Predicting Molecular Trajectories of a Nanomotor with Neural Networks WHK Research Project

Ferdinand Tölkes

 $\mathrm{July}\ 2025$

Presentation outline

- 1. Scope of my work
- 2. Dataset overview
- 3. Training the network
- 4. Results
- 5. Possible next steps

Scope of current work

Scope of current work

- ► Work on one specific dataset: MOTOR_MD_XTB/T300_1
- ► Prediction of **energy** and **forces** given atomic positions
- ► Molecule is only examined in ground state

Figure: Figure adapted from [1, p.13]

Dataset overview

Dataset overview

Figure: Figure adapted from [1, p.11]

- ► Four important conformations: anti-M, syn-M, anti-P and syn-P
- Can be roughly clustered by using dihedral angles, e.g.

$$M: \beta < 0, P: \beta > 0$$

and furthermore

syn-M:
$$\beta < 0$$
 & $\delta < 0$,
anti-M: $\beta < 0$ & $\delta > 0$

Dataset overview

- ▶ Data sampled in **NVT ensemble**
- Split in train (12615), validation (3154) and test data (3943)
- Center of mass and energy offset substracted
- ➤ Configurations in T300_1 mostly in anti-M

Figure: Plot of dihedral angles for T300_1 taken from [3].

Training the network

Training the network

- ► Training using SchNetPack (see [2] and Pragati's talk)
- ► Mean squared error (MSE) is underlying loss function
- ► Energies weighted with 0.01 and forces with 0.99
- ➤ Runs with 1000 epochs take roughly six hours and don't converge

Figure: Validation loss plotted against the number of steps when training a model on Angstrom and kcal/mol for 1000 epochs.

Impact of units

- ► Change of units (COU) affects model performance (see results section)
- ▶ Possible explanation: COU **affects weights** of energies and forces within the MSE
- ► Trying to counteract this effect, is not yet fruitful (see starred entry in results section)
- ▶ More on this later, if you are interested!

Results

Performance on Validation Data

Molecule	Training Units	Energy MAE [kcal/mol]	Forces MAE $[kcal/mol/Å]$
CPNX	Å, kcal/mol	0.1896 ± 0.0134	0.2999 ± 0.0110
CPNX	$ m \AA, eV$	0.1581 ± 0.0027	0.3174 ± 0.0067
CPNX	$ m \AA, Hartree$	0.2960 ± 0.0050	0.5154 ± 0.0100
CPNX	$Å, Hartree^*$	0.3053 ± 0.0085	0.4993 ± 0.0119
$C_9O_8H_4$	Å, kcal/mol	0.11 - 0.38	0.14 - 1.17

Table: Mean absolute errors (MAEs) with corresponding standard errors on the validation data, for models trained in three different unit systems. The reference values for Acetylsalicylic ($C_9O_8H_4$) are taken from [2, p.453]. Note that the chemical accuracy is more or less defined as 1 kcal/mol

◆□▶ ◆圖▶ ◆臺▶ ◆臺▶ 臺 釣९@

XTB vs. NN Trajectory

Figure: Plot of predicted energies from XTB and the neural network taken from [3].

- ► Take last sample of test data as starting configuration
- ► Using its velocities should ensure that **trajectory** is equilibrated
- Predict trajectory with XTB and neural network for 5000 steps à one femtosecond
- ➤ Simulating this with NN takes around five minutes

Correlation

- ► How similar are the trajectories around a certain point?
- Correlation as measure of similarity
- ightharpoonup At step s take the next n steps to compute the **Pearson correlation**
- ► Repeat for each time step

Figure: Plot of correlations between predicted energies from XTB and the neural network taken from [3].

Per-atom fluctuations

Figure: Average RMSF per atom.

- Take average over positions to compute reference structure
- Compute root mean squared fluctuations (RMSF) from reference structure per atom over time
- ▶ Indices $[0, ..., 47] \stackrel{\triangle}{=} atoms$ [O, C, ..., H, ...]
- ▶ Pearson correlation of 0.9934

Interatomic distances

- ▶ Plot of distribution of interatomic distances
- ▶ $48 \cdot 47/2 = 1128$ distances per step
- ► Flattened into array of length 1128 · #steps

Radius of gyration

- Radius of gyration is the distance from a systems rotational axis to its center of mass
- Describes how masses of system are distributed

Figure: Distributions of the radius of gyration.

Power spectrum

- \triangleright Excerpt of power spectra from XTB and NN trajectories, $r_{\text{Pearson}} = 0.7125$
- ▶ Calculated as Fourier transform of the velocity autocorrelation function
- ► Gives insights into active vibrational modes

Possible next steps

Possible next steps

- ▶ Include also the other T300 datasets in training and inference
- ► Train models until they converge
- ▶ Move on to exited states
- ► Try to use trained model as foundational model:
 - ► Finetune it for specific needs
 - ▶ Perform MD on the fly

Sources

- [1] Jesús Lucia-Tamudo, Michelle Menkel-Lantz, and Enrico Tapavicza. "First principles prediction of wavelength-dependent isomerization quantum yields of a second-generation molecular nanomotor". In: *Physical Chemistry Chemical Physics* 27.23 (2025), pp. 12519–12531.
- [2] KT Schütt et al. "SchNetPack: A deep learning toolbox for atomistic systems". In: Journal of chemical theory and computation 15.1 (2018), pp. 448–455.
- [3] Ferdinand Tölkes. Molecular Dynamics of a nanomotor using SchNetPack. https://github.com/FerdinandToelkes/whk. GitHub repository. 2025.