A Cluster Based Hybrid Feature Selection Approach

Pablo A. Jaskowiak and Ricardo J. G. B. Campello

Institute of Mathematics and Computer Sciences
University of São Paulo – Brazil

Outline

Motivation

Simplified Silhouette Filter

Proposed Hybrid Approach

Results and Discussion

Conclusions

Motivation

Increasing data collection and storage capacities

- More objects and in most cases more features
 - Collect everything and decide later
- Classification task
 - Which features to use?

Motivation

- Feature Selection
 - Aims to keep relevant features to the problem in hand while removing irrelevant and redundant features

Feature Selection vs Feature Extraction

Categorized w.r.t. their relation with the classifier

- □ Embedded
 - Byproduct of training
 - Model Specific
 - Decision Trees
- Wrapper
 - Classifier dependent
 - Usually expensive
 - Custom feature subsets

- □ Filter
 - Classifier Independent
 - Ususally fast
 - Generic
- Hybrid
 - Filter and Wrapper
 - Custom subsets
 - Moderate cost

- Categorized w.r.t. their relation with the classifier
- Embedded
 - Byproduct of training
 - Model Specific
 - Decision Trees
- Wrapper
 - Classifier dependent
 - Usually expensive
 - Custom feature subsets

- □ Filter
 - Classifier Independent
 - Ususally fast
 - Generic
- Hybrid
 - Filter and Wrapper
 - Custom subsets
 - Moderate cost

- Categorized w.r.t. their relation with the classifier
- Embedded
 - Byproduct of training
 - Model Specific
 - Decision Trees
- Wrapper
 - Classifier dependent
 - Usually expensive
 - Custom feature subsets

- □ Filter
 - Classifier Independent
 - Ususally fast
 - Generic
- Hybrid
 - Filter and Wrapper
 - Custom subsets
 - Moderate cost

- Categorized w.r.t. their relation with the classifier
- Embedded
 - Byproduct of training
 - Model Specific
 - Decision Trees
- Wrapper
 - Classifier dependent
 - Usually expensive
 - Custom feature subsets

- □ Filter
 - Classifier Independent
 - Ususally fast
 - Generic
- Hybrid
 - Filter and Wrapper
 - Custom subsets
 - Moderate cost

- Categorized w.r.t. their relation with the classifier
- Embedded
 - Byproduct of training
 - Model Specific
 - Decision Trees
- Wrapper
 - Classifier dependent
 - Usually expensive
 - Custom feature subsets

- □ Filter
 - Classifier Independent
 - Ususally fast
 - Generic
- Hybrid
 - Filter and Wrapper
 - Custom subsets
 - Moderate cost

Categorized w.r.t. their relation with the classifier

- □ Embedded
 - Byproduct of training
 - Model Specific
 - Decision Trees
- Wrapper
 - □ Classifier dependent
 - Us ally expensive
 - Custom feature subsets

- Filter
 - Classifier Independent
 - Jsusally fast
 - Generic
- Hybrid
 - Filter and Wrapper
 - Custom subsets
 - Moderate cost

Our Approach

- Two phase feature selection method
 - 1. Filter
 - Based on Simplified Silhouette Filter
 - Redundancy
 - 2. Wrapper
 - Traditional wrapper approach
 - Relevance

Simplified Silhouette Filter - SSF

Filter based on feature clustering

□ Tackles feature <u>redundancy</u>

Good results in comparison to competitors

Simplified Silhouette Filter - SSF

- 1. For k in 2 to k_{max}
 - Cluster features with k-medoids (repeat this r times)
 - Compute Simplified Silhouette (SS)
- Select Partition with best SS
- 3. Select Features from partition
 - Medoid of each cluster
 - Medoid and frontier of each cluster

Simplified Silhouette Filter - SSF

- No critical parameters
 - \blacksquare Range for number of clusters, typically 2 to 1/2m or Sqrt(m)
 - Number of partitions for each number of clusters
 - Selection method
- No interaction with the final classifier
 - Generic feature subsets

Our Hybrid Approach

- 1. For k in 2 to k_{max}
 - Cluster features with k-medoids (repeat this r times)
- Select the best partition for each k with SSE
- 3. Select Features from partition
 - Medoid of each cluster
 - Medoid and frontier of each cluster
- 4. Select the final subset with a wrapper
 - Feature subset with best accuracy on train set

Our Hybrid Approach

- No need of Simplified Silhouette
 - Sum of Squared Errors for fixed k
 - Wrapper determines the final number of features
- Wrapper examines a limited number of subsets
 - $\square k_{max} k_{min} + 1$
 - 1000 Features: Sqrt(1000)-2+1 = 30 feature subsets
 - Allows the selection of a maximum of 31 features
- Same, still no critical parameters, as for SSF

- Two data collections
 - Collection A
 - Same datasets employed to evaluate SSF
 - 3 UCI datasets + 6 Gene expression datasets
 - From 9 to 57 features
 - Collection B
 - 35 Gene expression benchmark datasets (de Souto et al. 2008)
 - Around 1000 features
- Evaluated against SSF
 - Already evaluated against other methods
- Error estimates for kNN and Naive Bayes (weka default parameters)

- □ General Procedure (Reunanem, 2003)
 - 10 fold cross validation
- Wrapper with nested 5 fold cross validation
 - Considering only the training data!

- Parameters are the same for both methods
 - Pearson correlation

- Collection A
 - **■** Kmin = 2
 - \blacksquare kmax = $\frac{1}{2}$ #features
 - 20 repetitions of k-medoids for each k
 - Both selection methods: medoid / medoid and frontier

Results on Collection A

Mean Error and Standard Deviation – Selection of One Feature per Cluster

Dataset	kNN		Naïve Bayes	
	Hybrid	SSF	Hybrid	SSF
Bio1	00.00 ± 0.00	02.50 ± 3.53	00.12 ± 0.39	02.37 ± 2.66
Bio2	06.50 ± 2.10	16.25 ± 5.80	07.00 ± 2.37	14.25 ± 3.68
Bio3	06.50 ± 3.94	12.75 ± 2.99	07.37 ± 3.55	12.37 ± 2.79
Bio4	01.00 ± 1.74	00.25 ± 0.79	00.87 ± 1.44	00.37 ± 0.60
Bio5	01.25 ± 1.31	02.50 ± 2.04	00.87 ± 0.84	02.37 ± 1.49
Spam	11.06 ± 1.48	14.27 ± 1.42	21.57 ± 6.93	24.42 ± 2.80
Wisc	05.42 ± 2.68	06.43 ± 2.68	05.20 ± 2.39	06.51 ± 2.79
Yeast	05.40 ± 2.85	11.16 ± 6.50	04.91 ± 3.52	09.45 ± 6.00
Iono	11.67 ± 3.88	12.53 ± 5.23	12.82 ± 2.25	17.38 ± 4.87

Results on Collection A

Mean Number of Features – Selection of One Feature per Cluster (Medoid)

Dataset	Hybrid A	SSF	
	kNN	Naïve Bayes	
Bio1	08.60 ± 0.69	09.30 ± 2.00	02.80 ± 0.78
Bio2	06.80 ± 1.93	07.50 ± 2.46	03.00 ± 0.00
Bio3	09.20 ± 1.39	09.90 ± 1.10	02.90 ± 0.99
Bio4	06.70 ± 1.82	07.20 ± 2.48	05.60 ± 2.36
Bio5	08.50 ± 2.36	10.90 ± 1.44	02.20 ± 0.63
Spam	26.70 ± 4.00	15.90 ± 5.76	20.80 ± 2.34
Wisc	05.80 ± 0.42	05.60 ± 0.51	02.00 ± 0.00
Yeast	10.80 ± 1.39	10.10 ± 1.37	02.00 ± 0.00
Iono	13.30 ± 4.32	16.00 ± 4.21	12.00 ± 2.10

- Parameters are the same for both methods
 - Pearson correlation

- Collection B
 - **■** Kmin = 2
 - kmax = Sqrt(# features)
 - 20 repetitions of k-medoids for each k
 - Selection method: medoid and frontier

Results on Collection B

Boxplots for Error Rates

Results on Collection B

Boxplots for Number of Features

SSF

Conclusions

- Hybrid feature selection approach based on clustering
- Competitive results with state of the art method
- Good alternative for classification problems
 - Specific feature subsets
- Wrapper operates in a limited number of subsets
 - Considerably small number of evaluations
- Future work
 - Empirical evaluation considering running time

Acknowledgements

Brazilian Research Agency

Any Questions? pablo@icmc.usp.br

Thank You!

References

- T. F. Covões and E. R. Hruschka, "Towards improving cluster-based feature selection with a simplified silhouette filter," *Information Sciences*, vol. 181, no. 18, pp. 3766–3782, 2011.
- M. C. P. Souto, I. G. Costa, D. S. A. Araujo, T. B. Ludermir, and A. Schliep, "Clustering cancer gene expression data: a comparative study." *BMC Bioinformatics*, vol. 9, no. 1, p. 497, 2008.
- J. Reunanen, I. Guyon, and A. Elisseeff, "Overfitting in making comparisons between variable selection methods," *Journal of Machine Learning Research*, vol. 3, pp. 1371–1382, 2003.