

KT AIVLE School

1일차 정리

전체 Process(CRISP-DM)

복습 – ML 알고리즘

✓알고리즘 한판 정리

	선형회귀	로지스틱회귀	KNN	SVM	Decision Tree	Random Forest	Gradient Boost (GBM, XGB, LGBM)
개념	✔오차를 최소화 하는 직선, 평면	✓오차를 최소화 하는 직선, 평면 ✓직선을 로지스틱 함수로 변환 (0~1 사이 값으로)	✔예측할 데이터와 train set과의 거리 계산 ✔가까운 [k개 이웃의 y] 의 평균으로 예측	✓마진을 최대화 하는 초 평면 찾기 ✓데이터 커널 변환	 ✓정보전달량 = 부모 불순도 - 자식 불순도 ✓정보 전달량이 가장 큰 변수를 기준으로 split 	✔ 여러 개의 트리 ✔ 각각 예측 값의 평균 ✔ 행과 열에 대한 랜덤 : 조금씩 다른 트리들 생성	✔여러 개의 트리 ✔트리를 더해서 하나의 모델로 생성 ✔더해지는 트리는 오차를 줄이는 모델
전제 조건	✓ NaN조치 ✓ 가변수화 ✓ x들 간 독립	✔NaN조치 ✔가변수화 ✔x들 간 독립	✓ NaN조치 ✓ 가변수화 ✓ 스케일링	✔NaN조치 ✔가변수화 ✔스케일링	✔NaN조치 ✔가변수화	✔NaN조치 ✔가변수화	✓NaN조치 ✓가변수화
성능	✓변수 선택 중요 ✓x가 많을 수록 복잡	✔변수 선택 중요 ✔x가 많을 수록 복잡	✔주요 hyper-parameter - n_neighbors : k 작을수록 복잡 - metric : 거리계산법	✓주요 hyper-parameter - C : 클수록 복잡 - gamma : 클수록 복잡	√주요 hp - max_depth : 클수록 복잡 - min_samples_leaf : 작을수록 복잡	✓주요 hp 기본값으로도 충분! - n_estimators - max_features ✓기본값으로 생성된 모 델 ==> 과적합 회피	✓주요 hp - n_estimators - learning_rate ✓ XGB, LGBM : 과적합 회피를 위한 규제

복습 - 회귀모델 평가

딥러닝 개념 - 학습 절차

✓ model.fit(x_train, y_train) 하는 순간...

단계①: 가중치에 (초기)값을 할당한다.

■ 초기값은 랜덤으로 지정

단계②: (예측) 결과를 뽑는다.

단계③ : 오차를 계산한다.

단계(4): 오차를 줄이는 방향으로 가중치를 조정

• Optimizer : GD, Adam...

단계(5): 다시 단계(1)로 올라가 반복한다.

■ max iteration에 도달.(오차의 변동이 (거의) 없으면 끝.)

■ 가중치(weight)의 다른 용어 **파라미터(parameter)**

medv = 1	$\cdot lstat + 3$

medv	Istat	ŷ
20	10	13
10	11	14
8	15	18

$$mse = \frac{\sum (y - \hat{y})^2}{n} = \frac{7^2 + 6^2 + 8^2}{3}$$

$$w_1: 1 \to 0.8$$

$$w_0: 3 \to 3.3$$

 $medv = w_1 \cdot lstat + w_0$

forward propagation

back propagation

딥러닝 개념 - 학습 절차

✓ 30번 학습(epochs = 30)하며 최적의 Weight를 찾아가는 과정

모델의 가중치가 업데이트되는 과정

모델의 오차가 줄어드는 과정(학습곡선)

딥러닝 구조

 $medv = w_1 \cdot lstat + w_2 \cdot ptratio + w_3 \cdot crim + w_0$

딥러닝 코드 - Dense

- ✓ input_shape = (,)
 - **분석단위**에 대한 shape
 - 1차원 : (feature 수,)
 - 2차원 : (rows, columns)
- ✓ output
 - 예측 결과가 1개 변수(y가 1개 변수)

딥러닝 코드 - Compile

✓ 컴파일(Compile)

선언된 모델에 대해 몇 가지 설정을
 한 후, 컴퓨터가 이해할 수 있는 형태로
 변환하는 작업

Python Code

model.compile(optimizer = Adam(0.1), loss='mse')

✓ loss function(오차함수)

- 오차 계산을 무엇으로 할지 결정
- mse: mean squared error, 회귀모델은 보통 mse로 오차 계산

✓ optimizer

- 오차를 최소화 하도록 가중치를 조절하는 역할
- optimizer = 'adam' : learning_rate 기본값 = 0.001
- optimizer = Adam(lr = 0.1) : 옵션 값 조정 가능
 - Ir과 learning_rate은 같지만, learning_rate 사용을 권장

딥러닝 코드 - 학습곡선

✓ .history

- 학습을 수행하는 과정 중에
- 가중치가 업데이트 되면서
- 그때그때마다의 성능을 측정하여 기록
- 학습 시 계산된 오차 기록
- 그것을 저장한 후 차트를 그리면...

Python Code

Epoch 1/20			
11/11 [] - 1s 31ms/step - loss	: 571.5110	- val loss	577.0120
Epoch 2/20			
11/11 [=================================	489.2647 -	val loss:	499.1079
Epoch 3/20			
11/11 [=================================	: 418.2319	- val_loss	432.6833
Epoch 4/20		_	
11/11 [] - Os 11ms/step - loss	: 359.0570	- val_loss	377.7811
Epoch 5/20			
11/11 [=================================	309.7421 -	val_loss:	332.4446
Epoch 6/20			
11/11 [=================================	270.8658 -	val_loss:	296.9759
Epoch 7/20			
11/11 [] - Os 6ms/step - loss:	240.5217 -	val_loss:	270.1676
Epoch 8/20			
11/11 [] - Os 12ms/step - loss	: 218.4201	- val_loss	249.3737
Epoch 9/20			
11/11 [] - Os 7ms/step - loss:	200.8222 -	val_loss:	233.2946
Epoch 10/20			
11/11 [] - Os 10ms/step - loss	: 187.6137	- val_loss	219.1513
Epoch 11/20			
11/11 [=======] - Os 7ms/step - loss:	175.6799 -	val_loss:	208.9160
Epoch 12/20	107 5004		000 0505
11/11 [=======] - Os 5ms/step - loss: Epoch 13/20	167.5694 -	val_loss:	200.2585
11/11 [=================================	160 0632 _	ual loca!	103 0237
Epoch 14/20	100.6032 -	Val_1055	190.0207
11/11 [] - Os 6ms/step - loss:	15/ 011/ -	ual loce:	186 0370
Epoch 15/20	104.5114	vai_1000.	100.0010
11/11 [=================================	149.6200 -	val loss:	181.1366
Epoch 16/20			
11/11 [=================================	145.2706 -	val_loss:	176.1777
Epoch 17/20			
11/11 [] - Os 7ms/step - loss:	141.4094 -	val_loss:	172.2429
Epoch 18/20			
11/11 [=================================	138.0926 -	val_loss:	168.4736
Epoch 19/20			
11/11 [] - Os 7ms/step - loss:	135.0007 -	val_loss:	164.8660
Epoch 20/20			
11/11 [] - Os 13ms/step - loss	: 131.7069	- val_loss	161.3870

딥러닝 코드 - 학습곡선

✓ 바람직한 곡선의 모습

- Epoch가 증가하면서 Loss가 큰 폭으로 축소
- 점차 Loss 감소 폭이 줄어들면서 완만해짐.

- Loss가 줄어들기는 하나, 들쑥날쑥
- → Learning_rate을 줄여 봅시다.

- Val_loss가 줄어들다가 다시 상승(과적합)
- → Epochs와 learning_rate을 조절해 봅시다.

딥러닝 구조 - Hidden Layer

✓ layer 여러 개 : 리스트[]로 입력

√ hidden layer

- input_shape 는 첫번째 layer만 필요
- activation
 - 히든 레이어는 활성함수를 필요로 합니다.
 - 활성함수는 보통 'relu'를 사용

✓ output layer

■ 예측 결과가 1개

활성화 함수 Activation Function

✓ 그래서 활성화 함수는...

■ Hidden Layer에서는 : 선형함수를 비선형 함수로 변환

■ Output Layer에서는 : 결과값을 다른 값으로 변환해 주는 역할

• 주로 분류Classification 모델에서 필요

요약 : 회귀 모델링

✓ 딥러닝 전처리

■ NaN 조치, 가변수화, 스케일링

✓ Layer

- 첫번째 Layer는 input_shape를 받는다.(분석단위의 shape)
 - 2차원 데이터셋의 분석단위 1차원 → shape는 (feature수,)
- Output layer의 node 수:1
- Activation Function
 - Hidden layer에 필요 :
 - 비선형 모델로 만들려고 → hidden layer를 여럿 쌓아서 성능을 높이려고.
 - 회귀 모델링에서 Output Layer에는 활성화 함수 필요하지 않음!

구분	Hidden Layer	Output Layer		Compile	
丁 世	Activation	Activation	Node수	optimizer	loss
Regression	relu	X	1	adam	mse

KT AIVLE School

2일차 정리

Hidden Layer에서 무슨 일이 일어나는가?

✓ 처음으로 돌아와서...Hidden Layer에서는 어떤 일이 일어났나요?

- 기존 데이터를 받아들여,
- (우리는 정확히 알기 어렵지만) 뭔가 새로운 특징(New Feature)을 만들어 냈습니다.
- 그 특징은 분명히 예측된 값과 실제 값 사이의 오차를 **최소화** 해주는
- 유익한 특징일 것입니다. (여기서-우리는 믿음이-필요합니다.^^)
- Hidden Layer에서는 기존 데이터가 **새롭게 표현(Representation)** 되였습니다. **Feature Engineering**이 진행된 것입니다!

17

Feature Representation

✓ Deep Learning → Representation Learning

딥러닝 구조 - 이진분류

- ✓ Node의 결과를 변환해주는 함수가 필요
 - 그것을 **활성 함수**Activation Function 라고 합니다.

딥러닝 구조 – 활성 함수Activation Function

✓ node의 결과를 변환시켜 주는 역할

Layer	Activation Function		기능	
Hidden Layer	ReLU		좀 더 깊이 있는 학습(Deep Learning)을 시키려고. (Hidden Layer를 여러 층 쌓으려고) (선형 모델을 비선형 모델로 바꾸려고)	
	회귀	X	X	
Output Layer	이진분류	sigmoid	결과를 0, 1로 변환하기 위해	
	다중분류	softmax	각 범주에 대한 결과를 범주별 확률 값으로 변환	

딥러닝 구조 - Output Layer

√ Softmax

■ 각 Class 별(Output Node)로 예측한 값을, 하나의 확률 값으로 변환.

요약: 회귀 vs 이진분류 vs 다중분류

		Regression	Two-Class	Multi-Class
전	Х		가변수화, 스케일링	
처 리	У			정수 인코딩 원핫 인코딩
	은닉층		activation = 'relu'	
델	출력층	activation : 없음 Node 수 : 1	• • • • • • • • • • • • • • • • • • • •	ation = 'softmax' : 수 : y의 class 수
리	컴파일 (loss)	mse	hinary crossentrony sparse_ca	tegorical_crossentropy orical_crossentropy
검 증	예측결과 처리		np.where(pred>.5, 1, 0) np.argr	max(pred, axis = 1)

[참조]가중치 업데이트

- ✓ Gradient : 기울기(벡터)
- ✓ Gradient Decent(경사 하강법, optimizer의 기본)
 - *w*의 초기값 지정 : *w*₀
 - 초기값에서의 기울기(방향) 확인 : $\frac{df(w)}{dw}$, $w = w_0$
 - 기울기가 이면 *x* 는 오른쪽(+방향)
 - 기울기가 + 이면 *x* 는 왼쪽(– 방향)
 - 조금 **조정** : η × $\frac{df(w)}{dw}$
 - η: eta, 조정하는 비율, Learning Rate

$$\mathbf{w}_{new} = \mathbf{w}_0 - \eta \times \frac{\partial f(\mathbf{w})}{\partial \mathbf{w}}$$

[참조]Local Minima problem

[참조]Local Minima problem → Optimizer

[참조] 모델의 성능 최적화

✓모델링의 목표

- 완벽한적절한 예측력을 얻기 위해
- 적절한 복잡도의 모델을 생성

✓모델의 복잡도

- 학습데이터 안에 포함된 패턴을 모델에 반영한 정도
- 대체로 하이퍼 파라미터 조정에 따라 복잡도가 달라짐

✓하이퍼 파라미터(hyper-parameter)

■ 우리가 조정해 줘야 할 대상

KNN	DT	XGB	DL
n_neighbors metric	max_depth min_samples_leaf	n_estimators max_depth learning_rate	Hidden Layer 수, node 수 learning_rate, epochs

[참조] 모델의 성능 최적화

✓ 하이퍼 파라미터 튜닝

- 튜닝 기본 방법 : 다양한 값들도 시도
 - Random Search : 지정한 범위 내에서 무작위로 시도
 - Grid Search : 지정한 범위 내에서, 모든 경우의 수 만큼 시도
- 최적의 모델 선정 → 검증 성능으로 평가
- 검증 성능을 기반으로 최적의 모델을 선정하면, 과적합을 피할 수 있음.

✓최근 ML/DL 성능 튜닝(과적합 방지) trend

- 모델을 (적절하게) 복잡하게 설계한 후 → 규제를 통해 모델을 일반화 시킴
 - 예1 : epoch를 크게 주고 → early stopping으로 최적 검증 성능에서 멈추기
 - 예2 : 은닉층 / 노드수를 크게 주고 → 가중치 규제(regularization)로 검증 성능 높이고, 과적합 회피