Figure 2C illustrates the relationship of the two input parameters (contrast threshold, intensity threshold) and the sensitivity of thresholding.

Please replace the paragraph beginning on page 3, line 20 with the following rewritten paragraph:

Figure 3A shows the image processing steps of automatic image quality inspection for a bitone image.

A\

Please replace the paragraph beginning on page 3, line 22 with the following rewritten paragraph:

Figure 3B shows the neighborhood operation of binary image dilation.

Please replace the paragraph beginning on page 3, line 24 with the following rewritten paragraph:

Figure 3C is an example of noise dot structures before image dilation in a binary image.

Please replace the paragraph beginning on page 3, line 26 with the following rewritten paragraph:

Figure 3D is the noise dot structures of Figure 3B after image dilation.

Please replace the paragraph beginning on page 3, line 28 with the following rewritten paragraph:

Figure 3E is the image processing block diagram of noise feature extraction.

Please replace the paragraph beginning on page 3, line 30 with the following rewritten paragraph:

Figure 3F is an example of noise feature calculation in a binary image.

Please replace the paragraph beginning on page 4, line 1 with the following rewritten paragraph:

Figure 4A shows the block diagram of the image processing for automatic image quality correction.

Please replace the paragraph beginning on page 4, line 3 with the following rewritten paragraph:

Figure 4B shows the block diagram of the image processing for the multiple adaptive image thresholding.

Please replace the paragraph beginning on page 4, line 5 with the following rewritten paragraph:

Figure 4C is the table containing the calculated noise levels for different thresholded images produced by various input parameters (contrast threshold (CT), intensity threshold (IT)).

Please replace the paragraph beginning on page 4, line 8 with the following rewritten paragraph:

Figure 4D is a flow chart of noise level analysis in finding the optimal contrast threshold and intensity threshold.

Please replace the paragraph beginning on page 4, line 10 with the following rewritten paragraph

Figure 4E is the first example of noise index distribution (R(CT,IT)) with constant intensity threshold (IT) at 70 and multiple contrast thresholds (CT) varied from 60 to 15.

Please replace the paragraph beginning on page 4, line 13 with the following rewritten paragraph:

Figure 4F is the second example of noise index distribution (R(CT,IT)) with constant intensity threshold (IT) at 70 and multiple contrast thresholds (CT) varied from 60 to 15.

Please replace the paragraph beginning on page 4, line 16 with the following rewritten paragraph:

Figure 4G is the third example of noise index distribution (R(CT,IT)) with constant intensity threshold (IT) at 70 and multiple contrast thresholds (CT) varied from 60 to 15.

Please replace the paragraph beginning on page 4, line 19 with the following rewritten paragraph:

Figure 4H is an example of noise index distribution (R(CT,IT)) with constant intensity threshold (IT) at 60 and multiple contrast thresholds (CT) varied from 70 to 220.

Please replace the paragraph beginning on page 4, line 22 with the following rewritten paragraph:

Figure 4I is an example of noise index distribution (R(CT,IT)) with constant intensity threshold (IT) at 60 and multiple contrast thresholds (CT) varied from 70 to 220.

Please replace the paragraph beginning on page 5, line 11 with the following rewritten paragraph:

The multi-windowing technique for thresholding an image using local image properties as described in U.S. Patent No. 5,583,659, the disclosure of which is hereby incorporated by reference, is applied to convert a gray scale image into a binary image. The thresholding technique calculates the threshold value for every pixel in an image based on the local image properties surrounding the pixel. The threshold value is then applied to turn the gray value of a pixel into bi-level value (black or white). The block diagram of the thresholding technique is summarized in Figure 2A. The operation of the technique requires a user to supply a contrast threshold value (CT) and an intensity threshold value (IT) as shown in Figure 2B. The image quality of a thresholded image is determined by the input of the two threshold values (CT and IT). A thresholded image (CT, IT) as shown in Figure 2B means that the image quality of a thresholded image is a function of (CT, IT). The image quality of a thresholded image is evaluated by

two factors: text readability (no image information loss) and smoothness of the white background (noise free on image background). The CT value controls the sensitivity of detecting thin, light text and line arts, and the it value accounts for the threshold of a uniform gray region. Assume that the CT value is normalized to the values in the range of 0 and 100 and the it value is between 0 and 255 as shown in Figure 2C. The CT value is often chosen to be sensitive enough for extracting all image information such as light text, thin lines, ... etc., and the IT value is set to turn light gray uniform region into white background. The threshold values at (CT=60, IT=90) as shown in Figure 2C is considered as an appropriate setup to extract all image information details. However, the setup of the threshold values at (CT=60, IT=90) may result in too sensitive for some documents due to the roughness of document papers and results in generating unwanted speckle noises in background of the thresholded images. The following section describes the method of automatic image noise inspection.

AZ

Please replace the paragraph beginning on page 6, line 12 with the following rewritten paragraph:

Figure 3A is the processing steps of detecting noise level for a thresholded image. A binary image dilation operation is applied to the binary image (B) and generates a new binary image (B1). Three noise features are measured from the dilated binary image (B1). The normalized noise area (R) is taken as the image noise index (INI) of the binary image (B). The detailed description of the processing steps as shown in Figure 3A is stated in the following.

Please replace the paragraph beginning on page 6, line 18 with the following rewritten paragraph:

Assume that black pixel is marked with "1" and white pixel is marked with "0" in a binary image. The image dilation operation is to expand the region of black dots by a local neighborhood operation as shown in Figure 3B. The center pixel "0" at the output is set to "0" only when all neighboring pixel X<sub>I</sub> in a 3x3 window, where I=1, ...8, are matched with the 3x3 zero mask.

Otherwise, the center pixel "0" at the output is marked with black pixel, "1". The

dilation operation is required because in some documents the text is printed with dot-matrix. The dilation operation connects the adjacent small dots into line segments so that the noise dots and the dots belonging to dot-matrix characters becomes distinguishable. A graphical example is illustrated in Figure 3C and Figure 3D. Figure 3C displays a binary image before image dilation. The number and size of the black dots in the left-handed side of the image is identical to the one in the right-handed side. If the number (or the area) of the noise dots is taken as a feature to evaluate level of noise, the feature will fail to differentiate the image patterns in both sides. However, after image dilation is applied, the original dotted pattern is turned into two straight line segments in the left-handed side as shown in Figure 3D. The dispersed noise patterns in the right handed side of the image stays the same except the enlarged noise dots. Hence, the number of noise dots becomes a useful feature in extracting real noise dots in the evaluation of noise level in the dilated binary image.

Please replace the paragraph beginning on page 7, line 6 with the following rewritten paragraph:

The randomly, distributed small dots which contain no image information in a binary image are defined as noise. The noise measurement requires counting the number and the area of the small dots in a binary image. Figure 3E depicts the processing steps of noise measurement on the dilated binary image. First, it applies to a contour tracing method (see reference in U.S. Patent No. 5,974,199, the disclosure of which is hereby incorporated by reference) to extract the outline of every object in the dilated binary image. The contour pixels are extracted either in a sequence of clockwise or counterclockwise. The contours extracted in the order of clockwise are the outer contour (or black object contours), and the contours extracted in the order of counterclockwise are the inner contours (or white object contours). A size threshold (T<sub>s</sub>) is applied to reject the large contour components whose size is too large to be considered as noise dots. The numbers of the remaining small contours are counted for black noise dots (NB) and white noise dots (NW), respectively, and the total noise area (NA) for black noise dots is calculated. The normalized noise area (R) is the ratio of NA value over the document area (DA) and is taken as the image noise index

AS

(INI). The NB and NW values are used to differentiate the white background from the black background. When the NB is greater than the NW, it indicates that the image has a white background. A large NW value then indicates that the background is black. This occurs when there is a con-tone image or large dark gray area existed in the document. Figure 3F is an example of the calculation of noise features. There are 20 black noise dots counted. That is that NB equals to 20. The number of white noise dots (NW) is counted as 10. Assume that the average area of each noise is calculated as Na, then the total noise area (NA) is 20 times Na and the image noise index (INI) is equal to NA/DA.

AC

A7

Please replace the paragraph beginning on page 8, line 6 with the following rewritten paragraph:

Figure 4A shows the block diagram of image processing for automatic image quality correction. A multiple adaptive image thresholding process is applied to produce (N+M) binary images by orderly change of the N different contrast and the M different intensity threshold parameters. The noise level of every binary image in the (N+M) thresholded image is calculated, respectively. The optimal threshold parameters is obtained from the (N+M) pair of threshold values by analyzing the correlation of the (N+M) noise levels and the (N+M) pairs of contrast and intensity thresholds.

Please replace the paragraph beginning on page 8, line 14 with the following rewritten paragraph:

The basic processing steps of the multiple adaptive thresholding are the same as the one in Figure 2A except with the multiple input of threshold values (CT, IT). The input (CT, IT) values are changed with 5 units decrement of CT and 30 units increment of IT in order of (60,70), (55,70), (50,70), (45,70), (40,70), (35,70), (30,70), (25,70), (20,70), (15,70), (60,100), (60,130), (60,160), (60,190) and (60,220). The 15 pairs of threshold values are fed into the adaptive thresholding process sequentially and generate 15 different binary images. By applying the process of noise feature extraction to the 15 different images separately as shown in Figure 3A, there are 15 noise values, R(CT,IT), calculated

A8

and listed in Figure 4C. Figure 4C shows noise levels at various combinations of (CT, IT).

Please replace the paragraph beginning on page 8, line 24 with the following rewritten paragraph:

The objective of correlation analysis of noise and (CT,IT) is to identify the threshold values (CT, IT) which will be used in the adaptive thresholding process in generating least background noises while retaining all image information in a thresholded image. Figure 4D is the block diagram of the data analysis of selecting the optimal threshold values. First, scanning through the set of noise values, R(CT(I),70), where I=1,...,10, if the condition (A): R(CT(I),70)>Rth for all CT(I), is met, where the Rth is a predefined noise threshold value (Rth) as shown in Figure 4E. This indicates that the noise levels of all thresholded images are high and unrelated to the change of contrast threshold. Hence, it requires the change of intensity threshold (IT) in search of the optimal intensity threshold. On the other hand, if the condition (A) fails, it requires the change of the contrast threshold (CT) in search of the optimal contrast threshold.

The paragraph beginning on page 9, line 5 has been amended as set forth below:

A10

In the search of optimal contrast threshold, if the condition (B): all of the noise values, R(CT(I),70), I=1,...,10, are smaller than the noise threshold (Rth) as shown in Figure 4E, it indicates that the starting threshold setting at (CT,IT) = (60,70) generates little background noises and the final threshold values (CTF,ITF) = (60,70) are taken as the optimal threshold values. Otherwise, by examining the array of R(CT(I), 70) data, if the condition (C) : R(CT(I), 70) > R(CT(I+1), 70), I-1,..., 9, is satisfied, the final threshold values (CTF,ITF) = (CT(I), 70) is selected at where the CT(I) meets the condition: R(CT(I), 70) < Rth and R(CT(I+1), 70) > Rth. As the example shown in Figure 4F, the CT(I) value is selected at 35 and the final threshold values (CTF,ITF) = (35, 70). If the test of the condition (C) fails, the final threshold values (CTF,ITF) = (CT(I), 70) is selected at where the CT(I) meets the condition: R(CT(I), 70) < R(CT(I-1), 70). As

APO

the example shown in Figure 4G, the CT(I) value is selected at 40 and the final threshold values (CTF,ITF) = (40, 70).

Please replace the paragraph beginning on page 9, line 19 with the following rewritten paragraph:

AIL

In the search of optimal intensity threshold, if the condition (D): R(60,IT(J))>Rth for all IT(J),J=1,...,6, is met, it indicates that the noise levels of all thresholded images are high and unrelated to the change of intensity threshold as the example shown in Figure 4H. The final threshold values (CTF,ITF) is set at (60, 70) which is the starting setup. This implies that there is no optimal threshold values detected and the final threshold values are assigned with the starting setting, (CTF,ITF) = (60, 70). On the other hand, if the test of the condition (D) fails, the (CTF,ITF) = (60,IT(J)) is selected at where R(60, IT(J-1))>Rth and R(60, IT(J))<Rth. As the example shown in Figure 4I, the IT(J) value is selected at 130. This indicates the intensity threshold at IT(J-1) = 100 is close to the background intensity and it is incapable of thresholding the intensity levels of background pixels and results in generating large amount of background noises.