

PHÒNG XÉT NGHIỆM DI TRUYỀN TẾ BÀO Trung Tâm Y Sinh Học Phân Tử Lầu 10 tòa nhà 15 tầng

Chuyên đề

CÁC KỸ THUẬT CHẨN ĐOÁN DI TRUYỀN

Đối tượng: sinh viên đăng ký thi nội trú

TS. BS. Bùi Võ Minh Hoàng

- Kỹ thuật nhiễm sắc thể đồ
- Kỹ thuật lai huỳnh quang tại chỗ (Fluorescent In Situ Hybridization)
- Kỹ thuật giải trình tự gen Sanger

Kỹ thuật nhiễm sắc thể đồ

Nguyên lý kỹ thuật

- Demecolcine (Colcemid) ngăn sự hình thành thoi vô sắc -> giữ nhiễm sắc thể ở trạng thái kỳ giữa
- Dung dịch nhược trương (KCI) -> nồng độ dung dịch bên trong cao hơn bên ngoài
 tế bào -> gia tăng thể tích tế bào -> cụm nhiễm sắc thể trải rộng
- Dung dịch định hình (Acetic acid : methanol = 3:1; Carnoy) -> loại nước khỏi tế
 bào & định hình nhiễm sắc thể

Hãm phân bào

Không colcemid

Có colcemid Source: AGT, 2017

5

Nhược trương tế bào

Sau 3 phút thêm KCI 0.075M

Sau 10 phút thêm KCI 0.075M

Sau 30 phút thêm KCI 0.075M

Sau 45 phút thêm KCI 0.075M

Source: AGT, 2017

- Kích thước
- Vị trí tâm
- Hình thái, kích thước và vị trí các băng

Cách ghi vị trí băng của NST

- 400 band 11q14
- 550 band
 11q14.1
 11q14.2
 11q14.3

Source: http://www.pathology.washington.edu/research/cytopages/idiograms/human/

Độ phân giải băng của NST

Độ phân giải băng của NST

TABLE I G -BANDING RESOLUTION EVALUATION SCORE [10].

Band	Land marks Criteria		
resolution			
300 band	2 dark bands on 8p (8p12 & 8p22)		
	3 dark bands on 10q (10q21, 10q23, 10q25)		
	20p12 visible		
	22q12 distinct		
400 band	3 dark bands on mid-4q (q22-28)		
	3 dark bands mid-5q (5q14, 5q21, 5q23)		
	2 dark bands on 9p (9p21 & 9p23)		
	13q33 distinct		
500 band	7q33 & 7q35 distinct		
•	3 dark bands on 11p (11p12, 11p14, 11p15.4)		
2 3	14q32.2 distinct		
6 8	4 dark bands on 18q (18q12.1, 18q12.3, 18q21.2,		
18	18q22)		
550 band	5q31.2 distinct		
	8p21.2 visible		
	2 dark bands on 11pter (11p15.2 & 11p15.4)		
	22q13.2 distinct		
700 band 2p25.2 distinct			
	2q37.2 distinct		
	10q21.1 and 10q21.3 resolve		
	17g22-g24 resolves into 3 dark bands		

Talbe II MINIMUM G -BANDING RESOLUTION FOR REGERRAL REASON [10].

Reason for referral	Minimum level of resolution of G-banding images quality
Confirmation of aneuploidy e.g. direct lymphocyte, direct CV or solid tissue culture preparation	< 300 band
Exclusion of known large structural rearrangements e.g. lymphocyte, solid tissue, CVS direct preparation or amniotic fluid cell preparation	300 band
Identification and exclusion of small expected structural rearrangements e.g. lymphocyte, solid tissue, CVS culture or amniotic fluid preparation	400 band
Routine amniotic fluid and CV culture preparations	400 band
Abnormal ultrasound scan associated with AF, CV and solid tissue referrals	500 band
Blood referrals, not covered by exclusion criteria	550 band
For microdeletion syndroms (when no FISH probe is available)	700 band

Source: Sethakulvivhai W. et al.,2012

Thai 19 tuần 2 ngày / Thiểu ối nặng, nghi ngờ bất sản thận hai bên

Cytogenetics laboratory

Cytogenetics and Pharmacy at Home

Karyotype thai: 46,XY,der(4)t(4;11)(q35.2;p15.2)mat

Karyotype me: 46,XX,t(4;11)(q35.2;p15.2)

THAI

(số lượng NST),(NST giới tính),(bất thường số lượng),(bất thường cấu trúc)

- X trước Y trước NST thường.
- Bất thường số lượng NST thường = ghi theo thứ tự tăng dần.
- Nhiều bất thường cấu trúc = theo ABC (del, inv, rob).
- Nhánh p trước nhánh q.
- Điểm gãy gần trước điểm gãy xa.

Bất thường cấu trúc NST

❖ trên cùng 1 NST, 1 điểm gãy

46,XY , sự kiện(NST số mấy)(điểm gãy ở nhánh nào)

❖ trên cùng 1 NST, 2 điểm gãy

46,XY , sự kiện(NST)(điểm gãy 1/nhánh?điểm gãy 2/nhánh?)

Bất thường cấu trúc NST

❖ trên cùng 1 NST, 1 điểm gãy

Ví dụ: 46,XX,del(5)(q13)

Diễn giải: người nữ có mất đoạn trên nhánh dài nhiễm sắc thể 5 ở vị trí 13.

❖ trên cùng 1 NST, 2 điểm gãy

Ví dụ 1: 46,XX,dup(1)(q22q25) = người nữ có nhân đoạn trên nhánh dài NST 1 ở giữa vị trí 22 và 25.

Ví dụ 2: 46,XY,inv(3)(p13q21) = người nam có đảo đoạn quanh tâm trên NST 3 với 2 điểm gãy ở vị trí 13 của nhánh ngắn và vị trí 21 của nhánh dài.

Ví dụ 3: 46,XY,inv(3)(q21q26.2) = người nam có đảo đoạn cạnh tâm trên NST 3 với 2 điểm gãy trên nhánh dài ở vị trí 21 và vị trí 26.2.

Bất thường cấu trúc NST

❖ giữa 2 NST, 2 điểm gãy

46,XY , sự kiện(NST1;NST2)(điểm gãy 1;điểm gãy 2)

Ví dụ: 46,XY,t(5;6)(q33;q23) = người nam có chuyển đoạn tương hỗ giữa 2 nhiễm sắc thể 5 và 6 với 2 điểm gãy ở nhánh dài NST 5 vị trí 33 và nhánh dài NST 6 vị trí 23.

Ưu điểm

- Thể hiện được bộ NST của cá thể, đánh giá được cả về số lượng và cấu trúc.
- Chi phí XN vừa phải.

Nhược điểm

- Cần thời gian để nuôi cấy tế bào.
- Cần thời gian để phân tích NST trong trường hợp thể khảm.
- Chỉ phát hiện bất thường cấu trúc NST ≥ 10 Mb.

Kỹ thuật nhiễm sắc thể đồ

Chỉ định

- Kiểu hình lâm sàng bất thường / đa dị tật bẩm sinh
- Chậm phát triển thể chất và / hoặc trí tuệ
- Mơ hồ giới tính
- Sẩy thai liên tiếp / vô kinh / vô sinh
- Bất thường hình thái của thai trên siêu âm / Thai sẩy trong 3 tháng đầu
- Bệnh sử gia đình đã xác định người mang bất thường cấu trúc nhiễm sắc thể
- Ung thư (bạch cầu)

Kỹ thuật lai huỳnh quang tại chỗ (FISH)

Nguyên lý kỹ thuật

- Chuyển chuỗi DNA kép thành chuỗi DNA đơn
- Đoạn dò DNA có gắn huỳnh quang ở dạng chuỗi DNA đơn
- Đoạn dò DNA có gắn huỳnh quang lai với đoạn DNA cần khảo sát
- Quan sát kết quả lai dưới kính hiển vi huỳnh quang

Kỹ thuật lai huỳnh quang tại chỗ (FISH)

Các loại đoạn dò (probes)

Locus-specific probes

 Những đoạn trình tự đặc hiệu tạo thành các clones với kích thước thay đổi tùy vào cloning vector

plasmids (1-10 kb) -> PAC, YAC, BAC vectors (80 kb -> 1 Mb)

- Úng dụng:
- + bất thường cấu trúc nhiễm sắc thể (chuyển đoạn / mất đoạn / đảo đoạn trong ung thư)
 - + khuếch đại gene trong ung thư
 - + chẩn đoán nhanh lệch bội nhiễm sắc thể trong chẩn đoán trước sinh
- Độ sáng huỳnh quang mức độ trung bình

Locus-specific probes

Repititive-sequence probes

- Những đoạn trình tự DNA ngắn lặp lại ở các vùng dị nhiễm sắc, ở tâm động hoặc các đầu tận của nhiễm sắc thể
- Ung dung:
 - + xác định nhanh lệch bội nhiễm sắc thể
 - + xác định sự thay đổi kích thước vùng dị nhiễm sắc ở NST 1, 9, 16 và Y
- Độ sáng huỳnh quang mức độ cao
- Thận trọng: có lai chéo giữa các NST khi dùng đoạn trình tự DNA lặp lại ở tâm động NST

A CONTRACTOR OF THE PARTY OF TH

Repititive-sequence probes

Source: Collin A. et al., 2009

Chromosome-painting probes

- Thư viện những probe đặc trưng cho một vùng của nhiễm sắc thể whole chromosome / whole chromosome arm / band-sized chromosomal regions
- Ung dung:
 - + định danh nhiễm sắc thể
 - + định danh nhánh / vùng nhiễm sắc thể
 - + định danh nhiễm sắc thể marker (M-FISH, SKY)
- Độ sáng huỳnh quang mức độ trung bình -> cao
- Nhược điểm: chi phí cao, thiết bị đắt tiền

MAN TO THE REAL PROPERTY OF THE PARTY OF THE

Chromosome-painting probes

Source: AGT, 2017

Phát hiện tín hiệu & phân tích

1		Don't count, skip over. This could be two nuclei with one signal each or one twisted nucleus.
2	PD PD	Count as two signals. One is very compact; the other is diffuse.
3		Don't count; skip over. Observer cannot determine which nucleus contains the signals.
4	•	Count as two signals. One signal is split.

5	Count as three signals.
6	Count as three signals. One is split.
7	Count as four signals.

Kỹ thuật lai huỳnh quang tại chỗ (FISH)

Ưu điểm

- Có thể thực hiện được trên metaphase, hay interphase.
- Xác định nhanh bất thường nghi ngờ
- Hỗ trợ khi kỹ thuật NST đồ không thành công hoặc trường hợp thể khảm.
- Thời gian trả kết quả nhanh (trong vòng 24 giờ).

Nhược điểm

- Không phát hiện được bất thường đi kèm (nếu có).
- Cần trang bị kính hiển vi huỳnh quang
- Chi phí XN khá cao.

Kỹ thuật lai huỳnh quang tại chỗ (FISH)

Chỉ định

- Hội chứng vi mất đoạn (DiGeorge, Prader-Willi, Cri-du-chat, ...)
- Biểu hiện gen ung thư đặc trưng trong bệnh lý ác tính huyết học (Bcr-Abl trong CML), ung thư vú (Her-2 neu), ...
- Chẩn đoán nhanh lệch bội NST trong chẩn đoán tiền sản
- Kiểm định các nghi ngờ bất thường cấu trúc của kết quả NST đồ

Source: https://www.nature.com/scitable/ https://byjus.com/biology/

Nguyên lý kỹ thuật

Chain termination (kết thúc chuỗi)

- Enzyme DNA polymerase xúc tác gắn các nucleotide vào đoạn ADN đơn đang tổng hợp ở vị trí 3' có nhóm –OH tự do, khi gặp nucleotide không có 3'-OH thì phản ứng tổng hợp dừng lại.
- Sử dụng các dideoxynucleotide (ddNTP) không có nhóm 3'-OH ở phân tử đường -> làm ngưng tổng hợp chuỗi ADN đơn ngẫu nhiên.
- Mỗi ddNTP được nhuộm màu huỳnh quang khác nhau.

Source: https://www.youtube.com/watch?v=3M0PyxFPwkQ

Đánh giá kết quả

✓ Chất lượng

Kết quả tốt, không "noise"

Kết quả tạm chấp nhận, ít "noise"

Kết quả không tốt

Đánh giá kết quả

✓ Gọi sai tên nucleotide

G-A

Ưu điểm

- Chiều dài phân mảnh ADN (read length) dài hơn so với kỹ thuật NGS.
- Độ chính xác cao
- Dùng kiểm định lại các đột biến được phát hiện bởi các kỹ thuật NGS.

Nhược điểm

- Tốn thời gian
- Chi phí XN cao
- Độ dài trình tự < 1000 bp

Chỉ định

- Phát hiện các đột biến ADN trong ung thư, bệnh lý thần kinh.
- Phát hiện các đột biến điểm trong chẩn đoán bệnh di truyền
- Xác định type và các allele kháng nguyên bạch cầu người HLA có liên quan đến bệnh.
- Định danh vi khuẩn, virus, nấm
- Kiểm định lại các đột biến ADN mới được phát hiện bằng các kỹ thuật giải trình tự thế hệ mới (NGS).