Algorithms for Collective Communication

Design and Analysis of Parallel Algorithms

Source

▶ A. Grama, A. Gupta, G. Karypis, and V. Kumar. Introduction to Parallel Computing, Chapter 4, 2003.

Outline

- One-to-all broadcast
- All-to-one reduction
- ► All-to-all broadcast
- ► All-to-all reduction
- All-reduce
- Prefix sum
- Scatter
- Gather
- ► All-to-all personalized
- Improved one-to-all broadcast
- ▶ Improved all-to-one reduction
- ► Improved all-reduce

Corresponding MPI functions

Operation	MPI function[s]
One-to-all broadcast	MPI_Bcast
All-to-one reduction	MPI_Reduce
All-to-all broadcast	MPI_Allgather[v]
All-to-all reduction	<pre>MPI_Reduce_scatter[_block]</pre>
All-reduce	MPI_Allreduce
Prefix sum	MPI_Scan / MPI_Exscan
Scatter	MPI_Scatter[v]
Gather	MPI_Gather[v]
All-to-all personalized	MPI_Alltoall[v w]

Topologies

Linear model of communication overhead

- ▶ Point-to-point message takes time $t_s + t_w m$
- t_s is the latency
- $ightharpoonup t_w$ is the per-word transfer time (inverse bandwidth)
- ▶ m is the message size in # words
- (Must use compatible units for m and t_w)

Contention

- Assuming bi-directional links
- Each node can send and receive simultaneously
- Contention if link is used by more than one message
- ▶ k-way contention means $t_w \rightarrow t_w/k$

Input:

► The message *M* is stored locally on the root

Output:

ightharpoonup The message M is stored locally on all processes

One-to-all broadcast Ring

- Recursive doubling
- ▶ Double the number of active processes in each step

Mesh

- ▶ Use ring algorithm on the root's mesh row
- ▶ Use ring algorithm on all mesh columns in parallel

One-to-all broadcast Hypercube

▶ Generalize mesh algorithm to *d* dimensions

The algorithms described above are identical on all three topologies

```
1: Assume that p = 2^d
 2: mask \leftarrow 2^d - 1 (set all bits)
 3: for k = d - 1, d - 2, \dots, 0 do
       mask \leftarrow mask XOR 2^k (clear bit k)
 5:
        if me AND mask = 0 then
 6:
           (lower k bits of me are 0)
           partner \leftarrow me XOR 2<sup>k</sup> (partner has opposite bit k)
 7:
           if me AND 2^k = 0 then
 8:
              Send M to partner
 9:
10:
           else
11:
              Receive M from partner
12:
           end if
13:
        end if
14: end for
```

The given algorithm is not general.

- ▶ What if $p \neq 2^d$?
 - ▶ Set $d = \lceil \log_2 p \rceil$ and don't communicate if partner $\geq p$
- What if the root is not process 0?
 - ▶ Relabel the processes: $me \rightarrow me XOR root$

- ▶ Number of steps: $d = \log_2 p$
- ► Time per step: $t_s + t_w m$
- ► Total time: $(t_s + t_w m) \log_2 p$
- In particular, note that broadcasting to p² processes is only twice as expensive as broadcasting to p processes (log₂ p² = 2 log₂ p)

All-to-one reduction

Input:

- ▶ The *p* messages M_k for k = 0, 1, ..., p 1
- ▶ The message M_k is stored locally on process k
- ▶ An associative reduction operator ⊕
- ▶ E.g., $\oplus \in \{+, \times, \max, \min\}$

Output:

▶ The "sum" $M:=M_0\oplus M_1\oplus \cdots \oplus M_{p-1}$ stored locally on the root

All-to-one reduction Algorithm

- Analogous to all-to-one broadcast algorithm
- ▶ Analogous time (plus the time to compute $a \oplus b$)
- Reverse order of communications
- Reverse direction of communications
- ► Combine incoming message with local message using ⊕

Input:

- ▶ The *p* messages M_k for k = 0, 1, ..., p 1
- ▶ The message M_k is stored locally on process k

Output:

▶ The p messages M_k for k = 0, 1, ..., p - 1 are stored locally on all processes

Ring

Ring algorithm

- 1: left \leftarrow (me 1) mod p2: right \leftarrow (me + 1) mod p3: result \leftarrow M_{me} 4: $M \leftarrow$ result
 5: for k = 1, 2, ..., p 1 do
 6: Send M to right
 7: Receive M from left
 8: result \leftarrow result \cup M9: end for
- ▶ The "send" is assumed to be non-blocking
- ▶ Lines 6-7 can be implemented via MPI_Sendrecv

Time of ring algorithm

- ▶ Number of steps: p-1
- ► Time per step: $t_s + t_w m$
- ▶ Total time: $(p-1)(t_s + t_w m)$

All-to-all broadcast Mesh algorithm

The **mesh** algorithm is based on the **ring** algorithm:

- ► Apply the ring algorithm to all mesh rows in parallel
- ▶ Apply the **ring** algorithm to all mesh columns in parallel

Time of mesh algorithm

(Assuming a
$$\sqrt{p} \times \sqrt{p}$$
 mesh for simplicity)

- Apply the ring algorithm to all mesh rows in parallel
 - ▶ Number of steps: $\sqrt{p} 1$
 - ► Time per step: $t_s + t_w m$
 - ▶ Total time: $(\sqrt{p}-1)(t_s+t_w m)$
- ▶ Apply the **ring** algorithm to all mesh columns in parallel
 - ▶ Number of steps: $\sqrt{p} 1$
 - ► Time per step: $t_s + t_w \sqrt{pm}$
 - ▶ Total time: $(\sqrt{p}-1)(t_s+t_w\sqrt{p}m)$
- ► Total time: $2(\sqrt{p}-1)t_s+(p-1)t_w m$

Hypercube algorithm

The **hypercube** algorithm is also based on the **ring** algorithm:

- ▶ For each dimension *d* of the hypercube in sequence:
- ▶ Apply the **ring** algorithm to the 2^{d-1} links in the current dimension in parallel

Time of hypercube algorithm

- ▶ Number of steps: $d = \log_2 p$
- ► Time for step k = 0, 1, ..., d 1: $t_s + t_w 2^k m$
- ► Total time: $\sum_{k=0}^{d-1} (t_s + t_w 2^k m) = t_s \log_2 p + t_w (p-1) m$

All-to-all broadcast Summary

Topology	t_s	t_{w}
Ring	p-1	(p-1)m
Mesh	$2(\sqrt{p}-1)$	(p-1)m
Hypercube	log ₂ p	(p-1)m

- ► Same transfer time (tw term)
- ▶ But the number of messages differ

All-to-all reduction

Input:

- ▶ The p^2 messages $M_{r,k}$ for r, k = 0, 1, ..., p-1
- ▶ The message $M_{r,k}$ is stored locally on process r
- lacktriangle An associative reduction operator \oplus

Output:

▶ The "sum" $M_r := M_{0,r} \oplus M_{1,r} \oplus \cdots \oplus M_{p-1,r}$ stored locally on each process r

All-to-all reduction Algorithm

- Analogous to all-to-all broadcast algorithm
- ▶ Analogous time (plus the time for computing $a \oplus b$)
- Reverse order of communications
- Reverse direction of communications
- lacktriangle Combine incoming message with part of local message using \oplus

All-reduce

Input:

- ▶ The *p* messages M_k for k = 0, 1, ..., p 1
- ▶ The message M_k is stored locally on process k
- ► An associative reduction operator ⊕

Output:

▶ The "sum" $M := M_0 \oplus M_1 \oplus \cdots \oplus M_{p-1}$ stored locally on all processes

All-reduce Algorithm

- ► Analogous to all-to-all broadcast algorithm
- lacktriangle Combine incoming message with local message using \oplus
- Cheaper since the message size does not grow
- ► Total time: $(t_s + t_w m) \log_2 p$

Prefix sum

Input:

- ▶ The *p* messages M_k for k = 0, 1, ..., p 1
- ▶ The message M_k is stored locally on process k
- ► An associative reduction operator ⊕

Output:

▶ The "sum" $M^{(k)} := M_0 \oplus M_1 \oplus \cdots \oplus M_k$ stored locally on process k for all k

Prefix sum

- ► Analogous to all-reduce algorithm
- ► Analogous time
- ▶ Locally store only the corresponding partial sum

Scatter

Input:

▶ The p messages M_k for k = 0, 1, ..., p-1 stored locally on the root

Output:

▶ The message M_k stored locally on process k for all k

Scatter Algorithm

- Analogous to one-to-all broadcast algorithm
- ▶ Send half of the messages in the first step, send one quarter in the second step, and so on
- ▶ More expensive since several messages are sent in each step
- ▶ Total time: $t_s \log_2 p + t_w(p-1)m$

Gather

Input:

- ▶ The *p* messages M_k for k = 0, 1, ..., p 1
- ▶ The message M_k is stored locally on process k

Output:

▶ The p messages M_k stored locally on the root

Gather Algorithm

- Analogous to scatter algorithm
- ► Analogous time
- ▶ Reverse the order of communications
- ▶ Reverse the direction of communications

All-to-all personalized

Input:

- ▶ The p^2 messages $M_{r,k}$ for r, k = 0, 1, ..., p-1
- ▶ The message $M_{r,k}$ is stored locally on process r

Output:

▶ The p messages $M_{r,k}$ stored locally on process k for all k

All-to-all personalized Summary

Topology	t_s	t_w
Ring	p-1	(p-1)mp/2
Mesh	$2(\sqrt{p}-1)$	$p(\sqrt{p}-1)m$
Hypercube	log ₂ p	$m(p/2)\log_2 p$

▶ The hypercube algorithm is not optimal with respect to communication volume (the lower bound is $t_w m(p-1)$)

An optimal (w.r.t. volume) hypercube algorithm

Idea:

▶ Let each pair of processes exchange messages directly

Time:

$$\blacktriangleright (p-1)(t_s+t_w m)$$

Q:

▶ In which order do we pair the processes?

Α:

- ▶ In step k, let me exchange messages with me XOR k
- This can be done without contention!

An optimal hypercube algorithm

An optimal hypercube algorithm based on E-cube routing

E-cube routing

- ▶ Routing from s to $t := s \times \mathsf{XOR} k$ in step k
- ▶ The difference between *s* and *t* is

$$s XOR t = s XOR(s XOR k) = k$$

- ▶ The number of links to traverse equals the number of 1's in the binary representation of *k* (the so-called Hamming distance)
- ► E-cube routing: route through the links according to some fixed (arbitrary) ordering imposed on the dimensions

E-cube routing

Why does E-cube routing work?

Write

$$k = k_1 XOR k_2 XOR \cdots XOR k_n$$

such that

- k_j has exactly one set bit
- $k_i \neq k_j$ for all $i \neq j$
- ► Step *i*:

$$r \mapsto r XOR k_i$$

and hence uses the links in one dimension without congestion.

▶ After all *n* steps we have as desired:

$$r \mapsto r \operatorname{XOR} k_1 \operatorname{XOR} \cdots \operatorname{XOR} k_n = r \operatorname{XOR} k$$

E-cube routing example

- ▶ Route from $s = 100_2$ to $t = 001_2 = s \text{ XOR } 101_2$
- ► Hamming distance (i.e., # links): 2
- Write

$$k = k_1 \text{ XOR } k_2 = 001_2 \text{ XOR } 100_2$$

► E-cube route:

$$t = 100_2 \rightarrow 101_2 \rightarrow 001_2 = s$$

Summary Hypercube

Operation	Time
One-to-all broadcast	$(t_s + t_w m) \log_2 p$
All-to-one reduction	$(t_s + t_w m) \log_2 p$
All-reduce	$(t_s + t_w m) \log_2 p$
Prefix sum	$(t_s + t_w m) \log_2 p$
All-to-all broadcast	$t_s \log_2 p + t_w(p-1)m$
All-to-all reduction	$t_s \log_2 p + t_w(p-1)m$
Scatter	$t_s \log_2 p + t_w(p-1)m$
Gather	$t_s \log_2 p + t_w(p-1)m$
All-to-all personalized	$(t_s + t_w m)(p-1)$

Improved one-to-all broadcast

Improved one-to-all broadcast

Time analysis

Old algorithm:

▶ Total time: $(t_s + t_w m) \log_2 p$

New algorithm:

- ► Scatter: $t_s \log_2 p + t_w (p-1)(m/p)$
- ▶ All-to-all broadcast: $t_s \log_2 p + t_w(p-1)(m/p)$
- ► Total time: $2t_s \log_2 p + 2t_w(p-1)(m/p) \approx 2t_s \log_2 p + 2t_w m$

Effect:

- ▶ t_s term: twice as large
- ▶ t_w term: reduced by a factor $\approx (\log_2 p)/2$

Improved all-to-one reduction

Improved all-to-one reduction Time analysis

► Analogous to improved one-to-all broadcast

▶ t_s term: twice as large

▶ t_w term: reduced by a factor $\approx (\log_2 p)/2$

Improved all-reduce

All-reduce = One-to-all reduction + All-to-one broadcast

...but gather followed by scatter cancel out!

Improved all-reduce

Improved all-reduce

Time analysis

- ► Analogous to improved one-to-all broadcast
- ▶ t_s term: twice as large
- ▶ t_w term: reduced by a factor $\approx (\log_2 p)/2$