高階 SOM のアルゴリズム

2019年8月22日

表 1 変数記号表

	21 200
記号	
$\mathbf{X}^{(i)}$	i 番目の子 SOM のデータ集合 $(\mathbf{X}^{(i)} = (x_{nd}^{(i)}) \in \mathbb{R}^{N^{(i)} \times D})$
	$\mathbf{x}_n^{(i)} = (x_{n1}^{(i)}, \dots, x_{nD}^{(i)})$
$N^{(i)}$	i 番目のデータ集合 $\mathbf{X}^{(i)}$ のデータ数
D	データの次元数
	クラス数 (親 SOM のデータ数)
$\mathbf{Y}^{(i)}$	i 番目の子 SOM の参照ベクトル集合 $(\mathbf{Y}^{(i)} = (y_{kd}^{(i)}) \in \mathbb{R}^{K imes D})$
	$\mathbf{y}_k^{(i)} = (y_{k1}^{(i)}, \dots, k_{kD}^{(i)})$
K	子 SOM のノード数
$k_n^{(i)*}$	i 番目の子 SOM における n 個目のデータの勝者ノード番号
$\mathbf{Z^{(i)}}$	i 個目の子 SOM の潜在変数集合($\mathbf{Z^{(i)}} = (z_n^{(i)}c) \in \mathbb{R}^{N^{(i)} \times C}$) $\mathbf{z_n^{(i)}} = (z_{n1}^{(i)},,z_{nC}^{(i)})^T$
C	子 SOM の潜在空間の次元数
$\boldsymbol{\zeta}_k^{(i)}$	i 番目の子 SOM の k 番目のノードの潜在空間における座標
$h_{nk}^{(i)}$	i 番目の子 SOM の学習率
σ_c	子 SOM の近傍半径(全部共通)
\mathbf{V}	親 SOM の入力データ($\mathbf{V}=(v_{im})\in\mathbb{R}^{I imes M}$)
	$\mathbf{v}_i = (v_{i1}, \dots, v_{iM})$
\mathbf{W}	親 SOM の参照ベクトル集合($\mathbf{W}=(w_{lm})\in\mathbb{R}^{L imes M}$)
	$\mathbf{w}_l = (w_{l1}, \dots, w_{lM})$
L	親 SOM のノード数
M	親 SOM の次元数 $(K \times D)$
l_i^*	親 SOM における i 個目データの勝者ノード番号
${f Z}$	親 SOM の潜在変数集合($\mathbf{Z}=(z_{np})\in\mathbb{R}^{KD\times P}$) $\mathbf{z_n}=(z_{n1},,z_{nP})^T$
P	親 SOM の潜在空間の次元数
$oldsymbol{\zeta}_l$	親 SOM の l 番目のノードの潜在空間における座標
h_{il}	親 SOM の学習率
σ_p	親 SOM の近傍半径

1 SOM² のシミュレーションアルゴリズム

1.1 人工データの読み込み

github にある関数データを load

1.2 ハイパーパラメータの設定

- 1.2.1 近傍半径のスケジューリングの設計
- ■近傍半径を単調減少させるスケジュールの設計
- 例) 最大値 $\sigma_{\rm max}$ と最小値子 $\sigma_{\rm min}$ と時定数 τ を与え、一次関数的に減少させる. (子 SOM 同士は同じスケジューリングを用いる.)

■ノード集合の作成

以下のように設定し、子 SOM と親 SOM それぞれで等間隔な座標集合を作る.(ただし I 個の子 SOM は同一のノード集合を用いる.)

- ・ノードが存在する範囲
- ・ノードの数

■初期化

潜在変数 (参照ベクトルでも) の初期化は子・親ともに行う.

1.3 子 SOM の学習

■潜在変数の推定

$$k_n^{(i)*} = \arg\min_{k} \|\mathbf{x}_n^{(i)} - \mathbf{y}_k^{(i)}\|^2$$
 (1)

$$\mathbf{z}_n^{(i)} := \boldsymbol{\zeta}_{k_n^{(i)*}} \tag{2}$$

■参照ベクトルの推定

$$h_{nk}^{(i)} = \exp\left(-\frac{1}{2\sigma_c^2} \|\mathbf{z}_n^{(i)} - \boldsymbol{\zeta}_k^{(i)}\|^2\right)$$
 (3)

$$\mathbf{y}_{k}^{(i)} = \frac{1}{g_{k}^{(i)}} \sum_{n} h_{nk}^{(i)} \mathbf{x}_{n}^{(i)} \tag{4}$$

ただし $g_k^{(i)} = \sum_n h_{nk}^{(i)}$

1.4 親 SOM の学習

1.4.1 親 SOM の入力データセット

$$\mathbf{v}_i := (y_{11}^{(i)}, \dots, y_{1D}^{(i)}, y_{21}^{(i)}, \dots, y_{2D}^{(i)}, \dots, y_{KD}^{(i)}) \tag{5}$$

■潜在変数の推定

$$l_i^* = \arg\min_{l} \|\mathbf{v}_i - \mathbf{w}_l\|^2 \tag{6}$$

$$\mathbf{z}_i := \zeta_{l_i^*} \tag{7}$$

■参照ベクトルの推定

$$h_{il} = \exp\left(-\frac{1}{2\sigma_p^2} \|\mathbf{z}_i - \zeta_l\|^2\right)$$
 (8)

$$\mathbf{w}_l = \frac{1}{g_l} \sum_i h_{il} \mathbf{v}_i \tag{9}$$

ただし $g_l = \sum_i h_{il}$

1.4.2 コピーバック

$$(y_{11}^{(i)}, \dots, y_{1D}^{(i)}, y_{21}^{(i)}, \dots, y_{2D}^{(i)}, \dots, y_{KD}^{(i)}) := \mathbf{w}_{l^*}$$

$$(10)$$