Feuille de travaux dirigés 5 : Tests, Neyman-Pearson

Exercice 1 (Test de Neyman-Pearson : gaussiennes à moyenne connue):

- 1. Soit Y un vecteur gaussien centré de taille n. On veut tester l'hypothèse $H_0: Y \sim \mathcal{N}(0, \Sigma_0)$ versus $H_1: Y \sim \mathcal{N}(0, \Sigma_1)$ où Σ_0, Σ_1 sont inversibles. Montrer que le test de Neyman-Pearson revient à comparer $y^T(\Sigma_1^{-1} \Sigma_0^{-1})y$ à un seuil.
- 2. Soient X et V deux variables gaussiennes réelles, centrées, de variances respectives σ_X^2 et σ_V^2 . La variable X est un signal utile et V est un bruit de mesure. L'observation est donnée par Y = X + V. On recoit n observations indépendantes.

Proposer un test au niveau α permettant de détecter la présence du signal X.

3. Pour le test précédent, donner la valeur du seuil en fonction des quantiles de la loi du chi-deux. On précise que la loi du chi-deux à n degrés de libertés est la loi suivie par la somme de n variables normales centrées réduites indépendantes :

$$X \sim \chi_n^2 \iff X \stackrel{\text{loi}}{=} \sum_{1}^n U_i^2 \text{ où } U_i \stackrel{i.i.d.}{\sim} \mathcal{N}(0,1)$$

Exercice 2 (Dosages):

On souhaite tester si la concentration d'un produit est la même dans deux bassins différents A et B dans lesquels vivent des poissons d'élevage. A cet effet, des dosages sont effectuées dans les deux bassins et ont donné les résultats suivants :

Bassin A: 12, 14, 13, 13 (en mg/l) **Bassin B**: 11, 13, 12 (en mg/l)

On admet que le résultat d'un dosage est une réalisation d'une variable aléatoire gaussienne dont l'espérance est la concentration du produit dans le bassin choisi (μ_A et μ_B respectivement pour les bassins A et B). On admet également que tous les dosages sont effectués de manière indépendante. On supposera que l'écart-type, pour la méthode de mesure utilisée, est égal à $\sigma = 1 \text{ mg/l}$.

On cherche un test de l'hypothèse H_0 : " $\mu_A = \mu_B$ " contre H_1 : " $\mu_A > \mu_B$ ".

1. On note n_A et n_B les tailles respectives des échantillons A et B et \bar{X}_A et \bar{X}_B les moyennes empiriques respectives des échantillons A et B. On considère la statistique de test

$$T(X) = \bar{X}_A - \bar{X}_B.$$

Quelle est la loi de T(X) sous l'hypothèse nulle?

Dans la suite on suppose que la seule observation disponible pour le statisticien est T(X).

2. On considère provisoirement le test de l'hypothèse nulle H_0 contre

$$\tilde{H}_1: \mu_A - \mu_B = \Delta$$

- où $\Delta > 0$ est fixé. Montrer que le test de Neyman-Pearson de niveau $\alpha = 5\%$ revient à comparer T(X) un seuil C que l'on précisera en fonction \bar{n}_A , \bar{n}_B , σ , et du quantile de niveau u de la loi gaussienne standard $\mathcal{N}(0,1)$, noté $q_{\mathcal{N}}(u)$, où u est à déterminer.
- 3. Quelle est la réponse de votre test pour les valeurs numériques données dans l'énoncé? On donne $q_{\mathcal{N}}(0.95) \simeq 1.645, q_{\mathcal{N}}(0.975) \simeq 1.96, \sqrt{2} \simeq 1.414.$
- 4. Montrer que le test construit à la question 2 est aussi un test de niveau $\alpha = 5\%$ de H_0 contre H_1 .
- 5. Montrer que le test construit à la question 2 est uniformément plus puissant de niveau α pour tester l'hypothèse H_0 contre H_1 .

Exercice 3 (gestion de réseau):

On reprend l'exemple du modèle de Pareto pour la modélisation du trafic internet, vu au TD 2. On rappelle que une variable aléatoire X_1 suit une loi de Pareto $\mathcal{P}ar(u,\theta)$, avec u>0 et $\theta>0$, si la fonction de répartition de X_1 est

$$F_{\theta}(x) = \begin{cases} 0 & \text{si } x \le u \\ 1 - \left(\frac{u}{x}\right)^{\theta} & \text{si } x > u. \end{cases}$$

Dans la suite on fixe u > 0 supposé connu. On pourra utiliser les résultats suivant :

1. Loi Gamma Une variable aléatoire Y suit une loi Gamma de paramètres α et λ ($\alpha > 0$ et $\lambda > 0$), notée $\mathcal{G}amma(\alpha, \lambda)$, si elle admet une densité par rapport à la mesure de Lebesgue donnée par

$$f_{(\alpha,\lambda)}^{\mathcal{G}}(y) = \mathbb{1}_{y>0} \frac{\lambda^{\alpha}}{\Gamma(\alpha)} y^{\alpha-1} e^{-\lambda y}.$$

On rappelle que pour $\alpha > 0$, $\Gamma(\alpha + 1) = \alpha \Gamma(\alpha)$. Si $Y \sim \mathcal{G}amma(\alpha, \lambda)$, on a

$$\mathbb{E}_{\alpha,\lambda}(Y) = \frac{\alpha}{\lambda} \quad ; \quad \mathbb{V}ar_{\alpha,\beta}(Y) = \frac{\alpha}{\lambda^2}.$$

2. Loi Inverse Gamma Si $Y \sim \mathcal{G}amma(\alpha, \lambda)$, alors $T := \frac{1}{Y}$ suit une loi dite 'inverse gamma' $\mathcal{IG}(\alpha, \lambda)$, de densité

$$f_{\alpha,\lambda}^{\mathcal{I}\mathcal{G}}(t) = \mathbb{1}_{t>0} \frac{\lambda^{\alpha}}{\Gamma(\alpha)} \frac{1}{t^{\alpha+1}} e^{-\lambda/t},$$

et l'on a, lorsque $\alpha > 1$ (resp. $\alpha > 2$):

$$\mathbb{E}_{\alpha,\lambda}(T) = \frac{\lambda}{\alpha - 1}$$
 ; (resp. $\mathbb{V}ar_{\alpha,\lambda}(T) = \frac{\lambda^2}{(\alpha - 1)^2(\alpha - 2)}$.)

3. Somme d'exponentielles Si $(Z_i)_{i=1}^n \stackrel{i.i.d.}{\sim} \mathcal{E}(\lambda)$, alors $Y := \sum_{i=1}^n Z_i$ suit une loi Gamma de paramètres (n, λ) :

$$\sum_{i=1}^{n} Z_i \sim \mathcal{G}amma(n, \lambda).$$

Le gestionnaire du réseau s'intéresse à la probabilité que la réseau sature (pour une observation X_1). En l'état actuel, son réseau sature lorsque $X_1 > s$, où s > u est connu. Soit $g(\theta) = \mathbb{P}_{\theta}(X_1 > s)$ (où θ est inconnu). La réglementation autorise le réseau à saturer "rarement", c'est-à-dire, elle impose que $g(\theta) \leq \rho_0$ où $0 < \rho_0 < 1$ est petit. La question est de savoir si le gestionnaire doit redimensionner son installation ou non. L'hypothèse nulle est que tout va bien :

$$H_0: \{g(\theta) \le \rho_0\}.$$

(l'hypothèse alternative est donc $H_1: \{g(\theta) > \rho_0\}$).

- 1. Donner l'expression de $g(\theta)$ en fonction de θ , s et u.
- 2. Montrer que H_0 est vérifiée si et seulement si

$$\theta \in \Theta_0 = [\theta_0, +\infty[\text{ où } \theta_0 = \frac{\log(\rho_0)}{\log(u/s)}]$$

3. Considérons pour commencer le test d'hypothèses simples \tilde{H}_0 : $\{\theta = \theta_0\}$ contre \tilde{H}_1 : $\{\theta = \theta_1\}$, où $\theta_1 < \theta_0$. Écrire la statistique du rapport de vraisemblance et montrer que le test de Neyman Pearson revient à comparer la variable aléatoire

$$W = \sum_{i=1}^{n} \log(X_i/u)$$

à un seuil c (qu'on ne calculera pas pour l'instant).

4. Soit $\alpha \in]0,1[$. Déterminer le seuil c tel que le test

$$\delta(X) = \begin{cases} 1 & \text{si } W \ge c \\ 0 & \text{si } W < c \end{cases}$$

soit un test uniformément plus puissant (U.P.P) au niveau α (c'est-à-dire, de risque de première espèce égal à α) pour l'hypothèse \tilde{H}_0 contre \tilde{H}_1 . On exprimera c en fonction des quantiles de la loi $\mathcal{G}amma(n,1)$.

- 5. Soit $t > \theta_0$ considérons le test de l'hypothèse $H_0(t) : \{\theta = t\}$ contre H_1 . Montrer que le risque de première espèce du test δ construit à la question 4 est strictement inférieur à α .
- 6. En déduire que δ est U.P.P. de niveau α pour tester $H_0: \{\theta \geq \theta_0\}$ contre \tilde{H}_1 .
- 7. En déduire que δ est U.P.P. de niveau α pour H_0 contre H_1 .