PATENT 09/162,648 Docket: SEQ-2

CLAIM AMENDMENTS

1 to 9. CANCELLED

- 10. (Previously presented) The method of claim 23, further comprising removing any residual tumor at or around the site of the second cell population at a time subsequent to when the second cell population was implanted.
- 11. (Previously presented) The method of claim 23, wherein both the first and second cell populations have one or more of the following features:
 - i) contain between about 2×10^9 and 2×10^{10} cultured peripheral blood mononuclear cells originating from the donor and between about 1×10^9 and 2×10^9 cultured peripheral blood mononuclear cells originating from the patient or from a second donor;
 - ii) are obtained by a process in which donor lymphocytes are alloactivated by coculturing ex vivo with stimulator leukocytes for a period of about 48 to 72 hours; or
 - iii) are obtained by a process in which donor lymphocytes are alloactivated by coculturing ex vivo with stimulator leukocytes and harvested at about the time of initial alloactivation, measurable by acridine orange or CD89 assay.

12 to 19. CANCELLED

20. (Currently amended) A—pharmaceutical composition comprising alloactivated lymphocytes allogenels to laukocytes in a cancer patient packaged with information

A product in which the following components are packaged together:

- a pharmacautical composition comprising alloactivated lymphocytes allogeneic to leukocytes in a cancer patient; and
- · written information for the treatment of the patient according to the method of claim 23.

21 to 22. CANCELLED

PATENT 09/162,648 Docket: SEQ-2

23. (Previously presented) An improvement in the method of treating a human patient having a tumor by implanting at or around the site of a solid tumor in the patient a cell population comprising alloactivated lymphocytes that are allogeneic to the patient;

wherein the implanting of the alloactivated lymphocytes results in the patient generating a therapeutic response against tumor growth;

the improvement comprising implanting at or around the site of a solid tumor in the patient a second cell population containing alloactivated lymphocytes that are allogeneic to the patient between 1 and 8 weeks after the implanting of the first cell population.

- 24. (Previously presented) The improved method of claim 23, which elicits an inflammatory response against the tumor.
- 25. (Previously presented) The improved method of claim 23, which elicits an immune response against the tumor.
- 26. (Previously presented) The improved method of claim 23, wherein the alloactivated lymphocytes in at least one of the cell populations are alloactivated against leukocytes of the human patient.
- 27. (Previously presented) The improved method of claim 23, wherein the alloactivated lymphocytes in at least one of the cell populations are alloactivated against leukocytes of a third-party donor different from the patient or the donor of the lymphocytes.
- 28. (Previously presented) The improved method of claim 23, wherein treatment according to the method has at least one of the following effects in at least 30% of treated subjects:
 - a) substantial regression of the tumor in size;
 - b) lack of recurrence of a tumor after removal; or
 - c) decrease in rate of formation of metastasis.
- 29. (Previously presented) The improved method of claim 23, wherein the tumor is a cancer is selected from melanoma, pancreatic cancer, liver cancer, colon cancer, prostate cancer, and breast cancer.
- 30. (Previously presented) The improved method of claim 23, wherein the first cell population stimulates a response in the patient against the tumor before the implanting of the second cell population.

PATENT 09/162,648 Docket: SEQ-2

- 31. (Previously presented) The improved method of claim 23, wherein treatment according to the method causes lack of recurrence of a tumor after removal.
- 32. (Previously presented) The method of claim 23, wherein the first and second cell populations are implanted at or around the site of the same tumor in the patient.