Introduction to Layout

Boris Murmann bmurmann@hawaii.edu

Course Schedule

Feb 21	W	Lec 12: <u>Switches</u>
Feb 26	М	Lec 13: <u>Transistorized Integrator</u>
Feb 28	W	Lec 14: Introduction to layout
Mar 04	М	Lec 15: Layout
Mar 06	W	Lec 16: Layout
Mar 11	М	Lec 17: Layout
Mar 13	W	Lec 18: Team presentations
Mar 18	М	Spring break
Mar 20	W	Spring break

Presentation time ~ 10 minutes per team

Suggested Outline for Team Presentations

- Explain your design goal
 - Template project (with spec changes?) or another topic?
- Give an executive summary on what your team has done so far
 - Which assignment steps did you complete?
 - Which circuits have you successfully designed/simulated?
 - What remains to be done in terms of schematic design?
- Show a tentative diagram of your top-level schematic
- Describe the task breakdown among team members
 - Who will complete which schematic block?
 - Who will complete which layout design?
- Anything else you'd like to highlight...

Tool Flow

Our Final Output Will Look Like This...

RF Front-End Receiver for ISM-900M https://www.ee.columbia.edu/~kinget/EE6350_S16/01_DCRRX_Hao_Tuo/Layout.html

Need to Learn Layout and Become Familiar with Design Rules

https://en.wikipedia.org/wiki/Integrated_circuit_layout https://en.wikipedia.org/wiki/Design_rule_checking

Cross Section (IHP SG13G2 Process)

Designer can only manipulate x & y dimensions, z dimensions are fixed

https://github.com/IHP-GmbH/IHP-Open-PDK/blob/main/ihp-sg13g2/libs.doc/doc/SG13G2_os_process_spec.pdf

2 Layer table

This chapter is a documentation of IHP layers definition which is valid in all technologies.

Remark: Only the layers described in the following table are allowed to be used in layout designs. Do not use layers exclusively reserved for internal usage.

Layer name	Purpose	GDS Number	GDS Datatype	Description
L0	drawing	0	0	Reserved for internal use
Activ	drawing	1	0	Defines active regions in substrate, where transistors, diodes and/or capacitors will be fabricated
Activ	label	1	1	Lable in activ layer
Activ	pin	1	2	Pin in active layer
Activ	net	1	3	
Activ	boundary	1	4	
Activ	lvs	1	19	
Activ	mask	1	20	added to Active:drawing at mask generation
Activ	filler	1	22	Activ filler layer
Activ	nofill	1	23	Filler exclusion definition layer
Activ	OPC	1	26	Activ outer OPC definition layer
Activ	iOPC	1	27	Activ inner OPC definition layer
Activ	noqrc	1	28	No parasitics extraction
L2	drawing	2	0	Reserved for internal use
BiWind	drawing	3	0	Defines active npn collector region
BiWind	OPC	3	26	BiWind OPC definition layer
GatPoly	drawing	5	0	Defines polysilicon gates and interconnect, GatPoly = GatPoly OR PolyRes see section

:

https://github.com/IHP-GmbH/IHP-Open-PDK/blob/main/ihp-sg13g2/libs.doc/doc/SG13G2_os_layout_rules.pdf

Example: Rules for Gate Poly Layer

3.8 GatPoly

Rule	Description		
Gat.a	Min. GatPoly width	0.13	
Gat.a1	Min. GatPoly width for channel length of 1.2 V NFET	0.13	
Gat.a2	Min. GatPoly width for channel length of 1.2 V PFET	0.13	
Gat.a3	Min. GatPoly width for channel length of 3.3 V NFET	0.45	
Gat.a4	Min. GatPoly width for channel length of 3.3 V PFET	0.4	
Gat.b	Min. GatPoly space or notch	0.18	
Gat.b1	Min. space between unrelated 3.3 V GatPoly over Activ regions	0.25	
Gat.c	Min. GatPoly and GatPoly:filler extension over Activ (end cap)	0.18	
Gat.d	Min. GatPoly space to Activ	0.07	
Gat.e	Min. GatPoly area (μm²)	0.09	
Gat.f	45-degree and 90-degree angles for GatPoly on Activ area are not allowed		
Gat.g	Min. GatPoly width for 45-degree bent gates (on field oxide) if the bend GatPoly length is $> 0.39~\mu m$	0.16	

Figure 3.3: GatPoly dimensions

Grid Rules

5.1 Grid rules

- All rules are defined in microns [µm] by default if there is no other unit mentioned
- All features are on a drawing grid of 5 nm (0.005 μm)
- Shapes with acute angles <87° are not allowed on any layer
- Following layers are only allowed on 90, 180 degree angles: Cont, Via1, Via2, Via3, Via4, TopVia1, TopVia2
- Following layers are only allowed on 90, 135, 180, 225, and 270 degree angles: GatPoly, Activ, Metal1, Metal2, Metal3, Metal4, Metal5, TopMetal1, TopMetal2
- Self-intersecting polygons must be avoided
- Design elements, which are snapped to grid must not violate any geometries in this document.

There are several layers which are not considered for mask generation. Offgrid and angle checks are not applied on the following layers: DigiBnd, RES, SRAM, IND, OPCBlk, EdgeSeal, dfpad, HeatTrans, HeatRes, DigiSub, NoDRC, TEXT, RadHard, Flash, SMOS, Scribe, Recog, NoRCX, NoMetFiller

Layout of an Inverter

https://www.klayout.de/doc-qt5/manual/lvs_intro.html

Cross Section

https://en.wikipedia.org/wiki/CMOS

Important: Need plenty of well and substrate contacts ("B")

Launching KLayout (with IHP tech setup)

9. Create a subdirectory for your layout work.

```
cd /foss/designs
mkdir layout
cd layout
```

10. To start Klayout with the proper technology setup, first set the KLAYOUT_HOME environment variable, then launch using the -e option (edit mode). You'll need to set the environment variable each time you start the container (this will be fixed in a future release).

```
export KLAYOUT_HOME=$PDKPATH/libs.tech/klayout klayout -e &
```

https://github.com/bmurmann/EE628/blob/main/3_Tools/win.md