



## A workable definition of "low" effective rank



The singular values of approx. 96% of considered networks are bounded from above by an hypergeometric envelope  $\Rightarrow$  sublinear effective ranks!

## Workable definition of low effective rank: $\sim$ 10% of the number of nodes N

Approx. 96% of the 679 networks qualify for having a low effective rank!

Hint: the rapid decrease of the dominant singular values of the adjacency matrix implies a low effective rank ▷ low effective rank? ⇒ effective rank scales at most sublinearly

as the number of nodes, N, goes to infitnity  $(N^{1-\varepsilon})$  with  $\varepsilon \in$ 

(0,1]

## A workable definition of "low" effective rank

Hint: the rapid decrease of the dominant singular values of the adjacency matrix implies a low effective rank

b low effective rank?  $\Rightarrow$  effective rank scales at most sublinearly as the number of nodes, N, goes to infitnity ( $N^{1-\varepsilon}$  with  $\varepsilon \in (0,1]$ )



The singular values of approx. 96% of considered networks are bounded from above by an hypergeometric envelope  $\Rightarrow$  sublinear effective ranks!



Workable definition of low effective rank:  $\sim$ 10% of the number of nodes N Approx. 96% of the 679 networks qualify for having a low effective rank!

## Reproduction of the dynamics with increasing accuracy

