Logic-based Ontology Engineering

Henrik Tscherny

18. Juli 2022

Inhaltsverzeichnis

1 Description Logic				
	Attribute Language with Concepts (ALC)	1		
	1.1 Vocabulary	2		
	1.2 Interpretations			
	1.3 Axioms			
	1.4 Ontologies			
	1.5 Reasoning	5		
	1.6 Open World vs. Closed World	7		
2	SROIQ(D)	7		
	2.1 Structure	8		
3	EL	10		
	3.1 Description Trees			
	3.2 Reasoning			
4	Ontology Learning 1			
5	Matching/Aligning Ontologies			
6	Ontology Maintenance			
1	Description Logic Attribute Language with Concepts (ALC)			

Description logics (DLs) are a *decidable* subset of first-order logic. They are restricted to *unary and binary predicates* .

1.1 Vocabulary

- C: Concepts/Classes/Categories → Person(x) is the set of all elements which are a person
 - Concepts can be defined inductively, if C and D are concepts then:

Name: top bottom conjunction disjunction negation

- Syntax: \top \bot $C \sqcap D$ $C \sqcup D$ $\neg C$ Semantics: $\Delta^{\mathcal{I}}$ \emptyset $C^{\mathcal{I}} \cap D^{\mathcal{I}}$ $C^{\mathcal{I}} \cup D^{\mathcal{I}}$ $\Delta^{\mathcal{I}} \setminus C^{\mathcal{I}}$
- Example: Plant \sqcap Tree \rightarrow set of objects being a plant and a tree
- if C is a concepts and r is a role the following are also concepts (describes *outgoing role connections*):

Name: existential restriction value restriction

- Syntax: $\exists r.C$ $\forall r.C$ Semantics: $\{d \mid \exists e.(d,w) \in r^{\mathcal{I}} \land e \in C^{\mathcal{I}}\}$ $\{d \mid \forall e.(d,e) \in r^{\mathcal{I}} \rightarrow e \in C^{\mathcal{I}}\}$
- Example: $\exists isSpicy.Food = \exists y.(isSpicy(x,y) \land Food(y)) \rightarrow \text{spicy food exists}$
- Example 2: $\forall isPlant.Tree = \forall y.(isPlant(x,y) \rightarrow Tree(y))$ \rightarrow all trees are plants
- size of a concept:
 - * $\operatorname{size}(A) = \operatorname{size}(\top) = \operatorname{size}(\bot) = 1$
 - * $\operatorname{size}(C \sqcap D) = \operatorname{size}(C \sqcup D) = 1 + \operatorname{size}(C) + \operatorname{size}(D)$
 - * $\operatorname{size}(\neg C) = \operatorname{size}(\exists r.C) = \operatorname{size}(\forall r.C) = 1 + \operatorname{size}(\mathbf{C})$
 - \rightarrow the number of \exists , \forall , \neg , \Box , \bot , \bot + 'basic' concepts
 - * Example: size($\exists r.(\exists s.A \sqcap \exists r.\exists s.\top)$) = 7
- role depth of a concept:
 - * $rd(A) = rd(\top) = rd(\bot) = 0$
 - * $rd(\neg C) = rd(C)$
 - * $rd(C \sqcap D) = rd(C \sqcup D) = max\{rd(C), rd(D)\}$
 - * $rd(\exists r.C) = rd(\forall r.C) = 1 + rd(C)$
 - \rightarrow maximal nesting depth of role restrictions in the concept
 - * Example: $rd(\exists r.(\exists s.A \sqcap \exists r.\exists s.\top)) = 3$
- if $C \sqsubseteq_{\mathcal{O}} D$ then C is more specific than D, D is more general than C

- R: Roles/Relations/Properties/Attributes \rightarrow likes(x,y) is the set of all pairs, where x likes y
 - only unary and binary relations \rightarrow n-ary relations can be transformed into unary and binary relations with reification
- I: Objects/Individuals → represents a constant in first-order logic, like a TOM, a specific person

1.2 Interpretations

A DL *interpretation* is a tuple $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$, where:

- $\Delta^{\mathcal{I}}$ is the **domain** of \mathcal{I} ($\Delta^{\mathcal{I}} \neq \emptyset$)
- $\cdot^{\mathcal{I}}$ is the interpretation function
 - each $A \in C$ is interpreted as a set $A^{\mathbb{I}} \subseteq \Delta^{\mathcal{I}}$
 - each $r \in R$ is interpreted as a binary relation $r^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$
 - each $a \in I$ is interpreted a an element $a^{\mathcal{I}} \in \Delta^{\mathcal{I}}$
- Interpretations can be represented as labeled graphs like:

- axioms can be used to restrict the set of interpretations
- every interpretation is a model of \emptyset

1.3 Axioms

- general concept inclusion (CGI)
 - Syntax: $C \sqsubseteq D$
 - Semantics: $\mathcal{I} \models C \sqsubseteq D \Leftrightarrow C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$
- equivalence axiom

- $-C \equiv D \Leftrightarrow C \sqsubseteq D \sqcap D \sqsubseteq C$
- concept definitions
 - $A \equiv D$, where A is a concept name
 - Example: Tutor ≡ Person
- Assertions/Facts

Name: concept assertion role assertion

- Syntax: a:C (a,b):r Semantics: $a^{\mathcal{I}} \in C^{\mathcal{I}}$ $(a^{\mathcal{I}},b^{\mathcal{I}}) \in r^{\mathcal{I}}$

- Example concept assertion: Room-42:Room
- Example role assertion: (Room-42, IBIS):belongsTo
- closure axiom
 - define the range/scope of a relation
 - setting the scope of a description under the open world assumption
 - Example: Cow $\sqsubseteq \forall$ eats.(Grass \sqcup Grain)
- covering axiom
 - (partial) definition with a disjunction on the right
 - can be used to cover not explicitly stated informations
 - Example: Person \equiv Man \sqcup Woman \sqcup Diverse
- disjointness axiom
 - can be used to separate to concepts from each other
 - Example: Animal

 ¬ Plant

1.4 Ontologies

An ontology is a set $\mathcal{O} = \mathcal{A} \cup \mathcal{T}$, where:

- ABox A, finite set of assertion/facs (ABox hold the 'data')
- TBox \mathcal{T} , finite set of general concept inclusions (TBox hold the 'knowledge')
- Example:

- $\mathcal{O} = \mathcal{A} \cup \mathcal{T}$
- $A = \{Room-42:Room, (Room-42,IBIS) : belongsTo, (IBIS,Berlin) : locatedIn \}$
- $\mathcal{T} = \{\text{Room} \sqsubseteq \neg \text{City}, \text{Hotel} \sqsubseteq \neg \text{Room}\}$
- $C(\mathcal{O}) = \{\text{Room,Hotel,City}\}\$ $R(\mathcal{O}) = \{\text{belongsTo,locatedIn}\}\$ $I(\mathcal{O}) = \{\text{Room-42,IBIS,Berlin}\}\$
- an ontology is **inconsistent** iff $\mathcal{O} \models \top \sqsubseteq \bot$
- if a ontology is consistent the ABox is irrelevant for checking satisfiability and subsumption
- a TBox \mathcal{T} is called acyclic if:
 - each concept name A has at most one definition $A \equiv C_A \in \mathcal{T}$
 - the depends on relation is acyclic \rightarrow A depends on B if B occurs in the definition C_A of A in \mathcal{T}
- the expansion of C wrt. to an acyclic TBox \mathcal{T} is to exhaustively replace all defined concept names in C by their definitions

1.5 Reasoning

Reasoning allows to entail information from an ontology

- reasoning for acyclic ALC TBoxes is in PSpace, general ALC reasoning is in ExpTime
- \mathcal{O} entails an axiom $\alpha(\mathcal{O} \models \alpha)$ if every model of \mathcal{O} is also a model of α

C is subsumed by D
$$\mathcal{O} \models C \sqsubseteq D$$
 $C \sqsubseteq_{\mathcal{O}} D$
C is equivalent to D $\mathcal{O} \models C \equiv D$ $C \equiv_{\mathcal{O}} D$
C is strictly subsumed by D $C \sqsubseteq_{\mathcal{O}} \land C \not\equiv_{\mathcal{O}} D$ $C \sqsubseteq_{\mathcal{O}} D$
C and D are disjoint $\mathcal{O} \models C \sqcap D \sqsubseteq \bot$ – (everything wrt. to \mathcal{O})

- $\mathcal{O} \models a : C$, a is an instance of C
- $\mathcal{O} \not\models C \sqsubseteq \bot$, C is satisfiable
- If all concept names in \mathcal{O} are satisfiable, then \mathcal{O} in coherent

- classification is the task of computing all entailments of the form $\mathcal{O} \models A \sqsubseteq B, \ A, B \in C$
- materialization is the task of computing all entailments of the form $\mathcal{O} \models a : A \text{ and } \mathcal{O} \models (a,b) : r$, with $(a,b) \in I, A \in C, r \in R$
- A tautology is an axiom that is satisfied by all interpretations
 - if α is a tautology, then α is entailed by the empty ontology \emptyset and also entailed by all \mathcal{ALC} ontologies
 - the following are tautologies

$$C \sqcap D \equiv D \sqcap C \quad (C \sqcap D) \sqcap E \equiv C \sqcap (D \sqcap E) \quad C \sqcap C \equiv C \quad C \sqcap T \equiv C$$

$$C \sqcup D \equiv D \sqcup C \quad (C \sqcup D) \sqcup E \equiv C \sqcup (D \sqcup E) \quad C \sqcup C \equiv C \quad C \sqcup \bot \equiv C$$

$$\neg \neg C \equiv C \quad \neg (C \sqcap D) \equiv \neg C \sqcup \neg D \quad \neg (C \sqcup D) \equiv \neg C \sqcap \neg D$$

$$\neg T \equiv \bot \quad \neg \bot \equiv T \quad \neg \exists r.C \equiv \forall r.\neg C \quad \neg \forall r.C \equiv \exists r.\neg C$$

$$C \sqcap D \sqsubseteq C \quad C \sqsubseteq T \quad C \sqsubseteq C \sqcup D \quad \bot \sqsubseteq C$$

$$(\exists r.C) \sqcap (\forall r.D) \sqsubseteq \exists r.(C \sqcap D)$$

$$\forall r.(C \sqcap D) \equiv (\forall r.C) \sqcap (\forall r.D) \quad \forall r.T \equiv T \quad (\forall r.C) \sqcup (\forall r.D) \sqsubseteq \forall r.(C \sqcup D)$$

$$\exists r.(C \sqcup D) \equiv (\exists r.C) \sqcup (\exists r.D) \quad \exists r.\bot \equiv \bot \quad \exists r.(C \sqcap D) \sqsubseteq (\exists r.C) \sqcap (\exists r.D)$$

- in negation normal form (NNF) negation (¬) is only directory in front of concept names
- every concept can be expressed in NNF
- entailment rules:
 - $C \sqsubseteq_{\mathcal{O}} D \land D \sqsubseteq_{\mathcal{O}} E \rightarrow C \sqsubseteq_{\mathcal{O}} E$ (transitivity)
 - $C \sqsubseteq_{\mathcal{O}} D \to \exists r. C \sqsubseteq_{\mathcal{O}} \exists r. D, \forall r. D, C \sqcap E \sqsubseteq_{\mathcal{O}} D \sqcap E \land C \lor R \sqsubseteq_{\mathcal{O}} D \sqcup E$ (substitution)
 - $-C \sqsubseteq_{\mathcal{O}} D \sqcap E \leftrightarrow C \sqsubseteq_{\mathcal{O}} D \land C \sqsubseteq_{\mathcal{O}} E$
 - $-C \sqcup D \sqsubseteq_{\mathcal{O}} E \leftrightarrow C \sqsubseteq_{\mathcal{O}} E \land D \sqsubseteq_{\mathcal{O}} E$
 - $\ C \sqcap D \sqsubseteq_{\mathcal{O}} E \leftrightarrow C \sqsubseteq_{\mathcal{O}} \neg D \sqcup E$
 - $C \sqsubseteq_{\mathcal{O}} D \leftrightarrow \neg D \sqsubseteq_{\mathcal{O}} \neg C$ (contraposition)
 - C \sqcap \neg C \sqsubseteq \emptyset \bot (contradiction)
- reasoning with ABoxes

-
$$\mathcal{O} \models a : C \land C \sqsubseteq_{\mathcal{O}} D \rightarrow \mathcal{O} \models a : D$$

- $\mathcal{O} \models a : \top$
- $\mathcal{O} \models a : \bot \rightarrow \top \sqsubseteq_{\mathcal{O}} \bot (\mathcal{O} \text{ is inconsistent})$
- $\mathcal{O} \models a : (C \sqcap D) \leftrightarrow \mathcal{O} \models a : C \land \mathcal{O} \models a : D$
- $\mathcal{O} \models a : C \lor \mathcal{O} \models a : D \rightarrow \mathcal{O} \models a : (C \sqcup D)$
- $\mathcal{O} \models a : C \land \mathcal{O} \text{ is consistent} \rightarrow \mathcal{O} \not\models a : \neg C$
- $\mathcal{O} \models (a,b) : r \land \mathcal{O} \models b : C \rightarrow \mathcal{O} \models a : (\exists r.C)$
- $\mathcal{O} \models (a,b) : r \land \mathcal{O} \models a : (\forall r.C) \rightarrow \mathcal{O} \models b : C$
(1-4) hold in both directions

1.6 Open World vs. Closed World

- in an open-world assumption, unknown ≠ false
 → you have to explicitly state that sth. is false
- in a closed-world assumption, unknown = false
 → you have to explicitly state that sth. is true

2 SROIQ(D)

More expressive DL then ALC, that is still decidable (reasoning is 2-NExpTime-complete)

SROIQ(D) stands for:

- transitive roles (S)
- complex role axioms (R)
- nominals (O)

• Inverse roles (I)

• qualified number restrictions (Q)

Name at-least restriction at-most restriction $Syntax \geq nr.C \leq nr.C$ Semantics $\{d \mid \#\{e \in C^{\mathcal{I}} \mid (d,e) \in r^{\mathcal{I}}\} \geq n\} \quad \{d \mid \#\{e \in C^{\mathcal{I}} \mid (d,e) \in r^{\mathcal{I}}\} \leq n\}$ Example Student \sqcap (\geq 2 attends.Lecture) \leq 1 belongsTo. \dashv (qualifiers e.g. \leq and \geq are optional and only numbers can be used)

• concrete domains (D)

2.1 Structure

- In SROIQ(D) an ontology consists of three parts $\mathcal{O} = \mathcal{A} \cup \mathcal{TR}$
- Assertions

Nameequalityinequalitynegated role assertionSyntax $a \approx b$ $a \not\approx b$ $(a,b): \neg r$ Semantics $a^{\mathcal{I}}$ $a^{\mathcal{I}} \neq b^{\mathcal{I}}$ $(a^{\mathcal{I}},b^{\mathcal{I}}) \not\in r^{\mathcal{I}}$ ExampleDD \approx Dresden $DD \not\approx APB$ (Ernie, Bert): \neg hasBrother

- all assertions are only syntactic sugar:

$$* a : C \Leftrightarrow \{a\} \sqsubseteq C$$

$$* a \approx b \Leftrightarrow \{a\} \sqsubseteq \{b\}$$

$$* a \not\approx b \Leftrightarrow \{a\} \sqsubseteq \neg \{b\}$$

$$* (a,b) : r \Leftrightarrow \{a\} \sqsubseteq \exists r.\{b\}$$

$$* (a,b) : \neg r \Leftrightarrow \{a\} \sqsubseteq \forall r.\neg \{b\}$$

- $Role\ Axioms \rightarrow RBox$
- a RBox \mathcal{R} is regular if there is a strict partial order < on $R^-(\mathcal{O})$ s.d:

$$-r < s \Leftrightarrow r^- < s, \forall r, s \in R^-(\mathcal{O})$$

- every role inclusion is of the form:

$$* r \circ r \sqsubseteq r$$

$$* r^{-} \sqsubseteq r$$

$$* r_{1} \circ \cdots \circ r_{n} \sqsubseteq r$$

$$* r \circ r_{1} \circ \cdots \circ r_{n} \sqsubseteq r$$

$$* r_{1} \circ \cdots \circ r_{n} \circ r \sqsubseteq r$$

• role axioms:

- Additional Axioms:

Name	Syntax	Defined as
disjointness	Dis(C, D)	$C \sqsubseteq \neg D \lor D \sqsubseteq \neg C \lor C \sqcap D \sqsubseteq \bot$
role equivalence	$r \equiv s$	$r \sqsubseteq s, s \sqsubseteq r$
domain restriction	$Dom(r) \sqsubseteq C$	$\top \sqsubseteq \forall r^c \lor \exists r.\top \sqsubseteq C$
range restriction	$Ran(r) \sqsubseteq C$	$\top \sqsubseteq \forall r.C \lor \exists r^ \top \sqsubseteq C$
role irreflexivity	Irr(r)	$\exists r. Self \sqsubseteq \bot$
role functionality	Fun(r)	$\top \sqsubseteq \leq 1r$
role symmetry	Sym(r)	$r \sqsubseteq r^-$
role asymmetry	Asy(r)	$Dis(r, r^-)$
role transitivity	Tra(r)	$r \circ r \sqsubseteq r$

- Concrete Domains $\rightarrow \Delta^D = \mathbb{Z}$, One $\Delta^D = 1$, Even $\Delta^D = \{..., -2, 0, 2, ...\}$
- Attributes
 - Let R_C be an infinite set of concrete role names (also called attribute names)
 - extend the definitions of an Interpretation $\mathcal I$ to assign each $u\in R_C$ a binary relation $u^{\mathcal I}\subseteq \Delta^{\mathcal I}\times \Delta^{\mathcal I}$
 - Example: (APB/E005, 30):hasSize, Fun(hasSize)

• Concrete Role Restrictions

Name (concrete) existential restriction

Syntax
$$\exists u.P$$

Semantics $\{d \mid \exists v.(d,v) \in u^{\mathcal{I}} \land v \in P^{D}\}$

Example $\exists \text{hasSize.Positive}, \exists \text{hasPrice.} \geq 1000 \text{ EUR}$

3 EL

Much simpler DL with much lower complexity, EL can be reasoned in PTime

- \mathcal{EL} is the sublogic of \mathcal{ALC} that only allows $\top, \sqcap, \exists r. C$
- all \mathcal{EL} ontologies are consistent and all concepts within are satisfiable
- an Atom is a concept name or an existential restriction $(At(C) := \{C_1, ..., C_n\})$
- every concept C is equivalent to a concept of the form $C_1 \sqcap \cdots \sqcap C_n$ $(C = \top \text{ is the empty conjunction with } At(\top) = \emptyset)$
- in \mathcal{EL} concepts are expressed as description trees

3.1 Description Trees

- description Tree $T = (V, E, v_0, l)$ with:
 - root node: v_0
 - nodes $v \in V$
 - edged $e \in E$
 - labeling function $l(v)\subseteq C$ which assigns each node a finite set of concepts and $l(e)\in R$ assigns each edge role names
- the root node v_0 is labeled by $l(v) := At(C) \cap C$
- for every $\exists r.D \in At(C), \exists (v_0, v_{\exists r.D}) : l(v_0, v_{\exists r.D}) := r$ where $v_{\exists r.D}$ is the root of a copy of the description tree T_D of D
- Example: $A \sqcap \exists r. (A \sqcap (\exists s.A) \sqcap B) \sqcap Es.A$

• the tree T_C can be seen as an interpretation whose root satisfies C this interpretation is called the canonical models of C

- *Proof* (by induction on the role depth of C):
 - base case (rd(C) = 0):
 - * C is a conjunction of concept names and \top
 - * for every $A \in At(C), A \in l(v_0)$ and thus $v_0 \in A^{\mathcal{I}_C}$

* consequently,
$$v_0 \in \left(\bigcap_{A \in At(C)} A \right)^{\mathcal{I}_C} = C^{\mathcal{I}_C}$$

- step (rd(C) > 0):
 - * For $D = A \in At(C) \cap C$ the case is as for rd(C) = 0
 - * Assume $D = \exists r.E \in At(C)$, then $(v_0, v_{\exists r.E}) \in E$, where $l(v_0, v_{\exists r.E}) = r$ and $v_0, v_{\exists r.E}$ is the root in the description three of E
 - * rd(E) < rd(C) and by IH, $v_{\exists r.E} \in E^{\mathcal{I}_C}$
 - * $(v_0, v_{\exists r.E}) \in r^{\mathcal{I}_C}$, and thus $v_0 \in (\exists r.E)^{\mathcal{I}_C}$

* We obtain
$$v_0 \in \left(\prod_{D \in At(C)} D \right)^{\mathcal{I}_C} = C^{\mathcal{I}_C}$$

- homomorphism between description trees $T_1=(V_1,E_1,v_1,l_1)$, $T_2=(V_2,E_2,v_2,l_2)$
 - $h: V_1 \to V_2$
 - $-h(v_1) = v_2$
 - $-l_1(v) \subseteq l_2(h(v)), \forall v \in V_1$
 - $\forall (v,w) \in E_1 \; \exists (h(v),h(w)) \in E_2 \; \text{each edge with the same label}$

- for two \mathcal{EL} concepts C, D, the axiom $C \sqsubseteq D$ is a tautology iff there is a homomorphism from T_D to T_C
- for two \mathcal{EL} concepts C, D, the axiom $C \sqsubseteq D$ is a tautology iff $\forall D' \in At(D) \ \exists C' \in At(C) : (C', D' \in C \land C' = D') \lor (C' = \exists r.C'', D' = \exists r.D'' \land C'' \sqsubseteq D'')$ is a tautology
- for two \mathcal{EL} concepts $C \equiv D \Leftrightarrow T_C \cong T_D$

- every \mathcal{EL} concept can be reduced by applying the following rules exhaustively:
 - $-C\sqcap \top \to C$
 - $-C \sqcap C \to C$
 - $-\exists r.C \cap \exists r.D \rightarrow \exists r.C \text{ if } C \subseteq D \text{ is a tautology,}$

3.2 Reasoning

- Normal Form of EL TBoxes
 - A TBox \mathcal{T} is in normal form if all CGIs have the form:
 - * $A_1 \sqcap \cdots A_n \sqsubseteq B$
 - $*A \sqsubseteq \exists r.B$
 - $* \exists r.A \sqsubseteq B$
 - if a TBox is not in normal form you may apply those normalization rules:
 - $* C \square D \square E \rightarrow C \square D, C \square E$
 - $* C \sqsubseteq \exists r. \hat{D} \to C \sqsubseteq \exists r. A_{\hat{D}}, A_{\hat{D}} \sqsubseteq \hat{D}$
 - $* \hat{C} \sqsubseteq \hat{D} \rightarrow \hat{C} \sqsubseteq A_{\hat{D}}, \ A_{\hat{D}} \sqsubseteq \hat{D}$
 - $* \ C \sqcap \hat{D} \sqsubseteq E \to \hat{D} \sqsubseteq A_{\hat{D}}, \ C \sqcap A_{\hat{D}} \sqsubseteq E$
 - * $\exists r.\hat{C} \sqsubseteq D \to \hat{C} \sqsubseteq A_{\hat{C}}, \ \exists r.A_{\hat{C}} \sqsubseteq D$
 - $*~\hat{C},\hat{D}$ are neither concept names nor \top and $A_{\hat{C}},A_{\hat{D}}$ is a fresh concept name
- with classification one can decide several concept subsumptions at once (Determine all $A \sqsubseteq_{\mathcal{T}} B$ where $A, B \in C$)
 - classification rules:
 - * $\overline{A \sqsubseteq A}$ (CR1)
 - * $\frac{\bot}{A \Box \top}$ (CR2)
 - * $\frac{A \sqsubseteq A_1 \cdots A \sqsubseteq A_n \quad A_1 \sqcap \cdots \sqcap A_n \sqsubseteq B}{A \sqsubseteq B}$ (CR3)
 * $\frac{A \sqsubseteq \exists r.B \quad B \sqsubseteq C \quad \exists r.C \sqsubseteq D}{A \sqsubseteq D}$ (CR4)

 - * if the premise is in $\mathcal T$ but the conclusion is not, then add the conclusion to \mathcal{T}

- every rule adds a new axiom $A \sqsubseteq B \Rightarrow$ at most quadratic many inferences
- the classification terminates in PTime in the size of \mathcal{T}
- classification can also be use to check complex subsumptions $C \sqsubseteq_{\mathcal{T}} D$, where C, D are not just concept names
 - * add the CGIs $A_C \sqsubseteq C$, $D \sqsubseteq B_D$ to \mathcal{T} , where A_C, B_D are fresh concept names
 - * normalize the extended TBox
 - * check whether $A_C \sqsubseteq B_D$ is entailed from it

4 Ontology Learning

Extraction knowledge from a source (text, database) and transform it into an ontology

- Learning Problem:
 - \mathcal{O} a consistent ontology
 - $A \in C$ be the target concept name
 - $E^+ \subseteq I(\mathcal{O})$ be a set of positive examples for A
 - $E^- \subseteq I(\mathcal{O})$ be a set of negative examples for A
 - concept learning problem:
 - $* \mathcal{O} \models a : C_A \forall a \in E^+$
 - $* \mathcal{O} \not\models a : C_A \forall a \in E^-$
 - * \rightarrow the ontology models positive but not negative examples
- to avoid overfitting we can restrict C_A to be an \mathcal{ALC} concept \rightarrow a exact solution then may not exist but an approximation does
- finding approximate solutions
 - generate candidates for C_A called hypotheses
 - evaluate the hypotheses
 - * $fn(C_A) := \#\{a \in E^+ \mid \mathcal{O} \not\models a : C_A\}$ false negatives
 - $* fp(C_A) := \#\{a \in E^- \mid \mathcal{O} \models a : C_A\}$ false positives
 - * $acc(C_A) := 1 \frac{fn(C_A) + fp(C_A)}{\#E^+ + \#E^-}$ accuracy

- * $score(C_A) := acc(C_A) \beta \cdot size(C_A)$ $(\beta \in [0, 1] \text{ is a parameter})$
- * choose the best C_A hypotheses based on score
- * add new concept definition $A \equiv C_A$ to \mathcal{O}
- how to find a good hypothesis:
 - * Start with $C_A = \top$ which has all positive and negative examples as instances and refine concept iteratively
 - * downward refinement operator ρ
 - $\cdot \ \rho(C) \subseteq \{D \mid D \sqsubseteq_{\mathcal{O}} C\}$
 - each $D \in \rho(C)$ is formulated using the signature of \mathcal{O}
 - write $C \to_{\rho} D$ if $D \in \rho(C)$
 - $\cdot \to_{\rho}^*$ is the reflexive transitive closure of \to_{ρ}
 - · D can be reach from C via \rightarrow_{ρ} if $C \rightarrow_{\rho}^{*} D$
 - * properties of refinement operator
 - · (locally) finite: if $\rho(C)$ is finite for all concepts C
 - · proper: if $C \to_{\rho} D \Rightarrow D \sqsubseteq_{\mathcal{O}} C$
 - · complete: if $D \sqsubset_{\mathcal{O}} \Rightarrow C \rightarrow_{\rho}^{*} E$ for some concept $E \equiv_{\mathcal{O}} D$
 - · *ideal*: if it is finite proper and complete (in each step only finitely many new hypothesis are created which are not equivalent to a previous one and also from which all more specific concepts can be reached from)
 - * every ALC ontology has a complete and finite refinement operator but there is no ideal refinement operator
- refining concepts
 - * define \downarrow (A) as the lower neighbors and \uparrow (A) as the upper neighbors of A
 - * define the atomic domain ADom(r) as the unique minimal $A \in C \cup \{\top, \bot\}$ s.d. $\mathcal{O} \models Dom(r) \sqsubseteq A$
 - * define the atomic range ARan(r) similarly
 - * instead of ρ_{\top} (special case of $B=\top$ we define ρ_B relative to a context $B\in C\cup\{\top,\bot\}$
 - $\cdot \rho_B(C) := \rho'_B(C) \cup \{\bot, C \sqcap \top\}$
 - $\cdot \rho'_B(\top) := \{C_1 \sqcup \cdots \sqcup C_n \mid C_1, \cdots, C_n \text{ are of the form (a)-(c)}\}$
 - $\cdot \rho_B'(\bot) := \emptyset$
 - $\cdot \rho_B'(A) := \{ E \mid E \in \downarrow (A), B \sqcap E \not\sqsubseteq_o nt \bot \}$
 - $\cdot \rho'_B(\neg A) := \{ \neg E \mid E \in \uparrow (A), B \sqcap \neg E \not\sqsubseteq_{\mathcal{O}} \bot \}$

```
\begin{aligned}
\cdot \; \rho_B'(\exists r.D) &:= \{\exists r.E \,|\, E \in \rho_{ARan(r)}(D)\} \\
\cdot \; \rho_B'(\forall r.D) &:= \{\forall r.E \,|\, E \in \rho_{ARan(r)}(D)\} \\
\cdot \; \rho_B'(C_1 \sqcap C_2) &:= \{C_1 \sqcap E \,|\, E \in \rho_B(C_2)\} \cup \{E \sqcap C_2 \,|\, E \in \rho_B(C_1)\} \\
\cdot \; \rho_B'(C_1 \sqcup C_2) &:= \{C_1 \sqcup E \,|\, E \in \rho_B(C_2)\} \cup \{E \sqcup C_2 \,|\, E \in \rho_B(C_1)\} \\
\cdot \; \rho_B'(C_1 \sqcup C_2) &:= \{C_1 \sqcup E \,|\, E \in \rho_B(C_2)\} \cup \{E \sqcup C_2 \,|\, E \in \rho_B(C_1)\}
\end{aligned}
```

- * ρ_{\top} is complete for \mathcal{ALC}
- * ρ_{\top} is not proper for \mathcal{ALC} $(\rho_{\top}(\exists r.D) \text{ contains } \exists r.D \sqcap \top \text{ which is equivalent to } \exists r.D)$
- $\rho_{\perp}^{\sqsubseteq}$ is complete and proper but not finite
- Algorithm
 - Input: Ontology \mathcal{O} , concept names $A, E^+, E^- \subseteq I(\mathcal{O})$, parameter β
 - Output: A list of candidates for C_A
 - 1. initialize search tree with a singe node labeled by $(\top, 0)$
 - 2. **while** true **do**:
 - choose a node labeled by (C, n) with maximal $acc(C) \beta \cdot n$
 - for all $D \in \rho_{\top}^{\sqsubseteq}(C)$ with size(D) = n+1 and $D \not\equiv_{\mathcal{O}} \bot$ do:
 - * create a child node with label (D, n)
 - change the label of the current node from (C, n) to (C, n + 1)
 - stop at any time
 - 3. **return** all concepts in the search tree (ranked by score)
- the algorithm can be improved further by the use of a heuristic

5 Matching/Aligning Ontologies

Given two ontologies \mathcal{O}_1 and \mathcal{O}_2 , an alignment \mathfrak{A} is a third ontology that shares the vocabulary of \mathcal{O}_1 and \mathcal{O}_2 . \mathfrak{A} contains bridge axioms that relate one ore more entities of the ontologies

- correspondence (between \mathcal{O}_1 and \mathcal{O}_2)
 - $-(e_1, r, e_2, c)$
 - * e_1 is in \mathcal{O}_1 and e_2 is in \mathcal{O}_2
 - * either $e_1, e_2 \in C, e_1, e_2 \in R, \text{ or } e_1, e_2 \in I$

- $* r \in \{ \equiv, \sqsubset, \supset, \bot, \emptyset \}$ * $c \in [0, 1]$ is a confidence value
- Example: (ont1:Arm,≡,ont2:Arm,0.95)
- similarity can be measured using a similarity measure $\sigma M_1 \times M_2 \rightarrow [0,1]$ (the closer the value is to 1 to more similar are m_1 and m_2)
- concept name similarity can be derived from other similarity measures
 - given $f_1: N_1 \to M_1$ and $f_2: \to M_2$, the similarity measure induced by σ , f_1 , and f_2 is $\sigma': N_1 \times N_2 \to [0,1], \text{ where } \sigma'(n_1,n_2) := \sigma(f_1(n_1),f_2(n_2))$
 - Example: $\sigma'(C20480, GO\ 0009987) := \sigma(Cellular\ Process'', cellular\ Process'', cellular$ process'') = 1
- the distance measure δ induced by σ is $\delta: M_1 \times M_2 \to [0,1]$, defined by $\delta(m_1, m_2) := 1 - \sigma(m_1, m_2)$ (similarity and distance measure contain the same information, its only for convenience)
- other distance/similarity measures:
 - hamming distance: $\delta(v,w) := \frac{1}{m} \cdot |\{i \in \{1,...,n\} \mid v_i \neq w_i\}|$
 - substring similarity: $\sigma(v, w) := \frac{|u|}{m}$, where u is the longest common substring of v and w
 - n-gram similarity: $\sigma(v,w) := \frac{|n gram(v) \cap n gram(w)|}{m n + 1}$, where n - gram(v) is the set of n-letter substrings of v
 - levenshtein (edit) distance: minimal number of (insert, delete, replace) operations to get from w to v (divided by m)
- similarity measures can be combined
 - sequentially:

- parallel: Algorithm 1

- similarity measures can be aggregated (by an aggregation operator ⊗)
 - weighted sum
 - weighted product
 - triangular norm (t-norm) $\otimes : [0,1] \times [0,1] \to [0,1]$ that is associative, commutative, monotone and has neutral element 1
 - triangular conorm (t-conorm) like t-norm but with neutral element 0
- similarity can also be defined for concepts
 - directed similarity between to Concepts C, D

$$* = \sigma_d(C, D) :=$$

$$\begin{cases} \sigma'(C, D), & C, D \in C \\ \sigma'(r, s) \cdot (\beta + (1 - \beta \cdot \sigma_d(E, F)), & C = \exists r.E \land D = \exists s.F \\ \min_{D' \in At(D)} \max_{C' \in At(C)} \sigma_d(C', D'), & |At(C)| > 1 \lor |At(D)| > 1 \\ 1, & At(D) = \emptyset \\ 0, & \text{otherwise} \end{cases}$$

- * $\delta_d(C,D)$ measures how C is subsumed by D
- undirected similarity
 - $* \sigma_u(C,D) := \sigma_d(C,D) \otimes \sigma_d(D,C)$
 - $* \otimes$ is a commutative aggregation operator
- A similarity should be equivalence invariant: $\sigma(\exists r.B, \exists s.D)$ as a function $\sigma'(B,D)$ if $B \equiv_{\mathcal{O}} C$, then $\sigma(\exists r.B, \exists s.D)$ should be equal to $\sigma(\exists r.C, \exists s.D)$
- from similarity to alignment
 - given a similarity measure, each concept may be similar to multiple concepts but we only want the best ones
 - Threshold-based methods ($\tau \in [0, 1]$)
 - * hard threshold: $\sigma(A, B) > \tau$
 - * delta threshold: $\sigma(A, B) \ge \max_{\sigma} -\tau$ with $\max_{\delta} := \max_{A', B'} \{ \sigma(A', B') \}$
 - * proportional threshold: $\sigma(A, B) \ge \tau \cdot \max_{\sigma}$
 - * percentage threshold: it is among the $\tau \cdot |C(\mathcal{O}_1)| \cdot |C(\mathcal{O}_2)|$ correspondences with the highest similarity

$$* \ \, \text{normalized threshold:} \ \, \frac{\sigma(A,B)}{\max\{\sigma(A,B')\}} \geq \tau \, \text{ and } \\ \frac{\sigma(A,B)}{\max\{\sigma(A',B)\}} \geq \tau$$

- sometimes a bijective alignment is needed, where one concept name has exactly one correspondence
 - * greedy algorithm
 - * maximum weight graph matching

6 Ontology Maintenance

- Justification
 - process of finding axioms responsible for erroneous entailment
 - a justification $\mathfrak{J} \subseteq \mathcal{O}$ for an axiom α is:
 - * $\mathfrak{J} \models \alpha$
 - * \mathfrak{J} is a minimal set with this property $\rightarrow \forall \mathfrak{J}' \subset \mathfrak{J} : \mathfrak{J}' \not\models \alpha$
 - a justification provides an explanation for the error α
 - computing a single justification is not enough to fix the error because the error may be caused by other clauses for the entailment of α
 - How to compute justifications
 - * Black-box algorithms
 - · Use reasoner to decide $\mathcal{O} \models \alpha$ and construct justification as a series of calls to the reasoner
 - * Glass-box algorithms
 - Extend an existing reasoning algorithm for checking O ⊨ α to trace the axioms from O that are used to derive α
 → faster but requires more knowledge about the reasoner (harder to implement)
 - to compute all Justification we need an algorithm to compute a single justification Single Justification (black box algorithm):
 - * **Input**: Ontologies \mathcal{O}_f , \mathcal{O} , axiom α with $\mathcal{O}_f \not\models \alpha$ and $\mathcal{O}_f \cup \mathcal{O} \models \alpha$
 - * **Output**: A minimal subset $\hat{\mathcal{O}} \subseteq \mathcal{O} : \mathcal{O}_f \cup \hat{\mathcal{O}} \models \alpha$
 - 1. if $|\mathcal{O}| = 1$ then return \mathcal{O}
 - 2. split \mathcal{O} int two halves \mathcal{O}_1 and \mathcal{O}_2

- 3. if $\mathcal{O}_f \cup \mathcal{O}_1 \models \alpha$ then return SingleJustification(\mathcal{O}_f , ont_1 , α)
- 4. **if** $\mathcal{O}_f \cup \mathcal{O}_2 \models \alpha$ **then return** SingleJustification(\mathcal{O}_f , ont_2 , α) · minimize \mathcal{O}_1 while fixing \mathcal{O}_2 , and vice versa
- 5. $\mathcal{O}_1' := \mathbf{SingleJustification}(\mathcal{O}_f \cup \mathcal{O}_2, \mathcal{O}_1, \alpha)$
- 6. $\mathcal{O}'_2 := \mathbf{SingleJustification}(\mathcal{O}_f \cup \mathcal{O}'_1, \mathcal{O}_2, \alpha)$
- 7. **return** $\mathcal{O}'_1 \cup \mathcal{O}'_2$
- * to compute a single justification for α in \mathcal{O} we can call **SingleJustification**(\emptyset , \mathcal{O} , α)
- glass box algorithm (pinpointing)
 - * idea: Assign unique labels to axioms in \mathcal{O} , a formula over the labels describes then a subset of \mathcal{O}
 - * pinpointing algorithm for \mathbb{EL}

$$\frac{(A \sqsubseteq A)^{\text{true}}}{(A \sqsubseteq A)^{\text{true}}} (\text{CR1})$$

$$\frac{(A \sqsubseteq T)^{\text{true}}}{(A \sqsubseteq A_1)^{\varphi_1} \cdots (A \sqsubseteq A_n)^{\varphi_n}} (A_1 \sqcap \cdots \sqcap A_n \sqsubseteq B)^{\varphi}}{(A \sqsubseteq B)^{\varphi_1 \wedge \cdots \wedge \varphi_n \wedge \varphi}} (\text{CR3})$$

$$\frac{(A \sqsubseteq \exists r.B)^{\varphi_1}}{(A \sqsubseteq D)^{\varphi_1 \wedge \varphi_2 \wedge \varphi_3}} (\text{CR4})$$