Sheaves and their cohomology

Date: 2023-08-08 3:00-5:00 PM Lecturer: Nithi Rungtanapirom Transcriber: Kittapat Ratanaphupha

Logistics

Score arrangements:

- Assignments 30%
- Quizzes 30%
- Oral Examination 40%

Recommended textbooks:

- Arapura, Algebraic geometry over the complex numbers
- Wedhorn, Manifolds, Sheaves and Cohomology

Overview

- 1. Manifold
- 2. Sheaves
- 3. Derived functors \rightarrow Cohomology

General philosophy: a geometric object should consist of the following data:¹

- 1. a topological space: X
- 2. a collection of "distinguished" (real-/complex-/k-; Körper) valued functions on open subsets of X (e.g., continuous, polynomial, holomorphic, smooth functions)

In what follows, let X be a topological space.

Def. Let T be a nonempty set. A presheaf of T-valued functions is a collection \mathcal{P} of subsets $\mathcal{P}(U) \subset \operatorname{Map}(U,T)$ for $U \subseteq X$ such that $\forall V \subseteq U \subseteq X, \forall f \in \mathcal{P}(U) : f|_{V} \in \mathcal{P}(V)$.

Easiest example: Maps(-,T)Less trivial examples:

- Constant presheaf: T^p where $T^p(U) = \{f : U \to T \text{ constant}\}$
- T is a topological space $\to \mathcal{C}_{X,T}$ is given by

$$C_{X,T}(U) = \{f: U \to T \text{ cont.}\}$$

¹Self note: Topological manifold: manifold with second-countable and Hausdorff

- $X = \mathbb{R}^n \to \mathcal{C}_{\mathbb{R}^n}^{\infty}$ is given by (replaced by smooth functions.)
- $X = \mathbb{C}^n \to \mathcal{O}_{\mathbb{C}^n}$ is given by (replaced by holomorphic functions.)

Def A presheaf of T-valued functions is called a *sheaf* (of T-valued functions) if the following holds for all open subsets $U \subseteq X$ and open covering $\{U_i\}_{i \in I}$ of U: For any function $f: U_i \to T$, if $U_i \in \mathcal{P}(U)$ for all $i \in I$, then $f \in \mathcal{P}(U)$.

Example: smooth function

Non-example: T^p unless every open subset of X is connected. $\mathcal{L}^p(X)^2$ presheaf of p-integrable functions

Def \mathcal{P} presheaf of (T-valued) functions. The sheafification of \mathcal{P} is given by

$$\mathcal{P}^s(U) = \{ f : U \to T \mid \forall x \in U, \exists U_x \stackrel{\circ}{\subset} U, x \in U_x, f|_{U_x} \in \mathcal{P}(U_x) \}$$

Examples:

- $(T^p)^s = T_X$ sheaf of locally constant functions.
- $(\mathcal{L}^p(\mathbb{R}^n))^s$ is a locally *p*-integrable functions.

Now let k be a field.

Note: Maps(X, k) is a commutative k-algebra (a ring that has a compatible k-vector space structure.)

Def A concrete k-space is a pair (X, \mathcal{R}) consisting of a topological space X and a sheaf \mathcal{R} of k-valued functions on X such that $\forall U \subseteq X, \mathcal{R}(U)$ is a k-subalgebra of Maps(U, k).

Examples.

- $(\mathbb{R}^n, \mathcal{C}^{\infty}_{\mathbb{R}})$, $(\mathbb{R}^n, \mathcal{C}_{\mathbb{R}^n, \mathbb{R}})$ is a concrete \mathbb{R} -space
- $(\mathbb{C}^n, \mathcal{O}^n_{\mathcal{C}})$ is a concrete \mathbb{C} -space

Def Let (X, \mathcal{R}) and (Y, \mathcal{S}) be concrete k-spaces. A morphism of concrete k-spaces $(X, \mathcal{R}) \to (Y, \mathcal{S})$ is a continuous map $F: X \to Y$ such that

$$\forall U \subseteq Y \forall f \in \mathcal{S}(U) : F^*f := f \circ (F|_{F^{-1}U}) \in \mathcal{R}(F^{-1}U)$$

 $(F^*f \text{ is called the pullback of } f \text{ along } F.)$

In this case, $\mathcal{L}^p(X)$ is said to be a set of integrable functions, but in analysis, $L^p(X)$ is used more frequently that is defined by $L^p = \mathcal{L}^p/\mathcal{N}$ where $\mathcal{N} = \{f \in \mathcal{L}^p : f = 0 \text{ a.e.}\}$

Example. $id_X:(X,\mathcal{R})\to(X,\mathcal{R})$

Let $F: \mathbb{R}^n \to \mathbb{R}^m$ be a continuous map, say $F = (F_1, F_2, \dots, F_m)$ for $F_i: \mathbb{R}^n \to \mathbb{R}$

Claim: F induces a morphism $(\mathbb{R}^n, \mathcal{C}^{\infty}_{\mathbb{R}^n}) \to (\mathbb{R}^m, \mathbb{C}^{\infty}_{\mathcal{R}^m})$ iff F_1, F_2, \dots, F_m are C^{∞} . Proof. (\longleftarrow) Trivial.

 $(\Longrightarrow) \forall U \stackrel{\circ}{\subseteq} \mathbb{R}^n \forall f \in \mathcal{C}^{\infty}_{\mathbb{R}^m}(U) : F^*f := f \circ (F|_{F^{-1}U}) \in \mathcal{C}^{\infty}_{\mathbb{R}^m}(F^{-1}U)$

Consider the function $\operatorname{pr}_j: \mathbb{R}^m \to \mathbb{R}, (x_1, x_2, \dots, x_m) \mapsto x_j, j = 1, \dots, m$

Then, $\operatorname{pr}_i \circ F = F_j$.

Since, pr_i is C^{∞} , the same holds for F_j .

Remark: similarly, a continuous map $F = (F_1, \dots, F_m) : \mathbb{C}^n \to \mathbb{C}^m$ induced a morphism of \mathbb{C} -spaces iff F_1, \dots, F_m are holomorphic.

Exercise Show that if $F:(X_1,\mathcal{R}_1)\to (X_2,\mathcal{R}_2)$ and $G:(X_2,\mathcal{R}_2)\to (X_3,\mathcal{R}_3)$ are morphisms of concrete k-spaces, them so $G\circ F$.

Prop/Def An isomorphism of concrete k-spaces $(X, \mathcal{R}) \stackrel{\cong}{\to} (Y, \mathcal{S})$ is a homeomorphism $F: X \to Y$ which satisfies one (and hence both) of the following equivalent properties.

- 1. Both F and F^{-1} are morphisms of concrete k-spaces.
- 2. $\forall U \subseteq Y, \forall f \in \text{Maps}(U, k) : f \in \mathcal{S}(U) \iff F^* f \in \mathcal{R}(F^{-1}U).$

Notation / Convention

 $C^{\alpha}_{\mathbb{R}^n}$ is a set of *n*-th differentiable functions (where $\alpha \in \mathbb{N}$)

 $C_{\mathbb{R}^n}^{\infty}$ smooth

 $C_{\mathbb{R}^n}^{\omega}$ analytic

 $\hat{\mathbb{N}}_0 = \mathbb{N}_0 \cup \{\omega, \infty\}$ with $\alpha < \infty < \omega$ for all $\alpha \in \mathbb{N}$. $\mathcal{O}_{\mathbb{C}^n}$ holomorphic

Def³ Let $\alpha \in \hat{\mathbb{N}}_0$. A (real) C^{α} -premanifold is a concrete \mathbb{R} -space $(X, \mathcal{C}_X^{\alpha})$ which admits an open covering $X = \bigcup_{i \in I} U_i$ such that for each $i \in I$, there is $B_i \stackrel{\circ}{\subseteq} \mathbb{R}^n$ such that

$$(U_i, \mathcal{C}_X^{\alpha}|_{U_i}) \cong (B_i, \mathcal{C}_X^{\alpha}|_{B_i})$$

Terminology

- Atlas = collection of coordinate charts
- $\alpha = 0$, C^0 -manifold is a topological manifold
- $\alpha = \infty$, C^{∞} -manifold is a smooth manifold
- $\alpha = \omega$, C^{ω} -manifold is an analytic manifold

 $^{^3}$ Self-note: Original definition: a transition map; smooth compatible, The homeomorphism is a coordinate chart.

Def Complex pre-manifold is the same as above, but with $(\mathbb{C}^n, \mathcal{O}_{\mathbb{C}^n})$ instead of $(\mathbb{R}^n, \mathcal{C}_{\mathbb{R}^n}^{\infty})$ Example of a premanifold which is not a manifold.

Def A real C^{α} /complex manifold is a real C^{α} /complex premanifold such that the topology of its underlying space is given by a metric (\iff the underlying topological space is Hausdorff and paracompact.)

Terminology

- C^{α} -diffeomorphism is an isomorphism of C^{α} -manifolds.
- Biholomorphism is an isomorphism of complex manifolds.
- Riemann surface is a one-dimensional complex manifold.

An n-dimensional complex manifold.

Let (X, \mathcal{O}_X) be a complex manifold of dimension n.

How to define a sheaf C_X^{∞} on X such that (X, C_X^{∞}) become a smooth manifold of dimension 2n.

Idea: X has a complex atlas $(B_j, \mathcal{O}_{\mathbb{C}^n}|_{B_j})_{j\in I}$ with isomorphisms $g_j: B_j \stackrel{\cong}{\to} U_j \stackrel{\simeq}{\hookrightarrow} X$ Define \mathcal{C}_X^{∞} by

$$f \in \mathcal{C}_X^{\infty} \iff \forall j : f \circ g_j \text{ is } C^{\infty}$$

(on open subset of B_j in \mathbb{R}^{2n})

Check: $(X, \mathcal{C}_X^{\infty})$ is a smooth manifold of dimension 2n.