Pesquisa Operacional - Problema da Corrente de Equilíbrio

Eduardo César¹ Manassés Ferreira¹ Marzo Júnior¹ Thiago Linke¹

¹Universidade Federal de Minas Gerais, Brasil

Pesquisa Operacional, 2013

Resumo

- Modelagem
 - O Problema
 - O Modelo
 - Modelo e dados
 - Solução
 - Modelo e dados do Dual
 - Solução Dual
- Análise de Sensibilidade
 - Duas Questões sobre Dualidade
- Conclusões

O Problema

Modelagem

The formulation of a set of equilibrium conditions as an equivalent optimization model is a powerful idea in the physical sciences, dating from the last century, which has become known as so-called variational principles. The term "variational" arises because the equilibrium conditions are the "optimality conditions" for the equivalen optimization model that tell us that we cannot improve the optimal solution by vary ing (hence the term "variational") the optimal solution to this optimization model O Problema

O Problema Organizando os dados.

	leiteP	queijo	iogurte
demandaMáxima (kL)	50	35	50
produçãoMínima (kL)	50	-	-
insumo: leite (L/unidade)	1	10	2.5
lucroUnitario (\$/unidade)	0.07	1.04	0.2
lucro (\$/kL)	70	104	80
limiteDiário insumo (kL)	100		
implicação	1kg queijo $ ightarrow$ 1L iogurte 4L $ ightarrow$ 1L		

$$\frac{\$}{kL} = lucro = \frac{lucroUnitario}{insumo:leite} = \frac{\$}{unidade} = \frac{unidade}{L} = \frac{1000 L}{kL} * Unidades convertidas para kL de insumo básico: o leite.$$

Definições

Restrições (em kL)

- leiteP + queijo + iogurte ≤ 100
- leiteP \geq 50 \rightarrow -leiteP \leq -50
- leiteP ≤ 50
- queijo ≤ 35
- iogurte ≤ 50
- $4 \times \text{iogurte}$ queijo $\geq 0 \rightarrow \text{queijo}$ $4 \times \text{iogurte} \leq 0$

Forma matricial

cotas

1 1 1

A: 0 1 0 0 0 1 Matriz de coeficientes

máximo

b:

. 100 -50 50 35 50 0

-4

Definições

Conjuntos

electrical-networkss: { leiteP, queijo, iogurte}

Restricoes: {*r*1, *r*2, *r*3, *r*4, *r*5, *r*6}

Variáveis

producao: {electrical - networkss}

Parâmetros

lucro: {70, 104, 80}

cotas: { Restricoes, electrical – networkss}

maximo: { Restricoes }

Definições

Objetivo

Maximizar:

```
\sum_{j \in electrical-networkss} lucro[j] \times producao[j]
```

Restrições

```
Sujeito a:
```

```
cotas[i, j] \times producao[j] \le maximo[i]
\{i \in Restricoes\}, \{j \in electrical - networkss\}
```

Afinal, qual a melhor escolha?

Saberemos agora ...

Modelo e dados

electrical-networks.mod e electrical-networks.data

Solução

electrical-networks.sol

glpsol -model electrical-networks.mod -data electrical-networks.data -output electrical-networks.sol

Modelo Primal

$$ext{Max.} Z = \sum_{j}^{n} c_{j} x_{j}$$
 sujeito a $\sum_{j=0}^{n} a_{ij} x_{j} \leq b_{i}$ $(i=1,2,3...,m)$ $x_{j} \geq 0$ $(j=1,2,3...,n)$

Modelo e dados do Dual

Obtendo o dual

 Função objetivo do primal é maximização, então a do dual é minimização.

- Função objetivo do primal é maximização, então a do dual é minimização.
- Termos constantes das restrições do dual são os coeficientes da função objetiva do primal e vice-versa.

- Função objetivo do primal é maximização, então a do dual é minimização.
- Termos constantes das restrições do dual são os coeficientes da função objetiva do primal e vice-versa.
- O número de incógnitas do dual (m valores de y_i) é igual ao número de restrições do primal.

- Função objetivo do primal é maximização, então a do dual é minimização.
- Termos constantes das restrições do dual são os coeficientes da função objetiva do primal e vice-versa.
- O número de incógnitas do dual (m valores de y_i) é igual ao número de restrições do primal.
- O número de restrições do dual é igual ao número de incógnitas do primal (m valores de x_i).

- Função objetivo do primal é maximização, então a do dual é minimização.
- Termos constantes das restrições do dual são os coeficientes da função objetiva do primal e vice-versa.
- O número de incógnitas do dual (m valores de y_i) é igual ao número de restrições do primal.
- O número de restrições do dual é igual ao número de incógnitas do primal (m valores de x_i).
- A matriz de coeficientes do dual é a transposta da matriz de coeficientes do primal.

Modelo Dual

$$\mathrm{Min.}D = \sum_{i}^{m} b_{i}y_{j}$$
 sujeito a $\sum_{i=0}^{m} a_{ij}y_{i} \geq c_{j}$ $(j=1,2,3...,n)$ $y_{i} \geq 0$ $(i=1,2,3...,m)$

Problema Dual

Função objetivo:

$$Min. D = 100 \times y_1 - 50 \times y_2 + 50 \times y_3 + 35 \times y_4 + 50 \times y_5 + 0 \times y_6$$

Modelo e dados do Dual

electrical-networksDual.mod e electrical-networks.data

Solução Dual

electrical-networksDual.sol

glpsol -model electrical-networksDual.mod -data electrical-networksDual.data -output electrical-networksDual.sol

Variação de f induzida por b

$$\Delta f = y \Delta b$$
 a

Variação de f induzida por b

$$\Delta f = y \Delta b$$
 a b

Acrescentar variáveis

Quarto Produto c

Acrescentar variáveis

Quarto Produto c

Conclusões

• item 1

Conclusões

- item 1
- item 2

Conclusões

- item 1
- item 2
- item 3

Dúvidas

Apresentação produzida usando

disponível em goo.gl/1DtLf