Proposal Toward More Profitable Business Practice

- customized solution for home equity credit lending business department

Ami Kang

Feb 2023

The challenge (problem)

The 20% of accounts become default during the journey of loan terms.

The business is running on the level of $negative ROI^*$.

^{*} Assumption: If it is assumed that 70% of the loan principal will not be recollected from the default accounts and the average interest income rate from the remaining loans are 10%

Solution Development

- Goal: Minimize the portion of default accounts in future portfolio
- Approach: Develop a methodology which helps the department identify credit applicants with high possibility of default using information only that is available at the time of lending decision making
- □ Validation: What-if analysis if the new methodology had been applied to the current portfolio

Current Business Practice Highlights 1

66% of the defaulted accounts did not provide debt-to-income information.

Current Business Practice Highlights 2

- Defaulted accounts received slightly lower loan than not-defaulted accounts.
- When debt-to-income information is not available, lower loan is granted.
- > Debt-to-income missing indicator seems not used in loan amount allocation decision.

Model Development Methodology

Compare the Performance of Candidate Models

Using the RECALL rate of the test data along with the precision, F1-rate and accuracy rates

Finalize the Customized Model

More feature-engineering and hyper-parameter tuning along with various decision threshold values to improve the performance of the final modeling framework

Explore Binary-Classification Modeling Framework

Logistic regression
Decision Tree
Random Forest
Boosting Classification models
KNN
Linear Discriminant Analysis
Quadratic Discriminant Analysis

Final Model* Performance

☐ The model correctly identifies 80% of defaulted accounts as future defaulters. (Recall rate=80%)

■ 84% of the accounts identified as a future defaulter by the model turn out to be true default accounts. (Precision rate = 84%)

^{*}Final model framework: Extreme Gradient Boosting Classifier

Learning and Usage of the Final Model

< Local Interpretability >

Default Probability = 80% Decision Threshold = 40%

Business Solution Proposal

Implement the (XGB) model developed in this study and calculate the default probability of an applicant prior to lending decisions.

ightharpoonup Decline the loan applications if a calculated default probability exceeds 40%.

Utilize account-level analysis from the model to draft a comprehensive and reasonable explanation letter for adverse lending decisions.

What if the Proposal Had Been Applied

Expected Benefits

- The expected default rates would have dropped from 20% to 3%.
- The bank could have prevented 89% of the future default loans from the current portfolio while missing only 2% of booking non-default loans.
- ROI would have been positive instead of negative (from -5% to 8%).
- ☐ The bank would have lent \$91M instead of \$110M to clients while making the similar level of profits.
- The bank could have saved borrowing cost of extra \$20M from the central bank or could have used that extra fund to more profitable business.

<Cost Benefit Analysis with the Adoption of the Proposed Solution>

	Investment	Safe-Ioans	Lost-loans	Expected Profit	Expected Loss	Net Profit	ROI
Current BAU	\$110,903,500	\$90,783,100	\$20,120,400	\$9,078,310	\$14,084,280	-\$5,005,970	-5%
Proposed Scenario	\$91,049,900	\$88,913,600	\$2,136,300	\$8,891,360	\$1,495,410	\$7,395,950	8%

Conservative Assumptions Applied to Cost Benefit Analysis

- Borrowers take out the full credit line available to them.
- An interest rate of 10% is applied (even though current home line equity loan interest rates are lower than 8%).
- It is assumed that the bank will incur a 70% loss on loan principal from defaulted accounts, although in reality the bank may incur an even greater loss.

Limitations of the Study

- Possibility of already-biased input data based on the current business practice
- Lack of data time stamp assumed that all information was collected at the time of application except the loan amount
- ☐ Necessity of different observation period data for more scrutinized model validation
- Necessity of more accurate cost-benefit analysis incorporating the actual loss from the default loans and actual loans borrowed by the customers along with the implementation and operation cost of final (XGB) model
- □ Not taking the full advantage of XGB's capability to handle missing values
- Room to improve performance of the model and control possible overfitting (appropriate level of pruning and hyper parameter tuning)

Business Future Steps

- ☐ Carefully explore a possibility of unintended unfair treatment to a certain group of applicants by implementing the new model-based approach
- Develop an optimization model to decide the loan amount for each approved account
- ☐ Monitor the stability of the model and recalibrate the model on a regular basis
- Investigate the high proportion of current loans missing the critical income-to-debt information and reasoning of the current practice of granting loans to them
- ☐ Conduct more precise cost-benefit analysis before implementing the new method
- Explore opportunities to collect different informative data and apply them to the model

Thank you.