Feuille de travaux dirigés : Réduction d'endomorphismes

Algèbre 4

CPI 2

Exercice 1:

Soit $E = \mathcal{C}^{\infty}(\mathbb{R})$ et D l'endomorphisme de E qui à f associe f'. Déterminer les valeurs propres de D et les sous-espaces propres associés.

Exercice 2:

Soit $E = \mathbb{C}^{\mathbb{N}}$ l'espace des suites à coefficients complexes, et ϕ l'endomorphisme de E qui à une suite (u_n) associe la suite (v_n) définie par $v_0 = u_0$ et pour tout $n \geq 1$,

$$v_n = \frac{u_n + u_{n-1}}{2}.$$

Déterminer les valeurs propres et les vecteurs propres de ϕ .

Exercice 3:

Soient f, g deux endomorphismes du \mathbb{K} -espace vectoriel E de dimension finie tels que f est diagonalisable. Démontrer que f et g commutent si et seulement si les sous-espaces propres de f sont stables par g.

Exercice 4:

Soient u et v deux endomorphismes d'un \mathbb{C} -espace vectoriel E de dimension finie. On suppose que u et v commutent. Démontrer que u et v ont un vecteur propre commun.

Exercice 5:

Diagonaliser les matrices suivantes :

$$A = \begin{pmatrix} 0 & 2 & -1 \\ 3 & -2 & 0 \\ -2 & 2 & 1 \end{pmatrix}, B = \begin{pmatrix} 0 & 3 & 2 \\ -2 & 5 & 2 \\ 2 & -3 & 0 \end{pmatrix}, C = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & -1 & 2 \end{pmatrix}.$$

On donnera aussi la matrice de passage de la base canonique à la base de vecteurs propres.

Exercice 6:

Soit m un nombre réel et f l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique est

$$A = \left(\begin{array}{rrr} 1 & 0 & 1 \\ -1 & 2 & 1 \\ 2 - m & m - 2 & m \end{array}\right).$$

- 1. Quelles sont les valeurs propres de f?
- 2. Pour quelles valeurs de m l'endomorphisme est-il diagonalisable ?
- 3. On suppose m=2. Calculer A^k pour tout $k \in \mathbb{N}$.

Exercice 7:

Soit
$$A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 2 & 2 & 2 & 2 \\ 3 & 3 & 3 & 3 \\ 4 & 4 & 4 & 4 \end{pmatrix}$$
.

- 1. Déterminer, sans calculer le polynôme caractéristique, les valeurs propres de $A.\ A$ est-elle diagonalisable?
- 2. Plus généralement, donner une condition nécessaire et suffisante pour qu'une matrice de rang 1 soit diagonalisable.

Exercice 8:

Soit A la matrice
$$\begin{pmatrix} -4 & -6 & 0 \\ 3 & 5 & 0 \\ 3 & 6 & 5 \end{pmatrix}$$
.

- 1. Diagonaliser A.
- 2. Calculer A^n en fonction de n.
- 3. On considère les suites (u_n) , (v_n) et (w_n) définies par leur premier terme u_0 , v_0 et w_0 et les relations suivantes :

$$\begin{cases} u_{n+1} &= -4u_n - 6v_n \\ v_{n+1} &= 3u_n + 5v_n \\ w_{n+1} &= 3u_n + 6v_n + 5w_n \end{cases}$$

pour $n \ge 0$. On pose $X_n = \begin{pmatrix} u_n \\ v_n \\ w_n \end{pmatrix}$. Exprimer X_{n+1} en fonction de A et X_n . En déduire u_n , v_n et w_n en fonction de n.

Exercice 9:

Soient a_0, \ldots, a_{n-1} des nombres complexes, et soient A, J les matrices de $\mathcal{M}_n(\mathbb{C})$ définies par

$$A = \begin{pmatrix} a_0 & a_1 & \dots & a_{n-1} \\ a_{n-1} & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & a_1 \\ a_1 & \dots & a_{n-1} & a_0 \end{pmatrix}, J = \begin{pmatrix} 0 & 1 & 0 & \dots \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \ddots & \ddots & 1 \\ 1 & 0 & \dots & 0 \end{pmatrix}.$$

- 1. Démontrer que J est diagonalisable et calculer ses valeurs propres.
- 2. Déterminer un polynôme Q tel que A = Q(J).
- 3. En déduire le déterminant de A.

Bonne chance