

		6. a. Compute the De Broglie wavelength (λ_{DB}) associated with a molecule of air $(\sim N_2)$ in your room (STP).												
		Compute the average distance (d) between molecules (STP) and compare d and λ_{DB} .												
		b. Is this any different from the case discusse din class foe a conduction band electron (STP). Briefly explain.												
•)	The	5TP conditions are: T = 273,16 K P= 1 atm												
o)		molecule of air can be considered as Nz, so:												
	L,	$M_{N_2} = 2 \cdot 14,007 u = 28,0152 u \cdot \frac{1,66 \cdot 10^{-27} k_3}{10} = 4,65 \cdot 10^{-26} k_5$												
o) 1	he in	ternal energy of an ideal gas: Kgs= 3 KBT												
	0W,	the Kinetic energy: Ke = 1 m v2												
	ls	$K_{\text{gas}} = K_{e} \Rightarrow \frac{3}{2} K_{\text{B}} T = \frac{1}{2} M_{\nu_{e}} v^{2} \Rightarrow v = \sqrt{\frac{3 K_{\text{B}} T}{m_{\nu_{e}}}}$												
? (·	De Br	oglie: $\lambda = \frac{h}{p} = \frac{h}{m_{N_2} \cdot v} = \frac{h}{(3m_{N_2} k_BT)} = \frac{6.64 \cdot 10^{-34}}{(3 \cdot 4.65 \cdot 10^{-23} \cdot 273.16}$												
		13. 4,500 4,500 5.716												
		\ = 0,029nm												

	7. In a sir	ngle-phot	on doub	le-slit ex	nerimen	t the (si	ngle-pho	ton "sn")	source	has beer	,			
	In a single-photon double-slit experiment the (single-photon "sp") source has been generated via a time-correlated photon parametric down-conversion process whereby a photon (pump) of energy $\hbar\omega_p$ is converted into a "pair" of photon each having energy													
	$\hbar\omega_{sp}.$													
	a. If $\lambda_p = 355 \ nm$ is the pump photon wavelength, compute the photon wavelength λ_{sp} of the down-converted single-photon impinging onto the double slit.													
	b. In a real experiment we need to place a "lens" between the image plane of the two													
	slits and the farfield screen where the interference pattern is generated. Draw a scheme of the double slit interferometer showing all its components. c. Derive an expression for the distance between the fringes in terms of the wavelength λ_{sp} , the lens focal length f and the distance d between the two slits. d. Assuming that the center-to-center distance between the two slits is $d \simeq 500 \ \mu m$, the feed length f at 500 μ m, "setimete" the fringes distance Compare your results.													
	the focal length $f \simeq 500 \ mm$, "estimate" the fringes distance. Compare your result with the observed fringe spacing that you may infer from the data collected (photon by photon) in the attached video.													