02393 Programming in C++ Module 11 Recursive Data-Structures: Trees

Teacher: Alberto Lluch Lafuente

Sebastian Mödersheim (slides author)

April 25, 2016

Lecture Plan

#	Date	Topic	Chapter *	
1	1.2	Introduction	1	
2	8.2	Basic C++	1	
3	15.2	Data Types	2	
4	22.2	Data Types		
		Libraries and Interfaces	3	
5	29.2	Libraries and interfaces		
6	7.3	Classes and Objects	4.1, 4.2 and 9.1, 9.2	
7	14.3	Templates	4.1, 11.1	
		Påskesferie		
8	4.4	Inheritance	14.3, 14.4, 14.5	
9	11.4	Recursive Programming	5	
10	18.4	Linked Lists	10.5	
11	25.4	Trees	13.1-13.3	
12	2.5	Graphs	16	
13	9.5	Summary		
	17.5	Exam	-	

^{*} Recall that the book uses sometimes ad-hoc libraries that are slightly different with respect to the standard libraries (e.g. strings and vectors).

Summary

- Recursive programming... when?
 - ★ Problem is recursively/inductively defined (e.g. Fibonacci);
 - ★ Problem on a recursive data structure (e.g. lists, sets, trees);
- Recursive data structures:
 - ★ Linked lists: single- and doubly-linked lists;
 - ★ Sets, multi-sets;
 - ★ (Binary) trees;
- Abstract Data Type vs Concrete Data Structures:
 - ★ Abstract Data Type: a new type being specified, e.g. a class Set;
 - ★ Concrete Data Structure: how we implement it, e.g. Set implemented with linked lists... or binary trees... or...;

Today

- Class Tree of (ordered) binary trees
 - ★ Inserting an element;
 - ★ Finding an element;
 - ★ Size of a tree;
 - ★ Height of a tree;
 - ★ Traversing the tree (enumerating all elements) in different orders;
- Class Set implemented with binary trees

Trees

What is a binary tree?

- A binary tree can be empty;
- A binary tree can be formed by a node and two sub-trees;

Some notation:

- The topmost node of a tree is called the root; nodes at the bottom (with empty sub-trees) are called *leafs*, all other nodes are called *internal* nodes;
- The size of a tree is the number nodes it has, the height is the maximal distance from the root to a leaf.

What is an ordered binary tree or (search tree)?

- An empty binary tree is a search tree;
- A non empty binary tree is a search tree if:
 - ★ all nodes in the left sub-tree are smaller than the root:
 - ★ all nodes in the right sub-tree are greater than the root;
 - ★ both sub-trees are search trees;

Such trees provide efficient insertion/deletion/search methods.

From nodes in a list to nodes in a tree

```
Possible implementation of tree nodes

struct Node{
  int content;
  Node *left;
  Node *right;
}
```

A tree could be then just a pointer to a Node, as we did for lists.

Class of Trees

```
Another possible recursive definition of trees
class Tree{
public:
private:
  bool empty;
  int content;
  Tree *left:
  Tree *right;
```

Here a flag empty is used to denote empty trees. Every tree (node) will be a class. We will use this representation in the examples.

Class of Trees: Methods

Most methods we need to implement can be implemented using recursion.

Consider, for example, the size of a tree. A recursive formulation could be based on the idea that:

- the size of an empty tree is 0;
- the size of a non empty tree is 1 (for the root node) plus the size of its sub-trees

All other methods that we will see can exploit the recursive structure of trees.

Some of them are not easy to implement without recursion.

Problem with simple binary trees

```
Inserting 1, 2, 3, 4...
```

```
1
/ \
2
/ \
3
/ \
4
/ \
...
```

... the tree degenerates into a list :(

Balanced trees

- A family of solutions: AVL (book), B-trees, Red-Black tres, etc.
- Main idea: make the height of the tree be $O(\log n)$.

Main mechanism to re-balance: rotations

Idea: inserting/deleting nodes may unbalance the trees. To re-balance, rotations can be applied.

Re-balancing requires to re-arrange some few links in the tree (a bit like when reversing a linked list).

Complexity discussion

Consider the implementations of sets that we have seen so far and the complexity of these operations:

	(0)	(1)	(2)	(3)
insert				
find				

- (0) Using arrays.
- (1) Using Linked-lists.
- (2) Using simple binary search trees.
- (3) Using balanced binary search trees.