HUMAN RESPONSE TO SONIC BOOMS

JOHN KARASINSKI DECEMBER 1, 2016

Chuck Yeager, Bell X-1 (1957)

THE EARLY YEARS

- ▶ 1950 USAF
- Correlate pressure with theory
- Keep humans "far enough away"
- Weapon?

INITIAL EXPERIMENTS

- Two aircraft at Mach 1.05-1.16
- Unique wave shapes
- Glass breakage
- Test on humans within 50 feet

MANY NOISE METRICS

- Predict loudness, or annoyance, or...
- Sound Pressure Levels (SPL)

$$L_A = 10\log_{10} \left[\sum_{i=1}^n 10^{L_A(i)/10} \right]$$

SLA, LL_S, LL_Z, PNL, PL, EPNL...

MODELLING BOOMS (PART 1)

- N-wave signature
 - Rise time, P_{max}, Duration

STARTLE RESPONSE

- Short rise times -> Large annoyance
- Abrupt, loud noises are startling
- Can you adapt?

MODELLING BOOMS (PART 2)

- N-wave signature
 - Rise time, P_{max}, Duration
- Front-shock-minimized (FSM)
 - Front-shock rise time, secondary rise time, peak
 overpressure, front-shock overpressure

COMMERCIAL TRANSPORT

- It would be nice to make money off this
- Effects on the population?
- Indoor vs outdoor perceptions

SUBJECT TESTING

- So far this is modelling
- Actual humans?

FUTURE RESEARCH

- Still no clear agreement
- Will aircraft ever be able to go

supersonic over land?

