LOW LEVEL DESIGN DOCUMENT

Prediction of LC50 Value Using Quantitative Structure Activity Relationship (QSAR) Models

Written By	Rizal Muhammed	
Document Version	1.0	
Last Revised Date	20/03/2024	

Document Control

Change Record

Version	Date	Author	Comments
1.0	20 / 03 / 2024	Rizal Muhammed	Introduction &
			Architecture defined

Reviews

Version	Date	Reviewer	Comments

Approval Status

Version	Review Date	Reviewed By	Approved By	Comments

Contents

1 Introduction	4
1.1 What is a Low-Level design document?	4
1.2 Scope	4
2 Architecture	5
3 Architecture Description	6
3.1 Data Description	6
3.2 Data Ingestion	6
3.3 Data Validation	6
3.4 Data Transformation	6
3.5 Data Base Operations	6
3.6 Data Preprocessing	6
3.7 Model Training	7
3.8 Prediction Service	7
3.9 Model Deployment	7

1 Introduction

1.1 What is a Low-Level design document?

The goal of LLD (Low-level design document) is to give the internal logical design of the actual program code for Prediction of LC50 value using QSAR models. LLD describes the class diagrams with the methods and relations between classes and program specs. It describes the modules so that the programmer can directly code the program from the document.

1.2 Scope

Low-level design document is a component-level design process that follows a step-by-step refinement process. This process can be used for designing data structures, required software architecture, source code and ultimately, performance algorithms. Overall, the data organization may be defined during requirement analysis and then refined during data design work

2 Architecture

3 Architecture Description

3.1 Data Description

QSAR fish toxicity data set is available at UCI Machine Learning Repository. Data set containing values for 6 attributes (molecular descriptors) of 908 chemicals used to predict quantitative acute aquatic toxicity towards the fish Pimephales promelas (fathead minnow). Please refer data set here.

3.2 Data Ingestion

Create folder artifacts/data_ingestion and download, extract data set into data directory. So, at the end of data ingestion stage, the CSV data, qsar_fish_toxicity.csv will be available in artifacts/data_ingestion/data directory.

3.3 Data Validation

Perform data validation such as raw file name validation, column length validation, validating missing values in whole columns, etc. If the data fails data validation, the corresponding files are moved to artifacts/data_validation/archive_bad_dir directory for reviewing. Upon successful data validation, the data is copied into artifacts/data_validation/tranining_raw_files_validated directory.

3.4 Data Transformation

Perform data transformation like replacing missing value with NULL. Remove existing good data directory and bad data directory. Move bad data from bad directory to archive bad directory.

3.5 Data Base Operations

Create table in the database (if it does not exist), insert good data into database table, Export data from table into csv file. At the end of this stage, the input file will be available at artifacts/tranining_file_from_db/inputfile.csv directory.

3.6 Data Preprocessing

In this stage, load the input data for training. Separate data into labels and features. Perform imputing missing values. Eliminate columns with zero standard deviation. Perform standard scaling and save data. At the end of this stage, the features data should be available at artifacts/preprocessed_data/preprocessed_input_X and the labels data should be available at artifacts/preprocessed_data/preprocessed_input_Y

Prediction of LC50 value using QSAR models

3.7 Model Training

In this stage, model building and hyper parameter tuning should be performed. Different machine learning algorithms are tried w.r.t dataset and save the best model along with corresponding performance metrics from the best model

3.8 Prediction Service

After Model training and evaluation, a prediction service is deployed in the cloud and made available to the user. The user can enter data into the front end of the prediction service. The best model will be loaded and should predict the output based on the input user data

3.9 Model Deployment

We will be deploying the model to Heroku

4 Unit Test Cases

Test Case Description	Pre-Requisite	Expected Result
Verify whether the	1. Application URL should	Application URL should be
application URL is	be defined	accessible to the user
accessible to the user		
Verify whether the	1.Application URL is	Application should load
application loads	accessible	completely for the user
completely for the user	2. Application is deployed	when the URL is accessed
when the URL is accessed		
Verify whether user can see	1. Application is accessible	User should be able to
input fields on accessing		successfully see input
the URL		fields
Verify whether user can edit	1. Application is accessible	User should be able to edit
all input fields	2. All the input fields are	all input fields
	visible	
Verify whether user gets	1. Application is accessible	User should be able access
Predict button to submit the	2. All the input fields are	Predict button
inputs	visible	
	3. User can edit input fields	
Verify whether the	1. Application is accessible	User should be able to get
corresponding prediction is	2. All the input fields are	the prediction displayed
displayed	visible	
	3. User can edit input fields	
	4. User can submit input	