CHEM / BCMB 4190/6190/8189 Introductory NMR

Lecture 18

The Nuclear Overhauser Effect

NOE: <u>Nuclear Overhauser Effect or Nuclear Overhauser Enhancement</u>

- Depends on dipole-dipole relaxation (an important mechanism of \mathbf{T}_1 relaxation)
- Is based on through-space interactions that change M_z
- The NOE changes the intensities of particular signals
- The magnitude of the NOE is related to nuclear distances and molecular motions

1. <u>1D steady-state NOE experiment</u>:

Consider a two-spin system AX:

- -Assume the homonuclear case (A and X are both ¹H, although they need not be)
- -Assume no scalar coupling between A and X (J = 0)
- -Assume the internuclear A-X distance is $\leq \sim 5\text{Å}$ (NOE enhancement depends on $1/r^6$ where r is internuclear distance)

So, the simple 1D spectrum gives 2 signals with no splitting (J=0):

To establish the NOE, we will selectively saturate the 'A' transition with an RF field to equilibrate the spin populations:

What happens to the population levels when we saturate one of the signals, and what happens afterwards?

-Let's look at the energy level diagrams:

A). At equilibrium:

$$N4 = N$$

$$N3 = N + \Delta H$$

$$N2 = N + \Delta H$$

$$N1 = N + 2\Delta H$$

'A' transitions:
$$N1 - N3 = N2 - N4 = \Delta H$$

'X' transitions:
$$N1 - N2 = N3 - N4 = \Delta H$$

- 'A' and 'X' transitions are allowed and observable
- 'A' and 'X' transitions give singlets in 1D spectrum

B). After saturation of the 'A' transition:

$$N4 = N + \Delta H/2$$

$$N3 = N + 3\Delta H/2$$

$$N2 = N + \Delta H/2$$

$$N1 = N + 3\Delta H/2$$

- 'A' transitions: N1 N3 = N2 N4 = 0
- 'X' transitions: $N1 N2 = N3 N4 = \Delta H$ (same as at equilibrium)

-populations of N1, N2, N3, and N4 are now different than they were at equilibrium

C). Now, allow relaxation during saturation:

er ation $\Delta H/2$ ΔH
ation $\Delta H/2$

- W₀, W₁, and W2 are rate constants or transition probabilities
- W₁ is a one-spin transition or single quantum transition
- W₀ and W₂ are two-spin transitions
- W₀ is a zero quantum transition
- W₂ is a double quantum transition
- W_0 and W_2 are spectroscopically FORBIDDEN and cannot be observed
 - -HOWEVER, they are ALLOWED for relaxation

Let's suppose W_0 is more efficient than W_2 (<u>large molecule case</u>):

-in this case, the system will attempt to return to equilibrium by moving spins from N3 to N2 $\begin{array}{c} \beta\beta \\ \text{N4} \\ \text{X} \end{array}$ A $\begin{array}{c} \beta\alpha \\ \text{N5} \\ \text{A} \end{array}$ A $\begin{array}{c} \beta\alpha \\ \text{N6} \\ \text{N6} \\ \text{N7} \end{array}$ A $\begin{array}{c} \beta\alpha \\ \text{N7} \\ \text{N8} \\ \text{N9} \\ \text{N1} \\ \text{N1} \\ \text{N1} \\ \text{N1} \\ \text{N1} \\ \text{N1} \end{array}$

'X' transitions: $N1 - N2 = N3 - N4 = \Delta H - \delta$: intensity of 'X' reduced !!

Let's suppose W_2 is more efficient than W_0 (small molecule case):

-in this case, the system will attempt to return to equilibrium by moving spins from N4 to N1

after saturation and W₀ relaxation

 $N4 = N + \Delta H/2 - \delta$

 $N3 = N + 3\Delta H/2$

 $N2 = N + \Delta H/2$

 $N1 = N + 3\Delta H/2 + \delta$

'X' transitions: $N1 - N2 = N3 - N4 = \Delta H + \delta$: intensity of 'X' increased !!

Summary:

(reminder: τ_c is the correlation time of the molecule (sec))

- for small molecules (short $\tau_{c}) \; W_{2}$ dominates
- for large molecules (large $\tau_{c}) \; W_{0}$ dominates
- because $W_{\scriptscriptstyle 0}$ and $W_{\scriptscriptstyle 2}$ depend on $B_{\scriptscriptstyle 0},$ the NOE also depends on $B_{\scriptscriptstyle 0}$

2. Enhancement Factor for Small Molecules:

Maximal enhancement for small molecules (η) :

$$\eta = \gamma_a / 2\gamma_x$$
 A: saturated X: observed (y is gyromagnetic ratio, of course)

Total Intensity (I):

$$I = (1 + \eta) I_0$$
 $I_0 = original intensity$

Examples:

a. Fractional increase in ¹³C NMR signal intensity with BB ¹H decoupling:

$$\eta = \gamma_a / 2\gamma_x$$

 $\eta = 4 / (2 \times 1) = 2$ i.e. signal increased by a factor of 2 (200%)

b. Fractional increase in ¹H NMR signal intensity with BB ¹³C decoupling:

$$\eta=1/8=0.125~$$
 i.e. signal increased by a maximum of 12.5% $I=(1+0.125)~I_0=1.125~x~I_0~$ (signal is slightly more intense)

3. Multi-Spin Systems:

Consider a homonuclear 3-spin system A-B-C

- assume no J coupling
- assume the molecule is a small molecule
- -If A is saturated, the intensity of the signal from B is increased
- -The saturation of A affects the populations of the B-C system, which causes an indirect NOE to C.
- -Thus, this indirect NOE is negative

4. <u>Dependence of Maximum ¹H-¹H Homonuclear NOE on B₀ and molecular mass:</u>

The magnitude and sign of the ¹H-¹H NOE are dependent on:

- the Larmor frequency, ν (sometimes ω), which depends on B_0
- the correlation time, $\tau_{\text{c}},$ which depends on molecular size (mass)
 - -VERY crudely, $\tau_c \approx 10^{-12}$ MW (where MW is molecular mass in Daltons)
 - -example: $\tau_c \approx 10$ ns for 10 kDa molecule

Note:

- NOE is *positive* for *small* molecules
- NOE is negative for large molecules
- NOE is zero at $\omega \tau_c \approx 1$

examples: -at 200 MHz, NOE is zero for molecules with $\tau_c \approx 5$ ns (approximately 5 kDa)

-at 800 MHz, NOE is zero for molecules with $\tau_c \approx 1.25$ ns (approximately 1.25 kDa)

5. <u>Dependence of the magnitude of the NOE on Internuclear Distance:</u>

In the absence of external relaxation:

- the maximal enhancement in achieved
- the NOE is distance independent

In the presence of external relaxation:

- two-spin steady-state NOE depends on internuclear distance

f = NOE enhancement $\propto 1/r^6$

(r = internuclear distance)

-this effect is usually observed only for ${}^{1}H$ - ${}^{1}H$ distances \leq 5 Å

Examples of external relaxation:

- a). intermolecular relaxation caused by paramagnetic agents
 - -field at a nucleus depends on the presence of unpaired electrons
 - -examples: dissolved O₂, manganese and other metal impurities
- b). quadrupolar relaxation
 - -energy of quadrupole nuclei varies with the fluctuating electric field gradient
 - -dominant mechanism for nuclei with I > 1/2 (²H and ¹⁴N)
- c). chemical shift anisotropy (CSA)
 - -anisotropy produces a different field at the nucleus depending on the orientation of the bond relative to the applied field
 - -significant for nuclei with large CSA (19F, 31P)

CHEM / BCMB 4190/6190/8189 Introductory NMR

Lecture 19

The NOESY Experiment

1). Review: 1D steady-state NOE experiment

- used in cases of well resolved spectra for assignment purposes or to establish local or global geometry by saturation of selected signals
- the *steady-state NOE* develops during saturation of one spin, and results in a change in the intensity of the signal from another spin -this is in contrast to the *transient NOE* (see below)

-used most often these days for enhancement of ¹³C signals by broadband decoupling of ¹H

2). 1D and 2D transient NOE experiments: NOESY

a). 1D selective transient NOE experiment

-an NOE can also be induced by application of a selective 180° pulse to one spin (the 'A' spin)

-during the mixing time (τ_m) , the NOE starts to build (at the 'X' spin), as the W_0 and W_2 routes redistribute the spin populations

-the NOE is transient, however: it builds to a maximum in a short time (approximately one T_1 period) and then decreases (remember, only a few T_1 periods after a 180° pulse, equilibrium populations are established)

- the NOESY (<u>N</u>uclear <u>O</u>verhauser <u>E</u>ffect <u>S</u>pectroscopy) experiment plays a central role in the structural elucidation of molecules ranging from small organic molecules to large biological molecules (nucleic acids and proteins)

-in the 2D NOESY experiment, *all* spins are inverted by the first two 90° pulses (assume, for the moment, that $t_1 = 0$), permitting all transient NOE's to develop during the subsequent mixing time (τ_m)

-increasing \mathbf{t}_1 provides chemical shift modulation of the signal for the second dimension

-in the 2D NOESY spectrum, the peaks representing the transferred magnetization (the "NOEs"), appear as crosspeaks (off-diagonal peaks)

-the crosspeaks appear at the chemical shifts of the spins involved

-the intensities of the crosspeaks are much less than the intensities of the diagonal peaks

3). 2D NOESY: vector diagrams

-we again will assume a simple AX system with no coupling $(J_{AX}=0)$ A X

- A and X have different Larmor frequencies, so $M_{\rm A}$ and $M_{\rm X}$ precess about z and move apart during ${\bf t_1}$
- the second 90° pulse converts the 'y' components of $M_{\rm A}$ and $M_{\rm X}$ to 'z'
- during τ_m , polarization is transferred from A to X and from X to A via cross-relaxation $(W_0$ and $W_2)$
 - -the transferred components are represented by the small arrows with opposite coloring

4). 2D NOESY: spectrum

Cross-relaxation / cross-polarization between nuclei results in cross peaks in the 2D NOESY spectrum, usually referred to as 'NOE cross-peaks' or simply 'NOEs'

- the *intensity* of the cross peaks is substantially less than the intensity of the diagonal peaks (the diagonal peaks can be problematic in these experiments because they are very intense)
- -the *intensity* of the cross peaks is proportional to $1/r^6$ where r is the internuclear distance

$$I \propto 1/r^6$$

- so, for ${}^{1}\text{H-}{}^{1}\text{H}$ distances, if the distance is \leq approximately 5 Å, crosspeaks can be observed
- -the *sign* or *phase* of crosspeaks (relative to the diagonal peaks) depends on the size of the molecule
 - -for small molecules, the crosspeaks and diagonal peaks are of opposite phase
 - -for large molecules, the crosspeaks are the same phase as the diagonal peaks

5). 2D NOESY: role of G_1 and G_2 gradient pulses

Normally, the data from many scans at each t_1 are added together during collection of NOESY spectra

- -ideally, one would wait $\sim 5T_1$ between scans to allow the system to equilibrate
- -this of course require far too much time to acquire a complete 2D data set
- -one can wait for $<5T_1$ between scans, but this causes a loss in signal intensity and an increase in the appearance of artifacts in the 2D spectra (some of which can be alleviated by phase cycling and other techniques) -linear field gradient pulses can be used to

G₁ gradient:

-in the gradient NOESY experiment, the G_1 gradient pulse will dephase any transverse magnetization during the recycle delay, preventing artifacts in the spectra resulting from these components

G₂ gradient:

-performs a function similar to the G_1 gradient, only during the mixing time, τ_m . During τ_m , transverse magnetization components often can cause artifacts in NOESY spectra. G2 dephases these components

6). 2D NOESY: mixing time

How long should the mixing time, τ_m , be?

- in order to maximize the polarization transfer that can be accomplished by the transient NOE, and therefore to maximize the crosspeak intensity in the NOESY spectrum, τ_m should be set to approximately T_1 for the 1H spins involved

small molecule: 500 ms - 5 s large molecule: 30 ms - 400 ms

7). example: 1D steady-state NOE experiment

Which methyl signal (δ =1.7 or δ =1.5 ppm) is the methyl group on the same side of the ring as H-3?

- -saturate the methyl signals
- -when the signal at δ =1.7 ppm is saturated, an NOE enhancement is observed for H-3, indicating the signal at δ =1.7 ppm corresponds to the methyl group on the same side of the ring as H-3

8). example: 2D NOESY experiment

(20 mg in 0.5 ml D2O, 128 points in t1, mixing time = 2 seconds, 16 scans/FID: 2 hours)

- -crosspeaks observed between H-1' (I) and H-3 and H-4 (II)
- -crosspeaks observed between H-2' (I) and H-5, H-6a and H-6b (II)
- -no crosspeaks between H-2' (I) and H-4 (II)