Foundations of Software Fall 2021

Week 11

Different Kinds of Maps

What is missing?

```
Term \rightarrow Term (\lambda x.t)

Type \rightarrow Term (\Lambda X.t)
```

Different Kinds of Maps

What is missing?

Agenda today:

- Type operators
- Dependent types

Type Operators and System F_{ω}

Type Operators

Example. Type operators in Scala:

```
type MkFun[T] = T => T
val f: MkFun[Int] = (x: Int) => x
```

Type Operators

Example. Type operators in Scala:

```
type MkFun[T] = T => T
val f: MkFun[Int] = (x: Int) => x
```

Type operators are functions at type-level.

$$\lambda X :: K.T$$

Type Operators

Example. Type operators in Scala:

```
type MkFun[T] = T => T
val f: MkFun[Int] = (x: Int) => x
```

Type operators are functions at type-level.

$$\lambda X :: K.T$$

Two Problems:

- Type checking of type operators
- Equivalence of types

Kinding

Problem: avoid meaningless types, like MkFun[Int, String].

Kinding

Problem: avoid meaningless types, like *MkFun*[*Int*, *String*].

```
* proper types, e.g. Bool, Int \rightarrow Int

* \Rightarrow * type operators: map proper type to proper type

* \Rightarrow * \Rightarrow * two-argument operators

(* \Rightarrow *) \Rightarrow * type operators: map type operators to proper types
```

Kinding

Problem: avoid meaningless types, like *MkFun*[*Int*, *String*].

Equivalence of Types

Problem: all the types below are equivalent

$$Nat o Bool$$
 $Nat o Id Bool$ $Id Nat o Id Bool$ $Id Nat o Bool$ $Id (Nat o Bool)$ $Id(Id(Id Nat o Bool)$

We need to introduce *definitional equivalence* relation on types, written $S \equiv T$. The most important rule is:

$$(\lambda X :: K.S) T \equiv [X \mapsto T]S$$
 (Q-AppAbs)

And we need one typing rule:

$$\frac{\Gamma \vdash t : S \qquad S \equiv T}{\Gamma \vdash t : T} \tag{T-EQ}$$

First-class Type Operators

Scala supports passing type operators as argument:

```
def makeInt[F[_]](f: () => F[Int]): F[Int] = f()
makeInt[List](() => List[Int](3))
makeInt[Option](() => None)
```

First-class type operators supports *polymorphism* for type operators, which enables more patterns in type-safe functional programming.

System F_{ω} — Syntax

Formalizing first-class type operators leads to *System* F_{ω} :

$$K ::= * K \Rightarrow K$$

kinds
kind of proper types
kind of operators

System F_{ω} — Semantics

$$\frac{t_1 \longrightarrow t_1'}{t_1 \ t_2 \longrightarrow t_1' \ t_2} \qquad \text{(E-APP1)}$$

$$\frac{t_2 \longrightarrow t_2'}{t_1 \ t_2 \longrightarrow t_1 \ t_2'} \qquad \text{(E-APP2)}$$

$$(\lambda x: T_1.t_1) \ v_2 \longrightarrow [x \mapsto v_2]t_1 \qquad \text{(E-APPABS)}$$

$$\frac{t \longrightarrow t'}{t \ [T] \longrightarrow t' \ [T]} \qquad \text{(E-TAPP)}$$

$$(\lambda X:: \mathcal{K}.t_1) \ [T] \longrightarrow [X \mapsto T]t_1 \ \text{(E-TAPPTABS)}$$

System F_{ω} — Kinding

$$\frac{X :: K \in \Gamma}{\Gamma \vdash X :: K}$$

$$\frac{\Gamma, X :: K_1 \vdash T_2 :: K_2}{\Gamma \vdash \lambda X :: K_1 . T_2 :: K_1 \Rightarrow K_2}$$

$$\frac{\Gamma \vdash T_1 :: K_1 \Rightarrow K_2 \qquad \Gamma \vdash T_2 :: K_1}{\Gamma \vdash T_1 T_2 :: K_2}$$

$$\frac{\Gamma \vdash T_1 :* \qquad \Gamma \vdash T_2 :*}{\Gamma \vdash T_1 \to T_2 :: *}$$

$$\frac{\Gamma, X :: K_1 \vdash T_2 :: *}{\Gamma \vdash \forall X :: K_1 . T_2 :: *}$$

$$(K-APP)$$

$$\frac{\Gamma, X :: K_1 \vdash T_2 :: *}{\Gamma \vdash \forall X :: K_1 . T_2 :: *}$$

$$(K-ALL)$$

System F_{ω} — Type Equivalence

$$T \equiv T$$

$$\frac{T \equiv S}{S \equiv T}$$

$$\frac{S \equiv U \qquad U \equiv T}{S \equiv T}$$

$$\forall X :: K_1.S_2 \equiv \forall X :: K_1.T_2$$
$$S_2 \equiv T_2$$
$$\lambda X :: K_1.S_2 \equiv \lambda X :: K_1.T_2$$

$$S_1 \equiv T_1 \qquad S_2 \equiv T_2$$

$$S_1 \rightarrow S_2 \equiv T_1 \rightarrow T_2$$

$$S_2 \equiv T_2$$

(Q-ABS)

(Q-Arrow)

$$\lambda X :: K_1.S_2 \equiv \lambda X :: K_1.T_2$$

 $S_1 \equiv T_1$ $S_2 \equiv T_2$

 $S_1 S_2 \equiv T_1 T_2$

 $S_2 \equiv T_2$

$$(\lambda X :: K.T_1) T_2 \equiv [X \mapsto T_2]T_1$$
 (Q-Appabs)

System F_{ω} — Typing

$$\frac{x: T \in \Gamma}{\Gamma \vdash x: T}$$

$$\frac{\Gamma \vdash T_1 :: * \qquad \Gamma, x: T_1 \vdash t_2 : T_2}{\Gamma \vdash \lambda x: T_1.t_2 : T_1 \to T_2}$$

$$\frac{\Gamma \vdash t_1 : S \to T \qquad \Gamma \vdash t_2 : S}{\Gamma \vdash t_1 t_2 : T}$$

$$\frac{\Gamma, X:: K_1 \vdash t_2 : T}{\Gamma \vdash \lambda X:: K_1.t_2 : \forall X:: K_1.T_2}$$

$$\frac{\Gamma \vdash t : \forall X:: K.T_2 \qquad \Gamma \vdash T :: K}{\Gamma \vdash t \ [T] : [X \mapsto T] T_2}$$

$$\frac{\Gamma \vdash t : S \qquad S \equiv T \qquad \Gamma \vdash T :: *}{\Gamma \vdash t : T}$$

$$\frac{\Gamma \vdash t : T \qquad (T-EQ)$$

Example

```
type PairRep[Pair :: * \Rightarrow * \Rightarrow *] = \{
     pair : \forall X. \forall Y. X \rightarrow Y \rightarrow (Pair X Y),
     fst: \forall X. \forall Y. (Pair X Y) \rightarrow X,
     snd: \forall X. \forall Y. (Pair\ X\ Y) \rightarrow Y
def swap[Pair :: * \Rightarrow * \Rightarrow *, X :: *, Y :: *]
     (rep : PairRep Pair)
     (pair : Pair X Y) : Pair Y X
     let x = rep.fst [X] [Y] pair in
     let y = rep.snd[X][Y] pair in
     rep.pair [Y][X]yx
```

The method *swap* works for any representation of pairs.

Properties

Theorem [Preservation]: if $\Gamma \vdash t : T$ and $t \longrightarrow t'$, then $\Gamma \vdash t' : T$.

Theorem [Progress]: if $\vdash t : T$, then either t is a value or there exists t' with $t \longrightarrow t'$.

Dependent Types

Why Does It Matter?

Example 1. Track length of vectors in types:

```
egin{array}{lll} 	extstyle 	extst
```

 $(x:S) \to T$ is called dependent function type. It is impossible to pass a vector of length 0 to the function *first*.

Why Does It Matter?

Example 1. Track length of vectors in types:

$$extit{NVec}$$
 :: $extit{Nat} o *$ first : $(n:Nat) o NVec (n+1) o Nat$

 $(x:S) \to T$ is called dependent function type. It is impossible to pass a vector of length 0 to the function *first*.

Example 2. Safe formatting for *sprintf*:

```
sprintf: (f:Format) \rightarrow Data(f) \rightarrow String

Data([]) = Unit

Data("%d" :: cs) = Nat * Data(cs)

Data("%s" :: cs) = String * Data(cs)

Data(c :: cs) = Data(cs)
```

Dependent Function Type (a.k.a. ☐ Types)

A dependent function type is inhabited by a dependent function:

$$\lambda x:S.t$$
 : $(x:S) \rightarrow T$

Dependent Function Type (a.k.a. ☐ Types)

A dependent function type is inhabited by a dependent function:

$$\lambda x:S.t$$
 : $(x:S) \rightarrow T$

If T does not depend on x, it degenerates to function types:

$$(x:S) \rightarrow T = S \rightarrow T$$
 where x does not appear free in T

The Calculus of Constructions

The Calculus of Constructions: Syntax

```
t ::=
                                                   terms
                                                    sort
                                                     variable
         X
                                                     abstraction
         \lambda x:t.t
         t t
                                                     application
         (x:t) \rightarrow t
                                                    dependent type
                                                   sorts
                                                     sort of proper types
                                                     sort of kinds
Γ ::=
                                                   contexts
                                                     empty context
         \Gamma, x: T
                                                     term variable binding
```

The semantics is the usual β -reduction.

The Calculus of Constructions: Typing

$$\frac{x:T\in\Gamma}{\Gamma\vdash x:T} \text{ (T-VAR)}$$

$$\frac{\Gamma\vdash S:s_1}{\Gamma\vdash \lambda x:S.t:(x:S)\to T} \text{ (T-ABS)}$$

$$\frac{\Gamma\vdash t_1:(x:S)\to T}{\Gamma\vdash t_1:t_2:[x\mapsto t_2]T} \text{ (T-APP)}$$

$$\frac{\Gamma\vdash S:s_1}{\Gamma\vdash (x:S)\to T:s_2} \text{ (T-PI)}$$

$$\frac{\Gamma\vdash t:T}{\Gamma\vdash t:T'} \frac{T\equiv T'}{\Gamma\vdash T':s} \text{ (T-CONV)}$$

The equivalence relation $T \equiv T'$ is based on β -reduction.

Example	Туре
$\lambda x: \mathbb{N}.x + 1$	$\mathbb{N} \to \mathbb{N}$
$\lambda f: \mathbb{N} \to \mathbb{N}.f \ x$	$(\mathbb{N} \to \mathbb{N}) \to \mathbb{N}$

Example	Туре
λx : $\mathbb{N}.x + 1$	$\mathbb{N} \to \mathbb{N}$
$\lambda f: \mathbb{N} \to \mathbb{N}.f \ x$	$(\mathbb{N} \to \mathbb{N}) \to \mathbb{N}$
λX :*. λx : X . x	$(X:*) \rightarrow X \rightarrow X$
$\lambda F: * \to *.\lambda x: F \mathbb{N}. x$	$(F:* o *) o (F\;\mathbb{N}) o (F\;\mathbb{N})$

Example	Туре
λx : $\mathbb{N}.x + 1$	$\mathbb{N} \to \mathbb{N}$
$\lambda f: \mathbb{N} \to \mathbb{N}.f \times$	$(\mathbb{N} \to \mathbb{N}) \to \mathbb{N}$
λX :*. λx : X . x	$(X:*) \rightarrow X \rightarrow X$
$\lambda F:* \to *.\lambda x: F \mathbb{N}. x$	$(F:* o *) o (F\;\mathbb{N}) o (F\;\mathbb{N})$
λX :*. X	$* \rightarrow *$
λF :* \rightarrow *. F \mathbb{N}	(* o *) o *

Example	Type
$\lambda x: \mathbb{N}.x + 1$	$\mathbb{N} \to \mathbb{N}$
$\lambda f: \mathbb{N} \to \mathbb{N}.f \ x$	$(\mathbb{N} \to \mathbb{N}) \to \mathbb{N}$
λX :*. λx : X . x	$(X:*) \rightarrow X \rightarrow X$
$\lambda F: * \to *.\lambda x: F \mathbb{N}.x$	$(F:* o *) o (F\;\mathbb{N}) o (F\;\mathbb{N})$
λX :*. X	$* \rightarrow *$
$\lambda F: * \to *.F \mathbb{N}$	(* o *) o *
λn :N.NVec n	$\mathbb{N} o *$
$\lambda f: \mathbb{N} \to \mathbb{N}.NVec (f 6)$	$(\mathbb{N} \to \mathbb{N}) \to *$

Strong Normalization

Given the following β -reduction rules

$$\frac{t_1 \longrightarrow t_1'}{\lambda x: T_1. t_1 \longrightarrow \lambda x: T_1. t_1'}$$
 (\beta-Abs)

$$\frac{t_1 \longrightarrow t_1'}{t_1 \ t_2 \longrightarrow t_1' \ t_2} \tag{\beta-APP1}$$

$$\frac{t_2 \longrightarrow t_2'}{t_1 \ t_2 \longrightarrow t_1 \ t_2'} \tag{β-App2)}$$

$$(\lambda x: T_1.t_1)t_2 \longrightarrow [x \mapsto t_2]t_1 \qquad (\beta\text{-AppAbs})$$

Theorem [Strong Normalization]: if $\Gamma \vdash t : T$, then there is no infinite sequence of terms t_i such that $t = t_1$ and $t_i \longrightarrow t_{i+1}$.

Pure Type Systems

$$\frac{\Gamma \vdash S : s_i \qquad \Gamma, x : S \vdash T : s_j}{\Gamma \vdash (x : S) \to T : s_j}$$

$$(S_i, s_j)$$

$$(T-PI)$$

System
$$(s_i, s_j)$$
 $\lambda \rightarrow$ $\{ (*, *), (*, \Box) \}$ λP $\{ (*, *), (*, \Box) \}$ F $\{ (*, *), (\Box, *) (\Box, *) \}$ CC $\{ (*, *), (*, \Box) (\Box, *) (\Box, *) \}$

Dependent Types in Coq

Proof Assistants

Dependent type theories are at the foundation of proof assistants, like Coq, Agda, etc.

By Curry-Howard Correspondence

- ▶ proofs ←→ programs
- ▶ propositions ←→ types

Proof Assistants

Dependent type theories are at the foundation of proof assistants, like Coq, Agda, etc.

By Curry-Howard Correspondence

- ightharpoonup proofs \longleftrightarrow programs
- ▶ propositions ←→ types

Two impactful projects based on Coq:

- CompCert: certified C compiler
- Mechanized proof of 4-color theorem

Type Universes in Coq

The rule $\Gamma \vdash Type : Type$ is unsound (Girard's paradox).

$$\Gamma \vdash Prop : Type_{1}$$

$$\Gamma \vdash Set : Type_{1}$$

$$\Gamma \vdash Type_{i} : Type_{i+1}$$

$$\frac{\Gamma, x : A \vdash B : Prop \qquad \Gamma \vdash A : s}{\Gamma \vdash (x : A) \rightarrow B : Prop}$$

$$\frac{\Gamma, x : A \vdash B : Set \qquad \Gamma \vdash A : s \qquad s \in \{Prop, Set\}}{\Gamma \vdash (x : A) \rightarrow B : Set}$$

$$\frac{\Gamma, x : A \vdash B : Type_{i} \qquad \Gamma \vdash A : Type_{i}}{\Gamma \vdash (x : A) \rightarrow B : Type_{i}}$$

Coq 101 - inductive definitions and recursion

Coq 101 - inductive definitions and recursion

Recursion has to be structural.

Coq 101 - inductive definitions and recursion

```
ΙO
3 | S (n : nat).
   Fixpoint double (n : nat) : nat :=
     match n with
       1 0 => 0
       | S n' => S (S (double n'))
     end.
   Recursion has to be structural.
   Inductive even : nat -> Prop :=
     I \text{ even } 0 : \text{ even } \Omega
     | evenS : forall x:nat, even x \rightarrow even (S (S x)).
```

Inductive nat : Type :=

Coq 101 - proofs

Coq 101 - proofs

The 2nd branch has the type even S(S(double n')), and Coq knows by normalizing the types:

```
even S(S(double n')) \equiv_{\beta} even(double(S n'))
```

Recap: Curry-Howard Correspondence

Propositions as types in the context of intuitionistic logic.

Proposition	Term & Type
$A \wedge B$	t:(A,B)
$A \lor B$	t: A + B
A o B	$t:A \to B$
	t : False
$\neg A$	$t: A o extit{False}$
∀ <i>x</i> : <i>A</i> . <i>B</i>	$t:(x:A)\to B$
∃ <i>x</i> : <i>A</i> . <i>B</i>	t: (x:A, B)

```
Inductive and (A B:Prop) : Prop :=
conj : A -> B -> A /\ B
where "A /\ B" := (and A B) : type_scope.
```

```
Inductive and (A B:Prop) : Prop :=
conj : A -> B -> A /\ B
where "A /\ B" := (and A B) : type_scope.

Inductive or (A B:Prop) : Prop :=
lor_introl : A -> A \/ B
lor_intror : B -> A \/ B
where "A \/ B" := (or A B) : type_scope.
```

```
Inductive and (A B:Prop) : Prop :=
conj : A -> B -> A /\ B
where "A /\ B" := (and A B) : type_scope.

Inductive or (A B:Prop) : Prop :=
lor_introl : A -> A \/ B
lor_intror : B -> A \/ B
where "A \/ B" := (or A B) : type_scope.

Inductive False : Prop :=.
```

```
1 Inductive and (A B:Prop) : Prop :=
2 \quad conj : A \rightarrow B \rightarrow A / B
where "A /\ B" := (and A B) : type_scope.
1 Inductive or (A B:Prop) : Prop :=
2 | or_introl : A -> A \/ B
1 Inductive False : Prop :=.
Definition not (A:Prop) := A -> False.
2 Notation "~ x" := (not x) : type_scope.
```

Curry-Howard correspondence in Coq - continued

```
Notation "A -> B" := (forall (_ : A), B) : type_scope.
Definition iff (A B:Prop) := (A -> B) /\ (B -> A).
Notation "A <-> B" := (iff A B) : type_scope.
```

Curry-Howard correspondence in Coq - continued

```
Notation "A -> B" := (forall (_ : A), B) : type_scope.
Definition iff (A B:Prop) := (A -> B) /\ (B -> A).
Notation "A <-> B" := (iff A B) : type_scope.

Inductive ex (A:Type) (P:A -> Prop) : Prop :=
ex_intro : forall x:A, P x -> ex (A:=A) P.

Notation "'exists' x .. y , p" :=
(ex (fun x => .. (ex (fun y => p)) ..)) : type_scope.
```

Curry-Howard correspondence in Coq - continued

```
Notation "A -> B" := (forall (_ : A), B) : type_scope.
Definition iff (A B:Prop) := (A \rightarrow B) / (B \rightarrow A).
3 Notation "A <-> B" := (iff A B) : type_scope.
1 Inductive ex (A:Type) (P:A -> Prop) : Prop :=
    ex_intro : forall x:A, P x -> ex (A:=A) P.
4 Notation "'exists' x .. y , p" :=
(ex (fun x => ... (ex (fun y => p)) ...)) : type_scope.
  Inductive eq (A:Type) (x:A) : A -> Prop :=
  eq_refl : x = x :> A
3
4 Notation "x = y" := (eq x y) : type_scope.
```

In intuitionistic logics, the law of excluded middle (LEM) and the law of double negation (DNE) are not provable.

- **►** LEM: ∀*P*.*P* ∨ ¬*P*
- \triangleright DNE: $\forall P. \neg \neg P \rightarrow P$

By curry-howard correspondence, there are no terms that inhabit the types above.

In intuitionistic logics, the law of excluded middle (LEM) and the law of double negation (DNE) are not provable.

- ► LEM: $\forall P.P \lor \neg P$
- \triangleright DNE: $\forall P. \neg \neg P \rightarrow P$

By curry-howard correspondence, there are no terms that inhabit the types above.

However, $\forall P.P \rightarrow \neg \neg P$ can be proved.

In intuitionistic logics, the law of excluded middle (LEM) and the law of double negation (DNE) are not provable.

- ► LEM: $\forall P.P \lor \neg P$
- ▶ DNE: $\forall P.\neg\neg P \rightarrow P$

By curry-howard correspondence, there are no terms that inhabit the types above.

However, $\forall P.P \rightarrow \neg \neg P$ can be proved. How?

In intuitionistic logics, the law of excluded middle (LEM) and the law of double negation (DNE) are not provable.

LEM: ∀P.P ∨ ¬P
 DNF: ∀P.¬¬P → P

By curry-howard correspondence, there are no terms that inhabit the types above.

However, $\forall P.P \rightarrow \neg \neg P$ can be proved. How?

We will prove that LEM is equivalent to DNE:

```
Definition LEM: Prop := forall P: Prop, P \/ P.
Definition DNE: Prop := forall P: Prop, ~~P -> P.
Definition LEM_DNE_EQ: Prop := LEM <-> DNE.
```

$\mathsf{LEM} \to \mathsf{DNE}$

```
Definition LEM_To_DNE :=
     fun (lem: forall P : Prop, P \/ ~ P) (Q:Prop) (q: ~~Q)
       =>
       match lem Q with
3
      | or_introl l =>
         1
6
       | or_intror r =>
         match (q r) with end
       end.
9
10
   Check LEM To DNE : LEM -> DNE.
```

$\mathsf{DNE} \to \mathsf{LEM}$

```
Definition DNE_To_LEM :=
     fun (dne: forall P : Prop, ~~P -> P) (Q:Prop) =>
       (dne (Q \ / ~ Q))
3
         (fun H: ~(Q \ // ~Q) =>
           let nq := (fun q: Q => H (or_introl q))
5
           in H (or_intror nq)
6
         ).
8
   Check DNE_To_LEM : DNE -> LEM.
10
   Definition proof := conj LEM_To_DNE DNE_To_LEM.
11
   Check proof : LEM <-> DNE.
```

Dependent Types in Programming Languages

Despite the huge success in proof assistants, its adoption in programming languages is limited.

- Scala supports path-dependent types and literal types.
- Dependent Haskell is proposed by researchers.

Dependent Types in Programming Languages

Despite the huge success in proof assistants, its adoption in programming languages is limited.

- Scala supports path-dependent types and literal types.
- Dependent Haskell is proposed by researchers.

Challenge: the decidability of type checking.

Problem with Type Checking

Value constructors:

```
\begin{array}{lll} \textit{NVec} & : & \mathbb{N} \to * \\ \textit{nil} & : & \textit{NVec} \ 0 \\ \textit{cons} & : & \mathbb{N} \to (\textit{n} : \mathbb{N}) \to \textit{NVec} \ \textit{n} \to \textit{NVec} \ \textit{n} + 1 \end{array}
```

Appending vectors:

```
append: (m:\mathbb{N}) \to (n:\mathbb{N}) \to NVec \ m \to NVec \ n \to NVec \ (n+m)
append = \lambda m:\mathbb{N}. \lambda n:\mathbb{N}. \lambda l:NVec \ m. \lambda t:NVec \ n.
match l with | \ nil \Rightarrow t |
| \ cons \times r \ y \Rightarrow cons \times (r+n) \ (append \ r \ n \ y \ t)
```

Question: How does the type checker know S(r + n) = n + (S r)?