东校区 2006 学年度第二学期高等数学 (一) 期末考试题 A

(2006級)

姓名:

专业:

学号:

成绩:

(中山大学授予学士学位工作细测) 第六条:"考试作弊不授予学士学位。"

一, (每小题7分, 共28分)

1, 若
$$u(x,y) = \sqrt{e'\cos y - \sin(xy)}$$
, 求 $u_x(0,0)$, $u_y(0,0)$ 。

3, 计算累次积分 $\int_{0}^{\frac{1}{2}} dy \int_{-x}^{\frac{1}{2}} \frac{\sin x}{x} dx$ 。

2.
$$\Re F(y) = \int_{y^2}^{y^2} \frac{e^{-y}}{x} dx$$
, $y > 0$, $\Re F'(y)$.

二、(10 分)求曲线积分 $I=\int\limits_{L}(e^{y}+x)dx+\left(xe^{y}-2y\right)dy$,其中 L 为曲线 $y=\sin\frac{\pi x}{2}$ 上由点 O(0,0) 到点 A(1,1) 的弧段。

四, (10分) 求解初值问题: $\begin{cases} y'' - 2y' - 3y = 3x + 1 \\ y(0) = \frac{1}{3}, \quad y'(0) = 3 \end{cases}$

三,(10 分) 计算曲面积分 $I=\iint_{S^2}(y^2+z^2)dydz+yzdzdx+z(x^2+y^3)dxdy$, 其中 S 为上半球面 $z=\sqrt{4-x^2-y^2}$ 与锥面 $z=\sqrt{x^2+y^2}$ 所围区域的表面,取外侧。

五, (每小题 5 分, 共 10 分) 讨论下列广义积分的敛散性。

$$(1) \int_{0}^{\infty} \frac{dx}{1+x|\sin x|} :$$

$$(2) \int_0^1 \frac{\sin x}{x^{\frac{4}{3}}} dx \, .$$

六, $(10\ \mathcal{G})$ 求幂级数 $\sum_{n=1}^{\infty} n(n+1)x^n$ 的收敛半径和收敛域,并求其和函数。

八,(7分)求证:函数项级数 $\sum_{n=n+x^2}^{n}$ 在 $(-\infty,+\infty)$ 上一致收敛,但对于固定的 x ,该级数并不绝对收敛。

七, (10分) 把函数 $f(x) = \ln(5+x)$ 展开成 (x-2) 的幂级数, 并求其 收敛域。

九,(5 分)设数项级数 $\sum_{n=1}^{n}(a_n-a_{n-1})$ 收敛,正项级数 $\sum_{n=1}^{n}b_n$ 也收敛,求证:级数 $\sum_{n=1}^{n}a_nb_n$ 绝对收敛。

Scanned by CamScanner