Advanced Data Structures and Algorithms

Introduction to Algorithms

Dr G.Kalyani

Department of Information Technology
Velagapudi Ramakrishna Siddhartha Engineering College

Topics

- Algorithm Specification
- Pseudocode Convention
- Performance Analysis
- Asymptotic Notations

What is an Algorithm

Definition

- An *Algorithm* is a finite set of instructions that, if followed, accomplishes a particular task.

Characteristics of an Algorithm

All algorithms must satisfy the following criteria:

- (1) *Input*: There are zero or more quantities that are externally supplied.
- (2) Output: At least one quantity is produced.
- (3) **Definiteness**: Each instruction is clear and unambiguous.
- (4) **Finiteness**: If we trace out the instructions of an algorithm, then for all cases, the algorithm terminates after a finite number of steps.
- (5) **Effectiveness**: Every instruction must be basic enough to be carried out, in principle, by a person using only pencil and paper. It is not enough that each operation be definite and also must be feasible.

Study of Algorithms

- The study of algorithms includes many important and active areas of research.
- Four distinct areas of study:
 - 1. How to Devise Algorithm
 - 2. How to Validate Algorithm
 - 3. How to Analyze Algorithms
 - 4. How to Test a Program

Devise and Validate an Algorithm

Devise an Algorithm:

- Study various design techniques that have proven to be useful in that they have often yielded good algorithms.
- Various design Strategies:
 - Divide and Conquer
 - Greedy Method
 - Dynamic Programming
 - Backtracking
 - Branch & Bound

Validate an Algorithm:

- Once an algorithm is devised, it is necessary to show that it computes the correct answer for all possible legal inputs.
- Once the validity of the method has been shown, a program can be written and a second phase begins.

Analyze and Test the Algorithms

3. Analyze the Algorithm

 Analysis of algorithms or performance analysis refers to the task of determining how much computing time and storage an algorithm requires.

4. Test a Program

- Testing a program consists of two phases: debugging and profiling (or performance measurement).
- Debugging is the process of executing programs on sample data sets to determine whether faulty results occur and, if so, to correct them.
- A proof of correctness is much more valuable than a thousand tests(if that proof is correct), since it guarantees that the program will work correctly for all possible inputs.
- Profiling or performance measurement is the process of executing a correct program on datasets and measuring the time and space it takes to compute the result.

Topics

- Algorithm Specification
- Pseudocode Convention
- Performance Analysis
- Asymptotic Notations

Describing Algorithms

Natural language

- English
 - Instructions must be definite and effectiveness

Graphic representation

- Flowchart
 - work well only if the algorithm is small and simple

Pseudocode

- Readable
- Instructions must be definite and effectiveness

Pseudocode

Pseudocode:

- Implementation of an algorithm in the form of annotations and informative text written in plain English.
- It has no syntax like any of the programming language and thus can't be compiled or interpreted by the computer.

Advantages of Pseudocode

- Improves the readability of any approach.
- Acts as a bridge between the program and the process. Also works as a rough documentation, so the logic of one developer can be understood easily when a pseudo code is written out.
- Explains what exactly each line of a program should do, hence making the code construction phase easier for the programmer.

Disadvantages of Pseudocode

- Pseudocode does not provide a visual representation of the logic of programming.
- There are no proper format for writing the for pseudocode.

Pseudocode Conventions

- 1. Comments begin with // and continue until the end of line.
- 2. Block of statements are indicated with matching braces:{ and }.
- 3. Statements are delimited by ";".
- **4.** The data types of variables are not explicitly declared. Compound data types can be formed with records.

Pseudocode Conventions

- 5. Assignment of values to variables is done using the assignment statement variable:=expression or value;
- 6. There are two Boolean values true and false. In order to produce these values, the logical operators and, or, and not and the relational operators <, and > are provided.
- 7. Elements of multi dimensional arrays are accessed using '[' and ']'.
 - For example, if A is a two dimensional array, the (i,j)th element of the array is denoted as A[i,j].

• 8. The while, repeat-until and for loops takes the following form:

```
while (condition)do {
statement 1 ...
statement n
}
```

```
Repeat
{
Statement 1 ....
Statement n
} until(condition)
```

```
for variable:= value I to value 2 step value do
{
    (statement 1) ....
    (statement n)
}
```

Pseudocode Conventions

9. A conditional statement has the following forms:

```
    if (condition) then statement;
    if (condition) then statement 1 else statement 2;
    case

            condition 1: statement 1 .....
            condition n: statement n
            else: statement n + 1
```

- 10. Input and output are done using the instructions read and write.
- 11. There is only one type of procedure: Algorithm.
 - An algorithm consists of a heading and a body.
 - The heading takes the form Algorithm Name(parameter list)

Tasks on Algorithms

- Write an algorithm to merge the given two sorted arrays as one sorted array.
- Write an algorithm for printing nth Fibonacci number.
- Write an algorithm to find the maximum product of two integers in the given array.

Tasks on Algorithms

```
Algorithm merge_sorted_arrays(arr1, arr2)
    i := 0; //Pointer for arr1
    i:= 0; // Pointer for arr2
    k := 0; // Pointer for mergedArray
    while (i < n1 and j < n2) do // copy the
                           //elements with
                            //comparison
       if (arr1[i] < arr2[j]) then
           mergedArray[k] = arr1[i];
           i + := 1; k+ :=1;
        else
            mergedArray[k] = arr2[j];
             i += 1; k += 1;
```

```
If(i<n1) then
   for x := i to n1-1
       mergedArray[k]:= arr1[x];
      x +:= 1; k +:= 1;
 else
    for x = j to n2-1
       mergedArray[k]:= arr2[x];
        x + := 1 k + := 1
// body close
```

Topics

- Algorithm Specification
- Pseudocode Convention
- Performance Analysis
- Asymptotic Notations

Performance Evaluation

- Evaluate a program
 - MWGWRERE

Meet specifications, Work correctly,
Good user-interface, Well-documentation,
Readable, Effectively use functions,
Running time acceptable,
Efficiently use space

- How to achieve them?
 - Good programming style, experience, and practice

Performance Evaluation

- Performance Evaluation
 - Performance Analysis
 - Performance **Measurement**
- Performance Analysis prior
 - estimate time Time Complexity
 - estimate space Space Complexity
 - machine independent
- Performance Measurement -posterior
 - The actual *time* and *space* requirements
 - machine dependent

Space Complexity

- Definition
 - The **space complexity** of a program is the amount of memory that it needs to run to completion
- The space needed is the sum of
 - Fixed space and Variable space
- Fixed space
 - Includes the instructions, variables, and constants
 - Independent of the number and size of Input and Output
- Variable space
 - Depends on an instance 'I' of the problem
 - Includes dynamic allocation, functions' recursion
- Total space of any program
 - $-S(P)=c+S_p(Instance)$

Examples of Evaluating Space Complexity

```
float abc(float a, float b, float c)
{
  return a+b+b*c+(a+b-c)/(a+b)+4.00;
}
```

```
float sum(float list[], int n)
{
  float fTmpSum= 0;
  int i;
  for (i= 0; i< n; i++)
    fTmpSum+= list[i];
  return fTmpSum;
}</pre>
```

```
float rsum(float list[], int n)
{
  if (n) return rsum(list, n-1)+ list[n-1];
  return 0;
}
```

```
S<sub>rsum</sub> (n)= 3*n
parameter: float(list[]) 1
parameter: integer(n) 1
return address 1
```

Time Complexity

Definition

The **time complexity, T(p)**, taken by a program P is the sum of the compile time and the run time

T(P)= compile time + run (or execution) time
=
$$c + t_p(n)$$

*Compile time does not depend on the instance characteristics

How to evaluate?

- Use the system clock (machine dependent)
- Number of steps performed (machine-independent)

Definition of a program step

 A *program step* is a syntactically or semantically meaningful instruction whose execution time is independent of the instance characteristics.

Examples of Determining Steps

the first method: count increment by a step

2n+ 3

• EX: Algorithm for calculating sum of numbers in an array

```
Algorithm sum(list[], n)
    tempsum:= 0;
                                /* assignment of zero */
     count++;
    for i = 0 to n
                                       /* for the for loop */
         count++;
         tempsum+:= list[i];
                              /* for assignment */
         count++;
                             /* last execution of for */
     count++;
                             /* for return */
     count++;
     return tempsum;
```

```
void add_matrices(int a[], int b[], int c[], int R, int C)
   int i, j;
   for i=0 to R
                             /* for the for i loop */
      count++;
      for j=0 to C
                                                                 = (R*x)+1
                            /* for the for j loop */
         count++;
                                                                 = (R*(2+y))+1
         count++; /* for the addition */
        c[i, j] := a[i, j] + b[i,j];
                                                                 = (R*(2+(2*C)))+1
                                                                 = (2*R*C+2*R)+1
                          /* last execution of for j */
      _count++;
                          /* last execution of for i */-
   count++;
```

```
float rsum(float list[], int n)
 count ++; /* for if condition */
 if (n!=1) then
  count++; /* for return and rsum invocation */
  return rsum(list, n-1)+ list[n-1];
 count++; /* return */
                                              Trsum(1) = 2
 return list[0];
                                              Trsum(n) = 2 + Trsum(n-1)
                                                    = 2 + (2 + Trsum(n-2))
                                                    = 2*2 + Trsum(n-2)
                                                    = 2*2+(2+Trsum(n-3))
                                                    = 3*2 + Trsum(n-3)
                                                    = (n-1)*2 + Trsum(n-(n-1))
                                                    = 2*n-2+2
                                                    = 2*n
```

The second method: build a table to count the number of steps

s/e: steps per execution

frequency: total numbers of times each statements is executed

float sum(float list[], int n)
{
 float sum=0;
 int i;
 for i=0 to n
 sum:= sum + list[i];
 return sum;
}

The second method: build a table to count the number of steps

s/e: steps per execution

frequency: total numbers of times each statements is executed

Statement	s/e	Frequency	Total Steps
float sum(float list[], int n)	0		
{	0		
float sum=0;	1		
int i;	0		
for i=0 to n	1		
sum:= sum + list[i];	1		
return sum;	1		
}	0		

The second method: build a table to count the number of steps

s/e: steps per execution

frequency: total numbers of times each statements is executed

Statement	s/e	Frequency	Total Steps
float sum(float list[], int n)	0	0	
{	0	0	
float sum=0;	1	1	
int i;	0	0	
for (i=0 to n	1	n+1	
sum:= sum + list[i];	1	n	
return sum;	1	1	
}	0	0	

The second method: build a table to count the number of steps

s/e: steps per execution

frequency: total numbers of times each statements is executed

Statement	s/e	Frequency	Total Steps
float sum(float list[], int n)	0	0	0
{	0	0	0
float sum=0;	1	1	1
int i;	0	0	0
for i=0 to n	1	n+1	n+1
sum:= sum + list[i];	1	n	n
return sum;	1	1	1
}	0	0	0

Total

2*n +3

The second method: build a table to count

s/e: steps per execution

frequency: total numbers of times each statements is executed

Statement s/e Frequency Total Steps

```
void add(int a[][], . . .
{
  int i, j;
  for i=0 to R
    for j=0 to C
    c[i , j]: = a[i , j] + b[i , j];
}
```

Total

The second method: build a table to count

s/e: steps per execution

frequency: total numbers of times each statements is executed

Statement	s/e	Frequency	Total Steps
void add(int a[][],	0	0	0
{	0	0	0
int i, j;	0	0	0
for i=0 to R	1	R+ 1	R+ 1
for j=0 to C	1	R*(C+1)	R*C+ R
c[i , j]= a[i , j] + b[i , j];	1	R*C	R*C
}	0	0	0

Total

2*R*C+2*R+1

The second method: build a table to count

s/e: steps per execution

frequency: total numbers of times each statements is executed

Statement s/e Frequency Total Steps

```
float rsum(float list[], int n)
{
  if (n!=1)
    return rsum(list,n-1)+list[n-1]
  return list[0];
}
```

Total

The second method: build a table to count

s/e: steps per execution

frequency: total numbers of times each statements is executed

Statement	s/e	Frequency	Total Steps
float rsum(float list[], int n)	0	0	0
{	0	0	0
if (n!=1)	1	n+1	n+1
return rsum(list,n-1)+list[n-1]	1	n	n
return list[0];	1	1	1
}	0	0	0

Total

2*n + 2

Tasks on Performance Analysis

- Write an algorithm for matrix multiplication and calculate its time complexity.
- Write an algorithm to print 'n' numbers in the Fibonacci series and estimate its time complexity.
- Write an algorithm to find the largest element in an array and estimate the time complexity.
- Write an algorithm to evaluate a polynomial using Horner's rule and estimate the time complexity.
- Write an algorithm to check whether the given number is Armstrong Number or not and estimate the time complexity.
- Estimate the time complexity of factorial of a number using recursion.

Topics

- Algorithm Specification
- Pseudocode Convention
- Performance Analysis
- Asymptotic Notations

Algorithm Analysis

- To analyze the given algorithm, we need to know with which inputs the algorithm takes less time and with which inputs the algorithm takes a long time.
- There are three types of analysis:

Worst case Analysis

Defines the input for which the algorithm takes a long time (slowest time to complete).

Best case Analysis

Defines the input for which the algorithm takes the least time (fastest time to complete).

Average case Analysis

- Assumes that the input is random.
- Run the algorithm many times, using many different inputs.
- compute the total running time (by adding the individual times), and divide by the number of times the algorithm has executed.

Asymptotic Notations

• Asymptotic notations are the mathematical notations used to describe the running time of an algorithm when the input tends towards a particular value or a limiting value (say 'n').

- The simplest example is a function $f(n) = n^2+3n$,
 - the term 3n becomes insignificant compared to n^2 when
 n is very large.
 - The function "f (n) is said to be asymptotically equivalent to n^2 as $n \to \infty$ ", and here is written symbolically as f (n) ~ n^2 .

Asymptotic Notations

- The commonly used asymptotic notations to represent the time complexity of an algorithm:
 - O (Big-Oh) Notation
 - Ω (Omega) Notation
 - θ (Theta) Notation
 - o (Little-oh) Notation
 - ω (Little-omega) Notation

O (Big-Oh) Notation-Upper Bounding function

- It represents the upper bound running time complexity of an algorithm.
- It is the measure of the longest amount of time.
- Definition: The function f (n) = O (g (n)) [read as "f of n is bigon oh of g of n"] if and only if there exists positive constant c and n0 such that

$$f(n) \leq c^*(g(n))$$
 for $\forall n \geq 0$

Examples on O (Big-Oh) Notation

- **Example-1:** Find upper bound for f(n) = 3n + 8
 - Solution: $3n + 8 \le 4n$, for all $n \ge 8$
 - ∴ 3n + 8 = O(n) with c = 4 and n0 = 8
- Example-2: Find upper bound for $f(n) = n^2 + 1$
 - **Solution:** $n2 + 1 \le 2n2$, for all $n \ge 1$
 - $\therefore n2 + 1 = O(n2)$ with c = 2 and n0 = 1
- Example-3: Find upper bound for $f(n) = n^4 + 100n^2 + 50$
- Example-4: Find upper bound for $f(n) = 2n^3 2n^2$
- **Example-5:** Find upper bound for f(n) = n
- **Example-6:** Find upper bound for f(n) = 410

O (Big-Oh) Notation

Theorem 1.2 If
$$f(n) = a_m n^m + \cdots + a_1 n + a_0$$
, then $f(n) = O(n^m)$.

$$f(n) \qquad \sum_{i=0}^{m} |a_i| n^i$$

Proof:

So, $f(n) = O(n^m)$ (assuming that m is fixed).

Ω (Omega) Notation-Lower Bounding function

- The notation $\Omega(n)$ is the formal way to express the lower bound of an algorithm's running time.
- **Definition:** The function $f(n) = \Omega(g(n))$ [read as "f of n is omega of g of n"] if and only if there exists positive constant c and n_0 such that

$$F(n) \ge c^* g(n)$$
 for all $n, n \ge n_0$

Examples on Ω (Omega) Notation

• **Example-1:** Find lower bound for $f(n) = 5n^2$.

- Example-2: Find lower bound for $f(n) = 10n^2 + 4n + 2$
- Example-3: Find lower bound for $f(n) = 6 * 2^n + n^2$
- **Example-4:** Prove $f(n) = 100n + 5 \neq \Omega(n^2)$.
- **Example-5:** Prove that $2n = \Omega(n)$, $n^3 = \Omega(n^3)$, $n^3 = O(log n)$.

θ (Theta) Notation

- The notation $\theta(n)$ is the formal way to express both the lower bound and the upper bound of an algorithm's running time.
- **Definition:** The function $f(n) = \theta(g(n))$ [read as "f is the theta of g of n"] if and only if there exists positive constant c_1 , c_2 and c_3 such that

$$c_1^*g(n) \le f(n) \le c_2^*g(n)$$
 for all $n, n \ge n_0$

Examples on θ (Theta) Notation

• Prove that $3n+2 = \theta(n)$

- Prove that $10n^2 + 4n + 2 = \theta(n^2)$
- Prove that $n^3 + 106n^2 = \theta(n^3)$
- Prove that the following is incorrect:

$$n^2/\log n = \theta(n^2)$$

Little oh and Little omega Notation

Definition 1.7 [Little "oh"] The function f(n) = o(g(n)) (read as "f of n is little oh of g of n") iff

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$$

Example: The function $3n + 2 = o(n^2)$

Definition 1.8 [Little omega] The function $f(n) = \omega(g(n))$ (read as "f of n is little omega of g of n") iff

$$\lim_{n \to \infty} \frac{g(n)}{f(n)} = 0$$

Why is it called Asymptotic Analysis?

- From the discussion above, we can easily understand that, in every case for a given function f(n) we are trying to find another function g(n) which approximates f(n) at higher values of n.
- In mathematics we call such a curve an asymptotic curve. In other terms, g(n) is the asymptotic curve for f(n). For this reason, we call algorithm analysis asymptotic analysis.

Different Asymptotic functions

1) Loops: The running time of a loop is, at most, the running time
of the statements inside the loop (including tests) multiplied by
the number of iterations.

```
// executes n times
for (i=1; i<=n; i++)
    m = m + 2; // constant time, c</pre>
```

 2) Nested loops: Analyze from the inside out. Total running time is the product of the sizes of all the loops.

```
//outer loop executed n times
for (i=1; i<=n; i++) {
    // inner loop executes n times
    for (j=1; j<=n; j++)
        k = k+1; //constant time
}</pre>
```

 3. Consecutive statements: Add the time complexities of each statement.

```
x = x +1; //constant time
// executes n times
for (i=1; i<=n; i++)
    m = m + 2; //constant time
//outer loop executes n times
for (i=1; i<=n; i++) {
    //inner loop executed n times
    for (j=1; j<=n; j++)
        k = k+1; //constant time
}</pre>
```

4) If-then-else statements: Worst-case running time: the test, plus either the then part or the else part (whichever is the larger).

```
/test: constant
if(length() == 0) {
   return false; //then part: constant
else {// else part: (constant + constant) * n
   for (int n = 0; n < length(); n++) {
     // another if : constant + constant (no else part)
    if(!list[n].equals(otherList.list[n]))
        //constant
       return false;
```

• 5) **Logarithmic complexity:** An algorithm is O(*logn*) if it takes a constant time to cut the problem size by a fraction (usually by ½).

```
for (i=1; i<=n;)
i = i*2;
```

```
for (i=n; i>=1;)
i = i/2;
```

Examples on Performance Analysis

- https://www.geeksforgeeks.org/miscellaneous-problems-of-time-complexity/
- https://www.geeksforgeeks.org/analysis-algorithms-set-5-practice-problems/?ref=rp

Sometimes we're tested, not to show our weakness, but to discover our strength.

