2019-2020 学年第二学期期末考试 A 卷

一、填空题(每空 1 分, 共 20 分)
1, $(43.375)_D = (\underline{})_H$
2 、逻辑函数 $F(A,B,C,D)=\prod M(1,3,5,7,13,15)$,其最简与-或式为,其对偶式为。.
。· 3、在计算机系统中,逻辑门常用作数据总线结构的缓冲隔离。
4 、已知 $3.3V$ 供电的两输入 $CMOS$ 与非门芯片的 $V_{IL(\max)} = 0.8V$, $V_{OL(\max)} = 0.2V$, $V_{IH(\min)} = 2.0V$,
$V_{OH(\mathrm{min})}\!=\!3.1V$,若输入端 A 的电平为 $0.4V$,输入端 B 的电平为 $1.9V$ 时,逻辑门的输出为 $_{}$ 。
5、与传统的 TTL 电路相比, $CMOS$ 逻辑器件具有静态功耗极低的优点。但未用的输入端不允许 $_{__\$,否则输出会出现逻辑紊乱。
6、 7 位 $ASCII$ 码 " A "对应的十进制数值为 65 ,当采用偶校验进行串行传输检错时,需增加的校
验位P=。
7 、判断逻辑函数 $L_3(A,B,C,D)=\sum_m(0,2,4,6,8,10,12,14)$ (是、否)可能产生竞争冒险。
8、为了扩展实现 4-16 线二进制译码器,至少需要个同样带有使能端的 2-4 线二进制译码器。
9、下图 1 中的 $always$ 块实现的逻辑功能是。
reg q; always@(En or d) begin if(En) q=d; end
10、 $Verilog$ 中 $6'h25$ 表达的无符号数值所对应的 $8421BCD$ 码为 $8421BCD$.
11、在时序电路设计过程对状态机进行编码时,若采用 4 位二进制数构成的格雷码表示状态,则最多可提供个状态。

//	(数字申	1.92 二	温料	Li+ (.) //	历年题
((. #X -← F	小岭与	1夕 粗 17	TT (*	—) <i>)</i>)	刀平测

12、将 50MHz石英晶体振荡器脉冲输出变为 $1Hz$ 的时钟信号,至少需用个触发器组成分频器。
$13、某重复频率为50KHz的数字波形,占空比为40\%,其脉冲宽度为\mu s。$
14、一个 $1M imes1$ 位的 $DRAM$,采用地址分时送入的方法,芯片应具有根地址线。
15、计算机系统存储空间的访问地址通常为字节地址 $(1Byte=8bit)$ 。若某 $16K imes32bit$ 的 $SRAM$ 在
系统存储空间的起始地址为(0000) _H ,则该芯片存储区域的最高地址为H。
16、数字 IC 的时钟输入端通常会设置,以便将上升/下降沿存在畸变的周期性波形整形成较为理想的矩形波。
17、可编程逻辑器件 <i>CPLD</i> 基于实现组合逻辑函数,可编程逻辑器件 <i>FPGA</i> 基于实现组合逻辑函数。
18 、线性数字温度传感器的采集温度范围为 $0-100^{\circ}C$,要求其至少分辨 $0.1^{\circ}C$,所选 ADC 的分辨率为位。二、化简题(共 10 分)
1、用代数法求逻辑函数 L 的"最简与或式"(备注:无推导步骤,不给分)
$L = (A,B,C) = \overline{B} + ABC + \overline{AC} \cdot \overline{AB}$

2、用卡诺图化简, 求逻辑函数L的"最简与或式"(备注: A是最高有效位, D是最低有效位。 不画圈,不给分)

$$L(A,B,C,D) = \sum m(0,2,4,8,10,12)$$

三、画波形图(6分)

试画出图 2 所示电路的输出 $\left(Q_0,Q_1,Q_2\, {\overline{Q}}_3\right)$ 波形,假定所有触发器上电时都为低电平。

四、已知组合电路如图 3 所示,试写出L 的逻辑表达式,并列出真值表,分析该电路的逻辑功能。 (共10分)

- (1) 写出L的逻辑表达式,要求为最简与或表达式
- (2) 列出L的真值表

	输入	输出	
A	В	C	L
	i		

(3) 描述该电路的逻辑功能

五、试分析下述Verilog描述的电路功能(共16分)

```
module xFF(output reg Q, input E, input R, input C);
    always @(posedge C or negedge R)
        if(\simR) Q = 0;
         else if(E) Q = 1;
         else Q = 0;
endmodule
module TOP(output Y, output[2:0] Q, input R, input C);
    wire[2:0] E;
    assign Y = Q[2] & Q[1] & \sim Q[0];
    assign E[2] = \sim Q[1] | Q[0];
    assign E[1] = Q[1] \& \sim Q[0] | Q[2] \& Q[0];
    assign E[0] = \sim Q[1] \& \sim Q[0] | \sim Q[2] \& \sim Q[0];
    xFF ff0(Q[0], E[0], R, C);
    xFF ff1(Q[1], E[1], R, C);
    xFF ff2(Q[2], E[2], R, C);
endmodule
```

(1) 画出xFF模块的状态图,并简述其功能。

(2) 写出^{TOP} 电路的输出方程组和激励方程组

输出方程组: Y=

激励方程组: E_0 = , E_1 = , E_2 = 。

(3) 填写TOP 电路的状态表, 画出状态图, 并简述其功能。

	$Q_2^n Q_1^n Q_0^n$	$Q_2^{n+1}Q_1^{n+1}Q_0^{n+1}$	Y
	000		
	001		
	010		
Γ.	011		
Γ	100		
	101		
	110		
	111		

(4) 分析TOP 电路是否具有自启动能力?

六、采用JK 触发器,实现如图 4 所示状态转换图的同步时序电路。(24 分)

(1) 根据状态转换图,补充完成状态转换及激励信号真值表

Q_2^n	Q_1^n	Q_0^n	J_2	K ₂	J_1	K ₁	J_0	K ₀	Q_2^{n+1}	Q_1^{n+1}	Q_0^{n+1}	Z
0	0	0							1	0	0	0
1	0	0							1	1	0	0
1	1	0							1	1	1	1
1	1	1							0	1	1	0
0	1	1							0	0	1	0
0	0	1							0	0	0	1

(2) 写出 3 个 JK 触发器激励信号和 Z 输出信号的最简与或式

 $J_2 =$ ______; $K_2 =$ ______;

 $J_1 =$; $K_1 =$;

 $J_0 =$ _____; $K_0 =$ _____;

(3) 该电路_____(有/无) 自启动功能,其中,Z信号功能是____,其占空比是____。

 Q_0 信号功能是。

(4) 根据上述电路功能,补充以下具有异步复位功能的Verilog 描述

```
module uut(output Z, output reg[2:0] Q, input clk, rst);
 assign Z = ______;
 always @(posedge clk, negedge rst)
  if(!rst)
    Q <= 3'd0;
  else
    case(Q)
     3'd0: Q <= 3'd____;
    3'd1: Q <= 3'd____;
```

```
3'd3: Q <= 3'd____;
     3'd4: Q <= 3'd____;
      3'd6: Q <= 3'd____;
      3'd7: Q <= 3'd____;
      default: Q <= 3'd0;</pre>
    endcase
endmodule
```

七、(10 分) 由D/A 转换器、计数器和ROM 组成的波形产生电路如图 5 所示,图中ROM 的数据 表如表 1 所示。试填写完成计数器的状态转换表,及对应D/A 转换器的输入和输出电压值。

$$(D/A$$
转換器输出与输入关系式为 $v_O = -\frac{V_{REF}}{2^n} \cdot \frac{R_f}{R} \left[\sum_{i=0}^{n-1} (D_i \cdot 2^i) \right]$)

计数器状态表及 DAC 输入和输出值											
Q_3	Q_2	Q_1	Q_0	D ₉	D_8	D_7	D_6	v _O /V			

八、综合题(6分)

 8×8 LED 阵列的内部结构如6(a) 所示。由于其结构限制,无法同时在不同行(或列)上显示不同 的内容(例如图6(b)中的箭头),需要使用动态扫描显示的方式,利用人眼视觉暂留效应进行显示。

图6(c)是由逻辑门、多谐振荡器、3 位二进制计数器、低电平输出有效的 3-8 线译码器、 8×8bit RAM 等构成的阵列显示电路,用于显示手扶电梯的方向箭头。

试分析该电路系统,并回答下列问题:

- (1) 根据存储器已存储的内容,补充完善其他存储单元的数值(十六进制)填入表中;
- (2) 为保证显示效果,LED阵列的刷新频率设定为50Hz,则多谐荡器的输出频率应当为 f_{OSC} =

Hz \circ

(3) 请分析控制线F的作用,其主要作用是

74LVC161 的功能表

				3	输	出							
清零	预置	使	能	时钟	预置数据输入					进位			
\overline{CR}	PE	CEP	CET	СР	D_3	D_2	D_1	D_0	Q_3	Q_2	Q_1	Q_0	TC
L	×	×	×	×	×	×	×	×	L	L	L	L	L
H	L	×	×	t .	D ₃ *	D_2 *	D_1 *	D_0*	D_3	D_2	D_{I}	D_0	#
H	H	L	× .	×	×	×	×	×		保	持		#
H	H	×	L	×	×	×	×	×		保	持		L
Н	H	H	H	l t	×	×	×	×		计	数		#

注: DN*表示 CP 脉冲上升沿之前瞬间 DN的电平。

#表示只有当 $Q_3Q_2Q_1Q_0$ -CET=1(正逻辑体系)时,TC输出为高电平,其余均为低电平。

复位清零; 置数: 1100; 计数: 1101→1110→1111→0000→0001→0010; 禁止计数 74LVC161 的典型时序图

ADI 公司的 AD7533 CMOS 电流输出型 10 位 D/A 转换器内部框图

2019-2020 学年第二学期期末考试 A 卷参考答案

- 一、填空题(每空1分,共20分)
- 1、【正解】(2B.6)_H

【解析】 $(43.375)_{10} = (101011.011)_2 = (2B.6)_H$

【考点延伸】数制的转换

2、【正解】 $\bar{D} + A\bar{B}$; $\bar{D} \cdot (A + \bar{B})$

【解析】对偶规则为变量不变,运算符号和常量改变

【考点延伸】逻辑运算

3、【正解】三态

【解析】三杰逻辑门常用作数据总线结构的缓冲隔离

【考点延伸】集成逻辑门

4、【正解】3.1~3.3V

【解析】由输入电平范围可知 A、B 都为低电平,从而由与非门性质可知输出为高电平,再有输 出电平范围可知为3.1~3.3V。

【考点延伸】CMOS逻辑门

5、【正解】悬空

【解析】CMOS 逻辑门输入端不允许悬空,否则将造成逻辑混乱

【考点延伸】集成逻辑门

6、【正解】0

【解析】 $(65)_{10} = (1000001)_2$,由偶校验定义可知 P=0。

【考点延伸】奇偶校验

7、【正解】是

【解析】当 L_3 表示为CD + CD形成时即存在竞争冒险

【考点延伸】冒险与竞争

8、【正解】4

【解析】最少4个2-4线译码器,可实现4-16线译码器

【考点延伸】译码器的运用

9、【正解】当变量 E_n 或d的值发生变化且 En 为 1 时,执行q=d。

【解析】 $always@a \ or \ b$ 表示a,b 均变变量,其中一个改变时,下方语句将被执行

【考点延伸】Verilog中always 语句运用

10、【正解】01011111

【解析】
$$6'h25 = 2 \times 16 + 5 = (37)_{10} = (00110111)_{8421BCD}$$

【考点延伸】Verilog 中数值的表达

11、【正解】16

【解析】4位二进制格雷码可表示24=16种状态

【考点延伸】可靠性编码

12、【正解】26

【解析】 $50MHz \div 1Hz = 50M \therefore 2^{25} < 50M < 2^{26}$,故至少用 26 个触发器。

【考点延伸】分频器的定义

13、【正解】8

【解析】 $1 \div 50kHz \times 40\% = 8 \times 10^{-6}s = 8\mu s$

【考点延伸】占空比的概念

14、【正解】20

【解析】
$$1M = (1K)^2 = (2^{10})^2 = 2^{20}$$
 ... 有 20 根地址线

【考点延伸】RAM的容量

15、**【正解】**03ff

【解析】 $16K \div 8 = 2^{11}$,一个地址对应两个字节,故共有 $2^{11} \div 2 = 1024$ 个地址,最高位为

(03ff)_H,对应 1024个字节

【考点延伸】存储器的容量

16、【正解】整流器

【解析】整流器具有将不规则波形化为矩形波的作用

【考点延伸】整流器的应用

17、【正解】可编程与或阵列: 查找表

【解析】CPLD基于可编程与或阵列,FPGA基于查找表实现组合逻辑函数

【考点延伸】可编程逻辑器件

18、【正解】10

【解析】
$$\Delta T = 100^{\circ} C \div 0.1^{\circ} C = 1000$$
, $2^{9} = 512 < 1000 < 1024 = 2^{10}$

【考点延伸】A/D转换器

二、化简题(共10分)

1、【解析】
$$L(A,B,C) = \overline{B} + ABC + \overline{AC} \cdot \overline{AB} = \overline{B} + ABC + (\overline{A} + \overline{C})(\overline{A} + \overline{B})$$

$$= \overline{B} + AC + (\overline{A} + \overline{AC} + \overline{AB} + \overline{CB}) = \overline{B} + AC + \overline{A} + \overline{CB} = \overline{B} + AC + \overline{A}$$

$$=\overline{B}+C+\overline{A}$$

【考点延伸】公式法化简

2、【解析】

AB	00	01	11	10
00		0	0	$\left(1\right)$
01	1	0	0	0
11	1	0	0	0
10	1	0	0	1

$$\therefore L(A,B,C,D) = \overline{C}\overline{D} + \overline{B}\overline{D}$$

【考点延伸】卡诺图简化

三、【解析】
$$\begin{cases} D_0 = \overline{Q}_3 \\ Q_0^{n+1} = D_0 = \overline{Q}_3 \end{cases} \quad \begin{cases} D_1 = Q_0 \\ Q_1^{n+1} = D_1 = Q_0 \end{cases} \quad \begin{cases} D_2 = Q_1 \\ Q_2^{n+1} = D_2 = Q_1 \end{cases} \quad \begin{cases} D_3 = Q_2 \\ Q_3^{n+1} = D_3 = Q_2 \end{cases}$$

Q_0	Q_1	Q_2	Q_3	Q_0^{n+}	$^{1}\ Q_{1}^{n+}$	$^1\ Q_2^{n+1}$	Q_3^{n+}	1
0	0	0	0	1	0	0	0	_
0	0	0	1	0	0	0	0	
0	0	1	0	1	0	0	1	
0	0	1	1	0	0	0	1	
0	1	0	0	1	0	1	0	
0	1	0	1	0	0	1	0	
0	1	1	0	1	0	1	1	
0	1	1	1	0	0	1	1	
1	0	0	0	1	1	0	0	
1	0	0	1	0	1	0	0	
1	0	1	0	1	1	0	1	
1	0	1	1	0	1	0	1	
1	1	0	0	1	1	1	0	
1	1	0	1	0	1	1	0	
1	1	1	0	1	1	1	1	
1	1	1	1	0	1	1	1	

【考点延伸】触发器的应用

四、【解析】(1)
$$L = \overline{\overline{AB} \cdot \overline{BC} \cdot \overline{AC}} = AB + BC + AC$$

(3) 功能: 当输入中有<2个1时, L=0; 当输入中有>2个1时, L=1

【考点延伸】组合逻辑电路的功能

$$E_0=\overline{Q_1}\,\overline{Q_0}+\overline{Q_2}\,\overline{Q_0} \hspace{1cm} E_1\,{=}\,Q_1\,\overline{Q_0}\,{+}\,Q_2Q_0 \hspace{1cm} E_2\,{=}\,\overline{Q_1}\,{+}\,Q_0$$

(3)

(3)						
Q_2^n	Q_1^n	Q_0^n	Q_2^{n+1}	Q_1^{n+1}	Q_0^{n+1}	Y
0	0	0	1	0	1	0
0	0	1	1	0	0	0
0	1	0	0	1	1	0
0	1	1	1	0	0	0
1	0	0	1	0	1	0
1	0	1	1	1	0	0
1	1	0	0	1	0	1
1	1	1	1	1	0	

功能为01000的序列信号发生器。

(4) 由状态转换图可知具有自启动功能。

【考点延伸】Verilog (编程语言)

六、【解析】(1)

(2)
$$J_2 = \overline{Q_0}$$
 $K_2 = Q_0$ $J_1 = Q_2$ $K_1 = \overline{Q_2}$

$$J_0 = Q_1 \quad K_0 = \overline{Q_1} \qquad \qquad Z = Q_2 Q_1 \, \overline{Q_0} + \overline{Q_2} \, \overline{Q_1} Q_0$$

- (3) 无;产生占空比一定的周期信号; 1/3;产生序列号为000111的周期序列
- (4) 空 1: $Q[2]\&Q[1]\&\sim Q[0] \mid \sim Q[2]\&\sim Q[1]\&Q[0]$

空 2: 4

空 3: 0

空 4: 5

空 5: 1

空 6: 6

空 7: 2

空 8:7

空 9: 3

【考点延伸】JK触发器的应用

七、【解析】

Q_0	Q_1	Q_2	Q_3	D_9	D_8	D_7	D_6	v_o/v
1	0	0	0	0	0	0	1	0.5
1	0	0	1	0	0	1	0	1
1	0	1	0	0	0	1	1	1.5
1	0	1	1	0	1	0	0	2
1	1	0	0 1 0 1 0	0	0	1	1	1.5

【考点延伸】逻辑电路的应用

八、【解析】(1) 由图可知数值如下: 1:0x3c 2:0x7e 3:0xff 4:0x18

(2) $50 \times 8 = 400 \text{Hz}$

(3) 用以控制 $A_0A_1A_0$ 在下一步的输入中保持不变或取相反值,从而控制箭头方向 【考点延伸】综合应用

扫码或联系QQ: 1152296818

本资料编者都是学长学姐, 虽然仔细核对了很多遍, 但可能会有一些疏漏, 诚恳希望学弟学妹们积极反 馈错误,我们会及时更正在二维码里哦 (ブ³) づ)