

Double-negation translation and CPS transformation

Ingo Blechschmidt
June 3rd, 2015 at KU Leuven

Outline

- Constructive mathematics
 - The law of excluded middle
 - Interpretation of intuitionistic logic
 - Applications
- The double-negation translation
 - The doubly-negated law of excluded middle
 - The fundamental result
 - Game-theoretical interpretation
- 3 Continuations
 - The Curry–Howard correspondence
 - Computational content of classical proofs
- 4 Outlook

Non-constructive proofs

Theorem. There exist **irrational** numbers x, y such that x^y is rational.

Proof. Either $\sqrt{2}^{\sqrt{2}}$ is rational or not.

In the first case we are done.

In the second case take $x := \sqrt{2}^{\sqrt{2}}$ and $y := \sqrt{2}$. Then $x^y = 2$ is rational.

The law of excluded middle

"For any formula A, we may deduce $A \vee \neg A$."

Classical logic = intuitionistic logic + law of excluded middle.

Classical interpretation

 \perp There is a contradiction.

 $A \wedge B$ A and B are true.

 $A \vee B$ A is true or B is true.

 $A \Rightarrow B$ If A holds, then also B.

 $\forall x: X. \ A(x)$ For all x: X it holds that A(x).

 $\exists x: X. \ A(x)$ There is an x: X such that A(x).

The law of excluded middle

"For any formula A, we may deduce $A \vee \neg A$."

Classical logic = intuitionistic logic + law of excluded middle.

Constructive interpretation

- \perp There is a contradiction.
- $A \wedge B$ We have evidence for A and for B.
- $A \vee B$ We have evidence for A or for B.
- $A \Rightarrow B$ We can transform evidence for A into one for B.
- $\forall x: X. \ A(x)$ Given x: X, we can construct evidence for A(x).
- $\exists x: X. \ A(x)$ We have an x: X together with evidence for A(x).

Negated statements

"¬A" is syntactic sugar for $(A \Rightarrow \bot)$ and means: There can't be any evidence for A.

Constructive interpretation

- $A \wedge B$ We have evidence for A and for B.
- $A \vee B$ We have evidence for A or for B.
- $A \Rightarrow B$ We can transform evidence for A into one for B.
- $\forall x: X. \ A(x)$ Given x: X, we can construct evidence for A(x).
- $\exists x: X. \ A(x)$ We have an x: X together with evidence for A(x).

Doubly-negated statements

" $\neg \neg A$ " means: There can't be any evidence for $\neg A$.

Trivially, we have $A \Longrightarrow \neg \neg A$. We can't deduce $\neg \neg A \Longrightarrow A$.

Constructive interpretation

- \perp There is a contradiction.
- $A \wedge B$ We have evidence for A and for B.
- $A \vee B$ We have evidence for A or for B.
- $A \Rightarrow B$ We can transform evidence for A into one for B.
- $\forall x: X. \ A(x)$ Given x: X, we can construct evidence for A(x).
- $\exists x: X. \ A(x)$ We have an x: X together with evidence for A(x).

Doubly-negated statements

" $\neg \neg A$ " means: There can't be any evidence for $\neg A$.

Trivially, we have $A \Longrightarrow \neg \neg A$. We can't deduce $\neg \neg A \Longrightarrow A$.

Where is the key?

 $\neg\neg(\exists x$. the key is at position x)

versus

 $\exists x$. the key is at position x

Applications

Intuitionistic logic ...

- can guide to more elegant proofs,
- is good for the mental hygiene, and
- allows to make finer distictions.

Applications

- We can mechanically extract algorithms from intuitionistic proofs of existence statements.
- The internal language of toposes is intuitionistic.
- **Dream mathematics** only works intuitionistically.

Topos power

Any finitely generated vector space does *not not* possess a basis.

Any sheaf of modules of finite type on a reduced scheme is locally free on a dense open subset.

Dream mathematics

Synthetic differential geometry

Any map $\mathbb{R} \to \mathbb{R}$ is smooth. There are infinitesimal numbers ε such that $\varepsilon^2 = 0$ and $\varepsilon \neq 0$.

Synthetic domain theory

For any set *X* there exists a map

$$\mathsf{fix}: (X \to X) \to X$$

such that f(fix(f)) = fix(f) for any $f: X \to X$.

Synthetic computability theory

There are only countably many subsets of \mathbb{N} .

The doubly-negated LEM

Even intuitionistically " $\neg\neg(A \lor \neg A)$ " holds.

Proof. Assume $\neg(A \lor \neg A)$, we want to show \bot . If A, then $A \lor \neg A$, thus \bot . Therefore $\neg A$. Since $\neg A$, we have $A \lor \neg A$, thus \bot .

The ¬¬-translation

$$A^{\square} :\equiv \neg \neg A \text{ for atomic formulas } A$$

$$(A \land B)^{\square} :\equiv \neg \neg (A^{\square} \land B^{\square})$$

$$(A \lor B)^{\square} :\equiv \neg \neg (A^{\square} \lor B^{\square})$$

$$(A \Rightarrow B)^{\square} :\equiv \neg \neg (A^{\square} \Rightarrow B^{\square})$$

$$(\forall x : X . A(x))^{\square} :\equiv \neg \neg (\forall x : X . A^{\square}(x))$$

$$(\exists x : X . A(x))^{\square} :\equiv \neg \neg (\exists x : X . A^{\square}(x))$$

Theorem. A classically \iff A^{\square} intuitionistically.

A classical logic fairy tale

A classical logic fairy tale

A intuitionistically \iff we can defend A in any dialog.

A classically \iff we can defend A^{\square} in any dialog.

A classical logic fairy tale

A intuitionistically \iff we can defend A in any dialog.

A classically \iff we can defend A^{\square} in any dialog.

 \iff we can defend A in any dialog with jumps back in time allowed.

logic programming

formula A type A

intuitionistic proof p : A term p : A

conjuction $A \wedge B$ product type (A, B)

disjunction $A \lor B$ sum type Either A B

implication $A \Rightarrow B$ function type $A \rightarrow B$

logic programming

formula A type A

intuitionistic proof p : A term p : A

conjuction $A \wedge B$ product type (A, B)

disjunction $A \lor B$ sum type Either A B

implication $A \Rightarrow B$ function type $A \rightarrow B$

¬¬-translation CPS transformation

 $\neg \neg A$??

programming logic formula A type Aintuitionistic proof p: Aterm p:Aconjuction $A \wedge B$ product type (A, B)disjunction $A \vee B$ sum type Either A B implication $A \Rightarrow B$ function type $A \rightarrow B$ ¬¬-translation CPS transformation

programming logic formula A type Aintuitionistic proof p: Aterm p:Aconjuction $A \wedge B$ product type (A, B)disjunction $A \vee B$ sum type Either A B implication $A \Rightarrow B$ function type $A \rightarrow B$ ¬¬-translation CPS transformation $(A \Rightarrow \bot) \Rightarrow \bot$

logic programming formula A type Aintuitionistic proof p: Aterm p:Aconjuction $A \wedge B$ product type (A, B)disjunction $A \vee B$ sum type Either A B function type $A \rightarrow B$ implication $A \Rightarrow B$ ¬¬-translation CPS transformation $(A \Rightarrow \bot) \Rightarrow \bot \quad (A \rightarrow r) \rightarrow r$

Computational content of classical proofs

```
type Cont r a = ((a \rightarrow r) \rightarrow r)
-- Decide an arbitrary statement a.
lem :: Cont r (Either a (a -> Cont r b))
lem k = k $ Right $ \x -> (\k' -> k (Left x))
-- Calculate the minimum of an infinite list
-- of natural numbers.
min :: [Nat] -> Cont r (Int, Int -> Cont r ())
min xs = ...
```

Outlook

- CPS transformation = Yoneda embedding
- What about delimited continuations?
- Geometrical interpretation:

$$Sh(X) \models A^{\square} \iff Sh(X_{\neg \neg}) \models A$$

- Generalize from ¬¬ to arbitrary **modal operators** (monads): Relevant axioms are
 - $A \Rightarrow \Box A$
 - $\square \square A \Rightarrow \square A$
 - $\Box (A \wedge B) \Leftrightarrow \Box A \wedge \Box B$

Outlook

- CPS transformation = Yoneda embedding
- What about delimited continuations?
- Geometrical interpretation:

$$\operatorname{Sh}(X) \models A^{\square} \iff \operatorname{Sh}(X_{\neg \neg}) \models A$$

- Generalize from ¬¬ to arbitrary modal operators (monads): Relevant axioms are
 - $A \Rightarrow \Box A$
 - $\square \square A \Rightarrow \square A$
 - $\Box (A \land B) \Leftrightarrow \Box A \land \Box B$

/iblech/talk-constructive-mathematics