This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 17 May 2001 (17.05.2001)

PCT

(10) International Publication Number WO 01/34135 A2

(51) International Patent Classification7:

10.

(22)

(21) International Application Number: PCT/US00/30944

A61K 31/00

(22) International Filing Date:

9 November 2000 (09.11.2000)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

60/164,713

11 November 1999 (11.11.1999) US

(71) Applicant (for all designated States except US): ELI LILLY AND COMPANY [US/US]; Lilly Corporate Center, Indianapolis, IN 46285 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): FLEISCH, Jerome, Herbert [US/US]; 10532 Coppergate, Carmel, IN 46032 (US). SAWYER, Jason, Scott [US/US]; 5718 North Winthrop Avenue, Indianapolis, IN 46220 (US). TEICHER, Beverly, Ann [US/US]; 1357 Worchester Drive, Carmel, IN 46033 (US). BEIGHT, Douglas, Wade [US/US]; 3468 South County Road 600 West, Frankfort, IN 46041 (US). SMITH, Edward, C., R. [US/US]; 9969 Parkway Drive, Fishers, IN 46038 (US). MCMILLEN,

William, Thomas [US/US]; 11665 Tidewater Drive, Fishers, IN 46038 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM,

(74) Agents: SAYLES, Michael, J. et al.; Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285 (US).

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CL, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

Published:

 Without international search report and to be republished upon receipt of that report.

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

01/34135 A2

(54) Title: ONCOLYTIC COMBINATIONS FOR THE TREATMENT OF CANCER

(57) Abstract: The therapeutic combinations of leukotriene (LTB₄) inhibitors and anti-cancer agents are disclosed. A method of treating cancer using leukotriene (LTB₄) inhibitors in conjunction with anti-cancer agents is also disclosed.

ONCOLYTIC COMBINATIONS FOR THE TREATMENT OF CANCER

CROSS REFERENCE

This application claims priority from United States 5 Provisional Patent Application No. 60/164,713 filed 11 November 1999; the entire disclosure of which is incorporated herein by reference.

FIELD OF THE INVENTION

This invention relates to a method of treating cancer with anti-cancer agents. More specifically, it relates to the use of anti-cancer agents, in conjunction with leukotriene (LTB4) antagonists which enhance the effectiveness of the anti-cancer agents.

BACKGROUND OF THE INVENTION

- Leukotriene B4 (LTB4) is a proinflammatory lipid which has 20 been implicated in the pathogenesis of psoriasis, arthritis, chronic lung diseases, acute respiratory distress syndrome, shock, asthma, inflammatory bone diseases and other inflammatory states characterized by the infiltration and activation of polymorphonuclear 25 leukocytes and other proinflammatory cells. Thus activated, the polymorphonuclear leukocytes liberate tissue-degrading enzymes and reactive chemicals causing the inflammation. US Patent 5,462,954 discloses phenylphenol leukotriene antagonists which are useful in the treatment of psoriasis, arthritis, chronic lung
- diseases, acute respiratory distress syndrome, shock,

asthma, inflammatory bone diseases and other inflammatory states characterized by the infiltration and activation of polymorphonuclear leukocytes and other proinflammatory cells. US Patent 5,910,505 discloses that certain phenylphenol leukotriene B_{4} (LTB₄) antagonists are useful as agents for the treatment of oral squamous cell carcinoma. US Patent 5,543,428 discloses a group of phenylphenol leukotriene antagonists that have the property of reversing multi-drug resistance in tumor cells. The use of the leukotriene antagonist will reverse 10 the drug resistance of resistant tumor cells to vinblastine, vincristine, vindesine, navelbine, daunorubicin, doxorubicin, mitroxantrone, etoposide, teniposide, mitomycin-C, actinomycin-D, taxol, topotecan, mithramycin, colchicine, puromycin, podophylotoxin, emetine, gramicidin-D, and valinomycin.

BRIEF SUMMARY OF THE INVENTION

This invention provides compositions and methods useful for treating cancers, which are not multi-drug resistant. The compositions of the present invention include anticancer agents in combination with leukotriene (LTB4) antagonists of formula A, formula I and formula II.

Surprisingly, we have found that the combination of certain anti-cancer agents with leukotriene (LTB4) antagonists is highly effective in treating cancers which are not multidrug resistant.

DETAILED DESCRIPTION OF THE INVENTION

5 I. Definitions:

10

15

20

25

30

The term, "Acidic Group" means an organic group which when attached as the "Z" substituent of formula (I) or the "Z2" substituent of formula (II) acts as a proton donor capable of hydrogen bonding. An illustrative acidic group is carboxyl.

The term, "Active Ingredient" refers both to certain anti-cancer agents defined below and also leukotriene B4 antagonist compounds generically described by formula A as well as diphenyl leukotriene B4 antagonist compounds generically described by formula A, formula I and formula II or the list of specific diphenyl compounds disclosed, infra., as well as a combination of a anti-cancer agent and a leukotriene B4 antagonist described by formula A or formula I or II, and the salts, solvates, and prodrugs of such compounds.

The term, "alkenyl" means a monovalent radical of the generic formula C_nH_{2n} such as ethenyl, n-propenyl, isopropeneyl, n-butenyl, isobutenyl, 2-butenyl, and 3-butenyl.

The term, "alkyl" by itself or as part of another substituent means, unless otherwise defined, a straight or branched chain monovalent hydrocarbon radical such as methyl, ethyl, n-propyl, isopropyl, n-butyl, tertiary butyl, sec-butyl, n-pentyl, and n-hexyl.

The term, "alkaryl" means an aryl radical substituted with an alkyl or substituted aryl group, for example:

5 In the term, "C6-C20 alkaryl" the numerical subscripts refer to the total number of carbon atoms in the radical.

The term, "C6-C20 aralkyl" means an alkyl radical substituted with an aryl or substituted aryl group, for example:

In the term, " C_6 - C_{20} aralkyl" the numerical subscripts refer to the total number of carbon atoms in the radical.

The term, "carbocyclic group" refers to a five, six, seven, or eight membered saturated, unsaturated or aromatic ring containing only carbon and hydrogen (e.g., benzene, cyclohexene, cyclohexane, cyclopentane).

The term, "cycloalkyl" means a carbocyclic nonaromatic monovalent radical such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, and cyclooctyl.

20

The term, "halo" means fluoro, chloro, bromo, or iodo.

The term, "heterocyclic radical(s)" refers to a radical having a saturated, unsaturated or aromatic five membered substituted or unsubstituted ring containing from 1 to 4 hetero atoms.

The terms, "mammal" and "mammalian" include human.

10 The term, "N-sulfonamidyl" means the radical:

where R12 is C_1-C_{10} alkyl, aryl, C1-C6 alkyl substituted aryl, C_6-C_{20} alkaryl, or C_6-C_{20} aralkyl.

The term, "substituted alkyl" means an alkyl group further substituted with one or more radical(s) selected from halo, C_1 - C_6 alkyl, aryl, benzyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_3 - C_8 cycloalkyl, C_1 - C_8 alkoxy, C_1 - C_6 haloalkyl (e.g., - C_5 3).

The term, "substituted aryl" means an aryl group further substituted with one or more radical(s) selected from halo, C₁-C₆ alkyl, aryl, benzyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₈ cycloalkyl, C₁-C₈ alkoxy, C₁-C₆ haloalkyl (e.g., -CF₃).

The term, "tetrazolyl" refers to an acidic group represented by either of the formulae:

10

5

The term "therapeutically effective interval" is a period of time beginning when one of either (a) the anticancer agent or (b) the LTB4 antagonist is administered to a mammal and ending at the limit of the anti-cancer beneficial effect in treating cancer of (a) or (b). Typically, the anti-cancer agents and the leukotriene (LTB4) antagonist are administered within 24 hours of each other, more preferably within 4 hours and most preferably within 1 hour.

20

15

The phrase "therapeutically effective combination", used in the practice of this invention, means administration of both (a) the anti-cancer agent and (b) the LTB4 antagonist, either simultaneously or separately.

25

The types of cancers which may be treated with the compositions of the present invention include: Breast Carcinoma, Bladder Carcinoma, Colorectal Carcinoma, Esophageal Carcinoma, Gastric Carcinoma, Germ Cell Carcinoma

25

e.g. Testicular Cancer, Gynecologic Carcinoma, Lymphoma –
 Hodgkin's, Lymphoma – Non-Hodgkin's, Malignant Melanoma,
 Multiple Myeoma, Neurologic Carcinoma, Brain Cancer,
 Non-Small Cell Lung Cancer, Pancreatic Carcinoma, Prostate
 Carcinoma, Ewings Sarcoma, Osteosarcoma, Soft Tissue
 Sarcoma, Pediatric Malignancies and the like.

The anti cancer agents which may be used include:

10 <u>ALKYLATING AGENTS</u>: Busulfan, Carboplatin, Carmustine, Cisplatin, Cyclophosphamide, Dacarbazine, Ifosfamide, Lomustine, Streptozocin, Oxaliplatin, Temozolomide;

ANTIBIOTICS: Bleomycin, Dactinomycin, Daunorubicin,
Doxorubicin, Idarubicin, Mitomycin-C, Plicamycin,
Cryptophycin;

<u>ANTIMETABOLITES</u>: Cytarabine, Floxuridine, Fludarabine, 5-Fluorouracil, Hydroxyurea, 6-Mercaptopurine, Methotrexate, Thioguanine; Capecitabine;

BIOLOGICALS: Aldesleukin, Interferon Alfa-2A, Interleukin-2, Interleukin-12 (recombinant), Interferon Alfa-2B (recombinant), Interferon Alfa-n3, Interferon Gamma-1B, Herceptin interleukin-2, interleukin-12;

HORMONAL AGENTS: Aminoglutethimide, Anastrozole, Flutamide, Goserelin, Leuprolide, Megestrol, Mitotane, Tamoxifen;

30 <u>NITROGEN MUSTARD DERIVATIVES</u>: Chlorambucil, Estramustine, Mechlorethamine, Melphalan, Thiotepa;

<u>PLANT ALKALOIDS</u>: Docetaxel, Etoposide, Irinotecan HCl, Paclitaxel, Teniposide, Topotecan, Vinblastine, Vincristine, Vinorelbine;

- OTHERS: Altretamine, Amifostine Asparaginase-Escherichia coli strain, BCG Live (Intravesical), Cladribine, Leucovorin, Levamisole, Mitoxantrone, Pegaspargase, Pentostatin, Procarbazine, and the like.
- The anti-cancer agents may be used alone or in combinations of one or more anti-cancer agents. When used in combination, the anti-cancer agents may be administered at the same time, sequentially or in more complicated regimens where the agents may be administered alternately.

 Such combinations and dosing regimens are well known to those skilled in the art. The anti-cancer agents may be formulated with common excipients, diluents or carriers, and compressed into tablets, or formulated elixirs or solutions for convenient oral administration or administered by intramuscular intravenous routes. The compounds can be administered transdermally and may be formulated as sustained relief dosage forms and the like.

The compositions of the present invention are a

25 combination of therapeutically effective amounts of the
leukotriene (LTB4) antagonists, noted above, and a
therapeutically effective amount of an anti-cancer agent.
The composition may be formulated with common excipients,
diluents or carriers, and compressed into tablets, or

30 formulated elixirs or solutions for convenient oral
administration or administered by intramuscular intravenous
routes. The compounds can be administered transdermally and

may be formulated as sustained relief dosage forms and the like.

In another embodiment, the invention relates to a method of treating a patient suffering from a non-multi-drug resistant cancerous condition which comprises the separate administration of a therapeutically effective amount of the leukotriene (LTB4) antagonists, and the anti-cancer agent. When administered separately, the leukotriene (LTB4) 10 antagonists, and the anti-cancer agent may be administered on a different schedule. One may be administered before the other as long as the time between the two administrations falls within a therapeutically effective interval. Therapeutically effective interval is a period of time beginning when one of either (a) the leukotriene (LTB4) 15 antagonists or (b) the anti-cancer agent is administered to a human and ending at the limit of the beneficial effect in the treatment of cancer of the combination of (a) and (b).

20 The methods of administration of the leukotriene LTB4 antagonist and the anti-cancer agent may vary. Thus, one agent may be administered orally, while the other is administered intravenously. It is possible that one of the products may be administered as a continuous infusion while the other is provided in discreet dosage forms. It is particularly important that the anti-cancer drug be given in the manner known to optimize its performance.

The leukotriene (LTB4) antagonists useful in the 30 present invention include those given in formula A.

Formula A

or a pharmaceutically acceptable base addition salt thereof, wherein:

 R_1 , is C_1 - C_5 alkyl, C_2 - C_5 alkenyl, C_2 - C_5 alkynyl, C_1 - C_4 alkyl) thio, halo, or R_2 , substituted phenyl;

each R2, and R3, are each independently hydrogen, halo, hydroxy, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, $(C_1$ - C_4 alkyl)- $(0)_q$ S-, trifluoromethyl, or di- $(C_1$ - C_3 alkyl)amino;

X' is -O-, -S-, -C(=0), or -CH₂-;

Y' is -O- or -CH2-;

or when taken together, -X'-Y'- is -CH=CH- or -C≡C-;

Z' is a straight or branched chain C1-C10 alkylidenyl;

A' is a bond, -O-, -S-, -CH=CH-, or -CR $_a$ R $_b$ -, where R $_a$ and R $_b$ are each independently hydrogen, C1-C5 alkyl, or R7'-substituted phenyl, or when taken together with the carbon atom to which they are attached form a C4-C8 cycloalkyl ring;

20

10

15

 $R_{\mbox{\scriptsize 4}}\,,$ is $R_{\mbox{\scriptsize 6}}$ or taken from one of the following formulae:

5 wherein:

each R₆ is independently -COOH, 5-tetrazolyl, -CON(R₉)₂, or -CONHSO₂R₁₀;

each R7 is hydrogen, C1-C4 alkyl, C2-C5 alkenyl, C2-C5 alkynyl, benzyl, methoxy, -W-R6, -T-G-R6, (C1-C4 alkyl)-T-(C1-C4 alkylidenyl)-O-, or hydroxy;

Rg is hydrogen or halo;

each Rg is independently hydrogen, phenyl, or C1-C4 alkyl, or when taken together with the nitrogen atom form a morpholino, piperidino, piperazino, or pyrrolidino group;

R₁₀ is C₁-C₄ alkyl or phenyl;

 R_{11} is R_2 , -W-R₆, or -T-G-R₆;

each W is a bond or a straight or branched chain divalent hydrocarbyl radical of one to eight carbon atoms;

each G is a straight or branched chain divalent hydrocarbyl radical of one to eight carbon atoms;

each T is a bond, $-CH_2-$, -O-, -NH-, -NHCO-, -C(=O)-, or

15 (O)_q S-;

K is -C(=0) - or -CH(OH) -;

each q is independently 0, 1, or 2;

p is 0 or 1; and

t is 0 or 1;

provided when X is -O- or -S-, Y is not -O-; provided when A is -O- or -S-, R4 is not R6; and provided W is not a bond when p is 0.

More preferred compounds of Formula A are those wherein 25 R4' is selected from the following formulae:

$$R_{11}$$

or

$$R_{\gamma}$$

An even more preferred compound is that wherein R4'is:

$$R_{7}$$

5

10

Preferred compounds or pharmaceutically acceptable acid or salt derivatives thereof are those wherein said compound is selected from the group (A) to (KKKK) consisting of:

- A) 2-Methyl-2-(1H-tetrazol-5-yl)-7-(2-ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy)heptane;
 - B) 2-Methyl-2-(1H-tetrazol-5-yl)-7-(2-ethyl-4-(3-fluorophenyl)-5-hydroxyphenoxy)heptane;
- 15 C) 3-(2-(3-(2-Ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy)propoxy)-6-(4-dimethylaminocarbonylbutyloxy)phenyl)propion ic acid;
- 20 D) 3-(2-(3-(2-Ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy)propoxy)phenyl)propionic acid;
- E) 3-(2-(3-(2-Ethyl-4-(4-fluorophenyl)-5hydroxyphenoxy)propoxy)-6-(4carboxybutyloxy)phenyl)propionic acid;

	F)	3-(2-(3-(2-Ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy)propoxy)-6-methoxyphenyl)propionic acid;
5	G)	3-(2-(3-(2-Ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy)propoxy)-6-(4-(1H-tetrazol-5-yl)butyloxy)phenyl)propionic acid;
10	H)	Methyl 3-(2-(4-(2-ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy)-(1-butenyl))phenyl)propionate;
15	I)	<pre>3-(2-(4-(2-Ethyl-4-(4-fluorophenyl)-5- hydroxyphenoxy)-(1-butenyl))phenyl)propionic acid;</pre>
	J)	<pre>3-(2-(4-(2-Ethyl-4-(4-fluorophenyl)-5- hydroxyphenoxy)butyl)phenyl)propionic acid;</pre>
20	K)	3-(2-(4-(2-Ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy)butyl)-6-methoxyphenyl)propionic acid;
25	L)	Methyl 3-(2-(3-(2-ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy)propoxy)-6-hydroxyphenyl)propionate;
30	M)	3-(2-(3-(2-Ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy)propoxy)-6-hydroxyphenyl)propionic acid;
	N)	3-(2-(3-(2-Ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy)propoxy)-6-(4-butyloxy)phenyl)propionic acid;
35	0)	3-(2-(3-(2-Ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy)propoxy)-6-(4-methylthiobutyloxy)phenyl)propionic acid;
40	P)	3-(2-(3-(2,4-Di-(4-fluorophenyl)-5-hydroxyphenoxy)propoxy)-6-(4-carboxybutoxy)phenyl)propionic acid;
45	Q)	6-Methyl-6-(1H-tetrazol-5-yl)-11-(2-ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy)undecane;

	R)	N, N-Dimethyl-3-(2-(3-(2-ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy)propoxy)phenyl)propionamide;
5	S)	N-Methanesulfonyl-3-(2-(3-(2-ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy)propoxy)phenyl)propionamide;
10	T)	N-Phenylsulfonyl-3-(2-(3-(2-ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy)propoxy)phenyl)propionamide;
15	U)	<pre>3-(2-(3-(2-Butyl-4-(4-fluorophenyl)-5- hydroxyphenoxy)propoxy)phenyl)propionic acid;</pre>
	V)	Ethyl 3-(2-(4-(2-ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy)butyloxy)phenyl)propionate;
20	W)	<pre>3-(2-(4-(2-Ethyl-4-(4-fluorophenyl)-5- hydroxyphenoxy)butyloxy)phenyl)propionic acid;</pre>
25	X)	Methyl 3-(2-(3-(2-ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy)propoxy)-6-(4-(methoxycarbonyl)phenoxy)phenyl)propionate;
30	Y)	<pre>3-(2-(3-(2-Ethyl-4-(4-fluorophenyl)-5- hydroxyphenoxy)propoxy)-6-(4- carboxyphenoxy)phenyl)propionic acid;</pre>
	2)	3-(2-(3-(2-Ethy1-4-(4-fluoropheny1)-5-hydroxyphenoxy)propoxy)-4-(4-carboxyphenoxy)phenyl)propionic acid;
35	AA)	3,3-Dimethyl-3-(2-(3-(2-ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy)propoxy)phenyl)propionic acid;

_	BB)	2-Methyl-2-(1H-tetrazol-5-yl)-3-(2-(3-(2-ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy)phenyl)propane;
5	CC)	2-Methyl-2-(1H-tetrazol-5-yl)-3-hydroxy-3- (2-(3-(2-ethyl-4-(4-fluorophenyl)-5- hydroxyphenoxy)propoxy)phenyl)propane;
10	DD)	3-(2-(3-(2-Bromo-4-(4-fluorophenyl)-5-hydroxyphenoxy)propoxy)phenyl)propionic acid;
15	EE)	<pre>3-(2-(3-(2-Ethylthio-4-(4-fluorophenyl)-5- hydroxyphenoxy)propoxy)phenyl)propionic acid;</pre>
20	FF)	Methyl 3-(2-hydroxy-3-(4-methoxycarbonylbutyl)-6-(3-(2-ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy)phenyl)propionate;
25	GG)	5-(3-(2-Ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy)propoxy)-8-(4-carboxybutyl)dihydrocoumarin;
	HH)	2-Phenyl-4-ethyl-5-[6-(2H-tetrazol-5-yl)-6-methylheptyloxy]phenol sodium salt;
30	II)	<pre>2-(4-Methylphenyl)-4-ethyl-5-[6-methyl-6- (2H-tetrazol-5-yl)heptyloxy]phenol disodium salt;</pre>
35	JJ)	2-(3-Methylphenyl)-4-ethyl-5-[6-methyl-6-(2H-tetrazol-5-yl)heptyloxy]phenol sodium salt;
40	KK)	<pre>2-(2-Methylphenyl)-4-ethyl-5-[6-methyl-6- (2H-tetrazol-5-yl)heptyloxy]phenol disodium salt;</pre>
	LL)	<pre>2-(4-Methoxyphenyl)-4-ethyl-5-[6-methyl-6- (2H-tetrazol-5-yl)heptyloxy]phenol sodium salt;</pre>
45	MM)	2-(3-Methoxyphenyl)-4-ethyl-5-[6-methyl-6-(2H-tetrazol-5-yl)heptyloxy]phenol sodium salt;

F	NN)	2-(4-Trifluoromethylphenyl)-4-ethyl-5-[6-methyl-6-(2H-tetrazol-5-yl)heptyloxy]phenol disodium salt;
5	00)	2-(3-Dimethylaminophenyl)-4-ethyl-5-[6-methyl-6-(2H-tetrazol-5-yl)heptyloxy]phenol disodium salt;
10	PP)	3-(5-(6-(4-Phenyl-5-hydroxy-2- ethylphenoxy)propoxy)-2-carboxymethyl- 1,2,3,4 -tetrahydronaphthalen-1(2H)- one)propanoic acid;
15	QQ)	3-(5-(6-(4-(4-Fluorophenyl)-5-hydroxy-2-ethylphenoxy)propoxy)-2-carboxymeth yl-1,2,3,4-tetrahydronaphthalen-1(2H)-one)propanoic acid;
20	RR)	3-(4-(5-(4-(4-Fluorophenyl)-5-hydroxy-2-ethylphenoxy)propoxy)-2-carboxymeth yl-2,3-dihydroinden-1(2H)-one)propanoic acid;
25	SS)	3,3-Dimethyl-5-(3-(2-carboxyethyl)-4-(3-(4-fluorophenyl)-5-hydroxy-2-ethylphenoxy)propoxy)phenyl)-5-oxopentanoicacid;
30	TT)	7-[3-[(5-Ethyl-2-hydroxy[1,1'-biphenyl]-4-yl)oxy]propoxy]-3,4-dihydro-8-propyl-2H-1-benzopyran-2-carboxylic acid;
35	UU)	8-Propyl-7-[3-[4-(4-fluorophenyl)-2-ethyl-5-hydroxyphenoxy]propoxy]-3,4-dihydro-2H-1-benzopyran-2-carboxylic acid;
	VV)	<pre>2-[3-[3-[(5-Ethyl-2-hydroxy[1,1'-biphenyl]- 4-yl)oxy]propoxy]-2-propylphenoxy]propanoic acid;</pre>
40	WW)	2-(4-Chlorophenyl)-4-ethyl-5-[6-methyl-6-(2H-tetrazol-5-yl)heptyloxy]phenol monosodium salt;
45	XX)	2-(3,5-Dichlorophenyl)-4-ethyl-5-[6-methyl-6-(2H-tetrazol-5-yl)heptyloxy]phenol monosodium salt;

	YY)	<pre>3-[2-[3-[(5-Ethyl-2-hydroxy[1,1'-biphenyl]- 4-yl)oxy]propoxy]-1-dibenzofuran]propanoic acid disodium salt;</pre>
5	ZZ)	7-Carboxy-9-oxo-3-[3-(2-ethyl-5-hydroxy-4-phenylphenoxy)propoxy]-9H-xanthene-4-propanoic acid disodium salt monohydrate;
10	AAA)	2-[2-Propyl-3-[3-(2-ethyl-5-hydroxy-4-phenylphenoxy)propoxy]phenoxy]benzoic acid sodium salt hemihydrate;
15	BBB)	<pre>3-[3-(2-Ethyl-5-hydroxy-4- phenylphenoxy)propoxy][1,1'-biphenyl]-4- propanoic acid disodium salt monohydrate;</pre>
	CCC)	5-Ethyl-4-[3-[2-propyl-3-[2-(2H-tetrazol-5-y1)phenoxy]phenoxy]propoxy][1,1'-biphenyl]-2-ol disodium salt sesquihydrate;
20	DDD)	3-[4-[3-[3-(2-Ethyl-5-hydroxy-4-phenylphenoxy)propoxy]-9-oxo-9H-xanthene]]propanoic acid sodium salt hemihydrate;
25	EEE)	2-Fluoro-6-[2-propyl-3-[3-(2-ethyl-5-hydroxy-4-phenylphenoxy)propoxy]phenoxy]benzoic acid disodium salt;
30	FFF)	2-[2-Propyl-3-[3-[2-ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy]propoxy]phenoxy]benzoic acid sodium salt;
35	GGG)	3-[4-[7-Carboxy-9-oxo-3-[3-[2-ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy]propoxy]-9H-xanthene]] propanoic acid disodium salt trihydrate;
40	ннн)	3-[4-[9-0xo-3-[3-[2-ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy]propoxy]-9H-xanthene]]propanoic acid;
45	III)	3-[2-[1-[2-Ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy]propoxy]-4-(5-oxo-5-morpholinopentanamido)phenyl]propanoic acid

	JJJ)	2-Fluoro-6-[2-propyl-3-[3-[2-ethyl-5-hydroxy-4-(4-fluorophenyl)phenoxy]propoxy]phenoxy]benzoic acid disodium salt hydrate;
5	KKK)	4-Fluoro-2-[2-propyl-3-[3-[2-ethyl-5-hydroxy-4-(4-fluorophenyl)phenoxy]propoxy]phenoxy]benzoic acid;
10	LLL)	2-[2-Propyl-3-[5-[2-ethyl-5-hydroxy-4-(4-fluorophenyl)phenoxy]pentoxy]phenoxy]benzoic acid;
15 ,	MMM)	<pre>2-[2-Propyl-3-[4-[2-ethyl-5-hydroxy-4-(4-fluorophenyl)phenoxy]butoxy]phenoxy]benzoic acid sesquihydrate;</pre>
20	NNN)	<pre>2-[2-(2-Methylpropyl)-3-[3-[2-ethyl-5- hydroxy-4-(4- fluorophenyl)phenoxy]propoxy]phenoxy]benzoic acid;</pre>
25	000)	<pre>2-[2-Butyl-3-[3-[2-ethyl-5-hydroxy-4-(4- fluorophenyl)phenoxy]propoxy]phenoxy]benzoic acid hydrate;</pre>
30	PPP)	<pre>2-[2-(Phenylmethyl)-3-[3-[2-ethyl-5-hydroxy- 4-(4- fluorophenyl)phenoxy]propoxy]phenoxy]benzoic acid;</pre>
35	QQQ)	<pre>2-[2-Propyl-3-[3-[2-ethyl-5-hydroxy-4-(4- fluorophenyl)phenoxy]propoxy]phenoxy]phenyla cetic acid;</pre>
	RRR)	2-[2-Propy1-3-[3-[2-ethy1-5-hydroxy-4-(4-fluorophenyl)phenoxy]propoxy]benzoyl]benzoic acid;
40	SSS)	2-[[2-Propyl-3-[3-[2-ethyl-5-hydroxy-4-(4-fluorophenyl)phenoxy]propoxy]phenyl]methyl]benzoic acid;
45	TTT)	<pre>2-[2-Propy1-3-[3-[2-ethy1-4-(4- fluoropheny1)-5- hydroxyphenoxy]propoxy]thiophenoxy]benzoic acid;</pre>

	UUU)	2-[2-Propyl-3-[3-[2-ethyl-4-(4-fluorophenyl)-5-
5		hydroxyphenoxy]propoxy]phenylsulfinyl]benzoi c acid;
	VVV)	2-[2-Propyl-3-[3-[2-ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy]propoxy]phenylsulfonyl]benzoi
10		c acid hydrate;
	www)	5-[3-[2-(1-Carboxy)ethyl]-4-[3-[2-ethyl-4-(4-fluorophenyl)-5-
15		hydroxyphenoxy]propoxy]phenyl]-4-pentynoic acid disodium salt 0.4 hydrate;
	XXX)	1-Phenyl-1-(1H-tetrazol-5-yl)-6-(2-ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy)hexane;
20	YYY)	1-(4-(Carboxymethoxy)phenyl)-1-(1H-tetrazol- 5-yl)-6-(2-ethyl-4-(4-fluorophenyl)-5- hydroxyphenoxy)hexane;
25	ZZZ)	1-(4-(Dimethylaminocarbonylmethoxy)phenyl)- 1-(1H-tetrazol-5-yl)-6-(2-ethyl-4-(4- fluorophenyl)-5-hydroxyphenoxy)hexane;
30	AAAA)	3-(2-(3-(2-Ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy)propoxy)phenyl)-E-propenoic acid;
	BBBB)	3-(2-(3-(2-Ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy)propoxy)phenyl)-2-methyl-E-propenoic acid;
35	CCCC)	5-(2-(2-(3-(2-Ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy)propoxy)phenyl)ethyl)-1H-tetrazole;

40

5	DDDD)	3-(2-(3-(2-Ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy)propoxy)-4-(4-carboxybutyloxy)phenyl)propionic acid;
	EEEE)	5-[3-[4-(4-Fluorophenyl)-2-ethyl-5-hydroxyphenoxy]propoxy]-3,4-dihydro-2H-1-benzopyran-2-one;
10	FFFF)	<pre>3-(3-{3-[2-Ethyl-4-(4-fluorophenyl)-5- hydroxyphenyloxy]propoxy}phenyl)propanoic acid;</pre>
15	GGGG)	3-(3-(3-[2-Ethyl-4-(4-fluorophenyl)-5-hydroxyphenyloxy]propoxy}-4-propylphenyl)propanoic acid sodium salt;
20	нннн)	3-(4-(3-[2-Ethyl-4-(4-fluorophenyl)-5-hydroxyphenyloxy]propoxy}-3-propylphenyl)propanoic acid;
	IIII)	3-(3-{3-[2-Ethy1-4-(4-fluoropheny1)-5-hydroxyphenyloxy]propoxy}-2-propylphenyl)propanoic acid;
25	JJJJ)	<pre>3-{3-[3-(2-Ethyl-5- hydroxyphenyloxy)propoxy]-2- propylphenyl}propanoic acid disodium salt; and</pre>
30	KKKK)	2-[3-[3-[2-Ethyl-5-hydroxy-4-(4-fluorophenyl)phenoxy]propoxy]benzoyl]benzoid disodium salt hemihydrate.

These leukotriene (LTB₄) antagonists are well known in the art, and are fully described in U.S. Patent 5,462,954, which is hereby specifically incorporated by reference for its disclosure of the methods of preparation of specific leukotriene B₄ antagonists and compounds or formulations of the leukotriene antagonists which may be administered to patients. A preferred compound is 2-[2-propyl-3-[3-[2-ethyl-5-hydroxy-4-(4-flourophenyl)phenoxy]propoxy]phenoxy]

benzoic acid which can also be named 2-[3-[3-(5-ethyl-4'-

flouro-2-hydroxybiphen-4-yloxy)propoxy]-2propylphhenoxy]benzoic acid, described in U.S. Patent
5,462,954 as example 66 and also shown below as Compound A
(Formula B):

5

Compound A (Formula B)

10 A second class of LTB4 antagonists to use as the essential co-agent in the compositions and practice of the method of this invention are those disclosed in copending provisional patent application, titled, "Heterocycle Substituted Diphenyl Leukotriene Antagonists" (inventor, Jason Scott Sawyer) containing 97 pages and identified as Eli Lilly and Company Docket No. B-13240), filed on November 11, 1999, and now Provisional patent Application Serial Number 60/164,786. The subject Heterocycle substituted diphenyl leukotriene antagonists are also described in more detail below:

20

25

II. Additional LTB4 Antagonists:

Additional LTB4 antagonists are described below which are novel heterocyclic substituted diphenyl compounds of formula (I)

$$X$$
 QH
 Y_3
 $(CH_2)_0$
 Y_2
 R_1
 Z
 $(CH_2)_0$
 Z

wherein:

X is selected from the group consisting of,

5

(i) a five membered substituted or unsubstituted heterocyclic radical containing from 1 to 4 hetero atoms independently selected from sulfur, nitrogen or oxygen; or

10

- (ii) a fused bicyclic radical wherein a carbocyclic group is fused to two adjacent carbon atoms of the five membered heterocyclic radical, (i);
- 15 Y_1 is a bond or divalent linking group containing 1 to 9 atoms;

 Y_2 and Y_3 are divalent linking groups independently selected from -CH2-, -O-, and -S-;

20

Z is an Acidic Group;

R1 is C_1 - C_{10} alkyl, aryl, C_3 - C_{10} cycloalkyl, C_2 - C_{10} alkenyl, C_2 - C_{10} alkynyl, C_6 - C_{20} aralkyl, C_6 - C_{20} alkaryl, C_1 - C_{10} haloalkyl, C_6 - C_{20} aryloxy, or C_1 - C_{10} alkoxy;

PCT/US00/30944

R2 is hydrogen, halogen, C_1-C_{10} haloalkyl, C_1-C_{10} alkoxy, C_1-C_{10} alkyl, C_3-C_8 cycloalkyl, Acidic Group, or $-(CH_2)_{1-7}$ (Acidic Group);

5 R3 is hydrogen, halogen, C₁-C₁₀ alkyl, aryl, C₁-C₁₀ haloalkyl, C₁-C₁₀ alkoxy, C₁-C₁₀ aryloxy, C₃-C₈ cycloalkyl;

R4 is C_1-C_4 alkyl, C_3-C_4 cycloalkyl, $-(CH_2)_{1-7}(\text{cycloalkyl}), C_2-C_4 \text{ alkenyl}, C_2-C_4 \text{ alkynyl}, \text{ benzyl},$ or aryl; and

n is 0, 1, 2, 3, 4, 5, or 6;

or a pharmaceutically acceptable salt, solvate, or prodrug derivative thereof.

III. Preferred LTB4 Antagonists include the following:

III A. Preferred X substituents:

20

A "substituted heterocyclic radical" is preferably Substituted with from 1 to 3 groups independently selected from hydrogen, halo, C_1-C_{10} alkyl, C_1-C_{10} haloalkyl, C_1-C_{10} alkoxy, aryl, or C_6-C_{20} aryloxy.

Preferred Group 1 of X substituent (symbol, "PG1-X")

Preferred LTB4 compounds of the invention include those wherein X is a heterocyclic radical selected from the group consisting of substituents represented by the following structural formulae:

. 5

10

15

where R10 is a radical selected from hydrogen or C_1 - C_4 alkyl; and R11 is a radical selected from hydrogen, halo, C_1 - C_{10} alkyl, C_1 - C_{10} haloalkyl, C_1 - C_{10} alkoxy, aryl, or C_6 - C_{20} aryloxy. Preferred R10 groups are hydrogen, methyl, or phenyl. Moreover, any of the above heterocyclic radicals illustrated by structural formulae may attach to the diphenyl leukotriene antagonist of formulae (I) by any monovalent bond originating on a suitable carbon or nitrogen atom in its ring structure.

For example, the pyrrole radical may attach to the diphenyl molecule by a single bond originating at any carbon atom or any nitrogen atom which has less than three bonds in the heterocyclic ring;

Location of attachment bond for pyrrole,

A preferred form of the substituent X is a fused

5 bicyclic radical wherein a carbocyclic group is fused to two
adjacent carbon atoms of the five membered heterocyclic
radical, for example:

10

III B. Preferred Group 2 of X substituent (symbol, "PG2X"):

Most preferred as the X substituents are the heterocyclic radicals;

, or

10 III C. Excluded X substituents:

The heterocyclic radical X of Formula (I) does not include 3-bromo-1,2,4 thiadiazole since the LTB4 antagonist activity of compounds containing this radical is considered too low to be an aspect of this invention.

15

III D. Preferred Y₁ substituents:

 Y_1 is a bond or divalent linking group containing 1 to 9 atoms independently selected from carbon, hydrogen, sulfur, nitrogen, and oxygen;

20

Preferred Group 1 of Y_1 substituent (symbol, "PG1- Y_1 ")

Preferred LTB4 compounds of the invention include those wherein Y_1 is a divalent linking group selected from the group consisting of substituents represented by the

25 following formulae:

where R13 is hydrogen, methyl, or ethyl;

The above divalent groups may be used in their forward or reversed positions. For example, the group;

5

may be positioned as either,

01

in the displayed fragment of formula (I).

III E. Preferred Group 2 of Y_1 substituent (symbol, "PG2-15 Y_1 "):

The most preferred divalent \mathbf{Y}_1 substituent is the group;

20

10

III F. Preferred Group 1 of Y_2 substituent (symbol, "PG1- Y_2 ") and Preferred Group 1 of Y_3 substituent (symbol, "PG1- Y_3 "):

The Y_2 and Y_3 substituents are preferably selected from 5 -S- and -O-.

III G. Preferred Group 2 of Y_2 substituent (symbol, "PG2- Y_2 ") and Preferred Group 2 of Y_3 substituent (symbol, "PG2- Y_3 "):

Most preferably both Y2 and Y3 are the group;

III H. Preferred Group 1 of Z substituent
(symbol, "PG1-Z"):

Z is the Acidic Group as previously defined. Preferred is an acidic group selected from the following:

tetrazolyl,

20

15

where R12 is C_1 - C_{10} alkyl, aryl, C_6 - C_{20} alkaryl, or C_6 - C_{20} aralkyl. Preferred R12 groups are represented by the formulae:

10

III I. Preferred Group 2 of Z substituent
(symbol, "PG2-Z"):

Highly preferred are the acidic groups; -5-tetrazolyl,

N-acyl sulfonamide, -SO3H, and carboxyl.

- 5 III J. Preferred Group 3 of Z substituent (symbol, "PG3-Z"):
 Carboxyl is the most preferred Z substituent.
- III L. Preferred Group 2 of n subscript variable (symbol, "PG2-n")

 The most preferred integer value of n for the divalent linking group, $-(CH_2)_n$ is n = 1.
- III M. Preferred Group 1 of Rl substituent (symbol, "PG120 R1"):

A preferred R1 group is methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, and 2-propenyl; with n-propyl being most preferred.

25 III N. Preferred Group 1 of R2 substituent (symbol, "PG1-R2") and Preferred Group 1 of R3 substituent (symbol, "PG1-R3"):

Preferred R2 and R3 groups are those wherein R2 and R3 are independently selected from hydrogen or methyl,

30 ethyl, methoxy, ethoxy, halo, or -CF3; with R2 and R3 both being hydrogen as most preferred.

III 0. Preferred Group 1 of R4 substituent
(symbol, "PG1-R4":)

Preferred R4 substituents are ethyl, propyl, and isopropyl.

5

III P. Combinations of substituents of the compound of
Formula (I):

The substituents of formula (I) are defined as "Z", "X", "n", "R1", "R2", "R3", "R4", "Y1", "Y2", and "Y3". Moreover, as described in the preceding section, within 10 each of the defined substituents of Formula (I) are "preferred" and "most preferred" subgroups which define the variety of substituents to be used in the definition of LTB4 antagonists of the invention. These preferred subgroups are defined by designations such as "PG1-R4" as 15 recited above. It is often advantageous to use combinations of preferred groups or combinations of preferred groups together with the general definition of variables given in Formula (I). Suitable combinations of substituents are shown in the following three Tables 20 (viz., R-Table, Y-Table & XZn-Table).

The following R-Table is used to select combinations of general and preferred groupings of the variables R1, R2, R3 and R4 for substitution in formula (I), as follows:

5

R-Table

R variables	R1	R2	R3	R4
Combination	group	group	group	group
Code	choice	choice	choice	choice
R01	R1	R2	R3	R4
R02	R1	R2	R3	PG1-R4
R03	R1	R2	PG1-R3	R4
R04	R1	R2	PG1-R3	PG1-R4
R05	R1	PG1-R2	R3	R4
R06	R1	PG1-R2	R3	PG1-R4
R07	R1	PG1-R2	PG1-R3	R4
R08	R1	PG1-R2	PG1-R3	PG1-R4
R09	PG1-R1	R2	R3	R4
R10	PG1-01	R2	R3	PG1-R4
R11	PG1-R1	R2	PG1-R3	R4
R12	PG1-R1	R2	PG1-R3	PG1-R4
R13	PG1-R1	PG1-R2	R3	R4
R14	PG1-R1	PG1-R2	R3	PG1-R4
R15	PG1-R1	PG1-R2	PG1-R3	R4
R16	PG1-R1	PG1-R2	PG1-R3	PG1-R4

Thus, for example, the substituent combination, "R14" describes a substituent combinatorial choice for Formula

(I) wherein R1 is selected from the preferred set of variables, "PG1-R1", that is, methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, and 2-propenyl; the R2 substituent is selected from the preferred set of

variables, "PG1-R2", that is, hydrogen or methyl, ethyl, methoxy, ethoxy, halo, or -CF3; the variable R3 has the scope defined in the generic formula (I), and the substituents suitable for R4 are selected from the preferred group, "PG1-R4" having the preferred set of variables, ethyl, propyl, and isopropyl.

The following Y-Table is used to select broad and preferred groupings of the variables Y1, Y2, and Y3 for substitution in formula (I), as follows:

Y-Table

Y variables	Y1 group	Y2 group	Y3 group
combination	choice	choice	choice
code			
Y01	Y1	Y2	Y3
Y02	Y1	Y2	PG1-Y3
Y03	Y1	Y2	PG2-Y3
Y04	Y1	PG1-Y2	Y3
Y05	Y1	PG2-Y2	Y3
¥06	Y1	PG1-Y2	PG1-Y3
¥07	Y1	PG1-Y2	PG2-Y3
X08	Y1	PG2-Y2	PG1-Y3
Y09	Y1	PG2-Y2	PG2-Y3
Y10	PG1-Y1	Y2	Y3
Y11	PG1-Y1	¥2	PG1-Y3
Y12	PG1-Y1	Y2	PG2-Y3
Y13	PG1-Y1	PG1-Y2	Y3
Y14	PG1-Y1	PG1-Y2	PG1-Y3
Y15	PG1-Y1	PG1-Y2	PG2-Y3
Y16	PG1-Y1	PG2-Y2	Y3
Y17	PG1-Y1	PG2-Y2	PG1-Y3
Y18	PG1-Y1	PG2-Y2	PG2-Y3
Y19	PG2-Y1	Y2	Y3
Y20	PG2-Y1	Y2	PG1-Y3
Y21	PG2-Y1	Y2	PG2-Y3
Y22	PG2-Y1	PG1-Y2	У3
Y23	PG2-Y1	PG1-Y2	PG1-Y3
Y24	PG2-Y1	PG1-Y2	PG2-Y3
Y25	PG2-Y1	PG2-Y2	Y3
¥26	PG2-Y1	PG2-Y2	PG1-Y3
Y27	PG2-Y1	PG2-Y2	PG2-Y3

The following XZn-Table is used to select broad and preferred groupings of the variables X, Z, and n for substitution in formula (I), as follows:

XZn-Table

XZn variables	Х	Z	n integer
combination	group	Group	group
code	choice	Choice	choice
XZn01	Х	Z	n
XZn02	Х	Z	PG1-n
XZn03	х	Z	PG2-n
XZn04	х	PG1-Z	n
XZn05	Х	PG2-Z	n
XZn06	х	PG3-Z	n
XZn07	Х	PG1-Z	PG1-n
XZn08	Х	PG2-Z	PG1-n
XZn09	Х	PG3-Z	PG1-n
XZn10	Х	PG1-Z	PG2-n
XZn11	Х	PG2-Z	PG2-n
XZn12	Х	PG3-Z	PG2-n
XZn13	PG1-X	Z	n
XZn14	PG1-X	Z	PG1-n
XZn15	PG1-X	Z	PG2-n
XZn16	PG1-X	PG1-Z	n
XZn17	PG1-X	PG2-Z	n
XZn18	PG1-X	PG3-Z	n
XZn19	PG2-X	PG1-Z	PG1-n
XZn20	PG2-X	PG2-Z	PG1-n
XZn21	PG2-X	PG3-Z	PG1-n
XZn22	PG2-X	PG1-Z	PG2-n
XZn23	PG2-X	PG2-Z	PG2-n
XZn24	PG2-X	PG3-Z	PG2-n

How to Use the Tables:

Any of the individual 16 combinations of the R substituents depicted in the R-Table may be used in combination with any of the 27 individual combinations of 5 Y substituents depicted in the Y-Table, which may be used with any of the 24 combinations of XZn substituents depicted in the XZn-Table. For example, the substituent combination choice "R07, Y21, XZn03" defines substituent set selections for a subset of formula (I) useful in the practice of the invention.

Additional preferred LTB4 antagonists are described by formula (II):

wherein;

20

25

15

10

, or

X2 is a heterocyclic radical selected from,

5

R21 is ethyl, 2-propen-1-yl, 3-propen-1-yl, n-propyl, iso-propyl, n-butyl, sec-butyl, or tert-butyl; and R22 is hydrogen, n-butyl, sec-butyl, flouro, chloro,

-CF₃, or tert-butyl.

Z2 is carboxyl, tetrazolyl, N-sulfonamidyl.

Preferred Compounds of the Invention:

III R. Specific compounds preferred as LTB4 antagonists are represented by the following structural formulae:

15

10

(C1):

(C2):

(C3):

5

(C4):

10

(C5):

(C6):

5 (C7):

10

15

(C8):

(C9):

(C10):

5

10 (C11):

(C12):

(C13):

5

(C14):

10

15

(C15):

(C16):

5 (C17):

(C18):

10

(C19):

5 (C20):

(C21):

10 (C22):

(C23):

and all acid, salt, solvate and prodrug derivatives thereof.

III S. Highly Preferred LTB4 Antagonists are as follows:

10

15

5

5

15

10 and all acid, salt, solvate and prodrug derivatives thereof.

The salts of the above diphenyl LTB4 antagonists of the invention, represented by formulae (A), (I) and (II) and the specific compounds set out by structural formulae in sections IIIR and IIIS herein, are an additional aspect of the invention. The compounds of the invention possess an Acidic Group(s) and at these sites various salts may be formed which are more water soluble and/or physiologically suitable than the parent compound in its acid form.

Representative pharmaceutically acceptable salts, include but are not limited to, the alkali and alkaline earth salts such as lithium, sodium, potassium, calcium, magnesium, aluminum and the like. Sodium salts are particularly preferred. Salts are conveniently prepared from the free preferred. Salts are conveniently prepared from the free acid by treating the acid form in solution with a base or by exposing the acid to an ion exchange resin. For example, exposing the acid to an ion exchange resin. For example, the (Acidic Group) of the Z of Formula (I) may be selected as -CO₂H and salts may be formed by reaction with appropriate bases (e.g., NaOH, KOH) to yield the corresponding sodium or potassium salt.

PCT/US00/30944

Included within the definition of pharmaceutically acceptable salts are the relatively non-toxic, inorganic and organic base addition salts of compounds of the present invention, for example, ammonium, quaternary ammonium, and amine cations, derived from nitrogenous bases of sufficient basicity to form salts with the LTB4 antagonist compounds of this invention (see, for example, S. M. Berge, et al., 20 "Pharmaceutical Salts," J. Phar. Sci., 66: 1-19 (1977)). Certain compounds of the invention may possess one or more chiral centers and may thus exist in optically active forms. All such stereoisomers as well as the mixtures thereof are intended to be included in the invention. If a particular stereoisomer is desired, it can be prepared by methods well known in the art, for example, by using stereospecific 25 reactions with starting materials which contain the asymmetric centers and are already resolved or, alternatively, by methods which lead to mixtures of the stereoisomers and subsequent resolution by known methods. For example, a racemic mixture may be reacted with a single enantiomer of some other compound. This changes the racemic 30

WO 01/34135

form into a mixture of diastereomers. Then, because the diastereomers have different melting points, different boiling points, and different solubilities, they can be separated by conventional means, such as crystallization.

5

10

20

25

Prodrugs are derivatives of the compounds of Formulae (A), (I) and (II), supra., which have chemically or metabolically cleavable groups and become by hydrolysis or under physiological conditions the compounds of the invention which are pharmaceutically active in vivo. Derivatives of the compounds of this invention have activity in both their acid and base derivative forms, but the acid derivative form often offers advantages of solubility, tissue compatibility, or delayed release in a mammalian organism (see, Bundgard, H., Design of Prodrugs, pp. 7-9, 21-24, Elsevier, Amsterdam 1985). Prodrugs include acid derivatives well known to practitioners of the art, such as, for example, esters prepared by reaction of the parent acidic compound with a suitable alcohol, or amides prepared by reaction of the parent acid compound with a suitable Simple aliphatic or aromatic esters derived from acidic groups pendent on the compounds of this invention are preferred prodrugs. In some cases it is desirable to prepare double ester type prodrugs such as (acyloxy) alkyl esters or ((alkoxycarbonyl)oxy)alkyl esters. Particularly

WO 01/34135 PCT/US00/30944

-51-

preferred esters as prodrugs are methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, tert-butyl, morpholinoethyl, and N,N-diethylglycolamido.

Esters of carboxylic acids are preferred prodrugs of the compounds of the invention (viz., the compounds of Formula A, Formula I, Formula II and the specific compounds set out in Section IIIR and IIIS, herein).

5

10

15

20

25

Methyl ester prodrugs may be prepared by reaction of the acid form of a compound of formula (I) in a medium such as methanol with an acid or base esterification catalyst (e.g., NaOH, H_2SO_4). Ethyl ester prodrugs are prepared in similar fashion using ethanol in place of methanol.

N,N-diethylglycolamido ester prodrugs may be prepared by reaction of the sodium salt of a compound of Formula (I) (in a medium such as dimethylformamide) with 2-chloro-N,N-diethylacetamide (available from Aldrich Chemical Co., Milwaukee, Wisconsin USA; Item No. 25,099-6).

Morpholinylethyl ester prodrugs may be prepared by reaction of the sodium salt of a compound of Formula (I) (in a medium such as dimethylformamide) 4-(2-chloroethyl)morpholine hydrochloride (available from Aldrich Chemical Co., Milwaukee, Wisconsin USA, Item No. C4,220-3).

Preferred LTB4 antagonists include compounds of Formula A, Formula (I), or Formula (II) or the specific compounds of sections IIIR and IIIS shown above by structural formula; wherein the acid, salt and prodrug derivatives thereof are respectively selected from: carboxylic acid, sodium salt, and ester prodrug.

WO 01/34135 PCT/US00/30944

-52-

IV. Method of Making the Compounds of the Invention
General reaction schemes (not represented to be
specific Examples) applicable for synthesis of the LTB4
antagonist compounds represented by formula (I) are set
out below. Numerous literature references and Chemical
Abstract registry numbers (e.g., RN 152609-60-4) are
supplied as additional aids for preparing reagents used in
practicing the synthesis schemes of the invention.

10

REACTION SCHEMES FOR MAKING THE COMPOUNDS OF THE INVENTION

The following scheme illustrates a process for making Example (1), a 4-substituted oxazole LTB4 receptor antagonist:

benzyl bromide, Cs₂CO₃, DMF

known compound: RN# 156005-61-7 R. W. Harper et al., J. Med. Chem. 1994, 37(15), 2411

known compound: RN 152609-76-2 J. S. Sawyer et al., J. Med. Chem. 1995, 38, 4411

K₂CO₃, Nal, 2-butanone

BF₃·Et₂O, EtSH

5

10

Known chloride (26) may be alkylated with benzyl bromide to provide chloride (28). Reaction with known ester (30), catalyzed by a suitable base, provides acetophenone (32). Oxidation with bis(trifluoroacetoxy)iodobenzene gives alphahydroxy ketone (34), that may be cyclized with triflic anhydride and formamide to give the 4-substituted oxazole (36). Debenzylation with boron trifluoride etherate and ethanethiol gives oxazole (38), that is hydrolyzed and protonated to provide Example (1).

Scheme 2

The following scheme illustrates a process for making Example (2), a 5(4)-substituted imidazole LTB4 receptor antagonist:

-56-

The trimethylsilyl enol ether of acetophenone (32) is formed and treated with N-chlorosuccinimide followed by tetra-nbutylammonium fluoride to provide the chloroketone (40). Treatment of (40) with 2-benzyl-2-thiopseudourea and base 5 provides imidazole (42), that is treated with boron trifluoride etherate and ethanethiol to give imidazole (44). Hydrolysis and protonation provide Example (2) as the hydrochloride salt.

10 Scheme 3

> The following scheme illustrates a process for making Example (3), a 4-substituted thiazole LTB4 receptor antagonist:

Chloroketone (40) is treated with thioformamide and magnesium carbonate to give thiazole (46), that is debenzylated with boron trifluoride etherate and ethanethiol giving thiazole (48). Hydrolysis and protonation provides

5 Example (3).

Scheme 4

The following scheme illustrates a process for making Example 10 (4), a 5(3)-substituted pyrazole LTB4 receptor antagonist:

PCT/US00/30944 WO 01/34135 -60-

Treatment of acetophenone (32) with N,N-dimethylformamide dimethyl acetal gives enone (50), that may be hydrolyzed, protonated, and then heated with hydrazine hydrate to

provide pyrazole (52). Debenzylation of the resulting 5 pyrazole with boron trifluoride etherate and ethanethiol gives Example (4).

10

The following scheme illustrates a process for making Example (5), a 5-substituted isoxazole LTB4 receptor antagonist:

WO 01/34135 PCT/US00/30944

-62-

Treatment of enone (50) with hydroxylamine provides isoxazole (54), that is debenzylated with boron trifluoride etherate and ethanethiol to give isoxazole (56). Hydrolysis and protonation provides Example (5).

5

Scheme 6

The following scheme illustrates a process for making Example (6), a 5(4)-substituted 1,2,3-triazole LTB4 receptor antagonist:

10

Known phenol (30) is alkylated with known chloride (58) to give aryl bromide (60). Treatment of (60) with tri-n-butylethynyltin and a palladium catalyst gives alkyne (62). Heating (62) with trimethylsilyl azide provides triazole (64), that is debenzylated with boron trifluoride etherate and ethanethiol to give triazole (66). Hydrolysis and protonation provides Example (6).

Scheme 7

10 The following scheme illustrates a process for making Example (7), a 1-substituted pyrrole LTB4 receptor antagonist:

References for formation of 1-aryl substituted pyrroles: M. Mure and J. P. Klinman, J. Am. Chem. Soc. 1995, 117(34), 8698; Y. Lee et al. J. Am. Chem. Soc. 1996, 118(30), 7241

WO 01/34135 PCT/US00/30944

-66-

4-Ethylbenzene-1,3-diol (68) is treated with potassium nitrosodisulfonate followed by 3-pyrroline and benzylbromide and a base to provide pyrrole (70). Alkylation with 1-bromo-3-chloropropane gives chloride (72), that is used to alkylate phenol (30) to give pyrrole (74). Debenzylation with boron trifluoride etherate and ethanethiol provides Example (7).

Scheme 8

10

The following scheme illustrates a process for making Example (8), a 5-substituted 1,2,4-thiadiazole LTB4 receptor antagonist:

15

The palladium-catalyzed addition of 4,4,5,5-tetramethyl[1,3,2]dioxaborolane to bromide (60) gives boronic ester
(76). The palladium-catalyzed addition of 3-bromo-5-chloro1,2,4-thiadiazole to (76) gives ester (78). Debenzylation
with boron trifluoride etherate and ethanethiol, followed by hydrolysis and protonation, gives Example (8).

Scheme 9

The following scheme illustrates a process for making Example 10 (9), a 2-substituted thiophene LTB4 receptor antagonist:

(9)

COONa

WO 01/34135 PCT/US00/30944

-70-

The palladium-catalyzed addition of boronic ester (76) to 2-bromothiophene, followed by debenzylation with boron trifluoride etherate and ethanethiol, provides thiophene (80). Hydrolysis and salt formation provides Example (9).

5

Scheme 10

The following scheme illustrates a process for making Example (10), a 4-substituted pyrazole LTB4 receptor antagonist:

10

15

WO 01/34135 PCT/US00/30944

-72-

The palladium-catalyzed addition of boronic ester (76) to 1-methyl-4-iodopyrazole provides pyrazole (82). Debenzylation with boron trifluoride etherate and ethanethiol, followed by hydrolysis and protonation, provides Example (10).

5

Scheme 11

The following scheme illustrates a process for making Example (11), a 2-substituted thiazole LTB4 receptor antagonist:

10

WO 01/34135 PCT/US00/30944

- -74-

The palladium-catalyzed addition of boronic ester (76) to 2-bromothizable provides thiazole (84). Debenzylation with boron trifluoride etherate and ethanethiol gives thiazole (86). Hydrolysis and protonation provides Example (11).

5

Scheme 12

The following scheme illustrates a process for making Example (12), a 4-substituted isoxazole LTB4 receptor antagonist:

10

WO 01/34135 PCT/US00/30944

-76-

The palladium-catalyzed addition of boronic ester (76) to 3,5-dimethyl-4-iodoisoxazole provides oxazole (88). Debenzylation with trimethylsilyl iodide, followed by hydrolysis and salt formation, provides Example (12).

5

Scheme 13

The following scheme illustrates a process for making Example (13), a 2-substituted furan LTB4 receptor antagonist:

10

Debenzylation of bromide (60) with boron tribromide provides phenol (90), that is treated with tert-butyldimethylsilyl chloride and imidazole to give silyl ether (92). The palladium-catalyzed addition of (92) to furan-2-boronic acid provides furan (94). Hydrolysis and salt formation gives Example (13).

Scheme 14

The following scheme illustrates a process for making Example (14), a 3-substituted furan LTB4 receptor antagonist:

The palladium-catalyzed addition of (92) to furan-3-boronic acid provides furan (96). Hydrolysis and salt formation gives Example (14).

-80-

Scheme 15

The following scheme illustrates a process for making Example (15), a 3-substituted tetrahydrofuran LTB4 receptor antagonist:

(15)

WO 01/34135 PCT/US00/30944

-82-

The palladium-catalyzed addition of bromide (60) to furan-3-boronic acid provides furan (98). Hydrogenation over a palladium catalyst gives tetrahydrofuran (100). Hydrolysis and salt formation gives Example (15).

5

Scheme 16

The following scheme illustrates a process for making Example (16), a 2-substituted pyrrolidine LTB4 receptor antagonist:

10

(16)

-84-

The palladium-catalyzed addition of bromide (60) to N-boc pyrrole-2-boronic acid provides pyrrole (102). Hydrogenation over a palladium catalyst gives pyrrolidine (104). Hydrolysis and salt formation gives pyrrolidine (106).

Treatment with hydrochloric acid provides Example (16) as the hydrochloride salt.

Scheme 17

The following scheme illustrates a process for making Example 10 (17), a 3-substituted thiophene LTB4 receptor antagonist:

Scheme 17

The palladium-catalyzed addition of bromide (58) to thiophene-3-boronic acid provides thiophene (108).

Alkylation of known phenol (110) with (108) catalyzed by base provides thiophene (112). Debenzylation with boron tribromide gives thiophene (114). Hydrolysis and protonation provide Example (17).

Scheme 18

10 The following scheme illustrates a process for making Example (18), a 5-substituted 1,2,3,4-thiatriazole LTB4 receptor antagonist:

The Appropriate Ap

Scheme 18

Reference for formation of dithloacids: N. C. Gonnella et al. Syn. Commun. 1979, 17 Reference for formation of 5-substituted 1,2,3,4-thiatriazoles from dithioacids: S. I. ikeda et al., Synthesis 1990, 415

20

Phenol (30) is alkylated with 1-bromo-3-chloropropane to give chloride (116), that is in turn to be treated with known aldehyde (118) and a base, followed by benzylation with benzyl bromide and a base, to provide aldehyde (120). From aldehyde (120) is made the thioacetal by treatment with 1,2-ethanedithiol. The resulting thioacetal is then to be treated with base to provide the thioacid. Treatment with piperidine makes piperidinium salt (122). By the teaching of Ikeda, infra, (the disclosure of which is incorporated herein by reference) treatment of (122) with 2-10 chloropyridinium methyl iodide followed by azide ion will give the 1,2,3,4-thiatriazole (124). Debenzylation with boron trifluoride etherate and ethanethiol, followed by hydrolysis and protonation, will provide the product of 15 Example (18).

Scheme 19

The following scheme illustrates a process for making Example (19), a 4-substituted 1,2,3-thiadiazole LTB4 receptor antagonist:

To the state of th

Scheme 19

(19)

Reference for 1,2,3-thiadiazole formation: E. W. Thomas et al., J. Med. Chem. 1985, 28, 442.

The state of the second

Treatment of acetophenone (32) with ethyl carbazate will give the hydrazone (128). Use of thionyl chloride by the method of Thomas et. al. (infra., the disclosure of which is incorporated herein by reference) will give an intermediate 1,2,3-thiadiazole (130), that is to be debenzylated with boron trifluoride etherate and ethanethiol, then hydrolyzed and protonated to give the product of Example (19).

Scheme 20

The following scheme illustrates a process for making Example (20), a 3-substituted 1,2,5-thiadiazole LTB4 receptor antagonist:

in the second of the second of

Scheme 20

Reference for 1,2,5-thiadiazole formation: E. W. Thomas et al., J. Med. Chem. 1985, 28, 442.

Alkyne (62) is to be treated with trithiazyl trichloride by the method of Thomas et. al. (infra., the disclosure of which is incorporated herein by reference) to provide thiadiazole (132). Debenzylation with boron trifluoride etherate and ethanethiol, followed by hydrolysis and protonation, will provide the product of Example (20).

PCT/US00/30944

Scheme 21

The following scheme illustrates a process for making Example (21), a 2-substituted 1,3,4-thiadiazole LTB4 receptor antagonist:

Scheme 21

A CAMPAGA A CAMP

The palladium-catalyzed addition of boronic ester (76) to 2-bromo-1,3,4-thiadiazole will provide ester (134).

Debenzylation with boron trifluoride etherate and ethanethiol, followed by hydrolysis and protonation, will provide the product of Example (21).

The following scheme illustrates a process for making Example (22), a 5-substituted isothiazole LTB4 receptor antagonist:

Scheme 22

The palladium-catalyzed addition of bromide (58) to 3-methylisothiazole-5-boronic acid will provide isothiazole (136). Alkylation of phenol (30) with (136) catalyzed by base will provide isothiazole (138). Debenzylation with boron trifluoride etherate and ethanethiol, followed by hydrolysis and protonation, will provide the product of Example (22).

Scheme 23

The following scheme illustrates a process for making Example (23), a 2-substituted oxazole LTB4 receptor antagonist:

Scheme 23

known compound: RN 125533-82-6 R. D. Miller et al., Chem. Mater. 1994, *6(7)*, 1023.

PdCl₂(dppf), Cs₂CO₃, toluene

- 1) BF3 Et2O, EtSH
- 2) aq. NaOH 3) aq. HCl

5

WO 01/34135 PCT/US00/30944

-97-

a that a second section and the second second

The palladium-catalyzed addition of boronic ester (76) to 2-bromooxazole will provide oxazole (140). Debenzylation with boron trifluoride etherate and ethanethiol, followed by hydrolysis and protonation, will provide the product of Example (23).

Scheme 24

The following scheme illustrates a process for making Example (24), a 3-substituted thiophane LTB4 receptor antagonist:

10

Reference for formation of tetrahydrothiophenes: D. N. Kursanov et al. Tetrahedron 1975, 31, 311

Thiophene (114) may be reduced in the presence of triethylsilane and trifluoroacetic acid by the method of Kursanov et. al. (infra., the disclosure of which is incorporated herein by reference) to provide the thiophane (142). Hydrolysis and protonation will provide the product of Example (24).

5

10

20

v. PREPARATIVE EXAMPLES 1 TO 17:

Example 1

Preparation of 2-{3-[3-(2-Ethyl-5-hydroxy-4-oxazol-4-yl-phenoxy)propoxy]-2-propyl-phenoxy}benzoic acid.

known compound: RN# 156005-61-7

R. W. Harper et al., J. Med. Chem. 1994, 37(15), 2411-20

15 A. Preparation of 1-[2-benzyloxy-4-(3-chloropropoxy)-5-ethylphenyl]ethanone.

A mixture of 1-[2-hydroxy-4-(3-chloropropoxy)-5ethylphenyl]ethanone (26.1 g, 102 mmol), cesium carbonate (33.4 g, 103 mmol), and benzyl bromide (12.2 ml, 103 mmol),

in N,N-dimethylformamide (300 mL) was stirred for 5 h at room temperature. The mixture was diluted with ethyl acetate and washed four times with water. The organic layer was dried (sodium sulfate), filtered, and concentrated in vacuo. The resulting oil was triturated with ethyl acetate and hexane, allowed to stand for 18 h, then cooled at 0 °C for 3 h. The resulting precipitate was collected via vacuum filtration to provide 24.3 g (69%) of the title compound as white crystals: mp 60-61 °C. H NMR (CDCl₃) δ 7.68 (s,

1H), 7.40 (m, 5H), 6.48 (s, 1H), 5.17 (s, 2H), 4.13 (t, J = 6 Hz, 2H), 3.75 (t, J = 6 Hz, 2H), 2.56 (s, 3H), 2.55 (q, J = 7 Hz, 2H), 2.26 (quintet, J = 6 Hz, 2H), 1.16 (t, J = 7 Hz, 3H); TOF MS ES exact mass calculated for

5 $C_{20}H_{24}ClO_3$ (p+1): m/z = 347.1414. Found: 347.1402; IR (CHCl₃,

cm⁻¹) 1659, 1602, 1266.

Anal. Calcd for $C_{20}H_{23}ClO_3$: C, 69.26; H, 6.68. Found: C, 69.30; H, 6.52.

10

15

known compound: RN# 152609-76-2 J. S. Sawyer et al., J. Med. Chem. **1995**, *38*, 4411

B. Preparation of 2-{3-[3-(4-acetyl-5-benzyloxy-2-ethylphenoxy)propoxy]-2-propyl-phenoxy}benzoic acid methyl ester.

A mixture of 1-[2-benzyloxy-4-(3-chloropropoxy)-5ethylphenyl]ethanone (7.27 g, 21.0 mmol) and sodium iodide (3.14 g, 23.1 mmol) in 2-butanone (100 mL) was heated at reflux for 18 h. The mixture was cooled to room

temperature, filtered, and concentrated in vacuo. The residue was dissolved in N, N-dimethylformamide (100 mL) and treated with 2-(3-hydroxy-2-propylphenoxy)benzoic acid methyl ester (6.0 g, 21 mmol) and potassium carbonate (3.2 g, 23 mmol) at room temperature for 15 h. The mixture was diluted with ethyl acetate and washed four times with water and once with saturated sodium chloride solution. organic layer was dried (sodium sulfate), filtered, and concentrated in vacuo. Chromatography (silica gel, 10% ethyl acetate/90% hexane) of the residue provided 9.2 g 10 (72%) of the title compound as a colorless oil. H NMR $(CDCl_3)$ δ 7.88 (d, J = 9 Hz, 1H), 7.69 (s, 1H), 7.38 (m, 6H), 7.12 (d, J = 8 Hz, 1H), 7.07 (d, J = 8 Hz, 1H), 6.80(d, J = 8 Hz, 1H), 6.67 (d, J = 8 Hz, 1H), 6.50 (s, 1H),6.44 (d, J = 9 Hz, 1H), 5.14 (s, 2H), 4.20 (m, 4H), 3.83 (s, 15 3H), 2.65 (t, J = 7 Hz, 2H), 2.57 (q, J = 7 Hz, 2H), 2.56(s, 3H), 2.32 (quintet, J = 6 Hz, 2H), 1.55 (hextet, J = 7Hz, 2H), 1.15 (t, J = 8 Hz, 3H), 0.90 (t, J = 7 Hz, 3H); IR(CHCl₃, cm⁻¹) 2965, 1726, 1602, 1461.

20 Anal. Calcd for C₃₇H₄₀O₇: C, 74.48; H, 6.76. Found: C, 74.39; H, 6.77.

10

15

20

C. Preparation of 2-(3-{3-[5-benzyloxy-2-ethyl-4-(2hydroxyacetyl)phenoxy]propoxy}-2-propylphenoxy)benzoic acid methyl ester.

A mixture of 2-{3-[3-(4-acetyl-5-benzyloxy-2ethylphenoxy)propoxy]-2-propyl-phenoxy}benzoic acid methyl ester (5.31 g, 8.89 mmol) and water (10 mL) in acetonitrile (50 mL) was treated with trifluoroacetic acid (1.4 mL), 18 mmol) and [bis(trifluoroacetoxy)iodo]benzene (7.65 g, 17.8 mmol). The resulting mixture was heated at reflux for 4 h then concentrated in vacuo. The residue was dissolved in methylene chloride and washed once with water. The aqueous layer was extracted twice with fresh portions of methylene chloride. The combined organic layers were washed three times with saturated sodium bicarbonate solution, once with saturated sodium chloride solution, dried (sodium sulfate), filtered, and concentrated in vacuo. Chromatography (silica gel, 20% ethyl acetate/80% hexane) of the residue provided 1.68 g (31%) of the title compound as a brown oil. H NMR $(CDC1_3)$ δ 7.92 (s, 1H), 7.88 (d, J = 9 Hz, 1H), 7.40 (m,

PCT/US00/30944

6H), 7.12 (d, J = 9 Hz, 1H), 7.05 (d, J = 9 Hz, 1H), 6.79 (d, J = 8 Hz, 1H), 6.66 (d, J = 8 Hz, 1H), 6.50 (s, 1H), 6.43 (d, J = 8 Hz, 1H), 5.15 (s, 2H), 4.65 (s, 2H), 4.22 (m, 4H), 3.83 (s, 3H), 2.65 (m, 4H), 2.34 (quintet, J = 6 Hz, 2H), 1.55 (hextet, J = 7 Hz, 2H), 1.17 (t, J = 8 Hz, 3H), 0.89 (t, J = 8 Hz, 3H); TOS MS ES exact mass calculated for C₃₇H₄₁O₈ (p+1): m/z = 613.2801. Found: 613.2833.

10

D. Preparation of 2-{3-{3-(5-benzyloxy-2-ethyl-4-oxazol-4-yl-phenoxy)propoxy}-2-propylphenoxy}benzoic acid methyl ester.

To a solution of 2-(3-{3-[5-benzyloxy-2-ethyl-4-(2-15 hydroxyacetyl)phenoxy]propoxy}-2-propylphenoxy)benzoic acid methyl ester (1.39 g, 2.27 mmol) in methylene chloride (20 mL) cooled to -78 °C was added triflic anhydride (0.57 mL, 3.4 mmol) and 2,6-lutidine (0.40 mL, 3.4 mmol). The resulting mixture was stirred for 1 h then poured into ether and water. The organic layer was separated and washed once with saturated sodium chloride solution, dried (sodium

sulfate), filtered, and concentrated in vacuo. The residue was dissolved in a 2:1 mixture of formamide/N,Ndimethylformamide (9 mL) and heated at 120 °C in a sealed tube for 4 h. The mixture was cooled to room temperature and diluted with ethyl acetate. The mixture was washed four times with water, once with saturated sodium chloride solution, dried (sodium sulfate), filtered, and concentrated in vacuo. Chromatography (silica gel, 10% ethyl acetate/90% hexane) of the residue provided 89 mg (6%) of the title 10 product as a colorless oil. H NMR (CDCl₃) δ 7.92 (s, 1H), 7.85 (s, 1H), 7.83 (m, 2H), 7.35 (m, 6H), 7.03 (d, J = 8 Hz, 1H), 7.00 (d, J = 8 Hz, 1H), 6.73 (d, J = 8 Hz, 1H), 6.62(d, J = 8 Hz, 1H), 6.52 (s, 1H), 6.35 (d, J = 8 Hz, 1H),5.07 (s, 2H), 4.14 (m, 4H), 3.76 (s, 3H), 2.61 (m, 4H), 2.26 (quintet, J = 6 Hz, 2H), 1.48 (hextet, J = 7 Hz, 2H), 1.1515 (t, J = 8 Hz, 3H), 0.84 (t, J = 8 Hz, 3H).

Alleria in Alleria in the control of the control of

E. Preparation of 2-{3-[3-(2-ethyl-5-hydroxy-4-oxazol-4-ylphenoxy)propoxy]-2-propylphenoxy)benzoic acid methyl ester. To a solution of 2-{3-[3-(5-benzyloxy-2-ethyl-4-oxazol-4-ylphenoxy)propoxy]-2-propylphenoxy}benzoic acid methyl ester (89 mg, 0.14 mmol) in ethanethiol (2 mL) was treated with boron trifluoride etherate (0.27 mL, 2.2 mmol) at room temperature for 4 h. The solution was poured into ether and washed once with water, once with saturated sodium bicarbonate solution, once with saturated sodium chloride solution, dried (sodium sulfate), filtered, and concentrated 10 in vacuo. Chromatography (silica gel, 15% ethyl acetate/85% hexane) of the residue provided 34 mg (45%) of the title ¹H NMR (CDCl₃) δ 7.99 (d, J = product as a light brown oil. 1 Hz, 1H), 7.90 (d, J = 1 Hz, 1H), 7.88 (dd, J = 8, 2 Hz,1H), 7.38 (t, J = 7 Hz, 1H), 7.15 (s, 1H), 7.10 (d, J = 915 Hz, 1H), 7.06 (d, J = 9 Hz, 1H), 6.81 (d, J = 9 Hz, 1H), 6.70 (d, J = 9 Hz, 1H), 6.52 (s, 1H), 6.44 (d, J = 9 Hz,1H), 4.20 (m, 4H), 3.83 (s, 3H), 2.65 (t, J = 8 Hz, 2H), 2.58 (q, J = 8 Hz, 2H), 2.33 (quintet, J = 6 Hz, 2H), 1.55(hextet, J = 7 Hz, 2H), 1.17 (t, J = 8 Hz, 3H), 0.91 (t, J =20

8 Hz, 3H); MS ES+ m/e = 532 (p + 1).

10

15

20

F. Preparation of 2-{3-[3-(2-ethyl-5-hydroxy-4-oxazol-4-yl-phenoxy)propoxy]-2-propylphenoxy}benzoic acid.

To a solution of $2-\{3-[3-(2-ethyl-5-hydroxy-4-oxazol-4-yl$ phenoxy)propoxy]-2-propylphenoxy}benzoic acid methyl ester (89 mg, 0.14 mmol) in methanol (2 mL) was added 1 M lithium hydroxide solution (0.28 mL) and the resulting mixture warmed at 60 °C for 3.5 h. The mixture was cooled to room temperature and concentrated in vacuo. The aqueous residue was diluted with water and the pH adjusted to ~4. mixture was extracted three times with methylene chloride. The combined organic extracts were dried (sodium sulfate), filtered, and concentrated in vacuo to provide 27 mg (92%) of the title compound as a yellow solid. 1 H NMR (DMSO- d_{c}) δ 12.83 (bs, 1H), 10.12 (bs, 1H), 8.39 (s, 1H), 8.25 (s, 1H), 7.78 (dd, J = 8, 1 Hz, 1H), 7.64 (s, 1H), 7.47 (t, J =8 Hz, 1H), 7.16 (m, 2H), 6.80 (t, J = 8 Hz, 2H), 6.56 (s,1H), 6.35 (d, J = 8 Hz, 1H), 4.20 (t, J = 6 Hz, 2H), 4.12(t, J = 6 Hz, 2H); 2.54 (m, 4H), 2.24 (quintet, J = 6 Hz,2H), 1.43 (hextet, J = 8 Hz, 2H), 1.10 (t, J = 8 Hz, 3H),

0.80 (t, J = 8 Hz, 3H); TOF MS ES⁺ exact mass calculated for $C_{30}H_{32}NO_7$ (p+1): m/z = 518.2179. Found: 518.2206; IR (KBr, cm⁻¹) 2961, 1696, 1460, 1222.

Anal. Calcd for $C_{30}H_{31}NO_7$: C, 69.62; H, 6.04; N, 2.71.

5 Found: C, 68.71; H, 5.82; N, 2.65.

Example 2

Preparation of 2-(3-{3-[2-Ethy1-5-hydroxy-4-(3H-imidazol-4-10 yl)phenoxy)propoxy}-2-propyl-phenoxy)benzoic acid hydrochloride.

15 A. Preparation of 2-(3-[3-[5-benzyloxy-4-(2-chloroacetyl)-2-ethylphenoxy]propoxy}-2-propylphenoxy)benzoic acid methyl ester.

To a solution of 2-{3-[3-(4-acetyl-5-benzyloxy-2-ethylphenoxy)propoxy}-2-propyl-phenoxy}benzoic acid methyl ester (3.04 g, 5.09 mmol) in tetrahydrofuran (50 mL) cooled

to -78 °C was added a solution of 1 M lithium hexamethyldisilazide in tetrahydrofuran (11.2 mL, 11.2 mmol) portion wise. After stirring for 20 min, trimethylsilyl chloride (2.6 mL, 20 mmol) was added and the mixture warmed to 0 °C and stirred for 30 min. The mixture was evaporated in vacuo and the residue dissolved in hexane. The resulting solution was filtered and concentrated in vacuo. residue was dissolved in tetrahydrofuran (50 mL), cooled to 0 °C, and treated with N-chlorosuccinimide (750 mg, 5.6 mmol). The mixture was warmed to room temperature and 10 stirred for 30 min, then heated at reflux for 2 h. mixture was cooled to room temperature and treated with water (4 mL) and a solution of 1 N tetra-n-butylammonium fluoride in tetrahydrofuran (6 mL). After stirring for 15 min the mixture was diluted in ether and washed once with 15 water, once with saturated sodium chloride solution, dried (sodium sulfate), filtered, and concentrated in vacuo. Chromatography (silica gel, 10% ethyl acetate/90% hexane) of the residue provided 1.94 g (60%) of the title compound as a white solid. H NMR (CDCl₃) δ 7.89 (d, J = 8 Hz, 1H), 7.77 20 (s, 1H), 7.40 (m, 6H), 7.12 (d, J = 9 Hz, 1H), 7.06 (d, J = 9 Hz, 1H)8 Hz, 1H), 6.80 (d, J = 8 Hz, 1H), 6.66 (d, J = 8 Hz, 1H), 6.49 (s, 1H), 6.43 (d, J = 8 Hz, 1H), 5.15 (s, 2H), 4.68 (s, 2H), 4.20 (q, J = 6 Hz, 4H), 3.82 (s, 3H), 2.65 (t, J = 7Hz, 2H), 2.59 (q, J = 7 Hz, 2H), 2.32 (quintet, J = 6 Hz, 25 2H), 1.54 (hextet, J = 8 Hz, 2H), 1.16 (t, J = 8 Hz, 3H), 0.89 (t, J = 7 Hz, 3H); TOF MS ES exact mass calculated for $C_{37}H_{40}ClO_7$ (p+1): m/z = 631.2463. Found: 631.2470; IR $(CHCl_3, cm^{-1})$ 2964, 1720, 1603, 1461.

Manada North State Communication of the State Co

Anal. Calcd for $C_{37}H_{39}ClO_7$: C, 70.41; H, 6.23. Found: C, 70.04; H, 5.97.

5

B. Preparation of 2-(3-{3-[5-benzyloxy-4-(2-benzylsulfanyl-3H-imidazol-4-yl)-2-ethyl-phenoxy]propoxy}-2-propylphenoxy)benzoic acid methyl ester.

A mixture of 2-(3-[3-[5-benzyloxy-4-(2-chloroacety1)-2ethylphenoxy]propoxy}-2-propylphenoxy)benzoic acid methyl
ester (800 mg, 1.27 mmol), 2-benzyl-2-thiopseudourea
hydrochloride (313 mg, 1.52 mmol), sodium iodide (77 mg,
0.51 mmol), and potassium carbonate (700 mg, 5.06 mmol) in
N,N-dimethylformamide (20 mL) was treated at 80 °C for 6 h.

The mixture was cooled, diluted with diethyl ether, and
washed once with water. The organic layer was dried (sodium
sulfate), filtered, and concentrated in vacuo.
Chromatography (silica gel, 30% ethyl acetate/70% hexane) of
the residue provided 376 mg (40%) of the title compound as a

yellow amorphous solid. H NMR (CDCl₃) δ 7.89 (d, J = 8 Hz, 1H), 7.36 (m, 9H), 7.20 (m, 5H), 7.21 (d, J = 9 Hz, 1H), 7.06 (d, J = 8 Hz, 1H), 6.79 (d, J = 8 Hz, 1H), 6.67 (d, J = 8 Hz, 1H), 6.55 (s, 1H), 6.43 (d, J = 8 Hz, 1H), 5.07 (s, 2H), 4.21 (t, J = 6 Hz, 2H), 4.18 (t, J = 6 Hz, 2H), 4.10 (s, 2H), 3.83 (s, 3H), 2.63 (m, 4H), 2.31 (quintet, J = 6 Hz, 2H), 1.55 (hextet, J = 7 Hz, 2H), 1.18 (t, J = 8 Hz, 3H), 0.90 (t, J = 7 Hz, 3H); TOF MS ES exact mass calculated for $C_{45}H_{47}N_2O_6S$ (p+1): m/z = 743.3155. Found: 743.3142; IR (CHCl₃, cm⁻¹) 2963, 1720, 1602, 1453. Anal. Calcd for $C_{45}H_{46}N_2O_6S$: C, 72.75; H, 6.24; N, 3.77. Found: C, 72.69; H, 6.17; N, 3.56.

- C. Preparation of 2-(3-{3-[4-(2-benzylsulfanyl-3H-imidazol-4-yl)-2-ethyl-5-hydroxyphenoxy]propoxy}-2-propylphenoxy)benzoic acid methyl ester.
- A solution of 2-(3-{3-[5-benzyloxy-4-(2-benzylsulfanyl-3H-imidazol-4-yl)-2-ethyl-phenoxy]propoxy}-2-propylphenoxy)benzoic acid methyl ester (360 mg, 0.49 mmol) in ethanethiol (7 mL) was treated with boron trifluoride etherate at room temperature for 3.5 h. The mixture was
- diluted with diethyl ether and water. The organic layer was separated and washed with saturated sodium bicarbonate solution, dried (sodium sulfate), filtered, and concentrated in vacuo. Chromatography (silica gel, 20% ethyl acetate/80% hexane) of the residue provided 154 mg (48%) of the title
- compound as an orange oil. 1 H NMR (CDCl₃) δ 7.85 (d, J = 8 Hz, 1H), 7.36 (t, J = 7 Hz, 1H), 7.20 (m, 7H), 7.12 (s, 1H), 7.05 (m, 3H), 6.79 (d, J = 8 Hz, 1H), 6.65 (d, J = 8 Hz, 1H), 6.54 (s, 1H), 6.41 (d, J = 8 Hz, 1H), 4.20 (s, 2H), 4.17 (m, 4H), 3.82 (s, 3H), 2.62 (t, J = 8 Hz, 2H), 2.54 (q,
- 20 J = 7 Hz, 2H), 2.30 (quintet, J = 6 Hz, 2H), 1.53 (hextet, J = 8 Hz, 2H), 1.14 (t, J = 7 Hz, 3H), 0.89 (t, J = 8 Hz, 3H); TOF MS ES⁺ exact mass calculated for $C_{38}H_{41}N_2O_6S$ (p+1): m/z = 653.2685. Found: 653.2669.
 - Anal. Calcd for $C_{38}H_{40}N_2O_6S$: C, 69.92; H, 6.18; N, 4.29.
- 25 Found: C, 69.44; H, 6.25; N, 3.99.

10

15

p. Preparation of 2-(3-{3-[2-ethyl-5-hydroxy-4-(3H-imidazol-4-yl)phenoxy]propoxy}-2-propyl-phenoxy)benzoic acid hydrochloride.

A solution of 2-(3-{3-[4-(2-benzylsulfanyl-3*H*-imidazol-4-yl)-2-ethyl-5-hydroxyphenoxy]propoxy}-2-propylphenoxy)benzoic acid methyl ester (154 mg, 0.235 mmol) in methanol (3 mL) was treated with 1 N lithium hydroxide solution at 60 °C for 3.5 h. The mixture was cooled to room temperature and concentrated in vacuo. The solution was diluted with water and adjusted to pH 4. The aqueous solution was extracted three times with methylene chloride. The combined organic layers were dried (sodium sulfate), filtered, and concentrated in vacuo. The residue was dissolved in ethanol (3 mL) and treated with 0.2 N sodium hydroxide solution (1 mL) and Raney nickel (75 mg) at 75 °C for 4 h. The mixture was cooled to room temperature,

20

filtered through Celite TM, and the filtrate concentrated in vacuo. The residue was diluted with water and adjusted to pH 2 with 1 N hydrochloric acid. The resulting precipitate was collected via vacuum filtration to provide 27 mg (21%) of the title compound. TOF MS ES exact mass calculated for $C_{30}H_{33}N_{2}O_{6}$ (p+1): m/z = 517.2339. Found: 517.2340.

Example 3

Preparation of 2-{3-[3-(2-Ethyl-5-hydroxy-4-thiazol-4-yl-10 phenoxy)propoxy]-2-propyl-phenoxy}benzoic acid.

A. Preparation of 2-{3-[3-(5-benzyloxy-2-ethyl-4-thiazol-4-yl-phenoxy)propoxy]-2-propylphenoxy)benzoic acid methyl ester.

A mixture of 2-(3-{3-[5-benzyloxy-4-(2-chloroacetyl)-2-ethylphenoxy]propoxy}-2-propylphenoxy)benzoic acid methyl ester (500 mg, 0.792 mmol), thioformamide (20 mL, 8.0 mmol), and magnesium carbonate in dioxane (10 mL) was heated at reflux for 2 h. The mixture was cooled to room temperature

The state of the s

15

and diluted with diethyl ether and 0.2 M sodium hydroxide solution. The organic layer was separated, washed with saturated sodium chloride solution, dried (sodium sulfate), filtered, and concentrated in vacuo. Chromatography (silica 5 gel, 10% ethyl acetate/90% hexane) of the residue provided 254 mg (50%) of the title compound as a colorless oil. H NMR (CDCl₃) δ 8.91 (s, 1H), 8.11 (s, 1H), 7.87 (dd, J = 8, 1 Hz, 1H), 7.84 (d, J = 1 Hz, 1H), 7.40 (m, 6H), 7.08 (m, 2H), 6.80 (d, J = 8 Hz, 1H), 6.68 (d, J = 8 Hz, 1H), 6.62 (s,1H), 6.43 (d, J = 8 Hz, 1H), 5.16 (s, 2H), 4.21 (t, J = 610 Hz, 4H), 3.83 (s, 3H), 2.68 (m, 4H), 2.32 (quintet, J = 6Hz, 2H), 1.56 (hextet, J = 8 Hz, 2H), 1.21 (t, J = 7 Hz, 3H), 0.90 (t, J = 7 Hz, 3H); TOF MS ES exact mass calculated for $C_{38}H_{40}NO_6S$ (p+1): m/z = 638.2576. Found: 638.2579. IR (CHCl₃, cm⁻¹) 2964, 1719, 1563, 1461.

- B. Preparation of 2-{3-[3-(2-ethyl-5-hydroxy-4-thiazol-4-yl-phenoxy)propoxy]-2-propylphenoxy}benzoic acid methyl
- A solution of 2-{3-[3-(5-benzyloxy-2-ethyl-4-thiazol-4-yl-phenoxy)propoxy]-2-propyl-phenoxy}benzoic acid methyl ester (243 mg, 0.366 mmol) in ethanethiol (7 mL) was treated with boron trifluoride etherate at room temperature for 4 h. The mixture was diluted with diethyl ether, washed once with water, once with saturated sodium bicarbonate solution,
- dried (sodium sulfate), filtered, and concentrated in vacuo. Chromatography (silica gel, 15% ethyl acetate/85% hexane) of the residue provided 131 mg (65%) of the title compound as a colorless oil. 1 H NMR (CDCl₃) δ 8.88 (d, J = 1 Hz, 1H),
- 7.88 (dd, J = 8, 1 Hz, 1H), 7.44 (d, J = 1 Hz, 1H), 7.38 (m, 2H), 7.08 (m, 2H), 6.81 (d, J = 8 Hz, 1H), 6.68 (d, J = 8 Hz, 1H), 6.55 (s, 1H), 6.43 (d, J = 8 Hz, 1H), 4.21 (t, J = 6 Hz, 4H), 3.83 (s, 3H), 2.63 (m, 4H), 2.33 (quintet, J = 6 Hz, 2H), 1.56 (hextet, J = 8 Hz, 2H), 1.19 (t, J = 8 Hz, 3H), 0.91 (t, J = 7 Hz, 3H); TOF MS ES + exact mass
- 20 calculated for $C_{31}H_{34}NO_6S$ (p+1): m/z = 548.2107. Found: 548.2085.

C. Preparation of 2-{3-[3-(2-ethyl-5-hydroxy-4-thiazol-4y1-phenoxy)propoxy]-2-propylphenoxy)benzoic acid.

A solution of 2-{3-[3-(2-ethyl-5-hydroxy-4-thiazol-4-ylphenoxy)propoxy]-2-propylphenoxy)benzoic acid methyl ester (130 mg, 0.236 mmol) in methanol (4 mL) was treated with 1 M $\,$ lithium hydroxide solution at 60 °C for 3 h. The mixture was cooled to room temperature, concentrated in vacuo, and diluted with water. The solution was adjusted to pH ~4 and 10 extracted three times with methylene chloride. The combined organic layers were dried (sodium sulfate), filtered, and concentrated in vacuo. The residue was dissolved in a minimum of methylene chloride and hexane was added until the solution became cloudy. The mixture was concentrated slowly 15 in vacuo to give 96 mg (76%) of the title compound. H NMR $(CDCl_3)$ δ 8.90 (s, 1H), 8.23 (dd, J = 8, 1 Hz, 1H), 7.41 (m, 2H), 7.38 (s, 1H), 7.29 (m, 2H), 6.82 (d, J = 8 Hz, 1H), 6.71 (d, J = 8 Hz, 1H), 6.62 (d, J = 8 Hz, 1H), 6.54 (s,1H), 4.25 (t, J = 6 Hz, 2H), 4.22 (t, J = 6 Hz, 2H), 2.59

20

(m, 4H), 2.35 (quintet, J = 6 Hz, 2H), 1.50 (hextet, J = 8 Hz, 2H), 1.19 (t, J = 7 Hz, 3H), 0.88 (t, J = 8 Hz, 3H);

TOF MS ES exact mass calculated for $C_{30}H_{32}NO_6S$ (p+1): m/z = 534.1950. Found: 534.1957. IR (CHCl₃, cm⁻¹) 2965, 1738,

5 1454.

Anal. Calcd for $C_{30}H_{31}NO_6S$: C, 67.52; H, 5.86; N, 2.62. Found: C, 67.19; H, 5.72; N, 2.53.

10

Example 4

Preparation of 2-(3-(3-[2-Ethyl-5-hydroxy-4-(2H-pyrazol-3-yl)phenoxy)propoxy)-2-propyl-phenoxy)benzoic acid.

A. Preparation of 2-(3-{3-[5-benzyloxy-4-(3-dimethylaminoacryloy1)-2-ethyl-phenoxy]propoxy}-2-propylphenoxy)benzoic acid methyl ester.

A mixture of 2-(3-{3-{4-acetyl-5-benzyloxy-2-ethylphenoxy}propoxy}-2-propylphenoxy)benzoic acid methyl

20 ester (3.07 g, 5.04 mmol) and dimethylformamide

dimethylacetal (0.9 mL, 7 mmol) in N,N-dimethylformamide (3 mL) was heated at 110-120 °C for 35 h. The mixture was cooled to room temperature and diluted with a mixture of ethyl acetate and 1 N hydrochloric acid. The organic layer was separated, washed twice with water, once with saturated sodium chloride solution, dried (sodium sulfate), filtered, and concentrated in vacuo. Chromatography (silica gel, 30% ethyl acetate/70% hexane to ethyl acetate) of the residue provided 2.1 g (63%) of the title compound as a yellow oil. TOF MS ES † exact mass calculated for $C_{40}H_{46}NO_{7}$ (p+1): m/z = 652.3274. Found: 652.3270. IR (CHCl₃, cm $^{-1}$) 2965, 1720,

Anal. Calcd for $C_{40}H_{45}NO_7$: C, 73.71; H, 6.96; N, 2.15. Found: C, 73.72; H, 6.95; N, 2.18.

15

1605.

- B. Preparation of 2-(3-{3-[5-benzyloxy-2-ethyl-4-(2H-pyrazol-3-yl)phenoxy]propoxy}-2-propylphenoxy)benzoic acid.
- 20 A solution of 2-(3-{3-[5-benzyloxy-4-(3-dimethylaminoacryloyl)-2-ethyl-phenoxy]propoxy}-2-

propylphenoxy) benzoic acid methyl ester (550 mg, 0.843 mmol in methanol (30 mL) was treated with 1 M lithium hydroxide solution at 60 °C for 3 h. The mixture was cooled to room temperature and diluted with ethyl acetate and 0.5 M hydrochloric acid. The organic layer was separated, washed with saturated sodium chloride solution, dried (sodium sulfate), filtered, and concentrated in vacuo. The residue was dissolved in methanol (15 mL) and treated with water (4 mL) and hydrazine monohydrate (0.50 mL, 7.7 mmol) at reflux for 3 h. The mixture was diluted with ethyl acetate and 1 N 10 hydrochloric acid. The organic layer was separated, washed with saturated sodium chloride solution, dried (sodium sulfate), filtered and concentrated in vacuo. Chromatography (30% ethyl acetate/69% hexane/1% acetic acid) of the residue provided 350 mg (65%) of the title compound 15 as the acetate salt. A portion of this material was freebased with sodium bicarbonate to provide an analytical ¹ H NMR (CDCl₃) δ 8.20 (dd, J = 8, 2 Hz, 1H), 7.55 (s, 1H), 7.44 (s, 1H), 7.38 (m, 5H), 7.15 (m, 2H), 6.78 (d, J = 8 Hz, 1H), 6.65 (d, J = 8 Hz, 1H), 6.61 (d, J = 8 Hz, 20 1H), 6.58 (s, 1H), 6.55 (bs, 1H), 5.18 (s, 2H), 4.22 (t, J =6 Hz, 2H), 4.17 (t, J = 6 Hz, 2H), 2.58 (m, 4H), 2.30(quintet, J = 6 Hz, 2H), 1.47 (hextet, J = 8 Hz, 2H), 1.18 $(t, J = 7 Hz, 3H), 0.88 (t, J = 8 Hz, 3H); TOF MS ES^{+}$ exact mass calculated for $C_{37}H_{39}N_2O_6$ (p+1): m/z = 607.2808. 25 Found: 607.2831. IR (CHCl₃, cm⁻¹) 2965, 1739, 1604, 1454. Anal. Calcd for $C_{37}H_{38}N_2O_6$: C, 73.25; H, 6.31; N, 4.62.

Found: C, 73.31; H, 6.30; N, 4.62.

C. Preparation of 2-(3-{3-[2-ethyl-5-hydroxy-4-(2H-pyrazol-3-yl)phenoxy]propoxy}-2-propylphenoxy)benzoic acid.

A solution of 2-(3-{3-[5-benzyloxy-2-ethyl-4-(2H-pyrazol-3yl)phenoxy]propoxy}-2-propylphenoxy)benzoic acid (300 mg, 0.490 mmol) in ethanethiol (2.5 mL) was treated with boron trifluoride etherate (2 mL) at room temperature for 3 h, at which time an additional portion of boron trifluoride etherate (1 mL) was added and stirring resumed for an 10 additional 1 h. The mixture was diluted with diethyl ether and water. The organic layer was separated, washed with water, dried (sodium sulfate), filtered, and concentrated in vacuo. Chromatography (silica gel, 15% ethyl acetate/85% hexane to 60% ethyl acetate/40% hexane) of the residue 15 provided 60 mg (24%) of the title compound as a white solid. ¹H NMR (CDC1₃) δ 8.23 (d, J = 8 Hz, 1H), 7.61 (s, 1H), 7.42 (t, J = 7 Hz, 1H), 7.30 (s, 1H), 7.19 (d, J = 8 Hz, 1H),7.15 (d, J = 8 Hz, 1H), 6.81 (d, J = 8 Hz, 1H), 6.69 (d, J =8 Hz, 1H), 6.61 (s, 1H), 6.60 (d, J = 8 Hz, 1H), 6.54 (s, 20 1H), 4.20 (m, 4H), 2.58 (m, 4H), 2.33 (quintet, J = 6 Hz,

2H), 1.48 (hextet, J = 8 Hz, 2H), 1.17 (t, J = 8 Hz, 3H), 0.86 (t, J = 7 Hz, 3H); TOF MS ES exact mass calculated for $C_{30}H_{33}N_2O_6$ (p+1): m/z = 517.2339. Found: 517.2334. IR (CHCl₃, cm⁻¹) 2965, 1738, 1454.

5 Anal. Calcd for C₃₀H₃₂N₂O₆: C, 69.75; H, 6.24; N, 5.42. Found: C, 69.73; H, 6.33; N, 5.25.

Example 5

10 Preparation of 2-{3-[3-(2-Ethyl-5-hydroxy-4-isoxazol-5-yl-phenoxy)propoxy]-2-propylphenoxy)benzoic acid.

A. Preparation of 2-{3-[3-(5-benzyloxy-2-ethyl-4-isoxazol-5-yl-phenoxy)propoxy]-2-propylphenoxy)benzoic acid methyl ester.

A mixture of 2-(3-{3-[5-benzyloxy-4-(3-dimethylaminoacryloyl)-2-ethylphenoxy]propoxy}-2-propylphenoxy)benzoic acid methyl ester (280 mg, 0.43 mmol), hydroxylamine hydrochloride (75 mg, 1.1 mmol), and water (1

20

mL) in methanol (4 mL) was heated at reflux for 2 h. The mixture was cooled to room temperature and diluted with diethyl ether and water. The organic layer was separated, washed with saturated sodium chloride solution, dried (sodium sulfate), filtered, and concentrated in vacuo. Chromatography (silica gel, 10% ethyl acetate/90% hexane) of the residue provided 202 mg (76%) of the title compound as a white solid. H NMR (CDCl₃) δ 8.20 (d, J = 2 Hz, 1H), 7.88 (dd, J = 9, 2 Hz, 1H), 7.79 (s, 1H), 7.40 (m, 7H), 7.08 (m, 7H)2H), 6.68 (d, J = 8 Hz, 1H), 6.59 (s, 1H), 6.58 (s, 1H), 10 6.43 (d, J = 8 Hz, 1H), 5.15 (s, 2H), 4.21 (t, J = 6 Hz, 4H), 3.82 (s, 3H), 2.65 (m, 4H), 2.33 (quintet, J = 6 Hz, 2H), 1.56 (hextet, J = 8 Hz, 2H), 1.20 (t, J = 7 Hz, 3H), 0.90 (t, J = 7 Hz, 3H); TOF MS ES exact mass calculated for $C_{38}H_{40}NO_7$ (p+1): m/z = 622.2805. Found: 622.2817. IR

Anal. Calcd for $C_{38}H_{39}NO_7$: C, 73.41; H, 6.32; N, 2.25. Found: C, 73.20; H, 6.34; N, 2.27.

(CHCl₃, cm⁻¹) 2964, 1720, 1461.

- B. Preparation of 2-{3-{3-{2-ethyl-5-hydroxy-4-isoxazol-5-yl-phenoxy}propoxy}-2-propylphenoxy}benzoic acid methyl ester.
- A solution of 2-{3-[3-(5-benzyloxy-2-ethyl-4-isoxazol-5-yl-phenoxy)propoxy]-2-propylphenoxy}benzoic acid methyl ester (180 mg, 0.289 mmol) in ethanethiol (5 mL) was treated with boron trifluoride etherate (1.5 mL) at room temperature for 2 h, at which time an additional portion of boron
- trifluoride etherate (0.5 mL) was added and stirring resumed for an additional 1 h. The mixture was diluted with diethyl ether and water. The organic layer was separated, washed once with saturated sodium bicarbonate solution, once with saturated sodium chloride solution, dried (sodium sulfate),
- filtered, and concentrated in vacuo. Chromatography (silica gel, 15% ethyl acetate/85% hexane) of the residue provided 94 mg (61%) of the title compound as a colorless oil.
 - NMR (CDCl₃) δ 8.28 (d, J = 1 Hz, 1H), 7.88 (dd, J = 8, 2 Hz, 1H), 7.38 (t, J = 8 Hz, 1H), 7.36 (s, 1H), 7.08 (t, J = 8 Hz, 1H), 7.05 (d, J = 8 Hz, 1H), 6.81 (d, J = 8 Hz, 1H), 6.67 (d, J = 8 Hz, 1H), 6.50 (s, 1H), 6.45 (s, 1H), 6.43 (d, J = 8 Hz, 1H), 4.20 (m, 4H), 3.83 (s, 3H), 2.62 (m, 4H), 2.34 (quintet, J = 6 Hz, 2H), 1.54 (hextet, J = 8 Hz, 2H), 1.18 (t, J = 8 Hz, 3H), 0.90 (t, J = 7 Hz, 3H); TOF MS ES + exact
- 25 mass calculated for $C_{31}H_{34}NO_7$ (p+1): m/z = 532.2335. Found: 532.2335. IR (CHCl₃, cm⁻¹) 2964, 1715, 1601, 1461. Anal. Calcd for $C_{31}H_{33}NO_7$: C, 70.04; H, 6.26; N, 2.63. Found: C, 70.13; H, 6.35; N, 2.63.

C. Preparation of 2-{3-[3-(2-ethyl-5-hydroxy-4-isoxazol-5-yl-phenoxy)propoxy]-2-propylphenoxy)benzoic acid.

To a solution of 2-{3-[3-(2-ethyl-5-hydroxy-4-isoxazol-5-yl-phenoxy)propoxy]-2-propylphenoxy)benzoic acid methyl ester (94 mg, 0.18 mmol) in methanol (3 mL) was added 1 M lithium hydroxide solution (1 mL) and the resulting mixture warmed at 60 °C for 3 h. The mixture was cooled to room

temperature and concentrated in vacuo. The aqueous residue was diluted with water and the pH adjusted to ~4. The mixture was extracted three times with methylene chloride. The combined organic extracts were dried (sodium sulfate), filtered, and concentrated in vacuo to provide 12 mg (13%)

of the title compound as an off-white amorphous solid.

NMR (CDCl₃) δ 8.26 (s, 1H), 8.20 (dd, J = 8, 1 Hz, 1H), 7.49 (t, J = 6 Hz, 1H), 7.36 (s, 1H), 7.18 (d, J = 8 Hz, 1H), 7.15 (d, J = 8 Hz, 1H), 7.02 (bs, 1H), 6.80 (d, J = 8 Hz, 1H), 6.69 (d, J = 8 Hz, 1H), 6.60 (d, J = 8 Hz, 1H), 6.50 (s, 1H), 6.46 (s, 1H), 4.22 (t, J = 6 Hz, 2H), 4.19 (t, J =

20 (s, 1H), 6.46 (s, 1H), 4.22 (t, J = 6 Hz, 2H), 4.19 (t, J = 6 Hz, 2H); 2.57 (m, 4H), 2.34 (quintet, J = 6 Hz, 2H), 1.47

(hextet, J = 8 Hz, 2H), 1.16 (t, J = 8 Hz, 3H), 0.85 (t, J = 7 Hz, 3H); TOS MS ES⁺ exact mass calculated for $C_{30}H_{32}NO_7$ (p+1): m/z = 518.2179. Found: 518.2175.

Anal. Calcd for $C_{30}H_{31}NO_7$: C, 69.62; H, 6.04; N, 2.71.

5 Found: C, 69.57; H, 6.15; N, 2.74.

Example 6

Preparation of 2-(3-{3-[2-Ethyl-5-hydroxy-4-(3H-10 [1,2,3]triazol-4-yl)phenoxy]propoxy}-2-propyl-phenoxy)benzoic acid.

A. Preparation of 2-{3-[3-(5-benzyloxy-4-bromo-2-ethylphenoxy)propoxy]-2-propylphenoxy}-benzoic acid methyl ester.

A mixture of 5-benzyloxy-4-bromo-1-(3-chloropropoxy)-2-ethylbenzene (1.19 g, 3.11 mmol), 2-(3-hydroxy-2-propylphenoxy)benzoic acid methyl ester (0.89 g, 3.1 mmol), potassium carbonate (1.29 g, 9.34 mmol), potassium iodide (0.52 g, 3.1 mmol), and methyl sulfoxide (2 mL) in 2-

PCT/US00/30944

butanone (20 mL) was heated at reflux for 48 h. The mixture was cooled to room temperature, diluted with diethyl ether, and washed once with water. The organic layer was dried (sodium sulfate), filtered, and concentrated in vacuo.
5 Chromatography (silica gel, 6% ethyl acetate/94% hexane) of the residue provided 1.34 g (68%) of the title compound as a colorless oil. H NMR (CDCl₃) δ 7.91 (dd, J = 8, 2 Hz, 1H), 7.50 (d, J = 7 Hz, 2H), 7.38 (m, 5H), 7.15 (d, J = 8 Hz, 1H), 6.71
10 (d, J = 8 Hz, 1H), 6.55 (s, 1H), 6.48 (, J = 8 Hz, 1H), 6.71
10 (d, J = 8 Hz, 1H), 6.55 (s, 1H), 6.48 (, J = 8 Hz, 1H), 5.16 (s, 2H), 4.21 (t, J = 6 Hz, 2H), 4.15 (t, J = 6 Hz, 2H), 3.83 (s, 3H), 2.68 (t, J = 8 Hz, 2H), 2.58 (q, J = 7 Hz, 2H), 2.31 (quintet, J = 6 Hz, 2H), 1.58 (hextet, J = 6 Hz, 2H), 1.17 (t, J = 7 Hz, 3H), 0.93 (t, J = 7 Hz, 3H).

15

20

B. Preparation of 2-{3-[3-(5-benzyloxy-2-ethyl-4-ethynylphenoxy)propoxy]-2-propyl-phenoxy}benzoic acid methyl ester.

A mixture of 2-{3-[3-(5-benzyloxy-4-bromo-2-ethylphenoxy)propoxy]-2-propylphenoxy}-benzoic acid methyl

The state of the s

ester (1.50 g, 2.37 mmol), tri-n-butylethynyltin (0.82 mL, 2.8 mmol), and tetrakis(triphenylphosphine)palladium (0) (1.0 g, 0.95 mmol) in N, N-dimethylformamide (25 mL) was purged with argon and heated in a sealed tube at 120 °C for 24 h. The mixture was cooled to room temperature and filtered. The filtrate was diluted with ethyl acetate, washed four times with water, once with saturated sodium chloride solution, dried (sodium sulfate), filtered, and concentrated in vacuo. Chromatography (silica gel, 10% ethyl acetate/90% hexane) of the residue provided 532 mg 10 (39%) of the title compound as a brown oil. H NMR (CDCl3) δ 7.88 (dd, J = 8, 2 Hz, 1H), 7.79 (s, 1H), 7.20-7.50 (m, 6H), 7.10 (d, J = 8 Hz, 1H), 7.05 (d, J = 8 Hz, 1H), 6.80(d, J = 8 Hz, 1H), 6.66 (d, J = 8 Hz, 1H), 6.43 (m, 2H),5.16 (s, 2H), 4.17 (t, J = 6 Hz, 2H), 4.11 (t, J = 6 Hz, 15 2H), 3.83 (s, 3H), 3.23 (s, 1H), 2.64 (t, J = 8 Hz, 2H), 2.53 (q, J = 7 Hz, 2H), 2.27 (quintet, J = 6 Hz, 2H), 1.53(m, 2H), 1.13 (t, J = 7 Hz, 3H), 0.89 (t, J = 7 Hz, 3H); TOFMS ES † exact mass calculated for $C_{37}H_{39}O_6$ (p+1): m/z =579.2747. Found: 579.2739. 20

- C. Preparation of 2-(3-{3-[5-benzyloxy-2-ethyl-4-(3H[1,2,3]triazol-4-yl)phenoxy]-propoxy}-2-
- 5 propylphenoxy)benzoic acid methyl ester.

A mixture of 2-{3-[3-(5-benzyloxy-2-ethyl-4-ethynylphenoxy)propoxy]-2-propyl-phenoxy}benzoic acid methyl ester (517 mg, 0.893 mmol) and trimethylsilyl azide (3.0 mL, 18 mmol) was heated in toluene (20 mL) in a sealed tube at 130 °C for 120 h. The mixture was cooled to room temperature and concentrated in vacuo. Chromatography (silica gel, 10% ethyl acetate/90% hexane to 50% ethyl acetate/50% hexane) of the residue provided 347 mg (88% based upon recovered starting material) of the title

15 compound as a brown solid.

1 H NMR (CDCl₃) δ 8.10 (bs, 1H),

7.89 (dd, J = 8, 2 Hz, 1H), 7.76 (s, 1H), 7.40 (m, 7H), 7.10

(d, J = 8 Hz, 1H), 7.05 (d, J = 8 Hz, 1H), 6.79 (d, J = 8 Hz, 1H), 6.67 (d, J = 8 Hz, 1H), 6.62 (s, 1H), 6.43 (d, J = 8 Hz, 1H), 5.18 (s, 2H), 4.21 (m, 4H), 3.82 (s, 3H), 2.65

20 (m, 4H), 2.32 (quintet, J = 6 Hz, 2H), 1.56 (hextet, J = 8 Hz, 2H), 1.21 (t, J = 8 Hz, 3H), 0.90 (t, J = 7 Hz, 3H); TOF

MS ES⁺ exact mass calculated for $C_{37}H_{40}N_3O_6$ (p+1): m/z = 622.2917. Found: 622.2946. IR (CHCl₃, cm⁻¹) 3400, 1721, 1602, 1453.

Anal. Calcd for $C_{37}H_{39}N_3O_6$: C, 71.48; H, 6.32; N, 6.76.

5 Found: C, 70.28; H, 6.07; N, 6.54.

D. Preparation of 2-(3-{3-[2-ethyl-5-hydroxy-4-(3H-10 [1,2,3]triazol-4-yl)phenoxy]-propoxy}-2-propyl-phenoxy)benzoic acid methyl ester.

A solution of 2-(3-{3-[5-benzyloxy-2-ethyl-4-(3H-[1,2,3]triazol-4-yl)phenoxy]propoxy}-2-propylphenoxy)benzoic acid methyl ester (330 mg, 0.531 mmol) in ethanethiol (9 mL) was treated with boron trifluoride etherate (2.0 mL,16 mmol) for 1 h at room temperature and then with an additional portion of boron trifluoride etherate (1.0 mL) for 1 h. The mixture was diluted with diethyl ether and water. The organic layer was washed once with saturated sodium bicarbonate solution, once with saturated sodium chloride solution, dried (sodium sulfate), filtered, and concentrated

E. Preparation of 2-(3-{3-[2-ethyl-5-hydroxy-4-(3H-[1,2,3]triazol-4-yl)phenoxy]-propoxy}-2-propylphenoxy)benzoic acid.

A solution of $2-(3-\{3-\{2-\text{ethyl}-5-\text{hydroxy}-4-(3H-$

- [1,2,3]triazol-4-yl)phenoxy]propoxy}-2-propylphenoxy)benzoic acid methyl ester (160 mg, 0.30 mmol) in methanol (5 mL) was treated 1 N lithium hydroxide solution (1.5 mL) at 60 °C for 3.5 h. The mixture was cooled to room temperature, diluted with water, and adjusted to ~pH 4. The resulting mixture
- was extracted three times with methylene chloride. The combined organic extracts were dried (sodium sulfate), filtered, and concentrated in vacuo to provide 134 mg (86%) of the title compound as a tan solid. H NMR (DMSO-d)
 - δ 14.98 (bs, 1H), 12.80 (bs, 1H), 10.02 (bs, 1H), 8.17 (bs,
- 15 1H), 7.77 (dd, J = 7, 2 Hz, 1H), 7.60 (bs, 1H), 7.47 (t, J = 8 Hz, 1H), 7.18 (t, J = 8 Hz, 1H), 7.14 (t, J = 8 Hz, 1H), 6.82 (d, J = 8 Hz, 1H), 6.68 (d, J = 8 Hz, 1H), 6.57 (s, 1H), 6.35 (d, J = 8 Hz, 1H), 4.22 (t, J = 6 Hz, 2H), 4.15 (t, J = 6 Hz, 2H), 2.54 (m, 4H), 2.25 (quintet, J = 6 Hz,
- 20 2H), 1.45 (hextet, J = 8 Hz, 2H), 1.11 (t, J = 7 Hz, 3H), 0.81 (t, J = 7 Hz, 3H); TOF MS ES exact mass calculated for $C_{29}H_{32}N_3O_6$ (p+1): m/z = 518.2291. Found: 518.2302. IR (CHCl₃, cm⁻¹) 2965, 1738, 1454.

Anal. Calcd for $C_{29}H_{31}N_3O_6$: C, 67.30; H, 6.04; N, 8.12.

25 Found: C, 67.15; H, 5.98; N, 7.93.

Example 7

Preparation of 2-{3-[3-(2-Ethyl-5-hydroxy-4-pyrrol-1-yl-phenoxy)propoxy]-2-propyl-phenoxy)benzoic acid methyl ester.

5

A. Preparation of 5-benzyloxy-2-ethyl-4-pyrrol-1-yl-phenol. To a mixture of potassium nitrosodisulfonate (40.0 g, 149 mmol) and potassium hydrogen phosphate (10 g) in water (1.2 L) at room temperature was added a solution of 4ethylbenzene-1,3-diol (10.0 g, 2.37 mmol) and potassium 10 hydrogen phosphate (10.5 g) in water (150 mL). The mixture was stirred for 15 min and adjusted to pH ~3. The solution was extracted three times with diethyl ether. The organic layer was dried (sodium sulfate), filtered, and concentrated in vacuo. The residue was dissolved in acetonitrile (70 mL) 15 and treated at room temperature with 65% 3-pyrroline (12 mL). The resulting mixture was stirred for 1 h and concentrated in vacuo, dissolved in ethyl acetate and hexane, and filtered down a short column of silica gel. The resulting solution was concentrated in vacuo. The residue 20 was dissolved in N,N-dimethylformamide (10 mL) and treated with benzyl bromide (0.85 mL, 7.1 mmol) and potassium carbonate (960 mg, 6.9 mmol) at room temperature for 15 h. The mixture was diluted with ethyl acetate, washed four times with water, once with saturated sodium chloride 25 solution, dried (sodium sulfate), filtered, and concentrated in vacuo. Chromatography (silica gel, ethyl acetate/hexane gradient) of the residue provided 316 mg (2%) of the title

compound. TOF MS ES⁺ exact mass calculated for $C_{19}H_{20}NO_2$ (p+1): m/z = 294.1494. Found: 294.1471.

B. Preparation of 1-[2-benzyloxy-4-(3-chloropropoxy)-5-ethylphenyl]-1H-pyrrole.

A mixture of 5-benzyloxy-2-ethyl-4-pyrrol-1-yl-phenol (316 mg, 1.08 mmol), potassium carbonate (223 mg, 1.62 mmol), and 1-bromo-3-chloropropane (0.16 mL, 1.6 mmol) in N,N
10 dimethylformamide (5 mL) was stirred at room temperature for 18 h. The mixture was diluted with ethyl acetate and water, washed four times with water, once with saturated sodium chloride solution, dried (sodium sulfate), filtered, and concentrated in vacuo. Chromatography (silica gel, 5% ethyl acetate/95% hexane) of the residue provided 314 mg (79%) of the title compound as a colorless oil. TOF MS ES exact mass calculated for C22H25NClO2 (p+1): m/z = 370.1574. Found: 370.1548.

C. Preparation of 2-{3-[3-(5-benzyloxy-2-ethyl-4-pyrrol-1yl-phenoxy)propoxy]-2-propylphenoxy}benzoic acid methyl 5 ester.

A mixture of 1-[2-benzyloxy-4-(3-chloropropoxy)-5ethylphenyl]-1H-pyrrole (310 mg, 0.85 mmol) and sodium iodide (140 mg, 0.94 mol) in 2-butanone (5 mL) was heated at reflux for 6 h. The mixture was cooled to room temperature, filtered, and concentrated in vacuo. The residue was 10 dissolved in N,N-dimethylformamide (7 mL) and treated with 2-(3-hydroxy-2-propylphenoxy)benzoic acid methyl ester (242 mg, 0.85 mmol) and potassium carbonate (129 g, 93 mmol) at room temperature for 15 h. The mixture was diluted with ethyl acetate and water, washed four times with water, once 15 with saturated sodium chloride solution, dried (sodium sulfate), filtered, and concentrated in vacuo. Chromatography (silica gel, 5% ethyl acetate/95% hexane) of the residue provided 196 mg (37%) of the title compound as a colorless oil. H NMR (CDCl₃) δ 7.86 (dd, J = 8, 2 Hz, 1H), 20 7.37 (dt, J = 8, 2 Hz, 1H), 7.30 (m, 5H), 7.07 (m, 3H), 6.84

(m, 2H), 6.79 (d, J = 8 Hz, 1H), 6.65 (d, J = 8 Hz, 1H), 6.58 (s, 1H), 6.42 (d, J = 8 Hz, 1H), 6.29 (m, 2H), 4.92 (s, 2H), 4.17 (t, J = 6 Hz, 2H), 4.15 (t, J = 6 Hz, 2H), 3.83 (s, 3H), 2.65 (t, J = 8 Hz, 2H), 2.58 (q, J = 7 Hz, 2H), 2.30 (quintet, J = 6 Hz, 2H), 1.55 (hextet, J = 8 Hz, 2H), 1.16 (t, J = 7 Hz, 3H), 0.80 (t, J = 7 Hz, 3H); TOF MS ES exact mass calculated for $C_{39}H_{42}NO_6$ (p+1): m/z = 620.3012. Found: 620.3021.

10

phenoxy)propoxy]-2-propyl-phenoxy)benzoic acid methyl ester.
A solution of 2-{3-[3-(5-benzyloxy-2-ethyl-4-pyrrol-1-yl-phenoxy)propoxy]-2-propylphenoxy)benzoic acid methyl ester (195 mg, 0.315 mmol) in ethanethiol (5 mL) was treated with boron trifluoride etherate (1.3 mL, 9.5 mmol) at room temperature for 2.5 h. The mixture was diluted with diethyl ether and water. The organic layer was washed with saturated sodium bicarbonate solution, dried (sodium sulfate), filtered, and concentrated in vacuo.

Chromatography (silica gel, 10% ethyl acetate/90% hexane) of the residue provided 39 mg (23%) of the title compound as a colorless oil. HNMR (CDCl₃) & 7.89 (d, J = 8 Hz, 1H), 7.37 (t, J = 8 Hz, 1H), 7.07 (m, 2H), 6.98 (s, 1H), 6.68 (m, 3H), 6.65 (d, J = 8 Hz, 1H), 6.57 (s, 1H), 6.42 (d, J = 8 Hz, 1H), 6.35 (m, 2H), 5.04 (bs, 1H), 4.19 (m, 2H), 3.83 (s, 3H), 2.64 (t, J = 8 Hz, 2H), 2.58 (q, J = 7 Hz, 2H), 2.32 (quintet, J = 6 Hz, 2H), 1.55 (m, 2H), 1.14 (t, J = 7 Hz, 3H), 0.90 (t, J = 7 Hz, 3H); TOF MS ES exact mass calculated for C₃₂H₃₆NO₆ (p+1): m/z = 530.2543. Found: 530.2516.

Example 8

15

20

Preparation of 2-(3-{3-[4-(3-Bromo-[1,2,4]thiadiazol-5-yl)-2-ethyl-5-hydroxyphenoxy]-propoxy}-2-propylphenoxy)benzoic acid.

A. Preparation of 2-(3-{3-[5-benzyloxy-2-ethyl-4-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)phenoxy]propoxy}-2-propylphenoxy)benzoic acid methyl ester.

A mixture of 2-{3-[3-(5-benzyloxy-4-bromo-2-5 ethylphenoxy)propoxy]-2-propylphenoxy}-benzoic acid methyl ester (8.30 g, 13.1 mmol), triethylamine (5.2 mL, 39 mmol), and PdCl₂(dppf) (320 mg, 0.39 mmol) in de-oxygenated toluene (80 mL) was treated with a 1 M solution of 4,4,5,5tetramethyl-[1,3,2]dioxaborolane in tetrahydrofuran (20 mL, 10 20 mmol) and heated at reflux for 6 h. The mixture was filtered down a short column of silica gel and the filtrate concentrated in vacuo. Chromatography (silica gel, 35% ethyl acetate/65% hexane) of the residue provided a dark oil that was subjected to further chromatography (silica gel,

- 15 hexane to 30% ethyl acetate/70% hexane) to give 7.70 g (84%) of the title compound. 1 H NMR (CDCl₃) δ 7.86 (dd, J = 8, 2 Hz, 1H), 7.60 (d, J = 8 Hz, 2H), 7.47 (s, 1H), 7.34 (m, 3H), 7.24 (t, J = 8 Hz, 1H), 7.09 (d, J = 9 Hz, 1H), 7.04 (d, J = 9 Hz, 1H), 6.79 (d, J = 9 Hz, 1H), 6.66 (d, J = 9 Hz, 1H),
- 20 6.47 (s, 1H), 6.43 (d, J = 8 Hz, 1H), 5.07 (s, 2H), 4.18 (m, 4H), 3.81 (s, 3H), 2.64 (t, J = 8 Hz, 2H), 2.56 (q, J = 7 Hz, 2H), 2.30 (quintet, J = 6 Hz, 2H), 1.53 (hextet, J = 8 Hz, 2H), 1.34 (s, 12H),1.14 (t, J = 7 Hz, 3H), 0.89 (t, J = 7 Hz, 3H); TOF MS ES exact mass calculated for $C_{41}H_{53}NBO_{8}$
- 25 (p + NH₄): m/z = 698.3864. Found: 698.3889. IR (CHCl₃, cm⁻¹) 2964, 1720, 1604, 1453.

Anal. Calcd for $C_{41}H_{49}BO_8$: C, 72.35; H, 7.26. Found: C, 72.30; H, 7.12.

15

B. Preparation of 2-(3-{3-[5-benzyloxy-4-(3-bromo-[1,2,4]thiadiazol-5-yl)-2-ethyl-phenoxy]propoxy}-2-propylphenoxy)benzoic acid methyl ester.

A mixture of 2-(3-{3-{5-benzyloxy-2-ethyl-4-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)phenoxy]propoxy}-2-propylphenoxy)benzoic acid methyl ester (310 mg, 0.46 mmol), 3-bromo-5-chloro-1,2,4-thiadiazole (120 mg, 0.60 mmol),

cesium carbonate (300 mg, 0.92 mmol), and PdCl₂(dppf) (20 mg, 0.024 mmol) in de-oxygenated toluene (10 mL) was heated at 100 °C for 15 h. The mixture was diluted with a solution of 35% ethyl acetate/65% hexane and filtered down a short column of silica gel. The filtrate was concentrated in vacuo. Chromatography (silica gel, hexane to 30% ethyl acetate/70% hexane) of the residue provided 232 mg (70%) of the title compound. 1 H NMR (CDCl₃) δ 8.13 (s, 1H), 7.87 (dd, J = 8, 2 Hz, 1H), 7.44 (m, 2H), 7.37 (m, 4H), 7.08 (t, dJ = 8, 1 Hz, 1H), 7.04 (d, J = 9 Hz, 1H), 6.78 (d, J = 9

dJ = 8, 1 Hz, 1H), 7.04 (d, J = 9 Hz, 1H), 6.78 (d, J = 920 Hz, 1H), 6.66 (d, J = 9 Hz, 1H), 6.55 (s, 1H), 6.43 (d, J = 8 Hz, 1H), 5.28 (s, 2H), 4.21 (t, J = 6 Hz, 2H), 4.19 (t, J = 6 = 6 Hz, 2H), 3.81 (s, 3H), 2.62 (m, 4H), 2.34 (quintet, J = 6 Hz, 2H), 1.55 (hextet, J = 8 Hz, 2H), 1.17 (t, J = 7 Hz, 3H), 0.88 (t, J = 7 Hz, 3H); MS ES⁺ m/e 717, 719.

5

C. Preparation of 2-(3-{3-[4-(3-bromo-[1,2,4]thiadiazol-5-y1)-2-ethyl-5-hydroxyphenoxy]propoxy}-2-propylphenoxy)benzoic acid.

10 A solution of 2-(3-{3-[5-benzyloxy-4-(3-bromo[1,2,4]thiadiazol-5-yl)-2-ethyl-phenoxy]propoxy}-2propylphenoxy)benzoic acid methyl ester (230 mg, 0.31 mmol)
in ethanethiol (4 mL) was treated with boron trifluoride
etherate (0.32 mL, 2.5 mmol) at room temperature for 6 h, at
which time an additional portion of boron trifluoride
etherate was added and stirring continued for 7 h. The
reaction mixture was diluted with water, concentrated in
vacuo, and extracted with diethyl ether. The residue was
dissolved in methanol (5 mL) and treated with 1 N lithium
20 hydroxide solution (2 mL) at 65 °C for 1 h. The mixture was
concentrated in vacuo and the residue diluted with water and

adjusted to ~pH 3 with 1 N hydrochloric acid. The resulting precipitate was collected via vacuum filtration and dissolved in dilute aqueous base. Reverse phase chromatography (1:1 acetonitrile/water) provided 43 mg (23%) of the title compound as a yellow solid. H NMR (DMSO-d₆) δ 7.85 (s, 1H), 7.80 (dd, J = 8, 2 Hz, 1H), 7.45 (m, 2H), 7.15 (m, 3H), 6.83 (d, J = 9 Hz, 1H), 6.80 (d, J = 9 Hz, 1H), 6.62 (s, 1H), 6.35 (d, J = 9 Hz, 1H), 4.20 (m, 4H), 2.55 (m, 4H), 2.27 (quintet, J = 5 Hz, 2H), 1.44 (hextet, J = 8 Hz, 2H), 1.13 (t, J = 7 Hz, 3H), 0.81 (t, J = 7 Hz, 3H); MS ES m/e 551 (p+NH₄ + -Br); IR (KBr, cm⁻¹) 2900, 1696, 1603, 1461. Anal. Calcd for C₂₉H₂₉BrN₂O₆S: C, 56.77; H, 4.76; N, 4.56. Found: C, 56.63; H, 4.72; N, 3.98.

15

Example 9

Preparation of 2-{3-[3-(2-Ethyl-5-hydroxy-4-thiophen-2-yl-phenoxy)propoxy}-2-propyl-phenoxy}benzoic acid sodium salt.

20 A. Preparation of 2-{3-[3-(2-ethyl-5-hydroxy-4-thiophen-2-yl-phenoxy)propoxy]-2-propylphenoxy}benzoic acid methyl ester.

A mixture of 2-(3-{3-{5-benzyloxy-2-ethyl-4-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)phenoxy}propoxy}-2
25 propylphenoxy)benzoic acid methyl ester (300 mg, 0.44 mmol),
2-bromothiophene (110 mg, 0.66 mmol), cesium carbonate (300 mg, 2.17 mmol), and PdCl₂(dppf) (20 mg, 0.024 mmol) in de
oxygenated toluene (10 mL) was heated at 105 °C for 66 h.

The mixture was cooled to room temperature and concentrated

in vacuo. The residue was dissolved in methylene chloride and filtered down a short column of silica gel. The filtrate was concentrated in vacuo. Chromatography (silica gel, 30% ethyl acetate/70% hexane) of the residue provided an oil that was dissolved in ethanethiol (4 mL) and treated with boron trifluoride etherate (0.44 mL, 3.4 mmol) at room temperature for 3 h. The mixture was diluted with water and extracted with diethyl ether. The organic layer was dried (sodium sulfate), filtered, and concentrated in vacuo. Chromatography (silica gel, hexane to 30% ethyl acetate/70% 10 hexane) of the residue provided 120 mg (50%) of the title compound as a yellow film. 1 H NMR (CDCl₃) δ 7.85 (dd, J = 8, 2 Hz, 1H), 7.35 (t, J = 8 Hz, 1H), 7.15 (d, J = 7 Hz, 1H), 7.03-7.15 (m, 5H), 6.80 (d, J = 9 Hz, 1H), 6.66 (d, J =9 Hz, 1H), 6.51 (s, 1H), 6.42 (d, J=8 Hz, 1H), 5.44 (bs, 15 1H), 4.18 (m, 4H), 3.82 (s, 3H), 2.62 (t, J = 8 Hz, 2H), 2.58 (q, J = 7 Hz, 2H), 2.54 (quintet, J = 6 Hz, 2H), 1.52(hextet, J = 8 Hz, 2H), 1.16 (t, J = 7 Hz, 3H), 0.90 (t, J =7 Hz, 3H); MS ES m/e 545 (p - 1).

B. Preparation of 2-{3-[3-(2-ethyl-5-hydroxy-4-thiophen-2-yl-phenoxy)propoxy]-2-propylphenoxy)benzoic acid sodium salt.

5 A solution of 2-{3-{3-(2-ethyl-5-hydroxy-4-thiophen-2-ylphenoxy)propoxy]-2-propylphenoxy}benzoic acid methyl ester (120 mg, 0.22 mmol) in methanol (3 mL) was treated with 1 N lithium hydroxide solution (0.5 mL) at room temperature for 1 h and then with an additional portion of 1 N lithium hydroxide solution (0.75 mL) for 18 h. The mixture was 10 heated at 50 °C then concentrated in vacuo. The residue was acidified with dilute hydrochloric acid and extracted with diethyl ether. The organic layer was washed once with water and concentrated in vacuo. The residue was diluted with 1 N sodium hydroxide solution (0.22 mL), diethyl ether, and 15 toluene. The mixture was concentrated in vacuo, dissolved in methylene chloride, and concentrated in vacuo to provide . 120 mg (98%) of the title compound as a green film. $(DMSO-d_6)$ δ 7.71 (d, J = 8 Hz, 1H), 7.42 <math>(m, 2H), 7.31 (m, 2H)2H), $7.10 \, (m, 2H)$, $6.99 \, (m, 1H)$, $6.76 \, (t, J = 7 \, Hz, 2H)$, 20 6.52 (s, 1H), 6.30 (d, J = 8 Hz, 1H), 4.16 (t, J = 7 Hz, 2H), 4.07 (t, J = 7 Hz, 2H), 2.50 (m, 4H), 2.20 (m, 2H),

1.40 (m, 2H), 1.06 (t, J = 8 Hz, 3H), 0.77 (t, J = 7 Hz, 3H); MS ES⁺ m/e 533 (p + 1 - Na⁺). IR (CHCl₃, cm⁻¹) 2900, 1738, 1604, 1454.

5

Example 10

Preparation of 2-(3-{3-{2-Ethyl-5-hydroxy-4-(1-methyl-1H-pyrazol-4-yl)-phenoxy}propoxy}-2-propylphenoxy)benzoic acid.

10 A. Preparation of 4-iodo-1-methylpyrazole (Known compound: RN 39806-90-1).

To a solution of 4-iodopyrazole (1.3 g, 6.8 mmol) in dioxane (10 mL) was added iodomethane (0.42 mL, 6.8 mmol) and the resulting mixture stirred at room temperature for 96 h. The mixture was concentrated in vacuo and the residue mixed with methylene chloride and filtered. The filtrate was concentrated in vacuo to provide 1.35 g (95%) of the title compound as a colorless oil. 1 H NMR (CDCl₃) δ 7.47 (s, 1H), 7.38 (s, 1H), 3.90 (s, 3H).

20

15

B. Preparation of 2-(3-(3-[5-benzyloxy-2-ethyl-4-(1-methyl-1H-pyrazol-4-yl)phenoxy]-propoxy)-2-propylphenoxy)benzoic acid methyl ester.

A mixture of 2-(3-(3-[5-benzyloxy-2-ethyl-4-(4,4,5,5-25 tetramethyl-[1,3,2]dioxaborolan-2-yl)phenoxy]propoxy)-2propylphenoxy)benzoic acid methyl ester (1.00 g, 1.47 mmol), 4-iodo-1-methylpyrazole (450 mg, 2.16 mmol), cesium carbonate (1.20 g, 3.62 mmol), and PdCl₂(dppf) (72 mg, 0.088

20

mmol) in de-oxygenated toluene (35 mL) was heated at 100 °C for 24 h. Additional portions of 4-iodo-1-methylpyrazole (~30 mg) and PdCl₂(dppf) (~30 mg) were added and heating continued at 100 °C for 40 h. The mixture was cooled to room temperature, concentrated in vacuo, diluted with methylene chloride, and filtered down a short plug of silica The filtrate was concentrated in vacuo. Chromatography (silica gel, 35% ethyl acetate/65% hexane to 65% ethyl acetate/35% hexane) of the residue provided 710 mg (76%) of the title compound. H NMR (CDCl₃) δ 7.86 (dd, J = 10 8, 2 Hz, 1H), 7.80 (s, 1H), 7.69 (s, 1H), 7.37 (m, 6H), 7.28 (s, 1H), 7.09 (d, J = 9 Hz, 1H), 7.04 (d, J = 9 Hz, 1H),6.78 (d, J = 9 Hz, 1H), 6.67 (d, J = 9 Hz, 1H), 6.56 (s,1H), 6.42 (d, J = 8 Hz, 1H), 5.08 (s, 2H), 4.18 (t, J = 6Hz, 2H), 4.15 (t, J = 6 Hz, 2H), 3.85 (s, 3H), 3.81 (s, 3H), 2.63 (t, J = 8 Hz, 2H), 2.59 (q, J = 7 Hz, 2H), 2.30 (quintet, J = 6 Hz, 2H), 1.55 (hextet, J = 8 Hz, 2H), 1.23 (t, J = 7 Hz, 3H), 0.89 (t, J = 7 Hz, 3H).

C. Preparation of 2-(3-{3-{2-ethyl-5-hydroxy-4-(1-methyl-1H-pyrazol-4-yl)-phenoxy}propoxy}-2-propylphenoxy)benzoic acid.

A solution of 2-(3-{3-[5-benzyloxy-2-ethyl-4-(1-methyl-1Hpyrazol-4-yl)phenoxy]propoxy}-2-propylphenoxy)benzoic acid methyl ester (710 mg, 1.12 mmol) in ethanethiol (5 mL) was treated with boron trifluoride etherate (1.42 mL, 11.2 mmol) at room temperature for 20 h. The reaction mixture was diluted with water, concentrated in vacuo, and extracted with diethyl ether. The organic layer was dried (magnesium 10 sulfate), filtered, and concentrated in vacuo. The residue was triturated twice with hexane and the residue dissolved in methanol (5 mL). This solution was treated with 1 N lithium hydroxide solution (5 mL) at ~95 °C for 2 h. The mixture was concentrated in vacuo and the residue diluted 15 with water, washed twice with diethyl ether, and the aqueous layer acidified with 1 N hydrochloric acid. The resulting solution was extracted with diethyl ether. The organic layer was dried (magnesium sulfate), filtered, and concentrated in vacuo. Chromatography (silica gel, 10% 20 methanol/90% methylene chloride) provided 338 mg (57%) of the title compound as a tan foam. ¹H NMR (DMSO-d_E) δ 12.85 (bs, 1H), 9.50 (bs, 1H), 7.98 (s, 1H), 7.78 (m, 2H), 7.48 (dt, J = 8, 2 Hz, 1H), 7.44 (s, 1H), 7.18 (t, J = 8 Hz, 1H),

25 7.13 (t, J = 9 Hz, 1H), 6.79 (d, J = 9 Hz, 1H), 6.77 (d, J = 9 Hz)

<u>and the second of the second </u>

9 Hz, 1H), 6.53 (s, 1H), 6.35 (d, J = 9 Hz, 1H), 4.20 (t, J = 6 Hz, 2H), 4.08 (t, J = 6 Hz, 2H), 3.85 (s, 3H), 2.50 (m, 4H), 2.24 (quintet, J = 5 Hz, 2H), 1.45 (hextet, J = 8 Hz, 2H), 1.09 (t, J = 7 Hz, 3H), 0.82 (t, J = 7 Hz, 3H); MS ES † m/e 531 (p+1); IR (KBr, cm $^{-1}$) 2961, 1697, 1602, 1460, 1222. Anal. Calcd for $C_{31}H_{34}N_{2}O_{6}$: C, 70.17; H, 6.46; N, 5.28. Found: C, 69.27; H, 6.08; N, 4.63.

10

Example 11

Preparation of 2-{3-[3-(2-Ethyl-5-hydroxy-4-thiazol-2-yl-phenoxy)propoxy]-2-propyl-phenoxy)benzoic acid.

15

A. Preparation of 2-{3-[3-(5-benzyloxy-2-ethyl-4-thiazol-2-yl-phenoxy)propoxy]-2-propylphenoxy)benzoic acid methyl ester.

A mixture of 2-(3-{3-{5-benzyloxy-2-ethyl-4-(4,4,5,5-20 tetramethyl-[1,3,2]dioxaborolan-2-yl)phenoxy]propoxy}-2-

PATHER SEE

20

propylphenoxy)benzoic acid methyl ester (960 mg, 1.41 mmol), 2-bromothiazole (0.25 mL, 2.8 mmol), cesium carbonate (1.15 g, 3.52 mmol), and $PdCl_2(dppf)$ (35 mg, 0.040 mmol) in deoxygenated toluene (35 mL) was heated at 60 °C for 16 h then at 100 °C for 7 h. Additional portions of 2-bromothiazole (0.13 mL) and $PdCl_2(dppf)$ (~30 mg) were added and heating continued at 100 °C for 72 h. The mixture was cooled to room temperature, concentrated in vacuo, diluted with methylene chloride, and filtered down a short plug of silica gel. The filtrate was concentrated in vacuo. Chromatography (silica gel, hexane to 35% ethyl acetate/65% hexane) of the residue provided 282 mg (31%) of the title compound. 1 H NMR (CDCl₃) δ 8.20 (s, 1H), 7.86 (dd, J = 8, 1 Hz, 1H), 7.82 (d, J = 3 Hz, 1H), 7.49 (d, J = 7 Hz, 2H), 7.35 (m, 4H), 7.23 (d, J = 3 Hz, 1H), 7.09 (d, J = 9 Hz, 15 1H), 7.04 (d, J = 9 Hz, 1H), 6.78 (d, J = 9 Hz, 1H), 6.65(d, J = 9 Hz, 1H), 6.57 (s, 1H), 6.42 (d, J = 8 Hz, 1H),5.24 (s, 2H), 4.17 (m, 4H), 3.81 (s, 3H), 2.63 (m, 4H), 2.33 (quintet, J = 6 Hz, 2H), 1.55 (hextet, J = 8 Hz, 2H), 1.19 (t, J = 7 Hz, 3H), 0.88 (t, J = 7 Hz, 3H).

B. Preparation of 2-{3-[3-(2-ethyl-5-hydroxy-4-thiazol-2-yl-phenoxy)propoxy]-2-propylphenoxy)benzoic acid methyl 5 ester.

A solution of 2-{3-{3-(5-benzyloxy-2-ethyl-4-thiazol-2-ylphenoxy)propoxy]-2-propylphenoxy}benzoic acid methyl ester (282 mg, 0.442 mmol) in ethanethiol (3 mL) was treated with boron trifluoride etherate (0.56 mL, 4.4 mmol) at room temperature for 3 h. The reaction mixture was diluted with 10 water, concentrated in vacuo, and extracted with diethyl ether. The organic layer was dried (magnesium sulfate), filtered, and concentrated in vacuo. Chromatography (silica gel, ethyl acetate/hexane) provided 107 mg (44%) of the title compound. ¹H NMR (CDCl₃) δ 7.88 (dd, J = 8, 2 Hz, 1H), 7.80 (d, J = 4 Hz, 1H), 7.35 (dt, J = 8, 2 Hz, 1H), 7.28 (d, J = 4 Hz, 1H), 7.24 (s, 1H), 7.09 (dt, J = 9, 2 Hz, 1H), 7.05 (t, J = 9 Hz, 1H), 6.79 (d, J = 9 Hz, 1H), 6.66(d, J = 9 Hz, 1H), 6.61 (s, 1H), 6.42 (d, J = 9 Hz, 1H),4.24 (t, J = 6 Hz, 2H), 4.18 (t, J = 6 Hz, 2H), 3.81 (s, 20 3H), 2.63 (t, J = 7 Hz, 2H), 2.58 (q, J = 7 Hz, 2H), 2.34

(quintet, J = 6 Hz, 2H), 1.52 (hextet, J = 8 Hz, 2H), 1.17 (t, J = 7 Hz, 3H), 0.88 (t, J = 7 Hz, 3H); MS ES m/e 548 (p+1).

5

C. Preparation of 2-{3-[3-(2-ethyl-5-hydroxy-4-thiazol-2-yl-phenoxy)propoxy}-2-propylphenoxy)benzoic acid.

2-{3-[3-(2-Ethyl-5-hydroxy-4-thiazol-2-yl-phenoxy)propoxy]-2-propylphenoxy}benzoic acid methyl ester (107 mg, 0.196 10 mmol) was dissolved in a 1:1 solution of methanol/dioxane (3 mL) and treated with 1 N lithium hydroxide solution (1 mL) at 60 °C for 2 h. The mixture was concentrated in vacuo and the residue diluted with water, washed twice with diethyl ether, and the aqueous layer acidified with 1 N hydrochloric 15 acid. The resulting solution was extracted twice with methylene chloride and the combined organic layers dried (magnesium sulfate), filtered, and concentrated in vacuo. Trituration (hexane) of the residue provided 72 mg (69%) of the title compound as a tan powder. H NMR (CDCl₃) δ 8.22 20 (dd, J = 8, 2 Hz, 1H), 7.70 (d, J = 4 Hz, 1H), 7.41 (dt, J =

8, 2 Hz, 1H), 7.35 (s, 1H), 7.18 (m, 3H), 6.82 (d, J = 9 Hz, 1H), 6.69 (d, J = 9 Hz, 1H), 6.62 (d, J = 9 Hz, 1H), 6.55 (s, 1H), 4.22 (t, J = 6 Hz, 2H), 4.21 (t, J = 6 Hz, 2H), 2.57 (m, 4H), 2.35 (quintet, J = 6 Hz, 2H), 1.49 (hextet, J = 8 Hz, 2H), 1.18 (t, J = 7 Hz, 3H), 0.86 (t, J = 7 Hz, 3H); MS ES $^{+}$ m/e 534 (p+1); IR (KBr, cm $^{-1}$) 2957, 1695, 1599, 1457. Anal. Calcd for $C_{30}H_{31}NO_6S$: C, 67.52; H, 5.86; N, 2.62. Found: C, 67.44; H, 5.95; N, 2.55.

10

Example 12

Preparation of 2-(3-{3-{4-(3,5-Dimethylisoxazol-4-yl)-2-ethyl=5-hydroxyphenoxy}propoxy}-2-propylphenoxy)benzoic_acid_sodium_salt.

A mixture of $2-(3-\{3-\{5-\text{benzyloxy}-2-\text{ethyl}-4-\{4,4,5,5$ tetramethyl-[1,3,2]dioxaborolan-2-yl)phenoxy]propoxy}-2propylphenoxy)benzoic acid methyl ester (305 mg, 0.448 mmol), 3,5-dimethyl-4-iodoisoxazole (110 mg, 0.493 mmol), cesium carbonate (293 mg, 0.899 mmol), and PdCl₂(dppf) (15 mg, 0.018 mmol) in de-oxygenated toluene (10 mL) was heated at 95 °C for 10 h. Additional portions of 3,5-dimethyl-4iodoisoxazole (110 mg), cesium carbonate (260 mg), and $PdCl_{2}(dppf)$ (~15 mg) were added and heating continued at 110 °C for 20 h. The mixture was cooled to room temperature, 10 concentrated in vacuo, diluted with methylene chloride, and filtered-down-a-short-plug-of-silica-gel-with-20%-ethyl----acetate/80% hexane. The filtrate was concentrated in vacuo. The resulting colorless oil was dissolved in methylene chloride (4 mL), cooled to 0 °C, and treated with 15 iodotrimethylsilane (0.40 mL, 2.7 mmol). The resulting mixture was allowed to warm to room temperature and stirred for 18 h. An additional portion of iodotrimethylsilane (0.70 mL) was added and stirring continued for 72 h. The mixture was poured into dilute sodium thiosulfate solution. 20 The organic layer was separated, washed with water, dried (sodium sulfate), filtered, and concentrated in vacuo. resulting foam was dissolved in a 1:1 mixture of tetrahydrofuran/1 N hydrochloric acid (5 mL) and stirred at room temperature for 18 h. The mixture was concentrated in 25 vacuo and treated with 1 equivalent 1 N sodium hydroxide solution in ether. The resulting mixture was concentrated in vacuo to provide 59 mg (23%) of the title compound as an

30 1H), 7.13 (dt, J = 8, 2 Hz, 1H), 6.97 (m, 2H), 6.79 (s, 1H), 6.68 (d, J = 9 Hz, 1H), 6.65 (d, J = 9 Hz, 1H), 6.60 (s,

off-white solid. ¹H NMR (DMSO-d₆) δ 7.40 (dd, J = 9, 2 Hz,

1H), 6.21 (d, J = 8 Hz, 1H), 4.19 (t, J = 6 Hz, 2H), 4.01 (t, J = 6 Hz, 2H), 2.66 (t, J = 8 Hz, 2H), 2.48 (q, J = 8 Hz, 2H), 2.24 (s, 3H), 2.17 (quintet, J = 6 Hz, 2H), 2.07 (s, 3 H), 1.49 (hextet, J = 8 Hz, 2H), 1.07 (t, J = 7 Hz, 3H), 0.85 (t, J = 7 Hz, 3H); TOF MS ES exact mass calculated for $C_{32}H_{36}NO_{7}$ (p+1): m/z = 546.2492. Found: 546.2514; IR (KBr, cm⁻¹) 3400, 1605, 1460.

Example 13

Preparation of 2-{3-[3-(2-Ethyl-4-furan-2-yl-5-hydroxyphenoxy)propoxy]-2-propylphenoxy}-benzoic acid sodium salt.

15 A. Preparation of 2-{3-[3-(4-bromo-2-ethy1-5-hydroxyphenoxy)propoxy]-2-propylphenoxy)benzoic acid methyl ester.

A solution of 2-{3-[3-(5-benzyloxy-4-bromo-2-ethylphenoxy)propoxy]-2-propylphenoxy}-benzoic acid methyl ester (2.50 g, 3.95 mmol) in methylene chloride (40 mL) was

cooled to -70 °C and treated with boron tribromide (0.25 mL, 2.6 mmol). After 25 min the mixture was poured into cold water and the resulting mixture extracted with methylene chloride. The combined organic extracts were washed once with water, once with saturated sodium chloride solution, dried (sodium sulfate), filtered, and concentrated in vacuo to provide 1.1 g (52%) of the title compound as a pale yellow oil. ¹ H NMR (CDCl₃) δ 7.89 (d, J = 9 Hz, 1H), 7.38 (t, J = 8 Hz, 1H), 7.18 (s 1H), 7.12 (d, J = 9 Hz, 1H), 7.08(d, J = 2 Hz, 1H), 6.81 (d, J = 9 Hz, 1H), 6.68 (d, J = 9)10 Hz, 1H), 6.56 (s, 1H), 6.46 (d, J = 9 Hz, 1H), 5.40 (s, 1H), 4.18 (t, J = 6 Hz, 2H), 4.11 (t, J = 6 Hz, 2H), 3.84 (s, 3H), 2.65 (t, J = 8 Hz, 2H), 2.54 (q, J = 7 Hz, 2H), 2.32 (quintet, J = 6 Hz, 2H), 1.54 (hextet, J = 8 Hz, 2H), 1.13 (t, J = 7 Hz, 3H), 0.89 (t, J = 7 Hz, 3H); MS ES m/z = 54115 (M - H), 543 (M - H + 2).

B. Preparation of 2-(3-[4-bromo-5-(tert-butyldimethylsilanyloxy)-2-ethylphenoxy]-propoxy}-2-propylphenoxy)benzoic acid methyl ester.

A solution of 2-{3-{3-{4-bromo-2-ethyl-5-

- hydroxyphenoxy)propoxy]-2-propylphenoxy)benzoic acid methyl ester (1.00 g, 1.84 mmol) in methylene chloride (20 mL) was treated with imidazole (0.19 g, 2.8 mmol) and tert-butyldimethylsilyl chloride (0.388 g, 2.57 mmol) at room temperature for 2 h. The mixture was poured into water and the organic layer separated, washed once with water, once with saturated sodium chloride solution, filtered through a short pad of silica gel, and concentrated in vacuo to provide 1.1 g (91%) of the title compound as a colorless
- oil. H NMR (CDCl₃) δ 7.88 (d, J = 9 Hz, 1H), 7.38 (t, J = 8 Hz, 1H), 7.22 (s 1H), 7.12 (d, J = 9 Hz, 1H), 7.08 (d, J = 2 Hz, 1H), 6.80 (d, J = 9 Hz, 1H), 6.69 (d, J = 9 Hz, 1H), 6.45 (d, J = 9 Hz, 1H), 6.40 (s, 1H), 4.20 (t, J = 6 Hz, 2H), 4.11 (t, J = 6 Hz, 2H), 3.83 (s, 3H), 2.64 (t, J = 8

Hz, 2H), 2.54 (q, J = 7 Hz, 2H), 2.32 (quintet, J = 6 Hz,

20 2H), 1.54 (hextet, J = 8 Hz, 2H), 1.13 (t, J = 7 Hz, 3H), 1.03 (s, 9H), 0.89 (t, J = 7 Hz, 3H), 0.23 (s, 6H).

C. Preparation of 2-{3-[3-(2-ethyl-4-furan-2-yl-5-hydroxyphenoxy)propoxy}-2-propyl-phenoxy)benzoic acid methyl ester.

A mixture of 2-(3-{3-{4-bromo-5-(tert-butyldimethylsilanyloxy)-2-ethylphenoxy}propoxy}-2-propylphenoxy)benzoic acid methyl ester (1.05 g, 1.60 mmol), furan-2-boronic acid (0.358 g, 3.20 mmol),

- tetrakis(triphenylphosphine)palladium(0) (0.185 g, 0.160 mmol), and 2 M aqueous sodium carbonate solution (8 mL) in tetrahydrofuran (20 mL) was heated at reflux for 18 h. The mixture was cooled to room temperature, diluted with water, and extracted with ethyl acetate. The organic layer was separated, washed once with water, once with saturated sodium chloride solution, dried (sodium sulfate), filtered, and concentrated in vacuo. Chromatography (silica gel, 10% ethyl acetate/90% hexane) of the residue provided 0.8 g (94%) of the title compound as a colorless oil. H NMR
- 20 (CDCl₃) δ 7.90 (d, J = 9 Hz, 1H), 7.48 (s, 1H), 7.38 (t, J = 8 Hz, 1H), 7.21 (s 1H), 7.13 (s, 1H), 7.10 (d, J = 9 Hz, 1H), 7.07 (d, J = 2 Hz, 1H), 6.81 (d, J = 9 Hz, 1H), 6.69

(d, J = 9 Hz, 1H), 6.52 (m, 3H), 6.44 (d, J = 9 Hz, 1H), 4.20 (m, 4H), 3.83 (s, 3H), 2.67 (t, J = 8 Hz, 2H), 2.59 (q, J = 7 Hz, 2H), 2.32 (quintet, J = 6 Hz, 2H), 1.55 (hextet, J = 8 Hz, 2H), 1.18 (t, J = 7 Hz, 3H), 0.91 (t, J = 7 Hz, 3H); MS ES m/z = 589 (p + AcO).

Anal. Calcd for $C_{32}H_{34}O_7$: C, 72.43; H, 6.46. Found: C, 72.21; H, 6.15.

10

D. Preparation of 2-{3-[3-(2-ethyl-4-furan-2-yl-5-hydroxyphenoxy)propoxy]-2-propylphenoxy}benzoic acid sodium salt.

2-{3-[3-(2-Ethyl-4-furan-2-yl-5-hydroxyphenoxy)propoxy]-2propylphenoxy}benzoic acid methyl ester (250 mg, 0.47 mmol)
was dissolved in tetrahydrofuran (4 mL) and treated with 1 N
lithium hydroxide solution (2 mL) at 50 °C for 16 h. The
mixture was concentrated in vacuo and the residue diluted
with water and extracted twice with ethyl acetate. The
combined organic extracts were washed once with water, once
with saturated sodium chloride solution, dried (sodium

sulfate), filtered, and concentrated in vacuo. The residue was dissolved in ethyl acetate and shaken with 1 N hydrochloric acid. The organic layer was dried (sodium sulfate), filtered, and concentrated in vacuo. The residue was dissolved in diethyl ether and treated with 1 N aqueous sodium hydroxide solution (0.32 mL). The mixture was concentrated in vacuo and azeotroped successively with diethyl ether, chloroform, and diethyl ether and dried to provide 168 mg (66%) of the title product as a cream solid. ¹H NMR (DMSO-d₆) δ 7.56 (s, 1H), 7.44 (d, J = 8 Hz, 1H), 10 7.35 (s, 1H), 7.13 (m, 1H), 6.97 (m, 2H), 6.77 (d, J = 2 Hz, 1H), 6.65 (m, 4H), 6.48 (d, J = 2 Hz, 1H), 6.24 (d, J = 9Hz, 1H), 4.15 (t, J = 6 Hz, 2H), 3.96 (t, J = 6 Hz, 2H), 2.66 (t, J = 8 Hz, 2H), 2.42 (q, J = 7 Hz, 2H), 2.13(quintet, J = 6 Hz, 2H), 1.48 (hextet, J = 8 Hz, 2H), 1.09 15 $(t, J = 7 Hz, 3H), 0.84 (t, J = 7 Hz, 3H); TOF MS ES^{+}$ exact mass calculated for $C_{31}H_{33}O_7$ (p+1): m/z = 517.2226. Found: 517.2230. IR (KBr, cm⁻¹) 3400, 2961, 1599, 1460.

Example 14

Preparation of 2-(3-(3-[2-Ethy1-5-hydroxy-4-furan-3-y1]phenoxy)propoxy}-2-propylphenoxy)benzoic acid.

5

A. Preparation of 2-{3-[3-(2-ethyl-4-furan-3-yl-5-hydroxyphenoxy)propoxy]-2-propyl-phenoxy}benzoic acid methyl ester.

A mixture of 2-(3-{3-{4-bromo-5-(tert-

butyldimethylsilanyloxy)-2-ethylphenoxy]propoxy}-2-10 propylphenoxy)benzoic acid methyl ester (2.10 g, 3.19 mmol), furan-3-boronic acid (0.722 g, 6.45 mmol), tetrakis(triphenylphosphine)palladium(0) (0.37 g, 0.32 mmol), and 2 M aqueous sodium carbonate solution (16 mL) in tetrahydrofuran (30 mL) was heated at reflux for 48 h. 15 mixture was cooled to room temperature, diluted with water, and extracted with ethyl acetate. The organic layer was separated, washed once with water, once with saturated sodium chloride solution, dried (sodium sulfate), filtered, and concentrated in vacuo. Chromatography (silica gel, 15% 20 ethyl acetate/85% hexane) of the residue provided 0.29 g (17%) of the title compound as a yellow oil. TOF MS ES

5

15

exact mass calculated for $C_{32}H_{35}O_7$ (p+1): m/z = 531.2383. Found: 531.2396.

B. Preparation of 2-{3-[3-(2-ethyl-4-furan-3-yl-5hydroxyphenoxy)propoxy]-2-propylphenoxy)benzoic acid sodium salt.

 $2-\{3-\{3-\{3-\{2-\text{Ethy}1-4-\text{furan}-3-\text{y}1-5-\text{hydroxyphenoxy}\}\}$ 10 propylphenoxy}benzoic acid methyl ester (170 mg, 0.32 mmol) was dissolved in tetrahydrofuran (4 mL) and methanol (1 mL) and treated with 1 N lithium hydroxide solution (4 mL) at 50 °C for 2 h. The mixture was concentrated in vacuo and the residue acidified with hydrochloric acid and the resulting mixture extracted twice with ethyl acetate. The combined organic extracts were washed once with water, once with saturated sodium chloride solution, dried (sodium sulfate), filtered, and concentrated in vacuo. Chromatography (silica gel, 2% methanol/98% chloroform) of the residue gave 45 mg 20 of material that was again submitted to chromatography (silica gel, 1% methanol/99% chloroform) to provide 25 mg (15%) of the title compound as an oil.

TOF MS ES † exact mass calculated for $C_{31}H_{33}O_7$ (p+1): m/z = 517.226. Found: 517.2230.

5

Example 15

Preparation of 2-(3-{3-[2-Ethyl-5-hydroxy-4-(tetrahydrofuran-3-yl)phenoxy]propoxy}-2-propylphenoxy)benzoic acid sodium salt hemihydrate.

10

A. Preparation of 2-{3-[3-(5-benzyloxy-2-ethyl-4-furan-3-yl-phenoxy)propoxy]-2-propylphenoxy}benzoic acid methyl ester.

A mixture of 2-{3-[3-(5-benzyloxy-4-bromo-2-ethylphenoxy)propoxy]-2-propylphenoxy)-benzoic acid methyl ester (3.00 g, 4.73 mmol), furan-3-boronic acid (1.06 g, 9.47 mmol), tetrakis(triphenylphosphine)palladium(0) (0.54 g, 0.47 mmol), and 2 M aqueous sodium carbonate solution (20 mL) in tetrahydrofuran (40 mL) was heated at 100 °C for 48 h. The mixture was cooled to room temperature, diluted with water, and extracted with ethyl acetate. The organic layer was separated, washed once with water, once with saturated

sodium chloride solution, dried (sodium sulfate), filtered, and concentrated in vacuo. Chromatography (silica gel, 10% ethyl acetate/90% hexane) of the residue provided 1.9 g (65%) of the title compound as a yellow oil. H NMR (CDCl₃) δ 7.88 (dd, J = 8, 2 Hz, 1H), 7.87 (s, 1H), 7.40 (m, 7H), 7.26 (s 1H), 7.05 (m, 2H), 6.80 (d, J = 9 Hz, 1H), 6.76 (d, J = 2 Hz, 1H), 6.67 (d, J = 9 Hz, 1H), 6.60 (s, 1H), 6.43 (d, J = 9 Hz, 1H), 5.11 (s, 2H), 4.18 (m, 4H), 3.83 (s, 3H), 2.66 (t, J = 8 Hz, 2H), 2.62 (q, J = 7 Hz, 2H), 2.30 (quintet, J = 6 Hz, 2H), 1.57 (hextet, J = 8 Hz, 2H), 1.20 (t, J = 7 Hz, 3H), 0.92 (t, J = 7 Hz, 3H); MS ES m/z = 621 (p + 1); IR (CHCl₃, cm⁻¹) 3000, 1727, 1603, 1461.

15

B. Preparation of 2-(3-{3-{2-ethyl-5-hydroxy-4-(tetrahydrofuran-3-yl)phenoxy}-propoxy}-2-propylphenoxy)benzoic acid methyl ester.

A solution of 2-{3-[3-(5-benzyloxy-2-ethyl-4-furan-3-yl-20 phenoxy)propoxy]-2-propylphenoxy)benzoic acid methyl ester (1.8 g, 2.9 mmol) in ethyl acetate (40 mL) was treated with

10% palladium-on-carbon (0.39 g) and hydrogenated at 48 psi and 45 °C for 72 h. The mixture was cooled to room temperature, filtered through Celite, and the filtrate concentrated in vacuo to provide 1.2 g (77%) of the title compound as a colorless oil. H NMR (CDCl₃) δ 7.88 (dd, J = 8, 2 Hz, 1H), 7.57 (dt, J = 8, 2 Hz, 1H), 7.09 (d, J = 9 Hz,1H), 7.04 (d, J = 9 Hz, 1H), 6.81 (d, J = 9 Hz, 1H), 6.80(s, 1H), 6.67 (d, J = 9 Hz, 1H), 6.44 (d, J = 9 Hz, 1H),6.43 (s, 1H), 4.19 (m, 3H), 4.10 (m, 2H), 4.02 (dd, J = 12, 3 Hz, 1H), 3.88 (dd, J = 12, 8 Hz, 1H), 3.84 (s, 3H), 3.7310 (q, J = 9 Hz, 1H), 3.45 (m, 1H), 2.64 (t, J = 8 Hz, 2H),2.53 (q, J = 7 Hz, 2H), 2.38 (m, 1H), 2.28 (quintet, J = 6Hz, 2H), 1.99 (m, 1H), 1.55 (hextet, J = 8 Hz, 2H), 1.15 (t, J = 7 Hz, 3H), 0.90 (t, J = 7 Hz, 3H); MS ES m/z = 593 (p + CH_3COO); IR (CHCl₃, cm⁻¹) 2963, 1719, 1589, 1461. 15 Anal. Calcd for C₃₂H₃₈O₇: C, 71.89; H, 7.16. Found: C, 71.41; H, 7.06.

and the said of the

30

C. Preparation of 2-(3-{3-[2-ethyl-5-hydroxy-4-(tetrahydrofuran-3-yl)phenoxy]-propoxy}-2-propylphenoxy)benzoic acid sodium salt hemihydrate.

A solution of 2-(3-{3-{2-ethyl-5-hydroxy-4-(tetrahydrofuran-3-yl)phenoxy]propoxy)-2-propylphenoxy)benzoic acid methyl ester (0.92 g, 1.7 mmol) in tetrahydrofuran (10 mL) and methanol (5 mL) was treated with 1 M aqueous lithium hydroxide solution (10 mL) at 55 °C for 2 h. The mixture was allowed to cool to room temperature and stirred for an additional 18 h. The mixture was concentrated in vacuo and 10 the remaining aqueous mixture was washed once with diethyl ether. The aqueous layer was acidified with concentrated hydrochloric acid and the resulting solution extracted with ethyl acetate. The ethyl acetate layer was washed once with water, once with saturated sodium chloride solution, dried 15 (sodium sulfate), filtered, and concentrated in vacuo. The resulting colorless oil was dissolved in diethyl ether and treated with 1 N aqueous sodium hydroxide solution (1.72 mL). The resulting biphasic mixture was diluted with 20 chloroform and concentrated in vacuo. Diethyl ether was added and the mixture concentrated in vacuo. The resulting white foam was dried in vacuo at room temperature for 60 h to provide 0.78 g (84%) of the title compound: mp 67-71 °C. ¹H NMR (DMSO- d_6) δ 7.62 (dd, J = 8, 2 Hz, 1H), 7.30 (dt, J = 8, 2 Hz, 1H), 7.05 (m, 2H), 6.85 (s, 1H), 6.73 (d, J = 9 Hz, 25 1H), 6.70 (d, J = 9 Hz, 1H), 6.53 (s, 1H), 6.34 (d, J = 9Hz, 1H), 4.15 (t, J = 6 Hz, 2H), 4.04 (t, J = 6 Hz, 2H), 3.95 (m, 1H), 3.88 (m, 1H), 3.75 (q, J = 9 Hz, 1H), 3.49 (m)2H), 2.60 (t, J = 8 Hz, 2H), 2.45 (q, J = 7 Hz, 2H), 2.15

(m, 3H), 1.90 (m, 1H), 1.48 (hextet, J = 8 Hz, 2H), 1.06 (t,

J = 7 Hz, 3H), 0.83 (t, J = 7 Hz, 3H); MS ES m/z = 519 (p - Na⁺); IR (CHCl₃, cm⁻¹) 2964, 1783, 1604, 1461.

Anal. Calcd for $C_{31}H_{35}NaO_7$ • 0.5 H_2O : C, 67.50; H, 6.58. Found: C, 67.76; H, 6.68.

5

10

Example 16

Preparation of 2-{3-[3-(2-Ethyl-5-hydroxy-4-pyrrolidin-2-yl-phenoxy)propoxy]-2-propyl-phenoxy)benzoic acid hydrochloride hydrate.

- A. Preparation of 2-(2-benzyloxy-5-ethyl-4-{3-[3-(2-methoxycarbonylphenoxy)-2-
- propylphenoxy]propoxy)phenyl)pyrrole-1-carboxylic acid tertbutyl ester.

A mixture of 2-{3-[3-(5-benzyloxy-4-bromo-2-ethylphenoxy)propoxy]-2-propylphenoxy}-benzoic acid methyl ester (3.00 g, 4.73 mmol), N-boc pyrrole-2-boronic acid (1.99 g, 9.43 mmol),

20 (1.99 g, 9.43 mmol), tetrakis(triphenylphosphine)palladium(0) (0.54 g, 0.47

mmol), and 2 M aqueous sodium carbonate solution (25 mL) in tetrahydrofuran (60 mL) was heated at reflux for 40 h. The mixture was cooled to room temperature, diluted with water, and extracted with ethyl acetate. The organic layer was separated, washed once with water, once with saturated sodium chloride solution, dried (sodium sulfate), filtered, and concentrated in vacuo. Chromatography (silica gel, 10% ethyl acetate/90% hexane) of the residue provided 2.6 g (76%) of the title compound as a solid. 1 H NMR (CDCl $_{3}$) δ 7.88 (dd, J = 8, 2 Hz, 1H), 7.15-7.40 (m, 7H), 7.08 (m, 3H), 10 6.82 (d, J = 9 Hz, 1H), 6.68 (d, J = 9 Hz, 1H), 6.52 (s,1H), 6.44 (d, J = 9 Hz, 1H), 6.23 (t, J = 4 Hz, 1H), 6.12(m, 1H), 4.95 (s, 2H), 4.20 (t, J = 6 Hz, 2H); 4.15 (t, J =6 Hz, 2H), 3.84 (s, 3H), 2.66 (t, J = 8 Hz, 2H), 2.60 (q, J= 7 Hz, 2H), 2.30 (quintet, J = 6 Hz, 2H), 1.57 (hextet, J =15 8 Hz, 2H), 1.28 (s, 9H), 1.18 (t, J = 7 Hz, 3H), 0.93 (t, J= 7 Hz, 3H); TOS MS ES exact mass calculated for $C_{44}H_{53}N_{2}O_{8} (p + NH_{4}^{+}): m/z = 737.3802.$ Found: 737.3804; IR (CHCl₃, cm⁻¹) 2964, 1730, 1461.

20 Anal. Calcd for C₄₄H₄₉NO₈: C, 73.41; H, 6.86; N, 1.94. Found: C, 73.76; H, 6.76; N, 2.04.

10

15

B. Preparation of 2-(5-ethyl-2-hydroxy-4-{3-[3-(2-methoxycarbonylphenoxy)-2-propylphenoxy]propoxy}phenyl)-pyrrolidine-1-carboxylic acid tert-butyl ester.

A solution of 2-(2-benzyloxy-5-ethyl-4-{3-[3-(2-methoxycarbonylphenoxy)-2-

propylphenoxy]propoxy}phenyl)pyrrole-1-carboxylic acid tertbutyl ester (0.98 g, 1.4 mmol) in ethyl acetate (40 mL) was treated with 10% palladium-on-carbon (0.98 g) and hydrogenated at 45 psi and 45 °C for 25 h, at room temperature for 20 h, then at 45 °C for 19 h. The mixture was cooled to room temperature, filtered through Celite, and the filtrate concentrated in vacuo to provide 0.76 g (88%) of the title compound as a colorless oil. H NMR

(CDCl₃) δ 7.87 (dd, J = 8, 2 Hz, 1H), 7.37 (dt, J = 8, 2 Hz, 1H), 7.10 (d, J = 9 Hz, 1H), 7.04 (d, J = 9 Hz, 1H), 6.91 (s, 1H), 6.81 (d, J = 9 Hz, 1H), 6.67 (d, J = 9 Hz, 1H), 6.47 (s, 1H), 6.44 (d, J = 9 Hz, 1H), 5.09 (m, 1H), 4.18 (d, J = 6 Hz, 2H), 4.14 (t, J = 6 Hz, 2H), 3.84 (s, 3H), 3.45 (m, 2H), 2.64 (t, J = 8 Hz, 2H), 2.54 (m, 3H), 2.25 (m, 5H),

2.06 (m, 1H), 1.54 (hextet, J = 8 Hz, 2H), 1.43 (s, 9H), 1.15 (t, J = 7 Hz, 3H), 0.90 (t, J = 7 Hz, 3H).

5

15

C. Preparation of 2-(4-{3-[3-(2-carboxyphenoxy)-2-propylphenoxy]propoxy}-5-ethyl-2-hydroxyphenyl)pyrrolidine-1-carboxylic acid tert-butyl ester lithium salt hydrate.

A solution of 2-(5-ethyl-2-hydroxy-4-{3-[3-(2-

10 methoxycarbonylphenoxy)-2-

propylphenoxy]propoxy}phenyl)pyrrolidine-1-carboxylic acid tert-butyl ester (0.114 g, 0.18 mmol) in a 1:1 mixture of methanol/tetrahydrofuran (4 mL) was treated with solution of 1 M lithium hydroxide (4 mL) at room temperature for 18 h.

- The mixture was concentrated in vacuo and the residue dissolved in water. The resulting mixture was extracted with ethyl acetate. The organic extract was dried (sodium sulfate), filtered, and concentrated in vacuo. The residue was diluted with diethyl ether, concentrated in vacuo, and
- 20 dried to provide 90 mg (78%) of the title compound. MS ES

5

10

15

20

 $m/z = 620 (p + 1 - Li^{+}); IR (KBr, cm^{-1}) 2964, 1672, 1603, 1416.$

Anal. Calcd for $C_{36}H_{44}NO_8Li$ • H_2O : C, 67.17; H, 7.20; N, 2.18. Found: C, 66.72; H, 6.99; N, 2.27.

p. Preparation of 2-{3-[3-(2-ethyl-5-hydroxy-4-pyrrolidin-2-yl-phenoxy)propoxy]-2-propylphenoxy}benzoic acid hydrochloride hydrate.

Into a solution of 2-(4-{3-[3-(2-carboxyphenoxy)-2-propylphenoxy]propoxy}-5-ethyl-2-hydroxyphenyl)pyrrolidine-1-carboxylic acid tert-butyl ester lithium salt hydrate (0.100 g, 0.16 mmol) in anhydrous diethyl ether (5 mL) was bubbled gaseous HCl. The resulting mixture was allowed to stir for 1 h. The mixture was concentrated in vacuo. Chromatography (SCX cation exchange resin, 1:1 tetrahydrofuran/methanol to dilute ammonia/methanol) of the residue provided a tan solid. This material was dissolved in ether and treated with gaseous HCl. This mixture was concentrated in vacuo to provide 48 mg (52%) of the title compound. 1 H NMR (DMSO-d₆) δ 12.80 (bs, 1H), 10.12 (s, 1H),

9.34 (bs, 1H), 8.36 (bs, 1H), 7.79 (dd, J = 9, 2 Hz, 1H),
7.47 (dt, J = 8, 2 Hz, 1H), 7.17 (t, J = 8 Hz, 1H), 7.12 (d,
J = 9 Hz, 1H), 7.07 (s, 1H), 6.80 (d, J = 9 Hz, 1H), 6.78
(d, J = 9 Hz, 1H), 6.58 (s, 1H), 6.35 (d, J = 9 Hz, 1H),
4.56 (m, 1H), 4.20 (t, J = 6 Hz, 2H); 4.11 (t, J = 6 Hz,
2H), 3.25 (m, 2H), 2.50 (m, 5H), 1.90-2.60 (m, 5H), 1.44
(hextet, J = 8 Hz, 2H), 1.08 (t, J = 7 Hz, 3H), 0.82 (t, J =
7 Hz, 3H); TOS MS ES exact mass calculated for C₃₁H₃₈NO₆
(p + 1): m/z = 520.2699. Found: 520.2672.

10

Example 17

Preparation of 2-(3-[3-(2-Ethyl-5-hydroxy-4-thiophen-3-yl-phenoxy)propoxy]-2-propyl-phenoxy)benzoic acid hydrate.

15

Known compound:

Sawyer et al., J. Med. Chem. 1995, 38, 4411.

20 A. Preparation of 3-[2-benzyloxy-4-(3-chloropropoxy)-5-ethylphenyl]thiophene. A mixture of 4-(benzyloxy)-5-bromo-2-(3-chloropropoxy)ethylbenzene (1.90 g, 5.30 mmol), 3-thiopheneboronic acid (2.00 g, 15.9 mmol), tetrakis(triphenylphosphine)palladium(0) (312 mg, 0.270 mmol), 2 M aqueous sodium carbonate solution (4 mL), and n-propanol (4 mL) in toluene (16 mL) was refluxed for 4 h. The mixture was cooled to room temperature, diluted with diethyl ether, washed once with water and once with

saturated sodium chloride solution. The organic layer was dried (magnesium sulfate), filtered, and concentrated in vacuo. Chromatography (silica gel, 5% ethyl acetate/95% hexane) of the residue provided 1.54 g (80%) of the title product as a white solid: mp 65-67 °C. HNMR (CDCl₃) δ 7.58 (d, J = 2.8 Hz, 1H), 7.49 (d, J = 5.2 Hz, 1H), 7.45-7.30 (m, 7H), 6.62 (s, 1H), 5.13 (s, 2H), 4.14 (t, J = 5.8 Hz, 2H), 3.81 (t, J = 6.3 Hz, 2H), 2.66 (q, J = 7.5 Hz, 2H), 2.29 (quintet, J = 6.0 Hz, 2H), 1.24 (t, J = 7.5 Hz, 3H); MS FD m/e 386 (p); IR (CHCl₃, cm⁻¹) 2969, 1613, 1501, 1138. Anal. Calcd for $C_{22}H_{23}O_2Cls$: C, 68.29; H, 5.99. Found: C, 68.53; H, 6.00.

Known compound: Sawyer et al., J. Med. Chem. 1995, 38, 4411.

15

20

10

B. Preparation of 2-[2-propy1-3-[3-[5-(benzyloxy)-2-ethyl-4-(thiophen-3-yl)phenoxy]phenoxy]phenoxy]benzonitrile.

A mixture of 4-(benzyloxy)-2-(3-chloropropoxy)-5-(thiophen-3-y1)ethylbenzene (1.25 g, 3.23 mmol), 3-(2-cyanophenoxy)-2-propylphenol (0.82 g, 3.2 mmol), potassium iodide (0.21 g,

1.3 mmol), potassium carbonate (1.12 g, 8.08 mmol), and methyl sulfoxide (2 mL) in 2-butanone (10 mL) was refluxed for 60 h. The mixture was cooled to room temperature, diluted with ether, and washed with water. The organic layer was dried (magnesium sulfate), filtered, and concentrated in vacuo. Chromatography (silica gel, 5% ethyl acetate/95% hexane) of the residue provided 1.31 g (67%) of the title product as a colorless oil. 1 H NMR (CDCl₃) δ 7.66 (d, J = 7.8 Hz, 1H), 7.57 (d, J = 2.9 Hz, 1H), 7.48 (d, J =10 - 5.2 Hz, 1H), 7.45-7.25 (m, 8H), 7.20 (t, J = 8.2 Hz, 1H), 7.10 (t, J = 8.1 Hz, 1H), 6.82 (d, J = 8.3 Hz, 1H), 6.77 (d, J)J = 8.6 Hz, 1H), 6.64 (s, 1H), 6.63 (d, <math>J = 6.4 Hz, 1H),5.11 (s, 2H), 4.26 (t, J = 6.0 Hz, 2H), 4.22 (t, J = 6.0 Hz, 2H), 2.65 (m, 4H), 2.36 (quintet, J = 5.9 Hz, 2H), 1.58(hextet, J = 7.5 Hz, 2H), 1.24 (t, J = 7.5 Hz, 3H), 0.95 (t, 15 J = 7.3 Hz, 3H); MS FD m/e 603 (p); IR (CHCl₃, cm⁻¹) 2967,2250, 1613, 1501. Anal. Calcd for $C_{38}H_{37}NO_{4}S$: C, 75.59; H, 6.18; N, 2.32. Found: C, 74.65; H, 6.21; N, 2.57.

C. Preparation of 2-[2-propyl-3-[3-[2-ethyl-5-hydroxy-4-(thiophen-3-yl)phenoxy]propoxy]phenoxy]benzonitrile.

To a solution of 2-[2-propyl-3-[3-[5-(benzyloxy)-2-ethyl-4-(thiophen-3-yl)phenoxy]propoxy]phenoxy]benzonitrile (900 mg, 1.49 mmol) in methylene chloride (25 mL) cooled to -78 °C was added 1 M boron tribromide solution in methylene chloride (2.99 mL, 2.99 mmol) over 2 min. The resulting deep violet solution was stirred for 30 min and allowed to warm to room temperature. The mixture was diluted with 10 water and shaken. The organic layer was separated, dried (magnesium sulfate), filtered, and concentrated in vacuo. Chromatography (silica gel, 25% ethyl acetate, 75% hexane) provided 400 mg (52%) of the title product as a colorless oil. H NMR (CDCl₃) δ 7.84 (d, J = 4.8 Hz, 1H), 7.71 (d, J = 15 4.9 Hz, 1H), 7.66 (d, J = 7.7 Hz, 1H), 7.62 (s, 1H), 7.42(t, J = 7.1 Hz, 1H), 7.27 (t, J = 6.6 Hz, 1H), 7.20 (s, 1H),7.08 (t, J = 6.9 Hz, 1H), 6.85 (s, 1H), 6.89 (d, J = 8.1 Hz, 1H), 6.74 (d, J = 8.5 Hz, 1H), 6.60 (d, J = 7.6 Hz, 1H), 4.71 (s, 1H, -OH), 4.26 (t, J = 6.0 Hz, 4H), 2.72 (q, J =7.4 dHz, 2H), 2.59 (t, J = 7.3 Hz, 2H), 2.39 (quintet, J =

20

6.1 Hz, 2H), 1.54 (hextet, J = 7.7 Hz, 2H), 1.25 (t, J = 7.5 Hz, 3H), 0.91 (t, J = 7.4 Hz, 3H).

5 D. Preparation of 2-[2-propyl-3-[3-[2-ethyl-5-hydroxy-4-(thiophen-3-yl)phenoxy]propoxy]phenoxy]benzoic acid hydrate.

A solution of 2-[2-propyl-3-[3-[2-ethyl-5-hydroxy-4-(thiophen-3-yl)phenoxy]propoxy]phenoxy]benzonitrile (400 mg, 0.780 mmol) in 2:1 methanol/water (6 mL) was treated with 10 12.5 M aqueous sodium hydroxide (4.0 mL) at reflux for 36 h. The mixture was cooled to room temperature, diluted with water, and extracted once with diethyl ether. The aqueous layer was acidified with concentrated hydrochloric acid and 15 extracted twice with methylene chloride. The combined methylene chloride layers were dried (magnesium sulfate), filtered, and concentrated in vacuo to provide a tan solid: mp 90-95 °C (dec). 1 H NMR (CDCl₃) δ 8.24 (d, J = 7.8 Hz, 1H), 7.47 (d, J = 5.0 Hz, 1H), 7.44 (t, J = 8.6 Hz, 1H), 7.36 (d, J = 3 Hz, 1H), 7.24 (d, J = 4.9 Hz, 1H), 7.19 (m, 20 2H), 7.09 (s, 1H), 6.84 (d, J = 8.0 Hz, 1H), 6.73 (d, J =8.3 Hz, 1H), 6.64 (d, J = 8.0 Hz, 1H), 6.55 (s, 1H), 5.38

15

20

25

30

(bs, 1H, -OH), 4.26 (t, J = 6.2 Hz, 2H), 4.21 (t, J = 7.1Hz, 2H), 2.60 (m, 4H), 2.36 (quintet, J = 5.8 Hz, 2H), 1.51(hextet, J = 7.1 Hz, 2H), 1.19 (t, J = 7.5 Hz, 3H), 0.90 (t, $J = 7.4 \text{ Hz}, 3\text{H}); \text{ MS FD m/e } 532 \text{ (p)}; \text{ IR (KBr, cm}^{-1}) 3200$ 5 (br), 2961, 1697, 1457, 1110. Anal. Calcd for $C_{31}H_{32}O_6S$. H₂O: C, 67.62; H, 6.22. Found: C, 67.34; H, 5.87.

In one embodiment the compositions of the present invention are a combination of therapeutically effective amounts of the leukotriene (LTB4) antagonists, noted above, and a 10 therapeutically effective amount of an anti-cancer agent or anti-cancer agents. The composition may be formulated with common excipients, diluents or carriers, and compressed into tablets, or formulated elixirs or solutions for convenient oral administration or administered by intramuscular intravenous routes. The compounds can be administered transdermally and maybe formulated as sustained relief dosage forms and the like.

In another embodiment, the anti-cancer agents are formulated independently of the leukotriene (LTB4) antagonists and are administered separately. The anticancer agents may be formulated with common excipients, diluents or carriers and administered by intravenous infusion. On the other hand, the anti-cancer agents may be formulated into liquids suitable for oral administration. Anti-cancer agents may also be compressed into tablets and administered orally. If the anti-cancer agents and the leukotrienes are administered separately, the anti-cancer agents may be administered before, after or during the administration of the leukotriene (LTB4) antagonists. If the anti-cancer agents are administered separately from the leukotrienes (LTB₄) antagonists, they must be administered within a therapeutically effective interval.

The method of treating a human patient according to the present invention includes both the administration of the 5 combination of leukotriene (LTB4) antagonists and an anticancer agent as well as the separate administration of the leukotriene (LTB4) antagonists and the anti-cancer agent. When administered separately, the leukotriene (LTB₄) antagonists are formulated into formulations which may be 10 administered by the oral and rectal routes, topically, parenterally, e.g., by injection and by continuous or discontinuous intra-arterial infusion, in the form of, for example, tablets, lozenges, sublingual tablets, sachets, cachets, elixirs, gels, suspensions, aerosols, ointments, 15 for example, containing from 1 to 10% by weight of the active compound in a suitable base, soft and hard gelatin capsules, suppositories, injectable solutions and suspensions in physiologically acceptable media, and sterile packaged powders adsorbed onto a support material for making 20 injectable solutions. Advantageously for this purpose, compositions may be provided in dosage unit form, preferably each dosage unit containing from about 5 to about 500 mg (from about 5 to 50 mg in the case of parenteral or inhalation administration, and from about 25 to 500 mg in 25 the case of oral or rectal administration) of a compound of Formula I or Formula II. Dosages from about 0.5 to about 300 mg/kg per day, preferably 0.5 to 20 mg/kg, of active ingredient may be administered although it will, of course, readily be understood that the amount of the compound or 30 compounds of Formula I actually to be administered will be determined by a physician, in the light of all the relevant

circumstances including the condition to be treated, the choice of compound to be administered and the choice of route of administration and therefore the above preferred dosage range is not intended to limit the scope of the present invention in any way.

The formulations useful for separate administration of the leukotriene (LTB4) antagonists will normally consist of at least one compound selected from the compounds of Formula I and Formula II mixed with a carrier, or diluted by a 10 carrier, or enclosed or encapsulated by an ingestible carrier in the form of a capsule, sachet, cachet, paper or other container or by a disposable container such as an ampoule. A carrier or diluent may be a solid, semi-solid or liquid material which serves as a vehicle, excipient or 15 medium for the active therapeutic substance. Some examples of the diluents or carrier which may be employed in the pharmaceutical compositions of the present invention are lactose, dextrose, sucrose, sorbitol, mannitol, propylene glycol, liquid paraffin, white soft paraffin, kaolin, fumed 20 silicon dioxide, microcrystalline cellulose, calcium silicate, silica, polyvinylpyrrolidone, cetostearyl alcohol, starch, modified starches, gum acacia, calcium phosphate, cocoa butter, ethoxylated esters, oil of theobroma, arachis oil, alginates, tragacanth, gelatin, syrup, methyl 25 cellulose, polyoxyethylene sorbitan monolaurate, ethyl lactate, methyl and propyl hydroxybenzoate, sorbitan trioleate, sorbitan sesquioleate and oleyl alcohol and propellants such as trichloromonofluoromethane, dichlorodifluoromethane and dichlorotetrafluoroethane. 30 the case of tablets, a lubricant may be incorporated to prevent sticking and binding of the powdered ingredients in

the dies and on the punch of the tableting machine. For such purpose there may be employed for instance aluminum, magnesium or calcium stearates, talc or mineral oil.

preferred pharmaceutical forms of the present invention are capsules, tablets, suppositories, injectable solutions, creams and ointments. Especially preferred are formulations for inhalation application, such as an aerosol, and for oral ingestion.

10

Pharmaceutical Compositions of the Invention

The pharmaceutical composition of the invention comprises as essential ingredients:

(a) an LTB4 antagonist, and

(b) an anti-cancer agent.

When the pharmaceutical composition of the invention is prepared in injectable form it is a composition comprising as ingredients:

20

15

- (a) an LTB4 antagonist,
- (b) an anti-cancer agent, and
- (c) an injectable liquid carrier.

Pharmaceutically acceptable carriers are those well known in the medical arts, such as sterile water, sterile water containing saline, and sterile water containing sugars and/or saline.

a. Ratio and Amount of Ingredients in the Composition of the Invention

30

25

The essential ingredients (a) an LTB4 antagonist and (b) anti-cancer compound are present in the formulation in

PCT/US00/30944

-178-

such proportion that a dose of the formulation provides a pharmaceutically effective amount of each ingredient to the patient being treated. Typically, the weight ratio of LTB₄ antagonist to anti-cancer agent 1:100 to 100 to 1, preferable from 10:1 to 1:10 and most preferable from 1:4 to 4:1.

The following formulation examples may employ as active compounds any of the leukotriene (LTB4) antagonists noted above. The examples are illustrative only and are not intended to limit the scope of the invention in any way.

FORMULATION EXAMPLE 1

15

Hard gelatin capsules are prepared using the following ingredients:

Quantity

•	(mg/capsule)	
20	3-(2-(3-(2-Ethyl-4-(4-fluorophenyl)-5- hydroxyphenoxy)propoxy)-6-(4-carboxy-	
	phenoxy)phenyl)propanoic acid	250
25	Starch	200
	Magnesium stearate	10

The above ingredients are mixed and filled into hard gelatin capsules in 460 mg quantities.

5	A tablet is prepared using the ingredients	below:
	Quantity (mg/caps	sule)
	1-(4-(Carboxymethoxy)phenyl)-1-(1H-	
	tetrazol-5-yl)-6-(2-ethyl-4-(4-	
10	fluorophenyl)-5-hydroxyphenoxy)hexane	250
	Cellulose, microcrystalline	400
15	Silicon dioxide, fumed	10
* ~	Magnesium stearate	5

The components are blended and compressed to form tablets each weighing 665 mg.

20

An aerosol solution is prepared containing the following components:

	Weight %
3-[4-[7-Carboxy-9-oxo-3-[3-[2-ethyl-4-	
(4-fluorophenyl)-5-hydroxyphenoxy)pa	ropoxy]-
9H-xanthene]]propanoic acid	0.25
Ethanol	30.00
Propellant 11 (trichlorofluoromethane)	10.25
Propellant 12 (Dichlorodifluoromethane)	29.75
Propellant 114 (Dichlorotetrafluoroethane)	29.75

The active compound is dissolved in the ethanol and the solution is added to the propellant 11, cooled to -30°C. and transferred to a filling device. The required amount is then fed to a container and further filled with the pre-mixed propellants 12 and 114 by means of the cold-filled method or pressure-filled method. The valve units are then fitted to the container.

Tablets each containing 60 mg of active ingredient are made up as follows:

5				
	2-[2-Propyl-3-[3-[2-ethyl-5-hydrox	y-4-(4-		
	fluorophenyl)phenoxy]propoxy]phe	enoxy) -		
	benzoic acid sodium salt		60	mg
10	Starch		45	mg
	Microcrystalline cellulose		35	mg
15	Polyvinylpyrrolidone (as 10% solution in water)		4	mg
	Sodium carboxymethyl starch		4.5	mg
20	Magnesium stearate		0.5	mg
20	Talc	_	1	mg
		Total	150	mg

The active ingredient, starch and cellulose are passed through a No. 45 mesh (355 μm) U.S. sieve and mixed thoroughly. The solution of polyvinylpyrrolidone is mixed with the resultant powders which are then passed through a No. 14 mesh (1.4 mm)U.S. sieve. The granules so produced are dried at 50-60°C and passed through a No. 18 mesh (1.00 μm) U.S. sieve. The sodium carboxymethyl starch, magnesium stearate and talc, previously passed through a No. 60 mesh (250 μm) U.S. sieve, are then added to the granules which, after mixing, are compressed on a tablet machine to yield tablets each weighing 150 mg.

Capsules each containing 80 mg of medicament are made as follows:

5	5-[3-[2-(1-Carboxy)ethy1]-4-[3-[2-ethy1-fluoropheny1)-5-hydroxyphenoxy]propoxy	4-(4-
10	phenyl]-4-pentynoic acid Starch	80 mg
	Microcrystalline cellulose	59 mg
15	Magnesium stearate	59 mg 2 mg
	Total	200 mg

The active ingredient, cellulose, starch and magnesium stearate are blended, passed through a No. 45 mesh

20 (355 µm) U.S. sieve, and filled into hard gelatin capsules in 200 mg quantities.

FORMULATION EXAMPLE 6

25

Suppositories each containing 225 mg of active ingredient are made as follows:

30	3-(5-(6-(4-(4-Fluorophenyl)-5-hydroxy-2- ethylphenoxy)propoxy)-2-carboxymethyl- 1,2,3,4-tetrahydronaphthalen-1(2H)-	
35	one)propanoic acid Unsaturated or saturated fatty acid glycerides to	225 mg
		2,000 mg

The active ingredient is passed through a No. 60 mesh (250 μ m) U.S. sieve and suspended in the fatty acid glycerides previously melted using the minimum heat necessary. The mixture is then poured into a suppository mold of nominal 2 g capacity and allowed to cool.

FORMULATION EXAMPLE 7

10

35

Suspensions each containing 50 mg of medicament per 5 mL dose are made as follows:

	2-[2-Propyl-3-[3-[2-ethyl-4-(4-fluorophen	y1)-
15	5-hydroxyphenoxy]propoxy]phenoxy]benzo:	ic
	acid	50 mg
	Sodium carboxymethyl cellulose	50 mg
20	Sugar	1 g
	Methyl paraben	0.05 mg
	Propyl paraben	0.03 mg
25	Flavor	q.v.
	Color	q.v.
30	Purified water to	5 mL

The medicament is passed through a No. 45 mesh (355 µm) U.S. sieve and mixed with the sodium carboxymethylcellulose, sugar, and a portion of the water to form a suspension. The parabens, flavor and color are dissolved and diluted with some of the water and added, with

stirring. Sufficient water is then added to produce the required volume.

The leukotriene (LTB4) antagonists are generally administered prior, during and after the anti-cancer agent or agents are administered. If the leukotriene (LTB4) antagonists are administered before or after the anti-cancer agent or agents, they should be administered within a therapeutically effective interval.

10

15

20

ASSAY EXAMPLE 1

The Nude Mouse Xenograft test used to evaluate antioncolytic agents of this invention is well known and
generally described in the textbook; Beverly A Teicher,
Editor, Anticancer Drug Development Guide, Humana Press,
Totowa, New Jersey, 1997, p.75-124 (ISBN 0-89603-461-5); the
disclosure of which is incorporated herein by reference.
The xenograft test is more particularly described as
follows:

Male or female nude mice, selected as appropriate to the gender of the tumor (Charles River), were treated with total body gamma Radiation (450 rads). After 24 hours,

15 human DU-145 prostate carcinoma, human H460 and Calu-6 nonsmall cell lung carcinomas, human HCT116 and HT29 colon carcinomas, and human MX-1 breast carcinoma (human DU-145 prostate carcinoma, human NCI-H460 and Calu-6 non-small cell lung carcinomas, and human HCT116 and HT29 colon carcinomas available from the American Type Culture Collection,

Manassas, VA; human MX-1 breast carcinoma available from the National Cancer Institute, Bethesda, MD), prepared from a

WO 01/34135

-185-

brie of donor tumors (5 x 10⁶ cells), were implanted subcutaneously in a hind-leg of the mice. The mice were treated with 2-[2-propyl-3-[3-[2-ethyl-5-hydroxy-4-(4-fluorophenyl)phenoxy]propoxy]phenoxy] benzoic acid (Formula IV), at dosages of 30, 100, 200, or 300 mg per kilogram daily, administered orally, beginning 4 days after the tumor cell implantation. An anti-cancer agent (irinotecan, paclitaxel, 5-fluorouracil, carboplatin, mitoxantrone, oxaliplatin, or indomethacin) was administered intraperitoneally or intravenously (paclitaxel) at dosages ranging from 30, 30, 24, 50, 1.6, 5, and 5 mg/kg, respectively.

Tumor response was monitored by tumor volume

15 measurements performed twice per week over the course of 6090 days. Body weights were determined as a general
measurement of toxicity. The mice were divided into an
untreated control group and multiple treatment groups with
five mice in each group.

20

25

10

The data was analyzed by determining the mean tumor volume for the control group and each treatment group over the course of the experiment. The tumor growth delay was calculated as the difference in days for the treatment versus the control tumors to reach the volume of 1000 mm³.

Table 1

Mouse Xenograft Test Results

Growth Delay of Colon Tumor(1) With Oxaliplatin

	•		•	
Treatment	Dose	Dose	TGD	TGD,
	Formula IV	OXAL		sem
Formula IV	100	-	7.5	0.6
Formula IV	300	-	18.2	1.7
OXAL	-	5	13.9	1.3
Formula IV + OXAL	100	5	7.8	0,7
Formula IV + OXAL	300	5	17.0	1.6

5 (1) = Human HT29 colon carcinoma

Formula IV = the LTB₄ antagonist, 2-[2-propyl-3-[3-[3-ethyl-5-hydroxy-4-(4-

fluoropheny1)phenoxy]propoxy]phenoxy]benzoic acid
OXAL = Oxaliplatin; (SP-4-2)-[(1R,2R)-1,2-

10 cyclohexanediamine- κN , $\kappa N'$ [ethanedioato(2-)- $\kappa O1$, $\kappa O2$] - Platinum; $C_8H_{14}N_2O_4Pt$; Chemical Abstract Registry Number 61825-94-3

Dose = milligrams per kilogram mouse body weight

TGD = average tumor growth delay in days

15 sem = standard error of the mean

Table 2

Mouse Xenograft Test Results

Growth Delay of Colon Tumor⁽²⁾ With Indomethacin

Treatment	Dose	Dose	TGD	TGD,
	Formula IV	INDO		sem
Formula IV	100	_	7.5	0.6
Formula IV	300	_	18.2	1.7
		: 		
INDO	-	5	13.9	1.3
Formula IV	100	5	16.7	1.6
+ INDO			•	
Formula IV	300	5	21.5	2.2
+ INDO				

(2) = Human HT29 colon carcinoma

INDO = Indomethacin; $1-(4-\text{Chlorobenzoyl})-5-\text{methoxy}-2-\text{methyl-1H-indole-3-acetic acid; } C_{19}H_{16}\text{ClNO}_4; \text{ molecular weight } 357.81; \text{ Chemical Abstract Registry Number } 53-86-1$

Treatment	dose	dose	TGD	TGD, sem	
	Formula IV	5-FU			
Formula IV	100	–	9.7	1.8	
5-FU	-	30	14.4	2.3	
Formula IV	100	30	25.4	3.8	
+ 5-FU					
(3) = Human HCT116 colon carcinoma					

5-FU = 5-Fluorouracil; 5-Fluoro-2,4(1H,3H)pyrimidinedione; 2,4-dioxo-5-fluoropyrimidine;
C4H3FN2O2; molecular weight 130.08; Chemical Abstract

10 Registry Number 51-21-8

Table 4

Mouse Xenograft Test Results

Growth Delay of Colon Tumor (4) With Irinotecan

Treatment	dose	Dose	TGD	TGD, sem
	Formula IV	IRIN		
Formula IV	100	-	9.7	1.8
IRIN	<u>-</u>	30	8.3	1.9
Formula IV + IRIN	100	30	22.8	3.7

5 (4) = Human HCT116 colon carcinoma

IRIN = Irinotecan; [1,4'-Bipiperidine]-1'-carboxylic

acid; (4S)-4,11-diethyl-3,4,12,14-tetrahydro-4-

hydroxy-3,14-dioxo-1H-

pyrano[3',4':6,7]indolizino[1,2-b]quinolin-9-yl

ester; $C_{33}H_{38}N_4O_6$; Chemical Abstract Registry Number

97682-44-5

Table 5

Mouse Xenograft Test Results

Growth Delay of Non-Small Cell Lung Tumor (5) With Paclitaxel

Treatment	dose	dose	TGD	TGD, sem
	Formula IV	PACL		
Formula IV	30	-	10.9	1.0
Formula IV	100	-	13.2	1.2
Formula IV	200	_	13.9	1.3
PACL	-	24	7.6	0.7
Formula IV	30	24	9.7	1.0
+ PACL				
Formula IV	100	24	12.8	1.3
+ PACL				
Formula IV	200	24	18.6	1.9
+ PACL				

(5) = Human H460 non-small cell lung carcinoma

PACL = Paclitaxel; $C_{47}H_{51}NO_{14}$; $(\alpha R, \beta S) - \beta$ -

 $(\texttt{benzoylamino}) \texttt{-}\alpha\texttt{-}\texttt{hydroxy}\texttt{-}\texttt{Benzene} \texttt{propanoic} \texttt{ acid}$

(2aR, 4S, 4aS, 6R, 9S, 11S, 12S, 12aR, 12bS) -6, 12b-

bis(acetyloxy)-12-(benzoyloxy)-

2a,3,4,4a,5,6,9,10,11,12,12a,12b-dodecanhydro-4,11-dihydroxy-4a,8,13,13-tetramethyl-5-oxo-7,11-methano-1H-cyclodeca[3,4]benz[1,2-b]oxet-9-yl ester; Chemical Abstract Registry Number 33069-62-4

5

Table 6

Mouse Xenograft Test Results

Growth Delay of Non-Small Cell Lung Tumor (6) With Carboplatin

10

dogo	done	TCD.	TCD com
dose	dose	160	TGD, sem
Formula IV	CARB		
30	-	10.9	1.0
100	-	13.2	1.2
200	_	13.9	1.3
-	50	10.7	1.1
30	50	17.7	1.6
	,		
100	50	19.1	2.0
200	50	33.3	3.4
	30 100 200 - 30	Formula IV CARB 30 - 100 - 200 50 30 50	Formula IV CARB 30 - 10.9 100 - 13.2 200 - 13.9 - 50 10.7 30 50 17.7

(6) = Human H460 non-small cell lung carcinoma

CARB = Carboplatin; (SP-4-2)-Diammine[1,1cyclobutanedicarboxylato(2-)-0,0']platinum; 1,1cyclobutanedicarboxylic acid platinum complex;

C₆H₁₂N₂O₄Pt; molecular weight 371.25; Chemical

Abstracts Registry Number 41575-94-4

Table 7

Mouse Xenograft Test Results

Growth Delay of Non-Small Cell Lung Tumor (7) With Paclitaxel

Treatment	dose	dose	TGD	TGD, sem
	Formula IV	PACL		
Formula IV	30	-	7.4	0.6
Formula IV	100	-	10.0	0.8
Formula IV	200	-	17.9	1.6
PACL	-	24	8.2	0.7
Formula IV	30	24	10.6	0.8
+ PACL				
Formula IV	100	24	15.0	1.3
+ PACL				
Formula IV	200	24	16.6	1.7
+ PACL				
(7) = Human Calu-6 non-small cell lung carcinoma				

PACL = Paclitaxel; $C_{47}H_{51}NO_{14}$; $(\alpha R, \beta S) - \beta -$ (benzoylamino) $-\alpha$ -hydroxy-Benzenepropanoic acid (2aR, 4S, 4aS, 6R, 9S, 11S, 12S, 12aR, 12bS) -6, 12b-bis(acetyloxy) -12-(benzoyloxy) -2a, 3, 4, 4a, 5, 6, 9, 10, 11, 12, 12a, 12b-dodecanhydro-4, 11-dihydroxy-4a, 8, 13, 13-tetramethyl-5-oxo-7, 11-methano-1H-cyclodeca[3, 4]benz[1, 2-b]oxet-9-yl ester; Chemical Abstract Registry Number 33069-62-4

10

10

Table 8

Mouse Xenograft Test Results

Growth Delay of Non-Small Cell Lung Tumor (8) With Carboplatin

Treatment	dose	dose	TGD	TGD, sem
	Formula IV	CARB		
Formula IV	30	-	7.4	0.6
Formula IV	100	_	10.0	0.8
Formula IV	200	_	17.9	1.6
CARB	-	50	3.1	0.3
Formula IV	30	50	6.1	0.5
+ CARB				
Formula IV	100	50	7.9	0.8
+ CARB				
Formula IV	200	50	22.6	2.1
+ CARB	·			

(8) = Human Calu-6 non-small cell lung carcinoma CARB = Carboplatin; (SP-4-2)-Diammine[1,1-cyclobutanedicarboxylato(2-)-0,0']platinum; 1,1-cyclobutanedicarboxylic acid platinum complex; $C_6H_{12}N_2O_4Pt$; molecular weight 371.25; Chemical Abstracts Registry Number 41575-94-4

10

Table 9

Mouse Xenograft Test Results

Growth Delay of Breast Tumor (9) With Paclitaxel

Treatment	dose	dose	TGD	TGD, sem
	Formula IV	PACL		
Formula IV	30	-	3.8	0.3
Formula IV	100	-	6.2	0.4
PACL	-	24	30.3	3.0
Formula IV	30	24	52.7	5.1
+ PACL				
Formula IV	100	24	75.0	8.0
+ PACL				

(9) = Human MX-1 breast carcinoma

PACL = Paclitaxel; $C_{47}H_{51}NO_{14}$; $(\alpha R, \beta S) - \beta -$ (benzoylamino) $-\alpha$ -hydroxy-Benzenepropanoic acid (2aR, 4S, 4aS, 6R, 9S, 11S, 12S, 12aR, 12bS) -6, 12b-bis (acetyloxy) -12- (benzoyloxy) -2a, 3, 4, 4a, 5, 6, 9, 10, 11, 12, 12a, 12b-dodecanhydro-4, 11-dihydroxy-4a, 8, 13, 13-tetramethyl-5-oxo-7, 11-methano-

dihydroxy-4a,8,13,13-tetramethyl-5-oxo-7,11-methano-1H-cyclodeca[3,4]benz[1,2-b]oxet-9-yl ester; Chemical Abstract Registry Number 33069-62-4

10

Treatment	dose	dose	TGD	TGD, sem
	Formula IV	CARB		
Formula IV	30	-	3.8	0.3
Formula IV	100	_	6.2	0.4
CARB	-	50	10.3	1.0
Formula IV	30	50	18.8	2.0
+ CARB	•			_
Formula IV	100	50	37.5	4.0
+ CARB				

(10) = Human MX-1 breast carcinoma

CARB = Carboplatin; (SP-4-2)-Diammine[1,1-cyclobutanedicarboxylato(2-)-0,0']platinum; 1,1-cyclobutanedicarboxylic acid platinum complex; $C_6H_{12}N_2O_4Pt$; molecular weight 371.25; Chemical Abstracts Registry Number 41575-94-4

Table 11

Mouse Xenograft Test Results

Growth Delay of Prostate Tumor (11) With Mitoxantrone

Treatment	dose	dose	TGD	TGD, sem
	Formula IV	MITO		
Formula IV	30	-	6.7	0.4
Formula IV	100	-	10.9	1.0
Formula IV	200	_	12.4	1.1
MITO	-	1.6	2.8	0.3
Formula IV	30	1.6	5.0	0.4
+ MITO				
Formula IV	100	1.6	11.2	1.0
+ MITO				
Formula IV	200	1.6	14.2	1.3
+ MITO				

(11) = Human DU-145 prostate carcinoma

MITO = Mitoxantrone; 1,4-Dihydroxy-5,8-bis[[2-[(2-hydroxyethyl)amino]ethyl]amino]-9,10-anthracenedione; 1,4-dihydroxy-5,8-bis[[2-[(2-

hydroxyethyl)amino]ethyl]amino]-9,10-anthraquinone; C₂₂H₂₈N₄O₆; molecular weight 444.09; Chemical Abstracts Registry Number 65271-80-9

5

10

Table 12

Mouse Xenograft Test Results

Growth Delay of Prostate Tumor (12) With Oxaliplatin

		_		
Treatment	dose	dose	TGD	TGD, sem
	Formula IV	OXAL		
Formula IV	30	-	6.7	0.4
Formula IV	100	-	10.9	1.0
Formula IV	200	-	12.4	1.1
OXAL	-	5	10.3	0.9
Formula IV	30	5	12.9	1.2
+ OXAL				
Formula IV	100	5	14.4	1.4
+ OXAL				
Formula IV	200	5	16.2	1.5
+ OXAL				

(12) = Human DU-145 prostate carcinoma

OXAL = Oxaliplatin; (SP-4-2)-[(1R,2R)-1,2-

cyclohexanediamine-KN, KN'][ethanedioato(2-)-K01, K02]-

Platinum; $C_8H_{14}N_2O_4Pt$; Chemical Abstract Registry

Number 61825-94-3

10

Table 13

Mouse Xenograft Test Results

Growth Delay of Prostate Tumor (13) With Paclitaxel

Treatment	dose	dose	TGD	TGD, sem
	Formula IV	PACL		
Formula IV	30	-	6.7	0.4
Formula IV	100	-	10.9	1.0
Formula IV	200	-	12.4	1.1
PACL	_	24	3.2	0.3
Formula IV	30	24	7.1	0.6
+ PACL				
Formula IV	100	24	8.8	0.9
+ PACL				

(13) = Human DU-145 prostate carcinoma

PACL = Paclitaxel; $C_{47}H_{51}NO_{14}$; $(\alpha R, \beta S) - \beta$ (benzoylamino) $-\alpha$ -hydroxy-Benzenepropanoic acid (2aR, 4S, 4aS, 6R, 9S, 11S, 12S, 12aR, 12bS) -6, 12b-

bis(acetyloxy)-12-(benzoyloxy)-

2a,3,4,4a,5,6,9,10,11,12,12a,12b-dodecanhydro-4,11-dihydroxy-4a,8,13,13-tetramethyl-5-oxo-7,11-methano-1H-cyclodeca[3,4]benz[1,2-b]oxet-9-yl ester; Chemical Abstract Registry Number 33069-62-4.

What is claimed is:

- A composition of matter comprising a
 therapeutically effective amount of a leukotriene (LTB4)
 antagonist and one or more anti-cancer agents.
 - 2. The composition of claim 1 wherein the leukotriene (LTB4) antagonist is represented by the formula (I) $\frac{1}{2}$

$$X$$

$$\begin{array}{c}
 & \text{Plane} \\
 & \text$$

wherein:

10

20

- 15 X is selected from the group consisting of,
 - (i) a five membered substituted or unsubstituted heterocyclic radical containing from 1 to 4 hetero atoms independently selected from sulfur, nitrogen or oxygen; and
 - (ii) a fused bicyclic radical wherein a carbocyclic group is fused to two adjacent carbon atoms of the five membered heterocyclic radical, (i);

 Y_1 is a bond or divalent linking group containing 1 to 9 atoms;

 Y_2 and Y_3 are divalent linking groups independently selected from -CH₂-, -O-, or -S-;

Z is an Acidic Group;

R1 is C_1 - C_{10} alkyl, aryl, C_3 - C_8 cycloalkyl, C_2 - C_{10} alkenyl, C_2 - C_{10} alkynyl, C_6 - C_{20} aralkyl, C_6 - C_{20} alkaryl, C_1 - C_{10} haloalkyl, C_6 - C_{20} aryloxy, or C_1 - C_{10} alkoxy; R2 is hydrogen, halogen, C_1 - C_{10} haloalkyl, C_1 - C_{10} alkoxy, C_1 - C_{10} alkyl, C_3 - C_8 cycloalkyl, Acidic Group, or -(C_{12})₁₋₇-(Acidic Group);

15

R3 is hydrogen, halogen, C_1 - C_{10} alkyl, aryl, C_1 - C_{10} haloalkyl, C_1 - C_{10} alkoxy, C_6 - C_{20} aryloxy, or C_3 - C_8 cycloalkyl;

20 R4 is C_1-C_4 alkyl, C_3-C_4 cycloalkyl, $-(CH_2)_{1-7}-(C_3-C_4 \text{ cycloalkyl}), C_2-C_4 \text{ alkenyl}, C_2-C_4 \text{ alkynyl},$ benzyl, or aryl; and

n is 0, 1, 2, 3, 4, 5, or 6;

25

30

or a pharmaceutically acceptable salt, solvate, or prodrug derivative thereof, in combination with a therapeutically effective amount of an anti-cancer agent or a pharmaceutically acceptable salt, solvate, or prodrug derivative thereof.

3. The composition of claim 2 wherein X is a heterocyclic radical selected from the group consisting of substituents represented by the following formulae:

5

10 .

where R10 is a radical selected from hydrogen or

- 10 C_1 - C_4 alkyl; and R11 is a radical selected from hydrogen, halo, C_1 - C_{10} alkyl, C_1 - C_{10} haloalkyl, C_1 - C_{10} alkoxy, aryl, or C_6 - C_{20} aryloxy.
- 4. The composition of claim 2 wherein the R1, R2, R3 and R4 groups for substitution in formula (I) are selected from the following variables coded R01 thru R16

R variables	R1	R2	R3	R4
Combination	group	group	group	group
Code	choice	choice	choice	choice
R01	R1	R2	R3	R4
R02	R1	R2	R3	PG1-R4
R03	R1	R2	PG1-R3	R4
R04	R1	R2	PG1-R3	PG1-R4
R05	R1	PG1-R2	R3	R4
R06	R1	PG1-R2	R3	PG1-R4
R07	R1	PG1-R2	PG1-R3	R4
R08	R1	PG1-R2	PG1-R3	PG1-R4
R09	PG1-R1	R2	R3	R4
R10	PG1-01	R2	R3	PG1-R4
R11	PG1-R1	R2	PG1-R3	R4
R12	PG1-R1	R2	PG1-R3	PG1-R4
R13	PG1-R1	PG1-R2	R3	R4
R14	PG1-R1	PG1-R2	R3	PG1-R4
R15	PG1-R1	PG1-R2	PG1-R3	R4
R16	PG1-R1	PG1-R2	PG1-R3	PG1-R4

and;

5 the Y1, Y2, and Y3 groups for substitution in formula (I) are selected from the following variables coded Y01 thru Y27:

Y variables	Y1 group	Y2 group	Y3 group
combination	choice	choice	choice
code			
Y01	Y1	Y2	Y3
Y02	Yl	Y2	PG1-Y3
Y03	Y1	Y2	PG2-Y3
Y04	Y1	PG1-Y2	Y3
Y05	Y1	PG2-Y2	Y3
Y06	Y1	PG1-Y2	PG1-Y3
Y07	Y1	PG1-Y2	PG2-Y3
Y08	Y1	PG2-Y2	PG1-Y3
Y09	Y1	PG2-Y2	PG2-Y3
Y10	PG1-Y1	Y2	Y3
Y11	PG1-Y1	Y2	PG1-Y3
Y12	PG1-Y1	Y2	PG2-Y3
Y13	PG1-Y1	PG1-Y2	Y3

Y14	PG1-Y1	PG1-Y2	PG1-Y3
Y15	PG1-Y1	PG1-Y2	PG2-Y3
Y16	PG1-Y1	PG2-Y2	Y3
Y17	PG1-Y1	PG2-Y2	PG1-Y3
Y18	PG1-Y1	PG2-Y2	PG2-Y3
Y19	PG2-Y1	Y2	Y3
Y20	PG2-Y1	¥2	PG1-Y3
Y21	PG2-Y1	¥2	PG2-Y3
Y22	PG2-Y1	PG1-Y2	Y3
Y23	PG2-Y1	PG1-Y2	PG1-Y3
Y24	PG2-Y1	PG1-Y2	PG2-Y3
Y25	PG2-Y1	PG2-Y2	Y3
Y26	PG2-Y1	PG2-Y2	PG1-Y3
Y27	PG2-Y1	PG2-Y2	PG2-Y3

and;

5 the X and Z groups and the n variable for substitution in formula (I) are selected from the following variables coded XZn01 thru XZn24:

XZn variables	Х	Z	n integer
combination	group	Group	group
code	choice	Choice	choice
XZn01	X	Z	n
XZn02	Х	Z	PG1-n
XZn03	Х	Z	PG2-n
XZn04	Х	PG1-Z	n
XZn05	X	PG2-Z	n
XZn06	Х	PG3-Z	n
XZn07	х	PG1-Z	PG1-n
XZn08	X	PG2-Z	PG1-n
XZn09	Х	PG3-Z	PG1-n
XZn10	Х	PG1-Z	PG2-n
XZn11	х	PG2-Z	PG2-n
XZn12	Х	PG3-Z	PG2-n
XZn13	PG1-X	Z	n
XZn14	PG1-X	Z	PG1-n
XZn15	PG1-X	Z	PG2-n
XZn16	PG1-X	PG1-Z	n
XZn17	PG1-X	PG2-Z	n

XZn18	PG1-X	PG3-Z	n
XZn19	PG2-X	PG1-Z	PG1-n
XZn20	PG2-X	PG2-Z	PG1-n
XZn21	PG2-X	PG3-Z	PG1-n
XZn22	PG2-X	PG1-Z	PG2-n
XZn23	PG2-X	PG2-Z	PG2-n
XZn24	PG2-X	PG3-Z	PG2-n

5. The composition of claim 2 wherein the leukotriene B4 antagonist is described by formula (II):

wherein;

5

10

X2 is a heterocyclic radical selected from,

R21 is ethyl, 2-propen-1-yl, 3-propen-1-yl, n-propyl, iso-propyl, n-butyl, sec-butyl, or tert-butyl; and

R22 is hydrogen, n-butyl, sec-butyl, flouro, chloro, 5 -CF3, or tert-butyl.

Z2 is the Acidic Group selected from carboxyl, tetrazolyl, or N-sulfonamidyl;

- 10 or a salt, solvate or prodrug thereof.
 - 6. The composition of claim 5 wherein the leukotriene antagonist is a compound selected from the following:

15

-208-

5

or an acid, salt, solvate or prodrug derivative thereof.

7. The composition of claim 5 wherein the leukotriene antagonist is a compound selected from the following:

10 or an acid, salt, solvate or prodrug derivative thereof.

10

15

20

25

8. The composition of claim 1 the leukotriene (LTB4) antagonist is represented by a compound of the structure (Formula A):

Formula A

or a pharmaceutically acceptable base addition salt thereof, wherein:

 R_1 , is C_1 - C_5 alkyl, C_2 - C_5 alkenyl, C_2 - C_5 alkynyl, C_1 - C_4 alkyl) thio, halo, or R_2 -substituted phenyl;

each R_2 , and R_3 , are each independently hydrogen, halo, hydroxy, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, $(C_1$ - C_4 alkyl)- $(0)_q$ S-, trifluoromethyl, or di- $(C_1$ - C_3 alkyl)amino;

X' is -O-, -S-, -C(=0), or -CH₂-;

Y' is -O- or -CH₂-;

or when taken together, -X'-Y'- is -CH=CH- or -C=C-;

Z' is a straight or branched chain C1-C10 alkylidenyl;

A' is a bond, -O-, -S-, -CH=CH-, or -CR $_a$ R $_b$ -, where R $_a$ and R $_b$ are each independently hydrogen, C1-C5 alkyl, or R7-substituted phenyl, or when taken together with the carbon atom to which they are attached form a C4-C8 cycloalkyl ring;

 R_4 , is R_6 , or taken from one of the following formulae:

$$R_{7}$$
 $C-G-R_{6}$ $(CH_{2})_{t}$ C

wherein:

10

15

20

each R₆ is independently -COOH, 5-tetrazoly1, -CON(R₉)₂, or -CONHSO₂R₁₀;

each R7 is hydrogen, C1-C4 alkyl, C2-C5 alkenyl, C2-C5 alkynyl, benzyl, methoxy, -W-R6, -T-G-R6, (C1-C4 alkyl)-T-(C1-C4 alkylidenyl)-O-, or hydroxy;

R8 is hydrogen or halo;

each Rg is independently hydrogen, phenyl, or C1-C4 alkyl, or when taken together with the nitrogen atom form a morpholino, piperidino, piperazino, or pyrrolidino group;

R₁₀ is C₁-C₄ alkyl or phenyl;

 R_{11} is R_2 , $-W-R_6$, or $-T-G-R_6$;

each W is a bond or a straight or branched chain divalent hydrocarbyl radical of one to eight carbon atoms;

each G is a straight or branched chain divalent hydrocarbyl radical of one to eight carbon atoms;

each T is a bond, $-CH_2-$, -O-, -NH-, -NHCO-, -C(=O)-, or $(O)_{Q}$ S-;

K is -C(=0) - or -CH(OH) -;

each q is independently 0, 1, or 2;

p is 0 or 1; and

t is 0 or 1;

provided when X is -O- or -S-, Y is not -O-; provided when A is -O- or -S-, R4 is not R6;

and provided W is not a bond when p is 0; and the pharmaceutically-acceptable salts thereof.

15

20

9. The composition of claim 8 wherein R4' is selected from the following formulae:

$$R_{11}$$
, or R_{12}

10. The composition of claim 9 wherein R4'is:

$$R_7$$

- 11. The composition of claim 10 wherein said compound 10 is selected from the group (A) to (KKKK) consisting of:
 - A) 2-Methyl-2-(1H-tetrazol-5-yl)-7-(2-ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy)heptane;
 - B) 2-Methyl-2-(1H-tetrazol-5-yl)-7-(2-ethyl-4-(3-fluorophenyl)-5-hydroxyphenoxy)heptane;
 - C) 3-(2-(3-(2-Ethyl-4-(4-fluorophenyl)-5hydroxyphenoxy)propoxy)-6-(4dimethylaminocarbonylbutyloxy)phenyl)propion ic acid;

	D)	3-(2-(3-(2-Ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy)propoxy)phenyl)propionic acid;
5	E)	3-(2-(3-(2-Ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy)propoxy)-6-(4-carboxybutyloxy)phenyl)propionic acid;
10	F)	3-(2-(3-(2-Ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy)propoxy)-6-methoxyphenyl)propionic acid;
15	G)	3-(2-(3-(2-Ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy)propoxy)-6-(4-(1H-tetrazol-5-yl)butyloxy)phenyl)propionic acid;
20	H)	<pre>Methyl 3-(2-(4-(2-ethyl-4-(4-fluorophenyl)- 5-hydroxyphenoxy)-(1- butenyl))phenyl)propionate;</pre>
20	I)	<pre>3-(2-(4-(2-Ethyl-4-(4-fluorophenyl)-5- hydroxyphenoxy)-(1-butenyl))phenyl)propionic acid;</pre>
25	J)	<pre>3-(2-(4-(2-Ethyl-4-(4-fluorophenyl)-5- hydroxyphenoxy)butyl)phenyl)propionic acid;</pre>
30	K)	3-(2-(4-(2-Ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy)butyl)-6-methoxyphenyl)propionic acid;
	L)	Methyl 3-(2-(3-(2-ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy)propoxy)-6-hydroxyphenyl)propionate;
35	M)	3-(2-(3-(2-Ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy)propoxy)-6-hydroxyphenyl)propionic acid;
40	N)	3-(2-(3-(2-Ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy)propoxy)-6-(4-butyloxy)phenyl)propionic acid;
45	0)	3-(2-(3-(2-Ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy)propoxy)-6-(4-methylthiobutyloxy)phenyl)propionic acid;

	P)	<pre>3-(2-(3-(2,4-Di-(4-fluorophenyl)-5- hydroxyphenoxy)propoxy)-6-(4- carboxybutoxy)phenyl)propionic acid;</pre>
5	Q)	6-Methyl-6-(1H-tetrazol-5-yl)-11-(2-ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy)undecane;
10	R)	N, N-Dimethyl-3-(2-(3-(2-ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy)propoxy)phenyl)propionamide;
15	S)	N-Methanesulfony1-3-(2-(3-(2-ethy1-4-(4-fluoropheny1)-5-hydroxyphenoxy)phenyl)propionamide;
	T)	N-Phenylsulfonyl-3-(2-(3-(2-ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy)propoxy)phenyl)propionamide;
20	Ŭ)	<pre>3-(2-(3-(2-Buty1-4-(4-fluorophenyl)-5- hydroxyphenoxy)propoxy)phenyl)propionic acid;</pre>
25	V)	Ethyl 3-(2-(4-(2-ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy)butyloxy)phenyl)propionate;
20	W)	<pre>3-(2-(4-(2-Ethy1-4-(4-fluorophenyl)-5- hydroxyphenoxy)butyloxy)phenyl)propionic acid;</pre>
30	X)	Methyl 3-(2-(3-(2-ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy)propoxy)-6-(4-(methoxycarbonyl)phenoxy)phenyl)propionate;
35	Y)	3-(2-(3-(2-Ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy)propoxy)-6-(4-carboxyphenoxy)phenyl)propionic acid;
40	Z)	<pre>3-(2-(3-(2-Ethyl-4-(4-fluorophenyl)-5- hydroxyphenoxy)propoxy)-4-(4- carboxyphenoxy)phenyl)propionic acid;</pre>
45	AA)	3,3-Dimethyl-3-(2-(3-(2-ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy)propoxy)phenyl)propionic acid;

	BB)	2-Methyl-2-(1H-tetrazol-5-yl)-3-(2-(3-(2-ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy)phenyl)propane;
5	CC)	2-Methyl-2-(1H-tetrazol-5-yl)-3-hydroxy-3- (2-(3-(2-ethyl-4-(4-fluorophenyl)-5- hydroxyphenoxy)propoxy)phenyl)propane;
10	DD)	<pre>3-(2-(3-(2-Bromo-4-(4-fluorophenyl)-5- hydroxyphenoxy)propoxy)phenyl)propionic acid;</pre>
15	EE)	<pre>3-(2-(3-(2-Ethylthio-4-(4-fluorophenyl)-5- hydroxyphenoxy)phenyl)propionic acid;</pre>
20	FF)	Methyl 3-(2-hydroxy-3-(4- methoxycarbonylbutyl)-6-(3-(2-ethyl-4-(4- fluorophenyl)-5- hydroxyphenoxy)propoxy)phenyl)propionate;
20		
•	GG)	5-(3-(2-Ethyl-4-(4-fluorophenyl)-5- hydroxyphenoxy)propoxy)-8-(4-carboxybuty 1)dihydrocoumarin;
25	HH)	2-Phenyl-4-ethyl-5-[6-(2H-tetrazol-5-yl)-6-methylheptyloxy]phenol sodium salt;
30	II)	2-(4-Methylphenyl)-4-ethyl-5-[6-methyl-6-(2H-tetrazol-5-yl)heptyloxy]phenol disodium salt;
35	JJ)	<pre>2-(3-Methylphenyl)-4-ethyl-5-[6-methyl-6- (2H-tetrazol-5-yl)heptyloxy]phenol sodium salt;</pre>
	KK)	2-(2-Methylphenyl)-4-ethyl-5-[6-methyl-6-(2H-tetrazol-5-yl)heptyloxy]phenol disodium salt;
40	LL)	<pre>2-(4-Methoxyphenyl)-4-ethyl-5-[6-methyl-6- (2H-tetrazol-5-yl)heptyloxy]phenol sodium salt;</pre>
45	MM)	<pre>2-(3-Methoxyphenyl)-4-ethyl-5-[6-methyl-6- (2H-tetrazol-5-yl)heptyloxy]phenol sodium salt;</pre>

	NN)	2-(4-Trifluoromethylphenyl)-4-ethyl-5-[6-methyl-6-(2H-tetrazol-5-yl)heptyloxy]phenol disodium salt;
5	00)	2-(3-Dimethylaminophenyl)-4-ethyl-5-[6-methyl-6-(2H-tetrazol-5-yl)heptyloxy]phenol disodium salt;
10	PP)	3-(5-(6-(4-Phenyl-5-hydroxy-2- ethylphenoxy)propoxy)-2-carboxymethyl- 1,2,3,4 -tetrahydronaphthalen-1(2H)- one)propanoic acid;
15	QQ)	3-(5-(6-(4-(4-Fluorophenyl)-5-hydroxy-2-ethylphenoxy)propoxy)-2-carboxymeth yl-1,2,3,4-tetrahydronaphthalen-1(2H)-one)propanoic acid;
20	RR)	3-(4-(5-(4-(4-Fluorophenyl)-5-hydroxy-2-ethylphenoxy)propoxy)-2-carboxymeth yl-2,3-dihydroinden-1(2H)-one)propanoic acid;
25	SS)	3,3-Dimethyl-5-(3-(2-carboxyethyl)-4-(3-(4-fluorophenyl)-5-hydroxy-2-ethylphenoxy)propoxy)phenyl)-5-oxopentanoic acid;
30	TT)	7-[3-[(5-Ethyl-2-hydroxy[1,1'-biphenyl]-4-yl)oxy]propoxy]-3,4-dihydro-8-propyl-2H-1-benzopyran-2-carboxylic acid;
	עט)	8-Propyl-7-[3-[4-(4-fluorophenyl)-2-ethyl-5-hydroxyphenoxy]propoxy]-3,4-dihydro-2H-1-benzopyran-2-carboxylic acid;
	VV)	<pre>2-[3-[3-[(5-Ethyl-2-hydroxy[1,1'-biphenyl]- 4-yl)oxy]propoxy]-2-propylphenoxy]propanoic acid;</pre>
40	WW)	2-(4-Chlorophenyl)-4-ethyl-5-[6-methyl-6-(2H-tetrazol-5-yl)heptyloxy]phenol monosodium salt;
45	XX)	2-(3,5-Dichlorophenyl)-4-ethyl-5-[6-methyl-6-(2H-tetrazol-5-yl)heptyloxy]phenol monosodium salt;

	YY)	<pre>3-[2-[3-[(5-Ethyl-2-hydroxy[1,1'-biphenyl]- 4-yl)oxy]propoxy]-1-dibenzofuran]propanoic acid disodium salt;</pre>
5	ZZ)	7-Carboxy-9-oxo-3-[3-(2-ethyl-5-hydroxy-4-phenylphenoxy)propoxy]-9H-xanthene-4-propanoic acid disodium salt monohydrate;
10	AAA)	2-[2-Propy1-3-[3-(2-ethy1-5-hydroxy-4-phenylphenoxy)propoxy]phenoxy]benzoic acid sodium salt hemihydrate;
15	BBB)	<pre>3-[3-(2-Ethyl-5-hydroxy-4- phenylphenoxy)propoxy][1,1'-biphenyl]-4- propanoic acid disodium salt monohydrate;</pre>
0.0	CCC)	5-Ethyl-4-[3-[2-propyl-3-[2-(2H-tetrazol-5-yl)phenoxy]phenoxy]propoxy][1,1'-biphenyl]-2-ol disodium salt sesquihydrate;
20	DDD)	3-[4-[3-[3-(2-Ethyl-5-hydroxy-4-phenylphenoxy)propoxy]-9-oxo-9H-xanthene]]propanoic acid sodium salt hemihydrate;
25	EEE)	2-Fluoro-6-[2-propyl-3-[3-(2-ethyl-5-hydroxy-4-phenylphenoxy)propoxy]phenoxy]benzoic acid disodium salt;
30	FFF)	2-[2-Propy1-3-[3-[2-ethy1-4-(4-fluoropheny1)-5-hydroxyphenoxy]propoxy]phenoxy]benzoic acid sodium salt;
35	GGG)	3-[4-[7-Carboxy-9-oxo-3-[3-[2-ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy]propoxy]-9H-xanthene]] propanoic acid disodium salt trihydrate;
40	ннн)	3-[4-[9-0xo-3-[3-[2-ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy]propoxy]-9H-xanthene]]propanoic acid;

	III)	<pre>3-[2-[1-[2-Ethy1-4-(4-fluoropheny1)-5- hydroxyphenoxy]propoxy]-4-(5-oxo-5- morpholinopentanamido)phenyl]propanoic acid;</pre>
5	JJJ)	2-Fluoro-6-[2-propyl-3-[3-[2-ethyl-5-hydroxy-4-(4-fluorophenyl)phenoxy]propoxy]phenoxy]benzoic acid disodium salt hydrate;
10	KKK)	4-Fluoro-2-[2-propyl-3-[3-[2-ethyl-5-hydroxy-4-(4-fluorophenyl)phenoxy]propoxy]phenoxy]benzoic acid;
15	LLL)	2-[2-Propyl-3-[5-[2-ethyl-5-hydroxy-4-(4-fluorophenyl)phenoxy]pentoxy]phenoxy]benzoic acid;
20	MMM)	<pre>2-[2-Propyl-3-[4-[2-ethyl-5-hydroxy-4-(4- fluorophenyl)phenoxy]butoxy]phenoxy]benzoic acid sesquihydrate;</pre>
25	NNN)	2-[2-(2-Methylpropyl)-3-[3-[2-ethyl-5-hydroxy-4-(4-fluorophenyl)phenoxy]propoxy]phenoxy]benzoic acid;
30	000)	<pre>2-[2-Buty1-3-[3-[2-ethy1-5-hydroxy-4-(4- fluorophenyl)phenoxy]propoxy]phenoxy]benzoic acid hydrate;</pre>
35	PPP)	2-[2-(Phenylmethyl)-3-[3-[2-ethyl-5-hydroxy-4-(4-fluorophenyl)phenoxy]propoxy]phenoxy]benzoic acid;
40	QQQ)	2-[2-Propyl-3-[3-[2-ethyl-5-hydroxy-4-(4-fluorophenyl)phenoxy]propoxy]phenoxy]phenylacetic acid;
	RRR)	2-[2-Propyl-3-[3-[2-ethyl-5-hydroxy-4-(4-fluorophenyl)phenoxy]propoxy]benzoyl]benzoic acid;

A guille indicatories of 8 halls - 1.

E	SSS)	<pre>2-[[2-Propyl-3-[3-[2-ethyl-5-hydroxy-4-(4-fluorophenyl)phenoxy]propoxy]phenyl]methyl]b enzoic acid;</pre>
5	TTT)	2-[2-Propyl-3-[3-[2-ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy]propoxy]thiophenoxy]benzoicacid;
10	טטט)	2-[2-Propyl-3-[3-[2-ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy]propoxy]phenylsulfinyl]benzoicacid;
15	VVV)	2-[2-Propyl-3-[3-[2-ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy]propoxy]phenylsulfonyl]benzoic acid hydrate;
20	WWW)	5-[3-[2-(1-Carboxy)ethyl]-4-[3-[2-ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy]phenyl]-4-pentynoic acid disodium salt 0.4 hydrate;
25	XXX)	1-Phenyl-1-(1H-tetrazol-5-yl)-6-(2-ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy)hexane;
30	YYY)	1-(4-(Carboxymethoxy)phenyl)-1-(1H-tetrazol- 5-yl)-6-(2-ethyl-4-(4-fluorophenyl)-5- hydroxyphenoxy)hexane;
35	ZZZ)	1-(4-(Dimethylaminocarbonylmethoxy)phenyl)- 1-(1H-tetrazol-5-yl)-6-(2-ethyl-4-(4- fluorophenyl)-5-hydroxyphenoxy)hexane;
	AAAA)	3-(2-(3-(2-Ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy)propoxy)phenyl)-E-propenoic acid;
40	BBBB)	3-(2-(3-(2-Ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy)phenyl)-2-methyl-E-propenoic acid;

_	cccc)	5-(2-(2-(3-(2-Ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy)propoxy)phenyl)ethyl)-1H-tetrazole;
5	DDDD)	3-(2-(3-(2-Ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy)propoxy)-4-(4-carboxybutyloxy)phenyl)propionic acid;
10	EEEE)	5-[3-[4-(4-Fluorophenyl)-2-ethyl-5-hydroxyphenoxy]propoxy]-3,4-dihydro-2H-1-benzopyran-2-one;
15	FFFF)	<pre>3-(3-{3-[2-Ethyl-4-(4-fluorophenyl)-5- hydroxyphenyloxy]propoxy}phenyl)propanoic acid;</pre>
20	GGGG)	3-(3-{3-[2-Ethyl-4-(4-fluorophenyl)-5-hydroxyphenyloxy]propoxy}-4-propylph enyl)propanoic acid sodium salt;
	нннн)	3-(4-{3-[2-Ethyl-4-(4-fluorophenyl)-5-hydroxyphenyloxy]propoxy}-3-propylphenyl)propanoic acid;
25	·	3-(3-{3-[2-Ethyl-4-(4-fluorophenyl)-5-hydroxyphenyloxy]propoxy}-2-propylphenyl)propanoic acid;
30		3-{3-[3-(2-Ethyl-5-hydroxyphenyloxy)propoxy]-2-propylphenyl}propanoic acid disodium salt; and
35	KKKK)	2-[3-[3-[2-Ethyl-5-hydroxy-4-(4-fluorophenyl)phenoxy]propoxy]benzoyl]benzoic acid disodium salt hemihydrate.

12. The composition of claim 8 wherein the leukotriene (LTB₄) antagonist is a compound of the structure (Formula B):

Formula B

namely, 2-[2-propyl-3-[3-[2-ethyl-5-hydroxy-4-(4-fluorophenyl)phenoxy]propoxy] phenoxy benzoic acid, and the pharmaceutically acceptable salts thereof.

The composition of claim 1 wherein the anti-cancer agent is selected from the group consisting of Busulfan, 15 Carboplatin, Carmustine, Cisplatin, Cyclophosphamide, Dacarbazine, Ifosfamide, Lomustine, Streptozocin, Oxaliplatin, Temozolomide, Bleomycin, Dactinomycin, Daunorubicin, Doxorubicin, Idarubicin, Mitomycin-C, Plicamycin, Cryptophycin, Cytarabine, Floxuridine, 20 Fludarabine, 5-Fluorouracil, Hydroxyurea, 6-Mercaptopurine, Methotrexate, Thioguanine; Capecitabine, Aldesleukin, Interferon Alfa-2A, Interleukin-2, Interleukin-12 (recombinant), Interferon Alfa-2B (recombinant), Interferon Alfa-n3, Interferon Gamma-1B, Herceptin interleukin-2, 25 interleukin-12, Aminoglutethimide, Anastrozole, Flutamide, Goserelin, Leuprolide, Megestrol, Mitotane, Tamoxifen,

PCT/US00/30944

WO 01/34135 PC7

Chlorambucil, Estramustine, Mechlorethamine, Melphalan,
Thiotepa, Docetaxel, Etoposide, Irinotecan HCl, Paclitaxel,
Teniposide, Topotecan, Vinblastine, Vincristine,
Vinorelbine, Altretamine, Amifostine Asparaginase
5 Escherichia coli strain, BCG Live (Intravesical),
Cladribine, Leucovorin, Levamisole, Mitoxantrone,
Pegaspargase, Pentostatin, and Procarbazine.

-226-

The composition of claim 13 wherein the anticancer agent is selected from the group consisting of 10 Busulfan, Carboplatin, Carmustine, Cisplatin, Cyclophosphamide, Dacarbazine, Ifosfamide, Lomustine, Streptozocin, Oxaliplatin, Temozolomide, Bleomycin, Dactinomycin, Daunorubicin, Doxorubicin, Idarubicin, 15 Mitomycin-C, Plicamycin, Cryptophycin, Cytarabine, Floxuridine, Fludarabine, 5-Fluorouracil, Hydroxyurea, 6-Mercaptopurine, Methotrexate, Thioguanine; Capecitabine, Aldesleukin, Interferon Alfa-2A, Interleukin-2, Interleukin-12 (recombinant), Interferon Alfa-2B (recombinant), Interferon Alfa-n3, Interferon Gamma-1B, Herceptin 20 interleukin-2, interleukin-12, Aminoglutethimide, Anastrozole, Flutamide, Goserelin, Leuprolide, Megestrol, Mitotane, Tamoxifen, Chlorambucil, Estramustine, Mechlorethamine, Melphalan, Thiotepa, Docetaxel, Etoposide, Irinotecan HCl, Paclitaxel, Teniposide, Topotecan, Vinblastine, Vincristine, Vinorelbine, Altretamine, Amifostine Asparaginase-Escherichia coli strain, BCG Live (Intravesical), Cladribine, Leucovorin, Levamisole,

Mitoxantrone, Pegaspargase, Pentostatin, and Procarbazine.

PCT/US00/30944

15. Use in the manufacture of a medicament for the treatment of cancer in mammals comprising a therapeutically effective amount of a leukotriene (LTB4) antagonist and one or more anti-cancer agents.

5

16. The use according to claim 15 wherein the leukotriene (LTB4) antagonist is represented by the formula (I)

10

$$X$$
 QH
 Y_3
 $(CH_2)_n$
 Y_2
 $R3$
 $R3$
 $R2$
 $R3$
 (I)

wherein:

X is selected from the group consisting of,

15

(i) a five membered substituted or unsubstituted heterocyclic radical containing from 1 to 4 hetero atoms independently selected from sulfur, nitrogen or oxygen; and

20

(ii) a fused bicyclic radical wherein a carbocyclic group is fused to two adjacent carbon atoms of the five membered heterocyclic radical, (i);

A CONTRACTOR OF THE PROPERTY O

 Y_1 is a bond or divalent linking group containing 1 to 9 atoms;

 Y_2 and Y_3 are divalent linking groups independently selected from -CH₂-, -O-, or -S-;

Z is an Acidic Group;

R1 is C_1 - C_{10} alkyl, aryl, C_3 - C_8 cycloalkyl, C_2 - C_{10} alkenyl, C_2 - C_{10} alkynyl, C_6 - C_{20} aralkyl, C_6 - C_{20} alkaryl, C_1 - C_{10} haloalkyl, C_6 - C_{20} aryloxy, or C_1 - C_{10} alkoxy; R2 is hydrogen, halogen, C_1 - C_{10} haloalkyl, C_1 - C_{10} alkoxy, C_1 - C_{10} alkyl, C_3 - C_8 cycloalkyl, Acidic Group, or -(C_1 - C_1 - C_1 -(Acidic Group);

15 R3 is hydrogen, halogen, C_1 - C_{10} alkyl, aryl, C_1 - C_{10} haloalkyl, C_1 - C_{10} alkoxy, C_6 - C_{20} aryloxy, or C_3 - C_8 cycloalkyl;

20 R4 is C_1-C_4 alkyl, C_3-C_4 cycloalkyl, $-(CH_2)_{1-7}-(C_3-C_4 \text{ cycloalkyl}), C_2-C_4 \text{ alkenyl}, C_2-C_4 \text{ alkynyl},$ benzyl, or aryl; and

n is 0, 1, 2, 3, 4, 5, or 6;

or a pharmaceutically acceptable salt, solvate, or prodrug derivative thereof, in combination with a therapeutically effective amount of one or more anti-cancer agents.

17. The use according to claim 16 wherein X is a heterocyclic radical selected from the group consisting of substituents represented by the following formulae:

5

where R10 is a radical selected from hydrogen or

 C_1-C_4 alkyl; and R11 is a radical selected from hydrogen, halo, C_1-C_{10} alkyl, C_1-C_{10} haloalkyl, C_1-C_{10} alkoxy, aryl, or C_6-C_{20} aryloxy.

18. The use according to claim 16 wherein the R1, R2, R3 and R4 groups for substitution in formula (I) are selected from the following variables coded R01 thru R16

R variables	R1	R2	R3	R4
Combination	group	group	group	group
Code	choice	choice	choice	choice
R01	R1	R2	R3	R4
R02	R1	R2	R3	PG1-R4
R03	R1	R2	PG1-R3	R4
R04	R1	R2	PG1-R3	PG1-R4
R05	R1	PG1-R2	R3	R4
R06	R1	PG1-R2	R3	PG1-R4
R07	R1	PG1-R2	PG1-R3	R4
R08	R1	PG1-R2	PG1-R3	PG1-R4
R09	PG1-R1	R2	R3	R4
R10	PG1-01	R2	R3	PG1-R4
R11	PG1-R1	R2	PG1-R3	R4
R12	PG1-R1	R2	PG1-R3	PG1-R4
R13	PG1-R1	PG1-R2	R3	R4
R14	PG1-R1	PG1-R2	R3	PG1-R4
R15	PG1-R1	PG1-R2	PG1-R3	R4
R16	PG1-R1	PG1-R2	PG1-R3	PG1-R4

5

and;

the Y1, Y2, and Y3 groups for substitution in formula (I) are selected from the following variables coded Y01 thru Y27:

5

Y variables	V1 group	Y2 group	Y3 group
combination	Y1 group choice	choice	choice
code	Choice	CHOICE	Choice
	Y1	Y2	Y3
Y01	Y1	Y2	PG1-Y3
Y02	Y1	Y2	PG2-Y3
Y03			Y3
Y04	Y1	PG1-Y2	
Y05	Y1	PG2-Y2	Y3
Y06	Y1	PG1-Y2	PG1-Y3
¥07	Y1	PG1-Y2	PG2-Y3
Y08	Y1	PG2-Y2	PG1-Y3
Y09	Y1	PG2-Y2	PG2-Y3
Y10	PG1-Y1	Y2	Y3
Y11	PG1-Y1	Y2	PG1-Y3
Y12	PG1-Y1	Y2	PG2-Y3
Y13	PG1-Y1	PG1-Y2	Y3
Y14	PG1-Y1	PG1-Y2	PG1-Y3
Y15	PG1-Y1	PG1-Y2	PG2-Y3
Y16	PG1-Y1	PG2-Y2	Y3
Y17	PG1-Y1	PG2-Y2	PG1-Y3
Y18	PG1-Y1	PG2-Y2	PG2-Y3
Y19	PG2-Y1	Y2	Y3
Y20	PG2-Y1	Y2	PG1-Y3
Y21	PG2-Y1	¥2	PG2-Y3
Y22	PG2-Y1	PG1-Y2	Y3
Y23	PG2-Y1	PG1-Y2	PG1-Y3
Y24	PG2-Y1	PG1-Y2	PG2-Y3
Y25	PG2-Y1	PG2-Y2	Y3
Y26	PG2-Y1	PG2-Y2	PG1-Y3
Y27	PG2-Y1	PG2-Y2	PG2-Y3

and;

and the same of th

the X and Z groups and the n variable for substitution in formula (I) are selected from the following variables coded XZn01 thru XZn24:

5 .

XZn variables	Х	Z	n integer
combination	group	Group	group
code	choice	Choice	choice
XZn01	X	Z	n
XZn02	X	Z	PG1-n
XZn03	Х	Z	PG2-n
XZn04	Х	PG1-Z	n
XZn05	Х	PG2-Z	n
XZn06	Х	PG3-Z	n
XZn07	Х	PG1-Z	PG1-n
XZn08	х	PG2-Z	PG1-n
XZn09	Х	PG3-Z	PG1-n
XZn10	х	PG1-Z	PG2-n
XZn11	Х	PG2-Z	PG2-n
XZn12	Х	PG3-Z	PG2-n
XZn13	PG1-X	Z	n
XZn14	PG1-X	Z	PG1-n
XZn15	PG1-X	Z	PG2-n
XZn16	PG1-X	PG1-Z	n
XZn17	PG1-X	PG2-Z	n
XZn18	PG1-X	PG3-Z	n
XZn19	PG2-X	PG1-Z	PG1-n
XZn20	PG2-X	PG2-Z	PG1-n
XZn21	PG2-X	PG3-Z	PG1-n
XZn22	PG2-X	PG1-Z	PG2-n
XZn23	PG2-X	PG2-Z	PG2-n
XZn24	PG2-X	PG3-Z	PG2-n

19. A use according to claim 16 wherein the leukotriene B4 antagonist is described by formula (II):

wherein;

5

10

X2 is a heterocyclic radical selected from,

R21 is ethyl, 2-propen-1-yl, 3-propen-1-yl, n-propyl, 15 iso-propyl, n-butyl, sec-butyl, or tert-butyl; and

R22 is hydrogen, n-butyl, sec-butyl, flouro, chloro, $-CF_3$, or tert-butyl.

Z2 is the Acidic Group selected from carboxyl, tetrazolyl, or N-sulfonamidyl;

or a salt, solvate or prodrug thereof.

5

20. The use according to claim 19, wherein the leukotriene antagonist is a compound selected from the following:

10

15

N-N OH S COOL

or an acid, salt, solvate or prodrug derivative thereof.

5

21. The use according to claim 20 wherein the leukotriene antagonist is a compound selected from the following:

10

or an acid, salt, solvate or prodrug derivative thereof.

10

22. Use in the manufacture of a medicament for the treatment of cancer in mammals comprising a therapeutically effective amount of a leukotriene (LTB₄) antagonist represented by a compound of the structure (Formula A):

Formula A

or a pharmaceutically acceptable base addition salt thereof, wherein:

 R_1 , is C_1 - C_5 alkyl, C_2 - C_5 alkenyl, C_2 - C_5 alkynyl, C_1 - C_4 alkyl) thio, halo, or R_2 -substituted phenyl;

each R_2 , and R_3 , are each independently hydrogen, halo, hydroxy, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, $(C_1$ - C_4 alkyl)- $(0)_q$ S-, trifluoromethyl, or di- $(C_1$ - C_3 alkyl)amino;

X' is -O-, -S-, -C(=O), or -CH₂-;

10 Y' is -O- or -CH₂-;

or when taken together, -X'-Y'- is -CH=CH- or -C=C-;

Z' is a straight or branched chain C1-C10 alkylidenyl;

A' is a bond, -O-, -S-, -CH=CH-, or -CR $_a$ R $_b$ -, where R $_a$ and R $_b$ are each independently hydrogen, C1-C5 alkyl, or R7-substituted phenyl, or when taken together with the carbon atom to which they are attached form a C4-C8 cycloalkyl ring;

 R_4 , is R_6 , or taken from one of the following formulae

$$R_7$$
 $C-G-R_6$ CH_2

wherein:

5

each R_6 is independently -COOH, 5-tetrazolyl, -CON(R_9)2, or -CONHSO2 R_{10} ;

each R7 is hydrogen, C1-C4 alkyl, C2-C5 alkenyl, C2-C5 alkynyl, benzyl, methoxy, -W-R6, -T-G-R6, (C1-C4 alkyl)-T-(C1-C4 alkylidenyl)-O-, or hydroxy;

Rg is hydrogen or halo;

each Rg is independently hydrogen, phenyl, or C1-C4

10 alkyl, or when taken together with the nitrogen atom form a
morpholino, piperidino, piperazino, or pyrrolidino group;

R10 is C1-C4 alkyl or phenyl;

 R_{11} is R_2 , -W-R₆, or -T-G-R₆;

each W is a bond or a straight or branched chain divalent hydrocarbyl radical of one to eight carbon atoms;

each G is a straight or branched chain divalent

5 hydrocarbyl radical of one to eight carbon atoms;

each T is a bond, -CH2-, -O-, -NH-, -NHCO-, -C(=O)-, or (O) $_{Q}$ S-;

K is -C(=0) - or -CH(OH) -;

each q is independently 0, 1, or 2;

10 p is 0 or 1; and

t is 0 or 1;

provided when X is -O- or -S-, Y is not -O-;

provided when A is -O- or -S-, R4 is not R6;

and provided W is not a bond when p is 0;

- in combination with a therapeutically effective amount of one or more anti-cancer agents.
 - 23. The use of claim 22 wherein R4'is selected from the following formulae:

20

$$R_7$$
 R_6 $W-R_6$

or

24. The use of claim 23 wherein R4'is:

20

- 25. The use according to claim 24 wherein said compound is selected from the group (A) to (KKKK) consisting of:
 - A) 2-Methyl-2-(1H-tetrazol-5-yl)-7-(2-ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy)heptane;
- 10 B) 2-Methyl-2-(1H-tetrazol-5-yl)-7-(2-ethyl-4-(3-fluorophenyl)-5-hydroxyphenoxy)heptane;
 - C) 3-(2-(3-(2-Ethyl-4-(4-fluorophenyl)-5hydroxyphenoxy)propoxy)-6-(4dimethylaminocarbonylbutyloxy)phenyl)propion ic acid;
 - D) 3-(2-(3-(2-Ethyl-4-(4-fluorophenyl)-5hydroxyphenoxy)propoxy)phenyl)propionic acid;
 - E) 3-(2-(3-(2-Ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy)propoxy)-6-(4-carboxybutyloxy)phenyl)propionic acid;
 - F) 3-(2-(3-(2-Ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy)propoxy)-6-methoxyphenyl)propionic acid;
- 30 G) 3-(2-(3-(2-Ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy)propoxy)-6-(4-(1H-tetrazol-5-yl)butyloxy)phenyl)propionic acid;
- H) Methyl 3-(2-(4-(2-ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy)-(1butenyl))phenyl)propionate;

	I)	<pre>3-(2-(4-(2-Ethyl-4-(4-fluorophenyl)-5- hydroxyphenoxy)-(1-butenyl))phenyl)propionic acid;</pre>
5	J)	<pre>3-(2-(4-(2-Ethyl-4-(4-fluorophenyl)-5- hydroxyphenoxy)butyl)phenyl)propionic acid;</pre>
10	K)	<pre>3-(2-(4-(2-Ethyl-4-(4-fluorophenyl)-5- hydroxyphenoxy)butyl)-6- methoxyphenyl)propionic acid;</pre>
15	L)	Methyl 3-(2-(3-(2-ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy)propoxy)-6-hydroxyphenyl)propionate;
	M)	3-(2-(3-(2-Ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy)propoxy)-6-hydroxyphenyl)propionic acid;
20	N)	3-(2-(3-(2-Ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy)propoxy)-6-(4-butyloxy)phenyl)propionic acid;
25	0)	3-(2-(3-(2-Ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy)propoxy)-6-(4-methylthiobutyloxy)phenyl)propionic acid;
30	P)	<pre>3-(2-(3-(2,4-Di-(4-fluorophenyl)-5- hydroxyphenoxy)propoxy)-6-(4- carboxybutoxy)phenyl)propionic acid;</pre>
	Q)	6-Methyl-6-(1H-tetrazol-5-yl)-11-(2-ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy)undecane;
35	R)	N, N-Dimethyl-3-(2-(3-(2-ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy)propoxy)phenyl)propionamide;
40	S)	N-Methanesulfony1-3-(2-(3-(2-ethy1-4-(4-fluoropheny1)-5-hydroxyphenoxy)propoxy)phenyl)propionamide;
45	T)	N-Phenylsulfonyl-3-(2-(3-(2-ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy)propoxy)phenyl)propionamide;

	U)	3-(2-(3-(2-Butyl-4-(4-fluorophenyl)-5-hydroxyphenoxy)propoxy)phenyl)propionic acid;
5	V)	Ethyl 3-(2-(4-(2-ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy)butyloxy)phenyl)propionate;
10	W)	<pre>3-(2-(4-(2-Ethyl-4-(4-fluorophenyl)-5- hydroxyphenoxy)butyloxy)phenyl)propionic acid;</pre>
25	X)	Methyl 3-(2-(3-(2-ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy)propoxy)-6-(4-(methoxycarbonyl)phenoxy)phenyl)propionate;
15	Y)	3-(2-(3-(2-Ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy)propoxy)-6-(4-carboxyphenoxy)phenyl)propionic acid;
20	Z)	3-(2-(3-(2-Ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy)propoxy)-4-(4-carboxyphenoxy)phenyl)propionic acid;
25	AA)	3,3-Dimethyl-3-(2-(3-(2-ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy)propoxy)phenyl)propionic acid;
30	BB)	2-Methyl-2-(1H-tetrazol-5-yl)-3-(2-(3-(2-ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy)propoxy)phenyl)propane;
35	CC)	2-Methyl-2-(1H-tetrazol-5-yl)-3-hydroxy-3- (2-(3-(2-ethyl-4-(4-fluorophenyl)-5- hydroxyphenoxy)propoxy)phenyl)propane;
	DD)	3-(2-(3-(2-Bromo-4-(4-fluorophenyl)-5-hydroxyphenoxy)propoxy)phenyl)propionic acid;
40	EE)	<pre>3-(2-(3-(2-Ethylthio-4-(4-fluorophenyl)-5- hydroxyphenoxy)propoxy)phenyl)propionic acid;</pre>
45	FF)	Methyl 3-(2-hydroxy-3-(4-methoxycarbonylbutyl)-6-(3-(2-ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy)phenyl)propionate;

	GG)	5-(3-(2-Ethyl-4-(4-fluorophenyl)-5- hydroxyphenoxy)propoxy)-8-(4-carboxybuty l)dihydrocoumarin;
5	HH)	2-Phenyl-4-ethyl-5-[6-(2H-tetrazol-5-yl)-6-methylheptyloxy]phenol sodium salt;
10	II)	2-(4-Methylphenyl)-4-ethyl-5-[6-methyl-6-(2H-tetrazol-5-yl)heptyloxy]phenol disodium salt;
15	JJ)	<pre>2-(3-Methylphenyl)-4-ethyl-5-[6-methyl-6- (2H-tetrazol-5-yl)heptyloxy]phenol sodium salt;</pre>
	KK)	<pre>2-(2-Methylphenyl)-4-ethyl-5-[6-methyl-6- (2H-tetrazol-5-yl)heptyloxy]phenol disodium salt;</pre>
20	LL)	2-(4-Methoxyphenyl)-4-ethyl-5-[6-methyl-6-(2H-tetrazol-5-yl)heptyloxy]phenol sodium salt;
25	MM)	<pre>2-(3-Methoxyphenyl)-4-ethyl-5-[6-methyl-6- (2H-tetrazol-5-yl)heptyloxy]phenol sodium salt;</pre>
30	NN)	2-(4-Trifluoromethylphenyl)-4-ethyl-5-[6-methyl-6-(2H-tetrazol-5-yl)heptyloxy]phenol disodium salt;
35	00)	2-(3-Dimethylaminophenyl)-4-ethyl-5-[6-methyl-6-(2H-tetrazol-5-yl)heptyloxy]phenoldisodium salt;
40	PP)	3-(5-(6-(4-Phenyl-5-hydroxy-2-ethylphenoxy)propoxy)-2-carboxymethyl-1,2,3,4 -tetrahydronaphthalen-1(2H)-one)propanoic acid;
3 0	QQ)	3-(5-(6-(4-(4-Fluorophenyl)-5-hydroxy-2-ethylphenoxy)propoxy)-2-carboxymeth yl-1,2,3,4-tetrahydronaphthalen-1(2H)-
45		one)propanoic acid;

	RR)	3-(4-(5-(4-(4-Fluorophenyl)-5-hydroxy-2-ethylphenoxy)propoxy)-2-carboxymeth yl-2,3-dihydroinden-1(2H)-one)propanoic acid;
5	SS)	3,3-Dimethyl-5-(3-(2-carboxyethyl)-4-(3-(4-fluorophenyl)-5-hydroxy-2-ethylphenoxy)propoxy)phenyl)-5-oxopentanoic acid;
10	TT)	7-[3-[(5-Ethyl-2-hydroxy[1,1'-biphenyl]-4-yl)oxy]propoxy]-3,4-dihydro-8-propyl-2H-1-benzopyran-2-carboxylic acid;
15	(טט)	8-Propyl-7-[3-[4-(4-fluorophenyl)-2-ethyl-5-hydroxyphenoxy]propoxy]-3,4-dihydro-2H-1-benzopyran-2-carboxylic acid;
20	VV)	<pre>2-[3-[3-[(5-Ethyl-2-hydroxy[1,1'-biphenyl]- 4-yl)oxy]propoxy]-2-propylphenoxy]propanoic acid;</pre>
	WW)	2-(4-Chlorophenyl)-4-ethyl-5-[6-methyl-6-(2H-tetrazol-5-yl)heptyloxy]phenol monosodium salt;
25	XX)	2-(3,5-Dichlorophenyl)-4-ethyl-5-[6-methyl-6-(2H-tetrazol-5-yl)heptyloxy]phenol monosodium salt;
30	YY)	<pre>3-[2-[3-[(5-Ethyl-2-hydroxy[1,1'-biphenyl]- 4-yl)oxy]propoxy]-1-dibenzofuran]propanoic acid disodium salt;</pre>
35	ZZ)	7-Carboxy-9-oxo-3-[3-(2-ethyl-5-hydroxy-4-phenylphenoxy)propoxy]-9H-xanthene-4-propanoic acid disodium salt monohydrate;
40	AAA)	2-[2-Propy1-3-[3-(2-ethy1-5-hydroxy-4-phenylphenoxy)propoxy]phenoxy]benzoic acid sodium salt hemihydrate;
	BBB)	3-[3-(2-Ethyl-5-hydroxy-4-phenylphenoxy)propoxy][1,1'-biphenyl]-4-propanoic acid disodium salt monohydrate;

_	CCC)	5-Ethyl-4-[3-[2-propyl-3-[2-(2H-tetrazol-5-yl)phenoxy]phenoxy]propoxy][1,1'-biphenyl]-2-ol disodium salt sesquihydrate;
5	DDD)	3-[4-[3-[3-(2-Ethyl-5-hydroxy-4-phenylphenoxy)propoxy]-9-oxo-9H-xanthene]]propanoic acid sodium salt hemihydrate;
10	EEE)	2-Fluoro-6-[2-propyl-3-[3-(2-ethyl-5-hydroxy-4-phenylphenoxy)propoxy]phenoxy]benzoic acid disodium salt;
15	FFF)	2-[2-Propyl-3-[3-[2-ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy]propoxy]phenoxy]benzoic acid sodium salt;
20	GGG)	3-[4-[7-Carboxy-9-oxo-3-[3-[2-ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy]propoxy]-9H-xanthene]] propanoic acid disodium salt trihydrate;
25	ннн)	3-[4-[9-0xo-3-[3-[2-ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy]propoxy]-9H-xanthene]]propanoic acid;
30	III)	3-[2-[1-[2-Ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy]propoxy]-4-(5-oxo-5-morpholinopentanamido)phenyl]propanoic acid;
35	JJJ)	2-Fluoro-6-[2-propyl-3-[3-[2-ethyl-5-hydroxy-4-(4-fluorophenyl)phenoxy]propoxy]phenoxy]benzoic acid disodium salt hydrate;
40	KKK)	4-Fluoro-2-[2-propyl-3-[3-[2-ethyl-5-hydroxy-4-(4-fluorophenyl)phenoxy]propoxy]phenoxy]benzoic acid;

. 5	LLL)	<pre>2-[2-Propyl-3-[5-[2-ethyl-5-hydroxy-4-(4- fluorophenyl)phenoxy]pentoxy]phenoxy]benzoic acid;</pre>
5	MMM)	2-[2-Propyl-3-[4-[2-ethyl-5-hydroxy-4-(4-fluorophenyl)phenoxy]butoxy]phenoxy]benzoic acid sesquihydrate;
10	NNN)	<pre>2-[2-(2-Methylpropyl)-3-[3-[2-ethyl-5- hydroxy-4-(4- fluorophenyl)phenoxy]propoxy]phenoxy]benzoic acid;</pre>
15	000)	<pre>2-[2-Butyl-3-[3-[2-ethyl-5-hydroxy-4-(4- fluorophenyl)phenoxy]propoxy]phenoxy]benzoic acid hydrate;</pre>
20	PPP)	<pre>2-[2-(Phenylmethyl)-3-[3-[2-ethyl-5-hydroxy- 4-(4- fluorophenyl)phenoxy]propoxy]phenoxy]benzoic acid;</pre>
25	QQQ)	2-[2-Propyl-3-[3-[2-ethyl-5-hydroxy-4-(4-fluorophenyl)phenoxy]propoxy]phenoxy]phenyla cetic acid;
30	RRR)	<pre>2-[2-Propyl-3-[3-[2-ethyl-5-hydroxy-4-(4- fluorophenyl)phenoxy]propoxy]benzoyl]benzoic acid;</pre>
	SSS)	2-[[2-Propyl-3-[3-[2-ethyl-5-hydroxy-4-(4-fluorophenyl)phenoxy]propoxy]phenyl]methyl]benzoic acid;
35	TTT)	2-[2-Propyl-3-[3-[2-ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy]propoxy]thiophenoxy]benzoic acid;
40	טטט)	<pre>2-[2-Propyl-3-[3-[2-ethyl-4-(4- fluorophenyl)-5- hydroxyphenoxy]propoxy]phenylsulfinyl]benzoi c acid;</pre>

5 [.]		2-[2-Propyl-3-[3-[2-ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy]propoxy]phenylsulfonyl]benzoic acid hydrate;
10	www)	5-[3-[2-(1-Carboxy)ethyl]-4-[3-[2-ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy]propoxy]phenyl]-4-pentynoic acid disodium salt 0.4 hydrate;
	XXX)	1-Phenyl-1-(1H-tetrazol-5-yl)-6-(2-ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy)hexane;
15	YYY)	1-(4-(Carboxymethoxy)phenyl)-1-(1H-tetrazol- 5-yl)-6-(2-ethyl-4-(4-fluorophenyl)-5- hydroxyphenoxy)hexane;
20	ZZZ)	1-(4-(Dimethylaminocarbonylmethoxy)phenyl)- 1-(1H-tetrazol-5-yl)-6-(2-ethyl-4-(4- fluorophenyl)-5-hydroxyphenoxy)hexane;
25	AAAA)	3-(2-(3-(2-Ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy)phenyl)-E-propenoic acid;
	BBBB)	3-(2-(3-(2-Ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy)propoxy)phenyl)-2-methyl-E-propenoic acid;
30	cccc)	5-(2-(2-(3-(2-Ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy)propoxy)phenyl)ethyl)-1H-tetrazole;
35	DDDD)	3-(2-(3-(2-Ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy)propoxy)-4-(4-carboxybutyloxy)phenyl)propionic acid;
40	EEEE)	5-[3-[4-(4-Fluorophenyl)-2-ethyl-5-hydroxyphenoxy]propoxy]-3,4-dihydro-2H-1-benzopyran-2-one;

20

25

30

GGGG) 3-(3-{3-[2-Ethyl-4-(4-fluorophenyl)-5hydroxyphenyloxy]propoxy}-4-propylph
enyl)propanoic acid sodium salt;

10 HHHH) 3-(4-{3-[2-Ethyl-4-(4-fluorophenyl)-5-hydroxyphenyloxy]propoxy}-3-propylphenyl)propanoic acid;

KKKK) 2-[3-[3-[2-Ethyl-5-hydroxy-4-(4fluorophenyl)phenoxy]propoxy]benzoic acid disodium salt hemihydrate.

26. The use according to claim 22 wherein the leukotriene (LTB $_4$) antagonist is a compound of the structure (Formula B):

Formula B

namely, 2-[2-propyl-3-[3-[2-ethyl-5-hydroxy-4-(4-fluorophenyl)phenoxy]propoxy] phenoxy benzoic acid, and the pharmaceutically acceptable salts thereof.

- The use of claim 15 wherein the anti-cancer agent 5 is selected from the group consisting of Busulfan, Carboplatin, Carmustine, Cisplatin, Cyclophosphamide, Dacarbazine, Ifosfamide, Lomustine, Streptozocin, Oxaliplatin, Temozolomide, Bleomycin, Dactinomycin, Daunorubicin, Doxorubicin, Idarubicin, Mitomycin-C, 10 Plicamycin, Cryptophycin, Cytarabine, Floxuridine, Fludarabine, 5-Fluorouracil, Hydroxyurea, 6-Mercaptopurine, Methotrexate, Thioguanine; Capecitabine, Aldesleukin, Interferon Alfa-2A, Interleukin-2, Interleukin-12 (recombinant), Interferon Alfa-2B (recombinant), Interferon 15 Alfa-n3, Interferon Gamma-1B, Herceptin interleukin-2, interleukin-12, Aminoglutethimide, Anastrozole, Flutamide, Goserelin, Leuprolide, Megestrol, Mitotane, Tamoxifen, Chlorambucil, Estramustine, Mechlorethamine, Melphalan, Thiotepa, Docetaxel, Etoposide, Irinotecan HCl, Paclitaxel, 20 Teniposide, Topotecan, Vinblastine, Vincristine, Vinorelbine, Altretamine, Amifostine Asparaginase-Escherichia coli strain, BCG Live (Intravesical), Cladribine, Leucovorin, Levamisole, Mitoxantrone, Pegaspargase, Pentostatin, and Procarbazine. 25
- 28. The use of claim 26 wherein the anti-cancer agent is selected from the group consisting of Busulfan, Carboplatin, Carmustine, Cisplatin, Cyclophosphamide, Dacarbazine, Ifosfamide, Lomustine, Streptozocin, Oxaliplatin, Temozolomide, Bleomycin, Dactinomycin, Daunorubicin, Doxorubicin, Idarubicin, Mitomycin-C,

Plicamycin, Cryptophycin, Cytarabine, Floxuridine, Fludarabine, 5-Fluorouracil, Hydroxyurea, 6-Mercaptopurine, Methotrexate, Thioguanine; Capecitabine, Aldesleukin, Interferon Alfa-2A, Interleukin-2, Interleukin-12 5 (recombinant), Interferon Alfa-2B (recombinant), Interferon Alfa-n3, Interferon Gamma-1B, Herceptin interleukin-2, interleukin-12, Aminoglutethimide, Anastrozole, Flutamide, Goserelin, Leuprolide, Megestrol, Mitotane, Tamoxifen, Chlorambucil, Estramustine, Mechlorethamine, Melphalan, Thiotepa, Docetaxel, Etoposide, Irinotecan HCl, Paclitaxel, 10 Teniposide, Topotecan, Vinblastine, Vincristine, Vinorelbine, Altretamine, Amifostine Asparaginase-Escherichia coli strain, BCG Live (Intravesical), Cladribine, Leucovorin, Levamisole, Mitoxantrone, Pegaspargase, Pentostatin, and Procarbazine. 15

- 29. A method of treating cancer in a human patient by administering to said patient a composition comprising a therapeutically effective amount of a leukotriene (LTB₄) antagonist and one or more anti-cancer agents.
- 30. The method according to claim 29 wherein the leukotriene (LTB $_4$) antagonist is represented by the formula (I)

$$X$$
 QH
 Y_3
 $(CH_2)_n$
 Y_2
 $R1$
 Z
 $R3$
 $R2$
 (I)

wherein:

X is selected from the group consisting of,

5

(i) a five membered substituted or unsubstituted heterocyclic radical containing from 1 to 4 hetero atoms independently selected from sulfur, nitrogen or oxygen; and

10

- (ii) a fused bicyclic radical wherein a carbocyclic group is fused to two adjacent carbon atoms of the five membered heterocyclic radical, (i);
- 15 Y₁ is a bond or divalent linking group containing 1 to 9 atoms;

 Y_2 and Y_3 are divalent linking groups independently selected from -CH₂-, -O-, or -S-;

20

Z is an Acidic Group;

R1 is C_1-C_{10} alkyl, aryl, C_3-C_8 cycloalkyl, C_2-C_{10} alkenyl, C_2-C_{10} alkynyl, C_6-C_{20} aralkyl, C_6-C_{20} alkaryl,

25 C_1 - C_{10} haloalkyl, C_6 - C_{20} aryloxy, or C_1 - C_{10} alkoxy;

R2 is hydrogen, halogen, C_1 - C_{10} haloalkyl, C_1 - C_{10} alkoxy, C_1 - C_{10} alkyl, C_3 - C_8 cycloalkyl, Acidic Group, or -(CH₂)₁₋₇-(Acidic Group);

5 R3 is hydrogen, halogen, C_1 - C_{10} alkyl, aryl, C_1 - C_{10} haloalkyl, C_1 - C_{10} alkoxy, C_6 - C_{20} aryloxy, or C_3 - C_8 cycloalkyl;

R4 is C_1 - C_4 alkyl, C_3 - C_4 cycloalkyl, $-(CH_2)_{1-7}-(C_3-C_4 \text{ cycloalkyl}), C_2-C_4 \text{ alkenyl}, C_2-C_4 \text{ alkynyl},$ benzyl, or aryl; and

n is 0, 1, 2, 3, 4, 5, or 6;

- or a pharmaceutically acceptable salt, solvate, or prodrug derivative thereof, in combination with a therapeutically effective amount of one or more anti-cancer agents.
- 31. The method according to claim 30 wherein X is a heterocyclic radical selected from the group consisting of substituents represented by the following formulae:

where R10 is a radical selected from hydrogen or

 C_1-C_4 alkyl; and R11 is a radical selected from hydrogen, halo, C_1-C_{10} alkyl, C_1-C_{10} haloalkyl, C_1-C_{10} alkoxy, aryl, or C_6-C_{20} aryloxy.

32. The method according to claim 31 wherein the R1, R2, R3 and R4 groups for substitution in formula (I) are selected from the following variables coded R01 thru R16

				D.A.
R variables	R1	R2	R3	R4
Combination	group	group	group	group
Code	choice	choice	choice	choice
R01	R1	R2	R3	R4
R02	R1	R2	R3	PG1-R4
R03	R1	R2	PG1-R3	R4
R04	R1	R2	PG1-R3	PG1-R4
R05	R1	PG1-R2	R3	R4
R06	R1	PG1-R2	R3	PG1-R4
R07	R1	PG1-R2	PG1-R3	R4
R08	R1	PG1-R2	PG1-R3	PG1-R4
R09	PG1-R1	R2	R3	R4
R10	PG1-01	R2	R3	PG1-R4
R11	PG1-R1	R2	PG1-R3	R4
R12	PG1-R1	R2	PG1-R3	PG1-R4
R13	PG1-R1	PG1-R2	R3	R4
R14	PG1-R1	PG1-R2	R3	PG1-R4
R15	PG1-R1	PG1-R2	PG1-R3	R4
R16	PG1-R1	PG1-R2	PG1-R3	PG1-R4

and;

the Y1, Y2, and Y3 groups for substitution in formula (I) are selected from the following variables coded Y01 thru Y27:

	V1 group	Y2 group	Y3 group
Y variables	Yl group choice	choice	choice
combination	Choice	0.20200	
code	Y1	Y2	Y3
Y01	Y1	Y2	PG1-Y3
Y02	Y1	Y2	PG2-Y3
Y03		PG1-Y2	Y3
Y04	Y1	PG2-Y2	Y3
Y05	Y1	PG1-Y2	PG1-Y3
Y06	Y1		PG2-Y3
Y07	Y1	PG1-Y2	PG1-Y3
¥08	Y1	PG2-Y2	
Y09	Y1	PG2-Y2	PG2-Y3
Y10	PG1-Y1	Y2	Y3
Y11	PG1-Y1	Y2	PG1-Y3
Y12	PG1-Y1	¥2	PG2-Y3
Y13	PG1-Y1	PG1-Y2	Y3
Y14	PG1-Y1	PG1-Y2	PG1-Y3
Y15	PG1-Y1	PG1-Y2	PG2-Y3
Y16	PG1-Y1	PG2-Y2	Y3
Y17	PG1-Y1	PG2-Y2	PG1-Y3
Y18	PG1-Y1	PG2-Y2	PG2-Y3
Y19	PG2-Y1	Y2	Y3
Y20	PG2-Y1	Y2	PG1-Y3
Y21	PG2-Y1	Y2	PG2-Y3
Y22	PG2-Y1	PG1-Y2	Y3
Y23	PG2-Y1	PG1-Y2	PG1-Y3
Y24	PG2-Y1	PG1-Y2	PG2-Y3
Y25	PG2-Y1	PG2-Y2	Y3
Y26	PG2-Y1	PG2-Y2	PG1-Y3
Y27	PG2-Y1	PG2-Y2	PG2-Y3
12,			

and;

the X and Z groups and the n variable for substitution in formula (I) are selected from the following variables coded XZn01 thru XZn24:

	l v	Z	la intono
XZn variables	X	_	n integer
combination	group	Group	group
code	choice	Choice	choice
XZn01	X	Z	n
XZn02	X	Z	PG1-n
XZn03	Х	Z	PG2-n
XZn04	X	PG1-Z	n
XZn05	Х	PG2-Z	n
XZn06	Х	PG3-Z	n
XZn07	Х	PG1-Z	· PG1-n
XZn08	х	PG2-Z	PG1-n
XZn09	x	PG3-Z	PG1-n
XZn10	х	PG1-Z	PG2-n
XZn11	Х	PG2-Z	PG2-n
XZn12	Х	PG3-Z	PG2-n
XZn13	PG1-X	Z	n
XZn14	PG1-X	Z	PG1-n
XZn15	PG1-X	Z	PG2-n
XZn16	PG1-X	PG1-Z	n
XZn17	PG1-X	PG2-Z	n
XZn18	PG1-X	PG3-Z	n
XZn19	PG2-X	PG1-Z	PG1-n
XZn20	PG2-X	PG2-Z	PG1-n
XZn21	PG2-X	PG3-Z	PG1-n
XZn22	PG2-X	PG1-Z	PG2-n
XZn23	PG2-X	PG2-Z	PG2-n
XZn24	PG2-X	PG3-Z	PG2-n

33. A method according to claim 30 wherein the leukotriene B4 antagonist is described by formula (II):

5

wherein;

X2 is a heterocyclic radical selected from,

10

R21 is ethyl, 2-propen-1-yl, 3-propen-1-yl, n-propyl, iso-propyl, n-butyl, sec-butyl, or tert-butyl; and

15

R22 is hydrogen, n-butyl, sec-butyl, flouro, chloro, -CF3, or tert-butyl.

Z2 is the Acidic Group selected from carboxyl,
20 tetrazolyl, or N-sulfonamidyl;

PCT/US00/30944

or a salt, solvate or prodrug thereof.

34. The method according to claim 33, wherein the leukotriene antagonist is a compound selected from the following:

10

10

f.... _

5 S OH COOH

or an acid, salt, solvate or prodrug derivative thereof.

5

35. The method according to claim 34 wherein the leukotriene antagonist is a compound selected from the following:

10

or an acid, salt, solvate or prodrug derivative thereof.

36. The method of claim 29 wherein the leukotriene (LTB₄) antagonist represented by a compound of the structure (Formula A):

Formula A

or a pharmaceutically acceptable base addition salt thereof, wherein:

 R_1 , is C_1 - C_5 alkyl, C_2 - C_5 alkenyl, C_2 - C_5 alkynyl, C_1 - C_4 alkoxy, $(C_1$ - C_4 alkyl)thio, halo, or R_2 -substitutedphenyl;

each R2, and R3, are each independently hydrogen, halo, hydroxy, C1-C4 alkyl, C1-C4 alkoxy, (C1-C4 alkyl)-(0)qS-, trifluoromethyl, or di-(C1-C3 alkyl)amino;

X' is -0-, -S-, -C(=0), or -CH₂-;

Y' is -O- or -CH2-;

or when taken together, -X'-Y'- is -CH=CH- or -C=C-;

Z' is a straight or branched chain C1-C10 alkylidenyl;

A' is a bond, -O-, -S-, -CH=CH-, or -CR $_a$ R $_b$ -, where R $_a$ and R $_b$ are each independently hydrogen, C1-C5 alkyl, or R7-substituted phenyl, or when taken together with the carbon atom to which they are attached form a C4-C8 cycloalkyl ring;

 R_4 , is R_6 , or taken from one of the following formulae:

10

$$R_7$$
 R_7
 R_7
 R_7
 R_7
 R_7
 C
 C
 C
 C

wherein:

5

10

each R_6 is independently -COOH, 5-tetrazolyl, -CON(R_9)₂, or -CONHSO₂ R_{10} ;

each R7 is hydrogen, C1-C4 alkyl, C2-C5 alkenyl, C2-C5 alkynyl, benzyl, methoxy, -W-R6, -T-G-R6, (C1-C4 alkyl)-T-(C1-C4 alkylidenyl)-O-, or hydroxy;

Rg is hydrogen or halo;

each Rg is independently hydrogen, phenyl, or C1-C4 alkyl, or when taken together with the nitrogen atom form a morpholino, piperidino, piperazino, or pyrrolidino group;

R10 is C1-C4 alkyl or phenyl;

WO 01/34135 PCT/US00/30944

-273-

R₁₁ is R₂, -W-R₆, or -T-G-R₆;

each W is a bond or a straight or branched chain divalent hydrocarbyl radical of one to eight carbon atoms;

each G is a straight or branched chain divalent

5 hydrocarbyl radical of one to eight carbon atoms;

each T is a bond, $-CH_2-$, -O-, -NH-, -NHCO-, -C(=O)-, or $(O)_q$ S-;

K is -C(=0) - or -CH(OH) -;

each q is independently 0, 1, or 2;

10 p is 0 or 1; and

t is 0 or 1;

provided when X is -O- or -S-, Y is not -O-;

provided when A is -O- or -S-, R4 is not R6;

and provided W is not a bond when p is 0;

in combination with a therapeutically effective amount of one or more anti-cancer agents.

37. The method of claim 36 wherein R4'is selected from the following formulae:

20

38. The composition of claim 37 wherein R4'is:

- 5 39. The method of claim 36 wherein said compound is selected from the group (A) to (KKKK) consisting of:
 - A) 2-Methyl-2-(1H-tetrazol-5-yl)-7-(2-ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy)heptane;
- 10 B) 2-Methyl-2-(1H-tetrazol-5-yl)-7-(2-ethyl-4-(3-fluorophenyl)-5-hydroxyphenoxy)heptane;
 - C) 3-(2-(3-(2-Ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy)propoxy)-6-(4-dimethylaminocarbonylbutyloxy)phenyl)propion ic acid;
 - D) 3-(2-(3-(2-Ethyl-4-(4-fluorophenyl)-5hydroxyphenoxy)propoxy)phenyl)propionic
 acid;
 - E) 3-(2-(3-(2-Ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy)propoxy)-6-(4-carboxybutyloxy)phenyl)propionic acid;
- F) 3-(2-(3-(2-Ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy)propoxy)-6-methoxyphenyl)propionic acid;
- 30 G) 3-(2-(3-(2-Ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy)propoxy)-6-(4-(1H-tetrazol-5-yl)butyloxy)phenyl)propionic acid;
- H) Methyl 3-(2-(4-(2-ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy)-(1butenyl))phenyl)propionate;

-	I)	<pre>3-(2-(4-(2-Ethyl-4-(4-fluorophenyl)-5- hydroxyphenoxy)-(1-butenyl))phenyl)propionic acid;</pre>
5	J)	3-(2-(4-(2-Ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy)butyl)phenyl)propionic acid;
10	K)	3-(2-(4-(2-Ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy)butyl)-6-methoxyphenyl)propionic acid;
15	L)	Methyl 3-(2-(3-(2-ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy)propoxy)-6-hydroxyphenyl)propionate;
	M)	3-(2-(3-(2-Ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy)propoxy)-6-hydroxyphenyl)propionic acid;
20	N)	3-(2-(3-(2-Ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy)propoxy)-6-(4-butyloxy)phenyl)propionic acid;
25	0)	3-(2-(3-(2-Ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy)propoxy)-6-(4-methylthiobutyloxy)phenyl)propionic acid;
30	P)	3-(2-(3-(2,4-Di-(4-fluorophenyl)-5-hydroxyphenoxy)propoxy)-6-(4-carboxybutoxy)phenyl)propionic acid;
	Q)	6-Methyl-6-(1H-tetrazol-5-yl)-11-(2-ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy)undecane;
35	R)	N, N-Dimethyl-3-(2-(3-(2-ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy)propoxy)phenyl)propionamide;
40	S)	N-Methanesulfonyl-3-(2-(3-(2-ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy)phenyl)propionamide;

	T)	N-Phenylsulfonyl-3-(2-(3-(2-ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy)propoxy)phenyl)propionamide;
5	U)	<pre>3-(2-(3-(2-Butyl-4-(4-fluorophenyl)-5- hydroxyphenoxy)propoxy)phenyl)propionic acid;</pre>
10	V)	Ethyl 3-(2-(4-(2-ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy)butyloxy)phenyl)propionate;
15	W)	<pre>3-(2-(4-(2-Ethyl-4-(4-fluorophenyl)-5- hydroxyphenoxy)butyloxy)phenyl)propionic acid;</pre>
	X)	Methyl 3-(2-(3-(2-ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy)propoxy)-6-(4-(methoxycarbonyl)phenoxy)phenyl)propionate;
20	Y)	3-(2-(3-(2-Ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy)propoxy)-6-(4-carboxyphenoxy)phenyl)propionic acid;
25	Z)	3-(2-(3-(2-Ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy)propoxy)-4-(4-carboxyphenoxy)phenyl)propionic acid;
30	AA)	3,3-Dimethyl-3-(2-(3-(2-ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy)propoxy)phenyl)propionic acid;
35	BB)	2-Methyl-2-(1H-tetrazol-5-yl)-3-(2-(3-(2-ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy)propoxy)phenyl)propane;
40	CC)	2-Methyl-2-(1H-tetrazol-5-yl)-3-hydroxy-3- (2-(3-(2-ethyl-4-(4-fluorophenyl)-5- hydroxyphenoxy)propoxy)phenyl)propane;
	DD)	<pre>3-(2-(3-(2-Bromo-4-(4-fluorophenyl)-5- hydroxyphenoxy)propoxy)phenyl)propionic acid;</pre>
45	EE)	<pre>3-(2-(3-(2-Ethylthio-4-(4-fluorophenyl)-5- hydroxyphenoxy)propoxy)phenyl)propionic acid;</pre>

5	FF)	Methyl 3-(2-hydroxy-3-(4-methoxycarbonylbutyl)-6-(3-(2-ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy)phenyl)propionate;
	GG)	5-(3-(2-Ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy)propoxy)-8-(4-carboxybutyl)dihydrocoumarin;
10	HH)	2-Phenyl-4-ethyl-5-[6-(2H-tetrazol-5-yl)-6-methylheptyloxy]phenol sodium salt;
15	II)	2-(4-Methylphenyl)-4-ethyl-5-[6-methyl-6-(2H-tetrazol-5-yl)heptyloxy]phenol disodium salt;
20	JJ)	<pre>2-(3-Methylphenyl)-4-ethyl-5-[6-methyl-6- (2H-tetrazol-5-yl)heptyloxy]phenol sodium salt;</pre>
	.KK)	2-(2-Methylphenyl)-4-ethyl-5-[6-methyl-6-(2H-tetrazol-5-yl)heptyloxy]phenol disodium salt;
25	LL)	2-(4-Methoxyphenyl)-4-ethyl-5-[6-methyl-6-(2H-tetrazol-5-yl)heptyloxy]phenol sodium salt;
30	MM)	2-(3-Methoxyphenyl)-4-ethyl-5-[6-methyl-6-(2H-tetrazol-5-yl)heptyloxy]phenol sodium salt;
35	NN)	2-(4-Trifluoromethylphenyl)-4-ethyl-5-[6-methyl-6-(2H-tetrazol-5-yl)heptyloxy]phenol disodium salt;
40	00)	2-(3-Dimethylaminophenyl)-4-ethyl-5-[6-methyl-6-(2H-tetrazol-5-yl)heptyloxy]phenol disodium salt;
45	PP)	3-(5-(6-(4-Phenyl-5-hydroxy-2-ethylphenoxy)propoxy)-2-carboxymethyl-1,2,3,4 -tetrahydronaphthalen-1(2H)-one)propanoic acid;
45		one, propanore acra,

5	QQ)	3-(5-(6-(4-(4-Fluorophenyl)-5-hydroxy-2-ethylphenoxy)propoxy)-2-carboxymeth yl-1,2,3,4-tetrahydronaphthalen-1(2H)-one)propanoic acid;
	RR)	3-(4-(5-(4-(4-Fluorophenyl)-5-hydroxy-2-ethylphenoxy)propoxy)-2-carboxymeth yl-2,3-dihydroinden-1(2H)-one)propanoic acid;
10	SS)	3,3-Dimethyl-5-(3-(2-carboxyethyl)-4-(3-(4-fluorophenyl)-5-hydroxy-2-ethylphenoxy)propoxy)phenyl)-5-oxopentanoicacid;
15	TT)	7-[3-[(5-Ethyl-2-hydroxy[1,1'-biphenyl]-4-yl)oxy]propoxy]-3,4-dihydro-8-propyl-2H-1-benzopyran-2-carboxylic acid;
20	υ υ)	8-Propyl-7-[3-[4-(4-fluorophenyl)-2-ethyl-5-hydroxyphenoxy]propoxy]-3,4-dihydro-2H-1-benzopyran-2-carboxylic acid;
25	VV)	<pre>2-[3-[3-[(5-Ethyl-2-hydroxy[1,1'-biphenyl]- 4-yl)oxy]propoxy]-2-propylphenoxy]propanoic acid;</pre>
30	WW)	2-(4-Chlorophenyl)-4-ethyl-5-[6-methyl-6-(2H-tetrazol-5-yl)heptyloxy]phenol monosodium salt;
	XX)	2-(3,5-Dichlorophenyl)-4-ethyl-5-[6-methyl-6-(2H-tetrazol-5-yl)heptyloxy]phenol monosodium salt;
35	YY)	<pre>3-[2-[3-[(5-Ethyl-2-hydroxy[1,1'-biphenyl]- 4-yl)oxy]propoxy]-1-dibenzofuran]propanoic acid disodium salt;</pre>
40	ZZ)	7-Carboxy-9-oxo-3-[3-(2-ethyl-5-hydroxy-4-phenylphenoxy)propoxy]-9H-xanthene-4-propanoic acid disodium salt monohydrate;
45	AAA)	2-[2-Propyl-3-[3-(2-ethyl-5-hydroxy-4-phenylphenoxy)propoxy]phenoxy]benzoic acid sodium salt hemihydrate;

·	BBB)	<pre>3-[3-(2-Ethyl-5-hydroxy-4- phenylphenoxy)propoxy][1,1'-biphenyl]-4- propanoic acid disodium salt monohydrate;</pre>
5	CCC)	5-Ethyl-4-[3-[2-propyl-3-[2-(2H-tetrazol-5-yl)phenoxy]phenoxy]propoxy][1,1'-biphenyl]-2-ol disodium salt sesquihydrate;
10	DDD)	3-[4-[3-[3-(2-Ethyl-5-hydroxy-4-phenylphenoxy)propoxy]-9-oxo-9H-xanthene]]propanoic acid sodium salt hemihydrate;
15	EEE)	2-Fluoro-6-[2-propyl-3-[3-(2-ethyl-5-hydroxy-4-phenylphenoxy)propoxy]phenoxy]benzoic acid disodium salt;
20	FFF)	<pre>2-[2-Propyl-3-[3-[2-ethyl-4-(4- fluorophenyl)-5- hydroxyphenoxy]propoxy]phenoxy]benzoic acid sodium salt;</pre>
25	GGG)	3-[4-[7-Carboxy-9-oxo-3-[3-[2-ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy]propoxy]-9H-xanthene]] propanoic acid disodium salt trihydrate;
30	ннн)	3-[4-[9-0xo-3-[3-[2-ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy]propoxy]-9H-xanthene]]propanoic acid;
35	III)	3-[2-[1-[2-Ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy]propoxy]-4-(5-oxo-5-morpholinopentanamido)phenyl]propanoic acid;
40	JJJ)	2-Fluoro-6-[2-propyl-3-[3-[2-ethyl-5-hydroxy-4-(4-fluorophenyl)phenoxy]propoxy]phenoxy]benzoic acid disodium salt hydrate;
45	KKK)	4-Fluoro-2-[2-propyl-3-[3-[2-ethyl-5-hydroxy-4-(4-fluorophenyl)phenoxy]propoxy]phenoxy]benzoic acid;

	LLL)	<pre>2-[2-Propyl-3-[5-[2-ethyl-5-hydroxy-4-(4- fluorophenyl)phenoxy]pentoxy]phenoxy]benzoic acid;</pre>
5	MMM)	<pre>2-[2-Propyl-3-[4-[2-ethyl-5-hydroxy-4-(4- fluorophenyl)phenoxy]butoxy]phenoxy]benzoic acid sesquihydrate;</pre>
10	NNN)	<pre>2-[2-(2-Methylpropyl)-3-[3-[2-ethyl-5- hydroxy-4-(4- fluorophenyl)phenoxy]propoxy]phenoxy]benzoic acid;</pre>
15	000)	<pre>2-[2-Butyl-3-[3-[2-ethyl-5-hydroxy-4-(4- fluorophenyl)phenoxy]propoxy]phenoxy]benzoic acid hydrate;</pre>
20	PPP)	<pre>2-[2-(Phenylmethyl)-3-[3-[2-ethyl-5-hydroxy- 4-(4- fluorophenyl)phenoxy]propoxy]phenoxy]benzoic acid;</pre>
25	QQQ)	2-[2-Propyl-3-[3-[2-ethyl-5-hydroxy-4-(4-fluorophenyl)phenoxy]phenoxy]phenoxy]phenoxy]phenylacetic acid;
	RRR)	<pre>2-[2-Propyl-3-[3-[2-ethyl-5-hydroxy-4-(4- fluorophenyl)phenoxy]propoxy]benzoyl]benzoic acid;</pre>
30	SSS)	2-[[2-Propy1-3-[3-[2-ethy1-5-hydroxy-4-(4-fluoropheny1)phenoxy]propoxy]pheny1]methy1]benzoic acid;
35	TTT)	<pre>2-[2-Propyl-3-[3-[2-ethyl-4-(4- fluorophenyl)-5- hydroxyphenoxy]propoxy]thiophenoxy]benzoic acid;</pre>
40	(טטט)	<pre>2-[2-Propyl-3-[3-[2-ethyl-4-(4- fluorophenyl)-5- hydroxyphenoxy]propoxy]phenylsulfinyl]benzoi c acid;</pre>
45	VVV)	<pre>2-[2-Propyl-3-[3-[2-ethyl-4-(4- fluorophenyl)-5- hydroxyphenoxy]propoxy]phenylsulfonyl]benzoi c acid hydrate;</pre>

WO 01/34135 PCT/US00/30944 -281-

5	www)	5-[3-[2-(1-Carboxy)ethyl]-4-[3-[2-ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy]phenyl]-4-pentynoic acid disodium salt 0.4 hydrate;
	XXX)	1-Phenyl-1-(1H-tetrazol-5-yl)-6-(2-ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy)hexane;
10	YYY)	1-(4-(Carboxymethoxy)phenyl)-1-(1H-tetrazol- 5-yl)-6-(2-ethyl-4-(4-fluorophenyl)-5- hydroxyphenoxy)hexane;
15	ZZZ)	1-(4-(Dimethylaminocarbonylmethoxy)phenyl)- 1-(1H-tetrazol-5-yl)-6-(2-ethyl-4-(4- fluorophenyl)-5-hydroxyphenoxy)hexane;
20	AAAA)	3-(2-(3-(2-Ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy)propoxy)phenyl)-E-propenoic acid;
25	BBBB)	3-(2-(3-(2-Ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy)propoxy)phenyl)-2-methyl-E-propenoic acid;
25	CCCC)	5-(2-(2-(3-(2-Ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy)propoxy)phenyl)ethyl)-1H-tetrazole;
30	DDDD)	3-(2-(3-(2-Ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy)propoxy)-4-(4-carboxybutyloxy)phenyl)propionic acid;
35	EEEE)	5-[3-[4-(4-Fluorophenyl)-2-ethyl-5-hydroxyphenoxy]propoxy]-3,4-dihydro-2H-1-benzopyran-2-one;
40	FFFF)	<pre>3-(3-{3-[2-Ethyl-4-(4-fluorophenyl)-5- hydroxyphenyloxy]propoxy}phenyl)propanoic acid;</pre>
45	GGGG)	3-(3-{3-[2-Ethyl-4-(4-fluorophenyl)-5-hydroxyphenyloxy]propoxy}-4-propylph enyl)propanoic acid sodium salt;
45	нннн)	3-(4-{3-[2-Ethyl-4-(4-fluorophenyl)-5-hydroxyphenyloxy]propoxy}-3-propylphenyl)propanoic acid;

5

10

KKKK) 2-[3-[3-[2-Ethyl-5-hydroxy-4-(4fluorophenyl)phenoxy]propoxy]benzoyl]benzoic acid disodium salt hemihydrate.

15

40. The method according to claim 36 wherein the leukotriene (LTB $_4$) antagonist is a compound of the structure (Formula B):

Formula B

- 25 namely, 2-[2-propyl-3-[3-[2-ethyl-5-hydroxy-4-(4-fluorophenyl)phenoxy]propoxy] phenoxy benzoic acid, and the pharmaceutically acceptable salts thereof.
- 41. The method according to claim 36 wherein the anti-30 cancer agent is selected from the group consisting of Busulfan, Carboplatin, Carmustine, Cisplatin,

*

Cyclophosphamide, Dacarbazine, Ifosfamide, Lomustine, Streptozocin, Oxaliplatin, Temozolomide, Bleomycin, Dactinomycin, Daunorubicin, Doxorubicin, Idarubicin, Mitomycin-C, Plicamycin, Cryptophycin, Cytarabine, Floxuridine, Fludarabine, 5-Fluorouracil, Hydroxyurea, 6-Mercaptopurine, Methotrexate, Thioguanine; Capecitabine, Aldesleukin, Interferon Alfa-2A, Interleukin-2, Interleukin-12 (recombinant), Interferon Alfa-2B (recombinant), Interferon Alfa-n3, Interferon Gamma-1B, Herceptin interleukin-2, interleukin-12, Aminoglutethimide, 10 Anastrozole, Flutamide, Goserelin, Leuprolide, Megestrol, Mitotane, Tamoxifen, Chlorambucil, Estramustine, Mechlorethamine, Melphalan, Thiotepa, Docetaxel, Etoposide, Irinotecan HCl, Paclitaxel, Teniposide, Topotecan, Vinblastine, Vincristine, Vinorelbine, Altretamine, Amifostine Asparaginase-Escherichia coli strain, BCG Live (Intravesical), Cladribine, Leucovorin, Levamisole, Mitoxantrone, Pegaspargase, Pentostatin, and Procarbazine.

20 42. The use of claim 40 wherein the anti-cancer agent is selected from the group consisting of Busulfan, Carboplatin, Carmustine, Cisplatin, Cyclophosphamide, Dacarbazine, Ifosfamide, Lomustine, Streptozocin, Oxaliplatin, Temozolomide, Bleomycin, Dactinomycin, Daunorubicin, Doxorubicin, Idarubicin, Mitomycin-C, Plicamycin, Cryptophycin, Cytarabine, Floxuridine, Fludarabine, 5-Fluorouracil, Hydroxyurea, 6-Mercaptopurine, Methotrexate, Thioguanine; Capecitabine, Aldesleukin, Interferon Alfa-2A, Interleukin-2, Interleukin-12
30 (recombinant), Interferon Alfa-2B (recombinant), Interferon Alfa-n3, Interferon Gamma-1B, Herceptin interleukin-2,

interleukin-12, Aminoglutethimide, Anastrozole, Flutamide,

Goserelin, Leuprolide, Megestrol, Mitotane, Tamoxifen, Chlorambucil, Estramustine, Mechlorethamine, Melphalan, Thiotepa, Docetaxel, Etoposide, Irinotecan HCl, Paclitaxel, Teniposide, Topotecan, Vinblastine, Vincristine, Vinorelbine, Altretamine, Amifostine Asparaginase-Escherichia coli strain, BCG Live (Intravesical), Cladribine, Leucovorin, Levamisole, Mitoxantrone, Pegaspargase, Pentostatin, and Procarbazine.