Министерство науки и высшего образования Российской Федерации

федеральное государственное автономное образовательное учреждение высшего образования «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО»

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА

ВЕРИФИКАЦИЯ АЛГОРИТМА ПОСТРОЕНИЯ БАЗИСА ГРЁБНЕРА И ЕГО ПРИМЕНЕНИЙ В СИСТЕМАХ КОМПЬЮТЕРНОЙ АЛГЕБРЫ НА ЯЗЫКЕ ИНТЕРАКТИВНОГО ДОКАЗАТЕЛЬСТВА ТЕОРЕМ LEAN

Автор: Федоров Глеб Влад	цимирович	
Направление подготовки:	01.03.02 Прикладная	
	математика и информатика	
Квалификация: Бакалавр		
Руководитель ВКР: Трифа	нов А.И., канд. физмат. наук	

Ооучающийся Федоров глео владимирович
Группа М34351 Факультет ИТиП
Направленность (профиль), специализация
Математические модели и алгоритмы в разработке программного обеспечения
Консультанты:
а) Гилев П.А., без звания
ВКР принята «»20 г.
Оригинальность ВКР%
ВКР выполнена с оценкой
Дата защиты «15» июня 2019 г.

Листов хранения _____

Демонстрационных материалов/Чертежей хранения _____

Секретарь ГЭК Павлова О.Н.

Министерство науки и высшего образования Российской Федерации

федеральное государственное автономное образовательное учреждение высшего образования «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО»

УТВЕРЖДАЮ

Руководитель ОП				
проф.	, д.т.н. Парфенов	в В.Г.		
«	»	20	Γ.	

ЗАДАНИЕ на выпускную квалификационную работу
Обучающийся Федоров Глеб Владимирович
Группа М34351 Факультет ИТиП
Квалификация: Бакалавр
Направление подготовки: 01.03.02 Прикладная математика и информатика
Направленность (профиль) образовательной программы: Математические модели и
алгоритмы в разработке программного обеспечения
Тема ВКР: Верификация алгоритма построения базиса Грёбнера и его применений в системах
компьютерной алгебры на языке интерактивного доказательства теорем lean
Руководитель Трифанов А.И., канд. физмат. наук, ординарный доцент Университета ИТМС
2 Срок сдачи студентом законченной работы до: «31» мая 2019 г.
3 Техническое задание и исходные данные к работе
4 Содержание выпускной квалификационной работы (перечень подлежащих разработко
вопросов)
5 Перечень графического материала (с указанием обязательного материала)
Графические материалы и чертежи работой не предусмотрены
6 Исходные материалы и пособия
a) -
7 Дата выдачи задания «22» октября 2022 г.
Руководитель ВКР
Задание принял к исполнению «22» октября 2022 г.

Министерство науки и высшего образования Российской Федерации

федеральное государственное автономное образовательное учреждение высшего образования «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО»

АННОТАЦИЯ ВЫПУСКНОЙ КВАЛИФИКАЦИОННОЙ РАБОТЫ

Обучающийся: Федоров Глеб Владимирович

Наименование темы ВКР: Верификация алгоритма построения базиса Грёбнера и его применений в системах компьютерной алгебры на языке интерактивного доказательства теорем lean

Наименование организации, в которой выполнена ВКР: Университет ИТМО

ХАРАКТЕРИСТИКА ВЫПУСКНОЙ КВАЛИФИКАЦИОННОЙ РАБОТЫ

1 Цель исследования: Разработать программное обеспечение на языке lean4, вычисляющее базис Грёбнера. Код данного программного обеспечения должен быть верифицирован на том же языке.

- 2 Задачи, решаемые в ВКР:
 - a) Реализация упорядочения lex и grlex для мономов. Доказательство, что реализованные доказательства являются линейными упорядочениями на множестве мономов;
 - б) Реализация алгоритма деления. Доказательство корректности алгоритма;
 - в) Реализация алгоритма построения базиса Грёбнера(алгоритм Бухбергера). Доказательство корректности алгоритма;
 - г) Реализация возможности пользовательского взаимодействия с кодом.
- 3 Число источников, использованных при составлении обзора: 0
- 4 Полное число источников, использованных в работе: 0
- 5 В том числе источников по годам:

Отечественных		Иностранных			
Последние	От 5	Более	Последние	От 5	Более
5 лет	до 10 лет	10 лет	5 лет	до 10 лет	10 лет
0	0	0	0	0	0

6 Использование информационных ресурсов Internet: нет

7 Использование современных пакетов компьютерных программ и технологий:

Пакеты компьютерных программ и технологий	Раздел работы	
Пакет tabularx для чуть более продвинутых таблиц	??, Приложения А, ??	
Пакет biblatex и программное средство biber	Список использован-	
	ных источников	

- 8 Краткая характеристика полученных результатов
- 9 Гранты, полученные при выполнении работы

10 Наличие публикат	ций и выступлений	й на конференциях по теме выпускной работы
Обучающийся	Федоров Г.В.	
Руководитель ВКР	Трифанов А.И.	
«»	20 г.	

СОДЕРЖАНИЕ

BB	ЕДЕ	НИЕ	5
1. I	Перв	вая глава	6
1	1.1.	Основные определения	6
1	1.2.	Деление полиномов от одной переменной	7
1	1.3.	Упорядочения мономов	7
1	1.4.	Алгоритм деления полиномов от нескольких переменных	8
1	1.5.	Алгоритм Бухбергера	8
1	1.6.	Решение задачи о принадлежности многочлена идеалу	8
I	Выво	оды по главе 1	8
2. I	Реал	изация	9
2	2.1.	Реализация полинома	9
2	2.2.	Мономиальные упорядочения	10
I	Выво	оды по главе 2	10
3AI	КЛК	ОЧЕНИЕ	12
ПРІ	илс	ЭЖЕНИЕ А. Пример приложения	13

введение

В данном разделе размещается введение.

ГЛАВА 1. ПЕРВАЯ ГЛАВА

Данная глава будет посвящена введению основных понятий теории колец от нескольких переменных.

1.1. Основные определения

Будем называть вектором степеней конструкцию следующего вида

$$\alpha = (\alpha_1 \dots \alpha_n), \alpha_i \in \mathbb{N}. \tag{1}$$

Назовём вектором переменных следующий вектор

$$x = (x_1 \dots x_n). \tag{2}$$

Мономом от переменных $x_1 \dots x_n$ называется произведение следующего вида

$$x^{\alpha} = (x_1^{\alpha_1} \dots x_n^{\alpha_n}). \tag{3}$$

Полиномом f, с коэффициентами из поля K называется конечная линейная комбинация мономов, которая записывается следующим образом

$$f = \sum_{\alpha} c_{\alpha} * x^{\alpha}, c_{\alpha} \in K. \tag{4}$$

Множеством всех полиномов от переменных $x_1 \dots x_n$ над полем K будем обозначать как $K[x_1 \dots x_n]$. Отметим, что на данном множестве можно естественным образом ввести операции + и * таким образом, чтобы структура $\langle K[x_1 \dots x_n], +, * \rangle$ удовлетворяла аксиомам кольца.

Подмножество $I \subset K[x_1 \dots x_n]$ называется идеалом, если выполнены следующие условия:

- a) $0 \in I$;
- б) если $f, g \in I$, то $f + g \in I$;
- в) если $f \in I$ и $h \in K[x_1 \dots x_n]$, то $hf \in I$.

Пусть $f_1 \dots f_s \in K[x_1 \dots x_n]$, тогда множество $\langle f_1 \dots f_s \rangle = \sum_i^s h_i * f_i | h_1 \dots h_s \in K[x_1 \dots x_n]$ является идеалом в $K[x_1 \dots x_n]$, а полиномы $\langle f_1 \dots f_s \rangle$ называются образующими идеала.

1.2. Деление полиномов от одной переменной

Теория базисов Грёбнера во многом опирается на операцию деления многочленов. Перед тем, как определить алгоритм деления в кольце полиномов от нескольких переменных рассмотрим алгоритм в кольце полиномов от одной переменной.

Важнейшей частью алгоритма является понятие старшего члена полинома. Пусть $f=\alpha_0 x^m+\alpha_1 x^{m-1}\ldots+a_m$, где $a_i\in K,\,a_0\neq 0$. Тогда

$$LT(f) = \alpha_0 x^m$$

называется старшим членом полинома f.

Опишем алгоритм деления в K[x]. Пусть $g \in K[x]$ — ненулевой полином. Тогда любой полином $f \in K[x]$ может быть записан в виде

$$f = qg + r$$

где $q,r\in K[x]$ и либо r=0, либо deg(r)< deg(g), причём q и r определены однозначно. Многочлены q и r могут быть найдены следующим алгоритмом.

Листинг 1 — Деление в K[x]

```
function \operatorname{Divide}(q,f) q=0; r=f; while r\neq 0 & LT(g)|LT(r) do q=q+LT(r)/LT(g) r=r-(LT(r)/LT(g))g end while return q,r end function
```

Доказательство корректности данного алгоритма можно найти в ...

1.3. Упорядочения мономов

После прочтения предыдущего параграфа может сложится впечатление, что алгоритм полиномов из K[x] будет работать и в $K[x_1 \dots x_n]$. К сожалению, это не совсем так. Заметим, что в кольце K[x] у мономов есть естественный порядок — по степеням, которые являются натуральными числами. Но в

 $K[x_1 \dots x_n]$ степень монома — не число. Поэтому, в данном параграфе будет дано определение упорядочения мономов в $K[x_1 \dots x_n]$.

Мономиальным упорядочением на $K[x_1 \dots x_n]$ называется любое бинарное отношение < на $\mathbb{Z}_{\geqslant 0}^n$, обладающее следующими свойствами:

- а) < является линейным упорядочением на $\mathbb{Z}_{\geqslant 0}^n$;
- б) если $\alpha < \beta$ и $\gamma \in \mathbb{Z}_{\geqslant 0}^n$, то $\alpha + \gamma < \beta + \gamma$;
- в) < вполне упорядочивает $\mathbb{Z}_{\geq 0}^n$.

Условие а нужно для того, чтобы мы могли для любого полинома расположить мономы в в порядке <. То есть, для любой пары мономов x^{α}, y^{β} должно выполняться одно из следующих соотношений

$$x^{\alpha} < y^{\beta}, x^{\alpha} = y^{\beta}, x^{\alpha} > y^{\beta}$$

Условие б нужно для того, чтобы упорядочение было согласованно с аксиомами кольца. А именно с дистрибутивностью умножения относительно сложения. Более подробно в приложении

Уловие в необходимо для доказательства корректности алгоритмов их следующих параграфов. А именно, критерий остановки остановки алгоритма будет основан на том, что старший члено полинома убывает на каждом шаге алгоритма.

В данной работе будут рассмотрены два упорядочения:

- а) Лексикографическое упорядочение $a <_{lex} b \Leftrightarrow$ первая ненулевая координата вектора b-a положительна;
- б) Градуированное лексикографическое упорядочение $a <_{grlex} b \Leftrightarrow |a| < |b| \lor (|a| = |b| \land a \leqslant_{lex} b)$.

Доказательства того, что эти упорядочения удовлетворяют условиям, определённым выше, будут предъявлены в следующей главе.

1.4. Алгоритм деления полиномов от нескольких переменных 1.5. Алгоритм Бухбергера

1.6. Решение задачи о принадлежности многочлена идеалу Выводы по главе 1

Вывод:

ГЛАВА 2. РЕАЛИЗАЦИЯ

Данная глава будет посвящена введению реализации описанной выше теории на языке интерактивного доказательства теорем lean. В данной работе будут рассматриваться только полиномы над полем рациональных чисел.

2.1. Реализация полинома

В библиотеке mathlib уже есть реализация полинома от нескольких переменных под названием MvPolynomial, которая удовлетворяет всем аксиомам кольца. Но, к сожалению, это реализация явно использует аксиому выбора, что делает её неконструктивной. Иначе говоря, её можно использовать только для доказательства теорем, но сгенерировать исполняемый код при её использовании не выйдет. Поэтому в данной работе была написана собственная реализация.

Введём основные определения. Вектором степеней назовём вектор натуральных чисел длины n упорядоченный согласно ord. Произведением двух векторов одинаковой длины с одинаковым упорядочением назовём их покомпонентную сумму. Мы называем сумму векторов произведением потомучто здесь имеется ввиду произведение $x_1^{\alpha_1} \dots x_n^{\alpha_n}$ на $x_1^{\beta_1} \dots x_n^{\beta_n}$, что равно $x_1^{\alpha_1+\beta_1} \dots x_n^{\alpha_n+\beta_n}$.

```
Листинг 2 – Вектор степеней
```

```
def Variables (n: Nat) (ord: Type) := Vector Nat n

def Variables.mul (v1 v2: Variables n ord): Variables n ord :=
    map2 (fun x y => x + y) v1 v2
```

Заметим, что вектор переменных нам нужен только для удобства восприятия. В работе алгоритмов он никак не учавствует. Поэтому мы можем определить моном как пару из рационального числа и вектора степеней длинны n упорядоченную согласно ord. Произведение мономов определенно естественным образом.

Полином был основан на основе красно-чёрного дерева. А именно, полином — это красно-чёрное дерево, элемены которого — это мономы, у которых ровно n переменных. Причём функция сравнения — это некоторое мономиальное упорядочение ord.

Основные функции работы с полиномом можно найти в приложении

Листинг 3 – Моном

```
def Monomial (n: Nat) (ord: Type) := Rat × (Variables n ord)
def Monomial.mul (m1 m1: Monomial n ord) : Monomial n ord :=
  (m1.fst * m2.fst , Variables.mul m1.snd m2.snd)
```

Листинг 4 – Моном

```
def Polynomial (n: Nat) (ord: Type) [MonomialOrder $ Variables n
  ord] := Std.RBSet (Monomial n ord) ordering.m cmp
```

2.2. Мономиальные упорядочения

Для доказательства того, что реализованные упорядочения удовлетворяют аксиомам мономиального упорядочения, был реализован typeclass(класс типов) MonomialOrder, наследованный от typeclass LinearOrder(линейное упорядочение) и typeclass WellFoundedRelation(вполне упорядочивание). Для LinearOrder lean накладывает дополнительные ограничения. А именно:

- a) Отношение ≤ должно быть вычислимым(decidable);
- б) Lean автоматически строит отношение <. Поэтому, нужно проверка согласованности отношений < и \leq . А именно $a < b \Leftrightarrow (a \leq b \land b \not\leq a)$.

В данной работе были определены два мономиальных упорядочения: лексикографическое(далее Lex) и градуированное лексикогрфическое(далее GrLex).

Листинг 5 – Lex упорядочение

def Order.lex (v1 v2: Variables n order.Lex): Prop := Order.
lex_impl v1 v2

Выводы по главе 2

Вывод:

Листинг 6 – Lex упорядочение

lex_impl v1 v2

Листинг 7 – GrLex упорядочение

ЗАКЛЮЧЕНИЕ

В данном разделе размещается заключение.

ПРИЛОЖЕНИЕ А. ПРИМЕР ПРИЛОЖЕНИЯ