Circuitos digitais

André Furlan - andre.furlan@unesp.br

Universidade Estadual Paulista Júlio de Mesquita Filho

2024

Sistema binário, álgebra de Boole e lógica

Números binários

Vantagens

- ► Dois estados (mais difícil deteriorar)
- Discretos
- Manipulação algébrica (álgebra de Boole)
 Mundo ideal: Junção do analógico com o digital

Desantagens

- Dois estados em oposição a infinitos estados
- Discretos em oposição a contínuo

Sistema numérico posicional

Dada a base com uma certa quantidade de elementos B e símbolos $d \in D = \{d_0, \ldots, d_n\}$, então um valor numérico decimal V **posicional** pode ser representado por

$$V(B) = \sum_{i=0}^{n} d_{i}.B^{n-i}$$
 (1)

Sendo $\mid\mid$ o operador de cardinalidade então n=|D|-1

Por exemplo, para o número decimal 249:

$$B = 10$$

$$D = \{2, 4, 9\} \implies |D| = 3 \implies n = 2$$

2.100 + 4.10 + 9.1 = 249

$$V(10) = \sum_{i=0}^{2} d_i \cdot 10^{2-i} =$$

$$d_0 \cdot 10^{2-0} + d_1 \cdot 10^{2-1} + d_2 \cdot 10^{2-2} = (2)$$

$$2 \cdot 10^2 + 4 \cdot 10^1 + 9 \cdot 10^0 =$$

Sistema numérico posicional

Dada a base com uma certa quantidade de elementos B e símbolos $d \in D = \{d_0, \ldots, d_n\}$, então um valor numérico decimal V **posicional** pode ser representado por

$$V(B) = \sum_{i=0}^{n} d_i . B^{n-i}$$
 (1)

Sendo $\mid\mid$ o operador de cardinalidade então n=|D|-1

Por exemplo, para o número binário 11:

$$B = 2$$

 $D = \{1, 1\} \implies |D| = 2 \implies n = 1$

$$V(2) = \sum_{i=0}^{1} d_i \cdot 2^{1-i} =$$

$$d_0 \cdot 2^{1-0} + d_1 \cdot 2^{1-1} =$$

$$1 \cdot 2^1 + 1 \cdot 2^0 =$$
(2)

$$2 + 1 = 3$$

Circuitos lógicos e algébra Booleana

Antes de avançarmos no estudo e na representação de circuitos lógicos, vamos entender como os estados de "ligado" e "desligado" dos componentes podem ser utilizados para gerar resultados úteis. Portanto, antes de abordarmos esses tópicos, faremos uma imersão na álgebra booleana, explorando tabelas verdade e formas de composição.

Álgebra de Boole: Operadores AND, OR e NOT

Sendo o sistema binário posicional aplica-se a ele muitas das regras as quais podemos aplicar aos números decimais o que nos leva a Álgebra de Boole e seus operadores:

AND denotado como . ou \land

O operador **AND** é uma função de 2 variáveis definida como:

$$AND(a, b) = a.b$$

 $AND(a, b) = 1, \forall a = b = 1$ (3)
 $AND(a, b) = 0, \forall a \neq b$

а	b	a . b
0	0	0
0	1	0
1	0	0
1	1	1

Tabela: Tabela verdade para AND.

Álgebra de Boole: Operadores AND, OR e NOT

Sendo o sistema binário posicional aplica-se a ele muitas das regras as quais podemos aplicar aos números decimais o que nos leva a Álgebra de Boole e seus operadores:

 \mathbf{OR} denotado com + ou \lor

O operador **OR** é uma função de 2 variáveis definida como:

$$OR(a, b) = a + b$$

 $OR(a, b) = 0, \forall a = b = 0$ (3)
 $OR(a, b) = 1, \forall a \neq b, a = b = 1$

b	a+b
0	0
1	1
0	1
1	1
	0

Tabela: Tabela verdade para OR.

Álgebra de Boole: Operadores AND, OR e NOT

Sendo o sistema binário posicional aplica-se a ele muitas das regras as quais podemos aplicar aos números decimais o que nos leva a Álgebra de Boole e seus operadores:

NOT denotado com \overline{a} ou $\neg a$

O operador **NOT** é uma função de 1 variável definida como:

$$NOT(a) = \overline{a}$$

 $NOT(a) = 0, \forall a = 1$
 $NOT(a) = 1, \forall a = 0$ (3)

a	a
0	1
1	0

Tabela: Tabela verdade para NOT.

Álgebra de Boole: Composição de de operadores

É importante destacar que assim com na álgebra tradicional os operadores tem prioridade no momento de sua aplicação na seguinte ordem: **NOT**, **AND** e por fim **OR**. Se usarmos os sinais as regras ficam bem parecidas com a álgebra tradicional: \bar{a} , . e +.

A partir dos operadores apresentados vamos brincar um pouquinho com eles:

$$(a+b).c (4)$$

а	b	С	a+b	a+b . c
0	0	0	0	0
0	0	1	0	0
0	1	0	1	0
0	1	1	1	1
1	0	0	1	0
1	0	1	1	1
1	1	0	1	0
1	1	1	1	1

Álgebra de Boole: Composição de operadores NAND e NOR

Alguns operadores comuns são compostos:

O operador **NAND** (NOT AND) é definido segundo a seguinte tabela verdade:

а	b	a . b	a.b
0	0	0	1
0	1	0	1
1	0	0	1
1	1	1	0

Tabela: Tabela verdade para NAND.

O operador **NOR** (NOT OR) é definido segundo a seguinte tabela verdade:

а	b	a + b	$\overline{a+b}$
0	0	0	1
0	1	1	0
1	0	1	0
1	1	1	0

Tabela: Tabela verdade para NOR.

Álgebra de Boole: Expressão booleanas equivalentes

Uma expressão boleana equivalente é aquela que, dada uma mesma entrada, retorna exatamente o mesmo resultado. Expressões boleanas equivalentes podem ser ou não a versão otimizada uma da outra.

O que foi dito acima só é possível se alguns axiomas¹ forem definidos.

A partir desses axiomas podemos definir **teoremas**².

Veremos ambos no próximo slide.

¹hipóteses básicas ou pré-supostos baseados na experiência empírica ou filosófica

²Teoremas são proposições demonstráveis a partir dos axiomas

Axiomas:

- 1. 0.0 = 0
- 211 = 1
- 3. 0.1 = 1.0 = 0
- 4. 1+1=1
- 5. 0+0=0
- 6. 1+0=0+1=1
- 7. $x = 0 \implies \overline{x} = 1$
- 8. $x = 1 \implies \overline{x} = 0$

Teoremas para AND

- 1. x.0 = 0
- 2. x.1 = x
- 3. x.x = x
- 4. $x.\overline{x} = 0$

Teoremas para OR

- 1. x + 1 = 1
- 2. x + 0 = x
- 3. x + x = x
- 4. $x + \overline{x} = 1$

Teorema para NOT

1.
$$\overline{(\overline{x})} = x$$

Álgebra de Boole: Expressão booleanas equivalentes

Princípio da dualidade

Dada uma expressão lógica que expressa uma igualdade então é possível criar uma expressão dual na qual a igualdade continua verdadeira.

Uma expressão dual é obtida quando se troca os valores de 0 para 1, de 1 para 0 e os operadores de and para or e de or para and. Perceba que **o resultado da expressão pode mudar** porém a **igualdade é preservada**.

Voltando ao slide 10 você perceberá que os teoremas para *OR* são **dualidades de uma variável** dos teoremas de *AND* e vice-versa.

$$x.y = y.x \Leftrightarrow x + y = y + x \text{ comutacao}$$

$$x + (x.y) = x \Leftrightarrow x.(x + y) = x \text{ absorcao}$$

$$(x.y) + (x.\overline{y}) = x \Leftrightarrow (x + y).(x + \overline{y}) = x \text{ combinacao}$$

$$(5)$$
Teorema de De Morgan: $\overline{(x.y)} = \overline{x} + \overline{y} \Leftrightarrow \overline{(x + y)} = \overline{x}.\overline{y}$

$$x + (\overline{x}.y) = x + y \Leftrightarrow x.(\overline{x} + y) = x.y$$

$$x.(y.z) = (x.y).z \Leftrightarrow x + (y + z) = (x + y) + z \text{ associação}$$

$$x.(y + z) = (x.y) + (x.z) \Leftrightarrow x + (y.z) = (x + y).(x + z) \text{ distribuição}$$

$$(x.y) + (y.z) + (\overline{x}.z) = (x.y) + (\overline{x}.z) \Leftrightarrow (x + y).(y + z).(\overline{x} + z) = (x + y).(\overline{x} + z)$$

$$\text{consenso (sumiço :D)}$$

$$(6)$$

Em tempo: Eu sei que em alguns lugares tem parenteses sobrando, isso foi intencional pra facilitar a visualização das relações.

Teorema de D.Morgan

Tabela: Prova exaustiva do teorema de De Morgan: $\overline{(x.y)} = \overline{x} + \overline{y}$

X	у	x.y	$\overline{x.y}$	\overline{X}	\overline{y}	$\overline{x} + \overline{y}$
0	0	0	1	1	1	1
0	1	0	1	1	0	1
1	0	0	1	0	1	1
1	1	1	0	0	0	0

Tabela: Prova exaustiva para o dual do teorema de De Morgan: $\overline{(x+y)} = \overline{x}.\overline{y}$

X	у	x + y	$\overline{x+y}$	\overline{X}	\overline{y}	$\overline{x}.\overline{y}$
0	0	0	1	1	1	1
0	1	1	0	1	0	0
1	0	1	0	0	1	0
1	1	1	0	0	0	0

Provas de expressões na álgebra de Boole

- Indução perfeita: Devido a pequena quantidade de valores possíveis (0 ou 1) geralmente é viável provar as igualdades dessa forma. A indução perfeita (prova exaustiva) se dá ao fazer a tabela verdade da igualdade, verificando se os valores literais realmente coincidem. Quando a expressão começa a ter muitas variáveis e/ou se tornar muito grande, esse método pode se tornar inviável devido a grande quantidade de estados possíveis que o sistema pode ter.
- manipulação algébrica: Levando em consideração os axiomas e teoremas é possível manipular as igualdades de forma que a igualdade seja provada.
- diagrama de Ven: Nos próximos capítulos.

Provas de expressões na álgebra de Boole com diagrama de Venn

Se interpretarmos **AND** ou . como \cap e **OR** ou + como \cup é possível fazer a prova de uma igualdade usando o diagrama de Venn.

Para começar, uma dica interessante é representar as relações do espaço para identificar cada uma das regiões de acordo com a expressão avaliada.

Figura: Relações de um espaço com duas variáveis

A partir disso é possível escrever outras relações:

$$(x.\overline{y}) + (x.y) = x$$

$$(\overline{x}.y) + (x.y) = y$$

$$(x.\overline{y}) + (x.y) + (\overline{x}.y) = x + y$$
(7)

Provas de expressões na álgebra de Boole com diagrama de Venn

Como exemplo provaremos o do teorema de DeMorgan: $\overline{(x.y)} = \overline{x} + \overline{y}$

Lado esquerdo da igualdade.

Figura: (x.y)

Figura: $\overline{(x.y)}$

Lado direito da igualdade.

Provas de expressões na álgebra de Boole com diagrama de Venn

Como exemplo provaremos
$$(x.y) + (y.z) + (\overline{x}.z) = (x.y) + (\overline{x}.z) \Leftrightarrow (x+y).(y+z).(\overline{x}+z) = (x+y).(\overline{x}+z)$$
 consenso (sumiço :D)

Lado esquerdo da igualdade.

Figura: (x.y) + (y.z)

Figura: $(x.y) + (y.z) + (\overline{x}.z)$

Lado direito da igualdade.

Figura: $(x.y) + (\overline{x}.z)$

Short test

A partir dos teoremas e propriedades apresentados mostre que (x + y).(x + z) = x + y.z. Indique quais os teoremas e/ou propriedades usados na solução.

Crie dualidades para

- ▶ 0.0
- ▶ 1.1
- $x = 0 \implies \overline{x} = 0$

Crie a tabela verdade para a porta lógica AND. Crie a tabela verdade para a porta lógica OR. Crie a tabela verdade para a porta lógica NOT.

Dada a tabela verdade a seguir, construa a expressão lógica correspondente:

Α	В	F
0	0	0
0	1	1
1	0	1
1	1	0

Dada a expressão lógica $F = A \cdot \overline{B}$, desenhe o circuito combinacional correspondente.

Dada a expressão lógica $F = A \cdot B + \overline{A} \cdot \overline{B}$, construa a tabela verdade correspondente.

Circuitos

Até agora, revisamos a lógica, as tabelas-verdade e a álgebra booleana. No entanto, ainda não abordamos os circuitos digitais propriamente ditos. A partir de agora, exploraremos a correlação entre as expressões lógicas da álgebra booleana e o projeto de circuitos elétricos.

A chave binária é um componente que permite ou impede a passagem da corrente elétrica dado seus estado. A partir dela criaremos circuitos mais complexos.

Figura: Chave binária

A chave binária pode ser representada de outra forma:

Figura: Chave binária

Agora considere uma função que depende um argumento x para definir seu estado. Tal função pode ser representada no circuito abaixo:

Figura: Função lógica de uma variável. No circuito *F* pode ser ligada a qualquer elemento de saída com um led ou outro circuito.

$$F=1 \forall x=1$$
 $F=0 \forall x=0$ Portanto F é uma função lógica de **uma** variável tal que $F(x)=x$

A partir de agora é possível construir circuitos mais complexos como OR e AND.

Figura: Circuito **AND**: *a* e *b* são suas entradas. Aqui se pode constatar que este circuito pode receber de 2 a *n* entradas.

Figura: Circuito **OR**: $a \in b$ são suas entradas. Aqui se pode constatar que este circuito pode receber de 2 a n entradas.

Circuito NOT

Figura: Circuito **NOT**: Inverte a entrada a.

Nada aqui por questões estéticas...

E assim como vimos na álgebra de Boole **OR** e **AND** podem ser combinados.

Figura: O \mathbf{OR} recebe as entradas $a \in b$, o circuito \mathbf{AND} recebe $c \in a$ saída de \mathbf{OR}

Para representar circuitos simples os símbolos já vistos são suficientes, porém, quando a complexidade aumenta pode ficar beeeeeemmmm complicado entender o que se passa. Então precisamos aumentar o nível de abstração encapsulando esse componentes.

Figura: Abstração de circuito AND para a porta AND

Figura: Abstração de circuito **OR** para a porta **OR**

Figura: Abstração de circuito NOT para a porta NOT

Veja como fica o circuito (a + b).c com as novas abstrações.

Figura: Circuito correspondente a expressão lógica (a+b).c

Dada a expressão lógica $F=A\cdot \overline{B}$, desenhe o circuito combinacional correspondente.

Dada a expressão lógica $F = A \cdot B + \overline{A} \cdot \overline{B}$, construa a tabela verdade correspondente.

Dada a expressão lógica $F = (A \cdot B + \overline{C}) \cdot (A + C)$, desenhe o circuito combinacional correspondente.

Construa a expressão lógica a partir do seguinte circuito combinacional:

Dada a expressão lógica $F=A+B\cdot\overline{C}$, desenhe o circuito combinacional correspondente.

Identifique as portas lógicas utilizadas no seguinte circuito combinacional:

Dado o circuito combinacional a seguir, construa a tabela verdade correspondente:

Dado o circuito combinacional a seguir, construa a expressão lógica e a tabela verdade correspondente:

