Auto MPG - (Test 2)

subject Machine Learning / Al casino 30 points

DESCRIPTION

Consider the automobile data set located at /data/training/autompg.csv

This data set consists of specification and performance details of cars

Here's a preview of the data under consideration:

mpg	cylinders	displacement	horsepower	weight	acceleration	year	name
18	8	307	130	3504	12	70	chevrolet chevelle malibu
15	8	350	165	3693	11.5	70	buick skylark 320
18	8	318	150	3436	11	70	plymouth satellite
16	8	304	150	3433	12	70	amc rebel sst
17	8	302	140	3449	10.5	70	ford torino
15	8	429	198	4341	10	70	ford galaxie 500
14	8	454	220	4354	9	70	chevrolet impala

Questions:

We need to analyse this data using Python programs as follows:

Load the data from /data/training/autompg.csv. Then perform the operations as described below:

1. Calculate the following statistics for **mpg** column from the data set:

Hint: Use pandas dataframe functions

- Mean
- Median
- Mode
- Standard Deviation

Print these values in a file named **output.csv** on separate rows

- 2. Calculate the correlation of weight with mpg using two methods Pearson and Kendall
 - First use df.corr and set method as kendall and print the value of resulting coefficient
 - Then calculate the value using pearson method using function pearsonr() and *print* the value of its coefficient

- Print these two values on two rows of output.csv below the existing rows written in
 Step 1
- 3. Read a sample of the above data set from a file. First, the name of the file containing the sample must be read from a file named **testcaseauto.txt**

Example: **autosample1** or **autosample2**. Then read the sample data from **autosample1.csv** or **autosample2.csv** respectively

- Compute the mean and standard deviation of mpg column of this sample.
- Calculate and *print* the difference between the means & standard deviations of the sample and population data as: < value for population > - < value for sample >
- **Print** these two values in a file named **outputn.csv** on two separate rows

Input Format:

- First, you have to read data from a file named autompg.csv present at the location /data/training/autompg.csv
- The second file to be read is a file named testcaseauto.txt which is present at the location /data/training/testcaseauto.txt
- testcaseauto.txt has the following lines:
 - The first line contains the number of test cases T
 - From the second line, every line contains the name of the file containing sample
 data to be used in the calculation of required statistics such as autosample1
 - Then read the sample data from /data/training/autosample1.csv

Output Format:

- You have to create a file named output.csv at the location /code/output/output.csv
- This file should contain the following values on 6 rows
 - Mean value rounded to 2 decimal places such as 45.67
 - Median value converted to int such as 35
 - Mode value in the form of a list such as [12.1]
 - Standard Deviation value rounded to 2 decimal places such as 5.43
 - Correlation coefficient using Kendall value rounded to 2 decimal places such as 0.23

- Correlation Coefficient using Pearson value rounded to 2 decimal
 places such as 0.45
- In Step 3, for each test case T, create an output file, output1.csv, output2.csv, ...,
 outputn.csv where n represents the test case number
- outputn.csv should be present at the location /code/output/outputn.csv
- This file should consist of the values for difference in Means and Standard
 Deviations as described, on two separate rows
- Both values need to be rounded to 2 decimal places and then printed

Sample Test Cases:

testcaseauto.txt contains the following data:

2 autosample1 autosample2

Sample Output

Example: output.csv will have data looking like this:

4	Α
1	12.34
2	35
3	[25.4]
4	5.67
5	-0.23
6	0.45
7	
8	

Example: output1.csv will have data looking like this:

A	Α
1	5.43
2	2.05
3	
4	
5	

DATASETS

• Training dataset