Lecture 13: Decision Trees and Random Forests

Machine Learning, Summer Term 2019

July 1, 2019

Michael Tangermann Frank Hutter Marius Lindauer

University of Freiburg

The Big Picture

- Lecture 1: overview
- Lecture 2-6: linear methods
- Lecture 7-9: algorithm-independent principles
- Lectures 10-15: nonlinear methods
 - Lecture 10-12: kernel-based methods <
 - Lectures 13-14: tree-based methods and ensembles
 - Lecture 15: neural networks

Lecture Overview

- Decision and Regression Trees
 - Regression Trees
 - Classification Trees (= Decision Trees)

2 Bagging

Random Forests

Lecture Overview

- Decision and Regression Trees
 - Regression Trees
 - Classification Trees (= Decision Trees)
- 2 Bagging
- 3 Random Forests

For many applications, random forests are the best off-the-shelf model

• Trees: easy to interpret

- Trees: easy to interpret
- Directly handle categorical features

- Trees: easy to interpret
- Directly handle categorical features
- Scalable to many data points (they are fast)

- Trees: easy to interpret
- Directly handle categorical features
- Scalable to many data points (they are fast)
- Scalable to many features (they are automated feature selectors)

- Trees: easy to interpret
- Directly handle categorical features
- Scalable to many data points (they are fast)
- Scalable to many features (they are automated feature selectors)
- Random forests: robust performance even for small datasets

- Trees: easy to interpret
- Directly handle categorical features
- Scalable to many data points (they are fast)
- Scalable to many features (they are automated feature selectors)
- Random forests: robust performance even for small datasets
- Random forests: robust to their hyperparameter settings
 - In contrast to, e.g., SVMs or neural networks

Trees and Forests are Extremely Popular Models

Leo Breiman 1928-2005

Classification and Regression Trees

Leo Breiman, Jerome H Friedman, Richard A Olshen, Charles J Stone

1999/5 Publication date

> CRC Press. New York Publisher

Total citations Cited by 34504

Trees and Forests are Extremely Popular Models

Classification and Regression Trees

Authors Leo Breiman, Jerome H Friedman, Richard A Olshen, Charles J Stone

Publication date 1999/5

Publisher CRC Press, New York

Total citations Cited by 34504

Scholar articles

Random forests

L Breiman - Machine learning, 2001

Cited by 29053 - Related articles - All 68 versions

Acknowledgement

Most visualizations in this lecture are taken from this excellent book by Criminisi et. al (2013):

PDF of entire book available from university machines: http://link.springer.com/book/10.1007/978-1-4471-4929-3

Decision and Regression Trees – General Idea

Lecture Overview

- 1 Decision and Regression Trees
 - Regression Trees
 - Classification Trees (= Decision Trees)

2 Bagging

3 Random Forests

Idea: fit simple model to subset of the data

Idea: fit simple model to subset of the data

probab. model

Idea: fit simple model to subset of the data

Idea: fit simple model to subset of the data

Idea: fit simple model to subset of the data

We will only cover the standard case of constant leaf predictions

- ullet Constant models in the leafs: \hat{f}_{left} and \hat{f}_{right}
- Greedily minimize sum of squared errors in the two children

$$x_{\mathsf{split}} \in \operatorname*{arg\,min}_{x} \left(\sum_{x_i \leq x} \left(y_i - \hat{f}_{left} \right)^2 + \sum_{x_i > x} \left(y_i - \hat{f}_{right} \right)^2 \right)$$

- ullet Constant models in the leafs: \hat{f}_{left} and \hat{f}_{right}
- Greedily minimize sum of squared errors in the two children

$$x_{\mathsf{split}} \in \operatorname*{arg\,min}_{x} \left(\sum_{x_i \leq x} \left(y_i - \hat{f}_{left} \right)^2 + \sum_{x_i > x} \left(y_i - \hat{f}_{right} \right)^2 \right)$$

- ullet Constant models in the leafs: \hat{f}_{left} and \hat{f}_{right}
- Greedily minimize sum of squared errors in the two children

$$x_{\mathsf{split}} \in \operatorname*{arg\,min}_{x} \left(\sum_{x_i \leq x} \left(y_i - \hat{f}_{left} \right)^2 + \sum_{x_i > x} \left(y_i - \hat{f}_{right} \right)^2 \right)$$

- ullet Constant models in the leafs: \hat{f}_{left} and \hat{f}_{right}
- Greedily minimize sum of squared errors in the two children

$$x_{\mathsf{split}} \in \operatorname*{arg\,min}_{x} \left(\sum_{x_i \leq x} \left(y_i - \hat{f}_{left} \right)^2 + \sum_{x_i > x} \left(y_i - \hat{f}_{right} \right)^2 \right)$$

- ullet Constant models in the leafs: \hat{f}_{left} and \hat{f}_{right}
- Greedily minimize sum of squared errors in the two children

$$x_{\mathsf{split}} \in \operatorname*{arg\,min}_{x} \left(\sum_{x_i \leq x} \left(y_i - \hat{f}_{left} \right)^2 + \sum_{x_i > x} \left(y_i - \hat{f}_{right} \right)^2 \right)$$

- ullet Constant models in the leafs: \hat{f}_{left} and \hat{f}_{right}
- Greedily minimize sum of squared errors in the two children

$$x_{\mathsf{split}} \in \operatorname*{arg\,min}_{x} \left(\underbrace{\sum_{x_i \leq x} \left(y_i - \hat{f}_{left} \right)^2}_{x} + \underbrace{\sum_{x_i > x} \left(y_i - \hat{f}_{right} \right)^2}_{x_i \leq x} \right)$$

Let's vote: Which of These Splits is the Best?

Let's vote: Which of These Splits is the Best?

CART algorithm [Breiman et. al 1984]

CART = Classification And Regression Trees

- Input: X, y (and hyperparameters max_depth, min_leaf)
- Check whether data should be split further; otherwise return leaf node
- Find best split value for each feature
- Choose best combination of split feature and split value
- ullet Split data into left and right accordingly: $(\mathbf{X}_l,\mathbf{y}_l)$ and $(\mathbf{X}_r,\mathbf{y}_r)$
- Save split feature and value, and pointer to two new subtrees to be built recursively:

```
 \begin{array}{l} \big( \ \mathsf{CART}\big(\underline{\mathbf{X}_l},\!\underline{\mathbf{y}}_l,\!\mathtt{max\_depth}\text{-}1,\,\mathtt{min\_leaf}\big), \\ \mathsf{CART}\big(\mathbf{X}_r,\!\underline{\mathbf{y}}_r,\!\underline{\mathtt{max\_depth}}\text{-}1,\,\mathtt{min\_leaf}\big) \ \big) \end{array}
```


• In each internal node: only store split criterion used

• In each internal node: only store split criterion used

• In each internal node: only store split criterion used

- In each internal node: only store split criterion used
- In each leaf: store mean of targets

Visualization of CART Algorithm For Regression: Training

- In each internal node: only store split criterion used
- In each leaf: store mean of targets

Visualization of CART Algorithm For Regression: Training

- In each internal node: only store split criterion used
- In each leaf: store mean of targets

Visualization of CART Algorithm For Regression: Training

- In each internal node: only store split criterion used
- In each leaf: store mean of targets

Visualization of CART Algorithm For Regression: Prediction for New Inputs

E.g
$$x_{n+1} = (true, 4.7, red)$$

• Walk down tree, return mean target stored in leaf $\Rightarrow 1.65$

Hierarchichal Binary Splits

- Hierarchical splits (as on the right side) are easy to represent
 - Splits as in the left figure would be harder

Hierarchichal Binary Splits

- Hierarchical splits (as on the right side) are easy to represent
 - Splits as in the left figure would be harder
- We could also use k-ary splits
 - But every k-ary split can be seen as a sequence of binary splits
 - Binary splits are faster and often yield better predictions

Formal Notation for Tree Predictions (1/2)

After the intuitive treatment so far, we now write down tree predictions formally.

- ullet Trees partition the input space ${\mathcal X}$ into regions R_1,\dots,R_J associated with their leaves
- ullet Each leaf j has a simple model; here the constant γ_j

Formal Notation for Tree Predictions (1/2)

After the intuitive treatment so far, we now write down tree predictions formally.

- ullet Trees partition the input space ${\mathcal X}$ into regions R_1,\dots,R_J associated with their leaves
- ullet Each leaf j has a simple model; here the constant γ_j
- Mathematically, a decision/regression tree T with constant leaf predictions is fully specified by $\langle R_1, \dots, R_J, \gamma_1, \dots, \gamma_J \rangle$

Formal Notation for Tree Predictions (2/2)

Tree Prediction

The prediction of a decision/regression tree with parameters

$$\Theta = \langle R_1, \dots, R_J, \gamma_1, \dots, \gamma_J
angle$$
 is

$$\Theta = \langle R_1, \dots, R_J, \gamma_1, \dots, \gamma_J \rangle$$
 is
$$T(x_i, \Theta) = \sum_{j=1}^J \underline{\gamma_j} \mathbb{I}(x \in R_j) = \emptyset_{\zeta} \cdot (\exists \gamma_{\zeta})$$

Here and throughout, ${\mathbb I}$ is the indicator function

$$\underline{\mathbb{I}(a)} := \begin{cases} 1 & , & \text{if } a = true \\ 0 & , & \text{otherwise} \end{cases}$$

Lecture Overview

- Decision and Regression Trees
 - Regression Trees
 - Classification Trees (= Decision Trees)

2 Bagging

3 Random Forests

Classification Trees (= Decision Trees)

- Conceptually the same as for regression
- Leaf model: majority vote; probability of data in the leaf
- Split criterion: Gini index; variance reduction; information gain

Classification Splitting Criteria

Intuitively, which of these splits is better?

- ★ Split 1 (into top and bottom)
- ★ Split 2 (into left and right)

Definition: Entropy

The entropy of a discrete random variable V with K possible outcomes v_k of respective probability $p(v_k)$ (for $k=1,\ldots,K$) is

$$H(V) = -\sum_{k=1}^{6} \underline{p(v_k)} \log_2 p(v_k)$$

Definition: Entropy

The entropy of a discrete random variable V with K possible outcomes v_k of respective probability $p(v_k)$ (for $k=1,\ldots,K$) is

$$H(V) = -\sum_{k=1}^{K} p(v_k) \log_2 p(v_k)$$

•
$$p(v_1) = 0.5$$
, $p(v_2) = 0.5$. Then,
 $H(V) = \bigcirc OS \cdot \log_2(OS) - OS \cdot \log_2(OS)$
 $= OS + OS = 1$

Definition: Entropy

The entropy of a discrete random variable V with K possible outcomes v_k of respective probability $p(v_k)$ (for $k=1,\ldots,K$) is

$$H(V) = -\sum_{k=1}^{K} p(v_k) \log_2 p(v_k)$$

•
$$p(v_1) = 0.5$$
, $p(v_2) = 0.5$. Then, $H(V) = -0.5 \log_2(0.5) - 0.5 \log_2(0.5) = 1$

Definition: Entropy

The entropy of a discrete random variable V with K possible outcomes v_k of respective probability $p(v_k)$ (for $k=1,\ldots,K$) is

$$H(V) = -\sum_{k=1}^{K} p(v_k) \log_2 p(v_k)$$

•
$$p(v_1) = 0.5$$
, $p(v_2) = 0.5$. Then, $H(V) = -0.5 \log_2(0.5) - 0.5 \log_2(0.5) = 1$

$$\begin{array}{l} \bullet \ p(v_1) = 0, \ p(v_2) = 1. \ \ \text{Then,} \\ H(V) = \end{array}$$

Definition: Entropy

The entropy of a discrete random variable V with K possible outcomes v_k of respective probability $p(v_k)$ (for $k=1,\ldots,K$) is

$$H(V) = -\sum_{k=1}^{K} p(v_k) \log_2 p(v_k)$$

•
$$p(v_1) = 0.5$$
, $p(v_2) = 0.5$. Then,
$$H(V) = -0.5\log_2(0.5) - 0.5\log_2(0.5) = 1$$

•
$$p(v_1) = 0$$
, $p(v_2) = 1$. Then, $H(V) = -\lim_{x \to 0} \underbrace{x \log_2(x) - 1 \log_2(1)} = 0$

Definition: Information Gain

Let V denote a random variable with the empirical class distribution \underline{p} of the \underline{N} data points at the current node.

Definition: Information Gain

Let V denote a random variable with the empirical class distribution p of the N data points at the current node. Let a split s result in two child nodes with N_l and N_r data points and empirical class distributions p_l and p_r , and let v_l and v_r denote random variables with these probability distributions, respectively.

Definition: Information Gain

Let V denote a random variable with the empirical class distribution p of the N data points at the current node. Let a split s result in two child nodes with N_l and N_r data points and empirical class distributions p_l and p_r , and let V_l and V_r denote random variables with these probability distributions, respectively. Then, the information gain achieved by split s is:

$$I = N \cdot H(V) - N_l \cdot H(V_l) - N_r \cdot H(V_r)$$

Definition: Information Gain

Let V denote a random variable with the empirical class distribution p of the N data points at the current node. Let a split s result in two child nodes with N_l and N_r data points and empirical class distributions p_l and p_r , and let V_l and V_r denote random variables with these probability distributions, respectively. Then, the information gain achieved by split s is:

$$I = N \cdot H(V) - N_l \cdot H(V_l) - N_r \cdot H(V_r)$$

$$= -N \sum_{k=1}^K p(v_k) \log_2(p(v_k)) + N_l \sum_{k=1}^K p_l(v_k) \log_2(p_l(v_k)) + N_r \sum_{k=1}^K p_r(v_k) \log_2(p_r(v_k))$$

Definition: Information Gain

Let V denote a random variable with the empirical class distribution p of the N data points at the current node. Let a split s result in two child nodes with N_l and N_r data points and empirical class distributions p_l and p_r , and let V_l and V_r denote random variables with these probability distributions, respectively. Then, the information gain achieved by split s is:

$$I = \underbrace{N \cdot H(V)}_{N_l \cdot H(V_l)} N_l \cdot \underbrace{H(V_l)}_{N_l \cdot H(V_l)} - N_r \cdot H(V_r)$$

$$= -N \sum_{k=1}^K p(v_k) \log_2(p(v_k)) + N_l \sum_{k=1}^K p_l(v_k) \log_2(p_l(v_k)) + N_r \sum_{k=1}^K p_r(v_k) \log_2(p_r(v_k))$$

We want to maximize this information gain.

$$I = N \cdot H(V) - N_l \cdot H(V_l) - N_r \cdot H(V_r)$$

$$= -N \sum_{k=1}^{K} p(v_k) \log_2(p(v_k)) + N_l \sum_{k=1}^{K} p_l(v_k) \log_2(p_l(v_k)) + N_r \sum_{k=1}^{K} p_r(v_k) \log_2(p_r(v_k))$$

- Example: Splitting 8 data points $(4 \times \text{false}, 4 \times \text{true})$.
 - Split 1: left: $4 \times \text{true}$; right: $4 \times \text{false}$
 - $N \cdot H(V) = 8 \cdot 1 = 8$
 - $N_l \cdot H(V_l) = 40 \approx$
 - $N_r \cdot H(V_r) = 4 \cdot 0 = 0$
 - Split 2: left: $2 \times \text{true}$, $2 \times \text{false}$; right: $2 \times \text{true}$, $2 \times \text{false}$
 - $N \cdot H(V) =$
 - $N_l \cdot H(V_l) =$
 - $N_r \cdot H(V_r)) =$

$$I = N \cdot H(V) - N_l \cdot H(V_l) - N_r \cdot H(V_r)$$

$$= -N \sum_{k=1}^{K} p(v_k) \log_2(p(v_k)) + N_l \sum_{k=1}^{K} p_l(v_k) \log_2(p_l(v_k)) + N_r \sum_{k=1}^{K} p_r(v_k) \log_2(p_r(v_k))$$

- Example: Splitting 8 data points $(4 \times \text{false}, 4 \times \text{true})$.
 - Split 1: left: $4 \times \text{true}$; right: $4 \times \text{false}$
 - $N \cdot H(V) = 8 \cdot 1 = 8$
 - $N_l \cdot H(V_l) =$
 - $N_r \cdot H(V_r)) =$
 - Split 2: left: $2 \times \text{true}$, $2 \times \text{false}$; right: $2 \times \text{true}$, $2 \times \text{false}$
 - $N \cdot H(V) =$
 - $N_l \cdot H(V_l) =$
 - $N_r \cdot H(V_r)) =$

$$I = N \cdot H(V) - N_l \cdot H(V_l) - N_r \cdot H(V_r)$$

$$= -N \sum_{k=1}^{K} p(v_k) \log_2(p(v_k)) + N_l \sum_{k=1}^{K} p_l(v_k) \log_2(p_l(v_k)) + N_r \sum_{k=1}^{K} p_r(v_k) \log_2(p_r(v_k))$$

- Example: Splitting 8 data points $(4 \times \text{false}, 4 \times \text{true})$.
 - Split 1: left: $4 \times \text{true}$; right: $4 \times \text{false}$
 - $N \cdot H(V) = 8 \cdot 1 = 8$
 - $N_l \cdot H(V_l) = 4 \cdot 0 = 0$
 - $N_r \cdot H(V_r)$) =
 - Split 2: left: $2 \times \text{true}$, $2 \times \text{false}$; right: $2 \times \text{true}$, $2 \times \text{false}$
 - $N \cdot H(V) =$
 - $N_l \cdot H(V_l) =$
 - $N_r \cdot H(V_r)) =$

$$I = N \cdot H(V) - N_l \cdot H(V_l) - N_r \cdot H(V_r)$$

$$= -N \sum_{k=1}^{K} p(v_k) \log_2(p(v_k)) + N_l \sum_{k=1}^{K} p_l(v_k) \log_2(p_l(v_k)) + N_r \sum_{k=1}^{K} p_r(v_k) \log_2(p_r(v_k))$$

- Example: Splitting 8 data points $(4 \times \text{false}, 4 \times \text{true})$.
 - Split 1: left: $4 \times \text{true}$; right: $4 \times \text{false}$
 - $N \cdot H(V) = 8 \cdot 1 = 8$
 - $N_l \cdot H(V_l) = 4 \cdot 0 = 0$
 - $N_r \cdot H(V_r) = 4 \cdot 0 = 0$
 - Split 2: left: $2 \times \text{true}$, $2 \times \text{false}$; right: $2 \times \text{true}$, $2 \times \text{false}$
 - $N \cdot H(V) = 8 \cdot 1 = 8$
 - $N_l \cdot H(V_l) = 4 \cdot 1 = 4$
 - $\bullet \ N_r \cdot H(V_r)) = \langle \cdot \cdot \rangle = \langle \cdot \rangle$

$$I = N \cdot H(V) - N_l \cdot H(V_l) - N_r \cdot H(V_r)$$

$$= -N \sum_{k=1}^{K} p(v_k) \log_2(p(v_k)) + N_l \sum_{k=1}^{K} p_l(v_k) \log_2(p_l(v_k)) + N_r \sum_{k=1}^{K} p_r(v_k) \log_2(p_r(v_k))$$

- Example: Splitting 8 data points $(4 \times \text{false}, 4 \times \text{true})$.
 - Split 1: left: $4 \times \text{true}$; right: $4 \times \text{false}$
 - $N \cdot H(V) = 8 \cdot 1 = 8$
 - $N_l \cdot H(V_l) = 4 \cdot 0 = 0$
 - $N_r \cdot H(V_r) = 4 \cdot 0 = 0$
 - Split 2: left: $2 \times \text{true}$, $2 \times \text{false}$; right: $2 \times \text{true}$, $2 \times \text{false}$
 - $N \cdot H(V) = 8 \cdot 1 = 8$
 - $N_l \cdot H(V_l) =$
 - $N_r \cdot H(V_r)) =$

$$I = N \cdot H(V) - N_l \cdot H(V_l) - N_r \cdot H(V_r)$$

$$= -N \sum_{k=1}^{K} p(v_k) \log_2(p(v_k)) + N_l \sum_{k=1}^{K} p_l(v_k) \log_2(p_l(v_k)) + N_r \sum_{k=1}^{K} p_r(v_k) \log_2(p_r(v_k))$$

- Example: Splitting 8 data points $(4 \times \text{false}, 4 \times \text{true})$.
 - Split 1: left: $4 \times \text{true}$; right: $4 \times \text{false}$
 - $N \cdot H(V) = 8 \cdot 1 = 8$
 - $N_l \cdot H(V_l) = 4 \cdot 0 = 0$
 - $N_r \cdot H(V_r) = 4 \cdot 0 = 0$
 - Split 2: left: $2 \times \text{true}$, $2 \times \text{false}$; right: $2 \times \text{true}$, $2 \times \text{false}$
 - $N \cdot H(V) = 8 \cdot 1 = 8$
 - $N_l \cdot H(V_l) = 4 \cdot 1 = 4$
 - $N_r \cdot H(V_r)) =$

$$I = N \cdot H(V) - N_l \cdot H(V_l) - N_r \cdot H(V_r)$$

$$= -N \sum_{k=1}^{K} p(v_k) \log_2(p(v_k)) + N_l \sum_{k=1}^{K} p_l(v_k) \log_2(p_l(v_k)) + N_r \sum_{k=1}^{K} p_r(v_k) \log_2(p_r(v_k))$$

- Example: Splitting 8 data points $(4 \times \text{false}, 4 \times \text{true})$.
 - Split 1: left: $4 \times \text{true}$; right: $4 \times \text{false}$
 - $N \cdot H(V) = 8 \cdot 1 = 8$
 - $N_l \cdot H(V_l) = 4 \cdot 0 = 0$
 - $N_r \cdot H(V_r) = 4 \cdot 0 = 0$
 - Split 2: left: $2 \times \text{true}$, $2 \times \text{false}$; right: $2 \times \text{true}$, $2 \times \text{false}$
 - $N \cdot H(V) = 8 \cdot 1 = 8$
 - $N_l \cdot H(V_l) = 4 \cdot 1 = 4$
 - $N_r \cdot H(V_r) = 4 \cdot 1 = 4$

- We previously said split 2 (into left and right) is intuitively better than split 1 (into top and bottom)
- Information gain quantifies this

Splits Along Several Dimensions

Axis-aligned split are standard, but more complex splits are possible

Splits Along Several Dimensions

Axis-aligned split are standard, but more complex splits are possible

Pros and Cons of Decision and Regression Trees

- + Flexible framework with exchangeable components: splitting criterion, leaf model, type of split
- + Interpretability
- + Handle categorical input values natively
- + Handle unimportant features well
- + Scalable for large datasets
- Tend to overfit
- Deterministic, i.e. not suitable for some ensemble methods

Hyperparameters of Decision and Regression Trees

Regression and decision trees have several hyperparameters:

- Minimum number of samples in a leaf (min_leaf)
- Maximal depth of the tree (max_depth)
- Total number of nodes
- Leaf model (weak learner; here constant)
- Split criterion

Assignment 8 explores some aspects of their influence on the predictive quality.

Bias and Variance of Trees

- Facts about tree-based models
 - Trees are very expressive models
 - When you slightly change the data, you might get a very different tree

Bias and Variance of Trees

- Facts about tree-based models
 - Trees are very expressive models
 - When you slightly change the data, you might get a very different tree
- Using these facts, please choose the right answer:
 - ★ Trees are a high-variance model.
 - ★ Trees are a low-variance model.

Bias and Variance of Trees

- Facts about tree-based models
 - Trees are very expressive models
 - When you slightly change the data, you might get a very different tree
- Using these facts, please choose the right answer:
 - ★ Trees are a high-variance model.
 - ★ Trees are a low-variance model.
- Using these facts, please choose the right answer:
 - ★ Trees are a high-bias model.
 - ★ Trees are a low-bias model.✓

Reminder: Bias and Variance

$$\underbrace{\mathbb{E}_{\mathcal{D}}[\{\hat{h}(\mathbf{x};\mathcal{D}) - \underline{h^*(\mathbf{x})}\}^2]}_{\text{(bias)}^2} = \underbrace{\{\underline{\bar{h}(\mathbf{x})} - \underline{h^*(\mathbf{x})}\}^2}_{\text{(bias)}^2} + \underbrace{\mathbb{E}_{\mathcal{D}}[\{\hat{h}(\mathbf{x};\mathcal{D}) - \underline{\bar{h}(\mathbf{x})}\}^2]}_{\text{variance}}$$

expected squared deviation from best prediction = $(bias)^2 + variance$

- $\hat{h}(\mathbf{x}; \mathcal{D})$ is the prediction of the model that fits data \mathcal{D} best
- $h^*(\mathbf{x})$ is the true best (unknown) prediction
- $\bar{h}(\mathbf{x}) = \mathbb{E}_{\mathcal{D}}[\hat{h}(\mathbf{x}; \mathcal{D}]]$ is the average model prediction (average of models trained on data sets \mathcal{D} from a data distribution)

- ullet N data points of dimensionality D, axis-aligned splits
- ullet Finding the best split value for a given feature (pre-sorted): O(N)
 - Amortized analysis: O(N) to initialize all data points to the left child, O(1) for moving one data point from left to right at a time

- ullet N data points of dimensionality D, axis-aligned splits
- Finding the best split value for a given feature (pre-sorted): O(N)
 - \bullet Amortized analysis: O(N) to initialize all data points to the left child, O(1) for moving one data point from left to right at a time
- Finding best split point at root: O(DN)
- Let T(N) denote the time we pay for a complete subtree with N data points; this has a part due to the cost at the root and parts due to the 2 smaller child subtrees

- ullet N data points of dimensionality D, axis-aligned splits
- ullet Finding the best split value for a given feature (pre-sorted): O(N)
 - \bullet Amortized analysis: O(N) to initialize all data points to the left child, O(1) for moving one data point from left to right at a time
- Finding best split point at root: O(DN)
- Let T(N) denote the time we pay for a complete subtree with N data points; this has a part due to the cost at the root and parts due to the 2 smaller child subtrees
- Best case: balanced trees
 - $\bullet \ \ \mathsf{Fitting:} \ T(N) = O(DN) + 2\underline{T(N/2)}$

2.0(D.N)

- ullet N data points of dimensionality D, axis-aligned splits
- Finding the best split value for a given feature (pre-sorted): O(N)
 - \bullet Amortized analysis: O(N) to initialize all data points to the left child, O(1) for moving one data point from left to right at a time
- Finding best split point at root: O(DN)
- Let T(N) denote the time we pay for a complete subtree with N data points; this has a part due to the cost at the root and parts due to the 2 smaller child subtrees
- Best case: balanced trees
 - Fitting: T(N) = O(DN) + 2T(N/2)
 - \leadsto This leads to $O(\underline{DN\log N})$ since we pay $O(D\cdot N)$ at each of $\log N$ levels

- ullet N data points of dimensionality D, axis-aligned splits
- Finding the best split value for a given feature (pre-sorted): O(N)
 - Amortized analysis: O(N) to initialize all data points to the left child, O(1) for moving one data point from left to right at a time
- Finding best split point at root: O(DN)
- Let T(N) denote the time we pay for a complete subtree with N data points; this has a part due to the cost at the root and parts due to the 2 smaller child subtrees
- Best case: balanced trees
 - Fitting: T(N) = O(DN) + 2T(N/2)
 - \leadsto This leads to $O(DN\log N)$ since we pay $O(D\cdot N)$ at each of $\log N$ levels
 - Prediction: $O(\log N)$

- ullet N data points of dimensionality D, axis-aligned splits
- ullet Finding the best split value for a given feature (pre-sorted): O(N)
 - ullet Amortized analysis: O(N) to initialize all data points left to the left child, O(1) for moving one data point from left to right at a time
- Finding best split point at root: O(DN)
- Let T(N) denote the time we pay for a complete subtree with N data points; this has a part due to the cost at the root and parts due to the 2 smaller child subtrees
- Worst case: splitting off one data point at a time
 - Fitting: T(N) = O(DN) + T(N-1); this leads to $O(DN^2)$
 - Prediction: O(N)

Lecture Overview

- Decision and Regression Trees
 - Regression Trees
 - Classification Trees (= Decision Trees)
- 2 Bagging
- 3 Random Forests

Bagging is a Committee / Ensemble Approach

- A single expert may fail
- A committee of experts is more likely to get it right (if experts are experienced and diverse)

Bagging [Breimann, 1996]

- \bullet Train N models on bootstrap samples of the training data
- For each model, data is drawn randomly with replacements
- Average output of all models (bagging = bootstrap aggregation)

Boostrapping

Why Does Bagging Work?

- Bagging
 - Train N models on bootstrap samples of the training data
 - For each model, data is drawn randomly with replacements
 - Average output of all models (bagging = bootstrap aggregation)

Discuss with your neighbor first. (2 minutes)

- Voting question 1: A bagged estimator has
 - ★ higher variance
 - ★ lower variance
 ↑
 ✓

than the individual models it bags.

- Voting question 2: A bagged estimator has
 - ★ higher bias レ
 - ★ lower bias

than the individual models it bags.

Reminder: Bias and Variance

$$\mathbb{E}_{\mathcal{D}}[\{\hat{h}(\mathbf{x};\mathcal{D}) - h^*(\mathbf{x})\}^2] = \underbrace{\{\bar{h}(\mathbf{x}) - h^*(\mathbf{x})\}^2}_{\text{(bias)}^2} + \underbrace{\mathbb{E}_{\mathcal{D}}[\{\hat{h}(\mathbf{x};\mathcal{D}) - \underline{\bar{h}}(\mathbf{x})\}^2]}_{\text{variance}}$$

expected squared deviation from best prediction = $(bias)^2 + variance$

- $\hat{h}(\mathbf{x}; \mathcal{D})$ is the prediction of the model that fits data \mathcal{D} best
- \bullet $h^*(\mathbf{x})$ is the true best (unknown) prediction
- $\bar{h}(\mathbf{x}) = \mathbb{E}_{\mathcal{D}}[\hat{h}(\mathbf{x}; \mathcal{D}]$ is the average model prediction (average of models trained on data sets \mathcal{D} from a data distribution)

Lecture Overview

- Decision and Regression Trees
 - Regression Trees
 - Classification Trees (= Decision Trees)
- 2 Bagging
- Random Forests

- Theoretical result [Breiman 2001]:
 - Ensemble error depends on (1) strength of individual models and (2) the degree to which the models' errors are uncorrelated.

- Theoretical result [Breiman 2001]:
 - Ensemble error depends on (1) strength of individual models and (2) the degree to which the models' errors are uncorrelated.
- We thus want:
 - Individual models that still work (quite) well
 - Quite different models

- Theoretical result [Breiman 2001]:
 - Ensemble error depends on (1) strength of individual models and (2) the degree to which the models' errors are uncorrelated.
- We thus want:
 - Individual models that still work (quite) well
 - Quite different models
- Randomized trees give us these properties. We can randomize in many ways:
- \longrightarrow best split using a random subset of $\underline{m \leq D}$ features
 - splitting using best out of a fixed number of random splits
- training on bootstrap-samples of the data

- Theoretical result [Breiman 2001]:
 - Ensemble error depends on (1) strength of individual models and (2) the degree to which the models' errors are uncorrelated.
- We thus want:
 - Individual models that still work (quite) well
 - Quite different models
- Randomized trees give us these properties. We can randomize in many ways:
 - best split using a random subset of $m \leq D$ features
 - splitting using best out of a fixed number of random splits
 - training on bootstrap-samples of the data

a) Low randomness, high tree correlation

b) High randomness, low tree correlation

Visualization of Random Forests and Their Predictions

Algorithm to Grow a Random Forest

Algorithm 15.1 Random Forest for Regression or Classification.

- 1. For b = 1 to B:
 - (a) Draw a bootstrap sample \mathbf{Z}^* of size N from the training data.
 - (b) Grow a random-forest tree T_b to the bootstrapped data, by recursively repeating the following steps for each terminal node of the tree, until the minimum node size n_{min} is reached.
 - i. Select m variables at random from the p variables.
 - ii. Pick the best variable/split-point among the m.
 - iii. Split the node into two daughter nodes.
- 2. Output the ensemble of trees $\{T_b\}_1^B$.

To make a prediction at a new point x:

Regression:
$$\hat{f}_{rf}^B(x) = \frac{1}{B} \sum_{b=1}^B T_b(x)$$
.

Classification: Let $\hat{C}_b(x)$ be the class prediction of the bth random-forest tree. Then $\hat{C}_{\rm rf}^B(x) = majority \ vote \ \{\hat{C}_b(x)\}_1^B$.

from [Hastie, Tibshirani and Friedman]

- \bullet N data points of dimensionality D, axis-aligned splits
- ullet Picking m variables at random at each split; B trees

- N data points of dimensionality D, axis-aligned splits
- ullet Picking m variables at random at each split; B trees
- Best case: balanced trees
 - Fitting: $O(BmN \log N)$

- ullet N data points of dimensionality D, axis-aligned splits
- ullet Picking m variables at random at each split; B trees
- Best case: balanced trees
 - Fitting: $O(BmN \log N)$
 - Prediction: $O(B \log N)$

- \bullet N data points of dimensionality D, axis-aligned splits
- ullet Picking m variables at random at each split; B trees
- Best case: balanced trees
 - Fitting: $O(BmN \log N)$
 - Prediction: $O(B \log N)$
- Worst case: splitting off one data point at a time
 - Fitting: $O(BmN^2)$
 - ullet Prediction: O(BN)

Some Ways of Ensembling Trees

- Decision Trees + Bagging = Bagged trees
- Decision Trees + random feature subsets + Bagging = Random forest
- Decision Trees with almost random splits + Bagging = ExtraTrees
 - Extremely randomized trees

Examples: Influence of split randomization

- 400 trees with max_depth 5 (top) and 13 (bottom)
- Different split types: axis aligned (left), oriented lines (middle), and conic sections (right)
- Splitting: best out of 500 random proposed splits for each splits

Examples: Influence of split randomization

- 400 trees with max_depth 5 (top) and 13 (bottom)
- Different split types: axis aligned (left), oriented lines (middle), and conic sections (right)
- Splitting: best out of 5 random proposed splits for each splits

Advantages of Boostrapping

- Can help detect outliers
- Decorrelation of the trees in the ensemble
- Out-of-bag error:
 - not every data point is used to fit every single tree
 - in fact, almost 37% are not used in each tree (see assignment)
 - predict unused points for each tree to obtain unbiased estimate of the generalization error

Pros and Cons of Random Forests (and co.)

- + All pros from decision trees remain (except interpretability)
- + Better generalization
- + Out-of-bag error with little overhead
- + Scalability to large data sets and high dimensions
- + Require little tuning
- Relatively weak performance for smooth functions without noise

Summary by learning goals

Having heard this lecture, you can now ...

- determine good splits in regression and classification trees
- describe the steps of the CART algorithm
- describe the steps of the random forest algorithm
- formally describe entropy and information gain
- derive the complexity of decision trees and random forests
- explain why bootstrapping works well for trees
- describe some ways to randomize trees and their effects

Further Reading

- Criminisi et. al (2013)
 - Chapter 3: Introduction: The Abstract Forest Model
 - Chapter 4: Classification Forests
 - Chapter 5: Regression Forests
 - PDF of entire book available from university machines: http://link.springer.com/ book/10.1007/978-1-4471-4929-3

- Hastie, Tibshirani and Friedman
 - Section 9.2: Tree-Based Methods
 - Chapter 15: Random Forests

Preview of Assignment 8

In assignement 8, you will ...

- implement a simple regression tree and forest
- study hyperparameter influence on toy data
- calculate entropy and information gain by hand
- build a small decision tree by hand