Sprawozdanie 2

Eksploracja danych

Kacper Szmigielski, 282255 i Mateusz Wizner, 277508

2025-04-28

Spis treści

1	$\mathbf{Z}\mathbf{A}$	DANIE 1 (Dyskretyzacja(przedziałowanie) cech ciągłych)	2
	1.1	a) Dane: iris (R-pakiet datasets)	2
	1.2	b) Wybór cech	2
	1.3	c) Porównanie nienadzorowanych metod dyskretyzacji	5
		1.3.1 Równe częstości	5
		1.3.2 Równe szerokości	9
		1.3.3 K-means	13
		1.3.4 Dyskretyzacja z przedziałami zadanymi przez urzytkownika	17
2		DANIE 2 (Analizaskładowych głównych (Principal Component Analy- $(\mathrm{PCA})))$	21
	2.1	a) Przygotowanie danych	21
	2.2	b) Wyznaczenie składowych głównych	24
	2.3	c) Zmienność odpowiadająca poszczególnym składowym	25
	2.4	d) Wizualizacja danych wielowymiarowych	27
	2.5	e) Korelacja zmiennych	27
	2.6	f) Końcowe wnioski	27
3		DANIE 3 (Skalowaniewielowymiarowe (Multidimensional Scaling DS)))	27
	3.1	a) Dane: titanic_train (R-pakiet titanic)	27
	3.2	b) Przygotowanie danych	27

3.3	c) Redukcja wymiaru na bazie MDS	27
3.4	d) Wizualizacja danych	27

1 ZADANIE 1 (Dyskretyzacja(przedziałowanie) cech ciągłych)

1.1 a) Dane: iris (R-pakiet datasets).

3 Pierwsze wiersze z pakietu iris

Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
5.1	3.5	1.4	0.2	setosa
4.9	3.0	1.4		setosa
4.7	3.2	1.3		setosa

Zbiór danych zawiera wyniki pomiarów uzyskanych dla trzech gatunków irysów (tj. setosa, versicolor i virginica) i został udostępniony przez Ronalda Fishera w roku 1936.

– Pomiary dotyczą długości oraz szerokości dwóch różnych części kwiatu– działki kielicha (ang. sepal) oraz płatka (ang. petal).

1.2 b) Wybór cech

Cechy, inaczej właściwie możemy to rozstrzygać jako kolumny, które charakteryzują się **największym zróżnicowaniem** w stosunku do rodzaju gatunku

Po przeanalizowaniu histogramów, widać ,że warto zwrócić uwagę na takie cechy jak **Petal.Length i Petal.Width**, ponieważ

widać dobrze zaznaczone przedziały w których występuje większość kwiatków danego gatunku.

Dalej warto jest też spojrzeć na to jak nasze *obserwawcje* teoretycznie rozkładają się w przestrzeni 2D, aby to zrobić dodajemy jedną dodatkową kolumnę y, wypełnioną losowymi liczbami od 0 do 1 (rozkłąd jednostajny)

Wykresy typu scatter-plot potwierdzają ,że **Petal.Length i Petal.Width** są bardzo dobry wyborem cech, które mogłyby być wyznacznikami gatunków roślin.

Musimy jednak wybrać wartości najlepsze i najgorsze, aby to zrobić przeanalizujemy jeszcze boxploty.

Na ich podstawaie możemy uznać, że Petal. Width może stanowić najlepszy wyznacznik gatunku roślin Najgorszym natomiast jest Sepal. Width, tutaj duża część gatunków dzieli te same wartości tej cechy.

1.3 c) Porównanie nienadzorowanych metod dyskretyzacji

1.3.1 Równe częstości

1.3.1.1 Dla najlepszej

1.3.1.2 Dla najgorszej

1.3.2 Równe szerokości

1.3.2.1 Dla najlepszej

1.3.2.2 Dla najgorszej

1.3.3 K-means

1.3.3.1 Dla najlepszej

1.3.3.2 Dla najgorszej

[1] 0.5801105

1.3.4 Dyskretyzacja z przedziałami zadanymi przez urzytkownika

1.3.4.1 Dla najlepszej

Metoda: fixed (user provided breaks)

Metoda: fixed (user provided breaks)

1.3.4.2 Dla najgorszej

Metoda: fixed (user provided breaks)

Metoda: fixed (user provided breaks)

2 ZADANIE 2 (Analizaskładowych głównych (Principal Component Analysis (PCA)))

2.1 a) Przygotowanie danych

Tabela 2: Typy danych w zbiorze

	Type
X	integer
UA_Name	character
UA_Country	character
UA_Continent	character
Housing	numeric
Cost.of.Living	numeric
Startups	numeric
Venture.Capital	numeric
Travel.Connectivity	numeric

	Type
Commute	numeric
Business.Freedom	numeric
Safety	numeric
Healthcare	numeric
Education	numeric
Environmental.Quality	numeric
Economy	numeric
Taxation	numeric
Internet.Access	numeric
LeisureCulture	numeric
Tolerance	numeric
Outdoors	numeric

X	UA_Name	UA_Country	UA_Continent	Housing	Cost.of.Living
0	Aarhus	Denmark	Europe	6.132	4.015
1	Adelaide	Australia	Oceania	6.310	4.692
2	Albuquerque	New Mexico	North America	7.262	6.059
3	Almaty	Kazakhstan	Asia	9.282	9.333
4	Amsterdam	Netherlands	Europe	3.053	3.824
5	Anchorage	Alaska	North America	5.434	3.141

X	Startups	Venture.Capital	Travel.Connectivity	Commute	Business.Freedom
0	2.827	2.512	3.536	6.312	9.940
1	3.136	2.640	1.777	5.336	9.400
2	3.772	1.493	1.456	5.056	8.671
3	2.458	0.000	4.592	5.871	5.568
4	7.972	6.107	8.325	6.118	8.837
5	2.795	0.000	1.738	4.715	8.671

X	Safety	Healthcare	Education	Environmental.Quality	Economy
0	9.617	8.704	5.367	7.633	4.887
1	7.926	7.937	5.142	8.331	6.070
2	1.343	6.430	4.152	7.319	6.514
3	7.309	4.546	2.283	3.857	5.269
4	8.504	7.907	6.180	7.597	5.053
5	3.470	6.060	3.624	9.272	6.514

X	Taxation	Internet.Access	LeisureCulture	Tolerance	Outdoors
0	5.068	8.373	3.187	9.739	4.130
1	4.588	4.341	4.328	7.822	5.531
2	4.346	5.396	4.890	7.028	3.515
3	8.522	2.886	2.937	6.540	5.500
4	4.955	4.523	8.874	8.368	5.307
5	4.772	4.964	3.266	7.093	5.358

	Wariancja
Housing	5.265
Cost.of.Living	5.988
Startups	4.635
Venture.Capital	6.520
Travel.Connectivity	4.375
Commute	2.320
Business.Freedom	4.450
Safety	3.051
Healthcare	2.196
Education	4.897
Environmental.Quality	4.840
Economy	2.302
Taxation	2.855
Internet.Access	3.505
LeisureCulture	4.027
Tolerance	2.974
Outdoors	2.534

2.2 b) Wyznaczenie składowych głównych

Tabela 8: Podsumowanie analizy PCA

Składowa	Odchylenie_standardowe	Procent_wariancji	Kumulatywna_wariancja
PC1	2.251	29.80	29.80
PC2	1.606	15.16	44.96
PC3	1.443	12.25	57.21
PC4	1.140	7.65	64.86
PC5	1.095	7.05	71.90
PC6	0.980	5.65	77.55
PC7	0.831	4.06	81.62
PC8	0.815	3.90	85.52
PC9	0.764	3.43	88.95
PC10	0.651	2.50	91.45
PC11	0.569	1.90	93.35
PC12	0.539	1.71	95.06
PC13	0.524	1.62	96.68
PC14	0.434	1.11	97.79
PC15	0.393	0.91	98.69
PC16	0.352	0.73	99.42
PC17	0.313	0.58	100.00

2.3 c) Zmienność odpowiadająca poszczególnym składowym

Tabela 9: Wektory ładunków dla PC1, PC2 i PC3

	PC1	PC2	PC3
Housing	0.3078251	0.0533534	-0.3135465
Cost.of.Living	0.2596091	-0.1757815	-0.3305352
Startups	-0.1802385	-0.4834415	0.0061000
Venture.Capital	-0.2365974	-0.4274509	0.0148768
Travel.Connectivity	-0.2094543	-0.1353067	-0.3397760
Commute	-0.1142045	0.0259310	-0.5057359
Business.Freedom	-0.3772809	0.0982196	0.0241046
Safety	-0.0389355	0.2871039	-0.3330100
Healthcare	-0.2803590	0.2419482	-0.2810248
Education	-0.4025620	-0.0490795	-0.0738645
Environmental.Quality	-0.3262220	0.2525355	0.0535717
Economy	-0.2731752	-0.0740033	0.3086705
Taxation	0.0262992	0.1074151	-0.0201849
Internet.Access	-0.2761922	0.0227056	0.0284416
LeisureCulture	-0.0744466	-0.3647324	-0.3050545
Tolerance	-0.1897496	0.3550911	-0.1027251
Outdoors	-0.0915866	-0.1933825	-0.1485868

Liczba składowych głównych wyjaśniających 80% wariancji: 7 Liczba składowych głównych wyjaśniających 90% wariancji: 10

- 2.4 d) Wizualizacja danych wielowymiarowych
- 2.5 e) Korelacja zmiennych
- 2.6 f) Końcowe wnioski
- 3 ZADANIE 3 (Skalowaniewielowymiarowe (Multidimensional Scaling (MDS)))
- 3.1 a) Dane: titanic_train (R-pakiet titanic)
- 3.2 b) Przygotowanie danych
- 3.3 c) Redukcja wymiaru na bazie MDS
- 3.4 d) Wizualizacja danych