テトリスの研究

芝浦工業大学 数理科学研究会 bv18051 千葉龍朗

令和元年5月19日

研究背景

テトリスは、日本で 1985 年に *GB* でテトリスが出て以来、多くの人気を博している. また、テトリスの遊び方も進化し、相手に勝つには様々な戦術で対抗する必要がある. その戦術を機械に解かせてみたいと思い、本研究を始めた. まずは理論からかためていく.

1 目標

落ちてくるミノから、どのように積むかを計算するようなアルゴリズムを作成する. 戦術は、パーフェクト \rightarrow T スピンや REN の順に行う. 今回は「テトリス 99」の仕様に沿って研究する.

2 テトリスのルール

4つの正方形をくっつけてできる塊をテトリミノや、単にミノとよぶ. ミノには7つの種類があり、それぞれ形が似ていることから、s,z,j,l,i,t,o とよばれる. 基本的なルールは省略するが、注意する点について記述する. 図1のように、下から19、20行、左から4~7の領域に正方形があり、かつ次に落ちてくるミノがそれと重なる場合、21、22行から正方形と重ならないように落ちてくる. ここで、下からi番目の行をi行、左からj番目の列をj列とする.

図 1

3 本論

テトリスのルールを満たすように集合を定義した. nを自然数, a=0,1,2,3 として, $(F_{n-1},(m_n)_a,p_n)$ が以下の条件を満たすとき, $(F_{n-1},(m_n)_a,p_n)$ をテトリス空間と呼ぶ. ここで, 考察を簡単にするために行列の左下を (1,1)成分, 右上を (24,10) 成分とする.

- (i) F_n は 24×10 行列で, 各成分は 0 か 1 の集合である. ただし, F_0 は成分がすべて 0 の行列.
- (ii) $(m_n)_a$ は 4×4 行列で、各成分は 0 か 1 である。 m_n は 7 つのミノの形、a は右回転する回数を表す。
- (iii) p_n は 24×10 行列で, 各成分は 0 か 1 である. p_n は 次のようにして決定される.

 F_n において、(i,j) 成分を $(F_n)_{i,j}$ とかく。 $(F_n)_{i,j} = 0$ 、 $(F_n)_{i+1,j} = 1$ または $(F_n)_{0,j} = 0$ を満たす (i+1,j) 成分を考える。この成分が一つでも含み、かつ (F_n) の成分が 0 である 4 つの成分の部分に $(m_n)_a$ の 1 の部分のみを置く。こうして置かれる $(m_n)_a$ の部分の成分を 1、それ以外を 0 とし、それを p_n とする。

この空間において, F_n は n 番目のミノが落ちてきたときのフィールドの状態, m_n は各ミノ, つまり $m_n = s, z, j, l, i, t, o$ であるので, $(m_n)_a$ の数は 28 である. ただし, 回転した後の形を区別しない場合は s, z, i = 2, j, l, t = 4, o = 1 より 19 である.

 F_n を 24×10 行列にした理由は、図 1 のような積み方を考慮したからである。目に見える範囲ではフィールド上には 20 行まで詰めるが、真ん中に積まなければ理論上はどんな高さにも積める。だが、そのような範囲まで考えてもあまり意味はないので、少し増やして 24 行にした。

この空間には不十分な点がある. それは, 空洞に対してもミノを置けるという点である.

4 今後すること

先述した問題点を解決し、そのうえでパーフェクトやTスピンなどについて考えていく.