LISTING OF CLAIMS

This Listing of Claims replaces all prior versions and listings of claims in this application.

(Currently amended) A signal processing apparatus (400;800) comprising: a demodulator (407;900) arranged to demodulate a received signal, which carries consecutive symbols (a₁,..., a₄) at a symbol rate, wherein the demodulator (407;900) is arranged, based on sample values of the received signal, to calculate an error value [[(φ_m)]] of a given symbol relative to a decision-directed determination of an expected symbol value [[(θ̂)]]; and

a phase-shifter (406,409;801;1002,1013) arranged to shift [[the]] <u>a</u> phase of sampling points in time at which points in time, sample values of the received signal [[is]] <u>are provided to the demodulator (407;1000)</u>; <u>and</u>

CHARACTERIZED IN THAT the apparatus (400;900) comprises

a processor (408;601;1000) arranged to evaluate an error metric $[[(\tau)]]$, at the symbol rate, for a given symbol as a function of the error value $[[(\phi)]]$ and symbol values $[[(\hat{\theta};\theta)]]$, and to determine whether to shift the phase of the sampling points in time based on further evaluation of the error metric $[[(\tau)]]$.

- 2. (Currently amended) A signal processing apparatus according to claim 1, CHARACTERIZED IN THAT wherein the error metric [[(τ)]] is a function of symbol values [[($\hat{\theta}_{m-1}$; $\hat{\theta}_{m+1}$; θ_{m-1} ; θ_{m+1})]] for symbols preceding and succeeding the given symbol [[(m)]].
- 3. (Currently amended) A signal processing apparatus according to claim 1 or 2, CHARACTERIZED IN THAT, wherein the error metric [[(τ)]] is a function of expected symbol values [[$\hat{\theta}$]].
- 4. (Currently amended) A signal processing apparatus according to any of claims 1-3, CHARACTERIZED 1N THAT claim 1, wherein the demodulator (407;900) is configured as a Phase Shift Keying (PSK) demodulator or a Differential Phase Shift Keying (DPSK) demodulator.

- 5. (Currently amended) A signal processing apparatus according to any of claims 1-4, CHARACTERIZED IN THAT claim 1, wherein the error metric $[[(\tau)]]$ is a function of the phase error value $[[(\phi_m)]]$ of a given symbol relative to the decision-directed determination of an expected symbol phase value $[[(\hat{\theta}_m)]]$, the phase value of a previous symbol $[[(\theta_{m-1})]]$, and the phase of a succeeding symbol $[[(\theta_{m+1})]]$.
- 6. (Currently amended) A signal processing apparatus according to any of claims 1-5, CHARACTERIZED IN THAT claim 1, wherein the error metric [[(τ)]] is a function of the phase error [[(ϕ_m)]] of the received symbol [[(m)]] multiplied by [[the]] a difference between the phase [[(θ_{m-1})]] of a previous symbol [[(m-1)]] and the phase [[(θ_{m+1})]] of a succeeding symbol [[(m+1)]].
- 7. (Currently amended) A signal processing apparatus according to any of claims 1-6, CHARACTERIZED IN THAT claim 1, wherein the error metric (τ) is composed of includes a first term $[[(\tau^e_m),]]$ representing that the sampling phase is advanced in time and a second term $[[(\tau^l_m),]]$ representing that the sampling phase is delayed in time relative to an optimal sampling phase $[[(\tau)]]$.
- 8. (Currently amended) A signal processing apparatus according to any of claims 1-7, CHARACTERIZED IN THAT claim 7, wherein the first term [[(τ^e_m),]] is the phase error of the received symbol [[(m)]] multiplied by the phase [[(θ)]] of [[the]] a succeeding symbol [[(m+1)]], and the second term [[(τ^l_m)]] is the phase error [[(ϕ)]] of the received symbol [[(m)]] multiplied by the phase [[(ϕ)]] of [[the]] a preceding symbol [[(m-1)]].
- 9. (Currently amended) A signal processing apparatus according to any of claims 1-8, CHARACTERIZED IN THAT claim 1, wherein the demodulator (407;900) is arranged to calculate a variable [[(τ^{tt})]] for time tracking based on an accumulated sum of the error metric [[(τ)]].
- 10. (Currently amended) A signal processing apparatus according to any of claims 1-9, CHARACTERIZED IN that claim 9, wherein the processor (408;601;1000) is arranged to determine whether to shift the phase, based on the accumulated sum [[(τ^{tt})]] of the error metric.

;

- 11. (Currently amended) A signal processing apparatus according to any of claims 1-10, CHARACTERIZED IN that claim 1, wherein the error metric [[(τ)]] expresses Inter Symbol Interference based on an estimate, which is based on an estimated impulse response for a transmission channel [[(103)]] over which the symbol is transmitted prior to being input to the signal processing apparatus [[(800)]].
- 12. (Currently amended) A signal processing apparatus according to any of claims 1-11, CHARACTERIZED IN THAT claim 1, wherein the apparatus comprises a sampler (405,404) arranged to sample the signal at an over sampling ratio OSR, which provides OSR samples per symbol; and [[that]] the phase-shifter (406,409) is arranged to control which out of every N samples [[that]] is to be provided to the demodulator [[(107)]].
- 13. (Currently amended) A signal processing apparatus according to any of claims 1-12, CHARACTERIZED IN THAT claim 1, wherein the demodulator (407;900) is arranged to calculate the error value $[[(\phi_m)]]$ of a given symbol additionally, relative to a reference value (ψ) , wherein and the reference value is calculated, based on a calculated error value $[[(\phi_{m-1})]]$ of previously received symbols.
- 14. (Currently amended) A mobile telephone CHARACTERIZED IN comprising a signal processing apparatus [[(800)]] as set forth in any of the claims 1-13 claim 1.
- 15. (Currently amended) A method of processing a signal, comprising the steps of:

demodulating a received signal, which carries consecutive symbols $(a_4,...,a_4)$ at a symbol rate, and

based on sample values of the received signal, calculate calculating an error value [[(ϕ_m)]] of a given symbol relative to a decision-directed determination of an expected symbol value [[$(\hat{\theta})$]]; and

shifting the phase of sampling points in time; <u>and</u>

CHARACTERIZED IN further comprising the step of

evaluating an error metric $[[(\tau)]]$, at the symbol rate, for a given symbol as a function of the error value $[[(\phi)]]$ and symbol values $[[(\hat{\theta};\theta)]]$, and

•

to determine determining whether to shift the phase of the sampling points in time based on further evaluation of the error metric $[(\tau)]$.

- 16. (Currently amended) A method of processing a signal according to claim 15, CHARACTERIZED IN THAT wherein the error metric [[(τ)]] is a function of symbol values [[($\hat{\theta}_{m-1}$; $\hat{\theta}_{m+1}$; θ_{m-1} ; θ_{m+1})]] for symbols preceding and succeeding the given symbol [[(m)]].
- 17. (Currently amended) A method of processing a signal according to claim 15 or 16, CHARACTERIZED IN THAT, wherein the error metric $[(\tau)]$ is a function of expected symbol values $[\hat{\theta}]$.
- 18. (Currently amended) A method of processing a signal according to any of claims 15-17, CHARACTERIZED IN THAT claim 15, wherein the demodulation is Phase Shift Keying (PSK) demodulation or Differential Phase Shift Keying (DPSK) demodulation.
- 19. (Currently amended) A method of processing a signal according to any of claims 15–18, CHARACTERIZED IN THAT claim 15, wherein the error metric $[(\tau)]$ is a function of the phase error value $[(\phi_m),]$ of a given symbol relative to the decision-directed determination of an expected symbol phase value $[(\hat{\theta}_m)]$, the phase value of a previous symbol $[(\theta_{m-1})]$, and the phase of a succeeding symbol $[(\theta_{m+1})]$.
- 20. (Currently amended) A method of processing a signal according to any of claims 15–19, CHARACTERIZED IN THAT claim 15, wherein the error metric [[(τ)]] is a function of the phase error [[(ϕ_m)]] of the received symbol [[(m)]] multiplied by [[the]] \underline{a} difference between the phase [[(θ_{m-1})]] of a previous symbol [[(m-1)]] and the phase [[(θ_{m+1})]] of a succeeding symbol [[(m+1)]].
- 21. (Currently amended) A method of processing a signal according to any of claims 15-20, CHARACTERIZED IN THAT claim 15, wherein the error metric (τ) is composed of includes a first term $[(\tau^e_m)]$ representing that the sampling phase is advanced in time and a second term $[(\tau^l_m)]$ representing that the sampling phase is delayed in time relative to an optimal sampling phase $[(\tau)]$.

·

- 22. (Currently amended) A method of processing a signal according to any of claims 15-21, CHARACTERIZED IN THAT claim 21, wherein the first term $[(\tau^e_m)]$ is the phase error $[(\phi)]$ of the received symbol [(m)] multiplied by the phase $[(\phi)]$ of the succeeding symbol [(m+1)], and the second term $[\tau^l_m]$ is the phase error $[(\phi)]$ of the received symbol [(m)] multiplied by the phase $[(\phi)]$ of the preceding symbol [(m-1)].
- 23. (Currently amended) A method of processing a signal according to any of claims 15-22, CHARACTERIZED IN THAT claim 15, wherein the demodulation comprises calculation of a variable $[[(\tau^{tot})]]$ for time tracking based on an accumulated sum of the error metric $[[(\tau)]]$.
- 24. (Currently amended) A method of processing a signal according to any of claims 15-23, CHARACTERIZED IN THAT claim 23, wherein the evaluation comprises determination of whether to shift the phase, based on the accumulated sum (τ^{tot}) of the error metric variable for time tracking.
- 25. (Currently amended) A method of processing a signal according to any of claims 15-24, CHARACTERIZED 1N THAT claim 15, wherein the error metric $[[(\tau)]]$ expresses Inter Symbol Interference based on an estimate, which is based on an estimated impulse response for a transmission channel [[(103)]] over which the symbol is transmitted prior to being received.
- 26. (Currently amended) A method of processing a signal according to any of claims 15-25, CHARACTERIZED IN claim 15, further comprising the step of sampling the signal at an over sampling ratio OSR, which provides OSR samples per symbol; and [[that]] the step of shifting the phase involves controlling which out of every N samples [[that]] is to be provided for demodulation.
- 27. (Currently amended) A method of processing a signal according to any of claims 15-26, CHARACTERIZED IN THAT claim 15, wherein the demodulating includes calculating the error value of a given symbol relative to a reference value, and the reference value is calculated, based on a calculated error value $[(\phi_{m-1})]$ of previously received symbols.