

Datenstrukturen, Algorithmen und Programmierung 2

Amin Coja-Oghlan

June 10, 2022

Lehrstuhl Informatik 2 Fakultät für Informatik

Die Problemstellung

- Arrays sind zusammenhängende Speicherblöcke, die direkt addressiert werden
- häufig werden aber Datenstrukturen benötigt, deren Elemente durch besondere Schlüssel adressiert werden können
- Beispiele: Matrikelnummern, Wörterbücher, Telefonverzeichnisse
- wir nehmen an, daß die verschiedenen Elemente verschiedene Schlüssel haben
- Hashtabellen stellen eine entsprechende Datenstruktur bereit

Einfach verkettete Listen

- wir wiederholen verkettete Listen
- jeder Listeneintrag enthält einen Zeiger auf den nächsten Eintrag
- die Abwesenheit eines Nachfolgers wird durch einen besonderen Wert NULL gekennzeichnet
- neue Elemente können in Zeit O(1) eingefügt werden
- Elemente können in Zeit O(1) gelöscht werden
- Durchsuchen der Liste kostet Zeit $\Theta(n)$
- zwei Listen können in Zeit O(1) vereinigt werden

Doppelt verkettete Listen

- jeder Listeneintrag enthält zusätzlich einen Zeiger auf den Vorgänger
- \blacksquare eine Liste kann in Zeit O(1) an einer bestimmten Stelle aufgeteilt werden
- unser "Wörterbuchproblem" kann mit einer verketten Liste gelöst werden
- \blacksquare allerdings ist $\Theta(n)$ Zeit notwendig, um Einträge aufzufinden

Direkte Adressierung

- sei $S = \{s_1, \dots, s_k\}$ die Menge der Schlüssel
- lacksquare wenn $\mathcal S$ "klein" ist, können wir einfach ein Array anlegen, das für jeden möglichen Schlüssel einen Eintrag bereitstellt
- in dieser Speicherstelle legen wir den entsprechenden Eintrag ab, wenn einer vorhanden ist; sonst NULL
- Speicherbedarf: $\Theta(k)$; ok für "kleine" k
- Zugriffszeit: O(1) (speichern/abrufen/löschen)

Hashtabellen

- für große Schlüsselmengen kommt direkte Adressierung nicht infrage
- stattdessen verwenden wir Hashing
- eine Hashfunktion

$$\mathcal{H}: \mathcal{S} \to [m] = \{1, \ldots, m\}$$

bildet die Schlüssel auf eine (kleiner) Menge [m] ab

■ die Zahlen 1,..., m verwenden wir, um ein Array zu adressieren

Hashtabellen

- wenn m < |S|, kann es zu Kollisionen kommen
- deshalb speichern wir die Einträge nicht einfach in einem Array ab
- stattdessen legen wir m einfach verkettete Listen $L = (L_1, ..., L_m)$ an
- Liste *L_i* speichert Elemente mit Hash *i*
- die Datenstruktur erlaubt Operationen Insert, Search und Delete

Hashtabellen

- Insert Um ein neues Element e mit Schlüssel s in die Hashtabelle einzufügen, berechnen wir zunächst den Hash $\mathcal{H}(s)$. Dann wird das Element in die Liste $L_{\mathcal{H}(s)}$ eingefügt. Diese Operationen kann in Laufzeit O(1) durchgeführt werden (wenn wir die Berechnung der Hashfunktion als eine Operation zählen).
- Search Um ein Element mit einem gegeben Schlüssel s zu finden, bestimmen wir den Hash $\mathcal{H}(s)$. Anschließend durchsuchen wir die Liste $L_{\mathcal{H}(s)}$ nach einem Element mit Schlüssel s. Die Laufzeit für diese Operation ist die Länge der Liste $L_{\mathcal{H}(s)}$.
- Delete Auch diese Operation kann in Zeit $L_{\mathcal{H}(s)}$ ausgeführt werden, wenn s der Schlüssel des zu löschenden Elements ist.

Hashfunktionen

- wir konstruieren wir gute Hashfunktionen?
- für jede deterministische Hashfunktion kann die Hashtabelle schlimmstenfalls zu einer verketteten Liste degenerieren
- dennoch werden oft einfache deterministische Hashfunktionen eingesetzt, weil sie schnell zu berechnen sind
- zufällige Hashfunktionen sind eine attraktive, beweisbar gute Alternative

Die Multiplikationsmethode

- Annahme: die Schlüssel s_i sind natürliche Zahlen
- wir wählen eine reelle Zahl $0 < \alpha < 1$, z.B.

$$\alpha = \frac{\sqrt{5} - 1}{2}$$

und definieren

$$\mathcal{H}(s) = \lceil m \cdot (s\alpha - \lfloor s\alpha \rfloor) \rceil \in \{1, \ldots, m\}$$

■ Vorsicht: diese Methode ist "heuristisch"

Definition

[Universelle Hashfunktionen]

Eine Folge $\mathfrak{H} = (\mathcal{H}_1, \dots, \mathcal{H}_\ell)$ von Hashfunktionen

$$\mathcal{H}_i: \mathcal{S} \to [m]$$

heißt universell, falls für je zwei Schlüssel $s, s' \in S$, $s \neq s'$, gilt

$$|\{i \in [\ell] : \mathcal{H}_i(s) = \mathcal{H}_i(s')\}| \le \frac{\ell}{m}$$
(1)

Satz

- Angenommen *n* Elemente werden in einer Hashtabelle gespeichert.
- Angenommen ℌ ist eine universelle Folge von Hashfunktionen.
- Wenn \mathcal{H} ist ein zufälliges Element von \mathfrak{H} ist, hat für jeden Schlüssel $k \in \mathcal{S}$ die Liste $L_{h(k)}$ erwartete Länge $\frac{n}{m} + O(1)$.

Die Erwartung bezieht sich nur auf die Wahl von H.

Division mit Rest

■ für $a, b \in \mathbb{Z}$, $b \neq 0$, existieren ganze Zahlen q und $0 \leq r < |b|$, so daß

$$a = q \cdot b + r$$
.

 \blacksquare wir nennen r den Rest von a bei Division durch b und schreiben

$$r = a \mod b$$

["modulo"]

■ b teilt a, falls r = 0. Schreibweise: b|a.

Der größte gemeinsame Teiler

- für $a, b \in \mathbb{Z}$ ist ggT(a, b) die größte Zahl $c \in \mathbb{N}$, so daß $c \mid a$ und $c \mid b$
- jede Zahl teilt die Null
- falls a = b = 0 definieren wir daher $ggT(a, b) = \infty$
- lacksquare für $a,b\in\mathbb{N}$ bestimmt der Algorithmus Euclid den größten gemeinsamen Teiler

Euclid(a, b)

- **1.** falls a < b, vertausche a und b
- **2.** setze $a_0 = a$, $a_1 = b$, i = 1.
- 3. solange $a_i > 0$
- **4.** berechne $q_i \in \mathbb{Z}$, $a_{i+1} \in \{0, 1, ..., a_i\}$, so daß $a_{i-1} = q_i a_i + a_{i+1}$.
- erhöhe i um 1
- 6. gib a_{i-1} aus

Satz

Für $a, b \in \mathbb{N}$ gibt Euclid den ggT(a, b) aus und hat Laufzeit $O(\log(a + b))$.

- der Algorithmus ist effizient
- denn die Länge der Eingabe ist $\Theta(\log(a+b))$

Korollar

Für je zwei Zahlen $a, b \in \mathbb{N}$ gibt es Zahlen $u, v \in \mathbb{Z}$, so daß ggT(a, b) = au + bv.

Konstruktion universeller Hashfunktionen

- sei m > 1 eine natürliche Zahl und p > m eine Primzahl
- für ganze Zahlen $1 \le a < p$ und $0 \le b < p$ definiere

$$\mathcal{H}_{a,b}: \{0,\ldots,p-1\} \to \{0,\ldots,m-1\}, \quad k \mapsto ((a \cdot k + b) \mod p) \mod m.$$

■ sei $\mathfrak{H}_{p,m} = (\mathcal{H}_{a,b})_{a,b}$.

Satz

Die Menge $\mathfrak{H}_{p,m}$ von Hashfunktionen $\{0,1,\ldots,p-1\}\to\{0,1,\ldots,m-1\}$ ist universell.

Zusammenfassung

- das Hashingproblem tritt in der Praxis häufig auf
- die Multiplikationsmethode bietet eine einfache heuristische Lösung
- mit Hilfe der Zahlentheorie haben wir universelle Hashfunktionen konstruiert