ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)»

Отчёт по лабораторной работе 5.1.2 Исследование эффекта Комптона

Выполнил студент:

Сериков Василий Романович

Сериков Алексей Романович

группа: Б03-102

Аннотация

Цель работы:

С помощью сцинтилляционного спектрометра исследуется энергетический спектр γ - квантов, рассеянных на графите. Определяется энергия рассеянных γ -квантов в зависимости от угла рассеяния, а также энергия покоя частиц, на которых происходит комптоновское рассеяние.

Теория:

Рассеяние γ -лучей в веществе относится к числу явлений, в которых особенно ясно проявляется двойственная природа излучения. Волновая теория, хорошо объясняющая рассеяние длинноволнового излучения, испытывает трудности при описании рассеяния рентгеновских и γ -лучей. Эта теория, в частности, не может объяснить, почему в составе рассеянного излучения, измеренного Комптоном, кроме исходной волны с частотой ω_0 появляется дополнительная длинноволновая компонента, отсутствующая в спектре первичного излучения.

Появление этой компоненты легко объяснимо, если считать, что γ -излучение представляет собой поток квантов (фотонов), имеющих энергию $\hbar\omega$ и импульс $p=\hbar\omega/c$. Эффект Комптона - увеличение длины волны рассеянного излучения по сравнению с падающим - интерпретируется как результат упругого соударения двух частиц: γ -кванта (фотона) и свободного электрона.

Рассмотрим элементарную теорию эффекта Комптона. Пусть электрон до соударения покоился (его энергия равна энергии покоя mc^2), а γ -квант имел начальную энергию $\hbar\omega_0$ и импульс $\hbar\omega_0/c$. После соударения электрон приобретает энергию γmc^2 и импульс γmv , где $\gamma=$ $=(1-\beta^2)^{-1/2}$, $\beta=v/c$, а γ -квант рассеивается на некоторый угол θ по отношению к первоначальному направлению движения. Энергия и импульс γ -кванта становятся соответственно равным и $\hbar\omega_1$ и $\hbar\omega_1/c$ (рис. 1). Запишем для рассматриваемого процесса законы сохранения энергии и импульса:

$$mc^{2} + \hbar\omega_{0} = \gamma mc^{2} + \hbar\omega_{1}$$
$$\frac{\hbar\omega_{0}}{c} = \gamma mv \cos\varphi + \frac{\hbar\omega_{1}}{c}\cos\theta$$
$$\gamma mv \sin\varphi = \frac{\hbar\omega_{1}}{c}\sin\theta$$

Решая совместно эти уравнения и переходя от частот ω_0 и ω_1 к длинам волн λ_0 и λ_1 , нетрудно получить, что изменение длины волны рассеянного излучения равно

$$\Delta \lambda = \lambda_1 - \lambda_0 = \frac{h}{mc} (1 - \cos \theta) = \Lambda_K (1 - \cos \theta) \tag{1}$$

где λ_0 и λ_1 - длины волн γ -кванта до и после рассеяния, а величина

$$\Lambda_{\rm K} = \frac{h}{mc} = 2,42 \cdot 10^{-10} {\rm cm}$$

Основной целью данной работы является проверка соотношения (1). Применительно к условиям нашего опыта формулу (1) следует преобразовать от длин волн к энергии γ -квантов. Как нетрудно показать, соответствующее выражение имеет вид

$$\frac{1}{\varepsilon(\theta)} - \frac{1}{\varepsilon_0} = 1 - \cos\theta \tag{2}$$

Здесь $\varepsilon_0 = E_0/(mc^2)$ — выраженная в единицах mc^2 энергия γ -квантов, падающих на рассеиватель, $\varepsilon(\theta)$ - выраженная в тех же единицах энергия квантов, испытавших комптоновское рассеяние на угол $\theta, m-$ масса электрона.

Экспериментальная установка:

Блок-схема установки изображена на рис. 3. Источником излучения 1 служит 137 Cs, испускающий γ -лучи с энергией 662 кэВ. Он помещен в толстостенный свинцовый контейнер с коллиматором. Сформированный коллиматором узкий пучок γ -квантов попадает на графитовую мишень 2 (цилиндр диаметром 40 мм и высотой 100 мм).

Рис. 1: Экспериментальная установка

Кванты, испытавшие комптоновское рассеяние в мишени, регистрируются сцинтилляционным счетчиком, принцип работы которого рассмотрен в работе 5.3. Счетчик состоит из фотоэлектронного умножителя 3 (далее ФЭУ) и сцинтиллятора 4*). Сцинтиллятором служит кристалл NaI(Tl) цилиндрической формы диаметром 40 мм и высотой 40 мм, его выходное окно находится в оптическом контакте с фотокатодом ФЭУ. Сигналы, возникающие на аноде ФЭУ, подаются на ЭВМ для амплитудного анализа. Кристалл и ФЭУ расположены в светонепроницаемом блоке, укрепленном на горизонтальной штанге. Штанга вместе с этим блоком может вращаться относительно мишени, угол поворота отсчитывается по лимбу 6.

Пусть $\varepsilon(\theta) = AN(\theta)$, A – коэффициент пропорциональность, $N(\theta)$ – номер соответствующего канала. Тогда (2) перепишется как

$$\frac{1}{N(\theta)} - \frac{1}{N(0)} = A(1 - \cos \theta). \tag{3}$$

Отсюда можно определить энергию покоя электрона как

$$mc^2 = E_\gamma \frac{N(90)}{N(0) - N(90)},$$
 (4)

где $E_{\gamma}=E_0$ – энергия испускаемых источником γ -квантов.

Ход работы:

1. Снимем зависимость числа отсчетов N от номера канала и определим положение пика для различных значений угла θ . Полученные значения занесем в таблицу 1. Погрешность измерения σ_N номера канала N возьмем за полуширину интервала на котором находится максимум (для всех углов θ $\sigma_N \approx 30$). $\sigma_{\theta} = 1^{\circ}$

θ , °	0	10	20	30	40	50	60	70	80	90	100	110	120
N	937	877	852	777	731	588	543	477	436	394	358	333	310

Таблица 1: Результаты измерений зависимости $N(\theta)$.

2. По полученным данным построим график зависимости $\frac{1}{N(\theta)} = k(1-\cos\theta)$. Полученный график изобразим на Рис2.

Рис. 2: График зависимости $\frac{1}{N(\theta)} = k(1 - \cos \theta)$

3. Подсчет погрешности по формулам:

$$\sigma_{1-\cos\theta} = \sin\theta \cdot \sigma_{\theta}$$

$$\sigma_k = k \sqrt{\frac{\sigma_{(1-\cos\theta)}^2}{(1-\cos\theta)^2} + \frac{\sigma_{\frac{1}{N(\theta)}}^2}{\left(\frac{1}{N(\theta)}\right)^2}} = 0,05k = 0,07 \cdot 10^{-3}$$

4. По полученным результатам и формуле:

$$mc^2 = E_\gamma \frac{N(90)}{N(0) - N(90)}$$

определим энергию покоя частицы на которой происходит комптоновское рассеяние γ квантов. $E_{\gamma}=661,66$ кэВ

$$\sigma_{mc^2} = mc^2 \cdot \frac{\sigma_{N(\theta)}}{N(\theta)} \sqrt{2}$$

$$mc^2 = 0.48 \pm 0,03 \text{ M} \cdot \text{B}$$

Обсуждение результатов и выводы:

В ходе данной работы мы исследовали энергетический спектр γ - квантов. Определили, что рассеяние γ - квантов является комптоновским, так как формула $\Delta\lambda = \Lambda_{\rm K}(1-\cos\theta)$ подтверждается экспериментально, что видно из линейной зависимости на Рис2. Также установили, что рассеяние происходит на электронах, так как расчет массы покоя показал значение $mc^2 = 0.48 \pm 0,03~{\rm MpB}$, что в пределах погрешности совпадает с массой покоя электрона $m_ec^2 = 0.51~{\rm MpB}$. Вклад в ошибку дают погрешности угла θ и погрешность определения канала N на котором находится максимум.