

تمرین سری ۱

درس مبانی سیستمهای نهفته و بی درنگ نیم سال دوم ۱۴۰۱-۱۴۰۱

۱. هدف از این تمرین مدلسازی و شبیهسازی یک مدل زمان پیوسته از یک سیستم کنترلی شامل یک کوادکوپتر و کنترلر آن است. دینامیک ساده فیزیکی یک کوادکوپتر توسط مجموعه معادلات دیفرانسیل زیر بیان می شود.

$$\begin{cases} m \frac{d^2 x}{dt^2} = -k_1 \frac{dx}{dt} + k_2 F \cos(\theta) \\ m \frac{d^2 y}{dt^2} = -k_1 \frac{dy}{dt} + k_2 F \sin(\theta) \\ m \frac{d^2 z}{dt^2} = -mg + k_2 F \cos(\phi) \cos(\theta) \\ I_{xx} \frac{d^2 \phi}{dt^2} = Lk_2 F \sin(\theta) \\ I_{yy} \frac{d^2 \theta}{dt^2} = Lk_2 F \cos(\phi) \cos(\theta) \\ F = F_1 + F_2 + F_3 + F_4 \\ F_i = k_3 * \omega_i^2; \quad 1 \le i \le 4 \\ I_{zz} \frac{d^2 \psi}{dt^2} = M_1 - M_2 + M_3 - M_4 \\ M_i = k_4 \omega_i^2; \quad 1 \le i \le 4 \end{cases}$$

که در آن

- z ،y ،x مكان كوادكويتر در فضا؛
- و سمت (yaw) کوادکوپتر؛ heta ، ϕ و ψ زوایای غلت (roll)، تاب (pitch) و سمت (yaw) و اینر؛
 - m = 1.0 kg جرم كوادكوپتر؛
 - $k_1 = 0.1 \text{ Ns/m}$ فریب میرایی؛
 - انش؛ $k_2 = 2.0 \text{ N/s}^2$
- F_{i} برایند نیروی رانش تولید شده توسط هر یک از چهار چرخانه (روتور) F_{i}
 - فریب رانش یک کوادکویتر کوچک؛ $k_3 = 0.0001 \text{ Ns}^2/\text{rad}^2$
 - فریب گشتاور یک کوادکویتر کوچک؛ $k_4 = 0.00001 \text{ Nm}^2/\text{rad}^2$
 - \bullet سرعت چرخش روتور rad/s؛
 - L = 0.2 m طول بازوی روتور؛
- l_{xx} = l_{yy} = 0.01 kgm² و l_{zz} = 0.02 kgm² و الكتي (moment of inertia) كوادكويتر؛
 - و شتاب جاذبه زمين؛ و $g = 9.81 \text{ m/s}^2$
 - M_3 ، M_2 ، M_1 و M_4 گشتاورهای تولید شده توسط هر یک از چهار روتور هستند.

ورودیهای مدل کوادکوپتر سرعتهای چهار موتور آن و خروجیهای مدل کوادکوپتر نیز مکان و سوی واقعی کوادکوپتر که توسط حسگرهایش گزارش میشود است. ورودیهای سیستم کنترلی که ساختاری حلقه بسته دارد، موقعیت و سوی مطلوب کوادکوپتر است. بنابراین، خروجیهای کنترلر فرمانهای سرعت موتورها است که به کوادکوپتر ارسال میشوند.

- أ. با اعمال ورودیهای مناسب به مدل کوادکویتر، آن را شبیه سازی کنید و از صحت آن اطمینان یابید.
- ب. یک سیستم کنترل حلقه بسته با یک کنترلر ساده P طراحی کنید. دقت کنید که بیش از یک سیگنال فرمان ورودی و فیدبک داریم. برای هر سیگنال باید سیگنال خطا محاسبه شود و ضریب مناسب آن برای اعمال به کوادکوپتر را با سعی و خطا پیدا کنید. با اعمال ورودیهای مطلوب متناسب، سیستم کلی را در سناریوهای زیر شبیهسازی کنید.
 - برخاستن و فرود
 - معلق در جای خود
 - یرواز در یک خط مستقیم
 - پرواز به شکل دایرهای یا شکل ∞ (اختیاری/امتیازی)
 - واكنش به اختلالاتي مانند باد يا تلاطم (اختياري/امتيازي)

اختیاری: کنترل کننده خود را با یک کنترلر PID جایگزین کنید. برای این منظور از بلوک آماده PID Controller کتابخانه Simulink استفاده کنید¹. با استفاده از امکان تنظیم خودکار پارامترهای کنترل (PID Tuner)، پارامترهای کنترل کننده را برای بهبود زمان پاسخدهی و اضافه جهش اصلاح کنید و سیستم را مجددا شبیهسازی کنید.

گزارش نهایی شامل یک گزارش در قالب PDF است که اولا پاسخ مسائل تحلیلی را بهطور کامل دربرگرفته باشد و ثانیا مدل سازی ها و شبیه سازی های انجام شده در ابزارها را به همراه تصویر به شکل واضح نمایش دهد.

- تمرینهای درس به صورت گروههای دو نفره انجام داده شده و تحویل میشوند.
- نکته مهم این است تمامی افراد گروه باید به همه جوانب و جزئیات تمرینها مسلط باشند که این نکته توسط دستیاران آموزشی موقع تحویل به دقت بررسی خواهد شد.
 - هر گروه باید به صورت مجزا تمرین را انجام داده و از کپی تمرینات گروه های دیگر خودداری کند.
- به منظور ایجاد شرایط یکسان برای تمامی گروهها و فاصله داشتن زمان آپلود و تحویل، به هنگام تحویل، ممکن است از اعضای گروه خواسته شود در همان زمان تمرین خود را از درسافزار دانلود کرده و روی سیستم خود تحویل دهند.

موفق باشید عطارزاده

¹ https://se.mathworks.com/help/simulink/slref/pidcontroller.html