

Exemplo de Projeto de Sistema Embarcado

PSI3441 - ARQUITETURA DE SISTEMAS EMBARCADOS

2ª. AULA 27/02/2018

SERGIO TAKEO KOFUJI

Objetivos de Aprendizado

Material Bibliográfico Wolf – capítulo 1

Computers as Components 3e

Vídeos que acompanham o livro canal Youtube Marylin Wolf

Processo de projeto de SEs

Compiladores, ferramentas de engenharia de softwares, Qual é a importância de uma Metodologia de projeto: ferramentas de CAD Metodologia de projeto? (computer-aided design), etc., podem ser usadas para: Ajuda a assegurar a Passos principais de um Ajudar a automatizar os realização de todos os passos das metodologia; projeto. passos do projeto Facilita a comunicação entre Ajuda a manter um os elementos de registro as atividades e, uma equipe portanto, ajuda a documentar o processo de projeto Ajuda a implementação de ferramentas de projeto auxiliados por computador

Metodologias de projeto (Design)

Níveis de Abstração

Aula 4 de Proj Formatura I

Projeto (design) Top-down vs. bottom-up

Projeto *Top-Down*:

- Começa a partir da descrição mais abstrata;
- Trabalha em direção ao nível mais detalhado (componentes).

Projeto *Bottom-up*:

- Trabalha a partir dos componentes até o sistema;
- Permite obter uma noção mais rápida de desempenho, potência, custo, dimensões físicas;
- Quanto mais o projetista tiver experiência anterior de projetos semelhantes, melhor.

Projetos reais utilizam as duas técnicas combinadas.

Desempenho;

 Velocidade total, prazos de execução para temporeal. 2

Funcionalidade e interface com o usuário;

3

Custo de Fabricação;

4

Consumo de Energia;

5

Outros requisitos (dimensões físicas, peso, robustez, interferência eletromagnética etc.).

Questões de projeto (design) em um (cada) nível

Refinamento Sucessivo

Em cada nível de abstração, devemos:

- analisar o projeto para determinar as características do estado corrente do projeto e ver como podemos atender as especificações;
- refinar o projeto para adicionar mais detalhes;
- Verificar se as metas de custo, velocidade etc. estão sendo atendidas.

Requisitos alinhados com as Necessidades (Marketing)

Descrição em linguagem simples (*Plain language*) do que o usuário quer e espera obter.

Pode se desenvolvida através de diversas formas:

- Conversando diretamente com os clientes (customers);
- Conversando com os representantes de venda;
- Fornecer protótipos para que os usuários comentem para um melhor entendimento do problema, além de permitir um entendimento comum.

Requisitos Funcionais e Não Funcionais

Requisitos funcionais:

- Saída como função da entrada.
- O QUE O SISTEMA FAZ, mas não como

Requisitos não funcionais:

- Tempo requerido para computar a saída;
- tamanho, peso, etc.;
- Consumo de energia;
- confiabilidade;
- etc.

Nome	
Propósito	
Entradas	
Saídas	
Funções	
Desempenho	
Custo de Fabricação	
Potência	
Tamanho Físico/Peso	

O nosso formulário de requisitos

Nesta aula veremos como projetar um sistema de mapa em movimento GPS. Veremos:

Necessidades do cliente (requisitos de marketing)

Requisitos gerais

Especificações (requisitos de engenharia)

Projeto da Arquitetura:

- Diagrama de blocos funcionais
- Arquitetura de hardware
- Arquitetura de software

Projeto dos componentes de hardware e de software

Integração do Sistema

Exemplo de Projeto: Sistema de Mapa GPS

Exemplo: requisitos do Sistema de Mapa GPS

O sistema de mapa adquire a posição a partir do Sistema de GPS, e desenha o mapa com base no banco de dados local.

> lat.=-23.5566823411911 long.=46.7303092202377

Necessidades do Sistema de Mapa GPS (necessidades do cliente)

Funcionalidade: Para uso automotivo. Mostra as principais estradas e pontos de referência (landmarks).

Interface de usuário: Pelo menos uma tela 400 x 600 pixels. Três teclas no máximo. Menu de Pop-up.

Desempenho: O mapa deve deslizar suavemente. Não mais que 1 segundo de iniciação. Travar no GPS em 15 segundos.

Custo: US\$120 de preço na rua = aprox. US\$30 custo de material.

tamanho físico/pêso: Deve caber na palma da mão.

Consumo de energia: Deve funcionar por 8 horas com quatro baterias AA.

Requisitos Funcionais e Não Funcionais

name	GPS moving map
purpose	consumer-grade moving map for
	driving
inputs	power button, two control buttons
outputs	back-lit LCD 400 X 600
functions	5-receiver GPS; three resolutions;
	displays current lat/lon
performance	updates screen within 0.25 sec of
	movement
manufacturing cost	\$100 cost-of-goods-sold
power	100 mW
physical size/weight	no more than 2: X 6:, 12 oz.

1.3.2 Especificação (Requisitos de Engenharia)

Uma descrição mais precisa do sistema:

- Não deve implicar em uma arquitetura em particular;
- Provê entrada ao processo de projeto arquitetural.

Pode incluir elementos funcionais e não funcionais.

Pode se executável ou pode estar na forma matemática para prova formal.

Especificação do Sistema de Mapa GPS

Deve incluir:

- O que é recebido do GPS;
- Dados de mapa;
- Interface de usuário;
- Operações requeridas para satisfazer as requisições do usuário;
- Operações de background necessárias para manter o sistema rodando.

1.3.3 Projeto da Arquitetura

Quais são os componentes principais para satisfazer a especificação?

Componentes de Hardware:

• CPUs, periféricos, etc.

Componentes de Software:

• Programas principais e suas operações.

Deve levar em consideração as especificações funcionais e não funcionais.

Diagrama de Bloco do sistema de Mapa GPS

Arquitetura de hardware do sistema de mapa GPS

Arquitetura de software do sistema de mapa GPS

1.3.4 projetando os componentes de hardware e software

Deve-se dispender algum tempo pensando na arquitetura (de software e hardware) antes de iniciar implementação dos componentes, por exemplo, codificação.

Tipos de Componentes

- Alguns componentes já estão prontos para uso,
- alguns podem ser modificados de outros projetos existentes,
- outros devem ser projetados do "zero".

1.3.5 Integração do sistema

Juntar os componentes.

Muitos bugs aparecem apenas neste estágio.

Tenha um plano de integração de componentes que possibilite descobrir *bugs* rapidamente.

Sumário

Estamos cercados de computadores embarcados.

Muitos sistemas tem software e hardware embarcados complexos.

Sistemas embarcados impõe muitos desafios de projeto: tempo de projeto, prazos para execução tempo-real, potência, etc.

Metodologias de projeto nos auxiliam a gerenciar o processo de projeto.

Atividade em Aula

Sistema Assistente automotivo com interface de vídeo e voz

Desenvolvimento de um sistema de navegação GPS automotivo com comunicação com um Sistema de Banco de Dados de Mapas local ou em Nuvem. Interface com voz e vídeo.

Outros Exemplos de Projeto

Caixa de auto-atendimento ATM

Utensílio domestico, por exemplo, cafeteira elétrica, geladeira, máquina de lavar, panel de arroz, et.

Sistema de Controle de casa, prédio, ou cidade (smart city)

Controle de um elevador

Documento de Requisitos

Metodologia de Projeto

Top-Down

Botton-Up

Híbrido Top-Down/Botton-UP

Exemplo: blocos construtivos de um Sistema com Comunicação 4G + GPS

- Raspberry Pi 3
- 4G + GPS Shield for Arduino and Raspberry Pi Tutorial (LTE / WCDMA / HSPA+ / 3G / GPRS. <u>https://www.cooking-hacks.com/documentation/tutorials/4g-gps-lte-wcdma-hspa-3g-gprs-shield-arduino-raspberry-pi-waspmote-tutorial/</u>

Documento de Especificação

Diagrama de Blocos Funcionais (HW+SW)

Arquitetura de HW

Arquitetura de SW

Entrega

Entregar o detalhamento de um projeto.