Вопросы на понимание

Упражнение 1. Ответьте на следующие вопросы:

- 1. Как из нормальной случайной величины $\mathcal{N}(a, \sigma^2)$ сделать величину со стандартным нормальным распределением $\mathcal{N}(0, 1)$?
- 2. Как необходимо преобразовать стандартную нормальную величину $\mathcal{N}(0,1)$, чтобы получить нормальное распределение $\mathcal{N}(a,\sigma^2)$?
- 3. Что такое функция распределения случайной величины?
- 4. Как по функции распределения F(x) случайной величины X найти ее плотность?
- 5. Как по функции распределения F(x) случайной величины X найти вероятность $\mathbb{P}(X>3)$?

ЗАДАЧИ

Упражнение 2. Если случайная величина X имеет нормальное распределение $\mathcal{N}(0,1)$, каким будет распределение случайной величины -X?

Упражнение 3. Пусть $X \sim \mathcal{N}(a, \sigma^2)$. Найдите математическое ожидание и дисперсию случайной величины $Y = (5 + X \cdot \ln 2)/2$.

Упражнение 4. Нарисуйте функцию распределения случайной величины с распределением Бернулли \mathbb{B}_p , $p \in (0;1)$ Как в общем случае выглядит функция распределения дискретной случайной величины?

Упражнение 5. Пусть X имеет стандартное нормальное распределение $\mathcal{N}(0,1)$. Найдите плотность распределения случайной величины X^2 . В статистике оно известно под именем «распределения хи-квадрат» (с одной степенью свободы).

Упражнение 6. Пусть $\Phi(u)$ будет функцией распределения стандартного нормального закона $\mathcal{N}(0,1)$. Известно, что функция $\Phi(u)$ не является элементарной, то есть, интеграл не может быть сведен к табличным и быть композицией элементарных функций. Находить значения $\Phi(u)$ мы будем по таблице. Часто в таблицах указывают значения только для $u \geq 0$. Чтобы найти значения для u < 0 мы будем пользоваться равенством $\Phi(-u) = 1 - \Phi(u)$, u > 0. Докажите это равенство.

Упражнение 7. Время работы электрической лампочки (в днях) хорошо описывается экспоненциальным распределением с плотностью

$$f(u) = \begin{cases} \frac{1}{30}e^{-\frac{u}{30}}, & u \ge 0, \\ 0, & u < 0. \end{cases}$$

Каким будет среднее время работы лампочки? Чему равна вероятность того, что лампочка проработает не более 3-х дней? А больше 10 дней? А больше 30 дней?

Упражнение 8. Пусть одновременно тестируются пять приборов, описанных выше. (а) Сколько придется ждать, пока один из них выйдет из строя? (b) Сколько придется ждать, пока испортятся все пять приборов?