

rootJS - Specification

PSE - Software Engineering Practice

C. Wolff, M. Früh, S. Rajgopal, C. Haas, J. Schwabe, T. Beffart | December 14, 2015

Outline/Gliederung

- Purpose
- Usage
- Product Environment
 - Software
 - Hardware
- Product data
- Product interface and functions
- Scenarios
 - Scenario 1
- **Use Cases**
 - Event Viewer
- System Model
 - Initialization
 - Call a feature

Product Environment Product data Product interface and functions

System Model Test Cases

Purpose

December 14, 2015

Usage

<ロ > ← □ > ← □ > ← □ > ← □ = ・ つ へ ○

December 14, 2015

ROOT

- process and visualize large amounts of scientific data (CERN)
- features a C++ interpreter (CLING) i.e. used for rapid and efficient prototyping
- persistency mechanism for C++ objects

Node.js

- open source runtime environment
 - develop server side web applications
 - act as a stand alone web server

Node.js

- open source runtime environment
 - develop server side web applications
 - act as a stand alone web server
- Google V8 engine to execute JavaScript code
- rootJS bindings realized as native Node.js module written in C++

Hardware

<ロ > ← □ > ← □ > ← □ > ← □ = ・ つ へ ○

Product data

Product interface and functions

Scenario 1

Event Viewer

Initialization

- Expose all
 - Global variables
 - Global functions
 - Classes

Initialization

- Expose all
 - Global variables
 - Global functions
 - Classes
- Each are bound to corresponding proxy methods
- An object which members are the exposed features is beeing passed to node

Initialization

- Expose all
 - Global variables
 - Global functions
 - Classes
- Each are bound to corresponding proxy methods
- An object which members are the exposed features is beeing passed to node

Names

- Functions and classes have the same name as in Root
- Global variables can be called using Get[Variable] and Set[Variable] methods

Call a feature

All features in node are mapped to a proxy method that will be called

Call a feature

- All features in node are mapped to a proxy method that will be called
- The proxy method will eventually call a root function and pass the result to our ObjectFactory

Call a feature

- All features in node are mapped to a proxy method that will be called
- The proxy method will eventually call a root function and pass the result to our ObjectFactory
- By looking at the object type an corresponding v8::Handle will be generated and returned to node
 - If the result is an object this will be done recursively

Test Cases

December 14, 2015

References I

- CERN. ROOT application domains. Dec. 2015. URL: https://root.cern.ch/application-domains.
- CERN. ROOT Shower Event Display. Dec. 2015. URL: https://root.cern.ch/rootshower00png.
- Node.js logo. Dec. 2015. URL: https://nodejs.org/static/images/logos/nodejs-light.eps.
- Danilo Piparo and Olivier Couet. ROOT Tutorial for Summer Students. Dec. 2015. URL:

https://indico.cern.ch/event/395198/attachments/791523/1084984/ROOT_Summer_Student_Tutorial_2015.pdf.

