計算機組織 LAB_4 0716003_鄒年城

teemmate: 0716079_藍世堯

一、 Icache

	4K	16K	64K	256K
16	0.0217096	0.0217096	0.0217096	0.0217096
32	0.0108548	0.0108548	0.0108548	0.0108548
64	0.0054274	0.0054274	0.0054274	0.0054274
128	0.0027137	0.0027137	0.0027137	0.0027137
256	0.0013569	0.0013569	0.0013569	0.0013569

Block-size 變大,miss rate 會降低是因為 spatial locality。

然後不同 size 的 cache, miss rate 不變是因為資料數量不夠大,所以沒影響。同時也因為資料量不夠大,所以 block 一直增大也沒有因為 pollution 而增加 miss rate。

二、Dcache

	4K	16K	64K	256K
16	0.0555556	0.0555556	0.0555556	0.0555556
32	0.0317460	0.0317460	0.0317460	0.0317460
64	0.0158730	0.0158730	0.0158730	0.0158730
128	0.0079365	0.0079365	0.0079365	0.0079365
256	0.0079365	0.0079365	0.0079365	0.0079365

Block size 造成變小的趨勢以及 cache size 不影響的原因都和 icache 一樣, 另外在 block size = 128 和 256 時 miss rate 不變,原因是因為 cache size 已經比資料量大了。

而 Dcache 的 miss rate 比 lcache 還要高的原因,我覺得有可能是因為這個程式比較小,而且不會複雜,所以 instruction 的 cache 不用存像 data cache 那麼多,那麼複雜。

三、LU

	4K	16K	64K	256K
1-way	0.0547202	0.0316230	0.0234072	0.0227872
2-way	0.0362734	0.0237173	0.0229422	0.0227872
4-way	0.0306929	0.0234072	0.0227872	0.0227872
8-way	0.0280577	0.0229422	0.0227872	0.0227872
16-way	0.0265075	0.0227872	0.0227872	0.0227872
32-way	0.0265075	0.0227872	0.0227872	0.0227872
64-way	0.0260425	0.0227872	0.0227872	0.0227872

cache size 越高,miss rate 如預期的越少。

在同樣的 cache size 下,越多 way (associativity 越大),表示每個 set 可以放越多資料,miss rate 也會下降,最後會收斂。

四、Radix

	4K	16K	64K	256K
1-way	0.1925690	0.0735599	0.01010940	0.00751728
2-way	0.0436636	0.0112471	0.00753168	0.00751728
4-way	0.0239631	0.0116791	0.00753168	0.00751728
8-way	0.0237471	0.0123704	0.00751728	0.00751728
16-way	0.0236175	0.0128312	0.00751728	0.00751728
32-way	0.0236319	0.0133497	0.00751728	0.00751728
64-way	0.0236319	0.0137241	0.00751728	0.00751728

cache size 越高,miss rate 如預期的越少。

在同樣的 cache size 下,越多 way (associativity 越大),表示每個 set 可以放越多資料,miss rate 也會下降,最後會收斂。

在 associativity 很小的情况下,miss rate 比 LU 大不少,我想可能是因為資料數大的關係,不過在 accociativity 大的情况下,associativity 的效果顯著,比 LU 的 miss rate 還要低了。