CBSE MATH

Made Simple

G. V. V. Sharma

Copyright ©2023 by G. V. V. Sharma.

 ${\rm https://creative commons.org/licenses/by-sa/3.0/}$

and

 $\rm https://www.gnu.org/licenses/fdl-1.3.en.html$

Contents

Introduction

This book links high school coordinate geometry to linear algebra and matrix analysis through solved problems. $\,$

Chapter 1

Intersection of Conics

1.1. Chords

1. Using integration, find the area of the region enclosed by the curve $y=x^2$, the x-axis and the ordinates x=-2 and x=1.

\mathbf{OR}

- 2. Using integration, find the area of the region enclosed by line $y = \sqrt{3}x$ semi-circle $y = \sqrt{4-x^2}$ and x-axis in first quadrant.
- 3. (a) Using integration, find the area of the smaller region enclosed by the curve $4x^2 + 4y^2 = 9$ and the line 2x + 2y = 3.

\mathbf{OR}

- (b) If the area of the regin bounded by the curve $y^2 = 4ax$ and the line x = 4a is $\frac{256}{3}$ sq. units, then using integration, find the value of a, where a > 0.
- 4. Find the area of the region enclosed by the curves $y^2 = x$, $x = \frac{1}{4}$, y = 0 and x = 1, using integration.

- 5. If the area of the region bounded by the line y=mx and the curve $x^2=y$ is $\frac{32}{3}$ sq. units, then find the positive value of m, using integration.
- 6. (a) Find the area bounded by the ellipse $x^2 + 4y^2 = 16$ and the ordinates x = 0 and x = 2, using integration.

OR

- (b) Find the area of the region $\{(x,y): x^2 \leq y \leq x\}$, using integration.
- 7. If the area between the curves $x = y^2$ and x = 4 is divided into two equal parts by the line x = a, then find the value of a, using integration.

1.2. Curves

Chapter 2

Tangent And Normal

1. Find the equation of tangent to the curve $y = x^2 + 4x + 1$ at the point (3, 22).

2.1. Construction

Chapter 3

Linear Forms

3.1. Equation of a Line

- 1. Solve the equations x + 2y = 6 and 2x 5y = 12 graphically.
- 2. Solve the following equations for x and y using cross-multiplication method:

$$(ax - by) + (a+4b) = 0$$

$$(bx + ay) + (b - 4a) = 0$$

- 3. Find the co-ordinates of the point where the line $\frac{x-3}{-1} = \frac{y+4}{1} = \frac{z+5}{6}$ crosses the plane passing through the points $\left(\frac{7}{2},0,0\right), (0,7,0), (0,0,7)$.
- 4. Electrical transmission wires which are laid down in winters are stretched tightly to accommodate expansion in summers.

Two such wires lie along the following lines:

$$l_1: \frac{x+1}{3} = \frac{y-3}{-2} = \frac{z+2}{-1}$$

$$l_2: \frac{x}{-1} = \frac{y-7}{3} = \frac{z+7}{-2}$$

Based on the given information, answer the following questions:

- Are the lines l_1 and l_2 coplanar? Justify your answer.
- Find the point of intersection of lines l_1 and l_2 .
- 5. Write the cartesian equation of the line PQ passing through points P(2,2,1) and Q(5,1,-2). Hence, find the y-coordinate of the point on the line PQ whose z-coordinate is -2.
- 6. Find the distance between the lines $x = \frac{y-1}{2} = \frac{z-2}{3}$ and $x+1 = \frac{y+2}{2} = \frac{z-1}{3}$.
- 7. Find the shortest distance between the following lines:

$$\overrightarrow{\mathbf{r}} = 3\hat{i} + 5\hat{j} + 7\hat{k} + \lambda(\hat{i} - 2\hat{j} + \hat{k}) \text{ and } \overrightarrow{\mathbf{r}} = (-\hat{i} - \hat{j} - \hat{k}) + \mu(7\hat{i} - 6\hat{j} = \hat{k}).$$

8. Two motorcycles A and B are running at a speed more than the allowed speed on the roads represented by the lines $\overrightarrow{\mathbf{r}} = \lambda(\hat{i} + 2\hat{j} - \hat{k})$ and $\overrightarrow{\mathbf{r}} = (3\hat{i} + 3\hat{j}) + \mu(2\hat{i} + \hat{j} + \hat{k})$ respectively.

Based on the following information, answer the following questions:

- Find the shortest distance between the given lines.
- Find a point at which the motorcycles may collide.
- 9. Find the shortest distance between the lines

$$\overrightarrow{\mathbf{r}} = (\lambda + 1)\hat{i} + (\lambda + 4)\hat{j} - (\lambda - 3)\hat{k}$$
, and

$$\vec{\mathbf{r}} = (3 - \mu)\hat{i} + (2\mu + 2)\hat{j} + (\mu + 6)\hat{k}$$

10. Find the shortest distance between the following lines and hence write whether the lines are intersecting or not.

$$\frac{x-1}{2} = \frac{y+1}{3} = z, \frac{x+1}{5} = \frac{y-2}{1}, z = 2$$

3.2. Perpendicular

- 1. If the distance of the point (1,1,1) from the plane $x-y+z+\lambda=0$ is $\frac{5}{\sqrt{3}}$, find the value(s) of λ .
- 2. Find the distance of the point (2,3,4) measured along the line $\frac{x-4}{3} = \frac{y+5}{6} = \frac{z+1}{2}$ from the plane 3x+2y+2z+5=0.
- 3. Find the distance of the point P(4,3,2) from the plane determined by the points A(-1,6,-5), B(-5,-2,3) and C(2,4,-5).
- 4. The distance of the line $\overrightarrow{\mathbf{r}} = (\hat{i} \hat{j}) + \lambda(\hat{i} + 5\hat{j} + \hat{k})$ from the plane $\overrightarrow{\mathbf{r}} \cdot (\hat{i} \hat{j} + 4\hat{k}) = 5$ is
 - $\sqrt{2}$
 - $\bullet \ \frac{1}{\sqrt{2}}$
 - $\bullet \ \frac{1}{3\sqrt{2}}$
 - $\bullet \ \frac{-2}{3\sqrt{2}}$

5. Find a unit vector perpendicular to each of the vectors $(\overrightarrow{a} + \overrightarrow{b})$ and $(\overrightarrow{a} - \overrightarrow{b})$ where $\overrightarrow{a} = \hat{i} + \hat{j} + \hat{k}$, $\overrightarrow{b} = \hat{i} + 2\hat{j} + 3\hat{k}$.

3.3. Plane

- 1. Find the equation of the plane passing through the points (2,1,0),(3,-2,-2)and (1,1,7). Also, obtain its distance from the origin.
- 2. The foot of a perpendicular drawn from the point (-2, -1, -3) on a plane is (1, -3, 3). Find the equation of the plane.
- 3. Find the cartesian and the vector equation of a plane which passes through the point (3,2,0) and contains the line $\frac{x-3}{1} = \frac{y-6}{5} =$
- 4. The distance between the planes 4x-4y+2z+5=0 and 2x-2y+z+6=00 is

 - $\begin{array}{c}
 \frac{1}{6} \\
 \frac{7}{6} \\
 \frac{11}{6}
 \end{array}$
- 5. Find the equation of the plane through the line of intersection of the

planes $\overrightarrow{\mathbf{r}} \cdot (\hat{i} + 3\hat{j}) + 6 = 0$ and $\overrightarrow{\mathbf{r}} \cdot (3\hat{i} - \hat{j} - 4\hat{k}) = 0$, which is at a unit distance from the origin.

3.4. Miscellaneous

1. Find the distance of the point (1, -2, 9) from the point of intersection of the line

$$\overrightarrow{\mathbf{r}} = 4\hat{i} + 2\hat{j} + 7\hat{k} + \lambda(3\hat{i} - +4\hat{j} + 2\hat{k}) \text{ and the plane } \overrightarrow{\mathbf{r}} \cdot (\hat{i} - \hat{j} + \hat{k}) = 10.$$

- 2. Find the area bounded by the curves y=|x-1| and y=1, using integration.
- 3. Find the coordinates of the point where the line through (4, -3, -4) and (3, -2, 2) crosses the plane 2x + y + z = 6.
- 4. Fit a straight line trend by the method of least squares and find the trend value for the year 2008 for the following data:

Year	Production	
	(in lakh tonnes)	
2001	30	
2002	35	
2003	36	
2004	32	
2005	37	
2006	40	
2007	36	