2a Avaluació	Tecnologia industrial	2n Batxillerat
Electromecànica		Data:
Nom i cognoms:		Qualificació:

Instruccions: Feu els exercicis a l'espai que se us proporciona. Feu servir la cara posterior si necessiteu més espai, indiqueu-ho clarament en aquest cas. Heu d'identificar clarament les respostes i mostrar el procés per tal d'aconseguir la màxima puntuació. La puntuació dels exercicis es dona entre parèntesis.

- 1. Una persona té un patinet elèctric que utilitza una bateria ideal de tensió $U=24\,V$ i energia $E_{bat}=250\,W\,h$ per alimentar un motor de rendiment $\eta_{mot}=0,85$. La roda motriu del patinet, de diàmetre $d_{roda}=140\,mm$, està connectada directament a l'eix de sortida del motor. En les condicions d'estudi, la persona i el patinet tenen una massa conjunta $m=70\,kg$ i recorren $s=2\,km$ a velocitat constant $v=8\,km/h$ per una pujada en que l'angle que forma el perfil del carrer amb l'horitzontal és $\alpha=7^\circ$. A l'inici del trajecte, la bateria està totalment carregada. Si totes les pèrdues diferents a les associades al rendiment del motor es poden negligir, determineu:
 - (a) (1,5 pts) La potència elèctrica consumida, P_{elec} .
 - (b) (1,5 pts) La velocitat de rotació de l'eix del motor, ω_{mot} , i el parell, Γ que subministra el motor.
 - (c) (1 pt) El percentatge d'energia consumida de la bateria, Δ .
- 2. Una cadira de rodes elèctrica experimental està sensoritzada per estudiar-ne els consums elèctrics. Disposa d'una bateria d'ió liti de tensió $36\,V$ i energia $240\,Wh$ que alimenta un motor reductor de rendiment eta=0,72. En les condicions d'estudi, la persona i la cadira tenen una massa conjunta $m=130\,kg$ i avancen per una pujada on l'angle que forma el perfil del carrer amb l'horitzontal és $\alpha=8^{\circ}$. En l'estudi la cadira puja a dues velocitats diferents, v_1 i v_2 i les potències consumides pel motor són $P_1=109,5\,W$ i $P_2=650,3\,W$, respectivament. Determineu:
 - (a) (1 pt) La capacitat de la bateria c en Ah.
 - (b) (1,5 pts) Les velocitats d'avanç, v_1 , v_2 .

(c)	(1,5 pts)	El temps	màxim	que la	cadira	podrà	estar	en	funcion ament	en	cada	cas,	t_1	i t_2 ,	i la
	distància	màxima re	ecorregue	da, s_{me}	ax.										

3. Una espremedora domèstica per a fer suc de taronja està formada per un motor elèctric de corrent continu d'imants permanents i un reductor d'engranatges, la sortida del qual fa girar la peça en forma de con que permet extreure suc de les taronges. El parell del motor és donat per l'expressió

$$\Gamma_{mot} = (0,08U - 0,01\omega) Nm$$

en què $U=24\,V$ és la tensió d'alimentació del motor i ω és la seva velocitat angular (en rad/s). La sortida del motor està connectada a l'entrada del reductor. Aquest està format per un pinyó de $z_p=9$ dents que engrana amb una roda dentada de $z_r=62$ dents.

- (a) (1 pt) Determineu la relació de transmissió $\tau = \omega_{sortida}/\omega_{entrada}$ del reductor.
- (b) (1 pt) Dibuixeu, indicant les escales, la corba característica parell-velocitat del motor i determineune la velocitat de gir màxima, n_{max} .

En règim nominal, el motor gira a $n_{mot} = 1\,000\,min^{-1}$ i té un rendiment $\eta = 0,55$. Per a aquesta situació, determineu:

- (c) (1,5 pts) La intensitat que circula pel motor.
- (d) (1 pt) La velocitat angular ω_{con} de la peça en forma de con que extreu el suc de les taronges.