Math 341 / 641 Fall 2023 Final Examination

Professor Adam Kapelner
December 15, 2023

Since the college is	s an academic community, its fundamental purpose is the pursuit of knowledge. Essential
to the success of t member of the col Students, as members	this educational mission is a commitment to the principles of academic integrity. Every lege community is responsible for upholding the highest standards of honesty at all times. Deers of the community, are also responsible for adhering to the principles and spirit of the Academic Integrity.
Activities that	t have the effect or intention of interfering with education, pursuit of knowledge, or fair dent's performance are prohibited. Examples of such activities include but are not limited
or other academic material, or study	ng or attempting to use unauthorized assistance, material, or study aids in examinations work or preventing, or attempting to prevent, another from using authorized assistance, aids. Example: using an unauthorized cheat sheet in a quiz or exam, altering a graded atting it for a better grade, etc.
I acknowledge and	agree to uphold this Code of Academic Integrity.

Instructions

Full Name __

This exam is 120 minutes (variable time per question) and closed-book. You are allowed **three** 8.5" × 11" pages (front and back) "cheat sheets", blank scrap paper (provided by the proctor) and a graphing calculator (which is not your smartphone). Please read the questions carefully. Within each problem, I recommend considering the questions that are easy first and then circling back to evaluate the harder ones. Show as much partial work as you can and justify each step. No food is allowed, only drinks.

date

signature

Distribution	Quantile	PMF / PDF	CDF	Sampling
of r.v.	Function	function	function	Function
beta	$ exttt{qbeta}(p,lpha,eta)$	$d-(x, \alpha, \beta)$	$p-(x, \alpha, \beta)$	$r-(\alpha, \beta)$
betabinomial	qbetabinom (p, n, α, β)	d - (x, n, α, β)	$p-(x, n, \alpha, \beta)$	\mathbf{r} - (n, α, β)
gamma	$\mathtt{qgamma}(p,\alpha,\beta)$	d - (x, α, β)	$p-(x, \alpha, \beta)$	\mathbf{r} - (α, β)
ext negative binomial	$qnbinom(p, r, \theta)$	d - (x, r, θ)	$p-(x, r, \theta)$	$\mathtt{r} extsf{-}(r, heta)$
normal	$qnorm(p, \theta, \sigma)$	$d-(x, \theta, \sigma)$	$p-(x, \theta, \sigma)$	r - $(heta, \sigma)$
inversegamma	$\mathtt{qinvgamma}(p, lpha, eta)$	d - (x, α, β)	$p-(x, \alpha, \beta)$	\mathbf{r} - (α, β)
Student's T	$ extsf{qt.scaled}(p,k,\mu,\sigma)$	d - (x, k, μ, σ)	$p-(x, k, \mu, \sigma)$	\mathbf{r} - (k, μ, σ)

Table 1: Functions from R (in alphabetical order) that can be used on this assignment and exams. The hyphen in colums 3, 4 and 5 is shorthand notation for the full text of the r.v. which can be found in column 2.

Problem 1 An uber driver is rated on a 1-5 \bigstar scale. Most ratings are 5 \bigstar . Anything less means something went wrong thus we are interested in 5 \bigstar vs < 5 \bigstar . So let 1 indicate 5 \bigstar and 0 indicate < 5 \bigstar . We model a driver's n ratings with the DGP: $X \sim \text{Binomial}(n, \theta)$. The number of rides n is fixed and we seek inference on the parameter θ .

- (a) [3 pt / 3 pts] What is the parameter space of θ ?
- (b) [3 pt / 6 pts] Using $f(\theta) = \text{Beta}(\alpha, \beta)$, how is the posterior $f(\theta \mid X)$ distributed?
- (c) [6 pt / 12 pts] Show that $\hat{\theta}^{\text{MMSE}}$ is asymptotically normal. Find its mean and variance.

(d) [6 pt / 18 pts] Compute Bias $\left[\hat{\theta}^{\text{MAP}}\right]$.

A new driver in the United States takes 5 rides in the first day and get only one 5 \bigstar rating and 4 < 5 \bigstar ratings. Use this data for the rest of the questions in this problem.

- (e) [4 pt / 22 pts] Using the Jeffrey's prior, calculate $\hat{\theta}^{\text{MMSE}}$ to two significant digits.
- (f) $[4~{\rm pt}~/~26~{\rm pts}]$ Using Haldane's prior, write an expression for a 95% credible region. Use numerical values for parameters.
- (g) [5 pt / 31 pts] Interpret the interval from the previous question.

(h) [5 pt / 36 pts] Using Laplace's prior, write an expression for the Bayesian p-value for the test whether this driver has a worse-than-average rating. The average average rating is 0.96 in the United States. Use numerical values for parameters.

Five rides is too small to make a meaningful estimate. Instead we rely on previous data. Fitting a beta distribution to previous data yields $\hat{\alpha}^{\text{MLE}} = 961.24$ and $\hat{\beta}^{\text{MLE}} = 40.58$. We now use these maximum likelihood estimates as α and β in $f(\theta)$ for the remainder of the problem.

- (i) [2 pt / 38 pts] Would this prior be considered objective? Yes / no
- (j) [4 pt / 42 pts] Compute the shrinkage metric ρ for $\hat{\theta}^{\text{MMSE}}$ to three significant digits.
- (k) [4 pt / 46 pts] Write an expression for $\hat{\theta}^{\text{MMAE}}$. Use numerical values for parameters.

(l) [5 pt / 51 pts] For the driver's next 1,000 rides, what is the distribution of the count of future 5 \bigstar ratings, i.e. $\mathbb{P}(X_* \mid X = 1)$? Use numerical values for parameters.

Problem 2 You are the data scientist at T-Mobile trying to understand the number of customer support calls on a weekday at primetime at the East Coast switchboard per minute. For two weeks Monday-Friday from 6:00:00PM - 6:00:59PM, here are the number of calls:

583 565 580 524 644 598 564 594 564 538

You model the number of calls per minute as the DGP: $X_1, \ldots, X_n \stackrel{iid}{\sim} \text{Poisson}(\theta)$. The average number of calls is $\bar{x} = 575.4$.

- (a) [3 pt / 54 pts] Using the Laplace prior, what is $f(\theta)$?
- (b) [4 pt / 58 pts] Using the Laplace prior, what is the posterior distribution of $\theta \mid \mathbf{X}$? Use numerical values for parameters.

(c) [5 pt / 63 pts] Using the Haldane prior, create a 90% credible region for $\theta \mid \mathbf{X}$. Use numerical values for parameters.

(d) $[6 \mathrm{~pt~/} 69 \mathrm{~pts}]$ Using the Jeffrey's prior, create a 95% posterior predictive interval (PI) for the number of calls from $6:00:00\mathrm{PM}$ - $6:00:59\mathrm{PM}$ on the next weekday. Use numerical values for parameters.

Problem 3 You are a data scientist studying Chevron's dividends. The following are the n=27 quarterly dividend returns of Chevron stock (as a %) dating back to February, 2016:

3.6 3.6 3.4 4.2 4.6 5.5 5.0 5.5 5.9 5.9 3.6 4.7 3.9 4.1 3.9 4.0 3.8 3.5 4.0 3.8 4.0 4.1 3.8 4.0 4.2 4.2 5.0

You model the quarterly returns as the DGP: $X_1, \ldots, X_n \stackrel{iid}{\sim} \mathcal{N}(\theta, \sigma^2)$ where both θ and σ^2 are unknown parameters. The average dividend return is $\bar{x} = 4.289$ and the sample variance of the returns is $s^2 = 0.526$.

(a) [6 pt / 75 pts] Using the Jeffrey's prior, what is the posterior distribution, $f(\theta, \sigma^2 \mid \boldsymbol{X})$? Round the parameters to three decimal places.

(b) [6 pt / 81 pts] Using the Jeffrey's prior, write an expression for the Bayesian p-value for the test for $H_a: \theta < 4$. Use numerical values for parameters.

(c) [6 pt / 87 pts] Find an expression for the probability that Chevron's next quarter's dividend will exceed 5%. Use numerical values for parameters.

Problem 4 Consider the DGP:

$$X_1, \dots, X_n \stackrel{iid}{\sim} \text{Geometric}(\theta) := \theta (1 - \theta)^x \mathbb{1}_{x \in \mathbb{N}_0} \text{ where } \mathbb{E}[X] = \frac{1 - \theta}{\theta}, \ \mathbb{V}\text{ar}[X] = \frac{1 - \theta}{\theta^2}$$

(a) [6 pt / 93 pts] Find the posterior distribution of θ and the parameters of this distribution. Assume the Laplace prior.

(b) [7 pt / 100 pts] Find the Jeffrey's prior and its parameters for this DGP.