大学院情報理工学研究科 博士前期課程一般入試 入学試験問題 (2021年8月17日実施)

【基盤理工学専攻】

専門科目

※注意事項

- 1. 試験開始の合図があるまで問題冊子を開いてはいけない。
- 2. 問題冊子はこの注意事項を含めて21枚、解答用紙は4枚である。
- 3. 試験開始の合図の後、全ての解答用紙に受験番号を記入すること。
- 4. 選択科目記入シートに受験番号を記入すること。
- 5. 試験時間は180分である。
- 6. 科目は、選択群 I の 5 科目(1 「電気・電子回路」、2 「光波動工学」、3 「量子力学/統計力学」、4 「無機・有機化学」、5 「分子生物学/生物化学」)と選択群 II の6 科目(6 「基礎数学」、7 「力学」、8 「電磁気学」、9 「光・電子デバイス基礎」、10 「物理化学」、11 「細胞・神経生物学」)、合計11科目で構成されている。
 - ●全11科目のうちから4科目を選択して解答すること。ただし、選択群Iから1科目以上を含めること。
- 7. 選択科目記入シートには、選択した4科目に〇印を記入すること。
- 8. 選択科目記入シートは、試験終了後に必ず提出すること。
- 9. 解答用紙の問題の番号欄には、<u>解答した問題の番号を記入すること</u>。 (採点は記入された番号についてのみ行う。誤記入、記入もれに注意すること。)
- 10. 解答は、問題ごとに別々の解答用紙(各問題ごとに1枚)を使用すること。 必要なら裏面を使用してもよいが、その場合は表面下に<u>「裏面へ続く」</u>と記入する こと。
- 11. 試験中に問題冊子の印刷不鮮明、ページの落丁・乱丁及び解答用紙の汚れ等に気付いた場合は、手を挙げて監督者に知らせること。
- 12. 試験終了後、この問題冊子は持ち帰ること。
- 13. 解答は英語でもよい。

問題は次のページからです。

このページは問題冊子の枚数には含みません。

問 題

基盤理工学専攻

電気·電子回路

(1) 図1に示した理想的なオペアンプ,抵抗,電圧Vの電圧源, および<u>負荷Q</u>からなる<u>回路</u>を考える。抵抗値 $R_0 \sim R_3$ を適切 に選ぶと負荷Qに流れる電流IはVとR0~R3のみで決まり 負荷の特性に依存しない。その条件を求める。

- (a) 図中のa点の<u>電位</u>を電流 I_1 を使って表せ。同様にb点 の電位をI2を使って表せ。
- (b) 理想的なオペアンプの入力端子間の電位差の特徴から I_1 と I_2 の関係を求めよ。
- (c) a 点の電位を I₂ を使って表せ。
- (d) 電流 I_0 を I_2 を使って表せ。
- (e) 負荷 Q に流れる電流 $I \in I_2$ を使って表せ。
- (f) I が負荷 Q の特性に依存しないのは R_0 と R_2 と R_3 がどのような関係にあるときか答えよ。
- (2) 自己インダクタンスLのコイルと抵抗値Rの抵抗が電圧 V_0 の 定電圧源と電源Pにつながれている回路を考える(図2)。電 源 P の<u>端子間電圧</u>を V(t)とする。
 - (a) コイルを流れる電流 I(t)が満たすべき<u>微分方程式</u>を書け。
 - (b) V(t) = 0 であるとき微分方程式を解いて I(t)を求めよ。ただ し初期値 I(0) = 0とする。また求めた I(t)のグラフを書け。

問題

基盤理工学専攻

科目の番号

1 電気・電子回路

(前ページから続く)

次にV(t)が図3のように<u>周期的</u>に変化する場合を考える。<u>周期</u>をT, デューティ比を α とし $L/R\gg T$ とする。また1周期の<u>平均</u>電流を

$$ar{I}(t) = rac{1}{T} \int_{t-T/2}^{t+T/2} I(t) dt$$
で定義する。

- (c) (a)で得た微分方程式をt-T/2からt+T/2まで<u>積分する</u>ことにより 1 周期の電流変化量 $\Delta I(t) = I(t+T/2)$ -I(t-T/2)を V_0 , V_1 , T, α , L, Rおよび $\overline{I}(t)$ で表せ(図 4 参照)。
- (d) 十分時間が経った後の平均電流 Ī(t)の値を求めよ。
- (e) (c),(d)で考えた回路は図5と等価である(<u>スイッチ</u>は周期 *T*, デューティ比 α で切り替え)。ここではさらに右の電圧源を<u>容量</u> Cの<u>コンデンサ</u>に置き換えた回路を考える(図6)。*RC*≫*T*として 十分時間が経った後のコンデンサの端子間電圧を求めよ。

図 5

理想的: ideal, オペアンプ: operational amplifier, 抵抗: resistor, 電圧: voltage, 電圧源: voltage supply, 負荷: load, 回路: circuit, 抵抗値: resistance, 電流: current, 特性: characteristics, 電位: voltage, 入力端子: input, 自己インダクタンス: self-inductance, コイル: inductor, 定電圧源: constant voltage supply, 電源: power supply, 端子間電圧: inter-terminal voltage, 微分方程式: differential equation, 周期的: periodic, 周期: period, デューティ比: duty ratio, 平均: mean, 積分する: integrate, 変化量: difference, スイッチ: switch, 容量: capacitance, コンデンサ: capacitor

間 題

基盤理工学専攻

科目の番号

光波動工学

- (1) 図 1 のように光ファイバ中を光線が伝搬している。コアに閉じ込められ低損失に伝搬できるのは、 コアとクラッドの界面で全反射条件を満たす角度で伝搬する光線のみである。コアの屈折率を n₁, クラッドの屈折率を $n_2(< n_1)$ とする。光ファイバの外側は空気(屈折率1)とする。以下の問に答え よ。
 - (a) 全反射の臨界角 θ_c を n_1 , n_2 を用いて表せ。
 - (b) 図1のように空気中から光ファイバに光線を入射する時、コア中の全反射伝搬を許容する最大入 射角を Θ とする。NA= $\sin\Theta$ は光ファイバの開口数と呼ばれる。NA を n_1 、 n_2 を用いて表せ。導出 過程を示すこと。

- (2) 波長 λ の単色平面波の回折について、以下の間に答えよ。スリットはxy面内にあり、z軸となす回折 角 θ は1より十分小さいとして $\sin\theta \sim \theta$ とする。
 - (a) 図 2(i)のように、x 軸方向の幅が a で y 軸方向には十分長いスリットに、垂直に平面波が入射し ている。この時スリットから十分遠方の回折光強度分布は図 2(ii)のようになった。回折光強度が 0 となる A での回折角 θ を求めよ。また最大強度の次の強度ピーク P の回折角 θ を求めよ。ここ で方程式 $\alpha = \tan \alpha$ の解は $\alpha = 0, \pm 4.49,...$ であることを使って良い。

問 題

基盤理工学専攻

科目の番号

2

光波動工学

(前ページから続く)

(b) 図 3(i)のように、x 軸方向の幅が a で y 軸方向には十分長い 3 つのスリット(間隔 d)に、垂直に平面波が入射している。この時スリットから十分遠方の回折光強度分布は図 3(ii)のようになった。最大強度を持つピーク P_0 の次の強度ピーク P_1 の回折角 θ を求めよ。また P_0 の強度は、(a)の単スリットの場合の最大強度の何倍か。入射平面波の強度は(a)の場合と同じとする。

(3) <u>均質・等方性媒質</u>中を伝搬する単色平面波の<u>電界E(r,t)</u>および<u>磁界H(r,t)</u>は,<u>複素振幅</u>表示で以下のように書ける。

$$E(\mathbf{r},t) = \text{Re}(E_0 \exp[i(\omega t - \mathbf{k} \cdot \mathbf{r})])$$

$$H(\mathbf{r},t) = \text{Re}(H_0 \exp[i(\omega t - \mathbf{k} \cdot \mathbf{r})])$$

ここでrは位置ベクトル、tは時刻、 ω は角周波数、kは波数ベクトルである。 E_0 および H_0 は複素定数の振幅ベクトルである。この媒質の屈折率をn、真空中の光速をcとする。E(r,t)およびH(r,t)は、マクスウェル方程式

$$\nabla \times \mathbf{E} = -\mu \frac{\partial \mathbf{H}}{\partial t}$$

$$\nabla \times \mathbf{H} = \varepsilon \frac{\partial \mathbf{E}}{\partial t}$$

$$\nabla \cdot \mathbf{E} = 0$$

$$\nabla \cdot \mathbf{H} = 0$$

を満たす。ここで μ , ε はそれぞれ媒質の<u>透磁率</u>および<u>誘電率</u>である。以下の問に答えよ。

- (a) 波数ベクトルの大きさ $k = |\mathbf{k}|$ を ω , n, c で表せ。
- (b) この<u>光波</u>の電界は k に直交している, すなわち<u>横波</u>であることを示せ。

問 題

基盤理工学専攻

科目の番号

2

光波動工学

(前ページから続く)

- (c) この光波の電界と磁界は互いに直交していることを示せ。また k, E, H の方向の関係を図示せよ。
- (d) この光波の伝搬方向を z とする。光波が<u>左回り円偏光</u>となるための E_0 の x 成分 E_{0x} および y 成分 E_{0y} が満たすべき条件を書け。ここで「左回り」とは光波を迎えるように見たときに電界が回転する方向とする。
- (e) k に直交する単位面積を単位時間に通過する光パワー(すなわち光強度)を E_0 , n, c, ε で表せ。

光ファイバ: optical fiber, 光線: ray, コア: core, クラッド: clad, 全反射: total reflection, 屈折率: refractive index, 臨界角: critical angle, 開口数: numerical aperture, 波長: wavelength, 単色平面波: monochromatic plane wave, 回折: diffraction, スリット: slit, 光強度: light intensity, 均質・等方性媒質: homogenous and isotropic medium, 電界: electric field, 磁界: magnetic field, 複素振幅: complex amplitude, 位置ベクトル: position vector, 角周波数: angular frequency, 波数ベクトル: wave vector, 真空: vacuum, 光速: velocity of light, マクスウェル方程式: Maxwell's equations, 透磁率: permeability, 誘電率: permittivity, 光波: optical wave, 横波: transverse wave, 左回り円偏光: left-handed circularly polarized light

問題

基盤理工学専攻

科目の番号

3

量子力学/統計力学

電子スピン $\mathbf{s} = (s_x, s_y, s_z)$ の x, y, z 成分の<u>演算子</u>は、それぞれ 2 行 2 列の<u>行列</u>

$$s_x = \frac{\hbar}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad s_y = \frac{\hbar}{2} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad s_z = \frac{\hbar}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix},$$

で表される。ただし、 \hbar は<u>プランク定数</u> h を 2π で割ったものである。以下の問に答えよ。

- (1) スピンの大きさの 2 乗 $s^2 = s_x^2 + s_y^2 + s_z^2$ を 2 行 2 列の行列で表し、さらに s^2 と s_z の同時<u>固有</u> 状態に対する固有値と対応する規格化された 2 行 1 列の<u>固有ベクトル</u>をすべて求めよ。
- (2) 一様な<u>磁東密度</u> $\mathbf{B} = \frac{1}{2}B\left(\sqrt{\frac{3}{2}},\sqrt{\frac{3}{2}},1\right)$ の場の中の電子スピンの固有状態を考える。
 - (a) 電子の<u>質量</u>を m, <u>電荷</u>を -e とすると, <u>ハミルトニアン</u>は $H = \frac{e}{m} \mathbf{B} \cdot \mathbf{s}$ と表される。ハミルトニアンを 2 行 2 列の行列の形式で書け。
 - (b) 時間に依存しない $\underline{\upsilon}_2$ レーディンガー方程式を解いて,<u>固有エネルギー</u> E と対応する 2 行 1 列の固有ベクトル ψ をすべて求めよ。固有ベクトルは大きさ $\psi^\dagger\psi=1$ となるように規格化すること。ただし, ψ^\dagger は ψ の $\underline{\tau}$ ルミート共役を表す。
 - (c) B=1.0 T の時,異なる固有エネルギーの差を eV 単位で求めよ。 \underline{q} 有効数字 $\underline{2}$ 桁とする。ただし,近似値として $\hbar=1.05\times 10^{-34}$ Js, $m=9.11\times 10^{-31}$ kg を使ってよい。
- (3) 一様な磁束密度 $\mathbf{B} = (0,0,B)$ の場の中の電子スピンの時間発展を考える。
 - (a) <u>状態ベクトル</u>を $\psi(t) = \begin{pmatrix} a(t) \\ b(t) \end{pmatrix}$ とし、 $\begin{pmatrix} a(t) \\ b(t) \end{pmatrix}$ に対する時間に依存するシュレーディンガー方程式を行列の形式で書け。
 - (b) 状態ベクトルの成分 a(t), b(t) のそれぞれに対する<u>微分方程式</u>を $\Omega = \frac{eB}{m}$ を用いて表せ。
 - (c) 実数 β に対して<u>初期条件</u>が $a(t=0)=\cos\beta$, $b(t=0)=\sin\beta$ のとき, (b) の微分方程式を解いて状態ベクトル $\psi(t)$ を求めよ。
 - (d) (c) で求めた $\psi(t)$ について、電子スピンの<u>期待値</u> $\langle s_j \rangle = \psi(t)^\dagger s_j \psi(t)$, (j=x,y,z) を求めてスピンの運動の物理的意味を述べよ。

電子: electron, スピン: spin, 演算子: operator, 行列: matrix, プランク定数: Planck constant, 固有状態: eigenstate, 固有値: eigenvalue, 固有ベクトル: eigenvector, 磁束密度: magnetic flux density, 質量: mass, 電荷: charge, ハミルトニアン: Hamiltonian, シュレーディンガー方程式: Schrödinger equation, 固有エネルギー: eigenenergy, エルミート共役: Hermite conjugate, 有効数字 2 桁: two significant digits, 時間発展: time evolution, 状態ベクトル: state vector, 微分方程式: differential equation, 初期条件: initial condition, 期待値: expectation value

問 題

基盤理工学専攻

科目の番号

4

無機·有機化学

(1) Moseley は、一連の元素について K 線と L 線と呼ばれる 特性 X 線の波長を測定した。 K 線と L 線はそれぞれ K 殻と L 殻に関連付けられている。特性 X 線の波長から 振動数 ν を求め、その 平方根を 原子番号 Z の順に配列したところ、それぞれの系列のデータが直線上に並ぶことがわかった。 A,B を定数とすると、

K線の系列: $\sqrt{v} = A_{K}\sqrt{(3/4)B}$, $A_{K} = Z-1$

L線の系列: $\sqrt{v} = A_{\rm I} \sqrt{(5/36)B}$, $A_{\rm I} = Z - 7.4$

これにより,原子番号が未確定であった元素の原子番号を明らかにするとともに,未知元素の存在も予言した。特性X線の放出にかかわる二つの \underline{x} 之が一準位を理解するためには,<u>量子</u>論を必要とする。その当時発表されたばかりのBohrの原子模型と調和させつつ,Moseleyは実験結果を解釈した。

- (a) Bに掛けられている係数 3/4 や 5/36 は何に由来するか。
- (b) Moseley による実験結果の解釈を3行程度で説明せよ。
- (c) A について、Z から引かれている数値 1 や 7.4 はどのような意味を持つか。
- (2) CuF_2 結晶で、 Cu^{2+} には 6 個の F イオンが<u>配位</u>している。6 つの Cu-F 結合のうち 4 つの<u>結合長</u>が 193 pm, 2 つの結合長が 227 pm である。このようになる理由を、d <u>軌道準位</u>および<u>電子配置</u> を図示して答えよ。結合長が異なることを定性的に説明できればよい。Cu の原子番号は 29 である。
- (3) 次の設問に答えよ。
 - (a) <u>光学活性</u>物質 X は C, H, O からなる。 <u>質量スペクトル</u>において X の<u>分子イオン</u>のピークが m/z = 86 に現れた。<u>赤外吸収スペクトル</u>において X は 1730 cm⁻¹ に強い吸収を見せたが 3100~3500 cm⁻¹付近には目立った吸収をもたなかった。X の<u>構造式</u>を示せ。原子量 H 1, C 12, O 16。
 - (b) 4-<u>ニトロアニリンは、アセトアニリド</u>をニトロ化し、続いて<u>加水分解</u>することにより得られる。アニリンを直接ニトロ化すると、<u>配向性</u>が変化して目的としない<u>異性体</u>がかなり副生する。この異性体の構造式を示すとともに、<u>反応中間体</u>の構造式と巻矢印(へ) を用いて反応機構と配向性を説明せよ。
 - (c) 水存在下で trans-2- $\underline{\overline{Jr}\nu}$ を臭素化すると $\underline{\overline{Jr}\nu}$ が得られる。この $\underline{\overline{Jr}\nu}$ と と $\underline{\overline{Jr}\nu}$ が得られる。この $\underline{\overline{Jr}\nu}$ と に $\underline{\overline{Jr}\nu}$ が得られる。この $\underline{\overline{Jr}\nu}$ と に $\underline{\overline{Jr}\nu}$ と に $\underline{\overline{Jr}\nu}$ が得られる。この $\underline{\overline{Jr}\nu}$ に $\underline{\overline{Jr}\nu}$ と に $\underline{\overline{Jr}\nu}$

問 題

基盤理工学専攻

科目の番号

4

無機·有機化学

(前ページから続く)

(4) 次の反応は<u>ビタミンA</u>の合成経路である。各段階 (a) \sim (e) で使われる<u>試薬</u>について,以下の選択肢の中から最適なものを選び記号で答えよ。選択肢の中では「/」や「i),ii)」により重要な反応条件や手順が示されているが,処理の一部は略されている。

選択肢

(ア) Na-C≡C-H/NH₃

 (\checkmark) Br-C≡C-H / Pd(PPh₃)₄, K₂CO₃

(ウ) LiAlH₄

(工) NaBH₄

(才) H₂ / Lindlar 触媒

(カ)<u>m-クロロ過安息香酸</u>

(キ) PhNMe₃⁺Br₃⁻

(ク) HBr

(ケ) Br₂, hv

(コ) KOH

(サ)i) Mg,ii) CO₂

(シ) i) KCN, ii) H₂O / H₃O⁺

(ス) i) Hg(OAc)2, ii) NaBH4

(セ) i) BH_3 , ii) H_2O_2 , OH^-

 (\mathcal{Y}) i) Ph₃P, ii) NaOCH₃ / CH₃OH

(タ) AlCl₃

(チ) 無水マレイン酸

(ツ) H₂O / H₃O⁺

特性 X 線: characteristic X-ray, 振動数: frequency, 原子番号: atomic number, エネルギー準位: energy level, 量子論: quantum theory, 模型: model, 配位: coordination, 結合長: bond length, 軌道準位: orbital level, 電子配置: electron configuration, 光学活性: optically active, 質量スペクトル: mass spectrum, 分子イオン: molecular ion, 赤外吸収スペクトル: infrared absorption spectrum, 構造式: structural formula, ニトロアニリン: nitroaniline, アセトアニリド: acetanilide, 加水分解: hydrolysis, 配向性: orientation, 異性体: isomer, 反応中間体: reaction intermediate, 反応機構: reaction mechanism, ブテン: butene, 臭素化: bromination, ブロモヒドリン: bromohydrin, 立体化学: stereochemistry, キラル中心: chiral center, ビタミン A: vitamin A, 合成経路: synthetic scheme, 試薬: reagent, m-クロロ過安息香酸: m-chloroperbenzoic acid, 無水マレイン酸: maleic anhydride

問 題

基盤理工学専攻

科目の番号

5

分子生物学/生物化学

(1) セントラルドグマの概略を示した下図を参考にして、以下の問に答えよ。

- (a) セントラルドグマについて、提唱した科学者の名前を挙げて2行程度で説明せよ。
- (b) <u>レトロウイルス</u>はセントラルドグマの概念に合わないことを行っている。どのようなことか。 1 行で説明せよ。
- (c) DNA <u>複製</u>における<u>リーディング鎖とラギング鎖</u>の複製メカニズムについて、それぞれの違いが分かるように3行程度で説明せよ。
- (d) <u>転写</u>を行う<u>酵素</u>の名前を答えよ。また,<u>真核生物</u>ではこの酵素が3種類存在するが,その意 義について1行で説明せよ。
- (e) 真核生物では転写後の mRNA <u>前駆体</u>にさまざまな<u>加工</u>が行なわれる。その中には 5'末端への キャップ構造の<u>付加</u>があるが,この構造の生体内での役割を 2 つ述べよ。
- (f) <u>リボソーム</u>が関わる<u>翻訳伸長</u>過程について、以下のキーワードを用いて 4 行程度で説明せよ。キーワード: tRNA, P 部位、A 部位、E 部位。
- (2) タンパク質およびその実験方法に関する以下の問に答えよ。
 - (a) タンパク質を構成する<u>標準アミノ酸</u>の中で、<u>リシン</u>、<u>アルギニン</u>、<u>ヒスチジン</u>は似た性質を有するアミノ酸に分類される。どのような性質であるかを答えよ。また、<u>グルタミン酸</u>と似た性質を示す標準アミノ酸をひとつ挙げ、その<u>側鎖</u>の構造式も答えよ。
 - (b) 以下のタンパク質, または<u>ペプチド</u>を分離するにはどのような<u>クロマトグラフィー</u>を行うの が適当か。その名称と理由をそれぞれ1行で答えよ。Mw は<u>分子量</u>, pI は<u>等電点</u>を示す。
 - (i) リゾチーム (Mw:14,300, pI:11.0) と<u>ラクトアルブミン</u> (Mw:14,100, pI:4.3)
 - (ii) ミオグロビン (Mw:16,900, pI:7.0) と<u>ヘモグロビン</u> (Mw:64,500, pI:7.1)
 - (iii) 2種のトリペプチド, アラニン-フェニルアラニン-リシンとアラニン-バリン-リシン
 - (c) タンパク質の<u>分離と検出</u>に用いられる SDS-PAGE(SDS-ポリアクリルアミドゲル電気<u>泳動</u>) と<u>ウエスタンブロッティング法</u>の方法の概要について,それぞれ 3 行程度で説明せよ。SDS は<u>ドデシル硫酸ナトリウム</u>を示す。
 - (d) タンパク質の<u>二次構造</u>のひとつである <u>β-シート</u>の構造的な特徴について 2 行程度で説明せよ。また、<u>三次構造</u>または<u>四次構造</u>を解析するためにはどのような実験方法を用いればよいか。実験方法の名称とともに実験の進め方について 2 行程度で答えよ。

問題

基盤理工学専攻

科目の番号

5

分子生物学/生物化学

(前ページから続く)

セントラルドグマ: central dogma,レトロウイルス: retrovirus,複製: replication,リーディング鎖: leading strand,ラギング鎖: ragging strand,転写: transcription,酵素: enzyme,真核生物: eukaryote,前駆体: precursor,加工: processing,キャップ構造: cap structure,付加: addition,リボソーム: ribosome,翻訳: translation,伸長: elongation,部位: site,タンパク質: protein,実験方法: experimental methods,標準アミノ酸: standard amino acid,リシン: lysine,アルギニン: arginine,ヒスチジン: histidine,グルタミン酸: glutamic acid,側鎖: side chain,ペプチド: peptide,クロマトグラフィー: chromatography,分子量: molecular weight,等電点: isoelectric point,リゾチーム: lysozyme,ラクトアルブミン: lactalbumin,ミオグロビン: myoglobin,ヘモグロビン: hemoglobin,アラニン: alanine,フェニルアラニン: phenylalanine,バリン: valine,分離: isolation,検出: detection,ポリアクリルアミドゲル電気泳動: polyacrylamide gel electrophoresis,ウエスタンブロッティング法: western blotting method,ドデシル硫酸ナトリウム: sodium dodecyl sulfate,二次構造: secondary structure,分・ト: β-sheet,三次構造: tertiary structure,四次構造: quaternary structure

問 題

基盤理工学専攻

科目の番号

6

基礎数学

- (1) 行列 $A = \begin{bmatrix} 1 & 2 & 0 \\ 2 & -1 & 2 \\ 0 & 2 & 1 \end{bmatrix}$ に対して,以下の問に答えよ。ただし,Eは単位行列,Oは零行列とする。
 - (a) Aの固有値をすべて求め、最大の固有値に対応する固有ベクトルを求めよ。
 - (b) a,b,c を実数とする。 $aA^2 + bA + cE = 0$ ならばa = b = c = 0 であることを示せ。
 - (c) $A^3 + sA^2 + tA + uE = 0$ を満たす実数s, t, u を求めよ。
 - (d) $A^5 4A^4 + 3A^3$ を求めよ。
- (2) 2変数関数 $f(x,y) = 3x^2 12xy + y^3 + 6y^2 15y 3$ の極値をすべて求めよ。
- (3) 次の重積分の値を求めよ。

(a)
$$\iint_{D} \frac{dxdy}{5 - \sqrt{x^2 + y^2}} \qquad D = \{(x, y) | 1 \le x^2 + y^2 \le 16\}$$

(b)
$$\iint_{D} (x^{2} - y^{2})^{2} dx dy \quad D = \{(x, y) | 2 \le x + y \le 3, -1 \le x - y \le 1\}$$

固有値: eigenvalue, 固有ベクトル: eigenvector, 極値: extremum, 重積分: multiple integral

問題

基盤理工学専攻

科目の番号

7

力学

- (1) 図1のような,長さlの軽くて \underline{m} にの生いがの先に<u>質点</u>1(<u>質量</u>m)がついた<u>振り子</u>について考える。ここで,振り子の<u>支点は固定され,鉛直から質点</u>1が<u>振れた角度</u>を θ とする(<u>右</u>に振れたとき θ > 0)。また,質点1の<u>釣り合いの位置</u>(θ = 0)からの水平方向の変位をx(t)とし,振り子は紙面内のみで運動する。重力加速度をgとして以下の設問に答えよ。
 - (a) 質点 1 の水平方向の変位に関する<u>運動方程式</u>をm,l,x,gを用いて 表せ。但し、振れ角 θ は十分小さい($|\theta|$ ≪ 1)と考え、 $\cos\theta$ ≈ 1, $\sin\theta$ ≈ θ としてよい。
 - (b) <u>時刻</u>t=0に、振れ角 θ_0 ($|\theta_0|\ll 1$) から質点 1 を<u>静かに放した</u>あと $\mathcal{O}_X(t)$ を求めよ。

- (2) 図 2 のような、水平軸上を滑らかに動く質点 2(質量M)に、(1)の振り子の支点を固定した場合について考える。ここで、質点 1 と質点 2 の壁からの位置を、それぞれX(t)+x(t)とX(t)とする。また、紙面内のみで運動し、振れ角 θ は十分小さく($|\theta|$ ≪ 1)、質点は壁にぶつからないものとする。
 - (a) 質点1の水平方向の運動方程式を,m,l,x,X,gを用いて表せ。
 - (b) 質点2の水平方向の運動方程式を、M,m,l,x,X,gを用いて表せ。
 - (c) 壁から位置 X_0 に質点 2 を置き、振れ角 θ_0 ($|\theta_0|$ \ll 1)で質点 1 を<u>静止</u>させた。質点 1 と質点 2 を<u>同時に</u>時刻t=0 に静かに放したあとのx(t), X(t) を求めよ。
 - (d) (c)の<u>振動</u>では、振り子の糸の途中で水平方向に振動しない点が存在する。その点から壁までの距離を求めよ。

図 2

問 題

基盤理工学専攻

科目の番号

7

力学

(前ページから続く)

- (3) 図3のような,質点2が壁に<u>ばね定数</u>kのばねで水平につながれている場合について考える。ここで, ばねの<u>自然長</u>からの質点1と質点2の位置を,それぞれX(t)+x(t)とX(t)とする。また,紙面内のみで運動し,振れ角 θ は十分小さく($|\theta|$ \ll 1),質点は壁にぶつからないものとする。
 - (a) 質点 1 , 質点 2 のそれぞれについて水平方向の運動 方程式をM,m,l,x,X,g,kを用いて表せ。
 - (b) (a)で求めたx(t),X(t)についての運動方程式が、 $x(t) = A\cos\omega t$, $X(t) = B\cos\omega t$ の形の \underline{M} をもつと仮定し、基準振動の角振動数をすべて求めよ。
 - (c) $m \ll M$ の場合, (b)で求めた角振動数はそれぞれどのようになるか述べよ。

長さ: length, 伸縮しない: no change in length, 糸: string, 質点: point mass, 質量: mass, 振り子: pendulum, 支点: pivot point, 固定: fixed, 鉛直: vertical, 振れた角度: swing angle, 右: right, 釣り合いの位置: balance position, 水平方向の変位: horizontal displacement, 紙面内: in plane, 重力加速度: gravitational acceleration, 運動方程式: equation(s) of motion, 時刻: time, 静かに放した: gently released, 水平軸上: on horizontal axis, 滑らかに: smoothly, 壁: wall, 位置: position, 静止: still, 同時に: simultaneously, 振動: oscillation, 存在する: exist, ばね定数: spring constant, 自然長: natural length, 解: solution, 基準振動: normal mode, 角振動数: angular frequency

間 題

基盤理工学専攻

科目の番号

8

電磁気学

(1) 極板の面積がS,極板間の距離がdの<u>平行平板コンデンサー</u>を考える。図 1(a) のように極板間には,2種類の<u>誘電体</u>(誘電体 1 ,誘電体 2)が挿入されている。誘電体 1 の<u>誘電率</u>は ϵ_1 ,厚さは d_1 であり,誘電体 2 の誘電率は ϵ_2 ,厚さは $d-d_1$ である。コンデンサーは<u>真空</u>中に置かれており,真空の誘電率は ϵ_0 とする。また,図 1(a) のように極板の面と垂直な方向にx軸をとり,極板Bの位置を原点とする。極板の端の効果は無視できるものとし,重力は考えない。

図 1(a) のようにコンデンサーには定電圧源が接続されており、極板間には<u>電圧</u> V_0 がかかっている。このとき以下の間(a), (b) に答えよ。

- (a) 極板Aに生じる電荷を求めよ。
- (b) コンデンサーに蓄えられているエネルギーを求めよ。

次に、図1(b)のように、定電圧源につながる回路のスイッチをオフにした後、極板Aをゆっくりとx軸に沿って距離l 移動させた。このとき以下の問(c)-(e)に答えよ。

- (c) コンデンサーの電気容量を求めよ。
- (d) 極板Aを移動させるために必要な力の大きさを求めよ。
- (e) 極板Aを距離l移動させるために必要な仕事を求めよ。また、極板Aを動かす前に比べ、コンデンサーに蓄えられているエネルギーがこの仕事分増加していることを示せ。

問 題

基盤理工学専攻

科目の番号

8

雷磁気学

(前ページから続く)

- (2) 図 2(a) のような<u>直交座標系</u>において、点A(a,a,0)と点B(a,-a,0)を結ぶ長さ2aの直線状の<u>導線</u>AB を考える。導線は真空中に置かれており、真空の<u>透磁率</u> E_{μ_0} とする。導線ABにはAからBの向きに<u>電流</u>Iが流れている。このとき以下の間(a),(b)に答えよ。
 - (a) 導線AB上の点Qにおける<u>線要素</u>を Δs としたとき,<u>電流素片</u> $I\Delta s$ が点P(0,0,z)につくる<u>磁束密度</u>の大きさを, $I,a,z,\theta,\Delta s,\mu_0$ を用いて表せ。ただし,角度PQBを θ とする。
 - (b) 導線ABを流れる電流が点Pに作る磁束密度の各成分 (B_x, B_y, B_z) を、 I, a, z, μ_0 を用いて表せ。必要であれば、 $\Delta s = \frac{\sqrt{a^2 + z^2}}{\sin^2 \theta} \Delta \theta$ の関係を用いて計算してよい。

次に、同じ大きさの正方形の $\underline{1}$ $\underline{1}$ $\underline{1}$ $\underline{1}$ の各項点の座標は、 $\underline{1}$ の名項点の座標は、 $\underline{1}$ の名項点の企業は、 $\underline{1}$ の名可点の企業は、 $\underline{1}$ の名可点の企業に

A: (a, a, 0), B: (a, -a, 0), C: (-a, -a, 0), D: (-a, a, 0)

であり、コイル2の各頂点の座標は、

A': (a, a, 2a), B': (a, -a, 2a), C': (-a, -a, 2a), D': (-a, a, 2a)

である。コイル1には電流Iが、コイル2には電流Iが流れている。電流は図2(b)の矢印の向きを正とする。このとき以下の間(c)-(e)に答えよ。

- (c) コイル 1 を流れる電流Iが点R(0,0,a)に作る磁束密度の各成分 (B'_x,B'_y,B'_z) を求めよ。
- (d) AR(0,0,a)での磁束密度が0(ゼロベクトル)となるような電流I/を求めよ。
- (e) 原点0(0,0,0)での磁束密度が0(ゼロベクトル)となるような電流I'を求めよ。

極板: electrode plate, 平行平板コンデンサー: parallel-plate capacitor, 誘電体: dielectric, 誘電率: permittivity, 真空: vacuum, 電圧: voltage, 電荷: electric charge, エネルギー: energy, 電気容量: electric capacitance, 直交座標系: orthogonal coordinate system, 導線: wire, 透磁率: permeability, 電流: current, 線要素: line element, 電流素片: current element, 磁束密度: magnetic flux density, コイル: inductor, ゼロベクトル: zero vector

問題

基盤理工学専攻

科目の番号

9

光・電子デバイス基礎

- (1) <u>半導体中のキャリア密度</u>nおよび<u>移動度</u> μ を<u>ホール測定</u>より求める。下図の様に厚さd,幅Wでx方向に長い半導体<u>片</u>のz方向に<u>磁束密度</u>Bの<u>磁界</u>をかけ,x方向に<u>電流</u>Iを流したところ,y方向に<u>ホール電圧 V_H (+y側が高電圧)が発生した。以下の間に答えよ。ただし,<u>電気素量</u>をqとする。</u>
 - (a) 半導体片の伝導型は何か,理由を説明して答えよ。
 - (b) キャリアにはたらく<u>ローレンツ力</u>の大きさをキャリア密度nおよび電流Iを用いて表せ。
 - (c) ホール電圧 $V_{\rm H}$ で生じる<u>内部電界</u>による力とローレンツ力との関係から<u>ホール係数</u> $R_{\rm H}$ (= 1/qn) を求めよ。
 - (d) この試料の抵抗率測定で電気伝導率 σ が得られた。ホール係数 R_H をもとに移動度 μ を導け。
 - (e) 厚さ $d=100~\mu m$ の半導体片に $B=1.0~T(=V\cdot s\cdot m^{-2})$ の磁界をかけ、I=0.50~Aの電流を流したところ、 $V_H=0.31~V$ のホール電圧が発生した。また、この半導体片の抵抗率測定をしたところ電気伝導率 σ は $1.1\times 10^3~S/m$ であった。この半導体片のキャリア密度および移動度を求めよ。ただし、電気素量gは $1.6\times 10^{-19}~C$ とし、 \underline{q} 効数 \underline{r} は2 析とする。

- (2) バンドギャップ E_g をもつ<u>直接遷移型</u>半導体中の光照射による<u>キャリア発生</u>と、それに伴う電気伝 導率 σ の変化を考える。ここで、<u>真性キャリア密度</u>および<u>真性フェルミ準位</u>をそれぞれ n_i , E_i , <u>熱平</u> <u>衡状態</u>の半導体中の<u>伝導電子密度と正孔</u>密度をそれぞれ n_0 , p_0 , 伝導電子と正孔の<u>寿命</u>をそれぞれ τ_n , τ_p , 伝導電子と正孔の移動度をそれぞれ μ_n , μ_p , 伝導電子および正孔の<u>単位体積当たりの生成レート</u>をG, 電気素量をQ, <u>ボルツマン定数</u>をk, <u>プランク定数</u>をh, <u>光の速度</u>をcとする。以下の問 に答えよ。
 - (a) 半導体のフェルミ準位を E_f とするとき、熱平衡状態のキャリア密度 n_0 および p_0 を示せ。ただしボルツマン分布を仮定し絶対温度をTとする。
 - (b) 光照射がない場合の電気伝導率σ₀を求めよ。
 - (c) 光照射によるバンド間の励起を可能にする光の波長 λ_n の条件を示せ。

間 顥

基盤理工学専攻

科目の番号

光・電子デバイス基礎

(前ページから続く)

ここでキャリア密度が空間的に一様な場合、光励起による伝導電子密度nおよび正孔密度pの単位 時間当たりの変化を示す $\frac{\overline{\nu-h}$ 方程式はそれぞれ $\frac{dn}{dt}=G-\frac{n-n_0}{\tau_n}, \ \frac{dp}{dt}=G-\frac{p-p_0}{\tau_p}$

$$\frac{dn}{dt} = G - \frac{n - n_0}{\tau_n}, \quad \frac{dp}{dt} = G - \frac{p - p_0}{\tau_n}$$

と表すことができる。

- (d) 光照射時, 定常状態における伝導電子密度nおよび正孔密度pを求めよ。
- (e) 光照射による電気伝導率の変化分Δσを求めよ。
- (f) 定常状態からt=0で光照射を止めたときの伝導電子密度の時間変化n(t)を求め、そのグラフの 概形を描け。

一般に直接遷移型半導体は $\mu_n\gg\mu_p$ なので、光照射による電気伝導率の変化 $\Delta\sigma$ は電子電流による ものとし、長さL、断面積Sの半導体光導電セルに電圧Vを印加したときの光電流 ΔI を考える。

- (g) 伝導電子のドリフト速度vを求めよ。
- (h) 光導電セルの電極間(長さL)を電子が走行する時間を t_0 とする。内部量子効率を1と仮定した とき, 光電流ΔIが次式となることを示せ。

$$\Delta I = qGLS \frac{\tau_n}{t_0}$$

GLSは単位時間当たりの光導電セル全体に発生する電子数に相当し、 au_n/t_0 を利得係 数と呼ぶ。

半導体: semiconductor, キャリア密度: carrier density, 移動度: mobility, ホール測定: Hall measurement, 片: chip,磁束密度: magnetic flux density,磁界: magnetic field,電流: current,ホール電圧: Hall voltage, 電気素量: elementary electric charge, 伝導型: conductivity type, ローレンツカ: Lorentz force, 内部電界: built-in electric field, ホール係数: Hall coefficient, 抵抗率測定: resistivity measurement, 電気伝導率: electric conductivity, 有効数字: significant figures, 直接遷移型: direct bandgap, 光照射: light irradiation, キャリア発生: carrier generation, 真性キャリア密度: intrinsic carrier density, 真性フェルミ準位: intrinsic Fermi level, 熱平衡状態: thermal equilibrium, 伝導電子: electron, 正孔: hole, 寿命: lifetime, 単位体積当たり生成レート: generation rate per unit volume, ボルツマン定数: Boltzmann constant, プランク定数: Planck constant, 光の速度: light velocity, ボルツマン分布: Boltzmann distribution, 絶対温度: absolute temperature, バンド間の励起: inter-band excitation, 光の波長: light wavelength, 空間的に一様: spatially uniform, 光励起: photo excitation, レート方程式: rate equation, 定常状態: steady state, 時間変化: time dependence, 電子電流: electron current, 長さ: length, 断面積: cross section, 光導電セル: photo-conductive cell,光電流: photocurrent,ドリフト速度: drift velocity,電極間: between electrodes, 電子が走行する時間: time for electrons to travel, 内部量子効率: internal quantum efficiency, 利得係数: gain coefficient

問 題

基盤理工学専攻

科目の番号

10

物理化学

- (1) 熱力学に関する下記の問に答えよ。ただし、導出過程を記し、有効数字2桁とせよ。
 - (a) メタン (CH_4) から合成ガス $(CO + H_2)$ を得るためには、次の水蒸気改質反応が用いられる。

$CH_4(g) + H_2O(g) \rightleftharpoons CO(g) + 3H_2(g)$

(i) この反応の標準ギブズ自由エネルギー変化 $\Delta_r G^\circ$ を計算せよ。ただし、右表の標準生成エン $\underline{$ タルピー $\Delta_r H^\circ$ と標準エントロピー $\underline{ S^\circ}$ の値を 用い、計算では標準状態に $T=300~\mathrm{K}$ を用いよ。

物質 $\Delta_{
m f} H^{
m o}$ S° $J K^{-1} mol^{-1}$ kJ mol-1 -75186 $CH_4(g)$ -243189 $H_2O(g)$ CO(g)-111198 $H_2(g)$ 131

(ii) 平衡定数 K° (単位:無次元)と $\Delta_{r}G^{\circ}$ をそれぞれ 分圧 p_{CH_4} , $p_{\text{H}_2\text{O}}$, p_{CO} , p_{H_2} を用いて表せ。ただし,標準圧力を p° ,気体定数を R,温度を T とする。

- (iii) 分圧 p_{H_2} を, 反応進行度 ξ , 系の全圧pを用いて表わせ。
- (b) <u>定積モル熱容量</u> $C_{V,m} = 21 \text{ J K}^{-1} \text{mol}^{-1}$, 熱容量比 $\gamma = 1.4$ の<u>理想気体</u> 5.0 mol がある。この系を, 300 K の状態から(状態 A とする)<u>断熱可逆的</u>に膨張させて体積が 4 倍の状態とした(状態 B とする)。
 - (i) 状態 B における気体の温度を計算せよ。ただし、断熱可逆過程 $A \rightarrow B$ には次の式が成り立つ。必要であれば、 $4^{0.4}=1.7$ を用いよ。

$$\frac{p_{\rm B}}{p_{\rm A}} = \left(\frac{V_{\rm A}}{V_{\rm B}}\right)^{\gamma}$$

- (ii) 上記 (i) の過程で, 系が外部にした仕事 W を求めよ。
- (2) <u>プロペン</u>の<u>メチル基</u>から H 原子が<u>脱離</u>すると,<u>アリルラジカル</u> H_2CCHCH_2 となる。以下の問に答えよ。
 - (a) プロペンと比べてアリルラジカルの CC 結合長は、どのように変化すると考えられるかをアリルラジカルの共鳴の様子を図示して説明せよ。
 - (b) アリルラジカルの π 軌道における p 軌道の寄与を、エネルギーの低い軌道が下になる順に模式 的に 3 つ図示し、各軌道の占有電子数を記せ。ただし、軌道における<u>節</u>の数は、1次元箱型ポテンシャルモデルを仮定して考えること。
 - (c) 結合性の π 軌道から反結合性の π^* 軌道に電子が<u>励起</u>されたとき,CC <u>伸縮</u>振動の<u>振動数</u>の変化は,増加あるいは減少のどちらか。理由とともに述べよ。
 - (d) アリルラジカルの振動の自由度を記せ。
 - (e) アリルラジカルの次の分子振動のうち、最も波数の大きな振動を答えよ。

CC 伸縮 CCC 変角 CH 伸縮 HCH 変角

問題

基盤理工学専攻

科目の番号

10

物理化学

_____ (前ページから続く)

合成ガス: synthesis gas, 水蒸気改質反応: steam reforming, 標準ギブズ自由エネルギー: standard Gibbs free energy, 標準生成エンタルピー: standard enthalpy of formation, 標準エントロピー: standard entropy, 標準状態: standard state, 反応進行度: extent of reaction, 定積モル熱容量: molar heat capacity at constant volume, 理想気体: ideal gas, 断熱可逆的: adiabatic and reversible, プロペン: propene, メチル基: methyl group, 脱離: eliminate, アリルラジカル: allyl radical, 共鳴: resonance, 節: node, 1次元箱型ポテンシャルモデル: one-dimensional box potential model, 励起: excite, 伸縮: stretch, 振動数: frequency, 自由度: degree of freedom, 分子振動: molecular vibration, 変角: deformation

問題

基盤理工学専攻

科目の番号

11

細胞•神経生物学

骨格筋収縮の制御に関する以下の間に答えよ。

右図は<u>安静状態</u>にある<u>骨格筋細胞</u>に単回の<u>電気刺激</u> (パルス幅 4 ミリ秒)を与えたときの筋細胞の細胞 膜電位,細胞質内カルシウムイオン(Ca²⁺)濃度,および筋張力の時間変化を模式的に示している。各波形は最大値を1として相対的な変化を表している。

- (1) 安静状態(電気刺激前)の細胞膜電位の特徴をイオン動態に着目し、3 行程度で説明せよ。
- (2) 電気刺激によって、図中のような膜電位の変化が起こる機序について、3行程度で説明せよ。
- (3) 図中の細胞質内 Ca^{2+} 濃度の変動に寄与し, Ca^{2+} を貯蔵する機能を持つ<u>細胞小器官</u>を答えよ。また,この小器官による細胞質内 Ca^{2+} 濃度の増加および低下の機序をそれぞれ 2 行程度で説明せよ。
- (4) 筋張力の発揮には細胞質内 Ca²⁺濃度の増加が必須である。この理由を 2 行程度で説明せよ。
- (5) 図中の電気刺激条件において<u>頻度</u>を単回から段階的に 100 Hz へと増加させた場合,筋張力はどのように変化するか。刺激頻度と筋張力の関係性を説明せよ。図示してもよい。
- (6) 刺激頻度が100 Hz の電気刺激を1分間継続して負荷した後,直ちに、図中の条件で電気刺激を加えたところ、筋張力が図中の値よりも小さくなった。この理由を3行程度で説明せよ。
- (7) <u>哺乳類</u>の細胞において、細胞質内 Ca²⁺濃度の増加によって誘導される生体反応を 1 例挙げて、その機構を説明せよ。ただし、筋収縮反応は除外し、筋細胞に限定しなくてもよい。

骨格筋収縮: skeletal muscle contraction, 安静状態: resting state, 骨格筋細胞: skeletal muscle cell, 電気刺激: electrical stimulation, パルス幅: pulse width, 膜電位: membrane potential, 細胞質内カルシウムイオン: cytoplasmic calcium ion, 筋張力: muscle tension, イオン動態: ion dynamics, 細胞小器官: organelle, 頻度: frequency, 哺乳類: mammalian