Project Assignment 1

1. Introduction

In this project, we need to implement a stream cipher that generates a sequence of 32-bit words under the control of a 128-bit key and a 128-bit initialization variable. These words can be used to mask the plaintext. First a key initialization is performed, i.e. the cipher is clocked without producing output, and then with every clock tick it produces a 32-bit word of output.

We use the prefix **0x** to indicate **hexadecimal** numbers. All data variables are presented with the most significant bit on the left hand side and the least significant bit on the right hand side. Where a variable is broken down into a number of sub-strings, the left most (most significant) sub-string is numbered 0, the next most significant is numbered 1 and so on through to the least significant.

For example if a 64-bit value X is subdivided into four 16-bit substrings P, Q, R, S we have:

$$X = 0x0123456789ABCDEF$$

with

$$P = 0x0123$$
, $Q = 0x4567$, $R = 0x89AB$, $S = 0xCDEF$.

In binary this would be:

with P = 000000100100011

 $\mathbf{O} = 0100010101100111$

R = 1000100110101011

S = 1100110111101111

We use the assignment operator '=', as used in several programming languages. When we write <variable> = <expression>

we mean that <variable> assumes the value that <expression> had before the assignment took place. For instance,

$$x = x + y + 3$$

means

(new value of x) becomes (old value of x) + (old value of y) + 3.

We also define the following symbols:

- = The assignment operator.
- ⊕ The bitwise exclusive-OR operation.
- \blacksquare Integer addition modulo 2^{32} .
- The concatenation of the two operands.
- <<n t t-bit left shift in an n-bit register.

2. Functions defined

2.1 Function MULx()

MULx maps 16 bits to 8 bits. Let V and c be 8-bit input values. Then MULx is defined:

If the leftmost (i.e. the most significant) bit of V equals 1, then

$$MULx(V, c) = (V <<_{8} 1) \oplus c$$

else

$$MULx(V, c) = V <<_{8} 1.$$

Example:

$$MULx(0x69,0x1B) = 0xD2$$

 $MULx(0x96,0x1B) = 0x2C \oplus 0x1B = 0x37.$

2.2 Function MULy()

MULy maps 16 bits and a positive integer *i* to 8 bit. Let *V* and *c* be 8-bit input values, then MULy(*V*, *i*, *c*) is recursively defined:

If *i* equals 0, then

$$MULy(V, i, c) = V$$
,

else

$$MULy(V, i, c) = MULx(MULy(V, i - 1, c), c).$$

3. Linear Feedback Shift Register (LFSR)

The Linear Feedback Shift Register (LFSR) consists of sixteen stages $s_0, s_1, s_2, ..., s_{15}$ each holding 32 bits.

4. Finite State Machine (FSM)

The Finite State Machine (FSM) has three 32-bit registers R1, R2 and R3.

The S-boxes S_1 and S_2 are used to update the registers R2 and R3.

4.1 The 32x32-bit S-Box S_1

The S-Box S_1 maps a 32-bit input to a 32-bit output.

Let $w = w_0 \parallel w_1 \parallel w_2 \parallel w_3$ the 32-bit input with w_0 the most and w_3 the least significant byte. Let $S_1(w) = r_0 \parallel r_1 \parallel r_2 \parallel r_3$ with r_0 the most and r_3 the least significant byte. We use the 8 to 8 bit Rijndael S-Box S_R defined later.

Then r_0 , r_1 , r_2 , r_3 are defined as:

4.2 The 32x32-bit S-Box S2

The S-Box S₂ maps a 32-bit input to a 32-bit output.

Let $w = w_0 \parallel w_1 \parallel w_2 \parallel w_3$ the 32-bit input with w_0 the most and w_3 the least significant byte. Let $S_2(w) = r_0 \parallel r_1 \parallel r_2 \parallel r_3$ with r_0 the most and r_3 the least significant byte. We use the 8 to 8 bit S-Box S_Q defined later.

Then r_0 , r_1 , r_2 , r_3 are defined as

5. The Clocking Operations

5.1 Clocking the LFSR

The clocking of the LFSR has two different modes of operation, the Initialization Mode and the Keystream Mode.

In both modes the functions MUL_{α} and DIV_{α} are used which are defined as follows.

5.2 The function MUL_{α}

The function MUL_{α} maps 8 bits to 32 bits. Let c be the 8-bit input, then MUL_{α} is defined as

$$MUL_{\alpha}(c) =$$

 $(MULy(c, 23, 0xA9) \parallel MULy(c, 245, 0xA9) \parallel MULy(c, 48, 0xA9) \parallel MULy(c, 239, 0xA9)).$

5.3 The function DIV

The function DIV_{α} maps 8 bits to 32 bits. Let c be the 8-bit input, then DIV_{α} is defined as

$$DIV_{\alpha}(c) =$$

 $(MULy(c, 16, 0xA9) \parallel MULy(c, 39, 0xA9) \parallel MULy(c, 6, 0xA9) \parallel MULy(c, 64, 0xA9)).$

5.4 Initialization Mode

In the Initialization Mode the LFSR receives a 32-bit input word F, which is the output of the FSM. Let $s_0 = s_{0,0} \parallel s_{0,1} \parallel s_{0,2} \parallel s_{0,3}$ with $s_{0,0}$ being the most and $s_{0,3}$ being the least significant byte of s_0 .

Let $s_{11} = s_{11,0} || s_{11,1} || s_{11,2} || s_{11,3}$ with $s_{11,0}$ being the most and $s_{11,3}$ being the least significant byte of s_{11} . Compute the intermediate value v as

```
v = (s_{0,1} \parallel s_{0,2} \parallel s_{0,3} \parallel 0x00) \oplus \text{MUL}_{\alpha}(s_{0,0}) \oplus s_2 \oplus (0x00 \parallel s_{11,0} \parallel s_{11,1} \parallel s_{11,2}) \oplus \text{DIV}_{\alpha}(s_{11,3}) \oplus \text{F.}
Set
```

$$s_0 = s_1$$
, $s_1 = s_2$, $s_2 = s_3$, $s_3 = s_4$, $s_4 = s_5$, $s_5 = s_6$, $s_6 = s_7$, $s_7 = s_8$, $s_8 = s_9$, $s_9 = s_{10}$, $s_{10} = s_{11}$, $s_{11} = s_{12}$, $s_{12} = s_{13}$, $s_{13} = s_{14}$, $s_{14} = s_{15}$, $s_{15} = v$.

5.5 Keystream Mode

In the Keystream Mode the LFSR does not receive any input.

Let $s_0 = s_{0,0} \parallel s_{0,1} \parallel s_{0,2} \parallel s_{0,3}$ with $s_{0,0}$ being the most and $s_{0,3}$ being the least significant byte of s_0 . Let $s_{11} = s_{11,0} \parallel s_{11,1} \parallel s_{11,2} \parallel s_{11,3}$ with $s_{11,0}$ being the most and $s_{11,3}$ being the least significant byte of s_{11} . Compute the intermediate value v as

```
v = (s_{0,1} \parallel s_{0,2} \parallel s_{0,3} \parallel 0x00) \oplus \text{MUL}_{\alpha}(s_{0,0}) \oplus s_2 \oplus (0x00 \parallel s_{11,0} \parallel s_{11,1} \parallel s_{11,2}) \oplus \text{DIV}_{\alpha}(s_{11,3}). Set
```

```
s_0 = s_1, s_1 = s_2, s_2 = s_3, s_3 = s_4, s_4 = s_5, s_5 = s_6, s_6 = s_7, s_7 = s_8, s_8 = s_9, s_9 = s_{10}, s_{10} = s_{11}, s_{11} = s_{12}, s_{12} = s_{13}, s_{13} = s_{14}, s_{14} = s_{15}, s_{15} = v.
```

5.6 Clocking the FSM

```
The FSM has two input words s_{15} and s_5 from the LFSR. It produces a 32-bit output word F:

F = (s_{15} \boxplus R1) \oplus R2

Then the registers are updated.

Compute the intermediate value r as:

r = R2 \boxplus (R3 \oplus s_5).

Set

R3 = S_2(R2),

R2 = S_1(R1),

R1 = r.
```

6. Operation

6.1 Initialization

The cipher is initialized with a 128-bit key consisting of four 32-bit words \mathbf{k}_0 , \mathbf{k}_1 , \mathbf{k}_2 , \mathbf{k}_3 and an 128-bit initialisation variable consisting of four 32-bit words \mathbf{IV}_0 , \mathbf{IV}_1 , \mathbf{IV}_2 , \mathbf{IV}_3 as follows.

Let **1** be the all-ones word (0xfffffff).

```
s_{15} = k_3 \oplus IV_0 s_{14} = k_2 s_{13} = k_1 s_{12} = k_0 \oplus IV_1

s_{11} = k_3 \oplus 1 s_{10} = k_2 \oplus 1 \oplus IV_2 s_{9} = k_1 \oplus 1 \oplus IV_3 s_{8} = k_0 \oplus 1

s_{7} = k_3 s_{6} = k_2 s_{5} = k_1 s_{4} = k_0

s_{3} = k_3 \oplus 1 s_{2} = k_2 \oplus 1 s_{1} = k_1 \oplus 1 s_{0} = k_0 \oplus 1
```

The FSM is initialized with R1 = R2 = R3 = 0.

Then the cipher runs in a special mode without producing output:

```
Repeat 32-times {
```

STEP 1: The FSM is clocked producing the 32-bit word F.

STEP 2: Then the LFSR is clocked in Initialization Mode consuming F.

6.2 Generation of Keystream

First the FSM is clocked once. The output word of the FSM is discarded. Then the LFSR is clocked once in Keystream Mode.

7. The Rijndael S-box S_R

The S-box S_R maps 8 bit to 8 bit. Here the input and output is presented in hexadecimal form. Let x_0 , x_1 , y_0 , y_1 be hexadecimal digits with $S_R(x_0 \ 2^4 + x_1) = y_0 \ 2^4 + y_1$, then the cell at the intersection of the x_0^{th} row and the x_1^{th} column contains the values for $y_0||y_1$ in hexadecimal form. For example $S_R(42) = S_R(0x2A) = 0xE5 = 229$.

\mathbf{x}_1	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F
\mathbf{X}_0																
0	63	7C	77	7B	F2	6B	6F	C5	30	01	67	2B	FE	D7	AB	76
1	CA	82	C9	7D	FA	59	47	F0	AD	D4	A2	AF	9C	A4	72	C0
2	В7	FD	93	26	36	3F	F7	CC	34	A5	E5	F1	71	D8	31	15
3	04	C7	23	C3	18	96	05	9A	07	12	80	E2	EB	27	B2	75
4	09	83	2C	1A	1B	6E	5A	A0	52	3B	D6	В3	29	E3	2F	84
5	53	D1	00	ED	20	FC	B1	5B	6A	СВ	BE	39	4A	4C	58	CF
6	D0	EF	AA	FB	43	4D	33	85	45	F9	02	7F	50	3C	9F	A8
7	51	A3	40	8F	92	9D	38	F5	BC	B6	DA	21	10	FF	F3	D2
8	CD	0C	13	EC	5F	97	44	17	C4	A7	7E	3D	64	5D	19	73
9	60	81	4F	DC	22	2A	90	88	46	EE	B8	14	DE	5E	0B	DB
Α	E0	32	3A	0A	49	06	24	5C	C2	D3	AC	62	91	95	E4	79
В	E7	C8	37	6D	8D	D5	4E	A9	6C	56	F4	EA	65	7A	AE	08
С	BA	78	25	2E	1C	A6	B4	C6	E8	DD	74	1F	4B	BD	8B	8A
D	70	3E	B5	66	48	03	F6	0E	61	35	57	B9	86	C1	1D	9E
Е	E1	F8	98	11	69	D9	8E	94	9B	1E	87	E9	CE	55	28	DF
F	8C	A1	89	0D	BF	E6	42	68	41	99	2D	0F	В0	54	BB	16

Table 1: Rijndael S-Box

8. The S-box SQ

The S-box S_Q maps 8 bit to 8 bit. Here the input is presented in hexadecimal form. Let x_0 , x_1 , y_0 , y_1 be hexadecimal digits with $S_Q(x_0 \ 2^4 + x_1) = y_0 \ 2^4 + y_1$, then the cell at the intersection of the x_0^{th} row and the x_1^{th} column contains the values for $y_0 || y_1$ in hexadecimal form. For example $S_Q(42) = S_Q(0x2A) = 0xAC = 172$.

\mathbf{x}_1	0	1	2	3	4	5	6	7	8	9	A	В	С	D	Е	F
\mathbf{X}_0																
0	25	24	73	67	D7	AE	5C	30	A4	EE	6E	СВ	7D	B5	82	DB
1	E4	8E	48	49	4F	5D	6A	78	70	88	E8	5F	5E	84	65	E2
2	D8	E9	CC	ED	40	2F	11	28	57	D2	AC	E3	4A	15	1B	B9
3	B2	80	85	A6	2E	02	47	29	07	4B	0E	C1	51	AA	89	D4
4	CA	01	46	В3	EF	DD	44	7B	C2	7F	BE	C3	9F	20	4C	64
5	83	A2	68	42	13	B4	41	CD	BA	C6	BB	6D	4D	71	21	F4
6	8D	В0	E5	93	FE	8F	E6	CF	43	45	31	22	37	36	96	FA
7	BC	0F	08	52	1D	55	1A	C5	4E	23	69	7A	92	FF	5B	5A
8	EB	9A	1C	A9	D1	7E	0D	FC	50	8A	B6	62	F5	0A	F8	DC
9	03	3C	0C	39	F1	B8	F3	3D	F2	D5	97	66	81	32	A0	00
A	06	CE	F6	EA	В7	17	F7	8C	79	D6	A7	BF	8B	3F	1F	53
В	63	75	35	2C	60	FD	27	D3	94	A5	7C	A1	05	58	2D	BD
C	D9	C7	AF	6B	54	0B	E0	38	04	C8	9D	E7	14	B1	87	9C
D	DF	6F	F9	DA	2A	C4	59	16	74	91	AB	26	61	76	34	2B
Е	AD	99	FB	72	EC	33	12	DE	98	3B	C0	9B	3E	18	10	3A
F	56	E1	77	C9	1E	9E	95	A3	90	19	A8	6C	09	D0	F0	86

Table 2: S-Box SQ