

Flexon: A Flexible Digital Neuron for Efficient Spiking Neural Network Simulations

Dayeol Lee[†], Gwangmu Lee^{*}, Dongup Kwon^{*}, Sunghwa Lee^{*}, Youngsok Kim^{*}, and Jangwoo Kim^{*}

*Dept. of Electrical and Computer Engineering, Seoul National University

[†]Dept. of Electrical Engineering and Computer Sciences, University of California, Berkeley

Degeneration

Parkinson's Disease, CJD, Dementia

Recognition

Object detection, Classification

Consciousness

Morality, Social Value

Neuroscience

The Study of **Neurons** and **Brains**

Emotion

Sympathy, Happiness, Apathy

// DNN did this

Degeneration

Parkinson's Disease, CJD, Dementia Object detection, Classification

Consciousness

Morality, Social Value

Neuroscience

Emotion

Sympathy, Happiness, Apathy

rne Study of Neurons and Brains

Unexplored yet

Where Does Time Go?

10 Representative Benchmarks on CPU/GPU

CPU: Intel Xeon E5-2630 v4 CPU (12-core, 2.2 GHz) / GPU: NVIDIA Titan X (Pascal) GPU

~50% of overheads coming from

Neuron Computation

Biological Neuron

Biological Neuron

Biological Neuron

Various Neuron Behaviors

Tons of variants exist, depending on their feature set.

We need to support various features for accurate brain simulations.

Solutions and Limitations

Software **Simulation**

Flexibility

Accuracy

High Performance

Low Energy

Design Goals & Key Ideas

Neuron Feature #1: Input Spike Accumulation

Current-based

Conductance-based (Exponential-shaped)

Conductance-based (Alpha function-shaped) **16**/32

Neuron Feature #1: Input Spike Accumulation

Current-based

Conductance-based (Exponential-shaped)

Conductance-based (Alpha function-shaped) **17**/32

Neuron Feature #2: Spike Initiation

Quadratic

Exponential

Neuron Feature #3: Spike-triggered Current

Adaptation

Sub-threshold Oscillation

Neuron Feature #4: Refractory Period

Absolute

Relative

Neuron Feature: Flexible Feature Support

Relative

Evaluation (12x Feature-driven Design)

8 CPU + 2 GPU Representative Benchmarks

Flexon: TSMC 45nm, Synopsys Design Compiler (neuron), CACTI 6.5 (SRAM)

(Normalized to the baseline)

Evaluation (12x Feature-driven Design)

8 CPU + 2 GPU Representative Benchmarks

Flexon: TSMC 45nm, Synopsys Design Compiler (neuron), CACTI 6.5 (SRAM)

Energy Efficiency

(Normalized to the baseline)

Intrinsic Space-inefficiency

Constructing Spatially-folded Flexon

Spatially-folded design → reduce area

- Remove redundant MAC operators

Constructing Spatially-folded Flexon

Spatially-folded design → reduce area

- Remove redundant MAC operators

Modifications from the baseline

- 2-stage pipeline, multi-cycle implementation

Constructing Spatially-folded Flexon

Spatially-folded design → reduce area

- Remove redundant MAC operators

What we should change

- 2-stage pipeline, multi-cycle implementation

"Spatially-folded" Flexon

supports various major neuron models

6x area saving

Evaluation (<u>72x</u> Spatially-folded Design)

8 CPU + 2 GPU Representative Benchmarks

Flexon: TSMC 45nm, Synopsys Design Compiler (neuron), CACTI 6.5 (SRAM)

Evaluation (<u>72x</u> Spatially-folded Design)

8 CPU + 2 GPU Representative Benchmarks

Flexon: TSMC 45nm, Synopsys Design Compiler (neuron), CACTI 6.5 (SRAM)

Energy Efficiency

(Normalized to the baseline)

Baseline Flexon vs. Spatially-folded Flexon

Baseline "Feature-driven" Flexon

- Fast: 87.4x over CPUs, 8.19x over GPUs
- Energy-efficient: 6,186x over CPUs, 422x over GPUs

"Spatially-folded" Flexon

- Fast: 122x over CPUs, 9.83x over GPUs
- Energy-efficient: 5,413x over CPUs, 135x over GPUs

Conclusion

- Flexon is a flexible feature-driven digital neuron design, capable of realizing various major neuron models.
 - Flexible & power-efficient (6,186x over CPU)

- Spatially-folded Flexon makes features share units, reducing 6x circuit area.
 - Flexible & fast when integrated (122x over CPU)

Flexon

A Flexible Digital Neuron for Efficient Spiking Neural Network Simulations

Thank you for listening