Question Number	Answer		Mark
15(a)	Electrons can exhibit wave behaviour	(1)	
	Electrons diffract as they pass through the graphite Or graphite acts as a diffraction grating	(1)	
	Structure of graphite must be ordered/ regular / layered	(1)	
	The (de Broglie) wavelength of the electrons is similar to the spacing of gaps between atoms	(1)	4
15(b)(i)	Use of $V = W/Q$	(1)	
	$W = 3.8 \times 10^{-16} (\mathrm{J})$	(1)	2
	Example of calculation $W = 1.6 \times 10^{-19} \text{C} \times 2400 \text{ V} = 3.84 \times 10^{-16} \text{ J}$		
15(b)(ii)	Use of $E_k = \frac{1}{2}mv^2$	(1)	
	$v = 2.9 \times 10^7 \mathrm{m \ s^{-1}}$	(1)	2
	(allow ecf from (b)(i))		
	Example of calculation $E_k = 3.8 \times 10^{-16} \text{ J} = \frac{1}{2} 9.11 \times 10^{-31} \text{kg} \times v^2$ $v = 2.90 \times 10^7 \text{ m s}^{-1}$		
15(b)(iii)	(Increasing the accelerating p.d.) would increase the (maximum) momentum of the electrons Or (Increasing the accelerating p.d.) would increase the (maximum) velocity of	(1)	
	the electrons Use of $\lambda = \frac{h}{p}$ so (de Broglie) wavelength of the electrons decreases	(1)	
	So the diameter of the circles would decrease Or Distance between maxima decreases	(1)	3
	Total for question 15		11