Lasers & Fiber Optics - Cheat Sheet (Theory Only)

1. LASERS (Light Amplification by Stimulated Emission of Radiation)

Principles of Lasers

Lasers produce coherent, monochromatic, and highly directional light.

Based on stimulated emission where photons amplify light waves.

Used in medical, industrial, communication, and defense applications.

2. Spontaneous & Stimulated Emissions

Spontaneous Emission → An excited electron randomly falls to a lower energy level, emitting light.

Stimulated Emission → An incoming photon forces an excited electron to release an identical photon, leading to amplification.

3. Einstein's Coefficients

Define the probabilities of **absorption**, **spontaneous emission**, **and stimulated emission** in quantum systems. Help in understanding **energy level transitions and laser action**.

4. Population Inversion & Laser Action

Population Inversion → More atoms in an excited state than in the ground state, necessary for laser operation. **Laser Action Process**:

1st **Pumping** → Excites electrons to a higher energy state.

2nd**Population Inversion** → More electrons in excited states.

3rd Stimulated Emission → Emission of coherent light.

4th **Amplification** → Continuous stimulated emissions strengthen laser output.

5. Components of a Laser

Active Medium → Generates laser light (e.g., gas, solid, semiconductor).

Energy Source (Pump Source) → Excites electrons (e.g., electric discharge, flashlamp).

Optical Resonator → Reflective mirrors that amplify light inside the laser cavity.

6. Types of Lasers

1. Nd:YAG Laser (Neodymium: Yttrium-Aluminum-Garnet)

Solid-state laser using neodymium-doped YAG crystal.

High power output and used in laser cutting, welding, and medical surgeries.

2. CO₂ Laser (Carbon Dioxide Laser)

Gas laser using a CO₂ mixture.

Emits infrared light and is used in industrial cutting, engraving, and medical applications.

3. GaAs Laser (Gallium Arsenide Laser)

Semiconductor laser (Diode Laser) based on GaAs material.
Used in fiber optic communication, barcode scanners, and medical instruments.

7. Fiber Optics & Light Propagation

Principle of Optical Fiber

Works on the principle of **Total Internal Reflection (TIR)**. Light propagates through a **core** surrounded by a **cladding layer**. Used in **telecommunication**, **medical imaging**, and **data transmission**.

8. Numerical Aperture (NA) & Acceptance Angle

Numerical Aperture (NA) measures the light-gathering ability of an optical fiber.

Acceptance Angle is the maximum angle at which light can enter and still propagate inside the fiber.

9. Types of Optical Fibers

Based on Material

Glass Fiber → High-quality transmission (used in telecom). Plastic Fiber → Low cost, used in short-distance communication.

Based on Refractive Index

Step-Index Fiber \rightarrow Sharp refractive index difference between core and cladding. **Graded-Index Fiber** \rightarrow Gradual refractive index change for reduced signal loss.

Based on Mode (Light Propagation)

Single-Mode Fiber (SMF) \rightarrow Carries one light mode, long-distance communication. Multi-Mode Fiber (MMF) \rightarrow Carries multiple light modes, short-distance applications.

This Laser & Fiber Optics Cheat Sheet covers laser principles, types, components, fiber optics, numerical aperture, and optical fiber classification. Let me know if you need further explanations!