1 Формулировка задачи

1.1

 $\widehat{y} = Xw$ - каждое значение целевой переменной есть сумма признака на соответствующий вес

1.2

$$\langle y - \widehat{y} \rangle \langle y - \widehat{y} \rangle = \langle y - Xw \rangle \langle y - Xw \rangle = (y - Xw)^T (y - Xw)$$

1.3

 $\sum_{i=1}^n \omega_i x_i$ - линейная комбинация $(x_i$ - столбцы, соответствующие i признаку)

2 Нормальное уравние

2.1

Вспомогательные утверждения: $\frac{\partial b^T b}{\partial b}=2b$ - очевидно, $\frac{\partial Ax+b}{\partial x}=A^T$ - обозначим f=Ax+b, $\frac{\partial f}{\partial x}=\left(\frac{\partial f}{\partial x_1},...,\frac{\partial f}{\partial x_n}\right)^T$ получим A^T Также существует правило композиции как и для обычных функций из матана. Поэтому $\frac{\partial (Ax+b)^T (Ax+b)}{\partial x}=2(Ax+b)A^T$

2.2

Воспользуемся равенством выше, получим $2X^T(X\omega-y)=0$ в итоге, раскрывая скобки $\omega=(X^TX)^{-1}X^Ty$

3 Геометрическая интерпретация

3.1

Данное выражение равно нулю. Раскроем скобки в $\langle x^j, y - \widehat{y} \rangle$: первое скалярное произведение $\langle x^j, y \rangle$ проекция y на x^j , второе скалярное произведение проекция проекции y на x^j по теореме о трёх перпендикулярах они равны.

3.2

Нулевому вектору. Так как каждая координата равна нулю по доказанному выше.

Подставляем выражение для \widehat{y} получаем ответ: $\omega = (X^TX)^{-1}X^Ty$

4 Вероятностная интрепретация

4.1

 $ho(x)=erac{(x-a)^2}{2\sigma^2}$ - одномерная плотность нормального распределения $L=\prod_{i=1}erac{(x_i-a)^2}{2\sigma^2} o max$, гле L правдоподобие. Максимизировать это произведение сразу сложно, поэтому его логарфимируют, логарифм - функция монотонная, поэтому сохраняет экстремумы. В итоге получаем выражение - $\sum_{i=1}^nrac{(x_i-a)^2}{2\sigma^2}$, которое нужно максимизировать

4.2

$$\sum_{i=1}^{n} \frac{(x_i - a)^2}{2\sigma^2}$$

4.3

Показано выше. Выносим дисперсию - в итоге нужно получить сумму квадратов отклонений.

4.4

Распределение Лапласа - $\rho(x) = \frac{\alpha}{2}e^{-\alpha|x-\beta|}$

5 Регуляризация

 $\langle y-Xw\rangle\langle y-Xw\rangle=(y-Xw)^T(y-Xw)+\tau\omega^T\omega$. Дифференциируя и сокращая это выражение получим: $X^T(X\omega-y)+\tau\omega=0\Leftrightarrow X^TX\omega-X^Ty+\tau E\omega\Leftrightarrow (X^TX+\tau E)\omega=X^Ty\to\omega=(X^TX+\tau E)^{-1}X^Ty$

5.1

См.выше.

5.2

Собственное значение определяется как $\max_{\|u\|=1} \| \Sigma' u \|$, где $\Sigma' = X^T X + \tau E$ По неравеству Коши выполняется $\| \Sigma u \| \le \| \Sigma \| \| u \|$ следовательно максимум равен этому

значению $\parallel \Sigma \parallel \parallel u \parallel$, а оно ограничено по неравенству треугольника - ($\parallel \Sigma \parallel + \lambda \parallel E \parallel$) $\parallel u \parallel$, что равно ($\lambda + \tau$). Покажем, что собственные векторы матриц Σ' и $\Sigma = X^TX$ - одинаковые $\Sigma' u = (X^TX + \tau E)u = X^TXu + \tau Eu = (\lambda + t)u$ - следовательно собственные векторы, остаются одними и теми же.

6 Лассо Тибширани

6.1

6.2

Рассмотрим значение градиента функции в неугловой точки, оно отлично от нуля следовательно можем сместиться в соседние точки и так для каждой неугловой точки.