(b)

21	21	21	95	169	243	243	243
21	21	21	95	169	243	243	243
21	21	21	95	169	243	243	243
21	21	21	95	169	243	243	243

(a) p(21)= 0.375 p(95)= 0.125 p(169)= 0.125 p(243)= 0.375

H= -[P(21)log(P(21)) + P(95)log(P(95)) + P(169)log(P(169)) + P(243)log(P(243))]=1.811

像素值	编码
21	10
95	110
169	111
243	0

(c) 计算霍夫曼编码能达到的压缩率和效率。中

应用 Huffman 编码的平均编码长度 L_{avg} = (3/8)(1) + (3/8)(2) +(1/8)(3) +(1/8)(3) = 1.875 bits/pixel,在无编码压缩的情况下长度为8bits/pixel,所以压缩率C = 8/1.875 = 4.27,理论的压缩率为 C' = 8/1.81128 = 4.416766,效率 n = (C' / C) *100% = 96.6%。

(**d**)

像素对	数目	概率
21-21	8	2/8
21-95	4	1/8

95-169	4	1/8
169-243	4	1/8
243-243	8	2/8
243-21	4	1/8

 $H = -[2*(2/8)\log(2/8) + 4*(1/8)\log(1/8)] = 1.25$

(e)

从第二列开始计算与前一列的差值,结果如下:

21	0	0	74	74	74	0	0
21	0	0	74	74	74	0	0
21	0	0	74	74	74	0	0
21	0	0	74	74	74	0	0

像素对	数目	概率
0	16	4/8
74	12	3/8
21	4	1/8

 $H = -[(1/8) \log(1/8) + (4/8) \log(4/8) + (3/8) \log(3/8)] = 1.4$

(f) a 中的熵衡量的是原图像的信息量,最大,含有大量冗余信息。d 中的熵衡量的是以像素对为信息单元的信息量,通过考虑像素与像素之间的相关性减少了一部分的冗余信息。e 中的熵衡量的是图像中像素差值的信息量,去掉了较多的冗余信息。