CSC321 Homework 4
Q1. Solution:
(a)
$$\theta_i^{(t+1)} = \theta_i^{(t)} - \alpha \cdot \frac{\partial CO^{(t)}}{\partial \theta_i^{(t)}}$$

 $\theta_i^{(t+1)} = \theta_i^{(t)} - \alpha \cdot \theta_i^{(t)}$
 $= (1 - \alpha \theta_i) \theta_i^{(t)} +$

$$\begin{aligned}
\theta_{\bar{i}}^{(t+1)} &= \theta_{\bar{i}}^{(t)} - \alpha \cdot \frac{\partial \theta_{\bar{i}}^{(t)}}{\partial \theta_{\bar{i}}^{(t)}} \\
\theta_{\bar{i}}^{(t+1)} &= \theta_{\bar{i}}^{(t)} - \alpha \cdot \theta_{\bar{i}}(\theta_{\bar{i}}^{(t)} r_{\bar{i}}) \\
&= (1 - \alpha \theta_{\bar{i}}) \theta_{\bar{i}}^{(t)} + \alpha \theta_{\bar{i}} r_{\bar{i}}
\end{aligned}$$

$$= (1 - \alpha \Omega_{1}) \theta_{1}^{(t)} + \alpha \Omega_{1} r_{1}$$

$$= (1 - \alpha \Omega_{1}) \theta_{1}^{(t)} + \alpha \Omega_{1} r_{1}$$

$$\text{nce } \theta_{1}^{(t+1)} = (1 - \alpha \Omega_{1}) \theta_{1}^{(t)}$$

$$= (1 - \alpha \Omega_{1}) \theta_{1}^{(t)} + \alpha \Omega_{1} r_{1}$$

$$= (1 - \alpha \Omega_{1}) \theta_{1}^{(t)} + \alpha \Omega_{1} r_{1}$$

$$= (1 - \alpha \Omega_{1}) \theta_{1}^{(t)}$$

$$= (1 - \alpha \Omega_{1}) \theta_{1}^{(t)}$$

(b) Since
$$\theta_i^{(t+1)} = (1-\alpha\Omega_i)\theta_i^{(t)} + \alpha\Omega_i r_i$$

then $\theta_i^{(t+1)} - r_i = (1-\alpha\Omega_i)\theta_i^{(t)} + (\alpha\Omega_i - 1)r_i$
then $\theta_i^{(t+1)} - r_i = (1-\alpha\Omega_i)(\theta_i^{(t)} - r_i)$

hence
$$\ell_{1}^{(t+1)} = (1-\alpha \ell_{1}) \ell_{1}^{(t+1)}$$

Since $\ell_{1}^{(t+1)} = (1-\alpha \ell_{1}) \ell_{1}^{(t)}$ Yt

(c) Since
$$\ell_1^{(t+1)} = (1-\lambda \ell_1) \ell_1^{(t)} \forall t$$

hence $\ell_1^{(t)} = (1-\lambda \ell_1)^t \ell_1^{(t)}$
In this case,

hence
$$C_1^{(1)} = C_1 - \alpha (C_1)^{1/2} C_1^{(1)}$$

In this case,
when $0 < 1 - \alpha C_1 < 1$ i.e. $0 < \alpha < C_1$, the procedure is stable

when
$$0 < 1 - 1 \times 10^{-1} = 10^{-1} \times 20^{-1}$$
, the procedure is unstable. This indicates when \times is large, \times is ea

when
$$x > \overline{\alpha_i}$$
, the procedure is unstable

This indicates when $x > \overline{\alpha_i}$ at the unstability. Also, high curvature dimensions i.e.

At is large in this case, make $\overline{\alpha_i}$ very small. Hence even though we begin with a relatively small $x > \overline{\alpha_i}$ which results in the unstability of the larger than $\overline{\alpha_i}$ at those high curvature dimensions, which results in the unstability also

then
$$C(0^{(t)}) = \frac{1}{2} \sum_{i=1}^{N} (O_i^{(t)} \Gamma_i)^2$$

$$= \frac{1}{2} \sum_{i=1}^{N} [CI - \alpha O_i)^t O_i^{(0)}]^2$$

$$= \frac{1}{2} \sum_{i=1}^{N} (1 - \alpha \alpha_i)^{2t} (\theta_i^{-(0)} - \gamma_i)^2$$

(d) Since $e_{\bar{1}}^{(t)} = e_{\bar{1}}^{(t)} - r_{\bar{1}} = (1 - \alpha a_{\bar{1}})^{t} e_{\bar{1}}^{(0)}$

Consider the jth term of the summation
$$\frac{1}{2}(1-\alpha l_j)^{2t}(\theta_j^{(0)}-r_j^2)^2$$

then $\lim_{t\to\infty} \frac{\frac{1}{2}(1-\alpha l_j)^{2t}(\theta_j^{(0)}-r_j^2)^2}{\frac{1}{2}\sum_{i=1}^{N}(1-\alpha l_i)^{2t}(\theta_i^{(0)}-r_i^2)^2}$
 $=\lim_{t\to\infty} \frac{(\theta_j^{(0)}-r_j^2)^2}{\sum_{r=1}^{N}(1-\alpha l_j^2)^{2t}(\theta_i^{(0)}-r_i^2)^2}$
 $=\int (\theta_j^{(0)}-r_j^2)^2 \quad \text{if } (1-\alpha l_j^2)^2 = \max\{(1-\alpha l_i^2)^2\} \forall i \}$

hence $\frac{1}{2}(1-\alpha \Omega_{\bar{j}})^{2t}(\Omega_{\bar{j}}^{(0)}-\Gamma_{\bar{j}})^{2}$ comes to dominate whose $(1-\alpha \Omega_{\bar{j}})^{2t}$ is the largest over all $(1-\alpha \Omega_{\bar{i}})^{2t}$

$$(1-\alpha \log)^{2\pi}$$
 is the largest over all $(1-\alpha \ln i)^{2\pi}$
2. Solution:
(a) $E[y] = E[\sum_j m_j w_j x_j]$
 $= \sum_j E[m_j w_j x_j]$

= \$\frac{1}{2} \times \

 $= \sum_{j} V_{ar}[M_{j}W_{j}X_{j}]$ $= \sum_{j} W_{j}^{2}X_{j}^{2}V_{ar}[M_{j}]$ Since each M_{j} is a Bernoulli random variable

then $V_{ar}[M_{j}] = \frac{1}{2}((1-\frac{1}{2})^{2}+(0-\frac{1}{2})^{2}) = \frac{1}{4}$

hence Var [Ý] = 女妻Wj²Xj² = 女妻(WjXj)² = 女(WTW)~

(b) Since
$$E[y] = \sum_{j} W_{j} X_{j} \cdot \frac{1}{2}$$

$$= \sum_{j} (\frac{1}{2} W_{j}) X_{j}$$
hence $\widetilde{W}_{j} = \frac{1}{2} W_{j}^{j}$ for each j T.e. $\widetilde{W} = \frac{1}{2} W$

hence
$$\widetilde{W}_{5} = \frac{1}{2} W_{5}^{*}$$
 for each j i.e. $\widetilde{W} = \frac{1}{2} W$

$$(C) S = \frac{1}{2N} \sum_{i=1}^{N} E[(y^{(i)} - t^{(i)})]^{2}$$

$$= \frac{1}{2N} \sum_{i=1}^{N} \left(E[(y^{(i)})^{2} - 2y^{(i)} + (t^{(i)})^{2}] \right)$$

$$= \frac{1}{2N} \sum_{i=1}^{N} \left(E[(y(i))^{2}] - \partial \widetilde{y}^{(i)} + (t^{(i)})^{2} \right)$$

$$= \frac{1}{2N} \sum_{i=1}^{N} \left(E[(y(i))]^{2} + Var(y(i)) - 2\widetilde{y}^{(i)} + (t^{(i)})^{2} \right)$$

$$= \frac{1}{2N} \sum_{i=1}^{N} (E[(y^{(i)})]^{2} + Var(y^{(i)}) - 2\tilde{y}^{(i)}t^{(i)} + (t^{(i)})^{2}]$$

$$= \frac{1}{2N} \sum_{i=1}^{N} [((\tilde{y}^{(i)})^{2} - 2\tilde{y}^{(i)}t^{(i)} + (t^{(i)})^{2}) + Var(y^{(i)})]$$

$$= \frac{1}{2N} \sum_{i=1}^{N} (\hat{y}^{(i)} - t^{(i)})^{2} + \frac{1}{2N} \sum_{i=1}^{N} Var(y^{(i)})$$

$$= \frac{1}{2N} \sum_{i=1}^{N} (\hat{y}^{(i)} - t^{(i)})^{2} + \frac{1}{2N} \sum_{i=1}^{N} t(w^{T}x)^{2}$$

$$= \frac{1}{2N} \sum_{i=1}^{N} (\hat{y}^{(i)} - t^{(i)})^2 + \frac{1}{2N} \sum_{i=1}^{N} (\hat{w}^T X)^2$$

$$= \frac{1}{2N} \sum_{i=1}^{N} (\hat{y}^{(i)} - t^{(i)})^2 + \frac{1}{2} (\hat{w}^T X)^2$$

$$= \frac{1}{2N} \sum_{i=1}^{N} (\hat{y}^{(i)} - t^{(i)})^2 + \frac{1}{2} (\hat{w}^T X)^2$$

Hence
$$\mathcal{R}(\widetilde{w}_{i}, \widetilde{w}_{D}) = \frac{1}{2}(\widetilde{w}^{T}x)^{2}$$

$$= \frac{1}{2}(\widetilde{w}^{T}x)^{2}$$