

Agenda

Análise de séries temporais tendências transformações numéricas decomposição

ANÁLISE DE SÉRIES TEMPORAIS tendências

Tendências são as formas mais comuns de manifestação do comportamento não estacionário em séries hidrológicas

Tema em discussão há mais de meio século [ver Klemes, 1974]
coincide com o crescimento do uso de modelos do tipo Box & Jenkins (ARMA)
a partir da década de 1970
modelos ARMA são estacionários

Causas comumente atribuídas para as tendências: ações antrópicas nas bacias hidrográficas variabilidade e mudanças climáticas

Discussões acerca da atribuição das tendências atribuição: termo utilizado para "explicar mudanças detectadas"

[Matalas, 1997]

Tendências são fruto de impactos de mudanças climáticas

[Salas et al., 2012]

Efeito não tão evidente em série hidrológicas

[Kahya e Kalayci, 2004]

Mudanças na geomorfologia das bacias são lentas, portanto tendências são causadas por mudanças no clima

Não estacionariedade e tendências: falta de consenso na literatura

[Klemes, 1974]

Discussões acerca da (não) estacionariedade de séries são "um exercício de futilidade"

[Koutsoyiannis, 2006, 2011, 2013]

Tendências são produtos de flutuações de larga escala

[Milly et al., 2008]

"Stationarity is dead"

```
[Lins & Cohn, 2008]
"Stationarity: wanted dead or alive?"
[Poveda e Álvarez, 2012]
"El colapso de la hipótesis de estacionariedad"
[Poveda, 2012]
"Fin al diletantismo (e.g. amadorismo) sobre el calntamiento global y su
origen antrópico"
[Serinaldi e Kilsby, 2015]
"Stationarity is undead"
```

Tendências em séries hidrológicas (anuais)

A detecção das tendências se dá por meio de testes de hipótese

Teste de Mann-Kendall (MK)

Teste não paramétrico

Tendências não necessariamente lineares, mas sim monotônicas

Hipóteses:

H₀: a série não possui tendência monotônica

H₁: a série possui tendência monotônica

A estatística do teste é calculada por meio de:

$$MK = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \text{sgn}[z_j - z_i]$$

onde z_i (ou z_j) é a observação no instante de tempo i (ou j) e:

$$\operatorname{sgn}[z_{j} - z_{i}] = \begin{cases} 1, \operatorname{se}(z_{j} - z_{i}) > 0 \\ 0, \operatorname{se}(z_{j} - z_{i}) = 0 \\ -1, \operatorname{se}(z_{j} - z_{i}) < 0 \end{cases}$$

A variância da variável do teste *MK* é dada por:

$$VAR[MK] = \frac{n(n-1)(2n+5)}{18}$$

A variável do teste é calculada por:

$$z = \begin{cases} \frac{MK - 1}{\sqrt{VAR[MK]}}, \text{ se } MK > 0\\ \frac{MK + 1}{\sqrt{VAR[MK]}}, \text{ se } MK < 0 \end{cases}$$

Rejeita-se H_0 se $z>z_{\alpha/2}$ para um nível de significância α

Lembra-se que os testes possuem a premissa de que os elementos das amostras devem ser independentes entre si

MK em amostras persistentes têm maior probabilidade de indicar tendência quando ela, na realidade, ela não existe [Yue et al., 2002]

É preciso investigar a persistência da série antes de averiguar tendências em dados persistentes, o teste de MK deve ser adaptado

Teste para correlação em série de primeira ordem (\hat{r}_1)

Hipóteses:

 H_0 : a série é independente ($\hat{r}_1 = 0$)

 H_1 : a série não é independente $(\hat{r}_1 \neq 0)$

Estatística do teste:

$$t_0 = \frac{\hat{r}_1 \sqrt{n-2}}{\sqrt{1-\hat{r}_1^2}}$$
 onde
$$\frac{n}{\hat{r}_1}$$
 tamanho da série
$$\hat{r}_1$$
 coeficiente de correlação de lag 1

Rejeita-se H₀ se:

$$|t_0| > t_{\alpha/2,(n-2)}$$

onde

 $t_{\alpha/2,(n-2)}$ variável t-Student com n-2 graus de liberdade significância de α

O p-valor pode ser calculado por:

$$p = 2 \cdot \Phi^{-1}[1 - |t_0|]$$

onde

 Φ^{-1} inversa da distribuição t-Student com n-2 graus de liberdade

[Exemplo] Significância de \hat{r}_1 nas vazões médias anuais dos rios Grande (usina Marimbondo) e Iguaçu (usina Foz do Areia), considerando $\alpha = 5\%$.

	Rio Grande Marimbondo	Rio Iguaçu Foz do Areia
n (anos)	93 (1931 a 2023)	93 (1931 a 2023)
$\boldsymbol{\hat{r}_1}$	0,35	0,25
t_0	3,60	2,41
$t_{\alpha/2;(n-2)}$	1,99	1,99
p-valor	< 0,001	0,02

Veredicto: Rejeita-se H₀ em ambos os casos (a série não é independente)

Caso H₀ seja rejeitada, existem algumas opções:

[Yue et al., 2002]: adaptar a série temporal [Hamed & Rao, 1998]: adaptar a formulação do teste

[Yue et al., 2002] propõem o uso da técnica pre-whitening a partir da série persistente z_t , obtém-se a série independente x_t aplicando:

$$x_t = z_t - \hat{r}_1 z_{t-1}$$

onde

 \hat{r}_1 coeficiente de correlação de primeira ordem (lag 1) da série

Entretanto, a mera presença da tendência na série afeta a estimativa de \hat{r}_1 o estimador passa a ser tendencioso

A proposta é, então:

1. Remover a tendência, usando o estimador de Theil-Sen *b* versão não paramétrica do estimador de mínimos quadrados do coeficiente angular de uma reta

$$b = \text{mediana}\left(\frac{z_j - z_i}{j - i}\right), \forall i < j$$

A remoção da tendência é feita a partir de:

$$y_t = z_t - bt$$

- 2. O pre-whitening é aplicado à série y_t , obtendo-se x_t o coeficiente \hat{r}_1 passa a ser estimado a partir da amostra sem tendência y_t
- 3. Devolve-se a tendência à série ("branca") x_t
- 4. Finalmente, aplica-se MK sobre a série x_t

Em resumo:

Por esse motivo, a abordagem de [Yue et al., 2002] é conhecida como Trend-Free Pre-Whitening (TFPW)

[Hamed & Rao, 1998] propõe alterar a variância do teste séries persistentes tendem a inflar a variância de MK

Lembra-se que a variância é baseada unicamente no tamanho da amostra:

$$VAR[MK] = \frac{n(n-1)(2n+5)}{18}$$

Portanto, o autor sugere usar um estimador denominado tamanho efetivo da amostra

O tamanho efetivo da amostra é calculado por:

$$n^* = \frac{n}{1 + 2\sum_{k=1}^{n-1} (1 - \frac{k}{n}) r_k}$$

onde

k defasagem temporal

 r_k autocorrelação de lag k estimada a partir da amostra

Assim, para séries persistentes, $n^* < n$ e o valor da variância do teste é reduzido

[Exemplo] Tendências nas vazões médias anuais dos rios Grande (usina Marimbondo) e Iguaçu (usina Foz do Areia) – no R, pacote modifiedmk

Rio Grande Marimbondo

```
mkOriginal <- mkttest(x)
P-value = 0.463</pre>
```

```
mkTFPW <- tfpwmk(x)
P-value = 0.853</pre>
```

```
mkHR <- mmkh(x,ci = 0.95)
P-value = 0.585
```

Rio Iguaçu Foz do Areia

```
mkOriginal <- mkttest(x)
P-value = 0.013</pre>
```

```
mkTFPW <- tfpwmk(x)
P-value = 0.005</pre>
```

$$mkHR <- mmkh(x,ci = 0.95)$$

P-value = 0.008

Análise de séries temporais

transformações numéricas

Transformações numéricas são técnicas utilizadas em alguns contextos: deixar a distribuição dos dados mais simétrica (próxima de uma Normal) regularizar a variação da série (controlar sua variância) lidar com o comportamento não estacionário

Adicionalmente, são aplicadas para adequar os dados aos requisitos de modelagem, quando necessários

As transformações a serem mostradas são: diferenciação

Box-Cox/Logarítmica

Diferenciação:

Utilizada para remover o comportamento não estacionário de uma série assume tendências estocásticas

Seja uma série z_t (t=1,...,n), a diferenciação de primeira ordem é dada por:

$$x_t = z_t - z_{t-1}$$

Séries com comportamentos não estacionários mais complexos (ou seja, com tendências e quebras estruturais), podem requerer diferenciações de segunda ordem:

$$y_t = x_t - x_{t-1} = (z_t - z_{t-1}) - (z_{t-1} - z_{t-2})$$

Cuidado deve ser tomado ao usar diferenciações, pois a reintegração da série (ou seja, o retorno à sua escala original) pode não ser possível o processo requer que o valor inicial z_0 seja conhecido para séries sintéticas z_t' não se conhece o valor z_o'

Se a(s) diferenciação(ões) resultar(em) em um série x_t ou y_t estacionária, z_t é uma série não estacionária homogênea*

^{*}o conceito de homogeneidade foi explicado na aula passada

Caso contrário, z_t é uma série não estacionária não homogênea

Box-Cox/Log-Normal:

A transformação de Box-Cox tem por objetivo estabilizar a variância de uma série (amenizar a heteroscedasticidade):

$$x_{t} = \begin{cases} \frac{(z_{t} + \epsilon)^{\lambda} - 1}{\lambda} ; \lambda \neq 0 \\ ln(z_{t} + \epsilon) ; \lambda = 0 \end{cases}$$

onde

- λ parâmetro da transformação

Um efeito secundário importante é que a transformação Box-Cox ajuda a aproximar a distribuição dos dados a uma Normal estabilizar a variância reduz a assimetria dos dados

Este efeito é esperado e pode ser utilizado como objetivo para a estimativa do parâmetro λ

variam-se os valores até que a série transformada x_t seja (aprox.) normalmente distribuída

[Exemplo] Transformação Box-Cox aplicada às vazões médias anuais do rio Iguaçu (usina Foz do Areia)

Contudo, há uma limitação importante quando do uso dessa transformação quando o objetivo é a geração de cenários sintéticos

Na reversão da transformação para o retorno à escala original dos dados, instabilidades numéricas aparecem quando $\lambda \cong 0$:

$$z'_t = \begin{cases} (\lambda x'_t + 1)^{1/\lambda} - \epsilon; \ \lambda \neq 0 \\ \exp(x'_t + \epsilon) \end{cases} ; \lambda = 0$$

Alternativa: aplicar diretamente a transformação log-normal sobre os dados

$$x_t = \log(z_t)$$

Onde $x_t \sim N(\mu_x, \sigma_x)$

Assim:

$$x_t^p = \frac{\log(z_t) - \mu_x}{\sigma_x}$$

Resulta em uma série $x_t^p \sim N(0,1)$

[Exemplo] Transformação Log-Normal aplicada às vazões médias anuais do rio Iguaçu (usina Foz do Areia)

ANÁLISE DE SÉRIES TEMPORAIS decomposição

Análise de séries temporais | decomposição

Uma série temporal z_t pode ser compreendida como a composição de três termos:

$$z_t = S_t + T_t + a_t$$

onde

 S_t componente sazonal

 T_t componente de tendência/ciclo

 a_t componente residual

O equacionamento mostrado assume uma forma aditiva de representação há também a forma multiplicativa, mas é menos comum em séries hidrológicas

A forma do modelo pode variar de acordo com a escala considerada ex.: para série anuais, a componente S_t é inexistente

A componente residual a_t representa tudo aquilo que as demais componentes não conseguem extrair da série idealmente possui características aleatórias depende dos modelos utilizados para representar S_t e T_t

Portanto, a decomposição de uma série diz respeito à aplicação de técnicas estatísticas para isolar S_t e T_t do sinal original Z_t

Aqui são consideradas três técnicas

decomposição clássica decomposição STL

decomposição CEEMDAN

As formulações detalhadas de cada método podem ser conferidas em:

decomposições clássica e STL: https://otexts.com/fpp3/decomposition.html

CEEMDAN: [Zhang et al., 2022]

Decomposição clássica:

Procedimento simplificado que assume:

sazonalidade constante no decorrer dos anos ciclo/tendência modelado a partir de médias móveis

1. Estimar a componente \hat{T}_t

utilizar média móvel com janela equivalente a um ciclo sazonal completo ex.: para séries mensais, adota-se janela temporal de 12 meses

2. Remover a componente de tendência do modelo

fazer: $z_t - \hat{T}_t$ a série resultante possui as componentes S_t e a_t

3. Estimar a componente \hat{S}_t

determinar a média de cada período sazonal da série $(z_t - \hat{T}_t)$ ex.: para séries mensais, calcular as médias de todos os janeiros, depois todos os fevereiros, etc.

4. Estimar a componente \hat{a}_t

fazer:
$$\hat{a}_t = z_t - \hat{T}_t - \hat{S}_t$$

[Exemplo] Decomposição clássica no rio São Francisco (usina Sobradinho)

Decomposição STL:

STL: "seasonal and trend decomposition using Loess" permite com que o comportamento sazonal varie com o passar dos anos ciclo/tendência pode ser não linear considera que a componentes S_t e T_t estão interrelacionadas

Loess: "locally weighted scatterplot smoothing"

é um método de regressão local

em uma série, o método aplica sucessivas regressões em janelas móveis são ponderadas de modo que os pontos mais próximos do centro da janela tenham maior representatividade

A decomposição STL aplica um processo iterativo alternando ajustes Loess distintos para as componentes S_t e T_t

```
1<sup>a</sup> iteração:
idem à decomposição clássica para obter \hat{S}_t^1 e \hat{T}_t^1
2ª iteração:
obtém z_t - \hat{T}_t^1 e aplica Loess para determinar \hat{S}_t^2;
obtém z_t - \hat{S}_t^2 e aplica Loess para determinar \hat{T}_t^2
3ª iteração:
obtém z_t - \hat{T}_t^2 e aplica Loess para determinar \hat{S}_t^3;
obtém z_t - \hat{S}_t^3 e aplica Loess para determinar \hat{T}_t^3
[repete até a convergência]
```

[Exemplo] Decomposição STL no rio São Francisco (usina Sobradinho)

Decomposição CEEMDAN:

CEEMDAN: "complementary ensemble empirical mode decomposition with adaptive noise"

variante aprimorada do método EMD (empirical mode decomposition)

Diferentemente das técnicas anteriores, o CEEMDAN assume que a série possui mais componentes do que S_t e T_t

as componentes adicionais são consideradas padrões oscilatórios denominados IMFs (intrinsic mode functions)

Portanto, a decomposição pode ser representador por:

$$z_t = IMF_t^1 + IMF_t^2 + \dots + IMF_t^k + a_t$$

O processo de determinação das IMFs continua até que o que resta da série possa ser considerado como resíduo o próprio algoritmo faz isso automaticamente

A partir de técnicas numéricas adicionais, é possível converter cada IMF em um frequência no domínio do tempo

ex.: oscilação com período de X anos ver [Antico et al., 2016]

Resumo

Tendências em séries podem significar alterações nos regimes hidrológicos em bacias hidrográficas

significância estatística pode ser testada, com a devida atenção à premissa de independência entre valores da série

Transformações numéricas são úteis para preparar os dados remoção de não estacionariedade via diferenciação requer cuidados transformações Box-Cox e logarítmica aproximam dados de uma distribuição Normal

Técnicas de decomposição de séries podem ajudar no entendimento aprofundado dos seus componentes

ERHA7016 – Hidrologia Estocástica

Daniel Detzel detzel@ufpr.br