(3.3.3) Total variation diminishing properties of scalar conservation laws consider $\int u_{++} f(u)_{x} = 0$ (1) and its quasi-lenear form ut+ g'(u) ux=0 recall characteristic curves x(E): $\frac{dx(t)}{dt} = g'(u(x,t))$ Such that du(x(t),t) = 0: u(x,t) is constant on characteristis no new local minima en maxima afferer over time for solutions of (1) ? this intuitive realization is contrared using the mathematical property of "Cotal variation" (TV), which is non-increasing over time for solutions of (1) def: Total Variation (TV) of u(x) over interval I2: $TV(u(x); \mathcal{D}) = \int \frac{du(x)}{dx} dx$

des: Total Variation
$$(TV)$$
 of $u(x)$ over interval Ω :
$$TV(u(x); \Omega) = \int \left| \frac{du(x)}{dx} \right| dx$$

(note: this def. also holds, in the distributional sense, for functions u(x) with jump discontinuities)

escample:

 $TV(u(x); [x_1,x_2]) = |u_{\omega}-u_{\omega}| + |u_{c}-u_{\omega}|$ $+ |u_{d}-u_{c}| + |u_{e}-u_{d}|$

note: I new local extrema arise, TV
goes up

Total Variation Diminishing (TVD) property.

consider smooth flow between Oberæterister x, (E) and x_2 (E), then it is easy to see that $TV(u(x,t_2)) = TV(u(x,t_1))$ Lon Ω , Lon Ω 2

