Reinforcement Learning

Advanced Policy Gradient

Александр Костин telegramm: @Ko3tin

LinkedIn: kostinalexander

Recap: Policy Gradient

$$\nabla J_{PG}(\theta) = \mathbb{E}_{p_{\theta}(\tau)} \left[\sum_{t=0}^{T} \nabla \log \pi_{\theta}(A_t | S_t) \sum_{k=t}^{T} \gamma^{k-t} R_k \right]$$

or

$$\nabla J_{PG}(\theta) = \mathbb{E}_{p_{\theta}(\tau)} \left[\sum_{t=0}^{T} \nabla \log \pi_{\theta}(A_t | S_t) [Q_{\pi_{\theta}}(S_t, A_t) - b(S_t)] \right]$$

or

$$\nabla J_{AC}(\theta) = \mathbb{E}_{p_{\theta}(\tau)} \left[\sum_{t=0}^{T} \nabla \log \pi_{\theta}(A_t | S_t) [A_{\pi_{\theta}}(S_t, A_t)] \right]$$

Recap: A2C

- Generate trajectories $\{\tau_i\}$ following $\pi_{\theta}(a \mid s)$
- Policy improvement:

Estimate gradient and make gradient ascent step:

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \left[\sum_{t=0}^{T} \nabla \log \pi_{\theta}(a_{i,t} | s_{i,t}) A_{\pi_{\theta}}(s_{i,t}, a_{i,t}) \right]$$

Policy evaluation:

Estimate gradient and make gradient descent step:

$$\nabla_{\phi}L(\phi) \approx \frac{1}{N} \sum_{i=1}^{N} \left[\sum_{t=0}^{T} \nabla_{\phi}(r_{i,t} + \gamma \overline{V_{\phi^{-}}}(s_{i,t+1}) - V_{\phi}(s_{i,t}))^{2} \right]$$
Not target network, just frozen parame

Not target network, just frozen parameters

Source

Generalized Advantage Estimation (GAE)

Advantage function estimation:

$$A(s_t, a_t) = Q(s_t, a_t) - V(s_t) = r_t + \gamma V(s_{t+1}) - V(s) = -V(s) + r_t + \gamma V(s_{t+1})$$

Such advantage estimation might be biased

Also advantage function estimation:

$$A(s_t,a_t) = Q(s,a) - V(s) = -V(s) + r_t + \, \gamma r_{t+1} + \gamma^2 r_{t+2} + \ldots$$

Such advantage estimation might have high variance

GAE

$$\hat{A}_{t}^{(1)} := \delta_{t}^{V} = -V(s_{t}) + r_{t} + \gamma V(s_{t+1})$$

$$\hat{A}_{t}^{(2)} := \delta_{t}^{V} + \gamma \delta_{t+1}^{V} = -V(s_{t}) + r_{t} + \gamma r_{t+1} + \gamma^{2} V(s_{t+2})$$

$$\hat{A}_{t}^{(3)} := \delta_{t}^{V} + \gamma \delta_{t+1}^{V} + \gamma^{2} \delta_{t+2}^{V} = -V(s_{t}) + r_{t} + \gamma r_{t+1} + \gamma^{2} r_{t+2} + \gamma^{3} V(s_{t+3})$$

$$\hat{A}_{t}^{(k)} := \sum_{l=1}^{k-1} \gamma^{l} \delta_{t+l}^{V} = -V(s_{t}) + r_{t} + \gamma r_{t+1} + \dots + \gamma^{k-1} r_{t+k-1} + \gamma^{k} V(s_{t+k})$$

$$\hat{A}_{t}^{(\infty)} = \sum_{l=0}^{\infty} \gamma^{l} \delta_{t+l}^{V} = -V(s_{t}) + \sum_{l=0}^{\infty} \gamma^{l} r_{t+l}$$

GAE

The generalized advantage estimator GAE(γ , λ) is defined as the exponentially-weighted average of these k-step estimators:

$$\begin{split} \hat{A}_t^{\text{GAE}(\gamma,\lambda)} &:= (1-\lambda) \Big(\hat{A}_t^{(1)} + \lambda \hat{A}_t^{(2)} + \lambda^2 \hat{A}_t^{(3)} + \ldots \Big) \\ &= (1-\lambda) \Big(\delta_t^V + \lambda (\delta_t^V + \gamma \delta_{t+1}^V) + \lambda^2 (\delta_t^V + \gamma \delta_{t+1}^V + \gamma^2 \delta_{t+2}^V) + \ldots \Big) \\ &= (1-\lambda) \big(\delta_t^V (1+\lambda+\lambda^2+\ldots) + \gamma \delta_{t+1}^V (\lambda+\lambda^2+\lambda^3+\ldots) \\ &\quad + \gamma^2 \delta_{t+2}^V (\lambda^2+\lambda^3+\lambda^4+\ldots) + \ldots \big) \\ &= (1-\lambda) \bigg(\delta_t^V \bigg(\frac{1}{1-\lambda} \bigg) + \gamma \delta_{t+1}^V \bigg(\frac{\lambda}{1-\lambda} \bigg) + \gamma^2 \delta_{t+2}^V \bigg(\frac{\lambda^2}{1-\lambda} \bigg) + \ldots \bigg) \\ &= \sum_{l=0}^{\infty} (\gamma \lambda)^l \delta_{t+l}^V \end{split}$$

Recap

Policy Gradients and Actor-Critic algorithms are on-policy algorithms so we can not use experience replay. Thus, our sample efficiency is quite low.

Policy Optimisation via Gradient Ascent

Several issues:

- We make gradient step in the space of parameters, get new parameters θ and policy π_{θ} from θ_{old} and old policy $\pi_{\theta_{old}}$. However, it's difficult to measure the impact of change in parameters on change in policy.
- Apply only first-order optimisation methods
- Low sample efficiency

$$\theta = \theta_{old} + \alpha \nabla J(\theta_{old})$$

Optimisation

$$J(\theta) \approx J(\theta_{old}) + \nabla J(\theta_{old})(\theta - \theta_{old})$$

Let's
$$d=\theta-\theta_{old}$$
, then $d^*\propto \nabla J(\theta_{old})$

$$\theta = \theta_{old} + \alpha \nabla J(\theta_{old})$$

Optimisation

$$J(\theta_{old})(\theta-\theta_{old})
ightarrow \max_{\theta} \text{ s.t.}$$

$$(\theta - \theta_{old})^T K(\theta - \theta_{old}) \le \delta$$

K is symmetric, positive-definite matrix

Let's
$$d=\theta-\theta_{old}$$
, then $d^*\propto K^{-1}\,\nabla J(\theta_{old})$

$$\theta = \theta_{old} + \alpha K^{-1} \nabla J(\theta_{old})$$

Natural Gradient

$$KL(\pi_{\theta_{old}} | | \pi_{\theta}) \approx \frac{1}{2} (\theta - \theta_{old})^T K(\theta_{old}) (\theta - \theta_{old}), \text{ where } K(\theta_{old}) = \nabla_{\theta}^2 KL(\pi_{old} | | \pi_{\theta}) |_{\theta_{old}}$$

$$\theta = \theta_{old} + \alpha s$$
, where $s = K^{-1} \nabla J(\theta_{old})$, α is a step size.

Natural Gradient

$$KL(\pi_{\theta_{old}} | | \pi_{\theta}) \approx \frac{1}{2} (\theta - \theta_{old})^T K(\theta_{old}) (\theta - \theta_{old}), \text{ where } K(\theta_{old}) = \nabla_{\theta}^2 KL(\pi_{old} | | \pi_{\theta}) |_{\theta_{old}}$$

$$\theta = \theta_{old} + \alpha s$$
, where $s = K^{-1} \nabla J(\theta_{old})$, α is a step size.

Choose the largest step:

$$\frac{1}{2}(\theta - \theta_{old})^T K(\theta_{old})(\theta - \theta_{old}) = \delta \iff \alpha = \sqrt{\frac{2\delta}{s^T K s}}$$

$$\theta = \theta_{old} + \alpha K^{-1} \nabla J(\theta_{old})$$

Natural Gradient

$$KL(\pi_{\theta_{old}} | | \pi_{\theta}) \approx \frac{1}{2} (\theta - \theta_{old})^T K(\theta_{old}) (\theta - \theta_{old}), \text{ where } K(\theta_{old}) = \nabla_{\theta}^2 KL(\pi_{old} | | \pi_{\theta}) |_{\theta_{old}}$$

$$\theta = \theta_{old} + \alpha s$$
, where $s = K^{-1} \nabla J(\theta_{old})$, α is a step size.

Choose the largest step:

$$\frac{1}{2}(\theta - \theta_{old})^T K(\theta_{old})(\theta - \theta_{old}) = \delta \iff \alpha = \sqrt{\frac{2\delta}{s^T K s}}$$

$$\theta = \theta_{old} + \alpha K^{-1} \, \nabla J(\theta_{old})$$

 $K \in \mathbb{R}^{|\theta| \times |\theta|}$, K^{-1} computation takes $O(|\theta|^3)$

Conjugate Gradient Method

Pape

K is symmetric, positive-definite matrix

In order to find $K^{-1} \nabla J(\theta_{old})$ we can solve system $Ks = \nabla J(\theta)$ iteratively.

Conjugate Gradient Method

Pape

K is symmetric, positive-definite matrix

In order to find $K^{-1} \nabla J(\theta_{old})$ we can solve system $Ks = \nabla J(\theta)$ iteratively.

Lemma:

$$J(\pi) = J(\pi_{old}) + \mathbb{E}_{\tau \sim \pi}[\sum_{t=0}^{I} \gamma^t A_{\pi_{old}}(S_t, A_t)], \text{ where } A_{\pi_{old}}(S_t, A_t) = Q_{\pi_{old}}(S_t, A_t) - V_{\pi_{old}}(S_t)$$

Let's rewrite it as a sum over states instead of timesteps:

$$J(\pi) = J(\pi_{old}) + \sum \rho_{\pi}(s) \sum \pi(a \mid s) A_{\pi_{old}}(s, a), \text{ where } \rho_{\pi}(s) = \mathbb{P}(s_0 = s) + \gamma \mathbb{P}(s_1 = s) + \dots$$

Lemma:

$$J(\pi) = J(\pi_{old}) + \mathbb{E}_{\tau \sim \pi}[\sum_{t=0}^{I} \gamma^t A_{\pi_{old}}(S_t, A_t)], \text{ where } A_{\pi_{old}}(S_t, A_t) = Q_{\pi_{old}}(S_t, A_t) - V_{\pi_{old}}(S_t)$$

Let's rewrite it as a sum over states instead of timesteps:

$$J(\pi) = J(\pi_{old}) + \sum_{s} \rho_{\pi}(s) \sum_{a} \pi(a \mid s) A_{\pi_{old}}(s, a), \text{ where } \rho_{\pi}(s) = \mathbb{P}(s_0 = s) + \gamma \mathbb{P}(s_1 = s) + \dots$$

If this term is nonnegative than the policy improvement is guaranteed

Lemma:

$$J(\pi) = J(\pi_{old}) + \mathbb{E}_{\tau \sim \pi}[\sum_{t=0}^{T} \gamma^t A_{\pi_{old}}(S_t, A_t)], \text{ where } A_{\pi_{old}}(S_t, A_t) = Q_{\pi_{old}}(S_t, A_t) - V_{\pi_{old}}(S_t)$$

Let's rewrite in sum over states instead of timesteps:

$$J(\pi) = J(\pi_{old}) + \sum_{s} \rho_{\pi}(s) \sum_{a} \pi(a \mid s) A_{\pi_{old}}(s, a), \text{ where } \rho_{\pi}(s) = \mathbb{P}(s_0 = s) + \gamma \mathbb{P}(s_1 = s) + \dots$$

If this term is nonnegative than the policy improvement is guaranteed

Since we don't know π this expression is intractable...

$$J(\pi) = J(\pi_{old}) + \sum_{s} \rho_{\pi}(s) \sum_{a} \pi(a \mid s) A_{\pi_{old}}(s, a)$$
$$J(\pi) \approx J(\pi_{old}) + \sum_{s} \rho_{\pi_{old}}(s) \sum_{a} \pi(a \mid s) A_{\pi_{old}}(s, a) = L_{\pi_{old}}(\pi)$$

$$J(\pi) = J(\pi_{old}) + \sum_{s} \rho_{\pi}(s) \sum_{a} \pi(a \mid s) A_{\pi_{old}}(s, a)$$

$$J(\pi) \approx J(\pi_{old}) + \sum_{s} \rho_{\pi_{old}}(s) \sum_{a} \pi(a \mid s) A_{\pi_{old}}(s, a) = L_{\pi_{old}}(\pi)$$

If π_{θ} is quite close to $\pi_{\theta_{old}}(\mathbb{E}_{s \sim \rho_{old}}[KL(\pi_{\theta_{old}} | \mid \pi_{\theta})] \leq \delta)$, then

$$L_{\pi_{\theta_{old}}}(\pi_{\theta_{old}}) = J(\pi_{\theta_{old}})$$

$$\left. \nabla_{\theta} L_{\pi_{\theta_{old}}}(\pi_{\theta}) \right|_{\theta_{old}} = \left. \nabla_{\theta} J(\pi_{\theta}) \right|_{\theta_{old}}$$

$$\begin{split} J(\pi) &= J(\pi_{old}) + \sum_{s} \rho_{\pi}(s) \sum_{a} \pi(a \mid s) A_{\pi_{old}}(s, a) \\ J(\pi) &\approx J(\pi_{old}) + \sum_{s} \rho_{\pi_{old}}(s) \sum_{a} \pi(a \mid s) A_{\pi_{old}}(s, a) = \\ &= J(\pi_{old}) + \sum_{s} \rho_{\pi_{old}}(s) \sum_{a} \pi_{old}(a \mid s) \frac{\pi(a \mid s)}{\pi_{old}(a \mid s)} A_{\pi_{old}}(s, a) \\ &= J(\pi_{old}) + \mathbb{E}_{\rho_{old}} \Big[\frac{\pi(a \mid s)}{\pi_{\sigmald}(a \mid s)} A_{\pi_{old}}(s, a) \Big] \end{split}$$

Visualisation

We want to compute loss function here!

Trust Region Policy Optimisation (TRPO)

Original paper

We have to solve the following optimisation problem to generate a policy update:

$$\begin{aligned} & \max_{\theta} \mathbb{E}_{s \sim \rho_{old}, a \sim \pi_{\theta_{old}}} \left[\frac{\pi_{\theta}(a \mid s)}{\pi_{\theta_{old}}(a \mid s)} A_{\pi_{\theta_{old}}}(s, a) \right] \\ & \text{s.t. } \mathbb{E}_{s \sim \rho_{old}} [KL(\pi_{\theta_{old}} | \mid \pi_{\theta})] \leq \delta \end{aligned}$$

The authors change the advantage function by the Q-function.

TRPO Algorithm

Repeat until convergence:

- 1. Collect transitions following current policy $\pi_{\theta_{old}}$
- 2. Compute $g = \nabla_{\theta} \frac{1}{N} \sum_{i=1}^{N} \frac{\pi_{\theta}(a_i \mid s_i)}{\pi_{\theta_{old}}(a_i \mid s_i)} Q_{\pi_{\theta_{old}}}(s_i, a_i)$
- 3. Compute $K = \nabla_{\theta}^2 \frac{1}{N} \sum_{i=1}^{N} KL(\pi_{\theta_{old}}(. | s_i) | | \pi_{\theta}(. | s_i))$
- 4. Find optimal direction via Conjugate Gradients Method (find $s = K^{-1}g$)
- 5. Do linear search in optimal direction checking the KL constraint and objective value for each new parameter: $\theta_j = \theta_{old} + \alpha_j \sqrt{\frac{2\delta}{g^T s}} s$

TRPO

- + Extremely stable
- + Prominent results
- Computational expensive
- Require cheap sampling
- Difficult to implement

Conditional vs Unconditional Problem

TRPO problem

Equivalent problem

$$\max_{\theta} \hat{\mathbb{E}}_{t} \left[\frac{\pi_{\theta}(a \mid s)}{\pi_{\theta_{old}}(a \mid s)} \hat{A}_{t} \right]$$

s.t.
$$\hat{\mathbb{E}}_t[KL(\pi_{\theta_{old}}|\mid \pi_{\theta})] \leq \delta$$

$$\max_{\theta} \hat{\mathbb{E}}_{t} \left[\frac{\pi_{\theta}(a \mid s)}{\pi_{\theta_{old}}(a \mid s)} \hat{A}_{t} - \beta KL(\pi_{\theta_{old}} \mid \pi_{\theta}) \right]$$

 \hat{A} is an estimator of the advantage function at timestep t. Here, the expectation $\hat{\mathbb{E}}_t$ indicates the empirical average over a finite batch of samples, in an algorithm that alternates between sampling and optimization.

PPO Objective

$$r_t(\theta) = \frac{\pi_{\theta}(a_t \mid s_t)}{\pi_{\theta_{old}}(a_t \mid s_t)}$$
, so $r_t(\theta_{old}) = 1$

$$L^{CPI}(\theta) = \hat{\mathbb{E}}_t \left[\frac{\pi_{\theta}(a \mid s)}{\pi_{\theta_{old}}(a \mid s)} \hat{A}_t \right] = \hat{\mathbb{E}}_t \left[r_t(\theta) \hat{A}_t \right]$$

$$L^{CLIP}(\theta) = \hat{\mathbb{E}}_t \left[\min \left(r_t(\theta) \hat{A}_t, clip(r_t(\theta), 1 - \epsilon, 1 + \epsilon) \hat{A}_t \right) \right]$$

PPO Objective

$$L^{CLIP}(\theta) = \hat{\mathbb{E}}_t \left[\min \left(r_t(\theta) \hat{A}_t, clip(r_t(\theta), 1 - \epsilon, 1 + \epsilon) \hat{A}_t \right) \right]$$

$p_t(\theta) > 0$	A_t	Return Value of min	Objective is Clipped	Sign of Objective	Gradient
$p_t(\theta) \in [1 - \epsilon, 1 + \epsilon]$	+	$p_t(\theta)A_t$	no	+	✓
$p_t(\theta) \in [1 - \epsilon, 1 + \epsilon]$	-	$p_t(\theta)A_t$	no	_	✓
$p_t(\theta) < 1 - \epsilon$	+	$p_t(\theta)A_t$	no	+	✓
$p_t(\theta) < 1 - \epsilon$	_	$(1 - \epsilon)A_t$	yes	_	0
$p_t(\theta) > 1 + \epsilon$	+	$(1 + \epsilon)A_t$	yes	+	0
$p_t(\theta) > 1 + \epsilon$	-	$p_t(\theta)A_t$	no	ı	√

Source

Source

Surrogate Objectives

Optimisation

Like in A2C, we obtain the following object, which is approximately maximised each iteration:

$$L_t^{CLIP}(\theta) - c_1 L_t^{VF}(\theta) + c_2 H_{\pi_{\theta}}(s_t),$$

where c_1, c_2 are coefficients, H denotes an entropy bonus,

$$L_t^{VF}(\theta)$$
 is a squared-error loss $\hat{\mathbb{E}}_t[V_{\theta}(s_t) - V_t^{target}]$

TRPO vs PPO

- Works for smaller models
- + Second-order optimisation

- + Works for big models
- First-order optimisation

Continuous action spaces

We can learn critic easily

• The problem is finding

$$a_{opt} = rg \max_a Q(s,a)$$

Idea: learn a separate network to find a opt

• Train critic Q(s,a)

$$argmin(Q(s_t, a_t) - [r + \gamma \cdot V(s_{t+1})])^2$$

Train actor a_opt(s) = mu(s)

$$abla_{ heta}J = rac{\partial Q^{ heta}(s,a)}{\partial a}rac{\partial \mu(s| heta)}{\partial heta}.$$

Idea: learn a separate network to find a_opt

• Train critic Q(s,a)

$$\underset{\boldsymbol{\theta}}{argmin} (Q\left(\boldsymbol{s}_{t}, \boldsymbol{a}_{t}\right) - [r + \gamma \cdot V\left(\boldsymbol{s}_{\underline{t+1}}\right)])^{2}$$

How to get V(s')?

Train actor a_opt(s) = mu(s)

$$abla_{ heta}J = rac{\partial Q^{ heta}(s,a)}{\partial a}rac{\partial \mu(s| heta)}{\partial heta}$$

Idea: learn a separate network to find a_opt

Train critic Q(s,a)

$$\underset{\theta}{\operatorname{argmin}} (Q(s_{t}, a_{t}) - [r + \gamma \cdot Q(s_{t+1}, \mu_{\theta}(s_{t+1}))])^{2}$$

Train actor a_opt(s) = mu(s)

$$abla_{ heta}J = rac{\partial Q^{ heta}(s,a)}{\partial a}rac{\partial \mu(s| heta)}{\partial heta}.$$

Gradient approximation: $\nabla_{\theta}J = \frac{\partial Q^{\theta}(s,a)}{\partial a} \frac{\partial \mu(s|\theta)}{\partial \theta}$

