Prime Numbers

Contents

① Divisibility

Prime Numbers

Divisibility

Definition 1 (Divisibility)

Let d and x be integers. To say that d divides x means that there exists an integer k such that x = kd. (3keZ)(x=kd)

- Every integer divides 0.
- 0 is the only integer that 0 divides. (If x is an integer and 0 divides x, then $x = k \cdot 0$ for some integer k, and $k \cdot 0 = 0$, so x = 0.)
- Let x be an integer. Then x is even iff 2 divides x.

$$(\exists k \in \mathbb{Z})(\lambda = 2k)$$
 ($\exists k \in \mathbb{Z}$) $(\lambda = k \cdot 2)$

proof of unique existence

(=!xEZ)(n divides x)

Remarks

- Alternate expression for "d divides x": "x is divisible by d"
- "d divides x" is a sentence while "d divided into x" (x/d, for $d \neq 0$) is a number. " $\chi \in \mathcal{A}$ divided by d"
- **Notation.** $d \mid x$ for "d divides x." and $d \nmid x$ for "d does not divide x."
- Let m and n be integers, with $n \neq 0$. To say that the fraction m/n is in lowest terms means that for each natural number d, if d divides m and d divides n, then d=1.

Examples

Example 2 (Divisibility with Natural Numbers)

Let $d, x \in \mathbb{N}$. Suppose d divides x. Then $d \leq x$.

Proof. Since d divides x, we can pick an integer k such that x=kd. Since k is an integer, either $k \geq 1$ or $k \leq 2$ But it is not the case that $k \leq 0$, because if $k \leq 0$, then $x = kd \leq 0$, which contradicts the fact that $x \geq 1$. Hence $k \geq 1$. Therefore $kd \geq d$. In other words, $x \geq d$.

Let
$$d \in \mathbb{Z}$$
.
Example: $h=6$. To divisible by
$$1, 2, 3, 6, -1, -2, -3, -6$$

$$b+c=b+8=14$$
, $b-c=6-8=-2$

Example 3

Let $a, b, c \in \mathbb{Z}$. If a divides b and a divides c, then a divides b + c and a divides b - c.

$$\left[(a|b) \wedge (a|c) \right] \Rightarrow \left[(a|b+c) \wedge (a|b-c) \right]$$

Proof. Assume alb and alc. Then we can pick integers to and I such that

$$b = ka$$
 and $c = la$.

Then

$$b \pm c = ka \pm la = (k \pm l) a$$
.

Since let lis an integer, a divides b+c.

Examples (cont')

Example 4

Let $a, b, c \in \mathbb{Z}$. If a divides b and b divides a, then b = a or b = -a.

Exercise

$$*$$
 $\begin{cases} a = kb \\ b = la \end{cases}$

$$a = k(la)$$

Prime Numbers

Definitions

Definition 5 (Prime Numbers)

To say that x is a prime number means that $x \in \mathbb{N}$ and $x \neq 1$ and for each $a \in \mathbb{N}$, for each $b \in \mathbb{N}$, if x = ab, then a = 1 or b = 1.

Exercise. Write the sentence " $x \in \mathbb{N}$ and $x \neq 1$ and for each $a \in \mathbb{N}$, for each $b \in \mathbb{N}$, if x = ab, then a = 1 or b = 1." using symbols.

Exercise Negation of above ("it is not a prime number.")
(assigned)

Prime Numbers as Building Blocks

Fact (Prime Factorization)

Each natural number, except 1, is prime or is a product of two or more primes.

- Proof of this fact requires complete induction.
- From this fact, it follows that for each $n \in \mathbb{N}$, if $n \neq 1$, then there exists a prime number p such that p divides n.

How Many Primes?

Theorem 6 (Euclid, circa 300 B.C.)

There are infinitely many prime numbers.

 $\mathcal{L} = \prod_{i=1}^{m} \beta_i + 1$

But since $n \in \mathbb{N}$ and $n \neq 1$, there must exists a prime number q which divides $n \neq 1$.

But q is not some of pi, ..., pm, because it was shown } < that more of them divides x.

However, q must be one of pi, ..., pm because ? <

they are all prime numbers that there exist.

This is a contradiction.