TU-Delft Deep Learning course 2018-2019

05.optimization

6 Apr 2019

Lecturer: Jan van Gemert Several slides inspired by Andrew Ng

Topic: Optimization

- Past gradient update statistics
- How to efficiently compute past statistics
- Momentum, RMSprop, Adam.
- Feature and Batch normalization

Book chapters: 8.3.1, 8.3.2, 8.5.2, 8.5.3, 8.7.1

Chapter 4.3

Training set:

ata	Label
1	1
1	0
0	0
0	1
	1 1 0

- 1. Present a training sample
- 2. Compare the results
- 3. Update the weights

Chapter 4.3

Training set:

Data		Label
0	1	1
1	1	0
0	0	0
1	0	1

- 1. Present a training sample \rightarrow Forward pass
- 2. Compare the results
- 3. Update the weights

Chapter 4.3

Training set:

Data		Label
0	1	1
1	1	0
0	0	0
1	0	1

- 1. Present a training sample \rightarrow Forward pass
- 2. Compare the results \rightarrow Loss
- 3. Update the weights

Chapter 4.3

Training set:

Da	ata	Label
0	1	1
1	1	0
0	0	0
1	0	1

- 1. Present a training sample \rightarrow Forward pass
- 2. Compare the results \rightarrow Loss
- 3. Update the weights → Backward pass

Chapter 5.9 and 8.3.1

• Gradient: Vector of all partial derivatives $\nabla_x f(x)$

- Gradient: Vector of all partial derivatives $\nabla_x f(x)$
- $\theta' = \theta \epsilon \nabla_{\theta} f(x)$:

- Gradient: Vector of all partial derivatives $\nabla_x f(x)$
- $\theta' = \theta \epsilon \nabla_{\theta} f(x)$: Gradient descent, where ϵ is the learning rate

- Gradient: Vector of all partial derivatives $\nabla_x f(x)$
- $\theta' = \theta \epsilon \nabla_{\theta} f(x)$: Gradient descent, where ϵ is the learning rate
- Loss all samples: $J(\theta) = \frac{1}{m} \sum_{i=1}^{m} L(x^{(i)}, y^{(i)}, \theta)$

- Gradient: Vector of all partial derivatives $\nabla_x f(x)$
- $\theta' = \theta \epsilon \nabla_{\theta} f(x)$: Gradient descent, where ϵ is the learning rate
- Loss all samples: $J(\theta) = \frac{1}{m} \sum_{i=1}^{m} L(x^{(i)}, y^{(i)}, \theta)$
- Gradient all samples: $\nabla_{\theta}J(\theta) = \frac{1}{m}\sum_{i=1}^{m}\nabla_{\theta}L(x^{(i)},y^{(i)},\theta)$

Chapter 5.9 and 8.3.1

- Gradient: Vector of all partial derivatives $\nabla_x f(x)$
- $\theta' = \theta \epsilon \nabla_{\theta} f(x)$: Gradient descent, where ϵ is the learning rate
- Loss all samples: $J(\theta) = \frac{1}{m} \sum_{i=1}^{m} L(x^{(i)}, y^{(i)}, \theta)$
- Gradient all samples: $\nabla_{\theta}J(\theta) = \frac{1}{m}\sum_{i=1}^{m}\nabla_{\theta}L(x^{(i)},y^{(i)},\theta)$

SGD approximates gradient from small sample set:

Chapter 5.9 and 8.3.1

- Gradient: Vector of all partial derivatives $\nabla_x f(x)$
- $\theta' = \theta \epsilon \nabla_{\theta} f(x)$: Gradient descent, where ϵ is the learning rate
- Loss all samples: $J(\theta) = \frac{1}{m} \sum_{i=1}^{m} L(x^{(i)}, y^{(i)}, \theta)$
- Gradient all samples: $\nabla_{\theta}J(\theta) = \frac{1}{m}\sum_{i=1}^{m}\nabla_{\theta}L(x^{(i)},y^{(i)},\theta)$

SGD approximates gradient from small sample set:

$$\theta' = \theta - \epsilon \frac{1}{m'} \sum_{i=1}^{m'} \nabla_{\theta} L(x^{(i)}, y^{(i)}, \theta)$$

The learning rate is arguably the most important parameter to tune

Q: Wait.. What is the ellipse? What are these red dots? Red line?

The learning rate is arguably the most important parameter to tune

Q: Wait.. What is the ellipse? What are these red dots? Red line?

A: Ellipse is contour plot of the loss for the full 2D space (center is low = good).

The learning rate is arguably the most important parameter to tune

Q: Wait.. What is the ellipse? What are these red dots? Red line?
A: Ellipse is contour plot of the loss for the full 2D space (center is low = good).

A: Each red dot is a particular parameter value for the full net.

(In reality not 2D, but thousands of dimensions: one per parameter)

The learning rate is arguably the most important parameter to tune

Q: Wait.. What is the ellipse? What are these red dots? Red line?

A: Ellipse is contour plot of the loss for the full 2D space (center is low = good).

A: Each red dot is a particular parameter value for the full net.

(In reality not 2D, but thousands of dimensions: one per parameter)

The learning rate is arguably the most important parameter to tune

Q: Wait.. What is the ellipse? What are these red dots? Red line?

A: Ellipse is contour plot of the loss for the full 2D space (center is low = good).

A: Each red dot is a particular parameter value for the full net.

(In reality not 2D, but thousands of dimensions: one per parameter)

The learning rate is arguably the most important parameter to tune

Q: Wait.. What is the ellipse? What are these red dots? Red line?

A: Ellipse is contour plot of the loss for the full 2D space (center is low = good).

A: Each red dot is a particular parameter value for the full net.

(In reality not 2D, but thousands of dimensions: one per parameter)

The learning rate is arguably the most important parameter to tune

Q: Wait.. What is the ellipse? What are these red dots? Red line?

A: Ellipse is contour plot of the loss for the full 2D space (center is low = good).

A: Each red dot is a particular parameter value for the full net.

(In reality not 2D, but thousands of dimensions: one per parameter)

The learning rate is arguably the most important parameter to tune

Q: Wait.. What is the ellipse? What are these red dots? Red line?

A: Ellipse is contour plot of the loss for the full 2D space (center is low = good).

A: Each red dot is a particular parameter value for the full net.

(In reality not 2D, but thousands of dimensions: one per parameter)

A: The red line is the trajectory of weight updated through SGD.

Q: What do you notice?

The learning rate is arguably the most important parameter to tune

Q: Wait.. What is the ellipse? What are these red dots? Red line?

A: Ellipse is contour plot of the loss for the full 2D space (center is low = good).

A: Each red dot is a particular parameter value for the full net.

(In reality not 2D, but thousands of dimensions: one per parameter)

A: The red line is the trajectory of weight updated through SGD.

Q: What do you notice?

A: If LR too high it will never find a good instantiation

The learning rate is arguably the most important parameter to tune

Q: What do you notice?

The learning rate is arguably the most important parameter to tune

A: If LR too low it will take very long to find a good instantiation

The learning rate is arguably the most important parameter to tune

Q: What do you notice?

The learning rate is arguably the most important parameter to tune

Q: What do you notice? A: SGD is noisy; it's also noisy close to a good place.

The learning rate is arguably the most important parameter to tune

Q: What do you notice? A: SGD is noisy; it's also noisy close to a good place.

Q: How to take smaller steps?

Tuning the learning rate; take 3.

The learning rate is arguably the most important parameter to tune

Q: What do you notice? A: SGD is noisy; it's also noisy close to a good place.

Q: How to take smaller steps? A: Reduce the LR over time (decay).

Tuning the learning rate; take 3.

The learning rate is arguably the most important parameter to tune

Q: What do you notice? A: SGD is noisy; it's also noisy close to a good place.

Q: How to take smaller steps? A: Reduce the LR over time (decay).

Book, Chapter 8.3.1: "Most guidance should be regarded with some skepticism".

Book, Chapter 8.3.1: "Most guidance should be regarded with some skepticism" .

There are some algorithms that seem to generally improve over SGD

Book, Chapter 8.3.1: "Most guidance should be regarded with some skepticism". There are some algorithms that seem to generally improve over SGD

Q: Would you use the same learning rate for x-axis and y-axis parameters?

Book, Chapter 8.3.1: "Most guidance should be regarded with some skepticism". There are some algorithms that seem to generally improve over SGD

Q: Would you use the same learning rate for x-axis and y-axis parameters? A: Use different learning rates per parameter: Smaller for y-axis parameter.

Book, Chapter 8.3.1: "Most guidance should be regarded with some skepticism". There are some algorithms that seem to generally improve over SGD

Q: Would you use the same learning rate for x-axis and y-axis parameters? A: Use different learning rates per parameter: Smaller for y-axis parameter.

Q: What can you say of the average and of the variance for each dimension?

Book, Chapter 8.3.1: "Most guidance should be regarded with some skepticism". There are some algorithms that seem to generally improve over SGD

Q: Would you use the same learning rate for x-axis and y-axis parameters? A: Use different learning rates per parameter: Smaller for y-axis parameter.

Q: What can you say of the average and of the variance for each dimension? A: Useful algorithms:

- Momentum: On average in the good direction
- RMSprop: Variance in the wrong direction is high
- Adam: Combines momentum and RMSprop

Useful algorithms:

- Momentum: On average in the good direction
- RMSprop: Variance in the wrong direction is high
- Adam: Combines momentum and RMSprop

Useful algorithms:

- Momentum: On average in the good direction
- RMSprop: Variance in the wrong direction is high
- Adam: Combines momentum and RMSprop

All these algorithms make use of past gradient update statistics.

Useful algorithms:

- Momentum: On average in the good direction
- RMSprop: Variance in the wrong direction is high
- Adam: Combines momentum and RMSprop

All these algorithms make use of past gradient update statistics.

Next slides: How to efficiently keep track of such statistics.

How to smooth out a noisy time series as values are coming in.

How to smooth out a noisy time series as values are coming in.

• Q: Can we use convolution?

How to smooth out a noisy time series as values are coming in.

- Q: Can we use convolution? A: No access to future values.
- Q: Keep recent values, and compute a weighted average?

How to smooth out a noisy time series as values are coming in.

- Q: Can we use convolution? A: No access to future values.
- Q: Keep recent values, and compute a weighted average?
- A: Out of memory (huge high-dimensional time series)

How to smooth out a noisy time series as values are coming in.

- Q: Can we use convolution? A: No access to future values.
- Q: Keep recent values, and compute a weighted average?
- A: Out of memory (huge high-dimensional time series)

An infinite impulse response filter (IIR) to the rescue: Recursively compute online average.

For value y_t at time t, and $0 \le \rho \le 1$ and $S_{t-1} = 0$, if t = 1. Exponentially weighted moving average (EWMA): $S_t = (\rho S_{t-1}) + (1-\rho)y_t$

For value y_t at time t, and $0 \le \rho \le 1$ and $S_{t-1} = 0$, if t = 1. Exponentially weighted moving average (EWMA): $S_t = (\rho S_{t-1}) + (1-\rho)y_t$

• Q: Write it out $3\times$ for S_{100} ?

For value y_t at time t, and $0 \le \rho \le 1$ and $S_{t-1} = 0$, if t = 1. Exponentially weighted moving average (EWMA): $S_t = (\rho S_{t-1}) + (1 - \rho)y_t$

• Q: Write it out $3\times$ for S_{100} ? A:

$$\begin{split} S_{100} &= \rho & S_{99} & + (1 - \rho)y_{100} \\ S_{100} &= \rho & (\rho \ S_{98} & + (1 - \rho)y_{99}) + (1 - \rho)y_{100} \\ S_{100} &= \rho & (\rho \ (\rho S_{97} + (1 - \rho)y_{98}) & + (1 - \rho)y_{99}) + (1 - \rho)y_{100} \end{split}$$

For value y_t at time t, and $0 \le \rho \le 1$ and $S_{t-1} = 0$, if t = 1. Exponentially weighted moving average (EWMA): $S_t = (\rho S_{t-1}) + (1 - \rho)y_t$

• Q: Write it out $3\times$ for S_{100} ? A:

$$\begin{split} S_{100} &= \rho & S_{99} & + (1 - \rho)y_{100} \\ S_{100} &= \rho & (\rho \ S_{98} & + (1 - \rho)y_{99}) + (1 - \rho)y_{100} \\ S_{100} &= \rho & (\rho \ (\rho S_{97} + (1 - \rho)y_{98}) & + (1 - \rho)y_{99}) + (1 - \rho)y_{100} \end{split}$$

Re-order as an exponentially weighted sum:

For value y_t at time t, and $0 \le \rho \le 1$ and $S_{t-1} = 0$, if t = 1. Exponentially weighted moving average (EWMA): $S_t = (\rho S_{t-1}) + (1-\rho)y_t$

• Q: Write it out $3\times$ for S_{100} ? A:

$$\begin{split} S_{100} &= \rho & S_{99} & + (1 - \rho) y_{100} \\ S_{100} &= \rho & (\rho \ S_{98} & + (1 - \rho) y_{99}) + (1 - \rho) y_{100} \\ S_{100} &= \rho & (\rho \ (\rho S_{97} + (1 - \rho) y_{98}) & + (1 - \rho) y_{99}) + (1 - \rho) y_{100} \end{split}$$

Re-order as an exponentially weighted sum:

$$S_{100} = (1 - \rho) y_{100} + (1 - \rho) \rho y_{99} + (1 - \rho) \rho^2 y_{98} + (1 - \rho) \rho^3 y_{97} + \dots$$

For value y_t at time t, and $0 \le \rho \le 1$ and $S_{t-1} = 0$, if t = 1. Exponentially weighted moving average (EWMA): $S_t = (\rho S_{t-1}) + (1 - \rho)y_t$

• Q: Write it out $3\times$ for S_{100} ? A:

$$\begin{split} S_{100} &= \rho & S_{99} & + (1-\rho)y_{100} \\ S_{100} &= \rho & (\rho \ S_{98} & + (1-\rho)y_{99}) + (1-\rho)y_{100} \\ S_{100} &= \rho & (\rho \ (\rho S_{97} + (1-\rho)y_{98}) & + (1-\rho)y_{99}) + (1-\rho)y_{100} \end{split}$$

Re-order as an exponentially weighted sum:

$$S_{100} = (1 - \rho) \ y_{100} + (1 - \rho) \ \rho \ y_{99} + (1 - \rho) \ \rho^2 \ y_{98} + (1 - \rho) \ \rho^3 \ y_{97} + \dots$$

Example of the weights for $\rho = 0.5$

For value y_t at time t, and $0 \le \rho \le 1$ and $S_{t-1} = 0$, if t = 1. Exponentially weighted moving average (EWMA): $S_t = (\rho S_{t-1}) + (1-\rho)y_t$

• Q: Write it out $3\times$ for S_{100} ? A:

$$S_{100} = \rho \qquad S_{99} \qquad + (1 - \rho)y_{100}$$

$$S_{100} = \rho \qquad (\rho S_{98} \qquad + (1 - \rho)y_{99}) + (1 - \rho)y_{100}$$

$$S_{100} = \rho \qquad (\rho (\rho S_{97} + (1 - \rho)y_{98}) \qquad + (1 - \rho)y_{99}) + (1 - \rho)y_{100}$$

Re-order as an exponentially weighted sum:

$$S_{100} = (1 - \rho) \ y_{100} + (1 - \rho) \ \rho \ y_{99} + (1 - \rho) \ \rho^2 \ y_{98} + (1 - \rho) \ \rho^3 \ y_{97} + \dots$$

Example of the weights for $\rho = 0.5$

11 / 25

Example for $\rho=0.5,~\rho=0.9,~\rho=0.95$

Example for $\rho = 0.5$, $\rho = 0.9$, $\rho = 0.95$

Example for $\rho=0.5$, $\rho=0.9$, $\rho=0.95$

Example for $\rho = 0.5$, $\rho = 0.9$, $\rho = 0.95$

Example for $\rho=0.5$, $\rho=0.9$, $\rho=0.95$

• Q: What do you notice about these curves?

- Q: What do you notice about these curves?
- A: The larger ρ , the later it 'catches up'.

- Q: What do you notice about these curves?
- A: The larger ρ , the later it 'catches up'.
- Q: Why is that?

- Q: What do you notice about these curves?
- A: The larger ρ , the later it 'catches up'.
- Q: Why is that?
- A: Border effect: Unknown what happened before time.

Bias correction for $S_t = (\rho S_{t-1}) + (1 - \rho)y_t$

Lets start an example at S_1 for $\rho=0.95$

Bias correction for $S_t = (\rho S_{t-1}) + (1 - \rho)y_t$

Lets start an example at S_1 for $\rho = 0.95$

- $S_1 = \rho S_0 + (1 \rho)y_1 = 0 + 0.05y_1$
- $S_2 = \rho S_1 + (1 \rho)y_2 = 0.95 \times 0.05y_1 + 0.05y_2 = 0.0475y_1 + 0.05y_2$

Lets start an example at S_1 for $\rho = 0.95$

•
$$S_1 = \rho S_0 + (1 - \rho)y_1 = 0 + 0.05y_1$$

•
$$S_2 = \rho S_1 + (1 - \rho)y_2 = 0.95 \times 0.05y_1 + 0.05y_2 = 0.0475y_1 + 0.05y_2$$

Indeed, very low values at the beginning.

Lets start an example at S_1 for $\rho = 0.95$

- $S_1 = \rho S_0 + (1 \rho)y_1 = 0 + 0.05y_1$
- $S_2 = \rho S_1 + (1 \rho)y_2 = 0.95 \times 0.05y_1 + 0.05y_2 = 0.0475y_1 + 0.05y_2$

Indeed, very low values at the beginning.

Bias correction:
$$\hat{S}_t = \frac{S_t}{1-\rho^t}$$

Lets start an example at S_1 for $\rho = 0.95$

• $S_1 = \rho S_0 + (1 - \rho)y_1 = 0 + 0.05y_1$

•
$$S_2 = \rho S_1 + (1 - \rho)y_2 = 0.95 \times 0.05y_1 + 0.05y_2 = 0.0475y_1 + 0.05y_2$$

Indeed, very low values at the beginning.

Bias correction:
$$\hat{S}_t = \frac{S_t}{1-\rho^t}$$

For
$$t=2$$
, the value $1-\rho^t=0.0975$, so: $\frac{0.0475y_1+0.05y_2}{0.0975}$

Q: Notice?

Lets start an example at S_1 for $\rho = 0.95$

• $S_1 = \rho S_0 + (1 - \rho)y_1 = 0 + 0.05y_1$

•
$$S_2 = \rho S_1 + (1 - \rho)y_2 = 0.95 \times 0.05y_1 + 0.05y_2 = 0.0475y_1 + 0.05y_2$$

Indeed, very low values at the beginning.

Bias correction:
$$\hat{S}_t = \frac{S_t}{1-\rho^t}$$

For t=2, the value $1-\rho^t=0.0975$, so: $\frac{0.0475y_1+0.05y_2}{0.0975}$

Q: Notice? A: Exactly normalizes the average (0.0475 + 0.05 = 0.0975)

Lets start an example at S_1 for $\rho = 0.95$

• $S_1 = \rho S_0 + (1 - \rho)y_1 = 0 + 0.05y_1$

•
$$S_2 = \rho S_1 + (1 - \rho)y_2 = 0.95 \times 0.05y_1 + 0.05y_2 = 0.0475y_1 + 0.05y_2$$

Indeed, very low values at the beginning.

Bias correction:
$$\hat{S}_t = \frac{S_t}{1-\rho^t}$$

For t=2, the value $1-\rho^t=0.0975$, so: $\frac{0.0475y_1+0.05y_2}{0.0975}$

Q: Notice? A: Exactly normalizes the average (0.0475 + 0.05 = 0.0975)

Q: What happens for large t?

Lets start an example at S_1 for $\rho = 0.95$

• $S_1 = \rho S_0 + (1 - \rho)y_1 = 0 + 0.05y_1$

•
$$S_2 = \rho S_1 + (1 - \rho)y_2 = 0.95 \times 0.05y_1 + 0.05y_2 = 0.0475y_1 + 0.05y_2$$

Indeed, very low values at the beginning.

Bias correction:
$$\hat{S}_t = \frac{S_t}{1-\rho^t}$$

For t=2, the value $1-\rho^t=0.0975$, so: $\frac{0.0475y_1+0.05y_2}{0.0975}$

Q: Notice? A: Exactly normalizes the average (0.0475 + 0.05 = 0.0975)

Q: What happens for large t ? $1 - \rho^t \approx 1$, so $\hat{S}_t \approx S_t$

Lets start an example at S_1 for $\rho = 0.95$

• $S_1 = \rho S_0 + (1 - \rho)y_1 = 0 + 0.05y_1$

•
$$S_2 = \rho S_1 + (1 - \rho)y_2 = 0.95 \times 0.05y_1 + 0.05y_2 = 0.0475y_1 + 0.05y_2$$

Indeed, very low values at the beginning.

Bias correction:
$$\hat{S}_t = \frac{S_t}{1-\rho^t}$$

For t=2, the value $1-\rho^t=0.0975$, so: $\frac{0.0475y_1+0.05y_2}{0.0975}$

Q: Notice? A: Exactly normalizes the average (0.0475 + 0.05 = 0.0975)

Q: What happens for large t ? $1-\rho^t \approx 1$, so $\hat{S}_t \approx S_t$

Useful algorithms:

- Momentum: On average in the good direction
- RMSprop: Variance in the wrong direction is high
- Adam: Combines momentum and RMSprop

All these algorithms make use of past gradient update statistics.

Useful algorithms:

- Momentum: On average in the good direction
- RMSprop: Variance in the wrong direction is high
- Adam: Combines momentum and RMSprop

All these algorithms make use of past gradient update statistics.

Now can efficiently keep track of such statistics.

Useful algorithms:

- Momentum: On average in the good direction
- RMSprop: Variance in the wrong direction is high
- Adam: Combines momentum and RMSprop

All these algorithms make use of past gradient update statistics.

Now can efficiently keep track of such statistics.

Next slides: lets use them for gradient updates.

Stochastic Gradient Descent with momentum

Chapter 8.3.2

Momentum smooths the average of noisy gradients with EWMA

Hyper-parameters: EWMA: ρ ; LR: ϵ ; with ∇_{θ} for a mini-batch in iteration i:

- $v_i = \rho v_{i-1} + (1-\rho)\nabla_\theta$
- $\theta' = \theta \epsilon v_i$

Sometimes (book) written as $v_i = \rho v_{i-1} + \nabla_{\theta}$, where ϵ then needs to be re-tuned. Often implemented without bias correction, as it does catch up quick. Default setting $\rho = 0.9$

Stochastic Gradient Descent with RMSprop

Chapter 8.5.2

RMSprop smooths the zero-centered variance of noisy gradients with EWMA

Hyper-parameters: EWMA: ρ ; LR: ϵ ; with ∇_{θ} for a mini-batch in iteration i:

- $r_i = \rho r_{i-1} + (1 \rho) \nabla_{\theta}^2$
- $\theta' = \theta \epsilon \frac{\nabla_{\theta}}{\sqrt{r_i}}$

To prevent dividing by 0, add a small $\delta \approx 10^{-6}$ to denominator: $r_i = \delta + r_i$ Often implemented without bias correction, as it does catch-up quick. Default setting $\rho = 0.9$

Stochastic Gradient Descent with Adam

Chapter 8.5.3

Adam combines momentum with RMSprop

Hyper-parameters: EWMA: ρ_1 , ρ_2 ; LR: ϵ ; with ∇_{θ} for a mini-batch in iteration i:

•
$$v_i = \rho_1 v_{i-1} + (1 - \rho_1) \nabla_{\theta}, \qquad r_i = \rho_2 r_{i-1} + (1 - \rho_2) \nabla_{\theta}^2$$

•
$$\hat{v}_i = \frac{v_i}{(1-\rho_1^i)}$$
, $\hat{r}_i = \frac{r_i}{(1-\rho_2^i)}$

•
$$\theta' = \theta - \epsilon \frac{\hat{v}_i}{\sqrt{\hat{r}_i}}$$

To prevent dividing by 0, add a small $\delta \approx 10^{-6}$ to denominator: $r_i = \delta + r_i$ Default settings: $\rho_1 = 0.9$ and $\rho_2 = 0.999$

· Centering inputs at zero and equal dimension variance speeds up training

- Centering inputs at zero and equal dimension variance speeds up training
- Q: For data X, how to turn ellipse in a 0-centered circle?

- Centering inputs at zero and equal dimension variance speeds up training
- Q: For data X, how to turn ellipse in a 0-centered circle? A:
- $\mu = \frac{1}{m} \sum_{i=1}^{m} x^{(i)}$,

- Centering inputs at zero and equal dimension variance speeds up training
- Q: For data X, how to turn ellipse in a 0-centered circle? A:
- $\mu = \frac{1}{m} \sum_{i=1}^{m} x^{(i)}$,
- $\sigma^2 = \frac{1}{m} \sum_{i=1}^m (x^{(i)} \mu)^2$,

- Centering inputs at zero and equal dimension variance speeds up training
- Q: For data X, how to turn ellipse in a 0-centered circle? A:
- $\mu = \frac{1}{m} \sum_{i=1}^{m} x^{(i)}$,
- $\sigma^2 = \frac{1}{m} \sum_{i=1}^m (x^{(i)} \mu)^2$,
- $X = \frac{X-\mu}{\sqrt{\sigma^2}}$

Chapter 8.7.1

 A deep neural net learns many hidden feature representations.

- A deep neural net learns many hidden feature representations.
- Q: How to normalize all those features?

- A deep neural net learns many hidden feature representations.
- Q: How to normalize all those features?
- A: Apply normalization also for each hidden layer.

- A deep neural net learns many hidden feature representations.
- Q: How to normalize all those features?
- A: Apply normalization also for each hidden layer.
- Batch norm: Normalize learned features.

- A deep neural net learns many hidden feature representations.
- Q: How to normalize all those features?
- A: Apply normalization also for each hidden layer.
- Batch norm: Normalize learned features.
- Q: Before or after activation $g(\cdot)$: $h_j = g(z_j) = g(x^\top W_{\cdot,j} + b_j)$?

- A deep neural net learns many hidden feature representations.
- Q: How to normalize all those features?
- A: Apply normalization also for each hidden layer.
- Batch norm: Normalize learned features.
- Q: Before or after activation $g(\cdot)$: $h_i = g(z_i) = g(x^\top W_{:,i} + b_i)$?
- A: There is debate; but before.

Chapter 8.7.1

For each layer i of n neurons $h_j = g(z_j) = g(x^\top W_{:,j} + b_j)$:

Chapter 8.7.1

For each layer i of n neurons $h_j = g(z_j) = g(x^\top W_{:,j} + b_j)$:

•
$$\mu_i = \frac{1}{n} \sum_{j=1}^n z^{(j)}$$
,

Chapter 8.7.1

For each layer i of n neurons $h_j = g(z_j) = g(x^\top W_{:,j} + b_j)$:

- $\mu_i = \frac{1}{n} \sum_{j=1}^n z^{(j)},$
- $\sigma_i^2 = \frac{1}{n} \sum_{j=1}^n (z^{(j)} \mu_i)^2$,

Chapter 8.7.1

For each layer i of n neurons $h_j = g(z_j) = g(x^\top W_{:,j} + b_j)$:

•
$$\mu_i = \frac{1}{n} \sum_{j=1}^n z^{(j)},$$

•
$$\sigma_i^2 = \frac{1}{n} \sum_{j=1}^n (z^{(j)} - \mu_i)^2$$
,

• $z_i^{
m norm}=rac{z-\mu}{\sqrt{\delta+\sigma^2}}$, (where $\deltapprox 10^{-8}$ prevent div0),

Chapter 8.7.1

For each layer i of n neurons $h_j = g(z_j) = g(x^\top W_{:,j} + b_j)$:

•
$$\mu_i = \frac{1}{n} \sum_{j=1}^n z^{(j)},$$

•
$$\sigma_i^2 = \frac{1}{n} \sum_{j=1}^n (z^{(j)} - \mu_i)^2$$
,

• $z_i^{
m norm}=rac{z-\mu}{\sqrt{\delta+\sigma^2}}$, (where $\deltapprox 10^{-8}$ prevent div0),

Sometimes too rigid.

Chapter 8.7.1

For each layer i of n neurons $h_j = g(z_j) = g(x^\top W_{:,j} + b_j)$:

•
$$\mu_i = \frac{1}{n} \sum_{j=1}^n z^{(j)},$$

•
$$\sigma_i^2 = \frac{1}{n} \sum_{j=1}^n (z^{(j)} - \mu_i)^2$$
,

•
$$z_i^{
m norm}=rac{z-\mu}{\sqrt{\delta+\sigma^2}}$$
, (where $\deltapprox 10^{-8}$ prevent div0),

Sometimes too rigid.

Add learnable parameters γ and β :

Chapter 8.7.1

For each layer i of n neurons $h_j = g(z_j) = g(x^\top W_{:,j} + b_j)$:

•
$$\mu_i = \frac{1}{n} \sum_{j=1}^n z^{(j)},$$

•
$$\sigma_i^2 = \frac{1}{n} \sum_{j=1}^n (z^{(j)} - \mu_i)^2$$
,

•
$$z_i^{
m norm}=rac{z-\mu}{\sqrt{\delta+\sigma^2}}$$
, (where $\deltapprox 10^{-8}$ prevent div0),

Sometimes too rigid.

Add learnable parameters γ and β :

•
$$\overline{z}_i^{\text{norm}} = \gamma_i z_i^{\text{norm}} + \beta_i$$

Chapter 8.7.1

For each layer i of n neurons $h_j = g(z_j) = g(x^\top W_{:,j} + b_j)$:

•
$$\mu_i = \frac{1}{n} \sum_{j=1}^n z^{(j)},$$

•
$$\sigma_i^2 = \frac{1}{n} \sum_{j=1}^n (z^{(j)} - \mu_i)^2$$
,

•
$$z_i^{
m norm}=rac{z-\mu}{\sqrt{\delta+\sigma^2}}$$
, (where $\deltapprox 10^{-8}$ prevent div0),

Sometimes too rigid.

Add learnable parameters γ and β :

•
$$\overline{z}_i^{\text{norm}} = \gamma_i z_i^{\text{norm}} + \beta_i$$

Network can learn to undo it all:

Chapter 8.7.1

For each layer i of n neurons $h_j = g(z_j) = g(x^\top W_{:,j} + b_j)$:

•
$$\mu_i = \frac{1}{n} \sum_{j=1}^n z^{(j)},$$

•
$$\sigma_i^2 = \frac{1}{n} \sum_{j=1}^n (z^{(j)} - \mu_i)^2$$
,

•
$$z_i^{
m norm}=rac{z-\mu}{\sqrt{\delta+\sigma^2}}$$
, (where $\deltapprox 10^{-8}$ prevent div0),

Sometimes too rigid.

Add learnable parameters γ and β :

•
$$\overline{z}_i^{\text{norm}} = \gamma_i z_i^{\text{norm}} + \beta_i$$

 Network can learn to undo it all: Q: How?

Chapter 8.7.1

For each layer i of n neurons $h_j = g(z_j) = g(x^\top W_{:,j} + b_j)$:

•
$$\mu_i = \frac{1}{n} \sum_{j=1}^n z^{(j)},$$

•
$$\sigma_i^2 = \frac{1}{n} \sum_{j=1}^n (z^{(j)} - \mu_i)^2$$
,

•
$$z_i^{
m norm}=rac{z-\mu}{\sqrt{\delta+\sigma^2}}$$
, (where $\deltapprox 10^{-8}$ prevent div0),

Sometimes too rigid.

Add learnable parameters γ and β :

•
$$\overline{z}_i^{\text{norm}} = \gamma_i z_i^{\text{norm}} + \beta_i$$

• Network can learn to undo it all:

Q: How? A:
$$\gamma_i = \sqrt{\delta + \sigma^2}$$
 and $\beta_i = \mu$

- Batch norm is applied for every mini-batch.
- It computes μ and σ^2 for each batch.

- Batch norm is applied for every mini-batch.
- It computes μ and σ^2 for each batch.
- How then to apply it at test time?

- Batch norm is applied for every mini-batch.
- It computes μ and σ^2 for each batch.
- How then to apply it at test time?
- Use a weighted average of the last mini-batches.

- Batch norm is applied for every mini-batch.
- It computes μ and σ^2 for each batch.
- How then to apply it at test time?
- Use a weighted average of the last mini-batches.
- How?

- Batch norm is applied for every mini-batch.
- It computes μ and σ^2 for each batch.
- How then to apply it at test time?
- Use a weighted average of the last mini-batches.
- How? Our friend: the exponential weighted moving average

- Batch norm is applied for every mini-batch.
- It computes μ and σ^2 for each batch.
- How then to apply it at test time?
- Use a weighted average of the last mini-batches.
- How? Our friend: the exponential weighted moving average
- Use the weighted average for μ and σ^2 and the learned parameters γ and β to compute $\overline{z}_i^{\mathsf{norm}} = \gamma_i z_i^{\mathsf{norm}} + \beta_i$ for each test sample.

Recap

- Stochastic Gradient Decent
- Learning rate
- Average and variance of past gradient update statistics help
- Exponentially weighted moving average
- Momentum: Average; RMSprop: variance; Adam: both.
- Feature and Batch normalization