Задачи по Эконометрике-2: Качество подгонки и сравнение моделей

Н.В. Артамонов (МГИМО МИД России)

Содержание

1	Кач	ество подгонки	1
	1.1	labour force equation #1 (probit)	1
		approve equation #1 (logit)	
2	Cpa	внение моделей	3
	2.1	labour force equation #1 (probit)	3
		approve equation #1 (logit)	

1 Качество подгонки

1.1 labour force equation #1 (probit)

Для датасета TableF5-1.csv рассморим несколько probit-регрессй. Результаты оценивания

______ Зависимая переменная LFP (1) (2) (3) (4) -0.0184 -0.0056 (0.0685) (0.0681) 0.0076 (0.0701)-0.0002 -0.0003 (0.0008) (0.0008) I(WA2) -0.0005 (0.0008)0.1088*** 0.1238*** 0.1088*** 0.1230*** WE (0.0241) (0.0237) (0.0238) (0.0221)-0.8513*** -0.6209*** -0.8473*** -0.8554*** KL6 (0.1154) (0.0977) (0.1149) (0.1151)-0.0632 0.0306 K618 (0.0417) (0.0363)-0.1277 -0.1654 CIT (0.1070) (0.1053) -0.0106 -0.0169 UN

	(0.0157)	(0.0155)		
log(FAMINC)	0.1996* (0.1049)	0.1704* (0.1028)	0.1626 (0.1016)	
Constant	-2.0046 (1.7039)	-2.6731*** (0.9574)	-1.4351 (1.6682)	-0.2815 (1.4961)
Observations Log Likelihood Akaike Inf. Crit.	753 -462.3402 942.6804	753 -475.6991 965.3982	753 -464.6961 941.3922	753 -465.9906 941.9812
Note:		*p<0.	1; **p<0.05	; ***p<0.01

Для каждой регрессии вычислите следующие показатели качества подгонки модели: $R^2_{pseudo}, adj. R^2_{pseudo}$, Cox & Snell, Nagelkerke/Cragg & Uhler, Efron, McKelvey & Zavoina. **Ответ округлите до 3-х десятичных знаков.**

Ответ:

Model	======== pseudo.R2	adj.pseudo.R2	CoxSnell	 Nagelkerke	Efron	McKelveyZavoina
1 2	0.102	0.086	0.130	0.175 0.133	0.133	0.207 0.158
3 4	0.097 0.095	0.088 0.087	0.125 0.122	0.167 0.163	0.127	0.199 0.195

1.2 approve equation #1 (logit)

Для датасета loanapp рассморим несколько logit-регрессй. Результаты оценивания

		Зависимая і	переменная	
	(1)	app:	rove (3)	(4)
appinc	0.0042*		0.0033 (0.0023)	0.0042*
I(appinc2)	-0.00001** (0.000003)			-0.00001** (0.000003)
mortno	0.7072*** (0.1750)	0.7700*** (0.1717)	0.6941*** (0.1748)	0.7363*** (0.1737)
unem	-0.0498* (0.0296)		-0.0623** (0.0286)	
dep	-0.1545** (0.0652)	-0.1683*** (0.0645)		-0.1032* (0.0606)

male	-0.0207 (0.1876)	0.0216 (0.1857)		
married		0.4173** (0.1624)		
yjob		-0.0066 (0.0651)		
self		-0.3144 (0.1951)		
Constant			1.7311*** (0.2067)	
Observations Log Likelihood Akaike Inf. Crit.	-713.7313	-717.4311	1986 -717.3869 1448.7740	-722.7259
Note:	=======	*p<0.	1; **p<0.05	; ***p<0.01

Для каждой регрессии вычислите следующие показатели качества подгонки модели: $R^2_{pseudo}, adj. R^2_{pseudo}$, Cox & Snell, Nagelkerke/Cragg & Uhler, Efron, McKelvey & Zavoina. **Ответ округлите до 3-х десятичных знаков.**

Ответ:

Model pseudo.	======================================	CoxSnell	Nagelkerke	Efron	McKelveyZavoina
1 0.967	0.022	0.024	0.046	0.027	0.190
2 0.972		0.021	0.039	0.022	0.174
3 0.970		0.022	0.043	0.026	0.178
4 0.977		0.017	0.033	0.019	0.145

2 Сравнение моделей

2.1 labour force equation #1 (probit)

Для датасета TableF5-1.csv рассморим несколько probit-регрессй. Результаты оценивания

=====		====== Зависимая	======= переменная	=======
			LFP	
	(1)	(2)	(3)	(4)
	0.0076 (0.0701)		-0.0184 (0.0685)	-0.0056 (0.0681)
(WA2)	-0.0005 (0.0008)		-0.0002 (0.0008)	-0.0003 (0.0008)

WE		0.1238*** (0.0237)		
KL6		-0.6209*** (0.0977)		
K618	-0.0632 (0.0417)			
CIT	-0.1277 (0.1070)	-0.1654 (0.1053)		
UN	-0.0106 (0.0157)	-0.0169 (0.0155)		
log(FAMINC)		0.1704* (0.1028)		
Constant		-2.6731*** (0.9574)		
Observations Log Likelihood				
Note:		*p<0.1	1; **p<0.05	; ***p<0.01

Для каждой модели вычислите показатели информационных критериев AIC & BIC и $adj.R_{pseudo}^2$. Ответ округлите до 3-х десятичных знаков.

Ответ

======	=======	=======	=========
Модель	AIC	BIC	adj.pseudo.R2
1	942.680	984.297	0.086
2	965.398	997.767	0.064
3	941.392	969.137	0.088
4	941.981	965.102	0.087

Какая модель предпочтительней по информационных критериям и $adj.R_{pseudo}^2$?

Ответ:

Терий Регрессия

АІС З
ВІС 4
adj.pseudo.R2 З

2.2 approve equation #1 (logit)

Для датасета loanapp рассморим несколько probit-регрессй. Результаты оценивания

=========		=====================================	======== переменная 	
	(1)	ap _]	prove (3)	(4)
appinc	0.0022*		0.0018 (0.0012)	0.0022* (0.0012)
I(appinc2)	-0.000004** (0.000002)		-0.000003** (0.000002)	-0.000004** (0.000002)
mortno	0.3650*** (0.0885)	0.3983***	0.3569*** (0.0882)	0.3758*** (0.0875)
unem	-0.0280* (0.0163)	-0.0293* (0.0162)	-0.0341** (0.0158)	
dep	-0.0784** (0.0353)	-0.0861** (0.0351)	-0.0798** (0.0351)	-0.0510 (0.0329)
male	-0.0076 (0.1007)	0.0143 (0.0997)		
married	0.2065** (0.0873)	0.2172** (0.0869)	0.2060** (0.0830)	
yjob	-0.0039 (0.0342)	-0.0010 (0.0345)		
self	-0.1961* (0.1088)	-0.1750 (0.1064)		
Constant	1.0102*** (0.1231)	1.1051*** (0.1048)	1.0366*** (0.1115)	0.9715*** (0.0861)
Observations Log Likelihood	1971 -713.9286	1971 -717.5349	1986 -717.6389	1986 -722.9362
Note:		*p<	0.1; **p<0.0	===================================

Для каждой модели вычислите показатели информационных критериев AIC & BIC и $adj.R_{pseudo}^2$. Ответ округлите до 3-х десятичных знаков.

Ответ

=======	:=====	=======	========
Модель	AIC	BIC	adj.pseudo.R2

1	1447.857	1503.720	0.020
2	1451.070	1495.760	0.018
3	1449.278	1488.435	0.019
4	1455.872	1483.842	0.015

Какая модель предпочтительней по информационных критериям и $adj.R^2_{pseudo}$?

Ответ:

==========	
Критерий	Регрессия
AIC	1
BIC	4
adj.pseudo.R2	1