Fairness and Bias in Machine Learning

Surya Dutta

Today, we'll discuss:

- What does bias in machine learning look like?
- How does algorithmic bias get introduced & amplify?

Today, we'll discuss:

- What does bias in machine learning look like?
- How does algorithmic bias get introduced & amplify?

- How can we quantify bias and fairness?
- How can we mitigate algorithmic bias?

Source: Suresh, Guttag 2020

Source: Suresh, Guttag 2020

Historical Bias

LAPD ditches predictive policing program accused of racial bias

Source: The Next Web

Chicago's predictive policing tool just failed a major test

A RAND report shows that the 'Strategic Subject List' doesn't reduce homicides

Source: The Verge

Ferguson, Missouri 2013

1 61843011) 1111330411 2013

Representation Bias

Crash Test Dummies Based on Men Pose Risks for Female Drivers

Source: Invisible Women

71% more likely to be moderately injured

17% more likely to be more likely to be seriously injured to die

Measurement Bias

Predicting Recidivism

Source: "Machine Bias" by ProPublica, 2016

Prediction Fails Differently for Black Defendants						
	WHITE	AFRICAN AMERICAN				
Labeled Higher Risk, But Didn't Re-Offend	23.5%	44.9%				
Labeled Lower Risk, Yet Did Re-Offend	47.7%	28.0%				

Aggregation Bias

Amazon scraps secret AI recruiting tool that showed bias against women

Source: Reuters 2018

"In effect, Amazon's system taught itself that male candidates were preferable. It penalized resumes that included the word "women's," as in "women's chess club captain." And it downgraded graduates of two all-women's colleges, according to people familiar with the matter."

Evaluation Bias

Source: gendershades.org

Gender Classifier	Overall Accuracy on all Subjects in Pilot Parlaiments Benchmark (2017)
Microsoft	93.7%
FACE**	90.0%
IBM	87.9%

Gender Classifier	Darker Male	Darker Female	Lighter Male	Lighter Female	Largest Gap
Microsoft	94.0%	79.2%	100%	98.3%	20.8%
FACE**	99.3%	65.5%	99.2%	94.0%	33.8%
IBM	88.0%	65.3%	99.7%	92.9%	34.4%

Source: gendershades.org

Amazon's Face Recognition Falsely Matched 28 Members of Congress With Mugshots

Source: ACLU

A black man was wrongfully arrested because of facial recognition

'The computer must have gotten it wrong'

Source: The Verge

Deployment Bias

A Child Abuse Prediction Model Fails Poor Families

Why Pittsburgh's predictive analytics misdiagnoses child maltreatment and prescribes the wrong solutions

The screen that displays the AFST risk score states clearly that the system "is not intended to make investigative or other child welfare decisions."

Source: Automating Inequality

Why can't we just omit any protected attributes from the dataset?

Why can't we just omit any protected attributes from the dataset?

Latent Variables
& Proxies

Why can't we just omit any protected attributes from the dataset?

Latent Variables
& Proxies

Simpson's Paradox

Can we directly see if the inner workings of our algorithm are biased?

Source: h2o.ai

Source: h2o.ai

Source: h2o.ai

Age

Source: h2o.ai

Surrogate Models

Simpler models trained on **same inputs** and **predicted outputs** of more
complex machine learning models

Age

Source: h2o.ai

Often not good enough!

Surrogate Models

Simpler models trained on **same inputs** and **predicted outputs** of more
complex machine learning models

Age

1. An algorithm that always predicts correctly

- 1. An algorithm that always predicts correctly
- 2. An algorithm that picks predictions randomly

- 1. An algorithm that always predicts correctly
- 2. An algorithm that picks predictions randomly
- 3. An algorithm that makes "mistakes" equally across privileged and unprivileged data

1. An algorithm that always predicts correctly

2. An algorithm that picks predictions randomly

3. An algorithm that makes "mistakes" equally across privileged and unprivileged data

Can we quantitatively define fairness?

Goal: Create a metric that machine learning algorithm can use to generate fair outcomes

Goal: Create a metric that machine learning algorithm can use to generate fair outcomes

Definitions:

- Y is the true value (0 or 1 for binary classification)
- C is the algorithm's predicted value
- A is the protected attribute (gender, race, etc.)
 - A=1 refers to the unprivileged group, A=0 refers to privileged

Demographic Parity

"A predictor satisfies demographic parity if the likelihood of a positive outcome is the same, regardless of whether the person is in the protected group or not"

Demographic Parity

"A predictor satisfies demographic parity if the likelihood of a positive outcome is the same, regardless of whether the person is in the protected group or not"

Pros: Proportional representation of groups

Demographic Parity

"A predictor satisfies demographic parity if the likelihood of a positive outcome is the same, regardless of whether the person is in the protected group or not"

Pros: Proportional representation of groups

Cons: Accuracy may be less in disadvantaged group

Demographic Parity

"A predictor satisfies demographic parity if the likelihood of a positive outcome is the same, regardless of whether the person is in the protected group or not"

Pros: Proportional representation of groups

Cons: Accuracy may be less in disadvantaged group

Greatly reduces effectiveness of predictor if true labels have any correlation with protected attribute

Equal Odds

"A predictor C satisfies equalized odds with respect to a protected attribute A and the true outcome Y if C and A are independent conditional on Y"

Equal Odds

"A predictor C satisfies equalized odds with respect to a protected attribute A and the true outcome Y if C and A are independent conditional on Y"

In a binary classification:

• C has **equal true positive rates** if Y=1 for both A=0 and A=1

Equal Odds

"A predictor C satisfies equalized odds with respect to a protected attribute A and the true outcome Y if C and A are independent conditional on Y"

C=1 TP FP

C=0 FN TN

Y=1

Y=0

In a binary classification:

- C has equal true positive rates if Y=1 for both A=0 and A=1
- C has **equal false positive rates** if Y=0 for both A=0 and A=1

	#	Qualified?	Hired?	Classification
0	2	Yes	Yes	True Positive
	3	Yes	No	False Negative
	4	No	Yes	False Positive
	5	No	No	True Negative
0	1	Yes	Yes	True Positive
	1	Yes	No	False Negative
	2	No	Yes	False Positive
	3	No	No	True Negative

	#	Qualified?	Hired?	Classification	In-Group Rate
0	2	Yes	Yes	True Positive	2/14
	3	Yes	No	False Negative	3/14
	4	No	Yes	False Positive	4/14
	5	No	No	True Negative	5/14
0	1	Yes	Yes	True Positive	1/7
	1	Yes	No	False Negative	1/7
	2	No	Yes	False Positive	2/7
	3	No	No	True Negative	3/7

	#	Qualified?	Hired?	Classification	In-Group Rate
	2	Yes	Yes (True Positive	2/14
0	3	Yes	No	False Negative	3/14
	4	No	Yes	False Positive	4/14
	5	No	No	True Negative	5/14
0	1	Yes	Yes (True Positive	1/7
	1	Yes	No	False Negative	1/7
	2	No	Yes	False Positive	2/7
	3	No	No	True Negative	3/7

	#	Qualified?	Hired?	Classification	In-Group Rate
0	2	Yes	Yes	True Positive	2/14
	3	Yes	No	False Negative	3/14
	4	No	Yes	False Positive	4/14
	5	No	No	True Negative	5/14
0	1	Yes	Yes	True Positive	1/7
	1	Yes	No	False Negative	1/7
	2	No	Yes	False Positive	2/7
	3	No	No	True Negative	3/7

Equal Odds

"Why not just accuracy?" (TP + TN)

Equal Odds

"Why not just accuracy?" (TP + TN)

Weakness: We can "trade" the false positive rate of one group for the false negative rate for another group

Ex. Hiring from two groups. We can achieve accuracy parity by exchanging qualified applicants from privileged group for unqualified applicants from unprivileged group

Equal Opportunity

Relaxed version of Equal Odds

 Equal true positive rates for Y=1 for both A=0 and A=1

Useful when only care about positive outcome

How can we actively mitigate bias and improve fairness?

Source: IBM AIF360

Preprocessing

Preprocessing

Disparate Impact Remover

Source: Feldman et. al 2015

Modify labels in the training dataset to ensure that the probability of a positive outcome is equivalent for both subgroups

Less strict - ratio of probabilities is greater than cutoff (typically 0.8)

$$\frac{P(C=1|A=1)}{P(C=1|A=0)} \le \tau = 0.8$$

Preprocessing

Disparate Impact Remover

Source: Feldman et. al 2015

Modify labels in the training dataset to ensure that the probability of a positive outcome is equivalent for both subgroups

Less strict - ratio of probabilities is greater than cutoff (typically 0.8)

$$\frac{P(C=1|A=1)}{P(C=1|A=0)} \le \tau = 0.8$$

Reweighing

Source: Kamiran, Calders 2010

Weigh each observation in the training dataset by the expected probability of the observation ignoring the protected attribute.

(for algorithms that do not support custom weights, sampling may be used instead)

$$W(X) = \frac{P_{obs}(X)}{P_{exp}(X_{i \neq A})}$$

Inprocessing

Inprocessing

Prejudice Remover

Source: Kamishima et. al 2012

Defines prejudice index *PI* that increases as correlation between outcome *C* and protected attribute *A* increases:

$$PI = P(C|A) \times \ln \frac{P(C|A)}{P(C)P(A)}$$

Use as **regularization term** in loss function – error goes up as correlation between outcome and protected attribute goes up

Inprocessing

Prejudice Remover

Source: Kamishima et. al 2012

Defines prejudice index *PI* that increases as correlation between outcome *C* and protected attribute **A** increases:

$$PI = P(C|A) \times \ln \frac{P(C|A)}{P(C)P(A)}$$

Use as **regularization term** in loss function — error goes up as correlation between outcome and protected attribute goes up

Adversarial Debiasing

Source: Zhang et. al 2018

When using a neural network to train model, set up a **second adversarial network** to predict protected attribute from the predictions of the first classifier.

Total loss minimizes class prediction performance and maximizes attribute prediction performance

Postprocessing

Postprocessing

Equal Odds

Source: Kamishima et. al 2012

A model's sensitivity and specificity can be tuned to optimize for metric like accuracy, precision, recall, or F1 score

We choose instead to tune the model to satisfy equal odds / equal opportunity

Postprocessing

Equal Odds

Source: Kamishima et. al 2012

A model's sensitivity and specificity can be tuned to optimize for metric like accuracy, precision, recall, or F1 score

We choose instead to tune the model to satisfy equal odds / equal opportunity

Rejection Option

Source: Kamiran et. al 2012

Based on the fact that most bias occurs on or near the decision boundary of the classifier

Flip favored classification to unprivileged group near the decision boundary until parity is reached

AIF360 Demo

Amazon scraps secret AI recruiting tool that showed bias against women

LAPD ditches predictive policing program accused of racial bias

Crash Test Dummies Based on Men Pose Risks for Female Drivers

Face Recognition Vendor Vows New Rules After Wrongful Arrest in U.S. Using Its Technology

<u>Image Source: Interaction Institute for Social Change</u>

Image Source: towardsdatascience.com

Questions?