Sets

Notation: Element

Let A be a set. The notation $a \in A$ indicates that *element* a is in set A.

Definition: Subset

Let A and B be sets. To say that A is a *subset* of B, denoted by $A \subset B$, means that:

$$a \in A \implies a \in B$$

In particular, a set is a subset of itself $(A \subset A)$ and the empty set \emptyset is a subset of every other set.

Definition: Equality

Let A and B be sets. To say that A is *equal* to B, denoted by A=B, means that:

$$a \in A \iff a \in B$$

or alternatively:

$$A \subset B$$
 and $B \subset A$

Definition: Proper

Let A and B be sets. To say that A is a *proper* subset of B, denoted by $A \subsetneq B$, means that $A \subset B$ but $A \neq B$. Thus, $B \not\subset A$, meaning $\exists \, b \in B, b \notin A$.

Definition: Operations

Let A, B, and X be sets such that $A, B \subset X$:

Union: $A \cup B = \{x \in X \mid x \in A \text{ or } x \in B\}$

Intersection: $A \cap B = \{x \in X \mid x \in A \text{ and } x \in B\}$

Complement: $X - A = \{x \in X \mid x \notin A\}$

When X is understood, X - A can be denoted by A^C .

Theorem: DeMorgan

Let A_1 , A_2 , and X be sets such that A_1 , $A_2 \subset X$:

$$(A_1 \cup A_2)^C = A_1^C \cap A_2^C (A_1 \cap A_2)^C = A_1^C \cup A_2^C$$

Proof. Assume $x \in X$:

$$x \in (A_1 \cup A_2)^C \iff x \notin A_1 \cup A_2$$

$$\iff x \notin A_1 \text{ and } x \notin A_2$$

$$\iff x \in A_1^C \text{ and } x \in A_2^C$$

$$\iff x \in A_1^C \cap A_2^C$$

$$\therefore (A_1 \cup A_2)^C = A_1^C \cap A_2^C$$

$$x \in (A_1 \cap A_2)^C \iff x \notin A_1 \cap A_2$$

$$\iff x \notin A_1 \text{ or } x \notin A_2$$

$$\iff x \in A_1^C \text{ or } x \in A_2^C$$

$$\iff x \in A_1^C \cup A_2^C$$

Notation

Let X be a set and let $\{A_{\alpha} : \alpha \in \lambda\}$ be a family of sets such that $A_{\alpha} \subset X$:

$$\bigcup_{\alpha \in \lambda} A_{\alpha} = \{ x \in X \mid \exists \alpha \in \lambda, x \in A_{\alpha} \}$$
$$\bigcap_{\alpha \in \lambda} A_{\alpha} = \{ x \in X \mid \forall \alpha \in \lambda, x \in A_{\alpha} \}$$

Theorem: General DeMorgan

Let X be a set and let $\{A_{\alpha}: \alpha \in \lambda\}$ be a family of sets such that $A_{\alpha} \subset X$:

$$\left(\bigcup_{\alpha \in \lambda} A_{\alpha}\right)^{C} = \bigcap_{\alpha \in \lambda} A_{\alpha}^{C}$$

$$\left(\bigcap_{\alpha \in \lambda} A_{\alpha}\right)^{C} = \bigcup_{\alpha \in \lambda} A_{\alpha}^{C}$$

Proof. Assume $x \in X$:

$$x \in \left(\bigcup_{\alpha \in \lambda} A_{\alpha}\right)^{C} \iff x \notin \bigcup_{\alpha \in \lambda} A_{\alpha}$$

$$\iff \forall \alpha \in \lambda, x \notin A_{\alpha}$$

$$\iff x \in \bigcap_{\alpha \in \lambda} A_{\alpha}^{C}$$

$$\therefore \left(\bigcup_{\alpha \in \lambda} A_{\alpha}\right)^{C} = \bigcap_{\alpha \in \lambda} A_{\alpha}^{C}$$

$$\Leftrightarrow x \notin \bigcap_{\alpha \in \lambda} A_{\alpha}$$

$$\iff \exists \alpha \in \lambda, x \notin A_{\alpha}$$

$$\iff \exists \alpha \in \lambda, x \notin A_{\alpha}$$

$$\iff \exists \alpha \in \lambda, x \in A_{\alpha}^{C}$$

$$\iff x \in \bigcup_{\alpha \in \lambda} A_{\alpha}^{C}$$

$$\Leftrightarrow x \in \bigcup_{\alpha \in \lambda} A_{\alpha}^{C}$$

$$\Leftrightarrow x \in \bigcup_{\alpha \in \lambda} A_{\alpha}^{C}$$

$$\Leftrightarrow x \in \bigcup_{\alpha \in \lambda} A_{\alpha}^{C}$$