MATHEMATICS

In a Δ^{le} ABC x + y + 2 = 0 is the perpendicular bisector of side AB and it meets AB at 61. (-1, -1). If x-y-1=0 is \perp^{lar} bisector of side AC and it meets AC at (2, 1) and P is mid point of BC then distance of P from ortho centre of Δ^{le} ABC is

1)5

3) $\sqrt{13}$

If a line passing through P(3, 1) meets coordinate axes in A and B and distance of AB 62. from origin is maximum then area of $\Delta^{le}OAB$ is

1) 25 sq.units

2) $\frac{50}{3}$ sq.units 3) $\frac{100}{3}$ sq.units 4) 19 sq.units

If A = (4, 0) and B = (9, 0) and C(0, h) are 3 – points such that AB subtends greatest 63. angle at C. If h > 0 then value of h is

1)4

3) $\frac{13}{2}$ 4) 6

The line x = 0 divides the area enclosed by the curves |x - 1| - y = 0, |x| + y - 3 = 0 into 64. two areas R_1 and R_2 where $R_1 < R_2$ then $\frac{R_1}{R_2} =$

1) $\frac{1}{2}$

2) $\frac{1}{2}$ 3) $\frac{1}{4}$ 4) $\frac{1}{8}$

A line is drawn from (0, 0) Intersect the lines 2x + y = 2, x - 2y + 2 = 0 in A and B 65. then locus of mid point of segment AB is

1) $2x^2 + 3xy + 2y^2 + x + 3y = 0$

2) $2x^2 - 3xy - 2y^2 - x - 3y = 0$

3) $2x^2 + 3xy - 2y^2 + x + 3y = 0$

4) $2x^2 - 3xy - 2y^2 + x + 3y = 0$

Sr.IPLCO JEE-MAIN Q.P

space for rough work

In the xy – plane the length of the shortest path from (0, 0) to the point P(12, 16)66. which does not go through inside the circle $(x-6)^2 + (y-8)^2 = 25$.

1) 20

2) $10\sqrt{3} + \frac{5\pi}{3}$ 3) $10\sqrt{3} + 5\pi$ 4) $10\sqrt{3}$

Let P be a point lies inside the triangle ABC and D, E, F are feet of perpendiculars 67. from P to the lines BC, CA, AB respectively. If $\frac{BC}{PD} + \frac{CA}{PE} + \frac{AB}{PE}$ is minimum then P is

1) Orthocentre of Δ^{le} ABC

2) Circum circle of Δ^{le} ABC

3) Incentre of Δ^{le} ABC

4) Centroid of Δ^{le} ABC

In a right angled triangle BC = 5, AB = 4, AC = 3. Let S be the circum circle. Let S_1 68. be the circle touching both sides AB and AC and circle S internally. Let S_2 be the circle touching the sides AB and AC of Δ^{le} ABC, and touching the circle S externally. If r_1, r_2 are radii of circles S_1 and S_2 respectively then $r_1r_2 =$

1) 12

2) 20

3) 15

4) 24

A circle passing through the vertex C of a rectangle and touches its sides AB and AD 69. at M and N respectively. If the \perp^{lar} distance from C to the line segment \overline{MN} is equal to 5 then area of rectangle ABCD.

1)5

2) 15

3) 25

4) 30

Sr.IPLCO_JEE-MAIN O.P

space for rough work

Sri	Chaite	nya IIT	Academy	,
-----	--------	---------	---------	---

01-08-15_Sr.IPLCO_Jee Main_RPTM-1_Q.PAPER

A(0,0), $B(1,\sqrt{3})$, C(2,0) are vertices of a $\Delta^{le}ABC$ whose one altitude is AD with D 70. on BC. Now circle drawn on AD as diameter cuts AB at E and AC at F then \overline{EF} =

1)3

2)2

3) $\frac{3}{2}$

4) $\frac{\sqrt{3}}{2}$

A circle with diameter AB and having centre at O(0, 0) is drawn. Now two circles 71. with diameters AO and OB are drawn. In the region between circumferences a circle of radius 8, with centre D is drawn such that is touches all 3 – circles then AB =

1) 18

2) 48

3) 24

4) 12

Equilateral triangle DEF is inscribed in equilateral triangle ABC such that D is on BC 72. E is on AC, F is on AB and DE \perp^{lar} BC, FD \perp^{lar} AB, FE \perp^{lar} AC. Then $\frac{\text{Area of } \Delta^{\text{le DEF}}}{\text{Area of } \Delta^{\text{le ABC}}} =$

1) $\frac{1}{2}$

2) $\frac{1}{4}$ 3) $\frac{1}{3}$ 4) $\frac{2}{3}$

A chord of the circle $x^2 + y^2 - 4x - 6y = 0$ passing through origin subtends an angle 73. $tan^{-1}(7/4)$ at the point where circle meets positive y – axis then equation of the chord is

1) 2x - y = 0

2) x - y = 0 3) x - 2y = 0 4) y = 3x

A line passing through P(1, -2) cuts the circle $x^2 + y^2 - x - y = 0$ at A and B then the 74. range of (PA + PB) is

1) $\left\lceil \sqrt{24}, \sqrt{26} \right\rceil$ 2) $\left\lceil \sqrt{26}, \infty \right\rceil$ 3) $\left\lceil -\sqrt{26}, \sqrt{26} \right\rceil$ 4) $\left\lceil -\sqrt{24}, \sqrt{24} \right\rceil$

Sr.IPLCO JEE-MAIN Q.P

space for rough work

The lengths of the arcs of a circle of radius 6 are respectively 2π , 5π , 4π respectively 75. in Ist, IInd, IIIrd quadrants then centre of the circle is

1)
$$\left(-3, \frac{\sqrt{3}-1}{\sqrt{2}}\right)$$
 2) $\left(-3\sqrt{2}, \frac{3(\sqrt{3}-1)}{\sqrt{2}}\right)$ 3) $\left(\frac{-3}{\sqrt{2}}, \frac{\sqrt{3}-1}{\sqrt{2}}\right)$ 4) $\left(3\sqrt{2}, \frac{-3(\sqrt{3}-1)}{\sqrt{2}}\right)$

A right angled triangle with sides 5,4,3 moving in a circle $2x^2 + 2y^2 = 25$ with 76. hypotenuse as the chord of the circle then locus of vertex opposite to hypotenuse.

1)
$$x^2 + y^2 = 1$$

2)
$$x^2 + y^2 = \frac{1}{2}$$

2)
$$x^2 + y^2 = \frac{1}{2}$$
 3) $x^2 + y^2 = \frac{1}{4}$ 4) $x^2 + y^2 = \frac{1}{16}$

The range of λ for which the variable line $3x + 4y = \lambda$ lies between the circles 77. $x^{2} + y^{2} - 2x - 2y + 1 = 0$ and $x^{2} + y^{2} - 18x - 2y + 78 = 0$ without intercepting a chord on either circles.

Two chords which are drawn from a point (a, b) on the circle x(x-a)+y(y-b)=078. are bisected by x - axis then

1)
$$a^2 < 8b^2$$

2)
$$a^2 = 8b^2$$

3)
$$a^2 > 8b^2$$

2)
$$a^2 = 8b^2$$
 3) $a^2 > 8b^2$ 4) $3a^2 > 4b^2$

The equation of the chord of the circle $x^2 + y^2 = a^2$ which cuts the circle at two points 79. which lie at a distance "d" from a point $A(\alpha, \beta)$ on the circle is $\alpha x + \beta y = \lambda$ then $\lambda = \beta$

1)
$$a^2 - d^2$$

2)
$$\frac{a^2}{2} - d^2$$
 3) $a^2 - \frac{d^2}{2}$ 4) $a^2 + \frac{d^2}{2}$

3)
$$a^2 - \frac{d^2}{2}$$

4)
$$a^2 + \frac{d^2}{2}$$

- Consider a curve $ax^2 + 2hxy + by^2 = 1$. If from a point P (not on the curve) a straight 80. line is drawn to cut the curve at A and B such that $PA \times PB$ is independent of inclination of line PAB. Then above curve represents. (given that a > 0).
 - 1) a parabola whose latusrectum is 2a
- 2) a circle whose radius is $\frac{1}{\sqrt{a}}$
 - 3) an ellipse whose major axis is 2a
- 4) a reactangular hyperbola
- Let P(a, b) be a variable point satisfying $a > 0, b > 0, 4 \le a^2 + b^2 \le 9$ 81. $b^2 - 4ab + a^2 \le 0$. Let R be the complete region represented by xy - plane in which p - lies then Area of region R is....

- 2) $\frac{5\pi}{3}$ 3) $\frac{3\pi}{6}$ 4) $\frac{5\pi}{6}$
- An isosceles triangle ABC is inscribed in the circle whose equation is $x^2 + y^2 = 9$ with 82. vertex at A (3, 0) and $\angle B = \angle C = 75^{\circ}$. Then product of ordinates of B and C is
 - 1) $\frac{1}{4}$

- 2) $\frac{-3}{4}$ 3) $\frac{-2}{3}$ 4) $\frac{-9}{4}$
- ABC be a triangle with A (1, 3) and y = x, y = -2x are the equations of internal 83. angular bisectors of $\angle B$ and $\angle C$ then area of triangle ABC is.....
 - 1) $\frac{1}{2}$

- 2) $\frac{5}{2}$ 3) $\frac{7}{2}$ sq.units 4) $\frac{3}{2}$ sq.units

If P is a point on the circle $x^2 + y^2 - 2\sqrt{2}x - 2\sqrt{3}y + 5 = 0$ and Q is a point on the other 84. circle $x^2 + y^2 + 2\sqrt{3}x - 2\sqrt{2}y + 5 = 0$ then smallest circle passing through P and Q is

1)
$$x^2 + y^2 + (\sqrt{3} - \sqrt{2})x - (\sqrt{3} + \sqrt{2})y = 0$$

2)
$$x^2 + y^2 + (\sqrt{3} - \sqrt{2})x - (\sqrt{3} + \sqrt{2})y + \sqrt{6} = 0$$

3)
$$x^2 + y^2 + (\sqrt{3} - \sqrt{2})x - (\sqrt{3} + \sqrt{2})y - 2\sqrt{6} = 0$$

4)
$$x^2 + y^2 + (\sqrt{3} - \sqrt{2})x - (\sqrt{3} + \sqrt{2})y + 2\sqrt{6} = 0$$

- All chords of the curve $3x^2 y^2 2x + 4y = 0$ which subtend a right angle at the origin 85. are concurrent at a point P then coordinates of P are
 - 1)(2,3)
- (3, 2)
- (1, -2)
- 4)(-1,2)
- Through the point A on the x-axis a straight line is drawn parallel to y axis so as to 86. intersect pair of lines $ax^2 + 2hxy + by^2 = 0$ in B and C. If AB = BC then $\frac{h^2}{a^2}$
 - 1) $\frac{1}{8}$

- 2) $\frac{3}{8}$ 3) $\frac{9}{8}$ 4) $\frac{17}{8}$
- ABCD is a square. P is a point inside the square such that PA = 3, PB = 7, PD = 587. then Area of the square ABCD is
 - 1) 105

2) 35

- 3)58
- 4)25

Sr.IPLCO_JEE-MAIN_Q.P

space for rough work

- 88. A point P moves such that the sum of its distances from the line $\sqrt{3}x y + 1 = 0$, $x \sqrt{3}y + 2 = 0$ is 2 then area bounded by locus of P is
 - 1)4

2)8

- 3) 16
- 4) 32
- 89. Two circles of radii 1 and 2 touch internally at the point A. ABC is an equilateral triangle where B is on one circle and C is on other circle then AB =
 - 1) $\sqrt{2}$

- 2) $\sqrt{3}$
- 3) 2
- 4) $2\sqrt{2}$
- 90. The locus of image of (2, 3) in the line $x-2y+3+\lambda(2x-3y+4)=0$ is
 - 1) $x^2 + y^2 + 2x + 4y 3 = 0$

2) $x^2 + y^2 - 2x - 4y + 3 = 0$

3) $x^2 + y^2 - 2x - 4y = 0$

4) $x^2 + y^2 - 2x + 4y - 3 = 0$