Fractals Avoiding Fractal Sets

Jacob Denson

November 21, 2018

1 A Discrete Building Block

We now develop a technique which we will use repeatedly to construct solutions to the fractal avoidance problem. It depends very little on the Euclidean structure of the plane, and as such, we rephrase the construction as a combinatorial problem on graphs. Recall that an n uniform hypergraph if a collection of vertices and hyperedges, where a hyperedge is a set of n distinct vertices. We say such a graph is hypartite if we can partition the vertex set into n sets V_1, \ldots, V_n , such that each edge in the graph contains exactly one vertex from each set. An independent set is a subset of vertices containing no complete set of vertices in any edge. A coloring is a partition of the vertex set into finitely many classes, and we call each such class a color. The next lemma is a variant of Turán's theorem on the construction of independant sets, generalized for hypergraphs. For technical reasons, we need an extra restriction on the vertex set so it is 'uniformly' chosen over the graph, which is the reason for the coloring.

Lemma 1. Let G be an n uniform hypergraph together with a coloring partitioning each vertex set into size A independant sets. Then we can find an independent set U containing all but $(n/A^n)|E|$ of the colors.

Proof. Let U be a vertex set chosen by randomly selecting a vertex of each color. Then each vertex in the graph is selected with probability 1/A. For each edge $e = (v_1, \ldots, v_n)$ in the graph, we know that the vertices v_i all have different colors, so they are added to U independently, and so the chance that this edge connects vertices in the set we have constructed is

$$\mathbf{P}(v_1 \in U, \dots, v_n \in U)$$

$$= \mathbf{P}(v_1 \in U) \dots \mathbf{P}(v_n \in U) = 1/A^n$$

Thus if we let E' denote the set of all edges $e = (u_1, \ldots, u_n)$ with $u_1, \ldots, u_n \in U$, then

$$\mathbf{E}|E'| = \sum_{e \in E} \mathbf{P}(e \in E') = \sum_{e \in E} 1/A^n = \frac{|E|}{A^n}$$

In particular, we may choose a particular, nonrandom choice U for which $|E'| \leq |E|/A^n$. If we form a vertex set $W \subset U$ by removing all vertices $u \in U$ which are a vertex in some edge in E', then W is an independant set containing all but $n|E'| \leq (n/A^n)|E|$ colors. \square

Corollary. If $|V| \gtrsim N^a$, $|E| \lesssim N^b$, and $A \gtrsim N^c$, where b < a + c(n-1), then as $N \to \infty$ we can find an independent set containing all but a fraction o(1) of the colors.

Proof. A simple calculation on the quantities of the previous lemma yields

$$\begin{split} \frac{\#(\text{colors removed})}{\#(\text{total colors})} &= \frac{(n/A^n)|E|}{|V|/A} \\ &= \frac{n|E|}{|V|A^{n-1}} \lesssim \frac{N^b}{N^{a+c(n-1)}} \end{split}$$

This is
$$o(1)$$
 if $b < a + c(n-1)$.

We now apply these constructions on graphs to a problem which is quite clearly related to the fractal avoidance problem, and will form our key building block to constructing solutions to the problem. Given a fixed integer N, we subdivide \mathbf{R}^d into a grid of sidelength 1/N cubes, the collection of such cubes we will denote by \mathcal{I} .

Theorem 1. Suppose that $dim_{\mathbf{M}}(Y) < \alpha$. If $\mathcal{I}_1, \ldots, \mathcal{I}_n$ are disjoint collections of length 1/N cubes in \mathcal{I} , with $|\mathcal{I}_i| \gtrsim N^d$ for each i, then provided $\beta > d(n-1)/(n-\alpha)$, we can find a collection of length $1/N^{\beta}$ cubes $\mathcal{I}_1, \ldots, \mathcal{I}_n$ with $\mathcal{I}_1 \times \cdots \times \mathcal{I}_n$ disjoint from Y and as $N \to \infty$, each \mathcal{I}_i contains a cube in all but o(1) of the cubes in \mathcal{I}_i .

Proof. For sufficiently large N, if we partition \mathbf{R}^{nd} into a grid of length $1/N^{\beta}$ cubes, and if \mathcal{K} is the collection of all these cubes intersecting Y, then $|\mathcal{K}| \lesssim N^{\alpha\beta}$. Similarly, we partition each \mathcal{I}_i into a grid of length $1/N^{\beta}$ cubes \mathcal{I}'_i , using these cubes as vertices in a hypartite graph G with a hyperedge between $I_1 \in \mathcal{I}'_1, \ldots, I_n \in \mathcal{I}'_n$ if $I_1 \times \cdots \times I_n \in \mathcal{K}$. We say two cubes in G are the same color if they are contained in a common cube in \mathcal{I}_i . Using the fact that

a sidelength 1/N cube contains $N^{d(\beta-1)}$ sidelength $1/N^{\beta}$ cubes, we conclude

 \bullet The number of vertices in G is

$$\sum |\mathcal{I}_i'| = N^{d(\beta-1)} \sum |\mathcal{I}_i| \gtrsim N^{d\beta}$$

- The number of edges is bounded by $|\mathcal{K}| \lesssim N^{\alpha\beta}$.
- Each color in G contains $N^{d(\beta-1)}$ vertices.

Thus in the terminology of the previous corollary, $a = d\beta$, $b = \alpha\beta$, and $c = d(\beta - 1)$, and the inequality in the hypothesis of this theorem is then equivalent to the inequality in the hypothesis of the corollary. \square

The value $d(n-1)/(n-\alpha)$ is directly related to the Hausdorff dimension $(n-\alpha)/(n-1)$ we obtain for solutions to the fractal avoidance problem in our main result. Any improvement on this bound for any special case of the fractal avoidance problem would immediately lead to improvements on the Hausdorff dimension of the resulting set. However, since this hypergraph result is tight in general, we believe that for the class of problems we consider, our construction is tight.

2 A Fractal Avoidance Set

We construct our solution X to the fractal avoidance problem by breaking down the problem into a sequence of discrete configuration problems on disecting cubes which lead to the complete fractal avoidance problem in the limit. The central idea of this construction was first used by Pramanik and Fraser (TODO: Insert Citation) in their general constructions to configuration avoidance problems. We construct $X = \lim X_N$, where each X_N is a union of cubes of a fixed length, and X_{N+1} is obtained from X_N by taking a certain subset of cubes in X_N , and dissecting this subset, subdividing the cube into cubes of a smaller sidelength and removing a portion of them. We will associate with each N a disjoint collection of sidelength L_N cubes $\mathcal{I}_1(N), \ldots, \mathcal{I}_n(N)$, with all such cubes contained in X_N . The previous section immediately allows us to find a collection of sidelength $L_N^{\beta_n}$ cubes $\mathcal{J}_1(N) \subset \mathcal{I}_1(N), \dots, \mathcal{J}_n(N) \subset$ $\mathcal{I}_n(N)$ with $\mathcal{J}_1(N) \times \cdots \times \mathcal{J}_n(N)$ disjoint from Y, with β_n converging to $d(n-1)/(n-\alpha)$ from above. We then form X_{N+1} from X_N by removing each part of an cubes in $\mathcal{I}_i(N)$ which is not contained in an cubes in $\mathcal{J}_i(N)$, for each index i. We choose $X_0 = [0,1]$ as an initial to start off our construction.

There is only a simple constraint required on the parameters to this construction to ensure that X is a

solution to the fractal avoidance problem: For any choice of distinct $x_1, \ldots, x_n \in X$, there exists N such that for each i, x_i is contained in a cube in $\mathcal{I}_i(N)$. Since we surely know $x_1, \ldots, x_n \in X_{N+1}$, it then follows that $x_1 \in \mathcal{J}_1(N), \ldots, x_n \in \mathcal{J}_n(N)$, and so the tuple (x_1, \ldots, x_n) are contained in a cube in $\mathcal{J}_1(N) \times \mathcal{J}_n(N)$, which is disjoint from Y.

We achieve the constraint to the construction by choosing our parameters subject to a dynamically changing queue consisting (I_1, \ldots, I_n) , where I_1, \ldots, I_n are disjoint cubes. To get the process tarted, we can initialize the queue to begin with the tuple $([0, 1/n], [1/n, 2/n], \dots, [(n-1)/n])$. At each step N of our process, we take off the front tuple (I_1,\ldots,I_n) , subdivide X_N into a grid of length L_N cubes, and for each i, set $\mathcal{I}_i(N)$ to be the set of all such length L_N cubes which are contained in I_i . After this is done, we have a subdivision of X_{N+1} into length L_N^{β} cubes, and we add each choice of n length L_N^{β} disjoint intervals in X_{N+1} in this subdivision to the end of the queue. The queue grows inconcievably fast over time, but in the limit, every subdivision is processed. Provided that $L_N \to 0$, for any distinct $x_1, \ldots, x_n \in X$ there is L_N with $|x_i - x_j| \ge 2L_N$, and so on the step N, we will add intervals I_1, \ldots, I_n with $x_1 \in I_1, \ldots, x_n \in I_n$ to the end of the queue, and so eventually considered much further on in the construction. Thus we conclude that X is a solution to the fractal avoidance problem.

3 Dimension Bounds

To complete the proof, it suffices to choose the parameters L_N and β_N which lead to the correct Hausdorff dimension bound on X. The 'uniformity' result present in our discrete construction will aid us in eliminating the superexponentially increasing constants which emerge from the exponentially decrasing values of L_N we are forced to pick.

To prove the dimension bounds on X, we rely on the mass distribution principle to construction a probability measure μ on X from which we can apply Frostman's lemma. We begin by putting the uniform probability measure μ_0 on $X_0 = [0,1]$. Then, at each stage of the construction, we construction μ_{N+1} from the measure μ_N supported on X_N by taking the mass of μ_N supported on a certain length L_{N-1} interval in X_N , and uniformly distributing it over the length L_N intervals contained with this interval which remain in X_{N+1} . Then we just use the weak compactness of the unit ball in $L^1(\mathbf{R}^d)^*$ to construct a weak limit $\mu = \lim \mu_n$, and μ is supported on X. It should be intuitive that the mass will be distributed more thinly

at each stage the fatter the intervals that are kept at each stage, and thus Frostman's lemma will obtain a

higher Hausdorff dimension bound.

Lemma 2. s

References

- [1] I. Z. Ruzsa Difference Sets Without Squares
- [2] Tamás Keleti A 1-Dimensional Subset of the Reals that Intersects Each of its Translates in at Most a Single Point
- [3] Robert Fraser, Malabika Pramanik Large Sets Avoiding Patterns
- [4] B. Sudakov, E. Szemerédi, V.H. Vu On a Question of Erdös and Moser