SIPNA COLLEGE OF ENGINEERING & TECHNOLOGY, AMRAVATI. DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING QUESTION BANK

Branch: CSE

• Year/Sem: 2nd/3rd

• Subject:- M – III

• Session:- 2023-24

• Unit: IV & VI

Question Number	1	2	3	4	5	1	2	3	4	5
CO			4					6		

UNIT IV [Partial Differential Equation & Statistics]

Q1] Solve the following partial differential equations

1. Solve
$$z - px - qy = c\sqrt{1 + p^2 + q^2}$$

- 2. Solve p x tan y = q + 1
- 3. Solve $\sqrt{p} + \sqrt{q} = 1$

4. Solve
$$\left(\frac{\partial z}{\partial y}\right)^2 + \left(\frac{\partial z}{\partial x}\right)^2 = \frac{3a^2}{z^2}$$

5. Solve
$$p^2 - p \ q = 1 - z^2$$

6. Solve
$$p^2y(1+x^2) = qx^2$$

7. Solve
$$p q = x^m y^n z^{2l}$$

8. Solve
$$x^2p^2 + y^2q^2 = z^2$$

9. Solve
$$(3y-2z)p + (z-3x)q = 2x - y$$

10. Solve
$$y z p + x z q + 2 x y = 0$$

11. Solve
$$(y + z)p - (x + z)q = x - y$$

12. Solve
$$(p q - p - q)(z - p x - q y) = p q$$

Q2] Fit a straight line y = a + b x to the following data by the method of least square

i)

X	0	1	3	6	8
Y	1	3	2	5	5

ii)

X	1	2	3	4	5
Y	14	27	40	55	68

Q3] Find the coefficient of correlation between x & y for the following data

i)

X	1	2	3	4	5	6	7	8	9
Y	9	8	10	12	11	13	14	16	15

ii)

X	2.6	2.8	2.9	3.1	3.2	2.3	2.5	1.8
Y	5.9	6.0	6.2	6.2	7.6	7.0	7.5	5.5

iii)

X	1	2	3	4	5	6	7	8	9	10
Y	10	12	16	28	25	36	41	49	40	50

Q4] Fit a second degree parabola for the following data

i)

X	1	1.5	2	2.5	3	3.5	4
Y	1.1	1.3	1.6	2	2.7	3.4	4.1

ii)

X	1	2	3	4	5	6	7	8	9
Y	2	6	7	8	10	11	11	10	9

Q5] Obtain equations of lines of regression for the data

X	1	2	3	4	5
Y	2	5	3	8	7

UNIT VI]Vector Calculus]

- Q.1.a) Find the directional derivative of $\phi = e^{2x} \cos yz$ at (0,0,0) in the direction of the tangent to the curve $x = a \sin t$, $y = a \cos t$, z = at at $t = \frac{\pi}{4}$
 - b) Find the directional derivatives of $f(x, y, z) = x^2y^2z^2$ at the point (1, 1, -1) in the direction of tangent to the curve $x = e^t$, $y = 2\sin t + 1$, $z = t \cos t$ at t = 0.
- c) Find the rate of change of : $\phi = xyz$ at (1,1,1) in the direction normal to the surface $x^2y + y^2x + z^2y = 3$
- **Q.2.** a) Find div F and curl F, where: $F = \nabla(x^3 + y^3 + z^3 3xyz)$
 - b) Find the divergence and curl of vector given by

$$F = (xyz)i + 3x^2yj + (xz^2 - yz^2)k$$

- c) If F = (x + y + 1)i + j (x + y)k Prove that $F \bullet curl F = 0$
- d) Show the vector (y+z)i + (z+x)j + (x+y)k is solenoidal
- **Q.3**. Prove that

a)
$$(\nabla^{\circ} \bar{r}) = 3$$

b)
$$\nabla^{\circ}(r^n\bar{r}) = (n+3)\bar{r}$$

c)
$$\nabla \left(\frac{1}{r}\right) = -\frac{\bar{r}}{r^2}$$

$$\mathbf{d})\nabla r^n = nr^{n-2}\bar{r}$$

- **Q.4.**a) A vector fief is given by $F = (\sin y)i + x(1+\cos y)j$ Evaluate the line integral over a circular path given by $x^2 + y^2 = a^2, z = 0$
 - b) If $\bar{A} = (3x^2 + 6y)i 14yzj + 20xz^2k$ then evaluate line integral $\oint \bar{A} \circ d\bar{r}$ from (0,0,0) to (1,1,1) along the curve $x = t, y = t^2, z = t^3$
- Q5.a) A vector field given by $\overline{F} = (x^2 yz)i + (y^2 zx)j + (z^2 xy)k$ Show that field is irrotational and find its scalar potential such that $\overline{F} = \nabla \emptyset$
- b) A vector field given by $\bar{F} = (x^2 y^2 + x)i (2xy + y)j$ Show that field is irrotational and find its scalar potential such that $\bar{F} = \nabla \emptyset$
