

### Uma análise numérica do atrator de Lorenz

Lucas Amaral Taylor Julio Cezar de Moura Lima

Instituto de Matemática e Estatística da Universidade de São Paulo - USP

Junho de 2024

# Estrutura da apresentação

- 1 Introdução
- 2 Tratamento Numérico
- 3 Erro e convergência
- 4 Conclusão

# O fenômeno de convecção atmosférica

Segundo Charles A. Doswell III, meteorologista americano, o fenômeno de convecção atmosférica, pode ser definido como:

"De um modo geral, a convecção refere-se ao transporte de uma determinada propriedade através do movimento de um fluido, na maioria das vezes com referência ao transporte de calor"

Fonte: Doswell III. C. A., Severe Convective Storms, American Meteorological Society, 1996.

# Finite Amplitude Free Convection as an Initial Value Problem—I

Em 1962, Barry Saltzman publica o artigo que intitula este slide. Nele, Saltzman realiza experimentos meteorológicos e hidrodinâmicos. O artigo, tem dois objetivos:

- Formular um modelo matemático para fenômenos de convecção de natureza não-linear;
- 2 Determinar um método de solução de um caso de movimento convectivo dependente do tempo bidimensionais.

Introdução

### Equação desenvolvida por Saltzman

$$\frac{a}{(1+a^2)^k}\psi = x(t)\sqrt{2}\sin\left(\frac{\pi u}{a}\right)\sin\left(\frac{\pi v}{H}\right) \tag{1}$$

$$\frac{\pi R_o \theta}{R \Delta T} = y(t) \sqrt{2} \cos \left(\frac{\pi u}{a}\right) \sin \left(\frac{\pi v}{H}\right) - z(t) \sin \left(\frac{2\pi}{H}v\right) \tag{2}$$

#### Onde:

- u: coordenada espacial horizontal (m);
- x(t), y(t), z(t): coeficientes dependentes do tempo (amplitudes) (Unidade depende do contexto);
- $\frac{\pi}{u}$ : inverso da profundidade da camada de fluido (máximo de  $\nu$ ) ( $m^{-1}$ );
- a: parâmetro de geometria;
- Ra: número de Rayleigh;
- $R_c$ : valor crítico de  $Ra(R_c = \pi^4(1 + a^2)^3/a^2)$ ;
- $\Delta T$ : diferença de temperatura total (K).

# Equação desenvolvida por Lorenz

Lorenz simplificou a equação desenvolvida por Saltzman, eliminou as funções trigonométricas e adotou equações diferenciais ordinárias. Temos o seguinte resultado:

$$\begin{cases} \frac{dx}{dt} &= \sigma(y - x) \\ \frac{dy}{dt} &= x(\rho - z) - y \\ \frac{dz}{dt} &= xy - \beta z \end{cases}$$

- $\sigma$  controla a sensibilidade do sistema à diferença entre as variáveis x e y (número de Prandtl).
- $\rho$  está associado à taxa de convecção do sistema (número de Rayleigh).
- $\beta$  está associado à geometria do sistema e à diferença entre as taxas de crescimento das variáveis x e z.

# Abordagem

- Utilizamos o método Runge-Kutta para a discretização e resolução do sistema de equações diferenciais;
- 2 Empregamos splines cúbicas para a representação gráfica;
- 3 Aplicamos o *Método dos Mínimos Quadrados (MMQ)* para a **análise da sensibilidade** do sistema.

# Razões para a seleção do Método Runge-Kutta

Optamos pelo Método de Runge-Kutta pelos seguinte motivos:

- 1 O método escolhido calcula inclinações em quatro pontos dentro de cada intervalo de tempo, oferecendo uma aproximação mais precisa em comparação aos métodos aprendidos em aula.
- 2 O método de quarta ordem possui um erro de truncamento local da ordem de  $h^5$  e um erro de truncamento global da ordem de  $h^4$ , onde h é o passo de tempo.

# Método Runge-Kutta

Para as nossas simulações, os valores dos parâmetros utilizados são:

### Parâmetros do sistema

$$\sigma = 10, \quad \rho = 28, \quad \beta = 8/3$$

### Condições iniciais

$$x_0 = 0$$
,  $y_0 = 1$ ,  $z_0 = 1.05$ 

### Configurações do método

Passo de tempo: h = 0.01, Número de passos  $= 1 \times 10^4$ 

# Evolução do atrator em função do número de passos



# Justificativa do emprego de Spline cúbicas

- Garantia de suavidade e continuidade nas curvas, essenciais dada a natureza não-linear e caótica do sistema.
- 2 Métodos, como o de Lagrange, não são adequados devido à perda de informação decorrente da linearização, comprometendo a representação precisa do sistema.

# Spline Cúbicas: resultado obtidos



Produzido pelos autores

# Motivos para a adoção do MMQ

- O MMQ aproxima bem as dinâmicas não-lineares do sistema.
- Quantifica o impacto das alterações nos parâmetros e como pequenas mudanças afetam o sistema.
- 3 Destaca-se pela alta eficiência computacional.

### MMQ: Resultados obtidos



Produzido pelos autores

# Abordagem para o Tratamento do Erro

- 1 O atrator de Lorenz não possui uma solução analítica.
- Usamos a solução numérica com o menor h como referência "exata".

Erro e convergência

3 O erro é a diferença entre as soluções numéricas para diferentes h e essa referência.

# Tabela de Convergência no método RK4

|   | X <sub>0.01</sub> | Y <sub>0.01</sub> | $Z_{0.01}$ | X <sub>0.001</sub> | Y <sub>0.001</sub> | $Z_{0.001}$ | X <sub>0.0001</sub> | $Y_{0.0001}$ | $Z_{0.0001}$ |
|---|-------------------|-------------------|------------|--------------------|--------------------|-------------|---------------------|--------------|--------------|
| 0 | 0.000             | 1.000             | 1.050      | 0.000              | 1.000              | 1.050       | 0.000               | 1.000        | 1.050        |
| 1 | 0.095             | 1.003             | 1.023      | 0.010              | 0.999              | 1.047       | 0.001               | 1.000        | 1.050        |
| 2 | 0.183             | 1.031             | 0.997      | 0.020              | 0.999              | 1.044       | 0.002               | 1.000        | 1.049        |
| 3 | 0.266             | 1.081             | 0.973      | 0.030              | 0.998              | 1.042       | 0.003               | 1.000        | 1.049        |
| 4 | 0.346             | 1.152             | 0.951      | 0.039              | 0.998              | 1.039       | 0.004               | 1.000        | 1.049        |
| 5 | 0.427             | 1.245             | 0.931      | 0.049              | 0.998              | 1.036       | 0.005               | 1.000        | 1.049        |
| 6 | 0.511             | 1.359             | 0.912      | 0.058              | 0.999              | 1.034       | 0.006               | 1.000        | 1.048        |
| 7 | 0.598             | 1.495             | 0.896      | 0.068              | 0.999              | 1.031       | 0.007               | 1.000        | 1.048        |
| 8 | 0.691             | 1.653             | 0.882      | 0.077              | 1.000              | 1.028       | 0.008               | 0.999        | 1.048        |
| 9 | 0.791             | 1.837             | 0.872      | 0.086              | 1.002              | 1.025       | 0.009               | 0.999        | 1.047        |

Erro e convergência

Table: Tabela de Convergência no método RK4

### Diferenças $\Delta X$ , $\Delta Y$ , $\Delta Z$ no método RK4

|   | Δ ent      | tre 0.01 e | 0.001      | Δ entre 0.01 e 0.0001 |       |            |  |
|---|------------|------------|------------|-----------------------|-------|------------|--|
|   | $\Delta X$ | ΔΥ         | $\Delta Z$ | $\Delta X$            | ΔΥ    | $\Delta Z$ |  |
| 0 | 0.000      | 0.000      | 0.000      | 0.000                 | 0.000 | 0.000      |  |
| 1 | 0.085      | 0.004      | -0.024     | 0.094                 | 0.003 | -0.027     |  |
| 2 | 0.163      | 0.032      | -0.047     | 0.181                 | 0.031 | -0.052     |  |
| 3 | 0.236      | 0.083      | -0.069     | 0.263                 | 0.081 | -0.076     |  |
| 4 | 0.307      | 0.154      | -0.088     | 0.342                 | 0.152 | -0.098     |  |
| 5 | 0.378      | 0.247      | -0.105     | 0.422                 | 0.245 | -0.118     |  |
| 6 | 0.453      | 0.360      | -0.122     | 0.505                 | 0.359 | -0.136     |  |
| 7 | 0.530      | 0.496      | -0.135     | 0.591                 | 0.495 | -0.151     |  |
| 8 | 0.614      | 0.653      | -0.146     | 0.683                 | 0.653 | -0.166     |  |
| 9 | 0.705      | 0.835      | -0.153     | 0.782                 | 0.838 | -0.175     |  |

Table: Diferenças entre os valores de X, Y e Z para diferentes passos de integração

# Convergência do Erro no Método RK4

 Redução do Erro com Passos Menores: Passos menores no RK4 resultam em valores mais precisos. As diferenças  $\Delta X$ ,  $\Delta Y$ e  $\Delta Z$  diminuem à medida que o passo de integração é reduzido.

Erro e convergência

 Convergência do Método RK4: Passos menores mostram que o RK4 converge para a solução correta. Os valores de X, Y e Z tornam-se mais próximos com passos menores.

# Principais referências



E. N. Lorenz, *Deterministic Nonperiodic Flow*, Journal of the Atmospheric Sciences, 1963, 20(2), pp. 130-141, doi:10.1175/1520-0469(1963)020;0130:DNF;2.0.CO;2



L. R. Ford, Differential Equations, McGraw-Hill, 1955



R. L. Burden, D. J. Faires, A. M. Burden, *Análise Numérica*, Editora Cengage, 2016



A. M. Roma, J. S. Bevilacqua, R. L. Nós, *Métodos para a solução numérica de equações diferenciais ordinárias a valores iniciais*, Notas de aula, curso de Métodos Numéricos, USP, 2023



Heinz-Otto Peitgen, Hartmut Jürgens, Dietmar Saupe, *Chaos and Fractals*, Springer Science & Business Media, 2013

# Obrigado!