Reg. No.: 218EC185)

Name :

Continuous Assessment Test I – January 2023

C H202223 500 2479

	The Comment	Semester	: WS 2022-23
	: B.Tech (ECE/ECM)	Code	: BECE206L
Course	: Analog Circuits	Class Nbr	: CH2022231001110
Faculty	: Dr.Sangeetha R.G	Slot	: F1+TF1
	10075	Max. Marks	: 50
Time	90 Minutes		

Answer ALL the questions

Q.No.	Sub. Sec.		Marks		
		Design a bias-stable PNP transistor circuit to meet a set of specifications. The transistor (Figure 1) values are $V_{ECQ} = 7V$, $I_{CQ} = 0.5 \text{mA}$, $\beta = 80$ and $V_{BE}(\text{on})$. Find the values of resistors.			
		+			
		R_{E} R_{E} R_{E} R_{E}			
1.		v_s R_2 R_C	15		
		V-= 9 V			
		Figure 1			
2.		Consider the circuit shown in Figure 2 and answer the following; $ \begin{array}{c c} v_{CC} \\ R_1 \\ \hline R_2 \\ R_L \end{array} $ $ \begin{array}{c c} c_{C1} \\ \hline R_1 \\ \hline R_2 \\ \hline R_2 \\ \hline R_2 \\ \hline R_L \end{array} $	10		
		Figure.2			

- (i) Draw the small signal high frequency equivalent model and derive the miller capacitance for the circuit (6)
- (ii) Derive the expression for lower and upper cut-off frequencies (4)

Figure 3.

- i. Draw the small signal equivalent circuit for the circuit shown in Figure 3. (2)
- ii. Derive the expression of voltage gain A_v (5)
- iii. Assume $V_{gs} = V_i$, $V_{TN}=0.8V$, $K_n=1\text{mA/V}^2$ and $\lambda=0$, $I_{DQ}=0.5\text{mA}$
 - (a) Find drain to source voltage (1)
 - (b) Gate to source voltage (1)
 - (c) small signal voltage Gain (1)

Analyze the characteristics of class A power amplifier as shown in Figure 4. Also, calculate the actual efficiency of a class A output stage. The circuits parameters are $V_{DD} = 10 V$ and $R_D = 5 k\Omega$ and the transistor parameters are: $k_n = 1 mA/V^2$, $V_{TN} = 1 V$ and $\lambda = 0$. Assume the output voltage swing is limited to the range between the transition points and $v_{DS} = 9 V$ to minimize nonlinear distortion.

4.

3.

Figure 4

Total

50

15

10