KagNet: Knowledge-Aware Graph Networks for Commonsense Reasoning

Bill Yuchen Lin, Xinyue Chen, Jamin Chen, Xiang Ren

University of California

EMNLP 2019

Presented by Koo hyeongseok gudtjrdltka@korea.ac.kr 2021.01.08

How to **empower** machines with performing **commonsense reasoning**?

(Specifically, commonsenseQA task)

Where do adults use glue sticks?

A: classroom B: office C: desk drawer

Previous work in commonsense reasoning

Using simply fine-tuning large, pre-trained language models

Such as GPT[1], BERT[2]

=> 1) *Much lower* than human performance

=> 2) Not providing *reusable* structures for *explainable* commonsense reasoning

Motivation

How about *injecting external knowledge*?

[Entity/Event extraction tasks] - Keeping related entities form knowledge bases[1]

[Natural language understanding tasks] – Incorporating related knowledge triples at the word-level[2]

In this work, imposing graph-structured knowledge into models

Contribution

- 1) They effectively <u>utilize external commonsense knowledge graphs</u> in commonsense reasoning
- 2) They propose a *knowledge-aware graph network(KagNet) module*, which model the graphs and perform explainable inferences
- 3) They yield a new <u>state-of-the-art results on commonsenseQA task</u>

Model

Model: Overview

Model: Overview

Schema Graph

Model: Overview

Match

Tokens in questions and answers &

Mentioned concepts from the knowledge graph (specifically, ConceptNet)

Model: Schema graph grounding Question Answer Question **Concepts** Concepts Answer **Graph Construction** via Path Finding Find all paths between question concepts and answer concepts, shorter than k concepts 2) Path pruning By utilizing knowledge graph embedding(KGE) techniques Schema Graph

Model: GCN-LSTM-HPA

Model: GCN(Graph Convolutional Networks)

Why applying GCN to Schema Graph?

<u>Updating node vectors via pooling features of their adjacent nodes</u>

- => 1) Contextually refine the concept vectors
- => 2) Capturing structural patterns of schema graphs

Example

^{*} Applying GCNs on the plain version of schema graphs, ignoring relation types on the edges.

Model: LSTM-based path encoder

Final Goal: "Measuring the plausibility of a candidate answer to a given question"

By applying LSTM-based path encoder, Representing schema graphs with respect to the paths between question concepts and answer concepts

Model: LSTM-based path encoder

Model: HPA(Hierarchical path-based Attention Mechanism)

Average Pooling => <u>Hierarchical</u> path-based <u>Attention</u> Mechanism

Two-levels attention mechanisms

- 1) Not all paths are equally important: *Path-level attention scores*
- 2) Not all question-answer concept pairs equally important: *Concept-pair-level attention scores*

Average Pooling Hierarchical path-based Attention Mechanism

MLP → Sigmoid → Plausibility score

Model: GCN-LSTM-HPA

Model: KagNet(Knowledge-Aware Graph Networks)

Q & A about model

Dataset and code

Dataset(CommonsenseQA)

- : https://www.tau-nlp.org/commonsenseqa
- ⇒ Official split: OFtrain/OFdev/OFtest
- ⇒ In-house split: IHtrain/ IHdev/ IHtest

Code

https://github.com/INK-USC/KagNet

Parameter settings

GCN: 2 Layers (100 dim, 50 dim)

LSTM: 1 bidirectional (128dim)

Pre-train KGE: TransE (100dim)(Initialized with GloVe embeddings)

Statement encoder: BERT-Large

Optimizer: Adam

Path-score threshold: 0.15

Comparison with standard baselines

Model	OFdev-Acc.(%)	OFtest-Acc.(%)
Random guess	20.0	20.0
BIDAF++	-	32.0
QACOMPARE+GLOVE	-	25.7
QABLINEAR+GLOVE	-	31.5
ESIM+ELMO	-	32.8
ESIM+GLOVE	-	34.1
GPT-FINETUNING	47.11	45.5
BERT-BASE-FINETUNING	53.57	53.0
BERT-LARGE-FINETUNING	62.34	56.7
CoS-E (w/ additional annotations)	-	58.2
KAGNET (Ours)	64.46	58.9
Human Performance	-	88.9

Knowledge-agnostic Methods (no external resources)

Increment of 2.2%

Comparison with knowledge-aware baselines

Bidirectional LSTM	Model	Easy Mode IHdev.(%) IHtest.(%)		Hard Mode IHdev.(%) IHtest.(%)	
Bidirectional LSTM	Random guess	33.3	33.3	20.0	20.0
	BLSTMs	80.15	78.01	34.79	32.12
Utilizing external knowledge	— + KV-MN	81.71	79.63	35.70	33.43
	+ CSPT	81.79	80.01	35.31	33.61
	+ TEXTGRAPHCAT	82.68	81.03	34.72	33.15
	+ TripleString	79.11	76.02	33.19	31.02
	- + KAGNET	83.26	82.15	36.38	34.57
	Human Performance	-	99.5	-	88.9

Ablation study

Model	IHdev.(%)	IHtest.(%)
KagNet (standard)	62.35	57.16
: replace GCN-HPA-LSTM w/ R-GCN	60.01	55.08
: w/o GCN	61.84	56.11
: #GCN Layers = 1	62.05	57.03
: w/o Path-level Attention	60.12	56.05
: w/o QAPair-level Attention	60.39	56.13
: using all paths (w/o pruning)	59.96	55.27

Relational GCN

Interpretability: transparent and interpretable inference process

1. Concept-pair-level attention scores

2. Path-level attention scores

```
ink -PartOf-> fountain_pen
ink -RelatedTo-> container <-IsA- fountain_pen
fill <-HasSubEvent- ink <-AtLocation- fountain_pen
fill -RelatedTo-> container <-IsA- fountain_pen
write <-UsedFor- pen
write <-UsedFor- pen <-IsA- fountain_pen
paper <-RelatedTo- write <-UsedFor- fountain_pen
..... 2. Ranking via path-level attn.</pre>
```

Transferability: testing with another task while fixing its parameters

Conclusion

- 1) They proposed <u>a knowledge-aware graph network (KagNet)</u>, which is based on GCN and LSTMs, with a hierarchical path-based attention mechanism.
- 2) <u>Effectively utilize external knowledge graphs</u> to model the relations of concepts in the questions and answers from both semantic and symbolic spaces.
- 3) KagNet achieved <u>a new SOTA</u> and provided results in <u>transparent, interpretable way</u>

Limitation

- 1. Negative reasoning: not sensitive to negation words
- 2. Comparative reasoning strategy
- 3. Subjective reasoning
 - ex) "Traveling from new place to new place is likely to be what?" "exhilarating" or "exhausting"?

Limitation

RoBERTa, not using ConceptNet

RoBERTa (ensemble model)	Facebook Al	08/13/2019	72.5
FreeLB-RoBERTa (single model)	Microsoft Dynamics 365 Al Research & UMD	10/03/2019	72.2
RoBERTa + IR (single model)	Microsoft STCA-NLP team	08/23/2019	72.1
RoBERTa (single model)	Facebook Al	08/13/2019	72.1

ALBERT, using ConceptNet

Model	Affiliation	Date	\$	Accuracy \$	Accuracy (*Use: ConceptNet)	\$
Human		03/1	0/2019	88.9		
ALBERT+DESC-KCR (ensemble model)	Microsoft Cognitive Services Research	12/0	2/2020		83.3	
Albert+KD (ensemble model)	HIT-SCIR-QA	12/3	0/2020		80.9	
ALBERT+DESC-KCR (single model)	Microsoft Cognitive Services Research	12/0	2/2020		80.7	
ALBERT+KD (single model)	HIT-SCIR-QA	12/1	0/2020		80.3	

Q&A