Robotic Motion Planning: Configuration Space

Henrik I Christensen

Adopted from Howie Choset http://www.cs.cmu.edu/~choset

Howie Choset with slides from G.D. Hager, Z. Dodds, and Dinesh Mocha

What if the robot is not a point?

What is the position of the robot?

Configuration Space

- A key concept for motion planning is a configuration:
 - a complete specification of the position of every point in the system
- A simple example: a robot that translates but does not rotate in the plane:
 - what is a sufficient representation of its configuration?
- The space of all configurations is the configuration space or Cspace.

C-space formalism: Lozano-Perez '79

Robot Manipulators

What are this arm's forward kinematics?

(How does its position depend on its joint angles?)

16-735, Howie Choset with slides from G.D. Hager, Z. Dodds, and Dinesh Mocha

Robot Manipulators

What are this arm's forward kinematics?

Find (x,y) in terms of α and β ...

Keeping it "simple"

$$c_{\alpha} = \cos(\alpha)$$
, $s_{\alpha} = \sin(\alpha)$

$$c_{\beta} = \cos(\beta)$$
, $s_{\beta} = \sin(\beta)$

$$c_{+} = \cos(\alpha + \beta)$$
, $s_{+} = \sin(\alpha + \beta)$

Manipulator kinematics

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} L_1 c_\alpha \\ L_1 s_\alpha \end{pmatrix} + \begin{pmatrix} L_2 c_+ \\ L_2 s_+ \end{pmatrix} \quad \text{Position}$$

Keeping it "simple"

$$c_{\alpha} = \cos(\alpha)$$
, $s_{\alpha} = \sin(\alpha)$

$$c_{\beta} = \cos(\beta)$$
, $s_{\beta} = \sin(\beta)$

$$c_{+} = \cos(\alpha + \beta)$$
, $s_{+} = \sin(\alpha + \beta)$

16-735, Howie Choset with slides from G.D. Hager, Z. Dodds, and Dinesh Mocha

Inverse Kinematics

Inverse kinematics -- finding joint angles from Cartesian coordinates via a geometric or algebraic approach...

Inverse Kinematics

Inverse kinematics -- finding joint angles from Cartesian coordinates via a geometric or algebraic approach...

$$\gamma = \cos^{-1}\left(\frac{x^2 + y^2 - L_1^2 - L_2^2}{2L_1L_2}\right)$$

$$\beta = 180 - \gamma$$

$$\alpha = \sin^{-1}\left(\frac{L_2\sin(\gamma)}{x^2 + y^2}\right) + \tan^{-1}(y/x)$$

$$\cot(y/x)$$

$$\cot(y/x)$$

(1,0) = 1.3183, -1.06(-1,0) = 1.3183, 4.45

16-735, Howie Choset with slides from G.D. Hager, Z. Dodds, and Dineshal Mochet usually this ugly...

Puma

Inv. Kinematics

```
% Solve for theta(1)

r=sqrt(Px^2 + Py^2);
if (n1 == 1),
    theta(1) = atan2(Py,Px) + asin(d3/r);
else
    theta(1) = atan2(Py,Px) + pi - asin(d3/r);
end

%
% Solve for theta(2)

V114= Px*cos(theta(1)) + Py*sin(theta(1));
r=sqrt(V114^2 + Pz^2);
Psi = acos((a2^2-d4^2-a3^2+V114^2+Pz^2)/(2.0*a2*r));
theta(2) = atan2(Pz,V114) + n2*Psi;

%
% Solve for theta(3)

num = cos(theta(2))*V114+sin(theta(2))*Pz-a2;
den = cos(theta(2))*Pz - sin(theta(2))*V114;
theta(3) = atan2(a3,d4) - atan2(num, den);
```

```
% Solve for theta(4)
V113 = cos(theta(1))*Ax + sin(theta(1))*Ay;
V323 = \cos(\text{theta}(1))*Ay - \sin(\text{theta}(1))*Ax;
V313 = \cos(theta(2) + theta(3)) * V113 +
       sin(theta(2)+theta(3))*Az;
theta(4) = atan2((n4*V323),(n4*V313));
% Solve for theta(5)
num = -cos(theta(4))*V313 - V323*sin(theta(4));
den = -V113*sin(theta(2)+theta(3)) +
       Az*cos(theta(2)+theta(3));
theta(5) = atan2(num,den);
% Solve for theta(6)
V112 = cos(theta(1))*Ox + sin(theta(1))*Oy;
V132 = \sin(\text{theta}(1))*Ox - \cos(\text{theta}(1))*Oy;
V312 = V112*cos(theta(2)+theta(3)) +
      Oz*sin(theta(2)+theta(3));
V332 = -V112*sin(theta(2)+theta(3)) +
        Oz*cos(theta(2)+theta(3));
V412 = V312*cos(theta(4)) - V132*sin(theta(4));
V432 = V312*sin(theta(4)) + V132*cos(theta(4));
num = -V412*cos(theta(5)) - V332*sin(theta(5));
den = - V432;
theta(6) = atan2(num,den);
```

16-735, Howie Choset with slides from G.D. Hager, Z. Dodds, and Dinesh Moghausuall much worse!

Some Other Examples of C-Space

- A rotating bar fixed at a point
 - what is its C-space?
 - what is its workspace
- A rotating bar that translates along the rotation axis
 - what is its C-space?
 - what is its workspace
- A two-link manipulator
 - what is its C-space?
 - what is its workspace?
 - Suppose there are joint limits, does this change the C-space?
 - The workspace?

16-735, Howie Choset with slides from G.D. Hager, Z. Dodds, and Dinesh Mocha

Configuration Space

(wraps horizontally and vertically)

Obstacles in C-Space

- Let q denote a point in a configuration space Q
- The path planning problem is to find a mapping c:[0,1]→ Q s.t. no configuration along the path intersects an obstacle
- Recall a workspace obstacle is WO_i
- A configuration space obstacle QO_i is the set of configurations q at which
 the robot intersects WO_i, that is

$$QO_i = \{q \in Q \mid R(q) \cap WO_i \neq \emptyset\}.$$

• The free configuration space (or just free space) Q_{free} is

$$Q_{\text{free}} = Q \setminus \left(\bigcup QO_i \right).$$

The free space is generally an open set A free path is a mapping c:[0,1] \rightarrow Q_{free} A semifree path is a mapping c:[0,1] \rightarrow cl(Q_{free})

16-735, Howie Choset with slides from G.D. Hager, Z. Dodds, and Dinesh Mocha

Disc in 2-D workspace

Example of a World (and Robot)

16-735, Howie Choset with slides from G.D. Hager, Z. Dodds, and Dinesh Mocha

$Configuration \ Space: \ {\tt Accommodate \ Robot \ Size}$

16-735, Howie Choset with slides from G.D. Hager, Z. Dodds, and Dinesh Mocha

Trace Boundary of Workspace

 $\mathcal{QO}_i = \{q \in \mathcal{Q} \mid R(q) \bigcap \mathcal{WO}_i \neq \emptyset\}.$

Pick a reference point...

16-735, Howie Choset with slides from G.D. Hager, Z. Dodds, and Dinesh Mocha

Polygonal robot translating in 2-D workspace

Polygonal robot translating & rotating in 2-D workspace

16-735, Howie Choset with slides from G.D. Hager, Z. Dodds, and Dinesh Mocha

Any reference point

16-735, Howie Choset with slides from G.D. Hager, Z. Dodds, and Dinesh Mocha

Any reference point configuration

16-735, Howie Choset with slides from G.D. Hager, Z. Dodds, and Dineshy Modes does P⊕R have?

Any reference point configuration

16-735, Howie Choset with slides from G.D. Hager, Z. Dodds, and Dimeahy Modes does P⊕R have?

Minkowski sum

• The **Minkowski sum** of two sets P and Q, denoted by $P \oplus Q$, is defined as

$$P \oplus Q = \{ p+q \mid p \in P, q \in Q \}$$

• Similarly, the Minkowski difference is defined as

$$P \ominus Q = \{ p - q \mid p \in P, q \in Q \}$$

16-735, Howie Choset with slides from G.D. Hager, Z. Dodds, and Dinesh Mocha

Minkowski sum of convex polygons

- The Minkowski sum of two convex polygons P and Q of m and n vertices respectively is a convex polygon $P \oplus Q$ of m + n vertices.
 - The vertices of $P \oplus Q$ are the "sums" of vertices of P and Q.

Observation

• If P is an obstacle in the workspace and M is a moving object. Then the C-space obstacle corresponding to P is $P \ominus M$

16-735, Howie Choset with slides from G.D. Hager, Z. Dodds, and Dinesh Mocha

Star Algorithm: Polygonal Obstacles

16-735, Howie Choset with slides from G.D. Hager, Z. Dodds, and Dinesh Mocha

16-735, Howie Choset with slides from G.D. Hager, Z. Dodds, and Dinesh Mocha

Start Point

• Leave that as an exercise for your homework.

Configuration Space "Quiz"

16-735, Howie Choset with slides from G.D. Hager, Z. Dodds, and Dinesh Mocha

Configuration Space Obstacle

16-735, Howie Choset with slides from G.D. Hager, Z. Dodds, and Dinesh Mocha

The C-space representation of this obstacle...

Two Link Path

Thanks to Ken Goldberg

16-735, Howie Choset with slides from G.D. Hager, Z. Dodds, and Dinesh Mocha

Two Link Path

Properties of Obstacles in C-Space

- If the robot and WO_i are ______, then
 - Convex then QO; is convex
 - Closed then QO_i is closed
 - Compact then QO_i is compact
 - Algebraic then QO; is algebraic
 - Connected then QO_i is connected

16-735, Howie Choset with slides from G.D. Hager, Z. Dodds, and Dinesh Mocha

Additional dimensions

What would the configuration space of a rectangular robot (red) in this world look like? Assume it can translate *and* rotate in the plane.

(The blue rectangle is an obstacle.)

16-735, Howie Choset with slides from G.D. Hager, Z. Dodds, and Dinesh Mocha

a 2d possibility

16-735, Howie Choset with slides from G.D. Hager, Z. Dodds, and Dinesh Motohaot keep it this simple?

A problem?

http://www.main.berkereyleur-settliah.with.elides_firey-obort_legal.com_Dodds_and Dineshotherise straightforward paths

Requires one more d...

16-735, Howie Choset with slides from G.D. Hager, Z. Dodds, and Dinesh Mocha

too conservative! what instead?

When the robot is at one orientation

16-735, Howie Choset with slides from G.D. Hager, Z. Dodds, and Dinesh Mocha

When the robot is at another orientation

16-735, Howie Choset with slides from G.D. Hager, Z. Dodds, and Dinesh Mocha

Additional dimensions

What would the configuration space of a rectangular robot (red) in this world look like?

16-735, Howie Choset with slides from G.D. Hager, Z. Dodds, and Dinesh Mocha this is twisted...

Polygonal robot translating & rotating in 2-D workspace

16-735, Howie Choset with slides from G.D. Hager, Z. Dodds, and Dinesh Mocha

2D Rigid Object

The Configuration Space (C-space)

16-735, Howie Choset with slides from G.D. Hager, Z. Dodds, and Dinesh Mocha

Moving a Piano

Configuration Space (C-space)

16-735, Howie Choset with slides from G.D. Hager, Z. Dodds, and Dinesh Mocha

Configuration space

16-735, Howie Choset with slides from G.D. Hager, Z. Dodds, and Dinesh Mocha

Why study the Topology

- · Extend results from one space to another: spheres to stars
- · Impact the representation
- Know where you are
- Others?

The Topology of Configuration Space

- Topology is the "intrinsic character" of a space
- Two space have a different topology if cutting and pasting is required to make them the same (e.g. a sheet of paper vs. a mobius strip)
 - think of rubber figures --- if we can stretch and reshape "continuously" without tearing, one into the other, they have the same topology
- A basic mathematical mechanism for talking about topology is the homeomorphism.

16-735, Howie Choset with slides from G.D. Hager, Z. Dodds, and Dinesh Mocha

Homeo- and Diffeomorphisms

- Recall mappings:
 - $\phi: S \to T$
 - If each elements of φ goes to a unique T, φ is injective (or 1-1)
 - If each element of T has a corresponding preimage in S, then ϕ is *surjective* (or onto).
 - If ϕ is surjective and injective, then it is bijective (in which case an inverse, $\phi^{\text{-1}}$ exists).
 - − ϕ is *smooth* if derivatives of all orders exist (we say ϕ is C[∞])
- If φ: S → T is a bijection, and both φ and φ⁻¹ are continuous, φ is a homeomorphism; if such a φ exists, S and T are homeomorphic.
- If homeomorphism where both ϕ and ϕ^{-1} are smooth is a *diffeomorphism*.

Some Examples

- How would you show a square and a rectangle are diffeomorphic?
- How would you show that a circle and an ellipse are diffeomorphic (implies both are topologically S¹)
- Interestingly, a "racetrack" is not diffeomorphic to a circle
 - composed of two straight segments and two circular segments
 - at the junctions, there is a discontinuity; it is therefore not possible to construct a smooth map!
 - How would you show this (hint, do this for a function on \mathfrak{R}^1 and think about the chain rule)
 - Is it homeomorphic?

16-735, Howie Choset with slides from G.D. Hager, Z. Dodds, and Dinesh Mocha

Local Properties

 $B_{\epsilon}(p) = \{p' \in \mathcal{M} \mid d(p, p') < \epsilon\}$ Ball

 $p \in \mathcal{M}$ $\mathcal{U} \subseteq \mathcal{M}$ with $p \in \mathcal{U}$ such that for every $p' \in \mathcal{U}$, $B_{\epsilon}(p') \subset \mathcal{U}$. Neighborhood

Manifolds

- A space S *locally diffeomorphic* (homeomorphic) to a space T if each p∈ S there is a neighborhood containing it for which a diffeomorphism (homeomorphism) to some neighborhood of T exists.
- S¹ is locally diffeomorphic to R¹
- The sphere is locally diffeomorphic to the plane (as is the torus)
- A set S is a k-dimensional manifold if it is locally homeomorphic to R^k

16-735, Howie Choset with slides from G.D. Hager, Z. Dodds, and Dinesh Mocha

Charts and Differentiable Manifolds

- A Chart is a pair (U,φ) such that U is an open set in a k-dimensional manifold and φ is a diffeomorphism from U to some open set in R^k
 - think of this as a "coordinate system" for U (e.g. lines of latitude and longitude away form the poles).
 - The inverse map is a parameterization of the manifold
- Many manifolds require more than one chart to cover (e.g. the circle requires at least 2)
- · An atlas is a set of charts that
 - cover a manifold
 - are smooth where they overlap (the book defines the notion of C^{∞} related for this; we will take this for granted).
- A set S is a differentiable manifold of dimension n if there exists an atlas from S to Rⁿ
 - For example, this is what allows us (locally) to view the (spherical) earth as flat and talk about translational velocities upon it.

Some Minor Notational Points

- $\mathfrak{R}^1 \times \mathfrak{R}^1 \times ... \times \mathfrak{R}^1 = \mathfrak{R}^n$
- $S^1 \times S^1 \times ... \times S^1 \neq S^n$ (= T^n , the n-dimensional torus)
- Sⁿ is the n-dimensional sphere
- Although Sⁿ is an n-dimensional manifold, it is not a manifold of a single chart --- there is no single, smooth, invertible mapping from Sⁿ to Rⁿ ---
 - they are not ??morphic?

16-735, Howie Choset with slides from G.D. Hager, Z. Dodds, and Dinesh Mocha

Examples

Type of robot	Representation of Q
Mobile robot translating in the plane	\mathbb{R}^2
Mobile robot translating and rotating in the plane	$SE(2)$ or $\mathbb{R}^2 \times S^1$
Rigid body translating in the three-space	\mathbb{R}^3
A spacecraft	$SE(3)$ or $\mathbb{R}^3 \times SO(3)$
An n-joint revolute arm	T^n
A planar mobile robot with an attached n -joint arm	$SE(2) \times T^n$

```
S^1 \times S^1 \times \ldots \times S^1 (n times) = T^n, the n-dimensional torus S^1 \times S^1 \times \ldots \times S^1 (n times) \neq S^n, the n-dimensional sphere in \mathbb{R}^{n+1} S^1 \times S^1 \times S^1 \neq SO(3) SE(2) \neq \mathbb{R}^3 SE(3) \neq \mathbb{R}^6
```

What is the Dimension of Configuration Space?

- The dimension is the number of parameter necessary to uniquely specify configuration
- One way to do this is to explicitly generate a parameterization (e.g with our 2-bar linkage)
- Another is to start with too many parameters and add (independent) constraints
 - suppose I start with 4 points in the plane (= 8 parameters), A, B, C, D
 - Rigidity requires d(A,B) = c₁ (1 constraints)
 - Rigidity requires $d(A,C) = c_2$ and $d(B,C) = c_3$ (2 constraints)
 - Rigidity requires $d(A,D) = c_4$ and $d(B,D) = c_5$ and ??? (?? constraints)
 - HOW MANY D.O.F?
- QUIZ:
 - HOW MANY DOF DO YOU NEED TO MOVE FREELY IN 3-space?

16-735, Howie Choset with slides from G.D. Hager, Z. Dodds, and Dinesh Mocha

What is the Dimension of Configuration Space?

- The dimension is the number of parameter necessary to uniquely specify configuration
- One way to do this is to explicitly generate a parameterization (e.g with our 2-bar linkage)
- Another is to start with too many parameters and add (independent) constraints

- QUIZ:
 - HOW MANY DOF DO YOU NEED TO MOVE FREELY IN 3-space?
 - 3+3
 - HOW MANY in 4-space?

More on dimension

 \mathbb{R}^1 and SO(2) are one-dimensional manifolds;

 \mathbb{R}^2 , S^2 and T^2 are two-dimensional manifolds;

 \mathbb{R}^3 , SE(2) and SO(3) are three-dimensional manifolds;

 \mathbb{R}^6 , T^6 and SE(3) are six-dimensional manifolds.

16-735, Howie Choset with slides from G.D. Hager, Z. Dodds, and Dinesh Mocha

More Example Configuration Spaces (contrasted with workspace)

- Holonomic robot in plane:
 - workspace R2
 - configuration space \Re^2
- 3-joint revolute arm in the plane
 - Workspace, a torus of outer radius L1 + L2 + L3
 - configuration space T³
- 2-joint revolute arm with a prismatic joint in the plane
 - workspace disc of radius L1 + L2 + L3
 - configuration space $T2 \times \Re$
- 3-joint revolute arm mounted on a mobile robot (holonomic)
 - workspace is a "sandwich" of radius L1 + L2 + L3
 - \square $\Re^2 \times \mathsf{T}^3$
- 3-joint revolute arm floating in space
 - workspace is \Re^3
 - configuration space is T³

16-735, Howie Choset with slides from G.D. Hager, Z. Dodds, and Dinesh Mocha

Parameterization of Torus

16-735, Howie Choset with slides from G.D. Hager, Z. Dodds, and Dinesh Mocha

2d Manifolds

16-735, Howie Choset with slides from G.D. Hager, Z. Dodds, and Dinesh Mocha

Representing Rotations

- Consider S¹ --- rotation in the plane
- The action of a rotation is to, well, rotate --> R_{θ} : $\Re^2 \to \Re^2$
- We can represent this action by a matrix R that is applied (through matrix multiplication) to points in \Re^2

$$cos(\theta) - sin(\theta)
sin(\theta) cos(\theta)$$

• Note, we can either think of rotating a point through an angle, or rotate the **coordinate system (or frame)** of the point.

16-735, Howie Choset with slides from G.D. Hager, Z. Dodds, and Dinesh Mocha

Geometric Transforms

Now, using the idea of homogeneous transforms, we can write:

$$p' = \begin{pmatrix} R & T \\ 0 & 0 & 1 \end{pmatrix} p$$

The group of rigid body rotations $SO(2) \times \Re(2)$ is denoted SE(2) (for special Euclidean group)

$$R = \left[\begin{array}{cc} \tilde{x}_1 & \tilde{y}_1 \\ \tilde{x}_2 & \tilde{y}_2 \end{array} \right] = \left[\begin{array}{cc} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{array} \right] \in SO(2)$$

This space is a type of torus

From 2D to 3D Rotation

- I can think of a 3D rotation as a rotation about different axes:
 - $rot(x,\theta) rot(y,\theta) rot(z,\theta)$
 - there are many conventions for these (see Appendix E)
 - Euler angles (ZYZ) --- where is the singularity (see eqn 3.8)
 - Roll Pitch Yaw (ZYX)
 - · Angle axis
 - Quaternion
- The space of rotation matrices has its own special name: SO(n) (for special orthogonal group of dimension n). It is a manifold of dimension n

$$R = \left[\begin{array}{ccc} \tilde{x}_1 & \tilde{y}_1 & \tilde{z}_1 \\ \tilde{x}_2 & \tilde{y}_2 & \tilde{z}_2 \\ \tilde{x}_3 & \tilde{y}_3 & \tilde{z}_3 \end{array} \right] = \left[\begin{array}{ccc} R_{11} & R_{12} & R_{13} \\ R_{21} & R_{22} & R_{23} \\ R_{31} & R_{32} & R_{33} \end{array} \right] \in SO(3)$$

• What is the derivative of a rotation matrix?

16-73 trickwequestionith-switetife.the topology, of that space Dires Mocha

Geometric Transforms

Now, using the idea of homogeneous transforms, we can write:

$$p' = \begin{pmatrix} R & T \\ 0 & 0 & 0 & 1 \end{pmatrix} p$$

The group of rigid body rotations $SO(3) \times \Re(3)$ is denoted SE(3) (for special Euclidean group)

$$SE(n) \equiv \left[egin{array}{cc} SO(n) & \mathbb{R}^n \\ 0 & 1 \end{array}
ight]$$

What does the inverse transformation look like?

Open vs. Closed Chains

- Serial (or open) chain mechanisms can usually be understood simply by looking at how they are put together (like our 2-link manipulator)
- Closed chain mechanisms have additional internal constraints --- the links form closed loops, e.g.

Suppose 4 revolute, 2 prismatic, 6 links

Gruebler's formula: $N(k-n-1) + \sum f_i$

N = DOF of space (here 3) f = dof of joints (here 1) n=# of joints; k # of links

16-735, Howie Choset with slides from G.D. Hager, Z. Dodds, and Dinesh Mocha

Transforming Velocity

- Recall forward kinematics K: $Q \rightarrow W$
- The Jacobian of K is the $n \times m$ matrix with entries

$$- J_{i,j} = d K_i / d q_j$$

- The Jacobian transforms velocities:
 - dw/dt = J dq/dt
- If square and invertible, then
 - $dq/dt = J^{-1} dw/dt$
- Example: our favorite two-link arm...

A Useful Observation

- The Jacobian maps configuration velocities to workspace velocities
- Suppose we wish to move from a point A to a point B in the workspace along a path p(t) (a mapping from some time index to a location in the workspace)
 - dp/dt gives us a velocity profile --- how do we get the configuration profile?
 - Are the paths the same if choose the shortest paths in workspace and configuration space?

16-735, Howie Choset with slides from G.D. Hager, Z. Dodds, and Dinesh Mocha

Summary

- Configuration spaces, workspaces, and some basic ideas about topology
- Types of robots: holonomic/nonholonomic, serial, parallel
- Kinematics and inverse kinematics
- Coordinate frames and coordinate transformations
- Jacobians and velocity relationships

T. Lozano-Pérez.
Spatial planning: A configuration space approach. *IEEE Transactions on Computing*, C-32(2):108-120, 1983.

A Few Final Definitions

- A manifold is path-connected if there is a path between any two points.
- A space is compact if it is closed and bounded
 - configuration space might be either depending on how we model things
 - compact and non-compact spaces cannot be diffeomorphic!
- · With this, we see that for manifolds, we can
 - live with "global" parameterizations that introduce odd singularities (e.g. angle/elevation on a sphere)
 - use atlases
 - embed in a higher-dimensional space using constraints
- Some prefer the later as it often avoids the complexities associated with singularities and/or multiple overlapping maps

16-735, Howie Choset with slides from G.D. Hager, Z. Dodds, and Dinesh Mocha