Method of moments & Maximum Likelihood Estimation

Tutorial-2

Course: Statistical Data Analysis

IIIT Sricity, 2020

Estimation of parameter from Binomial Distribution

Associated to Bernouli trials

x = total number of "successes" (pass or fail, heads or tails etc.)

p = probability of a success on an individual trial

n = number of trials

• To estimate 'p' from Binomial Distribution

Sampled from the Binomial distribution with described parameter

• sample 100 points from a binomial distribution with known parameters.

$$f(x,n,p) = {}^{n}C_{x} p^{x} (1-p)^{(n-x)}$$

Mean= np

Variance= np(1-p)

n=1000

p = 0.5

Mean=500

Variance= 250

Estimation of parameter for sample from Binomial Distribution

Compute moment of 1st order from 100 samples:

$$\frac{-}{x} = n\tilde{p} = 496.8$$

Sample Size	100	200	300	400	500
Value of 'p̃'	0.496	0.503	0.501	0.5007	0.501

Actual probability of a success on an individual trial= 0.5

Histogram of 100 samples

Note:

Consistency of the estimator:

As sample size increases the estimation becomes more accurate.

Estimation of parameter using sample from Gaussian Distribution

- Data sampled from Gaussian distribution.
- Used 1000 samples.
- To be estimated Mean and variance
- Mean= μ = 1st moment
- 1st moment= $8.36 = \mu$

Sample size	1000	2000	5000	10000	15000
Mean	8.36	11.64	9.11	10.22	9.96

$$f(x)=rac{1}{\sigma\sqrt{2\pi}}e^{-rac{1}{2}\left(rac{x-\mu}{\sigma}
ight)^2}$$

 μ :mean , σ standard deviation μ =10, σ = 50

Estimation of parameter using sample from Gaussian Distribution

For estimation of variance:

Use

• Var(X)= E(X²)- {E(X)}²

 Estimation for 1000 sample: Var(X)= 2524

160	-			
140				-
120	1	$\perp \parallel \parallel$		-
100				-
80 -				-
60 -				-
40 -			ПЬ	-
20				
ا ه				
-	-100	0	100	200

Histogram of 1000 samples

Sample size	1000	2000	5000	10000	15000
Variance	2524	2500	2489	2528	2513

Maximum Likelihood Estimation of parameter using sample from Gaussian Distribution

- Data sampled from Gaussian distribution.
- Used 1000 samples.
- To estimate Mean.
- We used s.d= 50 for the 100 samples.
- Likelihood function= $f(x_1, x_2, ..., x_n | \mu)$, where f(x) given by
- Assuming the samples are from i.i.d We have $f(x_1 | \mu) f(x_2 | \mu) ... f(x_n | \mu)$

$$f(x)=rac{1}{\sigma\sqrt{2\pi}}e^{-rac{1}{2}\left(rac{x-\mu}{\sigma}
ight)^2}$$

 μ :mean , σ standard deviation μ =10, σ = 50

Maximum Likelihood Estimation of parameter using sample from Gaussian Distribution

Likelihood estimate of μ̃ for Sample mean=13.12 100 samples

• $\tilde{\mu}$ =13.119, Likelihood estimation gives maximum value

le-25

• To estimate population variance (σ^2)

For the 100 samples, taken, μ=10 (known)

Likelihood estimate of σ^2 for 100 samples

$$\frac{1}{n}\sum_{i=1}^{n}(x_i-\mu)^2 = 2501.66$$

 Likelihood function maximizes at variance value 2501.6.

IIIT Sricity