Group 6 - Cancer Predictions

Raima Ghosh - Shane Abbley - Janell Napper - Amit Choksi

Which lifestyle choices determine the severity of a cancer diagnosis?

Data and Data Cleaning

- We obtained our lung cancer data from Kaggle.
- Our data contains symptom severity and lifestyle choices ranked from 1 to 8 and cancer severity ranked as either high, moderate, or low.
- We cleaned the data using pandas in a jupyter notebook.
 - We checked for empty data.
 - We dropped all of the symptom columns and converted them to a separate data frame for our visualizations.
 - We converted the cancer severity to a numeric value.

Patient Id	Age	Gender	Air Pollution	Alcohol use	Dust Allergy	OccuPational Hazards	Genetic Risk	chronic Lung Disease	Balanced Diet	Obesity	Smoking	Passive Smoker	Cancer Severity
P1	33	1	2	4	5	4	3	2	2	4	3	2	1
P10	17	1	3	1	5	3	4	2	2	2	2	4	2
P100	35	1	4	5	6	5	5	4	6	7	2	3	3
P1000	37	1	7	7	7	7	6	7	7	7	7	7	3
P101	46	1	6	8	7	7	7	6	7	7	8	7	3
P102	35	1	4	5	6	5	5	4	6	7	2	3	3
P103	52	2	2	4	5	4	3	2	2	4	3	2	1
P104	28	2	3	1	4	3	2	3	4	3	1	4	1

Database Construction and Entity Relationship Diagram

- We wanted a locally hosted database and our dataset is relatively small, so we chose to use a SQLite database.
- A simple way to create a SQLite database is to use the sqlite3 module in python.
- After creating a database, queries can be run with SQL syntax.
- A table was created for both the symptoms and the lifestyle choices.
- A combined table was created using a full outer join of the lifestyle and symptoms tables.

Entity relationship diagram for our database

After looking over this data, we wanted to answer these three questions.

- 1. Which lifestyle choices are most associated with a higher severity of cancer?
- 2. How can we most accurately predict cancer severity using machine learning?
- 3. Which machine learning model predicts the severity of cancer most accurately?

Cancer Severity by Level

Top Three Columns with the Highest usage value (8)


```
284
     187
     161
     140
     108
      60
      30
Name: Passive Smoker, dtype: int64
```

```
60
      59
      10
Name: Smoking, dtype: int64
```

Cancer Severity Per Lifestyle Choice

Pearson Correlation -0.2 Age --0.2 -0.25 -0.23-0.2 -0.19 -0.22-0.21 -0.1 -0.12 -0.21 -0.18 Gender --0.16 -0.25 0.64 0.71 0.63 Air Pollution -Alcohol use -0.230.82 0.88 0.88 0.76 0.65 0.67 0.59 0.72 Dust Allergy --0.2 0.64 0.82 0.84 0.79 0.62 0.65 0.71 OccuPational Hazards --0.19 0.88 0.84 0.89 0.86 0.69 0.56 0.67 0.71 Genetic Risk --0.220.88 0.89 0.84 0.68 0.61 -0.21 0.63 0.62 0.86 0.84 chronic Lung Disease -0.62 0.61 -0.1 0.65 0.65 0.69 0.62 0.71 Balanced Diet 0.68 0.65 -0.12 0.67 0.71 0.49 0.68 0.83 Obesity -0.52 -0.21 0.55 0.58 0.49 0.76 Smoking -0.65 -0.18 0.57 0.68 Passive Smoker - 0.0049 0.64 0.71 0.67 0.61 0.71 0.83 Cancer Severity -0.16 Age Gender Smoking Cancer Severity Air Pollution **Dust Allergy** Genetic Risk Lung Disease **Balanced Diet** Passive Smoker

- 1.00

-0.75

-0.50

- 0.25

-0.00

--0.25

--0.50

--0.75

--1.00

Model Overview

- Model of Choice: Logistic Regression & SVM for the predicting the severity of cancer as low, medium, or high
- We can compare the various results from running these algorithms
- Ran the model with different solvers, and different values of iterations.
- Logistic regression: This algorithm is used for classification problems in machine learning.
- Support vector machine: This algorithm separates the data points using a line, this line is chosen such that it will be furthermost from the nearest data points in 2 categories.

Logistic Regression

It is a classification model which is used to predict the odds in favour of a particular event. The odds ratio represents the positive event which we want to predict, for example, how likely a sample has cancer/ how likely is it for an individual to become diabetic in future. It used the sigmoid function to convert an input value between 0 and 1. It can further be extended to multiple logistic regression.

Logistic Regression tries to maximize the conditional likelihood of the training data, it is highly prone to outliers. Standardization (as co-linearity checks) is also fundamental to make sure a features' weights do not dominate over the others.

Source:

https://www.geeksforgeeks.org/differentiate-between-support-vector-machine-and-logistic-regression/

SVM

A powerful classification algorithm for predicting classification problems. To maximize the margin among class variables. This margin (support vector) represents the distance between the separating hyperplanes (decision boundary). The reason to have decision boundaries with large margin is to separate positive and negative hyperplanes with adjustable bias-variance proportion.

Source:

https://www.geeksforgeeks.org/differentiate-between-support-vector-machine-and-logistic-regression/

Comparison Pros/Cons of using various models

Benefits of Logistic regression

- 1. Solving classification problem
- 2. Works with already identified independent variable

Cons

- 1. Vulnerable to overfitting
- 2. Can miss outliers / lower sensitivity for large unbalanced data sets

SVM

- 1. Tries to find the best margin that separates the classes that reduces the risk of error on the data
- 2. Risk of overfitting is less.
- 3. Gave us the best prediction for the model under study.

Logistic Regression (liblinear)

Logistic Regression Solver(liblinear)

	Predicted Low	Predicted Medium	Predicted High
Actual Low	69	26	0
Actual Medium	21	81	8
Actual High	0	0	95

Accuracy Score: 0.816666666666667

support	f1-score	recall	precision	
95 110 95	0.75 0.75 0.96	0.73 0.74 1.00	0.77 0.76 0.92	1 2 3
300 300 300	0.82 0.82 0.81	0.82 0.82	0.82 0.81	accuracy macro avg weighted avg

Logistic Regression libfgs

Logistic Regression Solver(libfgs)

	Predicted Low	Predicted Medium	Predicted High
Actual Low	77	18	0
Actual Medium	18	88	4
Actual High	0	0	95

Accuracy Score: 0.866666666666667

	precision	recall	f1-score	support
1 2 3	0.81 0.83 0.96	0.81 0.80 1.00	0.81 0.81 0.98	95 110 95
accuracy macro avg weighted avg	0.87 0.86	0.87 0.87	0.87 0.87 0.87	300 300 300

Logistic Regression newton-cg

Logistic Regression Solver(newton-cg)

	Predicted Low	Predicted Medium	Predicted High
Actual Low	77	18	0
Actual Medium	18	88	4
Actual High	0	0	95

Accuracy Score: 0.866666666666667

	precision	recall	f1-score	support
1 2 3	0.81 0.83 0.96	0.81 0.80 1.00	0.81 0.81 0.98	95 110 95
accuracy macro avg weighted avg	0.87 0.86	0.87 0.87	0.87 0.87 0.87	300 300 300

Logistic Regression sag

Logistic Regression Solver(sag)

	Predicted Low	Predicted Medium	Predicted High
Actual Low	72	23	0
Actual Medium	18	88	4
Actual High	0	0	95

Accuracy Score: 0.85

	precision	recall	f1-score	support
1 2 3	0.80 0.79 0.96	0.76 0.80 1.00	0.78 0.80 0.98	95 110 95
accuracy macro avg weighted avg	0.85 0.85	0.85 0.85	0.85 0.85 0.85	300 300 300

Logistic Regression saga

Logistic Regression Solver(saga)

	Predicted Low	Predicted Medium	Predicted High
Actual Low	72	23	- (
Actual Medium	18	84	8
Actual High	0	0	95

Accuracy Score: 0.836666666666667

	precision	recall	f1-score	support
1 2 3	0.80 0.79 0.92	0.76 0.76 1.00	0.78 0.77 0.96	95 110 95
accuracy macro avg weighted avg	0.84 0.83	0.84 0.84	0.84 0.84 0.83	300 300 300

SVG Algorithm (Best prediction)

SVG

	Predicted Low	Predicted Medium	Predicted High
Actual Low	76	19	0
Actual Medium	18	92	0
Actual High	0	0	95

Accuracy Score: 0.876666666666667

	precision	recall	f1-score	support	
1 2 3	0.81 0.83 1.00	0.80 0.84 1.00	0.80 0.83 1.00	95 110 95	
accuracy macro avg weighted avg	0.88 0.88	0.88 0.88	0.88 0.88 0.88	300 300 300	

Early View of the Dashboard

- Coded using d3.json with Bootstrap components
- Csv files will be cleaned using pandas and converted to json
- Will also display features that come out of ML model and preliminary data graphs
- Interactive input connected to Symptom info and bar graph

Cancer Patient Data Matrix

Use the interactive charts below to explore the dataset

Classify lifestyle scores at different cancer severity

Final View

Cancer Patient Data Board Interactive option to Use the interactive charts below to explore the information input patient ID **Lifestyle Choices Scored** Cancer Severity Patient_ld: P103 Chest Pain: 2 Coughing of Blood Weight Loss: 4 Shortness of Breath -Wheezing: 2 Swallowing Difficulty: Frequent Cold : 2 Dry Cough: 3 Snoring: 4

When selected, displays:

- Symptoms scores
- Lifestyle scores bar graph
- Cancer severity gauge

Classifies 3
hypothesized lifestyle
habits by different
cancer severity

Initial Data Visualization

Grouping by Cancer Severity

We speculated that higher scores on bad lifestyle choices such as alcohol use, smoking, or even being exposed to secondhand smoking smoke (passive smoking) can lead to higher cancer severity. We focused on those 3 features and first grouped them by cancer severity. Then using stacked bar graphs we displayed level of alcohol use, smoking, or passive smoking (scored 1-8) in each level of cancer severity.

Most of the severe alcohol users (scored 7-8) are at the highest cancer severity level, while mild users (scored 1-2) are at the lowest severity level.

Cancer severity level one and two seemed to have very similar looking distribution for patient smoking scores.

Majority of the passive smokers who were at the highest cancer severity also scored the highest on the passive smoking score (scored 7-8).

Current View of the Dashboard

Initial Data Visualization

- Coded using d3.json with CSS styling and Bootstrap components
- Dashboard uses **HTML**

Final View

Bubble chart displays the **feature importance**

Confusion matrices from the 6 ML models displayed as table

Outcomes from Machine Learning Model

Feature Importance Outcomes from the Machine Learning Models

We ran multiple machine learning models on our dataset. As summarized in the bubble chart (above), we see that "Occupational Hazard" is a highly ranked feature, followed by "Air Pollution", "Smoking", and "Genetic Risk". Out of all the features we hypothesized previously would be top ranked, the machine learning models only highlighted "Smoking".

Confusion Matrices Generated from the Machine Learning Models

LR- liblinear	Predicted Low	Predicted Medium	Predicted High	LR-lbfgs	Predicted Low	Predicted Medium	Predicted High
Actual Low	69	26	0	Actual Low	77	18	o
Actual Medium	21	81	8	Actual Medium	18	88	4
Actual High	o	o	95	Actual High	o	o	95
Newton- cg	Predicted Low	Predicted Medium	Predicted High	LR-sag	Predicted Low	Predicted Medium	Predicted High
Actual Low	77	18	0	Actual Low	72	23	o
Actual Medium	18	88	4	Actual Medium	18	88	4
Actual High	o	o	95	Actual High	o	o	95
LR-saga	Predicted Low	Predicted Medium	Predicted High	SVC- linear	Predicted Low	Predicted Medium	Predicted High
Actual Low	72	23	0	Actual Low	76	19	0
Actual Medium	18	84	8	Actual Medium	18	92	o
Actual High	0	o	95	Actual High	0	o	95

The table above displays the confusion matrix for all the machine learning models that were run over the course of our analysis. From the outcomes above we see that SVC model has the best results to predict the highest cancer severity.

Pro

Final View- Demo

After our experiment, we answered all three of these questions.

- 1. Which lifestyle choices are most associated with a higher severity of cancer?

 Our model predicted occupational hazards, air pollution, and smoking as the three most relevant lifestyle factors.
- 2. How can we most accurately predict cancer severity using machine learning?

 We can try to run the algorithm again without some of the features that had a minimal impact on this models predictions.
- 3. Which machine learning model predicts the severity of cancer most accurately? We found that support vector machine (SVM) gave us the most accurate results.

Questions?