2011-2012

- 1. (10%) Use the minimum number of gates to implement a circuit that detects if a 4-bit binary number $A_3A_2A_1A_0$ is greater than 9. When the number is greater than 9, the output Y=1; otherwise Y=0.
- 2. (10%) Find the minimum POS form for the following expression

$$Y = \overline{(A \oplus B)\overline{\overline{B}}(\overline{A}B\overline{C}\overline{D} + \overline{A}C\overline{D})}$$

3. (15%) Use one 3-line-to-8-line decoder 74LS138 and one NAND gate to implement a circuit whose output Y and inputs A, B, and C are related as shown in Figure 1.

(a) Waveforms for the desired circuit

	INI	OUTPUTS										
Sı	$\overline{S}_2 + \overline{S}_3$	A2	Aı	Ao	Yo	\overline{Y}_1	\overline{Y}_2	¥з	\overline{Y}_4	¥5	Y 6	¥7
0	×	х	×	x	1	1	1	1	1	1	1	1
X	1	×		×	1	1	1	1	1	1	1	1
1	0	0	0	0	0	1	1	1	1	1	1	1
1	0	0	0	1	1	0	1	1	1	1	1	1
1	0	0	1	0	1	1	0	1	1	1	1	1
1	0	0	1	1	1	1	1	0	1	1	1	1
1	0	1	0	0	1	1	1	1	0	1	1	1
1	0	1	0	1	1	1	1	1	1	0	1	1
1	0	1	1	0	1	1	1	1	1	1	0	1
1	0	1	1	1	1	1	1	1	1	1	1	0

(b) Function Table for 74LS138

(c) Logic symbol for 74LS138

Figure 1

4. (10%) Use 4-bit adders to implement a circuit which adds up two 11-bit numbers. Label all critical inputs and outputs.

5. (15%) Use J-K flip-flops and the minimum number of gates to implement a synchronous 2-bit up/down counter with a Gray code sequence. The counter should count up when an UP/DOWN control input is 1 and count down when the control input is 0.

State diagram for a 2-bit Gray code counter

Figure 3

6. (15%) In Figure 4, $R_1 = 150 \text{ k}\Omega$, $R_2 = R_3 = 24 \text{ k}\Omega$, $C_1 = 0.033 \ \mu\text{F}$, $C_2 = C_3 = C_4 = 0.01 \ \mu\text{F}$. (1) What is the function of the circuit in block 2? (3) Suppose that the input v_{IN} , a single negative-going pulse, is applied at t = 0, sketch the waveforms v_{O1} , v_{O2} , and v_{O} . Suppose that both v_{O1} and v_{O2} are initially 0.

7. (15%) The input to the circuit in Figure 5 is $v_{IN}(t) = 4 + 4\sin(100\pi t)$ V, $0 \le t \le 20$ ms. The sampling signal has a frequency of 400 Hz. Determine the binary code sequence $D_2D_1D_0$ and the output $v_{OUT}(t)$ for $0 \le t \le 20$ ms.

8. (10%) Draw the state diagram for the circuit in Figure 6. Y is the output of the circuit.

2015-2016

(I) True/False (20')

- () It is possible to have an overlap between high and low levels in digital logic .
- 2. () Full-adders cannot be used as a BCD-to-binary converter .
- 3. () The XNOR gate will produce a high output if only one but not both of the input is HIGH.
- 4. () NAND gates can be used to construct NOR gates .
- 5. () The effect of an inverted output being connected to the inverting input of another gate is to effectively eliminate one of the inversions, resulting in a single inversion.
- 6. () The BCD equivalent of 73 is 01001001.
- A D flip-flop is constructed by connecting an inverter between the Set and Clock terminals.
- A J-K flip-flop associated waveforms are shown in Figl-1, the circuit is operating properly

Fig 1-1

- 9. () A 4-bit stairstep-ramp A/D converter has a clock frequency of 1000Khz and maximum input voltage 5V. The minimum sample rate will be 6250 samples/second.
- 10. () A 8-bit D/A converter has a resolution of 0.0125.

(\Box) . Choice

- 1. Which of the following is correct for full-adders ()
- (A) Full-adders have the capability of directly adding decimal numbers
- (B) In a parallel full-adder, the first stage may be a half-adder
- (C) Full-adders are limited to two inputs, since there are only two binary digits
- (D) Full-adders are used to make half-adders
- 2. Using 4 bit adders to create a 32 bit adder ()
- (A) requires 32 adders
- (B) requires 8 adders
- (C) requires the carry out of the less significant adder to be connected to the carry in of the next significant adder
- (D) both (B) and (C)
- 3. What type of device is shown in Fig 2-1, and what inputs (A3, A2, A1, A0) are required to produce the output levels as shown ()

Fig 2-1

- (A) A decimal to binary-coded-decimal encoder; 1, 1, 1, 0
- (B) A binary-to-decimal encoder; 0, 1, 1, 1
- (C) A binary-coded-decimal to decimal decoder; 1, 0, 0, 0
- (D) A decimal to binary-coded-decimal encoder; 0, 0, 0, 1

II) other

E 选项为 others

- 4. For the input values (AO-A3, BO-B3) given for Fig 2-2, what will be indicated on the display? 74139 is a 1-of-4 decoder ()
- (A) Data Select=1, B=6; Data Select=0, A=3
- (B) Data Select=1, A=6; Data Select=0, B=3
- (C) Data Select=1, A=3; Data Select=0, B=6
- (D) Data Select=1, B=3; Data Select=0, A=6

Fig 2-2

- 5. What is the frequency of the $F_{\rm out}$ in Fig 2-3 ()
- (A) 800Khz
- (B) 20Khz
- (C) 200Khz
- (D) 10Khz

Fig 2-3

- 6. Which of the example below express the distributive law? ()
- (A) A(B+C)=AB+AC
- (B) (A+B)+C=A+(B+C)
- (C) A+(B+C)=AB+AC
- (D) A(BC) = (AB) + C

- 7. The circuit shown in Fig 2-4 is a/an ().
- (A) 4-bit magnitude comparator
- (B) 4-bit half adder
- (C) 8-bit comparator
- (D) 8-bit binary adder

Fig 2-4

8. The state diagram of counter is Fig 2-5, The capacity of the counter is ().

Fig 2-5

- (A) 4 (B) 5 (C) 6 (D) 8
- 9. Referring to the function table in Fig 2-6, taking the CLEAR ,S1 and S0 inputs all HIGH will do what? ().
- (A) The exact response will depend on what values are loaded into the parallel data inputs
- (B) It will cause the parallel data inputs to be loaded and passed to the parallel data outputs (C) It will reset the parallel registers and inhibit the serial data inputs
- (D) It will inhibit the operation of the register

Fig 2-6

- 10. What is the accuracy of D/A converter? ()
- (A) It is the comparison between the actual output of the converter and its expected output
- (B) It is the reciprocal of the number of discrete steps in the D/A output
- (C) It is the deviation between the ideal straight-line output and the actual output of the converter
- (D) The ability to resolve between forward and reserve steps when sequenced over its entire range of inputs

(Ξ) . Problems

Using Algebra method to simplify the function. (10')

$$F = XZ + \overline{Y}Z + Y\overline{Q} + Z\overline{Q}C + Z\overline{Q}\overline{C} + X(Y + \overline{Z}) + \overline{X}YZ\overline{Q} + X\overline{Y}QC$$

二) Please use D flip-flop to design a synchronization timing circuit, when x=0, the circuit is a sextuple denotation counter(6 进制计数器); when x=1, the circuit is a Seven binary counter(7 进制计数器), and when the count value is 101(x=0), or 110(x=1), the output carry is Z=1.

 \equiv) A 555 timer is connected for a stable operation as shown in Fig3-1, Determine the waveform of v_0 (When v_0 is HIGH, its voltage is 5V) and v_c , The resistance of the bulb is 5 Ohm R1=R3=10K ohm. IF I want the power of bulb is 3~3.75W. Please give the value of R2 and the frequency of v_0 . (10')

四) Analyse the circuit, determine the output waveform。(15')

Fig 3-2

	74190											
EN	LD	M	CP	D0	D1	D2	D3	Q0 Q1 Q2 Q3				
×	0	×	×	a	b	С	d	a b c d				
0	1	0	1	×	×	×	×	递增计数				
0	1	1	1	×	×	×	×	递减计数				
1	1	×	×	×	×	×	×	保持				

 $Qcc/Qcb = \overline{M} Q3 \overline{Q2} \overline{Q1} Q0 + M \overline{Q3} \overline{Q2} \overline{Q1} \overline{Q0}$

Q3-Most Significant Bit ; Q0-Least Significant Bit

7485													
A3	В3	A2	B2	A1	B1	A0	BO	A>B	A=B	A <b< th=""><th>F_{P>Q}</th><th>F_{P=Q}</th><th>F_{P<q< sub=""></q<>}</th></b<>	F _{P>Q}	F _{P=Q}	F _{P<q< sub=""></q<>}
0	1	×	×	×	×	×	×	×	×	×	0	0	1
1	0	×	×	×	×	×	×	×	×	×	1	0	0
λ3-	-B3	0	1	×	×	×	×	×	×	×	0	0	1
A 3:	= B3	1	0	×	×	×	×	×	×	×	1	0	0
A 3-	-B3	A2:	-B2	0	1	×	×	×	×	×	0	0	1
A 3:	B 3	A2=	=B2	1	0	×	×	×	×	×	1	0	0
A 3:	-B3	A2-	-B2	A1-	-B1	0	1	×	×	×	0	0	1
A3:	=B3	A2=	=B2	A1:	=B1	1	0	×	×	×	1	0	0
A 3:	-B3	A2=	-B2	A1-	-B1	A0-	-B0	1	0	0	1	0	0
A3=	=B3	A2=	=B2	A1:	=B1	A 0=	=B0	0	1	0	0	1	0.
A3-	-B3	A2=	-B2	A1-	-B1	A0=	-B0	0	0	1	0	0	1

LD

- 五) In Fig3-3 , AD7254 is a 8-bit D/A converter, $\mu_0=-\frac{\upsilon_{REF}}{2^{\bullet}}\sum_{i=0}^{7}D_{\epsilon}\cdot 2^{\epsilon}$ 。 in Fig3-4 you can get the output of 2716(eg: if input $A_3A_2A_1A_0$ =0000; then output: $D_3D_2D_1D_0$ =0000), 74LS161 is a Synchronous 4-Bit Binary Counters, IF L_D is LOW , $Q_DQ_CQ_BQ_A$ =DCBA. (15')
- (1) Draw the state diagram of 74LS161, you must give the completes results
- (2) Determine the μ_0 waveform for CP (This signal is clock)

