# exoplanet classification

march 22, 2025

#### stuff i did

- busy with USA math olympiad, so sorry for the short presentation!!
- went back to the planetary systems classification i was doing a few weeks ago
  - did a literature study of a 2023 paper: <u>Framework for the architecture of exoplanetary systems</u>
    - applying this framework on our dataset

Similar

**Anti-ordered** 

**Ordered** 

**Mixed** 

Similar – similar regardless of distance

Anti-ordered – as planets further, get smaller

Ordered – as planets further, get larger

Mixed – goes back and forth



Fig. 2. Classes of architecture. This schematic diagram shows the four architecture classes: similar, anti-ordered, mixed, and ordered. Depending on how a quantity (e.g. mass or size) varies from one planet to another, the architecture of a system can be identified.

two ways to determine the planetary system architecture type:

two ways to determine the planetary system architecture type:

1. coefficient of similarity – positive for ordered, negative for anti-ordered

$$C_s(q) = \frac{1}{n-1} \sum_{i=1}^{n-1} \left( \log \frac{q_{i+1}}{q_i} \right)$$

where  $q_i$  is some planetary quantity q (ex. mass, radius, orbital period, etc.) for the i<sup>th</sup> planet in a system.

two ways to determine the planetary system architecture type:

1. coefficient of similarity – positive for ordered, negative for anti-ordered

$$C_s(q) = \frac{1}{n-1} \sum_{i=1}^{n-1} \left( \log \frac{q_{i+1}}{q_i} \right)$$

where  $q_i$  is some planetary quantity q (ex. mass, radius, orbital period, etc.) for the i<sup>th</sup> planet in a system.

this is super helpful for distinguishing **ordered** and **anti-ordered** planetary systems

two ways to determine the planetary system architecture type:

2. coefficient of variation – measure magnitude of variation in a set of numbers

$$C_v\left(q\right) = \frac{\sigma\left(q\right)}{\overline{q}}$$

"while similar systems will have a low value of the coefficient of variation, mixed systems will have a high value of coefficient of variation"

defining boundaries for different classes based on planetary mass:

| Architecture clas | s Condition                                                   |     |
|-------------------|---------------------------------------------------------------|-----|
| Anti-ordered      | $C_S(M) < -0.2$                                               |     |
| Ordered           | $C_S(M) > +0.2$                                               |     |
| Similar           | $ C_S(M)  \le 0.2$ and $C_V(M) \le \frac{\sqrt{n-1}}{2}$      | (3) |
| Mixed             | $ C_S(M)  \le 0.2 \text{ and } C_V(M) > \frac{\sqrt{n-1}}{2}$ |     |

apply to our own dataset!! (joined NASA composite systems data + HWC)

\*apparently, due to detection bias, anti-ordered planetary systems have not been found in the authors' data sources yet. might be interesting to look into our new data and see if anything about that has changed!!\*



|              | count |  |  |
|--------------|-------|--|--|
| pl_lm_class  |       |  |  |
| Ordered      | 381   |  |  |
| Similar      | 366   |  |  |
| Anti-ordered | 63    |  |  |
| Mixed        | 8     |  |  |

dtype: int64

our data actually shows different trends than the discussed in the paper...





compared to my old classification:





compared to my old classification:



