数学家 www.mathor.com

2014年全国大学生数学竞赛预赛试题参考答案

一 填空题(共有5小题, 每小题6分,共30分)

(1) 已知 $y_1 = e^x$ 和 $y_2 = xe^x$ 是齐次二阶常系数线性微分方程的解,则该方程是______

答案:
$$y''(x) - 2y'(x) + y(x) = 0$$

[参考解答] 由题设知该方程的特征方程有二重根r=1,故所求微分方程是y''(x)-2y'(x)+y(x)=0.

(2) 设有曲面 $S: z = x^2 + 2y^2$ 和平面 L: 2x + 2y + z = 0,则与 L 平行的 S 的切平面方程是

答案:
$$2x+2y+z+\frac{3}{2}=0$$

[参考解答] 设 $P_0(x_0, y_0, z_0)$ 为S上一点,则S在 P_0 的切平面方程是

$$-2x_0(x-x_0)-4y_0(y-y_0)+(z-z_0)=0.$$

由于该切平面与已知平面 L 平行,则 $(-2x_0, -4y_0, 1)$ 平行于 (2, 2, 1),故存在常数 $k \neq 0$ 使得 $(-2x_0, -4y_0, 1) = k(2, 2, 1)$,从而 k = 1.故得 $x_0 = -1$, $y_0 = \frac{-1}{2}$,这样就有 $z_0 = \frac{3}{2}$.所求切面方程是 $2x + 2y + z + \frac{3}{2} = 0$.

(3) 设函数
$$y = y(x)$$
 由方程 $x = \int_{1}^{y-x} \sin^2\left(\frac{\pi t}{4}\right) dt$ 所确定,求 $\frac{dy}{dx}\Big|_{x=0} =$ _______.

答案: y'=3

[参考解答] 易知在 y(0) = 1. 对方程的两边关于 x 求导,得 $1 = \sin^2\left(\frac{\pi}{4}(y-x)\right)(y'-1)$,于是

$$y' = \csc^2\left(\frac{\pi}{4}(y-x)\right) + 1$$
, 把 $x = 0$ 代入上式, 得 $y' = 3$.

答案: 1

[参考解答]
$$x_n = \sum_{k=1}^n \frac{k}{(k+1)!} = \sum_{k=1}^n \left(\frac{1}{k!} - \frac{1}{(k+1)!} \right)$$

$$= \left(1 - \frac{1}{2!} \right) + \left(\frac{1}{2!} - \frac{1}{3!} \right) + \left(\frac{1}{3!} - \frac{1}{4!} \right) + L + \left(\frac{1}{n!} - \frac{1}{(n+1)!} \right) = 1 - \frac{1}{(n+1)!} \to 1.$$

数学家 www.mathor.com

(5)
$$\exists \exists \lim_{x \to 0} \left(1 + x + \frac{f(x)}{x} \right)^{\frac{1}{x}} = e^3 \quad \exists \lim_{x \to 0} \frac{f(x)}{x^2} = \underline{\qquad}$$

答案: 2

[参考解答] 由
$$\lim_{x\to 0} \left(1+x+\frac{f(x)}{x}\right)^{\frac{1}{x}} = e^3$$
 知 $\lim_{x\to 0} \frac{1}{x} \ln(1+x+\frac{f(x)}{x}) = 3$,于是有 $\frac{1}{x} \ln(1+x+\frac{f(x)}{x}) = 3+\alpha$,

其中 $\alpha \to 0(x \to 0)$, 即有 $\frac{f(x)}{x^2} = \frac{e^{3x + \alpha x} - 1}{x} - 1$, 从而

$$\lim_{x \to 0} \frac{f(x)}{x^2} = \lim_{x \to 0} \frac{e^{3x + \alpha x} - 1}{x} - 1 = \lim_{x \to 0} \frac{3x + \alpha x}{x} - 1 = 2.$$

二 (本题满分 12 分) 设 n 为正整数, 计算 $I = \int_{e^{-2n\pi}}^{1} \left| \frac{d}{dx} \cos \left(\ln \frac{1}{x} \right) dx \right|$

[参考解答与评分标准]

$$I = \int_{e^{-2n\pi}}^{1} \left| \frac{d}{dx} \cos\left(\ln \frac{1}{x}\right) dx \right| = \int_{e^{-2n\pi}}^{1} \left| \frac{d}{dx} \cos\left(\ln x\right) \right| dx = \int_{e^{-2n\pi}}^{1} \left| \sin\ln x \right| \frac{1}{x} dx. \quad (6 \%)$$

令 $\ln x = u$,则有 $I = \int_{-2\pi}^{0} \left| \sin u \right| du = \int_{0}^{2n\pi} \left| \sin t \right| dt = 4n \int_{0}^{\pi/2} \left| \sin t \right| dt = 4n$. (12 分) 三 (本题满分 14 分) 设函数 f(x) 在[0,1]上有二阶导数,且有正常数 A, B 使得 $|f(x)| \le A$, $|f''(x)| \le B$. 证明:对任意 $x \in [0,1]$,有 $|f'(x)| \le 2A + \frac{B}{2}$.

[参考解答与评分标准] 由泰勒公式,有

$$f(0) = f(x) + f'(x)(0-x) + \frac{1}{2}f''(\xi)(0-x)^2, \xi \in (0,x),$$

$$f(1) = f(x) + f'(x)(1-x) + \frac{1}{2}f''(\eta)(1-x)^2, \eta \in (x,1),$$
 (5 分)

上述两式相减,得到 $f(0) - f(1) = -f'(x) - \frac{1}{2}f''(\eta)(1-x)^2 + \frac{1}{2}f''(\xi)x^2$,于是

$$f'(x) = f(1) - f(0) - \frac{1}{2} f''(\eta) (1 - x)^2 + \frac{1}{2} f''(\xi) x^2.$$
 (8 \(\frac{\psi}{2}\))

由条件 $|f(x)| \le A$, $|f''(x)| \le B$, 得到

$$|f'(x)| \le 2A + \frac{B}{2} ((1-x)^2 + x^2).$$
 (11 分)

因 $x^2 + (1-x)^2 = 2x^2 - 2x + 1$ 在 [0,1] 的最大值为 1, 故

$$|f'(x)| \le 2A + \frac{B}{2}. \tag{14分}$$

四 (本题满分 14 分) **(1)**设一球缺高为h,所在球半径为R.证明该球缺的体积为 $\frac{\pi}{3}(3R-h)h^2$,球冠的面积为 $2\pi Rh$.

数学家 www.mathor.com

$$\frac{f(1-\epsilon)}{f(c)} < 1, 于是 \lim_{n \to \infty} \left(\frac{f(1-\epsilon)}{f(c)} \right)^n = 0, \quad \text{所以 } \exists N, \forall n > N \text{ 时有}$$

$$\left(\frac{f(1-\epsilon)}{f(c)} \right)^n < \frac{\epsilon}{2} = 1 - c. \tag{8 分}$$

即 $f^n(1-\varepsilon) < f^n(c)(1-c) \le \int_c^1 f^n(x) dx \le \int_0^1 f^n(x) dx = f^n(x_n)$,从而 $1-\varepsilon < x_n$. 由 ε 的任意性得 $\lim x_n = 1.$ (10 分)

再考虑一般情形. 令 F(t)=f(a+t(b-a)),由 f 在 [a,b] 上非负连续,严格单增知 F 在 [0,1] 上非负连续,严格单增. 从而 $\exists t_n \in [0,1]$,使得 $F^n(t_n)=\int_0^1 F^n(t)dt$,且 $\lim_{n\to\infty}t_n=1$,即

$$f^{n}(a+t_{n}(b-a)) = \int_{0}^{1} f^{n}(a+t(b-a))dt.$$

记 $x_n = a + t_n(b-a)$,则有

$$[f(x_n)]^n = \frac{1}{b-a} \int_a^b [f(x)]^n dx \, , \, \coprod \lim_{n \to \infty} x_n = a + (b-a) = b \, . \tag{15 }$$

六 (本题满分 15 分) 设 $A_n = \frac{n}{n^2 + 1} + \frac{n}{n^2 + 2^2} + L + \frac{n}{n^2 + n^2}$, 求 $\lim_{n \to \infty} n \left(\frac{\pi}{4} - A_n \right)$.

[解]
$$\Leftrightarrow f(x) = \frac{1}{1+x^2}$$
, $\boxtimes A_n = \frac{1}{n} \sum_{i=1}^n \frac{1}{1+i^2/n^2}$, $\boxtimes \lim_{n \to \infty} A_n = \int_0^1 f(x) dx = \frac{\pi}{4}$. (5 分)

记
$$x_i = \frac{i}{n}$$
,则 $A_n = \sum_{i=1}^n \int_{x_{i-1}}^{x_i} f(x_i) dx$,故 $J_n = n \sum_{i=1}^n \int_{x_{i-1}}^{x_i} (f(x) - f(x_i)) dx$(8分)

由拉格朗日中值定理,存在
$$\zeta_i \in (x_{i-1}, x_i)$$
 使得
$$J_n = n \sum_{i=1}^n \int_{x_{i-1}}^{x_i} f'(\zeta_i)(x - x_i) dx.$$
(10分)

记 m_i 和 M_i 分 别 是 f'(x) 在 $[x_{i-1},x_i]$ 上 的 最 小 值 和 最 大 值 , 则 $m_i \leq f'(\zeta_i) \leq M_i$, 故 积 分 $\int_{x_{i-1}}^{x_i} f'(\zeta_i)(x-x_i) dx \, \text{介于} \, m_i \int_{x_{i-1}}^{x_i} (x-x_i) dx \, \text{和} \, M_i \int_{x_{i-1}}^{x_i} (x-x_i) dx \, \text{之间,所以存在} \, \eta_i \in (x_{i-1},x_i) \, \text{使得}$

$$\int_{x_{i-1}}^{x_i} f'(\zeta_i)(x-x_i)dx = -f'(\eta_i)(x_i - x_{i-1})^2/2, \qquad \dots \dots \dots (12 \ \text{f})$$

于是,有
$$J_n = -\frac{n}{2} \sum_{i=1}^n f'(\eta_i) (x_i - x_{i-1})^2 = -\frac{1}{2n} \sum_{i=1}^n f'(\eta_i)$$
. 从而

$$\lim_{n \to \infty} n \left(\frac{\pi}{4} - A_n \right) = \lim_{n \to \infty} J_n = -\frac{1}{2} \int_0^1 f'(x) dx = -\frac{1}{2} [f(1) - f(0)] = \frac{1}{4}. \tag{15 }$$

数学家 www.mathor.com

(2)设球体 $(x-1)^2 + (y-1)^2 + (z-1)^2 \le 12$ 被平面 P: x+y+z=6 所截的小球缺为 Ω . 记球缺上的球 冠为 Σ ,方向指向球外,求第二型曲面积分

$$I = \iint\limits_{\Sigma} x dy dz + y dz dx + z dx dy \ .$$

[参考解答与评分标准] (1)设球缺所在的球体表面的方程为 $x^2+y^2+z^2=R^2$,球缺的中心线为 z 轴,且设球缺所在圆锥顶角为 2α . 记球缺的区域为 Ω ,则其体积为

$$\iiint_{\Omega} dv = \int_{R-h}^{R} dz \iint_{D_{c}} dx dy = \int_{R-h}^{R} \pi (R^{2} - z^{2}) dz = \frac{\pi}{3} (3R - h)h^{2}. \qquad (3 \%)$$

由于球面的面积微元是 $dS = R^2 \sin \theta d\theta$, 故球冠的面积为

$$\int_{0}^{2\pi} d\phi \int_{0}^{\alpha} R^{2} \sin\theta \, d\theta = 2\pi R^{2} (1 - \cos\alpha) = 2\pi Rh \,. \tag{6.5}$$

(2)记球缺 Ω 的底面圆为 P_1 ,方向指向球缺外,且记 $J = \iint_{P_1} x dy dz + y dz dx + z dx dy$. 由 Gauss 公式, 有

$$I + J = \iiint_{\Omega} 3dv = 3v(\Omega) , \qquad (9 \ \%)$$

其中 $\nu(\Omega)$ 为 Ω 的体积. 由于平面P 的正向单位法向量为 $\frac{-1}{\sqrt{3}}$ (1,1,1),故

$$J = \frac{-1}{\sqrt{3}} \iint_{P_1} (x + y + z) dS = \frac{-6}{\sqrt{3}} \sigma(P_1) = -2\sqrt{3}\sigma(P_1),$$

其中 $\sigma(P_1)$ 是 P_1 的面积。故 $I = 3\nu(\Omega) - J = 3\nu(\Omega) + 2\sqrt{3}\sigma(P_1)$(12 分)

因为球缺底面圆心为Q=(2,2,2),而球缺的顶点为D=(3,3,3),故球缺的高度 $h=|QD|=\sqrt{3}$.再由 (1)所证并代入 $h=\sqrt{3}$ 和 $R=2\sqrt{3}$ 得

$$I = 3 \cdot \frac{\pi}{3} (3R - h)h^2 + 2\sqrt{3}\pi (2Rh - h^2) = 33\sqrt{3}\pi . \qquad (14 \ \%)$$

五 (本题满分 15 分) 设 f 在 [a,b] 上非负连续,严格单增,且存在 $x_n \in [a,b]$ 使得 $[f(x_n)]^n = \frac{1}{b-a} \int_a^b [f(x)]^n dx$,求 $\lim x_n$.

证明: 先考虑特殊情形: a=0,b=1. 下证 $\lim_{n\to\infty} x_n=1$.

由于 $\forall c \in (0,1)$,有 $\int_{c}^{1} f^{n}(x) dx > f^{n}(c)(1-c)$, 现 取 $c = 1 - \frac{\varepsilon}{2}$, 则 $f(1-\varepsilon) < f(c)$, 即