

Система управления

Руководство по программированию станков с ЧПУ

Приводные инструменты

с С-осью посредством главного привода

Sinumerik 810D / 840D

По состоянию на февраль 2003

Содержание

		стр.
1.0 1.1 1.2	Общая информация Выбор и отказ от использования С-оси Основная информация о формате адреса	2 2 2
2.0 2.1	Структура программы Указания по структуре программы	3 3
3.0	Указания и правила по программе С-оси	4
4.0	Данные инструмента	6
5.0	Примеры программирования	7
6.0	Циклы сверления (CYCLE 81, 82, 83, 84 и 840)	11
7.0 7.1 7.2 7.3	Функция Transmit (опция) Общая информация Указания и правила программирования Примеры программирования	17 17 18 20
8.0 8.1 8.2 8.3	Цилиндрическая интерполяция (опция) Общая информация Указания и правила программирования Примеры программирования	24 24 25 30
9.0 9.1 9.2 9.3 9.4	Y-ось (опция) Общая информация Указания и правила Формат программы Примеры программирования	31 31 31 32 33

1.0 Общая информация

Устройство «Приводные инструменты с С-осью посредством главного привода» является опцией. Оно расширяет диапазон использования токарных станков с ЧПУ и позволяет осуществлять полную обработку деталей. В нем содержатся следующие дополнительные устройства:

- Привод инструмента с помощью трехфазного двигателя на корпусе револьверной головки.
 (Мощность привода в зависимости от скорости вращения инструмента содержится в соответствующей диаграмме скорости вращения и мощности).
- 2. Управляемое программой движение оси вращения (главный шпиндель) осуществляется с помощью специального главного приводного двигателя.
- 3. С-ось (в качестве дополнительной оси).

При управлении с помощью опции ПО **ShopTurn** и составлении программы посредством ПО ShopTurn содержащаяся в данном руководстве техническая информация по программированию не имеет значения. В данном случае необходимо руководствоваться оригинальной инструкцией фирмы Siemens по ПО ShopTurn. Для обработки внешних программ DIN/ISO данное руководство может оказаться полезным относительно читаемости и описания формата, хотя здесь отдельно следует указать на то, что при использовании версии ShopTurn частично имеются иные системные настройки.

1.1 Выбор и отказ от использования С-оси

- SPOS=0 Включает режим позиционирования и главный шпиндель в положение 0-градусов.
- G0 C0 Переключение из режима позиционирования в режим C-оси.
- М5 С помощью М5 или запрограммированной скоростью вращения главного шпинделя с направлением вращения (S... М3 или М4) отключается режим С-оси и опять активируется обычный режим (токарный режим).

1.2 Основная информация о формате адреса

Описанные в данном руководстве функции и примеры относятся к станкам с ЧПУ типа RNC или MNC, SIN 810D / SIN 840D.

2.0 Структура программы

(в качестве примера)

2.1 Указания по структуре программы

SPOS=0 Режим позиционирования ВКЛ. Главный шпиндель в положении

0-градусов.

G0 C0 Позиция С-оси на 0-градусов.

G17 (или G19) Выбор уровня (G17 для осевой обработки, G19 для радиальной

обработки)

Т.. Введение приводного инструмента.

М24 Соединить привод инструмента.

G94 S2=... M2=3 С помощью M2=3 предварительно выбирается направление

вращения инструмента и с помощью S2=... активируется скорость

вращения инструмента. G94 = «фиксированная» скорость

вращения и поминутная подача.

М2=5 Остановка привода инструмента.

М25 Разъединение привода инструмента.

М30 Окончание программы.

3.0 Указания и правила по программе С-оси

- 1. В программе C-оси можно интерполировать максимум 3 оси (X, Z и C), причем линейно (G1).
- 2. При активном режиме позиционирования (включается с помощью SPOS=0) главный шпиндель осуществляет позиционирование с помощью G0 С... с наибольшей возможной скоростью позиционирования. Это (в зависимости от типа станка) максимум 180000°/мин = 50 об/мин.
- 3. Рабочая подача в программе С-оси это всегда поминутная подача. Это означает: G94 должно быть активировано.

При неподвижном главном шпинделе это мм/мин (например, N.. G94 G1 Z-... F...).

При вращающемся главном шпинделе (например, для изготовления окружного паза) это **градус/мин**, причем наименьшая программируемая единица составляет 0.001⁰ /мин. (например, N.: G94 G1 C.:: F...).

- 4. При работе в режиме С-оси V-постоянная (G96) не должна быть активной. Команда удаления G96 - G94.
- 5. Геометрические данные инструмента для ведомых инструментов соответствующим образом вводятся в память данных инструмента. Данные длины инструмента зависят от определенного типа инструмента. Инструменты для сверления имеют типы инструмента (Wz-Typ) 2..., инструменты для фрезерования типы инструмента (Wz-Typ) 1... Подробная информация содержится в главе 4 «Данные инструмента». Здесь на примере типа инструмента (Wz-Typ) 200 (спиральное сверло) показано, в какие поля нужно вводить данные длины сверла именно в зависимости от соответствующего уровня обработки (G17 или G19).

Перед обращением к Т-данным уровень обработки нужно запрограммировать с помощью G17 (осевая обработка) либо G19 (радиальная обработка). При токарной обработке соответственно программируется G18.

- 6. Привод инструмента соединяется с помощью M24, а разъединяется с помощью M25. Это также означает:
 - а) Привод инструмента должен быть после введения приводного инструмента соединен с помощью M24, и после этого с помощью S2=... M2=3 или M2=4 должна быть запрограммирована скорость вращения инструмента.
 - b) Перед заменой приводного инструмента необходимо остановить привод инструмента с помощью M2=5 и затем разъединить с помощью M25. Это также относится к M30.

7. С-ось программируется либо абсолютно (G90), либо с приращением (G91).

Формат программы при активации G90 - от C0 до C + 359.999.

Позиции С-оси С360 и выше достигаются только с приращением (G91). (Макс. значение С-команды здесь составляет С± 999999.999).

Программирование в абсолютной системе измерений (G90)

Формат программы - от С0 до С + 359.999 (отрицательные С-команды вызывают сбой)

Например:

G90 G0 C0	Главный шпиндель находится на 0°									
C270	Гл. ц	⊔пинде	ель по	ворачив	аетс	ся нег	посред	ственно	на	1 270° (напр. вращ.М4)
C320	"	"	"	"	"	"	"	"	"	320° (напр. вращ.М4)
C90	"	"	"	"	"	"	"	"	"	90° (напр. вращ.М3)

Более наглядное программирование: C=ACP(...) или C=ACN(...).

∟ напр. вращ.МЗ напр. вращ.М4

Например:

<u>Указание по формату программы:</u> G90 действует с самоудержанием (модально). C=ACP(...) либо C=ACN(...) действует покадрово.

Программирование в системе измерений с приращениями (G91)

Значение С-плюс обеспечивает вращение главного шпинделя в направлении М4. Значение С-минус " " " " " " " " " М3.

Например:

<u>Указание по формату программы:</u> G91 действует с самоудержанием (модально). C=IC(...) действует покадрово.

4.0 Данные инструмента

Информация в главе "Данные инструмента" не действительна при опции "ShopTurn". В этом случае определение данных инструмента происходит исключительно через ПО ShopTurn. С ПО ShopTurn сопоставление длины инструмента следующее: длина 1 всегда X-размер инструмента, длина 2 всегда - Z-размер, независимо от уровня (G17-G19) и типа инструмента.

Данные сверлильных и фрезерных инструментов следует соответствующим образом сохранить в памяти данных инструментов. См. рисунки (изображение на основании сверлильных инструментов). С фрезерными инструментами ситуация аналогичная (лишь типы инструмента 120 = концевая фреза).

Типы станков RNC и **MNC** (при MNC = верхняя револьверная головка инструмента):

Указание:

«Геометрическая длина1» и «Базисная длина2» - названия в строках ввода памяти данных инструмента. «Геометрическая длина1» = DP3, «Базисная длина2» = DP22.

Тип станка MNC (нижняя револьверная головка инструмента):

При <u>нижней</u> револьверной головке MNC (4-осевой станок) крепления инструмента расположены не горизонтально, а <u>вертикально</u>. Отсюда получается следующая ситуация:

Указание:

«Геометрическая длина1» и «Базисная длина3» - названия в строках ввода памяти данных инструмента. «Геометрическая длина1» = DP3, «Базисная длина3» = DP23.

5.0 Примеры программирования

Изготовление одного отверстия спиральным сверлом (по оси):

•

N1110 M5

N1120 SPOS=0

N1130 G0 C0

N1140 G17

N1150 T3

N1160 M24

N1170 G94 S2=1000 M2=3

N1180 G0 X60 Z2 M8

N1190 G1 Z-15 F100

N1200 G0 Z20

N1210 X400 Z300 D0

N1220 M2=5

N1230 M25

N1240 M30

%

Изготовление 3 отверстий:

.

N1110 M5

N1120 SPOS=0

N1130 G0 C0

N1140 G17

N1150 T5

N1160 M24

N1170 G94 S2=1000 M2=3

N1180 G0 X60 Z2 M8

N1190 BOHRUNG P3

N1200 G0 Z20

N1210 X380 Z300 D0

N1220 M2=5

N1230 M25

N1240 M30

%

% N BOHRUNG SPF -

N10 G91 G0 C120

N20 G94 G1 Z-17 F100

N30 G0 Z17

N40 G90 M17

Изготовление резьбового отверстия (М6 х 1 мм):

Для нарезания резьбы используется резьбонарезная головка (с выравниванием тяги/давления).

.

N780 M5

N790 SPOS=0

N800 G0 C0

N810 G17

N820 T3

N830 M24

N840 G94 S2=1000 M2=3

N850 G0 X60 Z2 M8

N860 G1 Z-20 F100

N870 G0 Z150

N880 M2=5

N890 M25

N900 T5

N910 M24

N920 S2=640 M2=3

N930 G0 X60 Z5

N940 G1

N950 G63 Z-10 F640

N960 G63 Z5 M2=4

N970 G0 Z20

N980 X380 Z300 D0

N990 M2=5

N1000 M25

N1010 M30

%

Поминутная подача
Шаг резьбы = Число оборотов

G63 = ручная коррекция подачи 100% G63 действует лишь покадрово. Нельзя программировать в одном кадре с другими G-данными.

<u>Изготовление торцевых пазов сверлильно-прорезной фрезой (Ø16):</u>

:

N790 M5

N800 SPOS=0

N810 G0 C0

N820 G17

N820 T7

N830 M24

N840 G94 S2=800 M2=3

N850 G0 X10 Z2 M8

N860 Z-5

N870 G94 G1 X100 F60

N880 Z2 F300

N890 G0 X10

N900 C180

N910 Z-5

N920 G1 X100 F60

N930 Z2 F300

N940 G0 Z20

N950 X380 Z300 D0

N960 M2=5

N970 M25

N980 M30

%

Резание на внешнем диаметре фрезой с осевой подачей (Ø20)

N1050 M5

N1060 SPOS=0

N1070 G0 C0

N1080 G17

N1090 T1

N1100 M24

N1110 G94 S2=530 M2=3

N1120 G0 X122 Z-3 M8

N1130 G1 X114 F53

N1140 C90 F60

N1150 X116

N1160 G0 X380 Z300 D0

N1170 M2=5

N1180 M25

N1190 M30

%

Резание фрезой на внешнем диаметре с одновременным смещением в X-оси

N1110 M5

N1120 SPOS=0

N1130 G0 C0

N1140 G17

N1150 T3

N1160 M24

N1170 G94 S2=530 M2=3

N1180 G0 X122 Z-3 M8

N1190 G1 X108 F53

N1200 X114 C90 F60

N1210 G0 X122

N1220 X380 Z300 D0

N1230 M2=5

N1240 M25

N1250 M30

%

Изготовление центрического кольцевого паза сверлильно-прорезной фрезой с осевой

<u>подачей</u>

N800 M5

N810 SPOS=0

N820 G0 C0

N830 G17

N840 T7

N850 M24

N860 G94 S2=600 M2=3

N870 G0 X80 Z2 M8

N880 G1 Z-4 F60

N890 C60 F86

N900 G0 Z20

N910 X380 Z300 T0

N920 M2=5

N930 M25

N940 M30

%

$$F = \frac{Do}{D} * F' = \frac{114.59}{80} * 60 = 86$$
 град./ мин.

Do = "Удельный диаметр" = 114.59 мм

D = актуальный диаметр фрезерования = 80 мм

F′ = подача в мм/мин.

F = подача в градусах/мин.

<u>Изготовление 2-х открытых продольных пазов сверлильно-прорезной фрезой (Ø10)</u>

. N750 M5

N760 SPOS=0

N770 G0 C0

N780 G19

N790 T9

N800 M24

N810 G94 S2=400 M2=3

N820 G0 X88 Z7 M8

N830 G94 G1 Z-15 F60

N840 X104 F300

N850 G0 Z7

N860 X88

N870 C180

N880 G1 Z-15 F60

N890 X104 F300

N900 G0 X380 Z300 D0

N910 M2=5

N920 M25

N930 M30

%

6.0 Циклы сверления

Фирма Siemens постоянно отслеживает и модернизирует данные циклы, поэтому могут иметься различия между поставляемой и описанной здесь версией.

Далее описывается общий формат программы, представленный на основании примеров программирования.

<u>Цикл сверления CYCLE 81</u>

<u>Цикл сверления, осевой</u> (одиночное отверстие)

. G17 — Уровень обработки T1 SPOS=0 G0 C0

G94 S2=2500 M2=3

G0 X100 Z50

G0 Z100 X350 M2=5

M25 M30

M24

Angetr. Wz – приводной инструмент

Глубина конечного сверления (абсолютно) Интервал безопасности (инкрем. без знака) Базовая плоскость (нач. точка, абсолютно) *) Уровень отвода (в конце цикла, абсолютно)

<u>касается*)</u> Начальная точка смещается на интервал безопасности (здесь: 1 мм)

Модальный цикл сверления

(4 отверстия на 90°)

G17 — Уровень обработки

T1

SPOS=0

G0 C0 M24

G94 S2=2500 M2=3

G0 X100 Z50

F200

MCALL CYCLE81 (10,0,1,-30)

G0 C0 C90 C180

C270
MCALL — окончание модального запрсса
Z100

X350 M2=5

M2=5

M30

0100

Используемый инструмент сохраняется в памяти данных инструмента с типом инструмента 200 (спиральное сверло), а длина сверла под геометрической длиной 1.

Цикл свеления CYCLE 82

Цикл сверления CYCLE82 отличается от цикла CYCLE81 тем, что здесь может быть запрограммировано время задержки на определенной глубине сверления.

Angetr. Wz – приводной инструмент

Указание:

В отношении формата программы важны следующие обстоятельства:

- 1. При составлении цикла глубокого сверления с управлением со стороны <u>оператора</u> ряд переменных (блок в скобках) дополняется 5-ю переменными (их значениями). См. указанную ниже структуру.
- 2. Если цикл глубокого сверления программируется не с управлением со стороны оператора, но с дополнительными 5-ю переменными, то хотя его и можно выполнить, Но нельзя полностью «переместить назад» («дополнительные» 5 переменных удаляются).

4. Содержащаяся в дополнительных 5 переменных минимальная глубина сверления активируется только в том случае, если значение дегрессии программируется не как расстояние (в верхнем примере – 10 мм), а как коэффициент.

Значение дегрессии интерпретируется как коэффициент, если оно программируется отрицательным значением, например: -0.8. В этом случае, начиная с 1-ой глубины сверления, каждая следующая глубина сверления сокращается на этот коэффициент (или на 80%).

В отличие от этого, при задании значения дегрессии в качестве расстояния, оставшаяся глубина сверления разделяется на два захода.

касается *) Если после нарезания резьбы осуществляется токарная обработка, то главный шпиндель нужно опять превратить в мастер-шпиндель с помощью SETMS(1). Посредством М5 или запрограммированной скорости вращения главного шпинделя (например, S1000 M4) осуществляется выход из регулировки положения (SPOS=..).

Указание:

Начиная с версии ПО 6.02.09, цикл G840 расширен на несколько переменных. Следующий пример показывает дополнительные возможности.

Указание относительно функции "Сброс":

Только составленный управлением со стороны <u>оператора</u>, начиная с версии ПО 6.02.09, цикл CYCLE840 с помощью функции «Сброс» соответственно производит возврат в «полный» экран ввода данных (с указанными выше дополнительными переменными). Составленный управлением <u>не</u> со стороны оператора цикл CYCLE840 (введенный через интерфейс или вручную) производит возврат в экран ввода, содержащий лишь «существовавшие ранее переменные».

Версии ПО ранее 6.02.09 соответственно обрабатывают только «существовавшие ранее переменные».

Начиная с версии ПО 6.02.09, цикл G84 расширен на несколько переменных. Следующий пример показывает дополнительные возможности.

Чтруктура программы: CYCLE84 (10,10,0,-20,,,3,,1.25,0,400,400,3,1,0,1,8,0.5)

бывшие значения переменных См. значение ниже

Bedeutung: ...,3,1,0,1,8,0.5)

Значение отвода (с приращением без знака)
Глубина нарезания резьбы с приращением (без знака)
1=изм. стружки, 2=удаление стр., (0=нарезка резьбы одним ходом)
0 (см. пояснение 1) ниже)
1 = шаг резьбы в мм (см. пояснение 2) ниже)
ГЕО-ось ("3" при прогр. G17 или G19, "1" при прогр. G18)

касается 1) 0 = состояние в отношении подачи и регулировки как и перед вызовом цикла При значении переменной $\neq 0$ см. оригинальное описание цикла фирмы «Сименс». касается 2)

0 = Шаг резьбы согласно запрогр. системе мер перед вызовом цикла (метрич. или в дюймах)

1 = " в мм (как в примере)

2 = " " в шагах резьбы на дюйм (ввод вместо шага резьбы 1.25) 3 = " " в дюймах на оборот (ввод вместо шага резьбы 1.25)

Указание относительно функции "Сброс":

Только составленный управлением со стороны <u>оператора</u>, начиная с версии ПО 6.02.09, цикл CYCLE84 с помощью функции «Сброс» соответственно производит возврат в «полный» экран ввода данных (с указанными выше дополнительными переменными).

Составленный управлением <u>не</u> со сто-роны оператора цикл CYCLE84 (введенный через интерфейс или вручную) производит возврат в эк-ран ввода, содержащий лишь «существовавшие ранее переменные».

Версии ПО ранее 6.02.09 соответственно обрабатывают только «существовавшие ранее переменные».

Нарезание резьбы без компенсационного патрона

2 резьбовых отверстия M8 x 1.25 (на C0 и C180), программируемые **G331** и **G332**.

MSG ("СПИРАЛЬНОЕ СВЕРЛО, Д-Р 6.8") G17 Уровень обработки T1 SPOS=0 -Главный шпиндель: регулировка положения G0 C0 M24 Соединить привод инструмента G94 S2=2500 M2=3 G0 X100 Z50 F200 -Подача сверла MCALL CYCLE 81 (10,0,1,-26) G0 C0 Конечная глубина нарезания резьбы (абсолютно) C180 Интервал безопасности (инкрем. без знака) MCALL Базовая плоскость (нач. точка, абсолютно) G0 Z100 C0 Уровень отвода (в конце цикла, абсолютно) M2 = 5M25 MSG ("GEWINDEBOHRER M8") T3 M24 S2=400 M2=3 G0 X100 Z10 Позиционирование Привод инструмента = мастер-шпиндель *) SETMS(2) -SPOS=0 Привод инструмента: регулировка положения G331 Z-20 K1.25 S2=400 Нарезание резьбы при С0 G4 F0.1 -Время задержки 0.1 сек. G332 Z10 K1.25 S2=400 -Отвод G4 F0.1 -Время задержки 0.1 сек. G0 C180 ——— С-ось на 180° G331 Z-20 K1.25 S2=400 Нарезание резьбы при С180 G4 F0.1 Время задержки 0.1 сек. G332 Z10 K1.25 S2=400 Отвод G4 F0.1 Время задержки 0.1 сек. G0 Z100 X350 касается *) M2 = 5Если после нарезания резьбы M25 осуществляется токарная обработка, M30 то главный шпиндель с помощью **SETMS(1)** необходимо опять превратить в мастер-шпиндель. С помощью М5 или запрограммированной скорости вращения главного шпинделя (напр., 20 S1000 M4) осуществляется выход из Ø100 регулировки положения (SPOS=..). 26

7.0 Функция Transmit

7.1 Общая информация

- 1. Функция TRANSMIT (от английского <u>TRANS</u>formation <u>M</u>illing <u>I</u>nto <u>T</u>urning (трансформация фрезерования в токарную обработку) это опция, касающаяся «приводных инструментов с C-осью».
- 2. TRANSMIT позволяет осуществлять фрезерную обработку контуров (например, квадратов, шестигранников, эксцентрических круговых пазов, плоскостей для ключей и т.д.) на торцевой поверхности изделия с помощью инструментов с осевой подачей. Осуществляется интерполяция X- и C-оси. (С=ось вращения).
- 3. Адресный формат для осей интерполяции TRANSMIT **X** и **Y**. <u>Указание:</u> В прежних станках и версиях управления (до июля 2002 г.) формат был **X** и **C1**.
- 4. TRANSMIT программируется в **условной** (декартовой) системе координат. А сами движения станка осуществляются в **реальной** системе координат станка. (См. рисунки).

условная система координат Fiktives Koordinatensystem

реальная система координат Reales Koordinatensystem

5. Следующие примеры программирования показывают структуру программы.

Пример 1: «Квадрат»

Пример 2: «Шестигранник»

Пример 3: «Квадрат с закруглением» Пример 4: «Плоскость для ключей»

7.2 Указания и правила программирования

- 1. Перед выбором опции TRANSMIT через режим позиционирования (SPOS=0) с помощью G0 C0 выбирается режим C-оси (см. также примеры программирования). Следует обратить внимание на то, что при активной опции TRANSMIT неактивно смещение нулевой точки C. Необходимый поворот с опцией TRANSMIT осуществляется командой ROT (см. п. 16).
- 2. Адресный формат для осей интерполяции TRANSMIT **X** и **Y**. Обе оси программируются в **радиусе** (DIAMOF).
- 3. TRANSMIT активируется командой **TRANSMIT** и деактивируется командой **TRAFOOF**. Данный кадр выбора либо отмены выбора не должен содержать никаких перемещений или других функций. Выбор TRANSMIT может осуществляться только из положения отмены TRAFOOF. Это означает, что переход к следующей трансформации возможен только через предварительную отмену кадра.
- 4. Перед обращением к используемому для опции TRANSMIT инструменту следует запрограммировать **G17** (выбор уровня). Если после <u>отмены выбора</u> TRANSMIT (с помощью TRAFOOF) осуществляется дальнейшая обработка, то перед обращением к соответствующему инструменту (Тданные) должен быть запрограммирован соответствующий уровень: при использовании токарных инструментов = G18, радиальных сверлильных и фрезерных инструментов = G19, при использовании осевых сверлильных и фрезерных инструментов остается активированным G17.

 Структура программы:
 .

 (Пример)
 N.. TRAFOOF
 — Отмена выбора: TRANSMIT

 N.. G54
 — Повторный выбор G54

 N.. G18
 — Выбор: уровень G18

 N.. T10
 — Токарный инструмент

- 5. Посредством даты станка TRAFOOF устанавливается как RESET-состояние (сброс).
- 6. После выбора и отмены выбора TRANSMIT необходимо запрограммировать первый кадр перемещения в абсолютных размерах (G90). Затем могут быть записаны абсолютные размеры или размеры с приращением (G91).
- 7. Выбор (G41/G42) компенсации радиуса инструмента (WRK) либо отмена выбора (G40) могут быть осуществлены только при активной опции TRANSMIT.
- 8. При предварительном позиционировании инструмента (фреза с осевой подачей) возле обрабатываемого изделия и соответственно при удалении от контура необходимо следить, чтобы это происходило при деактивированной функции WRK (G40). Это значит, что здесь программируется центр фрезерования. Для увеличения и одновременно для уменьшения значения WRK необходимо учитывать диаметр фрезерования, что касается интерполяции осей. При слишком коротком пути увеличения или уменьшения компенсации подается сообщение об ошибке WRK.
- 9. При активной опции TRANSMIT нужно при позиционировании (у первой точки контура) и свободном перемещении (от контура) учитывать знаки (+ или -) условных осей. Т.е. если обработка контура завершается, например, при X– (минус), то и инструмент должен тоже перемещаться в X– (минусовое направление).
- 10. Возможно использование программирования прохождения контура (RND, CHR, CHF, ANG). См. также пример 1 относительно указания угла (ANG).

11. Формат адреса для шпинделя инструмента:

S2=... M2=... (M2=3 или M2=4 или M2=5)

- 12. Подача должна программироваться в мм/мин (G94).
- 13. При программировании "TRANSMIT" и "TRAFOOF" стираются актуальные фреймы (смещения) с помощью G500. Это значит, что <u>после</u> этих команд необходимо опять запрограммировать актуальное смещение нулевой точки (как правило, G54). См. также примеры программирования.
- 14. Коррекция инструмента осуществляется с помощью радиуса фрезерования.
- 15. С помощью OFFN=... можно запрограммировать припуск к запрограммированному контуру (эквидистанту). Отмена выбора происходит с помощью OFFN=0. Использование показывает пример 1.
- 16. С помощью ROT Z... осуществляется вращение условных осей вокруг продольной оси (Z).

ROT Z... действует как абсолютная команда в градусах. На поворот (вправо или влево) вокруг Z-оси можно повлиять с помощью ROT Z+... либо ROT Z-.....

AROT Z... действует аддитивно. Названные ранее команды удаляются с помощью TRAFOOF. Структура программы следующая:

TRANSMIT G54 ROT Z... <u>Указание:</u> В сочетании с командой REPEAT командами **ROT Z...** или **AROT Z...** можно повторить действия в более

простой программной форме.

17. Данные фрезерного инструмента следует соответствующим образом сохранить в памяти коррекции инструмента, различно, в зависимости от типа станка: У типов станков RNC как концевую фрезу (тип 120).

У 4-осных станков типов MNC для верхней револьверной головки инструмента также как концевую фрезу с типом 120; а для инструментов <u>нижней</u> револьверной головки инструмента – как фрезу с угловой головкой (тип 130). См. ниже.

Типы станков **RNC**:

Тип инструмента 120

Werkzeugrevolver

И

типы станков ММС:

(верхняя револьв. головка)

G17 активно

Geometrie-Länge 1

Werkzeugrevolver

Тип станков **MNC**:

(нижняя револьв. головка)

Тип инструмента 130

Werkzeugrevolver – револьверная головка Geometrie-Länge – геометрическая длина Basis-Länge – базисная длина, Radius - радиус

<u>Указание:</u>

«Геометрическая длина 1», «базисная длина 3» и

«радиус» – названия в строках ввода памяти данных инструмента.

«Геометрическая длина 1» = DP3, «базисная длина 3» = DP23, «радиус» = DP6

7.3 Примеры программирования

Пример 1

%_N_VIERKANT_MPF	(Шапка программы - квадрат)		
N10 SPOS=0	(Режим позиционирования ВКЛ)		
N20 G0 C0	(С на 0 градусов)		
N30 G17	(Выбор уровня)		
N40 T1	(Введение фрезы для черновой обработки)		
N50 M24	(Соединить привод инструмента)		
N60 G94 S2=1500 M2=3	(Подача мм/мин,скор. вращения, направл. вращения)		
N70 DIAMOF	(Программирование радиуса)		
N80 TRANSMIT	(Выбор TRANSMIT)		
N90 G54	(Повторная активация G54-NV)		
N100 G0 X53 Z-10 M8	(Предварительное позиционирование)		
N110 G42 G1 X38.89 Y0 F120 OFFN=1	(Выбором комп. инстр. в подаче на точку 1)		
N120 X0 Y38.89	(точка 2)		
N130 X-38.89 Y0	(точка 3) Черновое фрезерование		
N140 X0 Y-38.89	(точка 4)		
N150 X38.89 Y0	(точка 1)		
N160 G40 X53 F2000 M9 OFFN=0	(Отменой комп. инстр. удаление от контура)		
N170 G0 Z300 D0 M2=5	(Позиция смены инстр., остановка привода инстр.)		
N180 M25	(Разъединить привод инструмента)		
N190 T2	(Введение фрезы для чистовой обработки)		
N200 M24	(Соединить привод инструмента)		
N210 G94 S2=1800 M2=3	(Скорость вращения, направление вращения)		
N220 X53 Z-10 M8	(Предварительное позиционирование)		
N230 G42 G1 X38.89 Y0 F100	(Выбором комп. инстр. в подаче на точку 1)		
N240 X0 Y38.89	(точка 2)		
N250 X-38.89 Y0	(точка 3) Чистовое фрезерование		
N260 X0 Y-38.89	(точка 4)		
N270 X38.89 Y0	(точка 1)		
N280 G40 X53 F2000 M9	(Отменой комп. инстр. удаление от контура)		
N290 TRAFOOF	(Отмена выбора TRANSMIT)		
N300 G54	(Повторная активация G54-NV)		
N310 DIAMON	(Программирование диаметра)		
N320 G0 X300 Z300 D0 M2=5	(Позиция смены инстр., остановка привода инстр.)		
N330 M25	(Разъединение привода инструмента)		
N340 M5	(Режим позиционирования ВЫКЛ)		
•	,		

axialer Schaftfräser – концевая фреза с осевой подачей

Указание:

С помощью OFFN=... можно предусмотреть припуск к запрограммированному контуру (см. N110). С помощью OFFN=0 происходит отмена выбора припуска (см. N160).

%_N_SECHSKANT_MPF	(Шапка программы – шестигранник)
MSG("SECHSKANT FRAESEN")	(Сообщение)
N10 SPOS=0	(Режим позиционирования ВКЛ)
N20 G0 C0	(С на 0 градусов)
N30 G17	(Выбор уровня)
N40 T5	(Завести приводн. инструмент (фрезу))
N50 M24	(Соединить привод инструмента)
N60 G94 S2=2000 M2=3	(Подача мм/мин, скорость вращения, напр. вращения)
N70 DIAMOF	(Программирование радиуса)
N80 TRANSMIT	(Выбор TRANSMIT)
N90 G54	(Повторное программирование G54-NV)
N100 G0 X48 Z-7 M8	(Предварительное позиционирование)
N110 G42 G1 X30.02 Y0 F120	(Выбором комп. инстр. в подаче на точку 1)
N120 X15.01 Y26	(точка 2)
N130 X-15.01	(точка 3)
N140 X-30.02 Y0	(точка 4)
N150 X-15.01 Y-26	(точка 5)
N160 X15.01	(точка 6)
N170 X30.02 Y0	(точка 1)
N180 G40 X48 F2000 M9	(Отменой комп. инстр. удаление от контура)
N190 TRAFOOF	(Отмена выбора TRANSMIT)
N200 G54	(Повторное программирование der G54-NV)
N210 DIAMON	(Программирование диаметра)
N220 G0 X300 Z300 D0 M2=5	(Позиция смены инструмента)
N230 M25	(Разъединить привод инструмента)
N240 M30	

Schlüsselweite – размер под ключ, Eckmaß – угловой размер Umrechnungsfaktor – переводной коэффициент, axialer Schaftfräser – концевая фреза с осевой подачей

%_N_VIERKANT_MIT_VERRUNDUNG_MPF		(шапка программы – квадрат с закруглением)		
N10	SPOS=0			
N20	G0 C0			
N30	G17			
N40	T12			
N50	M24			
N60	G94 S2=1200 M2=3			
N70	DIAMOF	(Программирование радиуса)		
N80	TRANSMIT	(Выбор TRANSMIT)		
N90	G54	(Повторное программирование G54-NV)		
N100	G0 X53 Z-10 M8	(Предварительное позиционирование)		
N110	G42 G1 X38.89 Y0 F100	(С пом. комп. инстр. в подаче в верх. угловую точку)		
N120	X7.07 Y31.82	(точка 2)		
N130	G3 X-7.07 Y31.82 CR=10	(точка 3)		
N140	G1 X-31.82 Y7.07	(точка 4)		
N150	G3 X-31.82 Y-7.07 CR=10	(точка 5)		
N160	G1 X-7.07 Y-31.82	(точка 6)		
N170	G3 X7.07 Y-31.82 CR=10	(точка 7)		
N180	G1 X31.82 Y-7.07	(точка 8)		
N190	G3 X31.82 Y7.07 CR=10	(точка 1)		
N200	G40 G1 X53 F2000 M9	(Отменой комп. инстр. удаление от контура)		
N210	TRAFOOF	(Отмена выбора TRANSMIT)		
N220	G54	(Повторное программирование G54-NV)		
N230	DIAMON	(Программирование диаметра)		
N240	G0 X300 Z350 D0 M2=5	(Позиция смены инструмента)		
N250	M25	(Разъединить привод инструмента)		
N260	M30			

Eckmaß – угловой размер Vierkant - квадрат Umrechnungsfaktor – переводной коэффициент

Указание:

При использовании программирования прохождения контура (здесь: RND) программирование этого квадрата с закруглением значительно облегчается. Программируются лишь угловые точки См. раздел программы рядом.

SIN 45° = Y / 10 Y = 0.707 * 10 = 7.07 X = Y = 7.07

Umrechnungsfaktor = 0.707 Eckmass = Vierkant / 0.707 Eckmass = 55 / 0.707 = 77.78

N110 G42 G1 X38.89 Y0 F100 N120 X0 Y38.89 RND=10 N130 X-38.89 Y0 RND=10 N140 X0 Y-38.89 RND=10 N150 X38.89 Y0 RND=10 N160 ANG=135 Y8 N170 G40 X53 F2000 M9

%_N_S	CHLUESSELFLAECHE_MPF	(шапка программы – плоскость для ключей)
N10	SPOS=0	(Режим позиционирования ВКЛ)
N20	G0 C0	(С на 0 градусов)
N30	G17	(Выбор уровня)
N40	T11	(Ввести приводн. инструмент)
N50	M24	(Соединить привод инструмента)
N60	G94 S2=500 M2=3	(Подача мм/мин, скорость вращения, напр. вращения)
N70	DIAMOF	(Программирование радиуса)
N80	TRANSMIT	(Выбор TRANSMIT)
N90	G54	(Повторное программирование G54-NV)
N100	G0 X65 Z-38 M8	(Предварительное позиционирование)
N110	G42 G1 X22.5 Y-20 F100	(Выбором комп. инстр. в подаче на точку 1)
N120	Y20	(точка 2)
N130	G3 X-22.5 Y20 CR=30 F2000	(точка 3) См. указание ниже.
N140	G1 Y-20 F100	(точка 4)
N150	G40 X-65 F2000 M9	(Отменой комп. инстр. удаление от контура. Здесь:Х-минус!)
N160	TRAFOOF	(Отмена выбора TRANSMIT)
N170	G54	(Повторное программирование G54-NV)
N180	DIAMON	(Программирование диаметра)
N190	G0 X430 Z300 D0 M2=5	(Позиция смены инструмента)
N200	M25	(Разъединить привод инструмента)
N210	M30	

Указание:

В кадре N130 осуществляется (с большой подачей и G3) промежуточное позиционирование из точки 2 в точку 3. Scheibenfräser – дисковая фреза

8.0 ЦИЛИНДРИЧЕСКАЯ ИНТЕРПОЛЯЦИЯ (TRACYL)

8.1 Общая информация

- 1. ЦИЛИНДРИЧЕСКАЯ ИНТЕРПОЛЯЦИЯ (называемая также интерполяцией боковой поверхности) является опцией для «приводных инструментов с С-осью».
- 2. ЦИЛИНДРИЧЕСКАЯ ИНТЕРПОЛЯЦИЯ позволяет осуществлять фрезерную обработку на боковой поверхности (цилиндрическое развертывание) изделия. При этом могут быть запрограммированы как контуры прямых, так и окружностей. Осуществляется интерполяция Z-оси и круглой оси.
- 3. Формат адреса для осей интерполяции TRACYL **Z** и **Y**. <u>Указание</u>: В более ранних версиях станков и программ управления (до июля 2002 г.) формат был **Z** и **C1**.
- 4. Для программирования необходимо развертывание подвергаемого фрезерованию контура. Развертывание относится к диаметру фрезерования, см. рисунок.

8.2 Указания и правила программирования

1. Общий формат программы для ЦИЛИНДРИЧЕСКОЙ ИНТЕРПОЛЯЦИИ следующий:

- 2. Формат адреса для осей интерполяции TRACYL **Z** и **Y**.
- 3. После выбора ЦИЛИНДРИЧЕСКОЙ ИНТЕРПОЛЯЦИИ с помощью G1 можно запрограммировать контуры прямых, а с помощью G2 / G3 контуры окружностей.
- 4. Перед вызовом используемого для опции TRACYL инструмента следует запрограммировать **G19** (выбор уровня).
- 5. При программировании " TRACYL (..)" и "TRAFOOF" стираются актуальные фреймы (смещения) с помощью G500. Это значит, что <u>после</u> этих команд необходимо опять запрограммировать актуальное смещение нулевой точки (как правило, G54). См. также примеры программирования.
- 6. Следует обращать внимание на то, что при активном TRACYL смещение нулевой точки С не действует.

Запрограммированный контур фрезерования можно смещать с помощью **ATRANS Y...** или **ATRANS Z...** (смещение в обоих случаях в миллиметрах).

Программное повторение данных действий можно легко осуществить с помощью функции REPEAT или подпрограммы.

Следует учесть, что перед ATRANS-смещением с помощью G40 следует выбрать отмену SRK (компенсацию радиуса резки).

С помощью TRAFOOF смещения вновь удаляются.

7. Если после отмены цилиндрической интерполяции (с помощью TRAFOOF) следует обработка токарными инструментами, то нужно активировать уровень **G18**.

Структура программы:

N.. TRAFOOF — Отмена: цилинд. интерполяция N.. G54

N.. G18 ——— Выбор: уровень G18

•

- 8. При активной компенсации радиуса резки данные длины инструмента и нулевой точки не могут быть изменены.
- 9. Данные фрезерного инструмента следует соответствующим образом сохранить в памяти коррекции инструмента, по-разному в зависимости от типа станка: У типов станков RNC как фрезу с угловой головкой (тип 130). У типов MNC для верхней револьверной головки инструмента также как фрезу с угловой головкой (тип 130), а для нижней револьверной головки как концевую фрезу (тип 120). См. ниже

Указание:

«Геометрическая длина 1», «базисная длина 2» и «радиус» - названия в строках ввода памяти данных инструмента.

«Геометрическая длина 1» = DP3, «базисная длина 2» = DP22, «радиус» = DP6

10. При ЦИЛИНДРИЧЕСКОЙ ИНТЕРПОЛЯЦИИ возможно программирование компенсации радиуса инструмента (WRK). Выбор осуществляется с помощью **G41** или **G42**.

При выборе G41 фреза перемещается влево, а при выборе G42 – вправо вдоль запрограммированного контура.

Выбор и отмена выбора функции WRK должны осуществляться при <u>активной</u> ЦИЛИНДРИЧЕСКОЙ ИНТЕРПОЛЯЦИИ.

При работе без WRK (**G40** активна) программируется траектория центра фрезерования, см. рисунки (фрагменты развертывания).

G40 (41, 42) ist aktiv - G40 (41, 42) активна Zylinderabwicklung – цилиндрическое развертывание Fräser – фреза programmierte Kontur – запрограммированный контур Fräser-Mittelpunktbahn – траектория центра фрезы

11. Размещенные ниже рисунок и раздел программы разъясняют последовательность движений фрезы (в частности, при выборе и отмене WRK – компенсации радиуса инструмента).

Äquidistante - эквидистанта Zylinderabwicklung – цилиндрическое развертывание bezogen auf den Fräs-Durchmesser – относится к диаметру фрезерования

•

N... SPOS=0

N... G0 C0

N... G19

N... T7

N... M24

N... G94 S2=... M2=...

N.. X80 Z50 M8

N... TRACYL (80)

N... G54

N... G0 **G41** Y0 Z15

N... G1 Z-110 F...

N... Y... Z-140

N... Y90

N... G3 Y120 Z-110 CR=30

N... G1 Z15

N... G0 **G40** Z50 —————

N... TRAFOOF

N... G54

•

Предварительное позиционирование

(Выбор WRK)

(первый проход фрезы)

(последний проход фрезы)

(Отмена WRK)

12. Размеры контура фрезерования, подлежащего программированию, будут, как правило, указаны в градусах. Однако Y-значения необходимы в мм. Это значит, что здесь необходим соответствующий перерасчет. Для этого можно воспользоваться коэффициентом, который рассчитывается из диаметра фрезерования, деленного на номинальный диаметр, см. пример ниже:

Диам. фрез. = 50 мм Номин. диаметр = 114.59 (360°/ π) Коэффициент = 0.436 (рассчитан: диам. фрезы/ номин. диаметр)

При диаметре фрезерования 50 мм коэффициент составляет 0.436. Это дает при развертывании, например, 90° путь развертывания 39.24 мм (рассчитывают: $90 \times 0.436 = 39.24$ мм).

8.3 Пример программирования

%_N_STEUERKURVE_MPF

N10 G54

N20 G0 X430 Z300 D0

N30 SPOS=0 N40 G0 C0

N50 G19

N60 T1 M8

N70 M24

N80 G94 S2=900 M2=3

N90 X124 Z-50

N100 TRACYL (110)

N110 G54

N120 G1 X110 F90

N130 Y57.6 RND=20

N140 Z-110 RND=10

N150 Y172.8 RND=50

N160 Y230.4 Z-50 RND=50

N170 Y345.6

N180 G0 X124

N190 TRAFOOF

N200 G54 N210 X430 Z300 D0

N220 M2=5

N230 M25

N240 M30

Технические данные:

Внешн. диаметр = 120 мм

Диаметр фрез. = 110 мм

Цил. развертыв. = $110 \text{ мм} * \pi$ (360°) = 345.575 мм

1° (или коэфф.) = 0.96 мм

1 MM = 1.042°

Соединить привод инструмента

Скорость вращения/направление вращения

Позиционирование фрезы

Выбор: цилиндрическая интерполяция

Повторное программирование G54-NV

Погружение на диаметр фрезерования

Отвод

Отмена: цилиндрическая интерполяция

Повторное программирование G54-NV

Позиция смены инструмента Привод инструмента СТОП

Разъединить привод инструмента

Zylinderabwicklung – цилиндрическое развертывание

9.0 Ү-ось

9.1 Общая информация

«Y-Achse» (GEO-ось) является опцией. Она предусмотрена для использования приводных инструментов для изготовления концентричных и, прежде всего, эксцентричных осевых и радиальных отверстий и расточек.

Тип станка UniCen (с опцией Y-оси) имеет вместо дисковой револьверной головки В-головку инструмента и серийно систему управления инструментом. Поэтому описание Y-оси для этого станка следует взять из руководства по программированию UniCen.

При Y-оси револьверная головка полностью двигается на направляющем элементе вертикально к X-оси.

Ү-ход зависит от станка, информация о нем содержится в соответствующем изображении рабочей зоны, см. рисунок.

Ansicht von vorne (Maschinentüre) – вид спереди (двери станка) Werkzeugrevolver – револьверная головка инструмента, Achse – ось Hauptspindel (Drehmitte) – главный шпиндель (центр вращения)

9.2 Указания и правила

- 1. Y-ось является «полноценной» осью (аналогично X и Z). Это также означает, что возможна линейная (G0, G1) и круговая (G2, G3) интер-поляция осей X, Z и Y друг с другом.
- 2. После ВКЛ/ВЫКЛ блока ЧПУ Y-ось (аналогично X и Z) необходимо выставить. После этого Y-ось находится не в положении Y0. (Не касается Y-оси с абсолютной системой измерений).
- 3. Для токарного режима и «обычного» (не эксцентричного) режима С-оси Y-ось должна находиться в исходном положении (Y0).
 - Таким образом, необходимо обязательно позаботиться о том, чтобы в начале про-граммы Y-ось перемещалась в исходное положение. Для смены инструмента Y-ось должна также находится в положении Y0, чтобы избежать столкновения (наи-больший диаметр устанавливаемого инструмента).
- 4. Для Y-оси существует (аналогично X, Z и C) возможность смещения нулевой точ-ки.

9.3 Формат программы

1. Для программирования Y-оси действую следующие правила знака: (см. также рисунок на предыдущей странице).

При активной **G90**: Исходное положение = Y0

$$Y+ =$$
 впереди (вверху) [смотря от Y0] $Y- =$ сзади (внизу) [" " "]

Ү- ось программируется в радиусе.

При активной **G91**:

Указание:

Названные с G91направления перемещения соответствуют работе с помощью кнопок JOG-режима (кнопки «+Y» и кнопка «-Y»).

2. Данные круговой интерполяции (это параллельные по осям координаты от начальной до центральной точки круга) программируются следующим образом:

$$Z$$
-ось = $\pm K$
 Y -ось = $\pm J$

$$X$$
-ось = $\pm I$
 Y -ось = $\pm J$

Приведенный ниже пример поясняет программирование:

Указание: вместо "I", "J" и "К" можно упрощенно использовать "CR=".

zu fräsendes Kreiselement – подлежащий фрезерования круговой элемент Mittelpunkt – центральная точка Vorzeichenregel – правило знака Kreisanfangspunkt – начальная точка круга

9.4 Примеры программирования

Пример 1

Фрезерование шпоночного паза (DIN 6886) торцевой пазовой фрезой (Ø11)

% N L1111 SPF

N10 G90 G0 X48 Z-21

N20 G1 X35.2 F50

N30 Z-64 F100

N40 G42 Z-70

N50 G2 Y-6 Z-64 CR=6

N60 G1 Z-21

N70 G2 Y+6 Z-21 CR=6

N80 G1 Z-64

N90 G2 Y0 Z-70 CR=6

N100 G40 G1 Z-64

N120 G0 X48

N130 M17

Последовательность фрезерования

Указание:

Коррекция инструмента

осуществляется радиусом фрезы.

Фрезерование шестигранника (SW 17) с помощью Y-оси. milling cutter - фреза

Текст программы:

•

N250 M5

N260 SPOS=0

N270 G0 C0

N280 G19

N290 Y0

N300 T11

N310 M24

N320 G94 S2=1500 M2=3

N330 G0 Y17

N340 X17

N350 SECHSKANT P6 — %_N_SECHSKANT_SPF

N360 G0 X50 MSG ("SECHSKANT FRAESEN, SW 17")

N370 G0 Y0 N10 G0 C=IC(60)

N380 M2=5 N20 G1 Y-17 F100 ;Фрезеровка из A в B

N390 M25 N30 G0 X19 ;Отвод

N40 Y+17 ;Позиционирование

N50 X17 ;Подача

N60 M17

Указания:

- 1). В кадре N350 вызывается подпрограмма SECHSKANT 6x (6 заходов фрезы).
- 2). Фрезерная обработка осуществляется в каждом случае из А в В.
- 3). Ү-ось программируется в радиусе.

<u>Заключение</u>

Мы со всей ответственностью подошли к составлению настоящего руководства по программированию, однако мы не несем никакой ответственности за любые ошибки, которые могут в нем содержаться.

Мы также не несем никакой ответственности за возможный ущерб, который может стать следствием подобных ошибок.

Мы будем благодарны Вам за указания на возможные ошибки, содержащиеся в данном руководстве.

Мы оставляем за собой право на изменения в спецификации.

© Копирование и перепечатка данного руководства, в т.ч. и его отдельных частей, возможна только по нашему специальному разрешению.

A. MONFORTS GmbH & Co. KG Машиностроительный завод Мёнхенгладбах

тел.: +49 (0) 2161- 401364

+49 (0) 2161- 401415

факс: +49 (0) 2161- 401490

E-Mail: technology@a.monforts.de

