ML4AAD - Final Project

Winter Semeseter 18/19

Neeratyoy Mallik

4774378

February 24, 2019

2 (similar) datasets with differing size, # of classes, class balance

2 (similar) datasets with differing size, # of classes, class balance

BOHB outperforms SMAC in high dimensional, mixed data

CNN Structure

INPUT → [CONV → BATCHNORM? → ACTIVATION → DROPOUT? → MAXPOOL?]* $M \rightarrow [FC \rightarrow BATCHNORM? \rightarrow ACTIVATION \rightarrow DROPOUT?]*K \rightarrow OUTPUT M ∈ {1,2,3}; K ∈ {0,1,2}; ? → <math>\top or \bot$

CNN Structure

 $INPUT \rightarrow [CONV \rightarrow BATCHNORM? \rightarrow ACTIVATION \rightarrow DROPOUT? \rightarrow MAXPOOL?]*M \rightarrow [FC \rightarrow BATCHNORM? \rightarrow ACTIVATION \rightarrow DROPOUT?]*K \rightarrow OUTPUT M ∈ {1,2,3}; K ∈ {0,1,2}; ? \rightarrow <math>\top or \bot$

- CONVolution layers
 - Kernel size
 - Padding
 - Stride
- ACTIVATION (relu/sigmoid/tanh)
- BATCHNORM, DROPOUT
 - True or False
- MAXPOOL (if True)
 - Kernel size (=stride)

CNN Structure

 $INPUT \rightarrow [CONV \rightarrow BATCHNORM? \rightarrow ACTIVATION \rightarrow DROPOUT? \rightarrow MAXPOOL?]*M \rightarrow [FC \rightarrow BATCHNORM? \rightarrow ACTIVATION \rightarrow DROPOUT?]*K \rightarrow OUTPUT M ∈ {1,2,3}; K ∈ {0,1,2}; ? \rightarrow <math>\top or \bot$

- CONVolution layers
 - Kernel size
 - Padding
 - Stride
- ACTIVATION (relu/sigmoid/tanh)
- BATCHNORM, DROPOUT
 - True or False
- MAXPOOL (if True)
 - Kernel size (=stride)
- Learning rate
- Optimizer
- Batch size

CNN Structure

 $INPUT \rightarrow [CONV \rightarrow BATCHNORM? \rightarrow ACTIVATION \rightarrow DROPOUT? \rightarrow MAXPOOL?]*M \rightarrow [FC \rightarrow BATCHNORM? \rightarrow ACTIVATION \rightarrow DROPOUT?]*K \rightarrow OUTPUT M ∈ {1,2,3}; K ∈ {0,1,2}; ? → <math>\top or \bot$

- CONVolution layers
 - Kernel size
 - Padding
 - Stride
- ACTIVATION (relu/sigmoid/tanh)
- BATCHNORM, DROPOUT
 - True or False
- MAXPOOL (if True)
 - Kernel size (=stride)
- Learning rate
- Optimizer
- Batch size

- >30 hyperparameters
- (Budget = Epochs) → expensive runs

CNN Structure

 $INPUT \rightarrow [CONV \rightarrow BATCHNORM? \rightarrow ACTIVATION \rightarrow DROPOUT? \rightarrow MAXPOOL?]*M \rightarrow [FC \rightarrow BATCHNORM? \rightarrow ACTIVATION \rightarrow DROPOUT?]*K \rightarrow OUTPUT M ∈ {1,2,3}; K ∈ {0,1,2}; ? → <math>\top or \bot$

- CONVolution layers
 - Kernel size
 - PaddingStride
- ACTIVATION (relu/sigmoid/tanh)
- BATCHNORM, DROPOUT
 - True or False
- MAXPOOL (if True)
 - Kernel size (=stride)
- Learning rate
- Optimizer
- Batch size

- >30 hyperparameters
- (Budget = Epochs) \rightarrow expensive runs

BOHB params:

eta	min_budget	max_budget
2	1	16
4	1	16
3	1	9
2	1	10

BOHB on KMNIST (and K49)

Dataset	eta_min_max_iter	Validation	Train	Test	вонв
	(BOHB)	Accuracy	Accuracy	Accuracy	Runtime
KMNIST	2_1_16_10	98.08%	99.81%	95.06%	<3 hrs
KMNIST	3_1_9_20	97.17%	98.23%	93.26%	<3 hrs
KMNIST	4_1_16_20	98.26%	99.98%	96.41%	<4 hrs
KMNIST	2_1_10_14	97.77%	99.86%	94.08%	<4 hrs
KMNIST	3_2_20_20	98.31%	99.62%	95.41%	<6 hrs

BOHB on KMNIST (and K49)

Dataset	eta_min_max_iter (BOHB)	Validation Accuracy	Train Accuracy	Test Accuracy	BOHB Runtime
KMNIST	2_1_16_10	98.08%	99.81%	95.06%	<3 hrs
KMNIST	3_1_9_20	97.17%	98.23%	93.26%	<3 hrs
KMNIST	4_1_16_20	98.26%	99.98%	96.41%	<4 hrs
KMNIST	2_1_10_14	97.77%	99.86%	94.08%	<4 hrs
KMNIST	3_2_20_20	98.31%	99.62%	95.41%	<6 hrs
K49	3_1_9_10	89.06%	99.93%	88.12%	<5 hrs
K49	2_1_10_10	91.19%	99.25%	88.25%	<12 hrs

BOHB on KMNIST (and K49)

Dataset	eta_min_max_iter	Validation	Train	Test	ВОНВ
	(BOHB)	Accuracy	Accuracy	Accuracy	Runtime
KMNIST	2_1_16_10	98.08%	99.81%	95.06%	<3 hrs
KMNIST	3_1_9_20	97.17%	98.23%	93.26%	<3 hrs
KMNIST	4_1_16_20	98.26%	99.98%	96.41%	<4 hrs
KMNIST	2_1_10_14	97.77%	99.86%	94.08%	<4 hrs
KMNIST	3_2_20_20	98.31%	99.62%	95.41%	<6 hrs
K49	3_1_9_10	89.06%	99.93%	88.12%	<5 hrs
K49	2_1_10_10	91.19%	99.25%	88.25%	<12 hrs

Model: KMNIST → K49

KMNIST	K49	K49	Run-
Test	Train	Test	time
95.06%	97.15%	90.49%	<2hrs
95.41%	95.91%	90.63%	<1hr
96.41%	99.67%	93.32%	<4hrs

5/6

	Model: KMNIST \rightarrow K49				
KMNIST	K49	K49	Run-		
Test	Train	Test	time		
95.06%	97.15%	90.49%	<2hrs		
95.41%	95.91%	90.63%	<1hr		
96.41%	99.67%	93.32%	<4hrs		

Configuration: KMNIST \xrightarrow{BOHB} K49

Hyperparameters:

- # of channels
- # of FC layers and neurons
- batch size

KMNIST	K49	K49	Run-
Test	Train	Test	time
95.41%	98.87%	90.20%	<4hrs
96.41%	99.93%	94.28%	<20hrs

Model: KMNIST \rightarrow K49				
KMNIST	K49	K49	Run-	
Test	Train	Test	time	
95.06%	97.15%	90.49%	<2hrs	
95.41%	95.91%	90.63%	<1hr	
96.41%	99.67%	93.32%	<4hrs	

Configuration: KMNIST \xrightarrow{BOHB} K49

Hyperparameters:

- # of channels
- # of FC layers and neurons
- batch size

	-		
KMNIST	K49	K49	Run-
Test	Train	Test	time
95.41%	98.87%	90.20%	<4hrs
96.41%	99.93%	94.28%	<20hrs

<u>Issues</u>: (i) Under-represented classes; (ii) Slow experiments;

Model: KMN	IST o K49	9	
KMNIST	K49	K49	Run-
Test	Train	Test	time
95.06%	97.15%	90.49%	<2hrs
95.41%	95.91%	90.63%	<1hr
96.41%	99.67%	93.32%	<4hrs

Configuration: KMNIST \xrightarrow{BOHB} K49

Hyperparameters:

- # of channels
- # of FC layers and neurons
- batch size

		-		
	KMNIST	K49	K49	Run-
	Test	Train	Test	time
	95.41%	98.87%	90.20%	<4hrs
İ	96.41%	99.93%	94.28%	<20hrs

<u>Issues</u>: (i) Under-represented classes; (ii) Slow experiments; [(iii) What if only K49?]

- Fidelity (data subsets)
 - K49: $90.20\% \rightarrow 93.85\%$

- Fidelity (data subsets)
 - K49: $90.20\% \rightarrow 93.85\%$
- Data Augmentation
 - \bullet K49: 94.28% \rightarrow 93.37% (with fidelity)

- Fidelity (data subsets)
 - K49: 90.20% → 93.85%
- Data Augmentation
 - K49: $94.28\% \rightarrow 93.37\%$ (with fidelity)
- Better/more parameters for transfer configuration
 - Learning rate schedule
 - Optimizer

- Fidelity (data subsets)
 - $\bullet~\text{K49: }90.20\% \rightarrow 93.85\%$
- Data Augmentation
 - K49: 94.28% → 93.37% (with fidelity)
- Better/more parameters for transfer configuration
 - · Learning rate schedule
 - Optimizer
- EPMs to try reduce parameter blow ups and runtimes

- Fidelity (data subsets)
 - $\bullet~\text{K49: }90.20\% \rightarrow 93.85\%$
- Data Augmentation
 - K49: $94.28\% \rightarrow 93.37\%$ (with fidelity)
- Better/more parameters for transfer configuration
 - · Learning rate schedule
 - Optimizer
- EPMs to try reduce parameter blow ups and runtimes
- NAS cell search

Possible improvements:

- Fidelity (data subsets)
 - K49: 90.20% → 93.85%
- Data Augmentation
 - K49: $94.28\% \rightarrow 93.37\%$ (with fidelity)
- Better/more parameters for transfer configuration
 - Learning rate schedule
 - Optimizer
- EPMs to try reduce parameter blow ups and runtimes
- NAS cell search
- Padding to go deeper (exploit sparsity)

Final Numbers:

Dataset	Dataset Default Test	
KMNIST	69.56%	97.89%
K49	54.43%	94.28%

KMNIST: from transferring best K49 model K49: from transferring incumbent config on KMNIST and then BOHB on K49

