GROTHENDIECK CONNECTIONS

Work in the local case. Suppose that B is an A-algebra. Let $I := I_{B/A}$ be the kernel of the canonical surjective ring homomorphism $m: B \otimes_A B \to B$, $b_1 \otimes b_2 \mapsto b_1 b_2$. There are two B-algebra structures of $B \otimes_A B$, which are denoted by

$$j_1: B \longrightarrow B \otimes_A B$$
, $b \mapsto b \otimes 1$
 $j_2: B \longrightarrow B \otimes_A B$, $b \mapsto 1 \otimes b$

Let $P_{B/A}^1 := (B \otimes_A B)/I^2$ be the *first principal part*. Then j_2 and j_2 induces two B-algebra structures on P^1 .

$$p_i := \bar{j}_i : B \longrightarrow B \otimes_A B \longrightarrow P^1,$$

where the second map is the natural quotient map. One the other hand, $\Omega^1_{B/A} := I/I^2$ has only one B-module structure. This is because for any $\sum a_i \otimes b_i \in \Omega^1_{B/A}$, we have $m(\sum a_i \otimes b_i) = \sum a_i b_i = 0$. Hence

$$\sum a_i \otimes b_i = \sum a_i \otimes b_i - \sum a_i b_i \otimes 1 = \sum (a_i \otimes 1) \cdot (1 \otimes b_i - b_i \otimes 1)$$

So $\Omega^1_{B/A}$ is generated as an *left* (i.e., induced by p_1) B-module by elements of the form $1 \otimes b - b \otimes 1$. Moreover, note that $(1 \otimes a - a \otimes 1) \cdot (1 \otimes b - b \otimes 1) \in I^2$, we know that $(1 \otimes a)(1 \otimes b - b \otimes 1) = (a \otimes 1)(1 \otimes b - b \otimes 1) \in I/I^2$. So the left (induced by p_1) and right (induced by p_2) B-module structures of $\Omega^1_{B/A}$ coincide. Hence those elements also generate $\Omega^1_{B/A}$ as an *right* B-module. Set

$$\partial := \partial_{B/A} : B \longrightarrow \Omega^1_{B/A}, \quad b \mapsto (p_2 - p_1)(b) = 1 \otimes b - b \otimes 1.$$

We have $\partial(b_1b_2) = b_1\partial b_2 + b_2\partial b_1$. It follows that we have an splitting exact sequence

$$0 \longrightarrow \Omega^{1}_{B/A} \longrightarrow P^{1}_{B/A} \xrightarrow{\tilde{m}} B \longrightarrow 0, \tag{I}$$

where i = 1 when $P_{B/A}^1$ is viewed as a left B-module (induced by p_1), and i = 2 when $P_{B/A}^1$ is viewed as a right B-module (induced by p_2). So we have isomorphism²

$$P^1_{B/A} \cong \Omega^1_{B/A} \oplus B$$
, $b_1 \otimes b_2 \mapsto (b_1 \partial b_2, b_1 b_2)$, as a left *B*-module, $P^2_{B/A} \cong \Omega^1_{B/A} \oplus B$, $b_1 \otimes b_2 \mapsto (-b_2 \partial b_1, b_1 b_2)$, as a right *B*-module.

Given the ring structure $(\omega, b) \cdot (\omega', b') := (b\omega' + b'\omega, bb')$, on the direct sum $\Omega^1_{B/A} \oplus B_2$, then above B-module isomorphisms becomes *ring isomorphisms*.

Now suppose that E is an B-module, together with an A-connection

$$\nabla: E \longrightarrow E \otimes_B \Omega^1_{B/A}$$
.

¹In EGA o_{IV} , §20, $p_1 - p_2$ is used. But in EGA IV_4 , §16, the convention $p_2 - p_1$ is used.

²all the following construction are based on the observations from the definition of these two isomorphism. For example, the difference of the first components gives the derivation $\partial(b_1b_2)$.

³Though it makes no difference, many people write $\Omega^1_{B/A} \otimes_B E$, but here it's more convenient to use $E \otimes_B \Omega^1_{B/A}$ instead, because we set $\partial = p_2 - p_1$, rather than $p_1 - p_2$. Otherwise, at some places, an extra minus sign will appear.

We have a *B*-module isomorphisms⁴

$$E \otimes_B P_{B/A}^1 = (E \otimes_B \Omega_{B/A}^1) \oplus E, \quad \text{and} \quad P_{B/A}^1 \otimes_B E = (\Omega_{B/A}^1 \otimes_B E) \oplus E, \tag{2}$$

where $P_{B/A}^1$ on the right of \otimes means that it's tensored using its left B-module structure and $P_{B/A}^1$ on the left means that it's tensored using its right B-module structure. The induced (right)⁵ $P_{B/A}^1$ -module structure on $E \otimes_B P_{B/A}^1 = (E \otimes_B \Omega_{B/A}^1) \oplus E$ is given by

$$(e \otimes \omega, e') \cdot (b_1 \otimes b_2) = (e \otimes \omega, e') \cdot (b_1 \partial b_2, b_1 b_2)$$
$$= (e' \otimes b_1 \partial b_2 + b_1 b_2 e \otimes \omega, b_1 b_2 e')$$
(3)

and the induced (left) $P^1_{B/A}$ -module structure on $P^1_{B/A}\otimes_B E=(\Omega^1_{B/A}\otimes_B E)\oplus E$ is given by

$$(b_1 \otimes b_2) \cdot (\omega \otimes e, e') = (-b_2 \partial b_1, b_1 b_2) \cdot (\omega \otimes e, e')$$
$$= (-b_2 \partial b_1 \otimes e' + b_1 b_2 \omega \otimes e, b_1 b_2 e')$$

$$(4)$$

Based on observations on (4) and (3), define

$$\epsilon: (\Omega^1_{B/A} \otimes_B E) \oplus E \longrightarrow (E \otimes_B \Omega^1_{B/A}) \oplus E$$

$$(\omega \otimes e, e') \longmapsto (e \otimes \omega + \nabla(e'), e')$$
(5)

It's straightly forward to check that

$$\epsilon(\omega \otimes e, e') \cdot (b_1 \otimes b_2) = (e \otimes \omega + \nabla(e'), e') \cdot (b_1 \otimes b_2)$$

$$= (e' \otimes b_1 \partial b_2 + b_1 b_2 e \otimes \omega + b_1 b_2 \nabla(e'), b_1 b_2 e')$$

$$\epsilon((b_1 \otimes b_2) \cdot (\omega \otimes e, e')) = \epsilon(-b_2 \partial b_1 \otimes e' + b_1 b_2 \omega \otimes e, b_1 b_2 e')$$

$$= (-e' \otimes b_2 \partial b_1 + b_1 b_2 e \otimes \omega + \nabla(b_1 b_2 e'), b_1 b_2 e')$$

$$= (e' \otimes b_1 \partial b_2 + b_1 b_2 e \otimes \omega + b_1 b_2 \nabla(e'), b_1 b_2 e')$$

where we use the Leibniz rule that $\nabla(b_1b_2e')=e'\otimes b_1\partial b_2+e'\otimes b_2\partial b_1+b_1b_2\nabla(e')$. Therefore ϵ is a $P^1_{B/A}$ -module homomorphism. Moreover, it's clear that ϵ is injective and surjective, hence an isomorphism of $P^1_{B/A}$ -modules. So it induce a commutative diagram of isomorphisms $P^1_{B/A}$ -modules

$$\begin{array}{ccc} P^1_{B/A} \otimes_B E & \stackrel{\cong}{\longrightarrow} (\Omega^1_{B/A} \otimes_B E) \otimes E \\ & & & & \downarrow^{\epsilon} \\ E \otimes_B P^1_{B/A} & \stackrel{\cong}{\longrightarrow} (E \otimes_B \Omega^1_{B/A}) \oplus E. \end{array}$$

Therefore, given a connection ∇ on E, it determines an isomorphism

$$\varepsilon: P_{B/A}^1 \otimes_B E \xrightarrow{\cong} E \otimes_B P_{B/A}^1. \tag{6}$$

such that the diagram

$$P_{B/A}^{1} \otimes_{B} E \xrightarrow{\varepsilon} E \otimes_{B} P_{B/A}^{1}$$

$$\downarrow_{\text{id} \otimes \tilde{m}} \qquad \qquad \downarrow_{\tilde{m} \otimes \text{id}}$$

$$B \otimes_{B} E \cong E \longrightarrow E \cong E \otimes_{B} B$$

$$(7)$$

⁴As the sequence (1) split, we do not need to require E nor $\Omega^1_{B/A}$ to be free. In a geometry setting, this means that we could work with general quasi-coherent sheaves \mathcal{E} over a unnecessarily smooth scheme X/S.

⁵Actually, it makes no difference to view it as an left module, which probably will make the computation less confusing.

of *B*-modules commutes, where the bottom arrow is the canonical isomorphism. If we identify the vertical arrows with the projection to *E* with respect to the direct sum decomposition, we could simply say that ε induces identity on *E*).

On the other hand, given an isomorphism (6) which induces identity on E, it gives rise to an isomorphism (5) that induces identity on E. Let $\operatorname{pr}_1:(E\otimes_B\Omega^1_{B/A})\oplus E\to E\otimes_B\Omega^1_{B/A}$ be the projection to the first component, and i_2 be the inclusion of E into $(\Omega^1_{B/A}\otimes_B E)\oplus E$ as the second component. Then we can recover ∇ by setting $\nabla:E\to E\otimes_B\Omega^1_{B/A}$ as the composition

$$E \xrightarrow{i_2} (\Omega^1_{B/A} \otimes_B E) \oplus E \xrightarrow{\epsilon} (E \otimes_B \Omega^1_{B/A}) \oplus E \xrightarrow{\operatorname{pr}_1} E \otimes_B \Omega^1_{B/A}. \tag{8}$$

And one checks that

$$\nabla(b \cdot e) = \operatorname{pr}_{1} \circ \epsilon \circ i_{2}(b \cdot e)$$

$$= \operatorname{pr}_{1} \circ \epsilon ((0, b \cdot e))$$

$$= \operatorname{pr}_{1} \circ \epsilon ((1 \otimes b) \cdot (0, e)) \qquad (\operatorname{recall} (4))$$

$$= \operatorname{pr}_{1} (\epsilon(0, e) \cdot (1 \otimes b)) \qquad (\epsilon \text{ is } P_{B/A}^{1} \text{-linear})$$

$$= \operatorname{pr}_{1} ((\nabla(e), e) \cdot (1 \otimes b))$$

$$= \operatorname{pr}_{1} ((e \otimes \partial b + b \nabla(e), be)) \qquad (\operatorname{recall} (3))$$

$$= e \otimes \partial b + b \nabla(e)$$

That is to say, ∇ satisfies the Leibniz rule.

Simplification/Summary The above computations could be simplified as follows. A simple element $(b_1 \otimes b_2) \otimes e \in P^1_{B/A} \otimes_B E$ has image $(-b_2 \partial b_1 \otimes e, b_1 b_2 e)$ in $(\Omega^1_{B/A} \otimes_B E) \oplus E$ under the isomorphism in (2). It is mapped by ϵ to

$$\begin{aligned} (-e \otimes b_2 \partial b_1 + \nabla(b_1 b_2 e), \, b_1 b_2 e) &= (e \otimes b_1 \partial b_2 + b_1 b_2 \nabla(e), \, b_1 b_2 e) \\ &= \left(\nabla(e), \, e \right) \cdot (b_1 \otimes b_2) \in \left(E \otimes_B \Omega^1_{B/A} \right) \oplus E. \end{aligned}$$

This further corresponds to the element $e \otimes (b_1 \otimes b_2) + \nabla(e) \cdot (b_1 \otimes b_2) \in E \otimes_B P^1_{B/A}$, where $\nabla(e)$ is viewed as its image in $E \otimes_B P^1_{B/A}$ via the natural map $E \otimes_B \Omega^1_{B/A} \to E \otimes_B P^1_{B/A}$, which may *not* be injective in general. So the isomorphism (5) translates to the following. Given a connection $\nabla: E \to E \otimes_B \Omega^1_{B/A}$, we can form the $P^1_{B/A}$ -isomorphism

$$\varepsilon: P_{B/A}^1 \otimes_B E \longrightarrow E \otimes_B P_{B/A}^1$$

$$1 \otimes e \longmapsto e \otimes 1 + \nabla(e). \tag{9}$$

This ε reduces to identity as (the image of) $\nabla(e)$ lies in the kernel of $\mathrm{id}_E \otimes \tilde{m} : E \otimes_B P^1_{B/A} \to E \otimes_B B \cong E$. Conversely, given a $P^1_{B/A}$ -isomorphism as above, we can recover ∇ as the composition

$$E \xrightarrow{i_2} P_{B/A}^1 \otimes_B E \xrightarrow{\varepsilon} E \otimes_B P_{B/A}^1 \xrightarrow{\operatorname{pr}_1} \Omega_{B/A}^1 \otimes_B E$$

$$e \longmapsto 1 \otimes e \longmapsto \varepsilon(1 \otimes e) \longmapsto \varepsilon(1 \otimes e) - (\operatorname{id}_E \circ \tilde{m}) \circ \varepsilon(1 \otimes e).$$
(10)

The Leibniz rule follows from direct computations.

Flat connection Descent datum.

Remark There is a technical point. Usually we set $\partial := p_2 - p_1$, that is $\partial(a) = 1 \otimes a - a \otimes 1$. This makes the isomorphism $P \otimes_B E \to E \otimes P$ more natural. We can rewrite this isomorphism as

I.
$$\varepsilon: p_2^*E \to p_1^*E$$
.

On the other hand, we have a natural morphism of *left B*-module morphism $E \to P(E) := P \otimes_B E = p_{1*}p_2^*E$. Using adjointness, we get a natural map

2.
$$\tilde{\varepsilon}: p_1^*E \to p_2^*E$$
.

Is these two map inverse to each other?

Moreover, we conventionally write a connection as $\nabla: E \to \Omega \otimes E$, rather than $E \to E \otimes \Omega$. Observe (8), if using $p_2^*E \to p_1^*E$, it's more convenient to write a connection as $E \to E \otimes \Omega$.

Atiyah Class. Splitting of the sequence

$$0 \to \Omega \to E \to P \otimes E \to E \to 0$$

1 Applications

1.1 Pullback of connections

It is very easy to see how a connection pulls back.

Suppose we have a commutative diagram

$$X' \xrightarrow{u} X$$

$$\downarrow^{f'} \qquad \downarrow^{f}$$

$$S' \xrightarrow{g} S$$

It induces a commutative diagram

$$(X')^{(1)} \xrightarrow{u^{(1)}} X^{(1)}$$

$$\downarrow^{\Delta_{f'}} \qquad \downarrow^{\Delta_{f}}$$

$$X' \times_{S'} X' \xrightarrow{u} X \times_{S} X$$

$$\downarrow^{p_{i}} \qquad \downarrow^{p_{i}}$$

$$\chi' \xrightarrow{u} X$$

Given an S-connection

$$\alpha: (p_2^{(1)})^* \mathcal{E} \longrightarrow (p_1^{(1)})^* \mathcal{E}$$

on a quasi-coherent \mathcal{O}_X -module \mathcal{E} , we can just pullback this map via $u^{(1)}$, and obtain an S' connection

$$(u^{(1)})^*\alpha:(u^{(1)})^*(p_9^{(1)})^*\mathcal{E}\cong ((p')_9^{(1)})^*(u^*\mathcal{E})\longrightarrow ((p')_1^{(1)})^*(u^*\mathcal{E})\cong (u^{(1)})^*(p_1^{(1)})^*\mathcal{E}$$

of the $\mathcal{O}_{X'}$ -module $u^*\mathcal{E}$.

⁶The problem may be hidden here. In [EGA IV §16], the functor $E \mapsto P(E)$ is studied. But it seems that $E \to P(E)$ is not a *natural* map. As the tensor product $P \otimes E$ uses the right module structure of B, so the natural map, which is the extension of scalers, should be the one $be \mapsto (1 \otimes 1) \otimes be = (1 \otimes b) \otimes e$. This map is not linear if we view $P \otimes E$ as a B-module by restriction of scalers via $p_1 : B \to P$.

1.2 Canonical connection on Frobenius pullback

Grothendieck's viewpoint This may not be the most direct viewpoint for this problem.

Denote by X'/S the Frobenius twist of X/S and by $F: X \to X'$ the relative Frobenius morphism. Suppose \mathcal{E}' is a quasi-coherent $\mathcal{O}_{X'}$ -module and set $\mathcal{E} := F^*\mathcal{E}'$ to be its Frobnius pullback. Then we know that

$$(p_1^{(1)})^* \mathcal{E} = F^{-1} \mathcal{E}' \otimes_{F^{-1} \mathcal{O}_{X'}} \mathcal{P}_{X/S}^1$$
 and $(p_2^{(1)})^* \mathcal{E} = \mathcal{P}_{X/S}^1 \otimes_{F^{-1} \mathcal{O}_{X'}} F^{-1} \mathcal{E}'$

Observe that if we restrict scalars via the natural map $F^{-1}\mathcal{O}_{X'} \to \mathcal{O}_X$, then the two induced $F^{-1}\mathcal{O}_{X'}$ -module structures on $\mathcal{P}^1_{X/S}$ coincide. Therefore the natural $F^{-1}\mathcal{O}_{X'}$ -module isomorphism

$$\sigma: \mathcal{P}^1_{X/S} \otimes_{F^{-1}\mathcal{O}_{X'}} F^{-1}\mathcal{E}' \longrightarrow F^{-1}\mathcal{E}' \otimes_{F^{-1}\mathcal{O}_{X'}} \mathcal{P}^1_{X/S}, \quad p \otimes e \mapsto e \otimes p$$

actually gives a $P_{X/S}^1$ -module isomorphism. It by definition induces to identity on $F^{-1}\mathcal{E}'$.

Traditional viewpoint. The key observation is that the derivation map

$$\partial: \mathcal{O}_X \to \Omega^1_{X/S}$$

is an $F^{-1}\mathcal{O}_X$ -module homomorphism. Thus the $F^{-1}\mathcal{O}_{X'}$ -module homomorphism

$$1 \otimes \partial : F^*\mathcal{E}' = F^{-1}\mathcal{E}' \otimes_{F^{-1}\mathcal{O}_{X'}} \mathcal{O}_X \to F^{-1}\mathcal{E}' \otimes_{F^{-1}\mathcal{O}_{X'}} \Omega^1_{X/S} \cong F^*\mathcal{E} \otimes_{\mathcal{O}_X} \Omega^1_{X/S}$$

is well defined. Denote by π (resp. π') the structure morphism of X/S (resp. X'/S). Then the map $1 \otimes \partial$ is automatically $\pi^{-1}\mathcal{O}_S$ -linear via the natural homomorphism $F^{-1}(\pi')^{\sharp}: \pi^{-1}\mathcal{O}_S = F^{-1}(\pi')^{-1}\mathcal{O}_S \to F^{-1}\mathcal{O}_{X'}$. The Leibniz rule is induced from that of ∂ .

http://math.stackexchange.com/q/1892218/

http://mathoverflow.net/q/13162/

⁷In fact, by identifying the underlying topological spaces of X and X', we can ignore F^{-1} in the following. Feel free to do so.

⁸Basically, this is because in characteristic $p \ge 2$, $t^p \otimes 1 - 1 \otimes t^p = (t \otimes 1 - 1 \otimes t)^p = 0 \in (B \otimes_A B)/I^2 =: P_{B/A}^1$ affine locally. It follows that $(t^p b_1) \otimes b_2 = b_1 \otimes t^p b_2 \in P_{B/A}^1$.

⁹This is because $\partial((at) \cdot b) = \partial(at^p b) = at^p \partial b$, where $at \in B'$ and the \cdot is the action of B' on B.