AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions, and listing, of claims in the application:

Listing of Claims:

- 1-84. (Canceled)
- 85. (Previously presented) A method of radiotherapy comprising the step of treating a host with a compound of the formulae complexed with a radionuclide suitable for radiotherapy:

where at least one R is -(A)_p-R₂ where (A)_p is a linking group and R₂ is a nitro-heterocyclic hypoxia localizing moiety; and wherein the other R groups are the same, or different and are independently selected from hydrogen, halogen, hydroxy, alkyl, alkenyl, alkynyl, alkoxy, aryl, -COOR₃, -(CO)-NHR₃, -NH₂, hydroxyalkyl, alkoxyalkyl, hydroxyaryl, haloalkyl, arylalkyl, -alkyl-COOR₃, -alkyl-CON(R₃)₂, -alkyl-N(R₃)₂, -aryl-COOR₃, -aryl-CON(R₃)₂, -aryl-N(R₃)₂, 5-or 6-membered nitrogen- or oxygen-containing heterocycle; or two R groups taken together with the one or more atoms to which they are attached form a carbocyclic or heterocyclic, saturated or unsaturated spiro or fused ring which may be substituted with R groups;

 R_1 is hydrogen, a thiol protecting group or $-(A)_p-R_2$;

R₃ is hydrogen, alkyl or aryl;

m = 2 to 5;

p = 0 to 20.

86. (Currently amended) The method of claim 85, wherein said compound is

or
$$R_{2}^{-(A)} p$$

$$R_{NH}$$

$$R_{NH}$$