## Notes on regularization

**CS434** 

#### A regression example: Polynomial Curve Fitting



- In this example, there is only one feature x. We learn a function of M-order polynomial
- Alternatively, we could also view this as linear regression using  $(1, x, x^2, ..., x^M)$  as the features.
- Note that this new feature space is derived from the original input x
- Such derived features are often referred to as the basis functions

#### Consider different choices for M



- Larger M leads to higher model complexity
- Given 10 data points, if M=9, we can fit the training data perfectly severely overfitting

### Over-fitting issue



- What can we do to curb overfitting
  - Use less complex model
  - Use more training examples
  - Regularization

# In linear regression, overfitting can often be characterized by large weights

|                | M = 0 | M = 1 | M = 3  | M = 9       |
|----------------|-------|-------|--------|-------------|
| W <sub>0</sub> | 0.19  | 0.82  | 0.31   | 0.35        |
| W <sub>1</sub> |       | -1.27 | 7.99   | 232.37      |
| W <sub>2</sub> |       |       | -25.43 | -5321.83    |
| W <sub>3</sub> |       |       | 17.37  | 48568.31    |
| W <sub>4</sub> |       |       |        | -231639.30  |
| W <sub>5</sub> |       |       |        | 640042.26   |
| W <sub>6</sub> |       |       |        | -1061800.52 |
| W <sub>7</sub> |       |       |        | 1042400.18  |
| W <sub>8</sub> |       |       |        | -557682.99  |
| <b>W</b> 9     |       |       |        | 125201.43   |

#### Regularized Linear Regression

• Consider the following loss function:



|                       | M = 0 | M = 1 | M = 3    | M = 9       |
|-----------------------|-------|-------|----------|-------------|
| <b>w</b> <sub>0</sub> | 0.19  | 0.82  | 0.31     | 0.35        |
| $W_1$                 |       | -1.27 | 7.99     | / 232.37    |
| $W_2$                 |       |       | -25.43 / | -5321.83    |
| <b>W</b> 3            |       |       | 17.37    | 48568.31    |
| $W_4$                 |       |       |          | -231639.30  |
| <b>W</b> 5            |       |       |          | 640042.26   |
| $W_6$                 |       |       | \        | -1061800.52 |
| <b>W</b> 7            |       |       |          | 1042400.18  |
|                       |       |       |          | >=======    |

#### L2 Regularized Linear Regression

• With the SSE loss and a quadratic regularizer, we get

$$\frac{1}{2} \sum_{i=1}^{N} (y_i - \mathbf{w}^T \mathbf{x}_i)^2 + \frac{\lambda}{2} \mathbf{w}^T \mathbf{w}$$

which is minimized by

$$\mathbf{w} = (\lambda \mathbf{I} + \mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T Y$$

- $\lambda$ : regularization coefficient, which controls the trade-off between model complexity and the fit to the data
  - Larger  $\lambda$  encourages simple model (driving more elements of **w** to 0)
  - Small  $\lambda$  encourages better fit of the data (driving SSE to zero)

#### More Regularizations

$$\sum_{i=1}^{N} (y_i - \mathbf{w}^T \mathbf{x}_i)^2 + \lambda \sum_{j=0}^{M} |w_j|^q$$

Equivalent to minimizing SSE subject to  $\sum_{i=0}^{M} |w_i|^q \leq \epsilon$ 

A good explanation of this equivalence is provided here:

http://math.stackexchange.com/questions/335306/why-are-additional-constraint-and-penalty-term-equivalent-in-ridge-regression



Shape is determined by q, size determined by  $\lambda$ 

#### Regularized Linear Regression

• Lasso (q = 1) tends to generate sparser solutions (majority of the weights shrink to zero) than a quadratic regularizer (q = 2, often called ridge regression).



#### Commonly used regularizers

L-2 regularization 
$$\sum_{i=1}^{N} (y_i - \mathbf{w}^T \mathbf{x}_i)^2 + \lambda \sum_{j=0}^{M} w_j^2$$

Poly-time close-form solution Curbs overfitting but does not produce sparse solution

L-1 regularization

$$\sum_{i=1}^{N} (y_i - \mathbf{w}^T \mathbf{x}_i)^2 + \sum_{j=0}^{M} |w_j|$$

Poly-time approximation algorithm Sparse solution – potentially many zeros in w

L-0 regularization

$$\sum_{i=1}^{N} (y_i - \mathbf{w}^T \mathbf{x}_i)^2 + \sum_{j=0}^{M} I(w_j \neq 0)$$

Seek to identify optimal feature subset NP-complete problem!