Tutorato MMI - Resto 1 05/05/2023

Dimostrazione per induzione

Dimostrare per induzione che $\forall n \in \mathbb{N}_0, 2^n \geq n+1$.

Esercizio 1 - Soluzione

Soluzione:

- **Base.** Sia n = 0, allora $2^n = 2^0 = 1 \ge 1 = 0 + 1 = n + 1$.
- Passo induttivo. Supponiamo per *ipotesi induttiva* che P(n) sia vera, con $n \ge 0$, cioè che $2^n \ge n+1$. Vogliamo dimostrare che P(n+1) è vera, cioè che $2^{n+1} \ge (n+1)+1$.

$$2^{n+1} = 2^n \cdot 2 \stackrel{?}{\geq} n + 2 = (n+1) + 1.$$

$$\frac{2^n \cdot 2}{2} = 2^n \ge \frac{n}{2} + 1 = \frac{n+2}{2}.$$

A questo punto la dimostrazione si riduce a verificare se $2^n \geq \frac{n}{2} + 1$. Per ipotesi induttiva $2^n \geq n + 1$. Inoltre, $\forall n \in \mathbb{N}_0$ risulta $n+1 \geq \frac{n}{2} + 1$. Per transitività, notiamo che: $2^n \geq n + 1 \geq \frac{n}{2} + 1$.

Avendo provato il passo base e il passo induttivo, per il principio di induzione l'asserto è vero $\forall n >= 0$.

Dimostrazione per induzione

Sia $n \in \mathbb{N}$. Dimostrare per induzione che $\exists k \in \mathbb{N}$ tale che $3^n < n!, \forall n \geq k$.

Esercizio 2 - Soluzione

Soluzione:

- **Base.** Sia n = 7, allora $3^n = 3^7 = 2187 < 5040 = 7! = n!$.
- Passo induttivo. Supponiamo per *ipotesi induttiva* che P(n) sia vera, con $n \ge 7$, cioè che $3^n < n!$. Vogliamo dimostrare che P(n+1) è vera, cioè che $3^{n+1} < (n+1)!$.

$$3^{n+1} = 3^n \cdot 3 \stackrel{?}{<} n! \cdot (n+1) = (n+1)!.$$

Poiché per ipotesi induttiva $3^n < n!$ è vero, se moltiplichiamo a destra e a sinistra della disequazione rispettivamente un valore x ed un valore y, tali che x < y, allora l'asserto $3^n \cdot x < n! \cdot y$ è vero. Consideriamo x = 3 e y = n + 1, poiché $3 < n + 1, \forall n \geq 7$ (passo base), allora l'asserto $3^n \cdot 3 < n! \cdot (n + 1)$ è vero.

Avendo provato il passo base e il passo induttivo, per il principio di induzione l'asserto è vero $\forall n >= 7$.

Dimostrazione per induzione

Dimostrare per induzione che 6^n-1 è divisibile per 5, per ogni $n \ge 0$.

Esercizio 3 - Soluzione

Soluzione:

- **Base.** Sia n = 0, allora $6^n 1 = 6^0 1 = 1 1 = 0$, che è divisibile per 5.
- Passo induttivo. Supponiamo per *ipotesi induttiva* che P(n) sia vera, con $n \ge 0$, cioè che $6^n 1$ è divisibile per 5. Vogliamo dimostrare che P(n+1) è vera, cioè che $6^{n+1} 1$ è divisibile per 5. Per ipotesi induttiva sappiamo che $\exists k \ge 0 : 6^n 1 = 5k$. Questo implica che $6^n = 5k + 1$. $6^{n+1} 1 = 6 \cdot 6^n 1 = 6(5k+1) 1 = 30k + 6 1$. $6^{n+1} = 30k + 5 = 5(6k+1)$, che è divisibile per 5.

Avendo provato il passo base e il passo induttivo, per il principio di induzione l'asserto è vero $\forall n >= 0$.

Dimostrazione per induzione

Dimostrare per induzione che $2+2^2+2^3+\ldots+2^n=2(2^n-1)$, per ogni $n\geq 1$.

Esercizio 4 - Soluzione

Soluzione:

- **Base.** Sia n = 1, allora $2 = 2(2^1 1) = 2(2^n 1)$.
- Passo induttivo. Supponiamo per ipotesi induttiva che P(n) sia vera, con $n \ge 1$, cioè che $\sum_{k=1}^{n} 2^k = 2(2^n 1)$. Dimostriamo ora che $\sum_{k=1}^{n+1} 2^k = 2(2^{n+1} 1)$. $2(2^{n+1} 1) = 2^{n+2} 2 = 2^{n+1} + 2^{n+1} 2 = 2^{n+1} + 2(2^n 1)$. $2^{n+1} + 2(2^n 1) = 2^{n+1} + \sum_{k=1}^{n} 2^k = \sum_{k=1}^{n+1} 2^k$.

Avendo provato il passo base e il passo induttivo, per il principio di induzione l'asserto è vero $\forall n >= 1$.