Algorithm Analysis

LECTURE 1 Introduction to Algorithm Design and Analysis

fang.liu@digipen.edu

Scene A

	Students		Status
1	John	Applied: EB, BubiSoft (sorted)	Waiting ···
2	John	Gets offer from BubiSoft	Accept (John BubiSoft)
3	John	Gets offer from EB	Withdraw (Null, BubiSoft) Accept (John, EB)

Unstable

Scene B

	Students		Status
1	Alan	Applies Geeks	waiting
2	Alan	Gets offer from Geeks	Accept (Alan Geeks)
3	Cindy	Applies Geeks Geeks: Cindy Alan (sorted)	Withdraw (Alan, Null) Accept (Cindy, Geeks)

Unstable

Is the *self-enforcing* possible?

 whenever a student is assigned to a company the self-interest of both the student and the company prevents them from breaking the match.

stable

	Students		Status
1	Alan	Applies Geeks	waiting
2	Alan	Gets offer from Geeks	Accept (Alan Geeks)
3	Cindy	Applies Geeks Geeks: Alan Cindy (sorted)	(Alan Geeks)
4	Cindy	Applied: BubiSoft EB (sorted)	Waiting ···
5	Cindy	Gets offer from BubiSoft	Accept (Cindy BubiSoft)
6	Cindy	Gets offer from EB	(Cindy BubiSoft)

Problem Formulating

LECTURE 1 Introduction to Algorithm Design and Analysis

Stable Marriage Problem

- John's preference list
 - Cindy
 - Mary
- Alan's
 - Mary
 - Cindy

- Cindy's
 - John
 - Alan
- Mary's
 - Alan
 - John

Terms

- M={John Alan}
- F = {Mary Cindy}
- M × F =
 - { (John Mary)
 - (John Cindy)
 - (Alan Mary)
 - (Alan Cindy) }

- Matching
 - S = {(John Mary) (Alan Cindy)}
 - S = {(John Cindy)}
- Perfect Matching
 - S = {(John Mary) (Alan Cindy)}
 - S = {(John Cindy) (Alan Mary)}
- Stable/Instable Matching
 - Stable: {(John Cindy) (Alan Mary)}
 - Instable: {(John Mary) (Alan Cindy)}

Terms - Definition

Matching

• A matching S is a set of ordered pairs, each from $M \times F$, with the property that each member of M and each member of F appears in at most one pair in S.

Perfect Matching

• A perfect matching S' is a matching with the property that each member of M and each member of F appears in exactly one pair in S'.

Stable/Instable Matching

- A matching S is considered to be instable if there are pairs $(m_1, f_1) \in S$ and $(m_2, f_2) \in S$ while m_1 prefers f_2 to f_1 and f_2 prefers m_1 to m_2 .
- A matching is stable if no such pairs exists.

Goal

- Given
 - a set of males M,
 - a set of women F and
 - their individual preference lists,
 - To find a perfect and stable matching.

Designing the algorithm

LECTURE 1 Introduction to Algorithm Design and Analysis

	M Proposes to	F	Engagement
1	Α	1	(A 1)
2	В	1	(A 1)
3	В	2	(A 1) (B 2)
4	С	1	(A 1) (B 2)
5	С	2	(A 1) (B 2)
6	С	3	(A 1) (B 2) (C 3)

Note: there may be other sequences . It depends on the input(free man choosing) order.

M	Preference List	F	Preference List
Α	123	1	АВС
В	123	2	АВС
С	123	3	АВС

	M Proposes to	F	Engagement	Free Males
0				{A B C}
1	Α	1	(A 1)	{B C}
2	В	1	(B 1)	{C A}
3	С	1	(C 1)	{A B}
4	А	2	(C 1) (A 2)	{B}
5	В	2	(C 1) (B 2)	{A}
6	А	3	(C 1) (B 2) (A 3)	{}

Note: there may be other sequences . It depends on the input(free man choosing) order.

M	Preference List	F	Preference List
Α	123	1	СВА
В	123	2	СВА
С	123	3	СВА

Algorithm Analysis

LECTURE 1 Introduction to Algorithm Design and Analysis

Questions?

- Does it work with any test case/instance?
 - Is the output S a perfect and stable matching if we change the instance?
- Is it fair, for men and woman?
- Dose the free man choosing influence the pairing result?
- How long will it take?
 - How many proposes should be made?

• Theorem 1. The while loop of the presented G-S algorithm terminates after at most n² iterations where n is the number of men.

Iteration	M Proposes to	F	Status of Engagement
1	А	1	(A 1)
2	В	1	(A 1)
	В	2	(A 1) (B 2)
3	С	1	(A 1) (B 2)
	С	2	(A 1) (B 2)
	С	3	(A 1) (B 2) (C 3)

$$1 + 2 + 3 = 6$$
 Consider n men $1 + 2 + 3 + \cdots + n$

Worst case: each man proposes to all women, $n \times n$

- Observation 1. Consider any woman w. Once engaged, w remains engaged and progressively gets engaged to a better and better man (in terms of her preference list) if possible.
 - The woman labeled with 1

- Observation 2. The women a man proposes to becomes worse and worse (in terms of his preference list).
 - The man labeled with A

• Let's turn to discussion with abstract notation!