Алгоритм для двоичных последовательностей

- 1. Задать требуемую последовательность битов $s_0, s_1, ..., s_{n-1}$.
- 2. Создать массивы b , t , c длины n , задать начальные значения $b_0\leftarrow 1$, $c_0\leftarrow 1$, $N\leftarrow 0$, $L\leftarrow 0$, $m\leftarrow -1$.
- 3. Пока N < n:
- 4. Вычислить $d \leftarrow s_N \oplus c_1 s_{N-1} \oplus c_2 s_{N-2} \oplus ... \oplus c_L s_{N-L}$.
- 5. Если d=0, то текущая функция генерирует выбранный участок ${}^{S_{N-L}}, {}^{S_{N-L+1}}, ..., {}^{S_{N}}$ последовательности; оставить функцию прежней.
- 6. Если $d \neq 0$.
- 7. Сохранить копию массива c в t.
- 8. Вычислить новые значения

$$c_{N-m} \leftarrow c_{N-m} \oplus b_0, c_{N-m+1} \leftarrow c_{N-m+1} \oplus b_1, ..., c_{n-1} \leftarrow c_{n-1} \oplus b_{n-N+m-1}.$$

- 9. Если $2L\leqslant N$, установить значения $L\leftarrow N+1-L$, $m\leftarrow N$ и скопировать t в b .
- $10. N \leftarrow N + 1.$
- 11. В результате массив c функция обратной связи, то $c_{\mathsf{CTb}}\,c_L s_i \oplus c_{L-1} s_{i+1} \oplus c_{L-2} s_{i+2} \oplus ... \oplus c_0 s_{i+L} = 0$ для любых i.