

Fig. 1(a)

Fig. 1(b)

Fig. 2(a)

Fig. 2(b)

Fig. 3

Fig. 4

Fig. 5

Modeling of basin of fractal geometry using Voronoi tessellation. Input to the program 1. Boundary limits of the region 2. Voronoi centers with in the boundary 3. The value of p for L^p norm 4. Density values corresponding to each region (could be same also) 5. Number of grid nodes in x and y direction 6. Grid node spacing in x and y direction. 7. Depth of the sub-surface region Generation of fractal subsurface and density assignment to each region. Laid grid of the specified specifications at the surface over the tessellated region of interest. Computation of gravity response due to each subsurface polygonal area of different physical property in tessellated region at each nodes of the grid at the surface. Cumulative gravity response at each nodes of the grid laid at the surface. Increase the depth value and repeat all steps Cumulative sum of the gravity anomaly with respect to depth at each nodes of the grid at the surface. Stop Fig. 7

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record.

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
SKEWED/SLANTED IMAGES
COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.