The best way to probe CP violation in the lepton sector is with long-baseline accelerator neutrino experiments in the appearance mode: the appearance of ν_e in predominantly ν_{μ} beams. Here we show that it is possible to discover CP violation with disappearance experiments only, by combining JUNO for electron neutrinos and DUNE or Hyper-Kamiokande for muon neutrinos. While the maximum sensitivity to discover CP is quite modest (1.6 σ with 6 years of JUNO and 13 years of DUNE), some values of δ may be disfavored by $> 3\sigma$ depending on the true value of δ .

CP-Violation with Neutrino Disappearance

History

A little bit of my history:

- 1. Attended Rice, class of 2010
- 2. PhD Vanderbilt+FNAL, defended 2016
- 3. Postdoc Niels Bohr Institute
- 4. Scientist at Brookhaven, 2018-now

History

A little bit of my history:

- 1. Attended Rice, class of 2010
- 2. PhD Vanderbilt+FNAL, defended 2016
- 3. Postdoc Niels Bohr Institute
- 4. Scientist at Brookhaven, 2018-now
- 5. Andrew Long visited BNL in 2023
 - Discussed an early universe model to probe CPV in the neutrino sector
 - ▶ A colleague asked if there were other ways to probe CPV without new physics
 - ▶ I first said no, appearance measurements like $\nu_{\mu} \rightarrow \nu_{e}$ is the only way
 - ► Remembered there is another way

3/29

3/29

Four known unknown in particle physics: all neutrinos

Atmospheric mass ordering

 θ_{23} octant

Complex phase

Absolute mass scale

Four known unknown in particle physics: all neutrinos

Atmospheric mass ordering θ_{23} octant

Complex phase

Absolute mass scale

Outline

- 1. Why CPV is interesting
- 2. Other non-standard probes of CPV
- 3. Relationship between appearance, disappearance, CP, T, CPT
- 4. Three ways to see why there is CPV information in disappearance
 - 4.1 Parameter counting
 - 4.2 Direct analytic calculation
 - 4.3 Numerical test
- 5. Role of the matter effect
- 6. Recommendation

Why is CPV interesting?

δ and CP violation

 $J_{CP} = s_{12}c_{12}s_{13}c_{13}^2s_{23}c_{23}\sin\delta$

C. Jarlskog PRL 55, 1039 (1985)

δ and CP violation

$$J_{CP} = s_{12}c_{12}s_{13}c_{13}^2s_{23}c_{23}\sin\delta$$

C. Jarlskog PRL 55, 1039 (1985)

1. Strong interaction: no observed EDM \Rightarrow CP (nearly) conserved

$$\frac{\bar{\theta}}{2\pi} < 10^{-11}$$

J. Pendlebury, et al. 1509.04411

2. Quark mass matrix: non-zero but small CP violation

$$\frac{|J_{\rm CKM}|}{J_{\rm max}} = 3 \times 10^{-4}$$

CKMfitter 1501.05013

3. Lepton mass matrix: ?

$$\frac{|J_{\rm PMNS}|}{J_{\rm max}} < 0.34$$

PBD, J. Gehrlein, R. Pestes 2008.01110

 $J_{\rm max} = \frac{1}{6\sqrt{3}} \approx 0.096$

δ : what is it really?

 δ : what is it not?

$\delta \not\Rightarrow$ Baryogenesis

The amount of leptogenesis is a function of:

- 1. the heavy mass scale
- $2. \delta$
- 3. α , β (Majorana phases)
- 4. CP phases in the RH neutrinos
- 5. ...

C. Hagedorn, et al. 1711.02866K. Moffat, et al. 1809.08251

$$\begin{array}{lll} \text{Measuring } \delta = 0, \pi & \not \Rightarrow & \text{no leptogenesis} \\ \text{Measuring } \delta \neq 0, \pi & \not \Rightarrow & \text{leptogenesis} \end{array}$$

δ , J: current status

Maximal CP violation is already ruled out:

- 1. $\theta_{12} \neq 45^{\circ} \text{ at } \sim 15\sigma$
- 2. $\theta_{13} \neq \tan^{-1} \frac{1}{\sqrt{2}} \approx 35^{\circ} \text{ at many (100) } \sigma$
- 3. $\theta_{23} = 45^{\circ}$ allowed at $\sim 1\sigma$
- 4. $|\sin \delta| = 1$ allowed

When δ and when J?

If the goal is **CP violation** the Jarlskog invariant should be used

however

If the goal is **measuring the parameters** one must use δ

Given $\theta_{12}, \, \theta_{13}, \, \theta_{23}$, and $J, \, I$ can't determine the sign of $\cos \delta$ which is physical e.g. $P(\nu_{\mu} \to \nu_{\mu})$ depends on $\cos \delta$

Other non-standard CPV probes

1. Some information in solar due to loops in elastic scattering

V. Brdar, X-J. Xu 2306.03160

2. Sub-GeV atmospherics

K. Kelly, et al. 1904.02751

See also e.g. A. Suliga, J. Beacom 2306.11090

Solar (no systematics): $\sim 0.5\sigma$

Atmospherics at DUNE: $< 2\sigma$

Appearance, disappearance, and CP

Appearance vs. Disappearance

Oscillation experiments can do appearance or disappearance experiments:

Disappearance K2K, MINOS, T2K, NOνA KamLAND, Daya Bay, RENO, Double CHOOZ (Sort of) SNO, Borexino, SK-solar JUNO, DUNE, HK

Neither appearance nor disappearance SK-atm, IceCube

Appearance T2K, NO ν A OPERA Atm ν_{τ} hints @ SK & IceCube DUNE, HK

CP, T: Disappearance

$$\begin{array}{cccc}
\nu_e \to \nu_e & \to & CP & \to & \bar{\nu}_e \to \bar{\nu}_e \\
& \searrow & & \downarrow & \\
& CPT & T & \\
& & \downarrow & \\
\bar{\nu}_e \to \bar{\nu}_e
\end{array}$$

Disappearance measurements are even eigenstates of CP

$$CP[P(\nu_e \to \nu_e)] = P(\bar{\nu}_e \to \bar{\nu}_e) \stackrel{CPT}{=} P(\nu_e \to \nu_e)$$

Assume that CPT is a good symmetry

CP, T: Appearance

Appearance measurements are not eigenstates of CP

Appearance and Disappearance, CP even and CP odd terms

Disappearance:

$$P(\nu_{\alpha} \to \nu_{\alpha}) = 1 - 4|U_{\alpha 1}|^{2}|U_{\alpha 2}|^{2}\sin^{2}\Delta_{21}$$
$$- 4|U_{\alpha 1}|^{2}|U_{\alpha 3}|^{2}\sin^{2}\Delta_{31}$$
$$- 4|U_{\alpha 2}|^{2}|U_{\alpha 3}|^{2}\sin^{2}\Delta_{32}$$
$$= P_{\alpha\alpha}^{CP+}$$

 $\Delta_{ij} \equiv \Delta m_{ij}^2 L/4E$

Appearance and Disappearance, CP even and CP odd terms

Disappearance:

$$P(\nu_{\alpha} \to \nu_{\alpha}) = 1 - 4|U_{\alpha 1}|^{2}|U_{\alpha 2}|^{2}\sin^{2}\Delta_{21}$$
$$- 4|U_{\alpha 1}|^{2}|U_{\alpha 3}|^{2}\sin^{2}\Delta_{31}$$
$$- 4|U_{\alpha 2}|^{2}|U_{\alpha 3}|^{2}\sin^{2}\Delta_{32}$$
$$= P_{\alpha\alpha}^{CP+}$$

Appearance:

$$P(\nu_{\alpha} \to \nu_{\beta}) = -4\Re[U_{\alpha 1}U_{\beta 1}^{*}U_{\alpha 2}^{*}U_{\beta 2}]\sin^{2}\Delta_{21}$$
$$-4\Re[U_{\alpha 1}U_{\beta 1}^{*}U_{\alpha 3}^{*}U_{\beta 3}]\sin^{2}\Delta_{31}$$
$$-4\Re[U_{\alpha 3}U_{\beta 3}^{*}U_{\alpha 2}^{*}U_{\beta 2}]\sin^{2}\Delta_{32}$$
$$\pm 8J_{CP}\sin\Delta_{21}\sin\Delta_{31}\sin\Delta_{32}$$
$$= P_{\alpha\beta}^{CP+} + P_{\alpha\beta}^{CP-}$$

 Peter B. Denton (BNL)
 2309.03262
 Rice University: April 2, 2024 17/29

 $\Delta_{ij} \equiv \Delta m_{ij}^2 L/4E$

Sign depends on α , β

Conventional Wisdom

 $1.\ \,$ Appearance is sensitive to CPV

[True]

 Peter B. Denton (BNL)
 2309.03262
 Rice University: April 2, 2024 18/29

Conventional Wisdom

1. Appearance is sensitive to CPV

[True]

2. Disappearance has no CPV sensitivity

[False]

Conventional Wisdom

1. Appearance is sensitive to CPV

[True]

2. Disappearance has no CPV sensitivity

[False]

3. Any δ dependence in disappearance is in ν_μ not ν_e

[Confusing/False]

$$\begin{pmatrix} c_{13}c_{12} & c_{13}s_{12} & s_{13}e^{-i\delta} \\ -c_{23}s_{12} - s_{23}s_{13}c_{12}e^{i\delta} & c_{23}c_{12} - s_{23}s_{13}s_{12}e^{i\delta} & s_{23}c_{13} \\ s_{23}s_{12} - c_{23}s_{13}c_{12}e^{i\delta} & -s_{23}c_{12} - c_{23}s_{13}s_{12}e^{i\delta} & c_{23}c_{13} \end{pmatrix}$$

Correct Statements

- \blacktriangleright Appearance is the best way to measure δ and CPV
 - ... given known oscillation parameters, systematics, and realistic experiments
 - ightharpoonup Probes mostly $\sin \delta$ not $\cos \delta$
 - ▶ Don't need both ν and $\bar{\nu}$ (but systematics)
- ightharpoonup Disappearance can measure δ
 - ▶ CPV can be discovered with only disappearance measurements
 - \triangleright Probes mostly $\cos \delta$ not $\sin \delta$
 - ► Requires measurements of two flavors
 - ▶ "Works through unitarity" (as do nearly all oscillation measurements)

1. Four parameters in the PMNS matrix

Majorana phases are irrelevant

1. Four parameters in the PMNS matrix

Majorana phases are irrelevant

- 2. Disappearance experiments of one flavor can measure up to three amplitudes
 - ► Electron neutrino row:
 - ► KamLAND measured one
 - ▶ Daya Bay/RENO measured a different one
 - ▶ JUNO will measure all three
 - ► Muon neutrino row:
 - ► MINOS/T2K/NO ν A measured one

1. Four parameters in the PMNS matrix

Majorana phases are irrelevant

- 2. Disappearance experiments of one flavor can measure up to three amplitudes
 - ► Electron neutrino row:
 - ► KamLAND measured one
 - ▶ Daya Bay/RENO measured a different one
 - ▶ JUNO will measure all three
 - ► Muon neutrino row:
 - ▶ MINOS/T2K/NO ν A measured one

$$P(\nu_{\alpha} \to \nu_{\alpha}) = 1 - 4 \sum_{i>j} C_{ij}^{\alpha} \sin^2 \Delta_{ij}$$
$$C_{ij}^{\alpha} = |U_{\alpha i}|^2 |U_{\alpha j}|^2$$
$$|U_{\alpha i}| = \left(\frac{C_{ij}^{\alpha} C_{ik}^{\alpha}}{C_{jk}^{\alpha}}\right)^{1/4}$$

1. Four parameters in the PMNS matrix

Majorana phases are irrelevant

- 2. Disappearance experiments of one flavor can measure up to three amplitudes
 - ► Electron neutrino row:
 - ► KamLAND measured one
 - ▶ Daya Bay/RENO measured a different one
 - ▶ JUNO will measure all three
 - ► Muon neutrino row:
 - ► MINOS/T2K/NO ν A measured one

Daya Bay 1809.02261

1. Four parameters in the PMNS matrix

Majorana phases are irrelevant

- 2. Disappearance experiments of one flavor can measure up to three amplitudes
 - ► Electron neutrino row:
 - ► KamLAND measured one
 - ▶ Daya Bay/RENO measured a different one
 - ▶ JUNO will measure all three
 - ► Muon neutrino row:
 - ► MINOS/T2K/NO ν A measured one

L. Zhan, et al. 0807.3203

1. Four parameters in the PMNS matrix

- 2. Disappearance experiments of one flavor can measure up to three amplitudes
 - ► Electron neutrino row:
 - ► KamLAND measured one
 - ▶ Daya Bay/RENO measured a different one
 - ▶ JUNO will measure all three
 - ► Muon neutrino row:
 - ► MINOS/T2K/NO ν A measured one
- 3. Only two parameters for one flavor are independent

1. Four parameters in the PMNS matrix

- 2. Disappearance experiments of one flavor can measure up to three amplitudes
 - ► Electron neutrino row:
 - ► KamLAND measured one
 - ▶ Daya Bay/RENO measured a different one
 - ▶ JUNO will measure all three
 - ► Muon neutrino row:
 - ▶ MINOS/T2K/NO ν A measured one
- 3. Only two parameters for one flavor are independent
- 4. Given good measurements of the ν_e and ν_μ disappearance, 4 independent parameters will be measured
 - Any row can be "simple" (e.g. $c_{12}c_{13}, s_{12}c_{13}, \ldots$) \Rightarrow no one row is ever enough
 - ▶ That is, CPV is physical and cannot depend on parameterization

1. Four parameters in the PMNS matrix

- 2. Disappearance experiments of one flavor can measure up to three amplitudes
 - ► Electron neutrino row:
 - ► KamLAND measured one
 - ▶ Daya Bay/RENO measured a different one
 - ▶ JUNO will measure all three
 - ► Muon neutrino row:
 - ▶ MINOS/T2K/NO ν A measured one
- 3. Only two parameters for one flavor are independent
- 4. Given good measurements of the ν_e and ν_μ disappearance, 4 independent parameters will be measured
 - Any row can be "simple" (e.g. $c_{12}c_{13}, s_{12}c_{13}, \ldots$) \Rightarrow no one row is ever enough
 - ► That is, CPV is physical and cannot depend on parameterization
- 5. This is sufficient to constrain $\cos \delta$ and three mixing angles

1. Four parameters in the PMNS matrix

- 2. Disappearance experiments of one flavor can measure up to three amplitudes
 - ► Electron neutrino row:
 - ► KamLAND measured one
 - ▶ Daya Bay/RENO measured a different one
 - ▶ JUNO will measure all three
 - ► Muon neutrino row:
 - ▶ MINOS/T2K/NO ν A measured one
- 3. Only two parameters for one flavor are independent
- 4. Given good measurements of the ν_e and ν_μ disappearance, 4 independent parameters will be measured
 - Any row can be "simple" (e.g. $c_{12}c_{13}, s_{12}c_{13}, \ldots$) \Rightarrow no one row is ever enough
 - ► That is, CPV is physical and cannot depend on parameterization
- 5. This is sufficient to constrain $\cos \delta$ and three mixing angles
- 6. If we determine $\cos \delta \neq \pm 1 \implies \text{CP is violated!}$

Direct Analytic Calculation

Disappearance experiments measure various $|U_{\alpha i}|^2$ terms Suppose 4 are measured: $|U_{e2}|^2$, $|U_{e3}|^2$, $|U_{\mu 2}|^2$, $|U_{\mu 3}|^2$

Actually this gives all 9 magnitudes by unitarity

Direct Analytic Calculation

Disappearance experiments measure various $|U_{\alpha i}|^2$ terms Suppose 4 are measured: $|U_{e2}|^2$, $|U_{e3}|^2$, $|U_{\mu 2}|^2$, $|U_{\mu 3}|^2$

Actually this gives all 9 magnitudes by unitarity

$$J_{CP}^{2} = |U_{e2}|^{2} |U_{\mu 2}|^{2} |U_{e3}|^{2} |U_{\mu 3}|^{2}$$
$$-\frac{1}{4} \left(1 - |U_{e2}|^{2} - |U_{\mu 2}|^{2} - |U_{e3}|^{2} - |U_{\mu 3}|^{2} + |U_{e2}|^{2} |U_{\mu 3}|^{2} + |U_{e3}|^{2} |U_{\mu 2}|^{2}\right)^{2}$$

Disappearance can tell us if CP is violated, but not if nature prefers ν 's or $\bar{\nu}$'s

Where is $|U_{\mu 2}|^2$?

Where is $|U_{\mu 2}|^2$?

Peter B. Denton (BNL)

2309.03262

▶ There is no δ information in $|U_{\mu 1}|^2 + |U_{\mu 2}|^2$ (sum of Δ_{31} and Δ_{32} terms)

2309.03262 Rice University: April 2, 2024 23/29

- ▶ There is no δ information in $|U_{\mu 1}|^2 + |U_{\mu 2}|^2$ (sum of Δ_{31} and Δ_{32} terms)
- ▶ There is δ information in $|U_{\mu 1}|^2 |U_{\mu 2}|^2$

- ▶ There is no δ information in $|U_{\mu 1}|^2 + |U_{\mu 2}|^2$ (sum of Δ_{31} and Δ_{32} terms)
- ▶ There is δ information in $|U_{\mu 1}|^2 |U_{\mu 2}|^2$
- ▶ This comes from the Δm_{21}^2 term

DUNE and HK can measure Δm_{21}^2 somewhat PBD, J. Gehrlein 2302.08513

- ▶ There is no δ information in $|U_{\mu 1}|^2 + |U_{\mu 2}|^2$ (sum of Δ_{31} and Δ_{32} terms)
- ▶ There is δ information in $|U_{\mu 1}|^2 |U_{\mu 2}|^2$
- ▶ This comes from the Δm_{21}^2 term

DUNE and HK can measure Δm_{21}^2 somewhat PBD, J. Gehrlein 2302.08513

► This term is

$$\approx -4c_{23}^{2} \left(s_{12}^{2} c_{12}^{2} + s_{23} c_{23} s_{13} \sin 2\theta_{12} \cos 2\theta_{12} \cos \delta \right) \sin^{2} \Delta_{21}$$

$$\approx -2 \quad (0.21 + 0.03 \cos \delta) \left(\frac{\pi}{33} \right)^{2}$$

$$\Delta m_{21}^{2} / |\Delta m_{21}^{2}| \approx 33$$

- There is no δ information in $|U_{\mu 1}|^2 + |U_{\mu 2}|^2$ (sum of Δ_{31} and Δ_{32} terms)
- ▶ There is δ information in $|U_{\mu 1}|^2 |U_{\mu 2}|^2$
- ▶ This comes from the Δm_{21}^2 term

DUNE and HK can measure Δm_{21}^2 somewhat PBD, J. Gehrlein 2302.08513

► This term is

$$\approx -4c_{23}^{2} \left(s_{12}^{2} c_{12}^{2} + s_{23} c_{23} s_{13} \sin 2\theta_{12} \cos 2\theta_{12} \cos \delta \right) \sin^{2} \Delta_{21}$$

$$\approx -2 \quad (0.21 + 0.03 \cos \delta) \left(\frac{\pi}{33} \right)^{2}$$

 $\Delta m_{21}^2/|\Delta m_{31}^2| \approx 33$

- ▶ So the probability is large for $\cos \delta = -1$?
- ▶ So the effect is $\sim -0.0005 \cos \delta$?

- ▶ There is no δ information in $|U_{\mu 1}|^2 + |U_{\mu 2}|^2$ ▶ There is δ information in $|U_{\mu 1}|^2 |U_{\mu 2}|^2$
- ▶ This comes from the Δm_{21}^2 term

Sector
$$0.99$$
 0.99

 $\Delta m_{21}^2 / |\Delta m_{21}^2| \approx 33$

This term is

$$\approx -4c_{23}^2 \left(s_{12}^2 c_{12}^2 + s_{23} c_{23} s_{13} \sin 2\theta_{12} \cos 2\theta_{12} \cos \delta \right) \sin^2 \Delta_{21}$$

$$\approx -2 \quad (0.21 + 0.03 \cos \delta) \left(\frac{\pi}{22} \right)^2$$

$$\cos o \left(\frac{1}{33} \right)$$

▶ So the probability is large for
$$\cos \delta = -1$$
?

▶ So the effect is
$$\sim -0.0005 \cos \delta$$
?

- ▶ There is no δ information in $|U_{\mu 1}|^2 + |U_{\mu 2}|^2$ ▶ There is δ information in $|U_{\mu 1}|^2 |U_{\mu 2}|^2$
- ▶ This comes from the Δm_{21}^2 term

Sector
$$0.99$$
 0.98

This term is

$$\approx -2 \quad (0.21 \quad +$$

So the probability is large for
$$\cos \delta = -1$$
?
So the effect is $\approx -0.0005 \cos \delta$?

$$0.03\cos\delta)\left(\frac{\pi}{33}\right)^2$$

Sign is wrong

 $\Delta m_{21}^2/|\Delta m_{31}^2| \approx 33$

So the effect is $\sim -0.0005 \cos \delta$? Magnitude is ~ 16 too small

 $\approx -4c_{23}^2 \left(s_{12}^2 c_{12}^2 + s_{23} c_{23} s_{13} \sin 2\theta_{12} \cos 2\theta_{12} \cos \delta\right) \sin^2 \Delta_{21}$

Let's start again at

$$\approx -4c_{23}^2 \left(s_{12}^2 c_{12}^2 + s_{23} c_{23} s_{13} \sin 2\theta_{12} \cos 2\theta_{12} \cos \delta \right) \sin^2 \Delta_{21}$$

Let's start again at

$$\approx -4c_{23}^2 \left(s_{12}^2 c_{12}^2 + s_{23} c_{23} s_{13} \sin 2\theta_{12} \cos 2\theta_{12} \cos \delta \right) \sin^2 \Delta_{21}$$

► Solar splitting modified by

$$\Delta m_{21}^2 \to \Delta m_{21}^2 \mathcal{S}_{\odot}$$

$$\mathcal{S}_{\odot} \approx \sqrt{(\cos 2\theta_{12} - c_{13}^2 a/\Delta m_{21}^2)^2 + \sin^2 2\theta_{12}} \approx 3.4$$

at E = 1.3 GeVPBD, S. Parke 1902.07185

Let's start again at

$$\approx -4c_{23}^2 \left(s_{12}^2 c_{12}^2 + s_{23} c_{23} s_{13} \sin 2\theta_{12} \cos 2\theta_{12} \cos \delta \right) \sin^2 \Delta_{21}$$

► Solar splitting modified by

$$\Delta m_{21}^2 \to \Delta m_{21}^2 \mathcal{S}_{\odot}$$

$$\mathcal{S}_{\odot} \approx \sqrt{(\cos 2\theta_{12} - c_{13}^2 a/\Delta m_{21}^2)^2 + \sin^2 2\theta_{12}} \approx 3.4$$

PBD, S. Parke 1902.07185

Mixing angle is modified

$$\cos 2\theta_{12} = 0.37 \rightarrow \frac{\cos 2\theta_{12} - c_{13}^2 a / \Delta m_{21}^2}{S_{\odot}} \approx -0.96 < 0$$

 $a \propto \rho E$

at E = 1.3 GeV

Let's start again at

$$\approx -4c_{23}^2 \left(s_{12}^2 c_{12}^2 + s_{23} c_{23} s_{13} \sin 2\theta_{12} \cos 2\theta_{12} \cos \delta \right) \sin^2 \Delta_{21}$$

► Solar splitting modified by

$$\Delta m_{21}^2 \to \Delta m_{21}^2 \mathcal{S}_{\odot}$$

$$\mathcal{S}_{\odot} \approx \sqrt{(\cos 2\theta_{12} - c_{13}^2 a/\Delta m_{21}^2)^2 + \sin^2 2\theta_{12}} \approx 3.4$$

Mixing angle is modified

at $E=1.3~\mathrm{GeV}$ PBD, S. Parke 1902.07185

$$\cos 2\theta_{12} = 0.37 \rightarrow \frac{\cos 2\theta_{12} - c_{13}^2 a / \Delta m_{21}^2}{S_{\odot}} \approx -0.96 < 0$$

➤ So the sign is swapped

 $a \propto \rho E$

$$\sin 2\theta_{12} \cos 2\theta_{12} = 0.37 \rightarrow -0.26$$

Let's start again at

$$\approx -4c_{23}^2 \left(s_{12}^2 c_{12}^2 + s_{23} c_{23} s_{13} \sin 2\theta_{12} \cos 2\theta_{12} \cos \delta \right) \sin^2 \Delta_{21}$$

► Solar splitting modified by

$$\Delta m_{21}^2 \to \Delta m_{21}^2 \mathcal{S}_{\odot}$$

$$\mathcal{S}_{\odot} \approx \sqrt{(\cos 2\theta_{12} - c_{13}^2 a/\Delta m_{21}^2)^2 + \sin^2 2\theta_{12}} \approx 3.4$$

Mixing angle is modified

$$\cos 2\theta_{12} = 0.37 \rightarrow \frac{\cos 2\theta_{12} - c_{13}^2 a / \Delta m_{21}^2}{S_{\odot}} \approx -0.96 < 0$$

► So the sign is swapped

$$a \propto \rho E$$

at E = 1.3 GeV

PBD, S. Parke 1902.07185

$$\sin 2\theta_{12} \cos 2\theta_{12} = 0.37 \rightarrow -0.26$$

Also s_{13} increases in matter $\sim 15\%$: total effect is $0.004\cos\delta$

Let's start again at

$$\approx -4c_{23}^2 \left(s_{12}^2 c_{12}^2 + s_{23} c_{23} s_{13} \sin 2\theta_{12} \cos 2\theta_{12} \cos \delta \right) \sin^2 \Delta_{21}$$

Solar splitting modified by

$$\Delta m_{21}^2 o \Delta m_{21}^2 \mathcal{S}_{\odot} \ \mathcal{S}_{\odot} pprox \sqrt{(\cos 2\theta_{12} - c_{13}^2 a/\Delta m_{21}^2)^2 + \sin^2 2\theta_{12}} pprox 3.4$$

Mixing angle is modified

$$\cos 2\theta_{12} = 0.37 \rightarrow \frac{\cos 2\theta_{12} - c_{13}^2 a / \Delta m_{21}^2}{S_{\odot}} \approx -0.96 < 0$$

► So the sign is swapped

$$a \propto \rho E$$

at E = 1.3 GeV

PBD, S. Parke 1902.07185

$$\sin 2\theta_{12} \cos 2\theta_{12} = 0.37 \rightarrow -0.26$$

- Also s_{13} increases in matter $\sim 15\%$: total effect is $0.004\cos\delta$
- ▶ This gets us **half** of the effect, and the correct sign

▶ $\frac{\Delta m_{\mu\mu}^2 L}{4E}$ in matter at the maximum is $\sim \pi$

H. Nunokawa, S. Parke, R. Funchal hep-ph/0503283 PBD, S. Parke 2401.10326

- ▶ $\frac{\Delta m_{\mu\mu}^2 L}{4E}$ in matter at the maximum is $\sim \pi$
 - H. Nunokawa, S. Parke, R. Funchal hep-ph/0503283 PBD, S. Parke 2401.10326
- ▶ The Δm_{32}^2 component is a bit off π

 $ightharpoonup \frac{\Delta m_{\mu\mu}^2 L}{4E}$ in matter at the maximum is $\sim \pi$

H. Nunokawa, S. Parke, R. Funchal hep-ph/0503283

PBD, S. Parke 2401.10326

- ▶ The Δm_{32}^2 component is a bit off π
- \blacktriangleright Leading order in s_{13} :

$$\approx -4s_{23}^2(c_{12}^2c_{23}^2 - 2s_{13}s_{12}c_{12}s_{23}c_{23}\cos\delta)\sin^2\Delta_{32}$$

$$\approx -2 \quad (0.0094 \quad -0.023\cos\delta)0.1 \quad \text{(matter)}$$

- $ightharpoonup \frac{\Delta m_{\mu\mu}^2 L}{4E}$ in matter at the maximum is $\sim \pi$
 - H. Nunokawa, S. Parke, R. Funchal hep-ph/0503283 PBD, S. Parke 2401.10326
- ▶ The Δm_{32}^2 component is a bit off π
- ightharpoonup Leading order in s_{13} :

$$\approx -4s_{23}^2(c_{12}^2c_{23}^2 - 2s_{13}s_{12}c_{12}s_{23}c_{23}\cos\delta)\sin^2\Delta_{32}$$

$$\approx -2 \quad (0.0094 \quad -0.023\cos\delta)0.1 \quad \text{(matter)}$$

▶ Adds in another $\approx 0.004 \cos \delta$ effect

- $ightharpoonup \frac{\Delta m_{\mu\mu}^2 L}{4E}$ in matter at the maximum is $\sim \pi$
 - H. Nunokawa, S. Parke, R. Funchal hep-ph/0503283 PBD, S. Parke 2401.10326
- ▶ The Δm_{32}^2 component is a bit off π
- \blacktriangleright Leading order in s_{13} :

$$\begin{array}{l} \approx -4s_{23}^2(c_{12}^2c_{23}^2 - 2s_{13}s_{12}c_{12}s_{23}c_{23}\cos\delta)\sin^2\Delta_{32} \\ \approx -2 \quad (0.0094 \quad -0.023\cos\delta)0.1 \quad \text{(matter)} \end{array}$$

- Adds in another $\approx 0.004 \cos \delta$ effect
- ▶ Total is $\approx 0.008 \cos \delta$ which agrees with exact calculation

Numerical Studies

Inputs are *only*:

$ ightharpoonup$ Daya Bay data for θ_{13}	1809.02261
▶ KamLAND data for θ_{12} and Δm_{21}^2	1303.4667
▶ JUNO 6 yrs precision sensitivity on θ_{12} , Δm_{21}^2 , Δm_{31}^2	2204.13249

► DUNE 6.5+6.5 yrs disappearance channels sensitivity only 2103.04797

Also looked at varying JUNO's and DUNE's runtime, and at HK

JUNO and DUNE disappearance Sensitivities

JUNO and HK disappearance Sensitivities

Discussion and Conclusions

- ▶ Disappearance can discover CPV
- ▶ Requires two good measurements: JUNO and DUNE/HK
- ▶ Can rule out some values of δ at $> 3\sigma$
- ► Analyses already exist but...

Discussion and Conclusions

- ▶ Disappearance can discover CPV
- ▶ Requires two good measurements: JUNO and DUNE/HK
- ▶ Can rule out some values of δ at > 3σ
- ► Analyses already exist but...
- ▶ LBL Experiments should break down δ analyses into app vs. dis
- ▶ Since systematics are different, provides a good cross check
- ▶ Subject to BSM degeneracies, as are most other oscillation measurements
- ▶ Works in vacuum or matter; matter slightly minimizes HK's effect

Discussion and Conclusions

- ▶ Disappearance can discover CPV
- ▶ Requires two good measurements: JUNO and DUNE/HK
- ▶ Can rule out some values of δ at > 3σ
- ► Analyses already exist but...
- ▶ LBL Experiments should break down δ analyses into app vs. dis
- ▶ Since systematics are different, provides a good cross check
- ▶ Subject to BSM degeneracies, as are most other oscillation measurements
- ▶ Works in vacuum or matter; matter slightly minimizes HK's effect

HFH! Happy Beer Bike!

Backups

References

SK hep-ex/9807003

M. Gonzalez-Garcia, et al. hep-ph/0009350

M. Maltoni, et al. hep-ph/0207227

SK hep-ex/0501064

SK hep-ex/0604011

T. Schwetz, M. Tortola, J. Valle 0808.2016

M. Gonzalez-Garcia, M. Maltoni, J. Salvado 1001.4524

T2K 1106.2822

D. Forero, M. Tortola, J. Valle 1205.4018

D. Forero, M. Tortola, J. Valle 1405.7540

P. de Salas, et al. 1708.01186

F. Capozzi et al. 2003.08511

Varying Runtime/Power

Improvement requires both experiments!

Complex phase in different parameterizations

- ► Can relate the complex phase in one parameterization to that in another
- $ightharpoonup U_{132}$ and U_{213} similar to U_{123}
- \bullet δ constrained to $\sim [150^{\circ}, 210^{\circ}]$ in $U_{231}, U_{312}, U_{321}$
- ▶ Bands indicate 3σ uncertainty on θ_{12} , θ_{13} , θ_{23}
- ▶ "50% of possible values of δ "
 - ⇒ parameterization dependent

DUNE TDR II 2002.03005

Quark mixing

From the PDG, V_{CKM} in the V_{123} parameterization is

$$\theta_{12} = 13.09^{\circ}$$
 $\theta_{13} = 0.2068^{\circ}$ $\theta_{23} = 2.323^{\circ}$ $\delta_{PDG} = 68.53^{\circ}$

Looks like "large" CPV:

$$\sin \delta_{\rm PDG} = 0.93 \sim 1$$

yet $J_{\text{CKM}}/J_{\text{max}} = 3 \times 10^{-4}$.

Switch to V_{212} parameterization, $\Rightarrow \delta' = 1^{\circ}$ and $\sin \delta' = 0.02$.

Standard oscillation parameters

Can see that the combination doesn't like the NO while it does like the IO IO preferred over NO at $\Delta\chi^2=2.3$

CP violation in oscillations

In vacuum at first maximum:

$$P_{\mu e} - \bar{P}_{\mu e} \approx 8\pi J \frac{\Delta m_{21}^2}{\Delta m_{32}^2}$$

$$J \equiv s_{12}c_{12}s_{13}c_{13}^2s_{23}c_{23}\sin\delta$$

C. Jarlskog PRL 55, 1039 (1985)

- \triangleright Extracting δ from data requires every other oscillation parameter
- ▶ J requires only Δm_{21}^2 (up to matter effects)

Matter effects are easily accounted for

$$\hat{J} \simeq \frac{J}{\sqrt{(c_{212} - c_{13}^2 a/\Delta m_{21}^2)^2 + s_{212}^2} \sqrt{(c_{213} - a/\Delta m_{ee}^2)^2 + s_{213}^2}}$$

PBD, S. Parke 1902.07185

PBD, H. Minakata, S. Parke 1604.08167

Repeated rotations

	U_{121}	U_{131}	U_{212}	U_{232}	U_{313}	U_{323}
$ U_{e2} $	1	1	1	1	X	X
$ U_{e3} $	1	1	X	X	1	1
$ U_{\mu 3} $	✓ ✓ ×	X	1	1	1	/

Note that $e^{i\delta}$ must be on first or third rotation

The importance of $\cos \delta$

- ▶ If only $\sin \delta$ is measured \Rightarrow sign degeneracy: $\cos \delta = \pm \sqrt{1 \sin^2 \delta}$
- ightharpoonup Most flavor models predict $\cos \delta$

— твм — GR2 NEW7 Probability density -0.50.0 0.5 $\cos \delta$

J. Gehrlein, et al. 2203.06219

L. Everett, et al. 1912.10139