Spectral Theorem

Special case of Eigen decomposition / Diagonalisation

Symmetric: $A = A^T$

If A_{nxn} is a real, symmetric matrix then:

- · All its eigenvalues are real
- $\bullet \ \ \lambda_1, \lambda_2 \in spectrum(A) \cap \lambda_1 \neq \lambda_2 \cap \vec{v_1} \in E_{\lambda_1}, \vec{v_2} \in E_{\lambda_2} \implies \vec{v_1}^T \vec{v_2} = 0$
- ullet $\lambda \in spectrum(A) \implies algebraic\ multiplicity = geometric\ multiplicity$

Algebraic Multiplicity: $(\lambda - \lambda_0)^k \implies k = AM$

Geometric Multiplicity: $dim(E_{\lambda_0})$

Diagonalisation Special Case

$$A = BDB^{-1}$$

Where B = $[\vec{v_1}, \vec{v_2}, \dots, \vec{v_n}]$

Such that $ec{v_i}.\,ec{v_j}=0\ orall i
eq j\cap |ec{v_i}|=1$

$$B^T = B^{-1}$$

Saves computation

An Example

$$A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$$

Characteristic Polynomial = $\lambda^2 - 2\lambda - 3$

$$Spectrum(A) = 3, -1$$

$$E_3 = Ker(A-3I) = \operatorname{span}\{\begin{bmatrix}1\\1\end{bmatrix}\}$$

$$E_{-1} = Ker(A+I)$$
 = $\operatorname{span}\{egin{bmatrix} -1 \ 1 \end{bmatrix}\}$

B =
$$\begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}$$

$$B^T = [\begin{array}{cc} 1/\sqrt{2} & 1/\sqrt{2} \\ -1/\sqrt{2} & 1/\sqrt{2} \end{array}] = B^{-1}$$

$$D = \begin{bmatrix} 3 & 0 \\ 0 & -1 \end{bmatrix}$$