1 Задание 3

1.1 Задача 1

Докажите: $HOД(k, n) = 1 \leftrightarrow \exists t : t \cdot k \equiv 1 mod n$

 \leftarrow : пусть d – общий делитель k и n и известно, что $tk \equiv 1 mod n$. Тогда tk = nm + 1, tk - mn = 1, следовательно d = 1, то есть единственный общий делитель 1, то есть числа взаимно простые.

 \to : Пусть НОД(k, n) = 1. Рассмотрим вычеты, кратые $[k]_n$, из множество $(k,n)=\{z:xk+yn,x,y\in\mathbb{Z}\}=$ НОД(k, n) $\mathbb{Z}=\mathbb{Z}$, значит $\exists x:kx=1-ny$, что и требовалось доказать.

1.2 Задача 2

Вычислите $17^{668} \mod 27$ $17^{668} = 17^{4 \cdot 167} = (17^4)^{167} = 10^{167} = |10^6 \mod 27 = 1| = 10^5 \cdot (1)^2 = 10^5 = 19$

Ответ: 19.

1.3 Задача 3

Вычислите $2^{21^{42069}} mod 14$

1.4 Задача 4

Изоморфны ли группы:

- 1. $C_{13} \times C_{13}$ и C_{169}
- 2. $C_7 \times C_{15}$ и $C_5 \times C_{21}$
- 1. В группе $C_{13} \times C_{13}$ порядки всех элементов не превосходят 13, а в группе C_{169} есть элемент порядка 169. Изоморфизм сохраняет порядки элементов, поэтому группы неиозоморфны.
- 2. Воспользуемся Китайской теоремой об остатках: $C_7 \times C_{15} = C_7 \times C_3 \times C_5$, $C_5 \times C_{21} = C_5 \times C_3 \times C_7$, откуда получим, что $C_7 \times C_3 \times C_5 = C_5 \times C_3 \times C_7$ с точностью до перестановок.

Ответ: 1) Нет 2) Да

1.4.1 Задача 7

Порождают ли перестановки порядка 3 группу S_{33} ?

Порядок перестановки — это НОК длин циклов в цикловом разложении. Т.к. $3=3\cdot 1$, то циклы либо длины 1, либо длины 3. Циклы длины 3 — чётные перестановки (т.к. любая четная перестановка является произведением циклов длины 3). Поэтому их произведение — чётная перестановка \rightarrow они образуют подгруппу четных перестановок.

Ответ: Нет.

2 ОВАиТК