Due Date: April 15, 10:00pm | Weight: 10%

INDIVIDUAL ASSINGMENT No. 4

Business Challenge: Use different types of trees to predict flight departure delays by carrier and airport using records of 1m flights provided in class.

Data Understanding:

File: Flight Delays Data.csv (on Canvas)

Rows:

• Each row = 1 flight occurrence

Columns:

- Year, Month, Day Wonth, Day Week
- Carrier(s)
- OriginAirportID, DestinationAirportID
- CRSDepartureTime (hours/24), DepartureDelay (min), DepartureDelay15 (#15min)
- CRSArrivalTime (hours/24), ArrivalDelay (min), ArrivalDelay15 (#15min)
- Cancelled / Not cancelled

Process:

- 1. Import data
- 2. Data preparation:
 - a. Dependent variable: plane departure delay in number of minutes.
 - b. Select columns (eliminate columns that can leak information about prediction targets or not relevant to the analysis).
 - c. If any missing values assign dummy variable.
 - d. Apply math operations (for ex. minutes to hours, round minutes to next hour)
 - e. Edit metadata (force columns to be categorical rather than numerical / vice versa)
- 3. Randomly partition and sample into training and hold-out samples
- 4. Run Regression Tree and Random Forest + Classification Tree and Random Forest
 - a. Used library algorithms.
 - b. Tune models hyper-parameters: tree depth 8, minimum units in each non-terminal node 20, and R² minimal improvement per split 1%.
 - c. Train algorithms on training data and generate predictor algorithms.
 - d. Cross Validate.
- 5. Performance & Analysis
 - a. Report fit for Regression/Random Forest + Classification/Random Forest.
 - b. Rank performance between 4 trees using MSE

Deliverables:

- 1. Executive Summary: 10 Lines, non-technical, describing:
 - a. Business Understanding: Target business value-add
 - b. Data Understanding: Credentials, relevance, and top categories
 - c. Modeling: Techniques, parameters, and performance metrics
 - d. Performance & Evaluation: Was value-add achieved, areas for further analytics

2. Technical Methodology:

STEPS	SPECS	
1. Data Management & Workflow	For each row, use technical language to provide step-by-step description of data & modeling decisions, why such decisions, whether performance was as desired, and areas for further analytics. Use business challenge above as model (Max > 20 words per line item).	
2. Training & Out-of-Sample Datasets		
3. Model Parameters		
4. Fit & Performance		

- 3. Data & Code: Submit files for following items (in Text, Excel, R, or Python):
 - a. Training & hold-out sample datasets
 - b. Predictive Algorithms
 - c. Interface for prediction & delivery

Evaluation Criteria:

- 1. **Executive Summary:** Ability to explain and justify in non-technical language your outcome business value-add based on the process and methodology you chose for business understanding, data understanding, modeling, and performance & evaluation.
- 2. **Technical Methodology:** Ability to use technical language to describe your process and methodology for above table items 1-4 and generate a step-by-step by step guide to duplicate your analytics using the datasets you provided as attachments.
- 3. **Data & Code:** Usability of datasets and code as provided to duplicate analytics using the Technical Methodology you provided.

ichlodology you provided.	
	Scoring Meth
Executive Summary Clarity of:	
Data Understanding Description	
Modeling Description	
Performance & Evaluation Description	
Technical Methodology Clarity of:	
Data Classification Description	1
Training & Out-of-Sample Datasets Description	1
Model Parameters Description	
Fit & Performance Description	1
Data & Code Duplication:	
Training & Out-of-Sample Datasets Duplicability	1
Algorithms Duplicability	
Interface for Prediction & Delivery Duplicability	
Total (Max): 10