Ţ

CASE FILE

IN-61

NASA

31.12.

MEMORANDUM

COMPUTER PROGRAM FOR SOLVING NINE-GROUP DIFFUSION

EQUATIONS FOR CYLINDRICAL REACTORS

By James W. Miser, Robert E. Hyland, and Daniel Fieno

Lewis Research Center Cleveland, Ohio

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

WASHINGTON

January 1959

		-
		,

TABLE OF CONTENTS

SUMMARY	Page 1
INTRODUCTION	1
METHOD OF ANALYSIS	2
CALCULATION PROCEDURE	15
APPENDIXES A - SYMBOLS	16
B - INFORMATION ON USE OF PROGRAM	18
C - USE OF PROGRAM FOR LESS THAN NINE ENERGY GROUPS AND FOUR OR LESS REGIONS	20
D - COMPUTING MACHINE PROGRAM INSTRUCTIONS	21
REFERENCES	38
TABLES I - STORAGE LOCATIONS OF INPUT	39
II - ORDER OF PUNCHED OUTPUT	40
RIGIDEC	4.7

		-
		•
		•
		•
		J

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

MEMORANDUM 12-24-58E

COMPUTER PROGRAM FOR SOLVING NINE-GROUP DIFFUSION

EQUATIONS FOR CYLINDRICAL REACTORS

By James W. Miser, Robert E. Hyland, and Daniel Fieno

SUMMARY

This report presents a method for determining the critical size of a cylindrical reactor by a one-dimensional group-diffusion solution in the radial plane. The effect of leakage in the axial direction is taken into account by prescribing values of axial leakage based on assumed flux levels. The method is based on dividing the neutron energy spectrum into nine groups and the reactor into four concentric cylinders (or regions). The nuclear cross sections used for each group are the average values in each energy group.

A computing machine program for an IBM 650 computer (plus attachments specified herein), which performs the solution of the diffusion equations given, and a method for using the program for less than nine groups and four, or less, regions are included.

INTRODUCTION

The subject program for the IBM type 650 magnetic drum data-processing machine provides a method for determining the critical size of a cylindrical reactor on the basis of age-diffusion theory. The age-diffusion equation is approximated by group-diffusion equations wherein the entire neutron energy spectrum is divided into nine energy groups selected on the basis of neutron cross-section characteristics. The neutron cross-sections and diffusion coefficients for each energy group are obtained by a suitable averaging procedure performed prior to the subject program. The program is written in such a way that fissions can occur in any, or all, of the energy groups and the neutrons may be born into any, or all, of the energy groups.

The reactor consists of four concentric cylinders, herein called regions. Any, or all, of the inner three regions may contain fissionable material, but the outer region may not. In the axial direction, each region is assumed to be uniform in composition.

By proper adjustments of the input information, the number of energy groups and/or regions can be reduced.

The subject program was written in the language of IBM SOAP II (Symbolic Optimal Assembly Program) and then converted by the IBM 650 computer into basic machine language. The machine time required for the solution of one case is approximately 6 minutes. Thus, in approximately 18 minutes three values of the effective multiplication factor can be plotted as a function of one geometric variable to determine the approximate critical size of the reactor in question.

This report presents the method of analysis and a discussion of the calculating procedure used to determine the critical size of a reactor. Information is included on the use of the machine program given and the use of the program for less than nine energy groups for four, or less, regions, as well as an outline and tabulation of the machine program. The method of obtaining the necessary input data is similar to that of reference 1, but substitutions of other methods for obtaining the required input can be made at the discretion of the reader. References 2 to 5 may be of use in understanding the programming and operating procedures used with this program.

METHOD OF ANALYSIS

The program calculates the effective multiplication factor $k_{\mbox{eff}}$ of a reactor by means of the equations and procedure given herein. On the basis of three or four such solutions for various values of one of the geometric or physical variables, the critical size of the reactor can be obtained.

The solution for $k_{\mbox{eff}}$ is begun by first assuming a radial distribution of neutrons born and then dividing the neutrons into energy groups on the basis of the division of the fission spectrum. From this assumed radial and energywise flux distribution of neutrons born, a new radial and energywise flux distribution can be calculated. On the basis of the new flux distribution, a calculation of the neutrons born as a result of the fissions in each energy group is made. The reactor power is proportional to the number of neutrons born. The new value of reactor power is divided by the previous one to determine a corresponding value of the effective multiplication factor $k_{\mbox{eff}}$. The new radial distribution of neutrons born then replaces the originally assumed distribution, and this cycle of calculations is continued until the value of $k_{\mbox{eff}}$ is stabilized; or, as considered in the subject program, $\Delta k_{\mbox{eff}}$ approaches zero.

The equations used to make these calculations are developed in the following sequence:

- (1) The steady-state group-diffusion equation is written for each energy group employing group-averaged cross sections.
- (2) The group-diffusion equation is then written in finite difference form for selected radial points in the reactor.
- (3) A procedure for solving equations at each radial point is described for determining the neutron flux at each point for the energy group in question.
- (4) For the radial flux distribution just calculated, the equation is given for computing the radial distribution of neutrons born out of a particular energy group.
- (5) Using the summation of neutrons born at each radial point, equations are given for calculating the reactor power and $k_{\mbox{eff}}$.

The value of the results obtained from the group-diffusion calculations may in some cases be improved with an increase in the number of energy groups. For this reason, the number of energy groups selected is nine, which is the largest number of groups that could be accommodated by the computing machine for which the program was designed. These nine groups are numbered a to i, and any one group generally will be referred to as the nth group. Group a designates the group of highest neutron energy, and group i designates the group of neutrons at thermal energy.

At any point within the reactor, the steady-state equation can be written in the form:

When the case of a unit volume within the reactor and neutrons of a particular energy group n is considered, the terms of the equation can be subdivided as follows (all symbols are defined in appendix A):

Neutron loss per unit time:

- (1) Diffusion of neutrons from volume element = $-D_n \nabla^2 \phi_n$
- (2) Neutron absorption = $\Sigma_{a,n}\varphi_n$
- (3) Slowing out of group $n = \Sigma_{q,n} \Phi_n$
- (4) Neutron leakage from reactor in axial direction = $D_n B_z^2 \phi_n$

Neutron production per unit time:

(1) Fission neutrons born into group $n = \alpha_n \beta t$ where

$$\beta_{t} = \nu \sum_{n=0}^{i} \Sigma_{f,n} \varphi_{n}$$

(2) Neutrons slowing down into group $n = \sum_{q,n-1} \varphi_{n-1}$

If the previous terms are substituted in equation (1), the general diffusion equation becomes

$$-D_{n}\nabla^{2}\phi_{n} + (\Sigma_{a,n} + \Sigma_{q,n} + D_{n}B_{z}^{2})\phi_{n} = \alpha_{n}\beta_{t} + \Sigma_{q,n-1}\phi_{n-1}$$
 (2)

Grouping the terms within the parentheses into one term, $\boldsymbol{\Sigma}_n \boldsymbol{\phi}_n$ reduces equation (2) to the form

$$-D_{n}\nabla^{2}\varphi_{n} + \Sigma_{n}\varphi_{n} = \alpha_{n}\beta_{t} + \Sigma_{q,n-1}\varphi_{n-1}$$
(3)

For a given unit volume in the reactor, the diffusion equations for the nine energy groups can be written

$$(-D\nabla^{2}\phi + \Sigma\phi)_{a} = \alpha_{a}\beta_{t} + 0$$

$$(-D\nabla^{2}\phi + \Sigma\phi)_{b} = \alpha_{b}\beta_{t} + \Sigma_{q,a}\phi_{a}$$

$$(-D\nabla^{2}\phi + \Sigma\phi)_{c} = \alpha_{c}\beta_{t} + \Sigma_{q,b}\phi_{b}$$

$$(-D\nabla^{2}\phi + \Sigma\phi)_{i} = 0 + \Sigma_{q,b}\phi_{h}$$

$$(4)$$

For the cylindrical geometry selected, the flux ϕ is assumed to be a function of the radius r only; therefore,

$$\nabla^2 \varphi = \frac{\mathrm{d}^2 \varphi}{\mathrm{d}r^2} + \frac{1}{r} \frac{\mathrm{d} \varphi}{\mathrm{d}r} \tag{5}$$

The terms on the right side of equation (5) may be approximated by expressing them in terms of finite differences based on values at adjacent points within a region. For this reason, each region is subdivided into cylinders of equal thickness hexcept for the cylinder at the center of the reactor, the two cylinders on either side of an interface, and the outermost cylinder (see fig. 1). Figure 1 presents the assumed configuration of the reactor and indicates the location of the numbered points. The radial dimensions of the four regions (I, II, III, and IV)

may vary independently; in other words, the distance h between two adjacent radial points in a region may vary from region to region. Thus, the value of h is specified by means of the general subscript m.

At a point k the derivatives of equation (5) can be written in terms of finite differences as

$$\left(\frac{\mathrm{d}\Phi}{\mathrm{d}r}\right)_{k} \approx \frac{\Phi_{k+1} - \Phi_{k-1}}{2h_{m}} \tag{6}$$

$$\left(\frac{\mathrm{d}^{2\varphi}}{\mathrm{dr}^{2}}\right)_{k} \approx \frac{\varphi_{k+1} - 2 \varphi_{k} + \varphi_{k-1}}{h_{m}^{2}} \tag{7}$$

Substituting equations (6) and (7) into equation (5) and simplifying result in the following equation:

$$\nabla^{2} \mathbf{\varphi} = \frac{\mathbf{E}_{\mathbf{k-1}} \mathbf{\varphi}_{\mathbf{k-1}} - 2\mathbf{r}_{\mathbf{k}} \mathbf{\varphi}_{\mathbf{k}} + \mathbf{E}_{\mathbf{k}} \mathbf{\varphi}_{\mathbf{k+1}}}{\mathbf{r}_{\mathbf{k}} \mathbf{h}_{\mathbf{m}}^{2}}$$
(8)

where

$$E_{k-1} = r_k - \frac{h_m}{2}$$

$$E_{k} = r_{k} + \frac{h_{m}}{2}$$

Substituting equation (8) into equation (3) and grouping the coefficients of $\phi_{\bf k}$ give

$$-\frac{D_{n,m}}{r_k h_m^2} \left[E_{k-1} \boldsymbol{\varphi}_{k-1,n} + \left(-2r_k - \frac{r_k h_m^2 \boldsymbol{\Sigma}_{n,m}}{D_{n,m}} \right) \boldsymbol{\varphi}_{k,n} + E_k \boldsymbol{\varphi}_{k+1,n} \right]$$

$$= \alpha_n \beta_{t,k} + \boldsymbol{\Sigma}_{q,n-1,m} \boldsymbol{\varphi}_{k,n-1}$$

Further simplification gives

$$E_{k-1}\phi_{k-1,n} + r_kG_{n,m}\phi_{k,n} + E_k\phi_{k+1,n} = W_{k,n}$$
 (9)

where

$$G_{n} = -2 - \frac{h_{m}^{2} \Sigma_{n,m}}{D_{n,m}}$$

$$W_{k,n} = -\frac{r_{k}h_{m}^{2}}{D_{n,m}} (\alpha_{n}\beta_{t,k} + \Sigma_{q,n-1,m}\phi_{k,n-1})$$

Equation (9) for the nth group is then of the form

$$C_{1,k}\phi_{k-1} + C_{2,k}\phi_k + C_{3,k}\phi_{k+1} = W_k$$
 (10)

Equation (9) is applicable at all points in the reactor except where special conditions are imposed, such as points 1, 11, 21, 31, and 38 in figure 1. Points 1 and 38 can be treated as special cases of equation (9); however, points 11, 21, and 31 at the interfaces of adjacent regions cannot be solved by equation (9) because the value of G_n is dependent on the cross sections of a particular region.

In the case of point 1, which is a distance of $h_{\rm I}/2$ from the center of the reactor, it is assumed that $\phi_1=\phi_0$; therefore, by substituting $h_{\rm I}/2$ for $h_{\rm m}$ and ϕ_1 for ϕ_0 , equation (9) becomes

$$\frac{\left(\frac{h_{I}}{4}\right) \varphi_{1,n} + \frac{h_{I}}{2} \left(-2 - \frac{h_{I}^{2}}{4} \frac{\Sigma_{n,I}}{D_{n,I}}\right) \varphi_{1,n} + \left(\frac{3h_{I}}{4}\right) \varphi_{2,n} }{= -\frac{h_{I}^{3}}{8D_{n,I}} \left(\alpha_{n}\beta_{t,1} + \Sigma_{q,n-1,I}\varphi_{1,n-1}\right) }$$

(The subscript I refers to the central region (fig. l(a)).) Dividing this equation by $h_{\rm I}/4$ and simplifying gives

$$\left(-3 - \frac{h_{I}^{2}}{2} \frac{\Sigma_{n,I}}{D_{n,I}}\right) \varphi_{1,n} + 3\varphi_{2,n} = -\frac{h_{I}^{2}}{2D_{n,I}} (\alpha_{n}\beta_{t,I} + \Sigma_{q,n-1,I}\varphi_{1,n-1})$$
(11)

which, in the form of equation (10) for the nth group, is

$$C_{2,1}\phi_1 + C_{3,1}\phi_2 = W_1$$

医十上上

For the solution of equation (9) at point 38, it is assumed that $\Phi_{39}=0$ and that $\beta_{t,38}=0$; therefore, equation (9) can be written as follows:

$$E_{37}^{\phi_{37,n}} + r_{38}G_{38,n}^{\phi_{38,n}} = -\frac{r_{38}h_{IV}^2}{D_{n,IV}} (\Sigma_{q,n-1,IV}^{\phi_{38,n-1}})$$
 (12)

or, after the general form of equation (10) for the nth group,

$$C_{1,38}\phi_{37} + C_{2,38}\phi_{38} = W_{38}$$

In order to determine an equation that is suitable for computing the flux at the interface of two regions (i.e., points 11, 21, and 31), the requirement that the net neutron current (-D grad φ) be the same for each region at the interface is considered. At point 11, for example,

$$-D_{I,n}(\operatorname{grad} \Phi)_{I,n,ll} = -D_{II,n}(\operatorname{grad} \Phi)_{II,n,ll}$$

This can be expressed as

$$-D_{I,n}\left(\frac{d\phi}{dr}\right)_{I,n,ll} = -D_{II,n}\left(\frac{d\phi}{dr}\right)_{II,n,ll}$$
(13)

The value of $(d\phi/dr)_{I,n,ll}$ can be determined approximately by the following equation, representing the first two terms in a Taylor's series expansion of $d\phi/dr$ at point 10:

$$\left(\frac{d\varphi}{dr}\right)_{I,n,ll} \sim \left(\frac{d\varphi}{dr}\right)_{n,l0} + h_{I}\left(\frac{d^{2}\varphi}{dr^{2}}\right)_{n,l0}$$

Substituting for the derivatives their equivalents as written in equations (6) and (7) gives

$$\left(\frac{\mathrm{d}\varphi}{\mathrm{dr}}\right)_{\mathrm{I,n,ll}} \approx \frac{\varphi_{\mathrm{ll,n}} - \varphi_{\mathrm{9,n}}}{2\mathrm{h}_{\mathrm{I}}} + \mathrm{h}_{\mathrm{I}} \left(\frac{\varphi_{\mathrm{ll,n}} - 2\varphi_{\mathrm{l0,n}} + \varphi_{\mathrm{9,n}}}{\mathrm{h}_{\mathrm{I}}^{2}}\right)$$

which, simplified, is

$$\left(\frac{\mathrm{d}\Phi}{\mathrm{dr}}\right)_{\mathrm{I,n,ll}} \approx \frac{3\Phi_{\mathrm{ll,n}} - 4\Phi_{\mathrm{l0,n}} + \Phi_{\mathrm{9,n}}}{2h_{\mathrm{I}}} \tag{14}$$

By a similar procedure,

$$\left(\frac{\mathrm{d}\phi}{\mathrm{d}r}\right)_{\mathrm{II,n,ll}} = -\frac{3\phi_{\mathrm{ll,n}} - 4\phi_{\mathrm{l2,n}} + \phi_{\mathrm{l3,n}}}{2h_{\mathrm{II}}}$$
(15)

Rearranging equation (13) in the form

$$\left(\frac{d\Phi}{dr}\right)_{I,n,ll} - \frac{D_{II,n}}{D_{I,n}} \left(\frac{d\Phi}{dr}\right)_{II,n,ll} = 0$$

and substituting equations (14) and (15) give

$$\frac{3\phi_{11,n} - 4\phi_{10,n} + \phi_{9,n}}{2h_{I}} - \frac{D_{II,n}}{D_{I,n}} \left(-\frac{3\phi_{11,n} - 4\phi_{12,n} + \phi_{13,n}}{2h_{II}} \right) = 0$$

Then, simplifying this equation gives

$$\varphi_{9,n} - 4\varphi_{10,n} + 3(1 + a_{1,n})\varphi_{11,n} - 4a_{1,n}\varphi_{12,n} + a_{1,n}\varphi_{13,n} = 0$$
(16)

where

$$a_{I,n} = \frac{h_I D_{II,n}}{h_{II} D_{I,n}}$$

At each interface (or k = 11, 21, 31), equation (16) can be written in general form for the $n^{\mbox{th}}$ group as follows:

$$\varphi_{k-2} + d_{1,k}\varphi_{k-1} + d_{2,k}\varphi_k + d_{3,k}\varphi_{k+1} + d_{4,k}\varphi_{k+2} = 0$$
 (17)

As a result of this development, equations (9), (11), (12), and (16) make it possible to write one equation at each of the 38 radial points in the reactor in terms of the flux with coefficients based on the nuclear cross-section data for each energy group. The flux coefficients on the left side of each equation for the nth group form a matrix (designated in the machine program as the <u>left</u> matrix) in which each row represents an equation at a particular radial point and each column represents the flux at a particular point as indicated:

The two simultaneous equations represented by the first two rows of coefficients in the preceding matrix can be reduced to an equation of two unknowns, namely $\phi_{2,n}$ and $\phi_{3,n}$, represented by the primed coefficients in the second row of the following primed matrix. This new equation and the equation represented by the third row of coefficients in the original matrix can then be reduced to an equation of two unknowns, namely $\phi_{3,n}$ and $\phi_{4,n}$, represented by the primed coefficients in the third row of the primed matrix. By continuing this process from the upper left corner to the lower right corner, the original matrix can be reduced to a new, primed matrix of the following form:

The right member of each of the 38 equations is altered, also, as the progression through the original matrix occurs. Therefore, the right side of each equation is treated as a separate matrix (called the right matrix in the program).

Equating the bottom row of the left, primed matrix with that of the right, primed matrix gives

$$C'_{2,38}\phi_{38} = W'_{38}$$

which can be written as

$$\varphi_{38} = \frac{W_{38}^{\bullet}}{C_{2,38}^{\bullet}}$$

After ϕ_{38} is thus determined, the flux at point 37 can be calculated by moving up one row in the primed matrix and writing

$$C'_{2,37}\Phi_{37} + C'_{3,37}\Phi_{38} = W'_{37}$$

$$\varphi_{37} = \frac{W'_{37} - C'_{3,37} \varphi_{38}}{C'_{2,37}}$$

This process continues to the upper left corner of the primed matrix, and thus the flux at each of the 38 points can be calculated. The preceding procedure is a modified matrix reduction technique that is a modification of the Crout matrix reduction technique.

After a value of the flux at each of the 38 radial points in the reactor is thus computed for an assumed value of β_t at each radial position in the core (i.e., the three inner regions), the radial distribution of neutrons born out of a particular energy group, designated as $\beta_{n,k}$, is calculated by

$$\beta_{n,k} = v \Sigma_{f,n,m} \varphi_{n,k}$$

It should be noted that at points 11 and 21 two values of $\beta_{n,k}$ can be calculated, one value based on the Σ_f of one region and the other value based on the Σ_f of the adjacent region. For a calculation of the power of the reactor by the method outlined herein, both values must be computed at an interface within the core. Thus, there are 33 values of $\beta_{n,k}$ for each energy group. It so happens that a running total of $\beta_{n,k}$ at each radial point can be made as the problem proceeds; therefore, a large amount of machine storage is not required to store the values of $\beta_{n,k}$ for each energy group. During the entire cycle of computing through all energy groups, the previously assumed values of $\beta_{t,k}$, or those calculated from the previous cycle, are used.

After the flux distribution and corresponding values of $\beta_{n,k}$ are computed for the first, or highest, energy group, the program proceeds to the solution of the matrix of the second energy group to determine the radial flux distribution and the 33 values of $\beta_{n,k}$ that are added to the $\beta_{n,k}$ of the next higher group. This procedure continues until the solution of all energy groups is completed.

Then, after the summations of $\beta_{n,k}$, designated as $\beta_{t,k}$, are computed for each radial point in the core, a value of the reactor power P is computed by the following equation:

$$P = A \sum_{r_0}^{r_{51}} 2\pi r_k \Delta r \beta_{t,k}$$

$$= A' \sum_{r_0}^{r_{31}} r_k \Delta r \beta_{t,k}$$
(18)

where A' is an arbitrary constant that cancels itself in computing the ratio of powers to determine $k_{\mbox{eff}}.$ In computing the power, a point k is assumed to be at the mean radius of a cylinder of thickness $h_m.$ Thus, figure 1 shows that special equations must be derived for computing the power generated between points 0 and 1, which are a distance $h_{\mbox{I}}/2$ apart, and for the cylinders of thickness $h_m/2$ on either side of an interface within the core. These special equations are listed below:

Between r_0 and r_1 :

$$r_{k} \Delta r_{b,k} = \frac{h_{I}}{4} \frac{h_{I}}{2} \beta_{t,l} = \frac{h_{I}^{2}}{8} \beta_{t,l}$$
 (19)

(Note: $\beta_{t,1}$ is assumed to represent the average β_t from the center of the reactor to point 1.)

Between $r_{10\frac{1}{2}}$ and r_{11} :

$$r_{k}^{\Delta r \beta_{t,k}} = \int_{10^{\frac{1}{2}}}^{r_{11}} \left(r_{10} + \frac{3h_{I}}{4} \right) \beta_{t}^{dr} = \int_{4}^{39h_{I}} \beta_{t}^{dr}$$
 (20)

where it is assumed by numerical integration that

$$\int_{r_{10\frac{1}{2}}}^{r_{11}} \beta_{t} dr = \frac{h_{I}}{24} (-\beta_{t,9} + 5\beta_{t,10} + 8\beta_{t,11})$$
 (21)

(Note: $\beta_{t,I,ll}$ corresponds to the value calculated from a value of Σ_f for region I. A similar regional subscript notation is used on β_t in the following equations.)

Substituting equation (21) into equation (20) gives

$$r_{k}\Delta r \beta_{t,k} = \frac{13h_{I}^{2}}{32} \left(-\beta_{t,9} + 5\beta_{t,10} + 8\beta_{t,I,11}\right)$$
 (22)

Between r_{11} and r_{11} :

$$\mathbf{r}_{\mathbf{k}} \Delta \mathbf{r} \beta_{\mathsf{t}, \mathsf{k}} = \int_{\mathbf{r}_{11}}^{\mathbf{r}_{11} \frac{1}{2}} \left(\mathbf{r}_{11} + \frac{\mathbf{h}_{II}}{4} \right) \beta_{\mathsf{t}} d\mathbf{r} = \int \left(10\mathbf{h}_{I} + \frac{\mathbf{h}_{II}}{4} \right) \beta_{\mathsf{t}} d\mathbf{r} \tag{23}$$

where

$$\int_{\mathbf{r}_{11}}^{\mathbf{r}_{11}\frac{1}{2}} \beta_{\mathbf{t}} d\mathbf{r} = \frac{\mathbf{h}_{II}}{24} \left(8\beta_{\mathbf{t},II,11} + 5\beta_{\mathbf{t},12} - \beta_{\mathbf{t},13}\right)$$
(24)

Then, substitution of equation (24) into equation (23) gives

$$r_{k} \triangle r \beta_{t,k} = \frac{h_{II}}{96} (40h_{I} + h_{II})(8\beta_{t,II,11} + 5\beta_{t,12} - \beta_{t,13})$$
 (25)

At points 21 and 31 equations representing $r_k \Delta r \beta_{t,k}$ can be derived in a manner similar to that used at point 11.

Then, substituting into equation (18) the right members of equations (19), (22), (25), and the equations for points 21 and 31 and the interior points of each region results in the following equation:

$$\frac{P}{A^{\dagger}} = h_{I} \left(\sum_{k=2}^{10} r_{k} \beta_{t,I,k} + Y_{1} (Z_{1} + Y_{2} Z_{2}) \right) + h_{II} \left(\sum_{k=12}^{20} r_{k} \beta_{t,II,k} + Y_{3} Z_{3} + Y_{4} Z_{4} \right) + h_{III} \left(\sum_{k=22}^{30} r_{k} \beta_{t,III,k} + Y_{5} Z_{5} + Y_{6} Z_{6} \right)$$
(26)

where

$$Y_{1} = \frac{h_{I}}{8}$$

$$Z_{1} = \beta_{t,1}$$

$$Z_{2} = \frac{39}{12}$$

$$Z_{2} = -\beta_{t,9} + 5\beta_{t,10} + 8\beta_{t,1,11}$$

$$Y_{3} = \frac{40h_{I} + h_{II}}{96}$$

$$Z_{3} = 8\beta_{t,II,11} + 5\beta_{t,12} - \beta_{t,13}$$

$$Z_{4} = -\beta_{t,19} + 5\beta_{t,20} + 8\beta_{t,II,21}$$

$$Y_{5} = \frac{40h_{I} + 40h_{II} + h_{III}}{96}$$

$$Z_{5} = 8\beta_{t,III,21} + 5\beta_{t,22} - \beta_{t,23}$$

$$Z_{6} = -\beta_{t,29} + 5\beta_{t,30} + 8\beta_{t,III,31}$$

With the value of P/A' calculated for a previous set of values of $\beta_{t,k}$ and a new value of P/A' for the values of $\beta_{t,k}$ obtained from the flux values in the reduced matrix solution, a value of $k_{\mbox{eff}}$ is defined as

$$k_{\text{eff,new}} = \frac{(P/A')_{\text{new}}}{(P/A')_{\text{previous}}}$$
 (27)

This value of k_{eff} is then compared with a previous value of k_{eff} to determine whether or not the change in k_{eff} , noted herein as Δk_{eff} , is less than an assumed value (e.g., 10^{-4}) that specifies a satisfactory limit on the convergence. If the limit on Δk_{eff} is not met, the new values of $\beta_{t,k}$ and P/A' are normalized by dividing each one by k_{eff} (eq. (27)). The normalized values of $\beta_{t,k}$ are then used to compute a new flux distribution that results in a new P/A'. A new k_{eff} is determined by equation (27), and the Δk_{eff} is inspected for being less than, for example, 10^{-4} . This inspection and recalculation of the problem continues until the limits on Δk_{eff} are met. A discussion of the values punched out during, and at the end of, the problem are discussed subsequently.

CALCULATION PROCEDURE

The solution for the effective multiplication factor keff of a reactor by means of the equations and procedure indicated in the previous section is begun by assuming an initial radial distribution of neutrons born and then dividing the neutrons into energy groups on the basis of the division of the fission spectrum. On the basis of this distribution of neutrons born, a radial and energywise flux distribution is calculated. This new flux distribution results in a new radial distribution of neutrons born and new values of reactor power and keff. During each subsequent iteration the radial distribution of neutrons born resulting from the previous cycle of flux calculations is used to compute new values of reactor power and keff. This iteration procedure continues until the value of $k_{\mbox{eff}}$ has converged within the limits specified. Then, one more time through the problem causes the program to punch out: (1) the radial distribution of neutron production as a summation of neutrons born out of each energy group plus those born out of all higher groups, (2) a normalized flux distribution, and (3) the radius of each radial point and the values of k_{eff} and Δk_{eff} .

The details of the program to perform the solution described are included in the appendixes, and an outline of the machine program is given in the form of a block diagram in figure 2. Appendix B lists the computing machine components used and gives instructions with regard to use of the machine program. Appendix C discusses the use of the subject program for less than nine energy groups and four, or less, concentric regions. Appendix D presents an outline and discussion of the various sections of the program and gives a complete listing of the machine program.

Lewis Research Center

National Aeronautics and Space Administration
Cleveland, Ohio, October 1, 1958

APPENDIX A

SYMBOLS

A,A'	coefficients relating power to total number of neutrons born (see eq. (18))
a	coefficient defined by equation (16)
$\mathtt{B}^2_{\mathbf{z}}$	geometric buckling in axial direction
С	flux coefficient defined by equations (9) and (10) used in forming matrix
C'	flux coefficient in reduced matrix
D	diffusion coefficient, cm
d	flux coefficient defined by equations (16) and (17)
d'	flux coefficient in reduced matrix
E	distance from axis of reactor to the halfway point between adjacent numbered points k and k+l (fig. 1(b)), cm
G	flux coefficient defined in equation (9)
h	thickness of concentric cylinders within a region of the reactor (fig. 1(b)), cm
k _{eff}	effective multiplication factor
$\Delta k_{ t eff}$	change in effective multiplication factor
n	neutron energy group (a, b, c, i, in order of decreasing energy to thermal group i)
P	reactor total power defined by equation (18), neutrons/sec
r	radius, cm
W	term in matrix equations representing the neutrons entering a group as defined by equation (9)
W'	term representing neutrons entering a group in the reduced, or primed, matrix
Y ₁ ,Y ₂ ,,Y ₆	coefficients defined by equation (26), cm

z_1, z_2, \dots, z_6	terms representing neutrons born in equation (26), neutrons/ $(cm^3)(sec)$
α	ratio of neutrons born into an energy group to the total number born
β	neutrons born into any one energy group per unit volume per unit time, neutrons/(cm ³)(sec)
$eta_{ t}$	total number of neutrons born into all energy groups per unit volume per unit time, neutrons/(cm3)(sec)
ν	average number of neutrons produced per fission
Σ	sum of neutron cross sections representing neutron loss from a given volume element other than by diffusion, cm ⁻¹
Σa	neutron absorption cross section, cm ⁻¹
$\Sigma_{\hat{\Gamma}}$	neutron fission cross section, cm ⁻¹
$\mathbf{\Sigma}_{ ext{q}}$	neutron slowing-down cross section specifying the number of neutrons slowing out of one energy group into the next lower group, cm ⁻¹
φ	neutron flux, neutrons/(cm ²)(sec)
Subscripts:	
a,b,ci	nine neutron energy groups
k	numbered radial point in reactor (0, 1, 2, 3, as shown in fig. 1)
m	numbered region (I, II, III, and IV as shown in fig. 1)
0,1,2,3,39	radial points
I,II,III,IV	radial regions

APPENDIX B

INFORMATION ON USE OF PROGRAM

The machine for which the subject program was developed is basically an IBM 650 magnetic drum data-processing machine (ref. 2) with an IBM 653 high-speed storage unit (ref. 3) and additional features including indexing accumulators A, B, and C and a floating decimal arithmetic unit (ref. 4). The language in which the program of appendix D is written is an optimal programming method called SOAP II (Symbolic Optimal Assembly Program II) developed for the IBM 650 computer (ref. 5). The results of processing the original program by the method of SOAP II into the basic machine language is shown in the appendix D tabulation, where the original coded program is shown on the left and the program in basic machine language is given in the four columns of numbers on the right. These four columns of numbers represent, column by column from left to right,

- (a) Location of command
- (b) Machine operation code
- (c) Address of data used with machine operation
- (d) Address of next instruction

The plus signs associated with each command, or the data, are not indicated; however, the sign, either plus or minus, should be punched in the cards to be used as the program. The manner in which the machine program is to be punched into cards, of course, depends on the wiring of the control panel in the card reader unit, which varies from one computing machine to another. Therefore, general card punching instructions cannot be given and are not included in this report.

The order of the punched cards to be read into the machine is

- 1. Suitable load punch subroutine
- 2. Program of appendix D
- 3. Set of input data as specified in table I
- 4. Basic load card to transfer control to the first instruction of program, which is 0500

When these four items are read in, the machine will compute and punch out answers until the end of the program is reached, where there is a HALT command.

When the first run is completed, a second run with only the changes desired can be performed by reading the changes into the computer and transferring control to address 0500.

The input locations are specified in table I. The location of each input value is dependent on both the physical composition of the region and/or the region location; therefore, each storage location has been specified in detail in table I.

The output locations are specified by the set of punch constants (program instructions 837 to 844) used in conjunction with an output (or PUNCH) subroutine. The instructions in the program that cause punching of the output are shown in table II in the order of occurrence during the program. Only the values of $k_{\mbox{eff}}$ and $\Delta k_{\mbox{eff}}$ are punched out during each iteration to indicate the progress of the convergence of $k_{\mbox{eff}}$ to the final value punched out at the end of the program.

The means used for loading and punching out data can be adapted to the requirements of a similar IBM 650 machine by writing loading and punching commands in the drum storages reserved for this purpose (namely, 1871 to 1999) and utilizing high-speed storages 9055 to 9059 during the punching operation. This would mean a possible revision of the program instructions used for this purpose, which are listed in table II, and the punch constants (837 to 844) in appendix D. The method used by the authors for reading the input and punching the output is not discussed herein, because the subject program is adaptable to any method presently in use by the reader. The authors' method is obtainable from the authors or the Machine Computing Branch at the NASA Lewis Research Center. The system used by the authors is designed to suit many other projects and cannot be recommended as a specific means of performing the functions required by this problem.

The only addresses not used that could be used for other purposes are addresses 0000, 0037, and 0332. It is understood that locations 1871 to 1999 are also available for a load-punch routine, as previously discussed.

The program is written in such a way that 1.0 is the original guess for each of the 33 values of β in the inner three regions. In some cases that have been run, this β distribution leads to negative fluxes in the first iteration. If this difficulty should arise, steps 373 to 377 can be bypassed by loading the following correction to replace step 372:

0330 21 0200 0390

Then it will be necessary to load with the input data the 33 original values of β stored in addresses 9019 to 9051.

APPENDIX C

USE OF PROGRAM FOR LESS THAN NINE ENERGY GROUPS

AND FOUR OR LESS REGIONS

The subject program can be used for any number of neutron energy groups up to nine and any number of regions up to four. If fewer than nine energy groups are used, input values for the unused energy groups must still be read into the machine as discussed in the next paragraph. The reason for this is that the machine program generates input for nine matrices regardless of the number of groups specified. However, after program step 155 (see appendix D), the program computes only the number of groups desired.

In a solution of fewer than nine groups, the valid cross-section values should be located toward the end of each storage region in which the input data are stored (see table I). For those groups not used, the cross-section values of Σ_q , Σ , and $\nu\Sigma_f$ should be zero. Also, the values of α for the energy groups not used should be zero. The value of Σ_q for the first group for each region should also be zero, and these zeros have to be read in with the other input; whereas, in the case of nine groups, steps 832 to 835 provide the necessary zeros for the four regions. The values of D for the energy groups not used should be equal to 1 because the D values appear in the denominator of expressions used in the program, and zeros in this case would cause the computing machine to stop.

With this storage arrangement, in the case of nine energy groups it is necessary to change the basic machine language of program steps 158 and 519, which control the input to the matrix calculations. An example for six groups would be as follows:

Step 158 = 0407 83 0005 0463

Step 519 = 0257 83 0005 0363

The underlined numbers are equal to 1 less than the number of groups being used.

If fewer than four regions are desired, it is necessary to duplicate the cross-section values and diffusion coefficients in adjacent regions and reduce the value of h in the adjacent regions. In other words, one region of the reactor can be treated as two identical regions insofar as the machine program is concerned. Thus, a three-region reactor can be treated as having four regions, and the machine program can proceed with its solution for four regions.

APPENDIX D

COMPUTING MACHINE PROGRAM INSTRUCTIONS

The subject program was written for the computing machine described in appendix B. In order that the organization of the machine program can be better understood, an outline of the program is given in figure 2. The numbers in the parentheses in each block of figure 2 specify the machine instructions that perform the operations indicated. In the tabulation of the instructions included in this appendix, these instruction numbers appear at the extreme left. (In the discussion in this appendix, the numbers in parentheses refer to these same instruction numbers.)

To utilize the indexing features of the computing machine, data are stored in groups of consecutive storage locations known as regions (3 to 18). The machine loading and punching subroutines are contained in a separate group of instructions that are read into the machine ahead of the subject program and stored in locations 1871 to 1999 (reserved by instruction 22).

As indicated in figure 2, there are parts of the program (3 to 379) that are performed at the beginning of the problem and are not repeated during each iteration to stabilize $k_{\rm eff}$. The remainder of the program (383 to 811) is repeated during each iteration, as shown by the arrow indicating the return of the program to instruction (385). Inside of this outer loop is an inner loop in the program that computes the neutrons born out of each energy group (518 to 811). As soon as $k_{\rm eff}$ has been stabilized, the program is set for the last iteration, and punching takes place during this iteration (746 to 749, 764, 777, 790, 796 to 805, 494 to 498). After the last iteration, the program is stopped, and restarting the problem to compute the next case can be done as outlined in appendix B.

Instruction numbers that are not indicated on the outline in figure 2 are instructions that are not machine commands, such as heading and spacing instructions or constants used in the program. The constants used are as follows:

- (815 to 823) Numbers 1 to 9 used for code designation of each energy group and as constants
- (825 to 830) Other constants that appear in the equations
- (832 to 835) Zero values for the slowing-in cross section of the first energy group in each region of the reactor

(837 to 844) Code numbers used with punch subroutine to prescribe a certain format for the output

(846 to 847) Values used in the left matrix

(849) Limit of convergence of k_{eff} (in this case, 10^{-4})

1	1		NINE	GROUP REACT	OR PROBLEM			
2	1		DEC 40763	0761	A1 511AC			
3			REG A0753 REG B1767		ALPHAS Sum Betas			
			REG C1720		BORY D			
5 6			REG D0762					
7			REG E0798	0797 0835	D COEFFS E VALUES			
8			REG F1729	1766	FLUX			
9			REG G1840	1866	F OF ALPHA			
10			REG H0717		F OF SIG Q			
11			REG J0681	0716	G VALUES			
12			REG M0836	1573	MATRICES			
13			REG N1802	1839	NORM FLUX			
14			REG Q1574	1609	SIGMA Q			
15			REG R1610	1647	PT RADII			
16			REG 51648	1683	SIGMA			
17			REG V1684	1710	NU SIGMA F			
18			REG W1711	1719	H SQ A			
19			SYN BEGIN	0500	START HERE			
20			EQU PUNCH	1930	RKT PUNCH			
21			BLR 0000	0000	BLR 0000			
22			BLR 1871	1999	LOAD PUNCH			
23			EQU KCHEK	9018	TEST FOR			
24	1				LAST			
25	1				ITERATION			
26	1							
27	1		FUNCTI	ONS OF INPUT	VALUES			
28	1							
29		BEGIN	RSA 0003	GO 1		0500		003 0556
30		G O 1	RAU 9217			0556	60 97	217 0471
31			FMP 8003		H SQUARE	0471		0325
32			STU 9213			0325		213 0267
33			NZA	GO 2		0267		320 0521
34			RAU 9217			0320		217 0571
35			FDV 9218		H RATIO	0571		218 0118
36			STU 9260			0118		260 0464
37	_		AXA 0001	GO 1		0464	50 00	001 0556
38 39	1	GO 2	RSB 0008		H SQ A	0521	83 00	008 0177
40		00 Z	RSC 0035	GO 4	II JU M	0177		35 0434
41		GO 4	RAU 50036	C 30 4		0434		383 0437
42			FDV D0036			0437		797 0447
				~		~ , ~ ,	J. J.	

43 44 45 46 47 48 49 51 52	1	GO GO		STU NZB AXB AXA SXB	MIN 1	c	G0 G0 G0	3		0447 0210 0317 0519 0172 0673 0429 0285 0178	39 21 42 52 50 53	9210 0466 6716 0172 0001 0001 0008 0178 0001	0317 0519
53 54 55 56 57 58		GO GO		RSB RAU FDV STU NZB AXB			GO GO	8	D RATIO	0439 0446 0552 0038 0359 0412			0446 0552 0038 0359 0514 0446
60 61 62 63 64 65 66 67 68 69 70 71		GO GO GO	10	RSC RSAB RAU FMP STU NZB AXB AXA SXB	0000 0002 0008 9630 9259 C0001 0001 0001	С	GO GO		BDRY COEFS FOR LEFT MATRIX D4 D8 D12	0514 0370 0226 0132 0335 0409 0174 0227 0228 0331 0487 0484	81 53 60 39 21 42 52 40 50 53	•	0226 0132 0335 0409 0174 0228 0484 0182 0487 0484
72 73 74 75 76 77 78 98 182 83	1	GO GO	12	FMP STU	C0054 C0027 9001 9(*)3	C	GO GO GO		D3 D7 D11 D2 D6 D10	0182 0088 0602 0652 0276 0304 0534 0537 0354 0557	60 39 21 60 32 39 21 48	0026 7746 1801 7773 7746 9001 9003 7800 0557 0001	0602 0652 0276 0304 0534 0537 0354
8456789012345		GO GO	16	FDV FMP		c c	GO GO GO GO	17 15 18	H SQ SIG Q OVER D	0158 0564 0420 0367 0224 0462 0417 0470 0274 0324 0277 0584	83 60 39 34 39 21 42 52 40 50	0003 0008 9213 7574 6762 0466 6717 0274 0001 0277 0001	0420 0367 0224 0462 0417 0470 0324 0180 0278 0584

96 97 1	GO	15	AXC	0001		GO	16		0180	58	0001	0420
9 8 99 100	GO		RSA RSB RSC	0 00 2 0008 002 6		GO	20	H SQ ALPHA OVER D	0278 0634 0090	83 89	0002 0008 0026	0090 0496
101 102 103 104	GO	20	NZU FDV	A0009 D0027 MIN 1		GO	21		0496 0467 0621 0138	44 34	4761 9621 5788 0466	0222 0138
104 105 106 107	GO	21	FMP	9212 G0027	c	GO GO			0517 0222 0569	39 21	9212 7866 0272	0222 0569
108 109 110	GO	22	AXB NZA AXA	0001		GO GO	19		02 7 2 03 7 4 03 2 7	52 40	0001 0327 0001	0328 0378
111 112 113 1	GO	19	SXB	0008		GO GO			0385 0328	53	0008 0001	0328
114 115 116 117 118 119	GO	23	RSA RSB RSC RAU FDV STU	0003 0008 0028 9014 9002 R0001				R AND E CALC	0378 0435 0641 0497 0505 0208	83 89 60 34	0003 0008 0028 9014 9002 1610	0641 0497 0505 0208
120 121 122 123			FAD STU	9 000 E0001 9000 R0002		GO	24		0614 0671 0404 0485	21 32 21	9000 0798 9000 1611	0404 0485 0664
124 125 126 127 128	GO	24	FAD STU NZB	9000 E0030 9000 R0031			25		0664 0444 0230 0459 0494	21 32 21 42	9000 6827 9000 7640 0547	0230 0459 0494 0498
129 130 131 132		26 25	AXB AXC NZA AXA	0001 0001		GO	26 24 ALC		0547 0454 0498 0504	58 40 50	0001 0001 0504 0001 9217	0664 0554 0260
133 134 135 136 137			RAU FDV STU RAU NZC	9217 9002 9000 R0031	c	GO	27		0260 0322 0375 0535 0546	34 21 60	9002	0375 0535 0546
138 139 140 1	GO	27	SXB SXB	0 00 9 0 00 6			26 26		03 4 9 0604	53	0 0 09 0 0 06	0454
141 142 143 144 145		90	STU FSB STU	0008 0009 0009 9002 J0009	Α		90	J VALUES	0554 0310 0544 0372 0654 0292	60 21 33 21	0008 2689 3719 9002 2689 0596	0544 0372 0654 0292
146 147 148	GO	91	NZA AXA RSA	0001 0026		GO	91 90 92		0596 0646	50	0001	0310

149 150 151 152 153 154 1	GO 92	RAU J0036 A FSB 9002 STU J0036 A NZA CROUT AXA 0001 G0 92	1-10	0555 0422 0605 0619 0472	60 2716 0422 33 9002 0605 21 2716 0619 40 0472 0251 50 0001 0555
155 1 156 1		LEFT MATRIX POINTS	1-10		
157 158 159 160 161 162 163 164 165	GO 34	RAC 0000 RSB 0008 GO 34 RSA 0008 RAU W0009 B FDV 9002 FSB 9003 STU M0001 C RAU 9003 FDV M0001 C STU M0041 C GO 28	MATRIX GROUP NET POINT	0251 0257 0363 0369 0373 0176 0305 0189 0297 0136 0279	88 0000 0257 83 0008 0363 81 0008 0369 60 5719 0373 34 9002 0176 33 9003 0305 21 6836 0189 60 9003 0297 34 6836 0136 21 6876 0279 39 2806 0356
167 168 169 170 171 172 173 174 175 176 177 178	GO 28	FMP E0009 A STU 9000 RAU R0010 A FMP J0(*09 B FSB 9000 STU M0002 C RAU E0010 A FDV M0002 C STU M0042 C NZA BDRY1 AXA 0001 AXC 0001 GO 28		0279 0356 0413 0423 0239 0419 0040 0311 0287 0130 0383 0289	21 9000 0413 60 3619 0423 39 4689 0239 33 9000 0419 21 6837 0040 60 2807 0311 34 6837 0287 21 6877 0130 40 0383 0284 50 0001 0289 58 0001 0279
180 1		LEFT MATRIX POINTS	11 AND 12		
181 1 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 1	BDRY1	SXC 0008 RAU C0082 FSB M0049 C STU M0081 C FMP M0050 C STU 9000 RAU C0063 B FSB 9000 STU M0011 C RAU C0036 B FDV M0011 C STU M0051 C RAU C0009 B FDV M0011 C STU M0082 C	POINT 11	0284 0140 0655 0511 0669 0585 0594 0587 0599 0597 0489 0635 0647	59 0008 0140 60 1801 0655 33 6884 0511 21 6916 0669 39 6885 0585 21 9000 0594 60 5782 0587 33 9000 0567 21 6846 0399 60 5755 0509 34 6846 0597 21 6886 0489 60 5728 0635 34 6846 0647 21 6917 0520
198 199 200 201		RAU E0011 FMP M0051 C STU 9000 RAU R0012	POINT 12	0520 0617 0336 0644	60 0808 0617 39 6886 0336 21 9000 0644 60 1621 0425

```
202
                   FMP J0018 B
                 FMP J0018 B
FSB 9000
STU M0012 C
RAU E0011
FMP M0082 C
STU 9000
RAU E0012
FSB 9000
FDV M0012 C
STU M0052 C
SXA 0007 GO 29
                                                                        0425 39 4698 0548
                                                                        0548 33 9000 0377
0377 21 6847 0606
 203
 204
 205
                                                                        0606 60 0808 0667
0667 39 6917 1867
 206
 207
                                                                        1867 21 9000 0475
 208
                                                                        0475 60 0809 0168
                                                                       0168 33 9000 0598
0598 34 6847 0648
0648 21 6887 0190
0190 51 0007 0301
 209
 210
 211
 212
213 1
214 1
                       LEFT MATRIX POINTS 13-20
215 1
216 GO 29 RAU E0019 A
                                                                        0301 60 2816 0221
                   FMP M0052 C
217
                                                                        0221
                                                                                 39 6887 0337
218
                    STU 9000
                                                                        0337
                                                                                 21 9000 0595
                                                                        0595
219
                   RAU ROO2O A
                                                                                 60 3629 0433
                                                                        0433 39 4698 0348
220
                   FMP J0018 B
                 FSB 9000
STU M0013 C
RAU E0020 A
FDV M0013 C
221
                                                                        0348
                                                                                 33 9000 0127
                                                                       0351 60 2817 0271
0271 34 6849
222
223
224
               STU M0053 C
NZA BDRY2
AXA 0001
                                                                       0398 21 6888 0541
0541 40 0394 0645
0394 50 0001 0401
0401 58 0001 0301
225
226
227
                   AXC 0001 GO 29
228
229 1
                   LEFT MATRIX POINTS 21 AND 22
230 1
231 1
232 BDRY2 SXC 0007
                                                     POINT 21
                                                                        0645 59 0007 0656
                   RAU C0082
                                                                        0656 60 1801 0607
0607 33 6894 0522
0522 21 6914 0218
0218 39 6895 0449
233
234
                   FSB M0059 C
235
                   STU MOC79 C
236
                   FMP M0060 C
                                                                        0449 21 9000 0657
0657 60 5791 0499
0499 33 9000 0479
237
                   STU 9000
                STU 9000
RAU C0072 B
FSB 9000
STU M0021 C
RAU C0045 B
FDV M0021 C
STU M0061 C
RAU C0018 B
FDV M0021 C
STU M0039 C
238
239
                                                                        0479 21 6856 0559
0559 60 5764 1869
240
241
242
                                                                        1869 34 6856 0258
243
                                                                        0258 21 6896 0549
244
                                                                        0549 60 5737 0342
                                                                        0342 34 6856 0308
0308 21 6874 0427
245
246
247 1
              RAU E0021

FMP M0061 C

STU 9000

RAU R0022

FMP J0027 B

FSB 9000

STU M0022 C
248
                                                   POINT 22
                                                                        0427 60 0818 0424
249
                                                                        0424 39 6896 0599
250
                                                                        0599 21 9000 0358
                                                                       0358 60 1631 0386
0386 39 4707 0408
0408 33 9000 0637
0637 21 6857 0360
251
252
253
254
```

```
255 RAU E0021

256 FMP M0039 C

257 STU 9000

258 RAU E0022

259 FSB 9000

260 FDV M0022 C

261 STU M0052 C

262 SXA 0007 GO 30
                                                                                0360 60 0818 0474
                                                                                 0474 39 6874 0524
                                                                                 0524 21 9000 0381
                                                                                 0381 60 0819 0574
                                                                                 0574 33 9000 0458
                                                                         0458 34 6857 0508
0508 21 6897 0558
                                                                                 0558 51 0007 0451
 263 1
 264 1
                          LEFT MATRIX POINTS 23-30
265 1
266 GO 30 RAU E0029 A
267 FMP M0062 C
268 STU 9000
269 RAU R0030 A
270 FMP J0027 B
271 FSB 9000
272 STU M0023 C
273 RAU E0030 A
274 FDV M0023 C
275 STU M0063 C
276 NZA GO 31
277 AXA 0001
278 AXC 0001 GO 30
279 1
 265 1
                                                                                  0451 60 2826 0231
                                                                                  0231 39 6897 0347
                                                                                 0347 21 9000 0355
0355 60 3639 0393
0393 39 4707 0307
                                                                               0307 33 9000 0387
0387 21 6858 0361
0361 60 2827 0281
0281 34 6858 0058
                                                                                0058 21 6898 0501
                                                                                0501 40 0054 0405
                                         GO 31
                                                                               0054 50 0001 0110
                                                                                 0110 58 0001 0451
 279 1
 280 1
                        LEFT MATRIX POINTS 31 AND 32
281 1
282 GO 31 SXC 0007 P
283 RAU C0082
284 FSB M0069 C
285 STU M0080 C
286 FMP M0070 C
287 STU 9000
288 RAU C0081 B
289 FSB 9000
290 STU M0031 C
291 RAU C0054 B
292 FDV M0031 C
293 STU M0071 C
294 RAU C0027 B
295 FDV M0031 C
296 STU M0040 C
 281 1
                                                          POINT 31
                                                                                  0405 59 0007 0561
                                                                                  0561 60 1801 0608
                                                                                  0608 33 6904 0431
                                                                                  0431 21 6915 0268
                                                                                  0268 39 6905 0658
                                                                                  0658 21 9000 0318
                                                                                  0318 60 5800 0609
                                                                                  0609 33 9000 0539
                                                                                  0539 21 6866 0570
                                                                                  0570 60 5773 0477
0477 34 6866 0368
                                                                                  0368 21 6906 0659
                                                                                  0659 60 5746 0410
                                                                                  0410 34 6866 0418
                                                                                  0418 21 6875 0428
297 1
               RAU E0031
FMP M0071 C
STU 9('00
RAU R0032
FMP J0036 B
FSB 9000
STU M0032 C
RAU E0031
FMP M0040 C
STU 9000
                                                          POINT 32
298
299
300
301
                                                                                  0428 60 0828 0436
                                                                                  0436 39 6906 0460
                                                                                  0460 21 9000 0468
                                                                                  0468 60 1641 0649
                                                                                  0649 39 4716 0518
                                                                                  0518 33 9000 0510
 303
                                                                                 0510 21 6867 0620
0620 60 0828 0486
0486 39 6875 0525
 304
305
306
                                                                                  0525 21 9000 0536
```

```
308
             RAU E0032
                                                 0536 60 0829 0586
309
            FSB 9000
                                                 0586
                                                       33 9000 0568
                                                 0568
                                                       34 6867 0618
310
            FDV M0032 C
                                                0618
                                                       21 6907 0560
311
            STU M0072 C
312
            SXA 0005
                          GO 32
                                                 0560 51 0005 0551
313 1
314 1
                LEFT MATRIX POINTS 33-38
315 1
                                                       60 2834 0339
316 GO 32
             RAU E0037 A
                                                 0551
             FMP M0072 C
317
                                                 0339
                                                       39 6907 0357
                                                 0357
318
             STU 9000
                                                       21 9000 0415
                                                0415
                                                       60 3647 0601
319
              RAU R0038 A
                                                       39 4716 0366
320
             FMP J0036 B
                                                0601
                                                0366
                                                       33 9000 0246
321
             FSB 9000
322
             STU M0033 C
                                                0246
                                                       21 6868 0321
323
             RAU E0038 A
                                                0321
                                                       60 2835 0389
324
             FDV M0033 C
                                                0389
                                                       34 3868 0068
325
             STU M0073 C
                                                0068
                                                       21 6908 0411
326
             NZA
                          GO 33
                                                0411
                                                       40 0214 0465
327
             AXA 0001
                                                0214
                                                       50 0001 0270
                 0001
328
             AXC
                        GO 32
                                                0270
                                                       58 0001 0551
329 1
              SET-UP MATRIX FOR NEXT GROUP
330 1
331 1
?32
     GO 33
                                                 0465 42 0668 0670
             NZB
                          GO 35
              AXB 0001
                                                 0668 52 0001 0624
333
                 0077
                        GO 34
                                                 0624 58 0077 0363
334
              AXC
335 1
336 1
                STORE ORIGINAL KEFF AND POWER
337 1
                                                 0670 60 9001 0527
338
    GO 35
             RAU 9001
              STU 9011
                                                0527
                                    ORIG KEFF
                                                       21 9011 0288
339
              STU 9010
                                    ORIG POWER 0288 21 9010 0376
340
341 1
342 1
              COEFFS FOR COMPUTING POWER
343 1
                                                 0376
                                                      60 9014 0338
344
             RAU 9014
             FDV 9008
                                                       34 9008 0442
345
                                                 0338
             STU Y1
                                                       21 0028 0531
                                                 0442
346
                                                 0531
                                                       60 0388 0426
347
             RAU CT39
                                                       34 0579 0629
348
             FDV CT12
                                                 0426
                                                       21 0046 0476
349
             STU Y2
                                                 0629
             RAU CT40
350
                                                 0476
                                                       60 0679 0438
                                                       39 9014 0492
351
             FMP 9014
                                                 0438
             FAD 9015
                                                       32 9015 0526
                                                 0492
352
                                                       21 9000 0488
             STU 9000
                                                 0526
353
                                                       34 0542 0592
             FDV CT96
                                                 0488
354
                                                       21 0066 0576
                                                 0592
355
             STU Y3
                                                       60 0280 0538
                                                 0576
356
             RAU CT38
                                                 0538
                                                       39 9015 0642
             FMP 9015
357
             FAD 9000
                                                       32 9000 0626
                                                 0642
358
            STU 9000
FDV CT96
                                                      21 9000 0588
359
                                                 0626
                                                 0588 34 0542 0676
360
```

361 362 363 364 365 366 367 368 369 370 371		STU RAD FAD STU FDV STU RAU FMP FAD FDV	9015 9000 9016 9000 CT96 Y5 CT38 9016 9000 CT96					0676 0577 0638 0627 0677 0589 0528 0578 0639 0628	60 32 32 21 34 21 60 39 32 34	0064 9015 9000 9016 9000 0542 0102 0280 9016 9000 0542	0638 0627 0677 0589 0528 0578 0639 0628 0678
372 373 374 375 376 377 378	МВЕТА МКСНК		0032 9001 9251 0001 MIN 1		MBETA MKCHK MBETA			0330 0380 0290 0430 0480 0340 0390 0530	81 60 24 40 50 60	0200 0032 9001 9251 0340 0001 0466 9018	0290 0430 0480 0390 0430 0530
379 380 1 381 1 382 1 383	MOVEB				ZEROB AS ZERO	RETA SUMS	5	0448		9019	
384 385 386 387	ZEROB RESET	LDB RSA RAU STU	B0001 0032 H0001 B0033	A	ZEROB RESET POWER			0610 0572 0478 0622 0660	09 81 60 21	1767 0032 0717 3799 1868	0572 0478 0622 0660
388 389 390 1 391 1 392 1		NZA AXA	OOO1	: ON	RESET			1 86 8	50	30 01	0622
393 394 395 396 297 398 399 1	POWER	SXA RAU FMP FSB STU RAU	0008 9029 9008 9027 9000 9028			REGION	I	0150 0156 0063 0016 0295 0253	60 39 33	9029 9029 9008 9027 9000 9028	0063 0016 0295 0253
400 401 402 403 404 405 406 407 408	GO 38	FMP FAD FMP FMP STU RAU FMP FAD	9019	А	GO 38			0011 0014 0093 0096 0075 0078 0135 0023 0026	32 39 32 39 21 60 39 32	3619 9228 9000	0093 0096 0075 0078 0135 0023 0026 0105
400 410 411 412 413	GO 39	NZA STU AXA FMP STU	9000 0001 9014 9000		G0 38			0105 0008 0115 0109 0012	21 50 39	0008 9000 0001 9014 9000	0115 0135 0012

414	1												
415			SXA	0008				REGION	11	0069	51	3008	0125
416			RAU	9030						0125	60	9030	0133
417			FMP	9008						0133		9008	
418			FSB	9032						0086		9032	
419			STU	9052						0165		9052	
420			RAU	9031						0073		9031	
421			FMP	9005						0031		9005	
422			FAD	9052						0084		9052	
1.23			FMP	Y3						0113	39	0066	0116
424			STU	9052						0116	21	9052	0123
425			RAU	9040						0123	60	9040	
426			FMP	9008						0081		9008	
427			FSB	9038						0134	3 3	9038	
428			STU	9053						0163	21	-	
429			RAU	9039						0021		9039	
430			FMP	9005						0029		9005	
431			FAD	9053						0082		9053	
432			FMP							0061		0064	
433			FAD	9052						0114		9052	
434			STU	9052		GO	40			0143		9052	
435	GO	40		R0020	Α					0051		3629	
436 437			FMP	9239						0183		9239	
			FAD	9052						0087		9052	
438			NZA	0000		GO	41			0017		0070	
439			STU	9052						0070		9052	
440 441	CO	41	AXA	0001		GO	40			0027		0001	
442	GO	41	FMP	9015						0071		9015	
442			FAD	9000						0024		9000	
	,		STU	9000						0303	21	9000	0111
444] 445	L		DALL	9041				REGION		A111	40	0061	0110
446			RAU FMP	9008				REGION	111	0111		9041	
447			FSB	9043						0119 0022		9008	
448			STU	9052						0101	21	9043 9052	
449			RAU	9042						0159			
450			FMP	9005						0067		9042 9005	
451			FAD	9052						0120		9052	
452			FMP							0099		0102	
453			STU	9052						0152		9052	
454			RAU	9051						0209		9051	
455			FMP	9008						0117		9008	
456			FSB	9(149						0170		9049	
457			STU	9053						0149		9053	
458			RAU	9050						0007		9050	
459			FMP	9005						0215		9005	
460			FAD	9053						0018		9053	-
461				Y6						0013		0200	
162			FAD	9052						0250		9052	
463			STU	9052						0079		9052	
464			SXA	0008		GO	42			0137		0008	
465	GO	42	RAU	R0030	Α					0193		3639	
466			FMP	9250						0243		9250	
												-	

467	FAD	9052			0298	32	9052	0077
468	NZA		GO 43		0077	40	0080	0131
469	STU	9052			0080			0187
470	AXA	0001	GO 42		0187			0193
471 GO 43	FMP	9016			0131			0636
472	FAD	9000		NEW POWER	0636			0282
473	STU	9000		,,_,,	0282			0672
474 1					• • • •			•
475 1	Λ	IEW KEFI	F AND DEL I	KEFF PLUS TST				
476 1				, ,,				
477	FDV	9010			0672	34	9010	0575
478	STU	9012		NEW KEFF	0575		9012	
479	FSB	9011		7724 1821	0188		9011	
480	STU	9013		DELTA KEFF	0674		2013	
481		KCHEK		DELIA KENI	0481		9018	
482	BMI	KCHLK	R PCH		0392		0611	
483		DEL K			0611		0625	
484	FSM	9013			0529		9013	
485		KCHEK	к РСН		0512		9018	
486 1	310	KCHEK	K I CII		0712	۷.	7010	0240
467 1	Р	NINCH KI	EFF AND DEL	KEEE				
488 I	,	O.T.C.I.	IT AND DE	- REII				
489 K PCH	RAI	PCKEF			0240	65	0662	0326
490	_	MKEFF	PUNCH		0326		0562	
491 1		1117 (2)			0320	0,	0,502	1/50
492 1	Р	UNCH R	KEFF AND	DEL KEEE				
493 1		0.000		DEC REIT				
494 R PCH	RAL	PCR		PCH RADII	0661	65	0581	0590
495	LDD	. •	PUNCH		0590		0631	
		Devec		PUNCH KEFF	0631			0232
496	RAL	PUREF			0031	65	0662	
496 497		PCKEF	PUNCH					
	LDD		PUNCH	AND DEL K	0232	69	0640	1930
497	LDD	9999	PUNCH			69		1930
497 498	LDD HLT	9999	PUNCH	AND DEL K	0232	69	0640	1930
407 408 499 1 500 1 501 1	LDD HLT	9999		AND DEL K	0232	69	0640	1930
407 408 499 1 500 1 501 1 502 1	LDD HLT	9999 ND OF (CALCULATION	AND DEL K	0232	69	0640	1930
407 408 469 1 500 1 501 1 502 1 503 1	LDD HLT E	9999 ND OF (CALCULATION	AND DEL K	0232 0640	69 01	0640 9999	1930 9999
407 408 469 1 500 1 501 1 502 1 503 1 504 MKEFF	LDD HLT E M	9999 ND OF C OVE KEF 9012	CALCULATION	AND DEL K	0232	69 01 60	0640 9999 9012	1930 9999 0675
407 408 499 1 500 1 501 1 502 1 503 1 804 MKEFF	LDD HLT E M RAU STU	9999 ND OF (CALCULATION	AND DEL K	0232 0640	69 01 60 21	9012 9011	1930 9999 0675 0238
407 408 469 1 500 1 501 1 502 1 503 1 604 MKEFF 505	LDD HLT E M	9999 ND OF C OVE KER 9012 9011 0032	CALCULATION	AND DEL K	0232 0640 0562	69 01 60 21 81	9999 9012 9011 0032	1930 9999 0675 0238 0382
407 408 499 1 500 1 501 1 502 1 503 1 804 MKEFF	LDD HLT E M RAU STU RSA RAU	9999 ND OF C OVE KER 9012 9011 0032 9251	CALCULATION	AND DEL K	0232 0640 0562 0675	69 01 60 21 81	9012 9011	1930 9999 0675 0238 0382
407 498 499 1 500 1 501 1 502 1 503 1 804 MKEFF 505 506 507 NORMS	LDD HLT E M RAU STU RSA RAU FDV	9999 ND OF C OVE KER 9012 9011 0032 9251 9012	CALCULATION	AND DEL K	0232 0640 0562 0675 0238 0382 0432	69 01 60 21 81 60 34	9999 9012 9011 0032 9251 9012	1930 9999 0675 0238 0382 0432 0482
407 498 499 1 500 1 501 1 502 1 503 1 604 MKEFF 505 506 507 NOKMB	LDD HLT E M RAU STU RSA RAU FDV	9999 ND OF C OVE KER 9012 9011 0032 9251	CALCULATION	AND DEL K	0232 0640 0562 0675 0238 0382	69 01 60 21 81 60 34 21	9999 9012 9011 0032 9251 9012 9251	1930 9999 0675 0238 0382 0432 0482 0532
407 498 499 1 500 1 501 1 502 1 503 1 604 MKEFF 605 506 507 NORMS 503 509 510	LDD HLT E M RAU STU RSA RAU FDV	9999 ND OF C OVE KER 9012 9011 0032 9251 9012	CALCULATION	AND DEL K	0232 0640 0562 0675 0238 0382 0432	69 01 60 21 81 60 34 21	9999 9012 9011 0032 9251 9012	1930 9999 0675 0238 0382 0432 0482 0532
407 498 499 1 500 1 501 1 502 1 503 1 604 MKEFF 605 506 507 NORMS 503 509	LDD HLT E M RAU STU RSA RAU FDV STU	9999 ND OF COVE KER 9012 9011 0032 9251 9012 9251	CALCULATION FF AND NORM NORMB	AND DEL K	0232 0640 0562 0675 0238 0382 0432 0482	69 01 60 21 81 60 34 21 40	9999 9012 9011 0032 9251 9012 9251	1930 9999 0675 0238 0382 0432 0482 0532 0632
407 408 409 100 500 1 502 1 503 1 804 MKEFF 506 507 NORMS 503 509 510 511 512 NORMP	LDD HLT E M RAU STU RSA RAU FDV STU NZA	9999 ND OF COVE KER 9012 9011 0032 9251 9012 9251	CALCULATION FF AND NORM NORMB NORMP	AND DEL K	0232 0640 0562 0675 0238 0382 0432 0482 0532	69 01 60 21 81 60 34 21 40 50	9999 9012 9011 0032 9251 9012 9251 0582	1930 9999 0675 0238 0382 0432 0482 0532 0632 0382
407 408 409 100 100 100 100 100 100 100 1	LDD HLT E M RAU STU RSA RAU FDV STU NZA AXA	9999 ND OF COVE KER 9012 9011 0032 9251 9012 9251 0001 9000 9012	CALCULATION FF AND NORM NORMB NORMP	AND DEL K	0232 0640 0562 0675 0238 0382 0432 0482 0532 0582	69 01 60 21 81 60 34 21 40 50 60	9012 9011 0032 9251 9012 9251 0582 0001	1930 9999 0675 0238 0382 0432 0482 0532 0632 0382 0612
407 408 409 100 100 100 100 100 100 100 1	LDD HLT E M RAU RAU RAU FDV STU NZA AXA RAU	9999 ND OF COVE KER 9012 9011 0032 9251 9012 9251 0001 9000	CALCULATION FF AND NORM NORMB NORMP	AND DEL K	0232 0640 0562 0675 0238 0382 0432 0482 0532 0582 0632	69 01 60 21 81 60 34 21 40 50 60 34	9012 9011 0032 9251 9012 9251 0582 0001 9000	1930 9999 0675 0238 0382 0432 0432 0532 0632 0632 0612 1870
407 408 409 1500 1 501 1 502 1 503 1 604 MKEFF 505 506 507 NORMS 509 510 511 512 NORMP 513 514 515 1	LDD HLT E M RATUA RADV STZA ARADV STZA ARADV FDV	9999 ND OF COVE KER 9012 9011 0032 9251 9012 9251 0001 9000 9012	CALCULATION FF AND NORM NORMB NORMP NORMB	AND DEL K	0232 0640 0562 0675 0238 0382 0432 0482 0532 0582 0632 0612	69 01 60 21 81 60 34 21 40 50 60 34	9012 9011 0032 9251 9012 9251 0582 0001 9000 9012	1930 9999 0675 0238 0382 0432 0432 0532 0632 0632 0612 1870
407 408 409 1500 1 501 1 502 1 503 1 604 MKEFF 506 507 NORMS 509 510 511 512 NORMP 513 514 515 1	LDD HLT E M RAU RAU FDU NZA AAU FDU STU	9999 ND OF COVE KER 9012 9011 0032 9251 9012 9251 0001 9000 9012 9010	CALCULATION FF AND NORM NORMB NORMP NORMB	AND DEL K	0232 0640 0562 0675 0238 0382 0432 0482 0532 0582 0632 0612	69 01 60 21 81 60 34 21 40 50 60 34	9012 9011 0032 9251 9012 9251 0582 0001 9000 9012	1930 9999 0675 0238 0382 0432 0432 0532 0632 0632 0612 1870
407 408 409 1500 1 500 1 502 1 503 1 804 MKEFF 506 507 NORM8 509 510 511 512 NORMP 513 514 515 1 516 1 517 1	LDD HLT E M RAUURSAU FDU R RAUVSTU R	9999 ND OF COVE KER 9012 9011 0032 9251 9012 9012 9010 IGHT MA	CALCULATION FF AND NORM NORMB NORMB COMPW	AND DEL K	0232 0640 0562 0675 0238 0382 0432 0482 0532 0582 0632 0612	69 01 60 21 81 60 34 21 40 50 60 34	9012 9011 0032 9251 9012 9251 0582 0001 9000 9012	1930 9999 0675 0238 0382 0432 0432 0532 0632 0632 0612 1870
407 408 409 1500 1 501 1 502 1 503 1 604 MKEFF 506 507 NORMS 509 510 511 512 NORMP 513 514 515 1	LDD HLT E M RAU RAU FDU NZA AAU FDU STU	9999 ND OF COVE KER 9012 9011 0032 9251 9012 9251 0001 9000 9012 9010	CALCULATION FF AND NORM NORMB NORMB COMPW	AND DEL K	0232 0640 0562 0675 0238 0382 0432 0432 0532 0632 0612 1870	69 01 60 21 81 60 34 21 40 50 60 34 21	9012 9011 0032 9251 9012 9251 0582 0001 9000 9012	1930 9999 0675 0238 0382 0482 0532 0632 0632 0612 1870 0651

		GO GO		NZU FDV FMP STU	0008 60009 9002 9019 9000		GO GO		NET	NET POIN T	0469 0553 0457 0160 0108	60 ! 44 (34 9 39 9 21 9	0008 5848 0457 9002 9019 9000	0553 0108 0160 0108 0515
	1	GO	45	RAU NZU FDV FMP FAD	9002 F0001 9000	В	GO GO				0515 0329 0483 0186 0334	60 44 34 39 32	0483	0334 0186 0334
		GO		FDV		C A	GO	48			0513 0236 0206 0406	21 39 21	1729 2806 9054	0206 0406 0563
				NZU FMP	9228		GO GO	46	22.4		0563 0603 0507		5848 0507 9228	0300
	1			F	RIGHT N	TAN	RIX	POINTS	2~10	0				
541 542 543 544	1	GO	46	STU RAU NZU FMP	9000 H0009 F0 010		GO GO				0300 0057 0129 0233	60	9000 4725 0233 3738	0129 0184
545 546 547 548 549 550 551		GO	47	FAD FMP FSB	9000 R0010 9(:54 M0002	A					0184 0213 0169 0199 0237	32 39 33 34 21	9000 3619 9054 6837 3738	0169 0199 0237
				NZA AXC AXA	0001 0001		GO GO	48			0391 0294 0350	58	0294 0001 0001	0350
554 555	1			F	RIGHT	TAP	RI	C POINT :	11					
556 557 558 559 560 561 562		GO	49	FDV	F0009 MIN 1 M0011 F0011		GO	52			0345 0302 0416 0613 0516 0296 0142	39 32 39 34 21	0008 6916 1737 0466 6846 1739 0008	0416 0613 0516 0296 0142
563 564 565 566 567 569 570	1	RIGHT MATRIX POINTS							12-	20				
		G0	52	STU	G0 01 8			50 50			0400 0166 0173 0161 0265	21 60 44	2816 9054 5857 0265 9239	0173 0161 0216
571 572		GO	50	STU		В		-			0216 0223	21	9000 4734	0223

E-113	573 574 575 576 577 578 579 580 581 582 583	GO	51	FAD FMP FSB FDV	F0020 9000 R0020 9054 M0012 F0020	A C A	G0 G0 G0	5153	0089 0293 0344 0273 0179 0259 0147 0151 0004	39 32 39 33 34 21 40 58	0293 3748 9000 3629 9054 6847 3748 0004 0001	0344 0273 0179 0259 0147 0151 0155 0060
	584 1			F	RIGHT N	4AT	RIX	POINT 21				
CY-5	585 1 586 587 588 589 590 591 592 593 1	60	53	FAD FMP FDV	0008 M0079 F0019 MIN 1 M0021 F0021 0008	c	GO	54	0155 0461 0264 0473 0566 0456 0352	39 32 39 34 21	0008 6914 1747 0466 6856 1749 0008	0264 0473 0566 0456 0352
	594 1			F	RIGHT N	1 AT	RIX	C POINTS 22-30				
	595 1 596	CO	54		E0029				0450	39	2826	0076
	597 598 599 600	00	J T	STU	9054 G0027 9250		G0 G0		0076 0283 0121 0175	21 60 44	9054 5866 0175 9250	0283 0121 0126
	601 602 603	GO	55	STU RAU NZU	9000 H0027	В	GO	5.4	0126 0333 0197		9000 4743 0201	0197
	604 605	GO	56	FMP FAD	F0030 9000				02 0 1 0202	39 32	3758 9000	0202 0181
	606 607 608 609			STU	R0030 9054 M0022 F0030	C			0181 0139 0219 0107	33 34 21	3639 9054 6857 3758	0219 0107 0211
	610 611 612 613 1			NZA AXC AXA	0001 0001		GO	57 54	0211 0164 0220	58	0164 0001 0001	0220
	614 1 615 1			F	RIGHT M	TAP	RIX	X POINT 31				
	616 617 f18 619 620 621 622 623 1 624 1	GO	57	FAD FMP FDV STU SXA		C	GO TRIX	58 x POINTS 32-38	0315 0371 0565 0533 0616 0666 0262	39 32 39 34 21	0008 6915 1757 0466 6866 1759 0006	0565 0533 0616 0666 0262
	625 1											

```
638 1
 639 1
                     FLUX CALC POINTS 37-32
 640 1
      1 GO 60 AXA 0005 SXC 0006 GO 61 0229 59 0006 0235 GO 61 FMP M0077 C 0235 39 6912 0212 STU 9000 0319 RAU F0032 A 0319 60 3760 0365 FSB 9000 0365 STU F0032 A 0545 21 3760 0313 NZA GO 62 0313 40 0316 0217 SXC 0001 SXA 0001 GO 61 0122 51 0001 0235
 641
 642
 643 GO 61
 644
645
646
647
648
649
650
           651 1
652 1
653 1
654 GO 62 AXC 0005
655
        RAU F0033
656
657
658
659
660
661
662
663
665
665
666
667
668 1
669 1
670 1
671 GO 63 FMP MO070 C
                                                                 0550 39 6905 0205
          STU 9000 0205 21 9000 0263

RAU F0022 A 0263 60 3750 0255

FSB 9000 0255 33 9000 0185

STU F0022 A 0185 21 3750 0353

NZA GO 64 0353 40 0256 0157

SXC 0(01 0256 59 0001 0062

SXA 0001 GO 63 0062 51 0001 0550
672
673
674
675
676
677
```

679 680	1	F	FLUX CA	LC PO	INT 21					
、 681 682 683 に 684 日 685 686 687		FMP STU	0008 M0039 F0023 9000 F0021 9000	С			0157 0414 0379 0402 0309 0653	60 39 21	0008 6874 1751 9000 1749 9000	0379 0402 0309 0653
688 689 690 691 692 693		STU RAU FMP STU	F0021 F0022 M0061 9000 F0021	С			0633 0452 0455 0346 0104	21 60 39 21	1749 1750 6896	0452 0455 0346 0104
693 694 695 696 697		FSB STU AXA	9000 F0021 0008	GO NLC PO	65	·12	0154 0384 0502	21	9000 1749 0008	0502
698 699 700 701 702	1	65 FMP STU	M0060 9000 F0012 9000	С			06 00 0395 0403 0445	21 60 33	6895 9000 3740 9000	0403 0445 0225
703 704 705 - 706 707	1	NZA SXC SXA	0001 0001	GO GO	65		0225 0343 0146 0252	40 59	3740 0146 0001 0001	0247 0252
708	1	F	FLUX CA	LC PO	INT 11					
710 711 712 713 714 715 716 717 718 719 720 721 722	GO	FMP STU RAU FSB STU RAU FMP STU RAU FSB	0008 M0082 F0013 9000 F0011 9000 F0011 9000 F0011 9000 F0011 0009		67		0247 0204 0421 0591 0299 0543 0573 0192 0396 0286 0593 0643 0623 0242	60 39 21 60 33 21 60 39 21 60 33 21	0008 6917 1741 9000 1739 9000 1739 1740 6886 9000 1739 9000 1739 0009	0421 0591 0299 0543 0573 0192 0396 0286 0593 0643 0623 0242
724 725	1	1	FLUX CA	ALC PO	INTS 10-	-1				
726 727 728 729 730 731	GO	STU RAU FSB	F0001	A			0100 0035 0043 0083 0013	21 60 33	9000	0083 0013

732 733 734 735 GO 68 736 737 738 739 740 GO 88 741 1 742 1	NZA GO 68 SXC 0001 SXA 0001 GO 67 AXC 0009 RAU KCHEK BMI GO 88 RAL CODE LDD GO 88 PUNCH NZC GO 80 GO 79 STORE + PUNCH NORMAL	FLUX	0032 40 0085 0036 0085 59 0001 0291 0291 51 0001 0100 0036 58 0009 0042 0042 60 9018 0341 0341 46 0244 0245 0245 65 0198 0203 0203 69 0244 1930 0244 48 0050 0248
743 1 744 GO 79 745 746 747 748 749 750 1 751 1	RAU KCHEK BMI GO 80 RAU FO001 STU NORMF RAL PNORM LDD GO 80 PUNCH NEUTRON REGENERA		0248 60 9018 0630 0630 46 0050 0580 0580 60 1729 0440 0440 21 0074 0490 0490 65 0680 0540 0540 69 0050 1930
752 1 753 GO 80 754 GO 69 755 756 757 758 756 760 761 GO 81 762 763 764	SXA 0010 GO 69 RAU V0009 B NZU GO 71 FMP F0011 A FAD B0011 A STU B0011 A NZA GO 81 AXA 0001 GO 69 RAU KCHEK BMI GO 82 RAL PCB1 LDD GO 82 PUNCH		0050 51 0010 0006 0006 60 5692 0047 0047 44 0001 0002 0001 39 3739 0039 0039 32 3777 0003 0003 21 3777 0030 0030 40 0033 0034 0033 50 0001 0006 0034 60 9018 0041 0041 46 0044 0045 0045 65 0048 0053 0053 69 0044 1930
765 1 766 GO 82 767 GO 71 768 769 770 771 772 773 774 GO 83 775 776 777 778 1		EGION II (0044 51 0010 0002 0002 60 5701 0005 0005 44 0009 0010 0009 39 3749 0049 0049 32 3788 0015 0015 21 3788 0091 0091 40 0094 0095 0094 50 0001 0002 0095 60 9018 0141 0141 46 0144 0145 0145 65 0098 0103
779 GO 84 780 GO 73 781 782 783 784	SXA 0010 G0 73 R RAU V0027 B NZU GO 93 FMP F0031 A FAD B0033 A STU B0033 A	0	0144 51 0010 0010 0010 60 5710 0065 0065 44 0019 0020 0019 39 3759 0059 0059 32 3799 0025 0025 21 3799 0052

785 786 787 788 789 790 791			85 93		BMI RAL LDD	0001 KCHEK GO 86 PCB3 GO 75 KCHEK	GC	9 85 9 73 INCH				0052 0055 0056 0191 0195 0153 0020	50 60 46 65 69	0055 0001 9018 0194 0148 0106 9018	0010 0191 0195 0153 1930
792 793	7				BMI	GO 86	GC	75				0241	46	0194	0106
794	1				1	NORMAL :	IZE F	LUX							
795 796 797 798 799	1		75		LDD RSA	CODE 0037	GC	INCH 76				0106 0453 0306 0112	69 81	0198 0306 0037 3766	1930 0112
801 802		GU	76		FDV	F0038 NORMF N0038	A	77				0171 0124 0092	34 21	0074 3839 0495	0124 0092
803 804 805 806	,	GO	77			0001 PCNF GO 86		76 INCH				0495 0196 0503	65	0001 0249 0194	0503
807	1				(0 TO 1	NEXT	GROL	IP OR	CALC	POMES				
808 809 810 811	1	GO	86		NZB AXB AXC	0001 0082		78				0194 0397 0254	52	0397 0001 0082	0254
813	1						CON	STAN	175						
814 815 816 817 818 820 821 822 823 824		90 90 90 90 90	001 002 003 004 005 006 007 008		10 20 30 40 50 60 70 80 90	0000 0000 0000 0000 0000 0000 0000		051 051 051 051 051 051 051		ENER GROU	GY P CODE	9001 9002 9003 9004 9005 9006 9007 9008 9009	20 30 40 50 60 70 80	0000 0000 0000 0000 0000 0000 0000	0051 0051 0051 0051 0051 0051
825 826 827 828 829 830 831			38 39 40	-	10 12 38 39 40 96	0000 0000 0000 0000 0000		051 052 052 052 052 052		OTHE CONS	R TANTS		12 38 39 40	0000 0000 0000 0000 0000	0052 0052 0052 0052
832 833 834 835 836		000	001 010 019 028		00 00 00	000 000 000		000 000 000		SIGM FOR GRO	FIRST	1574 1583 1592 1601	00 00	0000 0000 0000	0000
837	1	cor	DE		06	9409	c	001		PUNC	н	0198	06	94 09	0001

838	PCB1	06	B0001	0011	CONSTANTS	0048	06	1767	0011
839	PCB2	06	B0012	0011		0098	06	1778	0011
840	PCB3	06	B0023	0011		0148	06	1789	0011
841	PCNF	06	N0001	0038		0249	06	1802	0038
842	PCR	06	R0001	0038		0581	06	1610	0038
843	PCKEF	06	9012	0002		0662	06	9012	0002
844	PNORM	06	NORME	0001		0680	06	0074	0001
845	1	-							
846	C0082 -	40	0000	0051	D1 D5 D9	1801	-40	0000	0051
847	E0038	00	000	000	E38	0835	00	0000	0000
848	1								
849	DEL K	10	0000	0047	DEL K TEST	0625	10	0000	0047

REFERENCES

- 1. Glasstone, Samuel, and Edlund, Milton C.: The Elements of Nuclear Reactor Theory. D. Van Nostrand Co., Inc., 1952, pp. 227-229.
- 2. Anon.: 650 Magnetic Drum Data-Processing Machine Manual of Operation. Form 22-6060-1, international Business Machines Corp., June 1955.
- 3. Anon.: IBM Data Processing 650 Magnetic Drum Data-Processing Machine Manual of Additional Features: Magnetic Tapes, High-Speed Storage, Printer. Form 22-6265-1, International Business Machines Corp., 1955.
- 4. Anon.: IBM 650 MDDPM Additional Features Indexing Accumulators, Floating-Decimal Arithmetic. Form 22-6258-0, International Business Machines Corp., 1955.
- 5. Poley, Stan.: SOAP II Programmers' Reference Manual. Service Bureau Corp., International Business Machines Corp., 1957.

TABLE I. - STORAGE LOCATIONS OF INPUT

Storage region		orag cati	- 1	Input value
A	0753	to	0761	$\alpha_a, \alpha_b, \ldots \alpha_i$
D	0762	to	0770	D _{I,a} ,D _{I,b} , D _{I,i}
	0771	to	0779	D _{II,a} ,D _{II,b} , ··· D _{II,i}
	0780	to	0788	D _{III,a} ,D _{III,b} , D _{III,i}
				D _{IV,a} ,D _{IV,b} , D _{IV,i}
Q	1575	to	1582	$\Sigma_{q,I,a},\Sigma_{q,I,b},\Sigma_{q,I,h}$
	1584	to	1591	$\Sigma_{q,II,a}^{-},\Sigma_{q,II,b},\ldots\Sigma_{q,II,h}$
				$\Sigma_{q,III,a}, \Sigma_{q,III,b}, \dots \Sigma_{q,III,h}$
	1602	to	1609	$\Sigma_{q,IV,a},\Sigma_{q,IV,b},\ldots\Sigma_{q,IV,h}$
S				$\Sigma_{\mathrm{I,a}}^{\mathrm{I,a}}, \Sigma_{\mathrm{I,b}}, \ldots \Sigma_{\mathrm{I,i}}$
				$\Sigma_{\text{II},a}^{\tilde{\Sigma}_{\text{II},b}}, \ldots \hat{\Sigma}_{\text{II},i}$
				$\Sigma_{\rm III,a}, \Sigma_{\rm III,b}, \ldots \Sigma_{\rm III,i}$
	1675	to	1683	$\Sigma_{\text{IV,a}}, \Sigma_{\text{IV,b}}, \dots \Sigma_{\text{IV,i}}$
V	1684	to	1692	$\nu\Sigma_{f,I,a}, \nu\Sigma_{f,I,b}, \dots \nu\Sigma_{f,I,i}$
				$\nu\Sigma_{f,II,a}, \nu\Sigma_{f,II,b}, \dots \nu\Sigma_{f,II,i}$
				$\nu\Sigma_{f,III,a}, \nu\Sigma_{f,III,b}, \dots \nu\Sigma_{f,III,i}$
None	9014	to	9017	h _I ,h _{II} ,h _{III} ,h _{IV}

TABLE II. - ORDER OF PUNCHED OUTPUT

Program instruction	Output value	Location punched out	Remarks
489,490 739,740 748,749	k _{eff} ,Δk _{eff} Group code number Normal flux, φ ₁ ,a	9012,9013 (9009+IAB)**	(Punched for every iteration)
1	$\sum_{n=a}^{1} \beta_{I,n,k}$	1767 to 1777	For points 1 to 11, when $\Sigma_{f,I,n} \neq 0$
	Σi β _{II,n,k}	1778 to 1788	For points 11 to 21, when $\nu \Sigma_{f,II,n} \neq 0$
789,790	$\sum_{n=a}^{i} \beta_{III,n,k}$	1789 to 1799	For points 21 to 31, when $\nu \Sigma_{f,III,n} \neq 0$
796 , 797	Group code number	(9009+IAB)**	- ,,
804,805	$\frac{\varphi_{1,n}}{\varphi_{1,a}}, \cdots \frac{\varphi_{38,n}}{\varphi_{1,a}}$	1802 to 1839	
494,495	r ₁ , r ₃₈	1610 to 1647	
496,497	k _{eff} ,∆k _{eff}	9012,9013	Last values punched out

^{*}When the first neutron energy group is being considered in the program, the value of IAB equals -0008; this results in the punching of the contents of location 9001, which equals 10 0000 0051. Here, the last two digits indicate the position of the decimal to be 1.0 (ref. 4).

Figure 1. - Nuclear reactor composed of four concentric cylinders.

Figure 1. - Concluded. Nuclear reactor composed of four concentric cylinders.

NASA - Langley Field, Va

\			
			-
			4
			•
			ŧ.

1. Nuclear-Energy Systems (3.1.10 I. Miser, James W. II. Hyland, Robert E. III. Fieno, Daniel IV. NASA MEMO 12-24-50E	NASA	1. Nuclear-Energy Systems (3.1.10. I. Miser, James W. II. Hyland, Robert E. III. Fieno, Daniel IV. NASA MEMO 12-24-5cf	NASA
NASA MEMO 12-24-58E National Aeronautics and Space Administration. COMPUTER PROGRAM FOR SOLVING NINE-GROUP DIFFUSION EQUATIONS FOR CYLINDRICAL RE-ACTORS. James W. Miser, Robert E. Hyland, and Daniel Fieno. January 1959. 43p. diagrs., tabs. (NASA MEMORANDUM 12-24-58E) A method is presented for determining the critical size of a cylindrical reactor by a one-dimensional group-diffusion method extended to a two-dimensional solution by prescribing values of axial leakage based on assumed flux levels. The neutron energy spectrum is divided into nine groups, and the reactor into four concentric cylinders. A computing machine program for an IBM 650 computer with attachments and a method for using the program with nine, or less, groups and four, or less, regions are given.	Copies obtainable from NASA, Washington	NASA MEMO 12-24-58E National Aeronautics and Space Administration. COMPUTER PROCRAM FOR SOLVING NINE-GROUP DIFFUSION EQUATIONS FOR CYLINDRICAL RE- ACTORS. James W. Miser, Robert E. Hyland, and Daniel Fieno. January 1959. 43p. diagrs., tabs. (NASA MEMORANDUM 12-24-58E) A method is presented for determining the critical size of a cylindrical reactor by a one-dimensional group-diffusion method extended to a two-dimensional group-diffusion method extended to a two-dimensional solution by prescribing values of axial leakage based on assumed flux levels. The neutron energy spec- trum is divided into nine groups, and the reactor into four concentric cylinders. A computing machine program for an IBM 650 computer with attachments and a method for using the program with nine, or less, groups and four, or less, regions are given.	Copies obtainable from NASA, Washington
1. Nuclear-Energy Systems (3.1.10) I. Miser, James W. II. Hyland, Robert E. III. Fieno, Daniel IV. NASA MEMO 12-24-58E	NASA	1. Nuclear-Energy Systems (3.1.10) I. Miser, James W. II. Hyland, Robert E. III. Fieno, Daniel IV. NASA MEMO 12-24-58E	NASA
NASA MEMO 12-24-58E National Aeronautics and Space Administration. COMPUTER PROGRAM FOR SOLVING NINE-GROUP DIFFUSION EQUATIONS FOR CYLINDRICAL RE-ACTORS. James W. Miser, Robert E. Hyland, and Daniel Fieno. January 1959. 43p. diagrs., tabs. (NASA MEMORANDUM 12-24-58E) A method is presented for determining the critical size of a cylindrical reactor by a one-dimensional group-diffusion method extended to a two-dimensional solution by prescribing values of axial leakage based on assumed flux levels. The neutron energy spectrum is divided into nine groups, and the reactor into four concentric cylinders. A computing machine program for an IBM 650 computer with attachments and a method for using the program with nine, or less, groups and four, or less, regions are given.	Copies obtainable from NASA, Washington	NASA MEMO 12-24-58E National Aeronautics and Space Administration. COMPUTER PROGRAM FOR SOLVING NINE-GROUP DIFFUSION EQUATIONS FOR CYLINDRICAL RE-ACTORS. James W. Miser, Robert E. Hyland, and Daniel Fieno. January 1959. 43p. diagrs., tabs. (NASA MEMORANDUM 12-24-58E) A method is presented for determining the critical size of a cylindrical reactor by a one-dimensional group-diffusion method extended to a two-dimensional solution by prescribing values of axial leakage based on assumed flux levels. The neutron energy spectrum is divided into nine groups, and the reactor into four concentric cylinders. A computing machine program for an IBM 650 computer with attachments and a method for using the program with nine, or less, groups and four, or less, regions are given.	Copies obtainable from NASA, Washington

,

•

ī