FCC REPORT (BLE)

Applicant: Shenzhen RF-STAR Technology CO.,LTD

Address of Applicant: 2F, BLDG.8, Zone A, Bao'an Internet Industry Base, Baoyuan

Road, Xixiang, Bao'an DIST, Shenzhen, China

Equipment Under Test (EUT)

Product Name: Bluetooth 4.0 (BLE) Module

Model No.: RF-BM-S01, RF-BM-S01_V1.1

FCC ID: 2ABN2-RFBMS01

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 27 Dec., 2013

Date of Test: 28 Dec., to 02 Jan., 2014

Date of report issued: 03 Jan., 2013

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	03 Jan., 2013	Original

Prepared by:

Shirtey Li

Date: 03 Jan., 2013

Report Clerk

Reviewed by: Date: 03 Jan., 2013

Project Engineer

3 Contents

		Page
1	COVER PAGE	1
2	VERSION	2
3	CONTENTS	3
4	TEST SUMMARY	4
5	GENERAL INFORMATION	5
	5.1 CLIENT INFORMATION	5
	5.4 DESCRIPTION OF SUPPORT UNITS 5.5 LABORATORY FACILITY 5.6 LABORATORY LOCATION 5.7 TEST INSTRUMENTS LIST	
6	TEST RESULTS AND MEASUREMENT DATA	10
	6.1 ANTENNA REQUIREMENT	
7		
8		37

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
Emission Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	Shenzhen RF-STAR Technology CO., LTD	
Address of Applicant:	2F, BLDG.8, Zone A, Bao'an Internet Industry Base, Baoyuan Road, Xixiang, Bao'an DIST, Shenzhen, China	
Manufacturer:	Shenzhen RF-STAR Technology CO., LTD	
Address of Manufacturer:	2F, BLDG.8, Zone A, Bao'an Internet Industry Base, Baoyuan Road, Xixiang, Bao'an DIST, Shenzhen, China	

5.2 General Description of E.U.T.

Product Name:	Bluetooth 4.0 (BLE) Module
Model No.:	RF-BM-S01, RF-BM-S01_V1.1
Operation Frequency:	2402-2480MHz
Channel numbers:	40
Channel separation:	2 MHz
Modulation technology:	GFSK
Data speed :	1Mbps
Antenna Type:	PCB Antenna
Antenna gain:	0dBi
Power supply:	DC3.3V
Remark:	The Model: RF-BM-S01, RF-BM-S01_V1.1were identical inside, the electrical circuit design, layout, components used and internal wiring, with only difference being model name.

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2442MHz
The Highest channel	2480MHz

5.3 Test environment and mode

Operating Environment:					
Temperature:	24.0 °C				
Humidity:	54 % RH				
Atmospheric Pressure:	1010 mbar				
Test mode:					
Operation mode	Keep the EUT in continuous transmitting with modulation				

The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Description of Support Units

Manufacturer	Description	Model	Serial Number	FCC ID/DoC
DELL	Laptop	INSPIRON M4010	B1LMVP1	DoC
LENOVO	Laptop	SL510	2847A65	DoC
DELL	PC	OPTIPLEX745	N/A	DoC
DELL	MONITOR	E178FPC	N/A	DoC
DELL	KEYBOARD	SK-8115	N/A	DoC
DELL	MOUSE	MOC5UO	N/A	DoC
HP	Printer	CB495A	05257893	DoC

5.5 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

● FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

● IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

● CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.6 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

5.7 Test Instruments list

Radia	Radiated Emission:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)		
1	3m Semi- Anechoic Chamber	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	June 09 2013	June 08 2014		
2	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	CCIS0005	May 25 2013	May 24 2014		
3	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA9120D	CCIS0006	May 25 2013	May 24 2014		
4	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		
5	Coaxial Cable	CCIS	N/A	CCIS0016	Apr. 01 2013	Mar. 31 2014		
6	Coaxial Cable	CCIS	N/A	CCIS0017	Apr. 01 2013	Mar. 31 2014		
7	Coaxial cable	CCIS	N/A	CCIS0018	Apr. 01 2013	Mar. 31 2014		
8	Coaxial Cable	CCIS	N/A	CCIS0019	Apr. 01 2013	Mar. 31 2014		
9	Coaxial Cable	CCIS	N/A	CCIS0087	Apr. 01 2013	Mar. 31 2014		
10	Amplifier(10kHz- 1.3GHz)	НР	8447D	CCIS0003	Apr. 01 2013	Mar. 31 2014		
11	Amplifier(1GHz- 18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	June 09 2013	June 08 2014		
12	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	Apr. 01 2013	Mar. 31 2014		
13	Horn Antenna	ETS-LINDGREN	3160	GTS217	Mar. 30 2013	Mar. 29 2014		
14	Printer	HP	HP LaserJet P1007	N/A	N/A	N/A		
15	Positioning Controller	UC	UC3000	CCIS0015	N/A	N/A		
16	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP	CCIS0023	May. 25 2013	May. 24 2014		
17	EMI Test Receiver	Rohde & Schwarz	ESPI	CCIS0022	Apr 01 2013	Mar. 31 2014		
18	Loop antenna	Laplace instrument	RF300	EMC0701	Aug. 12 2013	Aug. 11 2014		
19	Universal radio communication tester	Rhode & Schwarz	CMU200	CCIS0069	May. 25 2013	May. 24 2014		
20	Signal Analyzer	Rohde & Schwarz	FSIQ3	CCIS0088	May. 25 2013	May. 24 2014		

Conducted Emission:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	June 09 2013	June 08 2014	
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	May 25 2013	May 24 2014	
3	LISN	CHASE	MN2050D	CCIS0074	Apr 01 2013	Mar. 31 2014	
4	Coaxial Cable	CCIS	N/A	CCIS0086	Apr. 01 2013	Mar. 31 2014	
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	

6 Test results and Measurement Data

6.1 Antenna requirement

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The antenna is an internal antenna which cannot replace by end-user, the best case gain of the antenna is 0 dBi.

6.2 Conducted Emissions

Test Requirement:	FCC Part15 C Section 15.207	FCC Part15 C Section 15.207				
Test Method:	ANSI C63.4:2003	ANSI C63.4:2003				
Test Frequency Rang	ge: 150 kHz to 30 MHz	150 kHz to 30 MHz				
Class / Severity:	Class B					
Receiver setup:	RBW=9 kHz, VBW=30 kHz, Swee	ep time=auto				
Limit:	Fraguency range (MHz)	Limit (c	dBuV)			
	Frequency range (MHz)	Quasi-peak	Average			
	0.15-0.5	66 to 56*	56 to 46*			
	0.5-5	56	46			
	5-30	60	50			
	* Decreases with the logarithm of	the frequency.				
Test setup:	Reference Plane					
	Remark E.U.T Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m	Remark E.U.T EMI Receiver Remark E.U.T: Equipment Under Test LISN: Line impedence Stabilization Network				
Test procedure:	impedance stabilization netwo coupling impedance for the mode of the mode. 2. The peripheral devices are also that provides a 500hm/50uH of (Please refer to the block diagonal of the mode.) 3. Both sides of A.C. line are che order to find the maximum em	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2003 on conducted measurement. 				
Test Instruments:	Refer to section 5.7 for details					
Test mode:	Bluetooth (Continuous transmittin	Bluetooth (Continuous transmitting) mode				
Test results:	Pass	-				

Measurement Data

Line:

Site : CCIS Conducted test Site
Condition : FCC PARTI5 B QP LISN LINE
Job No. : 617RF
EUT : Bluetooth module
Nodel : RP-EM-S01
Test Node : PC mode
Power Rating : AC120/60Hz
Environment : Temp: 23 °C Huni:56% Atmos:101KPa
Test Engineer: Wirner
Read LISN Cable Limit

	Freq	Read Level	LISN Factor	Cable Loss		Limit Line	Over Limit	Remark
-	MHz	dBuV	₫B	₫B	dBuV	dBuV	dB	
1 2 3 4 5	0.154 0.170 0.253	15.00 21.43 9.15	0. 27 0. 27 0. 27	10.78 10.77 10.75	26. 05 32. 47 20. 17	64.94	-32.47	Average QP Average
4	0.759 0.759	22. 29 7. 36	0. 23 0. 23	10.80 10.80	33, 32 18, 39	56.00	-22.6B	
0 7 8 9	2.201 2.201	19.97 12.08		10.95 10.95	31. 18 23. 29	56.00	-24. B2	
0.00	2.900 2.946	27. 93 18. 42	0. 27 0. 27	10.92 10.92	39. 12 29. 61	46.00		Average
10 11 12	16. 312 22. 535 22. 775	18. 63 20. 14 15. 17	0. 33 0. 44 0. 44	10. 91 10. 89 10. 89	29. 87 31. 47 26. 50	60.00	-30.13 -28.53 -23.50	1 Control ()

CCIS

Report No: CCIS13120061701

Neutral:

Trace: 15 Site Condition Job No. EUI : CCIS Conducted test Site : FCC PART15 B QP LISN NEUTRAL : 617RF

JOD NO. : 617RF
EVI : Bluetooth module
Nodel : RF-BM-S01
Test Node : PC mode
Power Rating : AC12U/60Hz
Environment : Temp: 23 °C Huni:56% Atmos:101KPa
Test Engineer: Wirmer

2000	Read				Limit Line			
MHz	dBuV	₫B	₫B	dBuV	dBuV	dB		-
0.158	21.16	0.25	10.78	32.19	65.56	-33. 37	QP	
0.160	14.95	0.25	10.78	25.98	55.47	-29.49	Average	
0.258	9.36	0.26						
0.747	20.48	0.19	10.79	31.46	56.00	-24.54	QP	
0.751	7.13	0.19	10.79	18.11	46.00	-27.89	Average	
2.237	20.44	0.29	10.95	31.68	56.00	-24.32	QP	
2.854	27.51	0.29	10.92	38.72	56.00	-17.2B	QP	
2.978	19.17	0.29	10.92	30.38	46.00	-15.62	Average	
16.398	20.80	0.25	10.91	31.96	60.00	-28.04	QP	
17, 018	13.37	0. 25	10.91	24.53	50.00	-25.47	Average	
22.775	15.51	0.39	10.89	26, 79	50,00	-23, 21	Average	
22.896	21.66	0.40	10.89	32.95	60.00	-27.05	QP	
	Freq 0.158 0.160 0.258 0.747 0.751 2.237 2.854 2.978 16.398 17.018 22.775	Freq Level MHz dbuV 0.158 21.16 0.160 14.95 0.258 9.36 0.747 20.48 0.751 7.13 2.237 20.44 2.854 27.51 2.978 19.17 16.398 20.80 17.018 13.37 22.775 15.51	Read LISN Level Factor MHz dBuV dB 0.158 21.16 0.25 0.160 14.95 0.26 0.26 0.747 20.48 0.19 0.751 7.13 0.19 2.237 20.44 0.29 2.854 27.51 0.29 2.978 19.17 0.29 16.398 20.80 0.25 17.018 13.37 0.25 22.775 15.51 0.39	Read LISN Cable Level Factor Loss MHz dBuV dB dB 0.158 21.16 0.25 10.78 0.160 14.95 0.25 10.78 0.258 9.36 0.26 10.75 0.747 20.48 0.19 10.79 0.751 7.13 0.19 10.79 2.237 20.44 0.29 10.95 2.854 27.51 0.29 10.92 2.978 19.17 0.29 10.92 16.398 20.80 0.25 10.91 17.018 13.37 0.25 10.91 22.775 15.51 0.39 10.89	Read LISN Cable Level Factor Loss Level MHz dBuV dB dB dB dBuV 0.158 21.16 0.25 10.78 32.19 0.160 14.95 0.25 10.78 25.98 0.258 9.36 0.26 10.75 20.37 0.747 20.48 0.19 10.79 31.46 0.751 7.13 0.19 10.79 31.46 0.751 7.13 0.19 10.79 18.11 2.237 20.44 0.29 10.95 31.68 2.854 27.51 0.29 10.92 38.72 2.978 19.17 0.29 10.92 30.38 16.398 20.80 0.25 10.91 31.96 17.018 13.37 0.25 10.91 31.96 17.018 13.37 0.25 10.91 24.53 22.775 15.51 0.39 10.89 26.79	Read LISN Cable Level Limit Line Read LISN Cable Level Line Line	Read LISN Cable Factor Loss Level Limit Limit Limit Over Limit Limit MHz dBuV dB dB dBuV dBuV dB 0.158 21.16 0.25 10.78 32.19 65.56 -33.37 0.160 14.95 0.25 10.78 25.98 55.47 -29.49 0.288 9.36 0.26 10.79 20.37 51.51 -31.14 0.747 20.48 0.19 10.79 31.46 56.00 -24.54 0.751 7.13 0.19 10.79 18.11 46.00 -27.89 2.237 20.44 0.29 10.95 31.68 56.00 -24.32 2.854 27.51 0.29 10.92 38.72 56.00 -17.28 2.978 19.17 0.29 10.92 30.38 46.00 -15.62 16.398 20.80 0.25 10.91 24.53 50.00 -25.47 22.775 15.51 0.39 10.89	Read LISN Cable Limit Over Limit Remark

6.3 Conducted Output Power

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)					
Test Method:	ANSI C63.4:2003 and KDB558074					
Limit:	30dBm					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.7 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					
Remark:	Test method refer to KDB558074 v03r01 (DTS Measure Guidance) section 9.2.2.2					

Measurement Data

Test CH	Maximum Conducted Output Power (dBm)	Limit(dBm)	Result
Lowest	3.35		
Middle	3.35	30.00	Pass
Highest	2.74		

Test plot as follows:

6.4 Occupy Bandwidth

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)				
Test Method:	ANSI C63.4:2003 and KDB558074				
Limit:	>500kHz				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.7 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Measurement Data

Test CH	6dB Emission Bandwidth (MHz)	Limit(kHz)	Result
Lowest	0.75		
Middle	0.74	>500	Pass
Highest	0.74		

Test CH	99% Occupy Bandwidth (MHz)	Limit(kHz)	Result
Lowest	1.10		
Middle	1.09	N/A	N/A
Highest	1.09		

Test plot as follows:

Highest channel

30.DEC.2013 14:29:47

Highest channel

6.5 Power Spectral Density

Test Requirement:	FCC Part15 C Section 15.247 (e)					
Test Method:	ANSI C63.4:2003 and KDB558074					
Limit:	8 dBm					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.7 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Measurement Data

Test CH	Power Spectral Density (dBm)	Limit(dBm)	Result
Lowest	3.36		
Middle	3.22	8.00	Pass
Highest	2.65		

Test plots as follow:

Highest channel

6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)					
Test Method:	ANSI C63.4:2003 and KDB558074					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table					
	Ground Reference Plane					
Test Instruments:	Refer to section 5.7 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Test plots as follow:

Lowest channel Highest channel

6.6.2 Radiated Emission Method

Test Requirement:	FCC Part15 C S	Section 15.209	and 15.205					
Test Method:	ANSI C63.4: 2003							
Test Frequency Range:	2.3GHz to 2.5GI	Hz						
Test site:	Measurement Distance: 3m							
Receiver setup:	Frequency	Detector Peak	RBW 1MHz	VBW 3MHz	Remark Peak Value			
	Above 1GHz	Peak	1MHz	10Hz	Average Value			
Limit:	Freque Above 1		Limit (dBuV/ 54.0 74.0	0	Remark Average Value Peak Value			
Test Procedure:	the ground to determin 2. The EUT w antenna, who tower. 3. The antennathe ground Both horizon make the m 4. For each sucase and the meters and to find the rest-results of the limit specified B 6. If the emission the limit specified be and the limit specified be also and the limit s	at a 3 meter cae the position of as set 3 meters hich was mount a height is varieto determine the standard vertical and vertical and vertical easurement. Uspected emissionen the antennation the rota table maximum readiceiver system vandwidth with sion level of the ecified, then teste EUT would be 10 dB margiri-peak or average.	amber. The toof the highest is away from ited on the too ited from one maximum al polarization, the EU a was turned to ite item. Was set to P Maximum He EUT in peasiting could be reported. In would be re	table was rost radiation. If the interferop of a variate meter to for a value of the part	rence-receiving able-height antenna our meters above the field strength. Intenna are set to a			
Test setup:	Antenna Tower Horn Antenna Spectrum Analyzer Turn Table Amplifier							
Test Instruments:	Refer to section	5.7 for details						
Test mode:	Refer to section	5.3 for details						
Test results:	Passed							

Test channel: Lowest

Horizontal:

Trace: 1

Frequency (MHz)

Site

3m chamber FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL 617RF Condition

Job NO. EUT

EUT : Bluetooth module
Model : RF-BM-S01
Test mode : TX (low channel) mode
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: Winner

	Read Freq Level		Antenna Factor						
	MHz	—dBu∜	<u>dB</u> /m	<u>d</u> B	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
1 2	2390.000 2390.000								

Test channel: Lowest

Vertical:

Trace: 3

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

Job NO. : 617RF

JOB NO. : 617KF
EUT : Bluetooth module
Model : RF-BM-S01
Test mode : TX (low channel) mode
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: Winner

ReadAntenna Cable Preamp Freq Level Factor Loss Factor Level Over Limit Line Limit Remark MHz dBuV dB/m <u>dB</u> --dB dBuV/m dBuV/m dB 2390.000 23.87 27.58 2390.000 11.70 27.58 0.00 57.12 74.00 -16.88 Peak 0.00 44.95 54.00 -9.05 Average 5.67 5.67

Test channel: Highest

Horizontal:

Trace: 7

Frequency (MHz)

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

Job NO. EUT : 617RF

EUT : Bluetooth module
Model : RF-BM-S01
Test mode : TX (high channel) mode
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: Winner

	memer.		Antenna	Cable	Preamo		Limit	Over		
	Freq		Factor				Line	Limit	Remark	
	MHz	dBu∜	$\overline{dB/m}$		<u>dB</u>	dBuV/m	dBu√/m	<u>dB</u>		
1	2483.500	27.55	27.52	5.70	0.00	60.77	74.00	-13.23	Peak	
2	2483.500	12.46	27.52	5.70	0.00	45.68	54.00	-8.32	Average	

Test channel: Highest

Vertical:

Trace: 5

Frequency (MHz)

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : 617RF Site Condition

Job NO. EUT

BUT : Bluetooth module

Model : RF-BM-S01

Test mode : TX (high channel) mode

Power Rating : AC120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: Winner

ReadAntenna Cable Preamp Limit Over Loss Factor Level Line Limit Remark Freq Level Factor dBu∀ dB/m dB dB dBuV/m dBuV/m dB 0.00 65.34 74.00 -8.66 Peak 0.00 46.54 54.00 -7.46 Average 2483.500 32.12 27.52 5.70 13.32 27.52 5.70

6.7 Spurious Emission

6.7.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)					
Test Method:	ANSI C63.4:2003 and KDB558074					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.7 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Test plot as follows:

Test mode:

Lowest channel

Date: 31.DEC.2013 08:07:11

30MHz~25GHz

Middle channel

Date: 31.DEC.2013 08:16:26

30MHz~25GHz

Highest channel

Date: 31.DEC.2013 08:10:51

30MHz~25GHz

6.7.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Section 15.209 and 15.205						
Test Method:	ANSI C63.4:200)3					
Test Frequency Range:	9KHz to 25GHz						
Test site:	Measurement D	istance: 3m					
Receiver setup:							
	Frequency	Detector	RBW	VBW	Remark		
	30MHz-1GHz	Quasi-peak	120KHz	300KHz	Quasi-peak Value		
	Above 1GHz	Peak	1MHz	3MHz	Peak Value		
	Above IGHZ	Peak	1MHz	10Hz	Average Value		
Limit:							
	Frequency		Limit (dBuV/m	@3m)	Remark		
	30MHz-88MHz		40.0		Quasi-peak Value		
	88MHz-216MHz	-	43.5		Quasi-peak Value		
		Z			· · · · · · · · · · · · · · · · · · ·		
	960MHz-1GHz						
	Above 1GHz	-					
Test Procedure:	216MHz-960MHz 46.0 Quasi-peak Value 960MHz-1GHz 54.0 Quasi-peak Value						

Below 1GHz

Horizontal:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) HORIZONTAL : 617RF

Condition Job NO. EUT

EUT : Bluetooth module
Model : RF-BM-S01
Test mode : TX mode
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: Winner

CSL	Freq	Read	Antenna Factor							
	MHz	dBu∜	dB/m	<u>d</u> B	dB	dBuV/m	dBuV/m	dB		-
1	312.179	49.49	13.22	2.98	29.49	36.20	46.00	-9.80	QP	
1 2 3	336.035	50.69	13.99	3.05	29.61	38.12	46.00	-7.88	QP	
3	360.448	47.92	14.43	3.10	29.73	35.72	46.00	-10.28	QP	
4 5	408.946	47.80	15.27	3.10	30.00	36.17	46.00	-9.83	QP	
5	480.528	46.93	16.07	3.46	30.52	35.94	46.00	-10.06	QP	
6	533 832	44 93	17 26	3.80	30 53	35 46	46.00	-10.54	OP	

Vertical:

Report No: CCIS13120061701

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) VERTICAL : 617RF : Bluetooth module : RF-BM-S01 Condition

Job NO.

EUT Model

Test mode : TX mode
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: Winner

	Freq		Antenna Factor						Remark
	MHz	dBu∜	<u>dB</u> /π		<u>ab</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>db</u>	
1	126.329	39.31	9.51	2.24	29.59	21.47	43.50	-22.03	QP
2	345.595	41.25	14.20	3.08	29.66	28.87	46.00	-17.13	QP
2	408.946	40.10	15.27	3.10	30.00	28.47	46.00	-17.53	QP
4	455.906	41.44	15.58	3.25	30.52	29.75	46.00	-16.25	QP
4	533.832	47.68	17.26	3.80	30.53	38.21	46.00	-7.79	QP
6	640.611	39.80	18.60	3.88	30.57	31.71	46.00	-14.29	QP

Above 1GHz

Lowest channel:

Test channel: Lowest	Level:	Peak	
----------------------	--------	------	--

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804	47.00	31.53	8.90	40.24	47.19	74.00	-26.81	Vertical
7206								Vertical
9608	-		-				-	Vertical
4804	47.53	31.53	8.90	40.24	47.72	74.00	-26.28	Horizontal
7206	-		-	-			1	Horizontal
9608								Horizontal

Test channel:	Lowest	Level:	Average
---------------	--------	--------	---------

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	35.21	31.53	8.90	40.24	35.40	54	-18.60	Vertical
7206.00								Vertical
9608.00								Vertical
4804.00	35.22	31.53	8.90	40.24	35.41	54	-18.59	Horizontal
7206.00								Horizontal
9608.00								Horizontal

Middle channel:

Test channel:	Middle	Level:	Peak
---------------	--------	--------	------

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4884.00	47.13	31.58	8.98	40.15	47.54	74.00	-26.46	Vertical
7323.00							-	Vertical
9764.00				-			-	Vertical
4882.00	47.64	31.58	8.98	40.15	48.05	74.00	-25.95	Horizontal
7323.00							-	Horizontal
9764.00								Horizontal

Test channel:	Middle	Level:	Average
---------------	--------	--------	---------

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4882.00	35.84	31.58	8.98	40.15	36.25	54.00	-17.75	Vertical
7323.00								Vertical
9764.00								Vertical
4882.00	35.64	31.58	8.98	40.15	36.05	54.00	-17.95	Horizontal
7323.00								Horizontal
9764.00								Horizontal

Highest channel:

Test channel:	Highest	Level:	Peak
---------------	---------	--------	------

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	47.50	31.69	9.08	40.03	48.24	74.00	-25.76	Vertical
7440.00								Vertical
9920.00				-		-		Vertical
4960.00	47.90	31.69	9.08	40.03	48.64	74.00	-25.36	Horizontal
7440.00								Horizontal
9920.00								Horizontal

Test channel: Highest Level: Average	i est chaimer.	nighest		
--------------------------------------	----------------	---------	--	--

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	35.95	31.69	9.08	40.03	36.69	54.00	-17.31	Vertical
7440.00								Vertical
9920.00								Vertical
4960.00	35.74	31.69	9.08	40.03	36.48	54.00	-17.52	Horizontal
7440.00			-				1	Horizontal
9920.00								Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test Setup Photo 7

Radiated Spurious Emission

8 EUT Constructional Details

-----End of report-----