Stammfunktion und unbestimmtes Integral

Grundintegrale (+ c jeweils weggelassen)

e / ln	$\sin / \cos / \tan$	allgemein
$\int e^x \cdot dx = e^x$	$\int \sin^2(x) \cdot dx = \frac{x}{2} - \frac{1}{2} \cdot \sin(x) \cdot \cos(x)$	$\int x^n \cdot dx = \frac{x^{n+1}}{n+1} + c, n \neq 1$
$\int e^{-2x} = \frac{e^{-2x}}{-2}$	$\int \cos^2(x) \cdot dx = \frac{1}{2}(x + \sin(x) \cdot \cos(x))$	$\int \frac{1}{\sqrt{a^2 - x^2}} = \arcsin \frac{x}{ a }$
$\int \frac{1}{e} = \frac{x}{e}$	$\int tan^2(x) = tan(x) - x$	$\int a^x \cdot dx = \frac{a^x}{\ln(a)} + c, a > 0, a \neq 1$
$\int be^{ax} \cdot dx = \frac{b}{a}e^{ax}$	$\int \frac{1}{\sin(x)} = \ln(\sin(\frac{x}{2})) - \ln(\cos(\frac{x}{2}))$	$\int e^{\ln(a)\cdot x} \cdot dx = \frac{a^x}{\ln(a)} + c, a > 0, a \neq 1$
$\int e^{-2x+1} = \frac{e^{-2x+1}}{-2}$	$\int \frac{1}{\cos(x)} = \ln(\sin(\frac{x}{2}) + \cos(\frac{x}{2})) - \ln(\cos(\frac{x}{2}) - \sin(\frac{x}{2}))$	$\int \frac{1}{x^2} = -\frac{1}{x}$
$\int \frac{1}{x} \cdot dx = \ln x $	$\int \frac{1}{\tan(x)} = \ln(\sin(x))$	$\int \frac{1}{x} \cdot dx = \ln x $
$\int \frac{1}{x-5} \cdot dx = \ln x-5 $	$\int \frac{1}{\sin^2(x)} = -\cot(x)$	$\int \frac{1}{x^2 + a^2} \cdot dx = \frac{1}{a} \cdot arctan(\frac{x}{a})$
$\int \frac{1}{2x-5} \cdot dx = \ln x-5 $	$\int \frac{1}{\cos^2(x)} = \tan(x)$	$\int \frac{1}{1+x^2} \cdot dx = tan^{-1}(x)$
$\int \frac{1}{e^x} = -e^{-x}$	$\int \frac{1}{\tan^2(x)} = -x - \cot(x)$	$\int \frac{1}{1+x^2} \cdot dx = \frac{1}{2}(\ln(x+1) - \ln(1-x))$
$\int \ln(x)dx = x\ln(x) - x$	$\int x \cdot \sin(x) \cdot dx = \sin(x) - x \cdot \cos(x)$	$\int \frac{1}{\sqrt{x}} = 2\sqrt{x}$
$\int x \cdot \ln(x) dx = \frac{1}{4}x^2 (2 \cdot \ln(x) - 1)$	$\int 2x \cdot \sin(x) \cdot dx = 2\sin(x) - 2x \cdot \cos(x)$	Tipps
	$\int x \cdot \cos(x) \cdot dx = x \cdot \sin(x) + \cos(x)$	$tan = \frac{sin}{cos}$ $e^{ln(x)} = x$
	$\int 2x \cdot \cos(x) \cdot dx = 2x \cdot \sin(x) + 2\cos(x)$	$e^{ln(x)} = x$
	$\int \frac{\sin(x)}{\cos(x)} = \int \tan(x) = -\ln(\cos(x))$	$ln(e^x) = x$
	$\int \sin(ax) \cdot dx = \frac{1}{a} \left(\frac{ax}{2} - \frac{1}{2} \cdot \sin(ax) \cdot \cos(ax) \right)$	$u^{\frac{3}{2}} = (u^{\frac{1}{2}})^3 = \sqrt{u}^3 = u \cdot \sqrt{u}$
	$\int \sin(x) \cdot \cos(x) \cdot dx = -\frac{1}{2}\cos^2(x)$	$ln(x)' = \frac{1}{x}$
	$\int tan(x) \cdot cos(x) \cdot dx = \int sin(x) \cdot dx = -cos(x)$	$(e^x)' = e^x$

Elementare Rechenregeln

Regel vom konstanten Faktor

$$\int k \cdot f(x) \cdot dx = k \cdot F(x) + c$$

${\bf Skalierung sregel}$

$$\int f(k \cdot x) \cdot dx = \frac{F(k \cdot x)}{k} + c$$

Translationsregel

$$\int f(x+k) \cdot dx = F(x+k) + c$$

$$\bullet \int \frac{1}{x-6} \cdot dx = \ln|x-6| + c$$

Summenregel

$$\int f(x) \pm g(x) \cdot dx = F(x) \pm G(x) + c$$

•
$$\int (8x^3 - 4x + 2) \cdot dx = 8 \cdot \frac{x^4}{4} - 4 \cdot \frac{x^2}{2} + 2x + c = 2x^4 - 2x^2 + 2x + c$$

Produkteregel / Partielle Integration

$$\int f(x) \cdot g(x) \cdot dx = F(x) \cdot g(x) - \int F(x) \cdot g'(x) \cdot dx$$

Bemerkung: Hier wurde x^2 jeweils abgeleitet und e^x integriert.

•
$$\int x \cdot \cos(x) \cdot dx = \sin(x) \cdot x - \int 1 \cdot \sin(x) \cdot dx = \sin(x) \cdot x + \cos(x) + c$$

Bemerkung: Hier wurde x abgeleitet und cos(x) integriert.

Integration und Substitution

- $\int f(u(x)) \cdot u' \cdot dx = \int f(u) \cdot du$
- $\int \frac{u'(x)}{u(x)} dx = \int \frac{du}{u} = \ln|u| + c$
- $\frac{dx}{du} = u'(x)$

Trick: Zähler eines Bruches so korrigieren, das es der Ableitung der Funktion entspricht. Anschliessend kann $u' \cdot dx$ durch du ersetzt werden.

$$\bullet \int \frac{1}{(4x+5)^3} \cdot dx = \frac{1}{4} \cdot \int \frac{4}{(4x+5)^3} \cdot dx = \frac{1}{4} \cdot \int \frac{u'}{u^3} \cdot dx = \frac{1}{4} \cdot \int \frac{du}{u^3} = \frac{1}{4} \cdot \frac{u^{-2}}{-2} + c = -\frac{1}{8u^2} + c = -\frac{1}{8} \cdot \frac{1}{(4x+e)^2} + c \text{ wobei } dx = \frac{du}{u}$$

$$\bullet \int \frac{x}{\sqrt{a^2 - x^2}} \cdot dx = \int \frac{x}{\sqrt{u}} \cdot dx = \int \frac{x}{\sqrt{u}} \cdot \frac{du}{u'} = \int \frac{x \cdot du}{-2x \cdot \sqrt{u}} = -\int \frac{du}{2 \cdot \sqrt{u}} = -\frac{1}{2} \cdot u^{\frac{1}{2}} \cdot 2 + c = -\sqrt{u} + c = -\sqrt{a^2 - x^2} + c = -\sqrt{u} + c = -\sqrt{u}$$

Spezialfall:

•
$$\int \frac{u'(x) \cdot dx}{u(x)} = \int \frac{du}{u} = \ln |u| + c = \ln |u(x)| + c$$

•
$$\int \frac{x}{4+x^2} \cdot dx = \frac{1}{2} \cdot \int \frac{2x}{4+x^2} \cdot dx = \frac{1}{2} \cdot \int \frac{du}{u} = \frac{1}{2} \cdot \ln|u| + c = \frac{1}{2} \cdot \ln|4+x^2| + c$$

Partialbruchzerlegung

Wird gebraucht um gebrochenrationale Funktionen zu integrieren:

$$\int \frac{p(x)}{q(x)} \cdot dx$$

Man unterscheidet:

- Grad Zähler≥Grad Nenner = unechtgebrochen
- Grad Zähler < Grad Nenner = echtgebrochen

Unechtgebrochen

Mit Hilfe der Polynomdivision lassen sich solche Quotienten zerlegen in ein Polynom und in einen echtgebrochenen Quotienten

Echtgebrochen

Grundsätzlich muss man das Polynom in Faktoren zerlegen die höchstens quadratisch sind.

- 1. Fall q(x) zerfällt in verschiedene lineare Faktoren (hat m einfache Nullstellen):
 - $q(x) = x^2 4x + 3 = (x 1)(x 3)$

Ansatz:

•
$$\int \frac{p(x)}{q(x)} = \int \frac{A_1}{(x-x_1)} \cdot dx + \int \frac{A_2}{(x-x_2)} \cdot dx + \dots + \int \frac{A_m}{(x-x_m)} \cdot dx$$

•
$$\int \frac{3x-5}{x^2+2x-8} \cdot dx = \int \frac{A}{(x-2)} \cdot dx + \int \frac{B}{(x+4)} \cdot dx$$

•
$$\frac{3x-5}{x^2+2x-8} = \frac{A}{(x-2)} + \frac{B}{(x+4)} \mid \cdot (x-2) \cdot (x+4)$$

- 3x 5 = A(x + 4) + B(x 2) |x einsetzen und A, B ausrechnen (z.B. x=-4, x=2)
- $A = \frac{1}{6}; B = \frac{17}{6}$

$$\bullet \ \int \tfrac{3x-5}{x^2+2x-8} \cdot dx = \tfrac{1}{6} \cdot \int \tfrac{1}{(x-2)} \cdot dx + \tfrac{17}{6} \cdot \int \tfrac{1}{(x+4)} \cdot dx = \tfrac{1}{6} \cdot \ln|x-2| + \tfrac{17}{6} \cdot \ln|x+4| + C$$

2. Fall q(x) zerfällt in lineare Faktoren, es gibt mindestens einen Faktor, der mehrfach vorkommt:

•
$$q(x) = x^3 - 3x^2 - 9x - 5 = (x+1)^2 \cdot (x-5)$$

Ansatz:

•
$$\int \frac{p(x)}{q(x)} = \int \frac{A_1}{(x-x_i)^k} \cdot dx + \int \frac{A_2}{(x-x_i)^2} \cdot dx + \dots + \int \frac{A_k}{(x-x_i)^k} \cdot dx$$

•
$$\int \frac{x^2 + 15x + 8}{x^3 - 3x^2 - 9x - 5} \cdot dx = \int \frac{A}{(x+1)} \cdot dx + \int \frac{B}{(x+1)^2} \cdot dx + \int \frac{C}{(x-5)} \cdot dx$$

•
$$\frac{x^2+15x+8}{x^3-3x^2-9x-5} = \frac{A}{(x+1)} + \frac{B}{(x+1)^2} + \frac{C}{(x-5)} \mid (x+1)^2 \cdot (x-5)$$

•
$$x^2 + 15x + 8 = A(x+1)(x-5) + B(x-5) + C(x-5)(x+1)^2$$
 | x einsetzen und A, B, C ausrechnen (z.B. x=-1, x=5)

•
$$A = -2$$
: $B = 1$: $C = 3$

$$\bullet \ \int \frac{x^2 + 15x + 8}{x^3 - 3x^2 - 9x - 5} \cdot dx = -2 \int \frac{1}{(x+1)} \cdot dx + 1 \int \frac{1}{(x+1)^2} \cdot dx + 3 \int \frac{1}{(x-5)} \cdot dx = -2 \cdot \ln|x+1| + \frac{(x+1)^{-1}}{-1} + 3 \cdot \ln|x-5| + C \int \frac{1}{(x+1)^{-1}} \cdot dx + \frac{1}{(x+1)^{-1}} \cdot dx$$

3. Fall Der Nenner enthalte quadr. Faktoren die sich nicht zerlegen lassen:

•
$$q(x) = x^3 - 6x^2 + 10x = x \cdot (x^2 - 6x + 10)$$

Ansatz:

•
$$\int \frac{p(x)}{q(x)} = \int \frac{B_1x + C_1}{Q(x)^1} \cdot dx + \int \frac{B_2x + C_2}{Q(x)^2} \cdot dx + \dots + \int \frac{B_kx + C_k}{Q(x)^k} \cdot dx$$

•
$$\int \frac{7x^2 - 19x + 30}{x^3 - 6x^2 + 10x} \cdot dx = \int \frac{A}{x} \cdot dx + \int \frac{Bx + C}{x^2 - 6x + 10} \cdot dx$$

•
$$\frac{7x^2 - 19x + 30}{x^3 - 6x^2 + 10x} = \frac{A}{x} + \frac{Bx + C}{x^2 - 6x + 10} \mid x \cdot (x^2 - 6x + 10)$$

•
$$7x^2 - 19x + 30 = A(x^2 - 6x + 10) + x \cdot (Bx + C)$$
 |x einsetzen und A, B, C ausrechnen (z.B. x=0,x=1, x=-1)

•
$$A = 3; B = 4; C = -1$$

•
$$\int \frac{7x^2 - 19x + 30}{x^3 - 6x^2 + 10x} \cdot dx = 3 \cdot \int \frac{1}{x} \cdot dx + \int \frac{4x - 1}{x^2 - 6x + 10} \cdot dx = 3 \cdot \ln|x| + (*)$$

- $(x^2 - 6x + 10)' = 2x - 6 \Rightarrow 4x - 1 = 2 \cdot (2x - 6) + 11$

$$\bullet \ \ (*) = \int \frac{2(2x-6)+11}{x^2-6x+10} \cdot dx = 2 \cdot \int \frac{2x-6}{x^2-6x+10} \cdot dx + \int \frac{11}{x^2-6x+10} \cdot dx \\ - \ \ (1) = 2 \cdot \int \frac{2x-6}{x^2-6x+10} \cdot dx = 2 \cdot \int \frac{du}{u} \cdot dx = 2 \cdot \ln \mid u \mid = 2 \cdot \ln \mid x^2 - 6x + 10 \mid \\ - \ \ (2) = 11 \cdot \int \frac{1}{x^2-6x+10} \cdot dx = 11 \cdot \int \frac{1}{(x-3)^2+1} \cdot dx \text{ ist von der Form } k \cdot \int \frac{1}{(x-C)^2+a^2} \cdot dx \\ - = k \cdot \frac{1}{a} \cdot \arctan(\frac{x-C}{a}) + C = 11 \cdot \frac{1}{1} \cdot \arctan(\frac{x-3}{1}) + C$$

•
$$\int f(x) \cdot dx = 3 \cdot \ln|x| + 2 \cdot \ln|x^2 - 6x + 10| + 11 \cdot arctan(x - 3) + C$$

Das bestimmte Integral

Das Flächenproblem

$$\int_{a}^{b} f(x) \cdot dx = A$$

1. Zwischenwerte $x_0, x_1, ..., x_n$ setzen und somit Intervall [a,b] in Teilintervalle zerlegen.

2. Wähle in jedem Teilintervall eine Zwischenstelle ξ_i

(a)
$$A_1 = \Delta x \cdot f(\xi_1)$$

(b)
$$A_k = \Delta x \cdot f(\xi_k)$$

3.
$$S_n = A_1 + ... + A_n = \sum_{k=1}^n A_k = \sum_{k=1}^n \Delta x \cdot f(\xi_k)$$

4. Grenzübergang:
$$\lim_{n\to\infty} S_n = A \Rightarrow (\Delta x \to 0)$$

Riemannsche Summen $\int_a^b f(x) dx := \lim_{n \to \infty(\triangle x \to 0)} \sum_{i=1}^n f(\xi_i) \times \Delta x_i$

Exakt mit Grenzübergang

$$f(x) = x^2$$

Teile Intervall [0,2] in n gleiche Teile:

	Intervall	Breite		Höhe	Fläche
	$I_1 = \left[0 \cdot \frac{2}{n}, 1 \cdot \frac{2}{n}\right]$	$\Delta x_1 = \frac{2}{n}$	$\xi_1 = 1 \cdot \frac{2}{n}$	$f(\xi_1) = (1 \cdot \frac{2}{n})^2$	$A_1 = \frac{2}{n} \cdot 1^2 \cdot \frac{4}{n^2}$
	$I_2 = \left[1 \cdot \frac{2}{n}, 2 \cdot \frac{2}{n}\right]$	$\Delta x_2 = \frac{2}{n}$	$\xi_2 = 2 \cdot \frac{2}{n}$	$f(\xi_2) = (2 \cdot \frac{2}{n})^2$	$A_2 = \frac{2}{n} \cdot 2^2 \cdot \frac{4}{n^2}$
	$I_k = [(k-1) \cdot \frac{2}{n}, k \cdot \frac{2}{n}]$	$\Delta x_k = \frac{2}{n}$	$\xi_k = k \cdot \frac{2}{n}$	$f(\xi_k) = (k \cdot \frac{2}{n})^2$	$A_n = \frac{2}{n} \cdot n^2 \cdot \frac{4}{n^2}$
	$I_n = [(n-1) \cdot \frac{2}{n}, n \cdot \frac{2}{n}]$	$\Delta x_n = \frac{2}{n}$	$\xi_n = n \cdot \frac{2}{n}$	$f(\xi_n) = (n \cdot \frac{2}{n})^2$	$A_k = \frac{2}{n} \cdot k^2 \cdot \frac{4}{n^2}$
$S_n = \frac{2}{n} \cdot \frac{4}{n^2} \cdot \sum_{k=1}^n k^2 = \frac{8}{n^3} \cdot \frac{n(n+1)(2n+1)}{6} = \frac{16}{6} = \frac{8}{3}$					

- Vorgehen
 allgemeines Intervall
 Auswertungsstelle] Wert an AS
 Flächenformel
 ∑ bilden

$$S_n = \frac{2}{n} \cdot \frac{4}{n^2} \cdot \sum_{k=1}^{n} k^2 = \frac{8}{n^3} \cdot \frac{n(n+1)(2n+1)}{6} = \frac{16}{6} = \frac{8}{3}$$