

# Ain Shams University Faculty of Computer and Information Science Scientific Computing department

## Project Title Parallel Median Filter

#### By Team 31 SC

| Name                                   | ID          | Section |
|----------------------------------------|-------------|---------|
| Nour Mohamed Hussein Kamaly            | 20191700701 | 5       |
| Nourhan Abdel-Karim Khalaf Abdel-Hafez | 20191700716 | 5       |
| Mohammed Nour-Elden Abbas Ismael       | 20191700583 | 4       |
| Abdul-Rahman Sayed Ali Mohammed        | 20191700339 | 3       |

Under the supervision of

Dr. Heba Khaled
Scientific Computing Department,
Faculty of computer and Information Science
Ain Shams University

## What is salt and pepper noise?

Salt-and-pepper noise, also known as impulse noise, is a form of noise sometimes seen on digital images. This noise can be caused by sharp and sudden disturbances in the image signal. It presents itself as sparsely occurring white and black pixels.

An effective noise reduction method for this type of noise is the median filter

### **Median filter**

The median filter is a non-linear digital filtering technique, often used to remove noise from an image or signal. Such noise reduction is a typical pre-processing step to improve the results of later processing (for example, edge detection on an image). Median filtering is very widely used in digital image processing because, under certain conditions, it preserves edges while removing noise (but see the discussion below), also having applications in signal processing.





## **Enhancements and findings**

- The time complexity of the median filter in sequential code is O(Width\*Height\* filterSize^2). Width \* Height to filter each pixel in the image and filterSize^2 as each pixel is filtered according to its (filterSize^2) neighbors.
- By using MPI (message passing interface), the image was distributed across N number of processors, each executing the code of the median filter, and the results were gathered at a specific core, to reconstruct the filtered image.
- As we increased the number of cores in parallel programming, the time taken used to decrease, until a threshold then it started to increase afterwards, this is due to the overhead on the processor to distribute the data and the tasks.
- The optimal number of processors to use is 8.

#### **Results**

|              | N*N | 2N*2N | 5N*5N | 10N*10N |
|--------------|-----|-------|-------|---------|
| Sequential   | 61  | 197   | 1230  | 5133    |
| MPI solution | 23  | 78    | 323   | 1313    |

**Unfiltered 10N\*10N picture** 



Sequential filtering



Parallel filtering

