Math 300 Cheat Sheet

Chenkai Luo

Contents

1	Propositional Logic	2
	1.1 Logical Equivalencies	2
	1.2 Quantifiers	2
2	Set Theory	3
	2.1 Definitions	3
3	Axioms of $\mathbb R$ (the real numbers)	5

1 Propositional Logic

1.1 Logical Equivalencies

De Morgan's Laws

$$\neg (P \land Q) \equiv \neg P \lor \neg Q$$
$$\neg (P \lor Q) \equiv \neg P \land \neg Q$$

Other Equivalencies

$$\begin{split} P \to Q &\equiv \neg Q \to \neg P \text{ (contrapositive)} \\ P \wedge P &\equiv P \vee P \equiv P \\ \neg \neg P &\equiv P \\ P \vee (Q \wedge R) &\equiv (P \vee Q) \wedge (P \vee R) \\ P \wedge (Q \vee R) &\equiv (P \wedge Q) \vee (P \wedge R) \\ P \to Q &\equiv \neg P \vee Q \\ \neg (P \to Q) &\equiv P \wedge \neg Q \end{split}$$

1.2 Quantifiers

De Morgan's Laws for Quantifiers

$$\neg \forall x P(x) \equiv \exists x \neg P(x)$$

$$\neg \exists x P(x) \equiv \forall x \neg P(x)$$

2 Set Theory

2.1 Definitions

Injective means one to one Surjective means onto

Laws

Identity Laws	$A \cup \emptyset = A$	$A \cap U = A$	
Domination Laws	$A \cup U = U$	$A \cap \emptyset = \emptyset$	
Idempotent Laws	$A \cup A = A$	$A \cap A = A$	
Commutative Laws	$A \cup B = B \cup A$	$A \cap B = B \cap A$	
Associative Laws	$A \cup (B \cup C) = (A \cup B) \cup C$	$A \cap (B \cap C) = (A \cap B) \cap C$	
Distributive Laws	$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$	$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	
Basic Properties	$(A^{c})^{c} = A$	$A - B = A \cap (B^{c})$	
Empty/Universal Set Properties	$A - \emptyset = A$	$A - U = \emptyset$	
	\emptyset $^{c} = U$	$U^{c} = \emptyset$	
De Morgan's Laws	$(A \cap B)^{\mathbf{c}} = A^{\mathbf{c}} \cup B^{\mathbf{c}}$	$(A \cup B)^{c} = A^{c} \cap B^{c}$	
Subsets/Complements	$A \subseteq B$ if and only if $B^{c} \subseteq A^{c}$		
Absorption Laws	$A \cup (A \cap B) = A$	$A \cap (A \cup B) = A$	
Complement Laws	$A \cup A^{\mathbf{c}} = U$	$A \cap A^{c} = \emptyset$	

Notation

Name	Meaning	Symbol	LaTeX
Empty set	The set containing zero elements	Ø or {}	\emptyset
In	a is an element of B	$a \in B$	\in
Not in	a is not an element of B	$a \notin B$	\notin
Subset	All elements of A are in B	$A \subseteq B$	\subseteq
Proper subset	A is a subset of B but not equal to B	$A \subset B$	\subset
Universal set	Set of all possible elements	U	
Union	Elements in either A or B or both	$A \cup B$	\cup
Intersection	Elements in both A and B	$A \cap B$	\cap
Set difference	Elements in A that are not in B	$A \setminus B$	\setminus
Complement (sets)	Set difference $U \setminus A$	\bar{A} or A^{c}	$\operatorname{bar}\{A\} \text{ or } A^{\wedge} c$
Power set	Set of all possible subsets of A	P(A)	
Cardinality	Number of distinct elements in A	A or card(A)	

3 Axioms of $\mathbb R$ (the real numbers)

1	Closure	$a+b \in \mathbb{R}, \ ab \in \mathbb{R}$
2	Commutativity	a+b=b+a, ab=ba
3	Associativity	$(a+b) + c = a + (b+c), (ab) \cdot c = a \cdot (bc)$
4	Distributivity	$(a+b) \cdot c = ac + bc, \ a \cdot (b+c) = ab + ac$
5	Existence of identities	There are two different numbers, 0 and 1, such that for all real numbers $a \in \mathbb{R}$, $a+0=a$ and $a\cdot 1=a$
6	Additive inverse	There exists a number $-a \in \mathbb{R}$ such that $a + (-a) = 0$
7	Multiplicative inverse	For all $a \in \mathbb{R}$ with $a \neq 0$, there exists a number $a^{-1} \in \mathbb{R}$ such that $a \cdot a^{-1} = 1$

Also

- $\mathbb N$ (natural numbers 1 and up) satisfies 1 4
- \mathbb{Z} (integers) satisfies 1 6
- \mathbb{Q} (rational numbers) satisfies 1 7

a + (-b) can be written as a - b

Equality axioms for \mathbb{R} (also holds for sets)

8	Reflexivity	a = a
9	Symmetry	If $a = b$, then $b = a$
10	Transitivity	If $a = b$ and $b = c$, then $c = a$
11	Substitution	If $a = b$, then b may be substituted for a without changing the truth value

Order axioms

12	Positive Closure	If $a, b \in \mathbb{R}$, and $a, b > 0$, then $a + b$ and $a \cdot b$ are positive
13	Trichotomy	If $a \in \mathbb{R}$, then exactly one of the following is true: a is positive, a is negative, $a = 0$
14	Well-Ordering Property	A set of positive integers has a minimum element.