1 线性代数基础

1.1 线性空间与内积空间

- 数域, 如: Q, R, C
- 线性空间, 如: $R^n, C^n, R^{m \times n}$
- 线性相关与线性无关, 秩, 基, 维数
- 线性子空间
- 像空间 (列空间, 值域) Ran(A), 零空间 (核) Ker(A)
- 张成子空间: $spanx_1, x_2, ..., x_k, span(A) = Ran(A)$

1.1.1 直和

设 S_1, S_2 是子空间, 若 $S_1 + S_2$ 中的任一元素都可唯一表示成

$$x = x_1 + x_2, x_1 \in S1, x2 \in S2,$$

则称 $S_1 + S_2$ 为直和, 记为 $S_1 \oplus S_2$.

定理 1.1 设 S_1 是 S 的子空间,则存在另一个子空间 S_2 ,使得

$$S = S_1 \oplus S_2$$
.

例: 设 $A \in \mathbb{C}^{m \times n}$,则

$$\mathbb{C}^n = \operatorname{Ker}(A) \oplus \operatorname{Ran}(A^*), \quad \mathbb{C}^m = \operatorname{Ker}(A^*) \oplus \operatorname{Ran}(A)$$

1.1.2 内积空间

- 内积, 内积空间, 欧氏空间, 酉空间
- 常见内积空间:
 - $C^n: (x,y) = y * x$
 - $R^n:(x,y)=y^Tx$
 - $R^{m \times n}$: $(A, B) = tr(B^T A)$

1.1.3 正交与正交补

- 正交: 向量正交, 子空间正交
- 正交补空间

1.2 向量范数与矩阵范数

定义 1 (向量范数) 若函数 $f: C^n \to R$ 满足

- (1) $f(x) \ge 0$, $\forall x \in C^n$, 等号当且仅当 x = 0 时成立;
- (2) $f(x) = || \cdot f(x), \forall x \in \mathbb{C}^n, \in \mathbb{C};$
- (3) $f(x+y) \le f(x) + f(y), \forall x, y \in C^n;$ 则称 f(x) 为 C^n 上的范数, 通常记作 $||\cdot||$

相类似地,我们可以定义实数空间 R^n 上的向量范数。

常见的向量范数:

- 1-范数: $||x||_1 = |x_1| + |x_2| + ... + |x_n|$
- 2-范数: $||x||_2 = \sqrt{|x_1|^2 + |x_2|^2 + \dots + |x_n|^2}$
- ∞ -范数: $||x||_{\infty} = \max_{1 \le i \le n} |x_i|$
- p-范数: $||x||_p = (\sum_{i=1}^n |x_i|^p)^{1/p}, \quad 1 \le p < \infty$

定义 2 (范数等价性) \mathbb{C}^n 上的向量范数 $||\dot{|}|_{\alpha}$ 与 $||\dot{|}|_{\beta}$ 等价: 存在正常数 c_1, c_2 , 使得 $c_1||x||_{\alpha} \leq ||x||_{\beta} \leq c_2||x||_{\alpha}, \quad \forall x \in \mathbb{C}^n$

定理 1.2 \mathbb{C}^n 空间上的所有向量范数都是等价的, 特别地, 有

$$||x||_{2} \le ||x||_{1} \le \sqrt{n} ||x||_{2}$$
$$||x||_{\infty} \le ||x||_{2} \le \sqrt{n} ||x||_{\infty}$$
$$||x||_{\infty} \le ||x||_{1} \le n ||x||_{\infty}$$

定理 1.3 (Cauchy-Schwartz 不等式) 设 (.,.) 是 \mathbb{C}^n 上的内积,则对任意 $x,y \in \mathbb{C}^n$, 有

$$|(x,y)|^2 \le (x,x) \cdot (y,y)$$

推论 1 设 (.,.) 是 \mathbb{C}^n 上的内积,则 $||x|| \triangleq \sqrt{(x,x)}$ 是 \mathbb{C}^n 上的一个向量范数

定理 1.4 设 ||.|| 是 \mathbb{C}^n 上的一个向量范数,则 $f(x) \triangleq ||x||$ 是 \mathbb{C}^n 上的连续函数。

1.2.1 矩阵范数

定义 3 (矩阵范数) 若函数 $f: \mathbb{C}^{n\times n} \to R$ 满足 $(1)f(A) \geq 0, \forall A \in \mathbb{C}^{n\times n}$, 等号当且 仅当 A=0 时成立; $(2)f(A)=||\cdot f(A), \forall A \in \mathbb{C}^{n\times n}, \in \mathbb{C}$; $(3)f(A+B) \leq f(A)+f(B), \forall A, B \in \mathbb{C}^{n\times n}$; 则称 f(x) 为 $\mathbb{C}^{n\times n}$ 上的范数, 通常记作 ||.||。

相容的矩阵范数: $f(AB) \leq f(A)f(B)$, $\forall A, B \in \mathbb{C}^{n \times n}$.

若未明确指出, 讲义所涉及矩阵范数都指相容矩阵范数

引理 1 设 $\|\cdot\|$ 是 C^n 上的向量范数,则

$$\|A\| \triangleq \sup_{x \in \mathbb{C}^n, x \neq 0} \frac{\|Ax\|}{\|x\|} = \max_{\|x\|=1} \|Ax\|$$

是 $\mathbb{C}^{n\times n}$ 上的范数, 称为算子范数, 或诱导范数, 导出范数。

† 算子范数都是相容的, 且

$$||Ax|| \le ||A|| \cdot ||x||, \quad A \in \mathbb{C}^{n \times n}, x \in \mathbb{C}^n$$

† 算子范数都是相容的, 且

$$||Ax|| \le ||A|| \cdot ||x||, \quad A \in \mathbb{C}^{n \times n}, x \in \mathbb{C}^n$$

† 类似地, 我们可以定义 $\mathbb{C}^{m\times n}$, $\mathbb{R}^{n\times n}$, $\mathbb{R}^{m\times n}$ 上的矩阵范数.

引理 2 可以证明:

- (1) 1-范数 (列范数): $||A||_1 = \max_{1 \le j \le n} (\sum_{i=1}^n |a_{ij}|)$
- (2) ∞-范数 (行范数): $||A||_{\infty} = \max_{1 \leq i \leq n} \left(\sum_{j=1}^{n} |a_{ij}| \right)$
- (3) 2-范数 (谱范数): $||A||_2 = \sqrt{\rho(A^T A)}$

另一个常用范数 F-范数
$$||A||_F = \sqrt{\sum_{i=1}^n \sum_{j=1}^n |a_{ij}|^2}$$

定理 1.5 (矩阵范数的等价性) $\mathbb{R}^{n \times n}$ 空间上的所有范数都是等价的, 特别地, 有

$$\frac{1}{\sqrt{n}} ||A||_2 \le ||A||_1 \le \sqrt{n} ||A||_2,$$

$$\frac{1}{\sqrt{n}} ||A||_2 \le ||A||_\infty \le \sqrt{n} ||A||_2,$$

$$\frac{1}{n} ||A||_\infty \le ||A||_1 \le n ||A||_\infty,$$

$$\frac{1}{\sqrt{n}} ||A||_1 \le ||A||_F \le \sqrt{n} ||A||_2,$$

1.2.2 矩阵范数的一些性质

• 对任意的算子范数 ||.||, 有 ||I|| = 1 • 对任意的相容范数 ||.||, 有 ||I|| \leq 1 • F-范数 是相容的, 但不是算子范数 • ||.|| $_2$ 和 ||.|| $_F$ 酉不变范数 • $\|A^\top\|_2 = \|A\|_2, \|A^\top\|_1 = \|A\|_\infty$

• 若 A 是正规矩阵, 则 $||A||_2 = \rho(A)$

1.2.3 向量序列的收敛

设 $x^{(k)}_{k=1}^{\inf}$ 是 \mathbb{C}^n 中的一个向量序列, 如果存在 $x \in \mathbb{C}^n$, 使得

$$\lim_{k \to \infty} x_i^{(k)} = x_i, \quad i = 1, 2, \dots, n$$

则称 $x^{(k)}$ (按分量) 收敛到 x, 记为 $\lim_{k\to\infty} x^{(k)} = x$

定理 1.6 (矩阵范数的等价性) 设 ||.|| 是 \mathbb{C}^n 上的任意一个向量范数,则 $\lim_{k\to\infty}x^{(k)}=x$ 的充要条件是

$$\lim_{k \to \infty} \left\| x^{(k)} - x \right\| = 0$$

1.2.4 收敛速度

设点列 $k_{k=1}^{\inf}$ 收敛,且 $\lim_{k=\infty} \varepsilon_k = 0$. 若存在一个有界常数 $0 < c < \infty$,使得 $\lim_{k\to\infty} \frac{|\varepsilon_{k+1}|}{|\varepsilon_k|^p} = c$ 则称点列 $_k$ 是 $_p$ 次 (渐进) 收敛的. 若 $1 或 <math>_p = 1$ 且 $_c = 0$,则 称点列是超线性收敛的.

†类似地,我们可以给出矩阵序列的收敛性和判别方法.

1.3 矩阵的投影

1.3.1 特征值与特征向量

- 特征多项式, 特征值, 特征向量, 左特征向量, 特征对
- n 阶矩阵 A 的谱: (A)□1,2,...,n
- 代数重数和几何重数, 特征空间
- 最小多项式
- 可对角化, 特征值分解
- 可对角化的充要条件
- 特征值估计: Bendixson 定理, 圆盘定理

1.3.2 **Bendixson** 定理

设
$$A \in \mathbb{C}^{n \times n}$$
, 令 $H = \frac{1}{2} \left(A + A^* \right), S = \frac{1}{2} \left(A - A^* \right)$. 则有
$$\lambda_{\min}(H) \leq \operatorname{Re}(\lambda(A)) \leq \lambda_{\max}(H)$$

$$\lambda_{\min}(iS) \leq \operatorname{Im}(\lambda(A)) \leq \lambda_{\max}(iS)$$

其中 Re(.) 和 Im(.) 分别表示实部和虚部。

†一个矩阵的特征值的实部的取值范围由其 Hermite 部分确定, 而虚部则由其 Skew-Hermite 部分确定.

1.3.3 **Gerschgorin** 圆盘定理

设 $A = [a_{ij}] \in \mathbb{C}^{n \times n}$, 定义集合

$$\mathcal{D}_i \triangleq \left\{ z \in \mathbb{C} : |z - a_{ii}| \le \sum_{j=1, j \ne i}^n |a_{ij}| \right\}, \quad i = 1, 2, \dots, n$$

这就是 A 的 n 个 Gerschgorin 圆盘。

定理 1.7 (Gerschgorin 圆盘定理) 设 $A = [a_{ij}] \in \mathbb{C}^{n \times n}$. 则 A 的所有特征值都包含在 A 的 Gerschgorin 圆盘的并集中, 即 $\sigma(A) \subset \bigcup_{i=1}^n \mathcal{D}_i$

1.3.4 投影变换与投影矩阵

设 $S = S_1 \oplus S_2$, 则 S 中的任意向量 x 都可唯一表示为 $x = x_1 + x_2, x_1 \in S_1, x_2 \in S_2$. 我们称 x_1 为 x 沿 S_2 到 S_1 上的投影,记为 $x|_{S_1}$. 设线性变换 $P: S \rightarrow S$. 如果对任意 $x \in S$,都有 $Px = x|_{S_1}$,则称 P 是从 S 沿 S_2 到 S_1 上的投影变换 (或投影算子),对应的变换矩阵称为投影矩阵.

引理 3 设 $P \in \mathbb{R}^{n \times n}$ 是一个投影矩阵, 则

$$\mathbb{R}^n = \operatorname{Ran}(P) \oplus \operatorname{Ker}(P) \tag{1}$$

反之, 若 (1.3) 成立, 则 P 是沿 Ker(P) 到 Ran(P) 上的投影

投影矩阵由其像空间和零空间唯一确定.

引理 4 若 S_1 和 S_2 是 \mathbb{R}^n 的两个子空间, 且 $\mathbb{R}^n = S_1 \oplus S_2$, 则存在唯一的投影矩阵 P, 使得

$$Ran(P) = S_1, Ker(P) = S_2$$

1.3.5 投影矩阵的判别

定理 1.8 矩阵 $P \in \mathbb{R}^{n \times n}$ 是投影矩阵的充要条件是 $P^2 = P$

1.3.6 投影算子的矩阵表示

设 S_1 和 S_2 是 \mathbb{R}^n 的两个 m 维子空间. 如果 $S_1 \oplus S_2^{\perp} = \mathbb{R}^n$, 则存在唯一的投影矩阵 P, 使得

$$\operatorname{Ran}(P) = \mathcal{S}_1, \quad \operatorname{Ker}(P) = \mathcal{S}_2^{\perp}$$

此时, 我们称 P 是 S1 上与 S2 正交的投影矩阵, 且有

$$P = V \left(W^{\top} V \right)^{-1} W^{\top}$$

其中 $V = [v_1, v_2, ..., v_m]$ 和 $W = [w_1, w_2, ..., w_m]$ 的列向量组分别构成 S_1 和 S_2 的一组基.

1.3.7 正交投影

设 S_1 是内积空间 S 的一个子空间, $x \in S$, 则 x 可唯一分解成

$$x = x_1 + x_2, x_1 \in S_1, x_2 \in S_1^{\perp}$$

, 其中 x_1 称为 x 在 S_1 上的正交投影.

- 若 P 是沿 S_1^{\perp} 到 S_1 上的投影变换, 则称 P 为 S_1 上的正交投影变换 (对应的矩阵为正交投影矩阵), 记为 P_{S_1}
 - 如果 P 不是正交投影变换, 则称其为斜投影变换

定理 1.9 投影矩阵 $P \in \mathbb{R}^{n \times n}$ 是正交投影矩阵的充要条件 P = P.

定理 1.10 投影矩阵 $P \in \mathbb{R}^{n \times n}$ 是正交投影矩阵的充要条件 $P^{\top} = P$.

推论 2 设 P 是子空间 S1 上的正交投影变换. 令 $v_1, v_2, ..., v_m$ 是 S_1 的一组标准正 交基,则

$$P = VV^{\top}$$

其中 $V = [v_1, v_2, ..., v_m]$.

性质 1 设 $P \in \mathbb{R}^{n \times n}$ 是一个正交投影矩阵, 则

$$||P||_2 = 1$$

且对 $\forall x \in \mathbb{R}^n$, 有

$$||x||_2^2 = ||Px||_2^2 + ||(I - P)x||_2^2$$

1.3.8 正交投影矩阵的一个重要应用

定理 1.11 设 S_1 是 R_n 的一个子空间, $z \in R_n$ 是一个向量. 则最佳逼近问题

$$\min_{x \in \mathcal{S}_1} \|x - z\|_2$$

的唯一解为

$$x_* = P_{\mathcal{S}_1} z$$

即 S_1 中距离 z 最近 (2-范数意义下) 的向量是 z 在 S_1 上的正交投影.

推论 3 设矩阵 $A \in \mathbb{R}^{n \times n}$ 对称正定, 向量 $x * \in S_1 \subseteq R_n$. 则 x_* 是最佳逼近问题

$$\min_{x \in \mathcal{S}_1} \|x - z\|_A$$

的解的充要条件是

$$A(x_*-z)\perp \mathcal{S}_1$$

这里 $||x - z||_A \triangleq ||A^{\frac{1}{2}}(x - z)||_2$

1.3.9 不变子空间

设 $A \in \mathbb{R}^{n \times n}$, $S \in \mathbb{R}^n$ 的一个子空间, 记

 $A\mathcal{S} \triangleq \{Ax : x \in \mathcal{S}\}$

定义 4 若 $AS\subseteq S$, 则称 S 为 A 的一个不变子空间.

定理 1.12 设 $x_1, x_2, ..., x_m$ 是 A 的一组线性无关特征向量,则

$$\mathsf{span}\left\{x_1,x_2,\ldots,x_m\right\}$$

是 A 的一个 m 维不变子空间.

1.3.10 不变子空间的一个重要性质

定理 1.13 设 $A \in \mathbb{R}^{n \times n}, X \in \mathbb{R}^{n \times k}$ 且 rank(X) = k. 则 span(X) 是 A 的不变子空间的充要条件是存在 $B \in \mathbb{R}^{k \times k}$ 使得

$$AX = XB$$
,

此时, B 的特征值都是 A 的特征值.

推论 4 设 $A \in \mathbb{R}^{n \times n}, X \in \mathbb{R}^{n \times k}$ 且 rank(X) = k. 若存在一个矩阵 $B \in \mathbb{R}^{k \times k}$ 使得 AX = XB, 则 (,v) 是 B 的一个特征对当且仅当 (,Xv) 是 A 的一个特征对.

1.4 矩阵标准型

计算矩阵特征值的一个基本思想是通过相似变换,将其转化成一个形式尽可能简单的矩阵,使得其特征值更易于计算.其中两个非常有用的特殊矩阵是 Jordan 标准型和 Schur 标准型.

定理 1.14 设 $A \in \mathbb{C}^{n \times n}$ 有 p 个不同特征值,则存在非奇异矩阵 $X \in \mathbb{C}^{n \times n}$, 使得

$$X^{-1}AX = \begin{bmatrix} J_1 & & & \\ & J_2 & & \\ & & \ddots & \\ & & & J_p \end{bmatrix} \triangleq J$$

其中 J_i 的维数等于 i 的代数重数, 且具有下面的结构

$$J_i = \left[egin{array}{cccc} J_{i1} & & & & & \\ & J_{i2} & & & & \\ & & \ddots & & & \\ & & J_{i
u_i} \end{array}
ight] J_{ik} = \left[egin{array}{cccc} \lambda_i & 1 & & & \\ & \ddots & \ddots & & \\ & & \lambda_i & 1 & \\ & & & \lambda_i \end{array}
ight]$$

这里 $_{i}$ 为 $_{i}$ 的几何重数, J_{ik} 称为 Jordan 块, 每个 Jordan 块对应一个特征向量

† Jordan 标准型在理论研究中非常有用,但数值计算比较困难,目前还没有找到十分稳定的数值算法.

推论 5 所有可对角化矩阵组成的集合在所有矩阵组成的集合中是稠密的.

1.4.1 **Schur** 标准型

定理 1.15 设 $A \in \mathbb{C}^{n \times n}$, 则存在一个酉矩阵 $U \in \mathbb{C}^{n \times n}$ 使得

$$U^*AU = \begin{bmatrix} \lambda_1 & r_{12} & \cdots & r_{1n} \\ 0 & \lambda_2 & \cdots & r_{2n} \\ \vdots & & \ddots & \vdots \\ 0 & \cdots & 0 & \lambda_n \end{bmatrix} \triangleq R \not \exists \vec{k} A = URU^*$$

其中 λ_1 , λ_2 , . . . , λ_n 是 A 的特征值 (排序任意).

关于 Schur 标准型的几点说明:

- Schur 标准型可以说是酉相似变化下的最简形式
- U 和 R 不唯一, R 的对角线元素可按任意顺序排列
- A 是正规矩阵当且仅当定理 (3.15) 中的 R 是对角矩阵;
- A 是 Hermite 矩阵当且仅当定理 (3.15) 中的 R 是实对角矩阵.

1.4.2 实 **Schur** 标准型

定理 1.16 设 $A \in \mathbb{R}^{n \times n}$, 则存在正交矩阵 $Q \in \mathbb{R}^{n \times n}$, 使得

$$Q^{\top}AQ = T$$

其中 $T \in \mathbb{R}^{n \times n}$ 是拟上三角矩阵, 即 T 是块上三角的, 且对角块为 1×1 或 2×2 的块矩阵. 若对角块是 1×1 的,则其就是 A 的一个特征值,若对角块是 2×2 的,则其特征值是 A 的一对共轭复特征值.

1.5 几类特殊矩阵

1.5.1 对称正定矩阵

设 $A \in \mathbb{C}^{n \times n}$.

A 是半正定 \iff Re $(x^*Ax) \ge 0, \forall x \in \mathbb{C}^n$

A 是正定 \iff Re $(x^*Ax) > 0, \forall x \in \mathbb{C}^n, x \neq 0$

A 是 Hermite 半正定 ⇐⇒ A Hermite 且半正定

A 是 Hermite 正定 ← A Hermite 且正定

†正定和半正定矩阵不要求是对称或 Hermite 的

定理 1.17 设 $A \in \mathbb{C}^{n \times n}$. 则 A 正定 (半正定) 的充要条件是矩阵 $H = \frac{1}{2}(A + A*)$ 正 定 (半正定).

定理 1.18 设 $A \in \mathbb{R}^{n \times n}$. 则 A 正定 (或半正定) 的充要条件是对任意非零向量 $x \in \mathbb{R}^n$ 有 $x^{\square}Ax > 0$ (或 $x^{\square}Ax \ge 0$).

1.5.2 矩阵平方根

定理 1.19 设 $A \in \mathbb{C}^{n \times n}$ 是 Hermite 半正定, k 是正整数. 则存在唯一的 Hermite 半正定矩阵 $B \in \mathbb{C}^{n \times n}$ 使得

$$B^k = A$$
.

同时, 我们还有下面的性质: (1) BA = AB, 且存在一个多项式 p(t) 使得 B = p(A); (2) rank(B) = rank(A), 因此, 若 A 是正定的, 则 B 也正定; (3) 如果 A 是实矩阵的, 则 B 也是实矩阵.

特别地, 当 k = 2 时, 称 B 为 A 的平方根, 通常记为 $A^{\frac{1}{2}}$.

Hermite 正定矩阵与内积之间有下面的关系

定理 1.20 设 (\cdot,\cdot) 是 \mathbb{C}^n 上的一个内积, 则存在一个 Hermite 正定矩阵 $A\mathbb{C}^{n\times n}$ 使 得

$$(x,y) = y^* A x.$$

反之, 若 $A \in \mathbb{C}^{n \times n}$ 是 Hermite 正定矩阵, 则

$$f(x,y) \triangleq y^*Ax$$

 \mathcal{L} \mathbb{C}^n 上的一个内积.

†上述性质在实数域中也成立.

1.5.3 对角占优矩阵

定义 5 设 $A \in \mathbb{C}^{n \times n}$, 若

$$|a_{ii}| \ge \sum_{j \ne i} |a_{ij}|$$

对所有 i = 1, 2, ..., n 都成立, 且至少有一个不等式严格成立, 则称 A 为弱行对角占优. 若对所有 i = 1, 2, ..., n 不等式都严格成立, 则称 A 是严格行对角占优. 通常简称为弱对角占优和严格对角占优.

+类似地,可以定义弱列对角占优和严格列对角占优.

1.5.4 可约与不可约

设 $A \in \mathbb{R}^{n \times n}$, 若存在置换矩阵 P, 使得 PAP^{\top} 为块上三角, 即

$$PAP^{\top} = \left[\begin{array}{cc} A_{11} & A_{12} \\ 0 & A_{22} \end{array} \right]$$

其中 $A_{11} \in \mathbb{R}^{k \times k} (1 \le k < n)$, 则称 A 为可约, 否则不可约.

定理 1.21 设 $A \in \mathbb{R}^{n \times n}$, 指标集 $\mathbb{Z}_n = \{1, 2, \dots, n\}$. 则 A 可约的充要条件是存在非空指标集 $J \subset \mathbb{Z}_n$ 且 $J \neq \mathbb{Z}_n$, 使得

$$a_{ij} = 0, \quad i \in J \coprod j \in \mathbb{Z}_n \backslash J$$

这里 $\mathbb{Z}_n J$ 表示 J 在 \mathbb{Z}_n 中的补集.

定理 1.22 若 $A \in \mathbb{C}^{n \times n}$ 严格对角占优,则 A 非奇异

定理 1.23 若 $A \in \mathbb{C}^{n \times n}$ 不可约对角占优,则 A 非奇异

1.5.5 其他常见特殊矩阵

- 带状矩阵: $a_{ij}\neq 0$ only if $-b_u\leq i-j\leq b_l$, 其中 b_u 和 b_l 为非负整数, 分别称为下带宽和上带宽, b_u+b_l+1 称为 A 的带宽
 - 上 Hessenberg 矩阵: $a_{ij} = 0$ for i-j > 1,

- 下 Hessenberg 矩阵
- Toeplitz 矩阵

$$T = \begin{bmatrix} t_0 & t_{-1} & \dots & t_{-n+1} \\ t_1 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & t_{-1} \\ t_{n-1} & \dots & t_1 & t_0 \end{bmatrix}$$

• 循环矩阵 (circulant):

$$C = \begin{bmatrix} c_0 & c_{n-1} & c_{n-2} & \cdots & c_1 \\ c_1 & c_0 & c_{n-1} & \cdots & c_2 \\ c_2 & c_1 & c_0 & \cdots & c_3 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ c_{n-1} & c_{n-2} & c_{n-3} & \cdots & c_0 \end{bmatrix}$$

• Hankel 矩阵:

$$H = \begin{bmatrix} h_0 & h_1 & \cdots & h_{n-2} & h_{n-1} \\ h_1 & \ddots & \ddots & \ddots & h_n \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ h_{n-2} & \cdots & \cdots & h_{2n-2} \\ h_{n-1} & h_n & \dots & h_{2n-2} & h_{2n-1} \end{bmatrix}$$

1.6 Kronecker 积

定义 6 设 $A \in \mathbb{C}^{m \times n}, B \in \mathbb{C}^{p \times q}$, 则 A = B 的 Kronecker 积定义为

$$A \otimes B = \begin{bmatrix} a_{11}B & a_{12}B & \cdots & a_{1n}B \\ a_{21}B & a_{22}B & \cdots & a_{2n}B \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1}B & a_{m2}B & \cdots & a_{mn}B \end{bmatrix} \in \mathbb{C}^{mp \times nq}$$

Kronecker 积也称为直积,或张量积.

†任意两个矩阵都存在 Kronecker 积, 且 $A \otimes B$ 和 $B \otimes A$ 是同阶矩阵, 但通常 $A \otimes B \neq B \otimes A$

1.6.1 基本性质

(1)
$$(A) \otimes B = A \otimes (B) = (A \otimes B), \forall \in \mathbb{C}$$

(2)
$$(A \otimes B)^{\square} = A^{\square} \otimes B^{\square}, (A \otimes B)^* = A^* \otimes B^*$$

(3)
$$(A \otimes B) \otimes C = A \otimes (B \otimes C)$$

(4)
$$(A+B) \otimes C = A \otimes C + B \otimes C$$

(5)
$$A \otimes (B + C) = A \otimes B + A \otimes C$$

(6) 混合积:
$$(A \otimes B)(C \otimes D) = (AC) \otimes (BD)$$

(7)
$$(A_1 \otimes A_2 \otimes \cdots \otimes A_k)(B_1 \otimes B_2 \otimes \cdots \otimes B_k) = (A_1 B_1) \otimes (A_2 B_2) \otimes \cdots \otimes (A_k B_k)$$

(8)
$$(A_1 \otimes B_1)(A_2 \otimes B_2) \cdots (A_k \otimes B_k) = (A_1 A_2 \cdots A_k) \otimes (B_1 B_2 \cdots B_k)$$

(9)
$$rank(A \otimes B) = rank(A) rank(B)$$

定理 1.24 设 $A \in \mathbb{C}^{m \times m}$, $B \in \mathbb{C}^{n \times n}$, 并设 (,x) 和 (,y) 分别是 A 和 B 的一个特征对, 则 $(,x \otimes y)$ 是 $A \otimes B$ 的一个特征对. 由此可知, $B \otimes A$ 与 $A \otimes B$ 具有相同的特征值.

定理 1.25 设 $A \in \mathbb{C}^{m \times m}$, $B \in \mathbb{C}^{n \times n}$, 则

- (1) $tr(A \otimes B) = tr(A)tr(B)$;
- (2) $det(A \otimes B) = det(A)^n det(B)^m$;
- (3) $A \otimes I_n + I_m \otimes B$ 的特征值为 i + j, 其中 i 和 j 分别为 A 和 B 的特征值;
- (4) 若A和B都非奇异,则 $(A \otimes B) 1 = A^{-1} \otimes B^{-1}$;

推论 6 设 $A = Q_1\Lambda_1Q_1^{-1}, B = Q_2\Lambda_2Q_2^{-1}$, 则

$$A \otimes B = (Q_1 \otimes Q_2) (\Lambda_1 \otimes \Lambda_2) (Q_1 \otimes Q_2)^{-1}$$

定理 1.26 设 $A \in \mathbb{C}^{m \times m}, B \in \mathbb{C}^{n \times n}$, 则存在 m + n 阶置换矩阵 P 使得

$$P^{\top}(A \otimes B)P = B \otimes A$$

定理 1.27 设矩阵 $X=[x1,x2,...,xn]\in\mathbb{R}^{m\times n}$, 记 vec(X) 为 X 按列拉成的 mn 维列向量, 即

$$\operatorname{vec}(X) = \begin{bmatrix} x_1^\top, x_2^\top, \dots, x_N^\top \end{bmatrix}^\top$$

则有

$$vec(AX) = (I \otimes A)vec(X), vec(XB) = (B^{\top} \otimes I)vec(X),$$

以及

$$(A \otimes B) vec(X) = vec(BXA^{\top})$$