Tsinghua-Berkeley Shenzhen Institute INFERENCE AND INFORMATION Fall 2017

Problem Set 7

7.1. Let q(y) > 0 $(y = 0, 1, \dots)$ be a probability mass function for a random variable y and let \mathcal{P} be the set of all PMFs defined over $\{0, \dots, M-1\}$ for a known constant M:

$$\mathcal{P} \triangleq \{p(\cdot)|p(y) = 0 \text{ for all } y \geq M\}$$

We can represent each element p of \mathcal{P} as a M-dimensional vector $[p_0, \dots, p_{M-1}]^T$ that lies on a (M-1)-dimensional simplex, i.e., $\sum_{m=0}^{M-1} p_m = 1$.

- (a) Show that, for all $p \in \mathcal{P}$, $D(q||p) = \infty$.
- (b) Show that, for all $p \in \mathcal{P}$, $D(p||q) < \infty$.
- (c) Find the I-projection of q onto \mathcal{P} , $p^* = \arg\min_p D(p\|q)$, and the corresponding divergence $D(p^*\|q)$ in terms of $Q(y) \triangleq \mathbb{P}(\mathsf{y} \leq y)$, the CDF of the random variable y .

Let \mathcal{P}_{ϵ} be the space of all PMFs with weight of ϵ on values M and above:

$$\mathcal{P}_{\epsilon} \triangleq \left\{ p(\cdot) \middle| \sum_{y=M}^{\infty} p(y) = \epsilon \right\}$$

We can think of \mathcal{P}_{ϵ} as an extension of \mathcal{P} to the distributions defined for all integers that only allows limited weight to be allocated to the values outside $\{0, \dots, M-1\}$.

- (d) Find the I-projection of q onto \mathcal{P}_{ϵ} , $p_{\epsilon}^* = \arg\min_{p} D(p||q)$, and the corresponding divergence $D(p_{\epsilon}^*||q)$ in terms of Q(y). Show that $\lim_{\epsilon \to 0^+} D(p_{\epsilon}^*||q) = D(p^*||q)$.
- (e) Show that \mathcal{P}_{ϵ} can be represented as a linear family of PMFs, i.e.,

$$\mathcal{P}_{\epsilon} = \{ p(\cdot) | \mathbb{E}_p[t(\mathbf{y})] = c \},$$

and invent the appropriate statistic $t(\cdot)$ and constant c.

- (f) Show that p_{ϵ}^* belongs to the exponential family $\mathcal{E}(x, \lambda(x) = x, t(\cdot), \ln q(\cdot))$ and find the value of the parameter x that corresponds to p_{ϵ}^* .
- 7.2. Let x and y be discrete random variables with a joint distribution $p_{x,y}(x,y)$. We wish to approximate this distribution with a separable distribution $q(x,y) = q_x(x)q_y(y)$.
 - (a) Find expressions for $q_{\mathsf{x}}(x)$ and $q_{\mathsf{y}}(y)$ that minimize $D(p_{\mathsf{x},\mathsf{y}} \parallel q)$.
 - (b) Say that x and y take on values in $\{1, 2, 3, 4\}$ and have the joint distribution

$$p_{\mathsf{x},\mathsf{y}}(x,y) = \begin{cases} \frac{1}{4} & x = y = 3 \text{ or } x = y = 4\\ \frac{1}{8} & x \le 2 \text{ and } y \le 2\\ 0 & \text{otherwise} \end{cases}$$

Find the $q_{\mathsf{x}}(x)$ and $q_{\mathsf{y}}(y)$ that minimize $D(q \parallel p_{\mathsf{x},\mathsf{y}})$. Does your answer from part (a) give a value of $D(q \parallel p_{\mathsf{x},\mathsf{y}})$ close to the minimum?