

TEAM MEMBERS

Garrett Bradshaw

Electrical Engineer

Team / Object Detection Lead

Raleigh, MS

Slade Hicks

Electrical Engineer

Wireless Comm Lead

Laurel, MS

Brandon Waldrup

Electrical Engineer

Power Supply Lead

Laurel, MS

Kyler Smith

Computer Engineer

Motion Tracking Lead

Southside, AL

INTERNAL ADVISOR

Dr. Ryan Green

- Assistant Professor, Mississippi State University
- Expertise in robotics and electromagnetics

EXTERNAL ADVISOR

Dr. Adam Jones

- Assistant Professor, Mississippi State University
- Expertise in neuroscience, psychophysics, and virtual reality

OUTLINE

Overview

Constraints /Approach

Evaluation

Progress

OVERVIEW

TECHNICAL CONSTRAINTS

Name	Description
Wheelchair	The system is attached to a wheelchair moving no faster
Speed	than five miles per hour [7].
Detection	The system detects objects within a radius of no more
Distance	than 2.2 meters.
Feedback	This system's latency for sending feedback to the user in
Latency	response to an object is no more than 250 milliseconds.
Sensor	The system's false detection rate is less than 16 percent.
Accuracy	
Wireless	The system can connect wirelessly to a Quest VR headset
Range	within 2.31 meters.
Wireless	The wireless latency is less than 250 milliseconds.
Latency	

PRACTICAL CONSTRAINTS

Туре	Name	Description
Sustainability	Reliability	Train and Go is designed to operate for at least five years without component failure.
Sustainability	Sensor Maintenance	Sensor connections are placed strategically to allow simple maintenance or replacement.
Usability	Product Versatility	Train and Go offers a flexible packaging system to attach to a variety of wheelchair designs and does not inhibit existing chair functionality.
Safety	Collision Detection	Train and Go provides the user with feedback to minimize the risk of collisions with obstacles.
Functionality	VR Communication	Train and Go communicates with a Quest VR headset.

ENGINEERING STANDARDS

Specific Standard	Standard Document	Specification / Application
IP-44		The system is protected from solid particles that are over 1 millimeter in size and from splashes of water [8].
Bluetooth	Institute of Electrical and Electronics Engineers 802-15.1	The system adheres to IEEE Bluetooth standards [9].
Protection Against Electric Shock		The electrical components of the system are isolated from the user to prevent electric shock [10].
Wheelchair Accessory	FDA 21 Code of Federal Regulations § 890.3910	Train and Go satisfies the FDA standards for a wheelchair accessory [11].

HARDWARE

ASSEMBLY DIAGRAM

HARDWARE

Part Type	Part	
Ultrasonic Sensor [13]	HCSR04	
Rumble Motor [14]	Tatoko	
DC-DC Converter [15]	Yipin Hexha	
VR Headset [16]	Meta Quest Pro	
IMU [17]	ISM330DHCX	
Detection Microcontroller [18]	Elegoo Mega	
Orientation Microcontroller [19]	ESP32	
Battery [20]	Zeee 2S Lipo	
Voltage Rail [21]	Evemodel	

SOFTWARE

[24

UNREAL ENGINE

VR ENVIRONMENT

ENGINE [23]

BLUETOOTH CONNECTION RANGE

ULTRASONIC SENSOR

Output Serial Monitor ×

Message (Enter to send message to 'Arduino Mega or N

Sensor1:

220
rumblePin:
0
Sensor1:
220
rumblePin:
0
Sensor1:
220
rumblePin:
0
Sensor1:

Actual Distance (m)	Sensor 1 (m)	Sensor 2 (m)	Sensor 3 (m)
0.40	0.44	0.45	0.44
0.60	0.65	0.63	0.65
0.80	0.86	0.82	0.84
1.00	1.04	1.03	1.03
1.20	1.20	1.21	1.20
1.40	1.41	1.41	1.40
1.60	1.61	1.61	1.60
1.80	1.83	1.82	1.80
2.00	2.03	2.03	2.00
2.20	2.25	2.23	2.21

SENSOR ACCURACY AND DISTANCE

```
14:06:46.719 -> Sensor1:
14:06:46.760 -> 29
14:06:46.760 -> rumblePin:
14:06:46.760 -> 1
14:06:47.744 -> Sensor1:
14:06:47.744 -> 19
14:06:47.744 -> rumblePin:
14:06:47.744 -> 1
14:06:48.743 -> Sensor1:
14:06:48.743 -> 19
14:06:48.743 -> rumblePin:
14:06:48.783 -> 1
14:06:49.741 -> Sensor1:
14:06:49.741 -> 19
14:06:49.741 -> rumblePin:
14:06:49.782 -> 1
14:06:50.761 -> Sensor1:
14:06:50.761 -> 19
14:06:50.761 -> rumblePin:
14:06:50.761 -> 1
14:06:51.842 -> Sensor1:
14:06:51.842 -> 1207
14:06:51.842 -> rumblePin:
14:06:51.882 -> 0
14:06:52.860 -> Sensor1:
14:06:52.860 -> 1207
14:06:52.860 -> rumblePin:
14:06:52.903 -> 0
14:06:53.894 -> Sensor1:
14:06:53.894 -> 1207
14:06:53.894 -> rumblePin:
14:06:53.942 -> 0
14:06:54.886 -> Sensor1:
14:06:54.918 -> 1207
14:06:54.918 -> rumblePin:
14:06:54.918 -> 0
14:06:55.938 -> Sensor1:
14:06:55.938 -> 1207
14:06:55.938 -> rumblePin:
```


Test Number	Latency (ms)
1	72
2	73
3	72
4	72
5	72
6	73
7	72
8	73
9	72
10	72

IP44 WATER RESISTANCE TEST

IMU ACCURACY


```
Measured Angle: 0
Measured Angle: -1
Measured Angle: -1
Measured Angle: -3
Measured Angle: -2
Measured Angle: 0
Measured Angle: 1
Measured Angle: 0
Measured Angle: 0
Measured Angle: 2
Measured Angle: -20
Measured Angle: -21
Measured Angle: -22
Measured Angle: -21
Measured Angle: -19
Measured Angle: -19
Measured Angle: 2
Measured Angle: -20
Measured Angle: -21
Measured Angle: -20
```

DRIFT TEST

Meta Touch Pro Controller Block Diagram Top-Facing Created on Jan'23 by Limas Lin **6DoF SLAM** OV7251 [Sunny] 640x480 Right-Front Left-Front **6DoF SLAM 6DoF SLAM OV7251** [Sunny] **OV7251** [Sunny] 640x480 640x480 Qualcomm **SnapDragon** 6-Axis IMU TDK 662 ICM-42686 ARM MO+ Home/Menu 1 ATMEL (Microchip) WiFi + BLE (Used for sending Ctlr QCOM WCN3950 3D Thumbstick SLAM data to HMD) Index Trigger \mathrid **BLE5 Nordic RF FEM** 16K SRAM Skyworks 66111-11 nRF52832 Main PCB Top Side Action Trigger Touch Panel RAM - 1GB LPDDR4 SK-Hynix H54G38AYRBX259-1G **ROM - 4GB eMMC FLASH** 3x Hall Effect Sensors: Allegro A1392 & A1395 Toshiba THGBMNG5D1LBAIL **Z-Axis LRA QCOM PMIC Haptic Controller** (On Index Trigger) Main PCB Bottom Side PMI632 & PM4250 Cirrus Logic **Z-Axis LRA** CS40L125 (On Thumb Rest) Charging Pressure Sensor Pogo Pins X-Axis VCM (used with stylus tip) (On Ctlr Lower Body) SCUD 16850 Li-lon Battery 2880mAh/10.52Wh

NEW APPROACH TO TRACKING ORIENTATION

TIMELINE

ASSEMBLY

VR ENVIRONMENT

VR ENVIRONMENT

FINAL TO DO LIST AND IMPROVEMENTS FOR REVISION: 02

What is left:

- Finish testing any remaining subsystems checks
- Finalize construction of the prototype for demo day

Future improvements:

- Develop a PCB for sensor connections inside the enclosure
- Curate additional VR environments
- Optimize obstacle detection and haptic feedback to be directional

CONCLUSION

- Train and Go provides an enhanced VR wheelchair training experience
- Train and Go ensures user safety during that training experience
- Train and Go empowers people with disabilities

SOURCES

- [1] Mississippi State University, "Faculty," msstate.edu. https://www.ece.msstate.edu/people/faculty/ (Accessed: Mar. 25, 2023).
- [2] Mississippi State University, "Faculty," msstate.edu. https://www.cse.msstate.edu/people/faculty/ (Accessed: Mar. 25, 2023).
- [3] Centers for Disease Control and Prevention, "Disability impacts all of us," Cdc.gov. https://www.cdc.gov/ncbddd/disabilityandhealth/infographic-disability-impacts-all.html (Accessed: Jan. 31, 2023).
- [4] United Spinal Association, "NYC sidewalks finally complying with ADA," unitedspinal.org. https://unitedspinal.org/nyc-sidewalks-finally-complying-with-ada/ (Accessed Jan. 31, 2023).
- [5] L. Faria, "Review-cities VR," waytoomany.games. https://waytoomany.games/?s=cities+vr (Accessed: Jan. 31, 2023).
- [6] Disher, "Product constraints: The catalyst of great design," disher.com. https://www.disher.com/blog/product-constraints-can-catalyst-great-design/ (Accessed: Mar. 25, 2023).
- [7] A. Smith, "How fast do electric wheelchairs go?" Mobility Medical Supply. https://mobilitymedicalsupply.com/how-fast-do-electric-wheelchairs-go/. (Accessed: Feb. 16, 2023).
- [8] Degrees of protection provided by enclosures (IP Code), International Electrotechnical Commission 60529, International Electrotechnical Commission, 2019. https://www.iec.ch/ip-ratings. (Accessed: Feb. 22, 2023).
- [9] Medium access control and physical layers, Institute of Electrical and Electronics Engineers 802.15.1, Institute of Electrical and Electronics Engineers, 2005. https://standards.ieee.org/ieee/802.15.1/3513/. (Accessed: Feb. 22, 2023).
- [10] Audio/video, information, and communication technology equipment Part 1: Safety requirements, International Electrotechnical Commission, 62368, International Electrotechnical Commission, 2018. https://webstore.iec.ch/publication/63964. (Accessed: Feb. 22, 2023).
- [11] Wheelchair accessory, Code of Federal Regulations Title 21 Section 890.3910, FDA, 2001. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/cfrsearch.cfm?fr=890.3910. (Accessed: Feb. 22, 2023).
- [12] "Permobil M5 corpus power wheelchair," medicaleshop.com. https://www.medicaleshop.com/permobil-m5-corpus-power-wheelchair.html (Accessed: Mar. 25, 2023).
- [13] "HC-SR04 Ultrasonic Distance Sensor," amazon.com. https://www.amazon.com/ACEIRMC-HC-SR04-Ultrasonic-Distance-ElecRightt/dp/B09J4BN46F/r (Accessed: Mar. 03, 2023).

SOURCES

- [14] "Tatoko Rumble Motor," amazon.com. https://www.amazon.com/tatoko-vibration-Waterproof-8000-16000RPM-toothbrush/dp/B07KYLZC1S/ (Accessed: Mar. 03, 2023).
- [15] "YIPIN HEXHA Voltage Converter," amazon.com. https://www.amazon.com/dp/B0BS5ZCP1N (Accessed: Mar. 03, 2023).
- [16] "Meta Quest Pro," amazon.com. https://www.amazon.com/Meta-Quest-Pro-Oculus/dp/B09Z7KGTVW/ (Accessed: Mar. 03, 2023).
- [17] "Adafruit ISM330DHCX 6 DoF IMU," adafruit.com. https://www.adafruit.com/product/4502 (Accessed: Mar. 03, 2023).
- [18] "Elegoo Mega Microcontroller," amazon.com. https://www.amazon.com/ELEGOO-ATmega2560-ATMEGA16U2-Arduino-Compliant/dp/B01H4ZDYCE/ (Accessed: Mar. 03, 2023).
- [19] "ESP32 datasheet," adafruit.com. https://cdn-shop.adafruit.com/product-files/3269/esp32_datasheet_en_0.pdf (Accessed: Mar. 03, 2023).
- [20] "Zeee 2S Lipo Battery," amazon.com. https://www.amazon.com/dp/B092CZGW2P (Accessed: Mar. 03, 2023).
- [21] "Evemodel Power Rail," amazon.com. https://www.amazon.com/PCB007-Position-Distribution-Outputs-Voltage/dp/B07DW2C4ZB (Accessed: Mar. 03, 2023).
- [22] "File:Meta Platforms Inc. logo.svg," wikimedia.org. https://commons.wikimedia.org/wiki/File:Meta_Platforms_Inc._logo.svg (Accessed: Mar. 25, 2023).
- [23] "Unreal engine branding," unrealengine.com. https://www.unrealengine.com/en-US/branding (Accessed: Mar. 25, 2023).
- [24] "Arduino home," arduino.cc. https://www.arduino.cc/ (Accessed: Mar. 25, 2023).
- [25]"Meta Quest Pro Controller", kguttag.com https://kguttag.com/2023/03/15/meta-quest-pro-part-2-block-diagrams-teardown-of-headset-and-controller/ (Accessed: April 26, 2023)