

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.**

Exhibit A

LABORATORY NOTEBOOK

Department Chemical Engineering
Stanford University
Stanford, California

Ying Chang
(650) 723 9140
Rm 105 Straffer III

Acrylic Family (Principles of polymerization G. Odian 3rd ed. Wiley Interscience)

(P.311)

name poly(acrylic acid) poly(methacrylic acid) poly(acrylonitrile) poly(vinylidene chloride)
water soluble "

name poly(vinyl acetate)

water based paint

{ radical
Ionic polymerization

chain polymerization

monomer: $\text{C}=\text{C}$ (vinyl species) $\rightarrow \bullet \overset{\cdot}{\underset{\cdot}{\text{C}}}-\overset{\cdot}{\underset{\cdot}{\text{C}}}\bullet, \bullet \overset{\cdot}{\underset{\cdot}{\text{C}}}-\overset{\cdot}{\underset{\cdot}{\text{C}}}\bullet$

type of chain polymerization undergone by various unsat. monomers

monomer	<u>type of initiation</u>		
	radical	cationic	anionic
ethylene	+	-	+
methacrylate, acrylate, methyl acrylate, acrylonitrile methacrylonitrile	+	+	-
styrene, methyl styrene	+	+	+

Ref: L Liang, X. Feng, J. Liu P.C. Rieke, G.E. Fryxell Macromolecules 1998 31 7845-50.

Initiator:

Reaction

SDDC:

Sodium N,N'-diethyl dithiocarbamate

(

LP: sodium diethyl dithiocarbamate trihydrate
 $(\text{Et}_2\text{N})_2\text{C-S-Na} \cdot 3\text{H}_2\text{O}$
 FW = 225.31
 mp = 95-98.5°
 hygroscopic. 22868-0 5g 17.55

Reaction:

Redo surface polymerization.

$$\frac{100}{25+75} = \frac{1000}{75} \\ = 13.$$

$$\frac{0.75 \text{ g}}{71} \sim 0.01 \text{ mol}$$

0.01 mol acrylamide / 0.75 ml.

~~1:3~~ Cu(I)Cl 0.067 g 98.99 (6.8×10^{-4} mol)

DMF 8 ml

0.75

should reverse

Calc. (Wang, 1995)

$$\begin{aligned} \text{Cu(I)Cl : bipy} &= 1:3 \quad (10^{-4} \text{ mol}) \quad \text{Mo: Cu(I)Cl} \\ &= 10^{-4}: 3 \times 10^{-4} \text{ (mol)} \quad = 100:1 \\ &= 0.01 \text{ g} : 3 \times 156.19 \times 10^{-4} \quad = 10^2 \text{ mol} : 10^{-4} \text{ mol} \\ &= 0.01 \text{ g} : 0.04685 \text{ g} \quad = 0.71 \cancel{\text{ml}} : 0.01 \text{ g} \end{aligned}$$

Rough estimation

What thickness means in this case

Assumption: density is const = bulk material

$d_4 = 1.189$ For PAC 50% wt in H₂O.

$$1.189 = \frac{1.189 + X}{2} \Rightarrow d_{\text{PAC}} \sim 1.37$$

$$(\text{needed mole of monomers}) = \frac{A h d (\text{total weight})}{71} = \frac{1 \text{ cm}^2 \times 1.37}{71} h (\text{cm}) = 0.019 \times 10^{-7} h (\text{cm}) \approx 2 \times 10^{-9} h (\text{cm}) \text{ moles.}$$

According to this, we can greatly reduce the amt of monomers from original recipe

$$\begin{aligned} \text{ex: } h &= 10^4 \text{ pm} \text{ nm} (= 10 \mu\text{m}) \\ \Rightarrow \text{needed monomers} &= 2 \times 10^{-5} \text{ mol} \end{aligned}$$

$$\begin{aligned} &\text{Assume densely packed: 1 molecule/nm}^2 \\ &\text{For } A = 1 \text{ cm}^2 = 10^{14} \text{ nm} \Rightarrow 10^{14} \text{ nm}^2 \# \text{PAC} = \frac{10^4}{6 \times 10^{-2}} = 1.7 \times 10^{10} \text{ nm}^2 \\ &D = 2 \times 10^{-5} \text{ mol} / 2 \times 10^{-10} = 10^5 \quad 10^5 \times 0.5 = 5 \times 10^4 \text{ nm} \sim 0(10 \mu\text{m}) \\ &\text{(good agreement!)} \end{aligned}$$

For DMF ~~1 ml~~. Make 0.01 M acrylamide soln = $0.01 \text{ mol} \times 71 = 0.71 \text{ g}$

$$0.01 = \frac{x \text{ mol}}{10^{-3} \text{ L}} \Rightarrow x = 10^{-5} \text{ mol}. 10^{-5} \text{ mol} \times 71 = 0.00071 \text{ g}$$

Roughly for DMF 10 ml acrylamide 0.0071 g $\Rightarrow \frac{0.00071}{0.01} = 10^{-2} \text{ M}$:

Better soln: 0.1 M \Rightarrow 10 ml DMF + 0.071 g acrylamide good enough for cover the whole surface.

Signed..... Date.....

Objective: Repeat protocol exp 7. For $N-(2\text{-hydroxypropyl})$ ~~methacrylamide~~ methacrylamide

HJV6d $N-(2\text{-hydroxypropyl})$ methacrylamide [21442-01-3] MW 143.2 mp=67° log 121.25

new materials.

chlorophenyl propyl trimethoxysilane 3mmol 1% in acetone.

+

1h
↓

148.3 ±39.6

[48..512] 06159914:CLS=
512 RWS=512 SIZ=27 UE=.
83

09:53:02 S499-168,
soda lime Affymetrix C
onfidential.

89.0 ±77.2
106.2 ±42.6
1541.8 ±1527.8

[64..18064] 06159915:CLS
=512 RWS=512 SIZ=27 UE=.
.83

09:56:33 YC13-2 Affy
metrix Confidential.

120.4 ±17.6

[64..1440] 06159916:CLS=
512 RWS=512 SIZ=27 UE=.

83 10:00:26 S499-108, 70
nm, 500 rpm Affymetrix Co
nfidential.

2

81.1 ±85.7

93.2 ±391.9
1244.2 ±966.6

556.1 ±1078.8

[64..17600] 06149917:CLS
=512 RWS=512 SIZ=27 UE=.
.83

16:03:14 YC13-2 Affy
metrix Confidential.

113.1 ±44.2

188.5 ±472.8
2257.5 ±1495.5

556.2 ±1169.1

[80..18544] 06169915:CLS
=512 RWS=512 SIZ=27 UE=.
.83

09:18:37 YC13-2 Affy
metrix Confidential.

17h
↑40h
↑

Objective: AIBN - HEMA.

glass - 10 pieces. Si substrates - 4 pieces.

Comment: last exp the thickness only reaches up to 10 nm. I think it's due to the low (exp 1) surface coverage of AIBN layer (I forgot to work it in darkness, so the final thickness checked by Si wafer sample is only half of the thickness of exp 10)

Improvement: This time I will work under dark and high concn of initiator layer.

Sample	Initiator condition	HEMA	
13-1	glass + AIBN/ toluene dark, Eqn, rm temp in N ₂ glove bag.	{ DNA strands on pattern }	deprotection EtOH/EDA ethylene diamine (1/1) 4h → w/ DI H ₂ O
13-2	Starting. 4:00 pm	{ work on condition 210-3 }	hybridization 50 μM. DNA target -tag in GXXSPE soln (1h) shake rm temp ↓ 17 hr. (hyb) Scan 10 am
13-3	~	{ 20% HEMA/DMF 65°C 24h. degass. freeze thaw 3 times }	1st scan @ ↓ 24 hr (batch 40h) (hyb)
13-4	"	HEMA 40mL DMF 160mL	2nd scan ↓ 3rd scan another protocol 45°C 16h.
13-5	"		
13-6	"	Store in darkness.	
13-7	"		
13-8	"		

hyp

sample	hyp time(h)	hyp	backgd	fluorescein	hyp/bg	fluo/bg
e13-2	1	1244	88	6056	14.1	68.8
control 1	1					
control 2	1	362	66	171	5.5	2.6
e13-2/control		3	1	35	3	27

: 1244/362 88/66 6056/171 14.1/5.5 68.8/2.6

sample	hyp time(h)	hyp	backgd	fluorescein	hyp/bg	fluo/bg
e13-2	17	1542	89	6529	17.3	73.4
control 1	17	339	101	140	3.4	1.4
control 2	17	404	95	148	4.3	1.6
e13-2/control		4	1	45	5	50

sample	hyp time(h)	hyp	backgd	fluorescein	hyp/bg	fluo/bg
e13-2	40	2258	113	6706.2	20.0	59.3
control 1	40	225	94	99	2.4	1.1
control 2	40	318	93	114	3.4	1.2
e13-2/control		8	1	63	7	52

experiment 13

e

report on file: e13-fluor.xls (thin's chang)

pHEMA initiated by AIBN

Fluorescence measured by Marc Glazer

Experiment condition: AIBN20h)- pHEMA(20h 65c) - DNA probes-hybridization

estimated pHEMA thickness: 5 nm (estimated by Si(100) ellipsometry; need further confirmed by XPS)

Comments for improvement: high standard deviation(ca 1500) -- surface film is not uniform enough -- need long hybridization time

Signed..... *J.S. Chang* Date.....

Subject.....

xx
condition

13-9 "

(same as
the
previous)

13-10 "

13-11
same
batch
but
Si(100)

13-12 Si(100)

13-13 "

13-14 "

Signed..... Date.....