QPGesture: Quantization-Based and Phase-Guided Motion Matching for Natural Speech-Driven Gesture Generation

Sicheng Yang¹, Zhiyong Wu^{1,4}, Minglei Li², Zhensong Zhang³, Lei Hao³, Weihong Bao¹, Haolin Zhuang¹

Paper ID: 7523

¹ Tsinghua Shenzhen International Graduate School, Tsinghua University, China
² Huawei Cloud Computing Technologies Co., Ltd, China ³ Huawei Noah's Ark Lab, China
⁴ The Chinese University of Hong Kong, Hong Kong SAR, China

1. Introduction

1.1 Motivation

- > Problems:
- Random jittering
- Inherent asynchronicity with speech
- ➢ Goal:
 - ✓ Solve jittering problems, such as grabbing hands or pushing glasses
 - ✓ Better alignment of speech and gestures
 - ✓ Further improve the quality of gesture generation

1.2 Contribution

- Propose a novel quantization-based motion matching framework for speech-driven gesture generation
- ✓ Address random jittering
- ✓ Align diverse gestures with different speech using Levenshtein distance. Solve the issue of speech and gesture asynchrony and motion matching model inflexibility
- ✓ A phase guidance strategy to select optimal audio and text candidates
- ✓ Extensive experiments show that jittering and asynchronicity issues can be effectively alleviated by our framework

2. Model Architecture

3. Methodology

3.1 Learning a discrete latent space representation

- vq-wav2vec
- Gesture VQ-VAE
 - Encode the joint sequence G

$$\mathbf{g} = E_g(\mathbf{G})$$

Decoder

$$\widehat{\mathbf{G}}_1 = D_g\left(\mathbf{g}_q\right) = D_g\left(\mathbf{q}(E_g(\mathbf{G}))\right)$$

• The encoder, decoder and codebook can be trained by optimizing:

$$\mathcal{L}_{gesture(E_g, D_g, \mathcal{Z}_g)} = \|\widehat{\mathbf{G}}\| - \mathbf{G}_1 + \alpha_1 \|\widehat{\mathbf{G}}_1' - \mathbf{G}_1'\|_1 + \alpha_2 \|\widehat{\mathbf{G}}_1'' - \mathbf{G}_1'\|_1 + \|\operatorname{sg}[\mathbf{g}] - \mathbf{g}_{\mathbf{q}}\| + \beta \|\mathbf{g} - \operatorname{sg}[\mathbf{g}_{\mathbf{q}}]\|_1$$

3.2 Motion Matching based on Audio and Text

 $\widehat{\mathbf{C}}_a + \widehat{\mathbf{C}}_g$ Ranking Audio candidate \mathbf{C}_a $\widehat{\mathbf{C}}_t + \widehat{\mathbf{C}}_g$ Ranking Text candidate \mathbf{C}_t weighting

3.3 Phase-Guided Gesture Generation

Encode the joint sequence

$$\mathbf{L} = E_p(\mathbf{G})$$

$tan 2(s_y, s_x)$ $\lambda Loss Function$ $\mathcal{L}_{phase} = \mathcal{L}_{phase-recon}(\mathbf{G}, h(\hat{\mathbf{L}}))$

4. Experiments

4.1 Dataset

- ➤ BEAT dataset; 15 joints corresponding to the upper body
- > 8:1:1 by training, validation, and testing

4.2 Comparison to Existing Methods

Name	Objective evaluation			Subjective evaluation	
	Hellinger	FGD on	FGD on raw	Human-likeness	Appropriatoress
	distance average [↓]	feature space [↓]	data space [↓]	Human-meness	Appropriateness
Ground Truth (GT)	0.0	0.0	0.0	3.79 ± 0.19	3.62 ± 0.21
End2End [47]	0.146	64.990	16739.978	3.64 ± 0.11	3.23 ± 0.14
Trimodal [46]	0.155	48.322	12869.98	3.31 ± 0.17	3.20 ± 0.19
StyleGestures [5]	0.136	35.842	9846.927	3.66 ± 0.08	3.30 ± 0.11
KNN [17]	0.364	43.030	12470.061	2.38 ± 0.10	2.35 ± 0.13
CaMN [31]	0.149	52.496	10549.455	3.65 ± 0.16	3.29 ± 0.15
Ours	0.136	19.921	5742.281	$\textbf{4.00} \pm \textbf{0.14}$	$\textbf{3.66} \pm \textbf{0.23}$

4.3 Ablation Studies

Name	Objective evaluation			Subjective evaluation	
	Hellinger	FGD on	FGD on raw	Human-likeness	Appropriateness
	distance average [↓]	feature space [↓]	data space [↓]	Tulliali-likelless	Appropriatelless
w/o wavvq + WavLM	0.151	19.943	6009.859	3.87 ± 0.21	3.64 ± 0.21
w/o audio	0.134	20.401	5871.044	3.87 ± 0.21	3.63 ± 0.20
w/o text	0.118	23.929	6389.866	3.57 ± 0.29	3.41 ± 0.23
w/o phase	0.138	19.195	5759.167	3.90 ± 0.11	3.65 ± 0.17
w/o motion matching (GRU + codebook)	0.140	30.404	11642.641	3.78 ± 0.14	3.43 ± 0.16
Ours	0.136	19.921	5742.281	$\textbf{4.07} \pm \textbf{0.15}$	$\textbf{3.77} \pm \textbf{0.21}$

Reference

- [1] Bailando: 3D Dance Generation by Actor-Critic GPT with Choreographic Memory.
- [2] A Motion Matching-based Framework for Controllable Gesture Synthesis from Speech.
- [3] DeepPhase: periodic autoencoders for learning motion phase manifolds.