A New Feasible Approach to Multi-dimensional Scale Saliency

P. Suau and F. Escolano

{pablo,sco}@dccia.ua.es

Robot Vision Group University of Alicante, Spain

October 2nd, 2009

- Introduction
- 2 Method
- 3 Experiments
- 4 Conclusions

- Introduction
- 2 Method
- 3 Experiments
- Conclusions

Local feature detectors

- Feature extraction is a basic step in many computer vision tasks
- Kadir and Brady scale-saliency
 - Widely used (Newton et al. ICRA 2006, Fergus et al. CVPR 2003)
 - Salient features over a narrow range of scales
 - Curse of dimensionality
- Previous scale saliency generalizations are too specific and not suitable for higher dimensions
- We present a naturally scalable approach (we report results on 31 dimensional data)

Salient features

•
$$H_D(s,x) = -\sum_{d \in D} P_{d,s,x} log_2 P_{d,s,x}$$

 Kadir and Brady algorithm (2001): most salient features between scales s_{min} and s_{max}

Scale-saliency algorithm

Kadir and Brady scale-saliency algorithm (2001)

- For each pixel x
 - For each scale s between s_{min} and s_{max}
 - Calculate local entropy H_D from local PDF
 - Select the set of scales S where entropy is peaked
 - Weight the entropy values at S using the sum of absolute difference of PDFs
- Select the highest weighted entropy values

- Introduction
- 2 Method
- 3 Experiments
- Conclusions

Multi-dimensional entropy estimation

- Non plug-in methods
- Our previous approach
 - Shannon's entropy estimation from entropic graphs (edge lengths)
 - Rényi α -entropy (from Minimal Spanning Trees or K-Nearest Neighbour Graphs)
 - Leonenko estimation (from K-Nearest Neighbour Graphs)

Multi-dimensional entropy estimation

- Our previous approach
 - Friedman and Rafsky's estimation of the Henze-Penrose divergence

9/21

KD-Partition entropy estimation

- Stowell et al. 2009
- Non plug-in method
 - Advantage: it does not require any distance computation
- Recursive and rectilinear data partition (KD-tree)

$$A = \{A_1, \ldots, A_p\}$$

Entropy estimated from the proportion of samples in each A_i

$$H = \sum_{i=1}^{p} \frac{n_i}{n} \log \left(\frac{n}{n_i} \mu(A_i) \right)$$

KD-Partition based divergence estimation

Inspired by Friedman and Rafsky's test

$$D(X||O) = \sum_{i=1}^{p} \left| \frac{\frac{n_{x,i}}{N_x} - \frac{n_{o,i}}{N_o}}{2} \right|$$

$$D(X||O) = 0.3642$$

$$D(X||O) = 0.7692$$

The multidimensional scale-saliency algorithm

Input: A m-dimensional array I containing m features for each pixel of the image

 ${f Output}$: An array HW containing weighted entropy values for all pixels on image at each scale

```
foreach pixel x of image do
```

```
foreach scale s_i between s_{min} and s_{max} do
        (1) Create a m-dimensional sample set X_i = \{x_i\} from the local
        neighborhood of pixel x at scale s_i in I:
        (2) Apply KD-partition to X in order to estimate entropy H(s_i)
        if i > s_{min} + 1 then
             if H(s_{i-2}) < H(s_{i-1}) > H(s_i) then
                 (* Entropy peak *)
            (4) KD-partition divergence: W = \frac{s^2}{2s-1}D(X_{i-1}||X_{i-2});
(5) HW(s_{i-1}, x) = H(s_{i-1}) \cdot W;
             end
               (6) HW(s_{i-1}, x) = 0;
        end
    end
end
```


- Introduction
- Method
- 3 Experiments
- Conclusions

Image databases

 Bristol hyperspectral image database (http://psy223.psy.bris.ac.uk/hyper/)

 Affine covariant regions dataset (http://www.robots.ox.ac.uk/~vgg/research/affine/)

Feasible Multi-dimensional scale saliency

Execution time

Detector quality

Detector quality

Feasible Multi-dimensional scale saliency

- Introduction
- 2 Method
- 3 Experiments
- 4 Conclusions

Conclusions

- We presented a new and feasible multi-dimensional scale saliency algorithm
- Entropy estimation by means of KD-Partition algorithm
- Divergence measure based on KD-Partition and inspired by Friedman and Rafsky's test
- Remarkably decrease of execution time
- Detector quality is not strongly affected

Future work

- Impact of high-dimensional data on computer vision problems
 - Video analysis (A. Oikonomopoulos, I. Patras, M. Pantic: Spatiotemporal saliency for human action recognition. ICME 2005)
 - Texture categorization (S. Lazebnik, C. Schmid, J. Ponce: A sparse texture representation using local affine regions. PAMI 2005)

A New Feasible Approach to Multi-dimensional Scale Saliency

P. Suau and F. Escolano

{pablo,sco}@dccia.ua.es

Robot Vision Group University of Alicante, Spain

October 2nd, 2009

