

Data Advanced

Hoofdstuk 4

Machine Learning

DE HOGESCHOOL MET HET NETWERK

Hogeschool PXL – Elfde-Liniestraat 24 – B-3500 Hasselt www.pxl.be - www.pxl.be/facebook

Inhoud

- 1. Inleiding
- 2. Historiek
- 3. ML problemen herkennen
- 4. Wanneer ML gebruiken?
- 5. Het ML proces
 - 1. Type ML problemen
 - 2. Data
 - 3. ML algoritme
- 6. Types van ML problemen
 - 1. Classificatie
 - 2. Regressie
 - 3. Clustering
 - 4. Recommendations
- 7. ML problemen uitgewerkt
- 8. Bronnen

1. Inleiding

- Frequent gehoorde term
- Wiskunde statistiek?
- Machines zelfstandig taken uitvoeren
- Supervised
 - Classificatie
 - Regressie
- Unsupervised
 - Clustering
 - Recommendations

2. Historiek

Arthur Samuel (jaren '50): schaakspel

Frank Rosenblatt: perceptron

• Stanford University (1979): bewegende robot

3. ML problemen herkennen

- Voorbeeld: Alien
- Klassieke aanpak

ML aanpak

3. ML problemen herkennen: vb

Netflix

- E-mail: spam ⇔ geen spam
- Zelfrijdende auto
- Slimme thermostaat
- Gezichtsherkenning

4. Wanneer ML gebruiken?

- Google Maps
 - Statische aanpak
 - Dynamische aanpak
- Vuistregels
 - Moeilijk om regels op te stellen
 - Grote set historische data voorhanden?
 - Relaties zijn dynamisch

5. Het ML - proces

- 3 stappen
 - Welk type ML?
 - Welke data?
 - Welk algoritme?

5. Type – Data – ML Algoritme

- Type
 - Supervised
 - Classificatie: Naive Bayes, ...
 - Regressie
 - Unsupervised
 - Clustering: K means clustering, ...
 - Recommendations
- Data
- ML algoritme

6. Types van ML - algoritmen

Classificatie

Regressie

Clustering

Recommendations

Classificatie

- Classification problem statement
- Features
- Training
- Testing

7. Classificatie: uitgewerkt

- Sentiment Analysis
 - Doel: tweet positief of negatief
 - Categorieën: positief / negatief
 - Classifier: Naive Bayes Algoritme
 - Training data: tweets reeds geclassificeerd
- PluralSight: How to think about Machine Learning Algorithms:
 - 4. Solving Classification Problems
 - Implementing Naive Bayes

7. Classificatie: uitgewerkt

- Reclame blokker
 - Doel: advertentie reclame of niet?
 - Categorieën: reclame / geen reclame
 - Classifier: Support Vector Machine Algoritme
 - Training data: advertenties reeds geclassificeerd
- Pluralsight: How to think about Machine Learning Algorithms:
 - 4. Solving Classification Problems
 - Implementing Suport Vector Machine

- Regressie
 - Voorspellen continue variabele
 - Verband tussen 2 variabelen

- Problem Statement
- Features
- Training
- Testing

7. Regressie: uitgewerkt

Methode van de kleinste kwadraten

- PluralSight: How to think about Machine Learning Algorithms:
 - 6. Solving Regression Problems
 - Minimizing Error Using Stochastic Gradient Descent
 - Implementing Linear Regression in Python

Clustering

- Dataset
- Features
- Algoritme

Classificatie ⇔ Clustering

7. Clustering: uitgewerkt

- Dataset: set van documenten
- Algoritme: K means
 - Stap 1
 - Stap 2
 - Stap 3
- PluralSight: How to think about Machine Learning Algorithms:
 - 8. Clustering Large Data Sets into Meaninful Groups
 - Implementing K means Clustering

Recommendations

Nieuwe noden – trouw blijven

- Voorbeelden
 - Top 10 films
 - Browser geschiedenis

7. Recommendations: uitgewerkt

- Collaborative Filtering
- Latent Factor Analysis
- PluralSight: How to think about Machine Learning Algorithms:
 - 7. Recommending Relevant Producst to a user
 - Implementing Alternvative Least Squares to find movie Recommendations