L3: Introduction to Memory II

DRAM, SRAM, Flash, and Optical Memories

<u>Individual Term Paper Presentation Schedule</u>

- Finalize your topic with the instructor first before you can sign up for a presentation slot (first-come-first-serve)
- 29 slots:
 - 4 slots on Feb 12th
 - 7 slots on Feb 19th
 - 7 slots on Feb 26th
 - 4 slots on Mar 18th
 - 4 slots on Mar 25th
 - 3 slots in Apr 1st
- Finalize your topic by next Wednesday, Feb 5th
- Link: https://goo.gl/BkgftK
- Written report (4-page IEEE-style paper) due on Feb 26th

<u>Recap</u>

- History of memory
- Memory vs. Storage
- Memory hierarchy
- Important traits
 - Cost
 - Speed
 - Density/Capacity
 - Energy
 - Scalability
 - Endurance
 - Volatility
 - Radiation

Recap: MRAM

Magnetic Tape

HDD

GMR Effect

Spintronics

MRAM

STT RAM

<u>Dynamic Random Access Memory (DRAM)</u>

- DRAM based on capacitive charge storage
- High speed
- Nearly infinite endurance >10¹⁶
- Volatile and needs constant refresh
- Main memory for computers
- Moderate capacity

DRAM Cell

- Information stored as charge in the capacitance
- 1T1C 1 transistor + 1 capacitor

DRAM: Read

- Bitline precharged to V_{DD}/2
- Wordline rises, cap.
 shares it charge with
 bitline, causing a voltage
 ΔV
- 3. Read disturbs the cell content at x, so the cell must be rewritten after each read

DRAM: Write

- Write bitline is driven high or low
- Fill and empty the capacitor
- Needs constant refreshing ~ 64 ms
- Refresh = a dummy read

DRAM Array

DRAM Size

- Capacitor is an order of magnitude larger than the transistor
- Cap needs to store enough charge to drive the bitline
- Limiting the density

Evolution of DRAM Cell Structure

Planar

- Planar Capacitor
 - Up to 1Mb
 - C decreases linearly with feature size
- Trench Capacitor
 - 4-256 Mb
 - Lining of hole in substrate
- Stacked Cell
 - > 1Gb
 - On top of substrate
 - Use high ε dielectric

Trench

Stack

DRAM Trench Cell

Trench DRAM Cell

Process

- Etch deep hole in substrate
 - Becomes reference plate
- Grow oxide on walls
 - Dielectric
- Fill with polysilicon plug
 - Tied to storage node

Electrode

DRAM Stacked Cell POLY 5 CAPACITOR SHEET bitline CAPA CITOR NITRIDE \TE ETCH-STOP PL COB=Capacitor over bir n+ "STEM" POLY 2 BIT LINE CONTACT **REFLOW GLASS** P-substrate wordline (gate) Storage Capacitor POLY 2 BIT Rubidium electrodes CONTACT PAD

Samsung 64Mbit DRAM Cross Section

• 25 nm thick

High dielectric insulator

50X higher than SiO₂

Cell capacitance 25 femtofarads

POLYCIDE 1 SELECT GATE

DRAM Buried Strap Trench Cell

DRAM Scaling

	<u>1992</u>	<u>1995</u>	<u>1998</u>	<u>2001</u>	<u>2004</u>	<u>2007</u>
Feature size:	0.5	0.35	0.25	0.18	0.12	0.10

- Industry is slightly ahead of projection

DRAM capacity: 16M 64M 256M 16 46 16G

- Doubles every 1.5 years
- Prediction on track

Chip area (cm²): 2.5 4.0 6.0 8.0 10.0 12.5

- Chips staying small

- Scaling challenge
- Must keep C_{node} high as we shrink cell size

Computing Memory Hierarchy

	Register	Cache	Memory	Disk Memory
size:	200 B	32KB - 4MB	128 MB	20 GB
speed: \$/Mbyte:	2 ns	4 ns \$100/MB	60 ns \$1.50/MB	8 ms \$0.05/MB
block size:	8 B	32 B	8 KB	

? DRAM HDD/Flash

Static RAM (SRAM)

- High speed ~<5 ns
- Stable
 - Highly immune to noise/disturbance
 - NO refresh needed
- Large
 - 6 transistor per bit
- Expensive
 - $\sim $100/MB$

SRAM Working Principle

CMOS inverter

Stable Configurations

Terminology:

bit line: carries data

word line: used for addressing

Write:

- set bit lines to new data value
 b' is set to the opposite of b
- 2. raise word line to "high"
- ⇒ sets cell to new state (may involve flipping relative to old state)

Read:

- 1. set bit lines high
- 2. set word line high
- 3. see which bit line goes low

DRAM vs. SRAM

- DRAM (Dynamic RAM)
- Used mostly in main mem.
- Capacitor + 1 transistor/bit
- Need refresh every ~50 ms
 - 5% of total time
- Read is destructive (need for write-back)
- Requires sensing amplifier
- Access time ~20 ns
- Density (25-50):1 to SRAM

- SRAM (Static RAM)
- Used mostly in caches (I, D, TLB, BTB)
- * 1 flip-flop (4-6 transistors) per bit
- Draws power even during standby
- Read is not destructive
- Bitline is driven to high/low
- * Access time ~ 2 ns
- Speed (8-16):1 to DRAM

Flash Memory

- Moderate cost per bit
- Good density
- Slow speed: ~25 µs (read time) to ms (write time)
- Random access
- Non-volatile
- Low power consumption
- Poor endurance
- Erase before write

Floating Gate Transistor

Circuit symbol

- MOSFET: fixed threshold voltage V_T
- Floating gate: V_T tuned by program/erase

Programmable Threshold

Read

- Apply V_{WL} on control gate, measure I_{D}
- "0" \rightarrow $I_D >> 0$, "1" \rightarrow $I_D = 0$

Flash Memory Working Principles

Program and Erase Method

- Programmingchannel hot electron (CHE)
 - Injection to floating gate at drain side

- Erasing
- Fowler-Nordheim tunneling
- Through oxide at source side

NAND vs NOR Flash

- Small cell, sharing contact
- Easy to scale down
- Sequential access 1 µs
- Fast write/erase 1 µs
- Lower cost

- Large cell
- Difficult to scale
- Fast random access 100 ns
- Slow write/erase 10 µs
- More expensive

Flash Scaling

E. Grochowski et al., "Future technology challenges for NAND flash and HDD products", Flash Memory Summit 2012

Flash Scaling Tricks

Multi-level cell

High-k layer

Gate 1.2nm SiO₂ Silicon Substrate Gate

3.0 nm high- dielectric*k*Silicon Substrate

• 3D flash

Flash Memory Endurance and Retention Issues

Endurance

- device failure from hot carrier injection
- oxide breakdown under stress (high voltage)
- oxide charge trapping
- Shift in operating window
- even worse for multi-level cell (MLC)
- $-\sim1000\times$ now

Retention

- Requiring no charge leak for ~10⁸ s,
- i.e. cannot lose >2 electrons per day
- Oxide defects, mobile ions, contamination
- High temperature/radiation pose thread
- More difficult with scaling
- Less tolerant for multi-level cell (MLC)

Flash Endurance

Optical Data Storage

Cave painting

Drawing

Photography

Compact Disk Read Only Memory (CDROM)

- Invented by James Russell in 1970
- Mass production since 1985 by Philips and Sony
- Basis
 - Optical recording technology developed for audio CDs
 - 74 minutes playing time
- Bit Rate
 - 150 KB / second

- Capacity
 - 74 Minutes * 150 KB / second * 60 seconds / minute = 650 MB
- Read only, cannot be overwritten

CDROM Working Principle

CD-Rewritable (CD-RW)

- Allows writing new data over recorded data
- Endurance: 100-1000 times
- Based on phase change materials

Programming

- "set": crystallization → data rate limiting (~10 ns)
- "reset": melt-quench → power limiting (~600 C)

DVD

- Improved technology upon CD-RW
- Smaller wavelength → higher density
- Better mechanical control
- Improved error correction
- Larger capacity
 - -Standard Up to 4.7 GB, 7 times more than CD-ROM
 - -Double layers 8.5 GB
 - Double-sided 17 GB
 - -Blu-ray (BD) disk 25 GB
 - Dual layer BD 50 GB

<u>Dual Layer Technology</u>

Benefits

- Increased durability
- Increased capacity

Detriments

- -Decreased S/N
- Decreased data density

Numerical Aperture

- NA = $n \sin(\theta/2)$
- Spot size = λ/NA
- CD-RW λ ~ 780 nm IR
- DVD $\lambda \sim 650$ nm red
- Blu-ray $\lambda \sim 405$ nm blue

Figure 2: A solid–immersion lens (SIL) can increase the effective NA beyond 1.0, further increasing density but requiring evanescent coupling between the SIL and disk.

Comparison of Optical Storage

Depth of Focus (DoF)

- DoF = λ/NA^2
- Determines spacing of layers
- Decreasing depth of focus

 → more layer → higher
 density
- Affects S/N; places an upper limit on NA.

Photonic Memory

- Change in Absorption in photonic waveguide
- Optical memory and all photonic circuit