

Evaluating the Impact of a New Landing Page on User Conversion Rates: An A/B Testing Analysis for an E-Commerce Platform

Project Overview

This project investigates whether a newly designed landing page improves user conversion rates compared to the existing page on an e-commerce platform. By leveraging **A/B testing**, we aim to determine whether any observed differences in conversion rates are statistically significant and translate into actionable business insights. The analysis follows a rigorous data science workflow including experimental design, data cleaning, exploratory data analysis, statistical hypothesis testing, and business impact assessment.

6 Business Objective

To evaluate the performance of a redesigned landing page, with the goal of increasing the user conversion rate, which is a critical metric for revenue growth in e-commerce.

Experimental Design

- Test Type: A/B Testing (Between-subjects)
- Unit of Analysis: Unique user session
- Metric of Interest (Primary KPI): Conversion Rate = Number of Conversions / Total Visitors
- Null Hypothesis (H_o): There is no difference in conversion rates between the old and new landing pages.
- Alternative Hypothesis (H₁): The new landing page has a different (higher or lower) conversion rate than the old one.

📦 Dataset Description

The dataset includes two groups:

- Control Group: Users who were shown the original landing page.
- **Treatment Group**: Users who were shown the new landing page.

Each record includes:

- user_id: Unique identifier for each visitor
- group: 'control' or 'treatment'
- landing_page: 'old_page' or 'new_page'
- converted: Binary variable indicating whether the user converted (1) or not (0)

✓ Data Cleaning & Validation

Key cleaning and sanity checks:

- Verified one-to-one mapping between group and landing_page.
- Removed inconsistent rows where treatment group did not receive new page or control group did not receive old page.
- Checked for duplicate user_id s and removed any overlaps to maintain experimental integrity.
- Final cleaned sample sizes:
 - o Control group: N₁ = 144,226
 - Treatment group: $N_2 = 144,314$

Exploratory Data Analysis (EDA)

Conversion Rates:

- Control Group: 12.02%
- Treatment Group: 11.87%

At first glance, the new page has a **slightly lower** conversion rate than the original. However, a formal statistical test is required to determine if this difference is

statistically significant.

We visualized conversion rates for both groups using a bar plot to get an immediate sense of performance differences:

We also explored the distribution of users across different countries for both groups to ensure a

balanced experiment across regions:

Country	Control	Treatment
CA	7,138	7,256
UK	36,100	35,861
US	100,988	101,197

Observations:

- The distribution is **almost identical** between the control and treatment groups across all three countries (CA, UK, US).
- The US has the highest user count by a wide margin, followed by the UK and Canada.
- This balance reinforces the **randomization quality** of the experiment and rules out **geographic bias** in the results.

Statistical Testing

Hypothesis Setup

• **Null Hypothesis (H_o):** There is no difference in conversion rates between the new and old landing pages.

• Alternative Hypothesis (H₁): There is a difference in conversion rates between the two pages.

Results of the Z-Test

Metric	Value
Z-statistic	-1.2942
P-value	0.1956
Significance Level (α)	0.05

Interpretation

- The p-value of 0.1956 is greater than 0.05, meaning we fail to reject the null hypothesis.
- Statistically, there is **no significant difference** in conversion rates between the control group (12.02%) and the treatment group (11.87%).
- The **z-statistic of -1.2942** is not extreme enough to indicate a meaningful effect of the new landing page on conversions.

Although the control group had a slightly higher conversion rate, this difference is not **statistically significant**. The test suggests that the **new landing page does not outperform** the existing one in driving conversions.

Business Implications

- The redesign did not improve the conversion rate and even showed a slight decrease.
- Deploying the new page may not yield positive ROI, especially considering the costs associated with design, engineering, and testing.
- Recommendation: Retain the current landing page and consider further user research or iterative design based on qualitative insights before additional testing.

This A/B test demonstrates that the new landing page does **not lead to a statistically or practically significant improvement** in conversion rates. Based on the data, the new design should not be rolled out. Future experimentation might include testing multiple variants or focusing on other components of the user journey.

References and Citations

- Dataset Source: A/B Testing Data
- Python Libraries Used: pandas , numpy , matplotlib , seaborn , scipy , statsmodels
- Z-Test Methodology Reference:
 - <u>Two-Proportion Z-Test Explanation Towards Data Science</u>
 - <u>Hypothesis Testing Khan Academy</u>
- A/B Testing Concepts and Best Practices:
 - Optimizely A/B Testing Guide

Code Documentation

- All analysis steps were executed in Python using a Jupyter Notebook environment.
- The notebook is structured and modular, with each section accompanied by clear Markdown explanations to enhance interpretability and traceability.
- The analysis flow follows the standard A/B Testing pipeline:
 - 1. Data Loading & Inspection
 - 2. Data Cleaning & Preprocessing
 - 3. Exploratory Data Analysis (EDA)
 - Conversion rate comparison
 - User distribution by group and country
 - 4. Statistical Testing (Two-Proportion Z-Test)
 - 5. Result Interpretation & Business Recommendation

Environment & Setup

• Python Version: ≥3.7

Recommended Environment: Jupyter Notebook / JupyterLab

Required Packages

Install the necessary Python libraries using:

pip install pandas numpy matplotlib seaborn scipy statsmodels

Materials & Resources

IPYNB Notebook:

https://colab.research.google.com/drive/1FyxNydmLhS0dtioZpL7klG8TwpolQnSQ?usp=sharing

GitHub Link: https://github.com/Rudrajit12/Ecommerce-AB-Test-Case-Study

Credits:

Author: Rudrajit Bhattacharyya

Email ID: rudrajitb24@gmail.com

LinkedIn: https://www.linkedin.com/in/rudrajitb/

GitHub: https://github.com/Rudrajit12