MATHEMATICAL ANALYSIS 1 **HOMEWORK 2**

(1) Prove Newton's binomial formula. Hint: prove by induction. In your proof you may also use the formula:

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$

- (2) Let $f: X \to Y$ be a function between two sets X and Y.
 - (a) Prove that $A \subseteq f^{-1}(f(A))$ for any $A \subseteq X$.
 - (b) Give an example of when $A \neq f^{-1}(f(A))$.
- (3) Describe the following subsets of \mathbb{R} , specify what are their infimum and supremum, and determine whether their minimum and maximum are attained (explain your answers).
 - (a) $A = \{x \in \mathbb{R} \mid (x+1)(x-1)(x-5) < 0\} \cap \{x \in \mathbb{R} \mid \frac{3x+1}{x-2} \ge 0\}$
 - (b) $B = \{x \in \mathbb{R} \mid x 4 \ge \sqrt{x^2 6x + 5}\} \cup \{x \in \mathbb{R} \mid x + 2 > \sqrt{x 1}\}$ (c) $C = \{x \in \mathbb{R} \mid x = \frac{1}{n-2}, n = 3, 4, 5, \dots\}$
- (4) Describe and sketch the following subsets of \mathbb{R}^2 :
 - (a) $A = \{(x, y) \in \mathbb{R}^2$ | xy > 0

 - (a) $A = \{(x, y) \in \mathbb{R} \mid xy \ge 0\}$ (b) $B = \{(x, y) \in \mathbb{R}^2 \mid 1 + xy > 0\}$ (c) $C = \{(x, y) \in \mathbb{R}^2 \mid x^2 y^2 > 0\}$ (d) $D = \{(x, y) \in \mathbb{R}^2 \mid x y \ne 0\}$ (e) $E = \{(x, y) \in \mathbb{R}^2 \mid |x y| < 2\}$ (f) $F = \{(x, y) \in \mathbb{R}^2 \mid |x y| < -2\}$
- (5) Describe the following sets: (explain your answers)
 - (a) dom (f) where $f: \mathbb{R} \to \mathbb{R}$ is given by $f(x) = \frac{1}{\sin x}$.
 - (b) im (f) where $f: \mathbb{R} \to \mathbb{R}$ is given by $f(x) = \frac{1}{\sin x}$. (c) dom (f) where $f: \mathbb{R} \to \mathbb{R}$ is given by $f(x) = \frac{1}{2 + \sin x}$.

 - (d) dom(f) where $f: \mathbb{R} \to \mathbb{R}$ is given by $f(x) = 10^x$.
 - (e) $\operatorname{im}(f)$ where $f: \mathbb{R} \to \mathbb{R}$ is given by $f(x) = 10^x$.
 - (f) dom(f) where $f: \mathbb{R} \to \mathbb{R}$ is given by $f(x) = \log_{10}(x)$.
 - (g) $\operatorname{im}(f)$ where $f: \mathbb{R} \to \mathbb{R}$ is given by $f(x) = \log_{10}(x)$.
- (6) For the following functions f and subsets $B \subseteq \mathbb{R}$, describe $f^{-1}(B)$.
 - (a) $f: \{3, 4, 5, \dots\} \to \mathbb{R}$ defined by $f(n) = \frac{1}{n-2}$, and B = (0, 1).
 - (b) In the previous question, what if B = [0, 1]?
 - (c) $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^4$, B = [1, 16].
 - (d) $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^3 + 1$, B = (-26, -7].
 - (e) $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = \cos x$, $B = \{0\}$.
- (7) Compute $\frac{100!}{98!}$. Explain your answer.

SOLUTIONS

(1) We prove by induction on n that $(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$. For n=0, we have $(a+b)^0 = 1$ $\binom{0}{0}a^0b^0$. Assume the formula holds for n-1. Then

$$(a+b)^{n} = (a+b)(a+b)^{n-1} = (a+b)\sum_{k=0}^{n-1} \binom{n-1}{k} a^{k} b^{n-1-k}$$

$$= \sum_{k=0}^{n-1} \binom{n-1}{k} a^{k+1} b^{n-1-k} + \sum_{k=0}^{n-1} \binom{n-1}{k} a^{k} b^{n-k}$$

$$= \sum_{k=1}^{n} \binom{n-1}{k-1} a^{k} b^{n-k} + \sum_{k=0}^{n-1} \binom{n-1}{k} a^{k} b^{n-k}$$

$$= a^{n} + \sum_{k=1}^{n-1} \binom{n-1}{k-1} + \binom{n-1}{k} a^{k} b^{n-k} + b^{n}$$

$$= \sum_{k=0}^{n} \binom{n}{k} a^{k} b^{n-k},$$

where we used the given formula $\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$ for $1 \le k \le n-1$. (2) (a) Let $x \in A$. Then $f(x) \in f(A)$, so $x \in f^{-1}(f(A))$.

- - (b) Let $X = \{1, 2\}$, $Y = \{a\}$, f(1) = f(2) = a, and $A = \{1\}$. Then $f(A) = \{a\}$ and $f^{-1}(f(A)) = \{a\}$ $f^{-1}(\{a\}) = \{1, 2\} \neq A.$
- (3) (a) (x+1)(x-1)(x-5) < 0 gives $x \in (-\infty, -1) \cup (1, 5)$. For $\frac{3x+1}{x-2} \ge 0$, we need $(3x+1)(x-2) \ge 0$ and $x \neq 2$, giving $x \in (-\infty, -\frac{1}{3}] \cup (2, \infty)$. Thus $A = (-\infty, -1) \cup (2, 5)$. We have $\inf A = -\infty$, $\sup A = 5 \notin A$. The minimum is not attained, the maximum is not attained.
 - (b) For $x-4 \ge \sqrt{x^2-6x+5}$, we need $x^2-6x+5 \ge 0$ (so $x \le 1$ or $x \ge 5$) and $(x-4)^2 \ge x^2-6x+5$, giving $x \ge \frac{21}{8}$. So the first set is $\left[\frac{21}{8}, \infty\right)$. For $x+2 > \sqrt{x-1}$, we need $x \ge 1$ and $(x+2)^2 > x-1$, giving $x^2 + 3x + 5 > 0$, which holds for all $x \ge 1$. Thus $B = [1, \infty)$, with inf $B = \min B = 1$,
 - (c) $C = \{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots\}$. We have $\inf C = 0 \notin C$, $\sup C = \max C = 1 \in C$.
- (4) (a) A consists of the first and third quadrants (including axes).

(b) B is the region between the two branches of the hyperbola xy = -1 (excluding the hyperbola itself)

(c) C consists of regions where |x| > |y|, i.e., the regions to the left and right of the lines $y = \pm x$ (excluding the lines themselves).

 $(\mathrm{d}) \ \ D = \mathbb{R}^2 \setminus \{(x,y) \in \mathbb{R}^2 \quad | \quad y = x\} \ \text{(i.e., the plane \mathbb{R}^2 without the line $y = x$)}.$

(e) E is the strip between the parallel lines y = x - 2 and y = x + 2 (excluding these lines).

- (f) $F = \emptyset$ since $|x y| \ge 0$ cannot be < -2.
- (5) (a) $dom(f) = \mathbb{R} \setminus \{k\pi \mid k \in \mathbb{Z}\}\ (\text{where } \sin x \neq 0).$
 - (b) $\operatorname{im}(f) = (-\infty, -1] \cup [1, \infty)$ (since $|\sin x| \le 1$ with equality attained).
 - (c) $dom(f) = \mathbb{R}$ (since $2 + \sin x \ge 1 > 0$ for all x).
 - (d) $dom(f) = \mathbb{R}$.
 - (e) $im(f) = (0, \infty)$.
 - (f) $dom(f) = (0, \infty)$.
- (g) $\operatorname{im}(f) = \mathbb{R}$. (6) (a) We need $\frac{1}{n-2} \in (0,1)$, so $\frac{1}{n-2} > 0$ and $\frac{1}{n-2} < 1$. This gives n > 2 and n > 3, so $n \ge 4$. Thus

 - (b) $f^{-1}([0,1]) = \{3,4,5,\ldots\}$ (including n = 3 where f(3) = 1). (c) $x^4 \in [1,16)$ gives $|x| \in [1,2)$, so $f^{-1}(B) = (-2,-1] \cup [1,2)$. (d) $x^3 + 1 \in (-26,-7]$ gives $x^3 \in (-27,-8]$, so $x \in (-3,-2]$. Thus $f^{-1}(B) = (-3,-2]$.
 - (e) $\cos x = 0$ when $x = \frac{\pi}{2} + k\pi$ for $k \in \mathbb{Z}$. Thus $f^{-1}(\{0\}) = \{\frac{\pi}{2} + k\pi \mid k \in \mathbb{Z}\}.$
- (7) $\frac{100!}{98!} = \frac{100 \cdot 99 \cdot 98!}{98!} = 100 \cdot 99 = 9900.$