Introduction to Theory of Computation

Chapter 4, Turing Machines

March 1, 2017

Even Palindromes

$a^nb^nc^n$

Equivalent models:

- 1. One-tape Turing machines.
- 2. k-tape Turing machines.
- 3. Non-deterministic Turing machines.
- 4. Java programs.
- 5. Scheme programs.
- 6. C++ programs.
- 7. ...

The Church-Turing Thesis

Every computational process that is intuitively considered to be an algorithm can be converted to a Turing machine.

Decidability

A language A over Σ is *decidable* if there exists a Turing machine M such that for every string $w \in \Sigma^*$:

- 1. If $w \in A$ then M, started on w, halts in the accept state.
- 2. If $w \notin A$ then M, started on w, halts in the reject state.

Describing machines and problems as strings

- ▶ We assume any machine (DFA, PDA, TM) can be described by a string *M* using some alphabet.
- ► The input to any machine is a string w using some alphabet.
- We can thus describe both a machine M and its input w, with a pair of strings: (M, w).
- ▶ This pair can be converted to a single string $\langle M, w \rangle$.
- ▶ For convenience, we assume $\langle M, w \rangle$ is encoded in binary.
- ▶ In general, $\langle M \rangle$ means: encode M as a binary string.
- ▶ We can now define a language A as the set of all strings $\langle M, w \rangle$ such that w is in the computation model of M.

The language A_{DFA} is decidable

$$A_{DFA} = \{\langle M, w \rangle : M \text{ is a DFA that accepts } w\}$$

The language A_{DFA} is decidable

$$A_{DFA} = \{\langle M, w \rangle : M \text{ is a DFA that accepts } w\}$$

- Given input $\langle M, w \rangle$:
 - \triangleright Run M on w.
 - ▶ It must terminate.
 - If it accepts, accept, else reject.

The language A_{NFA} is decidable

$$A_{NFA} = \{\langle M, w \rangle : M \text{ is a NFA that accepts } w\}$$

The language A_{NFA} is decidable

$$A_{\mathit{NFA}} = \{\langle M, w \rangle : M \text{ is a NFA that accepts } w\}$$

- Given input $\langle M, w \rangle$:
 - ► Convert NFA *M* to DFA *N*.
 - This algorithm terminates.
 - ▶ Run N on w.
 - It must terminate.
 - If it accepts, accept, else reject.

The language A_{CGF} is decidable

$$A_{NFA} = \{\langle M, w \rangle : M \text{ is a CFG that accepts } w\}$$

The language A_{CGF} is decidable

$$A_{\mathit{NFA}} = \{\langle \mathit{M}, \mathit{w} \rangle : \mathit{M} \text{ is a CFG that accepts } \mathit{w}\}$$

- Given input $\langle M, w \rangle$:
 - ► Convert CFG M to Chomsky normal form CFG N.
 - This algorithm terminates.
 - ▶ Run N on w for all derivations up to length 2|w|.
 - ▶ There are a finite number of these, so it must terminate.
 - If any derivation accepts, accept, else reject.

$$A_{TM} = \{\langle M, w \rangle : M \text{ is a TM that accepts } w\}$$

$$A_{TM} = \{\langle M, w \rangle : M \text{ is a TM that accepts } w\}$$

Proof? By contradiction.

- ▶ Assume there is a TM *H* that decides this language.
- Construct the following TM, D:

```
D: On input \langle M \rangle:
Step 1: Run H on \langle M, \langle M \rangle \rangle.
Step 2: If H accepts, reject, else accept.
```

- ▶ If H accepts $\langle D, \langle D \rangle \rangle$, then D rejects $\langle D \rangle$.
- ▶ If H rejects $\langle D, \langle D \rangle \rangle$, then D accepts $\langle D \rangle$.
- ▶ H does not recognize A_{TM}.

Diagonal argument

▶ Machine *H* that decides *A_{TM}* can fill in this table:

```
\langle M_5 \rangle
        \langle M_0 \rangle
                   \langle M_1 \rangle
                              \langle M_2 \rangle
                                          \langle M_3 \rangle
                                                     \langle M_4 \rangle
M_0
      accept
                  accept
                             accept
                                         reject
                                                    accept
                                                                reject
M_1
                  reject
                                                                reject
      accept
                             accept
                                         accept
                                                    accept
МΣ
                  reject
                                                                reject
      accept
                             accept
                                         accept
                                                    accept
Мз
                             reject
                                         reject
      accept
                  accept
                                                    accept
                                                                accept
M_{\Delta}
       reject
                             accept reject
                  accept
                                                    accept
                                                                accept
M_5
       reiect
                  reiect
                             accept
                                         accept
                                                    accept
                                                                reject
                                                                           . . .
```

- ▶ *D* uses *H* to give the opposite answer on the diagonal.
- ▶ *H* must give the wrong answer somewhere on machine *D*.

$$\mathit{Halt} = \{ \langle \mathit{M}, \mathit{w} \rangle : \mathit{M} \text{ is a TM that terminates on } \mathit{w} \}$$
 Proof?

$$Halt = \{\langle M, w \rangle : M \text{ is a TM that terminates on } w\}$$

Proof?

By contradiction. Assume there is a TM H that decides this language. Construct the following TM, Q:

$$Q$$
: On input $\langle M \rangle$: While $H(\langle M, \langle M \rangle)$ do endwhile

- ▶ What happens if we run *Q* on itself?
- ▶ $Q(\langle Q \rangle)$ terminates iff $Q(\langle Q \rangle)$ does not terminate.

$$M_a = \{ \langle M \rangle \mid \mathcal{L}(M) = \{a\} \}$$

$$M_a = \{\langle M \rangle \mid \mathcal{L}(M) = \{a\}\}$$

Proof?

By contradiction.

- Suppose TM A decides M_a.
- ► Construct the following TM, *H*:

H: On input $\langle M, w \rangle$:

Construct TM D:

D: On input $\langle s \rangle$:

- ightharpoonup Run M on w.
- If s = a accept, else reject.
- ► Run A on D.

$$M_a = \{\langle M \rangle \mid \mathcal{L}(M) = \{a\}\}$$

Proof?

By contradiction.

- Suppose TM A decides M_a.
- ► Construct the following TM, *H*:

H: On input $\langle M, w \rangle$:

Construct TM D:

D: On input $\langle s \rangle$:

- ightharpoonup Run M on w.
- ▶ If s = a accept, else reject.
- ► Run A on D.
- $\mathcal{L}(D) = \{a\}$ iff M halts on w.

$$M_a = \{\langle M \rangle \mid \mathcal{L}(M) = \{a\}\}$$

Proof?

By contradiction.

- ▶ Suppose TM A decides M_a.
- ► Construct the following TM, *H*:

H: On input $\langle M, w \rangle$:

Construct TM D:

D: On input $\langle s \rangle$:

- ► Run M on w.
- If s = a accept, else reject.
- ► Run A on D.
- $ightharpoonup \mathcal{L}(D) = \{a\} \text{ iff } M \text{ halts on } w.$
- H decides the language Halt.
- But that's impossible!

Rice's Theorem

Let $\ensuremath{\mathcal{T}}$ be the set of all binary encoded TMs.

Let \mathcal{P} be a subset of \mathcal{T} such that

- 1. $\mathcal{P} \neq \emptyset$
- 2. $\mathcal{P} \neq \mathcal{T}$
- 3. If $L(M_1) = L(M_2)$, then either both or neither is in \mathcal{P} .

Then \mathcal{P} is undecidable.

Rice's Theorem Examples

- 1. $\{\langle M \rangle \mid M \text{ accepts only inputs in the language } a^*b^*\}$
- 2. $\{\langle M \rangle \mid M \text{ accepts input of length } n^2\}$
- 3. $\{\langle M \rangle \mid M \text{ accepts input of length } k\}$
- 4. $\{\langle M \rangle \mid M \text{ accepts } \epsilon\}$
- 5. $\{\langle M \rangle \mid M \text{ accepts all inputs}\}$
- 6. $\{\langle M \rangle \mid M \text{ does not accept all inputs}\}$
- 7. $\{\langle M \rangle \mid M \text{ accepts some input}\}$
- 8. $\{\langle M \rangle \mid M \text{ does not accept any input}\}$

None of these is decideable, or even enumerable.

Enumerability

A language A over Σ is *enumerable* if there exists a Turing machine M such that for every string $w \in \Sigma^*$:

- 1. If $w \in A$ then M, started on w, halts in the accept state.
- 2. If $w \notin A$ then M, started on w, either halts in the reject state or loops forever.

Hilbert's problem is enumerable but not decidable

 $\mathit{Hilbert} = \{\langle p \rangle : p \text{ is a polynomial with integer coefficients}$ that has an integral root}

The language A_{TM} is enumerable but not decidable.

$$A_{TM} = \{\langle M, w \rangle : M \text{ is a TM that accepts } w\}$$

Why do we call it enumerable?

- If we can enumerate the elements with an algorithm, then we can create an algorithm to correctly identify elements of the set.
- ▶ If we can correctly identify elements of the set, then we can build an algorithm to enumerate them.

Busy beavers are not enumerable

The nth busy beaver number is the largest (finite) number of 1s that can be output by a Turing machine with n states.

2 State Busy Beaver: four 1s

3 State Busy Beaver: six 1s

4 State Busy Beaver: thirteen 1s

5 State Busy Beaver (?): 4098 1s

Proof Busy Beaver function is uncomputable

Proof by contradiction.

- ► Let *bb*(*n*) be the largest (finite) number of 1's output by a Turing Machine with *n* states.
- ▶ Suppose there is a Turing Machine M_{bb} that computes bb(n), that is, starting with n on the tape, the machine halts with bb(n) on the tape.

▶ Note: this is a new use of TMs, computing a function from input to output, not recognizing a language.

Busy Beaver proof

▶ Let g(n) = bb(2n). We can build a TM for g by starting with a machine that doubles the input, and then runs the machine M_{bb} .

▶ Suppose the machine for g, M_g has k states.

Busy Beaver proof

- ▶ Build a machine M_{2k} with 2k states that does nothing but put 2k 1s on a blank tape.
- Now build a machine M_D that starts by putting 2k 1's on the tape, and then runs the M_g machine.

- ▶ M_D can be built with 3k states.
- ► The output of M_D is g(2k) = bb(2(2k)) = bb(4k) 1s.
- ▶ Do you see the problem?