MATH 567: Mathematical Techniques in Data Science Lab 1

Dominique Guillot

Departments of Mathematical Sciences University of Delaware

February 8, 2016

1. Matrix/vectors

- ① Construct two 4×4 random matrices A, B with entries uniformly distributed in [0, 1].
- ② Compute the matrix product of A and B, and the entrywise product of A and B.
- \odot Compute the determinant of A.
- lacktriangle Compute the eigenvalues and the associated eigenvectors of A.
- **o** Construct a random vector $b \in \mathbb{R}^4$ with N(0,1) entries.
- **5** Solve the linear system Ax = b.
- $oldsymbol{\circ}$ Compute $A^{-1}.$ Verify your previous solution by computing $A^{-1}b$ explicitly.

2. Cars data

- Load the ISLR library (library(ISLR)). (Install the ISLR package first if necessary).
- 2 Load the Auto dataset (data(Auto)).
- 3 Read the documentation (?Auto).
- Use the fix function to look at the data.
- 5 Extract the first row from the table.
- Extract the "mpg" column from the table.
- Compute summary statistics for the data (summary(Auto)). Do you understand the output?
- Make a plot of "mpg" as a function of "weight".
- Onstruct a histogram for the "mpg" values.
- Use the command pairs to produce scatter plots of all pairs of variables. Save the plot in pdf to better visualize it.
- Examine the relation between a subset of the variables: pairs(~ mpg + horsepower + weight).

3. Linear regression

Let's try to identify linear relationships between variables.

mpg	horsepower	weight
18	130	3504
15	165	3693
18	150	3436
	:	:

3. Linear regression

Let's try to identify *linear relationships* between variables.

horsepower	weight
130	3504
165	3693
150	3436
:	i !
	130 165 150

General case: $Y = \beta_1 X_1 + \dots + \beta_p X_p + \epsilon$.

3. Linear regression

Let's try to identify *linear relationships* between variables.

mpg	horsepower	weight
18	130	3504
15	165	3693
18	150	3436
	:	
•		

General case: $Y = \beta_1 X_1 + \dots + \beta_p X_p + \epsilon$.

Vector form: $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$ with $\mathbf{Y}, \boldsymbol{\epsilon} \in \mathbb{R}^n$, $\mathbf{X} \in \mathbb{R}^{n \times p}$, $\boldsymbol{\beta} \in \mathbb{R}^p$.

Goal: Find the coefficients eta_1,\ldots,eta_p that minimize the "error" ϵ .

Least squares approach

We measure the error in the fit

$$Y = \beta_1 X_1 + \dots + \beta_p X_p + \epsilon$$

by the mean squared error:

$$MSE(\beta) = \frac{1}{n} ||\mathbf{Y} - \mathbf{X}\beta||_{2}^{2} = \frac{1}{n} \sum_{i=1}^{n} \left(y_{i} - \sum_{j=1}^{p} x_{ij} \beta_{j} \right)^{2}.$$

Least squares approach

We measure the error in the fit

$$Y = \beta_1 X_1 + \dots + \beta_p X_p + \epsilon$$

by the mean squared error:

$$MSE(\beta) = \frac{1}{n} ||\mathbf{Y} - \mathbf{X}\beta||_{2}^{2} = \frac{1}{n} \sum_{i=1}^{n} \left(y_{i} - \sum_{j=1}^{p} x_{ij} \beta_{j} \right)^{2}.$$

We solve:

$$\hat{\beta}_{\mathrm{LS}} := \underset{\beta \in \mathbb{R}^p}{\operatorname{argmin}} \|\mathbf{Y} - \mathbf{X}\beta\|_2^2.$$

Least squares approach

We measure the error in the fit

$$Y = \beta_1 X_1 + \dots + \beta_p X_p + \epsilon$$

by the mean squared error:

$$MSE(\beta) = \frac{1}{n} ||\mathbf{Y} - \mathbf{X}\beta||_2^2 = \frac{1}{n} \sum_{i=1}^n \left(y_i - \sum_{j=1}^p x_{ij} \beta_j \right)^2.$$

We solve:

$$\hat{\beta}_{LS} := \underset{\beta \in \mathbb{D}_n}{\operatorname{argmin}} \|\mathbf{Y} - \mathbf{X}\beta\|_2^2.$$

In R:

model <- lm(Auto\$mpg \sim Auto\$horsepower + Auto\$weight)