

AD-A136 376

COMPUTER PROGRAMS FOR HELICOPTER HIGH SPEED FLIGHT
ANALYSIS(U) NAVAL POSTGRADUATE SCHOOL MONTEREY CA
W F CARMONA SEP 83

1/0.

UNCLASSIFIED

F/G 1/3

NL

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 1963-A

A 1 3 6 3 7 6

NAVAL POSTGRADUATE SCHOOL
Monterey, California

Copy available to DTIC does not
permit fully legible reproduction

THESIS

Computer Programs for Helicopter
High Speed Flight Analysis

by

Waldo Francisco Carmona

September 1983

Thesis Advisor:

Donald M. Layton

Approved for Public Release, Distribution Unlimited

DMC FILE COPY

DISCLAIMER NOTICE

**THIS DOCUMENT IS BEST QUALITY
PRACTICABLE. THE COPY FURNISHED
TO DTIC CONTAINED A SIGNIFICANT
NUMBER OF PAGES WHICH DO NOT
REPRODUCE LEGIBLY.**

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
		AD-A136376
4. TITLE (and Subtitle) Computer Programs for Helicopter High Speed Flight Analysis		5. TYPE OF REPORT & PERIOD COVERED Master's Thesis September 1983
7. AUTHOR(s) Waldo Francisco Carmona		6. PERFORMING ORG. REPORT NUMBER
9. PERFORMING ORGANIZATION NAME AND ADDRESS Naval Postgraduate School Monterey, California 93943		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
11. CONTROLLING OFFICE NAME AND ADDRESS Naval Postgraduate School Monterey, California 93943		12. REPORT DATE September 1983
14. MONITORING AGENCY NAME & ADDRESS/If different from Controlling Office)		13. NUMBER OF PAGES 137
		15. SECURITY CLASS. (of this report)
		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report) Approved for Public Release, Distribution Unlimited.		
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)		
18. SUPPLEMENTARY NOTES		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Blade Stall Compressibility Helicopter Computer Program		
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) This report gives the user of the HP41-CV handheld programmable calculator or the IBM 3033 computer, a blade element method for calculating the total power required in forward, straight and level high-speed flight for an isolated rotor. The computer programs consist of a main program which calculates the necessary dynamic parameters of the main rotor and several		

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

subroutines which calculate power required as well as maximum forward velocity, stall onset velocity, and velocity for best endurance.

A-1cde

1	2	3
4	5	6
7	8	9
10	11	12
13	14	15
16	17	18
19	20	21
22	23	24
25	26	27
28	29	30
31	32	33
34	35	36
37	38	39
40	41	42
43	44	45
46	47	48
49	50	51
52	53	54
55	56	57
58	59	60
61	62	63
64	65	66
67	68	69
70	71	72
73	74	75
76	77	78
79	80	81
82	83	84
85	86	87
88	89	90
91	92	93
94	95	96
97	98	99
100	101	102
103	104	105
106	107	108
109	110	111
112	113	114
115	116	117
118	119	120
121	122	123
124	125	126
127	128	129
130	131	132
133	134	135
136	137	138
139	140	141
142	143	144
145	146	147
148	149	150
151	152	153
154	155	156
157	158	159
160	161	162
163	164	165
166	167	168
169	170	171
172	173	174
175	176	177
178	179	180
181	182	183
184	185	186
187	188	189
190	191	192
193	194	195
196	197	198
199	200	201
202	203	204
205	206	207
208	209	210
211	212	213
214	215	216
217	218	219
220	221	222
223	224	225
226	227	228
229	230	231
232	233	234
235	236	237
238	239	240
241	242	243
244	245	246
247	248	249
250	251	252
253	254	255
256	257	258
259	260	261
262	263	264
265	266	267
268	269	270
271	272	273
274	275	276
277	278	279
280	281	282
283	284	285
286	287	288
289	290	291
292	293	294
295	296	297
298	299	300
301	302	303
304	305	306
307	308	309
310	311	312
313	314	315
316	317	318
319	320	321
322	323	324
325	326	327
328	329	330
331	332	333
334	335	336
337	338	339
340	341	342
343	344	345
346	347	348
349	350	351
352	353	354
355	356	357
358	359	360
361	362	363
364	365	366
367	368	369
370	371	372
373	374	375
376	377	378
379	380	381
382	383	384
385	386	387
388	389	390
391	392	393
394	395	396
397	398	399
399	400	401
402	403	404
405	406	407
408	409	410
411	412	413
414	415	416
417	418	419
420	421	422
423	424	425
426	427	428
429	430	431
432	433	434
435	436	437
438	439	440
441	442	443
444	445	446
447	448	449
450	451	452
453	454	455
456	457	458
459	460	461
462	463	464
465	466	467
468	469	470
471	472	473
474	475	476
477	478	479
480	481	482
483	484	485
486	487	488
489	490	491
492	493	494
495	496	497
498	499	500
501	502	503
504	505	506
507	508	509
510	511	512
513	514	515
516	517	518
519	520	521
522	523	524
525	526	527
528	529	530
531	532	533
534	535	536
537	538	539
540	541	542
543	544	545
546	547	548
549	550	551
552	553	554
555	556	557
558	559	560
561	562	563
564	565	566
567	568	569
570	571	572
573	574	575
576	577	578
579	580	581
582	583	584
585	586	587
588	589	590
591	592	593
594	595	596
597	598	599
599	600	601
601	602	603
604	605	606
607	608	609
610	611	612
613	614	615
616	617	618
619	620	621
622	623	624
625	626	627
628	629	630
631	632	633
634	635	636
637	638	639
640	641	642
643	644	645
646	647	648
649	650	651
652	653	654
655	656	657
658	659	660
661	662	663
664	665	666
667	668	669
670	671	672
673	674	675
676	677	678
679	680	681
682	683	684
685	686	687
688	689	690
691	692	693
694	695	696
697	698	699
699	700	701
701	702	703
704	705	706
707	708	709
710	711	712
713	714	715
716	717	718
719	720	721
722	723	724
725	726	727
728	729	730
731	732	733
734	735	736
737	738	739
740	741	742
743	744	745
746	747	748
749	750	751
752	753	754
755	756	757
758	759	760
761	762	763
764	765	766
767	768	769
770	771	772
773	774	775
776	777	778
779	780	781
782	783	784
785	786	787
788	789	790
791	792	793
794	795	796
797	798	799
799	800	801
801	802	803
804	805	806
807	808	809
810	811	812
813	814	815
816	817	818
819	820	821
822	823	824
825	826	827
828	829	830
831	832	833
834	835	836
837	838	839
840	841	842
843	844	845
846	847	848
849	850	851
852	853	854
855	856	857
858	859	860
861	862	863
864	865	866
867	868	869
870	871	872
873	874	875
876	877	878
879	880	881
882	883	884
885	886	887
888	889	890
891	892	893
894	895	896
897	898	899
899	900	901
901	902	903
904	905	906
907	908	909
910	911	912
913	914	915
916	917	918
919	920	921
922	923	924
925	926	927
928	929	930
931	932	933
934	935	936
937	938	939
940	941	942
943	944	945
946	947	948
949	950	951
952	953	954
955	956	957
958	959	960
961	962	963
964	965	966
967	968	969
970	971	972
973	974	975
976	977	978
979	980	981
982	983	984
985	986	987
988	989	990
991	992	993
994	995	996
997	998	999
999	1000	1001

S N 0102-LF-014-6601

2 SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

Approved for public release, distribution unlimited

Computer Programs for Helicopter High Speed Flight Analysis

by

Waldo F. Carmona

Captain, United States Army

B.A., University of Dayton, 1973

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN AERONAUTICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL

September 1983

Author: Waldo F. Carmona

Approved by: Donald M. Taylor

Thesis Advisor

Donald M. Taylor
Chairman, Department of Aeronautics

An Dwyer

Dean of Science and Engineering

ABSTRACT

This report gives the user of the HP41-CV handheld programmable calculator or the IBM 3033 computer, a blade element method for calculating the total power required in forward, straight and level high speed flight for an isolated rotor. The computer programs consist of a main program which calculates the necessary dynamic parameters of the main rotor and several subroutines which calculate power required as well as maximum forward velocity, stall onset velocity, and velocity for best endurance.

TABLE OF CONTENTS

I.	INTRODUCTION	10
A.	GENERAL	10
B.	OBJECTIVE	12
II.	PROBLEM DEFINITION	13
A.	DESCRIPTION OF PROBLEM	13
B.	METHOD OF SOLUTION	13
III.	DESCRIPTION OF THE PROBLEM SOLUTION	15
A.	GENERAL	15
B.	ASSUMPTIONS	16
C.	NOMENCLATURE	17
D.	INITIALIZATION	17
E.	ROTOR DYNAMICS	17
F.	VELOCITY CALCULATIONS	20
G.	INITIAL POWER CALCULATIONS	26
H.	ANGLE OF ATTACK	28
I.	STALL POWER	32
J.	COMPRESSIBILITY POWER	36
IV.	CONCLUSIONS AND RECOMMENDATIONS	39
APPENDIX A		41
APPENDIX B		47
A.	GENERAL	47
B.	QUICK REFERENCE TABLES	50

1.	HP41-CV Displays	51
2.	HP41-CV Register Utilization	53
C.	PROGRAM DOCUMENTATION	55
1.	Main Program	56
2.	Solidity	64
3.	Downwash Velocity	66
4.	Coefficient of Thrust	68
5.	Induced Power	70
6.	Profile power	73
7.	Parasite Power	75
8.	Maximum Forward Velocity	77
9.	Best Endurance Velocity	80
10.	Stall Onset Velocity	82
11.	Inflow Ratio	85
12.	Angle of Attack at 90 Degrees	88
13.	Compressibility Power	91
14.	Stall Power	94
15.	Total Power	97
16.	Density/Sonic Velocity	99
17.	Change	101
D.	HP 41-CV SAMPLE OUTPUT	104
APPENDIX C		107
A.	IBM 3033 PROGRAM DOCUMENTATION	107

B.	INPUT DATA REQUIRED	108
C.	HELICOPTER SAMPLE DATA	109
D.	IBM PROGRAM FLOWCHART	110
E.	IBM PROGRAM LISTING	113
F.	SAMPLE OF IBM COMPUTER OUTPUT	123
G.	COMPARISON OF PROGRAM OUTPUT VS TEST DATA .	132
	LIST OF REFERENCES	136
	INITIAL DISTRIBUTION LIST	137

LIST OF FIGURES

3.1.	Typical Helicopter Power Curves	21
3.2.	VMAX, VBE, and VS from Power Available Curves.	24
3.3.	Rotor Angles in Longitudinal Plane.	29
3.4.	Inboard Stall Pattern.	34
3.5.	Approximated Stall Area.	35
C. 1.	Power Curves Generated by HP41-CV Program.	133
C. 2.	Power Curves Generated by the IBM 3033 Program.	134
C. 3.	Comparison Between Computer Data and Actual Test Flight Data.	135

ACKNOWLEDGEMENT

I would like to acknowledge the invaluable assistance of Professor Donald M. Layton in the accomplishment of this thesis. Without whose patient help this thesis could not have been completed. I am deeply grateful to Dr. Barnes W. McCormick, Department of Aerospace Engineering, Pennsylvania State University and R. P. Hennis, Strategic Systems Department, Naval Surface Weapons Center, for their help in the implementation of the algorithms presented herein. In addition I would like to thank my wife, Susan, for her understanding, encouragement and support.

I. INTRODUCTION

A. GENERAL

The basis for helicopter rotor analysis was developed in the early 1920's when Glauert extended propeller theory to the special case of rotating wings. Since that time, the development of the digital computer has permitted many improvements on Glauert's analysis.

In order to develop a method for predicting the total rotor power required in forward flight, it is necessary to develop a method that accurately predicts rotor dynamics. The prediction of rotor dynamics in forward flight is a complex one. Typically, a helicopter rotor blade encounters a flow environment which changes rapidly as it moves around in azimuth.

In forward flight, rotor blade sections are subjected to azimuthal variations in not only angle of attack but also Mach number. As a result, comprehensive performance analysis of a helicopter is much more involved than that of a conventional aircraft.

Recent helicopter design trends have been in the direction of increasing the maximum forward velocity possible as well as higher blade tip speeds. Since the

speed of the helicopter is added to the speed of rotation of the advancing blade, the highest relative velocities occur at the tip of the advancing blade. When the section Mach number of the blade tip exceeds the critical Mach number of the airfoil, compressibility effects result. These effects include a large increase in profile drag and change in pitching moments, therefore creating additional power requirements.

In all current helicopters there is a tendency for the retreating blade to stall. Just as the stall of an airplane wing limits the low speed performance of an airplane, the stall of a rotor limits the high speed potential of a helicopter. The relative velocity of the retreating blade decreases as forward speed increases. However, the retreating blades must produce the same amount of lift as the advancing blade. Therefore, as the relative velocity of the the retreating blade decreases with forward speed, the blade angle of attack must be increased to equalize lift throughout the the rotor disc area. As this angle increases the blade will eventually stall at some forward speed. For these reasons, stall and compressibility thus combine to limit the performance fo a helicopter at higher speeds.

For efficient design of a helicopter, the helicopter designer should have the analytical tools necessary to predict the performance of a helicopter. This report gives the user of the HP41-CV and the IBM 3033 computer a means of calculating the total power required in forward, straight and level flight.

B. OBJECTIVE

The objective was to provide an interactive computer program which can be used during the initial design stage to estimate the total power required by the main rotor of a helicopter, as well as maximum forward velocity possible, stall onset velocity, and best endurance velocity.

Additionally, the desired accuracy chosen at the beginning of this effort was to obtain angle of attack within a plus or minus one half degree, power estimates within ten per cent of the actual power required, and to obtain the needed accuracy in as short a running time as possible.

II. PROBLEM DEFINITION

A. DESCRIPTION OF PROBLEM

For a helicopter in level flight, the maximum forward speed is limited by the power available as well as stall and compressibility effects. It is therefore advantageous to develop a simple-to-use computer program that estimates blade stall and compressibility effects on helicopter performance.

B. METHOD OF SOLUTION

In forward flight, the aerodynamic environment of the rotor blade varies as the rotor blade rotates with respect to the direction of flight. The method chosen to obtain the objective accuracy ignores any variable not immediately impacting on the accuracy of the determination of angle of attack and power requirements.

The method utilized herein uses a combination of momentum and blade element theory to perform rotor performance calculations. This theory is initially used to determine the induced, profile, and parasite power required.

The solution method then utilizes a blade element analysis to predict the cyclic, collective, and inflow angles

associated with the rotor. These angles are then used in the calculation of the rotor blade's angle of attack at the azimuthal positions of 90 and 270 degrees. Compressibility and stall power are then estimated as a function of angle of attack and forward velocity.

III. DESCRIPTION OF THE PROBLEM SOLUTION

A. GENERAL

The calculation/prediction of helicopter performance is primarily a matter of determining the power required and power available over the desired flight regime. The power information may then be used to predict the operational capabilities of the aircraft.

For the ideal helicopter (no losses), in forward, straight and level flight, power required can be subdivided into five parts: induced power, P_I , required to produce rotor thrust; profile power, P_O , required to overcome the skin friction and pressure drag of the main rotor; parasite power, P_p , required to overcome the parasite drag of the helicopter; compressibility power, P_M , required to overcome the increase in profile drag when the tip Mach number exceeds the drag divergence Mach number of the airfoil; and stall power, P_S , required to account for the increase in rotor torque as a result of retreating blade stall. The HP41-CV and IBM 3033 computer programs contained herein provides a simple, quick means of evaluating the power required by an isolated rotor.

B. ASSUMPTIONS

The major task in helicopter performance analysis is the determination of rotor forces, angles, and power. The method chosen ignores any variable that does not directly impact on the desired accuracy. Therefore, in order to simplify the computational process used, the following assumptions are made:

1. Steady flow through the rotor system.
2. Small angle approximations are a valid representation of the real world phenomena.
3. All blades considered are rectangular (non-tapered) with only uniform twist possible.
4. Hinge off-set is zero (i.e., the thrust vector passes through the C.G.).
5. The stall angle on most helicopter blades can be approximated by the angle that occurs at CLMAX for a 2-D airfoil.
6. The helicopter is trimmed. This implies that the sum of all the moments about the center of gravity (C.G.) is zero, all forces are in balance, and that no lateral flapping is present.

7. At stall onset, the value of section drag coefficient jumps approximately 0.08.

8. The rotor rotates counterclockwise.

C. NOMENCLATURE

"Standard" nomenclature is used. Appendix A contains an alphabetical list defining all the symbols and mnemonics used in the development of this report. Appendix B contains an alphabetical list of all HP41-CV displays used in the HP41-CV program.

D. INITIALIZATION

It is assumed that the initial design of the helicopter has been completed and that the helicopter's weight as well as the chord, radius, tip velocity, twist, zero-lift drag coefficient, and number of blades of the rotor are known. Finally, it is assumed that an initial estimation of equivalent flat plate area is available, and that the forward velocity of the helicopter is known.

E. ROTOR DYNAMICS

There are four rotor parameters which will help expedite later calculations. The first of these is the rotor advance ratio, μ ; μ is the ratio of the helicopter's forward

velocity to the rotational velocity. The advance ratio can be represented as

$$(1) \quad \mu = \frac{v_F \cos \alpha}{v_T} \quad (\text{dimensionless})$$

Applying small angle approximations the advance ratio becomes

$$(2) \quad \mu = \frac{v_F}{v_T}$$

where,

$$v_T = (\Omega R)$$

The second dimensionless ratio that needs to be calculated is the inflow ratio, λ . The inflow ratio is the ratio of the net velocity up through the rotor system to the tip speed. For the near hover case, $\mu < 0.1$, the $\tan \alpha = 0$ and the inflow ratio can be approximated by

$$(3) \quad \lambda = -\sqrt{CT/2}$$

In forward flight, the calculation of λ requires the determination of the angle of attack of the rotor disc. Letting the angle of attack between the disc plane and the

incoming free-stream velocity be α_3 , and assuming angles to be small, the inflow velocity can be calculated using

$$(3a) \quad \lambda = \frac{-C_T}{2\sqrt{\lambda^2 + \mu^2}} + \mu \tan \alpha_3$$

where

$$\alpha_3 = -\tan(D_p/L) = -\tan(D_p/\pi)$$

$$D_p = (P_p * 550) / \gamma_F$$

The last dimensionless parameter that needs to be calculated is solidity. Solidity is the fraction of the rotor disc area that is composed of blades. For a blade of constant chord (i.e., non-tapered) solidity can be expressed as

$$(4) \quad \sigma = (b * C) / (\pi * R)$$

Finally, the tip loss factor, B_{TL} , must be considered. The tip loss factor is used to account for the loss of lift that a rotor blade experiences due to flow from the rotor's lower surface to its upper surface. The tip loss factor of a rotor can be approximated by

$$(5) \quad B_{TL} = 1.0 - \sqrt{2 * C_T / b}$$

P. VELOCITY CALCULATIONS

There are four velocities that are of interest. The first of these is the downwash velocity, w . Assuming steady flow through the rotor, the downwash velocity can be approximated by

$$(6) \quad w = \frac{W}{2\rho A_D v_F} \quad (\text{ft/s})$$

NOTE: This equation is not valid for small values of forward velocity.

The second velocity that needs to be calculated is the stall onset velocity, v_s . The stall onset velocity is the velocity at which the retreating blade tip first exceeds the static stall angle. The forward speed at which stall onset is first noted can be approximated by the velocity for best range, V_{BR} . This is due to the marked increase in profile power required at speeds higher than velocity for best range. A typical set of power curves for a helicopter are shown in Figure 3.1.

The forward velocity for minimum P/V (i.e., best range velocity) is easily found graphically on the power required curve as the point where a straight line through the origin

Figure 3.1. Typical Helicopter Power Curves

is tangent to the curve (see Figure 3.2). Since the power curves are not initially known, an analytical expression needs to be developed which will estimate the velocity for best range. The following is the derivation of one such expression.

As shown below, if the parasite power required is set equal to the profile power required and the equality is then solved for an equation in which forward velocity is the variable, the result is a cubic equation in which the largest root defines the point where the profile power and parasite power are equal.

$$P_p = P_0$$

$$\frac{1}{2} \rho f V_F^3 = \frac{1}{8} \sigma C_d \rho A_D (1 + 4.25 \mu^2)$$

$$(7) V_F^3 - (4.25 / 4f) C_d \rho A_D V_T V_F^2 - (\sigma / 4f) C_d \rho A_D V_T^3 = 0$$

Next, the largest root of equation 7 needs to be determined. This can be simply done using the cubic root equation. Letting

$$p = -(4.25 \sigma / 4f) C_d \rho A_D V_T$$

$$z = -(\sigma / 4f) C_d \rho A_D V_T^3$$

Equation 7 can now be written as

$$(7a) V_F^3 - p V_F^2 - z = 0$$

Substituting

$$(X = p/3)$$

for V_F in equation 7a yields an equation of the form

$$(7b) \quad X^3 + aX + b = 0$$

where,

$$a = -1/3 p^2$$

$$b = 1/27 (2p^2 + 27z)$$

The largest root of equation 7b is then given by

$$(8) \quad V = A + B$$

where,

$$A = \left[\frac{-b}{2} + \sqrt{\frac{b^2}{4} + \frac{a^3}{27}} \right]^{1/3}$$

$$B = \left[\frac{-b}{2} - \sqrt{\frac{b^2}{4} + \frac{a^3}{27}} \right]^{1/3}$$

Equation 8 can now be used as the initial approximation for stall onset velocity.

The third velocity which is of interest is the helicopter's maximum forward velocity, V_{MAX} . As shown in

Figure 3.2, the maximum forward velocity is given by the intersection of the power required and power available curves for a given gross weight and altitude [Ref. 1].

Figure 3.2. VMAX, VBE, and VS from Power Available Curves.

Therefore, whenever $V_F > V_{MAX}$, there is insufficient power available to sustain level flight.

The power-limited maximum speed may be estimated by

$$(9) \quad v_{MAX} = \frac{2}{\sigma f} (P_{AVAIL} - P_I - P_0)^{1/3} \quad (\text{ft/sec})$$

Equation 9 can be simplified by assuming that the power required at maximum speed is about the same as that required at hover. Therefore, assuming

$$(10) \quad (P_{AVAIL} - P_I - P_0) = (P_{HOVER} - P_0)$$

and that

$$(P_{AVAIL} - P_0) = (P_I)_{HOVER} = \sqrt{\frac{4}{2\rho A_D}}$$

equation 9 can then be written as

$$(10a) \quad v_{MAX} = v_I * (4/\rho A_D)^{1/3} \quad (\text{ft/s})$$

where,

$$(10b) \quad v_I = \sqrt{\frac{4}{2\rho A_D}}$$

The last velocity that needs to be calculated is the best endurance velocity, VBE. In the normal operating range the total helicopter power can be represented by

$$(11) \quad P_T = P_I + P_0 + P_p$$

Assuming that the variation of profile power with forward velocity is negligible, the velocity for best endurance (also the best rate of climb velocity) can be found. If equation is differentiated with respect to forward velocity, V_F , and is set equal to zero, it can be seen that

$$(11a) \quad P_I = 3 P_P$$

or

$$(11b) \quad \frac{W^2}{2 \rho A_D V_{BE}} = \frac{3 \rho f V_F^2}{2}$$

Solving equation for the best endurance velocity, V_{BE} , results in

$$(11c) \quad V_{BE} = \left[\frac{W}{\rho A_D} \left[\frac{A_D}{3f} \right]^{\frac{1}{2}} \right]^{\frac{1}{2}} \quad (\text{ft/s})$$

G. INITIAL POWER CALCULATIONS

As forward velocity increases, the induced power decreases, the profile power increases slightly, and the parasite power increases until it becomes the dominant loss at high speeds [Ref. 2]. For forward, straight and level flight, the induced power can be calculated by

$$(12) \quad P = \frac{\pi}{2} \left[-\frac{v_F^2}{v_I^2} + \sqrt{\left(\frac{v_F^2}{v_I^2}\right)^2 + 1} \right]^{\frac{1}{2}} v_I / 550 \quad (\text{hp})$$

If tip losses are taken into effect (equation 5), the induced power now becomes

$$(12a) \quad P_I = \frac{(1/B_{TL}) * P_I}{(TL)}$$

Since the induced power required in ground effect is less than that required out of ground effect, equation 12 should be written as

$$(12b) \quad P_I = \frac{(1/B_{TL}) * (GE) * P_I}{(TL+GE)}$$

where,

$$\begin{aligned} GE = & (-0.1276 * (h/D)^4 + 0.708 * (h/D)^3 \\ & - 1.4569 * (h/D)^2 + 1.3432 * (h/D) \\ & + 0.5147) \end{aligned}$$

The profile power required is given by

$$(13) \quad P_O = \frac{\sigma C_d \rho A_D v_I^3 (1 + 4.25 \mu^2)}{4400} \quad (\text{hp})$$

Finally, parasite power given by

$$(14) \quad P_p = \frac{\rho f V_F^3}{1100} \quad (\text{hp})$$

H. ANGLE OF ATTACK

The determination of angle of attack at the azimuthal positions of 90 and 270 degrees are important in the determination of compressibility and stall effects. It is because of this effect that the dynamics of the blade motion are important in analyzing helicopter performance.

The angle of attack of the rotor is a function of radius, r , and azimuthal position, ψ . Figure 3.3 illustrates the sign convention used in determining blade angle of attack. The angle of attack of a rotor can thus be estimated by,

$$(15) \quad \alpha(r, \psi) = \frac{\theta - V_F \beta \cos \alpha + w - V \alpha_3}{\Omega R + V_F \sin \psi} \quad (\text{rads})$$

where,

$$(15a) \quad \theta = \theta_0 + \theta_T + \theta_1 \cos \psi + \theta_2 \sin \psi + K_B \beta$$

$$(15b) \quad \beta = \beta_0 - a_1 \cos \psi - b_1 \sin \psi$$

ANGLE OF ATTACK

Figure 3.3. Rotor Angles in Longitudinal Plane.

To determine angle of attack, it is then necessary to determine the longitudinal collective and cyclic angles θ_0 and θ_2 . This can be accomplished by expressing the coefficient of thrust as

$$(16) \quad C_T = \frac{3\alpha}{2} \lambda T_1 + (\theta_0 + K_B \beta) T_2 + \theta_T T_3 + (\theta_2 - K_B \beta) T_4$$

where,

$$T_1 = .5 \frac{(B^2 + .5 \mu^2)}{TL} \quad T_3 = .25 \frac{B^2(B^2 + \mu^2)}{TL TL}$$

$$T_2 = (.5 B^3 + .5 \mu^2 B) \frac{1}{TL} \quad T_4 = .5 \mu \frac{(B^2 + .25 \mu^2)}{TL}$$

Additionally, the longitudinal flapping coefficient a_1 , needs to be determined. The longitudinal flapping coefficient can be written as

$$(17) \quad a_1 = \lambda A_{11} + (\theta_0 + K_B \beta_0) A_{12} + \theta_T A_{13} + (\theta_2 - K_B \beta) A_{14}$$

where,

$$D_1 = \frac{(B^2 - .5 \mu^2)}{TL}$$

$$A_{11} = \frac{.25 (.5 \frac{B^2}{TL} - \mu^3 / 8)}{\frac{B^2}{TL} D_1} \quad A_{13} = \frac{2 \mu \frac{B^2}{TL}}{D_1}$$

$$A_{12} = \frac{8 \mu \frac{B}{TL}}{3 D_1}$$

$$A_{14} = \frac{\frac{B^2}{TL} + 1.5 \mu^2}{D_1}$$

Assuming that there is no lateral flapping and that the effect is zero (i.e., $K_B = 0.0$), equations 16 and 17 become

$$(18) \quad \frac{2}{a} C_T = \lambda T_1 + \theta_0 T_2 + \theta_T T_3 + \theta_2 T_4$$

$$(19) \quad z_1 = \lambda A_{11} + \theta_0 A_{12} + \theta_T A_{13} + \theta_2 A_{14}$$

NOTE: Since the analysis is only looking at the azimuthal positions of 90 and 270 degrees, it can be seen from equation 15b that the contribution of the longitudinal flapping coefficient, a_1 , will always be zero at these positions.

Equations 18 and 19 now represent a set of simultaneous equations in which the only unknowns are the collective and cyclic angles and can thus be determined. Knowing the values of the cyclic and collective angles, the blade tip angle of attack at the 90 and 270 degree positions can be estimated by

$$(20) \quad \alpha_{90} = \theta_0 + \theta_T + \theta_2 + \frac{\lambda}{1+u}$$

$$(21) \quad \alpha_{270} = \theta_0 - \theta_2 + \theta_T + \frac{\lambda}{1+u}$$

NOTE: The angle of attack, α , is defined positively if the disk plane is nose up, see Figure 3.2.

I. STALL POWER

In the helicopter stall normally starts at the tip of the retreating blade, since the highest angles of attack are usually at the blade tip. As the forward speed increases, the stalled area of the rotor blade spreads inboard.

At the higher values of μ , the effects of stall on power required are great and therefore need to be estimated. Assuming a jump of 0.08 in the value of C_{D0} at stall onset, that the rotor area within which the blade stall exists is a segment of minimum dimensionless radius X_S and that the stall area is symmetric about $\psi = 270$ degrees, Castles and New found that the effects of tip stall on power required at the higher values of μ are large and can be approximated for high speed flight by

$$(22) \quad C_{PS} = \frac{\sigma}{24\pi} (1 - \mu)^2 (1 - X_S) \sqrt{1 - X_S^2}$$

where X_S is the nondimensional radius outboard of which the retreating blade is stalled [Ref. 3]. The dimensionless radius, X_S , can be estimated by equating the section angle of attack, at $\psi = 270$ degrees, to α_{MAX} [Ref. 4]. Setting equation 15 at $\psi = 270$ degrees equal to α_{MAX} results in the quadratic listed below.

$$(23) \quad (X - \mu) = \theta_0(X - \mu) + \theta_T X^2 - \theta_T \mu - \theta_2(X - \mu) + \lambda + X \geq 1$$

Applying the quadratic formula to equation 23 yields the roots

$$(23a) \quad X_S = \frac{-B_S + \sqrt{B_S^2 - 4\theta_T C_S}}{2\theta_T}$$

$$(23b) \quad X_0 = \frac{-B_S - \sqrt{B_S^2 - 4\theta_T C_S}}{2\theta_T}$$

where,

$$(23c) \quad \Gamma = \alpha_{MAX} - \theta_0 + \theta_2$$

$$(23d) \quad C_S = \mu\Gamma + \lambda$$

$$(23e) \quad B = -\mu\theta_T - \Gamma$$

Equation 22 is satisfactory for most cases. It is possible however, for the blade section angle of attack to be higher inboard than at the tip creating a situation which is usually referred to as inboard stalling [Ref. 5].

For the special case of inboard stalling, see Figure 3.4, the incremental stall power coefficient defined by equation 22 is too large and needs to be corrected.

INBOARD STALLING

Figure 3.4. Inboard Stall Pattern.

Assuming the stalled region is diamond shaped as shown in Figure 3.5 and that the stalled area is symmetric about $\psi = 3\pi/2$, it can be seen that as x_0 approaches x_s , the correction to the incremental stall power coefficient, C_{PS} , must vanish.

STALL REGIONS

Figure 3.5. Approximated Stall Area.

Similarly, as the average of X_0 and X_S approaches unity, the value of C_{PS} goes to the value defined by equation 22.

Therefore, in order to correct for the possibility of inboard stalling, the correction factor, k_S , is defined such that

$$(24) \quad k_S = 1.0 \quad \text{for } \frac{-B_S}{2\theta_T} > 1.0$$

$$(25) \quad k = \frac{B_S / 2\theta_T + X_S}{1 - X_S} \quad \text{for } \frac{-B_S}{2\theta_2} < 1.0$$

The corrected equation for stall power required thus becomes

$$(26) \quad C_{PS}' = k_S * C_{PS}$$

J. COMPRESSIBILITY POWER

The individual effects of stall and compressibility on rotor profile power are substantial at high advance ratios. When both effects are present the losses due to each source are difficult to distinguish. Therefore, as a helicopter's forward velocity and tip speed increase, the need for a simple estimate of how the compressibility of the air influences the rotor performance is necessary.

In forward flight, the Mach number of the advancing blade is given by

$$(27) \quad M = M_{TIP} (x + u \sin \psi)$$

where,

$$(27a) \quad M_{TIP} = \frac{\Omega R}{a_{SV}} = \frac{V_T}{a_{SV}}$$

$$(27b) \quad x = z/R = \text{non-dimensional radius}$$

Since the highest Mach number occurs at the tip of the advancing blade at $\psi = 90$ degrees, equation 27 can be written as

$$(28) \quad M_{90} = M_{TIP} (1 + u)$$

Reference 3.5 showed that the critical Mach number for drag divergence can be estimated by

$$(29) \quad M_{CRIT} = M_{90} - m_1 * a * x_\infty$$

Gessow and Crim, in their investigation of compressibility found that the compressibility effect on rotor performance was a rapid increase in the profile power when the tip Mach number exceeded the critical Mach number for drag divergence [Ref. 6]. The increase in profile power coefficient due to Mach effects can be estimated by

$$(30) \quad C_{PC} = 0.01 \Delta M_D + 0.1 (\Delta M_D)^3$$

where,

$$(31) \quad \Delta M_D = M_{90} - M_{CRIT} - 0.06$$

IV. CONCLUSIONS AND RECOMMENDATIONS

The objective of this project was to provide an easy to use, inter-active computer program which could be used during the initial design phase to estimate the total power required by the main rotor of a helicopter. The computer programs contained herein provide results which are well within the objective accuracies (see Figures C.1, C.2, C.3) and provide acceptable results as a first cut estimate of compressibility and stall power requirements.

In the development of the computational model, many simplifying assumptions were made to ease the amount of computation required. The assumption which most impacts on the accuracy of the program is that of steady flow through the rotor.

The flow environment encountered by the rotor changes rapidly due to the rate of change of blade angle of attack.. Additionally, rotor operation at high advance ratios also produces considerable radial flow along the blade span . The steady flow assumption ignores the time-variant aspect of rotor aerodynamics. The dynamic nature of the rotor, especially when operating at or near the stall regime, requires the application of unsteady aerodynamics, and a

close examination of how the pitching moments generated by the retreating blade stalling affects controllability [Ref. 7]. It is therefore recommended that additional investigations consider how the unsteady aerodynamics, and pitching moments generated, influence the performance of the helicopter.

APPENDIX A
NOMENCLATURE

Term	Mnemonic	Definition	Units
α	a	Slope of airfoil section lift curve.	rad
A	AD	Rotor disc area.	ft
α_3	Alpha3	Disk plane angle of attack.	rad
α_{MAX}	AMAX	The steady flow stall angle of the airfoil (given by $a * CLMAX$).	rad
α_{90}	A90	Angle of attack of the advancing blade at $\psi = 90$ degrees.	rad
α_{270}	A270	Angle of attack of the retreating blade at $\psi = 270$ degrees.	rad
α_1	a1	Longitudinal flapping	rad
A11	A11	Term in definition of THETA2.	dimensionless
A12	A12	Term in definition of THETA2.	dimensionless

A13	A13	Term in definition of THETA2.	dimensionless
A14	A14	Term in definition of THETA2.	dimensionless
b	b	Number of blades on the main rotor.	dimensionless
B_0	BETA0	Main rotor coning angle.	rad
B_S	BS	Term in definition of χ_S .	dimensionless
B_{TL}	STL	Tip loss factor.	dimensionless
c	C	Mean chord of main motor blade.	ft
CIC	CDO	Main rotor coefficient of drag at zero lift.	dimensionless
CL_{MAX}	CLMAX	Maximum coefficient of lift (2-D).	dimensionless
C_{PC}	CPC	Correction to power coefficient due to compressibility effects.	dimensionless
C_{PS}	CPS	Correction to power coefficient due to stall.	dimensionless
C_S	CS	Term in definition of χ_S .	dimensionless

C_T	C_T	Coefficient of thrust of the main rotor.	dimensionless
D_p	D	Rotor disc diameter.	ft
D	D_p	Parasite drag of the helicopter.	lb
ΔM_D	ΔM_D	Term in the definition of compressibility power.	dimensionless
δ_3	$\Delta \delta L_3$	Rate of change of blade pitch with respect to blade flapping.	dimensionless
ϵ	FPA	Equivalent flat plate area of the helicopter in forward flight.	ft
Γ	GAMMA	Term in definition of B and C .	dimensionless
G.E.	GE	Ground effect ratio.	dimensionless
h	H	Height of main rotor above the ground.	ft
hp	HP	Horsepower.	hp
K	K _B	effect.	dimensionless

λ	LAMB	Ratio of the net velocity up through the rotor system to the tip speed.	dimensionless
M	MACH	Mach number of rotor blade.	dimensionless
M_{CRIT}	MCRIT	Critical Mach number of advancing blade at $\psi = 90$ degrees.	dimensionless
M_T	MT	Tip Mach number of rotor blade.	dimensionless
M_{CRTO}	MCRTO	Critical Mach number for $C_l \approx 0.0$.	dimensionless
u	MU	Main rotor advance ratio.	dimensionless
m_1	M_1	Constant in definition of critical Mach number ($m_1 = 0.113$).	ft-lb
Ω	OMEGA	Rotational velocity.	rad/s
P_C	PM	Power required due to compressibility effects.	hp
P_I	PI	Induced power.	hp

P_O	P_O	Profile power.	hp
P_P	P_P	Parasite Power.	hp
P_S	P_S	Power required due to stall effects.	hp
R	R	Main rotor radius.	ft
ρ	ρ	Air density.	slug/ft ³
σ	σ	Main rotor solidity.	dimensionless
Θ	Θ	Ratio of ambient temper- ature to standard sea level temperature.	dimensionless
Θ_0	Θ_0	Main rotor collective pitch.	rad
		Main rotor lateral pitch.	rad
Θ_2	Θ_2	Main rotor longitudinal cyclic pitch.	rad
T_1	T_1	Term in definition of Θ_{00} .	dimensionless
T_2	T_2	Term in definition of Θ_{00} .	dimensionless
T_3	T_3	Term in definition of Θ_{00} .	dimensionless
T_4	T_4	Term in definition of Θ_{00} .	dimensionless

THETA0.

v_I	v_I	Induced velocity.	ft/s
v_F	v_F	Aircraft forward speed.	ft/s
v	v_{KT}	Aircraft forward speed.	kt
v_{MAX}	v_{MAX}	Maximum forward velocity possible.	kt
v_S	v_S	Stall onset velocity (velocity at which A_{270} equal A_{MAX})	kt
v_T	v_T	Rotor tip speed.	ft/s
a_{SV}	s_{VEL}	Speed of sound.	ft/s
w	d_w	Rotor downwash velocity.	ft/s
w	w	Aircraft gross weight.	lb
x_s	x_s	Radius outboard of which the main rotor is stalled.	dimensionless
x_o	x_o	Radius inboard of which rotor blade stall may be present due to inflow ratio and blade twist.	dimensionless

APPENDIX B
HP 41-CV PROGRAM DOCUMENTATION

A. GENERAL

The HP 41-CV program uses 45 program storage registers. Prior to program initialization, the handheld calculator should be sized to 46.

The computer program consists of a main program which calculates the necessary dynamic parameters of the main motor and several subroutines which calculate power required as well as the maximum forward velocity, stall onset velocity, and best endurance velocity.

The documentation for the HP 41-CV program is divided into the following sections:

1. PURPOSE

This section describes the intended purpose of the program or subroutine.

2. ASSUMPTIONS

This section lists any assumptions made which are applicable to the program or subroutine.

2. EQUATIONS

This section lists the equations utilized within the main program or subroutine. The primary references for

the equations used are Aerodynamics and V/STOL FLIGHT,
Reference 3.1, Helicopter Theory, Reference 3.2, and
Aircraft Performance, Reference 3.3.

4. FLOWCHART

Both the handheld computer and the IBM 3033 normally execute instructions in a program in a sequential manner unless it is instructed to do otherwise. This section will graphically represent the step by step method used to solve the problem as well as the flow of control between the various parts of the program. In a flowchart, different types of operations are indicated by different shaped boxes as illustrated below:

Oval

For start or stop.

Rectangle

For a calculation or process other than a decision.

Modified
Rectangle

For the execution of
a subroutine.

Diamond

For a decision.

Parallelogram For input or output.

Small Circle For an on page
connection when a
flowchart continues
on the same page, or
when it is difficult
to connect two boxes.

Pentagon

For connection when
a flowchart continues
to another page.

5. PROGRAMS AND SUBROUTINES

This section lists all the programs or subroutines which must be present in the HP 41-CV prior to program execution.

6. PROGRAM LISTING

This section contains the HP 41-CV listing of the program or subroutine.

3. QUICK REFERENCE TABLES

The tables in this section will be useful to the user of the HP 41-CV handheld calculator as a source of quick reference. Table 1 is an alphabetical listing of all calculator displays with an explanation of their respective meaning. Table 2 lists all storage registers used and describes how they are utilized.

1. HP41-CV Displays

TABLE I

<u>DISPLAY</u>	<u>DEFINITION</u>	<u>UNITS</u>
a = ?	Slope of airfoil lift curve.	rad
b = ?	Number of main rotor blades.	N/A
c = ?	Chord length of main rotor.	ft
DA = ?	Density altitude.	ft
Cdc = ?	Main rotor coefficient of drag at zero lift.	N/A
FPA = ?	Equivalent horizontal flat plate area of the helicopter.	ft
h = ?	Height of the main rotor above the ground.	ft
MCR0=?	Critical Mach number for the coefficient of lift equal to zero.	N/A
r = ?	Main rotor radius.	ft
TWIST = ?	Geometric twist of the rotor.	rad
VF (KT) = ?	Forward velocity.	kt
VT = ?	Rotor tip speed.	ft/s
W = ?	Aircraft gross weight.	lbs
COLL =	Main rotor collective pitch.	rad

CYCLIC =	Main rotor cyclic pitch.	rad
PI =	Induced power required compensated for tip losses and ground effect.	hp
PM =	Power required due to compressibility effects.	hp
PO =	Profile power required.	hp
PS =	Power required due to the retreating blade stalling.	hp
VBE =	Maximum endurance velocity.	Kt
VF > VMAX	The forward velocity that has been input is larger than the one calculated by subroutine VMAX.	N/A
VMAX =	Maximum forward velocity.	Kt
VS =	Initial estimate for finding onset velocity.	Kt
XS =	Radius outboard of which the main motor is stalled.	N/A
XO =	Radius inboard of which motor blade stall may be present.	N/A
α_{90° =	Angle of attack of the advancing blade at $= 90$ degrees.	deg
α_{270° =	Angle of attack of the retreating blade	deg

blade at $\psi = 270$ degrees.

2. 3241-CV Register Utilization

TABLE II

STORAGE

REGISTER	STORED QUANTITY/USE
00	Ground effect ratio (GE).
01	Maximum forward velocity (VMAX).
02	Stall onset velocity (VS).
05	Rotor radius (R).
06	Number of blades (b).
07	Zero-lift drag coefficient (Cdc).
09	Rotor height above the ground (h).
10	Aircraft gross weight (W).
11	Air density (RHO).
12	Lift curve slope (a).
13	Rotor tip velocity (VT).
14	Coefficient of thrust (CT).
15	Tip-loss factor (BTL).
16	Main rotor induced power (PI).
17	Rotor height to rotor diameter ratio (h/d).
18	Compressibility power (PC).

19	Solidity (SD).
20	Induced velocity (VI).
21	Main rotor profile power (PO).
22	Advance ratio (MU).
23	Stall power (PS).
24	Advance ratio squared (MU^2).
25	Forward velocity (VF).
26	Equivalent horizontal flat plate area (EPA).
27	Maximum 2-D lift coefficient (CLMAX).
28	Main rotor parasite power (PP).
29	Main rotor geometric twist (TWIST).
41	Angle of attack at 270 degrees (A270).
42	Angle of attack at 90 degrees (A90).
43	Sonic velocity (SVEL).
44	Critical Mach number for coefficient of lift equal to zero (MCR0).
45	Density altitude.
OTHERS	Scratch pad calculations.

C. PROGRAM DOCUMENTATION

This section contains the necessary documentation for the HP 41-CV computer program. The main program as well as all of the subroutines used in the solution of the problem are outlined in this section.

1. Main Program

(a) PURPOSE

This program calculates the dynamic parameters of the main rotor which are necessary for calculating the total main rotor power required in forward, high speed straight and level flight. It additionally controls the execution sequence of the various subroutines which are used to calculate main rotor power required, in terms of horsepower, as well as maximum forward velocity, stall onset velocity and velocity for best endurance in knots.

(b) ASSUMPTIONS

- (1) All angles are small.
- (2) Steady flow through the rotor.
- (3) All rotor blades are rectangular (non-tapered) with only uniform twist being possible.
- (4) Only the first harmonic of flapping is necessary for calculating power required.
- (5) The effective dimensionless radius can be approximated by the tip-loss factor.
- (6) The thrust vector passes through the C.G..
- (7) The static stall angle for blades on most helicopters can be approximated by the angle at which CLMAX occurs for the 2-D airfoil.

(8) The δ 3 effect, or the result of cocking the flapping axis of the blade so that its pitch varies as the blade flaps is zero (i.e., no lateral flapping is present).

(c) EQUATIONS

$$\begin{aligned}
 \mu &= V_F/V_T \\
 V_F (\text{ft/s}) &= V * 1.68894 \\
 T_1 &= .5(B_{TL}^2 + .5\mu^2) \\
 T_2 &= .334B_{TL}^3 + .5\mu^2B_{TL} \\
 T_3 &= .25B_{TL}^2(B_{TL}^2 + \mu^2) \\
 T_4 &= .5\mu(B_{TL}^2 + .25\mu^2) \\
 D_1 &= (B_{TL}^2 - .5\mu^2) \\
 A_{11} &= 4(.5B_{TL}^2 - \mu^3/8)/D_1 \\
 A_{12} &= 8\mu B_{TL}/3D_1 \\
 A_{13} &= 2\mu B_{TL}^2/D_1 \\
 A_{14} &= (B_{TL}^2 + 1.5\mu^2)/D_1 \\
 (2CT/\sigma a) &= \theta_0 T_1 + \theta_1 T_2 + \theta_T T_3 + \theta_2 T_4 \\
 0 &= \lambda A_{11} + \theta_0 A_{12} + \theta_T A_{13} + \theta_2 A_{14} \\
 A_{MAX} &= CL_{MAX}/CL_A \\
 a_{270} &= \theta_0 - \theta_2 + \theta_T (\lambda/1 + \mu) \\
 \Gamma &= A_{MAX} - \theta_0 - \theta_2 \\
 C_S &= \mu\Gamma + \lambda \\
 B_S &= -\mu\theta_T - \Gamma \\
 X_S &= -B_S + (B_S^2 - 4\theta_T C_S)^{.5} / 2\theta_T \\
 X_0 &= -B_S - (B_S^2 - 4\theta_T C_S)^{.5} / 2\theta_T
 \end{aligned}$$

d. FLOWCHART

e. PROGRAMS AND SUBROUTINES USED

" SD "	" CT "
" PIT "	" LAMB "
" PO1 "	" CPS "
" PPI "	" CPC "
" VS "	" a90 "
" VMAX "	" CNG "
" DEN "	

f. PROGRAM LISTING

01LBL "WBS"	43 "IA=?"	82 3
02 "R=?"	44 PROMPT	83 Y ¹ X
03 PROMPT	45 STO 45	84 3
04 STO 05	46LBL "AGN"	85 /
05 "b=?"	47 RCL 25	86 ENTER↑
06 PROMPT	48 RCL 13	87 RCL 24
07 STO 06	49 /	88 RCL 15
08 "C=?"	50 STO 22	89 *
09 PROMPT	51 X ¹ 2	90 2
10 STO 04	52 STO 24	91 /
11 "Cd0=?"	53 XEQ "SD"	92 +
12 PROMPT	54 XEQ "DEN"	93 STO 34
13 STO 07	55 F5? 03	94 RCL 30
14 "H=?"	56 GTO 05	95 RCL 24
15 PROMPT	57 XEQ "PIT"	96 +
16 STO 10	58 XEQ "PO1"	97 RCL 30
17 "VT=?"	59LBL 05	98 *
18 PROMPT	60 XEQ "PP1"	99 4
19 STO 13	61 ADV	100 /
20 "VF<KT>=?"	62 F5? 03	101 STO 35
21 PROMPT	63 GTO 06	102 RCL 30
22 1.68894	64 XEQ "VBE"	103 RCL 24
23 *	65 XEQ "VMAX"	104 4
24 STO 25	66 ADV	105 /
25 "FPA=?"	67LBL 06	106 +
26 PROMPT	68 XEQ "CT"	107 RCL 22
27 STO 26	69 RCL 15	108 *
28 "H=?"	70 X ¹ 2	109 2
29 PROMPT	71 STO 30	110 /
30 STO 09	72 ENTER↑	111 STO 36
31 "a=?"	73 RCL 24	112 RCL 22
32 PROMPT	74 2	113 RCL 30
33 STO 12	75 /	114 *
34 "CLMAX=?"	76 +	115 2
35 PROMPT	77 STO 31	116 /
36 STO 27	78 2	117 RCL 22
37 "TMIST=?"	79 /	118 3
38 PROMPT	80 STO 33	119 Y ¹ X
39 STO 29	81 RCL 15	120 8
40 "MCRO=?"		121 /
41 PROMPT		122 -
42 STO 44		123 4

124 *	166 RCL 12	207 -
125 RCL 38	167 /	208 /
126 ENTER↑	168 RCL 19	209 STO 32
127 RCL 24	169 /	210 FS? 03
128 2	170 STO 42	211 GTO 07
129 /	171 XEQ "LAMB"	212 R-D
130 -	172 RCL 03	213 "CYCLIC="
131 STO 32	173 RCL 33	214 ARCL X
132 RCL 38	174 *	215 AVIEW
133 *	175 CMS	216 STOP
134 /	176 RCL 42	217LBL 07
135 STO 37	177 +	218 RCL 31
136 RCL 22	178 RCL 29	219 ENTER↑
137 RCL 15	179 RCL 35	220 RCL 36
138 *	180 *	221 RCL 32
139 8	181 -	222 *
140 *	182 STO 31	223 -
141 3	183 RCL 03	224 RCL 34
142 /	184 CMS	225 /
143 RCL 32	185 RCL 37	226 STO 33
144 /	186 *	227 FS? 03
145 STO 38	187 RCL 29	228 GTO 08
146 RCL 22	188 RCL 39	229 R-D
147 2	189 *	230 "COLL="
148 *	190 -	231 ARCL X
149 RCL 38	191 STO 32	232 AVIEW
150 *	192 RCL 34	233 STOP
151 RCL 32	193 *	234 RINV
152 /	194 ENTER↑	
153 STO 39	195 RCL 31	235LBL 08
154 RCL 38	196 RCL 38	236 RCL 33
155 ENTER↑	197 *	237 RCL 32
156 RCL 24	198 -	238 -
157 1.5	199 RCL 34	239 RCL 29
158 *	200 ENTER↑	240 +
159 +	201 RCL 40	241 ENTER↑
160 RCL 32	202 *	242 RCL 03
161 /	203 RCL 36	243 1
162 STO 48	204 ENTER↑	244 RCL 22
163 RCL 14	205 RCL 38	245 +
164 2	206 *	
165 *		

246 /	287 X ¹²	327+LBL 03
247 +	288 STO 36	328 XEQ "CPS"
248 STO 41	289 ENTER↑	329 ADV
249 FS? 03	290 RCL 35	330 CF 01
250 GTO 09	291 CHS	331 CF 02
251 R-D	292 X>Y?	332 CF 03
252 "4270=	293 SF 01	333 XEQ "CPC"
253 ARCL X	294 FS? 01	334 ADV
254 AVIEW	295 GTO 03	335 ADV
255 STOP	296 RCL 36	336 XEQ "PT!"
256 ADV	297 RCL 35	337 XEQ "CNG"
257 XEQ "490-	298 +	338+LBL 09
258 ADV	299 SQRT	339 XEQ "VS"
259 RCL 27	300 STO 38	340 END
260 RCL 12	301 RCL 31	
261 /	302 CHS	
262 RCL 33	303 +	
263 -	304 RCL 29	
264 RCL 32	305 /	
265 +	306 2	
266 STO 30	307 /	
267 RCL 22	308 STO 30	
268 CHS	309 "XS="	
269 RCL 29	310 ARCL X	
270 *	311 AVIEW	
271 RCL 30	312 STOP	
272 -	313 RCL 31	
273 STO 31	314 CHS	
274 RCL 30	315 RCL 38	
275 RCL 22	316 -	
276 *	317 RCL 29	
277 RCL 03	318 /	
278 +	319 2	
279 STO 35	320 /	
280 4	321 STO 08	
281 CHS	322 "X0="	
282 *	323 ARCL X	
283 RCL 29	324 AVIEW	
284 *	325 STOP	
285 STO 35	326 ADV	
286 RCL 31		

2. Solidity

a. PURPOSE

This subroutine calculates the ratio of total blade area to the total rotor disc area.

b. ASSUMPTIONS

None

c. EQUATIONS

$$\sigma = \frac{b * c * R}{\pi * R^2} = \frac{b * c}{\pi * R}$$

d. FLOWCHART

e. PROGRAMS AND SUBROUTINES USED

* WBS *

f. PROGRAM LISTING

```
01LBL "SD"
02 RCL 06
03 RCL 04
04 *
05 RCL 05
06 /
07 PI
08 /
09 STD 19
10 END
```

3. Downwash Velocity

a. PURPOSE

The purpose of this subroutine is to compute the induced velocity of a rotor system.

b. ASSUMPTIONS

Steady flow through the rotor system.

c. EQUATIONS

$$w = \frac{W}{2\rho A_0 V_F}$$

d. FLOWCHART

e. PROGRAMS AND SUBROUTINES USED

"WBS"

f. PROGRAM LISTING

```
01LBL "W"
02 RCL 25
03 X=0?
04 GTO 05
05 RCL 10
06 2
07 RCL 11
08 *
09 RCL 25
10 *
11 PI
12 *
13 RCL 05
14 X*2
15 *
16 /
17 STD 64
18 GTO 06

19LBL 05
20 SF 03

21LBL 06
22 END
```

4. Coefficient of Thrust

a. PURPOSE

This subroutine calculates the coefficient of thrust for a arbitrary rotor.

b. ASSUMPTIONS

Steady flow through the rotor system.

c. EQUATIONS

$$CT = \frac{W}{\rho A_0 V_r^2}$$

d. FLOWCHART

e. PROGRAMS AND SUBROUTINES USED

' WBS '

f. PROGRAM LISTING

```
01•LBL "GT"
02 RCL 05
03 X↑2
04 PI
05 *
06 RCL 11
07 *
08 RCL 13
09 X↑2
10 *
11 1/X
12 RCL 10
13 *
14 STO 14
15 END
```

5. Induced Power

(a) PURPOSE

This subroutine calculates the power required by the motor to produce thrust at hover and forward flight. Additionally, this subroutine corrects for tip losses (losses in lift at the tips due to tip vortices) as well as ground effect.

(b) ASSUMPTIONS

Steady flow through the rotor system.

(c) EQUATIONS

$$PI = \frac{W}{2} \left[-\frac{v_F^2}{2v_I^2} + \sqrt{\left(\frac{v_F^2}{2v_I^2}\right)^2 + 1} \right]^{\frac{1}{2}} v_I$$

$$B = 1.0 - \sqrt{\frac{2 \cdot CT}{D}}$$

$$\begin{aligned} GE &= -0.1276(h/D) + 0.708(h/D)^3 \\ &\quad - 1.4569(h/D)^2 + 1.3432(h/D) + 0.5147 \\ PI_T &= (1/B) * (GE) * PI \end{aligned}$$

d. FLOWCHART

e. PROGRAMS AND SUBROUTINES USED

* WBS *

f. PROGRAM LISTING

01LBL "PIT"	33 .708	63 SQRT
02 RCL 14	34 *	64 STO 20
03 2	35 +	65 X†2
04 *	36 RCL 17	66 1/X
05 SQRT	37 4	67 RCL 32
06 RCL 06	38 Y†X	68 *
07 /	39 -.1276	69 2
08 CHS	40 *	70 /
09 1	41 +	71 CHS
10 +	42 .5147	72 STO 34
11 STO 15	43 +	73 X†2
12 RCL 09	44 STO 00	74 1
13 RCL 05	45 GTO 06	75 +
14 2	46LBL 05	76 SQRT
15 *	47 1	77 RCL 34
16 /	48 STO 00	78 +
17 STO 17	49LBL 06	79 SQRT
18 1.5	50 RCL 25	80 RCL 10
19 X<>Y	51 X†2	81 *
20 X>Y?	52 STO 32	82 RCL 20
21 GTO 05	53 RCL 10	83 *
22 RCL 17	54 2	84 550
23 1.3432	55 /	85 /
24 *	56 RCL 11	86 RCL 15
25 RCL 17	57 /	87 *
26 X†2	58 PI	88 RCL 00
27 -.14569	59 /	89 *
28 *	60 RCL 05	90 STO 16
29 +	61 X†2	91 "PI="
30 RCL 17	62 /	92 ARCL X
31 3		93 AVIEW
32 Y†X		94 STOP
		95 END

6. Profile power

a. PURPOSE

This subroutine calculates the profile power required for forward, straight and level flight in terms of horsepower.

b. ASSUMPTIONS

Steady flow through the rotor system.

c. EQUATIONS.

$$P_0 = \frac{\sigma C_{D0} \rho A_0 V_r^2 (1 + 4.25 \frac{V_r}{U})}{4400} \quad (\text{hp})$$

d. FLOWCHART

e. PROGRAMS AND SUBROUTINE USED

"WBS"

f. PROGRAM LISTING

```
01♦LBL "P01"
02 RCL 19
03 RCL 07
04 *
05 RCL 11
06 *
07 RCL 05
08 X†2
09 *
10 PI
11 *
12 RCL 13
13 3
14 Y†X
15 *
16 8
17 /
18 STO 21
19 RCL 24
20 4.25
21 *
22 1
23 +
24 RCL 21
25 *
26 550
27 /
28 STO 21
29 "P0="
30 ARCL X
31 AVIEW
32 STOP
33 END
```

7. Parasite Power

a. PURPOSE

This subroutine calculates the parasite power required in forward, straight and level flight.

b. ASSUMPTIONS

Steady flow through the rotor system.

c. EQUATIONS.

$$PP = \frac{\rho f V_F^3}{1100} \quad (\text{hp})$$

d. FLOWCHART

6. PROGRAMS AND SUBROUTINES USED

" WBS "

f. PROGRAM LISTING

```
01♦LBL "PP1"
02 RCL 11
03 RCL 26
04 *
05 .5
06 *
07 RCL 25
08 3
09 Y↑X
10 *
11 550
12 /
13 STO 28
14 "PP="
15 RCL X
16 AVIEW
17 STOP
18 END
```

8. Maximum Forward Velocity

a. Purpose

This subroutine calculates the power-limited maximum speed of the specified helicopter.

b. ASSUMPTIONS

- a. The power-limited maximum velocity may be estimated by neglecting the variation of induced power and profile power with speed.
- b. Power required to hover is approximately equal to power required for maximum speed.
- c. Steady flow through the rotor system.

c. EQUATIONS.

$$V_{MAX} = v_r \left[\frac{4}{f/A_0} \right]^{1/3}$$

$$v_r = \left[\frac{W}{2 \rho A_0} \right]^{1/2}$$

D. FLOWCHART

e. PROGRAMS AND SUBROUTINES USED

* WBS *

f. PROGRAM LISTING

```
01♦LBL "YMAX"
02 RCL 26
03 PI
04 /
05 RCL 05
06 X†2
07 /
08 1/X
09 4
10 *
11 .3333334
12 Y†X
13 RCL 20
14 *
15 STO 01
16 1.6884
17 /
18 "YMAX="
19 ARCL X
20 AVIEW
21 STOP
22 RCL 01
23 RCL 25
24 XY†2
25 GTO 12
26 XC=Y?
27 GTO 13

28♦LBL 12
29 "YF > YMAX"
30 AVIEW
31 XEQ "CNG"

32♦LBL 13
33 END
```

9. Best Endurance Velocity

A. PURPOSE

To calculate the value of velocity corresponding to minimum power (i.e., best endurance velocity and/or best rate of climb).

B. ASSUMPTIONS

1. Steady flow through the rotor system.
2. The variation of profile power with forward velocity is negligible.

C. EQUATIONS

$$V_{BE} = \left[\frac{W}{\rho * A} + \left(\frac{A}{3 * f} \right)^{1/2} \right]^{1/2} \quad (\text{ft/s})$$

D. FLOWCHART

e. PROGRAMS AND SUBROUTINES USED

* WBS *

f. PROGRAM LISTING

```
01LBL "VBE"
02 RCL 05
03 *
04 PI
05 =
06 3
07 /
08 RCL 26
09 /
10 SQRT
11 RCL 10
12 *
13 RCL 11
14 /
15 RCL 05
16 X1/2
17 /
18 PI
19 /
20 SQRT
21 1.68894
22 /
23 "VBEK="
24 ARCL X
25 RTVIEW
26 STOP
27 END
```

10. Stall Onset Velocity

a. PURPOSE

This subroutine gives the user of the HP 41-CV an initial approximation for the velocity at which the retreating blade angle of attack is approximately equal to the is approximately equal to the static stall angle of the rotor blade.

b. ASSUMPTIONS

1. Steady flow through the rotor system.
2. Stall onset velocity is approximately equal to the velocity for best range (i.e., minimum P/V).

c. EQUATIONS

$$p = (-4.25 \times C_{D0} A_b V_T) / (4f)$$

$$r = (-3 C_{D0} A_b V_T^3) / (4f)$$

$$a = -1/3 * p^2$$

$$b = 1/27 * (2 * p^2 + 27 * r)$$

$$A = [-b/2 + (b^2/2 + a^3/27)^{1/2}]^{1/3}$$

$$B = [-b/2 - (b^2/2 + a^3/27)^{1/2}]^{1/3}$$

d. FLOWCHART

e. PROGRAMS AND SUBROUTINES USED

" WBS "

f. PROGRAM LISTING

01•LBL "VS"	47 RCL 31	93 X†2
02 FS? 03	48 X†2	94 SQRT
03 GTO 10	49 4	95 .001
04 RCL 19	50 /	96 X>Y
05 RCL 07	51 RCL 30	97 X<Y?
06 *	52 3	98 GTO 11
07 PI	53 Y†X	99 RCL 31
08 *	54 27	100 RCL 41
09 RCL 05	55 /	101 X>Y?
10 X†2	56 +	102 GTO 12
11 *	57 SQRT	103 RCL 41
12 4	58 STO 33	104 RCL 31
13 /	59 RCL 31	105 X>Y?
14 RCL 26	60 CHS	106 GTO 13
15 /	61 2	107•LBL 12
16 STO 03	62 /	108 RCL 25
17 RCL 13	63 +	109 5
18 *	64 .333334	110 -
19 4.25	65 Y†X	111 STO 25
20 *	66 STO 32	112 GTO "AGN"
21 CHS	67 RCL 31	
22 STO 01	68 CHS	113•LBL 13
23 RCL 13	69 2	114 RCL 25
24 3	70 /	115 5
25 Y†Y	71 RCL 33	116 +
26 RCL 03	72 -	117 STO 25
27 *	73 .333334	118 GTO "AGN"
28 CHS	74 Y†X	
29 STO 02	75 STO 34	119•LBL 11
30 27	76 RCL 32	120 CF 03
31 *	77 +	121 RCL 41
32 RCL 01	78 STO 02	122 R-D
33 3	79 .25	123 "STALL="
34 Y†X	80 *	124 ARCL X
35 2	81 RCL 02	125 AVIEW
36 *	82 +	126 STOP
37 +	83 STO 25	127 RCL 25
38 27	84 SF 03	128 1.68894
39 /	85 GTO "AGN"	129 /
40 STO 31	86•LBL 10	130 "VS="
41 RCL 01	87 RCL 27	131 ARCL X
42 X†2	88 RCL 12	132 AVIEW
43 -3	89 /	133 STOP
44 1/X	90 STO 31	134 END
45 *	91 RCL 41	
46 STO 30	92 -	

11. Inflow Ratio

(a) PURPOSE

This subroutine calculates the ratio of the net velocity up through the rotor system to the tip speed.

(b) ASSUMPTIONS

Steady flow through the rotor system.

(c) EQUATIONS

$$\lambda = -\sqrt{C_T/2}$$

$$\lambda = \frac{-C_T}{2\sqrt{\lambda^2 + U^2}} + \mu \tan \alpha_3$$

$$D_P = (PP*550)/V_F$$

$$\alpha_3 = -\tan(D_P/W)$$

d. FLOWCHART

e. PROGRAMS AND SUBROUTINES USED

* WBS *

f. PROGRAM LISTING

01LBL "LAMB"	39 RCL 03
02 RCL 14	40 -
03 2	41 X ^{1/2}
04 /	42 SQRT
05 SQRT	43 .00005
06 CHS	44 X>Y?
07 STO 03	45 GTO 02
08 .1	46 RCL 08
09 RCL 22	47 STO 03
10 X<=Y?	48 GTO 01
11 GTO 06	49LBL 02
12 RCL 28	50 RCL 08
13 550	51 STO 03
14 *	52LBL 06
15 RCL 25	53 END
16 /	
17 RCL 18	
18 /	
19 STO 23	
20LBL 01	
21 RCL 14	
22 CHS	
23 RCL 03	
24 X ^{1/2}	
25 RCL 24	
26 +	
27 SQRT	
28 2	
29 *	
30 /	
31 ENTER↑	
32 RCL 23	
33 R-D	
34 TAN	
35 RCL 22	
36 *	
37 ~	
38 STO 08	

12. Angle of Attack at 90 Degrees

a. PURPOSE

This subroutine calculates the angle of attack at the azimuthal position of 90 degrees.

b. ASSUMPTIONS

- a. Steady flow through the rotor system.
- b. Blade oscillations are periodic in nature.
- c. Only first harmonics of flapping are necessary for calculating angle of attack.
- d. The thrust vector passes through the C.G.
- e. Only uniform twist of the rotor blade is possible.

c. EQUATIONS

$$\alpha_{90} = \theta_0 + \theta_2 + \theta_4 + \frac{\lambda}{(1 + \mu)}$$

d. FLOWCHART

e. PROGRAMS AND SUBROUTINES USED

' WBS '

" a90 "

f. PROGRAM LISTING

```
01•LBL "A90"
02 RCL 33
03 RCL 32
04 +
05 RCL 29
06 +
07 ENTER†
08 RCL 03
09 !
10 RCL 22
11 +
12 /
13 +
14 STO 42
15 R-D
16 "A90"=
17 ARCL X
18 AVIEW
19 STOP
20 END
```

13. Compressibility Power

a. PURPOSE

This subroutine calculates the power required due to compressibility on the main rotor system in forward, straight and level flight in terms of horsepower.

2. ASSUMPTIONS

- a. Steady flow through the rotor system.
- b. The compressibility losses can be expressed as a function of the amount by which the drag divergence Mach number is exceeded at the tip of the advancing blade.

c. EQUATIONS

$$M_{tip} = \frac{V_t + V_s}{a_0}$$

$$\Delta M_d = M_t - M_{crit} \quad 0.06$$

$$M_{crit} = 0.71 - 2.3 * \alpha 90$$

$$C_{sc} = * [0.012 + \Delta M_d + 0.1 * (\Delta M_d)^3]$$

$$P_h = \frac{C_{sc} * \rho * \pi * R^2 * V_t^3}{550} \quad (HP)$$

d. FLOWCHART

f. PROGRAM LISTING

01♦LBL "CPC"	37 RCL 19
02 RCL 13	38 *
03 RCL 25	39 STO 34
04 +	40 RCL 11
05 RCL 43	41 *
06 /	42 RCL 85
07 STO 31	43 Y ^{1/2}
08 RCL 42	44 *
09 RCL 12	45 PI
10 *	46 *
11 .113	47 ENTER ⁴
12 *	48 RCL 13
13 CHS	49 3
14 RCL 44	50 Y ^{4X}
15 +	51 *
16 STO 32	52 550
17 CHS	53 /
18 RCL 31	54 STO 18
19 +	55 GTO 10
20 .86	56♦LBL 89
21 -	57 0
22 STO 33	58 STO 18
23 0	
24 Y/Y	59♦LBL 10
25 X=Y?	60 "PC="
26 GTO 89	61 ARCL X
27 RCL 33	62 REVIEW
28 3	63 STOP
29 Y ^{4X}	64 END
30 .1	
31 *	
32 ENTER ⁴	
33 RCL 33	
34 .012	
35 *	
36 +	

14. Stall Power

a. PURPOSE

This subroutine estimates the additional power required in forward, straight and level flight due to retreating blade stall. Additionally, this subroutine calculates a stall correction factor, k_s , that corrects for the special case of inboard stalling.

b. ASSUMPTIONS

- a. Steady flow through the rotor system.
- b. The section drag coefficient at stall jumps approximately 0.08 at stall onset.
- c. The stalled area is symmetric about the 270 degree azimuthal position.
- d. For all airfoils considered, the static stall angle is approximately 12.5 degrees.

c. EQUATIONS

$$\frac{-B_s}{2 * \theta_r} \leq 1.0$$

where,

$$B_s = -u + \theta_1 - \Gamma$$

$$\Gamma = 0.218166 - \theta_0 + \theta_2$$

$$k_s = -\left(\frac{B_s / 2 + \theta_r + X_s}{1 - X_s} \right)$$

$$C_{D0} = \left[\frac{\sigma}{24 + \rho f} + (1 - u)^2 * (1 - X_s) * (1 - X_s^2)^{1/2} \right]$$

$$P_s = C_{D0} * \rho * \pi * R^2 * V_r^3$$

AD-A136 376 COMPUTER PROGRAMS FOR HELICOPTER HIGH SPEED FLIGHT
ANALYSIS(U) NAVAL POSTGRADUATE SCHOOL MONTEREY CA
W F CARMONA SEP 83

3/2

UNCLASSIFIED

F/G 1/3

NL

END

DATE

FILED

V-B4

DTIC

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

d. FLOWCHART

e. PROGRAMS AND SUBROUTINES USED

- " WBS "
- " SD "
- " CT "
- " W "
- " PP1 "
- " LAMB "

f. PROGRAM LISTING

01LBL "CPS"	31LBL 02	72 *
02 FS? 01	32 "KS="	73 550
03 GTO 06	33 ARCL X	74 /
04 RCL 30	34 AVIEW	75 STO 23
05 RCL 08	35 STOP	76 FS? 02
06 +	36 SF 02	77 GTO 07
07 2	37 RCL 19	78LBL 06
08 /	38 24	79 0
09 1	39 /	80 STO 23
10 X<Y	40 PI	81LBL 07
11 X<=Y?	41 /	82 "PS="
12 GTO 01	42 ENTER↑	83 ARCL X
13 1	43 1	84 AVIEW
14 STO 23	44 RCL 22	85 STOP
15 GTO 02	45 -	86 END
16LBL 01	46 X↑2	
17 RCL 31	47 *	
18 2	48 1	
19 /	49 RCL 30	
20 RCL 29	50 -	
21 /	51 *	
22 RCL 30	52 :	
23 +	53 RCL 30	
24 CHS	54 X↑2	
25 ENTER↑	55 -	
26 1	56 SORT	
27 RCL 30	57 *	
28 -	58 RCL 23	
29 /	59 *	
30 STO 23	60 STO 23	
	61 RCL 13	
	62 3	
	63 Y↑X	
	64 RCL 23	
	65 *	
	66 PI	
	67 *	
	68 RCL 05	
	69 X↑2	
	70 *	
	71 RCL 11	

15. Total Power

a. PURPOSE

This subroutine calculates the total power required in forward, straight and level flight, to include stall and compressibility power in terms of horsepower.

c. ASSUMPTIONS

Power losses, such as transmission and cooling, can be ignored.

c. EQUATIONS.

$$P_t = P_i + P_o + P_p + P_s + P_n$$

d. FLOWCHART

e. PROGRAMS AND SUBROUTINES USED

* WBS *

f. PROGRAM LISTING

```
01♦LBL "PT1"
02 RCL 28
03 RCL 16
04 +
05 RCL 21
06 +
07 RCL 23
08 +
09 RCL 18
10 +
11 "PT="
12 ARCL X
13 AVIEW
14 STOP
15 END
```

16. Density/Sonic Velocity

a. PURPOSE

To generate values of air density and sonic velocity.

b. ASSUMPTIONS

- (1) Geopotential altitude (H), and geometric altitudes are equal below 20,000 feet (actual $\Delta H = 29$ ft).
- (2) In the troposphere the standard temperature lapse rate is -3.57 °F per 1000 feet.

c. EQUATIONS

$$\theta = T/T_{SSL} = (1.0 - 6.8753 \times 10^{-6} * H)$$

$$SVEL = SVEL_{SSL} * \sqrt{\theta}$$

$$\rho = 0.0023769 * (1.0 + HTH * (-.02875 + 0.000275 * HTH))$$

where,

$$HTH = DA/1000$$

d. FLOWCHART

e. PROGRAMS AND SUBROUTINES USED

* WBS *

f. PROGRAM LISTING

```
01LBL "DEN"
02 RCL 45
03 6.875 E-06
04 *
05 CMS
06 1
07 +
08 SQRT
09 1116.89
10 *
11 STO 43
12 RCL 45
13 1000
14 /
15 STO 33
16 .000275
17 *
18 -.02875
19 +
20 RCL 33
21 *
22 1
23 +
24 .0023769
25 *
26 STD 11
27 END
```

17. Change

a. PURPOSE

This subroutine is used to expedite the changing of up to five of the input parameters whenever a design restraint is exceeded and/or at the end of the main program.

b. ASSUMPTIONS

The primary parameters which will require changing are:

- a. Forward velocity, VF; (Kts)
- b. blade twist, TW; (rads)
- c. lift curve slope, a; (per rad)
- d. tip velocity, VT; (ft/sec)
- e. weight, W; (lbs)

c. EQUATIONS

$$VF \text{ (ft/sec)} = VF \text{ (Kts)} * 1.68894$$

d. FLOWCHART

e. PROGRAMS AND SUBROUTINES USED

* WBS *

f. PROGRAM LISTING

01LBL "CNG"	31LBL D
02 "AGN"	32 "VT=?"
03 STO 31	33 PROMPT
04 CF 04	34 STO 13
05LBL 06	35 GTO 05
06 "CHANGE?"	36LBL E
07 PROMPT	37 "H=?"
08 X=?	38 PROMPT
09 GTO 07	39 STO 10
10 SF 04	40LBL 05
11 SF 27	41 CF 27
12 "VF TW a VT H"	42 GTO 06
13 PROMPT	43LBL 07
14LBL A	44 FS? 04
15 "VF<KTS>=?"	45 GTO IND 31
16 PROMPT	46 END
17 1.68894	
18 *	
19 STO 25	
20 GTO 05	
21LBL B	
22 "TWIST=?"	
23 PROMPT	
24 STO 29	
25 GTO 05	
26LBL C	
27 "a=?"	
28 PROMPT	
29 STO 60	
30 GTO 05	

D. HP 41-CV SAMPLE OUTPUT

Depending on the value of forward velocity there are three possible types of output that the HP 41-CV computer program is capable of producing. Examples of the three possible cases are listed below.

CASE 1 : Forward velocity, V_F , is less than stall onset velocity.

P1=791.751153
P0=224.504453
PP=0.000000

VS=137.762848
VBEK=76.060750
VMAX=163.448330

CYCLIC=0.000000
COLL=17.896907

Δ270=4.880790

Δ900=4.880790

PS=0.000000

PM=0.000000

PT=1.016.255606

CASE 2 : Forward velocity, VF, is greater than
stall onset velocity.

PJ=113.87
PQ=352.43
PP=704.24

VS=137.76
VBEK=76.86
VMAX=163.45

CYCLIC=-9.39
COLL=20.76

Δ270=17.75

Δ900=-1.03

X5=0.74
X0=1.24

K5=0.96
PS=148.90

PM=253.71

PT=1.573.16

CASE 3 : Forward velocity, VF, is greater than
the maximum forward velocity possible.

PI=107.18
P0=368.92
PP=844.72

VS=137.76
VBEK=76.06
VMAX=163.45
VF > VMAX

CYCLIC=-10.55
COLL=22.08

Δ27θ=19.87

Δ90θ=-1.23

XS=0.73
X0=1.53

KS=1.00
PS=156.10

PM=289.23

PT=1,766.15

APPENDIX C

A. IBM 3033 PROGRAM DOCUMENTATION

This program calculates the power required to fly a helicopter in forward, straight and level high speed flight. In the sections that follow all inputs and implementation requirements are specified. The problem solving methodology used is as described in Chapter II.

B. INPUT DATA REQUIRED

In calculating the performance of a helicopter it is necessary to define a set of force conditions, environmental conditions, and physical conditions. The force conditions required are the aircraft gross weight (W) in pounds, the maximum lift coefficient (CL_{MAX}), and the coefficient of lift at zero angle of attack (C_0). The environmental conditions include, forward velocity (VFK) in knots, speed of sound ($SVEL$) in feet/sec, rotor height above the ground (H) in feet, and air density (ρ) in lb-ft⁻³/sec. For sake of user simplicity, the speed of sound and air density are generated within the program and are comparable to the values found in a standard atmosphere table. Finally, the physical conditions required are the rotor radius (R) in feet, tip velocity (VT) in ft/sec, number of blades (b), main rotor chord (C) in feet, flat plate area (FPA) in ft², geometric twist of the rotor ($TWIST$) in radians, and airfoil lift curve slope (CLA) in per radians.

C. HELICOPTER SAMPLE DATA

Table C.1 below illustrates the format required when inputting data.

TABLE C.1 HELICOPTER SAMPLE INPUT DATA

<u>RADIUS</u>	<u>CDO</u>	<u>W</u>	<u>VI</u>	<u>PPA</u>
22.	.01075	10512.	738.0	17.
<u>TWIST</u>	<u>NO. BLADES</u>	<u>CHORD</u>	<u>INITIAL VFK</u>	<u>CLA</u>
-.1745	2.	2.25	0.0	5.73
<u>H</u>	<u>CLMAX</u>	<u>NO. ENGINES</u>	<u>TYPE AIRFOIL</u>	<u>DA</u>
1000.	1.4	2.	7.	1000.

D. IBM PROGRAM FLOWCHART

E. IBM PROGRAM LISTING

This section contains the listing of the IBM 3033 computer program developed in this report.

THIS PROGRAM CALCULATES THE PERFORMANCE OF A HELICOPTER
FROM HOVER TO FORWARD, STRAIGHT AND LEVEL FLIGHT, HIGH
SPEED FLIGHT.

WRITTEN BY CPT W. CARMONA (JUN 83)

INTEGER ADEG,IER,O,CENT,O/
REAL LAMBD,A,MU,KSD,KCH,
DATA DER/0,CU1,NLERR,MCR,MCR,I,TO
REAL C5,200,IR,CD,0,W,VT,FPA,TWIST,B,C,VFK,CLAH,CLMAX,XN,TYPE,DA
WRITE(6,202)
WRITE(6,201)

***** CALCULATION OF SONIC VELOCITY AND AIR DENSITY BASE ON STANDARD
***** ATMOSPHERE TABLE

THETA = 116 - 6.8753 E-06 * H
SVEL = CA/10^50 * SQRT(THETA)
HTH = 0.0023769 * (1. + HTH) - .02875 + .000275 * HTH
RH =

***** SELECTION OF PROPER AIRFOIL DATA FOR TYPE UH-60

IF ITYPE = EQ.	1	160	TC	1
IF ITYPE = EQ.	2	160	TC	2
IF ITYPE = EQ.	3	160	TC	3
IF ITYPE = EQ.	4	160	TC	4
IF ITYPE = EQ.	5	160	TC	5
IF ITYPE = EQ.	6	160	TC	6
IF ITYPE = EQ.	7	160	TC	7

NACA 0015 AIRFOIL CHARACTERISTICS

1 MCRO = C.64
CLMAX = 1.26
CLA = 5.73
GO TO 8

SC1095 AIRFOIL CHARACTERISTICS

2 MCRO = C.73
CLMAX = 1.16
CLA = 5.73

```

60 TO 8
NACA 63 A 410.5 AIRFOIL CHARACTERISTICS
3 MCR0 = C 72
CLMAX = 1 37
CLA = 25
GO TO E
C NACA 0012 AIRFOIL CHARACTERISTICS
4 MCR0 = C 72
CLMAX = 1 25
CLA = 5 73
GO TO 8
C NACA 0010 AIRFOIL CHARACTERISTICS
5 MCR0 = 0 74
CLMAX = 1 22
CLA = 5 8
GO TO E
C NACA 0011 AIRFOIL CHARACTERISTICS
6 MCR0 = 0 73
CLMAX = 1 2
CLA = 5 73
GO TO 8
C AH1-J CCERA AIRFOIL CHARACTERISTICS
7 MCR0 = C 72
CLMAX = 1 4
CLA = 5 73
AMAX = CLMAX/CLA
WRITE(6,312)RC,B,V,FPA,H,DA,H,RHO,SVEL,TWIST,TYPE,CLMAX,AMAX,
> PI = 3 14159
AD = PI*(F**2)
CD = (B+C)/(PI*R)
VI = SCRT((2*RHO*AD))
CT = h/(AD*RHO*(VI**2))
D = 2*R*(VI**2)
GE = -1276*(H/D)**4+708*(H/D)**3-14569*(H/D)**2+13432*(H/D)
> IF (H/E GT .5147
IF (H/E GT .5555 GE = 1 0
BTL = 1 3 - (SQR((2*CT)/B))

```

```

C WRITE(6,*)V1,V2,V3,V4,SUM,BTL,GE
C IF IN .GE. 2.0 N = (N - 3.0)*N
C VMAX = SQRT(W/2.0*RHO/ADJ)*(4.0/(FPA/ADJ)**4.0*333334
C VMAXK = VMAX*1.0*6894
C WRITE(6,236)VFK
C VF = VF/VT
C MU = VF/VT
C **** BASIC PCHER CALCULATIONS ****
C **** CALCULATING DYNAMIC PARAMETERS FOR CYCLIC AND COLLECTIVE ANGLES ****
C
C VLT = VF**2/(2.0*V1**2)
C P0 = (SC*RH*CDO*ADJ*(VY**3)/(1.0+25*MU**2))/4400.
C PP = P0 * FHD * FPA * (VF**3)/(1.0550).
C PT = P0 + PIT + PP
C
C C1 = (BTL**2 + .5 * MU**2)
C C2 = (BTL**2 - .5 * MU**2)
C T1 = .5 * C1
C T2 = (BTL**2/3.0 + (MU**2 * BTL**5))
C T3 = (BTL**2/4.0 + (BTL**2 + MU**2))
C T4 = (MU/2.0)**(BTL**2 + MU**2/4.0)
C A11 = ((BTL**2 * MU**5 - (MU**3/B.0))*.4 / (BTL**2*C2))
C A12 = (.8 * HL*BTL)/(3.0*C2)
C A13 = (.2 * HL*BTL*2.0/C2)
C A14 = (.01*BTL**2 + 1.5*MU**2)/C2
C
C **** CALCULATION OF INFLOW ANGLE LAMBDA ****
C
C IF (VF .GT. 0.0) GO TO 66
C ALPHAD = 0.0
C WRITE(6,248)ALPHA
C
C 66 LAMBD1 = -SQRT(CT/2.0)
C IF (MU .LE. 0.160) 66
C DP = PP * 5.50/VF
C ALPHAD = -DP/W
C WRITE(6,247)DP,ALPHA
C LAMBD1 = -C1/SQRT(2.0*(LAMBD1**2) + MU**2) + MU * TAN(ALPHA)
C DLAMB = LAMBDA - LAMBD1

```



```

C      KS = -1ES/(Z*TWIST)+XS/(1.-XS)
24    CPS = KS*.CPS
      GU TO 2
20    CPS = C 0
25    PS = CPS*RHC*AD*(VT**3)/550.
      WRITE(6,216)KS,CPS
C*****ANGLE OF ATTACK CALCULATIONS*****
C*****CALCULATION OF COMPRESSIBILITY FGER
C*****CALCULATION OF TOTAL POWER
C
C      A90 = CCLL + CYCLIC + TWIST + LAMBDA/(1.+MU)
A270 = COLL - CYCLIC + TWIST + LAMBDA/(1.+MU)
A90D = A90 * 57.29/278
A270D = A27 * 57.29/278
      WRITE(6,217)A90,A270
      WRITE(6,223)CYCLIC,COLL,A90D,A270D
C*****CALCULATION OF COMPRESSIBILITY FGER
C*****CALCULATION OF TOTAL POWER
C
C      MT = (VFT*VT)/VEL
      MCRIT = MRC - CLA * A90 * .113
      IF(MT - 1.28,27,27
      WRITE(6,240)
      GO TO 32
      DMD = VT-MC*LT-0.06
      IF(DMD/32.213C*SC*(0.012*DMD+.1*(DMD**3)))1
      GO TO 33
      CPC = 0.0
      DMD = 0.0
      PM = CPC*RHC*AD*(VT**3)/550.
C*****CALCULATION OF TOTAL POWER
C
C      PT1 = PT*PM+PS
      WRITE(6,230)MCRIT,DMD,CPC,PT,PM,PP,PS,PT1
      TSHP = 1.13*PT1+10.0
      VFK = VF/1.68894
      VFK = VFK + DVFK
      IF(VFK < LT-VMAXK) GO TO 65
      CENT = CENT + 1
      IF(CENT > G1) GOTO 97
      VFK = VPAK

```

97 IF (VFK .EQ. VMAXK) GO TO 65

C*****
C* DETERMINATION OF STALL ONSET VELOCITY
C*****
C*****
C

$$VOPTK = \sqrt{W/RtG/AU*SQRT(AU/3.*FPA)}$$

$$VOPTK = VOP / 1.68894$$

$$VF = VF/VT$$

$$MU = MU * FPA * (VF**3) / 550.$$

$$C1 = (BTL**2 + MU**2) / 5 * MU**2$$

$$C2 = (BTL**2 - MU**2) / 5 * MU**2$$

$$T1 = (BTL**2 + MU**2) / 3 + (MU**2 * BTL * 5)$$

$$T3 = (BTL**2 / 4 * J * (BTL**2 + MU**2))$$

$$T4 = (MU/2 * (BTL**2 + MU**2 / 4))$$

$$A11 = ((BTL**2 * MU**5 - (MU**3 / 8.) J**4.) / (BTL**2 * C2))$$

$$A12 = (E* * MU*BTL / (3.*C2))$$

$$A13 = (ETL**2 + 1.5*MU**2) / C2$$

$$A14 = (ETL**2 + 1.5*MU**2) / C2$$

C CALCULATION OF INFLOW ANGLE LAMBDA

$$\text{ALPHA} = -(PF**550.) / VF / W$$

$$\text{LAMBDI} = -SQR(T1 / 2)$$

$$\text{IF } (MU * LE) < 0 \text{ GO TO 71}$$

$$\text{LAMBDA} = -C1/SQRT(2*(LAMBDI**2) + MU**2) + MU * TAN(ALPHA)$$

$$DLAMB = LAMEDA - LAMBDI$$

$$LREF = ABS(LAMBDA)$$

$$\text{IF } (LREF .GE. LERR) \text{ GO TO 72}$$

71 CONTINUE

IF (MU * LE) .LT. 0.1 LAMBDA = LAMBDI

C SOLVING SIMULTANEOUS EQUATIONS FOR CYCLIC AND COLLECTIVE ANGLES

$$E1 = (2.*CT1)/(SD*C1A)$$

$$E2 = T1*LAMEDA$$

$$E3 = T3*T1*ST$$

$$D1 = (2.*C1)/(SU*C1A)$$

$$D2 = -(AI1*LAMBDA) - (WI1*S1*I3)$$

>>>>>
MAIN ROTOR HEIGHT ABOVE GROUND.,,G12.0/,
AIR DENSITY (RHO).,F12.0/,
SONIC VELOCITY.,,G12.0/,
BLADE GEOMETRIC TWIST.,,G12.0/,
TYPE AIRFOIL.,,G12.0/,
MAXIMUM 2-D LIFT COEFFICIENT.,,G12.6/,
2-D STATIC STALL ANGLE (AMAX).,,G12.7/,
LIFT CURVE SLOPE (/RAD).,,G12.0/,
ZERO-LIFT DRAG COEFFICIENT.,,F12.6/,
CRITICAL MACH NG (FCR CL = 0).,,F12.9/,
INITIAL FORWARD VELOCITY (KT).,,G12.0/

C
END

F. SAMPLE OF IBM COMPUTER OUTPUT

This section contains an example run of the IBM computer program, utilizing AH1-J Cobra data, starting at a forward velocity of 120 knots and terminating at VMAX.

HIGH SPEED FORWARD FLIGHT ANALYSIS

INPUT DATA

RADIUS.....	22.0000
MAIN ROTOR CHCRC.....	2.25000
NUMBER OF MAIN FOTOR BLADES.....	2.00000
AIRCRAFT GRCS WEIGHT.....	10612.0
ROTOR TIP VELOCITY.....	738.000
HORIZONTAL FLAT PLATE AREA.....	17.0000
NUMBER OF ENGINES IN HELICCPTER..	2.00000
 DENSITY ALTITUDE.....	1000.00
MAIN ROTOR FEIGHT ABOVE GROUND...	1000.00
AIR DENSITY (RHCI).....	0.002309
SUNIC VELOCITY.....	1113.04
BLADE GEOMETRIC TWIST.....	-0.174500
 TYPE AIRFOIL.....	7.00000
MAXIMUM 2-D LIFT COEFFICIENT.....	1.40000
2-D STATIC STALL ANGLE (AMAX)....	•2443680
LIFT CURVE SLOPE (/RAD).....	5.73000
ZERO-LIFT DRAG COEFFICIENT.....	0.010750
CRITICAL MACH NC (FOR CL = 0)...	0.720000
 INITIAL FORWARD VELOCITY (KT)....	120.000
COEFFICIENT CF THRUST.....	•554153E-02
INDUCED VELOCITIY.....	38.8469
DISC AREA.....	1522.62
SOLIDITY.....	•650197E-01
TIP-LOSS FACTOR.....	•947302
GRUND EFFECT RATIO.....	1.00000

 FORWARD VELOCITY IN KNOTS = 120.000

PARASITE DRAG = 806.258
 DISK PLANE ANGLE CF ATTACK = -0.759760E-01

DYNAMIC PARAMETERS

A11.....	0.625400
A12.....	0.806926
A13.....	0.573338
A14.....	1.175435
T1.....	0.467602
T2.....	0.319142
T3.....	0.218296
T4.....	0.125826
INFLOW RATIC (LAMBDA)	-0.040381

STALL POWER CALCULATIONS

R.T.....-1.06778E-01
INBOARD STALL CORRECTION FACTOR....0
STALL POWER COEFFICIENT.....0

ANGLE OF ATTACK CALCULATIONS

LONGITUDINAL CYCLIC ANGLE...-0.109613
LONGITUDINAL COLLECTIVE ANGLE... 0.314954
ALPHA(90) (DEG)...-0.048086
ALPHA(270) (DEG)... 12.511996

HIGH SPEED MACH EFFECTS

ADVANCING EDGE TIP MACH NUMBER... .845135
CRITICAL MACH NUMBER..... .720543
DRAG DIVERGENCE MACH NUMBER..... .645919E-01
COMPRESSIBILITY POWER COEFF..... .521491E-04

POWER REQUIRED

INDUCED POWER = 151.545
PROFILE POWER = 296.464
PARASITE POWER = 297.103
COMPRESSIBILITY POWER = 134.001
STALL POWER = 0

TOTAL POWER REQUIRED = 879.112

FORWARD VELOCITY IN KNOTS = 130.000

PARASITE DRAG = 946.234
DISK PLANE ANGLE OF ATTACK = -.891604E-01

DYNAMIC PARAMETERS

A11.....	0.680172
A12.....	0.880877
A13.....	0.625882
A14.....	1.207472
T1.....	0.470875
T2.....	0.325344
T3.....	0.221234
T4.....	0.136798
INFLOW RATIO (LAMBDA).....	-0.044668

STALL POWER CALCULATIONS

RT..... 798416E-02
INBOARD STALL CORRECTION FACTOR..... 0
STALL POWER COEFFICIENT..... 0

ANGLE OF ATTACK CALCULATIONS

LONGITUDINAL CYCLIC ANGLE.... -0.122350
LONGITUDINAL COLLECTIVE ANGLE... 0.326189
ALPHA(90) (DEG)..... -0.291443
ALPHA(270) (DEG)..... 13.728103

HIGH SPEED MACH EFFECTS

ADVANCING BLADE TIP MACH NUMBER... .860309
CRITICAL MACH NUMBER..... 723294
DRAG DIVERGENCE MACH NUMBER..... 770157E-01
COMPRESSIBILITY POWER COEFF..... .630606E-04

POWER REQUIRED

INDUCED POWER = 139.900
PROFILE POWER = 308.957
PARASITE POWER = 377.740
COMPRESSIBILITY POWER = 162.039
STALL POWER = 0
TOTAL POWER REQUIRED = 988.636

FORWARD VELOCITY IN KNOTS = 140.000

PARASITE DRAG = 1057.41
DISK PLANE ANGLE OF ATTACK = -.103412

DYNAMIC PARAMETERS

A11.....	0.725630
A12.....	0.956562
A13.....	0.679635
A14.....	1.242629
T1.....	0.474411
T2.....	0.332042
T3.....	0.224407
T4.....	0.147888
INFLOW RATIO (LAMBDA)	-0.350098

STALL POWER CALCULATIONS

RT.....-389701E-02
INBOARD STALL CORRECTION FACTOR..... 0
STALL POWER COEFFICIENT..... 0

ANGLE OF ATTACK CALCULATIONS

LONGITUDINAL CYCLIC ANGLE.... -0.136576
LONGITUDINAL COLLECTIVE ANGLE... 0.339933
ALPHA(90) (DEG)... -0.520492
ALPHA(270) (DEG)... 15.129103

HIGH SPEED MACH EFFECTS

ADVANCING EDGE TIP MACH NUMBER... .875484
CRITICAL MACH NUMBER... .725882
DRAG DIVERGENCE MACH NUMBER... .896012E-01
COMPRESSIBILITY POWER COEFF... .745873E-04

POWER REQUIRED

INDUCED POWER = 129.913
PROFILE POWER = 322.449
PARASITE POWER = 471.789
COMPRESSIBILITY POWER = 191.657
STALL POWER = 0

TOTAL POWER REQUIRED = 1115.81

FORWARD VELOCITY IN KNOTS = 150.000

PARASITE DRAG = 1259.78
DISK PLANE ANGLE OF ATTACK = -.118713

DYNAMIC PARAMETERS

A11.....	0.791849
A12.....	1.034170
A13.....	0.724801
A14.....	1.281051
T1.....	0.478258
T2.....	0.339237
T3.....	0.227815
T4.....	0.129103
INFLOW RATIO (LAMBDA)	-0.056720

STALL POWER CALCULATIONS

RT..... .230777E-02

VALUES FOR DETERMINING STALL COEFFICIENT

GAMMA = -C.26459390
CS = -C.14755023
BS = 0.32449627
XS = 0.7921403
X0 = 1.0674362

INBOARD STALL CORRECTION FACTOR..... .662218094
STALL POWER COEFFICIENT..... .31202595E-04

ANGLE OF ATTACK CALCULATIONS

LONGITUDINAL CYCLIC ANGLE.... -0.152545
LONGITUDINAL COLLECTIVE ANGLE... 0.356377
ALPHA(90) (DEG)..... -0.738687
ALPHA(270) (DEG)..... 16.740753

HIGH SPEED MACH EFFECTS

ADVANCING BLADE TIP MACH NUMBER... .890658
CRITICAL MACH NUMBER..... .728348
DRAG DIVERSION MACH NUMBER..... .102309
COMPRESSIBILITY POWER COEFF..... .867883E-04

POWER REQUIRED

INDUCED POWER = 121.281
PROFILE POWER = 336.941
PARASITE POWER = 580.279
COMPRESSIBILITY POWER = 223.009
STALL POWER = 80.1774

TOTAL POWER REQUIRED = 1341.69

FORWARD VELOCITY IN KNOTS = 160.000

PARASITE DRAG = 1433.35
DISK PLANE ANGLE OF ATTACK = -.135068

DYNAMIC PARAMETERS

A11.....	0.848907
A12.....	1.113897
A13.....	0.791449
A14.....	1.322899
T1.....	0.482267
T2.....	0.346927
T3.....	0.231457
T4.....	0.170453
INFLOW RATIO (LAMBDA).....	-0.064591

STALL POWER CALCULATIONS

RT..... 115852E-01

VALUES FOR DETERMINING STALL COEFFICIENT

GAMMA =	-0.30194568
CS =	-0.17515445
BS =	0.36584556
XS =	0.7398598
XO =	1.2566751

INBOARD STALL CORRECTION FACTOR..... 1.0000000
STALL POWER COEFFICIENT..... .6054921E-04

ANGLE OF ATTACK CALCULATIONS

LONGITUDINAL CYCLIC ANGLE.....	-0.170535
LONGITUDINAL COLLECTIVE ANGLE....	0.375743
ALPHA(90) (DEG).....	-0.949361
ALPHA(270) (DEG).....	18.591431

HIGH SPEED MACH EFFECTS

ADVANCING BLADE TIP MACH NUMBER....	.905832
CRITICAL MACH NUMBER.....	.730729
DRAG DIVERSION MACH NUMBER.....	.115103
COMPRESSIBILITY POWER COEFF.....	.997223E-04

POWER REQUIRED

INDUCED POWER =	113.722
PROFILE POWER =	352.433
PARASITE POWER =	704.243
COMPRESSIBILITY POWER =	250.243
STALL POWER =	155.586

TOTAL POWER REQUIRED = 1582.23

FORWARD VELOCITY IN KNOTS = 163.359

PARASITE DRAG = 1454.16
DISK PLANE ANGLE OF ATTACK = -.140799

DYNAMIC PARAMETERS

A11..	0.868277
A12..	1.141191
A13..	0.810842
A14..	1.337756
T1..	0.483689
T2..	0.349022
T3..	0.232734
T4..	0.174297
INFLOW RATIO (LAMBDA)	-0.067526

STALL POWER CALCULATIONS

RT..... .155987E-01

VALUES FOR DETERMINING STALL COEFFICIENT

GAMMA	=	-0.31570089
CS	=	-0.18555188
BS	=	0.38093823
Xs	=	0.7336488
Xo	=	1.4493771

INBOARD STALL CORRECTION FACTOR..... 1.0000000
STALL POWER COEFFICIENT..... .611C8760E-04

ANGLE OF ATTACK CALCULATIONS

LNGITUDINAL CYCLIC ANGLE	-0.177082
LNGITUDINAL COLLECTIVE ANGLE	0.382947
ALPHA(90) (DEG)	-1.019017
ALPHA(270) (DEG)	19.272018

HIGH SPEED MACH EFFECTS

ADVANCING BLADE TIP MACH NUMBER910929
CRITICAL MACH NUMBER731516
DRAG DIVERGENCE MACH NUMBER119412
COMPRESSIBILITY POWER COEFF104241E-03

POWER REQUIRED

INDUCED POWER = 111.388
PROFILE POWER = 357.861
PARASITE POWER = 749.536
COMPRESSIBILITY POWER = 267.855
STALL POWER = 157.023

TOTAL POWER REQUIRED = 1643.66

INITIAL STALL ONSET VELOCITY APPROXIMATION (KTS) = 76.

DIFFERENCE BETWEEN A270 AND A MAX = .259871E-03
ACCEPTABLE ERROR = .100000E-02

ANGLE AT STALL ONSET= 13.9811

STALL ONSET VELOCITY = 131.913

VELOCITY MAX ENDURANCE = 76.0347

MAXIMUM FCRARC VELOCITY = 103.359

G. COMPARISON OF PROGRAM OUTPUT VS TEST DATA

This section compares the output of the HP41-CV and IBM 3033 computer programs to actual flight test data gathered at the Naval Weapons System Center.

**POWER REQUIRED VS VELOCITY
FOR THE AH1-J USING THE HP 41-CV**

Figure C.1. Power Curves Generated by HP41-CV Program.

POWER REQUIRED VS VELOCITY
FOR THE AH1-J USING THE IBM 3033

Figure C.2. Power Curves Generated by the IBM 3033 Program.

POWER REQUIRED VS VELOCITY

Figure C.3. Comparison Between Computer Data and Actual Test Flight Data.

LIST OF REFERENCES

1. JOHNSON, W.: HELICOPTER THEORY. PRINCETON ACADEMIC Press, 1980.
2. LAYTON, D. M.: HELICOPTER PERFORMANCE. NAVAL Postgraduate School, 1980.
3. NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS TN 2656, A ~~Blade Element Analysis for Helicopter Rotor Performance~~, by Castilles, W., and New, W. C., July 1952.
4. MCCORMICK, B.: AERODYNAMICS OF V/STOL FLIGHT. Academic Press, 1967.
5. NAVAL SURFACE WEAPONS CENTER NSWC/DL-TR-3823, A ~~Computer Model for Determining weapons release parameters for a Helicopter gun system~~, by Dennis, F. P., and McCormick, B. W., October 1978.
6. NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS TN 3798, A ~~Theoretical Estimate of the Effects of Compressibility on the Performance of a Helicopter Rotor in Various Flight Conditions~~, by Gessow, A., and Chin, A. D., 1945.
7. CARMONA, W. F.: A MATHEMATICAL MODEL OF UNSTEADY Aerodynamics, Radial Flow and Stall Effects, ~~Applicable to the Navy Helicopter~~, presented at the Naval Postgraduate School, June 1983.

INITIAL DISTRIBUTION LIST

	No. Copies
1. Defense Technical Information Center Cameron Station Alexandria, Virginia 22314	2
2. Library, Code 0142 Naval Postgraduate School Monterey, California 93943	2
3. Department Chairman, Code 67 Department of Aeronautics Naval Postgraduate School Monterey, California 93943	1
4. CPT. Waldo F. Casmona 5602 S.W. 1 ST Miami, Florida 33034	5
5. Prof Donald M. Layton Code 67-LN Naval Postgraduate School Monterey, California 93943	5
6. MAJ. Paul J. Fardink 204 Sheffield Road Williamsburg, Virginia 23185	1
7. CPT Robert Cramer 585 Minuteman Drive Newport News, Virginia 23602	2
8. Aviation Safety Programs Code 034 ZG Naval Postgraduate School Monterey, California 93943	2