Machine Learning Technique Homework 2

1

$$F(A, B) = \frac{1}{N} \sum_{n=1}^{N} \ln(1 + \exp(-y_n(Az_n + B)))$$

$$\nabla F(A, B) = \frac{1}{N} \sum_{n=1}^{N} \frac{1}{1 + \exp(-y_n(Az_n + B))} \nabla \exp(-y_n(Az_n + B))$$

$$= \frac{1}{N} \sum_{n=1}^{N} \frac{\exp(-y_n(Az_n + B))}{1 + \exp(-y_n(Az_n + B))} \nabla (-y_n(Az_n + B))$$

$$= \frac{1}{N} \sum_{n=1}^{N} p_n \begin{bmatrix} -y_n z_n \\ -y_n \end{bmatrix}$$

2

Let
$$s = -y_n(Az_n + B)$$

$$\begin{split} &\frac{\partial}{\partial A} \nabla F(A, B) \\ &= \frac{1}{N} \sum_{n=1}^{N} \frac{\partial \theta(s)}{\partial s} \frac{\partial s}{\partial A} \begin{bmatrix} -y_n z_n \\ -y_n \end{bmatrix} \\ &= \frac{1}{N} \sum_{n=1}^{N} \frac{\exp(s)}{(1 + \exp(s))^2} (-y_n z_n) \begin{bmatrix} -y_n z_n \\ -y_n \end{bmatrix} \\ &= \frac{1}{N} \sum_{n=1}^{N} \frac{1}{2} (\frac{1 + 2 \exp(s) + \exp(s)^2}{(1 + \exp(s))^2} - \frac{1 + \exp(s)^2}{(1 + \exp(s))^2}) (-y_n z_n) \begin{bmatrix} -y_n z_n \\ -y_n \end{bmatrix} \\ &= \frac{1}{N} \sum_{n=1}^{N} \frac{1}{2} (1 - (1 - p_n)^2 - p_n^2) (-y_n z_n) \begin{bmatrix} -y_n z_n \\ -y_n \end{bmatrix} \end{split}$$

Similarily

$$\frac{\partial}{\partial B} \nabla F(A, B)$$

$$= \frac{1}{N} \sum_{n=1}^{N} \frac{\partial \theta(s)}{\partial s} \frac{\partial s}{\partial B} \begin{bmatrix} -y_n z_n \\ -y_n \end{bmatrix}$$

$$= \frac{1}{N} \sum_{n=1}^{N} \frac{\exp(s)}{(1 + \exp(s))^2} (-y_n) \begin{bmatrix} -y_n z_n \\ -y_n \end{bmatrix}$$

$$= \frac{1}{N} \sum_{n=1}^{N} \frac{1}{2} (1 - (1 - p_n)^2 - p_n^2) (-y_n) \begin{bmatrix} -y_n z_n \\ -y_n \end{bmatrix}$$

Combine the results above:

$$H(F) = \frac{1}{N} \sum_{n=1}^{N} \frac{1}{2} (1 - (1 - p_n)^2 - p_n^2) y_n^2 \begin{bmatrix} z_n^2 & z_n \\ z_n & 1 \end{bmatrix}$$

3

$$\lim_{\gamma \to \infty} \exp(-\gamma \|x - x'\|^2) = 0$$

Thus the kernel matrix is an $N \times N$ all 0 matrix, where N is the number of data.

Then the optimal β

$$\beta = (\lambda I + K)^{-1} y$$
$$= \frac{1}{\lambda} I y$$

4

$$\lim_{\gamma \to 0} \exp(-\gamma \|x - x'\|^2) = 1$$

Thus the kernel matrix is an $N \times N$ all 1 matrxi, where N is the number of data.

Then the optimal β

$$\beta = (\lambda I + K)^{-1} y$$

Let $A = (\lambda I + K)^{-1}$ (A must exist since K is s.p.d.), then

$$A_{i,j} = \begin{cases} -\frac{1}{\lambda(\lambda+N)} + \frac{1}{\lambda} & i = j\\ -\frac{1}{\lambda(\lambda+N)} & i \neq j \end{cases}$$

Bellow is the proof. Let $B = A(\lambda I + K) = \lambda A + AK$ and A_i, K_j denote the *i*-th row of matrix A, K respectively.

$$B_{ij} = \lambda A_{ij} + A_i K_j^T$$

$$= \lambda A_{ij} + \sum_{j=1}^N A_{ij}$$

$$= \lambda A_{ij} - N \frac{1}{\lambda(\lambda + N)} + \frac{1}{\lambda}$$

$$= \lambda A_{ij} + \frac{-N + \lambda + N}{\lambda(\lambda + N)}$$

$$= \lambda A_{ij} + \frac{\lambda}{\lambda(\lambda + N)}$$

since K is an all 1 matrix.

If i = j,

$$\lambda A_{ij} + \frac{\lambda N + \lambda}{\lambda(\lambda + N)}$$

$$= -\frac{\lambda}{\lambda(\lambda + N)} + 1 + \frac{\lambda}{\lambda(\lambda + N)}$$

$$= 1$$

If $i \neq j$,

$$\lambda A_{ij} + \frac{\lambda N + \lambda}{\lambda(\lambda + N)}$$

$$= -\frac{\lambda}{\lambda(\lambda + N)} + \frac{\lambda}{\lambda(\lambda + N)}$$

$$= 0$$

Thus B = I, and therefore $A = (\lambda I + K)^{-1}$, where

$$A_{i,j} = \begin{cases} -\frac{1}{\lambda(\lambda+N)} + \frac{1}{\lambda} & i = j\\ -\frac{1}{\lambda(\lambda+N)} & i \neq j \end{cases}$$

So optimal β

$$\beta = (\lambda I + K)^{-1} y$$

$$= -\frac{1}{\lambda(\lambda + N)} \sum_{i=1}^{N} y_i \cdot e + \frac{1}{\lambda} y$$

where e is an all 1 vector.

Consider the optimal $b, w, \xi^{\vee}, \xi^{\wedge}$ of original P_2 :

When $\max(0, |y_n - w^T \phi(x_n) - b| - \epsilon) = 0$

$$\implies |y_n - w^T \phi(x_n) - b| \le \epsilon$$

$$\implies -\epsilon - \xi_n^{\vee} \le y_n - w^T \phi(x_n) - b \le \epsilon + \xi_n^{\wedge}$$

for any $\xi^{\vee}, \xi^{\wedge} \geq 0$.

Thus to minimize $(\xi_n^{\wedge})^2 + (\xi_n^{\vee})^2$, the optimal $\xi_n^{\vee}, \xi_n^{\wedge} = 0$, so

$$(\xi_n^{\wedge})^2 + (\xi_n^{\vee})^2 = 0 = (\max(0, |y_n - w^T \phi(x_n) - b| - \epsilon))^2$$

· When $\max(0, |y_n - w^T \phi(x_n) - b| - \epsilon) = |y_n - w^T \phi(x_n) - b| - \epsilon$, If $y_n - w^T \phi(x_n) - b \le 0$,

$$-\epsilon - \xi_n^{\vee} \le y_n - w^T \phi(x_n) - b \le \epsilon + \xi_n^{\wedge}$$

for all $\xi_n^{\vee} \geq |y_n - w^T \phi(x_n) - b| - \epsilon, \xi_n^{\wedge} \geq 0$.

Thus to minimize $(\xi_n^{\wedge})^2 + (\xi_n^{\vee})^2$, the optimal $\xi_n^{\vee} = |y_n - w^T \phi(x_n) - b| - \epsilon$, $\xi_n^{\wedge} = 0$, so

$$(\xi_n^{\wedge})^2 + (\xi_n^{\vee})^2 = (|y_n - w^T \phi(x_n) - b| - \epsilon)^2 = (\max(0, |y_n - w^T \phi(x_n) - b| - \epsilon))^2$$

Similarly, if $y_n - w^T \phi(x_n) - b \ge 0$, the optimal $\xi^{\vee} = 0$, $\xi^{\wedge} = |u| - w^T \phi(x_n) - b|$

the optimal
$$\xi_n^{\vee} = 0$$
, $\xi_n^{\wedge} = |y_n - w^T \phi(x_n) - b| - \epsilon$, so

$$(\xi_n^{\wedge})^2 + (\xi_n^{\vee})^2 = (|y_n - w^T \phi(x_n) - b| - \epsilon)^2 = (\max(0, |y_n - w^T \phi(x_n) - b| - \epsilon))^2$$

Therefore, P_2 is equivalent to

$$\min_{b,w} \frac{1}{2} w^T w + C \sum_{i=1}^{N} (\max(0, |y_n - w^T \phi(x_n) - b| - \epsilon))^2$$

Substitute w with $\sum_{n=1}^{N} \beta_n z_n$, then

$$\min_{b,w} \frac{1}{2} w^T w + C \sum_{n=1}^{N} (\max(0, |y_n - w^T \phi(x_n) - b| - \epsilon))^2$$

$$= \min_{b,w} \frac{1}{2} \sum_{m=1}^{N} \sum_{n=1}^{N} \beta_n \beta_m K(x_n, x_m) + C \sum_{n=1}^{N} (\max(0, |y_n - (\sum_{m=1}^{N} \beta_m)^T \phi(x_n) - b| - \epsilon))^2$$

Then

$$\frac{\partial F(b,\beta)}{\partial \beta_m}$$

$$= \frac{1}{2} \left(\sum_{i=1,i\neq m}^{N} \beta_i K(x_i,x_m) + \sum_{j=1,j\neq m}^{N} \beta_j K(x_m,x_j) + 2\beta_m K(x_m,x_m) \right) +$$

$$C \sum_{i=1}^{N} \begin{cases} 0 & |y_n - (\sum_{m=1}^{N} \beta_m)^T \phi(x_n) - b| - \epsilon < 0 \\ 2(|y_n - (\sum_{m=1}^{N} \beta_m)^T \phi(x_n) - b| - \epsilon) g_n \beta_m \phi(x_n) & \text{otherwise} \end{cases}$$

$$= \sum_{i=1}^{N} \beta_i K(x_i,x_m) +$$

$$C \sum_{i=1}^{N} \begin{cases} 0 & |y_n - (\sum_{m=1}^{N} \beta_m)^T \phi(x_n) - b| - \epsilon < 0 \\ 2(|y_n - (\sum_{m=1}^{N} \beta_m)^T \phi(x_n) - b| - \epsilon) g_n \beta_m \phi(x_n) & \text{otherwise} \end{cases}$$

where $g_n = \operatorname{sgn}(y_n - (\sum_{m=1}^N \beta_m)^T phi(x_n) - b)$.

7

Let the two example generated at time t be $(p_t, p_t^2), (q_t, q_t^2)$. Then the learned model will be

$$g_t(x) = \frac{q_t^2 - p_t^2}{q_t - p_t} x - \frac{q_t^2 - p_t^2}{q_t - p_t} q_t + q_t^2$$
$$= (q_t + p_t)x - p_t q_t$$

$$\bar{g}(x)$$

$$= \lim_{T \to \infty} \frac{1}{T} \sum_{t=1}^{T} g_t(x)$$

$$= E(q+p)x - E(pq)$$

where

$$E(p) = E(q) = \int_0^1 p dp$$
$$= \frac{1}{2}$$

$$E(pq) = \int_0^1 \int_0^1 pq dp dq$$
$$= \frac{1}{4}$$

Thus,

$$\bar{g}(x)$$

$$=E(q+p)x - E(pq)$$

$$=x - \frac{1}{4}$$

8

We can get those \tilde{y}_n one by one.

First, query RMSE with a randomly generated hypothesis h_0 .

Then generate another hypothesis h_1 such that $h_0(\tilde{x}_1) \neq h_1(\tilde{x}_1)$ and $h_0(\tilde{x}_i) = h_1(\tilde{x}_i)$ for $i = 2, 3, \dots, \tilde{N}$. So by querying twice RMSE, we can solve \tilde{y}_1 from

$$\begin{cases} \text{RMSE}(h_1)^2 = \frac{1}{\tilde{N}}(\tilde{y}_1 - h_0(\tilde{x}_1))^2 + \sum_{n=1}^{\tilde{N}}(\tilde{y}_n - h_0(\tilde{x}_n))^2 \\ \text{RMSE}(h_2)^2 = \frac{1}{\tilde{N}}(\tilde{y}_2 - h_1(\tilde{x}_1))^2 + \sum_{n=1}^{\tilde{N}}(\tilde{y}_n - h_0(\tilde{x}_n))^2 \end{cases}$$

Similarly, we can generate $h_k(x_k) \neq h_0(x_k)$ and $h_0(\tilde{x}_i) = h_1(\tilde{x}_i)$ for $i=1,\cdots k-1, k+1,\cdots \tilde{N}$ and solve \tilde{y}_k iteratively for k=2 to $k=\tilde{N}-1$ with one query to RMSE from

$$\begin{cases} \text{RMSE}(h_0)^2 = \sum_{n=1}^{k-1} \frac{1}{\tilde{N}} (\tilde{y}_n - h_0(\tilde{x}_n))^2 + \frac{1}{\tilde{N}} (\tilde{y}_k - h_0(\tilde{x}_k))^2 + \sum_{n=k+1}^{\tilde{N}} (\tilde{y}_n - h_1(\tilde{x}_n))^2 \\ \text{RMSE}(h_k)^2 = \sum_{n=1}^{k-1} \frac{1}{\tilde{N}} (\tilde{y}_n - h_0(\tilde{x}_1))^2 + \frac{1}{\tilde{N}} (\tilde{y}_k - h_k(\tilde{x}_k))^2 + \sum_{n=k+1}^{\tilde{N}} (\tilde{y}_n - h_1(\tilde{x}_n))^2 \end{cases}$$

To solve $\tilde{y}_{\tilde{N}}$, since we have known \tilde{y}_k for $k=1,2,3,\cdots,k-1$ and known RMSE (h_0) , thus no additional query is required. Therefore, totally \tilde{N} queries are required.

$$RMSE(h) = \sqrt{\frac{1}{N} \sum_{n=1}^{\tilde{n}} (\tilde{y}_n - h(\tilde{x}_n))^2}$$

$$= \sqrt{\frac{1}{N} \sum_{n=1}^{\tilde{n}} \tilde{y}_n^2 - 2\tilde{y}_n h(\tilde{x}_n) + (h(\tilde{x}_n))^2}$$

$$= \sqrt{\frac{1}{N} \sum_{n=1}^{\tilde{n}} \tilde{y}_n^2 + \frac{1}{N} \sum_{n=1}^{\tilde{n}} (h(\tilde{x}_n))^2 - \frac{2}{N} \sum_{n=1}^{\tilde{n}} \tilde{y}_n h(\tilde{x}_n)}$$

$$= \sqrt{\frac{1}{N} \sum_{n=1}^{\tilde{n}} \tilde{y}_n^2 + \frac{1}{N} \sum_{n=1}^{\tilde{n}} (h(\tilde{x}_n))^2 - \frac{2}{N} g^T \tilde{y}}$$

Since $\frac{1}{N}\sum_{n=1}^{\tilde{n}}(h(\tilde{x}_n))^2$ can be compute without knowing \tilde{y} , we can solve $g^T\tilde{y}$ from

$$\begin{cases} \text{RMSE}(h)^2 = \frac{1}{N} \sum_{n=1}^{\tilde{n}} \tilde{y}_n^2 + \frac{1}{N} \sum_{n=1}^{\tilde{n}} (h(\tilde{x}_n))^2 - \frac{2}{N} g^T \tilde{y} \\ \text{RMSE}(-h)^2 = \frac{1}{N} \sum_{n=1}^{\tilde{n}} \tilde{y}_n^2 + \frac{1}{N} \sum_{n=1}^{\tilde{n}} (h(\tilde{x}_n))^2 + \frac{2}{N} g^T \tilde{y} \end{cases}$$

Therefore, only 2 queries are required.

10

$$\frac{\partial}{\partial \alpha} \tilde{N} RMSE^{2}(\sum_{k=1}^{K} \alpha_{k} g_{k})$$

$$= \frac{\partial}{\partial \alpha} \sum_{n=1}^{\tilde{N}} (\tilde{y}_{n} - \sum_{k=1}^{K} \alpha_{k} g_{k}(\tilde{x}_{n}))^{2}$$

$$= \frac{\partial}{\partial \alpha} (\tilde{y} - g(\tilde{x})\alpha)^{T} (\tilde{y} - g(\tilde{x})\alpha)$$

$$= 2g(\tilde{x})^{T} (g(\tilde{x})\alpha - \tilde{y}) = 0$$

where $g(\tilde{x})$ is a $\tilde{N} \times K$ matrix and $g(\tilde{x})_{i,j} = g_j(\tilde{x}_i)$. Then the optimal α is

$$(g(\tilde{x})^T g(\tilde{x}))^{-1} g(\tilde{x})^T \tilde{y}$$

Since we know all \tilde{x} , thus $(g(\tilde{x})^Tg(\tilde{x}))^{-1}g(\tilde{x})^T$ can be calculated locally. And

$$g(\tilde{x})^T \tilde{y} = \begin{bmatrix} g_1^T \tilde{y} \\ g_2^T \tilde{y} \\ \vdots \\ g_{\tilde{K}}^T \tilde{y} \end{bmatrix}$$

Each component can be calculated with two queries. Therefore, $2\tilde{K}$ queries are required.

Following combinations result in minimal $E_{in} = 0$, ($\gamma = 32, \lambda = 0.001$): ($\gamma = 32, \lambda = 1$), ($\gamma = 32, \lambda = 1000$), ($\gamma = 2, \lambda = 0.001$), ($\gamma = 2, \lambda = 1$), ($\gamma = 2, \lambda = 1000$), ($\gamma = 0.125, \lambda = 0.001$).

12

The minimum $E_{out}(g) = 0.39$ and the combination is $(\gamma = 0.125, \lambda = 1000)$,

13

The minumum $E_{in} = 0$, and the combinations are $(\gamma = 32, C = 1)$, $(\gamma = 32, C = 1000)$, $(\gamma = 2, C = 1)$, $(\gamma = 0.125, C = 1000)$.

14

The minumum $E_{out} = 0.42$, and the combinations is $(\gamma = 0.125, C = 1)$.

15

The minumum $E_{in} = 0.3125$, and the combinations is $\lambda = 100$. ($x_0 = 1$ is added.)

16

The minumum $E_{out}=0.36$, and the combinations is $\lambda=0.01,\lambda=0.1$. ($x_0=1$ is added.)

17

Let

$$z_n = \begin{bmatrix} g_1(x_n) \\ g_2(x_n) \\ \vdots \\ g_T(x_n) \end{bmatrix}$$

Then

$$\min_{\alpha_t} \frac{1}{N} \sum_{n=1}^{N} \max(1 - y_n \sum_{t=1}^{T} \alpha_t g_t(x_n), 0)$$

can be rewritten as

$$\min_{\alpha_t} \frac{1}{N} \sum_{n=1}^{N} \max(1 - y_n w^T z_n, 0)$$

where $w_n = \alpha_n$, for $n = 1, 2, \dots, N$. Also,

$$\min_{w} \sum_{n=1}^{N} \max(1 - y_n \sum_{t=1}^{T} \alpha_t g_t(x_n), 0)$$

is equivalent to

$$\min_{\xi, w} \sum_{n=1}^{N} \xi_n$$
 subject to $y_n(w^T x_n) \ge 1 - \xi_n$

Since when $1 - y_n \sum_{t=1}^{T} \alpha_t g_t(x_n) \geq 0$,

$$\max(1 - y_n \sum_{t=1}^{T} \alpha_t g_t(x_n), 0)$$

$$= 1 - y_n \sum_{t=1}^{T} \alpha_t g_t(x_n)$$

$$= \min_{\xi_n} \xi_n$$
subject to $y_n(w^T x_n) \ge 1 - \xi_n, \xi_n > 0$

and when $1 - y_n \sum_{t=1}^{T} \alpha_t g_t(x_n) > 0$,

$$\max(1 - y_n \sum_{t=1}^{T} \alpha_t g_t(x_n), 0)$$

$$=0$$

$$= \min_{\xi_n} \xi_n$$
subject to $y_n(w^T x_n) \ge 1 - \xi_n, \xi_n > 0$

As C is much greater than $\frac{1}{2}$,

$$\min_{\xi, w} \frac{1}{2} w^T w + C \sum_{n=1}^{N} \xi_n \approx \min_{\xi, w} C \sum_{n=1}^{N} \xi_n$$

Therefore, we can approximate those optimal α by solving optimal w with respect to those z with LIBSVM.

18

Following the previous question, before we feed data into LIBSVM, we can append some artificial $z_{N+1}, z_{N+2}, \dots, z_{N+T}$ after the original z_1, z_2, \dots, z_N , where the k-th component of z_{N+i} is

$$z_{N+i,k} = \begin{cases} 0 & i \neq k \\ 1 & i = k \end{cases}$$

and $y_{N+1} = y_{N+2} = \dots = y_{N+T} = 1$. So we have

$$y_{N+i}(w^T z_{N+i}) = w_i \ge 1 - \xi_{N+i}$$

for $i=1,2,\cdots,T$, which gives penalty when $w_i<1$.