Supplementary materials for MOLI: Multi-Omics Late Integration with deep neural networks for drug response prediction

Hossein Sharifi-Noghabi^{1,3}, Olga Zolotareva², Colin C. Collins^{3,4}, and Martin Ester^{1,3}

¹School of Computing Science, Simon Fraser University, Burnaby, BC, Canada

²International Research Training Group "Computational Methods for the Analysis of the Diversity and Dynamics of Genomes" and Genome Informatics, Faculty of Technology and Center for Biotechnology, Bielefeld University, Germany

³Vancouver Prostate Centre, Vancouver, BC, Canada

Preprocessing steps Gene expression profiles

CEL files for GDSC cohort were obtained from ArrayExpress (https://www.ebi.ac.uk/arrayexpress/E-MTAB-3610). **RMA** (robust multi-array average) normalization (Irizarry et al. 2003) of raw intensities was done using justRMA() function from affy (v 1.54.0) R package. This function performs background correction, quantile normalization, and log-transformation of probe intensities. CDF library files and probe set annotations for corresponding array platforms were obtained from BrainArray (Dai et al. 2005) v22.0.0 (http://brainarray.mbni.med.umich.edu). After the normalization, probe set identifiers were mapped to Entrez Gene identifiers. Intensities of the probe set corresponding to a single gene were summarized using collapseRows() function (Miller et al. 2011) from WGCNA (v 1.64.1) R package with method="Average". Probesets mapped to more than one Entrez gene were considered unspecific and removed.

For all TCGA cohorts, we used the estimated fractions of transcripts computed by RSEM method (Li and Dewey 2011) (scaled_estimates) provided by Firehose Broad GDAC (http://gdac.broadinstitute.org/runs/stddata__2016_01_28/data/), multiplied by 10⁶ to obtain TPM (Li and Dewey 2011) and log2-transformed. FPKM values for PDX samples were obtained from the supplementary table published by Gao et al. (Gao et al. 2015), converted into TPM, and log-transformed log2(TPM+1).

$$TPM_i = \frac{FPKM_i}{\sum_j FPKM_j} * 10^6$$
 (Pachter 2011)

Gene symbols were mapped to current Entrez Gene IDs using the table provided by NCBI (tp.ncbi.nih.gov:gene/DATA/GENE_INFO/Mammalia/Homo_sapiens.gene_info.gz).

To make expression measures in different data sets comparable, we standardized gene expressions within each cohort and performed pairwise homogenization procedure, as described in Geeleher et al., 2014 (Johnson, Li, and Rabinovic 2007; Geeleher, Cox, and Huang 2014). Briefly, for every pair of training and testing dataset, we kept only genes presenting in both datasets and applied *ComBat()* function (Johnson, Li, and Rabinovic 2007) from sva R package v 3.24.4. Finally, from every dataset, we excluded 5% of genes with the lowest variance assuming them not informative.

⁴Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada

Copy number profiles

In all TCGA cohorts, copy numbers were profiled by Affymetrix SNP6.0 arrays. Probe intensities measured for a sample were normalized by intensities in the most similar normal samples from HapMap (Johnson, Li, and Rabinovic 2007; Geeleher, Cox, and Huang 2014; International HapMap 3 Consortium et al. 2010) and log2-transformed. The resulted point estimates of intensity log-ratios (logR) were united into segments with the same level of logR using the circular binary segmentation (CBS) algorithm (Olshen et al. 2004). The resulted genome segmentation files for TCGA cohorts were downloaded from Firehose Broad GDAC (data published on 2016 01 28). These files contained hg19 coordinates of segments, a number of probes united into a segment, and an averaged intensity log-ratios reflecting the ratio of DNA amount in these segment to the DNA amount in the copy-neutral state. Although for TCGA we used segmentation files with "masked" putative germline CNAs detected in a panel of normals, we noticed that many tumor samples still contained some to segments matching with segments in normals derived from the same patient. This might be either a due to a cross-sample contamination when the normal sample was admixed with tumor DNA, or the result of the inclusion of sample-specific germline CNA into somatic CNA profile of the tumor. To remove likely germline segments from tumor CNA profiles, we performed two additional steps of filtering for TCGA samples. First, we excluded all segments with logR below 0.46 and above -0.68 from matched normal CNA profiles. These thresholds corresponded to for one copy gain and loss and -1 copy in 75% of a normal cell. We selected these thresholds based on the assumption that if tumor content in a matched normal sample is not high and applying these thresholds we exclude putative tumor CNAs from normal samples. Second, we compared the remaining segments in normal profiles with tumor profile and removed all tumor segments covered by more than 80% by normal segments. Segments including less than five probes removed from all CNA profiles, assuming that such segments are noisy. Finally, we overlapped remained segments with gene annotation for GRCh37/hg19 assembly obtained from NCBI and assigned every gene a value corresponding to logR of the segment it overlaps. If the gene overlapped more than one segment, we kept the most extreme log-ratio value. Genes overlapped no segments or only segments with logR below 0.20 or above -0.23 were considered to be copy-neutral. These thresholds correspond to log-ratios of 1-copy gain and 1-copy loss respectively occurred in 30% of cells.

GDSC and PDX datasets were obtained from ftp://ftp.sanger.ac.uk/pub/project/cancerrxgene/releases/release-7.0/Gene level CN.xlsx and supplementary files from (Gao et al. 2015), respectively. In contrast with TCGA, these projects provided gene-level estimated total copy numbers (CN). In order to make these data comparable with TCGA, we computed for every gene the logarithm of its CN divided by ploidy of copy-neutral state in the sample. Copy-neutral state was predicted for each sample based on the distribution of gene-level CN estimates, assuming that the mode closest to the median corresponds to the copy-neutral state. Similarly, with TCGA, all genes with log-ratios below 0.2 or above -0.23 were assumed to be neutral. Finally, for all four cohorts, we binarized gene-level CN estimates assigning zeros to copy-neutral genes and ones to all genes overlapping deletions or amplification.

Point mutations

GDSC cell from Somatic point mutations in lines were retrieved ftp://ftp.sanger.ac.uk/pub/project/cancerrxgene/releases/release-7.0/WES variants.xlsx. MAF **TCGA** samples from all cohorts from files were http://gdac.broadinstitute.org/runs/stddata 2016 01 28/data/. List of somatic mutations in PDX samples was obtained from supplementary tables (Gao et al. 2015), tab "pdxe mut and cn2". Amplification and deletions were removed. From all reported point mutations, we selected only those affecting protein structure and filtered out silent ones. Similarly, with previous works (Iorio et al. 2016)(Geeleher, Cox, and Huang 2014; Ding et al. 2018), we assigned ones to genes carrying any nonsynonymous somatic mutations and zeros to all others. All gene IDs were mapped to Entrez Gene IDs.

References

- Dai, Manhong, Pinglang Wang, Andrew D. Boyd, Georgi Kostov, Brian Athey, Edward G. Jones, William E. Bunney, et al. 2005. "Evolving Gene/transcript Definitions Significantly Alter the Interpretation of GeneChip Data." *Nucleic Acids Research* 33 (20): e175.
- Ding, Michael Q., Lujia Chen, Gregory F. Cooper, Jonathan D. Young, and Xinghua Lu. 2018. "Precision Oncology beyond Targeted Therapy: Combining Omics Data with Machine Learning Matches the Majority of Cancer Cells to Effective Therapeutics." *Molecular Cancer Research: MCR* 16 (2): 269–78.
- Gao, Hui, Joshua M. Korn, Stéphane Ferretti, John E. Monahan, Youzhen Wang, Mallika Singh, Chao Zhang, et al. 2015. "High-Throughput Screening Using Patient-Derived Tumor Xenografts to Predict Clinical Trial Drug Response." *Nature Medicine* 21 (11): 1318–25.
- Geeleher, Paul, Nancy J. Cox, and R. Stephanie Huang. 2014. "Clinical Drug Response Can Be Predicted Using Baseline Gene Expression Levels and in Vitro Drug Sensitivity in Cell Lines." *Genome Biology* 15 (3): R47.
- International HapMap 3 Consortium, David M. Altshuler, Richard A. Gibbs, Leena Peltonen, David M. Altshuler, Richard A. Gibbs, Leena Peltonen, et al. 2010. "Integrating Common and Rare Genetic Variation in Diverse Human Populations." *Nature* 467 (7311): 52–58.
- Iorio, Francesco, Theo A. Knijnenburg, Daniel J. Vis, Graham R. Bignell, Michael P. Menden, Michael Schubert, Nanne Aben, et al. 2016. "A Landscape of Pharmacogenomic Interactions in Cancer." *Cell* 166 (3): 740–54.
- Irizarry, Rafael A., Benjamin M. Bolstad, Francois Collin, Leslie M. Cope, Bridget Hobbs, and Terence P. Speed. 2003. "Summaries of Affymetrix GeneChip Probe Level Data." *Nucleic Acids Research* 31 (4): e15.
- Johnson, W. Evan, Cheng Li, and Ariel Rabinovic. 2007. "Adjusting Batch Effects in Microarray Expression Data Using Empirical Bayes Methods." *Biostatistics* 8 (1): 118–27.
- Li, Bo, and Colin N. Dewey. 2011. "RSEM: Accurate Transcript Quantification from RNA-Seq Data with or without a Reference Genome." *BMC Bioinformatics* 12 (1): 323.
- Miller, Jeremy A., Chaochao Cai, Peter Langfelder, Daniel H. Geschwind, Sunil M. Kurian, Daniel R. Salomon, and Steve Horvath. 2011. "Strategies for Aggregating Gene Expression Data: The collapseRows R Function." *BMC Bioinformatics* 12 (1): 322.
- Olshen, Adam B., E. S. Venkatraman, Robert Lucito, and Michael Wigler. 2004. "Circular Binary Segmentation for the Analysis of Array-Based DNA Copy Number Data."

Biostatistics 5 (4): 557–72.

Pachter, Lior. 2011. "Models for Transcript Quantification from RNA-Seq." http://arxiv.org/abs/1104.3889.

Supplementary tables

Table S1 Drug responses available for GDSC, TCGA and PDX cohorts.							
cohort	sources	original response measure	response interpretation				
GDSC (binary response)	Binary response: TableS5C.xlsx from Iorio F et al. 2016	R – resistant, S – Sensitive;	-				
GDSC (continuous response)	log(IC50): TableS4A.xlsx from Iorio F et al. 2016	log(IC50)	-				
PDX	Supplementary file nm.3954-S2.xlsx, tab "PCT curve metrics", ResponseCategory field	RECIST Response Categories	CR and PR are considered as sensitive and SD and PD of the entries are considered as resistant; Unstable responses were excluded as well as response to combo treatment				
TCGA	Ding et al. 2016, Supplementary Table S2	RECIST Response Categories	CR and PR are considered as sensitive and SD and PD of the entries are considered as resistant; Only single drug treatments kept				

Table S2 Multi-omics cohorts used in the study. Total number of Resistant (R) and Sensitive (S) cell lines or samples is shown in the third column.

		number of samples	genes					
Drug	Cohort	with all omics profiles and drug responses available	with expressions	with CNA	with SNA			
Afatinib	GDSC	828 (R:678, S:150)	18645	24452	18421			
Cetuximab	GDSC	856 (R:735, S:121)	18645	24452	18421			
Cetuximab	PDX	60 (R:55, S:5)	18232	20503	14455			
Cisplatin	GDSC	829 (R:752, S:77)	18645	24452	18421			
Cisplatin	TCGA	66 (R:6, S:60)	18216	23832	18228			
Docetaxel	GDSC	829 (R:764, S:65)	18645	24452	18421			
Docetaxel	TCGA	16 (R:8, S:8)	18216	23832	18170			
Erlotinib	GDSC	362 (R:298, S:64)	18645	24452	18421			
Erlotinib	PDX	21 (R:18, S:3)	18232	20503	14455			
Gefitinib	GDSC	825 (R:710, S:115)	18645	24452	18421			
Gemcitabine	PDX	25 (R:18, S:7)	18232	20503	14455			
Gemcitabine	TCGA	57 (R:36, S:21)	18216	23832	18181			
Lapatinib	GDSC	387 (R:326, S:61)	18645	24452	18421			
Paclitaxel	GDSC	389 (R:363, S:26)	18645	24452	18421			
Paclitaxel	PDX	43 (R:38, S:5)	18232	20503	14455			

Table S3 Considered ranges for each hyper-parameter for cross validation							
Hyper_parameter	Range						
Mini-batch size	[8, 16, 32, 64]*						
Number of nodes	[2048, 1024, 512, 256, 128, 64, 32, 16]						
Margin	[0.5, 1, 1.5, 2, 2.5, 3, 3.5]						
Learning rate	[0.1, 0.5, 0.01, 0.05, 0.001, 0.005, 0.0001, 0.0005, 0.00001, 0.00005]						
Number of epochs	[5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200]						
Dropout rate	[0.3, 0.4, 0.5, 0.6, 0.7, 0.8]						
Weight decay	[0.1, 0.01, 0.001, 0.1, 0.0001]						
Gamma	[0.1, 0.2, 0.3, 0.4, 0.5, 0.6]						
	ch mini-batch has at least three members to form the triplets, ad to change the size to 13, 14, 30, 36, 60, and 62.						

Table S4 Obtained hyper-parame	ters based on cro	ss validation													
Methods for Paclitaxel	mini-batch size		learning rate expression	learning rate mutation	learning rate CNA	Learning rate Classifier	dropout expression	dropout mutation	dropout CNA	weight decay	dropout classifier	gamma	#epoch	#Folds	margir
AE Early integration	NSC	NSC	NSC	NSC	NSC	NSC	NSC	NSC	NSC	NSC	NSC	NSC	NSC	7,10	NSC
Feed Forward	13	128	0.001	NA	NA	0.05	0.5	NA	NA	0.01	0.3	NA	10	5	NA
MOLI_Complete_OnlyExprs	36	64	0.05	NA	NA	0.005	0.5	0.5	0.5	0.001	0.3	0.005	10	5	1.5
MOLI_OnlyClassificationLoss	NSC	NSC	NSC	NSC	NSC	NSC	NSC	NSC	NSC	NSC	NSC	NSC	NSC	7	NSC
MOLI_Complete	64	512-256-1024*	0.0005	0.5	0.5	0.5	0.4	0.4	0.5	0.0001	0.3	0.6	10	5	0.5
Methods for PDX Gemcitabine	mini-batch size	#nodes	learning rate expression	learning rate mutation	learning rate CNA	Learning rate Classifier	dropout expression	dropout mutation	dropout CNA	weight decay	dropout classifier	gamma	#epoch	#Folds	margir
Early integration	62	256,128	NA	NA	NA	0.05	NA	NA	NA	0.001	0.2	NA	10	7	NA
Feed Forward	30	1024	0.05	NA	NA	0.001	0.5	NA	NA	0.1	0.3	NA	10	5	NA
MOLI_Complete_OnlyExprs	64	32	0.1	NA	NA	1.00E-05	0.5	NA	NA	0.1	0.3	0.1	10	5	2.5
MOLI_OnlyClassificationLoss	62	1024,64**	0.1	5.00E-05	0.01	0.005	0.5	0.5	0.5	0.01	0.4	NA	5	5	NA
MOLI_Complete	13	256,32,64	0.05	1.00E-05	0.0005	0.001	0.4	0.6	0.3	0.01	0.6	0.3	5	5	1.5
Methods for Cetuximab	mini-batch size	#nodes	learning rate expression	learning rate mutation	learning rate CNA	Learning rate Classifier	dropout expression	dropout mutation	dropout CNA	weight decay	dropout classifier	gamma	#epoch	#Folds	margir
Early integration	NSC	NSC	NSC	NSC	NSC	NSC	NSC	NSC	NSC	NSC	NSC	NSC	NSC	7,10	NSC
Feed Forward	30	128	0.05	NA	NA	0.5	0.5	NA	NA	0.1	0.3	NA	10	5	NA
MOLI_Complete_OnlyExprs	16	512	0.001	NA	NA	5.00E-05	0.5	0.5	0.5	0.001	0.5	0.1	10	5	2
MOLI_OnlyClassificationLoss	32	1024-128	1.00E-05	0.0005	0.0001	5.00E-05	0.5	0.5	0.5	0.001	0.4	NA	10	7	NA
MOLI_Complete	30	256,512,128	0.0001	0.0005	0.0005	0.0005	0.3	0.8	0.8	0.01	0.4	0.2	10	5	2
MOLI_Complete_Pan_Drug	16	32,16,256*	0.001	0.0001	5.00E-05	0.005	0.5	0.8	0.5	0.0001	0.3	0.5	20	5	1.5
Methods for Erlotinib	mini-batch size	#nodes	learning rate expression	learning rate mutation	learning rate CNA	Learning rate Classifier	dropout expression	dropout mutation	dropout CNA	weight decay	dropout classifier	gamma	#epoch	#Folds	margir
Early integration	NSC	NSC	NSC	NSC	NSC	NSC	NSC	NSC	NSC	NSC	NSC	NSC	NSC	7,10	NSC
Feed Forward	14	512	0.0001	NA	NA	0.001	0.5	NA	NA	0.0001	0.4	NA	10	5	NA
MOLI_Complete_OnlyExprs	64	1024	0.001	NA	NA	0.1	0.5	NA	NA	0.0001	0.5	0.5	10	5	1
MOLI_OnlyClassificationLoss	NSC	NSC	NSC	NSC	NSC	NSC	NSC	NSC	NSC	NSC	NSC	NSC	NSC	5,7,10	NSC
MOLI_Complete	32	64	0.5	0.5	0.1	0.1	0.5	0.5	0.5	0.01	0.5	0.6	5	5	1
MOLI_Complete_Pan_Drug	16	32,16,256*	0.001	0.0001	5.00E-05	0.005	0.5	0.8	0.5	0.0001	0.3	0.5	20	5	1.5
Methods for Docetaxel	mini-batch size	#nodes	learning rate expression	learning rate mutation	learning rate CNA	Learning rate Classifier	dropout expression	dropout mutation	dropout CNA	weight decay	dropout classifier	gamma	#epoch	#Folds	margir
Early integration	60	256,128	NA .	NA	NA	0.005	NA .	NA .	NA .	0.001		NA	15	5	NA
Feed Forward	64	128	1.00E-04	NA	NA	5.00E-05	0.5	NA	NA	0.1	0.3	NA	10	5	NA
MOLI_Complete_OnlyExprs	36	32	0.1	NA	NA	1.00E-05	0.5	NA	NA	0.0001	0.5	0.5	10	5	3
MOLI OnlyClassificationLoss	60	512128**	0.0001	0.001	0.01	0.005	0.5	0.5	0.5	0.001	0.5	NA	30	5	NA
MOLI Complete	8	16	0.0001	0.0005	0.0005	0.001	0.5	0.5	0.5	0.001	0.5	0.4	10	5	0.5
Methods for Cisplatin	mini-batch size	#nodes				Learning rate Classifier									margir
Early integration			learning rate expression	learning rate mutation	learning rate CNA	Learning rate Classiner	dropout expression	dropout mutation	dropout CNA	weight decay	dropout classifier	gamma	#epoch	#Folds	
Larry integration	15	2048-128	NA	NA	NA	0.01	NA	NA	NA	weight decay 0.01		gamma NA	#epoch	#Folds	NA
Feed Forward	15		<u> </u>						-		0.2	_	25		NA NA
Feed Forward	15 64	2048-128	NA .	NA	NA	0.01	NA	NA	NA	0.01	0.2 0.5	NA	25 10	5	
, ,	15 64 64	2048-128 64	NA 0.0001	NA NA	NA NA	0.01 0.0001	NA 0.5	NA NA	NA NA	0.01 0.001	0.2 0.5 0.5	NA NA	25 10 20	5 5	NA
Feed Forward MOLI_Complete_OnlyExprs	15 64 64	2048-128 64 256	NA 0.0001 0.1	NA NA NA	NA NA NA	0.01 0.0001 0.005	NA 0.5 0.5	NA NA NA	NA NA NA	0.01 0.001 0.0001	0.2 0.5 0.5 0.6	NA NA 0.5	25 10 20 60	5 5 5	NA 3
Feed Forward MOLI_Complete_OnlyExprs MOLI_OnlyClassificationLoss	15 64 64 60	2048-128 64 256 256 128	NA 0.0001 0.1 5.00E-05	NA NA NA 0.0005 0.005	NA NA NA 0.05	0.01 0.0001 0.005 0.005 0.0005	NA 0.5 0.5 0.5 0.5	NA NA NA 0.5 0.6	NA NA NA 0.5 0.8	0.01 0.001 0.0001 0.01 0.01	0.2 0.5 0.5 0.6 0.6	NA NA 0.5 NA	25 10 20 60 20	5 5 5 5 5	NA 3 NA 0.5
Feed Forward MOLI_Complete_OnlyExprs MOLI_OnlyClassificationLoss MOLI_Complete	15 64 64 60 15	2048-128 64 256 256 128	NA 0.0001 0.1 5.00E-05 0.05	NA NA NA 0.0005 0.005	NA NA NA 0.05 0.005	0.01 0.0001 0.005 0.005 0.0005	NA 0.5 0.5 0.5 0.5	NA NA NA 0.5 0.6	NA NA NA 0.5 0.8	0.01 0.001 0.0001 0.01 0.01	0.2 0.5 0.5 0.6 0.6 dropout classifier	NA NA 0.5 NA 0.2	25 10 20 60 20	5 5 5 5 5	NA 3 NA 0.5
Feed Forward MOLI_Complete_OnlyExprs MOLI_OnlyClassificationLoss MOLI_Complete Methods for TCGA Gemcitabine Early integration	15 64 64 60 15 mini-batch size 32	2048-128 64 256 256 128 #nodes 2048-256	NA 0.0001 0.1 5.00E-05 0.05 Iearning rate expression NA	NA NA NA 0.0005 0.005 learning rate mutation NA	NA NA NA 0.05 0.005 learning rate CNA NA	0.01 0.0001 0.005 0.005 0.0005 Learning rate Classifier 0.01	NA 0.5 0.5 0.5 0.5 0.5 dropout expression NA	NA NA NA 0.5 0.6 dropout mutation	NA NA NA 0.5 0.8 dropout CNA	0.01 0.001 0.0001 0.01 0.1 weight decay 0.01	0.2 0.5 0.5 0.6 0.6 dropout classifier 0.2	NA NA 0.5 NA 0.2 gamma	25 10 20 60 20 #epoch	5 5 5 5 5 #Folds	NA 3 NA 0.5 margir
Feed Forward MOLI_Complete_OnlyExprs MOLI_OnlyClassificationLoss MOLI_Complete Methods for TCGA Gemcitabine Early integration Feed Forward	15 64 64 60 15 mini-batch size	2048-128 64 256 256 128 #nodes	NA 0.0001 0.1 5.00E-05 0.05 learning rate expression	NA NA NA 0.0005 0.005	NA NA NA 0.05 0.005 learning rate CNA	0.01 0.0001 0.005 0.005 0.005 Learning rate Classifier	NA 0.5 0.5 0.5 0.5 0.5 dropout expression	NA NA NA 0.5 0.6 dropout mutation	NA NA NA 0.5 0.8 dropout CNA	0.01 0.001 0.0001 0.0001 0.01 weight decay	0.2 0.5 0.5 0.6 0.6 dropout classifier 0.2	NA NA 0.5 NA 0.2 gamma	25 10 20 60 20 #epoch 10	5 5 5 5 5 #Folds	NA 3 NA 0.5 margir
Feed Forward MOLI_Complete_OnlyExprs MOLI_OnlyClassificationLoss MOLI_Complete Methods for TCGA Gemcitabine Early integration Feed Forward MOLI_Complete_OnlyExprs	15 64 64 60 15 mini-batch size 32 64 64	2048-128 64 256 256 128 #nodes 2048-256 1024	NA 0.0001 0.1 5.00E-05 0.05 Iearning rate expression NA 1.00E-05	NA NA NA 0.0005 0.005 learning rate mutation NA NA	NA NA NA 0.05 0.005 learning rate CNA NA	0.01 0.0001 0.005 0.005 0.0005 Learning rate Classifier 0.01	NA 0.5 0.5 0.5 0.5 0.5 dropout expression NA 0.5	NA NA NA 0.5 0.6 dropout mutation NA NA	NA NA NA 0.5 0.8 dropout CNA NA	0.01 0.001 0.0001 0.01 0.1 weight decay 0.01 0.001	0.2 0.5 0.5 0.6 0.6 dropout classifier 0.2 0.3	NA NA 0.5 NA 0.2 gamma NA	25 10 20 60 20 #epoch 10 10	5 5 5 5 #Folds 5	NA 3 NA 0.5 margir NA NA
Feed Forward MOLI_Complete_OnlyExprs MOLI_OnlyClassificationLoss MOLI_Complete Methods for TCGA Gemcitabine Early integration Feed Forward MOLI_Complete_OnlyExprs MOLI_OnlyClassificationLoss	15 64 64 60 15 mini-batch size 32 64 64 62	2048-128 64 256 256 128 #nodes 2048-256 1024 1024 256,16**	NA 0.0001 0.1 5.00E-05 0.05 learning rate expression NA 1.00E-05 1.00E-05 0.1	NA NA NA 0.0005 0.005 learning rate mutation NA NA NA NA 0.1	NA NA NA 0.05 0.005 learning rate CNA NA NA NA NA 0.05	0.01 0.0001 0.005 0.005 0.0005 Learning rate Classifier 0.01 0.0001 1.00E-05 0.005	NA 0.5 0.5 0.5 0.5 dropout expression NA 0.5 0.5	NA NA NA O.5 O.6 dropout mutation NA NA NA NA NA O.5	NA NA NA 0.5 0.8 dropout CNA NA NA NA O.5	0.01 0.001 0.0001 0.0001 0.01 0.1 weight decay 0.01 0.001 0.1	0.2 0.5 0.5 0.6 0.6 dropout classifier 0.2 0.3 0.4	NA NA 0.5 NA 0.2 gamma NA NA NA 0.005 NA	25 10 20 60 20 #epoch 10 10 10 50	5 5 5 5 #Folds 5 5	NA 3 NA 0.5 margir NA NA 2 NA
Feed Forward MOLI_Complete_OnlyExprs MOLI_OnlyClassificationLoss MOLI_Complete Methods for TCGA Gemcitabine Early integration Feed Forward MOLI_Complete_OnlyExprs MOLI_OnlyClassificationLoss MOLI_Complete	15 64 64 60 15 mini-batch size 32 64 64 62 13	2048-128 64 256 256 128 #nodes 2048-256 1024 1024 256,16**	NA 0.0001 0.1 5.00E-05 0.05 learning rate expression NA 1.00E-05 1.00E-05	NA NA NA 0.0005 0.005 learning rate mutation NA NA NA	NA NA NA 0.05 0.005 learning rate CNA NA NA NA	0.01 0.0001 0.005 0.005 0.005 Learning rate Classifier 0.01 0.0001 1.00E-05	NA 0.5 0.5 0.5 0.5 0.5 dropout expression NA 0.5 0.5	NA NA NA 0.5 0.6 dropout mutation NA NA	NA NA NA 0.5 0.8 dropout CNA NA NA	0.01 0.001 0.0001 0.01 0.1 weight decay 0.01 0.001	0.2 0.5 0.5 0.6 0.6 dropout classifier 0.2 0.3 0.4	NA NA 0.5 NA 0.2 gamma NA NA 0.005	25 10 20 60 20 #epoch 10 10 10 50	5 5 5 5 #Folds 5 5 5	NA 3 NA 0.5 margir NA NA 2
Feed Forward MOLI_Complete_OnlyExprs MOLI_OnlyClassificationLoss MOLI_Complete Methods for TCGA Gemcitabine Early integration Feed Forward MOLI_Complete_OnlyExprs MOLI_OnlyClassificationLoss MOLI_Complete * #nodes for expression, mutation, i	15 64 64 60 15 mini-batch size 32 64 64 62 13 and CNA nodes we	2048-128 64 256 256 128 #nodes 2048-256 1024 1024 1024 16 bre different	NA 0.0001 0.1 5.00E-05 0.05 learning rate expression NA 1.00E-05 1.00E-05 0.1 0.001	NA NA NA 0.0005 0.005 learning rate mutation NA NA NA NA 0.1	NA NA NA 0.05 0.005 learning rate CNA NA NA NA NA 0.05	0.01 0.0001 0.005 0.005 0.0005 Learning rate Classifier 0.01 0.0001 1.00E-05 0.005	NA 0.5 0.5 0.5 0.5 dropout expression NA 0.5 0.5	NA NA NA O.5 O.6 dropout mutation NA NA NA NA NA O.5	NA NA NA 0.5 0.8 dropout CNA NA NA NA O.5	0.01 0.001 0.0001 0.0001 0.01 0.1 weight decay 0.01 0.001 0.1	0.2 0.5 0.5 0.6 0.6 dropout classifier 0.2 0.3 0.4	NA NA 0.5 NA 0.2 gamma NA NA NA 0.005 NA	25 10 20 60 20 #epoch 10 10 10 50	5 5 5 5 #Folds 5 5 5	NA 3 NA 0.5 margir NA NA 2 NA
Feed Forward MOLI_Complete_OnlyExprs MOLI_OnlyClassificationLoss MOLI_Complete Methods for TCGA Gemcitabine Early integration Feed Forward MOLI_Complete_OnlyExprs MOLI_OnlyClassificationLoss MOLI_Complete *#nodes for expression, mutation, i** the classifier has a second hidde	15 64 64 60 15 mini-batch size 32 64 64 62 13 and CNA nodes we	2048-128 64 256 256 128 #nodes 2048-256 1024 1024 1024 256,16** 16 rer different cond number is #	NA 0.0001 0.1 5.00E-05 0.05 learning rate expression NA 1.00E-05 1.00E-05 0.1 0.001	NA NA NA 0.0005 0.005 learning rate mutation NA NA NA 0.1 0.0001	NA NA NA 0.05 0.005 learning rate CNA NA NA NA 0.05 0.01	0.01 0.0001 0.005 0.005 0.0005 Learning rate Classifier 0.01 0.0001 1.00E-05 0.005	NA 0.5 0.5 0.5 0.5 dropout expression NA 0.5 0.5	NA NA NA O.5 O.6 dropout mutation NA NA NA NA NA O.5	NA NA NA 0.5 0.8 dropout CNA NA NA NA O.5	0.01 0.001 0.0001 0.0001 0.01 0.1 weight decay 0.01 0.001 0.1	0.2 0.5 0.5 0.6 0.6 dropout classifier 0.2 0.3 0.4	NA NA 0.5 NA 0.2 gamma NA NA NA 0.005 NA	25 10 20 60 20 #epoch 10 10 10 50	5 5 5 5 #Folds 5 5 5	NA 3 NA 0.5 margir NA NA 2 NA
Feed Forward MOLI_Complete_OnlyExprs MOLI_OnlyClassificationLoss MOLI_Complete Methods for TCGA Gemcitabine Early integration Feed Forward MOLI_Complete_OnlyExprs MOLI_OnlyClassificationLoss MOLI_Complete **modes for expression, mutation, is **the classifier has a second hidde AutoEncoder for Early integratio	15 64 64 60 15 mini-batch size 32 64 64 62 13 and CNA nodes we in layer and the sec mini-batch size	2048-128 64 256 256 128 #nodes 2048-256 1024 1024 1024 256,16** 16 ere different cond number is #	NA 0.0001 0.1 5.00E-05 0.05 learning rate expression NA 1.00E-05 1.00E-05 0.1 0.001 modes in that layer learning rate	NA NA NA 0.0005 0.005 learning rate mutation NA NA NA 0.1 0.0001	NA NA NA 0.05 0.005 learning rate CNA NA NA NA 0.05 0.01	0.01 0.0001 0.005 0.005 0.0005 Learning rate Classifier 0.01 0.0001 1.00E-05 0.005	NA 0.5 0.5 0.5 0.5 dropout expression NA 0.5 0.5	NA NA NA O.5 O.6 dropout mutation NA NA NA NA NA O.5	NA NA NA 0.5 0.8 dropout CNA NA NA NA O.5	0.01 0.001 0.0001 0.0001 0.01 0.1 weight decay 0.01 0.001 0.1	0.2 0.5 0.5 0.6 0.6 dropout classifier 0.2 0.3 0.4	NA NA 0.5 NA 0.2 gamma NA NA NA 0.005 NA	25 10 20 60 20 #epoch 10 10 10 50	5 5 5 5 #Folds 5 5 5	NA 3 NA 0.5 margir NA NA 2 NA
Feed Forward MOLI_Complete_OnlyExprs MOLI_OnlyClassificationLoss MOLI_Complete Methods for TCGA Gemcitabine Early integration Feed Forward MOLI_Complete_OnlyExprs MOLI_OnlyClassificationLoss MOLI_Complete **modes for expression, mutation, ** the classifier has a second hidde AutoEncoder for Early integration Paclitaxel	15 64 64 60 15 mini-batch size 32 64 64 62 13 and CNA nodes we in layer and the secon	2048-128 64 256 256 256 128 #nodes 2048-256 1024 1024 256,16** 16 #rodifferent cond number is # #nodes 1024,64	NA 0.0001 0.1 5.00E-05 0.05 learning rate expression NA 1.00E-05 0.1 0.001 cnodes in that layer learning rate 0.05	NA NA NA 0.0005 0.005 learning rate mutation NA NA NA 0.1 0.0001 dropout 0.5	NA NA NA 0.05 0.005 learning rate CNA NA NA NA 0.05 0.01	0.01 0.0001 0.005 0.005 0.005 Learning rate Classifier 0.01 0.0001 1.00E-05 0.005 #Folds	NA 0.5 0.5 0.5 0.5 dropout expression NA 0.5 0.5	NA NA NA O.5 O.6 dropout mutation NA NA NA NA NA O.5	NA NA NA 0.5 0.8 dropout CNA NA NA NA O.5	0.01 0.001 0.0001 0.0001 0.01 0.1 weight decay 0.01 0.001 0.1	0.2 0.5 0.5 0.6 0.6 dropout classifier 0.2 0.3 0.4	NA NA 0.5 NA 0.2 gamma NA NA NA 0.005 NA	25 10 20 60 20 #epoch 10 10 10 50	5 5 5 5 #Folds 5 5 5	NA 3 NA 0.5 margir NA NA 2 NA
Feed Forward MOLI_Complete_OnlyExprs MOLI_OnlyClassificationLoss MOLI_Complete Methods for TCGA Gemcitabine Early integration Feed Forward MOLI_Complete_OnlyExprs MOLI_Complete_OnlyExprs MOLI_Complete * #nodes for expression, mutation, ** * the classifier has a second hidde AutoEncoder for Early integration Paclitaxel Cetuximab	15 64 64 60 15 mini-batch size 32 64 64 62 13 and CNA nodes we in layer and the sec n mini-batch size 64 64	2048-128 64 256 256 256 1028 #nodes 2048-256 1024 1024 256,16*** 16 are different cond number is # #nodes 1024,64 1024,64	NA 0.0001 0.1 5.00E-05 0.05 learning rate expression NA 1.00E-05 0.1 0.001 chodes in that layer learning rate 0.05 0.1	NA NA NA 0.0005 0.005 learning rate mutation NA NA NA 0.1 0.0001 dropout 0.5 0.5	NA NA NA 0.05 0.005 learning rate CNA NA NA NA 0.05 0.01 #epoch 40 150	0.01 0.0001 0.005 0.005 0.0005 Learning rate Classifier 0.01 0.0001 1.00E-05 0.005 0.05 #Folds 5 5	NA 0.5 0.5 0.5 0.5 dropout expression NA 0.5 0.5	NA NA NA O.5 O.6 dropout mutation NA NA NA NA NA O.5	NA NA NA 0.5 0.8 dropout CNA NA NA NA O.5	0.01 0.001 0.0001 0.0001 0.01 0.1 weight decay 0.01 0.001 0.1	0.2 0.5 0.5 0.6 0.6 dropout classifier 0.2 0.3 0.4	NA NA 0.5 NA 0.2 gamma NA NA NA 0.005 NA	25 10 20 60 20 #epoch 10 10 10 50	5 5 5 5 #Folds 5 5 5	NA 3 NA 0.5 margir NA NA 2 NA
Feed Forward MOLI_Complete_OnlyExprs MOLI_OnlyClassificationLoss MOLI_Complete Methods for TCGA Gemcitabine Early integration Feed Forward MOLI_Complete_OnlyExprs MOLI_Complete_OnlyExprs MOLI_Complete onlyExprs MOLI_Complete onlyExprs MOLI_Complete onlyExprs MOLI_Complete onlyExprs MOLI_Complete *#modes for expression, mutation, in the classifier has a second hidde AutoEncoder for Early integration Pacilitaxel Cetuximab PDX-Gemcitabine	15 64 64 60 15 mini-batch size 32 64 64 62 13 and CNA nodes we in layer and the sec n mini-batch size 64 64 64	2048-128 64 256 256 128 #nodes 2048-256 1024 1024 1024 16 ere different cond number is # #nodes 1024,64 1024,64 256,128	NA 0.0001 0.1 0.1 5.00E-05 0.05 learning rate expression NA 1.00E-05 1.00E-05 0.1 0.001 modes in that layer learning rate 0.05 0.1 0.05	NA NA NA 0.0005 0.005 learning rate mutation NA NA O.1 0.0001 dropout 0.5 0.5	NA NA NA 0.05 0.005 learning rate CNA NA NA NA 0.05 0.01 #epoch 40 150 100	0.01 0.0001 0.005 0.005 0.005 Learning rate Classifier 0.01 0.0001 1.00E-05 0.005 #Folds 5 5 5	NA 0.5 0.5 0.5 0.5 dropout expression NA 0.5 0.5	NA NA NA O.5 O.6 dropout mutation NA NA NA NA NA O.5	NA NA NA 0.5 0.8 dropout CNA NA NA NA O.5	0.01 0.001 0.0001 0.0001 0.01 0.1 weight decay 0.01 0.001 0.1	0.2 0.5 0.5 0.6 0.6 dropout classifier 0.2 0.3 0.4	NA NA 0.5 NA 0.2 gamma NA NA NA 0.005 NA	25 10 20 60 20 #epoch 10 10 10 50	5 5 5 5 #Folds 5 5 5	NA 3 NA 0.5 margir NA NA 2 NA
Feed Forward MOLI_Complete_OnlyExprs MOLI_OnlyClassificationLoss MOLI_Complete Methods for TCGA Gemcitabine Early integration Feed Forward MOLI_Complete_OnlyExprs MOLI_Complete_OnlyExprs MOLI_Complete is in the complete of the complete is in the classificationLose is in the classifier has a second hidde AutoEncoder for Early integration Pacitiaxel Cetuximab PDX-Gemcitabine Erlotinib	15 64 64 60 15 mini-batch size 32 64 64 62 13 and CNA nodes we in layer and the sec n mini-batch size 64 64 64	2048-128 64 256 256 128 #nodes 2048-256 1024 1024 1024 16 are different cond number is # #nodes 1024,64 1024,64 256,128 2048-128	NA 0.0001 0.1 5.00E-05 0.05 learning rate expression NA 1.00E-05 1.00E-05 0.1 0.001 learning rate expression 0.001 0.001 0.005 0.1 0.05 0.1 0.05 0.05	NA NA NA 0.0005 0.005 learning rate mutation NA NA NA 0.1 0.0001 dropout 0.5 0.5 0.5	NA NA NA 0.05 0.005 learning rate CNA NA NA NA 0.05 0.01 #epoch 40 150 100	0.01 0.0001 0.005 0.005 0.005 Learning rate Classifier 0.01 0.0001 1.00E-05 0.005 #Folds 5 5 5	NA 0.5 0.5 0.5 0.5 dropout expression NA 0.5 0.5 0.5	NA NA NA O.5 O.6 dropout mutation NA NA NA NA NA O.5	NA NA NA 0.5 0.8 dropout CNA NA NA NA O.5	0.01 0.001 0.0001 0.0001 0.01 0.1 weight decay 0.01 0.001 0.1	0.2 0.5 0.5 0.6 0.6 dropout classifier 0.2 0.3 0.4	NA NA 0.5 NA 0.2 gamma NA NA NA 0.005 NA	25 10 20 60 20 #epoch 10 10 10 50	5 5 5 5 #Folds 5 5 5	NA 3 NA 0.5 margir NA NA 2 NA
Feed Forward MOLI_Complete_OnlyExprs MOLI_OnlyClassificationLoss MOLI_Complete Methods for TCGA Gemcitabine Early integration Feed Forward MOLI_Complete_OnlyExprs MOLI_OnlyClassificationLoss MOLI_Complete *#modes for expression, mutation, ** the classifier has a second hidde AutoEncoder for Early integration Paclitaxel Cetuximab PDX-Gemcitabine	15 64 64 60 15 mini-batch size 32 64 64 62 13 and CNA nodes we in layer and the sec n mini-batch size 64 64 64 64 66 64	2048-128 64 256 256 128 #nodes 2048-256 1024 1024 1024 16 ere different cond number is # #nodes 1024,64 1024,64 256,128	NA 0.0001 0.1 0.1 5.00E-05 0.05 learning rate expression NA 1.00E-05 1.00E-05 0.1 0.001 modes in that layer learning rate 0.05 0.1 0.05	NA NA NA 0.0005 0.005 learning rate mutation NA NA O.1 0.0001 dropout 0.5 0.5	NA NA NA 0.05 0.005 learning rate CNA NA NA NA 0.05 0.01 #epoch 40 150 100	0.01 0.0001 0.005 0.005 0.005 Learning rate Classifier 0.01 0.0001 1.00E-05 0.005 #Folds 5 5 5	NA 0.5 0.5 0.5 0.5 dropout expression NA 0.5 0.5 0.5	NA NA NA O.5 O.6 dropout mutation NA NA NA NA NA O.5	NA NA NA 0.5 0.8 dropout CNA NA NA NA O.5	0.01 0.001 0.0001 0.0001 0.01 0.1 weight decay 0.01 0.001 0.1	0.2 0.5 0.5 0.6 0.6 dropout classifier 0.2 0.3 0.4	NA NA 0.5 NA 0.2 gamma NA NA NA 0.005 NA	25 10 20 60 20 #epoch 10 10 10 50	5 5 5 5 #Folds 5 5 5	NA 3 NA 0.5 margir NA NA 2 NA