

Machine Learning

Matrices and vectors 冷神鬼啼

Matrix: Rectangular array of numbers: 美拉姆或卡斯特斯

Dimension of matrix: number of rows x number of columns

知维数

37802

列数

Matrix Elements (entries of matrix) たみずたなし次

 $A_{ij} = i''i, j$ entry" in the i^{th} row, j^{th} column.

$$A_{11} = |462|$$
 $A_{12} = |9|$
 $A_{32} = |437|$
 $A_{41} = |447|$

Agg = Underined lerror) イト 下記以てなる法元多)

1-indexed vs 0-indexed:

Machine Learning

Addition and scalar multiplication

/FRATH & FRATEX 132

Matrix Addition 片在相间流水的形形于可加加

Scalar Multiplication

red number
$$\frac{3}{4}$$
 $\frac{1}{2}$ $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{4}$ $\frac{1$

Combination of Operands を作る

Machine Learning

Matrix-vector multiplication FORT X FOZ

Example

Details:

To get y_i , multiply \underline{A} 's i^{th} row with elements of vector x, and add them up.

Example

$$1 \times 1 + 2 \times 3 + 1 \times 2 + 0 \times 1 = 14$$

 $0 \times 1 + 3 \times 3 + 0 \times 2 + 4 \times 1 = 13$
 $-1 \times 1 + (-2) \times 3 + 0 \times 2 + 0 \times 1 = -7$

Matrix-matrix multiplication

/FLEPT X FEPT

Example

Details:

The $\underline{i^{th}}$ column of the matrix C is obtained by multiplying A with the i^{th} column of B. (for i = 1,2,...,0)

Example

$$\begin{bmatrix} 1 & 3 \\ 2 & 5 \end{bmatrix} \begin{bmatrix} 0 \\ 3 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 9 & 7 \\ 15 & 12 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 3 \\ 2 & 5 \end{bmatrix} \begin{bmatrix} 0 \\ 3 \end{bmatrix} = \begin{bmatrix} 1 \times 0 + 3 \times 3 \\ 2 \times 0 + 5 \times 3 \end{bmatrix} = \begin{bmatrix} 9 \\ 15 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 3 \\ 2 & 5 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \times 1 + 3 \times 2 \\ 2 \times 1 + 5 \times 2 \end{bmatrix} = \begin{bmatrix} 7 \\ 12 \end{bmatrix}$$

Machine Learning

Matrix multiplication properties

/ROPERIUM FITE

Let A and B be matrices. Then in general,

$$A \times B \neq B \times A$$
. (not commutative.)

E.g.
$$\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 0 \\ 2 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 2 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 0 \\ 2 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 2 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 0 \\ 2 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 0 \\ 2 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 2 & 2 \end{bmatrix}$$

3×5×2

3×(5×2) = (3×5)×2

"Associative" 3804 $A \times (0 \times c) \leftarrow A \times (0 \times c) \leftarrow$ Let $D = B \times C$. Compute $A \times D$. A \times ($B \times C$)

Let $E = A \times B$. Compute $E \times C$. ($A \times B \times C$)

Some

Inverse and transpose

Matrix Transpose

Example:
$$A = \begin{bmatrix} 1 & 2 & 0 \\ \hline 3 & 5 & 9 \end{bmatrix}$$
 $B = A^{T} = \begin{bmatrix} 1 & 3 \\ 2 & 0 \\ 0 & 9 \end{bmatrix}$

Let A be an $m \times n$ matrix, and let $B = A^T$. 3×2 Then B is an $n \times m$ matrix, and

$$\frac{B_{ij} = A_{ji}}{B_{iz} = A_{zi}} = 2$$

$$B_{3z} = 9$$

$$A_{23} = 9$$