Norwegian University of Science and Technology

DEPARTMENT OF COMPUTER AND INFORMATION SCIENCE

MID-TERM EXAM TDT4258 MICROCONTROLLER SYSTEM DESIGN

Wednesday 3th Mars 2010

Time: 1615 - 1745

Allowed material: D: No printed or handwritten material allowed

Specific, simple calculator allowed

Use the table provided on the final sheet to provide your answers

Set type English E

Correct answer: 2.5 points Wrong answer: -0,5 points Unanswered: 0 points

Multiple answers on one question: -0,5 points!

The mid-term yields a maximum of 20 points, which are then recalculated to account for 20% of the final grade.

ANSWERS ARE TO BE SUBMITTED ON A SEPARATE SHEET ATTACHED AS THE FINAL PAGE

a) Given the information in the figure, what statement is correct?

- **A1.** The figure shows a computer with a typical accumulator architecture
- **A2.** The figure shows a von Neumann architecture computer
- **A3.** The figure shows a Harvard architecture computer
- A4. From the information in the figure, a RISC implementation can be excluded
- **A5.** From the information in the figure, a CISC implementation can be excluded
- b) At what level in the design process is a block diagram a suitable abstraction level?
- **B1.** Requirements
- **B2.** Specification
- **B3.** Architecture
- **B4.** Components
- **B5.** System integration
- c) What claim regarding interrupts is **not** correct??
- C1. NMI is an interrupt used by units that include non-volatile memory
- C2. NMI is an interrupt at the highest level that can not be masked by users
- **C3.** In the *interrupt priority register* the user can specify what I/O unit that should have the highest priority if several I/O units signal an interrupt at the same time
- **C4.** The *interrupt register* indicates what source that requested an interrupt
- C5. Using interrupts instead of busy wait free CPU time

d) In the figure some of the internal architecture of an ARM processor is shown. Use the figure to find what claim that is **not** correct (alternatively that statement D5 is correct)?

- **D1.** It is possible to do an addition of two registers and write the result back to one of the two registers in one operation, e.g. R0 = R0 + R3
- **D2.** It is possible to do an ALU operation between two registers and write the result back to a third register in one operation, e.g. R0 = R2 + R3
- **D3.** The processor supports multiplication
- **D4.** It is possible to do instructions that supports shift in combination with ALU operations, e.g. R0 = R2 + (R3 << 1)
- **D5.** All the above statements are correct

e) Given a system, shown in the figure, with a 16-bit microcontroller with 8 general 16-bit registers, 16-bit fixed instruction size, 128KB of cache 16MB of off-chip DRAM, which one of the following statements is **not** correct (alternatively that statement E5 is correct)?

- **E1.** In this system, memory access time will be non-deterministic compared to a system with no cache
- **E2.** Average memory access time (tav) will be: $tav = h * t_{cache} + (1-h) * t_{main}$

h: cache hit rate

t_{cach}: cache access time

 t_{main} : main memory access time

- **E3.** This system only include *L1 cache*
- **E4.** All memory access is done by the cache controller
- **E5.** All the above statements are correct

f) The figure shows how a processor alternate between executing instruction in a program (foreground) and executing instructions in interrupt routines for three I/O units (A, B and C). From the information in the figure, how are the interrupts prioritized?

- **F1.** All interrupts has equal priority
- **F2.** A has higher priority then B
- **F3.** C highest, thereafter B and A lowest
- **F4.** B highest, thereafter A and C lowest
- **F5.** B has higher priority then A
- **g)** Hvilken påstand om prosesser er **ikke** riktig?
- **G1.** Kontekstbyttefrekvens kan påvirke hurtigbufferutnyttelse
- **G2.** En prosess som etterspør data som må hentes fra hovedlager (eng: *main memory*) vil av scheduleren vanligvis settes i en ventende tilstand (eng: *waiting*).
- **G3.** Semaforer kan alltid implementeres i et program ved å utføre to etterfølgende instruksjoner, en som tester en verdi, og en som setter verdien basert på foregående test.
- **G4.** POSIX støtter valg av scheduleringsmetode for hver enkelt prosess
- **G5.** Co-operative multitasking er sårbart med tanke på prosesser som "henger" (slutter å respondere)
- h) Hvilken påstand om nettverk og kommunikasjon er ikke riktig?
- H1. OSI-modellen abstraherer nettverkskommunikasjon med en 7-lags modell
- **H2.** I²C-bussen benytter to linjer, SDL (serial data line) og SCL (serial clock line)
- **H3.** En I²C-buss kan ha flere mastere

Side 6 av 8

H4. En I²C-overføring inkluderer et CRC-felt for feildeteksjon **H5.** En CAN-buss kan benytte et tvunnet par som sitt overføringsmedium

Stu	deni	hnun	nmer

Stu	dieprogr	am
Diu	arcprogr	ani.

Answering table:

Mark with a cross the box that gives the correct answer for each question. Be warned that the **answers are NOT provided in order**. Double check that your crosses provide the intended answers.

a)	A1	A3	A2	A4	A5
b)	B5	B1	В3	B2	B4
c)	C4	C5	C1	C3	C2
d)	D2	D4	D5	D1	D3
e)	E3	E2	E4	E5	E1
f)	F1	F3	F2	F4	F5
g)	G5	G1	G3	G2	G4
h)	H4	Н5	H1	Н3	H2

Deliver only this answer table Keep the questionare

REMEMBER TO WRITE BOTH YOUR STUDENT ID NUMBER AND PROGRAM OF STUDY

DO NOT TURN **BEFORE** BEING **ALLOWED** TO DO SO!