

Topic: Network Analytics

Please ensure you update all the details:

Name: ULLI VENKATA SAI KUMAR Batch ID: 04072024HYD10AM

Topic: Network Analytics

Problem Statement: -

Two datasets consisting of information for the connecting routes and flight halt are provided. Create network analytics models on both datasets separately. Using various network analytics-based measures derive insights for the business to benefit from the data available.

- Create a network using an edge list matrix (directed only).
- Column to be used for respective datasets

Flight_halt = ID", "Name", "City", "Country", "IATA_FAA", "ICAO", "Latitude", "Longitude", "Altitude", "Time", "DST", "Tz database time"

connecting routes = "flights", " ID", "main Airport", "main Airport ID", "Destination ", "DestinationID", "haults", "machinery"

cohaltsng routes

	A	В	C	D	E	F	G	н	I
1	2B	410	AER	2965	KZN	2990		O	CR2
2	2B	410	ASF	2966	KZN	2990		O	CR2
3	2B	410	ASF	2966	MRV	2962		O	CR2
4	2B	410	CEK	2968	KZN	2990		O	CR2
5	2B	410	CEK	2968	OVB	4078		O	CR2
6	2B	410	DME	4029	KZN	2990		O	CR2
7	2B	410	DME	4029	NBC	6969		O	CR2
8	2B	410	DME	4029	TGK	\N		O	CR2
9	2B	410	DME	4029	UUA	6160		O	CR2
10	2B	410	EGO	6156	KGD	2952		O	CR2
11	2B	410	EGO	6156	KZN	2990		O	CR2
12	2B	410	GYD	2922	NBC	6969		O	CR2
13	2B	410	KGD	2952	EGO	6156		O	CR2
14	2B	410	KZN	2990	AER	2965		O	CR2
15	2B	410	KZN	2990	ASF	2966		O	CR2
16	2B	410	KZN	2990	CEK	2968		0	CR2
17	2B	410	KZN	2990	DME	4029		O	CR2
18	2B	410	KZN	2990	EGO	6156		O	CR2
19	2B	410	KZN	2990	LED	2948		0	CR2
20	2B	410	KZN	2990	SVX	2975		O	CR2
21	2B	410	LED	2948	KZN	2990		O	CR2
22	2B	410	LED	2948	NBC	6969		0	CR2
23	2B	410	LED	2948	UUA	6160		O	CR2
24	2B	410	MRV	2962	ASF	2966		0	CR2
25	2B	410	NBC	6969	DME	4029		0	CR2
26	2B	410	NBC	6969	GYD	2922		0	CR2
27	2B	410	NBC	6969	LED	2948		0	CR2
28	2B	410	NBC	6969	SVX	2975		0	CR2
29	2B	410	NJC	2972	SVX	2975		0	CR2
		connectin	a routes	(

Flight hault1

4	Α	В	C	D	E	F	G	Н	1	J	K	L	M	
		1 Goroka	Goroka	Papua Nev	GKA	AYGA	-6.08169	145.3919	5282	10	U	Pacific/Port	_Moresby	
		2 Madang	Madang	Papua Nev	MAG	AYMD	-5.20708	145.7887	20	10	U	Pacific/Port	_Moresby	
		3 Mount Ha	Mount Ha	Papua Nev	HGU	AYMH	-5.82679	144.2959	5388	10	U	Pacific/Port	_Moresby	
		4 Nadzab	Nadzab	Papua Nev	LAE	AYNZ	-6.56983	146.7262	239	10	U	Pacific/Port	_Moresby	
		5 Port More	Port More	Papua Nev	POM	AYPY	-9.44338	147.2201	146	10	U	Pacific/Port	_Moresby	
		6 Wewak In	Wewak	Papua Nev	WWK	AYWK	-3.58383	143.6692	19	10	U	Pacific/Port	_Moresby	
		7 Narsarsua	Narssarssu	Greenland	UAK	BGBW	61.16052	-45.426	112	-3	E	America/Go	dthab	
		8 Nuuk	Godthaab	Greenland	GOH	BGGH	64.19092	-51.6781	283	-3	E	America/Go	dthab	
		9 Sondre Str	Sondrestro	Greenland	SFJ	BGSF	67.01697	-50.6893	165	-3	E	America/Go	dthab	
	1	0 Thule Air E	Thule	Greenland	THU	BGTL	76.5312	-68.7032	251	-4	E	America/Th	ule	
	1	1 Akureyri	Akureyri	Iceland	AEY	BIAR	65.65999	-18.0727	6	0	N	Atlantic/Rev	ykjavik	
	1	2 Egilsstadir	Egilsstadir	Iceland	EGS	BIEG	65.28333	-14.4014	76	0	N	Atlantic/Rev	ykjavik	
	1	3 Hornafjor	Hofn	Iceland	HFN	BIHN	64.29556	-15.2272	24	0	N	Atlantic/Rey	ykjavik	
	1	4 Husavik	Husavik	Iceland	HZK	BIHU	65.95233	-17.426	48	0	N	Atlantic/Rey	ykjavik	
	1	5 Isafjordur	Isafjordur	Iceland	IFJ	BIIS	66.05806	-23.1353	8	0	N	Atlantic/Rey	ykjavik	
	1	6 Keflavik In	Keflavik	Iceland	KEF	BIKF	63.985	-22.6056	171	0	N	Atlantic/Rey	ykjavik	
	1	7 Patreksfjo	Patreksfjo	Iceland	PFJ	BIPA	65.55583	-23.965	11	0	N	Atlantic/Rey	ykjavik	
	1	8 Reykjavik	Reykjavik	Iceland	RKV	BIRK	64.13	-21.9406	48	0	N	Atlantic/Rev	ykjavik	
	1	9 Siglufjordu	Siglufjordu	Iceland	SIJ	BISI	66.13333	-18.9167	10	0	N	Atlantic/Rey	ykjavik	
	2	0 Vestmann	Vestmanna	Iceland	VEY	BIVM	63.4243	-20.2789	326	0	N	Atlantic/Rey	ykjavik	
	2	1 Sault Ste N	Sault Saint	Canada	YAM	CYAM	46.485	-84.5094	630	-5	Α	America/To	ronto	
	2	2 Winnipeg	Winnipeg	Canada	YAV	CYAV	50.05639	-97.0325	760	-6	Α	America/Wi	nnipeg	
	2	3 Shearwate	Halifax	Canada	YAW	CYAW	44.63972	-63.4994	167	-4	Α	America/Ha	lifax	
	2	4 St Anthony	St. Anthon	Canada	YAY	CYAY	51.39194	-56.0831	108	-3.5	Α	America/St_	_Johns	
	2	5 Tofino	Tofino	Canada	YAZ	CYAZ	49.08222	-125.773	80	-8	Α	America/Va	ncouver	
	2	6 Kugaaruk	Pelly Bay	Canada	YBB	CYBB	68.53444	-89.8081	56	-7	Α	America/Ed	monton	
	2	7 Baie Come	Baie Come	Canada	YBC	CYBC	49.1325	-68.2044	71	-5	Α	America/To	ronto	
	2	8 Bagotville	Bagotville	Canada	YBG	CYBG	48.33056	-70.9964	522	-5	Α	America/To	ronto	
)	2	9 Baker Lake	Baker Lake	Canada	YBK	CYBK	64.29889	-96.0778	59	-6	Α	America/Wi	nnipeg	

Connecting routes:-

Importing required libraries import pandas as pd import networkx as nx import matplotlib.pyplot as plt

```
# Load the CSV files into DataFrames
connecting_routes = pd.read_csv('connecting_routes.csv')
# Display the first few rows of each dataset to understand the structure
connecting_routes_head = connecting_routes.head()
# Display the first few rows of the DataFrame
connecting_routes_head
# Renaming relevant columns for clarity
connecting_routes.columns = ['airline', 'flight_number', 'source_airport', 'source_airport_id',
'destination_airport', 'destination_airport_id', 'codeshare', 'stops', 'equipment']
# Display the cleaned DataFrame's first few rows
connecting_routes_cleaned = connecting_routes[['source_airport', 'destination_airport']]
connecting_routes_cleaned.head()
# Inspecting the actual column names to identify the mismatch
connecting_routes.columns
```



```
for_g = nx.from_pandas_edgelist(connecting_routes_cleaned,
                   source='source_airport',
                   target='destination airport',
                   create_using=nx.DiGraph())
degree centrality = nx.degree centrality(for g)
closeness_centrality = nx.closeness_centrality(for_g)
eigenvector_centrality = nx.eigenvector_centrality(for_g)
betweenness centrality = nx.betweenness centrality(for g)
pos = nx.spring_layout(for_g)
nx.draw(for_g, pos, node_size=20, node_color='blue')
plt.show()
flight hault:-
# Importing required libraries
import pandas as pd
import networkx as nx
import matplotlib.pyplot as plt
# Load the CSV files into DataFrames
flight_hault = pd.read_csv('flight_hault.csv')
# Display the first few rows of each dataset to understand the structure
flight hault head = flight hault.head()
# Display the first few rows of the DataFrame
flight hault head
# Display the cleaned DataFrame's first few rows
flight_hault_cleaned = flight_hault[['Name', 'City']]
flight_hault_cleaned.head()
for_g = nx.from_pandas_edgelist(flight_hault_cleaned,
                   source='Name',
                   target='City',
                   create_using=nx.DiGraph())
degree_centrality = nx.degree_centrality(for_g)
closeness_centrality = nx.closeness_centrality(for_g)
eigenvector centrality = nx.eigenvector centrality(for g)
betweenness_centrality = nx.betweenness_centrality(for_g)
pos = nx.spring_layout(for_g)
nx.draw(for_g, pos, node_size=20, node_color='green')
plt.show()
```

Problem statement 2:

There are three datasets given (Facebook, Instagram, and LinkedIn). Construct and visualize the following networks:

- circular network for Facebook
- star network for Instagram
- star network for LinkedIn

Create a network using an adjacency matrix (undirected only). The snapshots of those datasets are given below:

Facebook

A	Α	В	С	D	Е	F	G	Н	1
1	1	2	3	4	5	6	7	8	9
2	0	1	0	0	0	0	0	0	1
3	1	0	1	0	0	0	0	0	0
4	0	1	0	1	0	0	0	0	0
5	0	0	1	0	1	0	0	0	0
5	0	0	0	1	0	1	0	0	0
7	0	0	0	0	1	0	1	0	0
3	0	0	0	0	0	1	0	1	0
9	0	0	0	0	0	0	1	0	1
0	1	0	0	0	0	0	0	1	0
1									

import pandas as pd import networkx as nx import matplotlib.pyplot as plt

Load Facebook data facebook_data = pd.read_csv("facebook.csv")

Ensure row and column labels match facebook_data.columns = facebook_data.index

Create the undirected graph facebook_graph = nx.from_pandas_adjacency(facebook_data)

Plot in a circular layout
plt.figure(figsize=(8, 8))
nx.draw_circular(facebook_graph, with_labels=True, node_size=500, node_color="skyblue",
font_size=10, font_weight="bold")
plt.title("Facebook Circular Network")
plt.show()

Instagram

	Α	В	С	D	Е	F	G	н	1	J	K	L	М	N
1	1	2	3	4	5	6	7	8	9	10	11	12	13	
2	0	1	1	0	0	0	0	0	0	0	0	0	0	
3	1	0	1	1	0	0	0	0	0	0	0	0	0	
4	1	1	0	1	0	0	0	0	0	0	0	0	0	
5	0	1	1	0	0	0	0	0	0	0	0	0	1	
6	0	0	0	0	0	1	1	0	0	0	0	0	0	
7	0	0	0	0	1	0	1	1	0	0	0	0	0	
8	0	0	0	0	1	1	0	1	0	0	0	0	0	
9	0	0	0	0	0	1	1	0	0	0	0	0	1	
10	0	0	0	0	0	0	0	0	0	1	1	0	0	
11	0	0	0	0	0	0	0	0	1	0	1	1	0	
12	0	0	0	0	0	0	0	0	1	1	0	1	0	
13	0	0	0	0	0	0	0	0	0	1	1	0	1	
14	0	0	0	1	0	0	0	1	0	0	0	1	0	
15														
16														
17														
18														
10														

import pandas as pd import networkx as nx import matplotlib.pyplot as plt

Load Instagram data instagram_data = pd.read_csv("instagram.csv")

Assume row 0 is the central node and connects to all others instagram_graph = nx.Graph() central_node = 0 for i in range(1, len(instagram_data)): instagram_graph.add_edge(central_node, i)

Plot in a star layout plt.figure(figsize=(8, 8))

pos = nx.spring_layout(instagram_graph, center=(0,0)) # Position nodes in a star pattern nx.draw(instagram_graph, pos, with_labels=True, node_size=500, node_color="lightgreen", font_size=10, font_weight="bold") plt.title("Instagram Star Network") plt.show()

LinkedIn

	Α	В	С	D	Е	F	G	Н	1	J
1	1	2	3	4	5	6	7	8		
2	0	1	1	1	1	1	1	1		
3	1	0	0	0	0	0	0	0		
4	1	0	0	0	0	0	0	0		
5	1	0	0	0	0	0	0	0		
6	1	0	0	0	0	0	0	0		
7	1	0	0	0	0	0	0	0		
8	1	0	0	0	0	0	0	0		
9	1	0	0	0	0	0	0	0		
10										
11										
12										
13										

import pandas as pd import networkx as nx import matplotlib.pyplot as plt

Load LinkedIn data linkedin_data = pd.read_csv("linkedin.csv")

Ensure columns match indices linkedin_data.columns = linkedin_data.index

Create a NetworkX graph linkedin_graph = nx.from_pandas_adjacency(linkedin_data)

Circular layout visualization
plt.figure(figsize=(8, 8))
nx.draw_circular(linkedin_graph, with_labels=True, node_size=500, node_color="skyblue",
font_size=10)
plt.title("LinkedIn Circular Network")
plt.show()