Asymmetrien der Physik

Matteo Schmider

11. Januar 2020

Inhaltsverzeichnis

Einführung

Symmetrische Eigenschaften der Physik

Symmetrieeigenwerte

CPT-Theorem

C-Symmetrie

P-Symmetrie

T-Symmetrie

Logik der Zusammensetzung

Symmetriebrechungen

Paritätsverletzung

CP-Verletzung

T-Verletzung

• 0

Symmetrische Eigenschaften der Physik

Symmetrieeigenwerte

0

C-Symmetrie

P-Symmetrie

T-Symmetrie

Allgemein

▶ Invarianz unter Zeitumkehr, d.h. unter der Transformation

$$T: t \to -t$$
 (1)

Allgemein

Invarianz unter Zeitumkehr, d.h. unter der Transformation

$$T: t \to -t$$
 (1)

- Aufgrund der Erscheinung in realen Beispielen Bewegungsumkehr genannt
- Vorstellbar als das rückwärts Abspielen eines Videos

Beispiel Fadenpendel

Auslenkung zur Zeit t_0 : 10°

Geschwindigkeit zur Zeit t_0 : 0

CPT als "höhere" Symmetrie

 Idee: Invarianz unter Hintereinanderausführung der Transformationen

CPT als "höhere" Symmetrie

- Idee: Invarianz unter Hintereinanderausführung der Transformationen
- Invarianz-Regel:
 Verletzung einer Symmetrie wird durch die zwei weiteren
 Transformationen aufgehoben

Paritätsverletzung

Folgerungen

► Erwartung: Gleiche Menge an Elektronen auf beiden Seiten

Folgerungen

- Erwartung: Gleiche Menge an Elektronen auf beiden Seiten
- ► Realität: Es verlassen mehr Elektronen die Atome entgegen der Spin-Richtung

Folgerungen

- ► Erwartung: Gleiche Menge an Elektronen auf beiden Seiten
- Realität: Es verlassen mehr Elektronen die Atome entgegen der Spin-Richtung
- ⇒ Parität verletzt

CPT-Theorem
0
0
0
0
0

 ${\sf CP\text{-}Verletzung}$

T-Verletzung