Noțiuni de bază în limbaje formale

Curs 2

S. Motogna - LFTC

Exemple de limbaje

- naturale (ex. Engleza, română)
- de programare (ex. C,C++)
- formale

• Exemplu: Un copil are un câine.

```
S \rightarrow PV

P \rightarrow un \ N

N \rightarrow copil \ sau \ N \rightarrow caine

(N \rightarrow copil \ | \ caine)

V \rightarrow QC

Q \rightarrow are

C \rightarrow AN

A \rightarrow un \mid o
```

- A $\rightarrow \alpha$ = regula
- S,P,V,N,Q,C,A = simboluri neterminale
- o,un,femeie,caine,are = simboluri terminale

Observatii

- Propozitia = cuvant sau secventa (contine doar simboluri terminale) si se va nota cu w.
- 2. S⇒PV⇒o NV⇒o NQC⇒o N are C -forma propozitionala

În general :
$$w=a_1a_2...a_n$$

 Regula de mai sus asigura corectitudinea sintaxei,dar NU asigura corectitudinea semantică

Gramatică

- Definiție: O gramatica (formala) este un cvadruplu : G=(N,Σ,P,S) avand urmatoarele semnificatii:
 - N multimea simbolurilor neterminale si |N| < ∞
 - Σ multimea simbolurilor terminale (alfabetul) si |Σ|i∞
 - P o multime finita,reprezentand multimea productiilor, avand proprietatea: $P \subseteq (N \cup \Sigma)^* \ N(N \cup \Sigma)^* \ X(N \cup \Sigma)^*$
 - S∈N simbol de start/axioma

Observații:

- 1. $(\alpha,\beta) \subseteq P$ este o productie notată $\alpha \rightarrow \beta$
- 2. $N \cap \Sigma = \emptyset$

Relații binare definite pe (N \cup Σ)*

derivare directă

$$\alpha \Rightarrow \beta$$
, $\alpha,\beta \in (N \cup \Sigma)^*$ dacă α =x1xy1, β =x1yy1 si x \rightarrow y \in P (x este transformat în y)

k derivare

$$\begin{array}{l} \alpha \stackrel{k}{\Rightarrow} \beta \text{ ,} \alpha, \beta \in (N \cup \Sigma)^* \\ \text{secventa de k derivari directe } \alpha \Rightarrow \alpha_1 \Rightarrow \alpha_2 \Rightarrow ... \Rightarrow \alpha_{k-1} \Rightarrow \beta, \alpha, \alpha_1, \alpha_2, ... \alpha_{k-1}, \beta \in (N \cup \Sigma)^* \end{array}$$

• + derivare

 $\alpha \stackrel{t}{\Rightarrow} \beta$ daca exista k>0 astfel incat $\alpha \stackrel{k}{\Rightarrow} \beta$ (exista cel putin o derivare directa)

• * derivare

 $\alpha \overset{*}{\Rightarrow} \beta \text{ daca exista k} \geq 0 \text{ astfel incat } \alpha \overset{k}{\Rightarrow} \beta \text{ adică, } \alpha \overset{*}{\Rightarrow} \beta \Leftrightarrow \alpha \overset{+}{\Rightarrow} \beta \text{ SAU } \alpha \overset{0}{\Rightarrow} \beta \text{ (}\alpha = \beta \text{)}$

Definitie: **Limbajul generat** de o gramatica $G=(N,\Sigma,P,S)$ este:

$$L(G)=\{w\in\Sigma^*\mid S\stackrel{*}{\Rightarrow}w\}$$

Observatii

- 1. $S \stackrel{*}{\Rightarrow} \alpha, \alpha \in (N \cup \Sigma)^* = \text{formă propozițională}$ $S \stackrel{*}{\Rightarrow} w, w \in \Sigma^* = \text{cuvânt / secvență}$
- 2. Operatiile definite pentru limbaje (mulțime) : L1 \cup L2 , L1 \cap L2 , L1-L2 , \overline{L} (complementara) , L+= $\bigcup_{k>0} L^k$, L*= $\bigcup_{k>0} L^k$

Concatenarea: $L=L_1L_2 = \{w_1w_2 \mid w_1 \in L_1, w_2 \in L_2\}$

3. |w|=0 (cuvântul vid - notatie ε)

Definitie: Doua gramatici G_1 si G_2 sunt echivalente daca ele genereaza acelasi limbaj

$$L(G_1)=L(G_2)$$

Ierarhia lui Chomsky (bazată pe forma $\alpha \rightarrow \beta \in P$)

- tipul 0 : nici o restrictie
- tipul 1 : gramatici dependente de context (x1Ay1 \rightarrow x1 γ y1)
- tipul 2 : gramatici independente de context (A \rightarrow α \subseteq P ,unde A \subseteq N si α \subseteq (N \cup Σ)*)
- tipul 3 : gramatici regulare (A \rightarrow aB | a \in P)

Observație:

tipul 3⊆tipul 2⊆tipul 1⊆tipul 0

Notații

- A,B,C,... pentru simboluri neterminale
- S = N pentru simbolul de start
- \circ a,b,c,... $\subseteq \Sigma$ pentru simboluri terminale
- $\circ \alpha, \beta, \gamma \subseteq (N \cup \Sigma)^*$ pentru forme propozitionale
- ε pentru cuvântul vid
- $\circ x,y,z,w \subseteq \Sigma^*$ pentru cuvinte
- \circ X,Y,U,... \in (N \cup Σ) pentru simboluri din gramatică (neterminal sau terminal)

Automate finite

Definiție: Un automat finit (AF) este un 5-tuplu

$$M = (Q, \Sigma, \delta, q0, F)$$

unde:

- Q este o multime finita de stari (|Q|<∞)
- Σ este un alfabet finit ($|\Sigma| < \infty$)
- δ este o functie de tranzitie : $\delta: Q \times \Sigma \rightarrow P(Q)$
- q_0 reprezinta starea initiala a automatului finit $q_0 \in Q$
- F⊆Q reprezinta multimea starilor finale

Observații

- 1. Q∩Σ=∅
- 2. $\delta: Q \times \Sigma \rightarrow P(Q)$, $\epsilon \subseteq \Sigma^0$ relation $\delta(q, \epsilon) = p$ **nu** este permisa
- 3. Daca $|\delta(q,a)| \le 1 = > un$ automat finit determinist (AFD)
- 4. Daca $|\delta(q,a)|>1$ (mai mult de o stare e obtinuta ca rezultat) => automat finit nedeterminist (AFN)

Proprietate: Pentru orice AFN M exista un AFD M' echivalent cu M

Configurație C=(q,x)

Unde:

- q este stare
- x este o secvență necitita de pe banda de intrare: x ∈ ∑*

```
Configurația inițială : (q_0,w), w - întreaga secventa
Configurarea finala : (q_f,\epsilon), q_f \in F, \epsilon este secventa vidă
(corespunde intotdeauna acceptarii)
```

Relații definite între configurații

- \vdash tranziție (simplă, într-un pas, en. *move*) (q,ax) \vdash (p,x), p \in δ (q,a)
- $\stackrel{k}{\vdash}$ k tranziție = o secvență de k tranziții directe) $C_0 \vdash C_1 \vdash ... \vdash C_k$
- $\stackrel{+}{\vdash}$ + tranziție C $\stackrel{+}{\vdash}$ C' : \exists k>0 astfel încât C $\stackrel{k}{\vdash}$ C'
- * tranziție (tranziție stelată)
 C * C' : ∃ k≥0 astfel încât

Definitie: **Limbajul** acceptat de AF M = (Q,Σ,δ,q0,F) este : L(M)={
$$w \in \Sigma^* \mid (q_0,w) \vdash^* (q_f,\epsilon), q_f \in F$$
 }

Observații

1. 2 automate finite M_1 si M_2 sunt echivalente daca si numai daca genereaza acelasi limbaj

$$L(M_1)=L(M_2)$$

1. $\varepsilon \in L(M) \Leftrightarrow q_0 \in F$ (starea inițială este și stare finală)

Reprezentări AF

• |-