TLQ - Teoria da Ligação Química

Felipe B. Pinto 61387 - MIEQB

17 de dezembro de 2021

Conteúdo

Ι	- Anotações	3	4 Difração	9
Sli	ide 1 Teoria Atômica I	3	5 Efeito fotoelétrico	9
1	Do grego: Átomos	3	6 Comprimento de onda do	
2	Teoria Atómica de Dalton	3	eletron	11
	J. J. Thomson: modelo		7 Equação de Rydberg	12
	pudim de passas	4	8 Generalizando para além	
4	Experimento da folha de		do hidrogênio	13
	ouro de Rutherford	5	II – Exercícios	15
5	Teoria orbital de Bohr	5	Lista 1	15
Sli	ide 2 Teoria Atômica II	8	Questão 1	15
1	Teoria orbital de Bohr (cont.)	8	Questão $2 \dots \dots$	15
2	Refração	8	Questão 3	16
3	Interferencia	9	Questão 4	16

I – Anotações

Slide 1 – Teoria Atômica I

História

1 Do grego: Átomos

No 5º Século A.C o filosofo Leucippus de Miletus originou a filosofia atômica, seu discípulo Democritus de Abdera nomeou átomo significando literalmente indivisível, e caracterizou os átomos por possuirem tamanhos e formas diferentes atribuindo a matéria que eles formam suas características.

A filosofia atômica nunca foi aceita por Aristotles e como sua filosofia deu origem a igreja cristã na europa, a igreja perseguiu aqueles que iam contra a filosofia aristotélica, atrasando bastante o desenvolvimento da teoria atômica.

2 Teoria Atómica de Dalton

Apenas no século 19 d.c a teoria atómica foi retomada com a publicação do livro A New System of Chemical Philosophy de John Dalton com base no princípio da conservação de massa em reações químicas de Lavoisier, elevando o conceito filosófico de átomo para uma teoria química. Dentre os conteúdos de sua publicação se discutiam o seguinte:

2.1 Postulados

- 1. Elementos consistem de minusculas particulas sem carga, indestrutíveis e indivisíveis;
- 2. Todos os átomos do mesmo elemento são iguais, diferentes elementos possuem diferentes tipos de átomos;
- 3. Átomos não são nem criados nem destruídos;
- 4. Diferentes átomos podem se juntar em simples proporções para formar "átomos compostos".

3 J. J. Thomson: modelo pudim de passas

3.1 Pretexto: Experimentos com ampola de Crooks

Ampolas alongadas e vedadas onde se podia inserir gases e reduzir sua pressão com uma bomba de vácuo, alem de possuir um cátodo e um anodo de pilhas em cada uma das suas extremidades.

Ao diminuir a pressão á 10 mmHg no interior de uma ampola preenchida com hidrogênio uma luz rosa passou a ser emitida pela ampola.

...

- átomos possuem pequenas partículas carregadas negativamente (elétrons)
- núcleo positivo constitui praticamente toda a massa do átomo

4 Experimento da folha de ouro de Rutherford

Bloco contendo Rádio emissor de partículas (positivas) que colidem com uma fina lamina de ouro, verificando o desvio das partículas que poderiam apenas ser explicadas pela interação elétrica com o campo gerado pelo núcleo dos átomos de ouro, que para possuir um campo suficientemente forte precisa ser pequeno.

Para que o núcleo seja pequeno, os elétrons tem que orbitar ao seu redor, e se esse for o caso pelas leis de Maxuel partículas carregadas em aceleração perdem energia em forma de ondas eletromagnéticas e os elétrons se colidiria com o núcleo causando a em alguns milésimos o que obviamente não ocorre.

A conclusão desse experimento contraria Maxuel, e por isso Rutherford descontinuou seus estudos atômicos.

5 Teoria orbital de Bohr

Usando o "insight" de Rutherford

- 1. Eletrons existem em estados estacionários
- 2. Qualquer variação do eletron no estado estacionario implica em absorção e emição de ondas eletromagnéticas
- 3. momento angular do eletron é quantizado ou $L=|m_e\,\vec{v}\times\vec{r}|=n\,K\quad\forall\,n\in\mathbb{K}$ onde $k=h/2\,\pi$

Raio da orbita

$$\begin{split} m_e \, v^2/r &= F_c = F_e = \frac{e^2}{4 \, \pi \, \varepsilon_0 \, r^2} \wedge m_e \, v \, r = \frac{n \, h}{2 \, \pi} \implies \\ \implies r &= \frac{e^2}{4 \, \pi \, \varepsilon_0 \, m_e \, \left(\frac{n \, h}{2 \, \pi \, m_e \, r}\right)^2} \implies r = \frac{\varepsilon_0 \, n^2 \, h^2}{e^2 \, \pi \, m_e} \end{split}$$

velocidade do elétron

$$m_e\,v\,r = \frac{n\,h}{2\,\pi} \implies v = \frac{n\,h}{2\,\pi\,m_e\,\left(\frac{\varepsilon_0\,n^2\,h^2}{e^2\,\pi\,m_e}\right)} = \frac{e^2}{2\,\varepsilon_0\,n\,h}$$

Energia Cinética

$$E_c = \frac{m_e \, v^2}{2} = \frac{m_e}{2} \, \left(\frac{e^2}{2 \, \varepsilon_0 \, n \, h} \right)^2 = \frac{\left(\frac{m_e \, e^4}{8 \, \varepsilon_0^2 \, h^2} \right)}{n^2} = k/n^2$$

Energia Potencial

$$E_p = \frac{-e^2}{4\,\pi\,\varepsilon_0\,r} = \frac{-\,e^2}{4\,\pi\,\varepsilon_0\,\left(\frac{\varepsilon_0\,n^2\,h^2}{e^2\,\pi\,m_e}\right)} = \frac{-2\,m_e\,e^4}{8\,\varepsilon_0^2\,n^2\,h^2} = -2\,k/n^2$$

Energia total

$$E_t = E_c + E_p = k/n^2 - 2\,k/n^2 = -k/n^2$$

k

$$\begin{split} k &= \frac{m_e \, e^4}{8 \, \varepsilon_0^2 \, h^2} = \\ &= \frac{9.10938356 * 10^{-31} \, \mathrm{kg} * (1.60217662 * 10^{-19} \, \mathrm{C})^4}{8 * (8.8541878128 * 10^{-12} \, \mathrm{F} \, \mathrm{m}^{-1})^2 * (6.62607015 * 10^{-34} \, \mathrm{J} \, \mathrm{Hz}^{-1})^2} \cong \\ &\cong 2.179872251033439 * 10^{-18} \, \frac{\mathrm{kgC^4 m^2 Hz^2}}{\mathrm{F^2 J^2}} \cong 2.179 \, 87 * 10^{-18} \, \frac{\mathrm{kgC^4 m^2 Hz^2}}{\mathrm{F^2 J^2}} \end{split}$$

Slide 2 – Teoria Atômica II

1 Teoria orbital de Bohr (cont.)

Energia de Ionização do Hidrogênio

$$E_i = \lim_{n \to \infty} |E_{t\,0} - E_{t\,n}| = \lim_{n \to \infty} k \, \left| 1^{-2} - n^{-2} \right| = k \cong 2.179\,87 * 10^{-18}$$

Espectro de emissão do Hidrogênio

Apesar das derivações da teoria de Bohr, ela permite prever o espectro de emissão do hidrogênio

...

Fenômenos Ondulatórios

2 Refração

Quando uma onda passa a se propagar em um meio diferente. Consequencias

- Alteração do comprimento de onda e consequentemente a velocidade de propagação (a frequência depende apenas da origem).
- Alteração da direção de propagação.

regra geral matéria interfere negativamente com a propagação de onda, diminuindo sua velocidade e comprimento de onda e aumentando o desvio.

3 Interferencia

Interação dentre ondas de mesmas características.

Tipos:

Construtiva

Momento de sincronização onde suas amplitudes se somam

Destrutiva

Momento de sincronização onde suas amplitudes se subtraem

4 Difração

Ocorre quando uma onda passa por um obstáculo com ordem de grandeza próxima do comprimento de onda.

5 Efeito fotoelétrico

Fenômeno que ocorre quando placas carregadas recebem emissão elétromagnéticas liberam elétrons

- Energia cinética dos elétrons depende da frequência da onda elétromagnética
- A quantidade de elétrons depende da intensidade da onda.

Foton (Quanta)

Energia associada a uma dada frequência.

Explicando o efeito fotoelétrico pela característica dos elétrons de apenas receberem uma quantidade fixa de energia (chamada de "quanta" por Einstein e substituida por "foton" pela aceitação do conceito da dualidade partícula-onda dos elétrons proposto pelo príncipe Louis de Broglie (1924))

$$E = h \nu$$

h: Constante de Plank = $662.61 * 10^{-36} \text{ J s}$

: Frequencia da radiação

Dualidade partícula-onda (Príncipe Louis de Broglie)

$$\begin{split} \lambda\,\nu &= c \wedge E = h\,\nu \implies E = \frac{h\,c}{\lambda} = m_e\,c^2 \implies E = \frac{h\,v}{\lambda} = m_e\,v^2 \implies \\ &\implies \lambda = h/m_e\,v = h/P \end{split}$$

6 Comprimento de onda do eletron

O perímetro de uma determinada orbita de um eletron ao redor do núcleo terá de ser sempre um múltiplo inteiro do comprimento de onda do eletron

$$P = n \lambda = 2 \pi r \implies \lambda = 2 \pi r / n$$

Quantização do momento angular

$$\begin{split} |\vec{L}| &= |m_e \, \vec{v} \times \vec{r}| = m_e \, v \, r \wedge \frac{m_e \, v}{h} = \frac{n}{2 \, \pi \, r} = \lambda^{-1} \implies \\ &\implies |\vec{L}| = n \frac{h}{2 \, \pi} = n \, k \end{split}$$

7 Equação de Rydberg

$$\bar{\nu}_H = R_H(n^{-2}-m^{-2}) \quad \forall \ \{n,m\} \in \mathbb{K}: m>n$$

 R_H : Constante de Rydberg 109678.746 cm⁻¹

 $\bar{\nu}$: Número de onda

Comparação com Variação de energia do elétron

$$\begin{split} \bar{\nu} &= \lambda^{-1} \wedge \lambda \, \nu = c \wedge h \, \nu = \Delta E = k |n_1^{-2} - n_2^{-2}| \implies \\ &\implies \bar{\nu} = \frac{k}{h \, c} |n_1^{-2} - n_2^{-2}| \end{split}$$

Massa reduzida do átomo

Levando em consideração a massa do elétron e átomo

$$\begin{split} R_H &= 109678.764\,\mathrm{cm}^{-1} \cong R\,\mu_H = (k/h\,c)\left(\frac{m_e\,m_p}{m_e+m_p}\right) = \\ &= \left(\frac{m_e\,e^4}{8\,\varepsilon_0^2\,h^3\,c}\right)\left(\frac{m_e\,(1836\,m_e)}{m_e+(1836\,m_e)}\right) = \frac{m_e^2\,e^4}{8\,\varepsilon_0^2\,h^3\,c}\frac{1836}{1837} \cong 109677.6\,\mathrm{cm}^{-1} \end{split}$$

8 Generalizando para além do hidrogênio

$$F_e = \frac{-e^2}{4\,\pi\,\varepsilon_0\,r^2} \to \frac{-Z\,e^2}{4\,\pi\,\varepsilon_0\,r^2} \quad \forall\,\{Z\} \in \mathbb{K}$$

II – Exercícios

Lista 1 -

Questão 1

Q1.1)

$$\begin{split} E_c &= E - E_{ion} = (h\,\nu - 738*10^3/602.21*10^{21}) \mathrm{J} \frac{\mathrm{eV}}{160.28*10^{-21}\,\mathrm{J}} = \\ &= (662.61*10^{-36}*2.63*10^{16} - 1.23*10^{-18}) \mathrm{eV}/160.28*10^{-21} \cong 95.11\,\mathrm{eV} \end{split}$$

Q1.2)

$$E_c = E - E_{ion} : E > E_{ion}$$

Questão 2

Q2.1)

$$E_{ion} = E - E_c = h \, \nu - E_c = 662.61 * 10^{-36} * 4 * 10^{14} \cong 265.04 * 10^{-21} \, \mathrm{J}$$

Q2.2)

$$\lambda_{max} = c/\nu = 299.79*10^6/4*10^{14} \cong 749.48\,\mathrm{nm}$$

Q2.3)

Não ha relação da intencidade de uma radiação com a energia cinética adquirída pelos elétron, esta irá apenas variar o numero de elétrons afetados

Questão 3

Q3.1)

$$E = h \, v; \lambda \, v = c \implies$$

$$\implies E = h \, c / \lambda = 6.626 * 10^{-34} \, \text{J s} \, 2.9979 * 10^8 \, \text{m s}^{-1} / 600 \, \text{nm}$$

Questão 4

Ε