

N-channel 600 V, 61 mΩ typ., 39 A, MDmesh™ M6 Power MOSFET in a TO247-4 package

TO247-4

Features

Order code	V _{DS}	R _{DS(on)} max.	I _D
STW48N60M6-4	600 V	69 mΩ	39 A

- · Reduced switching losses
- Lower R_{DS(on)} per area vs previous generation

experience for maximum end-application efficiency.

- · Low gate input resistance
- 100% avalanche tested
- Zener-protected
- Excellent switching performance thanks to the extra driving source pin

Applications

- · Switching applications
- · LLC converters
- · Boost PFC converters

Description

The new MDmesh $^{\text{TM}}$ M6 technology incorporates the most recent advancements to the well-known and consolidated MDmesh family of SJ MOSFETs. STMicroelectronics builds on the previous generation of MDmesh devices through its new M6 technology, which combines excellent $R_{DS(on)}$ per area improvement with one of the most effective switching behaviors available, as well as a user-friendly

Product status link

STW48N60M6-4

Product summary			
Order code STW48N60M6			
Marking	48N60M6		
Package	TO247-4		
Packing	Tube		

1 Electrical ratings

Table 1. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{GS}	Gate-source voltage	±25	V
1_	Drain current (continuous) at T _C = 25 °C	39	Α
I _D	Drain current (continuous) at T _C = 100 °C	25	Α
I _{DM} ⁽¹⁾	Drain current (pulsed)	140	Α
P _{TOT}	Total power dissipation at T _C = 25 °C	250	W
dv/dt ⁽²⁾	Peak diode recovery voltage slope	15	V/ns
dv/dt ⁽³⁾	MOSFET dv/dt ruggedness	100	V/IIS
T _{stg}	Storage temperature range	-55 to 150	°C
T _j	Operating junction temperature range	-55 to 150	

- 1. Pulse width is limited by safe operating area.
- 2. $I_{SD} \le 39$ A, $di/dt \le 400$ A/ μ s, $V_{DS(peak)} < V_{(BR)DSS}$, $V_{DD} = 400$ V
- 3. $V_{DS} \le 480 \text{ V}$

Table 2. Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case	0.5	°C/W
R _{thj-amb}	Thermal resistance junction-ambient	50	°C/W

Table 3. Avalanche characteristics

Symbol	Parameter	Value	Unit
I _{AR}	Avalanche current, repetitive or not repetitive (pulse width limited by T _{jmax})	5.5	Α
E _{AS}	Single pulse avalanche energy (starting $T_j = 25$ °C, $I_D = I_{AR}$, $V_{DD} = 50$ V)	950	mJ

DS12690 - Rev 1 page 2/12

2 Electrical characteristics

(T_C = 25 °C unless otherwise specified)

Table 4. On/off states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	V _{GS} = 0 V, I _D = 1 mA	600			V
		V _{GS} = 0 V, V _{DS} = 600 V			1	
I _{DSS}	Zero-gate voltage drain current	$V_{GS} = 0 \text{ V}, V_{DS} = 600 \text{ V},$ $T_C = 125 \text{ °C}^{(1)}$			100	μA
I _{GSS}	Gate-body leakage current	V _{DS} = 0 V, V _{GS} = ±25 V			±5	μA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}, I_D = 250 \mu A$	3.25	4	4.75	V
R _{DS(on)}	Static drain-source on-resistance	V _{GS} = 10 V, I _D = 19.5 A		61	69	mΩ

^{1.} Defined by design, not subject to production test.

Table 5. Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss}	Input capacitance		-	2578	-	pF
C _{oss}	Output capacitance	V _{GS} = 0 V, V _{DS} = 100 V, f = 1 MHz	-	202	-	pF
C _{rss}	Reverse transfer capacitance		-	3.1	-	pF
Coss eq. (1)	Equivalent output capacitance	V _{GS} = 0 V, V _{DS} = 0 to 480 V	-	415	-	pF
R_{G}	Intrinsic gate resistance	f = 1 MHz open drain	-	1.8	-	Ω
Qg	Total gate charge	V _{DD} = 480 V, I _D = 39 A,	-	57	-	nC
Q _{gs}	Gate-source charge	V _{GS} = 0 to 10 V	-	16	-	nC
Q _{gd}	Gate-drain charge	(see Figure 14. Test circuit for gate charge behavior)	-	23	-	nC

^{1.} $C_{\text{oss eq.}}$ is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS} .

Table 6. Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d (on)}	Turn-on delay time	V _{DD} = 300 V, I _D = 19.5 A,	-	20	-	ns
t _r	Rise time	$R_G = 4.7 \Omega$, $V_{GS} = 10 V$	-	9	-	ns
t _{d(off)}	Turn-off delay time	(see Figure 13. Switching times	-	60	-	ns
t _f	Fall time	test circuit for resistive load and Figure 18. Switching time waveform)	-	8.5	-	ns

DS12690 - Rev 1 page 3/12

Table 7. Source-drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current		-		39	Α
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		-		140	Α
V _{SD} ⁽²⁾	Forward on voltage	V _{GS} = 0 V, I _{SD} = 39 A	-		1.6	V
t _{rr}	Reverse recovery time	$I_{SD} = 39 \text{ A, di/dt} = 100 \text{ A/}\mu\text{s,}$	-	317		ns
Q _{rr}	Reverse recovery charge	V _{DD} = 60 V	-	4.4		μC
I _{RRM}	Reverse recovery current	(see Figure 17. Unclamped inductive waveform)	-	28		Α
t _{rr}	Reverse recovery time	$I_{SD} = 39 \text{ A, di/dt} = 100 \text{ A/}\mu\text{s,}$	-	475		ns
Q _{rr}	Reverse recovery charge	V_{DD} = 60 V, T_j = 150 °C	-	8.67		μC
I _{RRM}	Reverse recovery current	(see Figure 17. Unclamped inductive waveform)	-	36.5		Α

^{1.} Pulse width is limited by safe operating area.

DS12690 - Rev 1 page 4/12

^{2.} Pulse test: pulse duration = $300 \mu s$, duty cycle 1.5%.

2.1 Electrical characteristics (curves)

DS12690 - Rev 1 page 5/12

Figure 8. Normalized gate threshold voltage vs temperature V_{GS(th)} (norm.) GADG210320171542VTH I_D =250 A 1.1 1.0 0.9 8.0 0.7 0.6 -75 -25 25 75 125 T_J (°C)

Figure 9. Normalized on-resistance vs temperature $R_{DS(on)}$ (norm.) Q_{DS} $Q_$

DS12690 - Rev 1 page 6/12

3 Test circuits

Figure 13. Switching times test circuit for resistive load

Figure 15. Test circuit for inductive load switching and diode recovery times

Figure 16. Unclamped inductive load test circuit

Figure 17. Unclamped inductive waveform

Figure 18. Switching time waveform

DS12690 - Rev 1 page 7/12

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark.

4.1 TO247-4 package information

Figure 19. TO247-4 package outline

DS12690 - Rev 1 page 8/12

Table 8. TO247-4 mechanical data

Dim.		mm	
Dim.	Min.	Тур.	Max.
Α	4.90	5.00	5.10
A1	2.31	2.41	2.51
A2	1.90	2.00	2.10
b	1.16		1.29
b1	1.15	1.20	1.25
b2	0		0.20
С	0.59		0.66
c1	0.58	0.60	0.62
D	20.90	21.00	21.10
D1	16.25	16.55	16.85
D2	1.05	1.20	1.35
D3	24.97	25.12	25.27
Е	15.70	15.80	15.90
E1	13.10	13.30	13.50
E2	4.90	5.00	5.10
E3	2.40	2.50	2.60
е	2.44	2.54	2.64
e1	4.98	5.08	5.18
L	19.80	19.92	20.10
Р	3.50	3.60	3.70
P1			7.40
P2	2.40	2.50	2.60
Q	5.60		6.00
S		6.15	
Т	9.80		10.20
U	6.00		6.40

DS12690 - Rev 1 page 9/12

Revision history

Table 9. Document revision history

Date	Version	Changes
28-Nov-2018	1	First release.

DS12690 - Rev 1 page 10/12

Contents

1	Elec	ctrical ratings	2	
2	2 Electrical characteristics			
	2.1	Electrical characteristics (curves)	5	
3	Test	circuits	7	
4	Pac	kage information	8	
	4.1	TO247-4 package information	8	
Rev	vision	history	.10	

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2018 STMicroelectronics - All rights reserved

DS12690 - Rev 1 page 12/12