Design of crystal oscillators

Willy Sansen

KULeuven, ESAT-MICAS Leuven, Belgium

willy.sansen@esat.kuleuven.be

Table of contents

- Oscillation principles
- Crystals
- Single-transistor oscillator
- MOST oscillator circuits
- Bipolar-transistor oscillator circuits
- Other oscillators

The Barkhausen criterion

$$V_{out} = A(j\omega) V_{\epsilon}$$

$$V_f = F(j\omega) V_{out}$$

= $F(j\omega) A(j\omega) V_{\epsilon}$

$$\frac{V_f}{V_{\varepsilon}} = A(j\omega) F(j\omega)$$

Oscillation if
$$V_{in} = 0$$
 or if $\left| \frac{V_f}{V_{\epsilon}} \right| = |A(j\omega)| |F(j\omega)| \ge 1.0$
Positive FB!

$$\left\{\frac{V_f}{V_E}\right\} = \Phi_A + \Phi_F = 0^\circ$$

Ref. Barkhausen, Hirzel, Leipzig, 1935

Split analysis

$$Z_{resonator} \xrightarrow{Z_{circ}} Y_{res} + Y_{circ}$$

$$Y_{res} + Y_{circ} = 0$$

$$\frac{1}{Z_{res}} + \frac{1}{Z_{cir}} = 0$$

$$\frac{Z_{circ} + Z_{res}}{Z_{res} Z_{circ}} = 0$$

Oscillation if $Re(Z_{circ}+Z_{res}) = 0$ sets the minimum gain!

Im $(Z_{circ}+Z_{res}) = 0$ sets the frequency !

Table of contents

- Oscillation principles
- Crystals
- Single-transistor oscillator
- MOST oscillator circuits
- Bipolar-transistor oscillator circuits
- Other oscillators

Crystal as resonator

$$f_s = \frac{1.66}{d}$$

$$f_s$$
 in MHz if d in mm

$$C_p = A \frac{\epsilon_0 \epsilon_r}{d}$$
 $\epsilon_r \approx 4.5$

$$\omega_s^2 = \frac{1}{L_s C_s}$$
 $f_s = \frac{1}{2\pi \sqrt{L_s C_s}}$

$$C_s \omega_s = \frac{1}{C_s \omega_s}$$
 $Q \omega_s = \frac{1}{R_s C_s}$

$$Q = \frac{1}{R_s} \sqrt{\frac{L_s}{C_s}} \qquad R_s = \frac{1}{Q C_s \omega_s}$$

Crystal parameters

Xtal:
$$f_s = 10.000 \text{ MHz}$$

$$Q = 10^5$$

$$C_s = 0.03 \text{ pF}$$

$$C_p \approx 6 \text{ pF} (\approx 200 \text{ C}_s)$$

$$L_s \omega_s = \frac{1}{C_s \omega_s}$$
 $L_s \approx 8.4 \text{ mH}$

$$R_{s} = \frac{1}{Q C_{s} \omega_{s}} = 5.3 \Omega$$

f _s	L _s	C _s	R_s	C _p	Q
100.0 kHz	52 H	49 fF	400 Ω	8 pF	0.8 10 ⁵ 5.3 10 ⁵
1.000 MHz 10.00 MHz	2 H 10 mH	6 fF 26 fF	24 Ω 5 Ω	3.4 pF 8.5 pF	1.2 10 ⁵

Series and parallel resonance

Crystal impedance

$$Z_{s}(s) = \frac{s^{2}L_{s}C_{s} + sR_{s}C_{s} + 1}{s(C_{s} + C_{p})(s^{2} \frac{L_{s}C_{s}C_{p}}{C_{s} + C_{p}} + s \frac{R_{s}C_{s}C_{p}}{C_{s} + C_{p}} + 1)}$$

Crystal impedance at resonance

$$f_s = 1.998 \text{ MHz}$$

$$C_s = 12.2 \text{ fF}$$

$$L_s \approx 0.52 \text{ H}$$

$$C_p = 4.27 pF$$

$$R_s = 82 \Omega$$

Crystal operates in inductive region if circuit is capacitive!

Series and parallel resonance

$$Z_{s}(\omega) = \frac{-j}{\omega C_{p}} \frac{\omega^{2} - \omega_{s}^{2}}{\omega^{2} - \omega_{p}^{2}} \qquad \omega_{s}^{2} = \frac{1}{L_{s} C_{s}} \qquad \omega_{p}^{2} = \frac{1}{L_{s}} \left(\frac{1}{C_{p}} + \frac{1}{C_{s}}\right)$$
series
parallel

$$Z_s(\omega) = R_s + j\omega L_s + \frac{1}{j\omega C_s}$$

$$Z_s(\omega) = R_s + \frac{j}{\omega_s C_s} \left(\frac{\omega}{\omega_s} - \frac{\omega_s}{\omega} \right)$$

$$Z_s(\omega) \approx R_s + j \frac{2p}{\omega C_s}$$

Frequency pulling factor

$$p = \frac{\omega - \omega_s}{\omega_s}$$

Ref. Vittoz, JSSC June 88, 774-783

Series or parallel resonance?

Table of contents

- Oscillation principles
- Crystals
- Single-transistor oscillator
- MOST oscillator circuits
- Bipolar-transistor oscillator circuits
- Other oscillators

Single-transistor X-tal oscillator

Single-transistor X-tal oscillator analysis

 $Z_s = R_s + \frac{1}{2}$

Barkhausen :
$$Z_s + Z_c = 0$$

$$Re(Z_c) = -R_s$$
 yields g_m

Im
$$(Z_c) = -\frac{2p}{\omega C_s}$$
 yields for p

Ref. Vittoz, JSSC June 88, 774-783

Complex plane for 3-pt oscillator: Design crit.

Complex plane for 3-pt oscillator: Example

Amplitude of oscillation

Start-up of oscillation

$$\tau_{min} = \frac{L_s}{\text{Re} (Z_s) + R_s}$$

$$\tau_{min} = \frac{L_s}{\text{Re} (Z_s) + R_s}$$

$$\text{Re} (Z_s) = \frac{1}{2} \frac{1}{\omega_s C_3} \text{ if } C_3 << C_1$$

$$R_s << \text{Re} (Z_s)$$

$$R_s << \text{Re} (Z_s)$$

$$\tau_{min} \approx \frac{2 C_3}{\omega_s C_s} \approx \frac{400}{\omega_s} \text{ since } C_3 \approx 200 C_s$$

or also
$$\tau_{min} \approx 2Q R_s C_3$$

Power dissipation

In MOST:
$$g_{mA} \approx \omega_s^2 R_s C_1 C_2 \approx R_s (C_1 \omega_s)^2$$

$$I_{DSA} \approx g_{mA} \frac{V_{GS} - V_T}{2} \approx 2 \mu A \Longrightarrow 6 \mu W$$
In X-tal: $I_c = \frac{V_{gs}}{Z_{C1}} = |V_{gs}| C_1 \omega_s \approx |V_{GS} - V_T| C_1 \omega_s$

$$P_c = \frac{R_s I_c^2}{2} = \frac{R_s}{2} |V_{GS} - V_T|^2 (C_1 \omega_s)^2$$

$$= |V_{GS} - V_T|^2 \frac{g_{mA}}{2} \approx 0.2 \mu W$$

Design procedure for X-tal oscillators - 1

X-tal:
$$f_s f_p R_s C_p$$
 (or $f_s Q C_s C_p$) (Q = 1/ $\omega_s C_s R_s$)

1. Take : $C_3 > C_p$ but as small as possible

Pulling factor p =
$$\frac{1}{2} \frac{C_s}{C_3 + \frac{C_1C_2}{C_1 + C_2}} \approx \frac{1}{2} \frac{C_s}{C_L}$$
 $C_L = \frac{C_1}{2} = \frac{C_2}{2}$

If
$$p < \frac{C_s}{4C_p}$$
 it is a series oscillator (best !)

If $p > \frac{C_s}{4C_p}$ it is a parallel oscillator (not stable !)

Choose C_L large (> C_3), subject to power dissipation!

Design procedure for X-tal oscillators - 2

2. Calculate
$$g_{mA} \approx R_s C_L^2 \omega_s^2$$
 ($\approx \frac{\omega_s}{C_s Q} C_L C_L$)
and take $g_{mStart} \approx 10 g_{mA}$

3. Choose V_{GS} - V_{T} , which gives the amplitude V_{gs}

and current
$$I_{DS} = \frac{g_m(V_{GS} - V_T)}{2}$$
 and $\frac{W}{L}$ and power $P = (V_{GS} - V_T)^2 \frac{g_m}{2}$

4. Verify that biasing $R_B > 1/(R_s C_3^2 \omega_s^2)$

Single-transistor X-tal oscillator

Pierce X-tal oscillator

Colpitts X-tal oscillator

Crystal grounded : single-pin : X = D

Santos X-tal oscillator

Crystal grounded : single-pin : X = G

Ref. Santos, JSSC April 84, 228-236 Ref. Redman-White, JSSC Feb.90, 282-288

Table of contents

- Oscillation principles
- Crystals
- Single-transistor oscillator
- MOST oscillator circuits
- Bipolar-transistor oscillator circuits
- Other oscillators

Practical Pierce X-tal oscillator

Ref. Vittoz, JSSC June 88, 774-783

Full schematic

Ref. Vittoz, JSSC June 88, 774-783

Single-pin oscillator with crystal to Gate

$$f_s = 9.9956 \text{ MHz}$$
 $C_s = 24.3 \text{ fF}$
 $f_p = 10.012 \text{ MHz}$ $C_o = 7.4 \text{ pF}$
 $L = 10.4 \text{ mH}$
 $R = 7.2 \Omega$ (?)

$$p = 0.8 \ 10^{-3}$$
 $C_1 = C_2 = 50 \ pF$
 $g_{mA} = 350 \ \mu S$
 $I_{DSA} = 90 \ \mu A \ (V_{GS} - V_T = 0.5 \ V)$

Single-pin oscillator - 1

 $g_m = R_s (C_s \omega_0)^2$ DC unstable ! Positive FB dominant at crystal frequency!

Ref. van den Homberg, JSSC July 99, 956-961

Single-pin oscillator - 2

10 MHz, 3.3 V, 0.35 mA

Ref. van den Homberg, JSSC July 99, 956-961

X-tal oscillators with CMOS inverters

Table of contents

- Oscillation principles
- Crystals
- Single-transistor oscillator
- MOST oscillator circuits
- Bipolar-transistor oscillator circuits
- Other oscillators

Pierce X-tal oscillator

Colpitts X-tal oscillator

Santos X-tal oscillator

Crystal grounded : single-pin : X = G

Buffered output

Ref. Santos, JSSC April 84, 228-236

Ref. Redman-White, JSSC Feb.90, 282-288

98 GHz VCO in SiGe Bipolar technology

0.55 x 0.45 mm

12 mA at - 5 V -97 dBc/Hz at 1 MHz

Ref. Prendl BCTM Toulouse 03

Positive feedback circuits - 1

$$T = g_{m1} R_L$$
$$R_L > R_s$$

Ref. Nordholt, CAS 90, 175-182

Positive feedback circuits - 2

Positive feedback circuits - 3

Table of contents

- Oscillation principles
- Crystals
- Single-transistor oscillator
- MOST oscillator circuits
- Bipolar-transistor oscillator circuits
- Other oscillators

Voltage Controlled Oscillator

$$\omega_s = \frac{1}{\sqrt{LC_D}}$$

$$g_{mA} \approx R_L (C_D \omega_s)^2$$

$$\frac{dv_{out}^{2} \{\Delta\omega\}}{4kTR_{L}(1 + \frac{4}{3})(\frac{\omega_{s}}{\Delta\omega})^{2} df}$$

Ref. Craninckx, ACD Kluwer 96, 383-400; JSSC May 97, 736-744

Differential crystal Oscillator

Relaxation Oscillator

Ref. Grebene, JSSC, Aug.69, 110-122; Gray, Meyer, Wiley, 1984.

RC Oscillators: $3 \times 60^{\circ} = 180^{\circ}$

Wien Oscillator: 3 x Gain required

Voltage-controlled X-tal oscillator

Resonator 457 kHz Tuning ± 5 kHz

Ref. Huang, JSSC June 88, 784-793

Variable capacitance $\pm \Delta C$

Ref. Huang JSSC June 88, 784-793

G_m block to generate $\pm \Delta G_m$

$$I_1 = 90 \mu A$$

 $I_2 = 0 \dots 180 \mu A$ $G_m = B [(2\beta I_1)^{1/2} - (2\beta I_2)^{1/2}]$

R_dC_d block as differentiator

Ref. Huang JSSC June 88, 784-793

Table of contents

- Oscillation principles
- Crystals
- Single-transistor oscillator
- MOST oscillator circuits
- Bipolar-transistor oscillator circuits
- Other oscillators

References X-tal oscillators -1

- A.Abidi, "Low-noise oscillators, PLL's and synthesizers", in R. van de Plassche, W.Sansen, H. Huijsing, "Analog Circuit Design", Kluwer Academic Publishers, 1997.
- J. Craninckx, M. Steyaert, "Low-phase-noise gigahertz voltage-controlled oscillators in CMOS", in H. Huijsing, R. van de Plassche, W.Sansen, "Analog Circuit Design", Kluwer Academic Publishers, 1996, pp. 383-400.
- Q.T. Huang, W. Sansen, M. Steyaert, P.Van Peteghem, "Design and implementation of a CMOS VCXO for FM stereo decoders", IEEE Journal Solid-State Circuits Vol. 23, No.3, June 1988, pp. 784-793.
- E. Nordholt, C. Boon, "Single-pin crystal oscillators" IEEE Trans. Circuits. Syst. Vol.37, No.2, Feb.1990, pp.175-182.
- D. Pederson, K.Mayaram, "Analog integrated circuits for communications", Kluwer Academic Publishers, 1991.

References X-tal oscillators - 2

- W. Redman-White, R. Dunn, R. Lucas, P. Smithers, "A radiation hard AGC stabilised SOS crystal oscillator", IEEE Journal Solid-State Circuits Vol. 25, No.1, Feb. 1990, pp. 282-288.
- J. Santos, R. Meyer, "A one pin crystal oscillator for VLSI circuits", IEEE Journal Solid-State Circuits Vol. 19, No.2, April 1984, pp. 228-236.
- M. Soyer, "Design considerations for high-frequency crystal oscillators", IEEE Journal Solid-State Circuits Vol. 26, No.9, June 1991, pp. 889-893.
- E. Vittoz, M. Degrauwe, S. Bitz, "High-performance crystal oscillator circuits: Theory and application", IEEE Journal Solid-State Circuits Vol. 23, No.3, June 1988, pp. 774-783.
- V. von Kaenel, E. Vittoz, D. Aebischer, "Crystal oscillators", in H. Huijsing, R. van de Plassche, W.Sansen, "Analog Circuit Design", Kluwer Academic Publishers, 1996, pp. 369-382.

Appendix: Polar diagrams

Willy Sansen

willy.sansen@esat.kuleuven.be

Amplitude, phase, Real & Imaginary

$$| | = \sqrt{\text{Re}^2 + \text{Im}^2}$$

Re =
$$|\cos(\phi)|$$

Im = $|\sin(\phi)|$

$$Z = R + \frac{1}{Cj\omega}$$

$$Z = \frac{R}{1 + RCj\omega}$$

Circuit input impedance Zc

$$Z_{c} \approx \frac{g_{m} + 2 j\omega C_{1}}{j\omega C_{3} (g_{m} + \frac{C_{1}}{C_{3}} j\omega C_{1})}$$
if $C_{3} << C_{1} = C_{2}$

For
$$g_m \approx 0$$
 $Z_{c0} \approx 2 / \omega C_1$

For
$$g_m \approx \infty$$
 $Z_{c^{\infty}} \approx 1/\omega C_3$

Complex plane for 3-point oscillator

Calculation of g_{mA}

$$Z_{c} = \frac{1}{C_{3}s} \frac{g_{m} + (C_{1} + C_{2})s}{g_{m} + (C_{1} + C_{2} + \frac{C_{1}C_{2}}{C_{3}})s}$$

$$Q_{mA} = C_{2} = C_{1}$$

$$Re(Z_{c}) = R_{s}$$

For small
$$g_m : g_{mA} \approx R_s (C_{eff} \omega_s)^2$$

$$C_{eff} = C_1 (1 + \frac{2C_3}{C_1})$$

$$\approx C_1$$

Maximum negative resistance is $1/2\omega C_3$ at $g_{mmax} =$