Multilayer Percetrons

A dataset

Fields		class
2.5 3.8	2.0	0
4.9 4.5	4.3	0
7.5 3.9	2.8	1
3.6 1.2	1.3	0
etc		

Fields			class
2.5	3.8	2.0	0
4.9	4.5	4.3	0
7.5	3.8	2.8	1
3.6	1.2	1.3	0
etc			

Fields			class
2.5	3.8	2.0	0
4.9	4.5	4.3	0
7.5	3.8	2.8	1
3.6	1.2	1.3	0
etc			

Initialise with random weights

Fields		class
2.5 3.8	2.0	0
4.9 4.5	4.3	0
7.5 3.8	2.8	1
3.6 1.2	1.3	0
etc		

Input the training pattern

Fields class Feed it through to get output

Field	S		class
2.5 3	3.8	2.0	0
4.9 4	1.5	4.3	0
7.5 3	3.8	2.8	1
3.6	1.2	1.3	0
etc	•		

Fie	lds		class
2.5	3.8	2.0	0
4.9	4.5	4.3	0
7.5	3.8	2.8	1
3.6	1.2	1.3	0
etc			

Compare with target output

Fields	class

2.5	3.8	2.0	0
4.9	4.5	4.3	0
7.5	3.8	2.8	1
3.6	1.2	1.3	0
etc			

Adjust weights based on error

Fields

class

2.5	3.8	2.0
2.3	3.0	2.0

etc ...

Present a training pattern

Fie	lds		class
2.5	3.8	2.0	0
4.9	4.5	4.3	0
7.5	3.8	2.8	1
3.6	1.2	1.3	0
etc			

Feed it through to get output

Fields class 2.5 3.8 2.0 0 4.9 4.5 4.3 0 7.5 3.8 2.8 1 3.6 1.2 1.3 0 etc ...

Compare with target output

Fields

class

2.5	3.8	2.0	0
4.9	4.5	4.3	0
STATE OF THE PARTY	33727337723377		Y 3 3 77 Y 3 3 77 Y 3 3

7.5	3.8	2.8	1
3.6	1.2	1.3	0

etc ...

Adjust weights based on error

Fields		class
2.5 3.8	2.0	0
4.9 4.5	4.3	0_
7.5 3.8	2.8	1
3.6 1.2	1.3	0
etc		

Repeat this thousands, maybe millions of times — each time taking a random training instance, and making slight weight adjustments

Algorithms for weight adjustment are designed to make changes that will reduce the error

And so on

Initial random weights

Eventually

Learning Algo.,

- weight-learning algorithms for NNs
- They work by making thousands and thousands of tiny adjustments, each making the network do better at the most recent pattern, but perhaps a little worse on many others
- But, by dumb luck, eventually this tends to be good enough to

learn effective classifiers for many real applications

Some other points

Detail of a standard NN weight learning algorithm

If f(x) is non-linear, a network with 1 hidden layer can, in theory, learn perfectly any classification problem. A set of weights exists that can produce the targets from the inputs. The problem is finding them.

Some other 'by the way' points

If f(x) is linear, the NN can **only** draw straight decision boundaries (even if there are many layers of units)

Some other 'by the way' points

NNs use nonlinear f(x) so they can draw complex boundaries, but keep the data unchanged

NN and Back Propagation Algorithm

- Single layer nets have limited representation power (linear Separability problem). Multi layer nets (or nets with nonlinear hidden units) may overcome linear inseparability problem.
- Every boolean function can be represented by a network with a single hidden layer
- Every bounded continuous function can be approximated with arbitrary small error, by network with one hidden layer.
- Any function can be approximated to arbitrary accuracy by a network with two hidden layers.

Multilayer Perceptrons Architecture

Hidden Layers

A solution for the XOR problem

$$\varphi(v) = \begin{cases} 1 & \text{if } v > 0 \\ 1 & \text{if } v \le 0 \end{cases}$$

 $\boldsymbol{\phi}$ is the sign function.

NEURON MODEL

Sigmoidal Function

$$\varphi(\mathbf{v}_{j}) = \frac{1}{1 + e^{-av_{j}}}$$

$$\mathbf{v}_{\mathbf{j}} = \sum_{i=0,\dots,m} w_{\mathbf{j}i} y_{\mathbf{j}}$$

- v_i induced field of neuron j
- Most common form of activation function
- $a \rightarrow \infty \Rightarrow \phi \rightarrow \text{threshold function}$
- Differentiable

LEARNING ALGORITHM

Back-propagation algorithm

 It adjusts the weights of the NN in order to minimize the average squared error.

Average Squared Error

- Error signal of output neuron j at presentation of n-th training example:
- Total error at time n:

$$e_j(n) = d_j(n) - y_j(n)$$

• Average squared error:

$$E(n) = \frac{1}{2} \sum_{i \in C} e_j^2(n)$$

 Measure of learning performance:

$$E_{AV} = \frac{1}{N} \sum_{n=1}^{N} E(n)$$

C: Set of neurons in output layer

N: size of training set

Goal: Adjust weights of NN to minimize E_{AV}

Notation

- e_i Error at output of neuron j
- y_i Output of neuron j

$$v_j = \sum_{i=0,...,m} w_{ji} y_i$$
 Induced local field of neuron j

Weight Update Rule

Update rule is based on the gradient descent method take a step in the direction yielding the maximum decrease of E

$$\Delta w_{ji} = -\eta \frac{\partial E}{\partial w_{ji}}$$
 Step in direction opposite to the gradient

Computing Model (output neuron)

Signal-flow graph highlighting the details of output neuron j.

Definition of the Local Gradient of neuron i

$$\delta_{j} = -\frac{\partial E}{\partial \mathbf{v}_{j}}$$
 Local Gradient

We obtain

$$\delta_{j} = e_{j} \varphi'(v_{j})$$

because

$$-\frac{\partial E}{\partial \mathbf{v}_{j}} = -\frac{\partial E}{\partial \mathbf{e}_{j}} \frac{\partial \mathbf{e}_{j}}{\partial \mathbf{y}_{j}} \frac{\partial \mathbf{y}_{j}}{\partial \mathbf{v}_{j}} = -\mathbf{e}_{j}(-1)\phi'(\mathbf{v}_{j})$$

Update Rule

We obtain

$$\Delta w_{ji} = \eta \delta_j y_i$$

because

$$\frac{\partial E}{\partial \mathbf{w}_{ji}} = \frac{\partial E}{\partial \mathbf{v}_{j}} \frac{\partial \mathbf{v}_{j}}{\partial \mathbf{w}_{ji}}$$

$$-\frac{\partial E}{\partial \mathbf{v}_{j}} = \delta_{j} \qquad \frac{\partial v_{j}}{\partial \mathbf{w}_{ji}} = y_{i}$$

Compute local gradient of neuron j

- The key factor is the calculation of e_j
- There are two cases:
 - Case 1): j is a output neuron
 - Case 2): j is a hidden neuron

Error e_j of output neuron

Case 1: j output neuron

$$e_j = d_j - y_j$$

Then

$$\delta_{j} = (d_{j} - y_{j}) \varphi'(v_{j})$$

Local gradient of hidden neuron

- Case 2: j hidden neuron
- the local gradient for neuron j is recursively determined in terms of the local gradients of all neurons to which neuron j is directly connected

Computing model (hidden neuron)

Signal-flow graph highlighting the details of output neuron k connected to hidden neuron j.

Use the Chain Rule

$$\delta_{j} = -\frac{\partial E}{\partial y_{j}} \frac{\partial y_{j}}{\partial v_{j}} \qquad \frac{\partial y_{j}}{\partial v_{j}} = \varphi'(v_{j})$$

$$E(n) = \frac{1}{2} \sum_{k \in C} e_k^2(n)$$

$$-\frac{\partial E}{\partial y_{j}} = -\sum_{k \in C} e_{k} \frac{\partial e_{k}}{\partial y_{j}} = \sum_{k \in C} e_{k} \left[\frac{-\partial e_{k}}{\partial v_{k}} \right] \frac{\partial v_{k}}{\partial y_{j}}$$
from
$$-\frac{\partial e_{k}}{\partial v_{k}} = \phi'(v_{k}) \qquad \frac{\partial v_{k}}{\partial y_{j}} = w_{kj}$$
We obtain
$$-\frac{\partial E}{\partial y_{i}} = \sum_{k \in C} \delta_{k} w_{kj}$$

Local Gradient of hidden neuron j

Hence

$$\delta_{j} = \varphi'(v_{j}) \sum_{k \in C} \delta_{k} w_{kj}$$

Signal-flow graph of back-propagation error signals to neuron *j*

Delta Rule

• Delta rule $\Delta w_{ji} = \eta \delta_j y_i$

$$\delta_j = \begin{cases} \phi'(v_j)(d_j - y_j) & \text{IF j output node} \\ \phi'(v_j) \sum_{k \in C} \delta_k w_{kj} & \text{IF j hidden node} \end{cases}$$

C: Set of neurons in the layer following the one containing **j**

Local Gradient of neurons

$$\varphi'(v_j) = ay_j[1 - y_j] \qquad a > 0$$

$$\delta_{j} = \begin{cases} ay_{j}[1 - y_{j}] \sum_{j} \delta_{k} w_{kj} & \text{if j hidden node} \\ ay_{j}[1 - y_{j}][d_{j}^{k} - y_{j}] & \text{If j output node} \end{cases}$$

Backpropagation algorithm

- Two phases of computation:
 - Forward pass: run the NN and compute the error for each neuron of the output layer.
 - Backward pass: start at the output layer, and pass the errors backwards through the network, layer by layer, by recursively computing the local gradient of each neuron.

Summary

Multilayer Perceptrons

Signal-flow graphical summary of back-propagation learning. Top part of the graph: forward pass. Bottom part of the graph: backward pass.

Training

- Sequential mode (on-line, pattern or stochastic mode):
 - (x(1), d(1)) is presented, a sequence of forward and backward computations is performed, and the weights are updated using the delta rule.
 - Same for (x(2), d(2)), ..., (x(N), d(N)).

Training

- The learning process continues on an epochby-epoch basis until the stopping condition is satisfied.
- From one epoch to the next choose a randomized ordering for selecting examples in the training set.

Stopping criterions

- Sensible stopping criterions:
 - Average squared error change:
 Back-prop is considered to have converged when the absolute rate of change in the average squared error per epoch is sufficiently small (in the range [0.1, 0.01]).
 - Generalization based criterion:
 After each epoch the NN is tested for generalization. If the generalization performance is adequate then stop.

Early stopping

Generalization

- Generalization: NN generalizes well if the I/
 O mapping computed by the network is
 nearly correct for new data (test set).
- Factors that influence generalization:
 - the size of the training set.
 - the architecture of the NN.
 - the complexity of the problem at hand.
- Overfitting (overtraining): when the NN learns too many I/O examples it may end up memorizing the training data.

Generalization

(a) Properly fitted data (good generalization)
 (b) Overfitted data (poor generalization).

Expressive capabilities of NN

Boolean functions:

- Every boolean function can be represented by network with single hidden layer
- but might require exponential hidden units

Continuous functions:

- Every bounded continuous function can be approximated with arbitrarily small error, by network with one hidden layer
- Any function can be approximated with arbitrary accuracy by a network with two hidden layers

Generalized Delta Rule

- If η small ⇒ Slow rate of learning
 If η large ⇒ Large changes of weights
 ⇒ NN can become unstable (oscillatory)
- Method to overcome above drawback: include a momentum term in the delta rule

$$\Delta w_{ji}(n) = \alpha \Delta w_{ji}(n-1) + \eta \delta_j(n) y_i(n) \quad \text{delta} \\ \text{function}$$
 momentum constant

Generalized delta rule

- the momentum accelerates the descent in steady downhill directions.
- the momentum has a stabilizing effect in directions that oscillate in time.

η adaptation

Heuristics for accelerating the convergence of the back-prop algorithm through η adaptation:

- Heuristic 1: Every weight should have its own η.
- Heuristic 2: Every η should be allowed to vary from one iteration to the next.

NN DESIGN

- Data representation
- Network Topology
- Network Parameters
- Training
- Validation

Setting the parameters

- How are the weights initialised?
- How is the learning rate chosen?
- How many hidden layers and how many neurons?
- Which activation function?
- How to preprocess the data?
- How many examples in the training data set?

Some heuristics (1)

- Sequential v/s Batch algorithms:
- the sequential mode (pattern by pattern) is computationally faster than the batch mode (epoch by epoch)
- Sequential also called as on line learning
- Sequential is stochastic in nature
- Tracks small changes in training data set.
- Simple to implement
- Effective solution to large scale and complex classification problems
- Cost function is instantaneous error energy

Some heuristics (2)

- Maximization of information content: every training example presented to the back propagation algorithm must maximize the information content.
 - The use of an example that results in the largest training error.
 - The use of an example that is radically different from all those previously used.

Some heuristics (3)

 Activation function: network learns faster with antisymmetric functions when compared to nonsymmetric functions.

$$\varphi(\mathbf{v}) = \frac{1}{1 + e^{-av}}$$

Sigmoidal function is nonsymmetric

$$\varphi(\mathbf{v}) = a \tanh(b\mathbf{v})$$

Hyperbolic tangent function is nonsymmetric

Some heuristics (3)

Some heuristics (4)

- Target values: target values must be chosen within the range of the sigmoidal activation function.
- Otherwise, hidden neurons can be driven into saturation which slows down learning

Some heuristics (4)

- For the antisymmetric activation function it is necessary to design E
- For $a + \dot{d}_j = a \varepsilon$ For -a:

$$d_{i} = -a + \varepsilon$$

If a=1.7159 we can set $\varepsilon=0.7159$ then d=±1

Some heuristics (5)

- Inputs normalisation:
 - Each input variable should be processed so that the mean value is small or close to zero or at least very small when compared to the standard deviation.
 - Input variables should be uncorrelated.
 - Decorrelated input variables should be scaled so their covariances are approximately equal.

Some heuristics (5)

Illustrating the operation of mean removal, decorrelation, and covariance equalization for a two-dimensional input space.

Some heuristics (6)

- Initialization of weights:
 - If synaptic weights are assigned large initial values neurons are driven into saturation. Local gradients become small so learning rate becomes small.
 - If synaptic weights are assigned small initial values algorithms operate around the origin. For the hyperbolic activation function the origin is a saddle point.

Some heuristics (7)

- Learning rate:
 - The right value of η depends on the application. Values between 0.1 and 0.9 have been used in many applications.
 - Other heuristics adapt η during the training as described in previous slides.

Some heuristics (8)

- How many layers and neurons
 - The number of layers and of neurons depend on the specific task. In practice this issue is solved by trial and error.
 - Two types of adaptive algorithms can be used:
 - start from a large network and successively remove some neurons and links until network performance degrades.
 - begin with a small network and introduce new neurons until performance is satisfactory.

Some heuristics (9)

- How many training data?
 - Rule of thumb: the number of training examples should be at least five to ten times the number of weights of the network.