

Operating Systems & Computer Networks Internetworking

Internetworking

- Switches, Routers
- Routing
- Internet Protocol
- Addressing

Content (2)

- 8. Networked Computer & Internet
- 9. Host-to-Network I
- 10. Host-to-Network II
- 11. Host-to-Network III
- 12. Internetworking
- 13. Transport Layer

Content (2)

- 8. Networked Computer & Internet
 - Sockets
 - Internet
 - Layers
 - Protocols
- 9. Host-to-Network I
 - Physical Layer
 - Media
 - Signals
 - Modems
- 10. Host-to-Network II
 - Data Link Layer
 - Framing, Flow Control
 - Error Detection / Correction
 - Point-to-Point Protocol

- 11. Host-to-Network III
 - Topologies
 - Medium Access
 - Local Area Networks
 - Ethernet, WLAN

12. Internetworking

- Switches, Routers
- Routing
- Internet Protocol
- Addressing
- 13. Transport Layer
 - Protocol Mechanisms
 - TCP, UDP
 - Addressing, Ports

Data Link Layer

	OSI	TCP/IP	
7	Application	Application	
6	Presentation		Not present
5	Session		in the model
4	Transport	Transport	
3	Network	Internet	
2	Data link	Host-to-network	
1	Physical		

Reasons for Multiple Networks

- Limited number of users/throughput in a single network
- Historical reasons:
 - Different groups started out individually setting up networks
 - Usually heterogeneous
- Geographic distribution of different groups over different buildings, campus, ...
 - Impractical/impossible to use a single network because of distance
 - Most MAC protocols set maximum segment length for CSMA/CD
 - Long round-trip delay will negatively influence performance
- Reliability
 - Don't put all your eggs into one basket
 - "Babbling idiot" problem (isolation of errors)
- Security
 - Contain possible damage caused by promiscuous operation
- Political / business reasons
 - Different authorities, policies, laws, levels of trust, ...

Internetworking Units

Internetworking Units

Repeater / Hub

- Simplest option: Repeater
 - Physical layer device, connected to two or more cables
 - Amplifies/regenerates arriving signal, puts on other cables
 - Combats attenuation
 - Signal encodes data (represented by bits)
 - Can be regenerated
 - Opposed to only amplified (which would also amplify noise)
 - Analog vs. digital transmission
 - Neither understands nor cares about content (bits) of packets

Problems of Physical Layer Solutions

- Physical layer devices, e.g. repeater or hub, do not solve the more interesting problems
 - E.g. no mechanism for handling load, scalability, ...
- Some knowledge of data link layer structure is necessary
 - Ability to understand/inspect content of packets/frames and do something with that knowledge
- Link-layer devices:
 - Switch: Interconnect several terminals
 - Bridge: Interconnect several networks (of different type)
 - Nowadays terms sometimes used interchangeably

Switch

- Used to connect several terminals or networks
- Switch inspects arriving packet's MAC addresses and forwards it only on correct cable/port
 - Does not bother other terminals
 - Requires data buffer and knowledge on which port which terminal is connected
 - Mapping function of MAC address to port
- How to obtain knowledge about network topology?
 - Observe from where packets come to decide how to reach sending terminal
 - Backward learning

Freie Universität Berlin

Backward Learning - Algorithm

- 1. Learn address/port mapping from incoming packets
 - Remove expired entries (aging)
- 2. Forward based on knowledge about destination address
 - 1. Destination address is known → Forward on correct port
 - 2. Destination address is unknown → Forward on all ports
 - Only correct receiver will process frame, others will drop it

Routers

- All devices so far either ignored addresses (repeaters, hubs) or worked on MAC-layer addresses (switches, bridges)
- For interconnection outside a single LAN or connection of LANs, these simple addresses are insufficient
 - Unstructured, "flat" addresses do not scale
 - All forwarding devices would need a list of all addresses
 - Structured network topologies do not scale
 - World-wide spanning tree is unfeasible
- Need more sophisticated addressing structure and devices that operate on it
 - Routers and routing
 - E.g. based on Internet Protocol (IP) addresses

Example: Route to NASA (redone)

```
Z:\>tracert www.nasa.gov
```

Tracing route to www.nasa.gov.speedera.net [213.61.6.3] over a maximum of 30 hops:

```
router-114.inf.fu-berlin.de [160.45.114.1]
 1
      <1 ms
               <1 ms
                        <1 ms
                               zedat.router.fu-berlin.de [160.45.252.181]
                        <1 ms
      <1 ms
               <1 ms
 3
       1 ms
               <1 ms
                        <1 ms
                               ice.spine.fu-berlin.de [130.133.98.2]
                        <1 ms
                               ar-fuberlin1.q-win.dfn.de [188.1.33.33]
       1 ms
               <1 ms
                               cr-berlin1-po5-0.g-win.dfn.de [188.1.20.5]
 5
       1 ms
               <1 ms
                        <1 ms
                               cr-frankfurt1-po9-2.g-win.dfn.de [188.1.18.185]
       9 ms
                9 ms
                         9 ms
                               ir-frankfurt2-po3-0.g-win.dfn.de [188.1.80.38]
     10 ms
                9 ms
                         9 ms
      10 ms
                         9 ms
                               DECIX.fe0-0-quy-smiley.FFM.router.COLT.net
                9 ms
                                        [80.81.192.61]
                               ir1.fra.de.colt.net [213.61.46.70]
 9
      10 ms
                9 ms
                         9 ms
                               ge2-2.ar06.fra.DE.COLT-ISC.NET [213.61.63.8]
10
      11 ms
               10 ms
                         9 ms
                               213.61.4.141
11
                        10 ms
      11 ms
               10 ms
                              h-213.61.6.3.host.de.colt.net [213.61.6.3]
12
      11 ms
               10 ms
                        10 ms
```

Trace complete.

- Not all addresses can be resolved to names (see DNS)
- Some requests are redirected to Content Delivery Networks
- Some nodes simply don't answer...

Freie Universität Berlin

The Idea of Internet Routing

- Routing comprises:
 - Updating of routing tables according to routing algorithm
 - Exchange of routing information using routing protocol
 - Forwarding of data based on routing tables and addresses

Freie Universität Berlin

Autonomous Systems in the IP World

- Large organizations can own multiple networks that are under single administrative control
 - > Forming autonomous system or routing domain
- Autonomous systems form yet another level of aggregating routing information
 - Give raise to inter- and intra-domain routing
- Inter-domain routing is hard
 - One organization might not be interested in carrying a competitor's traffic
 - Routing metrics of different domains cannot be compared
 Only reachability can be expressed
 - Scalability: Currently, inter-domain routers have to know about 150,000-200,000 networks

Intra-domain Routing: OSPF

- The Internet's most prevalent intra-domain (= interior gateway) routing protocol: Open Shortest Path First (OSPF)
- Main properties:
 - Open, variety of routing distances, dynamic algorithm
 - Routing based on traffic type (e.g. real-time traffic uses different paths)
 - Load balancing: Also put some packets on the 2nd, 3rd best path
 - Hierarchical routing, some security in place, support tunneled routers in transit networks
- Essential operation: Compute shortest paths on graph abstraction of autonomous system
 - Link state algorithm

Basic Ideas of Link State Routing

- Distributed, adaptive routing
- Algorithm:
 - 1. Discovery of new neighbors
 - HELLO packet
 - 2. Measurement of delay / cost to all neighbors
 - ECHO packet measures round trip time
 - 3. Creation of link state packets containing all learned data
 - Sender and list of neighbors (including delay, age, ...)
 - Periodic or event triggered update (e.g. upon detecting new neighbors, line failure, ...)
 - 4. Flooding of packet to all neighbors
 - Flooding, but with enhancements: Duplicate removal, deletion of old packets, ...
 - 5. Shortest path calculation to all other routers (e.g. Dijkstra)
 - Computing intensive, optimizations exist

Inter-domain Routing: BGPv4

- Routing between domains: Border Gateway Protocols (BGP)
- BGP's perspective: Only autonomous systems and their connections
 - Routing complicated by politics, e.g. only route packets for paying customers, ...
 - Legal constraints, e.g. traffic originating and ending in Canada must not leave Canada while in transit
- Basic operation: Distance vector protocol
 - Propagate information about reachable networks and distances one hop at a time
 - Each router learns only next step to destination
 - Optimizations in BGP:
 - Not only keep track of cost via a given neighbor, but store entire paths to destination ASs
 - More robust, solves problems like count to infinity, i.e. can handle disconnected networks efficiently

Freie Universität Berlin

Conclusion: Interconnections

- Single LANs are insufficient to provide communication for all but the simplest installations
- Interconnection of LANs necessary
 - Interconnect on purely physical layer: Repeater, hub
 - Interconnect on data link layer: Bridges, switches
 - Interconnect on network layer: Router
 - Interconnect on higher layer: Gateway
- Problems:
 - Redundant bridges can cause traffic floods; need spanning tree algorithm
 - Simple addresses do not scale; need routers

IP

Simplified View of Internet protocols

Freie Universität Berlin

IP and Supporting Protocols

- Transport protocols (Layer 4, TCP or UDP) hand over data together with IP address of receiver to Internet Protocol (IP)
- IP may need to ask Address Resolution Protocol (ARP) for MAC address (Layer 2)
- IP hands over data together with MAC address to Layer 2
- IP forwards data to higher layers (TCP or UDP)

 Internet Control Message Protocol (ICMP) can signal problems during transmission

Freie Universität Berlin

Data Encapsulation / Decapsulation

- IP forwards data packets through network to receiver
- TCP/UDP add ports (dynamic addresses of processes)
- TCP offers reliable data transmission
- Packets (PDU, protocol data unit) are encapsulated

Internet Protocol (IP)

- History:
 - Original development with support of US Department of Defense
 - Already used back in 1969 in APANET
- Tasks
 - Routing support using structured addresses
 - Checking of packet lifetime to avoid routing loops
 - Fragmentation and reassembly
 - Network diagnostics support
- Development
 - Today IP (version 4) is most widely used layer 3 protocol
 - Further development started back in the 80s/90s
 - Project IPng (IP next generation) of the IETF (Internet Engineering Task Force)
 - Result in mid 90s: IPv6, still only rarely used

Properties of IP

- Packet oriented
- Connectionless (datagram service)
- Unreliable transmission
 - Datagrams can be lost
 - Datagrams can be duplicated
 - Datagrams can be reordered
 - Datagrams can circle, but solved by Time to Live (TTL) field
 - IP cannot handle Layer 2 errors
 - At least there is ICMP to signal errors
- Routing support via structured addresses
- No flow control (yet, first steps taken)
- Used in private and public networks

IPv4 Datagram

IPv4 Datagram

Structured IP Addresses and Address Classes (Classical View)

Special IP Addresses

Some IP addresses are reserved for special uses:

- Not all of the network/host combinations are available
- So-called "private" IP addresses
 - Used for internal networks (addresses not routable)
 - Example: 10.0.0.1, 192.168.0.1

Bridging Addressing Gap: ARP

- What happens once a packet arrives at its destination network / LAN?
 - IP address (which is all that is known about destination) needs to be translated into a MAC address that corresponds to the IP address
- Simple solution: Broadcast
 - Broadcast on LAN, asking which node has requested IP address
 - Node answers with its MAC address
 - Router can then forward packet to that MAC address
- > Address Resolution Protocol (ARP)

Example: ARP

Scalability Problems of IP

- Class A and B networks can contain many hosts
 - Too many for a router to easily deal with
 - Additionally, administrative problems in larger networks
 - Solution: Subnetting, i.e. a network is subdivided into several smaller networks by breaking up the address space
- Network classes waste a lot of addresses
 - Example: Organization with 2000 hosts requires a class B address, wasting 64K-2K ≈ 62.000 host addresses
 - ➤ Solution: Classless addressing → Classless Inter Domain Routing (CIDR)
 - Dynamic boundaries between host/network part of IP address
 - Aggregation on routers to reduce size of global routing table

Subnetting

- Suppose an organization has one class B address but is organized into several LANs
 - Example: University with different departments

- Main router should be concerned with whole networks
 - Should not be bothered with all the nodes in each departments
- Obvious case for hierarchical routing and addressing
 - How to put hierarchies into existing IP addresses?

Freie Universität Berlin

Subnetting - Hierarchies in Addresses

- Manipulating class bits to introduce more hierarchy levels is not practical
- Idea: Have more hierarchy levels implicitly
 - Introduce a subnet, represented by "borrowing" bits from host part of IP address
 - Local router has to know where to apply this split
 - Needs a subnet mask
 - Represented as x.y.u/#bits or as bit pattern needed to mask out the host bits

Original host part

Controling IP: ICMP

- IP is responsible for (unreliable) data transfer only
- Internet Control Message Protocol (ICMP) is used for error reporting and testing

- Examples:
 - Destination Unreachable
 - Time Exceeded: Time-to-Live field reaches 0
 - Also used when looking up routes using traceroute
 - Echo Request / Reply ("ping")
 - Timestamp Request / Reply

Conclusion: Internet Protocol

- Unreliable datagram transfer
- Needs supporting protocols
 - ARP for mapping IP to MAC address
 - ICMP for error signaling
- Classical addressing wastes addresses
 - Subnetting, subnet masks
 - Classless addressing, CIDR
- Version 4 dominant, version 6 coming (since years...)
 - Much more in Telematics

Content (2)

- 8. Networked Computer & Internet
- 9. Host-to-Network I
- 10. Host-to-Network II
- 11. Host-to-Network III
- 12. Internetworking
- 13. Transport Layer