TP Statistiques et Séries Chronologiques Université de Lorraine

Régression Linéaire Multiple

Clément Dell'Aiera

1 Régression sur variables qualitatives

Le but de cet exercice est d'expliquer la concentration en ozone O3 en fonction de la température T12 et de la direction du vent vent dans la table ozone.txt.

- 1. Télécharger la table, et effectuer des régressions selon les différents modèles.
- 2. Tester l'égalité des pentes.
- 3. Tester l'égalité des ordonnées à l'origine.
- 4. Analyser les résidus.

1.1 ANOVA à 1 facteur

Nous souhaitons modéliser la concentration en ozone en fonction de la direction du vent.

- 1. Tracer une boîte à moustaches de la variable O3 par rapport aux quatres modalités de la variable vent. Le vent semble-t-il avoir une influence sur la concentration en ozone?
- 2. On se place dans un modèle d'analyse de la variance à un facteur

$$y_{ij} = \mu + \alpha_j + \epsilon_{ij}$$

- (a) Effectuer la regression linéaire de O3 sur vent sous la contrainte $\mu=0.$
- (b) Effectuer la regression linéaire de O3 sur vent sous la contrainte $\alpha_1 = 0$.
- (c) Effectuer la regression linéaire de O3 sur vent sous la contrainte $\sum n_i \alpha_i = 0$.
- (d) Effectuer la regression linéaire de O3 sur vent sous la contrainte $\sum n_i \alpha_i = 0$.
- 3. Analyser les résidus afin de constater que l'hypothèse d'homoscédasticité est vérifiée. Pour cela, tracer un boxplot des résidus en fonction de vent, les résidus en fonction de $\hat{O3}$, leurs quantiles théoriques ainsi que la distribution des résidus par modalité de vent.

1.2 ANOVA à 2 facteurs

Nous voulons maintenant modéliser la concentration en ozone par le vent et la nébulosité, variable à 2 modalités : SOLEIL et NUAGEUX.

- 1. Procéder à un examen graphique qui puisse déterminer si l'interaction des facteurs influe sur la variable à expliquer. (voir ce qu'est un *profil*)
- 2. On suppose la gaussianité des résidus.
 - (a) Tester le modèle avec interaction : mod1.
 - (b) Tester le modèle sans interaction : mod2.
 - (c) Tester le modèle sans effet du facteur nebulosité : mod3.
- 3. Grâce à la commande ANOVA de R, effectuer des analyses de la variance entre les modèles **mod1**, **mod2** et **mod3**.
- 4. Répondez à la problématique.