Distribution-aware Pruning Strategy for Large Language Models¹

Qi Lei

with Jianwei Li and Yijun Dong

Courant Institute & Center for Data Science, NYU

JSM, 2024.08

Contents

- Introduction
 - Motivation
 - Prior work
- Methodology
 - One-shot Pruning
 - Pruning Units
 - Layer-wise Recovery
- Results
- Conclusion

2/20

Introduction

3/20

Motivation

◆ロト ◆問ト ◆意ト ◆意ト · 意 · 釣なで

4 / 20

Prior work

Classification 1: model structure preservation

A: better performance preservation

B: hardware compatibility; efficient at inference time

²Pruning masks: Dark blue is kept weight; light blue is pruned out weight. ▶ ✓ ₹ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦

5/20

Prior work

A: Preserving model weights

B: Preserving model outputs

Prior work

Classification 3: Retraining requirements (Computational costs)

- A: Iterative pruning (High)
- B: Finetuning-required pruning (Median)
- C: One-shot pruning (Relatively Low)
 - Value-based \ll Gradient-based \ll Hessian-based

5/20

Methodology

6/20

Goal

```
Iterative pruning ==> Single-shot pruning
Unstructured pruning ==> Structured pruning
Gradient/Hessian-based ==> Value-based pruning
Weight preservation ==> Output preservation
```

7/20

Goal

Iterative pruning	==>	Single-shot pruning
Unstructured pruning	==>	Structured pruning
Gradient/Hessian-based	==>	Value-based pruning
Weight preservation	==>	Output preservation

7/20

One-shot Pruning

²Concentrate on the effectiveness of the pruning method, instead of comparisons of fine-tuning data's quality. イロト イプト イミト イミト

One-shot Pruning

²Concentrate on the effectiveness of the pruning method, instead of comparisons of fine-tuning data's quality.

Goal

```
Iterative pruning ==> Single-shot pruning
Unstructured pruning ==> Structured pruning
Gradient/Hessian-based ==> Value-based pruning
Weight preservation ==> Output preservation
```

Pruning Unit: Depth-2 Units

Two pruning strategies:

Depth-2 Unit 1: Feedforward Layer

Depth-1 magnitude-based pruning: $\|(W_1)_{i,j}\|$ Depth-2 magnitude-based pruning: $||(W_1)_{:,i}|| ||(W_2)_{i,:}||$ Ours:

New York University

$$\begin{split} &\|(W_1)_{:,i}\|\\ &\|(W_1)_{:,i}\|\|(W_2)_{i,:}\|\\ &\|(W_2)_{i,:}\|^2(W_1)_{:,i}^\top \Sigma(W_1)_{:,i} \end{split}$$

2024.08

11/20

Rational: magnitude of each slice $E[\|(W_2)_{i,:}\|^2\sigma^2((W_1)_{:i}^\top X)]$ $=\frac{1}{2}\|(W_2)_{i,:}\|^2(W_1)_{::i}^{\top}\Sigma(W_1)_{::i}.$

(Take input X as a normal distribution with covariance Σ , σ is ReLU.)

LLM Pruning

Depth-2 Unit 2: Attention Layer

multi-head attention

32 attention heads from Block 4&5 of Llama-7B Connected if $D(h_i,h_j) \geq 0.2$.

<ロト <部ト < 注 ト < 注 ト

12 / 20

Goal

Iterative pruning==>Single-shot pruningUnstructured pruning==>Structured pruningGradient/Hessian-based==>Value-based pruningWeight preservation==>Output preservation

Layer-wise Recovery

Motivation:

- For gradient-based pruning ==> global criterion ==> $f(\cdot; W + \Delta W) \approx f(\cdot; W) + \nabla_W f(\cdot, W) \Delta W$
- For Value-based pruning ==> local criterion for each layer ==> error will compound layer by layer (if each layer is pruned independently)

4□ > 4回 > 4 = > 4 = > = 990

14 / 20

Layer-wise Recovery from Targeted Value

We will apply the above pruning strategy on a recovered weight $\hat{W}_l\colon$

$$\hat{W}_l \leftarrow \arg\min_{W} \|W\hat{X}_l - Y_l\|,$$

 \hat{X}_l is the updated input due to pruned weights $\hat{W}_1,\cdots \hat{W}_{l-1},\,Y_l$ is the targeted output. ^a

^a[Li, L, Cheng, Xu, 2023] https://arxiv.org/abs/2310.13191

Results

 New York University
 LLM Pruning
 2024.08
 16 / 20

Results

Methods	WikiText2↓	PTB↓	BoolQ	PIQA	HS	WG	ARC-e	ARC-c	OBQA	Ave ↑	
Dense	12.62	22.14	73.18	78.35	72.99	67.01	67.45	41.38	42.4	63.5	
Data Free Pruning											
Random	23.02	40.19	46.21	71.33	59.35	56.51	47.97	32.0	36.30	49.95	
L1 norm	179.02	311.75	51.28	60.22	43.14	52.01	36.53	27.89	30.8	43.12	
L2 norm	582.41	1022.17	60.18	58.54	37.04	53.27	32.91	27.56	29.8	42.76	
Ours (Self-Gen)	21.76	34.3	63.51	72.63	56.54	54.46	51.68	33.79	36.4	52.72	
Ours SG w/ remedy	20.32	33.42	64.17	72.67	58.43	57.29	53.32	34.15	37.23	53.89	
Data Dependent Pruning											
Training-Aware Pruning											
LLM-Pruner Vec	22.28	41.78	61.44	71.71	57.27	54.22	55.77	33.96	38.4	53.52	
LLM-Pruner E1	19.09	34.21	57.06	75.68	66.8	59.83	60.94	36.52	40.0	56.69	
LLM-Pruner E2	19.77	36.66	59.39	75.57	65.34	61.33	59.18	37.12	39.8	56.82	
Inference-Aware Pruning											
Wanda-sp	27.45	49.52	64.16	75.21	68.62	62.27	59.68	36.68	39.2	57.97	
Ours (Calibration)	17.48	30.04	66.48	75.78	67.73	62.27	61.4	35.49	39.6	58.39	
Ours C w/ remedy	17.90	31.23	70.12	76.86	68.55	65.76	64.23	38.54	40.5	60.65	
Retraining-required Pruning											
LLM-P. LoRA	17.37	30.39	69.54	76.44	68.11	65.11	63.43	37.88	40.0	60.07	

Model: LLaMA-7B (20% sparsity)

First two datasets: zero-shot perplexity (PPL) analysis Next 7 datasets: zero-shot task classification

Conclusion

 New York University
 LLM Pruning
 2024.08
 18 / 20

Conclusion

- Identifying inherent pruning structure: depth-2 units & attention heads
- Designing effective pruning criterion: distribution-aware value-based pruning
- Low-computational performance recovery technique: avoid error compound

19 / 20

Thank you!

20 / 20