S_N Method

Amelia Trainer

December 19, 2018

Homogenous Slab

Here are the convergence plots for a 50 cm slab homogeneous slab, using 10,000 cells to be the "good" answer with which to judge my errors on.

It seems that for all methods, having a SigS = 0.1 requires 6 iterations, having a SigS = 0.5 requires 18 iterations, and SigS = 0.99 requires about 700-800 iterations (depending on mesh size), except for Step Characteristic which requires as few as 200 iterations for 0.99 SigS value.

S2,S4 Step SigS = 0.1 = 6

S2,S4 Step SigS = 0.5 = 18

S2,S4 Step SigS = 0.99 = 700-800 for various numbers of cells

S2,S4 Diamond SigS = 0.1 = 6

S2,S4 Diamond SigS = 0.5 = 18

S2,S4 Diamond SigS = 0.99 = 700-800 for various numbers of cells

S2,S4 Step Characteristic SigS = 0.1 = 6

S2,S4 Step Characteristic SigS = 0.5 = 18

S2,S4 Step Characteristic SigS = 0.99 = 200-700 for various numbers of cells

S2,S4 Linear Disc. SigS = 0.1 = 6

S2,S4 Linear Disc. SigS = 0.5 = 18

S2,S4 Linear Disc. SigS = 0.99 = 700ish for various numbers of cells

Here are some examples of plots I made

The number of cells we have is L/dx. This means that we will have to store flux in the cell, of which there are L/dx, and save the information at the boundaries, of which there are L/dx + 1.

If we store angular flux in each slab instead of scalar flux, we will have an additional $L/dx \times \#$ angles.

Heterogeneous Slab

All my methods, for various mesh sizes, took between 15 and 20 iterations to converge.

