

Sampling Design of Large-Scale Assessments and Implications for Data Analyses

Ting Zhang

American Institutes for Research

NCME | March 2023

Agenda

- Overview of large-scale assessments (LSA)
- Study designs
 - Complex sample design
 - > Implication for variance estimation and sampling weights

What are educational large-scale assessments (LSA)?

Tests that focus on measuring and monitoring what populations know and can do in academic subject areas

- Populations are usually certain ages/grades in cities, states, countries
- Subpopulation measurement (gender, SES, race/ethnicity) is also prioritized
- Academic subject areas include mathematics, science, reading, social studies, computer literacy, etc.
- Measure contextual factors associated with achievements

Uses of LSAs

Provide information for achievement comparisons between educational systems or jurisdictions

• How does the performance in one country compare with that of other countries?

Examine trends in achievement

How does one country's achievement increase or decrease over time?

Improve education by informing policy, research, and practices

• What factors are associated with educational achievement? What can we learn from others about what works (and what doesn't)? What could be adopted by or adapted?

Why Specialized Software Programs are Needed for LSA Data Analysis?

Study Designs

- Complex sample design (multi-stage, clustered sample design, sampling weights, sampling variance)
- Complex assessment design (matrix sampling design, use of Item Response Theory (IRT) and Plausible Values (PVs), and measurement variance)

Sample Design, Sampling Variance and Weights

Why Do We Use Samples?

Impossible to test everyone on everything

- Too many people
- Too many items
- Too expensive

Not necessary to test everyone on everything, e.g.,

- Blood sample
- Soup sample

Source: Sabine Meinck, Ph.D., IEA, Design of International Large-Scale Assessments and Implications for Multilevel Modeling

You're probably familiar with simple random sampling (SRS)

- Each person has an equal probability of selection
- But, to conduct a study with nationally representative samples, SRS not feasible:
- Time!
- Cost!

Complex sample designs

Why "complex"?

- Multiple stages of stratified sampling
- Homogenous clusters are sampled
- Selection probabilities differ for different sampling units

Multiple sampling stages (TIMSS)

What are the implications of multistage cluster sampling?

Cluster effect: Individuals within classrooms/schools tend to be more similar than individuals between schools

What are the implications of multistage cluster sampling?

- In general, the sampling variance of a clustered sample tends to be larger than the sampling variance of a simple random sample of the same size.
- In studies using a complex sampling design, standard errors tend to get larger, partly due to the sampling variance.
- Variances are essential in statistical tests of significance
 - Biased variances could make differences between scores appear significant when in fact they are not

How to handle clustering:

Three recommended methods

- Replication methods. TIMSS and NAEP uses jackknife repeated replication
- Taylor series approximations
- Hierarchical linear models

Sampling schools and students: Unequal probabilities of selection

- Schools are sampled with **probability proportional to their size** from the list of all schools in the population
 - Larger schools are more likely to be selected than small ones
 - Students in large schools have a lower probability of selection than classes in smaller schools
 - Result: the overall probability of selection of students is more similar across different size schools

When we sample with unequal probabilities of selection, aren't we introduce bias into our analytical results?

Sample Weights

- To account for unequal probabilities of selection, sampling weights should be used in all statistical calculations where inferences are made to populations
 - Otherwise, population estimates of means or percentages will be biased
 - Most standard software have ways to specify weights

TIMSS Student Weights

Final student weights = school-level sampling probability * student-level sampling probability*non-participation adjustments

- Students are assigned sampling weights to adjust for over- or under-representation of particular groups in the final sample
- Student weight is the inverse of the probability of selection
- Students with higher weight values are representing more people in the target population
- Use of sampling weights is necessary for computation of sound, representative estimates
- Weights adjust for nonparticipation
- Sum of the overall student weights equals the number of students in the target population

Probabilities and Weights

- Student weight is the inverse of the probability of selection
- Suppose a school has a probability of selection of 0.1 and each student within a school has a probability of selection of 0.2. What is the students' probability of selection?

School prob

Student within school prob

Joint Prob

1/10

2/10

2/100 or 1/50

Student weight = inverse probability

$$50/1 = 50$$

Q: If a school has a 0.2 probability of selection and once school is selected the student has a 0.05 probability of selection, what is the students weight?

A. 100

B. 200

C. 20

D. 500

Implications for Large-Scale Data Analysts

- Many statistical software packages assume the data being analyzed come from a simple random sample with independent observations and equal selection probability
- LSAs clustering of observations in schools and classes prevents them from being independent
 - Need to use the JK, Taylor series or HLM method for sampling variance
- Complex sampling leads to unequal selection probability
 - Weights need to be applied for unbiased estimates
- Statistical software exists for "complex samples"
 - NCES's EdSurvey and Dire!

Resources

IEA TIMSS International Database

<u>IEA International Database Analyzer (IDB Analyzer)</u> and its

<u>tutorials</u>

TIMSS and PIRLS International Study

NCES International Activities Program

Center website

NCES International Data Explorer (IDE)

IEA website

website

ILSA Gateway

NCES EdSurvey R statistical package

OECD PISA website

NCES Dire R statistical package

NCES Distance Learning Dataset Training Modules (DLDT)

Questions?

Ting Zhang, PhD American Institutes for Research tzhang@air.org

AMERICAN INSTITUTES FOR RESEARCH® | AIR.ORG

Notice of Trademark: "American Institutes for Research" and "AIR" are registered trademarks. All other brand, product, or company names are trademarks or registered trademarks of their respective owners.

Copyright © 2021 American Institutes for Research®. All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, website display, or other electronic or mechanical methods, without the prior written permission of the American Institutes for Research. For permission requests, please use the Contact Us form on AIR.ORG.