TD 3: Construction de topologies

Exercice 1: Echauffement

Dites si les affirmations suivantes sont vraies ou fausses.

- 1. Soit X, Y deux espaces topologiques, $A \subset X$ et $f: X \to Y$ une application.
 - a) Si f est continue, alors $f|_A:A\to Y$ est continue.
 - b) Si $f|_A$ est continue alors f est continue en tout point de A.
- 2. La topologie produit sur $\{0,1\}^{10}$ est la topologie discrète.
- 3. La topologie produit sur $\{0,1\}^{\mathbb{N}}$ est la topologie discrète.
- 4. On définit sur [-1, 1] la relation d'équivalence \mathcal{R} dont les classes sont $\{-1\}, \{1\}, \{a, -a\}, a \in [0, 1[$. On considère sur $Y = [-1, 1]/\mathcal{R}$ la topologie quotient et on note $\pi : [-1, 1] \to Y$ la projection.
 - a) $\pi([0,1])$ est ouvert.
 - b) $\pi([0,1])$ est un voisinage de $\pi(1)$.
 - c) Cette topologie est séparée.
- 5. On définit sur [-1,1] la relation d'équivalence \mathcal{R} dont les classes sont $\{-1\},\{1\}$ et]-1,1[. On considère sur $Y=[-1,1]/\mathcal{R}$ la topologie quotient.
 - a) C'est la topologie discrète.
 - b) C'est la topologie grossière.

Exercice 2 : A propos de la topologie induite

- 1. Soit X un espace topologie séparé et $A \subset X$, muni de la topologie induite. Montrer que A est séparé.
- 2. Soit X un espace topologique quelconque et ω un élément qui n'est pas dans X. On pose $Y = X \cup \{\omega\}$ et on définit une topologie sur Y (pas la peine de vérifier que c'en est une) en décretant que les ouverts de Y sont \emptyset et les $U \cup \{\omega\}$, avec U ouvert de X.
 - a) Montrer que l'inclusion $j: X \to Y$ est un homéomorphisme sur son image.
 - b) Montrer que Y est séparable.
 - c) Soit $x \neq y$ deux points de X et U, V des ouverts de Y contenant respectivent x et y. Montrer que $U \cap V \neq \emptyset$. En particulier, X peut être séparé sans que Y ne le soit.

Exercice 3 : Séparation et espaces quotients

Soit X un espace topologique et \mathcal{R} une relation d'équivalence sur X.

- 1. Montrer que si X/\mathcal{R} est séparé, alors $\mathcal{R} \subset X \times X$ est fermé.
- 2. Montrer que si $\mathcal{R} \subset X \times X$ est fermé et si $\pi: X \to X/\mathcal{R}$ est ouverte, alors X/\mathcal{R} est séparé.
- 3. On suppose dans cette question que X=E est un espace vectoriel normé et que \mathcal{R} est donné par $x\mathcal{R}y \iff x-y \in F$ où F est un sous-espace vectoriel de E. On note dans ce cas E/F l'espace quotient. Il est naturellement muni d'une structure d'espace vectoriel topologique.

Corentin Gentil 1 ENS Paris, DMA

- a) Montrer l'équivalence entre les 3 points suivants :
 - (i) F est fermé
 - (ii) E/F est normable
 - (iii) E/F est séparé

Indication : pour l'implication (i) \implies (ii), on pourra considérer l'application $||S|| = \inf_{x \in S} d(x, F)$

b) En déduire le résultat suivant : soit $f:E\to\mathbb{R}$ linéaire. Alors :

f est continue \iff ker f est fermé.

Exercice 4: Lemme d'Urysohn

Définition. On dit qu'un espace topologique X est normal (ou T4) si pour tous fermés disjoints $F_0, F_1 \subset X$, il existe des ouverts disjoints $U_0, U_1 \subset X$ tels que $F_0 \subset U_0$ et $F_1 \subset U_1$.

On souhaite montrer le résultat suivant :

Théorème. (Lemme d'Urysohn) Soit X un espace topologique. Les deux assertions suivantes son équivalentes :

- (i) X est normal.
- (ii) pour tous fermés disjoints $F_0, F_1 \subset X$, il existe $f: X \to [0, 1]$ continue qui vaut 0 sur F_0 et 1 sur F_1 .
 - 1. Montrer que (ii) implique (i).
 - 2. Montrer que tout espace métrique est normal.
 - 3. On souhaite montrer que (i) implique (ii). On suppose donc que X est normal et on fixe F_0 et F_1 deux fermés disjoints.
 - a) On note \mathcal{D} l'ensemble des dyadiques de [0,1] (les nombres de la forme $\frac{k}{2^n}, n \in \mathbb{N}, k \in \{0,\ldots,2^n\}$). Montrer qu'il existe une famille de fermés $(G_x)_{x\in\mathcal{D}}$ telle que :
 - $G_0 = F_0$ et $G_1 \subset F_1^c$
 - Si $x < y \in \mathcal{D}$, $G_x \subset \mathring{G}_y$
 - b) On définit $f: X \to \mathbb{R}$ en posant :

$$f(x) = \begin{cases} \inf\{r \in \mathcal{D}, x \in G_r\} & \text{si } x \in G_1\\ 1 & \text{sinon} \end{cases}$$

Montrer que f convient.

Exercice 5 : Quelques propriétés des espaces produits.

- 1. Soit $(X_n)_{n\in\mathbb{N}}$ une famille dénombrable d'espaces topologiques à base dénombrable d'ouverts. Montrer que la topologie produit sur $X=\prod_{n\in\mathbb{N}}X_n$ est à base dénombrable d'ouverts.
- 2. Soit $(X_n)_{n\in\mathbb{N}}$ une famille dénombrable d'espaces topologiques séparables. Montrer que $X=\prod_{n\in\mathbb{N}}X_n$, muni de la topologie produit, est séparable.

3. Soit $((X_i, d_i))_{i \in I}$ une famille d'espaces métriques ayant au moins 2 points. On considère l'espace topologique produit $X = \prod_{i \in I} X_i$. Montrer que X est métrisable si et seulement si I est dénombrable.

Exercice 6: Exemples d'espaces quotient

Dans cet exercice, n désigne un entier naturel et tous les espaces quotient considérés seront munis de la topologie quotient.

- 1. (Tores) On définit le tore de dimension n comme étant le quotient $\mathbb{T}^n := \mathbb{R}^n/\mathbb{Z}^n$ i.e. le quotient de \mathbb{R}^n par la relation d'équivalence $x \sim y \iff x y \in \mathbb{Z}^n$. On note $\mathbb{S}^1 \subset \mathbb{C}$ le cercle unité.
 - Montrer que \mathbb{T}^n et $(\mathbb{S}^1)^n$ sont homéomorphes.
- 2. (Droites projectives réelles) On définit sur $\mathbb{R}^n \setminus \{0\}$ la relation d'équivalence \mathcal{R} par $x\mathcal{R}y \iff x \in \mathbb{R}y$. On note $\mathbb{P}^{n-1}(\mathbb{R}) := \mathbb{R}^n \setminus \{0\}/\mathcal{R}$.
 - a) Montrer que $\mathbb{P}^{n-1}(\mathbb{R})$ est en bijection avec les droites de \mathbb{R}^n .
 - b) Montrer que $\mathbb{P}^n(\mathbb{R})$ est homéomorphe à \mathbb{S}^n/\sim où \mathbb{S}^n désigne la sphère unité de \mathbb{R}^{n+1} et $x \sim y \iff x = y$ ou x = -y (relation d'antipodie).
 - c) Montrer $\mathbb{P}^1(\mathbb{R})$ est homéomorphe à \mathbb{S}^1 .
- 3. (Cônes) Soit X un espace topologique. On considère sur $X \times [0,1]$ le relation d'équivalence \mathcal{R} définie par :

$$(x,t)\mathcal{R}(y,s) \iff (t=s=1) \text{ ou } (x,t)=(y,s)$$

On considère enfin $CX := (X \times [0,1])/\mathcal{R}$ et on note π la projection canonique.

- a) Décrire l'image de $X \times \{1\}$.
- b) Montrer que $x \in X \mapsto \pi(x,0) \in CX$ est un homéomorphisme sur son image. On peut donc identifier X à un sous-ensemble de CX.
- c) On se donne Y un autre espace topologique et $f: X \to Y$ continue. Montrer que l'on peut définir une application continue $Cf: CX \to CY$ telle que pour tout $(x,t) \in X \times [0,1], Cf(\pi_X(x,t)) = \pi_Y(f(x),t).$
- 4. (**Ecrasements**) Soit X un espace topologique et $A \subset X$. On considère sur X le relation d'équivalence \mathcal{R} définie par :

$$x\mathcal{R}y \iff (x \in A \text{ et } y \in A) \text{ ou } x = y$$

On considère enfin $X/\langle A \rangle := X/\mathcal{R}$ et on note π la projection canonique.

- a) Décrire l'image de A dans $X/\langle A \rangle$.
- b) On suppose que A est fermé ou ouvert. Montrer que $\pi: X \setminus A \to X/< A>$ est un homéomorphisme sur son image.
- c) (Un exemple) Montrer que $C\mathbb{S}^n/<\mathbb{S}^n>$ est homéomorphe à \mathbb{S}^{n+1} .

Corentin Gentil 3 ENS Paris, DMA

Exercice 7 : Espace de Helly

On construit dans cet exercice un espace séparable, à base dénombrable de voisinages mais qui n'est pas à base dénombrable d'ouverts. On considère l'espace $[0,1]^{[0,1]}$ des applications de [0,1] dans [0,1], muni de la topologie produit (= de la convergence simple) et son sous-espace H des fonctions croissantes, muni de la topologie induite. C'est l'espace de Helly.

- 1. Montrer que H est séparable et à base dénombrable de voisinages.
- 2. Montrer que H n'est pas à base dénombrable d'ouverts. Indication : Considérer les fonctions $f_x, x \in [0,1]$, telles que $f_x(y) = 0$ si y < x, $f_x(x) = \frac{1}{2}$ et $f_x(y) = 1$ si y > x.

Exercice 8 : Topologie séquentielle (extrait du partiel 2021)

Soit (X, \mathcal{T}) un espace topologique. On dit qu'une partie $A \subset X$ est

- séquentiellement fermée (en abrégé s-fermée) si pour toute suite $(x_n) \in A^{\mathbb{N}}$ et pour tout $x \in X$, $x_n \to_{n \to +\infty} x \implies x \in A$;
- séquentiellement ouverte (en abrégé s-ouverte) si pour toute suite $(x_n) \in X^{\mathbb{N}}$ et pour tout $x \in A, x_n \to_{n \to +\infty} x \implies \exists n_0 \in \mathbb{N}, \forall n \geq n_0, x_n \in A$
- 1. a) Montrer que si A est s-ouverte alors $A^c = X \setminus A$ est s-fermée.
 - b) Montrer que si A est s-fermée, alors A^c est s-ouverte.
- 2. On définit la famille $\mathcal{T}_s \subset \mathcal{P}(X)$ comme étant l'ensemble des parties séquentiellement ouvertes de X.
 - a) Montrer que \mathcal{T}_s est une topologie.
 - b) Comparer \mathcal{T}_s et \mathcal{T} .
 - c) On suppose (uniquement dans cette question) que tout point $x \in X$ possède une base dénombrable de voisinages. Montrer que $\mathcal{T} = \mathcal{T}_s$.
- 3. Soit $(x_n) \in X^{\mathbb{N}}$ et $x \in X$. Montrer que (x_n) converge vers x au sens de la topologie \mathcal{T} si et seulement si (x_n) converge vers x au sens de la topologie \mathcal{T}_s .
- 4. Un exemple où les topologies ne coïncident pas. On considère $X = [0, 1]^{[0,1]}$, muni de la topologie produit.

On note A l'ensemble des applications qui s'annulent excepté en un nombre au plus dénombrable de points.

- a) Montrer que A est séquentiellement fermée.
- b) Montrer que A est dense dans X (pour la topologie produit). En particulier, A n'est pas fermée.

Exercice 9 : Droite et plan de Sorgenfrey

L'espace topologique que nous allons construire fournit des contre-exemples pour un certain nombre de propriétés. Pour des tas de contre-exemples, on pourra consulter le Springer, *Counterexamples in Topology*, Lynn Arthur Steen, J. Arthur SeebachJr.

On munit \mathbb{R} de la topologie dont une base d'ouverts est donnée par les intervalles [a, b], a < b. On note S la droite réelle munie de cette topologie.

- 1. Cette topologie est-elle plus fine que la topologie usuelle? Moins fine?
- 2. Montrer que \mathbb{Q} est dense dans S. En particulier, S est séparable.

Corentin Gentil 4 ENS Paris, DMA

- 3. Montrer que S n'est pas métrisable. Montrer que S ne possède pas de base dénombrable d'ouverts
- 4. On considère dans la suite $S \times S$ muni de la topologie produit et l'antidiagonale $\Delta = \{(x, -x); x \in \mathbb{R}\}$. On note enfin $K = \{(x, -x); x \in \mathbb{Q}\}$. Montrer que Δ est un fermé discret.
- 5. Montrer que K et $L = \Delta \setminus K$ sont fermés.
- 6. On souhaite montrer que K et $\Delta \setminus K$ sont deux fermés disjoints tels que pour tous ouverts U et V,

$$K \subset U \text{ et } \Delta \setminus K \subset V \implies U \cap V \neq \emptyset$$

On fixe donc deux tels ouverts U et V.

- a) Pour $n \in \mathbb{N}$, on pose $K_n = \{x \in [0,1] \setminus \mathbb{Q}; [x,x+2^{-n}[\times [-x,-x+2^{-n}[\subset V]]\}.$ Montrer que $[0,1] = \bigcup_{n \in \mathbb{N}} K_n \cup \mathbb{Q}$.
- b) En admettant le théorème suivant :

Théorème. Soit (X, d) espace métrique compact et $(F_n)_{n \in \mathbb{N}}$ une famille de fermés d'intérieur vide, alors $\bigcup_{n \in \mathbb{N}} F_n$ est d'intérieur vide.

Montrer qu'il existe $n \in \mathbb{N}$ ainsi que $a < b \in \mathbb{R}$ tels que $a < b \in \mathbb{R}$ tels que $a < b \in \mathbb{R}$ au s'adhérence est comprise ici au sens de la topologie usuelle.

- c) Montrer que $\{(x, -x + \epsilon); x \in]a, b[, 0 < \epsilon < 2^{-n}\} \subset V$.
- d) Conclure.
- 7. On considère sur $S \times S$ la relation d'équivalence \mathcal{R} dont les classes d'équivalence sont données par $K, \Delta \setminus K$ et $\{x\}, x \in S \times S \setminus \Delta$. Montrer que \mathcal{R} est fermée mais que $S \times S / \mathcal{R}$ n'est pas séparé.

Corentin Gentil 5 ENS Paris, DMA