การทดลองที่ 6

เรื่อง การกำทอนทางไฟฟ้า

วัตถุประสงค์

1. เพื่อศึกษาการเกิดการกำทอนในวงจรไฟฟ้ากระแสสลับเมื่อต่อวงจร RLC แบบอนุกรม ทฤษฎี

ในวงจรไฟฟ้ากระแสสลับที่ประกอบด้วย R , C และ L เมื่อกระแสไฟฟ้า i จะเปลี่ยนแปลงขึ้นอยู่กับ ความถิ่งองแหล่งจ่ายไฟ ในขณะเดียวกันค่าเฟส(phase) ของกระแสและแรงคันจะต่างกันขึ้นอยู่กับค่า R , C และ L ของวงจร จากรูปที่ 1.1 แรงคันคร่อมจุด a และ b จะมีค่าเป็น

$$V_{ab} = V_m \sin \omega t = R \frac{di}{dt} + L \frac{d^2i}{dt^2} + \frac{q}{C}$$
 (1.1)

รูปที่ 1.1 วงจร ไฟฟ้ากระแสสลับที่ต่อ R, C และ L แบบอนุกรม

เมื่อหาอนุพันธ์ของสมการ (1.1) เทียบกับเวลา t จะได้ว่า

$$V_m \omega \cdot \cos \omega t = R \frac{di}{dt} + L \frac{d^2 i}{dt^2} + \frac{i}{C}$$
 (1.2)

สมการ (1.2) นี้คือ สมการอนุพันธ์ลำดับที่สองซึ่งมีคำตอบเป็น

$$i = \frac{V_m \sin(\omega t - \phi)}{\sqrt{R^2 + (\omega L - \frac{1}{\omega C})^2}}$$
(1.3)

โดยที่ ϕ คือมุมเฟส มีค่าเป็น

$$\phi = \tan^{-1} \left(\frac{\left[\omega L - \frac{1}{\omega C} \right]}{R} \right)$$

ซึ่งเป็นความแตกต่างเฟสระหว่าง i กับ V , กระแส i สูงสุดของวงจรคือ

$$I_{m} = \frac{V_{m}}{\sqrt{R^{2} + \left(\omega L - \frac{1}{\omega C}\right)^{2}}}$$

$$(1.4)$$

ตัว C และ L ต่างมีสมบัติกล้ายกับตัวต้านทานตัวหนึ่งเรียกชื่อว่า reactance แทนสัญลักษณ์ \mathbf{X}_{C} และ \mathbf{X}_{L} โดยที่

$$X_C = \frac{1}{\omega C}$$
 ពេទ $X_L = \omega L$

$$\omega L - \frac{1}{\omega C} = X_L - X_C = X$$

$$\sqrt{R^2 + X^2} = Z$$

ค่า Z นี้เรียกชื่อว่า อิมพีแคนซ์ (impedance) จากสมการ (1.4) จะได้ว่า

$$I_m = \frac{V_m}{Z} \tag{1.5}$$

การกำทอนทางไฟฟ้าจะเกิดขึ้นเมื่อ X=0 นั่นคือ

$$\omega L = \frac{1}{\omega C} \quad \text{WFo} \quad \omega^2 = \frac{1}{LC} \tag{1.6}$$

เมื่อ
$$\omega = 2\pi f$$

$$\omega^2 = (2\pi f)^2 = \frac{1}{LC}$$

$$f = \frac{1}{2\pi\sqrt{LC}}\tag{1.7}$$

ถ้าให้เฟสเริ่มต้นเป็นศูนย์ ($\phi = 0$) จากสมการที่ 1.3 การกำทอนย่อมจะให้ผลดังนี้คือ

$$i = \frac{V_m \sin \omega t}{R} \tag{1.8}$$

เรียกว่าเกิดการกำทอนแบบอนุกรม (series resonance) และขณะเดียวกันนี้แรงดันไฟคร่อม R จะมีค่า มากที่สุด V_{max}

กรณีของวงจรในรูปที่ 1.2 ซึ่ง L และ C ต่อขนานกัน แรงคันไฟคร่อม R เมื่อเกิดกำทอนขึ้นจะมีค่าต่ำสุด V_{\min} การกำทอนทางไฟฟ้าที่เกิดขึ้นนี้เรียกว่าการกำทอนแบบขนาน(parallel resonance) กรณีเช่นนี้ตรวจสอบได้ โดยการวัดกระแส i ที่ไหลผ่าน R ซึ่งจะมีค่าน้อยที่สุด

รูปที่ 1.2 วงจร R L และ C แบบขนาน

การอานออสซิโลสโคป

ออสซิโลสโคปที่ใช้งานในการทดลองนี้คือออสซิลโลสโคป ยี่ห้อ GW Instek รุ่น GOS-622G ย่าน ความถี่ 20 MHz แบบ สองช่องสัญญาน มีความไวในการวัด 1 mV/div ออสซิลโลสโคป รุ่น GOS-622G มี ลักษณะและส่วนประกอบตามลำดับหมายเลข ดังนี้

รูปที่ 1.3 รูปภาพตำแหน่งตัวเลข ประกอบการใช้งานออสซิโลสโคป

หน้าที่ของสวิตซ์ ปุ่มและขั้วต่อต่างๆ

หมายเลข/ชื่อ	หน้าที่ สวิตซ์กด เปิด - ปิด		
1. Power			
2. Focus	ปุ่มปรับความคมชัดของเส้นที่แสดงบนจอภาพ		
3. ปุ่มปรับแรงดันต่อช่อง	ปรับให้ตำแหน่งกราฟหาง่ายต่อการทดลอง		
4. ปุ่มปรับตำแหน่งแกน y	ใช้ปรับตำแหน่งกราฟ ขึ้น – ลง		
5. ปุ่มปรับเวลาต่อช่อง	ปรับให้ตำแหน่งกราฟหาง่ายต่อการทดลอง		
6. ปุ่มปรับตำแหน่งแกน x	ใช้ปรับตำแหน่งกราฟ ซ้าย – ขวา		
7. การอ่านแรงคัน	อ่านแรงคันจากความสูงของกราฟ ตัวอย่างรูปที่ 5.4		
8. การอ่านคาบเวลา	อ่านค่าคาบเวลาจากความกว้างของกราฟ 1 ลูกคลื่น ตัวอย่างรูปที่ 5.5		
9. ปรับให้กราฟนิ่ง	ปรับไปประมาณกึ่งกลางเพื่อให้กราฟนิ่ง		
10. ช่องสัญญาณ	เลือกช่องสัญญาณให้ตรงกับวงจรที่ใช้ CH1 หรือ CH2		
(O)ปุ่มกดที่ไม่ใช้	ให้กดขึ้นทั้งหมด		
(X) ปุ่มหมุนที่ไม่ใช้	ปรับหมุนไปทั้งขวาสุด		
(V) ក៏អារម៉ាការ អា ភោ	าากแช่ห <i>เ</i> กม <i>า</i> กาเต็ม		

์ ตัวอยางการอ่านค่าแรงดัน

ในการอ่านก่าแรงคันให้อ่านจุดต่ำสุดถึงจุดสูงสุด ปรับปุ่ม 3-4-5-6 เพื่อให้อ่านกราฟง่ายได้ ตามกวาม เหมาะสม

รูปที่ 1.4 ตำแหน่งการอ่านแรงดัน

ตัวอย่าง จากรูปนับได้ 2 ช่อง เมื่อปรับปุ่ม 3(Volts/DIV)ไปที่ ตำแหน่ง 1 V จะได้ว่า แรงดัน = 2 ช่อง x 1 V = 2 Volt.

ตัวอย่างการคาบเวลา

ในการอ่านคาบเวลาให้อ่านจุดยอดกราฟถึงจุดยอดกราฟในตำแหน่งที่ติดกัน ปรับปุ่ม 3-4-5-6 เพื่อให้ อ่านกราฟง่ายได้ ตามความเหมาะสม

รูปที่ 1.5 ตำแหน่งการอ่านคาบเวลา

<u>ตัวอยาง</u> จากรูปนับได้ 2 ช่อง เมื่อปรับปุ่ม 5 ไปที่ตำแหน่ง 20 μ s จะได้ว่า คาบเวลา(t) = 2 ช่อง x 20 μ s = 40 μ s.

รูปที่ 1.6 แสดงเครื่องมือการทดลองการกำทอนทางไฟฟ้า

ร**ูปที่ 1.7** แสดงรูปการวางเครื่องมือสำหรับต่อวงจรแบบอนุกรมและแบบขนาน

อุปกรณ์

1.	ออสซิลโลสโคป	1	เครื่อง
2.	เครื่องกำเนิดสัญญาณ	1	เครื่อง
3.	ตัวด้านทาน	2	ค่า
4.	ตัวเก็บประจุ	3	ค่า
5.	ขดลวดเหนี่ยวนำ	1	ค่า
6.	สายไฟ	5	เส้น

วิธีทำการทดลอง

การกำทอนเมื่อต่อวงจร RLC แบบอนุกรม

- 1.1 นำตัวต้านทาน(R) ขดลวดเหนี่ยวนำ(L) และตัวเก็บประจุ(C) ต่อกันแบบอนุกรมกับเครื่องกำเนิด สัญญาณ ดังรูปที่ 1.1 ใช้สัญญาณแบบไซน์ โดยกดปุ่มของเครื่องกำเนิดสัญญาณไปที่สัญญาณแบบ ไซน์ (ไม่ต้องปรับปุ่มอื่น ๆ)
- 1.2 กำหนดสเกลของเครื่องกำเนิดสัญญาณ โดยการหาความถี่กำทอนจากกราฟ (resonance nomograph) ให้ลากเส้นต่อระหว่างค่าของ L และ C เราก็จะทราบค่าของความถี่กำทอนได้ ใช้ค่านี้สำหรับกำหนด สเกลของเครื่องกำเนิดสัญญาณ
- 1.3 เปิดสวิทซ์เครื่องออสซิลโลสโคป เลือกใช้เพียง channel 1 หรือ channel 2 เพียง 1 channel แล้ววัด ค่าโวลต์คร่อมตัวต้านทาน R (จุด a และ b) โดยปรับตั้งสเกลของแรงดันไว้ค่าใดค่าหนึ่งให้เหมาะสม
- 1.4 ปรับสเกลความถี่ของเครื่องกำเนิดสัญญาณให้ใกล้เคียงกับความถี่ที่ได้จากข้อ 1.2 ทดลองเลื่อน เปลี่ยนค่าความถี่ เพื่อหาความถี่กำทอนจากออสซิลโลสโคป (จะได้แรงดันตกคร่อม R มีค่ามากที่สุด (จุดนี้จะเป็นจุดที่กราฟหรือค่าแรงดันมีค่ามากที่สุดเมื่อเราลองเปลี่ยนความถี่ต่างจากจุดนี้ ไม่ว่าให้มากหรือน้อยค่า แรงคันจะลดลง) ถ้า ไม่พบแสดงว่าต้องตั้งสเกลของเครื่องกำเนิดสัญญาณใหม่ โดยกลับ ไปตรวจสอบ ความถี่จาก resonance nomograph ใหม่จนกว่าจะได้ความถี่กำทอนอย่างคร่าว ๆ หรือตรวจสอบดูว่า วงจรต่อถูกหรือ ไม่ แล้วบันทึกความถี่กำทอนและแรงดันที่อ่านได้จากออสซิลโลสโคป
- 1.5 เมื่อพบความถี่กำทอนแล้ว จากนั้นให้เปลี่ยนความถี่ให้มีค่าต่ำกว่าจุดที่เกิดความถี่กำทอนประมาณ 5 ค่า และเปลี่ยนความถี่ให้มีค่ามากกว่าจุดที่เกิดความถี่กำทอนประมาณ 5 ค่า (ให้ประมาณช่วง

ความถี่ที่ทำการทดลองเองว่ามีค่าพอเหมาะ) ที่แต่ละค่าความถี่ ให้บันทึกค่าโวลต์ที่อ่านได้จากจอ ของออสซิลโลสโคป โดยตั้งสเกลของแรงดันไว้ที่ค่าใดค่าหนึ่งเมื่อต้องการจะอ่านค่าแรงดันจากจอ ออสซิลโลสโคป ส่วนสเกลของเวลาให้ปรับตามความเหมาะสม

- 1.6 การอ่านค่าแรงคันให้อ่านเป็นความสูงจากยอดถึงยอด (peak to peak) หรือจากจุดสูงสุดถึงจุดต่ำสุด
- 1.7 นำผลการทดลองมาเขียนกราฟระหว่างแรงดัน V (แรงดันกระแสสลับ) กับความถี่ f จากออส ซิโลสโคปโดยให้ความต่างศักย์(V) เป็นแกน y ความถี่(f) เป็นแกน x หาค่าความถี่กำทอนจาก จุดสูงสุดหรือต่ำสุดของกราฟ
- 1.8 คำนวณหาค่าความถี่กำทอน โดยใช้สมการที่ 1.7
- 1.9 เปรียบเทียบผลที่ใด้จากกราฟกับผลการคำนวณ

บันทึกผลการทดลองที่ 6 การกำทอนทางไฟฟ้า

การกำทอนเมื่อต่อวงจร RLC แบบอนุกรม

ความถี่ f (k‼z)	ความถี่ f (kHz)		ความต่างศักย์ V (โวลต์)
จากเครื่องกำเนิดความถี่	า (มร) จากอย	วสซิลโลสโคป	
7.5	145	6.9	0.052
9.5	115	8.7	0.068
11.5	98	10.2	0.086
13.5	84	11.9	0.104
15.5	72	13. g	0.120
ความถี่กำทอน = 17.5	65	15.4	0.127
19.5	58	17. 2	0.124
21.5	53	18. 9	0.116
23,5	48	20.8	0.104
25.5	44	22,7	0.096
27, 5	41	24.4	0.086

วิธีการคำนวณ

$$f = \frac{1}{2\pi \sqrt{LC}}$$

$$= \frac{1}{2\pi \sqrt{(1.76 \times 10^{-3}) \times (0.047 \times 10^{-6})}}$$

$$= 17.5 \text{ kHz}$$

สรุปและวิจารณ์ผลการทดลอง