

Binary tree

Stack

Matrix

Linked List

Array

Spart Matrix

Heap

Hash Table

Queue

Top 25 algorithms

- Searching
- 1 Linear Search
- **2** Binary Search
- 3 Depth First Search
- Breadth First Search

- Sorting
- 1 Insertion Sort
- 2 Heap Sort
- **3 Merge Sort**
- **4** Selection Sort
- **5** Quick Sort
- **6** Counting Sort

Graphs

- 1 Kruskal's Algo
- 2 Dijkstra's Algo
- 3 Bellman Ford Algo
- Floyd Warshall Algo
- 5 Topological Sort Algo
- 6 Flood Fill Algo
- 7 Lee Algo

- Arrays
- 1 Kadane's Algo
- 2 Floyd's Cycle Detection Algo
- **3 KMP Algo**
- **4** Quick Select Algo
- 5 Boyer More Majority vote Algo

- Basic Algo's
- 1 Euclid's Algo
- **2** Union Find Algo
- 3 Huffman Coding Compression Algo

Array

An array is a data structure that contains a group of elements. Typically these elements are all of the same data type, such as an integer or string.

Here's an image of a simple array of size 4, containing elements (1, 2, 3 and 4).

2 Stack

A stack is a data structure used to store a collection of objects. Individual items can be added and stored in a stack using a push operation.

Here's an image of stack containing three data elements (1, 2 and 3), where 3 is at the top and will be removed first:

Queues

Queue is another linear data structure that stores the element in a sequential manner.

Here's an image of Queue containing four data elements (1, 2, 3 and 4), where 1 is at the top and will be removed first:

Linked List

A linked list is like a chain of nodes, where each node contains information like data and a pointer to the succeeding node in the chain.

Here's a visual representation of the internal structure of a linked list:

Graph

A graph is a set of nodes that are connected to each other in the form of a network. Nodes are also called vertices.

Trees

A tree is a hierarchical data structure consisting of vertices (nodes) and edges that connect them.

Hash

Hashing is a process used to uniquely identify objects and store each object at some pre-calculated unique index called its "key."

