cpge-paradise.com

Notations pour l'ensemble du sujet :

K désigne \mathbb{R} ou \mathbb{C} .

On note, pour *n* entier naturel, $n \ge 2$:

- $M_n(K)$ le K-espace vectoriel des matrices carrées de taille n à coefficients dans K.
- $D_n(\mathbb{R})$ le sous-espace vectoriel des matrices diagonales de $M_n(\mathbb{R})$.

EXERCICE

Q1. On munit $M_n(\mathbb{R})$ du produit scalaire canonique $(\langle A|B\rangle = \operatorname{trace}('A.B))$, déterminer $\left(D_n(\mathbb{R})\right)^{\perp}$, l'orthogonal de $D_n(\mathbb{R})$ pour ce produit scalaire.

PROBLÈME - Théorème de décomposition de Dunford

On admet le théorème suivant que l'on pourra utiliser librement :

Si A est une matrice de $M_n(K)$ telle que son polynôme caractéristique χ_A soit scindé sur K, alors il existe un unique couple (D,N) de matrices de $M_n(K)$ vérifiant les quatre propriétés :

- (1) A = D + N;
- (2) D est diagonalisable dans $M_n(K)$ (pas nécessairement diagonale);
- (3) N est nilpotente;
- (4) DN = ND.

De plus, D et N sont des polynômes en A et $\chi_A = \chi_D$.

Le couple (D,N) s'appelle la décomposition de Dunford de A.

Partie I - Quelques exemples

Q2. Donner le couple de la décomposition de Dunford d'une matrice A de $M_n(K)$ lorsque A est diagonalisable, puis lorsque la matrice A de $M_n(K)$ est nilpotente.

Justifier qu'une matrice trigonalisable vérifie l'hypothèse du théorème, admettant ainsi une décomposition de Dunford.

Le couple de matrices $\begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$, $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ est-il la décomposition de Dunford de la matrice

$$\begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}?$$

- Q3. Donner un exemple d'une matrice de $M_2(\mathbb{R})$ n'admettant pas de décomposition de Dunford dans $M_2(\mathbb{R})$.
- Q4. Soit la matrice $A = \begin{pmatrix} 3 & 0 & 8 \\ 3 & -1 & 6 \\ -2 & 0 & -5 \end{pmatrix}$.

cpge-paradise.com

Calculer son polynôme caractéristique χ_A , puis donner le couple (D, N) de la décomposition de Dunford de A (on utilisera le fait que $\chi_A = \chi_D$).

Q5. Application

Pour
$$A \in M_n(K)$$
, $\exp(A) = \sum_{k=0}^{+\infty} \frac{1}{k!} A^k$ est l'exponentielle de la matrice A .

Déduire de la question précédente l'exponentielle de la matrice A définie en $\mathbb{Q}4$. On pourra utiliser sans démonstration que si M et N sont deux matrices de $M_n(K)$ qui commutent, $\exp(M+N) = (\exp M) (\exp N)$.

Q6. Soit $A \in M_n(K)$ telle que $A^2(A-I_n) = 0$.

Justifier que le polynôme X(X-1) est annulateur de la matrice A^2 .

Démontrer que le couple (D, N) de la décomposition de Dunford de la matrice A est donné par : $D = A^2$ et $N = A - A^2$.

Partie II - Un exemple par deux méthodes

Soit la matrice
$$A = \begin{pmatrix} 3 & -1 & 1 \\ 2 & 0 & 1 \\ 1 & -1 & 2 \end{pmatrix}$$
.

On note u l'endomorphisme de \mathbb{R}^3 canoniquement associé à la matrice A. On notera id l'application identité de \mathbb{R}^3 .

Q7. La matrice A est-elle diagonalisable dans $M_3(\mathbb{R})$?

Démontrer qu'on a la somme directe : $\mathbb{R}^3 = \ker(u - \mathrm{id}) \oplus \ker(u - 2\mathrm{id})^2$.

Q8. Déterminer une base (e_1, e_2, e_3) de \mathbb{R}^3 telle que : $\ker(u - \operatorname{id}) = \operatorname{vect}\{e_1\}$, $\ker(u - 2\operatorname{id}) = \operatorname{vect}\{e_2\}$ et $\ker(u - 2\operatorname{id})^2 = \operatorname{vect}\{e_2, e_3\}$. Écrire la matrice B de u dans la base (e_1, e_2, e_3) de \mathbb{R}^3 .

- Q9. Déterminer le couple de la décomposition de Dunford de la matrice B et en déduire le couple (on calculera ces matrices) de la décomposition de Dunford de la matrice A.
- Q10. Décomposer en éléments simples la fraction $\frac{1}{(X-1)(X-2)^2}$ et en déduire deux polynômes U et V tels que :

$$(X-1)U(X)+(X-2)^2V(X)=1$$
 avec $\deg U < 2$ et $\deg V < 1$.

Q11. On pose les endomorphismes : $p = V(u) \circ (u - 2id)^2$ et $q = U(u) \circ (u - id)$.

Calculer p(x) + q(x) pour tout x vecteur de \mathbb{R}^3 .

Démontrer que p est le projecteur sur $\ker(u-\mathrm{id})$ parallèlement à $\ker(u-2\mathrm{id})^2$ et q est le projecteur sur $\ker(u-2\mathrm{id})^2$ parallèlement à $\ker(u-\mathrm{id})$.

Q12. On pose d = p + 2q. Écrire la matrice de d dans la base (e_1, e_2, e_3) de \mathbb{R}^3 (de la

Déterminer le couple de la décomposition de Dunford de la matrice A en exprimant D et Ncomme polynômes de la matrice A (sous forme développée).

Partie III - Une preuve de l'unicité de la décomposition

Q13. Soit E un K-espace vectoriel de dimension n. Soient u et v deux endomorphismes diagonalisables de E qui commutent. On note $\lambda_1, \lambda_2, ..., \lambda_p$ les valeurs propres de u et pour tout $1 \le i \le p$, $E_{\lambda_i}(u)$ le sous-espace propre de uassocié à la valeur propre λ_i .

Démontrer que tout sous-espace propre de u est stable par v.

En déduire qu'il existe une base commune de diagonalisation pour u et v.

Pour tout $1 \le i \le p$, on pourra noter v_i l'endomorphisme induit par v sur $E_{\lambda_i}(u)$.

- Q14. Soient A et B deux matrices diagonalisables de $M_n(K)$ qui commutent. Démontrer que la matrice A - B est diagonalisable.
- Q15. Soient A et B deux matrices nilpotentes de $M_n(K)$ qui commutent, démontrer que la matrice A - B est nilpotente.
- **Q16.** Déterminer les matrices de $M_n(K)$ qui sont à la fois diagonalisables et nilpotentes.
- Q17. Dans cette question, on admet, pour toute matrice carrée A de $M_n(K)$ à polynôme caractéristique scindé, l'existence d'un couple (D,N) vérifiant les conditions (1), (2), (3), (4)et tel que D et N soient des polynômes en A. Établir l'unicité du couple (D,N) dans la décomposition de Dunford.

Partie IV - Non continuité de l'application $A\mapsto D$

Q18. On note \mathcal{D} l'ensemble des matrices de $M_n(\mathbb{C})$ qui sont <u>diagonalisables</u>.

Dest-il un espace vectoriel?

Si P est une matrice inversible de $M_n(\mathbb{C})$, justifier que l'application de $M_n(\mathbb{C})$ vers $M_n(\mathbb{C}), M \mapsto PMP^{-1}$ est continue.

- **Q19.** Démontrer que \mathcal{D} est dense dans $M_n(\mathbb{C})$.
- Q20. Si (D,N) est le couple de la décomposition de Dunford d'une matrice A, on note φ l'application de $M_n(\mathbb{C})$ dans \mathcal{D} qui à la matrice A associe la matrice \mathcal{D} . Justifier que φ est l'application identité sur \mathcal{D} et en déduire que l'application φ n'est pas continue.

FIN