Problem Solving (Number Theory)

Srivaths P

Binary Exponentiation

The idea of binary exponentiation is as follows:

When B is even: $A^B = A_B^{\frac{B}{2}} \times A_B^{\frac{B}{2}}$.

When *B* is odd: $A^B = A^{\frac{D}{2}} \times A^{\frac{D}{2}} \times A$.

(Assuming division is floored)

We can do the above using a recursive function (or iteratively).

Greatest Common Divisor

GCD(A, B) is the Greatest Common Divisor of A and B.

LCM(A, B) is the Least Common Multiple of A and B.

To calculate GCD efficiently, we can use the Euclidean Algorithm.

Euclidean Algorithm states that GCD(A, B) = GCD(B % A, A). When A = 0, the solution is B.

Euclidean Algorithm – Code

Recursive:

```
int gcd_(int a, int b) {
   if (a == 0) return b;
   return gcd_(b%a, a);
}
```

Iterative:

```
int gcd_(int a, int b) {
    while (a) {
        int t = a;
        a = b \% a;
        b = t;
    return b;
```

Least Common Multiple

LCM(A, B) can be calculated as

$$\frac{A \times B}{GCD(A,B)}$$

(Only works for 2 numbers)

Properties of GCD / LCM

- GCD(A,B) can be represented as product of $\min(p_i^{a_i},p_i^{b_i})$ for each prime factor.
- LCM(A,B) can be represented as product of $\max(p_i^{a_i},p_i^{b_i})$ for each prime factor.
- GCD(A, B, C, ...) is the same as GCD(GCD(GCD(A, B), C), ...)
- LCM(A, B, C, ...) is the same as LCM(LCM(LCM(A, B), C), ...)
- $GCD(A, B) \times LCM(A, B) = A \times B$
- GCD(A, A + 1) = 1

OEIS - Online Encyclopedia of Integer Sequences

Link: https://oeis.org/

OEIS can be used to find the formula of an integer sequence with just the first few values (which could be computed using brute-force or manually by hand).

Problem Solving

- https://cses.fi/problemset/task/1081
- https://codeforces.com/problemset/problem/1474/B
- https://codeforces.com/problemset/problem/1471/A
- https://codeforces.com/problemset/problem/1617/B

Thanks for Watching!

Feedback form:

https://forms.gle/LiCo5Ckj252M7NFU6