knn-regression.md 2025-06-26

Problem Statement

Title: *Predicting House Prices Using K-Nearest Neighbors Regression*Objective

To build a K-Nearest Neighbors (KNN) regression model that predicts the price of a house based on:

- Its size (in square feet)
- Its number of bedrooms

Background

In real estate, pricing a house accurately is crucial for both sellers and buyers. Traditional regression models assume a functional form, but KNN regression offers a **non-parametric** approach by estimating prices based on **similar historical houses**. This model predicts the price by averaging the prices of the **k most similar houses** in the dataset, based on a distance metric.

Dataset Description

Each data point includes:

- X₁: Size (sqft)
- X₂: Bedrooms
- Y: Price (in thousands of dollars)

Sample Dataset

House	Size (sqft)	Bedrooms	Price (K USD)
1	1400	3	245
2	1600	3	312
3	1700	4	279
4	1875	3	308
5	1100	2	199
6	1550	4	219
7	2350	4	405
8	2450	5	324
9	1425	3	319
10	1700	3	255

knn-regression.md 2025-06-26

Goals

- Implement a KNN regression model to predict house prices
- Choose an appropriate value of **k** (number of neighbors)
- Use Euclidean distance to find nearest neighbors
- Predict price of a new house by averaging prices of the k nearest neighbors
- Evaluate model performance using:
 - Mean Squared Error (MSE)
 - Root Mean Squared Error (RMSE)
 - R² Score

Assumptions

- Houses with similar size and bedroom count tend to have similar prices
- The relationship between features and target does not need to be linear
- All features are **numerically scaled** (or normalized, if needed)

Example Task

Predict the price of a new house with:

- Size = 1800 sqft
- Bedrooms = 3

Using k = 3

Solution

Predict the price of a **new house**:

- Size = 1800 sqft
- Bedrooms = 3
- Using k = 3 nearest neighbors

Step 1: Dataset Recap

House	Size (sqft)	Bedrooms	Price (K USD)
1	1400	3	245
2	1600	3	312
3	1700	4	279
4	1875	3	308

2025-06-26 knn-regression.md

House	Size (sqft)	Bedrooms	Price (K USD)
5	1100	2	199
6	1550	4	219
7	2350	4	405
8	2450	5	324
9	1425	3	319
10	1700	3	255

♦ Step 2: Compute Euclidean Distance

Distance formula:

$$d = \sqrt{(x_1 - x_1')^2 + (x_2 - x_2')^2}$$

Let the query house be (Q = (1800, 3))

House	(Size, Bed)	Distance to Q	Price
1	(1400, 3)	$\sqrt{(400^2 + 0^2)} = 400$	245
2	(1600, 3)	200	312
3	(1700, 4)	$\sqrt{(100^2 + 1^2)} \approx 100.005$	279
4	(1875, 3)	75	308
5	(1100, 2)	$\sqrt{(700^2 + 1^2)} \approx 700.0007$	199
6	(1550, 4)	$\sqrt{(250^2 + 1^2)} \approx 250.002$	219
7	(2350, 4)	$\sqrt{(550^2 + 1^2)} \approx 550.0009$	405
8	(2450, 5)	$\sqrt{(650^2 + 2^2)} \approx 650.0031$	324
9	(1425, 3)	375	319
10	(1700, 3)	100	255

ightharpoonup Step 3: Identify k = 3 Nearest Neighbors

Sort by distance:

House	Distance	Price
4	75	308
10	100	255
3	100.005	279

knn-regression.md 2025-06-26

✓ Nearest 3 houses: House 4, House 10, House 3

■ Step 4: Predict Price (Average of k nearest neighbors)

 $\hat{y} = \frac{308 + 255 + 279}{3} = \frac{842}{3} \cdot$

Time Prediction

A house with **1800 sqft** and **3 bedrooms** is predicted to cost:

\$\boxed{\$280,670} \$

✓ Summary

Step	Result
k	3
Distance Metric	Euclidean
Prediction	\$280.67K
Neighbors	Houses 4, 10, 3