Алгебра

13 сентября 2022

§5 Алгебраически замкнутые поля

K[x]

 $x-a, \ a \in K$ всегда неприводимые

 $x^2 + 1$ неприводим над \mathbb{R}

$$x^3 + x^2 + 1$$
, $x^3 + x + 1$, $x^2 + x + 1$ неприводимы над \mathbb{F}_2

Для многочленов степени 2 и 3 из отсутствия корней следует неприводимость

Теорема. K – none

Следующие условия эквивалентны:

- 1. Любой $f \in K[x]$, $\deg f > 0$ имеет в K корень
- 2. $\forall f \in K[x] \ c \deg f > 0$ число его корней в K равно $\deg f$ c учетом кратности
- 3. Любой $f \in K[x] \deg f > 0$ делится на какой-то линейный
- 4. $\forall f \in K[x], \deg f > 0$ полностью раскладывается на произведение линейных сомножителей:

$$f = b \cdot \prod_{i=1} (x_i - c_i)^{a_i}$$

5. Всякий неприводимый над К линеен

Определение. Поле K, удовлетворяющее любому (а значит всем) из равносильных условий теоремы называется алгебраически замкнутым полем

Доказательство.

 $1 \Leftarrow 2$ Если корней $\deg f$, то хотя бы 1 есть

 $1 \Leftrightarrow 3$ Теорема Безу

 $4 \Rightarrow 3$ Раскладывается \Rightarrow делится

 $4 \Leftarrow 5$

$$\begin{cases} f \in K[x] \\ \deg f > 1 \\ f = \text{ произв. лин. сомножителей } > 1 \end{cases}$$

$$4 \Rightarrow 5$$

$$\begin{cases} f = \text{произв. непр. (OTA)} \\ \text{всякий непр. - линейный} \end{cases}$$

$$3 \Rightarrow 4 \ f \in K[x], \ \deg f > 0$$

Индукция по $\deg f$

База: $\deg f = 1$ – доказано

Предположение: $\deg f > 1$

По п. 3:
$$f = (x - c)g(x)$$

$$\deg g = \deg f - 1$$

По и. п.
$$g(x) = b \cdot \prod_{i=1} (x - c_i)^{a_i} = f \cdot \,$$
 пр-ие лин.

$1 \Rightarrow 2$ Индукция по $\deg f$

База: $\deg f = 1$ – выполнено

Предположение: $\deg f > 1$ (по п. 1 у $f \exists$ корень c)

это значит, что x-c|f

c – корень f кратности a

$$(x-c)^a | f (x-c)^{a+1} / f$$

$$f_{(x)} = (x - c)^a g(x) \qquad g(c) \neq 0$$

Если q = const:

$$\deg f = a$$

c — единственный корень f кратности a

Если $\deg g > 0$:

то т. к.
$$\deg g \leq \deg f - 1$$

по и. п. число корней g с учетом кратности (тут нада дописать дальше)

Всякий корень q – корень f (не меньшей кратности)

$$(x-d)^e|g \Rightarrow (x-d)^e|f$$

d – корень f, отличный от c, тогда d – корень g не меньшей кратности

$$(x-d)^e|f \Rightarrow (x-d)^e|g$$

 $d \neq c \Rightarrow x - d$, x - c взаимно простые

 $(x-d)^e$, (x-c) взаимно простые

 $(x-d)^e$, $(x-c)^e$ взаимно простые

По теореме о сопряжении $(x-d)^e|g$

```
c - не корень f Корни f, отличные от c= корни g, причем той же кратности c – корень f кратности a deg f=\deg g \;\; (ну тут тоже нада дописать чета похоже)
```

Теорема 1 (Без доказательства).

Поле $\mathbb C$ – алгебраически замкнутое

Факты: (Без доказательства)

1) Конечное поле сожержится в счетном алгебраически замкнутом поле

2) Всякое поле содержится в каком-то алгебраически замкнутом

4