Introdução aos Processos Estocásticos

Luiz Renato Fontes

Reversão temporal

Teorema 1

Seja \mathbf{Q} uma Q-matriz irred e não explosiva, e suponha que λ é uma distr inv p/ \mathbf{Q} . Seja T>0 e $(X_t)_{0\leq t\leq T}\sim \mathsf{PMS}(\lambda,\mathbf{Q})$, e façamos $\hat{X}_t=X_{T-t}$, $0\leq t\leq T$.

Então
$$(\hat{X}_t)_{0 \le t \le T} \sim \mathsf{PMS}(\lambda, \hat{\mathbf{Q}})$$
, onde $\hat{\mathbf{Q}} = (\hat{q}_{xy})_{x,y \in \mathcal{S}}$, com
$$\lambda_x \hat{q}_{xy} = \lambda_y q_{yx}, \ x, y \in \mathcal{S}. \tag{*}$$

Além disto, $\hat{\mathbf{Q}}$ é irred e não explosiva, e λ é inv p/ \mathbf{Q} .

Dem. Pelo Teo 5 do cj sobre Eqs de Kolmogorov (Teo 2.8.6 do livro), o semigrupo ($\mathbf{P}(t)$) é a slç mínima nneg da eq avançada

$$\mathbf{P}'(t) = \mathbf{P}(t)\mathbf{Q}, \ \mathbf{P}(0) = \mathbf{I}. \tag{1}$$

Tb temos que P(t) é uma matriz estocástica irred e c/distr inv λ (e logo recorrente) p/cada t > 0.

Dem. Teo 1 (cont)

Seja

$$\lambda_{x}\hat{P}_{xy}(t) = \lambda_{y}P_{yx}(t). \tag{2}$$

Então, pelo Teo 1 sobre reversão temporal em tempo discreto, $\hat{\mathbf{P}}(t)$ é uma matriz estocástica irred e c/distr inv λ .

Temos de (*), (1) e (2) que

$$\hat{\mathbf{P}}'(t) = \hat{\mathbf{Q}}\hat{\mathbf{P}}(t), \ \hat{\mathbf{P}}(0) = \mathbf{I}$$
 (3)

(verifique!), que é a eq atrasada para $\hat{\mathbf{Q}}$, que é uma Q-matriz (verifique!), e logo da minimali// de $(\mathbf{P}(t))$ segue que $(\hat{\mathbf{P}}(t))$ é a slç mínima nneg de (3). Logo $(\hat{\mathbf{P}}(t))$ é o semigrupo associado a $\hat{\mathbf{Q}}$.

Como \mathbf{Q} é irredutível e $\lambda_x > 0 \ \forall \ x$, temos de (2) e do Teo 1 do cj de slides sobre Rec e Trans que $\hat{\mathbf{Q}}$ é irredutível.

Da recorrência de \mathbf{Q} , segue a rec de $\mathbf{P}(t)$, e do Teo 1 sobre rev temp p/CM's em tempo discreto, temos que $\hat{\mathbf{P}}(t)$ é irredutível e tem distr inv λ ; segue que $\hat{\mathbf{P}}(t)$ é rec, e logo $\hat{\mathbf{Q}}$ é irred, rec, logo não explosiva e tem distr inv λ .

Dem. Teo 1 (cont)

Agora, para
$$0=t_0<\dots< t_n=T$$
, fazendo $s_k=t_k-t_{k-1}$, $k=1,\dots,n$, temos
$$\mathbb{P}(\hat{X}_{t_0}=x_0,\dots,\hat{X}_{t_n}=x_n)=\mathbb{P}(\hat{X}_{T-t_0}=x_0,\dots,\hat{X}_{T-t_n}=x_n)\\ =\lambda_{x_n}P_{x_nx_{n-1}}(s_n)\dots P_{x_1x_0}(s_1)=\lambda_{x_0}\hat{P}_{x_1x_0}(s_1)\dots\hat{P}_{x_nx_{n-1}}(s_n),\\ \text{e do Teo 4 sobre Eqs de Kolmogorov segue que}\\ (\hat{X}_t)_{0\leq t\leq T}\sim \mathsf{PMS}(\lambda,\hat{\mathbf{Q}}).$$

4

Equilíbrio detalhado; reversibilidade

Def. Uma Q-matrix \mathbf{Q} e uma medida λ em \mathcal{S} são ditas estar em equilíbrio detalhado se

$$\lambda_{x}q_{xy} = \lambda_{y}q_{yx} \ \forall \ x, y \in \mathcal{S}. \tag{4}$$

Lema 2

Se ${\bf Q}$ e λ estiverem em equilíbrio detalhado, então λ é invariante para ${\bf Q}$.

Dem.

$$(\lambda \mathbf{Q})_x = \sum_{y \in \mathcal{S}} \lambda_y q_{yx} \stackrel{\text{(4)}}{=} \sum_{y \in \mathcal{S}} \lambda_x q_{xy} = \lambda_x \sum_{y \in \mathcal{S}} q_{xy} = 0,$$

e temos que $\lambda \mathbf{Q} = \mathbf{0}$.

Def. Seja $(X_t) \sim \mathsf{PMS}(\lambda, \mathbf{Q})$, com \mathbf{Q} uma Q-matriz irredutível e não explosiva, e λ uma distr de prob em \mathcal{S} . Diremos que (X_t) é reversível se $(X_{T-t})_{0 \leq t \leq T} \sim \mathsf{PMS}(\lambda, \mathbf{Q})$ para todo $T \geq 0$.

Teorema 2

Seja \mathbf{Q} uma Q-matriz irredutível e não explosiva, e λ uma distr de prob em \mathcal{S} . Suponha que $(X_t) \sim \mathsf{PMS}(\lambda, \mathbf{Q})$. São equivalentes

- (a) (X_t) é reversível;
- (b) \mathbf{Q} e λ estão em equilíbrio detalhado.

Dem. (a) e (b) ambas implicam que λ é invariante para **Q**.

Então (a) e (b) ambas são equivalentes a dizer que

 $\hat{\mathbf{Q}} = \mathbf{Q}$ no Teo 1.

_

Teorema Ergódico

Teorema 3 (Teorema Ergódico)

Seja \mathbf{Q} uma Q-matriz irredutível, e ν uma medida qquer em \mathcal{S} , e suponha que $(X_t) \sim \mathsf{PMS}(\nu, \mathbf{Q})$. Então para todo $x \in \mathcal{S}$

$$\frac{1}{t} \int_0^t \mathbb{1}\{X_s = x\} ds \to \frac{1}{m_x q_x} \text{ qdo } t \to \infty \text{ qc}, \tag{5}$$

onde $m_X=\mathbb{E}_X(\mathcal{T}_X)$. Além disto, no caso rec pos, se $f:\mathcal{S}\to\mathbb{R}$ for limitada, temos que

$$\frac{1}{t} \int_0^t f(X_s) \, ds \to \bar{f} = \sum_{x \in \mathcal{S}} f(x) \lambda(x) \, \text{qdo } t \to \infty \, \text{qc}, \tag{6}$$

onde λ é a única distr inv p/ \mathbf{Q} .

Dem. Teo 3

Se x for transitório, então

$$\frac{1}{t} \int_0^t 1\{X_s = x\} \, ds \le \frac{1}{t} \int_0^\infty \mathbb{1}\{X_s = x\} \, ds \to 0 = \frac{1}{m_x q_x} \text{ qdo } t \to \infty \text{ qc.}$$

 $<\infty$

Vamos supor então x é recorrente. Vê-se prontamente que a proporção assintótica do tempo passado em x a partir do tempo 0 é a mesma do que aquela a partir de \mathcal{T}_x ($< \infty$ qc); logo, basta considerar o caso em que $\nu = \delta_x$.

Sejam L_1, L_2, \ldots as durações das sucessivas visitas de (X_t) a x, e M_1, M_2, \ldots as durações dos sucessivos períodos gastos por (X_t) entre visitas a x: $R_0 = 0$ e para $n \geq 0$

$$L_{n+1} = \inf\{t > R_n : X_t \neq x\} - R_n;$$

 $R_{n+1} = \inf\{t > R_n + L_{n+1} : X_t = x\}; M_{n+1} = R_{n+1} - R_n.$

Dem. Teo 3 (cont)

Pela PFM:

indep
$$\begin{cases} L_1, L_2, \dots & \text{iid } \sim \operatorname{Exp}(q_x); \\ M_1, M_2, \dots & \text{iid, } \mathbb{E}(M_1) = m_x. \end{cases}$$

Pelo LFGN

$$\frac{L_1+\cdots+L_n}{n} \xrightarrow[n\to\infty]{q_c} \frac{1}{q_x}, \quad \frac{M_1+\cdots+M_n}{n} \xrightarrow[n\to\infty]{q_c} m_x,$$

e logo

$$\frac{L_1 + \dots + L_n}{M_1 + \dots + M_n} \xrightarrow[n \to \infty]{} \frac{1}{m_x q_x},\tag{7}$$

$$e \xrightarrow[N_n]{} \xrightarrow[N\to\infty]{} 0, e, se m_X < \infty, \xrightarrow[N_{n+1}]{} \xrightarrow[N\to\infty]{} 1.$$
 (8)

Dem. Teo 3 (cont)

Logo, para $R_n \leq t < R_{n+1}$ temos

$$\frac{R_n}{R_{n+1}} \frac{L_1 + \dots + L_n}{M_1 + \dots + M_n} \le \frac{1}{t} \int_0^t 1\{X_s = x\} ds \le \frac{L_1 + \dots + L_n}{M_1 + \dots + M_n} + \frac{L_{n+1}}{R_n},$$
 e (5) segue de (7) e (8).

No caso recorrente positivo,

$$\frac{1}{t} \int_0^t f(X_s) \, ds = \sum_{x \in S} f(x) \left(\frac{1}{t} \int_0^t 1\{X_s = x\} \, ds - \lambda_x \right) \xrightarrow[n \to \infty]{qc} 0$$

pelo mesmo argumento usado na prova do Teo 2.b do cj de slides sobre o Teo Ergódico para CM's em tempo discreto (Teorema 1.10.2 do livro), observando que $\lambda_{\scriptscriptstyle X}=\frac{1}{m_{\scriptscriptstyle X}q_{\scriptscriptstyle X}}$.