Program Dinamis (Dynamic Programming) Bagian 1

Bahan Kuliah IF2211 Strategi Algoritma

Oleh: Rinaldi Munir

Program Studi Teknik Informatika STEI-ITB

Program Dinamis

- **Program Dinamis** (dynamic programming):
 - metode pemecahan masalah dengan cara menguraikan solusi menjadi sekumpulan tahapan (stage)
 - sedemikian sehingga solusi persoalan dapat dipandang sebagai serangkaian keputusan yang saling berkaitan.
- Kata "program" tidak ada kaitannya dengan pemrograman
- Istilah "dinamis" muncul karena pencarian solusinya melakukan perhitungan dengan menggunakan tabel (yang dapat berkembang)

 Program dinamis digunakan untuk menyelesaikan persoalanpersoalan optimasi (maksimasi atau minimisasi)

- Perbedaan Algoritma Greedy dengan Program Dinamis:
 - → Greedy: hanya satu rangkaian keputusan yang dihasilkan

→ **Program dinamis**: lebih dari satu rangkaian keputusan yang dipertimbangkan.

Tinjau graf di bawah ini. Kita ingin menemukan **lintasan terpendek** dari 1 ke 10.

Greedy: dari setiap simpul, ambil sisi dengan bobot terkecil ke simpul berikutnya Solusi greedy: 1-2-6-9-10 dengan cost = 2+4+3+4=13 \rightarrow tidak optimal!

Prinsip Optimalitas

• Pada program dinamis, rangkaian keputusan yang optimal dibuat dengan menggunakan **Prinsip Optimalitas**.

 Prinsip Optimalitas: jika solusi total optimal, maka bagian solusi sampai tahap ke-k juga optimal.

• Prinsip optimalitas berarti bahwa jika kita bekerja dari tahap k ke tahap k+1, kita dapat menggunakan hasil optimal dari tahap k tanpa harus kembali ke tahap awal.

• Ongkos pada tahap k+1= (ongkos yang dihasilkan pada tahap k) + (ongkos dari tahap k ke tahap k+1, atau $c_{k,k+1}$)

Karakteristik Persoalan dengan Program Dinamis

1. Persoalan dapat dibagi menjadi beberapa tahap (*stage*), yang pada setiap tahap hanya diambil satu keputusan.

 Masing-masing tahap terdiri dari sejumlah status (state) yang berhubungan dengan tahap tersebut. Secara umum, status merupakan bermacam kemungkinan masukan yang ada pada suatu tahap. **Graf multitahap** (multistage graph). Tiap simpul di dalam graf tersebut menyatakan status, sedangkan V_1 , V_2 , ... menyatakan tahap.

- Hasil dari keputusan yang diambil pada setiap tahap ditransformasikan dari status yang bersangkutan ke status berikutnya pada tahap berikutnya.
- 4. Ongkos (cost) pada suatu tahap meningkat secara teratur (steadily) dengan bertambahnya jumlah tahapan.
- 5. Ongkos pada suatu tahap bergantung pada ongkos tahap-tahap yang sudah berjalan dan onkos dari tahap tersebut ke tahap berikutnya.
- 6. Adanya hubungan rekursif yang mengidentifikasikan keputusan terbaik untuk setiap status pada tahap k memberikan keputusan terbaik untuk setiap status pada tahap k + 1.
- 7. Prinsip optimalitas berlaku pada persoalan tersebut.

Dua pendekatan PD

Dua pendekatan yang digunakan dalam program dinamis:

- 1. Program dinamis maju (forward atau up-down)
 - \rightarrow Perhitungan dilakukan dari tahap 1, 2, ..., n-1, n

- 2. Program dinamis mundur (backward atau bottom-up)
 - \rightarrow Perhitungan dilakukan dari tahap n, n-1, ..., 2, 1.

Misalkan $x_1, x_2, ..., x_n$ menyatakan peubah (*variable*) keputusan yang harus ditentukan masing-masing untuk tahap 1, 2, ..., n. Maka,

- 1. Program dinamis maju. Program dinamis bergerak mulai dari tahap 1, terus maju ke tahap 2, 3, dan seterusnya sampai tahap n. Rangkaian peubah keputusan adalah $x_1, x_2, ..., x_n$.
- 2. Program dinamis mundur. Program dinamis bergerak mulai dari tahap n, terus mundur ke tahap n 1, n 2, dan seterusnya sampai tahap 1.
 - Rangkaian peubah keputusan adalah x_n , x_{n-1} , ..., x_1 .

Langkah-langkah Pengembangan Algoritma Program Dinamis

- 1. Karakteristikkan struktur solusi optimal.
 - tahap, variable keputusan, status (state), dsb
- 2. Definisikan secara rekursif nilai solusi optimal.
 - hubungan nilai optimal suatu tahap dengan tahap sebelumnya
- 3. Hitung nilai solusi optimal secara maju atau mundur.
 - menggunakan tabel
- 4. Rekonstruksi solusi optimal (opsional).
 - rekonstruksi solusi secara mundur

Persoalan 1: Lintasan Terpendek (Shortest Path)

• Tentukan lintasan terpendek dari simpul 1 ke simpul 10:

How to find the shortest path?

(a) Karakteristikkan struktur solusi optimal

- Misalkan x_1 , x_2 , x_3 , x_4 adalah simpul-simpul yang dikunjungi pada tahap k (k = 1, 2, 3, 4). Tahap 5 tidak ada karena $x_5 = 10$
- Misalkan digunakan pendekatan program dinamis maju
- Maka rute yang dilalui adalah $x_1 \rightarrow x_2 \rightarrow x_3 \rightarrow x_4 \rightarrow x_5 = 10$

Pada persoalan ini,

- Tahap (k) adalah proses memilih simpul tujuan berikutnya (ada 4 tahap).
- Status (s) yang berhubungan dengan masing-masing tahap adalah simpulsimpul di dalam graf multi-tahap.

(b) Definisikan hubungan rekursif solusi optimal

Relasi rekurens berikut menyatakan lintasan terpendek pada setiap tahap:

$$f_1(s) = c_{x1,s}$$
 (basis)
 $f_k(s) = \min \{f_{k-1}(x_k) + c_{xk,s}\}$ (rekurens)
 $k = 2, 3, 4$

Keterangan:

- a. x_k : peubah keputusan pada tahap k (k = 2, 3, 4).
- b. s : status pada setiap tahap
- c. $c_{xk,s}$: bobot (cost) sisi dari ke x_k ke s
- d. $f_k(s)$: nilai minimum dari $f_k(x_k, s)$
- e. $f_{k-1}(x_k)$: nilai minimum tahap sebelumnya dari x_k ke s

(c)Hitung nilai solusi optimal

Tahap 1:

$$f_1(s) = c_{x1s}$$

	Solusi Optimum		
S	$f_1(s)$ x_1^*		
2	2	1	
3	4	1	
4	3	1	

$$f_1(s) = c_{x1,s}$$

Catatan: x_k^* adalah nilai x_k yang meminimumkan f_s .

Tahap sebelumnya (Tahap 1)

	Solusi Optimum		
S	$f_1(s)$ x_1^*		
2	2	1	
3	4	1	
4	3	1	

Tahap 2:

$$f_2(s) = \min_{x_2} \{ f_1(x_2) + {}^{C}x_2 s \}$$

$ x_2 $	$f_2(s) = f_1(x_2) + c_{x2,s}$			Solusi Optimum	
s	2	3	4	$f_2(s)$	${x_2}^*$
5	9	7	7	7	3 atau 4
6	6	6	4	4	4
7	8	8	8	8	2, 3, 4

$$f_k(s) = \min \{f_{k-1}(x_k) + c_{xk,s} \}$$

Tahap sebelumnya (Tahap 2)

Tahap 2:

$$f_2(s) = \min_{x_2} \{ f_1(x_2) + c_{x_2 s} \}$$

χ_2	$f_2(s)$	$= f_1(x_2) +$	$-c_{x2,s}$	Solusi C	ptimum
s	2	3	4	$f_2(s)$	x_2^*
5	9	7	7	7	3 atau 4
6	6	6	4	4	4
7	8	8	8	8	2, 3, 4

Tahap 3:

$$f_3(s) = \min_{x_3} \{ f_2(x_3) + {}^{C_{x_3}s} \}$$

χ_3	$f_3(s) = f_2(x_3) + c_{x3,s}$		Solusi Optimum		
s	5	6	7	$f_3(s)$	x_3^*
8	8	10	11	8	5
9	11	7	11	7	6

$$f_k(s) = \min \{f_{k-1}(x_k) + c_{xk,s}\}$$

Tahap sebelumnya (Tahap 3)

Tahap 3:

$$f_3(s) = \min_{x_3} \{ f_2(x_3) + {}^{C}x_3 s \}$$

x_3	$f_3(s) = f_2(x_3) + c_{x3,s}$			Solusi Optimum	
s	5	6	7	$f_3(s)$	x_3^*
8	8	10	11	8	5
9	11	7	11	7	6

Tahap 4:

$$f_4(s) = \min_{x_4} \{ f_3(x_4) + {}^{C}x_4s \}$$

X_4	$f_4(s) = f_3(x_4) + c_{x4,s}$		Solusi Optimum		
s	8	9	$f_4(s)$	${\mathcal X_4}^*$	
10	10 11 11 8 atau 9				
$f(c) = \min \{f(x) \mid c\}$					

(d) Rekonstruksi solusi optimal

Solusi optimum dapat dibaca pada tabel di bawah ini:

Jadi ada tiga lintasan terpendek dari 1 ke 10, yaitu

$$1 \rightarrow 3 \rightarrow 5 \rightarrow 8 \rightarrow 10$$

$$1 \rightarrow 4 \rightarrow 5 \rightarrow 8 \rightarrow 10$$

$$1 \rightarrow 4 \rightarrow 6 \rightarrow 9 \rightarrow 10$$

yang mana panjang ketiga lintasan tersebut sama, yaitu 11.

Tahap 2:

$$f_2(s) = \min_{x_2} \{ f_1(x_2) + {}^{C}x_2 s \}$$

$ x_2 $	$f_2(\mathbf{s}) = f_1(x_2) + c_{x2,\mathbf{s}}$		Solusi Optimum		
s	2	3	4	$f_2(s)$	x_2^*
5	9	7	7	7	3 atau 4
6	6	6	4	4	4
7	8	8	8	8	2, 3, 4

Tahap 3:

$$f_3(s) = \min_{x_3} \{ f_2(x_3) + {}^{C_{x_3}s} \}$$

χ_3	$f_3(s) = f_2(x_3) + c_{x3,s}$			Solusi O ₁	otimum
s	5	6	7	$f_3(s)$	<i>x</i> ₃ *
8	8	10	11	8	5
9	11	7	11	7	6

Tahap 4:

$$f_4(s) = \min_{x_4} \{ f_3(x_4) + {}^{C}x_4 s \}$$

$\setminus x_4$	$f_4(s) = f_3(x_4) + c_{x4,s}$		Solusi Optimum	
s	8	9	$f_4(s)$	x_4^*
10	11	11	11	8 atau 9

Latihan

- 1. Selesaikan persoalan shortest path tersebut dengan program dinamis mundur.
- 2. Carilah lintasan terpendek dari 1 ke 6 pada graf (a) dan dari d ke k pada graf (b):

Persoalan 2: Integer Knapsack

Diberikan sebuah knapsack dengan kapasitas M. Terdapat n buah objek, setiap objek memiliki bobot w_i dan keuntungan p_i .

Bagaimana cara memilih objek-objek yang dimasukkan ke dalam *knapsack* sehingga total keuntungan yang diperoleh maksimal.

Maksimasi
$$F = \sum_{i=1}^{n} p_i x_i$$

dengan kendala (constraint)

$$\sum_{i=1}^n w_i x_i \leq M$$

yang dalam hal ini, $x_i = 0$ atau 1, i = 1, 2, ..., n

M = 5

Barang ke-i	W_i	p_i
1	2	65
2	3	80
3	1	30

- Pada persoalan ini,
 - 1. Tahap (k) adalah proses memasukkan objek ke dalam knapsack (knapsack) (pada contoh di atas ada 3 tahap).

2. Status (y) menyatakan kapasitas muat knapsack yang tersisa setelah memasukkan objek pada tahap sebelumnya.

• Dari tahap ke-1, kita masukkan objek ke-1 ke dalam *knapsack* untuk setiap satuan kapasitas *knapsack* sampai batas kapasitas maksimumnya.

• Karena kapasitas *knapsack* adalah bilangan bulat, maka pendekatan ini praktis.

• Misalkan ketika memasukkan objek pada tahap k, kapasitas muat knapsack sekarang adalah $y-w_k$.

• Untuk mengisi kapasitas sisanya, kita menerapkan prinsip optimalitas dengan mengacu pada nilai optimum dari tahap sebelumnya untuk kapasitas sisa $y - w_k$

• Nilai optimum pada tahpa sebelumnya adalah $f_{k-1}(y-w_k)$.

• Selanjutnya, kita bandingkan: nilai keuntungan pengisian pada tahap k (yaitu p_k) + nilai $f_{k-1}(y-w_k)$

dengan

keuntungan pengisian hanya k-1 objek, $f_{k-1}(y)$.

• Jika $p_k + f_{k-1}(y - w_k)$ lebih kecil dari $f_{k-1}(y)$, maka objek yang ke-k tidak dimasukkan ke dalam knapsack,

tetapi jika $p_k + f_{k-1}(y - w_k)$ lebih besar dari $f_{k-1}(y)$, maka objek yang ke-k dimasukkan.

• Relasi rekurens untuk persoalan ini adalah

$$f_0(y) = 0, \quad y = 0, 1, 2, ..., M$$
 (basis)
 $f_k(y) = -\infty, \quad y < 0$ (basis)
 $f_k(y) = \max\{f_{k-1}(y), p_k + f_{k-1}(y - w_k)\}, \text{ (rekurens)}$
 $k = 1, 2, ..., n$

- $f_k(y)$ adalah keuntungan optimum pada tahap k untuk kapasitas knapsack sebesar y.
- $f_0(y) = 0$ adalah nilai persoalan *knapsack* kosong (tidak ada persoalan *knapsack*) dengan kapasitas y)
- $f_k(y) = -\infty$ adalah nilai persoalan *knapsack* untuk kapasitas negatif.
- Solusi optimum dari persoalan knapsack adalah $f_n(M)$.

$$M = 5$$

Barang ke-i	w_i	p_i
1	2	65
2	3	80
3	1	30

Tahap 1:

$$f_1(y) = \max\{f_0(y), p_1 + f_0(y - w_1)\}\$$

= $\max\{f_0(y), 65 + f_0(y - 2)\}\$

			Solusi Optimum	
y	$f_0(y)$	$65 + f_0(y-2)$	$f_1(y)$	(x_1^*, x_2^*, x_3^*)
0	0		0	(0, 0, 0)
1	0		0	(0, 0, 0)
2	0	65	65	(1, 0, 0)
3	0	65	65	(1, 0, 0)
4	0	65	65	(1, 0, 0)
5	0	65	65	(1, 0, 0)

$$M = 5$$

Barang ke-i	w_i	p_i
1	2	65
2	3	80
3	1	30

Tahap 2:

$$f_2(y) = \max\{f_1(y), p_2 + f_1(y - w_2)\}\$$

= \text{max}\{f_1(y), 80 + f_1(y - 3)\}

			Solusi Optimum	
y	$f_1(y)$	$80 + f_1(y-3)$	$f_2(y)$	(x_1^*, x_2^*, x_3^*)
0	0	$80 + (-\infty) = -\infty$	0	(0, 0, 0)
1	0	$80 + (-\infty) = -\infty$	0	(0, 0, 0)
2	65	$80 + (-\infty) = -\infty$	65	(1, 0, 0)
3	65	80 + 0 = 80	80	(0, 1, 0)
4	65	80 + 0 = 80	80	(0, 1, 0)
5	65	80 + 65 = 145	145	(1, 1, 0)

$$M = 5$$

Barang ke-i	w_i	p_i
1	2	65
2	3	80
3	1	30

Tahap 3:

$$f_3(y) = \max\{f_2(y), p_3 + f_2(y - w_3)\}\$$

= $\max\{f_2(y), 30 + f_2(y - 1)\}$

			Solusi Optimum	
y	$f_2(y)$	$30 + f_2(y-1)$	$f_3(y)$	(x_1^*, x_2^*, x_3^*)
0	0	$30 + (-\infty) = -\infty$	0	(0, 0, 0)
1	0	$30 + (-\infty) = -\infty$	0	(0, 0, 0)
2	65	30 + 0 = 30	65	(1, 0, 0)
3	80	30 + 65 = 95	95	(1, 0, 1)
4	80	30 + 80 = 110	110	(0, 1, 1)
5	145	30 + 80 = 110	145	(1, 1, 0)

Solusi optimum X = (1, 1, 0) dengan $\sum p = f = 145$.

SELAMAT BELAJAR