Modulformen I

Sommersemester 2018 Prof. Dr. Winfried Kohnen und Johann Franke

Vorlesungsmitschrieb von Patrick Arras Jonas Müller

Heidelberg, den 2. August 2018

Vorwort

Dies ist ein nicht offizielles Skript der Vorlesung Modulformen 1 aus dem Sommersemester 2018 gehalten von Professor Winfried Kohnen und Johann Franke an der Universität Heidelberg. Das Skript wurde in der Vorlesung mitgetext und mit pdflatex kompiliert. Deshalb kann es Fehler enthalten und wir übernehmen keine Garantie für die Richtigkeit.

Bei Fehlern kann ich unter folgender Mailadresse erreicht werden:

```
jj@mathphys.stura.uni-heidelberg.de
```

Die aktuellste Version des Skriptes befindet sich immer unter

```
https://github.com/jenuk/modulformen/blob/master/script.pdf
```

Die LATEX-Source Dateien findet man hier, auf Fehler kann hier alternativ über neues Issue aufmerksam gemacht werden:

```
https://github.com/jenuk/modulformen/tree/master
```

Der Comic auf der Titelseite ist eine Überarbeitung von Patrick vom Comic xkcd.com/179 von xkcd.com. Die Schrift kommt von github.com/ipython/xkcd-font.

Inhaltsverzeichnis

Inł	haltsverzeichnis	iv
1.		1 1 3 4 6 9
	Heckeoperatoren 2.1. Vorbemerkung, Motivation 2.2. Die Heckeoperatoren $T(n)$ 2.3. Folgerungen	13 13 15 22 25
Э.	Das Petersson'sche Skalarprodukt 3.1. Invariantes Maß und Skalarprodukt	25 30
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	33 39 39 40
	Die Eichler-Selberg-Spurformel auf $SL_2(\mathbb{Z})$ L-Reihen zu Modulformen $6.1.$ Dirichletreihen6.1. Dirichletreihen $6.2.$ Formale Eigenschaften von Dirichletreihen6.3. Die Mellin-Transformation $6.4.$ Die Riemannsche Zetafunktion6.4. Die Riemannsche Zetafunktion $6.5.$ Heckesche L-Reihen6.5. Heckesche L-Reihen $6.6.$ Der Heckesche Umkehrsatz6.7. L-Reihen zu Hecke Eigenformen $6.8.$ Spezielle Werte von L-Funktionen	63 63 68 73 77 83 87 92
Α.	Exkurs: Produktdarstellung der Diskriminantenfunktion	95
Inc	dex	99

Grundlegende Tatsachen

1.1. Ergebnisse aus Funktionentheorie 2 (Erinnerung)

1.1.1. Fundamentalbereich

Wie üblich sei

$$\mathbb{H} = \{ z \in \mathbb{C} \mid \operatorname{Im} z > 0 \}$$

die obere Halbebene und

$$SL_2(\mathbb{Z}) = \{ M \in M_2(\mathbb{Z}) \mid \det M = 1 \} .$$

Dann operiert $SL_2(\mathbb{Z})$ auf \mathbb{H} durch

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \circ z = \frac{az+b}{cz+d},$$

das heißt $E \circ z = z$ und $(M_1 M_2) \circ z = M_1 \circ (M_2 \circ z)$. Hierbei beachte man, dass

$$\operatorname{Im}\left(\frac{az+b}{cz+d}\right) = \frac{\operatorname{Im}z}{|cz+d|^2}.$$

 $\Gamma(1) = \operatorname{SL}_2(\mathbb{Z}) \subseteq \operatorname{SL}_2(\mathbb{R})$ ist eine diskrete Untergruppe, spezielle Matrizen in $\Gamma(1)$ sind

$$T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \qquad \text{und} \qquad S = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

die Translation $T \circ z = z + 1$ und Stürzung $S \circ z = -\frac{1}{z}$.

Man interessiert sich für die Operation von diskreten Untergruppen $\Gamma \subseteq SL_2(\mathbb{Z})$ insbesondere $\Gamma = \Gamma(1)$.

Abbildung 1.1.: Der Fundamentalbereich \mathcal{F}_1 der vollen Modulgruppe.

Definition 1.1. Eine Teilmenge $\mathcal{F} \subseteq \mathbb{H}$ heißt Fundamentalbereich für die Operationen von $\Gamma \subseteq \mathrm{SL}_2(\mathbb{R})$ auf \mathbb{H} , falls:

- (i) \mathcal{F} ist offen,
- (ii) zu jedem $z \in \mathbb{H}$ existiert ein $M \in \Gamma$ mit $M \circ z \in \overline{\mathcal{F}}$,
- (iii) Sind $z_1, z_2 \in \mathcal{F}$ und $z_2 = M \circ z_1$ mit $M \in \Gamma$, dann gilt $M = \pm E$ und somit $z_1 = z_2$.

Beispiel 1.2. Die Menge $\mathcal{F}_1 := \{ z = x + iy \mid |x| < \frac{1}{2}, |z| > 1 \}$ ist ein Fundamentalbereich für die Operation von $\Gamma(1)$ auf \mathbb{H} , dieser wird auch MODULFIGUR genannt. Siehe Abbildung 1.1.

Bemerkung 1.3. Identifikationen in $\overline{\mathcal{F}_1}$ finden nur auf dem Rand statt. (Die Geraden $x = \pm \frac{1}{2}$ werden miteinander identifiziert unter T bzw T^{-1} , Punkte auf den Kreisbögen rechts oder links von i werden unter S identifiziert.

Satz 1.4. Die Gruppe $\Gamma(1)$ wird erzeugt von S und T.

1.1.2. Modulform

Definition 1.5. Eine Abbildung $f: \mathbb{H} \to \overline{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$ heißt MODULFUNKTION vom Gewicht $k \in \mathbb{Z}$ für $\Gamma(1)$, falls gilt:

- (i) f ist auf \mathbb{H} meromorph,
- (ii) $f(\frac{az+b}{cz+d}) = (cz+d)^k f(z)$ für alle $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma(1)$,
- (iii) f ist meromorph in ∞ .

Bedeutung von (iii): Wendet man (ii) an mit M=T, so erhält man f(z+1)=f(z). Sei $\mathcal{R}=\{q\in\mathbb{C}\mid 0<|q|<1\}$. Die Abbildung $z\mapsto q=e^{2\pi iz}$ bildet \mathbb{H} auf \mathcal{R} ab und F(q):=f(z) ist wohldefiniert und holomorph bis auf mögliche Polstellen, die sich prinzipiell gegen q=0 häufen könnten. Bedingung (iii) fordert nun, dass q=0 eine unwesentliche isolierte Singularität¹ von F ist. Nach Funktionentheorie 1 hat dann F eine Laurententwicklung

$$F(q) = \sum_{n \ge n_0} a_n q^n$$
 für $0 < |q| < |q_0|$,

wobei $n_0 \in \mathbb{Z}$ fest. Damit erhalten wir also

$$f(z) = \sum_{n \ge n_0} a_n e^{2\pi i n z}$$
 für $0 < y_0 < y$.

Definition 1.6. Ein solches f heißt Modulform, falls f auf \mathbb{H} und in ∞ holomorph ist (letzteres bedeutet, dass F in q=0 hebbar ist, also $f(z)=\sum_{n\geqslant 0}a_ne^{2\pi inz}$ für alle $z\in\mathbb{H}$). Eine Modulform heißt Spitzenform, falls $a_0=0$.

Bemerkung 1.7. Die Fourierkoeffizienten a_n sind im Allgemeinen wichtige und interessante Größen (z. B. Darstellungsanzahlen von natürlichen Zahlen durch quadratische Formen, etwa $r_4(n) = \#\{(x,y,z,w) \in \mathbb{Z}^4 \mid n = x^2 + y^2 + z^2 + w^2\}$ oder die Anzahl von Punkten auf elliptischen Kurven über \mathbb{F}_p).

Definition 1.8. Sei $f \colon \mathbb{H} \to \mathbb{C}, k \in \mathbb{Z}, M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}_2(\mathbb{R})$. Man setzt

$$(f|_k M)(z) := (cz+d)^{-k} f\left(\frac{az+b}{cz+d}\right)$$

für $z \in \mathbb{H}$, dies ist der Peterssonscher Strichoperator.

¹Das heißt, es handelt sich um eine hebbare Singularität oder eine Polstelle.

Dann gilt $f|_k E = f$ und $f|_k(M_1M_2) = (f|_kM_1)|_kM_2$ für alle $M_1, M_2 \in SL_2(\mathbb{R})$. Es folgt:

- (i) Es gilt $(f|_k M)(z) = (cz+d)^{-k} f(\frac{az+b}{cz+d}) = f(z)$ für alle $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma(1)$ genau dann, wenn dies für S und T gilt, d. h. $f(-\frac{1}{z}) = z^k f(z)$ und f(z+1) = f(z), da S und T SL₂(\mathbb{Z}) erzeugen.
- (ii) Eine Funktion $f: \mathbb{H} \to \mathbb{C}$ ist genau dann eine Modulform vom Gewicht k, wenn f eine Fourierentwicklung

$$f(z) = \sum_{n \geqslant 0} a_n e^{2\pi i n z} \qquad \text{für } z \in \mathbb{H}$$

hat und zusätzlich gilt

$$f\left(-\frac{1}{z}\right) = z^k f(z) \,.$$

1.1.3. Beispiele für Modulformen

Thetareihen

Definition 1.9. Sei $A \in M_m(\mathbb{R})$ symmetrisch und positiv definit. Dann heißt

$$\vartheta_A(z) = \sum_{g \in \mathbb{Z}^m} e^{\pi i A[g]z}$$
 für $z \in \mathbb{H}$

eine Thetareihe, wobei $A[g] := g^t A g$ für $g \in \mathbb{Z}^m \cong M_{m,1}(\mathbb{Z})$.

Satz 1.10.

- (i) $\vartheta_A(z)$ ist gleichmäßig absolut konvergent auf $y \geqslant y_0 > 0$. Insbesondere ist $\vartheta_A(z)$ auf \mathbb{H} holomorph.
- (ii) Es gilt die Theta-Transformationsformel: $\vartheta_{A^{-1}} = \sqrt{\det A} \cdot (\frac{z}{i})^{\frac{m}{2}} \vartheta_A(z)$.

Satz 1.11. Sei $A \in M_m(\mathbb{Z})$ symmetrisch, positiv definit, gerade² und det A = 1. Dann gilt 8|m und $\vartheta_A(z)$ ist eine Modulform vom Gewicht $\frac{m}{2}$ für $\Gamma(1)$.

Beachte $\vartheta_A(z) = 1 + \sum_{n \geq 1} r_A(n) q^n$ wobei $r_A(n)$ die Anzahl der Darstellungen von n durch die ganzzahlige, positive definite quadratische Form $x \mapsto \frac{1}{2} x^t Ax$ auf \mathbb{Z}^m ist.

²Das heißt für alle $\mu \in \{1, \ldots, m\}$ gilt $a_{\mu\mu}$ ist gerade

Eisensteinreihen

Definition 1.12. Sei $k \in \mathbb{Z}$, k gerade und $k \geqslant 4$. Dann heißt

$$G_k(z) = \sum_{m,n}' \frac{1}{(mz+n)^k}$$
 für $z \in \mathbb{H}$

EISENSTEINREIHE vom Gewicht k.³

Satz 1.13.

- (i) $G_k(z)$ ist gleichmäßig absolut konvergent auf $D_{\varepsilon} = \{ z = x + iy \mid y \geqslant \varepsilon, \ x^2 \leqslant \frac{1}{\varepsilon} \}$, insbesondere also holomorph auf \mathbb{H} .
- (ii) G_k ist Modulform vom Gewicht k für $\Gamma(1)$.
- (iii) Es gilt

$$G_k(z) = 2\zeta(k) + \frac{2(2\pi i)^k}{(k-1)!} \sum_{n>1} \sigma_{k-1}(n)q^n$$

wobei $\zeta(k) = \sum_{n=1}^{\infty} \frac{1}{n^k}$ und $\sigma_{k-1}(n) = \sum_{d|n} d^{k-1}$.

Setze $E_k := \frac{1}{2\zeta(k)}G_k$ die normalisierte Eisensteinreihe. Benutze nun

$$\zeta(k) = \frac{(-1)^{\frac{k}{2} - 1} 2^{k - 1} B_k}{k!} \pi^k$$

für k gerade und $k \geqslant 2$. Damit folgt

$$E_k = 1 - \frac{2k}{B_k} \sum_{n \ge 1} \sigma_{k-1}(n) q^n$$
,

wobei alle B_k rationale Zahlen sind. Speziell gilt

$$B_4 = -\frac{1}{30} \qquad \Longrightarrow \qquad E_4 = 1 + 240 \sum_{n \geqslant 1} \sigma_3(n) q^n,$$

$$B_6 = \frac{1}{42} \qquad \Longrightarrow \qquad E_6 = 1 - 504 \sum_{n \geqslant 1} \sigma_5(n) q^n.$$

$${}^{3}\sum_{m,n}' := \sum_{\substack{(m,n) \in \mathbb{Z}^{2} \\ (m,n) \neq (0,0)}}$$

1.1.4. Valenzformel und Anwendungen

Satz 1.14 (VALENZFORMEL). Sei f eine Modulfunktion vom Gewicht $k \in \mathbb{Z}$, $f \not\equiv 0$. Dann gilt

$$\operatorname{ord}_{\infty} f + \frac{1}{2} \operatorname{ord}_{i} f + \frac{1}{3} \operatorname{ord}_{\rho} f + \sum_{\substack{z \in \Gamma(1) \setminus \mathbb{H} \\ z \not\sim i, \rho}} \operatorname{ord}_{z} f = \frac{k}{12}.$$

Hierbei ist $\rho = e^{\frac{2\pi i}{3}}$ und

$$\operatorname{ord}_{\infty} f := \operatorname{ord}_{q=0} F(q)$$

$$mit \ F(q) = f(z) \ f\ddot{u}r \ q = e^{2\pi i z}.$$

Beweis. Zum Nachweis reduziert man auf den Fall, dass f außer in $z = \rho, -\overline{\rho}, i$ keine Nulloder Polstellen auf $\partial \overline{F_1}$ hat und berechnet

$$\frac{1}{2\pi i} \int_{\mathcal{C}} \frac{f'(z)}{f(z)} \,\mathrm{d}z\,,$$

wobei die Kurve \mathcal{C} wie in Abbildung 1.2 gewählt ist.

g. e. s.

Definition 1.15. Sei

$$\Delta(z) = \frac{1}{1728} \left(E_4^3(z) - E_6^2(z) \right)$$

die Diskriminantenfunktion. Dann ist Δ eine Spitzenform vom Gewicht k=12 mit $\Delta(z)\neq 0 \ \forall z\in \mathbb{H}$ und $\operatorname{ord}_{\infty}\Delta=1,$ d. h. $\Delta=q+\ldots$

Bemerkung 1.16. Δ ist in gewisser Weise die "erste" von 0 verschiedene Spitzenform und wurde von vielen Mathematikern studiert.

Beispiel 1.17.

- (i) Schreibe $\Delta(z) = \sum_{n \geqslant 1} \tau(n) q^n$, dann heißt $n \mapsto \tau(n)$ RAMANUJAN-FUNKTION. Es gilt: $\tau(n) \in \mathbb{Z}$ für alle $n \geqslant 1$. Ferner lässt sich zeigen, dass $\tau(n) \equiv \sigma_{11}(n) \mod 691$, mithilfe von $B_{12} = -\frac{691}{2730}$.
- (ii) Vermutung: $\tau(n) \neq 0$ für alle $n \geq 1$ (Lehmer).

Abbildung 1.2.: Die Kurve C, wobei A und E so gewählt sind, dass C alle Null- und Polstellen (außer eventuell i, ρ) einschließt.

Sei M_k der C-Vektorraum der Modulformen vom Gewicht $k \in \mathbb{Z}$ und $S_k \subseteq M_k$ der Unterraum der Spitzenformen.

Bemerkung 1.18. $M_k = \{0\}$ für k ungerade, da $f((-E) \circ z) = f(z) = (-1)^k f(z)$.

Satz 1.19. Sei $k \in \mathbb{Z}$ gerade. Dann gilt:

- (i) $M_k = \{0\}$ für k < 0 und $M_2 = \{0\}$.
- (ii) $M_0 = \mathbb{C}$.
- (iii) $M_k = \mathbb{C}E_k \oplus S_k$, falls $k \geqslant 4$.
- (iv) Die Abbildung $f \mapsto f \cdot \Delta$ gibt einen Isomorphismus von M_{k-12} auf S_k .
- (v) dim $M_k < \infty$.

Satz 1.20. Sei $k \ge 0$ gerade. Dann gilt:

$$\dim M_k = \begin{cases} \left\lfloor \frac{k}{12} \right\rfloor & \text{falls } k \equiv 2 \mod 12 \\ 1 + \left\lfloor \frac{k}{12} \right\rfloor & \text{falls } k \not\equiv 2 \mod 12 \end{cases}.$$

Kapitel 1. Grundlegende Tatsachen

Beispiel 1.21.

- (i) $M_4 = \mathbb{C}E_4$.
- (ii) $M_6 = \mathbb{C}E_6$.
- (iii) $M_8 = \mathbb{C}E_8 = \mathbb{C}E_4^2$.
- (iv) $M_{10} = \mathbb{C}E_{10} = \mathbb{C}E_4E_6$.
- (v) $M_{12} = \mathbb{C}E_{12} \oplus \mathbb{C}\Delta$.
- (vi) $M_{14} = \mathbb{C}E_{14}$.

Satz 1.22. Sei $k \geqslant 0$ gerade. Dann bilden $E_4^{\alpha} E_6^{\beta}$ mit $4\alpha + 6\beta = k$ eine Basis von M_k , insbesondere gilt also

$$M_k = \bigoplus_{\substack{\alpha,\beta \geqslant 0\\ 4\alpha + 6\beta = k}} \mathbb{C}E_4^{\alpha} E_6^{\beta}.$$

Beweis. Wir zeigen zunächst induktiv, dass die Monome M_k erzeugen. Für $k \leq 10$ ist dies nach Beispiel 1.21 klar. Sei also $k \geqslant 12$. Man bestimme eine beliebige Kombination $\alpha, \beta \geqslant 0$ mit $4\alpha + 6\beta = k$ und setze $g := E_4^{\alpha} E_6^{\beta} \in M_k$ mit konstantem Term gleich 1.

Sei nun $f \in M_k$ beliebig mit konstantem Term a_0 . Dann ist $f - a_0 \cdot g \in S_k$. Nach Satz 1.19, iv) gilt daher $f - a_0 \cdot g = \Delta \cdot h$ mit $h \in M_{k-12}$. Nach Induktionsvoraussetzung ist h eine Linearkombination von Monomen $E_4^{\gamma} E_6^{\delta}$ mit $4\gamma + 6\delta = k - 12$. Aber $\Delta = \frac{1}{1728} (E_4^3 - E_6^2)$ und daher ist $f - a_0 \cdot g$ Linearkombination von Monomen $E_4^{\gamma + 3} E_6^{\delta}$ und $E_4^{\gamma} E_6^{\delta + 2}$. Wegen

$$4(\gamma + 3) + 6\delta = k - 12 + 12 = k$$
,

$$4\gamma + 6(\delta + 2) = k - 12 + 12 = k,$$

ist also auch f als Linearkombination von Monomen der behaupteten Form schreibbar. Somit erzeugen die Monome tatsächlich M_k .

Noch zu zeigen ist, dass die Monome über \mathbb{C} linear unabhängig sind. Beweis durch Widerspruch: Angenommen, es existiere eine nicht-triviale lineare Relation

$$\sum_{\substack{\alpha,\beta\geqslant 0\\ 4\alpha+6\beta=k}} \lambda_{\alpha,\beta} E_4^{\alpha} E_6^{\beta} = 0.$$

Fall 1: Sei $k \equiv 0 \mod 4$. Dann sind alle β gerade, also schreibe jeweils $\beta = 2\beta'$ mit $\beta' \geqslant 0$. Es folgt $\alpha = \frac{k}{4} - 3\beta'$ und somit

$$E_4^{\alpha} E_6^{\beta} = E_4^{\frac{k}{4} - 3\beta'} E_6^{2\beta'} = E_4^{\frac{k}{4}} \left(\frac{E_6^2}{E_4^3}\right)^{\beta'} \,.$$

Da $E_4^{\frac{k}{4}}$ nicht die Nullfunktion ist, ergibt sich eine nicht-triviale Polynom-Relation für $\frac{E_6^2}{E_4^3}$, d. h. die meromorphe Funktion $\frac{E_6^2}{E_4^3}$ ist Nullstelle eines nicht-trivialen Polynoms über $\mathbb C$. Da $\mathbb C$ algebraisch abgeschlossen ist (jedes nicht-konstante Polynom über $\mathbb C$ zerfällt vollständig über $\mathbb C$ in Linearfaktoren), ist $\frac{E_6^2}{E_4^3}$ somit konstant.

Wir zeigen $\frac{E_6^2}{E_4^3} \equiv 0$ mit einem Trick: Es gilt $E_6(-\frac{1}{z}) = z^6 E_6(z)$, denn $E_6 \in M_6$. Auswerten in $z = i = -\frac{1}{i}$ liefert $E_6(i) = 0$. Ferner gilt

$$E_4(z) = 1 + 240 \sum_{n \geqslant 1} \sigma_3(n) e^{2\pi i n z} \implies E_4(i) = 1 + 240 \sum_{n \geqslant 1} \sigma_3(n) e^{-2\pi n}$$
.

Da alle Summanden positiv sind, folgt $E_4(i) \neq 0$ und somit $\frac{E_6^2(i)}{E_4^3(i)} = 0$. Dies impliziert jedoch, da $\frac{E_6^2}{E_4^3}$ konstant ist, bereits $E_6 \equiv 0$. $\mbox{$\not =$}$

 $Fall\ 2$: Sei $k\equiv 2\mod 4$, dann sind alle β ungerade. Analoges Vorgehen zum ersten Fall liefert ebenfalls einen Widerspruch.

Somit sind die Monome über C linear unabhängig.

g.e.s.

Bemerkung 1.23. Der Satz impliziert additive Faltungsformeln für die multiplikativen Funktionen $\sigma_{k-1}(n)$ (weiterhin $k \in \mathbb{Z}, k \geqslant 4$ gerade). "Multiplikativ" bedeutet hier

$$ggT(m, n) = 1 \Longrightarrow \sigma_{k-1}(m \cdot n) = \sigma_{k-1}(m) \cdot \sigma_{k-1}(n)$$
.

Beispiel 1.24. $E_8 = E_4^2$, ferner $E_4 = 1 + 240 \sum_{n \ge 1} \sigma_3(n) q^n$, also $\sigma_7(n) = \sigma_3(n) + 120 \sum_{m=1}^{n-1} \sigma_3(n-m) \sigma_3(m)$.

Allgemeiner kann man E_k ausdrücken als Linearkombination von Monomen der Form $E_4^{\alpha} E_6^{\beta}$ und erhält hieraus Formeln für $\sigma_{k-1}(n)$.

1.2. Die Modulinvariante j

Definition 1.25. Sei $j := \frac{E_4^3}{\Delta}$ die Modulinvariante.

Satz 1.26.

- (i) j ist holomorph auf \mathbb{H} und hat einen einfachen Pol in ∞ .
- (ii) j ist eine Modulfunktion vom Gewicht 0.

(iii) j liefert eine Bijektion $\Gamma(1)\setminus \mathbb{H} \cong \mathbb{C}$.

Beweis.

(i) Da $\Delta(z) \neq 0$ für alle $z \in \mathbb{H}$, ist j(z) holomorph auf \mathbb{H} . Ferner gilt

$$\operatorname{ord}_{\infty} j = \operatorname{ord}_{\infty} E_4^3 - \operatorname{ord}_{\infty} \Delta = 0 - 1 = -1.$$

- (ii) Da E_4^3 , $\Delta \in M_{12}$ folgt die Aussage.
- (iii) Sei $\lambda \in \mathbb{C}$. Dann ist zu zeigen, dass die Modulfunktion $j_{\lambda} := j \lambda$ vom Gewicht Null eine modulo $\mathrm{SL}_2(\mathbb{Z})$ eindeutig bestimmte Nullstelle hat. Man wendet auf j_{λ} die Valenzformel an! Es gilt $\mathrm{ord}_z \ j_{\lambda} \geqslant 0$ für alle $z \in \mathbb{H}$ und $\mathrm{ord}_{\infty} \ j_{\lambda} = -1$. Da k = 0, folgt mit der Valenzformel

$$-1 + n + \frac{n'}{2} + \frac{n''}{3} = 0$$

mit $n, n', n'' \in \mathbb{N}_0$. Also

$$n + \frac{n'}{2} + \frac{n''}{3} = 1. (1.1)$$

Man prüft nach: die einzigen Lösungen $(n, n', n'') \in \mathbb{N}_0^3$ von (1.1) sind (1, 0, 0), (0, 2, 0) und (0, 0, 3). Dies impliziert die Behauptung.

Satz 1.27. Sei $f: \mathbb{H} \to \overline{\mathbb{C}}$ eine meromorphe Funktion. Dann sind folgende Aussagen äquivalent:

- (i) f ist eine Modulfunktion vom Gewicht 0.
- (ii) f ist Quotient zweier Modulformen gleichen Gewichts.
- (iii) f ist eine rationale Funktion in j.

Beweis.

(iii) \Rightarrow (ii) Sei $f = \frac{P(j)}{Q(j)}$ wobei $P(X) = a_0 + a_1 X + \ldots + a_m X^m$ mit $a_{\nu} \in \mathbb{C}$, $a_m \neq 0$ und $Q(X) = b_0 + b_1 X + \ldots + b_n X^n$ mit $b_{\nu} \in \mathbb{C}$, $b_n \neq 0$ mit $Q \not\equiv 0$, insbesondere also auch $Q(j) \not\equiv 0$. Wegen $j = \frac{E_3^3}{\Delta}$ folgt

$$f = \frac{a_0 + a_1 \frac{E_4^3}{\Delta} + \dots + a_m \left(\frac{E_4^3}{\Delta}\right)^m}{b_0 + b_1 \frac{E_4^3}{\Delta} + \dots + b_n \left(\frac{E_4^3}{\Delta}\right)^n}$$
$$= \frac{(a_0 \Delta^m + a_1 E_4^3 \Delta^{m-1} + \dots + a_m (E_4^3)^m) \cdot \Delta^n}{(b_0 \Delta^n + b_1 E_4^3 \Delta^{n-1} + \dots + b_n (E_4^3)^n) \cdot \Delta^m}.$$

Hier sind Zähler und Nenner Modulformen vom Gewicht 12(m+n). Also folgt die Behauptung.

- $(ii) \Rightarrow (i) \text{ klar}$
- (i) \Rightarrow (iii) Sei f eine Modulfunktion vom Gewicht Null und $f \not\equiv 0$. Seien $z_1, \dots z_r$ die modulo $\Gamma(1)$ verschiedenen Polstellen von f und $m_1, \dots m_r$ deren Ordnungen. Sei

$$P(z) := \prod_{\nu=1}^{r} (j(z) - j(z_{\nu}))^{m_{\nu}}.$$

Dann gilt

$$\operatorname{ord}_{z_{\nu}} P = \operatorname{ord}_{z_{\nu}} (j(z) - j(z_{\nu}))^{m_{\nu}} = m_{\nu} \operatorname{ord}_{z_{\nu}} (j(z) - j(z_{\nu})) \geqslant m_{\nu}.$$

Dann ist P(z)f(z) eine Modulfunktion vom Gewicht Null und holomorph auf H. Da P(z) ein Polynom in j ist, genügt es die Behauptung für P(z)f(z) zu zeigen. Insbesondere kann man voraussetzen, dass f holomorph auf H ist. Da ord $_{\infty} \Delta = 1$, gibt es $n \in \mathbb{N}_0$ so dass $g := \Delta^n f$ in unendlich holomorph ist. Dann ist $f = \frac{g}{\Delta^n}$ und g ist eine Modulform vom Gewicht 12n. Nach Satz 1.22 ist g eine Linearkombination von Monomen $E_4^{\alpha}E_6^{\beta}$ mit $4\alpha + 6\beta = 12n$. Es genügt somit die Behauptung für $\frac{E_4^{\alpha}E_6^{\beta}}{\Delta^n}$ zu zeigen. Insbesondere gilt $3|\alpha$ und $2|\beta$, schreibe $\alpha = 3p$ und $\beta = 2q$. Dann gilt

$$\frac{E_4^{\alpha} E_6^{\beta}}{\Delta^n} = \frac{(E_4^3)^p (E_6^2)^q}{\Delta^{p+q}} = j^p (j - 1728)^q ,$$
 denn $j - 1728 = j - \frac{E_4^3 - E_6^2}{\Delta} = \frac{E_4^3}{\Delta} - \frac{E_4^3 - E_6^2}{\Delta} = \frac{E_6^2}{\Delta} .$ g.e.s.

Bemerkung 1.28.

- (i) Der Quotient $\Gamma(1)^{\mathbb{H}}$ besitzt in natürlicher Weise die Struktur einer Riemannschen Fläche isomorph zu $S^2 \setminus \{\text{Punkt}\}$, indem man die Ränder in $\overline{\mathcal{F}_1}$ identifiziert. Fügt man den Punkt ∞ hinzu, so erhält man $\overline{\Gamma(1)^{\mathbb{H}}} := \Gamma(1)^{\mathbb{H}} \cup \{\infty\} \cong S^2$ (die Sphäre in \mathbb{R}^3). Satz 1.26 (iii) besagt dann, dass j ein Isomorphismus von $\overline{\Gamma(1)^{\mathbb{H}}} \cong S^2 \cong \mathbb{P}^1(\mathbb{C}) = \mathbb{C} \cup \infty$ ist. Satz 1.27 entspricht dann der Tatsache, dass die einzigen meromorphen Funktionen auf S^2 die rationalen Funktionen sind.
- (ii) Man kann zeigen (schwer!)

$$\Delta(z) = q \prod_{n \ge 1} (1 - q^n)^{24}.$$

Damit folgt

$$j = \frac{E_4^3}{\Delta} = \frac{1}{q} \left(1 + 240 \sum_{n \ge 1} \sigma_3(n) q^n \right)^3 \frac{1}{\prod_{n \ge 1} (1 - q^n)^{24}}$$

$$= \frac{1}{q} \left(1 + 240 \sum_{n \geqslant 1} \sigma_3(n) q^n \right)^3 \prod_{n \geqslant 1} \left(\sum_{m \geqslant 0} q^{mn} \right)^{24}$$
$$= \frac{1}{q} + 744 + \sum_{n \geqslant 1} c(n) q^n \quad \text{mit } c(n) \in \mathbb{N}.$$

Also hat die j-Funktion eine Fourierentwicklung in q, wobei die Koeffizienten positive ganzen Zahlen sind.

(iii) Man zeigt leicht: $\frac{1}{\prod_{n\geqslant 1}(1-q^n)}=1+\sum_{n\geqslant 1}p(n)q^n$ wobei p(n) die Anzahl der Partitionen von n ist, d. h. die Anzahl der Zerlegungen von n als Summe positiver, ganzer Zahlen (beispielsweise p(4)=5, denn 4=3+1=2+2=2+1+1=1+1+1+1). Man sagt: Die erzeugende Reihe von p(n) wird durch $\frac{1}{\prod_{n\geqslant 1}(1-q^n)}$ gegeben.

Beachte $1+\sum_{n\geqslant 1}p(n)q^n=\frac{e^{\pi i\frac{z}{12}}}{\eta(z)}$ wobei $\eta(z)=e^{\pi i\frac{z}{12}}\prod_{n\geqslant 1}(1-q^n)$ die sogenannte Dedekindsche η -Funktion ist. Beachte $\eta^{24}=\Delta$. η sollte also eine Modulform vom Gewicht $\frac{1}{2}$ sein. Mit Hilfe der Theorie der Modulformen kann man zeigen $p(n)\sim\frac{1}{4\sqrt{3}n}\cdot e^{\pi\sqrt{\frac{3}{2}n}}$ für $n\to\infty$ (hier $a(n)\sim b(n)$ genau dann, wenn $\lim_{n\to\infty}\frac{a(n)}{b(n)}=1$).

Heckeoperatoren

2.1. Vorbemerkung, Motivation

Definition 2.1. Definiere die Gruppe

$$\operatorname{GL}_2^+(\mathbb{R}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_2(\mathbb{R}) \mid ad - bc > 0 \right\},\,$$

welche $SL_2(\mathbb{R})$ als Untergruppe enthält.

Definition 2.2.

(i) Seien $z \in \mathbb{H}$ und

$$M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{GL}_2^+(\mathbb{R}),$$

dann setze

$$M \circ z := \frac{az+b}{cz+d}.$$

(ii) Für $k \in \mathbb{Z}$, $M \in \mathrm{GL}_2^+(\mathbb{R})$ und $f \colon \mathbb{H} \to \mathbb{C}$ setze

$$(f|_k M)(z) := (ad - bc)^{\frac{k}{2}} (cz + d)^{-k} f(M \circ z)$$
.

Diese Definitionen verallgemeinern die früheren Definitionen für $SL_2(\mathbb{R})$ (siehe 1.1.1). Beachte, dass weiterhin für alle $\lambda \in \mathbb{R}_+$ gilt:

$$f|_k \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} = f.$$

Lemma 2.3.

(i) Die Abbildung $(M, z) \mapsto M \circ z$ definiert eine Operation von $\operatorname{GL}_2^+(\mathbb{R})$ auf \mathbb{H} .

(ii) Man hat $f|_k M_1 M_2 = (f|_k M_1)|_k M_2$.

Beweis.

- (i) Rechne nach und beachte hierbei, dass $\operatorname{Im}\left(\frac{az+b}{cz+d}\right) = (ad-bc)\frac{\operatorname{Im}z}{|cz+d|^2}$
- (ii) Für $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2^+(\mathbb{R})$ setze j(M, z) := cz + d. Dann gilt für beliebige Matrizen $M_1, M_2 \in GL_2^+(\mathbb{R})$, dass

$$j(M_1M_2, z) = j(M_1, M_2 \circ z) \cdot j(M_2, z)$$

woraus wegen
$$(cz+d)^{-k}=j(M,z)^{-k}$$
 die Behauptung folgt.

Ziel: Definition gewisser linearer Operatoren $T \colon M_k \to M_k$ auf den Vektorräumen M_k (Modulformen vom Gewicht $k \in \mathbb{Z}$) durch geeignete Mittelbildung.

Idee: Sei $\mathcal{M} \subseteq GL_2^+(\mathbb{R})$ eine Teilmenge mit folgenden Eigenschaften (mit · die gewöhnliche Matrizenmultiplikation):

- (i) $\Gamma(1) \cdot \mathcal{M} \subseteq \mathcal{M}$,
- (ii) $\mathcal{M} \cdot \Gamma(1) \subseteq \mathcal{M}$,
- (iii) \mathcal{M} zerfällt in endlich viele disjunkte Rechtsnebenklassen, d.h.

$$\mathcal{M} = \bigcup_{M \in \Gamma(1) \setminus \mathcal{M}} \Gamma(1) \cdot M,$$

wobei die Vereinigung disjunkt und endlich ist.

Für eine Modulform $f \in M_k$ setze dann

$$f|T_{\mathcal{M}} := \sum_{M \in \Gamma(1) \setminus \mathcal{M}} f|_k M.$$

Dann ist $f|T_{\mathcal{M}}$ wohldefiniert, denn jede Rechtsnebenklasse $\Gamma(1) \cdot M \in \Gamma(1) \setminus \mathcal{M}$ besteht aus Vertretern der Form NM mit $N \in \Gamma(1)$ und es gilt

$$f|_k NM = (f|_k N)|_k M = f|_k M$$

wegen Lemma 2.3, ii) und $f|_k N = f$ für beliebiges $N \in \Gamma(1)$, da $f \in M_k$.

Ferner: Sei eine Matrix $N \in \Gamma(1)$ gegeben. Dann ist

$$(f|T_{\mathcal{M}})|_k N = \sum_{M \in \Gamma(1) \setminus \mathcal{M}} f|_k M N = \sum_{M \in \Gamma(1) \setminus \mathcal{M}} f|_k M = f|T_{\mathcal{M}},$$

denn mit M durchläuft auch MN ein Vertretersystem der Rechtsnebenklassen. (Begründung: Sind zwei Matrizen $M_1, M_2 \in \mathcal{M}$ nicht äquivalent unter Linksmultiplikation mit $\Gamma(1)$, so gilt dies trivialerweise auch für M_1N, M_2N . Auch ist

$$\mathcal{M}N = \Big(\bigcup_{M \in \Gamma(1) \setminus \mathcal{M}} \Gamma(1) \cdot M\Big) N = \bigcup_{M \in \Gamma(1) \setminus \mathcal{M}} \Gamma(1) \cdot MN = \mathcal{M},$$

denn nach Voraussetzung gilt sowohl $MN \subseteq M$ als auch $M = MN^{-1}N \subseteq MN$.)

Folgerung: $f|T_{\mathcal{M}}$ hat das Transformationsverhalten einer Modulform vom Gewicht k.

2.2. Die Heckeoperatoren T(n)

Definition 2.4. Sei $n \in \mathbb{N}$. Setze

$$\mathcal{M}(n) := \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_2(\mathbb{Z}) \mid ad - bc = n \right\}.$$

Beobachtung: $\mathcal{M}(n)$ ist invariant unter Links- und Rechtsmultiplikation von $\Gamma(1)$.

Lemma 2.5.

$$\mathcal{M}(n) = \bigcup_{\substack{ad=n\\d>0\\b \pmod{d}}}^{\cdot} \Gamma(1) \cdot \begin{pmatrix} a & b\\0 & d \end{pmatrix},$$

wobei die Vereinigung über alle Matrizen $\begin{pmatrix} a & b \\ 0 & d \end{pmatrix}$ geht, derart dass $a, b, d \in \mathbb{Z}$, ad = n, d > 0, und b ein volles Restsystem modulo d durchläuft (also z.B. $b \in \{1, 2, ..., d\}$).

Beweis. Die Inklusion \supseteq ist klar, zeige also noch \subseteq . Sei dazu $M=\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}(n)$. Da ad-bc=n>0, können a und c nicht gleichzeitig Null sein. Deswegen existiert $t:=\operatorname{ggT}(a,c)\in\mathbb{N}$. Also sind $-\frac{c}{t}$ und $\frac{a}{t}$ teilerfremd und es existieren $\alpha,\beta\in\mathbb{Z}$ mit

$$\begin{pmatrix} \alpha & \beta \\ -\frac{c}{t} & \frac{a}{t} \end{pmatrix} \in \Gamma(1) .$$

Dann ist

$$\begin{pmatrix} \alpha & \beta \\ -\frac{c}{t} & \frac{a}{t} \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} * & * \\ 0 & * \end{pmatrix} .$$

Man kann also voraussetzen, dass c=0. Wegen det M=n gilt dann ad=n. Multipliziert man gegebenenfalls mit -E, so kann man annehmen, dass d>0. Schließlich multipliziere für $\nu\in\mathbb{Z}$ mit

$$\begin{pmatrix} 1 & \nu \\ 0 & 1 \end{pmatrix} \in \Gamma(1) \Longrightarrow \begin{pmatrix} 1 & \nu \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} = \begin{pmatrix} a & b + \nu d \\ 0 & d \end{pmatrix}.$$

Durch geeignete Wahl von $\nu \in \mathbb{Z}$ kann man erreichen, dass $b + \nu d$ in einem vorgegebenen Restsystem modulo d liegt. Damit ist die Inklusion \subseteq gezeigt.

Noch zu zeigen ist, dass die Vereinigung disjunkt ist (die Endlichkeit ist nach Konstruktion klar). Angenommen, für zwei Matrizen

$$\begin{pmatrix} a & b \\ 0 & d \end{pmatrix}, \begin{pmatrix} a' & b' \\ 0 & d' \end{pmatrix}$$

(mit ad = n = a'd', d > 0, d' > 0 und b, b' Vertreter zweier Restklassen modulo d bzw. d') existiere ein $N \in \Gamma(1)$, sodass

$$N\begin{pmatrix} a & b \\ 0 & d \end{pmatrix} = \begin{pmatrix} a' & b' \\ 0 & d' \end{pmatrix} .$$

Dann folgt, dass die untere linke Komponente von N Null ist, $N \in SL_2(\mathbb{Z})$ also die Gestalt

$$N = \begin{pmatrix} \pm 1 & \nu \\ 0 & \pm 1 \end{pmatrix}$$

mit $\nu \in \mathbb{Z}$ hat. Damit ist

$$N\begin{pmatrix} a & b \\ 0 & d \end{pmatrix} = \begin{pmatrix} \pm 1 & \nu \\ 0 & \pm 1 \end{pmatrix} \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} = \begin{pmatrix} \pm a & \pm b + \nu d \\ 0 & \pm d \end{pmatrix} \stackrel{!}{=} \begin{pmatrix} a' & b' \\ 0 & d' \end{pmatrix}.$$

Es folgt $d' = \pm d$ und da d, d' > 0 nach Voraussetzung bereits d = d'. Die Diagonalelemente von N sind also beide +1 und es folgt $b' = b + \nu d$. Wegen d = d' stammen b, b' beide aus dem gleichen Restsystem modulo d. Da sie sich nur um ein Vielfaches von d unterscheiden, folgt

$$\begin{pmatrix} a' & b' \\ 0 & d' \end{pmatrix} = \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} .$$

g. e. s.

Definition 2.6. Sei $n \in \mathbb{N}$. Man setze dann für $f \in M_k$

$$f|T(n) := n^{\frac{k}{2}-1} \sum_{M \in \Gamma(1) \setminus \mathcal{M}(n)} f|_k M.$$

Satz 2.7.

- (i) Durch T(n) wird eine lineare Abbildung $M_k \to M_k$ definiert. Diese lässt S_k invariant (gemeint ist: Spitzenformen werden auf Spitzenformen geschickt). Man nennt T(n) den n-ten Hecke-Operator.
- (ii) Ist $f = \sum_{m \ge 0} a(m)q^m \in M_k$, so gilt

$$f|T(n) = \sum_{m\geqslant 0} \left(\sum_{d|(m,n)} d^{k-1}a\left(\frac{mn}{d^2}\right)\right) q^m.$$

Beachte: Der konstante Term von f|T(n) ist gleich

$$\sum_{d|n} d^{k-1}a(0) = \sigma_{k-1}(n)a(0).$$

Beispiel 2.8. Sei n = p prim. Dann ist

$$f|T(p) = \sum_{m \geqslant 0} \left(\sum_{d|(m,p)} d^{k-1} a\left(\frac{mp}{d^2}\right) \right) q^m$$
$$= \sum_{m \geqslant 0} \left(a(mp) + p^{k-1} a\left(\frac{m}{p}\right) \right) q^m,$$

wobei $a\left(\frac{m}{p}\right) := 0$ für $p \not\mid m$, denn

$$\sum_{d \mid (m,p)} d^{k-1} a\left(\frac{mn}{d^2}\right) = a(mp) + \begin{cases} 0 & \text{falls } p \not \mid m \\ p^{k-1} a\left(\frac{m}{p}\right) & \text{falls } p \mid m \end{cases}.$$

Beweis.

- (i) Nach den Überlegungen in Abschnitt 2.1 wissen wir, dass f|T(n) das Transformationsverhalten einer Modulform vom Gewicht k besitzt. Auch ist f|T(n) als Summe holomorpher Funktionen selbst holomorph auf \mathbb{H} . Zu zeigen verbleibt noch, dass f|T(n) holomorph in ∞ ist und den Raum S_k invariant lässt. Beides folgt direkt aus Teil ii) des Satzes.
- (ii) Benutze Lemma 2.5, damit folgt

$$f|T(n) = n^{\frac{k}{2}-1} \sum_{\substack{ad=n\\d>0\\b \bmod d}} f|_k \binom{a\ b}{0\ d}$$

$$= n^{\frac{k}{2} - 1} \sum_{\substack{ad = n \\ d > 0 \\ b \bmod d}} n^{\frac{k}{2}} d^{-k} f\left(\frac{az + b}{d}\right)$$

$$= n^{k - 1} \sum_{\substack{m \geqslant 0 \\ ad = n, \ d > 0 \\ b \bmod d}} d^{-k} a(m) e^{2\pi i m \frac{az + b}{d}}$$

$$= n^{k - 1} \sum_{\substack{m \geqslant 0 \\ d \bmod d}} \left(d^{-k} a(m) e^{2\pi i m \frac{n}{d^2} z} \cdot \sum_{b \bmod d} e^{2\pi i m \frac{b}{d}} \right).$$

Es gilt nun

$$\sum_{b \bmod d} e^{2\pi i m \frac{b}{d}} = \begin{cases} 0 & \text{falls } d \nmid m \\ d & \text{falls } d | m \end{cases},$$

denn allgemein ist $1+q+\dots q^{N-1}=\frac{q^N-1}{q-1}=0$, falls $q\neq 1$ und $q^N=1$. Wende dies an mit $q=e^{2\pi i\frac{m}{d}},\ N=d$. Damit erhalten wir, wobei zu beachten ist, dass die Vertauschungen wegen absoluter Konvergenz gerechtfertigt sind

$$f|T(n) = n^{k-1} \sum_{\substack{m \geqslant 0 \\ m \equiv 0 \bmod d \\ d|n, \ d > 0}} d^{-k+1}a(m)e^{2\pi i \frac{mn}{d^2}z} \qquad (m \mapsto md)$$

$$= \sum_{\substack{m \geqslant 0 \\ d|n, \ d > 0}} \left(\frac{n}{d}\right)^{k-1}a(md)e^{2\pi i \frac{mn}{d}z} \qquad \left(d \mapsto \frac{n}{d}\right)$$

$$= \sum_{\substack{m \geqslant 0 \\ d|n, \ d > 0}} d^{k-1}a\left(\frac{mn}{d}\right)e^{2\pi i m dz} \qquad (md \mapsto m)$$

$$= \sum_{\substack{m \geqslant 0 \\ m \equiv 0 \bmod d \\ d|n, \ d > 0}} d^{k-1}a\left(\frac{mn}{d^2}\right)e^{2\pi i m z}$$

$$= \sum_{\substack{m \geqslant 0 \\ d|n, \ d > 0}} \left(\sum_{\substack{d|m, \ d|n}} d^{k-1}a\left(\frac{mn}{d^2}\right)\right)q^m.$$

g. e. s.

Satz 2.9. Für alle $m, n \in \mathbb{N}$ gilt

$$T(m)T(n) = \sum_{d|(m,n)} d^{k-1}T\left(\frac{mn}{d^2}\right).$$

Speziell gilt (vergleiche mit Ramanujan- τ -Funktion):

(i)
$$T(n)T(m) = T(mn)$$
 falls $ggT(m, n) = 1$.

(ii)
$$T(p)T(p^{\nu}) = T(p^{\nu+1}) + p^{k-1}T(p^{\nu-1})$$
 für p prim und $\nu \geqslant 1$.

Beachte dass (ii) äquivalent ist zur Identität

$$\frac{1}{1 - T(p)X + p^{k-1}X^2} = \sum_{\nu \geqslant 0} T(p^{\nu})X^{\nu}.$$

Beweis. in mehreren Schritten: 1. Schritt: Beweis von (i): Seien m, n teilerfremd. Benutze Lemma 2.5 und Satz 2.7, dann gilt

$$f|T(m)T(n) = (mn)^{\frac{k}{2}-1} \sum_{\substack{ad=m\\d>0,\ b \bmod d}} \left(\sum_{\substack{a'd'=n\\d'>0,\ b' \bmod d'}} f|_k {a b \choose 0 \ d} {a' \choose 0 \ d'} \right)$$

$$= (mn)^{\frac{k}{2}-1} \sum_{\substack{ad=m\\d>0,\ b \bmod d}} \left(\sum_{\substack{a'd'=n\\d'>0,\ b' \bmod d'}} f|_k {\binom{aa'\ ab'+bd'}{0\ dd'}} \right).$$

Durchläuft d alle positiven Teiler von m und d' alle positiven Teiler von n, so durchläuft D := dd' alle positiven Teiler von mn, denn ggT(m,n) = 1. Setzt man A := aa', so gilt dann AD = mn. Ferner gilt: Durchläuft b ein volles Restsystem modd und b' ein solches modd', so durchläuft B = ab + bd' ein volles Restsystem moddd', denn in der Tat genügt es zu zeigen, dass diese Zahlen inkongruent moddd' sind, denn dann sind dies genau dd' paarweise inkongruente Zahlen. Angenommen

$$ab_1' + b_1d' \equiv ab_2' + b_2d' \mod dd'$$
,

dann gilt

$$a(b_1' - b_2') \equiv d'(b_2 - b_1) \mod dd'$$
.

Dies impliziert $a(b'_1 - b'_2) \equiv 0 \mod d'$. Aber ggT(a, d') = 1, denn a|m und d'|n und ggT(m, n) = 1 nach Voraussetzung. Also folgt $b'_1 \equiv b'_2 \mod d'$, also $b'_1 = b'_2$. Es folgt jetzt $b_2 \equiv b_1 \mod d$, also $b_2 = b_1$. Also folgt die Behauptung. Und damit

$$f|T(m)T(n) = (mn)^{\frac{k}{2}-1} \sum_{\substack{AD = mn \\ D > 0, \ B \bmod D}} f|_k {A \ B \choose 0 \ D} = f|_k T(mn).$$

2. Schritt: Beweis von (ii): Es gilt nach Lemma 2.5 und Satz 2.7:

$$f|T(p) = p^{\frac{k}{2}-1} \left(f|_k \binom{p \ 0}{0 \ 1} + \sum_{\mu \bmod p} f|_k \binom{1 \ \mu}{0 \ p} \right)$$

und

$$f|T(p^{\nu}) = (p^{\nu})^{\frac{k}{2}-1} \sum_{\substack{0 \leqslant \beta \leqslant \nu \\ b \bmod p^{\beta}}} f|_{k} {p^{\nu-\beta} \choose 0 p^{\beta}}.$$

Dann

$$f|T(p)T(p^{\nu}) = (p^{\nu+1})^{\frac{k}{2}-1} \left(\sum_{\substack{0 \leqslant \beta \leqslant \nu \\ b \bmod p^{\beta}}} f|_{k} \binom{p\ 0}{0\ 1} \binom{p^{\nu-\beta}\ b}{0\ p^{\beta}} + \sum_{\substack{0 \leqslant \beta \leqslant \nu \\ b \bmod p^{\beta} \\ \mu \bmod p}} f|_{k} \binom{1\ \mu}{0\ p^{\nu-\beta}\ b} \binom{p^{\nu-\beta}\ b}{0\ p^{\beta}} \right) \right)$$

$$= (p^{\nu+1})^{\frac{k}{2}-1} \left(\sum_{\substack{0 \leqslant \beta \leqslant \nu \\ b \bmod p^{\beta}}} f|_{k} {p^{\nu+1-\beta} pb \choose 0 p^{\beta}} + \sum_{\substack{0 \leqslant \beta \leqslant \nu \\ b \bmod p^{\beta} \\ \mu \bmod p}} f|_{k} {p^{\nu-\beta} b + \mu p^{\beta} \choose 0 p^{\beta+1}} \right). \quad (2.1)$$

Betrachte 2. Summe in (2.1): Durchläuft b ein Restsystem modulo p^{β} und μ ein Restsystem modulo p, so durchläuft $b + \mu p^{\beta}$ ein solches modulo $p^{\beta+1}$ (denn insgesamt $p^{\beta+1}$ Zahlen, paarweise inkongruent modulo $p^{\beta+1}$). Man sieht daher, dass die 2. Summe gleich

$$f|T(p^{\nu+1}) - (p^{\nu+1})^{\frac{k}{2}-1}f|_k(p^{\nu+1})^{\frac{1}{2}}$$

ist.

Betrachte 1. Summe in (2.1). Diese ist gleich

$$(p^{\nu+1})^{\frac{k}{2}-1} \left(f|_k \binom{p^{\nu+1} \ 0}{0 \ 1} + \sum_{\substack{1 \le \beta \le \nu \\ b \bmod p^{\beta}}} f|_k \binom{p^{\nu+1-\beta} \ pb}{0 \ p^{\beta}} \right) .$$

Man erhält also

$$f|_{k}T(p)T(p^{\nu}) = f|_{T}(p^{\nu+1}) + (p^{\nu+1})^{\frac{k}{2}-1} \underbrace{\sum_{\substack{1 \leqslant \beta \leqslant \nu \\ b \bmod p^{\beta}}} f|_{k}\binom{p\ 0}{0\ p}|_{k}\binom{p^{\nu-\beta} \ b}{0\ p^{\beta-1}}}_{p^{\beta-1}}$$

In R ersetze β durch $\beta + 1$, erhalte

$$R = \sum_{\substack{0 \le \beta \le \nu - 1 \\ b \bmod p^{\beta + 1}}} f|_k {\binom{p^{\nu - 1 - \beta} b}{0 p^{\beta}}},$$

Man setze $b = \widetilde{b} + \mu p^{\beta}$ wobei μ modulo p und \widetilde{b} modulo p^{β} läuft:

$$R = \sum_{\substack{0 \leqslant \beta \leqslant \nu - 1 \\ \widetilde{b} \bmod p^{\beta} \\ \mu \bmod p}} f|_{k} {1 \choose 0 \ 1}|_{k} {p^{\nu - 1 - \beta} \widetilde{b} \atop 0 \ p^{\beta}}.$$

Da f Periode 1 hat, erhält man

$$(p^{\nu+1})^{\frac{k}{2}-1}R = p^{k-1}(p^{\nu-1})^{\frac{k}{2}-1} \sum_{\substack{0 \leqslant \beta \leqslant \nu-1\\ \widetilde{b} \bmod p^{\beta}}} f|_k {p^{\nu-1-\beta} \ \widetilde{b} \choose 0 \ p^{\beta}} = p^{k-1}f|_T (p^{\nu-1}) \,.$$

3. Schritt: zeige durch Induktion nach $\nu \in \mathbb{N}$ (Übungsaufgabe), dass

$$T(p^{\nu})T(p^{s}) = \sum_{\alpha=0}^{\min\{\nu, s\}} (p^{\alpha})^{k-1}T(p^{\nu+s-2\alpha}),$$

was sich mit Teilern der Form $d = p^{\alpha}$ umschreiben lässt zu

$$T(p^{\nu})T(p^s) = \sum_{d|(p^{\nu},p^s)} d^{k-1}T(\frac{p^{\nu+s}}{d^2}).$$

4. Schritt: der allgemeine Fall! Induktion über die verschiedenen Primteiler von m. Sei $m = p^{\nu}m'$, $n = p^{s}n'$ mit $p \nmid m'$, $p \nmid n'$. Dann folgt mit i), dass

$$T(m)T(n) = T(m'p^{\nu})T(n'p^s) = T(m')T(p^{\nu})T(n')T(p^s)$$
$$= T(m')T(n')T(p^{\nu})T(p^s).$$

Wendet man dieses Argument nun induktiv auf T(m')T(n') und weitere gemeinsame Primteiler an, so kann man davon ausgehen, dass m', n' nach endlich vielen Iterationen teilerfremd sind. Dann kann man mit i) und Schritt 3 schreiben

$$T(m)T(n) = \left(\sum_{d \mid (m',n')} d^{k-1}T\left(\frac{m'n'}{d^2}\right)\right) \left(\sum_{t \mid (p^{\nu},p^s)} t^{k-1}T\left(\frac{p^{\nu}p^s}{t^2}\right)\right),$$

was sich nach erneuter Anwendung von i) vereinfacht zu

$$T(m)T(n) = \sum_{\substack{d \mid (m', n') \\ t \mid (p^{\nu}, p^{s})}} (dt)^{k-1} T\left(\frac{p^{\nu}m'p^{s}n'}{(dt)^{2}}\right)$$

und mit D = dt schließlich zu

$$T(m)T(n) = \sum_{D|(m,n)} D^{k-1}T\left(\frac{mn}{D^2}\right).$$

g. e. s.

2.3. Folgerungen

Satz 2.10. Die Hecke-Operatoren T(n) für $n \in \mathbb{N}$ erzeugen eine kommutative \mathbb{C} -Algebra von Endomorphismen von M_k , welche S_k stabil lässt. Die Algebra wird sogar bereits von den Hecke-Operatoren T(p) für p prim erzeugt.

Beweis. Die Kommutativität folgt direkt aus Satz 2.9. Wir zeigen noch, dass für beliebiges $n \in \mathbb{N}$ der Hecke-Operator T(n) durch Hecke-Operatoren der Form T(p) mit p prim darstellbar ist. Sei dazu $n = \prod_{i=1}^r p_i^{\alpha_i}$ die Primfaktorzerlegung von n, dann ist nach Satz 2.9, i)

$$T(n) = \prod_{i=1}^{r} T(p_i^{\alpha_i}).$$

Ferner gilt nach Satz 2.9, ii) für $\nu \geqslant 1$

$$T(p)T(p^{\nu}) = T(p^{\nu+1}) + p^{k-1}T(p^{\nu-1}),$$

also lässt sich beispielsweise durch Wahl von $\nu=1$ und Umstellen der Gleichung der Hecke-Operator $T(p^2)$ als Funktion von $T(p^1)=T(p)$ und $T(p^0)=T(1)=\mathrm{id}_{M_k}$ ausdrücken. Induktiv gilt dies für alle Hecke-Operatoren der Form $T(p_i^{\alpha_i})$, sodass sich T(n) bereits als Funktion der $T(p_i)$ darstellen lässt. Damit erzeugen die Hecke-Operatoren T(p) mit p prim bereits die gesamte Algebra.

Definition 2.11. Sei $f \in M_k$ mit k > 0. Dann heißt f HECKE-EIGENFORM, falls gilt

- (i) $f \not\equiv 0$,
- (ii) $f|T(n) = \lambda(n)f$ für alle $n \in \mathbb{N}$, wobei $\lambda(n) \in \mathbb{C}$.

Satz 2.12. Sei $f = \sum_{m \ge 0} a(m)q^m \in M_k$ eine Hecke-Eigenform mit $f|T(n) = \lambda(n)f$ für alle $n \in \mathbb{N}$, dann gilt

- (i) $a(n) = \lambda(n) \cdot a(1)$ für alle $n \in \mathbb{N}$,
- (ii) $a(1) \neq 0$,
- (iii)

$$\lambda(m)\lambda(n) = \sum_{d \mid (m,n)} d^{k-1}\lambda\left(\frac{mn}{d^2}\right)$$

für alle $m, n \in \mathbb{N}$. Speziell ist für (m, n) = 1

$$\lambda(m)\lambda(n) = \lambda(mn)$$

sowie für $\nu \geqslant 1$ und p prim

$$\lambda(p)\lambda(p^{\nu}) = \lambda(p^{\nu+1}) + p^{k-1}\lambda(p^{\nu-1}).$$

Beweis.

(i) Nach Satz 2.7, ii) gilt

$$\lambda(n)f = f|T(n) = \sum_{m \geqslant 0} \left(\sum_{d|(m,n)} d^{k-1}a\left(\frac{mn}{d^2}\right)\right)q^m.$$

Koeffizientenvergleich bei q^1 liefert sofort $\lambda(n) \cdot a(1) = a(n)$.

- (ii) Angenommen, a(1) = 0. Dann ist nach i) auch a(n) = 0 für alle $n \in \mathbb{N}$. Somit ist f = a(0) konstant und daher in M_0 . Da für eine Hecke-Eigenform $f \in M_k$ nach Definition k > 0 gefordert wird, folgt aus $f \in M_0 \cap M_k$ bereits $f \equiv 0$, was im Widerspruch zur Definition der Hecke-Eigenformen steht.
- (iii) Folgt aus Satz 2.9 und wegen $f \not\equiv 0$. Genauer gilt

$$f|T(m)T(n) = \sum_{d|(m,n)} d^{k-1}f|T\left(\frac{mn}{d^2}\right) \Longrightarrow \lambda(m)\lambda(n) = \sum_{d|(m,n)} d^{k-1}\lambda\left(\frac{mn}{d^2}\right).$$

g. e. s.

Definition 2.13. Man nennt $f = \sum_{m \ge 0} a(m)q^m$ eine normalisierte Hecke-Eigenform, falls a(1) = 1.

Bemerkung 2.14. Durch Division durch $a(1) \neq 0$ lässt sich jede Hecke-Eigenform normalisieren. Beachte jedoch, dass zum Beispiel die "normalisierten Eisensteinreihen" E_k zwar Hecke-Eigenformen, aber keine normalisierten Hecke-Eigenformen sind. Die beiden Normalisierungsbegriffe unterscheiden sich also.

Frage: Gibt es immer Hecke-Eigenformen? Gibt es vielleicht sogar eine Basis von Hecke-Eigenformen?

Bemerkung 2.15.

(i) Man zeigt "leicht", dass die Eisensteinreihe

$$E_k = 1 - \frac{2k}{B_k} \sum_{n \ge 1} \sigma_{k-1}(n) q^n$$
 mit $\sigma_{k-1}(n) = \sum_{d|n} d^{k-1}$

eine Hecke-Eigenform ist mit $E_k|T(n) = \sigma_{k-1}(n)E_k$ für alle $n \ge 1$.

In der Tat: Der konstante Term von $E_k|T(n)$ ist gleich $\sigma_{k-1}(n)$, siehe Satz 2.7. Die höheren Terme ergeben sich nach demselben Satz als

$$-\frac{2k}{B_k} \sum_{d \mid (m,n)} d^{k-1} \sigma_{k-1} \left(\frac{mn}{d^2} \right) = -\frac{2k}{B_k} \sigma_{k-1}(m) \sigma_{k-1}(n)$$

wegen

$$\sum_{d \mid (m,n)} d^{\alpha} \sigma_{\alpha} \left(\frac{mn}{d^2} \right) = \sigma_{\alpha}(m) \sigma_{\alpha}(n) .$$

für beliebiges $\alpha \in \mathbb{N}$. Diese Identität lässt sich leicht induktiv zeigen (Übungsaufgabe), besitzt jedoch nur für $\alpha = k-1$ im Kontext der Modulformen eine sinnvolle Interpretation.

(ii) Es ist $S_{12} = \mathbb{C}\Delta$, wobei $\Delta = \frac{1}{1728}(E_4^3 - E_6^2) = \sum_{n \geqslant 1} \tau(n)q^n$ mit $\tau(n) \in \mathbb{Z}$ und $\tau(1) = 1$. Daher ist Δ eine normalisierte Hecke-Eigenform in S_{12} . Insbesondere ist

$$\begin{split} \tau(m)\tau(n) &= \sum_{d|(m,n)} d^{11}\tau\left(\frac{mn}{d^2}\right)\,,\\ \tau(m)\tau(n) &= \tau(mn) & \text{für } (m,n) = 1,\\ \tau(p)\tau(p^\nu) &= \tau(p^{\nu+1}) + p^{11}\tau(p^{\nu-1}) & \text{für } p \text{ prim.} \end{split}$$

(iii) Man kann S_k mit einem Skalarprodukt versehen, derart dass die T(n) hermitesch bezüglich dieses Skalarproduktes sind. Dann folgt aus der Linearen Algebra bereits, dass die T(n) simultan diagonalisierbar sind. Dies garantiert die Existenz einer Basis von Hecke-Eigenformen.

Das Petersson'sche Skalarprodukt

3.1. Invariantes Maß und Skalarprodukt

Ziel: Definition eines "natürlichen" Skalarprodukts auf S_k . Hierzu benötigt man zunächst ein $\Gamma(1)$ -invariantes Maß auf \mathbb{R}^2 .

Definition 3.1. Für $z = x + iy \in \mathbb{H}$ setze man

$$\mathrm{d}\omega(z) := \frac{\mathrm{d}x\,\mathrm{d}y}{y^2} \,.$$

Satz 3.2. Die Differentialform $dw = \frac{dy \, dy}{y^2}$ für $z = x + iy \in \mathbb{H}$ ist $SL_2(\mathbb{R})$ -invariant, d. h. $dw(M \circ z) = dw(z)$ für alle $M \in SL_2(\mathbb{R})$.

Beweis. Es gilt $d\omega(z) = \frac{i}{2y^2} dz \overline{dz}$, denn

$$dz \overline{dz} = (dx + i dy)(dx - i dy)$$

$$= dx dx - i dx dy + i dy dx + dy dy$$

$$= 0 - i dx dy - i dx dy + 0$$

$$= -2i dx dy.$$

Sei nun $M=\left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix} \right) \in \mathrm{SL}_2(\mathbb{R}),$ dann folgt unter Verwendung von

$$\frac{d(M \circ z)}{dz} = \frac{d\frac{az+b}{cz+d}}{dz} = \frac{a(cz+d) - (az+b)c}{(cz+d)^2} = \frac{1}{(cz+d)^2}$$

die Behauptung nach

$$d\omega(M \circ z) = \frac{i}{2(\operatorname{Im}\ (M \circ z))^2} \, d(M \circ z) \, \overline{d(M \circ z)}$$

$$= \frac{i}{2\frac{y^2}{|cz+d|^4}} \frac{\mathrm{d}z}{(cz+d)^2} \overline{\frac{\mathrm{d}z}{(cz+d)^2}}$$

$$= \frac{i}{2\frac{y^2}{|cz+d|^4}} \frac{\mathrm{d}z}{(cz+d)^2} \overline{\frac{\mathrm{d}z}{(cz+d)^2}}$$

$$= \frac{i|cz+d|^4}{2y^2} \cdot \frac{1}{|cz+d|^4} \cdot \mathrm{d}z \overline{\mathrm{d}z}$$

$$= \frac{i}{2y^2} \, \mathrm{d}z \, \overline{\mathrm{d}z}$$

$$= \mathrm{d}\omega(z).$$

g. e. s.

Ansatz: Seien $f, g \in S_k$, dann setze

$$\langle f, g \rangle := \int_{\overline{\mathcal{F}}} y^k f(z) \overline{g(z)} \, d\omega,$$

wobei \mathcal{F} ein Fundamentalbereich ist.

Bemerkung 3.3. Sei $\eta = \frac{\mathrm{d}z}{y}$. Dann gilt $\mathrm{d}\eta = \frac{\mathrm{d}x\,\mathrm{d}y}{y^2}$, denn

$$\mathrm{d}\eta = \,\mathrm{d}\Big(\frac{\,\mathrm{d}x}{y} + i\frac{\,\mathrm{d}y}{y}\Big) = -\frac{1}{y^2}\,\mathrm{d}y\,\mathrm{d}x + i\Big(-\frac{1}{y^2}\Big)\,\mathrm{d}y\,\mathrm{d}y = \frac{\,\mathrm{d}x\,\mathrm{d}y}{y^2}\,.$$

Erinnerung. Eine Teilmenge $\mathcal{F} \subseteq \mathbb{H}$ heißt Fundamentalbereich (für $\Gamma(1)$), falls gilt:

- (i) \mathcal{F} ist offen,
- (ii) für alle $z \in \mathbb{H}$ existiert $M \in \Gamma(1)$ mit $M \circ z \in \overline{\mathcal{F}}$,
- (iii) sind $z_1, z_2 \in \mathcal{F}$ und $z_2 = M \circ z_1$ mit $M \in \Gamma(1)$, dann gilt $M = \pm E$ und $z_1 = z_2$.

Beobachtung: Für jede Teilmenge $A\subseteq\mathbb{C}\cong\mathbb{R}^2$ ist der Rand ∂A abgeschlossen, daher meßbar. Wir werden oft fordern, dass ∂F eine Nullmenge ist.

Beispiel 3.4. Der Rand des Standardfundamentalbereich

$$\mathcal{F}_1 = \left\{ z = x + iy \in \mathbb{H} \mid |x| < \frac{1}{2}, |z| > 1 \right\}$$

ist eine Nullmenge.

Satz 3.5. Seien \mathcal{F}_1 und \mathcal{F}_2 Fundamentalbereiche derart, dass ∂F_1 und ∂F_2 Nullmengen sind. Sei $f: \mathbb{H} \to \mathbb{C}$ meßbar und $\Gamma(1)$ -invariant, d. h. $f(M \circ z) = f(z)$ für alle $M \in \Gamma(1)$. Ferner gelte

$$\int_{\overline{\mathcal{F}_1}} |f| \, \mathrm{d}w < \infty \,,$$

also dass |f| über $\overline{\mathcal{F}}_1$ integrierbar ist (dies impliziert, dass f über $\overline{\mathcal{F}}_1$ integrierbar ist).

Dann ist f auch über \overline{F}_2 integrierbar und

$$\int_{\overline{\mathcal{F}_1}} f \, \mathrm{d}w = \int_{\overline{\mathcal{F}_2}} f \, \mathrm{d}w.$$

Beweis. Nach Eigenschaft (ii) eines Fundamentalbereichs gilt (mit $\Gamma(1)' = \Gamma(1)/_{\pm E}$)

$$\mathbb{H} = \bigcup_{M \in \Gamma(1)'} M^{-1} \circ \overline{\mathcal{F}_1} = \bigcup_{M \in \Gamma(1)'} M \circ \overline{\mathcal{F}_2}.$$

Nach Eigenschaft (iii) gilt $M \circ \mathcal{F}_1 \cap N \circ \mathcal{F}_1 = \emptyset$ für $M \neq \pm N$. Da $\overline{\mathcal{F}_1} = \mathcal{F}_1 \cup \partial \mathcal{F}_1$ und $\partial \mathcal{F}_1$ eine Nullmenge, folgt

$$M\circ\overline{\mathcal{F}_1}\cap N\circ\overline{\mathcal{F}_1}$$
eine Nullmenge für $M\neq\pm N\,,$

denn

$$M \circ \overline{\mathcal{F}_1} \cap N \circ \overline{\mathcal{F}_1} = M \circ (\mathcal{F}_1 \cup \partial \mathcal{F}_1) \cap N \circ (\mathcal{F}_1 \cup \partial \mathcal{F}_1)$$
$$= (M \circ \mathcal{F}_1 \cup M \circ (\partial \mathcal{F}_1)) \cap (N \circ \mathcal{F}_1 \cup N \circ (\partial \mathcal{F}_1))$$
$$= (M \circ \mathcal{F}_1 \cap N \circ \mathcal{F}_1) \cup (M \circ \mathcal{F}_1 \cap N \circ (\partial \mathcal{F}_1)) \cup \dots$$

Es gilt

$$\int_{\overline{\mathcal{F}_1}} f \, \mathrm{d}w = \int_{\mathbb{H} \cap \overline{\mathcal{F}_1}} f \, \mathrm{d}w = \int_{\substack{M \in \Gamma(1)'}} M \circ \overline{\mathcal{F}_2} \cap \overline{\mathcal{F}_1} f \, \mathrm{d}w \,,$$

wobei zu beachten ist, dass es sich um eine abzählbare Vereinigung von meßbaren Mengen handelt. Da die paarweisen Durchschnitte jeweils Maß Null haben, gilt die abzählbare Additivität des Integrals:

$$\int_{\overline{\mathcal{F}_1}} f \, \mathrm{d}w = \sum_{M \in \Gamma(1)'} \int_{M \circ \overline{\mathcal{F}_2} \cap \overline{\mathcal{F}_1}} f \, \mathrm{d}w = \sum_{M \in \Gamma(1)'} \int_{\overline{\mathcal{F}_2} \cap M^{-1} \circ \overline{\mathcal{F}_1}} f(M \circ z) \, \mathrm{d}w (M \circ z)$$

$$= \sum_{M \in \Gamma(1)'} \int_{\overline{\mathcal{F}_2} \cap M^{-1} \circ \overline{\mathcal{F}_1}} f \, \mathrm{d}w = \dots = \int_{\overline{\mathcal{F}_2}} f \, \mathrm{d}w.$$

g. e. s.

Beispiel 3.6. Für jeden Fundamentalbereich \mathcal{F} , so dass $\partial \mathcal{F}$ eine Nullmenge ist, gilt

$$\operatorname{vol}(\Gamma(1)\backslash\mathbb{H}) = \int_{\overline{F}} dw = \frac{\pi}{3} < \infty.$$

Beweis. Es genügt nach Satz 3.5 den Fall von $\mathcal{F} = \mathcal{F}_1$ zu betrachten, wobei \mathcal{F}_1 der Standard-Fundamentalbereich ist (siehe Beispiel 3.4).

Es gilt für $\mathcal{F}_c := \mathcal{F}_1 \cap \{ z \in \mathbb{H} \mid y \leqslant c \}$

$$\int_{\overline{F_1}} \frac{\mathrm{d}x \, \mathrm{d}y}{y^2} = \lim_{c \to \infty} \int_{\overline{F_2}} \frac{\mathrm{d}x \, \mathrm{d}y}{y^2} = \lim_{c \to \infty} \int_{\overline{F_2}} \mathrm{d}\eta = \lim_{c \to \infty} \int_{\partial \overline{F_2}} \frac{\mathrm{d}z}{y},$$

wobei die letzte Gleichheit wegen dem Satz von Stokes und Bemerkung 3.3 folgt.

Das Integral über die Gerade z(t) = ic + t für $t \in [-\frac{1}{2}, \frac{1}{2}]$ ergibt

$$\int_{\frac{1}{2}}^{-\frac{1}{2}} \frac{1}{c} dt = -\frac{1}{c} \xrightarrow{c \to \infty} 0.$$

Die Integrale über die beiden Geradenstücke heben sich auf, wegen entgegengesetzer Orientierung und da y invariant unter $z\mapsto z+1$. Damit bleibt das Integral über den Kreisbogen, dieser wird parametrisiert durch

$$z(t) = e^{it} = \cos t + i \sin t$$
 für $\frac{2\pi}{3} \geqslant t \geqslant \frac{\pi}{3}$.

Das Integral muss hierbei reellwertig sein und hat damit den Wert

$$\int_{\frac{2\pi}{3}}^{\frac{\pi}{3}} \frac{i(\cos t + i\sin t)}{\sin t} dt = \int_{\frac{2\pi}{3}}^{\frac{\pi}{3}} \operatorname{Re}\left(\frac{i\cos t - \sin t}{\sin t}\right) dt = \int_{\frac{2\pi}{3}}^{\frac{\pi}{3}} (-1) dt = \frac{2\pi}{3} - \frac{\pi}{3} = \frac{\pi}{3}.$$

g. e. s.

Satz 3.7. Für $f \in M_k$ setze man $g(z) := y^{\frac{k}{2}} |f(z)|$ für $z \in \mathbb{H}$. Dann gilt

- (i) g ist invariant unter $\Gamma(1)$.
- (ii) Ist $f \in S_k$, dann ist g auf \mathbb{H} beschränkt.

Beweis.

(i) Es gilt

$$g\left(\frac{az+b}{cz+d}\right) = \left(\operatorname{Im}\left(\frac{az+b}{cz+d}\right)\right)^{\frac{k}{2}} \left| f\left(\frac{az+b}{cz+d}\right) \right| = \left(\frac{y}{|cz+d|^2}\right)^{\frac{k}{2}} |cz+d|^k |f(z)| = g(z).$$

(ii) Es ist $\mathbb{H} = \bigcup_{M \in \Gamma(1)} M \circ \overline{\mathcal{F}_1}$. Da nach (i) g invariant unter $\Gamma(1)$ ist, genügt es zu zeigen, dass g auf $\overline{\mathcal{F}_1}$ beschränkt ist. Aber $\overline{\mathcal{F}_c} := \overline{\mathcal{F}_1} \cap \{z \in \mathbb{H} \mid y \leqslant c\} \subseteq \overline{\mathcal{F}_1}$ ist kompakt für c > 0 beliebig. Wegen Stetigkeit genügt es also zu zeigen, dass g für $y \to \infty$ beschränkt ist. Sei $f(z) = \sum_{n \geqslant 1} a(n)e^{2\pi inz}$ (beachte $n \geqslant 1$ wegen $f \in S_k$), dann gilt für $y \geqslant c$

$$|g(z)| = y^{\frac{k}{2}} |f(z)| = y^{\frac{k}{2}} \left| e^{2\pi i z} \sum_{n \geqslant 1} a(n) e^{2\pi i (n-1)z} \right|$$

$$\leqslant y^{\frac{k}{2}} e^{-2\pi y} \left(\sum_{n \geqslant 1} |a(n)| e^{-2\pi (n-1)y} \right)$$

$$\leqslant y^{\frac{k}{2}} e^{-2\pi y} e^{2\pi c} \left(\sum_{n \geqslant 1} |a(n)| e^{-2\pi nc} \right)$$

$$= \frac{y^{\frac{k}{2}}}{e^{2\pi y}} \cdot K \xrightarrow{y \to \infty} 0.$$

g. e. s.

Definition 3.8. Für $f, g \in M_k$ derart, dass $f \cdot g \in S_{2k}$, definieren wir das Petersson-Skalarprodukt durch

$$\langle f, g \rangle := \int_{\overline{\mathcal{F}}} f(z) \overline{g(z)} y^k \, \mathrm{d}w \,,$$
 (3.1)

wobei \mathcal{F} ein Fundamentalbereich wie oben ist.

Satz 3.9.

(i) (3.1) ist absolut konvergent und hängt nicht von der Auswahl von \mathcal{F} ab.

(ii) $S_k \times S_k \to \mathbb{C}$, $(f, g) \mapsto \langle f, g \rangle$ ist ein Skalarprodukt auf S_k .

Beweis.

(i) Beachte $fg \in S_{2k}$ und $|f(z)\overline{g(z)}|y^k = y^k|f(z)g(z)|$, wende Satz 3.7 (ii) an und bemerke $\int_{\overline{F}} dw < \infty$. Die Unabhängigkeit von \mathcal{F} folgt aus Satz 3.5.

(ii) Klar. *q. e. s.*

3.2. Anwendung: Eine Charakterisierung der Eisensteinreihen

Satz 3.10. Sei $k \in 2\mathbb{Z}$, $k \geqslant 4$. Sei $C_k := \{ f \in M_k \mid \langle f, g \rangle = 0 \ \forall g \in S_k \}$ ein Unterraum von M_k . Dann gilt $C_k = \mathbb{C}E_k$.

Beweis. Der Beweis erfolgt in mehreren Schritten:

Lemma 3.11. Es gilt $M_k = C_k \oplus S_k$ (und bekanntermaßen $M_k = \mathbb{C}E_k \oplus S_k$).

Beweis. Sei $f \in C_k \cap S_k$. Dann $\langle f, f \rangle = 0$, also $f \equiv 0$.

Sei $f \in M_k$. Die Abbildung $S_k \to \mathbb{C}$, $g \mapsto \langle g, f \rangle$ ist ein lineares Funktional. Nach dem Satz von Riesz existiert daher ein eindeutig bestimmtes Element $g_0 \in S_k$, so dass $\langle g, f \rangle = \langle g, g_0 \rangle$ für alle $g \in S_k$. Daher $\langle g, f - g_0 \rangle = 0$ für alle $g \in S_k$, d. h. $\langle f - g_0, g \rangle = 0$ für alle $g \in S_k$. Also ist $f - g_0 \in C_k$ nach Definition und somit

$$f = \underbrace{(f - g_0)}_{\in C_k} + \underbrace{g_0}_{\in S_k}.$$

g. e. s.

Es folgt

$$\dim C_k = \dim M_k - \dim S_k = 1 + \dim S_k - \dim S_k = 1.$$

Daher genügt es zu zeigen, dass $E_k \in C_k$, d. h. $\langle E_k, g \rangle = 0$ für alle $g \in S_k$.

Lemma 3.12. Es qilt

$$E_k(z) = \frac{1}{2} \sum_{M \in \Gamma(1) \cup \Gamma(1)} (1|_k M)(z),$$

wobei $\Gamma(1)_{\infty} = \left\{ \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix} \mid n \in \mathbb{Z} \right\} \ und \ (1|_k M) = (cz + d)^{-k}.$

Beweis. Es gilt $E_k = \frac{1}{2\zeta(k)}G_k$ mit $G_k = \sum_{m,n}' \frac{1}{(mz+n)^k}$. Ist $(m,n) \in \mathbb{Z}^2 \setminus \{(0,0)\}$, so schreibe $(m,n) = \lambda(c,d)$ wobei $\lambda = \operatorname{ggT}(m,n) \in \mathbb{N}$ und $(c,d) \in \mathbb{Z}^2$ mit $\operatorname{ggT}(c,d) = 1$. Also

$$G_k(z) = \underbrace{\zeta(k)}_{=\sum_{\lambda=1}^{\infty} \frac{1}{\lambda^k}} \cdot \sum_{\substack{(c,d) \in \mathbb{Z}^2 \\ \text{ggT}(c,d)=1}} (cz+d)^{-k}$$

und damit

$$E_k = \frac{1}{2} \sum_{\substack{(c,d) \in \mathbb{Z}^2 \\ \text{ggT}(c,d)=1}} (cz+d)^{-k}.$$

Daher genügt es zu zeigen, dass

$$\sum_{M \in \Gamma(1)_{\infty} \setminus \Gamma(1)} (1|_k M)(z) = \sum_{\substack{(c,d) \in \mathbb{Z}^2 \\ \operatorname{ggT}(c,d) = 1}} (cz+d)^{-k}.$$

Jeder Summand links hat die Gestalt $(cz+d)^{-k}$ mit ggT(c,d)=1. Umgekehrt ist zu zeigen: Jedes $(c,d)\in\mathbb{Z}^2$ mit ggT(c,d)=1 lässt sich vervollständigen zu $M=\left(\begin{smallmatrix} a&b\\c&d\end{smallmatrix}\right)\in\Gamma(1)$ eindeutig bis auf Links-Multiplikation eines Elementes in $\Gamma(1)_{\infty}$. Es gilt:

- $\operatorname{ggT}(c,d) = 1$, also exisitieren $a, b \in \mathbb{Z}$ mit ad bc = 1, denn \mathbb{Z} ist ein Hauptidealring. Also $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma(1)$.
- Seien $\binom{a \ b}{c \ d}$, $\binom{a' \ b'}{c \ d} \in \Gamma(1)$. Dann ad bc = 1 = a'd b'c. Also (a a')d = (b b')c, also $\frac{c}{d} = \frac{a a'}{b b'}$. Da ggT(c, d) = 1, folgt a a' = nc und b b' = nd mit $n \in \mathbb{Z}$. Das heißt $\binom{1}{0} \binom{n}{1} \binom{a' \ b'}{c \ d} = \binom{a' + nc \ b' + nd}{c \ d} = \binom{a \ b}{c \ d}$.

g. e. s.

Man kann dies schreiben als

$$E_k(z) = \sum_{M \in \Gamma(1)'_{\infty} \setminus \Gamma(1)'} (1|_k M)(z),$$

wobei $\Gamma(1)' = \Gamma(1)/\{\pm E\}$ und $\Gamma(1)'_{\infty} = \{\begin{pmatrix} \pm 1 & n \\ 0 & \pm 1 \end{pmatrix} \mid n \in \mathbb{Z} \}/\{\pm E\}$.

Sei nun $g \in S_k$, dann ist zu zeigen, dass $\langle E_k, g \rangle = 0$. Nach Definition ist

$$\langle E_k, g \rangle = \int_{\overline{\mathcal{F}}} E_k(z) \overline{g(z)} y^k \, \mathrm{d}w = \int_{\overline{\mathcal{F}}} \left(\sum_{M \in \Gamma(1)'_{\infty} \setminus \Gamma(1)'} (1|_k M)(z) \overline{g(z)} (\operatorname{Im} z)^k \right) \mathrm{d}w(z) \,.$$

Beachte nun

$$(1|_k M)(z)\overline{g(z)}(\operatorname{Im} z)^k = (1|_k M)(z)\overline{g(M \circ z)(1|_k M)(z)}(\operatorname{Im} M \circ z)^k |(1|_k M)(z)|^{-2}$$
$$= \overline{g(M \circ z)}(\operatorname{Im} M \circ z)^k.$$

Sei $\widetilde{\mathcal{F}} := \bigcup_{M \in \Gamma(1)'_{\infty} \setminus \Gamma(1)'} M \circ \overline{\mathcal{F}}$ ein Fundamentalbereich für die Untergruppe $\Gamma(1)'_{\infty} \subseteq \Gamma(1)'$, welche durch $z \mapsto z + n$ operiert. Dann folgt durch Substitution und Vertauschung (aufgrund der absoluten Konvergenz gerechtfertigt)

$$\langle E_k, g \rangle = \sum_{M \in \Gamma(1)' \setminus \Gamma(1)'} \int_{M \circ \overline{\mathcal{F}}} \overline{g(z)} y^{k-2} dx dy = \int_{\widetilde{\mathcal{F}}} \overline{g(z)} y^{k-2} dx dy.$$

Man zeigt formal: Das Integral ist unabhängig von der Auswahl des Fundamentalbereichs \mathcal{G} . Man wähle für \mathcal{G} einen Steifen der Breite 1, etwa $\mathcal{G} = \left\{z = x + iy \in \mathbb{H} \mid |x| < \frac{1}{2}\right\}$. Dann ist

$$\langle E_k, g \rangle = \int_0^\infty \int_{-\frac{1}{2}}^{\frac{1}{2}} \overline{g(z)} y^{k-2} dx dy.$$

Sei nun $g(z)=\sum_{n\geqslant 1}a(n)e^{2\pi inz}=\sum_{n\geqslant 1}a(n)e^{2\pi inx}e^{-2\pi ny}\in S_k$ und daher $\overline{g(z)}=\sum_{n\geqslant 1}\overline{a(n)}e^{-2\pi ny}e^{-2\pi inx}$, dann folgt

$$\langle E_k, g \rangle = \int_0^\infty \int_{-\frac{1}{2}}^{\frac{1}{2}} \left(\sum_{n \ge 1} \overline{a(n)} e^{-2\pi ny} y^{k-2} e^{-2\pi i nx} \right) dx dy = 0$$

durch Vertauschen von Summe und innerem Integral (erlaubt, denn $g \in S_k$) unter Beachtung von $\int_{-\frac{1}{2}}^{\frac{1}{2}} e^{-2\pi i n x} dx = 0$ für $n \neq 0$.

Poincaré-Reihen

Motivation: Die Abbildung $S_k \to \mathbb{C}$, $f \mapsto a_f(n) = n$ -ter Fourierkoeffizient von f ist ein lineares Funktional. Nach dem Darstellungssatz von Fréchet-Riesz existiert für jedes $n \in \mathbb{N}$ ein eindeutig bestimmtes $\widetilde{P}_n \in S_k$ mit

$$a_f(n) = \langle f, \widetilde{P}_n \rangle$$
 für alle $f \in S_k$.

Frage: Kann man \widetilde{P}_n explizit angeben? Antwort: ja!

Definition 4.1. Sei $k \in 2\mathbb{Z}$, $k \geqslant 4$, $n \in \mathbb{N}$. Dann heißt die formale Reihe

$$P_n(z) = \frac{1}{2} \sum_{\substack{(c,d) \in \mathbb{Z}^2 \\ \text{ggT}(c,d)=1 \\ ad-bc=1}} (cz+d)^{-k} e^{2\pi i n \frac{az+b}{cz+d}} \qquad \text{für } z \in \mathbb{H}$$

die n-te Poincaré Reihe vom Gewicht k für $\Gamma(1)$. Summiert wird über alle $(c,d) \in \mathbb{Z}^2$ mit $\operatorname{ggT}(c,d)=1$ und zu jedem solchen Paar ist $(a,b)\in\mathbb{Z}^2$ zu bestimmen, so dass ad-bc=1, d. h. $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma(1)$). Dies ist unabhängig von der Auswahl von a,b, denn ist auch a',b' ein solches Paar, so gilt a'=a+mc, b'=b+md für ein $m\in\mathbb{Z}$ und somit

$$\frac{a'z+b'}{cz+d} = \frac{az+b}{cz+d} + m$$

mit $m \in \mathbb{Z}$ und $e^{2\pi i n m} = 1$.

4.1. Anwendungen

Bemerkung 4.2. Es gilt $P_0 = E_k$, wie man durch Vergleich mit Lemma 3.12 leicht einsieht.

Satz 4.3.

- (i) Die Reihe P_n konvergiert auf Kompakta in \mathbb{H} gleichmäßig absolut, stellt also dort eine holomorphe Funktion dar. Es gilt $P_n \in S_k$ für $n \ge 1$.
- (ii) Es gilt

$$\langle f, P_n \rangle = \frac{(k-2)!}{(4\pi n)^{k-1}} a_f(n)$$

für alle $f \in S_k$ mit $f = \sum_{m \geqslant 1} a_f(m)q^m$.

Beweis.

(i) Wegen $\frac{az+b}{cz+d} \in \mathbb{H}$ ist

$$\left| e^{2\pi i n \frac{az+b}{cz+d}} \right| \leqslant 1$$

und daher

$$\sum_{\substack{(c,d) \in \mathbb{Z}^2 \\ \text{ggT}(c,d) = 1 \\ ad - bc = 1}} |cz + d|^{-k} \cdot \left| e^{2\pi i n \frac{az + b}{cz + d}} \right| \leqslant \sum_{\substack{(c,d) \in \mathbb{Z}^2 \\ \text{ggT}(c,d) = 1 \\ ad - bc = 1}} |cz + d|^{-k} ,$$

sodass die Reihe der Absolutbeträge nach Lemma 3.12 durch die Eisensteinreihe von Gewicht k majorisiert wird. Letztere konvergiert nach FT 2 auf Kompakta in $\mathbb H$ gleichmäßig absolut.

Zeige noch $P_n \in S_k$ für $n \ge 1$. Schreibe zunächst

$$P_n(z) = \frac{1}{2} \sum_{M \in \Gamma(1)_{\infty} \setminus \Gamma(1)} (e^n|_k M)(z)$$

mit $e^n(z):=e^{2\pi inz}$ und beachte, dass $e^n|_kM=e^n$ für $M\in\Gamma(1)_\infty$. Hierbei ist wie in Lemma 3.12

$$\Gamma(1)_{\infty} := \left\{ M \in \mathrm{SL}_2(\mathbb{Z}) \mid M = \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \right\}.$$

Für $P_n \in S_k$ müssen wir zeigen, dass $P_n|_k N = P_n$ für alle $N \in \mathrm{SL}_2(\mathbb{Z})$ (klar, da auch MN ein Vertretersystem für $\Gamma(1)_{\infty} \setminus \Gamma(1)$ bildet) und zudem in $z = i\infty$ verschwindet. Wie im Fall der Eisensteinreihen ist hierfür zu zeigen, dass

$$\lim_{z \to i\infty} P_n(z) = 0 \text{ also } \lim_{\nu \to \infty} P_n(z_{\nu}) = 0$$

für jede Folge von $z_{\nu} \in \mathbb{H}$ mit $z_{\nu} \to i\infty$. Wegen gleichmäßiger Konvergenz gilt

$$\lim_{\nu \to \infty} P_n(z_{\nu}) = \frac{1}{2} \sum_{\substack{(c,d) \in \mathbb{Z}^2 \\ \text{ggT}(c,d) = 1 \\ ad - bc = 1}} \lim_{\nu \to \infty} (cz_{\nu} + d)^{-k} e^{2\pi i n \frac{az_{\nu} + b}{cz_{\nu} + d}}$$

und alle Grenzwerte unter der Summe sind 0. In der Tat ist der Exponentialterm wegen $\frac{az_{\nu}+b}{cz_{\nu}+d} \in \mathbb{H}$ beschränkt und für $c \neq 0$ strebt $(cz_{\nu}+d)^{-k}$ gegen 0. Andererseits ist für c=0 der vordere Term gleich d^{-k} und somit beschränkt, während

$$\frac{az_{\nu}+b}{d} \to i\infty \implies e^{2\pi i n \frac{az_{\nu}+b}{d}} \to 0$$
.

Damit ist alles gezeigt.

(ii) Unter Benutzung der Darstellung

$$P_n(z) = \frac{1}{2} \sum_{M \in \Gamma(1)_{\infty} \setminus \Gamma(1)} (e^n|_k M)(z)$$

zeigt man mit dem gleichen "Konvolutionstrick" wie im Beweis von Satz 3.10, dass

$$\langle f, P_n \rangle = \int_0^\infty \int_{-\frac{1}{2}}^{\frac{1}{2}} f(z) e^{\overline{2\pi i n z}} y^{k-2} \, \mathrm{d}x \, \mathrm{d}y.$$

Man stelle sich hierzu vor, dass $\mathbb H$ als disjunkte Vereinigung von Bildern des exakten Fundamentalbereichs unter Linksmultiplikation mit $M \in \Gamma(1)$ entsteht. Teilt man nun $\Gamma(1)_{\infty}$ heraus, also alle Translationen, so verbleibt noch der Streifen $|x| < \frac{1}{2}$, 0 < y.

Es gilt weiter für beliebiges $f \in S_k$ mit Darstellung $f(z) = \sum_{m \ge 1} a(m)q^m$, wie üblich $q = \exp(2\pi iz)$ und z = x + iy, dass

$$\langle f, P_n \rangle = \int_0^\infty \int_{-\frac{1}{2}}^{\frac{1}{2}} \sum_{m \geqslant 1} a(m) e^{2\pi i m x} e^{-2\pi m y} e^{-2\pi i n x} e^{-2\pi n y} y^{k-2} \, \mathrm{d}x \, \mathrm{d}y$$
$$= \int_0^\infty \int_{-\frac{1}{2}}^{\frac{1}{2}} \sum_{m \geqslant 1} a(m) e^{2\pi i (m-n) x} e^{-2\pi (m+n) y} y^{k-2} \, \mathrm{d}x \, \mathrm{d}y.$$

Wegen

$$\int_{-\frac{1}{2}}^{\frac{1}{2}} e^{2\pi i r x} dx = \delta_{r,0} := \begin{cases} 1, & r = 0 \\ 0, & r \neq 0 \end{cases}$$
 (Kronecker-Delta)

für beliebiges $r \in \mathbb{Z}$ folgt

$$\langle f, P_n \rangle = \int_0^\infty \sum_{m \ge 1} a(m) \delta_{m,n} e^{-2\pi (m+n)y} y^{k-2} \, \mathrm{d}y$$

$$= a(n) \int_0^\infty e^{-4\pi ny} y^{k-2} \, \mathrm{d}y$$

$$= a(n) \frac{1}{(4\pi n)^{k-1}} \underbrace{\int_0^\infty e^{-y} y^{k-2} \, \mathrm{d}y}_{=\Gamma(k-1)}$$

$$= a(n) \frac{(k-2)!}{(4\pi n)^{k-1}} \, .$$

g. e. s.

Korollar 4.4. Die Poincaré-Reihen $\{P_n \mid n \in \mathbb{N}\}$ zu einem festen Gewicht $k \geqslant 4$ mit k gerade, erzeugen den Raum S_k .

Beweis. Angenommen die P_n erzeugen nicht ganz S_k , dann existiert ein $f \in S_k$ mit $\langle f, P_n \rangle = 0$ für alle $n \in \mathbb{N}$. Mit Satz 4.3, ii) folgt hieraus aber a(n) = 0 für alle $n \in \mathbb{N}$ und damit $f \equiv 0$.

Satz 4.5. Die Reihe P_n für $n \ge 1$ hat die Fourier-Entwicklung

$$P_n(z) = \sum_{m>1} g_n(m)q^m$$

mit

$$g_n(m) := \delta_{m,n} + 2\pi \cdot (-1)^{\frac{k}{2}} \cdot \left(\frac{m}{n}\right)^{\frac{k-1}{2}} \cdot \sum_{c \ge 1} \left[\frac{1}{c} \cdot K(m,n,c) \cdot J_{k-1} \left(\frac{4\pi\sqrt{mn}}{c} \right) \right].$$

Hierbei ist die Kloosterman-Summe K definiert als

$$K(m, n, c) := \sum_{\substack{d \pmod c \\ (c, d) = 1}} e^{2\pi i \frac{md + n\bar{d}}{c}},$$

wobei $\bar{d} \in \mathbb{Z}$ mit $\bar{d}d \equiv 1 \mod c$ ist, und die Besselfunktion J_{k-1} definiert als

$$J_{k-1}(x) := \left(\frac{x}{2}\right)^{k-1} \sum_{\ell > 0} \frac{\left(-\frac{1}{4}x^2\right)^{\ell}}{\ell!(k-1+\ell)!}.$$

Beweis. Nach Definition ist

$$P_n(z) = \frac{1}{2} \sum_{\substack{(c,d) \in \mathbb{Z}^2 \\ \text{ggT}(c,d)=1 \\ ad-bc-1}} (cz+d)^{-k} e^{2\pi i n \frac{az+b}{cz+d}}.$$

Ist c=0, so folgt aus ggT(c,d)=1 bereits $d=a=\pm 1$ und unabhängig von $b\in \mathbb{Z}$ ergibt sich zweimal der Term

$$\frac{1}{2}(\pm 1)^{-k}e^{2\pi in\frac{\pm z+b}{\pm 1}} = \frac{1}{2}e^{2\pi inz}e^{\pm 2\pi inb} = \frac{1}{2}e^{2\pi inz},$$

zusammengenommen also $e^{2\pi inz}$. Die übrigen Terme ergeben den Beitrag

$$\sum_{\substack{c \geqslant 1, d \in \mathbb{Z} \\ \text{ggT}(c,d) = 1 \\ ad - bc = 1}} (cz + d)^{-k} e^{2\pi i n \frac{az + b}{cz + d}} = \sum_{\substack{c \geqslant 1 \\ \text{ggT}(c,d') = 1 \\ ad' - b'c = 1}} \sum_{\nu \in \mathbb{Z}} (c(z + \nu) + d')^{-k} e^{2\pi i n \frac{a(z + \nu) + b'}{c(z + \nu) + d'}}.$$

Die rechte Seite entsteht aus der linken, indem man für festes $c \ge 1$ und ein festes Vertretersystem d'(mod c) jedes $d \in \mathbb{Z}$ mit ggT(c,d) = 1 in der Form $d = d' + c\nu$ mit $v \in \mathbb{Z}$ und d' im vorgegebenen Vertretersystem schreibt. Schreibt man zudem mit geeignetem $b' \in \mathbb{Z}$ auch $b = b' + a\nu$, so wird die Bedingung ad - bc = 1 zu

$$1 = ad - bc = a(d' + c\nu) - (b' + a\nu)c = ad' - b'c$$

und die obige Darstellung folgt durch Ausklammern von c und a. Im Folgenden schreiben wir wieder d und b statt d' und b'.

Lemma 4.6. Sei $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{R})$ mit c > 0. Sei $\gamma > 0$ beliebig (insbesondere nicht unbedingt ganzzahlig). Dann gilt für alle $z \in \mathbb{H}$

$$\sum_{\nu \in \mathbb{Z}} (c(z+\nu) + d)^{-k} e^{2\pi i \gamma \frac{a(z+\nu) + b}{c(z+\nu) + d}} = \frac{2\pi (-1)^{\frac{k}{2}}}{c} \sum_{m \geqslant 1} \left(\frac{m}{\gamma}\right)^{\frac{k-1}{2}} J_{k-1} \left(\frac{4\pi \sqrt{m\gamma}}{c}\right) e^{\frac{2\pi i}{c}(\gamma a + md)} e^{2\pi i mz}.$$

Beweis. Es genügt, diese Aussage nur für den Fall $A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ zu zeigen, d.h.

$$\sum_{\nu \in \mathbb{Z}} (z+\nu)^{-k} e^{-2\pi i \gamma \frac{1}{z+\nu}} = 2\pi (-1)^{\frac{k}{2}} \sum_{m \geqslant 1} \left(\frac{m}{\gamma} \right)^{\frac{k-1}{2}} J_{k-1} (4\pi \sqrt{m\gamma}) e^{2\pi i m z}.$$

In der Tat: Ersetzt man in dieser Gleichung z durch $z+\frac{d}{c}$ und γ durch $\frac{\gamma}{c^2}$ und multipliziert dann mit $c^{-k}e^{2\pi i\gamma\frac{a}{c}}$, so wird die linke Seite zu

$$c^{-k}e^{2\pi i\gamma\frac{a}{c}}\sum_{\nu\in\mathbb{Z}}(z+\frac{d}{c}+\nu)^{-k}e^{-2\pi i\frac{\gamma}{c^2}\frac{1}{z+\frac{d}{c}+\nu}} = \sum_{\nu\in\mathbb{Z}}(cz+d+c\nu)^{-k}e^{2\pi i\gamma\frac{a}{c}-2\pi i\frac{\gamma}{c}\frac{1}{cz+d+c\nu}}$$

$$= \sum_{\nu \in \mathbb{Z}} (c(z+\nu) + d)^{-k} e^{\frac{2\pi i \gamma}{c} \left(a - \frac{1}{c(z+\nu) + d}\right)}$$

$$= \sum_{\nu \in \mathbb{Z}} (c(z+\nu) + d)^{-k} e^{\frac{2\pi i \gamma}{c} \frac{ac(z+\nu) + ad - 1}{c(z+\nu) + d}}$$

$$= \sum_{\nu \in \mathbb{Z}} (c(z+\nu) + d)^{-k} e^{2\pi i \gamma \frac{a(z+\nu) + b}{c(z+\nu) + d}}$$

sowie die rechte Seite zu

$$c^{-k}e^{2\pi i\gamma\frac{a}{c}}2\pi(-1)^{\frac{k}{2}}\sum_{m\geqslant 1}\left(\frac{mc^{2}}{\gamma}\right)^{\frac{k-1}{2}}J_{k-1}\left(4\pi\sqrt{\frac{m\gamma}{c^{2}}}\right)e^{2\pi im(z+\frac{d}{c})}$$

$$=c^{-k+2\frac{k-1}{2}}2\pi(-1)^{\frac{k}{2}}\sum_{m\geqslant 1}\left(\frac{m}{\gamma}\right)^{\frac{k-1}{2}}J_{k-1}\left(\frac{4\pi\sqrt{m\gamma}}{c}\right)e^{2\pi i\gamma\frac{a}{c}+2\pi imz+2\pi im\frac{d}{c}}$$

$$=\frac{2\pi(-1)^{\frac{k}{2}}}{c}\sum_{m\geqslant 1}\left(\frac{m}{\gamma}\right)^{\frac{k-1}{2}}J_{k-1}\left(\frac{4\pi\sqrt{m\gamma}}{c}\right)e^{\frac{2\pi i}{c}(\gamma a+md)}e^{2\pi imz}.$$

$$(4.1)$$

Die linke Seite von (4.1) konvergiert gleichmäßig absolut auf kompakten Mengen in \mathbb{H} und hat den Limes 0 für $q \to \infty$ (gleicher Beweis wie in Satz 4.3). Sie hat daher eine Fourierentwicklung $\sum_{m\geqslant 1} c(m)q^m$ mit

$$c(m) = \int_{ic}^{ic+1} \left(\sum_{\nu \in \mathbb{Z}} (z+\nu)^{-k} e^{-2\pi i \gamma \frac{1}{z+\nu}} \right) e^{-2\pi i m z} dz \stackrel{z \mapsto is}{=} -i^{-k+1} \int_{c-i\infty}^{c+i\infty} s^{-k} e^{-2\pi \frac{\gamma}{s}} e^{2\pi m s} ds.$$

Es gilt nach "Abramowitz-Stegun", Seite 1026, Formel 29.3.80:

$$\frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} s^{-k} e^{-\frac{\alpha}{s}} e^{ts} ds = \left(\frac{t}{\alpha}\right)^{\frac{k-1}{2}} J_{k-1}(2\sqrt{\alpha t}).$$

Setzt man $\alpha = 2\pi\gamma$, $t = 2\pi m$, so folgt

$$c(m) = -i^{-k+1} \cdot 2\pi i \left(\frac{2\pi m}{2\pi \gamma}\right)^{\frac{k-1}{2}} J_{k-1}(2\sqrt{2\pi \gamma \cdot 2\pi m}) = (-1)^{\frac{k}{2}} \cdot 2\pi \left(\frac{m}{\gamma}\right)^{\frac{k-1}{2}} J_{k-1}(4\pi\sqrt{m\gamma})$$

wie behauptet.

g. e. s.

Nach dem Lemma folgt nun mit $\gamma =$, dass

$$P_n(z) = e^{2\pi nz} + \sum_{c \geqslant 1} \sum_{\substack{d \bmod c \\ \text{ggT}(d,c) = 1}} \frac{2\pi (-1)^{\frac{k}{2}}}{c} \sum_{m \geqslant 1} \left(\frac{m}{n}\right)^{\frac{k-1}{2}} J_{k-1}\left(\frac{4\pi\sqrt{mn}}{c}\right) \cdot e^{\frac{2\pi i}{c}(na+md)} e^{2\pi i mz}.$$

Die Behauptung folgt hieraus nach Vertauschung der Summationen über c und m (absolute Konvergenz) unter Beachtung von $ad = 1 + bc \equiv 1 \mod c$.

g. e. s.

4.1.1. Die Ramanujan τ -Funktion

Satz 4.7. Sei
$$\Delta(z) = \sum_{n \geqslant 1} \tau(n) q^n \in S_{12}$$
 $(\tau(1) = 1, \tau(2) = -24, \ldots)$. Dann gilt $\tau(n) \neq 0 \iff P_{n,12} \neq 0 \iff g_n(n) \neq 0$,

wobei $g_n(n)$ der n-te Fourier-Koeffizient von $P_{n,12}$ ist (siehe Satz 4.5).

Beweis. Es gilt $P_n = c_n \cdot \Delta$ mit $c_n \in \mathbb{C} \setminus \{0\}$. (Man kann zudem zeigen, dass $c_n \in \mathbb{R}$, dies benötigen wir im Folgenden jedoch nicht.) Aus $\langle \Delta, P_n \rangle \sim \tau(n)^1$ (siehe Satz 4.3 (ii)) folgt $c_n \langle \Delta, \Delta \rangle \sim \tau(n)$, also gilt $\tau(n) = 0$ genau dann, wenn $c_n = 0$. Aber $c_n = 0$ genau dann, wenn $P_n \equiv 0$, und dies gilt genau dann, wenn $P_n \equiv 0$, und dies gilt genau dann, wenn $P_n \equiv 0$. Hieraus folgt die Behauptung.

Bemerkung 4.8. Es wird vermutet, dass $\tau(n) \neq 0$ für alle $n \in \mathbb{N}$ (Lehmer).

4.1.2. Die Peterssonschen Formeln und Abschätzungen für Fourier-Koeffizienten

Sei $\{f_1, f_2, \dots f_g\}$ irgendeine orthogonale Basis von S_k (nach dem Gram-Schmidt-Verfahren kann man z. B. jedes $f \in S_k \setminus \{0\}$ zu irgendeiner orthogonalen Basis $\{f, \dots, f_g\}$ ergänzen). Dann gilt nach Satz 4.3 (ii) für jedes $n \in \mathbb{N}$

$$P_n = \frac{(k-2)!}{(4\pi n)^{k-1}} \sum_{\nu=1}^g \frac{\overline{a_{\nu}(n)}}{\langle f_{\nu}, f_{\nu} \rangle} f_{\nu} ,$$

wenn $f_{\nu} = \sum_{m \geqslant 1} a_{\nu}(m)q^{m}$. Nimmt man auf beiden Seiten den m-ten Fourier-Koeffizienten, so erhält man

$$g_n(m) = \frac{(k-2)!}{(4\pi n)^{k-1}} \sum_{r=1}^g \frac{a_{\nu}(m)\overline{a_{\nu}(n)}}{\langle f_{\nu}, f_{\nu} \rangle}.$$

¹Hier meint \sim die Proportionalität: $x \sim y \iff x = ky$ für k konstant.

Damit folgt

$$g_n(n) = \frac{(k-2)!}{(4\pi n)^{k-1}} \sum_{\nu=1}^g \frac{|a_{\nu}(n)|^2}{\langle f_{\nu}, f_{\nu} \rangle}.$$

Speziell ist

$$|a_{\nu}(n)|^2 \leq ||f_{\nu}||^2 \frac{(4\pi n)^{k-1}}{(k-2)!} g_n(n).$$

Für $g_n(n)$ substituiert man aus Satz 4.5 explizite Formeln. Benutzt man $J_n(x) = \mathcal{O}(\min\{x^{-\frac{1}{2}}, x^n\})$ (einfach) und $K(n, n, c) = \mathcal{O}_{\varepsilon}((n, c)^{\frac{1}{2}}c^{\frac{1}{2}+\varepsilon})$ (Weilsche Abschätzung, tiefliegend), so erhält man nach einigen Rechnungen

$$g_n(n) = \mathcal{O}_{\varepsilon}(n^{\frac{1}{2}+\varepsilon}),$$

also folgt

$$a_{\nu}(n) = \mathcal{O}_{\varepsilon}(n^{\frac{k}{2} - \frac{1}{4} + \varepsilon}).$$

Satz 4.9. Sei $f \in S_k$. Dann gilt $a(n) = \mathcal{O}_{\varepsilon}(n^{\frac{k}{2} - \frac{1}{4} + \varepsilon})$, für $\varepsilon > 0$.

Bemerkung 4.10.

- (i) Man kann leicht zeigen, dass $a(n) \ll_f n^{\frac{k}{2}}$ (siehe Satz 6.20).
- (ii) Mit der Theorie der L-Reihen zu Modulformen kann man $a(n) \ll_{f,\varepsilon} n^{\frac{k}{2} \frac{1}{4} + \varepsilon}$ für alle $\varepsilon > 0$ zeigen.
- (iii) Nach Deligne (sehr tiefliegend) gilt sogar $a(n) \ll_{f,\varepsilon} n^{\frac{k}{2} \frac{1}{2} + \varepsilon}$ für alle $\varepsilon > 0$ (Ramanujan-Petersson-Vermutung). Diese Abschätzung ist bereits bestmöglich, denn nach Rankin gilt

$$\limsup_{n \to \infty} \frac{|a_f(n)|^2}{n^{k-1}} = \infty.$$

4.1.3. Hecke-Operatoren sind hermitesch

Satz 4.11. Sei P_m für $m \in \mathbb{N}$ die m-te Poincaré-Reihe in S_k . Dann ist

$$P_m|T(n) = \sum_{d|(m,n)} \left(\frac{n}{d}\right)^{k-1} P_{\frac{mn}{d^2}}.$$

Beweis. Nach Definition ist

$$P_m = \frac{1}{2} \sum_{M \in \Gamma(1)_{\infty} \backslash \Gamma(1)} e^m |_k M$$

unabhängig vom Vertretersystem von $\Gamma(1)_{\infty} \backslash \Gamma(1)$. Es gilt

$$2P_m|T(n) = n^{\frac{k}{2}-1} \sum_{\substack{M \in \Gamma(1)_{\infty} \backslash \Gamma(1) \\ N \in \Gamma(1) \backslash \mathcal{M}(n)}} e^m|_k MN = n^{\frac{k}{2}-1} \sum_{\substack{R \in \Gamma(1)_{\infty} \backslash \mathcal{M}(n) \\ }} e^m|_R$$

Wir behaupten nun, dass die Menge

$$\{NM \mid N = \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} : ad = n, d > 0, \ b \bmod d,$$

$$M = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} : (\gamma, \delta) \in \mathbb{Z}^2 : \operatorname{ggT}(\gamma, \delta) = 1 \text{ und } (\alpha, \beta) \in \mathbb{Z}^2 \text{ fixiert s. d. } \alpha\delta - \beta\gamma = 1$$

ein Vertretersystem für $\Gamma(1)_{\infty} \setminus \mathcal{M}(n)$ ist.

Wir zeigen zunächst, dass die gesamten Matrizen inäquivalent modulo $\Gamma(1)_{\infty}$ sind. Angenommen

$$\begin{pmatrix} 1 & \nu \\ 0 & 1 \end{pmatrix} NM = N'M'$$

mit $\nu \in \mathbb{Z}$ und N, N' und M, M' wie oben. Daraus folgt

$$N'^{-1}\left(\begin{smallmatrix} 1 & \nu \\ 0 & 1 \end{smallmatrix}\right)N = M'M^{-1}\,,$$

also

$$\begin{pmatrix} \frac{d'}{d} & \frac{d'b-b'd+\nu d'd}{n} \\ 0 & \frac{d}{d'} \end{pmatrix} = M'M^{-1}.$$

Da $M'M^{-1}$ Komponenten in \mathbb{Z} hat, folgt $\frac{d}{d'}$, $\frac{d'}{d} \in \mathbb{Z}$, also $d = \pm d'$, also d = d' und a' = a und somit

$$M'M^{-1} \in \Gamma(1)_{\infty}$$

d.h. M'=M, da Vertretersystem modulo $\Gamma(1)_{\infty}$. Dann folgt aber $\begin{pmatrix} 1 & \nu \\ 0 & 1 \end{pmatrix} N = N'$, bzw. $b'=b+\nu d$, also b=b' und damit N'=N. Die Matrizen in der oben angegebenen Menge sind also tatsächlich inäquivalent modulo $\Gamma(1)_{\infty}$.

Es verbleibt noch zu zeigen, dass sich jedes $\begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \mathcal{M}(n)$ schreiben lässt als

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix} = \begin{pmatrix} 1 & \nu \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \,,$$

d.h.

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix} \begin{pmatrix} \delta & -\beta \\ -\gamma & \alpha \end{pmatrix} = \begin{pmatrix} 1 & \nu \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & b \\ 0 & d \end{pmatrix}$$

mit $\nu \in \mathbb{Z}$ und $ad = n, d > 0, b \pmod{d}$ und $(\gamma, \delta) \in \mathbb{Z}^2, \operatorname{ggT}(\gamma, \delta) = 1, \alpha\delta - \beta\gamma = 1$. Man bestimmt zunächst $(\gamma, \delta) \in \mathbb{Z}^2$ mit $\operatorname{ggT}(\gamma, \delta) = 1$, sodass $C\delta - D\gamma = 0$, dann ist

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix} \begin{pmatrix} \delta & -\beta \\ -\gamma & \alpha \end{pmatrix} = \begin{pmatrix} * & * \\ 0 & * \end{pmatrix} \in \mathcal{M}(n),$$

also

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix} \begin{pmatrix} \delta & -\beta \\ -\gamma & \alpha \end{pmatrix} = \begin{pmatrix} a & \widetilde{b} \\ 0 & d \end{pmatrix}$$

mit $\tilde{b} \in \mathbb{Z}$, ad = n. Indem man gegebenenfalls mit -E multipliziert, d.h. (γ, δ) durch $(-\gamma, -\delta)$ ersetzt, kann man auch d > 0 erreichen. Wähle nun $\nu \in \mathbb{Z}$, sodass $\tilde{b} = b + \nu d$. Dies zeigt die Behauptung, dass die oben angegebene Menge ein Vertretersystem für $\Gamma(1)_{\infty} \setminus \mathcal{M}(n)$ ist.

Es gilt nun

$$2P_m|T(n) = n^{\frac{k}{2}-1} \sum_{\substack{M \in \Gamma(1)_{\infty} \backslash \Gamma(1) \\ b \pmod{d}}} \left(\sum_{\substack{ad=n,d>0 \\ b \pmod{d}}} e^m|_k \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \right)|_k M.$$

Die innere Summe ist gleich

$$\sum_{\substack{d|n\\b \pmod{d}\\b \pmod{d}}} n^{\frac{k}{2}} d^{-k} e^{2\pi i m \left(\frac{n}{d^2} z + \frac{b}{d}\right)} = n^{\frac{k}{2}} \sum_{\substack{d|(m,n)\\d \pmod{d}}} d^{1-k} e^{2\pi i \frac{mn}{d^2} z}$$

wegen

$$\sum_{b \pmod{d}} e^{2\pi i \frac{b}{d}m} = \begin{cases} d, & d|m\\ 0, & \text{sonst} \end{cases}.$$

Hieraus folgt die Behauptung.

g. e. s.

Satz 4.12. Die Operatoren T(n), $n \in \mathbb{N}$ eingeschränkt auf S_k sind hermitesch bezüglich des Petersson-Skalarproduktes, d.h.

$$\langle f|T(n), g\rangle = \langle f, g|T(n)\rangle \quad \forall f, g \in S_k.$$

Beweis. Man zeigt dies normalerweise, indem man Modulformen zu sogenannten Kongruenzuntergruppen von $\Gamma(1)$ und deren Skalarprodukt definiert und dann gewisse Invarianzeigenschaften des Skalarproduktes (beim Übergang von einer Untergruppe zur anderen) beachtet. Wir werden hier die Behauptung unter Benutzung von Satz 4.11 beweisen. Da die P_m mit $m \in \mathbb{N}$ den Raum S_k erzeugen, genügt es zu zeigen, dass

$$\langle f|T(n), P_m\rangle = \langle f, P_m|T(n)\rangle.$$

Man schreibe $f=\sum_{l\geqslant 1}a(l)q^l$ und $f|T(n)=\sum_{l\geqslant 1}b(l)q^l$. Nach Satz 4.3, ii) ist

$$\langle f|T(n), P_m \rangle = \frac{(k-2)!}{(4\pi m)^{k-1}} b(m)$$

= $\frac{(k-2)!}{(4\pi m)^{k-1}} \sum_{d|(m,n)} d^{k-1} a\left(\frac{mn}{d^2}\right)$.

Andererseits ist nach Satz 4.11:

$$\langle f, P_m | T(n) \rangle = \sum_{d | (m,n)} \left(\frac{n}{d} \right)^{k-1} \langle f, P_{\frac{mn}{d^2}} \rangle$$

$$= \sum_{d | (m,n)} \left(\frac{n}{d} \right)^{k-1} \frac{(k-2)!}{(4\pi \frac{mn}{d^2})^{k-1}} a\left(\frac{mn}{d^2} \right)$$

$$= \frac{(k-2)!}{(4\pi m)^{k-1}} \sum_{d | (m,n)} d^{k-1} a\left(\frac{mn}{d^2} \right).$$

g. e. s.

Korollar 4.13. Die Eigenwerte von T(n) sind reell.

Beweis. Ist nach Satz 4.12 und LA 1 klar.

g. e. s.

Korollar 4.14. Seien f, g normalisierte Eigenformen in S_k . Dann ist entweder f = g oder $\langle f, g \rangle = 0$.

Beweis. Seien $f = \sum_{n \ge 1} a(n)q^n$ und $g = \sum_{n \ge 1} b(n)q^n$. Wegen a(1) = b(1) = 1 ist dann f|T(n) = a(n)f und g|T(n) = b(n)g. Daher gilt mit Satz 4.12

$$a(n)\langle f, g \rangle = \langle f|T(n), g \rangle = \langle f, g|T(n) \rangle = \overline{b(n)}\langle f, g \rangle = b(n)\langle f, g \rangle.$$

Aus $\langle f, g \rangle \neq 0$ folgt damit a(n) = b(n) für alle $n \in \mathbb{N}$, also f = g.

Lemma 4.15. Sei V ein endlich-dimensionaler komplexer Hilbertraum mit Skalarprodukt $\langle \cdot, \cdot \rangle$ und sei $\{T_{\mu}\}_{\mu \in I}$ eine Familie von hermiteschen, miteinander kommutierenden Endomorphismen von V. Dann besitzt V eine orthogonale Basis bestehend aus gemeinsamen Eigenvektoren aller Operatoren T_{μ} mit $\mu \in I$.

Beweis. Sei W die Menge der \mathbb{C} -linearen Endomorphismen von V, aufgefasst als reeller Vektorraum. Wegen $\dim_{\mathbb{C}} V < \infty$ ist auch $\dim_{\mathbb{R}} W < \infty$. Die T_{μ} erzeugen daher einen endlich-dimensionalen Unterraum von W, sodass es genügt, die Aussage für endlich viele Operatoren T_1, \ldots, T_m zu zeigen.

Wir zeigen zunächst durch Induktion nach m, dass V einen gemeinsamen nichttrivialen Eigenvektor von T_1,\ldots,T_m enthält. Für m=1 ist dies klar, da V wegen T_1 hermitesch einen nichttrivialen Eigenvektor von T_1 enthält. Sei nun $m\geqslant 2$ und λ ein Eigenwert von T_1 mit zugehörigem Eigenraum $V_\lambda:=\{v\in V\mid T_1v=\lambda v\}$. Für alle $\mu\in\{2,\ldots,m\}$ besteht nach Voraussetzung die Kommutativität $T_\mu T_1=T_1T_\mu$ und daher gilt $T_\mu V_\lambda\subseteq V_\lambda$. Nach Induktionsvoraussetzung besitzt nun V_λ einen nichttrivialen gemeinsamen Eigenvektor von T_2,\ldots,T_m . Dieser ist nach Definition von V_λ auch Eigenvektor von T_1 .

Wir zeigen abschließend die Aussage des Lemmas durch Induktion nach $\dim_{\mathbb{C}} V$. Für $\dim_{\mathbb{C}} V = 1$ ist die Aussage klar. Sei also $m = \dim_{\mathbb{C}} V \geqslant 2$. Man schreibe $V = \mathbb{C}v \oplus (\mathbb{C}v)^{\perp}$, wobei v ein Eigenvektor aller T_{μ} mit $\mu \in \{1, \ldots, m\}$ ist. Da die T_{μ} hermitesch sind und $\mathbb{C}v$ invariant lassen, lassen sie auch $(\mathbb{C}v)^{\perp}$ invariant. Nach Induktionsvoraussetzung besitzt $(\mathbb{C}v)^{\perp}$ bereits eine orthogonale Basis von Eigenvektoren für alle T_{μ} . Hieraus folgt die Behauptung.

Korollar 4.16. Der Raum S_k besitzt eine orthogonale Basis von gemeinsamen Eigenfunktionen für alle T(n) mit $n \in \mathbb{N}$.

Beweis. Folgt direkt aus dem obigen Lemma mit $V = S_k$ und $\{T_\mu\}_{\mu \in I} = \{T(n)\}_{n \in \mathbb{N}}$.

Bemerkung 4.17. Nach Korollar 4.14 ist diese orthogonale Basis bis auf Permutation und Multiplikation mit Skalaren in \mathbb{C}^{\times} eindeutig bestimmt.

Die Eichler-Selberg-Spurformel auf $SL_2(\mathbb{Z})$

Sei von nun an stets $k \ge 4$ gerade und wie üblich T(m) mit $m \ge 1$ der m-te Hecke-Operator auf $M_k(\Gamma(1))$. Wir wissen bereits, dass wir T(m) zu einem Endomorphismus auf S_k einschränken können.

Ziel: Bestimmung einer analytischen (einfach) und arithmetischen (schwer) Formel für die Spur $\operatorname{Tr} T(m)$ für alle $m \in \mathbb{N}$.

Sei \mathbb{H} wie üblich die obere Halbebene und h eine Funktion $h: \mathbb{H} \times \mathbb{H} \to \mathbb{C}, (z, z') \mapsto h(z, z'),$ welche in beiden Variablen eine Spitzenform von Gewicht k darstellt, d.h.

$$h(\cdot, z') \in S_k \quad \forall z' \in \mathbb{H} \quad \text{und} \quad h(z, \cdot) \in S_k \quad \forall z \in \mathbb{H}.$$

Für $f \in S_k$ definieren wir dann f * h als die Funktion

$$f * h : \mathbb{H} \to \mathbb{C}, z' \mapsto (f * h)(z') := \int_{\mathcal{F}} f(z) \overline{h(z, \overline{-z'})} y^{k-2} \, \mathrm{d}x \, \mathrm{d}y \qquad (z = x + iy). \quad (5.1)$$

Dies ist im Wesentlichen das Petersson-Skalarprodukt $\langle f, h(\cdot, \overline{-z'}) \rangle$. Wir wollen zunächst zeigen, dass $T(m) \colon S_k \to S_k$ als ein Integral dieses Typs geschrieben werden kann mit einem bestimmten Kern $h = h_m$ (bis auf eine Konstante). Aus diesen Überlegungen folgt dann auch sogleich eine analytische Formel für $\operatorname{Tr} T(m)$.

Sei f_1, \ldots, f_r eine Basis von normierten, simultanen, orthogonalen Eigenformen für die T(m), d. h.

$$f_i = \sum_{n=1}^{\infty} a_n^i q^n$$

$$a_1^i = 1$$

$$T(m) f_i = a_m^i f_i$$

$$\langle f_i, f_i \rangle = 0 \iff i \neq j.$$

Für $m \geqslant 1$ definieren wir

$$h_m(z, z') = \sum_{ad-bc=m} (czz' + dz' + az + b)^{-k},$$

dabei erstreckt sich die Summe über alle ganzzahligen Matrizen $\binom{a}{c} \binom{b}{d}$ mit Determinante m. Offenbar gilt ebenso

$$h_m(z,z') = \sum_{ad-bc=m} (cz+d)^{-k} \left(z' + \frac{az+b}{cz+d}\right)^{-k} = m^{-\frac{k}{2}} \sum_{M \in \mathcal{M}(m)} (z'+z)^{-k}|_{k,z} M.$$

Man zeigt schnell wegen $k \geqslant 4$, dass die Reihe auf kompakten Teilmengen $K \subseteq \mathbb{H} \times \mathbb{H}$ absolut und gleichmäßig konvergiert und dort in beiden Variablen eine holomorphe Funktion darstellt. Da $\mathcal{M}(m) \xrightarrow{\sim} \mathcal{M}(m)$, $M \mapsto ML$ mit $L \in \mathrm{SL}_2(\mathbb{Z})$, folgt $h(z,z')|_{k,z}L = h(z,z')$.

Da weiter

$$\lim_{z \to i\infty} \sum_{M \in \mathcal{M}(m)} (z + z')^{-k}|_{k,z} M = \sum_{M \in \mathcal{M}(m)} \lim_{z \to i\infty} (z' + z)^{-k}|_{k,z} M = 0,$$

folgt $h_m(\cdot,z') \in S_k$ und $h_m(z,\cdot) \in S_k$ aus Symmetriegründen.

Satz 5.1. *Sei*

$$C_k = \frac{(-1)^{\frac{k}{2}}\pi}{2^{k-3}(k-1)}. (5.2)$$

Dann gilt

(i) Die Funktion $C_k^{-1}m^{k-1}h_m(z,z')$ ist ein Kern für den Operator $T(m)\colon S_k\to S_k$, das heißt

$$(f * h_m)(z') = C_k m^{-k+1}(f|T(m))(z').$$
(5.3)

(ii) Es gilt die Identität

$$C_k^{-1} m^{k-1} h_m(z, z') = \sum_{i=1}^r a_m^i \frac{f_i(z) \cdot f_i(z')}{\langle f_i, f_i \rangle}.$$
 (5.4)

(iii) Die Spur $\operatorname{Tr} T(m)$ ist gegeben durch

$$\operatorname{Tr} T(m) = C_k^{-1} m^{k-1} \int_{\mathcal{F}} h_m(z, -\overline{z}) y^{k-2} \, \mathrm{d}x \, \mathrm{d}y.$$
 (5.5)

Beweis. Sei zunächst m=1. Falls $\gamma=\left(\begin{smallmatrix} a&b\\c&d\end{smallmatrix}\right)\in\mathrm{SL}_2(\mathbb{Z}),$ dann gilt

$$(c\overline{z}+d)^{-k}f(z)y^k = f(\gamma z) \cdot \operatorname{Im}(\gamma z)^k.$$

Aus der Definition von h_m erhalten wir also

$$f(z)\overline{h_1(z,z')}y^k = \sum_{\gamma \in \Gamma(1)} (\overline{z'} + \gamma \overline{z})^{-k} f(\gamma z) \operatorname{Im}(\gamma z)^k$$

und demnach

$$(f * h_1)(z') = \int_{\mathcal{F}} \sum_{\gamma \in \Gamma(1)} (-z' + \gamma \overline{z})^{-k} f(\gamma z) \operatorname{Im} (\gamma z)^k \frac{\mathrm{d}x \,\mathrm{d}y}{y^2}$$

$$= \sum_{\gamma \in \Gamma(1)} \int_{\gamma \circ \mathcal{F}} (-z' + \overline{z})^{-k} f(z) y^{k-2} \,\mathrm{d}x \,\mathrm{d}y$$

$$= 2 \int_0^\infty \int_{-\infty}^\infty (x - iy - z')^{-k} f(x + iy) y^{k-2} \,\mathrm{d}x \,\mathrm{d}y.$$
(5.6)

Nach Cauchy's Formel (und da f Spitzenform) gilt

$$\int_{-\infty}^{\infty} (x - iy - z')^{-k} f(x + iy) \, \mathrm{d}x = \frac{2\pi i}{(k - 1)!} f^{(k - 1)}(2iy + z').$$

Daraus folgt, dass die rechte Seite von (5.6) wie folgt umgeformt werden kann:

$$(f * h_1)(z') = \frac{4\pi i}{(k-1)!} \int_0^\infty y^{k-2} f^{(k-1)}(2iy + z') \, \mathrm{d}y$$

$$= \frac{4\pi i}{(k-1)!} \int_0^\infty \frac{1}{(2i)^{k-2}} \frac{\mathrm{d}^{k-2}}{\mathrm{d}t^{k-2}} f'(2ity + z') \Big|_{t=1} \, \mathrm{d}y$$

$$= \frac{4\pi i}{(k-1)!} \frac{1}{(2i)^{k-2}} \frac{\mathrm{d}^{k-2}}{\mathrm{d}t^{k-2}} \int_0^\infty f'(2ity + z') \, \mathrm{d}y \Big|_{t=1}$$

$$= \frac{4\pi i}{(k-1)!} \frac{1}{(2i)^{k-2}} \frac{\mathrm{d}^{k-2}}{\mathrm{d}t^{k-2}} \left(0 - \frac{f(z')}{2it}\right) \Big|_{t=1}$$

$$= C_k f(z').$$

Das beweist (5.3) im Fall m=1. Für den allgemeinen Fall beachte

$$h_1(z, z')|T(m) = 1^{-\frac{k}{2}} \left(\sum_{\gamma \in \Gamma(1)} (z' + z)^{-k} |_{k,z} \gamma \right) |T(m)$$

$$= m^{\frac{k}{2} - 1} \sum_{M \in \Gamma(1) \backslash \mathcal{M}(m) \atop \gamma \in \Gamma(1)} (z' + z)^{-k} |_{k,z} \gamma M$$

$$= m^{\frac{k}{2} - 1} \sum_{R \in \mathcal{M}(m)} (z' + z)^{-k} |_{k,z} R$$

$$= m^{k-1} h_m(z, z').$$

Damit folgt (i).

Für (ii) beachte, dass wir h_m schreiben können als

$$h_m(z, z') = \sum_{i,j=1}^r c_{ij} f_i(z) f_j(z'),$$

denn: Da f_1, \ldots, f_r Basis der Spitzenformen, können wir

$$h_m(z,z') = g_1(z)f_1(z') + \ldots + g_r(z)f_r(z')$$

mit Funktionen $g_j : \mathbb{H} \to \mathbb{C}$ schreiben. Diese sind auch Spitzenformen, denn für z_1, \ldots, z_r paarweise inäquivalent unter $\Gamma(1)$ und $z_\nu \not\equiv i, \rho \mod \Gamma(1)$ ist die Matrix in

$$\begin{pmatrix} h_m(z, z_1) \\ \vdots \\ h_m(z, z_r) \end{pmatrix} = \begin{pmatrix} f_1(z_1) & \dots & f_r(z_1) \\ \vdots & \ddots & \vdots \\ f_1(z_r) & \dots & f_r(z_r) \end{pmatrix} \cdot \begin{pmatrix} g_1(z) \\ \vdots \\ g_r(z) \end{pmatrix}$$

invertierbar, sonst würden nichttriviale $\alpha_1, \ldots, \alpha_r \in \mathbb{C}$ existieren, sodass die Funktion $\alpha_1 f_1 + \ldots + \alpha_r f_r$ die r Nullstellen z_1, \ldots, z_r besäße. Da es zudem eine Spitzenform ist, könnte man über die Valenzformel bereits $\alpha_1 f_1 + \ldots + \alpha_r f_r \equiv 0$ folgern, was im Widerspruch dazu steht, dass die f_j eine Basis bilden. Somit sind die g_j als Linearkombination von Spitzenformen selbst Spitzenformen und daher als Linearkombination der f_i darstellbar.

Wende nun (5.1) auf die Funktion $f = f_{\mu}$ mit $1 \leq \mu \leq r$, an:

$$(f_{\mu} * h_{m})(z') = \int_{\mathcal{F}} f_{\mu}(z) \sum_{i,j=1}^{r} \overline{c_{ij} f_{i}(z) f_{j}(-\overline{z'})} y^{k-2} \, \mathrm{d}x \, \mathrm{d}y$$

$$= \sum_{i,j=1}^{r} \overline{c_{ij}} f_{j}(z') \int_{\mathcal{F}} f_{\mu}(z) \overline{f_{i}(z)} y^{k-2} \, \mathrm{d}x \, \mathrm{d}y$$

$$= \sum_{i=1}^{r} \overline{c_{\mu j}} f_{j}(z') \langle f_{\mu}, f_{\mu} \rangle \stackrel{\text{(i)}}{=} C_{k} m^{1-k} a_{m}^{\mu} f_{\mu}(z') .$$

Hierbei geht unter Anderem ein, dass alle Fourierkoeffizienten von f_j reell sind, da es sich um eine normalisierte Hecke-Eigenform handelt. Da $f_1, \ldots f_r$ zudem eine Basis ist, folgt

$$c_{\mu j} = \begin{cases} 0 &, \text{ falls } j \neq \mu \\ C_k m^{1-k} a_m^{\mu} \langle f_{\mu}, f_{\mu} \rangle^{-1} &, \text{ falls } j = \mu \end{cases}.$$

und damit (ii).

Für (iii) beachte

$$C_k^{-1} m^{k-1} \int_{\mathcal{F}} h_m(z, -\overline{z}) y^{k-2} \, \mathrm{d}x \, \mathrm{d}y = \int_{\mathcal{F}} \sum_{i=1}^r a_m^i \frac{f_i(z) f_i(-\overline{z})}{\langle f_i, f_i \rangle} y^{k-2} \, \mathrm{d}x \, \mathrm{d}y$$
$$= \sum_{i=1}^r a_m^i \int_{\mathcal{F}} \frac{f_i(z) \overline{f_i(z)}}{\langle f_i, f_i \rangle} y^{k-2} \, \mathrm{d}x \, \mathrm{d}y$$
$$= \sum_{i=1}^r a_m^i = \operatorname{Tr} T(m) \, .$$

g. e. s.

Die zweite arithmetische Darstellung liefert eine explizite Beschreibung der Spur. Dafür müssen wir etwas ausholen.

Definition 5.2. Ein Polynom $q \in \mathbb{Z}[X,Y]$ mit $q(X,Y) = aX^2 + bXY + cY^2$ heißt ganze, binäre QUADRATISCHE FORM. Diese ist induziert von der Matrix

$$Q = \begin{pmatrix} a & \frac{b}{2} \\ \frac{b}{2} & c \end{pmatrix}$$

via $q(x,y) = (x,y) \cdot Q \cdot \begin{pmatrix} x \\ y \end{pmatrix}$.

q heißt positiv definit, falls q(x,y) > 0 für alle $(x,y) \in \mathbb{Z}^2 \setminus \{(0,0)\}.$

Wir bezeichnen $D = b^2 - 4ac$ als die DISKRIMINANTE von q.

Zwei quadratische Formen q und q' heißen äquivalent, falls es eine Matrix $U \in SL_2(\mathbb{Z})$ gibt mit $Q' = U^t Q U$. Man kann zeigen, dass die Diskriminante eine Klasseninvariante ist. Die Rückrichtung ist im Allgemeinen falsch.

Definiere eine Abbildung

$$H\colon \mathbb{Z} \to \mathbb{Q}$$

durch

- (i) H(n) = 0 für n < 0,
- (ii) $H(0) = -\frac{1}{12}$,
- (iii) H(n) ist für n > 0 die Zahl der Äquivalenzklassen positiv definiter binärer ganzer quadratischen Formen mit Diskriminante $D = b^2 4ac = -n < 0$, wobei Klassen mit Repräsentanten der Form $d \cdot (X^2 + Y^2)$ respektive $e \cdot (X^2 + XY + Y^2)$ mit Vielfachheit $\frac{1}{2}$ beziehungsweise $\frac{1}{3}$ gezählt werden sollen.

Man kann zeigen, dass H(n) wohldefiniert ist. Definiere zudem Polynome via

$$(1 - tx + Nx^2)^{-1} = \sum_{k=0}^{\infty} P_{k+2}(t, N)x^k$$

Mit diesen Werkzeugen gilt nun folgende arithmetische Spurformel:

Theorem 5.3 (Spurformel, Eichler-Selberg). Sei $k \ge 4$ gerade und m > 0 beliebig. Dann gilt

$$\operatorname{Tr} T(m) = -\frac{1}{2} \sum_{t=-\infty}^{\infty} P_k(t, m) H(4m - t^2) - \frac{1}{2} \sum_{d|m} \min\left(d, \frac{m}{d}\right)^{k-1}.$$
 (5.7)

Beweis. Wir werden den Beweis im Folgenden skizzieren, jedoch stellenweise auf Serge Lang: "Introduction to Modular Forms" verweisen. Für eine Einführung in die Theorie der quadratischen Formen, welche im Beweis eine wichtige Rolle spielt, verweisen wir auf Don Zagier: "Zetafunktionen und quadratische Körper". Natürlich ist dieses Hintergrundwissen nicht klausurrelevant.

In Satz 5.1 haben wir die Identität

$$\operatorname{Tr} T(m) = C_k^{-1} m^{k-1} \int_{\mathcal{F}} \sum_{ad-bc=m} \frac{y^k}{\left(c|z|^2 + d\overline{z} - az - b\right)^k} \frac{\mathrm{d}x \,\mathrm{d}y}{y^2}$$

gezeigt. Die innere Summe ist hierbei invariant unter $\Gamma(1)$, da das Integral ansonsten nicht unabhängig von der Wahl des Fundamentalbereiches \mathcal{F} wäre. Genauer behaupten wir: Ersetzt man z durch γz mit $\gamma \in \Gamma(1)$ in den Summanden, so ist dies äquivalent dazu, die Matrix $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ in der Summation durch $\gamma^{-1}M\gamma$ zu ersetzen. Denn:

Sei
$$\gamma = \begin{pmatrix} \alpha & \beta \\ \delta & \varepsilon \end{pmatrix} \in \Gamma(1)$$
 und $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}(m)$. Dann gilt
$$\gamma^{-1} M \gamma = \begin{pmatrix} \varepsilon & -\beta \\ -\delta & \alpha \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} \alpha & \beta \\ \delta & \varepsilon \end{pmatrix}$$
$$= \begin{pmatrix} \varepsilon a - \beta c & \varepsilon b - \beta d \\ -\delta a + \alpha c & -\delta b + \alpha d \end{pmatrix} \begin{pmatrix} \alpha & \beta \\ \delta & \varepsilon \end{pmatrix}$$
$$= \begin{pmatrix} \varepsilon a \alpha - \beta c \alpha + \varepsilon b \delta - \beta d \delta & \varepsilon a \beta - \beta^2 c + \varepsilon^2 b - \beta d \varepsilon \\ -\delta a \alpha + \alpha^2 c - \delta^2 b + \alpha d \delta & -\delta a \beta + \alpha c \beta - \delta b \varepsilon + \alpha d \varepsilon \end{pmatrix}.$$

Andererseits gilt

$$\frac{\operatorname{Im}(\gamma \circ z)}{c|\gamma \circ z|^{2} + d \cdot (\overline{\gamma} \circ \overline{z}) - a \cdot (\gamma \circ z) - b}$$

$$= \frac{\frac{\operatorname{Im} z}{|\delta z + \varepsilon|^{2}}}{c\left|\frac{\alpha z + \beta}{\delta z + \varepsilon}\right|^{2} + d\frac{\alpha \overline{z} + \beta}{\delta \overline{z} + \varepsilon} - a\frac{\alpha z + \beta}{\delta z + \varepsilon} - b}$$

$$= \frac{\operatorname{Im} z}{c(\alpha \overline{z} + \beta)(\alpha z + \beta) + d(\alpha \overline{z} + \beta)(\delta z + \varepsilon) - a(\alpha z + \beta)(\delta \overline{z} + \varepsilon) - b(\delta \overline{z} + \varepsilon)(\delta z + \varepsilon)}$$

$$= \frac{\operatorname{Im} z}{|z|^{2}(c\alpha^{2} + d\alpha \delta - a\alpha \delta - b\delta^{2}) + \overline{z}(c\alpha \beta + d\alpha \varepsilon - a\beta \delta - b\delta \varepsilon) + z(\dots) + \dots}.$$

Multipliziert man, wie im letzten Schritt angedeutet, den Nenner vollständig aus, sortiert die Summanden nach dem Auftreten von z, \overline{z} und vergleicht abschließend die Koeffizienten mit den Einträgen von $\gamma^{-1}M\gamma$, so ist die Behauptung klar.

Da die Matrizen M und $\gamma^{-1}M\gamma$ nicht nur dieselbe Determinante, sondern auch dieselbe Spur haben (rechne nach und beachte $\alpha\varepsilon - \beta\delta = 1$), lässt sich die Summe sogar nach der Spur der Matrizen in $\Gamma(1)$ -invariante Teile der Form

$$I(m,t) := C_k^{-1} m^{k-1} \int_{\mathcal{F}} \sum_{\substack{ad-bc=m\\a+d=t}} \frac{y^k}{\left(c|z|^2 + d\overline{z} - az - b\right)^k} \frac{\mathrm{d}x \,\mathrm{d}y}{y^2}$$

zerlegen, sodass

$$\operatorname{Tr} T(m) = \sum_{t=-\infty}^{\infty} I(m,t).$$

Wir werden im Folgenden beweisen:

$$\frac{1}{2}(I(m,t)+I(m,-t)) = \begin{cases} -\frac{1}{2}P_k(t,m)H(4m-t^2) & , \text{ falls } t^2-4m<0\\ \frac{k-1}{24}m^{\frac{k-2}{2}}-\frac{1}{4}m^{\frac{k-1}{2}} & , \text{ falls } t^2-4m=0\\ -\frac{1}{2}\left(\frac{|t|-u}{2}\right)^{k-1} & , \text{ falls } t^2-4m=u^2, u\in\mathbb{N}\\ 0 & , \text{ falls } t^2-4m>0 \text{ kein Quadrat }. \end{cases}$$

$$(5.8)$$

Wie man durch eine Rechnung einsieht, impliziert dies die Aussage des Theorems: Hierbei nutzt man aus, dass H für negative Argumente verschwindet und $H(0) := -\frac{1}{12}$ ist, um die linke Summe in (5.7) von solchen t mit $t^2 - 4m < 0$ auf alle $t \in \mathbb{Z}$ auszudehnen. Die rechte Summe kommt durch die Fälle $t^2 - 4m = u^2$ mit $u \in \mathbb{N}$ zustande, denn: Es gilt

$$m = \frac{t^2 - u^2}{4} = \frac{t + u}{2} \cdot \frac{t - u}{2} = \left| \frac{t + u}{2} \right| \cdot \left| \frac{t - u}{2} \right|,$$

wobei t,u wegen $t^2-4m=u^2$ entweder beide gerade oder beide ungerade sind. Damit sind die beiden Faktoren rechts immer ganzzahlig und wegen des Absolutbetrages positiv. Da über alle $t\in\mathbb{Z}$ summiert wird, trifft $\left|\frac{t+u}{2}\right|$ jeden Teiler d von m. Gleichzeitig trifft $\left|\frac{t-u}{2}\right|$ den Teiler $\frac{m}{d}$. Und wie man sich leicht überzeugt, ist

$$\frac{|t|-u}{2} = \min\left(\left|\frac{t+u}{2}\right|, \left|\frac{t-u}{2}\right|\right) = \min\left(d, \frac{m}{d}\right).$$

Wir müssen im Folgenden also "nur" noch das Integral I(m,t) studieren. Dazu bemerken wir zunächst folgendes Lemma:

Lemma 5.4. Es seien $\mathcal{M}_t(m)$ die Menge der ganzzahligen Matrizen mit Determinante m und Spur t sowie Q_D die Menge der binären quadratischen Formen mit Diskriminante $D = t^2 - 4m$. Dann sind die beiden Mengen gleichmächtig.

Beweis. Wir konstruieren eine konkrete Bijektion

$$\varphi \colon \mathcal{M}_t(m) \to Q_D, \ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mapsto g(u, v) = cu^2 + (d - a)uv - bv^2.$$

Diese ist wegen

$$D_g = (d-a)^2 + 4bc = d^2 - 2ad + a^2 + 4ad + 4(bc - ad)$$
$$= (d+a)^2 - 4(ad - bc) = t^2 - 4m$$

wohldefiniert. Betrachte nun einen Kandidaten für die Umkehrabbildung

$$\varphi^{-1}: Q_D \to \mathcal{M}_t(m), \ g(u,v) = \alpha u^2 + \beta uv + \gamma v^2 \mapsto \begin{pmatrix} \frac{1}{2}(t-\beta) & -\gamma \\ \alpha & \frac{1}{2}(t+\beta) \end{pmatrix}.$$

Für die Wohldefiniertheit dieser Abbildung rechnet man nach, dass die angegebene Matrix Determinante $\frac{1}{4}(t^2 - \beta^2) + \alpha \gamma = \frac{1}{4}(t^2 - D_g) = m$, Spur t sowie ganzzahlige Einträge besitzt. Letzteres folgt aus α, γ, β, t ganzzahlig und

$$D_g = t^2 - 4m = \beta^2 - 4\alpha\gamma \implies t^2 \equiv \beta^2 \mod 2 \implies t \equiv \beta \mod 2.$$

Wendet man nun auf $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_t(m)$ die Abbildungen φ und φ^{-1} an, so erhält man mit $\alpha = c, \ \beta = d - a$ und $\gamma = -b$ nach Definition von φ sowie mit t = a + d die Matrix

$$\begin{pmatrix} \frac{1}{2}(t-\beta) & -\gamma \\ \alpha & \frac{1}{2}(t+\beta) \end{pmatrix} = \begin{pmatrix} \frac{1}{2}(a+d-(d-a)) & b \\ c & \frac{1}{2}(a+d+(d-a)) \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

und es folgt $\varphi^{-1} \circ \varphi = id_{\mathcal{M}_t(m)}$. Analog lässt sich auch $\varphi \circ \varphi^{-1} = id_{Q_D}$ zeigen. Damit ist das Lemma bewiesen.

Für jede binäre quadratische Form $g(u,v) = \alpha u^2 + \beta uv + \gamma v^2$ und $z = x + iy \in \mathbb{C}, t \in \mathbb{R}$ beliebig definieren wir nun

$$R_g(z,t) := \frac{y^k}{(\alpha(x^2 + y^2) + \beta x + \gamma - ity)^k}.$$

Beachte, dass g von der Matrix $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ herrührt via der Bijektion φ aus Lemma 5.4 durch $\alpha = c, \ \beta = d - a \ \text{und} \ \gamma = -b$. Damit gilt

$$I(m,t) = C_k^{-1} m^{k-1} \int_{\mathcal{F}} \sum_{g,D_g = D} R_g(z,t) \frac{\mathrm{d}x \,\mathrm{d}y}{y^2} \,,$$

wobei sich die Summe über alle binären quadratischen Formen $g \in Q_D$, also mit Diskriminante $D_g = D := t^2 - 4m$, erstreckt.

Ein beliebiges Element $\gamma \in \Gamma(1)$ liefert, angewendet auf g durch

$$\gamma g(u,v) := g\left(\gamma \begin{pmatrix} u \\ v \end{pmatrix}\right) \,,$$

wieder eine quadratische Form γg . Es gilt zudem $R_{\gamma g}(z,t) = R_g(\gamma z,t)$. Daher können wir für jede Diskriminante $D = t^2 - 4m \equiv 0,1 \mod 4$ (Übung!) die Summe über alle quadratischen Formen mit dieser Diskrimante wie folgt aufteilen:

$$\sum_{g,D_g=D} R_g(z,t) = \sum_{\substack{g,D_g=D\\g (\operatorname{mod}\Gamma(1))}} \sum_{\gamma \in \Gamma(1)/\Gamma_g} R_{\gamma g}(z,t) = \sum_{\substack{g,D_g=D\\g (\operatorname{mod}\Gamma(1))}} \sum_{\gamma \in \Gamma(1)/\Gamma_g} R_g(\gamma z,t) \,.$$

Hierbei erstreckt sich die erste Summe nur noch über ein Vertretersystem aller Klassen modulo $\Gamma(1)$ von binären quadratischen Formen g mit Diskriminante $D_g = D$. Die zweite Summe erstreckt sich über alle Nebenklassen $\Gamma(1)/\Gamma_g$, wobei Γ_g die Fixgruppe von g ist.

Für $D \neq 0$ gibt es nur endlich viele Klassen modulo $\Gamma(1)$, sodass die erste Summe endlich ist und wir schreiben können:

$$\int_{\mathcal{F}} \sum_{g,D_g=D} R_g(z,t) \frac{\mathrm{d}x \,\mathrm{d}y}{y^2} = \sum_{\substack{g,D_g=D\\g \pmod{\Gamma(1)}}} \int_{\mathcal{F}_g} R_g(z,t) \frac{\mathrm{d}x \,\mathrm{d}y}{y^2}$$
(5.9)

mit

$$\mathcal{F}_g = \bigcup_{\gamma \in \Gamma(1)/\Gamma_q} \gamma \mathcal{F}$$

einem Fundamentalbereich für die Operation von Γ_q auf H.

Für D=0 ist dagegen ein (unendliches) System von Repräsentanten gegeben durch die Formen $\{g_r(u,v)=rv^2\mid r\in\mathbb{Z}\}$. Die Fixgruppe eines solchen g_r ist gegeben durch

$$\Gamma_{g_r} = \begin{cases} \Gamma(1) & \text{, falls } r = 0 \\ \Gamma(1)_{\infty} & \text{, falls } r \neq 0 \,. \end{cases}$$

Damit finden wir

$$\int_{\mathcal{F}} \sum_{g,D_g=0} R_g(z,t) \frac{\mathrm{d}x \,\mathrm{d}y}{y^2} = \int_{\mathcal{F}} R_{g_0}(z,t) \frac{\mathrm{d}x \,\mathrm{d}y}{y^2} + \int_{\mathcal{F}_{\infty}} \sum_{\substack{r \in \mathbb{Z} \\ r \neq 0}} R_{g_r}(z,t) \frac{\mathrm{d}x \,\mathrm{d}y}{y^2} \,, \tag{5.10}$$

wobei \mathcal{F}_{∞} ein Fundamentalbereich für die Operation von $\Gamma(1)_{\infty}$ auf \mathbb{H} ist. Ein Beispiel hierfür ist der Vertikalstreifen $\{z \in \mathbb{H} \mid 0 < \operatorname{Re}(z) < 1\}$.

Wir zeigen nun die in (5.8) behaupteten Formeln für den Mittelwert der Integrale

$$\frac{1}{2}\left(I(m,t)+I(m,-t)\right)$$

abhängig von $D := t^2 - 4m$ und unterscheiden dieselben vier Fälle:

Fall 1: D < 0. In diesem Fall ist Γ_g endlich (genau genommen von Ordnung $1 \le |\Gamma_g| \le 3$, Beweis entfällt aus Zeitgründen). Für eine quadratische Form $g(u, v) = \alpha u^2 + \beta uv + \gamma v^2$ mit Diskriminante $D_g = D = t^2 - 4m$ erhalten wir demnach:

$$\int_{\mathcal{F}_g} R_g(z,t) \frac{\mathrm{d}x \,\mathrm{d}y}{y^2} = \frac{1}{|\Gamma_g|} \int_{\mathbb{H}} R_g(z,t) \frac{\mathrm{d}x \,\mathrm{d}y}{y^2}$$

$$= \frac{1}{|\Gamma_g|} \int_{\mathbb{H}} \frac{y^{k-2}}{(\alpha(x^2 + y^2) + \beta x + \gamma - ity)^k} \,\mathrm{d}x \,\mathrm{d}y.$$

Fasse nun die obere Halbebene $\mathbb H$ als Teilmenge des $\mathbb R^2$ auf und nutze den Diffeomorphismus

$$\Phi: \mathbb{H} \to \mathbb{H}, (x,y) \mapsto \left(\frac{2x-\beta}{2\alpha}, \frac{y}{\alpha}\right)$$

mit Jacobi-Matrix

$$D\Phi = \begin{pmatrix} \alpha^{-1} & 0 \\ 0 & \alpha^{-1} \end{pmatrix} \implies \det D\Phi = \frac{1}{\alpha^2}$$

zur Substitution per Transformationssatz:

$$\int_{\mathcal{F}_g} R_g(z,t) \frac{\mathrm{d}x \, \mathrm{d}y}{y^2} = \frac{1}{|\Gamma_g|} \int_{\mathbb{H}} \frac{1}{\alpha^2} \frac{\left(\frac{y}{\alpha}\right)^{k-2}}{\left(\alpha \left(\left(\frac{2x-\beta}{2\alpha}\right)^2 + \left(\frac{y}{\alpha}\right)^2\right) + \beta \left(\frac{2x-\beta}{2\alpha}\right) + \gamma - it\frac{y}{\alpha}\right)^k} \, \mathrm{d}x \, \mathrm{d}y$$

$$= \frac{1}{|\Gamma_g|} \int_{\mathbb{H}} \frac{y^{k-2}}{\left((x^2 + y^2) - \frac{\beta^2}{4} + \gamma\alpha - ity\right)^k} \, \mathrm{d}x \, \mathrm{d}y$$

$$= \frac{1}{|\Gamma_g|} \int_{\mathbb{H}} \frac{y^{k-2}}{\left(|z|^2 - \frac{1}{4}D_g - ity\right)^k} \, \mathrm{d}x \, \mathrm{d}y.$$

Im letzten Schritt geht hierbei ein, dass $D_g=\beta^2-4\alpha\gamma$, also $-\frac{\beta^2}{4}+\alpha\gamma=-\frac{1}{4}D_g$. Das Integral hängt somit nicht von den konkreten Parametern α,β,γ der Form g ab, sondern nur von ihrer Diskriminante D_g . Da wir nur Formen g mit Diskriminante $D_g=D=t^2-4m$ betrachten, können wir mit

$$I(D,t) := \int_{\mathbb{H}} \frac{y^{k-2}}{\left(|z|^2 - \frac{1}{4}D - ity\right)^k} \, \mathrm{d}x \, \mathrm{d}y$$

schreiben:

$$\sum_{\substack{g,D_g=D\\g(\mathrm{mod}\,\Gamma(1))}}\int_{\mathcal{F}_g}R_g(z,t)\frac{\mathrm{d}x\,\mathrm{d}y}{y^2}=\sum_{\substack{g,D_g=D\\g(\mathrm{mod}\,\Gamma(1))}}\frac{1}{|\Gamma_g|}I(D,t)=2H(-D)\cdot I(D,t)$$

Die letzte Umformung liefert einen derart einfachen Term, da die Definition von H wegen

$$|\Gamma_g| = \begin{cases} 2 & \text{, falls } g \sim d \cdot (X^2 + Y^2) \text{ für ein } d \in \mathbb{Z} \setminus \{0\} \\ 3 & \text{, falls } g \sim e \cdot (X^2 + XY + Y^2) \text{ für ein } e \in \mathbb{Z} \setminus \{0\} \\ 1 & \text{, sonst} \end{cases}$$

bereits den Vorfaktor $\frac{1}{|\Gamma_g|}$ beinhaltet. Der Faktor 2 rührt von der Tatsache her, dass in der Definition von H nur Klassen positiv definiter quadratischer Formen gezählt werden. Die obige Summe berücksichtigt jedoch Klassen aller Formen g mit geeigneter Diskriminante $D_g = D$. Da alle diese Formen wegen $D_g = D < 0$ definit (also entweder positiv oder negativ definit) sind, besteht die Summe aus genau doppelt so vielen Summanden wie

durch H angegeben (zu jeder positiv definiten Form erhält man eine negativ definite Form gleicher Diskriminante durch Multiplikation mit -1 und umgekehrt).

Nutzt man nun die für beliebiges $A \in \mathbb{C}_-$ gültige Formel

$$\int_{-\infty}^{\infty} (x^2 + A)^{-k} dx = \frac{\pi}{(k-1)!} \cdot \frac{1}{2} \cdot \frac{3}{2} \cdot \frac{5}{2} \cdots \left(k - \frac{3}{2}\right) \cdot A^{\frac{1}{2} - k},$$

erhält man mit $A = y^2 - ity - \frac{1}{4}D$ schließlich

$$\begin{split} I(D,t) &= \int_{\mathbb{H}} \frac{y^{k-2}}{\left(|z|^2 - \frac{1}{4}D - ity\right)^k} \, \mathrm{d}x \, \mathrm{d}y \\ &= \int_0^\infty y^{k-2} \int_{-\infty}^\infty (x^2 + y^2 - ity - \frac{1}{4}D)^{-k} \, \mathrm{d}x \, \mathrm{d}y \qquad \qquad | \text{ siehe oben} \\ &= \frac{\pi}{(k-1)!} \cdot \frac{1}{2} \cdot \frac{3}{2} \cdot \frac{5}{2} \cdots \left(k - \frac{3}{2}\right) \int_0^\infty (y^2 - ity - \frac{1}{4}D)^{\frac{1}{2}-k} y^{k-2} \, \mathrm{d}y \quad | \text{ Leibniz} \\ &= \frac{\pi}{(k-1)!} \cdot \frac{1}{2} \cdot \frac{1}{i^{k-2}} \left(\frac{\mathrm{d}}{\mathrm{d}t}\right)^{k-2} \int_0^\infty (y^2 - ity - \frac{1}{4}D)^{-\frac{3}{2}} \, \mathrm{d}y \\ &= \frac{\pi i^{k-2}}{2(k-1)!} \left(\frac{\mathrm{d}}{\mathrm{d}t}\right)^{k-2} \left[\frac{4}{t^2 - D} \cdot \frac{y - \frac{1}{2}it}{\sqrt{y^2 - ity - \frac{1}{4}D}}\right]_0^\infty \quad | \text{ nach rechnen!} \\ &= \frac{\pi i^{k-2}}{2(k-1)!} \left(\frac{\mathrm{d}}{\mathrm{d}t}\right)^{k-2} \left(\frac{4}{\sqrt{|D|}} \cdot \frac{1}{\sqrt{|D|-it}}\right) \\ &= \frac{2\pi}{k-1} \cdot \frac{1}{\sqrt{|D|}} \cdot \frac{i^{k-2}}{(k-2)!} \left(\frac{\mathrm{d}}{\mathrm{d}t}\right)^{k-2} \left(\frac{1}{\sqrt{|D|-it}}\right) \\ &= \frac{2\pi}{k-1} \cdot \frac{1}{\sqrt{|D|}} \cdot \frac{1}{(\sqrt{|D|-it})^{k-1}} \, . \end{split}$$

Zusammengefasst gilt also (unter Beachtung von $D = t^2 - 4m < 0$), dass

$$I(m,t) = C_k^{-1} m^{k-1} \int_{\mathcal{F}} \sum_{g,D_g = D} R_g(z,t) \frac{\mathrm{d}x \,\mathrm{d}y}{y^2}$$

$$\stackrel{\text{(5.9)}}{=} C_k^{-1} m^{k-1} \sum_{\substack{g,D_g = D\\g (\mathrm{mod}\,\Gamma(1))}} \int_{\mathcal{F}_g} R_g(z,t) \frac{\mathrm{d}x \,\mathrm{d}y}{y^2}$$

$$\begin{split} &= C_k^{-1} m^{k-1} \cdot 2H(-D) \cdot I(D,t) \\ &= C_k^{-1} m^{k-1} \cdot 2H(4m-t^2) \cdot \frac{2\pi}{k-1} \cdot \frac{1}{\sqrt{4m-t^2}} \cdot \frac{1}{\left(\sqrt{4m-t^2}-it\right)^{k-1}} \,, \end{split}$$

was sich mit $\rho:=\frac{1}{2}(t+i\sqrt{4m-t^2})$ nach kurzer Rechnung vereinfachen lässt zu:

$$I(m,t) = \frac{\overline{\rho}^{k-1}}{\rho - \overline{\rho}} H(4m - t^2).$$

Beachtet man nun, dass

$$\rho + \overline{\rho} = \frac{1}{2} \left(t + i \sqrt{4m - t^2} \right) + \frac{1}{2} \left(t - i \sqrt{4m - t^2} \right) = t$$

und

$$\rho \overline{\rho} = |\rho|^2 = \frac{1}{4} |t^2 + 4m - t^2| = m,$$

so kann man für die per

$$(1 - tx + Nx^2)^{-1} = \sum_{k=0}^{\infty} P_{k+2}(t, N)x^k = P_2(t, N) + P_3(t, N)x + P_4(t, N)x^2 + \dots$$

definierten Polynome $P_k(t,N)$ mithilfe von Partialbruchzerlegung und der geometrischen Reihe die Beziehung

$$P_k(t,m) = \frac{\rho^{k-1} - \overline{\rho}^{k-1}}{\rho - \overline{\rho}}$$

zeigen.

Daraus folgt in der Tat wie in (5.8) behauptet

$$\frac{1}{2}\left(I(m,t) + I(m,-t)\right) = -\frac{1}{2}\left(\frac{\rho^{k-1}}{\rho - \overline{\rho}} + \frac{-\overline{\rho}^{k-1}}{\rho - \overline{\rho}}\right)H(4m - t^2) = -\frac{1}{2}P_k(t,m)H(4m - t^2).$$

Fall 2: D = 0. Wir benutzen hierfür die oben hergeleitete Formel (5.10)

$$\int_{\mathcal{F}} \sum_{g,D_g=0} R_g(z,t) \frac{\mathrm{d} x \, \mathrm{d} y}{y^2} = \int_{\mathcal{F}} R_{g_0}(z,t) \frac{\mathrm{d} x \, \mathrm{d} y}{y^2} + \int_{\mathcal{F}_{\infty}} \sum_{\substack{r \in \mathbb{Z} \\ r \neq 0}} R_{g_r}(z,t) \frac{\mathrm{d} x \, \mathrm{d} y}{y^2} \,.$$

Wegen $g_0(u, v) \equiv 0$ sind alle Parameter α, β, γ der quadratischen Form g_0 gleich 0, sodass sich R_{g_0} und damit der erste Summand leicht berechnen lassen:

$$\int_{\mathcal{F}} R_{g_0}(z,t) \frac{\mathrm{d}x \,\mathrm{d}y}{y^2} = \int_{\mathcal{F}} \left(\frac{y}{-ity}\right)^k \frac{\mathrm{d}x \,\mathrm{d}y}{y^2} = \int_{\mathcal{F}} \left(\frac{i}{t}\right)^k \frac{\mathrm{d}x \,\mathrm{d}y}{y^2}$$
$$= \left(\frac{i}{t}\right)^k \int_{\mathcal{F}} \frac{\mathrm{d}x \,\mathrm{d}y}{y^2} = \frac{(-1)^{\frac{k}{2}}}{t^k} \cdot \frac{\pi}{3} = (-1)^{\frac{k}{2}} \frac{\pi}{3t^k}.$$

Für den zweiten Term finden wir mit $g_r(u,v) = rv^2$, dass

$$\int_{\mathcal{F}_{\infty}} \sum_{\substack{r \in \mathbb{Z} \\ r \neq 0}} R_{g_r}(z, t) \frac{\mathrm{d}x \, \mathrm{d}y}{y^2} = \int_0^{\infty} \int_0^1 y^{k-2} \sum_{\substack{r \in \mathbb{Z} \\ r \neq 0}} (r - ity)^{-k} \, \mathrm{d}x \, \mathrm{d}y \qquad | \text{PBZ des cot}$$

$$= \frac{i^{k-2}}{(k-2)!} \left(\frac{\mathrm{d}}{\mathrm{d}t}\right)^{k-2} \int_0^{\infty} \frac{1}{t^2 y^2} - \frac{\pi^2}{\sinh^2(\pi t y)} \, \mathrm{d}y$$

$$= \frac{i^{k-2}}{(k-1)!} \left(\frac{\mathrm{d}}{\mathrm{d}t}\right)^{k-2} \frac{\pi}{|t|}$$

$$= (-1)^{\frac{k-2}{2}} \frac{\pi}{k-1} |t|^{-k+1}.$$

Für $t = \pm 2\sqrt{m}$ (da $D := t^2 - 4m = 0$) bekommen wir damit nach kurzer Rechnung

$$\begin{split} I(m,t) &= C_k^{-1} m^{k-1} \int_{\mathcal{F}} \sum_{g,D_g=0} R_g(z,t) \frac{\mathrm{d}x \, \mathrm{d}y}{y^{k-2}} \\ &= C_k^{-1} m^{k-1} \int_{\mathcal{F}} R_{g_0}(z,t) \frac{\mathrm{d}x \, \mathrm{d}y}{y^2} + C_k^{-1} m^{k-1} \int_{\mathcal{F}_{\infty}} \sum_{\substack{r \in \mathbb{Z} \\ r \neq 0}} R_{g_r}(z,t) \frac{\mathrm{d}x \, \mathrm{d}y}{y^2} \\ &= C_k^{-1} m^{k-1} (-1)^{\frac{k}{2}} \frac{\pi}{3t^k} + C_k^{-1} m^{k-1} (-1)^{\frac{k-2}{2}} \frac{\pi}{k-1} |t|^{-k+1} \\ &= \frac{k-1}{24} m^{\frac{k-2}{2}} - \frac{1}{4} m^{\frac{k-1}{2}} \,. \end{split}$$

 $Fall\ 3:\ D=u^2$ mit $u\in\mathbb{N}$. Wie in Fall 1 (D<0) gibt es hier nur eine endliche Anzahl von Klassen mit Diskriminante D und Γ_g ist eine endliche Gruppe. Es folgt damit ähnlich wie in Fall 1

$$\int_{\mathcal{F}} \sum_{g,D_x=D} R_g(z,t) \frac{\mathrm{d}x \,\mathrm{d}y}{y^2} = H_D \cdot I(D,t)$$

mit

$$H_D := \sum_{\substack{g, D_g = D \\ g \pmod{\Gamma(1)}}} \frac{1}{|\Gamma_g|}$$

und (vergleiche Fall 1)

$$I(D,t) := \int_{\mathbb{H}} \frac{y^{k-2}}{\left(|z|^2 - \frac{1}{4}D - ity\right)^k} dx dy.$$

Man kann nun zeigen, dass in Fall 3 alle Fixgruppen Γ_g trivial sind (d.h. $|\Gamma_g| = 1$) und es darüber hinaus genau u Klassen quadratischer Formen g mit Diskriminante $D_g = u^2$ gibt. Hieraus folgt $H_D = u$.

Analog zu Fall 1 können wir zudem wieder das Integral umformen zu

$$I(D,t) = \frac{\pi i^{k-2}}{2(k-1)!} \left(\frac{\mathrm{d}}{\mathrm{d}t}\right)^{k-2} \left[\frac{4}{t^2 - D} \frac{y - \frac{1}{2}it}{\sqrt{y^2 - ity - \frac{1}{4}D}}\right]_0^{\infty},$$

wobei der ausgewertete Term rechts diesmal unter Beachtung von $D=t^2-4m>0$ zu

$$\frac{-4}{\sqrt{D}} \frac{1}{\sqrt{D} + |t|}$$

wird. Es folgt wegen $\sqrt{D} = \sqrt{u^2} = u$, dass

$$I(D,t) = (-1)^{\frac{k-2}{2}} \frac{2\pi}{k-1} \cdot \frac{1}{\sqrt{D}} \cdot \frac{1}{(\sqrt{D} + |t|)^{k-1}} = (-1)^{\frac{k-2}{2}} \frac{2\pi}{k-1} \cdot \frac{1}{u} \cdot \frac{1}{(u+|t|)^{k-1}} \,,$$

und somit nach kurzer Rechnung

$$I(m,t) = C_k^{-1} m^{k-1} \int_{\mathcal{F}} \sum_{g,D_g = D} R_g(z,t) \frac{\mathrm{d}x \,\mathrm{d}y}{y^2}$$

$$= C_k^{-1} m^{k-1} H_D \cdot I(D,t)$$

$$= C_k^{-1} m^{k-1} (-1)^{\frac{k-2}{2}} \frac{2\pi}{k-1} \cdot \frac{1}{(u+|t|)^{k-1}}$$

$$= -\frac{1}{2} \left(\frac{|t| - u}{2} \right)^{k-1}.$$

Fall 4: D > 0, aber keine Quadratzahl. Wir zeigen in diesem Fall wie in (5.8) behauptet, dass

$$\frac{1}{2} \left(I(m,t) + I(m,-t) \right) = \frac{1}{2} C_k^{-1} m^{k-1} \cdot \left(\int_{\mathcal{F}} \sum_{g,D_g = D} R_g(z,t) \frac{\mathrm{d} x \, \mathrm{d} y}{y^2} + \int_{\mathcal{F}} \sum_{g,D_g = D} R_g(z,-t) \frac{\mathrm{d} x \, \mathrm{d} y}{y^2} \right)$$

$$\stackrel{\text{(5.9)}}{=} \frac{1}{2} C_k^{-1} m^{k-1} \cdot \sum_{\substack{g,D_g = D \\ g \pmod{\Gamma(1))}}} \left(\int_{\mathcal{F}_g} R_g(z,t) \frac{\mathrm{d} x \, \mathrm{d} y}{y^2} + \int_{\mathcal{F}_g} R_g(z,-t) \frac{\mathrm{d} x \, \mathrm{d} y}{y^2} \right) = 0,$$

indem wir für alle Formen g mit $D_g = D$ zeigen, dass

$$\int_{\mathcal{F}_g} R_g(z,t) \frac{\mathrm{d}x \,\mathrm{d}y}{y^2} + \int_{\mathcal{F}_g} R_g(z,-t) \frac{\mathrm{d}x \,\mathrm{d}y}{y^2} = 0.$$

Sei hierfür $g(u,v) = \alpha u^2 + \beta uv + \gamma v^2$ eine quadratische Form mit Diskriminante D > 0 kein Quadrat und seien außerdem w > w' die Lösungen der Gleichung $\alpha u^2 + \beta u + \gamma = 0$ (wegen $D_g = D > 0$ gibt es zwei verschiedene reelle Lösungen). Dann transformiert die Matrix

$$M = (w - w')^{-\frac{1}{2}} \begin{pmatrix} w' & w \\ 1 & 1 \end{pmatrix} \in GL_2(\mathbb{R})$$

g in Mg mit

$$Mg(u,v) = \sqrt{D}uv$$
.

In der Tat: Ist $T = \sqrt{w - w'}$, so gilt

$$\begin{split} M^t \begin{pmatrix} \alpha & \frac{\beta}{2} \\ \frac{\beta}{2} & \gamma \end{pmatrix} M &= \frac{1}{T^2} \begin{pmatrix} w' & 1 \\ w & 1 \end{pmatrix} \begin{pmatrix} \alpha & \frac{\beta}{2} \\ \frac{\beta}{2} & \gamma \end{pmatrix} \begin{pmatrix} w' & w \\ 1 & 1 \end{pmatrix} \\ &= \frac{1}{T^2} \begin{pmatrix} \alpha w' + \frac{\beta}{2} & \frac{\beta}{2} w' + \gamma \\ \alpha w + \frac{\beta}{2} & \frac{\beta}{2} w + \gamma \end{pmatrix} \begin{pmatrix} w' & w \\ 1 & 1 \end{pmatrix} \\ &= \frac{1}{T^2} \begin{pmatrix} \alpha w'^2 + \frac{\beta}{2} w' + \frac{\beta}{2} w' + \gamma & \alpha w w' + \frac{\beta}{2} w + \frac{\beta}{2} w' + \gamma \\ \alpha w w' + \frac{\beta}{2} w' + \frac{\beta}{2} w + \gamma & \alpha w^2 + \frac{\beta}{2} w + \frac{\beta}{2} w + \gamma \end{pmatrix} \\ &= \frac{1}{T^2} \begin{pmatrix} \alpha w'^2 + \beta w' + \gamma & \alpha w w' + \frac{\beta}{2} (w + w') + \gamma \\ \alpha w w' + \frac{\beta}{2} (w' + w) + \gamma & \alpha w^2 + \beta w + \gamma \end{pmatrix} . \end{split}$$

Wegen det $M = \det M^t = \pm 1$ bleibt die Determinante der Matrix (und somit auch die Diskriminante der von der Matrix induzierten quadratischen Form) trotz Transformation

unverändert. Da sowohl w als auch w' die Gleichung $\alpha u^2 + \beta u + \gamma = 0$ lösen, verschwinden beide Diagonaleinträge und die Form Mg lässt sich schreiben als Mg(u,v) = buv für ein $b \in \mathbb{R}$. Hieraus erhält man nach kurzer Rechnung wie behauptet $Mg(u,v) = \sqrt{D}uv$.

Nach nichttrivialen Überlegungen weiß man: Die Gruppe $M^{-1}\Gamma_g M$ ist zyklisch und kann durch $\binom{\varepsilon}{0}\frac{1}{\varepsilon}$ erzeugt werden, wobei $\varepsilon>1$ die Fundamentaleinheit des Ganzheitsrings R in $\mathbb{Q}(\sqrt{D})$ ist (hier geht auch ein, dass D keine Quadratzahl ist, sonst wäre $\mathbb{Q}(\sqrt{D})=\mathbb{Q}$). Daher können wir den Fundamentalbereich \mathcal{F}_g so wählen, dass $M^{-1}\mathcal{F}_g$ ein Kreisring $M^{-1}\mathcal{F}_g=\left\{z\in\mathbb{H}\mid r_0\leqslant |z|\leqslant \varepsilon^2r_0\right\}$ in der oberen Halbebene ist. Es gilt somit

$$\begin{split} I_{+} &:= \int_{\mathcal{F}_{g}} R_{g}(z,t) \frac{\mathrm{d}x \, \mathrm{d}y}{y^{2}} \\ &= \int_{\mathcal{F}_{g}} R_{Mg}(M^{-1}z,t) \frac{\mathrm{d}x \, \mathrm{d}y}{y^{2}} \\ &= \int_{M^{-1}\mathcal{F}_{g}} R_{Mg}(z,t) \frac{\mathrm{d}x \, \mathrm{d}y}{y^{2}} & \left| Mg(u,v) = \sqrt{D}uv \right| \\ &= \int_{\substack{y > 0 \\ r_{0} \leq |z| \leq \varepsilon^{2} r_{0}}} \left(\sqrt{D}x - ity \right)^{-k} y^{k-2} \, \mathrm{d}x \, \mathrm{d}y \, . \end{split}$$

Erhalte nun mit Polarkoordinaten $z = x + iy = re^{i\vartheta}$, dass

$$I_{+} = \int_{0}^{\pi} \int_{r_{0}}^{r_{0}\varepsilon^{2}} \left(\sqrt{D}\cos\vartheta - it\sin\vartheta\right)^{-k} (\sin\vartheta)^{k-2} \frac{\mathrm{d}r\,\mathrm{d}\vartheta}{r}$$
$$= \log(\varepsilon^{2}) \int_{0}^{\pi} \left(\sqrt{D}\cos\vartheta - it\sin\vartheta\right)^{-k} (\sin\vartheta)^{k-2} \,\mathrm{d}\vartheta$$

und wegen der Symmetrieeigenschaften von sin und cos analog

$$I_{-} := \int_{\mathcal{F}_g} R_g(z, -t) \frac{\mathrm{d}x \, \mathrm{d}y}{y^2}$$

$$= \log(\varepsilon^2) \int_0^{\pi} \left(\sqrt{D} \cos \vartheta + it \sin \vartheta \right)^{-k} (\sin \vartheta)^{k-2} \, \mathrm{d}\vartheta$$

$$= \log(\varepsilon^2) \int_{-\pi}^0 \left(\sqrt{D} \cos \vartheta - it \sin \vartheta \right)^{-k} (\sin \vartheta)^{k-2} \, \mathrm{d}\vartheta.$$

Wir sind also fertig, wenn wir

$$I := \frac{I_{+} + I_{-}}{\log(\varepsilon^{2})} = \int_{-\pi}^{\pi} \left(\sqrt{D}\cos\vartheta - it\sin\vartheta\right)^{-k} (\sin\vartheta)^{k-2} d\vartheta = 0$$

zeigen können. Schreibe hierfür das Integral um zum Kurvenintegral

$$I = \int_{-\pi}^{\pi} \left(\sqrt{D} \frac{e^{i\vartheta} + e^{-i\vartheta}}{2} - it \frac{e^{i\vartheta} - e^{-i\vartheta}}{2i} \right)^{-k} \left(\frac{e^{i\vartheta} - e^{-i\vartheta}}{2i} \right)^{k-2} d\vartheta$$

$$= \int_{-\pi}^{\pi} \left(\sqrt{D} i \frac{e^{i\vartheta} + e^{-i\vartheta}}{e^{i\vartheta} - e^{-i\vartheta}} - it \right)^{-k} \left(\frac{e^{i\vartheta} - e^{-i\vartheta}}{2i} \right)^{-2} d\vartheta$$

$$= \int_{-\pi}^{\pi} \left(\sqrt{D} i \frac{e^{2i\vartheta} + 1}{e^{2i\vartheta} - 1} - it \right)^{-k} \left(\frac{e^{2i\vartheta} - 1}{2i} \cdot e^{-i\vartheta} \right)^{-2} d\vartheta$$

$$= \frac{1}{2i} \int_{-\pi}^{\pi} \left(\sqrt{D} i \frac{e^{2i\vartheta} + 1}{e^{2i\vartheta} - 1} - it \right)^{-k} \left(\frac{e^{2i\vartheta} - 1}{2i} \right)^{-2} 2ie^{2i\vartheta} d\vartheta$$

$$= \frac{1}{2i} \int_{\mathcal{C}} \left(\sqrt{D} i \frac{z + 1}{z - 1} - it \right)^{-k} \left(\frac{z - 1}{2i} \right)^{-2} dz$$

mit \mathcal{C} : $[-\pi, \pi] \to \mathbb{C}, \vartheta \mapsto e^{2i\vartheta}$ geschlossen. Wegen $k \geqslant 4 > 2$ hebt der linke Faktor die Polstelle des rechten Faktors bei z = 1. Die Polstelle des linken Terms liegt bei

$$\sqrt{D}i\frac{z+1}{z-1} - it \stackrel{!}{=} 0 \quad \Longrightarrow \quad z \stackrel{!}{=} \frac{\frac{t}{\sqrt{D}} + 1}{\frac{t}{\sqrt{D}} - 1} > 1,$$

sodass der Integrand für $\delta > 0$ klein genug auf der Kreisscheibe $U_{1+\delta}(0) \supset \overline{\mathbb{E}}$ holomorph ist. Nach dem Residuensatz ist das Integral entlang $\mathcal{C} = \partial \mathbb{E}$ daher 0. Damit folgt für $D = t^2 - 4m > 0$ kein Quadrat, dass tatsächlich $\frac{1}{2}(I(m,t) + I(m,-t)) = 0$ gilt.

Hiermit haben wir (5.8) vollständig verifiziert und damit die in (5.7) behauptete arithmetische Spurformel bewiesen.

g. e. s.

L-Reihen zu Modulformen

6.1. Dirichletreihen

Ziel: Angabe elementarer Eigenschaften von "Dirichletreihen", welche eine besondere Stellung in der analytischen Theorie der Zahlen einnehmen.

Definition 6.1. Formell ist eine DIRICHLETREIHE eine Reihe der Form

$$\sum_{n=1}^{\infty} a(n)e^{-\lambda_n s},$$

wobei die λ_n reelle Zahlen sind mit $\lambda_1 < \lambda_2 < \lambda_3 < \dots \xrightarrow{n \to \infty} \infty$ und $s = \sigma + it$ eine komplexe Zahl ist.

Bemerkung 6.2.

- (i) $\lambda_n = n$ ist naheliegend führt aber mit $z = e^{-s}$ zur Theorie der Potenzreihen, die wir schon ausgiebig in der Funktionentheorie 1 studiert haben.
- (ii) $\lambda_n = \log(n)$: Mit dieser Wahl lässt sich die obere Reihe "schöner" schreiben als

$$\sum_{n=1}^{\infty} a(n)n^{-s} \,. \tag{6.1}$$

Das ist der für die Zahlentheorie relevante Fall. Eine Reihe der Gestalt (6.1) heißt GEWÖHNLICHE DIRICHLETREIHE.

(iii) Im Gegensatz zu Potenzreihen weisen Dirichletreihen ein anderes Konvergenzverhalten auf als das "auf Kreisscheiben" auf. Während also für eine Potenzreihe $f(z) = \sum_{n=0}^{\infty} a(n)z^n$ stets ein $0 \le R \le \infty$ existiert, so dass f für $z \in \mathbb{C}$ mit |z| < R konvergiert und für |z| > R divergiert, "konvergieren Dirichletreihen auf Halbebenen statt Kreisscheiben". Dies präzisiert der nächste Satz.

Satz 6.3. Es sei $F(s) := \sum_{n=1}^{\infty} a(n)e^{-\lambda_n s}$ eine Dirichletreihe wie in Definition 6.1 definiert. Ist diese für ein $s = s_0$ konvergent, so konvergiert sie auch für alle $\operatorname{Re}(s) > \sigma_0$ (= $\operatorname{Re}(s_0)$) und gleichmäßig auf kompakten Mengen.

Somit existiert eine reelle Zahl σ_0 , sodass die Reihe für alle s mit $\operatorname{Re} s > \sigma_0$ konvergiert und für alle $\operatorname{Re} (s) < \sigma_0$ divergiert (falls überall konvergent, setze $\sigma_0 = -\infty$, falls überall divergent setze $\sigma_0 = \infty$).

Die in dem Gebiet $\{s \in \mathbb{C} \mid \operatorname{Re}(s) > \sigma_0\}$ durch F(s) definierte Funktion ist dort holomorph, die Ableitungen sind gegeben durch

$$F^{(k)}(s) = (-1)^k \sum_{n=1}^{\infty} \lambda_n^k a(n) e^{-\lambda_n s},$$

wobei die rechts stehende Dirichletreihe auch für $\sigma > \sigma_0$ konvergiert.

Die Zahl σ_0 heißt Konvergenzabszisse der Dirichletreihe F(s).

Beweis. Es genügt die gleichmäßige Konvergenz im gesamten Bereich zu zeigen, da damit die Existenz eines σ_0 folgt und die Holomorphieaussagen aus der gleichmäßigen Konvergenz über den Satz von Weierstraß ersichtlich sind.

Wir zeigen, dass die Reihe in jedem Gebiet (siehe Abbildung 6.1)

$$|\operatorname{Arg}(s - s_0)| \leqslant \frac{\pi}{2} - \varepsilon < \frac{\pi}{2} \tag{6.2}$$

gleichmäßig konvergiert. Das ist stärker als die Aussage des Satzes, da jede kompakte Menge $K \subseteq \{ s \in \mathbb{C} \mid \text{Re}(s) > \sigma_0 \}$ in einem solchen Gebiet liegt.

Wir führen die Bezeichnungen

$$A(N) = \sum_{n=1}^{N} a(n), \qquad A(M,N) = \sum_{n=M}^{N} a(n), \qquad A(M,M-1) = 0$$

ein, die in diesem Paragraphen mehrmals benutzt werden. Ohne Einschränkung können wir $s_0 = 0$ voraussetzen (indem wir s durch $s + s_0$ und a(n) durch $a(n)e^{-\lambda_n s_0}$ ersetzen). Dann ist $\sum_{n=1}^{\infty} a(n)$ konvergent und es gibt zu vorgegebenen $\varepsilon > 0$ ein N_0 , so dass

Abbildung 6.1.: Das Gebiet aus (6.2)

 $|A(M,N)| \leqslant \varepsilon$ für alle $N_0 \leqslant M < N.$ Dann gilt für $N > M \geqslant N_0 :^1$

$$\sum_{n=M}^{N} a(n)e^{-\lambda_n s} = \sum_{n=M}^{N} (A(M,n) - A(M,n-1))e^{-\lambda_n s}$$

$$= A(M,M)e^{-\lambda_M s} - A(M,M)e^{-\lambda_{M+1} s} + A(M,M+1)e^{-\lambda_{M+1} s}$$

$$+ \dots + A(M,N-1)e^{-\lambda_{N-1} s} - A(M,N-1)e^{-\lambda_N s} + A(M,N)e^{-\lambda_N s}$$

$$= \sum_{n=M}^{N-1} A(M,n)(e^{-\lambda_n s} - e^{-\lambda_{n+1} s}) + A(M,N)e^{-\lambda_N s}.$$

¹Dieses Verfahren wird auch als abelsche Summation bezeichnet.

Es ist

$$\left| e^{-\lambda s} - e^{-\lambda_{n+1} s} \right| = \left| s \int_{\lambda_n}^{\lambda_{n+1}} e^{-sn} \, \mathrm{d}n \right|$$

$$\leq \left| s \right| \int_{\lambda_n}^{\lambda_{n+1}} \left| e^{-sn} \right| \, \mathrm{d}n$$

$$= \frac{\left| s \right|}{\sigma} \left(e^{-\lambda_n \sigma} - e^{-\lambda_{n+1} \sigma} \right) \qquad (\sigma = \operatorname{Re} s) \, .$$

Die Größe $\frac{|s|}{\sigma}$ ist in den Bereichen $|\text{Arg}(s)| \leq \frac{\pi}{2} - \delta$ durch eine Konstante $C_{\delta} > 0$ beschränkt. Somit ist für $\sigma > 0$:

$$\left| \sum_{n=M}^{N} a(n)e^{-\lambda_{n}s} \right| \leqslant \sum_{n=M}^{N-1} |A(M,n)| \cdot |e^{-\lambda_{n}s} - e^{-\lambda_{n+1}s}| + |A(M,N)| \cdot |e^{-\lambda_{N}s}|$$

$$\leqslant C_{\delta} \varepsilon \sum_{n=M}^{N-1} \left(e^{-\lambda_{n}\sigma} - e^{-\lambda_{n+1}\sigma} \right) + \varepsilon e^{-\lambda_{N}\sigma}$$

$$\leqslant C_{\delta} \varepsilon e^{-\lambda_{M}\sigma} + \varepsilon e^{-\lambda_{N}\sigma}$$

$$\leqslant (C_{\delta} + 1)e^{-\lambda_{N_{0}}\sigma} \varepsilon,$$

womit die gleichmäßige Konvergenz in diesem Bereich folgt.

g. e. s.

Analog zur bedingten Konvergenzabszisse kann man (bei gewöhnlichen Dirichletreihen) die absolute Konvergenzabszisse definieren als die bedingte Konvergenzabszisse von

$$\sum_{n=1}^{\infty} |a(n)| n^{-s}.$$

Wir bezeichnen σ_a als die ABSOLUTE und σ_c als die BEDINGTE KONVERGENZABSZISSE.

Satz 6.4. Ist F eine gewöhnliche Dirichletreihe mit $\sigma_c \in \mathbb{R}$, so gilt

$$\sigma_c \leqslant \sigma_a \leqslant \sigma_c + 1$$
.

Beweis. Übung! q.e.s.

Bemerkung 6.5. Wie in der Theorie der Potenzreihen gibt es auch in der Theorie der Dirichletreihen eine Methode zur Berechnung der Konvergenzsabszisse. Ist $\sum_{n=1}^{\infty} a(n)$ divergent, so folgt für $F(s) = \sum_{n=1}^{\infty} a(n)e^{-\lambda_n s}$ die Formel

$$\sigma_c = \limsup_{n \to \infty} \frac{\log A(n)}{\lambda_n}$$
.

Es gibt einen noch viel wichtigeren Unterschied zwischen Dirichletreihen und den uns geläufigen Potenzreihen. Bei den Potenzreihen kann man den Konvergenzradius nicht nur in Abhängigkeit der Koeffizienten, sondern auch durch das Verhalten der durch die Reihe dargestellte lokal analytische Funktion bestimmen, nämlich als kleinster Absolutbetrag der singulären Punkte (ohne Einschränkung ist der Entwicklungspunkt $z_0 = 0$): stellt die Reihe $\sum_{n=0}^{\infty} a(n)z^n$ eine Funktion dar, die sich auf eine Kreisscheibe |z| < r holomorph fortsetzen lässt, so ist sie in diesem Bereich auch absolut konvergent.

Für Dirichletreihen stimmt das nicht. Beispielsweise hat die Funktion

$$F(s) = 1 - \frac{1}{2^s} + \frac{1}{3^s} - \frac{1}{4^s} + \dots$$

eine Forsetzung zu einer ganzen Funktion (wie wir noch sehen werden!), aber die Reihe konvergiert nur für Werte $s \in \mathbb{C}$ mit Re s > 0.

Nur in Spezialfällen können wir auf die Existenz von singulären Punkten auf dem Rand der Konvergenzhalbebene schließen, wie der folgende Satz zeigt.

Satz 6.6 (Landau). Sei $\sum_{n=1}^{\infty} a(n)n^{-s}$ eine gewöhnliche Dirichletreihe mit nichtnegativen Koeffizienten und Konvergenzabszisse σ_c . Dann hat die durch $F(s) = \sum_{n=1}^{\infty} a(n)n^{-s}$ definierte Funktion in $s = \sigma_c$ einen singulären Punkt.

Beweis. Ohne Einschränkung sei $\sigma_c = 0$. Nehmen wir an, die Funktion F(s) wäre in einer Umgebung $U_{\varepsilon}(0)$ holomorph fortsetzbar. Dann würde sie um s = 1 eine Taylorentwicklung haben mit Konvergenzradius R > 1, da kein Punkt in $\partial U_1(1)$ singulär ist. Also wäre für geeignetes $\delta > 0$ die Reihe $\sum_{k=1}^{\infty} \frac{(-1-\delta)^k}{k!} F^{(k)}(1)$ konvergent und gleich $F(-\delta)$, denn nach Satz 6.3 ist

$$\sum_{k=0}^{\infty} \frac{(-1-\delta)^k}{k!} F^{(k)}(1) = \sum_{k=0}^{\infty} \frac{(1+\delta)^k}{k!} \sum_{n=1}^{\infty} \frac{(\log n)^k a(n)}{n}$$

$$a(n) \ge 0 \sum_{n=1}^{\infty} \frac{a(n)}{n} \sum_{k=0}^{\infty} \frac{(\log n)^k (1+\delta)^k}{k!}$$

$$= \sum_{n=1}^{\infty} \frac{a(n)}{n} e^{(1+\delta)\log(n)} = \sum_{n=1}^{\infty} a(n) n^{\delta}.$$

Damit gilt $\sigma_c \leqslant -\delta < 0 = \sigma_c$. \nleq

Satz 6.7. Seien $\sum_{n=1}^{\infty} a(n)e^{-\lambda_n s}$ und $\sum_{n=1}^{\infty} b(n)e^{-\lambda_n s}$ zwei Dirichletreihen, die in einem Gebiet $U \subseteq \mathbb{C}$ konvergieren und dort dieselbe analytische Funktion darstellen. Dann ist a(n) = b(n) für alle $n \in \mathbb{N}$.

Beweis. Nehmen wir an, dies sei nicht der Fall. Sei m der kleinste Index mit $a(m) \neq b(m)$. Dann gilt für σ groß genug (Identitätssatz)

$$0 = e^{\lambda_m \sigma} \left(\sum_{n=m}^{\infty} a(n) e^{-\lambda_n \sigma} - \sum_{n=m}^{\infty} b(n) e^{-\lambda_n \sigma} \right)$$

$$= a(m) - b(m) + \sum_{n=m+1}^{\infty} (a(n) - b(n)) e^{-(\lambda_n - \lambda_m)\sigma}.$$

In der Tat hat jedes Glied in der Reihe wegen $\lambda_n > \lambda_m$ den Limes 0 und die gleichmäßige Konvergenz impliziert, dass die Reihe für $\sigma \to \infty$ gegen 0 strebt, was $a(m) \neq b(m)$ widerspricht.

6.2. Formale Eigenschaften von Dirichletreihen

Ab jetzt bezeichnen wir gewöhnliche Dirichletreihen als Dirichletreihen. Die Regeln für die Handhabung von Dirichletreihen sind anders als die bei Potenzreihen, daher wollen wir diese jetzt näher erläutern.

Es ist klar, dass die Summe zweier Dirichletreihen die Reihe ist, deren allgemeiner Koeffizient die Summe der Koeffizienten der einzelnen Reihen ist. Aber wie bildet man das Produkt?

Seien

$$F(s) = \sum_{n=1}^{\infty} a(n)n^{-s}, \qquad G(s) = \sum_{n=1}^{\infty} b(n)n^{-s}$$

zwei in einer offenen Menge $U \subseteq \mathbb{C}$ durch absolut konvergente Dirichletreihen gegebene

Funktionen, dann ist in U:

$$F(s)G(s) = \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} a(n)b(m)n^{-s}m^{-s}$$

$$= \sum_{n,m=1}^{\infty} a(n)b(m)(nm)^{-s}$$

$$= \sum_{k=1}^{\infty} \left(\underbrace{\sum_{d|k} a(d)b\left(\frac{k}{d}\right)}_{=:c(k)}\right)k^{-s}.$$

Das heißt die additive Faltung $\sum_{n+m=k} a(n)b(m)$, die die Multiplikation von Potenzreihen beschreibt, wird durch die multiplikative Faltung $\sum_{d|k} a(d)b(\frac{k}{d})$ bei Dirichletreihen ersetzt. Diese Tatsache ist für große Bedeutung der Dirichletreihen in der Zahlentheorie verantwortlich.

Beispiel 6.8.

(i) Es sei d(n) die Anzahl der Teiler von n. Dann gilt für alle $s \in \mathbb{C}$ mit $\operatorname{Re} s > 1$

$$\sum_{n=1}^{\infty} \frac{d(n)}{n^s} = \sum_{n=1}^{\infty} \left(\sum_{d|n} 1 \cdot 1\right) n^{-s}$$
$$= \left(\sum_{n=1}^{\infty} \frac{1}{n^s}\right) \cdot \left(\sum_{n=1}^{\infty} \frac{1}{n^s}\right)$$
$$= \zeta(s)^2.$$

(ii) Allgemein gilt für $\sigma_k(n) = \sum_{d|n} d^k$ für $k \in \mathbb{Z},$ deshalb ist

$$\sum_{n=1}^{\infty} \frac{\sigma_k(n)}{n^s} = \zeta(s) \cdot \zeta(s-k) .$$

In beiden Beispielen haben die Koeffizienten die Eigenschaft multiplikativ zu sein. Eine MULTIPLIKATIVE FUNKTION $f \colon \mathbb{N} \to \mathbb{C}$ ist durch die Eigenschaft $f \not\equiv 0$ und $f(n \cdot m) = f(n) \cdot f(m)$ für alle n, m mit $\operatorname{ggT}(n, m) = 1$ charakterisiert. Gilt dies sogar für alle $n, m \in \mathbb{N}$, so nennen wir f STRENG MULTIPLIKATIV oder VOLLSTÄNDIG MULTIPLIKATIV.

Diese Eigenschaft wirkt sich wie folgt auf die entsprechenden Dirichletreihen aus: ist f multiplikativ, so ist f(1) = 1 und ist $n = p_1^{r_1} \cdot \ldots \cdot p_k^{r_k}$, so gilt

$$f(n) = f(p_1^{r_1}) \cdot \ldots \cdot f(p_k^{r_k}).$$

Es ist also im Bereich der absoluten Konvergenz von $F(s) = \sum_{n=1}^{\infty} \frac{f(n)}{n^s}$:

$$F(s) = \sum_{0 \leqslant r_1, r_2, \dots} f(2^{r_1} \cdot 3^{r_2} \cdot 5^{r_3} \dots) \cdot (2^{r_1} \cdot 3^{r_2} \cdot 5^{r_3} \dots)^{-s}$$

$$= \sum_{r_1=0}^{\infty} \sum_{r_2=0}^{\infty} \dots \sum_{r_j=0}^{\infty} \dots \frac{f(2^{r_1}) \cdot f(3^{r_2}) \cdot \dots \cdot f(p_j^{r_j}) \cdot \dots}{(2^{r_1} \cdot 3^{r_2} \cdot \dots \cdot p_j^{r_j} \cdot \dots)^s}$$

$$= \prod_{p \in \mathbb{P}} \sum_{r=0}^{\infty} \frac{f(p^r)}{p^{r_s}},$$

wobei sich das Produkt über alle Primzahlen erstreckt. Der folgende Satz präzisiert diese Aussage.

Satz 6.9. Sei $f: \mathbb{N} \to \mathbb{C}$ eine multiplikative Funktion und sei die Dirichletreihe

$$F(s) = \sum_{n=1}^{\infty} \frac{f(n)}{n^s}$$

absolut konvergent. Dann ist F(s) gleich dem Euler-Produkt

$$F(s) = \prod_{p \in \mathbb{P}} \left(1 + \frac{f(p)}{p^s} + \frac{f(p^2)}{p^{2s}} + \ldots \right).$$

Beispiel 6.10.

(i) Für $\zeta(s)$ sind die Koeffizierten alle gleich 1, es gilt also für Re s>1

$$\zeta(s) = \prod_{p \in \mathbb{P}} \left(1 + \frac{1}{p^s} + \frac{1}{p^{2s}} + \dots \right) = \prod_{p \in \mathbb{P}} \frac{1}{1 - p^{-s}}.$$

Diese von Euler entdeckte Formel ist der Grund für die große Rolle, die die Zetafunktion in der Zahlentheorie spielt.

(ii) Man erhält

$$\sum_{n=1}^{\infty} \frac{d(n)}{n^s} = \zeta(s)^2 = \prod_{p \in \mathbb{P}} (1 - p^{-s})^{-2} = \prod_{p \in \mathbb{P}} \left(1 + 2p^{-s} + 3p^{-2s} + \dots \right)$$
$$= \prod_{p \in \mathbb{P}} \left(1 + \frac{d(p)}{p^s} + \frac{d(p^2)}{p^{2s}} + \dots \right).$$

(iii) Für den Kehrwert $F(s) = \frac{1}{\zeta(s)}$ der Zetafunktion erhalten wir

$$\frac{1}{\zeta(s)} = \prod_{p \in \mathbb{P}} (1 - p^{-s}) = \sum_{n=1}^{\infty} \frac{\mu(n)}{n^s},$$

wobei

$$\mu(n) = \begin{cases} (-1)^L & \text{wobei L die Anzahl der verschiedenen Primteiler von} \\ n, \text{ falls n quadratfrei,} \\ 1 & \text{falls $n=1$,} \\ 0 & \text{sonst.} \end{cases}$$

Diese Funktion heißt auch MÖBIUSSCHE μ -FUNKTION. Über die Faltungsformel folgt die wichtige Eigenschaft

$$\sum_{d|n} \mu(d) = \begin{cases} 1 & \text{falls } n = 1 \\ 0 & \text{sonst} \end{cases}.$$

Die Möbiussche μ -Funktion ist für folgende Formel wichtig.

Satz 6.11. Seien f und g zwei Funktionen von \mathbb{N} nach \mathbb{C} . Ist für alle $n \in \mathbb{N}$

$$f(n) = \sum_{d|n} g(d) \,,$$

so ist für alle $n \in \mathbb{N}$

$$g(n) = \sum_{d|n} f(d)\mu\left(\frac{n}{d}\right). \tag{6.3}$$

Stehen f und g in dieser Beziehung zueinander, so ist f multiplikativ genau dann, wenn auch g multiplikativ ist.

Beweis. Die Gleichungen

$$f(1) = g(1)$$

$$f(2) = g(1) + g(2)$$

$$f(3) = g(1) + g(3)$$

$$f(4) = g(1) + g(2) + g(4)$$

lassen sich induktiv für g lösen

$$g(1) = f(1)$$

$$g(2) = f(2) - f(1)$$

$$g(3) = f(3) - f(1)$$

$$g(4) = f(4) - f(2)$$

. . . .

Es ist also klar, dass es eine solche Beziehung wie in (6.3) unabhängig von f und g existieren muss. Insbesondere genügt es, die Umkehrformel für Folgen "langsamen Wachstums" zu beweisen. Wir nehmen daher an, die Dirichletreihen

$$F(s) = \sum_{n=1}^{\infty} \frac{f(n)}{n^s}$$
 und $G(s) = \sum_{n=1}^{\infty} \frac{g(n)}{n^s}$

seien absolut konvergent. Dann gilt wegen der Faltungsformel und $\frac{1}{\zeta(s)} = \sum_{n=1}^{\infty} \frac{\mu(n)}{n^s}$ für alle $n \in \mathbb{N}$:

$$\begin{split} f(n) &= \sum_{d|n} g(d) \Longleftrightarrow F(s) = \left(\sum_{n=1}^{\infty} n^{-s}\right) \cdot \left(\sum_{m=1}^{\infty} g(m)m^{-s}\right) \\ &\iff G(s) = \zeta(s)^{-1}F(s) = \sum_{n=1}^{\infty} \mu(n)n^{-s}\sum_{m=1}^{\infty} f(m)m^{-s} \\ &\iff g(n) = \sum_{d|n} f(d)\mu\left(\frac{n}{d}\right). \end{split}$$

Gelten nun diese Beziehung, so folgt weiter

$$g$$
multiplikativ $\Longleftrightarrow G(s)$ besitzt Euler-Produkt
$$\Longleftrightarrow F(s)=\zeta(s)G(s) \text{ besitzt Euler-Produkt}$$
 $\Longleftrightarrow f$ multiplikativ .

g. e. s.

Als abschließendes Beispiel dieses Abschnitts sei

$$r(n) = \#\{(a,b) \in \mathbb{Z}^2 \mid a^2 + b^2 = n\}$$

die Anzahl der Darstellungen von n als Summe zweier ganzer Quadrate. Dann ist die Funktion $\frac{1}{4}r(n)$ multiplikativ und die entsprechende Dirichletreihe

$$\sum_{n=1}^{\infty} \frac{1}{4} r(n) n^{-s} = \zeta(s) \left(1 - \frac{1}{3^s} + \frac{1}{5^s} - \frac{1}{7^s} + \frac{1}{9^s} - \dots \right)$$

ist für $\mathrm{Re}\,s>1$ absolut konvergent. Dies führt mit

$$\chi(n) = \begin{cases} 1 & n \equiv 1 \mod 4 \\ -1 & n \equiv 3 \mod 4 \\ 0 & \text{sonst} \end{cases}$$

zu der nicht-trivialen Beziehung

$$r(n) = 4\sum_{d|n} \chi(d).$$

6.3. Die Mellin-Transformation

Erinnerung. Die Gammafunktion $\Gamma(s)$ ist definiert durch

$$\Gamma(s) = \lim_{N \to \infty} \frac{(N-1)! N^s}{s(s+1) \dots (s+N-1)}.$$

Es gilt der folgende Satz:

Satz 6.12. Die Funktion $\Gamma(s)$ ist eine in ganz $\mathbb{C} \setminus -\mathbb{N}_0$ holomorphe Funktion mit einfachen Polen in $s = 0, -1, -2, \ldots$ Es gilt die Funktionalgleichung

$$s\Gamma(s) = \Gamma(s+1) \qquad \forall s \in \mathbb{C} \setminus -\mathbb{N}_0.$$

Weiter gilt $\Gamma(n) = (n-1)!$ für $n \in \mathbb{N}$ und

$$\operatorname{res}_{s=-n} \Gamma(s) = \frac{(-1)^n}{n!} \quad \forall n \in \mathbb{N}_0.$$

Beweis. Siehe FT 2 oder Busam-Freitag FT 1.

Da $\Gamma(s) \neq 0$ für alle $s \in \mathbb{C}$, ist $\frac{1}{\Gamma(s)}$ eine ganze Funktion und es gilt die Produktentwicklung

$$\frac{1}{\Gamma(s)} = se^{\gamma s} \prod_{j=1}^{\infty} \left(1 + \frac{s}{j}\right) e^{-\frac{s}{j}},$$

wobei $\gamma = \lim_{N \to \infty} 1 + \frac{1}{2} + \ldots + \frac{1}{N} - \log(N)$ die Euler-Mascheroni-Konstante ist.

Eine der wichtigen Formeln für die Gammafunktion ist gegeben durch:

Satz 6.13 (STIRLING-FORMEL). Es gilt in jedem Winkelbereich $W_{\delta} = \{ s \in \mathbb{C} \mid -\pi + \delta < \operatorname{Arg}(s) < \}$

$$\Gamma(s) = \sqrt{2\pi} \cdot s^{s - \frac{1}{2}} e^{-s} e^{H(s)},$$

wobei H(s) eine in \mathbb{C}_- holomorphe Funktion ist mit der Eigenschaft

$$\lim_{\substack{|s|\to\infty\\s\in W_\delta}} H(s) = 0.$$

Diese ist vor allem Dingen dafür geeignet, den exponentiellen Abfall der Funktion $\Gamma(s)$ auf vertikalen Streifen $\sigma_1 < \text{Re } s < \sigma_2$ zu beweisen.

Eine für uns sehr wichtige Darstellung der Gammafunktion ist die Integraldarstellung von Euler:

Satz 6.14. Es gilt für alle $s \in \mathbb{C}$ mit $\operatorname{Re}(s) > 0$:

$$\Gamma(s) = \int_0^\infty e^{-x} x^{s-1} \, \mathrm{d}x. \tag{6.4}$$

Beweis. Siehe FT 2: Man verifiziert die Funktionalgleichung über partielle Integration und nutzt anschließend den Satz von Wielandt.

Die enorme Bedeutung der Gammafunktion in der Zahlentheorie wird in ihrem Zusammenspiel mit Dirichletreihen deutlich:

Satz 6.15 (MELLIN-TRANSFORMATION). Es sei $F(s) = \sum_{n=1}^{\infty} \frac{a(n)}{n^s}$ eine Dirichletreihe, welche irgendwo konvergiert. Dann gilt für die zugehörige Potenzreihe $P(z) = \sum_{n=1}^{\infty} a(n)z^n$ und für alle $s \in \mathbb{C}$ mit $\text{Re}(s) > \max\{0, \sigma_a(F)\}$:

$$F(s) = \frac{1}{\Gamma(s)} \int_0^\infty P(e^{-x}) \underbrace{x^{s-1}}_{Mellin-Kern} dx.$$

Beweis. Für beliebiges $n \in \mathbb{N}$ machen wir in (6.4) die Substitution x = ny und sehen, dass

$$\Gamma(s) = n^s \int_0^\infty e^{-ny} y^{s-1} \, \mathrm{d}y.$$

Daraus folgt für alle $s \in \mathbb{C}$ mit $\text{Re}(s) > \max\{0, \sigma_a(F)\}$, dass

$$F(s) = \sum_{n=1}^{\infty} \frac{a(n)}{n^s} = \sum_{n=1}^{\infty} \frac{a(n)}{\Gamma(s)} \int_0^{\infty} e^{-ny} y^{s-1} \, \mathrm{d}y$$
$$= \frac{1}{\Gamma(s)} \sum_{n=1}^{\infty} \int_0^{\infty} a(n) e^{-ny} y^{s-1} \, \mathrm{d}y$$
$$\stackrel{(*)}{=} \frac{1}{\Gamma(s)} \int_0^{\infty} y^{s-1} \sum_{n=1}^{\infty} a(n) e^{-ny} \, \mathrm{d}y$$
$$= \frac{1}{\Gamma(s)} \int_0^{\infty} P(e^{-y}) y^{s-1} \, \mathrm{d}y.$$

Die Vertauschung von Integral und Summe bei (*) ist nach Satz von Lebesgue gerechtfertigt wegen $\sigma := \text{Re}(s) > \max\{0, \sigma_a(F)\}$ nach Voraussetzung und daher

$$\sum_{n=1}^{\infty} \int_{0}^{\infty} \left| a(n)e^{-ny}y^{s-1} \right| dy = \sum_{n=1}^{\infty} |a(n)| \int_{0}^{\infty} e^{-ny}y^{\sigma-1} dy \qquad \left| \sigma > 0 \right|$$

$$= \sum_{n=1}^{\infty} |a(n)|n^{-\sigma}\Gamma(\sigma)$$

$$= \Gamma(\sigma) \sum_{n=1}^{\infty} \left| \frac{a(n)}{n^{\sigma}} \right| \qquad \left| \sigma > \sigma_a(F) \right|$$

$$< \infty.$$

g. e. s.

Beispiel 6.16.

(i) Ist $F(s) = \zeta(s)$, so erhalten wir für $s \in \mathbb{C}$ mit Re(s) > 1:

$$F(s) = \zeta(s) = \frac{1}{\Gamma(s)} \int_0^\infty \frac{x^{s-1}}{e^x - 1} dx.$$
 (6.5)

(ii) Ist $G(s) = 1 - \frac{1}{2^s} + \frac{1}{3^s} - \frac{1}{4^s} \pm \ldots = (1 - 2^{1-s})\zeta(s)$, so gilt sogar für alle $s \in \mathbb{C}$ mit Re (s) > 0 (folgt nicht vollständig aus Satz 6.15, lässt sich aber beweisen):

$$G(s) = \frac{1}{\Gamma(s)} \int_0^\infty \frac{x^{s-1}}{e^x + 1} dx.$$

Zum Schluss beweisen wir noch eine nützliche Darstellung von Log $\Gamma(s+1)$ in Form der expliziten Taylor-Entwicklung im Bereich |s| < 1:

Satz 6.17. Es gilt für alle $s \in \mathbb{E} := U_1(0)$:

$$\operatorname{Log}\Gamma(s+1) = -\gamma s + \sum_{n=2}^{\infty} (-1)^n \frac{\zeta(n)}{n} s^n.$$

Beweis. Es gilt

$$\Gamma(s+1) = s\Gamma(s) = \lim_{N \to \infty} \frac{N^s}{\left(1 + \frac{s}{1}\right)\left(1 + \frac{s}{2}\right)\cdots\left(1 + \frac{s}{N-1}\right)}$$

und somit folgt durch Logarithmieren:

$$\operatorname{Log}\Gamma(s+1) = \lim_{N \to \infty} \left[s \operatorname{Log} N - \sum_{n=1}^{N-1} \operatorname{Log} \left(1 + \frac{s}{n} \right) \right]$$

$$= \lim_{N \to \infty} \left[s \operatorname{log} N - \sum_{n=1}^{N-1} \left(\frac{s}{n} - \frac{s^2}{2n^2} + \frac{s^3}{3n^3} \mp \dots \right) \right]$$

$$= \lim_{N \to \infty} \left[s \left(\operatorname{log} N - \left(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{N-1} \right) \right) + \frac{s^2}{2} \left(1 + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{(N-1)^2} \right) - \frac{s^3}{3} \left(1 + \frac{1}{2^3} + \frac{1}{3^3} + \dots + \frac{1}{(N-1)^3} \right) \right]$$

$$\pm \dots \right]$$

$$= -\gamma s + \frac{\zeta(2)}{2} s^2 - \frac{\zeta(3)}{3} s^3 \pm \dots$$

Da die Folgen $a_r(N) = \sum_{n=1}^N \frac{1}{n^r}$ für $r \ge 2$ und $N \to \infty$ gleichmäßig gegen die Grenzwerte $\zeta(r)$ konvergieren, ist die Vertauschung von Limes und Summation $(\pm \ldots)$ im letzten Schritt erlaubt.

6.4. Die Riemannsche Zetafunktion

Die einfachste und wichtigste Dirichletreihe ist die Riemannsche Zetafunktion

$$\zeta(s) := \sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_{n \in \mathbb{P}} \frac{1}{1 - p^{-s}} = \frac{1}{\Gamma(s)} \int_0^{\infty} \frac{x^{s-1}}{e^x - 1} \, \mathrm{d}x \,,$$

wobei alle drei Darstellungen nur für $s \in \mathbb{C}$ mit Re(s) > 1 gültig sind. Die wichtigsten bisher bewiesenen Eigenschaften der Zetafunktion sind im folgenden Satz zusammengefasst:

Satz 6.18. Die auf $\{z \in \mathbb{C} \mid \operatorname{Re}(s) > 1\}$ durch $\zeta(s) := \sum_{n=1}^{\infty} \frac{1}{n^s}$ definierte Funktion ζ besitzt eine meromorphe Fortsetzung in die komplexe Zahlenebene \mathbb{C} mit einem einfachen Pol an der Stelle s=1 mit Residuum 1. Dies ist zugleich ihre einzige Polstelle.

Die Werte der Zetafunktion bei nichtpositiven ganzen Zahlen sind rational, genauer:

$$\zeta(0) = -\frac{1}{2}$$

$$\zeta(-2n) = 0 \qquad \forall n \in \mathbb{N}$$

$$\zeta(1-2n) = -\frac{B_{2n}}{2n} \qquad \forall n \in \mathbb{N},$$

wobei die rationalen Zahlen $B_2 = \frac{1}{6}$, $B_4 = -\frac{1}{30}$, ... die durch

$$\frac{t}{e^t - 1} = \sum_{k=0}^{\infty} \frac{B_k}{k!} t^k \quad \text{für } t \in U_{2\pi}(0)$$

definierten Bernoulli-Zahlen sind.

Die Werte der Zetafunktion bei positiven geraden Zahlen sind durch

$$\zeta(2n) = \frac{(-1)^{n-1}2^{2n-1}B_{2n}}{(2n)!}\pi^{2n}, \quad n \in \mathbb{N}$$

gegeben.

Beweis. Wir entwickeln zunächst

$$\frac{t}{e^t - 1} = \frac{t}{t + \frac{t^2}{2!} + \frac{t^3}{3!} + \dots} = 1 - \frac{t}{2} + \frac{t^2}{12} - \frac{t^4}{720} \pm \dots$$

und definieren B_n als das n!-fache des Koeffizienten von t^n auf der rechten Seite. Aus

$$\frac{t}{e^t - 1} - \frac{-t}{e^{-t} - 1} = -t$$

folgt, dass abgesehen von $B_1=-\frac{1}{2}$ alle B_n mit n ungerade verschwinden. Setze nun für beliebiges $n\in\mathbb{N}$

$$f_n(t) := \sum_{k=0}^{n} (-1)^k \frac{B_k}{k!} t^k = 1 + \frac{t}{2} + \frac{B_2}{2!} t^2 + \dots + \frac{B_n}{n!} t^n$$

unter Beachtung von $(-1)^k B_k = B_k$ für k > 1 wegen $B_k = 0 = -B_k$ für ungerade k > 1.

Dann gilt für alle $s \in \mathbb{C}$ mit $\sigma := \text{Re}\,(s) > 1$ und für $n \in \mathbb{N}$ beliebig:

$$\Gamma(s)\zeta(s) \stackrel{\text{(6.5)}}{=} \int_0^\infty \frac{t^{s-1}}{e^t - 1} dt$$

$$= \int_0^\infty \frac{te^t}{e^t - 1} e^{-t} t^{s-2} dt$$

$$= \underbrace{\int_0^\infty \left(\frac{te^t}{e^t - 1} - f_n(t)\right) e^{-t} t^{s-2} dt}_{=:I_1(s)} + \underbrace{\int_0^\infty f_n(t) e^{-t} t^{s-2} dt}_{=:I_2(s)},$$

Die Funktion $t\mapsto \frac{te^t}{e^t-1}$ ist lokal um t=0 holomorph und hat dort die Taylorentwicklung

$$\frac{te^t}{e^t - 1} = \frac{-t}{e^{-t} - 1} = \sum_{k=0}^{\infty} \frac{B_k}{k!} (-t)^k = \sum_{k=0}^{\infty} (-1)^k \frac{B_k}{k!} t^k = f_{\infty}(t) ,$$

sodass für $t \to 0$

$$\frac{te^t}{e^t - 1} - f_n(t) = \mathcal{O}(t^{n+1})$$

gilt. Somit ist der Integrand von $I_1(s)$ für $t \to 0$ in $\mathcal{O}(t^{n+\sigma-1})$ und fällt für $t \to \infty$ ohnehin exponentiell ab. Fixiere nun ein $n \in \mathbb{N}$ und betrachte die Halbebene $\mathbb{H}_{-n} := \{ s \in \mathbb{C} \mid \sigma := \operatorname{Re}(s) > -n \}$. Dort stellt das Integral wegen $n + \sigma - 1 > -1$ somit eine holomorphe Funktion dar.

Das zweite Integral ist zwar nur für $\sigma > 1$ konvergent, lässt sich aber elementar berechnen zu

$$I_2(s) = \int_0^\infty f_n(t)e^{-t}t^{s-2} dt$$

$$= \int_0^\infty \left(1 + \frac{t}{2} + \frac{B_2}{2!}t^2 + \dots + \frac{B_n}{n!}t^n\right)e^{-t}t^{s-2} dt$$

$$= \Gamma(s-1) + \frac{1}{2}\Gamma(s) + \sum_{k=2}^n \frac{B_k}{k!}\Gamma(s+k-1).$$

Da dies eine auf ganz \mathbb{C} meromorphe Funktion ist, folgt wegen $n \in \mathbb{N}$ beliebig, dass $\zeta(s)$ eine in ganz \mathbb{C} meromorphe Fortsetzung besitzt. Genauer erhalten wir durch Einsetzen der Integrale $I_1(s)$ und $I_2(s)$ sowie durch Ausnutzen der Funktionalgleichung von $\Gamma(s)$, dass insgesamt gilt:

$$\zeta(s) = \frac{1}{\Gamma(s)} \left(I_1(s) + I_2(s) \right)$$

$$= \frac{I_1(s)}{\Gamma(s)} + \frac{1}{\Gamma(s)} \left(\Gamma(s-1) + \frac{1}{2} \Gamma(s) + \sum_{k=2}^n \frac{B_k}{k!} \Gamma(s+k-1) \right)$$

$$= \frac{I_1(s)}{\Gamma(s)} + \frac{1}{s-1} + \frac{1}{2} + \sum_{k=2}^n \frac{B_k}{k!} s(s+1)(s+2) \dots (s+k-2)$$

Da $I_1(s)$ für $n \in \mathbb{N}$ beliebig auf \mathbb{H}_{-n} holomorph und Γ zudem nullstellenfrei ist, zeigt diese Formel zugleich, dass $\zeta(s) - \frac{1}{s-1}$ auf ganz \mathbb{C} holomorph ist. Somit ist auch der zweite Teil der Behauptung bewiesen und nur die konkreten Werte der Zetafunktion verbleiben noch zu zeigen.

Sei dazu $s \in \mathbb{Z}$ mit $-n < s \le 0$, dann ist $\frac{I_1(s)}{\Gamma(s)}$ wegen des Pols von $\Gamma(s)$ an dieser Stelle gleich Null und es folgt

$$\zeta(s) = \frac{1}{s-1} + \frac{1}{2} + \sum_{k=2}^{n} \frac{B_k}{k!} s(s+1)(s+2) \dots (s+k-2)$$

$$= \frac{1}{s-1} + \frac{1}{2} + \frac{s}{12} - \frac{s(s+1)(s+2)}{720} + \frac{s(s+1)(s+2)(s+3)(s+4)}{30240} \mp \dots$$

Dies zeigt, dass

$$\zeta(0) = \frac{1}{-1} + \frac{1}{2} = -\frac{1}{2},$$

$$\zeta(-1) = \frac{1}{-2} + \frac{1}{2} - \frac{1}{12} = -\frac{1}{12},$$

$$\zeta(-2) = \frac{1}{-3} + \frac{1}{2} - \frac{1}{6} = 0,$$

$$\zeta(-3) = \frac{1}{-4} + \frac{1}{2} - \frac{1}{4} + \frac{1}{120} = \frac{1}{120}.$$

Es ist klar, dass man dieses Verfahren für beliebig große n fortsetzen könnte, um $\zeta(-n)$ zu berechnen. Jedoch kann man auch eine geschlossene Form entwickeln: Aus dem erarbeiteten Ausdruck

$$\zeta(s) = \frac{1}{s-1} + \frac{1}{2} + \sum_{r=2}^{n} \frac{B_r}{r!} s(s+1)(s+2) \dots (s+r-2)$$

erhält man für s = -k und beliebiges n > k (z.B. n = k + 1) den Ausdruck

$$\zeta(-k) = \frac{1}{-k-1} + \frac{1}{2} + \sum_{r=2}^{n} \frac{B_r}{r!} (-k)(-k+1) \dots (-k+r-2)$$

$$= -\frac{1}{k+1} + \frac{1}{2} + \sum_{r=2}^{k+1} (-1)^{r-1} \frac{B_r}{r!} \frac{k!}{(k+1-r)!}$$

$$= -\frac{1}{k+1} \sum_{r=0}^{k+1} {k+1 \choose r} B_r.$$

Die Bernoulli-Zahlen erfüllen nun für beliebiges $n \in \mathbb{N}$ die Beziehung

$$\sum_{r=0}^{n} \binom{n}{r} B_r = (-1)^n B_n \,,$$

was per Koeffizientenvergleich und mit k = n - r aus

$$\sum_{n=0}^{\infty} \left(\sum_{r=0}^{n} \binom{n}{r} B_r \right) \frac{t^n}{n!} = \sum_{r=0}^{\infty} \sum_{k=0}^{\infty} \frac{B_r t^{r+k}}{r! k!}$$

$$= \underbrace{\left(\sum_{r=0}^{\infty} \frac{B_r}{r!} t^r \right)}_{=\frac{t}{e^t - 1}} \underbrace{\left(\sum_{k=0}^{\infty} \frac{t^k}{k!} \right)}_{=e^t}$$

$$= \frac{-t}{e^{-t} - 1} = \sum_{k=0}^{\infty} \frac{B_n}{n!} (-t)^n = \sum_{k=0}^{\infty} (-1)^n B_n \frac{t^n}{n!}$$

folgt. Damit ergibt sich wie behauptet

$$\zeta(-k) = -\frac{1}{k+1} \sum_{r=0}^{k+1} {k+1 \choose r} B_r = -\frac{B_{k+1}}{k+1}.$$

Zuletzt verbleibt noch, die Behauptung für die Werte $\zeta(2n)$ mit $n \in \mathbb{N}$ zu beweisen. Unter Benutzung des Eulerschen Ergänzungssatzes

$$\Gamma(1-s)\Gamma(s) = \frac{\pi}{\sin \pi s}$$

erhalten wir

$$\sum_{n=1}^{\infty} (-1)^{n-1} 2^{2n-1} \pi^{2n} \frac{B_{2n}}{(2n)!} s^{2n} = -\frac{1}{2} \sum_{n=1}^{\infty} \frac{B_{2n}}{(2n)!} (2\pi i s)^{2n}$$

$$= -\frac{1}{2} \left[\sum_{n=0}^{\infty} \frac{B_{2n}}{(2n)!} (2\pi i s)^{2n} - 1 \right]$$

$$= -\frac{1}{2} \left[\sum_{n=0}^{\infty} \frac{B_{n}}{n!} (2\pi i s)^{n} - 1 - 2B_{1} \pi i s \right]$$

$$= -\frac{1}{2} \left[\frac{2\pi i s}{e^{2\pi i s} - 1} - 1 + \pi i s \right]$$

$$= \frac{1}{2} - \frac{\pi i s}{2} \cdot \left(\frac{2}{e^{2\pi i s} - 1} + 1 \right)$$

$$= \frac{1}{2} - \frac{\pi i s}{2} \cdot \left(\frac{2 + e^{2\pi i s} - 1}{e^{2\pi i s} - 1} \right)$$

$$= \frac{1}{2} - \frac{\pi i s}{2} \cdot \frac{e^{\pi i s} + e^{-\pi i s}}{e^{\pi i s} - e^{-\pi i s}}$$

$$= \frac{1}{2} \left(1 - \frac{\pi s}{\tan \pi s} \right)$$

$$= \frac{s}{2} \left(\frac{1}{s} - \frac{\pi}{\tan \pi s} \right)$$

$$= \frac{s}{2} \frac{d}{ds} \operatorname{Log} \frac{\pi s}{\sin \pi s}$$

$$= \frac{s}{2} \frac{d}{ds} \operatorname{Log} \left(\Gamma(1 + s) \Gamma(1 - s) \right)$$
Satz 6.17

$$= \frac{s}{2} \frac{\mathrm{d}}{\mathrm{d}s} \left[\sum_{n=2}^{\infty} \left((-1)^n \frac{\zeta(n)}{n} + \frac{\zeta(n)}{n} \right) s^n \right]$$
$$= \frac{s}{2} \frac{\mathrm{d}}{\mathrm{d}s} \left[\sum_{n=1}^{\infty} 2 \frac{\zeta(2n)}{2n} s^{2n} \right]$$
$$= \sum_{n=1}^{\infty} \zeta(2n) s^{2n}.$$

Hieraus folgt über Koeffizientenvergleich wie behauptet für $n \in \mathbb{N}$ beliebig

$$\zeta(2n) = \frac{(-1)^{n-1}2^{2n-1}B_{2n}}{(2n)!}\pi^{2n}.$$

g. e. s.

Die Tatsache, dass die Werte von $\zeta(2n)$ und $\zeta(1-2n)$ dieselben Bernoulli-Zahlen enthalten, lässt erahnen, dass es eine Beziehung zwischen beiden Werten geben könnte. Dies in der Tat der Fall: Setzen wir

$$\xi(s) := \pi^{-\frac{s}{2}} \cdot \Gamma\left(\frac{s}{2}\right) \cdot \zeta(s)$$

so gilt für alle $s \in \mathbb{C} \setminus \{0,1\}$ die Gleichheit

$$\xi(1-s) = \xi(s). (6.6)$$

Diese Relation wurde zuerst von Euler vermutet und schließlich von Riemann bewiesen.

Für $\sigma>1$ ist die rechte Seite der Gleichung (6.6) von 0 verschieden, was sich mit der Darstellung von ζ als Eulerprodukt leicht einsehen lässt. Es folgt dann aus (6.6), dass für $\sigma<0$ nur die in Satz 6.18 bereits ermittelten "trivialen Nullstellen" s=-2n mit $n\in\mathbb{N}$ als Nullstellen von ζ infrage kommen. Zudem kann man zeigen, dass ζ auf den Geraden $\mathrm{Re}\,(s)=0$ und $\mathrm{Re}\,(s)=1$ keine Nullstellen besitzt. Die einzigen "nicht-trivialen" Nullstellen von ζ liegen somit im sogenannten "kritischen Streifen" $\{s\in\mathbb{C}\mid 0<\sigma:=\mathrm{Re}\,(s)<1\}$. Die "ersten" hiervon haben die Form

$$\frac{1}{2} \pm 14, 134725 \dots i$$
,
 $\frac{1}{2} \pm 21, 022040 \dots i$,
 $\frac{1}{2} \pm 25, 010852 \dots i$.

Es ist bekannt, dass ζ unendlich viele nicht-triviale Nullstellen besitzt. Die bis heute ungelöste RIEMANN-VERMUTUNG besagt, dass all diese Nullstellen den Realteil $\frac{1}{2}$ haben.

6.5. Heckesche L-Reihen

Einer Modulform $f = \sum_{n=0}^{\infty} a(n)q^n \in M_k$ ordnet man die L-Reihe

$$L(f,s) := \sum_{n=1}^{\infty} a(n)n^{-s}$$

zu. Nach Hecke impliziert das Transformationsverhalten von f "gute" analytische Eigenschaften für L(f,s), wie zum Beispiel die Existenz einer meromorphen Fortsetzung nach $\mathbb C$ oder die Gültigkeit einer Funktionalgleichung. Der Übergang von f zu L(f,s) erfolgt mittels Mellin-Transformation.

Konvention: Sei im Folgenden $k \ge 4$ stets gerade.

Definition 6.19. Sei $f = \sum_{n=0}^{\infty} a(n)q^n \in M_k$. Dann heißt die Reihe

$$L(f,s) := \sum_{n=1}^{\infty} a(n)n^{-s}$$

die Heckesche L-Reihe zu f.

Satz 6.20. Sei $f = \sum_{n=0}^{\infty} a(n)q^n \in M_k$. Dann gilt:

(i)
$$a(n) = \mathcal{O}(n^{k-1})$$
.

(ii) Ist
$$f \in S_k$$
, so gilt sogar $a(n) = \mathcal{O}(n^{\frac{k}{2}})$.

Beweis. Wegen $M_k = \mathbb{C}E_k \oplus S_k$ und

$$E_k \propto G_k = 2\zeta(k) + \frac{2(2\pi i)^k}{(k-1)!} \sum_{n=1}^{\infty} \sigma_{k-1}(n)q^n$$

folgt die Aussage (i) mit (ii) und

$$\sigma_{k-1}(n) := \sum_{d|n} d^{k-1} = n^{k-1} \sum_{d|n} \left(\frac{d}{n}\right)^{k-1} \leqslant n^{k-1} \sum_{l=1}^{\infty} \frac{1}{l^{k-1}} = \mathcal{O}(n^{k-1}).$$

Wir müssen also nur noch (ii) zeigen. Sei dazu $f \in S_k$. Nach Definition ist

$$a(n) = \int_{ci}^{ci+1} f(z)e^{-2\pi inz} dz$$

mit $c \in \mathbb{R}_{>0}$ beliebig. Man schreibe $f(z) = y^{-\frac{k}{2}}y^{\frac{k}{2}}f(z)$. Wie schon früher gezeigt, ist $g(z) := y^{\frac{k}{2}}f(z)$ auf ganz \mathbb{H} beschränkt. Es folgt somit

$$a(n) = \int_{ci}^{ci+1} y^{-\frac{k}{2}} g(z) e^{-2\pi i n z} dz = \int_{0}^{1} c^{-\frac{k}{2}} g(t+ic) e^{2\pi n c} e^{-2\pi i n t} dt$$

und damit $|a(n)| \leq c^{-\frac{k}{2}}e^{2\pi nc}M$, wobei M>0 nicht mehr von n abhängt. Man wähle $c=\frac{1}{n}$ und folgere $|a(n)|=\mathcal{O}(n^{\frac{k}{2}})$. Damit ist alles gezeigt.

Korollar 6.21. Sei $f \in M_k$. Dann gilt $\sigma_a(L(f,s)) \leq k$. Ist zudem $f \in S_k$, so gilt sogar $\sigma_a(L(f,s)) \leq \frac{k}{2} + 1$. Die Funktion $s \mapsto L(f,s)$ ist in der Halbebene $\text{Re}(s) > \sigma_c(L(f,s))$ holomorph.

Satz 6.22 (HECKE). Sei $f = \sum_{n=0}^{\infty} a(n)q^n \in M_k$. Setzt man für $\operatorname{Re}(s) > k$

$$L^*(f,s) := (2\pi)^{-s} \Gamma(s) L(f,s)$$
,

dann gilt: Die Funktion

$$s \mapsto L^*(f,s) + \frac{a(0)}{s} + \frac{(-1)^{\frac{k}{2}}a(0)}{k-s}$$

hat eine holomorphe Fortsetzung auf ganz \mathbb{C} , ist beschränkt in jedem Vertikalstreifen $\{s \in \mathbb{C} \mid \nu_1 \leqslant \operatorname{Re}(s) \leqslant \nu_2\}$ und L^* erfüllt die Funktionalgleichung

$$L^*(f, k - s) = (-1)^{\frac{k}{2}} L^*(f, s)$$
.

Ist $f \in S_k$, so ist a(0) = 0 und daher sogar $s \mapsto L^*(f,s)$ selbst bereits eine ganze Funktion.

Beweis. Nach Satz 6.15 (Mellin-Transformation) ist

$$L(f,s) = \frac{1}{\Gamma(s)} \int_0^\infty \sum_{n=1}^\infty a(n) (e^{-x})^n x^{s-1} dx = \frac{1}{\Gamma(s)} \int_0^\infty \left(\underbrace{\sum_{n=0}^\infty a(n) e^{-nx}}_{=f\left(\frac{ix}{2\pi}\right)} - a(0) \right) x^{s-1} dx ,$$

sodass nach Substitution $x \mapsto y := 2\pi x$ für alle $s \in \mathbb{C}$ mit $\operatorname{Re}(s) > k$ gilt:

$$L^*(f,s) = (2\pi)^{-s} \Gamma(s) L(f,s)$$
$$= \int_0^\infty (f(iy) - a(0)) y^{s-1} dy$$

$$= \underbrace{\int_0^1 (f(iy) - a(0)) y^{s-1} dy}_{=:I_1(s)} + \underbrace{\int_1^\infty (f(iy) - a(0)) y^{s-1} dy}_{=:I_2(s)}.$$

Wie man schnell sieht, ist $L^*(f,s)$ für $\operatorname{Re}(s) > k$ holomorph. Darüber hinaus sieht man schnell ein, dass $I_2(s)$ für alle $s \in \mathbb{C}$ konvergent (also eine ganze Funktion) und außerdem auf jedem Vertikalstreifen beschränkt ist. Es verbleibt somit nur noch das Studium von

$$I_1(s) = -a(0) \int_0^1 y^{s-1} dy + \int_0^1 f(iy) y^{s-1} dy.$$

Nun gilt für den ersten Summanden

$$\int_0^1 y^{s-1} \, \mathrm{d}y = \left[\frac{y^s}{s} \right]_0^1 = \frac{1}{s}$$

und für den zweiten Summanden nach Substitution $y \mapsto y^{-1}$ mit $d(y^{-1}) = -y^{-2} dy$:

$$\int_{0}^{1} f(iy)y^{s-1} dy = \int_{\infty}^{1} f(iy^{-1})y^{-s+1} d(y^{-1})$$

$$= \int_{1}^{\infty} f(S \circ (iy))y^{-s-1} dy \qquad | f \in M_{k}$$

$$= \int_{1}^{\infty} (iy)^{k} f(iy)y^{-s-1} dy$$

$$= (-1)^{\frac{k}{2}} \int_{1}^{\infty} f(iy)y^{k-s-1} dy$$

$$= (-1)^{\frac{k}{2}} \left(\int_{1}^{\infty} (f(iy) - a(0)) y^{k-s-1} dy + a(0) \int_{1}^{\infty} y^{k-s-1} dy \right)$$

$$= (-1)^{\frac{k}{2}} \left(I_{2}(k-s) - \frac{a(0)}{k-s} \right).$$

Insgesamt erhalten wir also

$$L^*(f,s) + \frac{a(0)}{s} + \frac{(-1)^{\frac{k}{2}}a(0)}{k-s} = I_1(s) + I_2(s) + \frac{a(0)}{s} + \frac{(-1)^{\frac{k}{2}}a(0)}{k-s}$$
$$= I_2(s) + (-1)^{\frac{k}{2}}I_2(k-s). \tag{6.7}$$

Da $I_2(s)$ ganz und auf jedem Vertikalstreifen beschränkt ist, müssen wir nur noch die Funktionalgleichung nachrechnen. Hierzu ersetzen wir in (6.7) das s durch k-s und

beobachten (k gerade):

$$L^*(f,k-s) + \frac{a(0)}{k-s} + \frac{(-1)^{\frac{k}{2}}a(0)}{s} \stackrel{(6.7)}{=} I_2(k-s) + (-1)^{\frac{k}{2}}I_2(s)$$

$$= (-1)^{\frac{k}{2}} \left((-1)^{\frac{k}{2}}I_2(k-s) + I_2(s) \right)$$

$$\stackrel{(6.7)}{=} (-1)^{\frac{k}{2}} \left(L^*(f,s) + \frac{a(0)}{s} + \frac{(-1)^{\frac{k}{2}}a(0)}{k-s} \right)$$

$$= (-1)^{\frac{k}{2}}L^*(f,s) + \frac{(-1)^{\frac{k}{2}}a(0)}{s} + \frac{a(0)}{k-s},$$

was nach Subtraktion von $\frac{a(0)}{k-s} + \frac{(-1)^{\frac{k}{2}}a(0)}{s}$ genau die Behauptung ergibt.

Beispiel 6.23.

(i) Sei $f = 1 - \frac{2k}{B_k} \sum_{m=1}^{\infty} \sigma_{k-1}(m) q^m$ die normierte Eisensteinreihe in M_k . Es ist

$$\sum_{m=1}^{\infty} \frac{\sigma_{k-1}(m)}{m^s} = \zeta(s)\zeta(s-k+1).$$

Es folgt, dass $(\zeta(s)\zeta(s-k+1))^*$ (bis auf eine Konstante $-\frac{2k}{B_k}$) die vervollständigte Heckesche L-Reihe $L^*(E_k,s)$ ist und $(-1)^{\frac{k}{2}}$ invariant unter $s\mapsto k-s$.

(ii) $f = \Delta \in S_{12}$. Dann hat $L^*(\Delta, s) = (2\pi)^{-s}\Gamma(s)L(\Delta, s)$ eine holomorphe Fortsetzung auf \mathbb{C} und ist invariant unter $s \mapsto 12 - s$.

Kuriose Anwendung: Sei $f = \sum_{n \ge 1} a(n)q^n \in S_k$ und seien fast alle a(n) gleich 0. Dann ist $f \equiv 0$.

Beweis. Die Funktion $L^*(f,s) = (2\pi)^{-s}\Gamma(s)L(f,s)$ ist holomorph in \mathbb{C} . Also folgt L(f,s) = 0 für $s = 0, -1, -2, \ldots$

Nach Voraussetzung

$$f = \sum_{n=1}^{N} a(n)q^{n}$$

$$\Rightarrow L(f,s) = \sum_{n=1}^{N} a(n)n^{-s}$$

$$\Rightarrow L(f,-\nu) = \sum_{n=1}^{N} a(n)n^{\nu} = 0 \quad \forall \nu = 0, 1, 2, \dots$$

$$\Rightarrow \begin{pmatrix} 1 & 1 & \dots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1^{N-1} & 2^{N-1} & \dots & N^{N-1} \end{pmatrix} \begin{pmatrix} a(1) \\ \vdots \\ a(N) \end{pmatrix} = 0$$

$$\Rightarrow a = 0$$

$$\Rightarrow f \equiv 0.$$

g. e. s.

6.6. Der Heckesche Umkehrsatz

Satz 6.22 hat eine Umkehrung:

Satz 6.24 (HECKE). Seien $k \in 2\mathbb{N}$ und $\alpha > 0$ gegeben. Sei $(a(n))_{n \in \mathbb{N}_0}$ eine Folge komplexer Zahlen mit $a(n) = \mathcal{O}(n^{\alpha})$. Sei

$$L(s) = \sum_{n=1}^{\infty} \frac{a(n)}{n^s} \qquad (\sigma > \alpha + 1)$$

und die Funktion $L^*(s) = (2\pi)^{-s}\Gamma(s)L(s)$ erfülle die Funktionalgleichung

$$L^*(k-s) = (-1)^{\frac{k}{2}}L^*(s)$$
.

Die Funktion

$$s \mapsto L^*(s) + \frac{a(0)}{s} + \frac{(-1)^{\frac{k}{2}}a(0)}{k-s}$$

besitze eine holomorphe Fortsetzung nach $\mathbb C$ und sei zudem in jedem Vertikalstreifen $\nu_1 \leqslant \operatorname{Re}(s) \leqslant \nu_2$ beschränkt. Dann gilt $f(z) = \sum_{n=0}^{\infty} a(n)q^n \in M_k$.

Beweis. Wir benötigen zum Beweis zwei weitere Sätze. Zunächst:

Satz 6.25 (MELLINSCHER UMKEHRSATZ). Sei $x \in \mathbb{C}$ mit $\operatorname{Re}(x) > 0$ und c > 0 eine reelle Zahl. Dann gilt

$$e^{-x} = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} \Gamma(s) x^{-s} \, \mathrm{d}s.$$

Beweis. Betrachte das Kurvenintegral über das Rechteck mit den Ecken c+iT, $-\frac{1}{2}-N+iT$, $-\frac{1}{2}-N-iT$, c-iT mit T>0 reell und N>0 ganz, beide groß.

Die horizontalen Integrale verschwinden für $T \to \infty$ (das folgt aus der Stirlingformel, siehe Satz 6.13) und das linke vertikale Integral für $N \to \infty$ (das folgt aus der Funktionalgleichung von $\Gamma(s)$). Damit folgt aus dem Residuensatz

$$\frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} \Gamma(s) x^{-s} \, \mathrm{d}s = \lim_{N \to \infty} \sum_{j=0}^{N} \frac{(-1)^{j}}{j!} x^{j} = e^{-x} \,.$$

g.e.s.

Darüber hinaus brauchen wir noch:

Lemma 6.26 (Phragmen-Lindelöf). Für zwei reelle Zahlen $\nu_1 < \nu_2$ setze $F = \{ s \in \mathbb{C} \mid \nu_1 \leqslant \text{Re}(s) \leqslant \nu_2 \}$. Sei φ eine holomorphe Funktion auf einer offenen Menge $U \supseteq F$, welche für $s = \sigma + i\tau$

$$|\varphi(s)| = \mathcal{O}(e^{|\tau|^{\delta}}) \qquad (|\tau| \to \infty)$$

gleichmäßig auf F mit einem $\delta > 0$ erfüllt.

Gibt es dann eine reelle Zahl b mit $|\varphi(s)| = \mathcal{O}(|\tau|^b)$ auf ∂F , so folgt bereits $|\varphi(s)| = \mathcal{O}(|\tau|^b)$ gleichmäßig auf F.

Beweis. Nach Vorausetzung existiert ein L > 0, sodass $|\varphi(s)| \leq Le^{|\tau|^{\delta}}$ auf F.

Betrachte zunächst den Fall b=0. Dann gibt es eine Konstante M>0, sodass $|\varphi(s)| \leq M$ auf ∂F . Sei m eine positive ganze Zahl mit $m\equiv 2 \mod 4$. Setze $s=\sigma+i\tau$. Da $\operatorname{Re}(s^m)=\operatorname{Re}((\sigma+i\tau)^m)$ ein Polynom in σ und τ ist, dessen höchste Potenz von τ durch $-\tau^m$ gegeben ist, haben wir

$$\operatorname{Re}(s^{m}) = -\tau^{m} + \mathcal{O}(|\tau|^{m-1})$$

gleichmäßig auf F. Es folgt, dass $\operatorname{Re}(s^m)$ eine obere Grenze N auf F besitzt. Indem wir $m > \delta$ wählen, erhalten wir für $\varepsilon > 0$

$$|\varphi(s)e^{\varepsilon s^m}| \leqslant Me^{\varepsilon N}$$
 auf ∂F

und damit

$$\left|\varphi(s)e^{\varepsilon s^m}\right| = \mathcal{O}\left(e^{\left|\tau\right|^{\delta}-\varepsilon\left|\tau\right|^m+K\left|\tau\right|^{m-1}}\right) \xrightarrow{\left|\tau\right|\to\infty} 0$$

gleichmäßig auf F. Nach dem Maximumsprinzip folgt damit bereits

$$|\varphi(s)e^{\varepsilon s^m}| \leqslant Me^{\varepsilon N}$$

auf F. Da ε unabhängig von M und N ist, bekommen wir mit $\varepsilon \to 0$ wie behauptet $|\varphi(s)| \leq M$, also $|\varphi(s)| = \mathcal{O}(|\tau|^0)$, auf F.

Nehmen wir jetzt $b \neq 0$ an. Wir definieren eine lokal um F holomorphe Hilfsfunktion $\psi(s) := (s - \nu_1 + 1)^b = e^{b \log(s - \nu_1 + 1)}$ mit Log dem Hauptzweig des komplexen Logarithmus. Da nun

$$\operatorname{Re}\left(\operatorname{Log}(s - \nu_1 + 1)\right) = \log|s - \nu_1 + 1|,$$

haben wir gleichmäßig auf F

$$|\psi(s)| = |s - \nu_1 + 1|^b \sim |\tau|^b \qquad (|\tau| \to \infty).$$

Setze $\varphi_1(s) = \frac{\varphi(s)}{\psi(s)}$. Dann erfüllt φ_1 die Voraussetzungen des Satzes mit b=0 und ist damit wie gerade gezeigt gleichmäßig beschränkt auf F. Es folgt $|\varphi(s)| = \mathcal{O}(|\tau|^b)$ gleichmäßig auf F.

Nach Voraussetzung ist $L^*(s)$ (bis auf die vernachlässigbaren Terme $\frac{a(0)}{s} + \frac{(-1)^{\frac{k}{2}}a(0)}{k-s}$) beschränkt auf jedem Vertikalstreifen $\nu_1 \leqslant \text{Re}(s) \leqslant \nu_2$. Nach der Stirlingformel gilt nun

$$L^*(s) = \mathcal{O}(|\tau|^{-M})$$
 für $|\tau| \to \infty$

auf jeder Geraden Re $(s) = \sigma_1 > \alpha + 1$ und wegen der Funktionalgleichung genauso auf jeder Geraden Re $(s) = \sigma_2 < k - \alpha - 1$. Betrachte für $c > \max\{\alpha + 1, k\}$ und y > 0 beliebig das Integral

$$\frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} L^*(s) y^{-s} \, ds = f(iy) - a(0)$$

nach dem Mellinschen Umkehrsatz (Satz 6.25): Man verschiebe den Integrationsweg nach links auf die Gerade Re (s)=k-c<0. Auf diese Weise erhält man Beiträge von Residuen der Polstellen von $L^*(s)y^{-s}$ bei s=0 und s=k als -a(0) beziehungsweise $(-1)^{\frac{k}{2}}a(0)y^{-k}$. Betrachte nun für T>0 reell das Kurvenintegral über das Rechteck mit Ecken c+iT, c-iT, k-c+iT, k-c-iT. Nach dem Prinzip von Phragmen-Lindelöf (Lemma 6.26) folgt dann, dass die Integrale über die horizontalen Streifen für $T\to\infty$ verschwinden, also verbleibt nur noch

$$-a(0) + a(0)(-1)^{\frac{k}{2}}y^{-k} = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} L^*(s)y^{-s} ds - \frac{1}{2\pi i} \int_{k-c-i\infty}^{k-c+i\infty} L^*(s)y^{-s} ds.$$

Durch Substitution $s \mapsto k - s$ in das zweite Integral erhält man

$$-\frac{1}{2\pi i} \int_{k-c-i\infty}^{k-c+i\infty} L^*(s) y^{-s} \, ds = -\frac{1}{2\pi i} \int_{c+i\infty}^{c-i\infty} L^*(k-s) y^{s-k} \, d(k-s)$$

$$= -(-1)^{\frac{k}{2}} y^{-k} \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} L^*(s) y^s \, \mathrm{d}s.$$

Damit folgt

$$-a(0) + (-1)^{\frac{k}{2}}a(0)y^{-k} = f(iy) - a(0) - (-1)^{\frac{k}{2}}y^{-k}\left(f\left(\frac{i}{y}\right) - a(0)\right)$$

und somit

$$0 = f(iy) - (iy)^k f\left(\frac{i}{y}\right).$$

Also gilt wie behauptet $f \in M_k$.

g. e. s.

Allgemeiner gilt sogar Folgendes:

Satz 6.27. Seien k > 0, $\lambda > 0$ reelle Zahlen und $C \in \mathbb{C}^{\times}$. Sei a(n) eine Folge, sodass $a(n) = \mathcal{O}(n^{\alpha})$ für ein $\alpha > 0$. Seien

$$L(s) = \sum_{n=1}^{\infty} a(n)n^{-s},$$

$$L^*(s) = \left(\frac{2\pi}{\lambda}\right)^{-s} \Gamma(s)L(s),$$

$$f(z) = \sum_{n=0}^{\infty} a(n)e^{2\pi i n z/\lambda}.$$

Dann sind äquivalent:

- (i) $f(-1/z) = C(z/i)^k f(z)$ für alle $z \in \mathbb{H}$.
- (ii) $L^*(s) + \frac{a(0)}{s} + \frac{Ca(0)}{k-s}$ hat eine holomorphe Fortsetzung auf \mathbb{C} , ist beschränkt auf Vertikalstreifen der Form $\nu_1 \leq \operatorname{Re}(s) \leq \nu_2$ und es gilt

$$L^*(k-s) = C \cdot L^*(s).$$

Beispiel 6.28. Theta-Transformationsformel: Für $A \in M_m(\mathbb{R})$, $A = A^t$, A > 0 setze

$$\vartheta_A(z) = \sum_{g \in \mathbb{Z}^m} e^{\pi i A[g]z}, \qquad z \in \mathbb{H},$$

dann gilt

$$\vartheta_{A^{-1}}(-1/z) = \sqrt{\det A}(z/i)^{m/2}\vartheta_A(z)$$
.

Ist speziell m=1 und $A=1\in\mathbb{R}^{1\times 1}=\mathbb{R}$, so folgt

$$\vartheta_1(z) = 1 + 2\sum_{n=1}^{\infty} e^{\pi i n^2 z}$$
.

Sei nun $f = \frac{1}{2}\vartheta_1$. Dann gilt mit der Theta-Transformationsformel von oben

$$f(-1/z) = (z/i)^{1/2} f(z)$$
.

Man wende nun Satz 6.27 auf f an mit den Parametern $k = \frac{1}{2}$, $\lambda = 2$ und C = 1, also $a(0) = \frac{1}{2}$. Dann gilt

$$L(s) = \sum_{n=1}^{\infty} (n^2)^{-s} = \zeta(2s).$$

Es folgt: Die Funktion $\pi^{-s}\Gamma(s)\zeta(2s)+\frac{1}{2s}+\frac{1}{1-2s}$ hat eine holomorphe Fortsetzung auf $\mathbb C$, ist beschränkt auf Vertikalstreifen $\nu_1\leqslant \mathrm{Re}\,(s)\leqslant \nu_2$ und es gilt die Funktionalgleichung $(L^*$ ist invariant unter $s\mapsto \frac{1}{2}-s)$. Hieraus erhält man die schon bekannten analytischen Eigenschaften von $\zeta(s)$, üblicherweise nach Übergang $s\mapsto \frac{s}{2}$ formuliert wie folgt: $\pi^{-\frac{s}{2}}\Gamma(\frac{s}{2})\zeta(s)$ hat eine holomorphe Fortsetzung auf $\mathbb C\setminus\{0,1\}$, einfache Pole in s=0 und s=1 und ist invariant unter $s\mapsto 1-s$.

6.7. L-Reihen zu Hecke Eigenformen

Satz 6.29. Sei $f(z) = \sum_{n=0}^{\infty} a(n)q^n \in M_k$ eine Hecke-Eigenform, also $f|T(n) = \lambda(n)f$ für alle $n \in \mathbb{N}$. Dann hat L(f,s) ein Euler-Produkt der Gestalt

$$L(f,s) = a(1) \prod_{p \in \mathbb{P}} (1 - \lambda(p)p^{-s} + p^{k-1-2s})^{-1},$$

wobei die rechte Seite für $\sigma > k$ (bzw. sogar für $\sigma > \frac{k}{2} + 1$, falls $f \in S_k$) unbedingt konvergiert.

Beweis. Schon gezeigt: $a(n) = \lambda(n)a(1)$ für alle $n \ge 1$. Ferner T(m)T(n) = T(mn) für (m,n) = 1. Also ist $\lambda(n)$ multiplikativ! Daher gilt die Formel

$$L(f,s) = a(1) \sum_{n=1}^{\infty} \lambda(n) n^{-s} = a(1) \prod_{p \in \mathbb{P}} \sum_{r=0}^{\infty} \lambda(p^r) p^{-rs}$$
.

Behauptung:

$$(1 - \lambda(p)X + p^{k-1}X^2) \sum_{r=0}^{\infty} \lambda(p^r)X^r = 1.$$

Das folgt unmittelbar aus der Formel $\lambda(p^r) - \lambda(p)\lambda(p^{r-1}) + p^{k-1}\lambda(p^{r-2}) = 0$ für alle $r \geq 2$ (siehe Satz 2.12, iii)) und Koeffizientenvergleich. Die Behauptung folgt mit $X = p^{-s}$.

6.8. Spezielle Werte von L-Funktionen

Erinnerung. Es sei $f \in S_k$ eine normalisierte Hecke-Eigenform. Dann ist

$$L^*(f,s) = (2\pi)^{-s} \Gamma(s) L(f,s)$$

eine ganze Funktion und $(-1)^{k/2}$ -invariant unter $s \mapsto k - s$. Ferner gilt

$$L(f,s) = \prod_{p \in \mathbb{P}} (1 - a(p)p^{-s} + p^{k-1-2s})^{-1}.$$

Definition 6.30. Eine ganze Zahl s_0 heißt KRITISCH bezüglich L(f,s) (f weiterhin Hecke-Eigenform), falls $1 \leq s_0 \leq k-1$.

Idee: s_0 ist genau dann kritisch, falls es weder Pol von $\Gamma(s)$ noch von $\Gamma(k-s)$ ist.

Es gibt folgende Philosophie von Deligne: Sei

$$L(s) = \sum_{n=1}^{\infty} a(n)n^{-s}$$

eine "motivierte" Dirichletreihe (d. h. L kommt von einem natürlichen mathematischen Objekt wie einer Varietät, einer Modulform, einer Galois-Darstellung, einem Zahlkörper, ...). Man setzt voraus, dass L ein Euler-Produkt besitzt und sich zu einer ganzen Funktion fortsetzen lässt (oder zumindest einer meromorphen Funktion mit endlich vielen Polstellen) und ihre Vervollständigung $L^*(s) = \gamma(s)L(s)$ (mit einem Gamma-Faktor $\gamma(s)$, z. B. $(2\pi)^{-s}\Gamma(s)$ für Modulformen) eine Funktionalgleichung $L^*(k-s) = \varepsilon L^*(s)$ erfüllt mit k>0 und $\varepsilon\in\{\pm 1\}$. Ist s_0 kritisch, so ist es weder Pol von $\gamma(s)$ noch von $\gamma(k-s)$. Dann soll eine geschlossene Formel

$$L^*(s_0) = B(s_0)\Omega$$

gelten mit $B(s_0) \in \mathbb{A}$ wobei $\mathbb{A} \subseteq \mathbb{C}$ der algebraische Abschluss von \mathbb{Q} ist und Ω "im Wesentlichen unabhängig von s_0 " ("Periode").

Beispiel 6.31. Für $\zeta(s)$ sind genau die positiven geraden und die negativen ungeraden Zahlen kritisch.

Satz 6.32 (EICHLER-SHIMURA). Sei $f \in S_k$ eine Hecke-Eigenform. Dann existieren $\omega_+, \omega_- \in \mathbb{R}_+$ derart, dass die Werte $L^*(f, s_0)/\omega_+$ für s_0 kritisch und ungerade beziehungsweise $L^*(f, s_0)/\omega_-$ für s_0 kritisch und gerade, algebraisch sind. Man kann f so normalisieren, dass

$$\omega_+\omega_- = \langle f, f \rangle$$
.

Beispiel 6.33. Ist $f = \Delta \in S_{12}$, so gilt

$$L^*(\Delta, 1) = L^*(\Delta, 11) = \frac{192}{691}\omega_+,$$

$$L^*(\Delta, 3) = L^*(\Delta, 9) = \frac{16}{135}\omega_+,$$

$$L^*(\Delta, 5) = L^*(\Delta, 7) = \frac{8}{105}\omega_+.$$

Ähnliche Formeln erhält man auch für ω_{-} .

Exkurs: Produktdarstellung der Diskriminantenfunktion

Satz A.1. Für die Diskriminantenfunktion Δ gilt die Produktentwicklung

$$\Delta(z) := \frac{1}{1728} \left(E_4^3(z) - E_6^2(z) \right) = q \prod_{m=1}^{\infty} \left(1 - q^m \right)^{24},$$

wobei wie üblich $q := \exp(2\pi i z)$ ist.

Beweis. Ein erster Beweis dieser Identität stammt von Jacobi; ein weiterer Beweis, der allein mit elementaren Mitteln auskommt, wird auf Übungsblatt 4 geführt werden. Im Folgenden soll ein vergleichsweise einfacher Beweis von Professor Kohnen selbst vorgestellt werden, der unter anderem auf die Hecke-Operatoren zurückgreift.

1. Schritt: Wir leiten eine zur Behauptung äquivalente Aussage her. Nehme also an, die Produktdarstellung gelte, dann können wir die logarithmische Ableitung bilden (verifiziere durch Nachrechnen unter Beachtung der Produktregel):

$$\frac{\Delta'}{\Delta} = 2\pi i - 2\pi i \cdot 24 \sum_{m=1}^{\infty} m \frac{q^m}{1 - q^m}$$

$$= 2\pi i \Big(1 - 24 \sum_{m=1}^{\infty} m \sum_{a=1}^{\infty} q^{ma} \Big)$$

$$=2\pi i \Big(1-24\sum_{n=1}^{\infty}\sigma_1(n)q^n\Big).$$

Es genügt also, folgende Aussage zu zeigen:

$$\frac{\Delta'}{\Lambda} = 2\pi i E_2 \,,$$

wobei $E_2(z) := 1 - 24 \sum_{n=1}^{\infty} \sigma_1(n) q^n$. Dies ist der . . .

2. Schritt: Für $n \in \mathbb{N}$ betrachte nun wie in Definition 2.4

$$\mathcal{M}(n) := \left\{ M \in \mathbb{Z}^{2 \times 2} \mid \det(M) = n \right\}.$$

Wohl bekannt ist aus Lemma 2.5, dass

$$\mathcal{M}(n) = \bigcup_{\substack{ad=n\\d>0\\b \pmod{d}}}^{\cdot} \Gamma(1) \cdot \begin{pmatrix} a & b\\0 & d \end{pmatrix}$$

und damit $\# \Gamma(1) \setminus \mathcal{M}(n) = \sigma_1(n)$. Definiere nun einen "multiplikativen Hecke-Operator" \mathfrak{M}_n , der eine Modulform f vom Gewicht k bezüglich $\Gamma(1)$ auf eine solche von Gewicht $\sigma_1(n) \cdot k$ abbildet durch

$$\mathfrak{M}_{n}(f) := \prod_{\substack{\gamma \in \Gamma(1) \backslash \mathcal{M}(n) \\ b \pmod{d}}} f|_{k} \gamma = \prod_{\substack{ad=n \\ b > 0 \\ b \pmod{d}}} f|_{k} \begin{pmatrix} a & b \\ 0 & d \end{pmatrix}. \tag{A.1}$$

Dies ist wohldefiniert (argumentiere dazu wie bei T(n) in Abschnitt 2.1). Wendet man dies nun auf $f = \Delta$ an, dann ist $\mathfrak{M}_n(f) = \mathfrak{M}_n(\Delta)$ eine Modulform vom Gewicht $12\sigma_1(n)$ ohne Nullstellen in \mathbb{H} und mit $\operatorname{ord}_{\infty}(\mathfrak{M}_n(\Delta)) = \sigma_1(n)$.

Aus der Valenzformel folgt jetzt $\mathfrak{M}_n(\Delta) = c \cdot \Delta^{\sigma_1(n)}$ für ein $c \in \mathbb{C}^{\times}$. Durch logarithmisches Ableiten beider Seiten von Gleichung A.1 erhalten wir mit $f = \Delta$ und $\mathfrak{M}_n(\Delta) = c \cdot \Delta^{\sigma_1(n)}$, dass

$$\sigma_{1}(n)\frac{\Delta'}{\Delta} = \sum_{\substack{ad=n\\d>0\\b \pmod{d}}} d^{-2}n\frac{\Delta'}{\Delta} \left(\frac{az+b}{d}\right) = \sum_{\substack{ad=n\\d>0\\b \pmod{d}}} \frac{\Delta'}{\Delta} \Big|_{2} \begin{pmatrix} a & b\\0 & d \end{pmatrix}, \tag{A.2}$$

denn die Ableitung von

$$f|_k \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} = n^{\frac{k}{2}} d^{-k} f\left(\frac{az+b}{d}\right)$$

ist für beliebiges $f \colon \mathbb{H} \to \mathbb{C}$ gegeben durch

$$\left(f|_{k}\left(\begin{smallmatrix} a & b \\ 0 & d \end{smallmatrix}\right)\right)' = n^{\frac{k}{2}}d^{-k}\frac{a}{d}f'\left(\frac{az+b}{d}\right) = n^{\frac{k}{2}}d^{-k-2}nf'\left(\frac{az+b}{d}\right).$$

Setzt man $\frac{\Delta'}{\Delta}=2\pi i\sum_{m=0}^{\infty}a(m)q^m$, so ergibt sich aus Gleichung A.2 unter formaler Anwendung der Hecke-Operatoren (siehe Beweis von Satz 2.7, ii)) für beliebige $m,n\in\mathbb{N}$

$$\sigma_1(n)a(m) = \sum_{d|(m,n)} da(\frac{mn}{d^2}).$$

Einsetzen von m=1 liefert

$$\sigma_1(n)a(1) = a(n)$$

und garantiert damit, dass $\frac{\Delta'}{\Delta}$ von der Form

$$\frac{\Delta'}{\Delta}(z) = 2\pi i \left(a(0) + a(1) \sum_{n=1}^{\infty} \sigma_1(n) q^n \right)$$

ist. Multipliziert man nun beide Seiten mit $\Delta(z) = \sum_{m=1}^{\infty} \tau(m) q^m$ und beachtet dabei $\tau(1) = 1$ sowie $\tau(2) = -24$, ergibt sich durch Koeffizientenvergleich

$$a(0) = 1$$
 und $a(1) = -24$,

womit alles gezeigt ist.

g. e. s.

Index

Bernoulli-Zahlen, 77	Modulfigur, 2		
	Modulform, 3		
Dedekindsche η -Funktion, 12	Modulfunktion, 3		
Dirichletreihe, 63	Modulinvariante, 9		
Gewöhnliche Dirichletreihe, 63	multiplikative Funktion, 69		
Diskriminantenfunktion, 6	streng, 69		
Eisensteinreihe, 5	vollständig multiplikativ, 69		
Euler-Produkt, 70	normalisierte Eisensteinreihe, 5		
Fundamentalbereich, 2	Petersson-Skalarprodukt, 29		
Hecke-Eigenform, 22	Peterssonscher Strichoperator, 3		
Hecke-Operator, 17	quadratische Form, 49		
Heckesche L-Reihe, 83	Diskriminante einer quadratischen		
Konvergenzabszisse, 64	Form, <u>50</u>		
Konvergenzsabszisse	Ramanujan-Funktion, 6		
absolute Konvergenzabszisse, 66	Riemann-Vermutung, 82		
bedingte Konvergenzabszisse, 66 kritisch, 92	Spitzenform, 3		
Möbiussche μ -Funktion, 71	Thetareihe, 4		