Solutions of Tutorial-3

Problem set 3.1

1 $x + y \neq y + x$ and $x + (y + z) \neq (x + y) + z$ and $(c_1 + c_2)x \neq c_1x + c_2x$.

2 When $c(x_1, x_2) = (cx_1, 0)$, the only broken rule is 1 times x equals x. Rules (1)-(4) for addition x + y still hold since addition is not changed.

11 (a) All matrices $\begin{bmatrix} a & b \\ 0 & 0 \end{bmatrix}$ (b) All matrices $\begin{bmatrix} a & a \\ 0 & 0 \end{bmatrix}$ (c) All diagonal matrices.

17 (a) The invertible matrices do not include the zero matrix, so they are not a subspace (b) The sum of singular matrices $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ is not singular: not a subspace.

Problem set 3.2

$$\textbf{1} \ \, \text{(a)} \ \, U = \begin{bmatrix} 1 & 2 & 2 & 4 & 6 \\ 0 & 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \text{ Free variables } x_2, x_4, x_5 \\ \text{Pivot variables } x_1, x_3 \end{aligned} \text{ (b) } U = \begin{bmatrix} 2 & 4 & 2 \\ 0 & 4 & 4 \\ 0 & 0 & 0 \end{bmatrix} \text{ Free } x_3 \\ \text{Pivot } x_1, x_2 \end{aligned}$$

2 (a) Free variables x_2, x_4, x_5 and solutions (-2, 1, 0, 0, 0), (0, 0, -2, 1, 0), (0, 0, -3, 0, 1)

(b) Free variable x_3 : solution (1, -1, 1). Special solution for each free variable.

5 (a) False: Any singular square matrix would have free variables (b) True: An invertible square matrix has no free variables. (c) True (only n columns to hold pivots)
(d) True (only m rows to hold pivots)

8 If column 4 of a 3 by 5 matrix is all zero then x_4 is a *free* variable. Its special solution is x = (0, 0, 0, 1, 0), because 1 will multiply that zero column to give Ax = 0.

9 If column 1 = column 5 then x_5 is a free variable. Its special solution is (-1, 0, 0, 0, 1).

- 10 If a matrix has n columns and r pivots, there are n-r special solutions. The nullspace contains only x=0 when r=n. The column space is all of \mathbf{R}^m when r=m. All those statements are important!
- **16** The nullspace of $A = \begin{bmatrix} 1 & 0 & 0 & -4 \\ 0 & 1 & 0 & -3 \\ 0 & 0 & 1 & -2 \end{bmatrix}$ is the line through the special solution $\begin{bmatrix} 4 \\ 3 \\ 2 \\ 1 \end{bmatrix}$

Problem set 3.3

$$\begin{bmatrix} 1 & 2 & -2 & b_1 \\ 2 & 5 & -4 & b_2 \\ 4 & 9 & -8 & b_3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & -2 & b_1 \\ 0 & 1 & 0 & b_2 - 2b_1 \\ 0 & 0 & 0 & b_3 - 2b_1 - b_2 \end{bmatrix}$$
 solvable if $b_3 - 2b_1 - b_2 = 0$.

Back-substitution gives the particular solution to Ax = b and the special solution to

$$Ax = 0$$
: $x = \begin{bmatrix} 5b_1 - 2b_2 \\ b_2 - 2b_1 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}$.

6 (a) Solvable if
$$b_2=2b_1$$
 and $3b_1-3b_3+b_4=0$. Then $x=\begin{bmatrix}5b_1-2b_3\\b_3-2b_1\end{bmatrix}=x_p$

(b) Solvable if
$$b_2 = 2b_1$$
 and $3b_1 - 3b_3 + b_4 = 0$. $x = \begin{bmatrix} 5b_1 - 2b_3 \\ b_3 - 2b_1 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} -1 \\ -1 \\ 1 \end{bmatrix}$.

11 A 1 by 3 system has at least two free variables. But $x_{
m null}$ in Problem 10 only has one.

12 (a) If
$$Ax_1 = b$$
 and $Ax_2 = b$ then $x_1 - x_2$ and also $x = 0$ solve $Ax = 0$

(b)
$$A(2x_1 - 2x_2) = 0, A(2x_1 - x_2) = b$$