Programmieraufgaben

(1) (a) Bestimmen Sie experimentell mit einem Testprogramm die relative Maschinengenauigkeit eps in python, indem Sie folgenden Pseudo-Code umsetzen:

$$\begin{array}{l} \mathtt{eps} \leftarrow 1.0 \\ \mathbf{solange} \ 1.0 + \mathtt{eps} > 1.0 \ \mathbf{tue} \\ \mid \ \mathtt{eps} \leftarrow \mathtt{eps}/2 \\ \mathbf{Ende} \end{array}$$

(b) Zeichnen Sie den Graphen der Funktion

$$f: (0, 10^{-15}] \to \mathbb{R}: x \mapsto \frac{(1+x)-1}{x}$$

sowie der Funktion

$$f \colon \left(0, 10^{-15}\right] \to \mathbb{R} \colon x \mapsto \frac{\mathrm{e}^x - 1}{x}$$

mit python und erklären Sie jeweils den Verlauf der Graphen.

(2) (a) Bestimmen Sie jeweils die absolute Kondition der folgenden Funktionen und diskutieren Sie diese experimentell, indem Sie $|f(\tilde{x}) - f(x)|$ und $|\tilde{x} - x|$ vergleichen. Betrachten Sie hierbei verschiedene Werte für x und \tilde{x} .

(i)
$$f: \mathbb{R} \to \mathbb{R}: x \mapsto e^x$$
 (ii) $f: (0, \infty) \to \mathbb{R}: x \mapsto \ln(x)$

(b) Die Funktion $f: [0, \infty) \to \mathbb{R}: x \mapsto x\sqrt{x+1} - x\sqrt{x}$ kann äquivalent zu $f(x) = \frac{x}{\sqrt{x+1} + \sqrt{x}}$ umgeformt werden. Betrachten Sie folgende Algorithmen zur Auswertung von f.

Implementieren Sie beide Algorithmen in python. Berechnen Sie damit den Funktionswert an der Stelle $x=10^8$ sowie die absoluten Fehler $|f_1(\tilde{x})-f_1(x)|$ sowie $|f_2(\tilde{x})-f_2(x)|$ bei gestörten Werten \tilde{x} von $x=10^8$. Berechnen Sie technologieunterstützt die absolute Konditionszahl der Funktion f in $x=10^8$. Welcher der beiden Algorithmen ist warum vorzuziehen?

(3) (a) Schreiben Sie eine Funktion efun in python, welche eine Näherung an die Exponentialfunktion

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$

berechnet. Als Übergabewert sollen eine reelle Zahl x und die Toleranz tol verwendet werden. Die einzelnen Summanden $s_n = \frac{x^n}{n!}$ lassen sich rekursiv durch

$$s_0 = 1$$

$$s_n = \frac{x}{n} \cdot s_{n-1} \quad n \ge 1$$

berechnen. Sobald $|s_n| < tol$ ist, soll die Berechnung beendet werden und die Näherungslösung zurückgegeben werden.

- (b) Schreiben Sie eine neue Funktion efun2, welche bei Übergabe einer reellen Zahl x und Toleranz tol eine Näherung von e^x nach folgender Vorschrift berechnet:
 - Falls x < 0 bestimmen Sie erst e^{-x} näherungsweise mit Teilaufgabe (a) unter Verwendung der vorgegebenen Toleranz und berechnen Sie anschließend den Kehrwert $\frac{1}{e^{-x}}$. Um beispielsweise e^{-10} zu berechnen, berechnen Sie erst e^{10} mit obigem Algorithmus und bestimmen Sie dann den Kehrwert.
 - Für $x \ge 0$ berechnen Sie e^x mit dem Algorithmus aus Aufgabe (a) unter Verwendung der vorgegeben Toleranz.

Berechnen Sie den relativen Fehler Ihrer Näherungen für ausgewählte Werte von x sowie tol (beispielsweise tol = 0.1, 0.01, 0.001...) für beide Funktionen efun und efun2.

Theorieaufgaben

(4) Gegeben sei die Funktion

$$f \colon (-\infty, 1) \to \mathbb{R} \colon x \mapsto \begin{cases} \frac{\log(1-x) + x e^x}{x^2}, & x \neq 0\\ \frac{1}{2}, & x = 0. \end{cases}$$

- (a) Zeigen Sie, dass f in 0 differenzierbar ist.
- (b) Bestimmen Sie die absolute Kondition des Problems für x = 0.
- (c) Welches Ergebnis erhalten Sie, wenn Sie den obigen Ausdruck für $x = 10^{-10}$ in python berechnen? Wie erklären Sie sich das Ergebnis im Lichte von (b)?
- (d) Formulieren Sie einen stabilen Algorithmus für die Berechnung von f(x) für x nahe 0.
- (5) Die Nullstellen des Polynoms $x^2 2px q$ können mit den Formeln

$$x_1 = p + \sqrt{p^2 + q}, \qquad x_2 = p - \sqrt{p^2 + q}$$

berechnet werden. Im Folgenden seien p, q > 0 und $p \gg q$ vorausgesetzt. Zeigen Sie:

- (a) Das Problem ist gut konditioniert.
- (b) Obiger Algorithmus ist numerisch instabil (im Sinne der Vorwärtsanalyse).
- (c) Finden Sie mit Hilfe des Satzes von Vietá $(x_1x_2 = -q)$ einen numerisch stabilen Algorithmus.