SOLUTION KEY

- 1. (a) f is continuous at x_0 if and only if for all $\epsilon > 0$ there exists $\delta > 0$ such that if $|x x_0| < \delta$ and $x \in S$ then $|f(x) f(x_0)| < \epsilon$.
- 1. (b) f is continuous at $x_0 \in S \iff$ for all sequences (x_n) in S with $x_n \to x_0$, $f(x_n) \to f(x_0)$.
- 1. (c) Let (x_n) be a sequence in S such that $x_n \to x_0$. Since f and g are continuous at x_0 we have $f(x_n) \to f(x_0)$ and $g(x_n) \to g(x_0)$. By the Limit Laws for sequences, $f(x_n) + g(x_n) \to f(x_0) + g(x_0)$. Therefore the function f(x) + g(x) is continuous at x_0 by the proposition stated in part (b).
- 1. (d) Since f is continuous on [a,b] it attains its maximum and minimum on [a,b]. Hence there exists $a_1,b_1 \in [a,b]$ such that $f(a_1) \leq f(x) \leq f(b_1)$ for all $x \in [a,b]$. By the Intermediate Value Theorem, if $y \in [f(a_1),f(b_1)]$, then there exists $x \in I \subset [a,b]$ such that f(x) = y, where I is the interval with endpoints a_1 and a_2 . Therefore, the range of a_2 is equal to a_2 .
- 2. (a) For all $\epsilon > 0$ there exists $\delta > 0$ such that if $|x x_0| < \delta$ and $x \in S \setminus \{x_0\}$, then $|f(x) L| < \epsilon$.
- 2. (b) Let $\epsilon > 0$. Let $\delta = \epsilon/2$. Then if $|x| < \delta$ and $x \in (-1,1) \setminus \{0\}$, then $|g(x)-1| = |2x+1-1| = 2|x| < \epsilon$.
- 2. (c) Let $\epsilon > 0$. Since $\lim_{x\to 0} f(x) = 0$ there exists $\delta > 0$ such that if $|x| < \delta$, $x \neq 0$, then $|f(x)| < \epsilon/M$. Therefore, if $|x| < \delta$, $x \neq 0$, then $|f(x)g(x)| \leq M|f(x)| < \epsilon$. Hence $\lim_{x\to 0} f(x)g(x) = 0$.
- 3. (a) $L(f, \mathscr{P}) = \sum_{i=1}^{N} m_i \Delta x_i$ and $U(f, \mathscr{P}) = \sum_{i=1}^{N} M_i \Delta x_i$ where $\Delta x_i = x_i x_{i-1}$.
- 3. (b) $L(f) = \sup \{ L(f, \mathscr{P}) \mid \text{ where } \mathscr{P} \text{ is a partition of } [a, b] \}$ and $U(f) = \inf \{ U(f, \mathscr{P}) \mid \text{ where } \mathscr{P} \text{ is a partition of } [a, b] \}.$
- 3. (c) f is integrable on $[a,b] \iff$ for all $\epsilon > 0$ there exists a partition \mathscr{P}_{ϵ} of [a,b] such that $U(f,\mathscr{P}) L(f,\mathscr{P}) < \epsilon$.
- 3. (d) Let $\epsilon > 0$. Choose a partition \mathscr{P}'_{ϵ} such that $L(f, \mathscr{P}'_{\epsilon}) > L(f) \epsilon/2$. By hypothesis we may choose a partition \mathscr{P}''_{ϵ} such that $U(f, \mathscr{P}''_{\epsilon}) < L(f) + \epsilon/2$. Define a new partition $\mathscr{P}_{\epsilon} = \mathscr{P}'_{\epsilon} \cup \mathscr{P}''_{\epsilon}$. Then $U(f, \mathscr{P}_{\epsilon}) \leq U(f, \mathscr{P}''_{\epsilon})$ and $L(f, \mathscr{P}'_{\epsilon}) \leq L(f, \mathscr{P}_{\epsilon})$. Therefore

$$U(f,\mathscr{P}_{\epsilon}) - L(f,\mathscr{P}_{\epsilon}) \leq U(f,\mathscr{P}''_{\epsilon}) - L(f,\mathscr{P}'_{\epsilon}) < L(f) + \epsilon/2 - (L(f) - \epsilon/2) = \epsilon.$$

Therefore f is integrable on [a, b] by the result stated in part (b).

3. (e) An example of a bounded function $g:[0,1]\to\mathbb{R}$ which is not integrable is the function g defined by

$$g(x) = \begin{cases} 1 & \text{if } x \text{ is rational} \\ 0 & \text{if } x \text{ is irrational} \end{cases}$$

4. (a) Let $f:[a,b]\to\mathbb{R}$ be a function which is continuous on [a,b] and differentiable on (a,b). Then there exists $c\in(a,b)$ such that

$$\frac{f(b) - f(a)}{b - a} = f'(c).$$

4. (b) Let $x_1, x_2 \in (a, b)$ and suppose without loss of generality that $x_1 < x_2$. Then f is continuous on $[x_1, x_2]$ and differentiable on (x_1, x_2) . By the Mean Value Theorem, there exists $c \in (x_1, x_2)$ such that

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} = f'(c) = 0$$

by the hypothesis on f. Therefore $f(x_2) - f(x_1) = 0$. Hence $f(x_1) = f(x_2)$ for all $x_1, x_2 \in (a, b)$. Therefore f is a constant function.

- 4. (c) By part (b) above it suffices to prove that f'(x) = 0 for all x. Let $x, y \in \mathbb{R}$ and suppose that $y \neq x$. Then $\left|\frac{f(y) f(x)}{y x}\right| \leq \frac{|x y|^2}{|x y|} \leq |x y|$ Therefore, as $y \to x$, $\left|\frac{f(y) f(x)}{y x}\right| \to 0$ and hence $\frac{f(y) f(x)}{y x} \to 0$ Therefore f is differentiable at x and f'(x) = 0.
- 4. (d) By FTOC Part I, F is differentiable on [a, b] with F'(x) = f(x). By the Inverse Function Theorem, F^{-1} is differentiable at F(x) with derivative

$$(F^{-1})'(F(x)) = \frac{1}{F'(x)} = \frac{1}{f(x)}.$$

- 5. (a) A series $\sum_{n=1}^{\infty} a_n$ is said to converge if the sequence (s_n) of partial sums is convergent.
- 5. (b) Suppose that $a_n \ge 0$ for all n. Then (s_n) is a monotonic sequence. Hence it converges if and only if it is bounded above.
- 5. (c) Let $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ be series such that $0 \le a_n \le b_n$ for all $n \ge 1$. If $\sum_{n=1}^{\infty} b_n$ converges then $\sum_{n=1}^{\infty} a_n$ converges. If $\sum_{n=1}^{\infty} a_n$ diverges then $\sum_{n=1}^{\infty} b_n$ diverges.
- 5. (d) We have $\ln(n+1) = \int_1^{n+1} \frac{1}{t} dt \le (n+1-1) = n$ for all $n \ge 1$. Therefore $1/n \le \ln(n+1)$. Since $\sum_{n=1}^{\infty} 1/n$ diverges, the Comparison Test implies that $\sum_{n=1}^{\infty} 1/\ln(n+1)$ diverges also.
- 6. (a) The sequence $(f_n)_{n=1}^{\infty}$ is said to converge uniformly to f on S if for all $\epsilon > 0$ there exists $N \in \mathbb{N}$ such that $\sup_{x \in S} |f_n(x) f(x)| < \epsilon$ if n > N.
- 6. (b) If $f_n \to f$ uniformly on S and f_n is continuous on S for all n, then f is continuous on S.
- 6. (c) The pointwise limit of the sequence $(g_n)_{n=1}^{\infty}$ is the function $g:[0,1]\to\mathbb{R}$ defined by

$$g(x) = \begin{cases} 0 & \text{if } x \in [0, 1) \\ 1 & \text{if } x = 1. \end{cases}$$

However, the convergence cannot be uniform since if it were then g would be continuous since each g_n is continuous. But g is not continuous.

6. (d) Let $\epsilon > 0$. Since each f_n is continuous on S and the convergence is uniform, f is continuous on S. Therefore, there exists $\delta > 0$ such that if $|x - y| < \delta$ then $|f(x) - f(y)| < \epsilon/2$. Choose $N_1 \in \mathbb{N}$ such that $n > N_1 \implies |x_n - x| < \delta$. Since $f_n \to f$ uniformly, we may choose $N_2 \in \mathbb{N}$ such that $n > N_2 \implies \sup_{x \in S} |f_n(x) - f(x)| < \epsilon/2$. Therefore, if $n > \max\{N_1, N_2\}$ then

$$|f_n(x_n) - f(x)| \le |f_n(x_n) - f(x_n)| + |f(x_n) - f(x)| < \epsilon/2 + \epsilon/2 = \epsilon.$$