PHYS 250 Formula Sheet

Constants

 $1 \, \text{eV} = 1.602 \times 10^{-19} \, \text{J}$ $q = 1.602 \times 10^{-19} \,\mathrm{C}$ $c = 2.998 \times 10^8 \,\mathrm{m/s}$ $h = 6.626 \times 10^{-34} \,\mathrm{J \, s} = 4.136 \times 10^{-15} \,\mathrm{eV \, s}$ $hc = 1240 \,\text{eV} \,\text{nm} = 1.986 \times 10^{-25} \,\text{J} \,\text{m}$ $\begin{array}{l} \hbar = \frac{h}{2\pi} = 1.055 \times 10^{-34} \, \mathrm{J \, s} = 6.5821 \times 10^{-16} \, \mathrm{eV \, s} \\ k = 1.381 \times 10^{-23} \, \mathrm{J/K} = 8.617 \times 10^{-5} \, \mathrm{eV/K} \end{array}$ $m_e = 9.11 \times 10^{-31} \,\mathrm{kg} = 0.511 \,\mathrm{MeV}/c^2$ $m_p = 1.673 \times 10^{-27} \,\mathrm{kg} = 938.3 \,\mathrm{MeV}/c^2$

Relativity

Lorentz Transforms

 $\beta = \frac{u}{c} = \sqrt{1 - \frac{1}{\gamma^2}}$ Lorentz Factor $\gamma = \frac{1}{\sqrt{1-\beta^2}}$ Approximations $\gamma \approx 1 + \frac{1}{2}\beta^2$ $(\beta \ll 1)$ $\beta \approx 1 - \frac{1}{2}\gamma^{-2} \qquad (\gamma \gg 1)$ $x' = \gamma(x - \beta ct)$ $ct' = \gamma(ct - \beta x)$ Transforms Inverse Transforms $x = \gamma(x' + \beta ct')$ $ct = \gamma(ct' + \beta x')$ Time Dilation $T_{\text{moving}} = \gamma T_{\text{rest}}$ Length Contraction $L_{\text{moving}} = \frac{L_{\text{rest}}}{2}$ Velocity Addition $\beta = \frac{\beta_1 + \beta_2}{1 + \beta_1 \beta_2}$ $f_{\rm obs} = f_{\rm source} \sqrt{\frac{1-\beta}{1+\beta}}$ Doppler Effect $\beta > 0 \iff$ distance increasing

Relativistic Energy-Momentum 4-Vector $X = (ct, x, y, z) = (ct, \overrightarrow{x})$ $X_1 \cdot X_2 = (ct_1)(ct_2) - \overrightarrow{x_1} \cdot \overrightarrow{x_2}$ Dot Product Rel Mass $M = \gamma m$ Kinetic $K = (\gamma - 1)mc^2$ Rel Momentum $p = \gamma mv$ $E = \gamma mc^2$ Rel Energy $E^2 = (pc)^2 + (mc^2)^2$ $E' = \gamma (E - \beta cp)$ $p' = \gamma (p - \beta cE)$ Transforms $E = \gamma(E' + \beta cp')$ $p = \gamma(p' + \beta cE')$ De Broglie Inverse $\underline{P} = (\underline{E_{\rm rel}}, \overline{p_{\rm rel}})$ $\underline{P}^2 = (mc)^2$ 4-Momentum $E_{\rm CM} = (P_1 + P_2)^2$ CM Energy

 $= m_1^2 + 2P_1 \cdot P_2 + m_2^2$

Photons Types of Light UV: $100 - 400 \, \text{nm}$ Visible: $400 - 750 \,\mathrm{nm}$ IR: $750 - 1000 \,\mathrm{nm}$ Photon Energy $E = hf = \frac{hc}{\lambda}$ $p=\frac{E}{a}=\frac{h}{\lambda}$ Photon Momentum $dI_{RI}(f) = \frac{2kTf^2}{2}df$ RJ Blackbody $dI_{RJ}(\lambda) = \frac{2kTc}{\lambda^4}d\lambda$ $dI_W(f) = \frac{2hf^3}{2} \exp\left(-\frac{hf}{LT}\right) df$ Wien Blackbody $dI_W(\lambda) = \frac{2hc^2}{\sqrt{5}} \exp(-\frac{hc}{\sqrt{kT}}) d\lambda$ $dI_P(f) = \frac{2hf^3}{c^2} \frac{1}{\exp(\frac{hf}{kT}) - 1} df$ Planck Blackbody $dI_P(\lambda) = \frac{2hc^2}{\lambda^5} \frac{1}{\exp(\frac{hc}{\lambda hT}) - 1} d\lambda$ $qV_{\text{stop}} = E_{k,\text{max}} = hf - \phi q$ Photoelectric $qV_{\text{tube}}(+q\phi) = hf_{\text{max}} = \frac{hc}{\lambda}$ X-ray Tube

Compton Scattering $\lambda' - \lambda = \frac{h}{mc}(1 - \cos \theta)$ $\frac{h}{mc} = 2.426 \, \text{pm}$

Plane Diffraction $2d\sin(\theta_{\text{surface}}) = n\lambda$ $d\sin(\theta_{\text{normal}}) = n\lambda$

Slit Diffraction

Atoms

 $\frac{1}{\lambda} = RZ^2 \left(\frac{1}{n^2} - \frac{1}{n^2} \right)$ Rydberg $R = 1.097 \times 10^7 \,\mathrm{m}^{-1}$

Photon Energy $E = 13.6 \,\mathrm{eV} \cdot Z^2 \left(\frac{1}{n^2} - \frac{1}{n^2}\right)$ $E = -\frac{1}{2} \frac{q^2 Z}{4\pi\epsilon_0} \frac{1}{r} = -Z \cdot \frac{0.7202 \,\text{eV nm}}{r}$ Orbit Energy

Bohr Model $L=n\hbar$

 $E = -\frac{m_e}{2} \left(\frac{q^2}{4\pi\epsilon_0 \hbar} \right)^2 \frac{Z^2}{n^2} = -13.6 \,\text{eV} \left(\frac{Z^2}{n^2} \right)$ Bohr Energy

 $r = \frac{4\pi\epsilon_0 \hbar^2 n^2}{Zma^2} = 52.97 \,\mathrm{pm}(\frac{n^2}{Z})$ Bohr Radius

 $v = \frac{Zq^2}{4\pi\varepsilon_0 n\hbar}$ $\beta = 7.293 \times 10^{-3} \left(\frac{Z}{n}\right)$ Bohr Velocity

Moseley's Law $E = 13.6 \,\mathrm{eV} \left(\frac{1}{n_s^2} - \frac{1}{n_s^2} \right) (Z - b)^2$

 $K\alpha$: b = 1, $n_1 = 1$, $n_2 = 2$

 $K\beta$: b = 1, $n_1 = 1$, $n_2 = 3$

L α : b = 7.4, $n_1 = 2$, $n_2 = 3$

 $p = \frac{E}{c} = \frac{hf}{c} = \frac{h}{\lambda_{\text{photon}}}$

 $\lambda_{\rm electron} = \frac{1.227 \sqrt{\rm eV \cdot nm}}{\sqrt{E_{k, \rm electron}}}$

 $\lambda_{\text{matter}} = \frac{h}{\sqrt{2mE_{*}}}$

1-D Schrodinger

Wavefunction $\Psi(x,t)$ $i\hbar \frac{\partial \Psi}{\partial t} = -\frac{\hbar^2}{2m} \frac{\partial^2 \Psi}{\partial x^2} + V(x)\Psi = H_{op}\Psi$ Equation

 $H_{op} = -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} + V(x)$ Hamiltonian

 $\Psi(x,t) = Ae^{i(kx - \omega t)}$ Free Particle

 $k = \frac{2\pi}{\lambda}$ $\lambda = \frac{h}{n}$ $\omega = 2\pi f$ $f = \frac{E}{h}$

 $p = \hbar k$ $E = \hbar \omega$

Separation $\Psi(x,t) = \psi(x)\phi(t)$

 $\phi(t) = e^{-iEt/\hbar}$ Time-Dependent

 $-\frac{\hbar^2}{2m}\frac{d^2\psi}{dx^2} + V(x)\psi = E\psi$ TISE

 $\rho(x) = \Psi^* \Psi \qquad \int_{-\infty}^{\infty} \Psi^* \Psi \, dx = 1$ Probability

 $f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{x^2}{2\sigma^2}}$ Gaussian

Transform $\sigma_r \sigma_k = 1$

 $\sigma_x \sigma_n \geq \frac{\hbar}{2}$ Uncertainty

Potential Step

 $\begin{cases} \psi_I = e^{ikx} \\ \psi_R = Re^{-ikx} \\ \psi_T = Te^{ik'x} \end{cases}$ (Incident) Wavefunctions (Reflected) (Transmitted)

 $k' = \frac{\sqrt{2m(E-V)}}{\hbar}$ Wavenumbers $k = \frac{\sqrt{2mE}}{\hbar}$

 $R = \frac{k-k'}{k+k'}$ $T = \frac{2k}{k+k'}$ Amplitudes

 $R = \frac{\sqrt{E} - \sqrt{E - V}}{\sqrt{E} + \sqrt{E - V}}$

Flux $\Phi = \rho \cdot v$

> $\Phi_I = \frac{\hbar k}{m}$ $\Phi_I = \Phi_R + \Phi_T$ $\Phi_R = \frac{\hbar k}{m} R^2$ $\Phi_T = \frac{\hbar k'}{m} T^2$

 $P(R) = \frac{\Phi_R}{\Phi_L} = R^2$ $P(T) = \frac{\Phi_T}{\Phi_L} = \frac{k'}{k}T^2$ Probabilities

Potential Barrier

(Incident) $\psi_R = Re^{-ikx}$ $\psi_T = Te^{ikx}$ $\psi_F = Fe^{ik'x}$ $\psi_B = Be^{-ik'x}$ (Reflected) Wavefunctions (Transmitted)

(Forward) (Backward)

Tunneling $P(T) \approx 16 \frac{E}{V} (1 - \frac{E}{V}) e^{-2\kappa w}$ $\kappa = \frac{\sqrt{2m(V-E)}}{2m(V-E)}$

Infinite Square Well

Energy
$$E_n = \frac{\hbar^2 \pi^2}{2m} \frac{n^2}{w^2}$$

$$\frac{\hbar^2 \pi^2}{2m_e} = 0.37603 \,\text{eV nm (for electron)}$$

Inside
$$\psi_n(x) = \sqrt{\frac{2}{w}} \sin(k_n x)$$

$$\frac{\partial^2 H(\phi)}{\partial x^2} = -uH(\phi)$$

Outside
$$\psi_n(x) = e^{\pm k'x}$$

$$k'_{-} = \frac{n\pi}{}$$

Finite Potential Wells

Energy
$$E_n \approx \frac{\hbar^2 \pi^2 n^2}{2mw^2} - V$$
, $E < 0$

Inside
$$\psi_n(x) = A\sin(kx) + B\cos(kx)$$
 $k = \frac{\sqrt{2mE}}{\hbar}$

Outside
$$\psi_n(x) = Ce^{k'x} + De^{-k'x}$$
 $k' = \frac{\sqrt{2m(V-E)}}{\hbar}$

Quantum Harmonic Oscillator

Potential
$$V(x) = \frac{1}{2}k'x^2$$

Energy
$$E_n = (n + \frac{1}{2})\hbar\omega$$
 $\omega = \sqrt{\frac{k'}{m}}$ Wavefunction $\psi_n(x) = H_n(\frac{x}{b})e^{-\frac{x^2}{2b^2}}$ $b^2 = \frac{\hbar}{\sqrt{k'm}}$

Wavefunction
$$\psi_n(x) = H_n(\frac{x}{b})e^{-\frac{1}{2b^2}}$$
 $b^2 = \frac{h}{\sqrt{k'm}}$
Hermite $H_0(x) = 1$ $H_1(x) = x$

$$H_2(x) = x^2 - \frac{1}{2}$$
 $H_3(x) = x^3 - \frac{3}{2}x$

3-D Schrodinger

Wavefunction
$$\Psi(x, y, z, t) = \Psi(\vec{x}, t)$$

Laplacian
$$\nabla^2 \Psi(x,y,z) = \frac{\partial^2 \Psi}{\partial x^2} + \frac{\partial^2 \Psi}{\partial y^2} + \frac{\partial^2 \Psi}{\partial z^2}$$

Equation
$$i\hbar \frac{\partial \Psi}{\partial t} = -\frac{\hbar^2}{2m} \nabla^2 \Psi + V(\vec{x}) \Psi$$

Free Particle
$$\Psi(\vec{x},t) = Ae^{i(\vec{k}\cdot\vec{x}-\omega t)}$$

$$\vec{p} = \hbar \vec{k} \qquad E = \hbar \omega$$

Separation
$$\Psi(\vec{x},t) = \psi(\vec{x})\phi(t)$$

Time-Dependent
$$\phi(t) = e^{-iEt/\hbar}$$

TISE
$$-\frac{\hbar^2}{2m}\nabla^2\psi + V(\vec{x})\psi = E\psi$$

Infinite Box Well

Energy
$$E_{n_x,n_y,n_z} = \left(\frac{n_x^2}{a^2} + \frac{n_y^2}{b^2} + \frac{n_z^2}{c^2}\right) \frac{\hbar^2 \pi^2}{2m}$$

Cube
$$E_{n_x,n_y,n_z} = (n_x^2 + n_y^2 + n_z^2) \frac{\hbar^2 \pi^2}{2m} \frac{1}{w^2}$$

Wavefunction
$$\psi_{\overrightarrow{n}}(x,y,z) = \sin(\frac{n_x\pi x}{a})\sin(\frac{n_y\pi y}{b})\sin(\frac{n_z\pi z}{c})$$
 Wavefunction $U_{k0}(r) = \sin(\frac{k\pi r}{R})$

Spherical Coordinates

$$\nabla^2 \Psi = \frac{1}{r^2} \frac{\partial}{\partial r} \left[r^2 \frac{\partial \Psi}{\partial r} \right] + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left[\sin \theta \frac{\partial \Psi}{\partial \theta} \right] + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 \Psi}{\partial \phi^2}$$

Separation
$$\psi(r, \theta, \phi) = F(r)G(\theta)H(\phi)$$

Equations
$$\begin{cases} \frac{\partial^{2}H(\phi)}{\partial\phi^{2}} = -\mu H(\phi) & \rho = \frac{2r}{na_{0}} & a_{0} = 52.97 \text{ pm} \\ \sin\theta \frac{\partial}{\partial\theta} \left[\sin\theta \frac{\partial G(\theta)}{\partial\theta}\right] = (\mu - \lambda \sin^{2}\theta)G(\theta) & U_{m}(\rho) \mid \ell = 0, m = 0 \end{cases} \qquad \ell = 1, m = 0, \pm 1, \pm 2$$

$$= \frac{r}{\sqrt{2}} \qquad \text{Solutions} \qquad H(\phi) = e^{im\phi}, m \in \mathbb{Z} \qquad n = 2 \qquad \rho = \frac{r}{a_{0}} \qquad n = 2 \qquad \rho^{2} - \frac{r^{2}}{\sqrt{2}} \qquad \rho^{2} \cdot e^{\frac{-\rho}{2}} \qquad \rho^{2} \cdot e^{\frac{-\rho}{2}} \end{cases}$$

Solutions
$$H(\phi) = e^{im\phi}, m \in \mathbb{Z}$$

$$G(\theta) = P_l^m(\theta)$$
 (Legendre functions)

$$F(r) = \frac{1}{r}U_{kl}(r)$$

Harmonics
$$Y_l^m(\theta, \phi) = P_l^m(\theta)e^{im\phi}$$

General
$$\psi_{klm}(r,\theta,\phi) = \frac{1}{r}U_{kl}(r)Y_l^m(\theta,\phi)$$

General
$$\psi_{klm}(r,\theta,\phi) = \frac{1}{r}U_{kl}(r)Y_{l}^{m}(\theta,\phi)$$
 $m=4$
 $m=3$
 $m=2$
 $+\sqrt{\frac{35}{64\pi}}\sin^{3}\theta e^{i\phi}$
 $+\sqrt{\frac{315}{512\pi}}\sin^{3}\theta e^{i\phi}$
 $+\sqrt{\frac{315}{64\pi}}\sin^{3}\theta \cos\theta e^{i\phi}$
 $+\sqrt{\frac{45}{64\pi}}\sin^{3}\theta \cos\theta e^{i\phi}$
 $+\sqrt{\frac{45}{128\pi}}\sin^{3}\theta \cos\theta e^{i\phi}$
 $+\sqrt{\frac{45}{128\pi}}\sin^{3}\theta (\cos\theta e^{i\phi})$
 $+\sqrt{\frac{45}{128\pi}}\sin^{3}\theta (\cos\theta e^{i\phi})$
 $+\sqrt{\frac{45}{64\pi}}\sin^{3}\theta (\cos\theta e^{i\phi$

Angular
$$l = \{0, 1, 2, ...\}$$

$$\text{Magnetic} \quad m = \{\dots, -1, 0, 1, \dots\}, \quad |m| \le l$$

Radial
$$k \in \mathbb{Z}$$
, starting from 0 or 1

Principal
$$n = k + l$$
 (for $\frac{1}{r}$ potential)

$$\lambda = l(l+1)$$

Infinite Spherical Well

Energy
$$E_{k0} = \frac{\hbar^2 \pi^2}{2M} \frac{k^2}{R^2}$$

Wavefunction
$$U_{k0}(r) = \sin(\frac{k\pi r}{D})$$

$$\psi_{k00} = \frac{1}{r} \sin\left(\frac{k\pi r}{R}\right) Y_0^0(\theta, \phi) = \frac{1}{r} \sin\left(\frac{k\pi r}{R}\right)$$

Infinite Shell

Energy
$$E_{kl} = \frac{\hbar^2 \pi^2}{2M} \left[\frac{k^2}{\Delta R^2} + \frac{l(l+1)}{\pi^2 (R + \Delta R/2)^2} \right]$$
 Centrifugal Term
$$\frac{\hbar^2 l(l+1)}{2M(R + \Delta R/2)^2} \approx \frac{\hbar^2 l(l+1)}{2MR^2} \quad (\Delta R \ll R)$$

Wavefunction
$$U_{k0}(r) = \sin\left(\frac{k\pi(r-R)}{\Delta R}\right)$$

 $\psi_{k00} = \frac{1}{r}\sin\left(\frac{k\pi(r-R)}{\Delta R}\right)$

Coulomb Potential and Hydrogen

Potential
$$V(r) = -\frac{q^2}{4\pi\varepsilon_0 r}$$

Wavefunction
$$\psi_{nlm}(r,\theta,\phi) = e^{-\frac{\rho}{2}} \rho^l L_{n-l-1}^{2l+1}(\rho) Y_l^m(\theta,\phi)$$

$$\rho = \frac{r}{a_0} \qquad \frac{U_{n\ell}(\rho)}{n=3} \begin{bmatrix} \ell = 0, m = 0 & \ell = 1, m = 0, \pm 1 & \ell = 2, m = 0, \pm 1, \pm 1 \\ \rho = \frac{r}{a_0} & n = 3 & \left[\rho^3 - 9\rho^2 + \frac{27}{2}\rho \right] \cdot e^{\frac{-\rho}{3}} & \left[\rho^3 - 6\rho^2 \right] \cdot e^{\frac{-\rho}{3}} & \rho^3 \cdot e^{\frac{-\rho}{3}} \\ n = 2 & \left[\rho^2 - 2\rho \right] \cdot e^{\frac{-\rho}{2}} & \rho^2 \cdot e^{\frac{-\rho}{2}} \\ n = 1 & \rho \cdot e^{-\rho} & \rho^2 \cdot e^{\frac{-\rho}{2}} \end{bmatrix}$$

Principal
$$\exp(-\frac{r}{na_0}) \implies n$$

Angular
$$\sin power + \max \cos power \implies l$$

Magnetic
$$\exp(im\phi) \implies m$$

Compiled June 30, 2024