# Complejidad algorítmica Clase de repaso

#### Algoritmos y Estructuras de Datos II

Departamento de Computación



2<sup>do</sup> cuatrimestre 2020

#### Menú del día

- Repaso
   Definiciones
   Propiedades
- ② Ejercicios Inducción Definición Algoritmo
- 3 Múltiples parámetros Algoritmo múltiple

#### **Definiciones**

#### Definición

Sea  $g: \mathbb{N} \to \mathbb{R}$ . Entonces:

$$\mathcal{O}(g) \stackrel{\text{def}}{=} \{ f : \mathbb{N} \to \mathbb{R} \mid (\exists \ n_0 \in \mathbb{N}, \ c \in \mathbb{R}_{>0}) \ f(n) \le c \cdot g(n) \ \forall n \ge n_0 \}$$

#### Definición

Sea  $g: \mathbb{N} \to \mathbb{R}$ . Entonces:

$$\Omega(g) \stackrel{\mathrm{def}}{=} \{ f : \mathbb{N} \to \mathbb{R} \mid (\exists \ n_0 \in \mathbb{N}, \ c \in \mathbb{R}_{>0}) \ f(n) \ge c \cdot g(n) \ \forall n \ge n_0 \}$$

#### Definición

Sea  $g: \mathbb{N} \to \mathbb{R}$ . Entonces:

$$\Theta(g) \stackrel{\mathrm{def}}{=} \{ f : \mathbb{N} \to \mathbb{R} \mid f \in O(g) \land f \in \Omega(g) \}$$

## Propiedades – $\diamondsuit$ es "comodín" de $\mathcal{O}, \Omega, \Theta$

**1** Toda f cumple  $f \in \Diamond(f)$ .

Reflexiva

- 3 Regla de la suma:

$$f_1 \in \Diamond(g) \land f_2 \in \Diamond(h) \implies f_1 + f_2 \in \Diamond(g+h) = \Diamond(\max\{g,h\})$$

4 Regla del producto:

$$f_1 \in \Diamond(g) \land f_2 \in \Diamond(h) \implies f_1 \cdot f_2 \in \Diamond(g \cdot h)$$

3 y 4 corresponden al álgebra de órdenes. Además 4 implica 2.

•  $f \in \Diamond(g) \land g \in \Diamond(h) \implies f \in \Diamond(h)$ 

Transitiva

- $f \in \Diamond(g) \implies \Diamond(f) \subseteq \Diamond(g)$
- $\Diamond(f) = \Diamond(g) \iff f \in \Diamond(g) \land g \in \Diamond(f)$

Como  $f \in \Theta(g) \implies g \in \Theta(f)$ 

Simétrica

•  $\Theta(f) = \Theta(g) \iff f \in \Theta(g)$ 

### Ejercicios: Inducción

Sea  $f(n)=2^n$ , probemos que para todo n dado  $f(n)\in\mathcal{O}(1)$ 

### Ejercicios: Inducción

Sea  $f(n) = 2^n$ , probemos que para todo n dado  $f(n) \in \mathcal{O}(1)$ ¿Esto significa que  $2^n \in \mathcal{O}(1)$ ?

# ¿Y cómo se hace?

Probemos que  $n2^n \in \mathcal{O}(3^n)$ .

### **Ejercicios**

**Demostrar** que, vistas como funciones de  $x \in \mathbb{R}_{\geq 0}$ , vale:

$$x^p \in \mathcal{O}(b^x)$$

para toda base  $b \in \mathbb{R}$  tal que b > 1 y para todo exponente  $p \in \mathbb{N}$ .

### **Ejercicios**

**Demostrar** que, vistas como funciones de  $x \in \mathbb{R}_{>0}$ , vale:

$$x^p \in \mathcal{O}(b^x)$$

para toda base  $b \in \mathbb{R}$  tal que b > 1 y para todo exponente  $p \in \mathbb{N}$ .

#### Ayuda:

Dados  $b \in \mathbb{R}$  tal que b > 1 y  $k \in \mathbb{N}$  tales que  $b^k \ge 2$  vale la siguiente desigualdad para todo  $x \in \mathbb{R}_{\ge 0}$  y para todo  $n, p \in \mathbb{N}$ 

$$\left(\frac{x}{pk}\right)^n \leq b^{n(\frac{x}{p}+k)}$$

## Ejercicios: Algoritmo

#### DIVISORESDEPARES(A: arreglo(nat))

```
1: total \leftarrow 0

2: para \ i \leftarrow 0...tam(A) - 1 \ hacer

3: si \ 2 \ divide \ a \ A[i] \ entonces

4: para \ j \leftarrow 0...tam(A) - 1 \ hacer

5: si \ A[j] \ divide \ a \ A[i] \ entonces

6: total \leftarrow total + 1
```

**Obs.:** Consideramos operaciones elementales a las verificaciones de divisibilidad

- 1 ¿La complejidad del *mejor caso* es  $\mathcal{O}(n^2)$ ?
- 2 ¿La complejidad del peor caso es  $\Omega(n)$ ?

### Múltiples parámetros

#### Definición

$$O(g) \stackrel{\mathrm{def}}{=} \left\{ f: \mathbb{N}^k \to \mathbb{R} \mid \exists \ \vec{n_0} \in \mathbb{N}^k, c \in \mathbb{R}_{>0} \\ f(\vec{n}) \leq c \cdot g(\vec{n}) \quad \forall \vec{n} > \vec{n_0} \right\}$$

Es decir,  $f \in O(g)$  si y sólo si existen  $\vec{n_0} \in \mathbb{N}^k$  y c > 0 tales que para todo  $\vec{n} \ge \vec{n_0}$  se tiene:

$$f(\vec{n}) \leq c \cdot g(\vec{n})$$

Ejemplo:  $m \log n = O(mn)$ 

# Múltiples parámetros: Algoritmo múltiple

**¡Último!** Queremos saber si un elemento e está en una matriz de  $N \times N$  o no.

```
BÚSQUEDAMATRICIAL(A: arreglo(arreglo(nat)), e: nat)

1: para i \leftarrow 0...tam(A) - 1 hacer

2: para j \leftarrow 0...tam(A[0]) - 1 hacer

3: si A[i][j] == e entonces

4: devolver true

5: devolver false = 0
```

• ¿Cuál es la complejidad del peor caso? Fácil, ¿no?

# Múltiples parámetros: Algoritmo múltiple

**¡Último!** Queremos saber si un elemento e está en una matriz de  $N \times N$  o no.

```
\begin{array}{ll} & \text{B\'uSQUEDAMATRICIAL}(A: \text{arreglo}(\text{arreglo}(\text{nat})), e: \text{nat}) \\ & \text{1: para } i \leftarrow 0...tam(A) - 1 \text{ hacer} \\ & \text{2: para } j \leftarrow 0...tam(A[0]) - 1 \text{ hacer} \\ & \text{3: si } A[i][j] == e \text{ entonces} \\ & \text{4: devolver } true \\ & \text{5: devolver } false \\ \end{array}
```

- ¿Cuál es la complejidad del peor caso? Fácil, ¿no?
- ¿Pero si es de  $N \times M$ ?