Joseph Salmon, Nicolas Verzelen

INRA / Université de Montpellier

Plan

Introduction

Rappels de classification Estimateurs/Classifieurs constants par morceaux

Arbres de décision

Détails et variations

Méthodes basées sur des arbres

- Nécessite de stratifier ou segmenter l'espace des prédicteurs en un certain nombre de régions simples
- L'ensemble des règles des partitionnement peuvent être résumées par un arbre : ce type d'approches sont connues comme des méthodes à arbres de décision

Pours et contres des arbres

Avantages:

- ► Simples et faciles à interpréter (+ faciles à expliquer que les modèles linéaires : représentation graphique)
- ► Fonctionnent de manieres similaires pour la régression et la classification
- ne dépend (souvent) que de quelques variables explicatives; souvent interprétées (à tort) comme une procédure de sélection de variables
- ▶ instabilité de la méthode

Limites:

- Faible en prédiction vs. meilleures approches d'apprentissage
- ► Améliorations possibles : mélanger de nombreux arbres pour produire une réponse consensus bagging , forêts aléatoires (ﷺ : random forests), XGBoost, etc

Classification supervisée et régression

X: variable **explicative**, vecteur aléatoire dans $\mathcal{X} = \mathbb{R}^p$

Y: variable à prédire, aléatoires dans $\mathcal{Y} = \{C_1, \dots, C_K\}$ (classification avec K classes) ou $\mathcal{Y} = \mathbb{R}$ (régression)

 $\mathcal{D}_n = \{(\mathbf{x}_i, y_i) \in \mathcal{X} \times \mathcal{Y}, i = 1, \dots, n\} : n$ -échantillon *i.i.d.* tiré selon la loi P, loi jointe de (X, Y), **inconnue**

 \mathcal{H} : collection de classifieurs/estimateurs, $h: \mathcal{X} \mapsto \mathcal{Y}$

L : perte mesurant les erreurs d'un classifieur/estimateur

- Exemple (régression) : $L(\mathbf{x}, y, h(\mathbf{x})) = (y h(\mathbf{x}))^2$

Objectif: déterminer à partir de \mathcal{D}_n la fonction $h \in \mathcal{H}$ qui minimise le risque $R(h) = \mathbb{E}_P[L(X,Y,h(X))]$

- ightharpoonup l'espace de représentation des données $\mathcal X$
- \blacktriangleright la classe des fonctions considérées \mathcal{H}

- ightharpoonup l'espace de représentation des données $\mathcal X$
- ▶ la **classe des fonctions** considérées H
- la fonction de coût L à minimiser pour obtenir la meilleur fonction h

- ightharpoonup l'espace de représentation des données $\mathcal X$
- ▶ la classe des fonctions considérées H
- ▶ la fonction de coût L à minimiser pour obtenir la meilleur fonction h
- l'algorithme de minimisation de cette fonction de coût

- ightharpoonup l'espace de représentation des données $\mathcal X$
- ▶ la **classe des fonctions** considérées *H*.
- ▶ la fonction de coût L à minimiser pour obtenir la meilleur fonction h
- l'algorithme de minimisation de cette fonction de coût
- une méthode de sélection de modèle pour calibrer les hyper-paramètres (e.g., validation croisée)

- ightharpoonup l'espace de représentation des données $\mathcal X$
- ▶ la **classe des fonctions** considérées *H*.
- ▶ la fonction de coût L à minimiser pour obtenir la meilleur fonction h
- l'algorithme de minimisation de cette fonction de coût
- une méthode de sélection de modèle pour calibrer les hyper-paramètres (e.g., validation croisée)
- un protocole d'évaluation des performances

- ightharpoonup l'espace de représentation des données $\mathcal X$
- ▶ la classe des fonctions considérées H.
- ▶ la fonction de coût L à minimiser pour obtenir la meilleur fonction h
- l'algorithme de minimisation de cette fonction de coût
- une méthode de sélection de modèle pour calibrer les hyper-paramètres (e.g., validation croisée)
- un protocole d'évaluation des performances

Classe des fonctions considérées

La collection ${\cal H}$ des classifieurs/estimateurs est une sous-partie de l'ensemble des **fonctions constantes par morceaux**.

Simplification : les séparations sont **parallèles** aux axes et donc les composantes constantes sont de la forme

$$\mathcal{C} = \left\{\mathbf{x} \in \mathcal{X} : \mathbf{x}^{j_1} \in [\underline{\mathbf{x}}^{j_1}, \overline{\mathbf{x}}^{j_1}], \dots, \mathbf{x}^{j_r} \in [\underline{\mathbf{x}}^{j_r}, \overline{\mathbf{x}}^{j_r}]\right\}$$

pour $r \in \llbracket 1, p \rrbracket$ et $(j_1, \ldots, j_r) \in \llbracket 1, p \rrbracket^r$

Pour M composantes constantes, l'estimateur s'écrit :

$$\hat{h} = \sum_{m=1}^{M} \hat{\alpha}_m \mathbb{1}_{\mathcal{C}_m}$$

les \mathcal{C}_m forment une partition de l'espace (pas de chevauchement) :

$$C_1 \sqcup \cdots \sqcup C_M = \mathcal{X}$$

et les $\hat{\alpha}_m \in \mathbb{R}$

Classifieur/Estimateur associé

Prenons une partition $\mathcal{C}_1 \sqcup \cdots \sqcup \mathcal{C}_M = \mathcal{X}$ et un prédicteur associé :

$$\hat{h} = \sum_{m=1}^{M} \hat{\alpha}_m \mathbb{1}_{\mathcal{C}_m}$$

Choix des coefficients $\hat{\alpha}_m$ (par maximum de vraisemblance) : pour tout $\mathbf{x} \in \mathcal{X}$, il existe un $m \in [\![1,M]\!]$ tel que $\mathbf{x} \in \mathcal{C}_m$, puis

► Pour la classification :

$$\hat{h}(\mathbf{x}) \in \argmax_{k=1,\dots,K} \sum_{\mathbf{x}_i \in \mathcal{C}_m} \mathbb{1}(y_i = k) \quad \text{("vote majoritaire")}$$

▶ Pour la régression :

$$\hat{h}(\mathbf{x}) = \frac{1}{|\{\mathbf{x}_i \in \mathcal{C}_m\}|} \sum_{\mathbf{x} \in \mathcal{C}} y_i$$
 ("moyenne empirique")

Rem: lien avec un estimateur "plug-in"

Exemple de fonction constante par morceaux

Classifieur/Estimateur associé

- Motivation : interprétation, seuils "interprétables"
- Limites :
 - difficile de décrire efficacement toutes ces fonctions
 - si la partition est fixée avant de voir les données, la plupart des composantes seront vides.

Exercise: quel problème cela pose-t-il en régression? en classification?

Alternative : apprendre la partition grâce aux données!

Plan

Introduction

Arbres de décision

Structure efficace : les arbres Séparateurs élémentaires Algorithme efficace

Détails et variations

Invention quasi simultanée entre 1979 et 1983

- ► CART Breiman et al. (1984) (Berkeley, USA); en statistique
- ► ID3 Quinlan (1986) (Sydney, Australie); en machine learning

Première idée :

Utiliser non pas un mais plusieurs séparateurs linéaires pour construire des frontières de décision non linéaires

Deuxième idée :

Utiliser des séparateurs linéaires parallèles aux axes, *i.e.*, des hyperplans $\{\mathbf{x} \in \mathcal{X} : \mathbf{x}^j = \tau\}$ pour l'interprétabilité.

Troisième idée :

Utiliser un prédicteur représenté par un d'arbre : chaque nœud est associé à un hyperplan séparateur $\{\mathbf{x}\in\mathcal{X}:\mathbf{x}^j=\tau\}$; chaque feuille est associée à une fonction constante (donc à une une classe)

Règles logiques

Après apprentissage : on connaît les variables explicatives qui interviennent dans la fonction de décision construite

<u>Rem</u>: souvent, une faible partie des variables sont discriminantes, intérêt pour l'**interprétabilité**

L'arbre code pour un ensemble de règles logiques du type :

"si
$$(\mathbf{x}^{j_1} > \tau_1)$$
 et $(\mathbf{x}^{j_2} \leq \tau_2)$ et \dots alors \mathbf{x} est dans la classe k "

<u>Efficacité computationnelle</u> : prédiction très **efficace** une fois la règle apprise, le temps de prédiction ne dépend que du nombre de seuils à tester

 $\underline{\mathsf{Coût}}$: (nombre de nœuds) imes (coût tester $\mathbf{x}^{j_1} > au_1$)

Séparateur linéaire orthogonal aux axes

Rappel : $\mathbf{x} = (\mathbf{x}^1, \dots, \mathbf{x}^p)$, p variables

▶ Variable continue (ou binaire) : j^e variable \mathbf{x}^j , seuil τ :

$$t_{j,\tau}(\mathbf{x}) = \operatorname{sign}(\mathbf{x}^j - \tau) = \begin{cases} +1, & \text{si } \mathbf{x}^j > \tau \\ -1, & \text{si } \mathbf{x}^j < \tau \end{cases}$$

lacktriangle Variable catégorielle à M modalités $\{v_1^j,\ldots,v_M^j\}$:

$$t_{j,\mathbf{v},m}(\mathbf{x}) = \mathbb{1}(\mathbf{x}^j = v_m^j)$$

<u>Rem</u>: cette dernière version du traitement des variables catégorielles discrimine simplement : "une modalité" vs. "toutes les autres"

Rem: avec sklearn il faut utiliser OneHotEncoder pour ce cas

Exemple visuel :cas de deux variables

Exemple visuel :cas de deux variables

Exemple visuel :cas de deux variables

- 1. Soit \mathcal{D}_n l'ensemble d'apprentissage
- 2. Construire un nœud racine

- 1. Soit \mathcal{D}_n l'ensemble d'apprentissage
- 2. Construire un nœud racine
- 3. Chercher la meilleure séparation $t: \mathcal{X} \mapsto \{-1,1\}$ à appliquer sur \mathcal{D}_n telle que le coût local $L(t,\mathcal{D}_n)$ soit minimal

- 1. Soit \mathcal{D}_n l'ensemble d'apprentissage
- 2. Construire un nœud racine
- 3. Chercher la meilleure séparation $t: \mathcal{X} \mapsto \{-1, 1\}$ à appliquer sur \mathcal{D}_n telle que le coût local $L(t, \mathcal{D}_n)$ soit minimal
- 4. Associer le séparateur choisi au nœud courant et séparer l'ensemble d'apprentissage courant \mathcal{D}_n en \mathcal{D}_n^d et \mathcal{D}_n^g à l'aide de ce séparateur

- 1. Soit \mathcal{D}_n l'ensemble d'apprentissage
- Construire un nœud racine
- 3. Chercher la meilleure séparation $t: \mathcal{X} \mapsto \{-1, 1\}$ à appliquer sur \mathcal{D}_n telle que le coût local $L(t, \mathcal{D}_n)$ soit minimal
- 4. Associer le séparateur choisi au nœud courant et séparer l'ensemble d'apprentissage courant \mathcal{D}_n en \mathcal{D}_n^d et \mathcal{D}_n^g à l'aide de ce séparateur
- 5. Construire un nœud fils à droite et un nœud fils à gauche

- 1. Soit \mathcal{D}_n l'ensemble d'apprentissage
- Construire un nœud racine
- 3. Chercher la meilleure séparation $t: \mathcal{X} \mapsto \{-1, 1\}$ à appliquer sur \mathcal{D}_n telle que le coût local $L(t, \mathcal{D}_n)$ soit minimal
- 4. Associer le séparateur choisi au nœud courant et séparer l'ensemble d'apprentissage courant \mathcal{D}_n en \mathcal{D}_n^d et \mathcal{D}_n^g à l'aide de ce séparateur
- 5. Construire un nœud fils à droite et un nœud fils à gauche
- 6. Mesurer le critère d'arrêt à droite, s'il est vérifié, le nœud droit devient une feuille; sinon retour en 3 avec $\mathcal{D}_n \leftarrow \mathcal{D}_n^d$

- 1. Soit \mathcal{D}_n l'ensemble d'apprentissage
- 2. Construire un nœud racine
- 3. Chercher la meilleure séparation $t: \mathcal{X} \mapsto \{-1, 1\}$ à appliquer sur \mathcal{D}_n telle que le coût local $L(t, \mathcal{D}_n)$ soit minimal
- 4. Associer le séparateur choisi au nœud courant et séparer l'ensemble d'apprentissage courant \mathcal{D}_n en \mathcal{D}_n^d et \mathcal{D}_n^g à l'aide de ce séparateur
- 5. Construire un nœud fils à droite et un nœud fils à gauche
- 6. Mesurer le critère d'arrêt à droite, s'il est vérifié, le nœud droit devient une feuille; sinon retour en 3 avec $\mathcal{D}_n \leftarrow \mathcal{D}_n^d$
- 7. Mesurer le critère d'arrêt à gauche, s'il est vérifié, le nœud gauche devient une feuille; sinon retour en 3 avec $\mathcal{D}_n \leftarrow \mathcal{D}_n^g$

Algorithme récursif de construction

Cas d'un arbre binaire :

- 1. Soit \mathcal{D}_n l'ensemble d'apprentissage
- Construire un nœud racine
- 3. Chercher la meilleure séparation $t: \mathcal{X} \mapsto \{-1, 1\}$ à appliquer sur \mathcal{D}_n telle que le coût local $L(t, \mathcal{D}_n)$ soit minimal
- 4. Associer le séparateur choisi au nœud courant et séparer l'ensemble d'apprentissage courant \mathcal{D}_n en \mathcal{D}_n^d et \mathcal{D}_n^g à l'aide de ce séparateur
- 5. Construire un nœud fils à droite et un nœud fils à gauche
- 6. Mesurer le critère d'arrêt à droite, s'il est vérifié, le nœud droit devient une feuille; sinon retour en 3 avec $\mathcal{D}_n \leftarrow \mathcal{D}_n^d$
- 7. Mesurer le critère d'arrêt à gauche, s'il est vérifié, le nœud gauche devient une feuille; sinon retour en 3 avec $\mathcal{D}_n \leftarrow \mathcal{D}_n^g$

Contre-exemple : partition non issue d'un arbre

Plan

Introduction

Arbres de décision

Détails et variations

Fonction de coût Fonction d'impureté Critères d'arrêt et variantes Sélection de modèles

Probabilités / simplexe

Idée principale : définir une notion de pureté/impureté d'une coupure, et faire grandir l'arbre par coupures (: splitting) successives

On définit pour un ensemble \mathcal{D}_n (avec n exemples étiquetés) la distribution de probabilités pour la classe k (avec K classes) par :

$$\hat{p}_k(\mathcal{D}_n) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}(y_i = k)$$

Rem: on note le simplexe (de dimension K)

$$\begin{split} \Delta_K := \left\{ p \in \mathbb{R}^K : \sum_{k=1}^K p_k = 1 \text{ et } \forall k \in [\![1,K]\!], p_k \geq 0 \right\} \text{ ainsi,} \\ \hat{p}(\mathcal{D}_n) = (\hat{p}_1(\mathcal{D}_n), \dots, \hat{p}_K(\mathcal{D}_n))^\top \in \Delta_K \end{split}$$

Rem: Δ_K identifié aux probabilités discrètes ayant K modalités

Coupure

- $ightharpoonup \mathcal{D}_n$: ensemble d'apprentissage
- $ightharpoonup t_{j,\tau}$: fonction de coupure

$$\begin{split} \mathcal{D}_n^d(j,\tau) &= \{(\mathbf{x},y) \in \mathcal{D}_n, t_{j,\tau}(\mathbf{x}) > 0\} \quad \text{(partie droite)} \\ \mathcal{D}_n^g(j,\tau) &= \{(\mathbf{x},y) \in \mathcal{D}_n, t_{j,\tau}(\mathbf{x}) \leq 0\} \quad \text{(partie gauche)} \end{split}$$

Coupure

- $ightharpoonup \mathcal{D}_n$: ensemble d'apprentissage
- $ightharpoonup t_{j, au}$: fonction de coupure

$$\begin{split} \mathcal{D}_n^d(j,\tau) &= \{(\mathbf{x},y) \in \mathcal{D}_n, t_{j,\tau}(\mathbf{x}) > 0\} \quad \text{(partie droite)} \\ \mathcal{D}_n^g(j,\tau) &= \{(\mathbf{x},y) \in \mathcal{D}_n, t_{j,\tau}(\mathbf{x}) \leq 0\} \quad \text{(partie gauche)} \end{split}$$

Coupure

- $ightharpoonup \mathcal{D}_n$: ensemble d'apprentissage
- $ightharpoonup t_{j,\tau}$: fonction de coupure

$$\begin{split} \mathcal{D}_n^d(j,\tau) &= \{(\mathbf{x},y) \in \mathcal{D}_n, t_{j,\tau}(\mathbf{x}) > 0\} \quad \text{(partie droite)} \\ \mathcal{D}_n^g(j,\tau) &= \{(\mathbf{x},y) \in \mathcal{D}_n, t_{j,\tau}(\mathbf{x}) \leq 0\} \quad \text{(partie gauche)} \end{split}$$

Fonction de coût locale

Parmi tous les paramètres $(j,\tau)\in\{1,\ldots,p\}\times\{\tau_1,\ldots,\tau_m\}$, on cherche \hat{j} et $\hat{\tau}$ qui minimisent, une fonction de coût :

$$\begin{split} L(t_{j,\tau},\mathcal{D}_n) &= \frac{n_g}{n} H\left(\hat{p}(\mathcal{D}_n^g(j,\tau))\right) + \frac{n_d}{n} H\left(\hat{p}(\mathcal{D}_n^d(j,\tau))\right) \\ \text{avec} \quad n_g &= |\mathcal{D}_n^g(j,\tau)| \quad \text{et} \quad n_d = |\mathcal{D}_n^d(j,\tau)| \end{split}$$

H est une fonction mesurant "l'**impureté**" d'une distribution

Propriétés requises :

- ▶ le coût total est la somme de l'impureté de chaque sous parties, pondérée par le nombre d'échantillons
- ightharpoonup un nombre fini de seuils suffit sur l'apprentissage (au plus n)
- la notion l'impureté d'un échantillon \mathcal{D}_n est une fonction seulement la distribution des probabilités $p(\mathcal{D}_n)$

Fonction d'impureté

$$\underline{\mathsf{Rappel}} : \Delta_K := \left\{ p \in \mathbb{R}^K : \sum_{k=1}^K p_k = 1 \text{ et } \forall k \in [\![1,K]\!], p_k \geq 0 \right\}$$

Définition : fonction d'impureté (d'une probabilité)

Une fonction d'impureté, est une fonction $H: \Delta_K \to \mathbb{R}$ telle que :

- 1. H est maximum au point $p_{\mathrm{unif}} = \left(\frac{1}{K}, \dots, \frac{1}{K}\right)^{\top}$
- 2. H atteint son minimum seulement au point $(1,0,\ldots,0)^{\top}, (0,1,0,\ldots,0)^{\top},\ldots,(0,\ldots,0,1)^{\top}$
- 3. H est une fonction symétrique en p_1, \ldots, p_K

Interprétation : cf. Breiman et al. (1984, page 32)

- 1. la distribution la plus impure est l'uniforme
- 2. les distributions les plus pures sont celles dégénérées
- 3. toutes les classes ont la même importance

Critères de coût (I) : Erreur de classification

Erreur de classification :
$$H_{\text{mis}}(\mathcal{D}_n) = 1 - \hat{p}_{\hat{k}(\mathcal{D}_n)}$$
,

avec $\hat{k}(\mathcal{D}_n)$ défini comme la classe majoritaire dans \mathcal{D}_n :

$$\hat{k}(\mathcal{D}_n) = \underset{k=1,\dots,K}{\operatorname{arg max}} \hat{p}_k(\mathcal{D}_n)$$
$$= \underset{k=1,\dots,K}{\operatorname{arg max}} \frac{1}{n} \sum_{i=1}^n \mathbb{1}(y_i = k)$$

Critères de coût (I) : Erreur de classification

Application dans le cas binaire :

$$H_{\text{mis}}(\mathcal{D}_n) = 1 - \max_{k=1,2} \hat{p}_k(\mathcal{D}_n) = \min(\hat{p}_1(\mathcal{D}_n), 1 - \hat{p}_1(\mathcal{D}_n))$$

Limites du choix : "erreur de classification"

- ► fonction non-différentiable (optimisations plus dure)
- pour une zone avec une classe très majoritaire il se peut qu'aucune coupure ne produise de réduction d'impureté
- ▶ la pureté induite par des nœuds pures est négligée par ce critère :

Impureté stricte

Définition : Impureté stricte

Une fonction d'impureté $H: \Delta_K \to \mathbb{R}$ est **stricte** si pour toutes distributions p,p' dans Δ_K avec $p \neq p'$ et tout $\alpha \in]0,1[$ on a : $H(\alpha p + (1-\alpha)p') > \alpha H(p) + (1-\alpha)H(p')$

Interprétation : mélanger ne fait qu'augmenter l'impureté

Conséquence : si H est une fonction d'impureté pure

$$\begin{split} L(t_{j,\tau},\mathcal{D}_n) &= \frac{n_g}{n} H\left(\hat{p}(\mathcal{D}_n^g(j,\tau))\right) + \frac{n_d}{n} H\left(\hat{p}(\mathcal{D}_n^d(j,\tau))\right) > H\left(\hat{p}(\mathcal{D}_n)\right) \\ n_g &= |\mathcal{D}_n^g(j,\tau)| \quad \text{et} \quad n_d = |\mathcal{D}_n^d(j,\tau)| \end{split}$$

et il y a égalité si et seulement si $\hat{p}(\mathcal{D}_n) = \hat{p}(\mathcal{D}_n^g) = \hat{p}(\mathcal{D}_n^d)$, cf. Breiman et al. (1984), page 100

Critères de coût (II) : Entropie

Entropie:
$$H_{\mathrm{ent}}(\mathcal{D}_n) = -\sum_{k=1}^K \hat{p}_k(\mathcal{D}_n) \log \hat{p}_k(\mathcal{D}_n)$$

Pour plus de détails sur l'entropie et ses propriétés caractéristiques, voir Roman (1992), Chapitre 1

Rem:liens étroits entre l'entropie de Shannon et celle de Boltzmann (thermodynamique)

Exercise: entropie et divergence de Kullback-Leibler sont liées par $H_{\mathrm{ent}}(\mathcal{D}_n) = \log(K) - D_{\mathrm{KL}}(\hat{p}(\mathcal{D}_n) \| p_{\mathrm{unif}})$ en définissant pour toutes probabilités $p, p' \in \Delta_K$:

$$D_{\mathrm{KL}}(p||p') = \sum_{k=1}^{K} p_k \log \left(\frac{p_k}{p'_k}\right)$$

Critères de coût (II) : Entropie

Application dans le cas binaire :

$$H_{\text{ent}}(\mathcal{D}_n) = -\hat{p}_1(\mathcal{D}_n)\log\left(\hat{p}_1(\mathcal{D}_n)\right) - (1 - \hat{p}_1(\mathcal{D}_n))\log\left(1 - \hat{p}_1(\mathcal{D}_n)\right)$$

Retour sur un exemple

Exercise: Calculer L_{ent} associée à H_{ent} .

Critères de coût (III) : indice de Gini

Indice de Gini:

$$H_{\text{Gini}}(\mathcal{D}_n) = \sum_{k=1}^{K} \hat{p}_k(\mathcal{D}_n)(1 - \hat{p}_k(\mathcal{D}_n)) = \sum_{k=1}^{K} \sum_{\substack{k'=1\\k' \neq k}}^{K} \hat{p}_k(\mathcal{D}_n)\hat{p}_{k'}(\mathcal{D}_n)$$

Interprétation des deux formulations :

- 1. les variables binaires $X_i^k = \mathbb{1}(Y_i = k)$, pour $i = 1, \ldots, n$; leur variance vaut $p_k(\mathcal{D}_n)(1 p_k(\mathcal{D}_n))$, l'indice de Gini mesure donc la somme/moyenne des variances des classes binarisées
- 2. remplacer le vote majoritaire par la règle "choisir la classe k avec probabilité p_k "; l'indice de Gini est alors la probabilité d'erreur pour cette règle Breiman et al. (1984), p. 104

Critères de coût (III) : indice de Gini

Application dans le cas binaire :

$$H_{\text{Gini}}(\mathcal{D}_n) = 2 \cdot \hat{p}_1(\mathcal{D}_n) \left(1 - \hat{p}_1(\mathcal{D}_n)\right)$$

Retour sur un exemple

Exercise: Calculer L_{Gini} associée à H_{Gini}

Critères d'arrêt

On peut s'arrêter dans une branche dès qu'on atteint :

- ▶ une profondeur maximale
- un nombre maximale de feuilles
- un nombre trop faible d'exemples par nœud

Rem: si le nombre minimal d'exemples vaut un, l'ensemble d'apprentissage est appris jusqu'au bout (dans les limites computationnelles et de mémoire) : risque de **sur-apprentissage**!

Rem: le cas de profondeur minimal un est appelé "souche" (SE: stump)

Variables catégorielles

- Pour avoir un arbre binaire : si une variables catégorielle est à M valeurs/modalités, on la transforme en M variables binaires
- L'algorithme d'apprentissage est approprié pour traiter aussi bien des problèmes binaires que multi-classes
- ► Les classes avec beaucoup de modalités ont tendance à etre favorisées car plus il y a de classes, plus il y a de chance de trouver une bonne coupure

Attention donc au sur-apprentissage!

Arbres de régression

Fonctionnement identique pour la régression, seul le critère de coût change, on minimise :

$$L(t_{j,\tau},\mathcal{D}_n) = \frac{n_g}{n} H(\mathcal{D}_n^g(j,\tau)) + \frac{n_d}{n} H(\mathcal{D}_n^d(j,\tau))$$

avec la variance comme mesure d'impureté

$$H(\mathcal{D}_n) = \overline{\operatorname{var}}(\mathcal{D}_n) := \frac{1}{|\mathcal{D}_n|} \sum_{(\mathbf{x}_i, y_i) \in \mathcal{D}_n} (y_i - \bar{y}_n)^2$$

οù

$$\bar{y}_n = := \frac{1}{|\mathcal{D}_n|} \sum_{(\mathbf{x}_i, y_i) \in \mathcal{D}_n} y_i$$

Rem: on veut maximiser l'homogénéité/pureté des sorties, ce qui revient à trouver la partition minimisant le risque quadratique

Sélection de modèles (I)

- (1) déterminer un des hyper-paramètres suivant par validation croisée
 - Profondeur maximale
 - nombre de feuilles maximal
 - ▶ nombre d'exemples minimal dans une feuille/nœud

Sélection de modèles (II)

(2) par élagage (: pruning)

On utilise un ensemble de validation pour re-visiter un arbre appris sans limite sur un ensemble d'apprentissage. On ne garde que les branches qui apportent une amélioration en validation. Plus de détails dans Hastie et al. (2009)

<u>Rem</u>: utile pour l'interprétation, mais coûteux et inutile si l'on combine plusieurs arbres (*cf.* "forêts aléatoires")

Rem: l'élagage n'est pas disponible dans sklearn (utiliser si besoin rpart de R)

Avantages et inconvénients des arbres de décision

Avantages

- ► Construit une fonction de décision non linéaire, interprétable
- ► Consistance des arbres (*cf.* Scott et Nowak (2006) pour une revue détaillée)
- ► Fonctionne pour le multi-classe
- ightharpoonup Prise de décision efficace : $O(\log F)$, F : nombre de feuilles
- Fonctionne pour des variables continues et catégorielles

Plus sur ce thème :

```
https://brohrer.github.io/how_decision_trees_work.html et le code
```

```
https://github.com/brohrer/brohrer.github.io/blob/master/code/decision_tree.py
```

Avantages et inconvénients des arbres de décision

Inconvénients

► Estimateur à large variance, instabilité : une petite variation dans l'ensemble d'apprentissage engendre un arbre complètement différent → d'où l'intérêt des combinaisons linéaires d'arbres (bagging, forêt, boosting)

Bibliographies

- BREIMAN, L. et al. Classification and regression trees. Wadsworth Statistics/Probability Series. Belmont, CA: Wadsworth Advanced Books et Software, 1984, p. x+358.
- HASTIE, T. J., R. TIBSHIRANI et J. FRIEDMAN. The Elements of Statistical Learning. Second. Springer Series in Statistics. New York: Springer, 2009, p. xxii+745.
- QUINLAN, J. R. "Induction of Decision Trees". In: Maching Learning 1 (1986), p. 81-106.
- ► ROMAN, S. Coding and information theory. T. 134. Graduate Texts in Mathematics. New York: Springer-Verlag, 1992, p. xviii+486.
- SCOTT, C. et R. D. NOWAK. "Minimax-optimal classification with dyadic decision trees". In: *IEEE Trans. Inf. Theory* 52.4 (2006), p. 1335-1353.