

Spectra Processing, Compound Annotation, Functional Insight and Causal Analysis using MetaboAnalyst 6.0

Jianguo (Jeff) Xia, Associate Professor

Canada Research Chair in Bioinformatics & Big Data Analytics

jeff.xia@mcgill.ca | www.xialab.ca

McGill University, Canada

Schedule

Part I: 2:15 p.m. – 4:15 p.m

- 2:15 3:00: Background
 - ✓ General introduction
 - ✓ LC-MS & MS/MS spectral processing
 - ✓ From peaks to functions
- 3:00 3:20: Live demo
- 3:20 4:15: Hands on practice

Part II: 4:30 p.m. – 6:30 p.m.

- 4:30 5:10: Background
 - ✓ Data processing
 - √ Statistical analysis
 - √ Causal analysis
- 5:10 5:40: Live demo
- **5:40 6:15**: Hands on practice
- **6:15 6:30**: Summary & discussion

Github Repository

https://github.com/xia-lab/Metabolomics_2024

- Slides (in PDF format);
- Example data;
- Reference literatures;
- Contact information.

Causal Analysis

- mGWAS
- Two-sample Mendelian Randomization (2SMR)

MetaboAnalyst 6.0 Modules

Input Data Type	Available Modules (click	Available Modules (click on a module to proceed, or scroll down to explore a total of 18 modules including utilities)								
LC-MS Spectra (mzML, mzXML or mzData)			Spectra Processing [LC-MS w/wo MS2]							
MS Peaks (peak list or intensity table)		Peak Annotation [MS2-DDA/DIA]	Functional Analysis [LC-MS]	Functional Meta-analysis [LC-MS]						
Generic Format (.csv or .txt table files)	Statistical Analysis [one factor]	Statistical Analysis [metadata table]	Biomarker Analysis	Statistical Meta-analysis	Dose Response Analysis					
Annotated Features (metabolite list or table)		Enrichment Anz	Pathway Analysis	Network Analysis						
Link to Genomics & Phenotypes (metabolite list)			Causal Analysis [Mendelian randomization]							

How can we detect causal effects?

Key Concept:

- If a biomarker / metabolite is causal for a disease / phenotype, the genetic variants which influence the levels of the biomarker should result in a higher risk of the disease
- Leverage known genetic variants (i.e. SNPs) to eliminates confounders to help detect causal links
- ➤ Mendelian Randomization (MR) analysis
 - These genetic variants are called instrument variables

MR analysis: nature's randomized controlled trials

Nat Rev Methods Primers 2, 6 (2022)

Mendelian randomization concept

Metabolite Genome-Wide Association Study (mGWAS)

Linking the genomics with metabolomics to identify genetic variants affecting metabolite levels

Sample Type	Study #	* Metabolite #	** Metabolite Ratio #	SNP#	SNP–Metabolite Associations #
Blood	57	3992	1265	67,570	30,3090
Urine	5	271	1123	6877	9647
Saliva	1	14	0	1364	1454
Cerebrospinal fluid (CSF)	1	15	0	1178	1182
Mitochondria	1	0	390	194	404
Sum (unique)	65	4147	2388	73,737	313,720

Browse mGWAS studies

ID	Biofluid	Study	Publication	Sample Size	Population	Genotyping Platform	Metabolomics Platform	Cutoff Threshold	Browse
65b	Blood	Viñuela_medRxiv_2021_targeted	Genetic analysis of blood molecular phenotypes reveals regulatory networks affecting complex traits: a DIRECT study	3029	European	Illumina HumanCore array (HCE24 v1.0)	BIOCRATES (AbsoluteIDQ™ p150 kit)	5e-08	∀iew
65a	Blood	Viñuela_medRxiv_2021_untargeted	Genetic analysis of blood molecular phenotypes reveals regulatory networks affecting complex traits: a DIRECT study	3029	European	Illumina HumanCore array (HCE24 v1.0)	Metabolon (LC- MS/MS)	5e-08	∇iew
64	Blood	Qin_medRxiv_2020	Genome-wide association and Mendelian randomization analysis prioritizes bioactive metabolites with putative causal effects on common diseases	8738	European	Illumina genome-wide SNP arrays (HumanCoreExome BeadChip, Human610- Quad BeadChip and HumanOmniExpress)	Thermo Q Exactive Orbitrap	4.5e-12	∀iew
63	Blood	Borges_UKBB_2020	Metabolic biomarkers in the UK Biobank measured by Nightingale Health 2020	500000	European	Affymetrix genome-wide genotyping array	Nightingale NMR	5e-08	∇iew
62	Blood	Montasser_bioRxiv_2021	Leveraging a founder population to identify novel rare- population genetic determinants of lipidome	650	Old Order Amish founder population	Affymetrix 500K array	Agilent (6550 Q- TOF LC/MS)	5e-08	✓ View
61	Mitochondria	Aboulmaouahib_HMG_2021	First mitochondrial genome wide association study with metabolomics	2718	European	Illumina MiSeq	BIOCRATES (AbsoluteIDQ™ p150 kit)	1e-05	∇iew
60	Blood	Harshfield_BM_2021	Genome-wide analysis of blood lipid metabolites in over 5000 South Asians reveals biological insights at cardiometabolic disease loci	13814+5662	European+South Asian	Illumina 660-Quad, Illumina HumanOmniExpress, Affymetrix	Thermo Q Exactive Orbitrap	8.9e-10	∇iew

Associations between SNPs and compounds/peaks

Explore causally links and evidences

(a)

Methods	MR Results				Heterogeneity Tests			Horizontal Pleiotropy		
	Number of SNPs	Beta	SE	P value	Q	Q_df	Q_pval	Egger Intercept	SE	P value
Inverse variance weighted	24	-0.91	0.313	0.0036	42.1	23	0.00893	-	-	-
MR Egger	24	-1.39	0.523	0.0146	39.7	22	0.0116	0.00993	0.00877	0.27
Simple mode	24	-0.128	0.711	0.858	-	-	-	-	-	-
Weighted median	24	-1.5	0.323	3.46e-06	-	-	-	-	-	-
Weighted mode	24	-1.48	0.315	9.73e-05	-	-	-	-	-	-

Potential causal associations between ~4000 metabolites and >200 diseases

Diseases	Exposure / Metabolites	SNP	Effect size	SE	Pval
Atherosclerotic heart disease	serine	5	-0.0279495	0.00203363	5.5606E-43
	sm c24:0	5	0.02832925	0.00217185	6.8912E-39
	sm (oh) c22:2	5	0.02907336	0.0022289	6.8912E-39
Inflammatory bowel disease	x-11381	3	-0.8251061	0.04109667	1.1679E-89
	nervonoylcarnitine (c24:1)*	3	-0.9093196	0.04529115	1.1679E-89
	margaroylcarnitine (c17)*	2	-1.0991236	0.06922023	8.9079E-57
	linoleoylcarnitine (c18:2)*	2	-0.8909735	0.05611142	8.9079E-57
	x-24241	1	-1.2770696	0.09285142	4.8253E-43
	histidine betaine (hercynine)*	1	1.24068493	0.09046718	8.3483E-43
	рс аа с32:2	5	0.46386518	0.03590836	3.5615E-38
	pc ae c34:2	5	0.4087556	0.03164226	3.5615E-38
	1-oleoyl-2-eicosapentaenoyl-gpc (18:1/20:5)	4	-0.2323055	0.0195418	1.3726E-32
	arachidoylcarnitine (c20)*	1	-0.9189255	0.07831706	8.5934E-32
	nisinate (24:6n3)	4	-0.3856061	0.03335131	6.4236E-31
Asthma	x-11381	3	0.04781557	0.0027428	4.6252E-68
	pc ae c36:3	8	-0.021023	0.00120984	1.2411E-67
	1-oleoyl-2-eicosapentaenoyl-gpc (18:1/20:5)	4	0.02003149	0.00134398	3.0763E-50
	linoleoylcarnitine (c18:2)*	2	0.05415016	0.00374454	2.1338E-47
	docosatrienoate (22:3n6)*	3	0.0276776	0.00206776	7.3688E-41
	1-eicosapentaenoyl-gpc (20:5)	3	0.02112966	0.00162433	1.0981E-38
	1-palmitoyl-2-eicosapentaenoyl-gpc (16:0/20:5)	3	0.02159433	0.00166005	1.0981E-38
	1-dihomo-linolenoyl-gpe (20:3n3 or 6)	3	-0.016672	0.00128165	1.0981E-38

Live Demo

Specify metabolite and phenotype of interest

Users should first select an exposure (i.e., metabolites) and an outcome (i.e., diseases) of interest.

SNP Filtering & Harmonization

- Multiple SNPs could be identified as potential instrumental variables (IV) from the mGWAS and GWAS studies.
- > To perform proper 2SMR, the IVs should be
 - Independent (i.e. not correlated with each other)
 - Showing strong effect (i.e. significant p-values)
 - No horizontal pleiotropy (i.e. affect the outcome only through the metabolite).
- Users need to carefully examine SNPs and apply different filtering and harmonization methods for each criterion

SNP Filtering and harmonization

To properly conduct two-sample MR analysis, the instrumental variables (IV) should be independent (i.e. not correlated with each other), showing strong effect (i.e. significant p-values), and no horizontal pleiotropy (i.e. affect the outcome only through the metabolite). The step provides following procedures to facilitate proper MR analysis: · Acquisition of independent IVs by performing linkage disequilibrium (LD) clumping. . In cases where the SNP query is absent in the outcome GWAS, a proxy SNP in LD with the input SNP, utilizing the 1000 Genomes Project (phase 3). Harmonizing exposure and outcome data to make sure that the effects of the SNPs on exposure and outcome are associated with the same allele. You should also review the table below to perform further harmonization based on other metadata (such as population, study info, etc) · To control horizontal pleiotropy, you should manually exclude SNPs that are associated with multiple metabolites. Harmonization steps require intensive O Do not check for LD between SNPs 1. LD Clumping Use clumping to prune SNPs for LD computing and also access via remote server. Do not use proxies 2. LD Proxies Use proxies and allow palindrome SNPs (advanced settings) It could take a long time or time out. Assume all alleles are presented on the forward strand Please be patient Try to infer the forward strand alleles using allele frequency information 3. Allele Harmonization Correct the strand for non-palindromic SNPs, but drop all palindromic SNPs Submit Details from the mGWAS studies Nearest Gene ↑↓ P-value 1 Study ↑↓ SNP ID ↑↓ Associated Metabolites 1 Biofluid ↑↓ Population 1 L-Cystathionine (7) L-Cystathionine <u>JRKL</u> 4.637e-08 Blood 28263315 rs117782586 European rs146276253 L-Cystathionine ANKRD13C 3.436e-08 Blood 28263315 European rs150320192 L-Cystathionine SRSF11 3.566e-08 Blood 28263315 European

Estimating the causal link via MR analysis

	analysis methods are based on the TwoSampleMR and MRInstruments R packages. Among these methods, the median estimator and MR Egger regression allow for genetic iotropy. You can use mouse-over of the corresponding question marks to learn more about each method.									
✓ Wald ratio ③	Maximum likelihood	✓ MR Egger ③								
Simple median	Weighted median	Inverse variance weighted radial	2							
Inverse variance weighted (MRE)	Inverse variance weighted (FE)	Simple mode	A total of 14 MR methods are offered currently. Some of them are more robust and can better							
Weighted mode ③	Weighted mode (NOME)	Simple mode (NOME)	tolerate violations of the assumptions to certain degree							
Sign concordance test ③	Unweighted regression ③									

- Mouse over the question marks for each method to see their main features.
- You can also find more detailed introduction on the forum:

https://omicsforum.ca/t/what-are-the-differences-between-the-mr-analysis-methods/1045

Graphical outputs from MR analysis

Forest plot compares the causal effect calculated using the methods that include all the SNPs to using each SNP separately.

Leave one out sensitivity
analysis: assesses whether a
single SNP is having a
disproportionately larger
impact on an association.
Each dot represents the MR
analysis excluding that specific
SNP using IVW method.

Scatter plot shows the relationships between SNP effects on exposure vs on the outcome. The slopes indicating the causal association

Funnel plot: Funnel shape will become more obvious with many SNPs (i.e. green box inset). Its asymmetry and wider spread may suggest horizontal pleiotropy.

Mendelian randomization results

✓ L-Cystathionine										
Methods	CAID Course	Causal Effe	ect Estimates		Hetero	eneity Tests		Horizontal Pleiotropy		
	SNP Count	Beta	SE	P value	Q	Q_df	Q_pval	Egger Intercept	SE	P value
Inverse variance weighted	6	0.041396	0.034939	0.23609	35.367	5	1.2709e-06	-	-	-
MR Egger	6	0.17071	0.057839	0.041906	14.006	4	0.0072767	-0.1179	0.047732	0.068948
Simple mode	6	0.088203	0.032068	0.040286	-	-	-	-	-	-
Weighted median	6	0.057145	0.021665	0.0083484	-	-	-	-	-	-
Weighted mode	6	0.072379	0.0219	0.021358	-	-	-	-	-	-

- The MR results are organized per metabolite (exposure).
- For metabolite, it shows the SNPs instrumental variables, along with their corresponding causal effect estimates, standard errors and p-values.
- Key values such as the MR-Egger regression intercept and its corresponding p-value are presented.
- Not all methods selected from the previous page would yield results depending on the data used.

Hands-on time

Summary & Conclusion

The evolution of data analytics

An ecosystem for omics data analysis

General workflow for multi-omics

Qualitative Integration

Quantitative Integration

natureprotocols

Explore content > About the journal > Publish with us >

nature > nature protocols > protocols > article

Protocol Published: 14 February 2024

Web-based multi-omics integration using the Analyst software suite

Jessica D. Ewald, Guangyan Zhou, Yao Lu, Jelena Kolic, Cara Ellis, James D. Johnson, Patrick E.

Macdonald & Jianguo Xia □

Nature Protocols (2024) Cite this article

Leveraging AI co-pilot for productivity

Towards conversational analytics

Key Features in "Pro" version

Acknowledgements

If you have any questions, please read/post into OmicsForum (https://omicsforum.ca)

Contact us:

- zhiqiang.pang@xialab.ca
- jeff.xia@xialab.ca

Omics Data Science course:

- Summer Bootcamp
 - Aug. 5 9, **9:30 16:30**
- Regular Session
 - Saturday morning 9:30 12:00,
 Sept. Nov.

