System-Programmierung o: Einführung

CC BY-SA, Thomas Amberg, FHNW (Soweit nicht anders vermerkt) Slides: tmb.gr/syspr-o

m 77

Überblick

Diese Lektion ist die Einführung bzw. das Drehbuch:

Was Sie vom Modul syspr erwarten können.

Was von Ihnen erwartet wird.

0

Hallo

Thomas Amberg (@tamberg), Software Ingenieur.

FHNW seit 2018 als "Prof. für Internet of Things".

Gründer von Yaler, sicherer Fernzugriff für IoT.

Organisator der IoT Meetup Gruppe in Zürich.

Email thomas.amberg@fhnw.ch

3

Aufbau Modul syspr

15 * 3 = 45 Stunden Unterricht:

Hands-on während der Lektion.

Dazu ca. 45 Stunden Selbststudium.

Total 90 Stunden, d.h. 3 ECTS Punkte.

4

Lernziele Modul syspr

Programmierung in C, da der Unix/Linux-Kern und Basisanwendungen in der Sprache geschrieben sind.

Praktische Nutzung der System-Call Schnittstelle von Unix/Linux lernen anhand von Beispielprogrammen.

Kommunikation zwischen Prozessen (IPC) und deren Synchronisation verstehen und einsetzen lernen.

Termine FS21 — Klasse 3ib

23.09. Einführung 25.11. Sockets 30.09. Erste Schritte in C 02.12. Projektwoche 07.10. Funktionen 09.12. POSIX IPC 14.10. File In-/Output 16.12. Zeitmessung 21.10. Prozesse und Signale 23.12. Terminals 28.10. Prozess-Lebenszyklus 30.12. Ferien 04.11. Threads und Synchr. 06.01. Ferien 11.11. Assessment I 13.01. Assessment II 18.11. IPC mit Pipes 20.01. Abschluss

5

Lernzielüberprüfung

Assessment I und Assessment II, beide obligatorisch. Fliessen zu je 50% in die Gesamtbewertung ein. Die Schlussnote wird auf Zehntel gerundet. Es gibt keine Modulschlussprüfung.

Assessment I und II, in Präsenz:

1 A4-Blatt* handgeschriebene Zusammenfassung. Weitere Unterlagen (Slides, ...) sind nicht erlaubt. Kommunikation (Smartphone, ...) ist nicht erlaubt. Das Assessment ist schriftlich, dauert 90 Minuten.

*Beidseitig beschrieben.

Betrug und Plagiate

Aus Betrug und Plagiate bei Leistungsnachweisen:

"Wer in Arbeiten im Rahmen des Studiums Eigenund Fremdleistung nicht unterscheidet, wer plagiiert, macht sich strafbar." - M. Meyer

Kommunikation via Slack

Kommunikation via Slack*, Einladung per Email:

https://fhnw-syspr.slack.com/

#general Ankündigungen und Fragen #random Eher Unwichtiges, Zufälliges tamberg Messages an eine Person, "privat"

*Slack App wird empfohlen, mobile oder Desktop.

Unterricht via Webex, Slides auf GitHub

Vorlesung remote via Webex, Link jeweils in Slack. Slides und verlinkte Code-Beispiele auf GitHub:

https://github.com/tamberg/fhnw-syspr

Slides, Beispiele und Hands-on sind Prüfungsstoff.

Hands-on mittels GitHub Classroom

Kurze Hands-on Übungen während den Lektionen. Private* Repos via GitHub Classroom, Link in Slack. Jeweils Review von zwei, drei Lösungsvorschlägen. Auch unfertige Lösungen können interessant sein.

*Sie und ich sehen den Inhalt.

Literatur

https://ddg.co/?q=the+c+ programming+language+k ernighan+ritchie

Absoluter Klassiker für C. 270 Seiten.

Literatur (optional)

https://nostarch.com/ Effective_C

Sehr gute Einführung in C. 272 Seiten.

14

Literatur (optional)

https://ddg.co/?q=the+ linux+programming+in terface

Nachschlagwerk zu Linux System Calls.

1500+ Seiten.

Literatur (optional)

https://ddg.co/?q=a+philo sophy+of+software+design

Software Engineering und Design von Schnittstellen. 180 Seiten.

10

Tools

Terminal (MacOS) bzw. cmd (Windows).

Text-Editor, z.B. nano oder VS Code.

C Compiler, gcc mit Flag -std=c99

Code Versionierung mit git.

Einfache Tools, ohne "Magie" => Verständnis.

Linux VM oder Raspberry Pi

System-Programmierung am Beispiel von Linux.

Die Beispiele wurden auf Raspbian entwickelt.

Im Prinzip sollte der C Code portabel sein.

Debian oder Ubuntu funktionieren gut.

WSL ist nicht empfohlen.

1.5

Wieso Raspberry Pi?

Günstige Hardware.

Einheitliche Linux Plattform.

Separates System => "Sandbox".

SD Card neu schreiben => "Factory reset".

Embedded Linux Systeme sind relevant für IoT.

Linux Shell Kommandos

Mehr hier oder auf tldr.sh (auch als PDF).

Hands-on, 30': Setup

Setup einer Linux VM auf dem eigenem Computer.

Oder Setup eines Raspberry Pi via USB, Computer.

"Hello World" als hello.c auf VM bzw. Pi speichern.

Den C Source Code mit gcc kompilieren.

```
$ gcc -o hello hello.c
$ ./hello
```

2

19

Source Code Versionierung mit Git

Account erstellen auf GitHub.com.

=> USER_NAME, USER_EMAIL

Auf der VM bzw. Pi, *qit* installieren mit *apt-qet*:

\$ sudo apt-get update
\$ sudo apt-get install git

User konfigurieren:

\$ git config --global user.email "USER_EMAIL"
\$ git config --global user.name "USER_NAME" 2:

Git konfigurieren auf VM/Raspberry Pi

SSH Key erstellen:

```
$ ssh-keygen -t rsa -b 4096 -C "USER_EMAIL"
$ eval "$(ssh-agent -s)"
$ cat ~/.ssh/id_rsa.pub
```

Raspberry Pi bzw. VM SSH Key eintragen auf GitHub:

```
User Icon > Settings > SSH and GPG keys > New SSH key > {SSH Key einfügen}
```

GitHub Repository klonen

GitHub Repository klonen (auf zwei Arten möglich):

\$ git clone https://github.com/USER_NAME/REPO
\$ git clone git@github.com:USER_NAME/REPO.git

Neue Datei hinzufügen:

\$ cd REPO
\$ nano my.c
\$ git add my.c

9.4

Git verwenden

Geänderte Dateien anzeigen:

\$ git status

Änderungen committen:

\$ git commit -a -m "fixed all bugs"

Änderungen pushen:

\$ git push

Mehr zu git hier.

Hands-on, 20': GitHub

GitHub Account einrichten, falls keiner vorhanden. Git auf VM bzw. Pi installieren und konfigurieren. Dann das Hands-on Repo* auf VM oder Pi klonen. File hello.c in Hands-on Repo committen, pushen.

*Classroom Link wird im Slack bekannt gegeben.

26

Zusammenfassung

Sie haben alle wichtigen Informationen zum Modul. Sie haben eine Linux VM oder Raspbian aufgesetzt*. Sie haben die Tools *gcc* und *git* installiert, getestet*. Sie sind bereit für *Erste Schritte in C.*

*Wird ab der nächsten Lektion vorausgesetzt.

Feedback oder Fragen?

Gerne im Slack https://fhnw-syspr.slack.com/ Oder per Email an thomas.amberg@fhnw.ch

Danke für Ihre Zeit.

28

