Markov Chain.

$$\mathbb{R}^n \ni \overline{p}_{\kappa} = \begin{pmatrix} (\overline{p}_{\kappa})_1 & \\ \vdots \\ (\overline{p}_{\kappa})_n \end{pmatrix}$$
 probability of being in state 1 at time k.

$$(\bar{P}_k)_j \ge 0$$
, $\sum_{j=1}^n (\bar{P}_k)_j = 1$

(iv) Transition matrix
$$A \in M_{n \times n}$$

$$A = \begin{bmatrix} A_{11} & \cdots & A_{1n} \\ \vdots & A_{ij} & \vdots \\ A_{n1} & \cdots & A_{nm} \end{bmatrix}$$

$$A_{ij} = \text{probability of moving from State}$$

$$Aij \geqslant 0$$
, $\sum_{i=1}^{n} Aij = 1$.

$$\bar{p}_i = A \bar{p}_i$$

$$\overline{P}_n = A^n \overline{P}_o$$

 $\sum_{n\to\infty}\bar{p}_n=\left(\sum_{n\to\infty}A^n\right)\bar{p}_o$

Theorem

Suppose for some $d \ge 1$. A^d has all positive entries.

Then, (a) I is an eigenvalue of A.

 $dim E_i = 1$ and $E_i = Span \{\bar{u}\}.$

where u is a prob vector.

(b) For any other eigenvalue λ , $1\lambda 1 < 1$.

(c) $A^n = (\bar{u}, \bar{u}, \dots, \bar{u})$

 $\sum_{n\to\infty} \bar{p}_n = (\bar{u}, \bar{u}, \dots \bar{u}) \bar{p}_o = \bar{u} (for any \bar{p}_o)$

Proof: (a) $det(B) = det(B^t) \Rightarrow det(A - tI_n) = det(A^t - tI_n)$

Consider At rows add to 1. a.

Let $\vec{v} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$

 $A^{t}\bar{V} = (a_{1}^{t} - \cdots - a_{n}^{t}) \begin{pmatrix} 1 \\ \vdots \end{pmatrix} = a_{1}^{t} + \cdots + a_{n}^{t} = \begin{pmatrix} 1 \\ \vdots \end{pmatrix} = \bar{V}$

So v is an eigenvector of At with eigenvalue 1.

So I is an eigenvalue of A.

```
(b) \lambda is an eigenvalue of A^t
    \Rightarrow A^* v = \lambda v \quad and \quad v = \begin{pmatrix} v_1 \\ \vdots \\ v_d \end{pmatrix} \neq \bar{0}
     Let \frac{|V_K| = \max_{i} \{|V_i|\}}{|V_i|}
     (A^t v)_k = \sum_j (A^t)_{kj} V_j
    (A^{t}v)_{k} = (\lambda v)_{k} = \lambda v_{k}
    |\lambda v_k| = |\sum_i (A^t)_{kj} v_j|
                   = |\sum_{j} A_{jk} V_{j}|
 If A_{ij} > 0 \ \forall \ i,j, then (dim \ E_1 = 1) and (\lambda \neq 1 \Rightarrow |\lambda| < 1)
Proof: Suppose |\lambda| = 1 and A^t v = \lambda v for v \neq \bar{0}
             It suffices to show V = C
            This implies (\lambda = 1) and dim E_1 = 1
        \Rightarrow / \lambda v_k / = / \sum_i (A^t)_{kj} v_j /
```

all Ajk V_j have $\sum_{j} (A_{jk} | V_j |)$ Same Sign.

(no cancellation) $\sum_{j} |V_k| \ge A_{jk} = |V_k|$ the inequalities must be equalities.

• $A_{jk} V_j$ all have same Sign $|V_j| = |V_k| \le A_{jk} > 0 \quad \forall j, k \implies V_j \text{ are all } > 0 \text{ or } \le 0$ • $|V_j| = |V_k| \quad \text{for } j = 1, \dots, n$ $V = \begin{pmatrix} V_k \\ \vdots \\ V_k \end{pmatrix} = V_k \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}$

Remark: Since dim $E_1=1$, we can write $E_1=\text{Span}[\tilde{u}]$ where sum entries of \bar{u} add to l.

(C): Suppose A is a transition matrix such that Aij > 0 for all i, j and A is <u>diagonalizable</u>. Then $E_{-\infty} A^{*} = [\bar{u}, --\cdot, \bar{u}]$, where \bar{u} is prob vector and $A\bar{u} = \bar{u} \cdot (i \cdot e \cdot \bar{u} \in E_1)$.

Proof: from (a) (b), we know $\pi = l$ is an

eigenvalue, dim E.=1, and anyother A has 121<1 $Al_1, \ldots, Al_n = [l_1, \ldots, l_n]$ Alj = lj for $j=1,2,\dots,n$ So. ly E E. . Since dim E. = 1. we know

Lj = Cj \bar{u} for some Cj. Sum of its entries is liberary Because the sum of all entries Lj = 1., the Cj = [\bar{u}]. Hence, \bar{u} \bar

 $\overline{(cv)} = c\overline{(v)} = c(\lambda v) = (c\lambda)v.$

Def T: $V \rightarrow V$ a subspace $W \subset V$ is I-invariant if $T(W) \subset W$ i.e. $T(w) \in W$, $\forall w \in W$ $T_{w}: W \rightarrow W$.

Theorem Suppose $T: V \rightarrow V$ is linear and dim $V < \infty$, if W is T-invariant then the char. poly. of Tw divides char. poly. of T. Proof: Let $Bw = \{v_1, \dots, v_k\}$ be a basis of W. Extend this to a basis for V. $B = \{v_1, \dots, v_k\}$.

$$\begin{bmatrix}
\begin{bmatrix} T \end{bmatrix}_{\beta}^{\beta} = ([T(V_1)]_{\beta} & \cdots & [T(V_n)]_{\beta}) \\
& = k \begin{pmatrix} B_1 & B_2 \\
0 & B_3 \end{pmatrix} \\
B_1 = [T_w]_{\beta w}^{\beta w} \\
\det([T]_{\beta}^{\beta} - tI_n) = \det([T_w]_{\beta w}^{\beta w} - tI_k & B_2 \\
0 & B_3 - tI_{n-k}
\end{bmatrix}$$

$$= \det([T_w]_{\beta w}^{\beta w} - tI_k) g(t)$$

To cyclic subspace

Def For $v \in V$, the T-cyclic subspace generated by v.

is $W = Span \{v, T(v), T(v), \dots\} \in V$ Observe that W is T-invariant $T(a_0v + a, T(v) + \dots + a_k T(v)) \in W$ $= a_0 T(v) + a_1 T(v) + \dots + a_k T(v) \in W$

Theorem Suppose T: V-V is linear and dimVer

```
Let W be a 1-cyclic subspace generated by v.
Set dim W = k \leq dim V. Then x \Rightarrow dim \leq x.

(if T^{x}(v) = \sum_{i=0}^{k-1} (v) + C_i T^{y}(v) = \sum_{i=0}^{k-1} T^{y}(v) + C_i (y; x).)

(a) \{v, T^{(v)}, --- T^{k-1}(v)\}^{i=0} is a basis of W.
(b) If T^k(v) = a_0 v + \cdots + a_{\kappa-1} T^{\kappa-1}(v), then the
char. poly. of Tw is (-1)k+1(ao+ait+····+ax+tk-1-tk)
Proof: Ceiven(a) prove (b):
[Tw]_{\mathcal{B}}^{\mathcal{C}} = [Tw(v)_{\mathcal{B}} Tw(T(v))_{\mathcal{B}} --- Tw(T^{\kappa-\prime}(v)_{\mathcal{B}})]
```

$$= (-t)^{k-1} \left(\frac{1}{t^{k-1}} a_0 + \frac{1}{t^{k-2}} a_1 + \dots + a_{k-1} - t \right)$$

$$= (-1)^{k-1} \left(a_0 + t a_1 + \dots + t^{k-1} a_{k-1} - t^k \right)$$