第2章

多様体のあれこれ

この章では、主に多様体に関する内容を雑多にまとめる.

2.1 位相多様体の性質

まず、コンパクト性に類似する概念をいくつか紹介する:

定義 2.1: 被覆

• 集合族 $\mathcal{U} \coloneqq \{U_{\lambda}\}_{\lambda \in \Lambda}$ が集合 X の被覆 (cover) であるとは、

$$X\subset\bigcup_{\lambda\in\Lambda}U_\lambda$$

が成り立つこと.

- 位相空間 X の被覆 $\mathcal{U} \coloneqq \left\{U_{\lambda}\right\}_{\lambda \in \Lambda}$ が開 (open) であるとは、 $\forall \lambda \in \Lambda$ に対して U_{λ} が X の開集合であること.
- 位相空間 X の被覆 $\mathcal{V}\coloneqq \left\{V_{\alpha}\right\}_{\alpha\in A}$ が,別の X の被覆 $\mathcal{U}\coloneqq \left\{U_{\lambda}\right\}_{\lambda\in\Lambda}$ の細分 (refinement) であるとは, $\forall V_{\alpha}\in\mathcal{V}$ に対してある $U_{\lambda}\in\mathcal{U}$ が存在して $V_{\alpha}\subset U_{\lambda}$ が成り立つこと.
- 位相空間 X の開被覆 $\mathcal{U}\coloneqq \left\{U_{\lambda}\right\}_{\lambda\in\Lambda}$ が局所有限 (locally finite) であるとは、 $\forall x\in X$ に対して以下の条件が成り立つこと:

(locally finiteness) x のある近傍 $V \subset X$ が存在して集合

$$\{ \lambda \in \Lambda \mid U_{\lambda} \cap V \neq \emptyset \}$$

が有限集合になる.

定義 2.2: パラコンパクト・コンパクト・局所コンパクト

位相空間 X を与える.

- パラコンパクト (paracompact) であるとは、任意の開被覆が局所有限かつ開な細分を持つこと.
- 位相空間 X の部分集合 $A \subset X$ は、以下の条件を充たすとき**コンパクト** (compact) であると言われる:

(Heine-Boral の性質) A の任意の開被覆 $\mathcal{U} \coloneqq \left\{ U_{\lambda} \right\}_{\lambda \in \Lambda}$ に対して,ある<u>有限</u>部分集合 $I \subset \Lambda$ が存在して $\left\{ U_{i} \right\}_{i \in I} \subset \mathcal{U}$ が A の開被覆となる。

• 位相空間 X が局所コンパクト (locally compact) であるとは, $\forall x \in X$ が少なくとも 1 つのコンパクトな近傍を持つこと.

 a このことを「任意の開被覆は有限部分被覆を持つ」と表現する.

2.2 微分構造の構成

微分構造を定義通りに構成するならば,まず位相多様体であることを確認してから座標変換が C^{∞} 級であることを確認しなくてはならず,若干面倒である.しかし,幸いにしてこの確認の工程をまとめた便利な補題がある [?, p.21, Lemma 1.35].

補題 2.1: 微分構造の構成

- 集合 M
- M の部分集合族 $\left\{U_{\lambda}\right\}_{\lambda\in\Lambda}$
- 写像の族 $\{\varphi_{\lambda}\colon U_{\lambda}\longrightarrow \mathbb{R}^n\}_{\lambda\in\Lambda}$

の3つ組であって以下の条件を充たすものを与える:

- (DS-1) $\forall \lambda \in \Lambda$ に対して $\varphi_{\lambda}(U_{\lambda}) \subset \mathbb{R}^{n}$ は \mathbb{R}^{n} の開集合であり, $\varphi_{\lambda} \colon U_{\lambda} \longrightarrow \varphi_{\lambda}(U_{\lambda})$ は全単射である.
- (DS-2) $\forall \alpha, \beta \in \Lambda$ に対して $\varphi_{\alpha}(U_{\alpha} \cap U_{\beta}), \varphi_{\beta}(U_{\alpha} \cap U_{\beta}) \subset \mathbb{R}^{n}$ は \mathbb{R}^{n} の開集合である.
- (DS-3) $\forall \alpha, \beta \in \Lambda$ に対して、 $U_{\alpha} \cap U_{\beta} \neq \emptyset$ ならば $\varphi_{\beta} \circ \varphi_{\alpha}^{-1} \colon \varphi_{\alpha}(U_{\alpha} \cap U_{\beta}) \longrightarrow \varphi_{\beta}(U_{\alpha} \cap U_{\beta})$ は C^{∞} 級である.
- (DS-4) 添字集合 Λ の可算濃度の部分集合 $I \subset \Lambda$ が存在して $\{U_i\}_{i \in I}$ が M の被覆になる.
- (DS-5) $p, q \in M$ が $p \neq q$ ならば、ある $\lambda \in \Lambda$ が存在して $p, q \in U_{\lambda}$ を充たすか、またはある $\alpha, \beta \in \Lambda$ が存在して $U_{\alpha} \cap U_{\beta} = \emptyset$ かつ $p \in U_{\alpha}, q \in U_{\beta}$ を充たす.

このとき,M の微分構造であって, $\forall \lambda \in \Lambda$ に対して $(U_{\lambda}, \varphi_{\lambda})$ を C^{∞} チャートとして持つものが一意的に存在する.

証明 位相の構成

 \mathbb{R}^n の Euclid 位相を $\mathcal{O}_{\mathbb{R}^n}$ と表記する. 集合

$$\mathscr{B} := \left\{ \varphi_{\lambda}^{-1}(U) \mid \lambda \in \Lambda, \ U \in \mathscr{O}_{\mathbb{R}^n} \right\}$$

が開基の公理 (B1), (B2) を充たすことを確認する.

- (B1) (DS-4) より明らか.
- **(B2)** $B_1, B_2 \in \mathcal{B}$ を任意にとる.このとき \mathcal{B} の定義から,ある $\alpha, \beta \in \Lambda$ および $U, V \in \mathcal{O}_{\mathbb{R}^n}$ が存在して $B_1 = \varphi_{\alpha}^{-1}(U), B_2 = \varphi_{\beta}^{-1}(V)$ と書ける.補題??-(4) より

$$B_1 \cap B_2 = \varphi_{\alpha}^{-1}(U) \cap \varphi_{\beta}^{-1}(V)$$
$$= \varphi_{\alpha}^{-1} (U \cap (\varphi_{\alpha} \circ \varphi_{\beta}^{-1})(V))$$
$$= \varphi_{\alpha}^{-1} (U \cap (\varphi_{\beta} \circ \varphi_{\alpha}^{-1})^{-1}(V))$$

が成り立つが、**(DS-3)** より $\varphi_{\beta}\circ\varphi_{\alpha}^{-1}$ は連続なので $(\varphi_{\beta}\circ\varphi_{\alpha}^{-1})^{-1}(V)\in\mathscr{O}_{\mathbb{R}^n}$ である. よって

$$B_1 \cap B_2 \in \mathscr{B}$$

であり, **(B2)** が示された.

従って定理??より、 $\mathscr B$ を開基とする M の位相 $\mathscr O_M$ が存在する.

$arphi_{\lambda}$ が同相写像であること

 $\forall \lambda \in \Lambda$ を 1 つ固定する. \mathcal{O}_M の構成と補題??-(4) より、 $\forall V \in \mathcal{O}_{\mathbb{R}^n}$ に対して $\varphi_{\lambda}^{-1}(V \cap \varphi_{\lambda}(U_{\lambda})) = \varphi_{\lambda}^{-1}(V) \cap U_{\lambda}$ は U_{λ} の開集合である*1. i.e. $\varphi_{\lambda} \colon U_{\lambda} \longrightarrow \varphi_{\lambda}(U_{\lambda})$ は連続である.

 $\forall B \in \mathcal{B}$ をとる.このとき補題??-(9) より $\varphi_{\lambda}(B \cap U_{\lambda}) = \varphi_{\lambda}(B) \cap \varphi_{\lambda}(U_{\lambda})$ が成り立つが, \mathscr{O}_{M} の定義より $\varphi_{\lambda}(B) \in \mathscr{O}_{\mathbb{R}^{n}}$ なので $\varphi_{\lambda}(B \cap U_{\lambda})$ は $\varphi_{\lambda}(U_{\lambda})$ の開集合である.相対位相の定義と de Morgan 則より, U_{λ} の任意の開集合は $B \cap U_{\lambda}$ の形をした部分集合の和集合で書けるので,補題??-(1) と位相 空間の公理から φ_{λ} は U_{λ} の開集合を $\varphi_{\lambda}(U_{\lambda})$ の開集合に移す.i.e. $\varphi_{\lambda} \colon U_{\lambda} \longrightarrow \varphi_{\lambda}(U_{\lambda})$ は連続な全単射でかつ開写像であるから同相写像である.

Hausdorff 性

位相空間 (M, \mathcal{O}_M) が Hausdorff 空間であることを示す. M の異なる 2 点 p, q を勝手にとる. このとき **(DS-5)** より,

- ある $\lambda \in \Lambda$ が存在して $p, q \in U_{\lambda}$ を充たす
- ある $\alpha, \beta \in \Lambda$ が存在して $U_{\alpha} \cap U_{\beta} = \emptyset$ かつ $p \in U_{\alpha}, q \in U_{\beta}$ を充たす

のいずれかである.後者ならば証明することは何もない.

前者の場合を考える。このとき $\varphi_{\lambda}(U_{\lambda})$ は \mathbb{R}^{n} の開集合だから, \mathbb{R}^{n} の Hausdorff 性から $\varphi_{\lambda}(U_{\lambda})$ も Hausdorff 空間であり,従って $\varphi_{\lambda}(U_{\lambda})$ の開集合 $U,V\subset\varphi_{\lambda}(U_{\lambda})$ であって $\varphi_{\lambda}(p)\in U$ かつ $\varphi_{\lambda}(q)\in V$ かつ $U\cap V=\emptyset$ を充たすものが存在する。このとき補題??-(4) より $\varphi_{\lambda}^{-1}(U)\cap\varphi_{\lambda}^{-1}(V)=\varphi_{\lambda}^{-1}(U\cap V)=\emptyset$ で,かつ \mathscr{O}_{M} の構成から $\varphi_{\lambda}^{-1}(U),\varphi_{\lambda}^{-1}(V)\subset M$ はどちらも M の開集合である。そ のうえ $p\in\varphi_{\lambda}^{-1}(U)$ かつ $q\in\varphi_{\lambda}^{-1}(V)$ が成り立つので M は Hausdorff 空間である。

第2可算性

 \mathbb{R}^n は第 2 可算なので、 $\forall \lambda \in \Lambda$ に対して $\varphi_{\lambda}(U_{\lambda})$ も第 2 可算である. $\varphi_{\lambda} \colon U_{\lambda} \longrightarrow \varphi_{\lambda}(U_{\lambda})$ は同相写像なので、 U_{λ} も第 2 可算である.従って **(DS-4)** から M も第 2 可算である.

 $^{^{*1}}U_{\lambda}$ には (M, \mathscr{O}_{M}) からの相対位相が、 $\varphi_{\lambda}(U_{\lambda})$ には $(\mathbb{R}^{n}, \mathscr{O}_{\mathbb{R}^{n}})$ からの相対位相を入れている.

以上の考察から、位相空間 $(M,\,\mathcal{O}_M)$ が位相多様体であることが示された. さらに **(DS-3)** より $A \coloneqq \{(U_\lambda,\,\varphi_\lambda)\}_{\lambda\in\Lambda}$ は $(M,\,\mathcal{O}_M)$ の C^∞ アトラスであることもわかる.

最後に、A の極大アトラス A^+ が、 $\underline{\$6}$ M 上の、与えられた全ての $(U_\lambda, \varphi_\lambda)$ を C^∞ チャートとする唯一の微分構造であることを示す.

位相の一意性

与えられた集合 M の上の位相 $\mathcal T$ であって,位相空間 $(M,\mathcal T)$ が第 2 可算な Hausdorff 空間となるようなものを任意にとる. $\forall \lambda \in \Lambda$ に対して与えられた全単射 $\varphi_{\lambda}\colon U_{\lambda} \longrightarrow \varphi_{\lambda}(U_{\lambda})$ が同相写像であるためには, $\forall V \in 2^{U_{\lambda}}$ に対して

$$V \in \mathscr{T} \iff \varphi_{\lambda}(V) \in \mathscr{O}_{\mathbb{R}^n}$$

が成り立つことが必要十分である. そしてこのとき

2.3 部分多様体

定義 2.3: 部分多様体

n 次元 C^{∞} 多様体 (M, \mathcal{O}_M) を与える. 部分集合 $N \subset M$ は以下の条件を充たすとき**部分多様体** (submanifold) と呼ばれる:

(sub) $\forall p \in N$ に対してある開近傍 $U \in \mathcal{O}_M$ と U 上定義された座標関数 $x^{\mu}: U \to \mathbb{R}$ が存在して,

$$\exists k \ge 0, \ N \cap U = \{q \in U \mid x^{k+1}(q) = \dots = x^n(q) = 0\}.$$

N が M の閉集合であるときは**閉部分多様体**と呼ぶ.

定義 2.4: はめ込みと埋め込み

 C^{∞} 多様体 M, N と C^{∞} 写像 $f: M \to N$ を与える.

- (1) $\forall p \in M$ において f の微分写像 $f_*: T_pM \to T_{f(p)}N$ が<u>単射</u>のとき, f を**はめ込み** (immersion) と呼ぶ.
- (2) $f: M \to N$ が<u>はめ込み</u>であって,かつ全射 $f: M \to f(M)$ が同相写像であるとき,f を**埋め** 込み (embedding) と呼ぶ.
- (3) $f: M \to N$ が全射であって、かつ $\forall p \in M$ において $f_*: T_pM \to T_{f(p)}N$ が全射であるとき、f を沈め込み (submersion) と呼ぶ.

定理 2.1: 埋め込みと部分多様体

 $f\colon M\to N$ を埋め込みとする.このとき $f(M)\subset N$ は N の部分多様体であり, $f\colon M\twoheadrightarrow f(M)$ は 微分同相写像である.

逆に M が N の部分多様体であるとき、包含写像 $\iota: M \hookrightarrow N$ は埋め込みである.

 $^aM\subset N$ のとき, $p\in M$ を N の元として扱う写像. $\iota(p)=p$ である. 標準単射 (canonical injection) と呼ばれることもある.

定理 2.2: Whitney の埋め込み定理

任意の n 次元 C^{∞} 多様体は \mathbb{R}^{2n+1} の中に閉部分多様体として埋め込むことができる.

2.3.1 誘導計量

定義 2.5: 誘導計量

(N,h) を Riemann 多様体, C^∞ 写像 $f\colon M\to N$ をはめ込みとする.このとき,2-形式 $h\in\Omega^2(N)$ の引き戻し(??) f^*h は M 上の Riemann 計量 $g\in\Omega^2(M)$ を定める:

$$g_p(u, v) := h_{f(p)}(f_*(u), f_*(v)), \quad \forall p \in M, \forall u, v \in T_pM$$

これを f による M の誘導計量と呼ぶ.

誘導計量を M のチャート $(U; x^\mu)$ および N のチャート $(V; y^
u)$ に関して成分表示すると

$$g_{p}(u, v) = g_{\mu\nu}(p)u^{\mu}v^{\nu}$$
$$= h_{\alpha\beta}(f(p))\frac{\partial y^{\alpha}}{\partial x^{\mu}}(f(p))\frac{\partial y^{\beta}}{\partial x^{\nu}}(f(p))u^{\mu}v^{\nu}$$

だから,

$$g_{\mu\nu}(p) = h_{\alpha\beta}(f(p)) \frac{\partial y^{\alpha}}{\partial x^{\mu}}(f(p)) \frac{\partial y^{\beta}}{\partial x^{\nu}}(f(p))$$

である. 特に C^{∞} 多様体 M の Euclid 空間 \mathbb{R}^n へのはめ込み $r: M \to \mathbb{R}^n, (x^{\mu}) \mapsto r(x^{\mu})$ が与えられたとき, M の Riemann 計量がしばしば

$$g_{\mu\nu} = \frac{\partial \mathbf{r}}{\partial x^{\mu}} \cdot \frac{\partial \mathbf{r}}{\partial x^{\nu}}$$

と書かれるのはこのためである.

多様体 N が擬 Riemann 多様体のときは、多様体 M が誘導計量を持つとは限らない.

例えば Euclid 空間 \mathbb{R}^3 に埋め込まれた単位球面 S^2 を考える. はめ込みを

$$r \colon (\theta, \phi) \mapsto \begin{bmatrix} \sin \theta \cos \phi \\ \sin \theta \sin \phi \\ \cos \theta \end{bmatrix}$$

として与えると, S^2 の誘導計量は

$$g_{\mu\nu} dx^{\mu} \otimes dx^{\nu} = \frac{\partial \mathbf{r}}{\partial x^{\mu}} \cdot \frac{\partial \mathbf{r}}{\partial x^{\nu}} dx^{\mu} \otimes dx^{\nu}$$
$$= d\theta \otimes d\theta + \sin^{2}\theta d\phi \otimes d\phi$$

と求まる.

2.4 隅付き多様体

2.5 力学系としての多様体