Contents

1	Idempotent	2
2	Commutative	2
3	Associative	2
4	Distributive	4
5	de Morgan's Laws	5
6	Double Negation	7
7	Implication Definition	7
8	Transposition	8
9	Exportation	8
10	Trivial Proof	9
11	Modus Tollens	10
12	Hypothetical Syllogism	10
13	Disjunctive Syllogism	11
14	Construction Dilemma	11
15	Destructive Dilemma	11
16	Qualifier Negation	12
17	Qualifier Unification	13
18	Qualifier Transposition	14
19	Trivial Proof with Qualifier	15

1 Idempotent

$A \vdash (A \land A)$

Line	Assumptions	Formula	Justification	References
1	1	A	Assumption Introduction	
2	1	$(A \wedge A)$	Conjunction Introduction	1, 1

$(A \wedge A) \vdash A$

Line	Assumptions	Formula	Justification	References
1	1	$(A \wedge A)$	Assumption Introduction	
2	1	A	Conjunction Elimination	1

$A \vdash (A \lor A)$

Line	Assumptions	Formula	Justification	References
1	1	A	Assumption Introduction	
2	1	$(A \vee A)$	Disjunction Introduction	1

$(A \lor A) \vdash A$

Line	Assumptions	Formula	Justification	References
1	1	$(A \vee A)$	Assumption Introduction	
2	2	A	Assumption Introduction	
3	1	A	Disjunction Elimination	1, 2, 2, 2, 2

2 Commutative

$(A \land B) \vdash (B \land A)$

Line	Assumptions	Formula	Justification	References
1	1	$(A \wedge B)$	Assumption Introduction	
2	1	A	Conjunction Elimination	1
3	1	B	Conjunction Elimination	1
4	1	$(B \wedge A)$	Conjunction Introduction	2, 3

$(A \vee B) \vdash (B \vee A)$

Line	Assumptions	Formula	Justification	References
1	1	$(A \vee B)$	Assumption Introduction	
2	2	A	Assumption Introduction	
3	2	$(B \vee A)$	Disjunction Introduction	2
4	4	B	Assumption Introduction	
5	4	$(B \vee A)$	Disjunction Introduction	4
6	1	$(B \vee A)$	Disjunction Elimination	1, 2, 3, 4, 5

3 Associative

$(A \land (B \land C)) \vdash ((A \land B) \land C)$

Line	Assumptions	Formula	Justification	References
1	1	$(A \wedge (B \wedge C))$	Assumption Introduction	
2	1	\overline{A}	Conjunction Elimination	1
3	1	$(B \wedge C)$	Conjunction Elimination	1
4	1	B	Conjunction Elimination	3
5	1	C	Conjunction Elimination	3
6	1	$(A \wedge B)$	Conjunction Introduction	2, 4
7	1	$((A \wedge B) \wedge C)$	Conjunction Introduction	5, 6

$((A \land B) \land C) \vdash (A \land (B \land C))$

Line	Assumptions	Formula	Justification	References
1	1	$((A \wedge B) \wedge C)$	Assumption Introduction	
2	1	$(A \wedge B)$	Conjunction Elimination	1
3	1	A	Conjunction Elimination	2
4	1	B	Conjunction Elimination	2
5	1	C	Conjunction Elimination	1
6	1	$(B \wedge C)$	Conjunction Introduction	4, 5
7	1	$(A \wedge (B \wedge C))$	Conjunction Introduction	3, 6

$(A \vee (B \vee C)) \vdash ((A \vee B) \vee C)$

Line	Assumptions	Formula	Justification	References
1	1	$(A \lor (B \lor C))$	Assumption Introduction	
2	2	\hat{A}	Assumption Introduction	
3	2	$(A \vee B)$	Disjunction Introduction	2
4	2	$((A \lor B) \lor C)$	Disjunction Introduction	3
5	5	$(B \vee C)$	Assumption Introduction	
6	6	B	Assumption Introduction	
7	7	C	Assumption Introduction	
8	6	$(A \vee B)$	Disjunction Introduction	6
9	6	$((A \lor B) \lor C)$	Disjunction Introduction	8
10	7	$((A \lor B) \lor C)$	Disjunction Introduction	7
11	5	$((A \lor B) \lor C)$	Disjunction Elimination	5, 6, 9, 7, 10
12	1	$((A \lor B) \lor C)$	Disjunction Elimination	1, 2, 4, 5, 11

$((A \lor B) \lor C) \vdash (A \lor (B \lor C))$

Line	Assumptions	Formula	Justification	References
1	1	$((A \vee B) \vee C)$	Assumption Introduction	
2	2	$(A \vee B)$	Assumption Introduction	
3	3	A	Assumption Introduction	
4	3	$(A \vee (B \vee C))$	Disjunction Introduction	3
5	5	B	Assumption Introduction	
6	5	$(B \vee C)$	Disjunction Introduction	5
7	5	$(A \vee (B \vee C))$	Disjunction Introduction	6
8	2	$(A \vee (B \vee C))$	Disjunction Elimination	2, 3, 4, 5, 7
9	9	C	Assumption Introduction	
10	9	$(B \vee C)$	Disjunction Introduction	9
11	9	$(A \vee (B \vee C))$	Disjunction Introduction	10
12	1	$(A \vee (B \vee C))$	Disjunction Elimination	1, 2, 8, 9, 11

4 Distributive

$(A \wedge (B \vee C)) \vdash ((A \wedge B) \vee (A \wedge C))$

Line	Assumptions	Formula	Justification	References
1	1	$(A \land (B \lor C))$	Assumption Introduction	
2	1	A	Conjunction Elimination	1
3	1	$(B \vee C)$	Conjunction Elimination	1
4	4	B	Assumption Introduction	
5	1, 4	$(A \wedge B)$	Conjunction Introduction	2, 4
6	1, 4	$((A \land B) \lor (A \land C))$	Disjunction Introduction	5
7	7	C	Assumption Introduction	
8	1, 7	$(A \wedge C)$	Conjunction Introduction	2, 7
9	1, 7	$((A \land B) \lor (A \land C))$	Disjunction Introduction	8
10	1	$((A \land B) \lor (A \land C))$	Disjunction Elimination	3, 4, 6, 7, 9

$((A \land B) \lor (A \land C)) \vdash (A \land (B \lor C))$

Line	Assumptions	Formula	Justification	References
1	1	$((A \land B) \lor (A \land C))$	Assumption Introduction	
2	2	$(A \wedge B)$	Assumption Introduction	
3	2	A	Conjunction Elimination	2
4	2	B	Conjunction Elimination	2
5	2	$(B \vee C)$	Disjunction Introduction	4
6	2	$(A \wedge (B \vee C))$	Conjunction Introduction	3, 5
7	7	$(A \wedge C)$	Assumption Introduction	
8	7	A	Conjunction Elimination	7
9	7	C	Conjunction Elimination	7
10	7	$(B \vee C)$	Disjunction Introduction	9
11	7	$(A \wedge (B \vee C))$	Conjunction Introduction	8, 10
12	1	$(A \wedge (B \vee C))$	Disjunction Elimination	1, 2, 6, 7, 11

$(A \vee (B \wedge C)) \vdash ((A \vee B) \wedge (A \vee C))$

Line	Assumptions	Formula	Justification	References
1	1	$(A \vee (B \wedge C))$	Assumption Introduction	
2	2	A	Assumption Introduction	
3	2	$(A \vee B)$	Disjunction Introduction	2
4	2	$(A \vee C)$	Disjunction Introduction	2
5	2	$((A \lor B) \land (A \lor C))$	Conjunction Introduction	3, 4
6	6	$(B \wedge C)$	Assumption Introduction	
7	6	B	Conjunction Elimination	6
8	6	$(A \vee B)$	Disjunction Introduction	7
9	6	C	Conjunction Elimination	6
10	6	$(A \vee C)$	Disjunction Introduction	9
11	6	$((A \lor B) \land (A \lor C))$	Conjunction Introduction	8, 10
12	1	$((A \lor B) \land (A \lor C))$	Disjunction Elimination	1, 2, 5, 6, 11

$((A \lor B) \land (A \lor C)) \vdash (A \lor (B \land C))$

Line	Assumptions	Formula	Justification	References
1	1	$((A \lor B) \land (A \lor C))$	Assumption Introduction	
2	1	$(A \vee B)$	Conjunction Elimination	1
3	1	$(A \vee C)$	Conjunction Elimination	1
4	4	A	Assumption Introduction	
5	5	B	Assumption Introduction	
6	6	C	Assumption Introduction	
7	4	$(A \vee (B \wedge C))$	Disjunction Introduction	4
8	5, 6	$(B \wedge C)$	Conjunction Introduction	5, 6
9	5, 6	$(A \vee (B \wedge C))$	Disjunction Introduction	8
10	1, 6	$(A \vee (B \wedge C))$	Disjunction Elimination	2, 4, 7, 5, 9
11	1	$(A \vee (B \wedge C))$	Disjunction Elimination	3, 4, 7, 6, 10

5 de Morgan's Laws

$(\neg A \vee \neg B) \vdash \neg (A \wedge B)$

Line	Assumptions	Formula	Justification	References
1	1	$(\neg A \lor \neg B)$	Assumption Introduction	
2	2	$\neg A$	Assumption Introduction	
3	3	$\neg B$	Assumption Introduction	
4	4	$(A \wedge B)$	Assumption Introduction	
5	4	A	Conjunction Elimination	4
6	2, 4	\perp	Negation Elimination	5, 2
7	2	$\neg (A \land B)$	Negation Introduction	4, 6
8	4	B	Conjunction Elimination	4
9	3, 4		Negation Elimination	8, 3
10	3	$\neg (A \land B)$	Negation Introduction	4, 9
11	1	$\neg(A \land B)$	Disjunction Elimination	1, 2, 7, 3, 10

$\neg (A \land B) \vdash (\neg A \lor \neg B)$

Line	Assumptions	Formula	Justification	References
1	1	$\neg(A \land B)$	Assumption Introduction	
2	2	$\neg(\neg A \lor \neg B)$	Assumption Introduction	
3	3	$\neg A$	Assumption Introduction	
4	3	$(\neg A \lor \neg B)$	Disjunction Introduction	3
5	2, 3	\perp	Negation Elimination	4, 2
6	2	$\neg \neg A$	Negation Introduction	3, 5
7	7	$\neg B$	Assumption Introduction	
8	7	$(\neg A \lor \neg B)$	Disjunction Introduction	7
9	2, 7	\perp	Negation Elimination	8, 2
10	2	$\neg \neg B$	Negation Introduction	7, 9
11	2	$(\neg \neg A \land \neg \neg B)$	Conjunction Introduction	6, 10
12	2	$\neg \neg A$	Conjunction Elimination	11
13	2, 3	\perp	Negation Elimination	3, 12
14	2	A	Reducto Absurdium	3, 13
15	2	$\neg \neg B$	Conjunction Elimination	11
16	2, 7	\perp	Negation Elimination	7, 15
17	2	B	Reducto Absurdium	7, 16
18	2	$(A \wedge B)$	Conjunction Introduction	14, 17
19	1, 2	\perp	Negation Elimination	18, 1
20	1	$(\neg A \lor \neg B)$	Reducto Absurdium	2, 19

$(\neg A \land \neg B) \vdash \neg (A \lor B)$

Line	Assumptions	Formula	Justification	References
1	1	$(\neg A \land \neg B)$	Assumption Introduction	
2	1	$\neg A$	Conjunction Elimination	1
3	1	$\neg B$	Conjunction Elimination	1
4	4	$(A \vee B)$	Assumption Introduction	
5	5	$\neg B$	Assumption Introduction	
6	6	B	Assumption Introduction	
7	5, 6	\perp	Negation Elimination	6, 5
8	5, 6	A	Falsum	7
9	9	A	Assumption Introduction	
10	4, 5	A	Disjunction Elimination	4, 9, 9, 6, 8
11	1, 4, 5	\perp	Negation Elimination	10, 2
12	1, 4	B	Reducto Absurdium	5, 11
13	1, 4	\perp	Negation Elimination	12, 3
14	1	$\neg(A \lor B)$	Negation Introduction	4, 13

$\neg (A \lor B) \vdash (\neg A \land \neg B)$

Line	Assumptions	Formula	Justification	References
1	1	$\neg(A \lor B)$	Assumption Introduction	
2	2	A	Assumption Introduction	
3	2	$(A \vee B)$	Disjunction Introduction	2
4	1, 2	\perp	Negation Elimination	3, 1
5	1	$\neg A$	Negation Introduction	2, 4
6	6	B	Assumption Introduction	
7	6	$(A \vee B)$	Disjunction Introduction	6
8	1, 6	\perp	Negation Elimination	7, 1
9	1	$\neg B$	Negation Introduction	6, 8
10	1	$(\neg A \land \neg B)$	Conjunction Introduction	5, 9

6 Double Negation

$\neg \neg A$	$\vdash A$
Line	As

Line	Assumptions	Formula	Justification	References
1	1	$\neg \neg A$	Assumption Introduction	
2	2	$\neg A$	Assumption Introduction	
3	1, 2	\perp	Negation Elimination	2, 1
4	1	A	Reducto Absurdium	2, 3

$A \vdash \neg \neg A$

Line	Assumptions	Formula	Justification	References
1	1	A	Assumption Introduction	
2	2	$\neg A$	Assumption Introduction	
3	1, 2	\perp	Negation Elimination	1, 2
4	1	$\neg \neg A$	Negation Introduction	2, 3

Implication Definition

$(\neg A \lor B) \vdash (A \to B)$

Line	Assumptions	Formula	Justification	References
1	1	$(\neg A \lor B)$	Assumption Introduction	
2	2	$\neg A$	Assumption Introduction	
3	3	A	Assumption Introduction	
4	2, 3	\perp	Negation Elimination	3, 2
5	2, 3	B	Falsum	4
6	2	$(A \to B)$	Implication Introduction	3, 5
7	7	B	Assumption Introduction	
8	3, 7	$(A \wedge B)$	Conjunction Introduction	7, 3
9	3, 7	B	Conjunction Elimination	8
10	7	$(A \to B)$	Implication Introduction	3, 9
11	1	$(A \to B)$	Disjunction Elimination	1, 2, 6, 7, 10

 $(A \to B) \vdash (\neg A \lor B)$

Line	Assumptions	Formula	Justification	References
1	1	$(A \to B)$	Assumption Introduction	
2	2	$\neg(\neg A \lor B)$	Assumption Introduction	
3	3	A	Assumption Introduction	
4	1, 3	B	Implication Elimination	3, 1
5	1, 3	$(\neg A \lor B)$	Disjunction Introduction	4
6	1, 2, 3	\perp	Negation Elimination	5, 2
7	1, 2	$\neg A$	Negation Introduction	3, 6
8	1, 2	$(\neg A \lor B)$	Disjunction Introduction	7
9	1, 2	\perp	Negation Elimination	8, 2
10	1	$(\neg A \lor B)$	Reducto Absurdium	2, 9

8 Transposition

$(A \to B) \vdash (\neg B \to \neg A)$

Line	Assumptions	Formula	Justification	References
1	1	$(A \to B)$	Assumption Introduction	
2	2	$\neg B$	Assumption Introduction	
3	3	A	Assumption Introduction	
4	1, 3	B	Implication Elimination	3, 1
5	1, 2, 3	\perp	Negation Elimination	4, 2
6	1, 2	$\neg A$	Negation Introduction	3, 5
7	1	$(\neg B \to \neg A)$	Implication Introduction	2, 6

$(\neg B \to \neg A) \vdash (A \to B)$

Line	Assumptions	Formula	Justification	References
1	1	$(\neg B \to \neg A)$	Assumption Introduction	
2	2	A	Assumption Introduction	
3	3	$\neg A$	Assumption Introduction	
4	2, 3	\perp	Negation Elimination	2, 3
5	2	$\neg \neg A$	Negation Introduction	3, 4
6	6	$\neg B$	Assumption Introduction	
7	1, 6	$\neg A$	Implication Elimination	6, 1
8	1, 2, 6	\perp	Negation Elimination	7, 5
9	1, 2	B	Reducto Absurdium	6, 8
10	1	$(A \to B)$	Implication Introduction	2, 9

9 Exportation

$$((A \land B) \to C) \vdash (A \to (B \to C))$$

Line	Assumptions	Formula	Justification	References		
1	1	$((A \land B) \to C)$	Assumption Introduction			
2	2	A	Assumption Introduction			
3	3	B	Assumption Introduction			
4	2, 3	$(A \wedge B)$	Conjunction Introduction	2, 3		
5	1, 2, 3	C	Implication Elimination	4, 1		
6	1, 2	$(B \to C)$	Implication Introduction	3, 5		
7	1	$(A \to (B \to C))$	Implication Introduction	2, 6		
$(A \to (B \to C)) \vdash ((A \land B) \to C)$						

Line	Assumptions	Formula	Justification	References
1	1	$(A \to (B \to C))$	Assumption Introduction	
2	2	$(A \wedge B)$	Assumption Introduction	
3	2	A	Conjunction Elimination	2
4	2	B	Conjunction Elimination	2
5	1, 2	$(B \to C)$	Implication Elimination	3, 1
6	1, 2	C	Implication Elimination	4, 5
7	1	$((A \land B) \to C)$	Implication Introduction	2, 6

Trivial Proof 10

$B \vdash (A \to B)$

Line	Assumptions	Formula	Justification	References
1	1	B	Assumption Introduction	
2	2	A	Assumption Introduction	
3	1, 2	$(A \wedge B)$	Conjunction Introduction	1, 2
4	1, 2	B	Conjunction Elimination	3
5	1	$(A \to B)$	Implication Introduction	2, 4

$\neg A \vdash (A \to B)$

Line	Assumptions	Formula	Justification	References
1	1	$\neg A$	Assumption Introduction	
2	1	$(\neg A \lor B)$	Disjunction Introduction	1
3	3	A	Assumption Introduction	
4	1, 3	\perp	Negation Elimination	3, 1
5	1, 3	B	Falsum	4
6	1	$(A \to B)$	Implication Introduction	3, 5

$A \vdash (\neg A \to B)$

Line	Assumptions	Formula	Justification	References
1	1	A	Assumption Introduction	
2	1	$(A \vee B)$	Disjunction Introduction	1
3	3	$\neg A$	Assumption Introduction	
4	1, 3	\perp	Negation Elimination	1, 3
5	1, 3	B	Falsum	4
6	1	$(\neg A \to B)$	Implication Introduction	3, 5

$(A \to (B \to C)) \vdash (B \to (A \to C))$

Line	Assumptions	Formula	Justification	References
1	1	$(A \to (B \to C))$	Assumption Introduction	
2	2	B	Assumption Introduction	
3	3	A	Assumption Introduction	
4	1, 3	$(B \to C)$	Implication Elimination	3, 1
5	1, 2, 3	C	Implication Elimination	2, 4
6	1, 2	$(A \to C)$	Implication Introduction	3, 5
7	1	$(B \to (A \to C))$	Implication Introduction	2, 6

$\neg (A \lor B) \vdash \neg A$

Line	Assumptions	Formula	Justification	References
1	1	$\neg (A \lor B)$	Assumption Introduction	
2	2	A	Assumption Introduction	
3	2	$(A \vee B)$	Disjunction Introduction	2
4	1, 2	<u></u>	Negation Elimination	3, 1
5	1	$\neg A$	Negation Introduction	2, 4

$\vdash (A \lor \neg A)$

Line	Assumptions	Formula	Justification	References
1	1	$\neg (A \lor \neg A)$	Assumption Introduction	
2	2	A	Assumption Introduction	
3	2	$(A \vee \neg A)$	Disjunction Introduction	2
4	1, 2	\perp	Negation Elimination	3, 1
5	1	$\neg A$	Negation Introduction	2, 4
6	1	$(A \vee \neg A)$	Disjunction Introduction	5
7	1	\perp	Negation Elimination	6, 1
8		$(A \vee \neg A)$	Reducto Absurdium	1, 7

11 Modus Tollens

$(A \to B), \neg B \vdash \neg A$

Line	Assumptions	Formula	Justification	References
1	1	$(A \to B)$	Assumption Introduction	
2	2	$\neg B$	Assumption Introduction	
3	3	A	Assumption Introduction	
4	1, 3	B	Implication Elimination	3, 1
5	1, 2, 3	\perp	Negation Elimination	4, 2
6	1, 2	$\neg A$	Negation Introduction	3, 5

12 Hypothetical Syllogism

$$(A \to B), (B \to C) \vdash (A \to C)$$

Line	Assumptions	Formula	Justification	References
1	1	$(A \to B)$	Assumption Introduction	
2	2	$(B \to C)$	Assumption Introduction	
3	3	\overline{A}	Assumption Introduction	
4	1, 3	B	Implication Elimination	3, 1
5	1, 2, 3	C	Implication Elimination	4, 2
6	1, 2	$(A \to C)$	Implication Introduction	3, 5

13 Disjunctive Syllogism

$(A \lor B), \neg B \vdash A$

Line	Assumptions	Formula	Justification	References
1	1	$(A \vee B)$	Assumption Introduction	
2	2	$\neg B$	Assumption Introduction	
3	3	B	Assumption Introduction	
4	2, 3	\perp	Negation Elimination	3, 2
5	2, 3	A	Falsum	4
6	6	A	Assumption Introduction	
7	1, 2	A	Disjunction Elimination	1, 6, 6, 3, 5

14 Construction Dilemma

$((A \to B) \land (C \to D)), (A \lor C) \vdash (B \lor D)$

Line	Assumptions	Formula	Justification	References
1	1	$((A \to B) \land (C \to D))$	Assumption Introduction	
2	2	$(A \vee C)$	Assumption Introduction	
3	1	$(A \to B)$	Conjunction Elimination	1
4	1	$(C \to D)$	Conjunction Elimination	1
5	5	A	Assumption Introduction	
6	1, 5	B	Implication Elimination	5, 3
7	1, 5	$(B \vee D)$	Disjunction Introduction	6
8	8	C	Assumption Introduction	
9	1, 8	D	Implication Elimination	8, 4
10	1, 8	$(B \vee D)$	Disjunction Introduction	9
11	1, 2	$(B \vee D)$	Disjunction Elimination	2, 5, 7, 8, 10

15 Destructive Dilemma

$$((A \to B) \land (C \to D)), (\neg B \lor \neg D) \vdash (\neg A \lor \neg C)$$

Line	Assumptions	Formula	Justification	References
1	1	$((A \to B) \land (C \to D))$	Assumption Introduction	
2	2	$(\neg B \lor \neg D)$	Assumption Introduction	
3	1	$(A \rightarrow B)$	Conjunction Elimination	1
4	1	$(C \to D)$	Conjunction Elimination	1
5	5	$\neg(\neg A \lor \neg C)$	Assumption Introduction	
6	6	$\neg A$	Assumption Introduction	
7	6	$(\neg A \lor \neg C)$	Disjunction Introduction	6
8	5, 6	Ì	Negation Elimination	7, 5
9	5	A	Reducto Absurdium	6, 8
10	1, 5	B	Implication Elimination	9, 3
11	11	$\neg C$	Assumption Introduction	
12	11	$(\neg A \vee \neg C)$	Disjunction Introduction	11
13	5, 11	Ì	Negation Elimination	12, 5
14	5	C	Reducto Absurdium	11, 13
15	1, 5	D	Implication Elimination	14, 4
16	16	$\neg B$	Assumption Introduction	
17	1, 5, 16	<u></u>	Negation Elimination	10, 16
18	1, 5, 16	$\neg D$	Falsum	17
19	19	$\neg D$	Assumption Introduction	
20	1, 2, 5	$\neg D$	Disjunction Elimination	2, 16, 18, 19, 19
21	1, 2, 5	<u></u>	Negation Elimination	15, 20
22	1, 2	$(\neg A \lor \neg C)$	Reducto Absurdium	5, 21

16 Qualifier Negation

$\neg \forall x F(x) \vdash \exists x \neg F(x)$

Line	Assumptions	Formula	Justification	References
1	1	$\neg \forall x F(x)$	Assumption Introduction	
2	2	$\neg \exists x \neg F(x)$	Assumption Introduction	
3	3	$\neg F(c)$	Assumption Introduction	
4	3	$\exists x \neg F(x)$	Existential Introduction	3
5	2, 3	\perp	Negation Elimination	4, 2
6	2	F(c)	Reducto Absurdium	3, 5
7	2	$\forall x F(x)$	Universal Introduction	6
8	1, 2	\perp	Negation Elimination	7, 1
9	1	$\exists x \neg F(x)$	Reducto Absurdium	2, 8

 $\exists x \neg F(x) \vdash \neg \forall x F(x)$

Line	Assumptions	Formula	Justification	References
1	1	$\exists x \neg F(x)$	Assumption Introduction	
2	2	$\forall x F(x)$	Assumption Introduction	
3	2	F(c)	Universal Elimination	2
4	4	$\neg F(c)$	Assumption Introduction	
5	2, 4	\perp	Negation Elimination	3, 4
6	1, 2	工	Existential Elimination	1, 4, 5
7	1	$\neg \forall x F(x)$	Negation Introduction	2, 6

$\neg \exists x F(x) \vdash \forall x \neg F(x)$

Line	Assumptions	Formula	Justification	References
1	1	$\neg \exists x F(x)$	Assumption Introduction	
2	2	F(c)	Assumption Introduction	
3	2	$\exists x F(x)$	Existential Introduction	2
4	1, 2	\perp	Negation Elimination	3, 1
5	1	$\neg F(c)$	Negation Introduction	2, 4
6	1	$\forall x \neg F(x)$	Universal Introduction	5

$\forall x \neg F(x) \vdash \neg \exists x F(x)$

Line	Assumptions	Formula	Justification	References
1	1	$\forall x \neg F(x)$	Assumption Introduction	
2	2	$\exists x F(x)$	Assumption Introduction	
3	3	F(c)	Assumption Introduction	
4	1	$\neg F(c)$	Universal Elimination	1
5	1, 3	\perp	Negation Elimination	3, 4
6	1, 2	工	Existential Elimination	2, 3, 5
7	1	$\neg \exists x F(x)$	Negation Introduction	2, 6

17 Qualifier Unification

$(\forall x F(x) \land \forall x G(x)) \vdash \forall x (F(x) \land G(x))$

Line	Assumptions	Formula	Justification	References
1	1	$(\forall x F(x) \land \forall x G(x))$	Assumption Introduction	
2	1	$\forall x F(x)$	Conjunction Elimination	1
3	1	F(c)	Universal Elimination	2
4	1	$\forall x G(x)$	Conjunction Elimination	1
5	1	G(c)	Universal Elimination	4
6	1	$(F(c) \wedge G(c))$	Conjunction Introduction	3, 5
7	1	$\forall x (F(x) \land G(x))$	Universal Introduction	6

$\forall x (F(x) \land G(x)) \vdash (\forall x F(x) \land \forall x G(x))$

Line	Assumptions	Formula	Justification	References
1	1	$\forall x (F(x) \land G(x))$	Assumption Introduction	
2	1	$(F(c) \wedge G(c))$	Universal Elimination	1
3	1	F(c)	Conjunction Elimination	2
4	1	$\forall x F(x)$	Universal Introduction	3
5	1	G(c)	Conjunction Elimination	2
6	1	$\forall x G(x)$	Universal Introduction	5
7	1	$(\forall x F(x) \land \forall x G(x))$	Conjunction Introduction	4, 6
$(\exists xF$	$(x) \vee \exists x G(x)) \vdash$	$\exists x (F(x) \lor G(x))$		
Line	Assumptions	Formula	Justification	References

Line	Assumptions	Formula	Justification	References
1	1	$(\exists x F(x) \lor \exists x G(x))$	Assumption Introduction	
2	2	$\exists x F(x)$	Assumption Introduction	
3	3	F(c)	Assumption Introduction	
4	3	$(F(c) \vee G(c))$	Disjunction Introduction	3
5	3	$\exists x (F(x) \lor G(x))$	Existential Introduction	4
6	2	$\exists x (F(x) \lor G(x))$	Existential Elimination	2, 3, 5
7	7	$\exists x G(x)$	Assumption Introduction	
8	8	G(c)	Assumption Introduction	
9	8	$(F(c) \vee G(c))$	Disjunction Introduction	8
10	8	$\exists x (F(x) \lor G(x))$	Existential Introduction	9
11	7	$\exists x (F(x) \lor G(x))$	Existential Elimination	7, 8, 10
12	1	$\exists x (F(x) \vee G(x))$	Disjunction Elimination	1, 2, 6, 7, 11

$\exists x (F(x) \lor G(x)) \vdash (\exists x F(x) \lor \exists x G(x))$

Line	Assumptions	Formula	Justification	References
1	1	$\exists x (F(x) \lor G(x))$	Assumption Introduction	
2	2	$(F(c) \vee G(c))$	Assumption Introduction	
3	3	F(c)	Assumption Introduction	
4	3	$\exists x F(x)$	Existential Introduction	3
5	3	$(\exists x F(x) \lor \exists x G(x))$	Disjunction Introduction	4
6	6	G(c)	Assumption Introduction	
7	6	$\exists x G(x)$	Existential Introduction	6
8	6	$(\exists x F(x) \lor \exists x G(x))$	Disjunction Introduction	7
9	2	$(\exists x F(x) \lor \exists x G(x))$	Disjunction Elimination	2, 3, 5, 6, 8
10	1	$(\exists x F(x) \lor \exists x G(x))$	Existential Elimination	1, 2, 9

Qualifier Transposition 18

$\forall x \forall y F(x,y) \vdash \forall y \forall x F(x,y)$

Line	Assumptions	Formula	Justification	References
1	1	$\forall x \forall y F(x,y)$	Assumption Introduction	
2	1	$\forall y F(c,y)$	Universal Elimination	1
3	1	F(c,d)	Universal Elimination	2
4	1	$\forall x F(x,d)$	Universal Introduction	3
5	1	$\forall y \forall x F(x,y)$	Universal Introduction	4

$\exists x \exists y F(x,y) \vdash \exists y \exists x F(x,y)$

Line	Assumptions	Formula	Justification	References
1	1	$\exists x \exists y F(x,y)$	Assumption Introduction	
2	2	$\exists y F(c,y)$	Assumption Introduction	
3	3	F(c,d)	Assumption Introduction	
4	3	$\exists x F(x,d)$	Existential Introduction	3
5	3	$\exists y \exists x F(x,y)$	Existential Introduction	4
6	2	$\exists y \exists x F(x,y)$	Existential Elimination	2, 3, 5
7	1	$\exists y \exists x F(x,y)$	Existential Elimination	1, 2, 6

19 Trivial Proof with Qualifier

$\forall x F(x) \vdash \exists x F(x)$

Line	Assumptions	Formula	Justification	References
1	1	$\forall x F(x)$	Assumption Introduction	
2	1	F(c)	Universal Elimination	1
3	1	$\exists x F(x)$	Existential Introduction	2

$\exists y \forall x F(x,y) \vdash \forall x \exists y F(x,y)$

Line	Assumptions	Formula	Justification	References
1	1	$\exists y \forall x F(x,y)$	Assumption Introduction	
2	2	$\forall x F(x,c)$	Assumption Introduction	
3	2	F(d,c)	Universal Elimination	2
4	2	$\exists y F(d,y)$	Existential Introduction	3
5	2	$\forall x \exists y F(x,y)$	Universal Introduction	4
6	1	$\forall x \exists y F(x,y)$	Existential Elimination	1, 2, 5