Sharp Threshold Phenomena in Statistical Physics

André Victor Ribeiro Amaral†

Orientador: Roger William Câmara Silva

Universidade Federal de Minas Gerais - ICEx, Departam. de Estatística. (09/12/2019)

[†] E-mail: avramaral@gmail.com

Sumário

Introdução

Como provar que $(f_k)_{k\in\mathbb{N}}$ passa por *sharp threshold*

Fórmula de Russo-Margulis

Inequação de sharp threshold

Desigualdade de O'Donnel-Saks-Schramm-Servedio

Aplicações em percolação Bernoulli (\mathbb{Z}^d)

Ponto crítico para percolação em \mathbb{Z}^2

Sharpness da transição de fase para percolação Bernoulli em \mathbb{Z}^d

Referências

Em modelos com componentes estocásticas, diz que um sistema aleatório **finito** passa por **sharp threshold** se o seu comportamento muda "rapidamente" como resultado de uma pequena perturbação dos parâmetros que governam sua estrutura.

Em modelos com componentes estocásticas, diz que um sistema aleatório **finito** passa por **sharp threshold** se o seu comportamento muda "rapidamente" como resultado de uma pequena perturbação dos parâmetros que governam sua estrutura.

Observação

O espaço de probabilidade $(\Omega, \mathcal{F}, \mathbb{P}_p)$ será tal que $\Omega = \{0,1\}^n$, para $n \in \mathbb{N}$, $\mathcal{F} = \sigma(\text{conjuntos cilíndricos})$ e \mathbb{P}_p é a medida produto Bernoulli $\prod_{i \in [n]} \mu_i$, com $\mu_i(\omega_i = 1) = p$ e $\mu_i(\omega_i = 0) = 1 - p$; onde $[n] = \{1, \cdots n\}$.

Seja $f_k:\Omega\longrightarrow\{0,1\}$ sequência de funções Booleanas, então defina $F_k(p):=\mathbb{E}_p(f_k(\omega)),\ \forall k\in\mathbb{N}.$ Nesse caso,

$$F_k(p) = \sum_{\omega \in \Omega} f_k(\omega) \, p^{\sum_{i \in [n]} \omega_i} \, (1-p)^{\sum_{i \in [n]} 1 - \omega_i}. \tag{1}$$

Seja $f_k:\Omega\longrightarrow\{0,1\}$ sequência de funções Booleanas, então defina $F_k(p):=\mathbb{E}_p(f_k(\omega)),\ \forall k\in\mathbb{N}.$ Nesse caso,

$$F_k(p) = \sum_{\omega \in \Omega} f_k(\omega) \, p^{\sum_{i \in [n]} \omega_i} \, (1-p)^{\sum_{i \in [n]} 1 - \omega_i}. \tag{1}$$

Definição 1

Uma sequência de funções Booleanas crescentes $(f_k)_{k\in\mathbb{N}}$ passa por sharp threshold em $(p_k)_{k\in\mathbb{N}}$ se existe $(\delta_k)_{k\in\mathbb{N}}$, com $\lim_{k\to+\infty}\delta_k=0$, tal que $F_k(p_k-\delta_k)\longrightarrow 0$ e $F_k(p_k+\delta_k)\longrightarrow 1$, quando $k\to+\infty$.

Figura 1: Esboço de $F_k(p) = \mathbb{E}_p(f_k(w))$ para algum k "grande", tal que $(f_k)_{k \in \mathbb{N}}$ passa por *sharp threshold*.

Exemplo 1

Seja $f_k(\omega) = \mathbb{I}_{\{\omega_1=1\}}(\omega)$, $\forall k \in \mathbb{N}$. Nesse caso, $F_k(p) = p$; dessa forma, $(f_k)_{k \in \mathbb{N}}$ **não** passa por *sharp threshold*.

Exemplo 1

Seja $f_k(\omega) = \mathbb{I}_{\{\omega_1=1\}}(\omega)$, $\forall k \in \mathbb{N}$. Nesse caso, $F_k(p) = p$; dessa forma, $(f_k)_{k \in \mathbb{N}}$ **não** passa por *sharp threshold*.

(Modelo de Erdös-Rényi) Seja G(n, p) grafo aleatório, então:

Exemplo 2 (Conectividade do grafo)

Seja $A_k = \{G(k, p) \text{ \'e conectado}\}$; então $(\mathbb{I}_{A_k})_{k \in \mathbb{N}}$ passa por sharp threshold em $p_k = \frac{\log k}{k}$.

Exemplo 1

Seja $f_k(\omega) = \mathbb{I}_{\{\omega_1=1\}}(\omega)$, $\forall k \in \mathbb{N}$. Nesse caso, $F_k(p) = p$; dessa forma, $(f_k)_{k \in \mathbb{N}}$ **não** passa por *sharp threshold*.

(Modelo de Erdös-Rényi) Seja G(n, p) grafo aleatório, então:

Exemplo 2 (Conectividade do grafo)

Seja $A_k = \{G(k, p) \text{ \'e conectado}\}$; então $(\mathbb{I}_{A_k})_{k \in \mathbb{N}}$ passa por sharp threshold em $p_k = \frac{\log k}{k}$.

Exemplo 3 (Exist. de comp. conectada "grande")

Seja $B_k = \{\exists \text{ comp. em } G(k,p) \text{ com tam. maior que } r_k\}$, tal que $\log k \ll r_k \ll k$; então $(\mathbb{I}_{B_k})_{k \in \mathbb{N}}$ passa por sharp threshold em $p_k = \frac{1}{k}$.

Como provar que $(f_k)_{k\in\mathbb{N}}$ passa por *sharp threshold*

Seja $f: \Omega \longrightarrow \{0,1\}$, então defina:

$$\nabla_i f(\omega) := f(\omega) - f(\mathsf{Flip}_i(\omega)),$$

onde

$$\mathsf{Flip}_i(\omega)_j = egin{cases} \omega_j & \mathsf{para}\ j
eq i \ 1 - \omega_j & \mathsf{para}\ j = i. \end{cases}$$

Como provar que $(f_k)_{k\in\mathbb{N}}$ passa por *sharp threshold*

Seja $f: \Omega \longrightarrow \{0,1\}$, então defina:

$$\nabla_i f(\omega) := f(\omega) - f(\mathsf{Flip}_i(\omega)),$$

onde

$$\mathsf{Flip}_i(\omega)_j = egin{cases} \omega_j & \mathsf{para}\ j
eq i \ 1 - \omega_j & \mathsf{para}\ j = i. \end{cases}$$

Além disso, defina a influência do bit i como

$$Inf_i(f(\omega)) := \mathbb{E}_p(|\nabla_i f(\omega)|),$$

que é o mesmo que $\operatorname{Inf}_i(f(\omega)) = \mathbb{P}_p(f(\omega) \neq f(\operatorname{Flip}_i(\omega))).$

Fórmula de Russo-Margulis

Teorema 1 (Fórmula de Russo-Margulis)

Para $f:\Omega\longrightarrow\{0,1\}$ crescente, vale:

$$\frac{d}{dp}\mathbb{E}_p(f(\omega)) = F'(p) = \sum_{i \in [n]} \mathsf{Inf}_i(f(\omega)).$$

Fórmula de Russo-Margulis

Teorema 1 (Fórmula de Russo-Margulis)

Para $f: \Omega \longrightarrow \{0,1\}$ crescente, vale:

$$\frac{d}{dp} \mathbb{E}_p(f(\omega)) = F'(p) = \sum_{i \in [n]} \mathsf{Inf}_i(f(\omega)).$$

Nesse sentido, ser for possível provar cotas do tipo:

$$F'(p) \ge C \, \mathbb{V}_p(f(\omega)),$$
 (2)

para constante C "grande", então vale que, tomando p tal que $F(p)=\frac{1}{2},\ \forall \delta>0,$

$$F(p-\delta) \le e^{-\delta C}$$
 e $F(p+\delta) \ge 1 - e^{-\delta C}$;

i.e., a seq. $(f_k)_{k\in\mathbb{N}}$ associada passa por sharp threshold.

Teorema 2 (Talagrand)

Existe constante c>0 tal que, $\forall p\in[0,1]$ e $n\in\mathbb{N}$, vale que, para qualquer função Booleana crescente $f:\Omega\longrightarrow\{0,1\}$,

$$\mathbb{V}_p(f(\omega)) \leq c \ln \frac{1}{p(1-p)} \sum_{i \in [n]} \frac{\inf_i(f(\omega))}{\ln \frac{1}{\inf_i(f(\omega))}}.$$

Teorema 2 (Talagrand)

Existe constante c>0 tal que, $\forall p\in[0,1]$ e $n\in\mathbb{N}$, vale que, para qualquer função Booleana crescente $f:\Omega\longrightarrow\{0,1\}$,

$$\mathbb{V}_p(f(\omega)) \leq c \ln \frac{1}{p(1-p)} \sum_{i \in [n]} \frac{\ln f_i(f(\omega))}{\ln \frac{1}{\ln f_i(f(\omega))}}.$$

De maneira equivalente, deve existir alguma influência i com

$$\frac{\inf_{i}(f(\omega))}{\ln\frac{1}{\inf_{i}(f(\omega))}} \ge \frac{c_p}{n} \, \mathbb{V}_p(f(\omega)),\tag{3}$$

onde
$$c_p = \left(c \ln \frac{1}{p(1-p)}\right)^{-1}$$
.

Continuando, a Inequação 3 implica em: existe pelo menos uma influência tal que

$$\operatorname{Inf}_{i}(f(\omega)) > c_{p} \frac{\ln n}{n} \mathbb{V}_{p}(f(\omega)),$$

com c_p possivelmente modificado por um fator multiplicador.

Continuando, a Inequação 3 implica em: existe pelo menos uma influência tal que

$$\operatorname{Inf}_{i}(f(\omega)) > c_{p} \frac{\ln n}{n} \mathbb{V}_{p}(f(\omega)),$$

com c_p possivelmente modificado por um fator multiplicador.

Por fim, fazendo referência à Inequação 2, o Teorema 2 pode ser traduzido como

$$F'(p) > c_p \ln \frac{1}{\max_i (\operatorname{Inf}_i(f(\omega)))} \, \mathbb{V}_p(f(\omega));$$

ou seja, se $C=c_p\ln\frac{1}{\max_i(\ln f_i(f(\omega)))}$ é "grande", então a seq. $(f_k)_{k\in\mathbb{N}}$ associada passa por *sharp threshold*.

Teorema 3

Existe constante c>0 tal que, $\forall p\in[0,1]$ e $n\in\mathbb{N}$, vale que, para qualquer função Booleana crescente $f:\Omega\longrightarrow\{0,1\}$ que é simétrica sob um grupo $\mathcal G$ agindo transitivamente sobre $[n]^1$,

$$F'(p) \geq c \ln(n) \mathbb{V}_p(f(\omega)).$$

¹Dado um conjunto Λ, (Σ, ψ) é grupo simétrico \mathcal{G} se $\Sigma = \{\sigma; \sigma : \Lambda \longrightarrow \Lambda$ é bijeção} e $\psi : \Sigma \times \Sigma \longrightarrow \Sigma$, com $(\sigma_1, \sigma_2) \mapsto \sigma_1 \circ \sigma_2$; nesse caso, f é dita simétrica sob \mathcal{G} , se $f \circ \sigma = f$, $\forall \sigma \in \mathcal{G}$. Além disso, \mathcal{G} age transitivamente sobre Λ se, para todo par λ_1 e λ_2 em Λ, existe $\sigma \in \mathcal{G}$, tal que $\sigma(\lambda_1) = \lambda_2$.

Teorema 3

Existe constante c>0 tal que, $\forall p\in[0,1]$ e $n\in\mathbb{N}$, vale que, para qualquer função Booleana crescente $f:\Omega\longrightarrow\{0,1\}$ que é simétrica sob um grupo $\mathcal G$ agindo transitivamente sobre $[n]^1$,

$$F'(p) \geq c \ln(n) \mathbb{V}_p(f(\omega)).$$

Nesse contexto, para todo par i_1 e $i_2 \in [n]$, vale que:

$$\mathsf{Inf}_{i_1}(f) = \mathsf{Inf}_{i_1}(f \circ \sigma) = \mathsf{Inf}_{i_2}(f).$$

¹Dado um conjunto Λ, (Σ, ψ) é grupo simétrico \mathcal{G} se $\Sigma = \{\sigma; \sigma : \Lambda \longrightarrow \Lambda$ é bijeção} e $\psi : \Sigma \times \Sigma \longrightarrow \Sigma$, com $(\sigma_1, \sigma_2) \mapsto \sigma_1 \circ \sigma_2$; nesse caso, f é dita simétrica sob \mathcal{G} , se $f \circ \sigma = f$, $\forall \sigma \in \mathcal{G}$. Além disso, \mathcal{G} age transitivamente sobre Λ se, para todo par λ_1 e λ_2 em Λ, existe $\sigma \in \mathcal{G}$, tal que $\sigma(\lambda_1) = \lambda_2$.

Mais uma vez, fazendo referência à Inequação 2, e tomando $C = c \ln(n)$, é possível dizer, então, que $(f_k)_{k \in \mathbb{N}}$ passa por sharp threshold sempre que forem satisfeitas as hipóteses do Teorema 3.

Mais uma vez, fazendo referência à Inequação 2, e tomando $C=c\ln(n)$, é possível dizer, então, que $(f_k)_{k\in\mathbb{N}}$ passa por sharp threshold sempre que forem satisfeitas as hipóteses do Teorema 3.

Exemplo 4 (Propriedades* monótonas em grafos)

Considerando o Modelo de Erdös-Rényi, toda sequência $(\mathbb{I}_{A_k})_{k\in\mathbb{N}}$ de funções indicadoras de propriedades crescentes de grafos; i.e., propriedades que dependem da ocorrência de eventos crescentes A_k , passa por *sharp threshold*.

Perceba que os Exemplos 2 e 3 são casos particulares do Exemplo 4.

Desigualdade de O'Donnel-Saks-Schramm-Servedio

Definição 2 (Algoritmo)

Dados uma n-upla $x=(x_1,\cdots,x_n)$ e um $t\leq n$, com $t\in\mathbb{N}$, defina $x_{[t]}:=(x_1,\cdots,x_t)$ e $\omega_{x_{[t]}}:=(\omega_{x_1},\cdots,\omega_{x_t})$. Um algoritmo \boldsymbol{T} é uma tripla $(i_1,\psi_t,t\leq n)$ que toma $\omega\in\Omega$ como entrada e devolve uma sequência ordenada (i_1,\cdots,i_n) construída indutivamente da seguinte forma: para $2\leq t\leq n$,

$$i_t = \psi_t(i_{[t-1]}, \omega_{i_{[t-1]}}) \in [n] \setminus \{i_1, \cdots, i_{t-1}\};$$

onde ψ_t é interpretada como a regra de decisão no tempo t (ψ_t toma, como argumentos, a localização e o valor dos bits para os primeiros (t-1) passos do processo de indução, e, então, decide qual o próximo bit que será consultado). Aqui, note que a primeira coordenada i_1 é determinística. Por fim, para $f:\Omega\longrightarrow\{0,1\}$, defina:

$$\tau(\omega) = \tau_{f,T}(\omega) := \min\{t \ge 1 : \forall x \in \Omega, x_{i_{[t]}} = \omega_{i_{[t]}} \implies f(x) = f(\omega)\}.$$

Desigualdade de O'Donnel-Saks-Schramm-Servedio

Teorema 4 (Desiguladade de OSSS)

Seja $p \in [0,1]$ e $n \in \mathbb{N}$. Fixe uma função Booleana crescente $f: \Omega \longrightarrow \{0,1\}$ e um algoritmo T; então vale que:

$$\mathbb{V}_p(f(\omega)) \leq p(1-p) \sum_{i \in [n]} \delta_i(T) \operatorname{Inf}_i(f(\omega)),$$

onde $\delta_i(\mathbf{T}) = \delta_i(f, \mathbf{T}) := \mathbb{P}_p(\exists t \leq \tau(\omega) : i_t = i)$ é chamado de *revelação* de f para o algoritmo \mathbf{T} e o bit i.

Desigualdade de O'Donnel-Saks-Schramm-Servedio

Teorema 4 (Desiguladade de OSSS)

Seja $p \in [0,1]$ e $n \in \mathbb{N}$. Fixe uma função Booleana crescente $f: \Omega \longrightarrow \{0,1\}$ e um algoritmo T; então vale que:

$$\mathbb{V}_p(f(\omega)) \leq p(1-p) \sum_{i \in [n]} \delta_i(T) \operatorname{Inf}_i(f(\omega)),$$

onde $\delta_i(\mathbf{T}) = \delta_i(f, \mathbf{T}) := \mathbb{P}_p(\exists t \leq \tau(\omega) : i_t = i)$ é chamado de *revelação* de f para o algoritmo \mathbf{T} e o bit i.

Sobre a Inequação 2, se todas as *revelações* $\delta_i(T)$ forem pequenas; i.e., se existe um algoritmo que determina de forma completa $f(\omega)$, mas *revela* "poucos" bits, então $(f_k)_{k\in\mathbb{N}}$ passa por *sharp threshold*.

Seja
$$\mathbb{L}^d = (\mathbb{Z}^d, E^d)$$
 reticulado tal que \mathbb{Z}^d é conjunto de vértices e $E^d = \{\langle x, y \rangle \in \mathbb{Z}^d \times \mathbb{Z}^d : \delta(x, y) = 1\}$, onde $\delta(x, y) = \sum_{i=1}^d |x_i - y_i|$.

- $\Omega = \{0,1\}^{|E^d|}$;
- $\mathcal{F} = \sigma(\text{conjuntos cilíndricos});$
- \mathbb{P}_p é medida produto Bernoulli $\prod_{e \in E^d} \mu_e, \text{ com } \mu_e(\omega_e = 1) = p \text{ e}$ $\mu_e(\omega_e = 0) = 1 p.$

Seja
$$\mathbb{L}^d = (\mathbb{Z}^d, E^d)$$
 reticulado tal que \mathbb{Z}^d é conjunto de vértices e $E^d = \{\langle x, y \rangle \in \mathbb{Z}^d \times \mathbb{Z}^d : \delta(x, y) = 1\}$, onde $\delta(x, y) = \sum_{i=1}^d |x_i - y_i|$.

- $\Omega = \{0,1\}^{|E^d|}$;
- $\mathcal{F} = \sigma(\text{conjuntos cilíndricos});$
- \mathbb{P}_p é medida produto Bernoulli $\prod_{e \in E^d} \mu_e, \text{ com } \mu_e(\omega_e = 1) = p \text{ e}$ $\mu_e(\omega_e = 0) = 1 p.$

Figura 2: $\omega \in \Omega$ em \mathbb{L}^2 com p = 0.25.

Seja
$$\mathbb{L}^d = (\mathbb{Z}^d, E^d)$$
 reticulado tal que \mathbb{Z}^d é conjunto de vértices e $E^d = \{\langle x, y \rangle \in \mathbb{Z}^d \times \mathbb{Z}^d : \delta(x, y) = 1\}$, onde $\delta(x, y) = \sum_{i=1}^d |x_i - y_i|$.

- $\Omega = \{0,1\}^{|E^d|}$;
- $\mathcal{F} = \sigma(\text{conjuntos cilíndricos});$
- \mathbb{P}_p é medida produto Bernoulli $\prod_{e \in E^d} \mu_e, \text{ com } \mu_e(\omega_e = 1) = p \text{ e}$ $\mu_e(\omega_e = 0) = 1 p.$

Figura 3: $\omega \in \Omega$ em \mathbb{L}^2 com p = 0.50.

Seja
$$\mathbb{L}^d = (\mathbb{Z}^d, E^d)$$
 reticulado tal que \mathbb{Z}^d é conjunto de vértices e $E^d = \{\langle x, y \rangle \in \mathbb{Z}^d \times \mathbb{Z}^d : \delta(x, y) = 1\}$, onde $\delta(x, y) = \sum_{i=1}^d |x_i - y_i|$.

- $\Omega = \{0,1\}^{|E^d|}$;
- $\mathcal{F} = \sigma(\text{conjuntos cilíndricos});$
- \mathbb{P}_p é medida produto Bernoulli $\prod_{e \in E^d} \mu_e, \text{ com } \mu_e(\omega_e = 1) = p \text{ e}$ $\mu_e(\omega_e = 0) = 1 p.$

Figura 4: $\omega \in \Omega$ em \mathbb{L}^2 com p = 0.75.

Notações e definições:

• Sejam $x, y \in \mathbb{Z}^d$, então x está conectado a y se existe caminho de elos abertos ($e \in E^d$ "aberto" é o mesmo que $\omega_e = 1$) que conecta x a y (notação: $x \leftrightarrow y$).

- Sejam $x, y \in \mathbb{Z}^d$, então x está conectado a y se existe caminho de elos abertos ($e \in E^d$ "aberto" é o mesmo que $\omega_e = 1$) que conecta x a y (notação: $x \leftrightarrow y$).
- Dado $x \in \mathbb{Z}^d$, $C_x(\omega) = \{y \in \mathbb{Z}^d : x \leftrightarrow y\}$ é dito *cluster* de x. Nesse sentido, $\{\omega \in \Omega : |C_0(\omega)| = +\infty\}$ é o evento percolar (notação: $\{0 \leftrightarrow +\infty\}$).

- Sejam $x,y\in\mathbb{Z}^d$, então x está conectado a y se existe caminho de elos abertos ($e\in E^d$ "aberto" é o mesmo que $\omega_e=1$) que conecta x a y (notação: $x\leftrightarrow y$).
- Dado $x \in \mathbb{Z}^d$, $C_x(\omega) = \{y \in \mathbb{Z}^d : x \leftrightarrow y\}$ é dito *cluster* de x. Nesse sentido, $\{\omega \in \Omega : |C_0(\omega)| = +\infty\}$ é o evento percolar (notação: $\{0 \leftrightarrow +\infty\}$).
- Defina $\theta(p) := \mathbb{P}_p(|C_0| = +\infty)$.

- Sejam $x,y\in\mathbb{Z}^d$, então x está conectado a y se existe caminho de elos abertos ($e\in E^d$ "aberto" é o mesmo que $\omega_e=1$) que conecta x a y (notação: $x\leftrightarrow y$).
- Dado $x \in \mathbb{Z}^d$, $C_x(\omega) = \{y \in \mathbb{Z}^d : x \leftrightarrow y\}$ é dito *cluster* de x. Nesse sentido, $\{\omega \in \Omega : |C_0(\omega)| = +\infty\}$ é o evento percolar (notação: $\{0 \leftrightarrow +\infty\}$).
- Defina $\theta(p) := \mathbb{P}_p(|C_0| = +\infty)$.
- Defina $p_c(d) := \sup\{p : \theta(p) = 0\}.$

- Sejam $x, y \in \mathbb{Z}^d$, então x está conectado a y se existe caminho de elos abertos ($e \in E^d$ "aberto" é o mesmo que $\omega_e = 1$) que conecta x a y (notação: $x \leftrightarrow y$).
- Dado $x \in \mathbb{Z}^d$, $C_x(\omega) = \{y \in \mathbb{Z}^d : x \leftrightarrow y\}$ é dito *cluster* de x. Nesse sentido, $\{\omega \in \Omega : |C_0(\omega)| = +\infty\}$ é o evento percolar (notação: $\{0 \leftrightarrow +\infty\}$).
- Defina $\theta(p) := \mathbb{P}_p(|C_0| = +\infty)$.
- Defina $p_c(d) := \sup\{p : \theta(p) = 0\}.$
- Para $n, m \in \mathbb{Z}$, defina a caixa $R(n, m) := [0, n] \times [0, m]$ e $\mathcal{H}(n, m) := \{\exists \text{ cruzamento horizontal em } R(n, m)\}.$

Teorema 5 (Kesten, 1980)

O ponto crítico para percolação Bernoulli em \mathbb{Z}^2 é $\frac{1}{2}$; i.e.,

$$p_c(2)=\frac{1}{2}.$$

Teorema 5 (Kesten, 1980)

O ponto crítico para percolação Bernoulli em \mathbb{Z}^2 é $\frac{1}{2}$; i.e.,

$$p_c(2)=\frac{1}{2}.$$

Uma intuição desse resultado é dada por:

Proposição 1

Temos que, para todo $n \in \mathbb{N}$, $\mathbb{P}_{\frac{1}{2}}(\mathcal{H}(n+1,n)) = \frac{1}{2}$.

Figura 5: Evento $\mathcal{H}(n+1,n)$.

Seja
$$(\mathbb{Z}^2)^\star = \left(\frac{1}{2}, \frac{1}{2}\right) + \mathbb{Z}^2$$
, defina, para $\omega^\star \in \{0, 1\}^{|(E^d)^\star|}$, $\omega_{e^\star}^\star := 1 - \omega_e$.

Figura 6: Rede dual $(\mathbb{Z}^2)^*$ – em vermelho.

Esboço da prova da Proposição 1:

Figura 7: Esboço dos eventos $\mathcal{H}(n+1,n)^c$ e $\mathcal{V}(n,n+1)$.

Sejam R=(n+1,n) e $R^*=(n,n+1)$; além de $\mathcal{H}(n+1,n)$, defina $\mathcal{V}(n,n+1)$ como o evento no qual existe cruz. vertical em R^* .

Esboço da prova da Proposição 1:

Figura 7: Esboço dos eventos $\mathcal{H}(n+1,n)^c$ e $\mathcal{V}(n,n+1)$.

Sejam R=(n+1,n) e $R^*=(n,n+1)$; além de $\mathcal{H}(n+1,n)$, defina $\mathcal{V}(n,n+1)$ como o evento no qual existe cruz. vertical em R^* .

Note que $\omega \sim \mathbb{P}_p$ e $\omega^* \sim \mathbb{P}_{1-p}$.

Esboço da prova da Proposição 1:

Figura 7: Esboço dos eventos $\mathcal{H}(n+1,n)^c$ e $\mathcal{V}(n,n+1)$.

Sejam R=(n+1,n) e $R^*=(n,n+1)$; além de $\mathcal{H}(n+1,n)$, defina $\mathcal{V}(n,n+1)$ como o evento no qual existe cruz. vertical em R^* .

Note que $\omega \sim \mathbb{P}_{\rho}$ e $\omega^{\star} \sim \mathbb{P}_{1-\rho}$.

Assim,

$$\begin{split} \mathbb{P}_{\frac{1}{2}}(\mathcal{H}(n+1,n)) &= 1 - \mathbb{P}_{\frac{1}{2}}(\mathcal{H}(n+1,n)^c) \\ &= 1 - \mathbb{P}_{\frac{1}{2}}(\mathcal{V}(n,n+1)) \\ &= 1 - \mathbb{P}_{\frac{1}{2}}(\mathcal{H}(n+1,n)) \end{split}$$

$$\mathbb{P}_{\frac{1}{2}}(\mathcal{H}(n+1,n))=\frac{1}{2}.$$

Teorema 6

Para qualquer $\rho > 0$, existe $c = c(\rho) > 0$ tal que. $\forall n \ge 1$,

$$c < \mathbb{P}_{\frac{1}{2}}(\mathcal{H}(\rho n, n)) \leq 1 - c.$$

Teorema 6

Para qualquer $\rho > 0$, existe $c = c(\rho) > 0$ tal que. $\forall n \ge 1$,

$$c < \mathbb{P}_{\frac{1}{2}}(\mathcal{H}(\rho n, n)) \leq 1 - c.$$

Seja $\Lambda_n = [-n, n]^d$ caixa d-dimensional de lado 2n e $\partial \Lambda_n := \Lambda_n \setminus \Lambda_{n-1}$; isto é, $\partial \Lambda_n$ é a fronteira de Λ_n . Então vale o seguinte resultado:

Corolário 1

Existe $\alpha > 0$ tal que, para todo $n \ge 1$, $\mathbb{P}_{\frac{1}{2}}(0 \leftrightarrow \partial \Lambda_n) \le \frac{1}{n^{\alpha}}$. Em particular, $p_c \ge \frac{1}{2}$.

Proposição 2

Para qualquer $p > \frac{1}{2}$, existe $\beta = \beta(p) > 0$ tal que,

$$\mathbb{P}_p(\mathcal{H}(2n,n)) \leq 1 - \frac{1}{\beta n^{\beta}}.$$

Na demonstração da Proposição 2 é possível mostrar que, $\forall e \in E$, $\mathrm{Inf}_e(\mathbb{I}_{\mathcal{H}(2n,n)}) \leq \frac{1}{N}$; o que, pelo Teorema 3, nos dá o resultado.

Proposição 2

Para qualquer $p > \frac{1}{2}$, existe $\beta = \beta(p) > 0$ tal que,

$$\mathbb{P}_p(\mathcal{H}(2n,n)) \leq 1 - \frac{1}{\beta n^{\beta}}.$$

Na demonstração da Proposição 2 é possível mostrar que, $\forall e \in E$, $\mathrm{Inf}_e(\mathbb{I}_{\mathcal{H}(2n,n)}) \leq \frac{1}{N}$; o que, pelo Teorema 3, nos dá o resultado.

Por fim, para terminar a prova do Teorema 5, basta olhar para os eventos $\mathcal{H}(2^{n+1},2^n)$ e $\mathcal{V}(2^n,2^{n+1})$. Nesse caso, pela Proposição 2, $\sum_{n=1}^{+\infty} \mathbb{P}_p(\mathcal{H}(2^{n+1},2^n)^c) \leq \frac{1}{\beta} \sum_{n=1}^{+\infty} \frac{1}{2^{\beta n}}$. Por Borel-Cantelli e simetria dos eventos $\mathcal{H}(2^{n+1},2^n)$ e $\mathcal{V}(2^n,2^{n+1})$, o resultado segue.

Sharpness da transição de fase para percolação Bernoulli em \mathbb{Z}^d

Teorema 7

Para percolação Bernoulli em \mathbb{Z}^d ,

- 1. Para $p < p_c$, existe $c_p > 0$ tal que, para todo $n \ge 1$, $\mathbb{P}_p(0 \leftrightarrow \partial \Lambda_n) \le e^{-c_p n}$.
- 2. (Mean Field Lower Bound) Existe c>0 tal que $p>p_c$, $\mathbb{P}_p(0\leftrightarrow +\infty)\geq c(p-p_c)$.

Sharpness da transição de fase para percolação Bernoulli em \mathbb{Z}^d

Teorema 7

Para percolação Bernoulli em \mathbb{Z}^d ,

- 1. Para $p < p_c$, existe $c_p > 0$ tal que, para todo $n \ge 1$, $\mathbb{P}_p(0 \leftrightarrow \partial \Lambda_n) \le e^{-c_p n}$.
- 2. (Mean Field Lower Bound) Existe c>0 tal que $p>p_c$, $\mathbb{P}_p(0\leftrightarrow +\infty)\geq c(p-p_c)$.

Observação:

A demonstração do Teorema 7 vem da escolha de um algoritmo T apropriado, para que, então, seja possível aplicar o Teorema 4 (Desigualdade de OSSS).

Referências

Hugo Duminil-Copin.

Sharp Threshold Phenomena in Statistical Physics.

Japanese Journal of Mathematics, 14(1):1–25, 2019.