STROMY A KOSTRY

Stromy a kostry TI 6.1

Stromy a kostry

Seznámíme se s následujícími pojmy:

- kostra grafu, cyklomatické číslo grafu, hodnost grafu
- (kořenový strom, hloubka stromu, kořenová kostra orientovaného grafu, uspořádaný strom, pravidelný strom stupně r, úplný pravidelný strom), vnější/vnitřní délka stromu, binární strom, průchody preorder/inorder/postorder

Skripta odst. 3.2, str. 49 – 58

Stromy a kostry TI 6.2

Připomeňme si nejprve, co je to **strom** ... a co je to **kostra** grafu ...

Co lze říci o stromech?

Nechť $G = \langle H, U \rangle$ je prostý graf. Potom

- a) G je strom
- b) ∀u,v∈U existuje právě jedna cesta u v
- c) G je souvislý, ale G {h} není pro libovolnou h∈H
- d) G je souvislý a platí |H| = |U| 1
- e) G neobsahuje kružnice a platí |H| = |U| 1
- f) G neobsahuje kružnice, ale $G \cup \{h\}$ ano

jsou ekvivalentní tvrzení.

Kostra grafu rozdělí hrany na větve a tětivy

Fundamentální soustava kružnic odpovídající dané kostře

Cyklomatické číslo (počet nezávislých kružnic = počet tětiv)

 $\mu(G) = |H|-|U|+p$ (p je počet komponent)

Hodnost grafu (počet hran kostry nebo lesa grafu)

$$h(G) = |U|-p$$

Orientované a speciální stromy

Kořenový strom T_u (s kořenem u) - orientovaný strom, kde každá cesta C(u,v) je orientovanou cestou.

Kořenová kostra - kostra, která je kořenovým stromem.

Hloubka hl(x) uzlu x v kořenovém stromu = vzdálenost od kořene

Hloubka kořenového stromu = $\max hl(x) x \in U$

Uspořádaný (kořenový) strom – následníci (podstromy každého uzlu jsou pevným způsobem uspořádáni (první, druhý, ...)

Pravidelný strom stupně r (≥1) ... δ+(u) = 0 nebo r Úplný pravidelný strom stupně r hloubky k všechny listy jsou v hloubce k od kořene

Statistika:

- 7 listů (k)
- 6 vnitřních uzlů (m)
- 12 hran (h)

Zjištění:

Pro každé n∈N existuje pravidelný strom stupně 2 s n listy

(má **n-1** vnitřních uzlů a **2(n-1)** hran: **n / n-1 / 2(n-1)**)

?Jak je to pro jiné stupně?

m.(r-1)+1 / m / m.r

9/4/12

Statistika (r=2):

- E(T)=2.4+3.3+2.2=21
- I(T)=1.3+2.2+2.1=9

Statistika (r=3):

- E(T)=3.4+5.3+4.2+1.1=36
- I(T)=1.3+2.2+2.1=9

vnější délka $E(T_u) = \sum hl(v)$ sčítá se přes listy v vnitřní délka $I(T_u) = \sum hl(v)$ sčítá se přes vnitřní uzly v

$$E = I.(r-1) + r.m$$
, kde m je počet vnitřních uzlů $r=2: 21=9.1+2.6$ $r=3: 36=9.2+3.6$

Binární strom

- žádný uzel (prázdný)
- kořen, levý podstrom, pravý podstrom

Průchody binárním stromem

- **preorder**: kořen, LS, PS

- inorder: LS, kořen, PS

- postorder: LS, PS, kořen

DS 26.3.08

Kontrolní otázky

- 6.1 Určete, jakou podmínku musí splňovat uzel u souvislého orientovaného grafu, aby existovala kořenová kostra tohoto grafu s kořenem u.
- 6.2 Pro obecný počet uzlů n (n ≥ 3) určete, jak vypadá strom s n uzly, který má maximální (resp. minimální) počet listů.
- 6.3 Kolik různých kružnic vznikne, přidáme-li do kostry grafu dvě tětivy?
- 6.4 Zdůvodněte, proč se při libovolném z průchodů preorder, inorder, postorder binárního stromu navštíví jeho listy ve stejném relativním pořadí.
- 6.5 Předpokládejme, že uzly pravidelného stromu stupně 2 jsou nějak očíslovány pořadovými čísly 1 až n. Ukažte, že strukturu tohoto pravidelného stromu lze jednoznačně rekonstruovat, pokud jsou k dispozici alespoň dvě z posloupností získaných průchodem preorder, inorder a postorder tohoto stromu.
- 6.6 Neorientovaný strom T má k listů a součet stupňů jeho vnitřních uzlů je s. Určete,
 - co z toho bezprostředně plyne pro vlastnosti čísel k a s
 - počet vnitřních uzlů stromu T v závislosti na k a s.
- 6.7 Šířkou kořenového stromu se nazývá maximum počtu uzlů nacházejících se ve stejné hloubce. Navrhněte algoritmus pro určení šířky zadaného kořenového stromu.

Minimální kostry

Seznámíme se s následujícími pojmy:

- generování všech koster grafu, množinový rozklad
- minimální kostra grafu, Borůvkův-Kruskalův algoritmus, Jarníkův-Primův algoritmus
- hladové algoritmy, Huffmanovo kódování

Skripta kap. 5, str. 91 - 109

?Jak bychom generovali všechny kostry grafu?

Pomocí stromu všech koster - efektivní test vzniku kružnic!

Rekapitulace:

Přidáváme hrany a testujeme vznik kružnice.

K tomu se hodí ...

Množinový rozklad - dynamický soubor podmnožin dané množiny s operacemi

- MAKE-SET(x) vytvoří jednoprvkovou podmnožinu
- UNION(x,y) sjednocení podmnožin s prvky x a y
- **FIND(x)** určí reprezentanta podmnožiny s prvkem **x**

Další použití:

```
void KOMP(Graph G) {      // určení komponent NG
    for (Node u in U(G)) MAKE-SET(u);
    for (Edge (u,v)in H)
      if (FIND(u) != FIND(v)) UNION(u,v);
}
```


	ди									
	{ <u>a</u> }	{ <u>b</u> }	{ <u>c</u> }	{ <u>a</u> }	{ <u>e</u> }	{ <u>f</u> }	{ <u>g</u> }	$\{\underline{\mathtt{h}}\}$	{ <u>i</u> }	
(a,b)	{ <u>a</u> ,b}		{ <u>c</u> }	{ <u>a</u> }	{ <u>e</u> }	{ <u>f</u> }	{ <u>g</u> }	{ <u>h</u> }	{ <u>i</u> }	
(e,f)	{ <u>a</u> ,b}		{ <u>c</u> }	{ <u>a</u> }	$\{\underline{e},f\}$		{ <u>g</u> }	$\{\underline{\mathtt{h}}\}$	{ <u>i</u> }	
(d,b)	{ <u>a</u> ,b,d	1}	{ <u>c</u> }		$\{\underline{e},f\}$		{ <u>g</u> }	$\{\underline{\mathtt{h}}\}$	{ <u>i</u> }	
(h,i)	{ <u>a</u> ,b,d	1}	{ <u>c</u> }		{ <u>e</u> ,f}		{ <u>g</u> }	$\{\underline{\mathtt{h}},\mathtt{i}\}$		
(a,c)	{ <u>a</u> ,b,d	l,c}			$\{\underline{e},f\}$		{ <u>g</u> }	$\{\underline{\mathtt{h}},\mathtt{i}\}$		
(e,g)	{ <u>a</u> ,b,d	l,c}			{ <u>e</u> ,f,	g }		$\{\underline{\mathtt{h}},\mathtt{i}\}$		
(b,c)	{ <u>a</u> ,b,d	l,c}			{ <u>e</u> ,f,	g }		$\{\underline{\mathtt{h}},\mathtt{i}\}$		
(f,g)	{ <u>a</u> ,b,d	l,c}			{ <u>e</u> ,f,	g}		$\{\underline{\mathtt{h}},\mathtt{i}\}$		
(a,d)	{ <u>a</u> ,b,d	l,c}			{ <u>e</u> ,f,	g }		$\{\underline{\mathtt{h}},\mathtt{i}\}$		

? Složitost : Ω(|U| + |H|)

? Výhoda: dynamika!

Jak implementujeme množinový rozklad?

Pomocí seznamů s odkazy na reprezentanta:

- MAKE-SET, FIND ... O(1)
- UNION ... O(min(m,n)) (pro vyvažování)
 (vyžaduje uchovávat další pomocné údaje)

Agregovaná složitost **m** operací, z toho **n** x MAKE-SET:

O(m + n.lg n)

Při použití na určení kostry provedeme:

|U|-krát MAKE-SET max. 2.|H|-krát FIND (|U|-1)-krát UNION \Rightarrow n = |U|, m \leq 2.(|U|+|H|) \Rightarrow

O(2|H| + 2|U| + |U|.lg |U|) = O(|H| + |U|.lg |U|)

?Dokážeme to ještě lépe? ANO!

Další heuristiky pro množinový rozklad

- zkracování cesty při FIND
- UNION podle hodností •

Datové struktury: **p[x]** - předchůdce uzlu x

hod[x] - hodnost (aproximace výšky)

```
void MAKE-SET (int x) {
   p[x] = x;
   hod[x] = 0;
}
```

```
void UNION (int x, int y) {
  LINK(FIND(x), FIND(y));
}
```

```
void LINK(int x,int y) {
  if (hod[x] > hod[y]) p[y] = x;
  else { p[x] = y;
   if (hod[x] == hod[y]) hod[y]++;
  }
}
```

```
void FIND(int x) {
  if (x != p[x])  p[x] = FIND(p[x]);
  return p[x]; }
```

Složitost **m** operací MAKE-SET, FIND, UNION, když počet MAKE-SET je přesně **n**:

O(m.lg*n) neboli O((|U|+|H|).lg*|U|)

... a teď už konečně ty minimální kostry ...

? Jaká kostra je minimální ? Každá má přece |U|-1 hran!

- G = (H,U) souvislý NG
- s nezáporným ohodnocením hran w: $H \rightarrow R^+$,
- kostra $T = \langle H_v, U \rangle$ taková, že

 \sum w(h) (součet přes h∈ H_v) je minimální

Minimální kostry - odst. 5.3

TI 6.20

? Jak poznáme, že kostra je minimální ?

- prohledáme všechny kostry grafu ???
- uhádneme kostru a ověříme její minimálnost (JAK?)

V: Kostra T grafu G je minimální ⇔ pro každou tětivu t je w(t) ≥ max w(h) pro h∈ K (kde K je jediná kružnice v T∪{t})

Hledání minimální kostry

? Praktické možnosti ?

- odebírat hrany z původního grafu ???
- najít libovolnou kostru a postupně ji upravovat ???
- vytvářet minimální kostru přidáváním vhodných hran !!!

Generický algoritmus pro minimální kostru

Jak hledat hranu pro přidání do minimální kostry

- V: Nechť P je podstrom vytvořené části minimální kostry grafu G, [p,q] je hrana taková, že
 - p∈P, q∉P
 - w([p,q]) = min w([u,v]) pro vš. hrany [u,v], $u \in P$, $v \notin P$.

Pak lze hranu [p,q] přidat k minimální kostře.

Borůvkův - Kruskalův algoritmus

```
void BK-MST(Graph G, Weights w) {
    T = \emptyset;
1
    for (Node u in U(G)) MAKE-SET(u);
    🖫 seřaď H(G) podle neklesajících vah w(h) "
    for (Edge [u,v] in H(G)) { // v daném pořadí
     if (FIND(u) != FIND(v)) {
        T = T \cup [u,v];
       UNION(u,v);
8
```

Borůvka-Jarník - odst. 5.4

Jarníkův - Primův algoritmus

```
void JP-MST(Graph G, Weights w, Node r) {
      Q = U;
   ... for (Node u in Q) d[u] = \infty;
      d[r] = 0; p[r] = null;
      while ( Q !=\emptyset )
        u = Q.ExtMin(
                                                    POZOR!
        for (Node v in Adj[u])
6
                                                 Nemají konstantní
               ((v \in Q) \&\& (w(y) < d[v]))
                                                   složitost !!!
8
 ····· O(|Ü|) ··+ O(|U| . lg |Ü|) ·+·O(|H| . lg |U|)
```

Kontrolní otázky

- 6.8 Nechť G je souvislý neorientovaný graf s nezáporným ohodnocením hran w, nechť H_1 je nějaká podmnožina jeho hran, která neobsahuje kružnice. Navrhněte algoritmus nalezení kostry s minimálním ohodnocením hran takové, že obsahuje všechny hrany z množiny H_1 .
- 6.9 Zjistěte, zda jsou následující tvrzení pravdivá či nikoliv. Pravdivá tvrzení dokažte, nepravdivá vyvraťte co nejjednodušším protipříkladem:
 - Jsou-li ohodnocení všech hran v souvislém neorientovaném grafu navzájem různá, je jeho minimální kostra určena jednoznačně.
 - Jsou-li ohodnocení všech hran v souvislém neorientovaném grafu navzájem různá, pak mají každé dvě jeho různé kostry různá ohodnocení.
 - Nechť je ohodnocení hrany h v souvislém neorientovaném grafu menší než ohodnocení každé jiné hrany. Pak je hrana h obsažena v každé jeho minimální kostře.
- 6.10 Graf G vzniknul tak, že jsme do stromu přidali hranu spojující nějakou dvojici jeho nesousedních uzlů. Čím je určen počet různých koster takto vytvořeného grafu G?
- 6.11 Ukažte na příkladu, že popsanými algoritmy hledání minimální kostry neorientovaného grafu nelze obecně získat minimální kořenovou kostru orientovaného grafu. V čem spočívá hlavní obtíž?

Hladové algoritmy

Požadavky na úlohu

- vlastnost hladového výběru výběr podproblému a pak jeho řešení
- optimální podstruktura optimální řešení problému obsahuje optimální řešení podproblému

Postup **shora – dolů** (dynamické programování zdola – nahoru)

Příklad - Jarník-Prim algoritmus:

- výběr "nejlepšího" z n uzlů mimo dílčí podstrom pro přidání
- úprava kritéria pro jeho sousedy
- pak totéž pro (n-1) uzlů, atd.

Příklad – návrh optimální větvící struktury programu

Známe relativní četnost průchodu jednotlivými větvemi

? Jaký bude průměrný počet testů potřebných k větvení?

 $\sum w_i$ hl(u_i)

Obecná formulace:

Pravidelný kořenový strom T_u stupně \mathbf{r} s \mathbf{n} listy, které jsou ohodnoceny reálnými čísly $\mathbf{w_i} = w(u_i)$

vnější w-délka $E_w(T_u) = \sum w_i$. hl (u_i)

Jak vypadá strom s minimální vnější w-délkou?

Jiná aplikace - generování optimálního prefixového kódu prefixový kód - žádné slovo není prefixem jiného slova Jsou dány znaky a jejich četnosti (absolutní/relativní) v textu

znak	A	В	С	D	E	F	G	Н	I	J
četnost	52	5	18	13	21	4	2	3	35	7
kód	10	11000	000	001	111	11001	110100	110101	01	11011

Huffmanův algoritmus (pro r=2)

```
void Huffman(Weights w, int n) {
   Q.Init();
   for (int i=1; i<=n; i++) {
      u = MakeNode(w[i]); Q.Push(u);
   }

  for (int i=1; i<n; i++) {
      x = Q.ExtMin(); y = Q.ExtMin();
      z = MakeNode(w[x]+w[y]);
      z.left = x; z.right = y;
      Q.Push(z);
   }

  return Q.ExtMin();
}</pre>
```

Zobecnění pro libovolné **r** (stupeň stromu) je přímočaré ...

Kontrolní otázky

- 6.12 Upravte Huffmanův algoritmus tak, aby vytvářel minimální pravidelný strom se zadaným stupněm r.
- 6.13 Dokažte, že hodnotu E_w vnější w-délky pravidelného stromu vytvořeného Huffmanovým algoritmem lze spočítat jako součet ohodnocení všech jeho vnitřních uzlů.