MINISTER SOUTH

UNIVERSIDADE FEDERAL DO CEARÁ – CAMPUS SOBRAL

CURSO: Engenharia Elétrica E Engenharia Da Computação

DISCIPLINA: Circuitos 1 (parte de Laboratório)

SEMESTRE: 2020.1

PRÁTICA II: ANÁLISE DE MALHA E DE NÓ

1. INTRODUÇÃO

Analisar um circuito é obter um conjunto de equações ou valores que demonstram as características de funcionamento. A análise é fundamental para que se possa sintetizar um circuito, ou seja, a partir da análise de circuitos, pode-se arranjar elementos que uma vez interconectados e alimentados, comportam-se de uma forma desejada.

1.1. Método da Análise Nodal

A análise nodal ou método nodal é baseado na Lei das Correntes de Kirchhoff (LCK). Para empregar esse método se aplicam os passos que estão dispostos nos itens de '1' a '5' que seguem:

1. Verificar o número de nós do circuito. O nº de equações necessárias para efetuar a análise do circuito é:

Número de equações =
$$nós - 1$$
 (1)

- 2. Escolher um dos nós como "nó de referência", atribuindo-lhe tensão nula. É interessante que o nó de referência seja o "terra" ou um nó com muitos ramos.
- 3. Escolher um sentido arbitrário de corrente em cada elemento, atribuindo a respectiva polaridade. Em casos de elementos passivos, atribui-se a polaridade conforme mostra a figura 1.

Figura 1. Polaridade em um elemento em função da corrente (regra prática).

$$X \xrightarrow{R} \xrightarrow{Ix} Y$$
 $Ix = \frac{V_{xy}}{R}$

- 4. Aplicar a LCK em cada nó, exceto no nó de referência, obtendo as equações.
- 5. Resolver o sistema formado, obtendo assim as tensões nos nós e consequentemente as correntes circulantes do circuito.

1.2. Método das Correntes das Malhas

A análise de malhas ou método das correntes das malhas é baseada na Lei das Tensões de Kirchhoff (LTK). Para aplicação desse método se empregam os passos que estão dispostos nos itens de '1' a '5' que seguem:

1. Verificar se o circuito é planar ou não planar, pois esse método só se aplica a circuitos planares.

O circuito planar é aquele que pode ser desenhado em um único plano sem que dois ramos se cruzem. Por exemplo, o circuito da Figura 2(a) é planar. O circuito não planar não pode ser representado em um só plano. Por exemplo, o circuito da figura 2(b).

Figura 2: (a) Circuito Planar. (b) Circuito não planar

2. Escolher arbitrariamente o sentido das correntes de malha. O número de correntes arbitrárias necessárias é:

$$L = B - N + 1 \tag{2}$$

Em que L é o número de correntes de malha; B é número de ramos; N é número de nós do circuito. O número de equações necessárias é igual ao número de correntes que por sua vez, é igual ao número de malhas do circuito analisado.

- 3. Todos os elementos do circuito devem ser percorridos por pelo menos uma corrente de malha.
- 4. Identificar a polaridade da tensão em cada ramo do circuito. Quando há duas correntes atravessando um único elemento, pode-se arbitrar uma ordem prioritária para correntes, ou seja, supor que uma corrente é maior que a outra e assim, identificar a polaridade da tensão em cada ramo do circuito.

Por exemplo, se duas correntes percorrem o mesmo elemento como mostra a figura 3(b), pode-se arbitrar que I_1 é maior que I_2 , então V tem a polaridade mostrada nessa mesma figura.

Figura 3. (a) Convenção de sinal em elemento passivo. (b) Polaridade de tensão identificada supondo $I_1 > I_2$.

5. Aplicar a LTK em cada malha, percorrendo o circuito no mesmo sentido da corrente, obtendo assim, uma equação para cada malha

2. OBJETIVO

 Verificar através das Leis de Tensões (LTK) e de Correntes (LCK), as tensões e correntes nos elementos utilizando a análise nodal e análise de malhas.

3. MATERIAL NECESSÁRIO

- Fonte CC, multímetro, protoboard e resistores.

4. PROCEDIMENTO EXPERIMENTAL

Escolha um dos grupos mostrados na tabela 1(Pode associar resistores em série ou paralelo para ter o valor do resistor).
Preencha os valores medidos de resistência na tabela 2.

Tabela 1 – Valores dos resistores do circuito.

GRUPO	V1 (V)	V2 (V)	R1 (Ω)	R2(Ω)	R3 (Ω)	R4(Ω)	R5(Ω)
1	7.0	5,0	470	10	330	180	680
2	5,5	7,5	560	180	220	330	470
3	8,0	6,5	680	10	220	100	470
4	7,5	6,0	470	330	100	10	560
5	6,0	8,0	560	220	180	10	680
6	9,0	7,0	680	330	180	100	470
7	4,0	5,0	470	10	100	330	560
8	5,0	6,0	10	330	470	560	680

2. Meça os valores das resistências com um multímetro e preencha a tabela 02.

3. Monte o circuito da figura 4 conforme os valores das tensões e resistências do grupo escolhido. A corrente aplicada deve ser de 0,5 A nas duas fontes.

Figura 4: Circuito para verificação das leis de tensões e correntes de Kirchhoff.

4. Meça as tensões em R1, R2, R3, R4 e R5 e correntes (I1, I2, I3), utilizando o multímetro e preencha a tabela 2.

Tabela 2 – Valores teóricos e medidos.

	\mathbf{R}_1	\mathbb{R}_2	R ₃	R ₄	\mathbf{R}_5			
Teórico (cód. cores):								
Medido(multímetro):								
Erro (%):								
	I_1	I_2	I ₃	V R ₁	V R ₂	V R ₃	V R ₄	VR ₅
Medido:								

5. QUESTIONÁRIO.

- 1. Para o grupo escolhido da tabela 1 e considerando o circuito da figura 4, calcule, usando LCK ou LTK, os valores de I₁, I₂ e I₃, calcule as quedas de tensão em R₁, R₂, R₃, R₄ e R₅. Coloque os cálculos no relatório.
- 2. Simule o circuito, coloque no relatório a simulação, comente sobre ela e preencha a tabela 3.

Tabela 3 – Valores teóricos e simulados

Valores	\mathbf{I}_1	I_2	I ₃	I ₄	V R ₁	V R ₂	V R ₃	V R ₄	V R ₅
Teórico(calculado):									
Simulado:									

- 3. Compare os valores de tensão e corrente das tabelas 2 e 3 e comente sobre as diferenças nos valores de corrente e tensão e os motivos disso.
- 4. Com base no grupo escolhido, analise o circuito da figura 05 e calcule os valores de I1, I2 e I3. Calcule as quedas de tensão em R1, R2, R3, R4 e R5. Todos os cálculos devem estar no relatório.

Figura 5: Circuito 2 para análise das leis de tensões e correntes de Kirchhoff.

- 5. Comente a influência da fonte de 5 V nos resultados do cálculo das tensões das malhas da figura 4 e 5.
- 6. Com essa nova fonte, ficou mais fácil ou difícil de analisar os dados? Comente as dificuldades.