## Healthcare Management Analytics

By: Rhiannon Pytlak, Vivek Mehendiratta, Anthony Huang, Vishal Gupta



#### **Presentation Overview**



**Problem Statement** 



Data Description



**Project Objective** 



**Exploratory Analysis Insights** 



Hypothesis



**Feature Engineering** 



Model Selection Methodology



**Cross Validation** 



Hyperparameter Tuning



Feature Importance



Conclusion

## Analysis Outline

#### **Problem Statement**

The COVID-19 pandemic has proven that efficient healthcare management is more critical now than ever.

Since the pandemic began, more and more people have been flocking to healthcare facilities, making it extremely tough for hospitals to manage patient case loads.

If healthcare officials were able to accurately predict how long a certain patient would be staying in the hospital, the hospital could serve more patients.



## Healthcare Data Description



Data source: Kaggle



Contains: patient attributes & length of stay at hospital



Target variable: 'Stay' is divided into 11 classes ranging from 0-10 days to 100+ days

|    | Column                            | Description                                     |
|----|-----------------------------------|-------------------------------------------------|
| 0  | case_id                           | Case_ID registered in Hospital                  |
| 1  | Hospital_code                     | Unique code for the Hospital                    |
| 2  | Hospital_type_code                | Unique code for the type of Hospital            |
| 3  | City_Code_Hospital                | City Code of the Hospital                       |
| 4  | Hospital_region_code              | Region Code of the Hospital                     |
| 5  | Available Extra Rooms in Hospital | Number of Extra rooms available in the Hospital |
| 6  | Department                        | Department overlooking the case                 |
| 7  | Ward_Type                         | Code for the Ward type                          |
| 8  | Ward_Facility_Code                | Code for the Ward Facility                      |
| 9  | Bed Grade                         | Condition of Bed in the Ward                    |
| 10 | patientid                         | Unique Patient Id                               |
| 11 | City_Code_Patient                 | City Code for the patient                       |
| 12 | Type of Admission                 | Admission Type registered by the Hospital       |
| 13 | Severity of Illness               | Severity of the illness recorded at the time o  |
| 14 | Visitors with Patient             | Number of Visitors with the patient             |
| 15 | Age                               | Age of the patient                              |
| 16 | Admission_Deposit                 | Deposit at the Admission Time                   |
| 17 | Stay                              | Stay Days by the patient                        |





## Objective & Procedure

#### What do we want to do?

Our objective is to <u>predict the length of stay</u> <u>for each patient</u> on a case-by-case basis so that hospitals can use this information for optimal resource allocation.

#### How?

Using past patient data, we will attempt to construct a <u>machine learning</u> <u>algorithm</u> that can predict how long a patient would require hospitalization.





# Exploratory Data Analysis Insights

## Distribution of Target Variable

- A majority of admitted patients (76%) tend to stay hospitalized anywhere between 0-40 days.
- When we plotted the Stay variable in a histogram, we found a <u>multimodal</u> <u>distribution</u>







### Positive Trend: Stay & Visitors

- On average, a patient will be admitted to the hospital with 2 visitors.
- There seems to be a
   positive trend between
   length of stay and the
   number of visitors that a
   patient is admitted with

#### Number of Hospitalized Patients by Age



A majority of hospitalized patients fall into the 31-40 and 41-50 age buckets.

#### Number of Hospitalized Patients by Department



80% of patient admission is for the Gynecology department, while the surgery department has the smallest number of caseloads

|           | max_deposit | min_deposit | average_deposit | median_deposit |
|-----------|-------------|-------------|-----------------|----------------|
| Stay      |             |             |                 |                |
| 0-10      | 9673.0      | 1801.0      | 4615.214625     | 4513.0         |
| 11-20     | 10419.0     | 1832.0      | 4931.124829     | 4800.0         |
| 21-30     | 10729.0     | 1807.0      | 5025.310329     | 4886.0         |
| 31-40     | 11008.0     | 1820.0      | 4871.071067     | 4708.0         |
| 41-50     | 11008.0     | 1825.0      | 4888.818530     | 4803.0         |
| 51-60     | 10771.0     | 1831.0      | 4748.784397     | 4526.0         |
| 61-70     | 10254.0     | 1809.0      | 4845.449344     | 4768.0         |
| 71-80     | 10842.0     | 1833.0      | 4709.845426     | 4500.0         |
| 81-90     | 10729.0     | 1827.0      | 4590.644688     | 4291.0         |
| 91-100    | 10506.0     | 1805.0      | 4715.538879     | 4530.0         |
| Above 100 | 10999.0     | 1800.0      | 4649.341763     | 4384.0         |

### Admission Deposit Variable

- On average, a deposit of 4,880 is paid before admission of the patient.
- There is no information available about where this data was collected geographically.



## Rooms Available at Time of Patient Admittance

Number of hospitals with extra rooms



When a patient is being admitted to a hospital, there is a high probability (>90%) that there are 2-4 extra rooms available in that hospital at that moment.

### Number of patients in each illness severity level



- More than half of the patients are admitted with moderate illness severity
- 18% are in extremelycritical status





Visitors
with Patient
(at time of
admission)
Variable
Insight

When there is a higher number of visitors present during admission, the conditional probability of a patient being hospitalized for a longer time period increases.

## Hypothesis

Based upon what we've seen so far, we hypothesized that the following variables would have an effect on a patient's length of stay



#### Age

Younger patients may recover faster

#### **Admission Deposit**

Possible indicator of patient's financial stability

#### Visitors with Patient (at time of admission)

Could indicate illness severity, therefore increasing hospitalization time

#### Department

Maybe a patient's length of stay will vary based upon what department they're in?

#### **Severity of Illness**

More severe illnesses might lead to a longer hospitalization period

#### Removed Variables

- Case ID
- Patient ID
- City Code Patient

#### Categorical Feature Encoding

- Hospital Type Code
- Ward Facility Code
- Ward Type
- Type of Admission
- Severity of Illness
- Type of Admission

#### Numerical Data Scaling

- Available Extra Rooms in Hospital
- Visitors with Patient
- Admission Deposit





## Model Selection Methodology

How are we measuring accuracy?



What models are being used?



How are we executing cross-validation?



Which parameters are hyper-tuned?



## Out-of-Sample Prediction Accuracy by Model Method: K-fold Cross-Validation (5-fold)

Decision Tree 28.7%

Naive Bayes 32.5%

Random Forest 33.4%

Logistic Regression 39.8%

## Hyperparameter Tuning



Logistic Regression

Search Method: Grid Search



Parameters: max\_iter, C, penalty



Accuracy Score: 39.8%



**Random Forest** 

Search Method: Random Search



Parameters: max\_depth, max\_features, min\_samples\_leaf, min\_samples\_split, n\_estimators



**Accuracy Score: 40.8%** 

## Feature Importance



Logistic Regression



1. Visitors with Patient (-)

2. Ward Type

3. Type of Admission



0.4

#### **Random Forest**



- 1. Visitors with Patient
- 2. Admission Deposit
- 3. Available Extra Rooms in Hospital

#### **Best Prediction Model**

The best out-of-sample prediction accuracy achieved was 40.8% with the hyperparameter-tuned <u>random forest model.</u>

#### Limitations

- We speculate that there are <u>external factors</u> not being taken into account.
- There are <u>innumerable variables</u> that could impact the duration of any given patient's hospital stay.
- There is not a <u>feasible</u> way to capture all of those variables for every patient and produce an interpretable prediction model for their hospitalization period.

## Findings Summary







## Questions?