A Transductive Forest for Anomaly Detection with Few Labels

https://github.com/jzha968/transForest

Jingrui Zhang, <u>Ninh Pham</u>, Gillian Dobbie University of Auckland

Anomaly detection

• Definition:

• Identify rare items, events, or observations which deviate significantly from the majority of the data

Unsupervised methods:

• Common assumption: "Anomalies are on sparse regions while normal points are on dense regions."

• Challenges in high dimensions:

- The common unsupervised prior is not true due to irrelevant features
- There are exponential number of subspaces to investigate

This work

- Research question: How could we find relevant subspaces to identify anomalies given few labels?
- Solution: Semi-supervised TransForest
 - Push the classification boundaries towards sensitive subspaces containing both normal and abnormal points
 - Provide feature importance ranking
 - Competitive with recent semi-supervised SOTA with 2% labeled data

How TransForest works?

- Setting:
 - Collection of trees (similar to iForest, Random Forest, Extra Trees)
 - Tree's input: all available labeled points + a subset of unlabeled points
- Training: Pseudo-labeling + Extra Trees learning
 - For a randomly selected feature $\mathbf{f_i}$, build a histogram, and use label information to pseudo-label unlabeled points in each bin
 - For a random feature $\mathbf{f_i}$ and a random cut $\mathbf{v_i}$, compute the InfoGain based on the labeled and pseudo-labeled points; then, select $(\mathbf{f_i}, \mathbf{v_i})$ that maximizes InfoGain

- Rule 1 (unsupervised):
 - ullet If **B** has no labeled points, resort unsupervised prior given a threshold Δ
 - o If **B** is dense ($|B| \ge \Delta$), all points in **B** are normal
 - o If **B** is sparse ($|B| < \Delta$), all points in **B** are abnormal

- Rule 2 (anomalies are rare):
 - ullet If **B** is dense and contains only labeled anomalies
 - o $\ B$ will have $0.9 \mid B \mid$ normal and $0.1 \mid B \mid$ abnormal points

- Rule 3 (semi-supervised):
 - If **B** has $\mathbf{m_0}$ normal points and $\mathbf{m_1}$ anomalies
 - o **B** will have $\frac{m_0}{m_0+m_1}$ | **B** | normal and $\frac{m_1}{m_0+m_1}$ | **B** | abnormal points

- Rule 1 (unsupervised):
 - ullet If ${f B}$ has no labeled points, resort unsupervised prior given a threshold Δ
 - o If **B** is dense ($|B| \ge \Delta$), all points in **B** are normal
 - o If **B** is sparse ($|B| < \Delta$), all points in **B** are abnormal

hyperparameters

- Rule 2 (anomalies are rare):
 - If **B** is dense and contains only labeled anomalies
 - o B will have 0.9 |B| normal and 0.1 |B| abnormal points

hyperparameters

- Rule 3 (semi-supervised):
 - If **B** has $\mathbf{m_0}$ normal points and $\mathbf{m_1}$ anomalies
 - o **B** will have $\frac{m_0}{m_0+m_1}|\mathbf{B}|$ normal and $\frac{m_1}{m_0+m_1}|\mathbf{B}|$ abnormal points

TransForest vs iForest

- TransForest vs iForest:
 - TransForest pushes boundaries towards sensitive areas

- Testing:
 - Using pathLength as anomaly score (similar to iForest) with adjustment
 - Labeled anomalies on isolated node: pathLength = 1
 - o Labeled normal points on isolated node: pathLength = log(s)

Hyperparameter setting

- Hyperparameters:
 - Density threshold of node S: $\Delta = 0.1 |S|$
 - Number of histogram bins of node S: log(|S|) + 1
 - Number of trees: t = 100
 - Number of trials to find the best split: k = 10
 - Tree size: $\mathbf{s} = \mathbf{max}(256, 2 \mathbf{n}_1)$ where $\mathbf{n}_1 = \#$ labels
- Complexity:
 - Training in O(t s k log(s)) and testing in O(n t log(s)) as similar as iForest
- Feature importance ranking:
 - Derived from the estimated InfoGain

Experiment

- Datasets:
 - 15 tabular and 20 continuous real-world data sets
- Experiment setting:
 - Randomly take 2% 10% labeled data for training (# labeled normal points = # labeled anomalies) and use the rest for testing
 - Measure average AUC for 10 runs
- Semi-supervised competitors:
 - Tree and boosting: Hybrid iForest, XGBOD
 - Deep learning: DeepSAD, DevNet

Experiment

• Avg AUC using 2% - 10% labels on various data sets:

(a) All datasets.

- (b) Tabular datasets.
- (c) CV & NLP datasets.
- Critical diagram using 2% labels on all data sets:

Feature importance ranking

- Annthyroid ($\mathbf{n} = 7200$, $\mathbf{d} = 6$, # anomalies = 534):
 - We use $\sim 2\%$ of labeled points (10 anomalies and 10 normal points)
 - Number is dimension index
 - Wedge size reflects feature importance

Conclusion

• Few labels are useful for identifying relevant features for anomaly detection

• TransForest:

- Simple but competitive with other semi-supervised models
- Consistent importance feature ranking with supervised models on lowdimensional data sets
- Robust against irrelevant features
- https://github.com/jzha968/transForest