Para la deflexión:

$$\left(\frac{L_5}{1}\frac{qb}{qc}\right)_5 = \frac{P_5}{1} - \frac{F_5}{F_5} + (c)$$

$$\left(-\frac{L^2}{7}\frac{d\pi}{d\pi}\right)_5 = \frac{P_5}{7} - \frac{L_5}{7}(7-\pi)$$

$$\left(-\frac{d\theta}{d\theta}\right)^2 = \left(\frac{c}{b}\right)^2 - u^2 + u^3$$

Hagamos: (-du/2=113-112-113+122

donde $\mu = \frac{r_5}{r_6}$; $r_5 : distancia de méximo acoreamiento.$

$$5\phi = 2 \int_{0}^{\mu} \frac{du}{\sqrt{u^{3} - u^{2} - \mu^{3} + \mu^{2}}} - \pi$$

Ho a and
$$x = \mu$$
 $d\mu = \mu dx$
 $\mu^{3} - \mu^{2} + \mu^{2} = x^{3}\mu^{3} - x^{2}\mu^{2} - \mu^{3} + \mu^{2}$
 $= \mu^{2} \left[\mu(x^{3} - 1) + (1 - x^{2}) \right]$
 $= \mu^{2} \left[(1 + x^{2}) - (1 - x^{3})\mu \right]$
 $= \mu^{2} \left[(1 + x^{2}) - (1 - x^{3})\mu \right]$
 $= \mu^{2} \left[(1 + x^{2}) - (1 - x^{3})\mu \right]$
 $= \mu^{2} \left[(1 + x^{2}) - (1 - x^{3})\mu \right]$
 $= \mu^{2} \left[(1 + x^{2}) - (1 - x^{3})\mu \right]$
 $= \mu^{2} \left[(1 + x^{2}) - (1 - x^{3})\mu \right]$
 $= \mu^{2} \left[(1 + x^{2}) - (1 - x^{3})\mu \right]$
 $= \mu^{2} \left[(1 + x^{2}) - (1 - x^{3})\mu \right]$
 $= \mu^{2} \left[(1 + x^{2}) - (1 - x^{3})\mu \right]$
 $= \mu^{2} \left[(1 + x^{2}) - (1 - x^{3})\mu \right]$
 $= \mu^{2} \left[(1 + x^{2}) - (1 - x^{3})\mu \right]$
 $= \mu^{2} \left[(1 + x^{2}) - (1 - x^{3})\mu \right]$
 $= \mu^{2} \left[(1 + x^{2}) - (1 - x^{3})\mu \right]$
 $= \mu^{2} \left[(1 + x^{2}) - (1 - x^{3})\mu \right]$
 $= \mu^{2} \left[(1 + x^{2}) - (1 - x^{3})\mu \right]$
 $= \mu^{2} \left[(1 + x^{2}) - (1 - x^{3})\mu \right]$
 $= \mu^{2} \left[(1 + x^{2}) - (1 - x^{3})\mu \right]$
 $= \mu^{2} \left[(1 + x^{2}) - (1 - x^{3})\mu \right]$
 $= \mu^{2} \left[(1 + x^{2}) - (1 - x^{3})\mu \right]$
 $= \mu^{2} \left[(1 + x^{2}) - (1 - x^{3})\mu \right]$
 $= \mu^{2} \left[(1 + x^{2}) - (1 - x^{3})\mu \right]$
 $= \mu^{2} \left[(1 + x^{2}) - (1 - x^{3})\mu \right]$
 $= \mu^{2} \left[(1 + x^{2}) - (1 - x^{3})\mu \right]$
 $= \mu^{2} \left[(1 + x^{2}) - (1 - x^{3})\mu \right]$
 $= \mu^{2} \left[(1 + x^{2}) - (1 - x^{3})\mu \right]$
 $= \mu^{2} \left[(1 + x^{2}) - (1 - x^{3})\mu \right]$
 $= \mu^{2} \left[(1 + x^{2}) - (1 - x^{3})\mu \right]$
 $= \mu^{2} \left[(1 + x^{2}) - (1 - x^{3})\mu \right]$
 $= \mu^{2} \left[(1 + x^{2}) - (1 - x^{3})\mu \right]$
 $= \mu^{2} \left[(1 + x^{2}) - (1 - x^{3})\mu \right]$
 $= \mu^{2} \left[(1 + x^{2}) - (1 - x^{3})\mu \right]$
 $= \mu^{2} \left[(1 + x^{2}) - (1 - x^{3})\mu \right]$
 $= \mu^{2} \left[(1 + x^{2}) - (1 - x^{3})\mu \right]$
 $= \mu^{2} \left[(1 + x^{2}) - (1 - x^{3})\mu \right]$
 $= \mu^{2} \left[(1 + x^{2}) - (1 - x^{3})\mu \right]$
 $= \mu^{2} \left[(1 + x^{2}) - (1 - x^{3})\mu \right]$
 $= \mu^{2} \left[(1 + x^{2}) - (1 - x^{3})\mu \right]$
 $= \mu^{2} \left[(1 + x^{2}) - (1 - x^{3})\mu \right]$
 $= \mu^{2} \left[(1 + x^{2}) - (1 - x^{3})\mu \right]$
 $= \mu^{2} \left[(1 + x^{2}) - (1 - x^{3})\mu \right]$
 $= \mu^{2} \left[(1 + x^{2}) - (1 - x^{3})\mu \right]$
 $= \mu^{2} \left[(1 + x^{2}) - (1 - x^{3})\mu \right]$
 $= \mu^{2} \left[(1 + x^{2}) - (1 - x^{2})\mu \right]$
 $= \mu^{2} \left[$

Sp = $T + 2\mu + \frac{3}{4} \left[\frac{5T}{4} - \frac{4J}{3} \mu^{2} - T \right]$ Sp = $2\mu + \frac{3}{4} \left[\frac{5T}{4} - \frac{4J}{3} \mu^{2} \right]$ Sp = $\frac{2T}{4} + \frac{3}{4} \left[\frac{5T}{4} - \frac{4J}{3} \mu^{2} \right]$ Abora, $\mu^{2} - \mu^{3} = \frac{C_{0}^{2}}{10^{2}} = v^{2}$ $\mu^{2} \left(1 - \mu \right) = v^{2}$ $\mu^{2} \left(1 - \mu \right)$

Corrección & 1º orden: Sol : 15 ~ 2,94 km; b ~ 76 ~ 6,96×10 km Sol = 2.2,94 ~ 8,45×10 (rd) = 1".74 6,96×10 km; b~R; ~ 6,98×10 km Sol = 6,42×10 rad = 0", 013 Solelite Hipparcos.