

Trabalho de Arquitectura de Sistemas e Computadores I

Licenciatura em Engenharia Informática

2019-2020

1 Objectivo

Pretende-se desenvolver uma calculadora que opere na notação polaca inversa (RPN - Reverse Polish Notation). A calculadora deverá ler strings da consola, realizar as operações indicadas e mostrar o estado da memória da calculadora na forma de uma pilha.

2 Notação polaca inversa

A notação polaca inversa, também conhecida como notação pós-fixada, é uma notação onde os operandos são introduzidos primeiro, seguidos dos operadores. Enquanto na notação infixa o operador é colocado no meio dos operandos, como em 3+4, na notação pósfixa o operador surge no final, como em 3+4.

Uma calculadora em notação polaca funciona com uma pilha. Os operandos (a verde) são colocados na pilha e os operadores (a azul) são aplicados sobre os operandos que estão no topo da pilha, substituindo-os pelo resultado da operação.

Por exemplo, para realizar a operação $(3+4)\times 5$ na notação polaca inversa escreve-se 3 4 + 5 \times . Note que a precedência marcada pelos parentesis é satisfeita. Para calcular $3-(4\times 5)$ escrever-se 3 4 5 \times -.

Para além dos operadores binários, que têm dois operandos, há também necessidade de operadores unários, que têm apenas um operando. Um exemplo é o cálculo do simétrico de um número, que habitualmente se escreve -3. Em notação polaca inversa escreve-se 3 neg, onde neg é um operador unário que subtitui o operando pelo seu simétrico.

Os operadores unários são aplicado ao operando que está no topo da pilha, enquanto um operador binário é aplicado aos dois operandos do topo da pilha.

A tabela seguinte mostra alguns exemplos de expressões nas notações infixa e pósfixa:

Notação infixa	Notação pósfixa	Comentário
3 - 4	3 4 -	subtracção
-3	3 neg	o operador unário neg calcula o simétrico
-3 + 4	3 neg 4 +	
$(3+4)\times 5$	$3 \ 4 + 5 \times$	A soma é efectuada primeiro
$3+4 \div 2$	$3 \ 4 \ 2 \div +$	A divisão é efectuada primeiro
3×3	$3 \text{ dup } \times$	A operador dup duplica (clone) o topo da pilha
$\operatorname{sqrt}(3)$	3 sqrt	Calcula raiz quadrada
$\operatorname{sqrt}(3) \div 3$	3 dup sqrt swap ÷	O operador swap troca os operandos do topo da pilha

Para exemplificar os vários passos intermédios da execução, considere a expressão $1 + \frac{\sqrt{3}}{3}$. Uma possibilidade de calcular esta expressão em notação polaca inversa é

1 3 dup sgrt swap
$$\div$$
 +

A tabela seguinte mostra a execução desta expressão passo-a-passo. Na segunda coluna mostra-se o estado da pilha com os elementos separados por vírgula. O topo da pilha é o elemento mais à direita.

Input	Stack
1	(empty)
1	1
3	$1, \ 3$
dup	1, 3, 3
sqrt	1, 3, 1.732
swap	1, 1.732, 3
÷	1, 0.577
+	1.577

A notação RPN tem várias vantagens em relação à infixa: não requer parêntesis e as operações podem ser directamente executadas à medida que vão sendo lidas, o que não acontece na notação infixa. A avaliação de uma expressão na notação infixa é consideravelmente mais complexa.

A notação RPN é usada na linguagem FORTH (ver https://en.wikipedia.org/wiki/Forth_(programming_language)). Esta linguagem é usada em sistemas *embedded*, por exemplo em firmware bootloaders e aplicações espaciais.

As calculadores RPN foram popularizadas pela Hewlett-Packard nos anos 60. Actualmente continuam a ser comercializados vários modelos de calculadoras científicas e financeiras RPN (http://en.wikipedia.org/wiki/Reverse_Polish_notation).

3 Especificação do problema

O trabalho a desenvolver consiste num programa que implemente uma calculadora RPN. O programa deve receber strings da consola contendo expressões em notação polaca inversa e efectuar os cálculos respectivos, mantendo o estado numa pilha que deve ser mostrada na consola.

Os dados podem ser inseridos separados por espaços ou quebras-de-linha. De cada vez que é dada uma quebra-de-linha (tecla *enter*) deve ser mostrado o estado da pilha. No caso de uma linha conter vários

operandos e operadores, só é mostrado o resultado no final. A pilha deve ser apresentada na vertical sendo os últimos números (mais abaixo) o topo da pilha.

Em seguida mostra-se um exemplo de uma sessão da calculadora. O input do utilizador está assinalado a vermelho.

```
***********
*** RPN - Reverse Polish Notation Calculator ***
*** Maria (12345) e Manuel (67890)
*** ASC1 2019/2020
*************
type 'help' for available commands
Stack:
  (empty)
-> 2
Stack:
  2
-> 3
Stack:
  2
  3
-> swap
Stack:
  3
  2
Stack:
  1
```

No exemplo acima, os operandos e operadores foram inseridos um-a-um em linhas separadas. Deste modo é possível observar o estado da pilha após cada operação. Em alternativa, pode ser escrita uma única linha com todos os operandos e operadores separados por espaços. Neste caso, apenas é apresentado o resultado final.

```
-> clear
Stack:
    (empty)

-> 2 3 swap -
Stack:
    1

-> off
Bye!
```


A calculadora deverá operar sobre números inteiros ou em vírgula flutuante (opcional). Deverão ser suportados os seguintes operadores:

Operador	Descrição	
+	Adição (operador binário)	
-	Subtracção (operador binário)	
*	Multiplicação (operador binário)	
/	Divisão (operador binário)	
neg	Calcula o simétrico (operador unário)	
swap	Troca posição dos dois operandos do topo da pilha	
dup	Duplica (clone) o operando do topo da pilha	
drop	Elimina um operando do topo da pilha	
clear	Limpa toda a pilha (fica vazia)	
off	Desliga a calculadora (termina o programa)	

4 Trabalho a desenvolver

O trabalho deverá ser desenvolvido em duas fases:

Implementação em linguagem C Nesta fase deverá implementar a calculadora num programa escrito em linguagem C. O programa deverá estar devidamente estruturado em funções e comentado. Cada operação da calculadora (+, -, *, /, dup, swap, etc) deve ser implementada numa função separada. Esta implementação deverá ser acompanhada de um pequeno relatório escrito em IATEX (máximo 4 páginas). No moodle estão três programas executáveis em Linux, MacOS e FreeBSD, que funcionam como exemplo de uma calculadora implementada em C.

Implementação em Assembly Nesta fase deverá implementar o mesmo programa, mas agora em Assembly MIPS para correr no simulador Mars. O programa deverá seguir a mesma estrutura (funções e estruturas de dados) usadas na implementação em C e seguir as convenções da ABI MIPS usadas neste curso. O programa deverá também ser acompanhado de um relatório com a descrição detalhada da organização do código e a listagem de funções implementadas. As funções devem estar documentadas de forma semelhante às man pages acessíveis no terminal em sistemas do tipo Unix.

Antes de iniciar o trabalho, tenha em atenção que a pilha da calculadora RPN não deve ser confundida com a pilha do programa (que contém os endereços de retorno das funções e as variáveis locais). São por isso necessárias duas pilhas: uma que diz respeito ao programa que simula a calculadora, e outra que diz repeito à operação da calculadora (operandos introduzidos pelo utilizador e resultados das operações).

Sugestões: Considere uma estrutura de dados (struct) para representar a pilha (a pilha pode ser um array e um inteiro com o tamanho). Escreva duas funções, push e pop, que permitam colocar e retirar um valor da pilha. Todas as operações podem ser feitas recorrendo a estas duas funções, por exemplo 3 4 + pode ser feito com

A entrega das várias versões é feita no http://moodle.uevora.pt nas datas lá indicadas.

Bom trabalho!

Miquel Barão