Leandro Marín	Grado en Ingeniería Informática	Tiempo Estimado
	Álgebra y Matemática Discreta	Previo: 60 min.
Facultad Informática Universidad Murcia	Sistemas de Ecuaciones y Reduccin por Filas	Clase: 30 min.

Vídeo: https://youtu.be/gbvdqz8XkLg

1. Resumen

Un sistema de ecuaciones lineales es un conjunto de expresiones de la forma:

$$2x_1 + 2x_2 - x_3 = 1$$
$$x_1 - 2x_2 + x_3 = 2$$

Llamaremos coeficientes a los valores que multiplican a las x_i que serán elementos de un cuerpo K. La matriz de los coeficientes es la formada por dichos coeficientes

$$A = \left[\begin{array}{ccc} 2 & 2 & -1 \\ 1 & -2 & 1 \end{array} \right]$$

El número de filas de esta matriz coincide con el número de filas y el número de columnas es igual al número de incógnitas.

Los elementos que aparecen a la derecha del = se llaman términos independientes y llamaremos **matriz ampliada del sistema** a la matriz formada por los coeficientes con una columna extra para los términos independientes.

$$[A|B] = \left[\begin{array}{ccc|c} 2 & 2 & -1 & 1 \\ 1 & -2 & 1 & 2 \end{array} \right]$$

El sistema de ecuaciones también se pude representar matricialmente como AX = B,

$$\left[\begin{array}{ccc} 2 & 2 & -1 \\ 1 & -2 & 1 \end{array}\right] \left[\begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array}\right] = \left[\begin{array}{c} 1 \\ 2 \end{array}\right]$$

Dado un sistema de ecuaciones, debemos ser capaces de reconocer la matriz ampliada y viceversa.

Teorema 1. Sea [A|B] la matriz ampliada del un sistema de ecuaciones y E una operación elemental por filas. Entonces el sistema asociado a [EA|EB] tiene exactamente las mismas soluciones que el sistema asociado a [A|B].

Demostración. X es solución de [A|B] si y solo si AX = B, pero AX = B si y solo si EAX = EAB por ser E una operación elemental invertible, y eso es equivalente a que X sea solución de [EA|EB].

Proposición 2. Las soluciones de un sistema de ecuaciones con matriz ampliada [A|B] son las mismas que las del sistema asociado a la matriz reducida por filas de [A|B] (que llamaremos sistema reducido).

Demostración. La matriz reducida se obtiene aplicando una sucesión de operaciones elementales por filas $E_k \cdots E_2 E_1[A|B]$. Aplicando en cada paso el teorema anterior, concluimos el resultado de la proposición. \square

Para resolver un sistema de ecuaciones, procederemos del siguiente modo:

Teorema 3. Sea [A|B] la matriz ampliada de un sistema de ecuaciones lineales y R su matriz reducida por filas.

- 1. Si la columna de los términos independientes es una columna pivote, entonces el sistema no tiene solución. Diremos que el sistema es incompatible.
- 2. Si eso no sucede, haremos parámetros las variables correspondientes a las columnas no pivote y depejaremos el resto de las variables respecto a ellas.
 - a) Si todas las columnas de la parte de los coeficientes son pivotes, entonces la solución es única. Diremos que el sistema es compatible determinado.
 - b) Si no, las soluciones dependerán de los parámetros que puden tomar cualquier valor en el cuerpo K. Diremos que el sistema es compatible indeterminado.

Leandro Marín	Grado en Ingeniería Informática	Tiempo Estimado
	Álgebra y Matemática Discreta	Previo: 60 min.
Facultad Informática Universidad Murcia	Sistemas de Ecuaciones y Reduccin por Filas	Clase: 30 min.

2. Erratas

(No detectadas)

3. Ejercicios

A continuación se proponen 50 sistemas de ecuaciones de distintos tipos. Los 20 primeros son en \mathbb{R} , los 20 siguientes en \mathbb{Z}_5 y los 10 últimos en \mathbb{Z}_3 .

Ejercicio 4. Estudia y resuelve si es posible el siguiente sistema de ecuaciones sobre los números reales:

$$x_1 + 5x_3 + 9x_4 = 0$$

$$-x_1 + x_2 - 3x_4 = 3$$

$$-x_1 - 4x_3 - 7x_4 = 0$$

$$-x_1 + 2x_2 + 2x_3 - 2x_4 = 5$$

$$-2x_2 - 8x_3 - 6x_4 = -7$$

Solución: Tomamos la matriz ampliada del sistema:

$$[A|B] = \begin{bmatrix} 1 & 0 & 5 & 9 & 0 \\ -1 & 1 & 0 & -3 & 3 \\ -1 & 0 & -4 & -7 & 0 \\ -1 & 2 & 2 & -2 & 5 \\ 0 & -2 & -8 & -6 & -7 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 5 & 9 & 0 \\ -1 & 1 & 0 & -3 & 3 \\ -1 & 0 & -4 & -7 & 0 \\ -1 & 2 & 2 & -2 & 5 \\ 0 & -2 & -8 & -6 & -7 \end{bmatrix}^{E_{(2)+1(1)}} \begin{bmatrix} 1 & 0 & 5 & 9 & 0 \\ 0 & 1 & 5 & 6 & 3 \\ -1 & 0 & -4 & -7 & 0 \\ -1 & 2 & 2 & -2 & 5 \\ 0 & -2 & -8 & -6 & -7 \end{bmatrix}^{E_{(3)+1(1)}} \begin{bmatrix} 1 & 0 & 5 & 9 & 0 \\ 0 & 1 & 5 & 6 & 3 \\ 0 & 0 & 1 & 2 & 0 \\ 0 & 0 & 1 & 5 & 6 & 3 \\ 0 & 0 & 1 & 2 & 0 \\ 0 & 2 & 7 & 7 & 5 \\ 0 & -2 & -8 & -6 & -7 \end{bmatrix}^{E_{(4)+2(2)}} \begin{bmatrix} 1 & 0 & 5 & 9 & 0 \\ 0 & 1 & 5 & 6 & 3 \\ 0 & 0 & 1 & 2 & 0 \\ 0 & 0 & -3 & -5 & -1 \\ 0 & 0 & 2 & 6 & -1 \end{bmatrix}^{E_{(4)-2(2)}} \begin{bmatrix} 1 & 0 & 5 & 9 & 0 \\ 0 & 1 & 5 & 6 & 3 \\ 0 & 0 & 1 & 2 & 0 \\ 0 & 0 & -3 & -5 & -1 \\ 0 & 0 & 2 & 6 & -1 \end{bmatrix}^{E_{(4)-2(2)}} \begin{bmatrix} 1 & 0 & 0 & -1 & 0 \\ 0 & 1 & 5 & 6 & 3 \\ 0 & 0 & 1 & 2 & 0 \\ 0 & 0 & -3 & -5 & -1 \\ 0 & 0 & 2 & 6 & -1 \end{bmatrix}^{E_{(4)-2(2)}} \begin{bmatrix} 1 & 0 & 0 & -1 & 0 \\ 0 & 1 & 5 & 6 & 3 \\ 0 & 0 & 1 & 2 & 0 \\ 0 & 0 & -3 & -5 & -1 \\ 0 & 0 & 2 & 6 & -1 \end{bmatrix}^{E_{(4)-2(2)}} \begin{bmatrix} 1 & 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & -4 & 3 \\ 0 & 0 & 1 & 2 & 0 \\ 0 & 0 & -3 & -5 & -1 \\ 0 & 0 & 2 & 6 & -1 \end{bmatrix}^{E_{(4)+3(3)}} \begin{bmatrix} 1 & 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & -4 & 3 \\ 0 & 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 2 & 6 & -1 \end{bmatrix}^{E_{(4)+3(4)}} \begin{bmatrix} 1 & 0 & 0 & 0 & -1 \\ 0 & 1 & 0 & -4 & 3 \\ 0 & 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 2 & 6 & -1 \end{bmatrix}^{E_{(4)+4(4)}}$$

Leandro Marín	Grado en Ingeniería Informática	Tiempo Estimado
-	Álgebra y Matemática Discreta	Previo: 60 min.
Facultad Informática Universidad Murcia	Sistemas de Ecuaciones y Reduccin por Filas	Clase: 30 min.

Como la columna de los términos independientes es una columna pivote, concluimos que el sistema no tiene solución, es incompatible. \Diamond

Ejercicio 5. Estudia y resuelve si es posible el siguiente sistema de ecuaciones sobre los números reales :

$$4x_1 - x_2 + 2x_3 = -2$$

$$x_1 = -2$$

$$2x_1 - x_2 + 3x_3 = 4$$

$$-2x_1 + 2x_2 - x_3 = -2$$

$$x_2 + x_3 = 0$$

Solución: Tomamos la matriz ampliada del sistema:

$$[A|B] = \begin{bmatrix} 4 & -1 & 2 & | & -2 \\ 1 & 0 & 0 & | & -2 \\ 2 & -1 & 3 & | & 4 \\ -2 & 2 & -1 & | & -2 \\ 0 & 1 & 1 & | & 0 \end{bmatrix}$$

$$\begin{bmatrix} 4 & -1 & 2 & | & -2 \\ 1 & 0 & 0 & | & -2 \\ 2 & -1 & 3 & | & 4 \\ -2 & 2 & -1 & | & -2 \\ 0 & 1 & 1 & | & 0 \end{bmatrix} \xrightarrow{E_{\frac{1}{4}(1)}} \begin{bmatrix} 1 & -\frac{1}{4} & \frac{1}{2} & | & -\frac{1}{2} \\ 1 & 0 & 0 & | & -2 \\ 2 & -1 & 3 & | & 4 \\ -2 & 2 & -1 & | & -2 \\ 0 & 1 & 1 & | & 0 \end{bmatrix} \xrightarrow{E_{(2)-1(1)}} \begin{bmatrix} 1 & -\frac{1}{4} & \frac{1}{2} & | & -\frac{1}{2} \\ 0 & \frac{1}{4} & -\frac{1}{2} & | & -\frac{1}{2} \\ 2 & -1 & 3 & | & 4 \\ -2 & 2 & -1 & | & -2 \\ 0 & 1 & 1 & | & 0 \end{bmatrix}$$

$$E_{(3)-2(1)} \begin{bmatrix} 1 & -\frac{1}{4} & \frac{1}{2} & | & -\frac{1}{2} \\ 0 & \frac{1}{4} & -\frac{1}{2} & | & -\frac{1}{2} \\ 0 & -\frac{1}{2} & 2 & | & 5 \\ -2 & 2 & -1 & | & -2 \\ 0 & 1 & 1 & | & 0 \end{bmatrix} \xrightarrow{E_{(4)+2(1)}} \begin{bmatrix} 1 & -\frac{1}{4} & \frac{1}{2} & | & -\frac{1}{2} \\ 0 & \frac{1}{4} & -\frac{1}{2} & | & -\frac{1}{2} \\ 0 & -\frac{1}{2} & 2 & | & 5 \\ 0 & \frac{3}{2} & 0 & | & -3 \\ 0 & 1 & 1 & | & 0 \end{bmatrix} \xrightarrow{E_{4(2)}} \begin{bmatrix} 1 & 0 & | & -2 \\ 0 & 1 & -2 & | & -6 \\ 0 & 0 & 1 & | & 2 \\ 0 & \frac{3}{2} & 0 & | & -3 \\ 0 & 1 & 1 & | & 0 \end{bmatrix} \xrightarrow{E_{(3)+\frac{1}{2}(2)}} \begin{bmatrix} 1 & 0 & 0 & | & -2 \\ 0 & 1 & -2 & | & -6 \\ 0 & 0 & 1 & | & 2 \\ 0 & \frac{3}{2} & 0 & | & -3 \\ 0 & 1 & 1 & | & 0 \end{bmatrix} \xrightarrow{E_{(4)+2(3)}} \begin{bmatrix} 1 & 0 & 0 & | & -2 \\ 0 & 1 & -2 & | & -6 \\ 0 & 0 & 1 & | & 2 \\ 0 & \frac{3}{2} & 0 & | & -3 \\ 0 & 1 & 1 & | & 0 \end{bmatrix} \xrightarrow{E_{(4)+2(3)}} \begin{bmatrix} 1 & 0 & 0 & | & -2 \\ 0 & 1 & -2 & | & -6 \\ 0 & 0 & 1 & | & 2 \\ 0 & \frac{3}{2} & 0 & | & -3 \\ 0 & 1 & 1 & | & 0 \end{bmatrix} \xrightarrow{E_{(4)+2(3)}} \begin{bmatrix} 1 & 0 & 0 & | & -2 \\ 0 & 1 & 0 & | & -2 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 3 & | & 6 \\ 0 & 0 & 3 & | & 6 \end{bmatrix}$$

Leandro Marín	Grado en Ingeniería Informática	Tiempo Estimado
	Álgebra y Matemática Discreta	Previo: 60 min.
Facultad Informática Universidad Murcia	Sistemas de Ecuaciones y Reduccin por Filas	Clase: 30 min.

$$\stackrel{E_{(5)-3(3)}}{\longrightarrow} \left[\begin{array}{ccc|c} 1 & 0 & 0 & -2 \\ 0 & 1 & 0 & -2 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right].$$

El sistema reducido queda:

$$x_1 = -2$$

$$x_2 = -2$$

$$x_3 = 2$$

$$0 = 0$$

$$0 = 0$$

Este sistema es compatible determinado y tiene solución única.

Ejercicio 6. Estudia y resuelve si es posible el siguiente sistema de ecuaciones sobre los números reales:

 \Diamond

 \Diamond

$$x_1 + x_2 - 2x_3 + 5x_4 = 1$$
$$2x_1 + 3x_2 - x_3 + 8x_4 = -5$$
$$x_1 - 4x_3 + 6x_4 = 6$$

Solución: Tomamos la matriz ampliada del sistema:

$$[A|B] = \begin{bmatrix} 1 & 1 & -2 & 5 & 1 \\ 2 & 3 & -1 & 8 & -5 \\ 1 & 0 & -4 & 6 & 6 \end{bmatrix}$$

y la reducimos por filas

$$\begin{bmatrix} 1 & 1 & -2 & 5 & 1 \\ 2 & 3 & -1 & 8 & -5 \\ 1 & 0 & -4 & 6 & 6 \end{bmatrix} \xrightarrow{E_{(2)-2(1)}} \begin{bmatrix} 1 & 1 & -2 & 5 & 1 \\ 0 & 1 & 3 & -2 & -7 \\ 1 & 0 & -4 & 6 & 6 \end{bmatrix} \xrightarrow{E_{(3)-1(1)}} \begin{bmatrix} 1 & 1 & -2 & 5 & 1 \\ 0 & 1 & 3 & -2 & -7 \\ 0 & -1 & -2 & 1 & 5 \end{bmatrix}$$

$$\xrightarrow{E_{(1)-1(2)}} \begin{bmatrix} 1 & 0 & -5 & 7 & 8 \\ 0 & 1 & 3 & -2 & -7 \\ 0 & -1 & -2 & 1 & 5 \end{bmatrix} \xrightarrow{E_{(3)+1(2)}} \begin{bmatrix} 1 & 0 & -5 & 7 & 8 \\ 0 & 1 & 3 & -2 & -7 \\ 0 & 0 & 1 & -1 & -2 \end{bmatrix} \xrightarrow{E_{(1)+5(3)}} \begin{bmatrix} 1 & 0 & 0 & 2 & -2 \\ 0 & 1 & 3 & -2 & -7 \\ 0 & 0 & 1 & -1 & -2 \end{bmatrix}$$

$$\xrightarrow{E_{(2)-3(3)}} \begin{bmatrix} 1 & 0 & 0 & 2 & -2 \\ 0 & 1 & 0 & 1 & -1 \\ 0 & 0 & 1 & -1 & -2 \end{bmatrix}.$$

El sistema reducido queda:

$$x_1 + 2x_4 = -2$$
$$x_2 + x_4 = -1$$
$$x_3 - x_4 = -2$$

Este sistema es compatible indeterminado y la solución depende de un parámetro, que a la vista de la reducción tomaremos en la variable x_4 .

$$x_1 = -2a - 2$$

$$x_2 = -a - 1$$

$$x_3 = a - 2$$

$$x_4 = a$$

donde a toma cualquier valor de \mathbb{R} .

Leandro Marín	Grado en Ingeniería Informática	Tiempo Estimado
	Álgebra y Matemática Discreta	Previo: 60 min.
Facultad Informática Universidad Murcia	Sistemas de Ecuaciones y Reduccin por Filas	Clase: 30 min.

Ejercicio 7. Estudia y resuelve si es posible el siguiente sistema de ecuaciones sobre los números reales:

$$-x_1 + x_2 - 2x_3 = 0$$
$$2x_1 - 3x_2 + 6x_3 = -2$$
$$2x_1 - 2x_2 + 4x_3 = 0$$

$$[A|B] = \begin{bmatrix} -1 & 1 & -2 & 0 \\ 2 & -3 & 6 & -2 \\ 2 & -2 & 4 & 0 \end{bmatrix}$$

y la reducimos por filas

$$\begin{bmatrix} -1 & 1 & -2 & 0 \\ 2 & -3 & 6 & -2 \\ 2 & -2 & 4 & 0 \end{bmatrix} \xrightarrow{E_{-1(1)}} \begin{bmatrix} 1 & -1 & 2 & 0 \\ 2 & -3 & 6 & -2 \\ 2 & -2 & 4 & 0 \end{bmatrix} \xrightarrow{E_{(2)-2(1)}} \begin{bmatrix} 1 & -1 & 2 & 0 \\ 0 & -1 & 2 & -2 \\ 2 & -2 & 4 & 0 \end{bmatrix}$$

$$\xrightarrow{E_{(3)-2(1)}} \begin{bmatrix} 1 & -1 & 2 & 0 \\ 0 & -1 & 2 & -2 \\ 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{E_{-1(2)}} \begin{bmatrix} 1 & -1 & 2 & 0 \\ 0 & 1 & -2 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{E_{(1)+1(2)}} \begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & -2 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

El sistema reducido queda:

$$x_1 = 2$$
$$x_2 - 2x_3 = 2$$
$$0 = 0$$

Este sistema es compatible indeterminado y la solución depende de un parámetro, que a la vista de la reducción tomaremos en la variable x_3 .

$$x_1 = 2$$

$$x_2 = 2a + 2$$

$$x_3 = a$$

donde a toma cualquier valor de \mathbb{R} .

Ejercicio 8. Estudia y resuelve si es posible el siguiente sistema de ecuaciones sobre los números reales:

$$-2x_1 - x_2 + 4x_3 - x_4 = 0$$
$$3x_1 - 2x_2 + x_3 - x_4 = 9$$
$$x_3 - x_4 = 6$$
$$-x_1 + x_3 = -2$$
$$-x_1 + x_2 + x_3 = 2$$

Leandro Marín	Grado en Ingeniería Informática	Tiempo Estimado
	Álgebra y Matemática Discreta	Previo: 60 min.
Facultad Informática Universidad Murcia	Sistemas de Ecuaciones y Reduccin por Filas	Clase: 30 min.

$$[A|B] = \begin{bmatrix} -2 & -1 & 4 & -1 & 0 \\ 3 & -2 & 1 & -1 & 9 \\ 0 & 0 & 1 & -1 & 6 \\ -1 & 0 & 1 & 0 & -2 \\ -1 & 1 & 1 & 0 & 2 \end{bmatrix}$$

y la reducimos por filas

$$\begin{bmatrix} -2 & -1 & 4 & -1 & 0 \\ 3 & -2 & 1 & -1 & 9 \\ 0 & 0 & 1 & -1 & 6 \\ -1 & 0 & 1 & 0 & | & -2 \\ -1 & 1 & 1 & 0 & | & 2 \end{bmatrix} \xrightarrow{E_{-\frac{1}{2}(1)}} \begin{bmatrix} 1 & \frac{1}{2} & -2 & \frac{1}{2} & 0 \\ 0 & 0 & 1 & -1 & 6 \\ -1 & 0 & 1 & 0 & | & -2 \\ -1 & 1 & 1 & 0 & | & 2 \end{bmatrix} \xrightarrow{E_{(2)-8(1)}} \begin{bmatrix} 1 & \frac{1}{2} & -2 & \frac{1}{2} & 0 \\ 0 & 0 & 1 & -1 & 6 \\ -1 & 0 & 1 & 0 & | & -2 \\ -1 & 1 & 1 & 0 & | & 2 \end{bmatrix}$$

$$E_{(4)+1(1)} \begin{bmatrix} 1 & \frac{1}{2} & -2 & \frac{1}{2} & 0 \\ 0 & -\frac{1}{2} & 7 & -\frac{5}{2} & 9 \\ 0 & 0 & 1 & -1 & 6 \\ 0 & \frac{1}{2} & -1 & \frac{1}{2} & | & -2 \\ -1 & 1 & 1 & 0 & | & 2 \end{bmatrix} \xrightarrow{E_{(5)+1(1)}} \begin{bmatrix} 1 & \frac{1}{2} & -2 & \frac{1}{2} & 0 \\ 0 & \frac{1}{2} & 7 & -\frac{5}{2} & 9 \\ 0 & 0 & 1 & -1 & 6 \\ 0 & \frac{1}{2} & -1 & \frac{1}{2} & | & -2 \\ -1 & 1 & 1 & 0 & | & 2 \end{bmatrix} \xrightarrow{E_{(5)+1(1)}} \begin{bmatrix} 1 & \frac{1}{2} & -2 & \frac{1}{2} & 0 \\ 0 & \frac{1}{2} & 7 & -\frac{5}{2} & 9 \\ 0 & 0 & 1 & -1 & 6 \\ 0 & \frac{1}{2} & -1 & \frac{1}{2} & | & -2 \\ -1 & 1 & 1 & 0 & | & 2 \end{bmatrix} \xrightarrow{E_{(5)+1(1)}} \begin{bmatrix} 1 & 0 & -1 & \frac{1}{2} & -2 \\ 0 & \frac{1}{2} & 7 & -\frac{5}{2} & 9 \\ 0 & 0 & 1 & -1 & 6 \\ 0 & \frac{1}{2} & -1 & \frac{1}{2} & | & -2 \\ 0 & \frac{3}{2} & -1 & \frac{1}{2} & | & -2 \\ 0 & \frac{3}{2} & -1 & \frac{1}{2} & | & -2 \\ 0 & \frac{3}{2} & -1 & \frac{1}{2} & | & -2 \\ 0 & 0 & 1 & -1 & \frac{1}{6} & 0 \\ 0 & 1 & -2 & \frac{57}{7} & -\frac{15}{7} \\ 0 & 0 & 1 & -1 & \frac{1}{6} & 0 \\ 0 & \frac{3}{2} & -1 & \frac{1}{2} & | & -2 \\ 0 & \frac{3}{2} & -1 & \frac{1}{2} & | & -2 \\ 0 & \frac{3}{2} & -1 & \frac{1}{2} & | & -2 \\ 0 & \frac{3}{2} & -1 & \frac{1}{2} & | & -2 \\ 0 & 0 & 1 & -1 & \frac{1}{6} & 0 \\ 0 & \frac{3}{2} & -1 & \frac{1}{2} & | & -2 \\ 0 & \frac{3}{2} & -1 & \frac{1}{2} & | & -2 \\ 0 & 0 & 2 & -\frac{1}{7} & -\frac{57}{7} \\ 0 & 0 & 1 & -1 & \frac{6}{6} \\ 0 & 0 & 0 & \frac{1}{7} & -\frac{57}{7} \\ 0 & 0 & 2 & -\frac{1}{7} & \frac{57}{7} \\ 0 & 0 & 2 & -\frac{1}{7} & \frac{57}{7} \\ 0 & 0 & 0 & 2 & -\frac{1}{7} & \frac{57}{7} \\ 0 & 0 & 0 & 2 & -\frac{1}{7} & \frac{57}{7} \\ 0 & 0 & 0 & 2 & -\frac{1}{7} & \frac{57}{7} \\ 0 & 0 & 0 & 2 & -\frac{1}{7} & \frac{57}{7} \\ 0 & 0 & 0 & 2 & -\frac{1}{7} & \frac{57}{7} \\ 0 & 0 & 0 & 2 & -\frac{1}{7} & \frac{57}{7} \\ 0 & 0 & 0 & 1 & -1 & 6 \\ 0 & 0 & 0 & 1 & -\frac{5}{7} & \frac{57}{7} \\ 0 & 0 & 0 & 0 & \frac{1}{7} & -\frac{57}{7} \\ 0 & 0 & 0 & 1 & -1 & 6 \\ 0 & 0 & 0 & 1 & -1 & 6 \\ 0 & 0 & 0 & 1 & -1 &$$

Como la columna de los términos independientes es una columna pivote, concluimos que el sistema no tiene solución, es incompatible.

Ejercicio 9. Estudia y resuelve si es posible el siquiente sistema de ecuaciones sobre los números reales:

$$x_1 + 4x_2 - x_3 = 0$$
$$x_3 = 2$$
$$-4x_3 = -8$$

Leandro Marín	Grado en Ingeniería Informática	Tiempo Estimado
	Álgebra y Matemática Discreta	Previo: 60 min.
Facultad Informática Universidad Murcia	Sistemas de Ecuaciones y Reduccin por Filas	Clase: 30 min.

$$[A|B] = \begin{bmatrix} 1 & 4 & -1 & 0 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & -4 & -8 \end{bmatrix}$$

y la reducimos por filas

$$\left[\begin{array}{cc|cc|c} 1 & 4 & -1 & 0 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & -4 & -8 \end{array}\right] \xrightarrow{E_{(1)+1(2)}} \left[\begin{array}{cc|cc|c} 1 & 4 & 0 & 2 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & -4 & -8 \end{array}\right] \xrightarrow{E_{(3)+4(2)}} \left[\begin{array}{cc|cc|c} 1 & 4 & 0 & 2 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{array}\right]$$

El sistema reducido queda:

$$x_1 + 4x_2 = 2$$
$$x_3 = 2$$
$$0 = 0$$

Este sistema es compatible indeterminado y la solución depende de un parámetro, que a la vista de la reducción tomaremos en la variable x_2 .

$$x_1 = -4a + 2$$
$$x_2 = a$$
$$x_3 = 2$$

donde a toma cualquier valor de \mathbb{R} .

Ejercicio 10. Estudia y resuelve si es posible el siguiente sistema de ecuaciones sobre los números reales:

 \Diamond

$$3x_1 - 2x_2 - 9x_3 = -1$$
$$-x_1 + x_2 + 2x_3 = 0$$
$$-2x_1 + x_2 + 8x_3 = 1$$
$$x_1 - x_2 - 2x_3 = 0$$

Solución: Tomamos la matriz ampliada del sistema:

$$[A|B] = \begin{bmatrix} 3 & -2 & -9 & -1 \\ -1 & 1 & 2 & 0 \\ -2 & 1 & 8 & 1 \\ 1 & -1 & -2 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 3 & -2 & -9 & | & -1 \\ -1 & 1 & 2 & | & 0 \\ -2 & 1 & 8 & | & 1 \\ 1 & -1 & -2 & | & 0 \end{bmatrix} \xrightarrow{E_{\frac{1}{3}(1)}} \begin{bmatrix} 1 & -\frac{2}{3} & -3 & | & -\frac{1}{3} \\ -1 & 1 & 2 & | & 0 \\ -2 & 1 & 8 & | & 1 \\ 1 & -1 & -2 & | & 0 \end{bmatrix} \xrightarrow{E_{(2)+1(1)}} \begin{bmatrix} 1 & -\frac{2}{3} & -3 & | & -\frac{1}{3} \\ 0 & \frac{1}{3} & -1 & | & -\frac{1}{3} \\ -2 & 1 & 8 & | & 1 \\ 1 & -1 & -2 & | & 0 \end{bmatrix}$$

$$E_{(3)+2(1)} \begin{bmatrix} 1 & -\frac{2}{3} & -3 & | & -\frac{1}{3} \\ 0 & \frac{1}{3} & -1 & | & -\frac{1}{3} \\ 0 & \frac{1}{3} & -1 & | & -\frac{1}{3} \\ 0 & -\frac{1}{3} & 2 & | & \frac{1}{3} \\ 1 & -1 & -2 & | & 0 \end{bmatrix} \xrightarrow{E_{(4)-1(1)}} \begin{bmatrix} 1 & -\frac{2}{3} & -3 & | & -\frac{1}{3} \\ 0 & \frac{1}{3} & -1 & | & -\frac{1}{3} \\ 0 & -\frac{1}{3} & 2 & | & \frac{1}{3} \\ 1 & -1 & -2 & | & 0 \end{bmatrix} \xrightarrow{E_{(4)-1(1)}} \begin{bmatrix} 1 & -\frac{2}{3} & -3 & | & -\frac{1}{3} \\ 0 & \frac{1}{3} & -1 & | & -\frac{1}{3} \\ 0 & -\frac{1}{3} & 2 & | & \frac{1}{3} \\ 1 & -1 & -2 & | & 0 \end{bmatrix}$$

$$\stackrel{E_{(1)+\frac{2}{3}(2)}}{\longrightarrow} \left[\begin{array}{ccc|c} 1 & 0 & -5 & -1 \\ 0 & 1 & -3 & -1 \\ 0 & -\frac{1}{3} & 2 & \frac{1}{3} \\ 0 & -\frac{1}{3} & 1 & \frac{1}{3} \end{array} \right] \stackrel{E_{(3)+\frac{1}{3}(2)}}{\longrightarrow} \left[\begin{array}{ccc|c} 1 & 0 & -5 & -1 \\ 0 & 1 & -3 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & -\frac{1}{3} & 1 & \frac{1}{3} \end{array} \right] \stackrel{E_{(4)+\frac{1}{3}(2)}}{\longrightarrow} \left[\begin{array}{ccc|c} 1 & 0 & -5 & -1 \\ 0 & 1 & -3 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right]$$

$$\stackrel{E_{(1)+5(3)}}{\longrightarrow} \left[\begin{array}{ccc|c} 1 & 0 & 0 & -1 \\ 0 & 1 & -3 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right] \stackrel{E_{(2)+3(3)}}{\longrightarrow} \left[\begin{array}{ccc|c} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right] .$$

El sistema reducido queda:

$$x_1 = -1$$

$$x_2 = -1$$

$$x_3 = 0$$

$$0 = 0$$

Este sistema es compatible determinado y tiene solución única.

Ejercicio 11. Estudia y resuelve si es posible el siguiente sistema de ecuaciones sobre los números reales:

 \Diamond

$$x_1 - x_2 - 3x_3 = 8$$

$$x_2 = -4$$

$$x_1 - 2x_2 - 2x_3 = 9$$

$$-x_1 + 2x_2 + x_3 = -5$$

$$x_1 - 2x_2 + x_3 = 3$$

Solución: Tomamos la matriz ampliada del sistema:

$$[A|B] = \begin{bmatrix} 1 & -1 & -3 & 8 \\ 0 & 1 & 0 & -4 \\ 1 & -2 & -2 & 9 \\ -1 & 2 & 1 & -5 \\ 1 & -2 & 1 & 3 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -1 & -3 & 8 \\ 0 & 1 & 0 & -4 \\ 1 & -2 & -2 & 9 \\ -1 & 2 & 1 & -5 \\ 1 & -2 & 1 & 3 \end{bmatrix} \xrightarrow{E_{(3)-1^{(1)}}} \begin{bmatrix} 1 & -1 & -3 & 8 \\ 0 & 1 & 0 & -4 \\ 0 & -1 & 1 & 1 \\ -1 & 2 & 1 & -5 \\ 1 & -2 & 1 & 3 \end{bmatrix} \xrightarrow{E_{(4)+1^{(1)}}} \begin{bmatrix} 1 & -1 & -3 & 8 \\ 0 & 1 & 0 & -4 \\ 0 & -1 & 1 & 1 \\ 0 & 1 & -2 & 3 \\ 1 & -2 & 1 & 3 \end{bmatrix}$$

$$\xrightarrow{E_{(5)-1^{(1)}}} \begin{bmatrix} 1 & -1 & -3 & 8 \\ 0 & 1 & 0 & -4 \\ 0 & -1 & 1 & 1 \\ 0 & 1 & -2 & 3 \\ 0 & -1 & 4 & -5 \end{bmatrix} \xrightarrow{E_{(1)+1^{(2)}}} \begin{bmatrix} 1 & 0 & -3 & 4 \\ 0 & 1 & 0 & -4 \\ 0 & -1 & 1 & 1 \\ 0 & 1 & -2 & 3 \\ 0 & -1 & 4 & -5 \end{bmatrix} \xrightarrow{E_{(3)+1^{(2)}}} \begin{bmatrix} 1 & 0 & -3 & 4 \\ 0 & 1 & 0 & -4 \\ 0 & 0 & 1 & -3 \\ 0 & -1 & 4 & -5 \end{bmatrix}$$

$$\xrightarrow{E_{(4)-1^{(2)}}} \begin{bmatrix} 1 & 0 & -3 & 4 \\ 0 & 1 & 0 & -4 \\ 0 & 0 & 1 & -3 \\ 0 & 0 & -2 & 7 \\ 0 & -1 & 4 & -5 \end{bmatrix} \xrightarrow{E_{(5)+1^{(2)}}} \begin{bmatrix} 1 & 0 & -3 & 4 \\ 0 & 1 & 0 & -4 \\ 0 & 0 & 1 & -3 \\ 0 & 0 & -2 & 7 \\ 0 & 0 & 4 & -9 \end{bmatrix} \xrightarrow{E_{(1)+3^{(3)}}} \begin{bmatrix} 1 & 0 & 0 & -5 \\ 0 & 1 & 0 & -4 \\ 0 & 0 & 1 & -3 \\ 0 & 0 & -2 & 7 \\ 0 & 0 & 4 & -9 \end{bmatrix}$$

Leandro Marín	Grado en Ingeniería Informática	Tiempo Estimado
	Álgebra y Matemática Discreta	Previo: 60 min.
Facultad Informática Universidad Murcia	Sistemas de Ecuaciones y Reduccin por Filas	Clase: 30 min.

$$\stackrel{E_{(4)+2(3)}}{\longrightarrow} \left[\begin{array}{ccc|c} 1 & 0 & 0 & -5 \\ 0 & 1 & 0 & -4 \\ 0 & 0 & 1 & -3 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 4 & -9 \end{array} \right] \stackrel{E_{(5)-4(3)}}{\longrightarrow} \left[\begin{array}{ccc|c} 1 & 0 & 0 & -5 \\ 0 & 1 & 0 & -4 \\ 0 & 0 & 1 & -3 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 3 \end{array} \right].$$

Como la columna de los términos independientes es una columna pivote, concluimos que el sistema no tiene solución, es incompatible. \Diamond

Ejercicio 12. Estudia y resuelve si es posible el siguiente sistema de ecuaciones sobre los números reales :

$$x_1 - 2x_2 - 2x_3 + 6x_4 = 1$$

$$-3x_1 + x_2 - 9x_3 + 4x_4 = 2$$

$$2x_1 - x_2 + 5x_3 = -1$$

$$-2x_2 - 6x_3 + 9x_4 = 2$$

Solución: Tomamos la matriz ampliada del sistema:

$$[A|B] = \begin{bmatrix} 1 & -2 & -2 & 6 & 1 \\ -3 & 1 & -9 & 4 & 2 \\ 2 & -1 & 5 & 0 & -1 \\ 0 & -2 & -6 & 9 & 2 \end{bmatrix}$$

y la reducimos por filas

$$\begin{bmatrix} 1 & -2 & -2 & 6 & 1 \\ -3 & 1 & -9 & 4 & 2 \\ 2 & -1 & 5 & 0 & -1 \\ 0 & -2 & -6 & 9 & 2 \end{bmatrix} \xrightarrow{E_{(2)+3(1)}} \begin{bmatrix} 1 & -2 & -2 & 6 & 1 \\ 0 & -5 & -15 & 22 & 5 \\ 2 & -1 & 5 & 0 & -1 \\ 0 & -2 & -6 & 9 & 2 \end{bmatrix} \xrightarrow{E_{(3)-2(1)}} \begin{bmatrix} 1 & -2 & -2 & 6 & 1 \\ 0 & -5 & -15 & 22 & 5 \\ 0 & 3 & 9 & -12 & -3 \\ 0 & -2 & -6 & 9 & 2 \end{bmatrix}$$

$$\xrightarrow{E_{-\frac{1}{5}(2)}} \begin{bmatrix} 1 & -2 & -2 & 6 & 1 \\ 0 & 1 & 3 & -\frac{22}{5} & -1 \\ 0 & 3 & 9 & -12 & -3 \\ 0 & -2 & -6 & 9 & 2 \end{bmatrix} \xrightarrow{E_{(1)+2(2)}} \begin{bmatrix} 1 & 0 & 4 & -\frac{14}{5} & -1 \\ 0 & 1 & 3 & -\frac{22}{5} & -1 \\ 0 & 3 & 9 & -12 & -3 \\ 0 & -2 & -6 & 9 & 2 \end{bmatrix} \xrightarrow{E_{(3)-3(2)}} \begin{bmatrix} 1 & 0 & 4 & -\frac{14}{5} & -1 \\ 0 & 1 & 3 & -\frac{22}{5} & -1 \\ 0 & 0 & 0 & \frac{6}{5} & 0 \\ 0 & -2 & -6 & 9 & 2 \end{bmatrix}$$

$$\xrightarrow{E_{(4)+2(2)}} \begin{bmatrix} 1 & 0 & 4 & -\frac{14}{5} & -1 \\ 0 & 1 & 3 & -\frac{22}{5} & -1 \\ 0 & 0 & 0 & \frac{1}{5} & 0 \end{bmatrix} \xrightarrow{E_{(5)}} \begin{bmatrix} 1 & 0 & 4 & -\frac{14}{5} & -1 \\ 0 & 1 & 3 & -\frac{22}{5} & -1 \\ 0 & 0 & 0 & \frac{1}{5} & 0 \end{bmatrix} \xrightarrow{E_{(1)+\frac{14}{5}(3)}} \begin{bmatrix} 1 & 0 & 4 & 0 & -1 \\ 0 & 1 & 3 & -\frac{22}{5} & -1 \\ 0 & 0 & 0 & \frac{1}{5} & 0 \end{bmatrix}$$

$$\xrightarrow{E_{(2)+\frac{22}{5}(3)}} \begin{bmatrix} 1 & 0 & 4 & 0 & -1 \\ 0 & 1 & 3 & 0 & -1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{E_{(4)-\frac{1}{5}(3)}} \begin{bmatrix} 1 & 0 & 4 & 0 & -1 \\ 0 & 1 & 3 & 0 & -1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} .$$

El sistema reducido queda:

$$x_1 + 4x_3 = -1$$
$$x_2 + 3x_3 = -1$$
$$x_4 = 0$$
$$0 = 0$$

Leandro Marín	Grado en Ingeniería Informática	Tiempo Estimado
_	Álgebra y Matemática Discreta	Previo: 60 min.
Facultad Informática Universidad Murcia	Sistemas de Ecuaciones y Reduccin por Filas	Clase: 30 min.

Este sistema es compatible indeterminado y la solución depende de un parámetro, que a la vista de la reducción tomaremos en la variable x_3 .

$$x_1 = -4a - 1$$

$$x_2 = -3a - 1$$

$$x_3 = a$$

$$x_4 = 0$$

donde a toma cualquier valor de \mathbb{R} .

Ejercicio 13. Estudia y resuelve si es posible el siguiente sistema de ecuaciones sobre los números reales :

 \Diamond

 \Diamond

$$-x_1 + 3x_2 - 5x_3 - x_4 = -5$$
$$x_2 - 2x_3 - x_4 = -3$$
$$x_1 - 4x_2 + 6x_3 + 2x_4 = 6$$

Solución: Tomamos la matriz ampliada del sistema:

$$[A|B] = \begin{bmatrix} -1 & 3 & -5 & -1 & | & -5 \\ 0 & 1 & -2 & -1 & | & -3 \\ 1 & -4 & 6 & 2 & | & 6 \end{bmatrix}$$

y la reducimos por filas

$$\begin{bmatrix} -1 & 3 & -5 & -1 & | & -5 \\ 0 & 1 & -2 & -1 & | & -3 \\ 1 & -4 & 6 & 2 & | & 6 \end{bmatrix} \xrightarrow{E_{-1(1)}} \begin{bmatrix} 1 & -3 & 5 & 1 & | & 5 \\ 0 & 1 & -2 & -1 & | & -3 \\ 1 & -4 & 6 & 2 & | & 6 \end{bmatrix} \xrightarrow{E_{(3)-1(1)}} \begin{bmatrix} 1 & -3 & 5 & 1 & | & 5 \\ 0 & 1 & -2 & -1 & | & -3 \\ 0 & -1 & 1 & 1 & | & 1 \end{bmatrix}$$

$$\xrightarrow{E_{(1)+3(2)}} \begin{bmatrix} 1 & 0 & -1 & -2 & | & -4 \\ 0 & 1 & -2 & -1 & | & -3 \\ 0 & -1 & 1 & 1 & | & 1 \end{bmatrix} \xrightarrow{E_{(3)+1(2)}} \begin{bmatrix} 1 & 0 & -1 & -2 & | & -4 \\ 0 & 1 & -2 & -1 & | & -3 \\ 0 & 0 & -1 & 0 & | & -2 \end{bmatrix} \xrightarrow{E_{-1(3)}} \begin{bmatrix} 1 & 0 & -1 & -2 & | & -4 \\ 0 & 1 & -2 & -1 & | & -3 \\ 0 & 0 & 1 & 0 & | & 2 \end{bmatrix}$$

$$\xrightarrow{E_{(1)+1(3)}} \begin{bmatrix} 1 & 0 & 0 & -2 & | & -2 \\ 0 & 1 & -2 & -1 & | & -3 \\ 0 & 0 & 1 & 0 & | & 2 \end{bmatrix} \xrightarrow{E_{(2)+2(3)}} \begin{bmatrix} 1 & 0 & 0 & -2 & | & -2 \\ 0 & 1 & 0 & -1 & | & 1 \\ 0 & 0 & 1 & 0 & | & 2 \end{bmatrix}.$$

El sistema reducido queda:

$$x_1 - 2x_4 = -2$$
$$x_2 - x_4 = 1$$
$$x_3 = 2$$

Este sistema es compatible indeterminado y la solución depende de un parámetro, que a la vista de la reducción tomaremos en la variable x_4 .

$$x_1 = 2a - 2$$

$$x_2 = a + 1$$

$$x_3 = 2$$

$$x_4 = a$$

donde a toma cualquier valor de \mathbb{R} .

Ejercicio 14. Estudia y resuelve si es posible el siguiente sistema de ecuaciones sobre los números reales:

$$-x_2 - x_3 + 4x_4 = 2$$

$$x_1 + x_2 + 2x_3 - 3x_4 = -2$$

$$-x_2 + x_3 + 7x_4 = -8$$

$$-x_1 - x_2 - 3x_3 + 2x_4 = 7$$

$$x_3 + x_4 = -4$$

Leandro Marín	Grado en Ingeniería Informática	Tiempo Estimado
	Álgebra y Matemática Discreta	Previo: 60 min.
Facultad Informática Universidad Murcia	Sistemas de Ecuaciones y Reduccin por Filas	Clase: 30 min.

$$[A|B] = \begin{bmatrix} 0 & -1 & -1 & 4 & 2 \\ 1 & 1 & 2 & -3 & -2 \\ 0 & -1 & 1 & 7 & -8 \\ -1 & -1 & -3 & 2 & 7 \\ 0 & 0 & 1 & 1 & -4 \end{bmatrix}$$

y la reducimos por filas

$$\begin{bmatrix} 0 & -1 & -1 & 4 & 2 \\ 1 & 1 & 2 & -3 & -2 \\ 0 & -1 & 1 & 7 & -8 \\ -1 & -1 & -3 & 2 & 7 \\ 0 & 0 & 1 & 1 & -4 \end{bmatrix} \xrightarrow{E_{-1(1)}} \begin{bmatrix} 0 & 1 & 1 & -4 & -2 \\ 1 & 1 & 2 & -3 & -2 \\ 0 & -1 & 1 & 7 & -8 \\ -1 & -1 & -3 & 2 & 7 \\ 0 & 0 & 1 & 1 & -4 \end{bmatrix} \xrightarrow{E_{(2)+1(1)}} \begin{bmatrix} 0 & 1 & 1 & -4 & -2 \\ 1 & 0 & 1 & 1 & 0 \\ 0 & -1 & 1 & 7 & -8 \\ -1 & -1 & -3 & 2 & 7 \\ 0 & 0 & 1 & 1 & -4 \end{bmatrix}$$

$$\xrightarrow{E_{(3)+1(1)}} \begin{bmatrix} 0 & 1 & 1 & -4 & -2 \\ 1 & 0 & 1 & 1 & -4 \\ 0 & 0 & 2 & 3 & -10 \\ 0 & 0 & 0 & 2 & 3 & -10 \\ -1 & -1 & -3 & 2 & 7 \\ 0 & 0 & 1 & 1 & -4 \end{bmatrix} \xrightarrow{E_{(4)+1(1)}} \begin{bmatrix} 0 & 1 & 1 & -4 & -2 \\ 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 2 & 3 & -10 \\ -1 & 0 & -2 & -2 & 5 \\ 0 & 0 & 1 & 1 & -4 \end{bmatrix} \xrightarrow{E_{(4)+1(1)}} \begin{bmatrix} 0 & 1 & 1 & -4 & -2 \\ 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 2 & 3 & -10 \\ 0 & 0 & 0 & 1 & 1 & -4 \end{bmatrix}$$

$$\xrightarrow{E_{\frac{1}{3}}} \begin{bmatrix} 0 & 1 & 1 & -4 & -2 \\ 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 3 & -5 \\ 0 & 0 & -1 & -1 & 5 \end{bmatrix} \xrightarrow{E_{(4)+1(1)}} \begin{bmatrix} 0 & 1 & 0 & -\frac{11}{2} & 3 \\ 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & \frac{3}{2} & -5 \\ 0 & 0 & -1 & -1 & -5 \\ 0 & 0 & 1 & 1 & -4 \end{bmatrix} \xrightarrow{E_{(4)+1(1)}} \begin{bmatrix} 0 & 1 & 0 & -\frac{11}{2} & 3 \\ 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & \frac{3}{2} & -5 \\ 0 & 0 & -1 & -1 & 5 \\ 0 & 0 & 1 & 1 & -4 \end{bmatrix}$$

$$\xrightarrow{E_{\frac{1}{3}}} \begin{bmatrix} 0 & 1 & 0 & -\frac{11}{2} & 3 \\ 1 & 0 & 0 & -\frac{1}{2} & 5 \\ 0 & 0 & 1 & \frac{3}{2} & -5 \\ 0 & 0 & 1 & 1 & -4 \\ 0 & 0 & 0 & \frac{3}{2} & -5 \\ 0 & 0 & 1 & 1 & -4 \\ 0 & 0 & 0 & -\frac{1}{2} & 1 \end{bmatrix} \xrightarrow{E_{\frac{1}{3}}} \xrightarrow{E_{\frac{1}{3}}}$$

Como la columna de los términos independientes es una columna pivote, concluimos que el sistema no tiene solución, es incompatible. \Diamond

Ejercicio 15. Estudia y resuelve si es posible el siguiente sistema de ecuaciones sobre los números reales:

$$x_1 - 5x_3 = 0$$

$$-2x_1 + x_2 + 8x_3 = -4$$

$$x_1 - x_2 - 2x_3 = 4$$

$$-x_1 + 2x_2 - 3x_3 = -8$$

$$2x_2 - 9x_3 = -8$$

Leandro Marín	Grado en Ingeniería Informática	Tiempo Estimado
	Álgebra y Matemática Discreta	Previo: 60 min.
Facultad Informática Universidad Murcia	Sistemas de Ecuaciones y Reduccin por Filas	Clase: 30 min.

$$[A|B] = \begin{bmatrix} 1 & 0 & -5 & 0 \\ -2 & 1 & 8 & -4 \\ 1 & -1 & -2 & 4 \\ -1 & 2 & -3 & -8 \\ 0 & 2 & -9 & -8 \end{bmatrix}$$

y la reducimos por filas

El sistema reducido queda:

$$x_1 = 0$$

$$x_2 = -4$$

$$x_3 = 0$$

$$0 = 0$$

$$0 = 0$$

Este sistema es compatible determinado y tiene solución única.

Ejercicio 16. Estudia y resuelve si es posible el siguiente sistema de ecuaciones sobre los números reales:

$$x_1 - x_2 + x_3 - 6x_4 = 7$$

$$-x_1 + 2x_2 + 5x_4 = -5$$

$$x_1 - 6x_2 - 3x_3 - 6x_4 = 5$$

$$x_1 - 2x_2 - 4x_4 = 3$$

$$x_2 + 4x_4 = -6$$

Leandro Marín	Grado en Ingeniería Informática	Tiempo Estimado
	Álgebra y Matemática Discreta	Previo: 60 min.
Facultad Informática Universidad Murcia	Sistemas de Ecuaciones y Reduccin por Filas	Clase: 30 min.

$$[A|B] = \begin{vmatrix} 1 & -1 & 1 & -6 & 7 \\ -1 & 2 & 0 & 5 & -5 \\ 1 & -6 & -3 & -6 & 5 \\ 1 & -2 & 0 & -4 & 3 \\ 0 & 1 & 0 & 4 & -6 \end{vmatrix}$$

y la reducimos por filas

$$\begin{bmatrix} 1 & -1 & 1 & -6 & 7 \\ -1 & 2 & 0 & 5 & -5 \\ 1 & -6 & -3 & -6 & 5 \\ 1 & -2 & 0 & -4 & 3 \\ 0 & 1 & 0 & 4 & -6 \end{bmatrix} \xrightarrow{E_{(2)+1(1)}} \begin{bmatrix} 1 & -1 & 1 & -6 & 7 \\ 0 & 1 & 1 & -1 & 2 \\ 1 & -6 & -3 & -6 & 5 \\ 1 & -2 & 0 & -4 & 3 \\ 0 & 1 & 0 & 4 & -6 \end{bmatrix} \xrightarrow{E_{(3)+1(1)}} \begin{bmatrix} 1 & -1 & 1 & -6 & 7 \\ 0 & 1 & 1 & -1 & 2 \\ 1 & -2 & 0 & -4 & 3 \\ 0 & 1 & 0 & 4 & -6 \end{bmatrix}$$

$$\xrightarrow{E_{(4)-1(1)}} \begin{bmatrix} 1 & -1 & 1 & -6 & 7 \\ 0 & 1 & 1 & -1 & 2 \\ 0 & -5 & -4 & 0 & -2 \\ 0 & -1 & -1 & 2 & -4 \\ 0 & 1 & 0 & 4 & -6 \end{bmatrix} \xrightarrow{E_{(1)+1(2)}} \begin{bmatrix} 1 & 0 & 2 & -7 & 9 \\ 0 & 1 & 1 & -1 & 2 \\ 0 & -5 & -4 & 0 & -2 \\ 0 & -1 & -1 & 2 & -4 \\ 0 & 1 & 0 & 4 & -6 \end{bmatrix} \xrightarrow{E_{(3)+5(2)}} \begin{bmatrix} 1 & 0 & 2 & -7 & 9 \\ 0 & 1 & 1 & -1 & 2 \\ 0 & -1 & -1 & 2 & -4 \\ 0 & 1 & 0 & 4 & -6 \end{bmatrix}$$

$$\xrightarrow{E_{(4)+1(2)}} \begin{bmatrix} 1 & 0 & 2 & -7 & 9 \\ 0 & 1 & 1 & -1 & 2 \\ 0 & 0 & 1 & -5 & 8 \\ 0 & 0 & 0 & 1 & -2 \\ 0 & 1 & 0 & 4 & -6 \end{bmatrix} \xrightarrow{E_{(5)-1(2)}} \begin{bmatrix} 1 & 0 & 2 & -7 & 9 \\ 0 & 1 & 1 & -1 & 2 \\ 0 & 0 & 1 & -5 & 8 \\ 0 & 0 & 0 & 1 & -2 \\ 0 & 0 & 1 & -5 & 8 \\ 0 & 0 & 0 & 1 & -2 \\ 0 & 0 & -1 & 5 & -8 \end{bmatrix} \xrightarrow{E_{(5)-1(3)}} \begin{bmatrix} 1 & 0 & 0 & 3 & -7 \\ 0 & 1 & 0 & 4 & -6 \\ 0 & 0 & 1 & -5 & 8 \\ 0 & 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{E_{(5)-1(3)}} \begin{bmatrix} 1 & 0 & 0 & 3 & -7 \\ 0 & 1 & 0 & 4 & -6 \\ 0 & 0 & 1 & -5 & 8 \\ 0 & 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{E_{(5)-1(3)}} \begin{bmatrix} 1 & 0 & 0 & 3 & -7 \\ 0 & 1 & 0 & 4 & -6 \\ 0 & 0 & 1 & -5 & 8 \\ 0 & 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{E_{(2)-4(4)}} \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & -1 \\ 0 & 1 & 0 & 0 & 0 & -1 \\ 0 & 1 & 0 & 0 & 0 & 0 \end{bmatrix}$$

El sistema reducido queda:

$$x_1 = -1$$

$$x_2 = 2$$

$$x_3 = -2$$

$$x_4 = -2$$

$$0 = 0$$

Este sistema es compatible determinado y tiene solución única.

Ejercicio 17. Estudia y resuelve si es posible el siguiente sistema de ecuaciones sobre los números reales:

$$x_1 + x_2 + x_3 = 1$$

$$-x_1 - x_3 - 4x_4 = -8$$

$$-3x_1 - 3x_2 - 2x_3 + 5x_4 = 6$$

$$3x_1 + 3x_2 + 3x_3 + x_4 = 5$$

$$-x_1 + x_2 - 4x_4 = -8$$

Leandro Marín	Grado en Ingeniería Informática	Tiempo Estimado
	Álgebra y Matemática Discreta	Previo: 60 min.
Facultad Informática Universidad Murcia	Sistemas de Ecuaciones y Reduccin por Filas	Clase: 30 min.

$$[A|B] = \begin{bmatrix} 1 & 1 & 1 & 0 & 1 \\ -1 & 0 & -1 & -4 & -8 \\ -3 & -3 & -2 & 5 & 6 \\ 3 & 3 & 3 & 1 & 5 \\ -1 & 1 & 0 & -4 & -8 \end{bmatrix}$$

y la reducimos por filas

$$\begin{bmatrix} 1 & 1 & 1 & 0 & 0 & 1 \\ -1 & 0 & -1 & -4 & -8 \\ -3 & -3 & -2 & 5 & 6 \\ 3 & 3 & 3 & 1 & 5 \\ -1 & 1 & 0 & -4 & -8 \end{bmatrix} \xrightarrow{E_{(2)+1(1)}} \begin{bmatrix} 1 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & -4 & -7 \\ -3 & -3 & -2 & 5 & 6 \\ 3 & 3 & 3 & 1 & 5 \\ -1 & 1 & 0 & -4 & -8 \end{bmatrix} \xrightarrow{E_{(3)+3(1)}} \begin{bmatrix} 1 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & -4 & -7 \\ 0 & 0 & 1 & 5 & 9 \\ 3 & 3 & 3 & 1 & 5 \\ -1 & 1 & 0 & -4 & -8 \end{bmatrix}$$

$$E_{(4)-3(1)} \begin{bmatrix} 1 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & -4 & -7 \\ 0 & 0 & 1 & 5 & 9 \\ 0 & 0 & 0 & 1 & 2 \\ -1 & 1 & 0 & -4 & -8 \end{bmatrix} \xrightarrow{E_{(5)+1(1)}} \begin{bmatrix} 1 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & -4 & -7 \\ 0 & 0 & 1 & 5 & 9 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 2 & 1 & -4 & -7 \end{bmatrix} \xrightarrow{E_{(1)-1(2)}} \begin{bmatrix} 1 & 0 & 1 & 4 & 8 \\ 0 & 1 & 0 & -4 & -7 \\ 0 & 0 & 1 & 5 & 9 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 1 & 4 & 7 \end{bmatrix} \xrightarrow{E_{(5)+4(4)}} \begin{bmatrix} 1 & 0 & 0 & -1 & -1 \\ 0 & 1 & 0 & -4 & -7 \\ 0 & 0 & 1 & 5 & 9 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & -1 & -2 \end{bmatrix} \xrightarrow{E_{(5)+4(4)}} \begin{bmatrix} 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & -1 & -2 \end{bmatrix} \xrightarrow{E_{(5)+4(4)}} \begin{bmatrix} 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & -1 & -2 \end{bmatrix} \xrightarrow{E_{(5)+4(4)}} \begin{bmatrix} 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & -1 & -2 \end{bmatrix}$$

El sistema reducido queda:

$$x_1 = 1$$

$$x_2 = 1$$

$$x_3 = -1$$

$$x_4 = 2$$

$$0 = 0$$

Este sistema es compatible determinado y tiene solución única.

Ejercicio 18. Estudia y resuelve si es posible el siguiente sistema de ecuaciones sobre los números reales :

$$x_1 - x_2 + 7x_3 - 6x_4 = -3$$
$$-x_1 - 4x_2 + x_3 - 7x_4 = 0$$
$$-2x_2 + 3x_3 - 5x_4 = -1$$

Leandro Marín	Grado en Ingeniería Informática	Tiempo Estimado
	Álgebra y Matemática Discreta	Previo: 60 min.
Facultad Informática Universidad Murcia	Sistemas de Ecuaciones y Reduccin por Filas	Clase: 30 min.

$$[A|B] = \begin{bmatrix} 1 & -1 & 7 & -6 & | & -3 \\ -1 & -4 & 1 & -7 & | & 0 \\ 0 & -2 & 3 & -5 & | & -1 \end{bmatrix}$$

y la reducimos por filas

$$\begin{bmatrix} 1 & -1 & 7 & -6 & | & -3 \\ -1 & -4 & 1 & -7 & | & 0 \\ 0 & -2 & 3 & -5 & | & -1 \end{bmatrix} \xrightarrow{E_{(2)+1(1)}} \begin{bmatrix} 1 & -1 & 7 & -6 & | & -3 \\ 0 & -5 & 8 & -13 & | & -3 \\ 0 & -2 & 3 & -5 & | & -1 \end{bmatrix} \xrightarrow{E_{-\frac{1}{5}(2)}} \begin{bmatrix} 1 & -1 & 7 & -6 & | & -3 \\ 0 & 1 & -\frac{8}{5} & \frac{13}{5} & | & \frac{3}{5} \\ 0 & -2 & 3 & -5 & | & -1 \end{bmatrix}$$

$$\xrightarrow{E_{(1)+1(2)}} \begin{bmatrix} 1 & 0 & \frac{27}{5} & -\frac{17}{5} & | & -\frac{12}{5} \\ 0 & 1 & -\frac{8}{5} & \frac{13}{5} & | & \frac{3}{5} \\ 0 & -2 & 3 & -5 & | & -1 \end{bmatrix} \xrightarrow{E_{(3)+2(2)}} \begin{bmatrix} 1 & 0 & \frac{27}{5} & -\frac{17}{5} & | & -\frac{12}{5} \\ 0 & 1 & -\frac{8}{5} & \frac{13}{5} & | & \frac{3}{5} \\ 0 & 0 & -\frac{1}{5} & | & \frac{1}{5} & | & \frac{1}{5} \end{bmatrix} \xrightarrow{E_{-5(3)}} \begin{bmatrix} 1 & 0 & \frac{27}{5} & -\frac{17}{5} & | & -\frac{12}{5} \\ 0 & 1 & -\frac{8}{5} & \frac{13}{5} & | & \frac{3}{5} \\ 0 & 0 & 1 & -1 & | & -1 \end{bmatrix}$$

$$\xrightarrow{E_{(1)-\frac{27}{5}(3)}} \begin{bmatrix} 1 & 0 & 0 & 2 & | & 3 \\ 0 & 1 & -\frac{8}{5} & \frac{13}{5} & | & \frac{3}{5} \\ 0 & 0 & 1 & -1 & | & -1 \end{bmatrix} \xrightarrow{E_{(2)+\frac{8}{5}(3)}} \begin{bmatrix} 1 & 0 & 0 & 2 & | & 3 \\ 0 & 1 & 0 & 1 & | & -1 \\ 0 & 0 & 1 & -1 & | & -1 \end{bmatrix}.$$

El sistema reducido queda:

$$x_1 + 2x_4 = 3$$
$$x_2 + x_4 = -1$$
$$x_3 - x_4 = -1$$

Este sistema es compatible indeterminado y la solución depende de un parámetro, que a la vista de la reducción tomaremos en la variable x_4 .

$$x_1 = -2a + 3$$

$$x_2 = -a - 1$$

$$x_3 = a - 1$$

$$x_4 = a$$

donde a toma cualquier valor de \mathbb{R} .

Ejercicio 19. Estudia y resuelve si es posible el siguiente sistema de ecuaciones sobre los números reales :

$$2x_1 + 3x_2 - 2x_3 = 7$$

$$x_1 + 2x_2 = 3$$

$$3x_1 + 6x_2 + x_3 = 7$$

$$x_1 - 3x_2 - 8x_3 = 5$$

$$-2x_1 + 2x_2 + 8x_3 = -4$$

Leandro Marín	Grado en Ingeniería Informática	Tiempo Estimado
	Álgebra y Matemática Discreta	Previo: 60 min.
Facultad Informática Universidad Murcia	Sistemas de Ecuaciones y Reduccin por Filas	Clase: 30 min.

$$[A|B] = \begin{bmatrix} 2 & 3 & -2 & 7\\ 1 & 2 & 0 & 3\\ 3 & 6 & 1 & 7\\ 1 & -3 & -8 & 5\\ -2 & 2 & 8 & -4 \end{bmatrix}$$

y la reducimos por filas

$$\begin{bmatrix} 2 & 3 & -2 & | & 7 \\ 1 & 2 & 0 & | & 3 \\ 3 & 6 & 1 & | & 7 \\ 1 & -3 & -8 & | & 5 \\ -2 & 2 & 8 & | & -4 \end{bmatrix} \xrightarrow{E_{\frac{1}{2}(1)}} \begin{bmatrix} 1 & \frac{3}{2} & -1 & | & \frac{7}{2} \\ 1 & 2 & 0 & | & 3 \\ 3 & 6 & 1 & | & 7 \\ 1 & -3 & -8 & | & 5 \\ -2 & 2 & 8 & | & -4 \end{bmatrix} \xrightarrow{E_{(2)-1(1)}} \begin{bmatrix} 1 & \frac{3}{2} & -1 & | & \frac{7}{2} \\ 0 & \frac{1}{2} & 1 & | & -\frac{1}{2} \\ 3 & 6 & 1 & | & 7 \\ 1 & -3 & -8 & | & 5 \\ -2 & 2 & 8 & | & -4 \end{bmatrix}$$

$$\xrightarrow{E_{(3)-3(1)}} \begin{bmatrix} 1 & \frac{3}{2} & -1 & | & \frac{7}{2} \\ 0 & \frac{1}{2} & 1 & | & -\frac{7}{2} \\ 0 & \frac{3}{2} & 4 & | & -\frac{7}{2} \\ 1 & -3 & -8 & | & 5 \\ -2 & 2 & 8 & | & -4 \end{bmatrix} \xrightarrow{E_{(4)-1(1)}} \begin{bmatrix} 1 & \frac{3}{2} & -1 & | & \frac{7}{2} \\ 0 & \frac{1}{2} & 1 & | & -\frac{7}{2} \\ 0 & -\frac{9}{2} & -7 & | & \frac{3}{2} \\ 0 & -\frac{9}{2} & -7 & | & \frac{3}{2} \\ 0 & -\frac{9}{2} & -7 & | & \frac{3}{2} \\ 0 & -\frac{9}{2} & -7 & | & \frac{3}{2} \\ 0 & -\frac{9}{2} & -7 & | & \frac{3}{2} \\ 0 & -\frac{9}{2} & -7 & | & \frac{3}{2} \\ 0 & -\frac{9}{2} & -7 & | & \frac{3}{2} \\ 0 & -\frac{9}{2} & -7 & | & \frac{3}{2} \\ 0 & 0 & 5 & 6 & | & 3 \end{bmatrix} \xrightarrow{E_{(4)-2(3)}} \begin{bmatrix} 1 & 0 & -4 & | & 5 \\ 0 & 1 & 2 & | & -1 \\ 0 & 0 & 1 & | & -2 \\ 0 & 0 & 2 & | & -3 \\ 0 & 0 & 0 & 1 & | & -2 \\ 0 & 0 & 2 & | & -3 \\ 0 & 0 & 0 & 1 & | & -2 \\ 0 & 0 & 2 & | & -3 \\ 0 & 0 & 0 & 2 & | & -3 \\ 0 & 0 & 0 & 2 & | & -3 \\ 0 & 0 & 0 & 4 & | & 8 \end{bmatrix} \xrightarrow{E_{(4)-2(3)}} \begin{bmatrix} 1 & 0 & 0 & | & -3 \\ 0 & 1 & 0 & | & 3 \\ 0 & 0 & 1 & | & -2 \\ 0 & 0 & 0 & 1 & | & -2 \\ 0 & 0 & 0 & 1 & | & -2 \\ 0 & 0 & 0 & 0 & | & 1 \\ 0 & 0 & 0 & 1 & | & -2 \\ 0 & 0 & 0 & 1 & | & -2 \\ 0 & 0 & 0 & 2 & | & -3 \\ 0 & 0 & 0 & 1 & | & -2 \\ 0 & 0 & 0 & 2 & | & -3 \\ 0 & 0 & 0 & 1 & | & 2 \\ 0 & 0 & 0 & 1 & | & 2 \\ 0 & 0 & 0 & 1 & | & 2 \\ 0 & 0 & 0 & 1 & | & 2 \\ 0 & 0 & 0 & 1 & | & 2 \\ 0 & 0 & 0 & 1 & | & 2 \\ 0 & 0 & 0 & 1 & | & 2 \\ 0 & 0 & 0 & 1 & | & 2 \\ 0 & 0 & 0 & 1 & | & 2 \\ 0 & 0 & 0 & 1 & | & 2 \\ 0 & 0 & 0 & 1 & | & 2 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Como la columna de los términos independientes es una columna pivote, concluimos que el sistema no tiene solución, es incompatible. \Diamond

Ejercicio 20. Estudia y resuelve si es posible el siguiente sistema de ecuaciones sobre los números reales :

$$x_1 + x_2 + x_3 = 2$$

$$x_1 + 2x_2 = -3$$

$$x_1 + x_2 + 2x_3 = 7$$

$$-2x_1 - 5x_2 - x_3 = 2$$

$$-2x_2 + x_3 = 7$$

Leandro Marín	Grado en Ingeniería Informática	Tiempo Estimado
	Álgebra y Matemática Discreta	Previo: 60 min.
Facultad Informática Universidad Murcia	Sistemas de Ecuaciones y Reduccin por Filas	Clase: 30 min.

$$[A|B] = \begin{bmatrix} 1 & 1 & 1 & 2 \\ 1 & 2 & 0 & -3 \\ 1 & 1 & 2 & 7 \\ -2 & -5 & -1 & 2 \\ 0 & -2 & 1 & 7 \end{bmatrix}$$

y la reducimos por filas

$$\begin{bmatrix} 1 & 1 & 1 & 2 & 2 & 0 & -3 \\ 1 & 2 & 0 & -3 & 1 & 1 & 2 & 7 \\ -2 & -5 & -1 & 2 & 2 & 0 & -2 & 1 & 7 \end{bmatrix} \xrightarrow{E_{(2)-1^{(1)}}} \begin{bmatrix} 1 & 1 & 1 & 1 & 2 \\ 0 & 1 & -1 & -5 \\ 1 & 1 & 2 & 7 \\ -2 & -5 & -1 & 2 \\ 0 & -2 & 1 & 7 \end{bmatrix} \xrightarrow{E_{(3)-1^{(1)}}} \begin{bmatrix} 1 & 1 & 1 & 1 & 2 \\ 0 & 1 & -1 & -5 \\ 0 & 0 & 1 & 5 \\ -2 & -5 & -1 & 2 \\ 0 & -2 & 1 & 7 \end{bmatrix}$$

$$\xrightarrow{E_{(4)+2^{(1)}}} \begin{bmatrix} 1 & 1 & 1 & 2 \\ 0 & 1 & -1 & 2 \\ 0 & 0 & 1 & 5 \\ 0 & 0 & 1 & 5 \\ 0 & 0 & 2 & 1 & 7 \end{bmatrix} \xrightarrow{E_{(1)-1^{(2)}}} \begin{bmatrix} 1 & 0 & 2 & 7 \\ 0 & 1 & -1 & -5 \\ 0 & 0 & 1 & 5 \\ 0 & -2 & 1 & 7 \end{bmatrix} \xrightarrow{E_{(4)+3^{(2)}}} \begin{bmatrix} 1 & 0 & 2 & 7 \\ 0 & 1 & -1 & -5 \\ 0 & 0 & 1 & 5 \\ 0 & 0 & -2 & 1 & 7 \end{bmatrix}$$

$$\xrightarrow{E_{(5)+2^{(2)}}} \begin{bmatrix} 1 & 0 & 2 & 7 \\ 0 & 1 & -1 & -5 \\ 0 & 0 & 1 & 5 \\ 0 & 0 & -2 & -9 \\ 0 & 0 & -1 & -3 \end{bmatrix} \xrightarrow{E_{(1)-2^{(3)}}} \begin{bmatrix} 1 & 0 & 0 & -3 \\ 0 & 1 & -1 & -5 \\ 0 & 0 & 1 & 5 \\ 0 & 0 & -2 & -9 \\ 0 & 0 & -1 & -3 \end{bmatrix} \xrightarrow{E_{(2)+1^{(3)}}} \begin{bmatrix} 1 & 0 & 0 & -3 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 5 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{E_{(5)+1^{(3)}}} \begin{bmatrix} 1 & 0 & 0 & -3 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 5 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{E_{(5)+1^{(3)}}} \begin{bmatrix} 1 & 0 & 0 & -3 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 5 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{E_{(5)+1^{(3)}}} \begin{bmatrix} 1 & 0 & 0 & -3 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 5 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{E_{(5)+1^{(3)}}}$$

Como la columna de los términos independientes es una columna pivote, concluimos que el sistema no tiene solución, es incompatible.

Ejercicio 21. Estudia y resuelve si es posible el siguiente sistema de ecuaciones sobre los números reales:

$$-3x_1 + 2x_2 - 5x_3 = 8$$
$$2x_1 - 3x_2 + 4x_3 = -6$$
$$2x_1 - 2x_2 + 3x_3 = -3$$
$$-2x_1 + 2x_2 - 4x_3 = 7$$

Solución: Tomamos la matriz ampliada del sistema:

$$[A|B] = \begin{bmatrix} -3 & 2 & -5 & 8 \\ 2 & -3 & 4 & -6 \\ 2 & -2 & 3 & -3 \\ -2 & 2 & -4 & 7 \end{bmatrix}$$

Leandro Marín	Grado en Ingeniería Informática	Tiempo Estimado
	Álgebra y Matemática Discreta	Previo: 60 min.
Facultad Informática Universidad Murcia	Sistemas de Ecuaciones y Reduccin por Filas	Clase: 30 min.

y la reducimos por filas

$$\begin{bmatrix} -3 & 2 & -5 & 8 \\ 2 & -3 & 4 & -6 \\ 2 & -2 & 3 & -3 \\ -2 & 2 & -4 & 7 \end{bmatrix} \xrightarrow{E_{-\frac{1}{3}(1)}} \begin{bmatrix} 1 & -\frac{2}{3} & \frac{5}{3} & -\frac{8}{3} \\ 2 & -3 & 4 & -6 \\ 2 & -2 & 3 & -3 \\ -2 & 2 & -4 & 7 \end{bmatrix} \xrightarrow{E_{(2)-2(1)}} \begin{bmatrix} 1 & -\frac{2}{3} & \frac{5}{3} & -\frac{8}{3} \\ 0 & -\frac{5}{3} & \frac{3}{3} & -\frac{3}{3} \\ 2 & -2 & 3 & -3 \\ -2 & 2 & -4 & 7 \end{bmatrix}$$

$$E_{(3)-2(1)} \begin{bmatrix} 1 & -\frac{2}{3} & \frac{5}{3} & -\frac{8}{3} \\ 0 & -\frac{5}{3} & \frac{23}{3} & -\frac{23}{3} \\ 0 & -\frac{2}{3} & -\frac{1}{3} & \frac{7}{3} \\ -2 & 2 & -4 & 7 \end{bmatrix} \xrightarrow{E_{(4)+2(1)}} \begin{bmatrix} 1 & -\frac{2}{3} & \frac{5}{3} & -\frac{8}{3} \\ 0 & -\frac{5}{3} & \frac{2}{3} & -\frac{2}{3} \\ 0 & -\frac{2}{3} & -\frac{1}{3} & \frac{7}{3} \\ -2 & 2 & -4 & 7 \end{bmatrix} \xrightarrow{E_{(4)+2(1)}} \begin{bmatrix} 1 & -\frac{2}{3} & \frac{5}{3} & -\frac{8}{3} \\ 0 & -\frac{5}{3} & \frac{2}{3} & \frac{7}{3} \\ 0 & -\frac{2}{3} & -\frac{1}{3} & \frac{7}{3} \\ 0 & 2\frac{3}{3} & -\frac{2}{3} & \frac{5}{3} \end{bmatrix} \xrightarrow{E_{-\frac{3}{3}(2)}} \begin{bmatrix} 1 & 0 & -\frac{7}{5} & -\frac{8}{3} \\ 0 & 2\frac{3}{3} & -\frac{2}{3} & \frac{5}{3} \\ 0 & 2\frac{3}{3} & -\frac{2}{3} & \frac{5}{3} \end{bmatrix} \xrightarrow{E_{-\frac{3}{3}(2)}} \begin{bmatrix} 1 & 0 & \frac{7}{5} & -\frac{12}{5} \\ 0 & 1 & -\frac{15}{5} & -\frac{12}{5} \\ 0 & 0 & -\frac{1}{2} & \frac{12}{3} \\ 0 & 2\frac{3}{3} & -\frac{13}{3} & \frac{13}{3} \end{bmatrix} \xrightarrow{E_{(4)+2(1)}} \begin{bmatrix} 1 & 0 & 0 & 1 & -\frac{1}{5} \\ 0 & 1 & -\frac{15}{5} & -\frac{12}{5} \\ 0 & 0 & -\frac{1}{2} & \frac{13}{3} \\ 0 & 0 & -\frac{1}{2} & \frac{13}{3} \\ 0 & 0 & -\frac{1}{2} & \frac{13}{3} \\ 0 & 0 & -\frac{13}{3} \\ 0 & 0 & -\frac{2}{5} & -\frac{13}{5} \end{bmatrix} \xrightarrow{E_{(4)+2(3)}} \begin{bmatrix} 1 & 0 & 0 & 1 & \frac{11}{3} \\ 0 & 1 & 0 & -\frac{13}{3} \\ 0 & 0 & 1 & -\frac{13}{3} \\ 0 & 0 & 0 & -\frac{1}{3} \end{bmatrix} \xrightarrow{E_{(4)+\frac{2}{3}(3)}} \begin{bmatrix} 1 & 0 & 0 & \frac{11}{3} \\ 0 & 1 & 0 & -\frac{13}{3} \\ 0 & 0 & 1 & -\frac{13}{3} \\ 0 & 0 & 0 & -\frac{1}{3} \end{bmatrix}$$

Como la columna de los términos independientes es una columna pivote, concluimos que el sistema no tiene solución, es incompatible.

Ejercicio 22. Estudia y resuelve si es posible el siguiente sistema de ecuaciones sobre los números reales:

$$x_1 - x_2 + 4x_3 - 3x_4 = -1$$
$$-x_1 + 2x_2 - 5x_3 + 6x_4 = -1$$
$$3x_2 - 2x_3 + 8x_4 = -7$$
$$-3x_1 + x_2 - 9x_3 + 2x_4 = 6$$

Solución: Tomamos la matriz ampliada del sistema:

$$[A|B] = \begin{bmatrix} 1 & -1 & 4 & -3 & | & -1 \\ -1 & 2 & -5 & 6 & | & -1 \\ 0 & 3 & -2 & 8 & | & -7 \\ -3 & 1 & -9 & 2 & | & 6 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -1 & 4 & -3 & | & -1 \\ -1 & 2 & -5 & 6 & | & -1 \\ 0 & 3 & -2 & 8 & | & -7 \\ -3 & 1 & -9 & 2 & | & 6 \end{bmatrix} \xrightarrow{E_{(2)+1(1)}} \begin{bmatrix} 1 & -1 & 4 & -3 & | & -1 \\ 0 & 1 & -1 & 3 & | & -2 \\ 0 & 3 & -2 & 8 & | & -7 \\ -3 & 1 & -9 & 2 & | & 6 \end{bmatrix} \xrightarrow{E_{(4)+3(1)}} \begin{bmatrix} 1 & -1 & 4 & -3 & | & -1 \\ 0 & 1 & -1 & 3 & | & -2 \\ 0 & 3 & -2 & 8 & | & -7 \\ 0 & -2 & 3 & -7 & | & 3 \end{bmatrix}$$

$$\xrightarrow{E_{(1)+1(2)}} \begin{bmatrix} 1 & 0 & 3 & 0 & | & -3 \\ 0 & 1 & -1 & 3 & | & -2 \\ 0 & 3 & -2 & 8 & | & -7 \\ 0 & -2 & 3 & -7 & | & 3 \end{bmatrix} \xrightarrow{E_{(3)-3(2)}} \begin{bmatrix} 1 & 0 & 3 & 0 & | & -3 \\ 0 & 1 & -1 & 3 & | & -2 \\ 0 & 0 & 1 & -1 & | & -1 \\ 0 & -2 & 3 & -7 & | & 3 \end{bmatrix} \xrightarrow{E_{(4)+2(2)}} \begin{bmatrix} 1 & 0 & 3 & 0 & | & -3 \\ 0 & 1 & -1 & 3 & | & -2 \\ 0 & 0 & 1 & -1 & | & -1 \\ 0 & 0 & 1 & -1 & | & -1 \end{bmatrix}$$

Leandro Marín	Grado en Ingeniería Informática	Tiempo Estimado
	Álgebra y Matemática Discreta	Previo: 60 min.
Facultad Informática Universidad Murcia	Sistemas de Ecuaciones y Reduccin por Filas	Clase: 30 min.

$$\stackrel{E_{(1)-3(3)}}{\longrightarrow} \left[\begin{array}{ccc|c} 1 & 0 & 0 & 3 & 0 \\ 0 & 1 & -1 & 3 & -2 \\ 0 & 0 & 1 & -1 & -1 \\ 0 & 0 & 1 & -1 & -1 \end{array} \right] \stackrel{E_{(2)+1(3)}}{\longrightarrow} \left[\begin{array}{ccc|c} 1 & 0 & 0 & 3 & 0 \\ 0 & 1 & 0 & 2 & -3 \\ 0 & 0 & 1 & -1 & -1 \\ 0 & 0 & 1 & -1 & -1 \end{array} \right] \stackrel{E_{(4)-1(3)}}{\longrightarrow} \left[\begin{array}{ccc|c} 1 & 0 & 0 & 3 & 0 \\ 0 & 1 & 0 & 2 & -3 \\ 0 & 0 & 1 & -1 & -1 \\ 0 & 0 & 0 & 0 & 0 \end{array} \right]$$

El sistema reducido queda:

$$x_1 + 3x_4 = 0$$
$$x_2 + 2x_4 = -3$$
$$x_3 - x_4 = -1$$
$$0 = 0$$

Este sistema es compatible indeterminado y la solución depende de un parámetro, que a la vista de la reducción tomaremos en la variable x_4 .

$$x_1 = -3a$$

$$x_2 = -2a - 3$$

$$x_3 = a - 1$$

$$x_4 = a$$

donde a toma cualquier valor de \mathbb{R} .

Ejercicio 23. Estudia y resuelve si es posible el siguiente sistema de ecuaciones sobre los números reales:

 \Diamond

$$-3x_1 + 3x_2 - 9x_3 = -3$$
$$2x_1 + 3x_2 - 9x_3 = -8$$
$$2x_1 - x_2 + 3x_3 = 0$$

Solución: Tomamos la matriz ampliada del sistema:

$$[A|B] = \begin{bmatrix} -3 & 3 & -9 & | & -3 \\ 2 & 3 & -9 & | & -8 \\ 2 & -1 & 3 & | & 0 \end{bmatrix}$$

y la reducimos por filas

$$\begin{bmatrix} -3 & 3 & -9 & | & -3 \\ 2 & 3 & -9 & | & -8 \\ 2 & -1 & 3 & | & 0 \end{bmatrix} \xrightarrow{E_{-\frac{1}{3}(1)}} \begin{bmatrix} 1 & -1 & 3 & | & 1 \\ 2 & 3 & -9 & | & -8 \\ 2 & -1 & 3 & | & 0 \end{bmatrix} \xrightarrow{E_{(2)-2(1)}} \begin{bmatrix} 1 & -1 & 3 & | & 1 \\ 0 & 5 & -15 & | & -10 \\ 2 & -1 & 3 & | & 0 \end{bmatrix}$$

$$\xrightarrow{E_{(3)-2(1)}} \begin{bmatrix} 1 & -1 & 3 & | & 1 \\ 0 & 5 & -15 & | & -10 \\ 0 & 1 & -3 & | & -2 \end{bmatrix} \xrightarrow{E_{\frac{1}{5}(2)}} \begin{bmatrix} 1 & -1 & 3 & | & 1 \\ 0 & 1 & -3 & | & -2 \\ 0 & 1 & -3 & | & -2 \end{bmatrix} \xrightarrow{E_{(1)+1(2)}} \begin{bmatrix} 1 & 0 & 0 & | & -1 \\ 0 & 1 & -3 & | & -2 \\ 0 & 1 & -3 & | & -2 \end{bmatrix}$$

$$\xrightarrow{E_{(3)-1(2)}} \begin{bmatrix} 1 & 0 & 0 & | & -1 \\ 0 & 1 & -3 & | & -2 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}.$$

El sistema reducido queda:

$$x_1 = -1$$
$$x_2 - 3x_3 = -2$$

Leandro Marín	Grado en Ingeniería Informática	Tiempo Estimado
	Álgebra y Matemática Discreta	Previo: 60 min.
Facultad Informática Universidad Murcia	Sistemas de Ecuaciones y Reduccin por Filas	Clase: 30 min.

$$0 = 0$$

Este sistema es compatible indeterminado y la solución depende de un parámetro, que a la vista de la reducción tomaremos en la variable x_3 .

$$x_1 = -1$$
$$x_2 = 3a - 2$$
$$x_3 = a$$

donde a toma cualquier valor de \mathbb{R} .

Ejercicio 24. Estudia y resuelve si es posible el siguiente sistema de ecuaciones sobre el cuerpo de 5 elementos :

 \Diamond

$$-x_1 + x_2 - x_3 = 0$$
$$-x_1 - x_3 + 2x_4 = 4$$
$$-x_2 + x_3 - x_4 = 4$$

Solución: Tomamos la matriz ampliada del sistema:

$$[A|B] = \left[\begin{array}{cccc|c} 4 & 1 & 4 & 0 & 0 \\ 4 & 0 & 4 & 2 & 4 \\ 0 & 4 & 1 & 4 & 4 \end{array} \right]$$

y la reducimos por filas

El sistema reducido queda:

$$x_1 + x_4 = 1$$
$$x_2 + 3x_4 = 1$$
$$x_3 + 2x_4 = 0$$

Este sistema es compatible indeterminado y la solución depende de un parámetro, que a la vista de la reducción tomaremos en la variable x_4 .

$$x_1 = -a + 1$$

$$x_2 = -3a + 1$$

$$x_3 = -2a$$

$$x_4 = a$$

donde a toma cualquier valor de \mathbb{Z}_5 .

Ejercicio 25. Estudia y resuelve si es posible el siguiente sistema de ecuaciones sobre el cuerpo de 5 elementos :

$$x_2 + x_3 = 3$$
$$-x_1 + 2x_2 + 3x_3 = 2$$
$$3x_1 + 3x_3 = 3$$

Leandro Marín	Grado en Ingeniería Informática	Tiempo Estimado
	Álgebra y Matemática Discreta	Previo: 60 min.
Facultad Informática Universidad Murcia	Sistemas de Ecuaciones y Reduccin por Filas	Clase: 30 min.

$$[A|B] = \begin{bmatrix} 0 & 1 & 1 & 3 \\ 4 & 2 & 3 & 2 \\ 3 & 0 & 3 & 3 \end{bmatrix}$$

y la reducimos por filas

$$\begin{bmatrix} 0 & 1 & 1 & | & 3 \\ 4 & 2 & 3 & | & 2 \\ 3 & 0 & 3 & | & 3 \end{bmatrix} \xrightarrow{E_{(2)+3(1)}} \begin{bmatrix} 0 & 1 & 1 & | & 3 \\ 4 & 0 & 1 & | & 1 \\ 3 & 0 & 3 & | & 3 \end{bmatrix} \xrightarrow{E_{4(2)}} \begin{bmatrix} 0 & 1 & 1 & | & 3 \\ 1 & 0 & 4 & | & 4 \\ 3 & 0 & 3 & | & 3 \end{bmatrix}$$

$$\xrightarrow{E_{(3)+2(2)}} \begin{bmatrix} 0 & 1 & 1 & | & 3 \\ 1 & 0 & 4 & | & 4 \\ 0 & 0 & 1 & | & 1 \end{bmatrix} \xrightarrow{E_{(1)+4(3)}} \begin{bmatrix} 0 & 1 & 0 & | & 2 \\ 1 & 0 & 4 & | & 4 \\ 0 & 0 & 1 & | & 1 \end{bmatrix} \xrightarrow{E_{(2)+1(3)}} \begin{bmatrix} 0 & 1 & 0 & | & 2 \\ 1 & 0 & 0 & | & 0 \\ 0 & 0 & 1 & | & 1 \end{bmatrix}$$

$$\xrightarrow{E_{(1,2)}} \begin{bmatrix} 1 & 0 & 0 & | & 0 \\ 0 & 1 & 0 & | & 2 \\ 0 & 0 & 1 & | & 1 \end{bmatrix}.$$

El sistema reducido queda:

$$x_1 = 0$$
$$x_2 = 2$$
$$x_3 = 1$$

Este sistema es compatible determinado y tiene solución única.

Ejercicio 26. Estudia y resuelve si es posible el siguiente sistema de ecuaciones sobre el cuerpo de 5 elementos :

 \Diamond

$$-x_2 + 3x_3 + 2x_4 = 4$$
$$x_2 + 2x_3 + 3x_4 = 1$$
$$x_1 + 3x_2 + 2x_3 - x_4 = 2$$

Solución: Tomamos la matriz ampliada del sistema:

$$[A|B] = \left[\begin{array}{ccc|c} 0 & 4 & 3 & 2 & 4 \\ 0 & 1 & 2 & 3 & 1 \\ 1 & 3 & 2 & 4 & 2 \end{array} \right]$$

y la reducimos por filas

$$\begin{bmatrix} 0 & 4 & 3 & 2 & | & 4 \\ 0 & 1 & 2 & 3 & | & 1 \\ 1 & 3 & 2 & 4 & | & 2 \end{bmatrix} \xrightarrow{E_{4(1)}} \begin{bmatrix} 0 & 1 & 2 & 3 & | & 1 \\ 0 & 1 & 2 & 3 & | & 1 \\ 1 & 3 & 2 & 4 & | & 2 \end{bmatrix} \xrightarrow{E_{(2)+4(1)}} \begin{bmatrix} 0 & 1 & 2 & 3 & | & 1 \\ 0 & 0 & 0 & 0 & | & 0 \\ 1 & 3 & 2 & 4 & | & 2 \end{bmatrix}$$

$$\xrightarrow{E_{(3)+2(1)}} \begin{bmatrix} 0 & 1 & 2 & 3 & | & 1 \\ 0 & 0 & 0 & 0 & | & 0 \\ 1 & 0 & 1 & 0 & | & 4 \end{bmatrix} \xrightarrow{E_{(1,3)}} \begin{bmatrix} 1 & 0 & 1 & 0 & | & 4 \\ 0 & 0 & 0 & 0 & | & 0 \\ 0 & 1 & 2 & 3 & | & 1 \end{bmatrix} \xrightarrow{E_{(2,3)}} \begin{bmatrix} 1 & 0 & 1 & 0 & | & 4 \\ 0 & 1 & 2 & 3 & | & 1 \\ 0 & 0 & 0 & 0 & | & 0 \end{bmatrix}$$

El sistema reducido queda:

$$x_1 + x_3 = 4$$
$$x_2 + 2x_3 + 3x_4 = 1$$

Leandro Marín	Grado en Ingeniería Informática	Tiempo Estimado
	Álgebra y Matemática Discreta	Previo: 60 min.
Facultad Informática Universidad Murcia	Sistemas de Ecuaciones y Reduccin por Filas	Clase: 30 min.

$$0 = 0$$

Este sistema es compatible indeterminado y la solución depende de 2 parámetros, que a la vista de la reducción, tomaremos en las variables x_3 y x_4

$$x_1 = -a + 4$$

$$x_2 = -2a - 3b + 1$$

$$x_3 = a$$

$$x_4 = b$$

donde a y b toman cualquier valor de \mathbb{Z}_5 .

Ejercicio 27. Estudia y resuelve si es posible el siguiente sistema de ecuaciones sobre el cuerpo de 5 elementos :

$$x_1 + 2x_2 = 4$$
$$3x_1 + 2x_2 + x_3 = 4$$
$$2x_1 + 2x_2 - x_3 = 3$$
$$x_2 - x_3 = 4$$

Solución: Tomamos la matriz ampliada del sistema:

$$[A|B] = \begin{bmatrix} 1 & 2 & 0 & | & 4 \\ 3 & 2 & 1 & | & 4 \\ 2 & 2 & 4 & | & 3 \\ 0 & 1 & 4 & | & 4 \end{bmatrix}$$

y la reducimos por filas

$$\begin{bmatrix} 1 & 2 & 0 & | & 4 \\ 3 & 2 & 1 & | & 4 \\ 2 & 2 & 4 & | & 3 \\ 0 & 1 & 4 & | & 4 \end{bmatrix} \xrightarrow{E_{(2)+2(1)}} \begin{bmatrix} 1 & 2 & 0 & | & 4 \\ 0 & 1 & 1 & | & 2 \\ 2 & 2 & 4 & | & 3 \\ 0 & 1 & 4 & | & 4 \end{bmatrix} \xrightarrow{E_{(3)+3(1)}} \begin{bmatrix} 1 & 2 & 0 & | & 4 \\ 0 & 1 & 1 & | & 2 \\ 0 & 3 & 4 & | & 0 \\ 0 & 1 & 4 & | & 4 \end{bmatrix}$$

$$\xrightarrow{E_{(1)+3(2)}} \begin{bmatrix} 1 & 0 & 3 & | & 0 \\ 0 & 1 & 1 & | & 2 \\ 0 & 3 & 4 & | & 0 \\ 0 & 1 & 4 & | & 4 \end{bmatrix} \xrightarrow{E_{(3)+2(2)}} \begin{bmatrix} 1 & 0 & 3 & | & 0 \\ 0 & 1 & 1 & | & 2 \\ 0 & 0 & 1 & | & 4 \\ 0 & 1 & 4 & | & 4 \end{bmatrix} \xrightarrow{E_{(4)+4(2)}} \begin{bmatrix} 1 & 0 & 3 & | & 0 \\ 0 & 1 & 1 & | & 2 \\ 0 & 0 & 1 & | & 4 \\ 0 & 0 & 3 & | & 2 \end{bmatrix}$$

$$\xrightarrow{E_{(1)+2(3)}} \begin{bmatrix} 1 & 0 & 0 & | & 3 \\ 0 & 1 & 1 & | & 2 \\ 0 & 0 & 1 & | & 4 \\ 0 & 0 & 3 & | & 2 \end{bmatrix} \xrightarrow{E_{(2)+4(3)}} \begin{bmatrix} 1 & 0 & 0 & | & 3 \\ 0 & 1 & 0 & | & 3 \\ 0 & 0 & 1 & | & 4 \\ 0 & 0 & 3 & | & 2 \end{bmatrix} \xrightarrow{E_{(4)+2(3)}} \begin{bmatrix} 1 & 0 & 0 & | & 3 \\ 0 & 1 & 0 & | & 3 \\ 0 & 0 & 1 & | & 4 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$

El sistema reducido queda:

$$x_1 = 3$$
$$x_2 = 3$$
$$x_3 = 4$$
$$0 = 0$$

Este sistema es compatible determinado y tiene solución única.

Leandro Marín	Grado en Ingeniería Informática	Tiempo Estimado
	Álgebra y Matemática Discreta	Previo: 60 min.
Facultad Informática Universidad Murcia	Sistemas de Ecuaciones y Reduccin por Filas	Clase: 30 min.

Ejercicio 28. Estudia y resuelve si es posible el siguiente sistema de ecuaciones sobre el cuerpo de 5 elementos :

$$-x_1 + 3x_2 + 3x_3 = 1$$
$$2x_1 + 3x_2 - x_3 - x_4 = 1$$
$$3x_1 + 3x_2 + 2x_3 = 0$$
$$-x_1 + 2x_2 + 3x_3 = 3$$
$$x_1 + 2x_2 + 3x_4 = 2$$

Solución: Tomamos la matriz ampliada del sistema:

$$[A|B] = \begin{bmatrix} 4 & 3 & 3 & 0 & 1 \\ 2 & 3 & 4 & 4 & 1 \\ 3 & 3 & 2 & 0 & 0 \\ 4 & 2 & 3 & 0 & 3 \\ 1 & 2 & 0 & 3 & 2 \end{bmatrix}$$

Leandro Marín	Grado en Ingeniería Informática	Tiempo Estimado
-	Álgebra y Matemática Discreta	Previo: 60 min.
Facultad Informática Universidad Murcia	Sistemas de Ecuaciones y Reduccin por Filas	Clase: 30 min.

El sistema reducido queda:

$$x_1 = 4$$

$$x_2 = 3$$

$$x_3 = 2$$

$$x_4 = 4$$

$$0 = 0$$

Este sistema es compatible determinado y tiene solución única.

Ejercicio 29. Estudia y resuelve si es posible el siguiente sistema de ecuaciones sobre el cuerpo de 5 elementos :

 \Diamond

$$3x_1 + 2x_2 + x_4 = 2$$
$$2x_1 - x_2 - x_3 - x_4 = 2$$
$$x_1 - x_2 + 2x_3 + x_4 = 0$$
$$3x_1 + 3x_4 = 0$$

Solución: Tomamos la matriz ampliada del sistema:

$$[A|B] = \begin{bmatrix} 3 & 2 & 0 & 1 & 2 \\ 2 & 4 & 4 & 4 & 2 \\ 1 & 4 & 2 & 1 & 0 \\ 3 & 0 & 0 & 3 & 0 \end{bmatrix}$$

y la reducimos por filas

$$\begin{bmatrix} 3 & 2 & 0 & 1 & 2 \\ 2 & 4 & 4 & 4 & 2 \\ 1 & 4 & 2 & 1 & 0 \\ 3 & 0 & 0 & 3 & 0 \end{bmatrix} \xrightarrow{E_{2(1)}} \begin{bmatrix} 1 & 4 & 0 & 2 & 4 \\ 2 & 4 & 4 & 4 & 2 \\ 1 & 4 & 2 & 1 & 0 \\ 3 & 0 & 0 & 3 & 0 \end{bmatrix} \xrightarrow{E_{(2)+3(1)}} \begin{bmatrix} 1 & 4 & 0 & 2 & 4 \\ 0 & 1 & 4 & 0 & 4 \\ 1 & 4 & 2 & 1 & 0 \\ 3 & 0 & 0 & 3 & 0 \end{bmatrix}$$

$$\xrightarrow{E_{(3)+4(1)}} \begin{bmatrix} 1 & 4 & 0 & 2 & 4 \\ 0 & 1 & 4 & 0 & 4 \\ 0 & 0 & 2 & 4 & 1 \\ 3 & 0 & 0 & 3 & 0 \end{bmatrix} \xrightarrow{E_{(4)+2(1)}} \begin{bmatrix} 1 & 4 & 0 & 2 & 4 \\ 0 & 1 & 4 & 0 & 4 \\ 0 & 0 & 2 & 4 & 1 \\ 0 & 3 & 0 & 2 & 3 \end{bmatrix} \xrightarrow{E_{(1)+1(2)}} \begin{bmatrix} 1 & 0 & 4 & 2 & 3 \\ 0 & 1 & 4 & 0 & 4 \\ 0 & 0 & 2 & 4 & 1 \\ 0 & 0 & 3 & 2 & 1 \end{bmatrix} \xrightarrow{E_{(4)+2(3)}} \begin{bmatrix} 1 & 0 & 4 & 2 & 3 \\ 0 & 1 & 4 & 0 & 4 \\ 0 & 0 & 1 & 2 & 3 \\ 0 & 0 & 3 & 2 & 1 \end{bmatrix} \xrightarrow{E_{(1)+1(3)}} \begin{bmatrix} 1 & 0 & 0 & 4 & 1 \\ 0 & 1 & 4 & 0 & 4 \\ 0 & 0 & 1 & 2 & 3 \\ 0 & 0 & 3 & 2 & 1 \end{bmatrix}$$

$$\xrightarrow{E_{(2)+1(3)}} \begin{bmatrix} 1 & 0 & 0 & 4 & 1 \\ 0 & 1 & 0 & 2 & 2 \\ 0 & 0 & 1 & 2 & 3 \\ 0 & 0 & 3 & 2 & 1 \end{bmatrix} \xrightarrow{E_{(4)+2(3)}} \begin{bmatrix} 1 & 0 & 0 & 4 & 1 \\ 0 & 1 & 0 & 2 & 2 \\ 0 & 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 0 & 1 & 2 \end{bmatrix} \xrightarrow{E_{(1)+1(4)}} \begin{bmatrix} 1 & 0 & 0 & 0 & 3 \\ 0 & 1 & 0 & 2 & 2 \\ 0 & 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 0 & 1 & 2 \end{bmatrix}$$

$$\xrightarrow{E_{(2)+3(4)}} \begin{bmatrix} 1 & 0 & 0 & 0 & 3 \\ 0 & 1 & 0 & 0 & 3 \\ 0 & 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 1 & 2 \end{bmatrix} \xrightarrow{E_{(3)+3(4)}} \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 3 \\ 0 & 1 & 0 & 0 & 3 & 3 \\ 0 & 0 & 1 & 0 & 0 & 4 \\ 0 & 0 & 0 & 0 & 1 & 2 \end{bmatrix} \xrightarrow{E_{(2)+3(4)}} \xrightarrow{E_{(2)+3(4)}} \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 3 \\ 0 & 1 & 0 & 0 & 3 & 3 \\ 0 & 0 & 1 & 0 & 0 & 4 \\ 0 & 0 & 0 & 0 & 1 & 2 \end{bmatrix}$$

El sistema reducido queda:

$$x_1 = 3$$

Leandro Marín	Grado en Ingeniería Informática	Tiempo Estimado
	Álgebra y Matemática Discreta	Previo: 60 min.
Facultad Informática Universidad Murcia	Sistemas de Ecuaciones y Reduccin por Filas	Clase: 30 min.

$$x_2 = 3$$
$$x_3 = 4$$
$$x_4 = 2$$

Este sistema es compatible determinado y tiene solución única.

Ejercicio 30. Estudia y resuelve si es posible el siguiente sistema de ecuaciones sobre el cuerpo de 5 elementos :

 \Diamond

 \Diamond

$$x_1 + x_2 - x_4 = 4$$
$$-x_1 - x_2 + x_3 + 3x_4 = 0$$
$$2x_1 + 2x_2 - x_3 + x_4 = 4$$

Solución: Tomamos la matriz ampliada del sistema:

$$[A|B] = \left[\begin{array}{cccc|c} 1 & 1 & 0 & 4 & 4 \\ 4 & 4 & 1 & 3 & 0 \\ 2 & 2 & 4 & 1 & 4 \end{array} \right]$$

y la reducimos por filas

$$\begin{bmatrix} 1 & 1 & 0 & 4 & | & 4 \\ 4 & 4 & 1 & 3 & | & 0 \\ 2 & 2 & 4 & 1 & | & 4 \end{bmatrix} \xrightarrow{E_{(2)+1(1)}} \begin{bmatrix} 1 & 1 & 0 & 4 & | & 4 \\ 0 & 0 & 1 & 2 & | & 4 \\ 2 & 2 & 4 & 1 & | & 4 \end{bmatrix} \xrightarrow{E_{(3)+3(1)}} \begin{bmatrix} 1 & 1 & 0 & 4 & | & 4 \\ 0 & 0 & 1 & 2 & | & 4 \\ 0 & 0 & 1 & 2 & | & 4 \\ 0 & 0 & 1 & 2 & | & 4 \\ 0 & 0 & 0 & 0 & | & 0 \end{bmatrix}.$$

El sistema reducido queda:

$$x_1 + x_2 - x_4 = 4$$
$$x_3 + 2x_4 = 4$$
$$0 = 0$$

Este sistema es compatible indeterminado y la solución depende de 2 parámetros, que a la vista de la reducción, tomaremos en las variables x_2 y x_4

$$x_1 = -a - 4b + 4$$

$$x_2 = a$$

$$x_3 = -2b + 4$$

$$x_4 = b$$

donde a y b toman cualquier valor de \mathbb{Z}_5 .

Ejercicio 31. Estudia y resuelve si es posible el siguiente sistema de ecuaciones sobre el cuerpo de 5 elementos :

$$x_1 + 3x_2 - x_3 = 1$$
$$3x_1 + x_3 = 0$$
$$-x_1 + x_2 + 3x_3 = 1$$
$$x_2 - x_3 = 3$$

Leandro Marín	Grado en Ingeniería Informática	Tiempo Estimado
	Álgebra y Matemática Discreta	Previo: 60 min.
Facultad Informática Universidad Murcia	Sistemas de Ecuaciones y Reduccin por Filas	Clase: 30 min.

$$[A|B] = \begin{bmatrix} 1 & 3 & 4 & 1 \\ 3 & 0 & 1 & 0 \\ 4 & 1 & 3 & 1 \\ 0 & 1 & 4 & 3 \end{bmatrix}$$

y la reducimos por filas

$$\begin{bmatrix} 1 & 3 & 4 & 1 \\ 3 & 0 & 1 & 0 \\ 4 & 1 & 3 & 1 \\ 0 & 1 & 4 & 3 \end{bmatrix} \xrightarrow{E_{(2)+2(1)}} \begin{bmatrix} 1 & 3 & 4 & 1 \\ 0 & 1 & 4 & 2 \\ 4 & 1 & 3 & 1 \\ 0 & 1 & 4 & 3 \end{bmatrix} \xrightarrow{E_{(3)+1(1)}} \begin{bmatrix} 1 & 3 & 4 & 1 \\ 0 & 1 & 4 & 2 \\ 0 & 4 & 2 & 2 \\ 0 & 1 & 4 & 3 \end{bmatrix}$$

$$\xrightarrow{E_{(1)+2(2)}} \begin{bmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & 4 & 2 \\ 0 & 4 & 2 & 2 \\ 0 & 1 & 4 & 3 \end{bmatrix} \xrightarrow{E_{(3)+1(2)}} \begin{bmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & 4 & 2 \\ 0 & 0 & 1 & 4 \\ 0 & 1 & 4 & 3 \end{bmatrix} \xrightarrow{E_{(4)+4(2)}} \begin{bmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & 4 & 2 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\xrightarrow{E_{(1)+3(3)}} \begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 4 & 2 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{E_{(2)+1(3)}} \begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

Como la columna de los términos independientes es una columna pivote, concluimos que el sistema no tiene solución, es incompatible. \Diamond

Ejercicio 32. Estudia y resuelve si es posible el siguiente sistema de ecuaciones sobre el cuerpo de 5 elementos :

$$-x_2 + 3x_3 + 2x_4 = 4$$

$$x_1 + 2x_2 - x_3 - x_4 = 2$$

$$x_3 + 3x_4 = 1$$

$$-x_1 + x_2 - x_3 + 2x_4 = 1$$

Solución: Tomamos la matriz ampliada del sistema:

$$[A|B] = \begin{bmatrix} 0 & 4 & 3 & 2 & | & 4 \\ 1 & 2 & 4 & 4 & | & 2 \\ 0 & 0 & 1 & 3 & | & 1 \\ 4 & 1 & 4 & 2 & | & 1 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 4 & 3 & 2 & | & 4 \\ 1 & 2 & 4 & 4 & | & 2 \\ 0 & 0 & 1 & 3 & | & 1 \\ 4 & 1 & 4 & 2 & | & 1 \end{bmatrix} \xrightarrow{E_{4(1)}} \begin{bmatrix} 0 & 1 & 2 & 3 & | & 1 \\ 1 & 2 & 4 & 4 & | & 2 \\ 0 & 0 & 1 & 3 & | & 1 \\ 4 & 1 & 4 & 2 & | & 1 \end{bmatrix} \xrightarrow{E_{(2)+3(1)}} \begin{bmatrix} 0 & 1 & 2 & 3 & | & 1 \\ 1 & 0 & 0 & 3 & | & 0 \\ 0 & 0 & 1 & 3 & | & 1 \\ 4 & 1 & 4 & 2 & | & 1 \end{bmatrix}$$

$$\xrightarrow{E_{(4)+4(1)}} \begin{bmatrix} 0 & 1 & 2 & 3 & | & 1 \\ 1 & 0 & 0 & 3 & | & 0 \\ 0 & 0 & 1 & 3 & | & 1 \\ 1 & 0 & 0 & 3 & | & 0 \\ 0 & 0 & 1 & 3 & | & 1 \\ 0 & 0 & 2 & 2 & | & 0 \end{bmatrix} \xrightarrow{E_{(1)+3(3)}} \begin{bmatrix} 0 & 1 & 0 & 2 & | & 4 \\ 1 & 0 & 0 & 3 & | & 0 \\ 0 & 0 & 1 & 3 & | & 1 \\ 0 & 0 & 2 & 2 & | & 0 \end{bmatrix}$$

Leandro Marín	Grado en Ingeniería Informática	Tiempo Estimado
	Álgebra y Matemática Discreta	Previo: 60 min.
Facultad Informática Universidad Murcia	Sistemas de Ecuaciones y Reduccin por Filas	Clase: 30 min.

El sistema reducido queda:

$$x_1 = 1$$

$$x_2 = 3$$

$$x_3 = 2$$

$$x_4 = 3$$

Este sistema es compatible determinado y tiene solución única.

Ejercicio 33. Estudia y resuelve si es posible el siguiente sistema de ecuaciones sobre el cuerpo de 5 elementos :

 \Diamond

 \Diamond

$$-x_1 + x_2 = 3$$
$$x_1 + 3x_2 + 3x_3 = 3$$
$$-x_1 + 2x_2 + 2x_3 = 2$$

Solución: Tomamos la matriz ampliada del sistema:

$$[A|B] = \begin{bmatrix} 4 & 1 & 0 & 3 \\ 1 & 3 & 3 & 3 \\ 4 & 2 & 2 & 2 \end{bmatrix}$$

y la reducimos por filas

$$\begin{bmatrix} 4 & 1 & 0 & 3 \\ 1 & 3 & 3 & 3 \\ 4 & 2 & 2 & 2 \end{bmatrix} \xrightarrow{E_{4(1)}} \begin{bmatrix} 1 & 4 & 0 & 2 \\ 1 & 3 & 3 & 3 \\ 4 & 2 & 2 & 2 \end{bmatrix} \xrightarrow{E_{(2)+4(1)}} \begin{bmatrix} 1 & 4 & 0 & 2 \\ 0 & 4 & 3 & 1 \\ 4 & 2 & 2 & 2 \end{bmatrix}$$

$$\xrightarrow{E_{(3)+1(1)}} \begin{bmatrix} 1 & 4 & 0 & 2 \\ 0 & 4 & 3 & 1 \\ 0 & 1 & 2 & 4 \end{bmatrix} \xrightarrow{E_{4(2)}} \begin{bmatrix} 1 & 4 & 0 & 2 \\ 0 & 1 & 2 & 4 \\ 0 & 1 & 2 & 4 \end{bmatrix} \xrightarrow{E_{(1)+1(2)}} \begin{bmatrix} 1 & 0 & 2 & 1 \\ 0 & 1 & 2 & 4 \\ 0 & 1 & 2 & 4 \end{bmatrix}$$

$$\xrightarrow{E_{(3)+4(2)}} \begin{bmatrix} 1 & 0 & 2 & 1 \\ 0 & 1 & 2 & 4 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

El sistema reducido queda:

$$x_1 + 2x_3 = 1$$
$$x_2 + 2x_3 = 4$$
$$0 = 0$$

Este sistema es compatible indeterminado y la solución depende de un parámetro, que a la vista de la reducción tomaremos en la variable x_3 .

$$x_1 = -2a + 1$$
$$x_2 = -2a + 4$$
$$x_3 = a$$

donde a toma cualquier valor de \mathbb{Z}_5 .

Leandro Marín	Grado en Ingeniería Informática	Tiempo Estimado
	Álgebra y Matemática Discreta	Previo: 60 min.
Facultad Informática Universidad Murcia	Sistemas de Ecuaciones y Reduccin por Filas	Clase: 30 min.

Ejercicio 34. Estudia y resuelve si es posible el siguiente sistema de ecuaciones sobre el cuerpo de 5 elementos :

$$x_1 + x_2 + x_3 = 1$$

$$x_1 + 3x_2 + 2x_3 = 4$$

$$2x_1 - x_2 + x_3 = 0$$

$$3x_1 + x_3 = 2$$

$$x_2 - x_3 = 4$$

Solución: Tomamos la matriz ampliada del sistema:

$$[A|B] = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 3 & 2 & 4 \\ 2 & 4 & 1 & 0 \\ 3 & 0 & 1 & 2 \\ 0 & 1 & 4 & 4 \end{bmatrix}$$

y la reducimos por filas

$$\begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 3 & 2 & 4 \\ 2 & 4 & 1 & 0 \\ 3 & 0 & 1 & 2 \\ 0 & 1 & 4 & 4 \end{bmatrix} \xrightarrow{E_{(2)+4(1)}} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 2 & 1 & 3 \\ 2 & 4 & 1 & 0 \\ 3 & 0 & 1 & 2 \\ 0 & 1 & 4 & 4 \end{bmatrix} \xrightarrow{E_{(3)+3(1)}} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 2 & 1 & 3 \\ 3 & 0 & 1 & 2 \\ 0 & 1 & 4 & 4 \end{bmatrix}$$

$$\xrightarrow{E_{(4)+2(1)}} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 2 & 1 & 3 \\ 0 & 2 & 4 & 3 \\ 0 & 2 & 3 & 4 \\ 0 & 1 & 4 & 4 \end{bmatrix} \xrightarrow{E_{3(2)}} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 3 & 4 \\ 0 & 2 & 4 & 3 \\ 0 & 2 & 3 & 4 \\ 0 & 1 & 4 & 4 \end{bmatrix} \xrightarrow{E_{(4)+3(3)}} \begin{bmatrix} 1 & 0 & 3 & 2 \\ 0 & 1 & 3 & 4 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \xrightarrow{E_{(4)+3(3)}} \begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 3 & 4 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \xrightarrow{E_{(4)+3(3)}} \begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 3 & 4 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \xrightarrow{E_{(4)+3(3)}} \begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 3 & 4 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \xrightarrow{E_{(4)+3(3)}} \begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 3 & 4 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \xrightarrow{E_{(4)+3(3)}} \begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 4 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{E_{(4)+3(3)}} \begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 4 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{E_{(5)+4(3)}} \begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 4 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{E_{(4)+3(3)}} \begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 4 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{E_{(5)+4(3)}} \begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 4 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Como la columna de los términos independientes es una columna pivote, concluimos que el sistema no tiene solución, es incompatible. \Diamond

Leandro Marín	Grado en Ingeniería Informática	Tiempo Estimado
	Álgebra y Matemática Discreta	Previo: 60 min.
Facultad Informática Universidad Murcia	Sistemas de Ecuaciones y Reduccin por Filas	Clase: 30 min.

Ejercicio 35. Estudia y resuelve si es posible el siguiente sistema de ecuaciones sobre el cuerpo de 5 elementos :

$$3x_2 - x_3 = 3$$

$$x_1 - x_2 + x_3 + x_4 = 1$$

$$-x_1 + 3x_2 + x_4 = 4$$

$$2x_1 + 3x_3 + x_4 = 0$$

$$[A|B] = \left[\begin{array}{cccc|c} 0 & 3 & 4 & 0 & 3 \\ 1 & 4 & 1 & 1 & 1 \\ 4 & 3 & 0 & 1 & 4 \\ 2 & 0 & 3 & 1 & 0 \end{array} \right]$$

y la reducimos por filas

$$\begin{bmatrix} 0 & 3 & 4 & 0 & | & 3 \\ 1 & 4 & 1 & 1 & | & 1 \\ 4 & 3 & 0 & 1 & | & 4 \\ 2 & 0 & 3 & 1 & | & 0 \end{bmatrix} \xrightarrow{E_{2(1)}} \begin{bmatrix} 0 & 1 & 3 & 0 & | & 1 \\ 1 & 4 & 1 & 1 & | & 1 \\ 4 & 3 & 0 & 1 & | & 4 \\ 2 & 0 & 3 & 1 & | & 0 \end{bmatrix} \xrightarrow{E_{(2)+1(1)}} \begin{bmatrix} 0 & 1 & 3 & 0 & | & 1 \\ 1 & 0 & 4 & 1 & | & 2 \\ 4 & 3 & 0 & 1 & | & 4 \\ 2 & 0 & 3 & 1 & | & 0 \end{bmatrix}$$

$$\xrightarrow{E_{(3)+2(1)}} \begin{bmatrix} 0 & 1 & 3 & 0 & | & 1 \\ 1 & 0 & 4 & 1 & | & 2 \\ 4 & 0 & 1 & 1 & | & 1 \\ 2 & 0 & 3 & 1 & | & 0 \end{bmatrix} \xrightarrow{E_{(3)+1(2)}} \begin{bmatrix} 0 & 1 & 3 & 0 & | & 1 \\ 1 & 0 & 4 & 1 & | & 2 \\ 0 & 0 & 0 & 2 & | & 3 \\ 2 & 0 & 3 & 1 & | & 0 \end{bmatrix} \xrightarrow{E_{(4)+3(2)}} \begin{bmatrix} 0 & 1 & 3 & 0 & | & 1 \\ 1 & 0 & 4 & 1 & | & 2 \\ 0 & 0 & 0 & 2 & | & 3 \\ 0 & 0 & 0 & 4 & | & 1 \end{bmatrix}$$

$$\xrightarrow{E_{3(3)}} \begin{bmatrix} 0 & 1 & 3 & 0 & | & 1 \\ 1 & 0 & 4 & 1 & | & 2 \\ 0 & 0 & 0 & 1 & | & 4 \\ 0 & 0 & 0 & 4 & | & 1 \end{bmatrix} \xrightarrow{E_{(2)+4(3)}} \begin{bmatrix} 0 & 1 & 3 & 0 & | & 1 \\ 1 & 0 & 4 & 0 & | & 3 \\ 0 & 0 & 0 & 1 & | & 4 \\ 0 & 0 & 0 & 0 & | & 0 \end{bmatrix} \xrightarrow{E_{(4)+1(3)}} \begin{bmatrix} 0 & 1 & 3 & 0 & | & 1 \\ 1 & 0 & 4 & 0 & | & 3 \\ 0 & 0 & 0 & 1 & | & 4 \\ 0 & 0 & 0 & 0 & | & 0 \end{bmatrix}$$

$$\xrightarrow{E_{(1,2)}} \begin{bmatrix} 1 & 0 & 4 & 0 & | & 3 \\ 0 & 1 & 3 & 0 & | & 1 \\ 0 & 0 & 0 & 1 & | & 4 \\ 0 & 0 & 0 & 0 & | & 0 \end{bmatrix}$$

El sistema reducido queda:

$$x_1 - x_3 = 3$$
$$x_2 + 3x_3 = 1$$
$$x_4 = 4$$
$$0 = 0$$

Este sistema es compatible indeterminado y la solución depende de un parámetro, que a la vista de la reducción tomaremos en la variable x_3 .

$$x_1 = -4a + 3$$

$$x_2 = -3a + 1$$

$$x_3 = a$$

$$x_4 = 4$$

donde a toma cualquier valor de \mathbb{Z}_5 .

Leandro Marín	Grado en Ingeniería Informática	Tiempo Estimado
	Álgebra y Matemática Discreta	Previo: 60 min.
Facultad Informática Universidad Murcia	Sistemas de Ecuaciones y Reduccin por Filas	Clase: 30 min.

Ejercicio 36. Estudia y resuelve si es posible el siguiente sistema de ecuaciones sobre el cuerpo de 5 elementos :

$$3x_1 + 2x_2 + 2x_3 + 3x_4 = 1$$
$$3x_1 + 2x_2 + x_3 = 1$$
$$x_1 + 2x_2 + x_3 + x_4 = 3$$
$$x_1 + x_3 = 4$$

Solución: Tomamos la matriz ampliada del sistema:

$$[A|B] = \begin{bmatrix} 3 & 2 & 2 & 3 & 1 \\ 3 & 2 & 1 & 0 & 1 \\ 1 & 2 & 1 & 1 & 3 \\ 1 & 0 & 1 & 0 & 4 \end{bmatrix}$$

y la reducimos por filas

$$\begin{bmatrix} 3 & 2 & 2 & 3 & 1 \\ 3 & 2 & 1 & 0 & 1 \\ 1 & 2 & 1 & 1 & 3 \\ 1 & 0 & 1 & 0 & 4 \end{bmatrix} \xrightarrow{E_{2(1)}} \begin{bmatrix} 1 & 4 & 4 & 1 & 2 \\ 3 & 2 & 1 & 0 & 1 \\ 1 & 2 & 1 & 1 & 3 \\ 1 & 0 & 1 & 0 & 4 \end{bmatrix} \xrightarrow{E_{2(2)}} \begin{bmatrix} 1 & 4 & 4 & 1 & 2 \\ 3 & 2 & 1 & 0 & 1 \\ 1 & 2 & 1 & 1 & 3 \\ 1 & 0 & 1 & 0 & 4 \end{bmatrix} \xrightarrow{E_{2(2)+2(1)}} \begin{bmatrix} 1 & 4 & 4 & 1 & 2 \\ 0 & 0 & 4 & 2 & 0 \\ 1 & 2 & 1 & 1 & 3 \\ 1 & 0 & 1 & 0 & 4 \end{bmatrix}$$

$$\xrightarrow{E_{(3)+4(1)}} \begin{bmatrix} 1 & 4 & 4 & 1 & 2 \\ 0 & 0 & 4 & 2 & 0 \\ 0 & 3 & 2 & 0 & 1 \\ 1 & 0 & 1 & 0 & 4 \end{bmatrix} \xrightarrow{E_{(4)+4(1)}} \begin{bmatrix} 1 & 4 & 4 & 1 & 2 \\ 0 & 0 & 4 & 2 & 0 \\ 0 & 3 & 2 & 0 & 1 \\ 0 & 1 & 2 & 4 & 2 \end{bmatrix} \xrightarrow{E_{4(2)}} \begin{bmatrix} 1 & 4 & 4 & 1 & 2 \\ 0 & 0 & 1 & 3 & 0 \\ 0 & 3 & 2 & 0 & 1 \\ 0 & 1 & 2 & 4 & 2 \end{bmatrix}$$

$$\xrightarrow{E_{(1)+1(2)}} \begin{bmatrix} 1 & 4 & 0 & 4 & 2 \\ 0 & 0 & 1 & 3 & 0 \\ 0 & 3 & 2 & 0 & 1 \\ 0 & 1 & 2 & 4 & 2 \end{bmatrix} \xrightarrow{E_{(4)+3(2)}} \begin{bmatrix} 1 & 4 & 0 & 4 & 2 \\ 0 & 0 & 1 & 3 & 0 \\ 0 & 3 & 0 & 4 & 1 \\ 0 & 1 & 2 & 4 & 2 \end{bmatrix} \xrightarrow{E_{(4)+4(3)}} \begin{bmatrix} 1 & 4 & 0 & 4 & 2 \\ 0 & 0 & 1 & 3 & 0 \\ 0 & 3 & 0 & 4 & 1 \\ 0 & 1 & 2 & 4 & 2 \end{bmatrix} \xrightarrow{E_{(4)+4(3)}} \begin{bmatrix} 1 & 0 & 0 & 2 & 4 \\ 0 & 0 & 1 & 3 & 0 \\ 0 & 1 & 0 & 3 & 2 \\ 0 & 1 & 0 & 3 & 2 \end{bmatrix} \xrightarrow{E_{(4)+4(3)}} \begin{bmatrix} 1 & 0 & 0 & 2 & 4 \\ 0 & 0 & 1 & 3 & 0 \\ 0 & 1 & 0 & 3 & 2 \\ 0 & 0 & 1 & 3 & 0 \\ 0 & 1 & 0 & 3 & 2 \\ 0 & 0 & 1 & 3 & 0 \\ 0 & 1 & 0 & 3 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

El sistema reducido queda:

$$x_1 + 2x_4 = 4$$
$$x_2 + 3x_4 = 2$$
$$x_3 + 3x_4 = 0$$
$$0 = 0$$

Este sistema es compatible indeterminado y la solución depende de un parámetro, que a la vista de la reducción tomaremos en la variable x_4 .

$$x_1 = -2a + 4$$
$$x_2 = -3a + 2$$

Leandro Marín	Grado en Ingeniería Informática	Tiempo Estimado
	Álgebra y Matemática Discreta	Previo: 60 min.
Facultad Informática Universidad Murcia	Sistemas de Ecuaciones y Reduccin por Filas	Clase: 30 min.

$$x_3 = -3a$$

$$x_4 = a$$

donde a toma cualquier valor de \mathbb{Z}_5 .

Ejercicio 37. Estudia y resuelve si es posible el siguiente sistema de ecuaciones sobre el cuerpo de 5 elementos :

$$x_1 + 2x_2 - x_3 = 3$$

$$3x_1 + 2x_2 = 1$$

$$3x_1 + x_2 + 3x_3 = 4$$

Solución: Tomamos la matriz ampliada del sistema:

$$[A|B] = \left[\begin{array}{ccc|c} 1 & 2 & 4 & 3 \\ 3 & 2 & 0 & 1 \\ 3 & 1 & 3 & 4 \end{array} \right]$$

y la reducimos por filas

$$\left[\begin{array}{ccc|c} 1 & 2 & 4 & 3 \\ 3 & 2 & 0 & 1 \\ 3 & 1 & 3 & 4 \end{array} \right] \xrightarrow{E_{(2)+2(1)}} \left[\begin{array}{ccc|c} 1 & 2 & 4 & 3 \\ 0 & 1 & 3 & 2 \\ 3 & 1 & 3 & 4 \end{array} \right] \xrightarrow{E_{(3)+2(1)}} \left[\begin{array}{ccc|c} 1 & 2 & 4 & 3 \\ 0 & 1 & 3 & 2 \\ 0 & 0 & 1 & 0 \end{array} \right]$$

$$\stackrel{E_{(1)+3(2)}}{\longrightarrow} \left[\begin{array}{ccc|c} 1 & 0 & 3 & 4 \\ 0 & 1 & 3 & 2 \\ 0 & 0 & 1 & 0 \end{array} \right] \stackrel{E_{(1)+2(3)}}{\longrightarrow} \left[\begin{array}{ccc|c} 1 & 0 & 0 & 4 \\ 0 & 1 & 3 & 2 \\ 0 & 0 & 1 & 0 \end{array} \right] \stackrel{E_{(2)+2(3)}}{\longrightarrow} \left[\begin{array}{ccc|c} 1 & 0 & 0 & 4 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 0 \end{array} \right]$$

El sistema reducido queda:

$$x_1 = 4$$

$$x_2 = 2$$

$$x_3 = 0$$

Este sistema es compatible determinado y tiene solución única.

Ejercicio 38. Estudia y resuelve si es posible el siguiente sistema de ecuaciones sobre el cuerpo de 5 elementos :

$$x_1 + x_3 = 4$$
$$3x_1 + x_2 + 2x_4 = 2$$
$$-x_1 - x_2 + 3x_3 - x_4 = 3$$

$$2x_1 - x_2 + 2x_3 + x_4 = 3$$

 \Diamond

Leandro Marín	Grado en Ingeniería Informática	Tiempo Estimado
	Álgebra y Matemática Discreta	Previo: 60 min.
Facultad Informática Universidad Murcia	Sistemas de Ecuaciones y Reduccin por Filas	Clase: 30 min.

$$[A|B] = \begin{bmatrix} 1 & 0 & 1 & 0 & 4 \\ 3 & 1 & 0 & 2 & 2 \\ 4 & 4 & 3 & 4 & 3 \\ 2 & 4 & 2 & 1 & 3 \end{bmatrix}$$

y la reducimos por filas

$$\begin{bmatrix} 1 & 0 & 1 & 0 & | & 4 \\ 3 & 1 & 0 & 2 & | & 2 \\ 4 & 4 & 3 & 4 & | & 3 \\ 2 & 4 & 2 & 1 & | & 3 \end{bmatrix} \xrightarrow{E_{(2)+2(1)}} \begin{bmatrix} 1 & 0 & 1 & 0 & | & 4 \\ 0 & 1 & 2 & 2 & | & 0 \\ 4 & 4 & 3 & 4 & | & 3 \\ 2 & 4 & 2 & 1 & | & 3 \end{bmatrix} \xrightarrow{E_{(3)+1(1)}} \begin{bmatrix} 1 & 0 & 1 & 0 & | & 4 \\ 0 & 1 & 2 & 2 & | & 0 \\ 0 & 4 & 4 & 4 & | & 2 \\ 2 & 4 & 2 & 1 & | & 3 \end{bmatrix}$$

$$\xrightarrow{E_{(4)+3(1)}} \begin{bmatrix} 1 & 0 & 1 & 0 & | & 4 \\ 0 & 1 & 2 & 2 & | & 0 \\ 0 & 4 & 4 & 4 & | & 2 \\ 0 & 4 & 0 & 1 & | & 0 \end{bmatrix} \xrightarrow{E_{(3)+1(2)}} \begin{bmatrix} 1 & 0 & 1 & 0 & | & 4 \\ 0 & 1 & 2 & 2 & | & 0 \\ 0 & 0 & 1 & 1 & | & 2 \\ 0 & 0 & 1 & 1 & | & 2 \\ 0 & 0 & 2 & 3 & | & 0 \end{bmatrix} \xrightarrow{E_{(4)+1(2)}} \begin{bmatrix} 1 & 0 & 1 & 0 & | & 4 \\ 0 & 1 & 2 & 2 & | & 0 \\ 0 & 0 & 1 & 1 & | & 2 \\ 0 & 0 & 2 & 3 & | & 0 \end{bmatrix}$$

$$\xrightarrow{E_{(1)+4(3)}} \begin{bmatrix} 1 & 0 & 0 & 4 & | & 2 \\ 0 & 1 & 2 & 2 & | & 0 \\ 0 & 0 & 1 & 1 & | & 2 \\ 0 & 0 & 2 & 3 & | & 0 \end{bmatrix} \xrightarrow{E_{(2)+3(3)}} \begin{bmatrix} 1 & 0 & 0 & 4 & | & 2 \\ 0 & 1 & 0 & 0 & | & 1 \\ 0 & 0 & 1 & 1 & | & 2 \\ 0 & 0 & 0 & 1 & | & 1 \end{bmatrix} \xrightarrow{E_{(4)+3(3)}} \begin{bmatrix} 1 & 0 & 0 & 0 & | & 3 \\ 0 & 1 & 0 & 0 & | & 1 \\ 0 & 0 & 1 & 1 & | & 2 \\ 0 & 0 & 0 & 0 & 1 & | & 1 \end{bmatrix}$$

$$\xrightarrow{E_{(1)+4(4)}} \begin{bmatrix} 1 & 0 & 0 & 0 & | & 3 \\ 0 & 1 & 0 & 0 & | & 1 \\ 0 & 0 & 1 & 1 & | & 1 \\ 0 & 0 & 0 & 1 & | & 1 \end{bmatrix} \xrightarrow{E_{(3)+4(4)}} \begin{bmatrix} 1 & 0 & 0 & 0 & | & 3 \\ 0 & 1 & 0 & 0 & | & 1 \\ 0 & 0 & 0 & 1 & | & 1 \end{bmatrix}$$

El sistema reducido queda:

$$x_1 = 3$$

$$x_2 = 1$$

$$x_3 = 1$$

$$x_4 = 1$$

Este sistema es compatible determinado y tiene solución única.

Ejercicio 39. Estudia y resuelve si es posible el siguiente sistema de ecuaciones sobre el cuerpo de 5 elementos :

 \Diamond

$$3x_2 + 3x_3 + 2x_4 = 1$$
$$3x_1 + 3x_3 + x_4 = 2$$
$$x_1 + x_2 + 2x_3 + x_4 = 1$$

Solución: Tomamos la matriz ampliada del sistema:

$$[A|B] = \left[\begin{array}{cccc|c} 0 & 3 & 3 & 2 & 1 \\ 3 & 0 & 3 & 1 & 2 \\ 1 & 1 & 2 & 1 & 1 \end{array} \right]$$

$$\left[\begin{array}{ccc|c} 0 & 3 & 3 & 2 & 1 \\ 3 & 0 & 3 & 1 & 2 \\ 1 & 1 & 2 & 1 & 1 \end{array}\right] \xrightarrow{E_{2(1)}} \left[\begin{array}{ccc|c} 0 & 1 & 1 & 4 & 2 \\ 3 & 0 & 3 & 1 & 2 \\ 1 & 1 & 2 & 1 & 1 \end{array}\right] \xrightarrow{E_{(3)+4(1)}} \left[\begin{array}{ccc|c} 0 & 1 & 1 & 4 & 2 \\ 3 & 0 & 3 & 1 & 2 \\ 1 & 0 & 1 & 2 & 4 \end{array}\right]$$

Leandro Marín	Grado en Ingeniería Informática	Tiempo Estimado
	Álgebra y Matemática Discreta	Previo: 60 min.
Facultad Informática Universidad Murcia	Sistemas de Ecuaciones y Reduccin por Filas	Clase: 30 min.

$$\stackrel{E_{2(2)}}{\longrightarrow} \left[\begin{array}{ccc|ccc|c} 0 & 1 & 1 & 4 & 2 \\ 1 & 0 & 1 & 2 & 4 \\ 1 & 0 & 1 & 2 & 4 \end{array} \right] \stackrel{E_{(3)+4(2)}}{\longrightarrow} \left[\begin{array}{ccc|ccc|c} 0 & 1 & 1 & 4 & 2 \\ 1 & 0 & 1 & 2 & 4 \\ 0 & 0 & 0 & 0 & 0 \end{array} \right] \stackrel{E_{(1,2)}}{\longrightarrow} \left[\begin{array}{cccc|ccc|c} 1 & 0 & 1 & 2 & 4 \\ 0 & 1 & 1 & 4 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{array} \right]$$

El sistema reducido queda:

$$x_1 + x_3 + 2x_4 = 4$$
$$x_2 + x_3 - x_4 = 2$$
$$0 = 0$$

Este sistema es compatible indeterminado y la solución depende de 2 parámetros, que a la vista de la reducción, tomaremos en las variables x_3 y x_4

$$x_1 = -a - 2b + 4$$

$$x_2 = -a - 4b + 2$$

$$x_3 = a$$

$$x_4 = b$$

donde a y b toman cualquier valor de \mathbb{Z}_5 .

Ejercicio 40. Estudia y resuelve si es posible el siguiente sistema de ecuaciones sobre el cuerpo de 5 elementos :

$$x_1 + 3x_2 + 3x_3 + x_4 = 3$$
$$3x_1 + x_2 + 2x_3 + x_4 = 0$$
$$3x_1 + x_3 + x_4 = 4$$
$$3x_2 + 3x_3 + x_4 = 4$$

Solución: Tomamos la matriz ampliada del sistema:

$$[A|B] = \begin{bmatrix} 1 & 3 & 3 & 1 & 3 \\ 3 & 1 & 2 & 1 & 0 \\ 3 & 0 & 1 & 1 & 4 \\ 0 & 3 & 3 & 1 & 4 \end{bmatrix}$$

y la reducimos por filas

$$\begin{bmatrix} 1 & 3 & 3 & 1 & 3 \\ 3 & 1 & 2 & 1 & 0 \\ 3 & 0 & 1 & 1 & 4 \\ 0 & 3 & 3 & 1 & 4 \end{bmatrix} \xrightarrow{E_{(2)+2(1)}} \begin{bmatrix} 1 & 3 & 3 & 1 & 3 \\ 0 & 2 & 3 & 3 & 1 \\ 3 & 0 & 1 & 1 & 4 \\ 0 & 3 & 3 & 1 & 4 \end{bmatrix} \xrightarrow{E_{(2)+2(1)}} \begin{bmatrix} 1 & 3 & 3 & 1 & 3 \\ 0 & 2 & 3 & 3 & 1 \\ 3 & 0 & 1 & 1 & 4 \\ 0 & 3 & 3 & 1 & 4 \end{bmatrix} \xrightarrow{E_{(3)+2(1)}} \begin{bmatrix} 1 & 3 & 3 & 1 & 3 \\ 0 & 1 & 2 & 3 & 0 \\ 0 & 3 & 3 & 1 & 4 \end{bmatrix}$$

$$\xrightarrow{E_{3(2)}} \begin{bmatrix} 1 & 3 & 3 & 1 & 3 \\ 0 & 1 & 4 & 4 & 3 \\ 0 & 1 & 2 & 3 & 0 \\ 0 & 3 & 3 & 1 & 4 \end{bmatrix} \xrightarrow{E_{(1)+2(2)}} \begin{bmatrix} 1 & 0 & 1 & 4 & 4 \\ 0 & 1 & 4 & 4 & 3 \\ 0 & 1 & 2 & 3 & 0 \\ 0 & 3 & 3 & 1 & 4 \end{bmatrix} \xrightarrow{E_{(3)+4(2)}} \begin{bmatrix} 1 & 0 & 1 & 4 & 4 \\ 0 & 1 & 4 & 4 & 3 \\ 0 & 0 & 3 & 4 & 2 \\ 0 & 0 & 1 & 4 & 4 \end{bmatrix}$$

$$\xrightarrow{E_{(4)+2(2)}} \begin{bmatrix} 1 & 0 & 1 & 4 & 4 \\ 0 & 1 & 4 & 4 & 3 \\ 0 & 0 & 3 & 4 & 2 \\ 0 & 0 & 1 & 4 & 0 \end{bmatrix} \xrightarrow{E_{2(3)}} \begin{bmatrix} 1 & 0 & 1 & 4 & 4 \\ 0 & 1 & 4 & 4 & 3 \\ 0 & 0 & 1 & 3 & 4 \\ 0 & 0 & 1 & 4 & 0 \end{bmatrix}$$

Leandro Marín	Grado en Ingeniería Informática	Tiempo Estimado
_	Álgebra y Matemática Discreta	Previo: 60 min.
Facultad Informática Universidad Murcia	Sistemas de Ecuaciones y Reduccin por Filas	Clase: 30 min.

$$\begin{array}{c} E_{(2)+1(3)} \\ \Longrightarrow \\ & \begin{array}{c} 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 2 & 2 \\ 0 & 0 & 1 & 3 & 4 \\ 0 & 0 & 1 & 4 & 0 \\ \end{array} \end{array} \end{array} \xrightarrow{E_{(4)+4(3)}} \begin{array}{c} 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 2 & 2 \\ 0 & 0 & 1 & 3 & 4 \\ 0 & 0 & 0 & 1 & 1 \\ \end{array} \xrightarrow{E_{(1)+4(4)}} \begin{array}{c} 1 & 0 & 0 & 0 & 4 \\ 0 & 1 & 0 & 2 & 2 \\ 0 & 0 & 1 & 3 & 4 \\ 0 & 0 & 0 & 1 & 1 \\ \end{array}$$

El sistema reducido queda:

$$x_1 = 4$$

$$x_2 = 0$$

$$x_3 = 1$$

$$x_4 = 1$$

Este sistema es compatible determinado y tiene solución única.

Ejercicio 41. Estudia y resuelve si es posible el siguiente sistema de ecuaciones sobre el cuerpo de 5 elementos :

 \Diamond

$$3x_1 + 3x_2 + 3x_3 = 3$$
$$x_1 + 3x_2 - x_3 = 3$$
$$x_1 + 3x_2 = 3$$
$$3x_1 + 3x_2 + 3x_3 = 4$$

Solución: Tomamos la matriz ampliada del sistema:

$$[A|B] = \begin{bmatrix} 3 & 3 & 3 & 3 \\ 1 & 3 & 4 & 3 \\ 1 & 3 & 0 & 3 \\ 3 & 3 & 3 & 4 \end{bmatrix}$$

y la reducimos por filas

$$\begin{bmatrix} 3 & 3 & 3 & 3 & 3 \\ 1 & 3 & 4 & 3 \\ 1 & 3 & 0 & 3 \\ 3 & 3 & 3 & 4 \end{bmatrix} \xrightarrow{E_{2(1)}} \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 3 & 4 & 3 \\ 1 & 3 & 0 & 3 \\ 3 & 3 & 3 & 4 \end{bmatrix} \xrightarrow{E_{2(1)}} \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 3 & 4 & 3 \\ 1 & 3 & 0 & 3 \\ 3 & 3 & 3 & 4 \end{bmatrix} \xrightarrow{E_{2(1)}} \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 2 & 3 & 2 \\ 0 & 2 & 3 & 2 \\ 0 & 2 & 4 & 2 \\ 3 & 3 & 3 & 4 \end{bmatrix} \xrightarrow{E_{2(1)}} \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 2 & 3 & 2 \\ 0 & 2 & 4 & 2 \\ 0 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{E_{3(2)}} \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 4 & 1 \\ 0 & 2 & 4 & 2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\xrightarrow{E_{(1)+4(2)}} \begin{bmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & 4 & 1 \\ 0 & 2 & 4 & 2 \\ 0 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{E_{(3)+3(2)}} \begin{bmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & 4 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{E_{(1)+3(3)}} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 4 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\xrightarrow{E_{(2)+1(3)}} \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{E_{(2)+1(3)}} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix} .$$

Como la columna de los términos independientes es una columna pivote, concluimos que el sistema no tiene solución, es incompatible.

Leandro Marín	Grado en Ingeniería Informática	Tiempo Estimado
	Álgebra y Matemática Discreta	Previo: 60 min.
Facultad Informática Universidad Murcia	Sistemas de Ecuaciones y Reduccin por Filas	Clase: 30 min.

Ejercicio 42. Estudia y resuelve si es posible el siguiente sistema de ecuaciones sobre el cuerpo de 5 elementos :

$$0 = 2$$

$$-x_1 + x_2 = 3$$

$$x_1 + 2x_3 = 3$$

$$2x_1 + 2x_3 = 3$$

$$[A|B] = \begin{bmatrix} 0 & 0 & 0 & 2 \\ 4 & 1 & 0 & 3 \\ 1 & 0 & 2 & 3 \\ 2 & 0 & 2 & 3 \end{bmatrix}$$

y la reducimos por filas

$$\begin{bmatrix} 0 & 0 & 0 & | & 2 \\ 4 & 1 & 0 & | & 3 \\ 1 & 0 & 2 & | & 3 \\ 2 & 0 & 2 & | & 3 \end{bmatrix} \xrightarrow{E_{4(2)}} \begin{bmatrix} 0 & 0 & 0 & | & 2 \\ 1 & 4 & 0 & | & 2 \\ 1 & 0 & 2 & | & 3 \end{bmatrix} \xrightarrow{E_{(3)+4(2)}} \begin{bmatrix} 0 & 0 & 0 & | & 2 \\ 1 & 4 & 0 & | & 2 \\ 0 & 1 & 2 & | & 1 \\ 2 & 0 & 2 & | & 3 \end{bmatrix}$$

$$\xrightarrow{E_{(4)+3(2)}} \begin{bmatrix} 0 & 0 & 0 & | & 2 \\ 1 & 4 & 0 & | & 2 \\ 0 & 1 & 2 & | & 1 \\ 0 & 2 & 2 & | & 4 \end{bmatrix} \xrightarrow{E_{(2)+1(3)}} \begin{bmatrix} 0 & 0 & 0 & | & 2 \\ 1 & 0 & 2 & | & 3 \\ 0 & 1 & 2 & | & 1 \\ 0 & 2 & 2 & | & 4 \end{bmatrix} \xrightarrow{E_{(4)+3(3)}} \begin{bmatrix} 0 & 0 & 0 & | & 2 \\ 1 & 0 & 2 & | & 3 \\ 0 & 1 & 2 & | & 1 \\ 0 & 0 & 3 & | & 2 \end{bmatrix}$$

$$\xrightarrow{E_{2(4)}} \begin{bmatrix} 0 & 0 & 0 & | & 2 \\ 1 & 0 & 2 & | & 3 \\ 0 & 1 & 2 & | & 1 \\ 0 & 0 & 1 & | & 4 \end{bmatrix} \xrightarrow{E_{(2)+3(4)}} \begin{bmatrix} 0 & 0 & 0 & | & 2 \\ 1 & 0 & 0 & | & 0 \\ 0 & 1 & 2 & | & 1 \\ 0 & 0 & 1 & | & 4 \end{bmatrix} \xrightarrow{E_{(3)+3(4)}} \begin{bmatrix} 0 & 0 & 0 & | & 2 \\ 1 & 0 & 0 & 0 & | & 0 \\ 0 & 1 & 0 & | & 3 \\ 0 & 0 & 1 & | & 4 \end{bmatrix}$$

$$\xrightarrow{E_{(1,2)}} \begin{bmatrix} 1 & 0 & 0 & | & 0 \\ 0 & 1 & 0 & | & 3 \\ 0 & 0 & 1 & | & 4 \end{bmatrix} \xrightarrow{E_{(2,3)}} \begin{bmatrix} 1 & 0 & 0 & | & 0 \\ 0 & 1 & 0 & | & 3 \\ 0 & 0 & 0 & | & 2 \\ 0 & 0 & 1 & | & 4 \end{bmatrix} \xrightarrow{E_{(3,4)}} \begin{bmatrix} 1 & 0 & 0 & | & 0 \\ 0 & 1 & 0 & | & 3 \\ 0 & 0 & 1 & | & 4 \\ 0 & 0 & 0 & | & 2 \end{bmatrix}$$

Como la columna de los términos independientes es una columna pivote, concluimos que el sistema no tiene solución, es incompatible.

Ejercicio 43. Estudia y resuelve si es posible el siguiente sistema de ecuaciones sobre el cuerpo de 5 elementos :

$$3x_1 + 3x_3 + 3x_4 = 1$$

$$2x_1 - x_3 - x_4 = 2$$

$$2x_1 + x_2 + 2x_4 = 4$$

$$-x_2 + x_3 - x_4 = 1$$

$$3x_1 + 2x_2 - x_3 - x_4 = 0$$

Leandro Marín	Grado en Ingeniería Informática	Tiempo Estimado
_	Álgebra y Matemática Discreta	Previo: 60 min.
Facultad Informática Universidad Murcia	Sistemas de Ecuaciones y Reduccin por Filas	Clase: 30 min.

$$[A|B] = \begin{bmatrix} 3 & 0 & 3 & 3 & 1 \\ 2 & 0 & 4 & 4 & 2 \\ 2 & 1 & 0 & 2 & 4 \\ 0 & 4 & 1 & 4 & 1 \\ 3 & 2 & 4 & 4 & 0 \end{bmatrix}$$

y la reducimos por filas

El sistema reducido queda:

$$x_1 = 3$$

$$x_2 = 0$$

$$x_3 = 0$$

$$x_4 = 4$$

$$0 = 0$$

Este sistema es compatible determinado y tiene solución única.

Leandro Marín	Grado en Ingeniería Informática	Tiempo Estimado
	Álgebra y Matemática Discreta	Previo: 60 min.
Facultad Informática Universidad Murcia	Sistemas de Ecuaciones y Reduccin por Filas	Clase: 30 min.

Ejercicio 44. Estudia y resuelve si es posible el siguiente sistema de ecuaciones sobre el cuerpo de 3 elementos :

$$x_1 + x_2 - x_3 - x_4 = 1$$
$$x_2 - x_4 = 2$$
$$-x_1 + x_2 - x_3 + x_4 = 2$$

Solución: Tomamos la matriz ampliada del sistema:

$$[A|B] = \left[\begin{array}{cccc|c} 1 & 1 & 2 & 2 & 1 \\ 0 & 1 & 0 & 2 & 2 \\ 2 & 1 & 2 & 1 & 2 \end{array} \right]$$

y la reducimos por filas

$$\begin{bmatrix} 1 & 1 & 2 & 2 & | & 1 \\ 0 & 1 & 0 & 2 & | & 2 \\ 2 & 1 & 2 & 1 & | & 2 \end{bmatrix} \xrightarrow{E_{(3)+1(1)}} \begin{bmatrix} 1 & 1 & 2 & 2 & | & 1 \\ 0 & 1 & 0 & 2 & | & 2 \\ 0 & 2 & 1 & 0 & | & 0 \end{bmatrix} \xrightarrow{E_{(1)+2(2)}} \begin{bmatrix} 1 & 0 & 2 & 0 & | & 2 \\ 0 & 1 & 0 & 2 & | & 2 \\ 0 & 2 & 1 & 0 & | & 0 \end{bmatrix}$$

$$\xrightarrow{E_{(3)+1(2)}} \begin{bmatrix} 1 & 0 & 2 & 0 & | & 2 \\ 0 & 1 & 0 & 2 & | & 2 \\ 0 & 0 & 1 & 2 & | & 2 \end{bmatrix} \xrightarrow{E_{(1)+1(3)}} \begin{bmatrix} 1 & 0 & 0 & 2 & | & 1 \\ 0 & 1 & 0 & 2 & | & 2 \\ 0 & 0 & 1 & 2 & | & 2 \end{bmatrix}.$$

El sistema reducido queda:

$$x_1 - x_4 = 1$$
$$x_2 - x_4 = 2$$
$$x_3 - x_4 = 2$$

Este sistema es compatible indeterminado y la solución depende de un parámetro, que a la vista de la reducción tomaremos en la variable x_4 .

$$x_1 = -2a + 1$$

$$x_2 = -2a + 2$$

$$x_3 = -2a + 2$$

$$x_4 = a$$

donde a toma cualquier valor de \mathbb{Z}_3 .

Ejercicio 45. Estudia y resuelve si es posible el siguiente sistema de ecuaciones sobre el cuerpo de 3 elementos :

$$x_1 - x_3 = 0$$

$$x_1 + x_2 - x_3 = 0$$

$$x_1 + x_2 = 1$$

$$x_2 + x_3 = 2$$

$$x_1 + x_2 + x_3 = 2$$

Leandro Marín	Grado en Ingeniería Informática	Tiempo Estimado
	Álgebra y Matemática Discreta	Previo: 60 min.
Facultad Informática Universidad Murcia	Sistemas de Ecuaciones y Reduccin por Filas	Clase: 30 min.

$$[A|B] = \begin{pmatrix} 1 & 0 & 2 & 0 \\ 1 & 1 & 2 & 0 \\ 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 2 \\ 1 & 1 & 1 & 2 \end{pmatrix}$$

y la reducimos por filas

$$\begin{bmatrix} 1 & 0 & 2 & | & 0 \\ 1 & 1 & 2 & 0 \\ 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & | & 2 \\ 1 & 1 & 1 & | & 2 \end{bmatrix} \xrightarrow{E_{(2)+2(1)}} \begin{bmatrix} 1 & 0 & 2 & | & 0 \\ 0 & 1 & 0 & | & 0 \\ 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & | & 2 \\ 1 & 1 & 1 & | & 2 \end{bmatrix} \xrightarrow{E_{(3)+2(1)}} \begin{bmatrix} 1 & 0 & 2 & | & 0 \\ 0 & 1 & 0 & | & 0 \\ 0 & 1 & 1 & | & 1 \\ 0 & 1 & 1 & | & 2 \\ 1 & 1 & 1 & | & 2 \end{bmatrix}$$

$$\xrightarrow{E_{(5)+2(1)}} \begin{bmatrix} 1 & 0 & 2 & | & 0 \\ 0 & 1 & 0 & | & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & | & 2 \\ 0 & 1 & 2 & | & 2 \end{bmatrix} \xrightarrow{E_{(3)+2(2)}} \begin{bmatrix} 1 & 0 & 2 & | & 0 \\ 0 & 1 & 0 & | & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & | & 2 \\ 0 & 1 & 2 & | & 2 \end{bmatrix} \xrightarrow{E_{(4)+2(2)}} \begin{bmatrix} 1 & 0 & 2 & | & 0 \\ 0 & 1 & 0 & | & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & | & 2 \\ 0 & 1 & 2 & | & 2 \end{bmatrix}$$

$$\xrightarrow{E_{(5)+2(2)}} \begin{bmatrix} 1 & 0 & 2 & | & 0 \\ 0 & 1 & 0 & | & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & | & 1 \\ 0 & 0 & 0 & | & 1 \\ 0 & 0 & 0 & | & 2 \\ 0 & 0 & 2 & | & 2 \end{bmatrix} \xrightarrow{E_{(4)+2(3)}} \begin{bmatrix} 1 & 0 & 0 & | & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & | & 1 \\ 0 & 0 & 0 & | & 1 \\ 0 & 0 & 0 & | & 1 \\ 0 & 0 & 0 & | & 1 \\ 0 & 0 & 0 & | & 1 \\ 0 & 0 & 0 & | & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\xrightarrow{E_{(5)+2(2)}} \begin{bmatrix} 1 & 0 & 0 & | & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & | & 1 \\ 0 & 0 & 0 & | & 2 \\ 0 & 0 & 2 & | & 2 \end{bmatrix} \xrightarrow{E_{(4)+2(3)}} \begin{bmatrix} 1 & 0 & 0 & | & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & | & 1 \\ 0 & 0 & 0 & 2 & | & 2 \end{bmatrix}$$

Como la columna de los términos independientes es una columna pivote, concluimos que el sistema no tiene solución, es incompatible. \Diamond

Ejercicio 46. Estudia y resuelve si es posible el siguiente sistema de ecuaciones sobre el cuerpo de 3 elementos :

$$x_1 + x_2 + x_4 = 1$$
$$x_1 - x_2 + x_3 = 2$$
$$x_3 = 2$$

Solución: Tomamos la matriz ampliada del sistema:

$$[A|B] = \begin{bmatrix} 1 & 1 & 0 & 1 & 1 \\ 1 & 2 & 1 & 0 & 2 \\ 0 & 0 & 1 & 0 & 2 \end{bmatrix}$$

$$\left[\begin{array}{ccc|ccc|c} 1 & 1 & 0 & 1 & 1 \\ 1 & 2 & 1 & 0 & 2 \\ 0 & 0 & 1 & 0 & 2 \end{array} \right] \xrightarrow{E_{(2)+2(1)}} \left[\begin{array}{cccc|c} 1 & 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 2 & 1 \\ 0 & 0 & 1 & 0 & 2 \end{array} \right] \xrightarrow{E_{(1)+2(2)}} \left[\begin{array}{cccc|c} 1 & 0 & 2 & 2 & 0 \\ 0 & 1 & 1 & 2 & 1 \\ 0 & 0 & 1 & 0 & 2 \end{array} \right]$$

Leandro Marín	Grado en Ingeniería Informática	Tiempo Estimado
	Álgebra y Matemática Discreta	Previo: 60 min.
Facultad Informática Universidad Murcia	Sistemas de Ecuaciones y Reduccin por Filas	Clase: 30 min.

$$\stackrel{E_{(1)+1(3)}}{\longrightarrow} \left[\begin{array}{ccc|c} 1 & 0 & 0 & 2 & 2 \\ 0 & 1 & 1 & 2 & 1 \\ 0 & 0 & 1 & 0 & 2 \end{array} \right] \stackrel{E_{(2)+2(3)}}{\longrightarrow} \left[\begin{array}{ccc|c} 1 & 0 & 0 & 2 & 2 \\ 0 & 1 & 0 & 2 & 2 \\ 0 & 0 & 1 & 0 & 2 \end{array} \right].$$

El sistema reducido queda:

$$x_1 - x_4 = 2$$
$$x_2 - x_4 = 2$$
$$x_3 = 2$$

Este sistema es compatible indeterminado y la solución depende de un parámetro, que a la vista de la reducción tomaremos en la variable x_4 .

$$x_1 = -2a + 2$$

$$x_2 = -2a + 2$$

$$x_3 = 2$$

$$x_4 = a$$

donde a toma cualquier valor de \mathbb{Z}_3 .

Ejercicio 47. Estudia y resuelve si es posible el siguiente sistema de ecuaciones sobre el cuerpo de 3 elementos :

 \Diamond

$$x_1 + x_2 = 2$$

$$x_2 + x_3 + x_4 = 2$$

$$x_3 + x_4 = 2$$

$$x_1 + x_2 + x_3 - x_4 = 0$$

Solución: Tomamos la matriz ampliada del sistema:

$$[A|B] = \left[\begin{array}{cccc|c} 1 & 1 & 0 & 0 & 2 \\ 0 & 1 & 1 & 1 & 2 \\ 0 & 0 & 1 & 1 & 2 \\ 1 & 1 & 1 & 2 & 0 \end{array} \right]$$

y la reducimos por filas

$$\begin{bmatrix} 1 & 1 & 0 & 0 & | & 2 \\ 0 & 1 & 1 & 1 & | & 2 \\ 0 & 0 & 1 & 1 & | & 2 \\ 1 & 1 & 1 & 2 & | & 0 \end{bmatrix} \xrightarrow{E_{(4)+2(1)}} \begin{bmatrix} 1 & 1 & 0 & 0 & | & 2 \\ 0 & 1 & 1 & 1 & | & 2 \\ 0 & 0 & 1 & 1 & | & 2 \\ 0 & 0 & 1 & 2 & | & 1 \end{bmatrix} \xrightarrow{E_{(1)+2(2)}} \begin{bmatrix} 1 & 0 & 2 & 2 & | & 0 \\ 0 & 1 & 1 & 1 & | & 2 \\ 0 & 0 & 1 & 1 & | & 2 \\ 0 & 0 & 1 & 2 & | & 1 \end{bmatrix}$$

$$\xrightarrow{E_{(1)+1(3)}} \begin{bmatrix} 1 & 0 & 0 & 0 & | & 2 \\ 0 & 1 & 1 & 1 & | & 2 \\ 0 & 0 & 1 & 2 & | & 1 \end{bmatrix} \xrightarrow{E_{(2)+2(3)}} \begin{bmatrix} 1 & 0 & 0 & 0 & | & 2 \\ 0 & 1 & 0 & 0 & | & 0 \\ 0 & 0 & 1 & 1 & | & 2 \\ 0 & 0 & 1 & 2 & | & 1 \end{bmatrix} \xrightarrow{E_{(4)+2(3)}} \begin{bmatrix} 1 & 0 & 0 & 0 & | & 2 \\ 0 & 1 & 0 & 0 & | & 0 \\ 0 & 0 & 1 & 1 & | & 2 \\ 0 & 0 & 0 & 1 & 2 & | & 1 \end{bmatrix}$$

$$\xrightarrow{E_{(3)+2(4)}} \begin{bmatrix} 1 & 0 & 0 & 0 & | & 2 \\ 0 & 1 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & 1 & | & 2 \end{bmatrix}.$$

El sistema reducido queda:

$$x_1 = 2$$

Leandro Marín	Grado en Ingeniería Informática	Tiempo Estimado
-	Álgebra y Matemática Discreta	Previo: 60 min.
Facultad Informática Universidad Murcia	Sistemas de Ecuaciones y Reduccin por Filas	Clase: 30 min.

$$x_2 = 0$$
$$x_3 = 0$$
$$x_4 = 2$$

Este sistema es compatible determinado y tiene solución única.

Ejercicio 48. Estudia y resuelve si es posible el siguiente sistema de ecuaciones sobre el cuerpo de 3 elementos :

 \Diamond

$$-x_{1} - x_{2} + x_{3} = 1$$

$$-x_{1} + x_{2} + x_{3} = 1$$

$$-x_{1} - x_{2} + x_{3} = 1$$

$$x_{1} - x_{2} = 2$$

$$x_{1} + x_{2} = 2$$

Solución: Tomamos la matriz ampliada del sistema:

$$[A|B] = \begin{bmatrix} 2 & 2 & 1 & 1 \\ 2 & 1 & 1 & 1 \\ 2 & 2 & 1 & 1 \\ 1 & 2 & 0 & 2 \\ 1 & 1 & 0 & 2 \end{bmatrix}$$

y la reducimos por filas

El sistema reducido queda:

Leandro Marín	Grado en Ingeniería Informática	Tiempo Estimado
	Álgebra y Matemática Discreta	Previo: 60 min.
Facultad Informática Universidad Murcia	Sistemas de Ecuaciones y Reduccin por Filas	Clase: 30 min.

$$x_2 = 0$$

$$x_3 = 0$$

$$0 = 0$$

$$0 = 0$$

Este sistema es compatible determinado y tiene solución única.

Ejercicio 49. Estudia y resuelve si es posible el siguiente sistema de ecuaciones sobre el cuerpo de 3 elementos :

$$x_1 - x_2 = 2$$

$$x_1 - x_3 = 2$$

$$x_1 - x_4 = 2$$

$$x_1 + x_2 + x_3 = 2$$

Solución: Tomamos la matriz ampliada del sistema:

$$[A|B] = \begin{bmatrix} 1 & 2 & 0 & 0 & 2 \\ 1 & 0 & 2 & 0 & 2 \\ 1 & 0 & 0 & 2 & 2 \\ 1 & 1 & 1 & 0 & 2 \end{bmatrix}$$

y la reducimos por filas

$$\begin{bmatrix} 1 & 2 & 0 & 0 & | & 2 \\ 1 & 0 & 2 & 0 & | & 2 \\ 1 & 0 & 0 & 2 & | & 2 \\ 1 & 1 & 1 & 0 & | & 2 \end{bmatrix} \xrightarrow{E_{(2)+2(1)}} \begin{bmatrix} 1 & 2 & 0 & 0 & | & 2 \\ 0 & 1 & 2 & 0 & | & 0 \\ 1 & 0 & 0 & 2 & | & 2 \\ 1 & 1 & 1 & 0 & | & 2 \end{bmatrix} \xrightarrow{E_{(3)+2(1)}} \begin{bmatrix} 1 & 2 & 0 & 0 & | & 2 \\ 0 & 1 & 2 & 0 & | & 0 \\ 0 & 1 & 0 & 2 & | & 0 \\ 1 & 1 & 1 & 0 & | & 2 \end{bmatrix}$$

$$\xrightarrow{E_{(4)+2(1)}} \begin{bmatrix} 1 & 2 & 0 & 0 & | & 2 \\ 0 & 1 & 2 & 0 & | & 0 \\ 0 & 1 & 0 & 2 & | & 0 \\ 0 & 2 & 1 & 0 & | & 0 \end{bmatrix} \xrightarrow{E_{(1)+1(2)}} \begin{bmatrix} 1 & 0 & 2 & 0 & | & 2 \\ 0 & 1 & 2 & 0 & | & 0 \\ 0 & 2 & 1 & 0 & | & 0 \end{bmatrix} \xrightarrow{E_{(3)+2(1)}} \begin{bmatrix} 1 & 0 & 2 & 0 & | & 2 \\ 0 & 1 & 2 & 0 & | & 0 \\ 0 & 0 & 1 & 2 & | & 0 \\ 0 & 0 & 1 & 2 & | & 0 \\ 0 & 2 & 1 & 0 & | & 0 \end{bmatrix}$$

$$\xrightarrow{E_{(4)+1(2)}} \begin{bmatrix} 1 & 0 & 2 & 0 & | & 2 \\ 0 & 1 & 2 & 0 & | & 0 \\ 0 & 0 & 1 & 2 & | & 0 \\ 0 & 0 & 0 & 0 & | & 0 \end{bmatrix} \xrightarrow{E_{(1)+1(3)}} \begin{bmatrix} 1 & 0 & 0 & 2 & | & 2 \\ 0 & 1 & 2 & 0 & | & 0 \\ 0 & 0 & 1 & 2 & | & 0 \\ 0 & 0 & 0 & 0 & | & 0 \end{bmatrix} \xrightarrow{E_{(2)+1(3)}} \begin{bmatrix} 1 & 0 & 0 & 2 & | & 2 \\ 0 & 1 & 0 & 2 & | & 0 \\ 0 & 0 & 1 & 2 & | & 0 \\ 0 & 0 & 0 & 0 & | & 0 \end{bmatrix}$$

El sistema reducido queda:

$$x_1 - x_4 = 2$$

$$x_2 - x_4 = 0$$

$$x_3 - x_4 = 0$$

$$0 = 0$$

Este sistema es compatible indeterminado y la solución depende de un parámetro, que a la vista de la reducción tomaremos en la variable x_4 .

$$x_1 = -2a + 2$$

$$x_2 = -2a$$

$$x_3 = -2a$$

$$x_4 = a$$

donde a toma cualquier valor de \mathbb{Z}_3 .

Leandro Marín	Grado en Ingeniería Informática	Tiempo Estimado
	Álgebra y Matemática Discreta	Previo: 60 min.
Facultad Informática Universidad Murcia	Sistemas de Ecuaciones y Reduccin por Filas	Clase: 30 min.

Ejercicio 50. Estudia y resuelve si es posible el siguiente sistema de ecuaciones sobre el cuerpo de 3 elementos :

$$x_1 + x_2 + x_3 = 2$$
$$-x_1 - x_3 - x_4 = 2$$
$$-x_1 + x_2 + x_4 = 2$$

Solución: Tomamos la matriz ampliada del sistema:

$$[A|B] = \left[\begin{array}{cccc|c} 1 & 1 & 1 & 0 & 2 \\ 2 & 0 & 2 & 2 & 2 \\ 2 & 1 & 0 & 1 & 2 \end{array} \right]$$

y la reducimos por filas

$$\begin{bmatrix} 1 & 1 & 1 & 0 & 2 \\ 2 & 0 & 2 & 2 & 2 \\ 2 & 1 & 0 & 1 & 2 \end{bmatrix} \xrightarrow{E_{(2)+1(1)}} \begin{bmatrix} 1 & 1 & 1 & 0 & 2 \\ 0 & 1 & 0 & 2 & 1 \\ 2 & 1 & 0 & 1 & 2 \end{bmatrix} \xrightarrow{E_{(3)+1(1)}} \begin{bmatrix} 1 & 1 & 1 & 0 & 2 \\ 0 & 1 & 0 & 2 & 1 \\ 0 & 2 & 1 & 1 & 1 \end{bmatrix}$$

$$\xrightarrow{E_{(1)+2(2)}} \begin{bmatrix} 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 2 & 1 \\ 0 & 2 & 1 & 1 & 1 \end{bmatrix} \xrightarrow{E_{(3)+1(2)}} \begin{bmatrix} 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 2 & 1 \\ 0 & 0 & 1 & 0 & 2 & 1 \\ 0 & 0 & 1 & 0 & 2 & 2 \end{bmatrix} \xrightarrow{E_{(1)+2(3)}} \begin{bmatrix} 1 & 0 & 0 & 1 & 2 \\ 0 & 1 & 0 & 2 & 1 \\ 0 & 0 & 1 & 0 & 2 \end{bmatrix}$$

El sistema reducido queda:

$$x_1 + x_4 = 2$$
$$x_2 - x_4 = 1$$
$$x_3 = 2$$

Este sistema es compatible indeterminado y la solución depende de un parámetro, que a la vista de la reducción tomaremos en la variable x_4 .

$$x_1 = -a + 2$$

$$x_2 = -2a + 1$$

$$x_3 = 2$$

$$x_4 = a$$

donde a toma cualquier valor de \mathbb{Z}_3 .

Ejercicio 51. Estudia y resuelve si es posible el siguiente sistema de ecuaciones sobre el cuerpo de 3 elementos :

$$x_{1} = 0$$

$$x_{1} + x_{2} = 2$$

$$-x_{2} + x_{3} = 0$$

$$-x_{1} + x_{2} - x_{3} = 1$$

$$x_{3} = 2$$

Leandro Marín	Grado en Ingeniería Informática	Tiempo Estimado
	Álgebra y Matemática Discreta	Previo: 60 min.
Facultad Informática Universidad Murcia	Sistemas de Ecuaciones y Reduccin por Filas	Clase: 30 min.

$$[A|B] = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 2 \\ 0 & 2 & 1 & 0 \\ 2 & 1 & 2 & 1 \\ 0 & 0 & 1 & 2 \end{bmatrix}$$

y la reducimos por filas

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 2 \\ 0 & 2 & 1 & 0 \\ 2 & 1 & 2 & 1 \\ 0 & 0 & 1 & 2 \end{bmatrix} \xrightarrow{E_{(2)+2(1)}} \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 2 \\ 0 & 2 & 1 & 0 \\ 2 & 1 & 2 & 1 \\ 0 & 0 & 1 & 2 \end{bmatrix} \xrightarrow{E_{(4)+1(1)}} \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 2 \\ 0 & 2 & 1 & 0 \\ 0 & 1 & 2 & 1 \\ 0 & 0 & 1 & 2 \end{bmatrix}$$

$$\xrightarrow{E_{(3)+1(2)}} \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 1 & 2 \end{bmatrix} \xrightarrow{E_{(4)+2(2)}} \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 1 & 2 \end{bmatrix} \xrightarrow{E_{(4)+1(3)}} \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 1 & 2 \end{bmatrix}$$

$$\xrightarrow{E_{(5)+2(3)}} \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{E_{(4)+1(3)}} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{E_{(5)+2(3)}} \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{E_{(4)+1(3)}} \xrightarrow{E_{(4)+1(3)}} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Como la columna de los términos independientes es una columna pivote, concluimos que el sistema no tiene solución, es incompatible. \Diamond

Ejercicio 52. Estudia y resuelve si es posible el siguiente sistema de ecuaciones sobre el cuerpo de 3 elementos :

$$x_1 - x_3 = 2$$

$$-x_1 + x_2 - x_3 = 0$$

$$x_2 - x_3 = 2$$

$$x_1 + x_2 = 2$$

Solución: Tomamos la matriz ampliada del sistema:

$$[A|B] = \begin{bmatrix} 1 & 0 & 2 & 2 \\ 2 & 1 & 2 & 0 \\ 0 & 1 & 2 & 2 \\ 1 & 1 & 0 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 2 & 2 \\ 2 & 1 & 2 & 0 \\ 0 & 1 & 2 & 2 \\ 1 & 1 & 0 & 2 \end{bmatrix} \xrightarrow{E_{(2)+1(1)}} \begin{bmatrix} 1 & 0 & 2 & 2 \\ 0 & 1 & 1 & 2 \\ 0 & 1 & 2 & 2 \\ 1 & 1 & 0 & 2 \end{bmatrix} \xrightarrow{E_{(4)+2(1)}} \begin{bmatrix} 1 & 0 & 2 & 2 \\ 0 & 1 & 1 & 2 \\ 0 & 1 & 2 & 2 \\ 0 & 1 & 1 & 0 \end{bmatrix}$$

Leandro Marín	Grado en Ingeniería Informática	Tiempo Estimado
	Álgebra y Matemática Discreta	Previo: 60 min.
Facultad Informática Universidad Murcia	Sistemas de Ecuaciones y Reduccin por Filas	Clase: 30 min.

Como la columna de los términos independientes es una columna pivote, concluimos que el sistema no tiene solución, es incompatible.

Ejercicio 53. Estudia y resuelve si es posible el siguiente sistema de ecuaciones sobre el cuerpo de 3 elementos :

$$-x_1 + x_2 - x_4 = 1$$
$$x_1 - x_2 - x_3 - x_4 = 1$$
$$x_1 - x_2 - x_3 = 1$$

Solución: Tomamos la matriz ampliada del sistema:

$$[A|B] = \left[\begin{array}{ccc|c} 2 & 1 & 0 & 2 & 1 \\ 1 & 2 & 2 & 2 & 1 \\ 1 & 2 & 2 & 0 & 1 \end{array} \right]$$

y la reducimos por filas

$$\begin{bmatrix} 2 & 1 & 0 & 2 & 1 \\ 1 & 2 & 2 & 2 & 1 \\ 1 & 2 & 2 & 0 & 1 \end{bmatrix} \xrightarrow{E_{2(1)}} \begin{bmatrix} 1 & 2 & 0 & 1 & 2 \\ 1 & 2 & 2 & 2 & 1 \\ 1 & 2 & 2 & 0 & 1 \end{bmatrix} \xrightarrow{E_{(2)+2(1)}} \begin{bmatrix} 1 & 2 & 0 & 1 & 2 \\ 0 & 0 & 2 & 1 & 2 \\ 1 & 2 & 2 & 0 & 1 \end{bmatrix}$$

$$\xrightarrow{E_{(3)+2(1)}} \begin{bmatrix} 1 & 2 & 0 & 1 & 2 \\ 0 & 0 & 2 & 1 & 2 \\ 0 & 0 & 2 & 2 & 2 \end{bmatrix} \xrightarrow{E_{2(2)}} \begin{bmatrix} 1 & 2 & 0 & 1 & 2 \\ 0 & 0 & 1 & 2 & 1 \\ 0 & 0 & 2 & 2 & 2 \end{bmatrix} \xrightarrow{E_{(3)+1(2)}} \begin{bmatrix} 1 & 2 & 0 & 1 & 2 \\ 0 & 0 & 1 & 2 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

$$\xrightarrow{E_{(1)+2(3)}} \begin{bmatrix} 1 & 2 & 0 & 0 & 2 \\ 0 & 0 & 1 & 2 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix} \xrightarrow{E_{(2)+1(3)}} \begin{bmatrix} 1 & 2 & 0 & 0 & 2 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix} \xrightarrow{E_{(2)+1(3)}} \begin{bmatrix} 1 & 2 & 0 & 0 & 2 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}.$$

El sistema reducido queda:

$$x_1 - x_2 = 2$$
$$x_3 = 1$$
$$x_4 = 0$$

Este sistema es compatible indeterminado y la solución depende de un parámetro, que a la vista de la reducción tomaremos en la variable x_2 .

$$x_1 = -2a + 2$$

$$x_2 = a$$

$$x_3 = 1$$

$$x_4 = 0$$

donde a toma cualquier valor de \mathbb{Z}_3 .