Estadística Inferencial

Capítulo X - Ejercicio 04

Aaric Llerena Medina

Se seleccionó una muestra aleatoria de 36 observaciones de una población con media μ desviación estándar 18. Si para realizar la prueba de la hipótesis nula: $H_0: \mu=50$, se utiliza la región de rechazo: $RC=\bar{X}<43$ o $\bar{X}>57$.

- a) Determine el nivel de significación de la prueba.
- b) Determine la probabilidad de error tipo II, si realmente, $\mu = 41$.

Solución:

Los parámetros conocidos son:

- Tamaño de la muestra: n = 36.
- Desviación estándar: $\sigma = 18$.
- Región de rechazo: $\bar{X} < 43$ o $\bar{X} > 57$.
- Hipótesis alternativa: $H_1: \mu \neq 50$.

La desviación estándar del error estándar de la media es:

$$SE = \frac{\sigma}{\sqrt{n}} = \frac{18}{\sqrt{36}} = \frac{18}{6} = 3$$

a) El nivel de significación α es la probabilidad de rechazar H_0 cuando es verdadera. Esto ocurre si \bar{X} cae en la región de rechazo $RC = \{\bar{X} < 43 \text{ o } \bar{X} > 57\}$. Calculamos esta probabilidad bajo H_0 :

$$P(\bar{X} < 43) + P(\bar{X} > 57)$$

Estandarizando, los valores críticos se transforman en valores z:

• Para $\bar{X} = 43$:

$$Z = \frac{43 - 50}{3} = -2.33$$

• Para $\bar{X} = 57$:

$$Z = \frac{57 - 50}{3} = 2.33$$

Usando la tabla de distribución normal estándar:

■
$$P(Z < -2.33) \approx 0.0099$$
.

$$P(Z > 2.33) = 1 - P(Z < 2.33) 1 - 0.9901 = 0.0099.$$

Por lo tanto, el nivel de significación es:

$$\alpha = P(Z < -2.33) + P(Z > 2.33) = 0.0099 + 0.0099 = 0.0198$$

Por lo tanto, el nivel de significación de la prueba es $\alpha = 0.0198$.

- b) El error tipo II ocurre cuando no se rechaza H_0 siendo falsa. Esto sucede si \bar{X} no cae en la región de rechazo, es decir, si $43 \leq \bar{X} \leq 57$, cuando realmente $\mu = 41$. Bajo esta hipótesis alternativa, la distribución de \bar{X} es:
 - Media: $\mu_{\bar{X}} = 41$.
 - Desviación estándar: $\sigma_{\bar{X}} = 3$.

Calculamos la probabilidad de que \bar{X} no caiga en la región de rechazo:

$$\beta = P\left(43 \le \bar{X} \le 57 \mid \mu = 41\right)$$

Estandarizando:

• Para
$$\bar{X} = 43$$
:

$$Z = \frac{43 - 41}{3} = \frac{2}{3} \approx 0.67$$

• Para
$$\bar{X} = 57$$
:

$$Z = \frac{57 - 41}{3} = \frac{16}{3} \approx 5.33$$

Usando la tabla de la distribución normal estándar:

■
$$P(Z \le 0.67) \approx 0.7486$$
.

■
$$P(Z \le 5.33) \approx 1.$$

Restando ambas probabilidades:

$$\beta = P(Z \le 5.33) - P(Z \le 0.67) \approx 1 - 0.7486 = 0.2514$$

Por lo tanto, la probabilidad de error tipo II es $\beta = 0.2525$.