Métricas de distancia en Aprendizaje No Supervisado

1. ¿Qué es el Clustering?

El **clustering** es una técnica de aprendizaje no supervisado cuyo objetivo es **encontrar patrones o agrupamientos naturales dentro de los datos**. Es decir, busca agrupar datos que son similares entre sí según cierta medida de "cercanía" o "distancia".

2. ¿Por qué es importante la métrica de distancia?

Para saber si dos datos están cerca o lejos, los algoritmos de clustering usan una **métrica de distancia**.

Pero **no existe una única forma de medir la distancia**: diferentes métricas pueden producir agrupamientos muy distintos.

Principales métricas de distancia

a) Distancia Euclidiana

¿Qué es?

Es la distancia "recta" entre dos puntos, la más intuitiva.

Fórmula (en 2D):

Si los puntos son (x_1,y_1) y (x_2,y_2) , la distancia es:

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

• Ejemplo:

Para los puntos (2, 2) y (4, 5):

$$d = \sqrt{(4-2)^2 + (5-2)^2} = \sqrt{4+9} = \sqrt{13} pprox 3.6$$

¿Dónde se usa?

Es la más usada en clustering tradicional.

b) Distancia Chebyshev

• ¿Qué es?

También llamada "distancia del tablero de ajedrez".

Es el máximo de las diferencias absolutas entre cada dimensión.

• Fórmula (en 2D):

$$d = \max(|x_2 - x_1|, |y_2 - y_1|)$$

• Ejemplo:

Para los puntos (2, 2) y (4, 5):

 $\circ\;\;$ Diferencia en X: |4-2|=2

 $\circ\;\;$ Diferencia en Y: |5-2|=3

 \circ Distancia Chebyshev: $\max(2,3)=3$

• ¿Por qué tablero de ajedrez?

Porque la **pieza Rey** en ajedrez puede moverse en cualquier dirección pero de a un cuadro por vez, y la cantidad mínima de movimientos para llegar de un punto a otro es igual a esta distancia.

c) Distancia Manhattan

• ¿Qué es?

Es la suma de las diferencias absolutas entre cada dimensión.

Llamada así por el diseño cuadriculado de Manhattan, donde para llegar de un punto a otro, hay que avanzar por las calles (en línea recta por bloques).

• Fórmula (en 2D):

$$d = |x_2 - x_1| + |y_2 - y_1|$$

• Ejemplo:

Para los puntos (2, 2) y (4, 5):

$$|4-2|+|5-2|=2+3=5$$

¿Por qué importa la elección de métrica?

- El tipo de métrica afecta directamente los clusters que el algoritmo va a detectar.
- Por ejemplo, usando el algoritmo DBSCAN en datos de ventas inmobiliarias (precio y antigüedad de la propiedad), cada métrica puede generar diferente número de clusters, diferente composición, incluso diferentes puntos detectados como ruido.
- No existe una regla universal: la mejor métrica depende de los datos y el problema.

Resumen visual

Métrica	Fórmula	Ejemplo (2,2)-(4,5)	Resultado
Euclidiana	$\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$	$\sqrt{13}$	3.6
Chebyshev	$\max(x_2-x_1 , y_2-y_1)$	$\max(2,3)$	3
Manhattan	$ x_2 - x_1 + y_2 - y_1 $	2 + 3	5

¿Cómo elegir la mejor métrica?

- **Experimentación:** No hay fórmula mágica, hay que probar varias métricas y ver cuál funciona mejor para tus datos y tu problema.
- Reglas generales:
 - Euclidiana: Para datos numéricos y escalas comparables.
 - Manhattan: Suele funcionar bien con datos categóricos o cuando hay muchas dimensiones.
 - Chebyshev: Casos muy específicos, por ejemplo, movimientos tipo "rey" en ajedrez o problemas de logística.
- Conclusión: ¡Experimenta y analiza! La métrica correcta es la que mejor representa la "cercanía" en tu contexto.

¿Por qué cambiar la métrica de distancia?

 Porque diferentes métricas de distancia pueden encontrar patrones diferentes en los datos. Elegir la métrica adecuada puede mejorar la calidad de los clusters o agrupaciones.

¿Cómo se cambia la distancia?

1. Identifica el algoritmo

No todos los algoritmos permiten cambiar la métrica.

Algunos que sí lo permiten son:

- KMeans (en su versión clásica usa siempre Euclidiana, pero existen variantes)
- DBSCAN
- Agglomerative Clustering (clustering jerárquico)
- KNeighbors (para búsquedas de vecinos más cercanos)
- Mean Shift, Spectral Clustering, etc. (depende)

2. Usa el parámetro adecuado

Casi siempre el parámetro es metric, affinity o distance al crear el modelo.

Ejemplo en Scikit-learn (Python):

a) DBSCAN

from sklearn.cluster import DBSCAN

Cambiar la métrica a 'manhattan' db = DBSCAN(eps=0.5, min_samples=5, metric='manhattan') db.fit(X)

b) Agglomerative Clustering

from sklearn.cluster import AgglomerativeClustering

Cambiar la afinidad (métrica) a 'chebyshev' cluster = AgglomerativeClustering(n_clusters=3, affinity='chebyshev', linka

```
ge='complete')
cluster.fit(X)
```

En versiones recientes, affinity a veces se llama metric.

c) KNeighborsClassifier o KNeighborsRegressor

```
from sklearn.neighbors import KNeighborsClassifier

# Usar distancia 'cosine'
knn = KNeighborsClassifier(n_neighbors=3, metric='cosine')
knn.fit(X_train, y_train)
```

d) KMeans

- El KMeans clásico solo usa Euclidiana.
- Si quieres cambiar la métrica, debes usar variantes como KMedoids (scikitlearn-extra) o programar tu propio método.

3. Métricas disponibles

Algunos nombres de métricas que puedes usar:

- 'euclidean'
- 'manhattan'
- 'chebyshev'
- 'minkowski'
- 'cosine'
- 'hamming'
- 'precomputed' (si tú mismo calculas las distancias y le pasas la matriz)

Consulta la documentación de Scikit-learn sobre métricas para más detalles.

Resumen paso a paso

1. Elige el algoritmo que permita personalizar la distancia.

- 2. **Pasa el nombre de la métrica** que quieres usar al parámetro correspondiente (metric , affinity , etc.).
- 3. **Ajusta los hiperparámetros** y entrena normalmente.