### Cinematica nel piano

Rappresentare la cinematica diretta completa dei robot nel piano.

Calcolare la cinematica diretta significa esprimere le coordinate del punto terminale (end-effector) del robot in funzione delle variabili di giunto che sono tante quante sono le variabili di libertà. In particolare se un robot possiede n gradi di libertà, occorre definire n+1 sistemi di riferimento e la notazione utilizzata è la seguente:

$$n \text{ DOF} \iff n+1 \text{ sistemi di riferimento } R_0, R_1, \dots, R_n$$

ove  $R_0$  è il sistema di riferimento inerziale e i restanti sistemi di riferimento  $R_1, \ldots, R_n$  sono sistemi di riferimento solidali al link, ma non interziali.

L'idea che occorre seguire per calcolare la cinematica diretta di un robot consiste, dopo aver fissato correttamente i sistemi di riferimento, nel sovrapporre i sistemi di riferimento tramite rotazioni e traslazioni. La matrice risultante da una rotazione e una traslazione viene detta matrice di trasformazione.

N.B.:in caso di variabili di giunto (rotoidali(R),prismatici(P)) il simbolo utilizzato è  $q_i$ . Inoltre, indichiamo con Q(R,0) la matrice di rotazione e R(I,d) la matrice di traslazione.

Solo nel caso planare effettuare una rotazione e poi una traslazione è equivalente ad effettuare una rotazione e poi una traslazione.

#### 1 DOF P - 1 gradi di libertà prismatico



 $T_{01} := \text{matrice di trasformazione da} \, R_o \to R_1$ 

$$T_{01}(q_1) = \begin{pmatrix} \text{rotazione} & \text{traslazione} \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} R(0) & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} I & q1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} I & q_1 e_x \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & q_1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

In particolare, il blocco 2x2:  $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$  rappresenta la cinematica di rotazione in cui gli assi sono paralleli alla base e il vettore  $\begin{pmatrix} q_1 \\ 0 \end{pmatrix}$  rappresenta la cinematica di posizione con  $q_1$ , ascissa, e 0 ordinata.

La funzione rotTrasl(a,q1,k) restituisce la matrice di rotazione Q(R,0) con parametri rotTrasl(r,q1,0) e la matrice di traslazione R(I,d) con parametri rotTrasl(d,0,q1).

1

```
(%i1) rotTrasl(a,q1,k):=block([res],
                            zero:ident(3),
                            zero[3][1]:0,
                            zero[3][2]:0,
                            zero[3][3]:1,
                            if a= r then(
                                 zero[1][1]:cos(q1),
                                 zero[1][2]:-sin(q1),
                                 zero[2][1]:sin(q1),
                                 zero[2][2]:cos(q1),
                                 res:zero)
                            elseif a = d then(
                               zero[1][3]:k[1],
                               zero[2][3]:k[2],
                               res:zero)
                            else
                              res: "Not rotation or traslation selected"
                            )
```

(%01) rotTrasl $(a, q1, k) := \mathbf{block}$  ([res], zero: ident(3), (zero<sub>3</sub>)<sub>1</sub>: 0, (zero<sub>3</sub>)<sub>2</sub>: 0, (zero<sub>3</sub>)<sub>3</sub>: 1, **if** a = r **then** ((zero<sub>1</sub>)<sub>1</sub>: cos (q1), (zero<sub>1</sub>)<sub>2</sub>:  $-\sin(q1)$ , (zero<sub>2</sub>)<sub>1</sub>:  $\sin(q1)$ , (zero<sub>2</sub>)<sub>2</sub>:  $\cos(q1)$ , res: zero) **elseif** a = d **then** ((zero<sub>1</sub>)<sub>3</sub>:  $k_1$ , (zero<sub>2</sub>)<sub>3</sub>:  $k_2$ , res: zero) **else** res: Not rotation or traslation selected)

Matrice di rotazione Q(0,0) in quanto non si necessità una rotazione per far coincidere gli assi del sitema di riferimento  $R_0$  con quelli del sistema di riferimento  $R_1$ .

(%i2) Q:rotTrasl(r,0,[0,0])

$$(\%02) \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right)$$

Matrice di traslazione  $R(I, q_1)$  in quanto occorre traslare di q1, variabile di giunto prismatico, per far coincidere le origini del sistema di riferimento  $R_0$  con  $R_1$ .

(%i3) R:rotTrasl(d,0,[q[1],0])

(%o3) 
$$\left( \begin{array}{ccc} 1 & 0 & q_1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right)$$

La matrice di trasformazione risultante, che rappresenta la cinematica diretta del robot 1 DOF prismatico  $T_{01}$ , risulterà uguale  $a: T_{01} = Q(0,0) R(I,q_1)$ 

(%i4) TP[01]:Q.R

(%o4) 
$$\begin{pmatrix} 1 & 0 & q_1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

(%i5)

## 1 DOF R - 1 grado di libertà rotoidale



 $T_{01} := \text{matrice di trasformazione da } R_o \rightarrow R_1$ 

$$\begin{split} T_{01}(q_1) &= \left( \begin{array}{cc} \text{rotazione} & \text{traslazione} \\ 0 & 1 \end{array} \right) = \left( \begin{array}{cc} R(q_1) & 0 \\ 0 & 1 \end{array} \right) \left( \begin{array}{cc} I & L_1 e_x \\ 0 & 1 \end{array} \right) = \left( \begin{array}{cc} R(q_1) & L_1 e_x R(q_1) \\ 0 & 1 \end{array} \right) = \left( \begin{array}{cc} c_1 & -s_1 & L_1 c_1 \\ s_1 & c_1 & L_1 s_1 \\ 0 & 0 & 1 \end{array} \right) \quad L_1 \coloneqq \text{distanza che congiunge } R_0 \, e \, R_1 \end{split}$$

# $N.B.: c_1 \longrightarrow \cos(q_1); s_1 \longrightarrow \sin(q_1);$

La matrice di rotazione  $Q(q_1, 0)$  permette di orientare il sistema di riferimento  $R_0$  come il sistema di riferimento dell'end – effector  $R_1$ . Poiché il giunto è rotoidale, dovremo ruotare  $R_0$  di un angolo pari alla variabile di giunto  $q_1$ .

(%i5) Q:rotTrasl(r,q[1],0);

(%o5) 
$$\begin{pmatrix} \cos(q_1) & -\sin(q_1) & 0 \\ \sin(q_1) & \cos(q_1) & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

La matrice di traslazione  $R(I, L_1)$  permette di far coincidere le origini del sistema di riferimento  $R_0$  e  $R_1$  tramite una traslazione  $L_1$ , coincidente con la distanza tra il sistema di riferimento  $R_0$  e  $R_1$ . (%i6) R:rotTrasl(d,0,[L[1],0]);

La matrice di trasformazione risultante, che rappresenta la cinematica diretta del robot 1 DOF rotoidale  $T_{01}$ , risulterà uguale  $a: T_{01} = Q(0,0) R(I,q_1)$ 

(%i7) TR[01]:Q.R;

(%o7) 
$$\begin{pmatrix} \cos(q_1) & -\sin(q_1) & L_1\cos(q_1) \\ \sin(q_1) & \cos(q_1) & L_1\sin(q_1) \\ 0 & 0 & 1 \end{pmatrix}$$

(%i8)

- -I termini  $\binom{L_1\cos(q_1)}{L_1\sin(q_1)}$  rappresentano la cinematica di posizione in termini di coordinate dell'endeffector nel sistema di riferimento inerziale
- -Il blocco  $2x2 \begin{pmatrix} \cos{(q1)} & -\sin{(q1)} \\ \sin{(q1)} & \cos{(q1)} \end{pmatrix}$  rappresenta la cinematica di orientamento del sistema di riferimento inerziale con lo stesso orientamento dell'end-effector.

3

#### 2 DOF RR - 2 gradi di libertà entrambi rotoidali



 $T_{02} := \text{matrice di trasformazione da } R_o \rightarrow R_2$ 

La matrice di trasformazione  $T_{01}$  corrisponde alla matrice di un robot planare 1 DOF R, mentre la matrice  $T_{12}$  corrisponde alla matrice di trasformazione tra la il sistema di riferimento  $R_1$  e  $R_2$ :

$$T_{01}(q_1) = \begin{pmatrix} R(q_1) & L_1 R(q_1) e_x \\ 0 & 1 \end{pmatrix},$$

$$T_{12}(q_2) = \begin{pmatrix} R(q_2) & L_2 R(q_2) e_x \\ 0 & 1 \end{pmatrix},$$

$$T_{02} = T_{01} T_{12} = \left( \begin{array}{cc} R(q_1) & L_1 R(q_1) \ e_x \\ 0 & 1 \end{array} \right) \left( \begin{array}{cc} R(q_2) & L_2 R(q_2) \ e_x \\ 0 & 1 \end{array} \right) = \left( \begin{array}{cc} R_{12} & L_2 R_{12} e_x + L_1 R_1 e_x \\ 0 & 1 \end{array} \right)$$

con  $R_{12} = R(q_1 + q_2) = R(q_1) R(q_2) = R_1 R_2$ 

$$T_{02} = \begin{pmatrix} c_{12} & -s_{12} & L_2 c_{12} + L_1 c_1 \\ s_{12} & c_{12} & L_2 s_{12} + L_1 s_1 \\ 0 & 0 & 1 \end{pmatrix}$$

con  $L_1 := \text{distanza che congiunge } R_0 e R_1$ 

 $L_2 := \text{distanza che congiunge } R_1 e R_2$ 

 $N.B.: c_{12} \longrightarrow \cos(q_1 + q_2); s_{12} \longrightarrow \sin(q_1 + q_2);$ 

Matrice di trasformazione  $T_{01}$  analoga al robot planare 1 DOF R

(%i8) TR[01]:

(%08) 
$$\begin{pmatrix} \cos(q_1) & -\sin(q_1) & L_1\cos(q_1) \\ \sin(q_1) & \cos(q_1) & L_1\sin(q_1) \\ 0 & 0 & 1 \end{pmatrix}$$

La matrice di rotazione  $Q2(q_2, 0)$  permette di orientare il sistema di riferimento  $R_1$  come il sistema di riferimento dell'end – effector  $R_2$ . Poiché il giunto è rotoidale, dovremo ruotare  $R_1$  di un angolo pari alla variabile di giunto  $q_2$ .

(%i9) Q2:rotTrasl(r,q[2],0);

(%09) 
$$\begin{pmatrix} \cos(q_2) & -\sin(q_2) & 0 \\ \sin(q_2) & \cos(q_2) & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

La matrice di traslazione  $R(I, L_2)$  permette di far coincidere le origini del sistema di riferimento  $R_1$  e  $R_2$  tramite una traslazione  $L_2$ , coincidente con la distanza tra il sistema di riferimento  $R_1$  e  $R_2$ .

(%i10) R2:rotTrasl(d,0,[L[2],0]);

(%o10) 
$$\begin{pmatrix} 1 & 0 & L_2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

(%i11) T[12]:Q2.R2;

(%o11) 
$$\begin{pmatrix} \cos(q_2) & -\sin(q_2) & L_2\cos(q_2) \\ \sin(q_2) & \cos(q_2) & L_2\sin(q_2) \\ 0 & 0 & 1 \end{pmatrix}$$

(%i12) TRR[02]:trigreduce(TR[01].T[12])

$$\begin{array}{c} \text{(\%o12)} \; \left( \begin{array}{ccc} \cos{(q_2+q_1)} & -\sin{(q_2+q_1)} & L_2\cos{(q_2+q_1)} + L_1\cos{(q_1)} \\ \sin{(q_2+q_1)} & \cos{(q_2+q_1)} & L_2\sin{(q_2+q_1)} + L_1\sin{(q_1)} \\ 0 & 0 & 1 \end{array} \right) \end{array}$$

## (%i13)

- -I termini  $\begin{pmatrix} L_2\cos{(q_2+q_1)} + L_1\cos{(q_1)} \\ L_2\sin{(q_2+q_1)} + L_1\sin{(q_1)} \end{pmatrix}$  rappresentano la cinematica di posizione in termini di coordinate dell'end-effector nel sistema di riferimento inerziale
- -Il blocco  $2x2 \begin{pmatrix} \cos{(q_2+q_1)} & -\sin{(q_2+q_1)} \\ \sin{(q_2+q_1)} & \cos{(q_2+q_1)} \end{pmatrix}$  rappresenta la cinematica di orientamento del sistema di riferimento inerziale con lo stesso orientamento dell'end-effector.

### 3 DOF RRR - 3 gradi di libertà rotoidali



$$T_{03} := \text{matrice di trasformazione da } R_0 \to R_3$$
 
$$T_{01}(q_1) = \begin{pmatrix} R(q_1) & L_1 R(q_1) \, e_x \\ 0 & 1 \end{pmatrix},$$
 
$$T_{12}(q_2) = \begin{pmatrix} R(q_2) & L_2 R(q_2) \, e_x \\ 0 & 1 \end{pmatrix},$$
 
$$T_{23}(q_3) = \begin{pmatrix} R(q_3) & L_3 R(q_3) \, e_x \\ 0 & 1 \end{pmatrix},$$
 
$$T_{03} = T_{01} T_{12} T_{23} = \begin{pmatrix} R(q_1) & L_1 R(q_1) \, e_x \\ 0 & 1 \end{pmatrix} \begin{pmatrix} R(q_2) & L_2 R(q_2) \, e_x \\ 0 & 1 \end{pmatrix} \begin{pmatrix} R(q_3) & L_3 R(q_3) \, e_x \\ 0 & 1 \end{pmatrix} =$$
 
$$= \begin{pmatrix} R_{12} & L_2 R_{12} e_x + L_1 R_1 e_x \\ 0 & 1 \end{pmatrix} \begin{pmatrix} R(q_3) & L_3 R(q_3) \, e_x \\ 0 & 1 \end{pmatrix} =$$
 
$$= \begin{pmatrix} R_1 R_2 R_3 & L_3 R_1 R_2 R_3 e_x + L_2 R_{12} e_x + L_1 R_1 e_x \\ 0 & 1 \end{pmatrix}$$

$$\operatorname{con} R_{12} = R(q_1 + q_2) = R(q_1) R(q_2) = R_1 R_2,$$

 $L_1 := \text{distanza che congiunge } R_0 e R_1$ 

 $L_2 := \text{distanza che congiunge } R_1 e R_2$ 

 $L_3 := \text{distanza che congiunge } R_2 e R_3$ 

La matrice di trasformazione  $T_{02}$ è identica alla matrice di un robot planare 2 DOF RR (%i13) TRR[02];

(%o13) 
$$\begin{pmatrix} \cos(q_2+q_1) & -\sin(q_2+q_1) & L_2\cos(q_2+q_1) + L_1\cos(q_1) \\ \sin(q_2+q_1) & \cos(q_2+q_1) & L_2\sin(q_2+q_1) + L_1\sin(q_1) \\ 0 & 0 & 1 \end{pmatrix}$$

La matrice di rotazione  $Q_3(q_3, 0)$  permette di orientare il sistema di riferimento  $R_2$  come il sistema di riferimento dell'end – effector  $R_3$ . Poiché il giunto è rotoidale, dovremo ruotare  $R_1$  di un angolo pari alla variabile di giunto  $q_3$ .

(%i14) Q3:rotTrasl(r,q[3],0);

(%o14) 
$$\begin{pmatrix} \cos(q_3) & -\sin(q_3) & 0 \\ \sin(q_3) & \cos(q_3) & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

La matrice di traslazione  $R(I, L_3)$  permette di far coincidere le origini del sistema di riferimento  $R_2$  e  $R_3$  tramite una traslazione  $L_3$ , coincidente con la distanza tra il sistema di riferimento  $R_2$  e  $R_3$ .

(%i15) R3:rotTrasl(d,0,[L[3],0]);

(%o15) 
$$\left( \begin{array}{ccc} 1 & 0 & L_3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right)$$

(%i16) TRR[23]:Q3.R3;

(%o16) 
$$\begin{pmatrix} \cos(q_3) & -\sin(q_3) & L_3\cos(q_3) \\ \sin(q_3) & \cos(q_3) & L_3\sin(q_3) \\ 0 & 0 & 1 \end{pmatrix}$$

(%i17) TRRR[03]:trigreduce(TRR[02].TRR[23])

(%o17)  $(\cos(q_3+q_2+q_1), -\sin(q_3+q_2+q_1), L_3\cos(q_3+q_2+q_1) + L_2\cos(q_2+q_1) + L_1\cos(q_1); \sin(q_3+q_2+q_1), \cos(q_3+q_2+q_1), L_3\sin(q_3+q_2+q_1) + L_2\sin(q_2+q_1) + L_1\sin(q_1); 0, 0, 1)$ 

## (%i18)

- -I termini  $\begin{pmatrix} L_3\cos\left(q_3+q_2+q_1\right)+L_2\cos\left(q_2+q_1\right)+L_1\cos\left(q_1\right)\\ L_3\sin\left(q_3+q_2+q_1\right)+L_2\sin\left(q_2+q_1\right)+L_1\sin\left(q_1\right) \end{pmatrix}$  rappresentano la cinematica di posizione in termini di coordinate dell'end-effector nel sistema di riferimento inerziale;
- -Il blocco 2x2  $\begin{pmatrix} \cos{(q_3+q_2+q_1)} & -\sin{(q_3+q_2+q_1)} \\ \sin{(q_3+q_2+q_1)} & \cos{(q_3+q_2+q_1)} \end{pmatrix}$  rappresenta la cinematica di orientamento del sistema di riferimento inerziale con lo stesso orientamento dell'end-effector.

Robot cartesiano 2 DOF PP - 2 gradi di libertà prismatici



 $T_{02} := \text{matrice di trasformazione da } R_o \rightarrow R_2$ 

$$T_{01}(q_1) = \left(\begin{array}{cc} I & q_1 e_y \\ 0 & 1 \end{array}\right),$$

$$T_{12}(q_1) = \left(\begin{array}{cc} I & q_2 e_x \\ 0 & 1 \end{array}\right),$$

$$T_{02} = T_{01} T_{12} = \begin{pmatrix} I & q_1 e_y \\ 0 & 1 \end{pmatrix} \begin{pmatrix} I & q_2 e_x \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} I & q_2 e_x + q_1 e_y \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & q_2 \\ 0 & 1 & q_1 \\ 0 & 0 & 1 \end{pmatrix}$$

La matrice di trasformazione  $T_{01}$  è composta dalla matrice di rotazione Q(0,0) e matrice di traslazione  $R(I, q_1e_y)$  e fa coincidere il sistema di riferimento  $R_0$  con il sistema di riferimento  $R_1$ .

(%i18) TPP[01]:rotTrasl(r,0,0).rotTrasl(d,0,[0,q[1]]);

(%o18) 
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & q_1 \\ 0 & 0 & 1 \end{pmatrix}$$

La matrice di trasformazione  $T_{12}$  è composta dalla matrice di rotazione Q(0,0) e matrice di traslazione  $R(I, q_2e_x)$  e fa coincidere il sistema di riferimento  $R_1$  con il sistema di riferimento  $R_2$ .

(%i19) TPP[12]:rotTrasl(r,0,0).rotTrasl(d,0,[q[2],0]);

(%o19) 
$$\begin{pmatrix} 1 & 0 & q_2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

(%i20) TPP[02]:TPP[01].TPP[12];

(%o20) 
$$\begin{pmatrix} 1 & 0 & q_2 \\ 0 & 1 & q_1 \\ 0 & 0 & 1 \end{pmatrix}$$

(%i21)

-I termini  $\begin{pmatrix} q_2 \\ q_1 \end{pmatrix}$  rappresentano la cinematica di posizione in termini di coordinate dell'end-effector nel sistema di riferimento inerziale

-Il blocco  $2x2\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$  rappresenta la cinematica di orientamento del sistema di riferimento inerziale con lo stesso orientamento dell'end-effector.

## 2 DOF RP - 2 gradi di libertà: il primo rotoidale, il secondo prismatico



Per questioni di leggibilità il sistema di riferimento  $R_2$  (in giallo) è stato posto in basso e non al centro dell'end-effector.

$$T_{01} = \begin{pmatrix} R_1 & L_1 R_1 e_x \\ 0 & 1 \end{pmatrix},$$

$$T_{12} = \begin{pmatrix} I & q_2 e_y \\ 0 & 1 \end{pmatrix},$$

$$T_{02} = T_{01} T_{12} = \begin{pmatrix} R_1 & L_1 R_1 e_x \\ 0 & 1 \end{pmatrix} \begin{pmatrix} I & q_2 e_y \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} R_1 & R_1 q_2 e_y + L_1 R_1 e_x \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} c_1 & -s_1 & -q_2 s_1 + L_1 c_1 \\ s_1 & c_1 & q_2 c_1 + L_1 s_1 \\ 0 & 0 & 1 \end{pmatrix}$$

(%i21) TRP[01]:rotTrasl(r,q[1],[0,0]).rotTrasl(d,0,[L[1],0]);

(%o21) 
$$\begin{pmatrix} \cos(q_1) & -\sin(q_1) & L_1\cos(q_1) \\ \sin(q_1) & \cos(q_1) & L_1\sin(q_1) \\ 0 & 0 & 1 \end{pmatrix}$$

(%i22) TRP[12]:rotTrasl(r,0,[0,0]).rotTrasl(d,0,[0,q[2]]);

(%o22) 
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & q_2 \\ 0 & 0 & 1 \end{pmatrix}$$

(%i23) TRP[02](q1,q2):=TRP[01].TRP[12];

(%023)  $TRP_2(q1, q2) := TRP_1 \cdot TRP_{12}$ 

(%i24) TRP[02](q1,q2);

(%o24) 
$$\begin{pmatrix} \cos(q_1) & -\sin(q_1) & L_1\cos(q_1) - q_2\sin(q_1) \\ \sin(q_1) & \cos(q_1) & L_1\sin(q_1) + q_2\cos(q_1) \\ 0 & 0 & 1 \end{pmatrix}$$

#### (%i25)

- -I termini  $\begin{pmatrix} L_1\cos{(q_1)}-q_2\sin{(q_1)} \\ L_1\sin{(q_1)}+q_2\cos{(q_1)} \end{pmatrix}$  rappresentano la cinematica di posizione in termini di coordinate dell'end-effector nel sistema di riferimento inerziale
- -Il blocco  $2x2 \begin{pmatrix} \cos{(q_1)} & -\sin{(q_1)} \\ \sin{(q_1)} & \cos{(q_1)} \end{pmatrix}$  rappresenta la cinematica di orientamento del sistema di riferimento inerziale con lo stesso orientamento dell'end-effector.

# ${\bf 2}$ ${\bf DOF}$ ${\bf PR}$ - 2 gradi di libertà: prismatico e rotoidale



 $T_{02} := \text{matrice di trasformazione da } R_o \rightarrow R_2$ 

$$T_{01} = \begin{pmatrix} I & q_1 e_x \\ 0 & 1 \end{pmatrix},$$

$$T_{12} = \begin{pmatrix} R_2 & L_2 R_1 e_x \\ 0 & 1 \end{pmatrix},$$

$$T_{02} = T_{01} T_{12} = \begin{pmatrix} I & q_1 e_x \\ 0 & 1 \end{pmatrix} \begin{pmatrix} R_2 & L_2 R_1 e_x \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} R_2 & q_1 e_x + L_2 R_2 e_x \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} c_2 & -s_2 & -q_1 + L_2 c_2 \\ s_2 & c_2 & L_2 s_2 \\ 0 & 0 & 1 \end{pmatrix}$$

(%i25) TPR[01]:rotTrasl(r,0,[0,0]).rotTrasl(d,0,[q[1],0]);

(%o25) 
$$\left( \begin{array}{ccc} 1 & 0 & q_1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right)$$

(%i26) TPR[12]:rotTrasl(r,q[2],[0,0]).rotTrasl(d,0,[L[2],0]);

(%o26) 
$$\begin{pmatrix} \cos(q_2) & -\sin(q_2) & L_2\cos(q_2) \\ \sin(q_2) & \cos(q_2) & L_2\sin(q_2) \\ 0 & 0 & 1 \end{pmatrix}$$

(%i27) TPR[02]:TPR[01].TPR[12];

(%o27) 
$$\begin{pmatrix} \cos(q_2) & -\sin(q_2) & L_2\cos(q_2) + q_1 \\ \sin(q_2) & \cos(q_2) & L_2\sin(q_2) \\ 0 & 0 & 1 \end{pmatrix}$$

#### (%i28)

- -I termini  $\begin{pmatrix} L_2 \cos(q_2) + q_1 \\ L_2 \sin(q_2) \end{pmatrix}$  rappresentano la cinematica di posizione in termini di coordinate dell'endeffector nel sistema di riferimento inerziale;
- -Il blocco  $2x2 \begin{pmatrix} \cos{(q_2)} & -\sin{(q_2)} \\ \sin{(q_2)} & \cos{(q_2)} \end{pmatrix}$  rappresenta la cinematica di orientamento del sistema di riferimento inerziale con lo stesso orientamento dell'end-effector.