

in Machine Learning

Optimal Transport

OT has found multiple applications in machine learning

Comparing distributions/samples is at the heart of ML

OT provides a principled, theoretically sound approach to do it

Recently: fast algorithms [Cuturi, 2013; Altschuler et al. 2017; ...], and accompanying theory [Geneveay et al., 2019,...]

Figure 7: Shape interpolation in 3D, expanded from Fig. 1.

Shape registration, interpolation [Gangbo + McCann, 2000; Solomon et al., 2015]

Optimal transport

Domain Adaptation, Classification Courty et al., 2017; Frogner et al., 2015]

Generative models [Arjovsky et al. 2017; Salimans et al., 2018; Genevay et al., 2018]

Optimal Transport in Machine Learning

OT has found multiple applications in machine learning

Figure 7: Shape interpolation in 3D, expanded from Fig. 1.

Shape registration, interpolation [Gangbo + McCann, 2000; Solomon et al., 2015]

Domain Adaptation, Classification [Courty et al., 2017; Frogner et al., 2015]

Generative models [Arjovsky et al. 2017; Salimans et al., 2018; Genevay et al., 2018]

- Comparing distributions/samples is at the heart of ML
- OT provides a principled, theoretically sound approach to do it
- Recently: fast algorithms [Cuturi, 2013; Altschuler et al. 2017; ...], and accompanying theory [Geneveay et al., 2019,...]

Optimal Transport Limitations

Doesn't incorporate frequently occurring structural information