ЛАБОРАТОРНАЯ РАБОТА №31

ОПРЕДЕЛЕНИЕ УДЕЛЬНОГО ЗАРЯДА ЭЛЕКТРОНА

Поляков Даниил, Б07-Ф3

Цель работы: исследование движения электронов по круговым орбитам в магнитном поле; определение зависимости напряженности магнитного поля В от ускоряющего потенциала U при постоянном радиусе r; определение удельного заряда электрона.

Оборудование:

- Узколучевая трубка;
- Катушки Гельмгольца с подставкой;
- Мультиметр 2шт;
- Источник питания лучевых трубок 0-500 В;
- Источник питания постоянного тока 0-16 В, 0-5 А;
- Mobile-CASSY;
- Аксиальный В-Сенсор S;
- Набор проводов.

Расчётные формулы:

• Анодный потенциал:

$$U = \frac{1}{2} \cdot \frac{e}{m_a} \cdot r^2 \cdot k^2 \cdot I^2$$

 $\frac{e}{m_e}$ – удельный заряд электрона;

 $r=8\ {
m cm}$ — радиус орбиты вращения электронов;

k – коэффициент пропорциональности индукции магнитного поля, создаваемой катушками, и силы тока в них;

I — сила тока в катушках.

• Коэффициент пропорциональности:

$$k = \mu_0 \cdot \left(\frac{4}{5}\right)^{\frac{3}{2}} \cdot \frac{n}{R}$$

 μ_0 – магнитная постоянная;

n = 130 — количество витков в катушках;

R = 150 мм — радиус катушки.

- Формулы для вычисления погрешностей:
 - о Абсолютная приборная погрешность:

$$\Delta f_{\rm np} = \frac{\theta A}{3}$$

heta — класс точности прибора;

A — предел измерения шкалы.

Метод проведения измерений

Соберём установку и получим круговую траекторию электронов. Установим ползунки на расстоянии 8 см друг от друга.

Установим анодный потенциал *U* на значение 300 В и подберём соответствующее значение силы тока *I* через катушки, чтобы траектория вращения электронов касалась ползунков (чтобы диаметр окружности составлял 8 см). Будем уменьшать потенциал анода с шагом в 10 В и подбирать соответствующее ему значение силы тока, при котором диаметр окружности равен 8 см, до тех пор, пока траектория движения электрона различима.

Таблицы и обработка данных

Погрешности амперметра и вольтметра:

$$\Delta I = \frac{\theta A}{3} = \frac{0.02 \cdot 3A}{3} = 0.02 \text{ A}$$

$$\Delta U = \frac{\theta A}{3} = \frac{0.02 \cdot 300B}{3} = 2 \text{ B}$$

<i>U</i> , B	I, A	I^2 , A
300	2.05	4.20
290	2.00	4.00
280	1.95	3.80
270	1.95	3.80
260	1.90	3.61
250	1.85	3.42
240	1.85	3.42
230	1.75	3.06
220	1.75	3.06
210	1.65	2.72
200	1.65	2.72
190	1.60	2.56
180	1.55	2.40
170	1.50	2.25
160	1.40	1.96
150	1.40	1.96

Рассмотрим линеаризованную зависимость $U(l^2)$:

Аппроксимация выполнена по методу наименьших квадратов.

По тангенсу угла наклона графика определим удельный заряд электрона:

$$\alpha = 65.6 \pm 1.7 \frac{B}{A^2}$$

$$U = \alpha I^2 = \frac{1}{2} \cdot \frac{e}{m_e} \cdot r^2 \cdot k^2 \cdot I^2 => \alpha = \frac{1}{2} \cdot \frac{e}{m_e} \cdot r^2 \cdot k^2 => \frac{e}{m_e} = \frac{2\alpha}{r^2 k^2}$$

$$k = \mu_0 \cdot \left(\frac{4}{5}\right)^{\frac{3}{2}} \cdot \frac{n}{R} = 7.8 \cdot 10^{-4} \frac{T\pi}{A}$$

$$\frac{e}{m_e} = (1.35 \pm 0.03) \cdot 10^{11} \frac{K\pi}{K\Gamma}$$

Теоретическое значение удельного заряда электрона составляет $1.76 \cdot 10^{11} \frac{\mathrm{K}\pi}{\mathrm{K}\Gamma}$. Полученное значение отличается от него на 23%, что может быть связано со сложностью определения размеров кольца, описываемого электронами, а также потерями энергии тока в катушках.