

Internet das Coisas Aplicada a Agropecuária de Precisão

Prática da Semana 2 Conceitos Fundamentais de Eletrônica

Introdução

- Para realizar esta atividade prática utilizaremos o simulador Tinkercad (<u>www.tinkercad.com</u>)
- Objetivos:
 - exercitar conceitos de eletrônica importantes no desenvolvimento de aplicações IoT;
 - praticar o uso de instrumentos como multímetros, fontes de alimentação e osciloscópios.

Atividade 1 - Divisor de tensão

- O Arduino tem por padrão o nível de tensão de saída de suas portas em 5 V. No entanto, alguns módulos utilizados juntamente com o Arduino aceitam no máximo o nível de tensão de 3.3 V.
- Objetivo:
 - Construir no simulador um divisor de tensão que solucionaria este problema.

Atividade 1 - Divisor de tensão - Passo 1

- Monte o circuito abaixo na atividade no TinkerCAD.
- Por padrão os resistores têm o valor de 1K, mas podem ser modificados ao selecioná-los.
- Observe que como utilizamos resistores iguais a tensão se dividiu pela metade e temos 2.5 V no multímetro.

Atividade 1 - Divisor de tensão - Passo 2

- Calcule o valor dos resistores para que o divisor de tensão nos entregue 3.3 V no multímetro.
- DICA: Escolha o valor para um deles e calcule o valor do outro

Atividade 1 - Divisor de tensão - Passo 3

- Nem todos os valores de resistores estão disponíveis no mercado. Certamente você encontrará valores de resistores que não são comerciais.
- Considerando a Tabela de resistores comerciais ao lado recalcule o valor dos resistores do divisor de tensão.
- DICA: Não é necessário obter o valor de tensão exato de 3.3 V, mas tente chegar o mais próximo possível.
- OBS: em projetos reais normalmente utilizamos reguladores de tensão, ao invés de divisores de tensão, para obter tensões diferentes das já disponíveis no circuito.

10	12	15	18	22	27
33	39	47	56	68	82

Os valores comerciais de resistores são potências de 10 dos valores observados na Tabela

Atividade 2 - Cálculo de Resistência

- Calcule o valor de um resistor para limitar a corrente de um LED em 10 mA. A tensão no LED corresponde a 2 V e o circuito é alimentado por um Vcc de 5V.
- Utilize um valor comercial para o resistor.
- DICAS:
 - um cálculo semelhante foi realizado na aula teórica.
 - aproveite também para observar a polarização do LED

Com a montagem da imagem acima no TinkerCAD será possível observar no display da fonte de alimentação o valor da corrente fluindo pelo circuito.

Atividade 3 - Pull-up e Pull-down

- Construa um circuito de pull-up e pull-down no simulador como foi apresentado na aula teórica.
- Em seguida, utilize o osciloscópio da ferramenta de simulação para validar o circuito desenvolvido.
- OBS: Os dois circuitos deverão ser implementados no mesmo projeto do TinkerCAD

Atividade 3 - Pull-up e Pull-down - Passo 1

- Construa o circuito de pull-up utilizando os componentes ilustrados na Figura 1 e o circuito da Figura 2.
- Inicie a simulação e observe se o circuito está funcionando como previsto no osciloscópio.
- DICA: observa na Figura 3 o esquema de interconexão do botão (push-button).

Figura 1 - Componentes

Figura 3 - Operação do push button

Figura 2 - Circuito pull-up

Atividade 3 - Pull-up e Pull-down - Passo 2

- Construa o circuito de pull-down utilizando os componentes ilustrados na Figura 1 e o circuito da Figura 2.
- Inicie a simulação e observe se o circuito está funcionando como previsto no osciloscópio.

Figura 1 - Componentes

Figura 2 - Circuito pull-down

