Categorical approaches to bisimilarity PPS' seminar, IRIF, Paris 7

Jérémy Dubut

National Institute of Informatics Japanese-French Laboratory for Informatics

April 2nd

Bisimilarity of Transition Systems

Transition Systems

Transition system:

A **TS** $T = (Q, i, \Delta)$ on the alphabet Σ is the following data:

- a set Q (of **states**);
- an initial state $i \in Q$;
- a set of transitions $\Delta \subseteq Q \times \Sigma \times Q$.

- $\Sigma = \{a, b, c\},\$
- $Q = \{0, 1, 2, 3\},\$
- i = 0,
- $\Delta = \{(0, a, 0), (0, b, 1), (0, a, 2), (1, c, 2), (2, b, 0), (2, a, 3)\}.$

Bisimulations of Transition Systems

Bisimulations [Park81]:

A **bisimulation** between $T_1=(Q_1,i_1,\Delta_1)$ and $T_2=(Q_2,i_2,\Delta_2)$ is a relation $R\subseteq Q_1\times Q_2$ such that:

- (i) $(i_1, i_2) \in R$;
- (ii) if $(q_1, q_2) \in R$ and $(q_1, a, q_1') \in \Delta_1$ then there is $q_2' \in Q_2$ such that $(q_2, a, q_2') \in \Delta_2$ and $(q_1', q_2') \in R$;
- (iii) if $(q_1, q_2) \in R$ and $(q_2, a, q_2') \in \Delta_2$ then there is $q_1' \in Q_1$ such that $(q_1, a, q_1') \in \Delta_1$ and $(q_1', q_2') \in R$.

Several Characterisations of Bisimilarity

Bisimilarity:

Given two TS T and T', the following are equivalent:

- [Park81] There is a bisimulation between T and T'.
- [Stirling96] Defender has a strategy to never loose in a 2-player game on T and T'.
- [Hennessy80] T and T' satisfy the same formulae of the Hennessy-Milner logic.

In this case, we say that T and T' are **bisimilar**.

Morphisms of Transition Systems

Morphism of TS:

A morphism of TS $f:T_1=(Q_1,i_1,\Delta_1)\longrightarrow T_2=(Q_2,i_2,\Delta_2)$ is a function $f:Q_1\longrightarrow Q_2$

such that:

- preserving the initial state: $f(i_1) = i_2$,
- preserving the transitions: for every $(p, a, q) \in \Delta_1$, $(f(p), a, f(q)) \in \Delta_2$.

 $\mathsf{TS}(\Sigma) = \mathsf{category}$ of transition systems and morphisms

Morphisms are functional simulations:

Morphisms are precisely functions f between states whose graph $\{(q, f(q)) \mid q \in Q_1\}$ is a simulation.

Categorical Characterisations

Bisimilarity, using morphisms:

Two TS T and T' are bisimilar iff there is a span of functional bisimulations between them.

Bisimilarity from Coalgebra

J. Rutten. *Universal coalgebra: a theory of systems.* Theoretical Computer Science **249**(1), 3–80 (2000)

Transition systems, as pointed coalgebras

Set of transitions, as functions:

There is a bijection between sets of transitions $\Delta \subset Q \times \Sigma \times Q$ and functions of type:

$$\delta: Q \longrightarrow \mathcal{P}(\Sigma \times Q)$$

where $\mathcal{P}(X)$ is the powerset $\{U \mid U \subset X\}$.

Initial states, as functions:

There is a bijection between initial states $i \in Q$ and functions of type:

$$\iota: * \longrightarrow Q$$

where * is a singleton.

Example

- $\Sigma = \{a, b, c\},\$
- $Q = \{0, 1, 2, 3\},\$
- i = 0,
- $\Delta = \{(0, a, 0), (0, b, 1), (0, a, 2), (1, c, 2), (2, b, 0), (2, a, 3)\}.$

$$egin{array}{ccccc} \delta & : & Q & \longrightarrow & \mathcal{P}(\Sigma imes Q) \\ & 0 & \mapsto & \{(a,0),(b,1),(a,2)\} \\ & 1 & \mapsto & \{(c,2)\} \\ & 2 & \mapsto & \{(b,0)\} \\ & 3 & \mapsto & arnothing \end{array}$$

Pointed coalgebras

Pointed coalgebras:

Given an endofunctor $G: \mathcal{C} \longrightarrow \mathcal{C}$ and an object $I \in \mathcal{C}$, a **pointed coalgebra** is the following data:

- ullet an object $Q\in\mathcal{C}$,
- a morphism $\iota: I \longrightarrow Q$ of \mathcal{C} ,
- a morphism $\sigma: Q \longrightarrow G(Q)$ of C.

G is often decomposed as $T \circ F$, where:

- T: "branching type", e.g, non-deterministic, probabilistic, weighted. For TS: $T = \mathcal{P}$.
- F: "transition type". For TS: $F = \Sigma \times$.

I is often the final object, but we will see other examples. For TS: I = *, the final object.

Morphisms of TS, using Pointed Coalgebras

Morphisms of TS are lax morphisms of pointed coalgebras

A morphism of TS, seen as pointed coalgebras $T=(Q_1,\iota_1,\delta_1)$ and $T'=(Q_2,\iota_2,\delta_2)$ is the same as a function

$$f: Q_1 \longrightarrow Q_2$$

satisfying

Lax Morphisms of Pointed Coalgebras

Lax Morphisms:

Assume there is an order \leq on every Hom-set of the form $\mathcal{C}(X, G(Y))$. A **lax morphism** from (Q_1, ι_1, δ_1) to (Q_2, ι_2, δ_2) is a morphism

$$f: Q_1 \longrightarrow Q_2$$

of $\mathcal C$ satisfying

 $Coal_{lax}(G, I) = category of pointed coalgebras and lax morphisms.$

What about functional bisimulations?

Functional bisimulations are homomorphisms of pointed coalgebras

For two TS, seen as pointed coalgebras $T=(Q_1, \iota_1, \delta_1)$ and $T'=(Q_2, \iota_2, \delta_2)$, and for a function of the form $f:Q_1 \longrightarrow Q_2$, the following are equivalent:

- The graph $\{(q, f(q)) \mid q \in Q_1\}$ of f is a bisimulation.
- *f* is a homomorphism of pointed coalgebras, that is, the following diagram commutes:

Bisimilarity, using homomorphisms of pointed coalgebras

For two TS T and T', the following are equivalent:

- T and T' are bisimilar.
- ullet There is a span of homomorphisms of pointed coalgebras between T and T'.

Homomorphisms of Pointed Coalgebras

Morphisms:

A **homomorphism** from (Q_1, ι_1, δ_1) to (Q_2, ι_2, δ_2) is a morphism

$$f: Q_1 \longrightarrow Q_2$$

of $\mathcal C$ satisfying

Coal(G, I) = category of pointed coalgebras and homomorphisms.

Summary

	coalgebra	
data type	$G: \mathcal{C} \to \mathcal{C}, I \in \mathcal{C}$ \preceq on $\mathcal{C}(X, G(Y))$	
systems	pointed coalgebras	
functional simulations	lax morphisms	
functional bisimulations	homomorphisms	
bisimilarity	existence of a span of functional bisimulations	

Bisimilarity from Open Maps

A. Joyal, M. Nielsen, G. Winskel. *Bisimulation from Open Maps.* Information and Computation **127**, 164–185 (1996)

Runs in a Transition System

Run

A **run** in a transition system (Q, i, Δ) is sequence written as:

$$q_0 \xrightarrow{a_1} q_1 \xrightarrow{a_2} \dots \xrightarrow{a_n} q_n$$

with:

- $q_i \in Q$ and $a_i \in \Sigma$
- $q_0 = i$
- for every j, $(q_j, a_{j+1}, q_{j+1}) \in \Delta$

$$q_0 \xrightarrow{a} q_0 \xrightarrow{b} q_1 \xrightarrow{c} q_2 \xrightarrow{a} q_3$$

Runs, Categorically

Finite Linear Systems:

A finite linear system is a TS of the form $\langle a_1, \ldots, a_n \rangle = ([n], 0, \Delta)$ where:

- [n] is the set $\{0, ..., n\}$;
- Δ is of the form $\{(i, a_{i+1}, i+1) \mid i \in [n-1]\}$ for some $a_1, ..., a_n$ in Σ .

$$\rightarrow 0 \xrightarrow{a_1} 1 \xrightarrow{a_2} 2 \cdots n-1 \xrightarrow{a_n} n$$

Runs are morphisms

There is a bijection between runs of \mathcal{T} and morphisms of TS between a finite linear system to \mathcal{T} .

Functional Bisimulations, from Lifting Properties of Paths

Functional bisimulations are open maps:

For a morphism f of TS from T to T', the following are equivalent:

- The reachable graph of f, that is, $\{(q, f(q)) \mid q \text{ reachable}\}$ is a bisimulation.
- *f* has the right lifting property w.r.t. path extensions, that for every commutative square (in plain):

there is a lifting (in dot), making the two triangles commute.

Bisimilarity, using open maps

For two TS T and T', the following are equivalent:

- T and T' are bisimilar.
- There is a span of open maps between T and T'.

Open maps

Open map situation:

An **open map situation** is a category \mathcal{M} (of **systems**) together with a subcategory $J : \mathbb{P} \hookrightarrow \mathcal{M}$ (of **paths**).

- $\mathcal{M} = \text{category of systems } (\mathsf{Ex}: \, \textbf{TS}(\Sigma)),$
- $\bullet \ \mathbb{P} = \text{sub-category of finite linear systems}.$

Open maps:

A morphism $f: T \longrightarrow T'$ of \mathcal{M} is said to be **open** if for every commutative square (in plain):

$$J(P) \xrightarrow{\rho} T$$

$$J(\rho) \downarrow \qquad \downarrow f$$

$$J(Q) \xrightarrow{\rho'} T'$$

where $p: P \longrightarrow Q$ is a morphism of \mathbb{P} , there is a lifting (in dot) making the two triangles commute.

Summary

	coalgebra	open maps
data type	$G: \mathcal{C} \to \mathcal{C}, I \in \mathcal{C}$ \preceq on $\mathcal{C}(X, G(Y))$	$J:\mathbb{P}\hookrightarrow\mathcal{M}$
systems	pointed coalgebras	objects of ${\cal M}$
functional simulations	lax morphisms	morphisms of ${\cal M}$
functional bisimulations	homomorphisms	open maps
bisimilarity	existence of a span of functional bisimulations	

From Open Maps to Coalgebra

S. Lasota. *Coalgebra morphisms subsume open maps*. Theor. Comput. Sci. **280**(1–2): 123–135 (2002)

Problem Setting

Input: An open map situation $\mathbb{P} \hookrightarrow \mathcal{M}$ such that:

- P is small,
- ullet $\mathbb P$ and $\mathcal M$ has a common initial object 0

Problem: Construct

- a coalgebra situation:
 - $G: \mathcal{C} \longrightarrow \mathcal{C}$.
 - $I \in C$.
 - \rightarrow on $\mathcal{C}(X, G(Y))$.
- ullet a functor Beh : $\mathcal{M} \longrightarrow \mathbf{Coal}_{\mathsf{lax}}(G,I)$

such that

f is an open map iff Beh(f) is a homomorphism.

Solution

- ullet $\mathcal{C} = \mathsf{Set}^{\mathsf{ob}(\mathbb{P})}$,
- $G((X_P)_{P \in \mathbf{ob}(\mathbb{P})}) = (\prod_{Q \in \mathbb{P}} (\mathcal{P}(X_Q))^{\mathbb{P}(P,Q)})_{P \in \mathbb{P}}$
- $I_0 = *, I_P = \emptyset$ otherwise,
- Beh(X):
 - $ightharpoonup X_P = \text{set of runs labelled by } P, \text{ i.e., the set } \mathcal{M}(P,X),$
 - ▶ $\iota: (I_P) \longrightarrow (X_P)$ maps * to unique morphism from 0 to X,
 - $\sigma_P = (\sigma_{P,Q})_Q : X_P \longrightarrow \prod_{Q \in \mathbb{P}} (\mathcal{P}(X_Q))^{\mathbb{P}(P,Q)}$, where $\sigma_{P,Q}$ maps a run ρ labelled by P to the set of runs labelled by Q that extend ρ .

Theorem [Lasota02]:

f is an open map iff Beh(f) is a homomorphism.

From Coalgebra to Open Maps

T. Wißman, J. Dubut, S. Katsumata, I. Hasuo. Path Category For Free – Open Morphisms From Coalgebras With Non-Deterministic Branching. FoSSaCS'19

Problem Setting

Input: A coalgebra situation:

- $G = T \circ F : \mathcal{C} \longrightarrow \mathcal{C}$,
- $I \in \mathcal{C}$,
- \leq on $\mathcal{C}(X, \mathcal{G}(Y))$.

satisfying some axioms.

Problem: Construct an open map situation $J: \mathbb{P} \hookrightarrow \mathbf{Coal}_{lax}(G, I)$ such that lax homomorphism $f: c_1 \longrightarrow c_2$:

if f is a homomorphism then f is open if f is open and c_2 is reachable, then f is a homomorphism

THE key notion: *F*-precise morphisms

F-precise morphisms:

A morphism $s: S \to FR$ of C is F-precise if for all f, g, h:

Intuition: a morphism $s: S \to FR$ is precise iff every element of R is used exactly once in the definition of s.

Examples

$$FX = X \times X + \bot$$

not precise

precise

The Path Category $\mathbb{P} = \text{Path}(I, F)$

A path consists in:

- a finite sequence P_0, \ldots, P_n of objects of C with $P_0 = I$,
- a finite sequence of F + 1-precise maps:

$$f_k: P_k \longrightarrow FP_{k+1} + 1$$

A morphism between paths, from $(P_k, p_k)_{k \le n}$ to $(Q_j, q_j)_{j \le m}$ consists in a sequence of isomorphisms $\phi_k : P_k \longrightarrow Q_k$ such that:

$$\begin{array}{ccc} P_k & \stackrel{\rho_k}{\longrightarrow} & FP_{k+1} + 1 \\ \phi_k & & & \downarrow^{F\phi_{k+1} + 1} \\ Q_k & \stackrel{q_k}{\longrightarrow} & FQ_{k+1} + 1 \end{array}$$

Examples

$$FX = \{a\} \times X + X \times X, I = *, p_k : P_k \rightarrow FP_{k+1} + \{\bot\}$$

The Functor J

Assumptions on C and T:

- $oldsymbol{\circ}$ C has finite coproducts,
- \bullet $\eta: \operatorname{Id}_{\mathcal{C}} \longrightarrow T$,
- \bullet $\bot : 1 \longrightarrow T$ such that $\bot_X \in \mathcal{C}(1, T(X))$ is the least element for \preceq ,
- some others.

Typical example: the powerset functor ${\cal P}$

- Set has disjoint unions and empty set,
- η is the unit $\eta_X(x) = \{x\}$,
- \bot is given by the empty subset $\bot_X(*) = \varnothing$,
- . . .

Theorem:

There is a functor $J: \mathsf{Path}(I,F) \longrightarrow \mathsf{Coal}_{\mathsf{lax}}(TF,I)$ given by $J(P_k,p_k) :=$

$$I \xrightarrow{\mathsf{in_0}} \coprod_{k \leq n} P_k \xrightarrow{\left[\mathsf{inl} \cdot [\mathsf{Fin}_{k+1} \cdot p_k]_{k < n}, \mathsf{inr} \cdot !\right]} F \coprod_{k \leq n} P_k + 1 \xrightarrow[]{[\eta, \bot]} \mathsf{TF} \coprod_{k \leq n} P_k$$

Wrapping up

Theorem:

A homomorphism of pointed coalgebras in $Coal_{lax}(TF, I)$ is open.

Proposition-Definition:

For a pointed coalgebra $c = (Q, \iota, \sigma)$, the following are equivalent:

- c has no proper subcoalgebra,
- the set of all morphisms of the form $J(P_k, p_k) \longrightarrow c$ is jointly epic.

In this case, we say that c is **reachable**.

Theorem:

An open map $h: c \longrightarrow c'$ in **Coal**_{lax}(TF, I) where c is reachable is a homomorphism.

Instances

Labelled Transition Systems

- \circ $C = \mathbf{Set}$.
- $F(X) = \Sigma \times X$,
- $T = \mathcal{P}$,
- I = *.

Paths are given by words.

Various Tree-like Automata

- $oldsymbol{\circ} \mathcal{C} = \mathbf{Set}$,
- F analytic, i.e., $F(X) = \coprod_{\sigma/n \in \Sigma} X^n/G_{\sigma}$,
- $T = \mathcal{P}$,
- *I* = *.

Multi-Sorted Transition Systems [Lasota'02]

- ullet $\mathcal{C} = \mathsf{Set}^{\mathsf{ob}(\mathbb{P})}$,
- $F((X_P)_{P\in\mathbb{P}}) = \left(\coprod_{Q\in\mathbb{P}} \mathbb{P}(P,Q) \times X_Q\right)_{P\in\mathbb{P}}$
- $T((X_P)_{P\in\mathbb{P}})=(\mathcal{P}(X_P))_{P\in\mathbb{P}},$
- $I_0 = *, I_P = \varnothing$.

Paths are given by sequences of path extensions from the initial path category:

$$0 \xrightarrow{m_1} P_1 \xrightarrow{m_2} P_2 \cdots \xrightarrow{m_n} P_n$$

Consequence:

We cannot expect a more general translation from coalgebra to open maps.

Regular Nondeterministic Nominal Automata [Schröder et al.'17]

- C = Nom.
- $F(X) = 1 + \mathbb{A} \times X + [\mathbb{A}]X$, where $[\mathbb{A}]_{-}$ is a binding operator,
- $T = \mathcal{P}_{ufs}$, the set of *uniformly* finitely supported,
- $I = \mathbb{A}^{\# n}$, the set of n-tuples of distincts atoms.

General Kripke Frames [Kupke et al.'04]

- ullet $\mathcal{C} =$ **Stone**, the category of Stone spaces
- F = Id,
- T = V, the Vietoris topology on the set of compact subsets,
- I = ∗.

Conclusion

[Wißman, D., Katsumata, Hasuo – FoSSaCS'19] Non-deterministic branching

	coalgebra	open maps
data type	$G: \mathcal{C} \to \mathcal{C}, I \in \mathcal{C}$ \preceq on $\mathcal{C}(X, G(Y))$	$J:\mathbb{P}\hookrightarrow\mathcal{M}$
systems	pointed coalgebras	objects of ${\cal M}$
functional simulations	lax morphisms	morphisms of ${\cal M}$
functional bisimulations	homomorphisms	open maps
bisimilarity	existence of a span of functional bisimulations	

[Lasota'02]

Small category of paths