1.3.10

Shivam Sawarkar AI25BTECH110031

August 28, 2025

Question

Find the ratio in which the point P(8, y) divides the line segment joining the points A(1, 2) and B(2, 3). Also, find the value of y.

Theoretical Solution

Let the vectors be

$$\mathbf{P} = \begin{bmatrix} 8 \\ y \end{bmatrix}, \quad \mathbf{A} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$

Equation

If P divides B - A in the ratio k : 1, then

$$\mathbf{P} = \frac{k\mathbf{B} + \mathbf{A}}{k+1}$$

Substitution

From the *x*-coordinate:

$$8 = \frac{2k+1}{k+1}$$

$$8(k+1) = 2k+1 \implies 8k+8 = 2k+1 \implies 6k = -7 \implies k = -\frac{7}{6}$$

From the *y*-coordinate:

$$y = \frac{3k+2}{k+1}$$

Substitute $k = -\frac{7}{6}$:

$$y = \frac{3(-\frac{7}{6}) + 2}{-\frac{7}{6} + 1} = \frac{-\frac{7}{2} + 2}{-\frac{1}{6}} = \frac{-\frac{3}{2}}{-\frac{1}{6}} = 9$$

Final Answer

Ratio =
$$-7:6$$
 (external division), $y=9$

C Code

```
#include <stdio.h>
void find_y_and_ratio() {
    double x1=1, y1=2, x2=2, y2=3;
    double xp=8, yp;
    double k;
    // solve for ratio using x-coordinate
    k = (xp - x1) / (x2 - xp);
    // solve for y-coordinate
    yp = (k*y2 + y1) / (k+1);
    printf("Ratio = \%.2f : 1\n", k);
    printf("y = \%.2f\n", yp);
}
```

C Code

```
int main() {
    find_y_and_ratio();
    return 0;
}
```

Python Code

```
def find_y_and_ratio():
    A = (1,2)
    B = (2,3)
   Px = 8
    # solve for ratio using x-coordinate
    k = (Px - A[0]) / (B[0] - Px)
    # solve for y-coordinate
    y = (k*B[1] + A[1]) / (k+1)
    print("Ratio = {:.2f} : 1".format(k))
    print("v =", v)
find_y_and_ratio()
```

Plot

Figure: