```
REAL TIME CLOCK:
```

```
+---+ NTSC
                +-->| /4 |----+
+----+ +---+ | +---+
| COLOR CLOCK |-->| /9 |--+ +--> RTC
+----+ +---+ PAL |
                +-->| /5 |----+
                   +---+
NTSC RTC = 3.579545 MHz /36 = 99.431806 KHz ; 10.05714 us (+0.5714\%)
PAL RTC = 4.43361875 MHz /45 = 98.534878 KHz; 10.14869 us (+1.4869%)
                             PAL slower by 0.9155%
               +---+ NTSC
            +-->| /72 |----+
+----+
| COLOR CLOCK*2 |--+ +--> RTC
-----+ PAL |
            +-->| /89 |----+
               +----+
NTSC RTC = 7.15909 \text{ MHz} / 72 = 99.431806 \text{ KHz}; 10.057140 \text{ us} (+0.57140\%)
PAL RTC = 8.8672375 MHz /89 = 99.6319 KHz ; 10.036948 us (+0.36948%)
```

PAL faster by 0.20192%

PROGRAMMING VIVIAN:

BLOCK = ADDRESS[23,14]
BLKADRS = ADDRESS[13,0]

- ,				
Road/Write	BLOCK	BIKZDBG	$\nabla \Delta \Box \Delta$	MODE COMMENT

R	ે	왕 왕	% Normal read cycle.
W	> 0	용용	NORM Normal write cycle.
W	0	% mode	% Set mode.
M	1	90	p MAP Map LOGICAL_BLOCK(1) to PHYSICAL_BLOCK(p).
M	С	90	p CONF Configure PHYSICAL_BLOCK(p) per configuration word c.
M	t	90	p TIME Set timing for PHYSICAL_BLOCK(p) per timing word t.
W	1	a	<pre>% COPY DMA copy contents of READ_ONLY_BLOCK</pre>
			and CPU acts as DMA controller.


```
CLOCK = COLOR CLOCK*2
STATE PROCESS
IDLE RAS = FALSE
     CAS = FALSE
     WAIT = TRUE
     IF RAS OR NOT MEM REQ,
       GOTO IDLEO
      RAS = TRUE ; RAS pre-charge time = 2 pixels
RASPC
     CAS = FALSE
     WAIT = TRUE
     ADR BUS = RA
     TEMP REG = RA
CAS RAS = TRUE
                   ; CAS width = 2 pixels
     CAS = TRUE
     WAIT = FALSE
     ADR BUS = CA
CASPC RAS = TRUE ; CAS pre-charge time = 2 pixels
     CAS = FALSE
     IF MEM_REQ AND NOT NEW_RA,
       GOTO CAS
     IF NOT MEM REQ OR NEW RA,
       GOTO IDLE
TIMING FOR INTERNAL MODE:
RA
CA
NEWROW
```


PERCEPT PARAMETER FETCH MACHINE:

```
NOT PARM_REQ
+----+
                     | LINKO
                              |<---+
            PARM REQ
           NOT WAIT | WAIT
               | LINK1
                     |<---+
               | | SKIP |
                       | AND
                       | NOT
    Α
           NOT SKIP | WAIT | WAIT |
            AND
           NOT WAIT V
               +----+
  |CLEANUP|
               | DISP0
                     |<---+
 WAIT
              NOT WAIT | WAIT |
+----+ | NOT WAIT
+--->| LINK5 |
              | LINK2
```

```
DXPOS EQU
           DAT BUS[9,0]
          DAT BUS[8,0]
DXOFF EQU
           DAT BUS[9,0]
DYPOS EQU
DYOFF EQU
           DAT BUS[8,0]
DZPOS EQU
           DAT BUS[8,0]
DZOFF EQU
           DAT BUS[7,0]
           DAT BUS[15,8]
DHGT EQU
           DAT BUS[13,0]
DLINK EQU
DDISP EQU
           DAT BUS[13,0]
DDATA EQU
           DAT BUS[13,0]
           MEM ADR[13,0]
ALINK EQU
           MEM ADR[13,0]
PC
     EQU
         ADR_BUS DAT_BUS PROCESS ADDER PERCEPT_DATA (STROBE)
STATE
                MEM REQ = PARM REQ
IDLE
                 ALINK = LINK(P)
                 IF NOT PARM REQ,
                   GOTO IDLE
LINKO ALINK DYOFF ALINK = LINK(P)
                 Y = DYOFF
                 FLAG = SKIP(P)
                      ADDA = LINK(P) ; if last link this P
                      ADDB[1,0] = 1; was skip, PC = LINK+5
                      ADDB[2] = SKIP(P); else, PC = LINK+1
                      ADDB[13,3] = 0
                      PC = ADD
                 IF WAIT,
                   GOTO LINKO
```

EQUATES:

```
LINK1 PC
        DDISP ADDA = Y
          OR
                    ADDB = -LC
          DLINK
                   Y = ADD
               SKIP(P) = DSKIP
               LINK(P) = DLINK
               IF WAIT,
                 GOTO LINK1
               IF FLAG AND NOT WAIT,
                 GOTO LINKO
DISPO DISP DYPOS
               IF WAIT,
                 GOTO DISPO
LINK2 LINK+2 DHGT ADDA = Y
          DZOFF ADDB = YPOS
                    Y = ADD
               FLAG = SIGN(Y)
               IF WAIT,
                 GOTO LINK2
LINK3 LINK+3
               DDATA ADDA = Y PY (YS)
                    ADDB = HGT
                    IF FLAG,
                     HGT = ADD
               IF FLAG,
                 PY = 0
               IF NOT FLAG,
                 PY = NEGPOLY(Y)
               IF WAIT,
                 GOTO LINK3
              DZPOS ADDB = DATA PHGT (HGTS)
DISP1 DISP+1
                    IF FLAG,
```

```
ADDA = 2 | Y |
                      IF NOT FLAG,
                        ADDA = 0
                      DATA(P) = ADD
                 IF SIGN(HGT)
                   PHGT = 0
                 IF NOT SIGN(HGT)
                   PHGT = NEGPOLY(ABS(HGT))
                 IF WAIT,
                   GOTO DISP1
DISP2 DISP+2
                 DXPOS ADDA = ZPOS
                      ADDB = ZOFF
                      Z = ADD
                      FLAG = SIGN(ADD)
                 IF WAIT,
                   GOTO DISP2
LINK4 LINK+4
                 DXOFF ADDA = XPOS; x=0 is X=-128 in space
                      ADDB = 488
                      X = ADD
                      FLAG = SIGN(ADD)
                                 PZ (ZS)
                 IF FLAG,
                   PZ = 0
                 IF NOT FLAG,
                   PZ = ABS(Z)
                 IF WAIT,
                   GOTO LINK4
LINK5 LINK+5
                 DLINK ADDA = X
                      ADDB = XOFF
                      X = ADD
                       FLAG = SIGN(ADD)
                 SKIP(P) = DSKIP
                 LINK(P) = DLINK
```

IF WAIT,

GOTO LINK5

CLEANUP IF FLAG, PX (XS)

PX = 0
IF NOT FLAG,

PX = NEGPOLY(X)

GOTO IDLE

ALGORITHM FOR GENERATING YAW:

YAW	FACT1	FACT2	FACT3	FACT4	dz	dx
0	_	_	_	_	0	1
1	4	5	4	4	4	80
2	2	3	2	3	4	24
3	2	2	2	2	4	16
4	1	2	1	1	4	10
5	1	1	1	1	4	8
6	0	1	0	1	4	6
7	0	1	0	0	4	5
8	0	0	0	0	4	4
9	0	1	0	0	5	4
A	0	1	0	1	6	4
В	1	1	1	1	8	4
С	1	2	1	1	10	4
D	2	2	2	2	16	4
E	2	3	2	3	24	4
F	4	5	4	4	80	4

yaw angle = arctan(dz/dx)

The basic idea here is as follows:

For yaw < 45 degrees, when x has incremented through 2^FACTn pixels, z increments/decrements by 1. This happens for 'n' = 1, 2, 3, & 4 successively for as many repetitions as the length of the data will permit.

For yaw >= 45 degrees, as x increments by one for each pixel, z increments/decrements by 2^FACTn . This happens for 'n' = 1, 2, 3, & 4 successively for as many repetitions as the length of the data will permit.

During the generation of the present line, the initial z value is incremented/decremented PINC times to arrive at the initial z value for the next line.

The reasoning behind the '2^FACTn' increment/decrement instead of simply adding or subtracting a binary is that a power-of-two up/down counter is smaller than an adder. As can be seen, it still yields reasonably usable and accurate values of angle if four intervals are used.

DERIVATION OF COLOR CHARTS:

- 1. I PLOTTED ALL POSSIBLE COMBINATIONS OF PHASERS (IE, 16X31)
- 2. I THREW OUT ALL COMBINATIONS WHICH EXCEEDED THE LIMITS

$$0 = < R, G, B = < 23.9$$

3. I FOUND THE MAXIMUM SATURATED R, G & B POINTS AND DREW LINES FROM THE ORIGIN TO THOSE POINTS TO DIVIDE THE GRAPH INTO THREE REGIONS

AN R TO G REGION, A G TO B REGION & A B TO R REGION.

4. I ASSIGNED MINIMUM REQUIRED LUMINANCE FOR EACH SURVIVING POINT

FOR R TO G REGION

$$P0 = .493*(-.30*R-.59*G)$$

 $P1 = .877*(.70*R-.59*G)$
 $LUMmin = .30*R+.59*G = -P0/.493$

FOR G TO B REGION

$$P0 = .493*(.89*B-.59*G)$$

 $P1 = .877*(-.11*B-.59*G)$
 $LUMmin = .11*B+.59*G = -P1/.877$

FOR B TO R REGION

$$P0 = .493*(-.30*R+.89*B)$$

 $P1 = .877*(.70*R-.11*B)$
 $LUMmin = .30*R+.11*B = .3782*P0+.5798*P1$

IN THE ABOVE CALCULATIONS, 'LUMmin' IS THE LUMINANCE WHICH IS REQUIRED JUST TO SUPPORT THE CHROMINANCE VECTORS WITHOUT ANY ADDED LUMINANCE (IE, FULLY SATURATED CHROMINANCE).

5. I READJUSTED THE MINIMUM LUMINANCE UPWARD FOR POINTS WHICH WERE OVERSATURATED (IE, THE SIGNAL DIPPED BELOW -201RE)

OVERSATURATED SIGNAL < -20IRE LUMmin(+/-)P0,LUMmin(+/-)P1 < -20IRE = -5

6. I THREW OUT ALL POINTS WHICH WERE OVERMODUATED (IE, THE SIGNAL OVERSHOT 120IRE) WITH EVEN THE MINIMUM LUMINANCE

120IRE < OVERMODUATED SIGNAL
29 = 120IRE < LUMmin(+/-)P1

DERIVATION OF COLOR CHARTS (CONTINUED):

7. I FOUND THE AMOUNT OF PRIMARY COLORS IN EACH POINT AT MINIMUM LUMINANCE

FOR R TO G REGION

P0 = .493*(-.30*R-.59*G) P1 = .877*(.70*R-.59*G) R = -P0/.493+P1/.877G = -2.4066*P0-.5798*P1

FOR G TO B REGION

P0 = .493*(.89*B-.59*G) P1 = .877*(-.11*B-.59*G) B = P0/.493-P1/.877 G = -.3782*P0-1.7200*P1

FOR B TO R REGION

P0 = .493*(-.30*R+.89*B) P1 = .877*(.70*R-.11*B) R = .3782*P0+1.7200*P1 B = 2.4066*P0+.5798*P1

8. I SOLVED FOR MAXIMUM LUMINANCE FOR EACH POINT BY ADDING DELTA TO ALL THREE COLORS UP TO THE MAXIMUM OF 24 FOR ANY ONE COLOR

FOR R TO G REGION

DELTA = SMALLEST{24-R,24-G}
LUMmax = LUMmin+DELTA

FOR G TO B REGION

DELTA = SMALLEST{24-G,24-B}
LUMmax = LUMmin+DELTA

FOR B TO R REGION

DELTA = SMALLEST{24-R,24-B}

LUMmax = LUMmin+DELTA

9. I READJUSTED THE MAXIMUM LUMINANCE DOWNWARD FOR POINTS WHICH WERE OVERMODULATED (IE, THE SIGNAL OVERSHOT 120IRE)

120IRE < OVERMODUATED SIGNAL
29 = 120IRE < LUMmax(+/-)P0,LUMmax(+/-)P1

10. I ENTERED LUMmin AND LUMmax FOR EACH POINT ON THE CHARTS BESIDE EACH POINT.

```
GENERATION OF VIDEO OUTPUT
                              +---+
                              ! MUX !
                 '0000'====4=>!3
                DIM[B, 8] == 4 => !2
                DIM[7, 4] == 4 => !1
                                    ! LUMI
                DIM[3,0] == 4 => !0 \text{ out } != 4 == == == [3,0] => H
                SEL======2=>!sel
                                                                     Η
                                                                     Η
                                             !ADDER!
                                                                     Η
      +----+
                                                                     Η
      !16x5 ROM!
      +---+
                                  LUM====5=>!a
      ! F ! 1F !
      ! E ! 1E ! P1=>H
      ! D ! 1D !
                                 ! MUX !
                                                   ! CI
      ! C ! 1C !
                                             !a+b+c!=6======[9,4]=>H
      ! B ! 1B !
                   H====I>o==5=>!3
      ! A ! 1A !
                   H H======5=>!2
                                                         CI
                                                               IRE
      ! 9 ! 19 !
                   H H==I>o==5=>!1
                                                   ! DEC HEX LEVEL
P0=4=>! 8 ! 18 !==>H=======5=>!0 out!=5=>!b
      ! 7 ! 17 !
                                                      29
                                                          1D +120
      ! 6 ! 16 !
                            H=2=>!sel
                                                      24
                                                          18
                                                               +100
                                                          00
                                                                     Η
      ! 5 ! OA !
                                                                  0
      ! 4 ! 08 !
                                                      -5
                                                          3B
                                                                -20
                                                                     Η
      ! 3 ! 06 !
                                                                     Η
      ! 2 ! 04 !
                                                                     Η
      ! 1 ! 02 !
                                                                     Η
                                                                     Η
      ! 0 ! 00 !
                                                                     Η
                            Η
                                                                     Η
      CTRL
                            Η
                                                                     Η
```

```
Η
! state!=2=====>H
                                                Η
! LUM+P0 = 00 !
                                                Η
                                                 Н
! LUM-P1 = 01 !
! LUM-P0 = 11 !
                                                 Η
! LUM+P1 = 10 !
+----+
                                                 Η
С
Η
           1024x6 ROM
                                    IRE
Η
                            DEC HEX LEVEL
     ! A = CI*10**{-LUMI/16*}!
                             39 27 +120
     ! LOG[ABS(CI)]}+10 !
                             34 22 +100
Η
                             10 OA O
Η
     ! B = INT[A-.49] ; CI<0 !
                             5 05 -20
                             0 00 -40 (SYNC)
     ! = 10 ; CI=0 !
     ! = INT[A+.49] ; CI>0 !
H==10==>!
     ! C = 0 ; B < 5
                      ! C +----+ +----+
      ! = B ; 4 < B < 40
                      !=6==>! 6 BIT D/A !-->! !
                          +----+ ! SUM !--> VIDEO
       = 39 ; B>39
                          SYNC & BLANK---->!!!
```

VIDEO OUTPUT ROM PROGRAMMING TABLE

bits 9,4		bits 3,0 in H	HEX
	0 1 2 3	4 5 6 7	8 9 A B C D E F
02 (2)	06 05 05 04 07 06 05 05 08 07 06 05	04 03 03 03 TO BE	02 02 02 02 01 01 01 01 01 02 02 02 02 01 01 01 01 01 03 02 02 02 02 01 01 01 01
05 (5) 06 (6)	0A 09 07 06 0B 09 08 07 0C 0A 09 07 0D 0B 09 08	REVISED 06 05 05 04 07 06 05 04	
09 (9) 0A (10)	0E 0C 0A 08 0F 0D 0B 09 10 0D 0B 09 11 0E 0C 0A	07 06 05 04 07 06 05 04 08 07 06 05 08 07 06 05	04 03 03 02 02 02 01 01 04 03 03 02 02 02 01 01 04 03 03 02 02 02 01 01 04 03 03 02 02 02 01 01
0D (13) 0E (14)	12 OF OC OA 13 10 OD OB 14 11 OD OB 15 11 OE OC	09 07 06 05 09 07 06 05 09 08 06 05 0A 08 07 05	04 03 03 02 02 02 01 01 04 04 03 02 02 02 01 01 04 04 03 02 02 02 01 01 04 04 03 02 02 02 01 01
11 (17) 12 (18)	16 12 OF OC 17 13 OF OD 18 14 10 OD 19 14 11 OE	0A 08 07 06 0A 09 07 06 0B 09 07 06 0B 09 07 06	05 04 03 03 02 02 01 01 05 04 03 03 02 02 01 01 05 04 03 03 02 02 01 01 05 04 03 03 02 02 01 01
15 (21)	1A 15 11 0E 1B 16 12 0E 1C 17 12 0F		05 04 03 03 02 02 01 01 05 04 03 03 02 02 01 01 05 04 03 03 02 02 01 01

17	(23)	1D	17	13	OF	0C	0A	80	07	05	04	03	03	02	02	01	01
19 1A	(24) (25) (26) (27)	1F 20	18 19 1A 1A	14 15	10 11	0 D 0 D	0A 0B	08 08 09 09	07 07	05 06	04 04 04 05	04	03 03	02 02	02 02 02 02	01 01	01 01
1D 1E	(28) (29) (30) (31)	23 24	1B 1C 1D 1D	16 17	12 12	0E 0F	0B 0C	09 09 09	07 07	06 06	05 05 05 05	04	03	02	02 02 02 02	02	01 01

VIDEO OUTPUT ROM PROGRAMMING TABLE (CONTINUED)

	es 9,4 HEX					bit	cs (3,0	in	HEX							
(DE	ных EC)	0	1	2		4		6	7	8	9			C 			
20 21 22	(32) (33)	26 27 28	1E 1F 20	18 19 19	13 14 14	0F 0F 10	0C 0C 0D 0D	0A 0A 0A	08 08 08	06 06 06	05 05 05 05	04 04 04	03 03 03	02 02 02	02 02 02 02	02 02 02	01 01 01
25 26	(36) (37) (38) (39)	2B 2B	22 23	1A 1B 1B 1C	15 16	11 11	0D 0D 0D 0E	0A 0B	08 08	06 07	05 05 05 05	0 4 0 4	03 03	03 03	02 02 02 02	02 02	01 01
29 2A	(40) (41) (42) (43)	2B 2B	25 26	1C 1D 1D 1E	17 17	12 12	0E 0E 0E 0E	0B 0B	09 09	07 07	05 05 05 05	04 04	03 03	03 03	02 02 02 02	02 02	01 01
2D	(45) (46)	2B 2B 2B xx	28 29	1F	18 19	13 13	OF OF OF XX	0C 0C	09 09	07 07	05 05 06 xx	04 04	03 03	03 03	02 02 02 xx	02 02	01 01
32	(-15) (-14) (-13)	00	00	00	00	00	xx 00 00 00	00	00	00	xx 00 00	00	00	00	xx 00 00 00	00	00
35	(-12) (-11) (-10)		00	00	00	00	00 00 00	00	00	00	00 00 00	00	00	00	00 00 00	00	00

37	(-9)	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
39 3A	(-6)	00 00 00 01	00	00	00	00	00	00 00 00 01	00	00	00	00 00 00 01	00	00	00	00 00 00 01	00
3D 3E	(-2)	02 03 04 05	03 04	03	02 03	02	02 02	01 02 02 03	02	01 02	01 02	01 01 01 02	01 01	01 01	01 01	01 01 01 01	01 01
25	(-1)	0.5	04	04	U 4	\cup \supset	\cup \supset	\cup \supset	\cup \angle	\cup \angle	\cup \angle	$\cup \angle$	$\cup \perp$	\cup \perp	$\cup \perp$	$\cup \perp$	UΙ

