

Digital Signal Processing in VLSI Design

Shao-Yi Chien 簡韶逸 Fall 2023

打造鋼鐵人、柯南眼鏡不是夢!台大師生看好「眼球追蹤」技術齊心創業

---數位時代創業小聚2020/07/20

Targets of This Course

- Introduction to the design skills of digital signal processing VLSI systems
- The main focuses of this course are VLSI hardware architectures for DSP, not DSP algorithms, and not general-purpose digital signal processor (DSP) design

DSP in VLSI Design

Role of Architecture Design -- From ASIC Point of View

DSP in VLSI Design

5

Role of Architecture Design -- From SoC Point of View

In an SoC, the Role of DSP Architecture?

Architecture Design?

■ Computer architecture " Transmitted and the computer architecture " Transmitted and the computer architecture " Transmitted and the computer architecture" and the computer architecture " Transmitted and the computer architecture" and the computer architecture " Transmitted and the computer architecture" and the computer architecture " Transmitted and the computer architecture" and the computer architecture " Transmitted and the computer architecture" and the computer architecture " Transmitted and the computer architecture" and the computer architecture " Transmitted and the computer architecture" and the computer architecture " Transmitted and the computer architecture" and the computer architecture architecture and the computer architecture arc

DSP architecture

The boundary is getting blur

Example: Google TPU

Course Outline (1/2)

- Part I: Basic Design Skills
- Introduction to digital signal processing systems
- Iteration bound
- Pipeline and parallel processing
- Retiming
- Unfolding
- Folding
- Systolic array architecture
- Scheduling and resource allocation
- Processing element design
- SoC and DSP architecture

Course Outline (2/2)

- Part II: Case Study
- Case study

 - Motion estimator
 - □ Neural network

Schedule

Week	Date	Topic
1	9/8	Introduction to digital signal processing systems
2	9/15	Iteration bound
3	9/22	Pipeline and parallel processing/Retiming
4	9/29	中秋節
5	10/6	Unfolding
6	10/13	Folding
7	10/20	Systolic array architecture
8	10/27	Scheduling and resource allocation
9	11/3	Processing element design
10	11/10	SoC and DSP Architecture (I)
11	11/17	Midterm Exam
12	11/24	SoC and DSP Architecture (II)
13	12/1	FFT
14	12/8	Motion Estimator
15	12/15	Neural Network Architecture
16	12/22	Final presentation

行程有可能修改,請隨時注意NTU Cool訊息

DSP in VLSI Design

Grading

- Homework 40%
 - □ About 10 homeworks
- Midterm 35%
- Final project 25%

Course Website and Lectures

- Course website:
 - https://cool.ntu.edu.tw/courses/32765
- Pre-recorded courseware on the website and on-site/on-line lectures
- Will record the lecture

References

- K. K. Parhi, VLSI Digital Signal Processing Systems, John Wiley & Sons, 1999.
- L. Wanhammar, *DSP Integrated Circuits*, Academic Process, 1999.
- K. K. Parhi and T. Nishitani Ed., Digital Signal Processing for Multimedia Systems, Marcel Dekker, 1999.
- B. Venkataramani and M. Bhaskar, Digital Signal Processors: Architecture, Programming and Applications, McGraw-Hill, 2002
- P. Lapsley, J. Bier, A. Shoham, E. A. Lee, *DSP Processor Fundamentals*, IEEE Press, 1996.
- L.-G. Chen, C.-T. Huang, C.-Y. Chen, and C.-C. Cheng, VLSI Design of Wavelet Transform, Imperial College Press, 2006.
- D. Markovic and R. W. Brodersen, DSP Architecture Design Essentials, Springer, 2012.
- A. C. C. Liu and O. M. K. Law, **Deep Learning Hardware Design**, 2020.
- Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S. Emer, Efficient Processing of Deep Neural Networks, Morgan & Claypool Publishers, 2020.
- Related papers