The geometry of Sinkhorn divergences

Hugo Lavenant

Bocconi University

Workshop "Variational Analysis, Models and Methods in Measure Spaces"

Marseille (France), April 30, 2024

Joint work with

Jonas Luckhardt

Gilles Mordant

Bernhard Schmitzer

Luca Tamanini

Preprint on arxiv hopefully soon!

 $\mathcal{P}(X)$ probability distributions over (X,d) compact metric space.

We propose d_S a new distance over $\mathcal{P}(X)$:

 $\mathcal{P}(X)$ probability distributions over (X,d) compact metric space.

We propose d_S a new distance over $\mathcal{P}(X)$:

1. It is a "Riemannian" metric.

 μ_1

 $\mathcal{P}(X)$ probability distributions over (X,d) compact metric space.

We propose d_S a new distance over $\mathcal{P}(X)$:

- 1. It is a "Riemannian" metric.
- 2. Translation are geodesics for this metric.

 $\mathcal{P}(X)$ probability distributions over (X,d) compact metric space.

We propose d_S a new distance over $\mathcal{P}(X)$:

- 1. It is a "Riemannian" metric.
- 2. Translation are geodesics for this metric.
- 3. The metric tensor is "smooth" and (X, d_S) embeds bi-Lipschitzly in a (RK) Hilbert space.

Hilbert Space

 $\mathcal{P}(X)$ probability distributions over (X,d) compact metric space.

We propose d_S a new distance over $\mathcal{P}(X)$:

- 1. It is a "Riemannian" metric.
- 2. Translation are geodesics for this metric.
- 3. The metric tensor is "smooth" and (X, d_S) embeds bi-Lipschitzly in a (RK) Hilbert space.

Idea: construct a Riemannian distance out of entropic optimal transport.

1 - Optimal transport and its geometry

2 - Entropic optimal transport and Sinkhorn divergences

3 - Building a Riemannian geometry out of Sinkhorn divergences

1 - Optimal transport and its geometry

2 - Entropic optimal transport and Sinkhorn divergences

3 - Building a Riemannian geometry out of Sinkhorn divergences

Quadratic optimal transport

(X, d) compact metric space.

Definition

$$OT(\mu, \nu) = \min_{\pi \in \Pi(\mu, \nu)} \iint_{X \times X} d(x, y)^2 d\pi(x, y)$$

Subset of $\mathcal{P}(X \times X)$, coupling between μ and ν

Quadratic optimal transport

(X,d) compact metric space.

Definition

$$\mathrm{OT}(\mu, \nu) = \min_{\pi \in \Pi(\mu, \nu)} \iint_{X \times X} d(x, y)^2 \, \mathrm{d}\pi(x, y)$$

Theorem. OT is the square of a distance on $\mathcal{P}(X)$ metrizing the weak convergence.

The linearization of optimal transport

On \mathbb{R}^d , what happens to $\mathrm{OT}(\mu,\nu)$ if $\mu\simeq\nu$?

 $\rightsquigarrow (\mu_t)_t$ curve in $\mathcal{P}(\mathbb{R}^d)$, we look at $\mathrm{OT}(\mu_0,\mu_t)$.

The linearization of optimal transport

On \mathbb{R}^d , what happens to $\mathrm{OT}(\mu,\nu)$ if $\mu\simeq \nu$?

 $\rightsquigarrow (\mu_t)_t$ curve in $\mathcal{P}(\mathbb{R}^d)$, we look at $\mathrm{OT}(\mu_0,\mu_t)$.

Theorem.
$$\mathrm{OT}(\mu_0,\mu_t) \sim t^2 \left(\min_v \int_{\mathbb{R}^d} |v(x)|^2 \,\mathrm{d}\mu_0(x) \right),$$
 where $v: \mathbb{R}^d \to \mathbb{R}^d$ such that $\left. \frac{\partial \mu}{\partial t} \right|_{t=0} = -\mathrm{div}(\mu_0 v).$

The linearization of optimal transport

On \mathbb{R}^d , what happens to $\mathrm{OT}(\mu,\nu)$ if $\mu \simeq \nu$?

 $\rightsquigarrow (\mu_t)_t$ curve in $\mathcal{P}(\mathbb{R}^d)$, we look at $\mathrm{OT}(\mu_0,\mu_t)$.

Theorem. OT
$$(\mu_0, \mu_t) \sim t^2 \left(\min_v \int_{\mathbb{R}^d} |v(x)|^2 d\mu_0(x) \right)$$
,

where $v:\mathbb{R}^d o \mathbb{R}^d$ such that $\left. \frac{\partial \mu}{\partial t} \right|_{t=0} = -\mathrm{div}(\mu_0 v)$. elliptic equation in ψ

Optimal v is $\nabla \psi$, obtained by solving $-\text{div}(\mu_0 \nabla \psi) = \dot{\mu}_0$.

Metric tensor:

$$\mathbf{g}_{\mu}^{\mathrm{OT}}(\dot{\mu},\dot{\mu}) = \int_{X} |\nabla \psi|^{2} \,\mathrm{d}\mu.$$

Metric tensor:

$$\mathbf{g}_{\mu}^{\mathrm{OT}}(\dot{\mu},\dot{\mu}) = \int_{X} |\nabla \psi|^{2} \,\mathrm{d}\mu.$$

Theorem (Benamou and Brenier, 2000):

$$\mathrm{OT}(\mu_0,\mu_1) = \min_{(\mu_t)_t} \int_0^1 \mathbf{g}_{\mu_t}^{\mathrm{OT}}(\dot{\mu}_t,\dot{\mu}_t) \,\mathrm{d}t$$
 with μ_0,μ_1 fixed.

Minimizers are geodesics.

 μ_0 μ_0

Example geodesic

Metric tensor:

$$\mathbf{g}_{\mu}^{\mathrm{OT}}(\dot{\mu},\dot{\mu}) = \int_{X} |\nabla \psi|^{2} \,\mathrm{d}\mu.$$

Theorem (Benamou and Brenier, 2000):

$$\mathrm{OT}(\mu_0,\mu_1) = \min_{(\mu_t)_t} \int_0^1 \mathbf{g}_{\mu_t}^{\mathrm{OT}}(\dot{\mu}_t,\dot{\mu}_t)\,\mathrm{d}t$$
 with μ_0,μ_1 fixed.

Minimizers are geodesics.

Example harmonic map

Metric tensor:

$$\mathbf{g}_{\mu}^{\mathrm{OT}}(\dot{\mu},\dot{\mu}) = \int_{X} |\nabla \psi|^{2} \,\mathrm{d}\mu.$$

Theorem (Benamou and Brenier, 2000):

$$\mathrm{OT}(\mu_0,\mu_1) = \min_{(\mu_t)_t} \int_0^1 \mathbf{g}_{\mu_t}^{\mathrm{OT}}(\dot{\mu}_t,\dot{\mu}_t) \,\mathrm{d}t$$
 with μ_0,μ_1 fixed.

Minimizers are **geodesics**.

Example: Wasserstein PCA

Metric tensor:

$$\mathbf{g}_{\mu}^{\mathrm{OT}}(\dot{\mu},\dot{\mu}) = \int_{X} |\nabla \psi|^{2} \,\mathrm{d}\mu.$$

Theorem (Benamou and Brenier, 2000):

$$\mathrm{OT}(\mu_0,\mu_1) = \min_{(\mu_t)_t} \int_0^1 \mathbf{g}_{\mu_t}^{\mathrm{OT}}(\dot{\mu}_t,\dot{\mu}_t)\,\mathrm{d}t$$
 with μ_0,μ_1 fixed.

Minimizers are geodesics.

Example gradient flow

Jordan, Kinderlehrer & Otto (1998). The variational formulation of the Fokker–Planck equation.

Ambrosio, Gigli & Savaré (2008). Gradient flows: in metric spaces and in the space of probability measures.

1 - Optimal transport and its geometry

2 - Entropic optimal transport and Sinkhorn divergences

3 - Building a Riemannian geometry out of Sinkhorn divergences

Entropic optimal transport

(X,d) compact metric space with symmetric cost function c, and $\varepsilon > 0$.

Definition

$$OT_{\varepsilon}(\mu, \nu) = \min_{\pi \in \Pi(\mu, \nu)} \iint_{X \times X} c(x, y) d\pi(x, y) + \varepsilon KL(\pi | \mu \otimes \nu)$$

$$KL(\alpha|\beta) = \int \log(d\alpha/d\beta)d\alpha$$
.

Entropic optimal transport

(X,d) compact metric space with symmetric cost function c, and $\varepsilon > 0$.

Definition

$$OT_{\varepsilon}(\mu, \nu) = \min_{\pi \in \Pi(\mu, \nu)} \iint_{X \times X} c(x, y) d\pi(x, y) + \varepsilon KL(\pi | \mu \otimes \nu)$$

Why?

- 1. easier to compute (Sinkhorn algorithm),
- 2. better statistical complexity,
- 3. smoother dependence in (μ, ν) .

Take c the quadratic cost on \mathbb{R}^d .

Select the entropic optimal coupling π_{ε} and define $(\mu_t)_t$ Schrödinger bridge between μ_0 and μ_1 :

$$\mu_t = \iint_{\mathbb{R}^d \times \mathbb{R}^d} \mathcal{N}\left((1-t)x + ty, \frac{t(1-t)\varepsilon}{2} \right) d\pi_{\varepsilon}(x,y)$$

Take c the quadratic cost on \mathbb{R}^d .

Select the entropic optimal coupling π_{ε} and define $(\mu_t)_t$ Schrödinger bridge between μ_0 and μ_1 :

$$\mu_t = \iint_{\mathbb{R}^d \times \mathbb{R}^d} \mathcal{N}\left((1-t)x + ty, \frac{t(1-t)\varepsilon}{2} \right) d\pi_{\varepsilon}(x,y)$$

Take c the quadratic cost on \mathbb{R}^d .

Select the entropic optimal coupling π_{ε} and define $(\mu_t)_t$ Schrödinger bridge between μ_0 and μ_1 :

$$\mu_t = \iint_{\mathbb{R}^d \times \mathbb{R}^d} \mathcal{N}\left((1-t)x + ty, \frac{t(1-t)\varepsilon}{2} \right) d\pi_{\varepsilon}(x,y)$$

Take c the quadratic cost on \mathbb{R}^d .

Select the entropic optimal coupling π_{ε} and define $(\mu_t)_t$ Schrödinger bridge between μ_0 and μ_1 :

$$\mu_t = \iint_{\mathbb{R}^d \times \mathbb{R}^d} \mathcal{N}\left((1-t)x + ty, \frac{t(1-t)\varepsilon}{2} \right) d\pi_{\varepsilon}(x,y)$$

Gaussian distribution

ullet Interpolates between μ_0 and μ_1 , converges to ${
m OT}$ geodesic as $\varepsilon o 0$.

Take c the quadratic cost on \mathbb{R}^d .

Select the entropic optimal coupling π_{ε} and define $(\mu_t)_t$ Schrödinger bridge between μ_0 and μ_1 :

$$\mu_t = \iint_{\mathbb{R}^d \times \mathbb{R}^d} \mathcal{N}\left((1-t)x + ty, \frac{t(1-t)\varepsilon}{2} \right) d\pi_{\varepsilon}(x,y)$$

- ullet Interpolates between μ_0 and μ_1 , converges to OT geodesic as $\varepsilon \to 0$.
- **But** the bridge between μ and itself is **not** $\mu_t = \mu$ for all t.
- **But** the temporal rescaling of a ε -bridge by τ is a $\tau \varepsilon$ -bridge.

Sinkhorn divergence as a distance?

As $\mathrm{OT}_{\varepsilon}(\mu,\mu)>0$ generically, **debias** by defining

$$S_{\varepsilon}(\mu,\nu) = \mathrm{OT}_{\varepsilon}(\mu,\nu) - \frac{1}{2}\mathrm{OT}_{\varepsilon}(\mu,\mu) - \frac{1}{2}\mathrm{OT}_{\varepsilon}(\nu,\nu).$$

Sinkhorn divergence as a distance?

As $\mathrm{OT}_{\varepsilon}(\mu,\mu)>0$ generically, **debias** by defining

$$S_{\varepsilon}(\mu,\nu) = \mathrm{OT}_{\varepsilon}(\mu,\nu) - \frac{1}{2}\mathrm{OT}_{\varepsilon}(\mu,\mu) - \frac{1}{2}\mathrm{OT}_{\varepsilon}(\nu,\nu).$$

Theorem (Feydy et al., 2019). Assume $\exp(-c/\varepsilon)$ positive definite universal kernel.

- 1. $S_{\varepsilon}(\mu,\nu) \geq 0$ with equality iff $\mu = \nu$.
- 2. $S_{\varepsilon}(\mu_n,\mu) \to 0$ iff $\mu_n \to \mu$ weakly.
- 3. S_{ε} convex in each of its inputs.

Assumption until the end of the talk

Sinkhorn divergence as a distance?

As $\mathrm{OT}_{\varepsilon}(\mu,\mu)>0$ generically, **debias** by defining

$$S_{\varepsilon}(\mu,\nu) = \mathrm{OT}_{\varepsilon}(\mu,\nu) - \frac{1}{2}\mathrm{OT}_{\varepsilon}(\mu,\mu) - \frac{1}{2}\mathrm{OT}_{\varepsilon}(\nu,\nu).$$

Theorem (Feydy et al., 2019). Assume $\exp(-c/\varepsilon)$ positive definite universal kernel.

- 1. $S_{\varepsilon}(\mu,\nu) \geq 0$ with equality iff $\mu = \nu$.
- 2. $S_{\varepsilon}(\mu_n,\mu) \to 0$ iff $\mu_n \to \mu$ weakly.
- 3. S_{ε} convex in each of its inputs.

Assumption until the end of the talk

But $\sqrt{S_{\varepsilon}}$ does not satisfy the triangle inequality.

1 - Optimal transport and its geometry

2 - Entropic optimal transport and Sinkhorn divergences

3 - Building a Riemannian geometry out of **Sinkhorn divergences**

- 1. Define $\mathbf{g}_{\mu}(\dot{\mu}, \dot{\mu})$ by $S_{\varepsilon}(\mu_{0}, \mu_{t}) \sim t^{2}\mathbf{g}_{\mu_{t}}(\dot{\mu}_{t}, \dot{\mu}_{t})$. 2. Define $\mathbf{d}_{S}(\mu_{0}, \mu_{1})^{2} = \inf \int_{0}^{1} \mathbf{g}_{\mu_{t}}(\dot{\mu}_{t}, \dot{\mu}_{t}) \, \mathrm{d}t$.

Understanding $OT_{\varepsilon}(\mu,\mu)$

With $f_{\mu}:X\to\mathbb{R}$ Schrödinger potential, π_{ε} entropic optimal plan between μ and μ is:

$$d\pi_{\varepsilon}(x,y) = \exp\left(\frac{f_{\mu}(x) + f_{\mu}(y) - c(x,y)}{\varepsilon}\right) d\mu(x) d\mu(y)$$

Understanding $OT_{\varepsilon}(\mu,\mu)$

With $f_{\mu}: X \to \mathbb{R}$ Schrödinger potential, π_{ε} entropic optimal plan between μ and μ is:

$$d\pi_{\varepsilon}(x,y) = \exp\left(\frac{f_{\mu}(x) + f_{\mu}(y) - c(x,y)}{\varepsilon}\right) d\mu(x) d\mu(y)$$

Interpretation. Take X_1, \ldots, X_n, \ldots Markov chain with $(X_n, X_{n+1}) \sim \pi_{\varepsilon}$.

Then:

- 1. Invariant distribution μ ,
- 2. Reversible Markov chain,
- 3. Transition probability close to $\exp(-c(x,y)/\varepsilon)$.

Gaussian kernel if c quadratic

The Hessian of the Sinkhorn divergence

 $\mu_t = \mu + t\dot{\mu}$, with $\dot{\mu}$ signed measure with zero mass.

The Hessian of the Sinkhorn divergence

 $\mu_t = \mu + t\dot{\mu}$, with $\dot{\mu}$ signed measure with zero mass.

Theorem.

$$S_{\varepsilon}(\mu_0, \mu_t) \sim t^2 \frac{\varepsilon}{2} \langle \dot{\mu}, (\mathrm{Id} - K_{\mu}^2)^{-1} H_{\mu}[\dot{\mu}] \rangle.$$

Where
$$k_{\mu}(x,y) = \exp((f_{\mu}(x) + f_{\mu}(y) - c(x,y))/\varepsilon)$$
 and:

$$K_{\mu}(\phi)(x) = \int_X k_{\mu}(x,y)\phi(y)\,\mathrm{d}\mu(y),$$
 $(\mathrm{Id}-K_{\mu}^2)/arepsilon \sim \mathsf{Laplacian}$ $H_{\mu}[\sigma](x) = \int_X k_{\mu}(x,y)\,\mathrm{d}\sigma(y).$

The Hessian of the Sinkhorn divergence

 $\mu_t = \mu + t\dot{\mu}$, with $\dot{\mu}$ signed measure with zero mass.

Theorem.

$$S_{\varepsilon}(\mu_0, \mu_t) \sim t^2 \frac{\varepsilon}{2} \langle \dot{\mu}, (\mathrm{Id} - K_{\mu}^2)^{-1} H_{\mu}[\dot{\mu}] \rangle.$$

 $\mu_t \qquad \mu_0 \qquad \mu_0$

Where $k_{\mu}(x,y) = \exp((f_{\mu}(x)))$

$$K_{\mu}(\phi)(x) = \int_X k_{\mu}(x,y)\phi(y)\,\mathrm{d}\mu(y),$$
 $(\mathrm{Id}-K_{\mu}^2)/arepsilon \sim \mathsf{Laplacian}$ $H_{\mu}[\sigma](x) = \int_X k_{\mu}(x,y)\,\mathrm{d}\sigma(y).$

The Hessian of the Sinkhorn divergence

 $\mu_t = \mu + t\dot{\mu}$, with $\dot{\mu}$ signed measure with zero mass.

Theorem:

$$S_{\varepsilon}(\mu_0, \mu_t) \sim t^2 \frac{\varepsilon}{2} \langle \dot{\mu}, (\mathrm{Id} - K_{\mu}^2)^{-1} H_{\mu}[\dot{\mu}] \rangle.$$

Where $k_{\mu}(x,y) = \exp((f_{\mu}(x)))$

$$K_{\mu}(\phi)(x) = \int_{X} k_{\mu}(x, y)\phi(y) d\mu(y),$$

$$H_{\mu}[\sigma](x) = \int_{X} k_{\mu}(x, y) d\sigma(y).$$

$$(\mathrm{Id}-K_{\mu}^2)/\varepsilon\sim \mathsf{Laplacian}$$

Same formula

Definition.
$$\mathbf{g}_{\mu}(\dot{\mu},\dot{\mu}) = \frac{\varepsilon}{2} \langle \dot{\mu}, (\mathrm{Id} - K_{\mu}^2)^{-1} H_{\mu}[\dot{\mu}] \rangle.$$

Definition of the distance and main results

Recall
$$\mathbf{g}_{\mu}(\dot{\mu},\dot{\mu}) = \frac{\varepsilon}{2} \langle \dot{\mu}, (\mathrm{Id} - K_{\mu}^2)^{-1} H_{\mu}[\dot{\mu}] \rangle.$$

Definition. Given
$$\mu_0, \mu_1$$
:
$$\mathsf{d}_S(\mu_0, \mu_1)^2 = \inf \int_0^1 \mathbf{g}_\mu(\dot{\mu}_t, \dot{\mu}_t) \, \mathrm{d}t$$

where infimum over (μ_t) on a class of path to be specified later.

Definition of the distance and main results

Recall
$$\mathbf{g}_{\mu}(\dot{\mu},\dot{\mu}) = \frac{\varepsilon}{2} \langle \dot{\mu}, (\mathrm{Id} - K_{\mu}^2)^{-1} H_{\mu}[\dot{\mu}] \rangle.$$

Definition. Given
$$\mu_0, \mu_1$$
:
$$\mathsf{d}_S(\mu_0, \mu_1)^2 = \inf \int_0^1 \mathbf{g}_{\mu}(\dot{\mu}_t, \dot{\mu}_t) \, \mathrm{d}t$$

where infimum over (μ_t) on a class of path to be specified later.

Theorem. d_S is a distance over $\mathcal{P}(X)$ metrizing weak convergence of measures, and the infimum in the definition is reached (geodesics exist).

Definition of the distance and main results

Recall
$$\mathbf{g}_{\mu}(\dot{\mu},\dot{\mu}) = \frac{\varepsilon}{2} \langle \dot{\mu}, (\mathrm{Id} - K_{\mu}^2)^{-1} H_{\mu}[\dot{\mu}] \rangle.$$

Definition. Given
$$\mu_0, \mu_1$$
:
$$\mathsf{d}_S(\mu_0, \mu_1)^2 = \inf \int_0^1 \mathbf{g}_\mu(\dot{\mu}_t, \dot{\mu}_t) \, \mathrm{d}t$$

where infimum over (μ_t) on a class of path to be specified later.

Theorem. d_S is a distance over $\mathcal{P}(X)$ metrizing weak convergence of measures, and the infimum in the definition is reached (geodesics exist).

Next slides: elements of the proof (and of functional analysis!).

Reminder on Reproducing Kernel Hilbert Spaces (RKHS)

Fix $k: X \times X \to \mathbb{R}$ positive definite.

Definition. \mathcal{H}_k Hilbert space of functions $X \to \mathbb{R}$: start with

$$\mathrm{span}\left\{k(\cdot,x)\ :\ x\in X\right\}$$

with $\langle k(\cdot,x), k(\cdot,y) \rangle_{\mathcal{H}_k} = k(x,y)$. Then take completion.

k positive definite if this defines dot product

(k universal $\Leftrightarrow \mathcal{H}_k$ dense in C(X))

Reminder on Reproducing Kernel Hilbert Spaces (RKHS)

Fix $k: X \times X \to \mathbb{R}$ positive definite.

Definition. \mathcal{H}_k Hilbert space of functions $X \to \mathbb{R}$: start with

$$\mathrm{span}\left\{k(\cdot,x)\ :\ x\in X\right\}$$

with $\langle k(\cdot,x), k(\cdot,y) \rangle_{\mathcal{H}_k} = k(x,y)$. Then take completion.

Remark. \mathcal{H}_k Hilbert space of functions on X such that $\phi \mapsto \phi(x)$ is continuous for any x, and this characterizes a RKHS.

Reminder on Reproducing Kernel Hilbert Spaces (RKHS)

Fix $k: X \times X \to \mathbb{R}$ positive definite.

Definition. \mathcal{H}_k Hilbert space of functions $X \to \mathbb{R}$: start with

$$\mathrm{span}\left\{k(\cdot,x)\ :\ x\in X\right\}$$

with $\langle k(\cdot,x), k(\cdot,y) \rangle_{\mathcal{H}_k} = k(x,y)$. Then take completion.

Remark. \mathcal{H}_k Hilbert space of functions on X such that $\phi \mapsto \phi(x)$ is continuous for any x, and this characterizes a RKHS.

In our case:

• $k=k_{\mu}=\exp((f_{\mu}\oplus f_{\mu}-c)/arepsilon)$, space \mathcal{H}_{μ} .

Typically smooth functions!

The tangent space

Recall:

- $\mathbf{g}_{\mu}(\dot{\mu},\dot{\mu})=rac{arepsilon}{2}\langle\dot{\mu},(\mathrm{Id}-K_{\mu}^{2})^{-1}H_{\mu}[\dot{\mu}]
 angle$ quadratic form in $\dot{\mu}$
- \mathcal{H}_{μ} RKHS with kernel k_{μ} .

The tangent space

Recall:

- $\mathbf{g}_{\mu}(\dot{\mu},\dot{\mu})=rac{arepsilon}{2}\langle\dot{\mu},(\mathrm{Id}-K_{\mu}^{2})^{-1}H_{\mu}[\dot{\mu}]
 angle$ quadratic form in $\dot{\mu}$
- \mathcal{H}_{μ} RKHS with kernel k_{μ} .

Theorem. The completion of signed measures with zero mass with respect to \mathbf{g}_{μ} is $\mathcal{H}_{\mu,0}^{*}$ the space of linear forms σ on \mathcal{H}_{μ} with $\langle \sigma, 1 \rangle = 0$.

That is, we want
$$\left| \frac{\mathrm{d}}{\mathrm{d}t} \int \phi \, \mathrm{d}\mu_t \right| \leq C \|\phi\|_{\mathcal{H}_\mu}$$
 for any $\phi \in \mathcal{H}_\mu$.

The tangent space

Recall:

- $\mathbf{g}_{\mu}(\dot{\mu},\dot{\mu})=rac{arepsilon}{2}\langle\dot{\mu},(\mathrm{Id}-K_{\mu}^{2})^{-1}H_{\mu}[\dot{\mu}]
 angle$ quadratic form in $\dot{\mu}$
- \mathcal{H}_{μ} RKHS with kernel k_{μ} .

Theorem. The completion of signed measures with zero mass with respect to \mathbf{g}_{μ} is $\mathcal{H}_{\mu,0}^{*}$ the space of linear forms σ on \mathcal{H}_{μ} with $\langle \sigma, 1 \rangle = 0$.

If c quadratic cost, both $\dot{\mu}$ signed measure ("vertical") and $\dot{\mu} = -\text{div}(\mu v)$ ("horizontal") are in the tangent space $\mathcal{H}_{\mu,0}^*$.

A useful change of variable

Define:

$$\beta = B(\mu) = \exp\left(-\frac{f_{\mu}}{\varepsilon}\right)$$

where $f_{\mu}: X \to \mathbb{R}$ self Schrödinger potential.

Theorem. The map B is an homeomorphism onto its image, included in unit sphere of \mathcal{H}_c .

(Change of variable suggested by Feydy et al, Séjourné et al)

Feydy, Séjourné, Vialard, Amari, Trouvé & Peyré (2019). Interpolating between optimal transport and MMD using Sinkhorn divergences.

Séjourné, Feydy Vialard, Trouvé & Peyré (2019). Sinkhorn divergences for unbalanced optimal transport.

A useful change of variable

Define:

$$\beta = B(\mu) = \exp\left(-\frac{f_{\mu}}{\varepsilon}\right)$$

where $f_{\mu}: X \to \mathbb{R}$ self Schrödinger potential.

Theorem. The map B is an homeomorphism onto its image, included in unit sphere of \mathcal{H}_c .

Theorem. We have $\mathbf{g}_{\mu_t}(\dot{\mu}_t, \dot{\mu}_t) = \tilde{\mathbf{g}}_{\mu_t}(\dot{\beta}_t, \dot{\beta}_t)$ and:

- $(\mu, \dot{\beta}) \mapsto \tilde{\mathbf{g}}_{\mu}(\dot{\beta}, \dot{\beta})$ jointly continuous,
- $\tilde{\mathbf{g}}_{\mu}(\dot{\beta},\dot{\beta}) \simeq ||\dot{\beta}||_{\mathcal{H}_{c}}^{2}$ uniformly in μ (but not in ε).

A useful change of variable

Define:

$$\beta = B(\mu) = \exp\left(-\frac{f_{\mu}}{\varepsilon}\right)$$

where $f_{\mu}: X \to \mathbb{R}$ self Schrödinger potential.

Theorem. The map B is an homeomorphism onto its image, included in unit sphere of \mathcal{H}_c .

- $(\mu, \dot{\beta}) \mapsto \tilde{\mathbf{g}}_{\mu}(\dot{\beta}, \dot{\beta})$ jointly continuous,
- $\tilde{\mathbf{g}}_{\mu}(\dot{\beta},\dot{\beta}) \simeq ||\dot{\beta}||_{\mathcal{H}_c}^2$ uniformly in μ (but not in ε).

Consequence. Admissible paths: $(\beta_t)_t H^1$ valued in \mathcal{H}_c ,

$$c_{\varepsilon} \|\beta_1 - \beta_0\|_{\mathcal{H}_c} \le \mathsf{d}_S(\mu_0, \mu_1) \le C_{\varepsilon} \|\beta_1 - \beta_0\|_{\mathcal{H}_c}.$$

Previous results hold for **any** compact space X if $\exp(-c/\varepsilon)$ positive definite universal kernel.

Now $X \subset \mathbb{R}^d$ and $c(x,y) = |x-y|^2$.

If $\mu \in \mathcal{P}(X)$, m barycenter and $\bar{\mu}$ centered part.

Previous results hold for **any** compact space X if $\exp(-c/\varepsilon)$ positive definite universal kernel.

Now $X \subset \mathbb{R}^d$ and $c(x,y) = |x-y|^2$.

If $\mu \in \mathcal{P}(X)$, m barycenter and $\bar{\mu}$ centered part.

Reminder: $OT(\mu_0, \mu_1) = |m_1 - m_0|^2 + OT(\bar{\mu}_0, \bar{\mu}_1)$.

Previous results hold for **any** compact space X if $\exp(-c/\varepsilon)$ positive definite universal kernel.

Now $X \subset \mathbb{R}^d$ and $c(x,y) = |x-y|^2$.

If $\mu \in \mathcal{P}(X)$, m barycenter and $\bar{\mu}$ centered part.

Reminder: $OT(\mu_0, \mu_1) = |m_1 - m_0|^2 + OT(\bar{\mu}_0, \bar{\mu}_1)$.

Theorem. $d_S(\mu_0, \mu_1)^2 = |m_1 - m_0|^2 + d_S(\bar{\mu}_0, \bar{\mu}_1)^2$.

Previous results hold for **any** compact space X if $\exp(-c/\varepsilon)$ positive definite universal kernel.

Now $X \subset \mathbb{R}^d$ and $c(x,y) = |x-y|^2$.

If $\mu \in \mathcal{P}(X)$, m barycenter and $\bar{\mu}$ centered part.

Reminder: $OT(\mu_0, \mu_1) = |m_1 - m_0|^2 + OT(\bar{\mu}_0, \bar{\mu}_1)$.

Theorem. $d_S(\mu_0, \mu_1)^2 = |m_1 - m_0|^2 + d_S(\bar{\mu}_0, \bar{\mu}_1)^2$.

Consequence: constant-speed translations are geodesics.

Conclusion and open questions

What I have not presented

- Explicit formula for Gaussians and the "two points" space.
- Example showing the Sinkhorn divergence is not jointly convex.

Open questions and future directions

- Limit $\varepsilon \to 0$ towards optimal transport.
- Numerical approximation of the distance?
- Gradient flows with respect to d_S (ongoing work with Mathis Hardion).

Conclusion and open questions

What I have not presented

- Explicit formula for Gaussians and the "two points" space.
- Example showing the Sinkhorn divergence is **not** jointly convex.

Open questions and future directions

- Limit $\varepsilon \to 0$ towards optimal transport.
- · Numerical approximation of the distance?
- Gradient flows with respect to d_S (ongoing work with Mathis Hardion).

Thank you for your attention