Błądzenie losowe

- Matematyczny model ruchu cząstki poruszającej się w danym środowisku w sposób przypadkowy
- Zastosowanie w wielu dziedzinach:
 - fizyka (teorii ruchów Browna, dyfuzja)
 - ekonomia (kursy akcji)
 - matematyka (np. rozwiązywanie równań)
 - informatyka (np. szacowanie rozmiaru Internetu)
 - logistyka (np. obsługa kolejek)
 - hydrologia (np. fluktuacje poziomu wody przy tamach rzecznych)

Szczególny przypadek

- Dyskretny czas
- Długość kroku wędrownika w kolejnych chwilach czasu jest stała
- Wędrownik porusza się w jednym wymiarze po nieskończonej linie
- Wędrownik zaczyna w środku liny i rzuca monetą
- W zależności od wyniku wędrownik porusza się w lewo (gdy wypadła reszka) lub w prawo (gdy wypadł orzeł)

Źródło: seminarium nr 2 (autor M. Krok)

Źródło: seminarium nr 2 (autor M. Krok)

Źródło: seminarium nr 2 (autor M. Krok)

Źródło: seminarium nr 2 (autor M. Krok)

Źródło: seminarium nr 2 (autor M. Krok)

Błądzenie kwantowe

- Zamiast monety stosujemy bramkę unitarną (np. H)
- Wędrownik po rzuceniu taką monetą znajduje się w superpozycji miejsc

Błądzenie klasyczne i kwantowe

- Błądzenie klasyczne oscyluje wokół punktu startowego.
- Błądzenie kwantowe wykazuje większe prawdopodobieństwo znalezienia cząstki na granicy zasięgu.
- Błądzenie kwantowe na linii rozchodzi się kwadratowo szybciej.

Źródło: seminarium nr 2 (autor M. Krok)

- Ze względu na skończoną liczbę qbitów kodujących pozycję rozważamy błądzenie po okręgu
- Kodujemy pozycje na 2 qbitach (możliwe pozycje 00,01,10,11)

Po kroku 1, pierwszy przypadek

Po kroku 1, drugi przypadek

Po kroku 2

Po kroku 3

Po kroku 4

Błądzenie kwantowe po okręgu

- Kodujemy pozycje na 2 qbitach (możliwe pozycje 00,01,10,11)
- Monetą jest bramka H na osobnym qbicie wpływająca na pozycje poprzez mechanizm qbitów kontrolnych
- Wędrownik może znajdować się w superpozycji
- Stany w superpozycji mogą różnić się fazą (1, -1)

Zmiana stanu w danym kroku

Po zaaplikowaniu bramki H i bramek krokowych (inkrementacji i dekrementacji), stan wędrownika zmienia się wg następujących reguł:

```
|position> \otimes |0> zamieniamy na \frac{1}{\sqrt{2}} (|position-1> \otimes |0> + |position+1> \otimes |1>)
|position> \otimes |1> zamieniamy na \frac{1}{\sqrt{2}} (|position-1> \otimes |0> - |position+1> \otimes |1>)
```

Bramki kroku

Inkrementacja:

Dekrementacja:

Dwa kroki

Probability of finding walker at position				
Number of steps	00>	01>	10>	11>
0	1			
1				
2				
3				