MATH 3022 Algebra II

Lecture 9
JOE TRAN

LECTURE

Recall in the previous lecture:

Definition 1. An *ideal* in a ring R is a subring $I \triangleleft R$ such that if $a \in I$ and $r \in R$, then $ar, ra \in I$.

Observe that if $I \leq R$, then

• (R, +) is an abelian group and $(I, +) \leq (R, +)$ and for $r \in R$, then r + I = I + r. This is what it means for $I \triangleleft R$ to be a normal subgroup.

Definition 2. The set

$$R/I = \{r + I : r \in R\}$$

is called the factor ring or quotient ring.

Based on the definition above, we note that R/I is a group with addition and operation defined by

$$(r+I) + (s+I) = (r+s) + I$$

For the multiplication, we seek an operation so that R/I under multiplication is well defined.

Lemma 1. Let $I \leq R$. Then the operation (r+I)(s+I) = (rs) + I is well defined if and only if $I \triangleleft R$.

Proof. Suppose that $I \triangleleft R$. We want to show that for all $a, b \in I$,

$$(r+I)(s+I) = [(r+a)+I][(s+b)+I]$$

So on the right hand side, we have

$$[(r+a)+I][(s+b)+I] = (r+a)(s+b)+I$$
$$= (rs+as+rb+ab)+I$$
$$= (rs)+I$$

On the other hand, assume that $I \leq R$. Then there exists an $r \in R$ and $a \in I$ such that either $ar \notin I$ or $ra \notin I$, or both. Without loss of generality, assume that $ar \notin I$. Then

$$(0+I)(r+I) = 0r + I = 0 + I$$

but

$$(a+I)(r+I) = ar + I$$

But $ar \notin I$, so $ar + I \neq 0 + I$. Therefore, the operation is not well defined.

Example 1. • For $n \in \mathbb{N}$, $\mathbb{Z}_n = \mathbb{Z}/n\mathbb{Z} = \mathbb{Z}/\langle n \rangle$.

• How many elements does $\mathbb{Z}[x]/\langle x,2\rangle$ have? Note that

$$\langle x, 2 \rangle = \{ xg(x) + 2f(x) : f(x), g(x) \in \mathbb{Z}[x] \}$$

Let $p(x) = \sum_{i=0}^{n} c_i x^i \in \mathbb{Z}[x]$, then $f(x) \in \langle x, 2 \rangle$ if c_0 is even, and $f(x) \in \langle x, 2 \rangle$ if c_0 is odd.

Recall that if $\phi: R \to S$ is a ring homomorphism, the kernel of ϕ is an ideal of R.

Theorem 1. Let $I \triangleleft R$. Then the map $\phi : R \rightarrow R/I$ defined by $\phi(r) = r + I$ is a ring homomorphism from R to R/I and $\ker(\phi) = I$.

Theorem 2 (First Isomorphism Theorem). Let $\psi: R \to S$ be a ring homomorphism. Then $\ker(\psi)$ is an ideal of R. If $\phi: R \to R/\ker(\psi)$ is the canonical homomorphism, then there exists a unique isomorphism $\eta: R/\ker(\phi) \to \psi(R)$ such that $\psi = \eta \phi$.

Example 2. Consider the evaluation homomorphism $\phi_{\alpha}: \mathbb{Z}[x] \to \mathbb{Z}$ given by $\phi_{\alpha}(f(X)) = f(\alpha)$. Then

$$\ker(\phi_{\alpha}) = \langle x \rangle$$

and so by the first isomorphism theorem, $\mathbb{Z}[x]/\langle x\rangle \simeq \phi_{\alpha}(\mathbb{Z})$. We want to show that $\phi_{\alpha}(\mathbb{Z}[x]) = \mathbb{Z}$, or ϕ_{α} is onto. For all $a \in \mathbb{Z}$, let f(x) = a and $\phi_{\alpha}(f(x)) = a$, so ϕ_{α} is onto so $\mathbb{Z}/\langle x\rangle \simeq \mathbb{Z}$.