Becoming Father

Age at first birth among men in Germany based on the SOEP

Henrik Schubert

2023-06-15

Abstract

Men's fertility patterns deviate from women's, with a shift towards later ages and a wider age distribution of childbearing. However, limited information exists on the age distribution of first births among men. This study utilizes data from the Socio-ökonomisches Panel (SOEP) to investigate the transition to fatherhood. Non-parametric approaches and survival models are used to explore the impact of age, while considering socio-economic factors. Cohort shifts and East-West disparities are emphasized. This study contributes to the understanding of men's fertility by examining the age distribution of first births. Using SOEP data, insights are gained into the interplay between age, socio-economic factors, and men's fertility. This research aids decision-making on demographic challenges in modern societies.

Purpose

Fertility of men deviates from fertility of women. Research points at a wider age-distribution of childbearing and that fertility is more shifted towards the later ages. Despite the increasing evidence on sex differences with respect to age-specific fertility, the information on the age distribution of first births among men remains scarce. For that reason this study utilizes the *Socio-ökonomisches Panel* (SOEP) in order to describe the transition to fatherhood. We use non-parametric approaches as well as survival models to better investigate the effect of age net of other socio-ecnonmic factors. A focus of this study lies on cohort differences and differences between East and West.

Data wrangling

For the study we harness the *biobirth* questionnaire from SOEP. The questionnaire contains questions on biological children of the respondent. The Figure @ref(fig:interview-dates) below illustrates the distribution of interview years for that particular questionnaire. It becomes visible that the interviews were mostly executed after the year 2000 and they were biannually.

```
fert <- read_stata("SOEP_V36/Stata/biobirth.dta")</pre>
# Remove respondents that where no asked the question
fert <- fert |> filter(bioyear != -1 & gebjahr != -1)
# Filter men
fert <- fert |> filter(sex == 1)
# Remove unimportant variables
fert <- fert |> select(!starts_with("kidsex"))
# Make everything as double
fert <- fert |> mutate(across(where(is.factor), as.double))
# Make missing, where values are either -2 or -1
fert <- fert |> replace_with_na_all(condition = ~.x %in% c(-2, -1))
# Clean the names
names(fert) \leftarrow sub("(.*)(\\d{2})$", "\\1_\\2", names(fert))
# Make a life-course perspective
fert2 <- fert |> pivot_longer(cols = starts_with("kid"),
                              names_pattern = "([a-z]*)_([0-9]*)",
                              values_to = "Value",
                              names to = c("Variable", "Number"))
# Filter first births
fert2 <- fert2 |> filter(Number == "01")
# Pivot wider
fert2 <- fert2 |> pivot_wider(names_from = c(Variable, Number),
                              values_from = Value)
# Create cohorts - split by 5 year groups
fert2 <- fert2 |> mutate(cohort = cut(gebjahr, breaks = seq(1900, 2020, by = 10), dig.lab = 4))
# Filter the data
fert2 <- fert2 |> filter(cohort %in% cohorts)
# Double check
fert2 <- fert2 |> filter(!is.na(gebjahr) & !is.na(bioyear))
# Create an event and censoring variable
fert2 <- fert2 |> mutate(Event = if_else(is.na(kidgeb_01), 0, 1),
                         Censoring = if_else(Event == 0, bioyear - gebjahr, kidgeb_01 - gebjahr))
### Split the data -----
# Split the data
spell_data <- survSplit(fert2, cut = 15:55, end = "Censoring", event = "Event", start = "start")</pre>
```

```
### Save the data
save(spell_data, file = "Data/spell_data.Rda")
save(fert2, file = "Data/person_data.Rda")

### Distribution of questionnaires
ggplot(fert2, aes(bioyear)) +
    geom_histogram() +
    scale_y_continuous(expand = c(0, 0)) +
    ylab("Year of biobirth interview")
}
```

Table @ref(table:data-structure1) displays the current shape of the data, when only showing the first 10 cases. Essentially, it is a single spell data set, which includes retrospective information on the fertility history.

```
# Make a table of the interview dates
fert2 |>
  arrange(persnr, bioage) |>
  slice_head(n = 10) |>
  pander()
```

Table 1: Table continues below

cid	persnr	hhnr	pid	sex	gebjahr	biovalid	bioyear	bioage
60	604	60	604	2	1990	2	2007	17
167	1603	167	1603	2	1986	2	2003	17
949	9403	949	9403	2	1986	2	2003	17
1341	13404	1341	13404	2	1987	2	2004	17
1341	13405	1341	13405	2	1988	2	2005	17
1341	13406	1341	13406	2	1990	2	2007	17
1872	18704	1872	18704	2	1990	2	2007	17
2011	20104	2011	20104	2	1953	4	2002	49
2054	20503	2054	20503	2	1988	2	2005	17
2054	20504	2054	20504	2	1988	2	2005	17

Table 2: Table continues below

biokids	$\operatorname{sumkids}$	$kidpnr_01$	$kidgeb_01$	$kidmon_01$	cohort	Event
0	0	NA	NA	1	(1980,1990]	0
0	0	NA	NA	1	(1980, 1990]	0
0	1	1495703	2017	10	(1980, 1990]	1
0	0	NA	NA	1	(1980, 1990]	0
0	0	NA	NA	1	(1980, 1990]	0
0	0	NA	NA	1	(1980, 1990]	0
0	0	NA	NA	1	(1980, 1990]	0
5	5	NA	1976	2	(1950, 1960]	1
0	0	NA	NA	1	(1980, 1990]	0
0	0	NA	NA	1	(1980, 1990]	0

In @ref(fig:event-data) illustrates the distribution of censoring or event times across different cohorts. The x-axis of the plot represents the time variable, either the time of the event (first birth) or the time of censoring (such as loss to follow-up or end of the study). The y-axis represents the frequency or proportion of individuals who have experienced the event or remained uncensored at a given time.

This graphical representation provides valuable insights into the survival experience of a population or a specific group, illustrating the probability of experiencing the event at a specific time point.

Data: SOEP Wave36

```
# Save
ggsave(last_plot(), filename = "Figures/descriptive_age_firstbirth.pdf")
```

Survival analysis

As the data exists already in form to proceed with survival analysis, we make some descriptive estimations. First, we estimate kaplan-meier curves using the following estimator:

$$\hat{S}(t) = \prod_{t_i \le t} [1 \frac{d_i}{Y_i}]$$

Population

First, we make the kaplan-meier estimator for the entire population.

```
### Prepare the survival data -----
# Look at the survival times
with(fert2, Surv(Censoring, Event))[1:100]
     [1] 17+ 17+ 27+ 17+ 32+ 38 31
                                     28+ 30
                                             20+ 17+ 17+ 17+
                                                             29
                                                                 25
##
    [19] 35+ 27+ 34
                    23
                         27
                             17+ 17+ 17+ 17+ 24
                                                 17+ 17+ 32
                                                             39+ 28
                                                                     21
                                                                         17+ 17+
                 17+ 27+ 25
                             34+ 27+ 28
                                         26+ 28+ 17+ 25
                                                         25
                                                             17+ 30+ 43
                                                    17+ 24
    [55] 17+ 34+ 22+ 53+ 25+ 17+ 17+ 19+ 35
                                             38+ 33
                                                             24+ 17+ 28
                                                                         17+ 22+
             30+ 26
                     30
                         25
                             17+ 26+ 17+ 31
                                             17+ 32+ 25
                                                         21
                                                             54+ 17+ 17+ 17+ 17+
##
    [73] 40
##
   [91] 22
            30+ 17+ 35
                         30
                             30
                                 26 35+ 21+ 17+
```

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	time	n.risk	n.event	surv	n.censor	cumhaz	std.chaz	lower	upper
13 24983 3 0.9998 0 0.0002402 9.804e-05 0.9995 0.9995 14 24980 2 0.9997 0 0.0003202 0.0001132 0.9995 0.9999 15 24978 8 0.9994 0 0.0006405 0.0001610 0.9999 0.9997 16 24970 23 0.9984 3 0.001562 0.0002501 0.9979 0.9989 17 24944 49 0.9965 1118 0.003526 0.0003759 0.9957 0.9972 18 23777 130 0.991 162 0.00893 0.006033 0.9998 0.9922 19 23485 249 0.9805 124 0.0196 0.000907 0.9788 0.9823 20 23112 413 0.963 152 0.03747 0.001263 0.9606 0.9654 21 22547 568 0.9387 168 0.06266 0.001647 0.9357 0.918 <tr< td=""><td>11</td><td>24986</td><td>2</td><td>0.9999</td><td>0</td><td>8.004 e - 05</td><td>5.66e-05</td><td>0.9998</td><td>1</td></tr<>	11	24986	2	0.9999	0	8.004 e - 05	5.66e-05	0.9998	1
14 24980 2 0.9997 0 0.0003202 0.0001132 0.9995 0.9999 15 24978 8 0.9994 0 0.0006405 0.0001601 0.999 0.9997 16 24970 23 0.9984 3 0.001562 0.0003759 0.9997 0.9989 17 24944 49 0.9965 1118 0.003526 0.0003759 0.9957 0.9972 18 23777 130 0.991 162 0.00893 0.006693 0.9988 0.9922 19 23485 249 0.9805 124 0.0196 0.000907 0.9788 0.9823 20 23112 413 0.963 152 0.03747 0.001263 0.9606 0.9654 21 22547 568 0.9387 168 0.06266 0.001647 0.9357 0.9418 22 21811 769 0.9556 169 0.09791 0.00281 0.9697 23	12	24984	1	0.9999	0	0.0001201	6.932 e-05	0.9997	1
15 24978 8 0.9994 0 0.0006405 0.0001601 0.999 0.9997 16 24970 23 0.9984 3 0.001562 0.0003759 0.9979 0.9989 17 24944 49 0.9965 1118 0.003526 0.0003759 0.9957 0.9972 18 23777 130 0.991 162 0.008993 0.0006093 0.9898 0.9922 19 23485 249 0.9805 124 0.0196 0.000907 0.9788 0.9823 20 23112 413 0.963 152 0.03747 0.001647 0.9357 0.9418 21 22547 568 0.9387 168 0.06266 0.001647 0.9357 0.9418 22 21811 769 0.9056 169 0.09791 0.00281 0.9919 0.9894 23 20873 953 0.8643 166 0.1436 0.00253 0.8599 0.8687 <t< td=""><td>13</td><td>24983</td><td>3</td><td>0.9998</td><td>0</td><td>0.0002402</td><td>9.804 e - 05</td><td>0.9996</td><td>1</td></t<>	13	24983	3	0.9998	0	0.0002402	9.804 e - 05	0.9996	1
15 24978 8 0.9994 0 0.0006405 0.0001601 0.999 0.9997 16 24970 23 0.9984 3 0.001562 0.0003759 0.9979 0.9989 17 24944 49 0.9965 1118 0.003526 0.0003759 0.9957 0.9972 18 23777 130 0.991 162 0.008993 0.0006093 0.9898 0.9922 19 23485 249 0.9805 124 0.0196 0.000907 0.9788 0.9823 20 23112 413 0.963 152 0.03747 0.001647 0.9357 0.9418 21 22547 568 0.9387 168 0.06266 0.001647 0.9357 0.9418 22 21811 769 0.9056 169 0.09791 0.00281 0.9919 0.9894 23 20873 953 0.8643 166 0.1436 0.00253 0.8599 0.8687 <t< td=""><td>14</td><td>24980</td><td>2</td><td>0.9997</td><td>0</td><td>0.0003202</td><td>0.0001132</td><td>0.9995</td><td>0.9999</td></t<>	14	24980	2	0.9997	0	0.0003202	0.0001132	0.9995	0.9999
17 24944 49 0.9965 1118 0.003526 0.0003759 0.9957 0.9972 18 23777 130 0.991 162 0.008993 0.0006093 0.9808 0.9922 19 23485 249 0.9805 124 0.0196 0.000907 0.9788 0.9823 20 23112 413 0.963 152 0.03747 0.001263 0.9606 0.9664 21 22547 568 0.9387 168 0.06266 0.001647 0.9357 0.9418 22 21811 769 0.9056 169 0.09791 0.002081 0.9019 0.9094 23 20873 953 0.8643 166 0.1436 0.00253 0.8599 0.8687 24 19754 1067 0.8176 190 0.1976 0.00342 0.8127 0.8226 25 18497 1139 0.7673 177 0.2592 0.003547 0.7618 0.7727	15	24978	8	0.9994	0	0.0006405	0.0001601	0.999	0.9997
18 23777 130 0.991 162 0.008993 0.0006093 0.9898 0.9922 19 23485 249 0.9805 124 0.0196 0.00097 0.9788 0.9823 20 23112 413 0.963 152 0.03747 0.001263 0.9606 0.9654 21 22547 568 0.9387 168 0.06266 0.001647 0.9357 0.9418 22 21811 769 0.9056 169 0.09791 0.002081 0.9019 0.9094 23 20873 953 0.8643 166 0.1436 0.002553 0.8599 0.8687 24 19754 1067 0.8176 199 0.1976 0.00342 0.8127 0.8226 25 18497 1139 0.7673 177 0.2592 0.003547 0.7618 0.7727 26 17181 1233 0.7122 177 0.3309 0.004094 0.7664 0.7181 <	16	24970	23	0.9984	3	0.001562	0.0002501	0.9979	0.9989
19 23485 249 0.9805 124 0.0196 0.000907 0.9788 0.9823 20 23112 413 0.963 152 0.03747 0.001263 0.9606 0.9654 21 22547 568 0.9387 168 0.06266 0.001647 0.9357 0.9418 22 21811 769 0.9056 169 0.09791 0.002081 0.9019 0.9094 23 20873 953 0.8643 166 0.1436 0.002553 0.8599 0.8687 24 19754 1067 0.8176 190 0.1976 0.003042 0.8127 0.8226 25 18497 1139 0.7673 177 0.2592 0.003547 0.7618 0.7727 26 17181 1233 0.7122 177 0.3309 0.004094 0.7064 0.7181 27 15771 1161 0.6598 275 0.4045 0.004629 0.6536 0.666 <	17	24944	49	0.9965	1118	0.003526	0.0003759	0.9957	0.9972
20 23112 413 0.963 152 0.03747 0.001263 0.9606 0.9654 21 22547 568 0.9387 168 0.06266 0.001647 0.9357 0.9418 22 21811 769 0.9056 169 0.09791 0.002081 0.9019 0.9094 23 20873 953 0.8643 166 0.1436 0.002553 0.8599 0.8687 24 19754 1067 0.8176 190 0.1976 0.003042 0.8127 0.8226 25 18497 1139 0.7673 177 0.2592 0.003547 0.7618 0.7727 26 17181 1233 0.7122 177 0.3309 0.004094 0.7064 0.7181 27 15771 1161 0.6598 275 0.4045 0.004629 0.6536 0.666 28 14335 1227 0.6033 291 0.4901 0.005284 0.5605 0.5536	18	23777	130	0.991	162	0.008993	0.0006093	0.9898	0.9922
21 22547 568 0.9387 168 0.06266 0.001647 0.9357 0.9418 22 21811 769 0.9056 169 0.09791 0.002081 0.9019 0.9094 23 20873 953 0.8643 166 0.1436 0.002553 0.8599 0.8687 24 19754 1067 0.8127 0.8226 0.003042 0.8127 0.8226 25 18497 1139 0.7673 177 0.2592 0.003547 0.7618 0.7727 26 17181 1233 0.7122 177 0.3309 0.004094 0.7064 0.7181 27 15771 1161 0.6598 275 0.4045 0.004629 0.6536 0.666 28 14335 1227 0.6033 291 0.4901 0.005234 0.5969 0.6097 29 12817 1195 0.547 293 0.5834 0.005888 0.5405 0.5536 30 </td <td>19</td> <td>23485</td> <td>249</td> <td>0.9805</td> <td>124</td> <td>0.0196</td> <td>0.000907</td> <td>0.9788</td> <td>0.9823</td>	19	23485	249	0.9805	124	0.0196	0.000907	0.9788	0.9823
22 21811 769 0.9056 169 0.09791 0.002081 0.9019 0.9094 23 20873 953 0.8643 166 0.1436 0.002553 0.8599 0.8687 24 19754 1067 0.8176 190 0.1976 0.003042 0.8127 0.8226 25 18497 1139 0.7673 177 0.2592 0.003547 0.7618 0.7727 26 17181 1233 0.7122 177 0.2399 0.004094 0.7064 0.7181 27 15771 1161 0.6598 275 0.4045 0.004629 0.6536 0.666 28 14335 1227 0.6033 291 0.4901 0.005234 0.5969 0.6097 29 12817 1195 0.547 293 0.5834 0.006627 0.4832 0.4964 31 19911 1097 0.4356 237 0.7987 0.007422 0.429 0.422 <t< td=""><td>20</td><td>23112</td><td>413</td><td>0.963</td><td>152</td><td>0.03747</td><td>0.001263</td><td>0.9606</td><td>0.9654</td></t<>	20	23112	413	0.963	152	0.03747	0.001263	0.9606	0.9654
23 20873 953 0.8643 166 0.1436 0.002553 0.8599 0.8687 24 19754 1067 0.8176 190 0.1976 0.003042 0.8127 0.8226 25 18497 1139 0.7673 177 0.2592 0.003547 0.7618 0.7727 26 17181 1233 0.7122 177 0.3309 0.004094 0.7064 0.7181 27 15771 1161 0.6598 275 0.4045 0.004629 0.6536 0.666 28 14335 1227 0.6033 291 0.4901 0.005234 0.5969 0.6097 29 12817 1195 0.547 293 0.5834 0.005888 0.5405 0.5536 30 11329 1186 0.4898 232 0.6881 0.006627 0.4832 0.4964 31 9911 1097 0.4356 237 0.7987 0.007422 0.429 0.422 <tr< td=""><td>21</td><td>22547</td><td>568</td><td>0.9387</td><td>168</td><td>0.06266</td><td>0.001647</td><td>0.9357</td><td>0.9418</td></tr<>	21	22547	568	0.9387	168	0.06266	0.001647	0.9357	0.9418
24 19754 1067 0.8176 190 0.1976 0.003042 0.8127 0.8226 25 18497 1139 0.7673 177 0.2592 0.003547 0.7618 0.7727 26 17181 1233 0.7122 177 0.3309 0.004094 0.7064 0.7181 27 15771 1161 0.6598 275 0.4045 0.004629 0.6536 0.666 28 14335 1227 0.6033 291 0.4901 0.005234 0.5969 0.6097 29 12817 1195 0.547 293 0.5834 0.005888 0.5405 0.5536 30 11329 1186 0.4898 232 0.6881 0.006627 0.4832 0.4964 31 9911 1097 0.4356 237 0.7987 0.007422 0.429 0.4422 32 8577 887 0.3905 203 0.9022 0.008194 0.384 0.3971	22	21811	769	0.9056	169	0.09791	0.002081	0.9019	0.9094
25 18497 1139 0.7673 177 0.2592 0.003547 0.7618 0.7727 26 17181 1233 0.7122 177 0.3309 0.004094 0.7064 0.7181 27 15771 1161 0.6598 275 0.4045 0.004629 0.6536 0.666 28 14335 1227 0.6033 291 0.4901 0.005234 0.5969 0.6097 29 12817 1195 0.547 293 0.5834 0.005888 0.5405 0.5536 30 11329 1186 0.4898 232 0.6881 0.006627 0.4832 0.4964 31 9911 1097 0.4356 237 0.7987 0.007422 0.429 0.4422 32 8577 887 0.3905 203 0.9022 0.008194 0.384 0.3971 33 7487 785 0.3496 177 1.007 0.009008 0.3432 0.3561	23	20873	953	0.8643	166	0.1436	0.002553	0.8599	0.8687
26 17181 1233 0.7122 177 0.3309 0.004094 0.7064 0.7181 27 15771 1161 0.6598 275 0.4045 0.004629 0.6536 0.666 28 14335 1227 0.6033 291 0.4901 0.005234 0.5969 0.6097 29 12817 1195 0.547 293 0.5834 0.005888 0.5405 0.5536 30 11329 1186 0.4898 232 0.6881 0.006627 0.4832 0.4964 31 9911 1097 0.4356 237 0.7987 0.007422 0.429 0.4422 32 8577 887 0.3905 203 0.9022 0.008194 0.384 0.3971 33 7487 785 0.3496 177 1.007 0.009008 0.3432 0.3561 34 6525 703 0.3119 128 1.115 0.009882 0.3056 0.3183	24	19754	1067	0.8176	190	0.1976	0.003042	0.8127	0.8226
27 15771 1161 0.6598 275 0.4045 0.004629 0.6536 0.666 28 14335 1227 0.6033 291 0.4901 0.005234 0.5969 0.6097 29 12817 1195 0.547 293 0.5834 0.005888 0.5405 0.5536 30 11329 1186 0.4898 232 0.6881 0.006627 0.4832 0.4964 31 9911 1097 0.4356 237 0.7987 0.007422 0.429 0.4422 32 8577 887 0.3905 203 0.9022 0.008194 0.384 0.3971 33 7487 785 0.3496 177 1.007 0.009008 0.3432 0.3561 34 6525 703 0.3119 128 1.115 0.009882 0.3056 0.3183 35 5694 603 0.2789 144 1.221 0.01078 0.2728 0.2851 <	25	18497	1139	0.7673	177	0.2592	0.003547	0.7618	0.7727
28 14335 1227 0.6033 291 0.4901 0.005234 0.5969 0.6097 29 12817 1195 0.547 293 0.5834 0.005888 0.5405 0.5536 30 11329 1186 0.4898 232 0.6881 0.006627 0.4832 0.4964 31 9911 1097 0.4356 237 0.7987 0.007422 0.429 0.4422 32 8577 887 0.3905 203 0.9022 0.008194 0.384 0.3971 33 7487 785 0.3496 177 1.007 0.009008 0.3432 0.3561 34 6525 703 0.3119 128 1.115 0.009882 0.3056 0.3183 35 5694 603 0.2789 144 1.221 0.01078 0.2728 0.2851 36 4947 500 0.2507 122 1.322 0.01169 0.2447 0.2568	26	17181	1233	0.7122	177	0.3309	0.004094	0.7064	0.7181
29 12817 1195 0.547 293 0.5834 0.005888 0.5405 0.5536 30 11329 1186 0.4898 232 0.6881 0.006627 0.4832 0.4964 31 9911 1097 0.4356 237 0.7987 0.007422 0.429 0.4422 32 8577 887 0.3905 203 0.9022 0.008194 0.384 0.3971 33 7487 785 0.3496 177 1.007 0.009008 0.3432 0.3561 34 6525 703 0.3119 128 1.115 0.009882 0.3056 0.3183 35 5694 603 0.2789 144 1.221 0.01078 0.2248 0.2851 36 4947 500 0.2507 122 1.322 0.01169 0.2447 0.2568 37 4325 360 0.2298 120 1.405 0.01249 0.224 0.2358 38 <td>27</td> <td>15771</td> <td>1161</td> <td>0.6598</td> <td>275</td> <td>0.4045</td> <td>0.004629</td> <td>0.6536</td> <td>0.666</td>	27	15771	1161	0.6598	275	0.4045	0.004629	0.6536	0.666
30 11329 1186 0.4898 232 0.6881 0.006627 0.4832 0.4964 31 9911 1097 0.4356 237 0.7987 0.007422 0.429 0.4422 32 8577 887 0.3905 203 0.9022 0.008194 0.384 0.3971 33 7487 785 0.3496 177 1.007 0.009008 0.3432 0.3561 34 6525 703 0.3119 128 1.115 0.009882 0.3056 0.3183 35 5694 603 0.2789 144 1.221 0.01078 0.2728 0.2851 36 4947 500 0.2507 122 1.322 0.01169 0.2447 0.2568 37 4325 360 0.2298 120 1.405 0.01249 0.224 0.2358 38 3845 359 0.2084 116 1.498 0.01342 0.2027 0.2142 39	28	14335	1227	0.6033	291	0.4901	0.005234	0.5969	0.6097
31 9911 1097 0.4356 237 0.7987 0.007422 0.429 0.4422 32 8577 887 0.3905 203 0.9022 0.008194 0.384 0.3971 33 7487 785 0.3496 177 1.007 0.009008 0.3432 0.3561 34 6525 703 0.3119 128 1.115 0.009882 0.3056 0.3183 35 5694 603 0.2789 144 1.221 0.01078 0.2728 0.2851 36 4947 500 0.2507 122 1.322 0.01169 0.2447 0.2568 37 4325 360 0.2298 120 1.405 0.01249 0.224 0.2358 38 3845 359 0.2084 116 1.498 0.01342 0.2027 0.2142 39 3370 242 0.1934 115 1.57 0.0142 0.1878 0.1991 40	29	12817	1195	0.547	293	0.5834	0.005888	0.5405	0.5536
32 8577 887 0.3905 203 0.9022 0.008194 0.384 0.3971 33 7487 785 0.3496 177 1.007 0.009008 0.3432 0.3561 34 6525 703 0.3119 128 1.115 0.009882 0.3056 0.3183 35 5694 603 0.2789 144 1.221 0.01078 0.2728 0.2851 36 4947 500 0.2507 122 1.322 0.01169 0.2447 0.2568 37 4325 360 0.2298 120 1.405 0.01249 0.224 0.2358 38 3845 359 0.2084 116 1.498 0.01342 0.2027 0.2142 39 3370 242 0.1934 115 1.57 0.0142 0.1878 0.1991 40 3013 205 0.1802 107 1.638 0.01497 0.1748 0.1859 41	30	11329	1186	0.4898	232	0.6881	0.006627	0.4832	0.4964
33 7487 785 0.3496 177 1.007 0.009008 0.3432 0.3561 34 6525 703 0.3119 128 1.115 0.009882 0.3056 0.3183 35 5694 603 0.2789 144 1.221 0.01078 0.2728 0.2851 36 4947 500 0.2507 122 1.322 0.01169 0.2447 0.2568 37 4325 360 0.2298 120 1.405 0.01249 0.224 0.2358 38 3845 359 0.2084 116 1.498 0.01342 0.2027 0.2142 39 3370 242 0.1934 115 1.57 0.0142 0.1878 0.1991 40 3013 205 0.1802 107 1.638 0.01497 0.1748 0.1859 41 2701 154 0.17 109 1.695 0.01566 0.1646 0.1755 42 <td< td=""><td>31</td><td>9911</td><td>1097</td><td>0.4356</td><td>237</td><td>0.7987</td><td>0.007422</td><td>0.429</td><td>0.4422</td></td<>	31	9911	1097	0.4356	237	0.7987	0.007422	0.429	0.4422
34 6525 703 0.3119 128 1.115 0.009882 0.3056 0.3183 35 5694 603 0.2789 144 1.221 0.01078 0.2728 0.2851 36 4947 500 0.2507 122 1.322 0.01169 0.2447 0.2568 37 4325 360 0.2298 120 1.405 0.01249 0.224 0.2358 38 3845 359 0.2084 116 1.498 0.01342 0.2027 0.2142 39 3370 242 0.1934 115 1.57 0.0142 0.1878 0.1991 40 3013 205 0.1802 107 1.638 0.01497 0.1748 0.1859 41 2701 154 0.17 109 1.695 0.01566 0.1646 0.1755 42 2438 134 0.1606 104 1.75 0.01636 0.1553 0.1661 43 2	32	8577	887	0.3905	203	0.9022	0.008194	0.384	0.3971
35 5694 603 0.2789 144 1.221 0.01078 0.2728 0.2851 36 4947 500 0.2507 122 1.322 0.01169 0.2447 0.2568 37 4325 360 0.2298 120 1.405 0.01249 0.224 0.2358 38 3845 359 0.2084 116 1.498 0.01342 0.2027 0.2142 39 3370 242 0.1934 115 1.57 0.0142 0.1878 0.1991 40 3013 205 0.1802 107 1.638 0.01497 0.1748 0.1859 41 2701 154 0.17 109 1.695 0.01566 0.1646 0.1755 42 2438 134 0.1606 104 1.75 0.01636 0.1553 0.1661 43 2200 86 0.1543 90 1.789 0.0169 0.1491 0.1598 45 1834<	33	7487		0.3496		1.007	0.009008	0.3432	0.3561
36 4947 500 0.2507 122 1.322 0.01169 0.2447 0.2568 37 4325 360 0.2298 120 1.405 0.01249 0.224 0.2358 38 3845 359 0.2084 116 1.498 0.01342 0.2027 0.2142 39 3370 242 0.1934 115 1.57 0.0142 0.1878 0.1991 40 3013 205 0.1802 107 1.638 0.01497 0.1748 0.1859 41 2701 154 0.17 109 1.695 0.01566 0.1646 0.1755 42 2438 134 0.1606 104 1.75 0.01636 0.1553 0.1661 43 2200 86 0.1543 90 1.789 0.0169 0.1491 0.1598 44 2024 85 0.1479 105 1.831 0.0175 0.1427 0.1532 45 1834 <td>34</td> <td>6525</td> <td>703</td> <td>0.3119</td> <td>128</td> <td>1.115</td> <td>0.009882</td> <td>0.3056</td> <td>0.3183</td>	34	6525	703	0.3119	128	1.115	0.009882	0.3056	0.3183
37 4325 360 0.2298 120 1.405 0.01249 0.224 0.2358 38 3845 359 0.2084 116 1.498 0.01342 0.2027 0.2142 39 3370 242 0.1934 115 1.57 0.0142 0.1878 0.1991 40 3013 205 0.1802 107 1.638 0.01497 0.1748 0.1859 41 2701 154 0.17 109 1.695 0.01566 0.1646 0.1755 42 2438 134 0.1606 104 1.75 0.01636 0.1553 0.1661 43 2200 86 0.1543 90 1.789 0.0169 0.1491 0.1598 44 2024 85 0.1479 105 1.831 0.0175 0.1427 0.1532 45 1834 48 0.144 93 1.857 0.0179 0.1388 0.1494 46 1693 47 0.14 96 1.885 0.01836 0.1349 0.1453 47 1550 24 0.1378 101 1.901 0.01863 0.1327 0.1432 48 1425 25	35	5694	603	0.2789	144	1.221	0.01078	0.2728	0.2851
38 3845 359 0.2084 116 1.498 0.01342 0.2027 0.2142 39 3370 242 0.1934 115 1.57 0.0142 0.1878 0.1991 40 3013 205 0.1802 107 1.638 0.01497 0.1748 0.1859 41 2701 154 0.17 109 1.695 0.01566 0.1646 0.1755 42 2438 134 0.1606 104 1.75 0.01636 0.1553 0.1661 43 2200 86 0.1543 90 1.789 0.0169 0.1491 0.1598 44 2024 85 0.1479 105 1.831 0.0175 0.1427 0.1532 45 1834 48 0.144 93 1.857 0.0179 0.1388 0.1494 46 1693 47 0.14 96 1.885 0.01836 0.1349 0.1453 47 1550 24 0.1378 101 1.901 0.01863 0.1327 0.1432	36	4947	500	0.2507	122	1.322	0.01169	0.2447	0.2568
39 3370 242 0.1934 115 1.57 0.0142 0.1878 0.1991 40 3013 205 0.1802 107 1.638 0.01497 0.1748 0.1859 41 2701 154 0.17 109 1.695 0.01566 0.1646 0.1755 42 2438 134 0.1606 104 1.75 0.01636 0.1553 0.1661 43 2200 86 0.1543 90 1.789 0.0169 0.1491 0.1598 44 2024 85 0.1479 105 1.831 0.0175 0.1427 0.1532 45 1834 48 0.144 93 1.857 0.0179 0.1388 0.1494 46 1693 47 0.14 96 1.885 0.01836 0.1349 0.1453 47 1550 24 0.1378 101 1.901 0.01863 0.1327 0.1432 48 1425 25 0.1354 84 1.918 0.01895 0.1303 0.1407	37	4325	360	0.2298	120	1.405	0.01249	0.224	0.2358
40 3013 205 0.1802 107 1.638 0.01497 0.1748 0.1859 41 2701 154 0.17 109 1.695 0.01566 0.1646 0.1755 42 2438 134 0.1606 104 1.75 0.01636 0.1553 0.1661 43 2200 86 0.1543 90 1.789 0.0169 0.1491 0.1598 44 2024 85 0.1479 105 1.831 0.0175 0.1427 0.1532 45 1834 48 0.144 93 1.857 0.0179 0.1388 0.1494 46 1693 47 0.14 96 1.885 0.01836 0.1349 0.1453 47 1550 24 0.1378 101 1.901 0.01863 0.1327 0.1432 48 1425 25 0.1354 84 1.918 0.01895 0.1303 0.1407	38	3845	359	0.2084	116	1.498	0.01342	0.2027	0.2142
41 2701 154 0.17 109 1.695 0.01566 0.1646 0.1755 42 2438 134 0.1606 104 1.75 0.01636 0.1553 0.1661 43 2200 86 0.1543 90 1.789 0.0169 0.1491 0.1598 44 2024 85 0.1479 105 1.831 0.0175 0.1427 0.1532 45 1834 48 0.144 93 1.857 0.0179 0.1388 0.1494 46 1693 47 0.14 96 1.885 0.01836 0.1349 0.1453 47 1550 24 0.1378 101 1.901 0.01863 0.1327 0.1432 48 1425 25 0.1354 84 1.918 0.01895 0.1303 0.1407	39	3370	242	0.1934	115	1.57	0.0142	0.1878	0.1991
42 2438 134 0.1606 104 1.75 0.01636 0.1553 0.1661 43 2200 86 0.1543 90 1.789 0.0169 0.1491 0.1598 44 2024 85 0.1479 105 1.831 0.0175 0.1427 0.1532 45 1834 48 0.144 93 1.857 0.0179 0.1388 0.1494 46 1693 47 0.14 96 1.885 0.01836 0.1349 0.1453 47 1550 24 0.1378 101 1.901 0.01863 0.1327 0.1432 48 1425 25 0.1354 84 1.918 0.01895 0.1303 0.1407	40	3013	205	0.1802	107	1.638	0.01497	0.1748	0.1859
43 2200 86 0.1543 90 1.789 0.0169 0.1491 0.1598 44 2024 85 0.1479 105 1.831 0.0175 0.1427 0.1532 45 1834 48 0.144 93 1.857 0.0179 0.1388 0.1494 46 1693 47 0.14 96 1.885 0.01836 0.1349 0.1453 47 1550 24 0.1378 101 1.901 0.01863 0.1327 0.1432 48 1425 25 0.1354 84 1.918 0.01895 0.1303 0.1407	41	2701	154	0.17	109	1.695	0.01566	0.1646	0.1755
44 2024 85 0.1479 105 1.831 0.0175 0.1427 0.1532 45 1834 48 0.144 93 1.857 0.0179 0.1388 0.1494 46 1693 47 0.14 96 1.885 0.01836 0.1349 0.1453 47 1550 24 0.1378 101 1.901 0.01863 0.1327 0.1432 48 1425 25 0.1354 84 1.918 0.01895 0.1303 0.1407	42	2438	134	0.1606	104	1.75	0.01636	0.1553	0.1661
45 1834 48 0.144 93 1.857 0.0179 0.1388 0.1494 46 1693 47 0.14 96 1.885 0.01836 0.1349 0.1453 47 1550 24 0.1378 101 1.901 0.01863 0.1327 0.1432 48 1425 25 0.1354 84 1.918 0.01895 0.1303 0.1407	43	2200	86	0.1543	90	1.789	0.0169	0.1491	0.1598
46 1693 47 0.14 96 1.885 0.01836 0.1349 0.1453 47 1550 24 0.1378 101 1.901 0.01863 0.1327 0.1432 48 1425 25 0.1354 84 1.918 0.01895 0.1303 0.1407	44	2024	85	0.1479	105	1.831	0.0175	0.1427	0.1532
47 1550 24 0.1378 101 1.901 0.01863 0.1327 0.1432 48 1425 25 0.1354 84 1.918 0.01895 0.1303 0.1407	45	1834	48	0.144	93	1.857	0.0179	0.1388	0.1494
48 1425 25 0.1354 84 1.918 0.01895 0.1303 0.1407	46		47	0.14	96	1.885	0.01836	0.1349	0.1453
48 1425 25 0.1354 84 1.918 0.01895 0.1303 0.1407	47	1550	24	0.1378	101	1.901	0.01863	0.1327	0.1432
	48		25	0.1354	84	1.918	0.01895	0.1303	0.1407
	49	1316	19	0.1335	90		0.01924	0.1283	0.1388

time	n.risk	n.event	surv	n.censor	cumhaz	std.chaz	lower	upper
50	1207	10	0.1324	85	1.941	0.01942	0.1272	0.1377

```
ggplot(km_result, aes(time, y= surv, ymin = lower, ymax = upper)) +
  geom_line() +
  geom_ribbon(alpha = .3)
```


Cohort specific

In Figure @ref(fig:cohort-km), the kaplan-meier curves for specific cohorts are displayed.

```
# Fit by cohort
km_coh <- survfit(Surv(Censoring, Event) ~ cohort, data = fert2, conf.int = 0.95, type = "kaplan-meier"
# Plot
ggsurv(km_coh) + scale_y_continuous(expand = c(0, 0), limits = c(0, 1.01))</pre>
```


Smoothed hazard models

Beyond describing the survival process using Kaplan-Meier estimates, we also estimate smoothed hazard models. The results from the smoothed hazard model are displayed in table.

Table 5: Fitting generalized (binomial/logit) linear model: Event \sim ns(log(Censoring), knots = c(20, 25, 30, 35, 40)) * cohort

	Estimate	Std. Error	z value	$\Pr(> z)$
(Intercept)	-1746	56.25	-31.05	1.277e-211
ns(log(Censoring), knots = c(20,	1733	55.86	31.02	2.725e-211
25, 30, 35, 40))1				
ns(log(Censoring), knots = c(20,	759.5	222031	0.00342	0.9973
25,30,35,40))2				
ns(log(Censoring), knots = c(20,	2985	126311	0.02363	0.9811
25,30,35,40))3				
$\mathrm{cohort}(1950{,}1960]$	324.9	69.61	4.668	3.046e-06
$\mathrm{cohort}(\overline{1960,}1970]$	508.2	66.33	7.662	1.833e-14
$\mathrm{cohort}(1970{,}1980]$	448	75.3	5.95	2.686e-09
$\mathrm{cohort}(1980{,}1990]$	744.7	94.21	7.905	2.669e-15
ns(log(Censoring), knots = c(20,	-322.5	69.14	-4.665	3.09e-06
25,30,35,				
$40))1: \mathrm{cohort}(1950, 1960]$				
ns(log(Censoring), knots = c(20,	843.1	179.6	4.695	2.672e-06
25,30,35,				
40))2:cohort $(1950,1960]$				
ns(log(Censoring), knots = c(20,	-503	65.89	-7.634	2.268e-14
25,30,35,				
$40))1: \mathrm{cohort}(1960, 1970]$				
ns(log(Censoring), knots = c(20,	1335	171	7.809	5.758e-15
25,30,35,				
$40)) 2: \mathbf{cohort}(1960, 1970]$				
ns(log(Censoring), knots = c(20,	-442	74.78	-5.91	3.415e-09
25,30,35,				
$40))1: \mathrm{cohort}(1970, 1980]$				
ns(log(Censoring), knots = c(20,	1191	194.3	6.133	8.598e-10
25,30,35,				
$40)) 2: \mathbf{cohort}(1970, 1980]$				
ns(log(Censoring), knots = c(20,	-736.7	93.42	-7.885	3.134e-15
25,30,35,				
$40))1: \mathrm{cohort}(1980, 1990]$				
ns(log(Censoring), knots = c(20,	1954	244.4	7.992	1.323e-15
25,30,35,				
40))2:cohort(1980,1990]				

In order to get a better understanding of the model, I visualized predicted probabilities of first birth by age and cohort in Figure @ref(fig: pred-smooth).

```
alpha = 0.10,
                                          ylab = "Hazard",
                                          plot = FALSE))
  # Save the predicted data
  save(plot_results, file = "Results/predict_smoothed_eha.Rda")
}
# Plot the predicted probabilities
plot_results$fit |>
  filter(Censoring >= 15 & Censoring <= 50 & cohort %in% cohorts) |>
  ggplot(aes(Censoring, visregFit, group = cohort, colour = cohort)) +
  geom_line() +
  scale_y_continuous(limits = c(0, 0.2), expand = c(0, 0)) +
  guides(colour = guide_legend(nrow = 2, byrow = TRUE)) +
  ylab("Predicted - age-specific first birth rates") +
  xlab("Age") +
  ggtitle("Spline logistic regression for first birth among men") +
  labs(caption = "Data: SOEP W36")
```


Parametric regression models

To allow for the inclusion of covariates, we used parametric event-history models. In order to abstain from too restrictive assumptions regarding the parametric shape, we have estimated models with several parametric specifications and compared the results using log-rank tests.

Exponential model

```
### Make parametric hazard models -----

# Exponential

exp <- par_surv(distribution = "exponential")
stargazer(exp, header = FALSE, type = 'latex')</pre>
```

Weibull model

```
# Weibull
weib <- par_surv(distribution = "weibull")
stargazer(weib, header = FALSE, type = 'latex')</pre>
```

Gaussian model

```
# Gompertz
#gomp <- par_surv(distribution = "gompertz")

# Gaussian
gauss <- par_surv(distribution = "gaussian")
stargazer(gauss, header = FALSE, type = 'latex')</pre>
```

Log-normal model

```
# Lognormal
lognor <- par_surv(distribution = "lognormal")
stargazer(gauss, header = FALSE, type = 'latex')</pre>
```

Log-logistic model

```
# Log-logistic
loglog <- par_surv(distribution = "loglogistic")
stargazer(loglog, header = FALSE, type = 'latex')</pre>
```

Discrete time survival model

While the parametric assumptions allow for more degrees of freedom, misspecification of the process may occur. In order to circumvent this issue, we have also estimated discrete time hazard models with splines for the age variables. We set the knots at 5-year age intervals.

```
if(all(isFALSE(estimate) & file.exists("Results/discrete_eha_splines.Rda"))){
    # Load the data
    load("Results/discrete_eha_splines.Rda")
}else{
### Discrete time model ------
# Estimate a logistic regression
logist <- glm(Event ~ ns(Censoring, knots = knots) * cohort, data = spell_data)</pre>
```

Table 6:

	Dependent variable:
	Censoring
cohort(1910,1920]	(0.000)
cohort(1920,1930]	(0.000)
cohort(1930,1940]	(0.000)
cohort(1940,1950]	-0.361^{***} (0.029)
cohort(1950,1960]	-0.294*** (0.027)
cohort(1960,1970]	-0.296^{***} (0.024)
cohort(1970,1980]	-0.321^{***} (0.025)
cohort(1980,1990]	(0.000)
cohort(1990,2000]	(0.000)
cohort(2000,2010]	(0.000)
cohort(2010,2020]	(0.000)
Constant	3.986*** (0.020)
Observations Log Likelihood χ^2	24,986 -84,184.550 481.330*** (df = 11)
Note:	*p<0.1; **p<0.05; ***p<0.0

Table 7:

	$Dependent\ variable:$
	Censoring
log(scale):1	3.640***
,	(0.010)
log(shape):1	0.796***
	(0.016)
log(scale):2	3.664***
	(0.007)
log(shape):2	0.924***
J(, ,	(0.013)
log(scale):3	3.630***
	(0.004)
log(shape):3	1.242***
- · · · · · · · · · · · · · · · · · · ·	(0.011)
log(scale):4	3.532***
	(0.003)
log(shape):4	1.607***
- · · · · · · · · · · · · · · · · · · ·	(0.011)
log(scale):5	3.458***
,	(0.003)
log(shape):5	1.858***
- , - /	(0.015)
Observations	24,986
Log Likelihood	$-69,\!609.480$
Note:	*p<0.1: **p<0.05: ***p<0.01

Note:

*p<0.1; **p<0.05; ***p<0.01

Table 8:

	Dependent variable:
	Censoring
cohort(1910,1920]	(0.000)
cohort(1920,1930]	(0.000)
cohort(1930,1940]	(0.000)
cohort(1940,1950]	$0.595^{**} \ (0.259)$
cohort(1950,1960]	1.554*** (0.232)
cohort(1960,1970]	1.652*** (0.210)
cohort(1970,1980]	-0.182 (0.212)
cohort(1980,1990]	(0.000)
cohort(1990,2000]	(0.000)
cohort(2000,2010]	(0.000)
cohort(2010,2020]	(0.000)
Constant	32.293*** (0.164)
${ m Log~Likelihood}$	$-71,640.940$ $136.801^{***} (df = 11)$
Note:	*p<0.1; **p<0.05; ***p<0.01

Table 9:

	Dependent variable:
	Censoring
cohort(1910,1920]	(0.000)
cohort(1920,1930]	(0.000)
cohort(1930,1940]	(0.000)
cohort(1940,1950]	0.595** (0.259)
cohort(1950,1960]	$1.554^{***} \\ (0.232)$
eohort(1960,1970]	1.652*** (0.210)
cohort(1970,1980]	-0.182 (0.212)
cohort(1980,1990]	(0.000)
cohort(1990,2000]	(0.000)
ohort(2000,2010]	(0.000)
cohort(2010,2020]	(0.000)
Constant	32.293*** (0.164)
Log Likelihood	$-71,640.940$ 136.801^{***} (df = 11)
Note:	*p<0.1; **p<0.05; ***p<

Table 10:

	Dependent variable:
	Censoring
cohort(1910,1920]	(0.000)
cohort(1920,1930]	(0.000)
cohort(1930,1940]	(0.000)
cohort(1940,1950]	$0.069 \\ (14,625.760)$
cohort(1950,1960]	$0.126 \\ (14,625.760)$
cohort(1960,1970]	$0.177 \\ (14,625.760)$
cohort(1970,1980]	$0.138 \\ (14,625.760)$
cohort(1980,1990]	$0.112 \\ (14,625.760)$
cohort(1990,2000]	(0.000)
cohort(2000,2010]	(0.000)
cohort(2010,2020]	(0.000)
Constant	3.296 (14,625.760)
Observations Log Likelihood χ^2	24,986 -67,410.160 301.738**** (df = 11)
Note:	*p<0.1; **p<0.05; ***p<0.0

```
# Save the results
save(logist, file = "Results/discrete_eha_splines.Rda")
}
# Create the prediction data
pred_data <- expand.grid(Censoring = 15:55, cohort = unique(fert2$cohort))</pre>
# Predict the results
pred_data$prediction <- predict(logist, pred_data)</pre>
# Select the data
pred_data <- subset(pred_data, Censoring >= 18 )
# De-select data
pred_data <- pred_data |> filter((cohort == "(1970,1980]" & Censoring <= 40) |</pre>
                                   (cohort == "(1980, 1990]" & Censoring <= 30)
                                   cohort %in% c("(1950,1960]", "(1960,1970]", "(1940,1950]"))
# Plot the result
ggplot(pred_data, aes(Censoring, prediction, colour = cohort, group = cohort)) +
  geom_line(size = 1.3) +
  scale_y = c(0, 0.15), expand = c(0, 0) +
  ylab("Predicted - age-specific first birth rates") +
  xlab("Age") +
  ggtitle("Spline logistic regression for first birth among men") +
  labs(caption = "Data: SOEP W36") +
  guides(colour = guide_legend(nrow = 2, byrow = TRUE))
```


A non-parametric approach

While the models are useful for incorporating covariates, they may rely on too restrictive assumptions. Therefore, we also used a non-parametric approach to estimate age-specific first birth rates.

We used the spell data and aggregated the exposures as well as the births by age. Than, we simply estimated the rates in the following way:

$$rate(x) = \frac{B_{firstbirth}(x)}{P_{childless}}$$

Figure @ref{fig:plot_raw} illustrates the raw age-specific first birth rates for different cohorts. Because the data is from a survey, the rates show an erratic pattern. Nonetheless, the expected bell-shape becomes apparent.

```
# Estimate the exposures
exposures <- spell_data |> group_by(start, cohort) |> count()

# Count the events
births <- spell_data |> group_by(start, cohort) |> summarise(birth = sum(Event))

# Combine
unparametric <- inner_join(exposures, births) |> mutate(rate = birth / n)
```

```
# De-select data
pred_data <- unparametric |> filter((cohort == "(1970,1980]" & start <= 40) |</pre>
                                       (cohort == "(1980, 1990]" \& start <= 30)
                                       cohort %in% c("(1950,1960]", "(1960,1970]", "(1940,1950]"))
# Plot the result
plot_raw <- unparametric |> filter(cohort %in% cohorts & start >= 18) |>
  ggplot(aes(start, rate, colour = cohort, group = cohort, shape = cohort)) +
    geom_line() +
    geom_point() +
    facet_wrap( \sim cohort, ncol = 1) +
    scale_x_continuous(expand = c(0, 0)) +
    scale_y\_continuous(expand = c(0, 0), limits = c(0, 0.15)) +
    ggtitle("Age-specific first-birth rates for men") +
    labs(caption = "Data: SOEP Wave 36") +
    ylab("Age-specific fertility rate (Parity 1)") +
    xlab("Age") +
    guides(colour = guide_legend(nrow = 2, byrow = TRUE))
# Plot the result
plot_raw
```

Age-specific first-birth rates for men

In order to reduce the noise and random fluctuations, which result from limited case numbers and the spread of the interview dates, we have smoothed the age-specific first birth rates using a *locally estimated scatterplot smoothing* (loess). The results are presented in Figure @ref{fig:smoothed-rates}

Comparison by birth region

It is very likely that some of the change in the age distribution is driven by the impactful reunification, which caused migration as well as fertility postponement. Thus, we estimated non-parametric age-specific first birth rates seperately by birth region. The sample was split into persons who were born in East-Germany and respondents who were born in West Germany. Following common practice, respondents from Berlin were classified as East-German.

```
# Filter respondents where the birth information are existent
fert2 <- fert2 |> filter(!is.na(birthregion))

# Create spell data
spell_data_reg <- survSplit(fert2, cut = 15:55, end = "Censoring", event = "Event", start = "start")

# Save the data
save(spell_data_reg, file = "Data/spell_data_reg.Rda")
}

# Create the prediction data
pred_data <- expand.grid(Censoring = 15:55, cohort = unique(fert2$cohort), birthregion = c("East", "Wes")</pre>
```

Once we have prepared the data, we estimate a discrete time survival regression with knots in 5-year intervals, with interactions between cohort and birth region. We than plot the predicted probabilities from the model in @ref(fig:pred-reg)

```
# Estimate a logistic regression
logist <- glm(Event ~ ns(Censoring, knots = knots) * cohort * birthregion,</pre>
              data = spell data reg)
# Predict the results
pred_data$prediction <- predict(logist, pred_data)</pre>
# Select the data
pred_data <- subset(pred_data, Censoring >= 18 )
# De-select data
pred_data <- pred_data |>
  filter((cohort == "(1970,1980]" & Censoring <= 40) |
         (cohort == "(1980, 1990]" \& Censoring <= 30)
          cohort %in% c("(1950,1960]", "(1960,1970]", "(1940,1950]"))
# Plot the result
ggplot(pred_data, aes(Censoring, prediction, colour = cohort, group = cohort)) +
  geom line(size = 1.3) +
  scale y continuous(limits = c(0, 0.2), expand = c(0, 0)) +
  ylab("Predicted - age-specific first birth rates") +
  xlab("Age") +
  facet_grid(cohort ~ birthregion) +
  ggtitle("Spline logistic regression for first birth among men") +
  labs(caption = "Data: SOEP W36") +
  guides(colour = guide_legend(nrow = 2, byrow = TRUE))
```

Spline logistic regression for first birth among me


```
# Save the file
ggsave(last_plot(), filename = "Figures/logistic_reg_soep.pdf")
```

As outlined earlier, the models may suffer from subjectivity and parametric assumptions, while they increase the degrees of freedom. We estimate the age-specific first birth rates using the non-parametric approach as well. The results with the raw birth rates is displayed in Figures @ref(fig:nonpara-reg).

```
### Unparametric by birthregion -----
# Estimate the exposures
exposures <- spell_data_reg |> group_by(start, cohort, birthregion) |> count()
# Count the events
births <- spell_data_reg |> group_by(start, cohort, birthregion) |> summarise(birth = sum(Event))
unparametric_reg <- inner_join(exposures, births) |> mutate(rate = birth / n)
# De-select data
unparametric_reg <- unparametric_reg |>
  filter((cohort == "(1970,1980]" & start <= 40) |
         (cohort == "(1980,1990]" & start <= 30 ) |
         cohort %in% c("(1950,1960]", "(1960,1970]", "(1940,1950]"))
# Plot the result
plot_raw_reg <- unparametric_reg |>
  filter(cohort %in% cohorts & start >= 18) |>
  ggplot(aes(start, rate, colour = cohort, group = cohort, shape = cohort)) +
   geom_line() +
   geom_point() +
   facet_grid(cohort ~ birthregion) +
    scale_x_continuous(expand = c(0, 0)) +
    scale_y_continuous(expand = c(0, 0), limits = c(0, 0.2)) +
    ggtitle("Age-specific first-birth rates for men") +
   labs(caption = "Data: SOEP Wave 36") +
   ylab("Age-specific fertility rate (Parity 1)") +
   xlab("Age") +
    guides(colour = guide_legend(nrow = 2, byrow = TRUE))
# Print the result
plot_raw_reg
```

Age-specific first-birth rates for men

Again, we used *loess* to smooth the rates and to yield a more schematic result. The result is displayed in Figure @ref(fig:nonpara-smooth-reg).

```
# Plot interpolated
plot_interpol_reg <- unparametric_reg |>
  filter(cohort %in% cohorts & start >= 18) |>
  ggplot(aes(start, rate, colour = cohort, group = cohort, linetype = cohort, fill = cohort)) +
    geom_smooth(se = FALSE) +
    facet_grid(cohort ~ birthregion) +
    scale_x_continuous(expand = c(0, 0)) +
    scale_y\_continuous(expand = c(0, 0), limits = c(0, 0.2)) +
    ggtitle("Age-specific first-birth rates for men (smoothed)") +
    labs(caption = "Data: SOEP Wave 36") +
    ylab("Age-specific fertility rate (Parity 1)") +
    xlab("Age") +
    guides(colour = guide_legend(nrow = 2, byrow = TRUE),
           linetype = guide_legend(nrow = 2, byrow = TRUE)) +
    scale_linetype_manual(values = c("dashed", "dotted", "longdash", "twodash", "solid"))
# Plot the interpolated result
plot_interpol_reg
```

Age-specific first-birth rates for men (smoothed)

