1	ŀ	7.3	16.5	6.	2.4	94.	1.9	7
5 51 11,000 54,700 137 109 87.7 7.9 14.7 1 26 130 90,000 500,000 181 82 87.6 7.3 21.5 1 108 240 48,000 110,000 199 74 88.1 7.4 17.9 14 57 22,000 740,000 165 116 87.5 7.7 18.9 18 61 17,400 198,000 217 81 87.5 7.7 15.6 17 108 214,000 190,000 198 8.4 7.4 25.0 250 260 K2,200 110,000 171 592 87.1 7.3 23.0 r-quality		<u>o</u>	68	420	463	189	ŀ	8.0	8.3	14.5	1.1	1.8	.20	1.4	~
26 130 90,000 500,000 181 82 °7.6 7.3 21.5 1 108 240 48,000 110,000 199 74 °8.1 7.4 17.9 14 57 22,000 740,000 165 116 °7.5 7.7 18.9 18 61 17,400 198,000 217 81 °7.5 7.7 18.9 17 108 214,000 190,000 198 8.4 7.4 25.0 250 260 K2,200 14,800 269 215 °7.9 7.7 13.6 23 84 41,000 110,000 171 592 °7.1 7.3 23.0		5	51	11,000	54,700	137	109	1.7ª	7.9	14.7	1.0	λi	8	.57	~
108 240 48,000 110,000 199 74 *8.1 7.4 17.9 14 57 22,000 740,000 165 116 *7.5 7.7 18.9 18 61 17,400 198,000 217 81 *7.5 7.7 18.9 17 108 214,000 190,000 198 8.4 7.4 25.0 250 260 K2,200 14,800 269 215 *7.9 7.7 13.6 23 84 41,000 110,000 171 592 *7.1 7.3 23.0		92	130	90,000	200,000	181	82	9.7°	7.3	21.5	1.3	1.8	.32	1.2	9
14 57 22,000 740,000 165 116 *7.5 7.7 18.9 18 61 17,400 198,000 217 81 *7.5 7.7 15.6 17 108 214,000 190,000 198 8.4 7.4 25.0 250 260 K2,200 14,800 269 215 *7.9 7.7 13.6 23 84 41,000 110,000 171 592 *7.1 7.3 23.0		%	240	48,000	110,000	199	74	88.1	7.4	17.9	07.	6:	.27	92.	4
18 61 17,400 198,000 217 81 °7.5 7.7 15.6 17 108 214,000 190,000 198 8.4 7.4 25.0 250 260 K2,200 14,800 269 215 °7.9 7.7 13.6 23 84 41,000 110,000 171 592 °7.1 7.3 23.0		41	27	22,000	740,000	165	116	87.5	7.7	18.9	.46	1.0	89.	1.4	~
17 108 214,000 190,000 198 – 8.4 7.4 25.0 250 260 K2,200 14,800 269 215 ⁸ 7.9 7.7 13.6 23 84 41,000 110,000 171 592 ⁸ 7.1 7.3 23.0		<u>&</u>	19	17,400	198,000	217	81	87.5	7.7	15.6	£ 4 .	۲.	.51	.93	<u>~</u>
250 260 K2,200 14,800 269 215 °7.9 7.7 13.6 23 84 41,000 110,000 171 592 °7.1 7.3 23.0		(1	108	214,000	190,000	198	i	8.4	7.4	25.0	.50	ę:	72.	11.	<u>~</u>
23 84 41,000 110,000 171 592 °7.1 7.3 23.0		20	260	K2,200	14,800	569	215	6.7ª	7.7	13.6	.71	Ľ	.15	1.2	<u>~</u>
		23	84	41,000	110,000	171	592	97 .1	7.3	23.0	9.	1.2	.15	1.2	<u>~</u>
	Water-quality														
1,000 500 DS	criteria			1,000		500 DS	r o	6.5- 8.5 A	<u>, , , , , , , , , , , , , , , , , , , </u>						

^a Value from a discrete sample taken near the peak of storm runoff.

Table 11. Event mean concentrations and values of additional constituents and physical properties for sampled storms

[All concentrations were determined from flow-weighted composite samples except suspended sediment, which was determined from discrete samples; specific conductance was determined from flow-weighted composite samples; --, no data; SP, Spring Branch; BR, Browns Creek tributary; ML, Mill Creek tributary; WB, West Fork Browns Creek; MC, McCrory Creek; µS/cm, microsiemens per centimeter; °C, degrees Celsius; mg/L, milligrams per liter]

Storm	Specific conduct- ance, field (µS/cm 25°C)	Specific conductance, ance, laboratory (µS/cm 25°C)	Alka- linity, laboratory, (mg/L as CaCO ₃)	Calcium, dis- solved (mg/L as Ca)	Chlo- ride, dis- solved (mg/L as Cl)	Magne- sium, dis- solved (mg/L as Mg)	Potas- sium, dis- solved (mg/L as K)	Sodium, dis- solved (mg/L	Sulfate, dis- solved (mg/L as SO ₄)	Carbon, organic, total (mg/L as C)	Sediment, suspended (mg/L)
SPI	281	262	71	37	8.2	4.6	3.0	4.5	55	15	1,150
SP2	в92	119	35	. 17	1.7	1.6	λi.	1.5	16	18	252
SP3	8165	181	52	25	3.5	2.5	1.2	5.6	27	24	27.8
BR1	283	274	113	35	10	2.5	7.6	18	31	39	302
BR2	245	242	65	32	1	2.3	2.1	8.0	ŀ	31	251
BR3	175	183	79	19	8.9	1.3	2.5	17	20	31	381
ML1	322	321	106	20	10	3.8	2.5	9.5	38	21	189
ML2	2 111	219	85	35	3.2	2.3	1.0	3.0	26	8.6	108
ML3	2 63	267	101	43	3.4	3.1	2.4	4.0	32	56	116
WB1	P287	308	126	52	6.2	4.4	2.4	3.4	30	8	71.7
WB2	*215	266	115	45	4.5	3.6	2.9	2.6	21	18	114
WB3	*355	350	143	57	6.2	4.9	2.8	3.9	28	92	63.8
MC1	352	347	113	52	4.0	6.1	3.5	5.8	2 6	25	1,810
MC2	⁸ 463	454	164	75	5.8	7.7	2.4	5.9	80	23	256
MC3	⁸ 319	288	105	45	2.7	4.6	2.6	3.4	42	54	448

a Value from a discrete sample taken near the peak of storm runoff.

Table 12. Storm loads for constituents and physical properties with event mean concentrations above minimum reporting level

[All loads are given in pounds; G, greater than; --, load not computed because event mean concentration for this storm was below the minimum reporting level; SP, Spring Branch; BR, Browns Creek tributary; ML, Mill Creek tributary; WB, West Fork Browns Creek; MC, McCrory Creek]

Chromium, total,	0.30 .68 .021	.031 .030 .0090	.15 .047 .020	.033	1.0 .23 .071
Cadmium, total, as Cd	1 1 1	0.010 .0067 .0026	1 1 1	111	i i i
Arsenic, total, as As			.021		
Anti- mony, total, as Sb	1 1 1	0.0051 .0034 .0026	.021	1 1 1	.043
Endrin, total	111	0.00017	1 1 1	1 1 1	1 1 1
Di- eldrin, total	1 1 1	1 1 1	0.00021	1 1 1	1 1 1
Pyrene, total	111	0.015	1 1 1	1 1 1	1 1 1
Fluor- anthene, total	111	0.021	1 1 1	1 1 1	1 1 1
BIS (2- Ethyl- hexyl) phthal- ate, total	0.79			1 1 1	1 1 1
Tri- chloro- ethyl- ene, total		0.0018 .0034 .00026		1 1 1	1 1 1
1,2- Transdi- chloro- ethene, total		0.00051 0.00026	1 1 1	1 1 1	1 1 1
Methyl- ene chlo- ride, total	111	- - 0.00026	1 1 1	1 1 1	1 1 1
Di- chloro- bromo- methane, total	1 1 1	0.0010	1 1 1	1 1 1	1 1 1
Chloro- form, total	0.0069	.0072 0.0010 .0035 .00034 .00026	. 0042	.0033	111
Storm number	SP1 SP2 SP3	BR1 BR2 BR3	ML1 ML2 ML3	WB1 WB2 WB3	MC1 MC2 MC3

Table 12. Storm loads for constituents and physical properties with event mean concentrations above minimum reporting level--Continued

Storm	Copper, total, as Cu	Cyanide total, as Cn	Lead, total, as Pb	Mercury, total, as Hg	Nickel, total, as Ni	Phenois, total	Thal- lium, total, as TI	Zinc, total, as Zn	Bio- logical oxygen demand	Chemical oxygen demand	Residue at 180° Celsius, dis- solved	Residue at 105° Celsius, sus- pended	Nitrogen, NO ₂ + NO ₃ , total, as N
SP1	0.15	I	0.32	0.0028	0.37	0.083		2.2	180	1,200	2,300	1	11
SP2	T.8	1	3.6	1	62.	1.0	1	19	1.	8,600	7,600	11,000	49
SP3	.049	i	.062	1	.021	1	1	54	37	230	450	190	2.3
BR1	.12	ŀ	.17	1	.028	7200.	1	% :	G72	280	460	ı	2.6
BR2	990.	ł	.12	.00017	.019	.0067	1	8	37	340	240	ł	84
BR3	.028	i	.056	1	.014	.016	ŀ	39	49	210	180	ı	6.
ML1	.25	ŀ	.71	.0021	.084	1	ŀ	4.0	210	1,900	4,000	1	23
ML2	.21	1	.63	1	.070	.023	0.12	5.6	120	1,200	3,200	2,600	23
ML3	:	ı	:	99000	1	990.	1	98.	170	860	1,200	540	9.8
WB1	.033	ł	.033	ŀ	.025	.0082	ŀ	1	890	2,000	1.600	610	80
WB2	.032	0.11	.054	}	.032	.043	ŀ	.22	150	620	1,800	1.300	5.0
WB3	.045	ł	.030	ŀ	.030	.015	ı	.30	270	910	3,200	1,200	6.4
MCI	.52	ŀ	1.8	9800	1.0	.21	ı	6.0	730	4,600	8,500	;	21
MC2	5.0	1	1.0	1	99:	ŀ	1	5.2	33,000	34,000	35,000	28,000	93
MC3	.11	ı	;	1	.035	.047	ı	1.2	270	066	2,000	7,000	7.1

Table 12. Storm loads for constituents and physical properties with event mean concentrations above minimum reporting level--Continued

NH4 and p organic, total, as N	Phos- phorous dis- solved, as P	Phos- phorus, total, as P	Oil and grease, total	Alka- linity, labor- atory, as CaCO ₃	Calcium, dis- solved, as Ca	Chlo ride, dis- solved, as Cl	Magnes- ium, dis- solved, as Mg	Potas- sium, dis- solved, as K	Sodium, dis- solved, as Na	Sulfate, dis- solved, as SO ₄	Carbon, organic, total, as C	Sedi- ment, sus- pended
6		6.5		086	510	110	64	42	62	760	210	16,000
17		55	570	4.000	1.900	190	180	5.7	170	1,800	2,000	29,000
` `	2	.82	16	210	100	14	10	4.9	11	110	66	110
	9	.51	5.1	290	06	26	6.4	70	94	80	100	780
٠,	51	7.9	8.4	110	54	1	3.9	3.5	13	ı	52	420
•	.59	2.5	1	100	25	8.8	1.7	3.2	22	76	40	490
4	2	29	:	2,200	1,100	210	80	53	200	800	440	6,100
4	7	13	ŀ	2,000	820	75	54	23	70	610	230	2,500
2.1	_	7.9	40	670	280	22	21	16	26	210	170	170
2	7	6.3	33	1,000	430	51	36	20	28	250	540	290
7	6	15	:	1,200	490	49	39	31	28	230	190	1,200
7.6	٠,	14	ŀ	2,100	850	93	73	42	28	420	1,000	096
12		33	ł	4,900	2,200	170	260	150	250	2,400	1,100	78,000
20	_	160	ı	21,000	9,800	200	1,000	310	770	10,000	6,900	34,000
14		14	1	1,200	530	32	54	31	40	200	280	5,300

REFERENCES CITED

- Fishman, M.J., and Friedman, L.C., eds., 1989,
 Methods for determination of inorganic substances in
 water and fluvial sediments (3rd ed.): Techniques
 of Water-Resources Investigations of the U.S.
 Geological Survey, Book 5, chap. A1, 545 p.
 Tennessee Department of Environment and
 Conservation, 1991, State of Tennessee water
 quality standards, in Rules of the Tennessee
 Department of Environment and Conservation,
- Chapters 1200-4-3 and 1200-4-4: Nashville, Tennessee, Division of Water Pollution Control, Tennessee Department of Environment and Conservation, p. 328-368.
- U.S. Environmental Protection Agency, 1990, National pollutant discharge elimination system permit application regulations for storm water discharges: U.S. Federal Register, v. 55, no. 222, p. 47990-48091.

INCREMENTAL RAINFALL AND INSTANTANEOUS STREAMFLOW VALUES FOR SAMPLED STORMS

Storm SP1 -- June 18, 1990

Watershed 1

03426460

Spring Branch at Edenwold

[Time is given in hours and minutes; rainfall amount is given in inches; streamflow is given in cubic feet per second; e, estimated; rainfall amount occurring from 0001 through 0835 was 0.00 inch]

Baseflow-1.4 cubic feet per second

	Incremental rainfall			Incremental rainfall	
Time	amount	Streamflow	Time	amount	Streamflov
0840	0:00	1.4	1050	0	4.3
0845	0	1.4	1055	0	3.9
0850	0	1.4	1100	0	3.7
0855	.01e	1.4	1105	0	3.4
0900	.05e	1.4	1110	0	3.3
0905	.20e	71	1115	0	3.0
0910	.10e	83	1120	0	3.0
0915	.15e	78	1125	0	2.8
0920	.01e	81	1130	0	2.7
0925	0	78	1135	0	2.7
0930	0	69	1140	0	2.6
0935	0	54	1145	0	2.5
a 0940	0	44	1150	0	2.5
0945	0	35	1155	0	2.4
0950	0	27	1200	0	2.4
0955	0	22	1205	0	2.3
1000	0	18	1210	0	2.3
1005	0	15	1215	0	2.2
1010	0	12	1220	0	2.2
1015	0	11	1225	0	2.2
1020	0	9.0	1230	0	2.1
1025	0	7.7	1235	0	2.1
1030	0	6.6	b 1240	0	2.0
1035	0	5.8	1245	0	2.0
1040	0	5.1	1250	0	2.0
1045	0	4.9	1255	0	1.9

^a Start of sampling.

b End of sampling.

INCREMENTAL RAINFALL AND INSTANTANEOUS STREAMFLOW VALUES FOR SAMPLED STORMS--Continued

Storm SP2 -- March 9 and 10, 1992

Watershed 1

03426460

Spring Branch at Edenwold

[Time is given in hours and minutes; rainfall amount is given in inches; streamflow is given in cubic feet per second; rainfall amount occurring from 0001 through 1715 was 0.01 inch]

Baseflow-1.2 cubic feet per second

	-	Incrementa	I		Incremental			Incrementa	al
1720 0.01 1.2 2115 0.03 63 0110 0.04 69 1725 0 1.2 2120 0.05 61 0115 0.02 71 1730 0.01 1.2 2125 0.6 64 0120 0.2 68 1733 0.01 1.2 2135 0.6 70 0130 0.3 69 1744 0.01 1.2 2135 0.6 70 0130 0.3 69 1745 0.01 1.6 2140 0.5 73 0135 0.4 67 1755 0.0 4.2 2135 0.5 82 0140 0.3 70 1755 0.0 4.2 2155 0.0 82 0140 0.3 70 1755 0.0 1.2 2135 0.0 82 0140 0.3 70 1805 0 11 22 2000 0.3 77 0155 0.0 47 1805 0 11 22 2000 0.3 77 0155 0.0 47 1810 0.1 12 2210 0.0 84 77 0155 0.0 47 1815 0 11 22210 0.0 86 0205 0.0 47 1815 0 11 22210 0.0 86 0205 0.0 47 1820 0.1 9.3 22215 0.7 86 0205 0.0 3 74 1825 0.1 9.3 22215 0.7 86 0205 0.0 3 74 1825 0.1 9.3 22220 0.6 84 0205 0.0 3 74 1825 0.1 9.3 22220 0.6 84 0205 0.0 3 74 1825 0.1 9.3 22220 0.6 84 0205 0.0 3 74 1826 0.1 9.3 22220 0.6 84 0205 0.0 3 74 1827 0.0 9.6 0205 0.0 80 103 0225 0.0 68 1830 0.1 8.6 2223 0.6 84 0225 0.0 68 1840 0.1 9.3 22240 0.0 9.0 103 0225 0.0 68 1840 0.1 9.3 22240 0.0 9.0 103 0225 0.0 68 1840 0.1 9.3 22240 0.0 9.0 103 0225 0.0 67 1845 0.1 9.3 22240 0.0 9.0 103 0225 0.0 67 1845 0.1 9.3 22240 0.0 9.0 103 0225 0.0 67 1845 0.1 9.3 22240 0.0 9.0 103 0225 0.0 67 1855 0.0 9.6 2255 0.0 8 101 0.0 225 0.0 61 1850 0 9.6 2255 0.0 8 101 0.0 225 0.0 61 1850 0 9.6 2255 0.0 8 101 0.0 225 0.0 61 1850 0 9.6 2255 0.0 8 101 0.0 225 0.0 61 1850 0 9.6 2255 0.0 8 101 0.0 225 0.0 61 1850 0 9.6 2255 0.0 8 101 0.0 225 0.0 61 1850 0 9.6 2255 0.0 8 101 0.0 225 0.0 61 1850 0 9.6 2255 0.0 8 101 0.0 225 0.0 61 1850 0 9.6 2255 0.0 8 101 0.0 225 0.0 61 1850 0 9.6 2255 0.0 8 101 0.0 225 0.0 61 1850 0 9.6 2255 0.0 8 101 0.0 225 0.0 62 1850 0 9.6 2255 0.0 8 101 0.0 225 0.0 62 1850 0 9.6 2255 0.0 8 101 0.0 225 0.0 62 1850 0 9.6 2255 0.0 8 101 0.0 225 0.0 62 1850 0 9.6 2255 0.0 8 101 0.0 225 0.0 62 1850 0 9.6 2255 0.0 8 101 0.0 225 0.0 62 1850 0 9.6 2255 0.0 8 101 0.0 225 0.0 62 1850 0 9.6 2255 0.0 8 101 0.0 225 0.0 62 1850 0 9.6 2250 0.0 8 101 0.0 225 0.0 62 1850 0 9.6 2255 0.0 8 101 0.0 225 0.0 62 1850 0 9.6 2255 0.0 8 101 0.0 225 0.0 62 1850 0 9.6 2255 0.0 8 100 0.0 225 0.0 62 1850 0 9.6 2255 0.0 8 100 0.0 225 0.0 62 18		rainfall			rainfall			rainfall	
1725 00 1 12 2125 06 64 0125 02 68 1730 01 1.2 2135 06 64 0125 02 68 17340 01 1.2 2135 06 70 0130 03 69 1744 01 1.6 2140 07 73 0135 04 67 1750 02 2.3 2145 05 82 0140 03 70 1755 01 4.2 2150 03 82 0145 02 69 1800 01 7, 4 2155 04 77 0150 03 72 1810 01 1.2 2200 03 76 0155 04 77 1810 01 1.2 2200 03 76 0155 04 77 1810 01 1.2 2205 04 74 0200 03 76 1815 01 1.2 2205 04 74 0200 03 69 18160 01 1.1 2210 09 76 0205 03 69 1820 01 1.1 2210 09 76 0205 03 69 1820 01 9.3 2220 08 87 0215 01 74 1825 01 9.3 2225 16 84 0220 0 69 1835 0 8.3 2230 06 96 0210 01 70 1835 0 1 8.6 2225 16 84 0220 0 69 1835 0 0 8.3 2230 06 96 0225 01 69 1835 0 0 9.6 2255 08 103 0235 0 66 1846 01 9.3 2244 09 93 0235 0 66 1845 01 9.3 2245 07 97 0240 0 68 1846 0.01 9.3 22245 07 97 0240 0 68 1849 0.01 9.3 2225 0 08 103 0230 0 66 1845 0.01 9.3 2235 08 103 0235 0 66 1846 0.01 9.3 2235 0 08 103 0230 0 67 1845 0.01 9.3 2235 0 08 103 0235 0 0 67 1845 0.01 9.3 2240 09 93 0235 0 0 67 1845 0.01 9.6 2255 0 08 101 0225 0 0 61 1855 0 9.6 2255 0 08 101 0225 0 0 61 1855 0 9.6 2255 0 08 101 0225 0 0 61 1855 0 9.6 2255 0 08 101 0225 0 0 61 1855 0 0 9.6 2255 0 08 101 0225 0 0 61 1855 0 0 9.6 2255 0 08 101 0225 0 0 61 1855 0 0 9.6 2255 0 08 101 0225 0 0 61 1855 0 0 9.6 2255 0 08 101 0225 0 0 61 1855 0 0 9.6 2255 0 08 101 0225 0 0 61 1855 0 0 9.6 2255 0 08 101 0225 0 0 61 1855 0 0 9.6 2255 0 08 101 0225 0 0 61 1855 0 0 9.6 2255 0 08 101 0225 0 0 61 1855 0 0 9.6 2255 0 08 101 0225 0 0 61 1855 0 0 9.6 2255 0 08 101 0225 0 0 61 1856 0 0 9.6 2255 0 08 101 0225 0 0 61 1857 0 0 9.0 2215 0 0 0 000 0 000 0 000 0 000 0 000 0 000 0	Time	amount	Streamflow	Time	amount	Streamflow	Time	amount	Streamflow
1725 0 1 12 2125 06 64 0120 02 68 1735 01 12 2135 06 64 0120 02 68 1735 01 12 2135 06 70 0135 02 68 1740 01 1.6 2140 0.7 73 0135 0.4 67 1750 0.2 2.3 2145 0.5 82 0140 0.3 70 1755 01 4.2 2150 0.3 82 0145 0.2 69 1880 0 11 2200 0.3 76 0155 0.4 77 1810 0.1 12 2200 0.3 76 0155 0.4 77 1810 0.1 12 2205 0.4 77 0150 0.3 69 1810 0 11 2200 0.3 76 0155 0.4 77 1815 0 12 2205 0.4 74 0200 0.3 79 1815 0 11 2215 0.9 76 0205 0.3 74 1820 0.1 9.3 2215 0.7 86 0210 0.1 70 1825 0.1 9.3 2220 0.8 87 0215 0.1 70 1830 0 8.6 2225 1.6 84 0220 0 69 1830 0 8.3 2230 0.6 96 0210 0.1 70 1835 0 8.3 2230 0.6 96 0225 0.1 68 1840 0.1 9.3 2235 0.8 103 0235 0 67 1855 0 9.6 2255 0.8 101 9.3 0235 0 67 1855 0 9.6 2255 0.8 101 9.3 0235 0 67 1850 0 9.6 2255 0.8 101 0.3 0235 0 67 1850 0 9.6 2255 0.8 101 0.3 0235 0 67 1850 0 9.6 2255 0.8 101 0.3 0235 0 67 1850 0 9.6 2255 0.8 101 0.3 0235 0 67 1850 0 9.6 2255 0.8 101 0.3 0235 0 67 1850 0 9.6 2255 0.8 101 0.3 0235 0 67 1850 0 9.6 2255 0.8 101 0.3 0235 0 67 1850 0 9.6 2255 0.8 101 0.3 0235 0 67 1850 0 9.6 2255 0.8 101 0.3 0235 0 67 1850 0 9.6 2255 0.8 101 0.3 0235 0 67 1910 0.1 8.6 2255 0.3 98 0250 0 49 1905 0 9.0 2315 0.0 2305 0.3 71 0.3 0255 0 45 1910 0.1 8.6 2325 0.0 8 101 0.2 035 0 0 34 1920 0 9.0 2315 0.0 2305 0.3 71 0.3 035 0 225 1955 0 0 9.6 2320 0.3 71 0.3 035 0 225 1955 0 0 9.6 2325 0.0 3 98 0350 0 245 1915 0 9.0 2315 0.0 2395 0.0 34 1925 0 8.6 2325 0.0 3 83 0305 0 245 1916 0 9.0 2315 0.0 2395 0.0 34 1925 0 8.6 2325 0.0 3 83 0305 0 265 1945 0.0 200 0.0 2355 0.0 237 1944 0.0 3 6.8 2335 0.0 3 71 0.0 235 0 0 21 2000 0.0 1 25 2355 0.0 2355 0.0 2355 0 0 21 2010 0.0 1 20 0.0 0.0 2355 0.0 2355 0 0 21 2020 0.0 4 19 0.0 0.0 2355 0.0 2355 0 0 21 2030 0.0 3 32 0.0 0.0 0.0 3 52 0.0 0.0 3 52 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	1720	0.01	1.2	2115	0.03		0110	0 0.04	69
1730			1.2	2120					
1735	1730	.01	1.2	2125					
1745	1735	.01	1.2						
1755			1.2			70			69
1755						/3			
** 1800						82			
1805			4.2			02 77			72
1810 .01 12 2205 .04 74 0200 .03 69 1815 0 11 2210 .09 76 0205 .03 74 1820 .01 9.3 2215 .07 86 0210 .01 70 1825 .01 9.3 2220 .08 87 0215 .01 69 1830 .01 8.6 2225 .16 84 0220 0 69 1840 .01 9.3 2230 .06 96 0225 .01 68 1840 .01 9.3 2235 .08 103 0230 0 67 1845 .01 9.3 2240 .09 93 0235 0 61 1855 .0 .96 2255 .08 101 0245 0 53 1900 .01 .96 2255 .03 98 0250 0 <td></td> <td></td> <td></td> <td></td> <td></td> <td>76</td> <td></td> <td></td> <td></td>						76			
1815 0 11 2210 .09 76 .0205 .03 .74 1820 .01 9.3 2215 .07 86 0210 .01 .70 1825 .01 9.3 2220 .08 87 0215 .01 .69 1830 .01 8.6 2225 .16 84 .0220 0 .69 1835 0 8.3 2235 .08 103 .0230 0 .67 1845 .01 9.3 2235 .08 103 .0230 0 .67 1845 .01 9.3 2240 .09 93 .0235 .0 .61 1850 .0 9.6 2255 .07 .97 .0240 .0 .56 1855 .0 9.6 2255 .03 .98 .0250 .0 .49 1905 .0 9.0 .2300 .03 .10 .0245				2205					
1820 .01 9.3 2215 .07 86 0210 .01 70 1825 .01 9.3 22200 .08 87 0215 .01 69 1835 .0 8.3 22230 .06 96 0225 .01 68 1840 .01 9.3 2235 .08 103 0230 0 67 1845 .01 9.3 2244 .09 93 0235 0 61 1850 0 9.6 2245 .07 97 0240 0 56 1855 0 9.6 2250 .08 101 0245 0 53 1900 .01 9.6 2255 .03 98 0250 0 49 1910 .01 8.6 2350 .03 101 0255 0 45 1910 .01 8.6 2350 .03 98 0300 0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
1825									
1850 .01 8.6 2225 .16 84 0220 0 69 1835 0 8.3 2230 .06 96 0225 .01 68 1840 .01 9.3 2235 .08 103 0230 0 67 1845 .01 9.3 2240 .09 93 0235 0 61 1850 0 9.6 2245 .07 97 0240 0 56 1855 0 9.6 2255 .03 98 0250 0 49 1905 0 9.6 2255 .03 98 0250 0 49 1905 0 9.0 2310 .02 93 0305 0 45 1910 .01 8.6 2305 .03 98 0300 0 39 1915 0 9.0 2315 .02 95 0310 0 3				2220					
1835	1023								
1840 .01 9.3 2235 .08 103 0230 0 67 1845 .01 9.3 22440 .09 93 0235 0 61 1850 0 9.6 2245 .07 97 0240 0 56 1855 0 9.6 2255 .03 98 0250 0 49 1900 .01 9.6 2255 .03 98 0250 0 49 1905 0 9.0 2300 .03 101 02255 0 45 1910 .01 8.6 2305 .03 98 0300 0 39 1915 0 9.0 2310 .02 93 0305 0 34 1920 0 9.0 2315 .02 95 0310 0 34 1925 0 8.6 2320 .03 83 0315 0				2230					
1845 .01 9.3 2240 .09 93 0235 0 61 1880 0 9.6 2250 .08 101 0245 0 53 1900 .01 9.6 2255 .03 98 0250 0 49 1905 0 9.0 2300 .03 101 0255 0 45 1910 .01 8.6 2305 .03 98 0300 0 39 1915 0 9.0 2310 .02 93 0305 0 34 1925 0 9.0 2315 .02 95 0310 0 34 1925 0 8.6 2320 .03 83 0315 0 34 1925 0 8.6 2320 .03 83 0315 0 32 1930 .01 8.0 2325 .01 81 0320 0 28				2235	.08				67
1850 0 9.6 2245 .07 97 0240 0 56 1855 0 9.6 2255 .08 101 0245 0 53 1900 .01 9.6 2255 .03 98 0250 0 49 1905 0 9.0 2300 .03 101 0255 0 45 1910 .01 8.6 2305 .03 98 0300 0 39 1915 0 9.0 2310 .02 93 0305 0 34 1920 0 9.0 2315 .02 95 0310 0 34 1920 0 8.6 2320 .03 83 0315 0 30 1930 .01 8.0 2325 .01 81 0320 0 28 1935 .01 7.1 2330 .03 73 0325 0 27					.09				
1855 0 9.6 2250 .08 101 .0245 0 53 1900 .01 9.6 2255 .03 .98 .0250 0 49 1905 0 9.0 2300 .03 101 .0255 0 45 1910 .01 8.6 2305 .03 98 .0300 0 39 1915 0 9.0 2315 .02 93 .0305 0 34 1920 0 9.0 2315 .02 95 .0310 0 34 1925 0 8.6 2320 .03 83 .0315 0 30 1930 .01 8.0 2325 .01 81 .0320 0 28 1935 .01 7.1 2330 .03 71 .0330 0 26 1945 .03 6.8 2335 .03 71 .0330 0					.07	97		0	56
1900 .01 9.6 2255 .03 98 0250 0 49 1905 0 9.0 2300 .03 101 0255 0 45 1910 .01 8.6 2305 .03 98 0300 0 39 1915 0 9.0 2310 .02 93 0305 0 34 1920 0 9.0 2315 .02 95 0310 0 34 1925 0 8.6 2320 .03 83 0315 0 30 1930 .01 8.0 2325 .01 81 0320 0 28 1935 .01 7.1 2330 .03 73 0325 0 27 1940 .03 6.8 2335 .03 71 0330 0 26 1945 .03 7.1 2340 .02 69 0335 0 <td< td=""><td></td><td></td><td></td><td></td><td>.08</td><td></td><td></td><td></td><td>53</td></td<>					.08				53
1905 0 9.0 2300 .03 101 02555 0 45 1910 .01 8.6 2305 .03 98 0300 0 39 1915 0 9.0 2315 .02 95 0310 0 34 1920 0 9.0 2315 .02 95 0310 0 34 1920 0 8.6 2320 .03 83 0315 0 30 1930 .01 8.0 2325 .01 81 0320 0 28 1935 .01 7.1 2330 .03 73 0325 0 27 1940 .03 6.8 2335 .03 71 0330 0 26 1945 .03 7.1 2340 .02 69 0335 0 25 1950 .02 11 2345 .02 71 0340 0 <td< td=""><td>1900</td><td>.01</td><td>9.6</td><td></td><td>.03</td><td></td><td></td><td></td><td>49</td></td<>	1900	.01	9.6		.03				49
1915 0 9.0 2310 .02 95 0305 0 34 1920 0 9.0 2315 .02 95 0310 0 34 1925 0 8.6 2320 .03 83 0315 0 30 1930 .01 8.0 2325 .01 81 0320 0 28 1935 .01 7.1 2330 .03 73 0325 0 27 1940 .03 6.8 2335 .03 71 0330 0 26 1945 .03 7.1 2340 .02 69 0335 0 25 1950 .02 11 2345 .02 71 0340 0 25 1950 .02 11 2345 .02 71 0340 0 23 1955 .01 22 2355 .01 65 0350 0 21 2000 .01 25 2355 .01 65 0350 0 21 2005 .01 22 2355 .01 65 0350 0 21 2005 .01 25 2400 .01 59 0355 0 21 2005 .01 20 0005 .02 58 0400 0 21 2015 .03 20 0010 .01 59 0355 0 21 2015 .03 20 0010 .01 57 0405 0 20 2020 .04 19 0015 .01 57 0405 0 20 2020 .04 19 0015 .01 57 0405 0 20 2020 .04 19 0015 .01 57 0405 0 20 2020 .04 19 0015 .01 57 0405 0 20 2020 .04 19 0015 .01 57 0405 0 20 2020 .04 19 0015 .01 57 0405 0 20 2020 .04 19 0015 .01 57 0405 0 20 2020 .04 19 0015 .01 57 0405 0 20 2020 .04 19 0015 .01 57 0405 0 20 2020 .04 19 0015 .01 57 0405 0 20 2020 .04 19 0015 .01 57 0405 0 20 2020 .04 19 0015 .01 57 0405 0 20 2020 .04 19 0015 .01 57 0405 0 20 2020 .04 19 0015 .01 57 0405 0 20 2020 .04 19 0015 .01 57 0405 0 20 2020 .05 .03 32 0020 0 54 0415 0 20 2025 .03 32 0020 0 54 0415 0 20 2036 .03 32 0025 .03 52 0420 0 19 2035 .02 36 0030 .02 52 0425 0 19 2045 .06 35 0040 .03 59 0435 0 18 2050 .05 41 0045 .04 59 0445 0 18 2050 .05 57 0055 .04 64 0450 0 17 2105 .04 58 0100 .03 65 0455 0 17			9.0	2300					
1920 0 9.0 2315 .02 95 0310 0 34 1925 0 8.6 2320 .03 83 0315 0 30 1930 .01 8.0 2325 .01 81 0320 0 28 1935 .01 7.1 2330 .03 73 0325 0 27 1940 .03 6.8 2335 .03 71 0330 0 26 1945 .03 7.1 2340 .02 69 0335 0 25 1950 .02 11 2345 .02 71 0340 0 23 1955 .01 22 2350 .02 70 0345 0 23 2000 .01 25 2355 .01 65 0350 0 21 2005 .01 25 2400 .01 59 0355 0	1910	.01	8.6	2305	.03				39
1925 0 8.6 2320 .03 83 0315 0 30 1930 .01 8.0 2325 .01 81 0320 0 28 1935 .01 7.1 2330 .03 73 0325 0 27 1940 .03 6.8 2335 .03 71 0330 0 26 1945 .03 7.1 2340 .02 69 0335 0 25 1950 .02 11 2345 .02 71 0340 0 23 1955 .01 22 2350 .02 71 0340 0 23 1955 .01 22 2350 .02 70 0345 0 23 1955 .01 25 2355 .01 65 0350 0 21 2000 .01 25 2355 .01 65 0350 0 21 2005 .01 25 2400 .01 59 0355 0 21 2010 .01 25 2400 .01 59 0355 0 21 2010 .01 20 0005 .02 58 0400 0 21 2015 .03 20 0010 .01 57 0405 0 20 2020 .04 19 0015 .01 57 0405 0 20 2020 .04 19 0015 .01 57 0405 0 20 2020 .04 19 0015 .01 57 0405 0 20 2020 .03 32 0020 0 054 0415 0 20 2020 .04 19 0015 .01 57 0410 0 20 2020 .03 32 0020 0 54 0415 0 20 2030 .03 32 0025 .03 52 0420 0 19 2035 .02 36 0030 .02 52 0420 0 19 2045 .06 35 0040 .03 59 0435 0 18 2050 .05 41 0045 .04 59 0445 0 18 2050 .05 57 0050 .03 62 0445 0 18 2055 .04 57 0050 .03 62 0445 0 18 2055 .04 57 0050 .03 65 0445 0 18 2050 .05 57 0055 .04 64 0445 0 18					.02	93			
1930 .01 8.0 2325 .01 81 0320 0 28 1935 .01 7.1 2330 .03 73 0325 0 27 1940 .03 6.8 2335 .03 71 0330 0 26 1945 .03 7.1 2340 .02 69 0335 0 25 1950 .02 11 2345 .02 71 0340 0 23 1955 .01 22 2350 .02 70 0345 0 23 2000 .01 25 2355 .01 65 0350 0 21 2005 .01 25 2400 .01 59 0355 0 21 2010 .01 20 0005 .02 58 0400 0 21 2015 .03 20 0010 .01 57 0405 0 <t< td=""><td></td><td></td><td></td><td>2315</td><td></td><td>95</td><td></td><td></td><td></td></t<>				2315		95			
1935 .01 7.1 2330 .03 73 0325 0 27 1940 .03 6.8 2335 .03 71 0330 0 26 1945 .03 7.1 2340 .02 69 0335 0 25 1950 .02 11 2345 .02 71 0340 0 23 1955 .01 22 2350 .02 70 0345 0 23 2000 .01 25 2355 .01 65 0350 0 21 2005 .01 25 2400 .01 59 0355 0 21 2005 .01 25 2400 .01 59 0355 0 21 2015 .03 20 0010 .01 57 0405 0 20 2020 .04 19 0015 .01 57 0410 0 <td< td=""><td>1925</td><td>•</td><td></td><td>2320</td><td></td><td></td><td></td><td></td><td></td></td<>	1925	•		2320					
1940 .03 6.8 2335 .03 71 0330 0 26 1945 .03 7.1 2340 .02 69 0335 0 25 1950 .02 11 2345 .02 71 0340 0 23 1955 .01 .22 2350 .02 70 0345 0 23 2000 .01 .25 2355 .01 65 0350 0 21 2005 .01 .25 2400 .01 59 0355 0 21 2010 .01 .20 0005 .02 58 0400 0 21 2015 .03 .20 0015 .01 57 0405 0 20 2020 .04 .19 0015 .01 57 0410 0 20 2025 .03 .22 0020 0 54 0415 0						01 72			28
1945 .03 7.1 2340 .02 69 0335 0 25 1950 .02 11 2345 .02 71 0340 0 23 1955 .01 .22 2350 .02 70 0345 0 23 2000 .01 .25 2355 .01 .65 0350 0 21 2005 .01 .25 2400 .01 .59 0355 0 21 2010 .01 .20 0005 .02 .58 0400 0 21 2015 .03 .20 0010 .01 .57 0405 0 20 2020 .04 .19 0015 .01 .57 0410 0 .20 2025 .03 .22 .0020 .0 .54 .0415 .0 .20 2030 .03 .32 .0025 .03 .52 .0420 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>0323</td><td></td><td>27</td></td<>							0323		27
2000 .01 .25 .2355 .01 .65 .0350 .0 .21 2005 .01 .25 .2400 .01 .59 .0355 .0 .21 2010 .01 .20 .0005 .02 .58 .0400 .0 .21 2015 .03 .20 .0010 .01 .57 .0405 .0 .20 2020 .04 .19 .0015 .01 .57 .0410 .0 .20 2025 .03 .22 .0020 .0 .54 .0415 .0 .20 2030 .03 .32 .0025 .03 .52 .0420 .0 .19 2035 .02 .36 .0030 .02 .52 .0425 .0 .19 2040 .03 .35 .0035 .03 .56 .0430 .0 .19 2045 .06 .35 .0040 .03 .59									26
2000 .01 .25 .2355 .01 .65 .0350 .0 .21 2005 .01 .25 .2400 .01 .59 .0355 .0 .21 2010 .01 .20 .0005 .02 .58 .0400 .0 .21 2015 .03 .20 .0010 .01 .57 .0405 .0 .20 2020 .04 .19 .0015 .01 .57 .0410 .0 .20 2025 .03 .22 .0020 .0 .54 .0415 .0 .20 2030 .03 .32 .0025 .03 .52 .0420 .0 .19 2035 .02 .36 .0030 .02 .52 .0425 .0 .19 2040 .03 .35 .0035 .03 .56 .0430 .0 .19 2045 .06 .35 .0040 .03 .59					.02				23
2000 .01 .25 .2355 .01 .65 .0350 .0 .21 2005 .01 .25 .2400 .01 .59 .0355 .0 .21 2010 .01 .20 .0005 .02 .58 .0400 .0 .21 2015 .03 .20 .0010 .01 .57 .0405 .0 .20 2020 .04 .19 .0015 .01 .57 .0410 .0 .20 2025 .03 .22 .0020 .0 .54 .0415 .0 .20 2030 .03 .32 .0025 .03 .52 .0420 .0 .19 2035 .02 .36 .0030 .02 .52 .0425 .0 .19 2040 .03 .35 .0035 .03 .56 .0430 .0 .19 2045 .06 .35 .0040 .03 .59					.02				23
2005 .01 .25 .2400 .01 .59 .0355 .0 .21 2010 .01 .20 .0005 .02 .58 .0400 .0 .21 2015 .03 .20 .0010 .01 .57 .0405 .0 .20 2020 .04 .19 .0015 .01 .57 .0410 .0 .20 2025 .03 .22 .0020 .0 .54 .0415 .0 .20 2030 .03 .32 .0025 .03 .52 .0420 .0 .19 2035 .02 .36 .0030 .02 .52 .0425 .0 .19 2040 .03 .35 .0035 .03 .56 .0430 .0 .19 2045 .06 .35 .0040 .03 .59 .0435 .0 .18 2050 .05 .41 .0045 .04 .59	2000		25						21
2010 .01 20 0005 .02 58 0400 0 21 2015 .03 20 0010 .01 57 0405 0 20 2020 .04 19 0015 .01 57 0410 0 20 2025 .03 22 0020 0 54 0415 0 20 2030 .03 32 0025 .03 52 0420 0 19 2035 .02 36 0030 .02 52 0425 0 19 2040 .03 35 0035 .03 56 0430 0 19 2045 .06 35 0040 .03 59 0435 0 18 2050 .05 41 0045 .04 59 0440 0 18 2055 .04 57 0050 .03 62 0445 0 18 </td <td></td> <td></td> <td>25</td> <td></td> <td></td> <td>59</td> <td></td> <td></td> <td>21</td>			25			59			21
2015 .03 20 0010 .01 57 0405 0 20 2020 .04 19 0015 .01 57 0410 0 20 2025 .03 .22 0020 0 54 0415 0 20 2030 .03 .32 0025 .03 52 0420 0 19 2035 .02 .36 0030 .02 52 0425 0 19 2040 .03 .35 0035 .03 56 0430 0 19 2045 .06 .35 0040 .03 .59 0435 0 18 2050 .05 .41 0045 .04 59 0440 0 18 2055 .04 .57 0050 .03 62 0445 0 18 2100 .05 .57 0055 .04 64 0450 0			20	0005	.02	58			21
2020 04 19 0015 .01 57 0410 0 20 2025 .03 22 0020 0 54 0415 0 20 2030 .03 32 0025 .03 52 0420 0 19 2035 .02 36 0030 .02 52 0425 0 19 2040 .03 35 0035 .03 56 0430 0 19 2045 .06 35 0040 .03 59 0435 0 18 2050 .05 41 0045 .04 59 0440 0 18 2055 .04 57 0050 .03 62 0445 0 18 2100 .05 57 0055 .04 64 0450 0 17 2105 .04 58 0100 .03 65 0455 0 17 <td></td> <td></td> <td></td> <td></td> <td>.01</td> <td>57</td> <td>0405</td> <td>5 0</td> <td>20</td>					.01	57	0405	5 0	20
2025 .03 22 0020 0 54 0415 0 20 2030 .03 32 0025 .03 52 0420 0 19 2035 .02 36 0030 .02 52 0425 0 19 2040 .03 35 0035 .03 56 0430 0 19 2045 .06 35 0040 .03 59 0435 0 18 2050 .05 41 0045 .04 59 0440 0 18 2055 .04 57 0050 .03 62 0445 0 18 2100 .05 57 0055 .04 64 0450 0 17 2105 .04 58 0100 .03 65 0455 0 17						5 7			20
2030 .03 32 0025 .03 52 0420 0 19 2035 .02 36 0030 .02 52 0425 0 19 2040 .03 35 0035 .03 56 0430 0 19 2045 .06 35 0040 .03 59 0435 0 18 2050 .05 41 0045 .04 59 0440 0 18 2055 .04 57 0050 .03 62 0445 0 18 2100 .05 57 0055 .04 64 0450 0 17 2105 .04 58 0100 .03 65 0455 0 17		.03	22						20
2040 .03 35 0035 .03 56 0430 0 19 2045 .06 35 0040 .03 59 0435 0 18 2050 .05 41 0045 .04 59 0440 0 18 2055 .04 57 0050 .03 62 0445 0 18 2100 .05 57 0055 .04 64 0450 0 17 2105 .04 58 0100 .03 65 0455 0 17	2030	.03	32			52			19
2045 .06 .35 .0040 .03 .59 .0435 .0 .18 2050 .05 .41 .0045 .04 .59 .0440 .0 .18 2055 .04 .57 .0050 .03 .62 .0445 .0 .18 2100 .05 .57 .0055 .04 .64 .0450 .0 .17 2105 .04 .58 .0100 .03 .65 .0455 .0 .17						52			19
2050 .05 41 0045 .04 59 0440 0 18 2055 .04 57 0050 .03 62 0445 0 18 2100 .05 57 0055 .04 64 0450 0 17 2105 .04 58 0100 .03 65 0455 0 17									19
2055 04 57 0050 .03 62 0445 0 18 2100 .05 57 0055 .04 64 0450 0 17 2105 .04 58 0100 .03 65 0455 0 17						29 50			
2100 05 57 0055 .04 64 0450 0 17 2105 .04 58 0100 .03 65 0455 0 17						39 62			18
2105 .04 58 0100 .03 65 0455 0 17			5 7						18
2100 10T 10 01 01 01 01 01 01 01 01 01 01 01 01									
2110 .04 61 67.65 .57 65 65.05 05.00 0 17									
	2110	.04	01			V)	0500		17

^a Start of sampling.
^b End of sampling.

INCREMENTAL RAINFALL AND INSTANTANEOUS STREAMFLOW VALUES FOR SAMPLED STORMS--Continued

Storm SP3 -- September 2, 1992

Watershed 1 03426460 Spring Branch at Edenwold

[Time is given in hours and minutes; rainfall amount is given in inches; streamflow is given in cubic feet per second; rainfall amount occurring from 0001 through 1025 was 0.00 inch]

Baseflow-1.2 cubic feet per second

Time	Incremental rainfall amount	Streamflow	Time	Incremental rainfall amount	Streamflow
1030	0.00	1.2	1255	0.00	15.0
1035	.01	1.2	1300	0	12
1040	0	1.2	1305	0	10
1045	0	1.2	1310	0	8.6
1050	0	1.2	1315	0	9.6
1055	0	1.2	1320	0	9.0
1100	0	1.2	1325	0	7.4
1105	0	1.2	1330	0	6.3
1110	0	1.2	1335	0	5.3
1115	0	1.2	1340	.01	4.7
1120	.01	1.2	1345	0	4.2
1125	0	1.2	1350	0	3.9
1130	.01	1.2	1355	0	3.6
1135	0	1.3	1400	0	3.3
1140	.01	1.5	1405	0	3.0
1145	0	1.6	1410	0	2.9
1150	0	2.1	1415	0	2.7
1155	0	2.7	1420	0	2.7
1200	.01	3.3	1425	0	2.5
1205	0	3.9	^b 1430	0	2.4
1210	0	4.0	1435	0	2.3
1215	.01	4.0	1440	0	2.2
1220	.08	3.9	1445	0	2.2
1225	.00	7.4	1450	0	2.1
1230	.04	8.6	1455	0	2.1
1235	.01	24	1500	0	2.0
1240	0	27	1505	0	1.9
1245	0	25	1510	0	1.9
1250	0	18	1515	0	1.9

^a Start of sampling.

b End of sampling.

Storm BR1 -- February 9, 1990

Watershed 2

03431353 Browns Creek tributary at Nashville

[Time is given in hours and minutes; rainfall amount is given in inches; streamflow is given in cubic feet per second; rainfall amount occurring from 0001 through 1115 was 0.00 inch]

Baseflow-0.57 cubic foot per second

	Incremental rainfall			Incremental rainfall	
Time	amount	Streamflow	Time	amount	Streamflow
1120	0.00	0.57	1300	0	3.10
1125	0	.57	1305	0	2.8
1130	.01	.57	1310	0	2.5
1135	.02	.70	1315	0	2.3
1140	.02	1.5	1320	0	2.0
1145	.03	2.8	1325	0	1.8
a 1150	0	5.1	1330	0	1.6
1155	0	16	1335	0	1.6
1200	.01	14	1340	0	1.5
1205	0	14	1345	0	1.5
1210	0	11	1350	0	1.3
1215	0	8.6	1355	0	1.3
1220	0	6.7	1400	0	1.1
1225	0	8.7	1405	0	1.1
1230	0	8.6	b 1410	0	1.1
1235	0	7.7	1415	0	.96
1240	0	6.3	1420	0	.96
1245	0	5.1	1425	0	.96
1250	0	4.1	1430	0	.96
1255	0	3.4	1435	0	.82

a Start of sampling.

b End of sampling.

Storm BR2 -- February 15, 1990

Watershed 2 03431353 Browns Creek tributary at Nashville

[Time is given in hours and minutes; rainfall amount is given in inches; streamflow is given in cubic feet per second; rainfall amount occurring from 0001 through 1155 was 0.01 inch]

Baseflow-0.12 cubic foot per second

	Incremental rainfall			Incremental rainfall	
Time	amount	Streamflow	Time	amount	Streamflow
1200	0.00	0.12	1315	0	2.50
1205	0	.12	1320	0	2.0
1210	.01	.12	1325	0	1.6
a 1215	.02	.82	1330	0	1.3
1220	.01	1.5	1335	0	1.3
1225	.01	3.4	1340	0	.96
1230	.02	10	1345	0	.82
1235	0	12	1350	0	.82
1240	0	12	1355	0	.70
1245	0	11	1400	0	.60
1250	0	8.5	^b 1405	0	.60
1255	0	6.7	1410	0	.48
1300	0	5.1	1415	0	.48
1305	0	3.8	1420	0	.48
1310	0	3.1	1425	0	.36

^a Start of sampling.

b End of sampling.

Storm BR3 -- November 5, 1990

Watershed 2 03431353 Browns Creek tributary at Nashville

[Time is given in hours and minutes; rainfall amount is given in inches; streamflow is given in cubic feet per second; rainfall amount occurring from 0001 through 0655 was 0.00 inch]

Baseflow-0.00 cubic foot per second

Time	Incremental rainfall amount	Streamflow	Time	incremental rainfall amount	Streamflow
0700	0.00	0.00	0920	0.01	6.7
0705	0	.00	0925	0	8.1
0710	0	.00	0930	.01	7.2
0715	0	.00	0935	0	5.4
0720	.01	.00	0940	.01	3.8
0725	0	.00	0945	0	2.5
0730	.01	.06	0950	0	1.8
0735	0	.11	0955	0	1.3
0740	0	.11	1000	0	.82
0745	0	.11	1005	0	.60
0750	0	.08	1010	.01	.55
0755	.01	.08	1015	0	.49
0800	.01	.22	1020	0	.46
0805	.01	.33	1025	0	.41
0810	0	.38	1030	0	.38
0815	.01	.41	1035	0	.36
0820	0	.70	1040	0	.33
0825	.01	1.3	1045	0	.30
0830	.01	.96	1050	0 -	.27
0835	0	.82	1055	0	.25
0840	.02	.70	1100	0	.24
0845	0	.70	1105	0	.23
0850	.01	.82	1110	0	.22
0855	.03	1.3	1115	0	.21
0900	.01	2.3	1120	0	.20
0905	.01	3.8	1125	0	.19
0910	.01	5.1	^b 1130	0	.18
0915	.02	5 .1	1135	0	.17

^a Start of sampling.

b End of sampling.

Storm ML1 -- January 17, 1990

Watershed 3 03431062 Mill Creek tributary at Glenrose Avenue

[Time is given in hours and minutes; rainfall amount is given in inches; streamflow is given in cubic feet per second; rainfall amount occurring from 0001 through 1400 was 0.00 inch]

Baseflow--1.4 cubic feet per second

	Incremental rainfall			incremental rainfall				Increments rainfall		
Time	amount	Streamflow	Time	amount	Streamflow		Time	amount	Streamflow	
1405	0.00	1.4	b 1725	0.02	13.0	_	2045	0.00	31.0	
1410	0	1.5	1730	.02	12		2050	.01	27	
1415	Ö	1.9	1735	.01	11		2055	0	24	
a 1420	.01	2.2	1740	.02	10		2100	0	22	
1425	.03	2.2	1745	0	9.7		2105	0	20	
1430	.03	2.2	1750	.01	9.4		2110	0	19	
1435	.02	2.2	1755	.01	9.1		2115	Ö	18	
1440	.02	2.2	1800	.01	8.8		2120	Ŏ	16	
1445	.01	2.2	1805	0	28		2125	ŏ	15	
1450	.02	2.2	1810	.01	25		2130	ŏ	13	
1455	.01	2.3	1815	0.01	21		2135	ŏ	11	
1500	.01	2.4	1820	.01	18		2140	ŏ	10	
1505	.01	2.4	1825	0	16		2145	ŏ	9.7	
1510	0	2.4	1830	Ŏ	15		2150	Ŏ	8.8	
1515	Ö	17	1835	Ö	15		2155	ő	8.3	
1520	.01	19	1840	Ö	14		2200	0	8.0	
1525	0	18	1845	0	13		2205	Ö	7.3	
1530	Ö	17	1850	0	12		2210	0	6.7	
1535	Ö	15	1855	.02	11		2215	Ö	6.4	
1540	Ö	13	1900	0	11		2220	0	6.1	
1545	.01	12	1905	.01	10		2225	0	5.9	
1550	0	11	1903	.01	9.4		2230	0	5.6	
1555	Ö	10	1915	.02	9. 4 8.8		2235	0	5.3	
	0	9.7						_		
1600	0		1920	.04	8.5		2240	.01	5.1	
1605	•	9.7	1925	.02	8.3		2245	0	4.9	
1610	.01 0	10	1930	0	8.0		2250	0	4.6	
1615	_	9.1	1935	.01	8.0		2255	0 0	4.6	
1620	.01 .01	8.6	1940	0 0	11		2300	-	4.4	
1625	.01	7.7	1945	0	15 32		2305	0	4.4	
1630 1635	.03	7.0 6.4	1950		32 29		2310	0	4.2	
			1955	0			2315	0	4.2	
1640	0	5.9	2000	•	24		2320	0	3.9	
1645	.01	5.6	2005	.01	21		2325	0	3.9	
1650	0	5.4	2010	.05	18		2330	0	3.7	
1655	.01	5.4	2015	.01	15		2335	0	3.7	
1700	0	5.4	2020	.02	14		2340	0	3.7	
1705	.01	14	2025	.01	13		2345	0	3.7	
1710	0	21	2030	.01	12		2350	0	3.5	
1715	0	18	2035	.01	11		2355	0	3.5	
1720	0	16	2040	.01	35		2400	0	3.5	

^a Start of sampling.

b End of sampling.

Storm ML2 -- December 9, 1991

Watershed 3 03431062 Mill Creek tributary at Glenrose Avenue

[Time is given in hours and minutes; rainfall amount is given in inches; streamflow is given in cubic feet per second; e, estimated; rainfall amount occurring from 0001 through 0455 was 0.06e inch]

Baseflow-1.5 cubic feet per second

Incremental rainfall				Incrementa rainfall			Increments rainfall	
Time	amount	Streamflow	Time	amount	Streamflow	Time	amount	Streamflow
0500	0.00	1.5	0840	0.00	10.0	1220	0.01e	16.0
0505	.01e	1.5	0840 0845	0.00	10.0 44	1225		15.0
0510	.01e	1.5	0843 0850	ŏ	38	1223	.01e 0	15
0515	.01e .01e	1.5	0855	•	36 32		_	15
0520	.01e	1.5	0900	.01c 0	32 27	1235 1240	.01e 0	15 1 5
0525	0	1.5	0905	ŏ	23		Ö	
0525	.01e	1.5 1.5	0903 0910	Ö	23 20	1245 12 5 0		14
0535		1.6		Ö	20 17		.01e	13
0533	.01e 0		0915 0920	ő		1255	0	13
0545	•	1.6 1.6		0	15	1300	.01e	13
	.01e		0925	0	13	1305	0	13
0550	.01e	1.6	0930	-	11	1310	0	13
0555	.02e	1.6	0935	0	10	1315	.01e	13
0600	.01e	1.6	0940	.01e	9.1	1320	0	12
0605	.02e	1.6	0945	0	8.6	1325	0	11
a 0610	.02e	1.7	0950	.01e	8.0	1330	0	10
0615	.03e	2.3	ь 0955	0	7.3	1335	.01e	9.7
0620	.03e	4.4	1000	0	7.0	1340	0	9.4
0625	.02e	7.0	1005	0	6.4	1345	0	9.1
0630	.02e	8.0	1010	.01e	6.1	1350	Ō	8.8
0635	.02e	9.1	1015	.01e	6.1	1355	0	8.5
0640	.02e	23	1020	0	5.9	1400	.01e	8.3
0645	.01e	31	1025	.01e	5.6	1405	0	8.0
0650	.01e	30	1030	.01e	5.3	1410	0	7.3
0655	.02e	27	1035	.01e	5.3	1415	0	7.3
0700	.01e	25	1040	0	5.3	1420	.01e	7.0
0705	.01e	23	1045	.01e	5.9	1425	0	6.7
0710	.01e	23	1050	.01e	6.4	1430	0	6.7
0715	0	23	1055	0	7.3	1435	0	6.7
0720	0	22	1100	.01e	8.8	1440	0	6.4
0725	.01e	21	1105	.01e	11	1445	0	6.4
0730	0	20	1110	.01e	11	1450	0	6.4
0735	.01c	18	1115	.02e	11	1455	0	6.1
0740	0	16	1120	.01e	11	1500	0	6.1
0745	.01e	14	1125	.01e	11	1505	.01e	6.1
0750	0	13	1130	0	12	1510	0	6.1
0755	.01e	12	1135	.02e	13	1515	0	6.4
0800	0	11	1140	.01e	14	1520	Ö	6.4
0805	0	10	1145	0	14	1525	ŏ	6.4
0810	.03e	9.1	1150	.01e	15	1530	.01e	6.4
0815	.03e	8.8	1155	.01e	16	1535	0	6.4
0820	.05e	8.6	1200	.01e	16	1540	Ŏ	6.1
0825	.02e	8.6	1205	.01e	15	1545	Ŏ	5.9
		9.4						
0830	. 0 1e	9.4	1210	.01e	15	1550	0	5.9

^a Start of sampling.

b End of sampling.

Storm ML3 -- May 19, 1992

Watershed 3 03431062 Mill Creek tributary at Glenrose Avenue

[Time is given in hours and minutes; rainfall amount is given in inches; streamflow is given in cubic feet per second; rainfall amount occurring from 0001 through 1445 was 0.00 inch]

Baseflow--1.3 cubic feet per second

Time	Incremental rainfall amount	Streamflow	Time	Incremental rainfall amount	Streamflow
1450	0.00	1.3	1730	0.00	10.0
1455	0	1.3	1735	.01	9.7
1500	.01	1.3	1740	0	9.1
1505	.01	1.3	1745	0	8.7
1510	.03	1.3	1750	0	8.3
1515	.10	1.4	1755	0	7.7
1520	.07	1.4	1800	0	7.0
1525	.03	1.4	1805	0	6.4
1530	.02	1.6	1810	0	6.2
^a 1535	.01	1.9	1815	0	5.9
1540	0	1.9	1820	0	5.6
1545	.01	1.7	1825	0	5.4
1550	.01	1.7	1830	0	5.1
1555	.01	1.7	^b 1835	0	4.6
1600	.02	1.9	1840	0	3.5
1605	.01	22	1845	0	4.2
1610	.01	20	1850	0	3.9
1615	.01	17	1855	0	3.7
1620	.02	16	1900	0	3.7
1625	0	14	1905	0	3.5
1630	.01	13	1910	0	3.4
1635	.01	12	1915	0	3.4
1640	0	14	1920	0	3.2
1645	.01	18	1925	0	3.2
1650	0	20	1930	0	3.0
1655	0	18	1935	0	3.0
1700	0	17	1940	0	2.9
1705	0	16	1945	0	2.9
1710	0	14	1950	0	2.7
1715	0	13	1955	0	2.7
1720	0	12	2000	0	2.6
1725	0	11	2005	0	2.6

^a Start of sampling.

b End of sampling.

Storm WB1 -- June 3, 1992

Watershed 4 03431100 West Fork Browns Creek at Glendale Lane

[Time is given in hours and minutes; rainfall amount is given in inches; streamflow is given in cubic feet per second; rainfall amount occurring from 0001 through 1255 was 0.00 inch]

Baseflow-0.10 cubic foot per second

Time	Incremental rainfall amount	Streamflow	Time	Incremental rainfall amount	Streamflow
1300	0.00	0.10	1615	0	8.0
1305	0	.10	^b 1620	0	8.0
1310	0	.10	1625	0	7.8
1315	0	.10	1630	0	7.8
a 1320	.06	.10	1635	0	7.8
1325	.08	.20	1640	0	7.8
1330	.09	.30	1645	0	7.5
1335	.06	.47	1650	0	7.5
1340	.06	.63	1655	0	7.2
1345	.03	.85	1700	0	7.0
1350	.05	1.5	1705	0	7.0
1355	.02	2.3	1710	0	6.7
1400	.01	2.4	1715	0	6.7
1405	.04	2.5	1720	0	6.7
1410	.02	2.6	1725	0	6.5
1415	0	2.7	1730	0	6.2
1420	.02	3.0	1735	0	6.2
1425	.01	3.3	1740	0	6.0
1430	.01	4.9	1745	0	6.0
1435	.01	6.5	1750	0	6.0
1440	.01	7.8	1755	0	5.8
1445	.02	10	1800	0	5.8
1450	.01	11	1805	0	5.8
1455	.01	11	1810	0	5.8
1500	.02	11	1815	0	5.6
1505	.02	10	1820	0	5.6
1510	.02	9.9	1825	0	5.6
1515	0	9.6	1830	0	5.3
1520	.01	9.3	1835	0	5.3
1525	0	9.1	1840	0	5.3
1530	.01	8.9	1845	0	5.3
1535	0	8.6	1850	0	5.3
1540	.01	8.5	1855	0	5.1
1545	.01	8.3	1900	0	5.1
1550	0	8.2	1905	0	5.1
1555	0	8.0	1910	0	5.1
1600	0	8.0	1915	0	5.1
1605	0	8.0	1920	0	5.1
1610	0	8.0	1925	0	5.1

^a Start of sampling.

b End of sampling.

Storm WB2 -- September 26, 1992

Watershed 4 03431100 West Fork Browns Creek at Glendale Lane

[Time is given in hours and minutes; rainfall amount is given in inches; streamflow is given in cubic feet per second; rainfall amount occurring from 0001 through 0915 was 0.37 inch]

Baseflow-0.47 cubic foot per second

Time	Incremental rainfall amount	Streamflow	Time	Incremental rainfall amount	Streamflow
0920	0.00	0.47	1155	0.00	11
0925	0	.47	1200	0	10
0930	.01	.47	1205	0	10
0935	0	.47	1210	.01	10
0940	.05	.85	1215	0	9.9
a 0945	.08	2.2	1220	0	9.6
0950	.07	2.3	1225	0	9.6
0955	.10	2.9	1230	0	9.2
1000	.05	4.0	1235	0	8.9
1005	.02	4.5	1240	0	8.9
1010	0	4.9	1245	0	8.6
1015	.01	5.1	1250	0	8.3
1020	.01	11	1255	0	8.3
1025	.01	15	1300	.01	8.0
1030	.02	18	1305	0	8.0
1035	.02	26	1310	0	7.8
1040	.01	25	1315	0	7.2
1045	.02	23	1320	0	7.2
1050	.01	21	1325	0	7.0
1055	.01	19	^b 1330	0	7.0
1100	.02	17	1335	0	6.7
1105	.01	16	1340	0	6.5
1110	.01	15	1345	0	6.5
1115	0	15	1350	0	6.5
1120	.01	13	1355	0	6.2
1125	.01	13	1400	0	6.2
1130	.01	13	1405	0	6.0
1135	.01	12	1410	0	6.0
1140	.01	12	1415	0	6.0
1145	.01	12	1420	0	5.8
1150	.01	12	1425	0	5.8

^a Start of sampling.

b End of sampling.

Storm WB3 -- November 12, 1992

Watershed 4 03431100 West Fork Browns Creek at Glendale Lane

[Time is given in hours and minutes; rainfall amount is given in inches; streamflow is given in cubic feet per second; rainfall amount occurring from 0001 through 0555 was 0.00 inch]

Baseflow--0.14 cubic foot per second

	Incrementa rainfall	il	Incremental rainfall				Incrementa rainfall	ai
Time	amount	Streamflow	Time	amount	Streamflow	Time	amount	Streamflow
			0005	2.22	11.0	1050		
0600	0.00	0.14	0925 0930	0.00 .01e	11.0	1250 1255	0.02e .10e	4.9 5.8
0605	0 0	.14	0935	0	13 13	1300	.10e .05e	5.8 5.8
0610 0615	.01c	.14 .14	0933	0	13	1305	.03e	5.6 6.5
	.016	.14 .19	0945	.01e	13	1310	.02e	6.2
0620	0		0950	0	15	1315	0	6.2
0625	.02e	.19	0955	0	16	1313	0	6.5
0630		.19	1000	0	16	1325	0	6.5
0635 0640	0 0	.19 .19	1005	0	16	1323	0	0.3 7.5
	0		1010	0	15	1335	0	7.3 9.9
0645	0	.19	1015	0	15	1340	0	
0650	_	.19	1013	0	13	1345	0	13 16
0655	.10e	.19	1025	0	13	1345	0	
0700	.05e	.35		0			0	16
0705	.05e	.47	1030 1035	0	13 9.6	1355	0	16
0710	0	.47		0		1400	0	15
0715	0	.47	1040	0	8.6 8.6	1405	0	14
0720	0	.47	1045 1050	0	8.6 8.3	1410	0	14
0725	0 0	.47	1050	0	8.0	1415 1420	0	13 13
0730		.47	1100	0	7.8		0	
0735	0 0	.47		0	7.8 7.5	1425	0	12
0740	-	.47	1105	0	7.5 7.5	1430	_	12
0745	.03e	.47	1110 1115	0	7.3 7.2	1435	0 0	12
0750	.02e	.63	1113	0	7.2 7.0	1440	0	12
0755	.05e	.85		-		1445	-	11
a 0800	.10e	1.5	1125	0	7.0	1450	0	11
0805	.05e	2.0	1130	0	6.7	1455	0	10
0810	.02e	2.2	1135	0	6.5	1500	0	9.9
0815	.01e	2.2	1140	0	6.5	1505	0	9.2
0820	0	2.2	1145	0	6.2	1510	0	8.9
0825	.02e	2.2	1150	0	6.0	1515	0	8.9
0830	.05e	2.5	1155	0	5.8	1520	0	8.6
0835	.01e	2.5	ь 1200	0	5.8	1525	0	8.6
0840	.03e	2.7	1205	0	5.6	1530	0	8.3
0845	.05e	2.9	1210	0	5.3	1535	0	8.3
0850	0	2.9	1215	0	5.3	1540	0	8.0
0855	.02e	3.1	1220	0	5.3	1545	0	7.8
0900	.05e	3.3	1225	0	5.1	1550	0	7.8
0905	.01e	3.5	1230	0	5.1	1555	0	7.8
0910	.01e	3.8	1235	0	5.1	1600	0	7.5
0915	.01e	5.1	1240	0	5.1	1605	0	7.5
0920	0	7.2	1245	0	5 .1	1610	0	7.2

^a Start of sampling.

b End of sampling.

⁴⁰ Rainfall, Streamflow, and Water-Quality Data for Five Small Watersheds, Nashville, Tennessee, 1990-92

Storm MC1 -- June 18, 1990

Watershed 5 03430118 McCrory Creek at Ironwood Drive

[Time is given in hours and minutes; rainfall amount is given in inches; streamflow is given in cubic feet per second; rainfall amount occurring from 0001 through 0855 was 0.02 inch}

Baseflow--4.0 cubic feet per second

Time	Incremental rainfall amount	Streamflow	Time	Incremental rainfall amount	Streamflow
0900	0.00	4.0	1205	0.00	70.0
0905	0	4.0	1210	0	61
0910	0	4.0	1215	0	54
0915	0	4.0	1220	0	48
0920	.01	4.0	1225	0	43
0925	.25	4.0	1230	0	38
0930	.26	5.8	1235	0	34
a 0935	.22	6.8	1240	0	31
0940	.07	6.2	1245	0	28
0945	.02	17	1250	0	25
0950	.01	40	1255	0	23
0955	0	47	^b 1300	0	21
1000	0	47	1305	0	19
1005	0	47	1310	0	18
1010	0	47	1315	0	16
1015	0	45	1320	0	16
1020	0	46	1325	0	15
1025	0	46	1330	0	14
1030	0	44	1335	0	13
1035	0	40	1340	0	13
1040	0	36	1345	0	12
1045	0	32	1350	0	12
1050	0	28	1355	0	11
1055	0	24	1400	0	11
1100	0	22	1405	0	10
1105	0	19	1410	.01	10
1110	0	20	1415	0	9.7
1115	0	77	1420	0	9.1
1120	0	126	1425	0	8.8
1125	0	143	1430	0	8.5
1130	0	144	1435	0	8.5
1135	0	139	1440	0	8.2
1140	0	128	1445	0	7.9
1145	0	116	1450	0	7.6
1150	0	103	1455	0	7.6
1155	0	91	1500	0	7.3
1200	0	78	1505	0	7.0

^a Start of sampling.
^b End of sampling.

Storm MC2 -- December 13, 1991

Watershed 5 03430118 McCrory Creek at Ironwood Drive

[Time is given in hours and minutes; rainfall amount is given in inches; streamflow is given in cubic feet per second; rainfall amount occurring from 0001 through 0225 was 0.08 inch]

Baseflow-7.0 cubic feet per second

Time	Incrementa rainfall		T:	Increments rainfall		Time	Increments rainfall	
1 ime	amount	Streamflow	Time	amount	Streamflow	Time	amount	Streamflow
				· · · · · · · · · · · · · · · · · · ·	<u> </u>			
0230	0.00	7.0	0620	0.02	45	1010	0.00	72
0235	0	7.3	0625	.01	50	1015	0	71
0240	0	7.3	0630	.01	56	1020	0	70
0245	0	7.3	0635	.02	63	1025	.01	69
0250	.01	7.3	0640	.01	69	1030	0	68
0255	0	7.6	0645	.01	75	1035	0	67
0300	0	7.6	0650	0	80	1040	0	66
0305	0	7.6	0655	.01	84	1045	0	65
0310	0	7.9	0700	0	89	1050	0	65
0315	0	7.9	0705	0	94	1055	0	64
0320	0	7.9	0710	.01	102	1100	.01	63
0325	.01	7.9	0715	.01	109	1105	0	62
0330	.05	7.9	0720	.01	118	1110	.01	61
0335	.01	7.9	0725	0	124	1115	0	60
0340	.01	7.9	0730	0	128	1120	Ō	59
0345	0	7.9	0735	.01	132	1125	.01	59
0350	.01	7.9	0740	0	133	1130	0	58
0355	.01	7.9	0745	0	134	1135	Ò	58
0400	0	8.2	0750	Ō	136	1140	.01	58
0405	0	8.2	0755	.01	134	1145	0	58
0410	0	8.5	0800	0	134	1150	0	58
0415	.01	9.1	0805	.01	134	1155	0	58
0420	.02	9.7	^в 0810	.01	134	1200	.01	58
^a 0425	.01	10	0815	0	134	1205	0	58
0430	.01	10	0820	ŏ	132	1210	ŏ	58
0435	.02	11	0825	.01	131	1215	.01	58
0440	0	11	0830	0	128 -	1220	0	58
0445	.01	11	0835	ŏ	125	1225	ŏ	58
0450	.02	îī	0840	.01	122	1230	ŏ	58
0455	.01	11	0845	0	119	1235	.01	58
0500	.01	11	0850	.01	114	1240	0.01	57
0505	0	11	0855	0.01	110	1245	ŏ	57
0510	.01	12	0900	ŏ	107	1250	ŏ	56
0515	.01	12	0905	ŏ	105	1255	ŏ	56
0520	.03	13	0910	ŏ	100	1300	ŏ	55
0525	.02	14	0915	ŏ	97	1305	ŏ	54
0530	.02	14	0920	.01	94	1310	ŏ	54
0535	.02	16	0925	0.01	91	1315	ŏ	54
0540	.03	17	0930	ŏ	88	1320	ŏ	52
0545	.02	18	0935	.01	85	1325	ŏ	53 53 52 52
0550	.02	19	0940	.01	83	1323	ŏ	52 52
0555	.02	21	0945	0.01	81	1335	ŏ	52 52
0600	.02	24	0950	.01	79	1333	ŏ	52 51
0605	.01	28	0955	0.01	77	1345	ŏ	51 51
0610	.02	34	1000	.01	75	1350	ŏ	50
0615	.01	39	1005	.01	73 73	1355	ŏ	50 50
0015	.01	37	1005	.01	13	1333	U	50

^a Start of sampling.
^b End of sampling.

Rainfall, Streamflow, and Water-Quality Data for Five Small Watersheds, Nashville, Tennessee, 1990-92

Storm MC3 -- June 18, 1992

Watershed 5 03430118 McCrory Creek at Ironwood Drive

[Time is given in hours and minutes; rainfall amount is given in inches; streamflow is given in cubic feet per second; e, estimated; rainfall amount occurring from 0001 through 0455 was 0.00 inch]

Baseflow-5.1 cubic feet per second

	Incremental rainfall			Incremental rainfall	
Time	amount	Streamflow	Time	amount	Streamflow
0500	0.01	5.1	0650	0	24
0505	.02	5.1	0655	0	21
0510	.05	5.1	0700	0	18
0515	.10	5.1	0705	0	16
0520	.13	5.1	0710	0	14
0525	.08	5.1	0715	0	13
0530	.07	5.1	0720	0	12
0535	.21	5.3	0725	0	11
0540	.14	7.0	0730	0	10
a 0545	.09	11	0735	0	9.4
0550	.03	39	0740	0	8.8
0555	.01	55	0745	0	8.5
0600	0	58	0750	0	7.9
0605	0	60	0755	0	7.3
0610	0	63	^в 0800	0	7.0
0615	0	58	0805	0	6.8
0620	0	51	0810	0	6.5
0625	0	45	0815	0	6.2
0630	0	41	0820	0	6.0
0635	0	36	0825	0	5.8
0640	0	31	0830	0	5.5
0645	0	28	0835	0	5.3

^{*} Start of sampling.

b End of sampling.