회로 망정리

4.1 중첩의 원리

4.4 T-π(또는 Y-△) 변환

4.2 테브난의 정리와 노턴의 정리 4.5 해석법의 선택

4.3 최대전력의 전달

연습문제

모든 저항회로망에 공통되는 어떤 일반적인 관계 · 정리들이 존재한다. 여기서 회로망(network)이란 좀 복잡한 회로를 뜻하지만 양자를 구별하지 않아도 된다. 이러한 정리들을 적절히 이용하면 때로는 회로해석이 간단하게 이루어진다. 사 실 앞장 3.1, 3.2절의 해석법은 가장 일반적이기는 하지만 경우에 따라서는 너무 장황하여 부적절할 때가 있다. 이 장에서 그러한 여러 가지 회로망정리를 기술 하며 앞으로 자주 인용할 것이다.

이 중에서 가장 중요한 것은 전원을 포함한 아무리 복잡한 저항회로라도 그 두 단자 외부에 대해서는 하나의 저항과 하나의 전압전원의 직렬로 대표할 수 있다는 실로 놀라운 단순화를 가능하게 하는 테브난의 정리일 것이다.

이 장의 마지막 절에서는 좀 복잡한 회로의 해석에서 절점해석법, 망로해석법 과 이 장에서 배울 여러 가지 회로망정리를 적용하는 다양한 방법들을 상호 비 교하는 흥미 있는 문제를 다룰 것이다.

4.1 중첩의 원리

그림 2.9의 회로에서 식 (2.23)에서 보는 바와 같이 $v_L = k_1 i_g + k_2 v_g$ (k_1, k_2) 는 정수)의 형식을 갖는다. 이것은 두 전원이 동시에 작용할 때의 v_L 은 $v_g = 0$ 일 때의 전압(제 1 항)과 $i_g = 0$ 일 때의 전압(제 2 항)의 합과 같음을 의미한다. v_L 뿐만 아니라 다른 응답도 개개의 전원이 개별적으로 작용할 때의 응답을 합한 것과 같다. 이것이 선형회로에서 일반적으로 성립되는 **중첩의 원리**(superposition principle)이다. 위에서 전원이 개별적으로 작용한다는 것은 그 이외의 전원을 죽이는 것, 즉 전압 전원을 단락, 전류전원은 개방함을 의미한다.

확인을 위하여 그림 4.1 (a)의 간단한 회로에서 2Ω 을 흐르는 전류는 i+10A이므로 좌측망로에 대한 KVL로부터 5=3i+2(i+10)이다.

$$\therefore i = -3A$$

이것은 중첩의 원리에 의하여 전압전원만에 의한 그림 (b)의 전류 i'와 전류 전원만에 의한 그림 (c)의 전류 i''와의 합과 같아야 할 것이다.

$$i' = \frac{5}{3+2} = 1 \,\text{A}, \quad i'' = -\frac{2}{3+2} \times 10 = -4 \,\text{A}$$

 $\therefore i' + i'' = -3 \,\text{A}$

즉, 처음에 구한 것과 같다.

전력은 전류나 전압의 제곱에 비례하므로 전력계산에 중첩의 원리를 적용할 수 없다. 이것은 흔히 범하는 과오이다. 가령 그림 4.1 (a)의 회로에서 저항 3Ω 에서 소비되는 전력을 구하는 데 있어서 각 전원이 개별적으로 작용할 때 3Ω 에서 소비되는 전력을 합하면 틀린 결과를 가져온다. 반드시 합성전류에 의한 소비전력을 계산해야 한다. 이것은 R에서 소비되는 총전력이 $Ri^2 = R(i'+i'')^2 \neq Ri''^2 + Ri''^2$ 임을 보아도 명백하다. 전원이 공급하는 전력에 대해서도 중첩의 원리는

그림 4.1 중첩의 원리의 예시

성립이 안된다[연습문제 4.2의 (d)].

4.2 테브난의 정리와 노턴의 정리

그림 4.2 (a)로부터 두 번의 전원변환을 거쳐서 그림 (c)를 얻었는데, 이 후자 에서 전원전압(6 V)은 원회로에서 단자 a-b를 개방했을 때의 단자전압이고, 전 원과 직렬로 된 저항 (1.2Ω) 은 원회로에서 전원을 0으로 하고 단자 a-b에서 본 저항과 같음을 알 수 있다. 이것은 다음의 테브난(Théverin)의 정리를 예시하는 것이다.

"전원을 포함한 저항회로는 그 단자 a-b 외측에 대해서는 등가적으로 하나의 전원전압 v_{Th} 에 하나의 저항 R_{Th} 의 직렬로 대치할 수 있다. 여기서 v_{Th} 는 원회 로에서 단자 a-b를 개방했을 때의 a-b간의 전압이고, R_{Th} 는 회로 내부의 전 원을 0으로 하고(전압원은 단락, 전류원은 개방) 단자 a-b에서 회로쪽을 본 저 항과 같다." [그림 4.3 (b)]

이 증명은 생략한다. 테브난의 등가회로에서 v_Th 를 테브난의 등가전압, R_Th 를 테브난의 등가저항이라 한다. 테브난의 등가회로에서 전원변환에 의하여 얻는 전

그림 4.2 등가전원의 대치와 테브난의 정리

그림 4.3 테브난의 등가회로와 노턴의 등가회로

류전원 i_N 와 $R_N(=R_{Th})$ 의 병렬회로를 **노턴**(Norton)**의 등가회로**라고 한다[그림 (c)]. 여기서 i_N 은

$$i_{N} = \frac{v_{Th}}{R_{Th}}$$
 , $v_{Th} = R_{N} i_{N}$ $(R_{N} = R_{Th})$ (4.1)

 i_{N} 은 원회로 또는 등가회로에서 a-b를 단락했을 때 이를 흐르는 전류와 같다.

즉,
$$R_{Th} = R_N = \frac{a - b \text{ 간의 개방전압}(v_{Th})}{a - b \text{ 간의 단락전류}} \tag{4.2}$$

- (1) 위의 두 정리는 회로해석에서 특히 특정된 단자간의 전압이나 이를 흐르는 전류를 구할 때 자주 쓰인다. 예컨대 그림 4.4 (a)의 사다리꼴회로에서 3Ω 의 양단전압만을 구하고 싶을 때 이 회로를 그림에서 점선으로 표시된 부분과 그 외의 두 부분으로 나누고, 단자 a-b 좌측을 테브난의 등가회로로 대치하고 $\left(v_{\mathit{Th}}=15\times\frac{8}{1+8},\;R_{\mathit{Th}}=6+1/18\right)$ 우측을 등가저항 2Ω 로 대치하면 그림 (b)와 같이 된다. 따라서 전압분배의 법칙에 의해서 $V_{ab}=\frac{120}{9}\mathrm{V}\times\frac{2}{(62/9)+2}=3\mathrm{V}$ 이 된다.
- (2) 테브난 또는 노턴의 등가회로를 이용할 때 주의할 것은 이것들이 고려하는 단자 외부에 대해서는 원회로와 등가이지만 원회로 내부의 전류, 전압, 전력 등을 구할 때에는 반드시 원회로에 돌아가서 생각해야 한다는 것이다. 이것 은 2.1절의 등가입력저항, 2.4절의 등가전원변환에서도 그러하였다. 예컨대 원회로 내부에서 소비되는 전력은 테브난 또는 노턴의 등가회로의 R_{Th}

그림 4.4 테브난의 정리의 응용

- (3) 명백히 2.4절의 전원변환은 테브난 또는 노턴의 등가회로의 특수한 경우이다.
- (4) 테브난의 등가저항을 내부저항 또는 출력저항이라 부르기도 한다.
- (5) 테브난의 정리는 회로망정리 중에서 가장 흔히 이용된다.
- [수치에] 전원을 포함한 어떤 저항회로의 두 단자 a-b간을 개방했을 때의 전압 $v_{ab}\!=\!10\mathrm{V}\,\mathrm{Olz}\ a-b$ 를 단락했을 때 전류 $i_{ab}\!=\!0.1\mathrm{A}\,\mathrm{였다면},$ 테브난의 등가 저항(출력저항)은 $10/0.1\!=\!100\,\Omega\,\mathrm{Olz}$ 로 a-b 사이에 $300\,\Omega$ 을 연결하면 $v_{ab}\!=\!10\mathrm{V}\!\times\!\frac{300}{100+300}\!=\!7.5\mathrm{V}\,\mathrm{Olc}.$

예제 4.1

그림 4.5 (a)의 회로에서 a-b 좌측을 테브난의 등가회로로 바꿈으로써 v_L 을 구하라.

그림 4.5 예제 4.1의 회로

풀 이

a-b를 개방했을 때의 전압 v_{ab} 는 중첩의 원리에 의하여 v_g 를 단락했을 때의 전압 $14\times(6\,/\!/3)=28\,\mathrm{V}$ 와 i_g 를 개방했을 때의 전압 $\frac{12}{3+6}\times 6=8\,\mathrm{V}$ 와의 합, 즉 $36\,\mathrm{V}$ 가 된다. 한편 a-b 좌측을 본 저항은 i_g 를 개방, v_g 를 단락했을 때의 저항 $(6\,/\!/3)=2\Omega$ 과 같다. 따라서 a-b 좌측에 대한 테브난의 등가회로는 그림 (b)의 점선 내부와 같다. 이로부터

$$v_L = 36 \,\mathrm{V} \times \frac{3}{2+4+3} = 12 \,\mathrm{V}$$

이 결과는 예제 2.3의 결과와 일치한다.

[수치에] 그림 4.5 (a)에서 a-b를 단락할 때 이를 흐르는 전류는 중첩의 원리에 의하여 v_g 를 단락했을 때의 전류 14A와 i_g 를 개방했을 때의 전류 12/3 = 4A와의 합 18A가 된다. 그리고 a-b의 개방전압은 위에서 구한 바와 같이 36V이므로 테브난의 등가저항은 $36/18=2\Omega$ 이 된다[식 (4.2) 참조]. 이것은 위의 풀이에서 다른 방법으로 구한 결과와 일치함을 볼 수 있다.

예제 4.2

그림 $4.6~(\mathrm{b})$ 의 회로에서 v_{cd} 을 구하라.

그림 4.6 예제 4.2의 회로

풀 이

a-d 좌측, b-c 상측, c-d 우측을 각각 테브난의 등가회로로 바꾸면 그림 4.6 (b)가된다. 따라서 전류 i는

$$i\!=\frac{\left(40-12-3\right){\rm V}}{\left(4+3+6+12\right)\Omega}\!=1\,{\rm A}$$

$$v_{cd} = 12 \Omega \times 1 A + 2 V = 14 V$$

이것은 예제 3.4에서 얻는 결과와 일치한다.

4.3 최대전력의 전달

그림 4.7 (a)에서 단자 a-b 좌측은 전원을 포함한 어떠한 복잡한 저항회로라도 좋다. 지금 단자 a-b 간에 부하저항 R_L 을 연결할 때 그 값을 얼마로 하면 이에 최대전력을 전달할 수 있는가 하는 문제를 생각하자. 이 문제는 단자 a-b 좌측을 그림 (b)와 같이 테브난의 등가회로로 대치하고 생각하는 것이 가장 간단

그림 4.7 최대전력의 전달

하다.

지금 R_L 만이 가변인 경우를 생각하자. 이 경우 부하 R_L 에 공급되는 전력은 $(전류)^2 \times R_L$ 와 같으므로

$$P_L = \frac{v_{Th}^2 R_L}{(R_{Th} + R_L)^2} \tag{4.3}$$

이것이 최대가 되는 R_L 의 값을 구하기 위하여 v_{Th} 와 R_{Th} 는 일정하게 하고 R_L 에 관하여 미분하여 0이라 놓으면

$$\frac{dP_L}{dR_L} = v_{Th}^2 \cdot \frac{(R_{Th} + R_L)^2 - 2R_L(R_{Th} + R_L)}{(R_{Th} + R_L)^4} = 0$$

$$\therefore R_L = R_{Th} \tag{4.4}$$

즉, 부하저항을 전원의 내부저항에 **정합**(matching)시키면 최대전력을 공급받을 수 있다.

최대부하전력 $P_{L(\max)}$ 은 식 (4.4)를 식 (4.3)에 대입하여

$$P_{L(\max)} = \frac{v_{Th}^2}{4R_I} \tag{4.5}$$

- [수치에] 전원을 포함한 어떤 저항회로에서 두 단자간의 개방전압이 $10 {
 m V}$ 이고 단락전류가 $2 {
 m A}$ 일 때, 이 단자에 저항부하 R_L 을 달아서 최대의 전력을 공급받으려면 $R_L = 10/2$ (내부저항) $= 5 \, \Omega$ 으로 하면 되고, 이때의 전력(최대전력)은 $\frac{10^2}{4 \times 5} = 5 {
 m W}$
 - [주] 실험적으로 단락전류를 측정하는 것은 때로는 위험하다(과전류가 흘러서 회로가 손상될 수 있기 때문에).

부하를 아무리 조절하더라도 전원회로에서 이 이상의 전력을 뽑아낼 수 없기 때문에 $P_{L(\max)}$ 를 전원의 **가용전력**(available power)이라고 부를 때가 있다.

다음에 특히 v_{Th} 와 R_{Th} 가 실제의 전원의 전압과 내부저항을 대표할 때 최대 전력의 전달시 전력의 반은 내부저항, 나머지 반은 부하에서 소비되므로 효율은 50%밖에 안된다. 이것은 주목할 만한 일이다. 즉, 최대전력을 얻기 위해서는 효율을 희생시킬 수밖에 없다.

이 점을 더 확실히 하기 위해서 식 (4.3)과 (4.5)의 비를 취하면

$$\frac{P_L}{P_{L(\text{max})}} = \frac{4R_{Th}R_L}{(R_{Th} + R_L)^2} = \frac{4(R_L/R_{Th})}{[1 + (R_L/R_{Th})]^2}$$
(4.6)

또 **효율**을 η 라 하면

효율
$$\eta=\frac{\mbox{부하전력}}{\mbox{전원의 공급전력}}=\frac{\mbox{식 (4.3)}}{\mbox{$v_{Th}^{\ 2}/(R_{Th}+R_L)$}}$$

$$=\frac{R_L/R_{Th}}{1+(R_L/R_{Th})} \eqno(4.7)$$

그림 4.8의 (a), (b)에는 각각 식 (4.6), (4.7)을 R_L/R_{Th} 의 함수로 그렸다.

- 이 곡선들로부터 주목되는 사실은
- (1) P_L 은 R_L 의 최적치 (R_{Th}) 부근에서 완만하게 변한다. $R_L = (0.67 \sim 1.5) R_{Th}$ 에서 P_L 은 최대치의 96% 이상에 든다—— 따라서 실제에서는 엄격한 정합이 필요한 것은 아니다.
- (2) $R_L > R_{Th}$ 에서 P_L 은 감소하나 효율은 증가한다.

그림 4.8 등가내부저항 R_0 를 갖는 전원에 부하저항 R_L 을 연결할 때의 부하전력과 효율

 R_{Th} 가 전원을 포함한 더 복잡한 회로의 내부저항(테브난의 등가저항)인 경우에는 다음 예제에서 보듯이 부하에 전달될 수 있는 최대전력이 실제로 발생된 전원전력의 반에도 못 미칠 수 있다.

예제 4.3

그림 4.9 (a)의 회로에서 (a) R_L 에 최대의 전력을 공급하려면 R_L 의 값을 얼마로 해야하는가? 또 이때의 (b) 전력 및 (c) 효율을 구하라.

그림 4.9 예제 4.3의 그림

풀 이

- (a) 단자 a-b 좌측을 테브난의 등가회로로 대치하면 그림 (b)와 같다. 따라서 $R_L=R_{Tb}=12\,\Omega$ 일 때 최대전력이 R_L 에 공급된다.
- (b) 이때의 전력, 즉 최대전력은 식 (4.5)로부터

$$P_{L(\text{max})} = V_{Th}^2 / 4R_{Th} = \frac{18^2}{4 \times 12} = 6.75 \text{ W}$$

(c) 효율은 전원이 공급하는 총전력에 대한 부하전력의 비와 같다. 전자는 등가회로에서 구할 수는 없다. 테브난의 등가회로는 어디까지나 단자 a −b의 외측에 대해서만 등가이기 때문이다. 그러므로 원회로에 돌아가서 전원전류를 구하면 i=30/(20+30 // 12) = 8.57 A, 따라서 전원이 공급하는 총전력은 30×8.57 = 257 W이고, 효율은 6.75/257 = 2.63%, 즉 50%보다 훨씬 적다.

참고로 $20\,\Omega$ 와 $30\,\Omega$ 에서 소비되는 전력 (257-6.75)W \neq $(R_{Th}$ 에서 소비되는 전력 $6.75\,\mathrm{W}$).

4.4 T-π (또는 Y-△) 변환

이미 배운 바와 같이 직병렬회로에서는 직렬저항을 하나의 등가저항으로 대치하고, 병렬컨덕턴스를 하나의 컨덕턴스로 대치함으로써 회로를 단순화하여 해석

을 용이하게 할 수 있었다. 그러나 그림 4.10(a)와 같은 직병렬구조가 아닌 회로에 대해서는 이와 같이 할 수가 없다.

그러나 만일 점선 내의 T형회로를 그림 (b)와 같이 π 형회로로 대치할 수 있다면 계속하여 그림 (c), (d)와 같은 변환을 거쳐서 용이하게 v_2 를 구할 수 있을 것이다. 이것은 \mathbf{T} - π 변환(\mathbf{T} - π transformation)의 유용성을 보이기 위한 일례에 불과하다.

그림 4.11의 (a), (b)의 T형, π 형을 각각 그림 (c), (d)와 같이 그려 놓고, 그모양에 연유하여 각각 Y형회로, Δ (델타)형회로라고 부르기도 한다.

지금 Y형회로가 그림 4.10 (a)와 같이 복잡한 회로의 일부를 차지하고 있을 때, 이것을 하나의 △형회로로 대치하더라도 세 단자 외부에서 하등의 변화가 일어나지 않으면 이 두 3단자회로는 서로 등가이다.

$\triangle \rightarrow Y$ 변환

지금 그림 4.11의 (c), (d)에서 양 회로가 등가이기 위해서는 그 특수한 경우로서 단자 a를 개방하고 b-c에서 본 저항이 서로 같아야 한다. 즉,

$$R_b + R_c = R_{bc} / / (R_{ca} + R_{ab}) = \frac{R_{bc} (R_{ca} + R_{ab})}{R_{ab} + R_{bc} + R_{ca}}$$
(4.8)

<u>그림</u> 4.11 T(Y)형회로와 π(△)형회로

마찬가지로 단자 b를 개방하고 c-a에서 본 저항을 같게 놓으면

$$R_c + R_a = \frac{R_{ca}(R_{ab} + R_{bc})}{R_{ab} + R_{bc} + R_{ca}}$$
(4.9)

마지막으로 단자 c를 개방하고 a-b에서 본 저항을 같게 놓으면

$$R_a + R_b = \frac{R_{ab}(R_{bc} + R_{ca})}{D} \tag{4.10}$$

이상 세 식에서 한 식만 알면 다른 식은 첨자를 $a \to b \to c \to a$ 와 같이 순환 적으로 바꿈으로써 얻어지는 것에 주목하라. 이 세 식으로부터 R_a, R_b, R_c 를 R_{ca} 로 표시할 수도 있고, 또 그 반대도 가능하다. 세 식을 합하면

$$R_a + R_b + R_c = \frac{R_{ab} R_{bc} + R_{bc} R_{ca} + R_{ca} R_{ab}}{D}$$
(4.11)

식 (4.11)에서 식 (4.8), (4.9), (4.10)을 각각 빼면

$$R_a = \frac{R_{ca} R_{ab}}{D} \tag{4.12}$$

 $R_b,\ R_c$ 에 대해서도 꼭 같은 대칭적인 식이 얻어진다. 이 등가조건은 그림 4.12를 참고로 다음 식에 의하여 기억하는 것이 편리하다.

$$R_a = \frac{\mathrm{인접} \ R \, \mathrm{의} \ \mathrm{\Xi}}{\sum R} \tag{Y} \leftarrow \Delta) \tag{4.13}$$

그림 4.12 △-Y 변환식을 기억하는 데 편리한 그림

$Y \rightarrow \triangle$ 변환

반대로 R_{ab} , R_{bc} , R_{ca} 를 R_a , R_b , R_c 로 표시하면

$$R_{ab} = \frac{R_a R_b + R_b R_c + R_c R_a}{R_c} = \frac{N}{R_c}$$
 (4.14)

마찬가지로 $R_{bc}=\frac{N}{R_a},\;R_{ca}=\frac{N}{R_b}.\;$ 다음 식은 이 변환식을 기억하는 데 편리하다(그림 4.12 참고).

$$R_{ab} = \frac{\sum RR}{\text{건너편 }R} \qquad (\triangle \leftarrow Y) \tag{4.15}$$

특히 3개의 저항이 같은 경우에는 그림 4.13과 같이 변환된다.

그림 4.13 세 저항이 같은 경우의 △-Y 변환

[수치에] (a) 그림 4.11 (a)의 T형회로에서 $R_a=1\,\Omega$, $R_b=2\,\Omega$, $R_c=3\,\Omega$ 일 때 이와 등가적인 그림 (b)의 π 형회로의 저항들은

$$R_{ab} = \frac{1 \cdot 2 + 2 \cdot 3 + 3 \cdot 1}{3} = \frac{11}{3} \Omega, \ R_{bc} = \frac{11}{1} \Omega, \ R_{ca} = \frac{11}{2} \Omega$$

(b) 그림 4.11 (d)의 Δ 형회로에서 $R_{ab}=1\,\Omega$, $R_{bc}=2\,\Omega$, $R_{ca}=3\,\Omega$ 일 때 이와 등가적인 그림 (c)의 Y형회로의 저항들은

$$R_a = \frac{1\cdot 3}{1+2+3} = \frac{3}{6} = \frac{1}{2}\,\Omega\,, \ R_b = \frac{1\cdot 2}{6} = \frac{1}{3}\,\Omega\,, \ R_c = \frac{2\cdot 3}{6} = 1\,\Omega$$

(c) Δ 형회로의 각 지로저항이 12Ω 이면 이와 등가인 Y형회로의 각 지로저항은 4Ω , Y형회로의 각 지로저항이 2Ω 이면 이와 등가인 Δ 형회로의 각 지로저항은 6Ω 이다.

예제 4.4

그림 4.14 (a)와 같은 휘트스톤 브리지에서 $Y-\Delta$ 변환을 이용하여 각 지로를 흐르는 전류를 구하라.

그림 4.14

풀이

우선 전원에서 회로에 유입하는 전류를 구하기 위하여 입력저항을 구해 보자. 이것은 위쪽 또는 아래쪽의 \triangle 형회로를 Y형회로로 변환하면 쉽게 구해진다. 위쪽의 \triangle 형회로를 변환하는 것을 택하면 그림 4.14 (b)와 같이 된다. 여기서 $\triangle \rightarrow Y$ 변환에 의하여 생기는 새로운 접합점을 o라고 하면 식 (4.13)을 이용하여

$$R_{ao} = \frac{2 \times 2}{2 + 2 + 1} = 0.8,$$
 $R_{bo} = \frac{2 \times 1}{2 + 2 + 1} = 0.4$ $R_{co} = \frac{2 \times 1}{2 + 2 + 1} = 0.4$

따라서 $R_{\rm in} = 1.8 + (2.4 \, /\!\!/ \, 1.4) = 2.684 \, \Omega$

$$\therefore i_{\rm in} = \frac{10}{2.684} = 3.726 \,\text{A}$$

그림 (b)에서 $i_{\rm in}$ 는 두 지로 $obd,\ ocd$ 에 분류하므로

$$i_{obd} = \frac{1.4}{2.4 + 1.4} \times 3.726 = 1.373 \,\mathrm{A}$$

$$i_{ocd} = \frac{2.4}{2.4 + 1.4} \times 3.726 = 2.353 \,\mathrm{A}$$

그림 (b)에서 $v_{ab}=v_{ao}+v_{ob}=0.8\times3.726+0.4\times1.373=3.53\,\mathrm{V}$

절점 $a,\,b,\,c$ 로 된 Δ 부분의 전류를 구하려면 원회로 (a)에 돌아가서

$$\begin{split} i_{ab} &= \frac{v_{ab}}{2} \! = \! 1.765 \, \mathrm{A}, & i_{ac} = i_{\mathrm{in}} - i_{ab} = \! 1.961 \, \mathrm{A} \\ i_{bc} &= i_{ab} - i_{od} \! = i_{ab} - i_{obd} = 0.392 \, \mathrm{A} \end{split}$$

4.5 해석법의 선택

이상에서 저항회로해석에 대하여 절점해석법, 망로해석법, 또 각종 회로망정리들은 이용하는 방법 등을 배웠는데, 주어진 회로에 대하여 그 어느 하나 또는 몇개의 조합으로 해석하는 다양한 방법이 있을 수 있다. 한 예로 그림 4.15 (a)의회로에서 입력전류 i_1 을 구하는 데 여러 가지 방법을 적용하여 보자.

그림 4.15 (a)~(d)는 세 번의 전원변환, (e)는 망로해석, (f), (g)는 △→Y 변환

·····(2)

[방법 1] 전원변환의 계속적 적응 : 그림 4.15의 (a)에서 (d)까지 세 번의 전원 변환을 거치면

$$i_1 = \frac{12+4}{2+3} = \underline{3.2 \,\text{A}}$$

[방법 2] 중첩의 정리 이용:

그림 (a)에서
$$12$$
 V 만에 의한 $i_1=\frac{12\,\mathrm{V}}{2\Omega+(4\Omega\,/\!/\,12\Omega)}=2.4\,\mathrm{A}$ 그림 (c)에서 $\frac{4}{3}\mathrm{A}$ 만에 의한 $i_1=\frac{4}{3}\mathrm{A}\times\frac{3\Omega}{3\Omega+2\Omega}=0.8\mathrm{A}$ 양자의 합= $3.2\,\mathrm{A}$

[방법 3] 테브난의 정리 이용 : 그림 (a)에서 12V 전원과 2Ω 을 제거하고 a-c 좌측에서 우측을 본 테브난의 등가회로를 구하자.

$$\begin{split} R_{\mathit{Th}} &= 4 \, /\!\!/ (8 + 4) = 3 \, \Omega \,, \; a - c \text{간 단락전류} \; i_{ac} = -2 \mathrm{A} \frac{8}{8 + 4} = -\frac{4}{3} \mathrm{A} \\ & \therefore v_{\mathit{Th}} = a - c \, \text{간의 개방전압} \, v_{ac} = 3 \, \Omega \left(-\frac{4}{3} \mathrm{A} \right) = -4 \mathrm{V} \\ & \text{이상으로 그림 (d) 의 회로와 동일한 등가회로가 얻어지며, } \; i_1 = 3.2 \, \mathrm{A} \end{split}$$

[방법 4] 망로해석법 : 그림 (e)에서 좌측망로전류를 i_1 , 우측망로전류를 i_2 라 하면 좌측망로에 대한 KVL : $6i_1-4i_2=12 \to 3i_1-2i_2=6 \cdots$ ① 2A 전원과 8Ω 을 전원변환하면 16V 전원과 8Ω 의 직렬이 된다.

$$\therefore$$
 우측망로에 대한 KVL : $4(i_2-i_1)+8(i_2-2)+4i_2=0$

 $\rightarrow i_1 + 4i_2 = 4$

①, ②로부터,
$$i_1 = 3.2 \,\text{A}$$

[방법 5]
$$\Delta \rightarrow Y$$
 변환 적용 : 그림 (g)에서 변환 후 KVL로부터
$$12=5\,i_1-2\times2 \quad \therefore \quad i_1=3.2\,\underline{A}$$

독자는 어느 방법을 선호하겠는가.

연/습/문/제

- **4.1** 그림 p 3.2의 회로에서 중첩의 정리를 이용하여 i_2 를 구하라.
- **4.2** 그림 p 4.2에서 다음을 구하라.
 - (a) $v_1 = 6$ V, $v_2 = 0$ 일 때 v_1 이 공급하는 전력
 - (b) $v_1 = 0$, $v_2 = 12$ V일 때 v_2 가 공급하는 전력
 - (c) $v_1 = 6 \, \text{V}, \, v_2 = 12 \, \text{V}$ 일 때 각 전원이 공급하는 전력
 - (d) (a), (b)의 전력의 합이 (c)에서의 전력의 합과 같은지 다른지를 살펴보고, 그 이유를 밝혀라.

- 4.3 직류전원과 저항소자를 포함한 회로망이 있다. 그 두 단자 a-b간에 저항 R을 연결하여 단자전압과 전류를 측정하였더니 각각 240 V, 130 mA였다. 다음에 R를 증가시켰더니 300 V, 40 mA였다고 한다. 단자 a-b에 관한 테브난의 등가회로 및 노턴의 등가회로를 구하라.
- **4.4** 그림 p 4.4의 회로에서 (a) 단자 a-b 좌측에 대한 테브난의 등가회로를 이용하여 단자 a-b간에 $R_L=6\,\Omega$ 을 연결할 때의 부하전류 i_L 을 구하라. (b) 테브 난의 등가회로를 이용하여 반복하라.
- 4.5 그림 p 2.15에서 (a) 단자 a-b 좌측에 대한 테브난의 등가회로와 노턴의 등가회로를 구하라. (b) 단자 a-b 사이에 10Ω 의 저항을 연결할 때의 v_{ab} 를 구하라. 이상을 연습문제 2.10의 결과와 비교하라.
- **4.6** 그림 p 3.3의 회로에서 단자 a-b의 좌측 및 우측을 노턴의 등가회로로 대치하여 v_{ab} 를 구하라.
- **4.7** 그림 p4.7의 회로에서 단자 a-b 좌측에 대한 테브난의 등가회로를 구하라.
- **4.8** 그림 p4.8의 회로에서 R_L 을 얼마로 하면 최대전력이 전달되겠는가? 또 이때

의 최대전력을 구하라.

4.9 그림 p 4.9의 회로에서 부하저항 R_L 을 얼마로 할 때 최대전력이 전달되겠는 가? (힌트 : 먼저 $2\,\mathrm{A}$ 전원과 $1\,\Omega$ 의 병렬을 전원변환한 다음에 a-b 좌측에 대한 테브난의 등가회로를 구하는 것이 간단하다)

- **4.10** 그림 p 4.7의 회로에서 단자 a-b 사이에 부하저항 R_L 을 연결할 때 R_L 을 얼마로 하면 이에 최대전력이 전달되는가? 또 이때의 최대전력을 구하라.
- **4.11** 그림 p 4.11의 휘트스톤 브리지에서 출력단자 a-b에서 본 테브난의 등가회로 를 구하라.

- **4.12** Y-△ 변환을 이용하여 연습문제 3.10을 풀어라.
- **4.13** 그림 p 4.13의 3단자회로에 대한 (a) 등가 Y형회로와 (b) 등가△형회로를 구하라.
- **4.14** 식 (4.14)를 유도하라.