Note of Fast Runner

Ken

June, 2018

1 System dynamics

At the end of touchdown, assuming impact force is σ .

$$I(\ddot{\theta}) = \sigma x_z \tag{1}$$
$$y = Cx + Du$$

2 Code implementation

2.1 Modeling and Parameters

Main idea: a virtual wheel (as the massless leg) with radius r_{wheel} penetrate the ground for a distance r_{pen} where a external force point pe is attached on it. A body (with mass m and inertia Iyy) is attached to the center of wheel. Using PD control to interpret contact force when p_e is under the ground.

06/07 First prototype (Not used now)

- Joint numbers: 2
- Joint types: Floating planer joint for virtual wheel and pin joint for the body link.
- Contact point type: External force point
- Virtual wheel rotation: set proper initial condition for virtual wheel (also need a large inertia to make it nearly constant).

Contact force: Assuming the ground height is 0,

$$F_z = kp(0 - pe_z) + kd(0 - ve_z)$$
 (2)

$$\phi = atan2(pe_x, r_{wheel} - pe_z) \tag{3}$$

$$F_x = F_z tan(\phi) \tag{4}$$

where ve is the velocity vector of the contact point pe, kp and kd are the PD control parameters. F_x is calculated so that the vector of ground reaction force $[F_x, F_y, F_z]^T$ will point towards the virtual pivot (the center of the virtual wheel).

Assessments:

- Need to set a non-zero inertia of massless virtual wheel (for numerical stability), otherwise the simulation will diverge.
- The inertia of virtual wheel need to be a large one for constant rotational speed.
- Suggestions: remove the massless link, attach the external force point to the body and change its position in the controller every time step.

06/08 Round Runner

- Joint numbers: 1
- Joint types: Floating planer joint for the body link.
- Contact point type: External force point
- Virtual wheel rotation: Assigning the external force point location with respect to the joint in an open loop manner.
- Contact force: Assuming the ground height is 0,

$$F_z = kp(0 - pe_z) + kd(0 - ve_z)$$
(5)

$$\phi = atan2(pe_x, r_{wheel} - pe_z) \tag{6}$$

$$F_x = F_z tan(\phi) \tag{7}$$

where ve is the velocity vector of the contact point pe, kp and kd are the PD control parameters. F_x is calculated so that the vector of ground reaction force $[F_x, F_y, F_z]^T$ will point towards the virtual pivot (the center of the virtual wheel).

Assessments:

- The ground reaction force looks better, while the energy is not balanced (after a while it will move towards the negative x direction)
- The inertia of virtual wheel need to be a large one for constant rotational speed.
- Suggestions: Use the ground contact point (instead of external force point) to see how it goes.

06/11 Round Runner(with Ground Contact Point)

- Joint numbers: 1
- Joint types: Floating planer joint for the body link.
- Contact point type: Ground contact point, linear contact model¹
- Virtual wheel rotation: Assigning the external force point location with respect to the joint in an open loop manner.
- Contact point number Parameterized, currently set to 3-6 points.
- Contact force: using built-in functionalities, only assigning the kp, kd (PD parameters in the z direction), kp_x , and kd_x (PD parameters in the x/y directions).

Assessments:

- Was able to generate a stable walking. Contact point has sliding.
- Due to setting up stiffness and damping for x and z separately, the force is not always point towards the virtual pivot.

¹Disable the hardening stiffness in z direction by setting groundStiffeningLength to Double.NEGATIVE_INFINITY

3 Info mightbe useful

3.1 Going through references

- 1. Compare different terrestiral locomotions: Some parameters of the walk are not speed-dependent. The swing duration is a constant time parameter [1].
- 2. Trunk plays an important role during walking (birds) [2].
- 3. Resonance drives are considered with adaptive control for robotics. The use of these drives allows increasing machine's quickness several times and decreasing energy expenses simultaneously 10-50 times [3].
- 4. Light weight leg (ostrich vs. moa) can run faster[5]. Also a famous allometric equation:

$$Y = M^{3/4} \tag{8}$$

where M is the body mass, Y is the metabolic rate.

- 5. Human's walking may not be really self-optimized: the preferred speed maybe different from the energetically optimal speed[9].
- 6. It is concluded that the most important adjustment to the bodys spring system to accommodate higher stride frequencies is that leg spring becomes stiffer [17].
- 7. magic equations for imd force (ostrich) [24]
- 8. gait frequency was reported to be highly correlated with the resonant frequency of the mass-spring model [28]
- 9. WABIAN, why you are here? [29]

3.2 Categories

- 1. Nonlinear oscillators/components [3, 6, 8, 9, 11];
- 2. Bio-inspired robots: [7, 30]
- 3. Reference I should read: [10, 14, 25, 26]
- 4. Article not found (or not free)[4].
- 5. Robots in 3D: [12]
- 6. Stability analysis (Monocycle, linearized system) [13]
- 7. Biology/Anatomical structure [15, 18]
- 8. Light weight fast robot [16, 23]
- 9. take a look again [19]
- 10. mechanism design of robot [20]
- 11. quadruped reference [21]
- 12. human energy cost [22]
- 13. walking parameterization [27]

References

- [1] Anick Abourachid. Kinematic parameters of terrestrial locomotion in cursorial (ratites), swimming (ducks), and striding birds (quail and guinea fowl). Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology, 131(1):113–119, dec 2001.
- [2] Anick Abourachid, Remi Hackert, Marc Herbin, Paul A. Libourel, François Lambert, Henri Gioanni, Pauline Provini, Pierre Blazevic, and Vincent Hugel. Bird terrestrial locomotion as revealed by 3D kinematics. Zoology, 114(6):360–368, dec 2011.
- [3] T. Akinfiev and M. Armada. Elements of built-in diagnostics for resonance drive with adaptive control system. In *International Symposium on Automation and Robotics in Construction*, pages 617–621, Madrid, Spain, 1999.
- [4] R. Mc N Alexander, G. M O Maloiy, R. Njau, and A. S. Jayes. Mechanics of running of the ostrich (Struthio camelus). *Journal of Zoology*, 187(2):169–178, 1979.
- [5] R. McNeill Alexander. The legs of ostriches (Struthio) and moas (Pachyornis). *Acta Biotheoretica*, 34(2-4):165–174, 1985.
- [6] G. V. Anand. Nonlinear Resonance in Stretched Strings with Viscous Damping. The Journal of the Acoustical Society of America, 40(6):1517–1528, 1966.
- [7] Arvind Ananthanarayanan, Mojtaba Azadi, and Sangbae Kim. Towards a bio-inspired leg design for high-speed running. *Bioinspiration and Biomimetics*, 7(4):046005, dec 2012.
- [8] V. I. Babitsky and M. Y. Chitayev. Adaptive high-speed resonant robot. Mechatronics, 6(8):897–913, dec 1996.
- [9] Jonas Buchli, Fumiya Iida, and Auke Jan Ijspeert. Finding resonance: Adaptive frequency oscillators for dynamic legged locomotion. In *IEEE International Conference on Intelligent Robots and Systems*, pages 3903–3909, Beijing, China, 2006.
- [10] Jg Cham. On Performance and Stability in Open-Loop Running. PhD thesis, Stanford University, 2002.
- [11] S. Chatterjee and Anindya Malas. On the stiffness-switching methods for generating self-excited oscillations in simple mechanical systems. *Journal of Sound and Vibration*, 331(8):1742–1748, apr 2012.
- [12] Michael J. Coleman, Anindya Chatterjee, and Andy Ruina. Motions of a rimless spoked wheel: a simple three-dimensional system with impacts. *Dynamics and Stability of Systems*, 12(3):139–159, 1997.
- [13] Michael J. Coleman and Jim M. Papadopoulos. Intrinsic stability of a classical monocycle and a generalized monocycle. In *Bicycle and Motorcycle Dynamics, Symposium on Dynamics and Control of Single Track Vehicles*, Delft, Netherlands, 2010.
- [14] M. A. Daley and A. A. Biewener. Running over rough terrain reveals limb control for intrinsic stability. *Proceedings of the National Academy of Sciences*, 103(42):15681–15686, oct 2006.
- [15] T. El-Mahdy, S. M. El-Nahla, L. C. Abbott, and S. A.M. Hassan. Innervation of the pelvic limb of the adult ostrich (Struthio camelus). *Journal of Veterinary Medicine Series C: Anatomia Histologia* Embryologia, 39(5):411–425, 2010.
- [16] Darrell Ethington. Dash Robotics Reveals A DIY High-Speed Running Robot Kit, Which Hobbyists Can Own For Just \$65, 2013.
- [17] Claire T. Farley and Octavio González. Leg stiffness and stride frequency in human running. *Journal of Biomechanics*, 29(2):181–186, 1996.
- [18] D. Gangl, G. E. Weissengruber, M. Egerbacher, and G. Forstenpointner. Anatomical description of the muscles of the pelvic limb in the ostrich (Struthio camelus). *Journal of Veterinary Medicine Series C: Anatomia Histologia Embryologia*, 33(2):100–114, 2004.

- [19] S. M. Gatesy and A. A. Biewener. Bipedal locomotion: effects of speed, size and limb posture in birds and humans. *Journal of Zoology*, 224(1):127–147, 1991.
- [20] Martin Grimmer and André Seyfarth. Design of a Series Elastic Actuator driven ankle prosthesis: The trade-off between energy and peak power optimization. In *Dynamic Walking*, 2011.
- [21] R Hackert, H Witte, and M S Fischer. Interactions between motions of the trunk and the angle of attack of the forelimbs in synchronous gaits of the pika (Ochotona rufescens). In *Adaptive Motion of Animals and Machines*, pages 69–77. Springer, 2006.
- [22] Kenneth G. Holt, Joseph Hamill, and Robert O. Andres. Predicting the minimal energy costs of human walking. *Medicine & Science in Sports & Exercise*, 23(4):491–498, 1991.
- [23] Fumiya Iida, Murat Reis, Nandan Maheshwari, Xiaoxiang Yu, and Amir Jafari. Toward efficient, fast, and versatile running robots based on free vibration. In *Dynamic Walking*, Pensacola, FL, 2012.
- [24] D. L. Jindrich, N. C. Smith, K. Jespers, and A. M. Wilson. Mechanics of cutting maneuvers by ostriches (Struthio camelus). *Journal of Experimental Biology*, 210(8):1378–1390, 2007.
- [25] Takahiro Kagawa and Yoji Uno. Necessary condition for forward progression in ballistic walking. *Human Movement Science*, 29(6):964–976, dec 2010.
- [26] Jg Daniël Karssen and Martijn Wisse. Running with improved disturbance rejection by using non-linear leg springs. *International Journal of Robotics Research*, 30(13):1585–1595, sep 2011.
- [27] Leng Feng Lee and Venkat N. Krovi. Musculoskeletal simulation-based parametric study of optimal gait frequency in biped locomotion. In *Proceedings of the 2nd Biennial IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, BioRob 2008*, pages 354–359, Scottsdale, AZ, 2008.
- [28] Myunghyun Lee, Seyoung Kim, and Sukyung Park. Leg stiffness increases with load to achieve resonance-based CoM oscillation. In *Dynamic Walking 2013*, Pittsburgh, PA, 2013.
- [29] Hun-ok Lim, Y Ogura, Atsuo Takanishi, and Proc R Soc A. Locomotion pattern generation and mechanisms of a new biped walking machine. Proceedings of the Royal Society A, 464(2089):273–288, 2008.
- [30] R. J. Lock, S. C. Burgess, and R. Vaidyanathan. Multi-modal locomotion: From animal to application. Bioinspiration and Biomimetics, 9(1):011001, dec 2014.