Streaming Algorithms

Meng-Tsung Tsai

04/24/2018

Fixes in Written Assignment #2

Problem #2

O(1/c)-pass $\rightarrow O(c)$ -pass

Problem #5

Let G be an arbitrary n-node m-edge connected undirected graph. Give a deterministic polynomial-time algorithm that can return n different cuts of G so that each partition the node set into two and the number of crossing edges is at least $(1-\epsilon)m/2$ for an arbitrary $\epsilon > 0$ if n is sufficiently large, as a function of ϵ .

Reminder

Written Assignment #2 needs some fixes and the deadline is extended to Sunday midnight. You need to LaTex your solution and submit it on New E3 (https://e3new.nctu.edu.tw).

You are encouraged to discuss with your classmates, TA, or me. However, the writeup shall be your own.

We will announce Programming Assignment #1 this weekend. Please recall how to find articulation points by a DFS, on a RAM.

References

• "A note on the Turán function of even cycles," Pikhurko (2010)

Spanners

Problem Definition

Input: Given an n-node m-edge undirected graph G and each edge e in G has weight $\omega(e)$.

Output: a sparse subgraph H of G so that $dis_H(u, v) \le t dis_G(u, v)$ for some given t. Such an H is called t-spanner.

Goal: make H as sparse as possible.

It is NP-hard. Our goal is try to make H to be reasonably sparse.

Algorithm

```
Spanner(G = (V, E), t) \{
Sort the edges in E by their weight in non-decreasing order.
H \leftarrow (V, \emptyset);
foreach (edge e) \{ \text{ // in the sorted order} \\ \text{ if } (H \cup \{e\} \text{ has a cycle of length} \leq t+1) \\ \text{ discard e; } \\ \text{ else } \\ \text{ } H \leftarrow H \cup \{e\};
\}
return H;
How to check whether H \cup \{e\} \text{ has a cycle of length} \leq t+1?
```

Algorithm

```
Spanner(G = (V, E), t){
```

Sort the edges in E by their weight in non-decreasing order.

```
H \leftarrow (V, \varnothing);
foreach (edge e){ // in the sorted order
  if (H \cup \{e\}) has a cycle of length \le t+1)
  discard e;
  else
  H \leftarrow H \cup \{e\};
}
return H;

H is a t-
```

H is a t-spanner.

Algorithm

```
Spanner(G = (V, E), t) {

Sort the edges in E by their weight in non-decreasing order.

H \leftarrow (V, \emptyset);

foreach (edge e) { // in the sorted order

if (H \cup {e} has a cycle of length \leq t+1)

discard e;
else
H \leftarrow H \cup \{e\};
}

return H;

H is C<sub>t+1</sub>-free.
```

Erdős Even Circuit Theorem

Erdős Even Circuit Theorem

Theorem. Every n-node C_{2k} -free graph has $O(k n^{1+1/k})$ edges.

Erdős Even Circuit Theorem

Theorem. Every n-node C_{2k} -free graph has $O(k n^{1+1/k})$ edges.

Corollary. Spanner(G, t = (2k-1)) return an H with O(k $n^{1+1/k}$) edges.

Example. We can extract a subgraph H from the input graph G using $O(n^{1.5})$ space, and by which we can approximate the shortest path for every pair of nodes in G to within a factor of 3.

Why do Spanner(G, t) remove all cycles of length \leq t+1? To use the even circuit theorem, we only need to remove all cycles of length = t+1.

Erdős Even Circuit Theorem

Theorem. Every n-node C_{2k} -free graph has $O(k n^{1+1/k})$ edges.

Corollary. Spanner(G, t = (2k-1)) return an H with O(k $n^{1+1/k}$) edges.

Example. We can extract a subgraph H from the input graph G using $O(n^{1.5})$ space, and by which we can approximate the shortest path for every pair of nodes in G to within a factor of 3.

Spanner(G, t) returns a subgraph of G whose girth is at least t+2. Some people states this fact as large-girth graphs are sparse.

EC-Theorem (by Pikhurko)

Theorem 1. Every n-node C_{2k}-free graph G has fewer than

 $(k-1)n^{1+1/k} + 16(k-1)n$ edges.

We prove this by contradiction. Our strategy:

- 1. Assume that G has at least $(k-1)n^{1+1/k} + 16(k-1)n$ edges.
- 2. Show that G must have a C_{2k} .

Let $\delta = e(G)/n$ = $(k-1)n^{1/k}+16(k-1)$

Proof Sketch

k-Core

Lemma 1. Every n-node m-edge undirected graph G has a subgraph H so that every node in H has degree \geq m/n. H is called *k-core*.

Remark. Such a k-core can be obtained in linear time by iteratively removing the min-degree node. (Why?)

Remark. G has a δ-core.

Let $\delta = e(G)/n$ = $(k-1)n^{1/k}+16(k-1)$

Θ_{2k} -graph

Definition. A Θ_{2k} -graph is a cycle of length $\geq 2k$ with a chord.

Lemma 2. For each $k \ge 3$, every bipartite graph of min degree k has a Θ_{2k} -subgraph. [Hint. the longest path]

Lemma 3. Let A, B be any partition of the node set of a Θ_{2k} subgraph F into two subsets. For every $\ell \in [1, 2k-1]$, there exists a length- ℓ AB-path, i.e. a path from a to b for some $a \in A$, $b \in B$, unless F is bipartite and A, B is the bipartition of F.

Sparse $H[D_i]$ and $H[D_i, D_{i+1}]$

Lemma 2. For each $k \ge 3$, every bipartite graph of min degree k has a Θ_{2k} -subgraph.

Lemma 4. $H[D_i]$ and $H[D_i, D_{i+1}]$ cannot contain Θ_{2k} as a subgraph for each $i \in [1, k-1]$.

 $\begin{array}{l} Lemma~5.~deg(H[D_i]) \leq 4k\text{-}4~and~deg(H[D_i,\,D_{i\text{+}1}]) \leq 2k\text{-}2\\ for~every~k \geq 2,~every~i \in [1,\,k\text{-}1]. \end{array}$

Proof. Otherwise $H[D_i, D_{i+1}]$ has a bipartite k-core, yielding a contradiction (Lemma 3 and 4). [req. $k \ge 3$]

Otherwise $H[D_i]$ has a bipartite subgraph I whose deg(I) > 2k-2, implying that $H[D_i]$ has a bipartite k-core. $\rightarrow \leftarrow [req. \ k \ge 3]$

For k=2, it suffices to check D_0 , D_1 , D_2 by the C_4 -freeness of H.

BFS on a δ-core H of G

Let x be any node in H, and set x as the roof of our BFS.

Let D_i be the set of nodes of depth i. For example, $D_0 = \{x\}$ and $D_1 = \{u : edge (u, x) in H\}$.

Let $H[D_i]$ be the induced subgraph of D_i in H, and let $H[D_i, D_{i+1}]$ be the induced bipartite subgraph of D_i and D_{i+1} in H. $(D[D_i, D_{i+1}] \neq H[D_i \cup D_{i+1}])$

Lemma 4. $H[D_i]$ and $H[D_i, D_{i+1}]$ cannot contain Θ_{2k} as a subgraph for each $i \in [1, k-1]$. Otherwise, one can construct a C_{2k} in H (also G). $\rightarrow \leftarrow$ (by Lemma 3)

Power Series

- 1. The nodes in H (also D_2) have average degree $\geq \delta$.
- 2. D₂ only have edges to D₁, D₂, and D₃. (Why?)
- 3. Together with Lemma 5 and an induction, each node in D_2 has δ O(k) edges to D_3 but each node in D_3 has O(k) edges to D_2 .
- 4. This assymetry implies that $|D_3|/|D_2|$ is large for large $\pmb{\delta}.$
- 5. The above holds for D_i , $i \le k$. Thus the sequence $|D_1|$, $|D_2|$, ..., $|D_k|$ grows exponentially. If δ is large, then $|D_k|$ exceeds n. $\rightarrow \leftarrow$