function:
$$x = f(n)$$

$$x = 1$$

$$for i = 1:n$$

$$x = x = f(n)$$

$$x = 1:n$$

$$x = x = 1:n$$

$$x = x = x + 1;$$

Dirind the sumtime of the algorithm mathematically:

Sol: outer loop runs from I to n

And for each iteration of outer loop, the inner

loop also sums from I to n. So, the total no. of

iterations for both loops together is sum of no's

from I ton for each loop.

Runtime =
$$T(n) = \underbrace{\sum_{i=1}^{n} \sum_{j=1}^{n} 1}_{n}$$

$$\Rightarrow \sum_{i=1}^{n} (n-1/+1) \Rightarrow \sum_{i=1}^{n} n$$

$$\Rightarrow n \stackrel{n}{\leq} 1 \Rightarrow n (n-1/4/1)$$

$$\Rightarrow$$
 $T(n) = \Theta(n^r)$

2) please find the attached graph.

X-Axis	Y-Axis
N(input)	Time(seconds
20	0
100	0
1000	0.2
2000	0.5
5000	3.6
8000	7.1
10000	10.7
15000	19.8
18000	28.7
20000	39.1

for modified function

for modified function	
X-Axis	Y-Axis
N(input)	Time(seconds)
20	0
100	0
1000	0.6
2000	1.3
5000	4.2
8000	8.9
10000	14.8
15000	29.3
18000	38.6
20000	58.4

3) Big theta =) the sumtime =
$$n^{\nu}$$
 from $f(n)$ =) $\Phi(n^{\nu})$

Big-0
$$\Rightarrow$$
 0 \leq $f(n) \leq cg(n)$
 $f(n) = n^{\gamma}$

Let us consider c = 4 + 2 Substitute in above $n^{r} \leq 4n^{r} = 9 + 4n^{r} = 9 + 0 = 0$

Big
$$n$$
 => $0 \le cg(n) \le f(n)$
 $f(n) = n^2$
=> $c \cdot n^2 \le n^2$

Let us consider c = 1/2 2 Substitute above $\frac{1}{2}n^{r} \leq n^{2} \Rightarrow \frac{n^{r}}{2} \leq n^{r}$ $\Rightarrow \frac{n^{r}}{2} \Rightarrow \mathcal{L}(n^{r})$

Big-D, Big-SZ, and Big of are same. ie;
The best case, average case & worst case of this function is all same, since it executes in times.

4)
$$N_0 = 5000$$
There is a suspid change in curve when $n = 5000$
So, $n_0 = 5000$

in 2 no: Below nother polynomial there is not specified and polynomial trend not followed.

Modification of function:

$$x = f(n)$$

 $x = 1$;
 $y = 1$;
for $i = 1 = n$.
 $for j = 1 = n$
 $x = x + 1$;
 $y = i + j$

4) we can see that the time taken has been increased slightly with an average of 13 seconds of the suntime of the modified function is

$$T(n) = C + \sum_{i=1}^{n} \sum_{j=1}^{n} 1$$

$$=$$
 $C + \sum_{i=1}^{m} (n-1+1)$

.. It does not effect the results fecom #1. The guntime of the modified function is still (1)