清华大学本科期末考试 2015.7.4

《电子电路与系统基础 I》2015 年春季学期期末考试试题 A卷

	班级	学号	姓名
--	----	----	----

卷面满分 108 分,超过 100 分按 100 分计。所有数值计算只需保留 3 位有效位数即可。

一、填空题(68 分,请在试题纸对应空位填空或画图。对于选择填空题,可选项在()括号后<...>括号内选取):

1、如图 1 所示,这是一个戴维南源驱动 PN 结二极管的电路,其中戴维南源电压 $V_{TH}=5V$,戴维南源内阻为 $R_{TH}=1k\Omega$,二极管伏安特性满足指数律关系,

$$i_D = I_{S0} \left(e^{\frac{v_D}{v_T}} - 1 \right)$$
, 其中 \mathbf{v}_D , \mathbf{i}_D 是二极管由 \mathbf{P} 端指向 \mathbf{N} 端关联参考方向定义下的端

口电压和端口电流, I_{SO} =20fA 是二极管反向饱和电流,热电压 v_T =26mV,以二极管电压 v_D 为待求量,列写关于 v_D 的电路方程 $f(v_D)$ =0,以 v_{TH} , R_{TH} ,及 I_{SO} 、 v_T 等为已知参量,该电路方程为 $f(v_D)$ =(

我们采用牛顿拉夫逊迭代法求解该电路方程, v_D 的初始值取 $v_D^{(0)}$ =0.7V,迭代一次

获得的解 v_n⁽¹⁾ = (

)(数学表达式)

= () V (具体数值解)。

图 1 戴维南电压源驱动二极管

图 2 二极管削波电路

2、二极管采用导通 0.7V 恒压源模型,分析如图 2 所示电路的输入输出转移特性 关系,该关系方程可表述为 $v_{out} = f(v_{in}) = 0$

),

当输入信号 $v_{in}(t)=V_{im}\cos \omega t$, $V_{im}=2V$,如图 3 虚线所示,请在该图上用实线画出输出信号 $v_{out}(t)$ 的波形。

图 3 图 2 削波电路输入输出信号波形

3、如图 4 所示,这是一个由线性电阻网络做负反馈网络的负反馈放大器,在图 上标注合适的输入电压 vin 或输入电流 lin、反馈电压 vf 或反馈电流 lf、误差电压 ve 或误差电流 ie、输出电压 vout 或输出电流 iout 等符号及其参考方向箭头。图示 连接关系为() <串串/并并/串并/并串>连接,反馈网络检测晶体管放 大网络的(),形成(),从() 中扣 除,形成的() 作用到放大网络输入端口, 稳定放大网络的) <前面 5 个空选填:输入电压/输入电流/反馈电压/反馈电流/ 误差电压/误差电流/输出电压/输出电流>,从而形成接近理想的(对该负反馈放大器进行分析,()相加,总参量矩阵(记为 p 矩阵)的 12 元素 p₁₂ 单独取出则形成理想反馈网络,()<电压/电流/ 跨阻/跨导>反馈系数 () $\langle F_{\nu}/F_{i}/R_{F}/G_{F} \rangle$ 等于 () 元素,剩下的三 个元素则是开环放大器基本放大参量,其中,开环放大器的输入电阻 rin 等于),输出电阻 **r**out 等于(),开环() <电压 /电流/跨导/跨阻>增益 () <A_{v0}/A_{i0}/G_{m0}/R_{m0}>等于 ()。对 前述求和参量矩阵再求逆,获得闭环放大器的最适网络参量,定义环路增益 T=),则闭环放大器的输入电阻 r_{inf} 是开环放大器输入电阻 r_{in} 的)倍,闭环放大器的输出电阻 rout 是开环放大器输出电阻 rout 的)倍,闭环放大器的闭环()增益($(A_{vf}/A_{if}/G_{mf}/R_{mf})$) 倍, 在满足深度负反馈条件(是开环增益的(前提下, 闭环增益近似为反馈系数的倒数, 即(

图 4 某种连接关系的负反馈放大器 图 5 某负反馈放大器

4、图 5 所示是一个负反馈放大电路,用如下文字说明它是负反馈连接:假设晶

5、如图 6 所示虚框所围电路可以作为电流放大器使用,假设所有晶体管的厄利电压均为50V,过驱动电压均为 0.2V,左支路直流电流为 $100\mu A$,右支路晶体管宽长比是左支路晶体管宽长比的 10 倍,则右支路直流电流为() mA。如图所示的虚框二端口网络如果作为交流小信号电流放大器,其输入电阻 r_{in} =() $k\Omega$,输出电阻 r_{out} =() $k\Omega$,本征电流增益 A_{io} =()。

6、某 NMOSFET 的 $\mu_n C_{ox} = 100 \, \mu A/V^2$, $V_{TH} = 0.7V$, 现希望该 NMOSFET 工作在恒流导通区,设计

图 6 电流放大器

时希望其恒流导通 $I_D = 2mA$ 工作时的过驱动电压为0.2V,那么设计电路时应取该

晶体管的 W/L=(1.0V, 其栅极电压为()。该晶体管在某电路中其源极电压被设置为

)V且其漏极电压大于()V时,

可确保其恒流导通且 $I_D = 1mA$ 。上述分析中均不考虑厄利效应。

7、将 MOSFET 的栅极和漏极连为一个端点,和源极端点构成一个单端口网络,它被称为 MOS 二极管,该二极管(单端口网络)的端口电压和端口电流分别记为 v_D和 i_D,则其端口描述方程为:(

)。

已知 MOSFET 的工艺参量 β_n , V_m , 不考虑厄利效应。

8、A 类放大器的最高理论效率为 (), B 类放大器的最高理论效率 为 ()。

9、741 运放为了获得高的电压增益,它采用了如下措施(

)。

<尽可能多地列举,用(1)(2)(3)分隔>

10、'互易网络是无源网络'这一论断() <正确/错误>,'单向网络是有源网络'这一论断() <正确/错误>。

11、BJT 被称为双极结型晶体管,其双极 Bipolar 的含义是(

)。

- 12、图 7a 是 NPN-BJT-CE 组态放大电路。图 7b 晶体管伏安特性曲线图上已画出了直流负载线,其上给出了直流工作点位置: $V_{CE0}=6V$, $I_{C0}=1mA$ 。
 - (1) 请在图上直接画交流负载线,标明交流负载线在两个坐标轴上的截距大小。
 - (2) 该放大器线性放大输出正弦波的最大峰值电压为() V。
 - (3) 该放大器的电压放大倍数为 () dB, 计算可取热电压 $v_T = 25mV$ 。

图 7b CE 组态放大电路负载线

13、假设下表图 8 中的所有晶体管均工作于恒流导通区,且形成的二端口网络均可在图标应用条件下进行单向化处理,请给出这些单向化处理后的二端口网络的交流小信号输入电阻、输出电阻和本征增益表达式,表达式中请直接利用晶体管微分元件参量如 g_m , r_{be} , r_{ce} , r_{ds} 等作为已知量。表达式可以是近似公式,表述应尽可能简单,例如无穷大用∞表述,两个电阻 R_1 和 R_2 的并联用 R_1 $||R_2$ 表述,用 R_1 < g_m $|R_2$ 表述 R_1 $||R_2$ 表述,同时对晶体管自身而言, g_m $|R_2$ $||R_2$ $||R_3$ $||R_4$ $||R_5$ $||R_5$ |

Smids//1,明件自勿变电阻 NE MAC SmNE//1,NE/\lbe, Ice。 在 a // D ,可以 a → D ≈ a。		
图 8: 放大器二端口网络	放大器基本参量	
(输入端口 IN,输出端口 OUT)		
······································	输入电阻 r _{in}	
(a) 串串负反馈跨导放大	输出电阻 r _{out} 本征跨导增益 G _{m0}	

二、(7 分)共基组态晶体管是双向网络,故而其输入电阻和负载电阻相关。用加压求流或加流求压法获得图 9a 所示共基组态晶体管的输入电阻表达式,其中晶体管已被直流偏置于恒流导通区。请在图 9b 位置画出随负载电阻变化输入电阻变化的曲线(可分段折线化处理),其中晶体管交流小信号微分元件参量取 $g_m=10mS$, $r_{be}=10k\Omega$, $r_{ce}=100k\Omega$ 。

(a) 共基组态连接关系图 (b) 输入阻抗随负载阻抗变化 图 9 共基组态晶体管的输入阻抗

三、(11 分)如图 10 所示是一个用晶体管实现的电流源电路,已知 $V_{DD}=8V$, $R_1=20k\Omega$, $R_2=20k\Omega$,现希望实现一个输出短路电流为 1mA 的电流源,问: (1) R_S 电阻如何取值?已知工作于恒流导通区的晶体管满足如下约束方程,

- (2) 虚框单端口网络等效诺顿电流源的内阻为多少?
- (3) 对该电流源的负载电阻 RL有何要求以确保电流源的 1mA 恒流输出?

图 10 晶体管电流源

四、(22 分)如图 11a/b 所示的两个单晶体管电路均可用来实现反相电压放大功能。下述分析中,晶体管采用分段折线模型。

- (1) 请分别分析并给出两个电路的输入输出电压转移特性关系方程。
- (2)画转移特性曲线,为了方便作图,取 V_{cc} =+12V , R_{c} =10kΩ ,其中 R_{B} 或 R_{E} 的取值使得这两个电路做反相电压放大器使用时,电压增益为-10,请说明 R_{B} 和 R_{E} 的具体取值,并说明哪个电路的电压增益稳定性更高,为什么?其中晶体管的 β=500,不考虑厄利效应。画特性曲线时,图上标清楚关键点的坐标数值。
- (3) 当输入信号中同时有直流分量和交流分量时, $v_{IN} = V_{IN0} + v_{in}(t)$,分别说明两个电路的输入直流分量 V_{IN0} 取多大时,反相电压放大器具有最大的线性范围。其中具体电路参量设定同(2)问。

共8页,第8页