Previously.

Subgroups generated by one or more elements of a group

- Cyclic groups

- The order of an element

- Subgroup lattices

This Section.

- Mappings between groups

- Homomorphisms

- Isomorphisms

- Image

– Kernel

- Automorphisms

Goal. Study "sensible" functions from one group to another.

Definition. Let (G,*) and (H,\diamond) be groups. Then a mapping $\phi: G \to H$ is a [group] homomorphism if $\phi(g_1*g_2) = \phi(g_1) \diamond \phi(g_2)$ for all $g_1, g_2 \in G$.

Exercise 1. Consider the groups \mathbb{Z} and $2\mathbb{Z}$ and the map $\phi : \mathbb{Z} \to 2\mathbb{Z}$ defined by $\phi(n) = -2n$ for all $n \in \mathbb{Z}$.

Show that ϕ is a homomorphism.

Example. The trivial homomorphism,

$$\phi \colon G \to H, \quad \phi(g) = e_H \ \forall g \in G$$

Remark. We might leave operations out and write

$$\phi(ab) = \phi(a)\phi(b).$$

Exercise 2. Let $H = \{\varepsilon, (1\ 2)\}$ and $G = S_3$. Define $\pi : H \to G$ by $\pi(\sigma) = \sigma$ for all $\sigma \in H$. Show that π is a homomorphism.

Exercise 3. $G = (\mathbb{Z}_2, +), H = (\mathbb{Z}_5^*, \cdot)$

$$\phi \colon \mathbb{Z}_2 \to \mathbb{Z}_5^*, \quad \phi(\overline{0}_2) = \overline{0}_5 \text{ and } \phi(\overline{1}_2) = \overline{4}_5.$$

Answer each of the following to verify that ϕ is a homomorphism:

- (a) Is $\phi(\overline{0}_2 + \overline{0}_2)$ equal to $\phi(\overline{0}_2) \cdot \phi(\overline{0}_2)$?
- (b) Is $\phi(\overline{0}_2 + \overline{1}_2)$ equal to $\phi(\overline{0}_2) \cdot \phi(\overline{1}_2)$?
- (c) Is $\phi(\overline{1}_2 + \overline{0}_2)$ equal to $\phi(\overline{1}_2) \cdot \phi(\overline{0}_2)$?
- (d) Is $\phi(\overline{1}_2 + \overline{1}_2)$ equal to $\phi(\overline{1}_2) \cdot \phi(\overline{1}_2)$?

Exercise 4. Let $\sigma \in S_4$. Define $\phi : S_4 \to S_4$ by $\phi(\tau) = \sigma \tau \sigma^{-1}$ for all $\tau \in S_4$. Show that ϕ is a homomorhism by showing that $\phi(\tau_1 \tau_2) = \phi(\tau_1)\phi(\tau_2)$ for all $\tau_1, \tau_2 \in S_4$.

Definition. A homomorphism that is both injective and surjective is called an **isomorphism**. If an isomorphism exists from G to H, we call G and H **isomorphic** and we write $G \cong H$ (\$G\cong H\$).

Example. Considering the homomorphism from before, $\phi \colon \mathbb{Z} \to 2\mathbb{Z}$ defined by $\phi(n) = -2n$ for all $n \in \mathbb{Z}$. Show that ϕ is:

- (One-to-One)
- (Onto)

Therefore $\mathbb{Z} \cong 2\mathbb{Z}$.

Exercise 5. Let $G = (\mathbb{R}, +)$ and $H = (\mathbb{R}_{>0}, \cdot)$. Define $\phi \colon G \to H$ by

$$\phi(x) = e^x \ \forall x \in \mathbb{R}.$$

- (a) Is ϕ a homomorphism?
- (b) Is ϕ one-to-one?
- (c) Is ϕ onto?
- (d) Is ϕ an isomorphism?

Exercise 6. Show that $\mathbb{Z}_3 \cong C_3$ (here $C_3 = \{1, a, a^2\}$).

Properties of Homomorphisms

Theorem 2.5.1. Let $\phi \colon G \to H$ be a group homomorphism. Then

(a)
$$\phi(e_G) = e_H$$
 (ϕ preserves identities)

(b)
$$\phi(g^{-1}) = \phi(g)^{-1} \ \forall g \in G$$
 (ϕ preserves inverses)

(c)
$$\phi(g^k) = \phi(g)^k \ \forall g \in G, k \in \mathbb{Z}$$
 (ϕ preserves powers)

Corollary. Let $\phi \colon G \to H$ be a homomorphism. If $g \in G$ has $|g| = n < \infty$, then $|\phi(g)| < \infty$. Moreover $|\phi(g)|$ divides |g|.

Example. $\phi \colon \mathbb{Z}_8 \to \mathbb{Z}_4, \ \phi(\overline{a}_8) = \overline{a}_4$

Warning: A map $\phi \colon \mathbb{Z}_n \to \mathbb{Z}_m$ with $\phi(\overline{a}_n) = \overline{a}_m$ only exists if $m \mid n$.

Exercise 7. Show $(\mathbb{Z}_4,+)\cong (\{1,-1,i,-i\},\cdot)$ by writing down a group isomorphism.

Exercise 8. Show \mathbb{Z}_4 has a subgroup isomorphic to \mathbb{Z}_2 . (Meaning there is an isomorphism between that subgroup and \mathbb{Z}_2 .)

Exercise 9. Give some reason why...

(a)
$$K_4 \not\cong (\mathbb{Z}_4, +)$$

(b)
$$S_3 \not\equiv C_6$$

(c)
$$(\mathbb{Z}_{12},+) \not\equiv (\mathbb{Q}^+,\cdot)$$

Exercise 10. Is $(2\mathbb{Z}, +) \cong (3\mathbb{Z}, +)$?

Image of a Homomorphism

Definition. Let $\phi \colon G \to H$ be a group homomorphism.

The image of ϕ is denoted $\phi(G)$ or $\operatorname{im}(\phi)$ and is defined to be the set

$$\{\phi(g) \in H \mid g \in G\} = \{h \in H \mid \exists g \in G \text{ s.t. } \phi(g) = h\}.$$

Corollary of Thm 2.5.1. Let $\phi: G \to H$ be a homomorphism. Then $\operatorname{im}(\phi) \leq H$.

Exercise 11. Consider $\phi \colon \mathbb{Z} \to GL_2(\mathbb{R})$ defined by

$$\phi(n) = \begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix}.$$

- (a) Show that ϕ is a homomorphism.
- (b) Verify $\operatorname{im}(\phi) = \left\{ \begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix} : n \in \mathbb{Z} \right\}$. (Call this set H.)
- (c) Conclude H is a group.

Isomorphisms are Equivalence Relations

Theorem 2.5.3. Let G, H, and K denote groups.

- **1.** The identity map $id_G: G \to G$ is an isomorphism for every group G.
- **2.** If $\sigma: G \to H$ is an isomorphism then the inverse mapping $\sigma^{-1}: H \to G$ is an isomorphism.
- **3.** If $\sigma: G \to H$ and $\tau: H \to K$ are isomorphisms then $\tau \sigma: G \to K$ is an isomorphism.

Corollary 1. This isomorphism relation, \cong is an equivalence relation on groups. That is, for all groups G, H, and K,

- 1. $G \cong G$,
- **2.** if $G \cong H$, then $H \cong G$, and
- **3.** if $G \cong H$ and $H \cong K$, then $G \cong K$.

Group of Homomorphisms

Corollary. If G is a group, then the set of all isomorphisms $G \to G$ forms a group under composition.

Proof. Notice that the set of all isomorphisms $G \to G$ is a subset of S_G . Therefore we can use the subgroup test. Theorem 2.5.3 completes the proof.

Question 12. How does Theorem 2.5.3 show that we have (1) Non-empty, (2) Closure, (3) Inverses?

Definition. Let G be a group.

- 1. An automorphism of G is an isomorphism from G to itself.
- **2.** The set Aut(G) is the set of all automorphisms of G.

Note. The previous Corollary says $\operatorname{Aut}(G) \leq S_G$, so $\operatorname{Aut}(G)$ is a group.

Exercise 13. (a) If G is abelian, then $\phi: G \to G$ defined by $\phi(g) = g^{-1}$ is an automorphism of G.

- i. Verify ϕ is a homomorphism.
- ii. Check ϕ is injective.
- iii. Check ϕ is surjective.
- (b) Let $G = S_3$ (which is not abelian). Show that ϕ from (a) is not a homomorphism.

Exercise 14. Compute the automorphism group of the cyclic group of order 6. $\mathbb{Z}_6 = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}\}$

- (a) Show that $\lambda: \mathbb{Z}_6 \to \mathbb{Z}_6$ defined by $\lambda(\overline{n}) = -\overline{n}$ is an automorphism of \mathbb{Z}_6 .
- (b) Verify that if $\phi: \mathbb{Z}_6 \to \mathbb{Z}_6$ is an automorphism, then $\phi(\overline{1}) = \overline{1}$ or $\phi(\overline{1}) = \overline{5}$.
- (c) Conclude that $\operatorname{Aut}(\mathbb{Z}_6) = \{id_{\mathbb{Z}_6}, \lambda\}.$
- (d) Discuss why $Aut(\mathbb{Z}_6) \cong \mathbb{Z}_2$.

Exercise 15. Let G be a group and $a \in G$. Define $\sigma_a \colon G \to G$ by $\sigma_a(g) = aga^{-1}$. We call σ_a an inner automorphism of G.

- (a) Verify σ_a is a homomorphism.
- (b) Check σ_a is injective.
- (c) Check σ_a is surjective.

Definition. The set $Inn(G) = \{\sigma_a | a \in G\}$ is the set of all inner autmorphisms of G.

Exercise 16. Prove that $Inn(G) \leq Aut(G)$.

- (a) Find a fixed $a \in G$ for which $\sigma_a = id_G$.
- (b) If $\sigma_a, \sigma_b \in \text{Inn}(G)$ what c satisfies $\sigma_a \sigma_b = \sigma_c$?
- (c) For each $\sigma_a \in \text{Inn}(G)$ what might be σ_a^{-1} ?

Kernel of a Homomorphism

Definition. Let $\phi \colon G \to H$ be a group homomorphism. The **kernel of** ϕ is denoted $\ker(\phi)$ and is defined to be the set

$$\{g \in G \mid \phi(g) = e_H\}.$$

Exercise 17. Let $\phi: G \to H$ be a homomorphism. Prove that $\ker(\phi) \leq G$.

Exercise 18. Let $\phi: \mathbb{Z} \to \mathbb{Z}_5$ be defined by $\phi(n) = \overline{n}$. Computer $\ker(\phi)$.