Problem 1

Let D be the domain in \mathbb{R}^2 bounded by the curves $y = 4 - x^2$, y = x + 2 and y = 2 - x.

- 1. Find the center of mass of D for a constant density.
- 2. Evaluate

$$\iint_D f(x,y)dA$$

for $f(x,y) = 2y^3x$.

Problem 2

Consider the domain D in \mathbb{R}^2 inside the circle of radius 1 centered at the origin and below the line $y = \frac{1}{2}$. Let $f(x, y) = \sin(x^2 + y^2)$.

- 1. Set up the integral as a union of type I domains, without computing it.
- 2. Set up the integral as a union of type II domains, without computing it.
- 3. Set up the integral in polar coordinates, without computing it.

Problem 3

Let E be the solid that lies above the cone $z = \sqrt{x^2 + y^2}$ and below the sphere of radius 1 centered in the origin. Let P be the center of mass of E.

- 1. Set up the integrals for the (x, y, z) coordinates of P in cylindrical coordinates, without computing them.
- 2. Set up the integrals for the (x, y, z) coordinates of P in spherical coordinates, without computing them.

Problem 4

Consider the integral given by

$$\int_0^{2\pi} \int_0^1 \int_0^{2-r} r \, dz \, dr \, d\theta$$

1. Sketch a domain in \mathbb{R}^3 on which we are calculating the integral.

- 2. Rewrite the domain in $dr dz d\theta$ (meaning you should write the boundaries of r as a function of z).
- 3. Evaluate the integral. Is this the volume of a solid?