Udacity Self Driving Car Engineer Nanodegree Highlights

Term 1 Course Outline

(Dec 12, 2016 - Apr 4, 2017)

Lesson	Week No.	Brief	Notes
Introduct	ion		
I		Welcome	Handbook: SDCND_WelcomeHandbook_December.pdf Two approaches to self-driving (both actively pursued): robotics: model based sensor fusion and navigation deep learning: learn by mimicking human driving behaviour History: 'The Great Robot Race' (below) on how teams adopted different approaches to 2003/2004 DARP/Grand Challenges. Basically, a few focused on hardware as the main challenge while others focused on software. Software won, and by a big margin! The video is long but worth watching.
2	2	Finding Lane Lines (project due 22 Dec)	Review of Canny Edge Detection and Hough Transforms Lane detection project using OpenCV and Python (Application of my lane detection pipeline on the 'challenge' video)
Deep Lea	arning		
3		Introduction to Deep Learning Module	-
1		Regression and Classification	 Regression by least-squares curve fitting Cross-validation to detect underfitting or overfitting model to data
5		Neural Networks	 Perceptrons compute operations on boolean data (AND, OR, NOT, XOR) Linear and nonlinear separability training: perceptron rule, gradient descent rule Back-propagation Types of inductive bias - preference bias and restriction bias
3		MiniFlow	Hands-on exercise - implementation of a TensorFlow-like system in Python
7		Introduction to TensorFlow	 Multinomial logistic classifiers: Softmax function, 1-hot encoding, cross-entropy Initialisation and numerical stability of loss function calculations Stochastic Gradient Descent: Momentum and Learning Rate Decay
3		Deep Neural Networks	 Rectified Linear Units (RELU) Chain rule to setup back-propagation Deep vs wide NNs - advantages Regularisation to prevent overfitting and to increase robustness: L2 regularisation, 'Drop-Out' Implementing deep NNs in TensorFlow
9		Convolutional Neural Networks	 Weight sharing How CNNs transform input from spatial to semantic information Dimensionality equation (number of neurons per layer) Improving convnets: Pooling, 1x1 convolutions, Inception module Exercise: Implement Lenet-5 deep neural network model (lecun-98.pdf) in TensorFlow
10	7	Traffic Sign Classifier (Project Due 23 Jan)	 Traffic sign recognition using multi-scale convolutional networks (sermanet-ijcnn-11.pdf) Developed a network with 197415 parameters, trained on German traffic signs and tested on UK traffic signs Report: https://github.com/cvilas/CarND/blob/master/P2-TrafficSigns/Traffic_Sign_Classifier.ipynb
11		Keras	Re-implemented the traffic sign classifier using both sequential and functional APIs provided by Keras
12		Transfer Learning	 The idea of re-purposing an existing trained network for a new similar task Feature Extraction and Fine Tuning Repurposed AlexNet (60 million parameters, 650000 neurons) for traffic sign classification Bottleneck features Benchmark VGGNet, GoogLenet, ResNet on cifar10 and traffic signs datasets The importance of experimenting with network architectures (practise is ahead of theory at the moment)
13	10	Behavioral Cloning (Project Due 13 Feb)	 End-to-end learning (i.e. no modeling or rules) and its advantages (nvidia paper: nvidia_end2end-16.pdf) Simulator: https://techcrunch.com/2017/02/08/udacity-open-sources-its-self-driving-car-simulator-for-anyon e-to-use/ Report: https://github.com/cvilas/CarND/blob/master/P3-BehavioralCloning/submission/report/report.md My architecture has 546619 parameters to tune. Others have achieved the same using SqueezeNet with 52 parameters: https://github.com/mez/carnd/blob/master/P3_behavioral_cloning/writeup_report.md Batch-normalisation in improving learning ability of a network: batch_normalisation.pdf

14	12	Advanced Lane Finding (Project Due 27 Feb)	 Reversing lens distortions Perspective transforms
15	14	Vehicle Detection and Tracking (Project Due 13 Mar)	

Additional Reading

- The curriculum for Term 1: https://medium.com/self-driving-cars/term-1-in-depth-on-udacitys-self-driving-car-curriculum-ffcf46af0c08 #.api26st07
- The curriculum for Term 2: https://medium.com/udacity/term-2-in-depth-on-udacitys-self-driving-car-curriculum-775130aae502#.lra2 w8s8m
- Vilas' GitHub repo: https://github.com/cvilas/CarND
- A Survey of Motion Planning and Control Techniques for Self-driving Urban Vehicles, https://arxiv.org/pdf/1604.07446v1.pdf
- Visualizing and Understanding Convolutional Networks:
 - fergus eccv2014.pdf
 - https://www.youtube.com/watch?v=ghEmQSxT6tw
- How the future of autonomous cars will unhold. 16 questions: Video
- Dropout: A Simple Way to Prevent Neural Networks from Overfitting: JMLRdropout.pdf
- Gradient-based learning applied to document recognition (Lenet): lecun-98.pdf
- Traffic sign recognition with multi-scale convolutional networks: sermanet-ijcnn-11.pdf
- ImageNet classification with deep convolutional neural networks (AlexNet): alexnet.pdf
- Going deeper with convolutions (GoogLenet): GoogLeNet-15.pdf
- Deep residential learning for image recognition (Microsoft Resnet): resnet-15.pdf
- Very deep convolutional networks for large-scale image recognition (vggnet): vggnet-15.pdf
- End to end learning for self-driving cars (Nvidia): nvidia_end2end-16.pdf
- SqueezeNet: AlexNet level accuracy with 50x fewer parameters and < 0.5 MB model size: squeezenet-17.pdf
- Batch Normalization: Accelerating deep network training by reducing internal covariate shift: batch_normalisation.pdf