```
In []: #SVM(Support Vectors Machine)
>SVC
>SVR

#Objective:cluster similar data points in such a manner that a decision boundary(hyper p
#can be used to separate classes.

#Types of SVM
>Linear SVM
>Non Linear SVM
>Non Linear SVM
In [1]: import pandas as pd

In [2]: df=pd.read_csv("f:/dataset/classification/fruits.csv")
df
```

	Q.1				
Out[2]:		diameter	weight	FruitName	
	0	3.0	30	Banana	
	1	6.0	100	Apple	
	2	6.1	95	Apple	
	3	3.2	35	Banana	
	4	5.5	80	Apple	
	5	7.1	120	Banana	
	6	2.5	60	Banana	
	7	2.3	100	Banana	
	8	4.8	70	Apple	
	9	4.8	79	Apple	
	10	5.8	120	Apple	
	11	2.6	85	Banana	
	12	6.0	110	Apple	
	13	6.3	95	Apple	
	14	3.0	40	Banana	
	15	3.5	25	Banana	
	16	5.5	100	Apple	
	17	7.5	120	Apple	
	18	2.5	50	Banana	
	19	2.7	40	Banana	
	20	4.8	90	Apple	
	21	5.8	90	Apple	

```
In [3]: X=df.iloc[:,:-1].values
y=df.iloc[:,-1].values
```

In [4]: **from** sklearn.svm **import** SVC

```
model=SVC(kernel='linear')
 In [5]:
         model.fit(X,y)
Out[5]:
                  SVC
         SVC(kernel='linear')
         from sklearn.model selection import cross val score
 In [6]:
         cross val score(model, X, y, cv=5) .mean()
In [7]:
         0.96
Out[7]:
 In [8]:
         import matplotlib.pyplot as plt
         import seaborn as sb
         sb.scatterplot(x=X[:,0],y=X[:,1],hue=y)
In [11]:
         plt.show()
          120
                     Banana
                     Apple
          100
           80
           60
           40
                                                5
                                                                        7
                                     4
                                                            6
In [12]:
         df=pd.read csv("f:/dataset/classification/fruits svc.csv")
         X=df.iloc[:,:-1].values
         y=df.iloc[:,-1].values
         model=SVC(kernel='linear')
         cross_val_score(model,X,y,cv=5).mean()
         0.69000000000000001
Out[12]:
         sb.scatterplot(x=X[:,0],y=X[:,1],hue=y)
In [13]:
         plt.show()
```



```
df=pd.read csv("f:/dataset/classification/fruits svc.csv")
In [15]:
         X=df.iloc[:,:-1].values
         y=df.iloc[:,-1].values
         model=SVC(kernel='poly')
         cross val score(model, X, y, cv=5) .mean()
         0.679999999999999
Out[15]:
In [25]:
         df=pd.read csv("f:/dataset/classification/fruits svc.csv")
         X=df.iloc[:,:-1].values
         y=df.iloc[:,-1].values
         model=SVC(kernel='poly',degree=7)
         cross val score(model, X, y, cv=5).mean()
         0.73
Out[25]:
In [34]:
         df=pd.read csv("f:/dataset/classification/fruits svc.csv")
         X=df.iloc[:,:-1].values
         y=df.iloc[:,-1].values
         model=SVC(kernel='rbf',gamma=.5)
         cross val score(model, X, y, cv=5).mean()
         0.73
Out[34]:
         df=pd.read csv("f:/dataset/classification/fruits svc.csv")
In [45]:
         X=df.iloc[:,:-1].values
         y=df.iloc[:,-1].values
         model=SVC(kernel='linear')
         cross val score(model, X, y, cv=5).mean()
         0.6900000000000001
Out[45]:
         from sklearn.preprocessing import StandardScaler
In [46]:
```

df=pd.read csv("f:/dataset/classification/fruits svc.csv")

In [49]:

X=df.iloc[:,:-1].values

```
y=df.iloc[:,-1].values
         sc=StandardScaler()
         X=sc.fit transform(X)
         model=SVC(kernel='linear')
         cross val score(model, X, y, cv=5).mean()
         0.6900000000000001
Out[49]:
In [72]: df=pd.read_csv("f:/dataset/classification/fruits svc.csv")
         X=df.iloc[:,:-1].values
         y=df.iloc[:,-1].values
         sc=StandardScaler()
         X=sc.fit transform(X)
         model=SVC(kernel='poly')
         cross val score(model, X, y, cv=5).mean()
         0.73
Out[72]:
         df=pd.read csv("f:/dataset/classification/fruits svc.csv")
In [71]:
         X=df.iloc[:,:-1].values
         y=df.iloc[:,-1].values
         sc=StandardScaler()
         X=sc.fit transform(X)
         model=SVC(kernel='rbf')
         cross val score(model, X, y, cv=5) .mean()
Out[71]:
In [83]:
         import numpy as np
         import matplotlib.pyplot as plt
         from sklearn.datasets import make circles
         from mpl toolkits.mplot3d import Axes3D
         X, y = make circles(n samples = 500, noise=.02)
         plt.scatter(X[:, 0], X[:, 1],c=y,marker='.')
         plt.show()
```



```
In [82]: X1 = X[:, 0]
    X2 = X[:, 1]
    X3 = (X1**2 + X2**2)

fig = plt.figure()
    axes=fig.add_subplot(projection = '3d')
    axes.scatter(X1, X2, X3, c=y)
    plt.show()
```



```
In [91]: sample=[2.5,70]
    sample=sc.transform([sample])
    model=SVC(kernel='rbf',probability=True)
```

```
model.fit(X,y)
model.predict(sample)

Out[91]: array([0], dtype=int64)

In [92]: model.predict_proba(sample)

Out[92]: array([[9.9999990e-01, 1.0000001e-07]])

In []:
```