Assignment 3*

Xiang Yu-Ye

Mechanical Engineering National Cheng Kung University Tainan City East Dist. Daxue Rd., Taiwan N16114445@gs.ncku.edu.tw

Abstract -使用LeNet對資料集分50個類別。

Index Terms - Deep Learning . LeNet5

I. INTRODUCTION

本次作業目標為使用Tensorflow or pytorch實現LeNet,所有 code 都 放 在 https://github.com/Jason890102/Deep-Learning/tree/main/Assignment_3。

II. METHOD

A. LeNet Architecture

Two Layer Net架構圖如Fig. 1.。Fig. 2.為trianing的Loss curve,以及trian&Test的accury,訓練300個epochs。

	Ť		
Layer (type)			
conv2d_78 (Conv2D)			
conv2d_79 (Conv2D)	(None,	252, 252, 10)	550
max_pooling2d_43 (MaxPooling	(None,		
module_wrapper_38 (ModuleWra	(None,		
conv2d_80 (Conv2D)	(None,		
conv2d_81 (Conv2D)	(None,		
module_wrapper_39 (ModuleWra	(None,		
conv2d_82 (Conv2D)	(None,	120, 120, 16)	1456
max_pooling2d_44 (MaxPooling	(None,		
module_wrapper_40 (ModuleWra	(None,	60, 60, 16)	64
conv2d_83 (Conv2D)	(None,	58, 58, 16)	2320
max_pooling2d_45 (MaxPooling	(None,	29, 29, 16)	
module_wrapper_41 (ModuleWra	(None,	29, 29, 16)	0
conv2d_84 (Conv2D)	(None,	27, 27, 16)	2320
max_pooling2d_46 (MaxPooling	(None,	13, 13, 16)	
module_wrapper_42 (ModuleWra	(None,	13, 13, 16)	64
conv2d_85 (Conv2D)	(None,	11, 11, 16)	2320
module_wrapper_43 (ModuleWra	(None,	11, 11, 16)	0
conv2d_86 (Conv2D)	(None,	10, 10, 50)	3250
module_wrapper_44 (ModuleWra	(None,	10, 10, 50)	
global_average_pooling2d_12	(None,	50)	
dense_40 (Dense)	(None,	1200)	61200
dense_41 (Dense)	(None,	840)	1008840
dense_42 (Dense)	(None,	648)	538240
dense_43 (Dense)	(None,	200)	128200
dense_44 (Dense)	(None,		10050
Total params: 1,760,902 Trainable params: 1,760,818 Non-trainable params: 84			

Fig. 1. LeNet Architecture

Fig. 2. LeNet hyprpapramter

B. Train&validation accuracy

Fig. 3.為Train&Validation accuracy curve, 從結果來看最高的準確度為32%,並且有點overfitting, Fig. 4.為手刻的 LeNet5的Loss Curve、train&test accury,最高為3%。

Fig. 3. Train&validation accury

Fig. 4. LeNet5 Loss Curve \ train&test accury

C. The predicted result on the validation set

Validation的accuracy如 Fig. 5.,分為50個類別,Fig. 6. 為Test set的accuracy,可以看出Test set的accuracy稍微好一點,。

```
15/15 - 2s - loss: 2.6859 - accuracy: 0.2644
validation損失值: 2.685920238494873 validation精準度: 0.2644444406032562
```

Fig. 5. Validation predict accuracy

15/15 - 1s - loss: 2.6118 - accuracy: 0.2667 test損失值: 2.611841917037964 test精準度: 0.2666666805744171

Fig. 6. Test predict accuracy

III. CONCLUSION

在寫作業的過程中對於資料的前處理還是不太會導致 正確率一直提升不上去,有試著增加層數及降低Learning rate,卻還是沒有超過40%。