In Silico Screening and Generating for TrmD Inhibitors

Authors:

Zalewski Daniel¹, Dubrouskaya Katsiaryna¹, Jakubicz Szymon¹, Pietrzak Przemysław¹

Under the supervision of: Sułkowska Joanna Ida², Sikora Maciej²

¹ Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, 02-097 Warsaw, Poland

² Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland

Introduction

- The global rise of **bacterial antimicrobial resistance** (AMR) poses a critical threat to public health.
- To address that researchers are exploring novel targets like **TrmD**, tRNA methyltransferase enzyme that is responsible for methylating guanine at position 37 to form 1-methylguanosine (m1G37) in tRNAs containing a G36G37 motif, using **S-adenosyl-L-methionine (SAM)** as a methyl donor (1).

Why Target TrmD?

- I. Highly conserved across bacterial pathogens.
- II. Essential for bacterial survival, but absent in humans.
- III. Distinct from Trm5, its eukaryotic counterpart, despite catalyzing the same reaction.

Results

Structural formulas of the top 10 molecules from ADMET analysis. The indicated molecules exhibit the best distribution, absorption and toxicity properties.

Among them, **molecule C** was selected for further analysis.

Conclusion

- The search for new inhibitors and a potential drug for drug-resistant bacterial strains is ongoing.
- The newly generated molecule C demonstrates enhanced stability in binding to the active site of TrmD(*).
- Our approach utilized DiffDock and STONED as representatives of innovative ML applications in drug design.
- Controlled generation of new molecules using STONED enables the analysis of many previously untested compounds to identify the best bindings to TrmD.
- The molecules proposed by our team demonstrate favorable
 ADMET properties and progress in creating new bonds with the molecular target.

Contact:

danil.zalewski@gmail.com k.dubrouskay@student.uw.edu.pl sj429144@students.mimuw.edu.pl p.pietrzak16@student.mimuw.edu.pl

References

(1)Anders S Byström and Glenn R Björk. The structural gene (trmd) for the trna (m1g) methyl-transferase is part of a four polypeptide operon in escherichia coli k-12. Molecular and General Genetics MGG, 188(3):447–454, 1982.

(2) Christian, T., Sakaguchi, R., Perlinska, A. *et al.* Methyl transfer by substrate signaling from a knotted protein fold. *Nat Struct Mol Biol* 23, 941–948 (2016). https://doi.org/10.1038/nsmb.3282

(3) C. A. Lipinski, F. Lombardo, B. W. Dominy, and P. J. Feeney. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 23:3–25, 1997

(4) AkshatKumar Nigam, Robert Pollice, Mario Krenn, Gabriel dos Passos Gomes, and Alán Aspuru- Guzik. Beyond generative models: superfast traversal, optimization, novelty, exploration and discovery (stoned) algorithm for molecules using selfies. Chem. Sci., 12:7079–7090, 2021. doi:10.1039/D1SC00231G.

(5) Gabriele Corso, Hannes Stärk, Bowen Jing, Regina Barzilay, and Tommi Jaakkola. Diffdock: Diffusion steps, twists, and turns for molecular docking, 2023. URL: https://arxiv.org/abs/2210.01776, arXiv:2210.01776.

(6) Guan, H Yang, Y Cai, L Sun, P Di, W Li, G Liu, and Y Tang. Admet-score - a comprehensive scoring function for evaluation of chemical drug-likeness. MedChemComm, 10(1):148–157, 2018. doi:10.1039/c8md00472b.