(முழுப்பதிப்புரிமையுடையது / All Rights Reserved)

ளத்துப் பல்கலைக்கழக மாணவர் அபிவிருத்திச் சங்கம் வவுளியா மாவட்டம் அனைத்துப் பல்கலைக்கழக மாணவர் அபிவிருத்திச் சங்கம் வவுளியா மாவட்டம் அனைத்துப் பல்கலைக்கழக மாணவர் அபிவிருத்திச் பசுங்கும்! எவுவிறியார்க்கும்! வில்குருக்கும்! எவுவிற்கு அபிவிருத்திச் பசுங்கும்! எவுவிற்கு அபிவிருத்திச் சங்கம் வவுளியார்க்கு அபிவிருத்திச் சங்கம் வவுளியார்க்கும்! வக்கலைக் முக மாணவர் அபிவிருத்திச் சங்கம் வவுளியா மாவட்டம் அனைத்தும் பல்கலைக் கழக மாணவர் அபிவிருத்திச் சங்கம் வவுளியா மாவட்டம் அனைத்தும் மல்கலைக் கழக மாணவர் அபிவிருத்திச் சங்கம் வவுளியா மாவட்டம் அனைத்தும் பல்கலைக் கழக மாணவர் அபிவிருத்திச் சங்கம் வவுளியா மாவட்டம் அனைத்தும் பல்கலைக் கழக மாணவர் அபிவிருத்திச் சங்கம் வவுளியா மாவட்டம் அனைத்தும் பல்கலைக் கழக

கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2023 கார்த்திகை General Certificate of Education (Adv. Level) Examination, 2023 November

இணைந்த கணிதம் I Combined Mathematics I

$\overline{}$		
10	Т	I

மூன்று மணித்தியாலயம் Three hours

மேலதிக வாசிப்பு நேரம் - 10 நிமிடங்கள் Additional Reading Time – 10 minutes

சுட்டெண் :	
------------	--

அறிவுறுத்தல்கள் :-

- * இவ் வினாத்தாள் பகுதி A (வினாக்கள் 1-10), பகுதி B (வினாக்கள் 11-17) என்னும் இரு பகுதிகளைக் கொண்டுள்ளது.
- பகுதி A
 எல்லா வினாக்களுக்கும் விடை எழுதுக. ஒவ்வொரு வினாவுக்கும் உமது விடைகளைத் தரப்பட்டுள்ள
 இடத்தில் எழுதுக. மேலதிக இடம் தேவைப்படுமெனின், நீர் மேலதிக தாள்களைப் பயன்படுத்தலாம்.
- * பகுதி B ஐந்து வினாக்களுக்கு மாத்திரம் விடை எழுதுக.
- * ஒதுக்கப்பட்டுள்ள நேரம் முடிவடைந்ததும் பகுதி A ஆனது பகுதி B இற்கு மேலாக இருக்கத்தக்கதாக இரு பகுதிகளையும் இணைத்து பரீட்சை மண்டப மேற்பார்வையாளரிடம் கையளிக்க.
- * வினாத்தாள் பகுதி B யை மாத்திரம் பரீட்சை மண்டபத்திலிருந்து வெளியே எடுத்துச் செல்வதற்கு அனுமதிக்கப்படும்.

பரீட்சகரின் உபயோகத்திற்கு மாத்திரம்

(10) (2))ணைந்த கணிது	Ιά
பகுதி	ഖിனா எண்	கிடைத்த புள்ளிகள்
	1	
	2	
	3	
	4	
	5	
Α	6	
	7	
	8	
	9	
	10	
	மொத்தம்	
	11	
	12	
	13	
В	14	
	15	
	16	
	17	
	மொத்தம்	
வினாத்தாள் II(இன் மொத்தம்	

வினாத்தாள் I	
வினாத்தாள் II	
மொத்தம்	
இறுதிப் புள்ளிகள்	

	பகுதி $-A$
1)	கணிதத்தொகுத்தறிவு முறையைப் பயன்படுத்தி எல்லா n \in Z^{+} இற்கும் $\mathcal{I}^{(n+2)}$ + $\mathcal{S}^{(2n+1)}$ ஆனது \mathcal{I} \mathcal{I}
	வகுபடும் எனக்காட்டுக.
2)	y= 2x-1 இன் வரைபை வரைக . இதிலிருந்து $y=4- 2x-1 $ இன் வரைபை உய்த்தறிக. மேலும் $y= 2x-3 $,
-/	
	y=4- 2x-1 இன் வரைபினை வரைபினை ஒரே வரைபில் வரைக. இதிலிருந்து $ 2x-1 <4- 2x-3 $ இனைத்
	தீர்க்க.

வரைக	பியாக் _ர 5. மே	ஆகன் கும் சிக் ற்குறித்	கல் எ த ஒ	ண்கள் முக்கு	ள் <i>z இ</i> களின்	ினை ர செ	் வை வட்டு	கக்குற ப்புள்	றிக்கு। ளியை	ம் புள் படை	ளிகள் மயமா	ரின் ஏ கவுப்	ஒழுச் ைக	கை ற்பல	பரு னை		யாக
தொடு	வதும	ான வட்	ட்டத்தி	ின் ஒ∈	ழக்கு	z-k-(k	+1)i =	<i>k</i>	க் காட	_்டுக.	இங்கு	$5 k = \frac{1}{\sqrt{2}}$	$\sqrt{3} + 1$ $\sqrt{3} - 1$	ஆகு	்ம்		
	•••••	•••••	•••••		•••••	•••••					•••••	•••••		•••••	•••••	•••••	•••••
		••••••	•••••		•••••		••••••					•••••			•••••	•••••	
	•••••		••••••		•••••	•••••										•••••	
•••••	• • • • • • • • • • • • • • • • • • • •	•••••						. .					•••••	• • • • • • • •	• • • • • • • •	• • • • • • • • • •	
	• • • • • • • • • • • • • • • • • • • •																
540 ஆ 6	னது ($\left(kx + \frac{1}{x}\right)$	6 என்	ற தெ	ாடரி6	 ர் மா	றிலி s	உறுப்	ப்பு எல	ளின், <i>)</i>	்	பெர	 மா	னத்6	 தை ச	ொண்	 5 .
540 ஆ 6	னது ($\left(kx + \frac{1}{x}\right)$	6) என்	ற தெ	ாடரி6	ள் மா	றிலி :	உறுப்	ப்பு எல	ரின், /	் இன்	பெர	 மா 	னத்	 நத ச 	எண்	
540 ஆ 6	னது ($\left(kx + \frac{1}{x}\right)$	6 என்	ற தெ	ாடரி6	ள் மா	றிலி \$	உறுப்	பு என	ரின், /	் இன்	பெற	 ушт 	னத்6	ந்த ச	5ாண்.	
540 ஆ 6	мதј ($\left(kx + \frac{1}{x}\right)$	6) என்	ற தெ	ாடரி6	ல் மா	றிலி :	உறுப்	ப்பு எஎ	ரின், /	் இன்	பெர	 ушт 	னத்6	 ந்த ச 	எண்	
540 ஆ 6	னது ($\left(kx + \frac{1}{x}\right)$	6 என்	ற தெ	ாடரி6	ள் மா	றிலி \$	உறுப்	பு என	ரின், /	் இன்	பெற	றுமா	னத்6	ந்த ச	5 எண்	ж.
540 ஆ 6	мதј ($\left(kx + \frac{1}{x}\right)$	6) என்	ற தெ	ாடரி6	ல் மா	றிலி \$	உறுப்	ப்பு என 	ரின், /	் இன்	பெர	 றுமா 	னத்6 	 ந்த ச 	எண்	
540 ஆ 6	ன து ($\left(kx + \frac{1}{x}\right)$	6 என்	ற தெ	ாடரி6	ன் மா 	றிலி \$	உறுப்	பு எல	ரின், /	் இன்	பெற	றுமா	னத்6	 ந்த ச 	5ாண்	
540 ஆ 6	мд ($\left(kx + \frac{1}{x}\right)$	6) என்	ற தெ	ாடரி6	ள் மா	றிலி :	உறுப்	பு என	ரின், /	் இன்	பெற		னத் வேக் வேக் வேக் வேக் வேக் வேக் வேக் வேக	 ந்த ச 	5ாண் -	
540 ஆ 6	ன து ($\left(kx + \frac{1}{x}\right)$	6 என்	ற தெ	ாடரி6	ள் மா 	றிலி s	உறுப்	பு எல	ரின், /	் இன்	பெற	 றமா	னத்6	 ந்த ச	5 என்	ъ.
540 ஆ 6	னது ($\left(kx + \frac{1}{x}\right)$	6 என்	ற தெ	ாடரி6	ள் மா	றிலி s	உறுப்	பு எல	ரின், /	் இன்	பெற	 ууют	னத்6	 ந்த ச	5ாண்	55.
540 ஆ 6	мд ($\left(kx + \frac{1}{x}\right)$	6) என்	ற தெ	ாடரி6	ல் மா	றிலி :	உறுப்	iபு எல	ரின், /	் இன்		 ујшт	னத்6	 ந்த ச 	5ாண். -	55.

$\lim_{t \to \pi/4} \frac{\sqrt{\tan \theta} - 1}{2\sqrt{\theta} - \sqrt{\pi}} = \sqrt{\pi}$			•••••		•••••	•••••
			•••••			•••••
	•••••					
						•••••
	•••••		•••••		••••••	***************************************
			•••••		•••••	
	•••••		•••••		•••••	•••••
		,				
			•••••			
			•••••			
$\int_0^1 \ln(x+1) dx = 2\ln x$				ு நடிகள்	ம <i>x=1</i> இனா	னும் அடை
$\int_0^1 \ln(x+1) dx = 2\ln x$				ுரைபுகள்¦லு 	ம <i>x=1</i> இனா 	-லும அடை
$\int_0^1 \ln(x+1) dx = 2\ln x$				பரைபுகள் <u>ல</u> ு	ம <i>x=1</i> இனா	ஆம் அடை
$\int_0^1 \ln(x+1) dx = 2\ln x$				பரைபுகள்வு 	ம <i>x=1</i> இனா	ஆம் அடை
$\int_0^1 \ln(x+1) dx = 2\ln x$				ா ரபுகள்லு	ம <i>x=1</i> இனா	லும் அடை ⁸
$\int_0^1 \ln(x+1) dx = 2\ln x$				பரைபுகள் <u></u> லு	ம x=1 இனா	ஆம் அடை
$\int_0^1 \ln(x+1) dx = 2\ln x$				ா ரபுகள்வு	ம x=1 இனா	ஆம் அடை
$\int_0^1 \ln(x+1) dx = 2\ln x$				்	ம <i>x=1</i> இனா	ஆம் அடை
$\int_0^1 \ln(x+1) dx = 2\ln x$				்	ம x=1 இனா	லும் அடை
$\int_0^1 \ln(x+1) dx = 2\ln x$				்	ம x=1 இனா	
$\int_0^1 \ln(x+1) dx = 2\ln x$				்	ம x=1 இனா	லும் அடை
¹ ln(x + 1) dx=2ln រក្រប់បុ e - (2ln2 +1) ត		ர எனக்காட்(நக.			
¹ ln(x + 1) dx=2ln រក្រប់បុ e - (2ln2 +1) ត	சதுர அலகுகள்	ர எனக்காட்(நக.			
¹ ln(x + 1) dx=2ln រក្រប់បុ e - (2ln2 +1) ត	சதுர அலகுகள்	ர எனக்காட்(நக.			
1 ln(x + 1) dx=2ln пріце - (2ln2 +1) а	சதுர அலகுகள்	ர எனக்காட்(நக.			
1 ln(x + 1) dx=2ln итіце - (2ln2 +1) а	சதுர அலகுகள்	ர எனக்காட்(நக.			
1 ln(x + 1) dx=2ln итіце - (2ln2 +1) а	சதுர அலகுகள்	ர எனக்காட்(நக.			
1 ln(x + 1) dx=2ln пріце - (2ln2 +1) а	சதுர அலகுகள்	ர எனக்காட்(நக.			
1 ln(x + 1) dx=2ln пріце - (2ln2 +1) а	சதுர அலகுகள்	ர எனக்காட்(நக.			
1 ln(x + 1) dx=2ln пріце - (2ln2 +1) а	சதுர அலகுகள்	ர எனக்காட்(நக.			
1 ln(x + 1) dx=2ln пріце - (2ln2 +1) а	சதுர அலகுகள்	ர எனக்காட்(நக.			
1 ln(x + 1) dx=2ln игіце - (2ln2 +1) а	சதுர அலகுகள்	ர எனக்காட்(நக.			
1 ln(x + 1) dx=2ln итіце - (2ln2 +1) а	சதுர அலகுகள்	ர எனக்காட்(நக.			
$y=e^x+1$, $y=2+ln(x+1)$ $dx=2ln$ dx	சதுர அலகுகள்	ர எனக்காட்(நக.			

=t-sint, $y=1$ - dy		π.				ியபிண் க ப்ப		
$\left(\frac{dy}{dx}\right)_{t=\pi/4} = \frac{1}{\sqrt{2}}$	 எனக்கா – 1	ட்டுக. <i>t=ⁿ</i> / ₄	. இற்கு ஒத்	த புளளியி	ல தொடல	MUNION FID	ன்பாடு	
$(\sqrt{2}-1)y-4$								
	••••••		•••••	•••••	•••••	•••••	•••••	••••••
•••••	••••••		•••••	••••••	•••••	•••••	•••••	•••••
••••••	••••••		•••••	••••••	••••••	••••••		•••••
				•••••				•••••
	••••••	•••••	•••••	•••••	•••••	•••••	•••••	
	••••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••
	•••••	•••••	•••••					•••••
ள்ளி P இன் ச	ஆள்க <u>ூ</u> றினை							
ள்ளி P இன் ச	ஆள்க <u>ூ</u> றினை							
ள்ளி P இன் ச	ஆள்க <u>ூ</u> றினை							
ள்ளி P இன் ச	ஆள்க <u>ூ</u> றினை							
ள்ளி P இன் ச	ஆள்க <u>ூ</u> றினை							
ள்ளி P இன் ச	ஆள்க <u>ூ</u> றினை							
ள்ளி P இன் ச	ஆள்க <u>ூ</u> றினை							
ள்ளி P இன் ச	ஆள்க <u>ூ</u> றினை							
ள்ளி P இன் ச	ஆள்க <u>ூ</u> றினை							
ள்ளி P இன் ச	ஆள்க <u>ூ</u> றினை							
5,0), (10cosθ,1 ள்ளி P இன் ச ஆரையினைக்	ஆள்க <u>ூ</u> றினை							
ுள்ளி <i>P</i> இன் ∈	ஆள்க <u>ூ</u> றினை							
ுள்ளி <i>P</i> இன் ∈	ஆள்க <u>ூ</u> றினை							
ுள்ளி <i>P</i> இன் ∈	ஆள்க <u>ூ</u> றினை							
ள்ளி P இன் ச	ஆள்க <u>ூ</u> றினை							
ள்ளி P இன் ச	ஆள்க <u>ூ</u> றினை							

•	ந்தின் பொது							
•••••	•••••	•••••	•••••	•••••	••••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••
•••••	•••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••
••••••	•••••			•••••		• • • • • • • • • • • • • • • • • • • •	••••••	
••••••	•••••	•••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	
•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	
•••••	•••••	•••••	•••••				•••••	
	•••••	•••••	•••••		•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••
			•••••					
	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	
•••••		•••••	•••••	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	•••••	
		•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••		•••••	•••••
• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••
S=sin b	$\theta + \sin 3\theta + \sin 5\theta$ (i) $2S\sin \theta = 1$ - (ii) $L = 4\cos \theta \cos \theta$	cos8θ என os2θcos4θ	வும் எனவும்	$\cos 3 heta + \cos$	$5\theta + \cos 7\theta$			
S=sin l	(i) $2Ssin\theta = 1$ -	cos8θ என os2θcos4θ	வும் எனவும்	$\cos 3 heta + \cos$	5θ + $\cos 7\theta$			
S=sin6	$(i)2Ssin\theta = 1$ - $(ii)L=4cos\theta c$	cos8θ என os2θcos4θ	வும் எனவும்	$\cos 3\theta + \cos 3\theta$	5θ+cos7θ			
S=sin t	$(i)2Ssin\theta = 1$ - $(ii)L=4cos\theta c$	cos8θ என os2θcos4θ	வும் எனவும்	$\cos 3\theta + \cos 3\theta$	5θ+cos7θ			
S=sin6	$(i)2Ssin\theta = 1$ - $(ii)L=4cos\theta c$	cos8θ என os2θcos4θ	வும் எனவும்	$\cos 3\theta + \cos 3\theta$	5θ+cos7θ			
S=sin6	$(i)2Ssin\theta = 1$ - $(ii)L=4cos\theta c$	cos8θ என os2θcos4θ	வும் எனவும்	cos3θ+cos	5θ+cos7θ			
S=sin6	$(i)2Ssin\theta = 1$ - $(ii)L=4cos\theta c$	cos8θ என os2θcos4θ	வும் எனவும்	$\cos 3\theta + \cos 3\theta$	5θ+cos7θ			
S=sin6	$(i)2Ssin\theta = 1$ - $(ii)L=4cos\theta c$	cos8θ என os2θcos4θ	வும் எனவும்	$\cos 3\theta + \cos 3\theta$	5θ+cos7θ			
S=sin6	$(i)2Ssin\theta = 1$ - $(ii)L=4cos\theta c$	cos8θ என os2θcos4θ	வும் எனவும்	$\cos 3\theta + \cos \theta$	5θ+cos7θ			
S=sin6	$(i)2Ssin\theta = 1$ - $(ii)L=4cos\theta c$	cos8θ என os2θcos4θ	வும் எனவும்	$\cos 3\theta + \cos \theta$	5θ+cos7θ			
S=sin6	$(i)2Ssin\theta = 1$ - $(ii)L=4cos\theta c$	cos8θ என os2θcos4θ	வும் எனவும்	cos3θ+cos	5θ+cos7θ			
S=sin6	$(i)2Ssin\theta = 1$ - $(ii)L=4cos\theta c$	cos8θ என os2θcos4θ	வும் எனவும்	$\cos 3\theta + \cos \theta$	5θ+cos7θ			
S=sin6	$(i)2Ssin\theta = 1$ - $(ii)L=4cos\theta c$	cos8θ என os2θcos4θ	வும் எனவும்	$\cos 3\theta + \cos \theta$	5θ+cos7θ			
S=sin6	$(i)2Ssin\theta = 1$ - $(ii)L=4cos\theta c$	cos8θ என os2θcos4θ	வும் எனவும்	cos3θ+cos	5θ+cos7θ			
S=sin6	$(i)2Ssin\theta = 1$ - $(ii)L=4cos\theta c$	cos8θ என os2θcos4θ	வும் எனவும்	$\cos 3\theta + \cos \theta$	5θ+cos7θ			
S=sin6	$(i)2Ssin\theta = 1$ - $(ii)L=4cos\theta c$	cos8θ என os2θcos4θ	வும் எனவும்	$\cos 3\theta + \cos 3\theta$	5θ+cos7θ			
S=sin6	$(i)2Ssin\theta = 1$ - $(ii)L=4cos\theta c$	cos8θ என os2θcos4θ	வும் எனவும்	$\cos 3\theta + \cos 3\theta$	5θ+cos7θ			
S=sin6	$(i)2Ssin\theta = 1$ - $(ii)L=4cos\theta c$	cos8θ என os2θcos4θ	வும் எனவும்	$\cos 3\theta + \cos 3\theta$	5θ+cos7θ			
S=sin6	$(i)2Ssin\theta = 1$ - $(ii)L=4cos\theta c$	cos8θ என os2θcos4θ	வும் எனவும்	$\cos 3\theta + \cos \theta$	5θ+cos7θ			
S=sin6	$(i)2Ssin\theta = 1$ - $(ii)L=4cos\theta c$	cos8θ என os2θcos4θ	வும் எனவும்	$\cos 3\theta + \cos 3\theta$	5θ+cos7θ			
S=sin6	$(i)2Ssin\theta = 1$ - $(ii)L=4cos\theta c$	cos8θ என os2θcos4θ	வும் எனவும்	$\cos 3\theta + \cos \theta$	5θ+cos7θ			
S=sin6	$(i)2Ssin\theta = 1$ - $(ii)L=4cos\theta c$	cos8θ என os2θcos4θ	வும் எனவும்	cos3θ+cos	5θ+cos7θ			

(ഗ്രധ്രப്പളിப്பുറിയെധ്വമെ uது / All Rights Reserved)

ளத்துப் பல்கலைக்கழக மானவர் அபிவிருத்திச் சங்கம் வவுனியா மாவட்டம் அனைத்துப் பல்கலைக் கழக மானவர் அப்விருத்திச் சங்கம் வவுனியா மாவட்டம் அனைத்துப் பல்கலைக் கழக மானவர் Development AlkiUniversity Students development Association Vavuniya District sociation vavuniya District sociati

கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2023 கார்த்திகை General Certificate of Education (Adv. Level) Examination, 2023 November

இணைந்த கணிதம் I Combined Mathematics I 10 T I

பகுதி-B

🕨 ஐந்து வினாக்களுக்கு மாத்திரம் விடை எழுதுக

11.

- (a) $a,b \in R$ ஆக இருக்குமாறு x இன் 3ம் படிப்பல்லுறுப்பி சார்பு $L(x) = x^3 + ax^2 + bx 12$ என கொள்வோம்.
 - (i) L(x) இனை x+2 ஆல் வகுக்க மீதி -150 ஆயின் 2a-b+65=0 எனக் காட்டுக.
 - (ii) x-3 ஆனது L(x) இன் ஓர் காரணி ஆயின் a,b இல் ஓர் சமன்பாட்டைப் பெறுக. மேலே பெற்ற சமன்பாடுகளில் இருந்து a,b இன் பெறுமானங்களைக் காண்க. மேலும் x இன் ஓர் பல்லுறுப்பு சார்பு S(x) ஆனது S(x) = PL(x) + 28q எனத் தரப்படுகின்றது எனக் கொள்வோம். இங்கு p, $q \in R$ ஆகும். x-2 ஆனது S(x) இற்கு ஓர் காரணி எனவும் S(x) இனை x+1 இனால் வகுக்க மீதி -156 உம் எனின் p,q இன் பெறுமானங்களைக் காண்க. S(x) இனை L(x) இனால் வகுக்க மீதி யாது?
- (b) a மெய்யாக இருக்க சமன்பாடு x^2 -2(a-2)x+2a-10=0 ஆனது மெய்யான மூலங்களைக் கொண்டிருக்கும் எனக் காட்டுக. சமன்பாடானது சமனும், முரண்குறியுமுடைய மூலங்களைக் கொண்டிருக்க a=2 எனவும், மூலங்களுக்கு இடையிலான வித்தியாசம் 6 எனின் a=1 அல்லது a=5 எனவும் காட்டுக. $(a,b \in R)$ a,b வேறுவேறானதாக இருக்க (a+ $2b)x^2$ + 2(a-b)x+(a-4b)=0 மெய்யான மூலகங்களைக் கொண்டிருக்கும் எனக் காட்டுக. சமன்பாட்டின் மூலங்கள் சமனானவை எனின் b=0 எனக் காட்டுக. $2x^2$ +x+5=0 இன் மூலங்கள் α , β ஆகும். $2x^2$ 3x + 2k = 0 இன் மூலங்கள் α +1, β +1 எனின் k இன் பெறுமானத்தைக் காண்க.

12.

- (a) பரீட்சைக்குத் தோற்றும் ஒருவர் A, B, C என்னும் மூன்று பகுதிகளின் கீழ் ஒவ்வொரு பகுதியிலும் 5 வினாக்கள் வீதம் தரப்பட்டுள்ள 15 வினாக்களில் ஆறு வினாக்களுக்கு விடையளிக்க வேண்டும்.
 - (i) ஒவ்வொரு பகுதியிலும் இரு வினாக்களுக்கு விடையளிக்க வேண்டுமெனின்,
- (ii) ஒவ்வொரு பகுதியிலும் முதலாம் வினா உட்பட இரு வினாக்களுக்கு விடையளிக்க வேண்டுமெனின்,
- (iii) ஒவ்வொரு பகுதியிலும் குறைந்தபட்சம் ஒரு வினாவிற்கேனும் விடையளிக்க வேண்டுமெனின்,
- (iv) ஒவ்வொரு பகுதியிலும் ஆகக்கூடுதலாக 4 வினாக்களுக்கு மேற்பட்டு விடையளிக்க முடியாததெனின், அப்பரீட்சார்த்தி 6 வினாக்களைத் தெரிந்தெடுக்கத்தக்க வெவ்வேறு வழிகளின் எண்ணிக்கையைக் காண்க.
- (b) எல்லா $x \in R$ இற்கும் $8x^3 + 2x^2 + 1 = Ax^2(2x+1) + B(x+1)^2(2x-1)$ ஆகுமாறு A,B என்னும் மாறிலிகளைக் காண்க. **இதிலிருந்து** $r \in Z^+$ இற்கு $U_r = f(r) f(r+1)$ ஆக இருக்கத்தக்கதாக f(r) ஐத் துணிக. இங்கு $U_r = \frac{(8r^3 + 2r^2 + 1)}{5^{r+1}(2r+1)(2r-1)}$ ஆகும். $\sum_{r=1}^n Ur = \frac{1}{5} \frac{(n+1)^2}{5^{n+1}(2n+1)}$ எனக் காட்டுக. $\sum_{r=1}^\infty Ur$ ஒருங்குகின்றது எனக் காட்டி $\sum_{r=1}^\infty Ur$ இன் பெறுமானத்தைக் காண்க.

13.

(a) (i) $A = \begin{pmatrix} 2 & 3 \\ 1 & 0 \end{pmatrix}$, $B = \begin{pmatrix} 2 & 3 \\ 0 & 1 \end{pmatrix}$ எனின் $A \times B \neq BxA$ எனக் காட்டுக.

(ii) $A = \begin{pmatrix} 2 & 1 \\ -1 & 3 \end{pmatrix}$ எனவும் $f(A) = A^2 - 5A + 7I$ எனவும் கொள்வோம். இங்கு I என்பது வரிசை 2 இனை உடைய சர்வ சமன்பாட்டுத் தாயம் ஆகும். f(A) = O எனக் காட்டுக. O என்பது வரிசை 2 இனை உடைய பூச்சிய தாயம் ஆகும். **இதிலிருந்து** A^{-1} இனைக் காண்க.

(b) $(i) z = cos\theta + i sin\theta$ எனின் $\frac{1}{(i-z)} = \frac{1}{2}[I + icot(\frac{\theta}{2})]$ எனவும் $z + \frac{1}{z} = 2cos\theta$ எனவும் நிறுவுக. $(ii) \frac{(cos\alpha + isin\alpha)}{(cos\beta + isin\beta)} = cos(\alpha - \beta) + i sin(\alpha - \beta)$ எனக் காட்டுக. $z_1 = (-I + i) \ , \ z_2 = (I + \sqrt{3} \ i \)$ எனக் கொள்வோம். $z_1 z_2$ இன் மட்டினையும் வீசலினையும் காண்க. $Re\left(\frac{z_1}{z_2}\right) = \frac{(\sqrt{3} - 1)}{4}$ எனவும் $Im\left(\frac{z_1}{z_2}\right) = \frac{(\sqrt{3} + 1)}{4}$ எனவும் காட்டுக.

L என்பது ஆகன் வரிப்படத்தில் $0 \le Im(z) \le \frac{\sqrt{3}}{2}$, $|z-2| \le I$ எனும் நிபந்தனையை திருப்தியாக்கும் சிக்கல் எண்கள் z ஐ வகைக்குறிக்கும் புள்ளிகளைக் கொண்ட பிரதேசம் L எனக் கொள்வோம். பிரதேசம் L இனை நிழற்றி z இனை வகைக்குறிக்கும் புள்ளி பிரதேசம் L மீது மாறும் போது தலைமை வீசல் $Arg\ z$ பெரிதாக இருக்கத்தக்க z ஐக் காண்க.

14.

 $(a) \ (i) \ y = \frac{1}{2} \left(e^x + e^{-x}\right)$ எனின் $\left(\frac{dy}{dx}\right)^2 = y^2 - 1$ எனக் காட்டுக. $(ii) \ \frac{d}{dx} \left(\frac{tanx}{1 + sinx}\right) = \frac{1 - sinx + sin^2x}{cos^2x(1 + sinx)} \quad \text{எனக் காட்டுக.}$ $(iii) \ \frac{d}{dt} \left(e^t \text{ lnt cost}\right) = e^t \left[\left(\frac{1}{t} + \text{lnt}\right) \text{cost } - \text{ lnt sint}\right] \quad \text{எனக் காட்டுக.}$

 $(b) \ f(x) = \frac{x}{(x-1)(x-2)}$ எனவும்; $x \ne 1,2$ ஆகவும் இருக்க y = f(x) இனை பரும்படியாக வரைந்து திரும்பல் புள்ளிகள், அணுகுகோடுகளை தெளிவாக காட்டுக. y = f(x) என்ற வரைபை பயன்படுத்தி k(x+1)(x-2) - x = 0 இரு வேறு மூலகங்களைக் கொண்டிருப்பின் k பெறுமான வீச்சைக் காண்க.

(c) படத்தில் காட்டியவாறு ABCD யானது ஓர் சரிவகம் ஆகும். இங்கு AD//BC, AB=BC=CD=a , $D\hat{A}B=\theta$ எனின், சரிவகம் ABCD யின் பரப்பளவு $\frac{1}{2}a^2(2\sin\theta+\sin2\theta)$ எனக் காட்டுக. பரப்பளவு ABCD உயர்வாக இருக்க **மிகப்பெரிய** கோணம் $\theta=\pi/3$ எனக் காட்டுக.

15.

 $(a) \; (i) \; t = \sqrt[6]{1+x} \;$ எனும் பிரதியீட்டைப் பயன்படுத்தி

$$\int \frac{x dx}{\sqrt[3]{1+x} - \sqrt{1+x}} dx = -6t^4 \left(\frac{t^5}{9} + \frac{t^4}{8} + \frac{t^3}{7} + \frac{t^2}{6} + \frac{t}{5} + \frac{1}{4} \right) + C$$
 எனக்காட்டுக.

இங்கு C எதேச்சை மாறிலி ஆகும்.

(ii) **தக்கபிரதியீட்டின்** மூலம் $\int_0^1 \frac{x dx}{(1+x^2)^{3/2}} = \frac{1}{\sqrt{2}} (\sqrt{2} - 1)$ எனக் காட்டுக.

- $(b) \int_0^a f(x) \, dx = \int_0^a f(a-x) \, dx$ எனக்காட்டுக. **இதிலிருந்து** $\int_0^\pi x \sin^2 x dx = \frac{\pi^2}{4}$ எனக் காட்டுக.
- $(c) \ t = tan \frac{x}{2}$ என **பிரதியிடுவதன்** மூலம் $\int_0^{\frac{\pi}{2}} \frac{dx}{3 + 5 cos x} = -\frac{1}{4} ln \frac{1}{3}$ எனக் காட்டுக.
- (d) (i) $\cos^3 x$ இனை $\cos x$, $\cos 3x$ இன் சார்பில் தருக.

பகுதிகளாக தொகையிடலை பயன்படுத்தி $\int x \cos^3 x \ dx$ இனைக் காண்க

- (ii) பகுதிகளாக தொகையிடலை பயன்படுத்தி $\int x sinx ln(sinx) \ dx$ இனைக் காண்க.
- $(e) \frac{2-x+x^2}{(1+x)(1-x)^2}$ இனை பகுதிப்பின்னங்களாக்குக. **இதிலிருந்து** $\int_0^{1/2} \frac{2-x+x^2}{(1+x)(1-x)^2} dx = \ln \frac{3}{2} + 1$ எனக்காட்டுக

16.

- (a) γ என்பது ஓர் மாறும் சாராமாறி எனில் (x_1,y_1) , (x_2,y_2) என்னும் புள்ளிகளுக்கூடாகச் செல்லும் கோட்டின் மீதுள்ள ஒரு மாறும் புள்ளியின் ஆள்கூறு $\gamma x_1 + (1-\gamma)x_2$, $\gamma y_1 + (1-\gamma)y_2$ என்னும் வடிவத்தில் இடப்படலாம் எனக்காட்டுக. இதன் மூலம் (-2,3), (2,3) என்னும் புள்ளிகளைத் தொடுக்கும் கோடு x+y=0 என்னும் கோட்டினால் பிரிக்கப்படும் விகிதத்தைக் காண்க.
- (b) $S \equiv (x-x_o)^2 + (y-y_o)^2 = R^2$ ஆகவுள்ள வட்டமும் $L \equiv ax+by+c=0$ ஆகவும் உள்ள நேர் கோடாகும். S உம் L உம் தொடும் எனின் $(ax_0+by_0+c)^2=R^2(a^2+b^2)$ எனக் காட்டுக. ஓரலகு ஆரையினையும் முதலாம் கால்வட்டத்தில் மையத்தினையும் கொண்ட வட்டம் x அச்சினையும் 3y=4x என்ற கோட்டையும் தொடுகின்றது. வட்டத்தின் சமன்பாடு $S_1 \equiv x^2+y^2-4x-2y+4=0$ எனவும், அது 3x+4y=15 எனும் கோட்டை தொடும் எனவும் காட்டுக. இன்னொரு வட்டம் S_2 ஆனது முதலாம் கால்வட்டத்தில் அதன் மையம் உள்ளது அவ்வட்டம் x அச்சினையும் 3y=4x, 3x+4y=15 என்ற கோட்டையும் தொடும் எனின் S_2 ஆனது 3 அலகு ஆரையுடைய வட்டம் எனவும் $S_2 \equiv x^2+y^2-12x-6y+36=0$ எனவும் காட்டுக. S_1,S_2 இன் மையங்களினை விட்டத்தின் முனைப்புள்ளிகளாக உடைய வட்டத்தின் சமன்பாட்டைக் காண்க.

17.

- (a) (i) $tan\alpha$ $-2tan(\alpha+\frac{\pi}{4})+tan(\alpha+\frac{\pi}{2})=\frac{(tan\alpha+1)(tan^2\alpha+1)}{tan\alpha(tan\alpha-1)}$ எனக்காட்டுக.
 - $(ii)~ tan heta = rac{4}{3} (~0 < heta < 2\pi)$ ஆகும் எனின் $tan^{ heta}/_2$, $sin^{ heta}/_2$ மிகப்பொருத்தமான பெறுமானங்களைக் காண்க
- (b) (i) $4sin(60-\theta)sin\theta sin(60+\theta)=sin$ 3θ எனக் காட்டுக.

இதிலிருந்து $sin20^{\circ}sin40^{\circ}sin60^{\circ}$ $sin80^{\circ} = \frac{3}{16}$ என உய்த்தறிக.

 $(ii) \sin 4\theta = -8\sin \theta \sin (\theta - \pi/4)\sin (\theta - \pi/2)\sin (\theta - 3\pi/4)$ எனக்காட்டுக

(iii) $sin\alpha + sin\beta + sin\gamma - sin(\alpha + \beta + \gamma) = 4sin(\frac{\alpha + \beta}{2})sin(\frac{\alpha + \gamma}{2})sin(\frac{\beta + \gamma}{2})$ எனக்காட்டுக.

- $(c) \tan^{-1}(\frac{1}{7}) + \tan^{-1}(\frac{1}{13}) = \tan^{-1}(\frac{2}{9})$ எனக்காட்டுக.
- (d) ΔABC யில் கோணம் A யின் இரு கூறாக்கி BC இனை D இல் சந்திக்கின்றது எனின் ,
 - (i) $AD(b+c) = 2bc \cos(A/2)$ எனவும்
 - $(ii) \ a = (b+c) \Big[1 \ rac{AD^2}{bc} \Big]^{rac{1}{2}}$ எனக்காட்டுக. AB=9 , AC=5 , AD=6 அலகுகள் எனின் $A=2cos^{-l}(rac{14}{15})$ எனவும் $a=rac{14\sqrt{5}}{5}$ எனவும் காட்டுக.

(முழுப்பதிப்புரிமையுடையது / All Rights Reserved)

லைக்கழக மானவர் அபிவிருத்திச் சங்கம் வவுனியா மாவட்டம் அனைத்துப் பல்கலைக்கழக மானவர் அபிவிருத்திச் ரங்கம் வவுனியா மாவட்டம் அனைத்துப் பல்கலைக்கழக மானவர் அபிவிரு welopmer**அனைத்துப் பிறல்கலைக்கழக**் மி**மாணவர்ற**ே அ**பிவிருத்திச்** பி**சங்கம் வவுனியா மாவட்டம் அனைத்துப் பல்கலைக் கழக மானவர் நேம் மானவர் அபிவருத்திச் சங்கம் வவுனியா மாவட்டம் அனைத்துப் பல்கலைக்கழக மானவர் அபிவிருத்திச் சங்கம் வவுனியா மாவட்டம் அனைத்துப் பல்கலைக் கழக மானவர் populary of Development All-University c Students மி Development Association v Avuniya District** sociation v Avuniya District sociation v Avun

> கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2023 வைகாசி General Certificate of Education (Adv. Level) Examination, May 2023

இணைந்த கணிதம் II Combined Mathematics II

10	Т	II
10		

மூன்று மணித்தியாலயம் Three hours

மேலதிக வாசிப்பு நேரம் - 10 நிமிடங்கள் Additional Reading Time – 10 minutes

அறிவுறுத்தல்கள் :-

- * இவ் வினாத்தாள் பகுதி A (வினாக்கள் 1-10), பகுதி B (வினாக்கள் 11-17) என்னும் இரு பகுதிகளைக் கொண்டுள்ளது.
- * பகுதி A
 எல்லா வினாக்களுக்கும் விடை எழுதுக. ஒவ்வொரு வினாவுக்கும் உமது விடைகளைத் தரப்பட்டுள்ள இடத்தில் எழுதுக. மேலதிக இடம் தேவைப்படுமெனின், நீர் மேலதிக தாள்களைப் பயன்படுத்தலாம்.
- * பகுதி B ஐந்து வினாக்களுக்கு மாத்திரம் விடை எழுதுக.
- * ஒதுக்கப்பட்டுள்ள நேரம் முடிவடைந்ததும் பகுதி A ஆனது பகுதி B இற்கு மேலாக இருக்கத்தக்கதாக இரு பகுதிகளையும் இணைத்து பரீட்சை மண்டப மேற்பார்வையாளரிடம் கையளிக்க.
- * வினாத்தாள் பகுதி B யை மாத்திரம் பரீட்சை மண்டபத்திலிருந்து வெளியே எடுத்துச் செல்வதற்கு அனுமதிக்கப்படும்.

பரீட்சகரின் உபயோகத்திற்கு மாத்திரம்

(10) (2)	ணந்த கணிது	i II d
பகுதி	ഖിனா எண்	கிடைத்த புள்ளிகள்
	1	
	2	
	3	
	4	
	5	
Α	6	
	7	
	8	
	9	
	10	
	மொத்தம்	
	11	
	12	
	13	
В	14	
	15	
	16	
	17	
	மொத்தம்	
வினாத்தாள் II(இன் மொத்தம்	

வினாத்தாள் I	
வினாத்தாள் II	
மொத்தம்	
இறுதிப் புள்ளிகள்	

பகுதி- A

1.	முறையே m,em திணிவுடைய A,B எனும் இரு துணிக்கைகள் முறையே u,eu மாறா வேகங்களுடன் ஒரே நேர்கோட்டில் ஒரே திசையில் படத்தில் காட்டப்பட்டுள்ளவாறு சென்று ஒன்றுடன் ஒன்று நேரடியாக மோதுகின்றன. அவற்றிற்கிடையேயான மீளமைவுக் குணகம் e ஆகும். இங்கு 0 <e<1 <math="" a="" b="" e="" ஆகும்.="" இனால்="" இன்="" உஞற்றப்பட்ட="" என="" ஐச்="" கணத்தாக்கின்="" காட்டுக.="" சாரவில்லை="" பருமன்="" பின்னர்="" மீது="" மொத்தலின்="" வேகம்="">\frac{6}{25}mu ஆக இருப்பின் e ஐக் காண்க.</e<1>
	$\overrightarrow{\rightarrow}^{u}$ $\overrightarrow{\rightarrow}^{eu}$
	A (m) B (em)
	A (m) B (em)
•	
•	
•	
•	
•	
2.	ஒரு துணிக்கை புள்ளி Ο இல் இருந்து கிடையுடன் கோணம் $\frac{\pi}{3}$ இல் u கதியுடன் ஈர்ப்பின் கீழ்
2.	ஒரு துணிக்கை புள்ளி Ο இல் இருந்து கிடையுடன் கோணம் π/3 இல் u கதியுடன் ஈர்ப்பின் கீழ் எறியப்படுகின்றது. Ο இன் மட்டத்திற்கு மேல் அதன் நிலைக்குத்து உயரம் h ஆக உள்ள புள்ளியில்
2.	ஒரு துணிக்கை புள்ளி O இல் இருந்து கிடையுடன் கோணம் $\frac{\pi}{3}$ இல் u கதியுடன் ஈர்ப்பின் கீழ் எறியப்படுகின்றது. O இன் மட்டத்திற்கு மேல் அதன் நிலைக்குத்து உயரம் h ஆக உள்ள புள்ளியில் அதன்வேகம் கிடையுடன் $\frac{\pi}{6}$ சாய்வில் இருப்பின் அப்புள்ளியில் வேகத்தின் நிலைக்குத்து கூறு $\frac{u}{2\sqrt{3}}$
2.	ஒரு துணிக்கை புள்ளி Ο இல் இருந்து கிடையுடன் கோணம் π/3 இல் u கதியுடன் ஈர்ப்பின் கீழ் எறியப்படுகின்றது. Ο இன் மட்டத்திற்கு மேல் அதன் நிலைக்குத்து உயரம் h ஆக உள்ள புள்ளியில்
2.	ஒரு துணிக்கை புள்ளி O இல் இருந்து கிடையுடன் கோணம் $\frac{\pi}{3}$ இல் u கதியுடன் ஈர்ப்பின் கீழ் எறியப்படுகின்றது. O இன் மட்டத்திற்கு மேல் அதன் நிலைக்குத்து உயரம் h ஆக உள்ள புள்ளியில் அதன்வேகம் கிடையுடன் $\frac{\pi}{6}$ சாய்வில் இருப்பின் அப்புள்ளியில் வேகத்தின் நிலைக்குத்து கூறு $\frac{u}{2\sqrt{3}}$
2.	ஒரு துணிக்கை புள்ளி O இல் இருந்து கிடையுடன் கோணம் $\frac{\pi}{3}$ இல் u கதியுடன் ஈர்ப்பின் கீழ் எறியப்படுகின்றது. O இன் மட்டத்திற்கு மேல் அதன் நிலைக்குத்து உயரம் h ஆக உள்ள புள்ளியில் அதன்வேகம் கிடையுடன் $\frac{\pi}{6}$ சாய்வில் இருப்பின் அப்புள்ளியில் வேகத்தின் நிலைக்குத்து கூறு $\frac{u}{2\sqrt{3}}$
2.	ஒரு துணிக்கை புள்ளி O இல் இருந்து கிடையுடன் கோணம் $\frac{\pi}{3}$ இல் u கதியுடன் ஈர்ப்பின் கீழ் எறியப்படுகின்றது. O இன் மட்டத்திற்கு மேல் அதன் நிலைக்குத்து உயரம் h ஆக உள்ள புள்ளியில் அதன்வேகம் கிடையுடன் $\frac{\pi}{6}$ சாய்வில் இருப்பின் அப்புள்ளியில் வேகத்தின் நிலைக்குத்து கூறு $\frac{u}{2\sqrt{3}}$
2.	ஒரு துணிக்கை புள்ளி O இல் இருந்து கிடையுடன் கோணம் $\frac{\pi}{3}$ இல் u கதியுடன் ஈர்ப்பின் கீழ் எறியப்படுகின்றது. O இன் மட்டத்திற்கு மேல் அதன் நிலைக்குத்து உயரம் h ஆக உள்ள புள்ளியில் அதன்வேகம் கிடையுடன் $\frac{\pi}{6}$ சாய்வில் இருப்பின் அப்புள்ளியில் வேகத்தின் நிலைக்குத்து கூறு $\frac{u}{2\sqrt{3}}$
2.	ஒரு துணிக்கை புள்ளி O இல் இருந்து கிடையுடன் கோணம் $\frac{\pi}{3}$ இல் u கதியுடன் ஈர்ப்பின் கீழ் எறியப்படுகின்றது. O இன் மட்டத்திற்கு மேல் அதன் நிலைக்குத்து உயரம் h ஆக உள்ள புள்ளியில் அதன்வேகம் கிடையுடன் $\frac{\pi}{6}$ சாய்வில் இருப்பின் அப்புள்ளியில் வேகத்தின் நிலைக்குத்து கூறு $\frac{u}{2\sqrt{3}}$
2.	ஒரு துணிக்கை புள்ளி O இல் இருந்து கிடையுடன் கோணம் $\frac{\pi}{3}$ இல் u கதியுடன் ஈர்ப்பின் கீழ் எறியப்படுகின்றது. O இன் மட்டத்திற்கு மேல் அதன் நிலைக்குத்து உயரம் h ஆக உள்ள புள்ளியில் அதன்வேகம் கிடையுடன் $\frac{\pi}{6}$ சாய்வில் இருப்பின் அப்புள்ளியில் வேகத்தின் நிலைக்குத்து கூறு $\frac{u}{2\sqrt{3}}$
2.	ஒரு துணிக்கை புள்ளி O இல் இருந்து கிடையுடன் கோணம் $\frac{\pi}{3}$ இல் u கதியுடன் ஈர்ப்பின் கீழ் எறியப்படுகின்றது. O இன் மட்டத்திற்கு மேல் அதன் நிலைக்குத்து உயரம் h ஆக உள்ள புள்ளியில் அதன்வேகம் கிடையுடன் $\frac{\pi}{6}$ சாய்வில் இருப்பின் அப்புள்ளியில் வேகத்தின் நிலைக்குத்து கூறு $\frac{u}{2\sqrt{3}}$
2.	ஒரு துணிக்கை புள்ளி O இல் இருந்து கிடையுடன் கோணம் $\frac{\pi}{3}$ இல் u கதியுடன் ஈர்ப்பின் கீழ் எறியப்படுகின்றது. O இன் மட்டத்திற்கு மேல் அதன் நிலைக்குத்து உயரம் h ஆக உள்ள புள்ளியில் அதன்வேகம் கிடையுடன் $\frac{\pi}{6}$ சாய்வில் இருப்பின் அப்புள்ளியில் வேகத்தின் நிலைக்குத்து கூறு $\frac{u}{2\sqrt{3}}$
2.	ஒரு துணிக்கை புள்ளி O இல் இருந்து கிடையுடன் கோணம் $\frac{\pi}{3}$ இல் u கதியுடன் ஈர்ப்பின் கீழ் எறியப்படுகின்றது. O இன் மட்டத்திற்கு மேல் அதன் நிலைக்குத்து உயரம் h ஆக உள்ள புள்ளியில் அதன்வேகம் கிடையுடன் $\frac{\pi}{6}$ சாய்வில் இருப்பின் அப்புள்ளியில் வேகத்தின் நிலைக்குத்து கூறு $\frac{u}{2\sqrt{3}}$
2.	ஒரு துணிக்கை புள்ளி O இல் இருந்து கிடையுடன் கோணம் $\frac{\pi}{3}$ இல் u கதியுடன் ஈர்ப்பின் கீழ் எறியப்படுகின்றது. O இன் மட்டத்திற்கு மேல் அதன் நிலைக்குத்து உயரம் h ஆக உள்ள புள்ளியில் அதன்வேகம் கிடையுடன் $\frac{\pi}{6}$ சாய்வில் இருப்பின் அப்புள்ளியில் வேகத்தின் நிலைக்குத்து கூறு $\frac{u}{2\sqrt{3}}$
2.	ஒரு துணிக்கை புள்ளி O இல் இருந்து கிடையுடன் கோணம் $\frac{\pi}{3}$ இல் u கதியுடன் ஈர்ப்பின் கீழ் எறியப்படுகின்றது. O இன் மட்டத்திற்கு மேல் அதன் நிலைக்குத்து உயரம் h ஆக உள்ள புள்ளியில் அதன்வேகம் கிடையுடன் $\frac{\pi}{6}$ சாய்வில் இருப்பின் அப்புள்ளியில் வேகத்தின் நிலைக்குத்து கூறு $\frac{u}{2\sqrt{3}}$
2.	ஒரு துணிக்கை புள்ளி O இல் இருந்து கிடையுடன் கோணம் $\frac{\pi}{3}$ இல் u கதியுடன் ஈர்ப்பின் கீழ் எறியப்படுகின்றது. O இன் மட்டத்திற்கு மேல் அதன் நிலைக்குத்து உயரம் h ஆக உள்ள புள்ளியில் அதன்வேகம் கிடையுடன் $\frac{\pi}{6}$ சாய்வில் இருப்பின் அப்புள்ளியில் வேகத்தின் நிலைக்குத்து கூறு $\frac{u}{2\sqrt{3}}$
2.	ஒரு துணிக்கை புள்ளி O இல் இருந்து கிடையுடன் கோணம் $\frac{\pi}{3}$ இல் u கதியுடன் ஈர்ப்பின் கீழ் எறியப்படுகின்றது. O இன் மட்டத்திற்கு மேல் அதன் நிலைக்குத்து உயரம் h ஆக உள்ள புள்ளியில் அதன்வேகம் கிடையுடன் $\frac{\pi}{6}$ சாய்வில் இருப்பின் அப்புள்ளியில் வேகத்தின் நிலைக்குத்து கூறு $\frac{u}{2\sqrt{3}}$
2.	ஒரு துணிக்கை புள்ளி O இல் இருந்து கிடையுடன் கோணம் $\frac{\pi}{3}$ இல் u கதியுடன் ஈர்ப்பின் கீழ் எறியப்படுகின்றது. O இன் மட்டத்திற்கு மேல் அதன் நிலைக்குத்து உயரம் h ஆக உள்ள புள்ளியில் அதன்வேகம் கிடையுடன் $\frac{\pi}{6}$ சாய்வில் இருப்பின் அப்புள்ளியில் வேகத்தின் நிலைக்குத்து கூறு $\frac{u}{2\sqrt{3}}$
2.	ஒரு துணிக்கை புள்ளி O இல் இருந்து கிடையுடன் கோணம் $\frac{\pi}{3}$ இல் u கதியுடன் ஈர்ப்பின் கீழ் எறியப்படுகின்றது. O இன் மட்டத்திற்கு மேல் அதன் நிலைக்குத்து உயரம் h ஆக உள்ள புள்ளியில் அதன்வேகம் கிடையுடன் $\frac{\pi}{6}$ சாய்வில் இருப்பின் அப்புள்ளியில் வேகத்தின் நிலைக்குத்து கூறு $\frac{u}{2\sqrt{3}}$
2.	ஒரு துணிக்கை புள்ளி O இல் இருந்து கிடையுடன் கோணம் $\frac{\pi}{3}$ இல் u கதியுடன் ஈர்ப்பின் கீழ் எறியப்படுகின்றது. O இன் மட்டத்திற்கு மேல் அதன் நிலைக்குத்து உயரம் h ஆக உள்ள புள்ளியில் அதன்வேகம் கிடையுடன் $\frac{\pi}{6}$ சாய்வில் இருப்பின் அப்புள்ளியில் வேகத்தின் நிலைக்குத்து கூறு $\frac{u}{2\sqrt{3}}$
2.	ஒரு துணிக்கை புள்ளி O இல் இருந்து கிடையுடன் கோணம் $\frac{\pi}{3}$ இல் u கதியுடன் ஈர்ப்பின் கீழ் எறியப்படுகின்றது. O இன் மட்டத்திற்கு மேல் அதன் நிலைக்குத்து உயரம் h ஆக உள்ள புள்ளியில் அதன்வேகம் கிடையுடன் $\frac{\pi}{6}$ சாய்வில் இருப்பின் அப்புள்ளியில் வேகத்தின் நிலைக்குத்து கூறு $\frac{u}{2\sqrt{3}}$

4. 50	00×10³ kg திண யர்கதி 96kmh ⁻	ிவுடைய எ	வண்டித்					2m
4. 50	00×10³ kg திண யர்கதி 96kmh ⁻	ிவுடைய எ	வண்டித்					
@		-2,0	கே சாய்வி	ில் மேல்				= செல்லக்கூடிய ‹mh ⁻¹ உம் அகும்.
	யக்கத்துற்கான ஞ்சின் ஒருமை ஒ				=	-	 	சந்தர்ப்பங்களிலும் வைக் காண்க.
••••							 	
••••							 	
••••		•••••				•••••	 	
••••							 	
••••							 	
••••		• • • • • • • • • • • • • • • • • • • •	•••••				 	

5.	ஒரு நுனி ஒரு நிலைத்த புள்ளி O இற்கு கட்டப்பட்டுள்ள நீளம் l இனை உடைய ஓர் இலேசான நீட்டமுடியாத இழையின் மற்றைய நுனியில் திணிவு 2m இனை உடைய ஓர் துணிக்கை நிலைக்குத்துடன் $\frac{\pi}{4}$ கோணம் அமைக்க காட்டியவாறு ஓய்வில் இருந்து விடுவிக்கப்படுகின்றது.	
	துணிக்கை அதிதாழ்புள்ளியினை அடையும் கணத்தில் வேகம் v எனின் $v^2 = (2 - \sqrt{2})gl$ எனக் காட்டுக.	
	காட்டியவாறு அதிதாழ் புள்ளியில் m திணிவுடன் மோதி இணைகின்றது எனின் சேர்த்தி துணிக்கை இயங்க தொடங்கும் வேகத்தைக்காண்க.	
•		
•		
•		
•		
•		
t	$\underline{a},\underline{c}$ என்பன இரண்டு அலகுக் காவிகள் ஆகும். \underline{b} = 4 காவிகள் $\underline{a},\underline{c}$ இற்கு இடைப்பட்ட கோணம் $\mathrm{an}^{-1}\sqrt{15}$ ஆகும். \underline{b} - 2 \underline{a} = k \underline{c} எனின் k இன் பெறுமானங்களைக் காண்க.	
t	$\underline{a},\underline{c}$ என்பன இரண்டு அலகுக் காவிகள் ஆகும். $ \underline{b} $ = 4 காவிகள் $\underline{a},\underline{c}$ இற்கு இடைப்பட்ட கோணம் $\mathrm{an}^{\cdot 1}\sqrt{15}$ ஆகும். \underline{b} - 2 \underline{a} = k \underline{c} எனின் k இன் பெறுமானங்களைக் காண்க.	
t	$\underline{a},\underline{c}$ என்பன இரண்டு அலகுக் காவிகள் ஆகும். \underline{b} = 4 காவிகள் $\underline{a},\underline{c}$ இற்கு இடைப்பட்ட கோணம் an ⁻¹ $\sqrt{15}$ ஆகும். \underline{b} - 2 \underline{a} = k \underline{c} எனின் k இன் பெறுமானங்களைக் காண்க.	
t	$\underline{a},\underline{c}$ என்பன இரண்டு அலகுக் காவிகள் ஆகும். $ \underline{b} =4$ காவிகள் $\underline{a},\underline{c}$ இற்கு இடைப்பட்ட கோணம் an-1 $\sqrt{15}$ ஆகும். \underline{b} - 2 \underline{a} $=$ k \underline{c} எனின் k இன் பெறுமானங்களைக் காண்க.	
t	$\underline{a},\underline{c}$ என்பன இரண்டு அலகுக் காவிகள் ஆகும். $ \underline{b} $ = 4 காவிகள் $\underline{a},\underline{c}$ இற்கு இடைப்பட்ட கோணம் an ⁻¹ $\sqrt{15}$ ஆகும். \underline{b} - 2 \underline{a} = k \underline{c} எனின் k இன் பெறுமானங்களைக் காண்க.	
t	$\underline{a},\underline{c}$ என்பன இரண்டு அலகுக் காவிகள் ஆகும். $ \underline{b} $ = 4 காவிகள் $\underline{a},\underline{c}$ இற்கு இடைப்பட்ட கோணம் an ⁻¹ $\sqrt{15}$ ஆகும். \underline{b} - 2 \underline{a} = k \underline{c} எனின் k இன் பெறுமானங்களைக் காண்க.	
t	$\underline{a},\underline{c}$ என்பன இரண்டு அலகுக் காவிகள் ஆகும். $ \underline{b} $ = 4 காவிகள் $\underline{a},\underline{c}$ இற்கு இடைப்பட்ட கோணம் an ⁻¹ $\sqrt{15}$ ஆகும். \underline{b} - 2 \underline{a} = k \underline{c} எனின் k இன் பெறுமானங்களைக் காண்க.	
t	<u>a,c</u> என்பன இரண்டு அலகுக் காவிகள் ஆகும். <u>b</u> = 4 காவிகள் <u>a,c</u> இற்கு இடைப்பட்ட கோணம் an ^{.1} √15 ஆகும். <u>b</u> - 2 <u>a</u> = k <u>c</u> எனின் k இன் பெறுமானங்களைக் காண்க.	
t	$\underline{a},\underline{c}$ என்பன இரண்டு அலகுக் காவிகள் ஆகும். $ \underline{b} $ = 4 காவிகள் $\underline{a},\underline{c}$ இற்கு இடைப்பட்ட கோணம் $\mathrm{an}^{-1}\sqrt{15}$ ஆகும். \underline{b} - $2\underline{a}$ = $\mathrm{k}\underline{c}$ எனின் k இன் பெறுமானங்களைக் காண்க.	
t	$\underline{a},\underline{c}$ என்பன இரண்டு அலகுக் காவிகள் ஆகும். $ \underline{b} $ = 4 காவிகள் $\underline{a},\underline{c}$ இற்கு இடைப்பட்ட கோணம் $\mathrm{an}^{-1}\sqrt{15}$ ஆகும். \underline{b} - $2\underline{a}$ = $\mathrm{k}\underline{c}$ எனின் k இன் பெறுமானங்களைக் காண்க.	
t	<u>a,c</u> என்பன இரண்டு அலகுக் காவிகள் ஆகும். <u>b</u> = 4 காவிகள் <u>a,c</u> இற்கு இடைப்பட்ட கோணம் an ^{.1} √15 ஆகும். <u>b</u> - 2 <u>a</u> = k <u>c</u> எனின் k இன் பெறுமானங்களைக் காண்க.	
t	$\underline{a,c}$ என்பன இரண்டு அலகுக் காவிகள் ஆகும். \underline{b} = 4 காவிகள் $\underline{a,c}$ இற்கு இடைப்பட்ட கோணம் $\mathrm{an}^{-1}\sqrt{15}$ ஆகும். \underline{b} - 2 \underline{a} = k \underline{c} எனின் k இன் பெறுமானங்களைக் காண்க.	
t	<u>a,c</u> என்பன இரண்டு அலகுக் காவிகள் ஆகும். <u>b</u> = 4 காவிகள் <u>a,c</u> இற்கு இடைப்பட்ட கோணம் an ⁻¹ √15 ஆகும். <u>b</u> - 2 <u>a</u> = k <u>c</u> எனின் k இன் பெறுமானங்களைக் காண்க.	
t	<u>a,c</u> என்பன இரண்டு அலகுக் காவிகள் ஆகும். <u>b</u> = 4 காவிகள் <u>a,c</u> இற்கு இடைப்பட்ட கோணம் an ⁻¹ √15 ஆகும். <u>b</u> - 2 <u>a</u> = k <u>c</u> எனின் k இன் பெறுமானங்களைக் காண்க.	
t	<u>a,c</u> என்பன இரண்டு அலகுக் காவிகள் ஆகும். <u>b</u> = 4 காவிகள் <u>a,c</u> இற்கு இடைப்பட்ட கோணம் an ⁻¹ √15 ஆகும். <u>b</u> - 2 <u>a</u> = k <u>c</u> எனின் k இன் பெறுமானங்களைக் காண்க.	
t	<u>a,c</u> என்பன இரண்டு அலகுக் காவிகள் ஆகும். <u>b</u> = 4 காவிகள் <u>a,c</u> இற்கு இடைப்பட்ட கோணம் an ⁻¹ √15 ஆகும். <u>b</u> - 2 <u>a</u> = k <u>c</u> எனின் k இன் பெறுமானங்களைக் காண்க.	
t	<u>a,c</u> என்பன இரண்டு அலகுக் காவிகள் ஆகும். <u>b</u> = 4 காவிகள் <u>a,c</u> இற்கு இடைப்பட்ட கோணம் an ⁻¹ √15 ஆகும். <u>b</u> - 2 <u>a</u> = k <u>c</u> எனின் k இன் பெறுமானங்களைக் காண்க.	
t	<u>a,c</u> என்பன இரண்டு அலகுக் காவிகள் ஆகும். <u>b </u> = 4 காவிகள் <u>a,c</u> இற்கு இடைப்பட்ட கோணம் an ⁻¹ √15 ஆகும். <u>b</u> - 2 <u>a</u> = k <u>c</u> எனின் k இன் பெறுமானங்களைக் காண்க.	
t	<u>a,c</u> என்பன இரண்டு அலகுக் காவிகள் ஆகும். <u>b </u> = 4 காவிகள் <u>a,c</u> இற்கு இடைப்பட்ட கோணம் an ⁻¹ √15 ஆகும். <u>b</u> - 2 <u>a</u> = k <u>c</u> எனின் k இன் பெறுமானங்களைக் காண்க.	

	N நிறையுடைய ஒரு சீரான திண்மக் கோளம் ஒன்று இரண்டு சரிவான ஓப்பமான தளங்களின் மீது ஒய்விலுள்ளது. அவற்றில் ஒரு தளத்தின் சரிவு கிடையுடன் π/3 ஆகும். இத்தளத்தின் மீது கோளத்தின்
ı	மறு தாக்கம் ஆனது கோளத்தின் நிறையின் 1 ீ மடங்கு ஆகும் எனின், மற்றைய தளத்தின்
	கிடையுடனான சாய்வைக் காண்க.
ı	் ஆரையினையும் 3 <i>a</i> உயரத்தினையும் உடைய சீரான திண்ம உருளை ஒன்று அதன் வட்ட அடி நரடான கிடைத்தளம் ஒன்றை தொட்டுக் கொண்டிருக்க வைக்கப்பட்டுள்ளது. தளத்தின் சாய்வு படிப்படியாக அதிகரிக்க <i>μ<</i> ⅔ எனின் சமநிலை குழம்பும் எனக்காட்டுக. இங்கு μ உருளைக்கும்
ı	
ı	நரடான கிடைத்தளம் ஒன்றை தொட்டுக் கொண்டிருக்க வைக்கப்பட்டுள்ளது. தளத்தின் சாய்வு படிப்படியாக அதிகரிக்க μ<⅔ எனின் சமநிலை குழம்பும் எனக்காட்டுக. இங்கு μ உருளைக்கும்
ı	நரடான கிடைத்தளம் ஒன்றை தொட்டுக் கொண்டிருக்க வைக்கப்பட்டுள்ளது. தளத்தின் சாய்வு படிப்படியாக அதிகரிக்க μ<⅔ எனின் சமநிலை குழம்பும் எனக்காட்டுக. இங்கு μ உருளைக்கும்
ı	நரடான கிடைத்தளம் ஒன்றை தொட்டுக் கொண்டிருக்க வைக்கப்பட்டுள்ளது. தளத்தின் சாய்வு படிப்படியாக அதிகரிக்க μ<⅔ எனின் சமநிலை குழம்பும் எனக்காட்டுக. இங்கு μ உருளைக்கும் ந ரைக்கும் இடையிலான உராய்வுக்குணகம் ஆகும்.
ı	நரடான கிடைத்தளம் ஒன்றை தொட்டுக் கொண்டிருக்க வைக்கப்பட்டுள்ளது. தளத்தின் சாய்வு படிப்படியாக அதிகரிக்க μ<⅔ எனின் சமநிலை குழம்பும் எனக்காட்டுக. இங்கு μ உருளைக்கும் ந ரைக்கும் இடையிலான உராய்வுக்குணகம் ஆகும்.
ı	நரடான கிடைத்தளம் ஒன்றை தொட்டுக் கொண்டிருக்க வைக்கப்பட்டுள்ளது. தளத்தின் சாய்வு படிப்படியாக அதிகரிக்க μ<⅔ எனின் சமநிலை குழம்பும் எனக்காட்டுக. இங்கு μ உருளைக்கும் ந ரைக்கும் இடையிலான உராய்வுக்குணகம் ஆகும்.
ı	நரடான கிடைத்தளம் ஒன்றை தொட்டுக் கொண்டிருக்க வைக்கப்பட்டுள்ளது. தளத்தின் சாய்வு படிப்படியாக அதிகரிக்க μ<⅔ எனின் சமநிலை குழம்பும் எனக்காட்டுக. இங்கு μ உருளைக்கும் ந ரைக்கும் இடையிலான உராய்வுக்குணகம் ஆகும்.
ı	நரடான கிடைத்தளம் ஒன்றை தொட்டுக் கொண்டிருக்க வைக்கப்பட்டுள்ளது. தளத்தின் சாய்வு படிப்படியாக அதிகரிக்க μ<⅔ எனின் சமநிலை குழம்பும் எனக்காட்டுக. இங்கு μ உருளைக்கும் ந ரைக்கும் இடையிலான உராய்வுக்குணகம் ஆகும்.
ı	நரடான கிடைத்தளம் ஒன்றை தொட்டுக் கொண்டிருக்க வைக்கப்பட்டுள்ளது. தளத்தின் சாய்வு படிப்படியாக அதிகரிக்க μ<⅔ எனின் சமநிலை குழம்பும் எனக்காட்டுக. இங்கு μ உருளைக்கும் ந ரைக்கும் இடையிலான உராய்வுக்குணகம் ஆகும்.
ı	நரடான கிடைத்தளம் ஒன்றை தொட்டுக் கொண்டிருக்க வைக்கப்பட்டுள்ளது. தளத்தின் சாய்வு படிப்படியாக அதிகரிக்க μ<⅔ எனின் சமநிலை குழம்பும் எனக்காட்டுக. இங்கு μ உருளைக்கும் ந ரைக்கும் இடையிலான உராய்வுக்குணகம் ஆகும்.
ı	நரடான கிடைத்தளம் ஒன்றை தொட்டுக் கொண்டிருக்க வைக்கப்பட்டுள்ளது. தளத்தின் சாய்வு படிப்படியாக அதிகரிக்க <i>μ<2</i> ⅓ எனின் சமநிலை குழம்பும் எனக்காட்டுக. இங்கு μ உருளைக்கும் ந ரைக்கும் இடையிலான உராய்வுக்குணகம் ஆகும்.
\$	நரடான கிடைத்தளம் ஒன்றை தொட்டுக் கொண்டிருக்க வைக்கப்பட்டுள்ளது. தளத்தின் சாய்வு படிப்படியாக அதிகரிக்க <i>μ<2</i> ⅓ எனின் சமநிலை குழம்பும் எனக்காட்டுக. இங்கு μ உருளைக்கும் ந ரைக்கும் இடையிலான உராய்வுக்குணகம் ஆகும்.
\$	நரடான கிடைத்தளம் ஒன்றை தொட்டுக் கொண்டிருக்க வைக்கப்பட்டுள்ளது. தளத்தின் சாய்வு படிப்படியாக அதிகரிக்க μ<⅔ எனின் சமநிலை குழம்பும் எனக்காட்டுக. இங்கு μ உருளைக்கும் ந ைக்கும் இடையிலான உராய்வுக்குணகம் ஆகும்.
\$	நரடான கிடைத்தளம் ஒன்றை தொட்டுக் கொண்டிருக்க வைக்கப்பட்டுள்ளது. தளத்தின் சாய்வு படிப்படியாக அதிகரிக்க μ<⅔ எனின் சமநிலை குழம்பும் எனக்காட்டுக. இங்கு μ உருளைக்கும் ந ைக்கும் இடையிலான உராய்வுக்குணகம் ஆகும்.
\$	நரடான கிடைத்தளம் ஒன்றை தொட்டுக் கொண்டிருக்க வைக்கப்பட்டுள்ளது. தளத்தின் சாய்வு படிப்படியாக அதிகரிக்க μ<⅔ எனின் சமநிலை குழம்பும் எனக்காட்டுக. இங்கு μ உருளைக்கும் ந ைக்கும் இடையிலான உராய்வுக்குணகம் ஆகும்.
\$	நரடான கிடைத்தளம் ஒன்றை தொட்டுக் கொண்டிருக்க வைக்கப்பட்டுள்ளது. தளத்தின் சாய்வு படிப்படியாக அதிகரிக்க μ<⅔ எனின் சமநிலை குழம்பும் எனக்காட்டுக. இங்கு μ உருளைக்கும் ந ைக்கும் இடையிலான உராய்வுக்குணகம் ஆகும்.
\$	நரடான கிடைத்தளம் ஒன்றை தொட்டுக் கொண்டிருக்க வைக்கப்பட்டுள்ளது. தளத்தின் சாய்வு படிப்படியாக அதிகரிக்க μ<⅔ எனின் சமநிலை குழம்பும் எனக்காட்டுக. இங்கு μ உருளைக்கும் ந ைக்கும் இடையிலான உராய்வுக்குணகம் ஆகும்.
\$	நரடான கிடைத்தளம் ஒன்றை தொட்டுக் கொண்டிருக்க வைக்கப்பட்டுள்ளது. தளத்தின் சாய்வு படிப்படியாக அதிகரிக்க μ<⅔ எனின் சமநிலை குழம்பும் எனக்காட்டுக. இங்கு μ உருளைக்கும் ந ைக்கும் இடையிலான உராய்வுக்குணகம் ஆகும்.
\$	நரடான கிடைத்தளம் ஒன்றை தொட்டுக் கொண்டிருக்க வைக்கப்பட்டுள்ளது. தளத்தின் சாய்வு படிப்படியாக அதிகரிக்க μ<⅔ எனின் சமநிலை குழம்பும் எனக்காட்டுக. இங்கு μ உருளைக்கும் ந ைக்கும் இடையிலான உராய்வுக்குணகம் ஆகும்.
\$	நரடான கிடைத்தளம் ஒன்றை தொட்டுக் கொண்டிருக்க வைக்கப்பட்டுள்ளது. தளத்தின் சாய்வு படிப்படியாக அதிகரிக்க μ<⅔ எனின் சமநிலை குழம்பும் எனக்காட்டுக. இங்கு μ உருளைக்கும் ந ைக்கும் இடையிலான உராய்வுக்குணகம் ஆகும்.
\$	நரடான கிடைத்தளம் ஒன்றை தொட்டுக் கொண்டிருக்க வைக்கப்பட்டுள்ளது. தளத்தின் சாய்வு படிப்படியாக அதிகரிக்க μ<% எனின் சமநிலை குழம்பும் எனக்காட்டுக. இங்கு μ உருளைக்கும் நரைக்கும் இடையிலான உராய்வுக்குணகம் ஆகும்.
\$	நரடான கிடைத்தளம் ஒன்றை தொட்டுக் கொண்டிருக்க வைக்கப்பட்டுள்ளது. தளத்தின் சாய்வு படிப்படியாக அதிகரிக்க μ<⅔ எனின் சமநிலை குழம்பும் எனக்காட்டுக. இங்கு μ உருளைக்கும் ந ைக்கும் இடையிலான உராய்வுக்குணகம் ஆகும்.
\$	நரடான கிடைத்தளம் ஒன்றை தொட்டுக் கொண்டிருக்க வைக்கப்பட்டுள்ளது. தளத்தின் சாய்வு படிப்படியாக அதிகரிக்க μ<% எனின் சமநிலை குழம்பும் எனக்காட்டுக. இங்கு μ உருளைக்கும் நரைக்கும் இடையிலான உராய்வுக்குணகம் ஆகும்.

	0 பொறியியல் மாணவர்கள் கொண்ட குழுவில் 17 பெண்கள் 13 ஆண்கள் ஆகும். இதில் 5 பெண்களும் 6 ஆண்களும் மின்சார் பொறியியலினையும் ஏனையோர் குடிசார் பொறியியலினையும்					
Æ	ற்கின்றனர். எழுமாறாக ஒரு மாணவரை தெரிவு செய்தால் அவர்,					
	i.குடிசார் பொறியியலினை கற்பவராகவும்,					
	ii.ஆணாக இருப்பின் குடிசார் பொறியியலினை கற்பவராக இருப்பதற்கான நிகழ்தகவுகளைக் காண்க.					
	∞ ∪ − − ≥ ≥ ··· · · · · · ≥ ··· · · · · · ·					
••••						
•••						
•••						
•••						
•••						
•••						
	n எண்கள் x₁,x₂,x₃,xո கொண்ட தொகுதியின் மாறற்றிறன் 36 ஆகும். $\sum_{i=1}^n x_1^2$ =1620,					
	n எண்கள் x ₁ ,x _{2,} x _{3,} x _n கொண்ட தொகுதியின் மாறற்றிறன் 36 ஆகும். $\sum_{i=1}^n x_1^2$ =1620,					
	n எண்கள் x ₁ ,x _{2,} x _{3,} x _n கொண்ட தொகுதியின் மாறற்றிறன் 36 ஆகும். $\sum_{i=1}^n x_1^2$ =1620,					
	n எண்கள் x $_1$,x $_2$,x $_3$, x_n கொண்ட தொகுதியின் மாறற்றிறன் 36 ஆகும். $\sum_{i=1}^n x_1^2$ =1620, $\sum_{i=1}^n x_1$ =108 எனின், n இன் பெறுமானங்களைக் காண்க.					
	n எண்கள் $x_1, x_2, x_3, \ldots, x_n$ கொண்ட தொகுதியின் மாறற்றிறன் 36 ஆகும். $\sum_{i=1}^n x_1^2$ =1620, $\sum_{i=1}^n x_1 =$ 108 எனின், n இன் பெறுமானங்களைக் காண்க.					
	n எண்கள் $x_1,\!x_2,\!x_3,\!\dots,\!x_n$ கொண்ட தொகுதியின் மாறற்றிறன் 36 ஆகும். $\sum_{i=1}^n x_1^2$ =1620, $\sum_{i=1}^n x_1 =$ 108 எனின், n இன் பெறுமானங்களைக் காண்க.					
	n எண்கள் $x_1,\!x_2,\!x_3,\!\dots,\!x_n$ கொண்ட தொகுதியின் மாறற்றிறன் 36 ஆகும். $\sum_{i=1}^n x_1^2$ =1620, $\sum_{i=1}^n x_1 =$ 108 எனின், n இன் பெறுமானங்களைக் காண்க.					
	n எண்கள் $x_1, x_2, x_3, \ldots, x_n$ கொண்ட தொகுதியின் மாறற்றிறன் 36 ஆகும். $\sum_{i=1}^n x_1^2$ =1620, $\sum_{i=1}^n x_1 = 108$ எனின், n இன் பெறுமானங்களைக் காண்க.					
	n எண்கள் $x_1, x_2, x_3, \ldots, x_n$ கொண்ட தொகுதியின் மாறற்றிறன் 36 ஆகும். $\sum_{i=1}^n x_1^2$ =1620, $\sum_{i=1}^n x_1 = 108$ எனின், n இன் பெறுமானங்களைக் காண்க.					
	n எண்கள் x ₁ ,x ₂ ,x ₃ ,x _n கொண்ட தொகுதியின் மாறற்றிறன் 36 ஆகும். $\sum_{i=1}^n x_1^2$ =1620, $\sum_{i=1}^n x_1 = 108$ எனின், n இன் பெறுமானங்களைக் காண்க.					
	n எண்கள் $x_1, x_2, x_3, \ldots, x_n$ கொண்ட தொகுதியின் மாறற்றிறன் 36 ஆகும். $\sum_{i=1}^n x_1^2 = 1620,$ $\sum_{i=1}^n x_1 = 108$ எனின், n இன் பெறுமானங்களைக் காண்க.					
	ி எண்கள் $x_1, x_2, x_3, \ldots, x_n$ கொண்ட தொகுதியின் மாறற்றிறன் 36 ஆகும். $\sum_{i=1}^n x_1^2 = 1620,$ $\sum_{i=1}^n x_1 = 108$ எனின், n இன் பெறுமானங்களைக் காண்க.					
	n எண்கள் $x_1, x_2, x_3, \ldots, x_n$ கொண்ட தொகுதியின் மாறற்றிறன் 36 ஆகும். $\sum_{i=1}^n x_1^2 = 1620,$ $\sum_{i=1}^n x_1 = 108$ எனின், n இன் பெறுமானங்களைக் காண்க.					
	n எண்கள் $x_1, x_2, x_3, \ldots, x_n$ கொண்ட தொகுதியின் மாறற்றிறன் 36 ஆகும். $\sum_{i=1}^n x_1^2 = 1620,$ $\sum_{i=1}^n x_1 = 108$ எனின், n இன் பெறுமானங்களைக் காண்க.					
	n எண்கள் $x_1, x_2, x_3, \ldots, x_n$ கொண்ட தொகுதியின் மாறற்றிறன் 36 ஆகும். $\sum_{i=1}^n x_1^2 = 1620,$ $\sum_{i=1}^n x_1 = 108$ எனின், n இன் பெறுமானங்களைக் காண்க.					
	n எண்கள் $x_1, x_2, x_3, \ldots, x_n$ கொண்ட தொகுதியின் மாறற்றிறன் 36 ஆகும். $\sum_{i=1}^n x_1^2 = 1620,$ $\sum_{i=1}^n x_1 = 108$ எனின், n இன் பெறுமானங்களைக் காண்க.					
	n எண்கள் x ₁ ,x ₂ ,x ₃ ,x _n கொண்ட தொகுதியின் மாறற்றிறன் 36 ஆகும். $\sum_{l=1}^n x_1^2$ =1620, $\sum_{l=1}^n x_1 = 108$ எனின், n இன் பெறுமானங்களைக் காண்க.					
	n எண்கள் $x_1, x_2, x_3, \ldots, x_n$ கொண்ட தொகுதியின் மாறற்றிறன் 36 ஆகும். $\sum_{i=1}^n x_i^2$ = 1620 , $\sum_{i=1}^n x_i = 108$ எனின், n இன் பெறுமானங்களைக் காண்க.					
	n எண்கள் x ₁ ,x ₂ x ₃ ,x _n கொண்ட தொகுதியின் மாறற்றிறன் 36 ஆகும். Σ ⁿ _{i=1} x ² ₁ =1620, Σ ⁿ _{i=1} x ₁ =108 எனின், n இன் பெறுமானங்களைக் காண்க.					
	n எண்கள் x ₁ ,x ₂ x ₃ ,x _n கொண்ட தொகுதியின் மாறற்றிறன் 36 ஆகும். Σ ⁿ _{i=1} x ² ₁ =1620, Σ ⁿ _{i=1} x ₁ =108 எனின், n இன் பெறுமானங்களைக் காண்க.					
	n எண்கள் x ₁ ,x _{2,} x _{3,} x _n கொண்ட தொகுதியின் மாறற்றிறன் 36 ஆகும். $\sum_{i=1}^n x_1^2$ =1620,					
	n எண்கள் x ₁ ,x ₂ x ₃ ,x _n கொண்ட தொகுதியின் மாறற்றிறன் 36 ஆகும். Σ ⁿ _{i=1} x ² ₁ =1620, Σ ⁿ _{i=1} x ₁ =108 எனின், n இன் பெறுமானங்களைக் காண்க.					

(முழுப்பதிப்புரிமையுடையது / All Rights Reserved)

ந்துப் பல்கலைக்கழக மாணவர் அபிவிருத்திச் சங்கம் வவுனியா மாவட்டம் அனைத்துப் பல்கலைக்கழக மாணவர் அபிவிருத்திச் பசுங்கும் எவுனியா மாவட்டம் அனைத்துப் பல்கலைக்கழக மாணவர் அபிவிருத்திச் பசுங்கும் எடுவிருந்தியிடிக்கும் மாணம். அனைத்துப் பல்கலைக் கழக மாணவர் அபிவிருத்திச் பசுங்கும் வடியியா மாவட்டம் அனைத்துப் பல்கலைக் கழக மாணவர் அபிவிருத்திச் சங்கம் வவுனியா மாவட்டம் அனைத்துப் பல்கலைக்கழக மாணவர் அபிவிருத்திச் சங்கம் வவுனியா மாவட்டம்

கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2023 மார்கழி General Certificate of Education (Adv. Level) Examination, 2023 December

இணைந்த கணிதம் II Combined Mathematics II 10 T II

பகுதி-B

🕨 ஐந்து வினாக்களுக்கு மாத்திரம் விடை எழுதுக

11. (a) ஒரு துணிக்கை P ஆனது புள்ளி O இல் இருந்து புவியீர்ப்பின் கீழ் வேகம் U உடன் நிலைக்குத்தாக மேல்நோக்கி எறியப்படுகின்றது. நேரம் ^U/2g இற்கு பின் வேறொரு துணிக்கை Q ஆனது அதேபுள்ளி O இல் இருந்து புவியீர்ப்பின் கீழ் வேகம் V(> U/2) உடன் நிலைக்குத்தாக மேல்நோக்கி எறியப்படுகின்றது. A ஆனது துணிக்கை P அடையும் அதியுயர் புள்ளியாகவும் B ஆனது P உயர் புள்ளியை அடையும் போது Q இன் நிலையாகவும் இருக்கும். P,Q ஆகிய துணிக்கைகளின் முழு இயக்கங்களுக்கான வேக-நேர வரைபினை ஒரே வரிப்படத்தில் வரைக. இவ் வேக-நேர வரைபுகளைப் பயன்படுத்தி,

i. புள்ளி B யில் Q இன் கதி $\left(V-\frac{U}{2}\right)$ எனவும்,

ii. $V=\frac{11U}{12}$ எனின் $AB=\frac{U^2}{6g}$ எனவும் காட்டுக.

துணிக்கை Q அதி உயர் புள்ளியை அடையும் போது O இலிருந்து P இன் உயரம் $\frac{119U^2}{288g}$ எனவும் காட்டுக.

- (b) ஒரு போர்க்கப்பல் சீரான கதியுடன் நேர்கோட்டுப் பாதையில் செல்கின்றது. குறித்த ஒரு கணத்தில் படகொன்று கப்பலில் இருந்து கிழக்குத் திசையில் d km தூரத்தில் உள்ளது. படகானது வடக்கு நோக்கி சீரான கதி w உடன் செல்கின்றது. போர்க் கப்பல் அடையக்கூடிய உயர் கதி $\mathbf{u}(<\mathbf{w})$ ஆகவும் அதிலுள்ள சுடுகலனின் அதிகூடிய வீச்சு R km உம் ஆகும். $\mathbf{R} < \frac{d}{w} \sqrt{w^2 u^2}$ எனின் படகானது பாதுகாப்பாக செல்லும் எனவும், போர்க்கப்பலானது உயர்கதியில் செல்லும்போது $\mathbf{R} > \frac{d}{w} \sqrt{w^2 u^2}$ எனின் படகானது தாக்கப்படக்கூடிய நேரம் $\frac{2\sqrt{R^2w^2 d^2w^2 + d^2u^2}}{w\sqrt{w^2 u^2}}$ எனவும் காட்டுக.
- 12. (a) M திணிவுள்ள சீரான மரக்குற்றி ஒன்றின் நிலைக்குத்து குறுக்குவெட்டைபடம் காட்டுகிறது இக்குற்றி ஒரு கரடான கிடை மேசை மேல் வைக்கப்பட்டுள்ளது. m திணிவுடைய துணிக்கை ஒன்று A யில் வைக்கப்பட்டுள்ளது. மரக்குற்றிக்கும் மேசைக்கும் இடையிலான உராய்வுக்குணகம் μ₁, துணிக்கைக்கும் மரக்குற்றிக்கும் இடையிலான உராய்வுக்குணகம் μ₂ ஆகும். துணிக்கை m ஆனது AD வழியே u வேகத்துடன் எறியப்படுகிறது. நேரம் t யில் துணிக்கையின், மரக்குற்றியின் இடப்பெயர்ச்சிகள் முறையே x,y ஆகும்.

i.மரக்குற்றியானது BC திசையில் இயங்குமெனின் m μ_2 > (m + M) μ_1 எனக் காட்டுக.

ii. துணிக்கை, மரக்குற்றி என்பவற்றின் ஆர்முடுகளைக் காண்பதற்கான சமன்பாடுகளைப் பெறுக. இதிலிருந்து

$$Mx = Mut - \frac{1}{2}(M+m) (\mu_2 - \mu_1)gt^2$$
எனவும், $My = \frac{1}{2}[(\mu_2 - \mu_1)m - M \mu_1]gt^2$ எனவும் காட்டுக.

(b)ஆரை *a* இனை உடைய இரண்டு ஒப்பமான அரைவட்டக் குழாய்கள் AB,BC ஆல் ஆன S வடிவ குழாயும் CD யில் கரடான காட்டப்பட்ட நீள அகலத்தினை கொண்ட L வடிவ CDE என்னும் குழாயும் இணைக்கப்பட்டு சேர்த்தி குழாய் ஒன்று உருவில் காட்டப்பட்டுள்ளது. அரைவட்டக் குழாய்களின் விட்டம் நிலைக்குத்தாகவும் CD கிடையாகவும் இருக்க ஒரு நிலைக்குத்து தளத்தில் வைக்கப்பட்டுள்ளது. S வடிவ குழாயின் மேல் முனை C ல் m திணிவு உடைய துணிக்கை q வைக்கப்பட்டுள்ளது. CD பகுதி 1/6 உராய்வுக்குணகம் கொண்டதாகும்.திணிவு m இனை உடைய ஒப்பமான துணிக்கை P ஆனது A வழியே வேகம் *U* உடன் எறியப்படுகின்றது. *AÔP* கோணம் θ இனை அமைக்கும் கணத்தில் துணிக்கையின் வேகம் V எனின்

 $V^2 = U^2 - 2ag(1 - cos\theta)$ எனவும் துணிக்கைக்கும் குழாய்க்குமான மறுதாக்கம் $\frac{m}{a}[U^2 - (2 - 3cos\theta)ag]$ எனவும் காட்டுக. $U^2 < 4ga$ எனின் துணிக்கை BC பகுதியில் புகமுடியாது எனக்காட்டுக. புள்ளி A யில் துணிக்கை P இற்கு $\sqrt{12ag}$ வேகம் கொடுக்கப்படின் தொடரும் இயக்கத்தில் புள்ளி C இல் துணிக்கை q உடன் மோதி இணைகின்றது. தொடரும் இயக்கத்தில் புள்ளி D யில் சேர்த்தி துணிக்கை மட்டுமட்டாக ஓய்வடைகின்றது எனக்காட்டி சேர்த்தி துணிக்கை குழாயின் முனை E ஊடாக வெளியேறுகின்றது எனவும் கொண்டு குழாயின் முனை E யில் சேர்த்தி துணிக்கை வெளியேறும் கதியைக் காண்க.

13. A,B என்பன ஒப்பமான கிடை மேசை ஒன்றின் மீதுள்ள 8a இடைத்தூரத்தில் உள்ள இரண்டு புள்ளிகள் ஆகும். இயற்கை நீளம் 2a இனையும் மீள்தன்மை மட்டு λ ஐயும் உடைய ஓர் இலேசான மீள்தன்மை இழையினால் புள்ளி A உடனும் இயற்கை நீளம் 3a இனையும் மீள்தன்மை மட்டு 4λ இனையும் உடைய ஓர் இலேசான மீள்தன்மை இழையினால் புள்ளி B உடனும் m திணிவு உடைய துணிக்கை இணைக்கப்பட்டு A க்கும் B க்கும் இடையே AB மீதுள்ள ஒரு புள்ளியில் வைக்கப்பட்டுள்ளது. M என்பது AB யின் நடுப்புள்ளியாகும். O என்பது M இற்கும் B இற்கும் இடையே துணிக்கை சமநிலையில் உள்ள புள்ளியாகும். MO=^{2a}/₁₁ எனக் காட்டுக. துணிக்கை AB யின் நடுப்புள்ளி M இல் வைக்கப்பட்டு பின்னர் ஓய்விலிருந்து விடுவிக்கப்படுகின்றது. துணிக்கை AB வழியே M இல் இருந்து x தூரத்தில் இருக்கும் புள்ளியில் இயக்க சமன்பாட்டை எழுதி வழக்கமான குறியீட்டில் x + ^{11λ}/_{6ma} (x - ^{2a}/₁₁) = 0 எனக்காட்டுக. X = x - ^{2a}/₁₁ என எழுதுவதன் மூலம் x + ^{11λ}/_{6ma} X = 0 எனக் காட்டுக. துணிக்கை எளிமை இயக்கத்தை ஆற்றும் எனக் காட்டி அதன் அலைவு காலத்தை காண்க.

துணிக்கை M இல் இருந்து $\frac{5a}{22}$ துாரத்தில் உள்ள புள்ளி C இல் உள்ளபோது அதன் வேகம் $\frac{1}{2}\sqrt{\frac{5a\lambda}{22m}}$ எனவும் C இனை அடைய எடுத்த நேரம் $\sqrt{\frac{6ma}{11\lambda}}\left[\pi-\cos^{-1}\left(\frac{1}{4}\right)\right]$ எனவும் காட்டுக.

- 14.(a) i. \underline{a} , \underline{b} என்னும் இருகாவிகளின் குற்றுப்பெருக்கம் \underline{a} . \underline{b} ஐ வரையறுக்க.
 - ii.AB என்பது ஒர் நேர்கோடாகும் புள்ளி C ஆனது AB இனுள் உள்ளது. A,B,C இன் தானக் காவிகள் முறையே $\mathbf{p},\mathbf{q},\mathbf{r}$ ஆகும். AC : CB =m :n எனின் $\mathbf{r} = \frac{m\mathbf{q} + n\mathbf{p}}{m+n}$ எனக் காட்டுக. ஒரு செங்கோண முக்கோணி OAB இல் கோணம் O= π /2 உம் O என்பது உற்பத்தியும் ஆகும். A,B இன் தானக்காவிகள் முறையே \mathbf{a},\mathbf{b} ஆகும். P,Q என்பது பக்கம் AB இனை முக்கூறிடும் புள்ளிகள் ஆகும். $\overrightarrow{OP},\overrightarrow{OQ}$ என்பவற்றை \mathbf{a},\mathbf{b} இன் சார்பில் காண்க. இதிலிருந்து $OP^2 + OQ^2 = \frac{5}{9}\left(\left|\underline{a}\right|^2 + \left|\underline{b}\right|^2\right)$ எனக் காட்டி $OP^2 + OQ^2 = \frac{5}{9}\left(AB\right)^2$ எனக் காட்டுக.
 - (b) ABCD என்பது 4m நீளமான சதுரமாகும். AB யில் E எனும் புள்ளி AE = 3m ஆகுமாறு உள்ளது. $\overrightarrow{BA}, \overrightarrow{BC}, \overrightarrow{CD}, \overrightarrow{AD}, \overrightarrow{DE}, \overrightarrow{DB}$ வழியே $\lambda P, \mu P, 2P, \gamma P, 10P, 2\sqrt{2}P$ விசைகள் தாக்குகின்றது.
 - і.தொகுதி சமநிலையில் இருப்பின் λ, μ, γ என்பவற்றைக் காண்க.
 - ii. γ≠4 ஆயும் λ=μ=6 ஆகவுமிருப்பின் தொகுதி தனி விசைக்கு ஒருங்கும் எனக் காட்டி அதன் பருமன், திசை, தாக்கக்கோடு என்பவற்றைக் காண்க.
 - iii. γ = 2 ஆயும் λ = μ = 6 ஆயும் உள்ள போது ஒரு தனிவிசை சேர்க்கப்பட 8P Nm இணைக்கு ஒடுங்குமெனின் தனிவிசையின் பருமன், தாக்ககோடு என்பவற்றைக் காண்க.
- 15. (a) l நீளமும் w நிறையும் உடைய நான்கு சீர்க்கோல்கள் அவற்றின் முனைகளில் சுயாதீனமாக மூட்டப்பட்டுள்ளன. 3w மீள்தன்மை மட்டை உடைய இலேசான விற்சுருள் எதிர் உச்சிகளிற்கு இணைக்கப்பட்டுள்ளன. இச்சட்டப்படல் ஆனது மற்றைய உச்சி ஒன்றில் இருந்து தொங்கவிடப்பட்டுள்ளது. இது சமநிலையில் சதுர வடிவை எடுப்பின் விற்சுருளில் தாக்கும் விசையையும் அதன் இயற்கை நீளத்தையும் காண்க. மேலும் அதிதாழ் புள்ளியில் தாக்கும் விசையையும் காண்க.
 - (b) AB = BC = CE = AE = 2a ஆகவும் ED =4a ஆகவும்
 உள்ள கோல்களினதும் ஏனைய BE, CD கோல்களினாலும்
 ஒப்பமாக மூட்டப்பட்டு சட்டப்படல் ஆனது
 உருவாக்கப்பட்டுள்ளது. சட்டப்படல் ஆனது D யில் w
 நிறையை காவுகின்றது. A யில் ஒப்பமாக
 பிணைக்கப்பட்டு இருக்கும் அதேவேளை காவுகின்றது.
 B யில் பிரயோகிக்கப்படும் P எனும் கிடை விசையில் BCD
 கிடையாக பேணக்கூடிய சட்டப்படல் ஆனது சமநிலையில் உள்ளது.

- i. கிடைவிசை P ன் பருமன் ($\sqrt{3}$ +1)w எனக் காட்டுக.
- ii. A யில் மறுதாக்கத்தின் பருமனையும் திசையினையும் காண்க.
- iii போவின் குறியீட்டைப் பயன்படுத்தி சட்டப்படலிற்கான ஒரு தகைப்பு வரிப்படத்தை வரைந்து இழுவைகளையும் உதைப்புக்களையும் வேறுபடுத்தி எல்லாக் கோல்களிலும் உள்ள தகைப்புகளைக் காண்க.

16. (a) மையம் O இல் 2θ கோணத்தை எதிரமைக்கும் a ஆரையினை உடைய சீரான வட்டவில் ஒன்றின் ஈர்ப்புமையம் O இல் இருந்து சமச்சீர் அச்சு வழியே $\frac{a sin \theta}{\theta}$ தூரத்தில் இருக்கும் எனக் காட்டுக.

உருவில் காட்டியவாறு (π +3)l நீளமான சீரான கம்பி AOBCDE ஆனது AO,OB பகுதியில் அரைவட்ட வில்லாகவும் (AB யில் S வடிவமாகுமாறு) CDE பகுதியில் L வடிவமாகவும் வளைக்கப்பட்டு காட்டியவாறு OX, OY தளத்தில் வைக்கப்பட்டுள்ளது. இவ்வுருவின் ஈர்ப்பு மையமானது OY,OX இல் இருந்து முறையே \overline{x} , \overline{y} தூரத்தில் இருக்கும் எனின் ஈர்ப்புமைய ஆள்கூறானது $G \equiv (\overline{x}, \overline{y})$ எனத் தரப்படலாம். ஈர்ப்புமைய ஆள்கூறானது $G \equiv \left(\frac{l}{k}, \frac{l}{2k}\right)$ என காட்டுக. இங்கு $k = \frac{\pi}{3} + 1$. இவ் உரு ஆனது O இல் கட்டி தொங்கவிடப்படின் OC நிலைக்குத்துடன் $sin^{-1}\left(\frac{1}{\sqrt{10}}\right)$ கோணத்தை அமைக்கும் எனக் காட்டுக.

- (b) விட்டம் S இனையும், நீளம் l இனையும் அரைக்கோளத்தின் அதே அடர்த்தியும் உடைய திரவியத்தினால் ஆன செவ்வட்ட திண்ம உருளை ஒன்றின் தளமுகங்களில் ஒன்று அரைக்கோளத்தின் வட்ட அடியுடன் விறைப்பாக இணைக்கப்பட்டு சேர்த்தி பெருள் ஒன்று ஆக்கப்படுகின்றது. இப்பொருள் அதன் வளைபரப்பானது ஒப்பமான கிடைத்தளம் ஒன்றை தொட்டுக் கொண்டு இருக்கும் எந்நிலையிலும் சமநிலையில் இருக்க $\frac{S}{l} = 2\sqrt{2}$ எனக் காட்டுக. (a ஆரையுடைய திண்ம அரைக்கோளத்தின் ஈர்வைமையத்தூரம் $\frac{3a}{8}$ ஆகும்)
- 17. (a) பை A யில் ஒரேயளவான ஒரு வெள்ளை, இரண்டு கறுப்பு, மூன்று சிவப்பு பந்துகள் உள்ளன. பை B யில் இரண்டு வெள்ளை, ஒரு கறுப்பு, ஒரு சிவப்பு பந்துகளும் பை C யில் நான்கு வெள்ளை, 5 கறுப்பு, 3 சிவப்பு பந்துகளும் உள்ளன. பை ஒன்றை எழுமாற்றாக தெரிவு செய்யப்பட்டு பந்து ஒன்று வெளியே எடுக்கப்பட்டது.
 - i. எடுக்கப்பட்ட பந்து வெள்ளையாக இருப்பதற்கான நிகழ்தகவைக் காண்க.
 - ii. எடுக்கப்பட்ட பந்து வெள்ளை எனின், அது பை B யில் இருந்து வருவதற்கான நிகழ்தகவைக் காண்க.
 - (b) 60 பயணிகள் வாகனம் மூலம் பயணித்த கால அளவு கீழ்வரும் அட்டவணையில் காட்டப்பட்டுள்ளது. வாகன நெரிசல் காரணமாக நேர அளவுகள் மாறுகிறது.

பயணத்திற்கான நேரம் (மணி)	பயணிகளின் எண்ணிக்கை
5.6-5.8	2
5.8-6.0	7
6.0-6.2	16
6.2-6.4	21
6.4-6.6	12
6.6-6.8	2

பயணத்திற்கான இடை, நியமவிலகல், ஆகாரம் என்பவற்றை காண்க.