

MuSES BRDF VW&A

First Phase

Alicia Garth
Erik Polsen
Roger Evans
TARDEC, Warren, MI

DISTRIBUTION STATEMENT A
Approved for Public Release
Distribution Unlimited

20060824211

MASTER PLAN

- OBJECTIVES
- BIG PICTURE
- BRDF
- SANDFORD-ROBERTSON
- TEST SETUP
- RESULTS
- LIMITATIONS AND RECOMMENDATIONS
- FUTURE PLANS

The Big Picture

BRDF

BRDF measurements

$$\rho_d \epsilon b e$$

Sandford-Robertson parameters

Physical modeling

3

OBJECTIVE

- Enhance the already existing MuSES Vv&A with validation of the BRDF Algorithms

4

BRDF

A measure of the reflective properties
of a material (i.e. diffuse, specular,
semi-specular, etc.)

SANDFORD-ROBERTSON

■ 4 Parameter Model

- b
- e

Constant for a given surface

- $\rho_D(\lambda)$
- $\epsilon(\lambda)$

■ Estimation

■ Assumptions

- Ideal Specular Lobe
- b and e are not λ dependent

6

SANDFORD-ROBERTSON PARAMETER "b"

Incident Zenith [degrees]

$- b=0.05$ — $b=0.10$ — $b=0.15$ — $b=0.20$ — $b=0.30$

Courtesy of Dave Less, ThermoAnalytics

7

SANDFORD-ROBERTSON PARAMETERS "e",

SANDFORD-ROBERTSON

Courtesy of Dave Less

8

CREATION OF MODELED DATA

make_sr1 RE, 8/03

Sandford-Robertson Parameters

CARC Green @ 555nm

CARC Tan @ 555nm

Army Black @ 555nm

Army White Primer @ 555nm

Arbitrary [type in]

3-D View [someday]

Parameter Values

ρ_0	<input type="text" value="0.6410"/>	ϵ	<input type="text" value="0.0500"/>	b	<input type="text" value="0.1000"/>	c	<input type="text" value="0.3500"/>
----------	-------------------------------------	------------	-------------------------------------	-----	-------------------------------------	-----	-------------------------------------

Theta Incident (elevation)

Θ	<input type="text" value="45"/>	Φ	<input type="text" value="0"/>
----------	---------------------------------	--------	--------------------------------

full hemisphere

floor

axes

Write RAW mesh

Write Phi=180 Values

9

COMPARISON- REAL VS. S-R MODEL

■ Pros

- Smoothes Data
- No Interpolation Necessary
- Totally Hemispherical

10

COMPARISON- REAL VS. S-R MODEL

■ Cons

- Can't model atypical BRDF's or anisotropic materials
- Uses Theoretical Calculations (i.e. angle of incidence equals angle of reflection)

TEST SET UP

DIFFUSE RESULTS

- Similar Properties
- Modeled Data is $10W/m^2$ off
- Must use Weather file
- Must use Paint option

SPECULAR DATA

Physical Temp Comparison (Polished Plate)

—◆— MuSES —■— Actual

14

LIMITATIONS AND RECOMMENDATIONS

■ LIMITATIONS

■ Sandford-Robertson 4 Parameter Model

- Does Not Allow for Irregular Surfaces
- Disregards the Wavelength Dependence for Surface Properties

■ RECOMMENDATIONS

- Integrate User Defined Raw Data BRDF Parameters

FUTURE PLANS

- Other Geometrical Shapes for Further Validation
- Environmental Exposure
- Variety of BRDF Panels

16173

OPSEC REVIEW CERTIFICATION

(AR 530-1, Operations Security)

I am aware that there is foreign intelligence interest in open source publications. I have sufficient technical expertise in the subject matter of this paper to make a determination that the net benefit of this public release outweighs any potential damage.

Reviewer: Wallace R. Mick Jr. GS14 Mechanical Engineer

Name	Grade	Title
<u>Wallace R. Mick Jr.</u>		<u>2 Sep 03</u>
Signature		Date

Description of Information Reviewed:

Title: MuSES Brdf VV&A First PhaseAuthor/Originator(s): Alicia Garth, Erik Polsen and Roger EvansPublication/Presentation/Release Date: G-VSS Conference - Aug 2003Purpose of Release: Conference

An abstract, summary, or copy of the information reviewed is available for review.

Reviewer's Determination (check one)

1. Unclassified Unlimited. *This presentation contains no military information. The content is routine physics applied to surface reflectance characteristics. I see no problem with unclassified unlimited release. Wally Mick*

2. Unclassified Limited, Dissemination Restrictions IAW _____

3. Classified. Cannot be released, and requires classification and control at the level of _____

Security Office (AMSTA-CM-XS):

Concur/Nonconcur

John Reynolds

Signature

4 Sep 03

Date

Public Affairs Office (AMSTA-CM-PI):

Concur/Nonconcur

Don Jones

Signature

10 SEP 03

Date