Olympiad NT Theorem Collection

Technique 1:

In number theory problems, if you see some thing of the sort: $\frac{1}{a} + \frac{1}{b} = \frac{1}{c}$ where a, b, c are integers, it is helpful to replace a by c + x and b by c + y

Problem to do using this:

For any positive integer n, let S(n) denote the number of ordered pair (x, y) of positive integers $\frac{1}{x} + \frac{1}{y} = \frac{1}{n}$. (for instance, S(2) = 3). Determine the set of positive integers S(n) = 5. Indian National MO,1991

Solution:

Putting x=n+a and y=n+b, we get $n^2=ab$. If n is prime, then S(n)=3. If n=pq, where p and q are primes then S(n)>5. S(n)=5 iff $n=p^2$, where p is prime when a=10, a=11, a=12, a=13, a=14, a=14, a=14, a=14, a=15, a

Technique 2:(Extremal Principle)

In extreme conditions use Extremal Principle!!!

This technically means looking at the maximal or minimal quantities, values or elements

Problems to do with this:

Find all positive integers x, y such that $2^x - 1 = xy$

Another very good problem on extremal principle:

Of 2n + 3 points of a plane, no 3 are collinear and no 4 are concyclic. Prove that we can choose 3 of these and draw a circle through them, so that exactly n lie outside and n inside(ChNO)

Technique 3:(Bertrand's Postulate)

For every positive integer n, there exists a prime p such that $n \le p \le 2n$. Use this when somewhere you need to check the existence of a prime in sequence/sub-sequence

Wikipedia:

"Bertrand's postulate (actually a theorem) states that if n > 3 is an integer, then there always exists at least one prime number p with n . A weaker but more elegant formulation is: for every <math>n > 1there is always at least one prime p such that n < p < 2n."

Problem to do using this:

Prove that n! is not a square

Technique 4:

Finding the residues of the factor modulo some integer.

Problem to do with this:

Well known but still as an example:

Prove that the divisors of $x^2 + 1$ are of the form 4k + 1 or is 2.

Technique 5:

For factorization one can also use roots of unity: For example $a^{3k+2}+a^{3m+1}+a^{3n}$ is divisible by a^2+a+1 as In the original expression if we put $a=\omega$ we get $\omega^{3k+2}+\omega^{3m+1}+\omega^{3n}=\omega^2+\omega+1$ where ω is the cube root of unity. (We can also use the other roots of unity in the same way).

Problem:

Prove 1280000401 is composite. (IIM 1993)

Observe that $1280000401 = 2^7 + 2^2 + 2^0$ which is of the form $a^7 + a^2 + 1$ hence is divisible by $a^2 + a + 1$. Or in this case 421 where a = 2.

Technique/Advice 6:

When the problem involves number theoritic functions like [x], $\phi(x)$, etc., dribbling with expression or factoring won't help much. You have to use their properties.

Here I will give some of the main properties of [x]:

Firstly, $x - [x] = \{x\}$, which called fraction part of x

And 2nd: -[-x] is the least integer $\geq x$

I have attached the properties:

$$[x] \le x < [x] + 1, x - 1 < [x] \le x, 0 \le x - [x] < 1.$$

$$[x] = \sum_{1 \le i \le x} 1 \text{ if } x \ge 0.$$

[x + m] = [x] + m if m is an integer.

$$[x] + [y] \le [x + y] \le [x] + [y] + 1.$$

$$[x] + [-x] = \begin{cases} 0 & \text{if } x \text{ is an integer,} \\ -1 & \text{otherwise.} \end{cases}$$

$$\left[\frac{x}{m}\right] = \left[\frac{x}{m}\right]$$
 if m is a positive integer.

-[-x] is the least integer $\geqslant x$.

 $\left[x+\frac{1}{2}\right]$ is the nearest integer to x. If two integers are equally near to x, it is the larger of the two.

 $-[-x+\frac{1}{2}]$ is the nearest integer to x. If two integers are equally near to x, it is the smaller of the two.

If n and a are positive integers, [n/a] is the number of integers among $1, 2, 3, \dots, n$ that are divisible by a.

Problem to do using this:

 $q(n) = \left[\frac{n}{\left[\sqrt{n}\right]}\right]_{\text{for } n = 1, 2, 3...}$ Determine all positive integers n for which $a_n > a_{n+1}$ (British MO, 1996)

For each integer $n \ge 1$, define $a_n = \left[\frac{n}{[\sqrt{n}]}\right]$ Find the number of all n in the set 1, 2, 3, ..., 2010for which $a_n > a_{n+1}$ (India Regional MO,2010)

Well, "History repeats itself, historians repeat each other"- Philip Guedalla

Technique 7:(Infinite Descent)

The statement states that any non-zero integer is not divisible by any prime infinitely many primes.

In other words if $\exists a$ prime p and ineteger n such that $n = p^{\alpha} m$ and $\alpha = \infty \iff n = 0$.

Problem to do using this:

- 1. Prove that $\sqrt{2}$ is irrational.
- 2. Find all $x, y \in \mathbb{Z}^2$ such that $x^2 + y^2 = x^2y^2$
- 3. Solve in integers x, y, z such that $x^3 + 2y^3 = 4z^3$

Solution of 2 in another way:
$$x^2 + y^2 - x^2y^2 - 1 = -1 \implies x^2(1 - y^2) - (1 - y^2) = -1 \implies (x^2 - 1)(y^2 - 1) = 1$$

Then

Case 1:

$$x^2 - 1 = 1$$
 and $y^2 - 1 = 1 \implies no$ integer solution

Case 2:

$$x^{2} - 1 = -1$$
 and $y^{2} - 1 = -1 \implies [(x; y) = (0; 0)]$

Better to follow infinite descent... At least one of x, y have to be even implying the other is even too.. Then we have the required descent...

Technique 8:(Inequalities)

Showing the RHS is far too large than LHS is a very powerful instrument.

Corollary:(Very useful)

Integers m, n satisfy $m \mid n \iff |m| \leq |n|$

Problem to do with this:

Find all positive integers n such that $n - \tau(n) \mid n$

Hint:

Just use $\tau(n) \le 2\sqrt{n}$

Technique 9:

Generating polynomials by working in \mathbb{Z}_{p} .

For example: In \mathbb{Z}_p , p is a prime

We get $x^{p-1} - 1 = 0$ by Fermat's Theorem $\forall x \in \mathbb{Z}_p/\{0\}$

So,
$$x^{p-1} - 1 = (x-1)(x-2)\cdots(x-p+1)$$

Problem to do with this:

In all these problems we asume P is any prime;

$$\bullet \binom{2p}{p} \equiv 2 \pmod{p^3}$$

$$\bullet \binom{ap}{bp} \equiv \binom{a}{b} \pmod{p^3} * *$$

**In this Problem you need the help of other Theorem's such as Wolstenholme's Theorem, e.t.c.

Technique 10:(Wolstenholme's Theorem)

If
$$1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{p-1} = \frac{A}{B}$$
, where p is prime then $p^2|A$. In fact,

(The second one just implies from the first one) Reason:

$$\binom{ap}{bp} - \binom{a}{b} \equiv a(a-1)\binom{a-2}{b-1} \left(\binom{2p}{p} - 2\right) \pmod{p^3}$$

Problem to do with this:

$$\sum_{k=1}^{p-1} (-1)^{k-1} \frac{1}{k} = \frac{A}{B} \sum_{\text{,and } k=1}^{\frac{p-1}{4}} \frac{1}{k} = \frac{C}{D}, \text{ here } A, B, C, D \text{ are all integers , and } \gcd(A, B) = 1, \gcd(C.D) = 1. \text{ Prove that } P \text{ divides } C \text{ iff } P \text{ divides } A \text{ and } P \text{ divides } C \text{ iff } P \text{ divides } A \text{ divides } C \text{ iff } P \text{ divides } A \text{ divides } C \text{ divides } C \text{ iff } P \text{ divides } A \text{ divides } C \text{ div$$

Small Hint:

Use Wolstenholme's Theorem

Big Hint:

$$\sum_{k=1}^{p-1} (-1)^{k-1} \frac{1}{k} = \sum_{k=1}^{p-1} \frac{1}{k} - \sum_{k=1}^{\frac{p-1}{2}} \frac{1}{k}$$

By Wolstenholme's Theorem, the numerator of the two expression on the RHS is divisible by p. Thus p always divides A.

Thus we have to show p always divides C.

Technique 11:(Multiplicative Inverse)
If
$$gcd(b, m) = 1$$
, $b \mid a$
Then $\frac{a}{b} \equiv ab^{-1} \pmod{m}$

Problem to do with this:

$$\bullet (p-1)! \equiv -1 \pmod{p}$$

$$\bullet 1 + \frac{1}{2} + \dots + \frac{1}{p-1} \equiv 0 \pmod{p^2}$$

(In the second problem p > 5)

Technique 12:

Be innovative, think geometrically or combinatorially. Given a expression think whether it is in the form of some length/area/angle. This helps in solving diophantine equations sometimes. Also given an expression, think whether it can be interpreted combinatorially. This directly shows the expression is a positive integer.

Problem to do with this:

- $\frac{(2m!)(2n!)}{m!n!(m+n)!}$ is always an integer. (IMO 72) [Think combinatorially]
- 2. Show that there does not exist an integer k such that the equation:

$$x^{2}y^{2} = k^{2}(x+y+z)(x+y-z)(y+z-x)(z+x-y)$$

has positive integral solution. [Think geometrically]

Solution of 2:

If x, y, z do not satisfy triangle inequality, exactly one term on the RHS is negative, but LHS is a square, so this can't happen. So let $\,x,y,z\,$ be sides of a triangle, $\,{
m giving}\,xy=4k({
m \emph{A}}{\it rea})=2kxy\sin Z$, so $\sin Z = 1/2k$ is rational. But $z^2 = x^2 + y^2 - 2xy\cos Z$, so $\cos Z = \sqrt{4k^2 - 1}/2k$ must be rational. Then $(2k)^2-1$ is a square so 2k=1, contradiction since k is supposed to be an integer. So no solutions.

As for the other one, it seems like the usual $v_P(n!)$ method with some inequality of floors is more efficient than finding a combinatorial interpretation :/

Technique 13:(Lucas's Theorem)

Write m, n in base p(for p prime) as $m_0 + m_1 p + m_2 p^2 + ... + m_k p^k$ and

$$n_0 + n_1 p + n_2 p^2 + ... + n_k p^k \text{ respectively. Then} \binom{m}{n} \equiv \prod_{i=0}^k \binom{m_i}{n_i} \pmod{p}$$
Use this in problems involving binomial coefficients mod p

Use this in problems involving binomial coefficients mod p.

Lucas's Theorem itself (as well as Wolstenholme, Wilson, and lots of other useful stuff) can be

proven in a very simple way using technique 9 and the fact that factorization is unique in polynomials mod p.

Problem to do with this:

Prove that in any row of Pascal's Triangle, the number of odd coefficients is a power of 2.

Can someone give a brief explanation of how UFDs (and related concepts), like $\mathbb{Z}[\sqrt{3}]$, work in solving Olympiad NT problems?

Example problem:

Find all integer solutions to the equation $x^2+2=y^3$

Solution:

To solve this problem we work in $\mathbb{Z}[\sqrt{-2}]$. Clearly, y is odd.

We factor the left side as $(x+\sqrt{-2})(x-\sqrt{-2})$. Suppose p is a prime in $\mathbb{Z}[\sqrt{-2}]$ that divides both $x+\sqrt{-2}$ and $x-\sqrt{-2}$. Then p also divides $2\sqrt{-2}=-\sqrt{-2}^3$, so p $=\pm\sqrt{-2}$. However, p must also divide y^3 , a contradiction, thus, $x+\sqrt{-2}$ and $x-\sqrt{-2}$ are coprime. Thus, $x+\sqrt{-2}=(a+b\sqrt{-2})^3$. Solving the equation for a and b gives $x=\pm 5, y=3$.

This problem uses unique factorization in $\mathbb{Z}[\sqrt{-2}]$

powerful technique:

A very powerful technique involving proving polynomials irreducible in $\mathbb{Z}[x]$ is reducing the polynomial in mod p and working from there. Gabriel Dospinescu taught this strategy in Number theory at Awesomemath.

Example problem (generalization of chinese TST and IMO 1993)

 $P \in \mathbb{Z}[x]$ is monic and has degree 2, and has no real roots. Furthermore, P(0) is squarefree. Prove that $P(x^n)$ is irreducible for all natural numbers n.

Solution:

Let $f = P(x^n)$. It is clear that for all n, f has no real roots. Let $f(x) = x^n + ax^{n-1} + q$. Let p be a prime that divides q. If we reduce f in \mathbb{F}_p , it becomes $x^n + ax^{n-1} = x^{n-1}(x+a)$. Suppose f = gh, where $g, h \in \mathbb{Z}[x]$. WLOG, we have $g = x^k + pg_1(x)$ and $h = x^{n-k-1}(x+a) + ph_1(x)$, where g_1 and g_2 and g_3 are integer polynomials. In the case that g_3 the sum of the case that g_3 and g_4 are integer polynomials.

g is constant, a contradiction. If k = n - 1, then f must have an integer root, also a contradiction. Thus, $0 \le k \le n - 1$. However, multiplying g and h and setting the product equal to f gives $p^2g_1h_1 = q$. However, $v_p(q) = 1$ since q is squarefree. Thus, f is irreducible.

This strategy can be applied to many problems, such as an IMO 1993, a China TST 1994, and a Romania TST 2006.

Thank you Gabriel for teaching me this most powerful technique for proving irreducibility.

(Erm, your statement also needs the constant term is not ± 1 or else the prime doesn't exist. Furthermore, $f=x^{2n}+ax^n+q$, not $x^n+ax^{n-1}+q$...)

Technique 13:

Try introducing the following things in Diophantine equations:

- 1. If you find a variable(say a) is always greater than say b, substitute a = b + k. This might help to reduce the power.
- 2. Remember discriminant ≥ 0

Problem to do with this:

Solve the Diophantine equation: $x^3 - y^3 = xy + 61$

Lemma:

Let x, y be integers and p be a prime of the form 4k + 3. Then $p \mid x^2 + y^2 \Rightarrow p \mid x, y$.

Problem:

Find all pair of positive integers (x, y) for which $\frac{x^2 + y^2}{x - y}$

is an integer which divides 1995.

(Source: Bulgaria 1995)

Lemma:

Let x, y be integers and p be a prime of the form 3k + 2. Then $p \mid x^2 + xy + y^2 \Rightarrow p \mid x, y$.

Problem:

Prove that there are no nontrivial solutions to the Diophantine equation $x^2 + y^2 + z^2 = 6(xy + yz + zx)$

Technique 14:

Technique 14:
$$V_p(n!) = \sum_{r \geq 1} [\frac{n}{p^r}]$$
 with $[x]$ the floor function.

Problem to do with this:

$$(m+n)!$$

show that : m!n! is always integer for all integers m and n .