Homework 8

Due Dec 1st, 2022

Problem 1

Suppose X_1, \ldots, X_{11} are iid $N(\mu_1, \sigma^2)$ and Y_1, \ldots, Y_{21} are iid $N(\mu_2, \sigma^2)$. Suppose we compute $\bar{X} = 1.1$, $S_X^2 = 1.25$, $\bar{Y} = 1.9$ and $S_Y^2 = 1.21$. Construct an EXACT 95% confidence interval for $\mu_1 - \mu_2$.

Problem 2

Among 1000 random selected voters 450 say they will vote for candidate A. Could you provide a 95% confidence interval for the true supporting rate of candidate A? Does your confidence interval cover 0.5?

Problem 3

 $X_1,...,X_m \stackrel{iid}{\sim} N(a,\sigma_1^2),\ Y_1,...,X_n \stackrel{iid}{\sim} N(b,\sigma_2^2).$ Suppose $\sigma_2^2/\sigma_1^2=\lambda$ and λ is known, find a $1-\alpha$ confidence interval for b-a.

Problem 4

Suppose X_1, \ldots, X_n are iid $N(\mu, 16)$, if we want to construct a $1 - \alpha$ level confidence interval for μ with length less than L. How large must n be?