Demographic
Behavioral Data
Set
GROUP 13

SIMPAO, CHARIZE R. TANYAG, LORD EXZEL JHONNE L.

INTRODUCTION

The report examines a completely cleansed sample of 1000 adult patients that combine demographic, socio-economic, lifestyle and behavioral health factors to explain the multifactorial predictors of body mass index (BMI). Connecting eight continuous variables (including age, weight_kg, height_cm, physical_activity_hours_week) and through six categorical variables (including gender, region, smoking status and socio-economic tires), the data can be used to build a solid basis of both parametric and non-parametrics. Descriptive statistics, exploratory visual analysis and multivariate modeling results are synthesized in the following pages in order to produce actionable insights on the part of the public health strategists and clinical decision-makers who wish to design patient-specific interventions.

Scope

ATTRIBUTE	TYPE & UNIT	OBSERVED RANGE / LEVELS	CORE RELEVANCE
PATIENT ID	Integer	1 – 1,000	Row index; no analytic weight
AGE	Years	18 – 90	Demographic baseline
SEX	Binary (0 = Female, 1 = Male)	0 / 1	Biological determinant
WEIGHT_KG	Kilograms	51 – 83	BMI numerator
HEIGHT_CM	Centimeters	130 – 175	BMI denominator
ВМІ	kg m ⁻²	18.6 – 45.0	Central health outcome
REGION	Coded 0, 1	Two macro- regions	Environmental proxy
SOCIOECONOMIC	Ordinal (1 = Low, 2 = Mid, 3 = High)	1/2/3	Income tier
EDUCATION	Ordinal (0 – 3)	0/1/2/3	Human-capital lens
PHYSICAL_ACTIVITY_HOURS_WEEK	Hours	0 – 16	Lifestyle dose
SMOKING_STATUS	Cat. (0 = Non, 1 = Occasional, 2 = Chain)	0/1/2	Risk behavior
DRINKING_STATUS	Cat. (0 = Non, 1 = Casual, 2 = Heavy)	0/1/2	Risk behavior

PATIENT_SATISFACTION_SCORE	Ordinal 1 – 5	1 – 5	Experience
			metric
HEALTH_LITERACY_SCORE	Ordinal 1 – 5	1 – 5	Empowerment
			proxy

Dataset profile: 1,000 fully complete observations with zero missingness after cleansing. Variables blend numeric (8) and categorical (6) fields, enabling both parametric and non-parametric technique.

Descriptive Statistics

METRIC	AGE	WEIGHT	HEIGHT	ВМІ	ACTIVITY	SATISFACTION	LITERACY
		KG	CM		H WK ⁻¹		
MINIMUM	18	51	130	18.6	0	1	1
MAXIMUM	90	83	175	45.0	16	5	5
MEAN	54.2	64.2	153.3	27.7	8.0	3.0	3.3
MEDIAN	55	63	153	27.3	8	3	3
STANDARD	21.3	7.6	11.9	4.9	4.9	1.5	1.4
DEVIATION							

These baseline figures set the interpretive stage for subsequent modeling.

ANALYSIS & Data Preparation

To clean the data preprocessing was applied, that is, the removal of X-series columns that were auxiliary placeholders; drop rows in the data containing missing values (NA); therefore, the data ended up with 1,000 complete data records. Also a new feature was developed which involved binning the values of BMI into categories: Underweight (BMI < 18.5), Normal (18.524.9), Overweight (2529.9), and Obese (BMI30) in order to perform stratified visualization and analysis consistent with the standard BMI classification guidelines.

Exploratory Visual Analytics

Histogram matrix – Distribution check for every numeric feature (Figure 1).

Boxplot matrix – Outlier surveillance across metrics. (Figure 2)

Bivariate scatter – Age × BMI with linear fit. (Figure 3) .

Stacked/dodged bars – BMI_Group cross-tabbed against Smoking, Drinking, Socioeconomic tiers (Figures 4-5) .

Predicted vs Actual scatter – Post-model validation. (Figure 6)

(Figure 6)

Inferential Modeling

A multiple linear regression (MLR) was specified:

$$\begin{split} \mathsf{BMI} &= \beta_0 + \beta_1(\mathsf{Age}) + \beta_2(\mathsf{Weight} \backslash \mathsf{kg}) + \beta_3(\mathsf{Height} \backslash \mathsf{cm}) + \beta_4(\mathsf{Activity}) \\ &+ \beta_{5,6}(\mathsf{Socioeconomic dummies}) + \varepsilon \end{split}$$

Diagnostics encompassed residual-vs-fitted, Q-Q, scale-location, and Cook's distance plots.

(Figure H)

Key Results and Figures

Visual Insights

FIGURE	CORE OBSERVATION	IMPLICATION
A. HISTOGRAMS	BMI & Satisfaction slightly right-	Tail-weight warrants robust
	skew; Age symmetric	stats
B. BOXPLOTS	No extreme outliers post-cleaning	Results unlikely driven by
		anomalies
C. AGE × BMI	Flat slope ($\beta \approx -0.0006$; p = 0.55)	Age alone not a BMI lever

D. SMOKING ×	Obesity highest among chain	Smoking cessation needs
BMI_GROUP	smokers	weight messaging
E. DRINKING ×	Heavy drinkers cluster as	Caloric vs metabolic
BMI_GROUP	Overweight, not Obese	pathways differ
F. SOCIOECONOMIC ×	Obesity % rises Low → High	Affluence paradox spotlights
BMI_GROUP		sedentary work
G. PREDICTED VS	Tight 45° alignment	Model explains >98%
ACTUAL		variance
H. RESIDUAL SUITE	Mild right-tail kurtosis; otherwise	MLR assumptions broadly
	homoscedastic	satisfied

Regression Coefficients

PREDICTOR	ESTIMATE	STD.ERR	T	<i>P</i> -VALUE	INTERPRETATION
INTERCEPT	55.96	0.30	189.2	<2 × 10 ⁻¹⁶	Hypothetical BMI at nil inputs
AGE	-0.0006	0.0010	-0.60	0.55	Negligible age effect
WEIGHT KG	0.434	0.0032	136.9	<2 × 10 ⁻¹⁶	+1 kg → +0.43 BMI
HEIGHT CM	-0.366	0.0018	-205.6	<2 × 10 ⁻¹⁶	+1 cm \rightarrow -0.37 BMI
ACTIVITY H WK ⁻¹	-0.004	0.0042	-1.02	0.31	Minor protective trend
SOCIO = MID	-0.016	0.055	-0.29	0.77	NS
SOCIO = HIGH	0.063	0.057	1.11	0.27	NS

Model fit: $R^2 = 0.983$; residual SD = 0.64 BMI units.

Conclusion

Lifestyle and a demographic factor also make a small contribution to changes in BMI because of weight and height. Interestingly, smoking has been associated with increased cases of obesity, and this gives the point that nicotine is reducing weight but may require an integrated cessation and weight management initiative. Paradoxically, higher social-economic status is associated with a higher prevalence of obesity, which is most likely related to the nature of sedentary occupations and high-calorie foods, which means that corporate well-being initiatives should focus on this population. Without dietary changes, the effect of changes in physical activity is very little in terms of effect on BMI. Medium health literacy and patient satisfaction identify the possibilities of digital education and improved digital experience to encourage the long-term engagement. Overall, despite the fact that BMI is largely a mechanical indicator, emphasis on behavioral pattern combination and enhancement of health literacy would serve to better target the successful responses of obesity.