ICS 321 Fall 2010 Algebraic and Logical Query Languages (ii)

Asst. Prof. Lipyeow Lim
Information & Computer Science Department
University of Hawaii at Manoa

Datalog: Database Logic

- A (relational) <u>atom</u>
 - Consists of a predicate and a list of arguments
 - Arguments can be constants or variables
 - Takes on Boolean value (true or false)
- A relation R can be represented as a predicate R
 - A tuple <a,b,c,d,e,f,g> is in R iff the atom R(a,b,c,d,e,f,g) is true.

Example: tables in datalog

R	
A	В
1	2
2	Λ

Arithmetic Atoms

Datalog Rules

Shorthand "if" or \leftarrow head body for AND LongMovie(t,y):- Movies(t,y,l,g,s,p) $\frac{1}{2}$ >=100 Aka "subgoal" (t,y) is a tuple of LongMovie These two These two Can be preceded **IF** (t,y,l,g,s,p) is a tuple of "t,y" have to "I" have to by negation Movies and length of movie is

Anonymous variables

match

LongMovie(t,y):- Movies(t,y,l, \searrow , $_$), I >= 100

match

at least 100

operator "NOT"

or "~"

Safety Condition for Datalog Rules

Every **variable** that appears anywhere in the rule **must** appear in some **nonnegated**, **relational subgoal** of the body

- Without the safety condition, rules may be underspecified, resulting in an infinite relation (not allowed).
- Examples
 - LongMovie(t,y) :- Movies(t,y,l,_,_,) , l >=100
 - P(x,y) := Q(x,z), NOT R(w,x,z), x < y

Alternative Interpretation: Consistency

```
Q(1,2)
Q(1,3)
R(2,3)
R(3,1)
P(x,y):- Q(x,z), R(z,y), NOT Q(x,y)
```

- For each consistent assignment of nonnegated, relational subgoal,
- Check the negated, relational subgoals and the arithmetic subgoals for consistency

Q(x,z)	R(z,y)	Consistent?	NOT Q(x,y)	Head
(1,2)	(2,3)	Yes	false	
(1,2)	(3,1)	No, z=2,3		
(1,3)	(2,3)	No, z=2,3		
(1,3)	(3,1)	Yes	true	P(1,1)

Intensional vs Extensional

```
Q(1,2)
Q(1,3)
R(2,3)
R(3,1)
P(x,y) :- Q(x,z), R(z,y), NOT Q(x,y)

intensional
```

- Extensional predicates relations stored in a database
- Intensional predicates computed by applying one or more datalog rules

What about bag semantics?

- Datalog still works if there are no negated, relational subgoals.
- Treat duplicates like non-duplicates

R(1,2)
R(1,2)
S(2,3)
S(4,5)
S(4,5)
H(x,z) := R(x,y), S(y,z)

R(x,y)	S(y,z)	Consistent?	Head
(1,2)	(2,3)	Yes	H(1,3)
(1,2)	(4,5)	No, y=2,4	
(1,2)	(4,5)	No, y=2,4	

```
Answer(x,y):- A(x,y)
Answer(x,y):- B(x,y)
```

Datalog

Answer(x,y) :- A(x,y), B(x,y)

Datalog

Answer(x,y) :- A(x,y), NOT B(x,y)

Datalog

Answer(x,y):- A(x,y), x > 10, y = 200

Datalog

Answer(x) :- A(x,y)

Datalog

Answer(w,x,y,z) :- A(w,x), B(y,z)

Datalog

Answer(w,x,y) :- A(w,x), B(x,y)

Datalog

Answer(w,x,z) :- A(w,x), B(y,z), x>y

Datalog

```
Path(x,y) :- Edge(x,y)
```

Path(x,z) :- Edge(x,y), Edge(y,z)