$11n_{169} (K11n_{169})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle -u^{12} + 8u^{11} + \dots + 4b - 12, \ 3u^{12} - 22u^{11} + \dots + 8a + 36, \ u^{13} - 8u^{12} + \dots + 56u - 8 \rangle \\ I_2^u &= \langle u^5 + u^4 + u^3 - u^2 + b - 1, \ u^7 + u^6 + 2u^5 + 2u^3 - 2u^2 + a - 2, \ u^8 + u^7 + 2u^6 - u^5 + u^4 - 3u^3 + u^2 - 2u + 1 \rangle \\ I_3^u &= \langle -5a^5u - 4a^5 + 7a^4 + 5a^3u + 4a^3 + 8a^2u - 2a^2 - 6au + 7b + 5a - 3u - 1, \\ a^6 + a^5u - a^4 - 3a^3u - 2a^3 + 3a^2u + a^2 + 2au + 3a - 3u - 1, \ u^2 + u + 1 \rangle \end{split}$$

* 3 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 33 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle -u^{12} + 8u^{11} + \dots + 4b - 12, \ 3u^{12} - 22u^{11} + \dots + 8a + 36, \ u^{13} - 8u^{12} + \dots + 56u - 8 \rangle$$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 1\\0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0\\u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u\\u^{3} + u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u\\u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} \frac{1}{4}u^{12} - 2u^{11} + \dots + 20u - \frac{9}{2}\\ \frac{1}{2}u^{12} - 2u^{11} + \dots - 13u + \frac{5}{2}\\ \frac{1}{2}u^{11} - 3u^{10} + \dots + \frac{25}{2}u - 2 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} \frac{1}{4}u^{12} + \frac{3}{2}u^{11} + \dots + \frac{3}{2}u + \frac{1}{2}\\ -\frac{1}{2}u^{11} + 3u^{10} + \dots + \frac{25}{2}u + 2 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -\frac{1}{4}u^{12} + \frac{3}{2}u^{11} + \dots + \frac{7}{2}u - \frac{3}{2}\\ \frac{1}{4}u^{12} - 2u^{11} + 3u^{10} + \dots - \frac{23}{2}u + 2 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -\frac{1}{8}u^{12} + \frac{3}{4}u^{11} + \dots + \frac{7}{2}u - \frac{3}{2}\\ \frac{1}{4}u^{12} - 2u^{11} + \dots - 14u + \frac{7}{2}\\ \frac{1}{2}u^{12} - \frac{7}{2}u^{11} + \dots - \frac{29}{2}u + 2 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} \frac{1}{4}u^{12} - 2u^{11} + \dots - 14u + \frac{7}{2}\\ \frac{1}{2}u^{12} - \frac{7}{2}u^{11} + \dots - \frac{29}{2}u + 2 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{12} - \frac{27}{4}u^{11} + \dots - \frac{73}{4}u + 2\\ -\frac{3}{4}u^{12} + \frac{11}{2}u^{11} + \dots - \frac{55}{4}u + 4 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -\frac{1}{4}u^{12} + \frac{5}{4}u^{11} + \dots - \frac{55}{4}u + 4\\ \frac{3}{4}u^{12} - \frac{11}{2}u^{11} + \dots - 29u + 4 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -\frac{1}{4}u^{12} + \frac{5}{4}u^{11} + \dots - \frac{55}{4}u + 4\\ \frac{3}{4}u^{12} - \frac{11}{2}u^{11} + \dots - 29u + 4 \end{pmatrix}$$

(ii) Obstruction class = -1

$$= -u^{12} + 5u^{11} - 15u^{10} + 31u^9 - 51u^8 + 70u^7 - 85u^6 + 89u^5 - 83u^4 + 63u^3 - 43u^2 + 24u - 22u^2 + 5u^2 - 15u^2 + 15u^2 - 15u^2$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_5	$u^{13} + 8u^{12} + \dots + 56u + 8$
c_2, c_4, c_8 c_9	$u^{13} + 3u^{11} + \dots + 2u + 1$
c_{3}, c_{6}	$u^{13} - 2u^{12} + \dots - 4u + 1$
c_7, c_{10}, c_{11}	$u^{13} + 6u^{12} + \dots + 14u + 4$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_5	$y^{13} + 4y^{12} + \dots + 480y - 64$
c_2, c_4, c_8 c_9	$y^{13} + 6y^{12} + \dots + 2y - 1$
c_3, c_6	$y^{13} - 26y^{12} + \dots + 42y - 1$
c_7, c_{10}, c_{11}	$y^{13} - 16y^{12} + \dots + 204y - 16$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.326542 + 1.020100I		
a = -0.503264 + 0.483746I	-1.07131 + 1.81105I	-12.48073 - 2.50977I
b = 0.329129 + 0.671341I		
u = -0.326542 - 1.020100I		
a = -0.503264 - 0.483746I	-1.07131 - 1.81105I	-12.48073 + 2.50977I
b = 0.329129 - 0.671341I		
u = 1.161480 + 0.385396I		
a = 0.216539 - 0.581687I	-3.17225 + 0.94602I	-12.22572 - 6.14642I
b = -0.475687 + 0.592166I		
u = 1.161480 - 0.385396I		
a = 0.216539 + 0.581687I	-3.17225 - 0.94602I	-12.22572 + 6.14642I
b = -0.475687 - 0.592166I		
u = 0.270743 + 1.206070I		
a = 0.733128 - 0.331803I	2.89440 - 2.21633I	-9.35734 + 3.25180I
b = -0.598666 - 0.794370I		
u = 0.270743 - 1.206070I		
a = 0.733128 + 0.331803I	2.89440 + 2.21633I	-9.35734 - 3.25180I
b = -0.598666 + 0.794370I		
u = 0.63465 + 1.27236I		
a = -0.928004 + 0.162795I	-0.15730 - 7.29804I	-11.37128 + 6.48312I
b = 0.796089 + 1.077430I		
u = 0.63465 - 1.27236I		
a = -0.928004 - 0.162795I	-0.15730 + 7.29804I	-11.37128 - 6.48312I
b = 0.796089 - 1.077430I		
u = 1.26554 + 0.69993I		
a = -0.057804 + 0.864578I	-11.99570 + 3.34885I	-12.69425 - 2.28469I
b = 0.678296 - 1.053700I		
u = 1.26554 - 0.69993I		
a = -0.057804 - 0.864578I	-11.99570 - 3.34885I	-12.69425 + 2.28469I
b = 0.678296 + 1.053700I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.83155 + 1.23498I		
a = 1.136480 + 0.017597I	-10.0617 - 10.8173I	-12.24076 + 5.20880I
b = -0.92331 - 1.41816I		
u = 0.83155 - 1.23498I		
a = 1.136480 - 0.017597I	-10.0617 + 10.8173I	-12.24076 - 5.20880I
b = -0.92331 + 1.41816I		
u = 0.325158		
a = -1.19415	-0.575325	-17.2600
b = 0.388289		

$$\text{II. } I_2^u = \langle u^5 + u^4 + u^3 - u^2 + b - 1, \ u^7 + u^6 + 2u^5 + 2u^3 - 2u^2 + a - 2, \ u^8 + u^7 + 2u^6 - u^5 + u^4 - 3u^3 + u^2 - 2u + 1 \rangle$$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u \\ u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{7} - u^{6} - 2u^{5} - 2u^{3} + 2u^{2} + 2 \\ -u^{5} - u^{4} - u^{3} + u^{2} + 1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{7} - 2u^{6} - 3u^{5} - u^{4} + 2u^{2} + 2u + 1 \\ -u^{7} - u^{6} - 2u^{5} + u^{4} - u^{3} + 3u^{2} + 1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -2u^{7} - 3u^{6} - 5u^{5} - u^{3} + 5u^{2} + u + 3 \\ -u^{7} - u^{6} - 2u^{5} + u^{4} - u^{3} + 3u^{2} - u + 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{7} - u^{6} - 3u^{5} - u^{4} - 3u^{3} + 3u^{2} - u + 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 3u^{7} + 4u^{6} + 7u^{5} - u^{4} + 2u^{3} - 7u^{2} + u - 4 \\ u^{7} + u^{6} + 2u^{5} - u^{4} + u^{3} - 3u^{2} - 2u - 4 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{7} + 2u^{6} + 4u^{5} + 2u^{4} + 2u^{3} - 3u^{2} - 2u - 4 \\ u^{7} + 2u^{6} + 3u^{5} + u^{4} + u^{3} - 2u^{2} - u - 2 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -2u^{7} - 3u^{6} - 5u^{5} - 2u^{3} + 4u^{2} + 4 \\ -u^{7} - 2u^{6} - 3u^{5} - u^{4} - u^{3} + 2u^{2} + u + 2 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -2u^{7} - 3u^{6} - 5u^{5} - 2u^{3} + 4u^{2} + 4 \\ -u^{7} - 2u^{6} - 3u^{5} - u^{4} - u^{3} + 2u^{2} + u + 2 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $3u^7 + 2u^6 + 4u^5 3u^4 + 3u^3 7u^2 u 11$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^8 + u^7 + 2u^6 - u^5 + u^4 - 3u^3 + u^2 - 2u + 1$
c_2, c_9	$u^8 + 3u^6 - u^5 + 3u^4 - 3u^3 - 3u - 1$
c_3, c_6	$u^8 + 2u^7 + u^6 + 3u^5 + u^4 + u^3 + 2u^2 - u + 1$
c_4, c_8	$u^8 + 3u^6 + u^5 + 3u^4 + 3u^3 + 3u - 1$
c_5	$u^8 - u^7 + 2u^6 + u^5 + u^4 + 3u^3 + u^2 + 2u + 1$
c ₇	$u^8 + u^7 - 5u^6 - 4u^5 + 8u^4 + 5u^3 - 3u^2 - u - 1$
c_{10}, c_{11}	$u^8 - u^7 - 5u^6 + 4u^5 + 8u^4 - 5u^3 - 3u^2 + u - 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_{1}, c_{5}	$y^8 + 3y^7 + 8y^6 + 11y^5 + 5y^4 - 7y^3 - 9y^2 - 2y + 1$
c_2, c_4, c_8 c_9	$y^8 + 6y^7 + 15y^6 + 17y^5 + y^4 - 21y^3 - 24y^2 - 9y + 1$
c_3, c_6	$y^8 - 2y^7 - 9y^6 - 7y^5 + 5y^4 + 11y^3 + 8y^2 + 3y + 1$
c_7, c_{10}, c_{11}	$y^8 - 11y^7 + 49y^6 - 112y^5 + 134y^4 - 71y^3 + 3y^2 + 5y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.163169 + 0.915412I		
a = 1.000040 + 0.736649I	-0.155635 - 0.787051I	-8.59786 - 1.33483I
b = -0.511162 + 1.035650I		
u = 0.163169 - 0.915412I		
a = 1.000040 - 0.736649I	-0.155635 + 0.787051I	-8.59786 + 1.33483I
b = -0.511162 - 1.035650I		
u = 0.918626		
a = -0.323992	-2.98361	-12.1620
b = -0.297628		
u = -0.404913 + 1.017880I		
a = -1.143500 + 0.110127I	5.21920 + 1.77211I	-2.23409 - 0.85548I
b = 0.350924 - 1.208540I		
u = -0.404913 - 1.017880I		
a = -1.143500 - 0.110127I	5.21920 - 1.77211I	-2.23409 + 0.85548I
b = 0.350924 + 1.208540I		
u = -0.95744 + 1.12705I		
a = 0.720153 - 0.424011I	1.24083 + 3.75870I	-10.69968 - 3.38204I
b = -0.211625 + 1.217620I		
u = -0.95744 - 1.12705I		
a = 0.720153 + 0.424011I	1.24083 - 3.75870I	-10.69968 + 3.38204I
b = -0.211625 - 1.217620I		
u = 0.479751		
a = 2.17061	-12.9150	-12.7750
b = 1.04135		

III. $I_3^u = \langle -5a^5u + 5a^3u + \dots + 5a - 1, \ a^5u - 3a^3u + \dots + 3a - 1, \ u^2 + u + 1 \rangle$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 1 \\ u+1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u \\ u+1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} \frac{5}{7}a^{5}u - \frac{5}{7}a^{3}u + \dots - \frac{5}{7}a + \frac{1}{7} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -\frac{3}{7}a^{5}u - \frac{4}{7}a^{3}u + \dots + \frac{10}{7}a - \frac{2}{7} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -\frac{3}{7}a^{5}u - \frac{4}{7}a^{3}u + \dots + \frac{10}{7}a - \frac{2}{7} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} \frac{5}{7}a^{5}u - \frac{5}{7}a^{3}u + \dots + \frac{11}{7}a + \frac{2}{7} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} \frac{5}{7}a^{5}u - \frac{5}{7}a^{3}u + \dots + \frac{2}{7}a + \frac{1}{7} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} \frac{3}{7}a^{5}u - \frac{5}{7}a^{3}u + \dots + \frac{2}{7}a + \frac{1}{7} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -\frac{2}{7}a^{5}u + \frac{4}{7}a^{3}u + \dots - \frac{10}{7}a + \frac{2}{7} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -\frac{2}{7}a^{5}u + \frac{4}{7}a^{3}u + \dots + \frac{2}{7}a + \frac{8}{7} \\ -a^{4}u - a^{4} + a^{3} + au + 2 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} a^{3}u + a^{3} - a \\ -\frac{4}{7}a^{5}u - a^{4}u + \dots + \frac{4}{7}a + \frac{2}{7} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} a^{3}u + a^{3} - a \\ -\frac{4}{7}a^{5}u - a^{4}u + \dots + \frac{4}{7}a + \frac{2}{7} \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = -4u 14

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_5	$(u^2 - u + 1)^6$
$c_2, c_4, c_8 \ c_9$	$u^{12} - u^{11} + \dots + 14u + 7$
c_3, c_6	$u^{12} - u^{11} + \dots - 56u + 13$
c_7, c_{10}, c_{11}	$(u^3 - u^2 - 2u + 1)^4$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_5	$(y^2 + y + 1)^6$
c_2, c_4, c_8 c_9	$y^{12} + 3y^{11} + \dots - 140y^2 + 49$
c_3, c_6	$y^{12} - 13y^{11} + \dots - 432y + 169$
c_7, c_{10}, c_{11}	$(y^3 - 5y^2 + 6y - 1)^4$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.500000 + 0.866025I		
a = -1.100660 + 0.111510I	4.22983 + 2.02988I	-12.00000 - 3.46410I
b = 0.231240 - 1.394380I		
u = -0.500000 + 0.866025I		
a = 1.091430 + 0.189362I	-12.68950 + 2.02988I	-12.00000 - 3.46410I
b = -1.61068 - 0.71000I		
u = -0.500000 + 0.866025I		
a = -1.045080 + 0.441811I	-1.40994 + 2.02988I	-12.00000 - 3.46410I
b = 0.763411 - 0.046058I		
u = -0.500000 + 0.866025I		
a = 0.421593 + 0.638105I	-1.40994 + 2.02988I	-12.00000 - 3.46410I
b = -0.139922 + 1.125970I		
u = -0.500000 + 0.866025I		
a = 1.323190 - 0.496928I	4.22983 + 2.02988I	-12.00000 - 3.46410I
b = -0.453761 + 1.008960I		
u = -0.500000 + 0.866025I		
a = -0.19046 - 1.74989I	-12.68950 + 2.02988I	-12.00000 - 3.46410I
b = 0.709707 - 0.850523I		
u = -0.500000 - 0.866025I		
a = -1.100660 - 0.111510I	4.22983 - 2.02988I	-12.00000 + 3.46410I
b = 0.231240 + 1.394380I		
u = -0.500000 - 0.866025I		
a = 1.091430 - 0.189362I	-12.68950 - 2.02988I	-12.00000 + 3.46410I
b = -1.61068 + 0.71000I		
u = -0.500000 - 0.866025I		
a = -1.045080 - 0.441811I	-1.40994 - 2.02988I	-12.00000 + 3.46410I
b = 0.763411 + 0.046058I		
u = -0.500000 - 0.866025I		
a = 0.421593 - 0.638105I	-1.40994 - 2.02988I	-12.00000 + 3.46410I
b = -0.139922 - 1.125970I		

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.500000 - 0.866025I		
a = 1.323190 + 0.496928I	4.22983 - 2.02988I	-12.00000 + 3.46410I
b = -0.453761 - 1.008960I		
u = -0.500000 - 0.866025I		
a = -0.19046 + 1.74989I	-12.68950 - 2.02988I	-12.00000 + 3.46410I
b = 0.709707 + 0.850523I		

IV. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$(u^{2} - u + 1)^{6}(u^{8} + u^{7} + 2u^{6} - u^{5} + u^{4} - 3u^{3} + u^{2} - 2u + 1)$ $\cdot (u^{13} + 8u^{12} + \dots + 56u + 8)$
c_2, c_9	$(u^8 + 3u^6 - u^5 + 3u^4 - 3u^3 - 3u - 1)(u^{12} - u^{11} + \dots + 14u + 7)$ $\cdot (u^{13} + 3u^{11} + \dots + 2u + 1)$
c_3, c_6	$(u^{8} + 2u^{7} + \dots - u + 1)(u^{12} - u^{11} + \dots - 56u + 13)$ $\cdot (u^{13} - 2u^{12} + \dots - 4u + 1)$
c_4, c_8	$(u^{8} + 3u^{6} + u^{5} + 3u^{4} + 3u^{3} + 3u - 1)(u^{12} - u^{11} + \dots + 14u + 7)$ $\cdot (u^{13} + 3u^{11} + \dots + 2u + 1)$
c_5	$(u^{2} - u + 1)^{6}(u^{8} - u^{7} + 2u^{6} + u^{5} + u^{4} + 3u^{3} + u^{2} + 2u + 1)$ $\cdot (u^{13} + 8u^{12} + \dots + 56u + 8)$
c_7	$(u^{3} - u^{2} - 2u + 1)^{4}(u^{8} + u^{7} - 5u^{6} - 4u^{5} + 8u^{4} + 5u^{3} - 3u^{2} - u - 1)$ $\cdot (u^{13} + 6u^{12} + \dots + 14u + 4)$
c_{10},c_{11}	$ (u^3 - u^2 - 2u + 1)^4 (u^8 - u^7 - 5u^6 + 4u^5 + 8u^4 - 5u^3 - 3u^2 + u - 1) $ $ \cdot (u^{13} + 6u^{12} + \dots + 14u + 4) $

V. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_5	$(y^{2} + y + 1)^{6}(y^{8} + 3y^{7} + 8y^{6} + 11y^{5} + 5y^{4} - 7y^{3} - 9y^{2} - 2y + 1)$ $\cdot (y^{13} + 4y^{12} + \dots + 480y - 64)$
$c_2, c_4, c_8 \ c_9$	$(y^{8} + 6y^{7} + 15y^{6} + 17y^{5} + y^{4} - 21y^{3} - 24y^{2} - 9y + 1)$ $\cdot (y^{12} + 3y^{11} + \dots - 140y^{2} + 49)(y^{13} + 6y^{12} + \dots + 2y - 1)$
c_3, c_6	$(y^8 - 2y^7 - 9y^6 - 7y^5 + 5y^4 + 11y^3 + 8y^2 + 3y + 1)$ $\cdot (y^{12} - 13y^{11} + \dots - 432y + 169)(y^{13} - 26y^{12} + \dots + 42y - 1)$
c_7, c_{10}, c_{11}	$(y^3 - 5y^2 + 6y - 1)^4$ $\cdot (y^8 - 11y^7 + 49y^6 - 112y^5 + 134y^4 - 71y^3 + 3y^2 + 5y + 1)$ $\cdot (y^{13} - 16y^{12} + \dots + 204y - 16)$