N2PZDQ

Generated by Doxygen 1.8.4

February 25, 2014

Contents

1	N2P	ZDQ: 2-	Nutrients	s, Q)uo	ta r	eso	olvii	ng l	NPZ	ZD i	mo	del												2
	1.1	Genera	al Overvie	€W													 		 				 		2
	1.2	Refere	nces														 	 -	 				 	·	2
2	Todo	o List																							3
3	Data	Type I	ndex																						4
	3.1	Class	Hierarchy														 	 -	 		-		 		4
4	Data	Type I	ndex																						5
	4.1	Data T	ypes List	•													 		 				 		5
5	File	Index																							6
	5.1	File Lis	st													-	 		 		-		 		6
6	Data	Type D	ocument	tati	on																				7
	6.1	fabm_l	nzg_n2pzc	dq l	Mo	dule	e Re	efer	enc	е.							 		 				 		7
		6.1.1	Detailed	l De	esci	riptio	on										 		 				 		7
		6.1.2	Member	r Fu	unct	tion/	/Sub	broı	utin	e D	ocu	me	nta	tion			 		 				 		8
			6.1.2.1	d	ok												 		 				 		8
			6.1.2.2	fŗ	pro	d.											 		 				 		8
			6.1.2.3	fı	upn	١.											 		 				 		8
			6.1.2.4	fı	upp												 		 				 		9
			6.1.2.5	g	jet_	_ligh	it_ex	xtin	ctio	n							 		 				 		9
			6.1.2.6	ir	nitia	alize											 		 				 		9
	6.2	fabm_l	nzg_n2pzc	dq:	::typ	oe_h	ızg_	_n2	pzd	lq T	ype	Re	efer	enc	Э.		 		 				 		9
		6.2.1	Detailed	l De	∋sci	riptio	on									-	 		 		-		 		11
7	File	Docum	entation																						12
	7.1	n2pzdo	q.F90 File	Re	efer	enc	е.										 		 				 		12
		711	Detailed	ı Da	000	rinti	on																		10

2	CONTENTS
Nomenclature	13
Index	14

N2PZDQ: 2-Nutrients, Quota resolving NPZD model

1.1 General Overview

Description

State variables

N2PZDQ model resolves:

- · 2 nutrients, nitrogen and phosphorus in dissolved and detrital form
- · Phytoplankton with flexible C:N:P stoichiometry
- · Zooplankton with fixed stoichiometry

Fluxes

The NPZD (nutrient-phytoplankton-zooplankton-detritus) model described here consists of \$I=4\$ state variables. Nutrient uptake (phytoplankton growth) is limited by light and nutrient availability, the latter of which is modelled by means of Michaelis-Menten kinetics, see eq. (dnp}). The half-saturation nutrient concentration \$\$ used in this formulation has typically a value between 0.2 and 1.5 mmol N\, m\$^{-3}\$. Zooplankton grazing which is limited by the phytoplankton standing stock is modelled by means of an Ivlev formulation, see eq. (dpz}). All other processes are based on linear first-order kinematics, see eqs. (dpn}) - (dzd}).

For all details of the NPZD model implemented here, see[Burchardetal2005b]}.

Here is a diagram of fluxes:

Conventions

For the sake of readibility of the formulas, conventional symbols (e.g., Greek letters, sub and superscripts, etc) are used. For the correspondance between the symbols and parameters in the model code, see the Nomenclature section at the end of this report.

maybe some script here

1.2 References

Todo List

Subprogram fabm_hzg_n2pzdq::initialize (self, configunit)

here a more detailed description can be provided

Data Type Index

3.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:	
fabm_hzg_n2pzdq	7
fabm hzg n2pzdg::type hzg n2pzdg	g

Data Type Index

4.1 Data Types List

Here are the data types with brief descriptions:

fabm_hzg_n2pzdq
This modeule describes an NPZD model extended with 2 nutrients and variable stoichiometry of
phyto
fabm_hzg_n2pzdq::type_hzg_n2pzdq
This is the derived model type

File Index

F 4	-: :	الما	1 3	
5 1	нп	le l	ш	ST

lere is a list of all documented files with brief descriptions: mainpage.doxygen	
mainpage.doxygen	??
This file contains the fabm_hzg_n2pzdq module	12

Data Type Documentation

6.1 fabm_hzg_n2pzdq Module Reference

This modeule describes an NPZD model extended with 2 nutrients and variable stoichiometry of phyto.

Data Types

• type type_hzg_n2pzdq

This is the derived model type.

Public Member Functions

subroutine initialize (self, configurit)

here the n2pzdq namelist is read, variables exported by the model are registered in FABM and variables imported from FABM are made available

Private Member Functions

• subroutine do (self, _ARGUMENTS_DO_)

This is the main routine where right-hand-sides are calculated.

subroutine get_light_extinction (self, _ARGUMENTS_GET_EXTINCTION_)

to calculate light extinction when kc chnages with depth

• subroutine fprod (self, par, temp_fact, qnc, qpc, primprod, Nlim, Plim, Llim)

subroutine: primary production

• pure real(rk) function fupn (self, DIN, qnc)

nitrogen uptake function

pure real(rk) function fupp (self, DIP, qpc)

phosphorus uptake function

6.1.1 Detailed Description

This modeule describes an NPZD model extended with 2 nutrients and variable stoichiometry of phyto.

Author

Lena Spruch, Kai Wirtz, Onur Kerimoglu

Copyright

HZG

See Section 1 for a general overview to see what the model is about.

Definition at line 11 of file n2pzdq.F90.

6.1.2 Member Function/Subroutine Documentation

6.1.2.1 fabm_hzg_n2pzdq::do(class(type_hzg_n2pzdq), intent(in) self, _ARGUMENTS_DO_) [private]

This is the main routine where right-hand-sides are calculated.

Zooplankton processes: $G = d_{zd} = r_{zd}c_z$.

Phytoplankton processes:

Phyto quatas are calculated as: $Q_N = P_N/P_C$, $Q_P = P_P/P_C$

Production: *phyprod*, *Nlim*, *Plim* is obtained by calling fprod

Mortality: $phy_{mort} = phy_{mort} 0 * e^{(-mortpar_phy*Nlim,Plim)} * det_N$

N-uptake: fupN function is called

P-uptake: fupP function is called.

Here details about specific processes are provided.

Definition at line 284 of file n2pzdq.F90.

References fprod(), fupn(), and fupp().

6.1.2.2 subroutine fabm_hzg_n2pzdq::fprod (type (type_hzg_n2pzdq), intent(in) self, real(rk), intent(in) par, real(rk), intent(in) temp_fact, real(rk), intent(in) qnc, real(rk), intent(in) qpc, real(rk), intent(out) primprod, real(rk), intent(out) Nlim, real(rk), intent(out) Plim, real(rk), intent(out) Llim) [private]

subroutine: primary production

Light limitation, $Llim = (-\alpha * par)/\sqrt{grow_m ax^2 + \alpha^2}$

N-limitation, $Nlim = 1 - qmin_N/qnc$

N-limitation, $Plim = 1 - qmin_P/qpc$

 $primary\ production,\ primprod = rmax*min(Nlim,Plim)*Llim*temp_fact$

Definition at line 474 of file n2pzdq.F90.

Referenced by do().

6.1.2.3 pure real(rk) function fabm_hzg_n2pzdq::fupn (type (type_hzg_n2pzdq), intent(in) self, real(rk), intent(in) DIN, real(rk), intent(in) qnc) [private]

nitrogen uptake function

Process description:quota-dependent regulation of uptake rate (forced to stay above 0) times the limitation dependent on external concentration

$$fupN = max(0, upmax_N(1 - (Q_N - Q_{min})/(Qmax_N - Qmin_N)) * DIN/(DIN + K_N)$$

Definition at line 499 of file n2pzdg.F90.

Referenced by do().

6.1.2.4 pure real(rk) function fabm_hzg_n2pzdq::fupp (type (type_hzg_n2pzdq), intent(in) self, real(rk), intent(in) DIP, real(rk), intent(in) qpc) [private]

phosphorus uptake function

Calculated as: fupP = max(x, y)

Definition at line 515 of file n2pzdq.F90.

Referenced by do().

to calculate light extinction when kc chnages with depth

get_light: some more description here?

Definition at line 436 of file n2pzdq.F90.

6.1.2.6 subroutine fabm_hzg_n2pzdq::initialize (class (type_hzg_n2pzdq), intent(inout), target *self*, integer, intent(in) *configunit*)

here the n2pzdq namelist is read, variables exported by the model are registered in FABM and variables imported from FABM are made available

Todo here a more detailed description can be provided

Definition at line 61 of file n2pzdq.F90.

The documentation for this module was generated from the following file:

n2pzdq.F90

6.2 fabm_hzg_n2pzdq::type_hzg_n2pzdq Type Reference

This is the derived model type.

Inheritance diagram for fabm_hzg_n2pzdq::type_hzg_n2pzdq:

Public Member Functions

- · procedure initialize
- procedure do
- procedure get_light_extinction

Public Attributes

• type(type_state_variable_id) id_din

- type(type_state_variable_id) id_dip
- type(type_state_variable_id) id_phyc
- type(type_state_variable_id) id_phyn
- type(type_state_variable_id) id_phyp
- type(type state variable id) id detn
- type(type_state_variable_id) id_detp
- type(type state variable id) id zooc
- type(type_state_variable_id) id_dic
- type(type_dependency_id) id_par
- type(type_dependency_id) id_temp
- type(type_horizontal_dependency_id) id_i_0
- type(type diagnostic variable id) id gpp
- type(type_diagnostic_variable_id) id_ncp
- type(type_diagnostic_variable_id) id_ppr
- type(type_diagnostic_variable_id) id_npr
- type(type_diagnostic_variable_id) id_dpar
- · type(type diagnostic variable id) id dmort
- type(type diagnostic variable id) id dllim
- type(type_diagnostic_variable_id) id_dnlim
- type(type_diagnostic_variable_id) id_dplim
- type(type_diagnostic_variable_id) id_dqnc
- type(type_diagnostic_variable_id) id_dqpc
- type(type diagnostic variable id) id den
- type(type_diagnostic_variable_id) id_dep
- type(type_diagnostic_variable_id) id_dec
- type(type_diagnostic_variable_id) id_dgraz
- type(type_diagnostic_variable_id) id_dmortz
- type(type_conserved_quantity_id) id_totn
- type(type_conserved_quantity_id) id_totp
- · real(rk) p0
- real(rk) upmax_n
- real(rk) upmax p
- real(rk) grow_max
- · real(rk) iv
- · real(rk) halfsatn
- real(rk) halfsatp
- real(rk) rem_n
- real(rk) rem_p
- real(rk) mort0_phy
- real(rk) mortpar_phy
- real(rk) qmax n
- real(rk) qmax_p
- real(rk) qmin_n
- real(rk) qmin_p
- real(rk) kc
- real(rk) w p
- real(rk) w_d
- real(rk) rpn
- real(rk) grazmax
- real(rk) mort_zoo
- real(rk) n
- real(rk) qzn
- real(rk) qzp
- real(rk) eff
- real(rk) e_c

- real(rk) k_detn
- real(rk) k_detp
- real(rk) mort_zoo2
- real(rk) n2
- real(rk) zexcdetfr
- real(rk) affin_par
- real(rk) dic_per_n
- logical use_dic

6.2.1 Detailed Description

This is the derived model type.

Parameters

affin_par	lpha - initial slope of the P-I curve
upmax_N	$V_{max,N}$ -maximum nitrogen uptake rate

Definition at line 28 of file n2pzdq.F90.

The documentation for this type was generated from the following file:

• n2pzdq.F90

File Documentation

7.1 n2pzdq.F90 File Reference

This file contains the fabm_hzg_n2pzdq module.

```
#include "fabm_driver.h"
```

Data Types

• module fabm_hzg_n2pzdq

This modeule describes an NPZD model extended with 2 nutrients and variable stoichiometry of phyto.

• type fabm_hzg_n2pzdq::type_hzg_n2pzdq

This is the derived model type.

7.1.1 Detailed Description

This file contains the fabm_hzg_n2pzdq module.

Definition in file n2pzdq.F90.

Nomenclature

lpha affin_par

 $V_{max,N}$ upmax_N

Index

```
do
    fabm_hzg_n2pzdq, 8
fabm_hzg_n2pzdq, 7
    do, 8
    fprod, 8
    fupn, 8
    fupp, 8
    get_light_extinction, 9
    initialize, 9
fabm_hzg_n2pzdq::type_hzg_n2pzdq, 9
fprod
    fabm_hzg_n2pzdq, 8
fupn
    fabm_hzg_n2pzdq, 8
fupp
    fabm_hzg_n2pzdq, 8
get_light_extinction
    fabm_hzg_n2pzdq, 9
initialize
    fabm_hzg_n2pzdq, 9
n2pzdq.F90, 12
```