Propiedades de las relaciones binarias

Sean A un conjunto y una relación R: A → A

R es reflexiva $\Leftrightarrow \forall a \in A \Rightarrow (a, a) \in R$ o bien a R a

R es reflexiva $\Leftrightarrow \Delta_A \subseteq R$ $con \Delta_A = \{(a; a)/a \in A\}$

La matriz de R tiene solamente unos en la diagonal principal $I \leq M_R$

El dígrafo de R tiene bucles en todos sus vértices

R es arreflexiva $\Leftrightarrow \forall a \in A \Rightarrow (a, a) \notin R$

R es arreflexiva $\Leftrightarrow \Delta_A \cap R = \emptyset$

En la matriz de R la diagonal principal son todos "0" es decir

$$I \wedge M_R = N$$
 (matriz nula)

En su dígrafo ningún elemento tiene bucle

R NO es reflexiva ni es arreflexiva se dice NO reflexiva

R es simétrica $\Leftrightarrow \forall$ a, b \in A: a R b \Rightarrow b R a

R es simétrica \Leftrightarrow R = R⁻¹

La matriz de R es simétrica respecto de la diagonal principal $M_R = (M_R)^t$

En el dígrafo de R si hay un arco dirigido de "1" a "2" existe también un arco dirigido de "2" a "1"

R es asimétrica $\Leftrightarrow \forall$ a, b \in A: a R b \Rightarrow b $\not R$ a

R es asimétrica \Leftrightarrow R \cap R⁻¹ = \emptyset

La $M_R \wedge (M_R)^t = N$ matriz nula

En el dígrafo de R si hay un arco dirigido de "1" a "2" no hay de "2" a "1"

R es antisimétrica $\Leftrightarrow \forall$ a, b \in A: a R b \land b R a \Rightarrow a = b

$$R \ es \ antisim\'etrica \Leftrightarrow R \cap R^{-1} \subseteq \Delta_A \quad con \ \Delta_A = \{(a; a)/a \in A\}$$

$$con \Delta_A = \{(a; a)/a \in A\}$$

 $M_R \wedge (M_R)^t \leq I$ matriz identidad

En el dígrafo entre dos vértices distintos cualesquiera hay a lo sumo un arco dirigido

R es transitiva $\Leftrightarrow \forall$ a, b, c \in A: a R b \land b R c \Rightarrow a R c

Restransitiva $\Leftrightarrow R \circ R \subseteq R$

R es transitiva \Leftrightarrow M_R \odot M_R \leq M_R

En el dígrafo siempre que existan arcos dirigidos de "1" a "2" y de "2" a "3" entonces también existe un arco dirigido de "1" a "3"

Relación de Equivalencia

La relación $R \subseteq A^2$ es de equivalencia \Leftrightarrow es

Reflexiva Simétrica

Transitiva

Las relaciones de equivalencia se suelen indicar ~

Sea \sim una relación de equivalencia en A $\neq \emptyset$.

Llamamos clase de equivalencia del elemento $a \in A$ es el conjunto de todos los elementos de A equivalentes a "a". Cla = $\{x \in A \mid x \in A\} = [a] = \overline{a}$

El conjunto formado por las clases de equivalencia se llama conjunto cociente.

$$\frac{A}{R} = \frac{A}{\sim} = \{ \text{Cla / a} \in A \}$$

El conjunto formado por UN representante de cada clase se denomina CONJUNTO DE INDICES.