ESERCIZI TUTORATO ALGEBRA 2 22 NOVEMBRE 2019 - LEZIONE 5

MARCO ABBADINI

Data una permutazione $\sigma \in S_n\,,$ definiamo

$$\operatorname{supp} \sigma := \{ i \in \{1, \dots, n\} \mid \sigma(i) \neq i \},\$$

ovvero gli elementi di $\{1,\ldots,n\}$ che sono "mossi" da σ .

Inoltre ricordiamo che, dati due elementi g ed h in un gruppo, si definisce il commutatore $[g,h] := g^{-1}h^{-1}gh$.

Esercizio 1. Sia n un intero nonnegativo. Provare le seguenti affermazioni.

- (a) Per ogni coppia di elementi $\sigma, \tau \in S_n$ tali che supp $\sigma \cap \operatorname{supp} \tau = \emptyset$, si ha che $[\sigma, \tau]$ è l'identità.
- (b) Non esistono $\sigma, \tau \in S_n$ tali che $[\sigma, \tau]$ è uno scambio.
- (c) Per ogni coppia di elementi $\sigma, \tau \in S_n$ tali che $|\operatorname{supp} \sigma \cap \operatorname{supp} \tau| = 1$, si ha che $[\sigma, \tau]$ è un tre-ciclo.

Esercizio 2. Siano G ed H due gruppi. Sia g un elemento di G di periodo finito n e sia h un elemento di H di periodo finito m. Provare che il periodo dell'elemento (g,h) nel prodotto diretto esterno $G \times H$ è $\operatorname{mcm}(n,m)$.

Esercizio 3. $\mathbb{Z}_2 \times \mathbb{Z}_3$ è ciclico? Se sì, trovare tutti i generatori, altrimenti stabilire se è isomorfo a S_3 .

Esercizio 4. (a) Stabilire quali tra i seguenti gruppi sono tra loro isomorfi.

- (a) $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_3$.
- (b) $\mathbb{Z}_2 \times \mathbb{Z}_6$.
- (c) $\mathbb{Z}_4 \times \mathbb{Z}_3$.
- (d) \mathbb{Z}_{12} .
- (b) Quanti sono, a meno di isomorfismo, i gruppi di ordine 12 che si ottengono come prodotto diretto di un numero finito di gruppi ciclici¹?

Esercizio 5. Sia G un gruppo finito di ordine 15, e supponiamo che G abbia un sottogruppo normale H di ordine 3 e un sottogruppo normale K di ordine $5.^2$

- (a) Provare che G è prodotto diretto interno di H e K.
- (b) Provare che G è isomorfo a \mathbb{Z}_{15} .

 $^{{\}it Ultimo~aggiornamento:}~18~{\rm novembre}~2019.$

¹Vedremo che questi sono precisamente i gruppi abeliani di ordine 12; infatti ogni prodotto di un numero finito di gruppi ciclici finiti è un gruppo abeliano finito e, viceversa, ogni gruppo abeliano finito è isomorfo a un prodotto di un numero finito di gruppi ciclici finiti.

 $^{^2}$ Vedremo che le ipotesi di esistenza di H e K normali di ordine 3 e 5 in realtà non sono necessarie, in quanto garantite dai teoremi di Sylow. Questo vuol dire che \mathbb{Z}_{15} è, a meno di isomorfismo, l'unico gruppo di ordine 15 (vedi il punto (b)).

Esercizio 6. Per ciascuno dei seguenti gruppi si trovi un gruppo "famoso" a lui isomorfo³:

$$\operatorname{Aut}(\{1\}),\operatorname{Aut}(\mathbb{Z}_2),\operatorname{Aut}(\mathbb{Z}_3),\operatorname{Aut}(\mathbb{Z}_4),\operatorname{Aut}(\mathbb{Z}_2\times\mathbb{Z}_2),\operatorname{Aut}(\mathbb{Z}_5),\operatorname{Aut}(\mathbb{Z}_6),\operatorname{Aut}(S_3),\operatorname{Aut}(\mathbb{Z}_7),\operatorname{Aut}(\mathbb{Z}_8).$$

- Esercizio 7. (1) Trovare due sottogruppi non banali A e B di S_3 tali che $S_3 = A \times B$ (prodotto semidiretto interno)⁴. Descrivere il corrispondente omomorfismo $\varphi \colon B \to \operatorname{Aut}(A)$.
 - (2) Trovare due sottogruppi A e B di \mathbb{Z}_6 di cardinalità rispettivamente 3 e 2 tale che $\mathbb{Z}_6 = A \rtimes B$ (prodotto semidiretto interno). Descrivere il corrispondente omomorfismo $\varphi \colon B \to \operatorname{Aut}(A)$.
 - (3) Descrivere tutti gli omomorfismi $\varphi \colon \mathbb{Z}_2 \to \operatorname{Aut}(\mathbb{Z}_3)$ e, per ciascuno di questi, trovare un gruppo "famoso" isomorfo al corrispondente prodotto semidiretto $\mathbb{Z}_3 \rtimes_{\varphi} \mathbb{Z}_2$.

Esercizio 8. Siano G, H, G' e H' gruppi finiti tali che |G| = |G'|, |H| = |H'| e $G \times H \simeq G' \times H'$.

- (a) Mostrare che, con le date ipotesi, non necessariamente si ha $G \simeq G'$.
- (b) Dimostrare che, se |G| e |H| sono coprimi, allora $G \simeq G'$ e $H \simeq H'$.

 $^{^3}$ Per gruppi famosi si intendono ad esempio gli \mathbb{Z}_n , gli S_n , gli A_n , i D_{2n} , prodotti diretti di questi...

⁴Ricordiamo che il sottogruppo normale è A.