MLSupervised Learning 2 by ambedkar@IISc

- ► Machine Learning Workflow
- ► Different Types of Learning
- ► Classification using Bayes rule
- ► Applications of Machine Learning

Agenda

Machine Learning Workflow

Machine Learning Workflow

Message is to practitioners

There are no Royal roads to build AI systems.

The following can provide some guidance

- Mathematical foundations of machine learning.
- Systematic and scientific experimentation
- Domain knowledge
- ► Perseverance

Machine Learning Workflow

Machine Learning Workflow

Machine Learning Workflow: Data Pre-processing

Data Cleaning

- ► Removing outliers
- ► Filling in missing values
- ▶ Denoising the data

▶ Normalization

- ► Making data zero mean
- Scaling the values

Integration

► Combine data from different sources

Machine Learning Workflow: Feature Extraction

- ► Manually Finding Features
 - ► Using domain expertise
 - ► Finding relevant information
- Automatically Discovering Features
 - ► Features themselves are learnable
 - ► These feature are usually not interpretable

Machine Learning Workflow: Dimensionality Reduction

- ► Finding a compressed representation of data that contains approximately the same information
- ▶ Discard features that are not relevant or highly correlated
- ► Reduces the number of parameters needed in the model
- ► Leads to better generalization performance
- ► Use methods like Principle Component Analysis (PCA)

Machine Learning Workflow: Other Components

Training

- ► Choose a model
- Use observed data to learn parameters of the model
- e.g., learning weights of a neural network

Validation

- Use validation strategies to fine tune model hyperparameters
- ▶ Perform model selection
- e.g., using K-fold cross validation to select a value of regularization parameter

Testing

- ► Compute the performance on unseen data
- ► Diagnose the problems
- ► Deploy the model

On Learning and Different Types

What is Learning?

It is hard to precisely define the learning problem in its full generality, thus let us consider an example:

	Problem 1	Problem 2
Input	Some cat images	
	$\mathbf{C} = \{C_1, C_2, \dots, C_m\}$	An array of numbers
	and dog images	$\mathbf{a} = [a_1, a_2, \dots, a_n]$
	$\mathbf{D} = \{D_1, D_2, \dots, D_n\}$	
Objective	Identify a new image X	Sort a in ascending order
	as cat/dog	Soft a ill ascending order
Approach		Follow a fixed recipe
	?	that works in the same
		way for all arrays a

C

What is Learning? (contd...)

Cat vs Dog	Sorting	
Any approach with hard-coded	Hard-coded "rules" can sort	
"rules" is bound to fail	any array	
Algorithm must rely on previously observed data	Arrays sorted earlier will not affect the sorting of a new array	
A good algorithm will get better as more data is observed	No such notion	
Data Algorithm Patterns/ Learnable Parameters	Data Algorithm Functional Transformation	

Different types Learning Problems

- ► Learn by exploring data
 - Supervised Learning
 - Unsupervised Learning
- ► Learn from data, in a more challenging circumstances
 - Semi-supervised Learning
 - Domain Adaptation
 - Active Learning
- ► Learn by interacting with an environment
 - ► Multi-armed Bandits
 - ► Reinforcement Learning
- Very recent challenging AI paradigms
 - ► Zero/One/Few-shot Learning
 - ► Transfer Learning
 - Multi-agent reinforcement learning

Classification of Learning Approaches

- Supervised Learning Separating spam from normal emails
- Unsupervised Learning Identifying groups in a social network

Reinforcement Learning - Controlled medicine trials

- ► Zero/One/Few-shot Learning Learning from few examples
- ► Transfer Learning Multi-task learning
- ► Semi-supervised Learning Using labeled and unlabeled data
- ▶ etc.

Classification of Learning Approaches

- Supervised Learning Separating spam from normal emails
- Unsupervised Learning Identifying groups in a social network

Reinforcement Learning - Controlled medicine trials

- ► Zero/One/Few-shot Learning Learning from few examples
- ► Transfer Learning Multi-task learning
- ► Semi-supervised Learning Using labeled and unlabeled data
- ▶ etc.

Bayesian Decision Theory

Bayesian Decision Making in Real Life

Let us help a fisherman trying to classifying his catch. For simplicity, let us consider that he has to classify between Sea bass (y_1) and Salmon (y_2) .

▶ It is a two class classification problem

► We will study this in various scenarios

Decision Rule: Based on Prior Knowledge

Fishermen will have some domain or prior knowledge. Suppose, except for this we do not have any other knowledge.

- Suppose, in a particular season there is a more probability of catching sea bass or in a particular area probability of getting Salmon is more.
- Suppose the prior probabilities are $P(y_1)$ and $P(y_2)$. $(P(y_1) + P(y_2) = 1 \& P(y_1), P(y_2) \ge 0)$
- ► Rule (or common sense) says

Decide
$$y_1$$
 if $P(y_1) > P(y_2)$
 y_2 otherwise

Decision Rule: Based on Prior Knowledge (contd...)

How good is this?

▶ It looks fine but for every catch the class label is going to be the same.

► Can we feed the image of of the fish to our model so that it can consider its features before deciding on the label?

Decision Rule: Based on class conditional probabilities

Aim here is to get features of the fish and feed it to our model.

- Suppose we can get features of the fish like measurement of weight (x).
- ▶ We will consider the class conditional densities $P(x|y_i), i = 1, 2$), which are also called likelihood.
- ▶ $P(x|y_i)$ denotes probability of observing a particular feature(s) x provided it has a class label y_i .

Decision Rule: Based on class conditional probabilities (Contd...)

Now the decision Rule:

Decide
$$y_1$$
 if $P(x|y_1) > P(x|y_2)$
 y_2 otherwise

Bayesian way....

Bayesian formulation helps in combining prior knowledge and class conditional probabilities into a single rule by finding posterior distribution $P(y_i|x)$

Decision Rule: Using posterior distribution

Using Bayes rule

$$P(y_i|x) = \frac{P(x|y_i)P(y_i)}{P(x)} i = 1, 2$$

where

$$P(x) = \sum_{i=1,2} P(x|y_i)P(y_i)$$

P(x) is called evidence ${\sf posterior} \ = \ \frac{{\sf likelihood} \ \times \ {\sf prior}}{{\sf evidence}}$

Rule says

$$y_1$$
 if $P(y_1|x) > P(y_2|x)$ y_2 otherwise

Note:

Prior and likelihood are the main factors determining the posterior probability the evidence can be considered as scaling.

Error Analysis

The probability of error is

$$P(error|x) = P(y_1|x)$$
 if we decide y_2
= $P(y_2|x)$ if we decide y_1

The overall probability of error is

$$P(error) = \int_{-\infty}^{+\infty} P(error, x) dx = \int_{-\infty}^{+\infty} P(error|x) P(x) dx$$

The Bayes decision rule says

$$y_1$$
 if $P(y_1|x) > P(y_2|x)$
 y_2 otherwise

So, it minimizes P(error|x). Hence P(error) is also minimized

Bayesian Decision Theory: A General Setting

 $\{y_1, y_2, \dots, y_c\}$: a finite set of classes

 $\{\alpha_1, \alpha_2, \dots, \alpha_a\}$: a finite set of actions

 $\lambda(\alpha_i|y_j)$, $i=1,2,\ldots,a$: denotes a loss function that describes

and $j=1,2,\ldots,c$ loss for taking action α_i when the of

the x value is y_i

 $x \in \mathbb{R}^D$: is a feature vector which is an instance

of random vectors

 $P(x|y_j),\ j=1,2,\ldots,c$: class conditional probability density

function or likelihood

 $P(y_j)$, $j = 1, 2, \dots, c$: prior probabilities

▶ Posterior probabilities $P(y_i|x)$ $j=1,2,\ldots,c$ can be calculated using the Bayes formula $P(y_i|x) = \frac{P(x|y_i)P(y_i)}{P(x)}$

▶ where the evidence $P(x) = \sum_{j=0}^{c} P(x|y_j)P(y_j)$

Bayesian Decision Rule as Risk Minimization

Suppose given $x \in \mathbb{R}^D$, we take action α_i , then the expected loss associated with taking action α_i is

$$R(\alpha_i|x) = \sum_{j=1}^{c} \lambda(\alpha_i|y_j)P(y_j|x)$$

This is called the conditional risk. In continuous form overall risk is

$$R = \int_{x \in \mathbb{R}^D} R(\alpha(x)|x) P(x) dx$$

Bayesian Decision Rule as Risk Minimization

Aim: Find the decision rule that minimizes the overall risk R.

- ► The minimum risk is called the Bayes risk
- ▶ Suppose $\alpha^*(x) = \underset{\alpha(x) = \{\alpha_1, \alpha_2, \dots, \alpha_a\}}{\arg\min} R(\alpha_i | x)$
- ▶ Then

$$R^* = \int_{x \in \mathbb{R}^D} R(\alpha^*(x)|x) P(x) dx$$

is the minimum risk.

Two Class Classification and Likelihood Ratio

- ▶ Let action α_i denotes deciding that true class label is y_1 , α_2 denotes deciding that true class is y_2
- ▶ Let $\lambda_{ij} = \lambda(\alpha_i | \omega_j)$ for i = 1, 2 and j = 1, 2, denotes the loss incurred when the decision is α_i but true class is ω_j
- lacktriangle The conditional risk for any observation $x\in\mathbb{R}^d$ is

$$R(\alpha_1|x) = \lambda_{11}P(y_1|x) + \lambda_{12}P(y_2|x)$$

$$R(\alpha_2|x) = \lambda_{21}P(y_1|x) + \lambda_{22}P(y_2|x)$$

▶ Decision rule is

$$y_1$$
 if $R(\alpha_1|x) < R(\alpha_2|x)$
 y_2 otherwise

Here we are taking decision based on the risk not by minimum posterior probabilities.

Two Class Classification and Likelihood Ratio (contd...)

$$R(\alpha_1|x) < R(\alpha_2|x)$$

$$\lambda_{11}P(\omega_1|x) + \lambda_{12}P(\omega_2|x) < \lambda_{21}P(\omega_1|x) + \lambda_{22}P(\omega_2|x)$$

- We have $\lambda_{21} = \lambda(\alpha_2|\omega_1)$ loss occurred for being wrong
- We have $\lambda_{11} = \lambda(\alpha_1|\omega_1)$ loss occurred for being right
- ▶ Similarly λ_{12} and λ_{22}
- ▶ It is sensible to assume $\lambda_{21} > \lambda_{11}$ and $\lambda_{12} > \lambda_{22}$ as risk in being wrong is greater than for being right.
- ▶ So, $\lambda_{21} \lambda_{11} > 0$ and $\lambda_{12} \lambda_{22} > 0$
- Now by minimum risk strategy we decide ω_1 if $(\lambda_{21} \lambda_{11})P(\omega_1|x) > (\lambda_{12} \lambda_{22})P(\omega_2|x)$ else ω_2 .

Two Class Classification and Likelihood Ratio (contd...)

Now using Bayes theorem we write the previous strategy in terms of prior and likelihood as given below.

$$\begin{split} (\lambda_{21} - \lambda_{11}) P(y_1) P(x|y_1) &> (\lambda_{12} - \lambda_{22}) P(y_2) P(x|y_2) \\ & \Longrightarrow \frac{P(x|y_1)}{P(x|y_2)} > \frac{\lambda_{12} - \lambda_{22}}{\lambda_{21} - \lambda_{11}} \frac{P(y_2)}{P(y_1)} \\ & \Longrightarrow \text{ likelihood ratio} > \text{ quantity independent of } x \\ & \Longrightarrow \psi(x) > c \text{, where } \psi(x) = \frac{P(x|y_1)}{P(x|y_2)} \end{split}$$

Two Class Classification and Likelihood Ratio: Summary

▶ Bayes rule can be interpreted as deciding y_1 if the likelihood ratio exceeds a threshold value that is independent of x.

► Assumption is that we know the class conditional densities.

▶ In practical setting we learn likelihood from the training dataset. That is the threshold c act as prior and $\psi(x)$ act as classifier whose parameters are to be learned from the data.

Classification with 0-1 loss

- \blacktriangleright $\{y_1, y_2, ..., y_c\}$ a finite set of classes
- \blacktriangleright { $\alpha_1, \alpha_2,, \alpha_c$ } a finite set of actions corresponding to $\{y_1, y_2, ..., y_c\}$
- ▶ 0-1 loss is define as

$$\lambda(\alpha_i|y_j) = 0 \text{ if } i = j$$

$$= 1 \text{ if } i \neq j$$

$$i, j = 1, 2, ...c$$

This assigns no loss to a correct decision and assigns unit loss to $=1 \ if \ i \neq j$ wrong decision. Now conditional risk

$$R(\alpha_i|x) = \sum_{j=1}^{c} \lambda(\alpha)i|y_j|P(y_j|x) = \sum_{j\neq i} P(y_j|x) = 1 - P(y_i|x)$$

 \implies If we decide on y_i if $P(y_i|x)$ is maximum

 $\Longrightarrow R(\alpha_i|x)$ is minimum $\Longrightarrow R(x)$ is minimum

Bayes rule in action

Bayes rule in action

Likelihood Ratio and threshold for decision boundary

Applications of Machine Learning

CycleGAN: Image to Image Translation¹

- ► Using video games to train autonomous driving systems
- ▶ More realistic image filtering in smartphone cameras etc.

¹Image Source: https://junyanz.github.io/CycleGAN/

Colorizing a Grayscale Image²

- Converting all old movies into their colored version
- ► Restoring old paintings etc.

 $^{{}^2} Image \ Source: \ \texttt{https://github.com/ImagingLab/Colorizing-with-GANs}$

Neural FaceApp³

- Victim identification during police investigations
- ► Smartphone filters etc.

³Image Source: Google

Original Sentence	Flipped Sentiment	
the film is strictly routine!	the film is full of imagination.	
after watching this movie, I	after seeing this film, I'm a	
felt that disappointed.	fan.	
the acting is uniformly bad	the performances are	
either.	uniformly good.	
this is just awful.	this is pure genius.	

Flipping sentiment of a sentence⁴

- ▶ De-radicalizing posts on Facebook
- ▶ Removing offensive sentences from movie captions

⁴Source: Toward Controlled Generation of Text

Dialogue	Dialogue	
SYSTEM: Hi. This is an Alexa Prize socialbot.		
USER: Hi	USER: Let's talk about movies.	
SYSTEM: Do you have pets?	SYSTEM: What's your favorite movie?	
USER: Yes, I have two rabbits.	USER: star wars movie	
Candidate Responses	Candidate Responses	
BoWFactGenerator: Did you know that male	BoWFactGenerator: Here's an interesting fact. The	
rabbits are called bucks, females are does?	international telephone dialing code for Antarctica is 672.	
GRUQuestionGenerator:	GRUQuestionGenerator: how about your New York City?	
How about the American family of it?	Initiatorbot: How was your day?	
Initiatorbot:	LSTMClassifierMSMarco:	
Do you believe in love at first sight?	A third Anthology film will be released in 2020.	
LSTMClassifierMSMarco:	DualEncoderRedditNews:	
Mar 23, 2017 Two Parts: Learning	Now whisper it to me, one more time bby.	
What to Feed Your Rabbit Learning How to	Alicebot: What did you like about the robots in that movie?	
DualEncoderRedditNews: bye doggie	Elizabot: How does that make you feel?	
Alicebot:	Evi: Star Wars movie a movie in the Star Wars series.	
Hurrah! Two is a good number of rabbits.	VHREDRedditMovies:	
Elizabot: OK, but can you elaborate a bit?	Oh please. Please. Pleeeease. Let this happen.	
VHREDRedditMovies:	VHREDSubtitles: What?	
Hmm. Nope, never heard of it.	BoWWashingtonPost:	
VHREDSubtitles: Would you like to see them?	A much more enjoyable feature than last year's	
BoWWashingtonPost:	old-timer's convention masquerading as a star wars movie.	
I do but I call people with dogs crazy also.	• •	

$Chatbots^5$

- ▶ In personal assistants like Siri, Google Assistant etc.
- ► Challenges include sustaining a long range conversation etc.

⁵Image Source: A Deep Reinforcement Learning Chatbot

Visual Question Answering⁶

- ► Transcribing videos to generate documentation of a procedure
- ► Helping blind people in sensing the world around them

⁶Image Source: Making V in VQA Matter

Speech Generation⁷

- ► Talking in a real world setting
- ► Personal assistants

⁷Image Source: Google

Generating Music⁸

- ► Conditionally generating music
- ► Can we replace the monotonous music at customer cares and personalize it to users?

⁸Image Source: Google

- ► Find topics from billions of documents in completely unsupervised way
- Used for improving search results, categorizing documents, finding trends in literature etc.
- ► The most commonly used algorithm (LDA) is efficient enough to run on a single laptop

Theme	Description	Top words
State bans	State level regulations on abortion	ban, state, govt, bill, ohio
Women's rights	Abortion as women's fun- damental right	women's, rights, pills, reproductive, health- care
Religious views	Church's stance on abortion	jesus, religion, bible, god, faith
Abortion is murder	Perceiving abortion as an act of killing	kill, murder, wrong, life, baby
Planned Par- enthood	organization for reproduc- tive health services	planned, parenthood, defund, pp, clinics

Topic Modeling⁹

Countless other Applications:

- ► Biology and Medicine:
 - Protein interaction prediction
 - ► Automated drug discovery
 - Predicting diseases faster than human experts etc.

Security:

- Applications like face recognition
- ► Detecting fraudulent transactions
- ► Automated video surveillance etc.

Social Sciences

- Spreading ideas in a social network
- ► Friend recommendations
- Analyzing large scale surveys etc.

► Information Extraction

- ▶ Web search
- Question answering
- ► Knowledge graph mining etc.

► Economics and Finance

- ► Algorithmic Trading
- Analyzing purchase patterns and market analysis
- e-commerce applications like product recommendations etc.

▶ Others

- Automated theorem proving
- ► Robotics
- ► Advertising
- And many more...

Summary

- ▶ What involves developing machine learning algorithms?
- ► Classification using Bayes rule: Incorporating prior knowledge
- Yes! Machine learning is very exiting field and it has many applications

References:

► Chapter 2, Pattern Classification by Duda, Hart and Stork