Mathematical Foundations

Max-Planck Institute for Neurobiology

January 12, 2022

1 Numerical Estimates

1.1 Estimates on the Gaussian function and derived functions

Definition 1.1.1. (Radial Gaussian function) Given the Gaussian function

$$g_{\sigma,\mu}: x \mapsto \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

with parameters $\sigma \in \mathbb{R}_{>}$ and $\mu \in \mathbb{R}$, we define, with σ as before and now $\mu \in \mathbb{R}^{n}$, the (n-dimensional) radial Gaussian function for $n \in \mathbb{N}$

$$G_{\sigma,\mu}: \begin{array}{c} \mathbb{R}^n \to \mathbb{R}_> \\ x \mapsto g_{\sigma,0}(|x-\mu|) \end{array}$$

where $|\cdot|$ is Euclidean distance.

Remark. Since the Gaussian function is symmetric in μ , the 1-dimensional radial Gaussian function is identical to the Gaussian function.

Proposition 1.1.2. Let $G_{\sigma,\mu}$ be a n-dimensional radial Gaussian function (cf. Definition 1.1.1) with parameters σ and μ . For $\varepsilon < \frac{\sigma}{\sqrt{2\pi}}$, we have for all $x \in \mathbb{R}^n$:

$$|x - \mu| > \sigma \sqrt{-2 \ln \left(\frac{\sqrt{2\pi}\varepsilon}{\sigma}\right)} \iff G_{\sigma,\mu}(x) < \varepsilon.$$

Proof. Let $\tilde{x} := |x - \mu|$ for $x \in \mathbb{R}^n$. The proof is due to a simple calculation:

$$G_{\sigma,\mu}(x) = g_{\sigma,\mu}(\tilde{x}) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{\tilde{x}^2}{2\sigma^2}\right),$$

so

$$G_{\sigma,\mu}(x) < \varepsilon$$

$$\iff g_{\sigma,\mu}(\tilde{x}) < \varepsilon$$

$$\iff -\frac{\tilde{x}^2}{2\sigma^2} < \ln\left(\frac{\sqrt{2\pi}\varepsilon}{\sigma}\right)$$

We use our assumption on ε to obtain $-\ln\left(\frac{\sqrt{2\pi}\varepsilon}{\sigma}\right) > 0$. Equivalence uses $\tilde{x} \geq 0$.

$$\Longleftrightarrow \tilde{x} > \sigma \sqrt{-2 \ln \left(\frac{\sqrt{2\pi}\varepsilon}{\sigma}\right)}$$

1.2 Estimates on Gaussian processes