

Time limit: 1000 ms Memory limit: 256 MB

Finding the perfect balance is something sought after by many people and in many ways... sometimes even in strings. We'll call a string unbalanced if it has even length and its two halves are equal. Find a string of length N, consisting only of characters y and y, such that it has as few distinct unbalanced substrings as possible.

Your score per test will be computed as $(1+\frac{1}{10})^{-K}$, where K is e^{F-O} , O is the optimal number of distinct unbalanced substrings and F is the number of distinct unbalanced substrings you have obtained.

Perfectly balanced as all things should be.

Standard input

The first line contains an integer ${\cal N}.$

Standard output

Print the answer on the first line.

Constraints and notes

- $1 \le N \le 300$
- By e we mean Euler's number, which is ≈ 2.718282

Input	Output
4	yyyY