Teoria di Galois 1 - Tutorato VI

Alfonso Pesiri

Venerdì 24 Maggio 2007

Esercizio 1. Calcolare il gruppo di Galois dei seguenti polinomi, assumendone l'irriducibilità:

- a. $f(x) = x^4 + 3x^3 + 3x + 11$;
- b. $f(x) = x^5 4x + 2$;
- c. $f(x) = (x+3)^4 + 5$;

Esercizio 2. Elencare tutti i polinomi irriducibili di grado minore di 5 su $\mathbb{F}_2[x]$.

Esercizio 3. Quali sono le radici di $x^{16} + x^{12} + 1$ in $\mathbb{F}_2[\alpha]$ dove $\alpha^4 = \alpha + 1$? (provare con $\alpha^3 + 1$)

Esercizio 4. Sia $f(x)=x^5+ax+b$, con $a,b\in\mathbb{Z}$. Dimostrare che $Gal(f)\simeq D_5$ se e solo se valgono le tre seguenti:

- (i) f è irriducibile su \mathbb{Q} ;
- (ii) D(f) è un quadrato in \mathbb{Q} ;
- (iii) f è risolubile per radicali.

Esercizio 5. Calcolare il gruppo di Galois del polinomio $f(x) = x^4 + 3x^3 + 3$ senza usare il metodo della risolvente cubica, ed assumendo che D(f) < 0.

Esercizio 6. Trovare il gruppo di Galois del polinomio $x^6 - 5$ sia su \mathbb{Q} che su \mathbb{R} .

Esercizio 7. Sia G il gruppo di Galois del polinomio $(x^4 - 2)(x^3 - 5)$ su \mathbb{Q} :

- a. indicare un insieme di generatori per G;
- b. individuare la struttura di G come gruppo astratto.

Esercizio 8. Quanti campi sono strettamente contenuti tra $\mathbb{Q}(\zeta_{12})$ e $\mathbb{Q}(\zeta_{12}^3)$?

Esercizio 9. Determinare il gruppo di Galois del polinomio $x^4 - 2$ su \mathbb{Q} esprimendolo anche come gruppo di permutazioni. Qual'è il numero dei sottocampi quadratici contenuti in \mathbb{Q}_f .