

Combined Zernike Moments, Histogram of Oriented Gradients and Binary Pixel Feature Extraction Technique for Recognizing Hand Written Bangla Characters.

Presented By

Aminul Huq
Dept. of Computer Science & Engineering
Rajshahi University of Engineering & Technology

Outline

- Introduction
- Literature Review
- Character Recognition System
- Proposed System
- Implementation
- Experimental Results
- Conclusion & Future Work
- References

Introduction

- Introduction
- Literature Review
- Character Recognition System
- Proposed System
- Implementation
- Experimental Results
- Conclusion & Future Work
- References

- Electronic conversion of images of typed, handwritten or printed text into machine-encoded text, whether from a scanned document, a photo of a document or a scene photo.
- ➤ Bangla being the 7th most used language a fully working OCR system for handwritten characters hasn't been developed [1].
- ➤ Various applications have made this a popular research topic.

Literature Review

- Introduction
- Literature Review
- Character Recognition System
- Proposed System
- Implementation
- Experimental Results
- Conclusion & Future Work
- References

- ➤T. K. Bhowmik et al. worked with SVM-based hierarchical architectures for handwritten Bangla character recognition and they achieved 88.38% [2].
- S. Bhowmik, et al. worked with MLP classification algorithm using HOG features for handwritten characters and achieved 87.35% accuracy but they put low focus on local regions [3].
- ➤ N. Das, et al. worked with SVM and MLP classification algorithm using shadow features, longest run features and quad tree based features and achieved 80.87% accuracy for SVM [4].
- A. Khotnazad, et al. worked with Zernike Moments for feature extraction technique for English Characters and achieved 99% accuracy [5].

Character Recognition System

- Introduction
- Literature Review
- Character Recognition System
- Proposed System
- Implementation
- Experimental Results
- Conclusion & Future Work
- References

➤ For both training and testing stage

Proposed System

- Introduction
- Literature
 Review
- Character Recognition System
- Proposed System
- Implementation
- Experimental Results
- Conclusion & Future Work
- References

> For both training and testing stage

Image Acquisition

- Introduction
- Literature
 Review
- Character Recognition System
- Proposed System
- Implementation
- Experimental Results
- Conclusion & Future Work
- References

□ Documents images can be acquired through scanners, cameras. ☐ Have used dataset [6]. ☐ Used a total of 30,000 images for 60 characters. 500 image for each characters. □400 images for training and 100 images for testing. □ No compound characters were used only Bangla vowels, consonant and numeric characters were used.

Preprocessing

- Introduction
- Literature
 Review
- Character Recognition System
- Proposed System
- Implementation
- Experimental Results
- Conclusion & Future Work
- References

Feature Extraction

- Introduction
- Literature
 Review
- Character Recognition System
- Proposed System
- Implementation
- Experimental Results
- Conclusion & Future Work
- References

□ Zernike Moments

- ✓ Moments describe numeric quantities at some distance from a reference point or axis.
- ✓ Zernike Moments Simply the projection of the image function onto these orthogonal basis functions[5].
- ✓ Advantages: translation, rotation and scale invariant, higher accuracy for detailed shape

Feature Extraction (cont'd)

- Introduction
- Literature
 Review
- Character Recognition System
- Proposed System
- Implementation
- Experimental Results
- Conclusion & Future Work
- References

☐ Histogram of Oriented Gradients (HOG)

- ✓ Counts occurrences of gradient orientation in localized portions
 of an image. [7]
- ✓ Similar to edge orientation histograms, scale-invariant feature transform descriptors.
- ✓ Differs in that it is computed on a dense grid of uniformly spaced cells and uses overlapping local contrast normalization for improved accuracy.

Feature Extraction (cont'd)

- Introduction
- Literature
 Review
- Character Recognition System
- Proposed System
- Implementation
- Experimental Results
- Conclusion & Future Work
- References

Fig. 1. HOG features for different cell size for Bangla Character '엑'

Feature Extraction (cont'd)

- Introduction
- Literature
 Review
- Character Recognition System
- Proposed System
- Implementation
- Experimental Results
- Conclusion & Future Work
- References

☐ Binary Pixel

- ✓ After converting an image to binary image the image matrix is carpeted into a row vector which is used as feature.
- ✓ Widely used as a feature extraction technique for printed characters [8].

Fig. 2. Binary image of a Bangla Character 'ক' [8].

Feature Extraction (cont'd)

- Introduction
- Literature
 Review
- Character Recognition System
- Proposed System
- Implementation
- Experimental Results
- Conclusion & Future Work
- References

☐ All three feature vectors are concatenated for creating a new

Fig.2: (a) sample character (b) Zernike Moments features of sample character (c) HOG features of sample character (d) Binary pixel features of sample character

Classification

- Introduction
- Literature
 Review
- Character Recognition System
- Proposed System
- Implementation
- Experimental Results
- Conclusion & Future Work
- References

□ Support Vector Machine

- ✓ Support Vector Machine is a supervised machine learning algorithm used for classification or regression problems.
- ✓ Uses kernel trick to transform data and then based on these transformations it finds an optimal boundary between the possible outputs[9].
- √ 3 popular kernels are used generally
 - Linear
 - Radio Basis Function (Gaussian)
 - Polynomial

Validation

- Introduction
- Literature Review
- Character Recognition System
- Proposed System
- Implementation
- Experimental Results
- Conclusion & Future Work
- References

- ☐ A total of 30,000 images are used for the whole system. 24,000 for training and 6,000 for testing.
- ☐ From the testing 24,000 images 4,800 images were separated for validation set for selecting various parameters.

Experimental Results

- Introduction
- Literature
 Review
- Character Recognition System
- Proposed System
- Implementation
- Experimental Results
- Conclusion & Future Work
- References

Fig. 3. Partial Confusion Matrix for combined features.

Experimental Results (cont'd)

- Introduction
- Literature
 Review
- Character Recognition System
- Proposed System
- Implementation
- Experimental Results
- Conclusion & Future Work
- References

Table 1. Accuracy rate corresponding to different feature extraction techniques for different characters.

	No. of Testing data	No. of Correctly Identified Data				
Characters		Zernike Moments	Raw Binary Pixels	Histogram of Oriented Gradients	Combined	
5	100	42	88	87	91	
•	100	46	91	93	98	
অ	100	68	96	99	99	
আ	100	78	73	91	99	
	100	24	65	83	99	
গ	100	33	77	88	95	
ঞ	100	67	38	91	92	
য	100	28	42	75	90	
স	100	33	79	77	95	
ঝ	100	50	52	85	97	
ঢ়	100	57	46	92	92	

Experimental Results (cont'd)

Table 2. No. of correctly identified characters when using different feature extraction techniques.

•	Introduction
	IIILIOGGCLIOII

- Literature
 Review
- Character Recognition System
- Proposed System
- Implementation
- Experimental Results
- Conclusion & Future Work
- References

	Total Testing Data	Correctly Identified Data	Accuracy
Zernike Moments	6000	2819	46.98%
Binary Pixels	6000	3996	66.60%
Histogram of Oriented Gradients	6000	5257	87.62%
Combined	6000	5693	94.88%

Experimental Results (cont'd)

- Introduction
- Literature
 Review
- Character Recognition System
- Proposed System
- Implementation
- Experimental Results
- Conclusion & Future Work
- References

Conclusion & Future Work

Introduction

- Literature Review
- Character Recognition System
- Proposed System
- Implementation
- Experimental Results
- Conclusion & Future Work
- References

□ Conclusion

- ✓ Zernike Moments provides 46.95%, Binary Pixels provide 66.60%, HOG provides 87.62% and Combining these provides 94.88% accuracy for the system.
- ✓ Combining the features provide a much better accuracy than the individual feature extraction techniques.

☐ Future Work

- ✓ Compare with other ensemble feature extraction techniques.
- ✓ Check performance for Gaussian and Polynomial kernels in SVM.
- ✓ Implement other classification algorithms for performance analysis.

References

- Introduction
- Literature
 Review
- Character Recognition System
- Proposed System
- Implementation
- Experimental Results
- Conclusion & Future Work
- References

- [1] B. B. Chaudhuri and U. Pal "A Complete Printed Bangla OCR System", Computer Vision and Pattern Recognition Unit, Indian Statistical Institute, 1998, Pattern Recognition, Vol. 31, No. 5, pp. 531-549
- [2] T. K. Bhowmik, P. Ghanty, A. Roy, S. K. Paru "SVM-based hierarchical architectures for handwritten Bangla character recognition" International Journal on Document Analysis and Recognition, 2009.
- [3] S. Bhowmik, M. G. Roushan, R. Sarkar "Handwritten Bangla word recognition using hog descriptor." Fourth International Conference of Emerging Applications of Information Technology (EAIT), 2014.
- [4] N. Das, B. Das, R. Sarkar, S. Bashu, M. Kundu, M. Nasipuri "Handwritten Bangla basic and compound character recognition using MLP and SVM classifier." arXiv preprint arXiv:1002.4040 (2010).

References

- Introduction
- Literature Review
- Character Recognition System
- Proposed System
- Implementation
- Experimental Results
- Conclusion & Future Work
- References

- [5] A. Khotanzad and Y. H. Hong. "Invariant image recognition by Zernike moments." IEEE Transactions on pattern analysis and machine intelligence 12.5 1990: 489-497.
- [6] N. Mohammed, S. Momen, A. Abedin, M. Biswas, R. Islam, G. Shom, Md. Shopon. "BanglaLekha-Isolated", Mendeley Data, v2, 2017.
- [7] N. Dalal and B. Triggs. "Histograms of oriented gradients for human detection." Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on. Vol. 1. IEEE, 2005.
- [8] S. Afroge, B. Ahmed, A. Hossain "Bangla Optical Character Recognition through Segmentation using Curvature Distance and Multilayer Perceptron Algorithm" International Conference on Electrical, Computer and Communication Engineering (ECCE), February 16-18, 2017.
- [9] R. Azim, W. Rahman, & M. F. Karim, Bangla Hand Written Character Recognition Using Support Vector Machine. 2016.

Thank you
Any Questions?