MA2108 - Mathematical Analysis I Suggested Solutions

AY19/20 Semester 1

Author: Chong Jing Quan Reviewer: Pan Jing Bin

Question 1

(a) (i) We prove this by induction. The case for n = 1 is clear. Suppose the inequality holds for $n = k \ge 1$. We want to show that the inequality holds for n = k + 1. Indeed, we have

$$x_{k+1} = \sqrt{x_k + 6} \ge \sqrt{0 + 6} > 0$$

and

$$x_{k+1} = \sqrt{x_k + 6} \le \sqrt{3 + 6} = 3$$
,

which completes the induction step.

(ii) We claim that the sequence converges to 3. Observe that

$$|x_{n+1}-3| = |\sqrt{x_k+6}-3| = \left|\frac{x_k-3}{\sqrt{x_k+6}+3}\right| < \frac{1}{3}|x_k-3|.$$

Thus, the sequence contracts and so $\lim_{k\to\infty} x_k = 3$.

(b) The answer is $\limsup y_n = 1$ and $\liminf y_n = -1$. Note that

$$\limsup y_n = \limsup \left(\frac{\cos n}{n} + \sin \frac{n\pi}{6}\right) \le \limsup \left(\frac{\cos n}{n}\right) + \limsup \left(\sin \frac{n\pi}{6}\right) = 0 + 1 = 1.$$

On the other hand, observe that

$$\sup\left\{\frac{\cos n}{n}+\sin\left(\frac{n\pi}{6}\right), n\geq k\right\}\geq \sup\left\{\frac{\cos(12n+3)}{12n+3}+\sin\left(\frac{(12n+3)\pi}{6}\right), n\geq k\right\}.$$

Since $\lim_{n\to\infty}\left(\frac{\cos(12n+3)}{12n+3}+\sin\left(\frac{(12n+3)\pi}{6}\right)\right)=1$, it follows that $\limsup y_n\geq 1$. Thus, $\limsup y_n=1$. The proof is similar for $\liminf y_n=-1$.

(c) For each positive integer k, and $\forall m > k$, we have $M_k := \sup\{a_n, n \ge k\} \ge a_m$ and $m_k := \inf\{b_n, n \ge k\} \le b_m$. Then whenever $m \ge k$, we have $\frac{a_m}{b_m} \le \frac{M_k}{m_k}$. Since the inequality works for any positive integer $m \ge k$, we get

$$\sup\left\{\frac{a_m}{b_m}, m \ge k\right\} \le \frac{M_k}{m_k}.$$

Taking limit on both sides gives

$$\lim_{k\to\infty}\sup\left\{\frac{a_m}{b_m}, m\geq k\right\} = \limsup_{k\to\infty}\frac{a_k}{b_k} \leq \lim_{k\to\infty}\frac{M_k}{m_k} = \frac{\lim_{k\to\infty}M_k}{\lim_{k\to\infty}m_k} = \frac{\limsup a_k}{\liminf b_k}$$

since (a_n) and (b_n) are bounded sequences.

Question 2

(a) We have

$$\begin{split} \sum_{n=1}^{\infty} \frac{2n+1}{n^2(n+1)^2} &= \lim_{N \to \infty} \sum_{n=1}^{N} \frac{2n+1}{n^2(n+1)^2} \\ &= \lim_{N \to \infty} \sum_{n=1}^{N} \frac{(n+1)^2 - n^2}{n^2(n+1)^2} \\ &= \lim_{N \to \infty} \sum_{n=1}^{N} \left(\frac{1}{n^2} - \frac{1}{(n+1)^2} \right) \\ &= \lim_{N \to \infty} \left(1 - \frac{1}{(N+1)^2} \right) = 1. \end{split}$$

(b) (i) We first show that $\frac{3n^3 - 2n^2 + n + 1}{5n^4 - 3n^3 + 2} > \frac{1}{5n}$ for positive integers n. Since for each positive integer n, we have $n^3 > \frac{2}{3}$ and $n^2 \ge 1$, this implies that

$$\frac{3n^3 - 2n^2 + n + 1}{5n^4 - 3n^3 + 2} = \frac{\frac{3}{n} - \frac{2}{n^2} + \frac{1}{n^3} + \frac{1}{n^4}}{5 - \frac{3}{n} + \frac{2}{n^4}} > \frac{\frac{3}{n} - \frac{2}{n^2}}{5} \ge \frac{1}{5n}.$$

Since $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges, the sum $\sum_{n=1}^{\infty} \frac{3n^3 - 2n^2 + n + 1}{5n^4 - 3n^3 + 2}$ diverges as well.

(ii) The series converges by root test. We have

$$\lim_{n \to \infty} \sqrt[n]{\frac{n^2}{10^n} \left(1 + \frac{1}{2n}\right)^{4n^2}} = \lim_{n \to \infty} \frac{1}{10} n^{\frac{2}{n}} \left(1 + \frac{1}{2n}\right)^{4n}.$$

Since $\lim_{n\to\infty} n^{\frac{2}{n}} = 1$ and $\lim_{n\to\infty} \left(1 + \frac{1}{2n}\right)^{4n} = e^2 < 9$, the required limit is less than 1 and so the series converges.

(c) Write $0 \le b_n - a_n \le c_n - a_n$. Since $\sum_{n=1}^{\infty} (c_n - a_n)$ converges (absolutely), the series $\sum_{n=1}^{\infty} (b_n - a_n)$ converges (absolutely) by comparison test. Hence, the series $\sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} (b_n - a_n) + \sum_{n=1}^{\infty} a_n$ converges too.

Question 3

(a) Let $\varepsilon > 0$ be given. Pick $\delta = \min\left\{\frac{1}{4}, \frac{\varepsilon}{24}\right\}$ so that $0 < |x+2| < \delta \implies \left|\frac{2x-3}{2x+3} - 7\right| < \varepsilon$. Indeed, we have $\left|\frac{2x-3}{2x+3} - 7\right| = \left|\frac{-12x-24}{2x+3}\right| = 12|x+2|\left|\frac{1}{2x+3}\right| < 12 \times 2|x+2| < 24 \times \frac{\varepsilon}{24} = \varepsilon.$

The conclusion follows.

(b) The function is only continuous at x = 2. Let $\varepsilon > 0$ be given. Take $\delta = \frac{\varepsilon}{3}$ so that $0 < |x - 2| < \delta \implies |f(x) - 5| < \varepsilon$. Indeed, we have

$$|f(x) - 5| \le \sup\{|(3x - 1) - 5|, |(2x + 1) - 5|\} = 3|x - 2| < 3 \times \frac{\varepsilon}{3} = \varepsilon.$$

Thus, the function is continuous at x = 2.

For $x \neq 2$, consider two cases. If x is rational, then f(x) = 3x - 1. Consider a sequence of irrational numbers $(x_n)_{n=1}^{\infty}$ that converges to x. Then, $f(x_k) = 2x_k + 1$ for each positive integer k. Since $x \neq 2$, the limit $\lim_{k \to \infty} (2x_k + 1) = 2x + 1$ does not equal to f(x) = 3x - 1. Thus, the function is not continuous at rational values other than 2. The case for x is irrational can be handled similarly.

- (c) (i) Since $\lim_{x\to\infty} \frac{g(2x)}{g(x)} = 1$, for a given ε , there exists a positive real number N so that $\left| \frac{g(2x)}{g(x)} 1 \right| < \varepsilon$ for all x > N. Since $2^{n-1}x \ge x$ for positive integers n, we have $\left| \frac{g(2^nx)}{g(2^{n-1}x)} 1 \right| < \varepsilon$ and we are done.
 - (ii) Notice that for $\alpha > 2$, we can write $\alpha = 2^k \beta$ for some positive integer k and real number $1 \le \beta < 2$. As such, we have

$$\lim_{x\to\infty}\frac{g(\alpha x)}{g(x)}=\lim_{x\to\infty}\frac{g(2^k\beta x)}{g(x)}=\lim_{x\to\infty}\left(\frac{g(2^k\beta x)}{g(2^{k-1}\beta x)}\frac{g(2^{k-1}\beta x)}{g(2^{k-2}\beta x)}\cdots\frac{g(2\beta x)}{g(\beta x)}\frac{g(\beta x)}{g(x)}\right).$$

A modification of the proof for part (i) yields $\lim_{x\to\infty}\frac{g(2^k\beta x)}{g(2^{k-1}\beta x)}=1$. On the other hand, since g is increasing, we have $g(x)\leq g(\beta x)< g(2x)$ and so $1\leq \frac{g(\beta x)}{g(x)}<\frac{g(2x)}{g(x)}$. By squeeze theorem, the limit is $\lim_{x\to\infty}\frac{g(\beta x)}{g(x)}=1$. Hence, we conclude that

$$\lim_{x \to \infty} \frac{g(\alpha x)}{g(x)} = 1.$$

Question 4

- (a) By Extreme Value Theorem, f attains its supremum at $x_1 \in [0,1]$ and g attains its supremum at $x_2 \in [0,1]$. If $x_1 = x_2$, there is nothing to prove.
 - Suppose $f(x_1) > f(x_2)$ and $g(x_1) < g(x_2)$, i.e. f and g attains maximum at different points. Then, we see that $f(x_1) g(x_1) = g(x_2) g(x_1) > 0$ and $f(x_2) g(x_2) = f(x_2) f(x_1) < 0$. Thus, by Intermediate Value Theorem, there exists $x_0 \in [0,1]$ so that $f(x_0) = g(x_0)$.
- (b) Without loss of generality, assume $x \ge 0$. Since f is uniformly continuous, there exists $\delta > 0$ so that $|x y| < 2\delta \Longrightarrow |h(x) h(y)| < 1$. Thus, if $|x| = k\delta + r$ for some positive integer k and $0 \le r < \delta$ by triangle inequality, we get

$$|h(x) - h(0)| = |h(x) - h(x - \delta) + h(x - \delta) - h(x - 2\delta) + \dots + h(r) - h(0)|$$

$$\leq |h(x) - h(x - \delta)| + |h(x - \delta) - h(x - 2\delta)| + \dots + |h(r) - h(0)|$$

$$\leq k + 1.$$

Thus, $|h(x)| \le |h(x) - h(0)| + |h(0)| \le k + 1 + |h(0)|$. Since $|x| = k\delta + r \ge k\delta$, it follows that

$$|h(x)| \le \frac{|x|}{\delta} + 1 + |h(0)|.$$

The proof is complete.