

King Mongkut University Of Technology Thonburi

Midterm Examination

Semester 1/2015

Subject: EIE 326 Electronics Communication Engineering

Student: 3rd Yr. Electronics & Telecommunication Eng.

Date: September 28th, 2015

Time: 09.00-12.00AM

Instructions

- 1. There are 48 questions in 10 pages, total 100 points.
- 2. Answer all questions in this paper.
- 3. KMUTT approved calculator can be used.
- 4. Books and documents are allowed.
- 5. You are not allowed to bring the question papers out of the examination room.

Notes

- When you finished, please raise your hand for the permission to leave the room.
- Any misbehave in this room may result to the highest penalty

Name _____Student ID_____

Assistant Prof. Chanin Wongngamkam Tel: 9070

R. Silynt

This papers have been approved

(Assoc. Prof. Rardchawadee Silapunt, Ph.D.)

Head of Electronic and Telecommunication Engineering Department

Name.		ID. no	Departn	nent		
Q1. Ma	ark X over your choice in th	e answer sheet on page	9. (1 points each)			
1.	Calculate the noise power at T 300K, BW. 1MHz					
	a) 0.003 pW	b) 0.004pW	c) 0.005 pW	d) 0.006 pW		
2.	Convert the answer from 1 of Q1 into dBm.					
	a)-113.8 dBm	b) -103.8 dBm	c) -111.8 dBm	d)-115.7 dBm		
3.	From 1 of Q1, calculate th	e thermal noise voltage	at the input of the	receiver with 75 ohms		
	input impedance?					
	a) 1.4494 µV	b) 1.44494 μV	c) 1.41494 µV	d) 1.11499 µV		
4.	Noise at the input of an amplifier in operation is -100 dBm but it is -99.7 dBm at the output					
	Calculate the noise factor.					
	a) 1.0755	b) 1.2755	c) 1.0715	d) 1.0015		
5.	What is the value of NF of the only one transistor in the amplifier from 4. of Q1?					
	a) 1.7 dB	b) 1.2 dB	c) 0.3 dB	d) 0.7 dB		
6.	How can we minimize the spurious from DDS?					
	a) Apply a filter at the o/p of DDS		b) Decrease the clock frequency			
	c) Increase the clock frequency		d) Increase the no. of bits			
7.	A common base BJT amplifier is commonly used as the rf amplifier for what reason?					
	a) High input impedance		b) Low input impedance			
	c) High current gain		d) Wide bandwidth			
8.	What is the level of noise in dBm/Hz at 290K ?					
	a) -178 dBm/Hz		b) -177 dBm/Hz			
	c) -175 dBm/Hz		d)-174dBm/Hz			
9.	The frequency of the crystal oscillator can be generated at?					
	a) At series resonance		b) At parallel res	onance		
	c) Between series resonance and anti-resonance d) all is correct					
10). What is the advantage of	PFD when compare to o	ther types of phase	detector?		
	a) Higher Q		b) Wider detection	on range		
	c) More o/p voltage		d) all is correct			

NameID.	noDepar	tment				
11. What is the benefit of the charge pumped when compare to others?						
a) Suitable for connect	tion to the outside capacito	b) More voltage can be obtained				
c) Voltage change is fas	ter	d) all is correct				
12. Compare the highest S/N	ceiver with 12 bits ADC and 8 bits ADC?					
a) 12 bit ADC provide 2	4 dB more SNR than 8 bit A	DC b) SNR is always equal				
c) 12 bit ADC provide 20	dB more SNR than 8 bit Al	OC d) no correct answer				
13. The SFDR = 40 dB means?						
a) O/P level of the input signal is more than the spurious for 40 dB						
b) I/P level of the input signal is more than the spurious for 40 dB						
c) The input frequency is more than the spurious for 40 dB 40 dB						
d) no correct answer	d) no correct answer					
14. Blocking and desensitizat	tion in the receiver may res	sult from?				
a) Non linearity of the	circuit	b) Strong interference				
c) DR is too low		d) no correct answer				
15. What is the method that can convert phase modulation into frequency modulation?						
a) Frequency multiplica	ation	b) Frequency division				
c) Frequency subtraction	on	d) Frequency addition				
16. FM detection by IQ demodulator with the Zero crossing detection is comparable to?						
a) Differentiation		b) Synchronous detection				
c) Phase detection		d) FM to AM conversion				
17. Intermediate Frequency in the super heterodyne receiver can be obtained from?						
a) Frequency multiplica	tion	b) Frequency division				
c) Frequency subtractio	n	d) Frequency addition				
18. Is it possible to decrease	e the receiver's noise floor?	Reason?				
a) No, since it is the con	stant	b) No, only increasing is possible				
c) Yes, if we can reduce	the operating frequency	d) Yes, if we can reduce the bandwidth				

NameID. no	Department					
19. How can we solve the image frequency problem in the modern low IF radio receiver?						
a) Using the band pass filter	b) Applying the quadrature mixer					
c) DSP implementation	d) Using the ADC					
20. What is the amount of NF of an amplifier with equi. noise Temp = 120K? Ref. $T = 290K$						
a)1.2 dB	b) 1.3 dB					
c) 1.4 dB	d) 1.5dB					
21. A radio receiver with the input impedance of 50 Ω require 1 μ Vrms which is equal to?						
a) -107 dBm	b) -117 dBm					
c) -109 dBm	d) -119 dBm					
22. A series RLC circuit (R = 200 Ω , L = 10 μ H, C = 0.01 μ F), which statement is correct for 200 KHz?						
a) The current is lagging the voltage	b) The current is leading the voltage					
c) The current and voltage are inphase	d) The voltage is zero during resonant					
23. What kind of matching network is good for th	e 50+j18 Ω source and the 50 Ω load?					
a) Low pass with the C close to the source a	and L close to the load.					
b) High pass with the L close to the source a	b) High pass with the L close to the source and C close to the load.					
c) Low pass with the L close to the source a	nd C close to the load.					
d) High pass with the C close to the source a	and L close to the load.					
24. Hi Z condition at PD _{out} of MC145152 occurs	when?					
a) Positive trailing of F_{R} is leading the F_{IN}	b) Positive trailing of $\ F_R$ is lagging the $F_{!N}$					
c) F _R and F _{IN} are in phase	d) no correct answer					
25. Image frequency can gives trouble to this receiver?						
a) Direct conversion	b) Super heterodyne					
. c) TRF	d) no correct answer					
26. This method can reduce the phase noise from the output of Integer N frequency synthesizer?						
a) Decrease Fr	b) Increase Fr					
c) Decrease N	d) Increase N					

NameDepa	artment						
27. From Bessel's table from m_f = 2.41, what happen to the carrier the FM signal?							
a) The carrier disappear for a moment, then return.							
b) The carrier begin to disappear then become weaker.							
c) The carrier change to the value before the mo	c) The carrier change to the value before the modulation begins.						
d) no correct answer							
28. IP3 from an amplifier can be reduced by means of?	28. IP3 from an amplifier can be reduced by means of?						
a) Addition of an Attenuator at the input	b) Reduction of the $\ensuremath{V_{cc}}$						
c) Reduction of the Gain	d) Addition of a band pass filter						
29. This problem can be solved by using the filter.							
a) IP3	b) IP2						
c) Spurious	d) Harmonics						
30. The output of the Phase Frequency Detector is $+V_{DD}$ p	oulse for the whole period because						
a) two inputs are in phase	b) It is in the phase detection mode						
c) It is in the phase lock mode	d) It is in the frequency detection mode						
Q 31 – 40 : Answer the question in the blank space provided (2 points each)							
31. An amplifier with the input and output impedance of	50 Ω has the voltage gain of 200, 100 KHz						
bandwidth, NF = 0. Calculate the V_N at the input at T = 30	00 K						
32. The related P _N can be calculate and equal to							
33. Calculate the F _N							
34. Matching R_S 1000 Ω to the 50+j18 Ω R_L at 1.5 MHz. Calculate the value of L and C for the low pass							
response matching circuit ?							
35. The power received from a satellite by a $2m^2$ earth station antenna is 6 x 10^{-13} W. What is the total							
transmitted power from the antenna of the satellite if the path loss is 140 dB?							
36. Can we use the low pass filter instead of the integrator for indirect FM generator? $V_{m} = C \stackrel{R}{=} V_{mn}$							

NameID.	no	Department
37. Reason for Q36		
38. The benefit from using 2 Modulus Pre-scale	•	
39. The benefits from using Fractional N instea	d of the 2 Modulus F	Pre-scaler is
40. Explain the difference between Narrowban	d FM and Wideband	

Q41. Two amplifier with 1Hz bandwidth are connected as shown in the following diagram at T=290K. Calculate the o/p noise power in dBm, o/p signal power in mW and o/p S/N in dB? (10 points)

Name......Department.......Department......

Q42. Calculate L,C, X_L , X_C of the L network with low pass response in order to match the source impedance of 50+j0 Ohms to the load with Z_L 200 Ohms at 800 MHz (5 points)

Q43. Calculate M and A when $f_{VCO} = 550.050$ MHz. Given R = 256 and 64/65 prescaler (5 points)

Q44. Describe the lock range and capture range from this diagram (5 points)

Solution

Q45. Calculate the total power of the AM waveform as shown in the picture. The carrier power is 10W (5 points)

Q46. Calculate the N_{eff},N,K,F of the following fractional – N frequency synthesizer.(10 points.)

- 1. calculate N_{eff}
- 2. Frequency step (F_r/F)
- 3. Reference frequency(F_r).....
- 4. calculate: reference freq./frequency step = resolution = F,
- 5. N+K/F
- 6. Fo

Q47. Draw the AM from Q45 in the vector form with respect to the scale of the modulation. (5 points)

Q48. A wideband amplifier is fed with 560 and 568 MHz, IMD may be found in the following frequencies? (5 points)

Name......Department.......Department.....

Answer sheet (Mark X over the best choice)

- 1. (a) (b) (c) (d)
- 2. (a) (b) (c) (d)
- 3. (a) (b) (c) (d)
- 4. (a) (b) (c) (d)
- 5. (a) (b) (c) (d)
- 6. (a) (b) (c) (d)
- 7. (a) (b) (c) (d)
- 8. (a) (b) (c) (d)
- 9. (a) (b) (c) (d)
- 10. (a) (b) (c) (d)
- 11. (a) (b) (c) (d)
- 12. (a) (b) (c) (d)
- 13. (a) (b) (c) (d)
- 14. (a) (b) (c) (d)
- 15. (a) (b) (c) (d)

- 16. (a) (b) (c) (d)
- 17. (a) (b) (c) (d)
- 18. (a) (b) (c) (d)
- 19. (a) (b) (c) (d)
- 20. (a) (b) (c) (d)
- 21. (a) (b) (c) (d)
- 22. (a) (b) (c) (d)
- 23. (a) (b) (c) (d)
- 24. (a) (b) (c) (d)
- 25. (a) (b) (c) (d)
- 26. (a) (b) (c) (d)
- 27. (a) (b) (c) (d)
- 28. (a) (b) (c) (d)
- 29. (a) (b) (c) (d)
- 30. (a) (b) (c) (d)