Лабораторная работа №6

по дисциплине «Программирование», $2 \ ceme{mp}$

Задание:

Решить задачу своего варианта из нижеприведенного перечня, создав многомодульное консольное приложение для MS Windows на языке C или C++. При этом:

- 1) Ввод исходных данных выполнить из нестандартного текстового файла.
- 2) Вывод исходных данных и результатов также выполнить в нестандартный текстовый файл.
- 3) Использовать только динамические массивы, не статические. В условиях задач N, M, K переменные, а не константы, и их значения надо также узнать из файла.
- 4) Аномальные ситуации можно не обрабатывать.
- 5) Для решения задачи выделить не менее двух подзадач, не считая подзадач ввода, вывода, выделения/освобождения памяти и проверки аномалий. Все подзадачи оформить в виде функций.
- 6) Внутри функций не использовать глобальных переменных напрямую: вся связь с вызывающей программой только через интерфейс функции её параметры возвращаемое значение.
- 7) Не смешивать внутри функций решение задачи с вводом или выводом: либо только ввод и/или вывод, либо только решение (поиск, вычисления и т.д.) без ввода дополнительных значений и без вывода результата.
- 8) Все функции расположить не в коде головного модуля программы (рядом с main), а в отдельных файлах (*.h и *.c/*.cpp), в одном или нескольких.
- 9) Создать краткий отчет по данной работе в рукописном или печатном виде, из условий задачи и выделенных подзадач и функциональных тестов.

Пример работы с текстовым файлом и информация про параметр-массив. функции, прототипы и модули в конце этого файла.

Перечень задач:

- 1. Дана матрица C из N (N>1) строк и N столбцов. Если первая строка не содержит ни одного элемента, значение которого совпадает со значением какого-либо элемента последней строки этой же матрицы, задать значения элементам X_1 X_2 ,..., X_N по правилу X_i = $max(C_{1,i}, C_{N,i})$,
- 2. Дана матрица A из N (N>1) строк и N столбцов. Если в матрице A элемент с минимальным значением (среди всех элементов этой матрицы) лежит ниже главной диагонали, создать массив C_1 , C_2 ,..., C_N из значений сумм элементов матрицы A, лежащих в каждом из столбцов с 1 по N поотдельности.
- 3. Даны три последовательности: X_1 , X_2 , ..., X_K ; Y_1 , Y_2 , ..., Y_K и M_1 , M_2 , ..., M_K . Каждая тройка элементов (X_i , Y_i , M_i) представляет параметры одной из K материальных точек, лежащих в плоскости XOY: абсциссу X_i , ординату Y_i и массу M_i . Если абсциссы и ординаты всех точек положительны, найти (XC, YC) координаты центра тяжести данной системы масс по формулам:

$$XC = \sum_{i=1}^{K} X_{i} M_{i} / \sum_{i=1}^{K} M_{i}; YC = \sum_{i=1}^{K} Y_{i} M_{i} / \sum_{i=1}^{K} M_{i}$$

- 4. Дана матрица P с двумя строками и K столбцами, каждым столбцом которой задана абсцисса и ордината одной из K точек плоскости. Если нет ни одной пары точек, расстояние между которыми меньше заданной величины R, заменить на нуль в матрице P все отрицательные абсциссы точек, увеличив ординаты этих точек на R.
- 5. Дана матрица A из N строк и M столбцов. Если среднее арифметическое матрицы A положительно, задать элементам $C_1, C_2, ..., C_i$ значения тех элементов матрицы A, которые больше этого среднего арифметического.
- 6. Дана матрица B из N (N>1) строк и N столбцов. Если в матрице B элемент с максимальным значением (среди всех элементов этой матрицы) лежит выше главной диагонали, найти сумму элементов матрицы, лежащих ниже главной диагонали.
- 7. Дана матрица A из N строк и M столбцов. Найти среднее арифметическое элементов матрицы A, и, если матрица A не содержит ни одного отрицательного элемента, изменить элементы матрицы путем вычитания из них этого среднего арифметического.
- 8. Дана матрица B из M строк и M столбцов. Если все элементы главной диагонали матрицы B отрицательны, разделить все элементы матрицы на максимальный по абсолютной величине элемент матрицы.
- 9. Дана матрица A из N строк и N столбцов. Если разность максимального и минимального элемента матрицы A превышает заданную величину E, заменить в матрице A все отрицательные элементы нулями, а положительные единицами и подсчитать число выполненных замен.
- 10. Дана матрица B из N строк и N столбцов и массив C_1 , C_2 , ..., C_M . Если среднее арифметическое элементов C_1 C_2 , ..., C_M больше минимального элемента матрицы B, уменьшить на величину последнего каждый из элементов C_1 , C_2 ,..., C_M .
- 11. Дана матрица A из N строк (N>2) и M столбцов. Если сумма двух первых строк матрицы A меньше суммы элементов двух последних ее строк, изменить матрицу A, прибавив к элементам каждой строки заданные элементы $X_1, X_2, ..., X_M$.
- 12. Дана матрица B из N строк (N>1) и N столбцов. Если ни один из столбцов матрицы B, не содержит два и более равных нулю элемента, найти сумму элементов матрицы, лежащих на главной диагонали и выше нее.
- 13. Дана матрица A из N строк и N столбцов. Если ниже главной диагонали матрицы A нет ни одного отрицательного элемента, изменить матрицу A, умножив каждый ее элемент на находящийся с ним в одной строке элемент главной диагонали.
- 14. Дана матрица B из N строк и M столбцов. Если число отрицательных элементов матрицы B превышает число положительных, увеличить каждый элемент матрицы B на величину среднего арифметического всех ее элементов.
- 15. Дана матрица A из N строк и M столбцов. Если сумма элементов последнего столбца матрицы A положительна, присвоить каждому из элементов X_1 , X_2 , ..., X_N значение среднего арифметического соответствующей по номеру строки матрицы.
- 16. Дана матрица B из M строк и M столбцов. Кроме матрицы B, даны элементы C_1 , C_2 , ..., C_M . Если для всех i и j выполняется неравенство $C_i > B_{ij}$, заменить значение каждого элемента C_i значением минимального элемента i-ой строки матрицы B.
- 17. Дана матрица A из N строк и N столбцов. Если в матрице A элементы, равные нулю, встречаются не более, чем в двух строках, задать элементам $X_1, X_2, ..., X_N$ значения соответствующих по номеру элементов главной диагонали.
- 18. Дана матрица A из N строк и N столбцов. Кроме матрицы A, даны элементы C_1 C_2 , ..., C_N . Если значения всех этих элементов заключены между заданными значениями P и T, получить значения

элементов
$$X_1, X_2, ..., X_N$$
 по формуле $X_i = \sum_{k=1}^N A_{ik}$

- 19. Дана матрица A из N строк и N столбцов и массив C_1 , C_2 , ..., C_N . Если среднее арифметическое CA элементов главной диагонали матрицы A меньше каждого из элементов C_1 , C_2 ,..., C_N , изменить матрицу A увеличением положительных ее элементов на величину CA и уменьшением отрицательных элементов на эту же величину.
- 20. Дана матрица B из N строк и N столбцов и массив C_1 , C_2 , ..., C_M . Если сумма Q положительных элементов матрицы B, превышает абсолютную величину суммы отрицательных из элементов C_1 , C_2 , ..., C_M , увеличить на Q значение каждого из элементов B и C.
- 21. Дана матрица A из N строк и N столбцов и массив C_1 , C_2 , ..., C_N . Если в последовательности C_1 , C_2 , ..., C_N имеются равные элементы, изменить значения всех ее элементов по правилу: $C_i = C_i + A_{ii}$.
- 22. Дана матрица A из N строк и N столбцов. Кроме матрицы A дана матрица B такого же размера. Если каждый элемент матрицы A больше соответствующего элемента матрицы B, присвоить

элементам
$$C_1, C_2, ..., C_N$$
 значения по правилу $C_i = \sum_{k=1}^{N} (A_{ik} + B_{ik})$

- 23. Дана матрица B из N строк и M столбцов. Если среднее арифметическое каждого столбца матрицы B меньше заданной величины T, заменить значение каждого элемента матрицы B квадратом этого значения.
- 24. Дана матрица A из N строк и N столбцов. Кроме матрицы A даны элементы последовательности B_1 , B_2 , ..., B_N . Если для каждой строки матрицы A сумма ее элементов (P_i) меньше соответствующего элемента последовательности (B_i), присвоить всем элементам последовательности значения по правилу: $B_i = P_i$.
- 25. Дана матрица A из N строк и N столбцов. Если разность максимального и минимального элементов каждой строки матрицы A не превышает заданной величины R, присвоить каждому из элементов C_1 , C_2 , ..., C_N значение соответствующего по номеру элемента главной диагонали матрицы A.
- 26. Дана матрица B из N строк и N столбцов. Если в матрице B элемент с максимальным значением (среди всех элементов этой матрицы) лежит на главной диагонали, присвоить начальным элементам последовательности C_1 , C_2 , ..., C_N^2 значения элементов матрицы, лежащих выше главной диагонали, а остальным элементам этой последовательности значения прочих элементов матрицы.
- 27. Дана матрица A из N строк и N столбцов. Если в матрице A нет элементов, абсолютная величина которых отличается от заданной величины P менее, чем на заданную величину E, найти для каждой ее строки среднее арифметическое положительных элементов.
- 28. Дана матрица A из N строк и N столбцов. Кроме матрицы A, дана матрица B такого же размера. Если для всех i,j выполняется неравенство $A_{ij}+B_{ij}>0$, заменить значение каждого элемента матрицы A, который меньше соответствующего элемента матрицы B.
- 29. Дана матрица B из N строк и N столбцов. Если $C_N > ... > C_3 > C_2 > C_1$, где C_i —сумма элементов i-ой строки матрицы B, задать элемента i-ой строки матрицы значения соответствующих элементов (i+1)-ой строки, а элементам последней строки задать значения элементов первой строки.
- 30. Даны две последовательности: C_1 , C_2 ,..., C_M ; P_1 , P_2 , ..., P_M . Если каждый элемент первой последовательности меньше суммы элементов второй, найти при каких значениях i, j максимально значение выражения $C_i/(I+P_i^2+C_i^2)$
- 31. Дана матрица B из N строк и M столбцов. Если среди элементов матрицы нет элементов, по абсолютной величине меньших единицы, то изменить матрицу B путем умножения всех ее элементов на значение последнего элемента матрицы.
- 32. Дана матрица A из N строк и N столбцов. Если вне главной диагонали не все элементы нулевые, найти такие значения i и j, при которых произведение A_{ij} х A_{ij} принимает максимальное значение.

- 33. Дана матрица B из N строк и N столбцов. Если $C_1 > C_2 > C_3 > ... > C_N$, где C_j количество неотрицательных элементов в j-ом столбце матрицы B, переставить в каждой строке матрицы B на главную диагональ максимальный из элементов этой строки, увеличив его вдвое.
- 34. Дана матрица A из N строк и N столбцов. Если в каждой строке матрицы на главной диагонали находится элемент с минимальным по абсолютной величине значением, изменить все элементы матрицы путем вычитания из них значения диагонального элемента из той же строки, где находится изменяемый элемент.
- 35. Дана матрица B из N строк и M столбцов. Если все элементы первого и последнего столбцов матрицы B отрицательны, присвоить каждому из элементов $X_1, X_2, ..., X_M$ значение суммы отрицательных элементов соответствующего по номеру столбца матрицы.

Порядок работы с текстовыми файлами:

порядок работы с текстовыми фаилами:			
Способ	Создание нового потока	Переопределение потоков	
	ввода/вывода и определения	стандартного ввода (stdin) и	
	указателя файла.	вывода (<i>stdout</i>), которые по-	
	Позволяет использовать	умолчанию связаны с	
	несколько потоков ввода	клавиатурой и экраном для	
	одновременно и несколько	консольного ввода и вывода	
	потоков вывода.		
Требуется подключить модуль	#include <stdio.h></stdio.h>	#include <stdio.h></stdio.h>	
		#include <conio.h></conio.h>	
Описание переменной	FILE *f;	FILE *f;	
Открытие для чтения (r/rt) * **	f = fopen("File1.txt", "r");	f = freopen("File1.txt","r", stdin)	
Открытие для записи с созданием	$f = fopen("d:\File1.txt", "w");$	f = freopen("F1.txt","w", stdout)	
Открытие для дозаписи в конец	$f = fopen("d:\Dir\F1.txt", "a");$	f = freopen("File1.txt","a", stdout)	
Чтение чисел (%i,%d,%u, %f,),	fscanf(f, "%d %f", &i, &r);	scanf("%d %f", &i, &r);	
символов (%c) и токенов(%s)			
Запись чисел	fprintf(f, "i=%d r=%f", i, r);	printf("i=%d r=%f", i, r);	
Чтение символов char ch	ch = getc(f);	ch = getch(); ch = getche();	
		ch=getchar(); или	
		scanf("%c",&ch);	
Запись символов	putc(ch, f);	putchar(ch); или printf("%c",ch);	
Чтение строк char str[80]	fgets(str, 79, f);	gets(str, 79);	
Запись строк	fputs(str, f);	puts(str); или printf("%s\n",str);	
Закрытие файла	fclose(f)	fclose(f)	
Дополнительные функции	if (feof(f)!=0) конец файла		

^{*}Относительный путь к файлу указывается от расположения exe-файла. Например, в папке Debug, Release или папке проекта в зависимости от версии среды программирования и режима компиляции.

^{**}Слеш (\) удваивается, так как является служебным символом в строке, например, \n \t \0 \\

1 1
Пусть есть файл из 2 строк:
10 11 12
13.1415
Считаем первое, третье и четвертое числа.
//
#include <stdio.h> // FILE fopen fclose fprintf, fscanf, printf, scanf</stdio.h>
#include <conio.h> // getch</conio.h>
#include <windows.h>// SetConsoleOutputCP</windows.h>
//
void main()

```
SetConsoleOutputCP(1251);
      printf("Use \"Lucida Console\"\n"); // не забудьте в свойствах консольного окна указать шрифт
      char fn[80];
      printf("Имя файла =?"); // приглашение
      gets(fn); //Ввод строки - имени текстового файла
      FILE *f;
      f = fopen(fn, "rt");
      if (!f) { // или if (f ==NULL) {
            printf("Error: Ошибка при открытии файла %s для чтения\nPress any key", fn);
            getch(); // ожидание нажатия клавиши
            return; // выход из функции main
      }
      int n, *m= new int; // целое и указатель на целое+выделение памяти (c++)
      fscanf(f, "%d %*d %d", &n, m); // ввод десятичного(%d) п и пропуск следующего, чтение *m
      fscanf(f, "%f", &z); // ввод десятичного(%d) z
      printf("n=%d m=%d z=%7.4f\n", n, *m, z);
// или printf("n=%d m=%d z=%*.*f\n", n, *m, 7, 4, z);
      fclose(f); delete m;
      printf("Press any key to exit");
      getch();
      return;
Пример 2
Посимвольное копирование файла, включая символы перевода каретки (13) и конца строки (10).
Имена файлов переданы через параметры программы.
Файлы в этой программе могут быть открыты как текстовые (r или rt и w или wt) или как двоичные
(rb или r+b и wb или w+b). t-text, b-binary, r-read, w-write
//-----
#include <stdio.h> // FILE fopen fclose fprintf, fscanf, printf, scanf
#include <conio.h> // getch
#include <windows.h>// SetConsoleOutputCP
//-----
void main(int argc, char *argv[])
{
      SetConsoleOutputCP(1251);
      printf("Use \"Lucida Console\"\n"); // не забудьте в свойствах консольного окна указать шрифт
      if (argc!=3){
            printf("Error: Вы забыли передать имена файлов\nPress any key to continue...");
            getch();
            return;
      }
      FILE *fin, *fout;
      if ((fin = fopen( argv[1], "rt")) == NULL) {
```

```
printf("Errror: Ошибка при открытии файла %s для чтения\nPress any key", argv[1]);
       getch(); // ожидание нажатия клавиши
       return; // выход из функции main
if ((fout = fopen( argv[2], "wt")) ==NULL) {
       printf("Errror: Ошибка при открытии файла %s для записи\nPress any key", argv[2]);
       fclose(fin);
       getch(); // ожидание нажатия клавиши
       return; // выход из функции main
}
char ch;
while (!feof(fin)){
       ch = getc(fin);
       if (!feof(fin)) putc(ch, fout);
}
fclose(fin);
fclose(fout);
printf("THE END\nPress any key to exit");
return;
```

Одномерный массив

Ognome Sham Macena			
	Динамический	Статический	
Описание переменной	int a[] = $\{0,1,2,30,-40\}$; // с инициализацией	int a[5];	
	int *b;	int $b[3] = \{0,1,2\}$	
Выделение памяти	a = new int[5]; // c++	При описании	
	b = (int*)calloc(3, sizeof(int)); // c обнулением		
	b = (int*)malloc(3*sizeof(int)); // без обнуления		
	b = (int*)realloc(3, sizeof(int)); // перевыделение		
Обращение к элементу	a[0] *a	a[0] *a	
	b[i] *(b+i)	b[i] *(b+i)	
Освобождение памяти	delete [] a; // c++	При выходе из области	
	free(b);	видимости, если не static	
Описание параметра	Для изменения значений		
	<pre>void proc1(int a[], int *b);</pre>		
	void proc2(int *a, int b[]);		
	void proc3(int a[5], int b[3]);		
	Для выделения/освобождения памяти Невозможно освободить/		
	void proc4(int *a[], int **b); перевыделить память		
	void proc5(int **a, int *b[]);		
	void* func_a(int a[]); // вызов a=(int*)func_a(a);		
	int* func_b(int *b); // вызов b=func_b(b);		
Структура	Указатель на первый элемент (int a[5])		
	a		
		1	

Двухмерный массив

	двухмерныи ма	СИВ
	Динамический (#include <alloc.h>)</alloc.h>	Статический
Описание	int $*a[] = {\text{new int}[3], \text{new int}[3]}; // 2x3$	int a[5][3];
переменной	int **b, **c;	int $b[2][3] = \{\{0,1,2\},\{3,4,5\}\};$
Выделение	c = new int*[5]; // 5x3	При описании
памяти	for(int i=0; i<5; i++) $c[i] = new int[3];$	
	b = (int**)calloc(2, sizeof(int*)); // 2x3 for(int i=0; i<2; i++) b[i]= (int*)calloc(3, sizeof(int));	
Доступ	a[0][0] **a	a[0][0] **a
к элементу	b[i][j] *(*((int*)b+i)+j)	b[i][j] *((int*)b+i*3+j)
Освобождение	for(i=0;i<5;i++) delete [] a[i];	При выходе из области видимости, если
памяти	delete [] a;	He static
	for(int $i=0$; $i<2$; $i++$) free(b[i]);	
	free(b);	
Описание	Для изменения значений	Для изменения значений
параметра	void proc1(int *a[], int **b);	void proc1(int a[5][3], int b[2][3]);
1 1	void proc2(int **a, int *b[]);	void proc2(int *a[3], int b[][3]);
	Для выделения/освобождения памяти	Невозможно освободить/ перевыделить
	void proc3(int **a[], int ***b);	память
	void proc4(int ***a, int **b[]);	
	void* func(int *a[]); //a=(int**)func(a);	
Структура	Указатель на массив указателей на	Указатель на первый элемент
15 51	первые элементы строк (2х3)	Строки одна за другой (2х3)
	b /	b /
	Drang armaya	
	Вторая строка	
		Первая строка Вторая строка
	↓	Первил строка Вторил строка
	Первая строка	
	·	

Функции и параметры

Например, вычислим для целых чисел c = a + b

с – возвращаемое значение в точку вызова функции		
Кратко	Аналог на Delphi	
Способ1	Function func1(a,b: integer):integer;	
int func1(int a, int b){	Begin	
return a+b;	func1:=a+b; exit;	
}	End;	

Вызов : c=func1(a,b);	Вызов : c:=func1(a,b);
Подробно	Аналог на Delphi
Способ2	Function func2(a,b: integer):integer;
int func2(int a, int b){	Var res: integer;
int res;	Begin
res=a+b;	res:=a+b;
return res;	func2:=res; exit;
}	End;
Вызов : c=func2(a,b);	Вызов : c:=func2(a,b);
Изменяем <i>с</i> через параметр	
Передаем адрес	Аналог на Delphi
для изменения значения по этому адресу	(Type PInteger = ^Integer;)
СпособЗ (указатель)	Procedure func3(a,b: integer; c: PInteger);
void func3(int a, int b, int *c){	Var res: integer;
int res;	Begin
res=a+b;	res:=a+b;
*c=res;	c^:=res;
return;	exit;
}	End;
Вызов : func3(a,b,&c); например, scanf("%d", &n);	Вызов : func3(a,b,@c); // var a,b,c:integer;
Передача по ссылке	Аналог на Delphi
(не во всех версиях компилятора Си!)	
Способ4 (ссылка)	Procedure func4(a,b: integer; var c: integer);
void func4(int a, int b, int &c){	Begin
c=a+b;	c:=a+b;
return;	exit;
}	End;
Вызов : c=func4(a,b,c);	Вызов : func4(a,b,c);
НЕ ИСПОЛЬЗОВАТЬ В ЛАБОРАТОРНЫХ	
РАБОТАХ ЭТОТ СПОСОБ – УЧИМ	
УКАЗАТЕЛИ ПО СПОСОБУ №3 – способ,	
использованный в <u>большинстве</u>	
библиотечных функций	

Прототипы функций и разделение на файлы

Для возможности раздельной разработки и компиляции, для создания библиотек функций есть возможность создания многофайловых проектов.

Функции, выделяемые помимо главной функции приложения *main*, обычно располагают не до, а после *main*. Но, поскольку их описание должно быть сделано ДО использования, в начало файла помещают прототипы этих функций, например:

Функция ДО main	Функция ПОСЛЕ main	Комментарии
#include <conio.h> // getch</conio.h>	#include <conio.h> // getch</conio.h>	Подключение библиотек
#include <stdio.h> // printf, scanf</stdio.h>	#include <stdio.h> // printf, scanf</stdio.h>	
//	//	
int sum(int a, int b){	int sum(int, int);	Прототип sum
return a+b;	//	(можно без имен параметров)
}	<pre>void main(){</pre>	
//	int a,b;	Главная функция приложения
void main(){	printf("a=? b=?");	main
int a,b;	scanf("%d %d", &a, &b);	
printf("a=? b=?");		
scanf("%d %d", &a, &b);	int c=sum(a,b);	Вызов функции <i>ѕит</i> и
	printf("c=%d+%d=%d", a,b,c);	объявление c

```
int c=sum(a,b);
printf("c=%d+%d=%d", a,b,c);
printf("\nPress any key");
getch();
return;
}
int sum(int a, int b){
return a+b;
}
Функция sum
```

Описания прототипов и констант обычно выносят в заголовочные файлы (*.h), которые имеют то же имя, что и файл с полным описанием этих функций (*.cpp или *.c), но другое расширение. Эти пары файлов имеют смысл аналогичный разделам INTERFACE и IMPLEMENTATION в модулях (Unit) в языке Delphi.

Если вынести функцию *sum* из предыдущего примера в отдельный файл, получится код:

Заголовочный файл	Файл с главной функцией	Комментарии
Unit1.h	Main	_
int sum(int, int);	#include <conio.h> // getch</conio.h>	Подключение стандартных
	#include <stdio.h> // printf, scanf</stdio.h>	библиотек (в угловых скобках)
	//	
Файл с функцией	#include "Unit1.h" // sum	Подключение своей библиотеки
Unit1.cpp	//	(путь в двойных кавычках)
//если в заголовочном файле	<pre>void main(){</pre>	
//есть описания констант, типов,	int a,b;	
//то его надо подключить и	printf("a=? b=?");	
//к этому файлу, как и другие	scanf("%d %d", &a, &b);	
//необходимые модули:		
//	int c=sum(a,b);	
#include "Unit1.h"	printf("c=%d+%d=%d", a,b,c);	
//		
int sum(int a, int b){	<pre>printf("\nPress any key");</pre>	
return a+b;	getch();	
}	return;	
	}	

При создании модуля (New → Unit C++ Builder) в среде CodeGear RAD Studio2003-2009, как и в некоторых других средах сразу создается заготовка для двух файлов: заголовочного h-файла (h – header) и с/срр-файла (C/ C Plus Plus), и дается возможность переключения межу ними:

После раздельной компиляции исходного кода всех модулей создаются объектные файлы, которые после редактирования связей компоновщиком преобразуются в исполнимый код программы в виде exe-файла (либо в dll-файл, например, в зависимости от исходно выбранного типа проекта).