SVM One Class Classification

3.5 kmeans

3.5 cm of the control of

- Matlab fitcsvm() or Sklearn svm.OneClassSVM()
 - An unsupervised method to learn a decision function for novelty detection.
 - Classify new data as how similar or how different to the training set. **kNN**??
 - **Like clustering???** Compare either to *k*-means or *GMM* (Gaussian Mixture Model).
 - http://scikit-learn.org/stable/modules/generated/sklearn.svm.OneClassSVM.html#sklearn.svm.OneClassSVM
 - http://scikit-learn.org/stable/auto_examples/covariance/plot_outlier_detection.html#sphx-glr-auto-examples-covariance-plot-outlier-detection-py
 - http://scikit-learn.org/stable/auto_examples/svm/plot_oneclass.html

One-Class SVM Experiments

- sklearn dataset
 - Build **only 1** <u>one</u>-class SVM from ...
 - Data of (one class (majority) + outliers (minority).

% one-class SVM yy = Y * 0; % make all labels = 0 mdl_c1 = fitcsvm(X, yy, , 'KernelFunction', 'rbf'); [~, scores_c1] = predict(mdl_c1, X);

- Iris dataset
 - Build 2 one-class SVMs from ...
 - Unbalanced data of (<u>two</u> classes).
 - Compare to 1 two-class SVM.

- Ovarian cancer dataset
 - Build 2 one-class SVMs from ...
 - **Super** unbalanced data of (**two** classes).
 - **4,000**-dimension data.

SVM RBF One Class, NO Kernel Scale

http://scikit-learn.org/stable/auto_examples/svm/plot_oneclass.html#sphx-glr-auto-examples-svm-plot-oneclass-py

data rng(10) XX = 0.3 * randn(100, 2); X = [XX + 2; XX - 2]; Y = zeros(size(X, 1), 1); XX = 0.3 * randn(20, 2); X_test = [XX + 2; XX - 2]; % Generate outliers a = -4; b = 4; X outliers = (b-a).*rand(20,2) + a;

SVM RBF One Class, NO Kernel Scale

Probability

$W^{T}X$

SVM RBF One Class, **Kernel Scale = 3.5**

http://scikit-learn.org/stable/auto_examples/svm/plot_oneclass.html#sphx-glr-auto-examples-svm-plot-oneclass-py

SVM RBF One Class, **Kernel Scale = 3.5**

Data for building One-Class SVM 3 training test outliers -3 -3 Predictions based on model 0 on training 0.9 100 0.8 200 0.7 0.6 300 0.5 400 0.4 500 0.3 600 0.2 0.1 700 200 300 400 500 600 700

$W^{T}X$

Iris Dataset

SVM / RBF One Class for **Unbalanced** Iris (50 vs. 100) Dataset

- Build model 0 (M0) from data of class 0 (first 50 rows) only.
- Build model 1 (M1) from data of class 1 (100 rows) only.

SVM / RBF One Class for **Unbalanced** Iris (50 vs. 100) Dataset–Cont'd

SVM / RBF for **Unbalanced** Iris (50 vs. 100) Data— One 2-Class SVM

■ Build **ONE** 2-Class model from both classes.

Ovarian Cancer Dataset

Detecting Super Unbalanced Ovarian Cancer Patients (One-Class)

- M0 was trained on healthy patients (C0).
- M1 was trained on ovarian cancer patients (C1).

```
\begin{split} &idx1 = find(Y); &idx0 = find(Y == 0);\\ &x0 = X(idx0,:); &y0 = Y(idx0);\\ &x1 = X(idx1,:); &y1 = Y(idx1);\\ &\textbf{mdl\_c0} = fitcsvm(x0, y0, , 'KernelFunction', 'rbf');\\ &[\sim, \textbf{scores\_c0}] = predict(\textbf{mdl\_c0}, \textbf{x0}); \end{split}
```

- Duplicate healthy records couple times to create a skewed dataset
 - Original data, total 261, Cancer = 121 (46%).

Duplicate data, total 3662, Cancer = 121 (3.4%)

Build One 2-Class SVM

■ Build one 2-class SVM model from **ALL** (unbalanced) patients.

Super Unbalanced Ovarian Cancer Patients (1-Class), Kernel Scale = 0.1

Apply One-Class Classification Using Logit??

- Objective Function for Logistic Regression
 - minimize negative log likelihood

$$\frac{-1}{m} \sum_{i=1}^{m} [Y_i log(P_i) + (1 - Y_i) log(1 - P_i)]$$

- Object function for SVM Kernel
 - Min $L_D = \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j x_i x_j \sum_{i=1}^m \alpha_i$

(Dual form)

• Min
$$L_D = \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j \Phi(\mathbf{x_i}) \Phi(\mathbf{x_j}) - \sum_{i=1}^m \alpha_i$$

Instance-Based Methods

- <u>Eager</u> instance-based learning, like SVM-RBF.
- Lazy instance-based learning. Store past data, NO model construction.
 - Approach $1 \underline{k}$ -nearest neighbor $(\underline{k}NN)$
 - All instances (records) are represented as points in the *n*-D Euclidean space.
 - Assign the majority class of the nearest neighbors to the new (unseen) data.
 - For each query, finding *k*NN can be very time consuming.
 - \blacktriangleright k-nearest neighbors can be far away (very dissimilar) from Q.
 - Approach 2– <u>range query</u>

kNN for Digit Recognition

- Compute distance between each test instance against <u>ALL</u> training data
 - Predict query image based on majority of *k*NN digits. Slow to run.
- Improvements?
 - **Idea 1**: classifying based on distance to the **center** of each class.
 - What is the center of each class?

Data Source: https://www.kaggle.com/c/digit-recognizer/data

Digit Recognition, DM-02-18S

Alreshidi Abdulaziz, Yogita Singh Bader Albulayhis, Sidi Mohamed,

Self Organizing Map (SOM)

- MUCH "better" alternative → Convolutional Neural Network (CNN).
 - Less recognizable patterns. They are no longer centers. They are *features*.

10×10 SOM neurons

© Copyright 2018 by Dr. Chih Lai

Page: 53

Idea 2: Using Smaller Samples from Training Data

Much faster with accuracy tradeoff.

data size used in kNN	Accuracy	Exe Time	
400 (1% of the data)	84%	1sec	
2000 (5% of the data)	91%	20 sec	
5000 (12.5% of the data)	93%	50 sec	
10000 (25% of the data)	95%	2min	

Digit Recognition, DM-02-18S

Alreshidi Abdulaziz, Yogita Singh Bader Albulayhis, Sidi Mohamed,

Compare kNN Classification Quality to Other Methods

- Computing time is bit longer. But, kNN produce not bad result.
- How about executing time and quality of SVM or SVM+RBF?
- How about advanced NN (i.e. CNN)???

Algorithm	Accuracy (%)
Decision Tree	85
Naïve Bayes	82.55
KNN	96.0
Random Forest	96
MLP ← Regular NN	94

Digit Recognition, DM-02-18S

Alreshidi Abdulaziz, Yogita Singh Bader Albulayhis, Sidi Mohamed,

■ Some writings are difficult to classify...

2

1

4

4

Issues in kNN, or Instance-Based Learning

- lacktriangle Difficult choosing right k value
 - If *k* is too small, sensitive to noise points
 - If *k* is too large, neighborhood may include points from other classes

- Numeric attributes with different scales.
 - Distance measures may be dominated by one of the attributes
 - Heights of persons vary from 1.5m to 1.8m. \$\$ of persons vary from \$100K to \$100B.
- Binary attributes.

$$R1 = (0 \quad 0 \quad 0)$$

$$R2 = (1 \quad 1 \quad 0)$$

$$R3 = (1 \quad 0 \quad 1)$$

- Categorical attributes. (e.g. diseases, states...)
 - Convert them to dummy variables...
 - That's it??!!
 - Before RBF, we **never** compare distance btwn records.
 - We only derive θ to compute $\theta^T X$.

100000000000

000000000001

Lazy vs. Eager Learning

- Lazy evaluation
 - kNN or Naïve Bayes (instance-based learner).
 - Less time training but more time predicting need to carry all instances
 - Generalize **beyond** the **current** training data.

- Eager evaluation
 - Decision-tree, logistic, LDA, SVM, SVM RBF (instance-based learner)
 - More time in training but less time in predicting
 - Commit to a fixed / static model.

Reminder

- We discussed many machine learning techniques.
- Try to use all or multiple methods.
- Not only you can compare their performance, but also... WHAT???

MDL-01 2018S, Bank Marketing

Terrence White
Ronald E Twite
Leela Sowjanya Chippada
Ahmad K Lubnani
Mowlid Abdillahi
Nathan Adams

Ensemble Hard / Soft Voting

Characteristics of Classification Algorithms

SVM

• Speed & memory usage are good w/ few support vectors, poor if too many. Difficult to interpret how SVM classifies data w/ kernels. Easy for linear SVM.

Naive Bayes

• Speed & memory usage are good for simple distributions, but poor for kernel distributions and large data sets.

Nearest Neighbor

• Good predictions in low D, but poor predictions in high D. Need kd-trees for speed. Vars can be either continuous or categorical, not both.

Discriminant Analysis

• Accurate when **normal dist**. Otherwise, accuracy varies.

Algorithm	Predictive Accuracy	Fitting Speed	Prediction Speed	Memory Usage	Easy to Interpret	Handles Categorical Predictors
Trees	Medium	Fast	Fast	Low	Yes	Yes
SVM	High	Medium	*	*	*	No
Naive Bayes	Medium	**	**	**	Yes	Yes
Nearest Neighbor	***	Fast***	Medium	High	No	Yes***
Discriminant Analysis	****	Fast	Fast	Low	Yes	No
Ensembles	See Suggestions for Choosing an Appropriate Ensemble Algorithm and General Characteristics of Ensemble Algorithms					

Appendix

Why RBF $\in \infty$ -Space?

•
$$K(a, b) = \exp(-||a - b||^2) / 2\sigma^2 = e^{\frac{-||a - b||^2}{2\sigma^2}}$$
.

■
$$K(x, y) = \exp(-\|x - y\|^2) = \exp(-(x_1 - y_1)^2 - (x_2 - y_2)^2)$$

$$= \exp(-x_1^2 + 2x_1y_1 - y_1^2 - x_2^2 + 2x_2y_2 - y_2^2)$$

$$= \exp(-\|x\|^2) \times \exp(-\|y\|^2) \times \exp(2x^Ty)$$

$$k(x,y) = \exp(-\|x\|^2) \exp(-\|y\|^2) \sum_{n=0}^{\infty} \frac{(2x^Ty)^n}{n!}$$

- \blacksquare Tylor series for e.
 - Raise x & y to n-dimension, divide it by n-factorial, and sum to infinity.

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \cdots$$