Cloud Computing

Cap 1. Introducere. Bazele MapReduce

October 29, 2022

- Clouds
- 2 Noțiunea de cloud
- 3 Istoric
- 4 Caracteristici
- Costuri
- 6 Paradigma MapReduce

- Clouds
- Noţiunea de cloud
- 3 Istorio
- 4 Caracteristici
- Costuri
- 6 Paradigma MapReduce

Modă sau necesitate?

- Gartner, 2009: Cifra de afaceri a cloud computing va depăși \$150 miliarde în 2013. Va reprezenta 19 % din cheltuielile IT în 2015.
- IDC, 2009: Cheltuielile IT cu serviciile cloud se vor tripla în următorii 5 ani, ajungînd la \$42 miliarde.
- Forrester, 2010: Volumul operațiilor cu cloud computing va crește de la \$41 miliarde în 2010 la \$241 miliarde în 2020.

Furnizori

- AWS: Amazon Web Services
 - EC2: Elastic Compute Cloud
 - S3: Simple Storage Service
 - EBS: Elastic Block Storage
- Microsoft Azure
- Google Compute Engine
- Oracle, VMWare, Yahoo, Cloudera, Gigaspaces, Datastax
- alţii

Categorii de clouds

- public clouds vs. private clouds
- public clouds oferă servicii clienților de tip pay-per-use:
 - Amazon S3 (Simple Storage Service): key-value store, stochează date de orice tip, plata se face pe GB pe luna de stocare
 - Amazon EC2 (Elastic Compute Cloud): upload, rularea oricărei imagini de sistem de operare (SO), plata pe CPU pe ora de rulare
 - Google Application Engine / Compute Engine: dezvoltare de aplicații ce vor fi rulate pe Application Engine, urmate de upload-ul lor și rulare

Clienții economisesc timp și bani

- Dave Power, consultant Eli Lilly: "Cu AWS, un nou server poate fi up-and-running în trei minute, (Eli Lilly avea nevoie de şapte săptămîni pentru a instala intern un server) iar in cluster Linux de 64 de noduri poate fi online în 7 minute (comparat cu o durată internă de trei luni)"
- Ingo Elfering, VP GlaxoSmithKline: "Cu serviciile online, costurile operaționale IT pot fi reduse cu aproximativ 30%"
- Jim Schwartz, CIO, Sybase: "Un cloud privat în datacenter ne-a economisit aproape \$2 milioane anual din 2006, deoarece compania poate pune în comun puterea de procesare şi resursele de stocare"
- sute de startup-uri pot folosi efectiv resurse largi de calcul fără a face investiții masive în hardware

- Clouds
- 2 Noțiunea de cloud
- 3 Istorio
- Caracteristici
- Costuri
- 6 Paradigma MapReduce

Cloud (nor de calcul)

- cluster?
- supercomputer?
- datastore?
- nici una din cele de mai sus
- toate cele de mai sus

• **cloud:** capacitate mare de stocare + putere de procesare lângă date

Ce este un nor de calcul (cloud)

- un datacenter (single-site cloud) constă în
 - noduri de calcul grupate în rack-uri
 - switch-uri, ce conectează rack-urile
 - topologie de rețea ierarhică, de tip arbore (hyper-arbore)
 - noduri de stocare (storage backend), conectate în rețea
 - nod front-end pentru preluarea job-urilor și servirea clienților
 - servicii software
- un cloud distribuit geografic constă în
 - mai multe datacenters
 - fiecare site poate avea structură și servicii diferite

Exemplu de topologie

Exemplu de hyper-arbore binar

- Clouds
- Noţiunea de cloud
- Storic
- Caracteristici
- Costuri
- 6 Paradigma MapReduce

Istoric - sisteme batch

- 1940 1960: primele datacenters
- 1960 1980: time-sharing (sisteme batch)
- 1985: primele PC-uri (non-distributed)
- 1980 2012: grids, clusters
- 1995 2008: peer-to-peer systems
- 2004 now: clouds, datacenters

Timeline

Legea lui Moore

- observare: numărul de tranzistori într-un circuit integrat se dublează la fiecare doi ani (Gordon E. Moore, co-founder, Intel, 1975)
- perioade de dublare:
 - storage: 12 luni
 - lățime de bandă: 9 luni
 - putere de calcul CPU: 18 luni

- bandwidth: 56kbps în 1985, de ordinul Tbps în prezent
- capacitate de stocare: 10MB HDD PC XT în 1988, TBs în prezent
- producție de date: simulări de molecule simple în 1990, LHC produce în ordinul PBytes (10^{15}) / an

Profeții

- în 1965, Fernando Corbato (MIT), designer al sistemului MULTICS -GE, Honeywell (precursorul UNIX) a previzionat apariția unui serviciu de calcul disponibil ca utilitate, precum compania de apă sau de energie electrică
- legea lui Corbato: "The number of lines of code a programmer can write in a fixed period of time is the same, independent of the language used." :-P

- Clouds
- Noţiunea de cloud
- 3 Istoric
- 4 Caracteristici
- Costuri
- 6 Paradigma MapReduce

Caracteristicile cloud-ului

- scară mare, masiv
 - datacenters de mii de noduri
- acces on-demand
 - oricine îl poate accesa
 - pay-per-use
- data intensive
 - stocare de la MB la TB (10^{12}), PB și EB (informal 10^{18} , un giga de GB)
 - log-uri, web data
 - spre comparație, Wikipedia se comprimă în ordinul GBytes
- paradigme noi de programare
 - MapReduce Hadoop, NoSQL Cassandra MongoDB
 - ușurință în programare, accesibilitate
 - open-source
- combinații ale acestor tehnologii dau naștere unor noi probleme nerezolvate (încă) de calcul distribuit (de tip cloud)

Exemple - număr de noduri

- Facebook: 30K în 2009, 60K în 2010, 180K în 2012
- Microsoft: 150K; creştere de 10K / lună; 80K rulează Bing
- Yahoo!: 100K în 2009; împărțire pe clustere, 4000 noduri / cluster
- AWS EC2: 40K noduri în 2009, 8 cores / nod
- eBay: 50K maşini, 2012
- HP: 380K noduri în 2012, în 180 datacenters
- Google: 1 Mio (estimare, 2013); 45K noduri / datacenter (2005)

Inside a Google data center

https://www.youtube.com/watch?v=XZmGGAbHqa0

Servers

Power Usage Efficiency

- WUE = $\frac{Water\ Usage}{IT\ Equipment\ Energy}$ (I / kWh)
- PUE = Total Facility: Power IT Equipment Power (supraunitar, cât mai aproape de 1)
- off-site
- on-site

Răcirea

- admisie de aer
- umidificarea cu apă purificată
- ventilarea sistemului cu aer rece
- evacuarea aerului cald

Acces la cerere

- on-demand: ca și închirierea unei mașini vs. cumpărarea uneia
 - AWS EC2: de la câţiva cenţi la câţiva \$ pe oră
 - AWS S3: de la câţiva cenţi la câţiva \$ pe GB / lună
- HaaS: Hardware as a Service
 - acces la masinile fizice, pentru a face orice cu ele (propriul cluster)
 - implică riscuri de securitate (cine are acces fizic la ele)
- laaS: Infrastructure as a Service
 - acces la o arhitectură de calcul flexibilă (virtualizare)
 - AWS EC2, AWS S3, Eucalyptus, Microsoft Azure

Acces la cerere

- PaaS: Platform as a Service
 - acces flexibil la arhitectura de calcul și cea de stocare, cuplată cu o platformă software
 - Google Application Engine (Python, Java, Go)
- SaaS: Software as a Service
 - acces la servicii software, la cerere
 - Google Docs, MS Office on demand, Dropbox

Calcul data-intensive

- computation-intensive
 - exemple: MPI-based, HPC1, grids
 - supercomputers (NCSA's Blue Waters²)
- data-intensive
 - date stocate în datacenters
 - folosirea nodurilor de procesare din imediata vecinătate a datelor
- în data-intensive computing, accentul se mută de la calcul la date: încărcarea CPU nu mai este cea mai importantă metrică, locul ei fiind luat de factorul I/O (atât disk-ul cât și rețeaua)

¹High Performance Computing

²https://en.wikipedia.org/wiki/Blue_Waters

Paradigme de programare pentru Cloud

- de obicei ușor de scris și de exprimat programe cu grad ridicat de paralelism
- Google: MapReduce, Sawzall (procedural)
- Amazon: Elastic MapReduce service (pay-per-use)
- Google MapReduce: indexarea se face cu un chain de 24 job-uri MR;
 200K joburi procesînd 50PB / lună (2006)
- Yahoo!: Hadoop + Pig; WebMap este un chain de 100 job-uri MR;
 280 TB, 2500 noduri
- Facebook: Hadoop + Hive; 300 TB, adaugă 2 TB / zi (2008); 3K jobs ce procesează 55 TB / zi
- NoSQL: MySQL este standard industrial de-facto, dar Cassandra este de 2400 ori mai rapid

- Clouds
- Noţiunea de cloud
- 3 Istoric
- Caracteristici
- 6 Costuri
- 6 Paradigma MapReduce

Categorii de clouds

- pot fi fie publici fie privaţi
- private clouds doar angajaţilor
- public clouds oricui plătește
- pentru un nou serviciu / companie: e mai rentabilă folosirea unui cloud public, sau alcătuirea propriului cloud?

Outsourcing sau ownership?

- problema: o organizație medie vrea să ruleze un serviciu pentru câteva luni
 - 128 servere (1024 cores)
 - 524 TB
- outsourcing (via AWS, cost lunar)
 - costul S3: \$0.12 / GB / lună
 - pentru 524 TB: 0.12 * 524 * 1000 = \$62K
 - costul EC2: \$0.10 / CPU / oră
 - costul total pe lună: storage + CPU = 62K + 0.10 * 1024 * 24 * 30 = 136K
- ownership (cost lunar)
 - storage: \$349K / nr. luni
 - total: \$1555K / nr. luni + 7.5K (1 sysadm la 100 noduri)

Outsourcing sau ownership?

- analiza costurilor: mai preferabil ownership-ul dacă
 - \$349K / nr. luni < \$62K (storage)
 - \$1555K / nr. luni < \$136K (total)

- prag
 - nr. luni > 6 (storage)
 - nr. luni > 12 (total)

- startup-urile folosesc outsourcing
- deţinătorii de datacentere publice monetizează cu precădere închirierea spaţiului de stocare

- Clouds
- Noţiunea de cloud
- 3 Istorio
- Caracteristici
- Costuri
- 6 Paradigma MapReduce

Operațiile map și reduce

• termeni împrumutați din programarea funcțională

```
>>> map(lambda x: x * x, [1, 2, 3, 4])
[1, 4, 9, 16]
>>> reduce(lambda a, b: a + b, [1, 4, 9, 6])
20
```

• aplicație exemplu:

pentru un set de date imens (ex. Wikipedia sau o biblioteca de ordinul TB), se dorește să se determine frecvența de apariție a fiecărui cuvânt, pentru fiecare document

Map

 se procesează individual fiecare înregistrare și se generează perechi (key, value) intermediare

Map

 se procesează în paralel fiecare înregistrare și se generează perechi (key, value) intermediare

• de regulă numărul de task-uri map este de un ordin de mărime mai mare decât numărul de noduri disponibile

Reduce

toate valorile asociate cu aceeași cheie se procesează împreună
 key, (listă de valori) >

Reduce

- fiecare cheie este asignată unui singur reducer
- procesarea paralelă se face prin partiționarea cheilor

 default, se realizează hash partitioning node nr. = hash(key) mod nodes

Codul mapper-ului în Hadoop

```
public static class TokenizerMapper
    extends Mapper<Object, Text, Text, IntWritable>{
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
public void map(Object key, Text value, Context context
              ) throws IOException, InterruptedException {
 StringTokenizer itr = new
     StringTokenizer(value.toString());
 while (itr.hasMoreTokens()) {
   word.set(itr.nextToken());
   context.write(word, one);
```

Codul reducer-ului în Hadoop

```
public static class IntSumReducer
    extends Reducer<Text,IntWritable,Text,IntWritable> {
 private IntWritable result = new IntWritable();
 public void reduce(Text key, Iterable<IntWritable> values,
                   Context context
                   ) throws IOException,
                       InterruptedException {
   int sum = 0;
   for (IntWritable val : values) {
     sum += val.get();
   result.set(sum):
   context.write(key, result);
```

Codul driver-ului în Hadoop

```
public static void main(String[] args) throws Exception {
 Configuration conf = new Configuration();
 Job job = Job.getInstance(conf, "word count");
 job.setJarByClass(WordCount.class);
 job.setMapperClass(TokenizerMapper.class);
 job.setCombinerClass(IntSumReducer.class);
 job.setReducerClass(IntSumReducer.class);
 job.setOutputKeyClass(Text.class);
 job.setOutputValueClass(IntWritable.class);
 FileInputFormat.addInputPath(job, new Path(args[0]));
 FileOutputFormat.setOutputPath(job, new Path(args[1]));
 System.exit(job.waitForCompletion(true) ? 0 : 1);
```

Exemplul Hadoop pentru WordCount

sursa:

```
https://hadoop.apache.org/docs/current/
hadoop-mapreduce-client/hadoop-mapreduce-client-core/
MapReduceTutorial.html#Source_Code
```

- combiner-ul are rolul de a reduce la nivelul unui nod valorile emise de mapper (reduce în mapper)
- va avea intrare și ieșire identice
- opţional

Programarea MapReduce

- extern: dpdv. al utilizatorului
 - program tip map, program tip reduce (de regulă scurte)
 - submit job, preluare rezultate
 - nu necesită cunoștințe de programare paralelă
- intern: pentru planificator
 - paralelizare mapper
 - transfer date de la mapper la reducer
 - paralelizare reducer
 - implementare storage pentru mapper input/output, reducer input/output
 - variantă: nici un reducer nu poate porni înainte ca toți mapper-ii să se fi terminat (barrier)
 - în practică reducer-ul poate porni când are un număr suficient de perechi, înainte de terminarea mapper-ilor

MapReduce internals (1)

- paralelizare map
 - fiecare task e independent de celelalte
 - toate perechile generate de mapper care au aceeași cheie sunt trimise spre același reducer
- transferul datelor de la mapper la reducer
 - toate perechile generate de mapper care au aceeași cheie sunt trimise spre același reducer
 - folosirea unei funcții de partiționare (implicit este funcția de hash-ing)
- paralelizare reduce
 - fiecare task e independent de celelalte
- storage pentru mappers și reducers
 - map input: din DFS (Distributed File System)
 - map output: filesystem local
 - reduce input: de pe discuri remote multiple; folosește local filesystems și rețeaua de interconectare
 - reduce output: DFS
- DFS poate fi: HDFS (Hadoop DFS), GFS (Google filesystem)

MapReduce internals (2)

Resource Manager asignează mapper-ele și reducer-ele către servere

4 D F 4 D F 4 D F 4 D F