Algorytmy Numeryczne Zadanie 3

Paulina Żurawska i Paweł Szczupak

Grupa 1, Aplikacje internetowe i bazy danych

Zadanie polega na obliczeniu prawdopodobieństwa, tego że głosowanie zakończy się sukcesem przy z góry ustalonej liczbie agentów i stałych zasadach zmiany statusów wylosowanej pary. Prawdopodobieństwo wylosowania pary jest równomiernie rozłożone.

Wynik jest uzyskiwany dzięki macierzy opisującej układ równań liniowych i metodą Gaussa, Jacobiego i Gaussa-Seidela na danych typu double.

Układ równań dla macierzy 4x4 obliczony manualnie i (poniżej) układ równań uzyskany dzięki programowi:

	00	01	02	03	04	10	11	12	13	20	21	22	30	31	40
00	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
01	0	1/2	1/2	0	0	0	0	0	0	0	0	0	0	0	0
02	0	0	1/3	2/3	0	0	0	0	0	0	0	0	0	0	0
03	0	0	0	1/2	1/2	0	0	0	0	0	0	0	0	0	0
04	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
10	0	0	0	0	0	1/2	0	0	0	1/2	0	0	0	0	0
11	1/6	0	0	0	0	0	1/6	1/3	0	0	1/3	0	0	0	0
12	0	1/3	0	0	0	0	0	1/6	1/3	0	0	1/6	0	0	0
13	0	0	1/2	0	0	0	0	0	1/2	0	0	0	0	0	0
20	0	0	0	0	0	0	0	0	0	1/3	0	0	2/3	0	0
21	0	0	0	0	0	1/3	0	0	0	0	1/6	1/6	0	1/3	0
22	0	0	0	0	0	0	2/3	0	0	0	0	1/3	0	0	0
30	0	0	0	0	0	0	0	0	0	0	0	0	1/2	0	1/2
31	0	0	0	0	0	0	0	0	0	1/2	0	0	0	1/2	0
40	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1

	00	01	02	03	04	10	11	12	13	20	21	22	30	31	40
99	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
01	0	0,5	0,5	0	0	0	0	0	0	0	0	0	0	0	0
02	0	0	0,33	0,67	0	0	0	0	0	0	0	0	0	0	0
0 3	0	0	0	0,5	0,5	0	0	0	0	0	0	0	0	0	0
04	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
10	0	0	0	0	0	0,5	0	0	0	0,5	0	0	0	0	0
11	0,17	0	0	0	0	0	0,17	0,33	0	0	0,33	0	0	0	0
12	0	0,33	0	0	0	0	0	0,17	0,33	0	0	0,17	0	0	0
13	0	0	0,5	0	0	0	0	0	0,5	0	0	0	0	0	0
20	0	0	0	0	0	0	0	0	0	0,33	0	0	0,67	0	0
21	0	0	0	0	0	0,33	0	0	0	0	0,17	0,17	0	0,33	0
22	0	0	0	0	0	0	0,67	0	0	0	0	0,33	0	0	0
30	0	0	0	0	0	0	0	0	0	0	0	0	0,5	0	0,5
31	0	0	0	0	0	0	0	0	0	0,5	0	0	0	0,5	0
40	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1

Na wykresach 1-6 przedstawiono błędy przy konkretnych precyzjach pomiędzy algorytmem Monte Carlo a odpowiednio Jacobiego i Gaussa-Seidela. Algorytmy te uzyskują takie same, bądź tak bliskie sobie wyniki, że różnica pomiędzy nimi i ich precyzjami jest minimalna, dlatego też wykresy są identyczne.

Zostały także przeprowadzone testy polegające na zmierzeniu czasu działania obu algorytmów. Rezultaty zostały ukazane na wykresach 7-9. Wynika z nich, że algorytm Gaussa-Seidela jest szybszy, tak więc ten algorytm okazał się najbardziej optymalnym.

Figure 1 Błąd pomiędzy algorytmami Monte Carlo a Jacobim dla precyzji 10^(-6) i wzrastającej liczby agentów

Figure 2 Błąd pomiędzy algorytmami Monte Carlo a Jacobim dla precyzji 10^(-10) i wzrastającej liczby agentów

Figure 3 Błąd pomiędzy algorytmami Monte Carlo a Jacobim dla precyzji 10^(-14) i wzrastającej liczby agentów

Figure 4 Błąd pomiędzy algorytmami Monte Carlo a Seidlem dla precyzji 10^(-6) i wzrastającej liczby agentów

Figure 5 Błąd pomiędzy algorytmami Monte Carlo a Seidlem dla precyzji 10^(-10) i wzrastającej liczby agentów

Figure 6 Błąd pomiędzy algorytmami Monte Carlo a Seidlem dla precyzji 10^(-14) i wzrastającej liczby agentów

Figure 7 Różnica czasów pomiędzy algorytmami w milisekundach w zależności od rosnącej liczby agentów(testy przeprowadzone dla precyzji 10^(-6))

Figure 8 Różnica czasów pomiędzy algorytmami w milisekundach w zależności od rosnącej liczby agentów(testy przeprowadzone dla precyzji 10^(-10))

Figure 9 Różnica czasów pomiędzy algorytmami w milisekundach w zależności od rosnącej liczby agentów(testy przeprowadzone dla precyzji 10^(-14))

Zakres prac:

Paulina Żurawska: implementacja kodu, tworzenie sprawozdania.

Paweł Szczupak: implementacja algorytmów, tworzenie sprawozdania.