Оценяване на параметри

Параметърът е числова характеристика на популацията

Зависи от извадката и има характер на случайна величина

Параметър	Точкова			
	оценка			
Средна стойност µ	Извадково \overline{x}			
Дисперсия σ^2	Извадкова дисперсия s²			
Вероятност р	Извадкова \hat{p} пропорция			

Hensmectehoct ha toykoba ouehka

Средната стойност на статистиката= параметъра

Пример 1. Извадковото средно $\overline{X} = \frac{x_1 + x_2 + ... + x_n}{x_n}$

$$\overline{X} = \frac{x_1 + x_2 + \dots + x_n}{n}$$

Нека случайната извадка с обем п е от популация със средна стойност µ

$$E\overline{X} = \frac{EX_1 + EX_2 + ...EX_n}{n} = \frac{\mu + \mu + ... + \mu}{n} = \mu$$
 $EX_i = \mu$ Извадковото средно е **неизместена оценка** на параметъра "популационна средна

$$E\overline{X} = \mu$$

на параметъра "популационна средна стойност µ"

Пример 2. Извадкова пропорция \hat{p}

Извадка с обем n е направена от алтернативна популация.

$$E\,\hat{p} = \frac{EX}{n} = p$$

Извадковата пропорция е неизместена оценка на параметъра "вероятност р"

Интервал, построен на основата на извадката, който съдържа неизвестния параметър с вероятност близка до 1

Пример:

Време на полет : 11 часа± 15 мин → 10 ч 45 мин ~ 11 ч 15 мин. средна стойност(математическо очакване)= точното времетраене на полета - неизвестно

Ниво на доверие

Означение: (1-\alpha)100%

примери: 90% дов. инт., 95% дов. инт.

Доверителен интервал за µ (о известно)

Случай 1. Нормална популация

Нека е направена извадка с обем *п* от *нормално разпределение* с неизвестна средна стойност µ, и известно стандартно отклонение о

Как да построим доверителен интервал за μ с (1- α)100% ниво на доверие ?

Точкова оценка на μ е извадковото средно

$$\overline{X} = \frac{X_1 + X_2 + \dots + X_n}{n} \in N(\mu, \frac{\sigma^2}{n})$$

Нека X е количеството мляко, консумирано от българите дневно. Известно е, че това количество е нормално разпределено със стандартно отклонение 96 г. За да оценят средното количество, Асоцията на млекопроизводителите е направила случайна извадка от 576 българи и е получила средна стойност 133 грма дневно. Постройте 90% доверителен интервал.

Точкова оценка на неизвестната средна консумация е извадковото средно, $\bar{x} = 133$

$$1-\alpha = 0.9$$

$$\alpha=0,1$$

$$\alpha/2 = 0.05$$

$$\alpha/2=0.05$$
 $z_{0.05}=1.645$

$$133 \pm 1,645 \frac{96}{\sqrt{576}}$$

$$126,42 \le \mu \le 139,58$$

На нивото на доверие

90% ниво на доверие

Ако построим 100 доверителни интервала, всеки на основата на различни извадки от една и съща популация, то можем да очакваме, че 90 от тях ще съдържат параметъра на популацията.

Доверителен интервал за µ (о известно)

Случай 2. Популацията не е нормална, но обемът на извадката е достатъчно голям (по-голям от 30)

$$\left[\overline{X} - Z_{\alpha/2} \frac{\sigma}{\sqrt{n}}, \overline{X} + Z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \right]$$

Пример: Направено е допитване до 100 деца в предучилищна възраст като са записани броя часове седмично прекарани пред телевизора и е намерено, че средното време е 27,197. Ако е известно, че стандартното отклонение на броя часове, прекарани пред телевизора за тази група от деца е 8.0 часа, то постройте 95% доверителен интервал на средното прекарано време седмично пред телевизора.

Решение

Параметърът, който ще оценяваме е µ –средното време, прекарано пред телевизора

Следователно, трябва да построим доверителен интервал за µ при условие, че не знаем нищо за разпределнието на популацията, но обемът на извадката n=100>30

$$\bar{x} = 27,197$$

Доколкото 1 -
$$\alpha$$
 =0,95, α = 0,05.
то $\alpha/2$ = 0,025 и $Z_{0.025}$ = 1,96

$$\overline{x} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}} = 27,191 \pm z_{0,025} \frac{8}{\sqrt{100}}$$

$$= 27,191 \pm 1,96 \frac{8}{\sqrt{100}} = 27,191 \pm 1,57 = [25,621; 28,761]$$

връзка между НИВОТО на доверие и дължината на доверителния интервал

$$\left[\overline{X} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}}, \overline{X} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \right]$$

Случай 1:Ниво на

$$\alpha = 0.1$$
 $\alpha / 2 = 0.05$

$$z_{0,05} = 1,645$$

Нека променим само нивото на доверие=> променя се само z

Случай 2: Ниво на доверие 95% =(1-α)100%

$$\alpha = 0.05$$
 $\alpha / 2 = 0.025$

$$\left[\overline{x}-1,645 \ \frac{\sigma}{\sqrt{n}}, \ \overline{x}+1,645 \ \frac{\sigma}{\sqrt{n}}\right]$$

$$z_{0,025} = 1,96$$

$$\left[\overline{x} - 1,96 \ \frac{\sigma}{\sqrt{n}}, \ \overline{x} + 1,96 \ \frac{\sigma}{\sqrt{n}} \right]$$

По-малко ниво на доверие = по-тесен доверителен интервал.

Ефект на обема на извадката върху ширината на доверителния интервал

$$\left[\overline{X} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}}, \overline{X} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}\right]$$

Нека променим само обемът на извадката => променя се само n

Случай 1: обем n=10

$$\left[\overline{x} - z_{\alpha/2} \frac{\sigma}{\sqrt{10}}, \ \overline{x} + z_{\alpha/2} \frac{\sigma}{\sqrt{10}} \right]$$

Случай 2: обем n=100

По-голям обем на извадката => по-тесен доверителен интервал.

$$\left[\overline{x} - z_{\alpha/2} \frac{\sigma}{\sqrt{100}}, \ \overline{x} + z_{\alpha/2} \frac{\sigma}{\sqrt{100}}\right]$$

Доверителен интервал за µ (о неизвестно)

Предположения

- Стандартното отклонение на популацията е неизвестно
- Популацията е нормално разпре∡елена

Точкова оценка на о е ѕ

$$s^{2} = \frac{\Sigma (X - \overline{X})^{2}}{n - 1}$$

Знаем, че

$$\overline{X} \in N(\mu, \frac{\sigma^2}{n})$$

Но σ е неизвестно и не можем да го използваме.

Заместваме σ с точковата му оценка S.

Извадковата дисперсия **s**², както и извадковото стандартно отклонение **s** са случайни величини.

Случайна величина

е частно на две случайни величини

Има специално разпределение, което се нарича =>

t_(p,df)

Има степени на свобода

Плътността е симетрична относно 0, т.е. 0=медиана

В t – таблица са дадени лицата под графиката на плътността

Нека ст.св. = 2

Намерете двете точки, които отсичат 20% <u>от графиката на плътността</u>

$$t_{n,\alpha}: P(T > t_{n,\alpha}) = \alpha$$

n - степени на свобода

α лице на дясна опашка

$$t_{5;0,005} = ? = 4,03214$$

$$t_{4;0,9} = ? = -1,533206$$

df\p	0.40	0.25	0.10	0.05	0.025	0.01	0.005	0.0005
1	0.324920	1.000000	3.077684	6.313752	12.70620	31.82052	63.65674	636.619 2
2	0.288675	0.816497	1.885618	2.919986	4.30265	6.96456	9.92484	31.5991
3	0.276671	0.764892	1.637744	2.353363	3.18245	4.54070	5.84091	12.9240
4	0.270722	0.740697	1.533206	2.131847	2.77645	3.74695	4.60409	8.6103
5	0.267181	0.726687	1.475884	2.015048	2.57058	3.36493	4.03214	6.8688

Доверителен интервал за µ (о неизвестно)

Предположения

- Стандартното отклонение на популацията е неизвестно
- Популацията е нормално разпределена

$$T = \frac{\overline{X} - \mu}{s} \sqrt{n} \in t(n-1)$$
 t разпределение с **n-1** степени на свобода

Използваме таблицата за t-разпределение

Доверителния интервал:

Станд. Откл.

$$\overline{X} - t_{\frac{\alpha}{2}, n-1} \frac{S}{\sqrt{n}} \le \mu \le \overline{X} + t_{\frac{\alpha}{2}, n-1} \frac{S}{\sqrt{n}}$$

Тези стойности за получени от таблиците за t- разпределението

Организаторите на компютърна зала искат да знаят колко време седмично студентите прекарват в залата. За целта се избират случайно 16 студенти и се намира, че тяхното средно седмично време е 24 часа със стандартно отклонение 4 часа. Намерете 95% доверителен интервал на неизвестното средно време на всички студенти, ако се знае, че времето прекарано в компютърната зала е нормално разпределено.

Средната стойност на популацията е неизвестна. Точкова оценка на тази стойност е извадковото средно 24 часа.

$$\alpha$$
= 0,05

$$\alpha/2 = 0.025$$

Какво е дадено?

Популацията е нормално разпределена

Извадковото станд. откл. s=4

Използваме t-разпределение, степени на свобода=16-1=15

от t-таблицата

$$t_{15,0.025} = 2,131$$

$$\overline{X} \pm 2,131 \frac{s}{\sqrt{n}} = 24 \pm 2,131 \frac{4}{\sqrt{16}}$$

$$= 24 \pm 2,131$$

Доверителният интервал е (21,869; 26,131).

Връзка между НИВОТО на доверие и дължината на доверителния интервал Разглеждаме t (15)

Ниво на доверие =90%

$$\alpha$$
 = 0,1

$$\alpha / 2 = 0.05$$

Ниво на доверие =95%

$$\alpha = 0.05$$
 $\alpha / 2 = 0.025$
 -2.131
0 2.131 t

По=малко ниво на доверие (1-α) – по-тесен доверителен интервал.

Ефект на обема на извадката върху ширината на доверителния интервал

$$\overline{X} - t_{\alpha/2, n-1} \frac{S}{\sqrt{n}} \le \mu \le \overline{X} + t_{\alpha/2, n-1} \frac{S}{\sqrt{n}}$$

Ако се променя само обемът, то в този случай се променя и стойността на t и стойността на s => не може да се направи извод за ширината

Сравни с доверителния интервал с известна дисперсия!!!

Определяне обема на извадката

Колко голяма да е извадката, за да оценим средната стойност?

Оценяването става с доверителен интервал

Максималната грешка при оценяването = половината дължина на интервала

Случай 1. Знае се стандартното отклонение σ,

$$z_{\alpha/2} \frac{\sigma}{\sqrt{n}} < E$$

$$n > \left(\frac{z_{\alpha}\sigma}{E}\right)^{2}$$

_{α/2} __ грешката е Е

Случай 2. Не се знае стандартното отклонение- предварително се правят някакви оценки.

Например, може да апроксимираме о с s и да използваме нормалното

разпределение (голямо n)

А ако се оценява процент , то
$$n > \left(\frac{z_{\frac{\alpha}{2}}\sqrt{p(1-p)}}{E}\right)^2 = \left(0.5\frac{z_{\frac{\alpha}{2}}}{E}\right)^2$$

Нека Х е количеството мляко, консумирано от българите дневно. Известно е, че това количество е нормално разпределено със стандартно отклонение 16 г. Трябва да се направи извадка, с помощта на която да се построи 90% доверителен интервал, при които грешката да не е повече от 0,01 грама.

Колко е обемът на извадката????

$$\sigma = 4$$

$$1-\alpha=0.9$$

$$\alpha/2 = 0.05$$

$$z_{0,05} = 1,645$$

$$n > \left(\frac{z_{\alpha}\sigma}{\frac{2}{E}}\right)^2 = \left(\frac{1,645*4}{0,01}\right)^2 = 432 964$$

Поне 432 965 българи трябва да се изберат по случаен начин

Ако увеличим грешката от 0,01 на 1 грам, то
$$n > \left(\frac{z_{\alpha}\sigma}{\frac{2}{E}}\right)^2 = \left(\frac{1,645*4}{1}\right)^2 = 43,2964$$

44, обемът се намалява