Linguaggi e Computabilità

UniShare

Davide Cozzi @dlcgold

Gabriele De Rosa @derogab

Federica Di Lauro @f_dila

Indice

1	Introduzione						
	1.1	Definiz	zioni	2			
		1.1.1	Alberi Sintatici	14			
		1.1.2	Grammatiche ambigue	18			
		1.1.3	Grammatiche Regolari	20			
		1.1.4	Espressioni Regolari (Regex)	23			

Capitolo 1

Introduzione

Questi appunti sono presi a lezione. Per quanto sia stata fatta una revisione è altamente probabile (praticamente certo) che possano contenere errori, sia di stampa che di vero e proprio contenuto. Per eventuali proposte di correzione effettuare una pull request. Link: https://github.com/dlcgold/Appunti.

Grazie mille e buono studio!

1.1 Definizioni

- un linguaggio è un insieme di stringhe che può essere generato mediante un dato meccanismo con delle date caratteristiche; un linguaggio può essere riconosciuto, ovvero dando in input una stringa un meccanismo può dirmi se appartiene o meno ad un linguaggio. I meccanismi che generano linguaggi si chiamano grammatiche, quelli che li riconoscono automi. I linguaggi formali fanno parte dell'informatica teorica (TCS)
- si definisce alfabeto come un insieme finito e non vuoto di simbolo (come per esempio il nostro alfabeto o le cifre da 0 a 9). Solitamente si indica con Σ o Γ
- si definisce **stringa** come una sequenza finita di simboli (come per esempio una parola o una sequenza numerica). La stringa vuota è una sequenza di 0 simboli, e si indica con ε o λ
- si definisce **lunghezza di una stringa** il numero di simboli che la compone (ovviamente contando ogni molteplicità). Se si ha $w \in \Sigma^*$ è una stringa w con elementi da Σ^* (insieme di tutte le stringhe di tutte le lunghezze possibili fatte da Σ), allora |w| è la lunghezza di w, inoltre $|\varepsilon| = 0$.

• si definisce **potenza di un alfabeto** Σ^k come l'insieme di tutte le sequenze (espressi come stringhe e non simboli) di lunghezza $k \in \mathbb{N}, k > 0$ ottenibili da quell'alfabeto (se Σ^2 si avranno tutte le sequenza di 2 elementi etc...). Se ho k = 1 si ha $\Sigma^1 \neq \Sigma$ in quanto ora ho stringhe e non simboli. Se ho k = 0 ho $\Sigma^0 = \varepsilon$. Dato k ho $|\Sigma|$ che è la cardinalità dell'insieme Σ (e non la sua lunghezza come nel caso delle stringhe); sia $w \in \Sigma^k = a_1, a_2, ..., a_k, a_i \in \Sigma$ e $|\Sigma| = q$ ora:

$$|\Sigma^k| = q^k$$

• si definisce Σ^* come **chiusura di Kleene** che è l'unione infinita di Σ^k ovvero

$$\Sigma * = \Sigma^0 \cup \Sigma^1 \cup ... \cup \Sigma^k$$

• si ha che Σ^+ è l'unione per $k \geq 1$ di Σ^k ovvero:

$$\Sigma + = \Sigma^1 \cup \Sigma^2 \cup ... \cup \Sigma^k = \Sigma^* - \Sigma^0$$

per esempio, per l'insieme $\{0,1\}$ si ha:

$$\Sigma^* = \{\varepsilon, 0, 1, 00, 01, 10, 100, 000, ...\}$$

• quindi un **linguaggio** L è un insieme di stringhe e:

$$L\subseteq \Sigma^*$$

si hanno sottoinsiemi particolari, come l'insieme vuoto, che resta però un linguaggio, il **linguaggio vuoto** e $\emptyset \in \Sigma^k$, $|\emptyset| = 0$ che è diverso dal linguaggio che contiene la stringa vuota $|\varepsilon| = 1$ (che conta come una stringa). Inoltre $\Sigma^* \subseteq \Sigma^*$ che ha lunghezza infinita. Posso concatenare due stringhe con un punto: $a \cdot b \cdot c = abc$ e $a \cdot \varepsilon = a$. Ovviamente la stringa concatenata è lunga come la somma delle lunghezze delle stringhe che la compongono. Vediamo qualche esempio di linguaggio:

-il linguaggio di tutte le stringhe che consistono in n0 seguiti da n1:

$$\{\varepsilon, 01, 0011, 000111, \ldots\}$$

- l'insieme delle stringhe con un uguale numero di 0 e di 1:

$$\{\varepsilon, 01, 10.0011, 0101.1001, ..\}$$

- l'insieme dei numeri binari il cui valore è un numero primo:

$$\{\varepsilon, 10, 11, 101, 111, 1011, ...\}$$

- $-\Sigma^*$ è un linguaggio per ogni alfabeto Σ
- $\emptyset,$ il linguaggio vuoto, e $\{\varepsilon\}$ sono un linguaggio rispetto a qualunque alfabeto

Prendiamo un alfabeto $\Sigma = \{0,1\}$ con la sua chiusura di Kleen $\Sigma = \{0,1\}^*$. Quando si ha un input si può avere un problema di decisione, P, che dia come output "si" o "no". Posso avere un problema di decisione (o membership) su $w \in \Sigma = \{0,1\}^*$, con w stringa, che dia in output "si" o "no". Un linguaggio L sarà:

$$L = \{w \in \{0,1\}^* \mid P(w) = si\}$$

quindi si ha che:

$$\Sigma^* \backslash L = \{ P(w) = no \}$$

Vediamo ora un esempio di *Context Free Language (CFL)*, costruito a partire da una *Context Free Grammar (CFG)*:

Esempio 1. Sia $\Sigma = \{0,1\}$ e $L_{pal} =$ "stringhe palindrome binarie". Quindi, per esempio, $0110 \in L$, $11011 \in L$ ma $10010 \notin L$. Si ha che ε , la stringa vuota, appartiene a L. Diamo una definizione ricorsiva:

- base: ε , 0 1 $\in L_{pal}$
- passo: se w è palindroma allora 0w0 è palindromo e 1w1 è palindromo

una variabile generica S può sottostare alle regole di produzione di una certa grammatica. In questo caso si ha uno dei seguenti:

$$S \to \varepsilon$$
, $S \to 0$, $S \to 1$, $S \to 0S0$, $S \to 1S1$

Si ha che una grammatica G è una quadrupla G = (V, T, P, S) con:

- \bullet V simboli variabili
- T simboli terminali, ovvero i simboli con cui si scrivono le stringhe alla fine
- \bullet *P* regole di produzione
- S variabile di partenza start

riprendiamo l'esempio sopra:

Esempio 2.

$$G_{pal} = (V = \{S\}, T = \{0, 1\}, P, S)$$

con:

$$P = \{S \rightarrow \varepsilon, S \rightarrow 0, S \rightarrow 1, S \rightarrow 0S0, S \rightarrow 1S1\}$$

 $Si\ può\ ora\ costruire\ un\ algoritmo\ per\ creare\ una\ stringa\ palindroma\ a\ partire\ dalla\ grammatica\ G:$

$$\underbrace{S}_{start\;applico\;una\;regola} \xrightarrow{1S1 \to 01S10 \to \underbrace{01010}_{sostituisco\;variabile}}$$

con S, 1S1 e 01S10 che sono forme sentenziali. Posso così ottenere tutte le possibili stringhe. Esiste anche una forma abbreviata:

$$S \rightarrow \varepsilon |o|1|0S0|1S1$$

Non si fanno sostituzioni in parallelo, prima una S e poi un'altra

Si hanno 4 grammatiche formali, qerarchia di Chomsky:

- **tipo 0:** non si hanno restrizioni sulle regole di produzione, $\alpha \to \beta$. Sono linguaggi ricorsivamente numerabili e sono rappresentati dalle *macchine di Turing*, deterministiche o non deterministiche (la macchina di Turing è un automa)
- tipo 1: il lato destro della produzione ha lunghezza almeno uguale a quello sinistro. Sono grammatiche dipendenti dal contesto (contestuali) e come automa hanno la macchina di Turing che lavora in spazio lineare:

$$\alpha_1 A \alpha_2 \rightarrow \alpha_1 B \alpha_2$$

con α_1 e α_2 detti contesto e α_1 , α_2 , $\beta \in (V \cup T)^*$

- tipo 2: sono quelle libere dal contesto, context free. Come regola ha $A \to \beta$ con $A \in V$ e $\beta \in V \cup T$)* e come automa ha gli *automi a pila* non deterministici
- tipo 3: sono le grammatiche regolari. Come regole ha $A \to \alpha B$ (o $A \to B\alpha$) e $A \to \alpha$ con $A, B \in V$ e $\alpha \in T$. Come automi ha gli automi a stato finito deterministici o non deterministici

Esempio 3. $Sia~G=(V,T,O,E),~con~V=\{E,I\}~e~T=\{a,b,0,1,(,),+,*\}$ quindi ho le seguenti regole, è di tipo 3:

- 1. $E \rightarrow I$
- 2. $E \rightarrow E + E$
- 3. $E \rightarrow E * E$
- 4. $E \rightarrow (E)$
- 5. $I \rightarrow a$
- 6. $I \rightarrow b$
- 7. $I \rightarrow Ia$
- 8. $I \rightarrow Ib$
- 9. $I \rightarrow I0$
- 10. $I \rightarrow I1$

 $voglio\ ottenere\ a*(a+b00)\ sostituisco\ sempre\ a\ destra\ (right\ most\ derivation)$

$$E \to E * E \to E * (E) \to E * (E + E) \to E * (E + I) \to E + (E + I0)$$

$$\rightarrow R + (I + b00) \rightarrow E * (a + b00) \rightarrow I * (a + b00) \rightarrow a * (a + b00)$$

usiamo ora l'inferenza ricorsiva:

passo	stringa ricorsiva	var	prod	passo stringa impiegata
1	a	I	5	\
2	b	I	6	\
3	<i>b0</i>	I	9	2
4	b00	I	9	3
5	a	E	1	1
6	b00	E	1	4
7	a+b00	E	2	5,6
8	(a+b00)	E	4	7
9	a*(a+b00)	E	3	5, 8

definisco formalmente la derivazione \rightarrow :

Definizione 1. Prendo una grammatica G = (V, T, P, S), grammatica CFG. Se $\alpha A\beta$ è una stringa tale che $\alpha, \beta \in (V \cup T)^*$, appartiene sia a variabili che terminali. Sia $A \in V$ e sia $a \to \gamma$ una produzione di G. Allora scriviamo:

$$\alpha A\beta \to \alpha \gamma \beta$$

 $con \ \gamma \in (V \cup T)^*$.

Le sostituzioni si fanno indipendentemente da α e β . Questa è quindi la definizione di derivazione.

Definizione 2. Definisco il simbolo \rightarrow_* , ovvero il simbolo di derivazioni in 0 o più passi. Può essere definito in modo ricorsivo. Per induzione sul numero di passi.

- la base dice che $\forall \alpha \in (V \cup T)^*, \alpha \to *\alpha$
- il passo è: se $\alpha \to_G * \beta$ e $\beta \to_G * \gamma$ allora $\alpha \to * \gamma$

Si può anche dire che $\alpha \to_G * \beta$ sse esiste una sequenza di stringhe $\gamma_1, ..., \gamma_n$ con $n \ge 1$ tale che $\alpha = \gamma_1$, $\beta = \gamma_n$ e $\forall i, 1 < i < n-1$ si ha che $\gamma_1 \to \gamma_{i+1}$ la derivazione in 0 o più passi è la chiusura transitiva della derivazione

Definizione 3. avendo ora definito questi simboli possiamo definire una forma sentenziale. Infatti è una stringa α tale che:

$$\forall \alpha \in (V \cup T)^* \ tale \ che \ S \to_G * \alpha$$

Definizione 4. data G = (V, T, P, S) si ha che $L(G) = \{w \in T^* | S \to_G * w\}$ ovvero composto da stringhe terminali che sono derivabili o 0 o più passi.

Esempio 4. formare una grammatica CFG per il linguaggio:

$$L = \{0^n 1^n | n \ge 1\} = \{01, 0011, 000111, ...\}$$

con x^n intendo una concatenazione di n volte x (che nel nostro caso sono θ e 1).

posso scrivere:

$$0^n 1^n = 00^{n-1} 1^{n-1} 1$$

il nostro caso base sarà la stringa 01, Poi si ha: G = (V, T, P, S), $T = \{0, 1\}$, $V = \{S\}$, il caso base $S \to 01$ e $S \to 0S1$ il caso passo è quindi: se $w = 0^{n-1}1^{n-1} \in L$ allora $0w1 \in L$.

Ora voglio dimostare che 000111 $\in L$, ovvero $S \to *000111$:

$$S \rightarrow ~0S1 \rightarrow 00S11 \rightarrow 000S111$$

Teorema 1. data la grammatica $G = \{V, T, P, S\}$ CFG e $\alpha \in (V \cup T)^*$. Si ha che vale $S \to *\alpha$ sse $S \to_{lm} *\alpha$ sse $S \to_{rm} *\alpha$. Con $\to_{lm} *$ simbolo di left most derivation $e \to_{rm} *$ simbolo di right most derivation

Esempio 5. formare una grammatica CFG per il linguaggio:

$$L = \{0^n 1^n | n \ge 0\} = \{\varepsilon, 01, 0011, 000111, \ldots\}$$

stavolta abbiamo anche la stringa vuota. Il caso base stavolta è $S \to \varepsilon | 0S1$

Esempio 6. Fornisco una CFG per $L = \{a^n | n \ge 1\} = \{a, aa, aaa, ...\}$. La base è a

il passo è che se $a^{n-1} \in L$ allora $a^{n-1}a \in L$ (o che $aa^{n-1} \in L$). Si ha la grammatica $G = \{V, T, P, S\}, V = \{S\}, T = \{a\}$ e si hanno $S \to a \mid Sa$ (o $S \to a \mid aS$). Dimostro che $a^3 \in L$.

$$S \rightarrow Sa \rightarrow Saa \rightarrow aaa$$

oppure

$$S \rightarrow aS \rightarrow aaS \rightarrow aaa$$

Esempio 7. trovo una CFG per $L = \{(ab)^n | n \ge 1\} = \{ab, abab, ababab, ...\}$ La base è ab

il passo è che se $(ab)^{n-1} \in L$ allora $(ab)^{n-1}ab \in L$.

Si ha la grammatica $G = \{V, T, P, S\}$, $V = \{S\}$, $T = \{a, b\}$ (anche se in realtà $T = \{ab\}$) e si hanno $S \to ab$ | Aab. Poi dimostro come l'esempio sopra

Esempio 8. trovo una CFG per $L = \{a^ncb^n|n \ge 1\} = acb$, aacbb, aaacbb, ...} Il caso base è acb il passo è che se $a^{n-1}cb^{n-1} \in L$ allora $a^{n-1}cb^{n-1}acb \in L$ Si ha la grammatica $G = \{V, T, P, S\}$, $V = \{S\}$, $T = \{a, b, c\}$ e si hanno $S \to aSb|acb$.

 $dimostro\ che\ aaaacbbbbb \in L$:

$$S \rightarrow aSb \rightarrow aaSbb \rightarrow aaaaSbbb \rightarrow aaaacbbbb$$

provo a usare anche una grammatica regolare, con le regole $S \to aS|c,$ $c \to cB$ e $B \to bB|b;$

$$S \rightarrow aS \rightarrow aaS \rightarrow aaC \rightarrow aacB \rightarrow aacb...$$

non si può dimostrare in quanto non si può imporre una regola adatta

Esempio 9. $L = \{a^n c b^{n-1} | n \ge 2\}$, con $a^n c b^{n-1} = a^{n-1} a c b^{n-1}$. $S \to a S b | a a c b$. Quindi:

$$S \to aSb \to aaaccbb \in L$$

Esempio 10. cerco CFG per $L = \{a^n c^k b^n | n, k > 0\}$. a e b devono essere uguali, uso quindi una grammatica context free, mentre c genera un linguaggio regolare.

Si ha la grammatica $G = \{V, T, P, S\}, V = \{S, C\}, T = \{a, b, c\}$ e si hanno $S \to aSb|aCb$ e $C \to cC|c$. dimostro che aaaccbbb $\in L, n = 3, k = 2$:

$$S \rightarrow aSb \rightarrow aaSbb \rightarrow aaaCbbb \rightarrow aaaCbbb \rightarrow aaacCbbb$$

Esempio 11. scrivere CFG per $L = \{a^n b^n c^k b^k | n, k \ge 0\}$

$$= \{ w \in \{a, b, c, d\}^* | a^n b^n c^k b^k | n, k \ge 0 \}$$

quindi L concatena due linguaggi L1 e L2, $X = \{a^nb^n\}$ e $Y = \{c^kd^k\}$:

$$X \to aXb|\varepsilon$$

$$Y \to cYd|\varepsilon$$

$$S \to XY$$

voglio derivare abcd:

$$S \to XY \to XcYd \to aXbcYd \to aXbc\varepsilon d \to a\varepsilon bc\varepsilon d \to abcd$$

 $voglio\ derivare\ cd$

$$S \to XY \to Y \to cYd \to cd$$

Quindi se ho $w \in L1, L2$, ovvero appartenente ad una concatenazione di linguaggi prima uso le regole di un linguaggio, poi dell'altro e infine ottengo il risultato finale.

Esempio 12. scrivere CFG per $L = \{a^n b^k c^k d^n | n > 0, k \ge 0\}$.

$$S \to aSd \mid aXd$$

$$X \to bXc|\varepsilon$$

derivo aabcdd:

$$S \rightarrow aSd \rightarrow aaXdd \rightarrow aabXcdd \rightarrow aabcdd$$

Esempio 13. scrivere CFG per $L = \{a^n c b^n c^m a d^m | n > 0, m \ge 1\}.$

$$S \to XY$$

$$X \to aXb|c$$

$$Y \rightarrow cUd|cad$$

$$S \to XY \to cY \to ccad$$

Esempio 14. scrivere CFG per $L = \{a^{n+m}xc^nyd^m | n, m \ge 0\}$. $a^{n+m} = a^na^m \ o \ a^ma^n$. Si hanno 2 casi:

1.
$$L = \{a^n a^m x c^n y d^m | n, m \ge 0\}$$

2.
$$L = \{a^m a^n x c^n y d^m | n, m \ge 0\}$$

ma solo $L = \{a^m a^n x c^n y d^m | n, m \ge 0\}$ può generare una CFG (dove non si possono fare incroci, solo concatenazioni e inclusioni/innesti).

$$S \to aSd|Y$$

$$Y \to Xy$$

$$X \to aXc|x$$

si può fare in 2:

$$S \to aSd|Xy$$

$$X \to aXc|x$$

derivo con m = n = 1, aaxcyd:

$$S \to aSd \to aXyd \to aaXcyd \to aaxcyd$$

Esempio 15. scrivere CFG per $L = \{a^n b^m | n \ge m \ge 0\}$.

$$L = \{\varepsilon, a, ab, aa, aab, aabb, aaa, aaab, aaabb, aaabb, ...\}$$

Se $n \ge m$ allora $\exists k \ge 0 \rightarrow n = m + k$. Quindi:

$$l = \{a^{m+k}b^m | m, k \ge 0\}$$

si può scrivere in 2 modi:

- 1. $l = \{a^m a^k b^m | m, k \ge 0\}$ quindi con innesto
- 2. $l = \{a^k a^m b^m | m, k \ge 0\}$ quindi con concatenazione

entrambi possibili per una CFG:

1.

$$S \to XY$$

 $X \to aX | \varepsilon \text{ si può anche scrivere } X \to Xa | \varepsilon$

$$Y \to aYb|\varepsilon$$

oppure

$$S \to aS|X$$

$$X \to aXb|\varepsilon$$

2.

$$S \to aSb|\varepsilon$$
$$X \to aX|\varepsilon$$

Esempio 16. scrivere CFG per $L = \{a^n b^{m+n} c^h | m > h \ge 0, n \ge 0\}$. Se n > h allora $\exists k \to n = h + k$, quindi:

$$L = \{a^n b^{m+h+k} c^h | \, m > h \ge 0, \, n \ge 0 \}$$

. ovvero:

$$L = \{a^n b^n b^k b^h c^h | m \ge 0, k > 0, h \ge 0\}$$

si ha:

$$S \to XYZ$$

$$X \to aXb|\varepsilon$$

$$Y \to Yb|b$$

$$Z \to bZc|\varepsilon$$

si può anche fare:

$$S \to XY$$

$$X \to aXb|\varepsilon$$

$$Y \to bYc|Z$$

$$Z \to bZ|b$$

Esempio 17. scrivere CFG per $L = \{a^nb^mc^k | k > n+m, n, m \ge 0\}$. per n=m=0, k=1 avrò la stringa c. se k > n+m allora $\exists l > 0 \rightarrow k = n+m+l$ quindi:

$$L = \{a^n b^m c^{n+m+l} | l > 0, n, m \ge 0\}$$
$$= L = \{a^n b^m c^n c^m c^l | l > 0, n, m \ge 0\}$$

sistem and o:

$$= L = \{a^n b^m c^l c^m cnl | \, l > 0, \, n,m \geq 0 \}$$

quindi:

$$S \to aSc|X$$
$$X \to bXc|Y$$
$$Y \to cY|c$$

Esempio 18. scrivere CFG per $L = \{a^nxc^{n+m}y^hz^kd^{m+h}| n, m, k, h \ge 0\}$. ovvero:

$$L = \{a^n x c^n c^m y^h z^k d^h d^m | n, m, k, h \ge 0\}$$

quindi avrò:

$$S \to XY$$

$$X \to aXc|x$$

$$Y \to cYd|W$$

$$W \to yWd|X$$

$$Z \to zZ|\varepsilon$$

Esempio 19. vediamo un esempio di grammatica dipendente dal contesto:

$$L = \{a^n b^n c^n | n \ge 1\}$$

 $G = \{V, T, P, S\} = \{(S, B, C, X)\} = \{(a, b, c), P, S\}$ ecco le regole di produzione (qui posso scambiare variabili a differenza delle context free):

- 1. $S \rightarrow aSBC$
- 2. $S \rightarrow aBC$
- 3. $CB \rightarrow XB$
- 4. $XB \rightarrow XC$
- 5. $XC \rightarrow BC$
- 6. $aB \rightarrow ab$
- 7. $bB \rightarrow bb$
- 8. $bC \rightarrow bc$
- 9. $cC \rightarrow cc$

vediamo un esempio di derivazione: per n = 1 ho abc ovvero:

$$S \to aBC \to abC \to abc$$

 $con \ n = 2 \ ho \ aabbcc: \ S \rightarrow aSBC \rightarrow aaBCBC \rightarrow aaBXBC \rightarrow aaBXCC \rightarrow aaBBCC \rightarrow aabbCC \rightarrow aabbcC \rightarrow aabbcC \rightarrow aabbcC$

Esempio 20. vediamo un esempio di grammatica dipendente dal contesto:

$$L = \{a^n b^m c^n d^m | n, m \ge 1\}$$

Si ha:

$$G = (\{S, X, C, D, Z\}, \{a, b, c, d\}, P, S)$$

con le seguenti regole di produzione:

- $S \rightarrow aSc|aXc$
- $X \rightarrow bXD|bD$
- $DC \rightarrow CD$
- $DC \rightarrow DZ$
- $DZ \rightarrow CZ$
- $XZ \rightarrow CD$
- $bC \rightarrow bc$
- $cC \rightarrow cc$
- $cD \rightarrow cd$
- $dD \rightarrow dd$

provo a derivare aabbbccddd quindi con n = 2, m = 3:

$$S \rightarrow aSC \rightarrow aaXCC \rightarrow aabXDCC \rightarrow aabbXDDCC \rightarrow aabbbDDDCC \rightarrow aabbbCCDDD \rightarrow aabbbccddd$$

Esempio 21. Sia $L = \{w \in \{a,b\}^* | w \text{ contiene lo stesso numero di } a \in b\}$:

$$S \to aSbS|bSaS|\varepsilon$$

dimostro per induzione che è corretto:

• caso base: $|w| = 0 \rightarrow w = \varepsilon$

quindi si ha che:

• caso passo: si supponga che G produca tutte le stringhe (di lunghezza (ain)) di $(a,b)^*$ con lo stesso numero di $(a,b)^*$ e dimostro che produce anche quelle di lunghezza $(a,b)^*$ sia:

 $w \in \{a,b\}^* \mid |w| = n \text{ con } a \text{ } e \text{ } b \text{ in equal numero}, \ m(a) = m(b) \text{ con } m() \text{ che indica il numero}.$

$$w = aw_1bw_2 \ o \ w = bw_1aw_2$$

sia.

$$k_1 = m(a) \in w_1 = m(b) \in w_1$$

$$k_2 = m(a) \in w_2 = m(b) \in w_2$$

allora:

$$k_1 + k_2 + 1 = m(a) \in w = m(b) \in W$$

sapendo che $|w_1| < n$ e $|w_2| < n$ allora w_1 e w_2 sono egnerati da G per ipotesi induttiva

1.1.1 Alberi Sintatici

Definizione 5. Data una grammatica CFG, $G = \{V, T, P, S\}$ un **albero** sintattico per G soddisfa le seguenti condizioni:

- ogni nodo interno è etichettato con una variabile
- ogni foglia è anch'essa etichettata con una variabile o col simbolo di terminale T o con la stringa vuota ε (in questo caso la foglia è l'unico figlio del padre)
- se un nodo interno è etichettato con A i suoi figli saranno etichettati con X1, ..., Xk e $A \to X1, ..., Xk$ sarà una produzione di G. Se un Xi è ε sarà l'unica figlio e $A \to \varepsilon$ sarà comunque una produzione di G

La concatenazione in ordine delle foglie viene detto prodotto dell'albero

Esempio 22. Usiamo l'esempio delle stringhe palindrome:

$$P \to 0P0|1P1|\varepsilon$$

sia il seguente albero sintatico:

Esempio 23. Si ha:

$$E \rightarrow I | E + E | E * E | (E)$$

$$I \rightarrow a|b|Ia|Ib|I0|I1$$

un albero sintattico per a*(a+b00) può essere:

Data una CFG si ha che i seguenti cinque enunciati si equivalgono:

- 1. la procedura di inferenza ricorsiva stailisce che una stringa w di simboli terminali appartiene al linguaggio L(A) con A variabile
- $2. A \rightarrow^* w$
- 3. $A \rightarrow_{lm}^* w$
- 4. $A \rightarrow_{rm}^* w$
- 5. esiste un albero sintattico con radice A e prodotto w queste 5 proposizioni si implicano l'uni l'altra:

vediamo qualche dimostrazione di implicazione tra queste proposizioni:

da 1 a 5. si procede per induzione:

• caso base: ho un livello solo (una sola riga), $\exists A \to w$:

• caso passo: suppongo vero per un numero di righe $\leq n$, lo dimsotro per n+1 righe:

$$A \to X_1, X_2, ..., X_k$$

$$w = w_1, w_2, ..., w_k$$

ovvero, in meno di n+1 livelli:

da 5 a 3. procedo per induzione:

• caso base (n=1): $\exists A \to w$ quindi $A \to_{lm} w$, come prima si ha un solo livello:

 $\overset{A}{\overset{\triangle}{w}}$

• caso passo: suppongo che la proprierà valga per ogni albero di profondità minore uguale a n, dimostro che valga per gli alberi profondi n+1:

$$A \rightarrow X_1, X_2, ..., X_k$$

$$w = w_1, w_2, ..., w_k$$

ovvero, in meno di n+1 livelli:

$$A \rightarrow_{lm} X_1, X_2, ..., X_k$$

 $x_1 \to_{lm}^* w_1$ per ipotesi induttiva si ha un albero al più di n livelli quindi:

$$A \to_{lm} X_1, ..., X_k \to_{lm}^* w_1, X_2, ..., X_k \to_{lm}^* ... \to_{lm}^* w_1, ..., w_k = w$$

Esempio 24.

$$E \to I \to Ib \to ab$$

$$\alpha E\beta \to \alpha I\beta \to \alpha Ib\beta \to \alpha ab\beta, \ \alpha, \beta \in (V \cup T)^*$$

Esempio 25. Mostro l'esistenza di una derivazione sinistra dell'albero sintattico di a * (a + b00):

$$E \to_{lm}^* E * E \to_{lm}^* I * E \to_{lm}^* a * E \to_{lm}^* a * (E) \to_{lm}^* a * (E + E) \to_{lm}^*$$
$$a*(I+E) \to_{lm}^* a*(a+E) \to_{lm}^* a*(a+I) \to_{lm}^* a*(a+I0) \to_{lm}^* a*(a+I00) \to_{lm}^* a*(a+I00)$$

1.1.2 Grammatiche ambigue

Definizione 6. Una grammatica è definita ambigua se esiste una stringa w di terminali che ha più di un albero sintattico

Esempio 26. vediamo un esempio:

1.
$$E \rightarrow E + E \rightarrow E + E * E$$
 ovvero:

2. $E \rightarrow E * E \rightarrow E + E * E$ ovvero:

si arriva a due stringhe uguali ma con alberi diversi. Introduciamo delle categorie sintatiche, dei vincoli alla produzione delle regole:

1.
$$E \rightarrow T \mid E + T$$

2.
$$T \rightarrow F | T + F$$

$$\beta. F \rightarrow I(E)$$

4.
$$I \to a|b|Ia|, Ib|I0|I1$$

Possono esserci più derivazioni di una stringa ma l'importante è che non ci siano alberi sintattici diversi. Capire se una CFG è ambigua è un problema indecidibile

Esempio 27. vediamo un esempio:

$$S \to \varepsilon |SS| iS| iSeS$$

con S=statement, i=if e e=else. Considero due derivazioni:

1. $S \rightarrow iSeS \rightarrow iiSeS \rightarrow iie$:

2. $S \rightarrow iS \rightarrow iiSeS \rightarrow iieS \rightarrow iie$:

Si ha quindi una grammatica ambigua

Teorema 2. Per ogni CFG, con G = (V, T, P, S), per ogni stringa w di terminali si ha che w ha due alberi sintattici distinti sse ha due derivazioni sinistre da S distinte.

Se la grammatica non è ambigua allora esiste un'unica derivazione sinistra da S

Linguaggi inerentemente ambigui

Definizione 7. Un linguaggio L è inerentemente ambiguo se tutte le grammatiche CFG per tale linguaggio sono a loro volta ambigue

Esempio 28. Sia $L = \{a^nb^nc^md^m | n, m \ge 1\} \cup \{a^nbmnc^md^n | n, m \ge 1\}$ si ha quindi un CFL formato dall'unione di due CFL. L è inerentemente ambiquo e generato dalla sequente grammatica:

•
$$S \to AB \mid C$$

- $A \rightarrow aAb|ab$
- $B \rightarrow cBd|cd$
- $C \rightarrow aCd|aDd$
- $D \rightarrow bDc|bc$

si possono avere due derivazioni:

- 1. $S \rightarrow_{lm} AB \rightarrow_{lm} aAbB \rightarrow_{lm} aabbB \rightarrow_{lm} aabbcBd \rightarrow_{lm} aabbccdd$
- 2. $S \rightarrow_{lm} C \rightarrow_{lm} aCd \rightarrow_{lm} aaBdd \rightarrow_{lm} aabBcdd \rightarrow_{lm} aabbccdd$

a generare problemi sono le stringhe con n=m perché possono essere prodotte in due modi diversi da entrambi i sottolinguaggi. Dato che l'intersezione tra i due sottolinguaggi non è buota si ha che L è ambiguo

1.1.3 Grammatiche Regolari

Sono le grammatiche che generano i linguaggi regolari (quelli del terzo tipo) che sono casi particolari dei CFL.

Si ha la solita grammatica G = (V, T, P, S) con però vincoli su P:

- ε si può ottenere solo con $S \to \varepsilon$
- le produzioni sono tutte lineari a destra $(A \to aA \circ A \to a)$ o a sinistra $(A \to Ba \circ A \to a)$

Esempio 29. $I \rightarrow a|b|Ia|Ib|I0|I1$ è una grammatica con le produzioni lineari a sinistra.

Potremmo pensarlo a destra $I \rightarrow a|b|aI|bI|0I|1I$.

Vediamo esempi di produzione con queste grammatiche:

• $con I \rightarrow a |b| Ia |Ib| I0 |I1| possiamo derivare ab01b0:$

$$I \rightarrow I0 \rightarrow Ib0 \rightarrow I1b0 \rightarrow I01b0 \rightarrow Ib01b0 \rightarrow ab01b0$$

• $con I \rightarrow a|b|aI|bI|0I|1I$ invece non riusciamo a generare nulla:

$$I \rightarrow 0I \rightarrow 0a$$

definisco quindi un'altra grammatica (con una nuova categoria sintattica):

$$I \rightarrow aJ | bJ$$

$$J \rightarrow a |b| aJ |bJ| 0J |1J|$$

che però non mi permette di terminare le stringhe con 0 e 1, la modifico ancora otterdendo:

$$I \rightarrow aJ | bJ$$

$$J \rightarrow a |b| aJ |bJ| 0J |1J| 0|1$$

e questo è il modo corretto per passare da lineare sinistra a lineare destra

Esempio 30. Sia $G = (\{S\}, \{0, 1\}, P, S)$ con $S \to \varepsilon |0| 1 |0S| 1S$. Si ha quindi:

$$L(G) = \{0, 1\}^*$$

si hanno comunque due proposizioni ridondanti, riducendo trovo:

$$S \to \varepsilon |0S| 1S$$

con solo produzioni lineari a destra. Con produzioni lineari a sinistra ottengo:

$$S \to \varepsilon |S0| S1$$

Esempio 31. Trovo una grammatica lineare destra e una sinistra per $L = \{a^n b^m | n, m \ge 0\}$:

• lineare a destra: si ha $G = (\{S, B\}, \{a, b\}, P, S)$ e quindi:

$$S \to \varepsilon |aS| bB$$

$$B \to bB | b$$

ma non si possono generare stringhe di sole b, infatti:

$$S \to aS \to abB \to abbB \to abbb$$

ma aggiungere ε a B **non è lecito**. posso però produrre la stessa stringa da due derivazioni diverse:

$$S \to \varepsilon |aS| bB|b$$

$$B \rightarrow bB \mid b$$

che risulta quindi la nostra lineare a destra

• lineare a sinistra: si ha $G = (\{S, A\}, \{a, b\}, P, S)$ e quindi:

$$S \to \varepsilon |Sb| Ab| a$$

$$A \to Aa \mid a$$

Esempio 32. Trovo una grammatica lineare destra e una sinistra per $L = \{ab^ncd^me | n \ge 0, m > 0\}$:

• lineare a destra: si ha si ha $G = (\{S, A, B, E\}, \{a, b, c, d, e\}, P, S)$ e quindi:

$$S \to aA$$

$$A \rightarrow bA | cB$$

$$B \to dB | dE$$

$$E \rightarrow e$$

• lineare a sinistra: si ha si ha $G = (\{S, X, Y, Z\}, \{a, b, c, d, e\}, P, S)$ e quindi:

$$S \to Xe$$

$$A \to Xd|Yd$$

$$B \to Zc$$

$$E \to a | Zb$$

quindi se per esempio ho la stringa "ciao" si ha:

• lineare a destra:

$$S \to Ao$$

$$A \rightarrow Ba$$

$$B \to Ei$$

$$E \to c$$

• lineare a sinistra:

$$S \to cA$$

$$A \rightarrow iB$$

$$B \to aE$$

$$E \rightarrow o$$

Esempio 33. A partire da $G = (\{S, T\}, \{0, 1\}, P, S)$ con:

$$S \to \varepsilon |0S| 1T$$

$$T \rightarrow 0T | 1S$$

trovo come è fatto L(G):

$$L(G) = \{w \in \{0,1\}^* | w \text{ ha un numero di 1 pari}\}$$

Esempio 34. fornire una grammatica regolare a destra e sinistra per:

$$L = \{w \in \{0,1\}^* | w \text{ ha almeno uno } 0 \text{ o almeno un } 1\}$$

Si ah che tutte le stringhe tranne quella vuota ciontengono uno 0 o un 1 quindi $G = (\{S\}, \{0, 1\}, P, S)$:

• lineare a destra:

$$S \to 0|1|0S|1S$$

• lineare a sinistra:

$$S \rightarrow 0|1|S0|S1$$

1.1.4 Espressioni Regolari (Regex)

le regex sono usate per la ricerca di un pattern in un testo o negli analizzatori lessicali. Una regex denota il linguaggio e non la grammatica. Si hanno le seguenti operazioni tra due linguaggi L e M:

• unione: dati $L, M \in \Sigma^*$, l'unione $L \cup M$ è l'insieme delle stringhe che si trovano in entrambi i linguaggi o solo in uno dei due

Esempio 35.

$$L = \{001, 10, 111\}$$

$$M = \{\varepsilon, 001\}$$

$$L \cup M = \{\varepsilon, 01, 10, 111, \varepsilon\}$$

si ha che:

$$L \cup M = M \cup L$$

• concatenazione: dati $L, M \in \Sigma^*$, la concatenazione $L \cdot M$ (o LM) è lisieme di tutte le stringhe ottenibili concatenandone una di L a una di M

Esempio 36.

$$L = \{001, 10, 111\}$$

$$M = \{\varepsilon, 001\}$$

$$L \cdot M = \{001, 001001, 10, ...\}$$

si ha che:

$$L \cdot M \neq M \cdot L$$

- si definiscono:
 - $-L \cdot L = L^2$, $L \ cdot L \cdot L = L^3 \ etc...$
 - $-L^{1}=L$
 - $-L^0 = \{\varepsilon\}$
- chiusura di Kleene: dato $L\subseteq \Sigma^*$ si ha che la chiusura di Kleen di L è:

$$L^* = \underset{i>0}{\cup} L^i$$

ricordando che $l^0 = \varepsilon$

Esempio 37. Sia $L = \{0, 11\}$, si ha:

$$L^0 = \varepsilon$$

$$L^1 = L = \{0, 11\}$$

$$L^2 = L \cdot L = \{00, 011, 110, 1111\}$$

 $L^3 = L \cdot L \cdot L = L^2 \cdot L = \{000, 0110, 1100, 11110, 0011, 01111, 11011, 1111111\}$

vediamo dei casi particolari:

 $-L=\{0^n|\,n\geq 0\}$ implica $|L|=\infty$ e quindi, essendo $L^i=L,\,i\geq 1$ e quindi $|L^i|=\infty,\,|L^*|=\infty.$ Si ha quindi:

$$L^* = L^0 \cup L^1 \cup \ldots \cup L^i = L$$

 $-L=\emptyset$ implica $L^0=\{\varepsilon\},\ L^2=L\cdot L=\emptyset$ e così via per ogni concatenazione di L. Si ha quindi:

$$L^* = L^0 = \{\varepsilon\}$$

–
$$L=\{\varepsilon\}$$
implica $L^0=\{\varepsilon\}=L=L^1=L^2=...,$ si ha quindi:

$$L^* = \{\varepsilon\} = L$$

L'insieme vuoto e l'insieme contenente la stringa vuota hanno le uniche chiusure di kleene finite

Definizione 8. Si riporta la definizione ricorsiva di un'espressione regolare:

- casi base: si hanno tre casi base:
 - 1. $\varepsilon \in \emptyset$ sono espressioni regolari
 - 2. se $a \in \Sigma$ a è un'esprssione regolare, $L(a) = \{a\}$
 - 3. le variabili che rappresentano linguaggi regolari sono espressioni regolari, L(L)=L
- casi passo: si hanno i 4 casi passo:
 - 1. **unione:** se E e F sono espressioni regolari allora anche $E+F=E\cup F$ è un'espressione regolare e si ha:

$$L(E+F) = L(E) \cup L(F)$$

2. **concatenazione:** se E e F sono espressioni regolari allora anche $EF = E \cdot F$ è un'espressione regolare e si ha:

$$L(EF) = L(E) \cdot L(F)$$

3. **chiusura:** se E è un'espressione regolare allora E^* è un'espressione regolare e si h:

$$L(E^*) = (L(E))^*$$

4. **parentesi:** se E è un'espressione regolare allora (E) è un'espressione regolare e si ha:

$$L((E)) = L(E)$$

Esempio 38. trovo regex per l'insieme di stringhe in $\{0,1\}^*$ che consistono in 0 e 1 alternati:

$$01 \to \{01\}$$
$$(01)^* \to \{\varepsilon, 01, 0101, 010101, ...\}$$
$$(01)^* + (10)^* \to \{\varepsilon, 01, 10, 0101, 1010, ...\}$$

ma posso volere diverse quantità di 0 e 1, sempre mantenendo l'alternanza, metto o uno 0 o un 1 davanti a quanto ottenuto appena sopra:

$$(01)^* + (10)^* + 0(10)^* + 1(01)^* \rightarrow \{\varepsilon, 01, 10, 010, 101, ...\}$$

non è comunque l'unica soluzione, si può avere:

$$(\varepsilon + 1)(01)^*(\varepsilon + 0) \to \{\varepsilon, 01, 10, 010, 101, ...\}$$

oppure ancora:

$$(\varepsilon + 0)(10)^*(\varepsilon + 1)$$

Si ha una precedenza degli operatori, in ordine di precedenza (si valuta da sinistra a destra):

- 1. chiusura di Kleene *
- 2. concatenazione ·, che è associativo $((E \cdot F) \cdot G = E \cdot (F \cdot G))$ ma non è commutativo $(E \cdot F \neq F \cdot E)$
- 3. unione + che è associativa ((E+F)+G=E+(F+G)) ed è commutativo (E+F=F+E)
- 4. infine le parentesi

si hanno anche delle proprietà algebriche:

- due espressioni regolari sono equivalenti se denotano le stesso linguaggio
- \bullet due espressioni regolari con variaboli sono equivalenti se lo sono \forall assegnamento alle variabili
- l'unione è commutativa e associativa, la concatenazione è solo associativa
- si definiscono:

- **identità:** ovvero un valore unito all'identità è pari a se stesso (elemento neutro della somma 0+x=x+0=x). \emptyset è identità per l'unione ($\emptyset+L=L+\emptyset=L$), $\{\varepsilon\}$ è identità per la concatenazione ($\varepsilon L=L\varepsilon=L$)
- annichilitore: ovvero un valore concatenato all'annichilatore da l'annichilitore (l'elemento nullo del prodotto 0x = x0 = 0). \emptyset è l'annichilitore per la concatenazione ($\emptyset L = L\emptyset = \emptyset$)
- distributività: dell'unione rispetto alla concatenazione (che non è commutativa):
 - distributività sinistra: L(M+N) = LM + LN
 - distributività destra: (M+N)L = ML + NL
- idempotenza: L + L = L
- $(L^*)^* = L^*$
- $\emptyset^* = \varepsilon$ infatti $L(\emptyset) = \{\varepsilon\} \cup L(\emptyset) \cup L(\emptyset) \cdot L(\emptyset) \cup ... = \{\varepsilon\} \cup \emptyset \cup \emptyset ... = \varepsilon$
- $\varepsilon^* = \varepsilon$ infatti $L(\varepsilon^*) = \{\varepsilon\} \cup L(\varepsilon) \cup L(\varepsilon) = \{\varepsilon\} \cup \{\varepsilon\} \cup ... = \{\varepsilon\} = L(\varepsilon)$
- $L^+ = L \cdot L^* = L^* \cdot L$ (quindi con almeno un elemento che non sia la stringa vuota)
- $L^* = l^+ + \varepsilon$

Esempio 39. Ho $ER = (0+1)^*0^*(01)^*$:

- 001 fa parte del linguaggio? Si: $\varepsilon \cdot 0 \cdot 01$
- 1001 fa parte del linguaggio? Si: 1 · 0 · 01
- 0101 fa parte del linguaggio? Si: $\varepsilon \cdot \varepsilon \cdot 0101$
- 0 fa parte del linguaggio? Si: $\varepsilon \cdot 0 \cdot \varepsilon$
- 10 fa parte del linguaggio? Si: $1 \cdot 0 \cdot \varepsilon$

 $L((0+1)^*) = (L(0+1))^* = (L(0)+L(1))^* = (\{0\}\cup\{1\})^* = (\{0,1\})^* = \{0,1\}^*$ ovvero tutte le combinazioni di 0 e 1

Si ricorda che:

$$(0+1)^* \neq 0^* + 1^*$$

Esempio 40. ho $ER = ((01)^* \cdot 10 \cdot (0+1)^*)^*$

- 0101 fa parte del linguaggio? No
- 01000 fa parte del linguaggio? No
- 01011 fa parte del linguaggio? No
- 10111 fa parte del linguaggio? Si, $\varepsilon \cdot 10 \cdot 111$
- 101010 fa parte del linguaggio? Si, prendo $10 \cdot 1010$
- 101101 fa parte del linguaggio? Si, $\varepsilon \cdot 10 \cdot 1$ due volte
- 0101100011 fa parte del linguaggio? Si, 0101 · 10 · 0011 (0011 lo posso prendere da $(0+1)^*$)

Esempio 41. ho $ER = ((01)^* \cdot 10 \cdot (0+1))^*$

- 0101 fa parte del linguaggio? No
- 01000 fa parte del linguaggio? No
- 01011 fa parte del linguaggio? No
- 10111 fa parte del linguaggio? No
- 101010 fa parte del linguaggio? No
- 101101 fa parte del linguaggio? Si, $\varepsilon \cdot 10 \cdot 1$ due volte
- 0101100011 fa parte del linguaggio? No

Esempio 42. Da $L \subseteq \{0,1\}$ | stringhe contenenti almeno una volta 01 quindi:

$$(0+1)^*01(0+1)^*$$

Esemplo 43. ho $ER = (00^*1^*)^*$, quindi:

$$L = \{\varepsilon, 0, 01, 000, 001, 010, 011\} = \{\varepsilon\} \cup \{w \in \{0, 1\}^* | w \text{ che inizia con } 0\}$$

Esempio 44. ho $ER = a(a+b)^*b$, quindi:

$$L = \{w \in \{a, b\}^* | w \text{ inizia con a } e \text{ termina con } b\}$$

Esempio 45. ho $ER = (0^*1^*)^*000(0+1)^*$, quindi, sapendo che $\{0,1\}^*$ mi permette tutte le combinazioni che voglio come $(0+1)^*$:

$$L = \{w \in \{0,1\}^* | w \text{ come voglio con tre } 0 \text{ consecutivi}\}$$

Esempio 46. ho $ER = a(a+b)^*c(a+b)^*c(a+b)^*b$, quindi:

 $L = \{w \in \{a,b,c\}^* | \ w \ inizia \ con \ a, \ termina \ con \ b \ e \ contiene \ almeno \ due \ c,$

eventtualmente non adiacenti}

Esempio 47. Da $L \subseteq \{0,1\}$ | ogni 1 è seguito da 0, a meno che non sia l'ultimo carattere, ovvero 11 non compare quindi:

$$(10+0)^*(\varepsilon+1)^*$$