Your name:

Instructor (please circle):

Zajj Daugherty

Erik van Erp,

Math 11 Fall 2011, Homework 9, due Wed Nov 30

Please show your work. No credit is given for solutions without justification.

- (1) Choose the correct answer. Show relevant work (it will not be graded).
 - (a) The vector surface integral $\iint_S \mathbf{F} \cdot d\mathbf{s}$ is zero if
 - (A) F is a radial vector field
 - (B) F is a conservative vector field
 - (C) The vector \mathbf{F} is tangent to the surface S at every point of S
 - (D) $\mathbf{F} \cdot \mathbf{n} = 0$ at every point of S, where \mathbf{n} is a normal vector for S
 - (E) $\mathbf{F} \times \mathbf{n} = \mathbf{0}$ at every point of S, where n is a normal vector for S
 - (F) $\mathbf{F} \times \mathbf{e_n} = \mathbf{0}$ at every point of S, where $\mathbf{e_n}$ is a unit normal vector for S
 - (b) True or false?
 - (i) True / False. If \mathcal{C} is a simple closed curve in \mathbb{R}^2 then $\oint_C y dx = \text{Area}(\mathcal{D})$, where \mathcal{D} is the region inside \mathcal{C} .
 - (ii) True False. If C is a simple closed curve in \mathbb{R}^2 then $\oint_C x dy = \text{Area}(\mathcal{D})$, where \mathcal{D} is the region inside C.
 - (iii) True / (False.) The flux of $\nabla \times \mathbf{F}$ through every oriented surface is zero.
 - (iv) True / False. The flux of $\nabla \times \mathbf{F}$ through every closed and oriented surface is zero.
 - (v) True / False. If F is conservative then $\nabla \times \mathbf{F} = (0,0,0)$.

(i)
$$\frac{\partial F_2}{\partial x} = \frac{\partial F_{11}}{\partial y} = -1$$
 because $\vec{F} = \langle Y, 0 \rangle$ here.

(ii)
$$\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} = 1$$
 became $\vec{F} = \langle 0, x \rangle$ here

(iv) ... but if S is closed it has no boundary, so then
$$\iint_S uvl \bar{F} \cdot d\bar{S} = 0$$
.

(V)
$$\vec{F} = \text{grad } f \text{ then } \text{cuvl } \vec{F} = \text{cuvl } (\text{grad } f) = \vec{o}$$

$$1 \xrightarrow{\text{grad}} 3 \xrightarrow{\text{cuvl}} 3 \xrightarrow{\text{div}} 1$$

$$\text{cuvl } (\text{grad}) = 0$$

$$C_2$$
 R_2
 R_3
 R_4
 R_4

(2) Let \mathcal{C} be the semi-circle $x^2 + (y-3)^2 = 9$ in \mathbb{R}^2 with $x \ge 0$, oriented from A = (0,6) to B = (0,0). Calculate the line integral

$$\int_C -y\,dx + x\,dy.$$

Hint: Use Green's theorem.

$$\iint \left(\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y}\right) dA = \oint_{\partial D} \vec{F} \cdot d\vec{s}$$

$$= -\oint_{C_1} \vec{F} \cdot d\vec{s} - \oint_{C_2} \vec{F} \cdot d\vec{s}$$

The awves E, E2 are oriented wrongly.

i) We get:
$$\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} = 1 - (-1) = 2$$
.

∬2 dA = 2 Avea D = 2·½ T3²=9T.

ii) Also:
$$\int_{C_1} \vec{F} \cdot d\vec{s}$$
, parametrize C_2 as $\vec{r}(t) = \langle o, t \rangle$

Then Sc. F. ds = 0

Patting it together:

$$9\pi = -0 - \int_{C_2} \overline{F} \cdot d\overline{s} \Rightarrow \int_{C_2} F \cdot d\overline{s} = -9\pi$$

(3) Let F be the vector field in \mathbb{R}^3 given by

$$\mathbf{F}(x,y,z) = \langle z \sin(xz), x^2 + y^2, x \sin(xz) \rangle$$

and let C be the oriented closed curve parametrized as

$$\mathbf{r}(t) = \langle \cos t, \sin t, 4 + \sin 4t \rangle$$
 $0 \le t \le 2\pi$

Let the surface S be the part of the cylinder $x^2 + y^2 = 1$ above the xy plane and below the curve C.

- (a) How must S be oriented so that C is oriented correctly as one of the components of ∂S ? Do the normal vectors point inward or outward?
- (b) The curve C is part of the boundary ∂S . Describe the other component of the boundary ∂S , and indicate how it must be oriented.
- (c) Use Stokes's Theorem to calculate the line integral $\phi_C \mathbf{F} \cdot d\mathbf{s}$.

C, oriented counterclockwise (seen from above) oriented inward

(b) C_2 is the circle in the xy plane with $X^2+Y^2=1$, Z=0.
Oriented clockwise.

(c) $\iint \text{caw}(\vec{F}) d\vec{S} = \iint_{C_1} \vec{F} \cdot d\vec{S} + \iint_{C_2} \vec{F} \cdot d\vec{S} \Rightarrow \iint_{C_1} \vec{F} \cdot d\vec{S} = 0.$ $\text{cav}(\vec{F}) = \langle 0, 0, 2 \times \rangle$

Since normal vectors of S are horizontal $\vec{N} = \langle \cdot, \cdot, 0 \rangle$

we get curl $\vec{F} \cdot \vec{n} = 0$ and $\iint \text{curl} \vec{F} \cdot d\vec{S} = 0$ Pavametrize C_2 as $\vec{r}(t) = \langle \text{cost}, \text{smt}, 0 \rangle$, $0 \le t \le 2\pi$ (with opposite orientation). Then $\vec{r}'(t) = \langle -\text{smf}, (\text{ost}, 0) \rangle$.

 $\vec{F} = \langle 0, 1, 0 \rangle$. $\int_{C_2} \vec{F} \cdot d\vec{s} = \int_{0}^{2\pi} \cos t \, dt = 0$.