Prisoner's Dilemma

Competitive Strategy, Lecture 4

James Traina

traina@uchicago.edu

Spring 2021

Overview of Today

- Introduction to Game Theory
- Static Games
- Competitive Analysis

Game Theory vs Price Theory

- In Price Theory, rival actions were fixed
 - Monopoly, MC, PC
- In Game Theory, rival actions are conditional on your actions
 - Cournot, Bertrand, Stackelberg
- Better tool to understand...
 - Dynamics of competition/cooperation
 - Real world positioning
 - Value of commitment
 - Network effects

Game Definitions

- Players
- Actions (aka moves)
- Payoffs
- Timing
 - Simultaneous (aka static), e.g. rock-paper-scissors
 - Sequential (aka dynamic), e.g. tic-tac-toe
- Information and randomness beyond the scope of this course

Best Responses

- Solutions are *predictions* of how players will act
- Strategies are fully-specified plans
 - For every decision point, what's your move?
- Solutions are mutual best response strategies
 - No player can do better by unilaterally changing strategy
- Solving is easy
 - For each player, write out each decision point and best response
 - Equilibrium is when best responses coincide

Example 1: Stag Hunt Cooperation

Example 2: Prisoner's Dilemma Competition

Bertrand Game

- Firms compete on prices, all goods and consumers identical
 - Undercutting rival's price means getting all the demand
 - Only Nash Equilibrium is P=MC
- If goods are differentiated, cannot get all the demand, but similar logic

Repeated Play

- Problem: Too much competition?
 - "solitary, poor, nasty, brutish, and short."
- Solution: *repetition*
- Often occurs at a "reasonable" focal point
 - Retail: Department stores mark-up of 200%
 - Oil: OPEC maintains certain historical market shares

Profits with Punishment

