TS

0、名词

缩写	全称	说明				
HLS	HTTP Live Streaming	HTTP实时流传输,参阅HLS(draft-pantos-http-live-streaming-20)				
TS	Transport Stream	传输流				
PES	Packetized Elementary Stream	包式基本流				
ES	Elementary Stream	基本流				
PSI	Program Specific Information	节目特定信息,PSI 由"对于 传输流的多路分解以及节目成功再现所必要的标准数据"组成,参阅ISO13818-2.4.4				
PAT	Program Association Table	节目相关表,是PSI的一种,参阅ISO13818-2.4.1				
PMT	Program Map Table	节目映射表,是PSI的一种,参阅ISO13818-2.4.1				
PID	packet identifier	包标识符,在传输流中用于标识一个节目的基本流的唯一整数值,如2.4.3 中所述。				
DTS	decoding time- stamp	解码时间戳				
PTS	presentation time- stamp	显示时间戳				
PCR	Program Clock Reference	节目时钟参考				
STC	System Time Clock	系统时钟				
T- STD	Transport system target decoder	传输系统目标解码器,用于确定 ITU-T H.222.0 ISO/IEC 13818-1 多路复用比特流语义的解码过程的虚拟参考模型				
AUD	Access Unit Delimiter	存取单元分隔符				

1、TS

TS文件

TS文件是流式文件,由多个TS包顺序排列组成,播放器从TS文件的任何位置开始下载数据,满足条件后都可以播放 TS文件表示一个节目的组织结构,有节目信息(PAT、PMT)、音视频信息(PES、H.264、AAC等)、时间轴信息(PCR、DTS、PTS等)

TS包(参阅2.4.3)

F.0.1 Transport Stream syntax

See Figure F.1.

Figure F.1 - Transport Stream syntax diagram

TS包为固定188字节,由header和payload组成,有两种:

- 1、带有一个PES包(参阅2.4.3.6)
- 2、带有一个PSI(如PAT、PMT)以及填充字节(参阅2.4.4)
- 3、空包

这是由payload_unit_start_indicator决定的, 1为PES或PSI, 0为空包(参阅2.4.3.3)

PS: 通常一个ts文件,第一个TS包带有PAT,第二个带有PMT,后面的带有PES

PES包

See Figure F.2.

Figure F.2 - PES packet syntax diagram

PES包由header和payload组成, payload为ES包,参阅2.4.3.6

ES包有两种: 音频包和视频包, 比如: H.264、aac等, 是由PES包的header中的stream_type决定的, 参阅Table 2-34, H.264=0x1b aac=0x0f

2、TS文件

接下来拿一个真实的TS文件解包开看一下

使用的工具有EasyICE和Elecard Stream Analyzer

首先来看一下,TS包的排列:

		SI/SI PID			_			_
ID	PID	Payload	PCR	PacketType	Frame	Continuity_Counter	Other	
0	0 (0x0)	1		PAT		0x0		
1	4097 (0x1001)	1		PMT		0x0		
2	256 (0x100)	1	0:0:0.104	H.264	IDR	0x1		
3	256 (0x100)	0		H.264		0x2		
4	256 (0x100)	0		H.264		0x3		
5	256 (0x100)	0		H.264		0x4		
6	256 (0x100)	0		H.264		0x5		
7	256 (0x100)	0		H.264		0x6		
8	256 (0x100)	0		H.264		0x7		
9	256 (0x100)	0		H.264		0x8		
10	256 (0x100)	0		H.264		0x9		
11	256 (0x100)	0		H.264		0xa		
12	256 (0x100)	0		H.264		0xb		
13	256 (0x100)	0		H.264		0xc		
14	256 (0x100)	0		H.264		0xd		
15	256 (0x100)	0		H.264		0xe		
16	256 (0x100)	0		H.264		0xf		
17	256 (0x100)	0		H.264		0x0		
18	256 (0x100)	0		H.264		0x1		
19	256 (0x100)	0		H.264		0x2		
20	256 (0x100)	0		H.264		0x3		
21	256 (0x100)	0		H.264		0x4		

可以看到,首先是PAT和PMT的包,接下来才是音视频的包

TS包payload的种类:

PID

包标识,表示TS包的ID TS包payload有PAT、PMT、音频包、视频包 音视频包有两种,一种有PES包,一种是空包,音视频数据存储在PES包

PAT包(参阅2.4.4.3-7)

PAT包的PID=0x0
PAT(节目相关表)含有program_number(节目编号)和PMT_PID(PMT的TS包头中的PID)
下图中,program_number=0x0001,PMT_PID=0x1001

PMT包(参阅2.4.4.8-9)

PMT(节目映射表)提供节目编号与组成它们的节目元之间的映射 PMT包的PID为上面的PMT_PID PMT中有很多有用的信息,比如: pcr_pid、stream_type、elementary_PID

PES包(参阅2.4.3.6)

```
PAT、PMT后面的TS包有两种,一种带音视频数据的PES包,另一种是空包
```

后面是一些空包以及P帧的PES包,接下来是AAC的PES包以及AAC的空包,然后是音视频包穿插进行

2、视频包

```
0 \times 000000000
               Transport Packet { PID = 0x0, Payload = Yes (184), Counter
0x00000005PAT
                                                                             ×
               Program Association Table
0 \times 0000000BC
                Transport Packet { PID = 0x1001, Payload = Yes (184), Count
0x000000C1
               Program Map Table
                                                                             ×
                                                                             ×
0 \times 00000178
               Transport Packet { PID = 0x100, Payload = Yes (176), Count
0 \times 00000184
               PES Packet { stream id = 0xE0 (video stream) }
                                                                             ×
0 \times 00000192
               H264 AUD
                                                                             ×
0x00000198|DRH264 SEI {User data unregistered}
                                                                             ×
0x000001B9
               H264 Sequence Parameter Set
                                                                             ×
0x000001C7
               H264 Picture Parameter Set
                                                                             ×
0x000001CF
               H264 I slice #0 { frame num = 0, pic order cnt lsb = 0
                                                                             ×
0 \times 000000234
               Transport Packet { PID = 0x100, Payload = Yes (184), Counted
0x000002F0
               Transport Packet { PID = 0x100, Payload = Yes (184), Counte
0x000003AC
               Transport Packet { PID = 0x100, Payload = Yes (184), Counter
0 \times 00000468
               Transport Packet { PID = 0x100, Payload = Yes (184), Counter
0 \times 00000524
               Transport Packet { PID = 0x100, Payload = Yes (184), Counted
0x000005E0
               Transport Packet { PID = 0x100, Payload = Yes (184), Counte
0x0000069C
               Transport Packet { PID = 0x100, Payload = Yes (184), Counter
0 \times 000000758
               Transport Packet { PID = 0x100, Payload = Yes (184), Counted
0 \times 000000814
               Transport Packet { PID = 0x100, Payload = Yes (184), Counter
0x000008D0
               Transport Packet { PID = 0x100, Payload = Yes (184), Counter
0x0000098C
               Transport Packet { PID = 0x100, Payload = Yes (184), Counted
0x00000A48
               Transport Packet { PID = 0x100, Payload = Yes (184), Counted
0x00000B04
               Transport Packet { PID = 0x100, Payload = Yes (184), Counter
0x00000BC0
               Transport Packet { PID = 0x100, Payload = Yes (184), Counter
0x00000C7C
               Transport Packet { PID = 0x100, Payload = Yes (184), Counted
0x00000D38
               Transport Packet { PID = 0x100, Payload = Yes (184), Counter
0x00000DF4
               Transport Packet { PID = 0x100, Payload = Yes (184), Count
```

第一个H.264的包是IDR帧,IDR属于I帧,比普通I帧前面多PPS(图像参数集)和SPS(序列参数集),这两个不能少

图中有很多信息:

上面标识IDR,左下角有PCR、PTS,右边有TS包头、PES包头中的一些信息

接下来是P帧

所有的帧都位于PES的payload中,并且都会有AUD作为分割符,少数播放器必须依赖AUD才能播放

3、音频包

4、同步

Mpeg-2规定的STC频率为27MHz,传输流中的PCR,PTS/DTS等均为对该STC的采样值。解码端捕获PCR,恢复出本地的STC,作为音视频同步控制的基准,并依据PTS(DTS)时间标签来安排解码和显示时间表,使音视频分别同步于STC,以实现音视频之间的同步。标准规定在原始音频和视频流中,PTS的间隔不能超过0.7s,而出现在TS包头的PCR间隔不能超过0.1s。

PCR

PMT中的PCR_PID表示该PID值的TS包的adaptation_field(自适应段)中存储PCR

比如,上面PMT那张图中为0x0100(256),说明在PID为0x0100并且含有adaptation_field的包中才会有PCR,而这个恰好是含有IDR帧的TS包,如下图

```
0 \times 000000000
               Transport Packet { PID = 0x0, Payload = Yes (184), Counter
0 \times 000000005
               Program Association Table
0x000000BC
               Transport Packet { PID = 0x1001, Payload = Yes (184), Count
0x000000C1
               Program Map Table
0 \times 00000178
               Transport Packet { PID = 0x100, Payload = Yes (176), Counte
                   Adaptation Field ():
                       adaptation field length = 7
                       discontinuity indicator = 0
                       random access indicator = 1
                       elementary stream priority indicator = 0
                       PCR flag = 1
                       OPCR flag = 0
                       splicing point flag = 0
                       transport private data flag = 0
                       adaptation field extension flag = 0
                            PCR = 0: 0: 104 ( 2 808 000)
                            program clock reference base = 9 360
                           program clock reference extension = 0
0 \times 00000184
               PES Packet { stream id = 0xE0 (video stream)}
0 \times 00000192
               H264 AUD
                                                                             ×
0 \times 00000198
               H264 SEI {User data unregistered}
                                                                             ×
0x000001B9
               H264 Sequence Parameter Set
0x000001C7
               H264 Picture Parameter Set
0x000001CF
                                                                             ×
               H264 I slice #0 { frame num = 0, pic order cnt lsb = 0
0 \times 000000234
               Transport Packet { PID = 0x100, Payload = Yes (184), Counte
0x000002F0
               Transport Packet { PID = 0x100, Payload = Yes (184), Counte
0x000003AC
               Transport Packet { PID = 0x100, Payload = Yes (184), Count
```

```
输入到T-STD解码器的第i个字节的PCR值:
PCR(i) = PCR_base(i)*300 + PCR_ext(i)
i: 包含PCR_base域的最后一个比特的字节号.

PCR_base(i) = ((system_clock_frequency * t(i)) / 300) % 2^33 = ((27 000 000 * t(i)) / 300 % 2^33 = 90 000 * t(i) % 8589934592

PCR_ext(i) = ((system_clock_frequency * t(i)) / 1 ) % 300 = ((27 000 000 * t(i)) % 300 t(i): 字节i的编码时间.
```

例如:

```
时间"03:02:29.012"的PCR计算如下:
03:02:29.012 = ((3 * 60) + 2) * 60 + 29.012 = 10949.012s

PCR_base = ((27 000 000 * 10949.012) / 300) % 2^33 = 98 541 080

PCR_ext = ((27 000 000 * 10949.012) / 1 ) % 300 = 0

PCR = 98 541 080 * 300 + 0 = 295 623 324 000
```

PTS, DTS

```
0 \times 00000178
               Transport Packet { PID = 0x100, Payload = Yes (176),
                                                                       Counter
0 \times 00000184
               PES Packet { stream id = 0xE0 (video stream)}
                   packet length = 5870
                   PES scrambling control = 0
                   PES priority = 0
                   data alignment indicator = 0
                   copyright = 0
                   original or copy = 0
                   PTS DTS flags = 2
                   ESCR flag = 0
                   ES rate flag = 0
                   DSM trick mode flag = 0
                   additional copy info flag = 0
                   PES CRC flag = 0
                   PES extension flag = 0
                   PES header data length = 5
                        PTS = 0: 0: 104 ( 9 360)
0 \times 00000192
0 \times 00000198
               H264 SEI {User data unregistered}
0x000001B9
               H264 Sequence Parameter Set
0x000001C7
               H264 Picture Parameter Set
0x000001CF
               H264 I slice #0 { frame num = 0, pic order cnt lsb = 0
0 \times 000000234
               Transport Packet { PID = 0x100, Payload = Yes (184), Count
0x000002F0
               Transport Packet { PID = 0x100, Payload = Yes (184), Counte
0x000003AC
               Transport Packet { PID = 0x100, Payload = Yes (184), Counte
0 \times 000000468
               Transport Packet { PID = 0x100, Payload = Yes (184), Counte
               Transport Packet { PID = 0x100, Payload = Yes (184), Count
0 \times 00000524
```

```
PTS和DTS存在于PES包头,由PTS_DTS_flags决定
图中PTS_DTS_flags=0x10(2)表示只有PTS(参阅2.4.3.6)
PTS和DTS都是一个33bit的值
```

总结

```
PCR用于构建本地时钟,PTS、DTS相当于时间轴上的增量
PCR存在于包含IDR帧的TS包头
PTS、DTS存在于PES包头
ES包就是音视频数据
```

播放流程

- 1、获取PAT、PMT, 解出PCR_PID(256)、Elementary_PID(H.264=256 AAC=257)
- 2、从每个PID=256并且含有IDR帧的TS包中解出PCR,用于构建本地时钟,从PES包中解出DTS、PTS用于解码和显示的时间值
- 3、从PID=256的TS包解码H.264数据用于显示图像,从PID=257的TS包中解码AAC用于播放声音