Suture Silk Scaffold to Promote Spinal Cord Repair Through Directional Guidance

Liam Barnes, Chris Brennan, Kalgi Chokshi, Megan Donohue, Angelica Spinelli

Advisor: Dr. Margaret Wheatley

Acknowledgements: Dolores Conover, Dr. Gallo's Lab (Temple), Claire King, Brian Oeffinger, and Dr. Joseph Sarver

Introduction

- Spinal cord injury (SCI) affects 347,000 people in the USA [1]
- Minimal regenerative and functional recovery due to non-permissive tissue environment [2]

Research has suggested that axons may still be capable of linear aligned regeneration when given a growth permissive scaffold that provides directional guidance for axons [3] [4]

Existing Scaffold Solutions

Exioning Countries Column				
Method	Pros	Cons		
Freeze drying	Highly porous structure	Random distribution of pores		
Mold casting	Simple, inexpensive	Inability to fabricate an intricate microstructure		
Heat compression	Versatile for many polymers	Difficult to control fiber assembly		

Design Rationale

- ➤ Neurites will adhere to and grow along silk fibroin [6]
- Neurites will grow in the direction guidance is provided [4]

Packing model shows presence of channel sizes

Gauge	Diameter (µm)		Neurites Accommodated
2	500	77.3	~10
4-0	150	23.6	~3

Proposed Solutions

A 3 mm diameter scaffold constructed from gauge 2 braided silk suture with channels constrained by PET heat shrink tubing to promote axon regeneration

Heat Shrink Tubing

Alternative Solutions

Braid

Spiral Bound

Gauge 4-0 suture will also be tested as lower bound for all scaffold designs

Design Criteria

- Mechanical Testing
 - Stiffness (1230 ± 490 N/m), Flexural Modulus (0.74 ± 0.14 MPa) [10][11]
 - Three point bend test
 - Scaffold properties compared to native tissue to prevent damage
- > Channel Size (23-77 μm)
 - Cross sections analyzed with SEM and ImageJ
 - Minimum and maximum passage to allow sufficient size for neurite growth
- > Suture Swelling (<5% of suture diameter) [9]
 - Suture submerged in PBS for 48 hours
 - Swelling of suture must not cause occlusion of the channels
- Directional Neurite Growth (100 μm growth and no more than ±15° deviation from channel neutral axis) [7] [8]
 - Analyze DRG growth on aligned suture post 48hr incubation
 - Must exceed DRG neurite growth without channel guidance

Mechanical Test Results

Loading Force Specimen	Scaffold Design	Stiffness (N/m)		Flexural Modulus (MPa)	
		Gauge 2	Gauge 4-0	Gauge 2	Gauge 4-0
	Heat Shrink	2450	1797	58.86	254.56
	Braid	1790	972.3	53.95	150.23
Three point bend apparatus	Spiral Bound	1340	909.5	57.20	403.89
	Design Criteria	1230 ± 490		0.74 ± 0.14	

Stiffness requirements of 1230 ± 490 N/m were met by gauge 2 and 4-0 spiral bound and gauge 4-0 braid scaffolds. No scaffold met the requirement of 0.74 ± 0.14 MPa for flexural modulus.

Channel Size Test Results

Scaffold Design	Measured Channel Size (μm)			
	Gauge 2	Gauge 4-0	Monofilament Gauge 0	
Heat Shrink	40.74	49.28	66.74	
Braid	110.78	24.64	N/A	
Spiral Bound	81.75	36.99	N/A	
Design Criteria	76.65	23.25	54.25	

Results show that the measured channel size for gauge 2 spiral bound and gauge 4-0 braided were similar to what was expected based on the packing model

Figure A: SEM image showing channel size (red circle) of shrink wrap tubing with gauge 2 silk suture (yellow circle) **Figure B:** SEM image showing channel size (red circle) of shrink wrap tubing with gauge 0 nylon monofilament (yellow circle)

Suture Swelling Test Results

Suture Gauge	Suture Diameter		Paired t-test P		
	Pre-Swelling	48hr Swelling	Value (one tail)		
	2	672 μm	708 µm	0.635	
	4-0	245 µm	253 µm	0.171	

Gauge 2 suture did not meet the requirement of <5% (705.6 μ m) of suture diameter, while gauge 4-0 did meet the requirement of <5% (257.3 μ m) of suture diameter

Neurite Growth Test Results

Growth of unguided DRG neurites on laminin coated glass coverslip

Fluorescent image of DRG on 3-0 PLO/laminin coated suture sample post 48 hour incubation

Results show that DRGs firmly adhered to suture silk, but growth was not observed. Directional neurite growth requirements of 100 µm growth and no more than ±15° deviation from channel neutral axis were not met.

Conclusions and Future Work

- Gauge 4-0 braid design showed most promising test results
 - Met stiffness, channel size and swelling requirements
- Directional growth was not observed on suture silk
- Processing on suture silk may impede neurite growth
- Cross sectioning of sutures affected channel size measurement
- Strong DRG attachment to silk suture was observed
- **➤** Future work
- Test neurite growth on pure silk fibroin
- Modify scaffold design to meet mechanical properties

References

[1] National Spinal Cord Injury Statistical Center. (2016). Spinal Cord Injury (SCI) Facts and Figures at a Glance. Birmingham: University of

Alabama at Birmingham.
[2] Shepherd Center. (2016). *Understanding Spinal Cord Injury*. Retrieved from Shepherd Center: http://www.spinalinjury101.org/details

[3] Aguayo, A., & Benfey, M. (1982). Extensive elongation of axons from rat brain into the peripheral nerve grafts. *Nature*, 150-152.
[4] Francis NL, Hunger PM, Donius AE, Riblett BW, Zavaliangos A, Wegst UGK, Wheatley MA. 2013. An ice-templated, linearly aligned chitosan-alginate scaffold for neural tissue engineering. J Biomed Mater Res Part A 2013:101A:3493–3503

chitosan-alginate scaffold for neural tissue engineering. J Biomed Mater Res Part A 2013:101A:3493–3503.
[5] M. Wang, P. Zhai, X. Chen, D. Schreyer, X. Sun and F. Cui, "Bioengineered Scaffolds for Spinal Cord Repair", *Tissue Engineering Part B: Reviews*, vol. 17, no. 3, pp. 177-194, 2011.

[6] Yumin Yang, Xuemei Chen, Fei Ding, Peiyun Zhang, Jie Liu, Xiaosong Gu, Biocompatibility evaluation of silk fibroin with peripheral nerve tissues and cells in vitro, Biomaterials, Volume 28, Issue 9, March 2007, Pages 1643-1652, ISSN 0142-9612,

https://doi.org/10.1016/j.biomaterials.2006.12.004.
[7] H. Yamamoto, T. Demura, M. Morita, G. A. Banker, T. Tanii, and S. Nakamura, "Differential neurite outgrowth is required for axon

specification by cultured hippocampal neurons," Journal of Neurochemistry, vol. 123, no. 6, pp. 904–910, Oct. 2012.
[8] B. W. Riblett, N. L. Francis, M. A. Wheatley, and U. G. K. Wegst, "Ice-Templated Scaffolds with Microridged pores direct DRG Neurite growth," Advanced Functional Materials, vol. 22, no. 23, pp. 4920–4923, Jul. 2012.

[9] K. S. Straley, C. W. P. Foo, and S. C. Heilshorn, "Biomaterial design strategies for the treatment of spinal cord injuries," Journal of Neurotrauma, vol. 27, no. 1, pp. 1–19, Jan. 2010.
[10] Chen BK, Knight AM, Madigan NN, et al. Comparison of polymer scaffolds in rat spinal cord: A step toward quantitative assessment of

combinatorial approaches to spinal cord repair. Biomaterials. 2011;32(32):8077-8086. doi:10.1016/j.biomaterials.2011.07.029.

[11] Bilston, L.E. & Thibault, L.E. Ann Biomed Eng (1995) 24(Suppl 1): 67. doi:10.1007/BF02770996

[12] Kopeliovich, D. (2012, June 01). Materials Engineering. Retrieved May 11, 2017, from http://www.substech.com/dokuwiki/doku.php?id=flexural_strength_tests_of_ceramics