Задачи за 3-4 кл.

- 1. $2008 + 200 \cdot 8 =$
- **A)** 17664 **B)** 3608 **B)** 2216 **Γ)** 2008 **Д)** 4016
 - **2.** На колко е равно двеста и едно плюс седемдесет и пет?
- А) двеста седемдесет и шест
- Б) двеста осемдесет и шест
- В) триста седемдесет и пет
- Γ) двеста осемдест и пет
- Д) деветстотин и шест
- **3.** Купих си два сока за по 35 ст. и една вафла за 25 ст. Дадох 1 лв. Колко стотинки трябва да ми върнат?
- **A)** 5 **B)** 10 **B)** 15 Г) 20 Д) 25
 - 4. Кое от числата
- **A)** 10 **B)** 15 **B)** 20 **Γ)** 25 **Д)** 30

трябва да стои на мястото на въпросителната в схемата?

- **5.** На колко части се разделя глобус от екватора и 2 меридиана?
- **A)** 2 **B)** 3 **B)** 4 Г) 5 Д) 6
- **6.** Биби заспала в десет и петнайсет вечерта и се събудила в седем без двайсет сутринта. Колко ча́са е спала Биби?
- **A)** 9 ч и 35 мин **B)** 9 ч и 15 мин **B)** 8 ч и 45 мин
- **Г**) 8 ч и 25 мин Д) 8 ч и 15 мин
- 7. Превоз на ферибот струва 9 лева на кола́ с шофьор плюс 2 лева за всеки допълнителен пътник. Платихме общо 15 лева. Колко души сме в колата?
- **A)** 1 **B)** 2 **B)** 3 Г) 4 Д) 5
- **8.** Ако c е естествено число, различно от 1, то с $c \uparrow$ ще означаваме следващото, а с $c \downarrow$ предишното естествено число. Например: $5 \uparrow = 6, \ 9 \downarrow = 8$. На колко е равно $4 \uparrow +7 \downarrow -3 \downarrow$?
- **A)** 8 **B)** 9 **B)** 10 Γ) 11 Д) 12

9. Иванчо написал в новата си тетрадка съчинение за дракони. В него той няколко пъти използвал думата "опастност". Учителката му направила забележка, че думата се пише "опасност" и го накарала да напише многократно думата, за да я научи. Общо думите "опастност" и "опасност" в тетрадката на Иванчо станали 23 и в тях буквата "т" била употребена 31 пъти. Колко пъти е била написана вярно думата "опасност"?

A) 8 **B)** 10 **B)** 13 Г) 15 Д) 23

10. На колко е равна сумата от всички цифри на всички естествени числа от 1 до 20 включително?

A) 21 **B)** 51 **B)** 91 Γ) 102 Π) 210

Задачи за 5-6 кл.

1. 2008 + 200, 8 + 20, 08 + 2,008 =

A) 2222,8888 **B)** 2222,888 **B)** 2230,88

Г) 2230,888 Д) 2238,888

2. На колко части се разделя глобус от 13 паралела и 20 меридиана?

A) 260 **B)** 261 **B)** 273 **Г)** 280 Д) 294

3. Товарен влак трябва да се композира от два локомотива, 17 вагона за въглища и 15 цистерни, като първоначално всички са отделени. Ако едно закачане продължава 2 минути, колко минути са необходими за композирането на целия влак?

A) 66 **B)** 68 **B)** 70 **Г)** 72 Д) 84

4. Превоз на ферибот струва 9 лева на кола́ с шофьор плюс 2 лева за всеки допълнителен пътник. Платихме общо 15 лева. Колко души сме в колата?

A) 5 **Б)** 4 **В)** 3 Г) 2 Д) 1

5. Във всяко от полетата на таблицата

	Α		
ĺ		Б	
Ì			?
ĺ	Γ		

трябва да се постави една от буквите A, Б, В или Г, така че във всеки ред, всеки стълб и по двата диагонала да се среща всяка от четирите букви. Коя буква трябва да се постави на мястото на въпросителния знак?

 $\mathbf{A}) \mathbf{A} \quad \mathbf{B}) \mathbf{B} \quad \mathbf{B}) \mathbf{B} \quad \mathbf{\Gamma}) \mathbf{\Gamma}$

Д) липсват данни

6. Иванчо написал в новата си тетрадка съчинение за дракони. В него той няколко пъти използвал думата "опастност". Учителката му направила забележка, че думата се пише "опасност" и го накарала да напише многократно думата, за да я научи. Общо думите "опастност" и "опасност" в тетрадката на Иванчо станали 23 и в тях буквата "т" била употребена 31 пъти. Колко пъти е била написана вярно думата "опасност"?

A) 23 **B)** 15 **B)** 13 **Γ)** 10 **Д)** 8

7. Един фунт е равен на 16 унции. Три унции бонбони тежат 84 грама. Колко грама тежат два фунта картофи?

A) 932 **B)** 915 **B)** 896 **Г)** 878 Д) 863

8. Ачо, Бебо и Вуте се занимавали със статистика: всеки от тях класифицирал топчетата от една и съща кутия, които били от четири цвята. Обаче всеки един правилно определял само два от цветовете, а другите два не различавал (което не е необичайно за статистиката). Единият не различавал червено и оранжево, другият не различавал оранжево и жълто, а третият – жълто и зелено. Резултатите от статистическите наблюдения са дадени в таблицата.

	Ч	О	Ж	3
Ачо	2	5	7	9
Бебо	2	4	9	8
Вуте	3	3	8	9

От кой цвят по колко топчета е имало в действителност в кутията?

- **A)** 4 3, O 3, Ж 9, 3 8
- **B)** 4 2, O 4, Ж 8, 3 9
- **B)** 4 2, O 4, Ж 9, 3 8
- **Γ)** Ч 3, O 3, Ж 8, З 9
- Д) друго разпределение
- **9.** На колко е равна сумата от всички цифри на всички естествени числа от 1 до 100 включително?
- **A)** 100 **B)** 495 **B)** 901 Γ) 1050
- Д) никое от тези
- 10. Сборът на три числа е 348. От всяко от тези числа било извадено едно и също число. Получили се числата 101, 105 и 112. На колко е равен сборът от цифрите на първоначално дадените числа?
- **A)** 15 **B)** 12 **B)** 17 Γ) 9 Д) 20

Задачи за 7-8 кл.

1. Решете уравнението две хикс минус едно равно на три втори.

- А) хикс е равно на три четвърти
- Б) хикс е равно на пет четвърти
- В) хикс е равно на пет втори
- Γ) хикс е равно на три втори
- Д) никое от тези

2. С A, B и C са означени три различни върха на квадрат. Колко различни стойности може да приема $\angle ABC$?

- **A)** 1 **B)** 2 **B)** 3 Г) 4 Д) 5
 - 3. Коя е цифрата на десетиците на стойността на израза $\frac{38^3-27\cdot 38^2+3^5\cdot 38-9^3}{38^2-18\cdot 38+81}\,?$
- **A)** 5 **B)** 4 **B)** 3 Г) 2 Д) 1

4. Един от ъглите на триъгълник има мярка 15° , а друг е със 70° по-голям. Мярката на третия ъгъл е:

- A) 80° B) 85° B) 90° Г) 95° Д) 100°
 - **5.** Кое цяло число е най-близко до $\frac{2008! + 2005!}{2007! + 2006!}?$

 $(n! = 1 \cdot 2 \cdot 3 \cdot \cdots (n-1) \cdot n.)$

А) 1 **В)** 2 **В)** 1004 **Г)** 2007 **Д)** 2008

6. Една кола изминала z км с y км/ч. Колата е тръгнала в 9 часа́ сутринта и е пристигнала предиобед същия ден. В колко часа́ е пристигнала?

A) 9y - z B) $\frac{z}{y} + 9$ B) $\frac{z - 9}{y}$ Г) $\frac{z}{y - 9}$ Д) $9 - \frac{z}{y}$

7. Какво ще бъде отпечатано в резултат от изпълнението на процедурата

n:=2008; p:=1; докато 2*p<n повтаряй p:=2*p; отпечатай n-p

- **A)** 0 **B)** 2008 **B)** 984 **Γ)** 1024
- Д) никое от тези

8. Колко са точките с целочислени координати (x;y), за които 2|x|+3|y|=12?

 ${f A}$) 4 ${f B}$) 6 ${f B}$) 8 ${f \Gamma}$) 12 ${f Д}$) никое от тези

9. Лицето на фигурата, ограничена от абсцисната ос и начупената линия с върхове (1;0), (1;1), (0;2), (-2;2), (-4;0), е число от интервала:

A) [5;8) **B)** [8;13) **B)** [13;16) Γ) [16;19) \square) [19;22]

10. На годишната забава броят на момчетата беше четири пъти по-голям от броя на момичетата. Когато на дансинга танцуваха 4 момчета и 4 момичета, броят на нетанцуващите момчета беше седем пъти по-голям от броя на нетанцуващите момичета. Кое от числата

A) 20 **B)** 30 **B)** 35 **Γ)** 36 **Д)** 40

може да бъде равно на броя на ученици на забавата?

11. На първи юли търговец купил 12 тона дини с водно съдържание 96% при цена 20 стотинки за килограм. На втори юли той продал 4 тона от дините, които вече имали водно съдържание 94%, при цена 40 ст. за килограм. На трети юли продал и останалите, които вече имали водно съдържание 92%, при цена 30 ст. за килограм. Колко лева е печалбата на търговеца от цялата операция?

A) 1600 **B)** 400 **B)** 200 **Γ)** 100 **Д)** 0

12. Корабокрушенец попаднал на самотен остров, а от багажа му оцеляла само огромна кутия бонбони. Всеки ден той ял по еднакъв брой бонбони от нея, докато я изпразнил. Ако беше ял с един бонбон по-малко на ден, тя щеше да му стигне за 9 дни повече. Ако беше ял с един бонбон повече на ден, щеше да му стигне за 6 дни по-малко. За колко дена е изпразнил кутията корабокрушенецът?

A) 30 **B)** 36 **B)** 42 **Г)** 48 Д) 54

Задачи за 9-10 кл.

1. Как са подредени по големина числата

 $a = 2008 \cdot 2008$, $b = 2007 \cdot 2009$, $c = 2006 \cdot 2010$?

- **A)** a < b < c **B)** b < c < a
- B) a > b > c Γ) b > c > a
- Δ) a=b=c
 - 2. Решете уравнението

три хикс квадрат минус две хикс равно на едно.

- А) хикс едно равно на едно, хикс две равно на минус една трета
- Б) хикс едно равно на минус едно, хикс две равно на една трета
- В) хикс едно равно на три, хикс две равно на минус едно
- Γ) хикс едно равно на едно, хикс две равно на една трета
- Д) никое от тези
 - 3. На колко е равен сборът от корените на уравнението $x^2 + 2008|x| - 16000 = 0$?
- **B**) 2008 $\mathbf{A}) 0$ **B**) -2008 Γ) 4016
- Д) никое от тези
- **4.** Една кола изминала z км с y км/ч. Колата е тръгнала в 9 часа вечерта и е пристигнала на другия ден предиобед. В колко часа е пристигнала?
- A) $\frac{z}{y} + 9$ B) $\frac{z 12}{y}$ B) $\frac{z}{y 9}$ Γ) $\frac{z}{y} 12$
- Д) по друго време
- **5.** С A, B и C са означени три различни върха на правилен шестоъгълник. Колко различни стойности може да приема $\triangleleft ABC$?
- **B**) 4 **A**) 3 **В**) 5 Г) 6 Д) 10
- 6. Какво ще бъде отпечатано в резултат от изпълнението на процедурата

n:=2008; p:=1; докато 2*p<n повтаряй p:=2*p; отпечатай n-р

- $\mathbf{A}) 0$ **B**) 2008 **B**) 984 **Γ**) 1024
- Д) никое от тези

7. В Средния адронен колайдер има два кръга за ускоряване на частици – малък, с дължина 5 км, и голям, с дължина 15 км. Енергията за обслужване на 1 км от големия кръг е с 20% повече от тази, необходима за поддържането на същите параметри в 1 км от малкия кръг. В малкия кръг протон бил ускорен до скорост 60% от скоростта на светлината, с която скорост протонът направил 3 обиколки на кръга. След това протонът навлязъл в големия кръг и бил ускорен до 75% от скоростта на светлината, като направил 4 обиколки с тази скорост. Приблизително каква енергия (в ГВтЧ) е била необходима за четирите обиколки в големия кръг, ако в малкия за трите обиколки са били изразходени 1,2 ГВтЧ? Приема се, че увеличението на енергията, необходима за поддържане на скоростта на протон от v_1 на $v_2 > v_1$, е $\left(\frac{v_2}{v_1}\right)^2$ пъти.

A) 10 **B)** 9 **B)** 8 Г) 7 Д) 6

8. Едно естествено число ще наричаме объркано, ако при деление с 9 дава частно а и остатък b, а при деление със 17 дава частно b и остатък a. Колко са обърканите трицифрени числа?

A) 3 **B)** 33 **B)** 39 **Г)** 47 Д) 52

9. На колко е равна сумата от всички цифри на всички естествени числа от 1 до 2008 включително?

A) 20 345 **B)** 31 412

B) $46\ 538$ **r**) $52\ 764$

Д) никое от тези

10. През XIX в. е имало 11 пътя, които свързвали Лондон и Кембридж, включително тези през Оксфорд, и 13 пътя от Лондон до Оксфорд, включително тези през Кембридж. Колко директни пътя са свързвали Оксфорд и Кембридж през XIX век?

A) 1 **B)** 2 **B)** 3 Г) 4 Д) 5

Задачи за 11-12 кл.

1. В кой от интервалите

A)
$$[0;1)$$
 B) $[1;2)$ **B)** $[2;3)$

$$\Gamma$$
) [3; 4) \Box [4; 5]

лежи най-големият корен на уравнението

$$\frac{x+1}{|x-1|} - 3\frac{|x-1|}{x+1} + 2 = 0?$$

2. По колко различни начина би могло да изглежда попълването на бланката, която се предава в края на състезанието **Черноризец Храбър**, ако се следва инструкцията?

A)
$$\binom{30}{6}$$
 B) $\frac{30!}{25!}$ B) 30^6 Г) 5^{30} Д) 6^{30}

3. За всяко x числото $4 \sin x - 3 \cos x$ е от интервала:

A)
$$[-3;6]$$
 B) $[-6;4]$ B) $[-4;6]$ Γ) $[-4;4]$ \mathcal{A}) $[-5;5]$

4. За $\triangle ABC$ са дадени $BC=4,\,CA=2,\,AB=3.$ Медианата AM пресича ъглополовящата CL в точката P. Правата BP пресича страната AC в точката Q. На колко е равна отсечката CQ?

A)
$$\frac{3}{2}$$
 B) $\frac{4}{3}$ B) $\frac{5}{4}$ Г) $\frac{6}{5}$ Д) никое от тези

5. Даден е правоъгълен триъгълник ABC с хипотенуза AB=6. Окръжност се допира до AC и BC в точки X и Y, а диаметрално противоположните точки на X и Y лежат на хипотенузата. На колко е равно лицето на сегмента извън триъгълника?

A)
$$\frac{1}{2}\pi - 1$$
 B) $\pi - 1$ B) $2\pi - 4$ Г) $\frac{1}{2}\pi - \frac{1}{2}$ Д) $\pi - 2$

6. За растящата аритметична прогресия $\{a_n\}$ е дадено $a_1 + a_2 + \cdots + a_{10} = 140$ и $a_2 a_9 = 147$. На колко е равен a_3 ?

A) 3 **B)** 5 **B)** 7 Γ) 9 Д) никое от тези

7. Десет ученици имат общо 10 лв. и са подредени в редица така, че всеки (без първия) има с 10 ст. повече от предния. Колко стотинки има десетият в редицата?

A) 100 **B)** 125 **B)** 140 **Г)** 145 Д) 150

8. Каква е вероятността случайно избрано трицифрено число да има една четна и две нечетни цифри?

A) $\frac{28}{225}$ Б) $\frac{31}{90}$ В) $\frac{13}{36}$ Г) $\frac{7}{18}$ Д) $\frac{1}{2}$

9. Ако x е положително ирационално число, а y е рационално число, кое от следните числа е непременно ирационално?

A) x + y B) xy B) $\ln x$ Γ) x^y

Д) никое от тези

10. Кое е най-голямото естествено число n, за което системата неравенства

$$k < x^k < k+1, \ k=1, \ 2, \dots, \ n$$

има решение?

A) 2 **B)** 3 **B)** 4 Γ) 5

Д) няма най-голямо число с това свойство

Отговори и кратки решения 3-4 кл.

- 1. Отговор. Б. Решение. $2008 + 200 \cdot 8 = 2008 + 1600$.
- 2. Отговор. А. Решение. 201 + 75 = 276.
- 3. Отговор. А. Решение. $100 2 \cdot 35 25 = 5$.
- 4. Отговор. Б. Решение. $(52-47) \cdot (12:4) = 5 \cdot 3 = 15$.
- 5. Отговор. В. Решение. Екваторът разделя глобуса на две части, а двата меридиана разделят всяка от тези части на две.
- 6. Отговор. Г. Решение. Биби е спала 1 ч 45 мин до полунощ и 6 ч 40 мин след полунощ общо 7 ч и 85 мин.
- 7. Отговор. Г. Решение. Допълнителната такса от 6 лева е за трима пътници. В колата има и шофьор.
 - 8. Отговор. Б. Решение. $4 \uparrow +7 \downarrow -3 \downarrow = 5+6-2$.
- 9. Отговор. Г. Решение. Имаме 8 излишни букви "т", така че толкова пъти думата е била написана грешно. Остават 23-8=15 верни думи.
- 10. Отговор. Г. Решение. Сумата от цифрите на едноцифрените числа е $1+2+\cdots+9=45$, а на числата от 10 до 19 е $(1+0)+(1+1)+(1+2)+\cdots+(1+9)=10+45=55$. Накрая трябва да добавим още 2 сумата от цифрите на 20.

Отговори и кратки решения 5-6 кл.

- Отговор. Г.
- 2. Отговор. Г. Решение. Паралелите разделят глобуса на 14 части. Всяка от тези части се разделя от меридианите на 20 части; общо $14 \cdot 20 = 280$ части.
- 3. Отговор. А. Решение. Имаме общо 2+17+15=34 локомотива и вагона, значи 33 закачания, т.е. 66 минути.
- 4. Отговор. Б. Решение. Допълнителната такса от 6 лева е за трима пътници. В колата има и шофьор.
- 5. Отговор. Б. Решение. Първо можем да открием, че в горния десен ъгъл се намира В, понеже другите букви се срещат по диагонала или по реда.

A	Б	Γ	В
В	Γ	Б	A
Б	Α	В	Γ
Γ	В	Α	Б

По същата причина под буквата А се намира пак В. С подобни средства можем да възстановим цялата таблица.

- 6. Отговор. Б. Решение. Имаме 8 излишни букви "т", така че толкова пъти думата е била написана грешно. Остават 23-8=15 верни думи.
- 7. Отговор. В. Решение. Една унция е равна на 84:3=28 грама. Два фунта са равни на 32 унции, т.е. на $32\cdot 28=896$ грама.
- 8. Отговор. В. Решение. Червените са объркани само от един измежду A, B и B. Това трябва да е B, понеже A и B имат един и същи резултат. Следователно червените топчета са 2. След като B не различава червени и оранжеви, той правилно определя жълтите и зелените те са съответно 8 и 9. Понеже общият брой топчета е 23 (установено с консенсус), оранжевите топчета са 23 (2 + 8 + 9) = 4.
- 9. Отговор. В. Решение. Нека S(n) е сумата от всички цифри всички на естествени числа от 1 до n. Имаме

$$S(9) = 45,$$

$$S(99) = 10(1 + 2 + \dots + 9) + 10S(9) = 900,$$

Накрая

$$S(100) = S(99) + 1 = 901.$$

10. Отговор. А. Решение. Числото, което било било извадено, е

$$(348 - (101 + 105 + 112)) : 3 = 10.$$

Следователно дадените числа са 111, 115 и 122.

Отговори и кратки решения 7-8 кл.

- 1. Отговор. Б. Решение. $2x-1=\frac{3}{2}\Longrightarrow 2x=\frac{5}{2}\Longrightarrow x=\frac{5}{4}$.
- 2. Отговор. Б. Решение. Възможните стойности са 45° и 90° .
- 3. Отговор. Г. Решение. Изразът е равен на $\frac{(38-9)^3}{(38-9)^2} =$ 38 - 9 = 29.
- 4. Отговор. А. Решение. Вторият ъгъл е 85°, така че третият е $180^{\circ} - 15^{\circ} - 85^{\circ} = 80^{\circ}$.
- 5. Отговор. Г. Решение. Имаме $\frac{2008! + 2005!}{2007! + 2006!} = \frac{2005!(2008 \cdot 2007 \cdot 2006 + 1)}{2006!(2007 + 1)} = \frac{2007! + 2006!}{2006 \cdot 2008} < 2007, 5.$
- 6. Отговор. Б. Решение. Времето в часове, което е пътувала колата, е $\frac{\tilde{z}}{y}$.
- 7. Отговор. В. Решение. Процедурата пресмята в р найголямата стойност на 2^k , по-малка от n, и отпечатва разликата

$$n - p = 2008 - 1024 = 984.$$

- 8. Отговор. В. Решение. Когато |x| е цяло число, |y| = $4-\frac{2|x|}{3}$ е естествено число единствено за $|x|\in\{0;\ 3;\ 6\}.$ • при |x|=0 имаме |y|=4, което ни дава две точки: $(0;\pm 4);$
- при |x| = 3 имаме |y| = 2, което ни дава четири точки: $(\pm 3; \pm 2);$
- при |x|=6 имаме |y|=0, което ни дава две точки: ($\pm 6;0$).
- 9. Отговор. А. Решение. Фигурата се състои от равнобедрени правоъгълни триъгълници, първият от които има лице $\frac{1}{2}$, а всеки следващ е с два пъти по-голямо лице от предишния, което се установява с подходящ разрез. Така сборът от лицата на триъгълниците е 0, 5+1+2+4=7, 5.
- 10. Отговор. Д. Решение. Броят на учениците на забавата е кратен на 5, а ако извадим 8 се получава кратно на 8, т.е. този брой се дели и на 8. Единственото от посочените числа, отговарящо на условието, е 40. Условието се реализира, ако момчетата са 32, а момичетата – 8.
- 11. Отговор. Г. Решение. За дините е той е платил 12000. 0, 2 = 2400 лв. На 2 юли сухото вещество в дините вече е 6% вместо 4%, без да е променило масата си, следователно дините вече тежат $\frac{2}{3} \cdot 12 = 8$ тона. Продадени са 4 тона от тях (срещу $4000 \cdot 0, 4 = 1600$ лв), така че остават 4 тона. На 3 юли сухото вещество в дините е 8% вместо 6%, без да е променило масата си, следователно дините вече тежат $\frac{3}{4} \cdot 4 =$

3тона. За тях са получени $3000\cdot 0, 3=900$ лева. Печалбата е 1600+900-2400=100лева.

12. Отговор. Б. Решение. Ако е ял d дни по b бонбона на ден, имаме равенствата

$$db = (d+9)(b-1)$$
 и $db = (d-6)(b+1)$.

Оттук

$$0 = 9b - d - 9$$
 и $0 = -6b + d - 6$.

Събирайки, получаваме 0 = 3b - 15 и b = 5. Сега

$$0 = -30 + d - 6$$
 и $d = 36$.

Отговори и кратки решения 9-10 кл.

- 1. Отговор. В. Решение. $a=2008^2,\ b=2008^2-1,$ $c=2008^2-4.$
- 2. Отговор. А. Решение. $3x^2 2x = 1 \Longrightarrow x_{1,2} = \frac{1 \pm \sqrt{1+3}}{3}$.
- 3. *Отговор.* А. *Решение*. Даденото уравнение има реален корен, понеже уравнението

$$x^2 + 2008x - 16000 = 0$$

има положителен корен, който е корен на даденото уравнение. Ако x е корен, то очевидно -x също е корен.

- 4. Отговор. Д. Решение. Отговорът е $\frac{z}{y}-3$. Времето в часове, което е пътувала колата, е $\frac{z}{y}$. Това време трябва да се намали с 12-9=3 ч.
- 5. Отговор. Б. Решение. Възможните стойности са 30° , 60° , 90° и 120° .
- 6. Отговор. В. Решение. Процедурата пресмята в р найголямата стойност на 2^k , по-малка от n, и отпечатва разликата

$$n - p = 2008 - 1024 = 984.$$

- 7. Отговор. Б. Решение. Енергията, необходима за поддържане на 60% от скоростта на светлината в една обиколка на големия кръг е $\frac{15}{5}\cdot 1,2$ от тази за една обиколка в малкия
- кръг. Отчитайки броя обиколки, енергията става $\frac{15}{5} \cdot 1, 2 \cdot \frac{4}{3}$. Увеличението на скоростта води до множителя $\left(\frac{v_2}{v_1}\right)^2 =$
- $\left(\frac{75}{60}\right)^2 = \frac{5^2}{4^2}$. Оттук за търсената енергия окончателно получаваме

$$1, 2 \cdot \frac{15}{5} \cdot 1, 2 \cdot \frac{4}{3} \cdot \frac{5^2}{4^2} = 9 \text{ } \Gamma \text{Bt} \text{H}.$$

8. Отговор. А. Решение. Нека

$$n = 9a + b = 17b + a$$

е произволно объркано число. От равенствата получаваме, че a=2b и n=19b. Трицифрени объркани числа се получават само при $b\in\{6;\ 7;\ 8\}$ – общо три на брой.

- 9. Отговор. Д. Решение. Нека S(n) е сумата от всички цифри на всички естествени числа от 1 до n. Имаме S(9)=45,
- $S(99) = 10(1 + 2 + \dots + 9) + 10S(9) = 900,$

$$S(999) = 100(1 + 2 + \dots + 9) + 10S(99) = 13500.$$

Накрая

$$S(2008) = 2S(999) + 1000 + 9 \cdot 2 + S(8) = 28054.$$

10. Отговор. Б. Решение. Нека x и y са директните пътища от Лондон съответно до Кембридж и Оксфорд. Ако

Оксфорд и Кембридж са свързани със z директни пътя, имаме

$$x + yz = 11$$
$$y + xz = 13$$

y + xz = 13.Като извадим двете равенства, получаваме

$$(x-y)(z-1) = 2,$$

откъдето z е 2 или 3. Само при z=2 получаваме естествени решения на системата.

Отговори и кратки решения 11-12 кл.

1. Отговор. А. Решение. Даденото уравнение има за корен единствено x=0. Наистина, нека $y=\frac{x+1}{|x-1|}$. Тогава

$$y^2 + 2y - 3 = 0,$$

откъдето $y_1 = 1, y_2 = -3.$

$$\frac{x+1}{|x-1|}=1\Longrightarrow x=0;\;\;\frac{x+1}{|x-1|}=-3$$
 няма решение.

- 2. Отговор. Д. Решение. На всяка от 30-те задачи имате по шест възможности: пет букви или празно.
 - 3. Отговор. Д. Решение. За подходящо φ $4 \sin x 3 \cos x = 5 \sin(x + \varphi)$.
- 4. Отговор. Б. Решение. За $L=l_C\times AB$ и M средата на BC от теоремата на Чева имаме $\frac{AL}{LB}\cdot\frac{BM}{MC}\cdot\frac{CQ}{QA}=1.$ Освен това $\frac{AL}{LB}=\frac{b}{a}=\frac{1}{2},$ откъдето CQ=2AQ, т.е. $CQ=\frac{2}{3}AC.$
- 5. Отговор. А. Решение. Лесно се вижда, че триъгълникът е равнобедрен с катет $3\sqrt{2}$. Да означим AX=x, тогава всяка от пресечните точки с хипотенузата я разделя на отсечки $x\sqrt{2}$ и $6-x\sqrt{2}$. От равенството $x\sqrt{2}(6-x\sqrt{2})=x^2$ намираме $x=2\sqrt{2}$. Тогава радиусът на окръжността е $r=3\sqrt{2}-2\sqrt{2}=\sqrt{2}$. Търсеното лице е $\frac{1}{4}\pi r^2-\frac{1}{2}r^2=\frac{1}{2}\pi-1$.
- 6. Отговор. Г. Решение. От $140=a_1+a_2+\cdots+a_{10}=5(a_1+a_{10})=5(a_2+a_9)$ намираме $a_2+a_9=28$. Сега от системата $\begin{vmatrix} a_2+a_9=28\\ a_2a_9=147 \end{vmatrix}$ намираме $a_2=7,\ a_9=21$. Разликата на прогресията е $d=\frac{21-7}{7}=2$, откъдето $a_3=a_2+2$.
- 7. Отговор. Г. Решение. Средно един ученик има 1 лв. и първият и десетият са "симетрично разположени около този лев на разстояние 45 ст." (По модела на задача от египетски папирус).
- 8. Отговор. Г. Решение. Всички трицифрени числа са 900, а благоприятните случаи са 350.
- 9. Отговор. А. Решение. Ако реалното число z=x+y беше рационално, то x=z-y би било рационално, абсурд. Значи z е ирационално. Отговори Б и Γ пропадат при y=0. Отговор В пропада при x=e.
- $10.\,$ Отговор. В. Решение. Умножаваме неравенствата при k=2 и k=3 и получаваме $6 < x^5,$ откъдето следва, че n < 5. Тъй като

$$\sqrt{2} < \sqrt[3]{3} < \sqrt[4]{5} < \sqrt[3]{4}$$

то всяко число $x \in (\sqrt[4]{3}; \sqrt[4]{5})$ е решение на системата неравенства (1-4).