Measure and Integration I (MAA5616), Fall 2020 Homework 2, **postponed to** Tuesday, Sep. 15

1. Suppose $x_{\alpha} \geq 0$, $\alpha \in A$, and

$$\sum_{\alpha \in A} x_{\alpha} < +\infty.$$

Prove that at most countably many of x_{α} are strictly positive.

Note: this is the reason we only consider at most countable additivity for measures.

2. A dyadic cube in \mathbb{R}^n is defined as

$$\prod_{l=1}^{n} \left[\frac{a_l}{2^k}, \frac{a_l+1}{2^k} \right), \quad a_l, k \in \mathbb{Z}.$$

Show: the class of unions of disjoint dyadic cubes is closed under differences and finite intersections (an empty union of cubes is the empty set).

Note: another way of phrasing this is to say that dyadic cubes form a semiring.

3. Verify that the collection of countable and co-countable subsets of an uncountable X forms a σ -algebra.

We say that $\mathcal{M} \subset 2^X$ is a monotone class, if it is closed under monotone unions and intersections: for $A_i, B_i \in \mathcal{M}, i \geq 1$, such that $A_1 \subset A_2 \subset \ldots$ and $B_1 \supset B_2 \supset \ldots$,

$$\bigcup_{i>1} A_i \in \mathcal{M}, \qquad \bigcap_{i>1} B_i \in \mathcal{M}.$$

For any family of monotone classes, their intersection is also a monotone class. Since 2^X is trivially a monotone class, for any nonempty $\mathcal{E} \subset 2^X$ there exists a unique minimal monotone class, containing \mathcal{E} . We denote it by $\mathcal{M}(\mathcal{E})$.

4. Let $\mathcal{A} \subset 2^X$ be an algebra of sets. Prove that

$$\mathcal{M}(\mathcal{A}) = \sigma(\mathcal{A}).$$

5. Verify that $(X, 2^X, \mu)$ with

$$\mu(E) = \begin{cases} 0, & \operatorname{card}(E) \leq \operatorname{card} \mathbb{N}, \\ +\infty, & \text{otherwise,} \end{cases}$$

is a measure space (that is, μ is countably additive on the sets from the σ -algebra 2^X).

- **6.** Let (X, \mathcal{A}, μ) be a measure space. Prove
 - if $E, F \in \mathcal{A}$ are such that $\mu(E \triangle F) = 0$, then $\mu(E) = \mu(F)$;
 - if $E \sim F \iff \mu(E \triangle F) = 0$, then \sim is an equivalence relation on \mathcal{A} ;
 - if $\rho(E,F) = \mu(E\triangle F)$, then $\rho(E,F) \le \rho(E,G) + \rho(G,F)$ for any $G \in \mathcal{A}$, and so ρ is a metric on the equivalence classes of \sim .