

Teoría de probabilidades I

Curso 2023-2024
Grado de Física
Técnicas Experimentales II

Objetivos tema:

- Notación conjuntista de probabilidad.
- Definición de probabilidad y desarrollo axiomático de probabilidad.
- Probabilidad condicionada.
- Sucesos estadísticamente independientes.
- Teorema de Bayes.
- Inferencia Bayesiana.

 Experimento aleatorio: aquel experimento que repetido sucesivas veces en condiciones idénticas produce diferentes resultados de manera no previsible.

• Experimento determinista: aquel experimento que repetido sucesivas veces en condiciones idénticas siempre produce el mismo resultado.

• **Suceso elemental**: es cada uno de los posibles resultados de un experimento aleatorio.

en el caso del dado 1, 2, 3, 4, 5, 6

• Definimos como **espacio muestral** Ω al conjunto de todos los posibles resultados de un experimento aleatorio.

para el dado
$$\Omega$$
= { 1,2,3,4,5,6}

• Suceso: cualquier subconjunto del espacio muestral Ω .

por ejemplo,
$$A=par = \{2,4,6\}$$
); $B=no primo = \{4,6\}$

• Denotaremos por \mathcal{A} el conjunto de todos los sucesos que es posible definir asociados a un cierto experimento aleatorio.

Espacio muestral discreto y continuo

• Decimos que un espacio muestral Ω es discreto si se puede poner en correspondencia uno a uno con un subconjunto Q de los números naturales N (esto es $Q \subseteq N$).

 Decimos que un espacio muestral Ω es continuo si se puede poner en correspondencia uno a uno con uno o más intervalos de la recta real.

• Si un suceso $A \in \mathcal{A}$. El suceso complementario de A se entiende como aquel que ocurre cuando no ocurra A. Y se denota como \overline{A} .

Por ejemplo en el caso del dado de seis caras:

$$A=par=\{2,4,6\}$$
 $\overline{A}=\{1,3,5\}$

• Dados dos sucesos $A, B \in \mathcal{A}$. El suceso unión de A y B se entiende como aquel que ocurre cuando ocurre A o bien ocurre B. Y se denota como $A \cup B$.

Se cumplen entonces las siguientes propiedades:

i)
$$A \cup \overline{A} = \Omega$$

iii)
$$A \cup \emptyset = A$$

ii)
$$A \cup B = B \cup A$$

iv)
$$A \cup \Omega = \Omega$$

• Dados dos sucesos $A, B \in \mathcal{A}$. El suceso intersección de A y B se entiende como aquel que ocurre cuando ocurre A y B simultáneamente. Y se denota como $A \cap B$.

Se cumplen entonces las siguientes propiedades:

i)
$$A \cap \overline{A} = \emptyset$$

iii)
$$A \cap \emptyset = \emptyset$$

ii)
$$A \cap B = B \cap A$$

iv)
$$A \cap \Omega = A$$

• Dados tre sucesos $A, B, C \in \mathcal{A}$. Se verifican las propiedades asociativas de la intersección y de la unión de sucesos:

$$A \cup (B \cup C) = (A \cup B) \cup C$$

$$A \cap (B \cap C) = (A \cap B) \cap C$$

Además se verifica la propiedad

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

Ejemplo
$$A = \{2,3,5\}; B = \{1,2\}; C = \{4,5,6\}$$

 $A \cap (B \cup C) = \{2,3,5\} \cap (\{1,2\} \cup \{4,5,6\}) = \{2,3,5\} \cap (\{1,2,4,5,6\}) = \{2,5\}$
 $(A \cap B) \cup (A \cap C) = (\{2,3,5\} \cap \{1,2\}) \cup (\{2,3,5\} \cap \{4,5,6\}) = \{2\} \cup \{5\} = \{2,5\}$

- Decimos que dos sucesos A y B son **incompatibles** si su intersección es nula $A \cap B = \emptyset$.
- Un suceso A y su complementario \bar{A} son *incompatibles*.
- Dados dos sucesos A y B definimos el suceso **diferencia** entre A y B, que denotamos como $A \setminus B$ como el suceso que ocurre cuando sucede A y pero no B.

$$A \backslash B = A \cap \bar{B}$$

sucesos *incompatibles*

suceso *diferencia*

Leyes de Morgan

- Consideremos dos sucesos $A,B\in\mathcal{A}$. Las leyes De Morgan permiten intercambiar las operaciones de unión e intersección a través del uso del suceso complementario.
- Primera Ley de Morgan $\overline{A \cup B} = \overline{A} \cap \overline{B}$

• Segunda Ley de Morgan $\overline{A \cap B} = \overline{A} \cup \overline{B}$

Leyes de Morgan

Ejemplo
$$A = \{2,3,5\}; B = \{2,4,5,6\}$$

Primera Ley de Morgan $\overline{A \cup B} = \overline{A} \cap \overline{B}$

$$A \cup B = \{2,3,4,5,6\}$$

$$\overline{A \cup B} = \{1\}$$

$$\bar{A} \cap \bar{B} = \{1\}$$

Segunda Ley de Morgan $\overline{A \cap B} = \overline{A} \cup \overline{B}$

$$A \cap B = \{2,5\}$$

$$\overline{A \cap B} = \{1,3,4,6\}$$

$$\bar{A} = \{1,4,6\}$$

$$\bar{B} = \{1,3\}$$

$$\bar{A} = \{1,4,6\}$$
 $\bar{B} = \{1,3\}$ $\bar{A} \cup \bar{B} = \{1,3,4,6\}$

Definición de probabilidad

• Experimento de resultados mutuamente excluyentes e igualmente probables (definición de Laplace)

$$p(A) = \frac{casos\ favorables}{casos\ posibles} = \frac{n}{N}$$

2000

 Valor límite al que tiende la frecuencia relativa de un suceso en un experimento repetido en condiciones idénticas (definición frecuentista)

$$p(A) = \lim_{n \to \infty} f(A) = \lim_{n \to \infty} \frac{n}{N}$$

Definición de probabilidad

Road (Total)		0.95
Motorcycle/moped	13.8	
Foot	6.4	
Cycle	5.4	
Car	0.7	
Bus and coach	0.07	
Ferry		0.25
Air (civil aviation)		0.035
Rail		0.035

Road (Total)		28
Motorcycle/moped	440	
Cycle	75	
Foot	25	
Car	25	
Bus and coach	2	
Air (civil aviation)		16
Ferry		8
Rail		2

Table 1: Deaths per 100 million person kilometres

Table 2: Deaths per 100 million person travel hours

Fuente: https://etsc.eu/transport-safetyperformance-in-the-eu-a-statistical-overview/

Definición axiomática de probabilidad

Dados el par formado por el espacio muestral, y el conjunto de todos los sucesos asociados a un experimento aleatorio (Ω, \mathcal{A}) , se dice que p es una probabilidad sobre el espacio (Ω, \mathcal{A}) , si verifica las siguientes propiedades:

1. La probabilidad de que ocurra un determinado suceso A dentro del espacio muestral $A \in \mathcal{A}$ es un número entre 0 y 1.

$$0 \leq p(A) \leq 1$$

- 2. La probabilidad del espacio muestral es la unidad y se denomina $p(\Omega)=1$
- 3. La probabilidad de la unión de sucesos mutuamente incompatibles es igual a la suma de las probabilidades de cada uno de ellos.

$${A_1, A_2, A_3, \dots}$$
 $A_i \cap A_j = \emptyset$ $\forall i \neq j$

$$p(A_1 \cup A_2 \cup A_3 \cup \cdots) = p(A_1) + p(A_2) + p(A_3) + \cdots$$

Definición axiomática de probabilidad

- Es posible demostrar que como consecuencia de las propiedades de la definición axiomática de probabilidad se deducen los siguientes resultados.
- La probabilidad del suceso vacío es nula y se denomina suceso imposible

$$p(\emptyset) = 0$$

La probabilidad del suceso complementario de A viene dada por:

$$p(\overline{A}) = 1 - p(A)$$

- Si se cumple $A \subset B$ entonces $p(A) \leq p(B)$ y además $p(B \setminus A) = p(B) p(A)$
- Dados dos sucesos A y B, se cumple que:

$$p(A \cup B) = p(A) + p(B) - p(A \cap B)$$

Ejemplo

Pelo\Ojos	Claros	Azules	Marrón	Negros	
Rubio	0.13	0.11	0.05	0.03	0.32
Rojo	0.07	0.05	0.02	0.01	0.15
Castaño	0.06	0.09	0.18	0.04	0.37
Negro	0.02	0.01	0.08	0.05	0.16
	0.28	0.26	0.33	0.13	1.00

 $p(\text{Pelo rubio} \cup \text{Ojos marrones}) = 0.60$

 $p(\text{Pelo rubio}) + p(\text{Ojos marrones}) - p(\text{Pelo rubio} \cap \text{Ojos marrones}) = 0.32 + 0.33 - 0.05 = 0.60$

Probabilidad a priori

• En muchos casos la forma de evaluar la probabilidad puede estar sujeta a condiciones sutiles respecto a nuestro conocimiento.

 El experimento de las tres puertas o el problema de Monty-Hall

Has escogido la puerta 1, pero el presentador te muestra que el premio no está en la puerta 3, ¿quieres cambiar?

Probabilidad a priori

En el momento de la elección.

• Al obtener información adicional.

Pelo\Ojos	Claros	Azules	Marrón	Negros	
Rubio	0.13	0.11	0.05	0.03	0.32
Rojo	0.07	0.05	0.02	0.01	0.15
Castaño	0.06	0.09	0.18	0.04	0.37
Negro	0.02	0.01	0.08	0.05	0.16
	0.28	0.26	0.33	0.13	1.00

La probabilidad de B condicionada por A (y denotamos este suceso como B|A) es la probabilidad de obtener B una vez conocido que ha ocurrido A. En la práctica corresponde a la probabilidad de B considerando que el universo de sucesos se restringe a A.

p(Pelo rubio|Ojos azules) = 0.11/0.26 = 0.4231

p(0)jos azules|Pelo rubio)= 0.11/0.32 = 0.3438

 Probabilidad de sucesos donde ocurre el suceso B una vez se ha producido el suceso A,

$$p(B|A) = \frac{p(A \cap B)}{p(A)}$$

Probabilidad de *B* condicionada por *A* (*).

Ejemplo:

$$p(A) = 1/2$$

$$p(B) = 1/3$$

$$p(A \cap B) = 1/3$$

$$p(B|A) = \frac{2}{3}$$

En general se cumple que

$$p(A|B) = \frac{p(A \cap B)}{p(B)} \neq p(B|A) = \frac{p(A \cap B)}{p(A)}$$

Probabilidad de A condicionada por B es diferente de la probabilidad de B condicionada por A. Aunque:

$$p(A|B) p(B) = p(B|A) p(A) = p(A \cap B)$$

Ejemplo:

suceso $A = par = \{2,4,6\}$; suceso $B = no primo = \{4,6\}$

$$p(A) = 1/2$$

$$p(B) = 1/3$$

$$p(A) = 1/2$$
 $p(B) = 1/3$ $p(A \cap B) = 1/3$

$$p(B|A) = \frac{2}{3} \qquad p(A|B) = 1$$

$$p(A|B) = 1$$

¿Cómo depende p(A|B) de la intersección $A \cap B$?

$$B \subset A$$

$$A \cap B = B$$

$$p(A|B) = 1 \quad p(B|A) < 1$$

$$A \subset B$$

$$A \cap B = A$$

$$p(A|B) < 1 \quad p(B|A) = 1$$

$$p(A \cap B) < p(A)$$

$$p(A \cap B) < p(B)$$

$$p(A|B) < 1 \quad p(B|A) < 1$$

$$p(A \cap B) = 0$$

$$p(A|B) = p(B|A) = 0$$

 Una encuesta realizada en Santiago nos indica que un 40 % de la población lee La Voz de Galicia, un 20 % lee El Correo Gallego y un 5 % ambos periódicos. ¿Cuál es la probabilidad de que un lector seleccionada al azar que lee La Voz de Galicia también lea El Correo Gallego?

$$p(V) = 0.4$$

$$p(C) = 0.2$$

$$p(V \cap C) = 0.05$$

$$p(C|V) = \frac{p(C \cap V)}{p(V)} = \frac{0.05}{0.4} = 0.125$$

$$p(V|C) = \frac{p(C \cap V)}{p(C)} = \frac{0.05}{0.2} = 0.25$$

$$p(V|C) p(C) = p(C|V) p(V) = p(C \cap V)$$

Regla del producto

• Hemos visto que si $A, B \in \mathcal{A}$ con p(A) > 0

$$p(A \cap B) = p(A) \ p(B|A)$$

• Análogamente si $A, B, C \in \mathcal{A}$ con $p(A \cap B) > 0$

$$p(A \cap B \cap C) = p(A) \ p(B|A) \ p(C|A \cap B)$$

• Igualmente si $A, B, C, D \in \mathcal{A}$ con $p(A \cap B \cap C) > 0$

$$p(A \cap B \cap C \cap D) = p(A) \ p(B|A) \ p(C|A \cap B) \ p(D|A \cap B \cap C)$$

Esto se conoce como regla del producto y se puede extender a una intersección de *n* sucesos de acuerdo con las reglas anteriores.

 Decimos que dos sucesos A y B son estadísticamente independientes cuando

$$p(A|B) = p(A)$$

Observemos que esto implica

$$p(A|B) = \frac{p(A \cap B)}{p(B)} = p(A) \implies p(A \cap B) = p(A) p(B)$$

Y por tanto

$$p(B|A) = p(B)$$

Por extensión si tres sucesos A, B y C son independientes entonces:

$$p(A \cap B \cap C) = p(A) p(B) p(C)$$

• Ejemplo de sucesos estadísticamente independientes. Considerando dos tiradas sucesivas de un dado (o dos dados distinguibles),

A = obtener en la primera tirada 1

B = obtener en la segunda tirada 6

• En el experimento aleatorio ideal se cumple que A y B son sucesos independientes

$$p(A|B) = p(A) = 1/6$$

$$p(B|A) = p(B) = 1/6$$

• Si dos sucesos $A, B \in \mathcal{A}$ son estadísticamente independientes

$$p(A \cap B) = p(A) p(B)$$

• Si dos sucesos $A, B \in \mathcal{A}$ son estadísticamente independientes, entonces se cumple que los siguientes pares de sucesos son independientes :

$$-A, \Omega$$
 $-\overline{A}, \overline{B}$ $-\overline{A}, B$

$$p(A \cap \Omega) = p(A) = p(A) p(\Omega)$$

$$p(A \cap \overline{B}) = p(A \setminus A \cap B) = p(A) - p(A \cap B) = p(A) - p(A) p(B)$$

= $p(A)(1 - p(B)) = p(A) p(\overline{B})$

$$p(\bar{A} \cap \bar{B}) = p(\bar{A} \cup \bar{B}) = 1 - p(A \cup B)$$

= 1 - p(A) - p(B) - p(A \cap B) = 1 - p(A) - p(B) - p(A) p(B)
= \((1 - p(A))(1 - p(B)) = p(\bar{A}) p(\bar{B})

Consideremos que un cohete puede ser dividido en cinco subsistemas *A*, *B*, *C*, *D* y *E*. Siendo los sistemas *B* y *C* junto con *D* y *E* redundantes.

La probabilidad de que cada subsistema funcione bien durante el lanzamiento es: p(A)=0.99 p(B)=0.90 p(C)=0.92 p(D)=0.88 p(E)=0.95 ¿Cuál es la probabilidad de lanzamiento con éxito?

$$p(S) = p(A) p(B \cup C) p(D \cup E)$$

$$p(B \cup C) = 1 - p(\bar{B} \cap \bar{C}) = 1 - p(\bar{B})p(\bar{C}) = 1 - 0.1 \cdot 0.08 = 0.992$$

$$p(D \cup E) = 1 - p(\overline{D} \cap \overline{E}) = 1 - p(\overline{D})p(\overline{E}) = 1 - 0.12 \cdot 0.05 = 0.994$$

$$p(S) = 0.99 \cdot 0.992 \cdot 0.994 = 0.976$$

Conjunto exhaustivo y completo de sucesos

Decimos que un conjunto de sucesos $\{A_1, A_2, ..., A_n \mid A_i \in \mathcal{A}\}$ es un conjunto exhaustivo de sucesos si su unión cubre el espacio muestral:

$$\bigcup_{i=1}^n A_i = \Omega$$

Un conjunto de sucesos $\{A_1,A_2,\dots,A_n\mid A_i\in\mathcal{A}\}$ se denomina completo si además los sucesos que lo forman tienen intersecciones vacías.

Ω

$$\cup_{i=1}^n A_i = \Omega$$

$$A_i \cap A_j = \emptyset$$
; $p(A_i \cap A_j) = 0 \quad \forall i \neq j$

Teorema de Bayes

Consideremos que el espacio muestral Ω de un experimento aleatorio puede ser dividido en un conjunto completo de sucesos mutuamente excluyentes: A_1 , A_2 , ... A_n de tal forma que

$$A_i \cap A_j = \emptyset$$
; $p(A_i \cap A_j) = 0 \quad \forall i \neq j$

Ω

$$\sum_{i=1}^{n} p(A_i) = 1$$

Dado un suceso B el Teorema de Bayes nos indica que

$$p(A_i|B) = \frac{p(B|A_i)p(A_i)}{p(B)} = \frac{p(B|A_i)p(A_i)}{\sum_{k=1}^{n} p(B|A_k) p(A_k)}$$

Teorema de bayes y probabilidad

Ejemplo: Un test de detección de coronavirus tiene una probabilidad del 95% de arrojar un resultado positivo si el paciente está infectado. Por otra parte la probabilidad de que el test sea positivo aunque el paciente no tenga la enfermedad es del 2%. Si sólo un 1% de la población está realmente infectada, ¿cuál es la probabilidad de estar realmente contagiado si el resultado del test es positivo?

$$p(P|C) = 0.95$$
 $p(P|NC)=0.02$ $p(C)=0.01$

$$p(C|P) = \frac{p(P|C)p(C)}{p(P|C)p(C) + p(P|NC)p(NC)}$$

$$p(C|P) = \frac{0,95 \cdot 0,01}{0,95 \cdot 0,01 + 0,02 \cdot 0,99} = 0,32$$

Inferencia bayesiana

El teorema de Bayes se utiliza también para realizar lo que se conoce como inferencia bayesiana:

Revisión o actualización *a posteriori* de los valores hipotéticos asignados *a priori* a uno o varios sucesos estadísticos una vez se han obtenido ciertos nuevos datos o evidencias.

Probabilidad a posteriori

Probabilidad a priori

Verosimilitud marginal

Inferencia bayesiana

Ejemplo: Tenemos dos bolsas idénticas 1 y 2 con bolas blancas y negras. En la bolsa 1 el 30% de las bolas son blancas mientras que en la bolsa 2 el 20% de las bolas son negras. Una persona extrae una bola de una de las bolsas. Si la bola es negra ¿cuál es la probabilidad de que provenga de la bolsa 2?

A partir de la información que tenemos podemos decir:

$$p(B|1) = 0.3$$
 $p(N|1)=0.7$ $p(B|2)=0.8$ $p(N|2)=0.2$

Podemos pensar que la <u>probabilidad</u> a <u>priori</u> de haber sacado la bola de las bolsas 1 y 2 es idéntica: p(1) = p(2) = 0.5

Inferencia bayesiana

Usando el teorema de Bayes podemos "actualizar" o modificar esta probabilidad asignando una probabilidad a posteriori a la bolsa 2:

$$p(B|1) = 0.3$$
 $p(N|1)=0.7$ $p(B|2)=0.8$ $p(N|2)=0.2$

$$p(2|N) = \frac{p(N|2) p(2)}{p(N|2) p(2) + p(N|1) p(1)}$$

$$p(2|N) = \frac{0.2 \cdot 0.5}{0.2 \cdot 0.5 + 0.7 \cdot 0.5} = 0.22$$

Bibliografía:

- Capítulo 2. "Probabilidad y estadística" George C. Canavos, Ed. Mc Graw-Hill
- Capítulo 4. "Fundamentos de estadística" Daniel Peña, Alianza Editorial
- Capítulo 2. "Tratamiento de datos físicos" Faustino Gómez, Luis M Varela, USC
- Capítulo 2. "Statistical and Computational Methods for Scientists and Engineers" Siegmund Brandt, Springer

