DETACHABLE FORMULA SHEET

Formulas

Circum. of circle	$C = 2\pi R$	Escape speed	$v_{\rm esc} = \sqrt{2GM/R} = \sqrt{2}v_{\rm circ}$
Area of disk	$A = \pi R^2$	Wave relation	$f = c/\dot{\lambda}$
Surf. area of sphere	$S = 4\pi R^2$	Photon energy	E = hf
Volume of sphere	$V = \frac{4}{3}\pi R^3$	Redshift	$z \equiv (\lambda_{\mathrm{obs}} - \lambda_{\mathrm{emit}})/\lambda_{\mathrm{emit}}$
Density of object	$\rho = M/V$	Doppler shift	$z = v_{\rm rad}/c \ (v_{\rm rad} \ll c)$
Small-angle formula	$\theta \approx D/d$	Wien's law	$\lambda_{\text{max}} = (0.002898 \text{ m/K})/T$
Force of gravity	$F = Gm_1m_2/d^2$	StephBoltz. law	$F_{ m emit} = \sigma T^4$
Ideal gas law	$P = nk_BT$	Flux-lumin. relation	$F_{\rm obs} = L/4\pi d^2$
Kepler's 3rd law	$P^2 = a^3$	Stellar luminosity	$L = 4\pi R^2 \sigma T^4$
Newton's form	$P^2 = \frac{4\pi^2}{G(m_1 + m_2)}a^3$	Parallax	d = 1/p, d in pc, p in arcsec
Convenient form	$\frac{m_1+m_2}{M_{\odot}} = \left(\frac{a}{AU}\right)^3/\left(\frac{P}{vr}\right)^2$	Magnitude system	$m_2 - m_1 = 2.5 \log_{10}(F_1/F_2)$
Mass balance	$m_1 r_1 = m_2 r_2$	Distance modulus	$m - M = 5\log_{10}(d/10 \text{ pc})$
Momentum balance	$m_1v_1 = m_2v_2$	Jeans mass	$M_J = (5k_BT/Gm_p)^{3/2}(3/4\pi\rho)^{1/2}$
Kinetic energy	$KE = \frac{1}{2}mv^2$	Main seq. lifetime	$ au pprox 1.0 imes 10^{10} (M/{ m M}_{\odot})^{-2.5} { m yr}$
Mass-energy equiv.	$E = mc^2$	Lorentz factor	$\gamma = 1/\sqrt{1 - v^2/c^2}$
Grav. Pot. energy	$GPE = -Gm_1m_2/r$	Special relativity	$t = \gamma t_{\text{prop}}, l = l_{\text{prop}}/\gamma, m = \gamma m_{\text{prop}}$
Orbital energy	E = KE + GPE	Schwarzschild radius	$R_S = 2GM/c^2 \simeq 3(M/{\rm M}_\odot) {\rm km}$
Circular orbit speed	$v_{\rm circ} = \sqrt{GM/R}$	Gravitational redshift	$z = (1 - R_S/r)^{-1/2} - 1 \simeq GM/c^2$
	•		

Units

Astronomical unit	$1 \text{ AU} = 1.496 \times 10^{11} \text{ m}$
Light-year	$1 \text{ ly} = 9.461 \times 10^{15} \text{ m} = 6.324 \times 10^4 \text{ AU}$
Parsec	$1 \text{ pc} = 3.086 \times 10^{16} \text{ m} = 3.262 \text{ ly} = 2.063 \times 10^5 \text{ AU}$
Year	$1 \text{ vr} = 365.25 \text{ d/vr} \times 24 \text{ h/d} \times 60 \text{ min/h} \times 60 \text{ s/min} = 3.15576 \times 10^7 \text{ s}$

Metric Prefixes

yr = 365.25 d/yr × 24 n/d × 60 min/n × 60 s/iiii $1^{\circ} = 60' \text{ (arcmin)} = 3600'' \text{ (arcsec)}; 180^{\circ} = \pi \text{ rad}$ Degree of arc

 $1 \text{ eV} = 1.602 \times 10^{-19} \text{ J}$ Electron-Volt

Quantities

Quantities		n (nano)	10^{-9}
Mass of Sun	$M_{\odot} = 1.989 \times 10^{30} \text{ kg}$	μ (micro)	10^{-6}
Radius of Sun	$R_{\odot} = 6.955 \times 10^8 \text{ m}$	m (milli)	10^{-3}
Effective temperature of Sun	$T_{\odot} = 5.778 \times 10^3 \text{ K}$	k (kilo)	10^{3}
Luminosity of Sun	$L_{\odot} = 3.839 \times 10^{26} \text{ W}$	M (mega)	10^{6}
Mass of hydrogen atom	$m_{\rm H} = 1.674 \times 10^{-27} \text{ kg}$	G (giga)	10^{9}
		T (tera)	10^{12}

Constants

Speed of light	$c = 2.998 \times 10^8 \text{ m s}^{-1}$
Gravitational constant	$G = 6.673 \times 10^{-11} \text{ m}^3 \text{ kg}^{-1} \text{ s}^{-2}$
Planck's constant	$h = 6.626 \times 10^{-34} \text{ m}^2 \text{ kg s}^{-1}$
Stefan-Boltzmann constant	$\sigma = 5.670 \times 10^{-8} \text{ W m}^{-2} \text{ K}^{-4}$
Boltzmann constant	$k_B = 1.381 \times 10^{-23} \text{ J K}^{-1}$