1. Use induction to prove that $\sum_{k=1}^{n} k^3 = \frac{n^2(n+1)^2}{4}$ for all $n \in \mathbb{Z}^+$.

$$\forall n \in \mathbb{Z}^+ \sum_{k=1}^n k^3 = \frac{n^2(n+1)^2}{4}.$$

Proof. Let P(n) be the statement

$$\sum_{k=1}^{n} k^3 = \frac{n^2(n+1)^2}{4},$$

for all $n \in \mathbb{Z}^+$. We proceed with a proof by induction on n.

Base case: P(1) is the statement

$$\sum_{k=1}^{1} k^3 = \frac{1^2(1+1)^2}{4}.$$

Then

$$\sum_{k=1}^{1} k^3 = 1,$$

and

$$\frac{1^2(1+1)^2}{4} = \frac{1(2)^2}{4},$$
$$= \frac{4}{4},$$
$$= 1.$$

Thus, P(1) is true.

Induction step: Suppose P(n), that is,

$$\sum_{k=1}^{n} k^3 = \frac{n^2(n+1)^2}{4}.$$

Then

$$\sum_{k=1}^{n+1} k^3 = \sum_{k=1}^n k^3 + (n+1)^3,$$

$$= \frac{n^2(n+1)^2}{4} + (n+1)^3,$$

$$= \frac{n^2(n+1)^2 + 4(n+1)^3}{4},$$

$$= \frac{n^4 + 6n^3 + 13n^2 + 12n + 4}{4},$$

$$= \frac{(n+1)^2(n+2)^2}{4},$$

$$= \frac{(n+1)^2(n+1+1)^2}{4}.$$

Thus, from P(n) we have proven P(n+1). Therefore, by induction, $\sum_{k=1}^{n} k^3 = \frac{n^2(n+1)^2}{4}$ for all $n \in \mathbb{Z}^+$.

2. Prove that $4|(6^n-2^n)$ for all $n \in \mathbb{Z}$.

$$\forall n \in \mathbb{Z}^+ \, 4 | (6^n - 2^n).$$

Proof. Let P(n) be the statement

$$4|(6^n-2^n),$$

for all $n \in \mathbb{Z}^+$. We proceed with a proof by induction on n.

Base case: P(1) is the statement

$$4|(6^1-2^1).$$

Let $k \in \mathbb{Z}$ be defined as

$$k = 1.$$

Then

$$6^{1} - 2^{1} = 6 - 2,$$

= 4,
= 4(1),
= 4k.

Thus, $4|(6^1-2^1)$, P(1) is true.

Induction step: Suppose P(n), that is

$$4|(6^n-2^n),$$

that there exists $k \in \mathbb{Z}$ such that

$$4k = 6^n - 2^n$$
.

Then P(n+1) is the statement

$$4|(6^{n+1}-2^{n+1}).$$

Let $q \in \mathbb{Z}$ be defined as

$$q = 6^n + 2k.$$

Then

$$6^{n+1} - 2^{n+1} = 6 \cdot 6^n - 2 \cdot 2^n,$$

$$= (4+2)6^n - 2 \cdot 2^n,$$

$$= 4 \cdot 6^n + 2 \cdot 6^n - 2 \cdot 2^n,$$

$$= 4 \cdot 6^n + 2(6^n - 2^n),$$

$$= 4 \cdot 6^n + 2(4k),$$

$$= 4(6^n + 2k),$$

$$= 4q.$$

Thus, $4|(6^{n+1}-2^{n+1})$. Therefore, from P(n) we have proven P(n+1). Thusly, by induction, $4|(6^n-2^n)$ for all $n \in \mathbb{Z}^+$.

3. Let $r \neq 1$ be a real number. Use induction to show that for any $m \in \mathbb{Z}^+$, $\sum_{k=m}^n r^k = \frac{r^m - r^{m+1}}{1-r}$ for all $n \in \mathbb{Z}^+$ with $n \geq m$.

$$\forall r \in \mathbb{R} \left((r \neq 1) \to \forall n, m \in \mathbb{Z}^+ \left((n \geq m) \to \left(\sum_{k=m}^n r^k = \frac{r^m - r^{n+1}}{1 - r} \right) \right) \right).$$

Proof. Let $r \in \mathbb{R}$ be given such that $r \neq 1$. We proceed with a proof by induction on n.

Base case: We will prove P(1), that is n = 1. There is only one $m \in \mathbb{Z}^+$ such that $n \geq m$, that is m = 1. Then, P(1) is the statement

$$\sum_{k=1}^{1} r^k = \frac{r^1 - r^{1+1}}{1 - r}.$$

Then

$$\sum_{k=1}^{1} r^k = r,$$

and

$$\frac{r^{1} - r^{1+1}}{1 - r} = \frac{r(1 - r)}{1 - r},$$
$$= r.$$

Thus, we have proven P(1).

Induction step: Suppose P(n), that is

$$\sum_{k=m}^{n} r^k = \frac{r^m - r^{n+1}}{1 - r}.$$

Then P(n+1) is the statement

$$\sum_{k=m}^{n+1} r^k = \frac{r^m - r^{n+2}}{1 - r}.$$

Then

$$\begin{split} \sum_{k=m}^{n+1} r^k &= \sum k = m^n r^k + r^{n+1}, \\ &= \frac{r^m - r^{n+1}}{1 - r} + r^{n+1}, \\ &= \frac{r^m - r^{n+1}}{1 - r} + \frac{(1 - r)}{(1 - r)} r^{n+1}, \\ &= \frac{r^m - r^{n+1} + (1 - r) r^{n+1}}{1 - r}, \\ &= \frac{r^m - r^{n+1} + r^{n+1} - r \cdot r^{n+1}}{1 - r}, \\ &= \frac{r^m - r^{n+1+1}}{1 - r}, \\ &= \frac{r^m - r^{n+2}}{1 - r}. \end{split}$$

Thus we have proven P(n + 1) by supposing P(n). Therefore, by induction, we prove

$$\forall r \in \mathbb{R} \left((r \neq 1) \to \forall n, m \in \mathbb{Z}^+ \left((n \geq m) \to \left(\sum_{k=m}^n r^k = \frac{r^m - r^{n+1}}{1 - r} \right) \right) \right).$$

I couldn't think of an elegant way to restate it.

- 4. Let $A = \{x \in \mathbb{Z} : x \mod 15 = 10\}$ and $B = \{x \in \mathbb{Z} : x \mod 3 = 1\}$.
 - (a) Prove $A \subseteq B$.

$$\forall x \in \mathbb{Z} \ (x \in A \to x \in B) \ .$$

Proof. Let $x \in \mathbb{Z}$ be given. Suppose $x \in A$, that is, $x \mod 15 = 10$. Then, by definition, there exists $q \in \mathbb{Z}$ such that

$$x = 15q + 10.$$

Let $k \in \mathbb{Z}$ be defined as

$$k = 5q + 9.$$

Then

$$x = 15q + 10,$$

= 15q + 9 + 1,
= 3(5q + 9) + 1,
= $3k + 1$.

Thus, $x \mod 3 = 1$. Therefore, if $x \in A$ then $x \in B$. Thus, $A \subseteq B$.

- (b) Either show that $B \subseteq A$, or explain why $B \nsubseteq A$. $B \nsubseteq A$. Suppose x = 1. Then 1 mod 3 = 1 but 1 mod 15 \neq 10. Thus, $\forall x \in \mathbb{Z} (x \in B \to x \in A)$ is not true, so $B \nsubseteq A$.
- 5. Suppose A and B are subsets of a universe \mathcal{U} . Show that if $A \subseteq B^c$, then $A \cap B = \emptyset$.

Proof. Let A and B be subsets of a universe \mathcal{U} . We will use the contrapositive, that is, if $A \cap B \neq \emptyset$ then $A \nsubseteq B^c$. Suppose $A \cap B \neq \emptyset$. Then, there exists some $x \in \mathcal{U}$ such that $x \in A \cap B$. Thus, $x \in A$ and $x \in B$. Equivalently, $x \in A$ and $x \notin B^c$. Therefore, if $A \cap B \neq \emptyset$ then $A \nsubseteq B^c$. By the contrapositive, if $A \subseteq B^c$ then $A \cap B = \emptyset$.