Київський національний університет імені Тараса Шевченка

Звіт до розрахункової роботи з дисципліни "Інтелектуальна обробка даних"

Виконав студент 4-го курсу факультету комп'ютерних наук та кібернетики спеціальності "комп'ютерні науки" групи ТК-41 Некряч Владислав

Для виконання розрахункової роботи було обрано датасет A13.txt, що містить запис кардіограми людини по 12 каналах. Структура файлу: 1-й канал, 2-й канал, ..., 12-й канал (амплітуда у відносних одиницях)

Час запису: t = 10 с.

Довжина запису: N = 5000

Дискретність: 500 точок за 1 секунду

1. Візуалізація даних

На всіх діаграмах видно нерівномірність піків та нерівність

інтервалів серцебиття; це, скоріш за все, свідчить про патології серця.

2. Основні стат. параметри

Медіана:

```
df.median()

to 2ero -2.537050
one -2.246200
tw 1.419950
three 1.792200
four -1.557650
five -3.018950
six -2.344500
seven -1.464750
eight -0.760165
nine 0.868825
ten 0.488675
eleven 3.252450
dtype: float64
```

Дисперсія:

Box-plot:

Гістограми для кожного каналу:

3 наведених вище діаграм видно, що канал eight, ten та eleven (індексація починається з 0) мають нормальний розподіл.

Нормалізовані дані за методом z-score:

3. Однофакторний аналіз

Проаналізуємо, чи датчики статистично відрізняються один від одного. Для цього використаємо модель ANOVA.


```
from statsmodels.formula.api import ols import statsmodels.api as sm import statistics

lm = ols('value ~ C(channel)', data=df_standardized_long).fit() table = sm.stats.anova_lm(lm) print(table)

df sum_sq mean_sq F PR(>F) C(channel) 11.0 1.500373e-28 1.363975e-29 1.363975e-29 1.0 Residual 59988.0 5.998800e+04 1.0000000e+00 NaN NaN
```

3 наведеної таблиці робимо висновок, що між каналами немає статистичної різниці (F-statistic ~ 1.0).

4. Двофакторний аналіз

Перевіримо, чи комбінація часу та каналу впливає на кардіограму. Розділяємо дані на відрізки по 2 секунди, і кожен відрізок помічаємо відповідним числом від 1 до 5.

Перегруповуємо дані:

Виконуємо двофакторний аналіз:

Бачимо, що жодна з груп не має суттєвого впливу на кардіограму при p-value = 0.05. Тобто, не дивлячись на нерівності які були помітні при візуалізації даних, серцебиття є стабільним.

5. Перетворення Фур'є

```
[21] N = 5000
t = 10
Fs = 500
t_step = 1 / Fs
f_step = Fs / N
```


11:

З перетворень Фур'є бачимо, що велику роль відіграють низькі частоти. Скоріш за все, на цих частотах знаходяться "корисні" сигнали. Високі частоти не зашумлені - можливо для кардіограм використовувалося обладнання, котре прибирає шуми з сигналу. Початковий та результуючий масиви майже не відрізнити: похибка дуже мала і знаходиться в межах похибки під час роботи з дійсними числами.

6. Кореляційний аналіз

Кореляційна матриця:

	zero	one	two	three	four	five	six	seven	eight	nine	ten	eleven
zero	1.000000	0.924682	-0.926323	-0.989687	0.991254	-0.049926	-0.593749	0.311544	0.793519	0.882034	0.932605	0.937533
one	0.924682	1.000000	-0.717296	-0.968616	0.867153	0.328988	-0.641200	0.186380		0.793849	0.875065	0.884732
two	-0.926323	-0.717296	1.000000	0.864342	-0.967452	0.416780	0.464709	-0.372705	-0.773311	-0.835575	-0.853158	-0.853824
three	-0.989687	-0.968616	0.864342	1.000000	-0.962534			-0.271430	-0.768473	-0.864960	-0.927609	-0.934063
four	0.991254	0.867153	-0.967452	-0.962534	1.000000	-0.179372	-0.557084	0.341367	0.801689	0.881564	0.920343	0.923573
five	-0.049926	0.328988	0.416780	-0.090348	-0.179372	1.000000	-0.229523	-0.293527	-0.172301	-0.106125	-0.021720	-0.003194
six	-0.593749	-0.641200	0.464709			-0.229523	1.000000	0.551170	-0.019049	-0.234700	-0.382262	-0.444091
seven	0.311544	0.186380	-0.372705	-0.271430	0.341367	-0.293527	0.551170	1.000000	0.810612	0.635428	0.510799	0.439328
eight	0.793519	0.685902	-0.773311	-0.768473	0.801689	-0.172301	-0.019049	0.810612	1.000000	0.954580	0.910675	0.870248
nine	0.882034	0.793849	-0.835575	-0.864960	0.881564	-0.106125	-0.234700	0.635428	0.954580	1.000000	0.965870	0.943713
ten	0.932605	0.875065	-0.853158	-0.927609	0.920343		-0.382262	0.510799	0.910675	0.965870	1.000000	0.976955
eleven	0.937533	0.884732	-0.853824	-0.934063	0.923573	-0.003194	-0.444091	0.439328	0.870248	0.943713	0.976955	1.000000

Для пошуку часткової кореляції та множинного коефіцієнту кореляції ми вибрали ознаки zero, one та four.

```
// [54] def partial_corr(ab, bc, ac):
    return (ab - ac * bc) / (((1-ac*ac) ** (1/2)) * ((1-bc*bc) ** (1/2)))

partial_corr(corr_matrix["zero"]["one"], corr_matrix["zero"]["four"], corr_matrix["one"]["four"])

0.99069843394116

// [56] def mult_corr_coef(ab, bc, ac):
    return np.sqrt((ab*ab + ac*ac - 2*ab*ac*bc) / (1 - bc*bc))

mult_corr_coef(corr_matrix["zero"]["one"], corr_matrix["zero"]["four"], corr_matrix["one"]["four"])

0.9977008701016992
```

Як бачимо, кореляції близькі до 1.

Виходячи з цього та з таблиці кореляцій, робимо висновки, що незалежних параметрів в даних немає (більшість кореляцій близька до 0.8-0.9 за модулем, що свідчить про лінійний зв'язок).

7. Факторний аналіз

Проведемо тест Кайзера-Мейера-Олкіна для визначення придатності даних щодо використання їх у факторному аналізі.

```
7. Factor analysis

[29]

import pandas as pd
from sklearn.datasets import load_iris
import matplotlib.pyplot as plt
from factor_analyzer import FactorAnalyzer
import matplotlib.pyplot as plt
from factor_analyzer.factor_analyzer import calculate_kmo
kmo_all, kmo_model = calculate_kmo(df)
kmo_model

0.8435104478982646
```

Маємо 0.84 > 0.6 -> можемо використовувати наявні дані.

```
fa = FactorAnalyzer(rotation=None)
fa.fit(df)
ev,v = fa.get_eigenvalues()

[31] ev

array([8.53293487e+00, 2.16658961e+00, 1.11041415e+00, 1.06583048e-01,
3.25363271e-02, 2.62784216e-02, 1.74825113e-02, 3.06244673e-03,
2.23901729e-03, 1.38858217e-03, 4.14589203e-04, 7.64317872e-05])
```

За критерієм Кайзера можемо вибрати 3 фактори, бо їх власні числа більше за 1.

Будуємо діаграму осипання. Бачимо, що після 3 компонент швидкість спадання графіку спадає.

Проведемо факторний аналіз.

Загальна описана доля дисперсії ~ 0.98, що ε дуже непоганим результатом.

Також трансформуємо дані для подальшого використання в кластеризації.

8. Кластерний аналіз

Кластризуємо дані з допомогою алгоритму k-means на 5 та 7 кластерів.

5 кластерів:

	cluster	zero
0	0	4084
2	2	618
4	4	138
1	1	110
3	3	50

7 кластерів:

		cluster	zero
	6	6	3797
	1	1	448
	2	2	442
	4	4	136
	5	5	84
	3	3	50
	0	0	43

Повторюємо процедуру на даних, які ми отримали при факторному аналізі.

5 кластерів:

7 кластерів:

Бачимо, що для 5 кластерів кластеризація змінилася не дуже сильно, але для 7 кластерів алгоритм показав інші результати - приблизно 500 об'єктів змінили свій кластер з найбільшого за розміром на другий за розміром.