

5.0 Designing Dimension Tables

Eugene Rex L. Jalao, Ph.D.

Associate Professor

Department Industrial Engineering and Operations Research
University of the Philippines Diliman

Module 2 of the Business Intelligence and Analytics Track of UP NEC and the UP Center of Business Intelligence

Outline for This Training

- 1. Introduction to Data Warehousing
- 2. DW Lifecycle and Project Management
 - Case Study on DW PM
- 3. Dimensional Modeling
- 4. Designing Fact Tables
- 5. Designing Dimension Tables
 - Case Study on Dimension Modeling
- 6. Extraction Transformation and Loading
 - Case Study on ETL Planning
- 7. Transformation and Loading Methodologies
 - Case Study on ETL

Outline for this Session

- Introduction to Dimension Tables
- Dimension Table Contents
- Dimension Table Types
- Generating Dimension Models
- Case Example
- Case Study

Dimension Tables

- A dimensional model divides the world into measurements and context.
- Context intuitively divided into clumps called dimensions.
- Dimensions describe the "who, what, where, when, why, and how" of the facts.
- They can also identified as the "by" words in a business question that asks for a report.
 - Example: "I'd like a report that lists sales by store by product by quarter.

Sample Dimension Model

One row per product per day per store

Dimension Tables

- Contain the parameters by which the fact table measures are analyzed
 - amount sold is analyzed by day, month, quarter, or year
 - amount sold on sunny days vs. rainy days
 - inventory quantity analyzed by warehouse by product
 - profit analyzed by product, category, department, store, district, or region

Dimension Table Traits

- Provide the context to the fact table measures they describe
- Contain descriptors of the business (nouns)
- Utilize business terminology
- Many large columns
- Contain textual and discrete data
- Are usually smaller than fact tables

Dimension Table Traits

- Have a single column surrogate primary key (called the warehouse dimension key)
- Are joined to a fact table through a foreign key reference to their primary key
- Can contain one or more hierarchies
- The hierarchies are de-normalized into the dimension tables

Generic Dimension and Fact Tables

Dimension Tables

Persons:

Customer Employee Supplier Competitor Applicant Alliance

Places:

Facility/Building Demographic Area Location

Things:

Product/Service Part/Component Material/Supply Physical Asset/ Equipment

Concepts:

Organizational Unit

Job

G/L Account

Financial Statement

Tax Rate Table

Policy/Procedure

Law/Regulation

Contract

Strategy

Course

Campaign/Promotion

Audit

Project

Fact Tables

Events:

Customer Order

Shipping Order

Customer Invoice

Requisition

Purchase Order

Receipt

Supplier Invoice

Disbursement

Incident

Work Order

Test/Inspection

Outline for this Session

- Introduction to Dimension Tables
- Dimension Table Contents
- Dimension Table Types
- Generating Dimension Models
- Case Example
- Case Study

The Anatomy of a Dimension

- Which attribute is the primary key?
- Which is the natural key?
- Which are the detail attributes?
- Which are the analytical attributes?
- What hierarchies do you see?

Rental Product Box Office Rating

Rental Product Key

Rental Product ID

Rental Product Age Classification

Rental Product Box Office Rating

Rental Product Genre

Rental Product Category

Rental Product Type

Rental Product Title

Rental Product Dimension Anatomy

- Primary key
 - Rental Product Key
- Natural key
 - Rental Product ID
- Detail attributes
 - Rental Product ID
 - Rental Product Title
- Hierarchies
 - Product < Category < Type</p>
 - Product < Genre</p>

- Analytical attributes
 - Rental Product AgeClassification
 - Rental Product BoxOffice Rating

Rental Product Box Office Rating

Rental Product Key

Rental Product ID

Rental Product Age Classification

Rental Product Box Office Rating

Rental Product Genre

Rental Product Category

Rental Product Type

Rental Product Title

Rental Product Dimension

Rental Product Dimension

tental Product Dimension Table					
Column Name	Description	Sample Data			
ental product key	data warehouse assigned surrogate key identifying an individual title	1', '2'			
ental product id	operational system identifier for an individual title	A2345FGD'			
ental product title	film title	The Gods Must be Crazy'			
ental product age classification	a classification as to how long the title has been available	New Release', Recent Release', etc.			
ental product box office rating	a classification as to how well the title did in movie theaters	Super Hit', 'Hit', Above Avg', etc.			
ental product category key	data warehouse assigned surrogate key for product categories	1', '2'			
ental product category code	product category code assigned by operational system	VHS', 'DVD', 'PS', 'NI'			
ental product category desc	product category description	Video Tape', DVD Disk', 'Play Station', 'Nintendo'			
ental product type key	data warehouse assigned surrogate key for product types	1', '2'			
ental product type code	product type code from operational system	MV', 'GM'			
ental product type desc	product type description	Movie', Game'			
ental product genre key	data warehouse assigned surrogate key for product genres	1', '2'			
ental product genre code	product genre code	CM', 'DR', 'AD'			
ental product genre desc	product genre description	Comedy', 'Drama', 'Adventure Game'			

Dimension Object Definition

Rental Product Dimension Object		
Level	Identified By	
product	rental product key	
category	rental product category key	
type	rental product type key	
genre	rental product genre key	
Hierarchy	Relationships	
product - category - type	product child of category child of type	
product - genre	product child of genre	
Level	Attributes	
product	rental product id	
	rental product title	
	rental product age classification	
	rental product box office rating	
category	rental product category code	
	rental product category desc	
type	rental product type code	
	rental product type desc	
genre	rental product genre code	
	rental product genre desc	

What is a surrogate key?

- A surrogate key is a system assigned primary key.
- When the first row is added to a dimension, the system automatically assigns a key of 1 to the row.
- As each additional row is added, the system automatically increments the key by 1.
- It's meaningless, but essential as a foreign key in fact tables
- Important: Retain source system primary key as unique identifier to use as lookup argument during ETL
 process and for report headers

Warehouse Dimension Keys

- Single column surrogate keys
 - Provide key control within the data warehouse
 - Substantially improve performance
 - Enable one method of tracking attribute history
 - Facilitate exception references from a fact table
- Implemented in every dimension, even date and time dimensions

Example

Legacy Data

cust id	cust name	cust address	cust city	cust state	cust zip
A173629	IBM	17 Mainframe Lane	White Plains	NY	20345
A548290	Oracle	12 Client Server Ave	Redwood Shores	CA	95467
A983240	Microsoft	54 MsDos Street	Redmond	WA	20645

Within Data Warehouse, Data Marts, Analytical Application Stores

cust key	cust id	cust name	cust address	cust city	cust state	cust zip
1	A173629	IBM	17 Mainframe Lane	White Plains	NY	20345
2	A548290	Oracle	12 Client Server Ave	Redwood Shores	CA	95467
3	A983240	Microsoft	54 MsDos Street	Redmond	WA	20645

Invalid Rows

	cust key	cust id	cust name	cust address	cust city	cust state	cust zip
`	0	INVALID	INVALID	INVALID	INVALID	INVALID	INVALID
3	1	A173629	IBM	17 Mainframe Lane	White Plains	NY	20345
1)	2	A548290	Oracle	12 Client Server Ave	Redwood Shores	CA	95467
136	3	A983240	Microsoft	54 MsDos Street	Redmond	WA	20645

Benefits of Surrogate Keys

- Provide Key Control
 - Maintain dimension key control from within the Data Warehouse environment
 - Isolation from the operational system
 - Strategic vs. Operational perspective
- Substantially Improve Performance using a single column primary key
- These keys are the foreign key references which are carried in the fact tables
- Substantially reducing fact table sizes

Warehouse Key Usage – Data Warehouse Size Effect

nbr_of_days	1825	Detail Level		Detail Level	
nbr_of_stores	500	Natural Keys		Warehouse Keys	
nbr_of_prod_per_day	10005	Store	4	Store Dept	2
		Dept	2		
		Date	4	Date	2
		Time	4	Time	2
		Transaction	4	Transaction	4
		Check Out Stand	2	Check Out Stand	2
		Clerk	2	Clerk	2
		Product	12	Product	4
		Qty	2	Qty	2
		Extended Price	4	Extended Price	4
		Extended Cost	4	Extended Cost	4
		total detail bytes	44		28
		401,500,000,000		255,500,000,000	
		Total Space		Total Space	
		10,000	item	s per store per day	

Track Attribute History

- Enable one method of tracking dimension attribute changes
 - Type 2 Slowly Changing Dimension
 - Not to be used for all dimension t

Exception Condition Dimension Table Rows

- Indicate that the row in the fact table referenced an exception condition
- 0 the fact table row had an invalid legacy id for this dimension (Invalid)
- -1 The fact table row should reference a value for this dimension, but the value is unknown (Missing Mandatory)
- -2 The fact table row is not applicable for this dimension (Missing Optional)

Examples

- Invalid reference from fact table
 - The sale of a product whose product ID is not in the dimension table
- Unknown reference from fact table
 - The sale of a product whose product ID is missing
- The fact table row is not applicable to this dimension
 - The sale of a product that is not on promotion

Default Dimension Rows

product_key	0
product_id	INV
product_desc	Invalid
product_line_key	-1
product_line_code	UNK
product_line_desc	Unknown
last_product_line_code	UNK
last_product_line_desc	Unknown
product_group_key	-1
product_group_code	UNK
product_group_desc	Unknown
last_product_group_code	UNK
last_product_group_desc	Unknown
manufacturer_key	-1
manufacturer_code	UNK
manufacturer_desc	Unknown
design_class_key	1
design_class_code	UNK

product_key	-1
product_id	UNK
product_desc	Unknown
product_line_key	-1
product_line_code	UNK
product_line_desc	Unknown
last_product_line_code	UNK
last_product_line_desc	Unknown
product_group_key	-1
product_group_code	UNK
product_group_desc	Unknown
last_product_group_code	UNK
last_product_group_desc	Unknown
manufacturer_key	-1
manufacturer_code	UNK
manufacturer_desc	Unknown
design_class_key	-1
design_class_code	UNK

product_key	-2
product_id	NA
product_desc	Not Appicable
product_line_key	-2
product_line_code	NA
product_line_desc	Not Appicable
last_product_line_code	NA
last_product_line_desc	Not Appicable
product_group_key	2
product_group_code	NA
product_group_desc	Not Appicable
last_product_group_code	NA
last_product_group_desc	Not Appicable
manufacturer_key	-2
manufacturer_code	NA
manufacturer_desc	Not Appicable
design_class_key	-2
design_class_code	NA

Outline for this Session

- Introduction to Dimension Tables
- Dimension Table Contents
- Dimension Table Types
- Generating Dimension Models
- Case Example
- Case Study

Dimension Table Classifications and Examples

- Date based
 - Date Dim
 - Month Dim
- Time based
 - Time Dim
- Business Entities
 - Store Dim
 - Customer Dim
- Analytical Profiles
 - Customer
 Demographics Dimalao, UP NEC, eljalao@up.edu.ph

- Correlated Entities
 - Finance Profile Dim
- Versions of Business
 Entities
 - Product Version Dim
- Flags and Indicators
 - Transaction Profile Dim
- Degenerate Dimensions

Date Based Dimensions

- Sale Date, Sales Calendar Month, Sales Calendar Quarter, Sales Calendar Year, Sales Fiscal Month, Sales Fiscal Quarter, Sales Fiscal Year
- Start Date
- End Date
- Arrival Date
- Departure Date
- Order Date
- Ship Date

The Date Dimension Family

- Implement the family and name each dimension for its granularity
 - Date Dim
 - Week Dim
 - Month Dim
 - Quarter Dim
 - Year Dim
- Use at least one character column for date
- Put in all attributes that simplify analysis
 - Enable all date functions (add, subtract, etc)

Sample Date Dimension Table

Fiscal Period Columns ...

,day_nbr_in_fiscal_quarter
,day_nbr_in_fiscal_year
,week_nbr_in_fiscal_year
,month_nbr_in_fiscal_year
,fiscal_quarter_yyyyq
,fiscal_quarter_name
,fiscal_quarter_abrv
,fiscal_quarter_nbr_in_year
,fiscal_quarter_nbr_overall

Season / Holiday Columns ...

holiday ind holiday name business season name calendar season name

Date Dim day date key ,day date ,day date yyyymmdd day of week name ,day_of_week_abrv day nbr in week day nbr in month, day nbr in quarter, ,day nbr in year day nbr overall, ,weekday ind ,weekend ind ,week vyvyww ,week nbr in year ,week nbr overall ,month yyyymm ,month name ,month abrv month nbr in year month nbr overall, ,quarter yyyyq ,quarter name ,quarter abrv quarter nbr in year quarter nbr overall, ,year_yyyy

Enterprise-Wide Events

- Special Event Description
 - World Cup final game
 - Significant stock market fall
 - Significant stock market rise
 - Interest rate raise
 - Interest raise drop
 - Gasoline price increase
 - Gasoline price decrease

Enterprise-Wide Columns ...

worldcup final game ind stock market fall ind stock market rise ind stock market direction

Support Reporting Periods

- MTD IND (Month to Date Indicator)
- YTD IND (Year to Date Indicator)
- Current 3MTH IND
- Current 12MTH IND

Reporting Period Columns ...

mtd ind ytd ind current 3mth ind current 12mth ind

Simpler, less error-prone filters

- SELECT sum(sales) FROM fact <join stataments> WHERE date BETWEEN
 2/1/2008 AND 4/31/2008
- VS
- SELECT sum(sales) FROM fact <join
 stataments> WHERE current_3mth_ind
 = 'YES'

Easy to extend 'Current 3Mths' or 'Not Current
 3Mths'

Date Dimension Physical Implementation

- Custom views for the business dimension roles it plays
 - Generic (Date Dim)
 - Date
 - Month
 - Specific Business Dimension (Sales Date Dim)
 - Sales Date
 - Sales Month
- Implemented using Role-Playing Dimensions

Time Based Dimension

One row for each minute in a day

Sales Time of Day Dim

sales time of day key sales time of day hhmm sales time band desc

The Time Dimension

 Objective: To determine the staffing requirements for tellers in a bank at each point in a day

 Should the Day Dimension go to an hour or second granularity?

Day Dimension Sizes for Different Granularities

- Date_Dim = 1460 (4 Years)
- Hour_Dim = 24
- Minute_Dim = 60
- Second_Dim = 60

- Day_Hour_DIM = 35,040
- Day_Min_DIM = 2,102,400
- Day_Second_DIM = 126,144,000

Sample Time Dimension

Sample Time Period Data

Time Period Dim (1440)			
time period key	1	2	3
hhmm	1801	1802	1803
work shift desc	Evening	Evening	Evening
retail time period desc	Early Evening	Early Evening	ly Evening

Business Entity Dimension

• One row for each store.

Store Dim

store key

store id

store name

store manager

store classification

total sq ft

last year performance rating

last week performance rating

opening date

remodeled date

Detail and Analytical Profile Dimensions

 One row for each instance of the business entity

Customer Detail Dim

customer key

customer billing id customer service id customer full name customer full street address. customer salutation customer salutation type customer first and middle names customer first name customer middle name customer last name customer name origin customer home telephone country code customer home telephone area code customer home telephone number customer fax country code customer fax area code customer fax number customer week telephone country code customer week telephone area code customer week telephone number

customer email address

customer email domain

customer secondary postal code customer current geo profile key customer current dmg profile key customer current scoring profile key

Customer Demographics Profile

customer dmg key
customer gender
customer age range
customer ethnicity
customer household type

Customer Geographic Profile

customer geo key
customer country
customer region
customer city
customer county
customer state
customer postal code type
customer primary postal code

Customer Scoring Profile

customer scoring profile key customer duration range total purchase amount range last 3 month purchase amount range customer segment

E.

Version Dimension

- Keeps track of all history of changes in a business entity
- One row for each change date for each product.

Product Version Dimension product key product id product desc product line key product line code product line desc last product line code last product line desc product group key product group code product group desc last product group code last product group desc manufacturer key manufacturer code manufacturer desc design class key design class code design class desc effective date current row ind

Degenerate Dimension

- Transaction id is a degenerate dimension
- All transaction attributes have already been attached to the fact table

SalesTransaction Fact

Sales date key

Sales time key

Sales store key

Sales clerk key

Sales transaction Id

Sales tran item qty

Sales tran total dollar amt

Sales tran total cost amt

Sales tran total profit amt

Large Space Needed!

Degenerate Dimension: Alternative Model

- Make a dimension for transaction
 - Protects against reuse of transaction ids
 - Reduces size of critical analytical space
 - Retain smaller key in fact table which is seldom used
 - Will serve as a dimension to a transaction level fact table if built
 - It will only be used if there is a need to bring back individual detail
 - Good container for text comment field

Implementation of a Degenerate Dim

Can Also Handle Multiple Connections

What About?

- Weather
- Promotions
- Ads
- Displays

Condition Dimensions

- Conditions that may effect fact table activity dependent on date and another dimension
- Cannot be handled in the date dimension
- Examples
 - Local events
 - Promotions
 - Weather Conditions

Local Weather Dimension

- Condition whose value is determined by day and store
- Often need system to capture
- Added value for conditions specific to your business

Consider Using Indicators

- Make values into column names
 - Very helpful for usability
- Use character data type
 - No ones and zeros
- Need standardized method of handling
 - Several choices

Proposed Method

Condition Dim			
condition key	1	2	3
desc	Sunny	Cloudy	Rainy
sunny ind	Υ	N	N
cloudy ind	N	Υ	N
rainy ind	N	N	Υ

Only practical if there are a limited/finite number of values

Usage

```
SELECT Day, Store, Weather_Desc,
SUM(Sales)
```

FROM Weather

Day	Store	Weather Desc	Sum Sales
1-Feb	NorthWest	'SUNNY'	\$2,000
1-Feb	NorthEast	'CLOUDY'	\$3,000

Avoid

Condition Dim			
condition key	1	2	3
sunny ind	1	0	0
cloudy ind	0	1	0
rainy ind	0	0	1

The Promotion Dimension

- Another condition or causal dimension
- Hopefully promotions affect product sales

Promotion		
promotion key	1	2
promotion	A34521	B65432
promotion desc	National Newspaper Ad	10% Off Coupon
media type	Newspaper	Coupon
start date	10/1/2000	11/1/2000
end date	10/5/2000	11/31/2000

The Problem

 Products may have a combination of promotions in effect at the same time

Multi-valued Dimensions

- Dimensions where the dimension table takes on more than one value for an individual fact table row
- One solution is to convert the multiple rows into one row
- Usually Called: Mix Dimension table
- One row for each different mix of values encountered in an individual fact table row

The Promotion Mix Dimension

1	2
Newspaper Ad, End Unit Display, Mfr Coupon	Newspaper Ad, End Unit and Front Store Display
Υ	Υ
Full Page Newspaper Ad	Quarter Page Newspaper Ad
N	N
Not Applicable	Not Applicable
Υ	N
Mfr Coupon	Not Applicable
Y	Υ
End Unit Display	End Unit and Front Store Display
	Full Page Newspaper Ad N Not Applicable Y Mfr Coupon

New Schema

Provides Valuable Analyses

- Average daily sales or profit when product
 - Is on display plus ad plus coupon
 - Is on display plus coupon
 - Is on display plus ad
 - Is on display only
 - Is on ad plus coupon
 - Is on ad only
 - Coupon only
 - Not on promotion

Role-Playing Dimensions

- Entity taking on different roles or uses for the same entity
- Examples
 - Order date
 - Ship date
 - Bill to customer
 - Ship to customer
 - Flight origination airport
 - Flight destination airport

Wrong Way to Model

Drag and Drop Consequences

- Report Desired
 - Bill to customer id
 - Shipped to customer id
 - Order date
 - Shipped date
 - Quantity

- Drag and drop result
 - Customer id
 - Customer id
 - Day date
 - Day date

 The column headings are the same and indistinguishable from each other as to which is which.

Dimensional Implementation Logical View

Dimensional Physical Implementation

- Physical base table
 - Date Dim
- Views*
 - Order Date Dim
 - Ship Date Dim
- View
 - is the result set of a stored query on the data, which the database users can query just as they would in a persistent database collection object.
 - Is not part of the physical schema

SQL Code Using Views for Role-Playing Dimensions

Date dimension

- CREATE TABLE DATE (date_key, day_of_week, month, ...)

Order Date view

- CREATE VIEW ORDER_DATE (order_date_key, order_day_of_week, order_month, ...) AS SELECT date key, day of week, month, ... FROM DATE

Ship Date view

- CREATE VIEW SHIP_DATE (ship_date_key, ship_day_of_week, ship_month, ...) AS SELECT date_key, day_of_week, month, ... FROM DATE

Logical Dimension Table

Dim
date_key
date_desc
date_yyyymmdd
day_of_week_name
day_of_week_abrv
day_nbr_in_week
day_nbr_in_month
day_nbr_in_quarter
day_nbr_in_year
day_nbr_overall
weekday_ind
weekend_ind
week_yyyyww
week_nbr_in_year
week_nbr_overall
month_yyyymm
month_name
month_abrv
month_nbr_in_year
month_nbr_overall
quarter_yyyyq
quarter_name
quarter_abrv
quarter_nbr_in_year
quarter_nbr_overall
WOOF

create view ORDER_DATE_DIM
(order_date_key
order_date
order_date_yyyymmdd
order_day_of_week_name
order_day_of_week_abrv
order_day_nbr_in_week
order_day_nbr_in_month
order_day_nbr_in_quarter
order_day_nbr_in_year
order_day_nbr_overall
order_weekday_ind
order_weekend_ind
order_week_yyyyww
order_week_nbr_in_year
order_week_nbr_overall
order_month_yyyymm
order_month_name
order_month_abrv
order_month_nbr_in_year
order_month_nbr_overall
order_quarter_yyyyq
order_quarter_name
order_quarter_abrv
order_quarter_nbr_in_year
order_quarter_nbr_overall
order year)

create view SHIP_DATE_DIM
(ship_date_key
ship_date
ship_date_yyyymmdd
ship_day_of_week_name
ship_day_of_week_abrv
ship_day_nbr_in_week
ship_day_nbr_in_month
ship_day_nbr_in_quarter
ship_day_nbr_in_year
ship_day_nbr_overall
ship_weekday_ind
ship_weekend_ind
ship_week_yyyyww
ship_week_nbr_in_year
ship_week_nbr_overall
ship_month_yyyymm
ship_month_name
ship_month_abrv
ship_month_nbr_in_year
ship_month_nbr_overall
ship_quarter_yyyyq
ship_quarter_name
ship_quarter_abrv
ship_quarter_nbr_in_year
ship_quarter_nbr_overall
ship year)

Outline for this Session

- Introduction to Dimension Tables
- Dimension Table Contents
- Dimension Table Types
- Generating Dimension Models
- Case Example
- Case Study

Dimensional Normal Form

- A creative and practical approach originated by Mike Schmitz to design Dimension Table Families
 - Fact tables are highly normalized for maintainability and flexibility
 - Dimensions have their hierarchies de-normalized into them for usability and performance
 - The schema is limited to two levels
 - A single first level or central highly normalized table called a fact table
 - Multiple second level tables called dimension tables linked to the first level table in primarily one to many relationships

Dimension Table Families

- Business dimensions should be modeled in 3NF reflecting the true hierarchical relationships embedded in them
- Each embedded dimension should be implemented as a separate dimension table with the upper level dimensions de-normalized into them
- Only one dimension table in a dimension family is attached to any one fact table

Example: 3NF ~ 169 Gb

Dimensional Normal Form Schema

Sales Date
sales date key
sales date attributes ...
sales month attributes ...
sales quarter attributes ...
year

Store Department
store dept key
store id store
store name
store size

store id store store name store size store mgr dept code dept name dept size dept mgr

Category Mgr category mgr key category mgr dist center name

Product
product key
product id
product name
product line desc
product category desc

Sales Item
transaction id
sales date key
store dept key
category mgr key
product key
qty
dollars

Dimensional Normal Form with Dimension Families

Sales year Sales Year Key Sales Year Sales Quarter
Sales Quarter Key
Sales Quarter Columns
Sales Year Key

Category

Category Key

Category Code

Category Desc

Category Manager

Category Manager Key

Category Manager ID

Category Manager

Store
Store Key
Store id
Store Name

Sales Month

Sales Month Key

Sales Year Key

Sales Month Columns

Sales Quarter Columns

Department
Dept Key
Dept Code
Dept Name

Store Manager

Store Size

Product Line
Product Line Key
Product Line Code
Product Line Desc

Sub Category
Sub Category Key
Sub Category Code
Sub Category Desc
Category Key
Category Code
Product Category Desc

Sales Date
sales date key
sales date attributes ...
sales month attributes ...
sales quarter attributes ...
year

Store Department
store dept key
store id store
store name
store size
store mgr
dept code
dept name
dept size
dept mgr

Category Mgr category mgr key category mgr dist center name

product key
product id
product name
product line desc
product category desc

Sales Item
transaction id
sales date key
store dept key
category mgr key
product key
qty

dollars

Space is not a Problem

- 3rd Normal Form
 - 169,363,742,293 bytes = $^{\sim}169$ GB
- 3nf De-Normalized for performance (into the fact table)
 - -227,760,000,000 bytes = 228 GB

Product Dimension Family Normalized Model

Dimensional Normal Form (DNF) Step 1

Product Dimension Family Denormalized Model

Dimensional Normal Form (DNF) Step 2

Product Category

prod category key
prod category code
prod category desc

Product Sub Category

prod sub category key
prod sub category code
prod sub category desc
prod category key
prod category code
prod category desc

Product Department

prod department key prod department code prod department desc

Product

prod key
prod id
prod desc
prod sub category key
prod sub category code
prod sub category desc
prod category key
prod category key
prod category code
prod category desc
prod department key
prod department code
prod department desc

Product Dimension Family Usage Product Dim Daily Summary Fact

Dimensional Normal Form (DNF) Step 3

Product Category

prod category key prod category code prod category desc

Product Department

prod department key prod department code prod department desc

Product Dim

prod key
prod id
prod desc
prod sub category key
prod sub category code
prod sub category desc
prod category key
prod category code
prod category code
prod category desc
prod department key
prod department code
prod department desc

Daily Summary Fact

date key
store key
product key
product qty
product dollars

Product Sub Category

prod sub category key prod sub category code prod sub category desc prod category key prod category code prod category desc

Product Category

prod category key prod category code prod category desc

Subcategory Summary Fact

date key store key prod sub category key prod sub category qty prod sub category dollars

What is Snowflaking?

- To use normalized tables in the dimensional model.
- Break dimension hierarchies into normalized tables connected by foreign key – primary key relationships

Sales Year		Sales Month		Sales Date
year key		month key		sales date key
year key		month key	\	date attributes
year desc		year key		month key

Why is this Bad?

- Joins
- Joins
- Joins
- Joins
- Every join costs something and one extra join may cause the database optimizer to choose a bad algorithm

Dimension Table Solution

Sales Date
sales date key
date attributes
month key
month
year key
year
year desc

Store Department
store dept key
store key
store name
store size
store mgr
dept key
dept nae
dept desc
dept size

dept mgr

Product
prod key
prod id
prod desc
prod sub category key
prod sub category code
prod sub category desc
prod category key
prod category code

prodicategory desc

sales date key
store dept key
product key
qty
total sales amount

DNF Complete Solution

Sales Month month key month year key vear year desc Store store kev store name store size store mgr Department dept key dept nae dept desc dept size dept mgr Product Sub Category prod sub category key prod sub category code prod sub category desc prod category key

prod category code

prod category desc

Sales Date sales date key date attributes month key month vear kev vear year desc Store Department store dept key store key store name store size store mgr dept key dept nae dept desc dept size dept mgr Product prod key prod id prod desc prod sub category key prod sub category code prod sub category desc prod category key

Daily Product Sales
sales date key
store dept key
product key
qty
total sales amount

prod category code prod category desc

Outline for this Session

- Introduction to Dimension Tables
- Dimension Table Contents
- Dimension Table Types
- Generating Dimension Models
- Case Example
- Case Study

Dimensional Model Exercise: Hotel Business Overview

- Maitutulog Mo Kaya Hotel (MMK Hotel)
- Composed of 500 hotels
- Three property types (luxury, economy, budget)
- Different room types
- Want to maximize utilization
- Want to maximize profit

Business Strategic Planning

- Determine the most profitable hotel type and room type mixes
- Can I just build more of the most profitable hotel types or can I just put in more of the most profitable room types
- Is there a saturation point (not enough luxury hotel customers or people wanting luxury suites available in the area) that would make utilization and profit go down
- What is the competition doing that will cause a change in my occupancy rates
- How do rates, discounts, promotions, campaigns, and advertising effect my profit

Daily Room Type Profitability Analysis

- What room types have the highest profitability and which have the lowest profitability across the chain, by property type?
- Which hotels have room type profitability different from the norm?
- How does weekend profitability compare with weekday?
- How does weekday profitability differ by day?

Hotel Property Management System Source Data 3NF

Challenge

 Build the LDMs for Daily Room Billing and Daily Utilization and Profitability

Outline for this Session

- Introduction to Dimension Tables
- Dimension Table Contents
- Dimension Table Types
- Generating Dimension Models
- Case Example
- Case Study

Case Study 2

Northwind Database

Outline for this Session

- Introduction to Dimension Tables
- Dimension Table Contents
- Dimension Table Types
- Generating Dimension Models
- Case Example
- Case Study

References

- Kimball, Ralph, Margy Ross, Warren
 Thornthwaite, Joy Mundy, and Bob Becker, The
 Data Warehouse Life Cycle Toolkit, Second Edition,
 Wiley, 2008, ISBN 978-0-470-14977-5
- Schmitz, Michael D. UCI Irvine Data Warehousing Notes (2014), High Performance Data Warehousing
- Simon, Alan. CIS 391 PPT Slides
- Jeltema ,Bernie, UCI Irvine Data Warehousing
 Notes (2014), Strategic Frameworks, Inc.