المادة: الرياضيات الشهادة: الثانوية العامة الفرع: العلوم الحياة نموذج رقم -٢-المدة: ساعتان

الهيئة الأكاديمية المشتركة قسم: الرياضيات

نموذج مسابقة (يراعى تعليق الدروس والتوصيف المعدّل للعام الدراسي ٢٠١٧-٢٠١ وحتى صدور المناهج المطوّرة)

ملاحظة: يُسمح باستعمال آلة حاسبة غير قابلة للبرمجة أو اختزان المعلومات أو رسم البيانات. يستطيع المرشح الإجابة بالترتيب الذي يناسبه (دون الالتزام بترتيب المسائل الوارد في المسابقة).

I- (4 points)

Les affirmations suivantes sont vraies. Justifier.

1) Dans le plan complexe rapporté à un repère orthonormé direct($0; \vec{u}, \vec{v}$). on considère trois points A, B et C distincts d'affixes respectives a, b et c tels que $\frac{c-a}{b-a} = 2i$,

A appartient au cercle de diamètre [BC].

- 2) Si $\frac{\pi}{2}$ est un argument de z, alors |i+z|=1+|z|.
- 3) Si $z = 3\sqrt{3} + 3i$ alors z^3 est imaginaire pur.
- 4) Si $z = e^{i\theta}$, alors $z^2 + \frac{1}{z^2}$ est réel.
- $5) \quad \left| i\overline{Z} + 1 \right| = \left| Z + i \right|.$

II- (4 points)

Dans l'espace rapporté à un repère orthonormé $(0; \vec{i}, \vec{j}, \vec{k})$, on donne le point A(2; 1; 5) et les droites

$$\text{(d) et (d') définies par : (d) } \begin{cases} x = 2m + 4 \\ y = 2m + 1 \text{ et (d')} \end{cases} \begin{cases} x = t + 2 \\ y = 2t - 1 \text{ , m et t réels.} \\ z = -2t + 6 \end{cases}$$

- (P) est le plan déterminé par A et (d').
 - 1) a) Montrer que A n'appartient pas à (d) ni à (d').
 - **b)** Montrer que les droites (d) et (d') ne sont pas coplanaires.
 - 2) a) Montrer que 2x + y + 2z 15 = 0 est une équation cartésienne du plan (P).
 - **b**) Montrer que (d) est parallèle à (P).
 - 3) Soit (Δ) la droite passant par A et parallèle à (d).
 - a) Ecrire un système d'équations paramétriques de la droite (Δ).
 - **b**) Trouver les coordonnées du point B, intersection de (Δ) et (d').
 - 4) Soit E le projeté orthogonal de A sur (d').
 - a) Calculer les coordonnées de E.
 - **b**) Calculer l'aire du triangle AEB.
 - 5) Soit M un point de (d). Calculer le volume du tétraèdre MABE

III- (4 points)

U₁et U₂ sont deux urnes telles que:

U₁ contient 10 boules: 6 rouges et 4 jaunes.

U₂ contient 10 boules : 5 rouges, 4 noires et 1 verte.

Une pièce de monnaie C est truquée de façon que la probabilité d'avoir face est trois fois plus que celle d'avoir pile.

On jette C:

- Si on obtient pile, on tire au hasard deux boules de l'urne U₁.
- Si on obtient face, on tire au hasard deux boules de l'urne U₂, **l'une après l'autre avec** remise.

Considérons les évènements suivants:

U₁: "l'urne choisie est U₁."

U₂: "l'urne choisie est U₂."

R: "les boules tirées sont rouges."

- 1) Montrer que $P(U_2) = \frac{3}{4}$ et $P(U_1) = \frac{1}{4}$.
- 2) Calculer $P(R/U_1)$, $P(R \cap U_1)$, et $P(R \cap U_2)$. En déduire que : $P(R) = \frac{13}{48}$.
- 3) Les deux boules tirées sont rouges. Calculer la probabilité que ces boules proviennent de U₁.
- 4) Soit X la variable aléatoire qui désigne le nombre de boules rouges tirées. Déterminer la loi de probabilité de X.

IV- (8 points)

Partie A

Soit g la fonction définie sur]1,+ ∞ [par g(x)= $x(\ln x)^2 - e$.

- 1) Calculer $\lim_{x\to 1} g(x)$ et $\lim_{x\to +\infty} g(x)$.
- 2) a -Dresser le tableau de variation de g.
 - **b-** Montrer que si x>e, alors g(x)>0.

Partie B

Soit f une fonction définie sur]1,+ ∞ [par f(x) = $e\left(\frac{\ln x - 1}{\ln x}\right) - x$, (C). Sa courbe représentative dans

un repère orthonormé (0; i, j) et (d) la droite d'équation y = e - x.

- 1) a- Calculer $\lim_{x\to 1} f(x)$; en déduire une asymptote de (C).
 - **b-** Montrer que (d) est une asymptote de (C).
 - ${f c} ext{-}$ Montrer que (C) est au-dessous de (d).
- 2) **a-** Montrer que $f'(x) = \frac{-g(x)}{x \ln^2 x}$
 - **b-** Dresser le tableau de variations de f.
 - **c-** Tracer la courbe (C).
- 3) a- Pour $1 < x \le e$, montrer que f admet une fonction réciproque dont on déterminera le domaine de définition.
 - **b-** Tracer la courbe (C') de h dans le même repère que celui de (C).
- 4) (Δ) est la droite d'équation y = -x-e.
 - **a-** Déterminer les coordonnées du point A intersection de (C') et (Δ) .
 - **b-** Ecrire l'équation de la tangente (T), en A à la courbe (C').
 - **c-** Résoudre graphiquement l'inéquation h(x) + e > -x.

المادة: الرياضيات الشهادة: الثانوية العامة الفرع: العلوم الحياة نموذج رقم - ٢ -المدّة: ساعتان

الهيئة الأكاديميّة المشتركة قسم: الرياضيات

أسس التصحيح (تراعي تعليق الدروس والتوصيف المعدّل للعام الدراسي ٢٠١٦-٢٠١ وحتى صدور المناهج المطوّرة)

	Question I	Notes
1)	A appartient au cercle de diamètre [BC] $\operatorname{car}(\overrightarrow{AB}, \overrightarrow{AC}) = \frac{\pi}{2}$.	0.75
2)	$ i+z = i+re^{i\frac{\pi}{2}} = i+ri = 1+r = 1+ z $	0.75
3)	$Z=3\sqrt{3}+3i$, alors $z^3=\left(6e^{i\frac{\pi}{6}}\right)^3=216i$ imaginaire pur	0.75
4)	$ z = 1 \Rightarrow z = e^{i\theta} \Rightarrow z^2 + \frac{1}{z^2} = e^{i2\theta} + e^{i(-2\theta)} = 2\cos 2\theta$ réel	0.75
5)	$\left i\overline{z} + 1 \right = \left i\left(\overline{z} + \frac{1}{i}\right) \right = \left i\right \left \overline{z} - i \right = \left \overline{z + i} \right = \left z + i \right $	1

	Question II	Notes
1.a	$A \notin \grave{a}$ (d) et $A \notin \grave{a}$ (d') (par vérification)	0.5
1.b	$\overrightarrow{BC}(\overrightarrow{u}_d \wedge \overrightarrow{u}_{d'}) = 16 \neq 0$; avec B un point de (d) et C un point de (d') donc (d) et (d') sont non coplanaires	0.5
2.a	(P): $2x + y + 2z - 15 = 0$. Soit M $(x,y,z) \in \grave{a}$ (P) et I $(2,-1,6) \in (d')$ et $\overrightarrow{AM} \cdot \left(\overrightarrow{AI} \wedge \overrightarrow{U}_{(d')}\right) = o$	0.5
2.b	$\vec{n}.\vec{u}_{(d)} = 0$ avec \vec{n} vecteur normal de (P), alors (d) est // à (P)	0.5
3.a	$(\Delta): \begin{cases} x = 2\lambda + 2 \\ y = 2\lambda + 1 \\ z = -3\lambda + 5 \end{cases}$	0.5
3.b	B (4;3;2) pour t = 2 et $\lambda = 1$	0.5
4.a	pour $E\left(\frac{8}{3}; \frac{1}{3}; \frac{14}{3}\right)$ avec $\overrightarrow{AE}.\overrightarrow{U_{(d')}} = 0$	0.25
4.b	$aire = \frac{AE.EB}{2} = 2u^2$	0.25
5	$V = \frac{1}{6} \overrightarrow{AM}.(\overrightarrow{AB} \wedge \overrightarrow{AE}) = \text{constant car (d) est parallèle à (P)}.$	0.5

	Question III	notes
1)	$P(U_1) + P(U_2) = 1$ et $P(U_2) = 3P(U_1)$; donc $P(U_2) = \frac{3}{4}$ et $P(U_1) = \frac{1}{4}$	0.5
2)	$P(R/U_1) = \frac{1}{3}$	0.25 0.5 0.5 0.5

	$P(R \cap U_1) = P(R / U_1) \times P(U_1) = \frac{1}{12} \text{ et } P(R \cap U_2) = P(R / U_2) \times P(U_2) = \frac{3}{16}$	
	$P(R) = P(R \cap U_1) + P(R \cap U_2) = \frac{13}{48}$	
3)	$P(U_1/R) = \frac{4}{13}$	0.5
4)	$X_{\Omega} = \{0, 1, 2\}; P(X = 0) = \frac{53}{240}; P(X = 1) = \frac{61}{120}; P(X = 2) = \frac{13}{48}$	0.25 0.5 0.5

		0.5
	Question IV	notes
Part	ie A	
1)	$\lim_{x \to 1} g(x) = -e \qquad \lim_{x \to +\infty} g(x) = +\infty$	0.5
2.a	$ \begin{array}{c cccc} x & 1 & +\infty \\ \hline g'(x) & + & \\ \hline g(x) & -e & & +\infty \\ \hline \text{avec } g'(x) = 2\ln x + (\ln x)^2 \\ \end{array} $	0.5
2.b	g(e)=0 et g est croissante. Donc si x>e, alors $g(x)>0$	0.5
Part		0.5
1.a	$\lim_{x\to 1} f(x) = -\infty$, alors x=1 est une asymptote verticale.	0.25
1.b	$\lim_{x \to +\infty} [f(x) - (e - x)] = 0$, alors y = e-x est une asymptote oblique.	0.5
1.c	pour x>1 lnx>0 alors $[f(x)-(e-x)]<0$, alors (C) est au dessous de (d).	0.5
2.a	$f'(x) = \frac{e\left(\frac{1}{x}(\ln x) - \frac{1}{x}(\ln x - 1)\right)}{\left(\ln x\right)^2} = \frac{-g(x)}{x(\ln x)^2}$	0.75
2.b	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.5
2.c	9 -6 -5 -4 -3 -3 -4 -5 -6 -6 -6 -6 -7 -8 -8	1
3.a	f définie continue et strictement croissante pour $1 < x \le e$. Donc elle admet une fonction réciproque. Dh = $]-\infty,-e]$.	0.5
3.b	Sur la figure avec y=1 asymptote horizontale. (C') symétrique de (C) par rapport à la droite d'équation y=x.	0.5

4.a	soit B symétrique de A par rapport à $y = x$ La symétrique de la droite (Δ) est la droite (Δ) car (Δ) perpendiculaire à la première bissectrice. Donc, $B = (C) \cap (\Delta)$, alors $B(\sqrt{e}; -\sqrt{e} - e)$, donc $A(-\sqrt{e} - e; \sqrt{e})$	0.5
4.b	f'(x) = $\frac{-g(x)}{x \ln^2 x}$; f'(\sqrt{e})= 1-4 \sqrt{e} . Pente de (T) = $\frac{1}{1-4\sqrt{e}}$. (T): y - \sqrt{e} = $\frac{1}{1-4\sqrt{e}}(x+\sqrt{e}+e)$.	1
4.c	(C') au-dessus de (Δ) pour x \in]- \sqrt{e} -e,-e]	0.5