

过程控制与系统专题实验报告

实验题目: 下水箱液位前馈-反馈控制系统实验

专业: 自动化

姓名: 张晓宇

班级: 自动化2101

学号: <u>2211410812</u>

1. 实验目的

- 1. 通过本实验进一步了解液位前馈-反馈控制系统的结构与原理。
- 2. 掌握前馈补偿器的设计与调试方法。
- 3. 掌握前馈-反馈控制系统参数的整定与投运方法。

2. 实验设备

- 1. 对象及控制屏、SA-11 挂件一个、SA-12 挂件一个、计算机一台、万用表一个;
 - 2. RS485/232 转换器一个、通讯线一根;
 - 3. SA-44 挂件一个、PC/PPI 通讯电缆一根。

3. 实验原理

本实验的被控制量为下水箱的液位h,主扰动量为变频器支路的流量。本实验要求下水箱液位稳定到给定值,将液位传感器LT3检测到的下水箱液位信号作为反馈信号,在与给定量比较后的差值通过调节器控制电动调节阀的开度,以达到控制下水箱液位的目的。而扰动量经过前馈补偿器后直接叠加在调节器的输出,以抵消扰动对被控对象的影响。本实验系统结构图和方框图如图所示

4. 结构图

图4-1 下水箱液位前馈-反馈系统

(a) 结构图 (b) 方框图

5. 接线图

图5-1 仪表控制"下水箱液位前馈-反馈控制"实验接线图

6. 实验步骤及实验结果

本实验选择中水箱和下水箱串联作为被控对象,实验之前先将储水箱中贮足水量,然后将阀门F1-1、F1-7、F2-1、F2-5全开,将阀门F1-10开至适当开度(40%~80%)、F1-11开至适当开度(30%~70% 阀F1-10>F1-11),其余阀门都关闭。

1. 测量前馈环节静态放大系数 K_F ,将变频器设置为面板控制(PU模式),输出频率设定在15Hz,调节旋钮 R_P 即为调节 K_F 。用万用表测量比值器两侧电压 U_{in1} 、 U_{out} 。依公式(1)计算 K_F 值:

$$K_F = \frac{U_{out} - 1}{U_{in1} - 1} \quad K_F \geqslant 0$$
 (1)

实验测量结果如表6-1所示。

变频器输出	R_P 逆时针到底	R_P 顺时针1圈	R_P 顺时针2圈	R_P 顺时针3圈
$f_{out} = 15 Hz$	$U_{out} = 0$	$U_{out} = 0.65$	$U_{out}\!=\!1.32$	$U_{out}\!=\!1.95$
$U_{in1} = 1.42$	$K_F < 0$	$K_F < 0$	$K_F = 0.76$	$K_F = 2.26$

$f_{out} = 16 Hz$	$U_{out} = 0$	$U_{out}\!=\!0.71$	$U_{out}\!=\!1.49$	$U_{out} = 2.1$
$U_{in1} = 1.56$	$K_F < 0$	$K_F < 0$	$K_F = 0.88$	$K_F = 2.04$
$f_{out} = 17 Hz$	$U_{out} = 0$	$U_{out}=0.77$	$U_{out} = 1.60$	$U_{out} = 2.3$
$U_{in1} = 1.69$	$K_F < 0$	$K_F < 0$	$K_F = 0.87$	$K_F = 1.90$
变频器关闭	$U_{out} = 0$	$U_{out} = 0.44$	$U_{out} = 0.89$	$U_{out} = 1.3$
$U_{in1} = 0.94$	$K_F = 16.66$	$K_F = 9.33$	$K_F = 1.83$	$K_F < 0$

表6-1 前馈环节静态放大系数表

- 2. 平衡水位。前馈模块的 R_P 逆时针转到底,在上位机监控界面中将智能仪表设置为"手动"或"自动"输出,适当增加/减少智能仪表的输出量,使下水箱的液位平衡于设定值。(建议液位设定在5~8cm, $\delta=1/P=20, I=30, D=5$)
- 3. 待液位稳定后,使调节器工作在"自动"状态,将变频器输出设为16Hz,启动变频器支路给下水箱打水,并记录下表各条件下水箱液位的响应过程曲线。分别对比曲线1/3/5,曲线2/4/6,比较在3种状态下对稳定时 U_{in1} 、 U_{out} 、 U_{in2} 的影响,说明前馈-反馈补偿器的作用和效果。

实验设定基准水位为6cm,变频器输出为16Hz。

a) 加干扰去干扰响应曲线, R_P 逆时针到底:

	U in 1/V	U out/V	U in2/V
启动变频器	1.635	0.002	1.295
关闭变频器	0.95	0.002	3.02

表6-2 逆时针到底电压测量值

图6-1 逆时针到底、启动变频器响应曲线

图6-2 逆时针到底、关闭变频器响应曲线

b) 加干扰去干扰响应曲线, R_P 顺时针两圈:

	U in 1/V	U out/V	U in2/V
启动变频器	1.629	1.520	2.84
关闭变频器	0.95	0.888	3.86

表6-3 顺时针2圈电压测量值

图6-3 顺时针2圈、启动变频器响应曲线

图6-4 顺时针2圈、关闭变频器响应曲线

c) 加干扰去干扰响应曲线, R_P 顺时针三圈:

	U in1/V	U out/V	U in2/V
启动变频器	1.573	2.18	3.60
关闭变频器	0.950	1.329	4.36

表6-4 顺时针3圈电压测量值

图6-5 顺时针3圈、启动变频器响应曲线

图6-6 顺时针3圈、关闭变频器响应曲线

实验计算,Uin2 - U out = C(固定值),计算结果见下表6-5:

Rp逆时针一圈	顺时针2圈	顺时针3圈
1.293	1.32	1.32
3	2.98	3.031

表6-5 实验计算结果

4. 比较与分析。对比可得Rp对三个电压值的影响见下表:

R_P	U_{in1}	U_{out}	U_{in2}
减小	减小	增大	增大
增大	增大	减小	减小

表6-6 Rp与电压的响应关系

比较各响应曲线,可以发现:前馈-反馈补偿器可以提高系统响应速度和稳态精度、减少系统的动态误差,能够抑制系统的振荡、增强系统对扰动和噪声的鲁棒性。

7. 思考题

1. 对一种扰动设计的前馈补偿装置,对其它形式的扰动是否也适用?

设计的前馈补偿装置通常是根据特定的扰动信号模型设计的,如果扰动信号模型与实际扰动信号不一致,前馈补偿装置的效果可能会受到影响。因此,对于其他形式的扰动信号,需要重新设计适合的前馈补偿装置来进行补偿。

2. 有了前馈补偿器后,试问反馈控制系统部分是否还具有抗扰动的功能? 有了前馈补偿器后,反馈控制系统部分仍然具有抗扰动的功能,但是前馈补偿器可以进一步提高系统的抗扰动能力。前馈补偿器可以根据预测的扰动信号提前补偿控制信号,以抵消扰动对系统的影响,从而减小反馈控制系统的误差。反馈控制系统和前馈补偿器可以协同工作,提高系统的稳定性和精度。

8. 实验总结

通过本次实验,了解了下水箱液位前馈-反馈控制系统的结构与组成,掌握了前馈系统静态放大系数的测定方法,并进一步了解了前馈-反馈控制系统,特别关注研究了前馈系统静态放大系数对系统控制效果、抗干扰能力的提升。