Практикум по дисциплине "Моделирование квантовых систем"

Сентябрь 2020

1 Лабораторная работа №1

1.1 Генерация случайных квантовых состояний

Для генерации смешанного квантового состояния размерности d необходимо произвести процедуру, обратную процедуре очищения: сгенерировать чистое случайное состояние размерности $d \cdot k$, где k - размерность вспомогательной подсистемы H.

$$|\psi\rangle \in C^{d\cdot k}$$
.

Затем, необходимо взять частичный след от матрицы плотности данного состояния по вспомогательной подсистеме H:

$$\rho = \text{Tr}_H(|\psi\rangle\langle\psi|). \tag{1}$$

Полученное состояние имеет размерность d и имеет ранг $r = \min(d, k)$.

Выберите параметры для генерации случайных состояний согласно своему варианту:

Вариант	d	k
1	4	5
2	5	3
3	3	6
4	6	2
5	5	4
6	3	5
7	6	3
8	2	6

- 1. Сгенерировать 1000 случайных смешанных состояний размерности d и параметром k с использованием процедуры очищения. Построить гистограмму распределения собственных значений матрицы плотности.
- 2. Построить график зависимости среднего Purity состояния от параметра k, изменяемого в пределах от 1 до 100. Для каждого значения k генерировать 50 смешанных состояний размерности d с использованием процедуры очищения.

1.2 Разложение Шмидта и процедура очищения

Выберите квантовое состояние $|\psi\rangle$ и подсистемы A и B согласно своему варианту:

Вариант	$ \psi angle$	A	В
1	$\frac{\sqrt{5}}{4} 001\rangle + \frac{\sqrt{2}}{2} 010\rangle + \frac{\sqrt{3}}{4} 100\rangle$	1	2, 3
2	$\frac{\sqrt{11}}{8} 0001\rangle - \frac{3}{8} 0011\rangle + \frac{\sqrt{10}}{8} 0111\rangle + \frac{\sqrt{34}}{8} 1111\rangle$	1, 2	3, 4
3	$\frac{1}{3} 000\rangle + \frac{\sqrt{5}}{6} 010\rangle - \frac{\sqrt{3}}{2} 111\rangle$	1, 2	3
4	$\frac{\sqrt{3}}{8} 0000\rangle - \frac{\sqrt{14}}{8} 0011\rangle + \frac{\sqrt{5}}{8} 1100\rangle - \frac{\sqrt{42}}{8} 1111\rangle$	1	2, 3, 4
5	$\frac{3}{8} 0011\rangle + \frac{\sqrt{6}}{8} 0110\rangle - \frac{7}{8} 1100\rangle$	1, 2, 3	4
6	$\frac{\sqrt{2}}{8} 001\rangle + \frac{\sqrt{7}}{8} 011\rangle - \frac{\sqrt{5}}{8} 110\rangle + \frac{\sqrt{22}}{8} 100\rangle$	1	2, 3
7	$\frac{\sqrt{3}}{4} 0101\rangle - \frac{\sqrt{2}}{4} 1010\rangle + \frac{\sqrt{6}}{8} 1001\rangle - \frac{\sqrt{11}}{8} 0110\rangle + \frac{\sqrt{27}}{8} 1111\rangle$	1, 2	3, 4
8	$\frac{\sqrt{15}}{9} 00100\rangle + \frac{\sqrt{14}}{9} 01010\rangle + \frac{\sqrt{52}}{9} 10001\rangle$	1, 2	3, 4, 5

- 1. Для заданного квантового состояния $|\psi\rangle$ выполните разложение Шмидта для подсистем A и B.
- 2. Используя разложение Шмидта, получите матрицы плотности подсистем. Сравните полученный результат с результатом взятия частичного следа.
- 3. На основе полученного разложения найдите число Шмидта K.
- 4. Для исходного состояния найдите *Negativity*. Сравните полученные метрики запутанности.
- 5. Убедитесь, что случайно сгенерированное чистое 4-ёх кубитное состояние почти всегда имеет ненулевую меру запутанности (K и Negativity). В качестве подсистемы A выбрать первые два кубита, в качестве подсистемы B последние два кубита.

2.1 Эволюция замкнутых квантовых систем

Уравнение фон Неймана:

$$\frac{\partial}{\partial t}\rho = -i[H, \rho] \tag{2}$$

Унитарная эволюция на отрезке $[t, t + \Delta t]$:

$$U(t, t + \Delta t) = \exp(-iH(t)\Delta t) \tag{3}$$

Выберите гамильтониан системы согласно своему варианту:

Вариант	Н	t
1	$\cos(10t)\sigma_z + \sin(10t)\sigma_x$	[0, 1]
2	$\pi\sigma_z + \frac{5\pi}{2}\cos(5t)\sigma_x$	[0, 2]
3	$2\pi(\sigma_x\otimes\sigma_x+\sigma_y\otimes\sigma_y\sin(8t))$	[0, 0.5]
4	$\sigma_x \otimes \sigma_z \sin(2t) + \sigma_z \otimes \sigma_x \cos(4t)$	[0, 1]
5	$t\sigma_x + t^2\sigma_y + t^3\sigma_z$	[0, 4]
6	$\sigma_x \otimes \sigma_x t + \sigma_y \otimes \sigma_y \sin\left(\frac{t}{5}\right)$	[0, 5]
7	$(\sigma_x \otimes \sigma_z + \sigma_x \otimes \sigma_y) \cos(\frac{t}{2}) + \sigma_x \otimes \sigma_x \sin(t)$	[0, 2]
8	$(\sigma_x + 2\sigma_y)\sin(\frac{t}{2}) + \sigma_z\cos(\frac{t}{4})$	[0, 4]

- 1. Выполните симуляцию эволюции случайного смешанного состояния 2-го ранга под действием заданного гамильтониана, используя уравнение фон Неймана и метод конечных разностей.
- 2. Выполните симуляцию эволюции, используя разложение оператора унитарной эволюции по инфинитизимальным временным интервалам $\Delta t = 10^{-1}, 10^{-2}, 10^{-3}$.
- 3. Постройте график зависимости $F(\rho(0),\rho(t))$ от времени при использовании двух методов моделирования.

2.2 Эволюция открытых квантовых систем

Операторное разложение Крауса:

$$\mathcal{E}(\rho) = \sum_{k} E_k \rho E_k^{\dagger} \tag{4}$$

Явный вид операторов Крауса для различных типов квантового шума.

• Классическая ошибка

$$E_0 = \sqrt{1-p} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}; E_1 = \sqrt{p} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix};$$

• Деполяризующий шум

$$E_0 = \frac{\sqrt{1-3p}}{2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}; E_1 = \frac{\sqrt{p}}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix};$$

$$E_2 = \frac{\sqrt{p}}{2} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}; E_3 = \frac{\sqrt{p}}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

• Чистая дефазировка

$$E_0 = \begin{pmatrix} 1 & 0 \\ 0 & \sqrt{1-\gamma} \end{pmatrix}; E_1 = \begin{pmatrix} 0 & 0 \\ 0 & \sqrt{\gamma} \end{pmatrix};$$

где
$$\gamma = 1 - \exp\left(-\frac{2t}{T_2^{pure}}\right)$$

• Амплитудная релаксация

$$E_0 = \begin{pmatrix} 1 & 0 \\ 0 & \sqrt{1-\gamma} \end{pmatrix}; E_1 = \begin{pmatrix} 0 & \sqrt{\gamma} \\ 0 & 0 \end{pmatrix};$$

где
$$\gamma = 1 - \exp\left(-\frac{t}{T_1}\right)$$

• Фазовая релаксация

$$T_2^{pure} = \frac{2T_1T_2}{2T_1 - T_2}$$

Описание эволюции посредтвом матрицы Чоя-Ямилковского:

$$\mathcal{E}(\rho) = \sum_{mn} \chi_{mn} A_m \rho A_n^{\dagger} \tag{5}$$

Вычисление матрицы Чоя-Ямилковского в стандартном базисе:

$$\frac{1}{d}\chi = (\mathcal{I} \otimes \mathcal{E})(|\Phi\rangle\langle\Phi|), \qquad |\Phi\rangle = \frac{1}{\sqrt{d}} \sum_{j} |j\rangle \otimes |j\rangle \tag{6}$$

Описание эволюции посредством супероператора:

$$\operatorname{vec}[\mathcal{E}(\rho)] = G \cdot \operatorname{vec}[\rho], \qquad G = \sum_{k} E_{k}^{*} \otimes E_{k}$$
 (7)

Выберите тип декогеренции согласно совему варианту:

Вариант	Тип шума	Параметры
1	Дефазировка	$t = 1, T_2 = 10$
2	Деполяризация	p = 0.15
3	Амплитудно-фазовая релаксация	$t = 1, T_1 = 7, T_2 = 5$
4	Случаный фазовый шум	p = 0.2
5	Случайный классический шум	p = 0.1
6	Амплитудно-фазовая релаксация	$t = 1, T_1 = 12, T_2 = 16$

- 1. Вычислите матрицу Чоя-Ямилковского для рассматриваемого процесса. Убедитесь в том, что частичный след матрицы по второй подсистеме даёт единичную матрицу.
- 2. Вычислите матрицу эволюции для рассматриваемого процесса
- 3. Сгенерируйте случайное состояние ранга 2 и выполните моделирование действия рассматриваемого процесса, используя операторное разложение Крауса, матрицу Чоя-Ямилковского и матрицу супероператора. Сравните результаты использования методов.

3.1 Марковская гамильтонова динамика с декогеренцией

Уравнение Линдблада

$$\frac{\partial}{\partial t}\rho = -i[H, \rho] + \frac{1}{2} \sum_{k} \left\{ L_{k}^{\dagger} L_{k}, \rho \right\} + \sum_{k} L_{k} \rho L_{k}^{\dagger}, \tag{8}$$

где L_k – операторы Линдблада.

Явный вид операторов Линдблада для различных типов квантового шума.

• Амплитудная релаксация

$$L_1 = \sqrt{\Gamma}a, \quad T_1 = \frac{1}{\Gamma}.$$

• Чистая дефазировка

$$L_1 = \sqrt{\Gamma} \frac{\sigma_z}{\sqrt{2}}, \quad T_2^{pure} = \frac{1}{\Gamma}.$$

Вариант	Н	t	T_1	T_2
1	$\cos(10t)\sigma_z + \sin(10t)\sigma_x$	[0, 1]	20	_
2	$\pi\sigma_z + \frac{5\pi}{2}\cos(5t)\sigma_x$	[0, 2]	_	10
3	$2\pi(\sigma_x + \sigma_y \sin(8t))$	[0, 0.5]	_	110
4	$\sigma_x \sin(2t) + \sigma_z \cos(4t)$	[0, 1]	_	90
5	$t\sigma_x + t^2\sigma_y + t^3\sigma_z$	[0, 4]	14	_
6	$\sigma_x t + \sigma_y \sin\left(\frac{t}{5}\right)$	[0, 5]	25	

- 1. Выполните симуляцию эволюции случайного чистого состояния под действием заданного гамильтониана и процесса декогеренции, используя уравнение Линдблада и метод конечных разностей.
- 2. Выполните симуляцию эволюции, используя операторы Крауса и разложение по инфинитизимальным временным интервалам $\Delta t=10^{-1},10^{-2},10^{-3}.$
- 3. Постройте график зависимости $F(\rho(0),\rho(t))$ от времени при использовании двух методов моделирования.

3.2 Генерация случайных чисел

Выберите квантовое состояние света и фазу гомодина согласно своему варианту:

Вариант	Состояние	Фаза гомодина
1	$ \psi\rangle=(1\rangle+ 3\rangle)/\sqrt{2}$	$\theta = \pi/4$
2	$ \psi\rangle \propto \alpha\rangle + -\alpha\rangle$, $\alpha = 1.5$	$\theta = \pi/3$
3	$ \psi angle= 1 angle$	$\theta=\pi$
4	$ \psi\rangle = \sqrt{\frac{2}{3}} 0\rangle + \sqrt{\frac{1}{6}} 10\rangle + i\sqrt{\frac{1}{6}} 11\rangle$	$\theta = pi/10$
5	$ \psi\rangle = \alpha\rangle, \alpha = 2e^{i\pi/8}$	$\theta = 3\pi/4$
6	$ \psi\rangle = \frac{1}{2} 1\rangle + \frac{1}{2}e^{i\pi/4} 12\rangle + i\frac{1}{2} 13\rangle + \frac{1}{2} 21\rangle$	$\theta = 0$

- 1. Определите размерность фоковского пространства, достаточную для моделирования рассматриваемого состояния.
- 2. Вычислите функцию плотности распределения квадратуры.
- 3. Сгенерируйте выборку из 10 000 представителей, используя метод Метрополиса. Сравните гистограмму выборки с функцией плотности.
- 4. Сгенерируйте выборку из 10~000 представителей, используя метод обратной функции. Сравните гистограмму выборки с функцией плотности.

4.1 Случайные ошибки как квантовый процесс

Произвольное однокубитное преобразование описывается матрицей

$$R(\delta, \theta, \varphi) = \begin{pmatrix} \cos\frac{\delta}{2} - i\cos\theta\sin\frac{\delta}{2} & -i\sin\theta\sin\frac{\delta}{2}e^{-i\varphi} \\ -i\sin\theta\sin\frac{\delta}{2}e^{i\varphi} & \cos\frac{\delta}{2} + i\cos\theta\sin\frac{\delta}{2} \end{pmatrix}, \tag{9}$$

где θ и φ задают зенитный и азимутальный углы оси вращения состояния на сфере Блоха, а δ — угол вращения.

Выберите размерность системы d, случайный оператор U_e и вид распределения e согласно своему варианту:

Вариант	d	U_e	e
1	2	$R(\pi,\pi/2,e)$	unirnd(0,0.1)
2	2	$R(e\pi/10,\pi/4,\pi)$	unirnd(-0.2,0.1)
3	4	$R(-\pi/4, \pi/2, \pi/2) \otimes R(\pi/20, \pi/2 + e, 0)$	normrnd(0,0.1)
4	4	diag[1, $\exp(ie\pi/3)$, 1, $\exp(ie\pi/9)$]	unirnd(-0.05,0.05)
5	2	$R(\pi + e\pi/8, \pi/14, e)$	normrnd(0.2,0.06)
6	4	diag[1, 1, $\exp(ie\pi/8)$, $\exp(ie\pi/4)$]	normrnd(-0.1,0.4)

- 1. Сгенерируйте случайное числое состояние $|\psi\rangle$ размерности d.
- 2. Выполните 1 000 численных экспериментов. В каждом эксперименте вычислите $|\varphi\rangle = U_e\,|\psi\rangle$. Расчитайте вероятность $p = |\langle 0|\varphi\rangle|^2$ и используйте её для генерации результата испытания Бернулли ("0" или "1"). Вычислите общее число k результатов "1". Оцените вероятность по результатам измерений как $\hat{p} = k/1000$.
- 3. Выполните описанную в предыдущем пункте процедуру 10 000 раз и постройте гистограмму распределения \hat{p} . Сравните с гистограммой для случая e=0.
- 4. Вычислите хи-матрицу рассматриваемого процесса и соответствующие операторы Крауса.
- 5. Вычислите матрицу плотности ρ на выходе полученного процесса и вероятность $p_{\mathcal{E}} = \langle 0|\rho|0\rangle$. Сравните это число с полученными выше гистограммами.

4.2 Зашумлённые квантовые схемы

На Рисунке приведена схема квантового преобразования Фурье (QFT).

Преобразование R_k имеет вид

$$R_k = \begin{pmatrix} 1 & 0 \\ 0 & \exp[i2\pi/(2^k)] \end{pmatrix}.$$

Выберите число кубитов n в схеме, случайный оператор U_e и вид распределения e согласно своему варианту:

Вариант	n	U_e	e
1	7	$R(e\pi,\pi/14,e)$	$ \operatorname{normrnd}(0,\gamma) $
2	8	$R(e\pi/10,\pi/4,\pi)$	$ \operatorname{unirnd}(-\gamma, \gamma) $
3	6	$R(e\pi,\pi/2,e)$	$\operatorname{normrnd}(0,\gamma)$
4	5	$R(e\pi/20,\pi/2+e,0)$	$ \operatorname{unirnd}(-\gamma, \gamma) $
5	10	$R(e\pi/8, e\pi/100, \pi)$	$\operatorname{normrnd}(0,\gamma)$
6	5	$R(-e\pi/4, \pi/4 - e\pi/8, \pi/2)$	$\operatorname{unirnd}(-\gamma, \gamma)$

- 1. Сгенерируйте случайное чистое состояние $|\psi\rangle$ размерности $d=2^n.$
- 2. Выполните моделирование зашумлённого квантового преобразования Фурье для значений уровня ошибки $\gamma=0,\,0.0001,\,0.005,\,0.001,\,0.005,\,0.001,\,0.005,\,0.01,\,0.05,\,0.1$. Для каждого e выполните 1 000 расчётов состояния $|\varphi\rangle=QFT\,|\psi\rangle$, где после каждого оператора Адамара действует случайный гейт U_e . Вычислите точность $F=|\langle\varphi_0|\varphi\rangle|^2$, где $|\varphi_0\rangle$ соответствует действию идеального QFT.
- Постройте график зависимости средней точности от уровня ошибки с доверительными интервалами, соответствующими нижней и верхней квартили точности.

5.1 Немарковская динамика

Разложение Троттера определяется формулой:

$$\exp(A+B) = \lim_{n \to \infty} \left(\exp\left(\frac{A}{n}\right) \exp\left(\frac{B}{n}\right) \right)^n \tag{10}$$

Данное разложение позволяет сводить действие сложного гамильтониана к набору малокубитных операций.

Выберите число кубитов и гамильтониан согласно своему варианту:

Вариант	n	Н
1	6	$\sum_{k=1}^{n} Z_k + \sum_{k=2}^{n} (k-1) X_1 Z_k$
2	5	$\sum_{k=1}^{n} Z_k + 4 \sum_{k=1}^{n-1} X_k X_{k+1}$
3	7	$\sum_{k=1}^{n} X_k + 4X_1Z_3 + 9Z_2X_7 + 9X_4X_5 + 13Z_6Z_7$
4	6	$\sum_{k=1}^{n} X_k + \sum_{k=1}^{n} Z_k Z_{n-k+1}$
5	5	$Z_1 + 2X_2 + 3Z_3 + 4X_4 + 5Z_5 + 5X_1Z_2 + 5Z_4X_5$
6	4	$\sum_{k=1}^{n} Z_k + \sum_{k=1}^{n-1} \sum_{m=k+1}^{n} Z_k X_m$

- 1. Сгенерируйте случайное чистое n-кубитовое состояние $|\psi\rangle$ в котором первый кубит не запутан со всеми остальными. Зафиксируйте random.seed для воспроизводимости эксперимента.
- 2. Проведите симуляцию эволюции квантового состояния под действием выбранного гамильтониана на временном отрезке [0,1]. В каждый момент времени вычислите Purity состояния первого кубита.
- 3. Выполните троттеризацию выбранного гамильтониана с различным числом разбиений 2, 10, 100. Для каждого числа разбиений проведите симуляцию эволюции квантового состояния с помощью разложения Троттера на одно-/двух-кубитовые преобразования. В каждый момент времени вычислите *Purity* состояния первого кубита.
- 4. Постройте все полученные графики Purity(t): график из пункта 2 и графики из пункта 3. Постройте графики ошибок троттеризации по сравнению со стандартной симуляцией. Сравните результаты.

5.2 Эффект спинового эха

Выберите число кубитов и гамильтониан согласно своему варианту:

Вариант	n	Н
1	5	$\sum_{k=1}^{n} Z_k + \sum_{k=2}^{n} (k-1) Z_1 Z_k$
2	6	$\sum_{k=1}^{n} Z_k + 4 \sum_{k=2}^{n} Z_1 Z_k$
3	4	$\sum_{k=1}^{n} Z_k + 4Z_1 Z_2 + 9Z_1 Z_3 + 16Z_1 Z_4$
4	5	$1.5\sum_{k=1}^{n} Z_k + \sum_{k=2}^{n} 2^{k-1} Z_1 Z_k$
5	6	$\sum_{k=1}^{n} k Z_k + \sum_{k=2}^{n} Z_1 Z_k$
6	7	$Z_1 + 2\sum_{k=2}^{n} Z_k + 2\sum_{k=2}^{n} Z_1 Z_k$

- 1. Сгенерируйте случайное чистое n-кубитовое состояние $|\psi\rangle$ в котором первый кубит не запутан со всеми остальными. Зафиксируйте random.seed для воспроизводимости эксперимента..
- 2. Проведите симуляцию эволюции квантового состояния под действием выбранного гамильтониана на временном отрезке [0,1]. В каждый момент времени вычислите Purity состояния первого кубита. Найдите время фазовой релаксации T_2 (время, за которое недиагональный элемент матрицы плотности состояния первого кубита падает в e раз)
- 3. Повторно проведите симуляцию эволюции квантового состояния под действием выбранного гамильтониана на временном отрезке $[0, 2T_2]$. В момент времени T_2 подействуйте оператором X_1 на первый кубит. В каждый момент времени вычислите Purity состояния первого кубита. Сравнить значения Purity в моменты времени t=0 и $t=2T_2$.
- 4. Построить графики зависимости Purity(t) из пунктов 2 и 3 на отрезке $[0, 2T_2]$.

6.1 Квантовые коды коррекции ошибок

Квантовая схема кодирования трехкубитового кода коррекции, исправляющего фазовые ошибки представлена на рисунке.

Для исправления ошибок вводят дополнительные кубиты c помощью которых определяется синдром ошибки.

Выберите входное квантовое состояние, модель ошибок и правую границу вероятности ошибки согласно своему варианту (для всех вариантов $E_0 = \sqrt{1-p}I$):

№	$ \psi angle$	Модель ошибок	p_{max}
1	$\sqrt{1-a^2} 0\rangle + a 1\rangle, a = 0.95$	$E_1 = \sqrt{p}Z$	0.4
2	$\frac{1}{\sqrt{2}}(0\rangle + \exp(\frac{3\pi i}{7}) 1\rangle)$	$E_1 = \sqrt{0.8p}Z, E_2 = \sqrt{0.2p}S$	0.6
3	$\frac{1}{\sqrt{3}} \left(0\rangle + i\sqrt{2} 1\rangle \right)$	$E_1 = \sqrt{0.9p}Z, E_2 = \sqrt{0.1p}T$	0.7
4	$\frac{1}{\sqrt{5}} \left(\sqrt{2} \left 0 \right\rangle - i \sqrt{3} \left 1 \right\rangle \right)$	$E_1 = \sqrt{0.9p}Z, E_2 = \sqrt{0.1p}Y$	0.7
5	$\frac{1}{\sqrt{2}}(0\rangle - \exp(\frac{7\pi i}{11}) 1\rangle)$	$E_1 = \sqrt{0.6p}Z, E_2 = \sqrt{0.2p}S, E_3 = \sqrt{0.2p}T$	0.7
6	$rac{1}{\sqrt{2}}(\ket{0}-i\ket{1})$	$E_1 = \sqrt{0.8p}Z, E_2 = \sqrt{0.2p} 0\rangle \langle 0 , E_3 = \sqrt{0.2p} 1\rangle \langle 1 $	0.6

- 1. Закодируйте входное квантовое состояние, для использования трехкубитового кода коррекции ошибок.
- 2. Реализовать процедуру исправления фазовой ошибки с помощью добавления двух вспомогательных кубитов.
- 3. Найти идеальное выходное квантовое состояние, получаемое после процедуры исправления ошибки. Состояние должно быть трехкубитовым, т.е. вспомогательные кубиты необходимо редуцировать.
- 4. Убедиться, что возникновение фазовой ошибки в любом кубите кода не изменяет квантовое состояние: подействовать оператором Z поочередно на каждый кубит кода, найти фиделити между новым выходным состоянием и состоянием, полученным в пункте 3.
- 5. Используя корневой подход, найти выходное состояние с учетом выбранной модели ошибок (ошибка действует на каждый кубит кода) и рассчитать фиделити. Проделать данную процедуру для всех значений вероятности ошибки на отрезке $[0, p_{max}]$.
- 6. Провести аналогичные вычисления для кубита без кода коррекции. Найти зависимость фиделити от вероятности ошибки на отрезке $[0,p_{max}]$

7. Построить два графика. Оценить, при каких значениях вероятности ошибки код коррекции использовать целесообразно.

7 Лабораторная работа №7

7.1 Анализ характеристик квантового процессора IBM

Выберите квантовую пятикубитовую схему по своему варианту:

№	Квантовая схема
1	$H_1, H_3, H_5, CNOT_{12}, CNOT_{54}, Z_1, S_3, T_5$
2	$H_1, CNOT_{12}, Z_2, CNOT_{23}, S_3, CNOT_{34}, T_4, CNOT_{45}$
3	$H_2, H_4, CNOT_{21}, CNOT_{45}, H_3, CNOT_{32}, CNOT_{34}, T_1, T_5$
4	$H_5, CNOT_{45}, T_4, CNOT_{34}, S_3, CNOT_{23}, Z_2, CNOT_{12}, H_1$
5	$H_1, H_3, H_5, CNOT_{12}, T_2, CNOT_{23}, T_3, CNOT_{54}, T_4, CNOT_{43}, T_3$
6	$H_1, H_2, CNOT_{23}, Z_1, S_2, T_3, CNOT_{34}, H_4, CNOT_{45}, T_5$

- 1. Соберите данную схему на квантовом процессоре IBM (используя их веб-интерфейс или программное API) ibmq_santiago. Выполните минимум 8192 прогона этой схемы для накопления статистики результатов.
- 2. Извлеките последние параметры калибровки квантового процессора. Для каждого кубита необходио получить ошибку однокубитовых гейтов (Single-qubit U2 error rate), ошибку двухкубитовых гейтов (CNOT error rate) и ошибки считывания (Readout error).
- 3. На основе этих параметров постройте модель неидальной квантовой схемы. Деполяризующий шум, заданный операторами Крауса на основе ошибок гейтов и ошибка считывания, заданная зашумленным POVM оператором.
- 4. Выполните симуляцию полученной схемы и сравните с результатами, полученными с IBM.

7.2 Анализ эволюции с периодическим гамильтонианом

Пусть гамильтониан системы имеет период T, т.е. $H(t+T_p)=H(t)$ для любых значений t. Тогда теорема Флоке даёт следующее решение уравнения Шредингера:

$$|\psi(t)\rangle = U(0, t_m) \cdot \left[U(0, T_p)\right]^m \cdot |\psi(0)\rangle, \tag{11}$$

где $t=mT_p+t_m,\,m$ – целое число, а U(0,t) – унитарный оператор, соответствующий эволюции системы между моментами времени 0 и t.

Для марковской диссепативной системы имеем аналогичное выражение для матрицы плотности

$$\operatorname{vec}[\rho(t)] = G(0, t_m) \cdot [G(0, T_p)]^m \cdot \operatorname{vec}[\rho(0)], \tag{12}$$

где G(0,t) соответстует оператору эволюции (7) на промежутке времени от 0 до t.

Выберите условие задачи согласно своему варианту.

Nº	Гамильтониан $H(t)$	Декогеренция
1	$\cos(2t)\sigma_x\otimes\sigma_0+\sin(t)\sigma_z\otimes\sigma_y$	$T_2 = 10$
2	$\cos^2(0.5t)\sigma_x$	$T_1 = 9$
3	$8\cos(t)\sigma_x + \sin(0.25t)\sigma_z$	$T_2 = 15$
4	$\cos(0.3t)\sigma_y$	$T_1 = 50, T_2 = 20$
5	$0.9\sin(0.4t)\sigma_z\otimes\sigma_z+0.1\cos(0.2t)\sigma_0\otimes\sigma_y$	$T_2 = 12$
6	$1.01\sin^3(3t)\sigma_x + 0.7\cos^4(7t)\sigma_z$	$T_1 = 24$

- 1. Рассчитайте минимальный период T_p гамильтониана.
- 2. Вычислите результат эволюции состояния $|0\rangle\langle 0|$ на промежутке времени от 0 до $T=50T_p$, используя подход инфинитезимальных преобразований, либо уравнение Линдблада. Для каждого момента времени t расчитайте величину $p_0(t) = \langle 0|\rho(t)|0\rangle$.
- 3. Вычислите $p_0(t)$, используя теорему Флоке. Для этого рассчитайте операторы эволюции для каждого момента времени $t_p \in [0,T_p]$ (достаточно рассмотреть сетку со 100 точками) и сохраните каждый из операторов $G(0,t_p)$ в памяти. После этого примените (12) для вычисления $p_0(t)$ на всех моментах времени от 0 до $T=50T_p$.
- 4. Постройте и сравние графики функций $p_0(t)$, полученные двумя способами. Сравните полные времена вычислений с использованием двух способов.