MUSCLE Algorithm for Multiple Sequence Alignment

Nahian Salsabil - 1705091 Muhtasim Noor - 1705108

CSE, BUET

July 6, 2021

Multiple Sequence Alignment

Figure: Multiple Sequence Alignment

Primary Idea

• All possible solutions

Primary Idea

- All possible solutions
- Computationally Expensive

Improved Algorithm

- CLUSTAL
- MAFFT
- MUSCLE

Multiple Sequence Comparison by Log-Expectation

Source code and executable files are freely available at http://www.drive5.com/muscle

Multiple Sequence Comparison by Log-Expectation

• Better average accuracy

Source code and executable files are freely available at http://www.drive5.com/muscle

Multiple Sequence Comparison by Log-Expectation

- Better average accuracy
- Better speed

Source code and executable files are freely available at http://www.drive5.com/muscle

Figure: Progressive Alignment

Similarity Measure

Unaligned sequences

Distance Matrix

Unaligned sequences

Seq	1	2	3	4
1	-	-	-	-
2	1	-	-	1
3	7	8	-	1
4	11	5	2	-

Building distance matrix

Tree Construction

Unaligned sequences

Building distance matrix

Guide tree construction

Aligning Sequences

Aligning Sequences

Stages of MUSCLE

Stages of MUSCLE

• Draft Progressive

Stages of MUSCLE

- Draft Progressive
- Improved Progressive

Draft Progressive

Stage 1: Draft Progressive

Similarity Measure

κ -mer Counting

k-mer	Count
ACGA	2
CGAG	1
GAGG	1
AGGT	1
GGTA	1
GTAC	1
TAGC	1

Stage 1: Draft Progressive

Tree Construction

UPGMA

	A	В	С	D	Ε
Α	-				
В	11	-			
С	20	30	-		
D	27	36	9	-	
E	30	33	20	27	-

Stage 1: Draft Progressive

Alignment

Improved Progressive

Similarity Measure

Fractional Identity (D)

```
Sequence 1
ACTGATCAT

Sequence 2
CCGCTCTAC

Alignment
1 2 3 4 5 6 7 8 9 10
ACTGATC—AT
CC—GCTCTAC

* * * * *
Fractional
Identity = 5/8
```

Tree Construction

Kimura Distance Matrix

	Seq1	Seq2	Seq3	Seq4
Seq1	0	0.1	0.3	0.8
Seq2		0	0.2	0.7
Seq3			0	0.7
Seq4				0

	Seq1	Seq2	Seq3	Seq4
Seq1	0	0.1	0.38	2.6
Seq2		0	0.23	1.6
Seq3			0	1.6
Seq4				0

$$d_{Kimura} = -log_e(1-D-D^2/5)$$

Tree Comparison

Tree Comparison

Terminates

Terminates

• When root is unchanged

MUSCLE Performance

Thank You!