ΛΥΣΗ

α) Έχουμε: $|\vec{\alpha}|^2=(|\vec{\alpha}|-4)^2+(|\vec{\alpha}|-2)^2\Leftrightarrow |\vec{\alpha}|^2-12|\vec{\alpha}|+20=0\Leftrightarrow$ $|\vec{\alpha}|=2$ ή $|\vec{\alpha}|=10$.

Aν $|\vec{\alpha}|=2$ τότε $\vec{\alpha}=(-2,0)$ και τα διανύσματα $\overrightarrow{OA}=\vec{\alpha}=(-2,0)$ και $\overrightarrow{OB}=(6,8)$ δεν είναι παράλληλα (σχηματίζουν τρίγωνο), αφού $\det(\vec{\alpha},\vec{\beta})=\begin{vmatrix} -2 & 0 \\ 6 & 8 \end{vmatrix}=-16\neq 0$ επομένως η λύση είναι δεκτή.

Aν $|\vec{\alpha}|=10$, τότε $\vec{\alpha}=(6,8)=\overrightarrow{OB}$ επομένως τα διανύσματα \overrightarrow{OA} και \overrightarrow{OB} δεν σχηματίζουν τρίγωνο. Έτσι, η λύση αυτή απορρίπτεται.

- β) Για να είναι το τετράπλευρο ΟΑΓΒ παραλληλόγραμμο πρέπει και αρκεί $\overrightarrow{OA} = \overrightarrow{B\Gamma}$ (1). Αν Γ(x, y) τότε η σχέση (1) γράφεται: $(-2,0) = (x-6,y-8) \Leftrightarrow x-6 = -2 \text{ και } y-8 = 0 \Leftrightarrow x=4 \text{ και } y=8, \text{ δηλαδή } \Gamma(4,8).$
- γ) Αρκεί να βρούμε την γωνία των διανυσμάτων \overrightarrow{AO} και \overrightarrow{AB} .

Α΄ τρόπος:

To διάνυσμα \overrightarrow{AB} είναι $\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA} = (8,8)$. Επίσης $\overrightarrow{AO} = -\overrightarrow{OA} = (2,0)$.

Αν ω είναι η γωνία που σχηματίζουν τα διανύσματα \overrightarrow{AO} και \overrightarrow{AB} , τότε:

$$\text{sun} = \frac{\overrightarrow{AO} \cdot \overrightarrow{AB}}{|\overrightarrow{AO}| \cdot |\overrightarrow{AB}|} = \frac{\overrightarrow{AO} \cdot \overrightarrow{AB}}{|\overrightarrow{AO}| \cdot |\overrightarrow{AB}|} = \frac{16}{2 \cdot 8\sqrt{2}} = \frac{\sqrt{2}}{2} = \text{sun} \frac{\pi}{4} \Longrightarrow \omega = \frac{\pi}{4}$$

Β΄ τρόπος:

Από το παραπάνω σχήμα παρατηρούμε ότι, αν E(6,0) είναι η προβολή του σημείου B πάνω στον άξονα x'x τότε από το ορθογώνιο τρίγωνο ABE έχουμε:

$$\epsilon \phi \omega = \frac{BE}{EA} = \frac{8}{8} = 1 = \epsilon \phi \frac{\pi}{4} \Longrightarrow \omega = \frac{\pi}{4} \,.$$