Use Perpendicular Bisectors

★ I can use perpendicular bisectors of triangles to solve problems. ★

Find each measure.

1. *FG*

2. *TU*

Find the length of \overline{AB} .

3. A

4.

Use the diagram below. \overline{EH} is the perpendicular bisector of DF. Find the indicated measure.

5. Find *EF*.

6. Find *DE*.

7. Find *FG*.

8. Find *DG*.

9. Find *FH*.

10. Find *DF*.

 \star I can use the perpendicular bisectors point of concurrency, the circumcenter, to find segment lengths. \star

Point P is the circumcenter of $\triangle ABC$. List any segment(s) congruent to each segment below.

- 11. \overline{BR}
- 12. *CS*
- 13. \overline{BP}

In the diagram, the perpendicular bisectors of $\triangle ABC$ meet at point G and are shown dashed. Find the indicated measure.

14. Find *AG*.

15. Find *BD*.

16. Find *CF*.

17. Find *BG*.

18. Find *CE*.

19. Find *AC*.

20. In the diagram below, m is the perpendicular bisector of \overline{BC} .

- a. Mark 3 pairs of congruent segments and a perpendicular into the diagram.
- b. If AB = 19, then $AC = _____$.
- c. Is $\triangle ABK \cong \triangle ACK$? Justify.
- d. If BK = 5x, AC = 6x + 7, CP = 4x, AB = 9x 14. Find x, KC, AB, AC, and BC.

e. Using the measures you found in part d, find *PK*.