Internship Program Report

By

KORLAPATI GAYATHRI DEVI 18481A0247

In association with

Contents

Introduction	3
Program organiser	3
Courtesy	3
Program details	3
Internship program	3
3 rd May2021: Introduction to EPC Industry	4
4 th May2021: Engineering documentation for EPC projects	5
5 th May2021: Engineering documentation for commands and formulae	6
7 th May2021: Engineering documentation for Electrical system design	7
10 th May2021: Engineering documentation for Typical diagrams	8
11th May2021: Classification of Transformers and Generators	9
12 th May2021: Classification of Switchgare construction and power factor improvement	10
17 th May2021: Detailing about UPS system and Busducts.	11
18 th May2021: Detailing about Motor Starters and Sizing of motors.	12
19 th May2021: Discribing about Earthing system and Lighting Protection	13
20 th May2021: Lighting or illumination systems and calculations	14
21 th May2021: Lighting or illumination systems using DIALUX software	15
24 th May2021: Cabling and their calculations and types	
25 th May2021: Cabling calculations and Cable gland selection	17
28 th May2021: Load calculations and Transformer sizing calculations	18
29th May2021: DG set calculations.	19
2nd june2021: Caluculations of Earthing and Lighting protection	20
5 th june 2021: Cable sizing and cable tray sizing calculations.	21
Conclusion	22
Feedback:	22

Introduction

Internship program arranged by GUDLAVALLERU ENGINEERING COLLEGE in association with Smart Internz, Hyderabad for the benefit of 3rd year EEE batch 2018-2022 on Electrical Detailed design Engineering for Oil& Gas, Power and Utility industrial sectors.

Program organiser

Smart Bridge, Hyderabad.

Pioneer in organising Internships, knowledge workshops, debates, hackathons, Technical sessions and Industrial Automation projects.

Courtesy

Dr. Sri B. Dasu – HOD – EEE, GEC

Dr.G.Srinivasa Rao-Coordinator

Mr. Ramesh V - Mentor

Mr. Vinay Kumar - System Support

Mr. Harikanth – Softwar/Technical Support

Program details

Smart Internz program schedule: 4 weeks starting from 3rd May 2021

Daily schedule time shall be 4PM to 6.30PM

Mode of Classes: Online through ZOOM

Presenter: Mr Ramesh V

Internship program

We have been given the opportunity to learn and interact with industry experienced engineering specialist to learn the Electrical detailed design engineering for various industrial sectors.

ROLL NO: 18481A0247 June 2021

3rd May2021: Introduction to EPC Industry

1	EPC Industry &	EPC Industry	Introduction
	Electrical Detailed	Engineering	Types of Engineering
	Engineering	Procurement	Engineering role in procurement
		Construction	Engineering role during construction

Topic details:

1C. ELECTRICAL DESIGN & DETAILED ENGINEERING - PROCESS

Engineering phases, Engineering deliverables (drawings & documents) list, Design Engineer role at various phases of project.

4th May2021: Engineering documentation for EPC projects

2	Electrical Design	Engineering Deliverables list	Sequence of deliverables
	Documentation	Detailed Engineering work flow	Detailed engineering process
		Document transmission	Document submission and info
			exchange
		Deliverables types	Different types of deliverables

Topic details:

On this day I have learned the Deliverable list of details and work flow in electrical design. And after sequence of deliverables, Detailed engineering process, Document submission and exchange process, and at last I learned about different types of deliverables.

$5^{\text{th}}\,\text{May}2021\text{:}$ Engineering documentation for commands and formulae

3 Electrical Design Ms word commands
Documentation Ms excel formulae
Auto cad basic commands

Topic details:

MS Word, Excel and Auto cad COMMANDS.

3C. AUTOCAD BASIC COMMANDS

A		AUT	OCAD	BASIC KE	EYS			
STANDARD		DRA	W	MOI	OIFY	FORM	AT	
NEW	Ctrl+N	LINE	L	ERASE	E	PROPERTIES	МО	
OPEN	Ctrl+O	RAY	RAY	COPY	со	SELECT COLOR	COL	
SAVE	Ctrl+S	PLINE	PL	MIRROR	MI	LAYER	LA	
PLOT	Ctrl+P	3DPOLY	3P	OFFSET	0	LINETYPE	LT	
PLOT PREVIEW	PRE	POLIGONE	POL	ARRAY	AR	LINEWEIGHTS	LW	
CUT	Ctrl+X	RECTANGLE	REC	MOVE	M	LT SCALE	LTS	
COPY	Ctrl+C	ARC	A	ROTATE	RO	LIST	LI	
PASTE	Ctrl+V	CIRCLE	С	SCALE	SC	DIMEN, STYLE	D	
MATCH PROPE.	MA	SPLINE	SPL	STRECH	S	RENAME	REN	
CLOSE	Ctrl+F4	ELLIPSE	EL	TRIM	TR	OPTION	OP	
EXIT	Ctrl+Q	BLOCK	В	EXTENED	EX			
		POINT	PO	BRAKE	BR			
		HATCH	Н	CHAMFER	CHA			
		GRADIENT	GD	FILLET	F			
		REGION	REG	EXPLODE	X			
		BOUNDARY	ВО					
		DONUT	DO					

	EX	TRA		DRA	FTING	PAPER SIZE
UNIT	UN	UCS	UCS	ORTHO	F8, Ctrl+L	A4=210*297
LIMITS	LIMITS	SINGLE TEXT	DT	OSNAP	F3, Ctrl+F	A3=297*420
(0,0; 1000,	1000)	MULTILINE TEXT	MT	POLAR	F10, Ctrl+U	A2=420*594
ZOOM	Z	EDIT TEXT	ED	GRID	F7, Ctrl+G	A1=594*841
ALL	Α	OBJECT SNAP	ОВ	OTRACK	F11	A0=841*1189
PAN	Р	DIMENTION	DIM	SNAP	F9	
CLEAN SCREEN	Ctrl+0	HORIZONTAL	HOR			
COMMAND WIN	Ctrl+9	VERTICAL	VER			

Here we need to check the Page setup, spelling, Grammer, Punctuation, Paragraphs, Overall prasentations, Tables & pictures to be numbered and titled at last we check the Document name & date of versions.

7th May2021: Engineering documentation for Electrical system design

4 Electrical system Overall plant description design for a small small project Sequence of approach Approach to detailed design

Topic details: Overall plant description, approach to detailed design.

Here we observed that how to do a project and Sequence of approach, Approach to detail design and Overall plant distribution system.

10th May2021: Engineering documentation for Typical diagrams

5 Electrical system
design for typical Load lists shedule
diagrams Single line diagram

Power flow diagram
Typical schematic diagram

Topic details: Typical diagrams and Load calculations.

. 1		EQUIPMENT	- 2	Т	Tal.	E p	Absorbed load	Equipment	Load factor	Efficienc at load	y Power factor at	R5	= A/D	Consu	med Load			KVAr = I		4
ž.	Equipment	Description	ly pi	2	entin	tartie	load	rating	=A/B or H/I		load factor		Continuous		Internit	ent and spares		Stan		Remarks
"	No.		Supply	2	` E	Res	kW	kW	In decimats	s In decima	_	No.	w s	Ar No	kW	kVAr	No.	kW	RVAr	1
\rightarrow	PROCESS LOADS			\rightarrow	H	+	-													
,		Portable MEG Injection Pump Package	LEWA	. +	+	×	27.00	37.00	0.73	0.91	0.83		_	-	29.6	19.94	Н			Portable Skid (Please refer Note-d)
	34-PM8401A	Liquid Return Pump Motor	LEWA		\Box	x	25.45	31.00	0.82	0.93	0.81				27.3					
		Liquid Return Pump Motor	LEWA			х	25.45	31.00	0.82	0.93	0.81						1	27.37	19.81	
4		Booster Pump Motor (LRP Package)	LEWA		++	х	1.40	2.20	0.64	0.78	0.84		_		1.79	1.16			1.16	
\exists		Booster Pump Motor (LRP Package)	LEWA			x	1.40	2.20	0.64	0.78		1 7	17 E			-	1	1.79	1.16	
3		Corrosion Inhibitor Injection Pump Motor Corrosion Inhibitor Injection Pump Motor	LEW/	-		×	6.45	11.00	0.59	0.90	0.77	1 /	17 5.	94		_	1	7.17	5.94	
		Batch Corrosion Inhibitor Injection Pump Motor	RAM	`		Ŷ	133.50	160.00	0.83	0.96	0.80		_			_	1	139.06	104.30	
	34-PM7903B	Batch Corrosion Inhibitor Injection Pump Motor	RAM	$\overline{}$	+	x	133.50	160.00	0.83	0.96	0.80		_				1	139.06	104.30	
0		KHI Inhibitor Injection Pump Motor	LEWA			х	6.45	11.00	0.59	0.90	0.77	1 7	17 5.	94						VSD for speed control
	34-PM7904B	KHI Inhibitor Injection Pump Motor	LEWA			х	6.45	11.00	0.59	0.90	0.77						1	7.17	5.94	VSD for speed control
2		Scale Inhibitor Injection Pump Motor	FUTUR			х	3.00	4.00	0.75		0.81	1 3	53 2.	56						Future
3		Scale Inhibitor Injection Pump Motor	FUTUR GENER			x	3.00	4.00 37.50	0.75	0.85	0.81	1 3	.33 25	00	_	-	1	3.53	2.56	Future
5		Nitrogen Compressor Motor	GENER			×	30.00	37.50	0.80	0.90	0.80		33 25		_	_				+
B		Nitrogen Compressor Motor Nitrogen Compressor Motor	GENER			Ŷ	30.00	37.50	0.80	0.90	0.00	1 3	20			_	1	33.33	25.00	
7	34-EM9602A	Aftercooler for Nitrogen Compressor	GENER	NC	+	x	1.15	2.50	0.46	0.78	0.80			-	1.47	1.11		00100	20.00	
3		Aftercooler for Ntrogen Compressor	GENER	INC		x	1.15	2.50	0.46	0.78	0.80				1.47	1.11				
9	34-EM9602C	Aftercooler for Nitrogen Compressor	GENER	NC		х	1.15	2.50	0.46		0.80						1	1.44	1.08	
\exists	34-H9602	Nitrogen Heater			\Box	T	6.20	1.00	6.20	0.90	1.00									
\Box	34-PM9701A	Hydraulic Fluid Pump - Welhead HPU - Very High Pre	ssure FRAME			х	0.19	0.55	0.35	0.80	0.70				0.24					
3		Hydraulic Fluid Pump - Wellhead HPU - Very High Pro			++	X	0.19 5.80	7.50	0.35	0.80	0.70				7.25		\vdash			+
1		Hydraulic Fluid Pump - Wellhead HPU - Medium High Hydraulic Fluid Pump - Wellhead HPU - Medium High			+	X	5.80	7.50	0.77	0.80	0.86		_	_						+
5	34-A9704A	Hydraulic Fluid Pump -IOPPS Valves HPU	LEDEE			X	5.42	5.50	0.77		0.86				6.78					+
3	34-A9704B	Hydraulic Fluid Pump -IOPPS Valves HPU	LEDEE	N		×	5.42	5.50	0.99	0.80	0.86				6.78	4.02				1
7	34-PM9705A	Hydraulic Fluid Pump - ESDV's HPU	LEDEE	N .	\Box	х	5.42	5.50	0.99	0.80	0.86				6.78	4.02				
8	34-PM9705B	Hydraulic Fluid Pump - ESDV's HPU	LEDEE			х	5.42	5.50	0.99		0.86									
9	AC-3435	Crane motor	LIEBHE			х	112.00	140.00	0.80	0.95	0.90				117.8	9 57.10				
	34-XZM8303	Lifeboat Recovery Starter Panel	SCHAT HAS			х	8.74	9.39	0.93	0.91	0.82		_				1	9.60	6.70	
		Flare Knock Out Drum Heater Control Panel	CHROMA	LOX	+	х	35.00	35.00	1.00	0.90	0.90		_	_	38.89	18.83				
	HVAC LOADS																			
2	34-YH4201ACCU01	Air Cooled Condensing Unit - 01	CCTC		х	\perp	37.25	42.90	0.87	0.82	0.80	1 4	.43 34	07						
3		Air Cooled Condensing Unit - 02	CCTC		х	-	37.25		0.62				_		_		1	45.43	34.07	
4	34-YH4201AHU01 34-YH4201AHU02	Air Handling Unit - 01	CCTC	-	x	-	8.85	10.00	0.89	0.80	0.80	1 1	.06 8.	80	_	_	1	11.06	8.30	
5		Air Handling Unit - 02		-		-	8.00	8.00	1.00		0.80	1 6	on e	27	_	_	1	11.06	8.30	-
7		Fresh Air Fan - 01 Fresh Air Fan - 02	CCTC	-	x	+	8.00	8.00	1.00	0.90	0.80	1 8	89 6.	21		_	1	8.89	6.67	+
В В		Exhaust Fan - Toilet	CCTC	-	×		1.00	1.00	1.00	0.90	0.80			-	1.11	0.83	1	0.03	0.01	
9		Duct heater - 01	CCTC	-	×		9.78	9.78	1.00		1.00				9.78					
0		Duct heater - 02	CCTC		X		4.69	4.69	1.00	1.00				- 1	4.69					
1		Duct heater - 03	CCTC		х		0.90	0.90	1.00	1.00	1.00			-						
2	34-YH4201EDH04	Duct heater - 04	CCTC		х	_	4.98	4.98	1.00	1.00	1.00			,	4.98	0.00				
	ELECTRICAL LOADS																			
3	AC-3431	Power Distribution Board	MASSEE	RA	x		41.00	51.50	0.80	0.98	0.80	1 4	.84 31	38						Inclusive of MOV, Choke valve, Control valve and heat tracing it
1		UPS- Main/Bypass	GUTO	R	x		24.00	24.00	1.00	0.82	0.80	1 2	.27 21	95						
5	BC-3442	Switchgear 24 V DC UPS	SAFT		х		1.20	1.20	1.00	0.80	0.80		50 1.							
3	LTR-3431	Lighting Transformer for LP-3431	SCHNEIL		Х	\perp	27.00	27.00	1.00	0.98	0.90		.55 13							Inclusive of lighting load, convenience outlets and small power
		Lighting Transformer for ELP-3431	SCHNEIL		х	-	27.00		1.00		0.90	1 2	.55 13	34			1	00.07	05.00	Inclusive of lighting load, convenience outlets and small power
9	WD-3431A WD-3431B	Welding Socket Outlet 1 - Upper Deck Welding Socket Outlet 2 - Upper Deck	STAH		++	X	33.00	33.00	1.00	0.98	0.80					_	1	33.67	25.26 25.26	-
9		Welding Socket Outlet 2 - Upper Deck Welding Socket Outlet 1 - Lower Deck	STAH		+	×	33.00	33.00	1.00	0.98	0.80						1		25.26 25.26	+
1		Welding Socket Outlet 2 - Lower Deck	STAH			×	33.00	33.00	1.00	0.98	0.80						1	33.67	25.26	+
2		Welding Socket Outlet 1 - Mezz Deck	STAH			x	33.00	33.00	1.00	0.98	0.80						1	33.67	25.26	1
3	WD-3433B	Welding Socket Outlet 2 - Mezz Deck	STAH			х	33.00	33.00	1.00	0.98	0.80						1	33.67	25.26	
◻	WD-3434	Welding Socket Outlet - Cellar Deck	STAH			х	33.00	33.00	1.00	0.98	0.80						1	33.67	25.26	
					Щ	100														
- 1	Aax, of normal running plant load: Est. x %E + y %F)	363 kW, 232 kVA	· √(k₩2 +	erse-9	4	123	kVA	х.	100	1 1	TOTAL		78 1	15	252	125	\vdash	671	503	Power factor without compensation [Cos q.] 0.836 Power factor with compensation [Cos q.]
- 16	Peak load:	420 kW, 282 kVA	· √(k₩2 +	kV4r-)	- 5	506	kVA	Z:	10	AVA	(0.0°+8004e9		339			282		8:	10	Regd capacitor rat: [=kW(tan \varphi - tan \varphi_1)] K
	Est. x %E + y %F + z%G)				\Box					A. A.										
s -	and also illustion basts	b) Absorbed loads:	dido polet			c)	Consum		"; all loads	final mo			G			ads require		ntos		1
	.oad classification/restarting: for definitions of "Vital", "Essentia	- for pumps, shaft load on	duty point. puters, communication, & a	le .							rmal operatio					nly, such as of not norn		OWL.		1
	or definitions of "Vital", "Essential", ion - Essential", services and app		pulers, communication, & a id during full operation of pl								mai operatio workshops					ally driven u				QATARGAS 3&4
	ion - Essensar, services and app if "Restarting", see DEP 33.64.10	.10 - Gen for lighting, during dark		or st.							worksnops ads required	ne .				- by for nor				OFFSHORE FACILITIES PROJECT
	Sectrical engineering guidelines.		ge total load in normal full								loading, etc.					- driven one		charge		WELLHEAD PLATFORM 7
-1"	congressing gardeness.	operation.									v driven unit					eed pumps)	(e.g.	or gro		1
d) 1	he Panel shall feed Injection Purr													1						1
		as standby load during normal running condition base	d on operating philosophy.																	
																				1 _
																				CDEA
	01	24-Jun-07	AK								APPROVE	D FOR C	ONSTRUC	TON						
	00	22-Aug-07	PJ							APF	ROVED FOR	CONST	UCTION V	/ТН НС	DLD					
		18-Jul-07	P.J		-								ANY REV							1 SN
_	В																			
_	B A	26-Oct-06	JG		+															
					F						15	SUED F								

We conclude here how to do load calculations and Typical diagrams and inernal structure and also about the power flow diagram.

11th May2021: Classification of Transformers and Generators

6 Classification of Transformers and Generators

Different types of Transformers

Different types of Generators

Topic Details: Classification of Transformers and Generators.

1 Ph. Pad mounted 3 Ph Pole mounted Commercial/ 3 Ph Oil filled (ONAN) Distribution Residential lighting Residential/ street lighting type for industrial & commercial.

415V Diesel generator sets for standby / 240V 1 ph diseal generator set for lighting and & small power only Emergency power supply.

Transformer shall include a primary disconnect on the incoming power source. The disconnect means shall be either a breaker or a load break primary switch that is fused. Transformers are sized to carry the peak running load of all busses connected to them. In addition, feeders to and from power transformers shall be rated to carry full current at the maximum rating.

The packaged combination of a diesel engine, an alternator and various ancillary devices such as base, canopy, sound attenuation, control systems, circuit breakers, jacket water heaters, starting systems etc., is referred to as a Diesel Generating Set or a DG Set in short.

12th May2021: Classification of Switchgare construction and power factor improvement

7 Classification of Switchgare construction and power factor improvement

Different types of Switchgare assembles

Power factor improvement

Topic details: Classifiaction of Switchgare contruction and Power Factor Improvement.

Switchgear includes switching & protecting devices like fuses, switches, CTs, VTs, relays, circuit breakers, etc. This device allows operating devices like electrical equipment, generators, distributors, transmission lines, etc.

Power factor defined as the ratio of real power to volt-amperes and is the cosine of the phase angle between the voltage and current in an AC circuit.

17th May2021: Detailing about UPS system and Busducts.

8 Detailing about
UPS system and
Busducts
Uninterruptible power supply
System
Uninterruptible power supply
System

Topic details: Power distribution of UPS system and Busducts.

UPS systems are designed to provide continuous power to a load, even with an interruption or loss of utility supply power. UPS generally involves a balance of cost Vs need.

Busducts are classified into various types depending on its application viz phase separated Busducts, segregated phase busducts, non-segregated phase busducts.

18th May2021: Detailing about Motor Starters and Sizing of motors.

9 Detailing about Motor starters and drives Sizing and selection of motors Motor Starters and Sizing of motors

Topic details: Detailing about Motor Starter and Sizing of motors and their selection.

The principal function of a motor starter is to start and stop the respective motor connected with specially designed electromechanical switches which are similar in some ways to relays. The main difference between a relay and a starter is that a starter has overload protection for the motor that is missing in a relay.

Different types of motor starters are as follows:

- Direct-On-Line Starter
- Rotor Resistance Starter
- Stator Resistance Starter
- Auto Transformer Starter
- Star Delta Starter

- Starting method soft starter, Auto transformer, Star/Delta
- Speed variation Constant speed, variable speed for VFD
 - Frame Size 56 to 280
- Insulation class & Temp rise A, E, B, F & H
- Protection Protection based on voltage & KW rating
- Cable entry, size & termination Cable sizing based on staring/running voltage drop and short circuit current Vibration monitoring based on KW rating.

19th May2021: Discribing about Earthing system and Lighting Protection.

10	Discribing about Earthing system and Lighting	Plant Earthing system	Lighting Protection materials
	Protection.		

Topic details: Discribing about Earthing system and Lighting Protection.

The purpose of earthing is to prevent damage to people and prevent or limit plant damage. Various earthing systems are provided with each earthing system is isolated from the other.

Lightning protection required for high rise structures and important buildings against lightning currents during thunder storms. Primarily Lightning protection system calculations are done based on soil resistivity, conductor material, coverage structure / Building to determine whether lightning protection is required or not.

20th May2021: Lighting or illumination systems and calculations.

11	Lighting or Illumination systems and Calculations	Lighting or illumination systems	Lighting calculations
	Carcarations		

Topic details: Lighting or Illumination systems and Calculations.

All outdoor lighting fittings shall be connected with armoured PVC cable of suitable no. of cores and size. Necessary type and no. of junction boxes shall be provided for branch connections. Indoor light fittings shall be connected with FRLS PVC wires laid in cable trunks or conduits.

Inputs required: Equipment and cable routing layouts, lighting calculations, Design basis for type of light fittings to be used, required lux levels

Lighting calculations software: Dialux, Chalmlite, Calculux, Relux, Luxicon, CG Lux

Applicable Standards: IS 6665: Code of practice for industrial lighting, IS 3646: Code of practice for interior illumination, IEC 60598: Luminaires, IEC 62493: Assessment of lighting equipment related to human exposure to electromagnetic field

Deliverables: Indoor Lighting layouts, socket outlet layouts, Street lighting and area lighting layouts. BOQ.

Types of light fittings: Industrial, flame proof type (EX d), increased safety type (Ex e).

21th May2021: Lighting or illumination systems using DIALUX software.

12 Lighting or
Illumination using
DIALUX software

Lighting or illumination systems

Operation of dialux software

Topic details: Lighting or Illumination Calculations using DIALUX software.

Here we are using this Dialux evo 5.9.2 software windows to construct the power plant and we can perform the operation from this software.

We have the indoor calculations and outdoor calculations too.

Indoor calculation

outdoor calculations

24th May2021: Cabling and their calculations and types.

13 Cabling and their types and claculations

Cabling calculations

Types of cabling materials

Topic details: Cabling and their types and claculations.

Electrical cables must be properly supported to relieve mechanical stresses on the conductors, and protected from harsh conditions such as abrasion which might degrade the insulation.

Cables generally laid in the cable trays above ground, direct buried underground and in metallic or PVC conduits. Derating factors may be applicable for each type of cable laying conditions.

Cable trays shall be generally loaded 60 to 70% leaving space for future use. Underground cabling shall be done in concrete cable trenches with cable trays in paved areas and directly buried with mandatory gap of 300mm between different systems of cables.

25th May2021: Cabling calculations and Cable gland selection.

14	Cabling		
	claculations and cable gland	Cabling calculations	Cable gland selection
	selection		

Topic details: Cable sizing calculation and cable gland selection.

Inputs required: Load List, Design basis, Electrical equipment layout, cable schedule, vendor catalogues for cable tray.

Cable tray sizing shall be performed for each branch of cable tray routing up to the load point.

Results shall be checked with specified limits mentioned in design basis.

Cable gland:

Cable Gland Selection Table

Refer to illustration at the top of the page.

Cable Gland Size	(Alternat	Entry Threads "C" te Metric Thread hs Available)	Cable Overall Bedding Cable Ari Diameter Diameter "A" "B"		Armou	r Range	Across Flats "D"	Across Corners "D"	Protrusion
Size	Metric	Thread Length (Metric) "E"	Max	Max	Min	Max	Max	Max	Length "F"
20516	M20	10.0	8.7	13.2	0.8	1.25	24.0	26.4	35.2
205	M20	10.0	11.7	15.9	0.8	1.25	24.0	26.4	32.2
20	M20	10.0	14.0	20.9	0.8	1.25	30.5	33.6	30.6
25	M25	10.0	20.0	26.2	1.25	1.6	36.0	39.6	36.4
32	M32	10.0	26.3	33.9	1.6	2.0	46.0	50.6	32.6
40	M40	15.0	32.2	40.4	1.6	2.0	55.0	60.5	36.6
505	M50	15.0	38.2	46.7	2.0	2.5	60.0	66.0	39.6
50	M50	15.0	44.1	53.1	2.0	2.5	70.1	77.1	39.1
635	M63	15.0	50.0	59.4	2.0	2.5	75.0	82.5	52.0
63	M63	15.0	56.0	65.9	2.0	2.5	80.0	88.0	49.8
755	M75	15.0	62.0	72.1	2.0	2.5	90.0	99.0	63.7
75	M75	15.0	68.0	78.5	2.5	3.0	100.0	110.0	57.3
90	M90	24.0	80.0	90.4	3.15	4.0	114.3	125.7	66.6

28 th May2021: Load calculations and Transformer sizing calculations

15 Load calculations and TR Load calculations TR calculations calculations

Topic details:

List of electrical load calculations.

	2						en ene			9.8	was .		kW = [A]/[D]		Consumed	Load	kVAR = kW	Htan Φ
, k	Equipment No.		quipment Description	Brea Rati		No. of Poles	Rating		Motor / Load Rating	Load Factor [A]/[B]	Efficiency at Load Factor [C]	Power Factor at Load Factor [C]	Continu	ous	Intermitt		Stand-	Ьу
							mA	[A]	(B)	(C)	(D) decimal	0010	kW	EVAR	kW	KVAR	kW	EVA
_	7	*	1		_	_	mes	KW.	- KW	decimal	decimal	003 th	KW.	EVAF	KW.	KVAH	EW.	ROM
	PU2315	Silica filter feed pump						12.47	15.00	0.83	0.85	0.73	14.67	13.74				
	PU 2314-A	Absorbesnt/Neutral oil pump (W)						3.62	4.70	0.77		0.73	4.3	4.0				
3	PU 2314 -B	Absorbesnt/Neutral oil pump (S)						3.11			0.85	0.73					3.7	- 3
	PU2305	Feed Pump (Seperator)						12.58		0.84	0.85	0.73	14.8	13.9				Т
5	MX2305	MIXER (W)						12.68	15.00			0.73	14.9	14.0				
6	MX 2308	MIXER (S)				1	1	12.68	15.00		0.85	0.73					14.9	14
7	BW2313	Blower						5.45	7.50	0.73		0.73	6.4	6.0				
3	Rotary valve	TK 2313B (II)						0.53	0.75	0.71	0.85	0.73			0.6	0.6		
9	SC2314	Screw conveyor (I)						1.23	1.50			0.73			1.45	1.35		
Ю	AG 2324A	Citric acid tan agitator (W)				***************************************	-	0.91	1.10			0.73	1.07	1.00				
	AG 2324B	Citrio acid tank agitator (S)						0.91	1.10			0.73					1.1	1
11	AG 2305	Citrio oil rection vessol agitator				***************************************		3.34	3.70	0.90	0.85	0.73	3.93	3.68				
3	AG 2309	Lye oil reaction vessel agitator						1.21	1.50	0.81	0.85	0.73	1.42	1.33				
3	AG 2310	Lue oil reaction vessel agitator	1					1.21	1.50	0.81		0.73	142	1.33				
5	AG 2314	Soap Adsorbant Tank Agitator						2.12	3.00	0.71	0.85	0.73	2.49	2.34				
																		00000000
	Maximum of norm (Est. x%E + y%F)	nal running plant load :	66.0	kW	61.6	E EVAR		sqn	(kW* +kVAR*) =	90.4	kVA	TOTAL	65.40	61.23	2.07	1.94	19.65	18.3
	Peak Load:		68.0		00.1	V KVAR			(kW*+kVART) =	93.1		kVA	89.51	0	2.8		26.9	
-	(Est H%E+V%F-	++VG)	66.0	RW	63.	KVAH		sqrt	(KM. +KAMH.) =	33.1	RVA	RVA	83.51		2.0	•	26.3	
	Assumptions 1) Load factor, Ef	ficiency and Power factor. Load Rating (kW) <= 20		E	Efficiency 0.85		Power fa											
-		> 20 - <= 45			0.91		0.78											
		> 45 - < 150			0.93		0.82											
		>= 150			0.94		0.91											

TR sizing calculations:

| 1.0 | Example of calculation for Transformer Capacity | Calculation for consumed load | Cons

29th May2021: DG set calculations.

16 DG set calculations

Topic details:

Transformer and DG set calculations, types , sizing or selections

	DG SIZING CALCULATIONS		
	Design Data		
	Rated Volatge	415	KV
	Power factor (CosØ)	0.74	Avg
	Efficiency	0.86	Avg
	Total operating load on DG set in kVA at 0.74 power factor	166.4	
	Largest motor to start in the sequence - load in KW	30	KW
	Running kVA of last motor (CosØ= 0.91)	47	KVA
	Starting current ratio of motor	6	(Considering starting method as Soft starte
	Starting KVA of the largest motor (Running kVA of last motor X Starting current ratio of motor)	283	KVA
	Base load of DG set in KVA	119	KVA
	(Total operating load in kVA – Running kVA of last motor)		
Α	Continous operation under load -P1 Lapacity or Disserbased on continuous operation under load P1 Transient Voltage dip during starting of Last motor	119	KVA
В	P2		
	Total momentary load in KVA	402	KVA
	(Starting KVA of the last motor+Base load of DG set in KVA		
	Subtransient Reactance of Generator (Xd")	7.91%	(Assumed)
	Transient Reactance of Generator (Xd')	10.065%	(Assumed)
	Xd''' =(Xd"+Xd')/2	0.089875	
	Transient Voltage Dip	15%	(Max)
	Transient Voltage dip during Soft starter starting of Last motor (Transient	205	KVA
С	Overload capacity P3		
	Capacity of DG set required considering overload capacity		
	Total momentary load in KVA	402	KVA
	overcurrent capacity of DG (K) (Ref: IS/IEC 60034-1, Clause 9.3.2)	150%	
	Capacity of DG set required considering overload capacity (P3) = <u>Total momentary load in KVA</u> overcurrent capacity of DG [K]	268	KVA

2nd june 2021: Caluculations of Earthing and Lighting protection.

17 Calculation of
Earthing and Earthing calculations Lighting protection calculation
Calculations Calculations Lighting protection calculation

Topic details:

Calculation of Earthing and Lighting protection calculations

Earthing calculations:

	_	
Maximum line-to-ground fault in kA for 1 sec	13	
Earthing material (Earth rod & earth strip)	GI	
Depth of earth flat burrial in meter	0.5	
Average depth / length of Earth rod in meters	4	
Soil resistivity Ω-meter	8.5	
Ambient temperature in deg C	50	
Plot dimensions (earth grid) L x B in meters	70	130
Number of earth rods in nos.	6	
Earth electrode sizing:		
Ac - Required conductor cross section in sq.mm		
$I_{lg} = A_c x \sqrt{\left[\frac{TCAPx10^{-4}}{t_c x \alpha_r x \rho_r}\right] x l_n \left[\frac{K_0 + T_m}{K_0 + T_a}\right]}$		
αr - Thermal co-efficient of resistivity, at 20 oC	0.0032	
pr - Resistivity of ground conductor at 20 oC	20.10	
Ta - Ambient Temperature is °C	50	
I _{I-g} - RMS fault current in kA = 50 KA	14	
tc - Short circuit current duration sec	1	
Thermal capacity factor, TCAP J/(cm3.oC)	3.93	
Tm - Maximum allowable temperature for copper conductor, in oC	419	
KO - Factor at oC	293	
The data taken from IEEE 80-2000, Clause 11.3, Table-1 for clad steel rod:		
14 = Ac *	0.123	
Ac - Required conductor cross section in sq.mm	114	
Earth rod dia in mm	12	
Earth rod dia (including 25% corrosion allowance) in mm	15	

5 th june 2021: Cable sizing and cable tray sizing calculations.

18 Cable sizing and Cable sizing calculations cable tray sizing Cable tray calculation calculations

Topic details: Cable sizing and cable tray sizing calculations for LV cables and MV/HV cables.

Description	Consume d Load KW	Load Ratin g KW	Voltag e (V)	No of ph	Full Load Curre nt (A)	Startin g Curren t	Load P.F. Runnin g	SIN ¢ Runnin g		SIN Ø Starin g	Туре	No. of Runs	No. of Cores	Size (mm2)	Current Rating (A)	Derating factor k1	Derating factor k2	Derating factor k3	Derating factor k4	Overall Derating factor k +	Derated Current (A)	Cable Length (M)	Cable Resistan ce (Ohms/k M)	Cable Reactance (OhmskM	Voltage drop (Runnin g) (V)	drop	drop	drop (starting	Cable
Dia She kedang	20	61	415	3	217	130.12	0.8	0.6	0.8	0.5	2	-1	4.0	10	66	0.98	0.9	1	1	0.882	58.2	95	23400	0.0852	6.86	165	40.99	9.88	DK
Number (Medical all pump)()	362	u	415	3	6.3	37.77	0.8	0.6	0.8	0.5	2	1	4.0	2.5	28	0.98	0.9	1	1	0.882	24.7	95	9.4800	0.1007	7.92	191	47.45	11.43	DK
Number (Nederla) page []	3.11	u	415	3	5.4	32.45	0.8	0.6	0.8	0.5	2	1	4.0	2.5	28	0.98	0.9	1	- 1	0.882	24.7	60	9.4800	0.1007	4.30	104	25.75	6.20	DK
Indiag Segudarj	250	61	415	3	21.9	131.26	0.8	0.6	0.8	0.5	2	1	4.0	6	51	0.98	0.9	1	1	0.882	45.0	85	3.9400	0.0902	10.33	2.49	61.78	14.89	DK
ншин	210	61	415	3	221	13231	0.8	0.6	0.8	0.5	2	1	4.0	6	51	0.98	0.9	1	1	0.882	45.0	75	3,9400	0.0902	9.18	221	54.95	13.24	DK
никр	210	61	415	3	221	13231	0.8	0.6	0.8	0.5	2	1	4.0	10	66	0.98	0.9	1	1	0.882	58.2	105	2,3400	0.0852	7.71	186	46.07	1110	DK
Kur	5.6	11	415	3	9.5	56.87	0.8	0.6	0.8	0.5	2	1	4.0	6	51	0.98	0.9	1	1	0.882	45.0	100	3.9400	0.0902	5.26	127	31.49	7.59	DK
reassil	0.53	Į.	415	3	0.9	5.53	0.8	0.6	0.8	0.5	2	_1_	4.0	6	51	0.98	0.9	1	1	0.882	45.0	100	3.9400	0.0902	0.51	0.12	3.06	0.74	DK
iesengell.	123	u	415	3	21	12.83	0.8	0.6	0.8	0.5	2	_1_	4.0	6	51	0.98	0.9	-1		0.882	45.0	75	3.9400	0.0902	0.89	0.21	5.33	128	DK
Chinailla ajido M	1.91		415	3	16	9.50	0.8	0.6	0.8	0.5	2		4.0	2.5	28	0.98	0.9	1		0.882	24.7	110	9.4800	0.1007	230	0.56	13.81	3.33	DK
Christial adult de R	1.91		415	3	16	9.50	0.8	0.6	0.8	0.5	2	_1_	4.0	6	51	0.98	0.9	1		0.882	45.0	75	3.9400	0.0902	0.66	0.16	3.94	0.95	DK
Chindenlaumi glide	334	U	415	3	5.8	34.85	0.8	0.6	0.8	0.5	2		4.0	6	51	0.98	0,9	1	1	0.882	45.0	105	3.9400	0.0902	3.39	0.82	20.26	4.88	DK
Lgrall or ad accuracy apiloto	121	t!	415	3	21	1263	0.8	0.6	0.8	0.5	2		4.0	2.5	28	0.98	0.9	1	1	0.882	24.7	85	9,4800	0.1007	237	0.57	14.19	3.42	DK DK
lgrill realisanus lajida	121		415	3	21	1263	0.0	0.6	0.8	0.5	2	1	4.0	2.5	28	0.98	0.9	1/		0.882	24.7	95	9,4800	0.1007	2.65	0.64	15.86	3.82	DK DK
Tag Blook of Tab Fijilo	2.02	ji	415	3	3.7	22.12	U.S	0.6	-0.8	0.5	1		4.0	25	28	0.98	0.9		100	0.882	24.7	65	9.4800	0.1007	3.17	0.76	19.01	458	DK DK
				1					2		-												8						

Sr. No.	Cable Route (From-To)	Type & Cable Size	Size of Cable (mm2)	No. of Cable	Overall Diameter of each Cable (mm)	Sum of Cable OD (mm)	Self Weight of Cable (Kg/Mt)	Total Weight of Cable (Kg/Mt)	Remarks
1	LVMCC	4	10	1	18	18	3.95	0.9	
2	PU2315- VFD	4	10	1	18	18	0.37	0.9	
3	PU2315- VFD	5	1.5	1	15	15	3.95	0.4	
4	LV MCC	4	2.5	1	16	16	0.37	0.5	
5	LV MCC	5	1.5	1	15	15	3.95	0.4	
6	LV MCC	4	2.5	1	16	16	0.37	0.5	
7	PU 2314 -B- VFD	4	2.5	1	16	16	0.9	0.5	
8	PU 2314 -B- VFD	5	1.5	1	15	15	0.9	0.4	
9	LV MCC	4	6	1	18	18	2.9	0.7	
10	PU2305- VFD	4	6	1	18	18	1.2	0.7	
11	PU2305- VFD	5	1.5	1	15	15	1.2	0.4	
12	LV MCC	4	6	1	18	18	1.2	0.7	
13	LV MCC	5	1.5	1	15	15	1.45	0.4	
14	LV MCC	4	10	1	18	18	2	0.9	
15	LV MCC	5	1.5	1	15	15	2.4	0.4	
16	LV MCC	4	6	1	18	18	2.4	0.7	
17	BW2313- VFD	4	6	1	18	18	0.85	0.7	
18	BW2313- VFD	5	1.5	1	15	15	0.85	0.4	
19	LV MCC	4	6	1	18	18	0.85	0.7	
	LVMCC	5	1.5	1	15	15	1	0.4	
21	LVMCC	4	6	1	18	18	0.85	0.7	
	Total			21		348	33.91	12.3	
alc	ulation					Result			
laxi	mum Cable Diameter:		18	mm		Selected Cab	le Tray width:	O.K	
ons	sider Spare Capacity of Cable Tra	ay:	30%	1		Selected Cal	ble Tray Depth:	O.K	
ista	ance between each Cable:		0	mm		Selectrd Cal	ole Tray Weight:	O.K	Including Spare Capacity
alc	ulated Width of Cable Tray:		452	mm			ble Tray Size:	O.K	Including Spare Capacity
	ulated Area of Cable Tray:		8143	Sq.mm			,		
	f Layer of Cables in Cable Tray:		2			Required Cal	ole Tray Size:	300 x 50	mm
	cted No of Cable Tray:		ī	Nos.			s of Cable Tray:	1	No
	cted Cable Tray Width:		300	mm			ole Tray Weight:	150.00	Ko/Meter/Tray
	cted Cable Tray Depth:		50	mm		Type of Cabl		Ladder	
	cted Cable Tray Weight Capacity		150	Ka/Mete	er	.,,			
	of Cable Tray:		Ladder			Cable Trav V	/idth Area Reman	25%	
	Area of Cable Trav:		15000	Sq.mm			rea Remaning:	46%	

Conclusion:

We have been taught many aspects of engineering activities during the EPC stages for all electrical and related other disciplines also.

Feedback:

Smart Bridge

They conduct summer internships, work shops, debates, hackthons, technical sessions.

Method of conducting program

Online virtual program with presentation slides and explanation on the topic and practical usage of topic and with some examples.

Program highlights

It is for the detailed design of any industrial sectors.

Material

The material was good.

Benefits

It has been given the opportunity to learn and interact with industry experienced engineering specialist to learn the Electrical detailed design engineering for various industrial sectors.

Assignment - 1 ELECTRICAL LOAD CALCULATIONS LV MCC

												kW = [A] / [D]		Consumed	Load	kVAR = kW	x tan φ	
SI. No.	Equipment No.	Equipment Description	Breaker Rating	Breaker Type	Breaker No. of Poles	ELCB Rating		Motor / Load Rating	Load Factor [A] / [B]	Efficiency at Load Factor [C]	Power Factor at Load	Continu	ous	Interm	ittent	Stand-	-by	Remark
							[A]	[B]	[C]	[D]	Factor [C]							
			Α			mA	kW	kW	decimal	decimal	cos φ	kW	kVAR	kW	kVAR	kW	kVAR	
1	PU2315	Silica filter feed pump					25.07	30.00	0.84		0.78	27.55	22.10					
2	PU 2314-A	Absorbesnt/Neutral oil pump (W)					7.28		0.97			8.6	8.0)				
3	PU 2314 -B	Absorbesnt/Neutral oil pump (S)					6.27	7.50	0.84							7.4	6.9	
4	PU2305	Feed Pump (Seperator)					25.31	30.00	0.84			27.8						
5	MX2305 MX 2308	MIXER (W)				-	25.51 25.51	30.00 30.00	0.85 0.85	0.91 0.91	0.78	28.0	22.5)		28.0	22.5	
6	BW2313	MIXER (S)					10.96					12.9	12.1			28.0	22.5	
7 8	Rotary valve	Blower TK 2313B (I)	1				1.07	15.00				12.9	12.1	1.3	1.2			
9	SC2314	Screw conveyor (I)	+			<u> </u>	2.46		0.7				I	2.89				
10	AG 2324A	Citric acid tan agitator (W)	1				1.84		0.84			2.16	2.03		2.71			
11	AG 2324B	Citric acid tank agitator (\$)	+				1.84		0.84			2.10	2.00			2.2	2.0	
12	AG 2305	Citric oil rection vessol agitator					6.72		0.90	0.85		7.91	7.40				1	
13	AG 2309	Lye oil reaction vessel agitator					2.44		0.81			2.87	2.69					
14	AG 2310	Lye oil reaction vessel agitator					2.44	3.00	0.81	0.85	0.73	2.87	2.69)				
15	AG 2314	Soap Adsorbant Tank Agitator					4.27	4.70	0.91	0.85	0.73	5.02	4.70)				
	Maximum of norn (Est. x%E + y%F	nal running plant load : 126.9 kW		107.7	kVAR		sqrt ((kW² +kVAR²) =	166.4	kVA	TOTAL	125.69	106.50	4.15	3.89	37.57	31.42	
	Peak Load : (Est. x%E + y%F	130.7 kW		110.8	kVAR		sqrt ((kW² +kVAR²) =	171.3	kVA	kVA	164.7	5	5.6	69	48.98	8	
	(ESt. X%E + y%F	+ 2%G)																
	Assumptions 1) Load factor, Ef	ficiency and Power factor.																
	, , , , , , , , , , , , , , , , , , ,	Load Rating (kW)		eiency		Power f												
		<= 20		85		0.73												
		> 20 - <= 45	0.			0.78												
		> 45 - < 150 >= 150	0.	93 94		0.82 0.91												
		/- IUU	0.	J -1		0.91	1											
	2) Coincidence fa	actors x= 1.0, y= 0.3, and z=0.1 considered for contnious, intermit	tent and sta	ndby load.														
9	1																	

Assignment - 2

Calculation for Transformer Capacity

Example of calculation for Transformer Capacity Calculation for consumed load

Consumed loads used for this example are as follows:

	kW	kVar	kVA	
a. Continuous load	125.69	106.5	164.74	(i)
b. Intermittent load / Diversity Factor	4.15	3.9	5.69	(ii)
c. Stand-by load required as consumed load	37.57	31.4	48.98	(iii)
Max. Consumed load = ((i) + 30% (ii) + 10% (iii)) =	130.7	110.8	171.34	
Future expansion, load (20% capacity)	26.1	22.2	34 27	

156.8

Calculation for 3.3kV / 0.433 kV transformer capacity

 Max. Consumed load
 =
 171.3 kVA

 Spare capacity
 =
 34.3 kVA

 Required capacity
 =
 205.6 kVA

 Transformer rated capacity
 =
 120 kVA

1.3 Voltage regulation check

Total Load =

During starting or reacceleration of max. capacity motor (3400 kW), while all the other loads running, the voltage regulation is as follows:

Result | During starting of max. capacity motor, while all other loads are running, the voltage regulation at Transformer secondary terminals is approx 6.60%

1.4 Selection of rated capacity

120 kVA transformer selected.

Assignment - 3

	Assignment - 3		
	DG SIZING CALCULATIONS		
	Design Data		
	Rated Volatge	415	KV
	Power factor (CosØ)	0.74	Avg
	Efficiency	0.86	Avg
	Total operating load on DG set in kVA at 0.74 power factor	166.4	
	Largest motor to start in the sequence - load in KW	30	KW
	Running kVA of last motor (CosØ= 0.91)	47	KVA
	Starting current ratio of motor	6	(Considering starting method as Soft starter)
		283	KVA
	Starting KVA of the largest motor (Running kVA of last motor X Starting current ratio of motor)		
		119	KVA
	Base load of DG set in KVA (Total operating load in kVA – Running kVA of last motor)	119	KVA
	(Total operating load in KVA Kullining KVA of last motor)		
Α	Continous operation under load -P1		
	Capacity of DG set based on continuous operation under load P1	119	KVA
В	Transient Voltage dip during starting of Last motor P2		
	Total momentary load in KVA	402	KVA
	(Starting KVA of the last motor+Base load of DG set in KVA		
		7.91%	
	Subtransient Reactance of Generator (Xd'')	10.065%	(Assumed)
	Transient Reactance of Generator (Xd')		(Assumed)
	$Xd^{\prime\prime\prime\prime} = (Xd^{\prime\prime\prime} + Xd^{\prime\prime})/2$	0.089875	
	Transient Voltage Dip	15%	(Max)
	Transient Voltage dip during Soft starter starting of Last motor		
	P2 = Total momentary load in KVA x Xd" x (1-Transient Voltage Dip)	205	KVA
	(Transient Voltage Dip)		
С	Overload capacity P3		
	Capacity of DG set required considering overload capacity		
	Total momentary load in KVA	402	KVA
	overcurrent capacity of DG (K)	150%	
	(Ref: IS/IEC 60034-1, Clause 9.3.2)	23070	
	Capacity of DG set required considering overload capacity	250	
	(P3) = <u>Total momentary load in KVA</u>	268	KVA
	overcurrent capacity of DG (K)		
	Considering the last value amongst P1, P2 and P3		
	Continous operation under load -P1	119	KVA
	Transient Voltage din during Seft starter starting of Last and D2	205	KVA
	Transient Voltage dip during Soft starter starting of Last motor P2 Overload capacity P3	268	KVA
	Considering the last value amongst P1, P2 and P3	268	KVA
	Considering the last value diffulgst F1, F2 diff F3	208	RVA
	Hence, Existing Generator 268 KVA is adequate to cater the loads as per re	-	
	scheduled loads		
	NOTE:VOLTAGE DIP CONSIDERED - 15%		

Assignment - 4 Lightning Caliculations

	7		
Location	, Udaipur		
Building	Concrete, Hospital		
Type of Building	Flat Roofs (a)		
Building Length (L)	17		
Building breadth (W)	7		
Building Height (H)	9		
54.14.1.1 ₆ 1.16.1 ₆ .1.1 (1.1)	<u> </u>		
Risk Factor Calculation			
1 Collection Area (Ac)			
Ac		=	(L*W) + (2*L*H) + (2*W*H) + (3.14*H*H) 805.34
2 Probability of Being Struck (P)			
Р		=	$A_c * N_g * 10^{-6}$
			0.001530146
3 Overall weighing factor			
a) Use of structure (A)		=	1.7
b) Type of construction (B)		=	0.4
c) Contents or consequential effects (C)		=	1.7
d) Degree of isolation (D)		=	1.0
e) Type of country (E)		=	0.3
Wo - Overall weighing factor		=	A * B * C * D * E
		=	0.347
4 Overall Risk Factor	Po	=	P * Wo
	Po	=	0.000530655
	Pa		10 ⁻⁵
As per clause no. 9.7 of BS- 6651, sugges Since Po > Pa lightning protection requir	· · · · · · · · · · · · · · · · · · ·	has bee	en taken as 10 ^{.5}
5 Air Terminations			
Perimeter of the building		=	2(L+W)
		=	48 Mts.
6 Down Conductors			

Hence 2 nos. of Down conductors have been selected.

No. of down conductors based on perimeter

Perimeter of building

Size of Down conductor = 20 X 2.5 mm Galvanized Steel Strip

Mts.

Nos.

(As per BS6651, lightning currents have very short duration, therefore thermal factors are of little consequence in deciding the cross-section of the conductor. The minimum size of Down conductors - 20mm X 2.5 mm Galvanized Steel Strip)

Assignment - 5

CABLE SIZING

te	round (3	0 deg C) 1	t in duct (30 deg C)c	t in air (40	deg C)		. AC Resi Deg C (X			. AC Resi Deg C (F			. ACResi Deg C (HF			Reactance XLPE			Reactance VC/HRPV		OD	Weight																
Sq mm (u XLPE	AI XLPE	Cu XLPE	AI XLPE	Cu XLPE	AI XLPE	Plan Cu	Tin Cu	Al	Plan Cu	Tin Cu	Al	Plan Cu	Tin Cu	Al	Sinle	core	Multi core	Sinle	core	Multi core	(mm)	KG/Mtr	Co	nductor siz	e						Nu	mber of cor	es					
							Ohm/kN	f Ohm/kN	1 Ohm/kN	// Ohm/kM	Ohm/kN	Ohm/kM	Ohm/kM	Ohm/kM	Ohm/kM I	Jnarmoured	Armoured		Unarmoure	d Armoured	1			an	a f	1	1	2	3	3.5	4	5	7	10	12	19	27	37	78
1.5	25	20	22	18	22	18	15.5	15.63	23.17	14.5	14.62	21.7	15.2	15.33	22.8	0.12		0.108	0.1239		0.1116	15	0.4	1.	5 -		-	20s	20s		20s	20s	20s	20	20	25	25	32	32
2.5	34	27	28	23	28	23	9.48	9.67	15.5	8.9	9.08	14.5	9.3	9.49	15.3	0.113		0.1007	0.1201		0.1077	16	0.5	2.	5 -		-	20s	20s	-	20s	20s	20	25	25	25	32	32	40
4	44	34	37	28	38	31	5.9	6.01	9.48	5.52	5.63	8.9	5.79	5.9	9.35	0.107		0.0947	0.116	-	0.1035	17	0.6	4			-	20s	20s		20	20	25	25	25	32	40	40	50
6	55	43	46	37	51	45	3.94	3.98	5.9	3.69	3.73	5.54	3.87	3.91	5.82	0.103		0.0902	0.1106	-	0.098	18	0.7	6			-	20s	20		20	-			-	-	-	-	-
10	72	57	60	48	66	60	2.34	2.35	3.94	2.19	2.2	3.7	2.3	2.31	3.89	0.098		0.0852	0.1045	-	0.0918	18	0.9	1) -		-	25	25		25	-			-	-	-	-	-
16	95	73	79	61	85	70	1.47	1.48	2.44	1.38	1.39	2.3	1.44	1.45	2.41	0.094	0.101	0.0815	0.0999	0.1058	0.0871	21	1	1			-	25	25	-	25	-	-	-	-	-	-	-	-
25	122	96	100	80	122	95	0.93	0.94	1.54	0.87	0.88	1.44	0.913	0.92	1.51	0.095	0.1	0.0816	0.0989	0.1037	0.0861	22	1.4	2	1	5	-	25	25	32	32					-	-	-	-
35	146	115	120	96	148	117	0.671	0.68	1.11	0.63	0.64	1.04	0.658	0.66	1.1	0.092	0.097	0.0794	0.0962	0.1004	0.0833	24	1.8	3	5 1	5	-	25	32	32	32	-	-	-	-	-	-	-	-
50	175	134	151	116	181	141	0.495	0.5	0.82	0.464	0.469	0.77	0.486	0.491	0.809	0.092	0.096	0.0792	0.0966	0.0997	0.0837	26	2.3	5) 2	5	25	32	32	32	40					-	-	-	-
70	212	165	182	141	230	177	0.343	0.323	0.567	0.321	0.323	0.533	0.337	0.34	0.559	0.088	0.091	0.0752	0.091	0.0937	0.078	29	3.25	7	3	5	25	32	40	40	40	-	-	-	-	-	-	-	-
95	253	198	211	168	284	221	0.247	0.25	0.41	0.232	0.234	0.385	0.243	0.246	0.404	0.086	0.089	0.0734	0.0905	0.0928	0.0775	33	4	9	5 5	0	25	40	40	50	50					-	-	-	-
120	290	225	236	189	330	257	0.196	0.197	0.324	0.184	0.185	0.305	0.193	0.194	0.32	0.0857	0.0879	0.0726	0.0886	0.0906	0.0755	37	5	12	0 7	0	25	40	50	50	50					-	-	-	-
150	325	252	271	210	375	293	0.159	0.162	0.264	0.15	0.152	0.249	0.157	0.16	0.261	0.0863	0.0886	0.0732	0.0889	0.0911	0.0758	39	6	15	0 7	0	32	40	50	50	50	-	-	-	-	-	-	-	-
185	362	285	308	243	431	338	0.127	0.128	0.21	0.121	0.122	0.198	0.126	0.127	0.208	0.0858	0.0875	0.0727	0.0881	0.0898	0.075	43	7.6	18	5 9	5	32	50	50	63	63					-	-	-	-
240	418	330	357	282	512	401	0.0965	0.0975	0.16	0.093	0.094	0.152	0.0972	0.0982	0.159	0.0851	0.0866	0.0719	0.0876	0.0891	0.0745	48	9.5	24	0 12	0	40	50	63	63	63	-	-	-	-	-	-	-	-
300	467	371	406	316	582	459	0.0769	0.0777	0.128	0.075	0.0757	0.122	0.0787	0.0795	0.128	0.0843	0.0857	0.0711	0.087	0.0884	0.074	54	11.5	30	0 15	0	40	63	63	75	75	-	-	-	-	-	-	-	-
400	518	423	439	366	661	536	0.0602	0.0608	0.1	0.0604	0.061	0.0961	0.063	0.0636	0.101	0.0837	0.0855	0.0705	0.0865	0.088	0.073	59	15	30	0 18	5	-	-	-	75	-	-	-	-	-	-	-	-	-
500	583	474	512	412	765	620	0.0468	0.0472	0.0774	0.049	0.0494	0.0761	0.0509	0.0513	0.0796	0.0835	0.0851	0.0703	0.0863	0.0879	0.0732	66	18	40	0 18	5	50	63	75	75	75	-	-	-	-		-	-	-
630	645	532	570	463	860	715	0.0362	0.0366	0.06	0.0401	0.0405	0.0606	0.0416	0.042	0.0632	0.0829	0.0843	0.0697	0.0859	0.0876	0.0728	73	20	50	0 -		50	-	-	-	-		-	-	-	-	-	-	-
800							0.0283	0.0287	0.047	0.0339	0.0343	0.0495	0.0351	0.0355	0.0515	0.0826	0.0841		0.0848	0.0863				63	0 -		50	-		-		-	-	-	-			-	-
1000							0.0225	0.0226	0.0372	0.0297	0.0298	0.0416	0.0306	0.0307	0.0431	0.0823	0.0836		0.0838	0.0851				80	0 -		63	-		-		-	-	-	-	-		-	-
																								10	10 -		63	-	-	-	-	-	-	-	-	-	-	-	-

Assignment-6

CABLE TRAY

	CABLES								
CABL	ETRAY: FROM	LT-4	_	TO	L	.T-5			
Sr. No.	Cable Route (From-To)	Type & Cable Size	Size of Cable (mm2)	No. of Cable	Overall Diameter of each Cable (mm)	Sum of Cable OD (mm)	Self Weight of Cable (Kg/Mt)	Total Weight of Cable (Kg/Mt)	Remarks
1	LVMCC	4	16	1	21	21	3.95	1	
2	PU2315- VFD	4	16	1	21	21	0.37	1	
3	PU2315- VFD	5	1.5	1	15	15	3.95	0.4	
4	LVMCC	4	6	1	18	18	0.37	0.9	
5	LVMCC	5	1.5	1	15	15	3.95	0.4	
6	LVMCC	4	2.5	1	16	16	0.37	0.5	
7	PU 2314 -B- VFD	4	2.5	1	16	16	0.9	0.5	
8	PU 2314 -B- VFD	5	1.5	1	15	15	0.9	0.4	
9	LVMCC	4	16	1	21	21	2.9	1	
10	PU2305- VFD	4	16	1	21	21	1.2	1	
11	PU2305- VFD	5	1.5	1	15	15	1.2	0.4	
12	LVMCC	4	16	1	21	21	1.2	1	
13	LVMCC	5	1.5	1	15	15	1.45	0.4	
14	LVMCC	4	16	1	21	21	2	1	
15	LVMCC	5	1.5	1	15	15	2.4	0.4	
16	LVMCC	4	16	1	21	21	2.4	1	
17	BW2313- VFD	4	16	1	21	21	0.85	1	
18	BW2313- VFD	5	1.5	1	15	15	0.85	0.4	
19	LVMCC	4	6	1	18	18	0.85	0.9	
20	LVMCC	5	1.5	1	15	15	1	0.4	
21	LVMCC	4	6	1	18	18	0.85	0.9	
	Total			21		374	33.91	14.9	
Calc	ulation					Result			
1axir	num Cable Diameter:		21	mm		Selected Cable Tr	ay width:	O.K	
onsi	der Spare Capacity of Cable Tray:		30%			Selected Cable T		O.K	
	nce between each Cable:		0	mm		Selectrd Cable Tr		О.К	Including Spare Capacity
	lated Width of Cable Tray:		486	mm		Selected Cable Tr		0.K	Including Spare Capacit
	lated Area of Cable Tray:		10210	Sq.mm			•	-	. 5 .p
	Layer of Cables in Cable Tray:		2	-4		Required Cable T	ray Size:	300 x 50	mm
	ted No of Cable Tray:		1	Nos.		Required Nos of (1	No
	ted Cable Tray Width:		300	mm		Required Cable To		150.00	Kg/Meter/Tray
	ted Cable Tray Depth:		50	mm		Type of Cable Tra		Ladder	J
	ted Cable Tray Weight Capacity:		150	Kg/Meter			•		
	of Cable Tray:		Ladder	.5,		Cable Tray Width	Area Remaning	19%	
	Area of Cable Tray:		15000	Sq.mm		Cable Tray Area F		32%	

Assignment - 7

2

0.0032

Earthing calculations Input

Maximum line-to-ground fault in kA for 1 sec	13	
Earthing material (Earth rod & earth strip)	GI	
Depth of earth flat burrial in meter	0.5	
Average depth / length of Earth rod in meters	4	
Soil resistivity Ω-meter	8.5	
Ambient temperature in deg C	50	
Plot dimensions (earth grid) L x B in meters	70	130
Number of earth rods in nos.	6	

Earth electrode sizing: Ac - Required conductor cross section in sq.mm

$$I_{\mathrm{lg}} = A_{\mathrm{c}} x \sqrt{\left[\frac{TCAPx10^{-4}}{t_{\mathrm{c}} x \alpha_{\mathrm{r}} x \rho_{\mathrm{r}}}\right] x l_{\mathrm{n}} \left[\frac{K_{\mathrm{o}} + T_{\mathrm{m}}}{K_{\mathrm{o}} + T_{\mathrm{a}}}\right]}$$

αr - Thermal co-efficient of resistivity, at 20 oC	0.0032
pr - Resistivity of ground conductor at 20 oC	20.10
Ta - Ambient Temperature is °C	50
I _{I-g} - RMS fault current in kA = 50 KA	14
tc - Short circuit current duration sec	1
Thermal capacity factor, TCAP J/(cm3.oC)	3.93
Tm - Maximum allowable temperature for copper conductor, in oC	419
KO - Factor at oC	293
The data taken from IEEE 80-2000, Clause 11.3, Table-1 for clad steel rod:	
14 = Ac *	0.123
Ac - Required conductor cross section in sq.mm	114
Earth rod dia in mm	12
Earth rod dia (including 25% corrosion allowance) in mm	15

Earth flat sizing:

Ac - Required conductor cross section in sq.mm

 αr - Thermal co-efficient of resistivity, at 20 oC

$$I_{lg} = A_c x \sqrt{\left[\frac{TCAPx10^{-4}}{t_c x \alpha_r x \rho_r}\right] x l_n \left[\frac{K_0 + T_m}{K_0 + T_a}\right]}$$

pr - Resistivity of ground conductor at 20 oC	20.10
Ta - Ambient Temperature is °C	50
I _{I-g} - RMS fault current in kA = 50 KA	14
tc - Short circuit current duration sec	1
Thermal capacity factor, TCAP J/(cm3.oC)	3.93
Tm - Maximum allowable temperature for copper conductor, in oC	419
KO - Factor at oC	293
The data taken from IEEE 80-2000, Clause 11.3, Table-1 for clad steel rod:	
14 = Ac *	0.123
Ac - Required conductor cross section in sq.mm	114
Earth flat area in mm	12
Earth flat area (including 25% corrosion allowance) in mm	15
Selected flat size W * Thk in sq mm	20

IEEE Std 80-2000

IEEE GUIDE FOR SAFETY

Table 1-Material constants

Description	Material conductivity (%)	α, factor at 20 °C (1/°C)	K, at 0 °C (0 °C)	Fusing ^a temperature T _m (°C)	ρ, 20 °C (μΩ·cm)	TCAP therma capacity [J/(cm ^{3,°} C)]
Copper, annealed soft-drawn	100.0	0.003 93	234	1083	1.72	3.42
Copper, commercial hard-drawn	97.0	0.003 81	242	1084	1.78	3.42
Copper-clad steel wire	40.0	0.00378	245	1084	4.40	3.85
Copper-clad steel wire	30.0	0.00378	245	1084	5.86	3.85
Copper-clad steel rod ^b	20.0	0.00378	245	1084	8.62	3.85
Aluminum, EC grade	61.0	0.00403	228	657	2.86	2.56
Aluminum, 5005 alloy	53.5	0.003 53	263	652	3.22	2.60
Aluminum, 6201 alloy	52.5	0.003 47	268	654	3.28	2.60
Aluminum-clad steel wire	20.3	0.003 60	258	657	8.48	3.58
Steel, 1020	10.8	0.00160	605	1510	15.90	3.28
Stainless-clad steel rod ^c	9.8	0.00160	605	1400	17.50	4,44
Zinc-coated steel rod	8.6	0.003 20	293	419	20.10	3.93
Stainless steel, 304	2.4	0.001 30	749	1400	72.00	4.03

*From ASTM standards.
*Copper-clad steel rods based on 0.254 mm (0.010 in) copper thickness.
*Stainless-clad steel rod based on 0.508 mm (0.020 in) No. 304 stainless steel thickness over No. 1020 steel core.