

Intelligent Referral Management
System
AI-Powered Referral Quality
Assessment Platform

Overview

The Intelligent Referral Management System uses machine learning to assess referrer quality, predict lifetime value, detect fraud, and optimize incentive distribution in real-time. The system processes behavioral patterns to classify users and make automated decisions about rewards and engagement strategies.

Four Pillars of Intelligence

The system employs four specialized machine learning models, each answering a specific question:

- 1. Quality Scorer "How valuable is this referrer?"
 - Analyzes 25 behavioral patterns to generate a quality score (0-100)
 - Considers factors like referral success rate, referee engagement, and transaction patterns
 - Enables instant prioritization among thousands of referrers
- 2. **Persona Classifier** "What type of referrer are they?"
 - Identifies behavioral patterns to classify users into four personas:
 - o **Transactional (55.7%)**: Responds to campaigns and incentives
 - o Casual (26.9%): Sporadic, low-engagement activity
 - o Risk (17.4%): Shows suspicious or fraudulent patterns
 - o **Power Influencer (<1%):** Rare users with viral potential
 - Enables personalized engagement strategies for each type
- 3. **Lifetime Value Predictor** "What's the monetary value of their referrals?"
 - Predicts the total revenue referees will generate over time
 - Converts behavioral signals into rupee values
 - Guides incentive budget allocation with clear ROI targets
- 4. Anomaly Detector "Can we trust this activity?"
 - Identifies unusual patterns both negative (fraud) and positive (viral moments)
 - Catches sophisticated fraud attempts in real-time
 - Discovers hidden influencers showing sudden growth

Persona Distribution

- Transactional Referrer (55.7%): Campaign-responsive users
- Casual Referrer (26.9%): Low-engagement users

- Risk Referrer (17.4%): Suspicious pattern users
- Power Influencer (<1%): High-value viral users

Model Ensemble Approach

All four models work together to provide a comprehensive assessment:

- Individual models provide specific insights
- · Combined analysis enables nuanced decision-making
- Cross-validation prevents single-point failures
- Real-time scoring enables instant actions

System Architecture

Multi-Agent AI Architecture

Agent Functions:

- Analysis Agent: Processes incoming data and orchestrates ML model calls based on context.
- **Decision Agent**: Interprets model outputs using Azure AI services to make nuanced business decisions.
- Monitoring Agent: Continuously watches for patterns, anomalies, and opportunities across all users.
- **Optimization Agent**: Learns from outcomes to improve future decisions and adjust strategies.

Technology Stack

- Microsoft Fabric: ML model endpoints and notebooks, data storage
- Azure Al Foundry: Intelligent orchestration and decision-making

- Azure App Service: Web application hosting
- Power BI Embedded: Analytics and visualization

Processing Pipeline:

- Data ingestion via REST APIs
- Real-time feature calculation
- Parallel ML model inference
- Al-powered decision synthesis
- Automated action execution

Key Capabilities

- Sub-second referrer scoring
- Instant fraud detection
- Dynamic incentive calculation
- Continuous monitoring across all users

Automated Decision Framework

Scenario	Model Outputs	System Action
High-Value Referrer	Score: 80+, LTV: ₹10,000+, Anomaly: Normal	Premium incentives, VIP treatment
Fraud Detection	Score: <20, Anomaly: Detected, Risk Persona	Account freeze, zero incentives
Emerging Influencer	Rising score, High LTV, Positive anomaly	Fast-track benefits, increased rewards
Standard User	Score: 40-60, Average LTV, Normal	Standard incentives, regular monitoring

Incentive Optimization Matrix

Referee Quality	Average LTV	Incentive Rate	Typical Reward
Low	<₹1,000	5%	₹50

Average	₹1,000-3,000	8%	₹200
Good	₹3,000-5,000	12%	₹600
Premium	>₹5,000	15%	₹1,500+

Implementation Methodology

- Phase 1: Model Development
 - Historical data analysis
 - o Feature engineering
 - o Model training and validation
 - o Endpoint deployment

• Phase 2: System Integration

- o API gateway setup
- o Agent orchestration configuration
- Database schema implementation
- o Frontend dashboard development

• Phase 3: Optimization

- o Performance monitoring
- o Model retraining cycles
- o A/B testing frameworks
- o Continuous improvement pipeline

Performance Metrics

Operational Metrics

Processing Capacity: 10,000+ referrers/day

Response Time: <200ms per assessment

Model Accuracy: 87-92% across models

• System Uptime: 99.9% availability

Business Impact

• Fraud Prevention: 95% reduction in fraudulent payouts

• Quality Improvement: 3.5x increase in referee LTV

- Cost Efficiency: 40% reduction in incentive waste
- ROI: 8-10x return on incentive investment

Future Enhancements

- Predictive Campaign Optimization: Proactive referrer activation
- Cross-Platform Integration: Mobile SDK development
- Advanced Personalization: Individual-level incentive tuning
- Expanded Analytics: Deeper behavioral insights
- Geographic Optimization: Region-specific strategies

Summary

The Intelligent Referral Management System combines four specialized ML models with multiagent AI orchestration to deliver automated, intelligent referral program management. Built on Microsoft Azure's enterprise infrastructure, the platform provides real-time assessment, fraud prevention, and incentive optimization at scale.

Key differentiators include ensemble model approach, autonomous decision-making, and continuous self-optimization, resulting in significant ROI improvement and operational efficiency gains.