Inferência Estatística Introdução

E.F.T¹

¹EACH-USP Universidade de São Paulo

ACH2053

Outline

- Teste de Hipóteses
 - Hipóteses Nula e Alternativa
 - A Região Crítica (RC)
 - A Função Poder
 - Erros Tipo I e Tipo II
 - Nível do Teste
 - Construindo um teste com algum nivel específico de Significância
 - o p valor

Construindo um teste com algum nivel específico de Significância o p valor

Outline

Teste de Hipóteses

- Hipóteses Nula e Alternativa
- A Região Crítica (RC)
- A Função Poder
- Erros Tipo I e Tipo II
- Nível do Teste
- Construindo um teste com algum nivel específico de Significância
- o p valor

Hipóteses Nula e Alternativa A Região Crítica (RC) A Função Poder Erros Tipo I e Tipo II Nível do Teste

Introdução

Consideramos agora problemas envolvendo um parâmetro θ cujo valor é desconhecido mas pertence a um espaço paramêtrico Ω . Suporemos agora que Ω pode ser particionado em dois subconjuntos disjuntos Ω_0 e Ω_1 e que o analista deve decidir se o valor (desconhecido) de θ pertence a Ω_0 ou Ω_1 .

- H_0 denotará a hipótese de que $\theta \in \Omega_0$.
- H_1 denotará a hipótese de que $\theta \in \Omega_1$.

como Ω_0 e Ω_1 são disjuntos e $\Omega_0\cup\Omega_1=\Omega$, exatamente uma das hipóteses será verdadeira.

O analista deve decidir se aceitar H_0 ou H_1 . Um problema deste tipo, em que apenas existem duas decisões possíveis, é chamado de *problema de Teste de Hipóteses*.

Hipóteses Nula e Alternativa A Região Critica (RC) A Funçaô Poder Erros Tipo I e Tipo II Nível do Teste

Introdução

Consideramos agora problemas envolvendo um parâmetro θ cujo valor é desconhecido mas pertence a um espaço paramêtrico Ω . Suporemos agora que Ω pode ser particionado em dois subconjuntos disjuntos Ω_0 e Ω_1 e que o analista deve decidir se o valor (desconhecido) de θ pertence a Ω_0 ou Ω_1 .

- H_0 denotará a hipótese de que $\theta \in \Omega_0$.
- H_1 denotará a hipótese de que $\theta \in \Omega_1$.

como Ω_0 e Ω_1 são disjuntos e $\Omega_0 \cup \Omega_1 = \Omega$, exatamente uma das hipóteses será verdadeira.

O analista deve decidir se aceitar H_0 ou H_1 . Um problema deste tipo, em que apenas existem duas decisões possíveis, é chamado de *problema de Teste de Hipóteses*.

Região Crítica (RC)
Função Poder
irros Tipo I e Tipo II
lível do Teste

Hipóteses Nula e Alternativa

Introdução

Consideramos agora problemas envolvendo um parâmetro θ cujo valor é desconhecido mas pertence a um espaço paramêtrico Ω . Suporemos agora que Ω pode ser particionado em dois subconjuntos disjuntos Ω_0 e Ω_1 e que o analista deve decidir se o valor (desconhecido) de θ pertence a Ω_0 ou Ω_1 .

- H_0 denotará a hipótese de que $\theta \in \Omega_0$.
- H_1 denotará a hipótese de que $\theta \in \Omega_1$.

como Ω_0 e Ω_1 são disjuntos e $\Omega_0 \cup \Omega_1 = \Omega$, exatamente uma das hipóteses será verdadeira.

O analista deve decidir se aceitar H_0 ou H_1 . Um problema deste tipo, em que apenas existem duas decisões possíveis, é chamado de *problema de Teste de Hipóteses*.

Hipóteses Nula e Alternativa A Região Crítica (RC) A Função Poder Erros Tipo I e Tipo II Nível do Teste

Introdução

Em alguns problemas, o analista poderá fazer coletar algumas informações antes de tomar a decisão, os valores observados lhe fornecerão informação sobre o valor de θ . Um procedimento para decidir ou aceitar H_0 ou aceitar H_1 é chamado de *procedimento de teste* ou simplesmente *teste*.

Hipóteses Nula e Alternativa

Em muitos problemas as duas hipóteses H_0 e H_1 são tratados completamente diferentes, para distingui-las

- H₀ é denotado por Hipótese Nula , e
- H₁ é denotado por Hipótese Alternativa.

Quando realizamos um teste, se decidirmos que θ está em Ω_1 , estamos dizendo que *rejeitamos* H_0 . Se decidirmos que θ está em Ω_0 dizemos que *não rejeitamos* H_0 .

Hipóteses Nula e Alternativa A Região Crítica (RC) A Função Poder Erros Tipo I e Tipo II Nível do Teste

Exemplo: Hipóteses Nula e Alternativa

A amplitude de crânios encontrados em Egito, que datam de aprox. 4000 a.C. foram medidos (em mm), e foram modelados como tendo distribuição Normal com média μ desconhecida e variância 26. Deseja-se compara-los com as medidas de crânios de homens da nossa época (aprox. 140 mm). O espaço paramêtrico Ω poderia ser o dos reais positivos, Ω_0 o intervalo [140, ∞), e Ω_1 = (0, 140). Neste caso, escreveriamos:

- H_0 : $\mu \ge 140$
- *H*₁: μ < 140

No caso de a média e a variância serem desconhecidas, o espaço paramêtrico Ω seria formado de pares de números reais, $\Omega_0 = [140, \infty) \times (0, \infty)$ e $\Omega_1 = (0, 140) \times (0, \infty)$; desde \mathbf{z}

Exemplo: Hipóteses Nula e Alternativa

A amplitude de crânios encontrados em Egito, que datam de aprox. 4000 a.C. foram medidos (em mm), e foram modelados como tendo distribuição Normal com média μ desconhecida e variância 26. Deseja-se compara-los com as medidas de crânios de homens da nossa época (aprox. 140 mm). O espaço paramêtrico Ω poderia ser o dos reais positivos, Ω_0 o intervalo $[140,\infty)$, e $\Omega_1=(0,140)$. Neste caso, escreveriamos:

- H_0 : $\mu \ge 140$
- *H*₁: *μ* < 140

No caso de a média e a variância serem desconhecidas, o espaço paramêtrico Ω seria formado de pares de números reais, $\Omega_0 = [140, \infty) \times (0, \infty)$ e $\Omega_1 = (0, 140) \times (0, \infty)$, desde

Hipóteses Nula e Alternativa A Região Crítica (RC) A Função Poder Erros Tipo I e Tipo II Nível do Teste Construindo um teste com algum nível específico de

Hipóteses Simples e Compostas

Suponha que desejarmos testar as seguintes hipóteses:

$$H_0: \theta \in \Omega_0$$

$$H_1: \theta \in \Omega_1$$
.

Para uma destas Hipóteses, o conjunto Ω_i (i = 0, 1), pode conter um valor particular de θ ou um cojunto.

- Se Ω_i contém um valor particular de θ então H_i é uma Hipótese simples.
- Se Ω_i contém mais do que um valor de θ então H_i é uma *Hipótese composta*.

Sob a hipótese simples, a distribuição das observações é completamente especificada, sob a hipótese composta, é especificado apenas a distribuição das observações que :

Hipóteses Nula e Alternativa
A Região Crítica (RC)
A Funçaō Poder
Erros Tipo I e Tipo II
Nível do Teste
Construindo um teste com algum nivel específico d

Hipóteses Simples e Compostas

Suponha que desejarmos testar as seguintes hipóteses:

$$H_0: \theta \in \Omega_0$$

$$H_1: \theta \in \Omega_1$$
.

Para uma destas Hipóteses, o conjunto Ω_i (i = 0, 1), pode conter um valor particular de θ ou um cojunto.

- Se Ω_i contém um valor particular de θ então H_i é uma Hipótese simples.
- Se Ω_i contém mais do que um valor de θ então H_i é uma *Hipótese composta*.

Sob a hipótese simples, a distribuição das observações é completamente especificada, sob a hipótese composta, é especificado apenas a distribuição das observações que * •

A Região Crítica (RC) A Função Poder Erros Tipo I e Tipo II Nível do Teste Construindo um teste com algum nivel específico de Significân

Hipóteses Nula e Alternativa

Hipóteses Simples e Compostas

Suponha que desejarmos testar as seguintes hipóteses:

$$H_0: \theta \in \Omega_0$$

$$H_1: \theta \in \Omega_1$$
.

Para uma destas Hipóteses, o conjunto Ω_i (i = 0, 1), pode conter um valor particular de θ ou um cojunto.

- Se Ω_i contém um valor particular de θ então H_i é uma Hipótese simples.
- Se Ω_i contém mais do que um valor de θ então H_i é uma *Hipótese composta*.

Sob a hipótese simples, a distribuição das observações é completamente especificada, sob a hipótese composta, é especificado apenas a distribuição das observações que

Hipóteses Unilaterais e Bilaterais

Hipóteses unilaterais são da forma

$$H_0: \theta \leq \theta_0$$
 ou $H_0: \theta \geq \theta_0$,

com as correspondentes hipóteses alternativas unilaterais

$$H_1: \theta > \theta_0$$
 ou $H_0: \theta < \theta_0$

Quando a hipótese é simples:

$$H_0: \theta = \theta_0$$

a hipótese alternativa é usualmente bilateral

$$H_1: \theta \neq \theta_0$$

Hipóteses Unilaterais e Bilaterais

Hipóteses unilaterais são da forma

$$H_0: \theta \leq \theta_0$$
 ou $H_0: \theta \geq \theta_0$,

com as correspondentes hipóteses alternativas unilaterais

$$H_1: \theta > \theta_0$$
 ou $H_0: \theta < \theta_0$

Quando a hipótese é simples:

$$H_0: \theta = \theta_0$$

a hipótese alternativa é usualmente bilateral:

$$H_1: \theta \neq \theta_0$$

A Região Crítica (RC) A Funçaô Poder Erros Tipo I e Tipo II Nível do Teste Construindo um teste com algum nivel específico de Significân

Outline

Teste de Hipóteses

- Hipóteses Nula e Alternativa
- A Região Crítica (RC)
- A Função Poder
- Erros Tipo I e Tipo II
- Nível do Teste
- Construindo um teste com algum nivel específico de Significância
- o p valor

A Região Crítica (RC)
A Função Poder
Erros Tipo I e Tipo II
Nível do Teste
Construindo um teste com algum nivel específico de Significância

Exemplo: T.H da média de uma Normal com variância conhecida

Suponha que $\mathbf{X} = (X_1, ..., X_n)$ é uma a.a.de uma Normal com média μ desconhecida e variância conhecida σ^2 . Desejamos testar as hipóteses:

$$H_0: \mu = \mu_0$$

$$H_1: \mu \neq \mu_0$$

Poderiamos escolher um número c e rejeitar H_0 se a distância entre \bar{X}_n e μ_0 é maior que c. Para isto, consideramos dois conjuntos:

$$S_0 = \{ \mathbf{x} : -c \leq \bar{X}_n - \mu_0 \leq c \}, \quad \mathbf{e} \quad S_1 = S_0^C$$

Então, rejeitariamos H_0 se $\mathbf{X} \in S_1$ e não rejeitariamos H_0 se

A Região Crítica (RC)
A Função Poder
Erros Tipo I e Tipo II
Nível do Teste
Construindo um teste com algum nivel específico de Significância

Exemplo: T.H da média de uma Normal com variância conhecida

Suponha que $\mathbf{X} = (X_1, ..., X_n)$ é uma a.a.de uma Normal com média μ desconhecida e variância conhecida σ^2 . Desejamos testar as hipóteses:

$$H_0: \mu = \mu_0$$

$$H_1: \mu \neq \mu_0$$

Poderiamos escolher um número c e rejeitar H_0 se a distância entre \bar{X}_n e μ_0 é maior que c. Para isto, consideramos dois conjuntos:

$$S_0 = \{ \mathbf{x} : -c \leq \bar{X}_n - \mu_0 \leq c \}, \quad \mathbf{e} \quad S_1 = S_0^C$$

Então, rejeitariamos H_0 se $\mathbf{X} \in S_1$ e não rejeitariamos H_0 se

A Região Crítica (RC)
A Funçaő Poder
Erros Tipo I e Tipo II
Nível do Teste
Construindo um teste com algum nivel específico de Significância

Introdução

No caso geral, considere o teste das seguintes hipóteses:

$$H_0: \theta \in \Omega_0, \quad e \quad H_1: \theta \in \Omega_1.$$

Antes de tomar a decisão, o analista poderia observar uma a.a. $\mathbf{X} = (X_1, ..., X_n)$ extraída da distribuição que envolve o

parâmetro θ . Podemos denotar S como o conjunto de todos os valores possíveis da a.a.

Em este problema, o analista especifica o procedimento de teste, particinando o espaço amostral S em dois subconjuntos.

Um deles (S_1) contém os valores de **X** para os quais rejeitaria-se H_0 , e o outro (S_0) contém os valores de **X** para os quais não rejeita-se H_0 .

A Região Crítica (RC)
A Função Poder
Erros Tipo I e Tipo II
Nível do Teste
Construindo um teste com algum pivel específico de Sio

Região Crítica

O conjunto S_1 definido acima é chamado de *região crítica* do teste (em resumo, o teste (procedimento) consiste em especificar a região crítica).

A Região Crítica (RC) A Funçaő Poder Erros Tipo I e Tipo II Nivel do Teste Construindo um teste com algum nivel específico de Significância

Estatísticas de Teste e Regiões de Rejeição

Seja **X** uma a.a de uma distribuição que depende do parâmetro θ . Seja $T = r(\mathbf{X})$ uma estatística, e seja R um subconjunto da reta. Suponha que o procedimento de teste é da forma "rejeite H_0 se $T \in R$ ". Então chamamos T como estatística de teste e R como Região de Rejeição.

Quando um teste é definido em termos de T e R, $S_1 = \{ \mathbf{x} : r(\mathbf{x} \in T) \}$ é a região crítica do teste.

No exemplo acima, a estatística de teste é $T = |\bar{X}_n - \mu_0|$ e a Região de Rejeição é o interavalo $[c, \infty)$.

A Região Crítica (RC) A Funçaő Poder Erros Tipo I e Tipo II Nível do Teste Construindo um teste com algum nivel específico de Significância

Estatísticas de Teste e Regiões de Rejeição

Seja **X** uma a.a de uma distribuição que depende do parâmetro θ . Seja $T = r(\mathbf{X})$ uma estatística, e seja R um subconjunto da reta. Suponha que o procedimento de teste é da forma "rejeite H_0 se $T \in R$ ". Então chamamos T como estatística de teste e R como Região de Rejeição.

Quando um teste é definido em termos de T e R,

 $S_1 = \{ \mathbf{x} : r(\mathbf{x} \in T) \text{ \'e a região crítica do teste. }$

No exemplo acima, a estatística de teste é $T = |\bar{X}_n - \mu_0|$ e a Região de Rejeição é o interavalo $[c, \infty)$.

rapoteses Nuta e Alternativa
A Região Crítica (RC)
A Função Poder
Erros Tipo I e Tipo II
Nível do Teste
Construindo um teste com algum nivel específico de Significância
o p valor

Procedimentos gerais

- 1. Divida o espaço paramétrico Ω em dois subconjuntos disjuntos Ω_0 e Ω_1 .
- 2. Divida o espaço amostral S em dois subconjuntos disjuntos S_0 e S_1 .

Essas divisões não são as mesmas, usualmente, o espaço amostral e o espaço paramétrico tem dimensões diferentes

- Se a a.a. **X** estiver em S_1 , rejeitamos a hipótese nula Ω_0 .
- Se a a.a. $\mathbf{X} \in S_0$, não rejeitamos a hipótese nula Ω_0 . eventualmente conhecemos sobre se S_0 ou S_1 contém \mathbf{X} , raramente aprendemos se Ω_0 ou Ω_1 contém θ .

A Região Crítica (RC) A Função Poder Erros Tipo I e Tipo II Nível do Teste Construindo um teste com algum nivel específico de Significância

Procedimentos gerais

- 1. Divida o espaço paramétrico Ω em dois subconjuntos disjuntos Ω_0 e Ω_1 .
- 2. Divida o espaço amostral S em dois subconjuntos disjuntos S_0 e S_1 .

Essas divisões não são as mesmas, usualmente, o espaço amostral e o espaço paramétrico tem dimensões diferentes.

- Se a a.a. **X** estiver em S_1 , rejeitamos a hipótese nula Ω_0 .
- Se a a.a. $\mathbf{X} \in S_0$, não rejeitamos a hipótese nula Ω_0 .

eventualmente conhecemos sobre se S_0 ou S_1 contém \mathbf{X} , raramente aprendemos se Ω_0 ou Ω_1 contém θ .

A Região Crítica (RC)
A Funçaõ Poder
Erros Tipo I e Tipo II
Nível do Teste
Construindo um teste com algum nivel específico de Significância

Outline

Teste de Hipóteses

- Hipóteses Nula e Alternativa
- A Região Crítica (RC)
- A Função Poder
- Erros Tipo I e Tipo II
- Nível do Teste
- Construindo um teste com algum nivel específico de Significância
- o p valor

A Região Crítica (RC)
A Funçao Poder
Erros Tipo I e Tipo II
Nível do Teste
Construindo um teste com algum nivel específico de Significância

A função poder

Seja δ um procedimento de teste (dependendo da R.C ou de uma estatística), as propriedades de δ podem ser sumarizadas calculando para cada $\theta \in \Omega$ a probabilidade $\pi(\theta|\delta)$ que o teste δ rejeitará H_0 ou a probabilidade $1 - \pi(\theta|\delta)$ que não rejeitará H_0 . A função $\pi(\theta|\delta)$ é chamado *a função poder do teste* δ .

• Se S_1 denota a R.C. de δ então

$$\pi(\theta|\delta) = P(\mathbf{X} \in S_1|\theta) \quad \text{para} \quad \theta \in \Omega$$
 (1)

• Se δ é descrito em função de T e R,

$$\pi(\theta|\delta) = P(T \in R|\theta) \quad \text{para} \quad \theta \in \Omega$$
 (2)

A Região Crítica (RC) A Funçaő Poder Erros Tipo I e Tipo II Nivel do Teste Construindo um teste com algum nivel específico de Significância

A função poder

Seja δ um procedimento de teste (dependendo da R.C ou de uma estatística), as propriedades de δ podem ser sumarizadas calculando para cada $\theta \in \Omega$ a probabilidade $\pi(\theta|\delta)$ que o teste δ rejeitará H_0 ou a probabilidade $1 - \pi(\theta|\delta)$ que não rejeitará H_0 . A função $\pi(\theta|\delta)$ é chamado *a função poder do teste* δ .

• Se S_1 denota a R.C. de δ então

$$\pi(\theta|\delta) = P(\mathbf{X} \in S_1|\theta) \quad \text{para} \quad \theta \in \Omega$$
 (1)

• Se δ é descrito em função de T e R,

$$\pi(\theta|\delta) = P(T \in R|\theta) \quad \text{para} \quad \theta \in \Omega$$
 (2)

A Região Crítica (RC)
A Funçaō Poder
Erros Tipo I e Tipo II
Nível do Teste
Construindo um teste com algum nivel específico de Signific

A função poder ideal

A função poder ideal seria aquela $\pi(\theta|\delta)=0$ para cada $\theta\in\Omega_0$ e $\pi(\theta|\delta)=1$ para cada valor de $\theta\in\Omega_1$.

Se a função poder de um teste δ tiver estes valores, não importará mais qual o valor de θ pois o teste δ levará sempre à decisão correta com probabilidade 1. Isto acontece raramente!.

A Função Poder

Erros Tipo I e Tipo II

Nível do Teste

Construindo um teste com algum nivel específico de Significância

Exemplo: T.H. sobre a média de uma normal com variância conhecida

No exemplo anterior o teste δ era baseado em $T=|\bar{X}_n-\mu_0|$ com Região de Rejeição $R=[c,\infty)$. Sabemos que $\bar{X}_n\sim N(\mu,\sigma^2/n)$. Podemos calcular então a função poder: Seja Φ a f.d.A da normal, então

$$P(T \in R|\mu) = P(\bar{X}_n \ge \mu_0 + c|\mu) + P(\bar{X}_n \le \mu_0 + c|\mu)$$

$$= 1 - \Phi(\frac{\mu_0 + c - \mu}{\frac{\sigma}{\sqrt{n}}}) + \Phi(\frac{\mu_0 - c - \mu}{\frac{\sigma}{\sqrt{n}}})$$
(3)

a expressão final é a função poder $\pi(\mu|\delta)$.

A Região Crítica (RC)
A Funçaő Poder
Erros Tipo I e Tipo II
Nível do Teste
Construindo um teste com algum nivel específico de Significânci

Exemplo: T.H. sobre a média de uma normal com variância conhecida

Na figura, consideramos a função poder para 3 testes diferentes com c = 1, 2, 3 e com $\mu_0 = 4$, n = 15 e $\sigma^2 = 9$

póteses Nula e Alternativa Região Crítica (RC) Função Poder

Erros Tipo I e Tipo II

Nível do Teste

Construindo um teste com algum nivel específico de Significânci o p valor

Outline

Teste de Hipóteses

- Hipóteses Nula e Alternativa
- A Região Crítica (RC)
- A Função Poder
- Erros Tipo I e Tipo II
- Nível do Teste
- Construindo um teste com algum nivel específico de Significância
- o p valor

Nível do Teste Construindo um teste com algum nivel específico de Significância

Erros Tipo I e II

- Erro Tipo I: Rejeitar a Hipótese Nula, quando ela é verdadeira.
- Erro Tipo II: N\u00e3o Rejeitar a Hip\u00f3tese Nula, quando ela \u00e9 falsa.

Nível do Teste Construindo um teste com algum nivel específico de Significância

Erros Tipo I e II

- Erro Tipo I: Rejeitar a Hipótese Nula, quando ela é verdadeira.
- Erro Tipo II: N\u00e3o Rejeitar a Hip\u00f3tese Nula, quando ela \u00e9 falsa.

Erros Tipo I e Tipo II

Construindo um teste com algum nivel específico de Significância o p valor

Erros Tipo I e II em termos da função poder

- Se $\theta \in \Omega_0$, $\pi(\theta|\delta)$ é a prob. de cometer o erro tipo I.
- Se $\theta \in \Omega_1$, $1 \pi(\theta|\delta)$ é a prob. de cometer o erro tipo II.

Como $\theta \in \Omega_0$ ou $\theta \in \Omega_1$ (não ambos), apenas um dos tipos de erro é possível condicional a θ .

Erros Tipo I e II em termos da função poder

- Se $\theta \in \Omega_0$, $\pi(\theta|\delta)$ é a prob. de cometer o erro tipo I.
- Se $\theta \in \Omega_1$, $1 \pi(\theta|\delta)$ é a prob. de cometer o erro tipo II.

Como $\theta \in \Omega_0$ ou $\theta \in \Omega_1$ (não ambos), apenas um dos tipos de erro é possível condicional a θ .

Novel do Teste
Construindo um teste com algum nivel específico de Significância
o p valor

Escolha do teste δ

Gostariamos de escolher um δ tal que $\pi(\theta|\delta)$ seja pequeno para $\theta \in \Omega_0$ e que seja alto para $\theta \in \Omega_1$.

Geralmente, estes dois objetivos são contrários, i.e, se escolhemos δ tal que é pequeno para $\pi(\theta|\delta)$, usualmente encontraremos que ele também é pequeno para $\theta \in \Omega_1$.

Nível do Teste Construindo um teste com algum nivel específico de Significânci

Escolha do teste δ

Gostariamos de escolher um δ tal que $\pi(\theta|\delta)$ seja pequeno para $\theta \in \Omega_0$ e que seja alto para $\theta \in \Omega_1$.

Geralmente, estes dois objetivos são contrários, i.e, se escolhemos δ tal que é pequeno para $\pi(\theta|\delta)$, usualmente encontraremos que ele também é pequeno para $\theta \in \Omega_1$.

Nível do Teste

Construindo um teste com algum nivel específico de Significância o p valor

Exemplo da Escolha do teste δ

Seja um teste δ_0 que nunca rejeita H_0 , sem importar os dados observados. para este procedimento,

- $\pi(\theta|\delta_0) = 0$ para todo $\theta \in \Omega_0$.
- No entanto, para este mesmo procedimento,também $\pi(\theta|\delta_0)=0$ para todo $\theta\in\Omega_1$.

Nível do Teste

Construindo um teste com algum nivel específico de Significâno o p valor

Exemplo da Escolha do teste δ

Seja um teste δ_1 que sempre rejeita H_0 , sem importar os dados observados. para este procedimento,

- $\pi(\theta|\delta_1) = 1$ para todo $\theta \in \Omega_0$.
- No entanto, para este mesmo procedimento,também $\pi(\theta|\delta_1)=1$ para todo $\theta\in\Omega_1$.

Escolha do teste δ

Existe então a necessidade de encontrar um balanço entre os dois objetivos: poder pequeno em Ω_0 e alto poder em Ω_1 .

O método mais usado é o de escolher um número α_0 entre 0 e 1 tal que:

$$\pi(\theta|\delta) \le \alpha_0$$
, para todo $\theta \in \Omega_0$ (4)

Entre os testes que satisfazem a equação acima, procura-se aquele cuja função poder seja tão alto quanto possível para $\theta \in \Omega_1$.

Outro método consistem em construir uma função linear das diferentes probabilidades de erro.

Escolha do teste δ

Existe então a necessidade de encontrar um balanço entre os dois objetivos: poder pequeno em Ω_0 e alto poder em Ω_1 . O método mais usado é o de escolher um número α_0 entre 0 e 1 tal que:

$$\pi(\theta|\delta) \le \alpha_0$$
, para todo $\theta \in \Omega_0$ (4)

Entre os testes que satisfazem a equação acima, procura-se aquele cuja função poder seja tão alto quanto possível para $\theta \in \Omega_1$.

Outro método consistem em construir uma função linear das diferentes probabilidades de erro.

Hipoteses INUIa e Alternativa A Região Critica (RC) A Função Poder Erros Tipo I e Tipo II Nível do Teste

Escolha do teste δ

Existe então a necessidade de encontrar um balanço entre os dois objetivos: poder pequeno em Ω_0 e alto poder em Ω_1 . O método mais usado é o de escolher um número α_0 entre 0 e 1 tal que:

$$\pi(\theta|\delta) \le \alpha_0$$
, para todo $\theta \in \Omega_0$ (4)

Entre os testes que satisfazem a equação acima, procura-se aquele cuja função poder seja tão alto quanto possível para $\theta \in \Omega_1$.

Outro método consistem em construir uma função linear das diferentes probabilidades de erro.

Exemplo sobre os crânios egipcios

- Os experimentadores podem erroneamente dizer que os dados suportam a teoria ($\mu <$ 140) quando na verdade $\mu >$ 140, ou
- poderiam erroneamente dizer que os dados não suportam a teoria ($\mu >$ 140), quando de fato $\mu <$ 140

Exemplo sobre os crânios egipcios

- Os experimentadores podem erroneamente dizer que os dados suportam a teoria ($\mu <$ 140) quando na verdade $\mu >$ 140, ou
- poderiam erroneamente dizer que os dados não suportam a teoria ($\mu >$ 140), quando de fato $\mu <$ 140

Exemplo sobre os crânios egipcios

- Os experimentadores podem erroneamente dizer que os dados suportam a teoria ($\mu <$ 140) quando na verdade $\mu >$ 140, ou
- poderiam erroneamente dizer que os dados não suportam a teoria ($\mu >$ 140), quando de fato $\mu <$ 140

Exemplo sobre os crânios egipcios

- Os experimentadores podem erroneamente dizer que os dados suportam a teoria ($\mu <$ 140) quando na verdade $\mu >$ 140, ou
- poderiam erroneamente dizer que os dados não suportam a teoria ($\mu >$ 140), quando de fato $\mu <$ 140

lipóteses Nula e Alternativa . Região Crítica (RC) . Função Poder

Erros Tipo I e Tipo II

Nível do Teste

Construindo um teste com algum nivel específico de Significância o p valor

Exemplo sobre os crânios egipcios

É normalmente mais sério o erro que consiste em confirmar uma falsa teoría (própria) do que falsamente (erradamente) rejeita-la.

• Erro tipo I: dizer que μ < 140 (confirmar a teoria, i.e, rejeitar H_0), quando de fato μ > 140 (a teoria é falsa, i.e, H_0 é verdadeiro).

Normalmente são incluidos os pontos limites do intervalo associado com a hipótese, na hipótese nula. Desta forma temos:

$$H_0: \mu \ge 140,$$

$$H_1: \mu \leq 140.$$

ipóteses Nula e Alternativa Região Crítica (RC) Função Poder

Erros Tipo I e Tipo II

Construindo um teste com algum nivel específico de Significâno

Exemplo sobre os crânios egipcios

É normalmente mais sério o erro que consiste em confirmar uma falsa teoría (própria) do que falsamente (erradamente) rejeita-la.

• Erro tipo I: dizer que μ < 140 (confirmar a teoria, i.e, rejeitar H_0), quando de fato μ > 140 (a teoria é falsa, i.e, H_0 é verdadeiro).

Normalmente são incluidos os pontos limites do intervalo associado com a hipótese, na hipótese nula. Desta forma, temos:

$$H_0: \mu \geq 140,$$

$$H_1: \mu \leq 140.$$

Outline

Teste de Hipóteses

- Hipóteses Nula e Alternativa
- A Região Crítica (RC)
- A Função Poder
- Erros Tipo I e Tipo II
- Nível do Teste
- Construindo um teste com algum nivel específico de Significância
- o p valor

A Região Crítica (RC) A Funçaō Poder Erros Tipo I e Tipo II **Nível do Teste**

Nível do Teste

Um teste que satisfaz a equação 4 é chamado de teste nivel α_0 , e dizemos que o teste tem nivel de significância α_0 .

O tamanho $\alpha(\delta)$ de um teste δ é definido como:

$$\alpha(\delta) = \sup_{\theta \in \Omega_0} \pi(\theta|\delta) \tag{5}$$

Um teste δ é dito ser de nivel α_0 se e somente se o seu tamanho é no máximo α_0 (i.e, $\alpha(\delta) \leq \alpha_0$). Se a hipótese nula for simples ($H_0: \theta = \theta_0$), então o tamanho de δ será $\alpha(\delta) = \pi(\theta_0|\delta)$.

A Hegiao Critica (HC)
A Funçaō Poder
Erros Tipo I e Tipo II
Nível do Teste
Construindo um teste com algum nivel específico de Significância

Nível do Teste

Um teste que satisfaz a equação 4 é chamado de teste nivel α_0 , e dizemos que o teste tem nivel de significância α_0 . O tamanho $\alpha(\delta)$ de um teste δ é definido como:

$$\alpha(\delta) = \sup_{\theta \in \Omega_0} \pi(\theta|\delta) \tag{5}$$

Um teste δ é dito ser de nivel α_0 se e somente se o seu tamanho é no máximo α_0 (i.e, $\alpha(\delta) \leq \alpha_0$). Se a hipótese nula for simples ($H_0: \theta = \theta_0$), então o tamanho de δ será $\alpha(\delta) = \pi(\theta_0|\delta)$.

A Região Crítica (RC) A Funçao Poder Erros Tipo I e Tipo II Nível do Teste

Nível do Teste

Um teste que satisfaz a equação 4 é chamado de teste nivel α_0 , e dizemos que o teste tem nivel de significância α_0 . O tamanho $\alpha(\delta)$ de um teste δ é definido como:

$$\alpha(\delta) = \sup_{\theta \in \Omega_0} \pi(\theta|\delta) \tag{5}$$

Um teste δ é dito ser de nivel α_0 se e somente se o seu tamanho é no máximo α_0 (i.e, $\alpha(\delta) \leq \alpha_0$).

Se a hipótese nula for simples ($H_0: \theta = \theta_0$), então o tamanho de δ será $\alpha(\delta) = \pi(\theta_0|\delta)$.

A Região Crítica (RC) A Funçaő Poder Erros Tipo I e Tipo II **Nivel do Teste** Construindo um teste com algum nivel específico de Significância

Exemplo: T.H. sobre a Distribuição Uniforme

Suponha que uma a.a. $X_1,...,X_n$ é tomada de uma distribuiçã uniforme no intervalo $[0,\theta]$, com θ desconhecido $(\theta > 0)$. Suponha também que desejamos testar as hipóteses:

$$H_0: 3 \le \theta \le 4$$

 $H_1: \theta < 3 \text{ ou } \theta > 4$

Sabemos que o EMV de θ é $Y_n = max\{X_1, ..., X_n\}$. Se o tamanho da amostra aumentar, o valor de Y_n será próximo de θ com alta probabilidade.

A Região Crítica (RC) A Função Poder Erros Tipo I e Tipo II **Nível do Teste** Construindo um teste com algum nivel específico de Significânc

Exemplo: T.H. sobre a Distribuição Uniforme

Suponha que uma a.a. $X_1,...,X_n$ é tomada de uma distribuiçã uniforme no intervalo $[0,\theta]$, com θ desconhecido $(\theta > 0)$. Suponha também que desejamos testar as hipóteses:

$$H_0: 3 \le \theta \le 4$$

 $H_1: \theta < 3 \text{ ou } \theta > 4$

Sabemos que o EMV de θ é $Y_n = max\{X_1, ..., X_n\}$. Se o tamanho da amostra aumentar, o valor de Y_n será próximo de θ com alta probabilidade.

A Região Crítica (RC) A Função Poder A Função Poder Brivel do Teste Construindo um teste com algum nivel específico de Significânc

Exemplo: T.H. sobre a Distribuição Uniforme

Suponha que o teste δ não rejeita H_0 se 2,9 < Y_n < 4, e rejeita H_0 se Y_n não estiver neste intervalo.

- A R.C. do teste δ contém os valores de $X_1, ..., X_n$ para os quais $Y_n \le 2,9$ ou $Y_n \ge 4$.
- Em termos da estatística do teste Y_n, a R.R. é a união dos intervalos (-∞, 2, 9] ∪ [4, ∞).
- A função poder de δ é especificado pela relação:

$$\pi(\theta|\delta) = Pr(Y_n \le 2, 9|\theta) + Pr(Y_n \ge 4|\theta)$$

A Região Crítica (RC)
A Função Poder
Erros Tipo I e Tipo II

Nível do Teste
Construindo um teste com algum nivel específico de Significância

Exemplo: T.H. sobre a Distribuição Uniforme

Suponha que o teste δ não rejeita H_0 se 2,9 < Y_n < 4, e rejeita H_0 se Y_n não estiver neste intervalo.

- A R.C. do teste δ contém os valores de $X_1, ..., X_n$ para os quais $Y_n \le 2,9$ ou $Y_n \ge 4$.
- Em termos da estatística do teste Y_n , a R.R. é a união dos intervalos $(-\infty, 2, 9] \cup [4, \infty)$.
- A função poder de δ é especificado pela relação:

$$\pi(\theta|\delta) = Pr(Y_n \le 2, 9|\theta) + Pr(Y_n \ge 4|\theta)$$

A Região Crítica (RC) A Funçaō Poder Erros Tipo I e Tipo II Nível do Teste Construindo um teste com algum nivel específico de Significâr

Exemplo: T.H. sobre a Distribuição Uniforme

Suponha que o teste δ não rejeita H_0 se 2,9 < Y_n < 4, e rejeita H_0 se Y_n não estiver neste intervalo.

- A R.C. do teste δ contém os valores de $X_1, ..., X_n$ para os quais $Y_n \le 2,9$ ou $Y_n \ge 4$.
- Em termos da estatística do teste Y_n , a R.R. é a união dos intervalos $(-\infty, 2, 9] \cup [4, \infty)$.
- A função poder de δ é especificado pela relação:

$$\pi(\theta|\delta) = Pr(Y_n \le 2, 9|\theta) + Pr(Y_n \ge 4|\theta)$$

- Se $\theta \le$ 2.9, então $Pr(Y_n \le 2, 9|\theta) = 1$ e $Pr(Y_n \ge 4|\theta) = 0$. Desta forma, $\pi(\theta|\delta) = 1$ se $\theta \le 2.9$.
- Se 2,9 < $\theta \le 4$, então $Pr(Y_n \le 2, 9|\theta) = (\frac{2,9}{\theta})^n$ e $Pr(Y_n \ge 4|\theta) = 0$. Neste caso, $\pi(\theta|\delta) = (\frac{2,9}{\theta})^n$
- Se $\theta > 4$, então $Pr(Y_n \le 2, 9|\theta) = (\frac{2,9}{\theta})^n$ e $Pr(Y_n \ge 4|\theta) = 1 (\frac{4}{\theta})^n$ A função poder será então $\pi(\theta|\delta) = (\frac{2,9}{\theta})^n + 1 (\frac{4}{\theta})^n$

- Se $\theta \le$ 2.9, então $Pr(Y_n \le 2, 9|\theta) = 1$ e $Pr(Y_n \ge 4|\theta) = 0$. Desta forma, $\pi(\theta|\delta) = 1$ se $\theta \le$ 2.9.
- Se 2,9 < $\theta \le 4$, então $Pr(Y_n \le 2, 9|\theta) = (\frac{2,9}{\theta})^n$ e $Pr(Y_n \ge 4|\theta) = 0$. Neste caso, $\pi(\theta|\delta) = (\frac{2,9}{\theta})^n$
- Se $\theta > 4$, então $Pr(Y_n \le 2, 9|\theta) = (\frac{2,9}{\theta})^n$ e $Pr(Y_n \ge 4|\theta) = 1 (\frac{4}{\theta})^n$ A função poder será então $\pi(\theta|\delta) = (\frac{2,9}{\theta})^n + 1 (\frac{4}{\theta})^n$

- Se $\theta \le$ 2.9, então $Pr(Y_n \le 2, 9|\theta) = 1$ e $Pr(Y_n \ge 4|\theta) = 0$. Desta forma, $\pi(\theta|\delta) = 1$ se $\theta \le$ 2.9.
- Se 2,9 < θ ≤ 4, então $Pr(Y_n \le 2,9|\theta) = (\frac{2,9}{\theta})^n$ e $Pr(Y_n \ge 4|\theta) = 0$. Neste caso, $\pi(\theta|\delta) = (\frac{2,9}{\theta})^n$
- Se $\theta > 4$, então $Pr(Y_n \le 2, 9|\theta) = (\frac{2,9}{\theta})^n$ e $Pr(Y_n \ge 4|\theta) = 1 (\frac{4}{\theta})^n$ A função poder será então $\pi(\theta|\delta) = (\frac{2,9}{\theta})^n + 1 (\frac{4}{\theta})^n$

- Se $\theta \le$ 2.9, então $Pr(Y_n \le 2, 9|\theta) = 1$ e $Pr(Y_n \ge 4|\theta) = 0$. Desta forma, $\pi(\theta|\delta) = 1$ se $\theta \le$ 2.9.
- Se 2,9 < θ ≤ 4, então $Pr(Y_n \le 2,9|\theta) = (\frac{2,9}{\theta})^n$ e $Pr(Y_n \ge 4|\theta) = 0$. Neste caso, $\pi(\theta|\delta) = (\frac{2,9}{\theta})^n$
- Se $\theta > 4$, então $Pr(Y_n \le 2, 9|\theta) = (\frac{2,9}{\theta})^n$ e $Pr(Y_n \ge 4|\theta) = 1 (\frac{4}{\theta})^n$ A função poder será então $\pi(\theta|\delta) = (\frac{2,9}{\theta})^n + 1 (\frac{4}{\theta})^n$

- Se $\theta \le$ 2.9, então $Pr(Y_n \le 2, 9|\theta) = 1$ e $Pr(Y_n \ge 4|\theta) = 0$. Desta forma, $\pi(\theta|\delta) = 1$ se $\theta \le$ 2.9.
- Se 2,9 < θ ≤ 4, então $Pr(Y_n \le 2,9|\theta) = (\frac{2,9}{\theta})^n$ e $Pr(Y_n \ge 4|\theta) = 0$. Neste caso, $\pi(\theta|\delta) = (\frac{2,9}{\theta})^n$
- Se $\theta > 4$, então $Pr(Y_n \le 2, 9|\theta) = (\frac{2,9}{\theta})^n$ e $Pr(Y_n \ge 4|\theta) = 1 (\frac{4}{\theta})^n$ A função poder será então $\pi(\theta|\delta) = (\frac{2,9}{\theta})^n + 1 (\frac{4}{\theta})^n$

- Se $\theta \le$ 2.9, então $Pr(Y_n \le 2, 9|\theta) = 1$ e $Pr(Y_n \ge 4|\theta) = 0$. Desta forma, $\pi(\theta|\delta) = 1$ se $\theta \le$ 2.9.
- Se 2,9 < θ ≤ 4, então $Pr(Y_n \le 2,9|\theta) = (\frac{2,9}{\theta})^n$ e $Pr(Y_n \ge 4|\theta) = 0$. Neste caso, $\pi(\theta|\delta) = (\frac{2,9}{\theta})^n$
- Se $\theta > 4$, então $Pr(Y_n \le 2, 9|\theta) = (\frac{2,9}{\theta})^n$ e $Pr(Y_n \ge 4|\theta) = 1 (\frac{4}{\theta})^n$ A função poder será então $\pi(\theta|\delta) = (\frac{2,9}{\theta})^n + 1 (\frac{4}{\theta})^n$

A Região Critica (RC) A Função Poder Erros Tipo I e Tipo II Nível do Teste

Exemplo: T.H. sobre a Distribuição Uniforme

o tamanho de δ é $\alpha(\delta)=\sup_{3\leq\theta\leq4}\pi(\theta|\delta)$. Pode ser visto da figura abaixo e cálculos que $\alpha(\delta)=\pi(3|\delta)=(29/30)^n$. Se o n=68, então o tamanho é $(29/30)^{68}=0.0997$. Desta forma δ é de nivel α_0 para cada nivel de significância $\alpha_0\geq0.0997$.

Figura: 1

Construindo um teste com algum nivel específico de Significância o p valor

Outline

Teste de Hipóteses

- Hipóteses Nula e Alternativa
- A Região Crítica (RC)
- A Função Poder
- Erros Tipo I e Tipo II
- Nível do Teste
- Construindo um teste com algum nivel específico de Significância
- o p valor

A Região Crítica (RC) A Funçaô Poder Erros Tipo I e Tipo II Nível do Teste Construindo um teste com algum nivel específico de Significância

Definição

Suponha que desejarmos testar as hipóteses:

$$H_0: \theta \in \Omega_0$$

$$H_1: \theta \in \Omega_1$$

Seja T uma estatística e suponha que nosso teste rejeitará H_0 se $T \geq c$, para alguma constante c. Suponha também que desejamos que nosso teste tenha tenha nivel de significância α_0 .

Construindo um teste com algum nivel específico de Significância o p valor

Definição

A função poder do nosso teste é $\pi(\theta|\delta) = P(T \ge c|\theta)$ e desejamos

$$\sup_{\theta \in \Omega_0} P(T \ge c | \theta) \le \alpha_0 \tag{6}$$

É claro que a função acima será satisfeita para valores grandes de c mas não para valores pequenos. Se desejarmos que a função poder tenha o maior valor possível para $\theta \in \Omega_1$, devemos construir c o mais pequeno possível que satisfaça a equação 6. Se T tiver distribuição continua, é simples encontrar o c apropriado.

A Funçaő Poder

Erros Tipo I e Tipo II

Nível do Teste

Construindo um teste com algum nivel específico de Significância

Exemplo: T.H. sobre a média de uma normal com variância conhecida

No exemplo acima, nosso teste rejeitaria $H_0: \mu=\mu_0$ se $|\bar{X}_n-\mu_0|\geq c$. Como H_0 é simples, o lado esquerdo da equação 6 reduz à prababilidade que $|\bar{X}_n-\mu_0|\geq c$ (assumindo que $\mu=\mu_0$).

Como $Y_n = \bar{X}_n - \mu_0 \sim N(0, \sigma^2/n)$ quando $\mu = \mu_0$, podemos achar c tal que o tamanho é α_0 para cada α_0 . Assim, c deve ser o $1 - \alpha/2$ quantil da distribuição de Y. Este quantil é $c = \Phi^{-1}(1 - \alpha_0/2_\sigma n^{-1/2})$.

A Regiao Critica (RC)
A Funçaō Poder
Erros Tipo I e Tipo II
Nível do Teste
Construindo um teste com algum nivel específico de Significância

Exemplo: T.H. sobre a média de uma normal com variância conhecida

No exemplo acima, nosso teste rejeitaria $H_0: \mu=\mu_0$ se $|\bar{X}_n-\mu_0|\geq c$. Como H_0 é simples, o lado esquerdo da equação 6 reduz à prababilidade que $|\bar{X}_n-\mu_0|\geq c$ (assumindo que $\mu=\mu_0$).

Como $Y_n = \bar{X}_n - \mu_0 \sim N(0, \sigma^2/n)$ quando $\mu = \mu_0$, podemos achar c tal que o tamanho é α_0 para cada α_0 . Assim, c deve ser o $1 - \alpha/2$ quantil da distribuição de Y. Este quantil é $c = \Phi^{-1}(1 - \alpha_0/2_\sigma n^{-1/2})$.

A Regiao Critica (RC)
A Funçaō Poder
Erros Tipo I e Tipo II
Nível do Teste
Construindo um teste com algum nivel específico de Significância

Exemplo: T.H. sobre a média de uma normal com variância conhecida

No exemplo acima, nosso teste rejeitaria $H_0: \mu=\mu_0$ se $|\bar{X}_n-\mu_0|\geq c$. Como H_0 é simples, o lado esquerdo da equação 6 reduz à prababilidade que $|\bar{X}_n-\mu_0|\geq c$ (assumindo que $\mu=\mu_0$).

Como $Y_n = \bar{X}_n - \mu_0 \sim N(0, \sigma^2/n)$ quando $\mu = \mu_0$, podemos achar c tal que o tamanho é α_0 para cada α_0 . Assim, c deve ser o $1 - \alpha/2$ quantil da distribuição de Y. Este quantil é $c = \Phi^{-1}(1 - \alpha_0/2_\sigma n^{-1/2})$.

A Função Poder
Erros Tipo I e Tipo II
Nível do Teste
Construindo um teste com algum nivel específico de Significância

Exemplo: T.H. sobre a média de uma normal com variância conhecida

Quando testamos hipóteses sobre a média da normal, é tradicional escrever o teste em termo da estatística:

$$Z = \frac{\bar{X}_n - \mu_0}{\frac{\sigma}{\sqrt{n}}} \tag{7}$$

A Região Crítica (RC)
A Função Poder
Erros Tipo I e Tipo II
Nível do Teste
Construindo um teste com algum nivel específico de Significância

Exemplo: T.H. sobre a parâmetro da Bernoulli

Suponha que $X_1, ..., X_n$ forma uma a.a. de uma distribuição de Bernoulli com parâmetro p. Suponha que desejamos testar a hipóteses

$$H_0: p \le p_0$$

$$H_1: p > p_0$$

A Região Crítica (RC) A Função Poder Erros Tipo I e Tipo II Nível do Teste Construindo um teste com algum nivel específico de Significância

Exemplo: T.H. sobre a parâmetro da Bernoulli

Seja $Y=\sum_{i=1}^n X_i \sim bin(n,p)$, quanto maior o valor de p, maior será o valor de Y. Suponha que escolhemos rejeitar H_0 se $Y\geq c$ para algum c. Suponha também que desejamos que o tamanho do teste seja proximo a α_0 sem supera-lo. É fácil checar que $P(Y\geq c|p)$ é uma função crescente em p. Desta forma, o tamanho do teste será $P(Y\geq c|p=p_0)$. De isto, temos que c será o menor número tal que $P(Y\geq c|p=p_0)\leq \alpha_0$.

A Região Crítica (RC)
A Função Poder
Erros Tipo I e Tipo II
Nível do Teste
Construindo um teste com algum nivel específico de Significância

Exemplo: T.H. sobre a parâmetro da Bernoulli

Se n=10, $p_0=0,3$ e $\alpha_0=0,1$, calculamos $\sum_{y=6}^{1} 0P(Y=y|p=0,3)=0,0473 \text{ e}$ $\sum_{y=5}^{1} 0P(Y=y|p=0,3)=0,1503. \text{ Para manter o tamanho do teste proximo de } 0,1, \text{ escolhemos } c>5. \text{ (Cada valor de } c$ no intervalo (5,6] produz o mesmo teste desde que Y só toma valores inteiros.

A Regiao Critica (RC)
A Funçaō Poder
Erros Tipo I e Tipo II
Nível do Teste
Construindo um teste com algum nivel específico de Significância

Outline

Teste de Hipóteses

- Hipóteses Nula e Alternativa
- A Região Crítica (RC)
- A Função Poder
- Erros Tipo I e Tipo II
- Nível do Teste
- Construindo um teste com algum nivel específico de Significância

o p valor

o p valor

A Região Crítica (RC)
A Funçaő Poder
Erros Tipo I e Tipo II
Nível do Teste
Construindo um teste com algum nivel específico de Significância
o p valor

Introdução

Suponha que no exemplo da média de uma normal com variância conhecia, escolhemos testar H_0 no nível $\alpha_0=0,05$. Calculamos então a estatística do teste e rejeitamos H_0 se $Z \geq \Phi^{-1}(1-\frac{0,05}{2})=1,96$. Por exemplo, suponha que Z=2,78 é observado. Então rejeitariamos H_0 . Suponha que anunciamos o resultado, dizendo que rejeitamos H_0 no nível 0,05, o que outro analista poderia dizer, se ele decide testar utilizando outro nivel?

A Região Crítica (RC)
A Funçao Poder
Erros Tipo I e Tipo II
Nível do Teste
Construindo um teste com algum nivel específico de Significância
o p valor

Introdução

Ainda no exemplo, o valor observado de Z foi 2,78, a hipótese H_0 seria rejeitada α_0 tal que 2,78 $\geq \Phi^{-1}(1-\alpha_0/2)$. Usando a tabela da normal, esta desigualdade resulta em $\alpha_0 \geq 0,0054$. Este valor 0,0054 é chamado o p-valor para os dados observados no teste de hipótese. Como 0,01 \geq 0,0054 o analista rejeitaria H_0 no nível 0,01.

A Região Crítica (RC)
A Função Poder
Erros Tipo I e Tipo II
Nível do Teste
Construindo um teste com algum nivel específico de Significância
o p valor

Definição

O *p- valor* é o menor nível de α_0 tal que rejeitariamos a hipótese nula no nível α_0 com os dados observados.

O *p-valor* é muitas vezes chamado de nível de significância observado.

Um experimentador rejeitará H_0 se e somente se, o p-valor é no máximo α_0 , está usando um teste com nível de significância α_0 .

A Região Crítica (RC)
A Função Poder
Erros Tipo I e Tipo II
Nível do Teste
Construindo um teste com algum nivel específico de Significância
o p valor

Definição

O p- valor é o menor nível de α_0 tal que rejeitariamos a hipótese nula no nível α_0 com os dados observados. O p-valor é muitas vezes chamado de nível de significância observado.

Um experimentador rejeitará H_0 se e somente se, o p-valor é no máximo α_0 , está usando um teste com nível de significância α_0 .

A Função Poder
Erros Tipo I e Tipo II
Nível do Teste
Construindo um teste com algum nivel específico de Significância
o p valor

Definição

observado

O p- valor é o menor nível de α_0 tal que rejeitariamos a hipótese nula no nível α_0 com os dados observados. O p-valor é muitas vezes chamado de nível de significância

Um experimentador rejeitará H_0 se e somente se, o p-valor é no máximo α_0 , está usando um teste com nível de significância α_0 .

A Hegiao Critica (HG)
A Função Poder
Erros Tipo I e Tipo II
Nível do Teste
Construindo um teste com algum nivel específico de Significân

Definição

O *p- valor* é o menor nível de α_0 tal que rejeitariamos a hipótese nula no nível α_0 com os dados observados.

O *p-valor* é muitas vezes chamado de nível de significância observado.

Um experimentador rejeitará H_0 se e somente se, o p-valor é no máximo α_0 , está usando um teste com nível de significância α_0 .

o p valor

Cálculo do p-valor

Se os testes são da forma *rejeitar a hipótese nula se* $T \ge c$, a maneira de calcular os p-valores é:

- para cada t, seja δ_t o teste que rejeita H_O se $T \geq t$.
- o p-valor quando T=t é observado é o tamanho do teste δ_t .
- o p-valor é igual a:

$$\sup_{\theta \in \Omega_0} \pi(\theta | \delta_1) = \sup_{\theta \in \Omega_0} \Pr(T \ge t | \theta)$$
 (8)

A Região Crítica (RC)
A Função Poder
Erros Tipo I e Tipo II
Nível do Teste
Construindo um teste com algum nivel específico de Significância
o p valor

Exemplo: Parâmetro da Bernoulli

No exemplo acima, foi usado um teste que rejeita H_0 se $Y \geq c$. O p-valor quando Y = y é observado e será $\sup_{p \geq p_0} P(Y \geq y | p)$. Vemos que $P(Y \geq y | p)$ cresce como função de p. Desta forma, o p-valor é $P(Y \geq y | p = p_0)$. Por exemplo, seja $p_0 = 0, 3$ e n = 10. Se Y = 6 é observado, então, $P(Y \geq 6 | p = 0, 3) = 0,00473$.

O cálculo do p-valor é mais complicado quando o teste não puder ser colocado na forma *rejeite a hipótese nula se T* \geq *t*.

A Região Crítica (RC)
A Funçaő Poder
Erros Tipo I e Tipo II
Nível do Teste
Construindo um teste com algum nivel específico de Significância
o p valor

Exemplo: Parâmetro da Bernoulli

No exemplo acima, foi usado um teste que rejeita H_0 se $Y \ge c$. O p-valor quando Y = y é observado e será $\sup_{p \ge p_0} P(Y \ge y|p)$. Vemos que $P(Y \ge y|p)$ cresce como função de p. Desta forma, o p-valor é $P(Y \ge y|p = p_0)$. Por exemplo, seja $p_0 = 0, 3$ e $p_0 = 10$. Se $p_0 = 10$ se

O cálculo do p-valor é mais complicado quando o teste não puder ser colocado na forma *rejeite a hipótese nula se* $T \ge t$.