BMA

Vor.: $(a_n)_{n\in\mathbb{N}}$ und $\mathbb{N}_{\geq N} = \{n \in \mathbb{N} : n \geq N\}$

- (1) **Beh.:** für $a_n := 8$ gilt $\exists a \in \mathbb{R} : \forall \varepsilon > 0 : \forall N \in \mathbb{N} : \forall n \in \mathbb{N}_{>N} : |a_n a| < \varepsilon$
- (2) **Beh.:** für $a_n := (-1)^n \cdot 8$ gilt $\exists a \in \mathbb{R} : \exists \varepsilon > 0 : \exists N \in \mathbb{N} : \forall n \in \mathbb{N}_{\geq N} : |a_n a| < \varepsilon$
- (3) **Beh.:** für $a_n := \frac{1}{n} \cdot 8$ gilt $\exists a \in \mathbb{R} : \forall \varepsilon > 0 : \exists N \in \mathbb{N} : \forall n \in \mathbb{N}_{\geq N} : |a_n a| < \varepsilon$
- (4) **Beh.:** für

$$a_n := \begin{cases} 8 & \text{für } n = 1\\ 0 & \text{sonst} \end{cases}$$

gilt $\exists a \in \mathbb{R} : \exists N \in \mathbb{N} : \forall \varepsilon > 0 : \forall n \in \mathbb{N}_{\geq N} : |a_n - a| < \varepsilon$

Proof

- (1) setze a := 8, zu zeigen $a \in \mathbb{R}$ und $\forall \varepsilon > 0 : \forall N \in \mathbb{N} : \forall n \in \mathbb{N}_{\geq N} : |a_n a| < \varepsilon$. $a = 8 \in \mathbb{R}$ gegeben Sei $\forall \varepsilon > 0, N \in \mathbb{N}$ und $n \in \mathbb{N}_{\geq N}$ gegeben, zu zeigen: $|a_n a| < \varepsilon$, es gilt: $|a_n a| = |8 8| = 0 < \varepsilon$
- (2) setze $a := 8, \varepsilon := 32$ und N := 16 zu zeigen: $a \in \mathbb{R}, \varepsilon > 0, N \in \mathbb{N}$ und $|a_n a| < \varepsilon$, es gilt: $a = 8 \in \mathbb{R}, \varepsilon = 32 > 0$ und $N = 16 \in \mathbb{N}$ gegeben.

$$|a_n - a| = |(-1)^n \cdot 8 - 8|$$
 Dreiecksungleichung $|(-1)^n \cdot 8| + |8| = 8 + 8 = 16 < 32 = \varepsilon$

(3) setze a:=0, zu zeigen $a\in\mathbb{R}$ und $\forall \varepsilon>0: \exists N\in\mathbb{N}: \forall n\in\mathbb{N}_{\geq N}: |a_n-a|<\varepsilon$. $a=0\in\mathbb{R}$ gegeben

Sei $\forall \varepsilon > 0$ gegeben, zu zeigen: $\exists N \in \mathbb{N} : \forall n \in \mathbb{N}_{\geq N} : |a_n - a| < \varepsilon$, nach Archi $\exists N \in \mathbb{N} > \frac{1}{\varepsilon}$, also $\frac{1}{N} < \varepsilon$, wähle ein solches N, zu zeigen $\forall n \in \mathbb{N}_{\geq N} : |a_n - a| < \varepsilon$: Sei $n \in \mathbb{N}_{\geq N}$ gegeben, zu zeigen $|a_n - a| < \varepsilon$, es gilt:

$$|a_n - a| = \left|\frac{1}{n} - 0\right| = \frac{1}{n} \stackrel{\text{da } n \ge N}{\le} \frac{1}{N} < \varepsilon$$

(4) setze a := 0 und N = 2, zu zeigen $a \in \mathbb{R}$, $N \in \mathbb{N}$ und $\forall \varepsilon > 0 : \forall n \in \mathbb{N}_{\geq N} : |a_n - a| < \varepsilon$. $a = 0 \in \mathbb{R}, N = 2 \in \mathbb{N}$ gegeben Sei $\forall \varepsilon > 0$ und $n \in \mathbb{N}_{\geq N}$ gegeben, zu zeigen: $|a_n - a| < \varepsilon$

$$|a_n - a| \stackrel{\mathrm{da} n \ge 2}{=} |0 - 0| = 0 \stackrel{\mathrm{Def.}}{<} \varepsilon$$