AI25BTECH11034 - SUJAL CHAUHAN 2.10.23

Question:

The vector(s) which is/are coplanar with the vectors $\hat{i}+\hat{j}+2\hat{k}$ and $\hat{i}+2\hat{j}+\hat{k}$, and perpendicular to vector $\hat{i}+\hat{j}+\hat{k}$ is/are.

- a) $\hat{\mathbf{j}} \hat{\mathbf{k}}$
- b) $\hat{\mathbf{i}} + \hat{\mathbf{j}}$
- c) $\hat{\mathbf{i}} \hat{\mathbf{j}}$
- d) $\hat{\mathbf{j}} + \hat{\mathbf{k}}$

Variable	Vector	
A	$\begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$	
В	$\begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$	
C	$\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$	

Listing options as vectors $\mathbf{D}_{\mathbf{i}}$:

Input	Vector	
D_1	$\begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}$	
D_2	$\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$	
D_3	$\begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$	
D_4	$\begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$	

Checking conditions

Let equation of plane be given by:

$$\mathbf{n}^{\mathsf{T}}\mathbf{X} = 1 \tag{1}$$

Let's find general solution n which is perpendicular to the plane

$$(A B)^{\top} \mathbf{n} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
 (2)

Given:
$$\begin{pmatrix} 1 & 1 & 2 \\ 1 & 2 & 1 \end{pmatrix} \mathbf{n} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
 (3)

(4)

We want to solve:
$$\begin{pmatrix} 1 & 1 & 2 \\ 1 & 2 & 1 \end{pmatrix} \mathbf{n} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \quad \mathbf{n} = \begin{pmatrix} n_1 \\ n_2 \\ n_3 \end{pmatrix}$$
 (5)

Form the augmented matrix:

$$\begin{pmatrix} 1 & 1 & 2 & | & 1 \\ 1 & 2 & 1 & | & 1 \end{pmatrix} \tag{6}$$

$$\xrightarrow{R_2 \to R_2 - R_1} \begin{pmatrix} 1 & 1 & 2 & | & 1 \\ 0 & 1 & -1 & | & 0 \end{pmatrix} \tag{7}$$

$$\xrightarrow{R_1 \to R_1 - R_2} \begin{pmatrix} 1 & 0 & 3 & | & 1 \\ 0 & 1 & -1 & | & 0 \end{pmatrix} \tag{8}$$

Thus the equations are:

$$n_1 + 3n_3 = 1, \quad n_2 - n_3 = 0$$
 (9)

Let
$$n_3 = a \in \mathbb{R}, \quad n_2 = a, \quad n_1 = 1 - 3a$$
 (10)

So the general solution is:

$$\mathbf{n} = \begin{pmatrix} 1 - 3a \\ a \\ a \end{pmatrix}, \quad a \in \mathbb{R}$$
 (11)

General solution is

$$\mathbf{n} = \begin{pmatrix} 1 - 3a \\ a \\ a \end{pmatrix} \tag{12}$$

Now any vector following both condition will be solution of the equation:

$$\begin{pmatrix} n & C \end{pmatrix}^{\mathsf{T}} \mathbf{D_i} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \tag{13}$$

Checking Values for all options:

$$\begin{pmatrix} 1 - 3a & a & a \\ 1 & 1 & 1 \end{pmatrix} \mathbf{D_i} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \tag{14}$$

Vector	$\begin{pmatrix} 1 - 3a & a & a \\ 1 & 1 & 1 \end{pmatrix} \mathbf{D_i}$	Satisfies
D_1	$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$	Yes
$\mathrm{D_2}$	$\begin{pmatrix} 1-2a\\2 \end{pmatrix}$	No
D_3	$\begin{pmatrix} 1-4a \\ 0 \end{pmatrix}$	No
D_4	$\binom{2a}{2}$	No

So only \mathbf{D}_1 satisfies both conditions.

Figure 1: Vector \mathbf{D}_1 in plane

Figure 2: Vector $\mathbf{D_2}$ not coplanar

Figure 3: Vector \mathbf{D}_3 not coplanar

Figure 4: Vector \mathbf{D}_4 not coplanar