Workshop OpenFlow

4. Rate limiter (traffic metering)

Akbari Indra Basuki Pusat Penelitian Informatika, LIPI

Daftar Materi

Topik	Keterangan
Basic forwarding	Dasar-dasar OpenFlow
Routing & Monitoring	Program Controller: Shortest-path routing Monitor node and link status Integrasi NetworkX dan matplotlib
Packet Filtering (Firewall + Web Interface)	Program Controller: Bloom Filter, Flask
Load balancing	Group bucket and group tables Round robin load balancing Main-backup path protection
Rate limiting	Meter table
Stateless vs Stateful data plane Stateful data plane	Jenis data plane dalam memproses paket OpenState SDN Arp handling Port Knocking

Rate limiter (meter table)

Bagaimana operator membatasi kecepatan jaringan untuk setiap pengguna?

Menggunakan meter table berdasarkan alamat IP pengguna

OpenFlow mendukung pembatasan kecepatan dan bandwidth menggunakan Meter table

Hanya berjalan pada userswitch (bukan OpenVSwitch)

Jenis pembatasan kecepatan:

- Drop limiter
- DscpRemark limiter

Acuan pembatasan:

Ukuran paket: OFPMF KBPS

Jumlah paket: OFPMF_PKTPS

Paket brust: OFPMF BURST

Statistik paket: OFPMF_STATS

Studi kasus — Speed limiter dengan meter table

Skenario:

- Switch S1 dapat membatasi kecepatan pengiriman paket dari Host 1 ke Host 2
- Kecepatan pengiriman ditentukan 100 Kbps

Implementasi:

- Switch 1: Meter table SELECT dengan mode DropLmiter berdasarkan ukuran paket (OFPMF_KBPS)
- Controller menginstall flow rule secara statis ketika switch terkoneksi

Source code

```
@set_ev_cls(ofp_event.EventOFPSwitchFeatures, CONFIG_DISPATCHER)
def switch features handler(self, ev):
       msg = ev.msg
       dp = msg.datapath
       ofproto = dp.ofproto
                                                             Metering per-ukuran paket 100 Kbps
        #pasang band meter
       bands = [dp.ofproto_parser.OFPMeterBandDrop(rate=100, burst_size=10)]
       req = dp.ofproto_parser.OFPMeterMod(datapath=dp, command=ofproto.OFPMC_ADD, flags=ofproto.OFPMF_KBPS, meter_id=1, bands=bands)
       dp.send msq(req)
       print "band meter rule installed"
                                                                                                Kirim ke meter table/limiter sebelum paket di
       #atur packet yang dikenai aturan meter
                                                                                                forward paket ke Host 2
       match = dp.ofproto_parser.OrPMatch(in_port=1, eth_type=0x0800, ipv4_src="10.0.0.1")
actions = [ dp.ofproto_parser.OFPActionOutput(2)1
       inst = [ dp.ofproto_parser.OFPInstructionActions(ofproto.OFPIT_APPLY_ACTIONS, actions), dp.ofproto_parser.OFPInstructionMeter(meter_id=1)
       mod = dp.ofproto_parser.OFPFlowMod(datapath=dp, table_id=0, priority=10, match=match, instructions=inst)
        dp.send msg(mod)
       print "flow meter rule installed"
        #default: semua paket IP tanyakan ke controller (priority=0)
       match = dp.ofproto_parser.OFPMatch(eth_type=0x800)
       actions = [dp.ofproto_parser.OFPActionOutput(ofproto.OFPP_CONTROLLER, ofproto.OFPCML_NO_BUFFER)]
       self.add_flow(dp, match, actions)
```

Langkah pengujian

Pengujian:

- Jalankan aplikasi controller (simpleMeter.py), meter 100 Kbps
 Ryu-manager simpleMeter.py
- Jalankan mininet, topologi: simpleTopo.py
 Sudo python simpleTopo.py
- H2 menjalankan iperf server

```
<mark>Iperf –s –i 1 -u</mark>
```

H1 menjalankan iperf client, throughput 1000 Kbps (1 Mbps)

```
Iperf -c 10.0.0.2 -u -b 1000k -t 10
```

Ctrl+C untuk mengakhiri program tcpdump

- Amati perbedaan throughput yang dapat dihasilkan oleh switch tanpa (simpleswitch.py) dan dengan metering (simplemeter.py)
 - Apakah throughput keduanya sama (1 Mbps) atau menurun seperti meter table (100 Kbps)?

Latihan: Variasi jenis meter

- Ubah kode untuk mengimplementasikan jenis metering berdasarkan Jumlah paket (OFPMF_PKTPS)
- Ubah mode dari drop limiter menjadi mode DscpRemark (OFPMeterBandDscpRemark)

Daftar pustaka

- 1. https://ryu.readthedocs.io/en/latest/ofproto_v1_3_ref.html
- 2. http://csie.nqu.edu.tw/smallko/sdn/ryu_meter.htm