MTH 483 Date: April 27, 2018

Proof of Cauchy's theorem (out verison)

Thm: If $f:\Omega\to\mathbb{C}$ is a holomorphism, and γ_0,γ_1 are Ω -homotopic closed curves in Ω , then

$$\int_{\gamma_0} f = \int_{\gamma_1} f$$

Proof under additional hypotheses:

- 1. Assume f' is continuous
- 2. Assume that homotopy h has continuous second partial derivatives.

Recall that γ_0, γ_1 parametrized by interval [0,1] and $h:[0,1]\times[0,1]\to\Omega$, the homotopy map is such that $h(t,0)=\gamma_0(t),\ h(t,1)=\gamma_2(t)$ and h(0,s)=h(1,s). Think of γ_s as the continuously varying family of curves.

Define $I(s) = \int_{\gamma_s} f$. So $I(0) = \int_{\gamma_0} f$ and $I(1) = \int_{\gamma_1} f$. So we want to show I(0) = I(1). To show this, it suffices to show that $I'(s) = 0 \quad \forall s$.

 $I'(s) = \frac{d}{ds} \int_0^1 f(\gamma_s(t)) \gamma_s'(t) dt$. When we switch to use h(t,s) instead, our derivatives become partials.

$$I'(s) = \frac{\partial}{\partial s} \int_0^1 f(h(t,s)) \frac{\partial}{\partial t} h(t,s) dt$$

$$= \int_0^1 \frac{\partial}{\partial s} \Big[f(h) \frac{\partial}{\partial t} h \Big] dt$$

$$= \int_0^1 f'(h(t,s)) \frac{\partial h}{\partial s} \frac{\partial h}{\partial t} + f(h(t,s)) \frac{\partial^2 h}{\partial s \partial t} dt$$

$$= \int_0^1 f'(h(t,s)) \frac{\partial h}{\partial t} \frac{\partial h}{\partial s} + f(h(t,s)) \frac{\partial^2 h}{\partial t \partial s} dt$$

$$= \int_0^1 \frac{\partial}{\partial t} \Big[f(h(t,s)) \frac{\partial h}{\partial s} \Big] dt \quad \text{product rule}$$

$$= f(h(1,s)) \frac{\partial h}{\partial s} (1,s) - f(h(0,s)) \frac{\partial h}{\partial s} (0,s)$$

$$= 0 \quad \text{since} \quad h(0,s) = h(1,s) \forall s$$
thus $I'(s) = 0 \Rightarrow I(s) = \text{const } \forall s$

Def we say γ is contractible (or null-homotopic) in Ω if γ is Ω -homotopic to a constant curve (i.e. a point).

Consequence: If γ is null-homotopic then,

$$\int_{\gamma} f = \int_{0}^{1} f(\gamma(t))\gamma'(t)dt = \int_{0}^{1} f(\gamma(t))0dt = 0$$

Think – integral of a point is always zero.

Ex: $\int_{|z-2|-1} Log(z) dz = 0$. Since Log(z) is holomorphic on $\Omega = \mathbb{C} \setminus (-\infty, 0]$ and the curve |z-2| = 1 is null-homotopic in Ω by inspection.

Def if f is entire and γ is closed, then $\int_{\gamma} f = 0$.

p.f. Every closed curve is null-homotopic in \mathbb{C} . (Straight line homotopy) *Note:* if $\Omega \to \mathbb{C}$ is a region in which every closed curve is null-homotopic in Ω , we say Ω is **Simply connected** (no holes). \mathbb{C} is simply connected. $\mathbb{C} \setminus \{0\}$ is not. Recall that we proved $\int_{|z|=1} \frac{1}{z} dz = 2\pi i \neq 0$ when $\Omega = \mathbb{C} \setminus \{0\}$ which does not agree with what Cauchy's theorem would give if we included the origin.

More generally, if Ω is simply-connected, then $\int_{\gamma} f = 0 \,\forall$ closed curves γ and holomorphisms f.

Ex: $\int_{|z|=1} \frac{1}{z^2-2z} dz = \int_{|z|=1} -\frac{1}{2z} + \frac{1}{2} \frac{1}{z-2} dz = -\frac{1}{2} 2\pi i$ Since we know the value of the first integral and the second is null-homotopic on the unit circle (the hole is at z=2). We did this using partial fraction decomposition.

Cauchy's Integral Formula

Theorem(Cauchy's Integral Formula): Let $\Omega \subseteq \mathbb{C}$ be a region and suppose the closed disc with center w and radius R, $D_R(w) \subseteq \Omega$, i.e. $\{z : |z - w| \leq R\} \subseteq \Omega$. Then if $f : \Omega \to \mathbb{C}$ is holomorphic, we have

$$f(w) = \frac{1}{2\pi i} \int_{|z-w|=R} \frac{f(z)}{z-w} dz$$