

Regularization The Problem of Overfitting Lecture 11 – HCCDA-AI

Imran Nawar

Regularization: The Problem of Overfitting

Overfitting occurs when a model performs exceptionally well on the training data but poorly on new, unseen data.

Model Fitting Scenarios:

- · Overfitting:
 - The model learns noise and specific details of the training set, leading to poor generalization.
- Just Right (Good Generalization):
 - The model captures patterns well and generalizes effectively to new data.
- · Underfitting:
 - The model does not capture patterns well, leading to poor performance on both training and validation data.

Classification

Regression

• **Goal:** Build a model that generalizes well to unseen data while avoiding overfitting.

Overfitting and Underfitting

Example: Linear regression (housing prices)

Overfitting: If we have too many features, the learned hypothesis may fit the training set very well $(J(\theta) = \frac{1}{2m} \sum_{i=1}^{\infty} (h_{\theta}(x^{(i)}) - y^{(i)})^2 \approx 0)$, but fail to generalize to new examples (predict prices on hew examples).

Example: Logistic regression

$$h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2)$$

(g = sigmoid function)

$$g(\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1^2 + \theta_4 x_2^2 + \theta_5 x_1 x_2)$$

$$g(\theta_0 + \theta_1 x_1 + \theta_2 x_1^2 + \theta_3 x_1^2 x_2 + \theta_4 x_1^2 x_2^2 + \theta_5 x_1^2 x_2^3 + \theta_6 x_1^3 x_2 + \dots)$$

Addressing Overfitting:

- 1. The number one tool to use against overfitting to get more training data.
 - Increase Training Data: More diverse and representative data helps the model generalize better and reduces overfitting.

Addressing Overfitting:

2. A second option for addressing overfitting is to see if you can use fewer features.

```
x_1 = \text{size of house}

x_2 = \text{no. of bedrooms}

x_3 = \text{no. of floors}

x_4 = \text{age of house}
```

 x_5 = average income in neighborhood

 $x_6 = \text{kitchen size}$

:

 x_{100}

- Reduce number of features.
 - Manually select which features to keep.
 - Model selection algorithm.

X

Size

X

X

Addressing Overfitting:

3. The third option to reduce overfitting is to use regularization.

Regularization.

- Helps minimize overfitting and improves the generalization of the learning algorithm.
- * Keeps all features but reduces the magnitude of model parameters θ_j (coefficients) to prevent excessive reliance on any single feature.
- Works well when there are many features, each contributing partially to predictions y.
- Provides a controlled way to reduce feature impact without completely eliminating them, unlike feature selection.

Machine Learning

Regularization

Cost Function

Intuition

Suppose we penalize and make θ_3 , θ_4 really small.

$$\min_{\theta} \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Regularization.

Small values for parameters $\theta_0, \theta_1, \dots, \theta_n$

- "Simpler" hypothesis
- Less prone to overfitting

Housing:

- Features: x_1, x_2, \dots, x_{100}
- Parameters: $\theta_0, \theta_1, \theta_2, \dots, \theta_{100}$

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Regularization.

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \lambda \sum_{j=1}^{n} \theta_j^2 \right]$$

$$\min_{\theta} J(\theta)$$

$$\lambda \sum_{j=1}^{n} \theta_j^2 \longrightarrow \text{Regularization term}$$

Add this regularization term at the end to shrink every single parameter, θ_1 , θ_2 , θ_3 , ...

 λ —• "Lambda" Regularization parameter.

- λ is divide by 2m so that both the 1st and 2nd terms here are scaled 1/2m. By scaling both terms the same way it becomes a little bit easier to choose a good value of λ .
- By convention we are not going to penalize the parameter θ_0 .

Regularization.

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \lambda \sum_{j=1}^{n} \theta_j^2 \right]$$

$$J(0) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_0(x^{(i)}) - y^{(i)} \right)^2 + \frac{\lambda}{2m} \sum_{j=1}^{m} Q_j^2$$
mean squared error regularization term

This new cost function trades off two goals:

- 1st: Fitting the training data well.
- 2nd: Keeping the parameters small.

Impact of λ in Regularization

- If $\lambda = 0$: it means we are not using regularization term.
- If λ is too big (enormous): under fit.
 - The model applies excessive regularization, making it too simple and leading to underfitting.
- **If** λ **is in between:** Balance "just right"

In regularized linear regression, we choose θ to minimize

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \lambda \sum_{j=1}^{n} \theta_j^2 \right]$$

What if λ is set to an extremely large value (perhaps for too large for our problem, say $\lambda = 10^{10}$)?

- Algorithm works fine; setting λ to be very large can't hurt it.
- Algorithm fails to eliminate overfitting.
- Algorithm results in underfitting. (Fails to fit even training data well).
- Gradient descent will fail to converge.

In regularized linear regression, we choose θ to minimize

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \lambda \sum_{j=1}^{n} \theta_j^2 \right]$$

What if λ is set to an extremely large value (perhaps for too large for our problem, say $\lambda = 10^{10}$)?

$$\theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4$$

Machine Learning

Regularization

Regularized Linear Regression

Cost Function: (regularized)

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \lambda \sum_{j=1}^{n} \theta_j^2 \right]$$

$$\min_{\theta} J(\theta)$$

repeat {
$$0_j := 0_j - \alpha \frac{\partial}{\partial 0_j} J(0_j)$$

3 simultaneous update

repeat {
$$0_0 := 0_0 - \alpha \frac{\partial}{\partial 0_0} J(0)$$

$$0_j := 0_j - \alpha \frac{\partial}{\partial 0_j} J(0)$$
} simultaneous updale $(j=1,2,-\infty)$

$$\frac{\partial}{\partial O_{i}} \mathcal{F}(O) = \frac{1}{m} \sum_{i=1}^{m} \left(h_{O}(\mathbf{x}^{(i)}) - \mathbf{y}^{(i)} \right) \frac{\partial}{\partial \mathbf{x}^{(i)}} \frac{\partial}{\partial$$

repeat
$$\xi$$

$$O_0 := O_0 - \alpha \frac{1}{m} \sum_{i=1}^{m} \left(h_0(\mathbf{x}^{(i)}) - \mathbf{y}^{(i)} \right) \qquad n_0^{(i)} = 1$$

$$O_j := O_j - \alpha \left[\frac{1}{m} \sum_{i=1}^{m} \left(h_0(\mathbf{x}^{(i)}) - \mathbf{y}^{(i)} \right) \cdot \mathbf{x}_j^{(i)} + \frac{\lambda}{m} O_j \right]$$

$$j = (i, 43, \dots, n)$$

$$j = (i, 43, \dots, n)$$

Let's take a look for update rule
$$0_j$$
 and rewrite it in another way.

 $0_j = 0_j - \alpha \left(\frac{1}{m} \prod_{i=1}^{m} \left(h_0 \left(x^{(i)}\right) - y^{(i)}\right) x_j^{(i)}\right) - \alpha \left(\frac{1}{m} 0_j\right)$
 $\Rightarrow_{just} \text{ re arraged the term}$
 $0_j := 0_j - \alpha \frac{1}{m} 0_j - \alpha \frac{1}{m} \prod_{i=1}^{m} \left(h_0 \left(x^{(i)}\right) - y^{(i)}\right) x_j^{(i)}$
 $0_j := 0_j \left(1 - \alpha \frac{1}{m}\right) - \alpha \frac{1}{m} \prod_{i=1}^{m} \left(h_0 \left(x^{(i)}\right) - y^{(i)}\right) x_j^{(i)}$
 $\Rightarrow_{number} \text{ slightly less than 1} \xrightarrow{\text{susual gradient descent update for un-regularing respression}$

$$\theta_j := \theta_j (1 - \alpha \frac{\lambda}{m}) - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)}$$

```
The effect of this term is that on every single iteration of gradient descent, you are taking of and multiplying it with number slighly less than $\ightarrow{01}$. (0.99) etc.

The effect of this term is that on every single iteration and multiplying it with number slighly less than $\ightarrow{01}$. (0.99) etc.

The effect of this term is that number slighly less than is multiplying of by a number slightly less than one and that has the effect of shrinking the value of Oj a little bit.
```

How we get the derivative term:

$$\frac{\partial}{\partial Q_{j}}J(Q_{0},\vec{Q}) = \frac{d}{dQ_{j}}\left[\frac{1}{2m}\sum_{i=1}^{m}\left(h_{Q}(\vec{x}^{(i)})-y^{(i)}\right)^{2}+\frac{\lambda}{2m}\sum_{j=1}^{m}Q_{j}^{2}\right]$$

$$=\frac{1}{m}\sum_{i=1}^{m}\left[\left(Q_{0}+\vec{Q}_{i}\cdot\vec{x}-y^{(i)}\right)\chi_{j}^{(i)}\right]+\frac{\lambda}{2m}Q_{j}^{2}$$

$$=\frac{1}{m}\sum_{i=1}^{m}\left[\left(h_{Q}(\vec{x}^{(i)})-y^{(i)}\right)\chi_{j}^{(i)}\right]+\frac{\lambda}{m}Q_{j}^{2}$$

Machine Learning

Regularization

Regularized Logistic Regression

Regularized Logistic Regression.

Cost function:

$$J(\theta) = -\left[\frac{1}{m} \sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)}))\right]$$

Gradient Descent

Repeat {

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_0^{(i)}$$

$$\theta_j := \theta_j - \alpha \quad \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)}$$

$$(j = \mathbf{X}, 1, 2, 3, \dots, n)$$

Thank You