Motor driver for Arduino IFX007T

Edwin.shin 2019.3.23

High Current PN Half Bridge with Integrated Driver IFX007T

• Path resistance of max. 12.8 m Ω @ 25°C (typ. 10.0 m Ω @ 25°C) High side: max. 6.5 m Ω @ 25°C (typ. 5.3 m Ω @ 25°C)

Low side: max. 6.3 m Ω @ 25°C (typ. 4.7m Ω @ 25°C)

- Enhanced switching speed for reduced switching losses
- Capable for high PWM frequency combined with active freewheeling
- Current limitation level of 55A min.
- Status flag diagnosis with current sense capability
- Undervoltage shutdown
- Driver circuit with logic level inputs
- · Adjustable slew rates for optimized EMI
- Operation up to 40V
- Green Production(RoHS compliant)
- JESD471 Qualified

Pin	Symbol	I/O	Function
1	GND	-	Ground
2	IN	I	Input Defines whether high - or low-side switch is activated
3	INH	I	Inhibit When set to low device goes in sleep mode
4,8	OUT	0	Power output of the bridge
5	SR	I	Slew Rate The slew rate of the power switches can be adjusted by connecting a resistor between SR and GND
6	IS	0	Current Sense and Diagnostics
7	vs	-	Supply

Parameter	Symbol Values				Unit	Note or	Number
		Min.	Тур.	Max.		Test Condition	
Supply voltage range for normal	V _{S(nor)}	8	-	40	V	<i>T</i> _j ≥ 25°C	P_4.2.1
operation		8	-	38	٧	<i>T</i> _j < 25°C	
Junction temperature	T _j	-40	-	150	°C	-	P_4.2.2

Parameter	Symbol	Values			Unit	Note or	Number
		Min.	Тур.	Max.		Test Condition	
Undervoltage shutdown		•		•	•		
Switch-ON voltage	V _{UV(ON)}	-	-	5.0	V	V _s increasing	P_5.3.1
Switch-OFF voltage ¹⁾	V _{UV(OFF)}	3.3	-	4.7	٧	V _s decreasing, INH = 1	P_5.3.2
ON/OFF hysteresis	V _{UV(HY)}	-	0.3	-	V	2)	P_5.3.3

NovalithIC™ -Explanation of features

INH

SR

Undervoltage shut down:

Protects the device at low supply voltages

Integrated Current-Sense:

Savings due to integrated current sense:

- Current sense amplifier
- High-current shunt
- Cooling for a power shunt

detection

- PCB area for devices and cooling
- Less pick and place due to decreased BOM

Current

Sense

Limitation

Digital Logic

Gate Driver

Gate Driver

HS off

Current Limitation:

Internal current measurement function to detect and protect against overcurrent situations for HS & LS

Overtemp. Protection:

> Fast and precise integrated temperature sensor

Logic-Level **Input Voltage:**

Direct connection to 3.3V or 5V $\mu C = no level$ shifter needed

Ease-of-Control:

Slewrate

Adjustment

Switching speed can be adjusted via an external slew rate resistor, optimizing between EMI and P_{DISS} and automatically adjusting the dead-time

Current

Limitation

LS

PWM capability:

Тио

GND

- PFET at high-side eliminates use of a charge pump
- Improves EMC performance and provides unlimited PWM frequency

Reduced parasitics:

Integration of HS and LS switches in one package reduces parasitics (stray inductances) dramatically

Protection & Diagnosis

8

Current sense (IS pin)

Device State	Input	Inputs		ıts		Mode	
	INH IN F		HSS	LSS	IS	1	
Normal Operation	0	X	OFF	OFF	0	Stand-by mode	
	1	0	OFF	ON	$I_{\rm IS(offset)}$	LSS active	
	1	1	ON	OFF	CS	HSS active	
Under-Voltage (UV)	X	X	OFF	OFF	0	UV lockout, reset	
Overtemperature (OT)	0	X	OFF	OFF	0	Stand-by mode, reset of latch	
or Short Circuit of HSS or LSS	1	X	OFF	OFF	1	Shut-down with latch, error detected	
Current Limitation Mode/	1	1	OFF	ON	1	Switched mode, error detected1)	
Overcurrent (OC)	1	0	ON	OFF	1	Switched mode, error detected ¹⁾	

1) Will return to normal operation after $t_{\rm CLS}$; Error signal is reset after $2^{\star}t_{\rm CLS}$ (see Chapter 5.3.3)

Inputs	Switches	Current Sense / Status Flag IS
0 = Logic LOW	OFF = switched off	$I_{\rm IS(offset)}$ = Current sense - Offset (for conditions see table: Current
		Sense)
1 = Logic HIGH	ON = switched on	CS = Current sense - high side (for conditions see table: Current Sense)
X = 0 or 1		1 = Logic HIGH (error)

Current Sense

Curren	i Selise						
5.4.6	Differential Current Sense ratio in static on-condition $dk_{\rm HIS} = dI_{\rm I}/dI_{\rm IS}$	dk _{ILIS}	14	19.5	25		$R_{\rm IS} = 1 \text{ k}\Omega$ $I_{\rm L1} = 10 \text{ A}$ $I_{\rm L2} = 40 \text{ A}$
5.4.7	Maximum analog Sense Current, Sense Current in fault Condition	$I_{\rm IS(lim)}$	4	5	6.5	mA	$V_{\rm S}$ = 13.5 V $R_{\rm IS}$ = 1k Ω
5.4.8	Isense Leakage current	$I_{\rm ISL}$	-	-	1	μA	V _{INH} = 0 V
5.4.9	Isense offset current	$I_{\rm IS(offset)}$	30	170	385	μΑ	$V_{\rm S}$ = 18V; $V_{\rm INH}$ = 5 V $I_{\rm SD(HS)}$ = 0 A

$$I_{\rm IS} = \frac{1}{{\rm dk_{ILIS}}} \cdot I_{\rm L} + I_{\rm IS(offset)}$$

$$I_{\rm L} = {\rm dk}_{
m ILIS} \cdot (I_{
m IS} - I_{
m IS(offset)})$$

$$V_{\rm IS}$$
 = $R_{\rm IS} \cdot I_{\rm IS}$.

Switching Time (SR pin)

Parameter	Symbol		Values			Note or	Number
	Min. Typ. Max.			Test Condition			
High-side switch dynamic ch	naracteristic	s	•	•			•
Rise-time of HS	$t_{\rm r(HS)}$	0.05 0.22	0.25 1.3	0.75 4.7	μs	$R_{\rm SR} = 0 \ \Omega$ $R_{\rm SR} = 51 \ k\Omega$	P_5.2.7
Switch-ON delay time HS	t _{dr(HS)}	1.5 2	3.4 15	4.6 31	μs	$R_{\rm SR} = 0 \ \Omega$ $R_{\rm SR} = 51 \ k\Omega$	P_5.2.8
Fall-time of HS	$t_{f(HS)}$	0.05 0.22	0.25 1.3	0.7 4.5	μs	$R_{\rm SR} = 0 \ \Omega$ $R_{\rm SR} = 51 \ k\Omega$	P_5.2.9
Switch-OFF delay time HS	$t_{\rm df(HS)}$	0.8 1.1	2.4 9	4.1 21	μs	$R_{\rm SR} = 0 \Omega$ $R_{\rm SR} = 51 \mathrm{k}\Omega$	P_5.2.10

Definition of switching times high side (R_{load} to GND)

			1						
Low-side switch dynamic characteristics									
Rise-time of LS	$t_{r(LS)}$	0.05 0.22	0.25 1.3	0.7 4.5	μs	$R_{\rm SR} = 0 \ \Omega$ $R_{\rm SR} = 51 \ k\Omega$	P_5.2.11		
Switch-OFF delay time LS	$t_{ m dr(LS)}$	0.2	1.5 7	2.5 16	μs	$R_{SR} = 0 \Omega$ $R_{SR} = 51 \text{ k}\Omega$	P_5.2.12		
Fall-time of LS	$t_{f(LS)}$	0.025 0.18	0.25 1.3	0.7 4.5	μs	$R_{SR} = 0 \Omega$ $R_{SR} = 51 \text{ k}\Omega$	P_5.2.13		
Switch-ON delay time LS	$t_{\rm df(LS)}$	1.6 2.0	4.2 16	5.9 36	μs	$R_{\rm SR} = 0 \Omega$ $R_{\rm SR} = 51 \mathrm{k}\Omega$	P_5.2.14		

Definition of switching times low side (R_{load} to VS)

Due to the timing differences for the rising and the falling edge there will be a slight difference between the length of the input pulse and the length of the output pulse. It can be calculated using the following formulas:

- $$\begin{split} \bullet \quad & \Delta t_{\text{HS}} = (t_{\text{dr(HS)}} + 0.5 \ t_{\text{r(HS)}}) (t_{\text{dr(HS)}} + 0.5 \ t_{\text{r(HS)}}) \\ \bullet \quad & \Delta t_{\text{LS}} = (t_{\text{dr(LS)}} + 0.5 \ t_{\text{r(LS)}}) (t_{\text{dr(LS)}} + 0.5 \ t_{\text{r(LS)}}). \end{split}$$

Motor application diagrams

Each is featuring one P-channel high side MOSFET and one N-channel low side MOSFET with an integrated driver IC in one package.

Due to the P-channel high side switch a charge pump is not needed.

On board of the Motor Control Shield are three IFX007T NovalithIC.

- Each is capable of driving up to 55 A.
- The limited thermal performance of the Shield PCB limits the recommended maximum current to 30 A.

Motor control board schematics

Power supply
TLE4271-2 (5V 0.5A)
TLE4284 DV50(5V 1A)

infineon

(option 1) TLE 4271-2

Features

- Output voltage tolerance ≤ ±2%
- Low-drop voltage
- Integrated overtemperature protection
- · Reverse polarity protection
- Input voltage up to 42 V
- Overvoltage protection up to 65 V (≤ 400 ms)
- Short-circuit proof
- Suitable for use in automotive electronics
- Wide temperature range
- · Adjustable reset and watchdog time
- · Green Product (RoHS compliant)
- AEC Qualified

Table 1 Pin Definitions and Functions

Pin	Symbol	Function
1	I	Input; block to ground directly on the IC with ceramic capacitor.
2	INH	Inhibit
3	RO	Reset Output; the open collector output is connected to the 5 V output via an integrated resistor of 30 kΩ.
4	GND	Ground
5	D	Reset Delay; connect a capacitor to ground for delay time adjustment.
6	WI	Watchdog Input
7	Q	5-V Output ; block to ground with 22 μF capacitor, ESR < 3 Ω .

Table 3 Operating Range

Parameter	Symbol	Limit Values		Unit	Notes
		Min.	Max.		
Input voltage	V_{I}	6	40	٧	_
Junction temperature	$T_{\rm j}$	-40	150	°C	_

 $V_{\rm I}$ = 13.5 V; -40 °C ≤ $T_{\rm j}$ ≤ 125 °C; $V_{\rm INH}$ > $V_{\rm U,INH}$ (unless otherwise specified)

Parameter	Symbol	Limit Values			Unit	Test Condition
	,	Min.	Тур.	Max.		
Output voltage	V_{Q}	4.90	5.00	5.10	٧	5 mA $\leq I_Q \leq$ 550 mA; 6 V $\leq V_I \leq$ 26 V
Output voltage	V_{Q}	4.90	5.00	5.10	٧	26 V $\leq V_{\rm I} \leq$ 36 V; $I_{\rm Q} \leq$ 300 mA
Output current limiting	I_{Qmax}	650	800	-	mA	$V_{Q} = 0 \text{ V}$
Output current				5.10		<i>I</i> _Q ≤ 300 mA

Thermal Resistance

Junction ambient	$R_{ m thja}$	_ _	65 70	K/W K/W	– PG-TO263-7-1
Junction case	$R_{ m thjc} \ Z_{ m thjc}$		3 2	K/W K/W	- t < 1 ms

- 5 V-Output

Reset timing setting

Definitions:

Input

- C_D = delay capacitor
- t_D = reset delay time
- I_D = charge current, typical 14 μA
- $\Delta V = V_{UD}$, typical 1.8 V
- V_{UD} = upper delay timing threshold at C_{D} for reset delay time

 $V_{\rm I}$ = 13.5 V; -40 °C \leq $T_{\rm i}$ \leq 125 °C; $V_{\rm INH}$ > $V_{\rm U,INH}$ (unless otherwise specified)

Parameter	Symbol	Limit Values			Unit	Test Condition
		Min.	Тур.	Max.	1	
Reset Generator						
Switching threshold	V_{RT}	4.5	4.65	4.8	V	-
Reset high voltage	V_{ROH}	4.5	_	-	V	_
Saturation voltage	$V_{RO,SAT}$	-	60	-	mV	$R_{\text{interm}} = 30 \text{ k}\Omega;$ 1.0 V $\leq V_{\text{Q}} \leq 4.5 \text{ V}$
Saturation voltage	$V_{RO,SAT}$	-	200	400	mV	$I_{\rm R}$ = 3 mA ²); $V_{\rm Q}$ = 4.4 V
Reset pull-up	R	18	30	46	kΩ	internally connected to Q
Lower reset timing threshold	V_{LD}	0.2	0.45	0.8	V	$V_{\rm Q} < V_{\rm RT}$
Charge current	I_{D}	8	14	25	μА	$V_{\rm D}$ = 1.0 V
Upper timing threshold	V_{UD}	1.4	1.8	2.3	V	-
Delay time	t_{D}	8	13	18	ms	$C_{\rm D} = 100 \; {\rm nF}$
Reset reaction time	t _{RR}	-	-	3	μs	C _D = 100 nF

Watchdog Timing setting

Watchdog setting with cap value.

Watchdog disable

Connecting the D pin to the output Q via a pullup resistor to compensate the discharge current of the watchdog.

TLE4271-2 test board assembly example.

Thermal considerations How to calculate a heat sink?

Which Power must be dissipated?

$$P_{V} = (V_{I} - V_{Q}) * I_{Q} + V_{I} * I_{q}$$
 $P_{V} = (V_{I} - V_{Q}) * I_{Q} + V_{I} * I_{q}$
 $P_{V} = (V_{I} - V_{Q}) * I_{Q} + V_{I} * I_{q}$
 $P_{V} = (V_{I} - V_{Q}) * I_{Q} + V_{I} * I_{q}$
 $P_{V} = (V_{I} - V_{Q}) * I_{Q} + V_{I} * I_{q}$
 $P_{V} = (V_{I} - V_{Q}) * I_{Q} + V_{I} * I_{q}$
 $P_{V} = (V_{I} - V_{Q}) * I_{Q} + V_{I} * I_{q}$
 $P_{V} = (V_{I} - V_{Q}) * I_{Q} + V_{I} * I_{Q}$
 $P_{V} = (V_{I} - V_{Q}) * I_{Q} + V_{I} * I_{Q}$
 $P_{V} = (V_{I} - V_{Q}) * I_{Q} + V_{I} * I_{Q}$
 $P_{V} = (V_{I} - V_{Q}) * I_{Q} + V_{I} * I_{Q}$
 $P_{V} = (V_{I} - V_{Q}) * I_{Q} + V_{I} * I_{Q}$
 $P_{V} = (V_{I} - V_{Q}) * I_{Q} + V_{I} * I_{Q}$
 $P_{V} = (V_{I} - V_{Q}) * I_{Q} + V_{I} * I_{Q} + V_{I} * I_{Q}$

Which Rthj-a would be needed to dissipate this Power losses?

$$T_{\text{junction}} = (R_{\text{thJA}} * P_{\text{V}}) + T_{\text{ambient}}$$

As a result, the PCB design must ensure a thermal resistance RthJA lower than 29,5K/W.

Referring to the thermal resistance table of the TLE4271-2G:

Thermal Resistance						
Junction ambient	$R_{ m thja}$		65 70	K/W K/W	- PG-TO263-7-1	
Junction case	$R_{ m thjc} \ Z_{ m thjc}$	_	3 2	K/W K/W	- t < 1 ms	

Only a FR4 2s2p board could be used.

TO263

Application-Boards for Rth - Measurement

FR4; $80 \times 80 \times 1.5$ mm; 35μ Cu, 5μ Sn A = 300 mm²; a = 17.32 mm

FR4; $80\,x\,80\,x\,1.5$ mm; $35\,\mu$ Cu, $5\,\mu$ Sn Footprint only

2001 Septides 24 G 2019. All rights reserved.

(option 2) TLE4284 DV50

PG-TO-252-3

Fixed Output Voltage Version

Features

- Adjustable output voltage or 1.5V, 1.8V, 2.6V, 3.3 V, 5.0V output voltage
- 1.0 A output current
- Low dropout voltage, typ. 1 V
- · Short circuit protection
- Overtemperature protection
- Wide operating range up to 40 V
- Wide temperature range of T_i = -40 to 150 °C
- Suitable for use in automotive electronics
- Green Product (RoHS compliant)
- AEC Qualified

Table 1 Pin Definitions and Functions Fixed Output Voltage Versions

Pin No.	Symbol	Function
1	GND	Ground
2, Tab	Q	Output; Connect output pin to GND via a capacitor $C_{\rm Q} \ge 10~\mu{\rm F}$ with ESR $\le 10~\Omega$. Connect to heatsink area.
3	1	Input

Table 10 Electrical Characteristics TLE 4284 DV50 (5.0 V fixed output voltage) -40 °C < $T_{\rm i}$ < 150 °C; $V_{\rm i}$ = 13.5 V, $I_{\rm Q}$ = 10 mA; unless otherwise specified

Parameter	Symbol	Limit Values		Unit	Measuring Conditions	
		min.	typ.	max.		
Output voltage	V_{Q}	4.85	5.00	5.15	V	10 mA $\leq I_{\rm Q} \leq$ 1000 mA; 6.4 V $\leq V_{\rm I} \leq$ 16 V
		_	5.00	-	V	10 mA $\leq I_Q \leq$ 1000 mA; 16V $\leq V_i \leq$ 40 V ¹⁾
Current limit	I_{Qmax}	1000	_	2200	mA	$V_{\rm I} - V_{\rm Q} < 18V;$ $V_{\rm Q} = V_{\rm nom} - 100 \text{ mV}$
		50	200	_	mA	$V_{\rm I}$ = 40 V; $V_{\rm Q}$ = $V_{\rm nom}$ - 100 mV $T_{\rm j}$ = 25 °C

Thermal Resistance

Junction ambient	$R_{\rm thja}$	_	144	K/W	PG-TO252-3-11 footprint only ¹⁾
		-	78	K/W	PG-TO252-3-11 300 mm ² heat sink area ¹⁾
		-	54	K/W	PG-TO252-3-11 600 mm ² heat sink area ¹⁾
Junction case	$R_{ m thjc}$	_	4	K/W	-

¹⁾ FR4, 80 x 80 x 1.5mm², 35µm Cu, 5µm Sn, horizontal position, zero airflow

2001@g0ds24G 2019. All rights reserved.

TO252

Application-Boards for Rth - Measurement

FR4; 80 x 80 x 1.5 mm; 35 μ Cu, 5 μ Sn A = 300 mm²; a = 17.32 mm

FR4; 80 x 80 x 1.5 mm; 35 μ Cu, 5 μ Sn Footprint only

Finite Element Method

(option 3) DC/DC Module

전압강하형(Step Down) 가변 DCDC 모듈

입력전압 5~60V를 출력전압 1.25V ~ 26V 가변출력

○ 제품 설명

본 제품은 전압강하형(Step Down) DC/DC모듈로 입력전압 5~60V를 출력전압 1.25V~26V가변출력됩니다 실험용 소형 전 원공급장치로 사용 가능합니다.

○ 제품 사양

- 등작모드: Step Down mode 입력전압: 5V ~ 60V (권장 50V 이하) 출력전압: 1.25V ~ 26V 출력전류(연속출력): 1.2A (총 20W 이내) 출력전류(최대출력): 3A
- 7 : 43 x 30 x 13 mm (WHD)

http://eleparts.co.kr/goods/view?no=31749

Part of your life. Part of tomorrow.