Modelling small population outbreaks

Deterministic models

$$\frac{\mathrm{d}S}{\mathrm{d}t} = -\frac{\beta}{N}SI + \gamma(N - S - I)$$

$$\frac{\mathrm{d}I}{\mathrm{d}t} = \frac{\beta}{N}SI - \nu I$$

One 0 = One trajectory

Life is discrete & stochastic

Event	Transition	Jump intensity
Infection	$(s,i) \to (s-1,i+1)$	-eta si/N
Recovery	$(s,i) \rightarrow (s,i-1)$	u i
Loss of immunity	$(s,i) \rightarrow (s+1,i)$	$\gamma(N-s-i)$

One 0 = Many trajectories

One 0 = Many trajectories

Exponential distribution

Mean = $1/\nu$ Var = Mean

Memory less

Erlang distribution

Mean = $1/\nu$ Var = Mean/k

Memory like

284 ind - 32% reinfected

One possible model...

One possible model...

Already implemented as a fitmodel!