Лабораторная работа 3.5.1

Изучение плазмы газового разряда в неоне.

6 сентября 2021 г.

Старченко Иван Александрович

Цель работы:

Изучение вольт-амперной характеристики тлеющего разряда; изучение свойств плазмы методом зондовых характеристик

В работе используются:

Стеклянная газоразрядная трубка, наполненная неоном; высоковольтный источник питания; источник питания постоянного тока; делитель напряжения; потенциометр; амперметры; вольтметры; переключатели

1. Теоретические сведения

Плазма

В ионизированном газе поле ионов «экранируется» электронами. Для поля ${\bf E}$ и плотности ρ электрического заряда

div
$$\mathbf{E} = 4\pi\rho$$
,

а с учётом сферической симметрии и $\mathbf{E} = -\mathrm{grad} \ \varphi$:

$$\frac{d^2\varphi}{dr^2} + \frac{2}{r}\frac{d\varphi}{dr} = -4\pi\rho. \tag{1}$$

Плотности заряда электронов и ионов (которые мы считаем бесконечно тяжёлыми и поэтому неподвижными)

$$\rho_e = -ne \cdot \exp\left(\frac{e\varphi}{kT_e}\right),$$

$$\rho_i = ne.$$
(2)

Тогда из (1) в предположении $\frac{e\varphi}{kT_e}\ll 1$ получим

$$\varphi = \frac{Ze}{r}e^{-r/r_D},\tag{3}$$

где $r_D=\sqrt{\frac{kT_e}{4\pi ne^2}}$ – paduyc Дебая. Среднее число ионов в сфере такого радиуса

$$N_D = n \frac{4}{3} \pi r_D^2. (4)$$

Теперь выделим параллелепипед с плотностью n электронов, сместим их на x. Возникнут поверхностные заряды $\sigma=nex$, поле от которых будет придавать электронам ускорение:

$$\frac{d^2x}{dt^2} = -\frac{eE}{m} = -\frac{4\pi ne^2}{m}x.$$

Отсюда получаем *плазменную (ленгмюровскую) частоту* колебаний электронов:

$$\omega_p = \sqrt{\frac{4\pi n e^2}{m}}. (5)$$

Одиночный зонд

При внесении в плазму уединённого проводника — $30n\partial a$ — с потенциалом, изначально равным потенциалу точки плазмы, в которую его помещают, на него поступают токи электроннов и ионов:

$$I_{e0} = \frac{n\langle v_e \rangle}{4} eS,$$

$$I_{i0} = \frac{n\langle v_i \rangle}{4} eS,$$
(6)

где $\langle v_e \rangle$ и $\langle v_i \rangle$ – средние скорости электронов и ионов, S – площадь зонда, n – плотность электронов и ионов. Скорости электронов много больше скорости ионов, поэтому $I_{i0} \ll I_{e0}$. Зонд будет заряжаться до некоторого равновестного напряжения $-U_f$ – nлавающего nотенциала.

В равновесии ионный ток мало меняется, а электронный имеет вид

$$I_e = I_0 \exp\left(-\frac{eU_f}{kT_e}\right).$$

Будем подавать потенциал U_3 на зонд и снимать значение зондового тока I_3 . Максимальное значение тока I_{eh} — электронный ток насыщения, а минимальное I_{ih} — ионный ток насыщения. Значение из эмпирической формулы Бомона:

$$I_{iH} = 0.4 neS \sqrt{\frac{2kT_e}{m_i}}. (7)$$

Двойной зонд

Двойной зонд — система из двух одинаковых зондов, расположенных на небольшом расстоянии друг от друга, между которыми создаётся разность потенциалов, меньшая U_f . Рассчитаем ток между ними вблизи I=0. При небольших разностях потенциалов ионные токи на оба зонда близки к току насыщения и компенсируют друг друга, а значит величина результирующего тока полностью связана с разностью электронных токов. Пусть потенциалы на зондах

$$U_1 = -U_f + \Delta U_1,$$

$$U_2 = -U_f + \Delta U_2.$$

Между зондами $U=U_2-U_1=\Delta U_2-\Delta U_1$. Через первый электрод

$$I_1 = I_{iH} + I_{e1} = I_{iH} - \frac{1}{4} neS \langle v_e \rangle \exp\left(-\frac{eU_f}{kT_e}\right) \exp\left(\frac{e\Delta U_1}{kT_e}\right) = I_{iH} \left(1 - \exp\left(\frac{e\Delta U_1}{kT_e}\right)\right). \tag{8}$$

Аналогично через второй получим

$$I_2 = I_{iH} \left(1 - \exp\left(\frac{e\Delta U_2}{kT_e}\right) \right) \tag{9}$$

Из (7) и (8) с учётом последовательного соединение зондов ($I_1 = -I_2 = I$):

$$\Delta U_1 = \frac{kT_e}{e} \ln \left(1 - \frac{I}{I_{i\text{H}}} \right)$$

$$\Delta U_2 = \frac{kT_e}{e} \ln \left(1 + \frac{I}{I_{i\text{H}}} \right)$$

Тогда итоговые формулы для разности потенциалов и тока

$$U = \frac{kT_e}{e} \ln \frac{1 - I/I_{iH}}{1 + I/I_{iH}}, I = I_{iH} th \frac{eU}{2kT_e}.$$
 (10)

Реальная зависимость выглядит несколько иначе и описывается формулой

$$I = I_{iH} th \frac{eU}{2kT_e} + AU.$$
 (11)

Из этой формулы можно найти формулу для T_e : для U=0 мы найдём $I_{i\mathrm{H}}$, продифференцируем в точке U=0 и с учётом th $\alpha\approx\alpha$ при малых α и $A\to0$ получим:

$$kT_e = \frac{1}{2} \frac{eI_{iH}}{\frac{dI}{dU}|_{U=0}}.$$
 (12)

2. Экспериментальная установка

Стеклянная газоразрядная трубка имеет холодный (ненакаливаемый) полый катод, три анода и *геттерный* узел – стеклянный баллон, на внут-

реннюю повехность которого напылена газопоглощающая плёнка ($\it remmep$). Трубка наполнена изотопом неона 22 Ne при давлении 2 мм рт. ст. Катод и один из анодом (I и II) с помощью переключателя Π_1 подключается через балластный резистор R_6 (≈ 450 кОм) к регулируемому ВИП с выкодным напряжением до 5 кВ.

При подключении к ВИП анода-I между ним и катодом возникает газовый разряд. Ток разряда измеряется миллиамперметром A_1 , а падение напряжения на разрядной трубке – цифровым вольтметром V_1 , подключённым к трубке черезе высокоомный (25 МОм) делитель напряжения с коэффициентом $(R_1 + R_2)/R_2 = 10$.

При подключении к ВИП анода-II разряд возникает в пространстве между катодом и анодом-II, где находятся двойной зонд, используемый для диагностики плазмы положительного столба. Зонды изготовлены из молибденовой проволоки диаметром d=0.2 мм и имеют длину l=5.2 мм. Они подключены к источнику питания GPS через потенциометр R. Переключатель Π_2 позволяет изменять полярность напряжения на зондах. Величина напряжения на зондах изменяеься с помощью дискретного переключателя «V» выходного напряжения источника питания и потенциометра R, а измеряется цифровым вольтметром V_2 . Для измерения зондового тока используется мультиметр A_2 .

3. Ход работы

- 1) Подготовим приборы к работе. плавно увеличив выходное напряжение ВИП, определим напряжение зажигания ($U_{\text{заж}}=22,8$ В)
- 2) С помощью вольтметра V_1 и амперметра A_1 снимем ВАХ $U_P(I_P)$. Данные представлены в таблице, приведенныой в конце. Построим график зависимости $(I_p(U_p))$.
- 3) Снимем ВАХ двойного зонда с помощью мультиметров A_2 и V_2 при $I_p=5,3,1.5~mA$. Занесем в таблицу полученные данные (таблица привдена в конце). Построим графики с центрированием $I_0=\frac{1}{2}\cdot\sum I$.

3.5.1

4. Апроксимация полученных данных

1) Найдем максимальное дифференциальное сопротивление, как коэффициент наклона кривой с учетом:

$$R_{\mathrm{диф}} = \frac{1}{dI/dU} = (1.7 \pm 0.5)~kOm$$

2) Определим температуру электронов T_e по формуле и занесем полученные данные в фанальную таблицу($I_{\rm H}$ найдем как пересечение ассимпоты с U=0 и $\frac{dI}{dU}_{|_{U=0}}$ как коэффициент наклона касательной в нуле:

$$T_e = \frac{1}{2} \cdot \frac{e \cdot I_{i\text{H}}}{\frac{dI}{dU}_{|_{U=0}} \cdot k}$$

.

3) Рассчитаем концентрацию n_e по формуле приведенной ниже

$$n_e = \frac{I_{i\text{H}}}{0,4eS} \cdot \sqrt{\frac{m_i}{2 \cdot k \cdot T_e}}$$

4) Рассчитаем плазменную частоту колебаний электронов ω_p и поляризационную длину r_{D_e}

$$\omega_p = \sqrt{\frac{4\pi n_e e^2}{m_e}}, \ m_e = 0.91 \cdot 10^{-30}$$

$$r_{D_e} = \sqrt{\frac{k \cdot T_e}{4\pi n_e e^2}}$$

5) Вычислим дебаевский радиус экранирования:

$$r_D = \sqrt{\frac{k \cdot T_i}{4\pi n_e e^2}}$$

6) Оценим среднне число ионов в дебаевской сфере:

$$N_D = n_i \cdot \frac{4}{3} \pi r_D^3$$

7) Все полученные данные занесем в таблицу:

I_p, mA	T_e , Эв	$n_e \cdot 10^{19}, cm^{-3}$	$\omega \cdot 10^4$, $1/\text{cek}$
5.0 ± 0.01	3.21 ± 0.17	1.06 ± 0.25	6.12 ± 0.03
3.0 ± 0.01	4.55 ± 0.20	0.48 ± 0.10	4.12 ± 0.02
1.5 ± 0.01	4.97 ± 0.35	0.22 ± 0.05	2.79 ± 0.01

$r_{D_e} \cdot 10^3$, cm	$r_D \cdot 10^{-2}$, cm	$\langle N_D \rangle \cdot 10^{15}$
3.60 ± 0.26	3.48 ± 0.07	1.87 ± 0.04
6.36 ± 0.23	5.17 ± 0.08	2.77 ± 0.04
9.83 ± 0.17	7.63 ± 0.09	4.09 ± 0.04

Таблица 1: Итоговые данные

9) Теперь построим графики зависимости электронной температуры и концентрации электронов от тока разряда $T_e(I_p)$, $n_e(I_p)$. Графики приведем в конце.

5. Вывод

Я освоил вольт-амперную характеристику тлеющего разряда и свойства плазмы методом зондовых характеристик. Все теоретические данные совпали с экспериментальными в пределах погрешности.

6. Список используемой литературы

- ullet Никулин М.Г. Лабораторный практикум по общей физике. Электричество и магнетизм
 - Описание лабораторных работ на кафедре общей физики МФТИ
- П.В. Попов, А.А. Нозик. Обработка результатов учебного эксперимента

7. Графики

Рис. 1

- (а) ВАХ двойного зонда, I = 5.0 мА.
- (b) ВАХ двойного зонда, I=3.0 мА.

(c) ВАХ двойного зонда, $I=1.5~\mathrm{mA}.$

Рис. 2: Зондовые характеристики при $I_p=1.5, 3, 5\ mA$

8. Таблицы

U_p , B	48	61	71	81	90		110		130	140	150
I_p , MA	29.56	27.49	27.33	26.64	25.90	25.00	24.52	24.27	24.32	24.36	24.46

Таблица 2: Зависимость $U_P(I_P)$

$I_p = 5.0 \text{ mA}$			$I_p = 3.0 \text{ mA}$		$I_p =$	$I_p = 1.5 \text{ мA}$	
U_2 , B	I_2 , MKA		U_2 , B	I_2 , MKA	U_2 , B	I_2 , мкА	
24.97	107.06		24.96	58.46	24.96	28.01	
22.00	104.70		22.13	56.90	22.01	27.08	
19.10	102.31		19.22	55.24	19.13	26.16	
16.11	99.04		16.15	53.48	16.17	25.21	
13.04	93.46		13.18	51.18	13.09	23.96	
10.10	84.50		10.24	47.01	10.24	22.02	
8.05	75.71		8.01	41.69	8.01	19.51	
6.05	63.77		6.09	35.10	6.08	16.44	
4.08	49.95		4.06	26.26	3.94	11.85	
2.01	32.88		2.02	44.94	2.04	6.78	
0.53	18.74		0.55	5.95	0.51	2.12	
-0.50	-18.19		-0.55	-5.47	-0.51	-1.94	
-2.06	-32.18		-2.09	-15.34	-2.04	-6.63	
-4.09	-50.01		-4.03	-25.73	-4.02	-11.78	
-6.03	-64.73		-6.05	-35.44	-6.25	-16.02	
-8.09	-77.76		-8.19	-42.88	-8.05	-19.79	
-10.14	-88.44		-10.05	-48.17	-10.07	-22.63	
-13.13	-98.22		-13.15	-52.81	-13.01	-24.75	
-16.16	-105.20		-16.11	-55.71	-16.06	-26.17	
-19.00	-108.87		-19.04	-57.36	-19.20	-27.26	
-22.08	-112.12		-22.18	-59.12	-22.06	-28.19	
-25.01	-114.71	1	-24.96	-60.94	-24.95	-29.16	

Таблица 3: Зависимость $U_3(I_3)$ при разных I_p .