CS141 – Intermediate Algorithms and Data Structures Assignment 2 – All Pairs Shortest Path

[Tianyou Xu]

Abstract

1 Introduction

- What is the problem that you are solving? Finding the shortest path between different pairs in a given graph with E edges and V vertices.
- What methods are you going to use to solve the problem?

The Bellman-Ford and the Floyd-Warshall.

- Why are these good methods to use?

 These two algorithms can handle negative edges while the Dijkstra's algorithm can't. Also these two algorithms are effective.
- Why are you going to be using both of them?
 Compare and contrast makes thing be acceptable and reliable.

2 Bellman-Ford

- What is the Bellman-Ford algorithm? The BellmanFord algorithm is an algorithm that computes shortest paths from a single source vertex to all of the other vertices in a weighted digraph.
- Why are you using it?

 To find the shortest distance between a given vertex to all other vertices in a graph.

- How did you adapt it to work for all-pairs as opposed to single source?
 Use loop to iterate all vertices in graph and apply Bellman-Ford algorithm.
- What is the run-time of the algorithm before and after your adaptation? Before: O(|V| * |E|). After: $O(|V|^2 * |E|)$

3 Floyd-Warshall

- What is the Floyd-Warshall algorithm? In computer science, the FloydWarshall algorithm is an algorithm for finding shortest paths in a weighted graph with positive or negative edge weights (but with no negative cycles)
- Why are you using it?
 Finding the result and compare the runtime with Bellman-Ford.
- How is it better than the Bellman-Ford algorithm?
 We don't need any adapting for using Floyd-Warshall algorithm.
- What is the run-time of the algorithm? $O(|V|^3)$

4 Results

• Compare and contrast the two algorithms? What makes one more suited for this problem? The Floyd-Warshall algorithm.

	Bellman-Ford		Floyd-Warshall	
Benchmarks	O(.)	Actual	O(.)	Actual
input1.txt	$O(V ^2 * E)$	0.000809	$O(V ^3)$	0.000502
input2.txt	$O(V ^2 * E)$	0.007666	$O(V ^3)$	0.003318

- What are their theoretical run-times (from the previous sections) and how do they compare? $O(|V|^2*|E|)$ versus $O(|V|^3)$
- What are the actual run-times that you computed? Which method is better? Why? The Floyd-Warshall algorithm. It costs less time than the Bellman-Ford algorithm.

5 Conclusions

- What did you find difficult about the assignment?
 - Adapting the Bellman-Ford algorithm.
- What did you learn?
 I learned about how the google map working and how to revise python code.
- What is one real-world problem that you think each of these problems would be good at solving?
 Find all starbucks within a circle with a given radius, or designing map applications like google map.