

In the Claims:

1 1. (currently amended) A lightweight, laminated structural
2 component made of thin metal plies comprising at least one
3 sheet metal component that is uninterrupted throughout its
4 area, said at least one sheet metal component extending in
5 a first plane and at least one further sheet metal
6 component constructed as a framework forming a lattice,
7 said lattice comprising strip shaped flat sheet metal lands
8 defining a second plane in which said flat sheet metal
9 lands are parallel to said first plane and a first adhesive
10 bond between said at least one sheet metal component and
11 said lattice.

1 2. (original) The lightweight, laminated structural component
2 of claim 1, wherein said at least one sheet metal component
3 comprises a first sheet metal ply that is uninterrupted
4 throughout its area, a second sheet metal ply that is also
5 uninterrupted throughout its area, a second adhesive bond
6 between said first and second uninterrupted metal plies to
7 form a first ply structure, and wherein said further sheet
8 metal component comprises a first sheet metal lattice, a
9 second sheet metal lattice and a third adhesive bond
10 between said first and second sheet metal lattices, to form
11 a second ply structure, and wherein said second ply
12 structure is bonded to said first ply structure by said
13 first adhesive bond.

- 1 3. (original) The lightweight, laminated structural component
2 of claim 1, further comprising stiffening members (18, 19)
3 operatively secured at least partly to said lattice for
4 forming a skin of an aircraft fuselage, said stiffening
5 members extending radially inwardly relative to a
6 longitudinal central axis of said aircraft fuselage.

- 1 4. (original) The lightweight, laminated structural component
2 of claim 3, wherein said stiffening members comprise
3 stringers (18) extending in parallel to said longitudinal
4 central axis, and ribs (19) extending circumferentially
5 relative to said longitudinal central axis.

- 1 5. (currently amended) The lightweight, laminated structural
2 component of claim [[37]] 1, wherein said lattice further
3 comprises flat sheet metal struts (10, 11, 12) forming as
4 an integral part of said lattice lattice, and wherein said
5 flat sheet metal struts are positioned between said flat
6 sheet metal lands for strengthening said lattice in
7 accordance with load dependent criteria.

- 1 6. (original) The lightweight, laminated structural component
2 of claim 5, wherein said struts (11, 12) extend in parallel
3 to said stiffening members (18, 19) and/or at an angle
4 relative to said stiffening members.

- 1 7. (currently amended) The lightweight, laminated structural
2 component of claim 1, wherein said lattice comprises sheet

3 metal strip shaped flat sheet metal lands are positioned
4 [[for]] facing to face into an aircraft fuselage, said
5 strip shaped flat sheet metal lands forming at least one
6 sheet metal ply with open fields surrounded by said strip
7 shaped flat sheet metal lands.

1 8. (original) The lightweight, laminated structural component
2 of claim 1, wherein said at least one sheet metal component
3 and said further sheet metal component forming said lattice
4 have a thickness within the range of 0.5 mm to 5.0 mm.

1 9. (original) The lightweight, laminated structural component
2 of claim 1, wherein said at least one sheet metal component
3 and said at least one further sheet metal component are
4 made of a metal selected from the group of: alloys of
5 aluminum, alloys of titanium, steel alloys, alloys of
6 copper, alloys of zinc, and alloys of magnesium.

1 10. (currently amended) A method for manufacturing the
2 lightweight, laminated structural component of claim 1,
3 comprising the following steps:

4 (a) preparing said at least one sheet metal component
5 forming at least one sheet metal ply that is
6 uninterrupted throughout its area, said at least one
7 sheet metal ply defining a first plane,
8 (b) preparing said further sheet metal component
9 constructed as said framework forming said lattice
10 having said strip shaped flat sheet metal lands

11 surrounding open fields; fields and extending flat in
12 a second plane in parallel to said first plane; and

13 (c) adhesively bonding said lattice to said at least one
14 sheet metal ply to form said adhesive bond.

1 11. (currently amended) The method of claim 10, wherein said
2 adhesive bonding is performed so that at least portions of
3 said lattice are adhesively bonded to said at least one
4 uninterrupted sheet metal ply and wherein said portions are
5 determined by load distribution patterns to which said
6 structural component is exposed.

1 12. (original) The method of claim 10, wherein said preparing
2 steps and said adhesive bonding step are performed as a
3 continuous, uninterrupted production operation.

1 13. (original) The method of claim 10, comprising using an
2 epoxy film as a bonding layer between said lattice and said
3 sheet metal component.

1 14. (original) The method of claim 10, further comprising
2 preparing at least two uninterrupted sheet metal plies,
3 adhesively bonding said at least two uninterrupted sheet
4 metal plies to each other, preparing at least one lattice,
5 and adhesively bonding said at least one lattice to said at
6 least two uninterrupted sheet metal plies.

1 **15.** (original) The method of claim 10, further comprising
2 securing stiffening members (18, 19) to said strip shaped
3 lands by any one or more of the following steps: adhesive
4 bonding, riveting and welding.

1 **16.** (new) The method of claim 10, further comprising forming
2 said further sheet metal component with said strip shaped
3 flat sheet metal lands and with flat sheet metal struts
4 between said flat sheet metal lands.

[RESPONSE CONTINUES ON NEXT PAGE]