# ECEN620: Network Theory Broadband Circuit Design Fall 2014

Lecture 10: Voltage-Controlled Oscillators



Sam Palermo
Analog & Mixed-Signal Center
Texas A&M University

#### Announcements & Agenda

HW3 is due Friday Oct 17

- VCO Fundamentals
- VCO Examples
- VCO Noise

#### Charge-Pump PLL Circuits

- Phase Detector
- Charge-Pump
- Loop Filter
- VCO
- Divider



#### Voltage-Controlled Oscillator



$$\omega_{out}(t) = \omega_0 + \Delta\omega_{out}(t) = \omega_0 + K_{VCO}v_c(t)$$

Time-domain phase relationship

$$\phi_{out}(t) = \int \Delta \omega_{out}(t) dt = K_{VCO} \int v_c(t) dt$$

**Laplace Domain Model** 



## Voltage-Controlled Oscillators (VCO)

- Ring Oscillator
  - Easy to integrate
  - Wide tuning range (5x)
  - Higher phase noise



- LC Oscillator
  - Large area
  - Narrow tuning range (20-30%)
  - Lower phase noise



#### Barkhausen's Oscillation Criteria



Closed-loop transfer function: 
$$\frac{H(j\omega)}{1-H(j\omega)}$$

- Sustained oscillation occurs if  $H(j\omega)=1$
- 2 conditions:
  - Gain = 1 at oscillation frequency  $\omega_0$
  - Total phase shift around loop is n360° at oscillation frequency  $\omega_0$

#### Ring Oscillator Example



Three-stage ring oscillator

$$H(s) = -\frac{A_0^3}{\left(1 + \frac{s}{\omega_0}\right)^3} \qquad \omega_{osc} = \sqrt{3}\omega_0 \qquad \tan^{-1}\frac{\omega_{osc}}{\omega_o} = 60^\circ$$

$$\tan^{-1}\frac{\omega_{osc}}{\omega_o} = 60^{\circ}$$

$$\frac{V_{out}(s)}{V_{in}(s)} = \frac{\frac{-A_0^3}{(1+s/\omega_0)^3}}{1+\frac{A_0^3}{(1+s/\omega_0)^3}} = \frac{-A_0^3}{(1+s/\omega_0)^3+A_0^3}$$

$$\frac{A_0^3}{\left[\sqrt{1 + \left(\frac{\omega_{osc}}{\omega_0}\right)^2}\right]^3} = 1$$

$$A_0 = 2$$

#### Ring Oscillator Example



- 4-stage oscillator work this one out yourself
  - $A_0 = sqrt(2)$
  - Phase shift = 45°
- Easier to make a larger-stage oscillator oscillate, as it requires less gain and phase shift per stage, but it will oscillate at a lower frequency

#### LC Oscillator Example



 Oscillation phase shift condition satisfied at the frequency when the LC (and R) tank load displays a purely real impedance, i.e. 0° phase shift

#### LC tank impedance

$$Z_{eq}(s) = \frac{R_S + L_1 s}{1 + L_1 C_1 s^2 + R_S C_1 s}$$

$$\left| Z_{eq} \left( s = j\omega \right) \right|^{2} = \frac{R_{S}^{2} + L_{1}^{2} \omega^{2}}{\left( 1 - L_{1} C_{1} \omega^{2} \right)^{2} + R_{S}^{2} C_{1}^{2} \omega^{2}}$$

## LC Oscillator Example



 Transforming the series loss resistor of the inductor to an equivalent parallel resistance



### LC Oscillator Example





 $|H_1H_2|$ 



- Phase condition satisfied at  $\omega_1 = \frac{1}{\sqrt{L_p C_p}}$
- Gain condition satisfied when  $(g_m R_p)^2 \ge 1$ 
  - Can also view this circuit as a parallel combination of a tank with loss resistance  $2R_P$  and negative resistance of  $2/g_m$
- Oscillation is satisfied when

$$\frac{1}{g_m} \le R_P$$

## CMOS Inverter Ring Oscillator



- Noise in the system will initiate oscillation, with the signals eventually exhibiting rail-to-rail swings
- While the small-signal transistor parameters ( $g_m$ ,  $g_o$ ,  $C_g$ , etc...) can be used to predict the initial oscillations during small-signal start-up, these parameters can vary dramatically during large-signal operation

## CMOS Inverter Ring Oscillator



- For this large-signal oscillator, the frequency is set by the stage delay, T<sub>D</sub>
- T<sub>D</sub> is a function of the nonlinear current drive and capacitances of each stage
- As an "edge" has to propagate twice around the loop  $f_{osc} = \frac{1}{6T_D}$ , or  $\frac{1}{2NT_D}$  where N is the oscillator stage number

## Supply-Tuned Ring Oscillator



$$T_{VCO} = 2nT_D \approx \frac{2nC_{stage}}{\beta (V_c - V_{th})}$$

$$K_{VCO} = \frac{\partial f_{VCO}}{\partial V_c} = \frac{\beta}{2nC_{stage}}$$

## Current-Starved Ring Oscillator



Current - starved VCO.

## Capacitive-Tuned Ring Oscillator



## Symmetric Load Ring Oscillator



- Symmetric load provides frequency tuning at excellent supply noise rejection
- See Maneatis papers for self-biased techniques to obtain constant damping factor and loop bandwidth (% of ref clk)

17

#### LC Oscillator

A variable capacitor
 (varactor) is often used to
 adjust oscillation frequency

 Total capacitance includes both tuning capacitance and fixed capacitances which reduce the tuning range

$$\omega_{osc} = \frac{1}{\sqrt{L_P C_P}} = \frac{1}{\sqrt{L_P (C_{tune} + C_{fixed})}}$$



#### Varactors

- pn junction varactor
  - Avoid forward bias region to prevent oscillator nonlinearity



- - Accumulation-mode devices have better Q than inversion-mode



#### Oscillator Noise





#### Oscillator Phase Noise Model



For improved model see Hajimiri papers

#### Open-Loop VCO Jitter



- Measure distribution of clock threshold crossings
- Plot σ as a function of delay ΔT

#### Open-Loop VCO Jitter



[McNeill]

$$\sigma_{\Delta T(OL)}(\Delta T) \approx \kappa \sqrt{\Delta T}$$

- Jitter  $\sigma$  is proportional to sqrt( $\Delta T$ )
- K is VCO time domain figure of merit

#### VCO in Closed-Loop PLL Jitter



• PLL limits  $\sigma$  for delays longer than loop bandwidth  $\tau_{\text{L}}$ 

$$\tau_L = 1/2\pi f_L$$

#### Ref Clk-Referenced vs Self-Referenced



- Generally, we care about the jitter w.r.t. the ref. clock  $(\sigma_x)$
- However, may be easier to measure w.r.t. delayed version of output clk
  - Due to noise on both edges, this will be increased by a sqrt(2) factor relative to the reference clock-referred jitter

#### Converting Phase Noise to Jitter



- As  $\Delta T$  goes to  $\infty$   $\sigma_T^2 = \frac{2}{\omega_o^2} R_{\varphi}(0) = \frac{4}{\omega_o^2} \int_0^{\infty} S_{\varphi}(f) df$
- Integration range depends on application bandwidth
  - f<sub>min</sub> set by standard
    - Ex. Assumed CDR tracking bandwidth
  - Usually stop integration at f<sub>o</sub>/2 or f<sub>o</sub> due to measurement limitations and aliasing components

#### Next Time

- VCO Noise (cont.)
- Divider Circuits