МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО» (Университет ИТМО)

Факультет систем управления и робототехники

Отчет по лабораторной работе №4 по дисциплине «Адаптивное и робастное управление»

по теме:

«СИНТЕЗ АДАПТИВНОГО НАБЛЮДАТЕЛЯ СОСТОЯНИЯ ЛИНЕЙНОГО ОБЪЕКТА»

Вариант №13

Студенты:

Нгуен Тоан

Буй Динь Кхай Нгуен

Хюинь Тан Куонг

Научный руководитель:

Козачёк Ольга Андреевна

ИТМО

Санкт-Петербург – 2024

Содержание

Глава 1. Введение	2
1.1. Цель работы	2
1.2. Методические рекомендации.	2
1.3. Теоретические сведения	2
Глава 2. Порядок выполнения работы	4
2.1. Моделирование адаптивного наблюдателя состояния многомерного	объекта
при $u(t)=10\sin(t)$	4
2.2. Построение эксперимента при $u(t) = 10\sin(t) + 5\cos(2t) + 4\cos(2t)$	$\cos(4t) +$
$3\cos(8t)$	6
Выводы	8
Список рисунков	9
Список таблиц	10

Глава 1. Введение

Работа №6. Синтез адаптивного наблюдателя состояния многомерного объекта.

1.1. Цель работы

Освоение принципов построения адаптивной системы управления многомерным объектом.

1.2. Методические рекомендации.

До начала работы студенты должны ознакомиться с принципом параметризованного представления вектора состояния линейного объекта (см. Работу №5) и с построением алгоритмов адаптации на основе стандартных моделей ошибок [2, 13, 16, 20].

1.3. Теоретические сведения

Дан асимптотически устойчивый объект управления:

$$\begin{cases} \dot{x} = Ax + bu, & x(0) \\ y = Cx \end{cases}$$

где x — недоступный прямому измерению вектор состояния объекта, y — вектор выхода объекта, u — вектор управляющего воздействия, A — матрица системы, b — матрица управления, C — матрица выхода.

$$A = \begin{bmatrix} -a_{n-1} & 1 & \cdots & 0 \\ -a_{n-2} & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & 1 \\ -a_0 & 0 & \cdots & 0 \end{bmatrix}, \quad b = \begin{bmatrix} 0 \\ \vdots \\ 0 \\ b_m \\ \vdots \\ b_0 \end{bmatrix}, \quad C = \begin{bmatrix} 1 & 0 & \cdots & 0 \end{bmatrix}$$

 $a_i, i = \overline{0, n-1}, b_j, j = \overline{m, 0}$ неизвестные коэффициенты модели.

Рассматриваемая задача состоит в построении оценки вектора состояния \hat{x} такой, что:

$$\lim_{t \to \infty} (x(t) - \hat{x}(t)) = 0$$

Нам надо знать некоторые формы:

$$\theta = \begin{bmatrix} k_0 - b_0 \\ k_1 - b_1 \\ \vdots \\ k_{n-1} - a_{n-1} \\ b_0 \\ b_1 \\ \vdots \\ b_m \end{bmatrix}, \quad \omega = \begin{bmatrix} \frac{1}{K(s)}[y] \\ \frac{s}{K(s)}[y] \\ \vdots \\ \frac{s^{n-1}}{K(s)}[y] \\ \frac{s}{K(s)}[u] \\ \vdots \\ \frac{s^m}{K(s)}[u] \end{bmatrix}$$

Решение задачи. Для решения задачи используется параметризованное представление выходной переменной:

$$\hat{y} = \hat{\theta}^T \omega$$

 \hat{y} — – оценка переменной y. Введем в рассмотрение ошибку идентификации:

$$e = y - \hat{y} = \tilde{\theta}^T \omega, \quad \tilde{\theta} = \theta - \hat{\theta}$$

Алгоритм адаптации:

$$\dot{\hat{\theta}} = \gamma \omega \varepsilon$$

Оценка вектора состояния:

$$\hat{x} = \sum_{i=0}^{n-1} \left(sI - A_0 \right)^{-1} e_{n-i}[y] + \sum_{j=0}^{m} \hat{\theta}_{j+1+n} (sI - A_0)^{-1} e_{n-j}[u]$$

Глава 2. Порядок выполнения работы

2.1. Моделирование адаптивного наблюдателя состояния многомерного объекта при $u(t) = 10 \sin(t)$

Наш Вариант 13

Таблица 2.1 – Коэффициенты передаточной функции объекта и фильтра

Коэффициенты передаточной функции			Коэффициенты фильтра		
объекта $(n=2)$		4P			
a_1	a_0	b_1	b_0	k_1	k_0
3	3	2	7	1.6	0.64

Путем многократных экспериментов в Simulink, мы выбрали $\gamma=0.5$

Рисунок 2.1 — Схема моделирования адаптивного наблюдателя состояния многомерного объекта

построение двух графиков моделирования. На первом отобразить переменные состояния норму разности $\parallel x(t) - \hat{x}(t) \parallel$. На втором графике — параметрические ошибки $\tilde{\theta}$

Рисунок 2.2 – График нормы разности $\|x(t) - \hat{x}(t)\|$

Рисунок 2.3 – График параметрических ошибок $\tilde{\theta}$

2.2. Построение эксперимента при $u(t) = 10\sin(t) + 5\cos(2t) + 4\cos(4t) + 3\cos(8t)$

Путем многократных экспериментов в Simulink, мы выбрали $\gamma=0.5$

Построение двух графиков моделирования. На первом отобразить переменные состояния норму разности $\| \ x(t) - \hat x(t) \ \|$. На втором графике — параметрические ошибки $\tilde \theta$

Рисунок 2.4 – График нормы разности $\|x(t) - \hat{x}(t)\|$

Рисунок 2.5 – График параметрических ошибок $\tilde{\theta}$

Выводы

Для задачи 1 целевая функция $\|x(t) - \hat{x}(t)\|$ и ошибка $\tilde{\theta}$ остаются стабильными, однако не сходятся к нулю. В задаче 2, несмотря на более сложный входной сигнал, целевая функция $\|x(t) - \hat{x}(t)\|$ и ошибка $\tilde{\theta}$ также остаются стабильными, но не сходятся к нулю, как ожидалось. В ходе экспериментов были получены следующие выводы:

- Чем более хаотична функция входного сигнала, тем лучше адаптивный алгоритм способствует экспоненциальной сходимости наблюдателя к нулю.
- Чем больше значение параметра γ , тем больше величина состояния, что может привести к невозможности выполнения расчетов в Simulink из-за стремления значений к бесконечности. С другой стороны, слишком малое значение γ может препятствовать сходимости системы к нулю.

Эти результаты показывают важность тщательной настройки коэффициента адаптации γ и формы входного сигнала для достижения желаемой сходимости.

Список рисунков

Рисунок	2.1:	Схема	моделирования	адаптивного	наблюдателя	состояния
многомер	ного с	объекта				4
Рисунок 2	2.2: Гр	афик нор	омы разности $\ x(t)\ $	$\hat{x}(t) = \hat{x}(t) \ \dots$		5
Рисунок 2	2.3: Гр	афик пар	раметрических ош	ибок $ ilde{ heta}$	•••••	5
Рисунок 2	2.4: Гр	афик нор	омы разности $\ x(t)\ $	$\hat{x}(t) = \hat{x}(t) \ \dots$		6
Рисунок 2	2.5: Гр	афик пар	раметрических ош	ибок $ ilde{ heta}$		7

Список таблиц

Таблица 2.1: Коэффициенты передаточной функции объекта и фильтра	4
--	---