Circuitos Lógicos Simplificação de circuitos lógicos Mapa de Karnaugh

Prof.: Daniel D. Silveira

Simplificação de circuitos lógicos

- A técnica de simplificação que será utilizada requer que a expressão esteja na forma de soma de produtos
- Forma de soma de produtos:

1.
$$ABC + \overline{A}B\overline{C}$$

2.
$$AB + \overline{A}B\overline{C} + \overline{C}\overline{D} + D$$

3.
$$\overline{A}B + C\overline{D} + EF + GK + H\overline{L}$$

 Uma barra não pode cobrir mais que uma variável em um termo

Simplificação de circuitos lógicos

- Outra forma de representação é o produto de somas
- Os métodos e projetos de circuitos que usaremos não utilizam esta forma de representação

1.
$$(A + B + C)(A + C)$$

2.
$$(A + \overline{B})(\overline{C} + D)F$$

3.
$$(A+C)(B+\overline{D})(\overline{B}+C)(A+\overline{D}+\overline{E})$$

O Mapa de Karnaugh

- Método gráfico usado para simplificar uma equação lógica ou converter uma tabela verdade no seu circuito lógico correspondente
- Estudaremos sua aplicação para problemas com até 4 entradas. Acima disso, os mapas se tornam muito complicados, sendo melhor fazer a análise por meio de programas de computador

Para 2 variáveis

А	В	Name of	Х		
0	0		1	_ →	ĀĒ
0	1		0		
1	0		0		
1	1		1	→	ΑB

$$\left\{ x = \bar{A}\bar{B} + AB \right\}$$

- Para 3 e 4 variáveis, é interessante conhecer o código Gray, que também é usado em outros ramos da eng. elétrica
- Código Gray: de um número para outro, apenas um bit varia

DECIMAL	BINARY	GRAY CODE	DECIMAL	BINARY	GRAY CODE
0	0000	0000	8	1000	1100
1	0001	0001	9	1001	1101
2	0010	0011	10	1010	1111
3	0011	0010	11	1011	1110
4	0100	0110	12	1100	1010
5	0101	0111	13	1101	1011
6	0110	0101	14	1110	1001
7	0111	0100	15	1111	1000

Para 3 variáveis:

$$\begin{cases} X = \bar{A}\bar{B}\bar{C} + \bar{A}\bar{B}C \\ + \bar{A}B\bar{C} + AB\bar{C} \end{cases}$$
(b)

Para 4 variáveis

Agrupamentos de 2 quadros (pares)

Agrupando um par de 1s adjacentes em um mapa K, elimina-se a variável que aparece nas formas complementada e não-complementada.

(c)

Agrupamentos de 4 quadrados (quartetos)

Agrupando um quarteto de 1s adjacentes, elimina-se duas variáveis que aparecem nas formas complementada e não-complementada.

Agrupamentos de 8 quadrados (octetos)

Agrupando um octeto de 1s adjacentes, elimina-se três variáveis que aparecem nas formas complementada e não-complementada.

Considerações

Quando uma variável aparece nas formas complementada e não-complementada em um agrupamento, tal variável é eliminada da expressão. As variáveis que não se alteram para todos os quadros do agrupamento têm de permanecer na expressão final.

Procedimento passo-a-passo

- Passo 1 Construa o mapa K e coloque os 1s nos quadros que correspondem aos 1s na tabelaverdade. Coloque 0s nos outros quadros.
- Passo 2 Analise o mapa quanto aos 1s adjacentes e agrupe os 1s que não sejam adjacentes a quaisquer outros 1s. Esses são denominados 1s isolados.
- Passo 3 Em seguida, procure os 1s que são adjacentes a somente um outro 1. Agrupe todo par que contém tal 1.
- Passo 4 Agrupe qualquer octeto, mesmo que ele contenha alguns 1s que já tenham sido agrupados.
- Passo 5 Agrupe qualquer quarteto que contenha um ou mais 1s que ainda não tenham sido agrupados, certificando-se de usar o menor número de agrupamentos.
- Passo 6 Agrupe quaisquer pares necessários para incluir quaisquer 1s que ainda não tenham sido agrupados, certificando-se de usar o menor número de agrupamentos.
- Passo 7 Forme a soma OR de todos os termos gerados por cada grupo.

Exemplos de análise

Exemplos de análise

FIGURA 4.16 O mesmo mapa K com duas soluções igualmente boas.

Exemplos de análise

Use um mapa K para simplificar $y = \overline{C}(\overline{ABD} + D) + A\overline{B}C + \overline{D}$.

FIGURA 4.17 Exemplo 4-14.

Condições irrelevantes ou don't care

- Em alguns projetos, a condição de saída pode ser irrelevante, porque certas condições de entrada nunca ocorrerão
- Essa condição de saída pode assumir o estado ALTO ou BAIXO, de acordo com a escolha do projetista, e é sinalizada na tabela verdade por um x
- Pode-se então escolher a saída como 0 ou 1, de forma a simplificar o circuito o máximo possível

Exemplo de don't care

Projeto

Vamos projetar um circuito lógico que controla uma porta de elevador em um prédio de três andares. O circuito na Figura 4.19(a) tem quatro entradas. M é um sinal lógico que indica quando o elevador está se movendo (M = 1) ou parado (M = 0). F1, F2 e F3 são os sinais indicadores dos andares que são normalmente nível BAIXO, passando para nível ALTO apenas quando o elevador estiver posicionado em um determinado andar. Por exemplo, quando o elevador estiver no segundo andar, F2 = 1 e F1 = F3 = 0. A saída do circuito é o sinal OPEN (ABRIR) que normalmente é nível BAIXO e vai para o nível ALTO quando a porta do elevador estiver aberta.

Exercícios Propostos

Determine a expressão mínima para os mapas abaixo

Simplifique as expressões utilizando o Mapa

(g)
$$y = \overline{(C + \underline{D})} + \overline{A}C\overline{D} + A\overline{B}\overline{C} + \overline{A}\overline{B}CD + AC\overline{D}$$

(h) $x = AB(\overline{C}D) + \overline{A}BD + \overline{B}\overline{C}\overline{D}$

(h)
$$x = AB(\overline{CD}) + \overline{ABD} + \overline{B}\overline{CD}$$

Exercícios Propostos

Projeto

Um número de quatro bits é representado como $A_3A_2A_1A_0$, onde A_3 , A_2 , A_1 e A_0 representam os bits individuais e A_0 é o LSB. Projete um circuito lógico que gera um nível ALTO na saída sempre que o número binário for maior que 0010 e menor que 1000.

