

CS-746
FINAL PROJECT REPORT
By
KABALI

Team information CS746F23Project_KABALI

S.No	Full Name	WSU ID	WSU Email
1	Lakshmi Kiranmai Guduru	B848P394	lxguduru@shockers.wichita.edu
2	Yaswanth Panguluri	T434K326	yxpanguluri@shockers.wichita.edu
3	Raghu Vamsi Anem	U627S967	rxanem@shockers.wichita.edu
4	Rahul Thirukovela	P993K463	rxthirukovela@shockers.wichita.edu
5	Justin Martin Zephaniah Srikotla	B592C567	jxsrikotla@shockers.wichita.edu

Today's Agenda

- What's the Chosen Data set.?
- EDA
- Data Cleaning
- Data Visualization
- Linear Regression
 - Performing Simple linear regression
 - Performing Multiple Linear Regression

DATA SET CHOOSEN

Describing the Data

37 Columns5 Rows

Data set -Independent Houses

Key Metrics info

Address,
Distance from Wsu,
Bed and bath specifications,
Square footage (Sqft), &
Rental information.

EDA

Exploratory Data Analysis

It is an approach of analyzing data sets to summarize their main characteristics, often using statistical graphics and other data visualization methods.

Steps in EDA:

- Describing data set.
- Handling Missing values.
- Data Visualization.
- Correlation Matrix.
- Outilers

DATA CLEANING

Here, We dropped 2 Key features i.e., "Address', 'Bed And Bath and checking the missing values.

Data Cleaning

```
df = df.drop(columns=['Address','Bed And Bath'])
# Display the modified DataFrame
print(df.head())
```

	Distance	from Wsu	Sqft	Rent	Bedrooms	Bathrooms
0		0.7	2200.0	1475	4	2.0
1		2.7	1617.0	1025	4	2.0
2		0.6	1200.0	1350	4	2.0
3		3.2	1650.0	1650	4	2.5
4		3.8	1748.0	1595	4	1.5

```
# Check for missing values
missing_values = df.isnull().sum()
print("Missing Values:\n", missing values)
# Handle missing values if needed (replace with mean, median, etc.)
df['Sqft'].fillna(df['Sqft'].median(), inplace=True)
Missing Values:
 Distance from Wsu
Sqft
Rent
Redrooms.
Bathrooms
dtype: int64
```

DATA VISUALIZATION FOR DISTANCE FROM WSU

Data visualization is the graphical representation of information and data.


```
import matplotlib.pyplot as plt
import seaborn as sns
# Set the style for seaborn
sns.set(style="whitegrid")
# Visualization for 'Distance from Wsu'
plt.figure(figsize=(10, 6))
sns.histplot(df['Distance from Wsu'], bins=15, kde=True)
plt.title('Distribution of Distance from Wsu')
plt.xlabel('Distance from Wsu')
plt.ylabel('Frequency')
plt.show()
```

VISUALIZATION FOR SQFT

```
# Visualization for 'Sqft'
plt.figure(figsize=(10, 6))
sns.histplot(df['Sqft'], bins=15, kde=True)
plt.title('Distribution of Sqft')
plt.xlabel('Sqft')
plt.ylabel('Frequency')
plt.show()
```


VISUALIZATION FOR RENT


```
# Visualization for 'Rent'
plt.figure(figsize=(10, 6))
sns.histplot(df['Rent'], bins=15, kde=True)
plt.title('Distribution of Rent')
plt.xlabel('Rent')
plt.ylabel('Frequency')
plt.show()
```

BOX PLOT FOR BEDROOMS & BATHROOMS

sns.boxplot(x='Bedrooms,
y='Bathrooms', data=df)

PAIRPLOTS (Distance from Wsu', 'Sqft', 'Rent', 'Bedrooms', 'Bathrooms)

CORRELATION HEAT MAP

LINEAR REGRESSION & MULTIPLE LINEAR REGRESSION

DATA DRIVEN COLLECTION

LINEAR REGRESSION SQFT VS RENT

DATA DRIVEN COLLECTION

LINEAR REGRESSION DISTANCE FROM WSU VS RENT

THANK YOU

