

Prediction Model

Analisis Risiko Kredit: Pemodelan dan Prediksi dengan Machine Learning

ID/X Partners - Data Scientist

Presented by Destya Rosa Mardiana

Daerah Istimewa Yogyakarta

destyarosa@gmail.com

Destya Rosa Mardiana

Destya Rosa Mardiana

Elektronika dan Instrumentasi, Universitas Gadjah Mada

🚀 Berpengalaman dalam Analisis Data, Machine Learning, dan IoT

SKILL:

- **1.** Machine Learning & AI: Autonomous driving , Computer Vision (CycleGAN, Pix2Pix, PSPNet)
- **2.** Pemrograman: Python (Pandas, Scikit-learn, TensorFlow, PyTorch)
- **3. IoT & Embedded Systems**: ESP32, BLE, sensor (Nitrogen, pH, Kelembaban, dll.)
- **4.** Leadership & Research: Asisten Praktikum, Project Engineer di AMX UAV, Ketua & Project Manager di Elins Research Club.

About Company

id/x partners didirikan pada tahun 2002 oleh ex-banker dan konsultan manajemen yang memiliki pengalaman luas dalam manajemen siklus dan proses kredit, pengembangan skoring, dan manajemen kinerja. Pengalaman gabungan kami telah melayani korporasi di seluruh wilayah Asia dan Australia serta di berbagai industri, khususnya layanan keuangan, telekomunikasi, manufaktur, dan ritel.

id/x partners menyediakan layanan konsultasi yang mengkhususkan diri dalam memanfaatkan solusi analitik data dan pengambilan keputusan (DAD) yang dikombinasikan dengan disiplin manajemen risiko dan pemasaran terintegrasi untuk membantu klien mengoptimalkan profitabilitas portofolio dan proses bisnis.

Layanan konsultasi yang komprehensif dan solusi teknologi yang ditawarkan oleh id/x partners menjadikannya sebagai penyedia layanan terpadu.

Project Portfolio

Sebagai seorang Data Scientist di sebuah perusahaan multifinance memiliki tugas dalam meningkatkan keakuratan dalam menilai dan mengelola risiko kredit, sehingga dapat mengoptimalkan keputusan bisnis dan mengurangi potensi kerugian. Pada portofolio ini berisi pengembangan model machine learning yang dapat memprediksi risiko kredit (credit risk) berdasarkan dataset yang disediakan, yang mencakup data pinjaman yang disetujui dan ditolak. Analisis data ini bertujuan untuk memprediksi risiko kredit berdasarkan pola perilaku dan riwayat peminjam guna mengidentifikasi tingkat risiko (tinggi atau rendah).

Link code <u>here!</u> GitHub Project explanation video here!

Business Understanding

Tingginya permintaan kredit membutuhkan analisis risiko yang akurat.

Risiko kredit yang tidak terkelola dapat menyebabkan kerugian finansial.

Data perilaku dan riwayat peminjam doapat menjadi indikator penting untuk memprediksi risiko.

Tujuan Analisis

Exploratory Data Analysis

Data Understanding

466285 Row dan 75 Feature

data.head() 0.0s								
Unnamed:	id	member_id	loan_amnt	funded_amnt	funded_amnt_inv	term	int_rate	instal
	1077501	1296599	5000	5000	4975.0	36 months	10.65	
	1077430	1314167	2500	2500	2500.0	60 months	15.27	
	1077175	1313524	2400	2400	2400.0	36 months	15.96	
	1076863	1277178	10000	10000	10000.0	36 months	13.49	
4	1075358	1311748	3000	3000	3000.0	60 months	12.69	

Analisis Missing Value

Feature "loan_status" akan menjadi fitur utama pada analisis ini

Data Distribution

Sebagian fitur memiliki distribusi yang cukup simetris dengan rentang nilai yang luas. Hal ini menunjukkan data tersebar secara normal dalam batas wajar. Ex:

loan_amnt

Funded_amnt

Sebagian fitur memiliki distribusi yang sangat skewed dengan banyak outlier di bagian atas. Ex :

installment Int_rate dti
annual_inc revol_bal

Analisis Interaksi Data

- Warna yang lebih gelap menunjukkan area dengan kepadatan data yang lebih tinggi.
- Mayoritas pinjaman berada pada kisaran \$5,000 -\$15,000.
 - Suku bunga sebagian besar berkisar antara **7% 18%**. Terdapat beberapa pinjaman dengan jumlah lebih dari **\$25,000**, tetapi relatif jarang.

Insight

Semakin tinggi jumlah pinjaman, suku bunga cenderung lebih stabil.

Pinjaman dengan jumlah kecil memiliki variasi suku bunga yang lebih luas.

Bisa digunakan untuk mengidentifikasi pola risiko kredit berdasarkan jumlah pinjaman.

Heatmap

Insight

Pada cuplikan tersebut, selain fitur in_rate, memiliki hubungan yang tinggi

total_pymnt, total_pymnt_inv, dan total_rec_prncp memiliki korelasi tinggi dengan loan_amnt, menandakan bahwa jumlah pinjaman berhubungan langsung dengan total pembayaran.

Installment dan in_rate memiliki korelasi positif dengan loan_amnt, hal ini dapat menjadi fitur penting

Fitur yang berkorelasi tinggi dapat dihilangkan untuk mencegah redundansi

Data Preprocessing

Pembersihan Data

Penghapusan feature dengan data 0 yang banyak

```
df = df.dropna(axis=1, how='all')

√ 1.8s
```

Penghapusan feature data yang tidak terlalu informatif untuk proses analisis

	mths_since_last_major_derog	98974 non-null	float64
	policy_code	466285 non-null	int64
	application_type	466285 non-null	object
54	annual_inc_joint	0 non-null	float64
	dti_joint	0 non-null	float64
56	verification_status_joint	0 non-null	float64
	acc_now_deling	466256 non-null	float64
58	tot_coll_amt	396009 non-null	float64
	tot_cur_bal	396009 non-null	float64
60	open_acc_6m	0 non-null	float64
	open_il_6m	0 non-null	float64
	open_il_12m	0 non-null	float64
	open_il_24m	0 non-null	float64
64	mths_since_rcnt_il	0 non-null	float64
	total_bal_il	0 non-null	float64
66	il_util	0 non-null	float64
	open_rv_12m	0 non-null	float64
68	open_rv_24m	0 non-null	float64
69	max_bal_bc	0 non-null	float64
70	all_util	0 non-null	float64
	total_rev_hi_lim	396009 non-null	float64
	inq_fi	0 non-null	float64
	total_cu_tl	0 non-null	float64
74	ing last 12m	0 non-null	float64

Converting Datetime

Beberapa fitur waktu diubah dalam bentuk numerik dengan hanya mengekstraksi **bulan.**

Issue_d

last_pymnt_d

next_pymnt_d

last_credit_pull_d

earliest_cr_line

	issue_d	earliest_cr_line	last_pymnt_d	next_pymnt_d	last_credit_pull_d
count	463536	463536	463172	236322	463496
unique	91	664	97	3	102
top	14-Oct	Oct-00	16-Jan	16-Feb	16-Jan
freq	38782	3650	179617	208390	326939

	issue_d_month	last_pymnt_d_month	next_pymnt_d_month	last_credit_pull_d_month	earliest_cr_line_month
		1.0	NaN	1.0	NaN
		4.0	NaN	9.0	Nat
		6.0	NaN	1.0	
		1.0	NaN	1.0	Na
		1.0	2.0	1.0	Na
466280		1.0	2.0	1.0	4
466281		12.0	NaN	1.0	Na
466282		1.0	2.0	12.0	12
466283		12.0	NaN	4.0	
466284		1.0	2.0	1.0	Na

Proses Labelling

Fitur **loan_status** dilakukan labelling untuk penentuan target prediksi. Pengklasifikasiannya dilakukan sebagai berikut :

Risk

- Charged Off
- Default
- Late (31-120 days)
- Late (16-30 days).

★ Kategori ini dianggap memiliki risiko kredit tinggi, karena keterlambatan atau kegagalan pembayaran.

Non-Risk

- · Fully Paid,
- Current
- · In Grace Period.

Kategori ini dianggap aman, karena peminjam menunjukkan kepatuhan dalam pembayaran.

Features Engineering

Ordinal Encoding

Mengubah kategori menjadi angka berdasarkan urutan tertentu.

- 1. term
- 2. grade
- 3. sub_grade
- 4. emp_length
- 5. verification_status

Label Encoding

Mengubah setiap kategori menjadi angka unik (tanpa mempertimbangkan urutan).

- 1. home_ownership
- 2. purpose
- 3. addr_state
- 4. initial_list_status

Pembuatan Fitur Baru

loan_to_income

credit_utilization

installment_to_income

high_risk_delinquency

revolving_utilization

Mengukur seberapa besar jumlah pinjaman dibandingkan dengan pendapatan tahunan peminjam.

Mengukur sejauh mana peminjam telah menggunakan batas kredit yang tersedia.

Mengukur proporsi cicilan bulanan terhadap pendapatan bulanan peminjam.

Menandai peminjaman yang memiliki lebih dari satu keterlambatan pembayaran dalam laporan kredit mereka

Mengukur seberapa besar revolving balance (saldo berjalan) terhadap batas kredit yang tersedia

Train Test Split dan Fitur Scaling

Train Test Split

Membagi dataset menjadi data test sebanyak 20% dan data train sebanyak 80%

Fitur Scaling

Fitur scaling yang digunakan adalah Standardization untuk menyamakan skala fitur agar model tidak terpengaruh oleh perbedaan unit dan rentang nilai.

Training Model

Prediction

Evaluation

Logistic Regression

c:\Users\ASUS A456UR\anaconda3\envs\tf_env\lib\site-packages\sk
warnings.warn(
Akurasi Logistic Regression pada testing: 0.6523600983733874

Ini menunjukkan bahwa Logistic Regression memiliki performa yang buruk pada data testing, jauh lebih rendah dari pada data training. Ini adalah indikasi kuat bahwa model ini **underfitting** atau **tidak cocok dengan data**.

Random Forest Classifier

Akurasi Random Forest pada testing: 0.9801095914052724

Performa yang baik dan stabil, dengan akurasi yang tinggi pada data testing. Perbedaan dengan akurasi data testing juga tidak jauh pula. Ini menunjukkan bahwa **Random Forest** tidak overfitting dan berjalan dengan **performa baik.**

Dengan nilai **0.98**, berarti model dapat memprediksi model dengan benar sebanyak **98%** dari semua data yang diuji.

Training Model Prediction Evaluation

LightGBM

Akurasi LightGBM pada testing: 0.994013461621435

Performa pada model LightGBM berada di akurasi 0.99 atau mendekati 1. Oleh karena itu perlu dilakukan pemeriksaan apakah model ini terjadi overfitting atau tidak, maka dilakukan evaluasi dengan cross-validation.

Akurasi LightGBM (CV): 0.9752294965690871

Setelah dilakukan evaluasi dengan cross-validation, akurasi berada di angka 0.97. Hal ini menunjukkan bahwa rata-rata model memiliki akurasi 97% ketika diuji dengan data yang berbeda dalam proses cross validation. Ini menunjukkan model memiliki performa yang konsisten dan dapat bekerja dengan baik.

CatBoost

```
==== CatBoost ====
Accuracy: 0.9933
Classification Report:
                          recall f1-score
              precision
                                              support
                  0.99
                             1.00
                                       1.00
                                                82423
                  1.00
                            0.94
                                      0.97
                                                10285
                                 Data Training
    601 9684]]
```

Akurasi CatBoost pada testing: 0.9933339086163007

Performa pada model **CatBoost** berada di akurasi **0.99** atau mendekati 1. Oleh karena itu perlu dilakukan pemeriksaan apakah model ini terjadi overfitting atau tidak, maka dilakukan evaluasi dengan **cross-validation**.

Akurasi CatBoost (CV): 0.9839343418408253

Setelah dilakukan evaluasi dengan **cross-validation**, akurasi berada di angka **0.98**. Hal ini menunjukkan bahwa rata-rata model memiliki akurasi **98%** ketika diuji dengan data yang berbeda dalam proses cross validation. Ini menunjukkan model memiliki performa yang **konsisten** dan dapat **bekerja dengan baik**.

Feature Importance

Dari keempat model tersebut memilki fitur importance yang berbeda-beda, tetapi ada pula yang sama seperti LightGBM dan CatBoost. Fitur-fitur tersebut dapat menjadi **pertimbangan yang optimal untuk menentukan keputusan apakah pengajuan pinjaman disetujui atau tidak**.

7. Conclusion

Berdasarkan analisis risiko kredit yang dilakukan, **model Random Forest**, **LightGBM dan CatBoost** menunjukkan performa terbaik dalam memprediksi risiko kredit berdasarkan **F1-Score**. **Feature importance** mengidentifikasi bahwa faktor utama seperti **recoveries**, **total_rec_prncp**, **dan revol_util** memiliki pengaruh signifikan dalam klasifikasi risiko. Implementasi model machine learning ini dapat **meningkatkan akurasi deteksi risiko**, membantu **mengurangi potensi kredit macet**, serta mendukung pengambilan keputusan yang lebih **efektif dan berbasis data** dalam evaluasi pinjaman.

Thank You

