Fall 2022, Math 328, Homework 4

Due: End of day on 2021-10-31

1 10 points

Let $\varphi: G \to H$ be a surjective homomorphism of groups, and assume that G is cyclic. Prove that H is cyclic. Deduce that any group which is isomorphic to a cyclic group is again cyclic. Deduce that any quotient of a cyclic group is again cyclic.

2 10 points

Describe (with proof) the lattice of subgroups of D_8 , S_3 and Q_8 . In these lattices, identify the subgroups which are cyclic.

3 10 points

Let n be a positive integer and G a cyclic group of order n with generator g.

- 1. Suppose that k is any integer. Prove that there is a unique homomorphism $\varphi_k: G \to G$ satisfying $\varphi_k(g) = g^k$.
- 2. Prove that φ_k is an automorphism if and only if gcd(k, n) = 1.
- 3. Suppose that $a, b \in \mathbb{Z}$ are two integers. Show that $\varphi_a \circ \varphi_b = \varphi_{a \cdot b}$.
- 4. Show that the map $\mathbb{Z}/n \to \operatorname{End}(G)$ defined by $(a \mod n) \mapsto \varphi_a$ is well defined, and that it restricts to a bijection

$$(\mathbb{Z}/n)^{\times} := \{a \mod n \mid \gcd(a, n) = 1\} \cong \operatorname{Aut}(G).$$

Here $\operatorname{End}(G)$ denotes the collection of *endomorphisms* of G, i.e. the homomorphisms from G to itself.

5. Deduce that $(\mathbb{Z}/n)^{\times}$ is a group with respect to the operation

$$(a \bmod n, b \bmod n) \mapsto a \cdot b \bmod n,$$

and that this group is isomorphic to Aut(G).

6. If H is an infinite cyclic group, describe Aut(H).

4 10 points

Let $\pi: G \to H$ be a surjective homomorphism of groups and let $\psi: G \to K$ be any homomorphism of groups.

- 1. Suppose that $\delta: H \to K$ is a homomorphism satisfying $\psi = \delta \circ \pi$. Show that the kernel of π is contained in the kernel of ψ .
- 2. Suppose that the kernel of π is contained in the kernel of ψ . Show that there exists a unique homomorphism $\delta: H \to K$ which satisfies $\psi = \delta \circ \pi$.

Use the above in conjunction with the universal property of quotients to (re)prove the *first isomor-phism theorem*:

Theorem. Let $\varphi: G \to H$ be a homomorphism of groups. Then $\ker(\varphi)$ is a normal subgroup of G, and φ induces an isomorphism $\bar{\varphi}: G/\ker(\varphi) \cong \operatorname{im}(\varphi)$ where $\bar{\varphi}(g \cdot \ker(\varphi)) = \varphi(g)$. In particular, if φ is surjective, then H is isomorphic to $G/\ker(\varphi)$.

5 10 points

Let H be a subgroup of a group G and assume that [G:H]=2. Prove that H is normal in G. Give an example showing that this can fail if 2 is replaced by a larger integer.

6 10 points

Let G be a group.

- 1. Show that Z(G) is normal in G.
- 2. Show that the following are equivalent:
 - (a) G is abelian.
 - (b) G = Z(G).
 - (c) G/Z(G) is cyclic.
 - (d) G/Z(G) is trivial.
- 3. Assume that G is a finite group of order $p \cdot q$ where p and q are (not necessarily distinct) primes. Show that G is either abelian or Z(G) is trivial.
- 4. Assume that Aut(G) is cyclic. Prove that G is abelian.

Hint: Revisit Problem 3 on Homework 3.