OSNOVE UMETNE INTELIGENCE 2018/19

razporejanje opravil

verjetnostno sklepanje z bayesovskimi mrežami

© Zoran Bosnić

Pregled

- planiranje
 - planiranje s "klasičnim" preiskovanjem prostora stanj
 - planiranje s sredstvi in cilji
 - planiranje z regresiranjem ciljev
 - razporejanje opravil
- bayesovske mreže
 - definicija
 - odvisnosti v bayesovski mreži
 - neodvisnosti v bayesovski mreži
 - verjetnostno sklepanje
 - ekvivalenca bayesovskih mrež

Planiranje in razporejanje opravil

- do sedaj (klasično planiranje): kaj narediti in v kakšnem vrstnem redu
- pristopi:
 - planiranje kot preiskovanje prostora stanj
 - planiranje s sredstvi in cilji
 - planiranje z regresiranjem ciljev skozi akcije
- v realnosti imamo številne dodatne omejitve:
 - časovne omejitve (začetki aktivnosti, trajanja aktivnosti, roki zaključkov)
 - resursi (omejeno število procesorjev, kadra, bencina, denarja, surovin, ...)

- delno urejen plan: vrstni red podmnožice aktivnosti je lahko urejen
- razširimo lahko notacijo (PDDL):
 - Akcija1 ≺ Akcija2: pomeni, da se mora Akcija1 zgoditi pred Akcijo2
 - Resources podaja števila razpoložljivih resursov
 - DURATION opredeljuje trajanje posamezne akcije
 - **CONSUME** opredeljuje (trajno) porabo določene količine resursov
 - USE opredeljuje (začasno) zasedenost količine resursov med izvajanjem akcije

- za začetek: samo časovne omejitve
- metoda kritične poti
 - kritična pot: pot, ki je najdaljša in določa dolžino trajanja celotnega plana (krajšanje vzporednih poti ne vpliva na trajanje plana)
 - vsaki akciji priredimo par [ES, LS]:
 - ES najbolj zgodnji možen začetek (angl. Earliest Start)
 - LS najbolj pozen možen začetek (angl. Latest Start)

$$ES(Start) = 0$$

 $ES(B) = \max_{A \prec B} ES(A) + Duration(A)$
 $LS(Finish) = ES(Finish)$
 $LS(A) = \min_{A \prec B} LS(B) - Duration(A)$
 $rezerva(slack) = LS - ES$

• časovna zahtevnost algoritma: O(Nb), N – število akcij, b – faktor vejanja

- dodatno: upoštevanje tudi resursov
- uvede omejitev, da se aktivnosti, ki potrebujeta iste resurse, ne smeta prekrivati

- sprememba časovne zahtevnosti: $O(Nb) \rightarrow NP$ -težek problem (!)
- primer izziv iz leta 1963 nerešen 23 let:
 - resursi: 10 strojev, 10 nalog, 100 akcij
 - preizkušene metode: simulirano ohlajanje, tabu search, razveji in omeji, ...
- primerna hevristika: algoritem najmanjše časovne rezerve (angl. minimum slack algorithm)
 - na vsaki iteraciji dodeli najbolj zgodnji možen začetek akciji, ki ima izpolnjene vse predhodnike in ima najmanj časovne rezerve,
 - nato posodobi [ES in LS] za celotni graf in ponovi.

Diskusija:

- Kakšen je rezultat simulacije algoritma najmanjše časovne rezerve na obravnavanem problemu?
- Ali je rešitev enaka optimalni? Zakaj?
- Kako upoštevati omejitve v zaporedju akcij pri pristopih za planiranje?
- Kako upoštevati omejitve v omejenem številu resursov?

Pregled

- planiranje
 - planiranje s "klasičnim" preiskovanjem prostora stanj
 - planiranje s sredstvi in cilji
 - planiranje z regresiranjem ciljev
 - razporejanje opravil
- bayesovske mreže
 - definicija
 - odvisnosti v bayesovski mreži
 - neodvisnosti v bayesovski mreži
 - verjetnostno sklepanje
 - ekvivalenca bayesovskih mrež

Bayesovske mreže

- so verjetnostni model, s katerim predstavimo odvisnosti med slučajnimi spremenljivkami
- pristop za obravnavo negotovosti v bazah znanja, ki je matematično dobro utemeljen v verjetnosti
- model je predstavljen z usmerjenim acikličnim grafom:
 - vozlišča: slučajne spremenljivke (dejstva, hipoteze),
 - povezave: odvisnosti med spremenljivkami (vpliv starša na naslednika)
- primeri uporabe:
 - splošno: za predstavitev verjetnostnega znanja in verjetnostno sklepanje
 - medicina: povezave med boleznijo in simptomi (diagnostika), napovedovanje izida operacije
 - ekspertni sistemi: ocenjevanje kvalitete vode, ...
 - sklepanje: kako verjetno so določene trditve, če vemo, da so druge trditve resnične?

Primer iz medicine

Bayesovske mreže

- stanje sveta povzamemo z vektorjem (logičnih) spremenljivk
- agent sklepa na verjetnost resničnosti določene spremenljivke
- upoštevamo lahko, da so določene spremenljivke med seboj neodvisne, kar predstavimo z bayesovsko mrežo, ki odraža te neodvisnosti (nepovezana vozlišča niso odvisna)
- primer:
 - senzor se sproži ob vlomu v hišo
 - včasih lahko tudi udar strele nehoteno sproži senzor
 - senzor ima nalogo, da sproži alarm in izvede opozorilni telefonski klic
- odvisnosti, ki izhajajo iz mreže:
 - senzor je odvisen od vloma in strele
 - alarm je odvisen od senzorja
 - klic je odvisen od senzorja

Bayesovske mreže

- z zapisom P(X) okrajšamo P(X = true), z zapisom P(XY) pa konjunkcijo
- za opis stanja sveta, ki ima n spremenljivk, bi morali poznati **popolno verjetnostno porazdelitev** ($2^n 1$ podatkov možnih stanj vseh logičnih spremenljivk)
 - spremenljivke: V, St, Se, A, K
 - popolna verjetnostna porazdelitev:

$$P(V St Se A K) = ...$$

 $P(\sim V St Se A K) = ...$
 $P(V \sim St Se A K) = ...$
 $P(\sim V \sim St Se A K) = ...$

- potrebujemo $2^5 1 = 31$ verjetnosti
- nepraktično ali nemogoče za veliko število spremenljivk
- verjetnost pojubnega dogodka (npr. P(VK)) izračunamo z vsoto vseh kombinacij vrednosti spremenljivk St, Se, A (pozitivna ali negirana) pri vrednostih V = true in K = true.

Pogojne verjetnosti

 ker bayesovska mreža opredeljuje odvisnosti spremenljivk, lahko opredelimo problem samo s pogojnimi verjetnostmi:

```
P(vlom) = 0,001

P(strela) = 0,02

P(senzor | vlom \land strela) = 0,9

P(senzor | vlom \land \sim strela) = 0,9

P(senzor | \sim vlom \land strela) = 0,1

P(senzor | \sim vlom \land \sim strela) = 0,001

P(alarm | senzor) = 0,95

P(alarm | \sim senzor) = 0,001

P(klic | senzor) = 0,95

P(klic | \sim senzor) = 0
```


- podamo torej 10 podatkov namesto $2^5 1 = 31$
- za spremenljivke, ki niso med seboj odvisne, ne potrebujemo vseh kombinacij verjetnosti:
 - če sta X in Y **odvisna**, v splošnem velja $P(XY) = P(X) \cdot P(Y|X)$ (potrebujemo P(Y|X))
 - če sta X in Y **neodvisna**, velja: $P(XY) = P(X) \cdot P(Y)$ (P(Y|X) ne potrebujemo, ker zaradi neodvisnosti velja P(Y|X) = P(Y))

Pogojne verjetnosti

pogojne verjetnosti lahko predstavimo tudi s tabelami pogojnih verjetnosti

P(vlom)
0,001

P(strela) 0,02

vlom	strela	P(senzor)
true	true	0,9
true	false	0,9
false	true	0,1
false	false	0,001

senzor	P(alarm)
true	0,95
false	0,001

senzor	P(klic)
true	0,95
false	0

• verjetnostni značaj modeliranja z bayesovskimi mrežami: vsota pogojnih verjetnosti P(X|Y) in $P(X|\sim Y)$ ni enaka 1, kar nakazuje, da obstajajo za X tudi drugi, neopredeljeni razlogi, ki niso zajeti v predstavitvi problema s podano mrežo

Primer s podanimi verjetnostmi

Izračun verjetnosti dogodka

- s pogojnimi verjetnostmi lahko izračunamo verjetnost dogodka iz popolne verjetnostne porazdelitve
- primer: kakšna je verjetnost $P(V \sim St \ Se \ A \ K)$? $P(V \sim St \ Se \ A \ K) = P(V) \cdot P(\sim St \ Se \ A \ K|V) = P(V) \cdot P(\sim St \ |V) \cdot P(Se|V \sim St) \cdot P(A|V \sim St \ Se) \cdot P(K|V \sim St \ Se \ A)$
- zaradi neodvisnosti, podanih v mreži, velja:

$$P(\sim St|V) = P(\sim St)$$

$$P(A|V \sim St Se) = P(A|Se)$$

$$P(K|V \sim St Se A) = P(K|Se)$$

torej:

$$P(V \sim St \ Se \ A \ K) = P(V) \cdot P(\sim St \ Se \ A \ K|V) =$$

= $P(V) \cdot P(\sim St) \cdot P(Se|V \sim St) \cdot P(A|Se) \cdot P(K|Se)$
= $0,001 \cdot 0,98 \cdot 0,9 \cdot 0,95 \cdot 0,9 = 0,00075$

v splošnem velja:

$$P(X_1X_2...X_n) = \prod_{i=1}^n P(X_i|star\check{s}i(X_i))$$

Pregled

- bayesovske mreže
 - definicija
 - odvisnosti v bayesovski mreži
 - neodvisnosti v bayesovski mreži
 - verjetnostno sklepanje
 - ekvivalenca bayesovskih mrež

Verjetnostno sklepanje

- možni sta dve smeri sklepanja:
 - vzročno (od vzrokom k posledicam): npr. P(A | V St) = ?
 - diagnostično (od posledic k vzrokom): npr. $P(V \mid A) = ?$

Odvisnosti v mreži

skupni prednik:

- alarm in klic sta **odvisna**; če vemo, da je eden od njiju resničen, vpliva to tudi na naše verjetje o resničnosti drugega (če se je sprožil alarm, se je verjetno izvedel tudi klic); $P(A|K) \neq P(A), P(K|A) \neq P(K)$
- vendar: poznavanje resničnosti prednika senzor omogoči, da alarm in klic obravnavamo kot neodvisna (vemo, da se je sprožil senzor, torej se je z določeno verjetnost tudi sprožil alarm in z določeno (neodvisno) verjetnostjo izvedel tudi klic; P(A|Se K) = P(A|Se), P(K|SeA) = P(K|Se)

skupni naslednik:

- *vlom* in *strela* sta medseboj **neodvisna** (vedenje, da se je zgodil vlom, ne vpliva na verjetje o dogodku strele) P(V|St) = P(V), P(St|V) = P(St)
- vendar: poznavanje resničnosti tega, da se je sprožil senzor povzroči, da dogodka vlom in strela postaneta odvisna; ker sta oba vzroka za sproženje senzorja, velja, da resničnost enega zmanjšuje verjetnost drugega in obratno

Odvisnosti v mreži

veriga

- vlom in alarm sta odvisna; poznavanje resničnosti enega od njiju vpliva na naše verjetje o resničnosti drugega
- vendar: če vemo, da je resničen tudi senzor, postaneta vlom in alarm neodvisna: poznavanje resničnosti spremenljivke alarm ni pogojena s poznavanjem vloma in obratno
- pravimo, da vozlišče senzor blokira vpliv vozlišča vlom na vozlišče alarm

pravilo lahko posplošimo na daljše verige:

$$P(D|ABC) = P(D|C)$$

Vaja

podana je naslednja bayesovska mreža:

- a in c naj bosta redka dogodka in vse povezave v mreži naj predstavljajo vzročnost med dogodki (torej npr. $P(b|a) \gg P(b|\sim a)$). Brez računanja oceni relacije (<, > ali =) med naslednjimi verjetnostmi:
 - a) P(a): P(a|c)
 - b) P(a): P(a|d)
 - c) P(a|d): P(a|cd)
 - *d)* P(d|bc): P(d|abc)

Primer

- podobno sklepanje lahko uporabimo na našem primeru:
 - vlom je sam po sebi malo verjeten dogodek
 - denimo, da prejmemo opozorilni klic
 - zaradi prejetega klica se verjetnost proženja senzorja poveča (in ravno tako verjetnost alarma)
 - ker vlom sproža senzor, se poveča tudi verjetnost vlomu
 - ali: izvemo, da je doma bila nevihta s strelami; ker je strela možen vzrok za proženje senzorja, se verjetnost vloma zmanjša

