Predicting organic installs multiplier

Samuel Chan 24 April 2017

This exercise is motivated by a request from an industry friend, who is interested to learn the **organic** multiplier rate for mobile app campaigns in the Shopping category in an unspecified geo / country.

Some initialization and configuration

```
# clear our global environment
rm(list=ls())

# effectively prevent scientific notation e.g e+04
options(scipen = 999)
```

Read in the data and simple exploratory

```
# Read in the data
data <- read.csv("data2.csv", header=TRUE)

# Feature construction
data$total <- data$paid + data$organic

# Examine if there is a fairly linear relationship between paid and organic
library(ggplot2)
ggplot(data = data, aes(x=paid, y=organic))+geom_point()+labs(x="Paid installs", y="Organic Installs", y="
```


Notice our use of method=lm automatically assume a 95% confidence region

Fit our first linear regression line

```
fit <- lm(organic ~ paid, data = data)</pre>
summary(fit)
##
## Call:
## lm(formula = organic ~ paid, data = data)
## Residuals:
       Min
                  1Q
                       Median
                                    ЗQ
                                            Max
                       105710
   -2081239 -508920
                                507742
                                       1495192
##
##
## Coefficients:
##
                  Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1072240.956 3245114.935
                                       0.330 0.744076
## paid
                     1.462
                                 0.318
                                        4.599 0.000126 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 933400 on 23 degrees of freedom
## Multiple R-squared: 0.4791, Adjusted R-squared: 0.4564
## F-statistic: 21.15 on 1 and 23 DF, p-value: 0.0001264
```

Interpreting the outlut: Values of coefficients are 1072240 and 1.462, hence prediction equation for model using the provided dataset is as below: Organic installs = 1072240 + 1.462 * paid installs

We also observed that our $\cos t$ is 933400 (residual standard error)

Compare organic installs predicted by the linear regression model vs actual values

```
actual.o <- data$organic
pred.o <- fitted(fit)
comparison <- as.data.frame(cbind("Actual Organic"=actual.o, "Predicted Organic" = pred.o, "Difference
comparison[1:25,]</pre>
```

##		Actual Organic	Predicted Organic	Difference (%)
##	1	15346209	15107137	1.56
##	2	15170811	15060273	0.73
##	3	15570750	15582630	0.08
##	4	17614907	16266382	7.66
##	5	17467287	16730566	4.22
##	6	14511285	15033147	3.60
##	7	14733265	14565222	1.14
##	8	14689045	14512609	1.20
##	9	14733520	14774845	0.28
##	10	15646495	15264760	2.44
##	11	17887966	16392774	8.36
##	12	17945417	16772376	6.54
##	13	15059549	15609091	3.65
##	14	15471055	16620840	7.43
##	15	15286845	15583683	1.94
##	16	15267369	15371687	0.68
##	17	15929826	15943584	0.09
##	18	17857219	16782568	6.02
##	19	17768430	17260688	2.86
##	20	15141070	15649990	3.36
##	21	14821458	16902697	14.04
##	22	15038147	16921271	12.52
##	23	15525773	16744555	7.85
##	24	16467219	16361509	0.64
##	25	18349397	17485431	4.71

Our formula here: Organic installs = 1072240 + 1.462 * paid installs can quite reliably predict the organic installs of many days with roughly 2% to 8% of error (difference). Depending on your use-case, this may or may not be a sufficient predictive model. There were 2 days of outlier (21st March and 22nd March respectively), but those are likely the result of extra boost campaign unaccounted in the data – or possibly an Apple AppStore feature or Google Play feature.

Final words

It is important to note here that the dependent variable (organic installs / multiplier) is correlated with the independent variable (paid installs) but this correlation do not imply causation. That is, as the number of paid installs changes, we observe a change in the organic installs. This should not be inferred or interpreted to mean that the paid installs has *caused* the number of organic installs to change.

However, we should also note that the model has a multiple R-squared value of 0.4791. An easy way to intepret this is that the linear model as a whole explains nearly 48% of the variation in our dependenable variable. We have after all, fit a simple linear model and this exercise should in no way be considered robust or scientifically rigorous. To improve our model's performance, we could:

- Obtain larger datasets
- Construct multiple features on each observation (app's placement on top free download rankings, top free shopping rankings)
- Variability (datasets spanning across multiple months)