Тамарин Вячеслав

24 сентября 2020 г.

Оглавление

1	Фуг	нкциональные последовательности и ряды	2
	1.1	Равномерная и поточечная сходимости	2
	1.2	Равномерные и поточечные сходимости рядов	4
	1.3	Свойства равномерно сходящихся функциональных последовательностей и рядов	7
	1.4	Степенные ряды	9
	1.5	Разложение элементарных функций в ряды Тейлора	14
2	Teo	рия меры и интегрирования	16
	2.1	Системы множеств	16
	2.2	Объем	18
	2.3	Мера и ее свойства	20
	2.4	Продолжение меры. Построение меры по внешней мере	22
	2.5	Продолжение меры. Построение внешней меры.	25
		2.5.1 Теорема о продолжении меры	26

Глава 1

Функциональные последовательности и ряды

Лекция 1: †

2 Sept

1.1 Равномерная и поточечная сходимости

Определение 1: Поточечная сходимость

Пусть определена последовательность функций $f_n \colon E \to \mathbb{R}(\mathbb{C})$, и $f \colon E \to \mathbb{R}(\mathbb{C})$. Тогда говорят, что f_n сходится к f поточечно $(f_n \to f)$, если

$$\forall x \in E : \lim_{n \to \infty} f_n(x) = f(x).$$

То есть для любого $x \in E$ и любого $\varepsilon > 0$ существует $N_{(x,\varepsilon)}$ такое, что

$$\forall n > N : |f_n(x) - f(x)| < \varepsilon.$$

Замечание. Это определение можно обобщить куда угодно, где есть мера. В данном курсе под E обычно подразумевается подмножество \mathbb{R}^n .

Определение 2: Равномерная сходимость

Пусть определена последовательность функций $f_n \colon E \to \mathbb{R}(\mathbb{C})$, и $f \colon E \to \mathbb{R}(\mathbb{C})$. Тогда говорят, что f_n сходится к f равномерно на E $(f_n \rightrightarrows f)$, если для любого $\varepsilon > 0$ существует $N_{(\varepsilon)}$ такое, что

$$\forall n > N \ \forall x \in E \colon |f_n(x) - f(x)| < \varepsilon.$$

Пример 1.1.1. Рассмотрим функции $f_n(x) = x^n$ на отрезке (0,1). Так как $\forall x \in (0,1) \colon x^n \to_{n \to \infty} 0$, $f_n \to f \equiv 0$. Но $f_n \not\rightrightarrows 0$, потому что, например, для $\varepsilon = \frac{1}{2}$ каким бы ни было N для всех n > N можно взять такое x рядом с единицей, что $|x^n - 0| > \frac{1}{2}$.

Утверждение. $f_n \rightrightarrows f$ на E равносильно тому, что

$$\sup_{x \in E} |f_n(x) - f(x)| \stackrel{n \to \infty}{\longrightarrow} 0.$$

Ремарка. Если мы смотрим на множество непрерывных функций на компакте C(K), где норма

$$||f||_{C(K)} = \max_{x \in K} |f(x)|,$$

то из поточечной сходимости следует равномерная:

$$f_n \to f \Longrightarrow ||f_n - f|| \to 0 \Longleftrightarrow f_n \rightrightarrows f$$
 на K .

Аналогично будет с множеством ограниченных функций на E $(l^{\infty}(E))$ с нормой

$$||f||_{\infty} = \sup_{x \in E} |f(x)|.$$

Определение 3: Равномерная ограниченность

Последовательность функций $f_n \colon E \to \mathbb{R}(\mathbb{C})$ называется равномерно ограниченной на E, если существует такое M, что

$$\forall x \in E \ \forall n \in \mathbb{N} \colon |f_n(x)| \leqslant M.$$

Пример 1.1.2. Пусть $f_n \in C(K)$. Тогда равномерная ограниченность $\{f_n\}$ равносильна ограниченности по норме, то есть все функции содержатся в некотором шаре с центром в нуле.

Свойства.

- 0. Из равномерной сходимости следует поточечная
- 1. Если для всех $x \in E$ выполнено

$$|f_n(x) - f(x)| \leqslant a_n,$$

где $\{a_n\}$ — последовательность, стремящаяся к нулю при $n \to \infty$, то f_n равномерно сходится к f на E.

2. Если существует ε_0 и $x_n \in E$ для всех n такие, что

$$|f_n(x_n) - f(x_n)| \geqslant \varepsilon_0,$$

то f_n не сходится равномерно к f на E.

3. Пусть $\{f_n\} \rightrightarrows f$ на E и $\{g_n\}$ равномерно ограничена на E. Тогда $f_n g_n \rightrightarrows 0$.

Доказательство.

$$\sup_{x \in E} |f_n(x)g_n(x)| \leqslant M_{g_n} \cdot \sup_{x \in E} |f_n(x)| \xrightarrow{n \to \infty} 0.$$

4. **Критерий Коши**. Пусть $f_n: E \to \mathbb{R}(\mathbb{C})$. f_n равномерно сходится на E, согда¹ для любого положительного ε существует N, что

$$\forall n, m > N \ \forall x \in E \colon |f_n(x) - f_m(x)| < \varepsilon.$$

Доказательство.

 $\boxed{1\Longrightarrow 2}$ Запишем определение равномерной сходимости на E для $\frac{\varepsilon}{2}$:

$$\forall \varepsilon > 0 \ \exists N : \forall n > N \ \forall x \in E \quad |f_n(x) - f(n)| < \frac{\varepsilon}{2}.$$

Тогда для любых n, m > N

$$|f_m(x) - f(x)_n| \le$$

$$\le |f_m(x) - f(x)| + |f_n(x) - f(x)| \le$$

$$\le \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

 $2 \Longrightarrow 1$ Из условия Коши получаем, что для всех $x \in E$ последовательность $f_n(x)$ фундаметальна. Следовательно, существует предел $f(x) := \lim_{n \to \infty} f_n(x)$.

Устремим $m \to \infty$. Тогда

$$|f_n(x) - f(x)| \le \varepsilon.$$

По определению равномерной сходимости получаем, что $f_n \rightrightarrows f$ на E.

П

¹С этого момента буду писать «согда» вместо «тогда и только тогда, когда», чтобы упростить формулировки

5. Пусть E — метрическое пространство. Рассмотрим последовательность непрерывных в точке $x \in E$ функций $f_n \colon E \to \mathbb{R}(\mathbb{C})$. Если $f_n \rightrightarrows f$ на E, то f тоже непрерывна в точке a.

Доказательство. Проверим, что

$$\lim_{x \to a} f(x) = f(a).$$

А именно, для любого $\varepsilon > 0$ существует $\delta > 0$ такое, что

$$\forall x \in E \quad \rho(x, a) < \delta \Longrightarrow |f(x) - f(a)| < \varepsilon.$$

Используем равномерную сходимость: для любого $\varepsilon > 0$ существует N такое, что

$$\forall n > N \ \forall x \in E \quad |f_n(x) - f(x)| < \frac{\varepsilon}{3}.$$

Так как f_n непрерывна в точке a, можем записать определение для $\frac{\varepsilon}{3}$ и заодно взять n>N:

$$\exists \delta > 0 \colon \forall x \in E \quad \rho(x, a) < \delta \Longrightarrow |f_n(x) - f_n(a)| \leqslant \frac{\varepsilon}{3}.$$

Используем два полученых неравенства:

$$|f(x) - f(a)| \le$$

$$\le |f(x) - f_n(x)| +$$

$$+|f_n(x) - f_n(a)| +$$

$$+|f_n(a) - f_n(a)| <$$

$$< \frac{\varepsilon}{3} \cdot 3 = \varepsilon$$

6. Теорема Стокса-Зайделя. Пусть $f_n \in C(E)$. Если $f_n \rightrightarrows f$, то f непрерывна на E.

Доказательство. Следствие из 5[прошлого свойства].

1.2 Равномерные и поточечные сходимости рядов

Определение 4: Функционоальный ряд

Рассмотрим функции $u_n \colon E \to \mathbb{R}(\mathbb{C})$. Тогда

$$\sum_{n=1}^\infty u_n(x)$$
 — функциональный ряд, $S_n(x) = \sum_{k=1}^n u_k(x)$ — частичная сумма ряда.

Если S_n сходится к S поточечно, то говорят, что ряд сходится поточечно. Если S_n сходится к S равномерно, то говорят, что ряд сходится равномерно.

$$r_n = S(x) - S_n(x)$$
 — остаток ряда.

Замечание. Если рассматриваемые функции ограничены $(u_n \in C(K))$, то $\sum_{n=1}^{\infty} u_n$ — ряд в нормированном пространстве, поэтому сходимость в C(K) равносильна тому, что $\|S_n - S\|_{C(K)} \to 0$. Это в свою очередь равносильно тому, что S_n сходится равномерно к S на K.

Свойства.

- 1. $\sum_{n=1}^{\infty} u_n(x)$ равномерно сходится на E, согда $r_n \rightrightarrows 0$ на E.
- 2. **Критерий Коши**. $\sum_{n=1}^{\infty} u_n(x)$ равномерно сходится на E, согда для всех $\varepsilon > 0$ существует такое N, что

$$\forall m > N \ \forall p \in \mathbb{N} \ \forall x \in E : \left| \sum_{k=m+1}^{m+p} u_k(x) \right| = |S_{m+p} - S_m| < \varepsilon.$$

3. Необходимое условие равномерной сходимости ряда. $Ecnu \sum_{n=1}^{\infty} u_n(x)$ сходится равномерно на E, то u_n равномерно сходится κ 0.

Доказательство. По критерию Коши для p = 1.

4. Признак сравнения. Пусть $u_n, v_n \colon E \to \mathbb{R}^2$ и для всех $x \in E$ выполнено неравенство $|u_n(x)| \le v_n(x)$ Если $\sum_{n=1}^{\infty} v_n(x)$ сходится равномерно на E, то $\sum_{n=1}^{\infty} u_n(x)$ тоже сходится равномерно на E.

Доказательство. Обозначим частичные суммы

$$S_n(x) = \sum_{k=1}^n u_k(x), \quad C_n(x) = \sum_{k=1}^n v_k(x).$$

Заметим, что

$$|S_m(x) - S_n(x)| \le \sum_{k=n+1}^m v_k(x) \le |C_m(x) - C_n(x)|.$$

Так как $\sum_{n=1}^{\infty} v_n(x)$ равномерно сходится, можно воспользоваться критерием Коши и получить, что последний модуль меньше ε при m,n>N и $x\in E$. Тогда можем применить критерий Коши для $\sum_{n=1}^{\infty} u_n(x)$.

5. Признак Вейерштрасса. Пусть $u_n \colon E \to \mathbb{R}(\mathbb{C})$ и для всех $x \in E$ выполнено неравенство $|u_n(x)| \leqslant a_n$. Если сходится ряд $\sum_{n=1}^{\infty} a_n$, то ряд $\sum_{n=1}^{\infty} u_n(x)$ сходится равномерно.

Доказательство. Применить признак Коши.

- 6. Если $\sum_{n=1}^{\infty} |u_n(x)|$ сходится равномерно, то и ряд $\sum_{n=1}^{\infty} u_n(x)$ сходится равномерно.
- 7. Признак Дирихле. Пусть $u_n, v_n \colon E \to \mathbb{R}(\mathbb{C})$, обозначим $U_n(x) = \sum_{k=1}^n u_k(x)$. Если выполнены следующие условия, ряд $\sum_{n=1}^{\infty} u_n(x) v_n(x)$ сходится равномерно:
 - (a) ряд U_n равномерно ограничен на E, то есть $\exists M : \forall x \in E \ \forall n \ |U_n(x)| \leqslant M$;
 - (b) ряд v_n равномерно сходится к нулю $(v_n \rightrightarrows 0)$;
 - (c) для любого $x \in E$ последовательность $\{v_n(x)\}$ монотонна.

Доказательство. Воспользуемся преобразованием Абеля:

$$S_n(x) = \sum_{k=1}^n u_k(x)v_k(x) = U_n(x)v_n(x) + \sum_{k=1}^{n-1} U_k(x)(v_k(x) - v_{k+1}(x)).$$

²Здесь на лекции u_n, v_n были определены как $E \to \mathbb{R}(\mathbb{C})$, но случае \mathbb{C} не понятно сравнение комплексного и вещественного числа в следующем неравенстве

Так как $U_n(x)$ равномерно ограничено, а $v_n(x)$ равномерно сходится к нулю, $U_n(x)v_n(x)$ тоже равномерно сходится к нулю. Теперь докажем, что второе слагаемое тоже равномерно сходится. Для этого достаточно проверить, что следующий ряд равномерно сходится

$$\sum_{k=1}^{\infty} |U_k(x)(v_k(x) - v_{k+1})|.$$

Оценим частичную сумму³

$$\sum_{k=1}^{n-1} |U_k(x)(v_k(x) - v_{k+1}(x))| \le$$

$$\le \sum_{k=1}^{n-1} |U_k(x)| \cdot |v_k(x) - v_{k+1}(x)| \le$$

$$\le M \cdot \sum_{k=1}^{n-1} |v_k(x) - v_{k+1}(x)| =$$

$$= M \cdot |v_1(x) - v_n(x)|$$

Так как $v_n \rightrightarrows 0$, $|v_1(x) - v_n(x)| \underset{n \to \infty}{\longrightarrow} |v_1(x)|$. Значит, частичная сумма ряда стремится к $M \cdot |v_1(x)|$, следовательно⁴, второе слагаемое тоже равномерно сходится, а тогда и сумма равномерно сходится.

- 8. Признак Лейбница. Если выполнены следующие условия, то ряд $\sum_{n=1}^{\infty} (-1)^n v_n(x)$ равномерно сходится:
 - (a) $v_n \rightrightarrows 0$ на E;
 - (b) для любого $x \in E$, ряд $\{v_n(x)\}$ монотонный.

Доказательство. Обозначим за $u_n(x) \coloneqq (-1)^n$. Заметим, что ряд $U_n(x) = \sum_{k=1}^n u_k(x)$ ограничен, тогда по признаку Дирихле $\sum_{n=1}^\infty u_n(x)v_n(x)$ равномерно сходится.

Пример 1.2.1. Рассмотрим ряд $\sum_{n=1}^{\infty} \frac{\sin(nx)}{n}$. Обозначим $u_n(x) = \sin(nx)$ и $v_n(x) = \frac{1}{n}$. Последний равномерно сходится к нулю и монотонно убывает.

$$U_n(x) = \sum_{k=0}^{n} \sin(kx) =$$

$$= \operatorname{Im}\left(\sum_{k=0}^{n} e^{ikx}\right) = \operatorname{Im}\left(\frac{1 - e^{i(n+1)x}}{1 - e^{ix}}\right) =$$

$$= \operatorname{Im}\left(\frac{e^{ix \cdot \frac{n+1}{2}} \cdot \left(e^{ix \cdot \frac{n+1}{2}} - e^{-ix \cdot \frac{n+1}{2}}\right)}{e^{\frac{ix}{2}} - e^{-\frac{ix}{2}}}\right) =$$

$$= \operatorname{Im}\left(e^{\frac{ixn}{2}}\right) \cdot \frac{\sin\frac{n+1}{2}x}{\sin\frac{x}{2}} =$$

$$= \frac{\sin\frac{nx}{2} \cdot \sin\frac{n+1}{2}x}{\sin\frac{x}{2}}$$

 $^{{}^{3}{}m B}$ последнем переходе мы используем монотонность $v_{k}(x)$

⁴Например, по признаку сравнения

Пример 1.2.2. Рассмотрим ряд $\sum_{n=1}^{\infty} \frac{(-1)^n x^n}{n}$ при $x \in (0,1)$. Обозначим $v_n(x) = \frac{x^n}{n}$. $v_n(x)$ монотонна для всех $x \in (0,1)$, так же $|v_n(x)| \leqslant \frac{1}{n}$, поэтому v_n равномерно сходится к нулю. По признаку Лейбница исходный ряд равномерно сходится.

- 9. Признак Абеля. Пусть $u_n,v_n\colon E o \mathbb{R}(\mathbb{C})$. Если выполнены следующие условия, ряд $\sum_{n=1}^\infty u_n(x)v_n(x)$ сходится равномерно:
 - (a) ряд $\sum_{n=1}^{\infty} u_n$ равномерно сходится на E; (b) ряд v_n равномерно ограничен;

 - (c) для любого $x \in E$ последовательность $\{v_n(x)\}$ монотонна.

Доказательство. Проверим критерий Коши, а именно: для любого $\varepsilon > 0$ должно существовать число N такое, что

$$\forall n > N \ \forall p \in \mathbb{N} \ \forall x \in E : \left| \sum_{k=n+1}^{n+p} u_k(x) v_k(x) \right| < \varepsilon.$$

Используем преобразование Абеля⁵:

$$\sum_{k=n+1}^{n+p} u_k(x)v_k(x) = \sum_{k=1}^{p} u_{n+k}(x) + v_{n+k}(x) =$$

$$= \left(U_{n+p}(x) - U_n(x)\right) \cdot v_{n+p}(x) + \sum_{k=1}^{p-1} \left(U_{n+k}(x) - U_n(x)\right) \cdot \left(v_{n+k}(x) - v_{n+k+1}(x)\right)$$

Так как v_n равномерно ограничено, а u_n равномерно сходится⁶:

$$(U_{n+p}(x) - U_n(x)) \cdot v_{n+p}(x) \le |U_{n+p}(x) - U_n(x)| \cdot M < \varepsilon \cdot M.$$

Для второго слагаемого аналогично используем критерий Коши для u_n и монотонность v_n :

$$\sum_{k=1}^{p-1} \left(U_{n+k}(x) - U_n(x) \right) \cdot \left(v_{n+k}(x) - v_{n+k+1} \right) \leqslant$$

$$\leqslant \sum_{k=1}^{p-1} \left| U_{n+k}(x) - U_n(x) \right| \cdot \left| v_{n+k}(x) - v_{n+k+1} \right| \leqslant$$

$$\leqslant \varepsilon \cdot \sum_{k=1}^{p-1} \left| v_{n+k}(x) - v_{n+k+1} \right| \leqslant$$

$$\leqslant \varepsilon \cdot \left| v_{n+1}(x) - v_{n+n}(x) \right| \leqslant \varepsilon \cdot 2M$$

Итого, оценили сумму из критерия Коши через ε , поэтому можем им воспользоваться.

1.3 Свойства равномерно сходящихся функциональных последовательностей и рядов

Свойства.

 $To \ ecmb$

1. Пусть $f_n, f: E \to \mathbb{R}(\mathbb{C}), a-n$ редельная точка E, f_n равномерно сходится κ f на E и существует предел $\lim_{x\to a} f_n(x) = b_n$. Тогда пределы $\lim_{n\to\infty} b_n$, $\lim_{x\to a} f(x)$ существуют и равны.

$$\lim_{n \to \infty} \lim_{x \to a} f_n(x) = \lim_{x \to a} \lim_{n \to \infty} f_n(x).$$

 $^{^5}$ Для удобства сделаем, чтобы сумма начиналась с единицы. Из-за этого придется писать больше скобок.

⁶Поэтому можем использовать критерий Коши

Доказательство.

(a) Проверим, что у b_n есть предел. Из критерия Коши для f_n следует, что для каждого $\varepsilon > 0$ существует N, что

$$\forall n, m > N \ \forall x \in E \colon |f_n(x) - f_m(x)| < \varepsilon.$$

Устремим $x \to a$. Тогда $f_n(x) \to b_n$ и $f_m(x) \to b_m$. Из того, что

$$\forall \varepsilon > 0 \ \exists N : \forall n, m > N \quad |b_n - b_m| < \varepsilon,$$

следует, что последовательность $\{b_n\}$ фундаментальна. Поэтому предел b_n существует и $b\coloneqq\lim_{n\to\infty}b_n.$

(b) Определим функции

$$g_n(x) = \begin{cases} f_n(x) & x \neq a \\ b_n & x = a \end{cases}, \quad g(x) = \begin{cases} f(x) & x \neq a \\ b & x = a \end{cases}$$

Эти функции непрерывны в точке a. Кроме этого $g_n \rightrightarrows g$ на $E \cup \{a\}$, так как можно выбрать N из прошлого пункта.

(с) Используем свойство равномерной сходимости

$$b = \lim_{x \to a} g(x) = \lim_{x \to a} f(x).$$

Следствие 1. Если $f_n \colon [a,b] \to \mathbb{R}(\mathbb{C}), \, f_n \rightrightarrows f$ на (a,b) и f_n непрерывна, то $f_n \rightrightarrows f$ на [a,b]

Лекция 2: †

9 Sept

2. Пусть $u_n \colon E \to \mathbb{R}(\mathbb{C}), \ a$ — предельная точка E и $\lim_{x\to a} u_n(x) = b_n$. Если $\sum_{n=1}^\infty u_n(x)$ равномерно сходится на E, то $\sum_{n=1}^\infty b_n$ сходится и

$$\sum_{n=1}^{\infty} \lim_{x \to a} u_n(x) = \lim_{x \to a} \sum_{n=1}^{\infty} u_n(x).$$

Доказательство. Обозначим частные суммы за

$$S_n(x) = \sum_{k=1}^n u_k(x)$$
$$B_n = \sum_{k=1}^n b_k$$

Тогда $\lim_{x\to a} S_n(x) = B_n$ и $S_n \rightrightarrows S$ на E. $S_n(x)$ — функции, поэтому можно применить свойство 1 и получить

$$\lim_{n \to \infty} \lim_{x \to a} S_n = \lim_{x \to a} \lim_{n \to \infty} S_n(x).$$

3. Пусть $f_n \in C[a,b]$ и $f_n \rightrightarrows f$ на [a,b] ⁷. Рассмотрим произвольную точку $c \in [a,b]$ и первообразную $\int_c^x f_n(t)dt$. Тогда

$$\int_{c}^{x} f_{n}(t)dt \Rightarrow \int_{c}^{x} f(t)dt \text{ Ha } [a,b].$$

 $^{^7}$ Из этих двух условий автоматически следует, что f непрерывна

В частности,

$$\int_{a}^{b} f_{n}(t)dt \to \int_{a}^{b} f(t)dt,$$
$$\lim_{n \to \infty} \int_{a}^{b} f_{n}(t)dt = \int_{a}^{b} \lim_{n \to \infty} f_{n}(t)dt.$$

Доказательство. Посмотрим на разность

$$\left| \int_{c}^{x} f(t)dt - \int_{c}^{x} f_{n}(t)dt \right| \leq |c - x| \cdot \max_{t \in [c, x]} |f(t) - f_{n}(t)|$$
 (1.3.1)

Расширив отрезок [c, x] до [a, b], получаем следующую оценку на 1.3.1

$$1.3.1 \leqslant (b-a) \cdot \max_{t \in [a,b]} |f_n(t) - f(t)| \xrightarrow{n \to \infty} 0 \tag{1.3.2}$$

Выражение в 1.3.2 не зависит от x, откуда и следует равномерная сходимость.

4. Перестановка дифференцирования и предельного перехода. Пусть $f_n \in C[a,b], f_n' \rightrightarrows g,$ $c \in [a,b]$ и $f_n(c) \stackrel{n \to \infty}{\longrightarrow}$. Тогда f_n равномерно сходится к f на [a,b] и f' = g. То есть

$$\left(\lim_{n\to\infty} f_n(x)\right)' = \lim_{n\to\infty} f'_n(x).$$

Доказательство. Так как $f_n'
ightharpoonup g$, по прошлому свойству

$$\int_{c}^{x} f'_{n}(t)dt \Longrightarrow \int_{c}^{x} g(t)dt.$$

Заметим, что

$$\int_{c}^{x} f_n'(t)dt = f_n(x) - f_n(c).$$

Поэтому

$$f_n(x) = \underbrace{f_n(c)}_{\rightarrow A} + \underbrace{\int_c^x f_n(t)dt}_{\Rightarrow \int_c^x g(t)dt} \Rightarrow A + \int_c^x g(t)dt.$$

Следствие 2 (дифференцирование равномерно сходящегося ряда). Пусть есть ряд $\sum_{n=1}^{\infty} u_n(x)$, $c \in [a,b], \sum_{n=1}^{\infty} u'_n(x)$ равномерно сходится и ряд $\sum_{n=1}^{\infty} u_n(c)$ сходится. Тогда ряд $\sum_{n=1}^{\infty} u_n(x)$ сходится равномерно и

$$\left(\sum_{n=1}^{\infty} u_n(x)\right)' = \sum_{n=1}^{\infty} u'_n(x).$$

1.4 Степенные ряды

Определение 5: Степенной ряд

Ряд $\sum_{n=0}^{\infty} a_n (z-z_0)^n$, где $a_n, z, z_0 \in \mathbb{C}$, называется степенным с центром в точке z_0 .

Замечание. С помощью переносов любой степенной ряд сводится к ряду с центром в нуле $\sum_{n=0}^{\infty} a_n z^n$.

⁸Далее в утверждениях будет обычно фигурировать ряд с центром в нуле для упрощения рассуждений.

Теорема 1.4.1

Пусть ряд $\sum\limits_{n=0}^{\infty}a_nz^n$ сходится в точке $z_0\in\mathbb{C}.$ Тогда ряд $\sum\limits_{n=0}^{\infty}a_nz^n$ сходится при всех z, что $|z|<|z_0|.^a$

 a To есть для всех zвнутри шара с центром в нуле и радиусом $z_0.$

Доказательство. Так как ряд сходится в точке $z_0, a_n z_0^n \stackrel{n \to \infty}{\longrightarrow} 0$, то есть $|a_n z_0^n| \leqslant M$. Тогда

$$\sum_{n=0}^{\infty} |a_n z^n| = \sum_{n=0}^{\infty} |a_n z_0^n| \cdot \left| \frac{z}{z_0} \right|^n \leqslant M \cdot \sum_{n=0}^{\infty} \left| \frac{z}{z_0} \right|^n.$$

A такой ряд сходится, так как $\left|\frac{z}{z_0}\right| < 1.$

Следствие 3. Если ряд $\sum_{n=0}^{\infty} a_n z_0^n$ расходится, то для всех z, что $|z|>|z_0|$, степенной ряд $\sum_{n=0}^{\infty} a_n z^n$ расходится.

Определение 6: Радиус сходимости

Радиус сходимости R степенного ряда $\sum\limits_{n=0}^{\infty}a_nz^n$ — такое число, что для всех $z\colon |z|< R$ ряд сходится, а для всех $z\colon |z|>R$ ряд расходится.

Замечание. R может быть равным нулю или бесконечности.

Теорема 1.4.2: Формула Коши-Адамара

Радиус сходимости существует и равен

$$R_{\rm cx} = \frac{1}{\overline{\lim}_{n \to \infty} \sqrt[n]{|a_n|}}.$$

Доказательство. Зафиксируем z.

$$q = \overline{\lim}_{n \to \infty} \sqrt[n]{|a_n z^n|} = |z| \cdot \overline{\lim}_{n \to \infty} \sqrt[n]{|a_n|}.$$

Если $|z| < R_{\rm cx}$, то q < 1, тогда по признаку Коши ряд сходится.

Если $|z| > R_{\rm cx}$, то q > 1, аналогично по признаку Коши ряд расходится.

Если $|z| = R_{\rm cx}$, то q = 1, и в этом случае ничего сказать нельзя.

Упраженение. Придумать формулировку в стиле признака Даламбера, то есть

$$q = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|.$$

Здесь, в отличии от верхнего предела в формуле Коши-Адамара, еще нужно доказать, что предел существует.

Пример 1.4.1. $\sum_{n=1}^{\infty} \frac{z^n}{n!}$, $n! \sim e^n$, поэтому $R_{\text{cx}} = \infty$.

Пример 1.4.2. $\sum_{n=0}^{\infty} z^n n!$, $R_{cx} = 0$.

Пример 1.4.3. $\sum_{n=1}^{\infty} \frac{z^n}{n}$, $R_{\text{cx}} = 1$.

Теорема 1.4.3

Пусть R — радиус сходимости степенного ряда $\sum_{n=0}^{\infty} a_n z^n$. Рассмотрим 0 < r < R. Тогда в $\overline{B(0,r)}$ ряд сходится равномерно.

Доказательство. Возьмем ряд $\sum_{n=0}^{\infty} |a_n| r^n$. Это сходящийся числовой ряд. Если взять ряд $\sum_{n=0}^{\infty} a_n z^n$ с произвольным z, то

$$\underline{\max_{B(0,r)}} |a_n z^n| = |a_n| r^n.$$

Получили что, ряд максимумов сходится, из чего про признаку Вейерштрасса следует, что ряд сходится.

Следствие 4. Сумма степенного ряда непрерывна в шаре $B(0, R_{\rm cx})$, так как частичные суммы будут непрерывными функциями, которые равномерно сходятся, следовательно, сходятся к непрерывной функции.

Теорема 1.4.4: Теорема Абеля

Рассмотрим ряд $\sum_{n=0}^{\infty} a_n z^n$, радиус сходимости равен R. Предположим, что в точке z есть сходимость. Тогда $\sum_{n=0}^{\infty} a_n x^n$ сходится на [0,R] равномерно. В частности,

$$\exists \lim_{x \to R-} \sum_{n=0}^{\infty} a_n x^n = \sum_{n=0}^{\infty} a_n R^n.$$

Доказательство. Докажем, что ряд сходится равномерно. Запишем следующее равенство:

$$\sum_{n=0}^{\infty} a_n x^n = \sum_{n=0}^{\infty} a_n R^n \left(\frac{x}{R}\right)^n.$$

По условию $\sum_{n=0}^{\infty} a_n R^n$ сходится равномерно (не зависит от x), а $\left(\frac{x}{R}\right)^n$ — монотонна и ограничена. Тогда по признаку Абеля ряд равномерно сходится на [0,R]

Пример 1.4.4. Разложим в ряд Тейлора

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots \qquad \text{при } |x| < 1.$$

По признаку Абеля при |x|=1 ряд тоже сходится. Поэтому $R_{\rm cx}=1$, причем на самом радиусе ряд тоже сходится.

Лемма 1. Следующие ряды имеют одинаковые радиусы сходимости:

$$\sum_{n=0}^{\infty} a_n z^n, \quad \sum_{n=0}^{\infty} a_n \frac{z^{n+1}}{n+1}, \quad \sum_{n=0}^{\infty} a_n n z^{n-1}.$$

Доказательство. Заметим, что если x_n сходится, то⁹

$$\overline{\lim}_{n\to\infty} x_n y_n = \lim_{n\to\infty} x_n \overline{\lim}_{n\to\infty} y_n.$$

⁹По определению верхнего предела это супремум частичных пределов последовательности, выберем такую $\{x_{k_i}, y_{k_i}\}$. Мы знаем, что $x_{k_i} \to x$, поэтому $\lim_{i \to \infty} x_{k_i} y_{k_i} = x \lim_{i \to \infty} y_{k_i}$.

Теперь воспользуемся формулой Коши-Адамара. Обозначим за R_1, R_2, R_3 радиусы сходимости рядов из условия.

$$R_{2} = \frac{1}{\overline{\lim_{n \to \infty}} {n+1 \sqrt{\left|a_{n} \cdot \frac{1}{n+1}\right|}}} = \frac{1}{\left(\lim_{n \to \infty} {n+1 \sqrt{\frac{1}{n+1}}}\right) \cdot \overline{\lim_{n \to \infty}} {n+1 \sqrt{\left|a_{n}\right|}}} =$$

$$= \frac{1}{\overline{\lim_{n \to \infty}} {\sqrt[n]{\left|a_{n}\right|}}} = R_{1}$$

$$R_{3} = \frac{1}{\overline{\lim_{n \to \infty}}} {\sqrt[n-1]{\left|a_{n} \cdot n\right|}} = \frac{1}{\left(\lim_{n \to \infty} {n-1 \sqrt{n}}\right) \cdot \overline{\lim_{n \to \infty}} {\sqrt[n-1]{\left|a_{n}\right|}}} =$$

$$= \frac{1}{\overline{\lim_{n \to \infty}} {\sqrt[n]{\left|a_{n}\right|}}} = R_{1}$$

Теорема 1.4.5

Пусть есть вещественный степенной ряд $\sum_{n=0}^{\infty} a_n (x-x_0)^n$, его ряд сходимость равен R. Тогда его можно проинтегрировать почленно для всех x, что $|x-x_0| < R$:

$$\int_{x_0}^{x} \sum_{n=0}^{\infty} a_n (t - x_0)^n dt = \sum_{n=0}^{\infty} \int_{x_0}^{x} a_n (t - x_0)^n dt = \sum_{n=0}^{\infty} a_n \frac{(x - x_0)^{n+1}}{n+1}.$$

Доказательство. Пусть $r = |x - x_0| < R$. В $\overline{B(x_0, r)}$ ряд равномерно сходится. Рассмотрим его частные суммы $S_n(x)$. Так как $S_n(x) \rightrightarrows S$,

$$\int_{x_0}^x \sum_{n=0}^\infty a_n t^n dt = \int_{x_0}^x S(t) dt =$$

$$= \int_{x_0}^x \lim_{n \to \infty} S_n(t) dt = \lim_{n \to \infty} \int_{x_0}^x S_n(t) dt$$

Определение 7: Производная комплекснозначной функции

Пусть $E\subset \mathbb{C},\ a$ — внутренняя точка $E,\ f\colon E\to \mathbb{C}.$ Производную в точке a можно определить двумя способами:

1. это такая функция

$$f'(a) = \lim_{z \to a} \frac{f(z) - f(a)}{z - a}.$$

2. f дифференцируема в точке a, если существует такое $k \in \mathbb{C}$, что

$$f(z) = f(a) = k(z - a) + o_{z \to a}(z - a).$$

Замечание. Существование f'(a) равносильно тому, что f дифференцируема в точке a, и в этом случае k = f'(a).

Теорема 1.4.6

Рассмотрим ряд $\sum_{n=0}^{\infty} a_n (z-z_0)^n$, его радиус сходимости равен R, f(z) — сумма ряда внутри шара

 $B(z_0,R)$. Тогда при $z\colon |z-z_0| < R$ функция f дифференцируема сколько угодно раз, при этом

$$f^{(m)}(z) = \sum_{n=m}^{\infty} a_n \frac{n!}{(n-m)!} (z - z_0)^{n-m}.$$

Доказательство. Опять скажем, что $z_0 = 0$. Достаточно доказать для m = 1, а далее по индукции. Пусть |z| < r < R. Запишем определение

$$f'(z) = \lim_{w \to z} \frac{f(w) - f(z)}{w - z} =$$

$$= \lim_{w \to z} \frac{\sum_{n=0}^{\infty} a_n w^n - \sum_{n=0}^{\infty} a_n z^n}{w - z} =$$

$$= \lim_{w \to z} \frac{\sum_{n=1}^{\infty} a_n (w^n - z^n)}{w - z} \stackrel{?}{=}$$

$$\stackrel{?}{=} \sum_{n=1}^{\infty} \lim_{w \to z} a_n \underbrace{(w^{n-1} + w^{n-2}z + \dots + z^{n-1})}_{\text{все стремятся к } z^{n-1}} =$$

$$= \sum_{n=1}^{\infty} a_n \cdot n \cdot z^{n-1}$$

Осталось доказать один переход. Если докажем равномерную сходимость ряда в $\overline{B(0,r)}$, то он будет верен. Обозначим

$$u_n(w) = a_n(w^{n-1} + w^{n-2}z + \dots + z^{n-1}).$$

Заметим, что

$$|u_n(w)| \le |a_n| \cdot (|w^{n-1}| + |w^{n-2}z| + \ldots + |z^{n-1}|) \le |a_n| \cdot n \cdot r^{n-1}.$$

Так как $r^{n-1} \in \overline{B(0,R)}$, ряд $\sum_{n=1}^{\infty} |a_n| \cdot n \cdot r^{n-1}$ сходится. Тогда по признаку Вейерштрасса ряд $\sum_{n=1}^{\infty} u_n(w)$ сходится, следовательно можем переставить предел и суммирование.

Teopema 1.4.7: О единственности разложения в степенной ряд

Если $f(z) = \sum_{n=0}^{\infty} a_n (z-z_0)^n$ и сходится в круге $B(z_0,R)$, то коэффициенты задаются однозначно:

$$a_m = \frac{f^{(m)}(z_0)}{m!}.$$

Доказательство. По теореме 1.4.6 можем записать следующую формулу:

$$f^{(k)}(z) = \sum_{n=m}^{\infty} a_n \cdot \frac{n!}{(n-k)!} \cdot (z-z_0)^{n-k}.$$

Тогда

$$f^{(m)}(z_0) = a_m \cdot \frac{n!}{(n-m)!} = a_m m! \implies a_m = \frac{f^{(m)}(z_0)}{m!}.$$

Определение 8

Для бесконечно дифференцируемого в точке z_0 степенного ряда f имеет место формула Тейлора с центром в точке z_0 :

$$f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z - z_0)^m.$$

1.5 Разложение элементарных функций в ряды Тейлора

Запишем разложения, которые нам уже известны

1. e^x

$$\forall x \in \mathbb{R}$$
 $e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} \dots = \sum_{n=0}^{\infty} \frac{x^n}{n!}.$

 $2. \sin x$

$$\forall x \in \mathbb{R}$$
 $\sin x = \sum_{n=0}^{\infty} (-1)^{n+1} \frac{x^{2n+1}}{(2n+1)!}.$

 $3. \cos x$

$$\forall x \in \mathbb{R} \qquad \cos x = \sum_{n=0}^{\infty} (-1)^{n+1} \frac{x^{2n}}{(2n)!}.$$

Определение 9

Пусть $z \in \mathbb{C}$. Определим $\exp z, \sin z, \cos z$ для комплексного числа как ряды из формул выше.

Упраженение.

$$e^{z_1+z_2}$$
 = $e^{z_1}e^{x_2}$
 $\cos(z_1+z_2)$ = $\cos z_1 \cos z_2 - \sin z_1 \sin z_2$
 $\sin(z_1+z_2)$ = $\sin z_1 \cos z_2 + \cos z_1 \sin x_2$
 $\sin^2 z + \cos^2 z$ = 1
 $(e^z)'$ = e^z
 $(\sin z)'$ = $\cos z$
 $(\cos z)'$ = $-\sin z$

Теорема 1.5.1: Формула Эйлера

$$e^{iz} = \cos z + i \sin z$$
.

Доказательство. Честная подстановка. Можно перегруппировывать слагаемые в рядах, так как они абсолютно сходятся. \Box

4. $\ln(1+x)$

$$\ln(1+x) = x - \frac{x^2}{2} - \frac{x^3}{3} + \dots \qquad |x| < 1.$$

Доказательство.

$$\ln(1+x) = \int_0^x \frac{1}{1+t} dt = \int_0^x (1-t+t^2-\ldots) dt =$$
$$= \sum_{n=0}^\infty (-1)^n \int_0^x t^n dt = \sum_{n=0}^\infty (-1)^n \frac{x^{n+1}}{n+1}$$

Так как $1-t+t^2-t^3+\ldots$ — равномерно сходящийся ряд при |t|<1, можем интегрировать его почленно. Аналогично мы можем определить $\ln(1+z)$ для $z\in\mathbb{C}$, если |z|<1.

5. $\operatorname{arctg} x$

$$\arctan x = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \dots = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1}.$$

Доказательство.

$$\arctan x = \int_0^x \frac{dt}{1+t^2} = \int_0^x \sum_{n=0}^\infty (-1)^n t^{2n} dt =$$

$$= \sum_{n=0}^\infty (-1)^n \int_0^x t^{2n} dt = \sum_{n=0}^\infty (-1)^n \frac{x^{2n+1}}{2n+1}$$

Формула верна внутри круга |t| < 1 для равномерной сходимости.

6. $(1+x)^p$

$$(1+x)^p = 1 + px + \frac{p(p-1)}{2}x^2 + \dots = \sum_{n=0}^{\infty} \frac{p(p-1)\dots(p-n+1)}{n!}x^n.$$

Докажем, что радиус сходимости равен 1. Обозначим

$$S(x) = \sum_{n=0}^{\infty} \frac{p(p-1)\dots(n-p+1)}{n!} x^n, \qquad f(x) = \frac{S(x)}{(1+x)^p}, \quad x \in (-1,1).$$

Поступим хитро: докажем, что $f(x) \equiv 1$. Заметим, что f(0) = 1. Тогда достаточно проверить, что f'(x) = 0 для всех $x \colon |x| < 1$.

$$f(x) = S(x)(1+x)^{-p}$$

$$f'(x) = S'(x)(1+x)^{-p} - pS(x)(1+x)^{-p-1} =$$

$$= (1+x)^{-p-1} \left(S'(x)(1-x) - pS(x) \right)$$

Проверим, что (S'(x)(1+x) - pS(x)) = 0.

$$\frac{p \cdot S(x)}{p \cdot S(x)} = \sum_{n=0}^{\infty} \frac{p(p-1) \dots (n-p+1)}{n!} x^n \cdot \mathbf{p}$$

$$\frac{(1+x) \cdot S'(x)}{n!} = \sum_{n=1}^{\infty} \frac{p(p-1) \dots (n-p+1)}{(n-1)!} x^{n-1} \cdot (1+x) = \sum_{n=1}^{\infty} \frac{p(p-1) \dots (n-p+1)}{(n-1)!} (x^{n-1} + x^n)$$

Теперь заметим, что

$$p \cdot \frac{p(p-1)\dots(n-p+1)}{n!} = \frac{p(p-1)\dots(n-p+1)}{(n+1)!} + \frac{p(p-1)\dots(n-p)}{n!}.$$

Поэтому коэффициенты при x^k будут одинаковыми, следовательно, разность равна нулю.

7. Частный случай для $p=-\frac{1}{2}$

$$\frac{p(p-1)\dots(n-p+1)}{n!} = \frac{\left(-\frac{1}{2}\right)\cdot\left(-\frac{3}{2}\right)\cdot\dots\cdot\left(-\frac{2n-1}{2}\right)}{n!} = (-1)^n \frac{(2n-1)!!}{2^n\cdot n!} = (-1)^n \frac{(2n-1)!!}{(2n)!!}.$$

8. $\arcsin x$

$$\arcsin x = \int_0^x \frac{dt}{\sqrt{1-t^2}} = \int_0^x \sum_{n=0}^\infty (-1)^n \frac{(2n-1)!!}{(2n)!!} (-t^2)^n dt = \sum_{n=0}^\infty \frac{(2n-1)!!}{(2n)!!} \cdot \frac{x^{2n+1}}{2n+1}.$$

Глава 2

Теория меры и интегрирования

Лекция 3: †

Системы множеств 2.1

Определение 10: Алгебра подмножеств

Пусть T — произвольное множество, 2^T — система подмножеств. $\mathfrak{A} \subset 2^T$ — алгебра подмножеств, если

16 Sept

(i) $\varnothing \in \mathfrak{A}$

(ii) $A, B \in \mathfrak{A} \Longrightarrow A \cap B \in \mathfrak{A}$

(iii) $A \in \mathfrak{A} \Longrightarrow T \setminus A \in \mathfrak{A}$

Свойства.

1. $T \in \mathfrak{A}$

2. $A, B \in \mathfrak{A} \Longrightarrow A \setminus B = A \cap (T \setminus B) \in \mathfrak{A}$

3. $A, B \in \mathfrak{A} \Longrightarrow A \cup B = T \setminus ((T \setminus A) \cap (T \setminus B)) \in \mathfrak{A}$ 4. $A_j \in \mathfrak{A}, \ j = 1, \dots n \Longrightarrow \bigcup_{j=1}^n A_j \in \mathfrak{A}, \ \bigcap_{j=1}^n A_j \in \mathfrak{A}$

Определение 11: σ -алгебра

 $\mathfrak{A}\subset 2^T-\sigma$ -алгебра, если \mathfrak{A} – алгебра и

(ii σ) $\forall A_j \in \mathfrak{A}, j \in \mathbb{N} : \bigcap_{j=1}^{\infty} A_j \in \mathfrak{A}$

Замечание. $\forall A_j \in \mathfrak{A}, \ j \in \mathbb{N} \Longrightarrow \bigcup_{j=1}^{\infty} A_j \in \mathfrak{A}$

Пример 2.1.1.

1. $2^T = \mathfrak{A}$

2. $\{\varnothing, T\} = \mathfrak{A}$

Теорема 2.1.1

Пусть T произвольное множество и $\mathcal{E} \subset 2^T$ — какая-то система подмножеств. Тогда существует минимальная по включению σ -алгебра, содержащая \mathcal{E} .

Доказательство. Возьмем пересечение всех σ -алгебр, содержащих \mathcal{E} .

Определение 12: Борелевская оболочка

 σ -алгебра из прошлой теоремы называется борелевской оболочкой. Обозначается $\mathfrak{B}(\mathcal{E})$

Определение 13

Рассмотрим топологическое пространство (T,τ) $(\tau-$ система отрытых множеств). Тогда $\mathfrak{B}(\tau)$ борелевская σ -алгебра в T. Обозначается $\mathfrak{B}(T)$.

Определение 14: Полукольцо

Набор подмножеств $\mathcal{P} \subset 2^T$ называется полукольцом, если выполнены следующие аксиомы:

- (ii) $P_1, P_2 \in \mathcal{P} \Longrightarrow P_1 \cap P_2 \in \mathcal{P}$
- (iii) $P_1, P_2 \in \mathcal{P} \Longrightarrow P_1 \setminus P_2 = \bigsqcup_{j=1}^N Q_j$, где $Q_j \in \mathcal{P}$ и Q_j дизъюнктны.

Пример 2.1.2. $T = \mathbb{R}, \mathcal{P} = \{[a, b)\}$

Теорема 2.1.2: о свойствах полукольца

Пусть \mathcal{P} — полукольцо, $P, P_1, \dots P_n \in \mathcal{P}$. Тогда

1.
$$P \setminus \bigcup_{j=1}^n P_j = \bigcup_{j=1}^N Q_j$$
, где $Q_j \in \mathcal{P}$ и Q_j дизъюнктны;

1.
$$P\setminus\bigcup_{j=1}^n P_j=\bigsqcup_{j=1}^N Q_j$$
, где $Q_j\in\mathcal{P}$ и Q_j дизъюнктны;
2. $\bigcup_{j=1}^n P_j=\bigcup_{k=1}^n\bigsqcup_{j=1}^m Q_{k_j}$, где $Q_{k_j}\in\mathcal{P}$, Q_{k_j} дизъюнктны и $\forall j\colon Q_{k_j}\subset P_k$;

3. в предыдущем пункте можно заменить n на ∞ .

Доказательство. 1. Очевидно

2. Заметим, что

$$\bigcup_{j=1}^{n} P_{j} = \underbrace{P_{1}}_{\in \mathcal{P}} \cup \underbrace{(P_{2} \setminus P_{1})}_{\subseteq \mathcal{P}} \cup \underbrace{(P_{3} \setminus (P_{1} \cup P_{2}))}_{\subseteq \mathcal{P}} \cup \dots$$

При этом все полученные множества дизъюнктны.

3. В предыдущем пункте мы не пользовались конечностью объединения.

2.2. OBBEM 18

Пример 2.1.3 (Важный пример: полукольцо ячеек в \mathbb{R}^n и полукольцо биодических ячеек в \mathbb{R}^n). Первое обозначается \mathcal{P}^n , второе — \mathcal{P}^n_d .

Рассмотрим два вектора

$$a = (a_1, \dots a_n), \quad \forall i \colon b_i \geqslant a_i$$
$$b = (b_1, \dots b_n), \quad \forall i \colon b_i \geqslant a_i$$

Тогда $[a,b) = \{x \in \mathbb{R}^n \mid \forall j \colon a_j \leqslant x < b_j\} = \prod [a_j,b_j)$ — ячейка.

Ячейка называется кубической, если $\forall j, k \colon |a_j - b_j| = |a_k - b_k|$.

Возьмем $e=(1,\ldots 1)$ и $\overline{k}=(k_1,\ldots k_n),\ k_j\in\mathbb{Z},\ \overline{k}\in\mathbb{Z}^n.\ [\overline{k},\overline{k}+e)$ — кубик с целочисленными координатами. Такие ячейки назовем ячейками ранка І. Они покрывают все \mathbb{R}^n и дизъюнктны.

Такие ячейки можно разбить на 2^n меньших ячеек второго ранга: $\left[\frac{\overline{k}}{2}, \frac{\overline{k}+e}{2}\right)$. Аналогично можно продолжить до ранга S+1: $\left[\frac{\overline{k}}{2^S}, \frac{\overline{k}+e}{2^S}\right)$.

Свойства.

- внутри ранга ячейки не пересекаются
- ячейки разных рангов либо не пересекаются, либо одна содержится в другой
- ullet если Q- ячейка ранга $k,\,Q'-$ ячейка ранга $k+1,\,mo\;Q\setminus Q'-$ объединение ячеек ранга k+1

 \mathcal{P}_d' — множество всех ячеек $\left[\frac{\overline{k}}{2^S}, \frac{\overline{k}+e}{2^S}\right)$, для $s=0,1,\dots d$ и $\overline{k}\in\mathbb{Z}^n$.

Теорема 2.1.3

 \mathcal{P}^n и \mathcal{P}^n_d — полукольца.

Теорема 2.1.4

Для любого открытого непустого $\varnothing \neq G \subset \mathbb{R}^n$ существует счетный набор $P_k \in \mathcal{P}_d^{na}$ такой, что

$$\bigcup_{k=1}^{\infty} P_k = G.$$

Доказательство. Рассмотрим точку $x \in G$ и шар $B(x,r) \subset G$. Тогда существует такая ячейка S, что существует P_x ранга S, что $x \in P_x \subset B(x,r)$ (просто берем диаметр ячейки менее x).

Всего ячеек счетное число, поэтому в покрытии тоже будет счетное, при этом $\bigcup_{x \in G} P_x = G$.

2.2 Объем

Определение 15: Объем

Рассмотрим множество T, полукольцо $\mathcal{P}\subset 2^T$. Тогда $\mu\colon\mathcal{P}\to\mathbb{R}\cup\{+\infty\}$ — объем, если

- (i) $\mu \geqslant 0$
- (ii) $\mu(\varnothing) = 0$
- (iii) μ конечноаддитивна:

$$P, P_1, \dots P_k \in \mathcal{P}, \ \bigsqcup_{j=1}^k P_j = P \Longrightarrow \mu(P) = \sum_{j=1}^k \mu(P_j).$$

Пример 2.2.1.
$$\mathcal{P} = \mathcal{P}^1 = \{[a,b)\}, \ \mu([a,b)) = b - a.$$

 $^{{}^{}a}$ Можно считать, что P_{k} не пересекаются

2.2. OBBEM 19

Пример 2.2.2. $g: \mathbb{R} \to \mathbb{R}, g$ монотонно возрастает. Тогда $\nu_q([a,b)) = g(b) - g(a)$ — тоже объем.

Пример 2.2.3. \mathcal{P} — множества на плоскости, которые либо ограничены, либо дополнение ограничено.

$$\mu_1(A)=egin{cases} 1 & A \ \text{неограничено} \\ 0 & A \ \text{ограниченo} \end{cases}, \quad \mu_2(A)=egin{cases} +\infty & A \ \text{неограниченo} \\ 0 & A \ \text{ограниченo} \end{cases}$$

Пример 2.2.4 (классический объем в \mathbb{R}^n). Рассмотрим \mathcal{P}^n , $P = \prod_{k=1}^n [a_k, b_k)$, где $\lambda_n(P) = \prod_{k=1}^n (b_k - a_k)$. Упраженение. Проверить, что это объем.

Теорема 2.2.1: о свойствах объема

Рассмотрим полукольцо \mathcal{P} , μ — объем на \mathcal{P} . P, $P_1, \dots P_n \in \mathcal{P}$.

- 1. (монотонность) $P' \subset P \Longrightarrow \mu(P') \leqslant \mu(P)$
- 2. (усиленная монотонность) P_k дизъюнктны,

$$\bigsqcup_{k=1}^{n} P_k \subset P \Longrightarrow \sum_{k=1}^{n} \mu(P_k) \leqslant \mu(P).$$

3. (конечная полуаддитивность) a

$$P \subset \bigcup_{k=1}^{n} P_k \Longrightarrow \mu(P) \leqslant \sum_{k=1}^{\infty} \mu(P_k).$$

Доказательство.

1. Если $P \subset P'$, то $P \setminus P' = \bigsqcup_{k=1}^n Q_k$, где $Q_k \in \mathcal{P}$ и Q_k дизъюнктны.

Тогда
$$P = P' \cup \bigsqcup_{k=1}^{n} Q_k$$
.

$$\mu(P) = \mu(P') + \sum_{k=1}^{n} \mu(Q_k) \geqslant \mu(P').$$

2. $P \setminus \bigsqcup_{k=1}^{n} P_k = \bigsqcup_{j=1}^{N} Q_j$, где $Q_j \in \mathcal{P}$ и Q_j дизъюнктны.

Тогда
$$P = \bigsqcup_{k=1}^{n} P_k \cup \bigsqcup_{j=1}^{N} Q_j$$
. Следовательно,

$$\mu(P) = \sum_{k=1}^{n} \mu(P_k) + \sum_{j=1}^{N} (Q_j) \geqslant \sum_{k=1}^{n} \mu(P_k).$$

3. Пусть $P \cap P_k = P_k' \in \mathcal{P}$. Тогда $P = \bigcup_{k=1}^n P_k' = \bigcup_{k=1}^n \bigcup_{j=1}^{m_k} Q_{k_j}$ — дизъюнктны.

$$\mu(P) = \sum_{k=1}^{n} \sum_{j=1}^{m_k} \mu(Q_{k_j}) \stackrel{\text{no}}{\leqslant} 2 \sum_{k=1}^{n} \mu(P_k') \leqslant \sum_{k=1}^{n} \mu(P_k).$$

^aЗдесь не предполагается, что $\bigcup_{k=1}^{n} P_k \in \mathcal{P}$

Замечание. Если \mathcal{P} — алгебра, то по аксиоме (iii) можно проверять только для двух множеств, а далее по индукции.

Замечание. Если \mathcal{P} — алгебра, $A, B \in \mathcal{P}$, $B \subset A$, то

$$\mu(B) < +\infty \Longrightarrow \mu(A \setminus B) = \mu(A) - \mu(B).$$

2.3 Мера и ее свойства

Определение 16: Мера

Пусть \mathcal{P} — подкольцо, μ — объем на \mathcal{P} . μ называется мерой, если μ счетно-аддитивен:

$$P,P_k\in\mathcal{P},\ P_k$$
 — дизъюнктны, $\bigsqcup_{k=1}^{\infty}P_k=P\Longrightarrow \mu(P)=\sum_{k=1}^{\infty}\mu(P_k).$

a

Пример 2.3.1.

- Классический объем λ_n в \mathbb{R}^n (докажем позже)
- $\frac{\nu_g([a,b)) = g(b) g(a)}{g \nearrow}$ и непрерывна слева $\Longrightarrow \nu_g$ мера (Упражнение)

Теорема 2.3.1: о счетной полуаддитивности меры

Пусть \mathcal{P} — полукольцо, μ — объем на \mathcal{P} . Тогда μ — мера, согда для любых $P, P_k \in \mathcal{P}$

$$P \subset \bigcup_{k=1}^{\infty} P_k \Longrightarrow \mu(P) \leqslant \sum_{k=1}^{\infty} \mu(P_k).$$

Доказательство.

$$\boxed{1\Longrightarrow 2}$$
 $P_k'=P_k\cap P,\,P=igcup_{k=1}^\infty P_k'=igcup_{k=1}^\infty igcup_{j=1}^{m_k} Q_{k_j},\,$ где Q_{k_j} — дизъюнктны. Тогда

$$\mu(P) = \sum_{k=0}^{\infty} \sum_{j=1}^{m_k} \underbrace{\mu(Q_{k_j})}_{\leqslant \mu(P'_k) \leqslant \mu(P_k)} \leqslant \sum_{k=1}^{\infty} \mu(P_k).$$

$$2 \Longrightarrow 1$$
 Пусть $Q, Q_j \in \mathcal{P}, Q_j$ — дизъюнктны и $Q = \bigcup_{j=1}^{\infty} Q_j$.

Из полуаддитивности следует, что $\mu(Q) \leqslant \sum_{i=1}^{\infty} \mu(Q_i)$. Теперь заметим, что

$$\bigcup_{j=1}^{n} Q_{j} \subset Q \Longrightarrow \sum_{j=1}^{n} \mu(Q_{j}) \leqslant \mu(Q).$$

Следовательно,

$$\sum_{j=1}^{\infty} \mu(Q_j) \leqslant \mu(Q).$$

 $^{^{}a}$ Сумма в этом ряду не зависит от порядка, так как он положительный.

Теорема 2.3.2: о нерпрерывности меры снизу

Пусть $\mathfrak A$ — алгебра, μ — объем на $\mathfrak A$. μ — мера, согда для всех $A_k \in \mathfrak A$ таких, что $A_1 \subset A_2 \subset \dots$ верно следующее свойство^a

$$\bigcup_{k=1}^{\infty} A_k = A \Longrightarrow \mu(A_k) \xrightarrow[k \to \infty]{} \mu(A).$$

^аЭто свойство называется «непрерывностью меры снизу»

Доказательство.

 $1 \Longrightarrow 2$ Рассмотрим новую систему дизъюнктных множеств из ${\mathfrak A}$:

$$A'_1 = A_1, \ A'_2 = A_2 \setminus A_1, \ A'_3 = A_3 \setminus (A_1 \cup A_2), \dots$$

Заметим, что

$$\bigcup_{j=1}^{\infty} A'_j = \bigcup_{j=1}^{\infty} A_j = A, \quad A_n = \bigcup_{j=1}^n A'_n.$$

Так как A'_i дизъюнктны,

$$\mu(A) = \sum_{j=1}^{\infty} \mu(A'_j) = \lim_{n \to \infty} \sum_{j=1}^{n} \mu(A'_j) = \lim_{n \to \infty} \mu(A_n).$$

 $\boxed{2\Longrightarrow 1}$ Пусть $A=igcup_{j=1}^\infty B_j$, где B_j дизъюнктны. Рассмотрим такие $A_k=igcup_{j=1}^k B_j$. Так как $A=igcup_{k=1}^\infty A_k$,

$$\mu(A_k) \xrightarrow[k \to \infty]{} \mu(A).$$

Из конечной аддитивности объема следует, что

$$\mu(A_k) = \sum_{j=1}^k \mu(B_j) \xrightarrow[k \to \infty]{} \sum_{j=1}^\infty \mu(B_j) = \mu(A).$$

Значит, μ — мера.

Определение 17: Конечный объем

Рассмотрим множество T, полукольцо $\mathcal P$ и объем μ на $\mathcal P$. Тогда μ называется конечным объемом, если $\mu(T) < \infty$.

Теорема 2.3.3: о непрерывности меры сверху

Пусть \mathfrak{A} — алгебра, μ — конечный объем на \mathfrak{A} . Тогда следующие утверждения эквивалентны:

- (i) μ мера
- (ii) для всех $A_k \in \mathfrak{A}$ выполнено^a

$$A_{k+1} \subset A_k, \ A = \bigcap_{k=1}^{\infty} A_k \in \mathfrak{A} \Longrightarrow \mu(A_k) \xrightarrow[k \to \infty]{} \mu(A).$$

(iii) для всех $A_k \in \mathfrak{A}$ выполнено

$$A_{k+1} \subset A_k, \ \varnothing = \bigcap_{k=1}^{\infty} \Longrightarrow \mu(A_k) \xrightarrow[k \to \infty]{} 0.$$

^аЭто и называется непрерывностью меры сверху

Доказательство.

 $(i)\Longrightarrow (ii)$ Пусть $B_k=A_k\setminus A_{k+1},$ тогда $A_1=A\cup \bigcup\limits_{j=1}^\infty B_j$ и B_j дизъюнктны. Следовательно,

$$\mu(A_1) = \mu(A) + \sum_{j=1}^{\infty} \mu(B_j) = \mu(A) + \lim_{n \to \infty} \underbrace{\sum_{j=1}^{\infty} \mu(B_j)}_{\mu(A_1) - \mu(A_{n+1})}$$

$$\underline{\mu(A_1)} = \mu(A) + \mu(A_1) - \lim_{n \to \infty} \mu(A_{n+1})$$

$$\mu(A) = \lim_{n \to \infty} \mu(A_{n+1})$$

- $(ii) \Longrightarrow (iii)$ Очевидно
- $(iii)\Longrightarrow (i)$ Пусть $A=\bigcup_{j=1}^\infty B_j$, где B_j дизъюнктны и $B_j,A\in\mathfrak{A}$. Проверим счетную аддитивность. Рассмотрим

$$A_k = B_{k+1} \cup B_{k+2} \cup \ldots = A \setminus B_1 \setminus B_2 \setminus \ldots \in \mathfrak{A}.$$

Поэтому, $\bigcap_{k=1}^{\infty} A_k = \infty$. Следовательно,

$$= \mu(A_k) \xrightarrow[k \to \infty]{} 0$$

$$= \mu(A \setminus \bigcup_{j=1}^k B_j) = \mu(A) - \sum_{j=1}^k \mu(B_j) \xrightarrow[k \to \infty]{} \mu(A) - \sum_{j=1}^\infty \nu(B_j)$$

Получили, что $\mu(A) = \sum_{j=0}^{\infty} \mu(B_j)$, значит, μ — мера.

2.4 Продолжение меры. Построение меры по внешней мере.

Определение 18: Внешняя мера

T — произвольное множество, $\tau\colon 2^T\to\mathbb{R}\cup\{+\infty\}$. au — внешняя мера, если

- (i) $\tau \geqslant 0$
- (ii) $\tau(\varnothing) = 0$
- (iii) (счетная полуаддитивность)

$$E \subset \bigcup_{k=1}^{\infty} E_k \Longrightarrow \tau(E) \leqslant \sum_{k=1}^{\infty} \tau(E_k).$$

 $3 амечание. \ au$ конечно полуаддитивна.

Замечание. τ монотонна: $E_1 \subset E_2 \Longrightarrow \tau(E_1) \leqslant \tau(E_2)$

Определение 19: τ -измеримо

Пусть τ — внешняя мера на T. Множество $A-\tau$ -измеримо, если для любого $E\subset T^a$

$$\tau(E) = \tau(E \cap A) + \tau(E \setminus A). \tag{2.4.1}$$

 $^a\mathrm{B}$ этом неравенстве знак \leqslant есть всегда

Теорема 2.4.1

Пусть au — внешняя мера, $\mathfrak{A}_{ au}$ — система au-измеримых множеств. Тогда $\mathfrak{A}_{ au}$ — σ -алгебра и au $|_{\mathfrak{A}_{ au}}$ — мера.

Доказательство.

- $0. \varnothing \in \mathfrak{A}_{\tau}$
- 1. Докажем, что $A \in \mathfrak{A}_{\tau} \Longrightarrow T \setminus A \in \mathfrak{A}_{\tau}$ Заметим, что

$$E \setminus A = E \cap (T \setminus A)$$
 $E \setminus (T \setminus A) = E \cap A$.

По определению τ -измеримости 2.4.1 для всех $E \subset T$

$$\tau(E) = \tau(E \cap A) + \tau(E \setminus A)) = \tau(E \setminus (T \setminus A)) + \tau(E \cap (T \setminus A)).$$

Следовательно, $T \setminus A \in \mathfrak{A}_{\tau}$.

2. Докажем, что $A, B \in \mathfrak{A}_{\tau} \Longrightarrow A \cup B \in \mathfrak{A}_{\tau}$. Рассмотрим произвольное множество $E \subset T$. Запишем для него условие 2.4.1 для A

$$\tau(E) = \tau(E \cap A) + \tau(E \setminus A) =$$

$$= \tau(E \cap A) + \tau((E \setminus A) \cap B) + \tau((E \setminus A) \setminus B) =$$

$$= (\tau(E \cap A) + \tau((E \setminus A) \cap B)) + \tau(E \setminus (A \cup B)) \ge$$

$$\ge \tau(E \cap (A \cup B)) + \tau(E \setminus (A \cup B))$$

Так как неравенство в обратную сторону верно всегда, $A \cap B \in \mathfrak{A}_{\tau}$.

3. Проверим конечную аддитивность τ на \mathfrak{A}_{τ} . Хотим доказать, что для дизъюнктных $A, B \in \mathfrak{A}_{\tau}$ выполнено

$$\tau(A) + \tau(B) = \tau(A \cap B).$$

Заметим, что для всех E

$$(E \cap (A \cup B)) \cap A = E \cap A$$
$$(E \cap (A \cup B)) \setminus A = E \cap B$$

Подставим в условие τ -измеримости 2.4.1

$$\tau(E \cap (A \cup B)) = \tau(E \cap A) + \tau(E \cap B).$$

Теперь подставим в качестве E = T

$$\tau(A \cup B) = \tau(A) + \tau(B).$$

4. Проверим, что $\mathfrak{A}_{\tau} - \sigma$ -алгебра. Для этого осталось доказать, что

$$\forall A_j \in \mathfrak{A}_{\tau} \colon \bigcup_{j=1}^{\infty} A_j \in \mathfrak{A}_{\tau}.$$

Обозначим
$$A = \bigcup_{j=1}^{\infty} A_j$$
.

(a) Пусть все A_i дизъюнктны. Для всех E верно

$$\tau(E) = \tau \Big(E \cap \bigcup_{j=1}^{n} A_j \Big) + \tau \Big(E \setminus \bigcup_{j=1}^{n} A_j \Big) =$$

Воспользуемся конечной аддитивностью и тем, что $E \setminus A \subseteq E \setminus \bigcup_{j=1}^n A_j$:

$$= \sum_{j=1}^{n} \tau(E \cap A_j) + \tau \Big(E \setminus \bigcup_{j=1}^{n} A_j \Big) \geqslant \sum_{j=1}^{n} \tau(E \cap A_j) + \tau(E \setminus A).$$

Устремим $n \to \infty$ и воспользуемся счетной аддитивностью для дизъюнктных множеств:

$$\tau(E) \geqslant \sum_{j=1}^{\infty} \tau(E \cap A_j) + \tau(E \setminus A) \geqslant$$

$$\geqslant \tau\left(\bigcup_{j=1}^{\infty} (E \cap A_j)\right) + \tau(E \setminus A) \geqslant$$

$$\geqslant \tau(E \cap A) + \tau(E \setminus A) = \tau(E)$$

Следовательно, $A \in \mathfrak{A}_{\tau}$.

(b) Если A_j не дизъюнктны, рассмотрим новые A_j' :

$$A'_j = A_j \setminus \bigcup_{k=1}^{j-1} A_k.$$

 A_j' дизъюнктны и измеримы, при этом их объединение равно A. Тогда по первому пункту A измеримо.

 $\mu = \tau \mid_{\mathfrak{A}_{\tau}}$, при этом известно, что $\tau \mid_{\mathfrak{A}_{\tau}}$ — объем и τ полудаддитивна. По теореме о счетной полуаддитивности, τ — мера.

Лекция 4: †

Определение 20: Полная мера

Пусть μ — мера на полукольце \mathcal{P} . Мера называется полной, если

$$e \in \mathcal{P}, \ \mu(e) = 0 \Longrightarrow \forall e' \subset e \colon e' \in \mathcal{P}.$$

Следствие 5 (Ключевое свойство построения меры). $au |_{\mathfrak{A}_{ au}}$ — полная мера.

Доказательство. Рассмотрим $e \in \mathfrak{A}_{\tau}$ и $e' \subset e$, причем $\tau(e) = 0$. Хотим доказать, что $e' \in \mathfrak{A}_{\tau}$. Хотим проверить такое равенство для всех $E \in T$:

$$\tau(E) = \tau(E \cap e') + \tau(E \setminus e').$$

По монотонности меры, $\tau(E) \geqslant \tau(E \setminus e')$. Так как $E \cap e' \subset E \cap e \subset e$,

$$0 \leqslant \tau(E \cap e') \leqslant \tau(e) = 0.$$

Следовательно, верно неравенство

$$\tau(E) \geqslant \tau(E \cap e') + \tau(E \setminus e').$$

А в другую сторону это неравенство верно всегда в силу полуаддитивности внешней меры.

23 Sept

2.5 Продолжение меры. Построение внешней меры.

Обозначение. Рассмотрим полукольцо \mathcal{P} и μ_0 — меру на нем. Пусть

$$\mu^*(E) = \inf \left\{ \sum_{j=1}^{\infty} \mu_0(P_j) \mid E \subset \bigcup_{j=1}^{\infty} P_j, \ P_j \in \mathcal{P} \right\}.$$

Если E нельзя покрыть счетным набором P_i , будем считать $\mu^{*(E)=+\infty}$.

Теорема 2.5.1

 μ^* — внешняя вера и $\mu^*(E) = +\infty$.

Доказательство.

1. $E \in \mathcal{P} \stackrel{?}{\Longrightarrow} \mu^*(E) = \mu_0(E)$. Нужно проверить неравенство в две стороны.

Возьмем покрытие $\{E,\varnothing,\varnothing,\ldots\}$. Тогда $\mu^*(E)\leqslant \mu_0(E)+0$.

 $\boxed{\geqslant}$ По теореме о счетной полуаддитивности меры, если $E \subset \bigcup_{j=1}^{\infty} P_j, \ P_j \in \mathcal{P}$, то $\mu_0(E) \leqslant \sum_{j=1}^{\infty} \mu_0(P_j) \leqslant \inf \sum_{j=1}^{\infty} \mu_0(P_j)$.

В частности, $\mu^*(\emptyset) = 0$.

2. Проверим счетную полуаддитивность μ^* , то есть докажем, что

$$E \subset \bigcup_{j=1}^{\infty} E_n \Longrightarrow \mu^*(E) \leqslant \sum_{n=1}^{\infty} \mu^*(E_n).$$

Каждое множество нужно оценить с некоторой точностью разбиения, а потом устремить разницу к нулю.

Если сумма $\sum_{n=1}^{\infty} \mu^*(E_n) = +\infty$, то неравенство автоматически выполнено. Предположим, что $\sum_{n=1}^{\infty} \mu^*(E_n)$ конечно.

Тогда существует такое покрытие $\{P_j^{(n)}\}$, что ошибка не большая для фиксированного $\varepsilon>0$:

$$E_n \subset \bigcup_{j=1}^{\infty} P_j^{(n)}, \quad \sum_{j=1}^{\infty} \mu_0(P_j^{(n)}) \leqslant \mu^*(E_n) + \frac{\varepsilon}{2^n}.$$

Далее запишем для E

$$E \subset \bigcup_{n=1}^{\infty} E_n \subset \bigcup_{n=1}^{\infty} \bigcup_{j=1}^{\infty} P_j(n).$$

Так как μ^* — это инфимум, можно перейти к следующему неравенству

$$\mu^*(E) \leqslant \sum_{n=1}^{\infty} \sum_{j=1}^{\infty} \mu_0(P_j^{(n)}) \leqslant \sum_{n=1}^{\infty} \mu^*(E_n) + \frac{\varepsilon}{2^n} =$$

$$\sum_{n=1}^{\infty} \mu^*(E_n) + \varepsilon \cdot \sum_{n=1}^{\infty} \frac{1}{2^n} = \sum_{n=1}^{\infty} \mu^*(E_n) + \varepsilon$$

Теперь устремим $\varepsilon \to 0$ и получим

$$\mu^*(E) \leqslant \sum_{n=1}^{\infty} \mu^*(E_n).$$

2.5.1 Теорема о продолжении меры

Теорема 2.5.2: Теорема о продолжении меры

Пусть μ_0 — мера на полукольце \mathcal{P}, μ^* — внешняя мера, построенная ранее. По ней построена σ -алгебра \mathfrak{A}_{μ^*} измеримых по μ^* множеств.

Тогда $\mathcal{P}\subset \mathfrak{A}_{\mu^*}{}^a$ и $\mu^*|_{\mathfrak{A}_{\mu^*}}$ — продолжение меры $\mu_0.$

^аЭто содержательная часть

Доказательство. Хотим проверить, что если $P \in \mathcal{P}$, то $\mathcal{P} \in \mathfrak{A}_{\mu^*}$, то есть

$$\forall E \in T \colon \mu^*(E) = \mu^*(E \cap P) + \mu^*(E \setminus P).$$

 $E\in P$] Воспользуемся главной аксиомой полукольца: $E\backslash P=igsqcup_{j=1}^NQ_j$, где $Q_j\in \mathcal{P}$ и дизъюнктны. Тогда E=

 $\underbrace{(P\setminus E)}_{\in\mathcal{P}}\cup \bigsqcup_{j=1}^N\underbrace{Q_j}_{\in\mathcal{P}}$, причем это объединение дизъюнктное. Теперь заметим, что для μ_0 есть конечная

аддитивность, а μ^* совпадает с μ на элементах кольца, и поэтому

$$\mu^*(E) = \mu_0(E) = \mu_0(P \cap E) + \mu_0\left(\bigsqcup_{j=1}^N G_j\right) =$$
$$= \mu^*(P \cap E) + \sum_{j=1}^N \mu^*(Q_j)$$

Так как μ^* полуаддитивна, $\sum_{j=1}^N \mu^*(Q_j) \geqslant \mu^*\Bigl(\bigcup_{j=1}^N Q_j\Bigr) = \mu^*(E\setminus P)$. Тогда

$$\mu^*(E) = \mu^*(P \cap E) + \mu^*(E \setminus P).$$

<u>Е</u> произвольное Если $\mu^*(E) = +\infty$, то неравенство сразу верно, поэтому будем считать, что $\mu^*(E) < +\infty$. Воспользуемся этим и приблизим с точностью до любого ε к объединению элементов полукольца.

Зафиксируем $\varepsilon > 0$ и построим такие $P_j \in \mathcal{P}$, что $E \subset \bigcup_{j=1}^\infty P_j$, при этом

$$\sum_{j=1}^{\infty} \leqslant \mu^*(E) + \varepsilon.$$

Так как $P_j \in \mathcal{P}$:

$$\mu_0(P_j) = \mu^*(P_j) \geqslant \mu^*(P_j \cap P) + \mu^*(P_j \setminus E).$$

Тогда

$$\mu^{*}(E) + \varepsilon \geqslant \sum_{j=1}^{\infty} \mu^{*}(P_{j}) \geqslant \sum_{j=1}^{\infty} \mu^{*}(P_{j} \cap P) + \sum_{j=0}^{\infty} \mu^{*}(P_{j} \setminus P) \geqslant$$
$$\geqslant \mu^{*}\left(\left(\bigcup_{j=1}^{\infty} P_{j}\right) \cap P\right) + \mu^{*}\left(\left(\bigcup_{j=1}^{\infty} P_{j}\right) \setminus P\right) \underset{\varepsilon \to 0}{\geqslant}$$
$$\geqslant \mu^{*}(E \cap P) + \mu^{*}(E \setminus P)$$