Bhuvesh Mittal

2210991450

G18

MCQs on CPU Scheduling Algorithms

First-Come, First-Served (FCFS) Scheduling

- 1. What is the main characteristic of FCFS scheduling?
 - a) Processes are executed based on priority
 - b) Processes are executed in the order they arrive
 - c) Shorter jobs are executed first
 - d) Processes are preempted based on time slice
- 2. Which of the following is a disadvantage of FCFS scheduling?
 - a) Simple to implement
 - b) Fair to all processes
 - c) Convoy effect
 - d) Low waiting time
- 3. In FCFS scheduling, if two processes arrive at the same time, how are they scheduled?
 - a) Based on priority
 - b) Based on shortest execution time
 - c) In the order they are listed in the queue
 - d) Randomly
- 4. What is the average waiting time for processes in FCFS scheduling?
 - a) Always zero
 - b) Depends on the order of arrival
 - c) Equal to the burst time of the process
 - d) Minimum for all processes

Shortest Job Next (SJN) Scheduling

- 5. Shortest Job Next (SJN) scheduling is also known as:
 - a) First-Come, First-Served
 - b) Shortest Job First
 - c) Round Robin
 - d) Priority Scheduling
- 6. What is a major drawback of SJN scheduling?
 - a) It is fair
 - b) It can lead to starvation of longer processes
 - c) It is simple to implement
 - d) It minimizes waiting time
- 7. In SJN scheduling, how is the next process to be executed determined?
 - a) By its arrival time
 - b) By its priority level
 - c) By its burst time
 - d) By its completion time
- 8. If process A has a burst time of 4 ms and process B has a burst time of 2 ms, which will be executed first in SJN scheduling?
 - a) Process A
 - b) Process B
 - c) Both simultaneously
 - d) It depends on arrival time

Priority Scheduling

- 9. In priority scheduling, how are processes selected for execution?
 - a) By arrival time
 - b) By the shortest burst time
 - c) By priority level
 - d) By their wait time
- 10. What can happen in a priority scheduling algorithm?
 - a) Starvation of low-priority processes
 - b) All processes are executed in order of arrival
 - c) High-priority processes can be preempted
 - d) It guarantees minimum waiting time

- 11. If two processes have the same priority, how are they scheduled in priority scheduling?
 - a) Based on burst time
 - b) Based on arrival time
 - c) Randomly
 - d) By their identifiers
- 12. Which of the following is a method to prevent starvation in priority scheduling?
 - a) Aging
 - b) FCFS
 - c) Round Robin
 - d) SJN

Shortest Remaining Time Scheduling

- 13. Shortest Remaining Time (SRT) is a preemptive version of which scheduling algorithm?
 - a) FCFS
 - b) SJN
 - c) Priority Scheduling
 - d) Round Robin
- 14. In SRT scheduling, what happens if a new process arrives with a shorter remaining time than the currently running process?
 - a) The current process continues
 - b) The current process is preempted
 - c) The new process waits
 - d) Both processes run simultaneously
- 15. Which of the following is true about SRT scheduling?
 - a) It always leads to starvation
 - b) It is less complex than SJN
 - c) It can improve turnaround time
 - d) It is suitable for batch systems
- 16. What is a potential issue with SRT scheduling?
 - a) High turnaround time
 - b) Increased context switching
 - c) Guaranteed fairness
 - d) All of the above

Round Robin (RR) Scheduling

- 17. In Round Robin scheduling, what is the primary factor determining how long a process runs?
 - a) Burst time
 - b) Priority level
 - c) Time quantum
 - d) Arrival time
- 18. Which of the following describes a time quantum in Round Robin scheduling?
 - a) The total time for all processes
 - b) The maximum time a process can run before being preempted
 - c) The minimum burst time of all processes
 - d) The average waiting time of all processes
- 19. What is a major advantage of Round Robin scheduling?
 - a) Fair allocation of CPU time
 - b) Minimizes turnaround time
 - c) Simple to implement
 - d) Prevents starvation
- 20. What happens if the time quantum is set too high in Round Robin scheduling?
 - a) Increased context switching
 - b) Fairness decreases
 - c) It behaves like FCFS
 - d) Processes get starved

Multiple-Level Queues Scheduling

- 21. In Multiple-Level Queues scheduling, how are processes categorized?
 - a) By their burst time
 - b) By their priority and type
 - c) Randomly
 - d) By arrival time
- 22. What is a key feature of Multiple-Level Queues scheduling?
 - a) All processes share a single queue
 - b) Each queue has its own scheduling algorithm
 - c) Processes are executed only once
 - d) Processes cannot move between queues

- 23. How is a process selected from a Multiple-Level Queue?
 - a) By highest burst time
 - b) By round-robin order across all queues
 - c) Based on the specific scheduling policy of its queue
 - d) Randomly
- 24. Which of the following is a common use case for Multiple-Level Queues scheduling?
 - a) All processes have the same priority
 - b) Differentiating between interactive and batch processes
 - c) Reducing context switching
 - d) Ensuring all processes finish simultaneously
- 25. What is a challenge associated with Multiple-Level Queues scheduling?
 - a) Increased context switching
 - b) Difficult to implements
 - c) Starvation of processes in lower-priority queues
 - d) All of the above