Exemple 2:

Soit α un processus adapté, continu et tel que $\mathbb{E}\left(\int\limits_0^t \alpha_s^2 ds\right)<\infty$. Alors $\alpha\in\overline{S}$.é

On considère la suite de processus tronqués (α^n) définie par $\alpha_t^n = \alpha_t \wedge n$. Il suffit de monter que $\alpha^n \in \overline{S}$ et que (α^n) converge vers α dans $L^2(\Omega \times [0,t])$. Remarquons d'abord que α^n est adapté, continu et $|\alpha_t^n| \leq n$, d'où $\mathbb{E}(\sup_{s \leq t} |\alpha_s|) \leq n < \infty$. Il résulte de l'exemple 1 que $\alpha^n \in \overline{S}$.

En fait la suite (α^n) est monotone croissante convergente ponctuellement vers α . En effet, pour tout $(t,\omega) \in \mathbb{R}_+ \times \Omega$ et pour tout $n \geq N_0 := [\alpha_t(\omega)] + 1$ ([x] désigne la partie entière de x) on a $\alpha_t(\omega) > n$, d'où $\alpha_t^n(\omega) = \alpha_t(\omega)$ $\forall n \geq N_0$. Par suite $\lim_{n \to \infty} \alpha_t^n = \alpha$. D'autre part, on a pour entier n et pour tout $(t,\omega) \in \mathbb{R}_+ \times \Omega$:

-ou bien $\alpha_t(\omega) \leq n$ et dans ce cas $\alpha_t^n(\omega) = \alpha_t^{n+1}(\omega) = \alpha_t(\omega)$, -ou bien $n < \alpha_t(\omega) \leq n+1$ et dans ce cas $\alpha_t^n(\omega) = n < \alpha_t(\omega) = \alpha_t^{n+1}(\omega)$, -ou bien $\alpha_t(\omega) > n+1$ et dans ce cas $\alpha_t^n(\omega) = n < n+1 = \alpha_t^{n+1}(\omega)$, d'où la croissance de (α^n) .

Ainsi (α^n) est une suite croissante de \overline{S} convergente vers ponctuellement vers α . Il résulte du théorème de la convergence monotone que

$$\lim_{n \to \infty} \mathbb{E}\left(\int_{0}^{t} (\alpha_{s}^{n} - \alpha_{s})^{2} ds\right) = \mathbb{E}\left(\int_{0}^{t} \lim_{n \to \infty} (\alpha_{s}^{n} - \alpha_{s})^{2} ds\right) = 0,$$

qui signifie que (α^n) convergente vers α dans $L^2(\Omega \times [0,t])$.

Exemple 3:

L'ensemble des processus adaptés continus est dense dans \overline{S} .

Pour le voir, il suffit d'approcher toute processus simple par une suite de processus adaptés continus.

Soient α un processus simple et $\varepsilon > 0$. On pose $\alpha_t^{\varepsilon} := \alpha * \frac{1}{\varepsilon} \mathbf{1}_{[0,\varepsilon[}(t), d'où$

$$\alpha_t^{\varepsilon} = \int\limits_{\mathbb{R}_+} \alpha_s \frac{1}{\varepsilon} 1_{[0,\varepsilon[}(t-s)ds = \frac{1}{\varepsilon} \int\limits_{t-\varepsilon}^t \alpha_s ds,$$

et on a

$$\begin{aligned} |\alpha_t^{\varepsilon} - \alpha_t| &= |\frac{1}{\varepsilon} \int_{t-\varepsilon}^t \alpha_s ds - \frac{1}{\varepsilon} \int_{t-\varepsilon}^t \alpha_t ds| = \frac{1}{\varepsilon} |\int_{t-\varepsilon}^t (\alpha_t - \alpha_s) ds| \\ &\leq \frac{1}{\varepsilon} \int_{t-\varepsilon}^t |\alpha_t - \alpha_s| ds \\ &\leq \sup_{s \in [t-\varepsilon,t]} |\alpha_t - \alpha_s|. \end{aligned}$$

Ainsi

$$0 \le |\alpha_t^{\varepsilon} - \alpha_t| \le \sup_{s \in [t - \varepsilon, t]} |\alpha_t - \alpha_s|,$$

par suite

$$\lim_{n\to\infty}\alpha_t^\varepsilon=\alpha,$$

d'où l'affirmation.

Proposition: (fondamentale)

Pour tout $\alpha \in \overline{S}$, le processus M défini par $M_t = (\int_0^t \alpha_s dB_s)^2 - \int_0^t \alpha_s^2 ds$ est une martingale.

Notons que si $\alpha \equiv 1$ alors $M_t = B_t^2 - t$ qui est bien une martingale.

Démonstration:

En fait, il suffit de montrer que M est une martingale pour $\alpha \in S$, le cas général se déduit par par passage à la limite.

Le processus $(\int_{0}^{t} \alpha_s dB_s)_{t\geq 0}$ étant une martingale donc adaptée, alors la variable aléatoire $(\int_{0}^{t} \alpha_s dB_s)^2$ est \mathcal{F}_t -mesurable. Il en est de même pour

$$\int_{0}^{t} \alpha_s^2 ds = \sum_{k} \alpha_{t_k}^2 \left(t_{k+1} \wedge t - t_k \wedge t \right)$$

et donc pour M_t aussi. Le processus M est donc adapté. De plus

$$\mathbb{E}\left(|M_t|\right) \leq \mathbb{E}\left(\left(\int\limits_0^t \alpha_s dB_s\right)^2 + \int\limits_0^t \alpha_s^2 ds\right) \leq \mathbb{E}\left(\int\limits_0^t \alpha_s dB_s\right)^2 + \mathbb{E}\left(\int\limits_0^t \alpha_s^2 ds\right) = 2\mathbb{E}\left(\int\limits_0^t \alpha_s^2 ds\right) < \infty$$

Il reste à montrer que $\mathbb{E}(M_{t+h} - M_t \mid \mathcal{F}_t) = 0$.

On a:

$$M_{t+h} - M_t = (\int_0^{t+h} \alpha_s dB_s)^2 - (\int_0^t \alpha_s dB_s)^2 - \int_t^{t+h} \alpha_s^2 ds.$$

Il résulte de la linéarité de l'espérance conditionnelle et du fait que $(\int\limits_0^t \alpha_s dB_s)$ est une martingale, que

$$\mathbb{E}((\int_{t}^{t+h} \alpha_{s}dB_{s})^{2} \mid \mathcal{F}_{t}) = \mathbb{E}((\int_{0}^{t+h} \alpha_{s}dB_{s}) - \int_{0}^{t} \alpha_{s}dB_{s})^{2} \mid \mathcal{F}_{t})$$

$$= \mathbb{E}((\int_{0}^{t+h} \alpha_{s}dB_{s})^{2} \mid \mathcal{F}_{t}) - 2\mathbb{E}(\int_{0}^{t+h} \alpha_{s}dB_{s} \int_{0}^{t} \alpha_{s}dB_{s} \mid \mathcal{F}_{t}) + \mathbb{E}((\int_{0}^{t} \alpha_{s}dB_{s})^{2} \mid \mathcal{F}_{t})$$

$$= \mathbb{E}((\int_{0}^{t+h} \alpha_{s}dB_{s})^{2} \mid \mathcal{F}_{t}) - 2\int_{0}^{t} \alpha_{s}dB_{s}\mathbb{E}[(\int_{0}^{t+h} \alpha_{s}dB_{s}) \mid \mathcal{F}_{t}] + (\int_{0}^{t} \alpha_{s}dB_{s})^{2}$$

$$= \mathbb{E}((\int_{0}^{t+h} \alpha_{s}dB_{s})^{2} \mid \mathcal{F}_{t}) - (\int_{0}^{t} \alpha_{s}dB_{s})^{2}$$

$$= \mathbb{E}((\int_{0}^{t+h} \alpha_{s}dB_{s})^{2} - (\int_{0}^{t} \alpha_{s}dB_{s})^{2} \mid \mathcal{F}_{t}).$$

d'où

$$\mathbb{E}((\int_{0}^{t+h}\alpha_{s}dB_{s})^{2}-(\int_{0}^{t}\alpha_{s}dB_{s})^{2}\mid\mathcal{F}_{t})=\mathbb{E}((\int_{t}^{t+h}\alpha_{s}dB_{s})^{2}\mid\mathcal{F}_{t})$$

et par suite

$$\mathbb{E}\left(M_{t+h} - M_t \mid \mathcal{F}_t\right) = \mathbb{E}\left(\left(\int_{-\infty}^{t+h} \alpha_s dB_s\right)^2 \mid \mathcal{F}_t\right) - \mathbb{E}\left(\int_{-\infty}^{t+h} \alpha_s^2 ds \mid \mathcal{F}_t\right).$$

On a

$$\int_{-\infty}^{t+h} \alpha_s dB_s = \sum_{k} \alpha_{t_k^{"}} (B_{t_{k+1}^{"}} - B_{t_k^{"}}),$$

où $(t_k^")$ est la subdivision de l'intervalle [t, t+h] construite à l'aide de t, t+h et les t_k qui appartiennent à [t, t+h]. On pose $C_k = \alpha_{t_k^"}(B_{t_{k+1}^"} - B_{t_k^"})$, d'où

$$(\int_{t}^{t+h} \alpha_s dB_s)^2 = (\sum_{k} C_k)^2 = \sum_{k,l} C_k C_{k+l}$$

et on a

$$\mathbb{E}((\int_{t}^{t+h} \alpha_s dB_s)^2 \mid \mathcal{F}_t) = \sum_{k,l} \mathbb{E}(C_k C_{k+l} \mid \mathcal{F}_t).$$

En fait $\mathbb{E}(C_k C_{k+l} \mid \mathcal{F}_t) = 0$ pour tout l > 0. En effet; comme $\mathcal{F}_t \subset \mathcal{F}_{t_{k+l}}$, alors

$$\mathbb{E}(C_{k}C_{k+l} \mid \mathcal{F}_{t}) = \mathbb{E}(\mathbb{E}\left(C_{k}C_{k+l} \mid \mathcal{F}_{t_{k+l}^{"}}\right) \mid \mathcal{F}_{t})$$

$$= \mathbb{E}(\alpha_{t_{k}^{"}}(B_{t_{k+1}^{"}} - B_{t_{k}^{"}})\alpha_{t_{k+l}^{"}}\mathbb{E}((B_{t_{k+l+1}^{"}} - B_{t_{k+l}^{"}}) \mid \mathcal{F}_{t_{k+l}^{"}}) \mid \mathcal{F}_{t})$$

$$= \mathbb{E}(A_{k}\alpha_{t_{k+l}^{"}}\mathbb{E}(B_{t_{k+l+1}^{"}} - B_{t_{k+l}^{"}} \mid \mathcal{F}_{t_{k+l}^{"}}) \mid \mathcal{F}_{t}) = 0 \text{ car } (B_{t}) \text{ est une martingale.}$$

Il résulte que

$$\begin{split} \mathbb{E}((\int_{t}^{t+h}\alpha_{s}dB_{s})^{2} & | \mathcal{F}_{t}) = \sum_{k} \mathbb{E}(C_{k}^{2} | \mathcal{F}_{t}) \\ & = \sum_{k} \mathbb{E}(\alpha_{t_{k}^{"}}^{2}(B_{t_{k+1}^{"}} - B_{t_{k}^{"}})^{2} | \mathcal{F}_{t}) \\ & = \sum_{k} \mathbb{E}(\mathbb{E}(\alpha_{t_{k}^{"}}^{2}(B_{t_{k+1}^{"}} - B_{t_{k}^{"}})^{2} | \mathcal{F}_{t_{k}^{"}}) | \mathcal{F}_{t}) \\ & = \sum_{k} \mathbb{E}(\alpha_{t_{k}^{"}}^{2} \mathbb{E}((B_{t_{k+1}^{"}} - B_{t_{k}^{"}})^{2} | \mathcal{F}_{t_{k}^{"}}) | \mathcal{F}_{t}) \\ & = \sum_{k} \mathbb{E}(\alpha_{t_{k}^{"}}^{2} \mathbb{E}((B_{t_{k+1}^{"}} - B_{t_{k}^{"}})^{2} | \mathcal{F}_{t}) | \mathcal{F}_{t}) \\ & = \sum_{k} \mathbb{E}(\alpha_{t_{k}^{"}}^{2} (t_{k+1}^{"} - t_{k}^{"}) | \mathcal{F}_{t}) \\ & = \mathbb{E}(\sum_{k} \alpha_{t_{k}^{"}}^{2} (t_{k+1}^{"} - t_{k}^{"}) | \mathcal{F}_{t}) = \mathbb{E}(\int_{1}^{\infty} \alpha_{s}^{2} ds | \mathcal{F}_{t}) \end{split}$$

Ainsi

$$\mathbb{E}\left(\left(\int_{t}^{t+h} \alpha_{s} dB_{s}\right)^{2} \mid \mathcal{F}_{t}\right) = \mathbb{E}\left(\int_{t}^{t+h} \alpha_{s}^{2} ds \mid \mathcal{F}_{t}\right),$$

d'où

$$\mathbb{E}\left(M_{t+h} - M_t \mid \mathcal{F}_t\right) = 0,$$

ce qu'il fallait démontrer.

■

1 Semi-martingales

Dans la suite, on aura besoin du rappel suivant:

1.1 *Rappel*

Définition:

Une fonction $F:[a,b] \to \mathbb{R}$ est dite à variations finies (ou bornées) si

$$||F||_{a,b} := \sup \sum_{i} |F(a_{i+1}) - F(a_i)| < \infty$$

où le suprémum est pris sur l'ensemble des subdivisions

$$d = \{a = a_0 < a_1 < a_2 < \dots < a_n = b\}$$

de [a, b].

Note que l'ensemble des fonctions à variations finies muni de $||.||_{a,b}$ est un espace vectoriel normé

Exemple 1:

Si F croissante alors elle est à variations finies. En effet, pour toute subdivision $d = \{a = a_0 < a_1 < a_2 < \dots < a_n = b\}$ de [a,b] on a

$$\sum_{i} |F(a_{i+1}) - F(a_i)| = F(b) - F(a),$$

d'où

$$||F||_{a,b} \le F(b) - F(a) < \infty.$$

Il en est de même pour F est décroissante et on a par le même raisonnement

$$||F||_{a,b} \le F(a) - F(b) < \infty.$$

Exemple 2:

Si F est de la forme

$$F(t) = \int_{a}^{t} f(s) \, ds$$

où f est une fonction positive, alors elle est à variations finies car elle croissante.

De plus on peut montrer que $||F||_{a,b} = \int_a^b |f(s)| ds$.

Exemple 3:

Si maintenant on suppose que f est de signe quelconque, alors elle est également à variations finies. En effet $f = f^+ - f^-$, où $f^+(x) = \max(f(x), 0) \ge 0$ et $f^-(x) = \max(-f(x), 0) \ge 0$ et donc

$$F(t) = \int_{a}^{t} f^{+}(s) ds - \int_{a}^{t} f^{-}(s) ds$$

est à variations finies comme étant la différence de deux fonctions à variations finies. On peut montrer dans ce cas que

$$F(t) = \int_{a}^{t} f^{+}(s) ds - \int_{a}^{t} f^{-}(s) ds$$

1.2 Motivation

Supposons qu'on a à résoudre l'équation suivante:

$$\Delta X_t = \sigma (X_t) \Delta B_t + V (X_t) \Delta t,$$

où X_t représente la position d'une particule (par exemple un gaz), $(B_t)_{t\geq 0}$ est un mouvement brownien de dimension n, $\sigma(x)$ une matrice carré $n\times n$ (appelé champ des covariances) et V(x) un champ de vecteur (appelé champ des vitesses). Ici, on entend par ΔX_t (resp. ΔB_t) l'accroissement $X_{t+h} - X_t$ (resp. $B_{t+h} - B_t$) et par Δt un temps infiniment petit h. Comme pour les équations différentielles ordinaires, X_t doit nécessairement satisfaire l'égalité suivante:

$$X_{t} = X_{0} + \int_{0}^{t} \sigma\left(X_{s}\right) dB_{s} + \int_{0}^{t} V\left(X_{s}\right) ds \qquad (*)$$

d'où la définition suivante.

1.3 Processus d'Itô

Définition:

Soit $(B_t)_{t\geq 0}$ un mouvement brownien réel standard défini sur un espace probabilisé filtré $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t\geq 0}, P)$. On appelle semi-martingale (ou processus d'Itô) tout processus de la forme:

$$X_t = X_0 + \int_0^t \alpha_s dB_s + \int_0^t \beta_s ds,$$

satisfaisant les propriétés suivantes:

- 1) X_0 est \mathcal{F}_0 -mesurable,
- 2) $\alpha \in \overline{S}$.
- 3) β est un processus adapté tel que $\mathbb{E}\left(\int\limits_0^t |\beta_s| \,ds\right) < \infty$ (on dira que le processus $\beta \in L^1_{loc}$).

Remarque:

On notera que le processus (X_t) est nécessairement adapté et que le processus β est p.s. à variations finies.

Définition:

Le processus $M_t := \int\limits_0^t \alpha_s dB_s$ s'appelle la partie martingale de X_t et $V_t := \int\limits_0^t \beta_s ds$ sa partie à variations finies.

On notera que l'ensemble des semi-martingales est un espace vectoriel et que la représentation (*) est unique à une égalité p.s. prés (voir T.D.).

Notation:

Au lieu d'écrire (*) on écrit

$$dX_t = \alpha_t dB_t + \beta_t dt \qquad (**)$$

Définitions:

- La forme (**) s'appelle la différentielle (ou la dynamique) de X.
- Lorsque α_t et β_t dépendent de X_t (i.e. $\alpha_t = \sigma(X_t)$ et $\beta_t = V(X_t)$), (**) prend la forme suivante:

$$dX_t = \sigma(X_t) dB_t + V(X_t) dt \qquad (***)$$

-La forme (* * *) s'appelle équation différentielle stochastique (EDS en abrégé). On dira dans ce cas que X_t satisfait l'EDS (* * *), σ est sa diffusion et V est sa vitesse (ou son drift).

On notera que si $\sigma \equiv 0$, alors l'EDS (***) devient une EDO.

Règle de multiplication (très importante):

Soient (X_t) , (Y_t) et (Z_t) trois semi-martingales définies par les différentielles suivantes:

$$dX_t = \alpha_t dB_t + \beta_t dt,$$

$$dY_t = \alpha'_t dB_t + \beta'_t dt \text{ et}$$

$$dZ_t = \alpha''_t dB_t + \beta''_t dt.$$

On pose par définition:

$$dX_t dY_t := \alpha_t \alpha_t' dt$$

Conséquences:

Puisque

$$dB_t = 1.dB_t + 0.dt$$
 et $dt = 0.dB_t + 1.dt$,

alors on conclut que

$$dB_t dB_t = dt$$
 et que $dt dB_t = dt dt = 0$.

Il résulte aussi de cette règle que

$$dX_t dY_t dZ_t = 0.$$

Dans tout ce qui suit, on convient que si $(B'_t)_{t\geq 0}$ est un autre mouvement brownien indépendant de $(B_t)_{t\geq 0}$, alors $dB_tdB'_t=\overline{0}$.

1.4 Temps d'arrêt

On aura besoin de la notion de temps d'arrêt relativement à la filtration $(\mathcal{F}_t)_{t\geq 0}$ suivante:

Définition:

On appelle temps d'arrêt (t.d'a. en abrégé) toute variable aléatoire $T: \Omega \to \overline{\mathbb{R}_+} = [0, \infty]$ telle que $\{T \le t\} \in \mathcal{F}_t$ pour tout $t \ge 0$.

Ainsi les v.a. constantes sont des t.d'a.

Définition:

Soient S et T deux t.d'a.. On défini les intervalles stochastiques de la manière suivante:

$$\begin{split} [S,T] &=& \left\{ (t,\omega) \in \mathbb{R}_+ \times \Omega : S\left(\omega\right) \leq t \leq T\left(\omega\right) \right\}, \\ [S,T[&=& \left\{ (t,\omega) \in \mathbb{R}_+ \times \Omega : S\left(\omega\right) \leq t < T\left(\omega\right) \right\}, \\]S,T[&=& \left\{ (t,\omega) \in \mathbb{R}_+ \times \Omega : S\left(\omega\right) < t \leq T\left(\omega\right) \right\}, \\]S,T[&=& \left\{ (t,\omega) \in \mathbb{R}_+ \times \Omega : S\left(\omega\right) < t < T\left(\omega\right) \right\}, \\]T,\infty[&=& \left\{ (t,\omega) \in \mathbb{R}_+ \times \Omega : T\left(\omega\right) < t \right\}, \\ [T,\infty[&=& \left\{ (t,\omega) \in \mathbb{R}_+ \times \Omega : T\left(\omega\right) \leq t \right\}. \end{split}$$

L'ensemble $|[T]| := \{(t, \omega) \in \mathbb{R}_+ \times \Omega : T(\omega) = t\}$ s'appelle le graphe de T.