LH1500AT/AAB/AABTR

1 Form A Solid State Relay

FEATURES

- Current Limit Protection
- I/O Isolation, 5300 V_{RMS}
- Typical R_{ON} 20 Ω
- Load Voltage 350 V
- Load Current 150 mA
- . High Surge Capability
- · Linear, AC/DC Operation
- Clean Bounce Free Switching
- Low Power Consumption
- High Reliability Monolithic Receptor
- SMD Lead Available on Tape and Reel

AGENCY APPROVALS

- UL File No. E52744
- BSI/BABT Cert. No. 7980
- FIMKO Approval
- CSA Certification 093751

APPLICATIONS

- · General Telecom Switching
 - On/off Hook Control
 - Ring Delay
 - Dial Pulse
 - Ground Start
 - Ground Fault Protection
- Instrumentation
- Industrial Controls
- See Application Note 56

DESCRIPTION

The LH1500 is robust, ideal for telecom and ground fault applications. It is a SPST normally open switch (1 Form A) that replaces electromechanical relays in many applications. It is constructed using a GaAIAs LED for actuation control and an integrated monolithic die for the switch output. The die, fabricated in a high-voltage dielectrically isolated technology, is comprised of a photodiode array, switch control circuitry and MOSFET switches. In addition, it employs current-limiting circuitry which meets FCC 68.302 and other regulatory voltage surge requirements when overvoltage protection is provided.

Part Identification

Part Number	Description			
LH1500AT	6-pin DIP, Thru Hole			
LH1500AAB	6-pin SMD			
LH1500AABTR	6-pin SMD, Tape and Reel			

Recommended Operating Conditions

Absolute Maximum Ratings, T_A=25°C

Stresses in excess of the Absolute Maximum Ratings can cause permanent damage to the device. These are absolute stress ratings only. Functional operation of the device is not implied at these or any other conditions in excess of those given in the operational sections of the data sheet. Exposure to maximum rating conditions for extended periods can adversely affect device reliability.

Ambient Temperature Range	-40 to +150°C 260°C
V _{IO} =500 V, T _A =25°C	≥10 ¹² Ω
V _{IO} =500 V, T _A =100°C	
SSR Output Power Dissipation (continuous)	
LED Continuous Forward Current	
LED Reverse Voltage (I _R ≤10 mA)	8.0 V
DC or Peak AC Load Voltage (I _L ≤50 mA)	350 V
Continuous DC Load Current at 25°C	
Bidirectional	150 mA
Unidirectional	250 mA

Electrical Characteristics, $T_A=25$ °C

Minimum and maximum values are testing requirements. Typical values are characteristics of the device and are the result of engineering evaluations. Typical values are for information only and are not part of the testing requirements.

Parameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions
Input		1				
LED Forward Current, Switch Turn-on	I _{Fon}	_	0.9	2.0	mA	I _L =100 mA, t=10 ms
LED Forward Current, Switch Turn-off	I _{Foff}	0.2	0.8	_	mA	<i>V</i> _L ±300 V
LED Forward Voltage	V_{F}	1.15	1.25	1.45	V	<i>I</i> _F =10 mA
Output	-			•		,
ON-resistance, ac/dc: Pin 4 (±) to 6 (±)	R _{ON}	_	18	25	Ω	$I_{\rm F}$ =5.0 mA, $I_{\rm L}$ =50 mA
ON-resistance, dc: Pin 4, 6 (+) to 5 (-)		3.0	4.6	6.25	Ω	$I_{\rm F}$ =5.0 mA, $I_{\rm L}$ =100 mA
OFF-resistance	R _{OFF}	0.5	300	_	GΩ	$I_{\rm F}$ =0 mA, $V_{\rm L}$ =±100 V
Current Limit ac/dc pin 4 (±) to 6 (±)	I _{LMT}	230	255	370	mA	I _F =5.0 mA, t=5.0 ms V _L ±6.0 V
Off-state Leakage Current	Io	_	0.32	200	nA	$I_{\rm F}$ =0 mA, $V_{\rm L}$ =±100 V
		_	73.4	1.0	mA	$I_{\rm F}$ =0 mA, $V_{\rm L}$ =±350 V
Output Capacitance, Pin 4 to 6	Co	_	33	_	pF	$I_{\rm F}$ =0 mA, $V_{\rm L}$ =1.0 V
		_	10	_	pF	$I_{\rm F}$ =0 mA, $V_{\rm L}$ =50 V
Switch Offset	V _{OS}	_	0.2	_	μV	I _F =5.0 mA
Transfer	•	-	_	'	-	<u>'</u>
Input/Output Capacitance	C _{ISO}	_	0.71	_	pF	V _{ISO} =1.0 V
Turn-on Time	t _{on}	_	0.338	2.0	ms	$I_{\rm F}$ =5.0 mA, $I_{\rm L}$ =50 mA
Turn-off Time	t _{off}	_	0.63	2.0	ms	$I_{\rm F}$ =5.0 mA, $I_{\rm L}$ =50 mA
						-

Figure 1. LED Voltage vs. Temperature

Figure 4. LED Current for Switch Turn-on vs. Temperature

Figure 2. LED Forward Current vs. LED Forward Voltage

Figure 5. LED Dropout Voltage vs. Temperature

Figure 3. LED Reverse Current vs. LED Reverse Voltage

Figure 6. Current Limit vs. Temperature

Figure 7. Load Current vs. Load Voltage

Figure 10. Switch Capacitance vs. Applied Voltage

Figure 8. ON-Resistance vs. Temperature

Figure 11. Insertion Loss vs. Frequency

Figure 9. Variation in ON-Resistance vs. LED Current

Figure 12. Leakage Current vs. Applied Voltage

Figure 13. Output Isolation

Figure 14. Switch Breakdown Voltage vs. Load Current

Figure 15. Switch Breakdown Voltage vs. Temperature

Figure 16. Switch Offset Voltage vs. Temperature

Figure 17. Switch Offset Voltage vs. LED Current

Figure 18. Turn-On Time vs. Temperature

Figure 19. Turn-Off Time vs. Temperature

Figure 21. Turn-Off Time vs. LED Current

Figure 20. Turn-On Time vs. LED Current

