	田积	房间数		100	俗			
37	2132	4	3450	100				
38	4215	4	5490	00				
39	2162	4	2870	00				
40	1664	2	3685	00				
41	2238	3	3299	00				
42	2567	4	3140	00				
43	1200	3	2990	00				
44	852	2	1799	00				
45	1852	4	2999	00				
46	1203	3	2395	00				
			面积	į	房	间数		价格
cou	nt 4'	7.00	0000	47.0	900000		47.000000	
mea	n 2000	0.68	0851	3.1	170213	34	0412.659574	
std	79	4.70	2354	0.	760982	12	5039.899586	
min	85	2.00	0000	1.0	900000	16	9900.000000	
25%	143	2.00	0000	3.0	900000	24	9900.000000	
50%	188	8.00	0000	3.0	900000	29	9900.000000	
75%	226	9.00	0000	4.0	900000	38	4450.000000	
max	447	8.00	0000	5.0	900000	69	9900.000000	

Preview of Train Sets

定理 8.2.2 如果函数 z=f(x,y) 在点(x,y)处可微分,则该函数在点(x,y)的偏导数必定存在,且函数 z=f(x,y) 在点(x,y)的全微分和梯度(导向量)分别为

$$dz = \frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy$$
 (8.2.6)

和

grad
$$f = \left(\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}\right)$$
.

若分别称(8.2.6) 式中 $\frac{\partial z}{\partial x}$ dx 和 $\frac{\partial z}{\partial y}$ dy 为函数对变量 x 和 y 的偏微分,则二元函数的全微分等于它的两个偏微分之和,称之为二元函数微分的叠加原理.这一原理也适用于二元以上的函数,例如,函数 u = f(x,y,z)如果在点(x,y,z)处可微分,则全微分为

$$du = \frac{\partial u}{\partial x} dx + \frac{\partial u}{\partial y} dy + \frac{\partial u}{\partial z} dz.$$

Validation

