

EE3305 / ME3243 Robotic System Design

Description of Project 2
Path Planning and Navigation in ROS
Platform: Turtlebot3 Burger

A/Prof. Prahlad Vadakkepat Dr. Andi Sudjana Putra

Project 2

- You will be simulating a Turtlebot3 maneuvering a maze.
- Turtlebot3 will start from an initial cell (orange) and will move to a destination cell (green).
- Information about Turtlebot3: https://emanual.robotis.com/docs/en/platform/turtlebot3/specifications/ (how to use this?)

Project 2

- You will be simulating a Turtlebot3 maneuvering a maze.
- Turtlebot3 will start from an initial cell (orange) and will move to a destination cell (green).
- Information about Turtlebot3: https://emanual.robotis.com/docs/en/platform/turtlebot3/specifications/ (how to use this?)

Navigate in a Maze

- Design a navigation system for a mobile robot
- Autonomously navigate from start to goal
- Environment is **not fully** known
- Easy task for a human, but complex for a robot, hence the need to divide into sub-problems

What is known and not known

What does the turtlebot need to do?

It needs to detects obstacle on its path to the destination cell.

It needs to plan (and re-plan) how to get to the destination cell.

It needs to move to the destination cell along the the path.

Three Nodes (without Topics)

File structure (example: a345b_path)

Setup the maze

- Import the maze file (EE3305_2022.world).
 - It defines the wall.
 - It shows the initial and destination cells.
- Launch the maze and the Turtlebot3.

Setup the maze

Adjust the destination cell according to the one assigned to you.

This cell is X=1, Y=1.

In test_world_1.world, the cell is defined referring to the centre of the square, i.e., <1.5 1.5>.

Navigate in a Maze

As the robot is moving, it detects walls in certain location.

Control Structure and Its Variables

Steering Control

Motoring Control

Parameters to setup

- Obtained from public variables in BotControl.hpp
- Defined in config.yaml

```
Kp_x:
Ki_x:
to tune these parameters

Kd_x:
Kp_a:
Ki_a:
Kd_a:
dt: 0.1 (assume this is the computation rate)
goal_x:
goal_y:
```

Location of Destination Cell

In EE3305_2023.world

<pose>1.5 1.5 0 0 0 0</pose>

In predefine.hpp

- GOAL_X=1
- GOAL_Y=1

In config.yaml

- goal_x
- goal_y

Files (refer to the 3 nodes)

Detection

range_detect_node.cpp

Path planning

path_plan_node.cpp

Control

bot_control_node.cpp

CMakeLists.txt

CMakeLists.txt

- add_executable
 - path_plan_node
 - src/path_plan_node.cpp
- target_link_libraries
 - path_plan_node
- add executable
 - bot_control_node
 - src/bot_control_node.cpp
- target_link_libraries
 - bot_control_node

form one path planning node

form one PID control node

package.xml

- <buildtool_depend>catkin</buildtool_depend>
- <build_depend>...</build_depend>
- <build_export_depend>...</build_export_depend>
- <exec_depend>...</exec_depend>

roscpp, sensor_msgs,
nav_msgs, geometry_msgs,
std_msgs

To launch the simulation

- Build the package
- Source the workspace
- Launch the environment (one terminal)
 - # In ~/workspace/
 - \$ roslaunch package launch_file.launch
- Launch the simulation (another terminal)
 - # In ~/workspace
 - \$ roslaunch package launch_file.launch
 - (different launch file from above)
- If at any time permission is denied to run a file:
 - \$ chmod +x file_name

Report

- 1. Initial conditions. Show the initial and assigned destination cells in the maze.
- Path planning.
 - a) Discuss how the path planning works, in particular the lines titled "Poll the queue" and "Find the path if the goal is found and break the loop",
 - b) Identify: (1) the path planned at the start cell, (2) the path planned at cell O, and (3) the eventual path. Discuss why they are the same or different.
- 3. Navigation. Discuss how the PID control is implemented, including:
 - a) The code that you have added,
 - b) The control gains.
- 4. Performance enhancement. Discuss what you planned to improve, how you did it and the results.
- 5. ROS structure. Include the graph of ROS nodes and topics of the simulation. Identify and describe the 3 main nodes and topics pertaining to those nodes.

The Maze

Explore ROS (command \$ rqt_graph)

- Select "Nodes/Topics (active)".
- Describe the nodes and topics related to the 3 main nodes of the simulation.
 - Identify the nodes and topics.
 - Show the relevant nodes and topics.

Thank you.