ICCS200: Assignment 1 Vikrom Narula

vikrom.nar@gmail.com

9/05/2019

Exercise 1:

We know we have n bottles of wines and one of them is poisonous. We also know we have only $\log_2 n$ testers to test the wine with this restrane we can use the binary system to weed out which bottle is poisonous. We can say 0 is assign to not drink and 1 is assign to drink the amount of binary bit use is $\lceil \log_2(n+1) \rceil$ to see the amount of people to use to solves the problem.

Bottle \ Tester	First person	Second person
1	0	0
2	0	1
3	1	1

Exercise 2:

(1) swap = O(1) , helperMethod1 = O(n) method1 = O(1) + (swap + helperMethod1) O(n) $method1 = O(n^2) \Rightarrow \Theta(n^2)$

This is for both best-case & worst-case.

(2) method2 =
$$O(n) + O(n)(O(1)) \Rightarrow O(n) \Rightarrow \Theta(n)$$

(3)
Method3 =
$$O(1) + O(1) + O(1)(O(n)(O(\log n))) + O(1)$$

= $O(n * \log n) \Rightarrow \Theta(n \log n)$

Exercise 3:

We know length of ys is $\frac{n}{2}$ and loop cost O(n) also in the making of ys. We put ys to recursion so its $T(\frac{n}{2})$

halvingSum =
$$O(n) + O(n) + T(\frac{n}{2}) \Rightarrow O(n)$$

We recursion takes T(n-1) because it take range 1 to length its takes O(1) because it returns and O(n) is the amount it took for copyOfRange anotherSum = $(O(1) + T(n-1)) + O(n) \Rightarrow O(n)$

copyOfRange takes O(n) splitting the list to do recursion take $T(\frac{n}{2})$ and the reset of the code take combinely O(n)

prefixSum =
$$O(n) + T(\frac{n}{2}) + O(n) + T(\frac{n}{2}) + O(n) \Rightarrow O(\log n)$$