

PROPOSAL PROGRAM KREATIVITAS MAHASISWA

SISTEM SMARTHOME EFISIENSI PENGGUNAAN AIR DENGAN PENGONTROLAN DAN PEMANTAUAN VOLUME AIR BERBASIS ANDROID DAN INTERNET

BIDANG KEGIATAN:

PKM KARSA CIPTA

Diusulkan Oleh:

Riko Firmando; 171331038; 2017

Iklima Amanah Yashinta; 181331043; 2018

Anadita Rizti Oktavia; 161331037; 2016

POLITEKNIK NEGERI BANDUNG 2019

i

Pengesahan PKM Karsa Cipta

1. Judul Kegiatan : Sistem Smarthome Efisiensi Penggunaan Air

> dengan Pengontrolan dan Pemantauan Volume Air Berbasis Android dan Internet

2. Bidang Kegiatan : PKM-KC

3. Ketua Pelaksana

Kegiatan

a. Nama Lengkap : Riko Firmando b. NIM : 171331027 c. Jurusan

: Teknik Elektro d. Perguruan Tinggi : Politeknik Negeri Bandung

e. Alamat Rumah dan Jl. Ciwaruga no 57 RT 01/RW 06 No. Tel/HP

: 08127868952 f. Email

: Rikofrmndo@gmail.com

4. Anggota Pelaksana : 2 orang Kegiatan / Penulis

Dosen Pendamping

a. Nama Lengkap dan : DR. Eril Mozef, MS., DEA

Gelar b. NIDN : 0004046504

c. Alamat Rumah dan : Jalan Mars Utara 1 No II Rt 02 Rw 02, NO. Tel/HP

Margahayu Raya, Bandung 40286

/08122269339

6. Blaya Kegiatan Total

a. Kemristekdikti : Rp.12.344.000

b. Sumber Lain

7. Jangka Waktu : 5 Bulan

Teknik Elektro,

Pelaksanaan

Bandung, 03 Januari 2019

Ketua Pelaksana Kegiatan,

Direktur Politekni

Malayusff, BSEE., M.Eng)

NIP. 195401011984031001

NIP. 19600316 087101001

Mengetahui, Dosen Pembimbing

(Riko Firmando)

NIM. 171331027

(DR. Eril Mozef, MS., DEA) NIDN. 0004046504

DAFTAR ISI

HALAMAN JUDUL	i
HALAMAN PENGESAHAN	ii
DAFTAR ISI	iii
BAB 1. PENDAHULUAN	1
1.1 Latar Belakang	1
1.2 Luaran Yang Diharapkan	2
1.3 Manfaat	2
BAB 2. TINJAUAN PUSTAKA	3
BAB 3. METODA PELAKSANAAN	5
3.1 Perancangan	5
3.2 Realisasi	5
3.3 Pengujian	5
3.4 Analisis	6
3.5 Evaluasi	6
BAB 4. BIAYA DAN JADWAL KEGIATAN	7
4.1 Anggaran Biaya	7
4.2 Jadwal Kegiatan	7
DAFTAR PUSTAKA	8
LAMPIRAN – LAMPIRAN	

BAB 1

PENDAHULUAN

1.1 Latar Belakang

Penggunaan air dirumah dalam kehidupan sehari-hari seringkali tidak tekontrol. Banyak air yang terbuang percuma tanpa diketahui pemilik rumah. Jika pemilik rumah lupa untuk menutup kran air, biasanya air yang berasal dari PDAM mengalir begitu saja apalagi ketika pemilik sedang tidak berada dirumah. Hal ini dianggap sangat merugikan pemilik rumah maupun orang lain diluar sana yang sangat membutuhkan air. Selain itu, terkadang ada keadaan dimana pemilik rumah harus meninggalkan rumah berhari-hari, sedangkan air yang berasal dari PDAM yang umumnya mengalir dua hari sekali akan susah terkontrol. Maka, diperlukan suatu sistem yang dapat mengontrol dan memonitoring penggunaan air dalam rumah dengan lebih mudah.

Gambaran dari sistem yang akan dibuat secara garis besar adalah membuat sistem untuk penghematan penggunaan air dalam rumah tangga dengan manajemen pengaturan volume air melalui WIFI secara lokal atau internet. Untuk pengontrolan lokal, pemilik rumah berada didalam rumah, sedangkan melalui internet dilakukan pengontrolan secara global yaitu ketika pemilik rumah berada di luar rumah. Pengontrolan dilakukan menggunakan smartphone dengan membuat aplikasi android yang didalamnya dapat diatur menggunakan touchscreen (dengan input keypad android) atau perintah suara menggunakan fitur speech recognizer dimana fitur ini sudah terhubung langsung dengan library Google Voice. Antara aplikasi Android ke sistem pengatur volume air terdapat perantara yaitu sentral (infrastruktur smarthome) yang berfungsi untuk meneruskan perintah dari smartphone ke sistem pengatur volume yang dituju. Disamping dilakukan pengontrolan, pemilik rumah dapat melakukan pemantauan dan menajemen penggunaan air yang digunakan setiap bulannya.

Realisasi sistemnya akan dibuat menjadi tiga bagian, bagian pertama adalah bagian perintah suara ke sentral. Bagian ini adalah bagian yang terhubung langsung dengan pengguna, karena pada bagian inilah aplikas*i Android* akan dibuat. Bagian kedua adalah bagian sentral ke sistem pengatur debit air. Bagian ini adalah bagian yang memastikan aliran data antara dua detector Wi-Fi (sentral dengan sistem pengatur volume air) yang ingin dikontrol sudah berjalan baik atau belum, dan bagian ketiga, yaitu bagian tambahan berupa penjadwalan dan pendeteksian otomatis bagi pemilik rumah sehingga dapat dilakukan dengan manajemen sistem smarthome melalui aplikasi pada *Android*.

Pada aplikasi ini juga akan dibuat *history* penggunaan air tiap bulannya sehingga pengguna bisa lebih menghemat daan mengefesiensikan penggunaan air.

"Dalam pengukuran volume air digunakan sensor ultrasonik, dimana sensor tersebut dapat mendeteksi jarak permukaan air dengan sensor. Datanya kemudian akan diolah oleh mikrokontroler untuk ditampilkan pada display (Permana, 2009)." Selain itu, "monitoring juga dapat dilakukan sehingga akan tercipta sistem smarthome dengan penggunaan air yang efisien dan terorganisir. Kami mengusulkan sistem ini karena smarthome akan menjadi kebutuhan dasar dan trendsetter hunian rumah (Okezone, 2016)."

1.2 Luaran yang diharapkan

- 1.Prototipe sistem *SmartHome*
- 2. Publikasi karya pada seminar nasional
- 3. Software Aplikasi Android

1.3 Manfaat

- 1. Memberikan fungsi manajemen pengehematan air agar tercipta sistem smarthome dengan penggunaan air yang efisien dan terorganisir.
- 2. Dapat melakukan pengontrolan dan pemantauan volume air jarak jauh sesuai keinginan sehingga pengguna dapat mengetahui berapa air yang tersedia didalamnya

BAB 2

TINJUAN PUSTAKA

"Adi (2009) menjelaskan teknologi untuk pemanfaatan air seperti teknologi pemanenan hujan (rainwater harvesting) merupakan alternative penyeediaan air pada daerah yang memiliki kualitas air permukaan buruk atau kesulitan sumber air".

"Amelia dan Adnan (2017) menjelaskan untuk meningkatkan kualitas dan kuantitas dari produksi dalam suatu industri, diperlukan sistem otomasi yang handal dan akurat. Salah satu sistem instrumentasi yang memerlukan keakuratan yaitu sistem kendali ketinggian air dalam suatu tangki. Sistem ini dirancang untuk mengendalikan ketinggian permukaan air dalam suatu tangki agar sesuai dengannilai referensi(setpoint)ketinggian yang diberikan. Ketidakakuratan pengukuran dalam sistem tersebut seringkali dapat menyebabkan kerugian, terutama dalam proses produksi. Dengan demikian, diperlukan suatu sistem kendali ketinggian air pada tangki untuk menjaga kestabilan dan keakuratan pengukuran pada sistem tangki tersebut.

"Firmansyah *et al.* (2015) telah merealisasikan metode penelitiannya yang dibagi menjadi beberapa tahap. Dimana sistem deteksi ketinggian air terdiri dari perangkat keras dan perangkat lunak. Perangkat keras terdiri dari catu daya, sensor ultarasonik, Raspberry Pi dan moto servo. Sebuah sistem detector level air diusulkan dengan user interface yang ramah bagi pengguna. Pengguna dapat memperoleh informasi melalui telegram baik berupa informasi yang dikirim langsung oleh Raspberry Pi ke pengguna, ataupun informasi yang diminta oleh pengguna kepada system melalui suatu isntruksi pada chat tersebut. Rancangan kran otomatis mengguanan motor servo sebagai penggerak kran".

"Permana (2009) telah merealisasikan pembuatan sistem monitoring ketinggian air dengan sensor ultrasonic berbasis mikrokontroler ATMega8535. Alat ini dapat dimanfaatkan sebagai alat bantu untuk memantau ketinggian air pada suatu tangki penyimpanan air. Sehingga pendeteksian tidak perlu dilakukan dengan kontak fisik antara sensor dengan permukaan air. Sensor ultrasonic mendeteksi jarak permukaan air dengan sensor. Datanya lalu akan diolah oleh mikronkrontroler untuk ditampilkan pada display. Sistem ini juga memiliki tanda peringatan yang lain yaitu berupa lampu indicator, alam buzzer dengan keadaaan pompa yang sesuai dengan yang diinginkan user".

"Ramadhan dan Suganda (2017) telah merealisasaikan salah satu perlatan untuk Fitting, Stop Kontak, Saklar Listrik dan Remote TV yang dikontrol secara local atau internet dengan Penginputan Perintah Suara dalam Bahasa Indonesia pada Smartphone Android yang nantinya akan memanfaatkan infrastruktur smarthome".

"Subandriyo (2002) mengatakan bahwa saat ini kondisi air (bersih) dunia benarbenar di ambang krisis. Hal itu disebabkan kebutuhan air bersih dunia meningkat dua kali lipat setiap 20 tahun akibat pertambahan jumlah penduduk yang sangat besar. Implikasi yang ditimbulkan dari kondisi tersebut antara lain satu di antara lima penduduk dunia tidak mempunyai akses pada air bersih. Sumber-sumber air makin terkuras, pencemaran air karena kegiatan manusia terjadi di mana-mana. Proyek-proyek besar pembangkit listrik tenaga air, polusi industri dan perkotaan, penggundulan hutan, penggunaan pestisida yang kurang bijaksana, pembuangan limbah serta aktivitas pertambangan, semuanya mempunyai andil dalam menciptakan kondisi krisis air dunia saat ini".

"Okezone (2016) menggambarkan dimana rumah ku istana ku, yang betapa rumah tidak hanya sebagai tempat tinggal sebagai kebutuhan manusia tetapi juga tempat berkumpul dan memberikan kehangatan antar keluarga. Kini seiring dengan perkembangan zaman, tren hunian dan bangunan akan cenderung mengarah pada gaya futuristic. Konsep rumah pintar akan menjadi bagian dari kebutuhan mutlak sebuah keluarga. Mengingat fungsi utama teknologi smarthome sebetulnya membuat operasional rumah menjadi aman, nyaman, dan efisien".

Untuk permasalahan tersebut di atas, diusulkan suatu sistem yang lebih praktis secara fisik yang memungkinkan pemilik rumah lebih mudah. Penggunaan sistem pengontrolan via WiFi dan IP Adress Privat yang bisa dikontrol secara lokal di dalam rumah maupun secara global melalui Internet sehingga pemilik rumah bisa mendapatkan kemudahan dalam mengontrol penggunaan air di rumahnya Dalam genggaman menggunakan Smartphone Android dimana perintahnya dapat menggunakan keypad atau perintah suara google voice dengan Bahasa Indonesia yang lebih praktis.

BAB 3 TAHAPAN PELAKSANAAN

1.1 Perancangan

Tahap awal pelaksanaanya akan dilakukan perancangan ke dalam sebuah bentuk skema. Pada bagian transmisi, input dari aplikasi dan suara dari pengguna yang dideteksi oleh *Google Voice* melalui *smartphone* dan ditransmisikan dengan modul wifi kepada mikrokontroler. Pada mikrokontroler tersebut akan melakukan proses pendeteksian input atau kata yang diucapkan oleh pengguna. Apabila input dan kata yang diucapkan pengguna sesuai dengan *keywordnya*, maka pengguna bisa melakukan pengontrolan dan monitoring volume air.

1.2 Simulasi

Setelah dibuat dalam bentuk skema, dilakukan simulasi rangkaian ke aplikasi *proteus* untuk melihat kerja sistem sudah bekerja baik atau belum.

1.3 Realisasi

Setelah dilakukan perancangan dan simulasi, dilakukan realisasi sistem, dimana sistem utama sensor untuk pengolahan data akan menggunakan *Arduino UNO*. Kemudian, data dari pengolah data akan dikirimkan ke database menggunakan Modul Wifi Node MCU. Untuk komunikasi lokal, pengguna bisa menjalankan aplikasi apabila berada di sekitar sistem. Sedangkan untuk komunikasi jarak jauh, modul wifi akan terhubung dengan sentral wifi yang masing-masing mempunyai IP, kemudian data akan tersimpan di cloud internet dan smartphone akan langsung terhubung apabila aplikasi sudah terinstal.

Aplikasi *android* yang dibuat menggunakan *software App invertor*, dan dibuat dalam 2 mode input. Mode yang pertama, yaitu mode manual, dimana perintah dilakukan dengan sentuhan pada monitor *smartphone*, kedua dengan perintah suara, dimana aplikasi *Android* yang dibuat ini sudah terisi fitur *speech recognizer* yang sudah otomatis terhubung langsung dengan *library Google Voice*.

1.4 Pengujian

Parameter yang akan diuji dari keseluruhan sistem yaitu pengujian sensor, sistem pengontrolan dan pemantuan volume air, sistem transmisi sentral ke client baik secara lokal maupun internet, fungsi manajemen *history* penggunaan air per bulannya. Sistem akan diuji dengan *Smartphone* SAMSUNG di Rumah dengan kapasitas 3 bak kamar mandi, antara lain :

a. Pengujian sensor

Pada tahap ini akan dilakukan pengujian sensor, apakah sensor berjalan lancar sesuai dengan program, sebelum dihubungkan ke modul wifi dan smartphone.

b. Pengiriman input dari smartphone

Pada tahap ini akan diuji apakah smartphone sudah terhubung dengan sistem utama sensor dan seberapa realtime data output yang ditampilkan sistem saat input dikirimkan.

c. Komunikasi smartphone dengan sentral secara Lokal dan Internet Pada tahap ini diukur seberapa jauh jarak smartphone dengan Arduino bisa terhubung apakah sesuai dengan harapan 10 m dan kelancaran konektivitas jarak jauh menggunakan internet.

d. Pengontrolan Volume air

Pada tahap ini dilakukan pengujian melalui *smartphone* apakah volume air dapat dikontrol seberapa besar kapasitas air yang ingin digunakan, secara lokal ataupun internet.

1.5 Analisis

Pada tahap ini akan dianalisis kinerja dari jarak komunikasi sentral melalui wifi dengan masing-masing mikrokontroler pada wireless, komunikasi via Internet, dan perintah pada suara *Voice Recognition* pada *smartphone* dengan Arduino. Proses konektivitas dengan server adalah bagian penting dimana arduino harus tersambung dengan server dan saling mengirimkan data. Kemudian akan dianalisis juga pengujian tentang perbandingan sinyal Wi-Fi yang diterima *smartphone* terhadap jarak dengan sentral dan pengaruh koneksi internet sehingga didapat grafik yang menentukan jarak dan koneksi paling ideal untuk sistem *smarthome* tersebut.

1.6 Evaluasi

Diharapkan pada sistem ini, sistem *smarthome* dengan pengontrolan terdistribusi WIFI dan IP untuk mengontrol dan memantau volume air yang dikontrol melalui aplikasi dan Voice Recognition pada *smartphone* android dapat mengirimkan sinyal ke Arduino dengan jarak sepuluh meter secara lokal, dan bisa berkomunikasi jarak jauh dengan baik dimanapun pengguna terkoneksi dengan internet. Sistem juga diharapkan mampu memberikan data yang akurat dan *realtime*

BAB 4 BIAYA DAN JADWAL KEGIATAN

4.1 Anggaran Biaya

Untuk Pembuatan satu unit modul sistem, diperlukan :

Tabel 4.1.1 Anggaran Biaya Modul Sistem

No	Jenis Biaya	Biaya (Rp)
1	Perlengkapan Yang diperlukan	Rp 6.480.000,-
2	Bahan Habis Pakai	Rp 5.004.000,-
3	Perjalanan	Rp 500.000,-
4	Lain-lain	Rp. 360.000,-
	JUMLAH	Rp 12.344.000,-

4.2 Jadwal Kegiatan

Tabel 4.2.1 Jadwal Kegiatan

No	Jenis Kegiatan	Bulan				
		1	2	3	4	5
1	Perancangan					
2	Simulasi					
3	Realisasi					
4	Pengujian					
5	Analisis					
6	Evaluasi					

DAFTAR PUSTAKA

- Adi S. 2009. Pemanfaatan dan Konservasi Sumber Air Dalam Keadaan Darurat. Jakarta J Air Indonesia 5(1):1-8
- Amelia Awaliah, Adnan Rafi Al Tahtawi. 2017. Sistem Kendali dan Pemantauan Ketinggian Air Pada Tangki Berbasis Sensor Ultrasonik. *Ilmiah Manajemen Informatika dan Komputer*, Volume 01, pp. 25-30
- Firmansyah, Marleta, Rahmaningsih. 2017. Pendeteksi Ketinggian Air Interaktif dengan Aplikasi Telegram Berbasis Raspberry PI. *Yogyakarta: Universitas Gadjah Mada J Sains dan Teknologi* 6(2):279-289.
- Permana F. 2009. Pembuatan Sistem Monitoring Ketinggian Air Dengan Sensor Ultrasonik Berbasis Mikrokontroler ATMEGA8535. Semarang: Universitas Diponegoro
- Ramadhan GP, Suganda K. 2017. Perancangan Dan Realisasi Sistem Smart Home Dengan Pengontrolan Terdistribusi Melalui WIFI dan IP Privat untuk Fitting, Stop Kontak, Saklar Listrik dan Remote TV yang dikontrol secara lokal atau internet dengan Penginputan Printah Suara dalam Bahasa Indonesia pada Smartphone Android. Bandung: Politeknik Negeri Bandung.
- Subandriyo T. 2002. "Air dan Konflik Kepentingan". Sumber Merdeka.
- "Konsep Smarthome Akan Jadi Kebutuhan Dasar dan Trendsetter". 2016. Okezone. 15 November. Diakses 23 Mei 2018. https://economy.okezone.com/read/2016/11/15/470/1541833/konsep-smarthome-akan-jadi-kebutuhan-dasar-dan-trendsetter.

LAMPIRAN-LAMPIRAN

Lampiran 1. Biodata Ketua, Anggota dan Dosen Pembimbing Biodata Ketua Pelaksana

A. Identitas Diri

1	Nama Lengkap	Riko Firmando
2	Jenis Kelamin	Laki-laki
3	Program Studi	D3-Teknik Telekomunikasi
4	NIM	171331027
5	Tempat dan Tanggal Lahir	Palupuh, 27 Agustus 1998
6	Email	Rikofrmndo@gmail.com
7	Nomor Telephone/Hp	081278689523

B. Kegiatan Mahasiswaan Yang Sedang/Pernah diikuti

NO Jenis Kegiata	Jenis Kegiatan	Status Dalam Kegiatan	Waktu dan Tempat
	11.1	-	

C. Penghargaan dalam 10 Tahun Terakhir (dari pemerintah,asosiasi atau institusi lainnya)

NO	Jenis Penghargaan	Institusi Penghargaan	Tahun
			-

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi. Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan Hibah PKM Karsa Cipta.

Bandung, 03 Januari 2019 Pengusul,

(Riko Firmando)

Biodata Anggota Pengusul

A. Identitas Diri

1	Nama Lengkap	Iklima Amanah Yashinta
2	Jenis Kelamin	Perempuan
3	Program Studi	D3-Teknik Telekomunikasi
4	NIM	181331043
5	Tempat dan Tanggal Lahir	Majalengka, 29 Maret 2000
6	Email	Yashintaiklima@gmail.com
7	Nomor Telephone/Hp	085524907610

B. Kegiatan Kemahasiswaan Yang Sedang/Pernah Diikuti

NO	Jenis Kegiatan	Status Dalam Kegiatan	Waktu dan Tempat	
	•	•	-	

C. Penghargaan dalam 10 Tahun Terakhir (dari pemerintah, asosiasi atau institusi lainnya)

NO	Jenis Penghargaan	Institusi Penghargaan	Tahun
		-	-

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi. Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan Hibah PKM Karsa Cipta.

Bandung, 03 Januari 2019

Pengusul,

(Iklima Amariah Yashinta)

Biodata Anggota Pengusul

A. Identitas Diri

1	Nama Lengkap	Anadita Rizti Oktavia
2	Jenis Kelamin	Perempuan
3	Program Studi	D3-Teknik Telekomunikasi
4	NIM	161331037
5	Tempat dan Tanggal Lahir	Bukittinggi, 21 Oktober 1998
6	Email	anaditarizti@gmail.com
7	Nomor Telephone/Hp	085353333252

B. Kegiatan Kemahasiswaan Yang Sedang/ Pernah diikuti

NO	Jenis Kegiatan	Status dalam Kegiatan	Waktu dan Tempat
		-	-

C. Penghargaan dalam 10 Tahun Terakhir (dari pemerintah, asosiasi atau institusi lainnya)

NO	Jenis Penghargaan	Institusi Penghargaan	Tahun
	-	-	-

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi. Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan Hibah PKM Karsa Cipta.

Bandung, 03 Januari 2019

Pengusul,

(Anadita Rizti Oktavia)

Biodata Dosen Pedamping

A. Identitas Diri

1	Nama Lengkap	Dr. Eril Mozef, MS, DEA
2	Jenis Kelamin	Laki-laki
3	Program Studi	Teknik Telekomunikasi
4	NIP	196504042000021001
5	Tempat dan Tanggal Lahir	Padang, 04 April 1965
6	Email	erilmozef@gmail.com
7	Nomor Telephone/Hp	08122269339

B. Riwayat Pendidikan

Gelar Akademik	S1	S2	S3
Nama Institusi	Universite Henry Poincare, Nancy Perancis	Universite Henry Poincare, Nancy Perancis	Universite Henry Poincare, Nancy Perancis
Jurusan	Teknik Elektro	Teknik Elektro	Teknik Elektro
Tahun Masuk Lulus	1989-1992	1992-1994	1994-1997

C. Rekam Jejak Tri Dharma PT

C.1 Pendidikan/ Pengajaran

No	Nama Mata Kuliah	Wajib/Pilihan	SKS
1	Elekronika Analog	Wajib	3
2	Elekronika Digital	Wajib	3
3	Alat Ukur dan Pengukuran	Wajib	3
4	Aplikasi Mikrokontroler	Wajib	3
5	Manajemen Proyek	Wajib	2
6	Seminar	Wajib	3

C.2 Penelitian

No	Judul Penelitian	Penyandang Dana	Tahun
1	Architecture electronique de traitements d'images binaires:etiquetage et mesures pour le		1995

En

	mesures pour le controle en temps reel video	
2	Circuit configurables dans le traitement d'images:etiquetage et mesures en temps reel video	1995
3	Real time connected component labeling one-dimensional array processors based on Content-Addressable Memory Optimization and Implementation	1996
4	Design of Linear Array Processors with Content- Addressable Memory for Intermediate Level Vision	1996
5	Parallel Architecture Dedicated to Connected Component Analysis	1996
6	LAPCAM, Linear Array of Processors Using Content- addressable Memories: A New Design of Machine Vision for Parallel Image Computation	1996
7	Parallel Architecture Dedicated to Connected Component Labelling in O(n log n): FPGA Implementation	1996
8	Architecture dediee a l'algorithme parallel O(n log n) d'etiquetage de composantes connexes	1996
9	Ammeloration de	1998

	Parallele pour le Traitement d'image	
	LAPCAM	2002
10	Design and	2002
	Simulation of High	
	Speed	
	Interconnection	
	Network:Orthogonal	1
	Addressable	
	Crossbar for	
	LAPCAM Parallel	1
	Architecture for	
	Image Processing	
11	VHDL Design and	2002
	Simulation of MAM	
	Memory for	1
	LAPCAM Parallel	1
	Architecure for	
	Image Processing	
12	Linear Array	2002
	Processors with	
	Multiple Access	
	Modes Memory for	
	Real-Time Image	ì
	Proceessing	
13	Penghitung Jumlah	2002
	Objek Bergerak Pada	
	Citra Video Secara	
	Waktu-nyata	
14	Disain dan Simulasi	2002
	Control Unit dengan	1
	VHDL untuk	
	Prosesor Element	
	RISC Arsitektur	1
	Paralel Pengolahan	1
	Citra LAPCAM	
15	Disain dan Simulasi	2002
	Arithmetic Logic	
	Unit dan File	
	Register untuk	
	Prosesor Element	
	RISC LAPCAM	
	dengan VHDL	
16	LAPCAM : An	2002
	Optimal Parallel	1
	Architecture for	1
	Image Processing	1

	Realization and Evaluation	
17	Implementasi Paralel dan Waktu-nyata Beberapa Algoritma Prapengolangan Citra dengan Multi- mikrokontroler RISC	2002
18	Implementasi FPGA Penghitung Objek Video Waktu-Nyata	2002
19	Desain Prosesor Element RISC untuk Arsitektur Paralel Pengolahan Citra LAPCAM	2002
20	Linear Array Processors with Multiple Access Modes for Real-Time Image Processing	2003
21	Perancangan dan Simulasi Protokol dan Penerima Serial Untuk Konfigurasi Jaringan Interkoneksi Berkecepatan Tinggi, Orthogonal Addressable Crossbar	2006

C.3 Pengabdian Kepada Masyarakat

No	Judul Pengabdian kepada Masyarakat	Penyandang Dana	Tahun
1	Medali Perak, Trinity College International Robot Contest, Kategori Robot Berkaki (Amerika Serikat)		2014
2	Medali Perunggu, Trinity College International Robot Contest, Kategori Robot Berkaki (Amerika Serikat)		2014

2015
2015
2015
2015

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi. Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan Hibah PKM Karsa Cipta.

Bandung, 03 Januari 2019 Dosen Pendamping,

(Dr. Eril Mozef, MS, DEA)

Lampiran 2. Justifikasi Anggara Kegiatan

1. Jenis Perlengkapan	Volume	Harga Satuan (Rp)	Nilai (Rp)
- Power Supply	1	1.500.000	2.000.000
- Toolkit	1	800.000	800.000
- Multimeter	1	300.000	300.000
- Toolbox	1	500.000	500.000
- Breadboard	4	35.000	140.000
- Timah	1	30.000	30.000
- Lem	5	10.000	50.000
- Adaptor	2	60.000	120.000
- Jumper	10	4.000	40.000
- Osiloskop	1	2.000.000	2.500.000
-	1	SUB TOTAL (Rp)	6.480.000
2. Bahan Habis (Hardware)	Volume	Harga Satuan (Rp)	Nilai (Rp)
- Arduino UNO	1	180.000	180.000
- Node MCU	1	150.000	150.000
- Wireless Router	2	450.000	900.000
- Modul Wi-Fi Shield	1	400.000	400.000
- Kabel USB to TTL	7	5.000	35.000
- Sensor Ultrasonik	1	70.000	70.000
- Valve Elektronik	1	50.000	50.000
- Display	1	80.000	80.000
		SUB TOTAL (Rp)	1.865.000
Bahan Habis (Mekanik)	Volume	Harga Satuan (Rp)	Nilai (Rp)
- PCB	4	35.000	140.000
- Acrylic Casing	1	1.500.000	1.300.000
- Transistor	3	5.000	15.000
- Resistor	5	200	1.000
- Spacer	16	500	8.000

- Header Male to	10	7.000	70.000
Female			
- Header Female	10	7.000	70.000
to Female		7.000	25,000
- Header Male to	5	7.000	35.000
Male			
	1	SUB TOTAL (Rp)	1.639.000
Bahan Habis (Software)	Volume	Harga Satuan (Rp)	Nilai (Rp)
- Sewa Web		1.500.000	1.500.000
Hosting			
	•	SUB TOTAL (Rp)	1.500.000
3. Perjalanan	Volume	Harga Satuan (Rp)	Nilai (Rp)
- Transport survey	5 kali	100.000	500.000
komponen			
pulang pergi (3			
orang)			
		SUB TOTAL(Rp)	500.000
4. Lain-lain	Volume	Harga Satuan (Rp)	Nilai (Rp)
- DVD RW	2 Buah	20.000	40.000
- Flashdisk 128gb	1 Buah	320.000	320.000
		SUB TOTAL (Rp)	360.000
		TOTAL (Rp)	12.334.000
(Terbilang Dua Belas J	uta Tiga Rat	us Tiga Puluh Empat l	Ribu Rupiah)

Lampiran 3. Susunan Organisasi Tim Pelaksana dan Pembagian Tugas

No	Nama/NIM	Program	Bidang Ilmu	Alokasi	Uraian Tugas
		Studi		Waktu	
				(Jam/	
				Minggu)	
1	Riko	D3	Teknik	12 Jam	Bagian
	Firmando		Telekomunikasi		Infrastruktur
					SmartHome
2	Iklima	D3	Teknik	10 Jam	Bagian
	Amanah		Telekomunikasi		Tinjauan
	Yashinta				Sistem secara
	(181331043)				Umum dan
					pembuatan
					history
					pengaturan
					manajamen
					penggunaaan
					air
3	Anadita Rizti	D3	Teknik	12 Jam	Bagian
	Oktavia		Telekomunikasi		Modul
	(161331037)				Pengontrolan
					Volume air

Lampiran 4. Surat Pernyataan Ketua Pelaksana

SURAT PERNYATAAN KETUA PELAKSANA

Saya bertanda tangan di bawah ini:

Nama : Riko Firmando

NIM : 171331027

Program Studi : D3 - Teknik Telekomunikasi

Jurusan : Teknik Elektro

Dengan ini menyatakan bahwa proposal Pekan Kreativitas Mahasiswa Karsa Cipta saya dengan judul: "Sistem *Smarthome* Efisiensi Penggunaan Air dengan Pengontrolan dan Pemantauan Volume Air Berbasis *Android* dan Internet" yang diusulkan untuk tahun anggaran 2018 bersifat original dan belum pernah dibiayai oleh lembaga atau sumber dana lain.

Bilamana di kemudian hari ditemukan ketidaksesuaian dengan pernyataan ini, maka saya bersedia dituntut dan diproses sesuai dengan ketentuan yang berlaku dan mengembalikan seluruh biaya penelitian yang sudah diterima ke kas negara.

Demikian pernyataan ini dibuat dengan sesungguhnya dan dengan sebenarbenarnya.

Bandung, 03 Januari 2019

Yang menyatakan,

(Riko Firmando)
NIM. 171331027

Malayusti BSEE, M.Eng)

eknik Elektro

Dalam rumah

Mode input melalui aplikasi

Access point

Internet

Luar Rumah

Mode input atau dengan google voice

Lampiran 5. Gambaran Teknologi yang Hendak Diterapkembangkan

Sumber gambat ; google.com

Cara Kerja Sistem Keseluruhan:

Dari ilustrasi pada Gambar 1 dapat dilihat bahwa terhadap seseorang yang sedang memegang smartphone berbasis Android. Melalui software aplikasi pada smartphone, pemilik rumah dapat mengontrol dan memantau penggunaan air berupa volume air. Valve Elektronik yang terdapat pada modul akan otomatis tertutup apabila air dalam toren dan bak mandi sudah terisi penuh sesuai dengan perintah yang diberikan. Selain itu pemilik rumah bisa mengetahui dan mengontrol volume air pada toren dan bak air saat diisi air menggunakan sensor ultrasonik walaupun pemilik tidak berada di dalam rumah. Tetapi dari smartphone, data yang berupa perintah tidak langsung menuju ke modul-modul yang akan dikontrol melainkan dilewatkan ke sebuah sentral dengan menggunakan koneksi Wi-Fi yang dapat dilakukan dengan cara menghubungkan smartphone ke access point terlebih dahulu. Sentral tersebut akan meneruskan perintah ke perangkat yang dituju dengan menggunakan koneksi Wi-Fi juga.

Dapat dilihat juga pada gambar 1 di atas bahwa meskipun pemilik rumah sedang berada di luar rumah, pemilik rumah tetap dapat mengontrol penggunaan air yang ada di dalam rumah karena sistem akan dibuat agar dapat terkoneksi dengan Internet sehingga kontrol peralatan tetap dapat dilakukan dimana saja dengan menggunakan interface aplikasi Android juga.

Gambar 2 Blok Diagram Sistem Keseluruhan

Cara Kerja Blok Diagram:

Dari Gambar 2 di atas, sistem yang diusulkan dibagi menjadi 2 bagian yang terdiri dari modul pengatur volume air dan infrastruktur smarthome. Modul pengatur volume air akan terhubung ke Sentral Wifi untuk mengontrol fungsi kinerja modul tersebut. Pengguna akan menginputkan perintah melalui smartphone yang telah terpasang aplikasi android berupa perintah suara atau menekan tombol pada aplikasi, kemudian input tersebut akan ditransmisikan melalui WiFi ke Sentral. Sentral akan mengubah perintah dari pengguna menjadi perintah untuk mengaktifkan fungsi pada modul pengatur volume air pada saat yang bersamaan Sentral akan menerima MAC Address dari Smartphone pengguna dan memberikan izin untuk melakukan pengontrolan. Setelah itu, setiap fungsi dari modul pengatur volume air akan diaktifkan jika sesuai dengan kode yang terdaftar pada sentral.