

PLANO DE ENSINO

2° SEMESTRE DE 2023

I. IDENTIFICAÇÃO

Unidade Acadêmica: UA Ciências Exatas

Curso: Ciências da Computação

Disciplina: Inteligência Artificial (ICE0196)

Carga horária semestral: 64h CH Teórica: 64h CH Prática: -Ano: 2023/2 Turma/turno: 6º período/integral

Docente: José Eurípedes Ferreira de Jesus Filho

Modalidade: Presencial

II. EMENTA

Introdução à Inteligência Artificial. Agentes Inteligentes. Representação do Conhecimento. Sistemas Especialistas. Resolução de Problemas. Algoritmos Genéticos. Redes Neurais Artificiais. Aprendizado de Máquina. Agentes Inteligentes. Mineração de Dados. Aplicações da Inteligência Artificial.

III. OBJETIVOS

Objetivo Geral

Oferecer o embasamento conceitual e teórico da área da inteligência artificial aplicando os conhecimentos no desenvolvimento de sistemas e analisando criticamente os desafios envolvidos.

Objetivo Específico

- Definir inteligência artificial, motivação e aplicações.
- Analisar as principais áreas de aplicação da inteligência artificial, técnicas, metodologias e algoritmos tradicionalmente propostos.
- Discutir o estado da arte na área da inteligência artificial, perspectivas de evolução e desafios a serem vencidos.

IV. CONTEÚDO PROGRAMÁTICO E CRONOGRAMA

Introdução a inteligência artificial.

Agentes inteligentes e agentes lógicos.

Buscas.

Problemas de satisfação de restrições.

Agentes lógicos.

Planejamento.

Aprendizagem.

Heurísticas.

Metaheurísticas.

Uma previsão da sequência do conteúdo é apresentada a seguir. É importante notar que essa sequência pode sofrer modificações no decorrer do semestre, de acordo com as necessidades. As aulas marcadas como reposição serão ministradas através de horários extras a serem agendados.

Cronograma Detalhado

Descrição	Data
Aula 01 a 04: Apresentação da disciplina. Introdução a IA.	09/11/2023
Aula 05 a 08: Lógica fuzzy.	16/11/2023
Aula 09 a 12: Sistemas de inferência.	23/11/2023
Aula 13 a 16: Agentes, Agentes inteligentes e Buscas.	30/11/2023
Aula 17 a 20: Busca em largura e busca em profundidade.	07/12/2023
Aula 21 a 24: Projeto Prático 1.	14/12/2023
Aula 25 a 28: Busca local - Hill climbing	11/01/2024
Aula 29 a 32: Busca local - Simulated Annealing	18/01/2024
Aula 33 a 36: Busca local - Tabu Search	25/01/2024
Aula 37 a 40: Busca competitiva.	08/02/2024
Aula 41 a 44: Busca competitiva.	reposição
Aula 45 a 48: Projeto Prático 2.	15/02/2024
Aula 49 a 52: Aprendizagem de máquina.	reposição
Aula 53 a 56: Redes neurais artificiais.	22/02/2024
Aula 57 a 60: Algoritmos genéticos.	29/02/2024
Aula 61 a 64: Projeto Prático 3.	07/03/2024

As aulas presenciais serão abordadas da seguinte forma:

- Aulas expositivas com e sem o auxílio de projeção em tela.
- Aulas práticas em laboratório.
- Exercícios para fixação do conteúdo.
- Textos complementares e recursos da internet.
- Projetos práticos assistidos.
- Atendimento individual e em grupo.
- Programação em pares.

VI. PROCESSOS E CRITÉRIOS DE AVALIAÇÃO E CRONOGRAMA:

Critérios de aprovação

Para que o aluno seja aprovado nesta disciplina é necessário que:

- Alcance uma nota mínima de 6,0 (seis) pontos, numa escala que varia entre 0 (zero) e 10 (dez) pontos
- Tenha uma frequência de 75% ou salvo os casos em que o discente se enquadre no Art. 105 do Resolução CEPEC/UFG nº 1791 de RGCG/2022.

A nota final (NF) será obtida através da seguinte fórmula:

$$NF = P1 + P2 + P3$$

onde:

Projeto Prático 1 (P1): 3 (três) pontos;

Projeto Prático 2 (P2): 3 (três) pontos;

Projeto Prático 3 (P3): 4 (quatro) pontos;

VII. BIBLIOGRAFIAS

Básica

RUSSEL, S.; NORVIG, P. Inteligência Artificial. Elsevier, 3ª Edição, 2013.

KOVÁCS, Zsolt László. Redes neurais artificiais: fundamentos e aplicações. 4 ed. rev. São Paulo: Livraria da Física.

2006.

GOLDBERG, David E. Genetic algorithms in search, optimization, and machine learning. 29 ed. Boston: Addison-Wesley, 2009.

SHAW, Ian S.; GODOY Marcelo. Controle e Modelagem Fuzzy. 2 ed. São Paulo: Edgard Blücher Ltda, 2007.

Complementar

HAYKIN, Neural networks and learning machines. 3rd ed. New York: Prentice Hall, 2009.

ARTERO, Almir Olivette. Inteligência artificial: teórica e pratica. São Paulo: Livraria da Física, 2008.

CARVALHO, Luís Alfredo Vidal de. Datamining: a mineração de dados no marketing, medicina, economia, engenharia e administração. São Paulo: Ciência Moderna, 2005.

BROOKSHEAR, J. Glenn. Ciência da computação: uma visão abrangente. 7 ed. Porto Alegre: Bookman, 2005.

Observações:

- 1) A bibliografia básica e complementar, respeitando: a Lei Nº 9.610, de 19 de fevereiro de 1998, a Lei Nº.10.695/2003, entre outras que dizem respeito aos crimes de violação de direito de autor e dos direitos conexos. Lembramos que tanto para o ensino presencial como para o não presencial a lei sobre direitos autorais é a mesma.
- 2) No que se refere aos materiais disponíveis virtualmente é importante colocar no plano de ensino, além da referência, os links de acesso livre.
- 3) Sugere-se acrescer nas bibliografias básicas e complementares, obras/títulos digitais de domínio público e/ou digital de acesso livre.

Jataí, 03 de novembro de 2023.

