http://timbaumann.info/svd-image-compression-demo/	
Written HW 11 due 4/1s	
7.5: 14, 20 7.1: 68, 70	
2.4:4,34	
Reflection 3 due 4/15	
Carvas	
Course Duni et al	
Course Euclivations!	
Optional Suggested Problems 8.1:4, 14, 16	
18.1:4,16	
8.3.4,6	
Singular Values	
For 2x2 matrix A, can we find orthogonal vectors U1, v2	
Such that Avi and Avz we also orthogonal?	
100 100 100 100 100 100 100 100 100 100	
$\left(\vec{V}_1 \cdot \vec{V}_2 = 0 \implies (A\vec{v}_1) \cdot (A\vec{v}_2) = 0.7\right)$	
(V, V) = B = 7 (AU, J) (AU2) = 0 0 J	
a) If A is orthogonal, then A preserves angles	
so if $\vec{v}_1 \cdot \vec{v}_2 = 0 \implies A\vec{v}_1 \cdot A\vec{v}_2 = 0$ in this case	
b) If A is symmetric, Choose two orthogonal eigenvectors v, vz	
then $\vec{v}_1 \cdot \vec{v}_1 = 0$ and $(A\vec{v}_1) \cdot (A\vec{v}_2) = \lambda_1 \vec{v}_1 \cdot \lambda_1 \vec{v}_1 = 0$	
In general?	
Consider: For any 2x2 matrix A, then ATA is always synne. = 7 ATA has an orthonormal eigen 645 is \{\vec{v}_1,\vec{v}_2\}\}	teic.
= 7 ATA has an arthonormal pines 645 is 3 V, V, 3	
$\left[A\vec{v}_{1}\right) \cdot \left(A\vec{v}_{2}\right) = \left(A\vec{v}_{1}\right)^{T} \left(A\vec{v}_{2}\right) = v_{1}^{T} A^{T} A \vec{v}_{2} = v_{1}^{T} \lambda_{2} \vec{v}_{2}$	
$(A_1, A_2, A_3, A_4, A_4, A_5, A_5, A_6, A_6, A_6, A_6, A_6, A_6, A_6, A_6$	
$= \lambda_2(\vec{v}_1 \cdot \vec{v}_2)$ $= O$	

