COMPLEXIDADE COMPUTACIONAL

Prof. Daniel Kikuti

Universidade Estadual de Maringá

Visão geral

Complexidade Computacional

Ramo da Teoria da Computação que estuda a dificuldade inerente aos problemas que podem ser resolvidos por meio de um computador.

- Problemas tratáveis vs. intratáveis.
- Dificuldade computacional (classes P, EXP e R).
- Máquinas não determinísticas e a classe NP.
- Termos "difícil" e "completo".
- Questão P = NP?
- Reduções.

Algoritmos \times Problemas

Complexidade de Algoritmos

É uma medida (quantidade) dos recursos necessários para um algoritmo efetuar sua computação.

Complexidade de Problemas

- A dificuldade computacional de um problema é a complexidade do melhor algoritmo que resolve o problema (nem sempre é o melhor algoritmo que conhecemos). Exemplo: o melhor algoritmo de ordenação por comparação consome tempo $\Theta(n\lg n)$ no pior caso.
- Complexidade computacional considera a classificação dos problemas conforme sua dificuldade.

Linguagens formais e problemas de decisão

Linguagem formal

- ▶ Uma linguagem formal L definida sobre um alfabeto Σ é um subconjunto de Σ^* .
- ▶ Ex.: Dado $\Sigma = \{0,1\}$, $L = \{10,11,101,111,1011,1101,\ldots\}$ é a linguagem da representação binária dos números primos.

Problema de decisão

- ► Função que associa o conjunto de instâncias I ao conjunto solução {não, sim} (conjunto {0, 1}).
- ▶ Um algoritmo A aceita uma instância x se A(x) = 1 e A rejeita x se A(x) = 0. A linguagem aceita por A é o conjunto $L = \{x : A(x) = 1\}$.
- Um algoritmo para o problema é decidível se para qualquer instância ele sempre termina em aceitação ou rejeição.

Codificação (encodings)

- ▶ Uma codifcação *e* de um conjunto de objetos *S* é uma associação de elementos de *S* a cadeias (*strings*) definidas sobre um alfabeto (com pelo menos dois elementos). Ex.: representação binária de números, tabela ASCII, etc.
- Podemos codificar um objeto composto como uma cadeia formada pela combinação das representações de suas partes constituintes. Ex.: vetores de inteiros, polígonos, grafos, funções, programas, etc.
- $e: I \to \{0,1\}^*$ é a representação computacional de uma instância de um problema.
- A eficiência na resolução de um problema depende de como o problema é codificado (medimos a eficiência de um algoritmo em função do tamanho da entrada).

Classe P

- Conjunto de problemas de decisão que podem ser resolvidos em tempo polinomial em uma máquina determinística.
- ▶ Problemas que podem ser resolvidos no pior caso em tempo $O(n^k)$, para alguma constante k.
- Problemas em P são chamados de tratáveis. Problemas que não estão em P são chamados de intratáveis.
- Exemplo de problema em P:
 - ▶ Dado um conjunto S de n inteiros, verificar se um inteiro x pertence a este conjunto.
 - ▶ Usando a notação de linguagens, $BUSCA = \{\langle S, x \rangle : x \in S\}$.
 - $\langle \{3,5,2,1\},2 \rangle \in \text{Busca}, \langle \{3,5,2,1\},4 \rangle \notin \text{Busca}.$
 - ▶ Para mostrar que $\mathrm{BUSCA} \in \mathbf{P}$, devemos apresentar um algoritmo polinomial (no tamanho da instância de entrada) para este problema.

Exercício

Mostre que PATH pertence a P

Dado um grafo G e dois vértices s,t, existe caminho de s a t?. Path = $\{\langle G,s,t\rangle : \text{existe um caminho de } s$ a $t\}$.

Exemplo: para o grafo G acima e vértices s=1 e t=4 o algoritmo deverá devolver **sim**. Se s=7 e t=2 o algoritmo deverá devolver **não**.

Classe NP

- Conjunto de problemas de decisão que podem ser resolvidos em tempo polinomial em uma máquina não determinística.
- Alternativamente, é o conjunto de problemas que podem ser verificados em tempo polinomial usando uma máquina determinística.
 - ► Um algoritmo verificador A é um algoritmo que recebe como argumentos uma instância x do problema e um certificado y.
 - ▶ Um algoritmo A verifica a linguagem L se $\forall x \in L$, existe um y que pode ser usado para provar que $x \in L$. Além disso, $\forall x \notin L$ não pode haver um certificado provando que $x \in L$.
 - $L = \{x : \exists y \text{ tal que } A(x, y) = 1\}.$
 - Ex.: Determinar se um número é composto pertence a \mathbf{NP} , pois podemos definir o certificado y como sendo um divisor de x. Assim, A(x,y)=1 se e somente se $y|x,\ y\neq 1$ e $y\neq x$.
- ▶ IMPORTANTE: NP significa polinomial não determinístico (não significa "não polinomial").

Exemplo

Mostre que Hamiltonian-Path pertence a NP

Dado um grafo G e dois vértices s,t, existe caminho hamiltoniano (caminho que passa por todos os vértices uma única vez) de s a t?. PATH = $\{\langle G,s,t\rangle : \text{existe um caminho hamiltoniano de } s$ a t $\}$. Exemplo:

Termos completo e difícil

Completo

- Designa o conjunto de problemas "mais difíceis" dentro de uma determinada classe.
- Exemplo: O problema de determinar se um grafo possui um caminho Hamiltoniano pertence a NP-Completo.

Difícil

- Designa o conjunto de problemas que s\u00e3o pelo menos t\u00e3o dif\u00edceis quanto os problemas mais dif\u00edceis de uma determinada classe.
- Exemplo: O Problema do Caixeiro Viajante é NP-difícil.
- Problemas em NP-difícil não precisam ser problemas de decisão.

P = NP?

Proposição: $\mathbf{P} \subseteq \mathbf{NP}$

Considere qualquer problema $X \in \mathbf{P}$.

- ightharpoonup Pela definição, existe um algoritmo polinomial A(x) que resolve X.
- ▶ Certificado: $y = \varepsilon$ (símbolo representando entrada vazia), verificador A(x,y) = A(x).

Questão aberta: $NP \subseteq P$?

- ▶ Prêmio de 1 milhão de dólares (7 Millenium Prize Problems).
- lacktriangle Maioria dos pesquisadores acreditam que $\mathbf{P}
 eq \mathbf{NP}$.

Classe EXP

- ► Problemas de decisão que podem ser resolvidos em tempo exponencial em uma máquina determinística.
- ► Contém todos os problemas da classe P, NP e outros que não estão em P (ainda não se sabe se NP = EXP).
- Problemas que não estão em P
 - Podem ser resolvidos em tempo razoável apenas para instâncias pequenas.
 - Abordagens heurísticas ou aproximadas para lidar com o problema.
- ▶ Exemplo: Xadrez em tabuleiro $n \times n$ pertence à **EXP**, mas não pertence à **P**.

Classe R (recursivamente enumerável)

- Problemas que podem ser resolvidos em tempo finito.
- ► Turing demonstrou na década de 30 que existem problemas que não podem ser resolvidos por qualquer algoritmo.
- O mais famoso destes problemas é o problema da parada:
 - ▶ Dado um algoritmo qualquer e sua instância de entrada, este algoritmo irá eventualmente parar ou continuará executando em um "loop infinito"?
- Fato: Existem muito mais problemas que não podem ser resolvidos computacionalmente do que problemas que podem ser resolvidos computacionalmente.

Classes de problemas e suas dificuldades

Reduções

Conceito

- Uma redução é uma transformação de um problema em outro.
- Captura a noção informal de que "um problema seja pelo menos tão difícil quanto outro problema". Por exemplo, se um problema X pode ser resolvido usando um algoritmo para Y, X não é mais difícil do que Y, e dizemos que X se reduz a Y.
- Estamos interessados em redução em tempo polinomial, isto é, transformações de instâncias de X em instâncias de Y que possam ser feitas em tempo polinomial.
- Notação: $X \leq_p Y$ (X é redutível em tempo polinomial a Y, ou Y é pelo menos tão difícil quanto X).

Exemplo

Quadrado \leq_p Multiplica

- Isto significa que podemos resolver o problema do quadrado de um número inteiro z usando o algoritmo para multiplicação de dois inteiros x e y.
- Para isto, pegamos a instância de entrada z para o problema QUADRADO e usamos x=y=z como instância do problema MULTIPLICA.
- ► A resposta para o problema MULTIPLICA será a resposta para o problema QUADRADO.
- Assim, podemos afirmar que o problema do quadrado de um inteiro não é mais difícil do que o problema da multiplicação.

Mais alguns exemplos

Expressões lineares \leq_p Expressões quadráticas

- ► Seja $X = \{ax + b = 0\}$ e $Y = \{a'x^2 + b'x + c' = 0\}.$
- Podemos resolver X, por meio de Y, fazendo com que a instância de entrada para Y seja a'=0, b'=a e c'=b.

Fibonacci \leq_p Potência de Matrizes

- ► Seja X = fib(x) e $Y = \begin{pmatrix} a & b \\ c & d \end{pmatrix}^n$
- Podemos resolver X, por meio de Y, fazendo com que a instância de entrada para Y seja a=1, b=1, c=1, d=0 e n=x.
- A solução para fib(x) estará nas células (1,2) e (2,1) da matriz resultante.

Redução em tempo polinomial

- $ightharpoonup \alpha$ é uma instância de X e β é uma instância de Y.
- ightharpoonup A resposta do Algoritmo X para a instância lpha é sim se e somente se a resposta do Algoritmo Y para a instância eta for sim.

Supondo que $X \leq_p Y$

- Se Y pode ser resolvido em tempo polinomial, então X também pode ser resolvido em tempo polinomial.
- Se X não pode ser resolvido em tempo polinomial, então Y também não pode ser resolvido em tempo polinomial [contrapositiva].

Classe NP-Completo

Definição

Um problema $X \in \mathbf{NP}$ -Completo quando:

- 1. $X \in \mathbf{NP}$;
- 2. $Y \leq_p X$ para todo problema $Y \in \mathbf{NP}$.

Teorema

Suponha que X é um problema $\mathbf{NP\text{-}Completo}$. Então X pode ser resolvido em tempo polinomial se e somente se $\mathbf{P} = \mathbf{NP}$.

- (\Leftarrow) Se $\mathbf{P} = \mathbf{NP}$ então X pode ser resolvido em tempo polinomial, pois $X \in \mathbf{NP}$ (item 1 da Definição);
- (\Rightarrow) Suponha que X pode ser resolvido em tempo polinomial.
 - ▶ Seja Y um problema qualquer em \mathbf{NP} . Como $Y \leq_p X$, podemos resolver Y em tempo polinomial. Isto implica que $\mathbf{NP} \subseteq \mathbf{P}$.
 - ▶ Sabemos que $P \subseteq NP$ (Por quê?). Portanto, P = NP.

Um primeiro problema NP-Completo

Para mostrar que existe um problema \mathbf{NP} -Completo, seria necessário mostrar que um problema deve ser capaz de representar/codificar qualquer problema em \mathbf{NP} .

- ► Em 1971, Cook e Levin mostraram de maneira independente como fazer isto para quaisquer problemas em NP.
- ► CIRTUIT SATISFIABILITY é **NP-Completo**.
- Representação de problemas por meio e circuitos (ver Cormen capítulo 34.3 ou Kleinberg & Tardos capítulo 8.4).

Mostrando que há outros problemas em NP-Completo

Estratégia geral

- 1. Mostre que $X \in \mathbf{NP}$.
- 2. Escolha um problema Y que é \mathbf{NP} -Completo.
- 3. Mostre que $Y \leq_p X$.

Note que o fato de $Y \in \mathbf{NP}$ -Completo implica $Z \preceq_p Y$ para qualquer problema $Z \in \mathbf{NP}$ e, pela redução $Y \preceq_p X$, segue que $Z \preceq_p X$.

Algumas reduções apresentadas no Cormen

Referências

- ► Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. 2009. Introduction to Algorithms, Third Edition. The MIT Press. Chapter 34.
- Kleinberg J., and Tardos E. Algorithm Design. 2005. Pearson. Chapter 8.
- Cook, Stephen. The complexity of theorem proving procedures. Proceedings of the Third Annual ACM Symposium on Theory of Computing [S.l.: s.n.], 1971. pp. 151–158.