Programación funcional II

Ricardo Pérez López

IES Doñana, curso 2019/2020

Índice general

1.	Abstracciones funcionales 2 1.1. Expresiones lambda 2 1.1.1. Parámetros y cuerpos 2 1.1.2. Aplicación funcional 2 1.1.3. Variables ligadas y libres 4 1.1.4. Ámbitos 5 1.1.5. Pureza 10 1.2. Estrategias de evaluación 11 1.2.1. Orden de evaluación 11 1.2.2. Evaluación estricta y no estricta 12 1.3. Composición de funciones 14
	1.3. Composición de funciones
2.	Computabilidad 14 2.1. Funciones y procesos 14 2.2. Funciones recursivas 15 2.2.1. Definición 15 2.2.2. Casos base y casos recursivos 15 2.2.3. El factorial 15 2.2.4. Recursividad lineal 16 2.2.5. Recursividad en árbol 18 2.3. Un lenguaje Turing-completo 20
3.	Tipos de datos recursivos 20 3.1. Cadenas 20 3.2. Listas 21 3.3. Rangos 22 3.4. Conversión a lista 22
4.	Funciones de orden superior 23 4.1. Concepto 23 4.2. map 25 4.3. filter 26 4.4. reduce 26 4.5. Listas por comprensión 27

Bibliografía 28

1. Abstracciones funcionales

1.1. Expresiones lambda

- Las **expresiones lambda** (también llamadas **abstracciones lambda** o **funciones anónimas** en algunos lenguajes) son expresiones que capturan la idea abstracta de «**función**».
- Son la forma más simple y primitiva de describir funciones en un lenguaje funcional.
- Su sintaxis (simplificada) es:

```
<expr_lambda> ::= lambda [<lista_parámetros>]: <expresión>
<lista_parámetros> := <identificador> (, <identificador>)*
```

• Por ejemplo:

```
lambda x, y: x + y
```

1.1.1. Parámetros y cuerpos

- Los identificadores que aparecen entre la palabra clave lambda y el carácter de dos puntos (:) son los **parámetros** de la expresión lambda.
- La expresión que aparece tras los dos puntos (:) es el cuerpo de la expresión lambda.
- En el ejemplo anterior:

```
lambda x, y: x + y
```

- Los parámetros son x e y.
- El cuerpo es x + y.
- Esta expresión lambda captura la idea general de sumar dos valores (que en principio pueden ser de cualquier tipo, siempre y cuando admitan el operador +).

1.1.2. Aplicación funcional

- De la misma manera que decíamos que podemos aplicar una función a unos argumentos, también podemos aplicar una expresión lambda a unos argumentos.
- Recordemos que *aplicar* una función a unos argumentos produce el valor que la función asocia a esos argumentos en el conjunto imagen.
- Por ejemplo, la aplicación de la función *max* sobre los argumentos 3 y 5 se escribe como max(3,5) y eso denota el valor 5.

• Igualmente, la aplicación de una expresión lambda como

```
lambda x, y: x + y
```

sobre los argumentos 4 y 3 se representa así:

```
\left( (lambda x, y: x + y)(4, 3) \right)
```

1.1.2.1. Llamadas a funciones

• Si hacemos la siguiente definición:

```
suma = lambda x, y: x + y
```

a partir de ese momento podemos usar suma en lugar de su valor (la expresión lambda), por lo que podemos hacer:

```
suma(4, 3)
```

en lugar de

```
(lambda x, y: x + y)(4, 3)
```

• Cuando aplicamos a sus argumentos una función así definida también podemos decir que estamos **invocando** o **llamando** a la función. Por ejemplo, en suma(4, 3) estamos *llamando* a la función suma, o hay una *llamada* a la función suma.

1.1.2.2. Evaluación de una aplicación funcional

- En nuestro modelo de sustitución, la evaluación de la aplicación de una expresión lambda consiste en sustituir, en el cuerpo de la expresión lambda, cada parámetro por su argumento correspondiente (por orden) y devolver la expresión resultante parentizada (entre paréntesis).
- A esta operación se la denomina aplicación funcional o β-reducción.
- Siguiendo con el ejemplo anterior:

```
(lambda x, y: x + y)(4, 3)
```

sustituimos en el cuerpo de la expresión lambda los parámetros x e y por los argumentos 4 y 3, respectivamente, y parentizamos la expresión resultante, lo que da:

```
(4 + 3)
```

que simplificando (según las reglas del operador +) da 7.

 Lo mismo podemos hacer si definimos previamente la expresión lambda ligándola a un identificador:

```
suma = lambda x, y: x + y
```

• Así, la aplicación de la expresión lambda resulta más fácil y clara de escribir:

```
suma(4, 3)
```

• En ambos casos, el resultado es el mismo (7).

Importante:

En **Python**, salvo excepciones, los operandos y los argumentos de las funciones se evalúan **de izquierda a derecha**.

1.1.2.3. **Ejemplos**

• Dado el siguiente código:

```
suma = lambda x, y: x + y
```

¿Cuánto vale la expresión siguiente?

```
suma(4, 3) * suma(2, 7)
```

Según el modelo de sustitución, reescribimos:

```
suma(4,3) * suma(2, 7)
= (lambda x, y: x + y)(4, 3) * suma(2, 7) # definición de suma
= (4 + 3) * suma(2, 7) # aplicación a 4, 3
= 7 * suma(2, 7) # aritmética
= 7 * (lambda x, y: x + y)(2, 7) # definición de suma
= 7 * (2 + 7) # aplicación a 2, 7
= 7 * 9 # aritmética
= 63
```

1.1.3. Variables ligadas y libres

- Si un identificador aparece en la lista de parámetros de una expresión lambda, a ese identificador le llamamos variable ligada de la expresión lambda.
- En caso contrario, le llamamos variable libre de la expresión lambda.
- En el ejemplo anterior:

```
lambda x, y: x + y
```

los dos identificadores que aparecen en el cuerpo (x e y) son variables ligadas, ya que ambos aparecen en la lista de parámetros de la expresión lambda.

• En cambio, en la expresión lambda:

```
lambda x, y: x + y + z
```

x e y son variables ligadas mientras que z es libre.

1.1.4. Ámbitos

- Recordemos que el **ámbito de una ligadura** es la porción del programa en la que dicha ligadura tiene validez.
- Ampliaremos ahora el concepto de *ámbito* para incluir los aspectos nuevos que incorporan las expresiones lambda.

1.1.4.1. Ámbito de una variable ligada

- Hemos visto que **un parámetro** de una expresión lambda **es una variable ligada** en el cuerpo de dicha expresión lambda.
- En realidad, lo que hace la expresión lambda es ligar al parámetro con la variable ligada que está dentro del cuerpo, y esa ligadura existe únicamente en el cuerpo de la expresión lambda.
- Por tanto, **el ámbito de una variable ligada es el cuerpo de la expresión lambda** que la liga con su parámetro.
- También se dice que la variable ligada tiene un ámbito local a la expresión lambda.
- Por contraste, los identificadores que no tienen ámbito local se dice que tienen un **ámbito no local** o, a veces, un **ámbito más global**.
- Por ejemplo:

```
# Aquí empieza el script (no hay más definiciones antes de esta línea):
producto = lambda x: x * x
y = producto(3)
z = x + 1 # da error
```

- La expresión lambda de la línea 2 tiene un parámetro (x) ligado a la variable ligada x situada en el cuerpo de la expresión lambda.
- Por tanto, el ámbito de la variable ligada x es el **cuerpo** de la expresión lambda (x * x).
- Eso quiere decir que, fuera de la expresión lambda, no es posible acceder al valor de la variable ligada, al encontrarnos **fuera de su ámbito**.
- Por ello, la línea 4 dará un error al intentar acceder al valor de un identificador no ligado.

1.1.4.2. Ámbitos, marcos y entornos

- Recordemos que un marco es un conjunto de ligaduras.
- Y que un entorno es una secuencia de marcos que contienen todas las ligaduras validas en un punto concreto del programa.
- Ahora hemos visto que cada expresión lambda define un nuevo ámbito, el cual crea un nuevo marco que contiene las ligaduras que define dicha expresión lambda.
- Ese nuevo marco se enlaza con el marco del ámbito que lo contiene (el marco más interno apunta al más externo), de manera que el último siempre es el marco global.

- Se va formando así una cadena de marcos que representa el entorno del programa en un punto dado del mismo.
- A partir de ahora ya no vamos a tener un único marco (el *marco global*) sino que tendremos, además, al menos uno más por cada expresión lambda que tenga nuestro programa.

1.1.4.3. Ligaduras sombreadas

- ¿Qué ocurre cuando una expresión lambda contiene como parámetros nombres que ya están definidos (ligados) en el entorno (en un ámbito más global)?
- Por ejemplo:

- La x que aparece en la línea 1 es distinta a la que aparece en la línea 2.
- El identificador x que aparece en el cuerpo de la expresión lambda hace referencia al parámetro x de la expresión lambda, y no al identificador x que está fuera de la expresión lambda (y que aquí está ligado al valor 4).
- En este caso, decimos que **el parámetro x hace sombra** al identificador x global, y decimos que ese identificador está **sombreado** o que su ligadura está **sombreada**.
- Que el parámetro haga sombra al identificador de fuera significa que no podemos acceder a ese identificador externo desde el cuerpo de la expresión lambda como si fuera una variable libre.
- Si necesitáramos acceder al valor de la x que está fuera de la expresión lambda, lo que podemos hacer es **cambiar el nombre** al parámetro x. Por ejemplo:

```
 x = 4 
total = (lambda w: w * x)(3) # Su valor es 12
```

Así, tendremos en la expresión lambda una variable ligada (el parámetro w) y una variable libre (el identificador x ligado en el ámbito global) al que ahora sí podemos acceder al no estar sombreada.

1.1.4.4. Renombrado de parámetros

- Los parámetros se pueden *renombrar* (siempre que se haga de forma adecuada) sin que se altere el significado de la expresión lambda.
- A esta operación se la denomina α-conversión.
- Un ejemplo de α-conversión es la que hicimos antes.
- La α-conversión hay que hacerla correctamente para evitar efectos indeseados. Por ejemplo, en:

```
lambda x, y: x + y + z
```

si renombramos x a z tendríamos:

```
lambda z, y: z + y + z
```

lo que es claramente incorrecto. A este fenómeno indeseable se le denomina captura de variables.

1.1.4.5. Expresiones lambda y entornos

- Para encontrar el valor de un identificador en el entorno, buscamos en el primer marco del entorno una ligadura para ese identificador, y si no la encontramos, vamos subiendo por la cadena de marcos hasta encontrarla. Si no aparece en ningún marco, querrá decir que el identificador no está ligado (o que su ligadura está fuera del entorno, en otro ámbito).
- Debemos tener en cuenta también, por tanto, las posibles **variables sombreadas** que puedan aparecer.

Si un identificador en un ámbito más local *hace sombra* a otro en un ámbito más global, al buscar una ligadura en la cadena de marcos (en el entorno) se encontrará primero la ligadura más local, ignorando las otras.

• Por ejemplo:

```
1 X = 4

2 Z = 1

3 Suma = (lambda x, y: x + y + z)(8, 12)

4 Y = 3

5 W = 9
```

• En cada línea tendríamos los siguientes entornos:

Entorno en la línea 1

Entorno en la línea 2

Entorno en la línea 3 fuera de la expresión lambda

Entorno en la línea 3 en el cuerpo de la expresión lambda, antes de aplicar los argumentos

Entorno en la línea 3 en el cuerpo de la expresión lambda, después de aplicar los argumentos

Entorno en la línea 4

Entorno en la línea 5

1.1.4.6. Evaluación de expresiones lambda con entornos

- Para que una expresión lambda funcione, sus variables libres deben estar ligadas a algún valor en el entorno en el momento de evaluar una aplicación de la expresión lambda sobre unos argumentos.
- Por ejemplo:

```
>>> prueba = lambda x, y: x + y + z # aquí no da error
>>> prueba(4, 3) # aquí sí
Traceback (most recent call last):
```

```
File "<stdin>", line 1, in <module>
File "<stdin>", line 1, in <lambda>
NameError: name 'z' is not defined
```

da error porque z no está definido (no está ligado a ningún valor en el entorno).

• En cambio:

```
>>> prueba = lambda x, y: x + y + z
>>> z = 9
>>> prueba(4, 3)
16
```

sí funciona (y devuelve 16) porque en el momento de evaluar la expresión lambda (en la línea 3) el identificador z está ligado a un valor en el entorno (en este caso, 9).

• Observar que no es necesario que las variables libres estén ligadas en el entorno cuando *se crea* la expresión lambda, sino cuando **se evalúa el cuerpo de la expresión lambda**, o sea, cuando se aplica la expresión lambda a unos argumentos.

1.1.5. Pureza

- Una expresión lambda cuyo cuerpo sólo contiene variables ligadas, es una expresión cuyo valor sólo va a depender de los argumentos que se usen cuando se aplique la expresión lambda.
- En cambio, el valor de una expresión lambda que contenga variables libres dependerá no sólo de los valores de sus argumentos, sino también de los valores a los que estén ligadas las variables libres al evaluar la expresión lambda.
- En el ejemplo anterior tenemos una expresión que no es pura, ya que su valor depende de una variable libre (z):

```
>>> prueba = lambda x, y: x + y + z
>>> z = 9
>>> prueba(4, 3)
16
```

• En este otro ejemplo, escribimos una expresión lambda que calcula la suma de tres números a partir de otra expresión lambda que calcula la suma de dos números:

```
suma = lambda x, y: x + y
suma3 = lambda x, y, z: suma(x, y) + z
```

En este caso, hay un identificador (suma) que no aparece en la lista de parámetros de la expresión lambda suma3, por lo que es una variable libre.

En consecuencia, el valor de dicha expresión lambda dependerá de lo que valga suma en el entorno actual.

- Una expresión lambda es pura cuando su valor depende, únicamente, del valor de sus parámetros.
- También se dice que una expresión lambda que contiene sólo variables ligadas es **más pura** que otra cuyo valor depende, además, de variables libres.

- En cuanto a grados de pureza, podemos decir que hay más pureza si una variable libre representa una función a aplicar en el cuerpo de la expresión lambda, que si representa cualquier otro tipo de valor.
- En el ejemplo anterior, tenemos que la expresión lambda suma3, sin ser totalmente pura, a efectos prácticos se la puede considerar pura, ya que su única variable libre se usa como una función, y las funciones tienden a no cambiar durante la ejecución del programa, al contrario que los demás tipos de valores.
- Por ejemplo, las siguientes expresiones lambda están ordenadas de mayor a menor pureza, siendo la primera totalmente **pura**:

```
# producto es una expresión lambda totalmente pura:
producto = lambda x, y: x * y
# cuadrado es casi pura; a efectos prácticos se la puede
# considerar pura ya que sus variables libres (en este
# caso, sólo una: producto) son funciones:
cuadrado = lambda x: producto(x, x)
# suma es impura, porque su variable libre no es una función:
suma = lambda x, y: x + y + z
```

1.2. Estrategias de evaluación

- A la hora de evaluar una expresión (cualquier expresión) existen varias **estrategias** diferentes que se pueden adoptar.
- Cada lenguaje implementa sus propias estrategias de evaluación que están basadas en las que vamos a ver aquí.
- Básicamente se trata de decidir, en cada paso de reducción, qué sub-expresión hay que reducir, en función de:
 - El orden (de fuera adentro o de dentro afuera).
 - La necesidad o no de evaluar dicha sub-expresión.

1.2.1. Orden de evaluación

- En un lenguaje de programación funcional puro se cumple la transparencia referencial, según la cual el valor de una expresión depende sólo del valor de sus sub-expresiones (también llamadas redexes).
- Pero eso también implica que **no importa el orden en el que se evalúen las sub-expresiones**: el resultado debe ser siempre el mismo.
- Gracias a ello podemos usar nuestro modelo de sustitución como modelo computacional.
- Hay dos estrategias básicas de evaluación:
 - Orden aplicativo: reducir siempre el redex más interno.
 - Orden normal: reducir siempre el redex más externo.
- Python usa el orden aplicativo, salvo excepciones.

1.2.1.1. Orden aplicativo

- El **orden aplicativo** consiste en evaluar las expresiones *de dentro afuera*, es decir, empezando siempre por el *redex* más **interno**.
- Corresponde a lo que en muchos lenguajes de programación se denomina paso de argumentos por valor.
- Ejemplo:

```
cuadrado = lambda x: x * x
```

Según el orden aplicativo, la expresión cuadrado(3 + 4) se reduciría así:

```
cuadrado(3 + 4)
= cuadrado(7)  # aritmética
= (lambda x, y: x * x)(7)  # definición de cuadrado
= (7 * 7)  # aplicación a 7
= 49  # aritmética
```

alcanzando la forma normal en 4 pasos de reducción.

1.2.1.2. Orden normal

- El **orden normal** consiste en evaluar las expresiones *de fuera adentro*, es decir, empezando siempre por el *redex* más **externo**.
- Corresponde a lo que en muchos lenguajes de programación se denomina **paso de argumentos por nombre**.
- Ejemplo:

```
cuadrado = lambda x: x * x
```

Según el orden normal, la expresión cuadrado(3 + 4) se reduciría así:

```
cuadrado(3 + 4)
= (lambda x, y: x * x)(3 + 4)  # definición de cuadrado
= ((3 + 4) * (3 + 4))  # aplicación a (3 + 4)
= 7 * (3 + 4)  # aritmética
= 7 * 7  # aritmética
= 49
```

alcanzando la forma normal en 5 pasos de reducción.

1.2.2. Evaluación estricta y no estricta

- Existe otra forma de ver la evaluación de una expresión:
 - Evaluación estricta: Reducir todos los redexes aunque no hagan falta.
 - **Evaluación no estricta**: Reducir sólo los *redexes* que sean estrictamente necesarios para calcular el valor de la expresión.

A esta estrategia de evaluación se la denomina también evaluación perezosa.

• Por ejemplo:

Sabemos que la expresión 1/0 da un error de división por cero:

```
>>> 1/0
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ZeroDivisionError: division by zero
```

• Supongamos que tenemos la siguiente definición:

```
primero = lambda x, y: x
```

de forma que primero es una función que simplemente devuelve el primero de sus argumentos.

- Es evidente que la función primero no necesita evaluar nunca su segundo argumento, ya que no lo utiliza (simplemente devuelve el primero de ellos). Por ejemplo, primero (4, 3) devuelve 4.
- Sabiendo eso... ¿qué valor devolvería la siguiente expresión?

```
primero(4, 1/0)
```

- Curiosamente, el resultado dependerá de si la evaluación es estricta o perezosa:
 - **Si es estricta**, el intérprete evaluará todos los argumentos de la expresión lambda aunque no se utilicen luego en su cuerpo. Por tanto, al evaluar 1/0 devolverá un error.

Es lo que ocurre cuando se evalúa siguiendo el orden aplicativo.

- En cambio, **si es perezosa**, el intérprete evaluará únicamente aquellos argumentos que se usen en el cuerpo de la expresión lambda, y en este caso sólo se usa el primero, así que dejará sin evaluar el segundo, no dará error y devolverá directamente 4.

Es lo que ocurre cuando se evalúa siguiendo el orden normal:

```
primero(4, 1/0) = (lambda x, y: x)(4, 1/0) = (4) = 4
```

- En **Python** la evaluación es **estricta**, salvo algunas excepciones:
 - El operador ternario:

```
<expr_condicional> ::= <valor_si_cierto> if <condición> else <valor_si_falso>
```

evalúa perezosamente <valor si cierto> y <valor si falso>.

- Los operadores lógicos and y or también son perezosos (se dice que evalúan en cortocircuito):
 - * True or x siempre es igual a True.
 - * False and x siempre es igual a False.

En ambos casos no es necesario evaluar x.

• La mayoría de los lenguajes de programación se basan en la evaluación estricta y el paso de argumentos por valor (siguen el orden aplicativo).

• **Haskell**, por ejemplo, es un lenguaje funcional puro que se basa en la evaluación perezosa y sigue el orden normal.

1.3. Composición de funciones

• Podemos crear una función que use otra función. Por ejemplo, para calcular el área de un círculo usamos otra función que calcule el cuadrado de un número:

```
cuadrado = lambda x: x * x
area = lambda r: 3.1416 * cuadrado(r)
```

• La expresión area(12) se evaluaría así según el orden aplicativo:

```
area(12)  # definición de area

= (lambda r: 3.1416 * cuadrado(r))(12)  # definición de cuadrado

= (lambda r: 3.1416 * (lambda x: x * x)(r))(12)  # aplicación

= (3.1416 * (lambda x: x * x)(12))  # aplicación

= (3.1416 * (12 * 12))  # aritmética

= 452.3904
```

• Y según el orden normal:

```
area(12) # definición de area

= (lambda r: 3.1416 * cuadrado(r))(12) # aplicación

= (3.1416 * cuadrado(12)) # definición de cuadrado

= (3.1416 * (lambda x: x * x)(12)) # aplicación

= (3.1416 * (12 * 12)) # aritmética

= 452.3904
```

• En ambos casos se obtiene el mismo resultado.

2. Computabilidad

2.1. Funciones y procesos

- Los **procesos** son entidades abstractas que habitan los ordenadores.
- Conforme van evolucionando, los procesos manipulan otras entidades abstractas llamadas datos.
- La evolución de un proceso está dirigida por un patrón de reglas llamada programa.
- Los programadores crean programas para dirigir a los procesos.
- Es como decir que los programadores son magos que invocan a los espíritus del ordenador con sus conjuros.
- Una función describe la evolución local de un proceso.
- En cada paso se calcula el *siguiente estado* del proceso basándonos en el estado actual y en las reglas definidas por la función.

- Nos gustaría ser capaces de visualizar y de realizar afirmaciones sobre el comportamiento global del proceso cuya evolución local está definida por la función.
- Esto, en general, es muy difícil, pero al menos vamos a describir algunos de los modelos típicos de evolución de los procesos.

2.2. Funciones recursivas

2.2.1. Definición

- Una función recursiva es aquella que se define en términos de sí misma.
- En general, eso quiere decir que la definición de la función contiene una o varias referencias a ella misma y que, por tanto, se llama a sí misma dentro de su cuerpo.
- Las definiciones recursivas son el mecanismo básico para ejecutar **repeticiones de instrucciones** en un lenguaje de programación funcional.
- Por ejemplo:

GNU significa GNU No es Unix.

Por tanto, GNU = GNU No es Unix = GNU No es Unix No es Unix...

Y así hasta el infinito.

2.2.2. Casos base y casos recursivos

- Resulta importante que una definición recursiva se detenga alguna vez y proporcione un resultado, ya que si no, no sería útil (tendríamos lo que se llama una **recursión infinita**).
- Para ello, en algún momento, la recursión debe alcanzar un punto en el que la función no se llame a sí misma.
- La función, en cada paso recursivo, debe ir acercándose cada vez más a ese punto.
- A ese punto o puntos en los que la función recursiva no se llama a sí misma, se les denomina casos base.
- Es decir: la función recursiva, ante ciertos valores de sus argumentos, debe devolver directamente un valor y no llamarse de nuevo recursivamente.
- Los demás casos, que sí provocan llamadas recursivas, se denominan casos recursivos.

2.2.3. El factorial

- El ejemplo más típico de función recursiva es el factorial.
- El factorial de un número natural *n* se representa *n*! y se define como el producto de todos los números desde 1 hasta *n*:

$$n! = n \cdot (n-1) \cdot (n-2) \cdot \ldots \cdot 1$$

Por ejemplo:

$$6! = 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 720$$

 Pero para calcular 6! también se puede calcular 5! y después multiplicar el resultado por 6, ya que:

$$6! = 6 \cdot \cancel{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}$$

$$6! = 6 \cdot 5!$$

- Por tanto, el factorial se puede definir de forma recursiva.
- Tenemos el caso recursivo, pero necesitamos un caso base para evitar que la recursión se haga infinita.
- El caso base del factorial se obtiene sabiendo que el factorial de 0 es directamente 1 (no hay que llamar al factorial recursivamente):

$$0! = 1$$

• Combinando ambos casos tendríamos:

$$n! = egin{cases} 1 & ext{si } n = 0 & ext{(caso base)} \\ n \cdot (n-1)! & ext{si } n > 0 & ext{(caso recursivo)} \end{cases}$$

2.2.4. Recursividad lineal

- Una función tiene **recursividad lineal** si cada llamada a la función recursiva recursiva genera, como mucho, otra llamada recursiva a la misma función.
- El factorial definido en el ejemplo anterior es un caso típico de recursividad lineal.

2.2.4.1. Procesos lineales recursivos

• La forma más directa y sencilla de definir una función que calcule el factorial de un número a partir de su definición recursiva podría ser la siguiente:

```
factorial = lambda n: 1 if n == 0 else n * factorial(n - 1)
```

• Utilizaremos el modelo de sustitución para observar el funcionamiento de esta función al calcular 6!:

```
factorial(6)
= (6 * factorial(5))
= (6 * (5 * factorial(4)))
= (6 * (5 * (4 * factorial(3))))
= (6 * (5 * (4 * (3 * factorial(2)))))
= (6 * (5 * (4 * (3 * (2 * factorial(1))))))
= (6 * (5 * (4 * (3 * (2 * (1 * factorial(0)))))))
= (6 * (5 * (4 * (3 * (2 * (1 * 1))))))
= (6 * (5 * (4 * (3 * (2 * (1 * 1)))))
```

```
= (6 * (5 * (4 * (3 * 2))))

= (6 * (5 * (4 * 6)))

= (6 * (5 * 24))

= (6 * 120)

= 720
```

- Podemos observar un perfil de **expansión** seguido de una **contracción**:
 - La expansión ocurre conforme el proceso construye una cadena de operaciones a realizar posteriormente (en este caso, una cadena de multiplicaciones).
 - La contracción se realiza conforme se van ejecutando realmente las multiplicaciones.
- Llamaremos **proceso recursivo** a este tipo de proceso caracterizado por una cadena de **operaciones pendientes de completar**.
- Para poder ejecutar este proceso, el intérprete necesita **memorizar**, en algún lugar, un registro de las multiplicaciones que se han dejado para más adelante.
- En el cálculo de n!, la longitud de la cadena de operaciones pendientes (y, por tanto, la información que necesita almacenar el intérprete), crece *linealmente* con n.
 - A este tipo de procesos lo llamaremos **proceso recursivo lineal**.

2.2.4.2. Procesos lineales iterativos

- A continuación adoptaremos un enfoque diferente.
- Podemos mantener un producto acumulado y un contador desde *n* hasta 1, de forma que el contador y el producto cambien de un paso al siguiente según la siguiente regla:

```
\begin{cases} \textit{acumulado} \leftarrow \textit{acumulado} \cdot \textit{contador} \\ \textit{contador} \leftarrow \textit{contador} - 1 \end{cases}
```

• Su traducción a Python podría ser la siguiente, usando una función auxiliar fact iter:

 Al igual que antes, usaremos el modelo de sustitución para visualizar el proceso del cálculo de 61.

```
fact(6)
= fact_iter(6, 1)
= fact_iter(5, 6)
= fact_iter(4, 30)
= fact_iter(3, 120)
= fact_iter(2, 360)
= fact_iter(1, 720)
= fact_iter(0, 720)
= 720
```

• Este proceso no tiene expansiones ni contracciones ya que, en cada instante, toda la información que se necesita almacenar es el valor actual de los parámetros cont y acc.

- A este tipo de procesos lo llamaremos proceso iterativo.
- El tiempo requerido para calcular n! usando esta función crece linealmente con n.
 - A este tipo de procesos lo llamaremos proceso iterativo lineal.
- En general, un **proceso iterativo** es aquel que está definido por una serie de **variables de estado** junto con una **regla** fija que describe cómo actualizar dichas variables conforme cambia el proceso de un estado al siguiente.
- La diferencia entre los procesos recursivo e iterativo se puede describir de esta otra manera:
 - En el **proceso iterativo**, las variables ligadas dan una descripción completa del estado del proceso en cada instante.
 - Así, si parásemos el cálculo entre dos pasos, lo único que necesitaríamos hacer para seguir con el cálculo es darle al intérprete el valor de los dos parámetros.
 - En el **proceso recursivo**, el intérprete tiene que mantener cierta información *oculta* que no está almacenada en ningún parámetro y que indica en qué punto se encuentra el proceso dentro de la cadena de operaciones pendientes.
- No debe confundirse un proceso recursivo con una función recursiva:
 - Cuando hablamos de *función recursiva* nos referimos al hecho sintáctico de que la definción de la función hace referencia a sí misma (directa o indirectamente).
 - Cuando hablamos de *proceso recursivo* nos referimos a la forma en como se desenvuelve la ejecución de la función.
- Puede parecer extraño que digamos que una función recursiva (por ejemplo, fact_iter) genera un proceso iterativo.

Sin embargo, el proceso es realmente iterativo porque su estado está definido completamente por dos variables ligadas, y para ejecutar el proceso sólo se necesita almacenar esas dos variables.

2.2.5. Recursividad en árbol

- La recursividad en árbol se produce cuando la función tiene recursividad múltiple.
- Una función tiene **recursividad múltiple** cuando una llamada a la función recursiva puede generar más de una llamada recursiva a la misma función.
- El ejemplo clásico es la función que calcula los términos de la sucesión de Fibonacci.
- La sucesión comienza con los números 0 y 1, y a partir de éstos, cada término es la suma de los dos anteriores:
 - 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, ...
- Podemos definir una función que devuelva el n-ésimo término de la sucesión de Fibonacci:

$$\mathit{fib}(n) = egin{cases} 0 & \mathsf{si} \ n = 0 & \mathsf{(caso \ base)} \ 1 & \mathsf{si} \ n = 1 & \mathsf{(caso \ base)} \ \mathit{fib}(n-1) + \mathit{fib}(n-2) & \mathsf{si} \ n > 1 & \mathsf{(caso \ recursivo)} \end{cases}$$

• Que traducida a Python sería:

o bien:

- Si vemos el perfil de ejecución de fib(5), vemos que:
 - Para calcular fib(5), antes debemos calcular fib(4) y fib(3).
 - Para calcular fib(4), antes debemos calcular fib(3) y fib(2).
 - Así sucesivamente hasta poner todo en función de fib(0) y fib(1), que se pueden calcular directamente (son los casos base).
- En general, el proceso resultante parece un árbol.

- La función anterior es un buen ejemplo de recursión en árbol, pero desde luego es un método *horrible* para calcular los números de Fibonacci, por la cantidad de **operaciones redundantes** que efectúa.
- Para tener una idea de lo malo que es, se puede observar que fib(n) crece exponencialmente en función de n.
- Por lo tanto, el proceso necesita una cantidad de tiempo que crece **exponencialmente** con n.

- Por otro lado, el espacio necesario sólo crece **linealmente** con *n*, porque en un cierto momento del cálculo sólo hay que memorizar los nodos que hay por encima.
- En general, en un proceso recursivo en árbol el tiempo de ejecución crece con el número de nodos mientras que el espacio necesario crece con la altura máxima del árbol.
- Se puede construir un **proceso iterativo** para calcular los números de Fibonacci.
- La idea consiste en usar dos variables de estado a y b (con valores iniciales 1 y 0, respectivamente) y aplicar repetidamente la siguiente transformación:

$$\begin{cases} a \leftarrow a + b \\ b \leftarrow a \end{cases}$$

- Después de n pasos, a y b contendrán, respectivamente, fib(n + 1) y fib(n).
- En Python sería:

```
fib_iter = lambda cont, a, b: b if cont == 0 else fib_iter(cont - 1, a + b, a)
fib = lambda n: fib_iter(n , 1, 0)
```

• Esta función genera un proceso iterativo lineal, por lo que es mucho más eficiente.

2.3. Un lenguaje Turing-completo

- El paradigma funcional que hemos visto hasta ahora (uno que nos permite definir funciones, componer dichas funciones y aplicar recursividad, junto con el operador ternario condicional) es un lenguaje de programación **completo**.
- Decimos que es **Turing completo**, lo que significa que puede computar cualquier función que pueda computar una máquina de Turing.
- Como las máquinas de Turing son los ordenadores más potentes que podemos construir (ya que describen lo que cualquier ordenador es capaz de hacer), esto significa que nuestro lenguaje puede calcular todo lo que pueda calcular cualquier ordenador.

3. Tipos de datos recursivos

3.1. Cadenas

- Las **cadenas** se pueden considerar **datos recursivos compuestos**, ya que podemos decir que toda cadena c:
 - o bien es la cadena vacía ' ' (caso base),
 - o bien está formada por dos partes:
 - * El **primer carácter** de la cadena, al que se accede mediante c [0].

- * El **resto** de la cadena (al que se accede mediante c [1:]), que también es una cadena (caso recursivo).
- Eso significa que podemos acceder al segundo carácter de la cadena (suponiendo que exista) mediante c[1:][0].

```
cadena = 'hola'
cadena[0]  # devuelve 'h'
cadena[1:]  # devuelve 'ola'
cadena[1:][0]  # devuelve 'o'
```

3.2. Listas

- Las **listas** son una generalización de las cadenas.
- Una lista es una **secuencia de elementos** que no tienen por qué ser caracteres, sino que cada uno de ellos pueden ser **de cualquier tipo** (números, cadenas, booleanos, incluso otras listas).
- Los literales de tipo lista se representan enumerando sus elementos separados por comas y encerrados entre corchetes.
- Por ejemplo:

```
lista = [27, 'hola', True, 73.4, ['a', 'b', 'c'], 99]
```

- Las listas también pueden verse como un tipo de datos recursivo, ya que toda lista 1:
 - o bien es la lista vacía, representada mediante [] (caso base),
 - o bien está formada por dos partes:
 - * El **primer elemento** de la lista (al que se accede mediante l[0]), que hemos visto que puede ser de cualquier tipo.
 - * El **resto** de la lista (al que se accede mediante l[1:]), que también es una lista (*caso recursivo*).
- Según el ejemplo anterior:

```
lista = [27, 'hola', True, 73.4, ['a', 'b', 'c'], 99]
lista[0]  # devuelve 27
lista[1:]  # devuelve ['hola', True, 73.4, ['a', 'b', 'c'], 99]
lista[1:][0]  # devuelve 'hola'
```

- Junto a las operaciones l[0] (primer elemento) y c[1:] (resto de la lista), tenemos también la operación + (**concatenación**), al igual que ocurre con las cadenas.
- Con la concatenación se pueden crear nuevas listas a partir de otras listas.
- Por ejemplo:

```
[1, 2, 3] + [4, 5, 6] # devuelve [1, 2, 3, 4, 5, 6]
```

3.3. Rangos

- Un rango es un tipo de dato cuyos valores representan sencuencias de números enteros.
- Los rangos se crean con la función range, cuya sintaxis es:

```
<rango> ::= range([<inicio>,] <fin>[, <salto>])
```

- <inicio>, <fin> y <salto> deben ser números enteros.
- Cuando se omite <inicio>, se entiende que es 0.
- El valor de <fin> no se alcanza nunca.
- Cuando <inicio> y <fin> son iguales, representa el rango vacío.
- Cuando <inicio > es mayor que <fin>, el <salto > debería ser negativo. En caso contrario, también representaría el rango vacío.
- Ejemplos:
 - range(10) representa la secuencia 0, 1, 2, ..., 9
 - range(3, 10) representa la secuencia 3, 4, 5, ..., 9
 - range(0, 10, 2) representa la secuencia 0, 2, 4, 6, 8
 - range(4, 0, -1) representa la secuencia 4, 3, 2, 1
 - range(3, 3) representa el rango vacío
 - range (4, 3) también representa el rango vacío
- Los rangos también pueden verse como un tipo de datos recursivo, ya que todo rango r:
 - o bien es el rango vacío (caso base),
 - o bien está formado por dos partes:
 - * El **primer elemento** del rango (al que se accede mediante r[0]), que hemos visto que tiene que ser un número entero.
 - * El **resto** del rango (al que se accede mediante r[1:]), que también es un rango (*caso recursivo*).
- Según el ejemplo anterior:

```
rango = range(4, 7)
rango[0]  # devuelve 4
rango[1:]  # devuelve range(5, 7)
rango[1:][0]  # devuelve 5
```

3.4. Conversión a lista

• Las cadenas y los rangos se pueden convertir fácilmente a listas usando la función list:

```
>>> list('hola')
['h', 'o', 'l', 'a']
>>> list('')
[]
```

```
>>> list(range(10))
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> list(range(1, 11))
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> list(range(0, 30, 5))
[0, 5, 10, 15, 20, 25]
>>> list(range(0, 10, 3))
[0, 3, 6, 9]
>>> list(range(0, -10, -1))
[0, -1, -2, -3, -4, -5, -6, -7, -8, -9]
>>> list(range(0))
[]
>>> list(range(1, 0))
[]
```

4. Funciones de orden superior

4.1. Concepto

- Hemos visto que **las funciones son**, en realidad, **abstracciones** que describen operaciones compuestas a realizar sobre ciertos valores sin importar cuáles sean esos valores en concreto.
- Por ejemplo, cuando definimos:

```
cubo = lambda x: x * x * x
```

no estamos hablando del cubo de un número en particular, sino más bien de un **método** para calcular el cubo de un número.

• Por supuesto, nos la podemos arreglar sin definir el cubo, escribiendo siempre expresiones explícitas (como 3*3*3, y*y*y, etc.) sin usar la palabra «cubo», pero eso nos obligaría siempre a expresarnos en términos de las operaciones primitivas de nuestro lenguaje (como *), en vez de poder usar términos de más alto nivel.

Es decir: nuestros programas podrían calcular el cubo de un número, pero no tendrían la habilidad de expresar el concepto de *elevar al cubo*.

- Una de las habilidades que deberíamos pedir a un lenguaje potente es la posibilidad de construir abstracciones asignando un nombre a los patrones más comunes, y luego trabajar directamente en términos de dichas abstracciones.
- Las funciones nos permiten esta habilidad y esa es la razón de que todos los lenguajes (salvo los más primitivos) incluyan mecanismos para definir funciones.
- Por ejemplo: en el caso anterior, vemos que hay un patrón (multiplicar algo por sí mismo tres veces) que se repite con frecuencia, y a partir de él construimos una abstracción que asigna un nombre a ese patrón (*elevar al cubo*). Esa abstracción la definimos como una función que describe la *regla* necesaria para elevar algo al cubo.

- Muchas veces observamos el mismo patrón en funciones muy diferentes.
- Para poder abstraer, de nuevo, lo que tienen en común dichas funciones, deberíamos ser capaces de manejar funciones que acepten a otras funciones como argumentos o que devuelvan otra función como resultado. A estas funciones que manejan otras funciones las llamaremos funciones de orden superior.
- Por ejemplo, supongamos las dos funciones siguientes:

```
# Suma los enteros comprendidos entre a y b:
suma_enteros = lambda a, b: 0 if a > b else a + suma_enteros(a + 1, b)

# Suma los cubos de los enteros comprendidos entre a y b:
suma_cubos = lambda a, b: 0 if a > b else cubo(a) + suma_enteros(a + 1, b)
```

- Estas dos funciones comparten claramente un patrón subyacente común. Se diferencian solamente en:
 - El nombre de la función
 - La función de a que se utiliza para calcular cada término
- Podríamos haber escrito las funciones anteriores rellenando los «casilleros» del siguiente patrón general:

```
<nombre> = lambda a, b: 0 if a > b else <término>(a) + <nombre>(a + 1, b)
```

- La existencia de este patrón común nos demuestra que hay una abstracción esperando que la saquemos a la superficie.
- De hecho, los matemáticos han identificado hace mucho tiempo esta abstracción llamándola **suma de una serie**, y la expresan así:

$$\sum_{n=a}^{b} f(n) = f(a) + \ldots + f(b)$$

- La ventaja que tiene usar la notación anterior es que se puede trabajar directamente con el concepto de sumatorio en vez de trabajar con sumas concretas, y podemos sacar conclusiones generales sobre los sumatorios independientemente de la serie particular que estemos tratando.
- Igualmente, como programadores estamos interesados en que nuestro lenguaje tenga la suficiente potencia como para describir directamente el concepto de *sumatorio*, en vez de funciones particulares que calculen sumas concretas.
- En programación funcional lo conseguimos creando funciones que conviertan los «casilleros» en parámetros:

```
suma = lambda term, a, b: 0 if a > b else term(a) + suma(term, a + 1, b)
```

 De esta forma, las dos funciones suma_enteros y suma_cubos anteriores se podrían definir en términos de esta suma:

```
suma_enteros = lambda a, b: suma(lambda x: x, a, b)
suma_cubos = lambda a, b: suma(lambda x: x * x * x, a, b)
```

```
# O mejor aún:
suma_cubos = lambda a, b: suma(cubo, a, b)
```

• ¿Se podría generalizar aún más la función suma?

4.2. map

- Supongamos que queremos escribir una función que, dada una lista de números, nos devuelva otra lista con los mismos números elevados al cubo.
- Inténtalo primero como ejercicio.
- Una forma de hacerlo sería:

• ¿Y elevar a la cuarta potencia?

• Es evidente que hay un patrón subyacente que se podría abstraer creando una función de orden superior que aplique una función f a los elementos de una lista y devuelva la lista resultante.

Esa función se llama map, y viene definida en Python:

```
map(<función>, <iterable>) -> <iterador>
```

donde <iterable> puede ser cualquier cosa compuesta de elementos que se puedan recorrer de uno en uno, como una lista, una cadena o un rango (cualquier secuencia de elementos vale).

• Podemos usarla así:

```
>>> map(cubo, [1, 2, 3, 4]) 
<map object at 0x7f22b25e9d68>
```

Lo que devuelve no es una lista, sino un objeto *iterador* que examinaremos con más detalle en posteriores temas.

Por ahora, lo que haremos será simplemente transformar ese iterador en la lista correspondiente usando la función list sobre el resultado de map:

```
>>> list(map(cubo, [1, 2, 3, 4]))
[1, 8, 27, 64]
```

• Además de una lista, también podemos usar un rango:

```
>>> list(map(cubo, range(1, 5)))
[1, 8, 27, 64]
```

- ¿Cómo definirías la función map?
- Podríamos definirla así:

4.3. filter

- filter es una función de orden superior que devuelve aquellos elementos de una lista (o cualquier cosa *iterable*) que cumplen una determinada condición.
- Su sintaxis es:

```
filter(<función>, <iterable>) -> <iterador>
```

• Por ejemplo:

```
>>> list(filter(lambda x: x > 0, [-4, 3, 5, -2, 8, -3, 9]))
[3, 5, 8, 9]
```

4.4. reduce

- reduce es una función de orden superior que aplica, de forma acumulativa, una función a todos los elementos de una lista (o cualquier cosa iterable).
- Las operaciones se hacen agrupándose por la izquierda.
- Captura un patrón muy frecuente de recursión sobre listas de elementos.
- Por ejemplo, para calcular la suma de todos los elementos de una lista, haríamos:

```
 suma = lambda l: 0 if l == [] else l[0] + suma(l[1:])
```

• Y para calcular el producto:

```
producto = lambda l: 1 if l == [] else l[0] * producto(l[1:])
```

- Como podemos observar, la estrategia de cálculo es esencialmente la misma (sólo se diferencian en la operación a realizar (+ o *) y en el valor inicial o elemento neutro (0 o 1).
- Si abstraemos ese patrón común podemos crear una función de orden superior que capture la idea de **reducir todos los elementos de una lista a un único valor**.
- Eso es lo que hace la función reduce.
- Su sintaxis es:

```
reduce(<función>, <iterable>[, <valor_inicial>]) -> <valor>
```

- El <*valor_inicial*>, si existe, se usará como primer elemento de la lista en el cálculo y sirve como valor por defecto cuando la lista está vacía.
- La <función> debe recibir dos argumentos y devolver un valor.
- Para usarla, tenemos que importarla previamente del módulo functools.
 - No es la primera vez que importamos un módulo. Ya lo hicimos con el módulo math.

- En su momento estudiaremos con detalle qué son los módulos. Por ahora nos basta con lo que ya sabemos: que contienen definiciones que podemos incorporar a nuestros *scripts*.
- Por ejemplo, para calcular la suma y el producto de [1, 2, 3, 4]:

```
from functools import reduce
lista = [1, 2, 3, 4]
suma_de_numeros = reduce(lambda x, y: x + y, lista, 0)
producto_de_numeros = reduce(lambda x, y: x * y, lista, 1)
```

- ¿Cómo podríamos definir la función reduce?
- Una forma (con valor inicial obligatorio) podría ser así:

4.5. Listas por comprensión

- Dos operaciones que se realizan con frecuencia sobre un iterador son:
 - Realizar alguna operación sobre cada elemento (map)
 - Seleccionar un subconjunto de elementos que cumplan alguna condición (filter)
- Las listas por comprensión son una notación copiada del lenguaje Haskell que nos permite realizar ambas operaciones de una forma muy concisa:

```
>>> [x ** 3 for x in [1, 2, 3, 4]]
[1, 8, 27, 64]
# equivale a:
>>> list(map(lambda x: x ** 3, [1, 2, 3, 4]))
[1, 8, 27, 64]
>>> [x for x in [-4, 3, 5, -2, 8, -3, 9] if x > 0]
[3, 5, 8, 9]
# equivale a:
>>> list(filter(lambda x: x > 0, [-4, 3, 5, -2, 8, -3, 9]))
[3, 5, 8, 9]
```

• Su sintaxis es:

- Los elementos de la salida generada serán los sucesivos valores de <expresión>.
- Las cláusulas **if** son opcionales. Si están, la <*expresión>* sólo se evaluará y añadirá al resultado cuando se cumpla la <*condición>*.
- Por ejemplo:

```
>>> sec1 = 'abc'
>>> sec2 = (1, 2, 3)
>>> [(x, y) for x in sec1 for y in sec2]
[('a', 1), ('a', 2), ('a', 3),
```

```
('b', 1), ('b', 2), ('b', 3), ('c', 1), ('c', 2), ('c', 3)]
```

Bibliografía

Abelson, Harold, Gerald Jay Sussman, and Julie Sussman. 1996. Structure and Interpretation of Computer Programs. 2nd ed. Cambridge, Mass.: New York: MIT Press; McGraw-Hill.