Ferienkurs Analysis 3 - Probeklausur - Musterlösung

Ralitsa Bozhanova, Max v. Vopelius

12.08.2009

1 Elementare Lösungsmethoden

Gegeben ist die DGL

$$y'(x) = -\frac{f(x,y)}{g(x,y)}$$

Es sei $f(x,y) = x^2 - y^2$, g(x,y) = 2xy und x > 0, y > 0. In dieser Aufgabe ist jeweils nur eine Antwort richtig!

(a) Aus welcher Ungleichung kann man schließen, dass die DGL nicht exakt ist?

$$\left(\ \Box \ \partial_x f \neq \partial_y g \ \Box \ \partial_x f \neq -\partial_y g \ \Box \ \partial_y f \neq \partial_x g \ \Box \ \partial_y f \neq -\partial_x g \ \right)$$

(b) Welche Gleichung muss ein integrierender Faktor h(x) erfüllen

$$\Box \ h(\partial_u f - \partial_x g) = h'g \quad \Box \ \partial_x (hf) = \partial_u (hg) \quad \Box \ h\partial_u f = h\partial_x g \quad \Box \ h'\partial_x g = h\partial_u h$$

(c) Welche der folgenden Funktionen sind integrierende Faktoren für die DGL?

$$\Box \ h(x) = -\frac{2}{x} \ \Box \ h(x) = \frac{1}{x^2} \ \Box \ h(x) = \frac{x^3}{3} \ \Box \ h(x) = -\frac{1}{2} \log x$$

(d) Für welche Funktion gilt V(x,y(x)) = const, falls y(x) eine Lösung der DGL ist?

$$\square \ V(x,y) = \tfrac{x^2 - y^2}{y} \quad \square \ V(x,y) = x(y^2 - \tfrac{1}{3}x^2) \quad \square \ V(x,y) = \tfrac{x^2 + y^2}{x} \quad \square \ V(x,y) = \tfrac{x^2 - y^2}{x}$$

(e) Welche der folgenden Funktionen $y:(0,1)\to\mathbb{R}$ ist eine Lösung der DGL?

$$\square \ y(x) = \sqrt{x(1-x)} \quad \square \ y(x) = \sqrt{x^2-x} \quad \square \ y(x) = \sqrt{x(x^2+1)} \quad \square \ y(x) = x + \sqrt{1-x}$$

2 Potenzreihen

Gegeben ist die Funktion $f: \mathbb{R} \to \mathbb{C}$, die die lineare Differentialgleichung erster Ordnung

2 POTENZREIHEN 2

$$f'(t) - f(t)t = b(1 - t^2)$$
$$f(0) = 1$$

mit einer Konstante $b \in \mathbb{C}$ erfüllt. Gehen Sie davon aus, daß die Lösung f in einer Umgebung von 0 in eine Potenzreihe entwickelbar ist, d.h

$$f(t) = \sum_{n=0}^{\infty} c_n t^n$$

a) Welche Werte nehmen die ersten vier Koeffizienten an?

$$\Box$$
 $c_0 = 1$ $c_1 = b$ $c_2 = \frac{1}{2}$ $c_3 = 0$

$$\Box$$
 $c_0 = 1$ $c_1 = -b$ $c_2 = \frac{1}{2}(1-b)$ $c_3 = b$

$$\Box$$
 $c_0 = 1$ $c_1 = b$ $c_2 = \frac{1}{2}$ $c_3 = \frac{1}{2}b$

$$\Box$$
 $c_0 = 1$ $c_1 = -b$ $c_2 = \frac{1}{2}(1-b)$ $c_3 = 0$

b) Welche Rekursionsgleichung erfüllen die Koeffizienten für $l=2,3,\ldots$

$$\Box c_{l+2} = \frac{1}{l+2}c_l$$

$$\Box c_{l+2} = \frac{1-b}{l+2}c_l$$

$$\Box \, c_{2l+1} = \frac{1}{2l+2} c_{2l}$$

$$\Box c_{l+1} = \frac{1}{l+1}c_l$$

c) Welche explizite Darstellung der Koeffizienten trifft für b=0 zu?

$$\Box c_{2l} = \frac{1}{2l!} \quad l \in \mathbb{N}$$

$$\Box c_{2l} = \frac{1}{2^l l!} \quad l \in \mathbb{N}$$

$$\Box c_{2l+1} = 1 \quad l \in \mathbb{N}$$

$$\Box c_{2l+1} = 0 \quad l \in \mathbb{N}$$

3

d) Geben Sie den Konvergenzradius R der so bestimmten Potenzreihe an.

$$\Box R = 0$$

$$\Box R = 2$$

$$\Box R = \infty$$

$$\Box R = 1$$

3 Linearisierung

Gegeben ist die DGL

$$\ddot{x} = \alpha \dot{x} + \frac{1}{\cosh(x)} - 1, \quad \alpha \in \mathbb{R}$$

(a) Schreiben Sie die Gleichung als System 1. Ordnung der Form $\dot{y} = F(y)$ mit $y \in \mathbb{R}^2$ und $F : \mathbb{R}^2 \to \mathbb{R}^2$. Wie lauten der Fixpunkte des Sytems?

$$\square$$
 $(\pi,0)$ \square $(0,0)$ \square $(0,1)$ \square $(0,2\pi)$

(b) Wie lautet die Linearisierung von F am Fixpunkt?

$$\square \left(\begin{array}{cc} 0 & \alpha \\ 0 & 0 \end{array}\right) \quad \square \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right) \quad \square \left(\begin{array}{cc} 0 & 1 \\ 0 & \alpha \end{array}\right) \quad \square \left(\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array}\right)$$

(c) Wie lauten die Eigenwerte der Linearisierung?

$$\square \{0,1\} \quad \square \{1,\alpha\} \quad \square \{-1,1\} \quad \square \{0,\alpha\}$$

(d) Von welchem Typ ist der Fixpunkt?

- \Box instabil für alle $\alpha \in \mathbb{R}$
- \Box rein elliptisch für $\alpha = 0$
- \square stabil für alle $\alpha > 0$
- \square rein hyperbolisch für alle $\alpha \in \mathbb{R}$

4 Fourier-Integrale

Gegeben ist die Funktion :

$$f(x) = \begin{cases} 1 & \text{für } 0 \le x < 1 \\ 0 & \text{sonst} \end{cases}$$

5 HOLOMORPHIE

mit der zugehörigen Fourier-Transformierten $\widehat{f}(k)=\frac{1}{\sqrt{2\pi}}\int e^{-ikx}f(x)dx$

(a) Welchen Wert hat $\int_{-\infty}^{\infty} |\hat{f}(k)|^2 dk$?

$$\Box \ \frac{1}{2\pi} \quad \Box \ 1 \quad \Box \ 0 \quad \Box \ \sqrt{2\pi} \quad \Box \ \sqrt{\frac{2}{\pi}}$$

4

(b) Welche Beziehung gilt für $k \neq 0$

$$\square \ \widehat{f}(k) = \frac{1}{\sqrt{2\pi}} \frac{\sin(k)}{k} \quad \square \ \widehat{f}(k) = \frac{e^{ik}}{\sqrt{2\pi}} \frac{\sin(k)}{ik} \quad \square \ \widehat{f}(k) = \frac{1}{\sqrt{2\pi}} \frac{e^{ik}}{k} \quad \square \ \widehat{f}(k) = \frac{1}{\sqrt{2\pi}} \frac{1 - e^{-ik}}{ik}$$

(c) Welches ist der Graph von f * f (Faltung)?

(d) Wie lautet die Fourier-Transformierte von f * f als funktion von k

$$\square \ \sqrt{2\pi} |\widehat{f}(k)|^2 \ \square \ \sqrt{2\pi} \widehat{f}(k) \widehat{f}(-k) \ \square \ \sqrt{2\pi} \widehat{f}(k)^2 \ \square \ \sqrt{2\pi} \widehat{f}(2k)$$

(e) Sei nun g(x)=af(ax). Wie lautet die Fourier-Transformierte $\widehat{g}(k)$ für a>0

$$\square \ \widehat{g}(k) = \widehat{f}(\tfrac{k}{a}) \quad \square \ \widehat{g}(k) = e^{ika} \widehat{f}(k) \quad \square \ \widehat{g}(k) = a \widehat{f}(ak) \quad \square \ \widehat{g}(k) = a \widehat{f}(\tfrac{k}{a})$$

5 Holomorphie

Verwenden Sie die Taylorentwicklung im Entwicklungspunkt x=0 von $\log(1+x), x\in\mathbb{R}$, und den Identitätssatz, um zu zeigen, dass der Hauptzweig des Logarithmus log auf $B=\{z\in\mathbb{C}||z-1|<1\}$ mit der Potenzreihe

$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} (z-1)^n$$

übereinstimmt.

6 WEGINTEGRAL 5

6 Wegintegral

Sei γ ein Weg in der komplexen Ebene, der einmal den vollen Kreis um den Ursprung vom Radius R>0 im Uhrzeigersinn durchlaufe. Berechnen Sie das folgende Wegintegral

$$\int_{\gamma} dz \, \mathrm{Im} \, z$$

7 Residuen

Gegeben ist die Funktion

$$f(z) = \frac{1+z}{z^2(1-z^2)^2}$$

(a) Wie groß ist das Residuum von f an der Stelle z = -1?

$$\Box \frac{1}{2} \qquad \Box \frac{\pi i}{2} \qquad \Box \frac{1}{4} \qquad \Box 0 \qquad \Box \frac{1}{4\pi i}$$

(b) Wie lautet der Standardansatz für eine vollständige Partialbruchzerlegung von f?

$$\Box f(z) = \frac{A}{z} + \frac{B}{z^2} + \frac{C}{z^2 - 1} + \frac{D}{(z^2 - 1)^2} + E$$

$$\Box f(z) = \frac{A}{z} + \frac{B}{z^2} + \frac{C}{z - 1} + \frac{D}{(z - 1)^2}$$

$$\Box f(z) = \frac{A}{z} + \frac{B}{z^2} + \frac{C}{z - 1} + \frac{D}{(z - 1)^2} + \frac{E}{z + 1}$$

$$\Box f(z) = \frac{B}{z^2} + \frac{D}{(z - 1)^2} + \frac{E}{z + 1}$$

(c) Wie lauten die ersten Terme der Laurent-Entwicklung von f um z=1 mit den Konstanten auf (b) und geeigneten $M_0, M_1 \in \mathbb{C}$

$$\Box f(z) = M_0 + \frac{C}{z-1} + \frac{D}{(z-1)^2} + \frac{1}{(z-1)^3} + \dots$$

$$\Box f(z) = \frac{D}{(z-1)^2} + \frac{C}{z-1} + M_0 + M_1(z-1) + \dots$$

$$\Box f(z) = \frac{C}{z-1} + M_0 + M_1(z-1) + \dots$$

$$\Box f(z) = \frac{D}{(z+1)^2} + \frac{C}{z+1} + M_0 + M_1(z+1) \dots$$

(d) Wie lautet eine Integraldarstellung von dem in (c) definierten M_0 ?

$$\Box M_0 = \int_{|z-1| = \frac{1}{2}} \frac{f(z)}{z - 1} dz \qquad \Box M_0 = \frac{1}{2\pi i} \int_{|z-1| = \frac{1}{2}} \frac{f(z)}{z - 1} dz$$

$$\Box M_0 = \frac{1}{2\pi i} \int_{|z-1| = \frac{1}{2}} (z - 1)^2 f(z) dz \qquad \Box M_0 = \int_{|z-1| = \frac{1}{2}} (z - 1)^2 f(z) dz$$

(e) Wie lautet eine differentielle Darstellung von dem in (c) definierten M_0 ?

$$\Box M_0 = \frac{d}{dz}(z-1)^2 f(z) \Big|_{z=1} \qquad \Box M_0 = \frac{1}{2\pi i} \frac{d^2}{dz^2} (z-1)^2 f(z) \Big|_{z=1}
\Box M_0 = \frac{1}{2} \frac{d^3}{dz^3} (z-1)^3 f(z) \Big|_{z=1} \qquad \Box M_0 = \frac{1}{2} d^2 dz^2 (z-1)^2 f(z) \Big|_{z=1}$$

8 Hilberträume und beschränkte Operatoren

(a) Welche der folgenden Aussagen ist richtig?

	In einem normierten Vektorraum gilt das Parallelogrammgesetz.
	Ein normierter Vektorraum ist ein Prähilbertraum, falls das Parallelogrammgesetz gilt
	In einem Prähilbertraum gilt die Polarisationsidentität.
	In einem normierten Vektorraum gilt die Polarisationsidentität.

(b) Sei A ein beschränkter Operator auf dem Hilbertraum \mathcal{H} . Welche der folgenden Aussagen ist richtig?

(c) Sei A ein Multiplikationsoperator auf $L^2(\mathbb{R})$ der Form $(A\psi)(x) = V(x)\psi(x)$ mit $V \in C(\mathbb{R}, \mathbb{C})$.

7

Welche der folgende	en Aussagen sind richtig?		
	A ist beschränkt, falls $ V(x) \leq c$ für ein $c > 0$		
	A ist hermitesch, falls A beschränkt ist und ${\rm Im} V=0.$		
	A ist unitär.		
	A ist eine orthogonale Projektion.		
(d) Sei B der Operator der Verschiebung auf $l^2(\mathbb{Z})$ der Form $(B\psi)_n=\psi_{n-1}$. Welche der folgeden Aussagen sind richtig?			
	$\Box B^* = B $		
	\Box B ist hermitesch.		
	\Box B ist unitär.		
	$\Box B < 1$		

9 Norm einer orthogonalen Projektion

Sei $P \neq 0$ eine orthogonale Projektion auf dem Hilbertraum \mathcal{H} . Beweisen Sie, dass ||P|| = 1.