

PLANEJAMENTO DE CAPACIDADE, MODELAGEM E AVALIAÇÃO DE DESEMPENHO DE SISTEMAS COMPUTACIONAIS

TÉCNICAS PARA AVALIAÇÃO DE DESEMPENHO DE SISTEMAS COPUTACIONAIS

Professor: Luis Enrique Zárate

Diversas são as técnicas que podem ser utilizadas para avaliar o desempenho de sistemas computacionais. Todas as técnicas se complementam, mas uma classificação de acordo com a sua precisão, custo e tempo para sua implementação pode ser apresentada.

- Modelos matemáticos
- Regressão linear
- Programas sintéticos
- Monitoramento
- Kernel
- Benchmark
- "Eu acho"

- Precisão
- Custo
- Tempo Implantação

1) "Eu acho"

Esta técnica embora mais imprecisa e a mais barata é a mais utilizada na prática.

A precisão desta técnica está associada à experiência dos responsáveis pela implantação do sistema.

Devido a sua imprecisão esta técnica deve ser voltada unicamente para proposta da configuração inicial do sistema. Para proposta de atualização, existem técnicas mais eficacezes.

2) Benchmark

É conhecida também como a técnica da comparação.

Tipicamente é destinada para comparar/analisar dispositivos isolados (processadores, placas de vídeo, placas de rede, compiladores, etc.).

Atualmente é aplicada para comparar o desempenho de sistemas nas Nuvens (Google, Microsoft, Amazon etc). Por exemplo para avaliar Scaling up ou Scaling out.

Benchmark

A idéia de escalar recursos nas nuvens quando a carga de trabalho muda pode ser intuitivo. Aumentar infraestrutura quando a carga aumenta e diminuíndo a infraestrutura quando a carga diminui.

Porém existem duas estratégias para incrementar a infraestrutura :

- Scaling out (escalonamento horizontal): consiste em aumentar recursos em paralelo espalhando de forma balanceada a carga de trabalho.
- Scaling up (escalonamento vertical): consiste em aumentar a velocidade para gerenciar grandes cargas de trabalho. Isto é, movimentando sua aplicação para um servidor virtual (VM) de 2 CPU para outro de 3 CPU.
- Scaling down (redução do escalonamento): refere-se a decrementar os recursos do sistema.

Benchmark

A comparação de desempenho de dispositivos deve ser feita em um ambiente controlado.

- Ex.: Para avaliar um compilador para disferentes Sistemas Operacionais
 - Mesmo processador
 - Mesmo S.O.
 - Mesmo barramento de memória
 - Mesma otimização do compilador
 - Etc.

Benchmark

Esta técnica precissa responder às seguintes questões:

- Qual é o ambiente experimental controlado considerado?
- Quais são as variáveis não controladas?
- Cómo as variáveis não controladas afetam as conclusões da análise?

3) Kernel

Esta técnica é destinada para avaliar exclusivamente processadores.

Esta técnica é utilizada quando não é disponível ou acessível "fisicamente" o processador.

Podemos considerar que esta técnica possui duas versões: A clássica e a combinada com a técnica dos programas sintéticos.

Kernel - versão clássica

Esta técnica consiste em identificar o módulo kernel da aplicação e obter, deste, seu código assembly.

A partir do código assembly, é possível determinar os tempos de execução de acordo com a especificação do fabricante.

Procedimentos:

1. Identificar o módulo Kernel da aplicação

•Identificando o módulo kernel de uma aplicação.

Inicio	Interação	Tempo gasto
Modulo 1	10	1 s
Modulo 2 < KERNEL	100	200s
Modulo 3	1000	1 0s
Fim	1	5s

2. Codificar o módulo Kernel em assembly

Alto nível	Interação
	LDD Ax, Hx0018
a = a +1	PST Ac
	ADD Ax, Ac
	MOV Ac Hx0018

3. Calcular o tempo total de execução do módulo kernel para cada processador em análise de acordo com os manuais do fabricante

Alto nível	Interação	Tempo Gasto	Tempo gasto
		Processador 1	Processador 2
	LDD Ax, Hx0018	2,5 ns	2,8 ns
a = a +1	PST Ac	1,2 ns	1,2 ns
	ADD Ax, Ac	3,2 ns	4,5 ns
	MOV Ac Hx0018	2,5 ns	2,8 ns
•••	•••		
Total		4500 ns	5670 ns

Kernel - versão com Programas Sintéticos

Esta técnica tem surgido pela falta de profissionais com conhecimento profundo de assembly, o que limita a aplicação da versão original.

É proposto então, criar um Módulo Kernel Sintético (MKS) que seja similar ao Módulo Kernel Original (MKO) e com este realizar répidos experimentos sobre Hardwares específicos (físicos)

Módulo Kernel Original Módulo Kernel Sintético

- Considerando um Processador específico X.
- Calcular o tempo de execução (Tko) do MKO, para, por exemplo, N = 1000
- A idéia é construir um programa sintético (MKS) similar ao MKO, respeitando vários critérios:

Alto nível	MKO	condição	MKS
Tempo de Processamento	Tko	=	Tks
Estrutura de dados	Listas, Vet, Mat,	≈	Listas, Vet, Mat,
Tipos de variáveis	Type Varr	æ	Type var
Ordem de complexidade	O(N)	=	O(N)
Contextos	Contexto	≠	Contexto

 O próximo passo é construir um código executável do programa sintético kernel e utilizar este para realizar testes rápidos em diversos processadores.

4) Monitoramento:

A técnica de monitoramento consiste na coleta dedados acerca do desempenho de um sistema computacional para seu posterior análise.

Essa técnica é utilizada com dois propósitos:

- a) Determinar os dispositivos próximos a saturação, os quais diminuem o desempenho global do sistema.
- b) Observar o desempenho global do sistema instalado

Monitoramento

Fases do processo de monitoramento:

- 1) Coleta de dados: Executada durante a operação normal do sistema;
- 2) Redução de dados: consiste em sintetizar os dados de forma estatística, médias, desvios padrões, máximos, mínimos, gráficos temporais, etc.
- 3) Análise dos dados: é feita pela criatividade, experiência e bom senso do analista.

Informações adicionais que podem ser obtidas pela técnica do Monitoramento:

Processador:

- Tempo atividade: parcela de tempo que a CPU processa instruções.
- Tempo de wait: Tempo de CPU inativa por ociosidade ou por espera de I/O
- Fila de CPU: número de Task ready, ou seja, em condições (não utilizando) CPU)
- Tempo em Supervisor: tempo que a CPU está executando tarefas do S.O.

ETAPA 1: DIAGNÓSTICO INICIAL DA PERFORMANCE DO SISTEMA

Memória:

- Utilização de canais: percentual do tempo em que se observou a condição Channel busy.
- Balanceamento: distribuição equilibrada de carga entre os canais
- Sobreposição de operação: grau de simultaneidade entre a operação dos canais e da CPU.

Disco:

- Utilização da unidade de controle: percentual de tempo em que se observou a condição Control Unit busy.
- Utilização de dispositivo: percentual de tempo em que se observou a condição Device busy.

ETAPA 1: DIAGNÓSTICO INICIAL DA PERFORMANCE DO SISTEMA

Disco:

- Movimentação do disco (Seek): número de cilindros atravessados para execução de uma operação em disco.
- Atrassos rotacionais (search): tepo necessário à busca do registro na trilha.
- Utilização do espaço: áreas mortas ou danificadas em disco.
- Utilização de arquivos: frequencia de utilização de arquivos em disco.

ETAPA 1: DIAGNÓSTICO INICIAL DA PERFORMANCE DO SISTEMA

Carga de Trabalho:

- Picos de carga e identificação das horas mais solicitadas.
- Programas que consomen mais recursos
- Taxa de processamento (Throughput) por hora, turno, dia, semana, etc.
- Tempo de duração total (elapsed) (CPU, I/O, etc.)
- Operações de I/O por dispositivo (blocos transferidos de/para)
- Atividades de reprocessamento (debido a erros de qualquer origem)
- Custo de Jobs (para fins contáveis)

Monitoramento

Relatórios e Análise dos Dados Coletados: Processos com maior número de EXCP por mês

Nome do Processo	Total de EXCP	%	EXCP em Disco	EXCP em Fita
P012	12568559	10,4	932420	115201
P015	6401831	5,3	5246570	-
P065	1839238	1,5	618616	629438
SubTotal	47929092	39,7*	22709075	5190875
Total do Mês	120735123	100		

^{*} Esses processos representam quase 50% do total do mês

O Monitoramento permite identificar os Horários de Pico da Instalação:

5) Previsão do Desempenho por Regressão Linear

É uma técnica simples, porém imprecissa, muito utilizada para acompanhar e preveer o desempenho do sistema computacional em qualquer momento do ciclo de vida do sistema.

Esta técnica deve ser restrita aos primeiros meses (anos) da Fase Operacional. Quando essa Fase chega a seu estado final, é aconcelhável utilizar modelos mais exátos, como por exemplo, baseados na teoria das filas.

Previsão do Desempenho por Regressão Linear

Modelo: L= a + b * t

Mês	Carga média Req/min
Jan	4
Fev	6
Mar	8
Abr	9

$$a = \frac{(\sum L) (\sum T^2) - (\sum T)(\sum T * L)}{m (\sum T^2) - (\sum T)^2}$$

$$a = \frac{(27) (30) - (10)(76)}{4 (30) - (10)^2} \quad a=2,5$$

$$b = \frac{m(\sum T * L) - (\sum T)(\sum L)}{m(\sum T^2) - (\sum T)^2}$$
$$b = \frac{4(76) - (10)(27)}{4(30) - (10)^2} b = 1,7$$

Mês	Carga média Req/s	Carga média Req/s	erro
Jan	4	4,2	0,2
Fev	6	5,9	0,1
Mar	8	7,6	0,4
Abr	9	9,3	0,3
Mai	-	11,00	= 1.0/4 = ± 0.25

Modelo: L= 2,5 + 1,7 * t

Maio:

$$L= 2.5 + 1.7 * 5$$

$$L = 11.0 + 0.25 = 11.25 \text{ r/s}$$

Para LNS = 5 s/r Di=100 ms/req

$$R = \frac{D_i}{1 - U_i} = \frac{0.01}{1 - 0.01 * 11.25} = 0.01 \frac{s}{req}.$$

$$Dsp = \left| \frac{5,0-0,01}{5,0} \right| = 0.99 \quad -> 99.0\%$$