Using the 'tta-conjugate' repo.

Nick Swetlin

Problem Statement.

TTA: Given a source model and unlabeled test data, adapt the source model to fit the test data (produce the lowest error that you can).

Some factors that impact results:

- Loss function that trained source model.
- Loss function used in TTA.

Bolded results mean the best (lowest) average error per specific (source model, TTA loss) combination.

5.2 Results on classifiers trained with cross-entropy

Temperature (T)	Hard PL	Robust PL	MEMO	Conjugate PL (ENT)
×	13.95 (±0.06) 13.95 (±0.06)	$13.97 (\pm 0.04)$ $12.85 (\pm 0.04)$	12.60 (±0.04) 12.51 (±0.01)	13.07 (± 0.05) 12.51 (± 0.03)
×	45.22 (±0.4) 45.22 (±0.4)	$39.80 (\pm 0.18)$ $36.37 (\pm 0.10)$	38.52 (±0.16) 37.38 (±0.06)	41.15 (±0.25) 36.10 (±0.07)
×	45.43 (±0.05) 45.43 (±0.05)	45.68 (±0.01) 45.61 (±0.01)	$48.91(\pm 0.03)$ $48.91(\pm 0.04)$	45.82(±0.01) 45.36(±0.01)
		(T) Hard PL X 13.95 (±0.06) ✓ 13.95 (±0.06) X 45.22 (±0.4) ✓ 45.22 (±0.4) X 45.43 (±0.05)	X 13.95 (±0.06) 13.97 (±0.04) ✓ 13.95 (±0.06) 12.85 (±0.04) X 45.22 (±0.4) 39.80 (±0.18) ✓ 45.22 (±0.4) 36.37 (±0.10) X 45.43 (±0.05) 45.68 (±0.01)	X 13.95 (±0.06) 13.97 (±0.04) 12.60 (±0.04) ✓ 13.95 (±0.06) 12.85 (±0.04) 12.51 (±0.01) X 45.22 (±0.4) 39.80 (±0.18) 38.52 (±0.16) ✓ 45.22 (±0.4) 36.37 (±0.10) 37.38 (±0.06) X 45.43 (±0.05) 45.68 (±0.01) 48.91(±0.03)

Bolded results mean the best (lowest) average error per specific (source model, TTA loss) combination.

1. Source Model Loss (table)

5.2 Results on classifiers trained with cross-entropy

Temperature (T)	Hard PL	Robust PL	MEMO	Conjugate PL (ENT)
×	$13.95 (\pm 0.06)$ $13.95 (\pm 0.06)$	$13.97 (\pm 0.04)$ $12.85 (\pm 0.04)$	12.60 (±0.04) 12.51 (±0.01)	13.07 (±0.05) 12.51 (±0.03)
×	45.22 (±0.4) 45.22 (±0.4)	$39.80 (\pm 0.18)$ $36.37 (\pm 0.10)$	38.52 (±0.16) 37.38 (±0.06)	41.15 (±0.25) 36.10 (±0.07)
X ✓	45.43 (±0.05) 45.43 (±0.05)	45.68 (±0.01) 45.61 (±0.01)	$48.91(\pm 0.03)$ $48.91(\pm 0.04)$	45.82(±0.01) 45.36(±0.01)
		(T) Hard PL X 13.95 (±0.06) ✓ 13.95 (±0.06) X 45.22 (±0.4) ✓ 45.22 (±0.4) X 45.43 (±0.05)	(T) Hard PL Robust PL X 13.95 (±0.06) 13.97 (±0.04) ✓ 13.95 (±0.06) 12.85 (±0.04) X 45.22 (±0.4) 39.80 (±0.18) ✓ 45.22 (±0.4) 36.37 (±0.10) X 45.43 (±0.05) 45.68 (±0.01)	X 13.95 (±0.06) 13.97 (±0.04) 12.60 (±0.04) ✓ 13.95 (±0.06) 12.85 (±0.04) 12.51 (±0.01) X 45.22 (±0.4) 39.80 (±0.18) 38.52 (±0.16) ✓ 45.22 (±0.4) 36.37 (±0.10) 37.38 (±0.06) X 45.43 (±0.05) 45.68 (±0.01) 48.91(±0.03)

Bolded results mean the best (lowest) average error per specific (source model, TTA loss) combination.

1. Source Model Loss (table)

5.2 Results on classifiers trained with cross-entropy

2. Dataset (row)

Dataset	Temperature (T)	Hard PL	Robust PL	МЕМО	Conjugate PL (ENT)
CIFAR-10-C	×	13.95 (±0.06) 13.95 (±0.06)	13.97 (±0.04) 12.85 (±0.04)	12.60 (±0.04) 12.51 (±0.01)	13.07 (±0.05) 12.51 (±0.03)
CIFAR-100-C	×	45.22 (±0.4) 45.22 (±0.4)	39.80 (±0.18) 36.37 (±0.10)	38.52 (±0.16) 37.38 (±0.06)	41.15 (±0.25) 36.10 (±0.07)
ImageNet-C	×	45.43 (±0.05) 45.43 (±0.05)	45.68 (±0.01) 45.61 (±0.01)	$48.91(\pm 0.03)$ $48.91(\pm 0.04)$	45.82(±0.01) 45.36(±0.01)

Bolded results mean the best (lowest) average error per specific (source model, TTA loss) combination.

1. Source Model Loss (table)

5.2 Results on classifiers trained with cross-entropy

3. Loss type used for TTA (column)

Dataset	Temperature (T)	Hard PL	Robust PL	МЕМО	Conjugate PL (ENT)
CIFAR-10-C	X	$13.95 (\pm 0.06)$ $13.95 (\pm 0.06)$	$13.97 (\pm 0.04)$ $12.85 (\pm 0.04)$	12.60 (± 0.04) 12.51 (± 0.01)	13.07 (±0.05) 12.51 (±0.03)
CIFAR-100-C	×	45.22 (±0.4) 45.22 (±0.4)	$39.80 (\pm 0.18)$ $36.37 (\pm 0.10)$	38.52 (±0.16) 37.38 (±0.06)	41.15 (±0.25) 36.10 (±0.07)
ImageNet-C	×	45.43 (±0.05) 45.43 (±0.05)	45.68 (±0.01) 45.61 (±0.01)	$48.91(\pm 0.03)$ $48.91(\pm 0.04)$	45.82(±0.01) 45.36(±0.01)

Bolded results mean the best (lowest) average error per specific (source model, TTA loss) combination.

1. Source Model Loss (table)

5.2 Results on classifiers trained with cross-entropy

2.	Dataset	(row)
----	---------	-------

3. Loss type used for TTA (column)

Dataset	Temperature (T)	Hard PL	Robust PL	МЕМО	Conjugate PL (ENT)
CIFAR-10-C	X	$13.95 (\pm 0.06)$ $13.95 (\pm 0.06)$	$13.97 (\pm 0.04)$ $12.85 (\pm 0.04)$	12.60 (±0.04) 12.51 (±0.01)	
CIFAR-100-C	×	45.22 (±0.4) 45.22 (±0.4)	$39.80 (\pm 0.18)$ $36.37 (\pm 0.10)$	38.52 (±0.16) 37.38 (±0.06)	
ImageNet-C	×	45.43 (±0.05) 45.43 (±0.05)	45.68 (±0.01) 45.61 (±0.01)	48.91(±0.03) 48.91(±0.04)	45.82(±0.01) 45.36(±0.01)

Results!

How To Recreate The Experiment

Workflow:

- Edit config files (.yaml)
- Run commands!

Workflow - Config Files

1. Source Model Loss (table)

2. Dataset (row)

3. Loss type used for TTA (column)

*Results!

```
*make sure SAVE_PATH and CKPT_PATH are the same location
```

```
source_train.yaml
     MODEL:
            : cross-entropy
       SAVE PATH: saved models/pretrained/nick.pth
       EPS: 6.0
   cifar.yaml
    MODEL:
       ADAPTATION: tent
      ARCH: ResNet-18
      CKPT PATH: saved models/pretrained/nick.pth
       EPS: 6.0
    TEST: ...
    CORRUPTION: ...
38
    OPTIM:
      METHOD: SGD
      ADAPT: conjugate
      STEPS: 1
       BETA: 0.9
      LR: 1e-3
      TEMP: 1.0
       WD: 0.
```

Workflow - Commands

1. Source Model Loss (table)

2. Dataset (row)

3. Loss type used for TTA (column)

Results!

*These commands might differ depending on your source dataset, consult the <u>github</u> for more info.

My Experience

Ideal Situation: Run in parallel on DSMLP! By far the quicker option!

My Situation: Run locally on laptop overnight. It's a long job (10+ hours for single GPU)

```
PROBE_LAYERS: 1
Files already downloaded and verified
Files already downloaded and verified
C:\Users\nicks\anaconda3\lib\site-packages\torch\nn\_reduction.py:42:
deprecated, please use reduction='none' instead.
   warnings.warn(warning.format(ret))
Epoch : 0 : Acc : 0.4521999955177307
Epoch : 1 : Acc : 0.510699987411499
Epoch : 2 : Acc : 0.6006999611854553
```

Running gradient descent...

```
[24/10/11 11:28:59] [cifar tta test.py: 218]: error % [gaussian noise5]: 31.20%
Meta test begin!
[24/10/11 11:29:49] [cifar tta test.py: 218]: error % [shot noise5]: 29.61%
Meta test begin!
[24/10/11 11:30:40] [cifar tta test.py: 218]: error % [impulse noise5]: 37.25%
Meta test begin!
[24/10/11 11:31:30] [cifar tta test.py: 218]: error % [defocus blur5]: 23.48%
Meta test begin!
[24/10/11 11:32:21] [cifar tta test.py: 218]: error % [glass blur5]: 37.08%
Meta test begin!
[24/10/11 11:33:13] [cifar_tta_test.py: 218]: error % [motion_blur5]: 29.19%
Meta test begin!
[24/10/11 11:34:04] [cifar tta test.py: 218]: error % [zoom blur5]: 22.25%
Meta test begin!
[24/10/11 11:34:55] [cifar tta test.py: 218]: error % [snow5]: 31.65%
Meta test begin!
[24/10/11 11:35:47] [cifar tta test.py: 218]: error % [frost5]: 29.94%
Meta test begin!
[24/10/11 11:36:39] [cifar tta test.py: 218]: error % [fog5]: 32.12%
Meta test begin!
[24/10/11 11:37:31] [cifar tta test.py: 218]: error % [brightness5]: 23.04%
Meta test begin!
[24/10/11 11:38:23] [cifar tta test.py: 218]: error % [contrast5]: 31.12%
Meta test begin!
[24/10/11 11:39:15] [cifar tta test.py: 218]: error % [elastic transform5]: 30.89%
Meta test begin!
[24/10/11 11:40:07] [cifar tta test.py: 218]: error % [pixelate5]: 24.98%
Meta test begin!
[24/10/11 11:41:00] [cifar tta test.py: 218]: error % [jpeg compression5]: 27.03%
Meta test begin!
```

Meta test begin!

Average Error on Severity 5 Distribution Shifts:

Significantly better than chance alone after only ~10 iterations of grad. descent.

29.83%

Comparing To The Paper.

Paper produced significantly better results due to:

- More iterations of grad. Descent!
- Temperature hyperparameter

5.2 Results on classifiers trained with cross-entropy

29.83 vs 12.51 percent error.

Dataset	Temperature (T)	Hard PL	Robust PL	MEMO Conjugate PL (ENT)
CIFAR-10-C	×	$13.95 (\pm 0.06)$ $13.95 (\pm 0.06)$	$13.97 (\pm 0.04)$ $12.85 (\pm 0.04)$	12.60 (±0.04) 13.07 (±0.05) 12.51 (±0.01) 12.51 (±0.03)
CIFAR-100-C	×	45.22 (±0.4) 45.22 (±0.4)	$39.80 (\pm 0.18)$ $36.37 (\pm 0.10)$	38.52 (±0.16) 41.15 (±0.25) 37.38 (±0.06) 36.10 (±0.07)
ImageNet-C	×	45.43 (±0.05) 45.43 (±0.05)	$45.68 (\pm 0.01)$ $45.61 (\pm 0.01)$	48.91(±0.03) 45.82(±0.01) 48.91(±0.04) 45.36 (±0.01)

Takeaways

- You should run this code.
 - Teaches terminal behavior with machine learning.
 - Familiarizes PyTorch architecture.
 - Live observation of each step.
- Always preferable to <u>run on DSMLP</u>, <u>background Kubernetes pod with multiple GPUS</u>.
 - Much faster than locally.
 - If you'd like to run it locally, ask me for tweaks I made.
- Commands are listed openly on the <u>github</u> for any table entry from the experiment you want to recreate.