COMBUSTION AND FLAME

THE JOURNAL OF THE COMBUSTION INSTITUTE

VOLUME 85 1991

Contents

TOMOJI ISHIGUK), NORTIOMO SUZUKI, YOSHIYASU FUJITANI, and	
HIDETAKE MORI	IOTO (Nagakute-cho, Japan)	
Microstructural C	nanges of Diesel Soot During Oxidation	1
R.K. CHENG and I.	G. SHEPHERD (Berkeley, CA)	
The Influence of	durner Geometry on Premixed Turbulent Flame Propagation	7
STEVEN ZABARN	CK (Edwards AFB, CA)	
Laser-Induced Fl	orescence Diagnostics and Chemical Kinetic Modeling of a CH ₄ /NO ₂ /O ₂	
Flame at 55 Torr		7
S.F. SON (Provo, U), P.A. MCMURTRY (Sait Lake City, UT), and M. QUEIROZ (Provo, UT)	
The Effect of Hea	Release on Various Statistical Properties of a Reacting Sheer Layer	ı
TAKEO SAITO, M	SATAKA SHIMODA, TOSHIO YAMAYA, and	
AKIRA IWAMA (S	gamihara City, Japan)	
	sed Composite Solid Propellants Containing Nitramines Exposed to CO ₂	
Laser Radiation	Subatmospheric Pressures	8
A. LEE and C.K. L.	W (Princeton, NJ)	
Gasification and	hell Characteristics in Slurry Droplet Burning	7
PIA KILPINEN and	MIKKO HUPA (Turku, Finland)	
	O Chemistry at Fluidized Bed Combustion Conditions: A Kinetic Modeling Study 9	4
DEREK BRADLEY	G. DIXON-LEWIS, S. EL-DIN HABIK, S. EL-SHERIF (Leeds, England), and	
L.K. KWA (Singapo		
	ructure and Burning Velocities of Premixed Methanol-Air	5
	QUEIROZ (Provo, UT)	
	ocity, Size, and Concentration Measurements in an Industrial-Scale Pulverized	
		1
	UNG, MING-SHYONG TSAI, and HUOO-DENG LIN (Tainan, Taiwan)	
	icles in H ₂ -O ₂ Counterflow Diffusion Flame Doped with SiH ₄ or SiCl ₄	4
D.K. COOK (Solihi	i, England)	
A One-Dimensio	al Integral Model of Turbulent Jet Diffusion	3
	Cambridge, England)	
Does Carbon Mo	noxide Burn Inside a Fluidized Bed? A New Model for the Combustion of	
Coal Char Partic	es in Fluidized Beds	3
	LGER (Sydney, Australia), A.R. GREEN (Londonderry, Australia), and	
J.G. QUINTIERE (
	ulent Flame Spread and Burning Over Large-Scale Horizontal PMMA Surfaces 16	y
	UK) and A.K. KAPILA (Troy, NY)	
	een Shock Initiations of Detonation Using Thermally-Sensitive and	
Chain-Branching	Chemical Models	J
S. SIVASEGARAN	and J.H. WHITELAW (London, England) Swirl on Oscillations in Ducted Premixed Flames	
		J
	GÖTTGENS (Aachen, Germany) nt Turbulent Jet Diffusion Flames	
	t. W. BILGER (Sydney, Australia), and R.W. DIBBLE (Livermore, CA)	ĸ
	v Premixed Flames of Nitrogen-Diluted Methane Near Extinction	
I urbuient Partia	V Fremixed Frames of Nitropen-Diluted Methane Near Extinction	

OHAN E. HUSTAD, DAG VAREIDE, and OTTO K. SØNJU (Trondheim, Norway)	
Burning Rates of Coke Particles in the Freeboard Above a Fluidized Bed Reactor	2
B. VEYSSIERE (Poitiers, France) and B.A. KHASAINOV (Moscow, USSR)	
A Model for Steady, Plane, Double-Front Detonations (DFD) in Gaseous Explosive Mixtures with	
Aluminum Particles in Suspension	1
BRAD E. FORCH and ANDRZEJ W. MIZIOLEK (Aberdeen Proving Ground, MD)	
Laser-Based Ignition of H2/O2 and D2 O2 Premixed Gases Through Resonant Multiphoton	
Excitation of H and D Atoms Near 243 nm 25	4
R. MINETTI, C. CORRE, JF. PAUWELS, P. DEVOLDER, and LR. SOCHET	
Villeneuve D'Ascq. France)	
On the Reactivity of Hydroperoxy Radicals and Hydrogen Peroxide in a Two-Stage	
Butane-Air Flame	3
Brief Communications	
D.L. BAULCH, J.F. GRIFFITHS, and R. RICHTER (Leeds, England)	
Free Radical and Atom Activity at a Pyrex Glass Surface as a Source of Sodium D	
Line Emissions During Combustion Reactions	71
J.G. KANG, S.W. LEE, S.S. YUN, S.N. CHOI, and C.S. KIM (Daejeon, Korea)	-
Ignition Delay Times of Nitromethane-Oxygen-Argon Mixtures Behind Reflected Shock	15
P.A. TESNER (Moscow, USSR)	
Growth Rate of Soot Particles	79
R.A. SHANDROSS, J.P. LONGWELL, and J.B. HOWARD (Cambridge, MA)	-
Noncatalytic Thermocouple Coating for Low-Pressure Flames	82
G. STAHL and J. WARNATZ (Stuttgart, Germany)	
Numerical Investigation of Time-Dependent Properties and Extinction of Strained Methane-and	
Propane-Air Flamelets	85
M. M. ELKOTB, S. L. ALY, and H. A. ELSALMAWY (Cairo, Egypt)	
Evaporation Characteristics of Fuel and Multifuel Droplets	00
P. E. BEST, P. L. CHIEN, R. M. CARANGELO, P. R. SOLOMON, M. DANCHAK, and	
I. ILOVICI (Hartford, CT)	
Tomographic Reconstruction of FT-IR Emission and Transmission Spectra in a Sooting Laminar	
Diffusion Flame: Species Concentrations and Temperatures	09
RENATO ROTA, PAOLO CANU, SERGIO CARRA (Milano, Italy),	
and MASSIMO MORBIDELLI (Cagliari, Italy)	
Vented Gas Deflagration Modeling: A Simplified Approach	19
STEPHEN C. BATES (Warren, MI)	
Further Insights Into SI Four-Stroke Combustion Using Flame Imaging	31
T. A. SEDER and D. J. BENARD (Thousand Oaks, CA)	
The Decomposition of Condensed Phase Fluorine Azide	53
H. PHYLAKTOU and G. E. ANDREWS (Leeds, UK)	-
The Acceleration of Flame Propagation in a Tube by an Obstacle	63
TRAN X. PHUOC and MAHENDRA P. MATHUR (Pittsburgh, PA)	05
Transient Heating of Coal Particles Undergoing Pyrolysis	90
CAMERON J. DASCH and DAVID M. HEFFELFINGER (Warren, MI)	ou
Planar Imaging of Soot Formation in Turbulent Ethylene Diffusion Flames:	
Fluctuations and Integral Scales	69
M. O. ANNARUMMA, J. M. MOST, and P. JOULAIN (Mignaloux-Beauvoir, France)	
On the Numerical Modeling of Buoyancy-Dominated Turbulent Vertical Diffusion Flames	03
J. SHARMA, G. B. WILMOT, A. A. CAMPOLATTARO, and F. SANTIAGO (Silver Spring, MD)	
XPS Study of Condensed Phase Combustion in Double-Base Rocket Propellant With and	
Without Lead Salt-Burning Rate Modifier	16

C. A. CATLIN (Solihull, UK) and R. P. LINDSTEDT (London, UK)	
Premixed Turbulent Burning Velocities Derived from Mixing Controlled Reaction Models	
With Cold Front Quenching	1
GARY P. MILLER, T. W. LESTER, and M. T. CHENG (Baton Rouge, LA)	
Nitric Oxide Reduction in the Postflame Region of Pulverized Coal Flames)
R. P. HESKETH and J. F. DAVIDSON (Cambridge, UK)	
Combustion of Methane and Propane in an Incipiently Fluidized Bed)
CHI-CHANG LIU and TA-HUI LIN (Tainan, Taiwan)	
The Interaction Between External and Internal Heat Losses on the Flame Extinction of Dilute Sprays 468	3
J. K. CHEN and T. B. BRILL (Newark, DE)	
Thermal Decomposition of Energetic Materials 50. Kinetics and Mechanism of Nitrate	
Ester Polymers at High Heating Rates by SMATCH/FTIR Spectroscopy)
MARY P. DUNPHY and JOHN M. SIMMIE (Galway, Ireland)	
Combustion of Methyl tert-Butyl Ether.	
Part I: Ignition in Shock Waves	8
E. HAMPARTSOUMIAN, W. NIMMO, A. G. CLARKE, and A. WILLIAMS (Leeds, UK)	
The Formation of NH ₃ , HCN, and N ₂ O in an Air-Staged Fuel Oil Flame	9
C. TREVIÑO (México City, Mexico), S. DONNERHACK (München, Germany), and	
N. PETERS (Aachen, Germany)	
LDA Measurements in the Premixed V Flame Stabilized in the Wake of a Flat Plate Boundary Layer 50:	5
K. A. SAHETCHIAN, R. RIGNY, and S. CIRGAN (Paris, France)	
Identification of the Hydroperoxide Formed by Isomerization Reactions During the	
Oxidation of n-Heptane in a Reactor and CFR Engine	1
T. TACHIBANA, K. HIRATA, H. NISHIDA, and H. OSADA (Kitakyushu, Japan)	
Effect of Ozone on Combustion of Compression Ignition Engines	5
Brief Communications	
J. AMROGOWICZ and W. KORDYLEWSKI (Wroclaw, Poland)	
Effectiveness of Dust Explosion Suppression by Carbonates and Phosphates	0
I. T. WOODS (London, UK) and B. S. HAYNES (Sydney, Australia)	
Soot Surface Growth at Active Sites	3
G. O. THOMAS, G. OAKLEY, and J. BRENTON (Dyfed, UK)	
Influence of the Morphology of Lycopodium Dust on Its Minimum Ignition Energy	6
Comments	
J. C. JONES (Kensington, Australia)	
Comment on "The Effect of Preheating of Wood on Ignition Temperature of Wood Char,"	
by FY. Hsieh and G. N. Richards	9
Erratum	12