Отчет о Калибровке Манипулятора

1 Описание Задачи

В данной работе была выполнена задача оптимизации параметров манипулятора. Задача заключалась в нахождении оптимальных параметров Денавита-Хартенберга для манипулятора, используя метод оптимизации для минимизации разности между рассчитанными и фактическими значениями матриц преобразования.

2 Методы

Для оптимизации параметров использовался алгоритм fmincon из MATLAB. Этот алгоритм позволяет находить минимум заданной функции с учетом заданных ограничений. В качестве целевой функции использовалась норма Фробениуса разности между рассчитанными и фактическими матрицами преобразования.

2.1 Используемые формулы

Параметры Денавита-Хартенберга представляют собой четыре параметра: θ (угол вращения), d (смещение вдоль оси вращения), α (угол между осями), a (смещение вдоль перпендикулярной оси). Матрица преобразования Денавита-Хартенберга определяется как:

$$T = Rotz(\theta) \cdot Transz(d) \cdot Rotx(\alpha) \cdot Transx(a) \tag{1}$$

где $Rotz(\theta)$, $Rotx(\alpha)$ - матрицы вращения вокруг осей z и x соответственно, а Transz(d), Transx(a) - матрицы смещения вдоль этих осей.

3 Результаты

После оптимизации были получены следующие параметры:

Звено	θ	d	α	a
1	q1 + 0.01	308	1.5758	6
2	q2 + 0.001	-2.1595	0.0020	405
3	q3 + 0	-2.8405	0	492

Таблица 1: Оптимизированные параметры манипулятора

При сравнении рассчитанных матриц преобразования с фактическими данными, норма Фробениуса разности показала значительное улучшение точности модели манипулятора.

4 Заключение

Использование оптимизатора fmincon позволило эффективно настроить параметры манипулятора, что привело к значительному улучшению точности моделирования его движений.