Липецкий государственный технический университет

Факультет автоматизации и информатики Кафедра автоматизированных систем управления

ЛАБОРАТОРНАЯ РАБОТА №1

по дисциплине «Прикладные интеллектуальные системы и экспертные системы»

«Бинарная классификация фактографических данных»

Студент Цыганов Н.А.

Группы М-ИАП-23

Руководитель Кургасов В.В.

Доцент

Цель работы

Получить практические навыки решения задачи бинарной классификации данных в среде Jupiter Notebook. Научиться загружать данные, обучать классификаторы и проводить классификацию. Научиться оценивать точность полученных моделей.

Задание кафедры

- 1) В среде Jupiter Notebook создать новый ноутбук (Notebook)
- 2) Импортировать необходимые для работы библиотеки и модули
- 3) Загрузить данные в соответствие с вариантом
- 4) Вывести первые 15 элементов выборки (координаты точек и метки класса)
- 5) Отобразить на графике сгенерированную выборку. Объекты разных классов должны иметь разные цвета.
- 6) Разбить данные на обучающую (train) и тестовую (test) выборки в пропорции 75% 25% соответственно.
- 7) Отобразить на графике обучающую и тестовую выборки. Объекты разных классов должны иметь разные цвета.
- 8) Реализовать модели классификаторов, обучить их на обучающем множестве.
 - 9) Истинные и предсказанные метки классов
 - 10) Матрицу ошибок (confusion matrix)
 - 11) Значения полноты, точности, f1-меры и аккуратности
 - 12) Значение площади под кривой ошибок (AUC ROC)
- 13) Отобразить на графике область принятия решений по каждому классу
 - 14) В качестве методов классификации использовать:

Метод к-ближайших соседей (n_neighbors = $\{1, 3, 5, 9\}$)

Наивный байесовский метод

Случайный лес (n_estimators = $\{5, 10, 15, 20, 50\}$) 18)

По каждому пункту работы занести в отчет программный код и результат вывода.

19) По результатам п.8 занести в отчет таблицу с результатами классификации всеми методами и выводы о наиболее подходящем методе классификации ваших данных.

20) Изучить, как изменится качество классификации, если на тестовую часть выделить 10% выборки, 35% выборки. Для этого повторить п.п. 6-10.

Ход работы

Вариант по журналу 17, вариантов 12, следовательно: вариант 5 представлен на рисунке 1.

5	
moons	
41	
-	
0.25	
1	

Рисунок 1 - Вариант для выполнения

На рисунке 2 изображен импорт библиотек.

```
# Bapwaht 5 random state = 41, noize 0,25
import numpy as np

import matplotlib.pyplot as plt

from sklearn.datasets import make_moons
from sklearn.model_selection import train_test_split
```

Рисунок 2 - Импорт необходимых библиотек

```
In [3]: X, y = make moons(n samples=1000, shuffle=True, noise=0.25, random state=41)
In [4]: print('Координаты точек: ')
        print(X[:15])
        print('Meтки класса: ')
        print(y[:15])
        Координаты точек:
         [[ 2.43925858e-01 8.64335729e-01]
          [ 2.16565685e-01 7.74035450e-02]
         [ 2.45733769e-01 -1.20800098e-01]
          [ 2.26162888e+00 8.10738624e-01]
          [ 1.08713469e-01 2.16517085e-01]
         [-3.61582169e-01 9.36581439e-01]
[-7.04683882e-01 4.85704886e-01]
          [ 1.48133028e+00 -1.31269733e-03]
[-3.99966999e-01 1.34289554e+00]
          [-4.68160123e-01 1.24150659e+00]
          [ 1.41350790e+00 -1.51963621e-01]
          [ 5.99243888e-01 7.13687210e-01]
          [ 1.91390078e+00 5.42106080e-01]]
        Метки класса:
         [0 1 1 0 1 1 1 0 0 1 0 0 1 0 1]
```

Рисунок 3 - Генерация данных

График сгенерированной выборки на рисунке 4.

```
colors = np.where(y == 1, 'r', 'b')
plt.scatter(X[:, 0], X[:, 1], c=colors)
plt.show()

1.5

-0.5

-0.5

-1.0
```

Рисунок 4 - Сгенерированная выборка

Разделим данных на обучающую и тестовую выборку. Для этого воспользуемся функцией train_test_split из пакета sklearn.model_selection. Представлено на рисунке 5.

Обучающее и тестовое множество (75/25)

Рисунок 5 - Обучающая выборка

Рисунок тестового множества представлен на рисунке 6.

```
[24]: colors_test = np.where(y_test == 1, 'r', 'b')
plt.title('Тестовая выборка')
plt.scatter(X_test[:, 0], X_test[:, 1], c=colors_test)
plt.show()
```


Рисунок 6 - Тестовая выборка

Перейдем к классификации, код представлен на рисунке 7.

```
def show info(classifier, classifier name, real values, prediction values, X, y):
   print(f'Метод классификации: {classifier_name}\n')
   print('Предсказанные и реальные значения:')
   print(prediction values)
   print(real_values)
   print('\nMaтрица неточностей')
   print(confusion matrix(real values, prediction values))
   print(f'\nTочность классификации: {accuracy score(prediction values, real values)}')
   print('\nПолнота: ')
   print(classification_report(real_values, prediction_values))
   print(f'\nПлощадь под кривой: {roc auc score(real values, prediction values)}')
   plt.xlabel('Первый класс')
   plt.ylabel('Второй класс')
   plt.title(classifier name.upper())
   colors = np.where(y == 1, 'r', 'b')
    # Рисуем разделяющую плоскость
   plot_2d_separator(classifier, X, fill=True)
   plt.scatter(X[:, 0], X[:, 1], c=colors, s=70)
   plt.show()
```

Рисунок 7 - Отображение для классификации Метод ближайших соседей k=1 представлен на рисунке 8-10.

```
knn = KNeighborsClassifier(n_neighbors=1, metric='euclidean')

# Обучаем модель данных
knn.fit(X_train, y_train)

# Оцениваем качество модели
prediction = knn.predict(X_test)

show_info(knn, 'ближайшие соседи (1)', y_test, prediction, X_test, y_test)
```

Рисунок 8 - Код для выполнения

Метод классификации: ближайшие соседи (1) Предсказанные и реальные значения: 0 0 1 1 0 0 1 1 1 1 1 0 0 1 0 0 0 0 0 1 1 1 0 1 0 1 0 0 0 1 1 1 1 1 0 1 1 0 0 0 1 1 1 0 1 1 0 1 1 0 0 1 1 0 1 1 0 0 0] $[0\ 0\ 1\ 0\ 1\ 1\ 1\ 1\ 1\ 1\ 0\ 0\ 0\ 0\ 0\ 0\ 1\ 0\ 1\ 1\ 1\ 1\ 0\ 0\ 1\ 1\ 0\ 0\ 1\ 1\ 0\ 1\ 1\ 0$ 1 1 1 0 1 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 1 0 1 1 0 0 0]

Матрица неточностей

[[110 19] [9 112]]

Точность классификации: 0.888

Полнота:

	precision	recall	f1-score	support
0	0.92	0.85	0.89	129
1	0.85	0.93	0.89	121
accuracy			0.89	250
macro avg	0.89	0.89	0.89	250
weighted avg	0.89	0.89	0.89	250

Площадь под кривой: 0.8891665065026586

Рисунок 9 - Данные

Площадь под кривой: 0.8891665065026586

БЛИЖАЙШИЕ СОСЕДИ (1)

Первый класс

Рисунок 10 - График

Также необходимо сделать для k = 3,5,9.

Точность классификации: 0.916 Полнота:

Полнота:	precision	recall	f1-score	support
0 1	0.93 0.90	0.91 0.93	0.92 0.91	129 121
accuracy macro avg weighted avg	0.92 0.92	0.92 0.92	0.92 0.92 0.92	250 250 250

Площадь под кривой: 0.9162982894483952

очность классификации: 0.92

Полнота:					
		precision	recall	fl-score	support
	0	0.94	0.91	0.93	129
	1	0.91	0.93	0.92	121
accus	cacy			0.92	250
macro	avg	0.92	0.92	0.92	250
weighted	avg	0.92	0.92	0.92	250

Площадь под кривой: 0.9243064898456018

	БЛИЖАЙШИЕ СОСЕДИ (3)						
Второй класс							
	Первый класс						

Точность классификации: 0.94

Полнота:				
	precision	recall	f1-score	support
0	0.95	0.94	0.94	129
1	0.93	0.94	0.94	121
accuracy			0.94	250
macro avg	0.94	0.94	0.94	250
weighted avg	0.94	0.94	0.94	250

Площадь под кривой: 0.9400666282273047

Рисунок 11 - Графики

Наивный байесовский классификатор и его выполнение представлен на рисунках 12-13.

```
from sklearn.naive_bayes import GaussianNB

nb = GaussianNB()

nb.fit(X_train, y_train)

prediction = nb.predict(X_test)

show_info(nb, 'Наивный байес', y_test, prediction, X_test, y_test)
```

Рисунок 12 - Импорт необходимой библиотеки и код

Площадь под кривой: 0.8597283618425268

Рисунок 13 - Результат работы

Теперь используем метод классификации "Случайный лес" с параметрами (n_estimators = $\{5, 10, 15, 20, 50\}$). Данный метод показан на рисунках 14-15.

Случайный лес n=5

```
7]: from sklearn.ensemble import RandomForestClassifier
3]: rfc = RandomForestClassifier(n_estimators=5)
  rfc.fit(X_train, y_train)
  prediction = rfc.predict(X_test)
  show_info(rfc, 'Случайный лес n=5', y_test, prediction, X_test, y_test)
  Метод классификации: Случайный лес n=5
  Предсказанные и реальные значения:
  0 0 1 0 0 0 1 1 1 1 1 1 0 0 1 0 1 0 0 0 1 1 0 0 1 0 1 0 0 0 1
    0\;1\;0\;1\;1\;0\;0\;0\;1\;1\;1\;1\;0\;0\;0\;1\;1\;0\;0\;1\;1\;1\;0\;0\;1\;1\;0\;0\;1
   1 1 0 0 0 1 0 0 1 1 0 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 1 0 1 0 1 1 0 1 1 0 0 1 1 0
   1 1 1 0 1 1 0 0 0 1 0 1 0 1 0 0 1 0 0 1 0 0 1 1 0 1 1 0 0 0]
  Матрица неточностей
   [ 8 113]]
  Точность классификации: 0.92
  Полнота:
           precision recall f1-score support
            0.94 0.91 0.92
0.90 0.93 0.92
            0.92
0.92 0.92 0.92
0.92 0.92 0.92
                                 250
     accuracy
  weighted avg
                                  250
```

Площадь под кривой: 0.9204305208533539

СЛУЧАЙНЫЙ ЛЕС N=5 Первый класс

Рисунок 14 - Импорт библиотеки и запуск

Матрица неточностей [[119 10] [9 112]]

Точность классификации: 0.924

Полнота:	precision	recall	f1-score	support
0	0.93 0.92	0.92 0.93	0.93 0.92	129 121
accuracy macro avg weighted avg	0.92 0.92	0.92 0.92	0.92 0.92 0.92	250 250 250

Площадь под кривой: 0.9240502274328912

СЛУЧАЙНЫЙ ЛЕС N=10 Первый класс

Матрица неточностей [[119 10] [10 111]]

Точность классификации: 0.92

Полнота:	precision	recall	f1-score	support
0	0.92 0.92	0.92 0.92	0.92 0.92	129 121
accuracy macro avg weighted avg	0.92 0.92	0.92	0.92 0.92 0.92	250 250 250

Площадь под кривой: 0.9199179960279327

Матрица неточностей [[120 9] [8 113]]

Точность классификации: 0.932

Полнота:				
	precision	recall	f1-score	support
0	0.94	0.93	0.93	129
1	0.93	0.93	0.93	121
accuracy			0.93	250
macro avg	0.93	0.93	0.93	250
weighted avg	0.93	0.93	0.93	250

Площадь под кривой: 0.9320584278300981

Матрица неточностей [[118 11] [8 113]]

Точность классификации: 0.924

Полнота:					
		precision	recall	f1-score	support
	0	0.94	0.91	0.93	129
	1	0.91	0.93	0.92	121
accur	acy			0.92	250
macro	avg	0.92	0.92	0.92	250
weighted	avg	0.92	0.92	0.92	250

Площадь под кривой: 0.9243064898456018

Рисунок 15 - Случайный лес

Теперь необходимо зафиксировать данные, изменить размер обучающей выборки, показано на рисунке 16, повторить тоже самое с разными размерами обучающей выборки, для этого составим таблицу.

Обучающее и тестовое множество (75/25)

Рисунок 16 - Нужно изменить значение test_size на необходимое Таблица 1 - Результаты

Метод	Размер выборки 75%		Размер выборки 90%		Размер выборки 65%	
	Точность	Площадь	Точность	Площадь	Точность	Площадь
Метод к-ближайших coceдей (n_neighbors = 1)	0.888	0.889	0.89	0.890	0.9028	0.9031
Метод к-ближайших coceдей (n_neighbors = 3)	0.916	0.916	0.91	0.910	0.9257	0.9257
Метод к-ближайших coceдей (n_neighbors = 5)	0.924	0.924	0.93	0.929	0.93	0.93
Метод к-ближайших coceдей (n_neighbors = 9)	0.94	0.94	0.98	0.9799	0.942857	0.942784
Наивный байесовский классификатор	0.86	0.8597	0.85	0.8509	0.8542	0.85417
Случайный лес (n_estimators = 5)	0.92	0.92	0.93	0.929	0.94	0.9399
Случайный лес (n_estimators = 10)	0.924	0.924	0.93	0.9294	0.9257	0.9254
Случайный лес (n_estimators = 15)	0.932	0.932	0.93	0.9310	0.937	0.937
Случайный лес (n_estimators = 20)	0.92	0.9199	0.93	0.9302	0.9314	0.9312
Случайный лес (n_estimators = 50)	0.924	0.924	0.93	0.9302	0.9314	0.93128

Вывод: исходя из сравнения полученных данных размер обучающей и тестовой выборки не сильно влияет на точность предсказания, лучше всего показал себя метод ближайших соседей с n = 9, он показал точность 0.98 при соотношении тестового множества к обучающему в пропорции 1 к 9. Хуже всего показал себя метод наивного байесовского классификатора, который ни разу не показал точность выше 90% на всех соотношениях тестового множества к обучающему. В ходе выполнения работы были получены практические навыки решения задачи бинарной классификации данных в среде Jupiter Notebook с загрузкой данных, обучением классификаторов и классификацией.