Representation theory for Iwahori-Hecke algebras and Schur algebras of classical type

Ziqing Xiang

University of Georgia

Mar. 18, 2019

Part I: Support varieties for Iwahori-Hecke algebras

Based on joint work with Daniel K. Nakanao.

Coxeter group

k: an algebraically closed field of characteristic 0.

(W, S): a Coxeter system.

Example 1

Let $G := Aut(\{\pm 1, ..., \pm d\}).$

- 1. Type A: $W^{A} \subset G$. $s_{i} := (i, i+1)(-i, -i-1)$.
- 2. Type B: $W^{B} \subset G$. $s_{0}^{B} := (1, -1)$.
- 3. Type D: $W^{\mathrm{D}} \subset G$. $s_0^{\mathrm{D}} := (1,-1)(2,-2) = s_0^{\mathrm{B}} s_1 s_0^{\mathrm{B}}$.

$$W^{A} \subseteq W^{D} \subseteq W^{B} \subseteq G$$
.

Iwahori-Hecke algebra

 $\mathbf{q} := (q_s)_{s \in S}$ such that $q_s = q_t$ if s and t are conjugate.

Definition 2

The *Iwahori-Hecke algebra* of (W, S) with parameter \mathbf{q} , denoted by $\mathcal{H}(W)$, is the free k-module with basis

$$\{T_w: w \in W\}$$

and with multiplication defined by

$$T_wT_s := egin{cases} T_{ws}, & ext{if } \ell(ws) > \ell(w), \ q_sT_{ws} + (q_s-1)T_w, & ext{otherwise,} \end{cases}$$

for $w \in W$ and $s \in S$, where $\ell: W \to \mathbb{N}$ is the length function of (W,S).

Two simple modules

For $w \in W$, let

$$q_w := q_{s_1} \dots q_{s_{\ell(w)}}$$

for a reduced expression $w = s_1 \dots s_{\ell(w)}$.

The trivial module k, where T_w acts as q_w .

The alternating module sgn, where T_w acts as $(-1)^{\ell(w)}$.

Cohomology

M: a $\mathcal{H}(W)$ -module.

Definition 3

The cohomology of $\mathcal{H}(\mathit{W})$ with coefficient M is

$$\mathrm{H}^{\bullet}(\mathcal{H}(W), M) := \mathrm{Ext}_{\mathcal{H}(W)}(k, M).$$

The cohomology ring of $\mathcal{H}(W)$ is

$$H^{\bullet}(\mathcal{H}(W), k) := \operatorname{Ext}_{\mathcal{H}(W)}(k, k).$$

Yoneda product gives

$$\operatorname{Ext}_{\mathcal{H}(W)}^{\bullet}(k,k) \times \operatorname{Ext}_{\mathcal{H}(W)}^{\bullet}(k,k) \to \operatorname{Ext}_{\mathcal{H}(W)}^{\bullet}(k,k),$$

and

$$\operatorname{Ext}^{\bullet}_{\mathcal{H}(W)}(k,k) \times \operatorname{Ext}^{\bullet}_{\mathcal{H}(W)}(k,M) \to \operatorname{Ext}^{\bullet}_{\mathcal{H}(W)}(k,M).$$

Let
$$R_{\lambda} := H^{\bullet}(\mathcal{H}(\Sigma_{\lambda}), k)$$
, and $R_d := R_{(d)}$.

Theorem 4

Suppose that q is an lth root of unity for l > 2.

1. $R_l \cong k[x] \otimes \Lambda[y]$ with $\deg x = 2l - 2$ and $\deg y = 2l - 3$.

Let
$$R_{\lambda} := H^{\bullet}(\mathcal{H}(\Sigma_{\lambda}), k)$$
, and $R_d := R_{(d)}$.

Theorem 4

Suppose that q is an lth root of unity for l > 2.

- 1. $R_l \cong k[x] \otimes \Lambda[y]$ with $\deg x = 2l 2$ and $\deg y = 2l 3$.
- 2. $R_{(l^a)} \cong k[x_1,\ldots,x_a] \otimes \Lambda[y_1,\ldots,y_a].$

Let
$$R_{\lambda} := H^{\bullet}(\mathcal{H}(\Sigma_{\lambda}), k)$$
, and $R_d := R_{(d)}$.

Theorem 4

Suppose that q is an lth root of unity for l > 2.

- 1. $R_l \cong k[x] \otimes \Lambda[y]$ with $\deg x = 2l 2$ and $\deg y = 2l 3$.
- 2. $R_{(l^a)} \cong k[x_1,\ldots,x_a] \otimes \Lambda[y_1,\ldots,y_a].$
- 3. (Benson-Erdmann-Mikaelian '10) Let $a:=\lfloor d/l \rfloor$.

$$R_d \cong R_{la} \cong R_{(l^a)}^{\Sigma_a} \cong k[x_1, \dots, x_a]^{\Sigma_a} \otimes \Lambda[y_1, \dots, y_a]^{\Sigma_a}.$$

Let
$$R_{\lambda} := H^{\bullet}(\mathcal{H}(\Sigma_{\lambda}), k)$$
, and $R_d := R_{(d)}$.

Theorem 4

Suppose that q is an lth root of unity for l > 2.

- 1. $R_l \cong k[x] \otimes \Lambda[y]$ with $\deg x = 2l 2$ and $\deg y = 2l 3$.
- 2. $R_{(l^a)} \cong k[x_1,\ldots,x_a] \otimes \Lambda[y_1,\ldots,y_a].$
- 3. (Benson-Erdmann-Mikaelian '10) Let $a:=\lfloor d/l \rfloor$.

$$R_d \cong R_{la} \cong R_{(l^a)}^{\Sigma_a} \cong k[x_1, \dots, x_a]^{\Sigma_a} \otimes \Lambda[y_1, \dots, y_a]^{\Sigma_a}.$$

4. (Nakano-X. '18) $H^{\bullet}(\mathcal{H}(\Sigma_d), M)$ is finitely generated over $H^{\bullet}(\mathcal{H}(\Sigma_d), k)$.

Let
$$R_{\lambda} := H^{\bullet}(\mathcal{H}(\Sigma_{\lambda}), k)$$
, and $R_d := R_{(d)}$.

Theorem 4

Suppose that q is an lth root of unity for l > 2.

- 1. $R_l \cong k[x] \otimes \Lambda[y]$ with $\deg x = 2l 2$ and $\deg y = 2l 3$.
- 2. $R_{(l^a)} \cong k[x_1,\ldots,x_a] \otimes \Lambda[y_1,\ldots,y_a].$
- 3. (Benson-Erdmann-Mikaelian '10) Let $a:=\lfloor d/l \rfloor$.

$$R_d \cong R_{la} \cong R_{(l^a)}^{\Sigma_a} \cong k[x_1, \dots, x_a]^{\Sigma_a} \otimes \Lambda[y_1, \dots, y_a]^{\Sigma_a}.$$

4. (Nakano-X. '18) $H^{\bullet}(\mathcal{H}(\Sigma_d), M)$ is finitely generated over $H^{\bullet}(\mathcal{H}(\Sigma_d), k)$.

Let $R_{\lambda} := H^{\bullet}(\mathcal{H}(\Sigma_{\lambda}), k)$, and $R_d := R_{(d)}$.

Theorem 4

Suppose that q is an lth root of unity for l > 2.

- 1. $R_l \cong k[x] \otimes \Lambda[y]$ with $\deg x = 2l 2$ and $\deg y = 2l 3$.
- 2. $R_{(l^a)} \cong k[x_1,\ldots,x_a] \otimes \Lambda[y_1,\ldots,y_a].$
- 3. (Benson-Erdmann-Mikaelian '10) Let $a:=\lfloor d/l \rfloor$.

$$R_d \cong R_{la} \cong R_{(l^a)}^{\Sigma_a} \cong k[x_1, \dots, x_a]^{\Sigma_a} \otimes \Lambda[y_1, \dots, y_a]^{\Sigma_a}.$$

4. (Nakano-X. '18) $H^{\bullet}(\mathcal{H}(\Sigma_d), M)$ is finitely generated over $H^{\bullet}(\mathcal{H}(\Sigma_d), k)$.

Let
$$\widetilde{R}_d := k[x_1,\ldots,x_a]^{\Sigma_a}$$
. Then,

$$\max \operatorname{Spec} \widetilde{R}_d = \mathbb{A}^{\lfloor d/l \rfloor}.$$

Complexity

For a sequence of integers a_{\bullet} , let

 $r(a_{\bullet}) := \text{smallest natural number } c \text{ such that } a_n \ll n^{c-1}.$

For an A-module M, the complexity of M is

$$c_A(M) := r(\dim P^{\bullet}),$$

where P^{\bullet} is the minimal projective resolution of the A-module M.

Complexity of $\mathcal{H}(\Sigma_d)$ modules

Let M be a $\mathcal{H}(\Sigma_d)$ -module.

- 1. c(M) = 0 if and only if M is projective.
- 2. $c(M) = r(\operatorname{Ext}_{\mathcal{H}(\Sigma_d)}^{\bullet}(M, M)).$
- 3. $c(k) = r(R_d) = r(k[x_1, \ldots, x_a]^{\Sigma_a} \otimes \Lambda[y_1, \ldots, y_a]^{\Sigma_a}) = \lfloor d/l \rfloor.$

Support variety for the group algebra of symmetric groups

Let M be a $k\Sigma_d$ -module. Its support variety is

$$V(M) := \max \operatorname{Spec} \widetilde{\operatorname{Ext}}_{k\Sigma_d}^{\bullet}(k, k) / J(M),$$

where J(M) is the annihilator of the action of $\operatorname{Ext}_{k\Sigma_d}^{\bullet}(k,k)$ on $\operatorname{Ext}_{k\Sigma_d}^{\bullet}(M,M)$.

$$\dim V(M) = r(\operatorname{Ext}^{\bullet}_{k\Sigma_d}(M, M)) = c(M).$$

Branching result on complexity

Theorem 5 (Hemmer-Nakano '02, Nakano-X. '18)

Let A_{λ} be $k\Sigma_{\lambda}$ or $\mathcal{H}(\Sigma_{\lambda})$, and M an A_d -module.

$$\begin{split} c(M) &= \max_{\lambda} r(\operatorname{Ext}_{A_d}^{\bullet}(D^{\lambda}, M)) \\ &= \max_{\lambda} r(\operatorname{Ext}_{A_d}^{\bullet}(S^{\lambda}, M)) \\ &= \max_{\lambda} r(\operatorname{Ext}_{A_d}^{\bullet}(Y^{\lambda}, M)) \\ &= \max_{\lambda} r(\operatorname{Ext}_{A_d}^{\bullet}(M^{\lambda}, M)) \\ &= \max_{\lambda} r(\operatorname{Ext}_{A_d}^{\bullet}(k, \operatorname{res}_{A_{\lambda}} M)) \end{split}$$

Support variety

The relative support of M is

$$W_{\lambda}(M) := \text{maxSpec}\widetilde{\text{Ext}}_{\mathcal{H}(\Sigma_{\lambda})}(k, k) / J_{\lambda}(M),$$

where $J_{\lambda}(M)$ is the annihilator of the action of $\widetilde{\operatorname{Ext}}_{\mathcal{H}(\Sigma_{\lambda})}^{\bullet}(k,k)$ on $\operatorname{Ext}_{\mathcal{H}(\Sigma_{\lambda})}^{\bullet}(k,M)$.

The support variety of M is

$$V_d(M) := \bigcup_{\lambda \vdash d} \operatorname{res}_{d,\lambda}^* W_{\lambda}(M).$$

Properties of support varieties

Let M and N be finite dimensional $\mathcal{H}(\Sigma_d)$ -modules.

- 1. dim V(M) = c(M).
- 2. For short exact sequence $0 o M_1 o M_2 o M_3 o 0$,

$$V(M_{i_1}) \subseteq V(M_{i_2}) \cup V(M_{i_3}).$$

- 3. $V(M_1 \oplus M_2) = V(M_1) \cup V(M_2)$.
- 4. $V_d(M) = \bigcup_{\lambda \vdash d} \operatorname{res}_{d,\lambda}^* W_{\lambda}(M)$, where λ runs over l-parabolic compositions.
- 5. If $M \mid \operatorname{ind}_{\mathcal{H}(\Sigma_{\lambda})}^{\mathcal{H}(\Sigma_{d})} N$ and $N \mid \operatorname{res}_{\mathcal{H}(\Sigma_{\lambda})}^{\mathcal{H}(\Sigma_{d})} M$, then

$$V_d(M) = \operatorname{res}_{d,\lambda}^* V_\lambda(N).$$

6. $V(k) = \mathbb{A}^{\lfloor d/l \rfloor}$.

Vertex theory

Definition 6 (Higman's criterion)

A $\mathcal{H}(\Sigma_d)$ -module M is $\mathcal{H}(\Sigma_{\lambda})$ -projective if and only if

$$M \mid \operatorname{ind}_{\mathcal{H}(\Sigma_{\lambda})}^{\mathcal{H}(\Sigma_{d})} N$$

for some $\mathcal{H}(\Sigma_d)$ -module N.

Definition 7

The vertex $\operatorname{vx}(M)$ of M is the minimal partition λ such that M is $\mathcal{H}(\Sigma_{\lambda})$ -projective. An N such that $M \mid \operatorname{ind}_{\mathcal{H}(\Sigma_{\lambda})}^{\mathcal{H}(\Sigma_{d})} N$ is called a source of M.

Corollary 8

Let N be a source of M. Then,

$$V_d(M) = \operatorname{res}_{d, \text{vx}(M)}^* V_{\text{vx}(M)}(N).$$

Support variety of some modules

Example 9 (Permutation modules)

Let
$$\lambda = \lambda_0 \mathit{l} + \lambda_1$$
 with $\lambda_1 < \mathit{l}$. Then,

$$V_d(M^{\lambda}) = \mathbb{A}^{|\lambda_0|}.$$

Support variety of some modules

Example 9 (Permutation modules)

Let
$$\lambda = \lambda_0 \mathit{l} + \lambda_1$$
 with $\lambda_1 < \mathit{l}$. Then,

$$V_d(M^{\lambda}) = \mathbb{A}^{|\lambda_0|}.$$

Example 10 (Young modules)

Let $\lambda = \lambda_0 l + \lambda_1$ with λ_1 being l-restricted. Then,

$$V_d(Y^{\lambda}) = \mathbb{A}^{|\lambda_0|}.$$

Support variety of some modules

Example 9 (Permutation modules)

Let
$$\lambda = \lambda_0 l + \lambda_1$$
 with $\lambda_1 < l$. Then,

$$V_d(M^{\lambda}) = \mathbb{A}^{|\lambda_0|}.$$

Example 10 (Young modules)

Let $\lambda = \lambda_0 l + \lambda_1$ with λ_1 being l-restricted. Then,

$$V_d(Y^{\lambda}) = \mathbb{A}^{|\lambda_0|}.$$

Example 11 (Blocks)

Let core λ be the core of λ and $\operatorname{wt} \lambda$ the weight of λ . Then,

$$V(\mathbb{B}^{\operatorname{core} \lambda}) = \mathbb{A}^{\operatorname{wt} \lambda}.$$

Morita equivalence

Theorem 12 (Dipper-James '92, Pallikaros '94, Hu '02)

1. If $f_d^{\mathbf{B}}(Q,q)$ is invertible in k, then

$$\mathcal{H}_{Q,q}^{\mathrm{B}}(d) \sim_{\mathrm{Morita}} \bigoplus_{i=0}^{d} \mathcal{H}_{q}^{\mathrm{A}}(i-1) \otimes \mathcal{H}_{q}^{\mathrm{A}}(d-i-1).$$

2. If $f_d^{\mathbb{D}}(q)$ is invertible in k, then

$$\mathcal{H}_q^{\mathrm{D}}(d) \sim_{\mathrm{Morita}} \mathcal{A}(d/2) \oplus \bigoplus_{i=0}^{\lceil d/2-1 \rceil} \mathcal{H}_q^{\mathrm{A}}(i-1) \otimes \mathcal{H}_q^{\mathrm{A}}(d-i-1),$$

where
$$\mathcal{A}(d/2)=0$$
 if d is odd, and $\mathcal{H}_q^{\mathrm{A}}(d/2-1)^{\otimes 2}//\mathcal{A}(d/2)\cong k\mathbb{Z}_2$ if d is even.

Part II: Coordinate construction of Schur algebras

Based on joint work with Chun-Ju Lai and Daniel K. Nakanao.

Tensor space

For
$$n=2r+\epsilon$$
, let

$$V := V_{>0} \oplus V_0 \oplus V_{<0},$$

where

$$V_{>0} \cong k^r$$
, $V_0 \cong k^{\epsilon}$, and $V_{<0} \cong k^r$.

Tensor space

For $n = 2r + \epsilon$, let

$$V := V_{>0} \oplus V_0 \oplus V_{<0},$$

where

$$V_{>0} \cong k^r$$
, $V_0 \cong k^{\epsilon}$, and $V_{<0} \cong k^r$.

The tensor space

$$V^{\otimes d}$$

admits an action of the type B Coxeter group $\langle s_0^{\mathrm{B}}, s_1, \dots, s_{d-1} \rangle$, hence actions of W^{Φ} for $\Phi \in \{A_{d-1}, B_d, D_d\}$.

Tensor space

For $n = 2r + \epsilon$, let

$$V := V_{>0} \oplus V_0 \oplus V_{<0},$$

where

$$V_{>0} \cong k^r$$
, $V_0 \cong k^\epsilon$, and $V_{<0} \cong k^r$.

The tensor space

$$V^{\otimes d}$$

admits an action of the type B Coxeter group $\langle s_0^{\rm B}, s_1, \dots, s_{d-1} \rangle$, hence actions of W^{Φ} for $\Phi \in \{A_{d-1}, B_d, D_d\}$.

The tensor space $V^{\otimes d}$ is a $\mathcal{H}_{\mathbf{q}}^{\Phi}$ -module, for $\Phi \in \{A_{d-1}, B_d, D_d\}$.

q-Schur algebra of classical type

Definition 13

The q-Schur algebra of type Φ is

$$S_{\mathbf{q}}^{\Phi}(n, d) := \operatorname{End}_{\mathcal{H}_{\mathbf{q}}^{\Phi}}(V^{\otimes d}).$$

Coordinate construction of q-Schur algebra of classical type

Suppose that $V = k \langle v_i : i \in I(n) \rangle$.

Let k[M(n)] be the bialgebra

$$k\langle x_{i,j}: i, j \in I(n)\rangle.$$

Theorem 14 (Lai-Nakano-Xiang '19 for type B and D)

There exists a suitable coideal $J_{\mathbf{q}}^{\Phi}(n) \subseteq k[M(n)]$ such that

$$S^{\Phi}_{\mathbf{q}}(n,d) \cong (k[M(n)]/J^{\Phi}_{\mathbf{q}}(n))_d^*.$$

Type A relations

	$(j \sim i, m \sim l)$
$x_{li}x_{mj} - q^{-1}x_{mj}x_{li}$	(=,<) or (<,=)
$x_{li}x_{mj} - qx_{mj}x_{li}$	(=,>) or (>,=)
$x_{li}x_{mj} - x_{mj}x_{li}$	(<,>) or (>,<) or (=,=)
$x_{li}x_{mj} - x_{mj}x_{li} - \widehat{q}x_{mi}x_{lj}$	(<,<)
$x_{li}x_{mj} - x_{mj}x_{li} + \widehat{q}x_{mi}x_{lj}$	(>,>)

$$\widehat{q} := q^{-1} - q$$

Extra type B relations

$$\widehat{Q}:=\,Q^{-1}\,-\,Q$$

Extra type D relations

	$(j \sim -i, m \sim -l)$
$x_{li}x_{mj} - q^{-1}x_{-m-j}x_{-l-i}$	(=,<) or (<,=)
$x_{li}x_{mj} - qx_{-m-j}x_{-l-i}$	(=,>) or (>,=)
$x_{li}x_{mj} - x_{-m-j}x_{-l-i}$	(<,>) or $(>,<)$ or $(=,=)$
$x_{li}x_{mj} - x_{-m-j}x_{-l-i} - \widehat{q}x_{-mi}x_{-lj}$	(<,<)
$x_{li}x_{mj} - x_{-m-j}x_{-l-i} + \widehat{q}x_{-mi}x_{-lj}$	(>,>)

$$\widehat{q} := q^{-1} - q$$

Isomorphism theorem for type B

Theorem 15 (Lai-Nakano-X. '19)

If $f_{Q,q}^{\mathrm{B}}(d)$ is invertible in k, then there exists an algebra isomorphism

$$S_{Q,q}^{\mathrm{B}}(n,d) \cong \bigoplus_{i=0}^{d} S_{q}^{\mathrm{A}}(\lceil n/2 \rceil,i) \otimes S_{q}^{\mathrm{A}}(\lfloor n/2 \rfloor,d-i).$$

Sketch of the proof of the isomorphism theorem for type B

Theorem 16 (Dipper-James '92)

There exists a Morita equivalence

$$\mathcal{H}_{Q,q}^{\mathrm{B}}(d) \sim \bigoplus_{i=0}^{d} e_{i,d-i} \mathcal{H}_{Q,q}^{\mathrm{B}}(d) e_{i,d-i} \cong \bigoplus_{i=0}^{d} \mathcal{H}_{q}(\Sigma_{i}) \otimes \mathcal{H}_{q}(\Sigma_{d-i}).$$

Sketch of the proof of the isomorphism theorem for type B

Theorem 16 (Dipper-James '92)

There exists a Morita equivalence

$$\mathcal{H}_{Q,q}^{\mathrm{B}}(d) \sim \bigoplus_{i=0}^{d} e_{i,d-i} \mathcal{H}_{Q,q}^{\mathrm{B}}(d) e_{i,d-i} \cong \bigoplus_{i=0}^{d} \mathcal{H}_{q}(\Sigma_{i}) \otimes \mathcal{H}_{q}(\Sigma_{d-i}).$$

For $e = e_{i,d-i}$,

$$V^{\otimes d}e \cong V^{\otimes i}_{>0} \otimes V^{\otimes d-i}_{<0},$$

where $V_{\geq 0} := V_{\geq 0} \oplus V_0$.

Sketch of the proof of the isomorphism theorem for type B

Theorem 16 (Dipper-James '92)

There exists a Morita equivalence

$$\mathcal{H}_{Q,q}^{\mathrm{B}}(d) \sim \bigoplus_{i=0}^{d} e_{i,d-i} \mathcal{H}_{Q,q}^{\mathrm{B}}(d) e_{i,d-i} \cong \bigoplus_{i=0}^{d} \mathcal{H}_{q}(\Sigma_{i}) \otimes \mathcal{H}_{q}(\Sigma_{d-i}).$$

For $e = e_{i,d-i}$,

$$V^{\otimes d}e \cong V^{\otimes i}_{>0} \otimes V^{\otimes d-i}_{<0},$$

where $V_{\geq 0} := V_{\geq 0} \oplus V_0$.

$$\operatorname{End}_{e\,\mathcal{H}_{O,q}^{\operatorname{B}}\,e}(\,V^{\otimes\,d}e)\cong\operatorname{End}_{\mathcal{H}_{q}^{\operatorname{A}}}(\,V_{\geq0}^{\otimes\,i})\otimes\operatorname{End}_{\mathcal{H}_{q}^{\operatorname{A}}}(\,V_{<\,0}^{\otimes\,d-i}).$$

Isomorphism conjecture for type D

Conjecture 17

If $f_q^{\rm D}(d)$ is invertible in k and d is odd, then there exists an algebra isomorphism

$$S_q^{\mathrm{D}}(n,d) \cong \bigoplus_{i=0}^{\lceil d/2-1 \rceil} S_q^{\mathrm{A}}(\lceil n/2 \rceil,i) \otimes S_q^{\mathrm{A}}(\lfloor n/2 \rfloor,d-i).$$

Conjecture 18

If $f_q^{\rm D}(d)$ is invertible in k and d,n are even, then there exists an algebra isomorphism

$$S_q^{\mathcal{D}}(n,d) \cong \bigoplus_{i=0}^{\lceil d/2-1 \rceil} S_q^{\mathcal{A}}(n/2,i) \otimes S_q^{\mathcal{A}}(n/2,d-i)$$
$$\oplus \left(S_q^{\mathcal{A}}(n/2,d/2) \otimes S_q^{\mathcal{A}}(n/2,d/2) \right)^{\mathbb{Z}_2}.$$

Corollary: Simple modules of *q*-Schur algebras

$$S_{Q,q}^{\mathrm{B}}(n,d) \cong \bigoplus_{i=0}^{d} S_{q}^{\mathrm{A}}(\lceil n/2 \rceil, i) \otimes S_{q}^{\mathrm{A}}(\lfloor n/2 \rfloor, d-i).$$

The simple modules of $S_q^{A}(n,d)$ are indexed by partitions

$$\Lambda^{\mathcal{A}}(n,d) := \{ \lambda \vdash d : \ \ell(\lambda) \le n \}.$$

Corollary: Simple modules of *q*-Schur algebras

$$S_{Q,q}^{\mathrm{B}}(n,d) \cong \bigoplus_{i=0}^{d} S_{q}^{\mathrm{A}}(\lceil n/2 \rceil, i) \otimes S_{q}^{\mathrm{A}}(\lfloor n/2 \rfloor, d-i).$$

The simple modules of $S_q^{\rm A}(n,d)$ are indexed by partitions

$$\Lambda^{\mathcal{A}}(n,d) := \{ \lambda \vdash d : \ \ell(\lambda) \le n \}.$$

The simple modules of $S_{Q,q}^{\mathrm{B}}(n,d)$ are indexed by bipartitions

$$\Lambda^{\mathrm{B}}(n,d) := \{(\lambda,\mu) \vdash d: \ \ell(\lambda) \leq \lceil n/2 \rceil, \ell(\mu) \leq \lfloor n/2 \rfloor)\}.$$

Corollary: Cellular structure

$$S_{Q,q}^{\mathrm{B}}(n,d) \cong \bigoplus_{i=0}^d S_q^{\mathrm{A}}(\lceil n/2 \rceil,i) \otimes S_q^{\mathrm{A}}(\lfloor n/2 \rfloor,d-i).$$

Theorem 19

The algebra $S_q^{\rm A}(n,d)$ is cellular with poset $\Lambda^{\rm A}(n,d)$ ordered by dominance order.

Corollary: Cellular structure

$$S_{Q,q}^{\mathrm{B}}(n,d) \cong \bigoplus_{i=0}^{d} S_{q}^{\mathrm{A}}(\lceil n/2 \rceil, i) \otimes S_{q}^{\mathrm{A}}(\lfloor n/2 \rfloor, d-i).$$

Theorem 19

The algebra $S_q^{\rm A}(n,d)$ is cellular with poset $\Lambda^{\rm A}(n,d)$ ordered by dominance order.

Theorem 20 (Lai-Nakano-X. '19)

The algebra $S_{Q,q}^{\rm B}(n,d)$ is cellular with poset $\Lambda^{\rm B}(n,d)$ ordered by dominance order.

Corollary: Representation type of q-Schur algebras

$$S_{Q,q}^{\mathrm{B}}(n,d) \cong \bigoplus_{i=0}^{d} S_{q}^{\mathrm{A}}(\lceil n/2 \rceil, i) \otimes S_{q}^{\mathrm{A}}(\lfloor n/2 \rfloor, d-i).$$

Let l be the order of q^2 . Assume that $l \ge 2$ and $n \ge 5$.

Theorem 21 (Erdmann-Nakano '01)

The algebra $S_q^{\rm A}(n,d)$ is semisimple, finite but not semisimple, and wild if and only if d < l, $l \le d < 2l$, and $2l \le d$, respectively.

Theorem 22 (Lai-Nakano-X. '19)

The algebra $S_{Q,q}^{\mathrm{B}}(n,d)$ is semisimple, finite but not semisimple, and wild if and only if d < l, $l \le d < 2l$, and $2l \le d$, respectively.

Corollary: Quasi-hereditary cover

Definition 23 (Rouquier '08)

A quasi-hereditary cover $F \colon A\operatorname{\mathsf{-mod}} \to B\operatorname{\mathsf{-mod}}$ is 1-faithful if

 $\operatorname{Hom}_A(M,N) \cong \operatorname{Hom}_B(FM,FN)$ and $\operatorname{Ext}_A^1(M,N) \cong \operatorname{Ext}_B^1(FM,FN)$

for M and N admitting Δ -filtration.

Corollary: Quasi-hereditary cover

Definition 23 (Rouquier '08)

A quasi-hereditary cover $F : A\text{-mod} \rightarrow B\text{-mod}$ is 1-faithful if

$$\operatorname{Hom}_A(M,N) \cong \operatorname{Hom}_B(FM,FN)$$
 and $\operatorname{Ext}_A^1(M,N) \cong \operatorname{Ext}_B^1(FM,FN)$

for M and N admitting Δ -filtration.

Theorem 24 (Hemmer-Nakano '04)

For $n \geq d$, the algebra $S_q^{\rm A}(n,d)$ is the quasi-hereditary 1-cover of $\mathcal{H}_q(\Sigma_d)$.

Corollary: Quasi-hereditary cover

Definition 23 (Rouquier '08)

A quasi-hereditary cover $F \colon A\operatorname{\mathsf{-mod}} \to B\operatorname{\mathsf{-mod}}$ is 1-faithful if

 $\operatorname{Hom}_A(M,N) \cong \operatorname{Hom}_B(FM,FN)$ and $\operatorname{Ext}_A^1(M,N) \cong \operatorname{Ext}_B^1(FM,FN)$

for M and N admitting Δ -filtration.

Theorem 24 (Hemmer-Nakano '04)

For $n \geq d$, the algebra $S_q^{\rm A}(n,d)$ is the quasi-hereditary 1-cover of $\mathcal{H}_q(\Sigma_d).$

Theorem 25 (Lai-Nakano-X. '19)

For $n \geq 2d$, the algebra $S_{Q,q}^{\rm B}(n,d)$ is the quasi-hereditary 1-cover of $\mathcal{H}_{Q,q}^{\rm B}(d)$.

Comparison between different type B Schur algebras

	QHA/ cellular	Schur functor	double cent'r prop	coord const'n	can'l bases
Orthogonal			✓	✓	
q-Schur algebra					
Sakamoto-Shoji's			✓		
q-Schur algebra					
Coideal	new	new	✓	new	√
q-Schur algebra					
Cyclotomic	✓				
q-Schur algebra					
q -Schur 2 algebra	✓				
Rouquier's		✓			
q-Schur algebra					

Thanks for your attention.