Systems of Linear Equations

Exercise 7

Systems of Linear Equations Report

Author Cesare De Cal Professor
Annie Cuyt
Assistant Professor
Ferre Knaepkens

1 Introduction

In this exercise I am going to use solve a linear system $A\vec{x} = \vec{y}$ using LU decomposition. The goal is to verify that first element of the unknowns vector, x_1 , will contain an approximation of e-2.

As we've seen in class, there are multiple ways of solving a linear system AX = B. Assume A is a $n \times n$ square matrix, B is a "constant" term matrix $n \times h$, and X is a $n \times h$ unknown matrix. To solve for X, we could compute the inverse of A and find $x = A^{-1}y$. We've seen that this approach, however, requires more computations than necessary and returns a less accurate result.

On the other hand, the LU decomposition technique is a way to represent the matrix A in the form of simpler matrices, L and U (lower triangular and upper triangular matrices, respectively):

$$PA = LU$$

This method uses forward substitution (solving for Y from LY = B) and backward substitution (solving for X from UX = Y). I'll be specifically solving the system by using Gaussian Elimination with partial pivoting, which reduces round-offs errors compared to its naive implementation. I'll also be calculating the error and the condition number as the variable n increases, and plot the results.

2 Tools

The following programming language and libraries have been used in this exercise:

- C
- GSL (GNU Scientific Library)

The following double-precision GSL data types have been used in the exercise:

- gsl_vector
- gsl_matrix
- gsl_permutation

The following GSL methods have been used in the exercise:

- gsl_matrix_alloc(size1, size2)
- gsl_matrix_set_zero(matrix)
- gsl_matrix_set(matrix, row, column, value)
- gsl_matrix_get(matrix, row, column)
- gsl_vector_alloc(size)
- gsl_vector_set_zero(vector)
- gsl_vector_set(vector, index, value)
- gsl_vector_get(vector, index)
- gsl_matrix_memcpy(matrixToCopyFrom, matrix)
- gsl_linalg_SV_decomp(A, V, S, workspaceVector)
- gsl_vector_minmax(vector, minInVector, maxInVector)

In order to factorize a matrix into the LU decomposition, and then solve the square system Ax = y using the decomposition of A, I've used the following methods:

- gsl_linalg_LU_decomp(A, permutation, signum)
- gsl_linalg_LU_solve(LU, permutation, b, x)
- gsl_permutation_alloc(size)

3 Solving the linear system

In order to solve the system Ax = y, I first need to build the matrix A by understanding how it's build. The requirements are to build a tridiagonal matrix with the values -1 on the adjacent upper diagonal, the entries +1 on the adjacent lower diagonal, and on the main diagonal the values b_i , with i = 1, ..., n given by

$$b_i = \frac{2(i+1)}{3}, \quad i+1=3,6,9,\dots$$

 $b_i = 1, \quad i+1=2,4,5,7,8,\dots$

By looking closely at the first rule, we see that the i+1 are all multiples of 3 (i+1=3*k, for some k). Hence the i are of the form i=3*k-1, for some k. For n=5, for example, this is what the matrix looks like:

1.00000000000	-1.00000000000	0.0000000000	0.0000000000	0.00000000000
1.00000000000	2.0000000000	-1.0000000000	0.0000000000	0.0000000000
0.00000000000	1.0000000000	1.0000000000	-1.00000000000	0.0000000000
0.00000000000	0.0000000000	1.0000000000	1.0000000000	-1.00000000000
0.0000000000	0.0000000000	0.0000000000	1.00000000000	4.00000000000

The coefficients matrix A is first allocated by using the gsl_matrix_alloc method, then I set all the elements to zero with gsl_matrix_set_zero and finally nested for loops fill the diagonal values by checking the indexes. The coefficients reported above on the diagonal have 5 significant digits for improve the readability of this report.

I used the gsl_vector_alloc method to create an instance of the vector. All of its elements were set to zero by using $gsl_vector_set_zero(vector)$. The exercise asks us to set the first element of the y vector to one, so I used $gsl_vector_set(vector, 0, 1)$ to assign the value 1 to index 0. For n = 5, we have:

Given the Ax = y system, my goal is now to find the vector of the unknowns x. To do so, I first factorize A into its LU decomposition by allocating a new matrix (so that the matrix which represents A doesn't get overridden) using gsl_matrix_memcpy and then by calling $gsl_linalg_LU_decomp$. This method utilizes Gaussian Elimination with partial pivoting to compute the decomposition. The following is the LU matrix for n=5:

I can now use the LU matrix to solve the system by passing LU, x, a permutation structure gsl_permutation and y to gsl_linalg_LU_solve. This method uses forward and back-substitution to modify the contents of the x vector given in input, which now looks like this (for n = 5):

$$\vec{x} = \begin{bmatrix} 0.7187500000 \\ -0.2812500000 \\ 0.1562500000 \\ -0.1250000000 \\ 0.03125000000 \end{bmatrix}$$

The first element looks contains an approximation of e-2. By increasing the size of the matrix n, x_i becomes increasingly more precise. For n=10, for example:

$$\vec{x} = \begin{bmatrix} 0.7182817183 \\ -0.2817182817 \\ 0.1548451548 \\ -0.1268731269 \\ 0.0279720280 \\ -0.0149850150 \\ 0.0129870130 \\ -0.0019980020 \\ 0.0009990010 \\ -0.0009990010 \end{bmatrix}$$

Then, I calculate the condition number of the matrix A of order n which will give me a better idea if this is a well-conditioned or an ill-conditioned linear system. In GSL there is no direct function that calculates the condition number, but it's possible to use the ratio of the largest singular value of matrix A, $\sigma_n(A)$, to the smallest $\sigma_1(A)$:

$$\kappa(A) := \frac{\sigma_n(A)}{\sigma_1(A)} = \frac{\|A\|}{\|A^{-1}\|^{-1}}$$

I proceed to factorize A into its singular value decomposition SVD using the $gsl_linalg_SV_decomp$ method, and then use gsl_vector_minmax to extract the minimum and maximum singular values out of the vector S that contains the diagonal elements of the singular value matrix.

For n = 5, the condition number is

$$\kappa(A) = \frac{\sigma_n(A)}{\sigma_1(A)} = \frac{4.2051006107}{1.1426432872} = 3.6801516779$$

For n = 10, the condition number is

$$\kappa(A) = \frac{\sigma_n(A)}{\sigma_1(A)} = \frac{6.2820508697}{1.1424251953} = 5.4988728328$$

I calculate the error by subtracting the computed solution x_1^* from the exact mathematical solution \tilde{x} (which can be obtained by using the M.E GSL constant minus 2).

Finally, I am now going to insert the x_1 component, the error, and the condition number for n from 1 to 20 in the next page.

n	x_1	Error	$\kappa(A_n)$
1	1.000000000000000000	-0.2817181715409549	1.000000000000000000
2	0.6666666666666667	0.0516151617923784	1.7675918792439982
3	0.75000000000000000	-0.0317181715409549	2.5615528128088298
4	0.7142857142857142	0.0039961141733309	2.2586960380558874
5	0.71875000000000000	-0.0004681715409549	3.6801516778795333
6	0.7179487179487180	0.0003331105103271	3.9538640020225495
7	0.7183098591549295	-0.0000280306958844	3.8476746091189153
8	0.7182795698924731	0.0000022585665720	5.3770375880477213
9	0.7182835820895522	-0.0000017536305071	5.7275818392893347
10	0.7182817182817183	0.0000001101773268	5.4988728328025962
11	0.7182818352059925	-0.0000000067469474	7.1003357703679963
12	0.7182818229439497	0.0000000055150954	7.5821646375997114
13	0.7182818287356958	-0.0000000002766507	7.1955317021216594
14	0.7182818284454013	0.0000000000136438	8.8331498923754399
15	0.7182818284705836	-0.0000000000115385	9.4880747300490409
16	0.7182818284585635	0.0000000000004816	8.9115586964085285
17	0.7182818284590651	-0.00000000000000200	10.5715228483523767
18	0.7182818284590280	0.0000000000000171	11.4201824603811897
19	0.7182818284590458	-0.00000000000000007	10.6381340746273825
_20	0.7182818284590452	-0.000000000000000001	12.3131996586543000

4 Observations

It can be observed that as n increases, the x_i component gets incrementally closer to the actual e-2 value. The condition number also gets incrementally bigger. It can be noticed, however, that a large condition number doesn't necessarily mean that the error will be large in all cases, just that it is possible to have a large error.