Conformal Vector Fields on Complex Hyperbolic Space¹

Hiroyasu Satoh

Nippon Institute of Technology, Japan

September 8, 2025 Differential Geometry and its Applications

 $^{^1\}mathsf{Based}$ on joint work with Hemangi M. Shah (HRI, India), arXiv:2506.09710 and arXiv:2507.1813.

Outline

- Definition & Main Theorem
- 2 Motivation & Background
- 3 Conformal Killing Equation: Geometry and Setup
- Proof of Main Theorem and Future Directions

This Section

- Definition & Main Theorem
- 2 Motivation & Background
- 3 Conformal Killing Equation: Geometry and Setup
- 4 Proof of Main Theorem and Future Directions

What is a conformal vector field?

Definition

Let (M,g) be a Riemannian manifold and ξ a smooth vector field on M. Then, ξ is called a *conformal vector field* if

$$\mathcal{L}_{\xi}g = 2\rho g,$$

for some function $\rho \in C^{\infty}(M)$. Here, $\mathcal{L}_{\xi}g$ denotes the Lie derivative of the metric g along ξ , and ρ is called the *potential function* of ξ .

- Killing: $\rho \equiv 0 \ (\Leftrightarrow \mathcal{L}_{\xi}g = 0)$.
- **Homothetic**: $\rho \equiv c$ for a constant $c \neq 0$
- In general, a conformal vector field generates only a local conformal flow.
- On a complete manifold, every Killing vector field generates a global one-parameter group of isometries.

Main Theorems

Theorem 1.1 (Complex hyperbolic case)

Let ξ be a conformal vector field on the complex hyperbolic space $\mathbb{C}H^n$ with $n \geq 2$. Then ξ must be a Killing vector field.

This phenomenon also holds for a wider family of homogeneous spaces:

Theorem 1.2 (General case)

Let (M,g) be a Damek–Ricci space. Then any conformal vector field on M is Killing.

- **Note:** These results also follow from classification results by Tashiro (1965) and Kanai (1983), which will be mentioned later.
- Our contribution: We give a direct and constructive proof, which will be explained in the following sections.

This Section

- Definition & Main Theorem
- 2 Motivation & Background
- 3 Conformal Killing Equation: Geometry and Setup
- 4 Proof of Main Theorem and Future Directions

How We Arrived at This Problem (I)

Our interest began with harmonic manifolds.

Definition

A Riemannian manifold (M,g) is harmonic if the **volume density** function $\sqrt{\det g_{ij}}$ in normal coordinates centered at $\forall p \in M$ depends only on the radius (i.e., it is a radial function).

- Classical examples: Euclidean spaces, spheres, and hyperbolic spaces.
- Every harmonic manifold is an Einstein manifold.

Conjecture (Lichnerowicz conjecture)

Every harmonic manifold is either Euclidean space or a rank-one symmetric space.

• Counterexamples: **Damek–Ricci spaces** (discovered in the 1990s) are harmonic and they include non-symmetric examples.

How We Arrived at This Problem (II)

- In this context, we asked the question:
 Do non-Killing conformal vector fields exist on harmonic manifolds?
- As a preliminary step, we first checked how conformal vector fields are constructed on the **real hyperbolic space** $\mathbb{R}H^n$.
- Then, we studied the **complex hyperbolic plane** $\mathbb{C}H^2$, and later extended the method to $\mathbb{C}H^n$ and to Damek–Ricci spaces.
- After completing the main part of our work, we realized that our results also follows from classical results, especially by Tashiro (1965) and Kanai (1983).
- However, our approach is different: it gives a direct proof using differential equations, and provides explicit expressions for the vector fields.
- This method may lead to further developments and give a new point of view on conformal rigidity.

Background: Conformal Rigidity

Conjecture (Lichnerowicz)

If a compact Riemannian manifold has an essential conformal transformation group, then it must be conformally equivalent to \mathbb{S}^n or \mathbb{E}^n .

- Here, essential means that the conformal group cannot be reduced to the isometry group under any conformal change of the metric.
- Resolved in many cases:
 - Compact case (Lelong-Ferrand, Obata, Ledger),
 - Complete Einstein case (Yano, Nagano),
 - General case (Alekseevskii, Lelong-Ferrand).
- Classical proofs often rely on:
 - global group actions, or
 - ▶ Bochner-type vanishing results.

Background: Tashiro-Kanai Results

Known classification

By results of **Tashiro** (1965) and **Kanai** (1983), if a complete Einstein manifold (M^n, g) admits a non-homothetic conformal vector field, then (M, g) must be isometric to one of the following:

- k > 0: the round sphere $\mathbb{S}^n(1/\sqrt{k})$,
- k = 0: the Euclidean space \mathbb{E}^n ,
- k < 0: a warped product $(N, h) \times_f (\mathbb{R}, g_0)$, where (N, h) is a complete Einstein manifold of non-positive scalar curvature.
- In particular, any Einstein manifold with negative Ricci curvature that is not a warped product admits only Killing vector fields.
- Hence, our theorems for $\mathbb{C}H^n$ and Damek–Ricci spaces follow from these classical results.
- However, our approach gives a **direct, constructive proof** using the conformal Killing equation, offering a new perspective.

Our Approach: PDE and Function Theory

- We study conformal vector fields *locally*, by directly solving the conformal Killing equation: $\mathcal{L}_{\xi}g = 2\rho g$.
- **Key idea**: view $\mathbb{C}H^2$ as a special case of a Damek-Ricci solvable Lie group with left-invariant metric.
- Then, use:
 - an explicit orthonormal frame on the group,
 - ightharpoonup coordinate representation of ξ in this frame,
 - ▶ and translate the conformal Killing equation into a PDE system.
- Part of the system yields a Cauchy–Riemann type relation.
 - ⇒ Some coefficients must be (real, imaginary parts of) **holomorphic** functions.
- Expanding these functions in terms of harmonic polynomials and substituting into the remaining PDEs, we obtain an identity between linearly independent functions.
 - \Rightarrow Almost all expansion coefficients vanish, forcing $\rho \equiv 0$.

Our Approach: From $\mathbb{C}H^2$ to Higher Dimensions

- The PDE method developed for $\mathbb{C}H^2$ also works for general $\mathbb{C}H^n$ and even Damek–Ricci spaces.
- **Key reason:** The conformal Killing equation system in $\mathbb{C}H^n$ (or DR spaces) contains the $\mathbb{C}H^2$ system as a natural subsystem.
- The Cauchy–Riemann-type equations reappear unchanged in higher dimensions.
- The only difference is in some derivative terms the differential operators become more complicated, but the essential analytic structure remains the same.

This Section

- Definition & Main Theorem
- 2 Motivation & Background
- 3 Conformal Killing Equation: Geometry and Setup
- 4 Proof of Main Theorem and Future Directions

Conformal Vector Fields on Real Hyperbolic Space $\mathbb{R}H^n$

Theorem 3.1

Every non-Killing conformal vector field ξ on $\mathbb{R}H^n(-1)$ $(n \ge 3)$ can be written as a linear combination of gradient fields:

$$\xi = \sum c_i \nabla e^{b_i},$$

where each b_i is a Busemann function associated with a boundary point.

Lemma 3.2

Let (M,g) be a Riemannian manifold. If a smooth function f satisfies $\operatorname{Hess}(f)=g-df\otimes df$, then the gradient field $\nabla(e^f)$ is conformal.

- These vector fields form an (n+1)-dimensional family of non-Killing conformal vector fields.
- Each ∇e^b is *incomplete*: its flow reaches boundary in finite time.
- Although the conformal Lie algebra is larger than the isometry algebra, we have $\operatorname{Conf}(\mathbb{R}H^n) = \operatorname{Isom}(\mathbb{R}H^n)$.

Why the Real Hyperbolic Construction Fails

- The construction via Busemann functions that works in $\mathbb{R}H^n$ fails in $\mathbb{C}H^n$.
- **Key obstruction:** The Hessian of a Busemann function has *two* distinct nonzero eigenvalues in directions orthogonal to its kernel.
- Therefore, we turned to a direct PDE approach, analyzing the conformal Killing equation in a natural left-invariant frame.

In the compact Káhler case, the following result is known:

Theorem 3.3 (Lichnerowicz)

Any conformal vector field on a compact Kähler manifold of real dimension at least four must be Killing.

Damek-Ricci Spaces: Definition and Basic Properties

- A **Damek–Ricci space** S is a solvable Lie group with Lie algebra $\mathfrak{s} = \mathfrak{a} \oplus \mathfrak{n}$, where:
 - ▶ $\mathfrak{n} = \mathfrak{v} \oplus \mathfrak{z}$ is 2-step nilpotent, with $[\mathfrak{v}, \mathfrak{v}] \subset \mathfrak{z}$ and $[\mathfrak{v}, \mathfrak{z}] = 0$. (Here \mathfrak{z} is the center.)
 - ▶ For $Z \in \mathfrak{z}$, define $J_Z : \mathfrak{v} \to \mathfrak{v}$ by $\langle J_Z V, W \rangle = \langle Z, [V, W] \rangle$.
 - ▶ Additional condition: For unit $Z \in \mathfrak{z}$, one requires $J_Z^2 = -|Z|^2 \mathrm{Id}_{\mathfrak{v}}$.
 - ullet $\mathfrak{a} = \mathbb{R}A$ is 1-dimensional, acting on \mathfrak{n} by

$$[A, V] = \frac{1}{2}V, \quad [A, Z] = Z \quad (V \in \mathfrak{v}, Z \in \mathfrak{z}).$$

- ► The left-invariant metric extends the inner product on n, with A unit and orthogonal to n.
- These are harmonic, noncompact Riemannian manifolds that include all noncompact rank-one symmetric spaces except for $\mathbb{R}H^n$.
- In particular: $\mathbb{C}H^n$ is a special case of a Damek–Ricci space $(\dim \mathfrak{z} = 1)$.

$\mathbb{C}H^2$ as a Damek–Ricci Space

We realize $\mathbb{C}H^2$ as a Damek–Ricci space S.

- $\mathbb{C}H^2$ corresponds to the case dim $\mathfrak{v}=2$ and dim $\mathfrak{z}=1$.
- \bullet The Lie algebra $\mathfrak s$ has orthonormal basis:

$$\{V, J_ZV, Z, A\},\$$

with nontrivial brackets:

$$[V, J_Z V] = Z, \quad [A, V] = \frac{1}{2}V, \quad [A, J_Z V] = \frac{1}{2}J_Z V, \quad [A, Z] = Z,$$

and all other brackets vanish.

- These define a left-invariant frame on the group $S (= \mathbb{C}H^2)$.
- By the exponential map, we introduce natural coordinates:

$$(x, y, z, a) \in \mathbb{R}^4 \cong S.$$

Setup for the Conformal Killing System

• A general vector field ξ on $\mathbb{C}H^2 \cong S$ is expressed as:

$$\xi = f_1 V + f_2 J_Z V + f_3 Z + f_4 A,$$

where each f_i is a smooth function of (x, y, z, a).

• In these coordinates, the left-invariant vector fields are given by:

$$\begin{split} V = & e^{a/2} \left(\frac{\partial}{\partial x} - \frac{y}{2} \frac{\partial}{\partial z} \right), \qquad J_Z V = & e^{a/2} \left(\frac{\partial}{\partial y} + \frac{x}{2} \frac{\partial}{\partial z} \right), \\ Z = & e^a \frac{\partial}{\partial z}, \qquad \qquad A = & \frac{\partial}{\partial a}. \end{split}$$

We compute the conformal Killing equation

$$\mathcal{L}_{\xi}g = 2\rho g$$
,

with respect to this left-invariant frame.

• This leads to a system of PDEs for f_1 , f_2 , f_3 , f_4 and ρ .

Conformal Killing Equation in Coordinates (I)

$$2e^{a/2}\left(\frac{\partial f_1}{\partial x} - \frac{y}{2}\frac{\partial f_1}{\partial z}\right) - f_4 = 2\rho,\tag{1}$$

$$e^{a/2} \left(\frac{\partial f_1}{\partial y} + \frac{x}{2} \frac{\partial f_1}{\partial z} \right) + e^{a/2} \left(\frac{\partial f_2}{\partial x} - \frac{y}{2} \frac{\partial f_2}{\partial z} \right) = 0, \quad (2)$$

$$2e^{a/2}\left(\frac{\partial f_2}{\partial y} + \frac{x}{2}\frac{\partial f_2}{\partial z}\right) - f_4 = 2\rho,\tag{3}$$

$$e^{a}\frac{\partial f_{1}}{\partial z} + e^{a/2}\left(\frac{\partial f_{3}}{\partial x} - \frac{y}{2}\frac{\partial f_{3}}{\partial z}\right) + f_{2} = 0, \tag{4}$$

$$e^{a} \frac{\partial f_2}{\partial z} + e^{a/2} \left(\frac{\partial f_3}{\partial y} + \frac{x}{2} \frac{\partial f_3}{\partial z} \right) - f_1 = 0,$$
 (5)

$$2e^{a}\frac{\partial t_{3}}{\partial z} - 2f_{4} = 2\rho, \tag{6}$$

$$\frac{\partial f_1}{\partial a} + e^{a/2} \left(\frac{\partial f_4}{\partial x} - \frac{y}{2} \frac{\partial f_4}{\partial z} \right) + \frac{1}{2} f_1 = 0, \tag{7}$$

$$\frac{\partial f_2}{\partial a} + e^{a/2} \left(\frac{\partial f_4}{\partial y} + \frac{x}{2} \frac{\partial f_4}{\partial z} \right) + \frac{1}{2} f_2 = 0, \tag{8}$$

ormal Killing Equation in Coordinates (I)

$$\begin{cases}
2e^{a/2} \left(\frac{\partial f_1}{\partial x} - \frac{y}{2} \frac{\partial f_2}{\partial z} \right) - f_4 = 2\rho, & (1) \\
e^{a/2} \left(\frac{\partial f_1}{\partial y} + \frac{x}{2} \frac{\partial f_2}{\partial z} \right) + e^{a/2} \left(\frac{\partial f_2}{\partial x} - \frac{y}{2} \frac{\partial f_2}{\partial z} \right) = 0, & (2) \\
2e^{a/2} \left(\frac{\partial f_2}{\partial y} + \frac{x}{2} \frac{\partial f_2}{\partial z} \right) - f_4 = 2\rho, & (3) \\
e^{a} \frac{\partial f_1}{\partial z} + e^{a/2} \left(\frac{\partial f_3}{\partial x} - \frac{y}{2} \frac{\partial f_3}{\partial z} \right) + f_2 = 0, & (4) \\
e^{a} \frac{\partial f_2}{\partial z} + e^{a/2} \left(\frac{\partial f_3}{\partial y} + \frac{x}{2} \frac{\partial f_3}{\partial z} \right) - f_1 = 0, & (5) \\
2e^{a} \frac{\partial f_3}{\partial z} - 2f_4 = 2\rho, & (6) \\
\frac{\partial f_1}{\partial a} + e^{a/2} \left(\frac{\partial f_4}{\partial x} - \frac{y}{2} \frac{\partial f_4}{\partial z} \right) + \frac{1}{2}f_1 = 0, & (7) \\
\frac{\partial f_2}{\partial a} + e^{a/2} \left(\frac{\partial f_4}{\partial y} + \frac{x}{2} \frac{\partial f_4}{\partial z} \right) + \frac{1}{2}f_2 = 0, & (8) \\
\frac{\partial f_3}{\partial a} + e^{a} \frac{\partial f_4}{\partial z} + f_3 = 0, & (9) \\
2\frac{\partial f_4}{\partial a} = 2\rho. & (10)
\end{cases}$$
4. Satoh (NIT) Conformal vector fields on CHⁿ Sep. 8 (DGA2028)

$$2\frac{\partial f_4}{\partial z} = 2\rho. \tag{10}$$

Conformal Killing Equation in Coordinates (II)

$$\mathcal{L}_{\xi}g = 2\rho g \implies \begin{cases} \left(\frac{\partial f_{1}}{\partial x} - \frac{y}{2}\frac{\partial f_{1}}{\partial z}\right) = e^{-a}\frac{\partial}{\partial a}\left(e^{a/2}f_{4}\right), & (1) \\ \left(\frac{\partial f_{1}}{\partial y} + \frac{x}{2}\frac{\partial f_{1}}{\partial z}\right) + \left(\frac{\partial f_{2}}{\partial x} - \frac{y}{2}\frac{\partial f_{2}}{\partial z}\right) = 0, & (2) \\ \left(\frac{\partial f_{2}}{\partial y} + \frac{x}{2}\frac{\partial f_{2}}{\partial z}\right) = e^{-a}\frac{\partial}{\partial a}\left(e^{a/2}f_{4}\right), & (3) \\ e^{a}\frac{\partial f_{1}}{\partial z} + e^{a/2}\left(\frac{\partial f_{3}}{\partial x} - \frac{y}{2}\frac{\partial f_{3}}{\partial z}\right) + f_{2} = 0, & (4) \\ e^{a}\frac{\partial f_{2}}{\partial z} + e^{a/2}\left(\frac{\partial f_{3}}{\partial y} + \frac{x}{2}\frac{\partial f_{3}}{\partial z}\right) - f_{1} = 0, & (5) \\ \frac{\partial}{\partial z}\left(e^{a}f_{3}\right) = e^{-a}\frac{\partial}{\partial a}\left(e^{a}f_{4}\right), & (6) \\ e^{a}\left(\frac{\partial f_{4}}{\partial x} - \frac{y}{2}\frac{\partial f_{4}}{\partial z}\right) + \frac{\partial}{\partial a}\left(e^{a/2}f_{1}\right) = 0, & (7) \\ e^{a}\left(\frac{\partial f_{4}}{\partial y} + \frac{x}{2}\frac{\partial f_{4}}{\partial z}\right) + \frac{\partial}{\partial a}\left(e^{a/2}f_{2}\right) = 0, & (8) \\ e^{-a}\frac{\partial}{\partial a}\left(e^{a}f_{3}\right) = -\frac{\partial}{\partial z}\left(e^{a}f_{4}\right). & (9) \end{cases}$$

Cauchy-Riemann Type Structure

$$\begin{cases} \frac{\partial}{\partial z} (e^{a} f_{3}) = e^{-a} \frac{\partial}{\partial a} (e^{a} f_{4}), & (6) \\ e^{-a} \frac{\partial}{\partial a} (e^{a} f_{3}) = -\frac{\partial}{\partial z} (e^{a} f_{4}). & (9) \end{cases}$$

- Let $w = e^a$, and define new functions $F_3 = w f_3$, $F_4 = w f_4$.
- Then equations (6) and (9) become:

$$\begin{cases} \frac{\partial F_3}{\partial z} = \frac{\partial F_4}{\partial w}, \\ \frac{\partial F_3}{\partial w} = -\frac{\partial F_4}{\partial z}. \end{cases}$$

which is a Cauchy–Riemann system on the (z, w)-plane.

• So, $F_3 + i F_4$ must be a holomorphic function on the (z, w)-plane, depending on parameters x, y.

Harmonic Polynomial Expansion

- Since F_3 , F_4 are harmonic in (z, w), they are real-analytic.
- Hence, around the origin they admit expansions into homogeneous harmonic polynomials (See [1, Cor. 5.34]):

$$F_3 = \sum_{m=1}^{\infty} F_3^{[m]} + C_3, \quad F_4 = \sum_{m=1}^{\infty} F_4^{[m]} + C_4.$$

• Each component:

$$F_3^{[m]} + iF_4^{[m]} = (C_1^{[m]} + iC_2^{[m]})(z + iw)^m.$$

Here, $C_1^{[m]}, C_2^{[m]}, C_3$ and C_4 are smooth in the parameters x, y.

 This reduces the PDE system to algebraic conditions on the coefficients.

Expression of $F_3^{[m]}$ and $F_4^{[m]}$

• For each $m \ge 1$,

$$F_3^{[m]} + iF_4^{[m]} = (C_1^{[m]} + i C_2^{[m]}) (z + iw)^m, \qquad C_j^{[m]} = C_j^{[m]}(x, y).$$

Using

$$(z+iw)^m = \sum_{k=0}^m \binom{m}{k} i^k z^{m-k} w^k \quad \text{and} \quad i^k = \cos \frac{\pi k}{2} + i \sin \frac{\pi k}{2},$$

we obtain the real formulas:

$$\begin{cases} F_3^{[m]}(z,w) = \sum_{k=0}^m {m \choose k} \left(C_1^{[m]} \cos \frac{\pi k}{2} - C_2^{[m]} \sin \frac{\pi k}{2} \right) z^{m-k} w^k, \\ F_4^{[m]}(z,w) = \sum_{k=0}^m {m \choose k} \left(C_1^{[m]} \sin \frac{\pi k}{2} + C_2^{[m]} \cos \frac{\pi k}{2} \right) z^{m-k} w^k. \end{cases}$$

Analytic Remarks

- The expansion is local, valid near the origin (other centers also possible).
- Convergence is uniform on small neighbourhoods, together with derivatives.
- Therefore, termwise differentiation and substitution into the PDE system are justified.
- Integration and differentiation can also be interchanged with the series.

These facts allow us to compare coefficients in the PDEs rigorously.

This Section

- Definition & Main Theorem
- 2 Motivation & Background
- 3 Conformal Killing Equation: Geometry and Setup
- 4 Proof of Main Theorem and Future Directions

Proof Outline of Theorem 1.1 (n = 2) – Step 1

• Recall equation (10):

$$\frac{\partial f_4}{\partial a} = \rho.$$

If f_4 is independent of a, then $\rho \equiv 0$.

- Recall $F_3 = w f_3$, $F_4 = w f_4$ with $w = e^a$.
 - $F_3 + iF_4$ is holomorphic in (z, w).
 - ▶ Hence F_3 , F_4 are harmonic and admit expansions into homogeneous harmonic polynomials.
- By substituting the expansion into the remaining PDEs and comparing coefficients, we find that almost all coefficients must vanish:
 - $C_4(x,y) = 0$
 - $C_2^{[m]}(x,y) = 0$ for any positive integer m.
 - $C_1^{[m]}(x,y) = 0 \text{ for } m \ge 3.$

Proof Outline of Theorem 1.1 (n = 2) – Step 2

- With the previous vanishing, all $C_2^{[m]}$ vanish, and $C_1^{[m]}$ remains only when m=1,2.
- From the definition, the two remaining terms can be written as:

$$F_4^{[1]} = e^a C_1^{[1]}(x,y), \qquad F_4^{[2]} = 2z e^a C_1^{[2]}(x,y),$$

while $C_4 = 0$.

Hence

$$F_4 = w \left(C_1^{[1]}(x, y) + 2z C_1^{[2]}(x, y) \right),$$

$$\Rightarrow f_4 = \frac{F_4}{w} = C_1^{[1]}(x, y) + 2z C_1^{[2]}(x, y),$$

which is independent of a.

- Therefore, by (10) we obtain $\rho \equiv 0$.
- By analyticity (identity theorem), this polynomial form of F_4 holds globally, not only near the origin.

From $\mathbb{C}H^2$ to General $\mathbb{C}H^n$ and Damek–Ricci Spaces S

- Let $\mathfrak{s} = \mathfrak{v} \oplus \mathfrak{z} \oplus \mathbb{R} A$ be the Lie algebra of S.
- Choose unit vectors $V \in \mathfrak{v}$ and $Z \in \mathfrak{z}$.
- Take an orthonormal basis

$$\{V, J_ZV, V_3, \ldots, Z, Z_2, \ldots, A\},\$$

and introduce natural coordinates $(x, y, v_3, \dots, z, z_2, \dots, a)$.

Consider the conformal Killing equation

$$\mathcal{L}_{\xi}g = 2\rho g$$
.

- Focus on the $\{V, J_Z V, Z, A\}$ -block of equations.
 - ▶ This subsystem is almost identical to the 10 equations obtained in $\mathbb{C}H^2$.
 - ► The only difference: differential operators in *x*, *y* variables are slightly modified
 - ▶ But the essential structure of the equations remains the same.

Conclusion of the General Case

- The PDE subsystem for $\{V, J_Z V, Z, A\}$ has the same analytic structure as in $\mathbb{C}H^2$:
 - ► Cauchy–Riemann type equations reappear unchanged.
 - ▶ Harmonic polynomial expansion applies in the same way.
- Therefore, the $\mathbb{C}H^2$ argument extends directly to $\mathbb{C}H^n$ and to any Damek–Ricci space.
- We obtain

$$\rho \equiv 0$$
,

i.e., every conformal vector field on S is Killing.

Geometric Interpretation and Future Direction

- In a general Damek–Ricci space S, for any unit vectors $V \in \mathfrak{v}$ and $Z \in \mathfrak{z}$, the set $\{V, J_Z V, Z, A\}$ forms a Lie subalgebra of \mathfrak{s} , and the subgroup it generates is a complex hyperbolic plane.
- Thus, any Damek-Ricci space S contains a totally geodesic submanifold isometric to $\mathbb{C}H^2$.
- Our proof can be viewed as showing that the infinitesimal conformal rigidity (non-existence of nontrivial conformal vector fields) of this totally geodesic submanifold propagates to the ambient space.
- This suggests the following problem ...

Remarks on the Proposed Problem

- Q1 If N is a totally geodesic submanifold of M, and N has no nontrivial conformal vector fields, then does M also have none?
 - \Rightarrow False.
 - ▶ Example: $M = N \times_f \mathbb{R}$, where f is a non-constant positive function satisfying f(0) = 1. Then $\xi = f(t) \frac{\partial}{\partial t}$ is a nontrivial conformal vector field.
- If M has no nontrivial conformal vector fields, then do all its totally geodesic submanifolds also?
 - \Rightarrow False.
 - ▶ Example: $\mathbb{C}H^n$ contains $\mathbb{R}H^k$ totally geodesically, but $\mathbb{R}H^k$ admits many nontrivial conformal vector fields.

Problem 4.1

What are the precise **geometric conditions** under which infinitesimal conformal rigidity propagates between ambient spaces and their totally geodesic submanifolds?

References I

- Axler, S., Bourdon, P. and Ramey, W., Harmonic Function Theory, Grad. Texts in Math. 137, Springer, 2001.
- Berndt, J., Tricerri, F. and Vanhecke, L., Generalized Heisenberg groups and Damek-Ricci harmonic spaces, Lecture Notes in Math. **1598**, Springer-Verlag, Berlin. **1995**.
- Damek, E. and Ricci, F., *A class of nonsymmetric harmonic Riemannian spaces*, Bull. Amer. Math. Soc. **27** (1992), 139-142.
- Kanai, M., On a differential equation characterizing a Riemannian structure of a manifold, Tokyo J. Math. **6** (1983), 143-151.
- Satoh, H. and Shah, H. M., Conformal vector fields on complex hyperbolic space, arXiv:2506.09710.
- Satoh, H. and Shah, H. M., Conformal vector fields on Damek-Ricci space, arXiv:2507.18137.
- Tashiro, Y., Complete Riemannian manifolds and some vector fields, Trans. Amer. Math. Soc. 117 (1965), 251-275.