PRINCIPLES OF ANALYSIS PROBLEM SET D

PAUL L. BAILEY

ABSTRACT. The problems are taken from the book and are due Thursday, November $20,\,2003.$

Problem 1 (Exercise 3.19). Let $f,g:D\to\mathbb{R}$ be uniformly continuous. Show that the function $f+g:D\to\mathbb{R}$ is uniformly continuous. What can be said about the function $fg:D\to\mathbb{R}$? Justify.

Problem 2 (Exercise 3.20). Let $f:A\to B$ and $g:B\to C$ be uniformly continuous. What can be said about the function $g\circ f:A\to C$? Justify.

Problem 3 (Exercise 3.23). A function $f: \mathbb{R} \to \mathbb{R}$ is *periodic* if there exists $h \in \mathbb{R}$ with h > 0 such that f(x + h) = f(x) for all $x \in \mathbb{R}$. Show that if $f: \mathbb{R} \to \mathbb{R}$ is periodic and continuous, then it is uniformly continuous.

Problem 4 (Exercise 3.31). Suppose $f:[a,b]\to\mathbb{R}$ and $g:[a,b]\to\mathbb{R}$ are continuous. Let $T=\{x\in[a,b]\mid f(x)=g(x)\}$. Show that T is closed.

Problem 5 (Exercise 3.44). Suppose that $f:[a,b] \to [a,b]$ is continuous. Show that f has a *fixed point*, that is, there exists $x \in [a,b]$ such that f(x) = x.

Department of Mathematics and CSCI, Southern Arkansas University $E\text{-}mail\ address$: plbailey@saumag.edu

Date: November 11, 2003.