ISYE6501x Homework 7

Done By: Joel Quek

Question 10.1

Using the same crime data set uscrime.txt as in Questions 8.2 and 9.1, find the best model you can using

- (a) a regression tree model, and
- (b) a random forest model.

In R, you can use the tree package or the rpart package, and the randomForest package. For each model, describe one or two qualitative takeaways you get from analyzing the results (i.e., don't just stop when you have a good model, but interpret it too).

Dataset and Libraries

In [1]:

```
library(rpart)
library(rpart.plot)
library(tree)
library(RColorBrewer)
library(rattle)
library(caret)
library(randomForest)
library(mitools)
library(mitools)
library(ggplot2)
library(cowplot)
```

In [2]:

```
crime <- read.table("uscrime.txt", header=TRUE)</pre>
```

In [3]:

head(crime)

A data.frame: 6 × 16

	M	So	Ed	Po1	Po2	LF	M.F	Pop	NW	U1	U2	Wealth	Ineq	
	<dbl></dbl>	<int></int>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<int></int>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<int></int>	<dbl></dbl>	
1	15.1	1	9.1	5.8	5.6	0.510	95.0	33	30.1	0.108	4.1	3940	26.1	0.0
2	14.3	0	11.3	10.3	9.5	0.583	101.2	13	10.2	0.096	3.6	5570	19.4	0.0
3	14.2	1	8.9	4.5	4.4	0.533	96.9	18	21.9	0.094	3.3	3180	25.0	0.0
4	13.6	0	12.1	14.9	14.1	0.577	99.4	157	8.0	0.102	3.9	6730	16.7	0.0
5	14.1	0	12.1	10.9	10.1	0.591	98.5	18	3.0	0.091	2.0	5780	17.4	0.0
6	12.1	0	11.0	11.8	11.5	0.547	96.4	25	4.4	0.084	2.9	6890	12.6	0.0
4														•

In [4]:

summary(crime)

```
So
                                          Ed
                                                          Po<sub>1</sub>
Min.
       :11.90
                 Min.
                         :0.0000
                                   Min.
                                           : 8.70
                                                    Min.
                                                            : 4.50
1st Qu.:13.00
                 1st Qu.:0.0000
                                   1st Qu.: 9.75
                                                    1st Qu.: 6.25
Median :13.60
                 Median :0.0000
                                   Median :10.80
                                                    Median : 7.80
                         :0.3404
                                                            : 8.50
Mean
       :13.86
                 Mean
                                   Mean
                                           :10.56
                                                    Mean
3rd Qu.:14.60
                 3rd Qu.:1.0000
                                   3rd Qu.:11.45
                                                     3rd Qu.:10.45
       :17.70
                        :1.0000
                                           :12.20
                                                            :16.60
Max.
                 Max.
                                   Max.
                                                    Max.
     Po<sub>2</sub>
                        LF
                                          M.F
                                                            Pop
                                            : 93.40
Min.
       : 4.100
                  Min.
                          :0.4800
                                    Min.
                                                      Min.
                                                              : 3.00
1st Qu.: 5.850
                  1st Qu.:0.5305
                                    1st Qu.: 96.45
                                                      1st Qu.: 10.00
Median : 7.300
                  Median :0.5600
                                    Median : 97.70
                                                      Median : 25.00
Mean
       : 8.023
                  Mean
                         :0.5612
                                    Mean
                                            : 98.30
                                                      Mean
                                                             : 36.62
3rd Qu.: 9.700
                  3rd Qu.:0.5930
                                    3rd Qu.: 99.20
                                                       3rd Qu.: 41.50
Max.
       :15.700
                  Max.
                          :0.6410
                                    Max.
                                            :107.10
                                                      Max.
                                                              :168.00
      NW
                       U1
                                           U2
                                                          Wealth
       : 0.20
                         :0.07000
                                            :2.000
Min.
                 Min.
                                    Min.
                                                     Min.
                                                             :2880
1st Qu.: 2.40
                 1st Qu.:0.08050
                                    1st Qu.:2.750
                                                      1st Ou.:4595
Median: 7.60
                                    Median :3.400
                                                     Median:5370
                 Median :0.09200
                         :0.09547
Mean
       :10.11
                 Mean
                                    Mean
                                            :3.398
                                                     Mean
                                                             :5254
3rd Qu.:13.25
                 3rd Qu.:0.10400
                                    3rd Qu.:3.850
                                                      3rd Qu.:5915
Max.
       :42.30
                 Max.
                         :0.14200
                                    Max.
                                            :5.800
                                                     Max.
                                                             :6890
                                                          Crime
     Ineq
                      Prob
                                          Time
                         :0.00690
                                                             : 342.0
Min.
       :12.60
                 Min.
                                    Min.
                                            :12.20
                                                     Min.
1st Qu.:16.55
                 1st Qu.:0.03270
                                    1st Qu.:21.60
                                                     1st Qu.: 658.5
Median :17.60
                 Median :0.04210
                                    Median :25.80
                                                     Median : 831.0
Mean
       :19.40
                 Mean
                         :0.04709
                                    Mean
                                            :26.60
                                                     Mean
                                                             : 905.1
3rd Qu.:22.75
                 3rd Qu.:0.05445
                                    3rd Qu.:30.45
                                                      3rd Qu.:1057.5
Max.
       :27.60
                        :0.11980
                                            :44.00
                 Max.
                                    Max.
                                                     Max.
                                                             :1993.0
```

Regression Tree

Source: https://www.pluralsight.com/guides/explore-r-libraries:-rpart (https://www.pluralsi

In [5]:

```
set.seed(1)
tree_model<- rpart(Crime~ ., data = crime, method="anova" )
summary(tree_model)</pre>
```

1

```
Call:
rpart(formula = Crime ~ ., data = crime, method = "anova")
 n= 47
          CP nsplit rel error
                                 xerror
                                             xstd
1 0.36296293
                  0 1.0000000 1.0303899 0.2549076
2 0.14814320
                  1 0.6370371 0.8900680 0.2149365
3 0.05173165
                  2 0.4888939 0.9096979 0.2393384
4 0.01000000
                  3 0.4371622 0.8893049 0.2346618
Variable importance
                                                                           LF
   Po1
          Po2 Wealth
                       Ineq
                              Prob
                                        Μ
                                              NW
                                                    Pop
                                                          Time
                                                                    Ed
    17
           17
                  11
                         11
                                10
                                       10
                                                      5
    So
     1
Node number 1: 47 observations,
                                   complexity param=0.3629629
  mean=905.0851, MSE=146402.7
  left son=2 (23 obs) right son=3 (24 obs)
  Primary splits:
      Po1
             < 7.65
                         to the left,
                                       improve=0.3629629, (0 missing)
                                       improve=0.3629629, (0 missing)
      Po<sub>2</sub>
             < 7.2
                         to the left,
      Prob
             < 0.0418485 to the right, improve=0.3217700, (0 missing)
      NW
             < 7.65
                         to the left, improve=0.2356621, (0 missing)
      Wealth < 6240
                         to the left, improve=0.2002403, (0 missing)
  Surrogate splits:
     Po2
             < 7.2
                         to the left, agree=1.000, adj=1.000, (0 split)
      Wealth < 5330
                         to the left, agree=0.830, adj=0.652, (0 split)
                        to the right, agree=0.809, adj=0.609, (0 split)
             < 0.043598
             < 13.25
                         to the right, agree=0.745, adj=0.478, (0 split)
      М
             < 17.15
                         to the right, agree=0.745, adj=0.478, (0 split)
      Ineq
Node number 2: 23 observations,
                                   complexity param=0.05173165
  mean=669.6087, MSE=33880.15
  left son=4 (12 obs) right son=5 (11 obs)
  Primary splits:
      Pop < 22.5
                                    improve=0.4568043, (0 missing)
                      to the left,
      Μ
         < 14.5
                      to the left,
                                   improve=0.3931567, (0 missing)
      NW < 5.4
                      to the left, improve=0.3184074, (0 missing)
      Po1 < 5.75
                      to the left, improve=0.2310098, (0 missing)
                      to the right, improve=0.2119062, (0 missing)
      U1 < 0.093
  Surrogate splits:
      NW
          < 5.4
                       to the left, agree=0.826, adj=0.636, (0 split)
           < 14.5
                       to the left, agree=0.783, adj=0.545, (0 split)
      Time < 22.30055 to the left, agree=0.783, adj=0.545, (0 split)
      So
           < 0.5
                       to the left,
                                    agree=0.739, adj=0.455, (0 split)
      Ed
           < 10.85
                       to the right, agree=0.739, adj=0.455, (0 split)
Node number 3: 24 observations,
                                   complexity param=0.1481432
  mean=1130.75, MSE=150173.4
  left son=6 (10 obs) right son=7 (14 obs)
  Primary splits:
      NW
           < 7.65
                       to the left, improve=0.2828293, (0 missing)
                       to the left, improve=0.2714159, (0 missing)
           < 13.05
      Time < 21.9001
                       to the left, improve=0.2060170, (0 missing)
      M.F < 99.2
                       to the left, improve=0.1703438, (0 missing)
      Po1 < 10.75
                       to the left, improve=0.1659433, (0 missing)
  Surrogate splits:
      Ed
         < 11.45
                       to the right, agree=0.750, adj=0.4, (0 split)
                       to the left, agree=0.750, adj=0.4, (0 split)
      Ineq < 16.25
      Time < 21.9001
                       to the left, agree=0.750, adj=0.4, (0 split)
                       to the left, agree=0.708, adj=0.3, (0 split)
      Pop
          < 30
```

LF < 0.5885 to the right, agree=0.667, adj=0.2, (0 split)

Node number 4: 12 observations mean=550.5, MSE=20317.58

Node number 5: 11 observations mean=799.5455, MSE=16315.52

Node number 6: 10 observations mean=886.9, MSE=55757.49

Node number 7: 14 observations mean=1304.929, MSE=144801.8

Regression Tree Plot

Source: https://discuss.analyticsvidhya.com/t/what-are-the-packages-required-to-plot-a-fancy-rpart-plot-in-r/6776/2)

In [6]:

```
fancyRpartPlot(tree_model)
# rpart.plot(tree_model) also works
```


Rattle 2023-Feb-28 22:20:01 redoc

From the Regression Tree only three variables are used

- 1. Po1
- 2. Pop
- 3. NW

Variable Importance

In [7]:

Po1: 2497521.6813136 Po2: 2497521.6813136 Wealth: 1628818.48781322 Ineq:

1602211.95963445 **Prob**: 1520230.58862567 **M**: 1388627.84614747 **NW**: 1245883.78569375

Pop: 661770.552416714 Time: 601906.02365587 Ed: 569545.86447513 LF:

203872.534285714 So: 161800.795903701

tree model\$variable.importance

Variable importance is determined by calculating the relative influence of each variable: whether that variable was selected to split on during the tree building process, and how much the squared error (over all trees) improved (decreased) as a result.

Source: <a href="https://h2o-release.s3.amazonaws.com/h2o/rel-yau/3/docs-website/h2o-docs/variable-importance.html#:~:text=Variable%20importance%20is%20determined%20by,(decreased)%20as%20a%20result (https://h2o-release.s3.amazonaws.com/h2o/rel-yau/3/docs-website/h2o-docs/variable-importance.html#:~:text=Variable%20importance%20is%20determined%20by, (decreased)%20as%20a%20result).

Model Evaluation

Source (Regression): https://medium.com/nerd-for-tech/implementing-decision-trees-in-r-regression-problem-using-rpart-c74cbd9e0b7b)

Source (Classification): https://www.pluralsight.com/guides/explore-r-libraries:-rpart (https://www.pluralsight.com/guides/explore-r-libraries:-rpart)

In [8]:

```
set.seed(100)
trainRowNumbers <- createDataPartition(crime$Crime, p=0.7, list=FALSE)
train <- crime[trainRowNumbers,]
test <- crime[-trainRowNumbers,]
dim(train); dim(test)</pre>
```

35 · 16

12 · 16

In [9]:

```
PredictCART_train = predict(tree_model, data = test, type="vector")
```

In [10]:

```
MAE <- function(actual, pred) {mean(abs(actual-pred))}
MAE(test$Crime, PredictCART_train)</pre>
```

Warning message in actual - pred: "longer object length is not a multiple of shorter object length"

356.986791931473

In [11]:

```
y1 <- predict(tree_model, test)
MSE1 <- mean((y1-test$Crime)^2)
MSE1</pre>
```

65045.3652938944

Regression Tree Complexity Parameter

In [12]:

```
printcp(tree_model)
plotcp(tree_model)
```

```
Regression tree:
rpart(formula = Crime ~ ., data = crime, method = "anova")
Variables actually used in tree construction:
[1] NW Po1 Pop
Root node error: 6880928/47 = 146403
n = 47
        CP nsplit rel error xerror
                                       xstd
1 0.362963
                0
                    1.00000 1.03039 0.25491
2 0.148143
                1
                    0.63704 0.89007 0.21494
3 0.051732
                2
                    0.48889 0.90970 0.23934
4 0.010000
                    0.43716 0.88930 0.23466
```


Pruning the Tree

In [13]:

```
pruned_model <- prune.rpart(tree_model,cp=0.10) # adjust the cp parameter to get different model(pruned_model)

text(pruned_model)

#fancyRpartPlot(tree_model)</pre>
```


Test the Pruned Model

In [14]:

```
y2 <- predict(pruned_model, test)
```

In [15]:

```
plot(y2, test$Crime)
abline(0,1)
```


In [16]:

```
MSE2 <- mean((y2-test$Crime)^2)
MSE2</pre>
```

72477.785708081

The MSE is worse for the pruned tree

Regression Equations at the Leaves

In [17]:

```
pruned_model$where
```

In [18]:

```
leaf4 <-crime[which(pruned_model$where==4),]
leaf5 <-crime[which(pruned_model$where==5),]
leaf2 <-crime[which(pruned_model$where==2),]
#leaf6 <-crime[which(pruned_model$where==6),]</pre>
```

In [19]:

```
model_leaf4<-lm(Crime~., data=leaf4)
model_leaf4
#summary(Leaf4)</pre>
```

Call:

lm(formula = Crime ~ ., data = leaf4)

Coefficients:

(Intercept)	M	So	Ed	Po1	Po2
32527.85	258.27	NA	-46.38	-1168.92	612.42
LF	M.F	Pop	NW	U1	U2
16612.42	-384.45	-18.22	124.13	2064.68	NA
Wealth	Ineq	Prob	Time		
NA	NA	NA	NA		

In [20]:

```
model_leaf5<-lm(Crime~., data=leaf5)
model_leaf5
#summary(Leaf7)</pre>
```

Call:

lm(formula = Crime ~ ., data = leaf5)

Coefficients:

(Intercept)	М	So	Ed	Po1	Po2
-1.381e+04	8.012e+01	-2.827e+02	2.663e+02	-2.943e+02	3.571e+02
LF	M.F	Pop	NW	U1	U2
-1.648e+03	8.738e+01	1.154e+00	8.841e+00	-3.265e+04	5.783e+02
Wealth	Ineq	Prob	Time		
2.416e-01	1.367e+02	NA	NA		

```
In [21]:
```

```
model_leaf2<-lm(Crime~., data=leaf2)
model_leaf2
#summary(Leaf6)</pre>
```

Call:

```
lm(formula = Crime ~ ., data = leaf2)
```

Coefficients:

(Intercept)	М	So	Ed	Po1	Po2
(Tircel cept)	l'1	30	Lu	FOI	F 02
-48.5477	45.8622	380.4815	187.9074	-3.5138	44.6382
LF	M.F	Рор	NW	U1	U2
1059.3652	-22.5521	10.6413	0.1010	4878.2802	-5.5126
Wealth	Ineq	Prob	Time		
-0 1022	1 7770	-7317 //07	-20 0603		

Observations

It appears that the R library produced the model with the lowest MSE.

Random Forest Model

Source (Stat Quest): https://www.youtube.com/watch?v=6EXPYzbfLCE (https://www.youtube.com/watch?v=6EXPYzbfLCE (https://www.youtube.com/watch?v=6EXPYzbfLCE (https://www.youtube.com/watch?v=6EXPYzbfLCE)

```
In [22]:
```

```
set.seed(1)
forest_model <- randomForest(Crime ~. , data=crime,keep.forest=T, importance=TRUE,class=)
print(forest_model )</pre>
```

```
Call:
```

% Var explained: 40.3

Variable Importance

In [23]:

importance(forest_model)

A matrix: 15 × 2 of type dbl

	%IncMSE	IncNodePurity
М	2.3965203	228719.50
So	2.6589225	23456.11
Ed	3.7141435	213283.48
Po1	12.4862109	1095484.85
Po2	11.0894307	1197840.76
LF	3.1325318	270248.43
M.F	1.7951798	232785.09
Pop	0.7784942	343523.34
NW	9.5782376	520590.05
U1	-1.9438082	133339.11
U2	1.9167880	162803.16
Wealth	2.6613199	654055.84
Ineq	1.6040415	208959.89
Prob	8.3155853	743181.12
Time	0.7126839	231615.22

In [24]:

```
varImpPlot(forest_model )
```

forest_model

Performance of Random Forest Model

In [25]:

```
forest_predict <- predict(forest_model)
RSS <- sum((forest_predict-crime$Crime)^2)
# the residual sum of squares
TSS <- sum((mean(crime$Crime)-crime$Crime)^2)
#the total sum of squares
R_squared_forest<-1-(RSS/TSS)
R_squared_forest</pre>
```

0.402966921582338

In [26]:

#residual analysis plot(crime\$Crime, scale(forest_predict-crime\$Crime), pch =19,main="Random Forest: Residual v: abline(0,0)

Observations

 R^2 is 0.402966921582338 which is a good score

Question 10.2

Describe a situation or problem from your job, everyday life, current events, etc., for which a logistic regression model would be appropriate. List some (up to 5) predictors that you might use.

As an educator, there are times when I need to decide if a student is suitable for an Arts or Science program. Although there are tests with numeric scores used to mesaure, there are other intangible factors that should also be taken into account for instance:

- 1. Socio-economic factors
- 2. Gender
- 3. Race
- 4. Next-of-kin aptitude in the subjects

Such factors are categorical and would require logistic regression to model the response.

Question 10.3

- 1. Using the GermanCredit data set germancredit.txt from http://archive.ics.uci.edu/ml/machine-learning-databases/statlog/german) / (description at http://archive.ics.uci.edu/ml/datasets/Statlog+%28German+Credit+Data%29)), use logistic regression to find a good predictive model for whether credit applicants are good credit risks or not. Show your model (factors used and their coefficients), the software output, and the quality of fit. You can use the glm function in R. To get a logistic regression (logit) model on data where the response is either zero or one, use family=binomial(link="logit") in your glm function call.
- 2. Because the model gives a result between 0 and 1, it requires setting a threshold probability to separate between "good" and "bad" answers. In this data set, they estimate that incorrectly identifying a bad customer as good, is 5 times worse than incorrectly classifying a good customer as bad. Determine a good threshold probability based on your model.

Source (Stat Quest): https://www.youtube.com/watch?v=C4N3_XJJ-jU (https://www.youtube.com/watch?v=C4N3_XJJ-jU (https://www.youtube.com/watch?v=C4N3_XJJ-jU (https://www.youtube.com/watch?v=C4N3_XJJ-jU (https://www.youtube.com/watch?v=C4N3_XJJ-jU (https://www.youtube.com/watch?v=C4N3_XJJ-jU)

In [27]:

```
credit <- read.table("germancredit.txt",sep = " ")</pre>
```

In [28]:

```
head(credit,5)
```

A data.frame: 5 × 21

	V1	V2	V3	V4	V5	V6	V 7	V 8	V9	V10		V12	V13	V14	
	<chr></chr>	<int></int>	<chr></chr>	<chr></chr>	<int></int>	<chr></chr>	<chr></chr>	<int></int>	<chr></chr>	<chr></chr>		<chr></chr>	<int></int>	<chr></chr>	
1	A11	6	A34	A43	1169	A65	A75	4	A93	A101	•••	A121	67	A143	
2	A12	48	A32	A43	5951	A61	A73	2	A92	A101		A121	22	A143	
3	A14	12	A34	A46	2096	A61	A74	2	A93	A101		A121	49	A143	
4	A11	42	A32	A42	7882	A61	A74	2	A93	A103		A122	45	A143	
5	A11	24	A33	A40	4870	A61	A73	3	A93	A101		A124	53	A143	
4														>	

One-Hot Encode the Response Variable

```
In [33]:
```

```
set.seed(1)
credit_onehot <- one_hot(as.data.table(credit))
#one hot encoding the categorical variables</pre>
```

In [34]:

head(credit_onehot)

A data.table: 6 × 21

V1	V2	V3	V4	V5	V6	V7	V8	V9	V10	•••	V12	V13	V14	1
<chr></chr>	<int></int>	<chr></chr>	<chr></chr>	<int></int>	<chr></chr>	<chr></chr>	<int></int>	<chr></chr>	<chr></chr>		<chr></chr>	<int></int>	<chr></chr>	<c< th=""></c<>
A11	6	A34	A43	1169	A65	A75	4	A93	A101		A121	67	A143	A
A12	48	A32	A43	5951	A61	A73	2	A92	A101		A121	22	A143	A.
A14	12	A34	A46	2096	A61	A74	2	A93	A101		A121	49	A143	A [·]
A11	42	A32	A42	7882	A61	A74	2	A93	A103		A122	45	A143	A [·]
A11	24	A33	A40	4870	A61	A73	3	A93	A101		A124	53	A143	A [·]
A14	36	A32	A46	9055	A65	A73	2	A93	A101		A124	35	A143	A.
4														•

In [35]:

```
credit_onehot$V21[credit_onehot$V21==1]<-0
credit_onehot$V21[credit_onehot$V21==2]<-1</pre>
```

In the data dictionary [http://archive.ics.uci.edu/ml/datasets/Statlog+%28German+Credit+Data%29] (http://archive.ics.uci.edu/ml/datasets/Statlog+%28German+Credit+Data%29%5D)

1 = Good, 2 = Bad

Our one-hot encoding makes

0 = Good and 1 = Bad

In [36]:

head(credit_onehot)

A data.table: 6 × 21

V1	V2	V3	V4	V5	V6	V 7	V8	V9	V10	•••	V12	V13	V14	1
<chr></chr>	<int></int>	<chr></chr>	<chr></chr>	<int></int>	<chr></chr>	<chr></chr>	<int></int>	<chr></chr>	<chr></chr>	•••	<chr></chr>	<int></int>	<chr></chr>	<c< th=""></c<>
A11	6	A34	A43	1169	A65	A75	4	A93	A101		A121	67	A143	A.
A12	48	A32	A43	5951	A61	A73	2	A92	A101		A121	22	A143	A.
A14	12	A34	A46	2096	A61	A74	2	A93	A101		A121	49	A143	A.
A11	42	A32	A42	7882	A61	A74	2	A93	A103		A122	45	A143	A.
A11	24	A33	A40	4870	A61	A73	3	A93	A101		A124	53	A143	A.
A14	36	A32	A46	9055	A65	A73	2	A93	A101		A124	35	A143	A [·]
4														•

```
In [37]:
```

logistic <- glm(V21~.,data=credit_onehot, family="binomial")</pre>

In [39]:

summary(logistic) # pay attention to the coefficients

```
Call:
glm(formula = V21 ~ ., family = "binomial", data = credit_onehot)
Deviance Residuals:
   Min
             10
                  Median
                               3Q
                                       Max
-2.3410 -0.6994 -0.3752
                           0.7095
                                    2.6116
Coefficients:
             Estimate Std. Error z value Pr(>|z|)
(Intercept) 4.005e-01 1.084e+00
                                  0.369 0.711869
V1A12
           -3.749e-01 2.179e-01 -1.720 0.085400
V1A13
           -9.657e-01 3.692e-01 -2.616 0.008905 **
           -1.712e+00 2.322e-01 -7.373 1.66e-13 ***
V1A14
            2.786e-02 9.296e-03 2.997 0.002724 **
V2
            1.434e-01 5.489e-01 0.261 0.793921
V3A31
V3A32
           -5.861e-01 4.305e-01 -1.362 0.173348
V3A33
           -8.532e-01 4.717e-01 -1.809 0.070470 .
V3A34
           -1.436e+00 4.399e-01 -3.264 0.001099 **
           -1.666e+00 3.743e-01 -4.452 8.51e-06 ***
V4A41
V4A410
           -1.489e+00 7.764e-01 -1.918 0.055163 .
           -7.916e-01 2.610e-01 -3.033 0.002421 **
V4A42
V4A43
           -8.916e-01 2.471e-01 -3.609 0.000308 ***
V4A44
                       7.623e-01 -0.686 0.492831
           -5.228e-01
V4A45
           -2.164e-01
                       5.500e-01 -0.393 0.694000
                                  0.092 0.927082
V4A46
            3.628e-02 3.965e-01
V4A48
           -2.059e+00 1.212e+00 -1.699 0.089297 .
V4A49
           -7.401e-01 3.339e-01 -2.216 0.026668 *
V5
            1.283e-04 4.444e-05
                                  2.887 0.003894 **
V6A62
           -3.577e-01 2.861e-01 -1.250 0.211130
V6A63
           -3.761e-01 4.011e-01 -0.938 0.348476
V6A64
           -1.339e+00 5.249e-01 -2.551 0.010729 *
                       2.625e-01 -3.607 0.000310 ***
V6A65
           -9.467e-01
V7A72
           -6.691e-02 4.270e-01 -0.157 0.875475
V7A73
           -1.828e-01 4.105e-01 -0.445 0.656049
V7A74
           -8.310e-01 4.455e-01 -1.866 0.062110 .
V7A75
           -2.766e-01 4.134e-01 -0.669 0.503410
٧8
            3.301e-01 8.828e-02
                                  3.739 0.000185 ***
V9A92
           -2.755e-01 3.865e-01 -0.713 0.476040
           -8.161e-01 3.799e-01 -2.148 0.031718 *
V9A93
V9A94
           -3.671e-01 4.537e-01 -0.809 0.418448
            4.360e-01 4.101e-01
                                  1.063 0.287700
V10A102
V10A103
           -9.786e-01 4.243e-01 -2.307 0.021072 *
            4.776e-03 8.641e-02 0.055 0.955920
V11
V12A122
            2.814e-01 2.534e-01
                                  1.111 0.266630
V12A123
            1.945e-01 2.360e-01
                                  0.824 0.409743
V12A124
            7.304e-01 4.245e-01
                                  1.721 0.085308 .
V13
           -1.454e-02 9.222e-03 -1.576 0.114982
           -1.232e-01 4.119e-01 -0.299 0.764878
V14A142
V14A143
           -6.463e-01 2.391e-01 -2.703 0.006871 **
           -4.436e-01 2.347e-01 -1.890 0.058715 .
V15A152
V15A153
           -6.839e-01 4.770e-01 -1.434 0.151657
            2.721e-01 1.895e-01 1.436 0.151109
V16
V17A172
            5.361e-01 6.796e-01
                                  0.789 0.430160
V17A173
            5.547e-01 6.549e-01
                                  0.847 0.397015
            4.795e-01 6.623e-01
                                  0.724 0.469086
V17A174
            2.647e-01 2.492e-01
                                  1.062 0.288249
V18
                       2.013e-01 -1.491 0.136060
V19A192
           -3.000e-01
V20A202
           -1.392e+00 6.258e-01 -2.225 0.026095 *
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1221.73 on 999 degrees of freedom Residual deviance: 895.82 on 951 degrees of freedom

AIC: 993.82

Number of Fisher Scoring iterations: 5

For the factors whose p-values are below 0.05, the log(odds) and log(odds ratios) are both statistically significant.

AIC (Akaike Information Criterion) is 993.82 which in this context is just the Residual Deviance adjusted for the number of parameters in the model.

AIC can be used to compare one model to another.

Model Evaluation - Pseudo R^2

Source (Stat Quest): https://www.youtube.com/watch?v=C4N3_XJJ-jU (https://www.youtube.com/watch?v=C4N3_XJJ-jU (https://www.youtube.com/watch?v=C4N3_XJJ-jU (https://www.youtube.com/watch?v=C4N3_XJJ-jU (https://www.youtube.com/watch?v=C4N3_XJJ-jU (https://www.youtube.com/watch?v=C4N3_XJJ-jU)

In [40]:

```
ll.null<-logistic$null.deviance/-2
ll.proposed<-logistic$deviance/-2
(ll.null-ll.proposed)/ll.null</pre>
```

0.266762043171136

The Pseudo R^2 can be interpreted as the overall effect size

In [43]:

```
1-pchisq(2*(11.proposed-11.null),df=(length(logistic$coefficients)-1))
```

0

In this case the p-value is tiny, so the \mathbb{R}^2 calue isn't due to randomness.

Logistic Curve

In [45]:

```
predicted.data<-data.frame(probability.of.credit=logistic$fitted.values,credit=credit_onehot
```

In [46]:

```
predicted.data<-predicted.data[order(predicted.data$probability.of.credit,decreasing=FALSE),</pre>
```

In [47]:

```
predicted.data$rank<-1:nrow(predicted.data)</pre>
```

In [55]:

Conclusions

We recall that 0 = Good and 1 = Bad. . It will cost more for the bank to give loans to individuals with bad credit. To ensure that, I will make the threshold for classification to be less than 0.50.