ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«САНКТ-ПЕТЕРБУРГСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ПЕТРА ВЕЛИКОГО»

Физико-механический институт, Высшая школа теоретической механики и математической физики

(наименование учебного подразделения)

Отчет о прохождении учебной (научно-исследовательская работа) практики

(вид и тип практики)

Качевская Ольга Андреевна

(Ф.И.О. обучающегося)

2 курс бакалавриата группа 5030103/00001

(номер курса обучения и учебной группы)

01.03.03 Механика и математическое моделирование, 01.03.03_01 Механика и математическое моделирование сред с микроструктурой

(Направление подготовки (код и наименование)

Место прохождения практики: СПбПУ, ВШТМиМФ, ФизМех

(указывается наименование профильной организации или наименование структурного подразделения

ФГАОУ ВО «СПбПУ», фактический адрес)

Сроки практики: с 22.06.2022 по 05.07.2022

Руководитель практики от ФГАОУ ВО «СПбПУ»: Уманский Александр Олегович,

ассистент ВШТМиМФ, ФизМех

(Ф.И.О., уч.степень, должность)

Руководитель практики от профильной организации:		
	(Ф.И.О., должность)	
Оценка:		
Руководитель практики		
от ФГАОУ ВО «СПбПУ»:	/Уманский А.О./	
Руководитель практики		
от профильной организации:	/Ф.И.О./	
Обучающийся:	/Качевская О.А./	
Дата:		

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«САНКТ-ПЕТЕРБУРГСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ПЕТРА ВЕЛИКОГО»

Физико-механический институт, Высшая школа теоретической механики и математической физики

(наименование учебного подразделения)

ИНДИВИДУАЛЬНЫЙ ПЛАН (ЗАДАНИЕ И ГРАФИК) ПРОВЕДЕНИЯ ПРАКТИКИ

Ф.И.О. обучающегося Качевская Ольга Андреевна

Направление подготовки (код/наименование) 01.03.03 Механика и математическое моделирование
Профиль (код/наименование) 01.03.03_01 Механика и математическое моделирование сред с микроструктурой
Вид практики учебная
Тип практики научно-исследовательская работа
Место прохождения практики СПбПУ, Высшая школа теоретической механики и математической физики, ФизМех

Руководитель практики от ФГАОУ ВО «СПбПУ»: Уманский Александр Олегович,

ассистент ВШТМиМФ, ФизМех

ГФ.И.О., уч. степень, должность)

Руководитель практики от профильной организации:

(Ф.И.О., должность)

Рабочий график проведения практики

Сроки практики: с 22.06.2022 по 05.07.2022

№ п/п	Этапы (периоды) практики	Вид работ	Сроки прохождения этапа (периода) практики
1	Организационный этап	Введение в теорию КЭ, постановка целей и задач, инструктаж по технике безопасности, выдача сопроводительных документов по практике	22.06.2022
2	Основной этап	Получение экспериментальных данных и построение моделей изгиба балки и колебаний балки	22.06.2022 – 05.07.2022
3	Заключительный		
9Tan	этап	Защита отчета по практике	05.07.2022

Обучающийся	/Качевская О.А./
Руководитель практики от ФГАОУ ВО «СПбПУ»	/ Уманский А.О./
Согласовано:	
Руководитель практики от профильной организации:	/Ф.И.О./

Содержание

Введение	4
1. Теоретическая справка	
2. Задача об изгибе балки	6
2.1 Постановка задачи	6
2.2 Получение данных об изгибе балки	6
2.3 Модел изгиба балки	7
2.4 Выводы по задаче об изгибе балки	8
3. Задача о колебания балки	9
3.1 Постановка задачи	9
3.2 Получение данных о колебаниях балки	9
3.3 Модель колебаний балки	9
3.4 Выводы по задаче о колебаниях балки	11
Заключение	12
Список использованной литературы	13

Введение

Колебания и изгибы- одни из самых распространенный вид деформаций в природе. Для более точного и менее затратного изучения данных деформаций можно воспользоваться моделью балки. Для создания модели, учетом основных параметров объекта, МОЖНО воспользоваться программой Ansys. Строить и находить нужные нам данные, например перемещения, мы будем с помощью различных численных методов. Один из таких методов – метод конечных элементов или же метод решения дифференциальных уравнений в частных производных. Основная идея метода состоит в том, чтобы разделить расчетную область на небольшие участки, в каждом из которых вид переменной задается аппроксимирующей функцией, а далее благодаря этому находятся коэффициенты этой функции, которые определяются через значения переменной в точках, которые совпадают с узлами элементов и дают неразрывное решение.

В данной работе будет реализована математическую модель колебаний балки с использованием ее собственных частот колебаний, а также модель изгиба балки.

1. Теоретическая справка

Для решения поставленных задач воспользуемся методом конечных элементов. Метод конечных элементов — это численный метод решения дифференциальных уравнений в частных производных.

Основная идея:

Разделение расчетной области на небольшие участки (конечные элементы), в которых вид искомой переменной задается внутри каждого такого участка аппроксимирующей функцией, самый простой вид такой функции — линейный. Вне «своего» элемента она равна нулю.

Главная задача — определить коэффициенты в этой функции, которые определяются через значения искомой переменной в некоторых точках, которые совпадают с «узлами» этих элементов и дают в итоге неразрывное решение.

Из-за того, что вид аппроксимирующей функции в каждом элементе известен, то задача сводится к решению системы алгебраических уравнений, неизвестные в которой — значения переменной в узлах.

Конечно-элементная модель – система с многими степенями свободы.

Уравнение линейной динамики для конечно-элементной модели представимо в виде:

$$[M]{\ddot{x}} + [K]{x} = {f}$$

[М] - матрица масс;

[K] - матрица жесткости;

 $\{x\}$ - вектор перемещений.

2. Задача об изгибе балки

2.1 Постановка задачи

Необходимо создать модель изгиба балки, воспользовавшись полученными экспериментальными данными.

Дано: $m_1 = 0.05$ кг, $m_2 = 0.03$ кг, $m_3 = 0.02$ кг, $m_4 = 0.01$ кг, a = 25 mm, b = 1 mm, L = 300 mm, $E = 4.5 * 10^9$, материал: сталь

Рисунок 1. Схема установки

2.2 Получение экспериментальных данных об изгибе балки

Для получения данных возьмем металлическую балку (металлическая линейка), а также 4 вида грузов разных масс: $m_1 = 0.05 \, \mathrm{kr}$, $m_2 = 0.03 \, \mathrm{kr}$, $m_3 = 0.02 \, \mathrm{kr}$, $m_4 = 0.01 \, \mathrm{kr}$. Создадим экспериментальную установку, состоящую из балки, жестко заделанной с одного конца. Далее зафиксируем то, что будет происходить с балкой, на свободный конец которой мы положим грузы различных масс.

Рисунок 2. Экспериментальная установка по изучению изгиба балки

2.3 Модель изгиба балки

Рисунок 3. Полученная модель изгиба балки

Для сравнения результатов численной модели были построены графики численного, аналитического и экспериментальных решений:

Рисунок 4. Графики решений

2.4 Выводы по задаче об изгибе балки

Сравнивая полученные результаты, можно сделать вывод о том, что даже несмотря на погрешность, полученная модель изгиба балки может считаться достоверной.

3. Задача о колебаниях балки

3.1 Постановка задачи

Необходимо создать модель колебаний балки, воспользовавшись ее собственными частотами колебаний, которые мы получили экспериментально.

Дано: $L=930 \ mm$, $a=25.5 \ mm$, $b=2.3 \ mm$, материал: сталь

3.2 Получение данных о колебаниях балки

Для получения данных воспользуемся установкой, состоящую из балки и источника колебаний. Задавая различные частоты, определим при каких собственных частотах балки она достигает резонанса.

Рисунок 5. Экспериментальная установка по изучению колебаний балки

3.3 Модель колебаний балки

Рисунок 6. Полученная модель колебаний балки

Для подтверждения достоверности математической модели колебания балки сравним собственные частоты балки полученные экспериментально и при помощи модели, составим таблицу результатов, а также добавим виды моделей относительно модов:

Таблица 1. Экспериментальные и численные результаты

Моды	Среднее значение, ГЦ	Полученная частота, ГЦ
1	2	2,0037
2	11	12,556
3	20	22,163
4	30,50	35,161
5	60,25	68,913
6	100,25	113,95
7	117,25	136,12
8		138,41

Рисунок 7. Вид модели при 2 моде

Рисунок 8. Вид модели при 5 моде

Рисунок 9. Вид модели при 8 моде

3.4 Вывод по задаче о колебаниях балки

Сравнивая полученные результаты при различных резонансах, можно сделать вывод о том, что даже несмотря на погрешность, полученная модель колебаний балки может считаться достоверной.

Заключение

В данной практической работе было получено общее представление о пакете программ «Ansys». Были получены базовые знания и навыки, необходимые для построения математических моделей, отражающих реальное поведение тел с некоторой степенью неточности. В последнем мы убедились, сравнив результаты натурных и вычислительных экспериментов.

Для обоих задач был использован метод конечных элементов, благодаря которому мы получили достоверный результат. Таким образом, можно сделать вывод, что применение вычислительных методов в задачах механики целесообразно. Однако из-за того, что в задачах были использованы неточные измерительные приборы, а также материал балки с неизвестным модулем Юнга и т. д., возникала определенная погрешность. Отсюда мы можем сделать заключение о том, что точное решение также является необходимым для достижения желаемого результата (построении качественной модели).

Список использованной литературы

- 1. «Введение в Ansys Workbench» Д. В. Иванов, А. В. Доль http://dolivanov.ru/sites/default/files/metodichka_workbench.pdf
- 2. «Компьютерное проектирование. Ansys. » М. А. Денисов https://www.studmed.ru/denisov-m-a-avtomatizirovannoe-proektirovanie-v-ansys-i-kompas-3d_dbcf5ffaffa.html