Syntax and Semantics: Exercise Session 2

Exercise 1.

Let $L_1 = \{aa, bb, bbb\}$, $L_2 = \{abba, aab, bb\}$ Specify the following languages:

- 1. $L_1 \circ L_2$
- $2. L_1 \cup L_2$
- 3. $L_1 \cap L_2$
- 4. $L_1 \setminus L_2$
- 5. Provide a few strings of L_2^*

Exercise 2.

Describe the following automata.

- (a) Describe the sequence of states of \mathcal{M}_1 for the following inputs:
 - (1) abbbab

(2) ababaab

(3) aaaaa

(4) ε

(b) Which of the previous sequences are final in M_1 , M_2 and M_3 ?

(c) Describe the languages accepted by each of the three machines.

Exercise 3.

Give the state diagram for the following automaton and describe its language. $M_4=(Q,\Sigma,\delta,q_o,F)$ where:

$Q = \{s, q_1, q_2, r_1, r_2\}$	δ	a	b
P (1)	s	q_1	r_1
$\Sigma = \{a, b\}$	q_1	q_1	q_2
$q_0 = s$		q_1	
	r_1	r_2	r_1
$F = \{q_1, r_1\}$	r_2	r_2	r_1

Exercise 4.

Give the state diagram for an automaton that recognizes the following language:

(i)
$$L_1 = \{ w \in \{1, 22\}^* \mid 11 \text{ is a prefix of } w \}$$

(ii)
$$L_2 = \emptyset \subseteq \{0, 1, 2\}^*$$

(iii)
$$L_3 = \{\varepsilon\} \subseteq \{0, 1, 2\}^*$$

(iv)
$$L_4 = \{ w \in \{ \text{go}, \text{stop} \}^* \mid w = \varepsilon \text{ or ends with stop} \}$$

(v)
$$L_5 = \{w \in \{0,1\}^* \mid w \text{ has } 001 \text{ as a prefix or } 11 \text{ as a suffix}\}$$

Exercise 5.

Consider the automata M_1 and M_2 drawn below.

1. Construct an automaton that recognizes the language $L(M_1) \cap L(M_2)$

2. Prove that the regular languages are closed under intersection.

- 3. Construct an automaton for each of the following languages:
 - (i) $\{0,1\}^* \setminus L(M_1)$
 - (ii) $\{0,1\}^* \setminus L(M_2)$
 - (iii) $\{0,1\}^* \setminus (L(M_1) \cap L(M_2))$
- 4. Prove that the set of regular languages is closed under complement.

Hint:

- 2. Similar construction with the one for union, only that $F = F_1 \times F_2$
- 4. Change the final states in not-final and reverse

Exercise 6.

Describe the following automaton.

- (i) Give examples of accepted and nonaccepted words (at least five for each).
- (ii) Prove that the language L(M) can be characterized as follows: Suppose that M keeps a running count of the sum of the numerical input symbols it reads and it reset the count to 0 every time it reads $\langle \text{reset} \rangle$. Then, $L(M) = \{ w \mid count(w) = 0 \pmod{3} \}$.
- (iii) Generalize the automaton such that $L(M) = \{w \mid count(w) = 0 \pmod{4}\}$