العلامة		i ta Ni Latio
مجموع	مجزأة	عناصر الإجابة
		الموضوع الأول
01.05		التمرين الأول (04,5 نقط)
01,25	0,75	$ig(t\in Rig)z=-1+2t:y=-t:x=1+t:ig(BCig)$ التمثيل الوسيطي للمستقيم (I
	0,5	2 (-t) + (-1 + 2t) + 1 = 0 : (P) محتوی فی
1	2×0,5	ين المن فقس المنتوي. (Δ) و (BC) غير متوازيين وغير متقاطعين إذن (Δ) و (BC) ليننا من نقس المنتوي.
	0,5	$d(A;(P)) = rac{6\sqrt{5}}{5}$ (P) المنافة بين A و (f (3)
02.25	0,25	2 (0) - 1 + 1 = 0 (P) نقطة من D (ب
02,25	0,5	$CD^2 = 1 \cdot BD^2 = 1 \cdot BC^2 = 6$ مثلث قائم BCD
	0,5	(P) و باعي الوجوه (P) لأن (P) \neq (P) علما أن (ABC) علما (P)
	0,5	$V=rac{1}{3}A_{(BCD)} imes d\left(A\left(P ight) ight)=$ ا ب حجم رباعي الوجوه $ABCD$ - حجم رباعي الوجوه

		التمرين الثاني (04 نقط)
01	0,75	و حدّها الأول $v_{0}=5$ منتالية هندسية أساسها $q=rac{5}{6}$ و حدّها الأول $v_{0}=5$
	0,25	$\lim_{n \to -\infty} v_n = 0 \ (2$
	1	من أجل كل n من أجل كل n من أحل كل n من أحل كل المن الحام ا
03	0,5	$u_{n+1} - u_n > 0; u_{n-1} - u_n = \frac{(6 - u_n)(1 + u_n)}{\sqrt{5u_n + 6 + u_n}}$ متزایدة تماما (u_n)
	0,5	$(\frac{1}{6+\sqrt{5u_n+6}}<\frac{1}{6})$ 6 - $u_{n+1}\leq \frac{2}{3}(6-u_n)$ ، \mathbb{N} من أجل كل n أي من أجل كل $(1/6)$
	0.5	ب) من أجل كل n من n من n من n من n من أجل كل n من أجل كل n من أجل كل n من أجل كل n من أجل كا n
	0,5	$\left(\lim_{n \to +\infty} u_n = 6 \right) \lim_{n \to +\infty} v_n = 0 \left(\lim_{n \to +\infty} u_n = 6\right)$

	0,5	التمرین الثالث (05 نقط) $\Delta = 4i^2 \sin^2 \alpha$ (1
01	0,5	$z'' = 2(\cos\alpha - i\sin\alpha) \cdot z' = 2(\cos\alpha + i\sin\alpha)$
	0,25	ر أو العكس). $z_2=1-i\sqrt{3}$ ، $z_1=1+i\sqrt{3}$ تحديد (2)
01,25	2×0,5	$\left(\frac{z_1}{z_2}\right)^{2013} = +1 \text{o} \frac{z_1}{z_2} = e^{i\left(\frac{2\pi}{3}\right)}$
	0,75	(xx) وفاصلتها B و B و $A\in C_{(\mathcal{O}(2)}$ وفاصلتها B وفاصلتها B و النسبة $A\in C_{(\mathcal{O}(2)}$
		و C لها نف v ترتیب A .
02.75	0,5	$\frac{z_C - z_A}{z_R - z_A} = \frac{\sqrt{3}}{2}i (\because)$
02,75	0.5	z_R-z_A و راویته $rac{\pi}{2}$ صورة R بالتشابه الذي نسبته $rac{\sqrt{3}}{2}$ و زاویته C ، $z_C-z_A=rac{\sqrt{3}}{2}iig(z_B-z_Aig)$
	0.5	G الثماء $z_G=4+2i\sqrt{3}$ (ج $z_D=4$ (ع

		التمرين الرابع: (5,60 نقط)
01	0.5	$\lim_{x \to \infty} f(x) = -\infty + \lim_{x \to \infty} f(x) = 2 (1 (I))$
	0.5	معادلتا مستقيمين مقاربين $x\!=\!1$ ، $y=2$
01	0,5	$f'(x) = \frac{-1}{(x-1)^2} (1+e^{x-1}) x \in]-\infty; 1[0]$ من آجل (2)
	0,25 0,25	بما أنّ $f'(x) < 0$ من أجل كل $f'(x) = -\infty$ فإنّ f متناقصية تماما على $f'(x) < 0$
	0,25	للمعادلة $f(x)=0$ حل وحيد $lpha$ من $f(x)=0$ المعادلة $f(x)=0$
0.5	0.25	$0.21 < \alpha < 0.22$
	0,5	4) إنشاء المستقيمين المقاربين لـ (٢)
01,25	0,5	إنشاء المنحني (C)
	0.25	إنشاء المنحلي (٢٠) الممثل للدالة f
0.25	0,25	$m \in \left[\frac{1}{e}; 2 \right]$ للمعادلة $m \in \left[\frac{1}{e}; 2 \right]$ حلين مختلفين في الإشارة من أجل $\left f(x) \right = m$
	0.25×2	f'(2x-1) < 0 وعليه $2x-1$ فإن $x < 1$ كان $y'(x) = f'(2x-1)$ (1 (II)
01.5	0,25	و متناقصة تماماً على]1;00-[

	0,5 0,25	$\lim_{x \to -\infty} g(x) = -\infty$ ، $\lim_{x \to -\infty} g(x) = 2$ $\lim_{x \to -\infty} g(x) = 2$ جدول تغیرات $g(x) = -\infty$ ، $\lim_{x \to -\infty} g(x) = 2$
	2×0,25	$g'\left(\frac{\alpha+1}{2}\right) = 2f'(\alpha)$ $g\left(\frac{\alpha+1}{2}\right) = f(\alpha) = 0$ (§(2)
1	0,25	$y=2f'(\alpha)\left(x-rac{\alpha+1}{2} ight)$ ب) (ب) معادلة له:
	0,25	$(e^{\frac{1}{\alpha-1}} = -\frac{\alpha}{\alpha-1}) (T): y = \left(\frac{2}{(\alpha-1)^3}x - \frac{\alpha+1}{(\alpha-1)^3}\right) (\varepsilon)$

		الموضوع الثاني التمرين الأول: (04,5 نقط)
1		($-2-3i$) ² + 4($-2-3i$) + 13 = 0 (E) حل للمعادلة $-2-3i$ (1
	0,5	
	0,5	$\overline{-2-3i}$. (E) استنتاج الحل الآخر للمعادلة
01.5	1	$z'-z_A=rac{1}{2}e^{i(rac{\pi}{2})}(z-z_A)$ S الكتابة المركبة للتثنابه S (أ (2)
	0,5	$z_C = -4 - 2i \ (-1)$
	0,5	هرجح النقطنين Λ و B مرفقين بالمعاملين B و D على الترتيب D (أ D
	0,5	$z_D = -3 - 5i$ ب D هي $D = -3 - 5i$
02	0,5	$\frac{z_D - z_A}{z_C - z_A} = i \ (\varepsilon$
	0.5	$((AC;AD^{'})=rac{\pi}{2}$ و مضاوي الساقين $AD=AC$ و AC

	0,50	التمرين الثاني: (04 تقط)
	0,.70	u_3 و u_2 ، u_1 ، u_0 تمثيل الحدود (أ $\{1\}$
	0,25	ب) التخمين: (u_n) متزايدة تماما و u_n متقاربة.
	0,50	. $[0;1]$ متزایدة تماما علی المجال f ، f ' $(x) = \frac{2}{(x+1)^2}$ (أ (2)
	0,50	ب) البرهان بالتراجع أنّ من أجل كل عدد طبيعي n فإنّ: $1 < u_n < 1$.
04	0,75	$u_{n+1}-u_n=rac{u_n\left(1-u_n ight)}{u_n+1}$:ج) من أجل كل n من n لدينا u_n+1 ادينا u_n+1 مترايدة تماما. u_n أي u_n مترايدة تماما.
	0,75	\cdot v ، v من أجل كل n من n من أجل كل n من أجل كل v من أجل كل n ، الحد الأول v
	0,50	$u_n=rac{1}{1+\left(rac{1}{2} ight)^n}$ ؛ $v_n=-\left(rac{1}{2} ight)^n$ ، $\mathbb N$ من أجل كل n من أجل كل n من أجل كا ب
	0,25	$\cdot \left(\lim_{n \to +\infty} v_n = 0\right) \cdot \lim_{n \to -\infty} u_n = 1$

		التمرين الثالث (04,5 نقط)
01	0.25	$I\left(\frac{3}{2};0;1\right) (i(1)$
	0,25	ب) التَّحقق أنَّ I نقطة من (P) (تقبل كل طريقة سليمة)
	0.5	ناظمي لـ (P) ناظمي لـ AB
0,5	0,5	$x=k-rac{3}{2}$ يقبل أي تمثيل وسيطى له $x=k-rac{3}{2}$ $y=2k-2$ $(k\in\mathbb{R})$ مثيل وسيطى آخر (Λ) (2) $z=-4k+1$
01	2×0,5	$E\left(-rac{7}{6};-rac{4}{3};-rac{1}{3} ight)$ و ر $E\left(\Delta ight)$ و منه $E\left(-rac{7}{6};-rac{4}{3};-rac{1}{3} ight)$ و منه $E\left(-rac{1}{6};-rac{4}{3};-rac{1}{3} ight)$
01	0.5	ب) (AB) و $\stackrel{ ightarrow}{u}$ مرتبطان خطیا
	0.5	$(EC^{2}+IE^{2}=IC^{2})-($ اي المثلث $EC^{2}+IE^{2}=IC^{2}$ ا يقبل أي تبرير ا
	$2 \times 0,25$	$(I\!\!D) \perp (I\!\!E) \geq (I\!\!D) \perp (AB)$ (§ (4)
01	0,5	$V=rac{28}{9}uv$ - DHC ب) حجم رباعي الوجوه

	<u> التمرين الرابع (07 نقط)</u>
	$g(x) = x^2 + 2x + 4 - 2\ln(x+1)$ (I
0.25	$\lim_{x \to -1} g(x) = +\infty $ (1
^ ~	
0.5	$\lim_{x \to +\infty} g(x) = +\infty$
	$2r^2+4r$
0.5	$g'(x) = \frac{2x^2 + 4x}{x+1}$ ، $x \in]-1,+\infty[$ من أجل
	x+1
0.25	$g'(x) \leq 0$ فين $x \neq 0$ كان $x \leq 0$ اشارة $g'(x) \leq 0$ هين گيم x
	$g'(x) \geq 0$ فلن $0 \geq (x') \geq 0$ و إذا كان $0 \geq 0$
	9,,
[0.25]	ا جدول التغيرات
0.25	$g(x) > 0$ ومنه $g(x) \geq 4$ (2
0.25	$\lim_{x \to -1} f(x) = -\infty \ (i \ (1 \ (II)))$
	$x \xrightarrow{>} -1$
0.25	معادلة مستقيم مقارب $x=-1$
	$\begin{bmatrix} 1 & \ln(x+1) \end{bmatrix}$
0.25	$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left[x - \frac{1}{x+1} + 2 \frac{\ln(x+1)}{x+1} \right] = +\infty (= $
V. 20	$x \to +\infty$ $x \to +\infty$ $x \to +\infty$ $x \to 1$
	0.5 0.5 0.25 0.25 0.25 0.25

	0,5	$f'(x) = \frac{g(x)}{(x+1)^2} i (2)$
01,5	0,25	$]-1;+\infty$ دالة متزايدة تماما على $]-1;+\infty$
01,5	0.25	جدول تغیرات <i>f</i>
	0.25	$-1;+\infty$ حلا وحيدا في $-1;+\infty$ حلا وحيدا في $-1;+\infty$ مبرهنة القيم المتوسطة $-1;+\infty$
	0.25	
	0,25	$\lim_{x\to -\infty} \left[f\left(x\right) - x \right] = 0 + \infty$ بجوار $\left(C_f\right)$ بجوار مائل ل $\left(C_f\right)$ بجوار مائل المائقيم مقارب مائل المائقي
01	0,25	$f(x) - x = \frac{-1 + 2\ln(x+1)}{2}$
	0,5	x -1 $-1+\sqrt{e}$ $+\infty$ $f(x)-x=\frac{-1+2\ln(x+1)}{x+1}$ (ب $f(x)-x$ $ $ $ 0$ $+$ (A) بالنبية لـ (C_f) بالنبية لـ (C_f)
0.5	0,5	$x_0 = -1 + \sqrt{e^3} \left(\sqrt{4} \right)$
	1	(C_f) و (T) المقاربين، المماهن (T) و (T)
1,25	0.25	$0 < m < \frac{2}{\sqrt{e^3}} (\varepsilon)$

