### On AGI architecture

September 20, 2019mid-term report

#### YKY

Independent researcher, Hong Kong generic.intelligence@gmail.com

#### Table of contents

- AGI
  No free lunch (NFL)
  Topos
- 10 (permutation invariance)

# The simplest AGI architecture

AGI recurrent

rewrite / update / transition function = F



(1)

- Bellman
- ► Transition function *F*
- no free lunch inductive bias

## No free lunch (NFL)

- no free lunch
- AGI bias



- ► F (sparse) (deep)
- 🕨 bias 😥

• working memory (•) (101010)



- ► BERT BERT
- BERT AGI BERT

```
\begin{array}{c} \begin{array}{c} \text{loop 1} \\ \end{array} \xrightarrow{} \begin{array}{c} \begin{array}{c} \text{loop 2} \\ \end{array} \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \text{mental state} \end{array}
```

(4)

(3)



(5)

(6)

symmetric NN



**(5)** (6) **(6)** 

Bellman

Bellman

Lagrangian *L* Hamiltonian *H* 

Bellman  $S_t(x) = \max_{u} \{L(x, u) + \gamma S_{t+1}(x)\}$ 

Hamilton-Jacobi 1970s Kalman Pontryagin

K.E. = kenetic energy, P.E. = potential energy.

Hamilton-Jacobi-Bellman (HJB)

 $\frac{}{\text{Hamilton-Jacobi}} \frac{\partial S(x,t)}{\partial t} = -H$ 

(8)

L = K.E. - P.E. , H = K.E. + P.E.

► Hamilton-Jacobi Schrödinger exact  $Ψ = e^{-i\hbar S}$ 

Hamilton-Jacobi 
$$\frac{\partial S}{\partial t} = -H \implies i\hbar \frac{\partial \Psi}{\partial t} = H\Psi$$
 Schrödinger

(quantization) [Field 2010]

Schrodinger (imaginary time) (diffusion)

wave eqn. 
$$\frac{\partial \Psi}{\partial t} + i\Delta \Psi = 0 \quad \Longleftrightarrow \quad \frac{\partial u}{\partial t} + \Delta u = 0 \quad \text{[heat eqn.]}$$

AI discrete Laplacian Δ discrete Schrödinger operators graph graph









(10)

# **Topos**

Topos Lawvere 1950s topos (objects)

- ► Cartesian product  $A \times B A \wedge B$
- exponentiation  $A \to B = B^A \ A \Rightarrow B$
- ▶ subobject classifier  $A \hookrightarrow B$   $A \subseteq B$

Topos relation graphsalgebras

 $F \ U \xrightarrow{F} V$  exponentiation  $V^U \ U, V \ A \times B$  embed  $A \times B = B \times A$  Abel

### (permutation invariance)

- Word2Vec Poincaré disc / hyperbolic space [Nickel and Kiela 2017]
- vectors hyperbolic space
- $ightharpoonup F_2$  Cayley Cayley



- ►  $F_n$  Cayley hyperbolic disc  $F_n$  Abelianization  $F_n^{Ab} \cong \mathbb{Z}^n = \mathbb{Z} \times ... \mathbb{Z}$  n-grid
- (representation theory) Abel 1-  $F_n^{Ab}$  n 1-

- $\mathbb{Z}^n$  fractal fractals
- weights-sharing permutation invariant (= Symmetric NN)
- activation function = polynomial
- 1-2 = 2
- sparse bias

Field, JH (2010). "Derivation of the Schrödinger equation from the Hamilton-Jacobi equation in Feynman's path integral formulation of quantum mechanics". In: *European Journal of Physics*.

Nickel, Maximillian and Douwe Kiela (2017). "Poincaré embeddings for learning hierarchical representations". In: *Advances in neural information processing systems*, pp. 6338–6347.

