08-10

北京新云南皇冠假日酒店

.

数据库压缩技术在百度网盘的应用

百度数据库架构师: 陈辉

百度数据库资深运维工程师: 高佳

大纲

- 百度网盘简介
- 问题与挑战
- 阶段一: InnoDB压缩(100G压缩到60G)(2014~2015)
- 阶段二: TokuDB压缩(100G压缩到35G)(2016~2018)
- 阶段三: 下一步 (MyRocks & 冷热分离) (2018~2019)

百度网盘发展历史

萌芽探索期

快速发展期

瓶颈洗牌期

成熟理性期

2005

- 2005, GmailDrive , 网易邮箱个人文件夹 功能成为云盘的雏形;
- 2009年, Dropbox 用户数突破百万,华 为网盘、115网盘等 产品出现。

2012

- 各厂商纷纷进入个 人云盘领域,竞争 日趋白热化。
 - 百度网盘发布。

2016

- 行业政策监管趋严, 个人云盘盈利困难, 包括360等多家服务 商关停网盘服务。
- 百度云坚持下来, 大量用户转到百度 云。

2017

- 2017年, 行业洗牌逐渐 完成,商业模式形成。
- 百度网盘(6亿用户)、 DropBox(5亿用户)。

百度网盘架构介绍

PCS: 管理用户和文件

POMS: 管理文件和块的关系

OBJECT:分布式KV存储,存储最终的文件 块。

MySQL:

1. 存储用户目录信息(用户与文件的MAP信息)

2. 存储文件拆分后的索引信息(按照4MB拆分的小 文件)

为什么要用MySQL?

需要SQL接口

大量order by, group by, distinct等

APP Server

产品

PCS

用户与文件关系

POMS

文件与块的关系

MySQL

OBJECT-Store

KV存储

MySQL问题和挑战

问题与挑战:

- 数据量大
 - 整个网盘估算: 10G*6亿 = 10G * 600,000,000 = 6ZB??
 - MySQL数据库PB级别
- MySQL集群规模大
 - 千级别机器和实例
- MySQL磁盘利用率高
 - 达到60%左右
- 不断快速增长!

2015-2020年中国个人云盘市场规模及预测

: 根据公开资料、专家访谈,结合艾瑞统计模型自主核算。

©2018 12 iResearch Inc. www.iresear@常能访

大纲

- 百度网盘简介
- 问题与挑战
- 阶段一: InnoDB压缩(100G压缩到60G)(2014~2015)
- 阶段二: TokuDB压缩(100G压缩到35G)(2016~2018)
- 阶段三: 下一步(MyRocks & 冷热分离) (2018~2019)

社区版压缩功能不能直接使用。

问题1:压缩后写性能是未开启压缩性能的1/3,业务无法接受。

问题2: 压缩后读性能没有提升。

DTCC 2019 - 写性能差原因1:同步压缩

DATABASE TECHNOLOGY CONFERENCE CHINA 2019

• 原因1:写入时增加的同步压缩操作。

DTCC 2019

写性能差原因2:压缩失败页分裂

DICC 2019

解决方案: 提前分裂

问题: 提升读性能

• 原因:ssd上读取速度和innodb zlib解压速度相当。节省的io被解压操作抵消了。

• 解决方案:替换压缩算法LZ4

算法	压缩率	压缩速度	解压速度
zlib	0.211724	29.060595	236.911942
Izo	0.306656	387.374542	711.443909
snappy	0.314193	241.024979	859.810669
lz4	0.297518	385.175537	1618.197998

问题: 提升读性能

- LZ4基于块压缩, ZLIB基于流式压缩
- 需要将流式记录压缩转化为块压缩

优化成果

Sysbench压测

Read,读性能提升20~30%

Write,写性能下降10%以内

大纲

- 百度网盘简介
- 问题与挑战
- 阶段一: InnoDB压缩(100G压缩到60G)(2014~2015)
- 阶段二: TokuDB压缩(100G压缩到35G)(2016~2018)
- 阶段三: 下一步 (MyRocks & 冷热分离) (2018~2019)

DTCC 2019

阶段二: tokudb压缩

特点:

- Fractal Tree
- B+ tree + Message Buffer
- Big nodes (4MB vs. ~16KB)

性能:

- 优化了写入行为, 同步改异步。
- 读性能下降, 每次查询请求都 需要对同条链路上的异步消息缓 存消息进行下推。

主要的工作

- 压缩比和性能测试
- 2. ZSTD新压缩算法引入
- 海量数据迁移
- 4. 稳定性工作

數据库技术 1. 压缩比和性能测试

压缩测试:模拟线上环境,采用的是网盘PCS表的数据

性能测试: sysbench压测,表个数是10张,每张表1000W行记录,OLTP环境

压缩算法	数据库版本	压缩率	并发数	TPS	读写请求	平均耗时
LZ4(InnoDB)	MySQL5.6	58.5%	10	243/s	4474/s	41.3ms
			20	485/s	8481/s	41.6ms
			50	1156/s	20813/s	43.6ms
QUICKLZ(TokuDB)	Percona5.6	34.5%	10	785/s	15141/s	11.6ms
			20	1239/s	22309/s	16.2ms
			50	1248/s	22470/s	40.1ms

Tokudb引擎优势

- Innodb的压缩受到页对齐影响,理论上线不会超过50%。
- innodb引擎的压缩率接近58.5%, tokudb引擎压缩率可达到34.5%, 空间 节省70%。
- Tokudb在低并发(<=20)场景下性能有明显优势。

2. ZSTD压缩算法引入

压缩名称	压缩比例	压缩速度	解压速度
ZSTD 1.3.4-1	2.877	470MB/S	1380MB/S
ZLIB 1.2.11-1	2.743	110MB/S	400MB/S
QUICKLZ 1.5.0	2.238	550MB/S	710MB/S
LZ4 1.8.1	2.101	750MB/S	3700MB/S
SNAPPU 1.1.4	2.091	530MB/S	1800MB/S
LZF 3.6-1	2.077	400MB/S	860MB/S

- 综合权衡压缩率和性能,ZSTD最优。
- ZSTD和tokudb默认QUICKLZ算法相比,压 缩率提升20%左右,性能提升7%左右。
- ZSTD 支持多个压缩级别,从level=1到 level=22。level值越大,压缩效果越好,但 占用的资源和压缩时间也就越长。Level=6

ZSTD效果

压缩算法	存储容量	并发数	QPS读	SQL平均相 应	CPUIDLE	IOUTIL
QUICKLZ	561GB	10	5670/s	1.18ms	64%	9%
		20	9000/s	1.42ms	36%	10.2%
		30	11800/s	1.64ms	28%	18.3%
ZSTD_level_1 478GB	10	5640/s	1.15ms	67%	11.2%	
	20	9400/s	1.31ms	39%	13.2%	
		30	11500/s	1.52ms	30%	15.1%
ZSTD_level_6 463GB	463GB	10	5710/s	1.26ms	66%	7.2%
		20	9200/s	1.35ms	33%	9%
		30	12000/s	1.53ms	26%	16.4%

ZSTD效果

引擎名称	压缩算法	存储容 量	并发数	TPS	读写请求	平均耗时
LZ4(InnoDB)	MySQL5.6	58.5%	10	243/s	4474/s	41.3ms
			20	485/s	8481/s	41.6ms
			30	1 156 /s	20813/s	43.6ms
QUICKLZ(TokuDB)	Percona5.6	34.5%	10	785/s	15141/s	11.6ms
			20	1 239/s	22309/s	16.2ms
			50	1248/s	22470/s	40.1ms
ZSTD(TokuDB)	MySQL5.6	28.5%	20	比 Q uickLZ提 升 7%	比 Q uickLZ提 升 7 %	

DTCC 2019

3. 数据迁移

第十届中国数据库技术大会

- 临时关闭集群配置下发 进程
- 实例上下线通过程序批 量操作

减少业务断链

实例角 色变更

上线

预热

集群健 康检查

- 集群分片级拓扑 信息
- dbproxy加载信 息一致性

避免请求异常

- 调整读请求流量权重
- 定时统计请求耗时

稳定请求耗时

快速回 滚方案

• 每个分片保存异构 的存储引擎

• 批量主从切换程序 开发

降低业务损失

4. 稳定性相关

- Bug修复
 - 一致性约束失效
 - tokudb引擎统计信息失效
 - 关闭binlog导致MySQL实例crash
 - 执行MySQL部分操作慢
 - TokuDB中ALTER TABLE可能产生的线程阻塞
 - jemalloc库版本bug
 - Etc..
- 监控项
- xtrabackup

压缩技术总体收益

• 存储容量: 网盘数据库数据量减少PB级别

成本节省:

- 数据库压缩技术每年为网盘节省近千台服务器
- 网盘数据库单GB存储成本减少70%。

其他收益:

- 百度网盘的压缩整体方案只是一个开始。
- 数据库压缩技术已经在百度所有的MySQL业务上推广起来。

大纲

- 百度网盘简介
- 问题与挑战
- 阶段一: InnoDB压缩(100G压缩到60G)(2014~2015)
- 阶段二: TokuDB压缩(100G压缩到35G)(2016~2018)
- 阶段三: 下一步 (MyRocks & 冷热分离) (2018~2019)

DTCC 2019 -

不同存储引擎压缩算法适配场景

第十届中国数据库技术大约

innodb (LZ4)

tokudb (ZSTD)

rocksdb (ZSTD)

优势:

- 数据压缩效果一般
- 请求类型支持广泛
- 事务支持完善

优势:

- 数据压缩效果最佳
- 表字段以字符串为主
- 数据碎片化少

优势:

- 数据压缩效果较好
- 数据类型基于KV存储

劣势:

- 随机写性能较差
- 实例崩溃恢复速度慢
- 回滚段存在空间浪费

劣势:

- 不支持外键约束
- 读请求耗时稍长
- 不适合范围查询

劣势:

- 事务支持不完善
- 排序操作性能差
- 不支持在线表变更

多种引擎并存

- INNODB: 对事务要求较 高的业务: 金融类、商 业订单类。
- Tokudb: 已经成熟
- MyRocks: 正在成熟落地

MvRocks是未来方向

优势:

- LSM-Tree写性能大大优于B+树, FTL树。
- RocksDB的压缩率和TokuDB接近。
- 社区非常活跃,各IT厂商纷纷采用。
- 学术界不断有各种论文和研究成果推出:读写性能提升,空间放大优化。

计划: 软硬结合, 下一代高性能引擎

- 将CPU密集的操作offload到FPGA/GPU。
- 使用Open Channel SSD深度定制针对MySQL业务特点的磁盘。
- 使用NVM技术提升读写性能。
- 在软件层面,优化LSM-Tree,进一步提升读写性能。

DTCC 2019 -

新硬件推动了数据库分层存储模式

- 经常被访问的数据存储在内存、NVM中,提 供最高的性能。
- 历史数据存储在SSD/HDD磁盘上, 甚至是云 存储上。
- 自动分析数据的冷热特征,动态调度,弹 性扩缩容量。

介质	SSD	DRAM (内 存)	NVM(非易失性内 存)
性能	低	佢	SSD < NVM < DRAM
易失 性	非易失	易失	非易失
成本	低	高	SSD < NVM < DRAM

