# Lab02 (109061256 陳立萍)

## 1. Lab2\_1: a BCD-to-Excess-3 code converter

## **Design Specification**

input: abcd(MSB to LSB)
output: wxyz(MSB to LSB)

abcd: 0000 ~ 1001

| WXYZ | = | abcd | + | DOII |
|------|---|------|---|------|

| 0        | 6       | $\mathcal{C}$ | d                 | W                                     | X        | H             | 2              |
|----------|---------|---------------|-------------------|---------------------------------------|----------|---------------|----------------|
| 00000000 | 0000111 | 0011001       | 0 1 0 1 0 1 0 1 0 | 0 0 0 0 1 1 1                         | 0 1 1    | 1 0 0 1 1 0 0 | 0 - 0 - 0      |
|          | 0000111 | 100110011     | 0 0 0 0 0         | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | ×××××××× | 00××××××      | 1010 × × × × × |









$$W = a + bc + bd$$

$$X = b'c + b'd + bc'd'$$

$$Y = cd + c'd'$$

$$Z = d'$$

# logic diagram



# I/O pin assignment:

| a   | b   | С   | d   |
|-----|-----|-----|-----|
| W17 | W16 | V16 | V17 |

| W   | х   | у   | Z   |
|-----|-----|-----|-----|
| V19 | U19 | E19 | U16 |

# **Design Implementation**

abcd =0010, wxyz =0101



## abcd =1000, wxyz =1011



# 設計方法:

BCD 轉換成 Excess-3 的式子如上 1.1 ,wxyz = abcd + 0011,接著寫出對應的 truth table,再用 k-map 化簡 output (wxyz),得到 wxyz 各自的 Boolean function.

此即是如同  $lab1_1$ ,只是加了接上 pin 腳的動作,根據  $lab2_1$  題目要求的方式一個一個接上 pin 腳,就可以在板子上得到對應的結果。

# 2. Lab2\_2:

# Design Specification Lab2\_display

input: [3:0]i

output: [7:0]D, [3:0]d

reg [7:0] D

|    | binary    | 7-segment |
|----|-----------|-----------|
| 0  | 0000      |           |
| 1  | 1000      | 1 1 1     |
| 2  | 0)00      | 2222      |
| 3  | 1100      | 공급 필급     |
| 4  | 0 0 0     | 닉 닉 닉 닉   |
| 5  | 0101      | 5555      |
| _6 | 0110      | 后后后后      |
| _2 | 1110      | 7-1-1-1   |
| 8  | (000)     | 임임임임      |
| 9  | 1001      | 5555      |
| 10 | (0)0)     | 무무무무      |
| 11 | [01]      | 6 6 6     |
| 12 | ا ا ۱ ۰ ۰ | CICI      |
| 13 | 1101      | 리리티리      |
| 14 | 1110      | こここと      |
| 15 | 1111      | FFFF      |



# logic diagram



# I/O pin assignment:

| D[7] | D[6] | D[5] | D[4] | D[3] | D[2] | D[1] | D[0] |
|------|------|------|------|------|------|------|------|
| W7   | W6   | U8   | V8   | U5   | V5   | U7   | V7   |

| d[3] | d[2] | d[1] | d[0] |
|------|------|------|------|
| V19  | U19  | E19  | U16  |

| i[3] | i[2] | i[1] | i[0] |
|------|------|------|------|
| W17  | W16  | V16  | V17  |

# **Design Implementation**

[3:0]i = 1100 = C



#### [3:0]i = 0100 = 4



### 設計方法:

先定義每一個數字的七段顯示器顯示方式,1是代表燈亮,0代表燈不亮,而 D[7]至 D[0] 由上圖可知各自的定義位置,再依照題目設定將 input 設定為 i[3:0],接著判斷輸入的 i 等於多少,再用 define 過的值輸出應對的結果,另外 d[3:0]用來控制四個開關上方的 LED 燈要不要量,如果 i[x]=1 則 LED 要亮,若 i[x]=0 則燈不亮。

Bonus. Lab2\_bonus: Bulls and Cows game.

## **Design Specification**

input [7:0] s, [7:0] g output [1:0] bulls, [1:0] cows

logic diagram

# I/O pin assignment:

| s[7] | s[6] | s[5] | s[4] | s[3] | s[2] | s[1] | s[0] |
|------|------|------|------|------|------|------|------|
| W13  | W14  | V15  | W15  | W17  | W16  | V16  | V17  |

| g[7] | g[6] | g[5] | g[4] | g[3] | g[2] | g[1] | g[0] |
|------|------|------|------|------|------|------|------|
| R2   | T1   | U1   | W2   | R3   | T2   | T3   | V2   |

| bulls[1] | bulls[0] | cows[1] | cows[0] |
|----------|----------|---------|---------|
| V19      | U19      | E19     | U16     |

# **Design Implementation**

[7:0]s=10000001, [7:0]g=10000001, bulls=10, cows=01



[7:0]s=00100001, [7:0]g=00010010, bulls=00, cows=10



## 設計方法:

這裡設定 s 為 secret number,而 g 為 guess number,各為 8 個 bits。在這裡使用 if, else if, else 的語法來判斷猜中的 bulls 數目和 cows 數目,並用 V19, U19, E19, U16 四顆燈泡表示 bulls 和 cows 的數目,其中 V19, U19 燈泡表示 bulls 數目, E19, U16 燈泡表示 cows 數目,1 是亮 0 是不亮,舉例來說,若 U19 燈泡亮,V19 燈泡不亮即表示 2 進位的 01 也就是十 進位的 1,也就是代表 1 個 bulls,同理若是 U19 燈泡不亮 V19 燈泡亮亦即表示 2 進位的 10 也就是 10 進位的 2。

#### Discussion

#### Lab2\_1

這題非常簡單,用 lab1\_的程式碼就可以執行,再按照題目的要求即可在 fpga 版上呈現 亮燈,可以看到執行的結果是否正確結果顯示與 truth table 相符。

#### Lab2 2

這題其實有很多做法,但是剛好看到 define 語法,便使用看看 define 語法,用此種方法雖然不是最簡短的,但是最容易了解,且如果燈亮處定義錯誤,也很方便更改。這題一開始 define 每一個七段顯示器就都正確,因此執行的結果皆正確。

#### Lab2 bonus

這題原本看似非常難,因為題目的敘述複雜,很難理解,後來理解後,我就想用 if, else if 的語法來作判斷,雖然使得版面非常冗長,但卻是最容易理解的方法,直接判斷並輸出。另外這題在做完的時候一直顯示 not got the license 一直無法執行,搞了將近 1 小時候才想到,原來是把資料夾放在有中文的目錄下,因此才會無法執行,修改為英文檔名後,馬上就執行成功了。

#### Conclusion

這次的 lab 花了好多時間在寫,因為第一個 lab 和上學期學到的就只需要用 assign,而這次的 lab 卻需要許多不同的語法和想法才能成功做出來,另外這是第一次把結果用到板子上,可以看到實際的結果,感覺學到了很多,尤其是做 lab 的過程與思考。

#### References

教授授課頭影片:語法運用,符號運用。