Employee Attrition Analysis

The cost of training an employee for them to be situated in the company has a financial impact because the time it takes for the new hire takes at least 12 months to be fully productive. When an existing employee decides to leave the company. There are many factors that affect an employee's attrition and performance: family, kids, work-life balance, job satisfaction, complexity of the work, relationship status, etc.

Developing a classifier that more strongly weighs relevant factors using Logistic Regression, Decision Trees, or Random Forest could help solve this problem. This is an invaluable method because, if successful, it will be extremely important to improve employee satisfaction with the company and improve attrition and performance. The scope of this project is to find ways to improve employee satisfaction best and retain attrition. Other companies can benefit from similarly specified factors especially when it comes to improving the company's environment to retain employees.

Data

Having the IBM data as a reference point will allow us to use a representation of the workforce at a large-scale company. Given IBM's growth in products and individuals, IBM would serve as a good representation as a baseline for other companies whether to that size and magnitude or hopes to become of that size. Since the data has many variables as below:

- Work-life balance
- Relationship satisfaction
- Performance rating
- Job satisfaction
- Environment satisfaction
- Education level
- Manager
- Recent promotions

Data link: https://www.kaggle.com/datasets/pavansubhasht/ibm-hr-analytics-attrition-dataset

Exploratory Data Analysis

We graphed the different variables to determine the attrition of an employee:

- Overtime (figure 1)
- Number of companies worked (figure 2)
- Business Travel (figure 3)
- Stock option (figure 4)

Figure 1

Figure 2

Figure 3

Figure 4

Method/Model

We determined the algorithm and model that would best determine whether an employee would stay at the current company. When finding that, we found that the Logistic Regression was the most accurate model to determine that.

	Algorithm Model accuracy score			
	Θ	Logistic Regress	ion	0.873016
	1		KNN	0.863946
	2		SVM	0.875283
	3	Random For	rest	0.863946
	4	Gradient Bo	oost	0.873016
	5	Naive Ba	ayes	0.773243
Out[89]:		Algorithm	ROC-AUC train score	ROC-AUC test score
	0	Logistic Regression	0.819373	0.750928
	1	KNN	0.772569	0.702564
	2	SVM	0.819323	0.770563
	3	Random Forest	0.789897	0.701586
	4	Gradient Boost	0.800767	0.681495

Feature Importance

In determining the best attributes/features that would determine whether the employee would stay at the company. We found that the most important features were years with the current manager, total working years, standard hours, distance from home, etc..

YearsWithCurrManager	1.454346
TotalWorkingYears	0.877391
StandardHours	0.863064
DistanceFromHome	0.779004
NumCompaniesWorked	0.756131
BusinessTravel	0.572680
OverTime	0.547024
MonthlyIncome	0.538561
YearsSinceLastPromotion	0.512346
PerformanceRating	0.498976
JobLevel	0.494973
YearsInCurrentRole	0.494973
StockOptionLevel	0.494973
HourlyRate	0.452856
PercentSalaryHike	0.385998
YearsAtCompany	0.271022
WorkLifeBalance	0.202738
TrainingTimesLastYear	0.147951
JobInvolvement	0.114334
Over18	0.083830
JobSatisfaction	0.079956
Education	0.078487
MonthlyRate	0.050861
RelationshipSatisfaction	0.019259

Future Improvements

While IBM is a good source of data, having one organization's data prevents the users of the data from predicting for small or medium-sized companies. As companies continue to grow, some other variables and factors could impact an employee's decision to stay at the company such as mission statement, growth, stock price, etc. Incorporating these variables will allow for a holistic view and a better prediction of whether an employee stays at a company.