Lineare Algebra 1 – WS 2024/25

Übungsblatt 10 - 22.1.2025

Aufgabe 1

Bestimmen Sie den Rang der Matrix über \mathbb{R}

$$A = \begin{pmatrix} 1 & 3 & 5 & -4 & 0 \\ 1 & 3 & 2 & -2 & 1 \\ 1 & -2 & 1 & -1 & -1 \\ 1 & -4 & 1 & 1 & -1 \\ 0 & -1 & 3 & 1 & 0 \end{pmatrix}.$$

Aufgabe 2

Es sei $\mathbb{R}_2[x]$ der Vektorraum der Polynome mit Koeffizienten in \mathbb{R} vom Grad ≤ 2 . Ferner sei $\frac{d}{dx} \colon \mathbb{R}_2[x] \to \mathbb{R}_2[x]$ die (formale) Ableitung, d.h., $\frac{d}{dx}(a_2x^2 + a_1x + a_0) = 2a_2x + a_1$ für $a_0, a_1, a_2 \in \mathbb{R}$. Bestimmen Sie die Matrix $\left[\frac{d}{dx}\right]_{\mathcal{B}_i,\mathcal{B}_i}$ für folgende Basen:

(a)
$$\mathcal{B}_1 = (1, x, x^2),$$

(a)
$$\mathcal{B}_1 = (1, x, x^2),$$

(b) $\mathcal{B}_2 = ((x-1)^2, x^2, (x+1)^2).$

Aufgabe 3

Es sei V ein 2-dimensionaler Vektorraum über einem Körper K und $T: V \to V$ eine lineare Abbildung. Weiters sei \mathcal{B} eine geordnete Basis von V und es gelte

$$[T]_{\mathcal{B},\mathcal{B}} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 mit $a, b, c, d \in K$.

Zeigen Sie, dass T genau dann bijektiv ist, wenn gilt $ad - bc \neq 0$.

Aufgabe 4

Es sei V ein n-dimensionaler Vektorraum über einem Körper $K, \varphi \colon V \to V$ eine lineare Abbildung, und $k \in \mathbb{N}$ mit $1 \le k \le n$. Zeigen Sie, dass folgende Aussagen äquivalent sind.

- (a) Es existiert ein k-dimensionaler Unterraum $W \subseteq V$ mit $\varphi(W) \subseteq W$.
- (b) Es existiert eine geordnete Basis \mathcal{B} von V, sodass die Matrix $[\varphi]_{\mathcal{B},\mathcal{B}}$ von der Form

$$n-k \left\{ \begin{pmatrix} * & \dots & * & * & \dots & * \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ * & \dots & * & * & \dots & * \\ 0 & \dots & 0 & * & \dots & * \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & 0 & * & \dots & * \\ k & & & n-k \end{pmatrix} \right..$$

ist.

Aufgabe 5

Es seien K ein Körper, V, W zwei endlich dimensionale K-Vektorräume, und $f, g \colon V \longrightarrow W$ zwei lineare Abbildungen. Zeigen Sie

$$rang(f+g) \le rang(f) + rang(g)$$
.