Tutorial #1 (part 2)

Fundamentals of Analytics (Simple and Multiple Regression)

Objective:

This is the second part of the tutorial #1.

The objective of this tutorial is to familiarize participants with simple and multiple linear regression and interpretation of the results.

This tutorial will cover the following topics:

- 1. Simple linear regression
- 2. Multiple linear regression

Tools: Jupyter notebooks, Python with the following libraries: pandas, matplotlib, statsmodels.

Prerequisites: Basic Python knowledge and familiarity with descriptive statistics.

In [1]:

```
import pandas as pd
import matplotlib.pyplot as plt
import statsmodels.api as sm
import statsmodels.formula.api as smf
import statsmodels.stats as smt
```

In [2]:

```
# to read from a locally saved file use this
# df = pd.read_csv("Davis-weight.csv")

# to read directly from github, use the following URL path
df = pd.read_csv("https://raw.githubusercontent.com/agrianalytics/fundamentals/master/w
eight.csv")
```

How many rows and columns does the data set have?

```
In [3]:
```

```
df.shape

Out[3]:
(200, 6)
```

In [4]:

```
df.head()
```

Out[4]:

	ID	sex	weight	height	repwt	repht
0	1	М	77	182	77.0	180.0
1	2	F	58	161	51.0	159.0
2	3	F	53	161	54.0	158.0
3	4	М	68	177	70.0	175.0
4	5	F	59	157	59.0	155.0

In [5]:

```
df.dtypes
```

Out[5]:

ID int64
sex object
weight int64
height int64
repwt float64
repht float64
dtype: object

Create a scatter plot of height and weight. What do you notice?

In [6]:

```
plt.scatter(x=df.height, y=df.weight)
plt.xlabel('height')
plt.ylabel('weight')
```

Out[6]:

Text(0, 0.5, 'weight')

We remove the outlier.

```
In [7]:
```

```
df = df[df.height > 80]
```

In [8]:

```
plt.scatter(x=df.height, y=df.weight)
plt.xlabel('height')
plt.ylabel('weight')
```

Out[8]:

Text(0, 0.5, 'weight')

We will use the **statsmodel.formula.api** to specify a model. We will then call the *fit()* method of the model and then print out the results.

In [9]:

```
model = smf.ols(formula='weight ~ height', data = df)
result = model.fit()
print(result.summary())
```

OLS Regression Results

	OC3 regression resures								
Dep. Variable:		we:	weight		R-squared:				
0.594 Model:			OLS	Adj.	R-squared:				
0.592				3	•				
		Least Squa	ares	F-sta	atistic:		2		
88.3									
Date:	Sı	ın, 09 Jun 2	2019	Prob	(F-statistic):	2.01		
e-40		45.0							
Time:		16:2	1:22	Log-l	_ikelihood:		-70		
7.79 No. Observati	ons:		199	AIC:			1		
420.	.0115 .		199	AIC.			1		
Df Residuals:			197	BIC:			1		
426.						_			
Df Model:			1						
Covariance Ty	pe:	nonrol	bust						
=========	=======	:======:	=====	=====	========	======	======		
====	_					_			
0751	coef	std err		t	P> t	[0.025	0.		
975]									
Intercept -	130.7470	11.563	-11	.308	0.000	-153.550	-10		
7.944									
height	1.1492	0.068	16	.978	0.000	1.016			
1.283									
=========			=====	=====	========		======		
====									
Omnibus:		33	.873	Durb	in-Watson:				
1.844	0	000	Jangi	10 Pona (3P).		7			
Prob(Omnibus): 7.622		V	0.000		Jarque-Bera (JB):				
Skew:		а	.766	Prob	(JB):		1.40		
e-17									
Kurtosis:		5	.648	Cond	. No.		3.27		
e+03									
			=====	=====			======		
====									

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 3.27e+03. This might indicate that ther e are

strong multicollinearity or other numerical problems.

We can plot the actual and fitted values on a graph.

'bo' and 'r--' are formatting strings for the markers. ('bo' = blue circles and 'r--' = red dashes)

In [10]:

```
plt.plot(df.height, df.weight, 'bo')
plt.plot(df.height, result.fittedvalues, 'r--')
plt.xlabel('height')
plt.ylabel('weight')
plt.show()
```


Residual plots are drawn as part of the diagnostics of the regression model. What does this one tell us?

In [17]:

```
plt.plot(df.height, result.resid, 'bo')
plt.plot(df.height, [0]*len(df.height), 'r--')
plt.xlabel('height')
plt.ylabel('residuals')
plt.title('Residual Plot')
plt.show()
```


Answer the following questions:

- 1. How much of the variability in weight can be explained by this model?
- 2. What is the relationship between height and weight? Write down an equation.
- 3. Is *height* statistically significant in explaining weight?
- 4. What can we do to make the model better?

Could other variables be important?

```
In [12]:
```

```
df[['sex', 'height', 'weight']].groupby('sex').boxplot(figsize=(12, 8))
```

Out[12]:

F AxesSubplot(0.1,0.15;0.363636x0.75) M AxesSubplot(0.536364,0.15;0.363636x0.75)

dtype: object

Does gender matter? Let's add another variable 'sex' to the model.

In [13]:

```
model = smf.ols(formula='weight ~ height + sex', data = df)
result = model.fit()
print(result.summary())
```

OLS Regression Results

=========	0L5 Regression Results								
====									
Dep. Variab]	e:	wei	ght	R-squ	ared:				
0.636			Dc	544					
Model:			0LS	Δdi.	R-squared:				
0.633			023	, .a.j •	n squarea.				
Method:		Least Squa	res	F-sta	tistic:		1		
71.6		Lease squa		. 500			-		
Date:	S	un. 09 Jun 2	019	Proh	(F-statistic	١.	8.54		
e-44	3	a, 05 5a 2	013		(. 500015010	,.	0.5.		
Time:		16.21	•23	l ∩g-l	ikelihood:		-69		
6.80		10.21		-06 -	111011110001		0,5		
No. Observat	ions:		199	AIC:			1		
400.							_		
Df Residuals	5:		196	BIC:			1		
409.							_		
Df Model:			2						
Covariance 1	Type:	nonrob							
	=======		=====	=====		=======	======		
====									
	coef	std err		t	P> t	[0.025	0.		
975]						-			
Intercept	-76.6362	15.755	-2	1.864	0.000	-107.708	-4		
5.564									
sex[T.M]	8.2162	1.717	2	1.784	0.000	4.830	1		
1.603									
height	0.8107	0.096	8	3.485	0.000	0.622			
0.999									
========			====			=======	======		
====	====								
Omnibus:		38.	506	Durbi	n-Watson:				
1.859									
Prob(Omnibus	5):	0.	000	Jarqu	e-Bera (JB):		10		
0.338									
Skew:		0.	822	Prob(JB):		1.63		
e-22									
Kurtosis:		6.	066	Cond.	No.		4.71		
e+03									
========	=======	=======	=====		========	=======	======		
====									

Warnings:

- $\[1\]$ Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 4.71e+03. This might indicate that ther e are

strong multicollinearity or other numerical problems.

Note that sex[T.M] (i.e. Treatment M) is a **dummy** variable.

Answer the following questions:

- 1. Is this a beter model than the previous one?
- 2. How much of the variability in weight can be explained by this model?
- 3. What is the relationship between the dependent and independent variables? Write down an equation.
- 4. Which variables are statistically significant in explaining weight? What are the null and alternative hypotheses in this case?

In [14]:

```
plt.plot(df.height, result.resid, 'bo')
plt.plot(df.height, [0]*len(df.height), 'r--')
plt.xlabel('height')
plt.ylabel('residuals')
plt.title('Residual Plot')
plt.show()
```


In [15]:

```
aov = smt.anova.anova_lm(result)
aov
```

Out[15]:

	df	sum_sq	mean_sq	F	PR(>F)
sex	1.0	17730.725290	17730.725290	271.177649	8.010402e-39
height	1.0	4707.485084	4707.485084	71.997322	5.238355e-15
Residual	196.0	12815.297164	65.384169	NaN	NaN

In the simple model, what if we interchange height and weight? Is there causality?

In [16]:

```
model = smf.ols(formula='height ~ weight', data = df)
result = model.fit()
print(result.summary())
```

OLS Regression Results

```
_____
Dep. Variable:
                   height
                         R-squared:
0.594
Model:
                     0LS
                        Adj. R-squared:
0.592
Method:
              Least Squares
                        F-statistic:
                                              2
88.3
             Sun, 09 Jun 2019
                        Prob (F-statistic):
Date:
                                            2.01
e-40
                         Log-Likelihood:
Time:
                  16:21:23
                                            -62
8.29
No. Observations:
                     199
                         AIC:
                                              1
261.
Df Residuals:
                     197
                         BIC:
                                              1
267.
Df Model:
                      1
Covariance Type:
                 nonrobust
______
          coef
               std err
                         t
                              P>|t|
                                      [0.025
                                             0.
975]
______
       136.8366 2.029 67.446
Intercept
                               0.000
                                     132.836
                                             14
0.838
                0.030
weight
         0.5169
                       16.978
                               0.000
                                      0.457
0.577
______
====
Omnibus:
                    5.915
                        Durbin-Watson:
1.945
Prob(Omnibus):
                    0.052
                        Jarque-Bera (JB):
7.807
Skew:
                    0.170
                         Prob(JB):
                                             0.
0202
Kurtosis:
                    3.909
                         Cond. No.
334.
______
```

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.