1 Code-breaking Games

1.1 Notation

 V_X is the set of all valuations on variable set X; Form_X is a set of all formulas over variables X; Perm_X is the set of all permutations of X; Formulas $\varphi_0, \varphi_1 \in \text{Form}_X$ are (semantically) equivalent, written $\varphi_0 \equiv \varphi_1$, if $v(\varphi_0) = v(\varphi_1)$ for all $v \in V_X$. For any unary predicate P, $\#i \in A.P(i) = |\{i \in A \mid P(i)\}|$. We usually omit the " $\in A$ " part and write only #i.P(i) if the range of i is clear from the context. For a formula $\varphi \in \text{Form}_X$, $\$(\varphi) = \#v \in V_X.(v(\varphi) = 1)$ is the number of valuations by which φ is satisfied.

1.2 Formal definition

Definition 1. A code-breaking game is a quintuple $\mathcal{G} = (X, \varphi_0, T, E, \Phi)$, where

- X is a finite set of propositional variables,
- $\varphi_0 \in \text{Form}_X$ is a satisfiable prepositional formula,
- T is a finite set of types of experiments,
- $E \subseteq T \times X^*$ is experiment relation, and
- $\Phi: V_X \times E \to \text{Form}_X$ is inference function such that
 - (i) $\forall v \in V_X, e \in E$: $v(\Phi(v, e)) = 1$ and
 - (ii) $\forall v \in V_X, (t, p) \in E, \pi \in \text{Perm}_X$:

$$\varphi_0 \equiv \pi(\varphi_0) \Rightarrow \Phi(v, (t, \pi(p))) \equiv \pi(\Phi(v, (t, p))).$$

The inference function gives us the partial information as a formula, given the secret valuation, an experiment and its parametrization. The condition (i) requires that this formula is satisfied by the secret valuation. Intuitively, the condition (ii) says that if π is a symmetry of the initial formula φ_0 , we do not get different information if we permutate the variables in a parametrization by π .

Example 2 (Fake-coin problem). Fake-coin problem with n coins, one of which is fake, can be formalized as a code breaking game $\mathcal{F}_n = (X, \varphi_0, T, E, \Phi)$, where

- $X = \{x_1, x_2, \dots, x_n, y\}$ Intuitively, variable x_i tells weather the coin i is fake. Variable y tells weather it's lighter or heavier.
- φ_0 = Exactly-1 ($\{x_1, \ldots, x_n\}$) This is to ensure that exactly one coin is fake.
- $T = \{t\}$ There is only one type of experiment – weighting the coins.
- $E = \{(t, p) \mid p \in \{x_1, \dots, x_n\}^{2n}, n \geq 0, \forall x \in X : \#_x(p) \leq 1\}$ Any sequence of variables of even length with no repetitions is a permitted parametrization of type t.
- $\Phi(v,(t,p)) = \begin{cases} (\bigvee A \land \neg y) \lor (\bigvee B \land y) & \text{if } r = \text{lighter}, \\ (\bigvee A \land y) \lor (\bigvee B \land \neg y) & \text{if } r = \text{heavier}, \\ \neg \bigvee (A \cup B) & \text{if } r = \text{equal}, \end{cases}$

where $A = \{p[i] \mid 1 \le i \le |p|/2\}$, $B = \{p[i] \mid |p|/2 < i \le |p|\}$. The conditions correspond to the result r of the experiment:

- r = lighter if $(v(c) = 1 \text{ for some } c \in A \text{ and } v(y) = 0) \text{ or } (v(c) = 1 \text{ for some } c \in B \text{ and } v(y) = 1)$
- $r = \text{heavier if } (v(c) = 1 \text{ for some } c \in A \text{ and } v(y) = 1) \text{ or } (v(c) = 1 \text{ for some } c \in B \text{ and } v(y) = 0)$
- $r = \text{equal if } v(c) = 0 \text{ for every } c \in A \cup B$

Example 3 (Mastermind). Mastermind puzzle with n pegs and color set C can be formalized as a code breaking game $\mathcal{M}_{n,C} = (X, \varphi_0, T, E, \Phi)$, where

- $X = \{x_{i,c} \mid 1 \le i \le n, c \in C\}$. Variable $x_{i,c}$ tells whether there is the color c at position i. For simplicity, let us use the notation $X_c = \{x_{i,c} \mid 1 \le i \le n\}$.
- $\varphi_0 = \bigwedge \{ \text{Exactly-1} \{ x_{i,c} \mid c \in C \} \mid 1 \leq i \leq n \}.$ This guarantees that there is exactly one color at each position.
- $T = \{t\}$. There is only one type of experiment – guessing a combination.
- $E = \{(t,p) \mid p = x_{1,c_1} x_{2,c_2} \dots x_{n,c_n} \}$. Parametrization of t can be any string of length n, i-th symbol of which belongs to $\{x_{i,c} \mid c \in C\}$.
- Inference function is defined by

$$\Phi(v, (t, p)) = \text{Exactly-b} \{p[i] \mid 1 \le i \le n\} \land$$

$$\text{Exactly-t} \bigcup \{$$

$$\{\text{AtLeast-k} \{x_{i,c} \mid 1 \le i \le n\} \mid 1 \le k \le \#i.(p[i] \in X_c)\}$$

$$\mid c \in C\}$$

where b = #i.(v(p[i]) = 1) captures the number of black pegs in the response for the experiment (t, p) and $t = \sum_{c \in C} \min(\#i.(v(x_{i,c}) = 1), \#i.(p[i] \in X_c))$ is the total number of pegs (black + white). Fakt to nejde nějak jednodušej?

1.3 Strategies

Definition 4. A strategy is a function $\sigma : \text{Form}_X \to E$, determining the next experiment for given accumulated knowledge, such that

$$\varphi_0 \equiv \varphi_1 \Rightarrow \sigma(\varphi_0) = \sigma(\varphi_1).$$

A strategy σ together with a secret valuation v induce a solving process, which is an infinite sequence

$$\pi_{\sigma,v} = \varphi_0 \xrightarrow{e_1} \varphi_1 \xrightarrow{e_2} \varphi_2 \xrightarrow{e_3} \dots$$

such that $e_{i+1} = \sigma(\varphi_0 \wedge \varphi_1 \wedge \ldots \wedge \varphi_i)$ and $\varphi_{i+1} = \Phi(v, e_{i+1})$ for all $i \in \mathbb{N}_0$. For the sake of simplicity, let us write $\varphi_{0..k}$ instead of $\varphi_0 \wedge \varphi_1 \wedge \ldots \wedge \varphi_k$.

We define length of the solving proces, denoted $|\pi_{\sigma,v}|$ (despite the inifinite length of the sequence), as the smallest $k \in \mathbb{N}_0$ such that $\$(\varphi_{0..k}) = 1$. This corresponds to the situation in which we can unambiguously determine the secret code.

Note that it always holds $\$(\varphi_{0..k}) > 0$ because $v(\varphi_{0..k}) = 1$ thanks to the condition (i) in Definition 1.

The following lemma is a straightforward consequence of the memory-less nature of the games. It says that once a strategy gives us an experiment that yields no new information, we will never more get any new information (using the strategy).

Lemma 5. If $\mathcal{S}(\varphi_{0..k}) = \mathcal{S}(\varphi_{0..k+1})$ for some $k \in \mathbb{N}$, then $\mathcal{S}(\varphi_{0..k}) = \mathcal{S}(\varphi_{0..k+l})$ for any $l \in \mathbb{N}$.

Proof. If $\varphi_{0..k+1} = \varphi_{0..k} \wedge \varphi_{k+1}$ is satisfied by valuation v, so must be $\varphi_{0..k}$. Since $\$(\varphi_{0..k}) = \$(\varphi_{0..k+1})$, the sets of valuations satisfying $\varphi_{0..k}$ and $\varphi_{0..k+1}$ must be exactly the same and the formulas are thus equivalent. This implies $\sigma(\varphi_{0..k}) = \sigma(\varphi_{0..k+1})$ and thus also $\varphi_{k+2} = \varphi_{k+1}$. By induction, $\varphi_{k+l} = \varphi_{k+1}$ and $\varphi_{0..k+l} \equiv \varphi_{0..k}$ for any $l \in \mathbb{N}$.

The worst-case number of experiments λ^{σ} of a strategy σ is the maximal length of the solving process $\pi_{\sigma,v}$ over all valuations v, i.e. $\lambda^{\sigma} = \max_{v \in V_X} |\pi_{\sigma,v}|$. We say that the strategy solves the game if λ^{σ} is finite. The game is solvable if there exists a strategy that solves the game.

Problem 6. Given a code-breaking game \mathcal{G} , decide whether \mathcal{G} is solvable.

Definition 7. A strategy σ is *optimal* if $\lambda^{\sigma} \leq \lambda^{\sigma'}$ for any strategy σ' . A strategy σ is greedy if for every $\varphi \in \text{Form}_X$ and $e' \in E$,

$$\max_{v \in V_X} \$(\varphi \land \Phi(v, \sigma(\varphi))) \le \max_{v \in V_X} \$(\varphi \land \Phi(v, e')).$$

In words, a greedy strategy minimizes the worst-case number of possible valuations in the next step.

Problem 8. Given a code-breaking game \mathcal{G} , decide whether all greedy strategies are optimal. This seems to be the case for Fake-coin problem (?) but it is not the case for Mastermind/ref.

Bibliography