Nuclear matter as a crystal of topological solitons

Derek Harland¹ Miguel Huidobro² **Paul Leask**^{1,3} Carlos Naya⁴ Martin Speight¹ Andrzej Wereszczynski⁵

¹University of Leeds

²Universidad de Santiago de Compostela

³KTH Royal Institute of Technology ⁴Universidad de Alcalá ⁵Jagiellonian University,

Solitons in the presence of vector mesons

- Large N_c -limit, QCD reduces to a weakly interacting theory of mesons, not only scalar but vector as well
- Can identify vector mesons with gauge multiplets of a minimally broken $SU(2)_L \otimes SU(2)_R \otimes U(1)_V$ gauge model [Phys. Rev. Lett. **56**, 1035 (1986)]
- The ω -meson can be introduced by gauging the U(1) vector symmetry, and it couples anomalously through the gauged Wess-Zumino term
- Skyrme stabilizing term related to the effects of the ρ -meson field in the $m_{\rho} \to \infty$ limit
- Sextic term represents $m_{\omega} \to \infty$ limit of the ω -meson [Phys. Lett. B 145, 101–106 (1985)]
- Natural to consider replacement of adhoc Skyrme term by explicit interactions with finite mass vector mesons

Solitons stabilized by ω -mesons

• Non-linear σ -model (NL σ M) coupled to an ω -meson [Phys. Lett. B 137, 251–256 (1984)]

$$\mathcal{L} = -\frac{1}{8\hbar^3} F_\pi^2 m_\pi^2 \text{Tr} \left(\text{Id}_2 - \varphi \right) - \frac{F_\pi^2}{16\hbar} \eta^{\mu\nu} \text{Tr} (L_\mu L_\nu) + \frac{m_\omega^2}{2\hbar^3} \eta^{\mu\nu} \omega_\mu \omega_\nu - \frac{1}{4\hbar} \eta^{\mu\alpha} \eta^{\nu\beta} \omega_{\mu\nu} \omega_{\alpha\beta} + \beta_\omega \omega_\mu \mathcal{B}^\mu$$

- Wess-Zumino interaction term $\beta_{\omega}\omega_{\mu}\mathcal{B}^{\mu}$ describes coupling of the ω -meson to three pions
- Coupling constant β_{ω} related to the $\omega \to \pi^+\pi^-\pi^0$ decay rate
- Lagrangian is singular and static Lagrangian not bounded below ⇒ non-trivial extremization
- In every Yang-Mills theory, the canonical momentum conjugate to the temporal component of the gauge field vanishes identically [Nucl. Phys. A 526, 453-478 (1991)]: $p_0 = \frac{\partial \mathcal{L}}{\partial (\partial u u_0)} = 0$
- Constitutes a primary constraint of the theory
- Dirac-Bergmann algorithm (singular Lagrangian \rightarrow constrained Hamiltonian system): conservation of this primary constraint in time results in a secondary constraint of the form

$$\beta_{\omega}\mathcal{B}_0 + m_{\omega}^2\omega_0 - \partial_{\mu}p_{\mu} = 0$$
 statics $\left(-\nabla^2 + m_{\omega}^2\right)\omega_0 = -\beta_{\omega}\mathcal{B}_0$

• Can be solved and used to eliminate the constrained degree of freedom, ω_0

Geometric formulation of the ω -NL σ M model

- Pion field: $\varphi:(M,g)\to(G,h)$
- ullet M an oriented Riemannian manifold, and G a compact Riemannian manifold (normally SU(2)
- Omega meson $\omega = \omega_{\mu} dx^{\mu} \in \Omega^{1}(M), \, \omega_{0} \in C^{\infty}(M)$
- Volume form $\Xi = \text{vol}_h/|G| \Rightarrow \mathcal{B}_0 = *_q \varphi^* \Xi$
- Statics: constrained variational problem [J. High Energ. Phys. 07, 184 (2020)]

$$E(\varphi,g) = \int_{M} \left(\frac{1}{8} |\mathrm{d}\varphi|^2 + \frac{1}{4} (V \circ \varphi) + \frac{1}{2} |\mathrm{d}\omega_0|^2 + \frac{1}{2} \omega_0^2 \right) \mathrm{vol}_g \ge 0,$$

subject to the constraint

- t $(\Delta_g + 1) \omega_0 = -c_\omega * \varphi^* \Xi, \quad c_\omega = \frac{m_\omega \beta_\omega}{E}$
- Critical points of this are solutions of the Euler-Lagrange equations associated to the unconstrained Lagrangian ${\cal L}$
- The constraint can be solved by a non-linear conjugate gradient method

Varying the metric

Consider the base space to be the 3-torus

$$(\mathbb{R}^3/\Lambda, g_{\text{Euc}}), \quad \Lambda = \{n_1 \vec{X}_1 + n_2 \vec{X}_2 + n_3 \vec{X}_3 : n_i \in \mathbb{Z}\}$$

 $F: (\mathbb{T}^3, g) \to (\mathbb{R}^3/\Lambda, g_{\mathsf{FUC}}), \quad x_1 \vec{X}_1 + x_2 \vec{X}_2 + x_3 \vec{X}_3$

- Key idea [Comm. Math. Phys. 332, 355-377 (2014)]: Identify all 3-tori via diffeomorphism
- The metric on $\mathbb{T}^3 \equiv \mathbb{R}^3/\mathbb{Z}^3$ is the pullback $g = F^*g_{\mathsf{Euc}} = g_{ij}\mathrm{d} x^i\mathrm{d} x^j,\ g_{ij} = \vec{X}_i\cdot\vec{X}_j$
- (\mathbb{T}^3, g) is equivalent to $(\mathbb{R}^3/\Lambda, g_{\mathsf{Euc}})$
- Vary metric g_s with $g_0 = F^*g_{\text{Euc}} \iff$ vary lattice Λ_s with $\Lambda_0 = \Lambda$
- Energy minimized over variations of $g \iff$ optimal Λ_{\diamond} [Phys. Rev. D 105, 025010 (2022)]

ω -NL σ M stress tensor

- To determine crystalline phases, we need to compute the stress tensor
- Given a smooth one-parameter family of variations (φ_s, g_s), soliton crystals are critical points of the energy $E(\varphi, g)$, that is solutions of [Phys. Lett. B 855, 138842 (2024)]

$$\frac{\mathrm{d}}{\mathrm{d}s}E(\varphi_s,g_s)\bigg|_{s=0} = \int_{\mathbb{T}^3} \mathrm{d}^3x \sqrt{g} \, \left(\Phi_A(\varphi,g)\dot{\varphi}_A + S_{ij}(\varphi,g)\dot{g}_{kl}g^{jk}g^{li}\right) = 0$$

- $S(\varphi,g) \in \Gamma(\odot^2 T^*\mathbb{T}^3)$ is the stress tensor and $\Phi \in \Gamma(\varphi^{-1}TSU(2))$ the tension field of φ
- The stress-energy tensor $S = S_{ij} dx^i dx^j$ associated to the energy

$$E(\varphi,g) = \int_{M} \left(\frac{1}{8} \left| \mathrm{d}\varphi \right|^2 + \frac{1}{4} (V \circ \varphi) + \frac{1}{2} \left| \mathrm{d}\omega_0 \right|^2 + \frac{1}{2} \omega_0^2 \right) \mathrm{vol}_g,$$

subject to the constraint

$$(\Delta_g + 1) \omega_0 = -c_\omega * \varphi^* \Xi,$$

is the section of $\operatorname{Sym}^2(T^*M)$ given by [J. High Energ. Phys. 06, 116 (2024)]]

$$S(\varphi,g) = \left(\frac{1}{16}|\mathrm{d}\varphi|^2 + \frac{1}{8}(V\circ\varphi) - \frac{1}{4}|\mathrm{d}\omega_0|^2 - \frac{1}{4}\omega_0^2\right)g - \left(\frac{1}{8}\varphi^*h - \frac{1}{2}\mathrm{d}\omega_0\otimes\mathrm{d}\omega_0\right)g$$

Coincides with stress tensor of the unconstrained problem

Massive soliton crystals

- For fixed Skyrme \mathcal{L}_{024} -field φ , there **exists a unique critical point** of $E(\varphi, g)$ w.r.t. variations of g (generalizes to \mathcal{L}_{0246} -model) [J. Math. Phys. **64**, 103503 (2023)]
- Four crystals were found with $B_{\rm cell}=4$: the $\varphi_{1/2},\,\varphi_{\alpha},\,\varphi_{\rm chain}$ and $\varphi_{\rm multiwall}$ crystals
- From $\varphi_{1/2}$, the other three crystals can be constructed by applying a chiral SO(4)transformation $Q \in SO(4)$, such that $\varphi = Q\varphi_{1/2}$, and minimizing $E(\varphi, g)$ w.r.t. variations of arphi and g
- These are

- These four crystals were also found in the ω -NL σ M model, with the ground state configuration dependent on the free parameters of the theory
- Related to symmetric scattering states of the $B=4~\alpha$ -particle [Phys. Lett. B 391, 150–156] (1997)]

Figure 1. The E/B per unit cell of soliton crystals as a function of cell volume in the massive Skyrme model

Bethe-Weizsäcker semi-empirical mass formula

• Can use soliton crystals to estimate coefficients in the Bethe-Weizsäcker SEMF

$$E_b = a_V B - a_S B^{2/3} - a_C \frac{Z(Z-1)}{B^{1/3}} - a_A \frac{(N-Z)^2}{B} + \delta(N,Z), \qquad \begin{cases} a_V \simeq 15.7 - 16.0 \, \text{MeV}, \\ a_S \simeq 17.3 - 18.4 \, \text{MeV} \end{cases}$$

- Method: approach the SEMF using α -particle approximation with n^3 α -particles
- Energy of a $B=4n^3$ chunk in the α -particle approximation:

$$E(B) = \frac{E_{\text{crystal}}^{\alpha}}{4}B + E_{S}^{\text{chunk}}, \quad E_{S}^{\text{chunk}} = 6n^{2}E_{\text{face}}^{\alpha} = \frac{6E_{\text{face}}^{\alpha}}{42/3}B^{2/3}$$

Classical binding energy of an isospin symmetric chunk:

$$E_b = BE_1 - E(B) = \left(E_1 - \frac{E_{\text{crystal}}^{\alpha}}{4}\right) B - \frac{3E_{\text{face}}^{\alpha}}{\sqrt[3]{2}} B^{2/3} \quad \Rightarrow \quad \begin{cases} a_V = E_1 - \frac{1}{4} E_{\text{crystal}}^{\alpha}, \\ a_S = \frac{3}{\sqrt[3]{2}} E_{\text{face}}^{\alpha} \end{cases}$$

- Only need to compute the nucleon mass E_1 , crystal energy $E_{
 m crystal}^{lpha}$ and the energy of a single face of an α -particle $E_{\rm face}^{\alpha}$
- Previous results for $SC_{1/2}$ crystal in the massless \mathcal{L}_{24} -Skyrme model: $a_V = 136$ MeV, $a_S = 320 \text{ MeV}$ [Nucl. Phys. A **596**, 611-630 (1996)]
- Our calculations for the ω -NL σ M model: $a_V = 15.6$ MeV, $a_S = 18.6$ MeV

Figure 2. Plot of the Bethe-Weizsäcker SEMF from the α -particle approximation for the ω -NL σ M model.

Compressibility of solitonic matter

• Energy of isospin symmetric nuclear matter [Phys. Rev. D 109, 056013 (2024)]

$$E(n_B)/B = E_0 + \frac{1}{2}K_0\frac{(n_B - n_0)^2}{9n_0^2} + \mathcal{O}\left((n_B - n_0)^3\right), \quad K_0/E_0 \approx 0.260$$

- Approximate dense nuclear matter as a large extended crystalline configuration composed of N unit cells
- Each unit cell has baryon number $B_{\rm cell}$ and volume $V_{\rm cell}$
- Baryon density is simply $n_B = NB_{\text{cell}}/(NV_{\text{cell}}) = B_{\text{cell}}/V_{\text{cell}}$
- In the thermodynamic limit $N \to \infty$, $E(n_B)/B \to E_{cell}/B_{cell}$
- $E_{\rm cell}$ is just the classical **static mass** of a soliton crystal $\to E_0 = E_{\rm cell}(n_0)/B_{\rm cell}$
- Can consider $E_{cell}(n_B)$ by varying the baryon density n_B or, equivalently, the unit cell volume $V_{\rm cell}$
- The compression modulus is thus

$$K_0 = \frac{9n_0^2}{B_{\text{cell}}} \frac{\partial^2 E_{\text{cell}}}{\partial n_B^2} \bigg|_{n_B = n_0} = \frac{9V_0^2}{B_{\text{cell}}} \frac{\partial^2 E_{\text{cell}}}{\partial V_{\text{cell}}^2} \bigg|_{V_{\text{cell}} = V_0}$$

- Fixed density variations requires replacing S_{ij} by its projection $S_{ij} \frac{1}{\text{Tr}_q(q)} S_{kl} g^{kl} g_{ij}$
- Previous results for $SC_{1/2}$ crystal $K_0/E_0 \ge 1$ [Phys. Rev. D **90**, 045003 (2014)]
- Ground state crystal with the lowest B.E. coupling constant: multiwall with $c_{\omega}=14.34$
- We find $E_0 = 917$ MeV and $K_0 = 370$ MeV \Rightarrow $|K_0/E_0 = 0.403|$