Case Study_Human Resourse Dataset

- Human_Resources.csv Analysis
- Apply K mean Clustering
- Apply PCA
- Apply Autoencoder

Task 1:Import your libraries (Lab 2)

#Import the libraries here

#Attach the Human_Resource.csv file and view the first five records

→	Age	Attrition	BusinessTravel	DailyRate	Department	DistanceFromHome	Education	EducationField	EmployeeCount	EmployeeNumber	 Relation
	41	Yes	Travel_Rarely	1102	Sales	1	2	Life Sciences	1	1	
	1 49	No	Travel_Frequently	279	Research & Development	8	1	Life Sciences	1	2	
	2 37	Yes	Travel_Rarely	1373	Research & Development	2	2	Other	1	4	
	3 33	No	Travel_Frequently	1392	Research & Development	3	4	Life Sciences	1	5	
	4 27	No	Travel_Rarely	591	Research & Development	2	1	Medical	1	7	

5 rows × 35 columns

show all the file data types

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1470 entries, 0 to 1469
Data columns (total 35 columns):

Data	columns (total 35 columns):	
#	Column	Non-Null Count	Dtype
0	Age	1470 non-null	int64
1	Attrition	1470 non-null	object
2	BusinessTravel	1470 non-null	object
3	DailyRate	1470 non-null	int64
4	Department	1470 non-null	object
5	DistanceFromHome	1470 non-null	int64
6	Education	1470 non-null	int64
7	EducationField	1470 non-null	object
8	EmployeeCount	1470 non-null	int64
9	EmployeeNumber	1470 non-null	int64
10	EnvironmentSatisfaction	1470 non-null	int64
11	Gender	1470 non-null	object
12	HourlyRate	1470 non-null	int64
13	JobInvolvement	1470 non-null	int64
14	JobLevel	1470 non-null	int64
15	JobRole	1470 non-null	object
16	JobSatisfaction	1470 non-null	int64
17	MaritalStatus	1470 non-null	object
18	MonthlyIncome	1470 non-null	int64
19	MonthlyRate	1470 non-null	int64
20	NumCompaniesWorked	1470 non-null	int64
21	Over18	1470 non-null	object
22	OverTime	1470 non-null	object
23	PercentSalaryHike	1470 non-null	int64
24	PerformanceRating	1470 non-null	int64
25	RelationshipSatisfaction	1470 non-null	int64
26	StandardHours	1470 non-null	int64
27	StockOptionLevel	1470 non-null	int64
28	TotalWorkingYears	1470 non-null	int64
29	TrainingTimesLastYear	1470 non-null	int64
30	WorkLifeBalance	1470 non-null	int64
31	YearsAtCompany	1470 non-null	int64
32	YearsInCurrentRole	1470 non-null	int64
33	YearsSinceLastPromotion	1470 non-null	int64
34	YearsWithCurrManager	1470 non-null	int64
dtype	es: int64(26), object(9)		

memory usage: 402.1+ KB

_	Age	DailyRate	DistanceFromHome	Education	EmployeeCount	EmployeeNumber	EnvironmentSatisfaction	HourlyRate	JobInvolvement	
cour	t 1470.000000	1470.000000	1470.000000	1470.000000	1470.0	1470.000000	1470.000000	1470.000000	1470.000000	1
mea	n 36.923810	802.485714	9.192517	2.912925	1.0	1024.865306	2.721769	65.891156	2.729932	
std	9.135373	403.509100	8.106864	1.024165	0.0	602.024335	1.093082	20.329428	0.711561	
mir	18.000000	102.000000	1.000000	1.000000	1.0	1.000000	1.000000	30.000000	1.000000	
25%	30.000000	465.000000	2.000000	2.000000	1.0	491.250000	2.000000	48.000000	2.000000	
50%	36.000000	802.000000	7.000000	3.000000	1.0	1020.500000	3.000000	66.000000	3.000000	
75%	43.000000	1157.000000	14.000000	4.000000	1.0	1555.750000	4.000000	83.750000	3.000000	
max	60.000000	1499.000000	29.000000	5.000000	1.0	2068.000000	4.000000	100.000000	4.000000	

8 rows × 26 columns

→ Task 2: Visualize Dataset (Lab 2)

Replace 'Attritition','Overtime' and 'Over18' columns with integers before performing any visualizations

display the current first four records

		Age	Attrition	BusinessTravel	DailyRate	Department	DistanceFromHome	Education	EducationField	EmployeeCount	EmployeeNumber	 Relation
	0	41	1	Travel_Rarely	1102	Sales	1	2	Life Sciences	1	1	
	1	49	0	Travel_Frequently	279	Research & Development	8	1	Life Sciences	1	2	
	2	37	1	Travel_Rarely	1373	Research & Development	2	2	Other	1	4	
	3	33	0	Travel_Frequently	1392	Research & Development	3	4	Life Sciences	1	5	

4 rows × 35 columns

Drop EmployeeNumber', EmployeeCount' ,'Standardhours' and 'Over18' since they do not change from one employee to the other

```
# Let's see how many employees left the company!
```

left df = employee_df[employee_df['Attrition'] == 1] = employee_df[employee_df['Attrition'] == 0] stayed_df

Count the number of employees who stayed and left

It seems that we are dealing with an imbalanced dataset

→ Total = 1470

Number of employees who left the company = 237

Percentage of employees who left the company = 16.122448979591837 %

Number of employees who did not leave the company (stayed) = 1233

Percentage of employees who did not leave the company (stayed) = 83.87755102040816 %

show the correlation heat map as below

create a Kernel Density Estimate comparing 'Employees who left' and 'Employees who Stayed' using 'Distance From Home' plt.figure(figsize=(12,7))

Let's see the Gender vs. Monthly Income using box plots

Task 3: Create Testing and Training Dataset & Perform Data Cleaning (Lab 2)

Convert the categorical fields into numerics using OneHotEncoder

select your features here i.e. drop the target 'Atrittion'

→		0	1	2	3	4	5	6	7	8	9		PerformanceRating	RelationshipSatisfaction	StockOptionLevel	TotalWorkingYears	TrainingTim
	0	0.0	0.0	1.0	0.0	0.0	1.0	0.0	1.0	0.0	0.0		3	1	0	8	
	1	0.0	1.0	0.0	0.0	1.0	0.0	0.0	1.0	0.0	0.0		4	4	1	10	
	2	0.0	0.0	1.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0		3	2	0	7	
	3	0.0	1.0	0.0	0.0	1.0	0.0	0.0	1.0	0.0	0.0		3	3	0	8	
	4	0.0	0.0	1.0	0.0	1.0	0.0	0.0	0.0	0.0	1.0		3	4	1	6	
								•••				***	***				
	1465	0.0	1.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	1.0		3	3	1	17	
	1466	0.0	0.0	1.0	0.0	1.0	0.0	0.0	0.0	0.0	1.0		3	1	1	9	
•	1467	0.0	0.0	1.0	0.0	1.0	0.0	0.0	1.0	0.0	0.0		4	2	1	6	
	1468	0.0	1.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	1.0		3	4	0	17	
	1469	0.0	0.0	1.0	0.0	1.0	0.0	0.0	0.0	0.0	1.0		3	1	0	6	

1470 rows × 50 columns

scale your features data assigning it variable X

X

```
\rightarrow array([[0.
            [0. , 0.
0.29411765],
                                              , ..., 0.22222222, 0.
            [0. , 1. 0.41176471],
                                    , 0.
                                                 , ..., 0.38888889, 0.06666667,
            [0.
                                                                  , 0.
            0.
                        , 0.
                                               , ..., 0.11111111, 0.
            [0.
                                    , 1.
             0.17647059],
            0.47058824],
            [0.
                                    , 0.
                                                 , ..., 0.33333333, 0.
```

```
# select your dependent, target or response data as "Attrition" using variable y
<del>_</del>
     1465
     1466
     1467
     1468
     1469
     Name: Attrition, Length: 1470, dtype: int64

    Task 4: Find the Optimal Number of Clusters using Elblow Method (Lab 2)

# Compute 'within cluster sum of squares' or WCSS metric for a range of k clusters
# Create a visualization for Finding the right number of clusters - Elbow method'
Task 5: Apply K-Means Clustering (Lab 2)
# Check size of each cluster - Are they all representative ?

    Task 6: Apply PCA and Visualize Results (Lab 3)

# Obtain the principal components
# All samples projected on the two principal components
# Create a dataframe with the two components
# Concatenate the clusters labels to the dataframe
# Create a scatterplot visual of Projection of the dataset on the 2 PCA dimensions'
# show the % of the total variance explained by each principal component. Overall close to 48% explained by these two.

    Task 7: Perform Dimensionality Reduction using Autoencoders (Lab 3)

#import the autoencoder libraries
# create your autoencoder with all the features showing Encoder, bottleneck, decoder, autoencoder
# compile the autoencoder using optimizer='adam', loss='mean_squared_error'
# show the autoencoder summary
```

, ..., 0.16666667, 0.06666667,

, 1.

Train autoencoder using input = output
Use Autoencoder to reduce the number of features / dimensions and show the dimensions
 Task 8: Apply KMEANS to encoded dataset (Lab 3)
Apply KMEANS to encoded dataset here
create a line plot to show the " Pick optimal number of clusters using Elbow method" of the unreduced and reduced dimension Kmeans features
Apply the resulting optimal k to find new centroids
Show the centroids shape
show the clusters shape

 $\ensuremath{\text{\#}}$ concatenate the clusters to the data

show the 'Number of samples" in your current consolidated