Lista 7

Contents

Problem 1	1
Problem 2	3
Problem 4	4
Problem 5	6

Problem 1

- (a) Let $\alpha \in \Omega^1(N)$ be a contact form. Consider $N \times \mathbb{R}$ equipped with the 2-form $d(e^t\alpha)$ (where t is the coordinate on \mathbb{R}). Verify that this 2-form is symplectic, and conclude that any (N,α) can be viewed as a hypersurface of contact type of a symplectic manifold.
- (b) On the other hand: Let (M, ω) be symplectic and $\iota : S \hookrightarrow M$ a hypersurface of contact, with contact form α . Suppose that S is compact. Show that there is a neighbourhood U of S in M that is symplectomorphic to a neighbourhood of S in its symplectization, $(S \times (-\varepsilon, \varepsilon), d(e^t \alpha))$, for an $\varepsilon > 0$.
- (c) Let $\xi \in \Omega^1(N)$ be a contact form on N and D = ker $\xi \subset$ TN. Let L \subset N be a submanifold such that TL \subset D|L.
 - (1) Check that T_xL is an isotropic subspace of the symplectic vector space $(D_x, d\xi|_x)$ for all $x \in L$, so dim $L \leqslant \frac{1}{2\text{rk}(D)}$. In case of equality, we call L *legendrian*.
 - (2) Very that L is legendrian iff $L \times \mathbb{R}$ is a lagrangian submanifold of the symplectization $N \times \mathbb{R}$.

Solution.

(a) By Lista 1, exercise 1, it's enough to show that $\left(d(e^t\alpha)\right)^n\neq 0.$ Since

$$d(e^t\alpha)=e^t(dt\wedge\alpha+d\alpha),$$

it's enough to show that $(dt \wedge \alpha + d\alpha)^n \neq 0$. Since the wedge product of 2-forms commutes, we may apply binomial theorem to get

$$\left((dt \wedge \alpha) + d\alpha\right)^n = \sum_{i=0}^n \binom{n}{i} (dt \wedge \alpha)^{n-i} \wedge (d\alpha)^i.$$

(With a little help from StackExchange.) When i = n - 1 we find the term $n(dt \wedge \alpha) \wedge (d\alpha)^{n-1}$, which must be nowhere vanishing since so is dt and α is a contact form. Further, when i = n we have $(d\alpha)^n$, which vanishes since α is a form on the (n-1)-dimensional manifold M. Likeways, $(dt \wedge \alpha)^2$ vanishes since $(dt)^2$ vanishes on \mathbb{R} . We conclude that the only term that survives is when i = n - 1.

To see that $N \subset N \times \mathbb{R}$ is a hypersurface of contact type consider the inclusion $i: N \hookrightarrow N \times \mathbb{R}$, $x \mapsto (x,0)$. Then

$$i^*d(e^t\alpha) = di^*(e^t\alpha) = d\alpha$$

since for any point $x \in N$ and vector $v \in T_x N$ we see that

$$i^*(e^t\alpha)_x(\nu)=(e^t\alpha)_{i(x)}(i_*\nu)=(e^t\alpha)_{(x,0)}(\nu)=\alpha(\nu).$$

(b) O teorema da vizinhança tubular nos diz que existe uma vizinhança U de S em M e um difeomorfismo $\psi: U \to S \times (-\varepsilon, \varepsilon)$ tal que $f|_S = id$. Como o campo vetorial conformemente simplético X é transversal a S, podemos supor que em coordenadas locais de $S \times (-\varepsilon, \varepsilon)$, $X = \frac{\partial}{\partial t}$.

Seguindo o hint (e a prova em Bursztyn and Macarini, thm. 5.2.1), seja Y o campo de Reeb de S e defina $W_1 = \ker \alpha$ e $W_2 = \operatorname{span}(X,Y)$. Para ver que W_1 e W_2 são ω -ortogonais pegue $V \in \ker \alpha$. Por um lado, $\omega = d\alpha$ por ser S uma hiperfície, e como Y é o campo de Reeb, $\omega(Y,V) = 0$. Por outro lado, $\iota^*(i_X\omega) = \alpha$, de modo que $\omega(X,V) = 0$.

Para confirmar que também são $\psi^*(de^t\alpha)$ -ortogonais, note que

$$\psi^*(de^t\alpha) = e^t\psi^*dt \wedge \alpha + d\alpha$$

já que $\psi^*\alpha=\alpha$. Daí, como no parágrafo anterior, $d\alpha(Y,V)=0$ por ser Y de Reeb, e

$$\alpha \wedge \psi^* dt(Y, V) = \alpha(V)^{-0} \psi^* dt(Y) - \alpha(Y)^{-1} \psi^* dt(V) = 0$$
 (1)

já que V e tangente a S.

Para o caso de X, como antes, $d\alpha(X, V) = 0$ e temos

$$\alpha \wedge \psi^* dt(X, V) = \alpha(V)^{\bullet 0} \psi^*(X) - \alpha(X)^{\bullet 0} \psi^* dt(V) = 0$$
 (2)

de novo porque $\alpha = \iota^*(i_X \omega)$ e ω é simplética.

Para concluir queremos ver que $\psi^*d(e^t\alpha)=\omega$. O teorema de Darboux-Weinstein nos da exatamente esse resultado (possivelmente numa vizinhança mais pequena que U) se mostramos que $\psi^*d(e^t\alpha)|_x=\omega|_x$ em todo ponto $x\in S$. Lembre que, em pontos de S,

$$\psi^* d(e^t \alpha) = \psi^* dt \wedge \alpha + d\alpha$$

Basta comprovar o resultado em W_1 e W_2 . Para W_1 é claro já que $W_1 = \ker \alpha$ e $d\alpha = \omega$ em S. Para W_2 note que o fator $\psi^*dt \wedge \alpha$ se anula em pares de campos vetoriais se um deles é X ou Y; isso segue das eqs. (1) and (2).

(c) (1) (Com ajuda de ChatGPT) A observação chave é que como $TL \subset D = \ker \xi$, quando escrevemos d ξ na fórmula sem coordenadas obtemos

$$d\xi(X,Y) = X(\xi(Y)) - Y(\xi(X)) - \xi([X,Y]) = 0 \qquad \forall X,Y \in \mathfrak{X}(L)$$

já que $[X, Y] \in \mathfrak{X}(L)$ por ser L uma subvariedade.

(2) Suponha que L é legendriana. Primeiro note que $\dim(L \times \mathbb{R}) = \frac{1}{2}\dim(N \times \mathbb{R})$: como D é de codimensão 1,

$$\text{dim}(L\times\mathbb{R})=\text{dim}\,L+1=\frac{1}{2}\,\text{rk}\,D+1=\frac{1}{2}(\text{dim}\,N-1)+1=\frac{1}{2}\,\text{dim}(N\times\mathbb{R}).$$

Além disso, por (1) sabemos que L é isotrópica.

Supondo que $L \times \mathbb{R}$ é uma subvariedade lagrangiana de $N \times \mathbb{R}$, por uma conta análoga sabemos que dim $L = \frac{1}{2} \operatorname{rk}(D)$. Para ver que $T_x L$ é um subespaço isotrópico de $T_x N$ devemos usar que $T_{(x,t)}(L \times \mathbb{R})$ é um subespaço lagrangiano de $T_{(x,t)}(N \times \mathbb{R})$; isso significa que a forma simplética $d(e^t \xi) = e^t (dt \wedge \xi + d\xi)$ se anula em $T_{(x,t)}(L \times \mathbb{R})$. Mediante o mergulho $\iota : L \hookrightarrow L \times \mathbb{R}$, $\iota(x) = (x,0)$, obtemos que $d\xi|_{TxL} = 0$.

Problem 2 Show the Darboux theorem for contact manifolds: Given contact manifold (N^{2n-1},α) , around any point there exist local coordinates $q^1,\ldots,q^{n-1},p_1,\ldots,p_{n-1},z$ such that $\alpha=\sum_i q^i dp_i+dz$.

Ideia de prova. Em Arnold, Vogtmann, and Weinstein, apéndice 4, temos uma prova deste teorema usando simplectificação. Porém, Arnold define a simplectifiação de uma variedade de contato como o conjunto de das formas de contato na variedade. (As formas de contacto são todas proporcionais, de forma que esse conjunto é um fibrado linear.) A forma simplética é a diferencial da "forma tautológica" definida neste fibrado—a definição dessa forma é idéntica à da forma tatutológica no fibrado cotangente:

$$\alpha_{(x,\xi)} = (d\pi_{(p,\xi)})^* \xi,$$

para $(x, \xi) \in T^*N$ com ξ de contato, i.e. d ξ é simplética em ker ξ .

Para mostrar o teorema de Darboux para variedades de contato, pegue um ponto na variedade de contato N e um ponto na fibra dele na simplectização. Alí usamos o teorema de Darboux para expressar a forma simplética da simplectização como

$$d\alpha = dp_0 \wedge dq_0 + ... + dp_n \wedge dq_n$$
.

Mas ainda, podemos pegar essas coordenadas tais que a hiperfície $p_0 = 0$ é a variedade de contato. (Faltou checar.)

Como a diferencial da forma $\sum_{i=0}^{n} p_i dq_i$ é $d\alpha$, segue que

$$\alpha = p_0 dq_0 + \ldots + p_n dq_n + dw$$

para alguma função w. Daí, a restrição a N é

$$\alpha|_{N} = p_1 dq_1 + \ldots + p_n dq_n + dw.$$

Para concluir devemos ver que $\alpha|_N$ é uma forma de contato, i.e., que a diferencial dela $d\alpha|_N$ é simplética em ker $\alpha|_N$. Porém, não consegui descrever ker $\alpha|_N$ tomando em conta o sumando dw.

Problem 4 The *manifold of contact elements* of an n-dimensional manifold X is $C = \{(x, \chi_x) : x \in X \text{ and } \chi_x \text{ is a hyperplane in } T_x X\}$. On the other hand, the projectivization of the cotangent bundle of X is $\mathbb{P}^*X = (T^*X \setminus \text{zero section}) / \sim$, where $(x, \xi) \sim (x, \xi')$ whenever $\xi = \lambda \xi'$ for some $\lambda \in \mathbb{R} \setminus \{0\}$.

- (a) Show that C is naturally isomorphic to \mathbb{P}^*X as a bundle over X.
- (b) There is on \mathcal{C} a canonical field of hyperplanes \mathcal{H} : \mathcal{H} at the point $\mathfrak{p}=(x,\chi_x)\in\mathcal{C}$ is the hyperplane $\mathcal{H}_\mathfrak{p}=(d\pi_\mathfrak{p})^{-1}\chi)_x$, where $\pi:\mathcal{C}\to X$ is the projection. Therefore, by item (a), \mathcal{H} induces a field of hyperplanes \mathbb{H} on \mathbb{P}^*X . Describe \mathcal{H} .
- (c) Check that $(\mathbb{P}^*X, \mathbb{H})$ is a contact manifold, and therefore $(\mathcal{C}, \mathcal{H})$ is a contact maifold.
- (d) What is the symplectization of *C*?

Solution.

(a) Consultando Silva e Arnold, Vogtmann, and Weinstein confirmei que os hiperplanos χ_x passam pela origem, i.e. são subespaços lineares. Segue do teorema da dimensão que o kernel de uma 1-forma é um subespaço de codimensão 1, i.e. um hiperplano, e de fato esse hiperplano é invariante quando multiplicamos a forma por um escalar não zero. Isso garante que a seguinte correspondência está bem definida em cada ponto x ∈ X:

$$(\mathbb{P}^*X)_{x} \longrightarrow \mathcal{C}_{x}$$
$$[\xi_{x}] \longmapsto \ker \xi_{x}$$

Para ver injectividade, suponha que $\xi_x, \xi_x' \in T_x^*M$ tem o mesmo kernel em algum ponto $x \in X$. Queremos ver que $\xi_x'(v) = \lambda \xi_x(v)$ para todo $v \in V \setminus \ker \xi_x$. Fixe um v fora do kernel e defina $\lambda = \xi_x'(v)/\xi_x(v)$. Como o kernel e de codimensão 1, todo vetor $w \in V \setminus \ker \xi$ é da forma $w = \mu v$. Daí $\xi_x'(w) = \xi_x'(\mu v) = \lambda \xi_x(\mu v) = \lambda \xi_x(w)$.

A surjetividade segue de que os espaços $(\mathbb{P}^*X)_x$ e \mathcal{C}_x tem a mesma dimensão: $\dim X-1$. Isso é claro no caso de \mathbb{P}^*X . Para \mathcal{C} também es simples já que podemos identificar cada hiperplano em \mathcal{C}_x com a reta normal a ele respeito a produto ponto usual, o que nos diz que de fato $\dim \mathcal{C}_x = \dim \mathbb{RP}^{\dim X} = \dim X - 1$.

(b) Denotando por φ o isomorfismo do item anterior, temos o seguintes dados:

$$\begin{array}{cccc} \mathcal{C}_x & \xrightarrow{\phi} (\mathbb{P}^*X)_x & & & T_{(x,\chi_x)}\mathcal{C} & \xrightarrow{d\phi} T_{(x,[\xi])}\mathbb{P}^*X \\ (x,\chi_x) & \longmapsto [\xi], & \text{ker } \xi = \chi_x & & \mathcal{H}_{(x,\chi_x)} & & ? \end{array}$$

Onde

$$\mathcal{H}_{(x,\chi_x)} = (d\pi_{(x,\chi_x)})^{-1}\chi_x.$$

O hint em Silva é considerar o pullback de ξ baixo π_0 , que é uma 1-forma em \mathbb{P}^*X , cujo kernel é um hiperplano de $\mathsf{T}_{(x,[\xi])}\mathbb{P}^*X$. Só queda comprovar que de fato esse hiperplano é $\mathsf{d}\phi(\mathcal{H}_{(x,\chi_x)})$.

dφ manda um vetor tangente v ∈ TC em um vetor tangente dφ := $w ∈ TP^*M$. Como dπv está no kernel de ξ , segue que dπ $_0w$ também. (Isso segue de que tanto φ quanto as projeções π , π_0 não alteram as primeiras n coordenadas.) Concluimos que os vetores em dπ ($\mathcal{H}_{(x,\chi_x)}$) são aqueles que se anulam baixo $\xi ∘ d\pi_0 = (d\pi_0)^*\xi$.

Agora note que o pullback de ξ baixo π_0 é a forma tautológica α do fibrado cotangente em $(x, [\xi])$. Lembre a expressão em coordenadas locais de α no fibrado cotangente sem projetivizar:

$$\alpha = \sum \xi_i dx_i \tag{3}$$

onde $(x_1,\ldots,x_n,\xi_1,\ldots,\xi_n)$ são coordenadas do espaço cotangente perto de (x,ξ) . Segue que os vetores no kernel de α são os vetores *verticais*: aqueles que não tem coordenadas ∂_{x_i} . O hiperplano $\mathbb{H}_{(x,[\xi])}$ é a projetivização desse espaço de vetores verticais.

(c) Mostrar que (\mathbb{P}^*X , \mathbb{H}) é de contato significa achar uma 1-forma α em \mathbb{P}^*X tal que ker $\alpha = \mathbb{H}$ e d α é simplética em \mathbb{H} . De fato, a escolha de α é exatamente a forma tautológica em eq. (3).

O detalhe aqui é que a definição de estrutura de contato em Silva é um campo de hiperplanos definidos *localmente* como o kernel de uma 1-forma cuja derivada exterior é simplética no hiperplano. Já sabemos que $\ker \alpha_{(x,[\xi])} = \mathbb{H}_{(x,[\xi])}$. Para ver que d α é simplética em $\mathbb{H}_{(x,[\xi])}$ considere um sistema de coordenadas locais $(x_1,\ldots,x_n,[\xi_1,\ldots,\xi_n])$ em \mathbb{P}^*X . Mas ainda, fixe coordenadas afins $\xi_1=1$. Nessas coordenadas, a forma tautológica na eq. (3) tem a forma

$$\alpha = dx_1 + \sum_{i=2}^{n} \xi_i dx_i. \tag{4}$$

Segue que

$$d\alpha = \sum_{i=2}^{n} d\xi_i \wedge dx_i,$$

que é simplética.

(d) (Ideia) A simplectização de $\mathcal C$ é o fibrado cotangente. A forma simpléica na simplectização de $\mathcal C$ é

$$d(e^t \alpha) = e^t (dt \wedge \alpha + d\alpha).$$

Sustituindo eq. (4) obtemos que

$$d(e^t\alpha) = e^t \bigg(dt \, \wedge \, dx_1 + \sum_{i \geqslant 2} \xi_i dt \, \wedge \, x_i \, + \sum_{i \geqslant 2} d\xi_i \, \wedge \, dx_i \bigg)$$

Daí eu queria chegar à forma simplética canônica no espaço cotangente...

Problem 5 Let (M, α) be a contact manifold with contact structure $\xi = \ker \alpha$. A *contact vector field* X on M is a vector field whose (linearized) flow preserves ξ .

- (a) Let R_{α} be the Reeb vector field of α . Prove that R_{α} is a contact vector field.
- (b) Suppose that X is a contact vector field transverse to ξ . Show that it can be written as a Reeb vector field for some 1-form α_X defining the contact structure ξ .

Solution.

(a) Pela fórmula de Cartan e as propriedades que definem R_{α} , é imediato que

$$\mathcal{L}_{R_{\alpha}}\alpha = di_{R_{\alpha}}\alpha + i_{R_{\alpha}}d\alpha = 0.$$

Segue que, se ϕ_t é o fluxo de R_{α} ,

$$\nu \in \text{ker}\,\alpha \iff 0 = \alpha(\nu) = \phi_t^*\alpha(\nu) = \alpha(d\phi_t(\nu)) \iff d\phi_t\nu \in \text{ker}\,\alpha$$

References

Arnold, V.I., K. Vogtmann, and A. Weinstein. *Mathematical Methods of Classical Mechanics*. Graduate Texts in Mathematics. Springer New York, 2013. ISBN: 9781475716931.

Bursztyn, H. and L. Macarini. *Introdução a Geomeria Simplética*. 2006. URL: https://w3.impa.br/~henrique/papers/EGD2806.pdf.

Silva, A.C. da. *Lectures on Symplectic Geometry*. Lecture Notes in Mathematics no. 1764. Springer, 2001. ISBN: 9783540421955.