Продажа квартир в Санкт-Петербурге — анализ рынка недвижимости

Описание задачи проекта: используя данные сервиса Яндекс.Недвижимость, определить рыночную стоимость объектов недвижимости и типичные параметры квартир.

Данные: выгрузка данных сервиса Яндекс Недвижимость — архив объявлений за несколько лет о продаже квартир в Санкт-Петербурге и соседних населённых пунктах. О каждой квартире в базе содержится два типа данных: добавленные пользователем и картографические. Например, к первому типу относятся площадь квартиры, её этаж и количество балконов, ко второму — расстояния до центра города, аэропорта и ближайшего парка.

Общий план исследования: выполнить предобработку данных и изучить их, чтобы найти особенности и зависимости, которые существуют на рынке недвижимости.

Навыки и инструменты, применённые в работе:

- Предобработка данных: исправление проблемы со склеиванием исходных данных, замена пропусков, изменение типов данных.
- Расчёты и исследование данных: добавление столбцов с рассчитанными данными (цена квадратного метра, период публикации объявления, соотношение жилой и общей площади, а также отношение площади кухни к общей), категоризация этажности квартир, сводные таблицы, множественная фильтрация, расчёт корреляции параметров.
- Графики: гистограмма, линейный график, диаграмма рассеяния.

Результаты исследования

В ходе работы над исследованием была проведена предобработка данных:

- найдены столбцы с пропусками, % пропусков, удалены пропуски в столбцах,
- там где это было возможно и логично (is_apartment, balcony),
- изменены типы данных в столбцах last_price, balcony с дробного на целочисленный, is_apartment и first_day_exposition из типа object на булевы значения и дату/время соответсвенно.

Далее были рассчитаны и добавлены к исходным данным столбцы:

- price_sqm стоимость кв. метра жилья
- day_of_week_public день недели, когда было опубликовано объявление
- month_public месяц публикации объявления
- year_public год публикации объявление
- part_living_area доля жилой площади по отношению к всей площади квартиры
- part_kitchen_area доля площади кухни по отношению ко всей площади квартиры

В результате исследовательского анализа, чтобы избавиться выбросов к исходным данным были применены следующие ограничения:

- 'total_area' <= 200
- 'last_price'<= 20000000
- 1<='rooms'<=8
- 2.5<='ceiling_height'<=3.5

и создана таблица с отфильтрованными данными, по которым далее и проводилось исследование.

В результате которых было выявлено наибольшее влияние на стоимость квартиры по сравнению с другими параметрами (кол-во комнат, этаж, удалённость от центра), оказывает параметр площади квартиры. Период публикации объявления на стоимость квартиры влияние не оказывает.

Также была выделена зона в г.Санкт-Питербурге, которую можно отнески к центру и проведено исследование параметров, в результате которых тажке было выявлено максимальное влияние размера площади на стоимость квартиры.

Кроме того было выделено 10 населённых пунктов, лидирующих по числу обявлений:

- Санкт-Петербург 7709
- Всеволожск 215
- посёлок Мурино 193
- посёлок Шушары 186

- Колпино 177
- Пушкин 175
- Гатчина 125
- Петергоф 121
- посёлок Парголово 118
- деревня Кудрово 11

и выявлено, что из десяти населённых пунктов, лидирующих по числу объявлений:

- максимальная стоимость кв.метра в Санкт-Питербурге равная 107201,
- а меньшая стоимость во Всеволожске, равная 66297.

Изучение исходных данных

Импортируем библиотеку pandas и откроем файл с помощью функции read csv()

Out[3]:		$total_images \\ tlast_price \\ ttotal_area \\ tfirst_day_exposition\\ trooms\\ tceiling_height\\ tfloors_total\\ tliving_area\\ tfloor\\ tis_apartment\\ tstudio\\ topen_plan\\ tkiterial$	che
	0		
	1		
	2		
	3		
	4		
	4		Þ

В полученных данных есть очевидная проблема - данные склеились в одну строку вместо того, чтобы разбиться по колонкам. Исправим эту ситуацию, добавив в параметр sep в функцию read csv().

: [total_image	s	last_price	total_area	first_day_exposition	rooms	ceiling_height	floors_total	living_area	floor	is_apartment	 kitchen_are
0	2	0.	13000000.0	108.0	2019-03-07T00:00:00	3	2.70	16.0	51.0	8	NaN	 25.0
1		7	3350000.0	40.4	2018-12-04T00:00:00	1	NaN	11.0	18.6	1	NaN	 11.0
2	. 1	0	5196000.0	56.0	2015-08-20T00:00:00	2	NaN	5.0	34.3	4	NaN	 8.;
3		0	64900000.0	159.0	2015-07-24T00:00:00	3	NaN	14.0	NaN	9	NaN	 Nal
4		2	10000000.0	100.0	2018-06-19T00:00:00	2	3.03	14.0	32.0	13	NaN	 41.0
5	rows × 22 co	lur	nns									

Поросмотрим общую информацию о данных в таблице:

Согласно документации к данным:

- airports_nearest расстояние до ближайшего аэропорта в метрах (м)
- balcony число балконов
- ceiling_height высота потолков (м)
- cityCenters nearest расстояние до центра города (м)
- days_exposition сколько дней было размещено объявление (от публикации до снятия)
- first_day_expositio n дата публикации
- floor этаж
- floors_total всего этажей в доме
- is apartment апартаменты (булев тип)
- kitchen area площадь кухни в квадратных метрах (м²)
- last price цена на момент снятия с публикации
- living area жилая площадь в квадратных метрах (м²)
- locality_name название населённого пункта
- open_plan свободная планировка (булев тип)
- parks_around3000 число парков в радиусе 3 км
- parks_nearest расстояние до ближайшего парка (м)
- ponds_around3000 число водоёмов в радиусе 3 км
- ponds_nearest расстояние до ближайшего водоёма (м)

- rooms число комнат
- studio квартира-студия (булев тип)
- total area площадь квартиры в квадратных метрах (м²)
- total_images число фотографий квартиры в объявлении

Пояснение: апартаменты — это нежилые помещения, которые не относятся к жилому фонду, но имеют необходимые условия для проживания.

Промежуточный вывод

На данном этапе открыт файл с данными, исправлена проблема со склеиванием данных. Выведена общая информация о таблице, благодаря чему видна проблема с пропусками данных в ряде столбцов.

Предобработка данных

С помощью цикла найдём столбцы, в которых есть пропуски, посчитаем их количество и %, которые пропуски в столбце составляют от всех данных:

Количество пропусков в столбцах:

```
ceiling_height: 9195, что составляет 39% от всех данных floors_total: 86, что составляет 0% от всех данных living_area: 1903, что составляет 8% от всех данных is_apartment: 20924, что составляет 88% от всех данных kitchen_area: 2278, что составляет 10% от всех данных balcony: 11519, что составляет 49% от всех данных locality_name: 49, что составляет 0% от всех данных airports_nearest: 5542, что составляет 23% от всех данных cityCenters_nearest: 5519, что составляет 23% от всех данных parks_around3000: 5518, что составляет 23% от всех данных parks_nearest: 15620, что составляет 66% от всех данных ponds_around3000: 5518, что составляет 23% от всех данных ponds_around3000: 5518, что составляет 66% от всех данных ponds_nearest: 14589, что составляет 62% от всех данных days_exposition: 3181, что составляет 13% от всех данных
```

Столбцы, для которых нет подходящего значения на замену:

количественные переменные:

• floors_total(всего этажей в доме): 86,

что составляет меннее 1% от всех данных, что может быть связано с невнимательностьтю при заполнении данных либо это может быть объявление о продаже частных одноэтажных домов, в связи с чем пользователь мог не указать этажность дома, заполнить пропуски проблематично, т.к. для этого не достаточно информации, например данных о типе дома.

- living_area(жилая площадь в квадратных метрах (м²)): 1903, что составляет 8% от всех данных
- kitchen area(площадь кухни в квадратных метрах (м²)): 2278, что составляет 10% от всех данных

возможно, пропуски связаны с отсутствием информации о площади у продавца квариры (нет плана квартиры с отметками о площади), либо с невнимательностью при заполнении. Заполнить пропуски проблематично, т.к. средние или медианные значения могут не отражать индивидуальные особенности квартиры. Вероятно, пропуски можно было бы заполнить, если бы были данные о типе/серии дома, на основе которых можно было бы заполнить типовые значения.

- days_exposition(сколько дней было размещено объявление (от публикации до снятия)): 3181, что составляет 13% от всех данных возможно пропуски связаны с техническими ошибками при записи данных в таблицу.
- ceiling_height(высота потолков (м)): 9195, что составляет 39% от всех данных значительный процент пропусков, вероятно, связан с тем, что данных о высоте потолков может не быть в документации на квартиру и при продаже люди не измеряют их высоту, считая этот параметр не самым значительным.

- airports_nearest(расстояние до ближайшего аэропорта в метрах (м)): 5542, что составляет 23% от всех данных
- cityCenters nearest(расстояние до центра города (м)): 5519, что составляет 23% от всех данных
- parks_around3000(число парков в радиусе 3 км): 5518, что составляет 23% от всех данных
- ponds_around3000(число водоёмов в радиусе 3 км): 5518, что составляет 23% от всех данных
- ponds_nearest(расстояние до ближайшего водоёма (м)): 14589, что составляет 62% от всех данных
- parks_nearest(расстояние до ближайшего парка (м)): 15620, что составляет 66% от всех данных

составляют значительный процент пропусков 23-66%, что может быть связано с техническими проблемами при определении картографических данных.

категориальные переменные:

• locality_name(название населённого пункта): 49, что составляет менее 1% от всех данных, возможно, невнимательность при заполнении объявления.

Столбцы, в которых можно предположить логичную замену:

- balcony(число балконов): 11519, что составляет 49% от всех данных (количественная переменная)
- is apartment(апартаменты (булев тип)): 20924, что составляет 88% от всех данных (категориальная переменная)

-где не указаны число балконов и значение в столбце is_apartment, можем сделать предположение, что в таких случаях балкона нет и продаваемый объект не относится к типу "апартаменты", поэтому заменим пропуски в обоих столбцах на значение "0" и "False" соответсвенно.

Выполним проверку того, что пропуски в столбцах после замены отсутствуют:

```
In [8]: len(df[df['balcony'].isna()])
Out[8]: 0

In [9]: len(df[df['is_apartment'].isna()])
Out[9]: 0
```

Изменение типов данных:

Проверим, как изменились данные о таблице:

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 23699 entries, 0 to 23698
Data columns (total 22 columns):
                          Non-Null Count Dtype
#
    Column
- - -
0
   total_images
                         23699 non-null int64
                          23699 non-null float64
23699 non-null float64
    last_price
1
2
    total area
3
    first_day_exposition 23699 non-null object
4
                          23699 non-null
    rooms
                                          int64
                          14504 non-null float64
5
    ceiling_height
6
    floors_total
                          23613 non-null float64
                          21796 non-null
    living_area
                                          float64
8
                          23699 non-null
                                          int64
    floor
    is_apartment
                          23699 non-null
9
                                          bool
10 studio
                          23699 non-null
                                          bool
11 open plan
                          23699 non-null
                                          bool
12 kitchen_area
                          21421 non-null
                                          float64
13 balcony
                          23699 non-null
                                          float64
14 locality_name
                          23650 non-null object
                          18157 non-null
15 airports nearest
                                          float64
16 cityCenters_nearest 18180 non-null
                                          float64
17 parks_around3000
                          18181 non-null float64
18 parks nearest
                          8079 non-null
                                          float64
19 ponds around3000
                          18181 non-null float64
20 ponds_nearest
                          9110 non-null
                                          float64
                          20518 non-null float64
21 days_exposition
dtypes: bool(3), float64(14), int64(3), object(2)
memory usage: 3.5+ MB
```

Замену типов данных также необходимо сделать для следующих столбцовс float64 на int, т.к. знаки после запятой в этих полях избыточны, достаточно целочисленных значений:

- last price
- balcony

Для следующих столбцов замену сделать нет возможности методом astype(), т.к. в столбцах есть пропуски.

- floors_total 23613 non-null float64
- airports_nearest 18157 non-null float64
- cityCenters_nearest 18180 non-null float64
- parks_around3000 18181 non-null float64
- parks_nearest 8079 non-null float64
- ponds_around3000 18181 non-null float64
- ponds_nearest 9110 non-null float64
- days exposition 20518 non-null float64

```
In [11]: df['last_price']=df['last_price'].astype('int')
In [12]: df['balcony']=df['balcony'].astype('int')
```

И сделаем замену типа данных для столбца first_day_exposition с типа object на тип datetime, чтобы сделать дату читабельной и удобной для дальнейшей работы с данными:

```
In [13]: df['first_day_exposition']=pd.to_datetime(df['first_day_exposition'], format = '%Y-%m-%dT%H:%M:%S')
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 23699 entries, 0 to 23698
Data columns (total 22 columns):
#
    Column
                           Non-Null Count Dtype
0
     total images
                           23699 non-null
                                            int64
 1
     last_price
                           23699 non-null
                                            int32
     total_area
                            23699 non-null
                                            float64
     first_day_exposition
                           23699 non-null
                                            datetime64[ns]
                           23699 non-null
 4
                                            int64
    rooms
 5
     ceiling height
                           14504 non-null
                                            float64
                            23613 non-null
                                            float64
     floors_total
                           21796 non-null
                                            float64
     living_area
 8
    floor
                           23699 non-null
                                            int64
     \verb"is_apartment"
                            23699 non-null
                                            bool
 10 studio
                           23699 non-null
                                            bool
                           23699 non-null
 11
    open plan
                                            hool
 12
     kitchen area
                           21421 non-null
                                            float64
                           23699 non-null
 13 balcony
                                            int32
 14
    locality_name
                           23650 non-null
                                            obiect
                           18157 non-null
 15 airports nearest
                                            float64
 16 cityCenters_nearest
                           18180 non-null
                                            float64
 17
    parks around3000
                            18181 non-null
                                            float64
 18 parks nearest
                           8079 non-null
                                            float64
 19
    ponds_around3000
                           18181 non-null
                                            float64
 20
                           9110 non-null
                                            float64
    ponds_nearest
                           20518 non-null
 21 days exposition
                                            float64
dtypes: \overline{bool}(3), datetime64[ns](1), float64(12), int32(2), int64(3), object(1)
memory usage: 3.3+ MB
```

Out[15]:		total_images	last_price	total_area	first_day_exposition	rooms	ceiling_height	floors_total	living_area	floor	is_apartment	 kitchen_area
	0	20	13000000	108.0	2019-03-07	3	2.70	16.0	51.0	8	False	 25.0
	1	7	3350000	40.4	2018-12-04	1	NaN	11.0	18.6	1	False	 11.0
	2	10	5196000	56.0	2015-08-20	2	NaN	5.0	34.3	4	False	 8.3
	3	0	64900000	159.0	2015-07-24	3	NaN	14.0	NaN	9	False	 NaN
	4	2	10000000	100.0	2018-06-19	2	3.03	14.0	32.0	13	False	 41.0

5 rows × 22 columns

Вывод

На данном этапе определили какие столбцы содержат пропуски, какой процент составляют пропуски, заполнили пропуски в тех столбцах, в которых это возможно (balcony, is_apartment) и изменили типы данных в столбцах (first_day_exposition, last_price, balcony)

Расчёты и добавление результатов в таблицу

Рассчитаем и добавим в таблицу цену квадратного метра по каждому объекту:

```
In [16]: df['price_sqm']=round(df['last_price']/df['total_area'])
```

Рассчитаем и добавим в таблицу столбцы с днём недели, месяцем и годом публикации объявления:

```
In [17]: df['day_of_week_public']=df['first_day_exposition'].dt.weekday
In [18]: df['month_public']=df['first_day_exposition'].dt.month
In [19]: df['year_public']=df['first_day_exposition'].dt.year
```

Out[20]:		total_images	last_price	total_area	first_day_exposition	rooms	ceiling_height	floors_total	living_area	floor	is_apartment	 cityCenters_r
	0	20	13000000	108.0	2019-03-07	3	2.70	16.0	51.0	8	False	 1
	1	7	3350000	40.4	2018-12-04	1	NaN	11.0	18.6	1	False	 1
	2	10	5196000	56.0	2015-08-20	2	NaN	5.0	34.3	4	False	 1
	3	0	64900000	159.0	2015-07-24	3	NaN	14.0	NaN	9	False	
	4	2	10000000	100.0	2018-06-19	2	3.03	14.0	32.0	13	False	

5 rows × 26 columns

Выполним категоризацию этажей квартир, для этого создадим функцию, в аргумент передадим весь датафрейм и затем, передав в метод аррlay() созданную функцию, создадим новый столбец с категориями этажей: "Первый", "Последний", "Другой".

Проверим полученный результат:

Out[23]:		total_images	last_price	total_area	first_day_exposition	rooms	ceiling_height	floors_total	living_area	floor	is_apartment	parks_arounc
	0	20	13000000	108.0	2019-03-07	3	2.70	16.0	51.0	8	False	
	1	7	3350000	40.4	2018-12-04	1	NaN	11.0	18.6	1	False	
	2	10	5196000	56.0	2015-08-20	2	NaN	5.0	34.3	4	False	
	3	0	64900000	159.0	2015-07-24	3	NaN	14.0	NaN	9	False	
	4	2	10000000	100.0	2018-06-19	2	3.03	14.0	32.0	13	False	

5 rows × 27 columns

Найдём соотношение жилой и общей площади для каждой квартиры и добавим соответствующий столбец:

```
In [24]: df['part_living_area'] = df['living_area']/df['total_area']
```

Найдём отношение площади кухни к общей площади квартиры и добавим соответствующий столбец:

```
In [25]: df['part_kitchen_area'] = df['kitchen_area']/df['total_area']
```

Проверим результат добавления столбцов в таблицу:

Out[26]:		total_images	last_price	total_area	first_day_exposition	rooms	ceiling_height	floors_total	living_area	floor	is_apartment	 ponds_aroun
-	0	20	13000000	108.0	2019-03-07	3	2.70	16.0	51.0	8	False	
	1	7	3350000	40.4	2018-12-04	1	NaN	11.0	18.6	1	False	

2	10 5196000	56.0	2015-08-20	2	NaN	5.0	34.3	4	False	
3	0 64900000	159.0	2015-07-24	3	NaN	14.0	NaN	9	False	
4	2 10000000	100.0	2018-06-19	2	3.03	14.0	32.0	13	False	

5 rows × 29 columns

Вывод

На данном этапе рассчитали и добавили к таблице столбцы:

- price sqm стоимость кв. метра жилья
- day_of_week_public день недели, когда было опубликовано объявление
- month_public месяц публикации объявления
- year_public год публикации объявление
- part_living_area доля жилой площади по отношению к всей площади квартиры
- part_kitchen_area доля площади кухни по отношению ко всей площади квартиры

Исследовательский анализ данных

Параметр "Площадь"

Построим гистограмму для параметра "Площадь", предварительно посмотрев с помощью функций min() и max() между какими значениями она будет построена.

```
Out[27]:
```

```
        count
        23699.000000

        mean
        60.348651

        std
        35.654083

        min
        12.000000

        25%
        40.000000

        50%
        52.000000

        75%
        69.900000

        max
        900.000000
```

Name: total_area, dtype: float64

Зададим в параметре bins 100 коризин, чтобы график был более показательным:

Используем параметр range, чтобы изучить распределение значений total_area, находящихся в диапазоне от 12 до 300. Количество корзин оставим прежним — 100.

Нетипично маленькую и большую площадь признаем выбросами и отбросим. Для этого посмотрим на гистограмму-стоимость после 200 кв.м встречается редко, возьмём её за верхнуюю границу. Нижню границу оставим 12 кв.м.

Далее будем работать с наблюдениями, удовлетворяющим условию: df.['total_area']<= 200'

Параметр "Цена"

Аналогично построим гистограмму для параметра "Цена":

```
2.369900e+04
         count
Out[31]:
                  6.541549e+06
         mean
                  1.088701e+07
         std
                  1.219000e+04
         min
         25%
                  3.400000e+06
         50%
                  4.650000e+06
                  6.800000e+06
         75%
                  7.630000e+08
         max
         Name: last_price, dtype: float64
```


С помощью параметра range сделаем гисторамму более показательной:

Гистограмма в целом похожа на нормальное распределение.

Не типично маленькую и большую стоимость признаем выбросами и отбросим. Для этого посмотрим на гистограмму-стоимость более 20 000 000 встречается редко, возьмём её за верхнуюю границу. Цена в 12000 руб. тоже кажется подозрительной, но пока оставим как есть.

Параметр "Число комнат"

Построим гистограмму для параметра "Число комнат", предварительно посмотрев с помощью функций min() и max() между какими значениями она будет построена.

23699.000000 count Out[35]: 2.070636 mean std 1.078405 0.000000 min 1.000000 25% 2.000000 50% 3.000000 19.000000 max

Name: rooms, dtype: float64


```
(df['rooms']>=1) & (df['rooms'] <=8)
```

Параметр "Высота потолков"

Построим гистограмму для параметра "Высота потолков":

14504.000000 count Out[38]: 2.771499 mean std 1.261056 1.000000 min 25% 2.520000 50% 2.650000 75% 2.800000 100.000000 max

Name: ceiling_height, dtype: float64

Значения в столбце ceiling_height меньше 2,5 м и 3,5 метра - будем считать выбросами и отбросим их с помощью среза: (df['ceiling_height']>=2.5) & (df['ceiling_height'] <=3.5)

Параметр "Время продажи квартиры"

```
20518.000000
         count
Out[41]:
         mean
                     180.888634
                     219.727988
         std
                       1.000000
         min
                      45.000000
         25%
          50%
                      95.000000
         75%
                     232.000000
                    1580.000000
         max
```

Name: days_exposition, dtype: float64

Посмотрим на гисторграмму - значения после 1000 дней становятся крайне редки. Примем за верхнюю границу это значение и в дальнейшем будем использовать значения в столбце, удовлетворяющим условию: df.['days_exposition']<= 1000'

Найдем медиану в столбце days_exposition, среднее, равное 180,9 дней- было найдено выше методом describe()

```
In [44]: round(df['days_exposition'].median(),1)
Out[44]: 95.0
```

На основании глафиуа и мелианы момем сузать, что чань всего пролами осуществляются в периол ло 200 лией, чаиболее часто

та осповании графика и медиалы можем сказать, это чаще всего продажи осуществляются в период до 200 дней- паисолее часто за 95 дней, реже в период с 200-400 дней, значительно меньше с 400-600 дней и незначительное кол-во продаж происходят в период с 600-1000 дней с момента публикации объявления. Продажи в период после 1000 дней, считаем выбросами и отбрасываем.

Посмотрим, как связаны длительность продажи и год публикации объявления:

Из графика чётко прослеживается зависимость - медианное время продажи с каждым годом становиться меньше.

Посмотрим, как связаны длительность продажи и месяц публикации объявления:

Инетерсно, что в разрезе месяцев максимальное медианное время продажи находится в районе 130 дней, тогда как в разрезе лет оно превышает 600 дней.

В зависимости от дня недели, когда было опубликовано объявление - самые быстрые продажи - около 40 дней. Хотя, такие показатель, как день публикации не стоит сильно принимать во внимание, т.к. значительно большую роль играет год публикации, а точнее экономическая ситуация в течение года.

Вывод

По найденным выше аномалиям, найденным в параметрах "Площадь", "Цена", "Число комнат", "Высота потолков", "Время продажи квартиры" сделаем срез данных и запишем их в новый датафрейм (для сохранения ресурсов памяти лучше обновить исходный датафрейм, но с целью сравения исходных и отфильтрованных данных запишем новый датафрейм):

	total_illages	iast_price	total_area	iiist_day_exposition	1001115	ceiling_neight	110015_total	iiviiig_area	11001	is_apartifient	 ponus_arou
4	2	10000000	100.0	2018-06-19	2	3.03	14.0	32.0	13	False	
9	18	5400000	61.0	2017-02-26	3	2.50	9.0	43.6	7	False	
10	5	5050000	39.6	2017-11-16	1	2.67	12.0	20.3	3	False	
13	20	3550000	42.8	2017-07-01	2	2.56	5.0	27.0	5	False	
16	11	6700000	82.0	2017-11-23	3	3.05	5.0	55.6	1	False	

5 rows × 29 columns

Рассмотрим какие факторы больше всего влияют на стоимость квартиры.

"Площадь"

Рассмотрим зависимость стоимости квартиры от площади:

Определим коэффициент кореляции для исходных данных и данным, отфильтрованным от выбрасов:

```
In [50]: print(df['last_price'].corr(df['total_area'])) #исходные данные

0.6536750579657242
```

```
In [51]: print(df_1['last_price'].corr(df_1['total_area'])) #отфильтрованные данные
```

0.77182163209962

В результате видим, что после фильтрации данных от выбросов, зависимость стоимости от площади стала более очевидной.

"Кол-во комнат"

Рассмотрим зависмость стоимости квартиры от количества комнат:

Определим коэффициент кореляции для исходных данных и данным, отфильтрованным от выбрасов:

```
In [53]:
    print(df['last_price'].corr(df['rooms']))
```

0.3633428499648955

```
In [54]: print(df_1['last_price'].corr(df_1['rooms']))
```

0.5008728943079482

Видим, что зависимость стоимости от кол-ва комнат слабая и фильтрация данных на коэф.кореляции не повлияла.

Также по графику можем ещё раз увидеть, что наиболее часто встречаются объявления о продаже 1-4-х комнатных квартир.

Вызывает удивление, что 2-4 комнатные квартиры имеют низкую стоимость, но для того, чтобы сделать более точный вывод, необходимо также учитывать связь с площадью, т.к. небольшая квартира тоже может быть разбита не 3-4 маленьких комнаты.

"Удалённость от центра"

Рассмотрим зависмость стоимости квартиры от удалённости от центра:


```
In [56]:
    print(df['last_price'].corr(df['cityCenters_nearest']))
```

-0.20674734874298364

```
In [57]: print(df_1['last_price'].corr(df_1['cityCenters_nearest']))
```

-0.34430387443117333

Видим отрицательную зависимость, т.е. чем ближе к центру тем стоимость выше, но зависимость слабая. Фильтрация данных на корреляцию не повлияла.

Этажность квартиры

Рассмотрим зависмость стоимости квартиры от категории этажа:

В случае с категорией этажа коэффициент корреляции найти в данном случае не можем, но по графику можем сделать вывод, что для категории "Первый этаж" стоимость чаще всего находится в пределах до 14 000 000,стоимость выше встречается редко. Для категорий "Последний" и "Другой" стоимость почти равномерно распределена по всему ценовому диапазоуну, но для категрии "Последний" чуть меньше объявлений в диапазоне 15 000 000-20 000 000, чем в аналогичном диапазоне для категории "Другой".

Период размещения объявления

Рассмотрим зависмость стоимости квартиры от года размещения объявления:


```
In [60]: print(df['last_price'].corr(df['year_public']))
```

-0.043089036199508574

По графику и коэффициенту корреляции видим, что зависимость стоимости от года публикации очень слабая. По графику можем увидеть, что в 2019 году стоимость снизилась по сравнению с 2016-2018 годами и ограничивается примерно 17 500 000. Также на графике можем дополнительно увидеть, что объявлений в 2014 году было значительно меньше, чем в последующие годы.

Рассмотрим зависмость стоимости квартиры от месяца размещения объявления:


```
In [63]: print(df['last_price'].corr(df['month_public']))
0.0027791287507397235
```

In [64]: print(df_1['last_price'].corr(df_1['month_public']))

0.011170568192095573

По графику и коэффициенту корреляции видим,что зависимости стоимости от месяца публикации практически нет.

Рассмотрим зависмость стоимости квартиры от дня недели размещения объявления:


```
In [66]: print(df['last_price'].corr(df['day_of_week_public']))
```

0.0015501452176215438

По графику и коэффициенту корреляции видим, что зависимости стоимости от дня недели публикации объявления практически нет.

Вывод

Наибольшее влияние на стоимость квартиры по сравнению с другими параметрами (кол-во комнат, этаж, удалённость от центра), оказывает параметр площади квартиры. Период публикации объявления на стоимость квартиры практически не влияет.

10 населённых пунктов с наибольшим числом объявлений

Найдём 10 населённых пунктов с наибольшим числом объявлений:

```
Санкт-Петербург
                               7709
Out[68]:
                                215
         Всеволожск
         посёлок Мурино
                                193
         посёлок Шушары
                                186
         Колпино
                                177
         Пушкин
                                175
         Гатчина
                                125
         Петергоф
                                121
         посёлок Парголово
                                118
         деревня Кудрово
                                115
         Name: locality_name, dtype: int64
```

Найдём среднюю стоимость квадратного метра жилья в населённых пунктах из Тор-10 по числу объявлений:

```
locality name
Out[69]:
         Санкт-Петербург
                               107201.123751
         Пушкин
                               100027.422857
         деревня Кудрово
                                90522.339130
         посёлок Парголово
                                89542.305085
         посёлок Мурино
                                87300.507772
                                82908.867769
         Петергоф
         посёлок Шушары
                                78462,209677
         Колпино
                                75053.175141
                                69179.904000
         Гатчина
                                66297.562791
         Всеволожск
         Name: price_sqm, dtype: float64
```


Вывод

В результате вычислений видим, что максимальная стоимость кв.метра в Санкт-Питербурге равная 107201 руб., а меньшая стоимость из десяти населённых пунктов по числу объявлений - во Всеволожске, равная 66297 руб.

Квартиры в Санкт-Питербурге

Выделим данные о квартирах в Санкт-Питербурге в отдельную таблицу:

```
In [71]: spb = df_1[df_1['locality_name']=='Санкт-Петербург']
```

Посчитаем среднюю цену за кв.метр жилья для каждого километра:

Out[73]:		dist_center_km	price_sqm
	0	0.0	105223.666667
	1	1.0	126654.276316
	2	2.0	119522.578947

3	3.0	108150.013889
4	4.0	119927.389892
5	5.0	126355.375723
6	6.0	121645.594828
7	7.0	119941.120482
8	8.0	120631.402062
9	9.0	110953.269737
10	10.0	112099.288221
11	11.0	104669.105960
12	12.0	106557.550117
13	13.0	105976.438903
14	14.0	102862.909483
15	15.0	102769.022170
16	16.0	98635.897554
17	17.0	96952.556793
18	18.0	93867.561404
19	19.0	95934.180723
20	20.0	97858.000000
21	21.0	94632.357143
22	22.0	90360.750000
23	23.0	93301.928571
24	24.0	90830.800000
25	25.0	88748.857143
26	26.0	84966.214286
27	27.0	193919.000000
28	28.0	68468.000000
29	29.0	75742.000000

Вывод

Постоянное снижение стоимости за кв.м наблюдается с 5 км от центра города, из чего можно сделать вывод,что зона до 5 км входит в центр Санкт-Питербурга.

Центр Санкт-Питербурга

Выделим квартиры, находящиеся в центре Санкт-Питербурга:

```
spb_center= spb[spb['dist_center_km']<=5]</pre>
```

Рассмотрим параметры квартир, находящихся в центре:

Параметр "Площадь"

Построим гистограмму для параметра "Площадь", предварительно посмотрев с помощью функций min() и max() между какими значениями она будет построена.

963.000000 count Out[76]: mean 78.855223 31.032035 std 12.000000 min 25% 56.100000 50% 73.450000 97.250000 75% 195.700000 max

Name: total_area, dtype: float64

Вспомним вид гистограммы по исходным данным:

Видим, что в центре Санкт-Питербурга чаще всего встречаются квартиры с площадью 70 кв.м, а также достаточно часто встречается 40-45 кв.м, по всем объявлениям видим что эта величина составляет около 45 кв.м.

Параметр "Цена"

Аналогичные рассчёты сделаем для параметра "Цена" для центра Санкт-Питербурга:

Out[79]:

9.630000e+02 count 9.093068e+06 mean std 3.507949e+06 1.600000e+06 min 6.500000e+06 25% 50% 8.470000e+06 75% 1.100000e+07 2.000000e+07 max

Name: last_price, dtype: float64

Вспомним вид гистограммы по исходным данным:

Параметр "Число комнат"

Out[82]:

 count
 963.000000

 mean
 2.711319

 std
 1.158780

 min
 1.000000

 25%
 2.000000

 50%
 3.000000

 75%
 3.000000

 max
 7.000000

Name: rooms, dtype: float64

В центре города чаще всего встречаются 2-3 комнатные квартиры, тогда как для все объявлений также часто встречается и 1-комнатные квартиры.

Параметр "Высота потолков"

Out[85]: count 963.000000 mean 3.034808

 std
 0.252560

 min
 2.500000

 25%
 2.820000

 50%
 3.000000

 75%
 3.200000

 max
 3.500000

Name: ceiling_height, dtype: float64

Видим существенную разницу между высотой потолков в центре Санкт-Питербурга и остальными объявлениями в базе. Для центра города наиболее характерны 2,8 м и 3-х метровые потолки, тогда как для объявлений по всей базе максимальное количество объявлений находится в пределах до 2,6 м и намного реже до 2,8 м. Потолки выше 2,8 - встречаются редко.

Какие факторы больше всего влияют на стоимость квартиры в центре Санкт-Питербурга?

Рассмотрим зависмость стоимости квартиры от количества комнат:

Определим коэффициент кореляции:

```
In [89]: print(spb_center['last_price'].corr(spb_center['rooms']))
```

0.44657487747056307

Видим, по графику и коэффициенту корреляции, что есть зависимость между площадью и количеством комнат есть, но слабая. Кроме того зависимость чуть ниже, чем по всем объявлениям в базе, где коф. корреляции 0,5

Рассмотрим зависмость стоимости квартиры от этажа:

Определим коэффициент кореляции:

```
In [91]: print(spb_center['last_price'].corr(spb_center['floor']))
```

0.15138528076970062

По графику и коэффициенту корреляции видим, что в целом влияния этажа на стоимость квартиры нет.

Рассмотрим зависмость стоимости квартиры от удалённости от центра:


```
In [93]: print(spb_center['last_price'].corr(spb_center['dist_center_km']))
```

По графику и коэф.корреляции видим,что зависимости стоимости от удалённости от центра практически нет. Что отличается от в объявлений по базе в целом, где есть слабая отрицательная зависимость - чем ближе к центру тем стоимость выше.

Скорее, удаленность от центра в центральной зоне Санкт-Питербурга влияет на количество самих объявлений - чем ближе к самому центру Санкт-Питербурга, тем меньше объявлений о продаже.

Рассмотрим зависмость стоимости квартиры от года размещения объявления:

In [95]:
 print(spb_center['last_price'].corr(spb_center['year_public']))

-0.039787873742946844

Рассмотрим зависмость стоимости квартиры от месяца размещения объявления:

In [97]: print(spb_center['last_price'].corr(spb_center['month_public']))

-0.03206911391256399

Рассмотрим зависмость стоимости квартиры от дня недели размещения объявления:


```
0.25 0 1 2 3 4 5 6 День недели размещения объявления
```

In [99]: print(spb_center['last_price'].corr(spb_center['day_of_week_public']))

-0.02227744404287884

По графикам и коэф.корреляции видно, что стоимость в центре не зависит от года, месяца и дня публикации, причем коэф. корреляции имеют небольшие отличия в большую или меньшую сторону с данными по всей базе, но в целом, результат аналогичный.