Research and Development in Neuromorphic AI for an Anthropomorphic Android to Achieve a Human-centered AI Society

CRF-2025 Project Kick-off Meeting
Sustainable Computing Cluster
2025/07/08

Year 1 Goal: Pioneering Neuromorphic Al for Anthropomorphic Android

- Research and develop innovative Al hardware: Developing braininspired, energy-efficient designs based on SNN.
- Research and develop lightweight software: Creating adaptive realtime decision-making capabilities.
- **Applications**: We will explore applications, such as healthcare and customer service sectors.

Cloud Computing external computing task) Artificial Retina (sensor: light/visual) Artificial Cochlea (sensor: audio/sound) Inter-AI-chip connection Artificial Joint (Motor for moving hand) Sensors Neuromorphic AI Actuators Chip (NASH) Communications (Bluetooth, WIFI, Ethernet) System Overview

From CRF Presentation Slides

Fig. 7: NeoAndro: Neuromorphic Anthropomorphic Android

CRF: System Architecture

In AY2025, we will focus on (1) FPGA-based SNN SoC

1 FPGA-based SNN SoC

1 FPGA-based SNN SoC with NVM

(1) Emulating NVM using BRAMs (*1)

- Implement NVM as digital logic circuit with BRAM
- Realize read access time and write access time (*2) of NVM by using counters
- ➤ Calculate energy consumption by using access time and typical device parameters (read current, write current, etc.) (*3)

(2) Use external NVM

(*1)[Example] NORM by Univ. Tronto https://dl.acm.org/doi/10.1145/3517812 https://github.com/simoneruffini/NORM

(*2) Typically, read access time of STT-MRAM cell is 2~3 ns and write access one is about 10ns (depends on applied current)
(*3) Typically, read current of STT-MRAM cell

is several uA and write one is about 100uA

- (*4) https://www.hdl.co.jp/EDX-303/
- (*5) https://ieeexplore.ieee.org/document/11038377
- ➤ Use Humandata's FPGA board with Eversipin's STT-MRAM (*4)
- Use discrete STT-MRAM IC and connect FPGA board
 -> In (*5), there is a CNN's demo using AMD's FPGA and STT-MRAM IC_

AY2025: (1) FPGA based SNN SoC

- [T1] SNN deployment on FPGA [DANG]
 - A training flow with Pytorch
 - A HW emulation framework:
 - A conversion framework: Pytorch -> Verilog HDL.
 - A flow for SoC on FPGA
 - Publications:
 - [TCAD (major)] approximate SNN architecture
 - [Preparing] Framework for carbon-neutral SNN inference/training by adjusting hardware/model configuration to compensate for the energy harvesting.
- [T2] NVM emulation [SUZUKI]
 - Behavior model for implementing FPGA
 - Energy model for calculating energy consumption
 - FPGA implementation using "virtual" NVM
 - FPGA implementation using "real" NVM

Schedule

Other HW parts

- (2) ANN SoC for Hand Control
- For AY2025, we can reuse the existing system (ANN/SNN) on a Raspberry Pi to control the hand.
- We will discuss in AY2026 for this system (in 2026/04)
- 3 Inter-Al-chip connection (wired)
- Reserve for AY2026
- Potentially: I2C
- 4 Cloud connection (wireless)
- Reserve for AY2027

Distributed Android Cooperative Learning and Communication

Cooperative learning and communication

- Sensor and data sharing design
- Communication methods and protocols
- Task specification

RL-Based Android Control for Path Planning and Object Manipulation

- Multi-agent path coordination
- Obstacle avoidance and scene interaction
- Real-time re-planning for dynamic environments
- Object manipulation via reinforcement learning

Android design

- Component 3D print
- Full body assembly
- Actuator integration
- Function design and implementation
- Final test

Cooperative Learning and Communication – Scalability

Core Metrics for Evaluating Scalability						
Metric	Description					
Coordination Success Rate	Percentage of multi-android tasks completed without conflict or failure					
Single-Task Success Rate	Percentage of individual tasks completed correctly despite increased system load					
Decision Latency	Average time for each android to make decisions as team size grows					

Cooperative Learning and Communication – Scalability

Cooperative Learning and Communication – Reliability

Core Metrics for Evaluating Reliability						
Metric	Description					
Completion Rate under Faults	Percentage of tasks successfully completed even when one or more robots fail					
MTTR (Mean Time To Recovery)	Average time the system takes to recover from a robot failure (e.g., detect, reassign, continue)					
MTTF (Mean Time To Failure)	The average time before an individual android fails due to internal issues					

Cooperative Learning and Communication – Reliability

RL-Based Android Control for Path Planning and Object Manipulation

Step 1. RL-Based Modeling and Simulation Setup

- Get hands-on experience with the <u>MATLAB Simulink</u> environment, focusing on the RL Toolbox and building basic dynamic systems
- Prepare a comprehensive explanation of core RL concepts, key formulas, and common deployment environments.
- Develop a RL-based model of AlzuHand
- Advanced Research: Investigate leveraging LLM to enhance the RL agent's learning process

Step 2. Task-Level Simulation in MATLAB Simulink

- Define detailed input and output for object manipulation execution (e.g., grasp & release)
- Simulate object manipulation (grasp & release) in MATLAB Simulink
- Define detailed input and output for path planning (e.g., start point and destination, obstacle and walls)
- Simulate path planning in MATLAB Simulink

Step 3. Add Multi-Android Coordination

- Use multi-agent RL for coordinated path planning (Evaluation metric: Joint success rate, average agent reward / team reward, task completion time)
- Implement a distributed communication framework that allows androids to exchange key state information (e.g., position, planned trajectory) to support decentralized coordination in real time

Core Functions – Inputs and Outputs

Function	Input	Output	Android's Use (Purpose)			
Vision	Image	Object	Manipulation (e.g., grasp)			
	Image + depth map or 3D point cloud (e.g., .png [16-bit], .npy, .pcd)	Obstacle + 3D position	Path planning			
	Videos (a set of image frames)	Real-time trajectory	Dynamic interaction (i.e., obstacle avoidance)			
Voice Recognition	Analog signal	Structured command data (e.g., {action: "bring", object: "cup"})	Command recognition (e.g., move, grasp)			
	Digital pulse-code modulation (PCM) audio stream	3D position	Voice source localization			
Grasp /Release	Target object position and orientation + desired action + endeffector pose	Trajectory of end- effector + Control signals to actuators	Physical manipulation actions (e.g., grasp, release)			
Walking	Starting point and destination + environment map (obstacles, walls)	Collison-free path	Path planning			
	Planned path, current status	Actuator commands	Physical move for each step			

Android Design Status

Phase	Current Status	Expect Due		
Mechanical Design (3D Print)	Complete	-		
Full Body Assembly	Sensors, knurled nuts, bolts and screws, bearings (8 arrived, 1 on delivery) (Expected arrival: mid of July, 2025)	July 25 (Fri), 2025		
Actuator Integration	Motor (5010 & M6C12) <u>Arrived</u>	July 25 (Fri), 2025		

Task	Sub-Task	2025 Jul	2025 Aug	2025 Sep	2025 Oct	2025 Nov	2025 Dec	2026 Jan	2026 Feb	2026 Mar	2026 Apr	2026 May	2026 Jun
Distributed Android	Problem formulation (scalability & reliability)		_	\rightarrow									
	Propose algorithms				\Rightarrow								
	Conduct evaluation & write Jnl. Paper					_		\rightarrow					
	Investigate practical scenarios (Optional)									\Rightarrow			
Path Planning	Prepare RL fundamental explanation	\Rightarrow											
i idililiig	Investigate RL in Simulink	\Rightarrow											
	Write Conf. paper												
	Object manipulation in Simulink				\Rightarrow								
	Path planning in Simulink												
	Write Jnl. paper												
Android	Full body assembly												
Physical Design	Initial actuator integration												
	Single-actuator function testing			\rightarrow									
	Write conf. paper												
	Full actuator integration												
	Integrated function tests												
	Write Jnl. paper												

AY2025 Expected Achievement

- [HARDWARE] DANG & SUZUKI
 - 2 Journal, 2 Conference papers
 - 1 Patent Applications
 - 1 KAKENHI 2026 (ALL SuScom Members), 2 External (DANG, WANG - applied already)
- [ANDROID] WANG & BEN
 - 2 Journal, 2 Conference papers
 - 1 Patent Applications
 - 1 KAKENHI 2026 (WANG, BEN)