Examen de Física I (Setembre, 2008)

Llicenciatura de Química Universitat Autònoma de Barcelona

Qüestions:

1.- La Figura adjunta mostra la trajectòria d'un automòbil format per segments rectilinis i arcs de circumferències de radi *R*. El cotxe parteix del repòs en el punt A i es para en el punt F. Entre B i E es mou amb una velocitat constant. ¿En quins punts el automòbil té acceleració, quina és la seva direcció i sentit? ¿Quina relació tenen els mòduls de las acceleracions en els trams BC i DE?

- **2.-** Una partícula es troba en un àrea de l'espai en la qual s'observa la distribució d'energia potencial mostrada a la figura. Trobeu:
 - a) La posició d'equilibri.
 - b) La força que experimenta la partícula en les posicions x = 1, 3 i 6 m.
 - c) Els punts de retorn si la partícula es troba inicialment a x = 2 m i te una energia total de 0 J.
 - d) L'energia cinètica quan passa per la posició d'equilibri, si la seva energia total és de -0.5 J.

- **3.-** La molècula de CO_2 és lineal, amb l'àtom de carboni al centre i els àtoms d'oxígens separats d = 1.2 Å del carboni. Considerem que aquesta molècula té una energia cinètica de 10^{-3} eV. Trobeu:
 - (a) El moment d'inèrcia del CO₂ respecte d'un eix perpendicular a la molècula que passa pel seu centre de masses. Considereu que la massa dels àtoms està confinada als seus nuclis, i per tant es poden considerar puntuals.
 - (b) Si tota l'energia cinètica és de rotació, ¿quina és la velocitat del centre de masses de la molècula, i la seva velocitat angular?

Dades: massa d'un àtom de Carboni = 12 uma; massa d'un àtom d'oxigen = 16 uma; $1 \text{ uma} = 1.67 \text{ } 10^{-27} \text{ kg}$; Càrrega de l'electró = $1.6 \text{ } 10^{-19} \text{ C}$.

- **4.-** La massa de Mart és 0.11 vegades la massa de la Terra, i el seu radi és 0.53 el radi terrestre. Trobeu:
 - (a) l'acceleració de la gravetat sobre la superfície de Mart.
 - (b) La velocitat d'escapament en aquest planeta en relació a la de la Terra.
 - (c) La duració de l'any marcià en anys terrestres, sabent que la distància de Mart al Sol és 1.5 vegades la distància de la Terra al Sol
- **5.-** Al dibuix de la figura, el tub i la cubeta contenen oli de densitat 0.9 g/cm³. La cubeta està oberta a l'exterior, però la part superior A del tub està tancada. Trobeu l'altura *h* de la columna d'oli al tub en els casos següents: (a) a l'espai A hi ha buit, i (b) hi ha un gas amb una pressió de 0.4 atm. La secció transversal del tub és de 2 cm². (1 atm = 1.013 10⁵ Pa)

- **6.-** El radó ²²²Rn es un gas natural radioactiu que es troba normalment diluït en l'aire i el seu període de semidesintegració és de 3.8 dies.
 - a) Calculeu la seva constant de desintegració.
 - b) Si considerem que en un espai tancat la concentració de radó és de 4.75 10⁷ àtoms per m³ d'aire, quina deu ser la seva activitat corresponent?
 - c) Quin temps es necessita per a que aquesta activitat es redueixi a una quarta part?
 - d) Quina seria aquesta activitat desprès de 25 dies?

Problemes: (Nota: agafeu $g = 10 \text{ m/s}^2$)

1. Una massa m està unida a un punt fix mitjançant una corda lleugera i inextensible de longitud l=30 cm i gira en un cercle vertical (veure figura), amb un moviment que fa que la tensió de la corda quan la massa està en el punt més baix (C) sigui tres vegades més gran que quan està en el punt més alt (A). Calculeu la tensió i la velocitat de la massa en els punts A, B i C.

2. Una bala de 15 g que viatja a 500 m/s xoca amb un bloc de fusta de 0.8 kg que està a l'extrem d'una taula que es troba a 0.8 m del terra. Si la bala s'incrusta en el bloc, determineu la distància horitzontal *D* des de la posició d'equilibri del bloc (sobre la taula) fins el punt en el qual el sistema (bloc + bala) toca el terra. Calculeu la velocitat del centre de masses del sistema abans del xoc i quan toca el terra.

La Figura adjunta mostra la trajectòria d'un automòbil format per segments rectilinis i arcs de circumferències de radi *R*. El cotxe parteix del repòs en el punt A i es para en el punt F. Entre B i E es mou amb una velocitat constant.

- 1. L'acceleració del automòbil ...
 - a) és constant en tota la trajectòria i va en la direcció de moviment
 - b) és normal a la trajectòria en el tram DE
 - c) és nul·la en el tram EF
 - d) es pot menysprear en el tram AB
- 2. En els trams BC i DE ...
 - a) el mòdul de l'acceleració varia en funció del temps
 - b) el mòdul de l'acceleració en el tram DE es superior al del tram BC
 - c) la relació entre els mòduls de les acceleracions es 1
 - d) el vector velocitat es constant
- 3. En la trajectòria considerada, el vector velocitat ...
 - a) es diferent en cada tram
 - b) es igual en tots els trams
 - c) no afecta al moviment
 - d) no influeix en el càlcul de las components intrínseques de l'acceleració

Qüestió 2

Una partícula es troba en un àrea de l'espai en la qual s'observa la distribució d'energia potencial mostrada a la figura.

- 4. La seva posició d'equilibri x₀ és ...
 - a) 0 m
 - b) 1 m
 - c) 2 m
 - d) 3 m

- 5. La força que experimenta la partícula en la posició x = 6 m és ...
 - a) positiva
 - b) negativa
 - c) nul·la
 - d) no es pot conèixer, necessitem més dades
- 6. La força neta que actua sobre la partícula és ...
 - a) positiva en la posició x = 1 m i negativa en la posició x = 3 m
 - b) negativa en la posició x = 1 m i positiva en la posició x = 3 m
 - c) negativa en les dues posicions
 - d) positiva en les dues posicions
- 7. Si la partícula es troba inicialment a x = 2 m i té una energia total de 0 J, els punts de retorn són...
 - a) no hi ha punts de retorn perquè la partícula és lliure
 - b) 1 m i 3 m
 - c) 0 m i 4 m
 - d) qualsevol posició pot ser considerada de retorn
- 8. Si la partícula té una energia total de -0.5 J, la seva energia cinètica quan passa per la posició d'equilibri és...
 - a) nul·la perquè es una posició d'equilibri
 - b) -0.5 J
 - c) 0.5 J
 - d) 1.5 J

La molècula de CO_2 és lineal, amb l'àtom de carboni al centre i els àtoms d'oxígens separats d = 1.2 Å del carboni. Considerem que aquesta molècula té una energia cinètica de 10^{-3} eV. Quan sigui necessari podeu considerar que els àtoms són masses puntuals.

Dades: massa d'un àtom de Carboni = 12 uma; massa d'un àtom d'Oxigen = 16 uma;

1 uma = $1.67 \cdot \times 10^{-27}$ kg; Càrrega de l'electró = $1.6 \cdot 10^{-19}$ C.

- 9. El moment d'inèrcia del CO₂ respecte d'un eix perpendicular a la molècula que passa pel seu centre de masses val...
 - (a) $7.7 \cdot 10^{-46} \text{ kg m}^2$
 - (b) $3.8 \cdot 10^{-46} \text{ kg m}^2$
 - (c) $6.4 \cdot 10^{-36} \text{ kg m}^2$
 - (d) 0 kg m^2

Si tota l'energia cinètica és de rotació...

- 10. ...el centre de masses de la molècula...
 - (a) es desplaça amb una velocitat uniforme no nul·la
 - (b) es desplaça amb una acceleració uniforme
 - (c) no es desplaça
 - (d) cap de les anteriors
- 11. ...la velocitat angular de la molècula val aproximadament...
 - (a) $4.6 \cdot 10^{12} \, \text{s}^{-1}$
 - (b) $3.7 \cdot 10^{12} \, \text{s}^{-1}$
 - (c) $3.7 \cdot 10^{11} \text{ s}$
 - (d) $4.6 \cdot 10^{-11} \, \text{s}^{-1}$

La massa de Mart és 0.11 vegades la massa de la Terra, i el seu radi és 0.53 el radi terrestre.

- 12. L'acceleració de la gravetat sobre la superfície de Mart és...
 - (a) 2.9 m/s^2
 - (b) 3.8 m/s^2
 - (c) 6.7 m/s^2
 - (d) 9.8 m/s
- 13. La velocitat d'escapament d'un planeta...
 - (a) augmenta quan el seu radi augmenta
 - (b) es independent del radi del planeta
 - (c) es duplica quan la seva massa es duplica
 - (d) es duplica quan la seva massa es multiplica per 4
- 14. El quocient entre la velocitat d'escapament de Mart i la de la Terra és aproximadament...
 - (a) 1.5
 - (b) 0.53
 - (c) 0.46
 - (d) 0.24
- 15. Com que la distància de Mart al Sol és 1.5 vegades la distància de la Terra al Sol, la duració de l'any marcià en anys terrestres és, aproximadament,
 - (a) 0.85
 - (b) 1.2
 - (c) 1.8
 - (d) 2.1

Qüestió 5

Al dibuix de la figura, el tub i la cubeta contenen un oli de densitat 0.9 g/cm^3 . La cubeta està oberta a l'exterior, però la part superior del tub A està tancada. La secció transversal del tub és de 2 cm^2 . (1 atm = $1.013 \cdot 10^5 \text{ Pa}$)

- (a) disminueix quan el tub és més gros.
- (b) disminueix quan la pressió al compartiment A augmenta
- (c) augmenta quan el líquid és més dens
- (d) augmenta amb la profunditat del líquid a la cubeta

- (a) 11.5 m
- (b) 9 m
- (c) 0.76 m
- (d) 15 m

- (a) 6.9 m
- (b) 5.4 m
- (c) 4.6 m
- (d) 3.0 m

El radó ²²²Rn es un gas natural radioactiu que es troba normalment diluït en l'aire i el seu període de semidesintegració és de 3.8 dies.

- 19. La seva constant de desintegració és aproximadament...
 - (a) $3.28 \cdot 10^5$ s
 - (b) $2.11 \cdot 10^{-6} \text{ s}^{-1}$ (c) $2.27 \cdot 10^{5} \text{ s}$

 - (d) $3.05 \cdot 10^{-6} \, \text{s}^{-1}$
- 20. Si en un espai tancat la concentració de radó és de 4.75 10⁷ àtoms per m³ d'aire, la activitat corresponent a 1 m³ d'aire val aproximadament ...
 - (a) 10 Bq
 - (b) 50 Bq
 - (c) 100 Bq
 - (d) 200 Bq
- 21. El temps necessari per a que aquesta activitat es redueixi a una quarta part és aproximadament ...
 - (a) 1.9 dies
 - (b) 3.8 dies
 - (c) 7.6 dies
 - (d) 15.2 dies
- 22. Quan hi hagi transcorregut 25 dies, l'activitat d'1 m³ d'aire serà aproximadament ...
 - (a) 0.5 Bq
 - (b) 1 Bq
 - (c) 5 Bq
 - (d) 10 Bq

Una massa m està unida a un punt fix mitjançant una corda lleugera i inextensible de longitud l = 30 cm i gira en un cercle vertical (veure figura), amb un moviment que fa que la tensió de la corda quan la massa està en el punt més baix (C) sigui tres vegades més gran que quan està en el punt més alt (A).

- 23. Per poder resoldre aquest problema hem d'aplicar ...
 - (a) la segona llei de la dinàmica d'una partícula
 - (b) la llei de conservació de l'energia mecànica
 - (c) els dos conceptes anteriors
 - (d) no es pot resoldre perquè es necessiten més dades
- 24. La tensió de la corda en el punt més alt (A) val ...

(a)
$$T_{\rm A} = m \frac{v_{\rm A}^2}{l}$$
, on $v_{\rm A}$ és la velocitat de la partícula en aquest punt

(b)
$$T_A = m(\frac{v_A^2}{I} - g)$$
, on v_A és la velocitat de la partícula en aquest punt

(c)
$$T_A = m(\frac{v_A^2}{l} + g)$$
, on v_A és la velocitat de la partícula en aquest punt

(d)
$$T_A = m g$$

- 25. La tensió de la corda en el punt (B) val...
 - (a) $T_{\rm B} = m \frac{v_{\rm B}^2}{I}$, on $v_{\rm B}$ es la velocitat de la partícula en aquest punt
 - (b) $T_{\rm B} = m(\frac{v_{\rm B}^2}{l} g)$, on $v_{\rm B}$ es la velocitat de la partícula en aquest punt
 - (c) $T_{\rm B} = m(\frac{v_{\rm B}^2}{l} + g)$, on $v_{\rm B}$ es la velocitat de la partícula en aquest punt
 - (d) $T_{\rm B} = m g$
- 26. La tensió de la corda en el punt més baix (C) val ...
 - (a) $T_{\rm C} = m \frac{v_{\rm C}^2}{l}$, on $v_{\rm C}$ es la velocitat de la partícula en aquest punt
 - (b) $T_{\rm C} = m(\frac{v_{\rm C}^2}{l} g)$, on $v_{\rm C}$ es la velocitat de la partícula en aquest punt
 - (c) $T_{\rm C} = m(\frac{v_{\rm C}^2}{l} + g)$, on $v_{\rm C}$ es la velocitat de la partícula en aquest punt
 - (d) $T_C = m g$
- 27. La velocitat en el punt més alt (A) val...
 - (a) $\sqrt{2gl}$
 - (b) $\sqrt{4 gl}$
 - (c) $\sqrt{6gl}$
 - (d) $\sqrt{8gl}$
- 28. La velocitat en el punt B, v_B , satisfà...
 - (a) $v_B^2 = v_C^2 + 2gl$
 - (b) $v_B^2 = v_C^2 + gl$
 - (c) $v_B^2 = v_C^2 2gl$
 - (d) $v_B^2 = v_C^2 gl$
- 29. La velocitat en el punt més baix (C) val...
 - (a) $\sqrt{2gl}$
 - (b) $\sqrt{4 gl}$
 - (c) $\sqrt{6gl}$
 - (d) $\sqrt{8gl}$

Problema 2

Una bala de 15 g que viatja a 500 m/s xoca amb un bloc de fusta de 0.8 kg que està a l'extrem d'una taula que es troba a 0.8 m del terra. Si la bala s'incrusta en el bloc, determineu la distància horitzontal D des de la posició d'equilibri del bloc (sobre la taula) fins el punt en el qual el sistema (bloc + bala) toca el terra.

 30. En aquest xoc es conserva a) el moment lineal i l'energia mecànica totals del sistema b) el moment angular i l'energia mecànica totals del sistema c) l'energia mecànica d) el moment lineal
 31. Desprès del xoc, la trajectòria seguida pel sistema a) és rectilínia b) és circular c) és parabòlica d) no depèn de les condicions inicials
32. El mòdul de la velocitat del centre de masses abans del xoc val aproximadament (a) 4.7 m/s (b) 9.2 m/s (c) 12.3 m/s (d) 0 m/s
 33. La distància horitzontal D val aproximadament (a) 0 m (b) 7.5 m (c) 2.1 m (d) 3.7 m
34. El mòdul de la velocitat del centre de masses del sistema al tocar el terra és aproximadament (a) 4 m/s (b) 9.2 m/s (c) 10 m/s (d) 13.2 m/s
35. El temps que tarda el sistema en tocar el terra val aproximadament (a) 0.4 s (b) 1 s (c) 4 s (d) 5 s