Chapter 5 Gases. Elements that are gases: Gases

- Very compressible

- mix evenly with other gases.

Rn - very low density - assume shape + volume of container.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

1A											8A
H 2A	1					ЗА	4A	5A	6A	7A	He
]							N	0	F	Ne
		 	 _	 _	 _					Cl	Ar
											Kr
											Xe
											Rn

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Table 5.1 Some Substance	able 5.1 Some Substances Found as Gases at 1 Atm and 25°C					
Elements	Compounds					
H ₂ (molecular hydrogen)	HF (hydrogen fluoride)					
N ₂ (molecular nitrogen)	HCl (hydrogen chloride)					
O ₂ (molecular oxygen)	HBr (hydrogen bromide)					
O ₃ (ozone)	HI (hydrogen iodide)					
F ₂ (molecular fluorine)	CO (carbon monoxide)					
Cl ₂ (molecular chlorine)	CO ₂ (carbon dioxide)					
He (helium)	NH ₃ (ammonia)					
Ne (neon)	NO (nitric oxide)					
Ar (argon)	NO ₂ (nitrogen dioxide)					
Kr (krypton)	N ₂ O (nitrous oxide)					
Xe (xenon)	SO ₂ (sulfur dioxide)					
Rn (radon)	H ₂ S (hydrogen sulfide)					
	HCN (hydrogen cyanide)*					

^{*} The boiling point of HCN is 26°C, but it is close enough to qualify as a gas at ordinary atmospheric conditions.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

ex: Lungs
$$P_1 = 1.00 \text{ a.m.}$$
 $P_2 = ?$ $V_1 = 3.00 \text{ L}$ $V_2 = 4.00 \text{ L}$

ex: Lungs
$$P_1 = 1.00 \text{ ahm}$$
 $V_1 = 3.00 \text{ L}$
 $V_2 = 4.00 \text{ L}$
 $P_1 V_1 = P_2 V_2 \implies P_2 = \frac{P_1 V_1}{V_2} = \frac{1.00 \text{ ahm} \times 3.00 \text{ K}}{4.00 \text{ L}}$
 $= 0.750 \text{ atm}$

Absolute temperature scall.

- Lowest possible temperature = \emptyset K A

°C °F °K K

Absolute

Zero

T(K) = t(°c) + 273.15

ex: t= -273.15 °C t= -273.15 + 273.15 = 0 K t= 25.00°C

T = 25.00 + 273.15 = 298.15 K

