Quantum Computing

Lecture |08>

Grover's Quantum Search Algorithm

Paolo Zuliani

Outline

- The Search Problem
- Grover's algorithm

The Problem: Finding a Needle in a Haystack

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
78	655	<u>9797</u>	3249	6	13	877	56	8789	10	999	1548	<u>354</u>	75	1875	9

- Array of length $N = 2^n$ with $1 \le M \le N$ "solution" elements
- **Problem**: Find the index of a solution element
- Classical (random): $O(\frac{N}{M})$ array accesses in the worst case
- Quantum: Grover's algorithm returns a correct index with high probability, with only $O(\sqrt{\frac{N}{M}})$ array accesses!

[f(x) = O(g(x))] for $x \to \infty$ if $|f(x)| \le K|g(x)|$ for some constant K and large x

- Let A be our array of size $N = 2^n$
- Array indices can then be encoded with n bits

We "encode" the solutions via the Boolean function

$$f: \{0, \dots, N-1\} \to \{0,1\}$$

$$f(i) = \begin{cases} 0 & \text{if } A[i] \text{ is } \mathbf{not} \text{ a solution} \\ 1 & \text{if } A[i] \text{ is a solution} \end{cases}$$

For our $f: \{0, ..., N-1\} \rightarrow \{0,1\}$ we build the unitary $U_f: |x \otimes y\rangle \rightarrow |x \otimes (y \oplus f(x))\rangle$

where x is a quantum register of length n and y is a qubit. Also, recall that:

$$U_f|x\otimes 0\rangle = |x\otimes f(x)\rangle$$
 $U_f|x\otimes 1\rangle = |x\otimes \neg f(x)\rangle$

Let's see what happens when $y = \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)$...

$$U_f|x\rangle\otimes\frac{1}{\sqrt{2}}\left(|0\rangle-|1\rangle\right)=$$

$$|x\rangle \otimes \frac{1}{\sqrt{2}} (|f(x)\rangle - |\neg f(x)\rangle = \begin{cases} |x\rangle \otimes \frac{1}{\sqrt{2}} (|0\rangle - |1\rangle) & \text{if } f(x) = 0\\ |x\rangle \otimes \frac{1}{\sqrt{2}} (|1\rangle - |0\rangle) & \text{if } f(x) = 1 \end{cases}$$

$$= (-1)^{f(x)} |x\rangle \otimes_{\frac{1}{\sqrt{2}}}^{\frac{1}{2}} (|0\rangle - |1\rangle)$$

Note that the (right-hand side) qubit is returned unaltered.

We can conveniently drop the RHS qubit and obtain the "oracle"

$$O_f|x\rangle = (-1)^{f(x)}|x\rangle$$

that 'flips' the amplitude of the solution elements!

Grover's algorithm is an example of **oracle** (or **black-box**) quantum algorithms.

The Deutsch-Jozsa algorithm is another one.

Grover's Quantum Circuit

What is G? (And let's forget the oracle workspace.)

Grover's Quantum Circuit

In general, the state of the *n* qubits is

$$\sum_{x \in \{0,1\}^n} \alpha_x |x\rangle$$

$$\sum_{x \in \{0,1\}^n} \alpha_x |x\rangle$$
 (with $\sum_{x \in \{0,1\}^n} |\alpha_x|^2 = 1$)

$$G = W \cdot O_f$$
 where $W|x\rangle = (-\alpha_x + 2\langle \alpha \rangle)|x\rangle$ $\langle \alpha \rangle = \frac{1}{N} \sum_{x \in \{0,1\}^n} \alpha_x$

inversion about the mean (a unitary transform!) zuliani@di_uniroma1.it *mean* amplitude

Grover's Iteration G

After the Hadamard, all amplitudes are (real) and equal to $\frac{1}{\sqrt{N}}$

Apply oracle

$$O_f|x\rangle = (-1)^{f(x)}|x\rangle$$

Apply inversion about mean $W|x\rangle = (-\alpha_x + 2\langle \alpha \rangle)|x\rangle$

We have (unitarily) increased the amplitude of a solution!!

Apply oracle

$$O_f|x\rangle = (-1)^{f(x)}|x\rangle$$

zuliani@di.uniroma1.it

10

Let $S = \{\text{solution indices}\}$ (in our example $S = \{2, 12\}$) Define the vectors

Superposition of non-solution indices
$$|a\rangle = \frac{1}{\sqrt{N-M}} \sum_{x \in \overline{S}} |x\rangle$$
 $|b\rangle = \frac{1}{\sqrt{M}} \sum_{x \in S} |x\rangle$ Superposition of solution indices

Note $\{0,1\}^n = \overline{S} \cup S$. Recall that after $H^{\otimes n}$ the state is

$$|\psi\rangle = \frac{1}{\sqrt{N}} \sum_{x \in \{0,1\}^n} |x\rangle$$

hence

$$|\psi\rangle = \sqrt{\frac{N-M}{N}}|a\rangle + \sqrt{\frac{M}{N}}|b\rangle$$

Recall that O_f inverts the sign of the solution amplitudes:

$$O_f|\psi\rangle = O_f(\alpha|a\rangle + \beta|b\rangle) = \alpha|a\rangle - \beta|b\rangle$$

 O_f performs a *reflection* about $|a\rangle$!

Recall that $W|x\rangle = (2\langle \alpha \rangle - \alpha_x)|x\rangle$, where $|x\rangle$ is a basis vector

Equivalently $W = 2P_{\psi} - I$

where P_{ψ} is the *projection* operator over $|\psi\rangle = \frac{1}{\sqrt{N}} \sum_{x \in \{0,1\}^n} |x\rangle$

Now,
$$W = 2P_{\psi} - I = 2P_{\psi} - (P_{\psi} + P_{\psi^{\perp}}) = P_{\psi} - P_{\psi^{\perp}}$$

W performs a *reflection* about $|\psi\rangle$!

 $G = WO_f$ is thus a *rotation* in the plane defined by $|a\rangle$ and $|b\rangle$!!

Let $\theta/2$ be the angle between $|a\rangle$ and $|\psi\rangle$

Since
$$|\psi\rangle = \sqrt{\frac{N-M}{N}}|a\rangle + \sqrt{\frac{M}{N}}|b\rangle$$
 we have

$$\cos \theta /_2 = \sqrt{\frac{N-M}{N}}$$
 and $\sin \theta /_2 = \sqrt{\frac{M}{N}}$

Hence $|\psi\rangle = \cos^{\theta}/2 |a\rangle + \sin^{\theta}/2 |b\rangle$ and

$$G|\psi\rangle = WO_f|\psi\rangle = \cos^{3\theta}/_2|a\rangle + \sin^{3\theta}/_2|b\rangle$$

(rotation by θ)

$$G^{k}|\psi\rangle = \cos\frac{(2k+1)\theta}{2}|a\rangle + \sin\frac{(2k+1)\theta}{2}|b\rangle$$
 (k = 0, 1, 2, 3, ...)

How Many Iterations of *G*?

To increase the probability of success, *i.e.*, finding a solution, we need to **rotate** $|\psi\rangle$ **towards** $|b\rangle$.

Now, each application of G is a rotation by θ . Thus, applying G

$$k = \left\lfloor \left(\frac{\cos^{-1} \sqrt{\frac{M}{N}}}{\theta} \right) \right\rfloor \text{ times gets us to within an angle } \frac{\pi}{4} \text{ of } |b\rangle!$$

A measurement will return a solution with probability at least 50%!

How Many Iterations of *G*?

Assuming $M \leq \frac{N}{2}$ ensures that $\theta \leq \frac{\pi}{2}$.

Now, note that
$$k = \left[\left(\frac{\cos^{-1} \sqrt{\frac{M}{N}}}{\theta} \right) \right] \le \left[\frac{\pi}{2\theta} \right]$$
, since $\cos^{-1} \le \frac{\pi}{2}$. Thus

$$\sqrt{\frac{M}{N}} = \sin\frac{\theta}{2} \le \frac{\theta}{2}$$
 and therefore $\frac{1}{\theta} \le \frac{1}{2}\sqrt{\frac{N}{M}}$

and thus

$$k = \left\lfloor \left(\frac{\cos^{-1} \sqrt{\frac{M}{N}}}{\theta} \right) \right\rfloor \le \left\lceil \frac{\pi}{2\theta} \right\rceil \le \left\lceil \frac{\pi}{4} \sqrt{\frac{N}{M}} \right\rceil$$

How to remove the $M \leq \frac{N}{2}$ requirement?

