Залікова робота з Чисельних методів розв'язання диференціальних та інтегральних рівнянь

Захаров Дмитро, Варіант 12

27 травня, 2025

Зміст

1	Задача 1. Метод прогонки.			
	1.1	Дискретизація похідних	2	
	1.2	Метод прогонки	4	
	1.3	Розв'язання системи рівнянь	5	
2	Задача 2. Метод сіток.			
	2.1	Явна схема	6	
	2.2	Неявна схема	7	
3	Задача 3. Інтегральне рівняння.			
	3.1	Теорія	8	
	3.2	Фактичний розв'язок	8	

Задача 1. Метод прогонки.

Умова 1.1. Метод диференціальної прогонки розв'язання граничної задачі для звичайного диференціального рівняння.

Відповідь. Розглянемо рівняння другого порядку

$$\begin{cases} \mathcal{L}[y] = y'' + p(x)y' + q(x)y = f(x), & x \in (a, b), \\ e_0[y] := r_0 y(a) + m_0 y'(a) = \nu_0, \\ e_1[y] := r_1 y(b) + m_1 y'(b) = \nu_1, \end{cases}$$

Метод прогонки полягає в по-перше дискретизації області (a,b) на n рівних частин таким чином, що $x_i=a+ih$, де h=(b-a)/n та $i\in[0,n]$. Далі, дискретизувавши похідні в рівняннні та граничні умови, отримуємо систему рівнянь відносно наближених значень $y_i=y(x_i), i\in\{0,\ldots,n\}$. Проте для цього спочатку розглянемо, як саме дискретизувати похідні.

1.1 Дискретизація похідних

Із представлення $y_{j+1}=y_j+hy_j'+\mathcal{O}(h^2)$ маємо $y_j'=\frac{y_{j+1}-y_j}{h}+\mathcal{O}(h)$. Аналогічно $y_j'=\frac{y_j-y_{j-1}}{h}+\mathcal{O}(h)$. Таким чином, будемо позначати через

$$\Delta_{x_i^+} y \triangleq \frac{y_{i+1} - y_i}{h}, \quad i \in \{0, \dots, n-1\},$$

 $\Delta_{x_i^-} y \triangleq \frac{y_i - y_{i-1}}{h}, \quad i \in \{1, \dots, n\}.$

праву та ліву похідні відповідно. Проте, на практиці, якщо ми не знаходимось на краю області, то можна використовувати центральну похідну, що дає квадратичну помилку замість лінійної. Для цього запишемо розкладання:

$$y_{j+1} = y_j + hy'_j + \frac{h^2}{2}y''_j + \mathcal{O}(h^3),$$

$$y_{j-1} = y_j - hy'_j + \frac{h^2}{2}y''_j + \mathcal{O}(h^3).$$

Таким чином, відніявши від першого рівняння друге, отримаємо:

$$y'_j = \frac{y_{j+1} - y_{j-1}}{2h} + \mathcal{O}(h^2).$$

Таким чином, природньо ввести центральну похідну як

$$\Delta_{x_i} y \triangleq \frac{y_{i+1} - y_{i-1}}{2h}, \quad i \in \{1, \dots, n-1\}.$$

Нарешті, знайдемо вирази для других похідних. Запишемо розкладання, проте для більшої кількості точок:

$$y_{j+1} = y_j + hy'_j + \frac{h^2}{2}y''_j + \frac{h^3}{6}y'''_j + \mathcal{O}(h^4),$$

$$y_{j-1} = y_j - hy'_j + \frac{h^2}{2}y''_j - \frac{h^3}{6}y'''_j + \mathcal{O}(h^4).$$

Якщо додати ці два рівняння, отримаємо:

$$y_j'' = \frac{y_{j+1} - 2y_j + y_{j-1}}{h^2} + \mathcal{O}(h^2).$$

Таким чином, вводимо дискретизацію другої похідної як

$$\Delta_{x_i}^2 y \triangleq \frac{y_{i+1} - 2y_i + y_{i-1}}{h^2}, \quad i \in \{1, \dots, n-1\}.$$

Нарешті, нам потрібно дискретизувати граничні умови, тобто знайти умови на y'(a) та y'(b):

$$\begin{cases} y_1 = y_0 + hy_0' + \frac{h^2}{2}y_0'' + \mathcal{O}(h^3), \\ y_2 = y_0 + 2hy_0' + 2h^2y_0'' + \mathcal{O}(h^3). \end{cases}$$

В такому разі,

$$y_0' = \frac{-3y_0 + 4y_1 - y_2}{2h} + \mathcal{O}(h^2), \quad \Delta_{x_0} y \triangleq \frac{-3y_0 + 4y_1 - y_2}{2h}.$$

Аналогічно для правої границі:

$$\Delta_{x_n} y \triangleq \frac{3y_n - 4y_{n-1} + y_{n-2}}{2h}$$

Таким чином, ми вивели наступні наближення:

Похідна	Оператор	Дискретизація
$y'(x_i)$	$\Delta_{x_i} y$	$\frac{y_{i+1}-y_{i-1}}{2h}, i \neq 1, n$
$y''(x_i)$	$\Delta_{x_i}^2 y$	$\left \frac{y_{i+1} - 2y_i + y_{i-1}}{h^2}, i \neq 1, n \right $
y'(a)	$ig \Delta_{x_0} y$	$ \begin{array}{c} h^2, & t \neq 1, H \\ \frac{-3y_0 + 4y_1 - y_2}{2h} \end{array} $
y'(b)	$\Delta_{x_n} y$	$\frac{3y_n - 4y_{n-1}^{2h} + y_{n-2}}{2h}$

Табл. 1: Дискретизація похідних

1.2 Метод прогонки

Отже, підставимо ці дискретизації в рівняння та граничні умови. Додатково позначимо $p_i:=p(x_i),\,q_i:=q(x_i),\,f_i=f(x_i).$ Тоді:

$$\begin{cases} \frac{y_{i-1} - 2y_i + y_{i+1}}{h^2} + p_i \frac{y_{i+1} - y_{i-1}}{2h} + q_i y_i = f_i, i \in \{1, \dots, n-1\}, \\ r_0 y_0 + m_0 \cdot \frac{-3y_0 + 4y_1 - y_2}{2h} = \nu_0, \\ r_1 y_n + m_1 \cdot \frac{3y_n - 4y_{n-1} + y_{n-2}}{2h} = \nu_1. \end{cases}$$

Отже, ми отримали систему лінійних рівнянь відносно y_i , $i \in \{0, \ldots, n\}$. Тепер, нам залишилось лише звести цю систему до тридіагонального вигляду, щоб надалі скористатися чисельними методами лінійної алгебри. Для цього нам потрібно "полагодити" граничні умови. Запишемо перші два рівняння системи:

$$\begin{cases} \frac{y_0 - 2y_1 + y_2}{h^2} + p_1 \frac{y_2 - y_0}{2h} + q_1 y_1 = f_1, \\ \left(r_0 - \frac{3m_0}{2h}\right) y_0 + \frac{2m_0}{h} y_1 - \frac{m_0}{2h} y_2 = \nu_0, \end{cases}$$

Складемо ці два рівняння, помноживши перше на $\frac{m_0}{2h}$, а друге на $\frac{1}{h^2}+\frac{p_1}{2h}$:

$$\underbrace{\left[\frac{m_0}{2h}\left(\frac{1}{h^2} - \frac{p_1}{2h}\right) + \left(\frac{1}{h^2} + \frac{p_1}{2h}\right)\left(r_0 - \frac{3m_0}{2h}\right)\right]}_{:=\gamma_0} y_0$$

$$+ \underbrace{\left[\frac{m_0}{2h}\left(q_1 - \frac{2}{h^2}\right) + \frac{2m_0}{h}\left(\frac{1}{h^2} + \frac{p_1}{2h}\right)\right]}_{:=\gamma_1} y_1 = \underbrace{\frac{m_0}{2h}f_1 + \nu_0\left(\frac{1}{h^2} + \frac{p_1}{2h}\right)}_{:=\tilde{f}_0}$$

Таким чином, отримали: $\gamma_0 y_0 + \gamma_1 y_1 = \widetilde{f}_0$. Для правої границі аналогічно можна отримати $\eta_{n-1} y_{n-1} + \eta_n y_n = \widetilde{f}_n$, де

$$\eta_{n-1} = \frac{m_1}{2h} \left(q_{n-1} - \frac{2}{h^2} \right) + \frac{2m_1}{h} \left(\frac{1}{h^2} - \frac{p_{n-1}}{2h} \right)$$

$$\eta_n = \frac{m_1}{2h} \left(\frac{1}{h^2} + \frac{p_{n-1}}{2h} \right) - \left(r_1 + \frac{3m_1}{2h} \right) \left(\frac{1}{h^2} - \frac{p_{n-1}}{2h} \right)$$

$$\widetilde{f}_n = \frac{m_1}{2h} f_{n-1} - \left(\frac{1}{h^2} - \frac{p_{n-1}}{2h} \right) \nu_1$$

Таким чином, отримали тридіагональну систему рівнянь:

$$\begin{cases} \gamma_0 y_0 + \gamma_1 y_1 = \widetilde{f}_0 \\ \left(\frac{1}{h^2} - \frac{p_i}{2h}\right) y_{i-1} + \left(\frac{2}{h^2} + q_i\right) y_i + \left(\frac{1}{h^2} + \frac{p_i}{2h}\right) y_{i+1} = f_i, \quad i \in \{1, \dots, n-1\} \\ \eta_{n-1} y_{n-1} + \eta_n y_n = \widetilde{f}_n \end{cases}$$

Або можна явно ввести вектор $\boldsymbol{f}=(\widetilde{f}_0,f_1,\ldots,f_{n-1},\widetilde{f}_n)\in\mathbb{R}^{n+1}$ і наступну матрицю системи $M\in\mathbb{R}^{(n+1)\times(n+1)}$:

$$M = \begin{pmatrix} \gamma_0 & \gamma_1 & 0 & \dots & 0 \\ \frac{1}{h^2} - \frac{p_1}{2h} & \frac{2}{h^2} + q_1 & \frac{1}{h^2} + \frac{p_1}{2h} & 0 & \dots & 0 \\ 0 & \frac{1}{h^2} - \frac{p_2}{2h} & \frac{2}{h^2} + q_2 & \frac{1}{h^2} + \frac{p_2}{2h} & 0 & \dots & 0 \\ \vdots & 0 & 0 & \ddots & 0 & 0 \\ 0 & 0 & 0 & 0 & \eta_{n-1} & \eta_n \end{pmatrix}$$

Тоді система рівнянь має вигляд $M\mathbf{y} = \mathbf{f}$, де $\mathbf{y} = (y(x_0), \dots, y(x_n)) \in \mathbb{R}^{n+1}$ — наближені значення в точках сітки.

1.3 Розв'язання системи рівнянь

Це рівняння можна розв'язати за допомогою методу прогонки (тому і метод називається так само). Скоротимо позначення і розглянемо таку систему:

$$\begin{cases} y_0 = k_0 y_1 + b_0, \\ \alpha_i y_{i-1} + \beta_i y_i + \gamma_i y_{i+1} = b_i, & i \in \{1, \dots, n-1\}, \\ y_n = k_1 y_{n-1} + b_n. \end{cases}$$

Ідея прогонки — шукати розв'язок у вигляді $y_i=\lambda_i y_{i+1}+\mu_i$, де λ_i,μ_i — прогоночні коефіцієнти. Щоб не розписувати це питання на ще одну сторінку, наведемо рекурентні формули для обрахунку цих коефіцієнтів:

$$\lambda_i = -\frac{\gamma_i}{\alpha_i \lambda_{i-1} + \beta_i}, \quad \mu_i = \frac{b_i - \alpha_i \mu_{i-1}}{\beta_i + \alpha_i \lambda_{i-1}}, \quad i \neq 1, n$$

Початкові умови $\lambda_0=k_0$ та $\mu_0=b_0$. Знайшовши усі λ_i та μ_i , йдемо у зворотньому напрямку. Маємо

$$y_n = \frac{k_1 \mu_{n-1} + b_n}{1 - k_1 \lambda_{n-1}}, \quad y_j = \lambda_j y_{j+1} + \mu_j, \quad j \in \{n - 1, \dots, 0\}.$$

Таким чином, отримали доволі простий спосіб за лінійну $\mathcal{O}(n)$ складність розв'язати спеціальний вид лінійної системи рівнянь.

2 Задача 2. Метод сіток.

Умова 2.1. Метод сіток чисельного розв'язання рівнянь еліптичного типу.

Відповідь. Нехай маємо рівняння для $(x,t) \in [0,\ell] \times [0,T]$:

$$\begin{cases} \frac{\partial u}{\partial t} - a^2 \frac{\partial^2 u}{\partial x^2} = f(x, t) \\ u(x, 0) = \varphi(x), \ u(0, t) = \psi(t), \ u(\ell, t) = \xi(t) \end{cases}$$

Дискретизація в методі сіток відбувається в обидва напрямки. Нехай маємо сітку $n \times m$ з кроками $h = \frac{\ell}{n}$ та $\tau = \frac{T}{m}$. Апроксимація похідних в такому вигляді виглядає наступним чином, якщо позначити $u_{i,j} = u(x_i, t_j)$:

$$\frac{\partial u}{\partial t}\Big|_{(x_i,t_j)} \approx \frac{u_{i,j+1} - u_{i,j}}{\tau}$$

$$\frac{\partial^2 u}{\partial x^2}\Big|_{(x_i,t_j)} \approx \frac{u_{i-1,j} - 2u_{i,j} + u_{i+1,j}}{h^2}$$

Якщо позначити $f_{i,j} := f(x_i, t_j)$, то отримаємо наступну систему:

$$\frac{u_{i,j+1} - u_{i,j}}{\tau} = a^2 \cdot \frac{u_{i-1,j} - 2u_{i,j} + u_{i+1,j}}{h^2} + f_{i,j}$$

Крайові умови допомогають встановити нам значення на краях сітки. Зокрема, для наведеного вище рівняння, маємо наступні граничні умови на сітці: $u_{i,0} = \varphi(x_i), u_{0,j} = \psi(t_j), u_{n,k} = \xi(t_k).$

2.1 Явна схема

Розглянемо, як саме розв'язати цю систему. Для цього, спочатку виразимо $u_{i,j+1}$ через $u_{i-1,j},\,u_{i,j}$ та $u_{i+1,j}$:

$$u_{i,j+1} = u_{i,j} + \frac{a^2\tau}{h^2}(u_{i-1,j} - 2u_{i,j} + u_{i+1,j}) + \tau f_{i,j}$$

Таким чином, невідоме значення вузла на наступному часовому шарі залежить лише від значень вузлів на поточному часовому шарі. Причому, початковий шар ми повністю знаємо: це і є гранична умова ($\{u_{i,0}\}_{i\in\{0,\dots,n\}}$). Отже, можемо послідовно брати шар $j\in\{0,\dots,m\}$ і обчислювати його, маючи значення на попередньому шарі j-1.

Така схема є стійкою, якщо $\frac{a^2\tau}{h^2} \leq \frac{1}{2}$, або ж просто $\tau \leq \frac{h^2}{2a^2}$. Бачимо, що крок за часом має бути сильно менший за крок по простору. Тому, потрібно розглянути метод, що дає меншу похибку.

2.2 Неявна схема

По суті, використовується те саме рівняння, але для знаходження похідної за часом на j-ому шарі, використовуємо поперешній шар j-1:

$$\frac{a^2}{h^2}u_{i-1,j} - \left(\frac{2a^2}{h^2} + \frac{1}{\tau}\right)u_{i,j} + \frac{a^2}{h^2}u_{i+1,j} = -\frac{u_{i,j-1}}{\tau} - f_{i,j}$$

Метод розв'язання наступний: починаємо з шару j=1 (бо нульовий шар нам заданий). Маємо систему лінійних рівнянь відносно $\{u_{i,j}\}_{i\in\{1,\dots,n-1\}}$, бо $u_{0,j}$ та $u_{n,j}$ нам відомі з граничних умов. Випишемо її явно:

$$\begin{cases} -\left(\frac{2a^2}{h^2} + \frac{1}{\tau}\right)u_{1,1} + \frac{a^2}{h^2}u_{2,1} = -\frac{u_{1,0}}{\tau} - \frac{a^2}{h^2}u_{0,1} - f_{1,1} \\ \frac{a^2}{h^2}u_{i-1,1} - \left(\frac{2a^2}{h^2} + \frac{1}{\tau}\right)u_{i,1} + \frac{a^2}{h^2}u_{i+1,1} = -\frac{u_{i,0}}{\tau} - f_{i,1} \\ \frac{a^2}{h^2}u_{n-2,1} - \left(\frac{2a^2}{h^2} + \frac{1}{\tau}\right)u_{n-1,1} = -\frac{a^2}{h^2}u_{n,1} - \frac{u_{n,0}}{\tau} - f_{n-1,1} \end{cases}$$

Ця матриця є діагонально домінуючою, оскільки $\left|\frac{2a^2}{h^2}+\frac{1}{\tau}\right|>\frac{2a^2}{h^2}$, тому розв'язок цієї системи є стійким.

Далі ця дія повторюється для кожного наступного шару $j \in \{2, \ldots, m\}$. Тобто, ми маємо систему лінійних рівнянь відносно $\{u_{i,j}\}_{i \in \{1,\ldots,n-1\}}$, де $u_{0,j}$ та $u_{n,j}$ нам відомі з граничних умов. Це дозволяє знайти усі значення $u_{i,j}$.

3 Задача 3. Інтегральне рівняння.

Умова 3.1. Розв'язати наступне інтегральне рівняння:

$$y(x) = x^2 + \lambda \int_{-1}^{1} (x+t)y(t)dt$$

Розв'язання. Маємо ядро інтеграла K(x,t)=x+t, що є виродженим, оскільки його можна записати у вигляді $K(x,t)=\sum_{i=1}^n f_i(x)g_i(t)$. В нашому випадку $f_1(x)=x,g_1\equiv 1,\,f_2\equiv 1,\,g_2(t)=t$.

3.1 Теорія

Звернемося до теорії. В рівнянні $y(x)=f(x)+\lambda\sum_{i=1}^n f_i(x)\int_a^b g_i(t)y(t)dt$, розв'язок шукаємо у вигляді $y(x)=f(x)+\lambda\sum_{i=1}^n c_i f_i(x)$, де $c_i=\int_a^b g_i(t)y(t)dt$. В такому разі, система зведеться до вигляду

$$c_i - \lambda \sum_{j=1}^n \alpha_{ij} c_j = f_i, \quad i = 1, \dots, n,$$

де в якості $\alpha_{ij}=\int_a^b g_i(t)f_j(t)dt$ та $f_i:=\int_a^b g_i(t)f(t)dt.$

3.2 Фактичний розв'язок

Перейдемо до практики. Маємо два невідомих коефіцієнта c_1 та c_2 . Тоді, розв'язок шукається у вигляді $y(x)=x^2+\lambda c_1x+\lambda c_2$. Знаходимо коефіцієнти α_{ij} та f_i з формул вище:

$$f_1 = \int_{-1}^{1} 1 \cdot t^2 dt = \frac{2}{3}, \quad f_2 = \int_{-1}^{1} t \cdot t^2 dt = 0,$$

Нарешті, коефіцієнти α_{ij} :

$$\alpha_{11} = \int_{-1}^{1} 1 \cdot x dx = 0, \quad \alpha_{12} = \int_{-1}^{1} 1 \cdot 1 dt = 2,$$

$$\alpha_{21} = \int_{-1}^{1} t^{2} dx = \frac{2}{3}, \quad \alpha_{22} = \int_{-1}^{1} t dt = 0.$$

Тому, отримали систему:

$$\begin{cases} c_1 - 2\lambda c_2 = \frac{2}{3} \\ c_2 - \frac{2}{3}\lambda c_1 = 0 \end{cases}$$

Звідси маємо $c_2=\frac{2}{3}\lambda c_1$, підставляючи у перше, маємо $c_1-\frac{4}{3}\lambda^2 c_1=\frac{2}{3}$, звідки $c_1=\frac{2}{3-4\lambda^2}$. Тому, $c_2=\frac{4\lambda}{9-12\lambda^2}$. Остаточно:

$$y(x) = x^2 + \frac{2\lambda}{3 - 4\lambda^2}x + \frac{4\lambda^2}{9 - 12\lambda^2}.$$

Відповідь.
$$y(x)=x^2+\frac{2\lambda}{3-4\lambda^2}x+\frac{4\lambda^2}{9-12\lambda^2}.$$