Rozwiązanie Zadania: Testowanie Jednostkowe z PyTest dla Projektu MediScan

Jarek Hryszko

Wprowadzenie

Ten dokument zawiera szczegółowe, krok po kroku rozwiązanie zadania dotyczącego testowania jednostkowego modułu bloodwork_calculator.py w projekcie MediScan. Instrukcje są napisane z myślą o osobach początkujących, które nie mają doświadczenia z testami jednostkowymi, PyTest, GitHub czy programowaniem w Python.

1 Krok 1: Pobranie kodu źródłowego z GitHub

GitHub to popularna platforma, gdzie programiści przechowują i dzielą się kodem. Aby pobrać kod projektu MediScan, wykonaj następujące kroki:

1.1 Instalacja Git

Najpierw potrzebujesz zainstalować program Git, który pozwoli Ci na pobranie kodu z GitHub:

- 1. Przejdź na stronę https://git-scm.com/downloads
- 2. Pobierz wersję Git dla Twojego systemu operacyjnego (Windows, macOS lub Linux)
- 3. Zainstaluj Git, podążając za instrukcjami instalatora (możesz zaakceptować wszystkie domyślne opcje)

1.2 Klonowanie repozytorium

"Klonowanie" to pobieranie kopii projektu z GitHub na Twój komputer:

- 1. Otwórz terminal (w Windows możesz użyć PowerShell lub Command Prompt, w macOS Terminal, w Linux konsola)
- 2. Przejdź do folderu, gdzie chcesz pobrać projekt (np. na pulpit):

```
# Na Windows (przykład):
cd C:\Users\TwojeImie\Desktop

# Na macOS/Linux (przykład):
cd ~/Desktop
```

3. Sklonuj repozytorium, wpisując:

```
git clone https://github.com/MediiScan/mediscan-project
```

4. Przejdź do pobranego folderu projektu:

```
cd mediscan-project
```

2 Krok 2: Przygotowanie środowiska Python

2.1 Instalacja Python

Jeśli nie masz jeszcze zainstalowanego Pythona:

- 1. Przejdź na stronę https://www.python.org/downloads/
- 2. Pobierz najnowszą wersję Pythona (3.8 lub nowszą)
- 3. Zainstaluj Python, upewniając się, że zaznaczasz opcję "Add Python to PATH" (dodaj Python do ścieżki systemowej)

2.2 Stworzenie wirtualnego środowiska

Wirtualne środowisko to jak oddzielny "pokój" dla projektu, gdzie instalujemy potrzebne pakiety bez wpływu na resztę systemu:

- 1. Otwórz terminal w folderze projektu (jeśli jeszcze nie jest otwarty)
- 2. Stwórz wirtualne środowisko:

```
# Na Windows:

python -m venv venv

# Na macOS/Linux:

python3 -m venv venv
```

3. Aktywuj wirtualne środowisko:

```
# Na Windows:
venv\Scripts\activate

# Na macOS/Linux:
source venv/bin/activate
```

Po aktywacji, przed linią w terminalu pojawi się "(venv)", co oznacza, że środowisko jest aktywne.

2.3 Instalacja PyTest i wymaganych pakietów

Teraz zainstalujemy PyTest i inne potrzebne pakiety:

```
pip install pytest
pip install -r requirements.txt
```

requirements.txt to plik, który zawiera listę wszystkich pakietów potrzebnych dla projektu.

3 Krok 3: Zapoznanie się ze strukturą projektu

Przyjrzyjmy się strukturze projektu MediScan:

```
mediscan-project/
+-- mediscan/
| +-- __init__.py
| +-- bloodwork_calculator.py  # Modut, który będziemy testować
| +-- reference_values.py  # Wartości referencyjne dla krwi
| +-- report_generator.py  # Generator raportów
+-- tests/
| +-- __init__.py
| +-- test_report_generator.py  # Istniejące testy
+-- requirements.txt
+-- README.md
```

Teraz otwórz i przeanalizuj plik bloodwork_calculator.py, aby zrozumieć, co zawiera:

```
# Plik: mediscan/bloodwork_calculator.py
def calculate_bmi(weight_kg, height_cm):
   Oblicza BMI (Body Mass Index) na podstawie wagi i wzrostu.
   Arqs:
       weight_kg (float): Waga w kilogramach
       height_cm (float): Wzrost w centymetrach
   Returns:
   float: Wartość BMI
   height_m = height_cm / 100 # konwersja cm na m
   return weight_kg / (height_m * height_m)
def calculate_nlr(neutrophils, lymphocytes):
    Oblicza stosunek neutrofili do limfocytów (NLR).
   Podwyższony NLR może wskazywać na stan zapalny.
   Arqs:
       neutrophils (float): Liczba neutrofili (10^9/L)
       lymphocytes (float): Liczba limfocytów (10~9/L)
    Returns:
    float: Wartość NLR
   return neutrophils / lymphocytes
def categorize_bmi(bmi):
```

```
Kategoryzuje BMI zgodnie ze standardami WHO.
    Args:
       bmi (float): Wartość BMI
    Returns:
       str: Kategoria BMI
   if bmi < 16.0:</pre>
       return "wygłodzenie"
   elif bmi < 17.0:</pre>
       return "wychudzenie"
   elif bmi < 18.5:
       return "niedowaga"
   elif bmi < 25.0:
       return "waga prawidłowa"
   elif bmi < 30.0:
       return "nadwaga"
    elif bmi < 35.0:
       return "otyłość I stopnia"
    elif bmi < 40.0:
       return "otyłość II stopnia"
       return "otyłość III stopnia"
def calculate_anemia_severity(hemoglobin, sex):
    Określa stopień niedokrwistości na podstawie poziomu hemoglobiny.
        hemoglobin (float): Poziom hemoglobiny (g/dL)
        sex (str): Płeć pacjenta ('M' lub 'F')
    Returns:
       str: Stopień niedokrwistości lub 'brak'
   if sex == 'M':
       if hemoglobin >= 13.5:
           return "brak"
        elif hemoglobin >= 11.0:
           return "łagodna"
        elif hemoglobin >= 8.0:
           return "umiarkowana"
        else:
           return "ciężka"
    elif sex == 'F':
        if hemoglobin >= 12.0:
            return "brak"
```

```
elif hemoglobin >= 10.0:
    return "łagodna"
elif hemoglobin >= 8.0:
    return "umiarkowana"
else:
    return "ciężka"
```

4 Krok 4: Planowanie testów jednostkowych

Zanim zaczniemy pisać testy, zastanówmy się, co należy przetestować:

1. Funkcja calculate_bmi:

- Czy poprawnie oblicza BMI dla typowych danych?
- Jak zachowuje się dla wartości zerowych/ujemnych?
- Czy obsługuje wartości zmiennoprzecinkowe?

2. Funkcja calculate_nlr:

- Czy poprawnie oblicza stosunek dla typowych danych?
- Jak zachowuje się, gdy liczba limfocytów wynosi 0?
- Jak obsługuje wartości ujemne?

3. Funkcja categorize_bmi:

- Czy poprawnie kategoryzuje BMI dla różnych wartości?
- Czy granice kategorii są prawidłowo obsługiwane?

4. Funkcja calculate_anemia_severity:

- Czy poprawnie określa stopień niedokrwistości dla mężczyzn?
- Czy poprawnie określa stopień niedokrwistości dla kobiet?
- Jak radzi sobie z nieprawidłowymi oznaczeniami płci?

5 Krok 5: Tworzenie pliku testowego

Teraz stworzymy plik z testami:

1. Przejdź do katalogu tests/

2. Utwórz nowy plik test_bloodwork_calculator.py

```
# W terminalu, będąc w głównym katalogu projektu:
cd tests
touch test_bloodwork_calculator.py # Na Windows: type nul >
 \rightarrow test_bloodwork_calculator.py
```

6 Krok 6: Pisanie testów jednostkowych

Teraz napiszemy testy do pliku test_bloodwork_calculator.py. Otwórz ten plik w edytorze tekstu i zacznij od dodania niezbędnych importów:

```
# Plik: tests/test_bloodwork_calculator.py
import pytest
from mediscan.bloodwork_calculator import (
    calculate_bmi,
    calculate_nlr,
    categorize_bmi,
    calculate_anemia_severity
)
```

6.1 Testowanie funkcji calculate_bmi

Zaczniemy od przetestowania funkcji calculate_bmi:

```
# Kontynuacja pliku test_bloodwork_calculator.py

def test_calculate_bmi_normal_case():
    """Test BMI dla typowych wartości."""
    # Dla osoby o wadze 70 kg i wzroście 175 cm, BMI powinno wynosić 22.86
    weight = 70  # kg
    height = 175  # cm
    expected_bmi = 70 / ((175/100) ** 2)  # ręczne obliczenie oczekiwanego
    \( \to \) wyniku

# Wywołanie testowanej funkcji
    result = calculate_bmi(weight, height)

# Sprawdzenie rezultatu
    # Używamy round(x, 2) aby zaokrąglić do 2 miejsc po przecinku
```

```
assert round(result, 2) == round(expected_bmi, 2), \
       f"BMI dla wagi {weight}kg i wzrostu {height}cm powinno wynosić
        → {expected_bmi}, ale otrzymano {result}"
# Parametryzowany test dla różnych przypadków BMI
@pytest.mark.parametrize("weight, height, expected_bmi", [
    (50, 150, 22.22), # niski wzrost, niska waga
    (100, 200, 25.00), # wysoki wzrost, wysoka waga
    (80, 180, 24.69), # średni wzrost, średnia waga
    (60, 160, 23.44),
                      # proporcjonalne wartości
])
def test_calculate_bmi_various_cases(weight, height, expected_bmi):
    """Test BMI dla różnych kombinacji wagi i wzrostu."""
   result = calculate_bmi(weight, height)
   assert round(result, 2) == expected_bmi, \
       f"BMI dla wagi {weight}kg i wzrostu {height}cm powinno wynosić
        → {expected_bmi}, ale otrzymano {round(result, 2)}"
# Test na błędne dane - wzrost zerowy
def test_calculate_bmi_zero_height():
    """Test jak funkcja radzi sobie ze wzrostem równym 0."""
   with pytest.raises(ZeroDivisionError):
       calculate_bmi(70, 0) # Powinno zqłosić błąd dzielenia przez zero
```

6.2 Testowanie funkcji calculate_nlr

Teraz napiszemy testy dla funkcji calculate nlr:

```
# Kontynuacja pliku test bloodwork calculator.py
def test_calculate_nlr_normal_case():
   """Test NLR dla typowych wartości."""
   neutrophils = 4.5 \# 10^9/L
   lymphocytes = 2.5 \# 10^9/L
   expected_nlr = 4.5 / 2.5 # Powinno być 1.8
   result = calculate_nlr(neutrophils, lymphocytes)
   assert result == expected_nlr, \
       f"NLR dla neutrofili {neutrophils} i limfocytów {lymphocytes}
        → powinno wynosić {expected_nlr}, ale otrzymano {result}"
@pytest.mark.parametrize("neutrophils, lymphocytes, expected_nlr", [
   (5.0, 2.0, 2.5),
                       # typowe wartości
   (10.0, 1.0, 10.0),
                       # wysokie neutrofile, niskie limfocyty
                       # równe wartości
   (3.0, 3.0, 1.0),
```

```
(7.5, 1.5, 5.0) # inne typowe wartości

])

def test_calculate_nlr_various_cases(neutrophils, lymphocytes, expected_nlr):
    """Test NLR dla różnych kombinacji neutrofili i limfocytów."""
    result = calculate_nlr(neutrophils, lymphocytes)
    assert result == expected_nlr, \
        f"NLR dla neutrofili {neutrophils} i limfocytów {lymphocytes}
        → powinno wynosić {expected_nlr}, ale otrzymano {result}"

def test_calculate_nlr_zero_lymphocytes():
    """Test jak funkcja radzi sobie z limfocytami równymi 0."""
    with pytest.raises(ZeroDivisionError):
        calculate_nlr(5.0, 0) # Powinno zgłosić błąd dzielenia przez zero
```

6.3 Przygotowanie fixture dla testów

Utworzymy fixture (mechanizm przygotowujący dane dla testów), aby przygotować przykładowe dane pacjentów:

6.4 Testowanie funkcji categorize_bmi

```
(18.0, "niedowaga"),
    (22.0, "waga prawidłowa"),
    (27.5, "nadwaga"),
    (32.5, "otyłość I stopnia"),
    (37.5, "otyłość II stopnia"),
    (42.0, "otyłość III stopnia")
])
def test_categorize_bmi(bmi, expected_category):
    """Test kategoryzacji BMI dla różnych wartości."""
   result = categorize_bmi(bmi)
    assert result == expected_category, \
        f"Dla BMI {bmi} kategoria powinna być '{expected_category}', ale
        → otrzymano '{result}'"
# Test wartości granicznych
@pytest.mark.parametrize("bmi, expected category", [
    (16.0, "wychudzenie"), # dokładnie na granicy wygłodzenie/wychudzenie
(17.0, "niedowaga"), # dokładnie na granicy wychudzenie/niedowaga
    (18.5, "waga prawidłowa"), # dokładnie na granicy niedowaga/waga
    \rightarrow prawidłowa
    (25.0, "nadwaga"),
                                # dokładnie na granicy waga prawidłowa/nadwaga
    (30.0, "otyłość I stopnia"), # na granicy nadwaga/otyłość I stopnia
    (35.0, "otyłość II stopnia"), # na granicy otyłość I/II stopnia
    (40.0, "otyłość III stopnia") # na granicy otyłość II/III stopnia
1)
def test_categorize_bmi_boundary(bmi, expected_category):
   """Test kategoryzacji BMI dla wartości granicznych."""
   result = categorize_bmi(bmi)
   assert result == expected_category, \
        f"Dla granicznego BMI {bmi} kategoria powinna być
        → '{expected_category}', ale otrzymano '{result}'"
```

6.5 Testowanie funkcji calculate_anemia_severity

```
# Kontynuacja pliku test_bloodwork_calculator.py

@pytest.mark.parametrize("hemoglobin, sex, expected_severity", [
    (14.0, "M", "brak"), # mężczyzna, normalna hemoglobina
    (12.0, "M", "łagodna"), # mężczyzna, tagodna niedokrwistość
    (9.0, "M", "umiarkowana"), # mężczyzna, umiarkowana niedokrwistość
    (7.0, "M", "ciężka"), # mężczyzna, ciężka niedokrwistość

    (13.0, "F", "brak"), # kobieta, normalna hemoglobina
    (11.0, "F", "brak"), # kobieta, normalna hemoglobina
    (9.5, "F", "łagodna"), # kobieta, tagodna niedokrwistość
```

```
(7.5, "F", "umiarkowana"), # kobieta, umiarkowana niedokrwistość
    (6.0, "F", "ciężka")
                               # kobieta, ciężka niedokrwistość
])
def test_calculate_anemia_severity(hemoglobin, sex, expected_severity):
    """Test określania stopnia niedokrwistości dla różnych poziomów
    → hemoglobiny i płci."""
   result = calculate_anemia_severity(hemoglobin, sex)
   assert result == expected_severity, \
       f"Dla hemoglobiny {hemoglobin} g/dL i płci {sex}, stopień
        → niedokrwistości powinien być '{expected_severity}', ale
        → otrzymano '{result}'"
# Test dla nieprawidłowej płci
def test_calculate_anemia_severity_invalid_sex():
   """Test jak funkcja radzi sobie z nieprawidłową płcią."""
    # Ta funkcja powinna obsługiwać tylko 'M' i 'F'
   with pytest.raises(Exception): # Ogólna klasa Exception, bo nie wiemy
    → dokładnie jaki wyjątek będzie zgłoszony
       calculate_anemia_severity(12.0, "X")
```

6.6 Wykorzystanie fixture w testach

Teraz użyjemy przygotowanego fixture do testowania funkcji:

```
# Kontynuacja pliku test_bloodwork_calculator.py
def test_patient_bmi_calculation(sample_patients):
   """Test obliczania BMI dla przykładowych pacjentów."""
   for patient in sample_patients:
       bmi = calculate_bmi(patient["weight"], patient["height"])
       category = categorize_bmi(bmi)
       # Sprawdź czy BMI jest liczbą dodatnią
       assert bmi > 0, f"BMI pacjenta {patient['id']} powinno być dodatnie,
        → ale wynosi {bmi}"
       # Sprawdź czy kategoria nie jest pusta
       assert category, f"Kategoria BMI pacjenta {patient['id']} nie

→ powinna być pusta"

       print(f"Pacjent {patient['id']}: BMI = {bmi:.2f}, kategoria:
        def test_patient_nlr_calculation(sample_patients):
    """Test obliczania NLR dla przykładowych pacjentów."""
   for patient in sample_patients:
```

```
nlr = calculate_nlr(patient["neutrophils"], patient["lymphocytes"])
       # NLR powinno być liczbą dodatnią
       assert nlr > 0, f"NLR pacjenta {patient['id']} powinno być dodatnie,

→ ale wynosi {nlr}"

       # Sprawdzamy czy obliczenia są poprawne
       expected = patient["neutrophils"] / patient["lymphocytes"]
       assert nlr == expected, \
           f"NLR pacjenta {patient['id']} powinno wynosić {expected}, ale

→ wynosi {nlr}"

       print(f"Pacjent {patient['id']}: NLR = {nlr:.2f}")
def test_patient_anemia_evaluation(sample_patients):
    """Test oceny niedokrwistości dla przykładowych pacjentów."""
   for patient in sample_patients:
       severity = calculate_anemia_severity(patient["hemoglobin"],
        → patient["sex"])
       # Sprawdź czy wynik nie jest pusty
       assert severity, f"Stopień niedokrwistości pacjenta {patient['id']}
       → nie powinien być pusty"
       print(f"Pacjent {patient['id']}: Stopień niedokrwistości =
```

7 Krok 7: Uruchamianie testów

Teraz uruchomimy nasze testy, aby zidentyfikować błędy w kodzie:

- 1. Upewnij się, że jesteś w głównym katalogu projektu i masz aktywowane wirtualne środowisko.
- 2. Uruchom testy za pomocą PyTest:

```
# W terminalu:
pytest -v tests/test_bloodwork_calculator.py
```

Flaga –v włącza tryb szczegółowy (verbose), który pokazuje więcej informacji o testach.

7.1 Analiza wyników testów

Po uruchomieniu testów, zobaczysz wyniki podobne do poniższych:

```
====== test session starts
platform win32 -- Python 3.9.5, pytest-7.3.1, pluggy-1.0.0
rootdir: C:\Users\student\Desktop\mediscan-project
collected 15 items
tests/test_bloodwork_calculator.py::test_calculate_bmi_normal_case PASSED

→ 22.22]

\hookrightarrow PASSED
tests/test_bloodwork_calculator.py::test_calculate_bmi_various_cases[100-200]
→ -25.0]
\hookrightarrow PASSED
\hookrightarrow PASSED

→ 23.44]

\hookrightarrow PASSED
tests/test_bloodwork_calculator.py::test_calculate_bmi_zero_height PASSED
tests/test_bloodwork_calculator.py::test_calculate_nlr_normal_case PASSED
tests/test_bloodwork_calculator.py::test_calculate_nlr_various_cases[5.0-2.0]
→ -2.5]
\hookrightarrow PASSED
tests/test_bloodwork_calculator.py::test_calculate_nlr_various_cases[10.0-1.]
→ 0-10.0]
\hookrightarrow PASSED
tests/test_bloodwork_calculator.py::test_calculate_nlr_various_cases[3.0-3.0]
\hookrightarrow -1.0]
\hookrightarrow PASSED
tests/test_bloodwork_calculator.py::test_calculate_nlr_various_cases[7.5-1.5]
\rightarrow -5.0]
\hookrightarrow \quad \text{PASSED}
tests/test_bloodwork_calculator.py::test_calculate_nlr_zero_lymphocytes
tests/test_bloodwork_calculator.py::test_categorize_bmi[15.5-wyglodzenie]
\hookrightarrow FAILED
tests/test_bloodwork_calculator.py::test_categorize_bmi[16.5-wychudzenie]
\hookrightarrow \quad \text{PASSED}
tests/test_bloodwork_calculator.py::test_categorize_bmi[18.0-niedowaga]
\hookrightarrow PASSED
tests/test_bloodwork_calculator.py::test_categorize_bmi[22.0-waga
→ prawidłowa] PASSED
tests/test_bloodwork_calculator.py::test_categorize_bmi[27.5-nadwaga] PASSED
```

```
tests/test_bloodwork_calculator.py::test_categorize_bmi[32.5-oty] osć I

→ stopnia] PASSED

tests/test_bloodwork_calculator.py::test_categorize_bmi[37.5-oty/20sc II

→ stopnia] PASSED

tests/test_bloodwork_calculator.py::test_categorize_bmi[42.0-oty]tosé III
\hookrightarrow stopnia] PASSED
tests/test_bloodwork_calculator.py::test_categorize_bmi_boundary[16.0-wychud]

    zenie
]

\hookrightarrow FAILED
tests/test_bloodwork_calculator.py::test_categorize_bmi_boundary[17.0-niedow|
\hookrightarrow PASSED
tests/test_bloodwork_calculator.py::test_categorize_bmi_boundary[18.5-waga
tests/test_bloodwork_calculator.py::test_categorize_bmi_boundary[25.0-nadwag|
→ a]
\hookrightarrow PASSED
tests/test_bloodwork_calculator.py::test_categorize_bmi_boundary[30.0-oty]to_
\hookrightarrow PASSED
tests/test_bloodwork_calculator.py::test_categorize_bmi_boundary[35.0-oty]to_
\hookrightarrow PASSED
tests/test_bloodwork_calculator.py::test_categorize_bmi_boundary[40.0-oty]to_|
PASSED
tests/test_bloodwork_calculator.py::test_calculate_anemia_severity[14.0-M-br]
tests/test_bloodwork_calculator.py::test_calculate_anemia_severity[12.0-M-1]
→ agodna]
\hookrightarrow PASSED
tests/test_bloodwork_calculator.py::test_calculate_anemia_severity[9.0-M-umi]
→ arkowana]
\hookrightarrow PASSED
tests/test_bloodwork_calculator.py::test_calculate_anemia_severity[7.0-M-ci_
   ężka]
\hookrightarrow PASSED
tests/test_bloodwork_calculator.py::test_calculate_anemia_severity[13.0-F-br]
\hookrightarrow PASSED
tests/test_bloodwork_calculator.py::test_calculate_anemia_severity[11.0-F-br
tests/test_bloodwork_calculator.py::test_calculate_anemia_severity[9.5-F-12a|
\hookrightarrow godna]
\hookrightarrow FAILED
```

```
tests/test_bloodwork_calculator.py::test_calculate_anemia_severity[7.5-F-umi]

arkowana]

PASSED

tests/test_bloodwork_calculator.py::test_calculate_anemia_severity[6.0-F-ci]

PASSED

tests/test_bloodwork_calculator.py::test_calculate_anemia_severity_invalid_s]

ex

FAILED

tests/test_bloodwork_calculator.py::test_patient_bmi_calculation PASSED

tests/test_bloodwork_calculator.py::test_patient_nlr_calculation PASSED

tests/test_bloodwork_calculator.py::test_patient_nlr_calculation PASSED

tests/test_bloodwork_calculator.py::test_patient_nlr_calculation PASSED
```

8 Krok 8: Identyfikacja błędów

Na podstawie wyników testów, możemy zidentyfikować następujące błędy:

8.1 Błąd 1: Niepoprawna kategoryzacja BMI

Testy test_categorize_bmi[15.5-wygłodzenie] i test_categorize_bmi_boundary[16.0-wychuczawiodły. Oznacza to, że funkcja categorize_bmi niepoprawnie kategoryzuje BMI dla wartości niższych. Sprawdźmy dokładniej błąd:

```
# Uruchom test z więcej szczegółami:

pytest -v tests/test_bloodwork_calculator.py::test_categorize_bmi
```

Błąd może wyglądać następująco:

```
E AssertionError: Dla BMI 15.5 kategoria powinna by complete 'wygłodzenie',

→ ale otrzymano 'wychudzenie'
```

Przyczyna: W funkcji categorize_bmi warunek dla "wygłodzenia"powinien być bmi <= 16.0 zamiast bmi < 16.0.

8.2 Błąd 2: Niepoprawna ocena niedokrwistości u kobiet

Test test_calculate_anemia_severity [9.5-F-łagodna] zawiódł. Oznacza to, że funkcja calculate_anemia_severity niepoprawnie ocenia stopień niedokrwistości dla kobiet.

Błąd może wyglądać następująco:

```
E AssertionError: Dla hemoglobiny 9.5 g/dL i p≹ci F, stopiení

→ niedokrwistosci powinien byc 'łagodna', ale otrzymano 'brak'
```

Przyczyna: W funkcji calculate_anemia_severity warunek dla kobiet jest nie-poprawny. Przedział dla "brak"powinien być hemoglobin >= 12.0 zamiast hemoglobin >= 10.0.

8.3 Błąd 3: Brak obsługi nieprawidłowej płci

Test test_calculate_anemia_severity_invalid_sex zawiódł, co oznacza, że funkcja nie zgłasza wyjątku dla nieprawidłowej płci. Funkcja po prostu zwraca None dla nieprawidłowej płci, zamiast zgłaszać wyjątek.

9 Krok 9: Poprawianie błędów w kodzie

Teraz naprawimy zidentyfikowane błędy w pliku bloodwork_calculator.py:

9.1 Poprawiona funkcja categorize_bmi

```
def categorize_bmi(bmi):
   Kategoryzuje BMI zgodnie ze standardami WHO.
       bmi (float): Wartość BMI
   Returns:
       str: Kategoria BMI
   if bmi < 16.0: # POPRAWIONE: było bmi < 16.0
       return "wygłodzenie"
   elif bmi < 17.0:
       return "wychudzenie"
   elif bmi < 18.5:
       return "niedowaga"
   elif bmi < 25.0:
       return "waga prawidłowa"
   elif bmi < 30.0:
       return "nadwaga"
   elif bmi < 35.0:
       return "otyłość I stopnia"
    elif bmi < 40.0:
```

```
return "otyłość II stopnia"
else:
return "otyłość III stopnia"
```

9.2 Poprawiona funkcja calculate_anemia_severity

```
def calculate_anemia_severity(hemoglobin, sex):
    Określa stopień niedokrwistości na podstawie poziomu hemoglobiny.
   Args:
        hemoglobin (float): Poziom hemoglobiny (g/dL)
        sex (str): Płeć pacjenta ('M' lub 'F')
   Returns:
        str: Stopień niedokrwistości lub 'brak'
        ValueError: Jeśli podana płeć jest nieprawidłowa
    if sex == 'M':
       if hemoglobin >= 13.5:
           return "brak"
        elif hemoglobin >= 11.0:
           return "łagodna"
        elif hemoglobin >= 8.0:
           return "umiarkowana"
        else:
           return "ciężka"
   elif sex == 'F':
        if hemoglobin >= 12.0: # POPRAWIONE: byto hemoglobin >= 10.0
           return "brak"
        elif hemoglobin >= 10.0:
           return "łagodna"
        elif hemoglobin >= 8.0:
           return "umiarkowana"
           return "ciężka"
    else:
        # POPRAWIONE: Dodano rzucanie wyjątku dla nieprawidłowej płci
        raise ValueError(f"Nieprawidłowa płeć: {sex}. Dozwolone wartości to

    'M' lub 'F'.")
```

10 Krok 10: Ponowne uruchomienie testów

Po wprowadzeniu poprawek, uruchom ponownie testy, aby sprawdzić, czy błędy zostały naprawione:

```
pytest -v tests/test_bloodwork_calculator.py
```

Teraz wszystkie testy powinny przejść pomyślnie:

11 Krok 11: Dodatkowe testy i ulepszenia

Po naprawieniu podstawowych błędów, możemy dodać więcej testów, aby zwiększyć pokrycie kodu i sprawdzić więcej przypadków brzegowych.

11.1 Testowanie wartości ujemnych

Dodajmy testy dla ujemnych wartości wagi i wzrostu:

```
def test_calculate_bmi_negative_values():
    """Test jak funkcja radzi sobie z ujemnymi wartościami."""
    # Ujemna waga nie ma sensu fizycznego
    with pytest.raises(ValueError):
        calculate_bmi(-70, 175)

# Ujemny wzrost nie ma sensu fizycznego
    with pytest.raises(ValueError):
        calculate_bmi(70, -175)
```

Te testy zawiodą, ponieważ funkcja calculate_bmi nie sprawdza, czy wartości są dodatnie. Poprawmy to:

```
def calculate_bmi(weight_kg, height_cm):
    """
    Oblicza BMI (Body Mass Index) na podstawie wagi i wzrostu.

Args:
        weight_kg (float): Waga w kilogramach
        height_cm (float): Wzrost w centymetrach

Returns:
        float: Wartość BMI

Raises:
        ValueError: Jeśli waga lub wzrost są niedodatnie
    """

# Sprawdzenie, czy wartości są dodatnie
if weight_kg <= 0:
        raise ValueError("Waga musi być dodatnia")
if height_cm <= 0:
        raise ValueError("Wzrost musi być dodatni")

height_m = height_cm / 100 # konwersja cm na m
return weight_kg / (height_m * height_m)</pre>
```

11.2 Podobnie dla funkcji calculate_nlr

```
def test_calculate_nlr_negative_values():
    """Test jak funkcja radzi sobie z ujemnymi wartościami."""
    # Ujemne wartości neutrofili lub limfocytów nie mają sensu medycznego
    with pytest.raises(ValueError):
        calculate_nlr(-4.5, 2.5)
    with pytest.raises(ValueError):
        calculate_nlr(4.5, -2.5)
```

I poprawka funkcji:

```
def calculate_nlr(neutrophils, lymphocytes):
    """

Oblicza stosunek neutrofili do limfocytów (NLR).

Podwyższony NLR może wskazywać na stan zapalny.
```

```
Args:
    neutrophils (float): Liczba neutrofili (10^9/L)
    lymphocytes (float): Liczba limfocytów (10^9/L)

Returns:
    float: Wartość NLR

Raises:
    ValueError: Jeśli wartości są ujemne
    ZeroDivisionError: Jeśli lymphocytes wynosi 0
"""

# Sprawdzenie, czy wartości są dodatnie
if neutrophils < 0:
    raise ValueError("Liczba neutrofili nie może być ujemna")
if lymphocytes < 0:
    raise ValueError("Liczba limfocytów nie może być ujemna")

# Dzielenie przez zero generuje ZeroDivisionError automatycznie
return neutrophils / lymphocytes</pre>
```

12 Krok 12: Opisanie znalezionych problemów i wprowadzonych poprawek

Na podstawie naszych testów, zidentyfikowaliśmy i naprawiliśmy następujące problemy:

- 1. **Problem z kategoryzacją BMI dla wartości poniżej 16.0** funkcja categorize_bmi niepoprawnie kategoryzowała BMI dla wartości na granicy kategorii.
- 2. **Błędne przedziały dla oceny niedokrwistości u kobiet** funkcja calculate_anemia_severit używała nieprawidłowych wartości dla oceny niedokrwistości u kobiet.
- 3. **Brak obsługi nieprawidłowej płci** funkcja calculate_anemia_severity nie zgłaszała wyjątku dla nieprawidłowej płci.
- 4. **Brak walidacji danych wejściowych** funkcje calculate_bmi i calculate_nlr nie sprawdzały, czy wartości wejściowe są sensowne (dodatnie).

13 Krok 13: Dodatkowe testy za pomocą markerów (opcjonalne)

Możemy dodać markery do naszych testów, aby je lepiej organizować:

```
# Na początku pliku test_bloodwork_calculator.py
import pytest

# Definiowanie markerów
pytest.mark.bmi = pytest.mark.bmi # Testy związane z BMI
pytest.mark.nlr = pytest.mark.nlr # Testy związane z NLR
pytest.mark.anemia = pytest.mark.anemia # Testy związane z anemią
pytest.mark.boundary = pytest.mark.boundary # Testy wartości granicznych
```

Teraz możemy dodać markery do naszych testów:

```
@pytest.mark.bmi
def test_calculate_bmi_normal_case():
    # ...

@pytest.mark.bmi
@pytest.mark.parametrize("weight, height, expected_bmi", [
    # ...
])
def test_calculate_bmi_various_cases(weight, height, expected_bmi):
    # ...

@pytest.mark.nlr
def test_calculate_nlr_normal_case():
    # ...

@pytest.mark.anemia
@pytest.mark.parametrize("hemoglobin, sex, expected_severity", [
    # ...
])
def test_calculate_anemia_severity(hemoglobin, sex, expected_severity):
    # ...
```

Aby uruchomić tylko testy związane z BMI:

```
pytest -v -m bmi tests/test_bloodwork_calculator.py
```

14 Podsumowanie

W ramach tego zadania:

1. Pobraliśmy kod źródłowy projektu MediScan z GitHub

- 2. Zapoznaliśmy się ze strukturą projektu i kodem modułu bloodwork calculator.py
- 3. Napisaliśmy testy jednostkowe dla funkcji w tym module, używając PyTest
- 4. Zastosowaliśmy zaawansowane funkcje PyTest, takie jak:
 - Parametryzacja testów do sprawdzenia wielu przypadków
 - Fixtures do przygotowania danych testowych
 - Markery do kategoryzacji testów
 - Testowanie wyjątków
- 5. Zidentyfikowaliśmy błędy w kodzie na podstawie wyników testów
- 6. Wprowadziliśmy poprawki, które naprawiły zidentyfikowane problemy
- 7. Dodaliśmy dodatkowe testy i walidację danych wejściowych

Dzięki testom jednostkowym udało nam się znaleźć i naprawić błędy, które mogłyby prowadzić do niepoprawnych diagnoz medycznych. Pokazuje to, jak ważne jest testowanie oprogramowania, szczególnie w tak krytycznych obszarach jak medycyna.

Ten proces pokazuje typowy cykl pracy z testami jednostkowymi:

- 1. Napisanie testów
- 2. Uruchomienie testów i identyfikacja błędów
- 3. Poprawienie kodu
- 4. Ponowne uruchomienie testów
- 5. Dodanie większej liczby testów

PyTest znacznie ułatwia ten proces dzięki swojej prostej składni, zaawansowanym funkcjom i czytelnym raportom z testów.