La Demografía del Parentesco

Escuela: Familia, parentesco y hogares en América Latina y el Caribe

Diego Alburez Gutiérrez

Kinship Inequalities Research Group Instituto Max Planck de Investigación Demográfica alburezgutierrez@demogr.mpg.de

XI Congreso ALAP, 09 Diciembre 2024, Bogotá, Colombia

MAX PLANCK INSTITUTE MAX-PLANCK-INSTITUT
FOR DEMOGRAPHIC FÜR DEMOGRAFISCHE
RESEARCH FORSCHUNG

El equipo

Amanda Martins MPIDR

Liliana P. Calderón-Bernal **MPIDR**

Iván Williams Universidad de Buenos Aires

Diego Alburez

Introducciones (5min)

Busque a alguien que no conozca y pregunte:

- 1 Su nombre
- 2 Dónde estudia/trabaja
- 3 Comida favorita
- 4 ¿Qué es la demografía del parentesco?

Estructura del día

```
09:00 - 09:20 Introducciones
09:20 - 10:00 La demografía del parentesco (Diego)
10:00 - 10:30 Preparación técnica (Liliana y Amanda)
10:30 - 11:00 Café
11:00 - 11:45 Simulaciones en rsocsim I (Liliana)
11:45 - 12:30 Simulaciones en rsoscim II (Liliana)
12:30 - 14:00 Almuerzo
14:00 - 14:45 Modelos en DemoKin I (Ivan y Amanda)
14:45 - 15:30 Modelos en DemoKin II (Ivan y Amanda)
15:30 - 16:00 Café
16:00 - 17:00 Ejercicio grupal usando DemoKin
17:00 - 17:30 Conclusiones y cierre (Diego)
```

Definiciones $(1)^1$

Parentesco

Conjunto de relaciones sociales que unen a individuos a través vínculos de afinidad biológica, legal o normativa que, en agregado, producen sistemas familiares.

Demografía del parentesco

El estudio de las redes familiares, sus estructuras y dinámicas desde una perspectiva demográfica y utilizando métodos demográficos.

¹Alburez-Gutierrez, D., Barban, N., Caswell, H., Kolk, M., Margolis, R., Smith-Greenaway, E., Song, X., Verdery, A., & Zagheni, E. (2022).Kinship, Demography, and Inequality: Review and Key Areas for Future Development. *Unpublished manuscript*

¿Por qué estudiar parentesco en demografía?

- Rápido crecimiento
- 2 avances teóricos, metodológicos y empíricos
- 3 oportunidad para desarrollar la disciplina demográfica

¿Las familias serán cada vez más pequeñas? El alarmante estudio de un guatemalteco

El parentesco es un universal demográfico

- 1 Todo humano nace
- 2 Todo humano muere
- 3 Todo humano está subsumido en estructuras de parentesco²
- 4 Ninguna estructura familiar es universal o estable

 $^{^2}$ Caswell, H. (2019).The formal demography of kinship: A matrix formulation. Demographic Research, 41, 679–712

Consideremos un bebé nacido en Brazil en 1950...

- 1 ¿Qué edad tenían, en promedio, sus abuelos cuando nació?
- ¿Cuántos hijos vivos tendría en su 70 cumpleaños?
- 3 ¿Cuántos nietos tendría?

Modelos y simulaciones de parentesco

Permiten inferir estructura de parentesco en una población usando únicamente:

- tasas de mortalidad y fecundidad
- estructura poblacional

Distinguimos entre:

- Modelos demográficos (DemoKin)
- 2 Microsimulaciones (rsocsim)

Paquetería para este taller

The R package 'DemoKin' provides an accessible interface for computing expected kinship structures from demographic rates under a range of scenarios and assumptions using models from formal demography.

FOR MORE INFORMATION, SEE:

Williams, I.: Alburez-Gutierrez, D.: Song, X.: and H. Caswell. (2021) DemoKin: An R package to implement demographic matrix kinship models.

github.com/IvanWilli/DemoKin

The R package rsocsim introduces a platform-independent implementation of the SOCSIM microsimulation software used to produce synthetic populations with plausible kinship structures using demographic rates as input.

FOR MORE INFORMATION, SEE:

Theile, T.: Alburez-Gutierrez, D.: Snyder, M.: Calderón-Bernal L. P.; and E. Zagheni. (2022). rsocsim: An R package to run demographic microsimulations using SOCSIM, kinship models.

github.com/MPIDR/rsocsim

I. Microsimulaciones

Lógica general de las microsimulaciones demográficas

- Modelar el comportamiento demográfico a nivel individual utilizando un conjunto de reglas.
- 2 Generar datos a nivel individual.
- Insumos simples.
- 4 Diferentes alternativas:
 - SOCSIM
 - CAMSIM
 - R/python
 - Modelado basado en agentes

Microsimulaciones demográficas con SOCSIM

- Una plataforma de microsimulación estocástica, desarrollada en los años 70 en la UC Berkeley.
- 2 Comienza con una población inicial.
- 3 Cada individuo simulado experimenta tasas específicas cada mes (por ejemplo, mortalidad, fecundidad, matrimonio).
- 4 Rastrea los vínculos de parentesco para crear una genealogía completa.
- **6** Manual de usuario de SOCSIM de UC Berkeley³

 $^{^3}$ Mason, C. (2016). SOCSIM Oversimplified. UC Berkeley. https://lab.demog.berkeley.edu/socsim/CurrentDocs/socsimOversimplified.pdf $\square \times 4 \bigcirc \times 4 \bigcirc$

Representación esquemática de una simulación

Datos de entrada para la microsimulación en SOCSIM

- 1 Proporcionados por el usuario
 - Población inicial
 - 2 Tasas de fertilidad específicas por edad
 - 3 Tasas de mortalidad específicas por edad
- Parámetros opcionales o valores predeterminados disponibles
 - 1 Tasas de transición matrimonial
 - Modelo para el mercado matrimonial
 - 3 Otras tasas de transición
 - Otros parámetros (herencia de fertilidad, etc.)

¿Cómo funciona SOCSIM? (1)

- 1 Cada persona es un objeto individual.
- 2 La población es una lista larga de personas.
- 3 Cuando ocurre un nacimiento, se crea una nueva persona y se añade a esa lista.
- 4 Al inicio de la simulación (o después de un evento), cada persona recibe un "próximo evento".

¿Cómo funciona SOCSIM? (2)

- **5** Los eventos pueden ser matrimonio, divorcio, nacimiento, muerte, etc.
- 6 El tiempo avanza en pasos discretos.
- The cada paso de tiempo, todos los eventos programados para ese momento "ocurren".
- Una simulación puede consistir en uno o más "segmentos", y cada segmento puede tener diferentes tasas.
- Al final de la simulación, SOCSIM escribe la población en archivos de salida.

Atributos de los individuos simulados (1)

Cada persona en SOCSIM tiene los siguientes parámetros:

- **1 estado**: vivo/muerto.
- 2 sexo (femenino o masculino).
- **3 estado civil** (soltero, casado, divorciado, en convivencia, viudo).
- 4 paridad (número total de hijos nacidos de una mujer).

Eventos posibles

- 1 nacimiento: creación de una nueva persona con edad 0 y parámetros que son aleatorios (sexo) o derivados (estado civil = soltero al nacer, . . .).
- 2 muerte: según las tasas de mortalidad. Estas son específicas a los parámetros de las personas individuales (edad, género, grupo, paridad, estado civil).
- **3 matrimonio**: el evento más complicado, porque involucra a dos personas. Tres sistemas de mercado matrimonial:
 - 1 Tasas de matrimonio tanto para hombres como para mujeres.
 - 2 Tasas de matrimonio solo para mujeres; los hombres simplemente son seleccionados.
 - Sin tasas de matrimonio; el matrimonio ocurre justo antes de un nacimiento de una madre soltera.
- 4 divorcio.

Lo que nos da SOCSIM

```
head(opop)
     pid fem group nev dob mom pop nesibm nesibp lborn marid mstat
                                                                       dod
## 1
                    65 1009
                                                 0 26579
                                                          1005
                                                                    4 1593 1.767931
## 2
                    65 1179
                                                              0
                                                                    1 2062 0.000000
## 3
                    65
                        956
                                                 0 26205
                                                           625
                                                                    4 1795 0.706973
## 4
                    65 641
                                                                    1 1349 0.000000
## 5
                    65 1015
                                                 0 25201
                                                           2810
                                                                    3 1938 0.000000
## 6
                    65
                       797
                                                 0 22412
                                                            526
                                                                    3 1555 1.581888
```

head(omar)

```
wpid hpid dstart dend rend wprior hprior
##
     mid
##
          4473 11649
                       1201 1810
                                     3
                                                   0
##
          3418 1865
                       1201 1358
          3569 11595
                       1201 1660
                                     3
##
## 4
       4 17771 3043
                       1201 1451
          5388 17305
##
  5
                       1201 1765
## 6
       6 11717
                  33
                       1201 1402
                                                   0
```

Ejemplo: La 'generación sánguche'4

Pregunta de investigación

Es la 'generación sánguche' más prevalente en las poblaciones envejecidas del norte global?

- 1 Métodos: microsimulación demográfica en SOCSIM
- 2 Datos: 2019 UNWPP (estimaciones y proyecciones)
- Resultados: distribución desigual de ensanguchamiento demográfico

⁴Alburez-Gutierrez, D., Mason, C., & Zagheni, E. (2021). The "Sandwich Generation" Revisited: Global Demographic Drivers of Care Time Demands. *Population and Development Review*, 47(4), 997–1023.

Ensanguchamiento demográfico⁵

Una persona está ensanguchada si tiene al mismo tiempo:

- 1 + hijx menor de 15 años, y
- 2 1+ p/madre/o suegrx que morirá en los próximos 5 años

https://doi.org/10.1111/padr.12436

⁵Alburez-Gutierrez, D., Mason, C., & Zagheni, E. (2021). The "Sandwich Generation" Revisited: Global Demographic Drivers of Care Time Demands. *Population and Development Review*, 47(4), 997–1023.

Generación sánguche alrededor del mundo⁶

⁶Alburez-Gutierrez, D., Mason, C., & Zagheni, E. (2021). The "Sandwich Generation" Revisited: Global Demographic Drivers of Care Time Demands. *Population and Development Review, 47*(4), 997–1023. https://doi.org/10.1111/padr.12436

II. Modelos matemáticos de parentesco

Modelos matemáticos de parentesco

- Los familiares del Focal constituyen una población.
- 2 Pueden modelarse utilizando métodos tradicionales de proyección.
- 3 Las operaciones matriciales proporcionan una implementación eficiente.

Modelos matemáticos permiten estimar...

- Número promedio de parientes
- Distribución de edades de parientes
- Desde el punto de vista de un miembro promedio ('Focal')

Focal: un miembro promedio de la población

Árboles de parentesco

Implementación⁷

Los modelos tienen la forma:

$$\underbrace{\mathbf{k}(x+1)}_{\text{estructura etaria de parientes}} = \underbrace{\mathbf{U}\,\mathbf{k}(x)}_{\text{envejecimiento y supervivencia}} + \underbrace{\left\{ \begin{matrix} \mathbf{0} \\ \mathbf{F}\,\mathbf{k}^*(x) \end{matrix} \right.}_{\text{nuevos parientes}}.$$

donde:

- ▶ U es una matriz con probabilidades de supervivencia en la subdiagonal
- ▶ **F** una matriz con tasas de fecundidad en la primea fila

⁷Caswell, H. (2019).The formal demography of kinship: A matrix formulation. *Demographic Research*, 41, 679–712

Distribución etaria de parientes

Número esperado de parientes

Ejemplo: Estimaciones de duelo derivado del CAC en Colombia⁸

Pregunta de investigación

¿Cuántas personas en Colombia experimentaron una o múltiples pérdidas debido al CAC en algún momento de su vida?

- 1 Método: modelos demográficos de parentesco
- 2 Datos: DANE, UNWPP y Comisión de la Verdad
- 3 Resultados: En el 2018, cerca del 42% de la población colombiana había perdido algún familiar en el CAC

 $^{^8}$ Acosta, E., Alburez-Gutierrez, D., Gargiulo, M., & Torres, C. (2024).The ripples of loss: Estimating the bereaved population due to conflict deaths and enforced disappearances in Colombia.

Homicidios y desapariciones durante el CAC

Figura 1. Número anual de muertes en conflicto y desapariciones forzadas (línea negra) y número anual de pérdidas de familiares según el tipo de parentesco (áreas coloreadas).

Personas en duelo por el CAC, Colombia 2018

Figura 2. Número de personas en duelo en 2018, según la categoría del familiar perdido y el tipo de violación (homicidio o desaparición forzada).

Preguntas?

Estructura del día

```
09:00 - 09:20 Introducciones
09:20 - 10:00 La demografía del parentesco (Diego)
10:00 - 10:30 Preparación técnica (Liliana y Amanda)
10:30 - 11:00 Café
11:00 - 11:45 Simulaciones en rsocsim I (Liliana)
11:45 - 12:30 Simulaciones en rsoscim II (Liliana)
12:30 - 14:00 Almuerzo
14:00 - 14:45 Modelos en DemoKin I (Ivan y Amanda)
14:45 - 15:30 Modelos en DemoKin II (Ivan y Amanda)
15:30 - 16:00 Café
16:00 - 17:00 Ejercicio grupal usando DemoKin
17:00 - 17:30 Conclusiones y cierre (Diego)
```