MINISTRY OF EDUCATION AND SCIENCE OF UKRAINE NATIONAL TECHNICAL UNIVERSITY OF UKRAINE "IHORY SIKORSKY KYIV POLYTECHNIC INSTITUTE"

Liubov Oleshchenko

Statisical Methods Of ML

Laboratory Work 1

K-Means clustering algorithm in Python

Kulubecioglu Mehmet

IM-14 FIOT

Class Number: 12

Kyiv

IHORY SIKORSKY KYIV POLYTECHNIC INSTITUTE

2024

Using K-Means Clustering Algorithm in Python

1. Introduction

This report presents an implementation of the K-Means clustering algorithm in Python to analyze and segment datasets. The analysis is performed on two datasets:

- Loan Application Dataset (clustering.csv) Clustering applicants based on income and loan amount.
- 2. Wholesale Customers Dataset (Wholesale customers data.csv) Segmenting wholesale customers based on annual spending across different product categories.

2. Required Libraries and Tools

To implement the clustering algorithm, the following libraries were used:

- pandas for data manipulation.
- **numpy** for numerical computations.
- matplotlib.pyplot for data visualization.
- sklearn.cluster.KMeans for implementing the K-Means algorithm.
- **sklearn.preprocessing.StandardScaler** for data standardization.

Google Colab was used as the development environment.

3. Clustering Loan Applicants

Step 1: Importing Required Libraries

Step 2: Loading and Exploring the Dataset

Step 3: Selecting Features and Visualizing Data

Step 4: Applying K-Means Clustering

Step 5: Determining the Optimal Number of Clusters (Elbow Method)

4. Clustering Wholesale Customers

Step 1: Loading the Dataset

Step 2: Standardizing the Data

Step 3: Implementing K-Means Clustering

Step 4: Visualizing the Clusters

5. Answers to Questions

1. What is clustering?

Clustering is an unsupervised learning technique that groups similar data points into clusters based on patterns in the data.

2. What properties of clusters do you know?

- Homogeneity within clusters: Data points within a cluster should be similar.
- **Heterogeneity between clusters:** Data points in different clusters should be as different as possible.

3. What applications of clustering in real scenarios do you know?

Customer segmentation

- Document clustering
- Image segmentation
- Recommendation systems

4. What clustering evaluation metrics do you know?

- Inertia (Sum of Squared Errors SSE)
- Dunn Index
- Silhouette Score

5. What is K-Means Clustering?

K-Means is a clustering algorithm that partitions data into k clusters, minimizing the variance within each cluster.

6. How to choose the right number of clusters in K-Means?

The **Elbow Method** is commonly used, where we plot the inertia for different k values and select the optimal number where the curve bends.

7. What is the K-Means++ algorithm used for?

K-Means++ improves the initialization of centroids to avoid poor clustering results.

8. How to implement K-Means clustering algorithm and K-Means++ algorithm for centroid initialization in Python?

Using **sklearn.cluster.KMeans**, we specify **init='k-means++'** while creating the model.

9. What is data standardization used for?

Standardization scales data to have a mean of 0 and a standard deviation of 1, ensuring that features contribute equally to clustering.

10. What clustering algorithms do you know?

- K-Means
- Hierarchical Clustering
- DBSCAN (Density-Based Spatial Clustering of Applications with Noise)
- Gaussian Mixture Models (GMM)