Théorie des distributions et espaces de Sobolev

Raphaël Bigey

22 septembre 2025

Ce papier sert de support pour les auditeurs de l'exposé.

Rappels

Quelques rappels de la théorie de la mesure et d'analyse fonctionnelle :

Espaces L^p

- 1. $\mathscr{L}^p(\mathbb{R}^d)=\{f \text{ borélienne}: \mathbb{R}^d \to \mathbb{R} \text{ tq } \int |f|^p d\lambda <+\infty \}$
- 2. $L^p(\mathbb{R}^d) = \mathcal{L}^p(\mathbb{R}^d) / \sim \text{avec } f \sim g \Leftrightarrow f = g \text{ presque-partout}$
- 3. $\mathcal{L}^{\infty}(\mathbb{R}^d) = \{ f \text{ borélienne} : \mathbb{R}^d \to \mathbb{R} \mid \exists c \in \mathbb{R} \text{ tq } |f| \le c \text{ presque-partout} \}$
- 4. $L^{\infty}(\mathbb{R}^d) = \mathscr{L}^{\infty}(\mathbb{R}^d)/\sim$
- 5. $\mathscr{L}^p_{\mathrm{loc}}(\Omega) = \{f \text{ bor\'elienne}: \Omega \to \mathbb{R} \text{ tq } \forall K \text{ compact } \subset \Omega, \ \int_K |f|^p d\lambda < +\infty \}$ 6. $\mathscr{L}^\infty_{\mathrm{loc}}(\Omega) = \{f \text{ bor\'elienne}: \Omega \to \mathbb{R} \text{ tq } \forall K \text{ compact } \subset \Omega, \text{ sup } \mathrm{ess}|f| < +\infty \}$
- 7. $L_{loc}^p(\Omega) = \mathcal{L}_{loc}^p(\Omega)/\sim$
- 8. $L_{loc}^{\infty}(\Omega) = \mathcal{L}_{loc}^{p}(\Omega)/\sim$

Si
$$f \in L^p$$
, $||f||_p = \left(\int |f|^p d\lambda\right)^{\frac{1}{p}}$
Si $f \in L^{\infty}$, $||f||_{\infty} = \inf\{c \in \mathbb{R} \mid |f| \le c \text{ p-p}\}$

Topologie

Théorème. L^p pour $1 \le p \le \infty$ est une espace de Banach (e.v.n)

Proposition. Soit X un EVN, on note $X' = \mathcal{L}(X,\mathbb{R})$ son dual topologique (ensemble des formes linéaires continues de X dans \mathbb{R}). De plus, X' est un EVN.

Fourier

Définition. Pour $f \in L^1(\mathbb{R}^d)$, on définit \widehat{f} ou $\mathcal{F}(f)$ comme :

$$\mathcal{F}(f): \mathbb{R}^d \longrightarrow \mathbb{C}$$

$$\xi \longmapsto \frac{1}{(2\pi)^{\frac{d}{2}}} \int_{\mathbb{R}^d} e^{-ix \cdot \xi} f(x) \ dx$$

Produit de convolution

Définition. Soit $f, g: \mathbb{R}^d \longrightarrow \mathbb{K}$ deux fonctions mesurables. Pour tout $x \in \mathbb{R}^d$ tel que $y \mapsto f(y)g(x-y)$ soit intégrable, le **produit de convolution** de f et g en x est défini par

$$f * g(x) = \int_{\mathbb{R}^n} f(y)g(x-y)d\lambda(y)$$

Propriété.

- 1. Si $f \in L^1(\mathbb{R}^d)$ et $g \in L^1(\mathbb{R}^d)$, alors f * g existe pour presque tout $x \in \mathbb{R}^d$ et est L^1 .
- 2. Si $f \in L^1(\mathbb{R}^d)$ et $g \in C_c^{\infty}(\mathbb{R}^d)$ alors f * g est bien définie et est de classe C^{∞} .

1 Distributions

Définition 1. On appelle **support** d'une fonction f le complémentaire du plus grand ouvert sur lequel f est identiquement nulle.

On pose pour la suite Ω un ouvert de \mathbb{R}^d .

Notation. On définit $C_c^{\infty}(\Omega) = \{ \varphi \in C^{\infty}(\Omega) \mid \text{supp}(\varphi) \text{ est un compact inclus dans } \Omega \}$ l'ensemble des fonctions C^{∞} à support compact. Les fonctions de cet ensemble sont plus souvent appelées fonctions tests.

Définition 2. On appelle distribution sur Ω une application linéaire

$$T: C_c^{\infty}(\Omega) \longrightarrow \mathbb{R} \text{ (ou } \mathbb{C})$$

qui vérifie la propriété de continuité suivante :

$$\forall K \text{ compact } \subset \Omega, \exists p \in \mathbb{N}, \ \exists C > 0 \text{ tq } \forall \varphi \in C_c^{\infty}(\Omega),$$
$$\text{support}(\varphi) \subset K \implies |\langle T, \varphi \rangle| \leq C \|\varphi\|_{C^p}$$

Explications:

- 1. L'ensemble des fonctions tests sera souvent noté $\mathcal{D}(\Omega)$.
- 2. Si K est un compact dans Ω , $\mathcal{D}_K(\Omega) = \{ \varphi \in \mathcal{D}(\Omega) \mid \text{supp}(\varphi) \in K \}$.
- 3. Soit $\alpha = (\alpha_1, \dots, \alpha_d) \in \mathbb{N}^d$, on définit la longueur de α par $|\alpha| = |\alpha_1| + \dots + |\alpha_d|$.
- 4. $\partial^{(\alpha)} \varphi = \frac{\partial^{|\alpha|} \varphi}{(\partial x_1)^{\alpha_1} \dots (\partial x_d)^{\alpha_d}}$
- 5. On définit

$$\|\varphi\|_{C^p} = \sum_{k=0}^p \sum_{\substack{\alpha \in \mathbb{N}^d \\ |\alpha|=k}} \sup_{\Omega} |\partial^{(\alpha)}\varphi|$$

Notation. L'espace des distributions sur Ω est noté $\mathcal{D}'(\Omega)$.

Définition 3. Soit $T \in \mathcal{D}'(\Omega)$ et $f \in C^{\infty}(\Omega)$. On définit la distribution fT par

$$\langle fT, \varphi \rangle = \langle T, f\varphi \rangle, \ \forall \varphi \in \mathscr{D}(\Omega).$$

Définition 4. Soit $T \in \mathcal{D}'(\Omega)$. On dit que T est d'ordre fini si

$$\exists p \in \mathbb{N}, \forall K \text{ compact } \subset \Omega, \exists C_k > 0, \forall \varphi \in \mathscr{D}_K(\Omega), |\langle T, \varphi \rangle| \leq C_k \|\varphi\|_{C^p}$$

Remarque. L'ordre de T est le plus petit $p \in \mathbb{N}$ possible (si T est d'ordre fini).

Proposition. Soit $T \in \mathscr{D}'(\Omega)$ à support compact. Alors on a une propriété de "continuité améliorée" :

 $\exists p \in \mathbb{N}, \exists C > 0 \text{ et } K \text{ compact } \subset \Omega \text{ tq } \forall \varphi \in \mathscr{D}(\Omega),$

$$|\langle T, \varphi \rangle| \le C \underbrace{\left(\sum_{|\alpha| \le p} \sup_{K} |\partial^{(\alpha)} \varphi| \right)}_{\approx \|\varphi\|_{C^{p}(K)}}$$

Définition 5. On dit que T_j converge vers T au sens des distributions si

$$\forall \varphi \in \mathscr{D}(\Omega), \lim_{j \to \infty} \langle T_j, \varphi \rangle = \langle T, \varphi \rangle$$

C'est une convergence au sens très faible.

Définition 6. Soit $T \in \mathcal{D}'(\Omega)$. Soit $\alpha \in \mathbb{N}^d$. la α -ieme dérivée partielle de T est la distribution :

$$\partial^{(\alpha)}T: \mathcal{D}(\Omega) \longrightarrow \mathbb{R}$$
$$\varphi \longmapsto (-1)^{|\alpha|} \langle T, \partial^{(\alpha)}\varphi \rangle$$

2 Classe de Schwartz

Définition 7. La classe de Schwartz est :

$$\mathscr{S}(\mathbb{R}^d) = \left\{ f \in C^{\infty}(\mathbb{R}^d, \mathbb{R}) \mid \begin{array}{l} \forall \alpha \in \mathbb{N}^d, \ \forall P \text{ polynôme sur } \mathbb{R}^d \\ P(x) \, \partial^{(\alpha)} f(x) \underset{|x| \to \infty}{\to} 0 \end{array} \right\}$$

Remarque. La classe de Schwartz est parfois appelée fonctions C^{∞} à décroissance rapide.

Définition 8. On définit une famille de norme sur \mathscr{S} . Pour $p \in \mathbb{N}$, on définit pour $f \in \mathscr{S}(\mathbb{R}^d)$

$$N_p(f) = \sup_{|\alpha| \leq p, \ x \in \mathbb{R}^d} \left. \left(1 + |x|^p \right) \cdot \left| \partial^{(\alpha)} f(x) \right| \right.$$

3 Distributions tempérées

Définition 9. Une distribution U est dite **tempérée** si c'est une distribution sur $\Omega = \mathbb{R}^d$ qui vérifie :

$$\exists C > 0, \exists p \in \mathbb{N} \text{ tq } \forall \varphi \in \mathscr{D}(\mathbb{R}^d), |\langle U, \varphi \rangle| \leq C \cdot N_p(\varphi)$$

Notation. On note \mathscr{S}' l'espace des distributions tempérées.

Définition 10. Soit U une distribution tempérée. On définit la **transformée de Fourier** \widehat{U} ou $\mathcal{F}(U)$ de U comme la distribution :

$$\forall \varphi \in \mathscr{D}(\mathbb{R}^d), \ \langle \mathcal{F}(U), \varphi \rangle = \langle U, \mathcal{F}(\varphi) \rangle$$

4 Convolution de distributions

4.1 Convolution d'une distribution et d'une fonction C_c^{∞}

Définition 11. Soit $T \in \mathcal{D}'(\mathbb{R}^d)$ et $\varphi \in C_c^{\infty}(\mathbb{R}^d)$. On définit <u>la fonction</u> $T * \varphi \ \forall x \in \mathbb{R}^d$:

$$(T * \varphi)(x) = \langle T, \tau_{-x}(\check{\varphi}) \rangle$$

Remarque. Ici $\ddot{\varphi}$ est la fonction $y \mapsto \varphi(-y)$. Et τ_x est la fonction $y \mapsto \Psi(y+x)$.

Propriété.

- 1. $T * f \in C^{\infty}(\mathbb{R}^d)$.
- 2. Si T $\in \mathcal{E}'(\mathbb{R}^d)$, alors $T * f \in C_c^{\infty}$.

4.2 Convolution de deux distributions

Définition 12. Soit $S, T \in \mathcal{D}'(\mathbb{R}^d)$ avec T à support compact. On définit <u>la distribution</u> S * T comme suit :

$$\forall \varphi \in \mathcal{D}'(\mathbb{R}^d), \ \langle S * T, \varphi \rangle = \langle S, \breve{T} * \varphi \rangle$$

5 Les espaces de Sobolev

Définition 13. Soit $s \ge 0$, on définit l'espace de Sobolev noté $H^s(\mathbb{R}^d)$ ainsi :

$$H^{s}(\mathbb{R}^{d}) = \{ f \in L^{2}(\mathbb{R}^{d}) \mid \int (1 + |\xi|^{2})^{s} |\widehat{f}(\xi)|^{2} d\xi < \infty \}$$

Proposition. $\forall s \geq 0, H^s(\mathbb{R}^d)$ est un espace de Hilbert pour le produit scalaire suivant

$$\langle f, g \rangle \longmapsto \int (1 + |\xi|^2)^s \overline{\widehat{f}(\xi)} \widehat{g}(\xi) \ d\xi$$

Le théorème suivant permet de relier $H^s(\mathbb{R}^d)$ avec $C_0^k(\mathbb{R}^d)$ définit par

$$C_0^k(\mathbb{R}^d) = \{ f \in C^k \mid \forall |\alpha| \le k, |\partial^{(\alpha)} f(x)| \underset{|x| \to +\infty}{\longrightarrow} 0 \}$$

4

Théorème. L'espace $H^s(\mathbb{R}^d)$ s'injecte continûment dans $C_0^k(\mathbb{R}^d)$ si $s > k + \frac{d}{2}$