Theorem (1)

Let V, W be vector spaces over \mathbb{Q} , and let $T: V \to W$ be a function. Then the following holds:

$$\forall (v_1, v_2 \in V) : T(v_1 + v_2) = T(v_1) + T(v_2) \Rightarrow T \text{ is linear.}$$

Proof. Suppose $v \in V$. Since $0 \in V$, then v + 0 = v, and, by definition of T,

$$T(v + 0) = T(v) = T(v) + T(0).$$

- By the cancellation law for V, it follows that T(0) = 0.
- Now, since $\exists ((-v) \in V) : v + (-v) = 0$, then it follows that

$$T(0) = T(v + (-v)) = T(v) + T(-v) = 0.$$

- Thus, by the cancellation law for V, T(v) = -T(-v), and hence T is odd.
- Suppose $v' = (n+1)v, \ n \in \mathbb{N} \subset \mathbb{Q}$. Then by definition of T, T(v+v') = T(v) + T(v'),
- 7 and thus

$$T((n+1)v) = T(v+nv) = T(v) + T(nv).$$
(1)

- Since T is additive by definition, to prove that T is linear, it is necessary to show that
- 9 T is homogeneous. Since $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q}$, the condition will be shown to hold first for \mathbb{N} ,
- then for \mathbb{Z} and finally for \mathbb{Q} .
- 11 Consider the statement S(k): T(kv) = kT(v).
- Since $v \in V, T(v) \in W$, then $T(1 \cdot v) = 1 \cdot T(v)$. Thus, S(1) is true.
- Suppose $\exists (k \in \mathbb{N}) : S(k)$ holds.
- 14 Consider S(k+1) : T((k+1)v) = (k+1)T(v).
- From the equation 1, setting n = k,

$$T((k+1)v) = T(v) + T(kv).$$

By the hypothesis, T(kv) = kT(v), and thus

$$T((k+1)v) = T(v) + kT(v) = kT(v) + T(v) = (k+1)T(v),$$

- which is exactly S(k+1).
- Since S(1) is true, then S(k) holds for all $k \in \mathbb{N}$ by induction.
- Since T is odd, while $k \in \mathbb{N}$, then it follows that

$$T((-k)v) = -T(-(-k)v) = -(T(kv)) = -(kT(v)) = (-k)T(v).$$

- Also, T(0) = 0, and thus S(k) holds for all $k \in \mathbb{Z}$.
- Note that for all $m \in \mathbb{Z}$ and $k \in \mathbb{Z} \setminus \{0\}$, since $\frac{1}{k} \in \mathbb{Q}$,

$$T(v) = T(\frac{k}{k}v) = kT(\frac{1}{k}v),$$

and hence $T(\frac{1}{k}v) = \frac{1}{k}T(v)$. Therefore,

$$T(\frac{m}{k}v) = \frac{1}{k}T(mv) = \frac{m}{k}T(v),$$

- and hence S(n) holds for all $n \in \mathbb{Q}$.
- Thus, T is homogeneous, and since it is also additive by definition, then T is linear. \Box
- ²⁵ Claim. Theorem (1) does not hold for all V, W defined over \mathbb{C} .
- 26 Proof. Suppose Theorem (1) holds for all V, W defined over \mathbb{C} .
- Let V, W be vector spaces over \mathbb{C} with elements from \mathbb{C} .
- Let $z \in V$. Consider a map $T: V \to W$ such that $z \mapsto z + \overline{z}$.
- Note that by definition of a complex conjugate, $z + \overline{z} \in \mathbb{R} \subset \mathbb{C}$.
- Note also that T is additive, since for all $u, v \in \mathbb{C}$:

$$(u+v) + (\overline{u} + \overline{v}) = (u + \overline{u}) + (v + \overline{v}).$$

- Consider $a = i \in \mathbb{C}$ and $z = 1 \in V$.
- Note that $T(1) = 2 \in W$, $T(i \cdot 1) = 0 \in W$, $iT(1) = 2i \in W$.
- Thus, $T(i \cdot 1) \neq iT(1)$, which is a contradiction.
- Let \mathbb{P} denote the set of prime numbers.
- Claim. Theorem (1) holds for V, W defined over $\mathbb{F} = \mathbb{Z}_p$ for $p \in \mathbb{P}$.
- 26 Proof. The proof is similar to the proof of Theorem (1).
- Suppose $v \in V$. Since $0 \in V$, then v + 0 = v, and, by definition of T,

$$T(v + 0) = T(v) = T(v) + T(0).$$

- By the cancellation law for V, it follows that T(0) = 0.
- Suppose v' = (n+1)v, $n \in \mathbb{F}$, $n \neq p-1$. Then by definition of T, T(v+v') = T(v) + T(v'),
- 40 and thus

$$T((n+1)v) = T(v+nv) = T(v) + T(nv).$$
(2)

- Since T is additive by definition, to prove that T is linear, it is necessary to show that T is homogeneous.
- Consider the statement S(k): T(kv) = kT(v).
- First, note that T(0v) = T(0) = 0 = 0 First, note that T(0v) = T(0) = 0 First, note that T(0v) =
- Suppose $\exists (k \in \mathbb{F}, k \neq (p-1)) : S(k)$ holds.
- Consider S(k+1) : T((k+1)v) = (k+1)T(v).
- From the equation 2, setting n = k,

$$T((k+1)v) = T(v) + T(kv).$$

By the hypothesis, T(kv) = kT(v), and thus

$$T((k+1)v) = T(v) + kT(v) = kT(v) + T(v) = (k+1)T(v),$$

- which is exactly S(k+1).
- Since S(0) is true, by the above argument it follows that S(1) holds. Thus, S(2) holds also. Repeating the argument for all $k \in [2:p-2]$ (since $\mathbb F$ is finite, this procedure stops, and in the last step it is shown that S(p-1) holds since S(p-2) is true), it follows that T is homogeneous for all $k \in \mathbb F$, and thus the claim holds.