

Aerial Robotics Path Planning III

Prof. Arthur Richards

bristol.ac.uk

 Start with obstacles, goal, and initial pose

 Start with obstacles, goal, and initial pose

Choose a random point

- Start with obstacles, goal, and initial pose
- Choose a random point
- Extend tree towards *

 Start with obstacles, goal, and initial pose

Choose another random point

Start with obstacles, goal, and initial pose

Choose another random point

Get closest point on tree so far

Start with obstacles, goal, and initial pose

Choose another random point

Get closest point on tree so far

• Extend towards *

Repeat a few times

If an extension cuts an obstacle, just skip it

If an extension cuts an obstacle, just skip it

- Can get quite bad paths
 - Essentially all luck
 - RRT* variant optimises...
 - ...but far slower
- Really good at finding a path through cluttered worlds

RRT Likes and Dislikes

- Likes
 - Extends to more dimensions

- Handles rich environment models

- Dislikes
 - Can be slow
 - Paths can be quite poor, neither efficient nor robust

Randomness is strength **and** weakness: good for identifying hard-to-find paths, but can give poor results where paths are obvious.