A Comparison of Antenna Placement Algorithms

Abhinav Jauhri

April 5, 2015

Motivation

- ► Systems with multiple antennas offer interference, and thereby reduce each antenna's efficiency
- Parasitic effects due to the plaform
- Frequency bands change over time requiring new antennas, and therefore need to find new placements

Outline of this talk

- ► Part 1: Introduction to the antenna placement problem
- ► Part 2: Description of stochastic algorithms, their properties and operators
- ► Part 3: Evaluation of test cases

Part 1: Introduction to the antenna placement problem

Antenna Placement Problem

Given, platform

- allowable placements of antennas

Antenna Placement Problem

Problem: Find best antenna placements to maximize gain and minimize coupling

Antenna Placement Problem

Given:

- ▶ platform *P* with its surface gridded such that end points represent possible antenna placements
- ▶ set of *m* antennas $A = A_1, A_2, ..., A_m$ such that m > 1
- ▶ for each A_i , L_i denote the set of allowable placements $\in \mathbb{R}^3$ such that $|L_i| = n_i$ and $\forall i, n_i > 1$; $L_i = \{(x_1, y_1, z_1) ... (x_{n_i}, y_{n_i}, z_{n_i})\}$

Problem: Find a set of n optimal antenna placements on P to maximize gain and minimize coupling

Question: How is a good antenna placement quantified in the context of platform and other antennas?

Mutual Coupling

When two antennas are in proximity, and one is transmitting, the second will receive some of the transmitted energy.

Minimize Mutual Coupling

$$F_{MC} = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} CP(A_i, A_j), \tag{1}$$

where

► $CP(\cdot,\cdot) \in \mathbb{R}$ is the coupling between two antennas, and computed using a simulator

Example: If n = 3, then $F_{MC} = CP(A_1, A_2) + CP(A_1, A_3) + CP(A_2, A_3)$

Radiation Pattern

Free-space pattern without platform or other antennas

Radiation Pattern

Free-space pattern without platform or other antennas

2D view of the free space gain pattern

In-situ pattern (in red) for random antenna placements

Minimize Difference in Radiation Pattern

$$F_{RP} = \sum_{i=1}^{n} \sum_{\theta=0}^{\pi/S} \sum_{\phi=0}^{2\pi/S} \left(FSG_i(S\theta, S\phi) - ISG_i(S\theta, S\phi) \right)^2, \quad (2)$$

where

- ► *S* is the step size
- \triangleright θ, ϕ spherical coordinates
- ► $FSG(\cdot, \cdot) \in \mathbb{R}$ is the free-space gain pattern computed by the simulator
- ▶ $ISG(\cdot, \cdot) \in \mathbb{R}$ is the in-situ gain pattern computed by the simulator

Fitness Evaluation

Find a placement such that F is minimal:

$$F = \alpha F_{MC} + \beta F_{RP}, \tag{3}$$

where α,β are adjustable weights for each of the objectives

Part 2: Stochastic Algorithms

Stochastic Algorithms

We will consider algorithms which rely on randomization principle.

- ► Genetic Algorithm
- Evolutionary Strategy
- Simulated Annealing
- Hill Climbing

Each algorithm maintains a candidate solution or pool of candidate solutions called population

Stochastic Algorithms: Operand

Candidate solution or an **individual** is a member of a set of possible solutions.

 Simulated Annealing and Hill Climbing maintain single individual

 Genetic Algorithm and Evolutionary Strategy maintain a population of individuals

Stochastic Algorithms: Mutation Operator

1. Given an individual, select an antenna uniformly at random, let's say antenna 1:

2. For antenna 1, select any other allowable placement:

3. Change position for antenna 1 in individual:

Stochastic Algorithms: Crossover Operator

1. Select two individuals from population:

2. Select a crossover point, and swap placements prior to the point:

3. Two new offsprings created:

Question: Why use stochastic algorithms?

Multi-Modal Search Space

Search space for one of the test cases evaluated. There are multiple local minimas which makes convergence difficult. z-axis is the combined fitness F (refer Eq. 3)

Genetic Algorithm

```
1 P \leftarrow \text{generate } p \text{ random individuals. Compute}
    fitness(ind_i), i \in [1, p];
 i = 0:
    while i < gen_{max} do
          Elitism: Select n_e fittest individuals to add to P';
          for (p-n_e)/2 times do

| /* 'select' returns a pair of individuals
 5
                                                                          */
                M \leftarrow select(P,2);
                if rand(0,1) < p_c then
                      \mathbf{O} \leftarrow crossover(\mathbf{M});
                      Add O to P':
                else
10
                      Add M to P';
11
          Uniformly select p_m \cdot (p - n_e) individuals from P,
12
          and apply mutation operator to each;
          Update P \leftarrow P':
13
          Compute fitness(ind_i); i \in [1, p];
14
          Update i \leftarrow i + 1:
15
```

Genetic Algorithm

```
1 P \leftarrow generate p random individuals. Compute
    fitness(ind_i), i \in [1, p];
 i = 0;
    while i < gen_{max} do
          Elitism: Select n_e fittest individuals to add to P';
          for (p-n_e)/2 times do

| '* 'select' returns a pair of individuals
 5
                                                                        */
                M \leftarrow select(P,2);
                if rand(0,1) < p_c then
                     \mathbf{O} \leftarrow crossover(\mathbf{M});
                     Add O to P':
               else
10
                     Add M to P':
11
          Uniformly select p_m \cdot (p - n_e) individuals from P,
12
          and apply mutation operator to each;
          Update P \leftarrow P':
13
          Compute fitness(ind_i); i \in [1, p];
14
          Update i \leftarrow i + 1:
15
```


Plateaus suggesting stagnation of search

Evolutionary Strategy

```
    P← generate μ random individuals;
    i = 0;
    while i < gen<sub>max</sub> do
    Create λ/μ offsprings from each μ individuals by applying mutation operator;
    Add all offsprings to P;
    Compute fitness(ind<sub>i</sub>), i ∈ [1, λ + μ];
    Keep μ best individuals in P, and discard remaining λ - μ individuals;
    Update i ← i + 1
```

Evolutionary Strategy

```
P← generate μ random individuals;
i = 0;
while i < gen<sub>max</sub> do
Add all offsprings to P;
Create λ/μ offsprings from each μ individuals by applying mutation operator;
Compute fitness(ind<sub>i</sub>), i ∈ [1,λ+μ];
Keep μ best individuals in P, and discard remaining λ-μ individuals;
Update i ← i+1
```


Less likely to stagnate search space exploration

Simulated Annealing

```
c ← generate a random individual;
 i = 0:
    while i < i_m ax do
         n \leftarrow mutate(c);
         if fitness(c) < fitness(n) then
               if rand(0,1) < e^{-\delta f/T} then
 6
                     /* replace current individual by a higher
                         fitness (less fitter) individual
                                                                         */
 7
          else
           c ← n;
         T \leftarrow T \cdot f_{cooling}; i \leftarrow i + 1;
10
11
```

Simulated Annealing

```
1 c \leftarrow generate a random individual;

2 i=0;

3 while i < i_m a \times do

4 n \leftarrow mutate(c);

5 if fitness(c) < fitness(n) then

6 if \frac{rand(0,1) < e^{-\delta f/T}}{/* replace current individual by a higher fitness (less fitter) individual */

7 c \leftarrow n

8 else

9 c \leftarrow n;

10 c \leftarrow n;

11 c \leftarrow i+1;
```


Fluctuation in fitness gradually reduces due to cooling

Hill Climbing

```
1 Initialize c \leftarrow generate \ a \ random \ inidividual;

2 Compute fitness(c);

3 i = 0;

4 while i < i_{max} \ do

5 | n \leftarrow mutate(c);

6 | if fitness(n) < fitness(c) then

7 | c \leftarrow n

8 | i \leftarrow i + 1
```

Hill Climbing

```
Initialize c \leftarrow \text{generate a random inidividual};

Compute \text{fitness}(c);

i = 0;

while i < i_{max} do

n mutate(c);

fitness(n) < fitness(c) then

c = n

c \leftarrow n
```


Greedy approach to accept only fitter(low fitness) individuals

Part 3: Evaluation of test cases

Experimental Setup

- 1. All test cases describe platforms which are replicas of real-world use cases like mobile devices, tanks, and cars
- 2. We use a popular NEC2 simulator 1 to get fitness parameters
- 3. Evaluate the entire search space using an exhaustive algorithm to find the optimal antenna locations

Experiments: Test Cases

Test Case #1 with 7056 (84x84) allowable placements

Test Case #3 with 126025 (71x71x25) allowable

Test Case #2 with 50625 (45x45x45) allowable placements

Test Case #4 with 20736 (12x12x12x12) allowable

Results - Mean Best Fitness With Std. Dev.

Results - Success Rates

Conclusion

- ► Formulation of the antenna placement problem
- Generic problem formulation to accommodate multiple antennas and platforms
- ► Optimal placements found using Evolutionary Strategy with at most 25% evaluations of search space