Отчёт по лабораторной работе №6

Арифметические операция в NASM

Новикова Анастасия Андреевна

Содержание

1	Цель работы		5
2	Зад	ание	6
3	Выг	полнение лабораторной работы	7
	3.1	Символьные и численные данные в NASM	7
	3.2	Выполнение арифметических операций в NASM	10
		3.2.1 Ответы на вопросы по программе	13
	3.3	Выполнение заданий для самостоятельной работы	14
4	Выв	зоды	17

Список иллюстраций

3.1	Создание директории	./
3.2	Создание файла	7
3.3	Создание копии файла	7
3.4	Редактирование файла	8
3.5	Запуск исполняемого файла	8
3.6	Редактирование файла	8
3.7	Запуск исполняемого файла	8
3.8	Создание файла	9
3.9	Редактирование файла	9
3.10	Запуск исполняемого файла	9
3.11	Редактирование файла	9
	Запуск исполняемого файла	10
3.13	Редактирование файла	10
	Запуск исполняемого файла	10
3.15	Создание файла	10
3.16	Редактирование файла	11
3.17	Запуск исполняемого файла	11
	Изменение программы	11
3.19	Запуск исполняемого файла	12
3.20	Создание файла	12
3.21	Редактирование файла	12
3.22	Запуск исполняемого файла	12
3.23	Создание файла	14
3.24	Написание программы	14
3.25	Запуск исполняемого файла	14
3.26	Запуск исполняемого файла	15

Список таблиц

1 Цель работы

Освоение арифметических инструкций языка ассемблера NASM.

2 Задание

- 1. Символьные и численные данные в NASM
- 2. Выполнение арифметических операций в NASM
- 3. Выполнение заданий для самостоятельной работы

3 Выполнение лабораторной работы

3.1 Символьные и численные данные в NASM

С помощью команды mkdir создаю директорию, в которой буду создавать файлы с программами для лабораторной работы №6 (рис. 3.1). Перехожу в созданный каталог с помощью команды cd.

```
aanovikova123@fedora:~/work/arch-pc$ mkdir ~/work/arch-pc/lab06
aanovikova123@fedora:~/work/arch-pc$ cd ~/work/arch-pc/lab06
aanovikova123@fedora:~/work/arch-pc/lab06$
```

Рис. 3.1: Создание директории

С помощью команды touch создаю файл lab6-1.asm (рис. 3.2).

```
aanovikova123@fedora:~/work/arch-pc/lab06$ touch lab6-1.asm
aanovikova123@fedora:~/work/arch-pc/lab06$ ls
lab6-1.asm
aanovikova123@fedora:~/work/arch-pc/lab06$
```

Рис. 3.2: Создание файла

Копирую в текущий каталог файл in_out.asm с помощью команды ср, т.к. он будет использоваться в других программах (рис. 3.3).

```
aanovikova123@fedora:~/work/arch-pc/lab06$ cp ~/work/arch-pc/lab05/in_out.asm in_out.asm
aanovikova123@fedora:~/work/arch-pc/lab06$ ls
in_out.asm lab6-1.asm
aanovikova123@fedora:~/work/arch-pc/lab06$
```

Рис. 3.3: Создание копии файла

Открываю созданный файл lab6-1.asm, вставляю в него программу вывода значения регистра eax (рис. 3.4).

Рис. 3.4: Редактирование файла

Создаю исполняемый файл программы и запускаю его (рис. 3.5). Вывод программы: символ j, потому что программа вывела символ, соответствующий по системе ASCII сумме двоичных кодов символов 4 и 6.

```
aanovikova123@fedora:~/work/arch-pc/lab06$ nasm -f elf lab6-1.asm
aanovikova123@fedora:~/work/arch-pc/lab06$ ld -m elf_i386 -o lab6-1 lab6-1.o
aanovikova123@fedora:~/work/arch-pc/lab06$ ./lab6-1
j
aanovikova123@fedora:~/work/arch-pc/lab06$
```

Рис. 3.5: Запуск исполняемого файла

Изменяю в тексте программы символы "6" и "4" на цифры 6 и 4 (рис. 3.6).

Рис. 3.6: Редактирование файла

Создаю новый исполняемый файл программы и запускаю его (рис. 3.7). Теперь вывелся символ с кодом 10, это символ перевода строки, этот символ не отображается при выводе на экран.

```
aanovikova123@fedora:~/work/arch-pc/lab06$ nasm -f elf lab6-1.asm
aanovikova123@fedora:~/work/arch-pc/lab06$ ld -m elf_i386 -o lab6-1-1 lab6-1.o
aanovikova123@fedora:~/work/arch-pc/lab06$ ./lab6-1-1

aanovikova123@fedora:~/work/arch-pc/lab06$ ls
```

Рис. 3.7: Запуск исполняемого файла

Создаю новый файл lab6-2.asm с помощью команды touch (рис. 3.8).

```
aanovikova123@fedora:~/work/arch-pc/lab06$ touch lab6-2.asm
aanovikova123@fedora:~/work/arch-pc/lab06$
```

Рис. 3.8: Создание файла

Ввожу в файл текст другой программы для вывода значения регистра eax (рис. 3.9).

Рис. 3.9: Редактирование файла

Создаю и запускаю исполняемый файл lab6-2 (рис. 3.10). Теперь выводится число 106, потому что программа позволяет вывести именно число, а не символ, хотя все еще происходит именно сложение кодов символов "6" и "4" (54 + 52 = 106).

```
aanovikova123@fedora:~/work/arch-pc/lab06$ nasm -f elf lab6-2.asm
aanovikova123@fedora:~/work/arch-pc/lab06$ ld -m elf_i386 -o lab6-2 lab6-2.o
aanovikova123@fedora:~/work/arch-pc/lab06$ ./lab6-2
106
aanovikova123@fedora:~/work/arch-pc/lab06$
```

Рис. 3.10: Запуск исполняемого файла

Заменяю в тексте программы в файле lab6-2.asm символы "6" и "4" на числа 6 и 4 (рис. 3.11).

Рис. 3.11: Редактирование файла

Создаю и запускаю новый исполняемый файл (рис. 3.12). Теперь программа складывает не соответствующие символам коды в системе ASCII, а сами числа, поэтому вывод 10.

```
aanovikoval23@fedora:~/work/arch-pc/lab06$ nasm -f elf lab6-2.asm
aanovikoval23@fedora:~/work/arch-pc/lab06$ ld -m elf_i386 -o lab6-2-1 lab6-2.o
aanovikoval23@fedora:~/work/arch-pc/lab06$ ./lab6-2-1
10
aanovikoval23@fedora:~/work/arch-pc/lab06$
```

Рис. 3.12: Запуск исполняемого файла

Заменяю в тексте программы функцию iprintLF на iprint (рис. 3.13).

```
Tightout the state of the state
```

Рис. 3.13: Редактирование файла

Создаю и запускаю новый исполняемый файл (рис. 3.14). Вывод значения не изменился, но курсор остался на той же строке. То есть функция iprintLF переводит курсор на следующую строку, а iprint не добавляет к выводу символ переноса строки.

```
aanovikova123@fedora:~/work/arch-pc/lab06$ nasm -f elf lab6-2.asm
aanovikova123@fedora:~/work/arch-pc/lab06$ ld -m elf_i386 -o lab6-2-2 lab6-2.o
aanovikova123@fedora:~/work/arch-pc/lab06$ ./lab6-2-2
10aanovikova123@fedora:~/work/arch-pc/lab06$
```

Рис. 3.14: Запуск исполняемого файла

3.2 Выполнение арифметических операций в NASM

Создаю файл lab6-3.asm с помощью команды touch (рис. 3.15).

```
aanovikova123@fedora:~/work/arch-pc/lab06$ touch lab6-3.asm
aanovikova123@fedora:~/work/arch-pc/lab06$
```

Рис. 3.15: Создание файла

Ввожу в созданный файл текст программы для вычисления значения выражения f(x) = (5 * 2 + 3)/3 (рис. 3.16).

```
*lab6-3.asm
-/work/arch-pc/lab06

1 %include 'in_out.asm'; nogknovenue внешнего файла
2 %ECTION .data
3 div: DB 'Peaynarar: ',0
4 rem: DB 'Ocrarok or деления: ',0
5 %ECTION .text
6 GLOBAL _start
7 .start:
8; --- Bhчисление виражения
9 snov eax,5; EAX-5
10 mov ebx,2; EBX-2
11 mul ebx; EAX-EAX-BX
11 mul ebx; EAX-EAX-BX
12 and eax,3; EAX-EAX-BX
13 xor edx,edx; olenynex EDX для корректной работы div
14 mov ebx,3; EBX-3
15 div ebx; EAX-EAX,5 EDX-ocrarok or деления
15 mov edx,5; AEX-EAX,7 EDX-ocrarok or деления
16 mov edi,eax; samck peaynarara survecenum s'edi'
17 mov beap peaynarara survecenum s'edi'
18 mov edi,eax; samck peaynarara survecenum s'edi'
19 coll %print; cooleguenum 'Peaynarara: '
19 call %print; cooleguenum 'Peaynarara: '
10 mov eax,eq call %print; cooleguenum 'Peaynarara' '
11 mov eax,eq call %print; cooleguenum 'Peaynarara' '
12 mov eax,eq call %print; cooleguenum 'Peaynarara' '
13 call %print; cooleguenum 'Peaynarara' '
14 mov eax,eq call %print; cooleguenum 'Peaynarara' '
1
```

Рис. 3.16: Редактирование файла

Создаю исполняемый файл и запускаю его (рис. 3.17).

```
aanovikoval23@fedora:-/work/arch-pc/lab06$ nasm -f elf lab6-3.asm
aanovikoval23@fedora:-/work/arch-pc/lab06$ ld -m elf_i386 -o lab6-3 lab6-3.o
aanovikoval23@fedora:-/work/arch-pc/lab06$ ./lab6-3
Результат: 4
Остаток от деления: 1
aanovikoval23@fedora:-/work/arch-pc/lab06$
```

Рис. 3.17: Запуск исполняемого файла

Изменяю программу так, чтобы она вычисляла значение выражения f(x) = (4 * 6 + 2)/5 (рис. 3.18).

```
Tinctude 'in_out.asm'; nog/movewere внешнего файла

2 SECTION (ADM STATE) ', 0

3 divi DB 'MRSYNTATE'; 0

5 SECTION LOS OF REMOVERS; 1, 0

5 OF LOS OF REMOVERS; 1, 0

5
```

Рис. 3.18: Изменение программы

Создаю и запускаю новый исполняемый файл (рис. 3.19). Я посчитала для проверки правильности работы программы значение выражения самостоятельно, программа отработала верно.

```
aanovikoval23@fedora:~/work/arch-pc/lab06$ nasm -f elf lab6-3.asm
aanovikoval23@fedora:~/work/arch-pc/lab06$ ld -m elf_i386 -o lab6-3-1 lab6-3.o
aanovikoval23@fedora:~/work/arch-pc/lab06$ ./lab6-3-1
Результат: 5
Остаток от деления: 1
aanovikoval23@fedora:~/work/arch-pc/lab06$
```

Рис. 3.19: Запуск исполняемого файла

Создаю файл variant.asm с помощью команды touch (рис. 3.20).

```
aanovikova123@fedora:~/work/arch-pc/lab06$ touch variant.asm
aanovikova123@fedora:~/work/arch-pc/lab06$ gedit variant.asm
```

Рис. 3.20: Создание файла

Ввожу в файл текст программы для вычисления варианта задания по номеру студенческого билета (рис. 3.21).

```
Normants

*Variants **

*Variants**

*Varian
```

Рис. 3.21: Редактирование файла

Создаю и запускаю исполняемый файл (рис. 3.22). Ввожу номер своего студ. билета с клавиатуры, программа вывела, что мой вариант - 20.

```
aanovikoval23@fedora:~/work/arch-pc/lab06$ nasm -f elf variant.asm
aanovikoval23@fedora:~/work/arch-pc/lab06$ ld -m elf_i386 -o variant variant.o
aanovikoval23@fedora:~/work/arch-pc/lab06$ ./variant
Введите № студенческого билета:
1132246839
Ваш вариант: 20
aanovikoval23@fedora:~/work/arch-pc/lab06$
```

Рис. 3.22: Запуск исполняемого файла

Я проверила аналитически, действительно, 1132246839/20 + 1 = 20. Остаток от деления 1132246839 на 20 равен 19, 19 + 1 = 20.

3.2.1 Ответы на вопросы по программе

1. За вывод сообщения "Ваш вариант" отвечают строки кода:

```
mov eax,rem
call sprint
```

- 2. Инструкция mov ecx, х используется, чтобы положить адрес вводимой строки х в регистр ecx. mov edx, 80 запись в регистр edx длины вводимой строки. call sread вызов подпрограммы из внешнего файла, обеспечивающей ввод сообщения с клавиатуры.
- 3. call atoi используется для вызова подпрограммы из внешнего файла, которая преобразует ASCII-код символа в целое число и записывает результат в регистр eax.
- 4. За вычисления варианта отвечают строки:

```
xor edx, edx ; обнуление edx для корректной работы div mov ebx, 20 ; ebx = 20 div ebx ; eax = eax/20, edx - остаток от деления inc edx ; edx = edx + 1
```

- 5. При выполнении инструкции div ebx остаток от деления записывается в регистр edx
- 6. Инструкция inc edx увеличивает значение регистра edx на 1
- 7. За вывод на экран результатов вычислений отвечают строки:

```
mov eax,edx
call iprintLF
```

3.3 Выполнение заданий для самостоятельной работы

Создаю файл lab6-zadanie.asm с помощью команды touch (рис. 3.23).

```
aanovikova123@fedora:~/work/arch-pc/lab06$ touch lab6-zadanie.asm
```

Рис. 3.23: Создание файла

Открываю созданный файл для редактирования, ввожу в него текст программы для вычисления значения выражения $x^3 * 1/3 + 21$ (рис. 3.24). Это выражение было под вариантом 20.

Рис. 3.24: Написание программы

Создаю и запускаю исполняемый файл (рис. 3.25). При вводе значения 1, вывод - 21. Так как $1^3 = 1$. Остаток от деления на 3 равен 0. Значит, 0 + 21 = 21. Программа отработала верно.

```
aanovikoval23@fedora:~/work/arch-pc/lab06$ nasm -f elf lab6-zadanie.asm
aanovikoval23@fedora:~/work/arch-pc/lab06$ ld -m elf_i386 -o lab6-zadanie lab6-zadanie.o
aanovikoval23@fedora:~/work/arch-pc/lab06$ ./lab6-zadanie
Введите значение переменной х: 1
Результат: 21
```

Рис. 3.25: Запуск исполняемого файла

Провожу еще один запуск исполняемого файла для проверки работы программы с другим значением на входе (рис. 3.26). Программа отработала верно. $3^3 = 27.27/3 = 9.9 + 21 = 30$.

```
aanovikova123@fedora:~/work/arch-pc/lab06$ ./lab6-zadanie
Введите значение переменной х: 3
Результат: 30
```

Рис. 3.26: Запуск исполняемого файла

Листинг 4.1. Программа для вычисления значения выражения х^3 * 1/3 + 21.

```
%include 'in_out.asm' ; подключение внешнего файла
SECTION .data ; секция инициированных данных
    msg: DB 'Введите значение переменной х: ', 0
    rem: DB 'Результат: ', 0
SECTION .bss ; секция неинициированных данных
    x: \mathsf{RESB} \ 80 ; Переменная для ввода значения x, выделено 80 байт
SECTION .text ; Kod программы
GLOBAL _start ; Начало программы
_start: ; Точка входа в программу
    ; ---- Запрос на ввод х
    mov eax, msg; Загрузка адреса сообщения в еах
    call sprint; Печать сообщения
    mov ecx, x ; Адрес переменной для хранения x
    mov edx, 80 ; Длина вводимого значения
    call sread : Чтение значения x
    mov eax, x ; Загрузка адреса x в еах
    call atoi ; Преобразование ASCII в число, результат в еах
    ; ---- Вычисление выражения y = x^3 // 3 + 21
```

```
mov ebx, eax; Konupyem x в ebx
imul eax, eax; eax = x^2
imul eax, ebx; eax = x^3
mov ebx, 3; Делитель = 3
xor edx, edx; Очистка старшей части для деления
div ebx; eax = x^3 // 3, остаток игнорируется
add eax, 21; eax = x^3 // 3 + 21
mov edi, eax; Сохраняем результат в edi

; ---- Вывод результата на экран
mov eax, rem; Загрузка сообщения 'Результат: ' в еах
call sprint; Печать сообщения
mov eax, edi; Загрузка результата в еах
call iprintLF; Печать результата в виде числа
call quit; Завершение программы
```

4 Выводы

При выполнении данной лабораторной работы были освоены арифметические инструкции языка ассемблера NASM.