The logic of randomisation methods in statistics

Brad Duthie

Two probability models

- 1. General idea of the key concept
- 2. Step by step example demonstrating the process
- 3. Related methods and tests

Population model

- Assumes random sampling from population
- Assumes population distribution
- Compares test statistic to distribution (e.g., t, F)
- Can generalise to population of interest

¹Ernst, M D. 2004. *Stat. Sci.* 19:676-685.

²Ludbrook, J, & H Dudley. 1998. Am. Stat., 52:127-132.

³Manly, B F J. 2007. Randomization, Bootstrap and Monte Carlo Methods in Biology (3rd ed.). Chapman & Hall/CRC.

Population model

- Assumes random sampling from population
- Assumes population distribution
- Compares test statistic to distribution (e.g., t, F)
- Can generalise to population of interest

Randomisation model

- Does not assume random sampling form population
- No assumption of population distribution
- Randomises data to build a null distribution
- Statistical inference limited to sample*

¹Ernst, M D. 2004. Stat. Sci. 19:676-685.

²Ludbrook, J, & H Dudley. 1998. Am. Stat., 52:127-132.

³Manly, B F J. 2007. Randomization, Bootstrap and Monte Carlo Methods in Biology (3rd ed.). Chapman & Hall/CRC.

Population model

- Assumes random sampling from population
- Assumes population distribution
- Compares test statistic to distribution (e.g., t, F)
- Can generalise to population of interest

Randomisation model

- Does not assume random sampling form population
- No assumption of population distribution
- Randomises data to build a null distribution
- Statistical inference limited to sample*

^{*}Note that we can generalise verbally [1, 2].

¹Ernst, M D. 2004. Stat. Sci. 19:676-685.

²Ludbrook, J, & H Dudley. 1998. Am. Stat., 52:127-132.

³Manly, B F J. 2007. *Randomization, Bootstrap and Monte Carlo Methods in Biology* (3rd ed.). Chapman & Hall/CRC.

The general idea of the randomisation approach

1. Randomly and repeatedly shuffle data in some way to generate a null distribution that is neutral with respect to our test statistic.

¹Ernst, M D. 2004. Stat. Sci. 19:676-685.

²Manly, B F J. 2007. *Randomization, Bootstrap and Monte Carlo Methods in Biology* (3rd ed.). Chapman & Hall/CRC.

The general idea of the randomisation approach

- Randomly and repeatedly shuffle data in some way to generate a null distribution that is neutral with respect to our test statistic.
- 2. Compare the observed test statistic with the null distribution of test statistics generated in step 1.

¹Ernst, M D. 2004. Stat. Sci. 19:676-685.

²Manly, B F J. 2007. *Randomization, Bootstrap and Monte Carlo Methods in Biology* (3rd ed.). Chapman & Hall/CRC.

The general idea of the randomisation approach

- Randomly and repeatedly shuffle data in some way to generate a null distribution that is neutral with respect to our test statistic.
- 2. Compare the observed test statistic with the null distribution of test statistics generated in step 1.
- 3. Determine the probability of observing a test statistic at least as extreme as the one we actually observed given the null distribution.

¹Ernst, M D. 2004. Stat. Sci. 19:676-685.

²Manly, B F J. 2007. Randomization, Bootstrap and Monte Carlo Methods in Biology (3rd ed.). Chapman & Hall/CRC.

Empirical data from fig-fig wasp associations

Figs sampled from Ficus petiolaris in Baja, Mexico

Do SO1 and SO2 fig wasps differ in ovipositor length?

Cryptic species of *Idarnes* non-pollinating fig wasps

¹Duthie, A B, et al. 2015. Am. Nat. 186:151-158.

Ovipositor measurements for SO1 and SO2

Species	Ovipositor (mm)	Species	Ovipositor (mm)
SO1	3.256	SO2	3.014
SO1	3.133	SO2	2.790
SO1	3.071	SO2	2.985
SO1	2.299	SO2	2.911
SO1	2.995	SO2	2.914
SO1	2.929	SO2	2.724
SO1	3.291	SO2	2.967
SO1	2.658	SO2	2.745
SO1	3.406	SO2	2.973
SO1	2.976	SO2	2.560
SO1	2.817	SO2	2.837
SO1	3.133	SO2	2.883
SO1	3.000	SO2	2.668
SO1	3.027	SO2	3.063
SO1	3.178	SO2	2.639
SO1	3.133		
SO1	3.210		

¹Duthie, A B, et al. 2015. Am. Nat. 186:151-158.

Measurement data for two fig wasp species

Summary statistics for SO1

Ovipositor (mm) Min. :2.299 ## 1st Qu.:2.976 Median :3.071

##

##

##

$$\hat{\sigma}_{SO1} = 0.260018$$

Summary statistics for SO2

```
Ovipositor (mm)
##
          :2.560
##
   Min.
##
   1st Qu.:2.735
##
   Median :2.883
##
   Mean :2.845
## 3rd Qu.:2.970
```

$$\hat{\sigma}_{SO2} = 0.151241$$

Max. :3.063

Null hypothesis that ovipositor length does not differ with respect to species $(H_0 : E[SO1] = E[SO2])$

##

¹Duthie, A B, et al. 2015. Am. Nat. 186:151-158.

Calculating a p-value from randomised data

The difference between mean ovipositor lengths was:

$$E[SO1] - E[SO2] = 0.185251$$

Calculating a p-value from randomised data

The difference between mean ovipositor lengths was:

$$E[SO1] - E[SO2] = 0.185251$$

Assume that you randomly shuffle group identity (i.e., SO1 & SO2) and recalculate the difference between means 9999 times, finding that 19 random resuffles are as or more extreme (i.e., larger absolute value) than the observed difference. **How do you calculate a p-value?**

Calculating a p-value from randomised data

The difference between mean ovipositor lengths was:

$$E[SO1] - E[SO2] = 0.185251$$

Assume that you randomly shuffle group identity (i.e., SO1 & SO2) and recalculate the difference between means 9999 times, finding that 19 random resuffles are as or more extreme (i.e., larger absolute value) than the observed difference. **How do you calculate a p-value?**

$$\hat{P} = \frac{19+1}{9999+1} = 0.002.$$

Randomisation not restricted to categorical variables

Species	Ovipositor (mm)	Wing (mm)
SO1	3.256	1.557
SO1	3.133	1.470
SO1	3.071	1.592
SO1	2.299	1.150
SO1	2.995	1.420
SO1	2.929	1.524
SO1	3.291	1.516
SO1	2.658	1.304
SO1	3.406	1.562
SO1	2.976	1.469
SO1	2.817	1.532
SO1	3.133	1.587
SO1	3.000	1.476
SO1	3.027	1.506
SO1	3.178	1.493
SO1	3.133	1.541
SO1	3.210	1.510

Compare estimated r=0.834 with null distribution by randomly shuffling ovipositor length

Null distribution not restricted to existing data

Tree	Latitude	Longitude
T34	28.29021	-113.1116
T01	28.29141	-113.1117
T02	28.29130	-113.1118
T03	28.29129	-113.1126
T04	28.29127	-113.1127
T05A	28.29110	-113.1125
T05B	28.29108	-113.1125
T06	28.29090	-113.1127
T07	28.29090	-113.1129
T08	28.29039	-113.1126
T09	28.28982	-113.1125
T10	28.29038	-113.1122
T11	28.29039	-113.1121
T12	28.29040	-113.1119
T13	28.29059	-113.1116
T14	28.29092	-113.1114
T15A	28.29074	-113.1110
T15B	28.29069	-113.1110

Compare estimated n^{th} nearest neighbour with null distribution by placing 18 trees in new locations.

Population model

- Assumes random sampling from population
- Assumes population distribution
- Compares test statistic to distribution (e.g., t, F)
- Can generalise to population of interest

Randomisation model

- Does not assume random sampling form population
- No assumption of population distribution
- Randomises data to build a null distribution
- Statistical inference limited to sample*

^{*}Note that we can generalise verbally [1, 2].

¹Ernst, M D. 2004. Stat. Sci. 19:676-685.

²Ludbrook, J, & H Dudley. 1998. Am. Stat., 52:127-132.

³Manly, B F J. 2007. Randomization, Bootstrap and Monte Carlo Methods in Biology (3rd ed.). Chapman & Hall/CRC.