EMC-suoja esimerkki, kännykästä

- Suojat voivat olla kiinteitä tai irrotettavia (kuten kuvassa)
 - Jos irrotettava kansi irroitetaan esimerkiksi korjaamisen takia niin suoja voi vaurioitua. Tällöin voi joutua laittamaan uuden kannen.
- Miksi suojat rei'itetään?
 - Tuuletuksen takia
 - Kevennetään kokonaispainoa
- Jos reitetään niin silloin pitää huolenti että reikä ei ole liian iso eikä niitä laiteta liian lähekkäin jottei EMC suojaus liikaa huonone.
- Suojaus heikkenee ja on verrannollinen reikien lukumäärän neliöjuureen jos reikien etäisyys on vähemmän kuin suojattavan aallon pituuden puolikas, $\lambda/2$.

 Esim. 100 kpl 4mm reikiä omaa 20dB huonomman suojauksen kuin yksi 4mm reikä jos reikien etäisyys on vähemmän kuin 2/2.

EMC-suoja

- muovien pinnoituksilla voidaan tehdä tehokas EMC-suoja esimerkiksi muovikuoreen.
 - Esim. Cho-shield 4900: akryylipinnoite johon lisätty hopeaa

Kotelon liitosten tiivistys

- Kotelon tiiveys siis määräytyy siitä missä on pisin aukinainen reuna tai rako
- Kotelon "EMC" tiiveyteen voidaan vaikuttaa
- Kuinka paljon kotelon kiinnitysruuveja
- Saumojen väliin voidaan myös laittaa EMC tiiviste jolloin kotelosta tulee "tiivis"
 - Metallikudosnauha
 - Johtavat tiivistenauhat

- Sormilevytiivisteet mm. oviin, luukkuihin.
- Prototypoinnissa on kätevä käyttää erilaisia johtavia teippejä, mm. kupari

Kotelon aukot

- Ikkunointi voidaan tehdä laminoimalla ikkunaan johtavaa verkkoa
- Käyttämällä johtavaa lasi tai muovia
- Läpinäkyvää johtavaa pinnoitetta
- Esimerksiksi laminoituverkko, suoaustehokkuus oikealla.

Tuuletusaukko, hunajakennorakenne

- Jos laitteen tuuletusaukon suojaustehokkuutta halutaan parantaa voidaan käyttää hunajakennorakennetta.
- Tällöin kysymyksessä ns. Aaltoputkisuodatin.
- Tällöin hunajakennorakenteen paksuutta kasvatetaan niin kauan kunnes haluttu suojaustehokkuus on saavutettu.

Suojaustehokkuus

$$S \approx 20 \log \left(\frac{\lambda}{2D}\right) + 27.3 \frac{l}{D} - 10 \log N$$

Missä λ = aallonpituus, D = yksittäisen reijän halkaisija ja l = on hunajakennon paksuus

Hunajakenno venttiileitä

