The Introduction to FEMU and its newly related research

Presented by Chen Haodong

Outline

- 1. Backgrounds
- 2. Existing SSD platform
- 3. Case of FEMU
- 4. Newly related work in 2023
- 5. Future work

1. Backgrounds

SSD research mainly focus on 3 parts:

- 1. kernel changes
- 2. Interface changes
- 3. FTL changes

Typical full-stack research

HDU – Center of Cloud computing

Simulator

Emulator

Hardware platform

Simulator

Emulator

Hardware platform

DiskSim's SSD; FlashSim; SSDSim;

Simulator

Emulator

Hardware platform

DiskSim's SSD; FlashSim; SSDSim;

simple

Time-saving

internal-SSD research

HDU – Center of Cloud computing

Simulator

Emulator

Hardware platform

DiskSim's SSD; FlashSim; SSDSim;

Simulator

Emulator

Hardware platform

OpenSSD; FPGA; OpenChannel SSD;

DiskSim's SSD; FlashSim; SSDSim;

Simulator

DiskSim's SSD; FlashSim; SSDSim; **Emulator**

Hardware platform

OpenSSD; FPGA; OpenChannel SSD;

Simulator

Emulator

DiskSim's SSD; FlashSim; SSDSim;

DiskSim's SSD;

simple

Time-saving

internal-SSD research

kernel-level extension

Hardware platform

OpenSSD; FPGA; OpenChannel SSD;

Full-stack research

Accurate

high costs

complex to use

Simulator

DiskSim's SSD; FlashSim; SSDSim;

Emulator

FlashEm; LightNVM QEMU; QEMU based VSSIM;

Hardware platform

OpenSSD; FPGA; OpenChannel SSD;

- Time-saving
- internal-SSD research
- kernel-level extension

Simulator

DiskSim's SSD; FlashSim; SSDSim;

Emulator

FlashEm; LightNVM QEMU; QEMU based VSSIM;

Hardware platform

OpenSSD; FPGA; OpenChannel SSD;

internal-SSD research

kernel-level extension

Full-stack research

Simulator

DiskSim's SSD; FlashSim; SSDSim;

Emulator

FlashEm; LightNVM QEMU; QEMU based VSSIM;

OpenSSD; FPGA; OpenChannel SSD;

Full-stack research

Full-stack research

Time-saving

Low costs

Accurate

internal-SSD research

Not scalability

high costs

kernel-level extension

Not accurate

complex to use

FEMU is a software (QEMU-based) flash emulator for fostering future full-stack software/hardware SSD research.

FEMU is a software (QEMU-based) flash emulator for fostering future full-stack soft- ware/hardware SSD research.

Cheap

Open source,

download from:

https://github.com/vtess/FEMU

FEMU is a software (QEMU-based) flash emulator for fostering future full-stack soft- ware/hardware SSD research.

Produce an advanced openChannel SSD

Model

The error of resulting latencies drops to only 0.5-38%

FEMU is a software (QEMU-based) flash emulator for fostering future full-stack soft- ware/hardware SSD research.

support 32 channels/chips

FEMU is a software (QEMU-based) flash emulator for fostering future full-stack soft- ware/hardware SSD research.

- modifiable interface
 - modifiable FTL
 - modifiable SSD
- modifiable kernel

Typical full stack research

APP Host OS interface **Hardware** FTL platform

.vs FEMU full stack research

HDU – Center of Cloud computing

Typical full stack research FEMU full stack research .VS **APP Host OS** interface **Hardware FTL** platform **FEMU** FTL changes **QEMU**

Typical full stack research FEMU full stack research .VS **APP Host OS** Interface **NVMe** interface changes **Hardware FTL FTL** changes platform **FEMU QEMU**

HDU – Center of Cloud computing

1. Holistic and Opportunistic Scheduling of Background I/Os in Flash-based SSDs. (TC'23). Yu Wang, You Zhou, Fei Wu, Yu Zhong, Jian Zhou, Zhonghai Lu, Shu Li, Zhenghong Wang, Changsheng Xie

Fig. 3. Design overview of *HuFu*. The core components include a framework, which allows host software to offload I/O scheduling of BG tasks into the SSD, and an SSD-internal I/O scheduler, which prioritizes FG I/Os while processing system-wide BG I/Os opportunistically.

1. Holistic and Opportunistic Scheduling of Background I/Os in Flash-based SSDs. (TC'23). Yu Wang, You Zhou, Fei Wu, Yu Zhong, Jian Zhou, Zhonghai Lu, Shu Li, Zhenghong Wang, Changsheng Xie

FEMU

Kernel changes

FTL changes

HDU – Center of Cloud computing

Fig. 3. Design overview of *HuFu*. The core components include a framework and an SSD-internal I/O scheduler, which prioritizes FG I/Os while processing s

2. **NVMeVirt: A Versatile Software-defined Virtual NVMe Device. (FAST'23).** Sang-Hoon Kim, Jaehoon Shim, Seongyeop Jeong, Jin-Soo Kim

Figure 1: The overall architecture of NVMeVirt. NVMeVirt virtualizes a virtual NVMe device through the PCI bus and switch, so the device is seen as a native PCIe device from the host.

2. NVMeVirt: A Versatile Software-defined Virtual NVMe Device. (FAST'23). Sang-Hoon Kim, Jaehoon Shim, Seongyeop Jeong, Jin-Soo Kim

FEMU NVMe interface

.VS

HDU – Center of Cloud computing

3. **DECC: Differential ECC for Read Performance Optimization on High-Density NAND Flash Memory.** (ASPDAC '23). Yunpeng Song, Yina Lv, Liang Shi

Figure 4: Overview of differential ECC.

3. **DECC: Differential ECC for Read Performance Optimization on High-Density NAND Flash Memory.** (ASPDAC '23). Yunpeng Song, Yina Lv, Liang Shi **FEMU**

Figure 4: Overview of differential ECC.

HDU – Center of Cloud computing

4. ConfZNS: A Novel Emulator for Exploring Design Space of ZNS. (SYSTOR'23). Inho Song, Myounghoon Oh, Bryan S. Kim, Seehwan Yoo, Jaedong Lee, Jongmoo Choi

Figure 1: Key components of ConfZNS.

HDU – Center of Cloud computing

5. **Optimizing Data Migration for Garbage Collection in ZNS SSDs. (DATE'23).** Zhenhua Tan, Linbo Long, Renping Liu, Congming Gao, Yi Jiang, Yan Liu

Fig. 1. The method of in-storage data migration.

5. **Optimizing Data Migration for Garbage Collection in ZNS SSDs. (DATE'23).** Zhenhua Tan, Linbo Long, Renping Liu, Congming Gao, Yi Jiang, Yan Liu

Fig. 1. The method of in-storage data migration.

HDU – Center of Cloud computing

6. **Design of a High-Performance, High-Endurance Key-Value SSD for Large-Key Workloads**. **(IEEE CAL'23)**. Chanyoung Park, Chun-Yi Liu, Kyungtae Kang, Mahmut Kandemir, Wonil Choi

Fig. 4. Internal architecture of LK-SSD.

Fig. 2. Internal architecture of PinK.

Fig. 5. Relocating a set of values to the value log in LK-SSD+.

Emulate three architecture on FEMU,

Compare their performance

lane.

7. CFIO: A conflict-free I/O mechanism to fully exploit internal parallelism for Open-Channel SSDs. (JSA'23). Jinbin Zhu, Liang Wang, Limin Xiao, Lei Liu, Guangjun Qi

FEMU

FTL changes:

Optimized I/O stack with CF line based on original FEMU OC-SSD

HDU – Center of Cloud computing

8. An Efficient F2FS GC Scheme for Improving I/O Latency of Foreground Application. (ICCE'23). Manjong Lee, Jonggyu Pa, Young Ik Eom

IV. EVALUATION

A. Experimental Setup

Table 1. Experiment Setup

Table 1. Experiment Setup	
Host Spec.	CPU: Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz Memory: DDR4 64GB OS: Ubuntu 18.04.6 LTS
VM Spec.	Emulator: FEMU-v5.2 CPU: 4 SMP CPU Memory: 4GB OS: Ubuntu 20.04.4 LTS Kernel Version: Kernel v5.17 Storage: 12GB ZNS SSD

The detailed experiment setup is described in Table 1. To emulate ZNS storage, we use FEMU [15] with the default setting. To test various situations, we set various zone size from 16MB to 128MB. We use FIO [16] as the background application issuing write operations. The background application repeatedly creates/deletes 32KB ~ 64KB small files and 256KB ~ 1MB big files. For the foreground application, we use a program that issues 4KB write operations followed by fsync every 30ms.

Emulate different zone size on FEMU,

Compare their performance

HDU - Center of Cloud computing

5. Future work

- 1. make FEMU running on my computer
- 2. Read the Friendly Source Code of FEMU
- 3. Find research direction

Thank you for listening

Presented by Chen Haodong