		Matrice	w (Matri	x)矢厚障	4
1	Introdu	ction			
	Conside	c the foll	lowing table		
		6A	6B	6C	
	Male	17	15	10	
	Felmale	14	16	25	
	_	an examp	le of matr	ìx	
		re present			
	1-	7	5 10	•	
•		· .			
	\ 4	f 1	6 25/		
_	, Fl	1	5 . 107		
_	or				
4	LI	4 . 1	6 25		<u> </u>
,2	Definitio	η			
	A matr	ix is a	<u>rectangle</u>	of number	4
	Each n		re called		
	The o	rder (or	dimension) i	is the numb	ber
	of row x number of columns				
	eg	(17	15 10,		
	J				
		14	16 25/		
	A 2×	3 matri	x (cantio	on: not 6 ma	lvix)
	In general, an mxn matrix.				
	$A = (a_{ij})_{m \times n} = (a_{ij} - a_{in})$				
	, ,	mxn	, ,	1	
		<u>.</u>	\ami -	- amn/	
			You column	•	·

3 Different types of matrices.	
3 Different types of matrices. (1) Real matrix	
$\begin{array}{c cccc} eg & (2 & 5 & -3) \\ \hline & \overline{13} & 0 & \overline{N} \end{array}$	
	<u> </u>
(2) Row matrix	
$eg (5-10 Z^3)$	
(3) Column matrix	
eg (î F3)	
(4) Square matrix 为]車	
(no. of columns = no of rows) m=n	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
a21 a23	_
a_{31} a_{32} a_{33}	_
(a1) a 22 a33) is called the diagonal	
(4.1) Diagonal matrix, aij=0 for i+j	_
eg(0) $eg(00)$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	I dentity matrix
(4.2) Triangular matrix aij=0 fori>jorixj	J
eg (1°00) eg (01)	
(420)	
6 5 5/ upper triangular	
lower triangular matrix matrix.	
$\frac{eg}{0}$	
The following is not a triangular matrix	·
(1)	
(10)	

Question No. Symmetric matrix. aij = aji Vij (4.5) Skew Symmetric matrix ûij=-ûj; (Alternate matrix, Asymmetric motrix) (5) Zero metrix aij=0 Vi,j A Equality of two matrices.

A man = B pag if their dim

are equal m=p n=q

and aii = bii their dimensions

Question No. Name AtB is undefined because 3×2 ≠2×3 Some properties of addition $A + B = B + A \cdot (commutative)$ pf A+B= (aij + bij) mxn = (bij + aij) mxn = B+AA + (B+C) = (A+B)+C (associative) pf: At(B+c) = A + (bi) + Ci)= (aij+bij+Cij))m×n $=((a_{ij}+b_{ij})+C_{ij})_{m\times n}$ = (aij tbij)mxn + C. = (A + B) + C $A + O = O + A = A_{man}$ (Zero ?deatity) $pf: A_{mxn} + \underline{O}_{mxn} = (aij to)_{mxn}$ =(0+aij)mn= Qman + Aman = (aij)man = Aman hote $\left(\frac{1}{3}, \frac{2}{4}\right) + Q_{2\times3}$ is meaningless $\frac{1}{3} \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} + \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$

Question No,	
8 Multiplication of matrices.	
The following table shows Thin buy the	
fruit ip a week.	
$A_{1\times 3} = (12 10 15)$	
orange apple mango	
The following table shows the prices of	
The following table shows the prices of each fruit in the week	
B3x1 = 167 orange	
2 apple	
$B_{3\times 1} = \begin{pmatrix} 6 \\ 2 \end{pmatrix} \text{ orange}$ 4 mango	
Then the expenditure for Johnin a week	
to buy fruit is: (6) $C = A \times B = (12 + 10) (5) (4) = 152$	
(4)	
Suppose Mary buys fruit in a week	,
suppose many buys fruit in a week according to the table.	
(13 14 11)	
orange apple mango.	
and the price of fruit in a week	
is now increased to [7] mange	
3 apple	
Find the price and old price of.	
John and many.	· · · · · · · · · · · · · · · · · · ·
let D2x3= (12 10 15)	
13 14 11 / .	
$E_{3\times 2} = \begin{pmatrix} 6 & 7 \\ 2 & \end{pmatrix}$	
1 2 3	

$$F_{2x2} = D \times F$$

$$= \begin{pmatrix} 12 & 16 & 7 \\ 13 & 14 & 11 \end{pmatrix} \begin{pmatrix} 4 & 5 \\ 4 & 5 \end{pmatrix}$$

$$= \begin{pmatrix} 152 & 189 \\ 150 & 188 \end{pmatrix} \text{ Many}$$

$$= \begin{pmatrix} 150 & 188 \end{pmatrix} \text{ Many}$$

$$= \begin{pmatrix} 160 & 188 \end{pmatrix} \text{ Many}$$

Question No.	
P = (-3)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\left(\frac{1}{3},\frac{5}{5}\right)$	
$A \times B = 12$	
4 6 (-3)	-
(35)	
[2(-3)+1(-2)] /-6 -2] /-8]	
- 4(-3) +6(-2) = -12 -12 = -24	
3(-3)+5(-2)/-9-19/-19/	
A3x2 B2x1	
B × A is undefined (or meaningless)	
because 2 * 1 3 x 2	
not equal	
eg Write 2X+3y=4 as a product of	
matrice (X)	
(2 3)(y) = (4)	
eg write the following system of equations	
as a product of matrices.	
$\int 2X - 3y = 5$	
$\begin{cases} 4x + 7y = 20 \end{cases}$	
$\left \frac{2}{2} \right -3 \left \frac{x}{x} \right = \left \frac{x}{x} \right $	
(4 7/(y) (20)	
Coefficient	
matrix.	
augmented matrix: [2 -3 5]	
(4 7. 20)	

9 Some properties of multiplication (1) Non-Commutative.
ie in general AB = BA.
$\frac{\text{eg A} = \begin{pmatrix} 0 & 1 & 0 \\ 2 & -1 \end{pmatrix}}{B} = \begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix}$
$AB = \begin{pmatrix} 1 & 0 & 1 & 2 \\ 2 & -1 & -1 & 3 \end{pmatrix}$
$= \frac{ x +o(-1)}{2x(1+o(1)(-1))} = \frac{ x +o(3)}{2x(1+o(1)(-1))}$
$= \begin{pmatrix} 1 & 2 \\ 3 & 1 \end{pmatrix}$
$BA = \begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 2 & -1 \end{pmatrix}$
= (x +2x2 x 0 + 2(-1)) $= (x +3x2 - x 0 + 3x(-1))$
$= \begin{pmatrix} 2 & -3 \end{pmatrix}$
7. AB + BA
exercise $A = \begin{pmatrix} 1 & -1 \\ 0 & 2 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 0 \\ 1 & 2 \end{pmatrix}$
show that (a) $(A+B)(A-B) + A^2 - B^2$
(b) $(A+B)^2 + A^2 + 2AB+B^2$
(2) Cancellation law does not hold. (2) Converlation law does not hold. (3) Year number system ab = ac, a = 0
=> b=c.
This is called concellation law)

$\frac{eq}{d} A = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}, B = \begin{pmatrix} 22 \\ 00 \end{pmatrix}, C = \begin{pmatrix} 2 & 2 \\ 0 & 2 \end{pmatrix}.$	
$AB = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 2 & 2 \\ 0 & 0 \end{pmatrix}$	
$= \frac{1\times2+0\times0}{1\times2+0\times0}$ $= \frac{1\times2+0\times0}{1\times2+0\times0}$	
[1x2 t 0x0 1x2 t 0x0)	
$-\frac{2}{2}$	
(22)	
$AC = \begin{pmatrix} 1 & 0 \end{pmatrix} \begin{pmatrix} 2 & 2 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 2 \end{pmatrix}$	
(10/(02)	
- (1x2+0x0 1x2+0x2)	
- (1×2+0×0 1×2+0×2) - (1×2+0×0 1×2+0×2)	
$-\left(\begin{array}{cc}2&2\\2&2\end{array}\right)$	
AB = AC.	
now A = 0	
but we cannot cancel A	
B # C	
In general AB=AC →B=C	
(3) $AB = 0 \Rightarrow A = 0 \text{ or } B = 0$	
$=g-A=\begin{pmatrix}3&1\\6&2\end{pmatrix}, B=\begin{pmatrix}-1&3\\3&4\end{pmatrix}$	
AB=13 \ /-1 3	
$AB = \begin{bmatrix} 3 & 1 \\ 6 & 2 \end{pmatrix} \begin{pmatrix} -1 & 3 \\ 3 & -9 \end{pmatrix}$	
$= \frac{3(-1)+1\times 3}{6(-1)+2\times 3} \frac{3\times 3+1(-9)}{6\times 3+2(-9)} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$	
=0 but A + 0 B + 0	

(4) (h real number
$$X^2 = 1$$
 $X = \pm 1$

In Complex number $Z^3 = 1$
 $Z = 1$, $cio120^\circ$, $ciopeo$
 $Z^4 = 5$, $\Rightarrow Z = 5^+$, -5^+ , $ciopeo$
 $Z^4 = 5$, $\Rightarrow Z = 5^+$, -5^+ , $ciopeo$
 $Z^4 = 5$, $\Rightarrow Z = 5^+$, -5^+ , $ciopeo$
 $Z^4 = 5$, $\Rightarrow Z = 5^+$, -5^+ , $ciopeo$
 $Z^4 = 5$, $\Rightarrow Z = 5^+$, -5^+ , $ciopeo$
 $Z^4 = 5$, $\Rightarrow Z = 5^+$, -5^+ , $ciopeo$
 $Z^4 = 5$, $\Rightarrow Z = 5^+$, -5^+ , $ciopeo$
 $Z^4 = 5$, $\Rightarrow Z = 5^+$, -5^+ , $ciopeo$
 $Z^4 = 5$, $\Rightarrow Z = 5^+$, -5^+ , $ciopeo$
 $Z^4 = 5$, $\Rightarrow Z = 5^+$, -5^+ , $ciopeo$
 $Z^4 = 5$, $\Rightarrow Z = 5^+$, -5^+ , $ciopeo$
 $Z^4 = 5$, $\Rightarrow Z = 5^+$, -5^+ , $ciopeo$
 $Z^4 = 5$, $\Rightarrow Z = 5^+$, -5^+ , $ciopeo$
 $Z^4 = 5$, $\Rightarrow Z = 5^+$, -5^+ , $ciopeo$
 $Z^4 = 5$, $\Rightarrow Z = 5^+$, -5^+ , $ciopeo$
 $Z^4 = 5$, $\Rightarrow Z = 5^+$, -5^+ , $ciopeo$
 $Z^4 = 5$, $\Rightarrow Z = 1$, $cio120^\circ$, $ciopeo$
 $Z^4 = 5$, $\Rightarrow Z = 1$, $cio120^\circ$, $ciopeo$
 $Z^4 = 5$, $\Rightarrow Z = 1$, $cio120^\circ$, $ciopeo$
 $Z^4 = 5$, $\Rightarrow Z = 1$, $cio120^\circ$, $ciopeo$
 $Z^4 = 5$, $\Rightarrow Z = 1$, $cio120^\circ$, $ciopeo$
 $Z^4 = 5$, $\Rightarrow Z = 5^+$, $ciopeo$
 $Z^4 = 5$, $ziopeo$
 $Z^4 = 1$, $Ziopeo$
 $Ziop$

(5) Associative law of multiplication A (BC) = (a) (b) (CRe) $= (\sum_{k=1}^{m} \sum_{j=1}^{n} a_{ij} b_{jk} C_{kk})$ $= (\sum_{k=1}^{n} \sum_{j=1}^{n} a_{ij} b_{jk} C_{kk})$ $A(BC) = (AB)C^{-1}$ $, B = \begin{pmatrix} 2 & 0 \\ -1 & 1 \end{pmatrix}, C = \begin{pmatrix} 2 & 1 \\ 4 & 0 \end{pmatrix}$ $\begin{pmatrix} 0 \\ 1 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ 4 & 0 \end{pmatrix} = \begin{pmatrix} 4 & 2 \\ 2 & -1 \end{pmatrix}$ $\begin{pmatrix} -5 & 1 \\ -2 & 2 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ 4 & 0 \end{pmatrix} = \begin{pmatrix} -6 & 4 \\ 4 & -2 \end{pmatrix}$: A (BC)=(AB)C.

(6) Distributive law of multiplication
$$A(B+C) = AB+AC$$

$$(A+B)C = AC+BC$$
we only prove the frist one
$$pf: A(B+C) = (aij) [(bjR + CjR)]$$

$$= (\stackrel{?}{=} aij bjR + \stackrel{?}{=} aij CjR)$$

$$= (\stackrel{?}{=} aij bjR) + (\stackrel{?}{=} aij CjR)$$

$$= AB + AC$$

$$(1) \quad \text{Let } A \text{ be an } n \times n \text{ square matrix}$$

$$Pefice A = I$$
for $n \ge 1$

$$A^n = A^{n-1} A$$

$$= GA = (1 \quad 1) \quad \text{prove that } A^n = (1 \quad n)$$

$$pf: \text{induction on } n$$

$$n = 1 \quad A^1 = A = (1 \quad n)$$

$$Suppose A^n = (1 \quad n)$$

$$Suppose A^n = (1 \quad n)$$

$$Bug MI, A^n = (1 \quad n) \quad \forall n \in \mathbb{N}$$

$$exercise A = (2 \quad 1) \quad \text{find } A^n$$

General rule of elementary vow operations	
General rule of elementary vow operations I multiply a row through by a nonzero constant	
2 lutared as too be s	
- intrehange (00 m)	
2 Interchange two hows. 3 Add a multiple of one row to another you	<u>· </u>
The following augmented matrix is in reduced row-echelon form.	
in reduced row-echelon form.	
(0 0 0 1 1) (0 1 0 1 2) (0 0 1 1 3)	
(0 1 0 1 2)	
0 0 1 3	
	-
It must have the following properties.	
I the the journing projectes	
I If a row does not consist entirely of zeros	
then the first non-zero number in the.	
row is 9 ((We call this a leading !)	
2 If there are any rows that consist entirely	
of zeros the thou are a son tentle at	
of zeros, then they are grouped together at	
the bottom of the matrix.	
3 In any two successive rows that do not consist	
entirely of zeros, the leading in the	
lower vow occups farther to the right than	
the leading 1 in the Richard	
the leading I in the Righer row	
4 Each column that contains a leading 1	
has zeros everywhere else.	
U	
A matrix having property 1, 2, and 3 is said	
A matrix having property 1, 2, and 3 is said to be in row-echelon form	

本頁積分 Page Total

D 9

eg [D [0 0 0 1 1 7	
00001013	
000000	
L0 0 0 0 0 0 0 0 1	
reduced row-echelon form.	
eg [-160041-27	
00103(1	
000152	······································
L0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
row-echelon form	· · · · · · · · · · · · · · · · · · ·
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
2 4 -10 6 .12 28	
L2 4 -5 6 -5 1-1-1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
P 20 1 A	
0 0 5 5 0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\frac{-\frac{1}{2}R_3 - R_3}{0 + \frac{1}{4}R_3 - \frac{1}{2}R_3} = \frac{2}{2} \frac{1}{2} $	
0 0 1 0 -7 1-6	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
[1 2 0 3 - 45 1 - 31] vow-echelon form	
~ 0010 -21-6	
$-2R_3\rightarrow R_3$ $\downarrow 0$ 0 0 0 $\downarrow 2$	
R1+4187R, [12030177	
$R_2 + \frac{7}{2}R_3 \rightarrow R_2$ 0 0 0 1	
\sim $\lfloor 0 \ 0 \ 0 \ 0 \ \vert^{2}$	
reduced row - echelon form	

	
(1) -(2) $A \times_1 - A \times_2 = 0$	
$A(X_1 - X_2) = 0$	
let $X_0 = X_1 - X_2$ (non-zero	
HER A(X,+KX0) = AX, +AKX0)	
$= B + K(AX_0)$	
= B + kD	
= B $+$ 0	
= B .	
again X,+ KXo is a solution Y KE	[R
: AX=B has infinitely wany solutions	
	•
2 if AB=BA=I	
•	:
we say B the inverse of A and denote $B = A^{-1}$ (not A	
(because A'C +	CA-1)
Theorem A is unique	
of: suppose AC=CA=T	
Theorem A is unique $pf: Suppose AC = CA = I$ $C = CI = C(AB)$	
= (CA) B	
= T B	
= B	,
eg Find the inverse of A=/a	6
J (c	d).
A= (Pg) AA'= (ab)(Pg)	(10)
(rs) (cd)(rs)	0 1)
Solving $p = \frac{d}{ad-bc} = \frac{-c}{ a }$	
J ad-bc IAI IAI	
$q = -\frac{b}{1A1}$ $S = \frac{a}{1A1}$	

試題號數 Question No. Matrices

Let neIN
Define A = I
$A^{-n} = (A^n)^n$
Claim $A^{-n} = (A^{-1})^n$
pf: induction on n
N=0, 1 obviously true
Suppose $A^{-K} = (A^{-1})^{K}$ $(A^{-1})^{K+1} = (A^{-1})^{K} A^{T} A A^{K}$
$(A^{-1})^{k+1}A^{k+1} = (A^{-1})^{k}A^{1}AA^{k}$
$= (A^{-1})^{k} I A^{k}$
$= (A^{-1})^k A^k$
= A-KAK (by induction assumption)
$(A^{-1})^{k+1} = A^{-(k+1)}$
$r,s \in \mathbb{Z}$ $A^r A^s = A^{r+s}$ $(A^r)^s = A^{rs}$
The transpose of a matrix
$A = (a_{ij})_{m \times n}$ $A^{t} = A' = (a_{ji})_{n \times m}$
(1 7)
$e_{q} A = \begin{bmatrix} 3 & 4 \\ 3 & 4 \end{bmatrix} A^{t} = \begin{bmatrix} 1 & 3 & 5 \\ 3 & 4 & 5 \\ 3 & 4 & 5 \end{bmatrix}$
$\left(\begin{array}{c} 2 & 4 & 6/2x \end{array}\right)$
1 6/3×2
00 R = (11) pt = /1 p)
$\begin{pmatrix} 0 & 2 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 2 & 0 & 0 \end{pmatrix}$
7242
If A - At=A.
It A is symmetric A=A.
pt. 11 - (uj)/nxn - (uij)/nxn - 1
+eg $=$ $-eg$
$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$

If A is skew-symmetric At = -A
of: At = (ai)
$= (-a_{ij})_{n \times n}$
$=-(a_{ij})_{n\times n}$
= -A
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c cccc} eg & -1 & 0 & \vdots & = & 1 & 0 & -i \\ \hline & 3 & \vdots & 0 & & -2 & \vdots & p \end{array}$
/ 5 / -2)
=-(-1)
3 ; 0
Properties of the Transpose Operation (i) $(A^t)^t = A$ pf $(A^t)^t = (a_{ji})^t = (a_{ij}) = A$ (ii) $(A+B)^t = A^t + B^t$ pf! $(A+B)^t = (a_{ij} + b_{ij})^t$ $= (a_{ji} + b_{ji})$ $= (a_{ji} + b_{ji})$ $= A^t + B^t$ (ii) $(kA^t = kA^t + k \in R)$
$pf(kA)^{\dagger} = (kaij)^{\dagger}$
$=(ka_{ji})$
$= k(a_{ji})$
$\frac{-KA^{t}}{(in)} (AR)^{t} = R^{t}A^{t}$
$pf: (AB)^{t} = \left(\sum_{k=1}^{n} a_{ik} b_{kj}\right)_{m+1}^{t} A_{mp}, B_{pm}$
$= \left(\sum_{k=1}^{p} b_{k} \cdot a_{jk}\right)_{n \times m}$

12a

Bt At = (bki) nxp (Bjk)pxn = (
= (\frac{k}{k}, \dots \hat{k}, \dots \hat{l}_j \kappa\) nxm : (AB)^t = B^t A^t Similarly (ABC)^t = C^t B^t A^t Industrively (A, \cdots An)^t = An An An \cdots An At And A^t And And A^t And	$B^{t}A^{t} = (b_{R};) (a_{1R})_{R}$	
Similarly $(ABC)^{\dagger} = C^{\dagger} B^{\dagger} A^{\dagger}$. Inductively $(A, \cdots, A_n)^{\dagger} = A^{\dagger} A^{\dagger} A^{\dagger} - \cdots A^{\dagger}$. Example if A is any matrix, show that AA^{\dagger} and $A^{\dagger}A$ are both symmetric. Pf: $(AA^{\dagger})^{\dagger} = (A^{\dagger})^{\dagger} A^{\dagger} = AA^{\dagger}$. AA^{\dagger} is symmetric. $(A^{\dagger}A)^{\dagger} = A^{\dagger}(A^{\dagger})^{\dagger} = A^{\dagger}A$. Parameter is a symmetric. Property in a unique way as a sum of a symmetric matrix and a stew-symmetrix matrix. Pf: $(A + A^{\dagger})^{\dagger} = A^{\dagger}(A^{\dagger})^{\dagger} = A^{\dagger}(A^{\dagger})^{\dagger} = A^{\dagger}(A^{\dagger})^{\dagger}$. Pf: $(A + A^{\dagger})^{\dagger} = A^{\dagger}(A^{\dagger})^{\dagger} = A^{\dagger}(A^{\dagger})^{\dagger}$. Example show that any square matrix A can be expressed in a unique way as a sum of a symmetric matrix. Pf: $(A + A^{\dagger})^{\dagger} = A^{\dagger}(A^{\dagger})^{\dagger} = A^{\dagger}(A^{\dagger$		
Similarly $(ABC)^{\dagger} = C^{\dagger} B^{\dagger} A^{\dagger}$. Inductively $(A, \cdots, A_n)^{\dagger} = A^{\dagger} A^{\dagger} A^{\dagger} - \cdots A^{\dagger}$. Example if A is any matrix, show that AA^{\dagger} and $A^{\dagger}A$ are both symmetric. Pf: $(AA^{\dagger})^{\dagger} = (A^{\dagger})^{\dagger} A^{\dagger} = AA^{\dagger}$. AA^{\dagger} is symmetric. $(A^{\dagger}A)^{\dagger} = A^{\dagger}(A^{\dagger})^{\dagger} = A^{\dagger}A$. Parameter is a symmetric. Property in a unique way as a sum of a symmetric matrix and a stew-symmetrix matrix. Pf: $(A + A^{\dagger})^{\dagger} = A^{\dagger}(A^{\dagger})^{\dagger} = A^{\dagger}(A^{\dagger})^{\dagger} = A^{\dagger}(A^{\dagger})^{\dagger}$. Pf: $(A + A^{\dagger})^{\dagger} = A^{\dagger}(A^{\dagger})^{\dagger} = A^{\dagger}(A^{\dagger})^{\dagger}$. Example show that any square matrix A can be expressed in a unique way as a sum of a symmetric matrix. Pf: $(A + A^{\dagger})^{\dagger} = A^{\dagger}(A^{\dagger})^{\dagger} = A^{\dagger}(A^{\dagger$	= (& briair) nxm.	
Similarly $(ABC)^{\dagger} = C^{\dagger}B^{\dagger}A^{\dagger}$ Industrively $(A, \cdots, A_n)^{\dagger} = A^{\dagger}A^{\dagger}A^{\dagger}$. Example if A is any matrix, show that AA^{\dagger} and $A^{\dagger}A$ are both symmetric. Pf: $(AA^{\dagger})^{\dagger} = (A^{\dagger})^{\dagger}A^{\dagger} = AA^{\dagger}$ AA^{\dagger} is symmetric. $(A^{\dagger}A)^{\dagger} = A^{\dagger}(A^{\dagger})^{\dagger} = A^{\dagger}A$ And is symmetric. (Ata) = A^{\dagger}(A^{\dagger})^{\dagger} = A^{\dagger}A And is also symmetric matrix A can be expressed in a unique way as a sum of a symmetric matrix and a skew-symmetrix matrix Pf $S = \frac{1}{2}(A + A^{\dagger})$ $S = \frac{1}{2}(A - A^{\dagger})^{\dagger}$ $S = \frac{1}{2}(A + A^{\dagger})^{\dagger}$ $S = \frac{1}{2}(A - A^$	$AQ = DC \Delta C$	
Example if A is any matrix, show that AA ^t and A ^t A are both symmetric. Pf: (AA ^t) ^t = (A ^t) ^t A ^t = AA ^t AA ^t is symmetric. (A ^t A) ^t = A ^t (A ^t) ^t = A ^t A AA ^t is also symmetric. Example show that any square motrix A can be expressed. in a unique way as a sum of a symmetric matrix and a skew-symmetrix matrix Pf S = ½ (A + A ^t) T = ½ (A - A ^t) S+T = A S ^t = ½ (A + A ^t) T = ½ (A - A ^t) = ½ (A ^t - A) = S T ^t = ½ (A - A ^t) Exercise(1) Show that if A is symmetric then BAB ^t is also symmetric	Similarly (ABC) = Ct Bt At.	
Example if A is any matrix, show that AA ^t and A ^t A are both symmetric. Pf: (AA ^t) ^t = (A ^t) ^t A ^t = AA ^t AA ^t is symmetric. (A ^t A) ^t = A ^t (A ^t) ^t = A ^t A AA ^t is also symmetric. Example show that any square motrix A can be expressed. in a unique way as a sum of a symmetric matrix and a skew-symmetrix matrix Pf S = ½ (A + A ^t) T = ½ (A - A ^t) S+T = A S ^t = ½ (A + A ^t) T = ½ (A - A ^t) = ½ (A ^t - A) = S T ^t = ½ (A - A ^t) Exercise(1) Show that if A is symmetric then BAB ^t is also symmetric	Inductively (A, An) = An Any At	
pf: $(AA^{t})^{t} = (A^{t})^{t}A^{t} = AA^{t}$ i. AA^{t} is symmetric. $(A^{t}A)^{t} = A^{t}(A^{t})^{t} = A^{t}A$ i. AA^{t} is also symmetric. Example show that any square matrix A can be expressed in a unique way as a sum of a symmetric matrix and a skew-symmetrix matrix of $S = \frac{1}{2}(A + A^{t})$ $S = \frac{1}{2}(A + A^{t})$ $S = \frac{1}{2}(A + A^{t})^{t}$ $S = \frac{1}{2}(A + A^{t})^{t}$ $S = \frac{1}{2}(A + A^{t})^{t}$ $S = \frac{1}{2}(A - A^{t})^{t$	d '	
pf: $(AA^{t})^{t} = (A^{t})^{t}A^{t} = AA^{t}$ i. AA^{t} is symmetric. $(A^{t}A)^{t} = A^{t}(A^{t})^{t} = A^{t}A$ i. AA^{t} is also symmetric. Example show that any square matrix A can be expressed in a unique way as a sum of a symmetric matrix and a skew-symmetrix matrix of $S = \frac{1}{2}(A + A^{t})$ $S = \frac{1}{2}(A + A^{t})$ $S = \frac{1}{2}(A + A^{t})^{t}$ $S = \frac{1}{2}(A + A^{t})^{t}$ $S = \frac{1}{2}(A + A^{t})^{t}$ $S = \frac{1}{2}(A - A^{t})^{t$	Example if A is any matrix, show that AAt and AtA	
i. AA^{t} is symmetric. $(A^{t}A)^{t} = A^{t}(A^{t})^{t} = A^{t}A$ i. AA^{t} is also symmetric. Example show that any square matrix A can be expressed. in a unique way as a sum of a symmetric matrix and a skew-symmetrix matrix $F = \frac{1}{2}(A + A^{t})$ $T = \frac{1}{2}(A - A^{t})$ $S + T = A$ $S^{t} = \frac{1}{2}(A + A^{t})^{t}$ $= \frac{1}{2}(A^{t} + A) = S$ $T^{t} = \frac{1}{2}(A - A^{t})^{t}$ $= \frac{1}{2}(A^{t} - A^{t})^{t}$ $= \frac{1}{2}(A^{t} - A^{t})^{t}$ exercise(1) Show that if A is symmetric, then BAB^{t} is also symmetric.	are both symmetric.	
Example 8 how that any square matrix A can be expressed in a unique way as a sum of a symmetric matrix and a skew-symmetrix matrix pf S = ½ (A + A+) T = ½ (A - A+) S+T = A S ⁺ = ½ (A + A+) [†] = ½ (A+A+) = S S is symmetric. T ⁺ = ½ (A-A+) [†] = ½ (A+A+) = S S is symmetric. The symmetric exercise (1) Show that if A is symmetric then BABt is also symmetric.	pf : $(AA^t)^t = (A^t)^t A^t = AA^t$	
Example 8 how that any square matrix A can be expressed in a unique way as a sum of a symmetric matrix and a skew-symmetrix matrix pf S = ½ (A + A+) T = ½ (A - A+) S+T = A S ⁺ = ½ (A + A+) [†] = ½ (A+A+) = S S is symmetric. T ⁺ = ½ (A-A+) [†] = ½ (A+A+) = S S is symmetric. The symmetric exercise (1) Show that if A is symmetric then BABt is also symmetric.		
Example 8 how that any square matrix A can be expressed in a unique way as a sum of a symmetric matrix and a skew-symmetrix matrix pf S = ½ (A + A+) T = ½ (A - A+) S+T = A S ⁺ = ½ (A + A+) [†] = ½ (A+A+) = S S is symmetric. T ⁺ = ½ (A-A+) [†] = ½ (A+A+) = S S is symmetric. The symmetric exercise (1) Show that if A is symmetric then BABt is also symmetric.	$\left(A^{t}A\right)^{t} = A^{t}\left(A^{t}\right)^{t} = A^{t}A$	
Example 8 how that any square matrix A can be expressed in a unique way as a sum of a symmetric matrix $S = \frac{1}{2}(A + A^{+})$ $T = \frac{1}{2}(A - A^{+})$ $S = \frac{1}{2}(A + A^{+})^{T}$		
in a unique way as a sum of a symmetric matrix and a skew-symmetrix matrix $ \begin{array}{lll} \text{pf} & S = \frac{1}{2} (A + A^{+}) \\ T = \frac{1}{2} (A - A^{+}) \\ S + T = A \\ S^{+} = \frac{1}{2} (A + A^{+})^{+} \\ & = \frac{1}{2} (A^{+} + A) = S \text{i. S is symmetric.} \\ T^{+} = \frac{1}{2} (A - A^{+})^{+} \\ & = \frac{1}{2} (A^{+} - A) = T \text{i. T is skew-symmetric.} \\ \text{exercise(1) Show that if } A \text{ is symmetric. then} \\ B A B^{+} \text{ is also symmetric.} \\ \end{array} $	example show that any square matrix A can be expres	sed.
matrix and a skew-symmetrix matrix	in a unique way as a sum of a symmetr	?c
pf $S = \frac{1}{2} (A + A^{t})$ S + T = A $S^{t} = \frac{1}{2} (A + A^{t})^{t}$ $= \frac{1}{2} (A^{t} + A) = S$ S is symmetric. $T^{t} = \frac{1}{2} (A - A^{t})^{t}$ $= \frac{1}{2} (A^{t} - A) = -T$ T is shew-symmetric exercise(1) Show that if A is symmetric then BABt is also symmetric	matrix and a skew-symmetrix matrix	
$S+T = A$ $S^{\dagger} = \frac{1}{2} (A+A^{\dagger})^{\dagger}$ $= \frac{1}{2} (A^{\dagger}+A) = S \text{i. S is symmetric.}$ $T^{\dagger} = \frac{1}{2} (A-A^{\dagger})^{\dagger}$ $= \frac{1}{2} (A^{\dagger}-A) = -T \text{i. T is shew-symmetric.}$ $\text{exercise(1) Show that if } A \text{ is symmetric. then } BAB^{\dagger} \text{ is also symmetric.}$	$pf S = \frac{1}{2} (A + A^{\dagger})$	
$= \frac{1}{2} (A^{t} + A) = S \text{S is symmetrie.}$ $T^{t} = \frac{1}{2} (A - A^{t})^{t}$ $= \frac{1}{2} (A^{t} - A) = T \text{T is skew-symmetric.}$ $\text{exercise (1) Show that } \text{if } A \text{is symmetric. then}$ $B \land B^{t} \text{ is also symmetric.}$	$T = \frac{1}{2} \left(A - A^{\dagger} \right)$	-
$= \frac{1}{2} (A^{t} + A) = S \text{S is symmetrie.}$ $T^{t} = \frac{1}{2} (A - A^{t})^{t}$ $= \frac{1}{2} (A^{t} - A) = T \text{T is skew-symmetric.}$ $\text{exercise (1) Show that } \text{if } A \text{is symmetric. then}$ $B \land B^{t} \text{ is also symmetric.}$	S+T=A	
= \frac{1}{2}(A^t - A) = -T = T is skew-symmetrice exercise(1) Show that if A is symmetric then BABt is also symmetric		
= \frac{1}{2}(A^t - A) = -T = T is skew-symmetrice exercise(1) Show that if A is symmetric then BABt is also symmetric	$= \frac{1}{2} (A^{t} + A) = S \text{i. S is symmetric}$	C ,
exercise (1) Show that if A is symmetric then BABt is also symmetric		
BABt is also symmetrice		tric
BAB is also symmetrice	,	
(2) if A and B age symmetric N×n matrices.	BAB is also symmetrice	
$Ch_{\alpha} + H_{\alpha}T + HU - RA $ $Ch_{\alpha} + H_{\alpha}T + HU - RA $	(2) if A and B are symmetric NXN matrices	•
sion mai 15-bt) spew-symmetric	Show that AB-BA us skew-symmetric	<u> </u>

If $A^{-1}exist$ $(A^{-1})^{-1} = A$	
$(A^{t})^{-1}$ also exists and $(A^{t})^{-1}=(A^{-1})^{t}$	
$Df (A^{-1})A = A A^{-1} = I$	
$(A^{-1})^{-1} = A$	
$(A^{-1} A)^{t} = (A A^{-1})^{t} = I^{t}$	
$A^{t} (A^{-1})^{t} = (A^{-1})^{t} A^{t} = I$	
$(A^{t})^{-1} = (A^{-1})^{t}$	
If A and B exist and A, B are both nxn matrices	
then $(AB)^{T}$ exists and $(AB)^{T} = B^{T}A^{-1}$	
Df: AB(B'A'') = A(BB'')A''	
$= A I A^{-1}$	
$= A A^{-1}$	
= I	
$B^{-1}A^{-1}(AB) = B^{-1}(A^{T}A)B = B^{T}IB = B^{T}B = I$	
$AB^{-1} = B^{-1}A^{-1}$	
Simlarly (ABC) = C'B'A' (same as transpose).	
Inductively (A,AzAm) = Am AzAi	
example If A and B are invertible non matrices	
Show that $A^{-1}+B^{-1}=A^{-1}(A+B)B^{-1}$	
If A+B is also invertible find (A-1+B-1)-1	
$pf: A^{-1}(A+B)B^{-1} = (I+A^{-1}B)B^{-1}$	
$= B^{-1} + A^{-1} = A^{-1} + B^{-1}$ (at 5-1) - (at 5-2) - 1 = A (at 5-2	
$(A^{-1}+B^{-1})^{-1} = (A^{-1}(A+B)B^{-1})^{-1} = B(A+B)^{-1}A$	
exercise let AB be non matrices such that I-AB is	
invertible, Showthat I-BA is invertible and (I-BA) = I+B(I-	<u>-AB) A</u>

試題號數 Question No.

Not all matrix has an inverse
eg /164)
$A = \begin{bmatrix} 2 & 4 & -1 \end{bmatrix}$
(-1 2 1)
[AII] = [1 6 4 1 1 0 0 7
24-1010
[-1 2 5 6 0 1]
$R_2-2R_1\rightarrow R_2\Gamma$ (641100)
~ 0-8-9 -2 10
$R_1+R_3\rightarrow R_3$ Q
P16411807
R2+R3+R3~ 0-8-9/-210
L0 0 0 - 1 1 0)
Consisting of a row of zeros
Consisting of a row of zeros A is not invertible
700
Determinant of a square non matrix (n=3)
a) $M = (a)$ $M = det M = a$
$M = \begin{pmatrix} u_{11} & u_{12} \\ u_{21} & u_{22} \end{pmatrix} \times 2 \qquad \qquad \begin{pmatrix} u_{11} & u_{12} \\ u_{21} & u_{22} \end{pmatrix} \times 2 \qquad \qquad \begin{pmatrix} u_{11} & u_{12} \\ u_{21} & u_{22} \end{pmatrix}$
$= a_{11}a_{22} - a_{21}a_{12}$
if $ N = b_{11} b_{12} $ then $ MN = M N$
b21 b22
pf: (an a,2) by by - (anb) ta,2b2, a,1 b12 + a,2b2)
(a21 a22 b21 b22) (a21 b1+a22b2) (a21 bx + a22 b22)
= (a,b,+ a,2b2) (a2,b,2+ a22 b22) - (a2,b,+ a22b2) (a, b,2+ a,2b22)
= 9,9216,1612 + a,19226,1622 + 9,12921 b,12 b2, + 9,2922 b,2022
- a11 ay 611012 - a11 a22 b 12 by - a12 a21 b11 b22 - a12 a2x b21 b22

= a, azz(b, bzz-b)zbz)+a,zaz, (b,zbz, -b, bzz)	
=(a11 a22 - a2 a12) (b11 b22 - b12 b21)	
= det M det N	
$c) M = a_{11} a_{12} a_{13}$	
92, 922 azz	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
1M = a11 a22 a33 + a12 a23 a31 + a13 a21 a32	
- a13 a22 a31 - a12 a21 a33 - a11 a23 a32	
if N is also a 3 x 3 square matrix	
MN = M N	
pf: difficult, omit	
Elementary now / column operations of determinant (See the past note yourself!)	1
(see the past note yourself!)	
Definition An monmatrix A is non-singular if 1A1+	0
Theorem A is invertible (ie A' exist) if and	
only if IAI # 0.	
pf: We have proved for the case n=2 (on P1	66)
now we are going to prove for n=3	
$\left(\begin{array}{cccc} a_{12} & a_{12} \\ \end{array}\right)$:
Let $A = \begin{pmatrix} a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$	
(431 A32 A33)	
Let Cij = (-1)" det motrix by deleting the ith row of A)——
let Cij = (-1)it) det matrix by deleting the ithrow of A Called the Cofactor of A	1
\mathcal{O}	

試題號數 Question No.

3+3 1 0 0 0 0	
$eg G_{33} = (-1)^{3+3} \alpha_{11} \alpha_{12} - \alpha_{11} \alpha_{22} - \alpha_{21} \alpha_{12} $ $ \alpha_{21} \alpha_{22} $	-
(-az) azz	· · · · · · · · · · · · · · · · · · ·
$C_{23} = (-1)^{2+3} a_{11} a_{12} = -(a_{11} a_{32} - a_{31} a_{12}) $	·
$C_{23} = (-1)^{2+3} \begin{vmatrix} a_{11} & a_{12} \\ a_{31} & a_{32} \end{vmatrix} = - (a_{11}a_{32} - a_{31}a_{12})$	[
$C_{11} = (-1)^{1+1} G_{22} G_{23} = (Q_{22} Q_{33} - Q_{32} Q_{23})$)
$\begin{array}{c c} & & & & & & & & & & & & & & & & & & &$	
Then we have the cofactor expansion of det	1
then we have the cotactor expansion of act	<u>F</u>
det(A) = ai, Ci, + ai, Ci, + ai, Ci, i=1,2,3	(voro)
$= a_{ij}C_{ij} + a_{2j}C_{2j} + a_{3j}C_{3j} = 1, 2, 3$	(column)
Futhermore air Cji + aiz Cjz + aiz Cjz = 0 for i + j air Cij + azi Czj + azi Czj = 0 for i + j	
$a_{14}c_{13} + c_{23}c_{23} + a_{23}c_{23} = 0$ for $7 \neq 3$	
Define C = / C11 C12 C13	
2 equil (-) (1) (1) (1)	
C2 C23	
Define $C = \begin{pmatrix} C_{11} & C_{12} & C_{13} \\ C_{21} & C_{22} & C_{23} \\ C_{31} & C_{32} & C_{33} \end{pmatrix}$	
where Cij to the (i,j)th cofactor of A. C is called the matrix of cofactors from the	
is called the matrix of cofactors from A	
C' is called the adjoint of A.	
denote $C^{\dagger} = ad_i(A)$	
Consider A adj (A) = (a11 a12 a13) (C1 C21 C31	\
au au au C12 C22 (32	}
(a31 a32 a33/ C13 C23 C33/	<u>/</u>
(a, C, + a, 2C, 2 + a, 3C, 13 a, C2, + a, 2C2 + a, 3C23 a, C3, + a, 2C3 2 + a, 2C3 2	
= Q21 G1+ Q22 G2 + Q23 C13 Q21 G21 + Q22 C22 + Q23 G23 Q21 C31 + Q22 C32 + Q23 G3	
931 C11 + 932 G2 + 933 G3 931 C21 + 932 G2 + 933 G3 931 C31 + 932 G32 + 933 G3	
· · · · · · · · · · · · · · · · · · ·	

$Aod_{i}(A) = \int det(A) O$	
$A adj(A) = \begin{cases} det(A) & 0 & 0 \\ 0 & det(A) & 0 \end{cases} = det(A) I$	
O o det(A)	
: if det(A) \$ 0 A (ad)(A) = I	· .
det (A)	
in A exist and equal to 1 adj (A).	
if A^{-1} exist. $A A^{-1} = I$	
AA' = I	
$ A A^{-} =1$	
,', [A] ‡0	
eg Find the inverse of the matrix A = 12 14	
$\begin{pmatrix} 0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 &$	
and hence solve $\begin{cases} 2x + y + 4z = 2 \\ x + 2z = 3 \end{cases}$	
$\frac{1}{2} \times \pm 20 \pm 2 = 1$	
	3 7
	-4
	-[_]
731 21 723	
114 124 121	
L 6 2 - 1 2 (10 J	
$adj A = (Cij) = \begin{bmatrix} -6 & 11 & 2 \end{bmatrix}$	
$\begin{pmatrix} 3 & -6 & 0 \\ 2 & -6 & -1 \end{pmatrix}$	
101-12 141	
$\frac{1}{2} = \frac{1}{3} + \frac{1}{(-1) \times 2} \times \frac{1}{2}$	
$= (1 - \beta = 3)$.

本頁積分 Page Total

156

	
$A^{-1} = 1$ adi $A = \frac{1}{3} \begin{bmatrix} -6 & 11 & 2 \\ 1 & 2 & 1 \end{bmatrix}$	3
A $ A $	0
L3 -4 -1) \ 1 -\frac{4}{3}	$-\frac{1}{3}$
Second part $AX = H$ $X = [X]$ $H = [2]$	/
7	
2/ -6/	
A'(AX = A'H) $(A'A) X = A'H)$	
$T \times = A^{-1}H$	_
$X = A^{-1}H$	
- /-2 <u>U</u> Z \ / 2 \	_
$= \begin{pmatrix} 2 & 3 & 3 & 2 \\ 1 & -2 & 0 & 3 \end{pmatrix}$	_
$\frac{1}{1} - \frac{1}{2} - \frac{1}{3} - \frac{1}{6}$	<u> </u>
=	
	·
,', X=3 y=-4 z=0	
exercise. Find the inverse of [+ -1] and hence	
px - y + z = 1 $(2 - 1 3)$	
$\int X - y + z = 1 $ (2 -1 3) Solve { X + y + 2Z = 0 } (2X - y + 3Z = 2	
2X-y+3Z=2	

考生編號 Candidate Number

本頁積分 Page Total

16 a

Finding an inverse is always time-consuming
Finding an inverse is always time-consuming You can use a programmable ealeulator to. help you or any other methods such as:
help you or any other methods such as:
(A) Matrix equation (Hamilton-Cayley theorem) let B=(ab) be any 2x2 matrix.
let B=(ab) be any 2x2 matrix
$\begin{pmatrix} c d \end{pmatrix}$
then $B^2 - (a+d)B + (detB)I = 0$ (the zero matrix)
$B^{2} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a^{2}+bc & ab+bd \\ ac+cd & bc+d^{2} \end{pmatrix}$
/ 2 -1 1
$\frac{ -ac-cd -ad-d}{ -ac-cd }$ $= \frac{ -ac-cd -ad-d}{ -ac-cd }$
t) (0 ad-bc)
$B^{2}-(a+d)B+det(B)I=\begin{pmatrix}0&0\\0&6\end{pmatrix}=0$
It follows that every 2×2 matrix satisfies a:
eg R= (-2 -3) It follows that B-3B+2I=0
B= (2) 11 tollows that 0-315+21-0
B(R-3I) = -2T
$\frac{1}{B}\left[\frac{1}{2}\left(B-3I\right)\right]=I$
$B = \frac{1}{2}(B-3I) = -\frac{1}{2}(\frac{-2}{4}, \frac{-3}{4}) - \frac{3}{6}\frac{3}{2}$
$\frac{1}{2}\left(\frac{1}{4}\right) = \left(\frac{1}{2}\right)$

Finding the nth power (nEN) is also very easy from Cayley-Hamilton theorem.	
eg B ² -3B+2I=0, cquen, B às a 2x2 matris	×)_
find B101	
Solution $X^{(0)} = (X^2 - 3X + 2)Q(X) + aX + b$	
by remainder theorem.	
X'' = (X-1)(X-2)Q(X) + QX+b	
$\begin{array}{c c} X=1 & l=a+b \\ X=2 & 2^{10}=2a+b \end{array}$	
$\alpha = 2^{10!} - 1$	
a = a''' - 1 $b = 2 - 2''' - 1$	
$B^{(0)} = (B^2 - 3B + 2I)Q(B) + (2^{(0)})B + (2-2^{(0)})$)I
$= \frac{1}{6} \left(\frac{101}{1000} \right) = \frac{1}{1000} \left(\frac{1000}{1000} \right)$	
$= \frac{(2^{(0)}-1)B+(2-2^{(0)})I}{C}$	
Can you find B-101 in terms of B and I?	
exercise(1) If $A = \begin{pmatrix} 1 & 2 \\ -4 & 3 \end{pmatrix}$ find an matrix equal	f ion
and hence find $(A^{-1})^3$	
(2) If A=(100)	
Prove by induction that $\forall n \ge 3$ $A^{n-A^{n-2}} = A^{2-T}$	
Hence find A100	