Tópicos de Matemática

2º teste (3 de janeiro de 2018) —

____ duração: 2h00 ____

1. Seja $f: \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$ a função definida por

$$f(n) = \left\{ \begin{array}{ll} (2n,2n+1) & \text{ se } n \geq 0 \\ (-2n,-2n+1) & \text{ se } n < 0 \end{array} \right.$$

- (a) Determine $f(\{1,-1,0\})$ e $f^\leftarrow(\{(2,3),(2,5)\}.$ Diga se existe algum conjunto $A\subseteq\mathbb{Z}\times\mathbb{Z}$ tal que $f^\leftarrow(A)=\{1\}.$ Justifique.
- (b) Diga, justificando, se f é injetiva e se f é sobrejetiva.
- 2. Seja $f:A\to B$ uma função sobrejetiva. Mostre que se $\{Y_i\}_{i\in I}$ é uma partição de B, então $\{f^\leftarrow(Y_i)\}_{i\in I}$ é uma partição de A.
- 3. Sejam S e T as relações binárias em $\mathbb N$ definidas por

$$S = \{(a, b) \in \mathbb{N}^2 \mid \exists_{k \in \mathbb{N}} \ b - a = 5k\} \ e \ T = \{(4, 7), (3, 5), (4, 2)\}.$$

- (a) Determine Dom(S) e Im(S).
- (b) Diga, justificando, se a relação S é: (i) simétrica; (ii) transitiva.
- (c) Determine $T \circ T^{-1}$. Diga se $T \circ T^{-1} \subseteq S$. Justifique a sua resposta.
- 4. Seja θ a relação de equivalência em $\mathbb R$ definida por

$$x \theta y$$
 se e só se $x - y \in \mathbb{Z}$.

- (a) Indique três elementos distintos da classe $\left[\frac{1}{2}\right]_{\theta}$. Determine a classe de equivalência $[0]_{\theta}$.
- (b) Dê um exemplo, ou justifique que não existe um exemplo, de elementos a e b tais que:
 - i. $a, b \in \mathbb{Z}$, $a \neq b$ e $[a]_{\theta} \cap [b]_{\theta} = \emptyset$.
 - ii. $a, b \in \mathbb{R}$, $[a]_{\theta} \neq [b]_{\theta}$ e $[2a]_{\theta} = [2b]_{\theta}$.
- 5. Considere o c.p.o (A, ρ) , onde $A = \{(1,3), (2,2), (2,3), (2,4), (3,2), (3,3), (3,4), (3,5), (4,3), (4,4), (5,1)\}$ e ρ é a relação de ordem parcial em A definida por $(a,b)\rho(c,d)$ se e só se $a \le c$ e $b \le d$.
 - (a) Diga, justificando, se o c.p.o. (A, ρ) é uma cadeia.
 - (b) Desenhe o diagrama de Hasse de (A, ρ) .
 - (c) Indique os elementos maximais e minimais de A.
 - (d) Indique, caso existam, $\sup(\{(1,3),(2,4),(3,2)\}) \in \inf(\{(1,3),(2,4),(3,2)\})$. Justifique.
- 6. Diga, justificando, se as afirmações seguintes são verdadeiras para quaisquer conjuntos não vazios $A,\,B$ e C.
 - (a) Se $A \times C \sim B \times C$, então $A \sim B$.
 - (b) Se $A \cup B$ é numerável, então A é numerável ou B é numerável.