# Logical Database Design

01418221 Fundamentals of Database Systems

# การออกแบบฐานข้อมูลเชิงสัมพันธ์

- การศึกษาแนวคิดของการออกแบบฐานข้อมูลเชิงสัมพันธ์ เพื่อจะช่วยในการสร้างแบบจำลองสำหรับฐานข้อมูล เชิงสัมพันธ์ โดยอ้างถึงหลักเกณฑ์ในการกำหนดตารางคอลัมน์และสร้างความสัมพันธ์ระหว่างตารางเพื่อลด ความซ้ำซ้อนของข้อมูล
  - การสร้างแบบจำลองจากปัญหาจริงเป็นตารางที่สัมพันธ์กัน
  - การระบุถึงปัญหาและการลดความซ้ำาซ้อนของข้อมูลที่จัดเก็บ
  - การระบุการอ้างอิง และการรวมตัวกันในการออกแบบฐานข้อมูลเชิงสัมพันธ์
  - การปรับแต่งตารางในฐานข้อมูลเชิงสัมพันธ์เพื่อให้การออกแบบมีความเหมาะสมมากที่สุด

#### ปัญหาการซ้ำซ้อนของข้อมูล -

- ความซ้ำซ้อนข้อมูลหมายถึงข้อมูลประเภทเดียวกันที่มีการจัดเก็บมากกว่าหนึ่งชุดข้อมูล
  - หมายถึงการจัดเก็บภายในตารางเดียวกันของฐานข้อมูล
  - การซ้ำซ้อนข้อมูลนี้เกิดจากการออกแบบฐานข้อมูลเชิงสัมพันธ์ที่ไม่เหมาะสม
- เกิดความผิดปกติของข้อมูลในฐานข้อมูล (Anomalies) ดังต่อไปนี้
  - ความผิดปกติจากการปรับปรุงแก้ไขข้อมูล (Update Anomalies)
  - ความผิดปกติจากการลบข้อมูล (Delete Anomalies)
  - ความผิดปกติจากการเพิ่มข้อมูล (Insert Anomalies)

# ความผิดปกติจากการแก้ไขปรับปรุงข้อมูล (Update Anomalies)

- ความผิดปกติจากการปรับปรุงแก้ไขข้อมูลจะเกิดขึ้นเมื่อรายการข้อมูลซ้ำกันตั้งแต่หนึ่งรายการขึ้นไปต้องการ แก้ไขปรับปรุงข้อมูล ยกตัวอย่าง
  - สมบัติย้ายที่อยู่จาก กรุงเทพฯ ไป ชลบุรี จะต้องมีการปรับปรุงข้อมูลเดียวกัน ซ้ำกันหลายที่

| StudentNum | CourseNum | Student Name | Address   | Course               |
|------------|-----------|--------------|-----------|----------------------|
| S21        | 9201      | สมบัติ       | กรุงเทพฯ  | บัญชีเบื้องต้น       |
| S21        | 9267      | สมบัติ       | กรุงเทพฯ  | ฟิสิกส์              |
| S24        | 9267      | รัตนา        | ระยอง     | ฟิสิกส์              |
| S30        | 9201      | วิชชา        | เชียงใหม่ | คอมพิวเตอร์เบื้องต้น |
| S30        | 9322      | วิชชา        | เชียงใหม่ | คณิตศาสตร์           |

https://www.sqa.org.uk/e-learning/MDBS01CD/page\_24.htm

# ความผิดปกติจากการลบข้อมูล (Update Anomalies)

- ความผิดปกติจากการลบข้อมูลจะเกิดขึ้นเมื่ข้อมูลในบางแอททริบิวต์จะหายไปเมื่อมีการลบข้อมูลส่วนอื่นออกไป ยกตัวอย่าง
  - สมบัติเป็นนิสิตคนสุดท้ายที่เรียนวิชาบัญชีเบื้องต้น เมื่อสมบัติถอนวิชาบัญชีเบื้องต้นออกแล้ว จะทำให้รายการลงทะเบียน ของสมบัติในวิชานี้จะถูกลบออก จะส่งผลให้ข้อมูลวิชาบัญชีจะหายไปด้วย

| StudentNum | CourseNum | Student Name | Address   | Course               |
|------------|-----------|--------------|-----------|----------------------|
| S21        | 9201      | สมบัติ       | กรุงเทพฯ  | บัญชีเบื้องต้น       |
| S21        | 9267      | สมบัติ       | กรุงเทพฯ  | ฟิสิกส์              |
| S24        | 9267      | รัตนา        | ระยอง     | ฟิสิกส์              |
| S30        | 9201      | วิชชา        | เชียงใหม่ | คอมพิวเตอร์เบื้องต้น |
| S30        | 9322      | วิชชา        | เชียงใหม่ | คณิตศาสตร์           |

https://www.sqa.org.uk/e-learning/MDBS01CD/page\_24.htm

# ความผิดปกติจากการเพิ่มข้อมูล (Insert Anomalies)

- ความผิดปกติจากการเพิ่มข้อมูลจะเกิดขึ้นเมื่อต้องการเพิ่มข้อมูลในบางแอททริบิวต์แต่ไม่สามารถทำได้ เพราะ ข้อมูลบางส่วนเป็นค่าว่างไม่ได้ ยกตัวอย่าง
  - เมื่อต้องการเพิ่มรายวิชา 9330 ฐานข้อมูลในระบบลงทะเบียน แต่ไม่สามารถทำได้ เพราะ ไม่มีข้อมูลนิสิตที่จะลงทะเบียน เรียน โดยที่ StudentNum เป็นคีย์หลักของตาราง ซึ่งเป็นค่าว่างไม่ได้

| StudentNum | CourseNum | Student Name | Address   | Course               |
|------------|-----------|--------------|-----------|----------------------|
| S21        | 9201      | สมบัติ       | กรุงเทพฯ  | บัญชีเบื้องต้น       |
| S21        | 9267      | สมบัติ       | กรุงเทพฯ  | ฟิสิกส์              |
| S24        | 9267      | รัตนา        | ระถอง     | ฟิสิกส์              |
| S30        | 9201      | วิชชา        | เชียงใหม่ | คอมพิวเตอร์เบื้องต้น |
| S30        | 9322      | วิชชา        | เชียงใหม่ | คณิตศาสตร์           |
|            | 9330      |              |           | ฐานข้อมูล            |

## การกระจายความสัมพันธ์ (Decompositions)

- การกระจายความสัมพันธ์ในการออกแบบฐานข้อมูลเชิงสัมพันธ์แสดงถึงการแบ่งโครง ร่าง (Schema) ที่เกี่ยวข้องให้มีความสัมพันธ์ที่มีขนาดเล็กลง
  - มีความซับซ้อนที่น้อยลง เพื่อหลีกเลี่ยงความซ้ำซ้อน
  - สามารถสืบค้นได้อย่างถูกต้อง โดยสร้างความสัมพันธ์ที่มีขนาดเล็กสำหรับข้อมูลกลุ่มต่างๆ

| C+l +N l | Ct d a lat Nia la | \         |            |           |   | CourseNum | Course               |
|----------|-------------------|-----------|------------|-----------|---|-----------|----------------------|
|          | Student Name      | Address   |            |           |   | 9201      | บัญชีเบื้องต้น       |
| S21      | สมบัติ            | กรุงเทพฯ  |            |           | _ | 9267      | พิสิกส์              |
| S24      | รัตนา             | ระยอง     | StudentNum | CourseNum |   |           |                      |
| S30      | วิชชา             | เชียงใหม่ | S21        | 9201      |   | 9201      | คอมพิวเตอร์เบื้องต้น |
|          | <u> </u>          |           | S21        | 9267      | - | 9322      | คณิตศาสตร์           |
|          |                   |           | S24        | 9267      | - |           |                      |
|          |                   |           | S30        | 9201      | ] |           |                      |
|          |                   |           | S30        | 9322      | 1 |           |                      |

- Functional Dependencies (FD) เป็นชนิดของความสัมพันธ์เพื่อสร้างเงื่อนไขให้เกิด ความถูกต้องของข้อมูล โดยนำแนวคิดของการมี Super key มาใช้ โดยกำหนดให้มี การพึ่งพาระหว่าง subset ของ แอตทริบิวต์ของความสัมพันธ์ที่กำาหนดไว้ คำจำกัด ความของ functional dependency ได้ให้นิยามไว้ดังนี้
- นิยาม: กำหนด schema เชิงสัมพันธ์ R กับ subset ของแอตทริบิวต์ของ A และ B กล่าวได้ว่ามี functional dependency A→B ปรากฎอยู่ ถ้าค่าใน A แสดงถึงค่าที่ B สามารถอ้างถึงได้ในทุกอินสแตนซ์ r ของความสัมพันธ์ R

- FD นำหลักการซูเปอร์คีย์มาใช้งานเนื่องจาก แอตทริบิวต์ ในเซต A จะเป็นตัว กำหนดค่าของแอตทริบิวต์ในเซต B
  - สำหรับความสัมพันธ์ R ที่กำหนด นอกจากนี้ การอ้างอิงฟังก์ชัน A→B มีอยู่เมื่อ ค่าของ B จะขึ้นอยู่กับ A อย่างเป็นฟังก์ชัน เนื่องจากใกล้เคียงกับแนวคิดของ ฟังก์ชัน FD เชื่อมโยงความสัมพันธ์ของเซตแอตทริบิวต์ A ไปยังเซต B
- Functional Dependency หมายถึง "A กำหนด B", "B คือขึ้นอยู่กับ A" หรือ "A สัมพันธ์กับ B" และกล่าวได้ว่า "A $\longrightarrow$ B"

### ความสัมพันธ์ (Relation)

- ความสัมพันธ์ (relation) เป็นความสัมพันธ์ระหว่างการเชื่อมโยงระหว่างสมาชิกภายในเซตสอง เซต โดยที่
  - โดเมน (Domain) ของความสัมพันธ์ r คือ เซตที่มีสมาชิกตัวหน้าของทุกคู่อันดับในความสัมพันธ์ r ซึ่ง เป็นรายการข้อมูลนำเข้า
  - **เรนจ์ (range) หรือโคโดเมน (codomain)** ของความสัมพันธ์ *r* คือ เซตที่มีสมาชิกตัวหลังของทุกคู่ อันดับในความสัมพันธ์ *r* ซึ่งเป็นรายการผลลัพธ์





### ฟังก์ชัน (Function)

- ฟังก์ชัน (function) เป็นความสัมพันธ์ที่แต่ละค่าของข้อมูลนำเข้าจะมีผลลัพธ์เป็นค่าเดียวเท่านั้น
- เหตุผลหลักของการ**ไม่อนุญาตให้มีผลลัพธ์หลายค่ากับค่านำเข้าหนึ่งค่า**คือ เมื่อเราใช้ฟังก์ชันเดิมกับค่านำเข้าใดค่า หนึ่งแล้วหลายครั้ง เช่นถ้าค่าโดเมน *a* หรือ *b* มีค่าเท่ากัน (a = b) ควรจะได้ค่าผลลัพธ์ f(a) = f(b) เสมอ



## ฟังก์ชัน (Function)

- จงพิจารณาว่า ความสัมพันธ์ใดต่อไปนี้เป็นฟังก์ชัน
- 1.  $r_1 = \{(1,3),(2,5),(3,7),(4,9)\}$
- 2.  $r2 = \{(1,-1),(1,1),(2,4)\}$
- 3.  $r3 = \{(2,0),(4,0),(6,0)\}$ 
  - r1 และ r3 เป็นฟังก์ชัน
- 4. แต่ r2 ไม่เป็นฟังก์ชัน เนื่องจาก ถ้า x=1 จะได้ y=-1 และ y=1

- คุณสมบัติของ FD
  - เป็นความสัมพันธ์แบบหนึ่งต่อหนึ่ง (1-to-1 Relationship)
  - เป็นจริงในทุกกรณี (Hold For All Time)
  - เป็น Non Trivial
- FD Trivial คือ แอตทริบิวต์ทางขวาหรือแอตทริบิวต์ที่ถูกกำหนดเป็นสับเซ็ต (Subset) ของแอตทริบิวต์ที่อยู่ทางซ้ายซึ่งเป็นแอตทริบิวต์ที่เป็นผู้กำหนด (Determinant)

| StudentNum | Student Name | Address        | Major |
|------------|--------------|----------------|-------|
| S21        | สมบัติ       | กรุงเทพฯ       | CS    |
| S24        | รัตนา        | ระยอง          | IT    |
| S30        | วิชชา        | เชียงใหม่      | CS    |
| S32        | สมบัติ       | 5 <b>ะ</b> ยอง | IT    |

เซตต่อไปนี้ของ FDs ยังคงเป็นจริง

{StudentNum → StudentName,

StudentNum  $\longrightarrow$  Address,

StudentNum  $\rightarrow$  Major,

StudentNum  $\rightarrow$  StudentName  $\rightarrow$  Address,

StudentNum → StudentName → Major}

#### ตัวอย่าง Trivial FD :

(StudentNum → StudentName ) → StudentName

StudentNum -> StudentNum

โดยทั่วไป functional dependency A→B ในกรณีที่ B คือ subset ของ A หมายถึง B บรรจุอยู่ใน A (ด้านขวามือจะเป็นส่วนหนึ่งของทางด้านซ้ายมือ) ในการออกแบบฐานข้อมูลเชิงสัมพันธ์โดยทั่วไปเราสนใจ non-trivial FDs ที่ช่วยกำหนดความถูกต้องของเงื่อนไขความสัมพันธ์

| STUDENT_ID | STUDENT      | RANK | COLLEGE   |
|------------|--------------|------|-----------|
| 0001       | Ria Sinha    | 6    | Fergusson |
| 0002       | Vivek Kaul   | 15   | PICT      |
| 0003       | George Smith | 9    | IIT       |
| 0004       | Will Brown   | 1    | IIT       |

• จงเขียน Functional Dependencies ที่ เป็นจริง

#### Full FD และ Partial FD

- ullet พิจารณารีเลชั่น R ที่ประกอบด้วยแอตทริบิวต์ A และ B โดยที่ A  $\longrightarrow$  B แล้ว
- แอตทริบิวต์ B เป็น Full FD บนแอตทริบิวต์ A ถ้าทุกแอตทริบิวต์ที่ไม่ใช่คีย์ (B) ขึ้นอยู่คีย์ทั้งหมด (A)
  - ไม่สามารถนำบางแอตทริบิวต์ออกจาก A ได้ เพราะจะทำให้คุณสมบัติ DB หายไป
- แอตทริบิวต์ B เป็น Partial FD บนแอตทริบิวต์ A ถ้าทุกแอตทริบิวต์ที่ไม่ใช่คีย์ (B) ขึ้นอยู่คีย์บางส่วน (A)

ชามารถนำบางแอตทริบิวต์ออกจาก A ได้ โดยที่ A → B ยังคงอยู่เหมือนเดิม |

| StudentNum | Student Name | Address   | Major |
|------------|--------------|-----------|-------|
| S21        | สมบัติ       | กรุงเทพฯ  | CS    |
| S24        | รัตนา        | ระยอง     | IT    |
| S30        | วิชชา        | เชียงใหม่ | CS    |
| S32        | สมบัติ       | ระยอง     | IT    |

#### Full FD:

StudentNum → StudentName

StudentNum → Address

StudentNum → Major

#### Partial FD:

StudentNum, StudentName -> Address

StudentNum, StudentName -> Major

### Transitive Dependency

- พิจารณารีเลชั่น R ที่ประกอบด้วยแอตทริบิวต์ A, B และ C ถ้า A  $\longrightarrow$  B และ B  $\longrightarrow$  C ดังนั้นแอตทริบิวต์ C เป็น Transitive Dependency บนแอตทริบิวต์ A หรือกล่าวได้ว่า รีเลชั่น R มี Transitive Dependency ถ้า
  - แอตทริบิวต์ที่ไม่ใช่คีย์ของรีเลชั่น (Non Key Atrribute) ขึ้นอยู่กับ แอตทริบิวต์ที่ไม่ใช่คีย์ของรีเลชั่น

#### **STUDENTS**

| StudentNum | MajorCode | MajorName           |
|------------|-----------|---------------------|
| S21        | CS        | วิทยาการคอมพิวเตอร์ |
| S24        | IT        | เทคโนโลยีสารสนเทศ   |
| S30        | CS        | วิทยาการคอมพิวเตอร์ |
| S32        | IT        | เทคโนโลยีสารสนเทศ   |

StudentNum → MajorCode

MajorCode → MajorName

ดังนั้น STUDENTS มี Transitive Dependency

## กฎการอนุมานสำหรับ FD (Inference Rules)

- กฎการอนุมาน (Inference Rules) หรือกฎอาร์มสตรอง (Armstrong's Axioms) เป็นกฎที่บ่งชี้การได้มาของ สมบัติปิดของเซตการขึ้นอยู่กับ (Derive Closure S+) Inference Rules ประกอบด้วย 3 กฎ ดังนี้
  - Reflexivity ถ้า B เป็น subset ของแอตทริบิวต์ในเซต A แล้ว A $\longrightarrow$ B
  - Augmentation ถ้า A→B และ C เป็นแอตทริบิวต์อื่น แล้ว AC→BC
  - Transitivity ถ้า A→B และ B→C ดังนั้น A→C
- นอกจากนี้ มีกฎประยุกต์อีก 4 ข้อคือ
  - Self-determination A→A
  - Decomposition ถ้า A→B,C แล้ว A→B และ B→C
  - Union ถ้า A→B และ B→C แล้ว A→ B,C
  - Composition ถ้า A→B และ C→D แล้ว A,C→ B,D

## การนอร์มัลไลซ์ (Normalization)



- กระบวนการ Normalization เป็น กระบวนการในการออกแบบฐานข้อมูลเชิง สัมพันธ์เพื่อให้มีการปรับปรุงเปลี่ยนแปลง แบบแผนเชิงสัมพันธ์ให้อยู่ในรูปแบบที่ เหมาะสม คือ
- การกำจัดความซ้ำซ้อนในความสัมพันธ์
  และลดปัญหาที่จะตามมา ได้แก่ความ
  ผิดปกติอันเนื่องมาจากการเพิ่ม ลบ และ
  ปรับปรุง ข้อมูล เป็นต้น

### การนอร์มัลไลซ์ (Normalization)



## การนอร์มัลไลซ์ (Normalization)



# นอร์มัลฟอร์มระดับที่ 1 (First Normal Form (1NF))

- ความสัมพันธ์นั้นอยู่ในรูปของ First Normal Form โดยแอตทริบิวต์ของทั้งหมด มีโดเมนที่ไม่สามารถแบ่ง ออกเป็นส่วนๆ ได้ หรือ การทำให้เป็นหน่วยที่เล็กที่สุด การทำนอร์มัลฟอร์มระดับ 1NF จะต้องกำจัด multivalued Attribute ของรีเลชั่นออกไป ด้วยวิธีการดังต่อไปนี้
- 1. การเพิ่มข้อมูลให้เต็มทุกช่องเซลล์ภายในรีเลชั่น

FD: StudentNum, CourseNum -> StudentName, Course Day, Time, LecturerCode, LecturerName

| StudentNu | n StudentName | CourseNum | Course      | Day      | Time        | LecturerCode | LecturerName | StudentNum | StudentName | CourseNum | Course      | Day      | Time        | LecturerCode | LecturerName |
|-----------|---------------|-----------|-------------|----------|-------------|--------------|--------------|------------|-------------|-----------|-------------|----------|-------------|--------------|--------------|
| S21       | สมบัติ        | 9201      | บัญชี       | อังคาร   | 9.00-12.00  | L01          | รัชนีกร      | S21        | สมบัติ      | 9201      | บัญชี       | อังคาร   | 9.00-12.00  | L01          | รัชนีกร      |
|           |               | 9267      | ฟิสิกส์     | พฤหัสบดี | 13.00-16.00 | L02          | สามารถ       | S21        | สมบัติ      | 9267      | ฟิสิกส์     | พฤหัสบดี | 13.00-16.00 | L02          | สามารถ       |
| S24       | รัตนา         | 9267      | ฟิสิกส์     | พฤหัสบดี | 13.00-16.00 | L02          | สามารถ       | S24        | รัตนา       | 9267      | ฟิสิกส์     | พฤหัสบดี | 13.00-16.00 | L02          | สามารถ       |
|           |               | 9201      | คอมพิวเตอร์ | ศุกร์    | 9.00-12.00  | L03          | มานะ         | S24        | รัตนา       | 9201      | คอมพิวเตอร์ | ศุกร์    | 9.00-12.00  | L03          | มานะ         |
| S30       | วิชชา         | 9201      | คอมพิวเตอร์ | ศุกร์    | 9.00-12.00  | L03          | มานะ         | S30        | วิชชา       | 9201      | คอมพิวเตอร์ | ศุกร์    | 9.00-12.00  | L03          | มานะ         |

# นอร์มัลฟอร์มระดับที่ 1 (First Normal Form (1NF))

- 2. การแยกตาราง เพื่อกำจัด Multi-valued Attribute ในรีเลชั่นออกไป จะทำให้เพิ่มรีเลชั่นจำนวนมากขึ้น
- ความสัมพันธ์จากตารางดังกล่าวยังไม่ได้อยู่ในรูปของ 1NF เนื่องจากตารางนี้ยังประกอบด้วยแอตทริบิวต์ Actors ที่มีค่าแบบ Multi-valued ได้ เมื่อต้องการแปลงเป็นความสัมพันธ์ 1NF เรากระจายตารางเพิ่มเติมลง ในตาราง Movie Table และ Cast Table

| Movie_Title  | Year | Туре     | Director   | Director_DOB | Actors             |
|--------------|------|----------|------------|--------------|--------------------|
| Notting Hill | 1999 | Romantic | Roger M    | 05/06/1956   | Hugh G<br>Rhys I   |
| Lagaan       | 2000 | Drama    | Ashutosh G | 15/02/1968   | Aamir K<br>Gracy S |

#### Cast Table

#### Movie Table

| Movie_Title  | Year | Туре     | Director   | Director_DOB |
|--------------|------|----------|------------|--------------|
| Notting Hill | 1999 | Romantic | Roger M    | 05/06/1956   |
| Lagaan       | 2000 | Drama    | Ashutosh G | 15/02/1968   |

| Movie_Title  | Year | Actors  |
|--------------|------|---------|
| Notting Hill | 1999 | Hugh G  |
| Notting Hill | 1999 | Rhys I  |
| Lagaan       | 2000 | Aamir K |
| Lagaan       | 2000 | Gracy S |

## นอร์มัลฟอร์มระดับที่ 2 (Second Normal Form (2NF))

- ความสัมพันธ์ของตารางจะถือว่าอยู่ในรูปของ Second Normal Form เมื่อตาราง
  - อยู่ใน 1NF
  - ไม่มี nonkey attribute ที่ขึ้นอยู่กับบางส่วนของ candidate key แต่ขึ้นอยู่กับทั้งหมดของ candidate key จากข้อกำหนดข้างต้น ความสัมพันธ์ที่มีแอ ตทริบิวต์เดียวเป็น candidate key จะถือว่าอยู่ในรูป 2NF เสมอ
- 1. กำหนดแอททริบิวต์ที่เป็น Key attribute ทั้งหมด
  - StudentNum
  - CourseNum
  - StudentNum, CourseNum
- 2. กำหนด FD ทั้งหมดในรีเลชั่นที่มีแอททริบิวต์ใน ข้อที่ 1เป็น Determinant (ตัวกำหนดหรือระบุค่า)

FD1: StudentNum → StudentName

FD2: CourseNum  $\rightarrow$  Course

FD3: StudentNum, CourseNum →

Day, Time, LecturerCode, LecturerName

| StudentNum | StudentName | CourseNum | Course      | Day      | Time        | LecturerCode | LecturerName |
|------------|-------------|-----------|-------------|----------|-------------|--------------|--------------|
| S21        | สมบัติ      | 9201      | บัญชี       | อังคาร   | 9.00-12.00  | L01          | รัชนีกร      |
| S21        | สมบัติ      | 9267      | ฟิสิกส์     | พฤหัสบดี | 13.00-16.00 | L02          | สามารถ       |
| S24        | รัตนา       | 9267      | ฟิสิกส์     | พฤหัสบดี | 13.00-16.00 | L02          | สามารถ       |
| S24        | รัตนา       | 9201      | คอมพิวเตอร์ | ศุกร์    | 9.00-12.00  | L03          | มานะ         |
| S30        | วิชชา       | 9201      | คอมพิวเตอร์ | ศุกร์    | 9.00-12.00  | L03          | มานะ         |

# นอร์มัลฟอร์มระดับที่ 2 (Second Normal Form (2NF))

| StudentNum | StudentName | CourseNum | Course      | Day      | Time        | LecturerCode | LecturerName |
|------------|-------------|-----------|-------------|----------|-------------|--------------|--------------|
| S21        | สมบัติ      | 9201      | บัญชี       | อังคาร   | 9.00-12.00  | L01          | รัชนีกร      |
| S21        | สมบัติ      | 9267      | ฟิสิกส์     | พฤหัสบดี | 13.00-16.00 | L02          | สามารถ       |
| S24        | รัตนา       | 9267      | ฟิสิกส์     | พฤหัสบดี | 13.00-16.00 | L02          | สามารถ       |
| S24        | รัตนา       | 9201      | คอมพิวเตอร์ | ศุกร์    | 9.00-12.00  | L03          | มานะ         |
| S30        | วิชชา       | 9201      | คอมพิวเตอร์ | ศุกร์    | 9.00-12.00  | L03          | มานะ         |

| StudentNum | StudentName |
|------------|-------------|
| S21        | สมบัติ      |
| S24        | รัตนา       |
| S30        | วิชชา       |

| CourseNum | Course      |
|-----------|-------------|
| 9201      | บัญชี       |
| 9267      | ฟิสิกส์     |
| 9201      | คอมพิวเตอร์ |

| StudentNum | CourseNum | Day      | Time        | LecturerCode | LecturerName |
|------------|-----------|----------|-------------|--------------|--------------|
| S21        | 9201      | อังคาร   | 9.00-12.00  | L01          | รัชนีกร      |
| S21        | 9267      | พฤหัสบดี | 13.00-16.00 | L02          | สามารถ       |
| S24        | 9267      | พฤหัสบดี | 13.00-16.00 | L02          | สามารถ       |
| S24        | 9201      | ศุกร์    | 9.00-12.00  | L03          | มานะ         |
| S30        | 9201      | ศุกร์    | 9.00-12.00  | L03          | มานะ         |

# นอร์มัลฟอร์มระดับที่ 3 (Third Normal Form (3NF))

- ความสัมพันธ์ที่อยู่ในรูปของ Third Normal Form หมายถึงตารางที่
  - อยู่ในรูปของ 2NF และ
  - ไม่มี nonkey attribute ที่ขึ้นกับ candidate transitively key ที่มีแอตทริบิวต์ทุกตัวขึ้นโดยตรงกับ primary key และไม่ผ่าน transitive relation ยกตัวอย่างเช่น
  - แอตทริบิวต์ Z อาจขึ้นกับ non-key attribute Y และ Y ขึ้นกับ primary key X ตามลำดับ โดยอ้างถึงกฎความสัมพันธ์แบบ Transitivity หมายถึง เมื่อ X—Y และ Y—Z แล้ว X—Z
- เมื่อพิจารณาตัวอย่างก่อนหน้านี้

| FD                                                                                          | เหตุผล                                                                                |
|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| 1: StudentNum → StudentName                                                                 | ไม่มี transitive dependency เพราะมี StudentName ตัวเดียวที่เป็น Non-key<br>attributes |
| 2: CourseNum → Course                                                                       | ไม่มี transitive dependency เพราะมี Course ตัวเดียวที่เป็น Non-key attributes         |
| 3: StudentNum, CourseNum → Day, Time, LecturerCode, LecturerName แยกรีเลชั่นระดับ 3 NF เป็น | มี tr: ansitive dependency เพราะ LecturerCode เป็นตัว Determinant ของ<br>LecturerName |
| 3.1 : LecturerCode→ LecturerName                                                            | LecturerCode→ LecturerName                                                            |
| 3.2 : StudentNum, CourseNum $\rightarrow$ Day, Time, LecturerCode                           |                                                                                       |

# นอร์มัลฟอร์มระดับที่ 3 (Third Normal Form (3NF))

| StudentNum | CourseNum | Day      | Time        | LecturerCode | LecturerName |
|------------|-----------|----------|-------------|--------------|--------------|
| S21        | 9201      | อังคาร   | 9.00-12.00  | L01          | รัชนีกร      |
| S21        | 9267      | พฤหัสบดี | 13.00-16.00 | L02          | สามารถ       |
| S24        | 9267      | พฤหัสบดี | 13.00-16.00 | L02          | สามารถ       |
| S24        | 9201      | ศุกร์    | 9.00-12.00  | L03          | มานะ         |
| S30        | 9201      | ศุกร์    | 9.00-12.00  | L03          | มานะ         |

| StudentNum | StudentName |
|------------|-------------|
| S21        | สมบัติ      |
| S24        | รัตนา       |
| S30        | วิชชา       |

| CourseNum | Course      |
|-----------|-------------|
| 9201      | บัญชี       |
| 9267      | ฟิสิกส์     |
| 9201      | คอมพิวเตอร์ |

| StudentNum | CourseNum | Day      | Time        | LecturerCode |
|------------|-----------|----------|-------------|--------------|
| S21        | 9201      | อังคาร   | 9.00-12.00  | L01          |
| S21        | 9267      | พฤหัสบดี | 13.00-16.00 | L02          |
| S24        | 9267      | พฤหัสบดี | 13.00-16.00 | L02          |
| S24        | 9201      | ศุกร์    | 9.00-12.00  | L03          |
| S30        | 9201      | ศุกร์    | 9.00-12.00  | L03          |

| LecturerCode | LecturerName |
|--------------|--------------|
| L01          | รัชนีกร      |
| L02          | สามารถ       |
| L03          | มานะ         |

## นอร์มัลฟอร์ม Boyce Codd Normal Form (BCNF)

- ลักษณะของนอร์มอลฟอร์มแบบ Boyce-Codd Normal Form (BCNF) จะเป็น 3NF แบบเข้มงวด ที่นำไปใช้ต่อ ความสัมพันธ์ ที่อาจมีการ overlapping ของ candidate keys ความสัมพันธ์นี้เรียกว่าเป็น BoyceCodd normal form
  - ถ้าเป็น 3NF และทุก non-trivial FD สำหรับความสัมพันธ์นี้มี candidate key เป็นดีเทอร์มิแนนต์ กล่าวคือ สำหรับทุก X → Y, X คือ candidate key
- แปลงรีเลชั่นที่เป็นผลลัพธ์ของ 3NF ให้เป็น BCNF โดยกำหนดให้อาจารย์แต่ละคนสอน 1 รายวิชา

FD1: StudentNum → StudentName

เป็น BCNF

FD2: CourseNum  $\rightarrow$  Course

เป็น BCNF

FD3.1 : LecturerCode → LecturerName

เป็น BCNF

FD3.2 : StudentNum, CourseNum  $\rightarrow$  Day, Time, LecturerCode

ไม่เป็น BCNF

- แต่เนื่องจากโจทย์กำหนดให้อาจารย์แต่ละคนสอน 1 รายวิชา ทำให้ได้ LecturerCode CourseNum
- ทำให้ FD3.2 ไม่เป็น BCNF แปลง FD3.2 เป็น BCNF

FD3.2.1 : StudentNum, LecturerCode  $\rightarrow$  Day, Time

FD3.2.2 : LecturerCode → CourseNum

# นอร์มัลฟอร์มระดับที่ 4 (Fourth Normal Form (4NF))

- รีเลชั่นที่อยู่ใน 4NF ดจะต้องเป็นรีเลชั่นที่อยู่ใน 3NF และ ไม่มี Multi-valued Dependency (MVD)
  - การแปลงรีเลชั่นใด ๆ ให้อยู่ในรูปนอร์มัลฟอร์มระดับที่ 4 จะต้องกำจัด Multi-valued Dependency ออกจากรีเลชั่น
- กำหนดรีเลชั่น CLASS ซึ่งประกอบด้วยแอตทริบิวต์ STUDENT\_ID หมายถึงรหัสนิสิต COURSE หมายถึงชื่อ วิชา และ HOBBY หมายถึงงานอดิเรก

จากรีเลชั่นแสดงว่านิสิตหนึ่งคนมีวิชาเรียนได้มากกว่าหนึ่งวิชา และนิสิตแต่ละคนจะมีงานอดิเรกได้มากกว่าหนึ่งงาน ทำให้รีเลชั่นมี ลักษณะไม่เป็น 4NF เพราะมี Multi-valued Dependency เราสามารถแยกออกเป็นสองรีเลชั่น คือ

| STUDENT_ID | COURSE    | HOBBY   |
|------------|-----------|---------|
| 21         | Computer  | Dancing |
| 21         | Math      | Singing |
| 34         | Chemistry | Dancing |
| 74         | Biology   | Cricket |
| 59         | Physics   | Hocke   |



| STUDENT_ID | COURSE    |
|------------|-----------|
| 21         | Computer  |
| 21         | Math      |
| 34         | Chemistry |
| 74         | Biology   |
| 59         | Physics   |

| STUDENT_ID | HOBBY   |
|------------|---------|
| 21         | Dancing |
| 21         | Singing |
| 34         | Dancing |
| 74         | Cricket |
| 59         | Hocke   |

https://www.javatpoint.com/dbms-fifth-normal-form

# นอร์มัลฟอร์มระดับที่ 5 (Fifth Normal Form (5NF))

- รีเลชั่นที่อยู่ในระดับ 5NF จะต้องเป็นรีเลชั่นที่อยู่ในระดับ 4NF และไม่มี Joint Dependency (JD)
  - การแปลงรีเลชั่นใด ๆ ให้อยู่ในรูปนอร์มัลฟอร์มระดับที่ 5 จะต้องกำจัด Joint Dependency ออกจากรีเลชั่น

จอห์นเรียนทั้งวิชาคอมพิวเตอร์และคณิตศาสตร์สำหรับภาคเรียนที่ 1 แต่เขาไม่ได้เรียนวิชาคณิตศาสตร์สำหรับภาคเรียนที่ 2 ในกรณีนี้การรวมกันของฟิลด์เหล่านี้ทั้งหมดเป็นสิ่งจำเป็นในการระบุข้อมูลที่ถูกต้อง

| SUBJECT   | LECTURER | SEMESTER   |   |
|-----------|----------|------------|---|
| Computer  | Anshika  | Semester 1 |   |
| Computer  | John     | Semester 1 |   |
| Math      | John     | Semester 1 | L |
| Math      | Akash    | Semester 2 |   |
| Chemistry | Praveen  | Semester 1 |   |

| SEMESTER   | SUBJECT   |
|------------|-----------|
| Semester 1 | Computer  |
| Semester 1 | Math      |
| Semester 1 | Chemistry |
| Semester 2 | Math      |

| SUBJECT  | LECTURER |
|----------|----------|
| Computer | Anshika  |
| Computer | John     |
| Math     | John     |
| Math     | Akash    |
|          |          |

| SEMESTER   | LECTURER |
|------------|----------|
| Semester 1 | Anshika  |
| Semester 1 | John     |
| Semester 1 | John     |
| Semester 2 | Akash    |
| Semester 1 | Praveen  |