

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ: ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ КАФЕДРА: КОМПЬЮТЕРНЫЕ СИСТЕМЫ И СЕТИ (ИУ6)

Отчет

по лабораторной работе (домашнему заданию) № 1

Название лабораторной работы	:	
П		
Дисциплина: Основы программи Студент гр. ИУ6-12Б	рования (Подпись, дата)	С.В.Астахов (И.О. Фамилия)
Преподаватель	(Полпись дата)	(ИО Фамилия)

I вариант

<u>Задание 1.1</u>

Создайте новый проект в отдельной папке и введите программу, представленную ниже, заменив выражения в фигурных скобках соответствующими операторами. Создайте новый проект в отдельной папке и введите программу, представленную ниже, заменив выражения в фигурных скобках соответствующими операторами.

Текст программы:

```
program example2;
{$APPTYPE CONSOLE}
uses
 SysUtils;
Var
y: real;
begin
y := 1;
 WriteLn('До преобразований y=', y:20:16);
 y := y / 6000;
 y := exp(y); \{ y = ex \}
y := sqrt(y); { Квадратный корень }
 y := y / 14;
y := 14*y;
y := sqr(y); \{ Y = y2 \}
 y := In(y);
 y := 6000 * y;
 WriteLn('После преобразований = ', y:20:16);
 writeln('абсолютная погрешность = ',#13#10,(abs(y-1) ):20:16);
 writeln('относительная погрешность = ',#13#10,(abs(y-1) / abs(y) ):20:16);
 writeln('предельная относительная погрешность = ',(abs(y-1) / abs(y-abs(y-
1) ) ):20:16 );
 readIn;
end.
```

Абсолютная	Относительная	Предельная
погрешность	погрешность	относительная
		погрешность
0.000000000012632	0.000000000012632	0.000000000012632

Данные погрешности относятся к типам:

- связанных с использованием приближенных значений параметров, например, любых физических констант (начальные погрешности);
- связанных с ограниченным количеством разрядов, используемых для представления чисел (погрешности округления);

Вывод:

- При программировании вычислений возникают погрешности, полученный результат отличается от истинного.
- Существует 3 основных метода оценки погрешностей.
- Существует множество факторов, влияющих на величину погрешности.
- Погрешности в вычислении чисел типа real незначительны для большинства задач, однако для высокоточных операций их разрядной сетки может быть недостаточно.

<u>Задание 1.2</u>

Из математики известно, что $ch^2x - sh^2x = 1$. Разработайте программу, которая вычисляет левую часть этого равенства.

Указание. Программа должна реализовывать следующую последовательность вычислений: $y1=sh\ x,\ y2=ch\ x,\ y=y22-y12,\ где\ x,\ y,\ y1,\ y2-$ переменные типа real. Полученные значения $y1,\ y2$ и у вывести на экран, указав ширину поля вывода не менее 20 и количество дробных цифр не менее 16. Заполните таблицу и объясните результат. Измените в программе типы переменных на double. Объясните полученный результат. Типы каких переменных реально влияют на точность результата и почему?

Текст программы:

```
program Project1;
{$APPTYPE CONSOLE}
uses
 System.SysUtils;
var
 x, y1, y2, y, delta, sigma: real;
begin
 writeIn('Enter X');
 readln(x);
 y1 := (\exp(x) + \exp(-x)) / 2;
 y2 := (\exp(x) - \exp(-x)) / 2;
 y := sqr(y1) - sqr(y2);
 delta := abs(y - 1);
 sigma := delta / abs(y);
 writeln('y1, y2,y:',y1:28:20,'',y2:28:20,'',y:28:20);
 writeln('абсолютная погрешность: ', delta:22:20);
 writeln('относительная погрешность: ', sigma:22:20);
 readIn;
end.
```

Х	y1	y2	у	Δ	δ
8,25	1913.813041349 23175000000	1913.812 7800906745 5000000	0.9999999996 2005858800	0.000000000 37994141167	0.000000000 37994141181
8,32	2052.580125935 02781000000	2052.579 8823391637 6000000	0.9999999992 7467797500	0.000000000 72532202466	0.000000000 72532202519
8,45	2337.536474706 09940000000	2337.536 2608056843 8000000	0.9999999983 7200448400	0.000000001 62799551617	0.000000001 62799551882
8,55	2583.377310360 54720000000 2583.377	2583.377 1168154476 1000000	1.0000000001 7280399000	0.000000000 17280399334	0.000000000 17280399331
8,65	2855.073454440 17847000000	2855.073 2793133306 6000000	0.9999999980 0002115100	0.000000001 99997884920	0.000000001 99997885320
8,75	3155.344133275 17450000000	3155.343 9748138494 0000000	0.999999998 9904608800	0.000000000 10095391190	0.000000000 10095391191

Вывод:

- Данная программа демонстрирует, что при операциях над близкими по значению числами погрешность вычисления возрастает (для x=8.25, 8.32, 8.75 у1 и у2 более далеки по значению, чем для других входных данных и при этом погрешности при подсчете результата значительно меньше).
- При использовании типа double для переменных у, у1, у2 точность возрастает, т.к. над ними совершаются действия с экспонентой, а число Эйлера иррационально (и должно быть представлено в функции exp() с высокой точность) => так или иначе в ходе вычисления происходит потеря точности, но за счет большей разрядной сетки у double она уменьшается.

Примечание: использование double для x в данном конкретном тесте незначительно влияет на точность, т.к. все входные данные умещаются в разрядную сетку real.

Схема алгоритма:

<u>Задание 1.3</u>

Разработайте программу, которая проверяет равенство $\sin^2 x + \cos^2 x = 1$. Убедитесь, что погрешность достаточно мала. Поясните полученный результат.

Текст программы:

```
program Project1;
{$APPTYPE CONSOLE}
uses
 System.SysUtils;
var
 x, leftside: real;
 eps: double;
begin
 writeIn('Enter X, Eps');
 readln(x, eps);
 leftside := sqr(sin(x)) + sqr(cos(x));
 if (abs(leftside - 1) < eps) then
  writeln('sin^2(x)+cos^2(x) equals 1')
 else
  writeln('sin^2(x)+cos^2(x) DOES NOT equal 1');
 readln;
end.
```

Тесты:

Ввод	Вывод
1 1e-10	sin^2(x)+cos^2(x) equals 1
5 1e-50	sin^2(x)+cos^2(x) equals 1
9 1e-200	sin^2(x)+cos^2(x) equals 1
7 1e-500	sin^2(x)+cos^2(x) DOES NOT
	equal 1
11 1e-1000	sin^2(x)+cos^2(x) DOES NOT
	equal 1

Вывод:

Погрешность очень мала, т.к. из всех возможных факторов в данной программе на точность влияет лишь ограниченность разрядной сетки. Особенно важным является тот факт, что не происходит вычитания близких чисел.

Задание 2

Ввести действительные числа X, Y и W. Определить $\max^2(X+Y+W, X^*Y^*W)$

Текст программы:

```
program Project1;
{$APPTYPE CONSOLE}
uses
 System.SysUtils;
var
 x, y, w, r1, r2: real;
begin
 writeIn('Enter x,y,w');
 readln(x, y, w);
 r1 := x + y + w;
 r2 := x * y * w;
 if (sqr(r1) > sqr(r2)) then
 begin
  writeIn('(x+y+w)^2 > (x*y*w)^2')
 end
 else
 begin
  if (sqr(r1) < sqr(r2)) then
    writeIn('(x+y+w)^2 < (x^*y^*w)^2')
  else
    writeIn('(x+y+w)^2 = (x^*y^*w)^2');
 end;
 readIn;
end.
```

Тесты

Ввод	Ожидаемый вывод	Вывод
0 1 -1	$(x+y+w)^2 = (x^*y^*w)^2$	$(x+y+w)^2 = (x^*y^*w)^2$
222	$(x+y+w)^2 < (x^*y^*w)^2$	$(x+y+w)^2 < (x^*y^*w)^2$
111	$(x+y+w)^2 > (x^*y^*w)^2$	$(x+y+w)^2 > (x^*y^*w)^2$
5 3 8	$(x+y+w)^2 < (x^*y^*w)^2$	$(x+y+w)^2 < (x^*y^*w)^2$

Вывод:

Turbo Delphi позволяет программировать ветвящиеся процессы. В том числе процессы со вложенными операторами ветвления.

Схема алгоритма:

Задание 3

Решить задачу с точностью ξ , организовав итерационный цикл. Значение точности вводится с клавиатуры. Найти первый член последовательности y=n/(n²+2), для которого у $\leq \xi$. Определить, как изменяется число итераций при изменении точности. Проверить программу при ξ =10-², 10-⁴.

Текст программы:

```
program Project1;
{$APPTYPE CONSOLE}
uses
 System.SysUtils;
var
 eps, y: real;
 n: integer;
begin
 writeIn('Введите точность: ');
 readIn(eps);
 n := 1;
 y := n / (sqr(n) + 2);
 while not(y <= eps) do
 begin
  n:=n+1;
  y := n / (sqr(n) + 2);
 end;
 writeln('y <= eps: ',y:20:16);
 writeIn('n=',n);
 readIn;
end.
```

Тесты

Ввод	Ожидаемый вывод	Вывод (для n)
	(для n)	
0.1	10	10
1e-2	100	100
1e-4	10000	10000

Ответ:

В данной программе число итераций обратно точности (n = 1/eps).

Вывод:

- Число итераций при расчетах с погрешностью напрямую связано с заданной точностью.
- Пределы последовательностей в программировании вычисляются не точно, а с задаваемой пользователем погрешностью.

Схема алгоритма:

