# Hands on with FPGA's: Module 7

Venkat Rangan

#### Questions on Module 6

### Topics

- Pre-class: Open floor for questions
  - Module 6
- Clock Domain Crossing
  - Mhys
  - How to deal with it?
- IP Reuse
  - FuseSoC
  - LiteX
- IDE's: tips/tricks
- Open discussion

## Clock Domain Crossing

Metastability



### Techniques

- Double flop receiving signal
- Register sending signal



- What if tx\_clk is much faster than rx\_clk?
  - Assume a 1 clock wide pulse on tx\_data

#### Safe Solution for CDC

Use Acknowledge



- Pros:
  - Reliable transfer across clock domain
- Cons:
  - Significantly larger synchronization delay

### Other CDC techniques...

- Asynchronous FIFO's for multiple bits
  - Can be just 2 deep FIFO



- Gray encoding
  - Only 1 transition between successive counts

| Binary | Gray                                                                                                         | Decimal of Gray                                                                                                         |
|--------|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| 0000   | 0000                                                                                                         | 0                                                                                                                       |
| 0001   | 0001                                                                                                         | 1                                                                                                                       |
| 0010   | 0011                                                                                                         | 3                                                                                                                       |
| 0011   | 0010                                                                                                         | 2                                                                                                                       |
| 0100   | 0110                                                                                                         | 6                                                                                                                       |
| 0101   | 0111                                                                                                         | 7                                                                                                                       |
| 0110   | 0101                                                                                                         | 5                                                                                                                       |
| 0111   | 0100                                                                                                         | 4                                                                                                                       |
| 1000   | 1100                                                                                                         | 12                                                                                                                      |
| 1001   | 1101                                                                                                         | 13                                                                                                                      |
| 1010   | 1111                                                                                                         | 15                                                                                                                      |
| 1011   | 1110                                                                                                         | 14                                                                                                                      |
| 1100   | 1010                                                                                                         | 10                                                                                                                      |
| 1101   | 1011                                                                                                         | 11                                                                                                                      |
| 1110   | 1001                                                                                                         | 9                                                                                                                       |
| 1111   | 1000                                                                                                         | 8                                                                                                                       |
|        | 0000<br>0001<br>0010<br>0011<br>0100<br>0101<br>0110<br>0111<br>1000<br>1001<br>1010<br>1100<br>1101<br>1100 | 0001 0001 0010 0011 0010 0110 0100 0110 0101 0101 0111 0100 1110 1100 1101 1101 1101 1110 1101 1110 1101 1111 1110 1010 |

https://en.wikipedia.org/wiki/Gray\_code

#### Lets build an SoC!

- Use <u>LiteX</u>
- Follow instructions in the repo to install
  - For windows, use WSL!
  - Will not work well in the Powershell/Command prompt

## IDE's: Tips/tricks

- Emacs: Verilog mode:
  - Demo of auto completion

#### <u> Module 7:</u>

- Challenge:
  - Create your own version of a processor using LiteX or FuseSoC
  - Locate the I2C and SPI cores in it
  - Can you program your I2C controller to produce some outputs?
  - Hook up any 12C device to the FPGA and try to read/write registers

# Open Discussion