- Cada questão contribui 0.2 pontos para Prova 1. **Prazo de entrega fixo**: antes da prova.
- As questões são individualizadas e se referem aos números do cartão n_1, n_2, \ldots, n_8 (com dígitos 1 na esquerda para completar 8 dígitos, caso necessário). Exemplo: para cartão 93350 temos $n_1 = 1, n_2 = 1, n_3 = 1, n_4 = 9, n_5 = 3, n_6 = 3, n_7 = 5, n_8 = 0.$

Exercícios Prova 1

Questão 1 (Fabricação)

Uma empresa está interessada em maximizar o lucro mensal de quatro de seus produtos. Para fabricar esses produtos ela utiliza dois tipos de máquinas (M1 e M2) e dois tipos de matéria prima que têm as seguintes disponibilidades:

Máquinas	Tempo Disponível (máquina-hora/mês)		Disponibilidade (unidades/mês)
M1	80	MP1	120
M2	20	MP2	160

O setor técnico da empresa fornece os seguintes quadros de produtividade:

• Máquinas-hora necessárias para produzir uma unidade de cada produto:

Máquinas	Produtos			
	P1	P2	Р3	P4
M1	n_1	n_2	n_3	n_4
M2	n_5	n_6	n_7	n_8

• Matéria prima necessárias para produzir uma unidade de cada produto:

Matéria-prima	Produtos			
	P1	P2	Р3	P4
MP1	2	4	2	8
MP2	7	3	0	7

O setor comercial da empresa fornece os seguintes informações:

Produtos	Máximo de vendas (Unidades/Mês)	Lucro Unitário (Reais/Unidade)
P1	70	10
P2	60	8
P3	40	9
P4	20	7

Deseja-se saber a produção mensal dos produtos para que o lucro mensal da empresa seja o máximo. Formule um modelo de programação linear.

Questão 2 (Eleicões)

Um político quer ganhar uma eleição e precisa, para isso, conseguir pelo menos 50% dos votos na cidade (500000 habitantes), no subúrbio (300000 habitantes), e no interior (100000 habitantes). A seguinte tabela mostra a quantidade de votos obtidos por cada R\$ 1000 investidos em diversos tópicos da campanha:

Tópico / Votos	Cidade Subúrbio Interior (em 1000 votos)			
Infraestrutura	$-n_8$	2	5	
Segurança	8	n_7	0	
Subvenções agrárias	-3	0	n_6	
Impostos	n_5	-1	4	

Formula um programa linear que garante a eleição minimizando o investimento total na campanha.

Questão 3 (Formulação Matemática)

Anualmente as bruxas festejam durante a Noite de Santa Valburga no Blocula. Neste ano eles querem comer algo especial e escolheram como ingredientes línguas de cotovia, narizes de lontras, baços de ocelote, e fígados de carriças. Como tais ingredientes são difíceis de conseguir, eles podem usar somente as quantidades máximas mostradas na tabela abaixo. Cada ingrediente possui uma quantidade de energia oculta e de Ψ por grama, também mostrado na tabela. As bruxas querem maximizar a energia oculta garantindo que o Ψ médio resultante é entre 3 e 5. Além disso, para um bom gosto, é necessário manter a proporção de baços de ocelote entre 1.5 e 2 vezes da quantidade de fígados de carriças. Ajuda-las formulando um programa linear que determina as quantidades ótimas.

Ingrediente	Quant. máx. disp. (g)	Energia oculta (por g)	Ψ (por g)
Línguas de cotovia	200	31	3
Narizes de lontras	500	41	7
Baços de ocelote	350	$10n_4 + n_5$	7
Fígados de carriças	100	26	2

(Lembre-se de que n_4 e n_5 são o quinto e o quarto dígitos a partir da direita da cartão.)

Questão 4 (Solução de sistemas lineares)

Resolve usando o método Simplex aplicando a regra de Bland.

maximiza
$$x_1 + 2x_2 + 2x_3$$

sujeito a $5x_1 + 2x_2 + 3x_3 \le 10n_7 + n_8$,
 $x_1 + 4x_2 + 2x_3 \le 12$,
 $-2x_1 - x_3 \ge -8$,
 $x_1, x_2, x_3 \ge 0$.

(Lembre-se de que n_7 e n_8 são os últimos dois dígitos da cartão.)

- a) Qual o sistema em forma normal?
- b) Precisa-se aplicar a fase I? Por quê? Caso sim, qual a solução ótima do sistema auxiliar e seu valor? Caso não, o que podemos concluir?
- c) Explique brevemente a regra de Bland.
- d) Precisa-se aplicar a fase II? Por quê? Caso sim, qual a solução ótima do sistema original e seu valor? Caso não, o que podemos concluir?

Questão 5 (Solução de sistemas lineares)

Resolve usando o método Simplex.

maximiza
$$3x_1 + n_6 x_2 + 3x_3$$

sujeito a $2x_1 + x_2 + x_3 \le 2$,
 $3x_1 + 4x_2 + 2x_3 \ge 8$,
 $x_1, x_2, x_3 \ge 0$.

(Lembre-se de que n_6 é o terceiro dígito da direita da cartão.)

- a) Qual o sistema em forma normal?
- b) Precisa-se aplicar a fase I? Por quê? Caso sim, qual a solução ótima do sistema auxiliar e seu valor? Caso não, o que podemos concluir?
- c) Precisa-se aplicar a fase II? Por quê? Caso sim, qual a solução ótima do sistema original e seu valor? Caso não, o que podemos concluir?

3