1 Constant Coefficient Systems. Fourier Syntheis

1.1 The Fourier transform

Definition 1.1.

$$\mathscr{S} = \{ u \in C^{\infty}(\mathbb{R}^d) : \forall \alpha, \beta, \sup_{x \in \mathbb{R}^d} |x^{\alpha} \partial_x^{\beta} u(x)| \le C_{\alpha,\beta} \}$$
 (1)

this space is topology space with topology defined by semi-norm $|u|_n = \sup_{x \in \mathbb{R}^d, \alpha + \beta \le n} |x^{\alpha} \partial_x^{\beta} u(x)|$ **Definition 1.2.** $\forall u \in \mathscr{S}(\mathbb{R}^d), T \in \mathscr{S}'(\mathbb{R}^d), x, \xi \in \mathbb{R}^d$

$$(\mathscr{F}u)(\xi) = \widehat{u}(\xi) = \int e^{-ix\cdot\xi}u(x)\,\mathrm{d}x\tag{2}$$

$$(\mathscr{F}^{-1}u)(x) = (2\pi)^{-d} \int e^{ix\cdot\xi} u(\xi) \,\mathrm{d}\xi \tag{3}$$

$$(\mathscr{F}T, u) = (T, \mathscr{F}u) \tag{4}$$

Theorem 1.1. 1. \mathscr{F} is homeomorphism on \mathscr{S} or \mathscr{S}' , if $u(x) \in \mathscr{S}$

$$u(x) = (2\pi)^{-d} \int e^{ix \cdot \xi} \widehat{u}(\xi) \, \mathrm{d}x$$

2. (Plancherel [?]) $\forall u \in L^2$, then

$$||u||_{L^{2}}^{2} = (2\pi)^{-d}||\widehat{u}||_{L^{2}}^{2}$$
(5)

so Fourier transform is isometric(almost) on L^2

3. $\forall u \in \mathscr{S} \text{ or } \mathscr{S}'$

$$\widehat{\partial_x^{\alpha} u}(\xi) = (i\xi)^{\alpha} \widehat{u}(\xi) \tag{6}$$

$$\partial_{\varepsilon}^{\alpha} \widehat{u}(\xi) = \widehat{(ix)^{\alpha} u}(\xi) \tag{7}$$

Definition 1.3.

$$H^{s} = \{ u \in \mathscr{S}' : ||\lambda^{s} \widehat{u}||_{L^{2}} < \infty \}$$
(8)

where $\lambda(\xi) = (1 + |\xi|^2)^{1/2}$

1.2 The method

1.2.1 General method example

this section we consider first order about t and constant coefficient systems:

$$\begin{cases} \partial_t u + A(\partial_x)u = f & on \quad [0, T] \times \mathbb{R}^d \\ u|_{t=0} = h & on \quad \mathbb{R}^d \end{cases}$$
(9)

where $A(\partial_x) = \sum_{\alpha} A_{\alpha} \partial_x^{\alpha} u$. u(t,x) is function from $[0,T] \times \mathbb{R}^d$ to \mathbb{R}^N and A_{α} is $N \times N$ order constant matrix.

Theorem 1.2. $\forall u \in C^0([0,T]; H^s(\mathbb{R}^d)), f \in L^1([0,T]; H^s(\mathbb{R}^d))$ then system on Fourier side is

$$\begin{cases} \partial_t \widehat{u} + A(i\xi)\widehat{u} = \widehat{f} & on \quad [0,T] \times \mathbb{R}^d \\ \widehat{u}|_{t=0} = \widehat{h} & on \quad \mathbb{R}^d \end{cases}$$
(10)

where $A(i\xi) = \sum_{\alpha} A_{\alpha}(i\xi)^{\alpha}$.

this first order ordinary differential equation has solution

$$\widehat{u}(t,\xi) = e^{-tA(i\xi)}\widehat{h}(\xi) + \int_0^t e^{(t'-t)A(i\xi)}\widehat{f}(t',\xi) dt'$$
(11)

Theorem 1.3. if exist function C(t) bounded on any compact set [0,T], and $\forall t \geq 0, \xi \in \mathbb{R}^d, |e^{-tA(i\xi)}| \leq C(t)$, then:

1. $\forall h \in H^s, f \in L^1([0,T];H^s)$, the solution u(t,x) for system is in $C^0([0,T];H^s)$, with

$$||u(t)||_{H^s} \le C(t)||h||_{H^s} + \int_0^t C(t-t')||f(t')||_{H^s} dt'$$
 (12)

2. $\forall h \in L^2, f \in L^1([0,T];L^2)$, the solution u(t,x) for system is in $C^0([0,T];L^2)$, with

$$||u(t)||_{L^2} \le C(t)||h||_{L^2} + \int_0^t C(t-t')||f(t')||_{L^2} dt'$$
 (13)

1.2.2 Specific examples

this section is use general method(that is Fourier transform and analysis solution) just learned to solve particular three eq.

Theorem 1.4 (heat equation). if exist function C(t) bounded on any compact set [0,T], and $\forall t \geq 0, \xi \in \mathbb{R}^d, |e^{-tA(i\xi)}| \leq C(t)$, then heat eq:

$$\partial_t u - \triangle_x u = f, u|_{t=0} = h \tag{14}$$

has solution $u \in C^0([0,T];H^s)$ for all $h \in H^s, f \in L^1([0,T];H^s)$

Theorem 1.5 (Schrödinger equation).

$$\partial_t u - i \triangle_x u = f, u|_{t=0} = h \tag{15}$$

has solution $u \in C^0([0,T]; H^s)$ whenever $h \in H^s, f \in L^1([0,T]; H^s)$

Theorem 1.6 (wave eqution). if $h_0 \in H^{s+1}$, $h_1 \in H^s$, $f \in L^1([0,T];H^s)$, then wave eq

$$\partial_t^2 u - \triangle_x u = f, u|_{t=0} = h_0, \partial_t u|_{t=0} = h_1$$
(16)

has solution $u \in C^0([0,T];H^{s+1})$, and $\partial_t u, \partial_{x_j} u \in C^0([0,T];H^s)$, with

$$||u(t)||_{H^{s+1}} \le ||h_0||_{H^{s+1}} + 2(1+t)||h_1||_{H^s} + 2(1+t)\int_0^t ||f(t')||_{H^s} dt'$$
(17)

$$||\partial_t u(t)||_{H^s}, ||\partial_{x_j} u(t)||_{H^s} \le ||h_0||_{H^{s+1}} + ||h_1||_{H^s} + \int_0^t ||f(t')||_{H^s} \, \mathrm{d}t'$$
(18)

1.2.3 more about wave equation

Definition 1.4. $C(t,\xi) = \cos(t|\xi|), S(t,\xi) = \frac{\sin(t\xi)}{\xi|}$

1.3 Hyperbolicity for first order system

in this section we consider more simpler system, first order system about t and x

$$\begin{cases} \partial_t u + \sum_{j=1}^d A_j \partial_{x_j} u = f & on \quad [0, T] \times \mathbb{R}^d \\ u|_{t=0} = h & on \quad \mathbb{R}^d \end{cases}$$
(19)

where A_j is $N \times N$ constant matrix, and u(t,x) is N-valued function.

this eq is special form of theorem1.2, so use (11), we can get this simper system's solution on Fourier side:

$$\widehat{u}(t,\xi) = e^{-itA(\xi)}\widehat{h}(\xi) + \int_0^t e^{i(t'-t)A(\xi)}\widehat{f}(t',\xi) \,\mathrm{d}t'$$
(20)

where $A(\xi) = \sum_{j=1}^{d} \xi_j A_j$

from section 1.2 we see $e^{itA(\xi)}$ play important role in whether solution exist on sobolev space. **Definition 1.5.** if first order system satisfy $\forall \xi \in \mathbb{R}^d, |e^{iA(\xi)}| \leq C|\xi|^k$, for some k > 0, then this system is hyperbolic.

Definition 1.6. if first order system satisfy $\forall \xi \in \mathbb{R}^d, |e^{iA(\xi)}| \leq C$, then this system is strongly hyperbolic.

Lemma 1.7. if
$$\forall |x_0| = 1$$
, $f(\mu x_0) = O(\mu^k)$, as $k \to \infty$, then $f(x) = O(|x|^k)$, as $|x| \to \infty$

Lemma 1.8. $\lambda(\xi)$ is eigenvalue for matrix $A(\xi) = \sum_j \xi_j A_j$. then $\lambda(\xi) = O(|\xi|)$, as $|\xi| \to \infty$

Lemma 1.9. J is m-order Jordan block with parameter λ , then when $k \geq m$

 $J^{k} = \begin{pmatrix} \lambda^{k} & {k \choose 1} \lambda^{k-1} & \cdots & {k \choose m-1} \lambda^{k-m+1} \\ \lambda^{k} & \ddots & {k \choose m-2} \lambda^{k-m+2} \\ & \ddots & \vdots \\ & & \lambda^{k} \end{pmatrix}$ (21)

 $e^{J} = \begin{pmatrix} e^{\lambda} & e^{\lambda} & \cdots & \frac{1}{(m-1)!} e^{\lambda} \\ & \ddots & \ddots & \vdots \\ & & e^{\lambda} & e^{\lambda} \\ & & & e^{\lambda} \end{pmatrix}$ (22)

Theorem 1.10. system is hyperbolic, then for all $\xi \in \mathbb{R}^d$, $A(\xi)$ only have real eigenvalue.

Theorem 1.11 (not proved). if all eigenvalue of $A(\xi)$ are real and semi-simple, then

$$A(\xi) = \sum_{j=1}^{N} \lambda_j(\xi) \Pi_j(\xi)$$
(23)

where $\lambda_j(\xi)$ are eigenvalues, and $\Pi_j(\xi)$ are eigenprojectors which can defined by

$$\lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} e^{-is\lambda} e^{isA(\xi)} \, \mathrm{d}s \tag{24}$$

Theorem 1.12. system is strongly hyperbolic is equals to

- 1. $\forall \xi \in \mathbb{R}^d$, then eigenvalue of $A(\xi)$ is real and simisimple.
- 2. there exist constant C, such that, for all $\xi \in \mathbb{R}^d$, the eigenprojectors of $A(\xi)$ is bounded by C uniformly.

Definition 1.7. 1. system is hyperbolic symmetric if $\forall j, A_j$ is self adjoint(Hermitian).

2. system is hyperbolic symmtriable if exist positive define matrix S, such that $\forall j, SA_j$ is self adjoint.

Theorem 1.13. hyperbolic symmtriable system is strongly hyperbolic

10

Definition 1.8. system is smooth diagonalizable if $A(\xi)$ can diagonalizable and exist real valued eigenvalues $\lambda_j(\xi)$ and eigenprojectors $\Pi_j(\xi)$ which are analytic on unit sphere, such that $A(\xi) = \sum_j \lambda_j(\xi) \Pi_j(\xi)$

Theorem 1.14. smooth diagonalizable system is strongly hyperbolic.

Definition 1.9. system is strictly hyperbolic if $\forall \xi \neq 0, A(\xi)$ has N distinct real eigenvalues. **Theorem 1.15** (perturbation theory,not proved). if matrix's eigenvalues have local constant

multiplicity, then the eigenvalues and eigenprojectors are both smooth (real analytic)

Theorem 1.16. strictly hyperbolic system is smooth diagonalizable

Remark 1.1. although strongly hyperbolic is like strong condition, but preview definition all belong to strongly hyperbolic.

Theorem 1.17. system is strongly hyperbolic then for all $h \in H^s$, $f \in L^1([0,T]; H^s)$, the solution $u \in C^0([0,T]; H^s)$ with

$$||u(t)||_{H^s} \le C||h||_{H^s} + C\int_0^t ||f(t')||_{H^s} dt'$$
 (25)