4-to-1 Multiplexer (MUX):

The 4-to-1 multiplexer is a circuit that takes in 4 inputs and sends a signal out depending on which select gate is switched on or off.

Gate Implementation:

Truth Table:

Sel_1	Sel_0	f
0	0	In_0
0	1	In_1
1	0	In_2
1	1	In_3

K-Map;

Sel_0 Sel_1	0	1
0	In_0	In_1
1	In_2	In_3

Boolean Expressions:

$$f = (in_0*sel_0'*sel_1') + (in_1*sel_0'*sel_1) + (in_2*sel_0sel_1') + (in_3*sel_0*sel_1)$$

Waveforms:

Full Adder/Subtractor:

The full adder and subtractor is a circuit that takes in 2 1-bit binary numbers and either add or subtract them depending on the signal which the circuit is designed to choose. In my circuit 0 is add and 1 is subtract. What makes a fuller adder and subtractor different from the half adder and subtractor is that in a full adder and subtractor, carry ins and carry outs are taken in consideration during the mathematical process.

Gate Implementation:

Full Adder Gate:

Full Subtractor Gate:

Derek Yang 63118832

Assignment 1 Lab Report

Truth Table:

Adder

addorsub	in_0	in_1	cin	cout	sum
0	0	0	0	0	0
0	0	0	1	0	1
0	0	1	0	0	1
0	0	1	1	1	0
0	1	0	0	0	1
0	1	0	1	1	0
0	1	1	0	1	0
0	1	1	1	1	1

Subtractor

addorsub	in_0	in_1	cin	cout	sum
1	0	0	0	0	0
1	0	0	1	1	1
1	0	1	0	1	1
1	0	1	1	1	0
1	1	0	0	0	1
1	1	0	1	0	0
1	1	1	0	0	0
1	1	1	1	1	1

K-Map

Sum:

in_0i	n_1	00	01	11	10
cin	0		1		1
	1	1		1	

Adder cout

in_0i	n_1	00	00	11	10
cin	0			1	
	1		1	1	1

Subtractor cout

in_0i	n_1	00	01	11	10
cin	0		1		
	1	1	1	1	

Derek Yang 63118832

Assignment 1 Lab Report

Boolean Equations:

Full Adder:

Sum =
$$in_0 xor in_1 xor cin$$

Cout = $(in_0*in_1) + (in_0*cin) + (in_1 *cin)$

Full Subtractor:

Wave map:

Comparator:

The comparator is a circuit that compares two 1-bit numbers and sends a signal through the gate corresponding to whether the 1^{st} bit is either greater than, equal to, or less than the 2^{nd} bit.

Boolean Equations

Encoder:

The encoder is a circuit that takes in a decimal number and transcribes it into a binary number.

Gate Truth Table

K- Map

Boolean Equation

Wave Map:

Decoder:

The decoder is a circuit that takes a binary number and transcribes it into a decimal number, It is the opposite of an encoder.

K- Map Boolean Equation

