in the following assume m = n.

- 1. use Boyer-Moore voting algorithm, maintain the information (number, count) by segment tree. $O(n \log n)$.
- 2. the information we maintain forms an (associative) semigroup, so it's mergeable. we need to query range sum on a static array, which needs $O(n\alpha(n))$ by Yao [4]. [1] also gives a $\Theta(n\lambda(k,n))$ (= $O(n\alpha(n))$ for our purpose) time and space algorithm, where $\lambda(k,\cdot)$ is the inverse of a certain function at the $\lfloor \frac{k}{2} \rfloor$ -th level of the primitive recursive hierarchy. We can also get O(n) preprocessing and O(1) per query, see my article here: https://zhuanlan.zhihu.com/p/79423299. Then check whether the number we find is valid, by computing the number of occurrence of it in the query interval, using persistent array (or vEB tree) in $O(\log\log n)$. We can also solve this in $O(\frac{\log\log n}{\log\log\log n})$ per query by reducing to the static predecessor problem https://en.wikipedia.org/wiki/Predecessor_problem [2] (but with $O(n^4)$ preprocessing time; in our case the universe N=n). In conclusion we get $O(n\log\log n)$.
- 3. $O(n \log n)$ preprocessing, O(1) per query [3].

References

- [1] Noga Alon and Baruch Schieber. Optimal preprocessing for answering on-line product queries. Citeseer, 1987.
- [2] Paul Beame and Faith E Fich. Optimal bounds for the predecessor problem. In *STOC*, volume 99, pages 295–304. Citeseer, 1999.
- [3] Stephane Durocher, Meng He, J Ian Munro, Patrick K Nicholson, and Matthew Skala. Range majority in constant time and linear space. In *International Colloquium on Automata, Languages, and Programming*, pages 244–255. Springer, 2011.
- [4] Andrew C Yao. Space-time tradeoff for answering range queries. In *Proceedings of the fourteenth annual ACM symposium on Theory of computing*, pages 128–136. ACM, 1982.