3.3 无界闭集

- 1. C 在 α 中无界,即 $\sup C = \alpha$,或等价地,对任意 $\beta < \alpha$,存在 $\xi \in C$, $\beta < \xi$;
- 2. C 在 α 中是闭的,即,对任意极限序数 $\gamma < \alpha$,如果 $\sup(C \cap \gamma) = \gamma$,则 $\gamma \in C$ 。

就称 C 是 α 的无界闭集。

注记 3.3.2. 假设 C 是极限序数 α 的子集,如果 γ 是 C 某一子集的上确界并且 $\gamma < \alpha$,则称 γ 是 C 的极限点。因此,C 在 α 中是闭集当且仅当 C 的极限点都属于 C。

练习 3.3.3. 回忆拓扑的概念。对任意非空的序数集合 X,令

 $B = \{(\xi, \eta) \mid \xi, \eta \in X\} \cup \{\xi \cap X \mid \xi \in X\} \cup \{X - (\xi + 1) \mid \xi \in X\} \cup \{X\}$ (3.5)

为拓扑基,则由 3 生成的拓扑称为 X 上的**序拓扑**。证明:定义中的闭集与 α 上序拓扑中闭集的意义一致。

以下讨论无界闭集的一些基本性质。

引理 3.3.4. 假设 α 是极限序数,并且 cf(α) > ω ,则:

- (1) α 是 α 上的无界闭集。
- (2) 任取 $\beta < \alpha$,则集合 $\{\delta < \alpha \mid \delta > \beta\}$ 是 α 上的无界闭集。
- (3) 集合 $X = \{\beta < \alpha \mid \beta \}$ 是极限序数} 是 α 上的无界闭集。
- (4) 如果 X 在 α 中无界,则 $X' = \{ \gamma \in X \mid \gamma < \alpha \land \gamma \neq X \}$ 的极限点} 是 α 上的无界闭集。

证明.(1),(2) 留给读者。

(3) X 显然是闭集。为证 X 是无界的,任取 $\xi \in \alpha$,定义序列

$$\xi = \xi_0, \xi_1, \cdots, \xi_n, \cdots \quad (n \in \omega)$$

其中 ξ_{n+1} 是严格大于 ξ_n 并且属于 α 的最小序数。令 η 为以上序列的极限,则 $\eta > \xi$ 并且属于 X。

(4) X' 是无界的可用类似(3)中的方法证明:任取 $\xi \in \alpha$,定义严格 递增的序列 $(\xi_n)_{n \in \omega}$,其中每个 $\xi_n \in X$ 。这个序列的极限 η 是 X 的极限点,所以属于 X' 并且大于 ξ 。为证明 X' 是闭集,任取 $\eta < \alpha$ 是 X' 的极限点,即, $\sup(X'\cap\eta)=\eta$,则对任意 $\sigma < \eta$,存在 X 的极限点 $\xi < \eta$ 使得 $\sigma +1 < \xi$ 。由极限点的定义,存在 $\mu \in X \cap \xi$,使得 $\sigma < \mu$,所以 $\sup(X\cap\eta)=\eta$,即 η 也是 X 的极限点,故 $\eta \in X'$ 。

引理 3.3.5. 如果 α 是极限序数并且 $cf(\alpha) > \omega$,而 $f: \alpha \to \alpha$ 是严格递增的,并且是连续的,即对任意极限 $\beta < \alpha$, $f(\beta) = \bigcup_{\gamma < \beta} f(\gamma)$,则:

- (1) f 的值域是 α 的无界闭集;
- (2) 反之,如果 α 是还是正则的,则 α 中的每个无界闭集C 都是这样一个函数的值域。

证明. 对于(1): f 是严格递增的,所以它的值域在 α 中无界;f 是连续的,所以它的值域是闭集。

对于(2),令 τ 为无界闭集 C 的序型, $f:\tau\to C$ 是关于序数上 < 关系的同构,则 f 显然是严格递增和连续的。由于 C 是无界的,而 α 是正则的,所以 $\tau \geq \mathrm{cf}(\alpha) = \alpha$ 。又由于对任意 $\eta < \tau$, $\eta \leq f(\eta)$,所以 $\tau \leq \sup f(\eta) = \alpha$ 。

练习 3.3.6. 如果 α 是极限序数,则存在一个函数 $g=f: cf(\alpha) \rightarrow \alpha$,ran(f) 是 α 的无界闭集。

注记 3.3.7. 我们在定义2.1.35中定义了类函数的连续性,如果将 ◎ 看作一个"极限序数",则有类似引理3.3.5结果:

假设 $F: \mathbb{O} \to \mathbb{O}$ 是严格递增的连续函数,则 F 的"值域"作为子类在 \mathbb{O} 中是闭的,并且是无界的。反之亦然:如果 $\mathcal{C} \subseteq \mathbb{O}$ 是一个无界的闭的类,则存在 $F: \mathbb{O} \to \mathbb{O}$, \mathcal{C} 是 F 的"值域"。

命题 **3.3.8.** 假设 α 是极限序数,且 $cf(\alpha) > \omega$,则对任意 $\gamma < cf(\alpha)$,如果 $\langle C_{\xi} \rangle_{\xi < \gamma}$ 是无界闭集的序列,则 $\bigcap_{\xi < \gamma} C_{\xi}$ 也是 α 的无界闭集。

证明. 假设 $\gamma=2$,只需证明 $C_1\cap C_2$ 是无界闭集。闭集的交显然是闭集,所以只需证明 $C_1\cap C_2$ 在 α 中无界。任取 $\delta<\alpha$,则存在 $\xi\in C_1$, $\eta\in C_2$ (不妨设 $\xi<\eta$)使得 $\delta<\xi<\eta$,构造无穷序列:

$$\delta < \xi_0 < \eta_0 < \xi_1 < \eta_1 < \xi_2 < \eta_2 < \cdots$$

其中 $\xi_0 = \xi, \eta_0 = \eta$ 且对任意 $n \in \omega, \ \xi_n \in C_1, \eta_n \in C_2$ 。令 μ 是这个序列的极限,则 $\sup(C_1 \cap \mu) = \mu$ 且 $\sup(C_2 \cap \mu) = \mu$ 。由于 $\mathrm{cf}(\alpha) > \omega$,因此 $\mu \in C_1 \cap C_2$,并且 $\delta < \mu$ 。

如果 γ 是后继序数,则凭借归纳假设,用 $\gamma = 2$ 的方法容易证明。

假设 γ 是极限序数,令 $D = \bigcap_{\xi < \gamma} C_{\xi}$,D 显然是闭集,以下证明它是无界的。根据归纳假设,对任意 $\eta < \gamma$, $D_{\eta} = \bigcap \{C_{\xi} \mid \xi < \eta\}$ 是无界闭集,而且 $D = \bigcap_{\eta < \gamma} D_{\eta}$,并且 $\eta < \eta' < \gamma$ 蕴涵 $D_{\eta} \supset D_{\eta'}$ 。任取 $\delta < \alpha$,构造序数的序列:

$$\delta < \xi_0 < \xi_1 < \dots < \xi_\eta < \dots,$$

对每一 $\eta < \gamma$, $\xi_{\eta} \in D_{\eta}$, 并且是大于 $\sup\{\xi_{\delta} \mid \delta < \eta\}$ 的最小序数,最后令 $\xi = \sup\{\xi_{\eta} \mid \eta < \gamma\}$ 。由于 α 是正则的,所以这个序列在 α 中有界,所以 $\xi \in \alpha$ 。 对任意 $\eta < \gamma$,任意 $\delta \geq \eta$, $\xi_{\delta} \in D_{\delta} \subseteq D_{\eta}$,所以 ξ 是 D_{η} 的极限点,因此 $\xi \in D_{\eta}$,所以 $\xi \in D_{\delta}$ 。

由此,我们可以定义:

定义 3.3.9. 对任意共尾数大于 ω 的极限序数 α ,

 $F_{CB}(\alpha) = \{X \subseteq \alpha \mid \exists C(C \neq \alpha) \in \mathbb{R} \mid A \in \mathbb{R} \mid$

推论 3.3.10. 如果 κ 是不可数正则基数,则 κ 上的无界闭滤是 κ -完全的。

证明. 由命题3.3.8 立得。

虽然不可数正则基数 κ 上的无界闭滤是 κ 完全的,但是可以找到一个长度为 κ 的无界闭集的序列,它的交为空集(见习题 3.4.6)。

定义 3.3.11. 对任意序数 α , $\langle X_{\xi} | \xi < \alpha \rangle$ 是 α 子集的序列,

(1) X_ξ 的对角线交定义为:

$$\bigwedge_{\xi < \alpha} X_{\xi} = \{ \eta < \alpha \mid \eta \in \bigcap_{\xi < \eta} X_{\xi} \}$$
(3.7)

(2) X_ξ 的对角线并定义为:

$$\nabla X_{\xi} = \{ \eta < \alpha \mid \eta \in \bigcup_{\xi < \eta} X_{\xi} \}$$
(3.8)

注记 3.3.12. 如果令 $Y_{\xi} = \{ \eta \in X_{\xi} \mid \eta > \xi \}$,则 $\Delta_{\xi < \alpha} X_{\xi} = \Delta_{\xi < \alpha} Y_{\xi}$ 。同时, $\Delta_{\xi < \alpha} X_{\xi} = \bigcap_{\xi < \alpha} (X_{\xi} \cup \{ \eta \mid \eta \leq \xi \})$ (见习题 3.4.7、3.4.8)。另外,在不致引起混淆的情况下,我们常将 $\Delta_{\xi < \alpha} X_{\xi}$ 简记为 ΔX_{ξ} 。对于 $\nabla_{\xi < \alpha} X_{\xi}$,也类似。

命题 3.3.13. 对任意不可数正则基数 κ ,以及 κ 上的无界闭集的序列 $\langle X_{\gamma} | \gamma < \kappa \rangle$, $\Delta_{\nu < \kappa} X_{\gamma}$ 是无界闭集。即, $F_{CB}(\kappa)$ 关于对角线交封闭。

证明. 对任意 $\gamma < \kappa$, 令 C_{γ} 为 $\bigcap_{\xi < \gamma} X_{\xi}$, 则 $\Delta X_{\gamma} = \Delta C_{\gamma}$ 。而我们有:

$$C_0 \supset C_1 \supset \cdots \supset C_{\gamma} \supset \cdots \quad (\gamma < \kappa).$$

令 $C = \Delta C_{\nu}$ 。 为证 C 是闭集,取 η 是 C 的极限点。我们需要证明 $\eta \in C$,即,对任意 $\xi < \eta$, $\eta \in C_{\xi}$ 。为此定义 $X = \{\nu \in C \mid \xi < \nu < \eta\}$,则 $X \subset C_{\xi}$;根据定理3.3.10, C_{ξ} 是无界闭集,所以 $\eta = \sup X \in C_{\xi}$,因此 $\eta \in C$ 。

为证 C 无界,取 $\mu < \kappa$ 。如下定义序列 $\langle \beta_n \mid n < \omega \rangle$:令 $\beta_0 > \mu$ 且 $\beta_0 \in C_0$,对每一 n,令 $\beta_{n+1} > \beta_n$ 且 $\beta_{n+1} \in C_{\beta_n}$ 。由于 C_{β_n} 是无界的,所以 这样的 β_{n+1} 总能找到。同时注意到

$$C_{\beta_0}\supset C_{\beta_1}\supset C_{\beta_2}\supset\ldots$$

所以对任意 m > n, $\beta_m \in C_{\beta_n}$ 。以下证明 $\beta = \sup\{\beta_n \mid n < \omega\} \in C$ 。为此,只需证明对任意 $\xi < \beta$,都有 $\beta \in C_{\xi}$ 。如果 $\xi < \beta$,则存在 n, $\xi < \beta_n$ 。而对每一 m > n, $\beta_m \in C_{\beta_n} \subset C_{\xi}$ 。由于 C_{ξ} 是闭集,故 $\beta \in C_{\xi}$ 。

推论 3.3.14. 对任意不可数正则基数 κ , 如果 $f: \kappa \to \kappa$ 是函数,则集合

$$D = \{ \alpha < \kappa \mid \forall \beta < \alpha (f(\beta) < \alpha) \} \tag{3.9}$$

是无界闭集。

证明. 对任意 $\alpha < \kappa$,定义 $C_{\alpha} = \{\beta < \kappa \mid f(\alpha) < \beta\}$,则 C_{α} 是无界闭集。对任意 $\alpha < \kappa$, $\alpha \in D$ 当且仅当对任意 $\beta < \alpha$, $f(\beta) < \alpha$ 当且仅当对任意 $\beta < \alpha$, $\alpha \in D_{\beta}$,所以 $D = \triangle C_{\alpha}$,是无界闭集。

若 α 是极限序数,并且 $cf(\alpha) > \omega$,则 α 上的无界闭滤 $F_{CB}(\alpha)$ 包含了 α 的"大子集",与其对偶的"小子集"的族是 $I = \{X \subseteq \kappa \mid \kappa - X \in F_{CB}\}$ 。有时候我们需要刻画"不小的"子集的族,即不属于 I 的那些子集,这等价于说 $\kappa - X$ 不以一个无界闭集为子集,即 X 与任何无界闭集相交不空。

定义 3.3.15. 令 α 为任意极限序数, 并且 cf(α) > ω ,

- (1) 如果 $S \subseteq \alpha$ 满足对任意 α 的无界闭集 C 都有 $S \cap C \neq \emptyset$,就称 S 是 α 上的平稳集 1 。
- (2) $I_{NS}(\alpha) = \{X \subseteq \alpha \mid \exists C(C \ \exists \alpha \ \text{的无界闭子集} \land X \cap C = \emptyset\}$ 称为 α 上的非平稳理想。

练习 3.3.16. ϕ α 为任意极限序数, $cf(\alpha) > \omega$ 。

- (1) 如果 $S \subseteq \alpha$ 是平稳集, $C \subseteq \alpha$ 是无界闭集, $C \cap S$ 是平稳集。
- (2) $I_{NS}(\alpha)$ 是 $F_{CB}(\alpha)$ 的对偶理想。

引理 3.3.17. 假设 α 是极限序数, $cf(\alpha) > \omega$,

¹Stationary Set 有很多不同的译法,例如"稳定集"、"驻集",新出的《数学大词典》中译为"荟萃集"。

- (1) α 上的无界闭集都是平稳集,若 S 是平稳集且 $S\subseteq T\subseteq \alpha$,则 T 是平稳集。
 - (2) α上的平稳集都是无界的。
 - (3) 存在 α 上无界子集T, 但T 不是平稳集。

证明. (1) 由命题3.3.8, 任意两个无界闭集相交不空。

- (2) 假设 S 是平稳集,任取 $\beta < \alpha$, $\{\gamma < \alpha \mid \beta < \gamma\}$ 是 α 上的无界闭集,它与 S 相交非空,这个交集中的任何序数都大于 β 。
- (3) 令 $T = \{\alpha + 1 \mid \alpha < \kappa\}$ 是无界的,但不是 κ 上的平稳集,因为 κ 中的所有极限序数构成的无界闭集与它相交为空。

练习 3.3.18. 假设 α 是极限序数, $cf(\alpha) > \omega$,

- (1) 对任意 $\gamma < \alpha$,如果 $D = \{X_{\xi} \mid \xi < \gamma\}$ 为非平稳集的族,则 $\bigcup D$ 也是非平稳集。因此,如果 κ 是不可数正则基数,则 κ 上的非平稳理想是 κ -完全的。
- (2) S 和 α S 都是 α 上的平稳集当且仅当 S 不以任何无界闭集为子集。

命题 3.3.19. 假设 α 是极限序数, $cf(\alpha) > \omega$, 而 $\lambda < cf(\alpha)$ 是正则的, 定义

$$E_{\lambda}^{\alpha} = \{ \eta < \alpha \mid \operatorname{cf}(\eta) = \lambda \}. \tag{3.10}$$

则 E_{λ}^{α} 是 α 上的平稳集。

证明. 任取 α 上的无界闭集 C, 递归定义 C 上的长度为 λ 的严格递增的序列

$$\eta_0 < \eta_1 < \ldots < \eta_{\xi} < \ldots < \ldots \qquad (\xi < \lambda). \tag{3.11}$$

令此序列的上确界为 η ,则由于 C 是闭集并且 $\lambda < \mathrm{cf}(\alpha)$, $\eta \in C$,又因为 $\mathrm{cf}(\eta) = \lambda$,所以 $\eta \in E^{\alpha}_{\lambda}$ 。

注记 3.3.20. 当 $\alpha > \aleph_1$ 时,根据以上命题3.3.19, E^{α}_{ω} 和 $E^{\alpha}_{\omega_1}$ 是不相交的平稳子集,因此, E^{α}_{ω} 和 $\kappa - E^{\alpha}_{\omega}$ 都不是无界闭集,所以 α 上的无界闭滤不是超滤。

如果 $\alpha = \aleph_1$,要证明 α 上的无界闭滤不是超滤就需要选择公理,而且这种对选择公理的依赖是必须的,因为命题" \aleph_1 上的无界闭滤是超滤"与 **ZF** 是一致的。

命题 3.3.21. 对任意不可数正则基数 κ ,如果 $\langle X_{\xi} | \xi < \kappa \rangle$ 是非平稳集的序列,则 $\nabla_{\xi < \kappa} X_{\xi}$ 仍是非平稳集。即, $I_{NS}(\kappa)$ 关于对角线并封闭。

证明. 对任意 X_{ξ} ,存在 C_{ξ} 使得 $X_{\xi} \cap C_{\xi} = \emptyset$,令 $C = \triangle C_{\xi}$,则 C 是无界闭集(命题3.3.13)。令 $X = \nabla X_{\xi}$ 。对任意 $\gamma < \kappa$, $\gamma \in C$ 当且仅当对任意 $\xi < \gamma$, $\gamma \in C_{\xi}$,这蕴涵对任意 $\xi < \gamma$, $\gamma \notin X_{\xi}$,所以 $\gamma \notin X$,所以 $\chi \cap C = \emptyset$ 。

在本节剩下的部分,我们证明索洛维(Robert Solovay)的一个重要结论。 首先证明一个重要的定理——福道尔(Géza Fodor)定理,除了在索洛维定理 中需要用到,它还有很多应用。

定义 3.3.22. 定义在序数的集合 S 上的函数 f 如果满足对任意非 0 的 $\alpha \in S$, 都有 $f(\alpha) < \alpha$, 就称 f 是退缩的。

定理 3.3.23 (福道尔). 任取不可数正则基数 κ ,平稳集 $S \subseteq \kappa$,如果 f 是定义在 S 上的退缩函数,则存在平稳集 $T \subseteq S$ 和序数 $\gamma < \kappa$ 使得对任意 $\alpha \in T$, $f(\alpha) = \gamma$ 。

证明. 反设对任意 $\gamma < \kappa$,集合 $A_{\gamma} = \{\alpha \in S \mid f(\alpha) = \gamma\}$ 都不是平稳集。对每 $-\gamma < \kappa$,存在无界闭集 C_{γ} , $A_{\gamma} \cap C_{\gamma} = \emptyset$,即对任意 $\alpha \in S \cap C_{\gamma}$, $f(\alpha) \neq \gamma$ 。令 $C = \Delta_{\gamma < \kappa} C_{\gamma}$,即 $\alpha \in C$ 当且仅当对任意 $\gamma < \alpha$, $\alpha \in C_{\gamma}$,也就是说,对任意 $\gamma < \alpha$, $\gamma \in C_{\gamma}$,这意味着对任意 $\gamma \in C_{\gamma}$,也就是说,对闭集,所以 $\gamma \in C_{\gamma}$ 。 这与 $\gamma \in C_{\gamma}$ 是定义在 $\gamma \in C_{\gamma}$ 上的退缩函数矛盾。

引理 3.3.24. 令 κ 是不可数正则基数。 $S \subseteq \kappa$ 是平稳集,f 是 S 上的退缩函数。如果对任意 $\eta < \kappa$,集合

$$X_{\eta} = \{ \alpha \in S \mid f(\alpha) \ge \eta \} \tag{3.12}$$

都是平稳集,则S可以划分为 κ 个互不相交的平稳集。

证明. 对任意 $\eta < \kappa$, $f \upharpoonright X_{\eta} \not = X_{\eta}$ 上的退缩函数。应用 Fodor 引理,得到一个 $\gamma_{\eta} < \kappa$, $\gamma_{\eta} > \eta$, 使得 $S_{\nu_{\eta}} = \{\alpha \in S \mid f(\alpha) = \gamma_{\eta}\}$ 是平稳集。

递归定义 $g: \kappa \to \kappa$ 为: g(0) = 0,如果对任意 $\xi < \eta$ 已经定义,令 $g(\eta) = \sup\{\gamma_{g(\xi)} + 1 \mid \xi < \eta\}$ 。如果 $\xi < \eta < \kappa$,则 $\gamma_{g(\xi)} < g(\eta) \leq \gamma_{g(\eta)}$,所以 $\eta \mapsto \gamma_{g(\eta)}$ 是一个 κ 到 κ 上的递增的共尾函数。所以 $\{S_{\gamma_{g(\eta)}} \mid \eta < \kappa\}$ 的基数为 κ ,并且是两两不交的。

引理 3.3.25. 假设 κ 是不可数正则基数, $\lambda < \kappa$ 是正则基数,

$$E_{\lambda}^{\kappa} = \{ \alpha < \kappa \mid \mathrm{cf}(\alpha) = \lambda \} \tag{3.13}$$

的任意平稳子集都可以划分为 K 个互不相交的稳定子集的并。

证明. 令 $S \subseteq E_{\lambda}^{\kappa}$ 是平稳集。对任意 $\alpha \in S$,选择一个严格递增的共尾函数 $f_{\alpha}: \lambda \to \alpha$ 。对任意 $\xi < \lambda$,定义函数 $g_{\xi}: \kappa \to \kappa$ 为:

$$g_{\xi}(\alpha) = \begin{cases} 0 & \text{m} \mathbb{R} \ \alpha \notin S; \\ f_{\alpha}(\xi) & \text{m} \mathbb{R} \ \alpha \in S. \end{cases}$$
 (3.14)

注意到,对任意 $\xi < \lambda$, $g_{\xi} \upharpoonright S$ 是一个退缩函数。

对任意 $\eta < \kappa$, 任意 $\xi < \lambda$, 定义以下集合:

$$X_{\xi}^{\eta} = \{ \alpha \in S \mid g_{\xi}(\alpha) \ge \eta \}. \tag{3.15}$$

我们证明: 存在 $\xi < \lambda$,对任意 $\eta < \kappa$, S_{ξ}^{η} 是一个平稳集。否则,对任意 $\xi < \lambda$,存在一个无界闭集 C_{ξ} ,一个序数 $\eta_{\xi} < \kappa$,使得 $C_{\xi} \cap X_{\xi}^{\eta_{\xi}} = \emptyset$ 。令 $C = \bigcap_{\xi < \lambda} C_{\xi}$, $\eta = \sup\{\eta_{\xi} \mid \xi < \lambda\}$,则 C 是无界闭集。但是,对任意 $\alpha \in C \cap S$,任意 $\xi < \lambda$, $g_{\xi}(\alpha) < \eta$,所以 $C \cap S \subseteq \eta$,矛盾。

固定一个 $\xi < \lambda$,使得对任意 $\eta < \kappa$, X_{ξ}^{η} 是一个平稳集。应用引理 3.3.24, S 可以划分为 κ 个互不相交的平稳集。

推论 3.3.26. 令 κ 为不可数正则基数, $X = \{\alpha < \kappa \mid \text{cf}(\alpha) < \alpha\}$ 。如果 $S \subseteq X$ 是平稳集,则 S 可以划分为 κ 个互不相交的平稳集的并。

证明. 令 $S \subseteq X$ 为平稳集,定义 $f : \kappa \to \kappa$ 为 $f(\alpha) = \mathrm{cf}(\alpha)$,则 $f \upharpoonright S$ 上为 退缩函数。由 Fodor 引理,存在 $\lambda < \kappa$, $S_{\lambda} = \{\alpha \in S \mid f(\alpha) = \lambda\}$ 是平稳集。 注意到 $S_{\lambda} \subseteq E_{\lambda}^{\kappa}$,所以 S_{λ} 可以划分为 κ 个互不相交的平稳集的并。

引理 3.3.27. 令 κ 为不可数正则基数, $S \subseteq \kappa$ 为平稳集, $f: S \to \kappa$ 为退缩函数。对任意 $\beta < \kappa$,定义集合

$$S_{\beta} = \{ \alpha \in S \mid f(\alpha) = \beta \},\tag{3.16}$$

令 $I = \{S_{\beta} \mid S_{\beta}$ 是平稳集},则以下命题有且只有一个成立:

- (1) $|I| = \kappa$;
- (2) $|I| < \kappa$ 并且存在一个无界闭集 C , $f \upharpoonright C \cap S$ 的值域在 κ 中有界。

证明. 假设(1)不成立,则存在一个 $\beta < \kappa$,

$$X_{\beta} = \{ \alpha < \kappa \mid f(\alpha) \ge \beta \} \tag{3.17}$$

不是平稳集,否则,由引理 3.3.24,S 可划分为 κ 个互不相交的平稳集,与题设矛盾。

现在,令 $\beta < \kappa$ 为使得 X_{β} 不是平稳集的序数。存在无界闭集 $C,C \cap X_{\beta} = \emptyset$ 。但是 $C \cap S \neq \emptyset$,而对于任意 $\alpha \in C \cap S$, $\alpha \notin X_{\beta}$,即 $f(\alpha) < \beta$ 。

引理 3.3.28. 令 κ 为不可数正则基数, $R = \{\omega < \gamma < \kappa \mid \mathrm{cf}(\gamma) = \gamma\}$ 小于 κ 的不可数正则基数的集合。定义 R 的子集:

$$D = \{ \gamma \in R \mid R \cap \gamma \in I_{NS}(\gamma) \}, \tag{3.18}$$

如果 R 是 κ 的平稳子集,则 D 也是 κ 的平稳子集。

证明. 反设 D 不是平稳集,令 C 为无界闭集使得 $C \cap D = \emptyset$ 。同时,令 C' 为 C 的极限点的集合,C' 也是无界闭集。取 $C' \cap R$ 的最小元 γ , $\gamma \in R - D$ 。所以, $R \cap \gamma$ 是 γ 的平稳集。

现在考虑 $C \cap \gamma$,由于 γ 是 C 的极限点,这个集合在 γ 中无界,由引理3.3.4 (4), $C' \cap \gamma$ 是 γ 的无界闭集。所以 $R \cap C' \cap \gamma \neq \emptyset$,但这与 γ 是 $R \cap C'$ 的最小元矛盾。

定理 3.3.29 (索洛维). 对任意不可数的正则基数 κ , κ 上的任一平稳集都是 κ 个互不相交的平稳集的并。

证明. 令 $S \subseteq \kappa$ 为平稳集。令

$$S_0 = \{ \alpha < \kappa \mid \operatorname{cf}(\alpha) < \alpha \}$$

 $S_1 = \{ \alpha < \kappa \mid \operatorname{cf}(\alpha) = \alpha \},$

则 $S = S_0 \cup S_1$ 。所以, S_0 或 S_1 是平稳集。

如果 S_0 是,则根据引理3.3.26, S_0 可划分为 κ 个互不相交的平稳集。定理得证。

现在假设 S_1 是平稳集,令 $D = \{\alpha \in S_1 \mid S_1 \cap \alpha \in I_{NS}(\alpha)\}$ 。根据引理 3.3.28,D 是平稳集。

由于 $D \subseteq S_1$,所以对任意 $\alpha \in S_1$, $D \cap \alpha$ 不是 α 的平稳子集,所以存在 α 的无界闭集 C_α 使得 $C_\alpha \cap D \cap \alpha = \emptyset$ 。

对任意 $\alpha \in D$,定义 $f_{\alpha}: \alpha \to C_{\alpha}$ 为: 对任意 $\xi < \alpha$, $f_{\alpha}(\xi) = {}^{*}C_{\alpha}$ 的第 ξ 个元素。由于 C_{α} 是 α 的无界闭集,所以根据引理3.3.5,可以令 f_{α} 是连续且严格递增的函数。注意,对任意 $\alpha \in D$,任意 $\xi < \alpha$, $f_{\alpha}(\xi) \notin D$ 。现在我们证明以下命题:

断言 3.3.30. 存在 $\theta < \kappa$, 使得对任意 $\eta \in \kappa$,

$$X_{\eta} = \{ \alpha \in D \mid \theta < \alpha \land f_{\alpha}(\theta) \ge \eta \}$$
 (3.19)

是平稳集。

证明断言. 反设对任意 $\theta < \kappa$,存在 $\eta(\theta)$,使得 $X_{\eta(\theta)}$ 不是平稳集。令 C_{θ} 为 无界闭集且 $C_{\theta} \cap X_{\eta(\theta)} = \emptyset$ 。所以,对任意 $\alpha \in C_{\theta} \cap D$,如果 $\theta < \alpha$,则 $f_{\alpha}(\theta) < \eta(\theta)$ 。现在令 $C = \Delta_{\theta < \kappa} C_{\theta}$,C 是无界闭集,根据定义,对任意 $\beta \in C$,对任意 $\theta < \beta$, $\beta \in C_{\theta}$ 。所以对任意 $\alpha \in C \cap D$,对任意 $\theta < \alpha$,都 有 $f_{\alpha}(\theta) < \eta(\theta)$ 。定义

$$E = \{ \gamma \in C \mid \forall \theta < \gamma(\eta(\theta) < \gamma) \}$$
 (3.20)

以下证明 E 是无界闭集。

首先,假设 ξ 是 E 的极限点,则 ξ 是 C 的极限点,所以 ξ \in C 。如果 θ $< \xi$,由于 $\sup(E \cap \xi) = \xi$,所以存在 $\gamma \in E \cap \xi$, $\theta < \gamma$,所以 $\eta(\theta) < \gamma < \xi$,所以 $\xi \in E$ 。

其次,任取 $\alpha < \kappa$,令 $\xi_0 > \alpha$ 并且 $\xi_0 \in C$ 。如果 ξ_n 已经定义,令 $\gamma = \sup\{\eta(\theta) \mid \theta < \xi_n\}$,取 $\xi_{n+1} \in C$ 使得 $\xi_{n+1} > \gamma$ 。令 $\xi = \sup\{\xi_n \mid n \in \omega\}$,则 $\xi \in C$ 的极限点,所以 $\xi \in C$ 。同时,如果 $\theta < \xi$,则存在 $n \in \omega$, $\theta < \xi_n$,所以 $\eta(\theta) < \xi_{n+1} < \xi$,这蕴涵着 $\xi \in E$ 。

现在取 $\alpha, \beta \in E \cap D$,不妨设 $\beta < \alpha$ 。根据定义,对任意 $\theta < \beta$, $f_{\alpha}(\theta) < \eta(\theta) < \beta$,所以 $f_{\alpha}(\beta) = \beta$ 。但是 $f_{\alpha}(\beta) \notin D$,而 $\beta \in D$,矛盾。

固定 $\theta < \kappa$ 使得对任意 $\eta < \kappa$, X_{η} 都是平稳集。定义函数 $g_{\theta} : \kappa \to \kappa$ 为: 对任意 $\alpha \in D$, $g_{\theta}(\alpha) = f_{\alpha}(\theta)$ 。还记得 $f_{\alpha}(\theta) \in C_{\alpha} \subseteq \alpha$,所以 $g_{\theta} \in D$ 上的退缩函数。应用 Fodor 引理,对每一 $\eta < \kappa$,我们得到一个 $\eta \leq \eta_{\theta} < \kappa$,使得

$$S_{\eta_{\theta}} = \{ \alpha \in X_{\eta} \mid g_{\theta}(\alpha) = \eta_{\theta} \}$$
 (3.21)

是平稳集。

现在,我们递归定义 $h: \kappa \to \kappa$ 。h(0) = 0,假设对任意 $\xi < \eta$, $h(\xi)$ 已经定义,令 $h(\eta) = \sup\{h(\xi)_{\theta} + 1 \mid \beta < \alpha\}$ 。对任意 $\xi < \eta < \kappa$, $h(\xi)_{\theta} < h(\eta) \leq h(\eta)_{\theta}$,h 是严格递增函数的共尾函数。所以 $\{S_{h(\eta)_{\theta}} \mid \eta < \kappa\}$ 的基数为 κ 。显然,它们是两两不交的。

3.4 习题

- **3.4.1.** 如果 \mathcal{F} 是 S 上的滤构成的一个 ⊆-链,则 $\bigcup \mathcal{F}$ 是 S 上的滤。
- **3.4.2.** 如果 F 是非主超滤,则任意 $X \in F$ 都是无穷的。因此任何非主超滤必是弗雷歇滤的扩张。
- **3.4.3.** 如果 $F \in S$ 上的滤,而 $F' = \{X \subseteq S \mid S X \notin F\}$,则 $F \subseteq F'$,并且 F = F' 当且仅当 F 是超滤。

- **3.4.4.** 假设 *X* ⊆ *S* , 证明:
 - (1) 如果 $F \in S$ 上的滤且 $X \in F$,则 $F \cap \mathcal{P}(X)$ 是 X 上的滤;
 - (2) 如果 $F \in S$ 上的超滤且 $X \in F$,则 $F \cap \mathcal{P}(X)$ 是 X 上的超滤;
 - (3) 如果 $F \in X$ 上的滤,则 F 能扩张为 S 上的超滤。
- **3.4.5.** 假设 *S* 是无穷的,则
- (1) 存在 S 上的超滤 F ,对任意 $X \in F$,|X| = |S| 。这样的滤称为 S 上的均匀超滤(uniform ultrafilter);
- (2) $\{F \mid F \neq S \text{ Linbipsize}\} = \{F \mid F \neq S \text{ Linbipsize}\}$ 当且仅当 $S \neq S$ 是可数的。
- **3.4.6.** 令 κ 为不可数正则基数,举出一个例子,使得 $X = \{C_{\alpha} \mid \alpha < \kappa\}$ 是 κ 上的无界闭集的族,而 $\bigcap X = \emptyset$,但是 $\bigwedge_{\alpha < \kappa} C_{\alpha} = \kappa$ 。
- **3.4.7.** 如果令 $Y_{\alpha} = \{ \xi \in X_{\alpha} \mid \xi > \alpha \}$,则 $\Delta_{\alpha < \kappa} X_{\alpha} = \Delta_{\alpha < \kappa} Y_{\alpha}$ 。
- **3.4.8.** $\triangle_{\alpha < \kappa} X_{\alpha} = \bigcap_{\alpha < \kappa} (X_{\alpha} \cup \{\xi \mid \xi \leq \alpha\})_{\circ}$
- **3.4.9.** 证明不存在 ω 上非主超滤 F 使得 F 对对角线交封闭。
- **3.4.10.** 如果 S 是无穷的, F 是 S 上的超滤, 则以下命题等价:
 - (1) *F* 是非主滤;
 - (2) { $X \subseteq S \mid S X$ 是有穷的} ⊆ F;
 - (3) F 的元素都是无穷的。
- **3.4.11.** 如果 S 是无穷的,则 S 上的任何非主超滤都不是 $|S|^+$ 完全的。所以 ω 上的任何非主超滤都不是 σ -完全的。
- **3.4.12.** 如果 $F \in S$ 上的非主超滤,并且是 |S|-完全的,则 F 是均匀超滤。
- **3.4.13.** 一个不可数基数 κ 是可测的当且仅当 κ 上存在 κ 完全的非主超滤。证明任何可测基数都是不可达基数,即,都是正则和强极限的。
- **3.4.14.** 如果 F 是 S 上的滤,并且令 $\mu = \sup\{\kappa \mid F \in \kappa \text{ 完全的}\}$,则 μ 是正则基数,并且 F 是 μ -完全的。

- **3.4.15.** 假设 S 是无穷的,F 是 S 上的超滤。证明 F 是 κ -完全的当且仅当对任意 $\tau < \kappa$ 和任意划分 $\langle X_{\xi} \mid \xi < \tau \rangle$,总存在 $X_{\xi} \in F$ 。
- **3.4.16.** 如果 $\alpha > \aleph_0$ 是正则基数,并且 $f : \alpha \to \alpha$ 是函数,则集合 $C = \{\beta < \alpha \mid f[\beta] \subseteq \beta\}$ 是 α 上的无界闭集。
- **3.4.17.** 假设 α 为极限序数,则:
 - (1) α 上存在一个序型为 $cf(\alpha)$ 的无界闭集。
- (2) 如果 A 是一集极限序数,则用选择公理可以证明:存在序列 $\langle C_{\alpha} \rangle_{\alpha \in A}$ 满足: C_{α} 是 α 上的序型为 $\mathrm{cf}(\alpha)$ 的无界闭集。
- **3.4.18.** $\{\alpha < \omega_1 \mid \omega^{\alpha} = \alpha\}$ 是 ω_1 上的无界闭集。
- **3.4.19.** κ 上的无界闭集都是平稳集。
- **3.4.20.** $\Diamond \kappa$ 为不可数正则基数, $S \subset \kappa$, 证明以下命颢等价:
 - (1) *S* 是平稳集;
- (2) 对任意递减函数 $f:S\to\kappa$,存在序数 $\alpha<\kappa$,使得 $f^{-1}[\alpha]$ 在 κ 中无界。
- **3.4.21.** 如果 κ 是不可达基数(它当然是不可数正则的),则集合 $\{\lambda < \kappa \mid \lambda \in \mathbb{R} \}$ 是强极限基数 $\{\lambda \in \mathbb{R} \}$ 是强极限基本数 $\{\lambda \in \mathbb{R} \}$ 是强极限基本数 $\{\lambda \in \mathbb{R} \}$
- **3.4.22.** 如果 κ 是最小的不可达基数,则集合 $\{\lambda < \kappa \mid \lambda$ 是强极限的奇异基数 $\}$ 是 κ 上的无界闭集。
- **3.4.23.** 假设 κ 是第 α 个不可达基数,而 $\alpha < \kappa$,证明 $X = \{\lambda < \kappa \mid \lambda$ 是正则的} 不是 κ 上的平稳集。
- **3.4.24.** 一个无穷基数 κ 是**马洛基数** (Mahlo cardinal) 当且仅当 κ 是不可达的并且 $\{\lambda < \kappa \mid \lambda$ 是正则基数} 是 κ 上的平稳集。如果 κ 是马洛基数,则 $\{\lambda < \kappa \mid \lambda$ 是不可达基数} 是 κ 上的平稳集,因此 κ 是第 κ 个不可达基数。
- **3.4.25.** 如果 $\kappa = \min\{\lambda \mid \lambda \in \mathbb{A} \setminus \mathbb{A} \in \mathbb{A} \setminus \mathbb{A} \in \mathbb{A} \in \mathbb{A} \in \mathbb{A} \}$,证明 κ 不是马洛基数。
- **3.4.26.** 如果 κ 是马洛基数,则集合 $\{\lambda < \kappa \mid \lambda$ 是第 λ 个不可达基数} 在 κ 中无界。