Embryogenesis Explained

Biochemical and mechanical regulation of extracellular matrix signaling: insights from fibronectin

Michael Smith March 5, 2014

Cell sensory toolbox

Goal: Determine how extracellular matrix fibers communicate biochemical and mechanical signals to cells

Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.

Collagen

Lodish et al. Molecular Biology of the Cell.

Parry. 1988. BiophysChem. 29:195.

Fibronectin

Davidson, Keller, DeSimone. 2004. DevDyn. 231: 888. Erickson, Carrell. 1983. JBiolChem. 258: 14539. Peters, Portz, Fullenwider, Mosher. 1990. JCellBiol. 111: 249. Development 119, 1079-1091 (1993)

Printed in Great Britain © The Company of Biologists Limited 1993

Defects in mesoderm, neural tube and vascular development in mouse embryos lacking fibronectin

Elizabeth L. George*, Elisabeth N. Georges-Labouesse†, Ramila S. Patel-King, Helen Rayburn and Richard O. Hynes‡

Cell and fibronectin dynamics during branching morphogenesis

Melinda Larsen, Cindy Wei and Kenneth M. Yamada*

Craniofacial Developmental Biology and Regeneration Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, MSC 4370, Bethesda, MD 20892-4370, USA

*Author for correspondence (e-mail: kenneth.yamada@nih.gov)

Accepted 5 June 2006
Journal of Cell Science 119, 3376-3384 Published by The Company of Biologists 2006
doi:10.1242/jcs.03079

VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia

Holger Gerhardt,¹ Matthew Golding,² Marcus Fruttiger,³ Christiana Ruhrberg,² Andrea Lundkvist,¹ Alexandra Abramsson,¹ Michael Jeltsch,⁴ Christopher Mitchell,⁵ Kari Alitalo,⁴ David Shima,² and Christer Betsholtz¹

We show here that VEGF-A controls angiogenic sprouting in the early postnatal retina by guiding filopodial extension from specialized endothelial cells situated at the tips of the vascular sprouts. The tip cells

respond to VEGF-A only by guided migration; the proliferative response to VEGF-A occurs in the sprout stalks. These two cellular responses are both mediated by agonistic activity of VEGF-A on VEGF receptor 2.

Proposed strategy to create bioartificial heart

- 1. Decellularize cadaveric heart
- → create whole-heart scaffold
- 2. Repopulate decellularized heart
- → cardiac and endothelial cells
- 3. Functionalize construct
- → form contractile myocardium

Perfusion-decellularized matrix: using nature's platform to engineer a bioartificial heart

Harald C Ott¹, Thomas S Matthiesen², Saik-Kia Goh², Lauren D Black³, Stefan M Kren², Theoden I Netoff³ & Doris A Taylor^{2,4}

Sharma, Askari, Humphries, Jones, Stuart. 1999. EMBOJ. 18: 1468. Hytonen, Smith, Vogel. 2010. Cellular Mechanotransduction: Diverse Perspectives from Molecules to Tissues, Chapter 13. Cambridge University Press (Editors: Mofrad, Kamm).

Challenge 1

Bradshaw, Smith. 2013. ActaBiomater. In Press.

Challenge 2

Ohashi, Kiehart, Erickson. 1999. ProcNatlAcadSci. 96: 2153.

Fabricating fibronectin fibers

Ejim, Blunn, Brown. 1993. Biomaterials. 14: 743.

Fibronectin extensibility

PDF created with pdfFactory Pro trial version www.pdffactory.com

Fn mechanical properties

Klotzsch, Smith, Kubow, Muntwyler, Little, Beyeler, Gourdon, Nelson, Vogel. PNAS. 106: 18267.

Rho-mediated Contractility Exposes a Cryptic Site in Fibronectin and Induces Fibronectin Matrix Assembly

Cuiling Zhong, Magdalena Chrzanowska-Wodnicka, James Brown, Amy Shaub, Alexey M. Belkin, and Keith Burridge

Department of Cell Biology and Anatomy, and Lineberger Comprehensive Cancer Center, University of North Carolina,

Chapel Hill, North Carolina

Little, Smith, Ebneter, Vogel. 2008. MatrixBiol. 27: 451.

Little, Schwaertlander, Smith, Gourdon, Vogel. 2009. NanoLett. 9(12): 4158-4167.

Relevance to disease

M. Chabria, S. Hertig, M.L. Smith, V. Vogel. 2010. NatCommun.

Allosteric binding?

Mitsi, Hong, Costello, Nugent. 2006. Biochemistry. 45.

Allosteric binding?

Mitsi, Hong, Costello, Nugent. 2006. Biochemistry. 45.

Hubbard, Nugent, Smith. Unpublished.

Allosteric versus mechanical regulation

Hubbard, Buczek-Thomas, Nugent, Smith. 2013. Matrix Biol. In Press.

Enthalpic and Entropic contributions to extension:

How do fibers extend?

Vogel. 2006. AnnuRevBiophysBiomolStruct. 35:459.

How do fibers extend?

blocked with iodoacetamide and stretched from 3x absolute extension

Johnson, Tang, Carag, Speicher, Discher. 2007. Science. 317:663.

PLASMA FIBRONECTIN

Unfolding profile

Bradshaw, Smith. 2011. Biophys J. 101: 1740.

Linking nm to µm length scales

molecular properties

+

intermolecular arrangement

Molecules are probabilistic

Fibers are deterministic

Multi-scale model

Benefits: predictions of intermolecular arrangement, molecular force, molecular conformation, ligand density, and porosity

Challenge:

Molecules are probabilistic

Fibers are deterministic

In silico: single molecule

Fibronectin fiber architecture

transmission electron microscopy

Singer. 1979. Cell. 16: 675.

UV absorption microscopy

Bradshaw, Cheung, Ehrlich, Smith. 2012. PLoSComputBiol. 8(12): e1002845.

In silico: model fibronectin fiber

$$f = (k_B T/A) z/L + 1/(4(1-z/L)^2) - 1/4$$

(1) Worm like chain equation.

$$U = \sum_{i} \left[\left(\frac{k_b T}{A_i} \right) \left(\frac{z_i^2}{2L_i} + \frac{L_i}{4} \left(1 - \frac{z_i}{L_i} \right)^{-1} - \frac{z_i}{4} \right) \right]$$

(2) Integrate (1) and sum over all molecules to find potential energy.

$$P_{u} = (k_{u}^{0} * \Delta t)(\exp(f * \Delta x_{u}/k_{B}T))$$

(3) The probability of an unfolding event.

Bradshaw, Smith. 2011. BiophysJ. 101: 1740.

Mechanical comparison

Bradshaw, Cheung, Ehrlich, Smith. 2012. PLoSComputBiol. 8(12): e1002845.

Insight: ligands and pores

Architecture predictions:

- \sim 2500 RGD/ μ m²
- ~15 nm spacing between nanofibers
- ~these properties are strain dependent!

Insight:

Bradshaw, Smith. 2013. ActaBiomater. In Review.

Direct regulation of cell behavior

Acknowledgements

PhD students:

Mark Bradshaw
Sam Polio
Brant Hubbard
Liz Canović
Matt Jacobsen

Collaborators:

Matt Nugent, UML
Dimitrije Stamenović, BU
Paul Barbone, BU
Dan Ehrlich, BU
Joyce Wong, BU

