

Smartphone-based Plasmonic Sensing for Respiratory Viruses

Research Team:

Bryan Hong, Isabella Liu, Joy Ting, Julia Pan, Rishi Rai, and Luke Ting

Faculty Advisor: Dr. Zhenpeng Qin

Graduate Assistants: Tingting Zhang, Yaning Liu

BACKGROUND PRINCIPLES CONTENTS EXPERIMENT DETAILS 副 **RESULTS** CONCLUSIONS

01 BACKGROUND

Antigen based test:

Lateral flow: Delivers results in 30 mins.

- 30% less effective
- Not effective for early detection

• Nucleic acid based test:

PCR: Takes a day or 2 for results to accurately appear.

- Takes roughly 24-72 hours
- expensive equipments
- Professional operation

Goals:

- Accurate detection results
- Rapid detection

- User-friendly test
- Less expensive

Gold Nanoparticles

Gold nanoparticles have different optical responses to different wavelengths of light.

Absorption and scattering properties of gold nanoparticles can be changed by altering the **shape** and **size**.

Gold Nanoparticle Based Nucleic Acid Detection

02 PRINCIPLES

Benefits:

- Less Expensive
- **User Friendly**
- More Accurate Results

Parts of the model:

- Smartphone case
- **Cuvette Holder**
- Flashlight Fiber
- Camera Fiber
- **Diffraction Grating**

Diffraction grating

AuNP

03 EXPERIMENTAL DETAILS

Gold Nanoparticle Synthesis

Chemicals:

Key steps:

- Au 15 nm Seeds
- HAuCL4
- Sodium Citrate
- Hydroquinone

- Mix the chemicals in the order above
- Let particles synthesize overnight
- Wash 3 times before use

Gold Nanoparticle - DNA Probes Synthesis

Chemicals:

- 50 mM citrate buffer with 3.0 pH
- Oligonucleotide (ssDNA)
- Gold nanoparticles

Key steps:

- Incubate overnight
- Wash 3 times before use

04 RESULTS AND DISCUSSION

Noticeable Observations:

- Peak wavelength shifts to the right
- Peak broadens

04 RESULTS FROM PHONE APPARATUS

Why use a smartphone?

- Spectrometers are expensive and tedious to use
- Everyone has a smartphone (and take it basically everywhere), so why not?

05 CONCLUSION & FUTURE PERSPECTIVES

What did we find?

By utilizing the changes in absorption properties of gold nanoparticles, we created a <u>fast</u> and <u>accurate</u> detection test for respiratory viruses including COVID-19, influenza, rhinovirus, and RSV using smartphones.

How could we take this further?

- Multiplex detection multiple targets per test
- Microfluidic chip design a chip to optimize the device so it can automatically do the procedure
- Combine newest nucleic acid amplification method with our current platform
- Optimize current procedure probe concentration, sequence design, etc.

SPECIAL THANKS TO:

- · Dr. Zhenpeng Qin
- Tingting Zhang
- · Yaning Liu
- · Vijay Karthikeya Raja
- Steven Nguyen

EXTRA PRINCIPLES

From cytodiagnostics.com

From cytodiagnostics.com

EXTRA PRINCIPLES

Smartphone-based spectrometer: wavelength calibration

EXTRA DNA INFORMATION

RSV:

<u>AGGGTTGACTCCTGGTGTTGTTGAAGCTAGTATGGTGGTGATTTGTG</u>
ATGTAATTTCAGACGGATTAGAGGGACTGATTCCAAGCTGAGGATTCT

Probe A: AAAAA AAAAA AAAAA AGAAT CCTCA GCTTG GAATC AGTCC Probe B: AAAAA AAAAA AAAAA CTCTA ATCCG TCTGA AATTA CATCA Probe C: AAAAA AAAAA AAAAA CAAAT CACCA CCATA CTAGC TTCAA Probe D: AAAAA AAAAA AAAAA CAACA CCAGG AGTCA AGTCA ACCCT

Covid:

CCCAATAATACTGCGTCTTGGTTCACCGCTCTCACTCAACATGGCAAGGAAGA
CCTTAAATTCCCTCGAGGACAAGGCGTTCCAATTAACACCAATAGCA

Probe A: AAAAA AAAAA AAAAA TGCTA TTGGT GTTAA TTGGA ACGCC Probe B: AAAAA AAAAA AAAAA TTGTC CTCGA GGGAA TTTAA GGTCT Probe C: AAAAA AAAAA AAAAA TCCTT GCCAT GTTGA GTGAG AGCGG Probe D: AAAAA AAAAA AAAAA TGAAC CAAGA CGCAG TATTA TTGGG

Flu:

GATTACAGGTACACGTACCGATGCCATAGAGGTGACACACAAATACAAACCC GAAGATCATTTGAAATAAAGAAACTGTGGGAGCAAACCCGTTCCAAAG

Probe A: AAAAA AAAAA AAAAA CTTTG GAACG GGTTT GCTCC CACAG Probe B: AAAAA AAAAA AAAAA TTTCT TTATT TCAAA TGATC TTCGG Probe C: AAAAA AAAAA AAAAA GTTTG TATTT GTGTG TCACC TCTAT Probe D: AAAAA AAAAA AAAAA GGCAT CGGTA CGTGT ACCTG TAATC

Rhino:

<u>GATGGGTACCAACAACAAGAAGTAGTGATTATGGATGATTTAAATCAGAATC</u> <u>CTGATGGTCAAGACATTAGTATGTTCTGCCAGATGGTGTCATCAGTTG</u>

Probe A: AAAAA AAAAA AAAAA CAACT GATGA CACCA TCTGG CAGAA Probe B: AAAAA AAAAA AAAAA CATAC TAATG TCTTG ACCAT CAGGA Probe C: AAAAA AAAAA AAAAA TTCTG ATTTA AATCA TCCAT AATCA Probe D: AAAAA AAAAA AAAAA CTACT TCTTG TTGTT GGTAC CCATC

EXTRA CONCLUSION & FUTURE PERSPECTIVES

Nucleic acid amplification---Isothermal amplification

Loop-Mediated Isothermal Amplification

Advantages:

- Quick technique
- Naked-eye detection

Rolling circle amplification

- High sensitivity
- Simple operation

Research Team:

Bryan Hong

Isabella Liu

Joy Ting

Julia Pan

Rishi Rai

Luke Ting

Faculty Advisor:

Dr. Zhenpeng Qin

Graduate Assistants:

Tingting Zhang

Yaning Liu

Thanks for listening