Проектирование в Quartus Prime

Содержание

- Методы ввода проекта
- Компиляция проекта
- ✓ Изучение результатов компиляции

Три версии САПР Quartus Prime

	Lite Edition	Standard Edition	Pro Edition (beta)
Поддержка устройств	Недорогие семейства (MAX, Cyclone)	Все семейства	Arria 10, Stratix 10
Возможности	Базовые	Быстрая перекомпиляция, новый компиляторSpectraQ, набор базовых IP-ядер	Быстрая перекомпиляция, новый компилятор SpectraQ, набор базовых IP-ядер, Blueprint Platform Designer
Доступно	Internet	Internet	Internet
Цена	Бесплатная (не требует лицензии)	Платная, от \$2995	Платная

Система проектирования Quartus Prime

- Интегрированное средство разработки

 - Логический синтез
 - Разводка
 - Анализ временных характеристик и энергопотребления
 - Программирование и внутрисхемная отладка
- Моделирование
 - Поддерживается связь с различными пакетами моделирования
 - Имеется бесплатная версия пакета ModelSim для моделирования проектов на ПЛИС Altera

Среда проектирования Quartus Prime

Проектирование в Quartus Prime

Маршрут проектирования

Маршрут проектирования ПЛИС

Системный уровень

- Требования к проекту
- Разработка архитектуры проекта
- Разработка требований к модулям
- Высокоуровневый ввод и моделирование

Не поддерживается в Quartus Prime

Ввод проекта

Поведенческое или структурное описание проекта в виде модулей.

Функциональное моделирование

Проверка корректности логического описания и потока данных без учета задержек

Настройка проекта

- Задание временных требований
- Выбор типа микросхемы и задание размещения выводов и их настроек (стандарт и т.д.)
- Настройка оптимизаций компилятора

Компиляция

- Логический синтез и оптимизация (отображение описания проекта в уравнения и настройки модулей, реализуемые в устройстве)
- Разводка (отображение синтезированных уравнений на конкретные функциональные элементы устройства и конфигурация соединений между ними)

Маршрут проектирования ПЛИС

Анализ результатов компиляции

- Временной анализ (проверка выполнения временных требований с учетом результатов синтеза и разводки и временной модели ПЛИС)
- Анализ энергопотребления

Временное моделирование (опционально)

Проверка функционирования проекта в выбранном устройстве с учетом временных характеристик проекта

- Программирование и тестирование реального устройства
- Внутрисхемная эмуляция SignalTap II
- Вывод тестовых сигналов SignalProbe
- Редактирование встроенной памяти
- Тестирование высокоскоростных интерфейсов в Transceiver Toolkit
- Отладка контроллеров памяти в External Memory Interface Toolkit

Проектирование в Quartus Prime

Создание проекта

Проекты Quartus Prime

- Описание

 - Один проект одна микросхема.
 Не поддерживается проектирование для нескольких ПЛИС или объединение нескольких проектов в одну ПЛИС.
 - Расширение файла проекта .QPF
 - Настройки проекта хранятся в файле .QSF

Мастер создания нового проекта

Тип проекта

- Создание пустого проекта или загрузка шаблонов проекта из магазина Altera
 - https://cloud.altera.com/devstore/
- Примеры проектов для отладочных плат

Добавление файлов

Добавьте файлы проекта

Схемный ввод:

• .BDF (.GDF)

Языки:

- AHDL
- VHDL
- Verilog
- SystemVerilog

Списки соединений:

- EDIF
- VQM

Примечание:

• Файлы могут быть добавлены впоследствии

Настройка путей к доп. библиотекам

- Библиотеки пользователя
- Библиотеки IP ядер третьих фирм
- Прекомпилированные библиотеки на VHDL

Выбор устройства

Настройка САПР третьих фирм

Завершение

Навигатор проекта. Закладка иерархии

- Отображает иерархию проекта после анализа в процессе компиляции
- Дополнительные возможности
 - Отображение объема задействованных ресурсов для модулей
 - Индивидуальные настройки модулей
 - Определение верхнего уровня иерархии
 - Поиск в исходных модулях и средствах просмотра результатов компиляции
 - Разделение на области для инкрементального проектирования

Закладки навигатора проекта

< Закладка Files Tab

- Показывает файлы, добавленные в состав проекта
- Назначение
 - Добавление и удаление файлов из проекта
 - Открытие файлов
 - ✓ Определение верхнего уровня иерархии
 - Указание библиотек на VHDL
 - Возможность настройки средств синтеза для различных файлов

Закладка Design Units

- Отображает логические модули проекта и их тип
 - Модули на VHDL и Verilog
 - Модуль на AHDL
 - Файл схемного ввода
- Отображает соответствие файлов и логических модулей

Закладка IP Components

- Отображает задействованные IP-ядра
- < Вызов диалога конфигурации

 □ Вызов диалога конфигурации
 □ Вызов диалога конфигурации
 □ Вызов диалога конфигурации
 □ Вызов диалога конфигурации
 □ Вызов диалога конфигурации
 □ Вызов диалога конфигурации
 □ Вызов диалога конфигурации
 □ Вызов диалога конфигурации
 □ Вызов диалога конфигурации
 □ Вызов диалога конфигурации
 □ Вызов диалога конфигурации
 □ Вызов диалога конфигурации
 □ Вызов диалога конфигурации
 □ Вызов диалога конфигурации
 □ Вызов диалога конфигурации
 □ Вызов диалога конфигурации
 □ Вызов диалога конфигурации
 □ Вызов диалога конфигурации
 □ Вызов диалога конфигурации
 □ Вызов диалога конфигурации
 □ Вызов диалога конфигурации
 □ Вызов диалога конфигурации
 □ Вызов диалога конфигурации
 □ Вызов диалога конфигурации
 □ Вызов диалога конфигурации
 □ Вызов диалога конфигурации
 □ Вызов диалога конфигурации
 □ Вызов диалога конфигурации
 □ Вызов диалога конфигурации
 □ Вызов диалога конфигурации
 □ Вызов диалога конфигурации
 □ Вызов диалога конфигурации
 □ Вызов диалога конфигурации
 □ Вызов диалога конфигурации
 □ Вызов диалога конфигурации
 □ Вызов диалога конфигурации
 □ Вызов диалога конфигурации
 □ Вызов диалога конфигурации
 □ Вызов диалога конфигурации
 □ Вызов диалога конфигурации
 □ Вызов диалога конфигурации
 □ Вызов диалога конфигурации
 □ Вызов диалога конфигурации
 □ Вызов диалога конфигурации
 □ Вызов диалога конфигурации
 □ Вызов диалога конфигурации
 □ Вызов диалога конфигурации
 □ Вызов диалога конфигурации
 □ Вызов диалога конфигурации
 □ Вызов диалога конфигурации
 □ Вызов диалога конфигурации
 □ Вызов диалога конфигурации
 □ Вызов диалога конфигурации
 □ Вызов диалога конфигурации
 □ Вызов диалога конфигурации
 □ Вызов диалога конфигурации
 □ Вызов диалога конфигурации
 □ Вызов диалога конфигурации
 □ Вызов диалога конфигурации
 □ Вызов диалога конфигурации
 □ Вызов диалога конфигурации
 □ Вызов диалога конфигурации
 □ Вызов диалога конфигурации
 □ Вызов диалога конфигурации
 □ Вызов диалога конфигурации
 □ Вызов диалога конфигурации
 □ Вызов диалога конфигурации
 □ Вы

Окно задач

✓ Быстрый доступ к большинству функций в Quartus II (двойной щелчок запускает задачу)

■ Выводятся связанные задачи для разных этапов маршрута

проектирования

Полный маршрут Вывод всех задач

Только компиляция

Вывод задач компилятора

RTL Simulation Функциональное моделирование

Настройка панели задач

- Можно определить свой маршрут
- Можно добавлять скрипты Tcl для ускорения запуска сложных процессов

Консоль Tcl

Ввод и исполнение команд ТсІ

Меню View → Utility Windows → Tcl Console

```
Quartus II Tcl Console
tcl> project_open pipemult
tcl> execute_flow -compile
tcl> project_close
tcl>
```

- Запуск команд из командной строки в оболочке Tcl
 - quartus_sh -shell
- ✓ Запуск готовых скриптов также возможен из меню Tools ⇒ Tcl Scripts...

Лабораторная работа №1 Часть 1

Проектирование в Quartus II

Ввод проекта

Средства ввода проекта

Допускается использование в проекте файлов разных типов

Текстовый ввод

- Возможности редактора
 - Нумерация строк
 - Комментирование блоков
 - Сворачивание блоков и функций
 - Подсветка синтаксиса

 - Автозавершение
- Расширения поддерживаемых языков
 - ✓ VHDL (.vhd, .vhdl)
 - Verilog (.v, .vlg, .verilog, .vh)
 - SystemVerilog (.sv)

Шаблоны HDL

панели инструментов

Схемный ввод

- Создание схем
 - Ввод схем на основе стандартных библиотечных функций (блоков)
 - < Вентили, триггеры, выводы, буферы

 □ Вентили, триггеры, выводы, буферы
 □ Вентили, триггеры, выводы, буферы
 □ Вентили, триггеры, выводы, буферы
 □ Вентили, триггеры, выводы, буферы
 □ Вентили, триггеры, выводы, буферы
 □ Вентили, триггеры, выводы, буферы
 □ Вентили, триггеры, выводы, буферы
 □ Вентили, триггеры, выводы, буферы
 □ Вентили, триггеры, выводы, буферы
 □ Вентили, триггеры, выводы, буферы
 □ Вентили, триггеры, выводы, буферы
 □ Вентили, триггеры, выводы, буферы
 □ Вентили, триггеры, выводы, буферы
 □ Вентили, триги
 □ Вентили
 □ Вентил
 - Параметризируемые мегафункции
 - Возможность создания символов и использования файлов на Verilog, VHDL, AHDL
- Назначение схемного ввода
 - Создание простых проектов
 - Создание тестовых проектов для тестирования мегафункций и IP ядер
 - ✓ DSP, PLL, LVDS, Память, Процессоры...
 - Создание модуля верхнего уровня сложной системы для облегчения понимания взаимодействия модулей

Схемный ввод

File ⇒ New ⇒ Block Diagram/Schematic File

Ввод соединений

Редактирование имен выводов

Создание символов для модулей

Каталог ІР

- Модули проекта
- Стандартные функции
- < IP-ядра Altera
 - **▼** ЦОС (фильтры, БПФ и т.д.)
 - Реализации контроллеров интерфейсов
 - Контроллеры памяти
- ✓ IP-ядра партнеров фирмы Altera

Базовые функции Quartus

- Готовые стандартные модули
 - Сложение, умножение, счетчики и т.д.
- < Задействование функциональных модулей ПЛИС
 - ▼ PLL (ФАПЧ), память, аппаратные умножители, поддержка интерфейсов памяти и т.д.
- Преимущества
 - Входят в состав библиотек Quartus II
 - Ускоряют ввод проекта
 - Оптимизированы для микросхем Altera
- < Два типа
 - Мегафункции Altera (начало названия ALT)
 - ✓ Реализуют все возможности функциональных модулей
 - ▼ Библиотека параметризируемых модулей (LPM)

IP Base Suite

- ✓ Устанавливается с Quartus Prime
 - Требует лицензирования для версии Lite
 - ▼ Без лицензии работает в режиме OpenCore® Plus
 - Также устанавливаются HDL модели для моделирования
- Состав IP Base Suite
 - FIR Compiler
 - Numerically Controlled Oscillator
 - Fast Fourier Transform Compiler
 - DDR2/3/QDRII/LPDDR2/RLDRAMII SDRAM Controllers with UniPHY

Прочие мегафункции ІР - ядер

- Требуют приобретения лицензии (кроме базовых или входящих в лицензируемый пакет)
 - Исходный текст зашифрован
- < Два типа
 - ✓ MegaCore IP –ядра интеллектуальной собственности Altera
 - Altera Megafunctions Partner Program (AMPP) IP
- Все MegaCore IP и некоторые AMPP IP поддерживают функцию OpenCore® Plus

 - Наличие моделей для моделирования
 - Генерация файлов для программирования с ограничением по времени работы (неограниченно при связи платы с загрузочным кабелем)
 - См. AN320: OpenCore Plus Evaluation of Megafunctions

Пример окна настройки

Ссылка на описание

Выходные файлы мастера настройки

- По умолчанию
 - Файл .qip со ссылками на файлы мегафункции
 - Исходный файл вариации мегафункции на выбранном HDL.
 Вызывает мегафункцию с определенными через мастер параметрами. Ручное редактирование не рекомендуется.
- **С** Дополнительно
 - Файл символа Quartus II (BSF)
 - Заголовочный файл с объявлением прототипа вариации на выбранном HDL
 - Вспомогательные компоненты на Verilog и VHDL

MegaWizard Plug-In Manager

MegaWîzard*

 В версиях Quartus II до 13.1 вместо IP Catalog использовался MegaWizard Plug-In Manager

Редактор памяти

- Создание и редактирование файлов инициализации памяти в форматах Intel Hex (.HEX) или Altera (.MIF)
- Предназначен для инициализации модулей памяти при конфигурации ПЛИС
- < Содержимое памяти учитывается при моделировании при модели п

Создание файла инициализации памяти

Настройка параметров

Выбор основания для представления адреса и данных

Меню View

 Редактирование объема и разрядности памяти в меню Edit=>Memory Size Wizard

Лабораторная работа №1 Часть 2

Проектирование в Quartus II

Компиляция проекта

Компиляция проектов в Quartus II

- Основные этапы
- Анализ проекта
 - Выявление ошибок ввода
 - Формирование внутреннего представления проекта для компиляции (базы данных)
- Логический синтез проекта
 - ✓ Формирование уравнений, реализуемых в устройстве
- Разводка
 - Распределение уравнений и функций по модулям ПЛИС и формирование связей между ними
- Формирование выходных файлов
 - ✓ Временной список соединений и отчет временного анализатора
 - Список соединений для моделирования
 - Файлы для программирования/конфигурации

Режимы работы компилятора

- Compilation
 - Полная компиляция
- Analysis & Elaboration
 - < Проверка синтаксиса
- Analysis & Synthesis
 - **С**интез
- Fitter
 - Разводка
- Assembler
 - Формирование файлов для программирования
- Анализ
 - I/O Assignment
 - Power Play
 - TimeQuest
 - < SSN

Маршруты проектирования

- Стандартный маршрут
 - < Проект компилируется полностью

 Проект компил
 - ✓ Производится глобальная оптимизация
- Инкрементальный маршрут
 - Разработчик определяет необходимость и режим компиляции отдельных частей проекта
 - Преимущества
 - Сокращение времени компиляции

 - Сохранение результатов компиляции для отлаженных модулей
 - Разделение
 - Инкрементальный синтез
 - Инкрементальная разводка

Примечание: в данной лабораторной работе используется стандартный маршрут

Отчет компилятора

Processing=>Compilation Report

Проектирование в Quartus II

Анализ проекта

Анализ проекта

- RTL Viewer
 - Просмотрщик уровня регистровых передач (до синтеза)
- Technology Viewer
 - Просмотрщик уровня технологии (после синтеза и после разводки)
- Chip Planner
 - < ✓ Редактор и просмотрщик на уровне кристалла
- PowerPlay Power Analyzer Tool
 - Средство анализа энергопотребления
- TimeQuest Timing Analyzer
 - < Средство анализа временных характеристик

RTL Viewer

Меню Tools ⇒ Netlist Viewers ⇒ RTL Viewer

Technology Viewer

 Графическое отображение результатов синтеза и отображения на целевую архитектуру

Просмотр конечных автоматов

Меню Tools ⇒ Netlist Viewers ⇒ State Machine Viewer или из RTL Viewer

Chip Planner

Tools=>Chip Planner

Дополнительные режимы просмотра выбираются в меню View

Анализ энергопотребления

Меню Processing ⇒ PowerPlay Power Analyzer Tool

- Анализ потребления на основе файла активности сигналов или данных о частоте переключения
- Файл активности сигналов может быть создан при моделировании или импортирован из САПР третьих фирм (.SAF, .VCD):
- Файл .SAF содержит только информацию о частоте переключения выходов;
- Файл .VCD содержит полный дамп изменения сигналов во времени.
- Возможен анализ с учетом характеристик окружающей среды и системы охлаждения
- В отчете выводятся данные о потреблении проекта в целом, его модулей и элементов ПЛИС

Рекомендации по оптимизации

- Resource Optimization Advisor рекомендации по настройке проекта для минимизации ресурсов
- Timing Optimization Advisor рекомендации по настройке проекта для увеличения быстродействия
- Power Optimization Advisor рекомендации по настройке проекта для уменьшения энергопотребления
- Incremental Compilation Advisor помощь по работе с проектом при использовании инкрементальной компиляции

Пример рекомендаций

Панель инструментов

Для настройки панелей инструментов вызовите Tools → Customize...

Оконный интерфейс

Можно отделять внутренние окна в Quartus II (меню Window → Detach/Attach Window)

Лабораторная работа №1 Часть 3

