## **FEATURES**

- > Complies with JEDEC standard no. 8-1A
- > ESD protection

HBM EIA/JESD22-A114-A exceeds 2000V

MM EIA/JESD22-A115-A exceeds 200V

Specified from -40 to  $+85^{\circ}$ C and -40 to  $+125^{\circ}$ C

## **DESCRIPTION**

The 74HC04/74HCT04 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A. The 74HC04/74HCT04 provide six inverting buffers.

## **QUICK REFERENCE DATA**

GND = 0V;  $T_{amb} = 25 \,^{\circ}\text{C}$ ;  $t_f = t_f \le 6.0 \text{ns}$ 

| SYMBOL            | PARAMETER                              | CONDITIONS                | TYF  | UNIT  |      |
|-------------------|----------------------------------------|---------------------------|------|-------|------|
|                   | TANAMETER                              | CONDITIONS                | HC04 | HCT04 | UNII |
| $T_{PLH}/t_{PLH}$ | Propagation delay nA to nY             | $C_L = 15pF; V_{CC} = 5V$ | 7    | 8     | ns   |
| $C_{I}$           | Input capacitance                      |                           | 3.5  | 3.4   | pF   |
| $C_{PD}$          | Power dissipation capacitance per gate | Notes 1 and 2             | 21   | 24    | pF   |

#### Notes

1. C<sub>PD</sub> is used to determine the dynamic power dissipation (P<sub>D</sub> in uW).

 $P_D = C_{PD} \times V_{CC}^2 \times f_i \times N + \sum (C_L \times V_{CC}^2 \times f_o)$  where:

 $f_i$  = input frequency in MHz;

 $f_0$  = output frequency in MHz;

 $C_L$  = output load capacitance in pF;

 $V_{CC}$  = supply voltage in volts;

N = total load switching outputs;

2. For 74HC04: the condition is  $V_I = GND$  to  $V_{CC}$ .

For 74HCT04: the condition is  $V_I = GND$  to  $V_{CC}$ -1.5V

### **FUNCTION TABLE**

#### See note 1.

| INPUT | OUTPUT |
|-------|--------|
| nA    | nY     |
| L     | Н      |
| Н     | L      |

#### Note

1. H = HIGH voltage level;

L = LOW voltage level.

## **ORDERING INFORMATION**

| TYPE NUMBER  |                   | P.   | ACKAGE  |          |           |
|--------------|-------------------|------|---------|----------|-----------|
| I IPE NUMBER | TEMPERATURE RANGE | PINS | PACKAGE | MATERIAL | CODE      |
| 74HC04N      | –40 to +125°C     | 14   | DIP14   | Plastic  | SOT27-1   |
| 74HCT04N     | –40 to +125°C     | 14   | DIP14   | Plastic  | SOT27-1   |
| 74HC04D      | –40 to +125°C     | 14   | SO14    | Plastic  | SOT108-1  |
| 74HCT04D     | –40 to +125°C     | 14   | SO14    | Plastic  | SOT108-1  |
| 74HC04DB     | –40 to +125°C     | 14   | SSOP14  | Plastic  | SOT337-01 |
| 74HCT04DB    | –40 to +125°C     | 14   | SSOP14  | Plastic  | SOT337-01 |
| 74HC04PW     | –40 to +125°C     | 14   | TSSOP14 | Plastic  | SOT402-1  |
| 74HCT04PW    | –40 to +125°C     | 14   | TSSOP14 | Plastic  | SOT402-1  |
| 74HC04BQ     | –40 to +125°C     | 14   | DHVQF14 | Plastic  | SOT762-1  |
| 74HCT04BQ    | –40 to +125°C     | 14   | DHVQF14 | Plastic  | SOT762-1  |

## **PINNING**

| PIN | SYMBOL | DESCRIPTION   |
|-----|--------|---------------|
| 1   | 1A     | Data input    |
| 2   | 1Y     | Data output   |
| 3   | 2A     | Data input    |
| 4   | 2Y     | Data output   |
| 5   | 3A     | Data input    |
| 6   | 3Y     | Data output   |
| 7   | GND    | Ground (0V)   |
| 8   | 4Y     | Data output   |
| 9   | 4A     | Data input    |
| 10  | 5Y     | Data output   |
| 11  | 5A     | Data input    |
| 12  | 6Y     | Data output   |
| 13  | 6A     | Data input    |
| 14  | VCC    | Supply votage |





## SHENZHEN FUMAN ELECTRONICS CO., LTD.

## **74HC04/74HCT04**(文件编号: S&CIC0463)



(1) The die substrate is attached to this pad using conductive die attach material.it can not be used as a supply pin or input.

Fig. 2 Pin configuration DHVQFN14.







## RECOMMENDED OPERATING CONDITIONS

| CVMDOI                           | PARAMETER                 | CONDITIONS          |     | 74HC04 |      | 74HCT04 |     |      | UNIT         |
|----------------------------------|---------------------------|---------------------|-----|--------|------|---------|-----|------|--------------|
| SYMBOL                           | PARAMETER                 | CONDITIONS          | MIN | TYP    | MAX  | MIN     | TYP | MAX  | UNII         |
| VCC                              | Supply voltage            |                     | 2.0 | 5.0    | 6.0  | 4.5     | 5.0 | 5.5  | V            |
| VI                               | Input voltage             |                     | 0   | ı      | Vcc  | 0       | -   | Vcc  | V            |
| VO                               | Output voltage            |                     | 0   | -      | Vcc  | 0       | -   | Vcc  | V            |
|                                  | Ambient temperature       | See DC and AC       |     |        |      |         |     |      |              |
| Tamb                             |                           | Characteristics per | -40 | +25    | +125 | -40     | +25 | +125 | $^{\circ}$ C |
|                                  |                           | Device              |     |        |      |         |     |      |              |
|                                  |                           | Vcc = 2.0V          | -   | -      | 1000 | -       | -   | -    | ns           |
| tr, tf Input rise and fall times | Input rise and fall times | Vcc = 4.5V          | -   | 6.0    | 500  | -       | 6.0 | 500  | ns           |
|                                  | Vcc = 6.0V                | -                   | -   | 400    | -    | -       | -   | ns   |              |

## LIMITING VALUES

In accordance with the absolute maximum rating system (IEC 60134); voltages are referenced to GND (fround = 0V)

|                       | recordance with the desorate maximum rating system (IDE 60121), votages are referenced to 6112 (fround 617) |                                                                                      |      |      |                        |  |  |  |  |  |
|-----------------------|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------|------|------------------------|--|--|--|--|--|
| SYMBOL                | PARAMETER                                                                                                   | CONDITIONS                                                                           | MIN  | TYP  | MAX                    |  |  |  |  |  |
| Vcc                   | Suupply voltage                                                                                             |                                                                                      | -0.5 | +7.0 | V                      |  |  |  |  |  |
| $I_{IK}$              | Input diode current                                                                                         | $V_{I}$ <-0.5 $V$ <or <math="">V_{I}&lt;<math>V</math>cc+0.5<math>V</math></or>      | -    | ±20  | mA                     |  |  |  |  |  |
| $I_{OK}$              | Output diode currer                                                                                         | $V_{O}$ <-0.5 $V$ <or <math="">V_{O}&lt;<math>V</math>cc+0.5<math>V</math></or>      | -    | ±20  | mA                     |  |  |  |  |  |
| $I_{O}$               | Output source of sink current                                                                               | -0.5V <v<sub>0<vcc+0.5v< td=""><td>-</td><td>±25</td><td>mA</td></vcc+0.5v<></v<sub> | -    | ±25  | mA                     |  |  |  |  |  |
| Icc, I <sub>GND</sub> | Vcc or GND currer                                                                                           |                                                                                      | -    | ±50  | mA                     |  |  |  |  |  |
| $T_{stg}$             | Storage temperature                                                                                         |                                                                                      | -65  | ±150 | $^{\circ}\!\mathbb{C}$ |  |  |  |  |  |
|                       | Power dissipation                                                                                           |                                                                                      |      |      |                        |  |  |  |  |  |
| P <sub>tot</sub>      | DIP 14 package                                                                                              | $T_{amb} = -40 \text{ to } +125 ^{\circ}\text{C}; \text{ note } 1$                   | -    | 750  | mW                     |  |  |  |  |  |
|                       | Other packages                                                                                              | $T_{amb} = -40 \text{ to } +125^{\circ}\text{C}; \text{ note } 2$                    | -    | 500  | mW                     |  |  |  |  |  |

### Notes

1. For DIP14 packages: above  $70^{\circ}$ C derate linearly with 12 mW/K.

2. For SO14 packages: above 70°C derate linearly with 8 mW/K.

For SSOP14 and TSSOP14 packages: above 60°C derate linearly with 5.5mW/K.

For DHVQFN14 packages: above 60°C derate linearly with 4.5mW/K.

## DC CHARACTERISTICS

Type 74HC04

At recommended operating conditions; voltages are referenced to GND (ground = 0V).

| CVMDOI                          | DADAMETED                  | TEST CONDITIONS                     |         | MINI | TYP  | MAY  | UNIT |
|---------------------------------|----------------------------|-------------------------------------|---------|------|------|------|------|
| SYMBOL                          | PARAMETER                  | OTHER                               | Vcc (V) | MIN  | TIP  | MAX  | UNII |
| $T_{amb} = 25 ^{\circ}\text{C}$ |                            |                                     |         |      |      |      |      |
|                                 |                            |                                     | 2.0     | 1.5  | 1.2  | -    | V    |
| $V_{\mathrm{IH}}$               | HIGH-level input voltage   |                                     | 4.5     | 3.15 | 2.4  | -    | V    |
|                                 |                            |                                     | 6.0     | 4.2  | 3.2  | -    | V    |
|                                 |                            |                                     | 2.0     | -    | 0.8  | 0.5  | V    |
| $V_{\mathrm{IL}}$               | LOW-level input voltage    |                                     | 4.5     | -    | 2.1  | 1.35 | V    |
|                                 |                            |                                     | 6.0     | -    | 2.8  | 1.8  | V    |
|                                 | HIGH-level output voltage  | $V_{I} = V_{IH} \text{ or } V_{IL}$ |         |      |      |      |      |
|                                 |                            | $I_{O} = -20uA$                     | 2.0     | 1.9  | 2.0  | -    | V    |
| V                               |                            | $I_O = -20uA$                       | 4.5     | 4.4  | 4.5  | -    | V    |
| $V_{OH}$                        |                            | $I_{O} = -4.0 \text{mA}$            | 4.5     | 3.98 | 4.32 | -    | V    |
|                                 |                            | $I_{O} = -20uA$                     | 6.0     | 5.9  | 6.0  | -    | V    |
|                                 |                            | $I_{O} = -5.2 \text{mA}$            | 6.0     | 5.48 | 5.81 | -    | V    |
|                                 |                            |                                     |         |      |      |      |      |
|                                 |                            | $I_O = 20uA$                        | 2.0     | -    | 0    | 0.1  | V    |
| V                               | LOW-level output voltage   | $I_O = 20uA$                        | 4.5     | -    | 0    | 0.1  | V    |
| $V_{OL}$                        | LOW-level output voltage   | $I_{O} = 4.0 uA$                    | 4.5     | -    | 0.15 | 0.26 | V    |
|                                 |                            | $I_{O} = 20uA$                      | 6.0     | -    | 0    | 0.1  | V    |
|                                 |                            | $I_{O} = 5.2uA$                     | 6.0     | -    | 0.16 | 0.26 | V    |
| $I_{LI}$                        | Input leakage current      | $V_I = Vcc \text{ or GND}$          | 6.0     | -    | 0.1  | ±0.1 | uA   |
| I                               | 3-state output OFF current | $V_{I} = VIH \text{ or VIL};$       | 6.0     |      | -    | ±0.5 | uA   |
| $I_{OZ}$                        | 3-state output OFF current | $V_0 = Vcc \text{ or GND}$          |         | -    | -    |      | u/A  |
| Icc                             | Quiescent supply current   | $V_I = Vcc \text{ or GND}; I_O = 0$ | 6.0     | -    | -    | 2    | uA   |



| SYMBOL                     | PARAMETER                  | TEST CONDITION                                            | NS      | MIN  | TYP | MAX  | UNIT |
|----------------------------|----------------------------|-----------------------------------------------------------|---------|------|-----|------|------|
| SYMBOL                     | PARAMETER                  | OTHER                                                     | Vcc (V) | MIIN | 111 | MAA  | UNII |
| $T_{amb} = -40 \text{ to}$ | +85°C                      |                                                           |         |      |     |      |      |
|                            |                            |                                                           | 2.0     | 1.5  | -   | -    | V    |
| $V_{\mathrm{IH}}$          | HIGH-level input voltage   |                                                           | 4.5     | 3.15 | 1   | -    | V    |
|                            |                            |                                                           | 6.0     | 4.2  | -   | -    | V    |
|                            |                            |                                                           | 2.0     | -    | -   | 0.5  | V    |
| $V_{ m IL}$                | LOW-level input voltage    |                                                           | 4.5     | -    | -   | 1.35 | V    |
|                            |                            |                                                           | 6.0     | -    | -   | 1.8  | V    |
|                            | HIGH-level output voltage  | $V_{I} = V_{IH} \text{ or } V_{IL}$                       |         |      |     |      |      |
|                            |                            | $I_O = -20uA$                                             | 2.0     | 1.9  | -   | -    | V    |
| $V_{OH}$                   |                            | $I_O = -20uA$                                             | 4.5     | 4.4  | -   | -    | V    |
| ▼ OH                       |                            | $I_O = -4.0 \text{mA}$                                    | 4.5     | 3.84 | -   | -    | V    |
|                            |                            | $I_O = -20uA$                                             | 6.0     | 5.9  | -   | -    | V    |
|                            |                            | $I_O = -5.2 \text{mA}$                                    | 6.0     | 5.34 | -   | -    | V    |
|                            |                            |                                                           |         |      |     |      |      |
|                            |                            | $I_O = 20uA$                                              | 2.0     | -    | -   | 0.1  | V    |
| $V_{ m OL}$                | LOW-level output voltage   | $I_O = 20uA$                                              | 4.5     | -    | 1   | 0.1  | V    |
| V <sub>OL</sub>            | LOW-level output voltage   | $I_{O} = 4.0 uA$                                          | 4.5     | -    | 1   | 0.33 | V    |
|                            |                            | $I_O = 20uA$                                              | 6.0     | -    | 1   | 0.1  | V    |
|                            |                            | $I_O = 5.2uA$                                             | 6.0     | -    | -   | 0.33 | V    |
| $I_{LI}$                   | Input leakage current      | $V_I = Vcc \text{ or GND}$                                | 6.0     | -    | -   | ±0.1 | uA   |
| $I_{OZ}$                   | 3-state output OFF current | $V_I = VIH \text{ or VIL};$<br>$V_O = Vcc \text{ or GND}$ | 6.0     | -    | -   | ±5.0 | uA   |
| Icc                        | Quiescent supply current   | $V_I = Vcc \text{ or GND}; I_O = 0$                       | 6.0     | -    | -   | 20   | uA   |



| CVMDOI                     | PARAMETER                  | TEST CONDITION                                            | NS      | MIN   | TYP | MAY   | UNIT |
|----------------------------|----------------------------|-----------------------------------------------------------|---------|-------|-----|-------|------|
| SYMBOL                     | PARAMETER                  | OTHER                                                     | Vcc (V) | IMIIN | TYP | MAX   | UNII |
| $T_{amb} = -40 \text{ to}$ | +125℃                      |                                                           |         |       |     |       |      |
|                            | HIGH-level input voltage   |                                                           | 2.0     | 1.5   | -   | -     | V    |
| $V_{\mathrm{IH}}$          |                            |                                                           | 4.5     | 3.15  | -   | -     | V    |
|                            |                            |                                                           | 6.0     | 4.2   | -   | -     | V    |
|                            |                            |                                                           | 2.0     | -     | -   | 0.5   | V    |
| $V_{\mathrm{IL}}$          | LOW-level input voltage    |                                                           | 4.5     | -     | -   | 1.35  | V    |
|                            |                            |                                                           | 6.0     | -     | -   | 1.8   | V    |
|                            | HIGH-level output voltage  | $V_I = V_{IH} \text{ or } V_{IL}$                         |         |       |     |       |      |
|                            |                            | $I_O = -20uA$                                             | 2.0     | 1.9   | -   | -     | V    |
| $V_{\mathrm{OH}}$          |                            | $I_O = -20uA$                                             | 4.5     | 4.4   | -   | -     | V    |
| V OH                       |                            | $I_0 = -20 \text{ uA}$                                    | 6.0     | 5.9   | -   | -     | V    |
|                            |                            | $I_O = -4.0 \text{mA}$                                    | 4.5     | 3.7   | -   | -     | V    |
|                            |                            | $I_O = -5.2 \text{mA}$                                    | 6.0     | 5.2   | -   | -     | V    |
|                            |                            |                                                           |         |       |     |       |      |
|                            |                            | $I_O = 20uA$                                              | 2.0     | -     | -   | 0.1   | V    |
| $V_{OL}$                   | LOW-level output voltage   | $I_O = 20uA$                                              | 4.5     | -     | -   | 0.1   | V    |
| V OL                       | LO W-level output voltage  | $I_O = 20uA$                                              | 6.0     | -     | -   | 0.1   | V    |
|                            |                            | $I_{O} = 4.0uA$                                           | 4.5     | -     | -   | 0.4   | V    |
|                            |                            | $I_{O} = 5.2uA$                                           | 6.0     | -     | -   | 0.4   | V    |
| $I_{LI}$                   | Input leakage current      | $V_I = Vcc \text{ or GND}$                                | 6.0     | 1     | -   | ±1.0  | uA   |
| $I_{OZ}$                   | 3-state output OFF current | $V_I = VIH \text{ or VIL};$<br>$V_O = Vcc \text{ or GND}$ | 6.0     | -     | -   | ±10.0 | uA   |
| Icc                        | Quiescent supply current   | $V_I = Vcc \text{ or } GND; I_O = 0$                      | 6.0     | -     | -   | 40    | uA   |



## **Type 74HCT04**

At recommended operating conditions; voltages are referenced to GND (ground = 0V).

| CVMDOI                     | DADAMETED                                  | TEST COND                           | ITIONS     | MINT | TVD  | MAV       | ן ואוויד |
|----------------------------|--------------------------------------------|-------------------------------------|------------|------|------|-----------|----------|
| SYMBOL                     | PARAMETER                                  | OTHER                               | Vcc (V)    | MIN  | TYP  | MAX       | UNIT     |
| $T_{amb} = 25^{\circ}C$    |                                            |                                     |            |      |      |           |          |
| $V_{\mathrm{IH}}$          | HIGH-level input voltage                   |                                     | 4.5 to 5.5 | 2.0  | 1.6  | -         | V        |
| $V_{\mathrm{IL}}$          | LOW-level input voltage                    |                                     | 4.5 to 5.5 | 1    | 1.2  | 0.8       | V        |
|                            |                                            | $V_{I} = V_{IH} \text{ or } V_{IL}$ |            |      |      |           |          |
| $V_{OH}$                   | HIGH-level output voltage                  | $I_O = -20 \text{ uA}$              | 4.5        | 4.4  | 4.5  | -         | V        |
|                            |                                            | $I_O = -4.0 \text{mA}$              | 4.5        | 3.84 | 4.32 | -         | V        |
|                            |                                            | $V_{I} = V_{IH} \text{ or } V_{IL}$ |            |      |      |           |          |
| $V_{OL}$                   | LOW-level output voltage                   | $I_O = 20 \text{ uA}$               | 4.5        | -    | 0    | 0.1       | V        |
|                            |                                            | $I_O = 4.0 \text{mA}$               | 4.5        | -    | 0.15 | 0.26      | V        |
| $I_{LI}$                   | Input leakage current                      | $V_I = Vcc \text{ or GND}$          | 5.5        | -    | -    | $\pm 0.1$ | uA       |
| т.                         |                                            | $V_{I} = V_{IH} \text{ or } V_{IL}$ | 5.5        | -    | -    | ±0.5      | uA       |
| $\mathbf{I}_{\mathrm{OZ}}$ | I <sub>OZ</sub> 3-state output OFF current | $V_I = Vcc \text{ or } GND$         |            |      |      |           |          |
|                            |                                            | $I_{O} = 0$                         |            |      |      |           |          |
| Icc                        |                                            | $V_I = Vcc \text{ or GND}$          | 5.5        | -    | -    | 2         | uA       |
|                            | Quiescent supply current                   | $I_O = 0$                           |            |      |      |           |          |
| Λ.τ.                       | Abbitional supply current per input        | $V_I = Vcc - 2.1V$                  | 4.5 to 5.5 | -    | 120  | 432       | uA       |
| △Icc                       | Abbitional supply current per input        | $I_{O} = 0$                         |            |      |      |           |          |
| $T_{amb} = -40 \text{ t}$  | to +85 °C                                  |                                     |            |      |      |           |          |
| $V_{IH}$                   | HIGH-level input voltage                   |                                     | 4.5 to 5.5 | 2.0  | -    | -         | V        |
| $V_{\mathrm{IL}}$          | LOW-level input voltage                    |                                     | 4.5 to 5.5 | -    | -    | 0.8       | V        |
|                            |                                            | $V_{I} = V_{IH} \text{ or } V_{IL}$ |            |      |      |           |          |
| $V_{OH}$                   | HIGH-level output voltage                  | $I_O = -20 \text{ uA}$              | 4.5        | 4.4  | -    | -         | V        |
|                            |                                            | $I_O = -4.0 \text{mA}$              | 4.5        | 3.84 | -    | -         | V        |
|                            |                                            | $V_{I} = V_{IH} \text{ or } V_{IL}$ |            |      |      |           |          |
| $V_{OL}$                   | LOW-level output voltage                   | $I_0 = 20 \text{ uA}$               | 4.5        | -    | -    | 0.1       | V        |
|                            |                                            | $I_O = 4.0 \text{mA}$               | 4.5        | -    | -    | 0.33      | V        |
| $I_{LI}$                   | Input leakage current                      | $V_I = Vcc \text{ or GND}$          | 5.5        | -    | -    | ±1.0      | uA       |
| <u>.</u>                   |                                            | $V_{I} = V_{IH} \text{ or } V_{IL}$ | 5.5        | -    | -    | ±5.0      | uA       |
| $I_{OZ}$                   | 3-state output OFF current                 | $V_I = Vcc \text{ or GND}$          |            |      |      |           |          |
|                            |                                            | $I_{O} = 0$                         |            |      |      |           |          |
| T                          |                                            | $V_I = Vcc \text{ or GND}$          | <i>5.5</i> |      |      | 20        |          |
| Icc                        | Quiescent supply current                   | $I_{O} = 0$                         | 5.5        | -    | -    | 20        | uA       |
| △Icc                       | Abbitional supply current per input        | $V_{I} = Vcc - 2.1V$ $I_{O} = 0$    | 4.5 to 5.5 | -    | -    | 540       | uA       |



| SYMBOL                    | PARAMETER                                | TEST CONDITIONS                                 |            | MIN    | TYP | MAX  | UNIT |
|---------------------------|------------------------------------------|-------------------------------------------------|------------|--------|-----|------|------|
| SIMBOL                    | TARAWILTER                               | OTHER                                           | Vcc (V)    | IVIIIN | 111 | WIAA | UNII |
| $T_{amb} = -40 \text{ t}$ | o +125°C                                 |                                                 |            |        |     |      |      |
| $V_{\mathrm{IH}}$         | HIGH-level input voltage                 |                                                 | 4.5 to 5.5 | 2.0    | -   | -    | V    |
| V <sub>IL</sub>           | LOW-level input voltage                  |                                                 | 4.5 to 5.5 | -      | -   | 0.8  | V    |
|                           |                                          | $V_{I} = V_{IH} \text{ or } V_{IL}$             |            |        |     |      |      |
| $V_{OH}$                  | HIGH-level output voltage                | $I_O = -20 \text{ uA}$                          | 4.5        | 4.4    | -   | -    | V    |
|                           |                                          | $I_{O} = -4.0 \text{mA}$                        | 4.5        | 3.7    | -   | -    | V    |
|                           | LOW-level output voltage                 | $V_{\rm I} = V_{\rm IH} \text{ or } V_{\rm IL}$ |            |        |     |      |      |
| $V_{OL}$                  |                                          | $I_O = 20 \text{ uA}$                           | 4.5        | -      | -   | 0.1  | V    |
|                           |                                          | $I_{O} = 4.0 \text{mA}$                         | 4.5        | -      | -   | 0.4  | V    |
| $I_{LI}$                  | Input leakage current                    | $V_I = Vcc \text{ or GND}$                      | 5.5        | -      | -   | ±1.0 | uA   |
| т                         |                                          | $V_{\rm I} = V_{\rm IH} \text{ or } V_{\rm IL}$ | 5.5        | -      | -   | ±10  | uA   |
| $I_{OZ}$                  | 3-state output OFF current               | $V_I = Vcc \text{ or GND}$                      |            |        |     |      |      |
|                           |                                          | $I_{O} = 0$                                     |            |        |     |      |      |
| т                         |                                          | $V_I = Vcc \text{ or GND}$                      | 5.5        | -      | -   | 40   | uA   |
| Icc                       | Quiescent supply current                 | $I_O = 0$                                       |            |        |     |      |      |
| Λ.τ.                      | A11.77 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | $V_I = Vcc - 2.1V$                              | 4.5 to 5.5 | -      | -   | 590  | uA   |
| △Icc                      | Abbitional supply current per input      | $I_O = 0$                                       |            |        |     |      |      |

## **AC CHARACTERISTICS**

Family 74HC04

GND = 0V;  $t_r = t_f \le 6.0$ ns;  $C_L = 50$ pF.

| CVMDOI                              | PARAMETER                     | TEST CONDIT      | TEST CONDITIONS |     | TVD | MAN | LINIT |
|-------------------------------------|-------------------------------|------------------|-----------------|-----|-----|-----|-------|
| SYMBOL                              | PARAMETER                     | WAVEFORMS        | Vcc (V)         | MIN | TYP | MAX | UNIT  |
| $T_{amb} = 25^{\circ}\text{C}$      |                               |                  |                 |     |     |     |       |
|                                     | Propagation delay<br>nA to nY | See figs 6 and 7 | 2.0             | -   | 25  | 85  | ns    |
| $t_{\mathrm{PHL}}/t_{\mathrm{PLH}}$ |                               |                  | 4.5             | 1   | 9   | 17  | ns    |
|                                     |                               |                  | 6.0             | 1   | 7   | 14  | ns    |
|                                     | Output transition time        |                  | 2.0             | 1   | 19  | 75  | ns    |
| $t_{ m THL}/t_{ m TLH}$             |                               | See figs 6 and 7 | 4.5             | 1   | 7   | 15  | ns    |
|                                     |                               |                  | 6.0             | -   | 6   | 13  | ns    |
| $T_{amb} = -40 \text{ to } +8$      | 35℃                           |                  |                 |     |     |     |       |
|                                     | Propagation delay<br>nA to nY |                  | 2.0             | 1   | -   | 105 | ns    |
| $t_{\mathrm{PHL}}/t_{\mathrm{PLH}}$ |                               | See figs 6 and 7 | 4.5             | 1   | -   | 21  | ns    |
|                                     |                               |                  | 6.0             | -   | -   | 18  | ns    |
|                                     |                               | See figs 6 and 7 | 2.0             | -   | -   | 95  | ns    |
| $t_{THL}/t_{TLH}$                   | Output transition time        |                  | 4.5             | -   | -   | 19  | ns    |
|                                     |                               |                  | 6.0             | -   | -   | 16  | ns    |
| $T_{amb} = -40 \text{ to } +1$      | 125℃                          |                  |                 |     |     |     |       |
|                                     | D                             |                  | 2.0             | -   | -   | 130 | ns    |
| $t_{\mathrm{PHL}}/t_{\mathrm{PLH}}$ | Propagation delay<br>nA to nY | See figs 6 and 7 | 4.5             | -   | -   | 26  | ns    |
|                                     |                               |                  | 6.0             | -   | -   | 22  | ns    |
|                                     |                               |                  | 2.0             | -   | -   | 110 | ns    |
| $t_{THL}/t_{TLH}$                   | Output transition time        | See figs 6 and 7 | 4.5             | -   | -   | 22  | ns    |
|                                     | 1                             |                  | 6.0             | -   | -   | 19  | ns    |



## SHENZHEN FUMAN ELECTRONICS CO., LTD.

## **74HC04/74HCT04**(文件编号: S&CIC0463)

Family 74HCT04

GND = 0V;  $t_r = t_f \le 6.0$ ns;  $C_L = 50$ pF.

| CVMDOL                                                    | PARAMETER                                            | TEST CONDIT      | IONS    | MIN | TYP | MAY | UNIT |
|-----------------------------------------------------------|------------------------------------------------------|------------------|---------|-----|-----|-----|------|
| SYMBOL                                                    | PARAMETER                                            | WAVEFORMS        | Vcc (V) | MIN | TIP | MAX | UNII |
| $T_{amb} = 25 ^{\circ}\text{C}$                           |                                                      |                  |         |     |     |     |      |
| t <sub>PHL</sub> /t <sub>PLH</sub>                        | Propagation delay<br>nA to nY                        | See figs 6 and 7 | 4.5     | -   | 10  | 19  | ns   |
| $t_{THL}/t_{TLH}$                                         | Output transition time                               | See figs 6 and 7 | 4.5     | -   | 7   | 15  | ns   |
| $T_{amb} = -40 \text{ to } +85^{\circ}\text{C}$           |                                                      |                  |         |     |     |     |      |
| t <sub>PHL</sub> /t <sub>PLH</sub>                        | Propagation delay<br>nA to nY                        | See figs 6 and 7 | 4.5     | -   | -   | 24  | ns   |
| t <sub>THL</sub> /t <sub>TLH</sub>                        | Output transition time                               | See figs 6 and 7 | 4.5     | -   | -   | 19  | ns   |
| $T_{amb} = -40 \text{ to } +125^{\circ}$                  | $_{\rm amb} = -40 \text{ to } +125 ^{\circ}\text{C}$ |                  |         |     |     |     |      |
| $t_{ m PHL}/t_{ m PLH}$                                   | Propagation delay<br>nA to nY                        | See figs 6 and 7 | 4.5     | -   | -   | 29  | ns   |
| t <sub>THL</sub> /t <sub>TLH</sub> Output transition time |                                                      | See figs 6 and 7 | 4.5     | -   | -   | 22  | ns   |

## **AC WAVEFORMS**



For 74HCO4:VM=50%;VI=GND to VCC.
For 74HCTO4:VM=1.3V;VI=GND to 3.0V.
Fig. 6 Waveforms showing the data input(nA) to data output (nY) propagation delays and the output transition times.







SHENZHEN FUMAN ELECTRONICS CO., LTD.

**74HC04/74HCT04**(文件编号: S&CIC0463)

## PACKAGE OUTLINES

DIP 14: plastic dual in-line package; 14 leads (300 minl)







## **DIMENSIONS** (inch dimensions are derived from the original mm dimensions)

| UNIT   | A    | A1   | A2   | b     | B1    | с     | D <sup>(1)</sup> | E <sup>(1)</sup> | e    | $e_1$ | L    | $M_{\rm E}$ | $M_{H}$ | W     | $Z^{(1)}$ |
|--------|------|------|------|-------|-------|-------|------------------|------------------|------|-------|------|-------------|---------|-------|-----------|
|        | max  | mın  | max  |       |       |       |                  |                  |      |       |      |             |         |       | max       |
| mm     | 4.2  | 0.51 | 3.2  | 1.73  | 0.53  | 0.36  | 19.50            | 6.48             | 2.54 | 7.62  | 3.60 | 8.25        | 10.0    | 0.254 | 2.2       |
| mm     | 4.2  | 0.51 | 3.2  | 1.13  | 0.38  | 0.23  | 18.55            | 6.20             | 2.34 | 7.02  | 3.05 | 7.80        | 8.3     | 0.234 | 2.2       |
| inahaa | 0.17 | 0.02 | 0.12 | 0.068 | 0.021 | 0.014 | 0.77             | 0.26             | 0.1  | 0.2   | 0.14 | 0.32        | 0.39    | 0.01  | 0.087     |
| inches | 0.17 | 0.02 | 0.13 | 0.044 | 0.015 | 0.009 | 0.73             | 0.24             | 0.1  | 0.3   | 0.12 | 0.31        | 0.33    | 0.01  | 0.087     |

## Note

1. Plastic or metal protrusions of 0.25mm (0.01 inch) maximum per side are not included.

|         | •      |        | ·         | • |            |             |
|---------|--------|--------|-----------|---|------------|-------------|
| OUTLINE |        | REFE   | ERENCES   |   | EUROPEAN   | ISSUE DATE  |
| VERSION | IEC    | JEDEC  | JEITA     |   | PROJECTION | ISSUE DATE  |
| SOT27-1 | 050G04 | MO-001 | SC-201-14 |   |            | <del></del> |



SHENZHEN FUMAN ELECTRONICS CO., LTD.

**74HC04/74HCT04**(文件编号: S&CIC0463)

SO14: plastic small outline package; 14 leads; body width 3.9mm

SOT108-1



## DIMENSIONS (inch dimensions are derived from the original mm dimensions)

| UNIT   | A     | A1    | A2    | A3   | bp    | c      | $\mathbf{D}^{(1)}$ | E <sup>(1)</sup> | e    | $H_{E}$ | L     | Lp    | Q     | v    | W    | у     | $\mathbf{Z}^{(1)}$ | θ  |
|--------|-------|-------|-------|------|-------|--------|--------------------|------------------|------|---------|-------|-------|-------|------|------|-------|--------------------|----|
|        | max   |       |       |      |       |        |                    |                  |      |         |       |       |       |      |      |       |                    |    |
| mm     | 1.75  | 0.25  | 1.45  | 0.25 | 0.49  | 0.25   | 8.75               | 4.0              | 1.27 | 6.2     | 1.05  | 1.0   | 0.7   | 0.25 | 0.25 | 0.1   | 0.7                |    |
|        |       | 0.10  | 1.25  |      | 0.36  | 0.19   | 8.55               | 3.8              |      | 5.8     |       | 0.4   | 0.6   |      |      |       | 0.3                | 8° |
| inches | 0.069 | 0.010 | 0.057 | 0.01 | 0.019 | 0.0100 | 0.35               | 0.16             | 0.05 | 0.244   | 0.041 | 0.039 | 0.028 | 0.01 | 0.01 | 0.004 | 0.028              | 0° |
|        |       | 0.004 | 0.049 |      | 0.014 | 0.0075 | 0.34               | 0.15             |      | 0.228   |       | 0.016 | 0.024 |      |      |       | 0.012              |    |

### Note

## 1. Plastic or metal protrusions of 0.15mm (0.006 inch) maximum per side are not included.

| OUTLINE  |        | REFE   | ERENCES   | EUROPEAN   | ISSUE DATE  |
|----------|--------|--------|-----------|------------|-------------|
| VERSION  | IEC    | JEDEC  | JEITA     | PROJECTION | ISSUE DATE  |
| SOT108-1 | 076E06 | MS-012 | SC-201-14 |            | <del></del> |



SHENZHEN FUMAN ELECTRONICS CO., LTD.

**74HC04/74HCT04**(文件编号: S&CIC0463)

SSOP14: plastic shrink small outline package; 14 leads; body width 5.3mm

SOT337-1



## DIMENSIONS (inch dimensions are derived from the original mm dimensions)

| UNIT | A<br>max | A1   | A2           | A3   | bp   | С    | D <sup>(1)</sup> | E <sup>(1)</sup> | e    | $H_{E}$    | L    | Lp           | Q   | V   | W    | у   | $\mathbf{Z}^{(1)}$ | θ        |
|------|----------|------|--------------|------|------|------|------------------|------------------|------|------------|------|--------------|-----|-----|------|-----|--------------------|----------|
| mm   | 2        | 0.21 | 1.80<br>1.65 | 0.25 | 0.38 | 0.20 | 6.4              | 5.4<br>5.2       | 0.65 | 7.9<br>7.6 | 1.25 | 1.03<br>0.63 | 0.9 | 0.2 | 0.13 | 0.1 | 1.4                | 8°<br>0° |

## Note

1. Plastic or metal protrusions of 0.25mm maximum per side are not included.

| OUTLINE  |     | REF    | ERENCES | EUROPEAN   | ISSUE DATE                        |
|----------|-----|--------|---------|------------|-----------------------------------|
| VERSION  | IEC | JEDEC  | JEITA   | PROJECTION | ISSUE DATE                        |
| SOT337-1 |     | MO-150 |         |            | <del>- 99-12-27</del><br>03-02-19 |



SHENZHEN FUMAN ELECTRONICS CO., LTD.

**74HC04/74HCT04**(文件编号: S&CIC0463)

TSSOP14: plastic thin shrink small outline package; 14 leads; body width 4.4mm

SOT402-1



DIMENSIONS (inch dimensions are derived from the original mm dimensions)

| UNIT | A   | A1   | A2   | A3   | bp   | c   | $D^{(1)}$ | E <sup>(1)</sup> | e    | $H_{E}$ | L | Lp   | Q   | v   | W    | у   | $Z^{(1)}$ | θ  |
|------|-----|------|------|------|------|-----|-----------|------------------|------|---------|---|------|-----|-----|------|-----|-----------|----|
|      | max |      |      |      |      |     |           |                  |      |         |   |      |     |     |      |     |           |    |
| mm   | 1.1 | 0.15 | 0.95 | 0.25 | 0.30 | 0.2 | 5.1       | 4.5              | 0.65 | 6.6     | 1 | 0.75 | 0.4 | 0.2 | 0.13 | 0.1 | 0.72      | 8° |
|      |     | 0.05 | 0.80 |      | 0.19 | 0.1 | 4.9       | 4.3              |      | 6.2     |   | 0.50 | 0.3 |     |      |     | 0.38      | 0° |

Note: 1. Plastic or metal protrusions of 0.15mm maximum per side are not included.

2. Plastic interlead protrusions of 0.25mm maximum per side are not included.

| OUTLINE  |     | REFEI  | RENCES | EUROPEAN   | ISSUE DATE                      |
|----------|-----|--------|--------|------------|---------------------------------|
| VERSION  | IEC | JEDEC  | JEITA  | PROJECTION | ISSUE DATE                      |
| SOT402-1 |     | MO-153 |        |            | <del>99-12-27</del><br>03-02-18 |



SHENZHEN FUMAN ELECTRONICS CO., LTD.

**74HC04/74HCT04**(文件编号: S&CIC0463)

DHVQFN14: plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 14 terminals; body  $2.5 \times 3 \times 0.85$ mm SOT762-1



## DIMENSIONS (mm are the original dimensions)

| UNI<br>T | A <sup>(1)</sup><br>max | A1           | b            | С   | D <sup>(1)</sup> | $D_h$        | E <sup>(1)</sup> | $E_h$        | e | e1           | L          | v   | w    | у   | y1           |
|----------|-------------------------|--------------|--------------|-----|------------------|--------------|------------------|--------------|---|--------------|------------|-----|------|-----|--------------|
| mm       | 1                       | 0.05<br>0.00 | 0.30<br>0.18 | 0.2 | 3.1<br>2.9       | 1.65<br>1.35 | 2.6<br>2.4       | 1.15<br>0.85 | 1 | 0.75<br>0.50 | 0.4<br>0.3 | 0.2 | 0.13 | 0.1 | 0.72<br>0.38 |

Note: 1. Plastic or metal protrusions of 0.075mm maximum per side are not included.

| OUTLINE  |     | REFE   | ERENCES | EUROPEAN   | ISSUE DATE                        |
|----------|-----|--------|---------|------------|-----------------------------------|
| VERSION  | IEC | JEDEC  | JEITA   | PROJECTION | ISSUE DATE                        |
| SOT762-1 |     | MO-241 |         |            | <del>-02-10-17-</del><br>03-01-27 |



### **DATA SHEET STATUS**

| LEVEL | DATA SHEET       | PRODUCT       | DEFINITION                                                                 |
|-------|------------------|---------------|----------------------------------------------------------------------------|
| LEVEL | STATUS(1)        | STATUS(2)(3)  | DEFINITION                                                                 |
| I     | Objective data   | Development   | This data sheet contains data from the objective specification for product |
|       |                  |               | Development.                                                               |
| II    | Preliminary data | Qualification | This data sheet contains data from the preliminary specification.          |
|       |                  |               | Supplementary data will be published at a later date.                      |
| III   | Product data     | Production    | This data sheet contains data from the product specification.              |

#### **Notes**

- 1. Please consult the most recently issued data sheet before initiating or completing a design.
- 2. For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.

### **DEFINITIONS**

**Short-form specification**-The data in a short-from specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook

**Limiting values definition**-Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

**Application information**-Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

### PAD ASSIGNMENT

|                | Pad No | Pad Name | X       | Y       |
|----------------|--------|----------|---------|---------|
|                | 1      | A1       | -243.00 | -48.00  |
| A6 Y6 A5 Y5 A4 | 2      | Y1       | -243.00 | -182.00 |
|                | 3      | A2       | -122.50 | -182.00 |
|                | 4      | Y2       | 7.50    | -182.00 |
|                | 5      | A3       | 112.50  | -182.00 |
| VDD Y4         | 6      | Y3       | 242.50  | -182.00 |
|                | 7      | VSS      | 230.50  | -57.50  |
| A1 VSS         | 8      | Y4       | 242.50  | 47.50   |
| Y1 A2 Y2 A3 Y3 | 9      | A4       | 242.50  | 181.50  |
|                | 10     | Y5       | 122.00  | 181.50  |
|                | 11     | A5       | -8.00   | 181.50  |
|                | 12     | Y6       | -113.00 | 181.50  |
|                | 13     | A6       | -243.00 | 181.50  |
|                | 14     | VDD      | -243.00 | 57.00   |