Problem 1. (Big \mathcal{O}) The following problem will explore \mathcal{O} , \mathcal{O} , and their relationship. It will also explore the relationship between \mathcal{O} and Taylor series.

- (a) For each of the following sequences $\{x_n\}$, determine if $x_n = \mathcal{O}(f_n)$ and $x_n = \mathcal{O}(f_n)$ as $x \to \infty$:
 - (i) $x_n = 5n + 7, f_n = n$
 - (ii) $x_n = 2n^2 + 3n + 1$, $f_n = n^3$
 - (iii) $x_n = \sqrt{n+5}, f_n = n$
- (b) Show that if $x_n = \mathcal{O}(y_n)$, then $cx_n = \mathcal{O}(cy_n)$, where $c \in \mathbb{R}$. Is the same true for o?
- (c) Determine the 'best' integer k such that $e^{2x} = 1 + 2x + \mathcal{O}(x^k)$ as $x \to 0$.
- (d) Explain why every smooth function can be approximated on an interval of length h by a polynomial of degree n with an error that is $\mathcal{O}(h^{n+1})$ as $h \to 0$. [Hint: Appeal to Taylor's Theorem.]

Problem 2. (IEEE Floating Point Numbers) This problem will work through an explicit example of how IEEE floating point numbers work with a 'nice' real number. Define $n := 2^5 + 2^{-17} + 2^{-21}$.

- (a) Write n in binary.
- (b) Express n as a IEEE single precision number.
- (c) Determine f(n).
- (d) Determine the absolute error |n fl(n)| and relative error $\frac{|n fl(n)|}{|n|}$.
- (e) What must the relative error be bounded by? Does your answer in (d) agree with this bound?

Problem 3. (Numerical Stability) The following problem will help develop 'hands-on' experience recognizing and avoiding loss of significance. For each of the following functions, describe when a loss of significance may occur and suggest—with justification—ways to avoid the loss.

- (a) $\sqrt{x+4}-2$
- (b) $\ln x 1$ [Do *not* use Taylor Series]
- (c) $e^x e^{-2x}$ [Hint: Taylor Series]
- (d) $2\cos^2 x 1$

Problem 4. (Condition Number) The following problem will help develop 'hands-on' computing condition numbers and recognizing where a computation might be 'unstable.' For the following functions, compute the condition number and describe the x values where the condition number is large:

- (a) x^5
- (b) $(x+2)^3$
- (c) ln *x*
- (d) $\sin x$

Problem 5. (Algorithm Analysis) The following problem will help develop 'hands-on' experience reading and improving algorithms. Consider the following pseudocode that takes as an input an integer n:

```
for i = 1 to n:
sum = 0;
for j = 1 to i:
    sum += j
print(sum)
```

- (a) Describe what this algorithm is computing.
- (b) How many flops are used in this algorithm? Find x_n such that this algorithm is $\mathcal{O}(x_n)$.
- (c) Explain why this algorithm is computationally inefficient.
- (d) Rewrite this pseudocode so that it is computationally less expensive. For your algorithm, count the number of flops required.
- (e) Is there an even shorter way avoiding loops entirely?

Evaluation.

Complete the following survey by rating each problem. Each area will be rated on a scale of 1 to 5. For interest, 1 is "mind-numbing" while a 5 is "mind-blowing." For difficulty, 1 is "trivial/routine" while 5 is "brutal." For learning, 1 means "nothing new" while 5 means "profound awakening." Then you to estimate the amount of time you spent on each problem (in minutes).

	Interest	Difficulty	Learning	Time Spent
Problem 1				
Problem 2				
Problem 3				
Problem 4				
Problem 5				

Finally, indicate whether you believe lectures were useful in completing this assignment and whether you believe the problems were useful enough/interesting enough to assign again to future students by checking the appropriate space.

	Lectures		Assign Again	
	Yes	No	Yes	No
Problem 1				
Problem 2				
Problem 3				
Problem 4				
Problem 5				