Национальный исследовательский университет ИТМО Факультет программной инженерии и компьютерной техники

Учебно-исследовательская работа №1 по дисципение Сети ЭВМ и телекоммуникации

Студент: Саржевский Иван

Группа: Р3302

Содержание

1	1 Цель	2
2	2 Задание	2
3	3 Формирование сообщения	2
4	4 Физическое кодирование	2
	4.1 Выделение основной частоты	 2
	4.2 Потенциальный код NRZ	 3
	4.3 Манчестерское кодирование	 4
	4.4 Импульсный код RZ	 6
	4.5 Потенциальный код 2BQ1	 7
	4.6 Сравнительный анализ физического кодирования	 8
5	5 Логическое кодирование	9
	5.1 4B/5B	 9
	5.2 Скремблирование 5-7	 11
	5.3 Сравнение логических методов кодирования	 13

1 Цель

Изучение методов логического и физического кодирования, используемых в цифровых сетях передачи данных.

2 Задание

Выполнить логическое и физическое кодирование исходного сообщения в соответствии с заданными методами кодирования, провести сравнительный анализ рассматриваемых методов кодирования, выбрать и обосновать наилучший метод для передачи исходного сообщения.

3 Формирование сообщения

Сообщение: Саржевский И.А.

Hex-κοд: D1 E0 F0 E6 E5 E2 F1 EA E8 E9 20 C8 2E C0 2E

11010001 11100000 11110000 11100110 11100101 11100010 11110001

00101110

Длина: 15 байт (120 бит)

4 Физическое кодирование

4.1 Выделение основной частоты

Определим частоту основной гармоники бесконечного сигнала 10101010... как базовую частоту f_0 . В таком случае, частоту основной гармоники сигнала с повторением произвольного количества нулей и единиц удобно представить в виде $f=f_0/x$, где x - длина последовательности нулей и единиц (например, очевидно что частота основной гармоники сигнала 110011001100... равна $f_0/2$).

Введение такой переменной позволяет нам записать ряд Фурье для бесконечного сигнала с повторением произвольного количества нулей и единиц таким образом:

$$\sum_{y} (A_0/y) \sin(2\pi \frac{yf_0}{x}t)$$

, где $y \in \{1, 3, 5, 7\}$, а x - длина периода повторяющихся символов.

Определим f_0 для разных значений пропускной способности. Она будет равна единице, деленной на период основной гармоники, равный времени передачи двух бит сообщения. Таким образом, для пропускной способности x:

$$\begin{split} B_t &= 1/x \\ T_0 &= 2B_t \\ f_0 &= 1/T_0 \end{split}$$

Пропускная способность, Mbps	Базовая частота f_0 , Γ ц
10	$0.5 * 10^7$
100	$0.5 * 10^8$
1000	$0.5 * 10^9$

4.2 Потенциальный код NRZ

Рис. 1: Кодирование первых четырех байт потенциальным кодом NRZ

Из рис. 1 легко понять, что T_{min} достигается при кодировании чередующихся сигналов, из чего следует, что $T_{min}=T_0$ и $f_{max}=f_0$. Для определения T_{max} найдем участок с минимальным чередованием. Для данного вида кодирования такой участок достигается при передаче последовательности из 8 символов 0, следовательно $T_{max}=8T_0$, а $f_{min}=\frac{f_0}{8}$.

Разложение в ряд Фурье для сигнала представляющего из себя последовательность чередующихся единиц и нулей будет иметь вид:

$$A_0\sin(2\pi f_0t) + (A_0/3)\sin(2\pi 3f_0t) + (A_0/5)\sin(2\pi 5f_0t) + (A_0/7)\sin(2\pi 7f_0t)$$

Аналогичное разложение для сигнала с чередующимися последовательностями из 8 единиц и нулей будет иметь вид:

$$A_0\sin(2\pi\frac{f_0}{8}t) + (A_0/3)\sin(2\pi\frac{3f_0}{8}t) + (A_0/5)\sin(2\pi\frac{5f_0}{8}t) + (A_0/7)\sin(2\pi\frac{7f_0}{8}t)$$

Получаем спектр частот $\frac{f_0}{8}...7f_0$.

Пропускная способность: 10 Mbps			
Частота основной гармоники сигнала 11111	0 Гц		
Верхняя граница частот в передаваемом сообщении	$35000000\ \Gamma$ ц		
Нижняя граница частот в передаваемом сообщении	$625000~\Gamma$ ц		
Необходимая полоса пропускания	625000:35000000 Гц		
Пропускная способность: 100 М	Ibps		
Частота основной гармоники сигнала 11111	0 Гц		
Верхняя граница частот в передаваемом сообщении	$350000000\ \Gamma$ ц		
Нижняя граница частот в передаваемом сообщении	6250000 Γ ц		
Необходимая полоса пропускания	$6250000:350000000$ Γ ц		
Пропускная способность: 1000 1	Mbps		
Частота основной гармоники сигнала 11111	0 Гц		
Верхняя граница частот в передаваемом сообщении	3500000000 Гц		
Нижняя граница частот в передаваемом сообщении	$62500000\ \Gamma$ ц		
Необходимая полоса пропускания	$62500000:3500000000$ Γ ц		

Частота	Участки	Кол-во битовых интервалов	Отношение к f_0
f_1	1 и 0	25	$f_0/1$
f_2	111 и 000	30	$f_0/3$
f_3	11111 и 00000	15	$f_0/5$
f_4	1111 и 0000	24	$\int f_0/4$
f_5	11 и 00	18	$f_0/2$
f_6	11111111 и 00000000	8	$f_0/8$

$$f_{mean} = 25/120*f_1 + 30/120*f_2 + 15/120*f_3 + 24/120*f_4 + 18/120*f_5 + 8/120*f_6$$

Пропускная способность, Mbps	$f_{mean},$ Гц
10	2250000
100	22500000
1000	225000000

4.3 Манчестерское кодирование

Рис. 2: Кодирование первых четырех байт Манчестерским кодом

Из рис. 2 легко понять, что T_{min} достигается при кодировании последовательных одинаковых бит (00 или 11), при этом $T_{min}=T_0/2$ и $f_{max}=2f_0$. T_{max} возникает в следствие

кодирования чередующихся бит (01 и 10) и равен f_0 . Сигнал вида 11111... или 00000... аналогичен последовательности сигналов 11, следовательно частота его основной гармоники равна f_{max} .

Разложение в ряд Фурье для сигнала представляющего из себя последовательность единиц или нулей будет иметь вид:

$$A_0\sin(2\pi 2f_0t) + (A_0/3)\sin(2\pi 6f_0t) + (A_0/5)\sin(2\pi 10f_0t) + (A_0/7)\sin(2\pi 14f_0t)$$

Аналогичное разложение для сигнала с чередующимися последовательностями из единиц и нулей будет иметь вид:

$$A_0\sin(2\pi f_0t) + (A_0/3)\sin(2\pi 3f_0t) + (A_0/5)\sin(2\pi 5f_0t) + (A_0/7)\sin(2\pi 7f_0t)$$

Получаем спектр частот $f_0...14f_0$

Пропускная способность: 10 Mbps			
Частота основной гармоники сигнала 11111	10000000 Гц		
Верхняя граница частот в передаваемом сообщении	70000000 Гц		
Нижняя граница частот в передаваемом сообщении	5000000 Гц		
Необходимая полоса пропускания	5000000 : 70000000 Гц		
Пропускная способность: 100 1	Mbps		
Частота основной гармоники сигнала 11111	100000000 Гц		
Верхняя граница частот в передаваемом сообщении	700000000 Гц		
Нижняя граница частот в передаваемом сообщении	50000000 Гц		
Необходимая полоса пропускания	50000000 : 700000000 Гц		
Пропускная способность: 1000 Mbps			
Частота основной гармоники сигнала 11111	1000000000 Гц		
Верхняя граница частот в передаваемом сообщении	7000000000 Гц		
Нижняя граница частот в передаваемом сообщении	500000000 Гц		
Необходимая полоса пропускания	500000000 : 7000000000 Гц		

Определение среднего значения частоты передаваемого сообщения

Частота	Участки	Кол-во битовых интервалов	Отношение к f_0
f_1	11 и 00	66	$f_0 * 2$
f_2	1 и 0	54	$f_0 * 1$

$$f_{mean} = 66/120*f_1 + 54/120*f_2$$

Пропускная способность, Mbps	f_{mean} , Гц
10	7750000
100	77500000
1000	775000000

4.4 Импульсный код RZ

Рис. 3: Кодирование первых четырех байт импульсным кодом RZ

Из рис. З легко понять, что T_{min} достигается при кодировании последовательных одинаковых бит (00 или 11), при этом $T_{min}=T_0/2$ и $f_{max}=2f_0$. T_{max} возникает в следствие кодирования чередующихся бит (01 и 10) и равен f_0 . Сигнал вида 11111... или 00000... аналогичен последовательности сигналов 11, следовательно частота его основной гармоники равна f_{max} .

Разложение в ряд Фурье для сигнала представляющего из себя последовательность единиц или нулей будет иметь вид:

$$A_0 \sin(2\pi 2f_0 t) + (A_0/3) \sin(2\pi 6f_0 t) + (A_0/5) \sin(2\pi 10f_0 t) + (A_0/7) \sin(2\pi 14f_0 t)$$

Аналогичное разложение для сигнала с чередующимися последовательностями из единиц и нулей будет иметь вид:

$$A_0\sin(2\pi f_0t) + (A_0/3)\sin(2\pi 3f_0t) + (A_0/5)\sin(2\pi 5f_0t) + (A_0/7)\sin(2\pi 7f_0t)$$

Получаем спектр частот $f_0...14f_0$

Пропускная способность: 10 Mbps			
Частота основной гармоники сигнала 11111	10000000 Гц		
Верхняя граница частот в передаваемом сообщении	70000000 Гц		
Нижняя граница частот в передаваемом сообщении	5000000 Гц		
Необходимая полоса пропускания	5000000 : 70000000 Гц		
Пропускная способность: 100 1	Mbps		
Частота основной гармоники сигнала 11111	100000000 Гц		
Верхняя граница частот в передаваемом сообщении	700000000 Гц		
Нижняя граница частот в передаваемом сообщении	50000000 Гц		
Необходимая полоса пропускания	50000000 : 700000000 Гц		
Пропускная способность: 1000 Mbps			
Частота основной гармоники сигнала 11111	1000000000 Гц		
Верхняя граница частот в передаваемом сообщении	7000000000 Гц		
Нижняя граница частот в передаваемом сообщении	500000000 Гц		
Необходимая полоса пропускания	500000000 : 7000000000 Гц		

Частота	Участки	Кол-во битовых интервалов	Отношение к f_0
f_1	11 и 00	66	$f_0 * 2$
f_2	1 и 0	54	$f_0 * 1$

$$f_{mean} = 66/120 * f_1 + 54/120 * f_2$$

Пропускная способность, Mbps	$f_{mean},$ Гц
10	7750000
100	77500000
1000	775000000

4.5 Потенциальный код 2BQ1

Рис. 4: Кодирование первых четырех байт потенциальным кодом 2BQ1

 T_{max} достигается на участке 11101010111010 и равен $14T_0$, следовательно $f_{min}=f_0/14$. Как видно на рис. 4, T_{min} достигается на участках с чередованием 11 и 00 и равна $2T_0$, следовательно $f_{max}=f_0/2$. Сигналы вида 111111... и 000000... выраждаются в прямую линию, поэтому частота в этом случае равна 0.

Разложение в ряд Фурье для сигнала, имеющего период T_{min} будет иметь вид:

$$A_0\sin(2\pi\frac{f_0}{2}t) + (A_0/3)\sin(2\pi3\frac{f_0}{2}t) + (A_0/5)\sin(2\pi5\frac{f_0}{2}t) + (A_0/7)\sin(2\pi7\frac{f_0}{2}t)$$

Аналогичное разложение для сигнала с периодом T_{max} :

$$A_0\sin(2\pi\frac{f_0}{14}t) + (A_0/3)\sin(2\pi3\frac{f_0}{14}t) + (A_0/5)\sin(2\pi5\frac{f_0}{14}t) + (A_0/7)\sin(2\pi7\frac{f_0}{14}t)$$

Получаем спектр частот $f_0/14...3.5f_0$

Пропускная способность: 10 Mbps			
Частота основной гармоники сигнала 11111	0 Гц		
Верхняя граница частот в передаваемом сообщении	$17500000\ \Gamma$ ц		
Нижняя граница частот в передаваемом сообщении	357142 Гц		
Необходимая полоса пропускания	357142:17500000 Гц		
Пропускная способность: 100 М	Ibps		
Частота основной гармоники сигнала 11111	0 Гц		
Верхняя граница частот в передаваемом сообщении	175000000 Гц		
Нижняя граница частот в передаваемом сообщении	3571428 Гц		
Необходимая полоса пропускания	3571428:175000000 Гц		
Пропускная способность: 1000 1	Mbps		
Частота основной гармоники сигнала 11111	0 Гц		
Верхняя граница частот в передаваемом сообщении	1750000000 Гц		
Нижняя граница частот в передаваемом сообщении	$35714285 \ \Gamma$ ц		
Необходимая полоса пропускания	$35714285:1750000000$ Γ ц		

Частота	Участки (кол-во символов)	Кол-во бит. интервалов	Отношение к f_0
f_1	2	6	$f_0/2$
f_2	4	20	$f_0/4$
f_3	6	6	$f_0/6$

$$f_{mean} = 6/32 * f_1 + 20/32 * f_2 + 6/32 * f_3$$

Пропускная способность, Mbps	f_{mean} , Гц
10	1406250
100	14062500
1000	140625000

4.6 Сравнительный анализ физического кодирования

Вид	Стоимость	Самосинхронизация	Полоса пропускания
Манчестр.	Мин.	Да	6.5 ГГц
NRZ	Мин.	Нет	3.44 ГГц
RZ	Сред.	Да	$6.5~\Gamma\Gamma$ ц
2BQ1	Макс.	Нет	1.7 ГГц

- \bullet Манчестерское: Не требует синхронизации, требует более широкую полосу пропускания чем 2BQ1 и NRZ.
- NRZ: Средняя ширина необходимой полосы пропускания, вероятность ошибок при передаче длинных последовательностей нулей и единиц.
- RZ: Обладает самосинхронизацией, однако дороже в реализации предыдущих из-за трех уровней сигнала и широкой необходимой полосы пропускания.

• 2BQ1: Самая узкая полоса пропускания, четыре уровня сигнала делают его самым дорогим видом кодирования из представленных.

Можно сделать вывод, что оптимальным методом кодирования для данного сообщения будет манчестерский, так как не смотря на широкую необходимую полосу пропускания, он обладает свойством самосинхронизации и минимальной стоимостью.

5 Логическое кодирование

$5.1 ext{ } 4B/5B$

Таблица кодирования 4В/5В:

0000	11110	1000	10010
0001	01001	1001	10011
0010	10100	1010	10110
0011	10101	1011	10111
0100	01010	1100	11010
0101	01011	1101	11011
0110	01110	1110	11100
0111	01111	1111	11101

Исходное сообщение:

Закодированное сообщение:

Длина закодированного: 150; Длина исходного: 120. Избыточность: 25%.

Физическое кодирование

Для кодирования полученного сообщения будем использовать потенциальный код NRZ.

Рис. 5: Кодирование первых четырех байт потенциальным кодом NRZ

Из рис. 5 легко понять, что T_{min} достигается при кодировании чередующихся сигналов, из чего следует, что $T_{min}=T_0$ и $f_{max}=f_0$. Для определения T_{max} найдем участок с

минимальным чередованием. Для данного вида кодирования такой участок достигается при передаче последовательности из 5 символов 1, следовательно $T_{max} = 5T_0$, а $f_{min} = \frac{f_0}{5}$.

Разложение в ряд Фурье для сигнала представляющего из себя последовательность чередующихся единиц и нулей будет иметь вид:

$$A_0\sin(2\pi f_0t) + (A_0/3)\sin(2\pi 3f_0t) + (A_0/5)\sin(2\pi 5f_0t) + (A_0/7)\sin(2\pi 7f_0t)$$

Аналогичное разложение для сигнала с чередующимися последовательностями из 5 единиц и нулей будет иметь вид:

$$A_0\sin(2\pi\frac{f_0}{5}t) + (A_0/3)\sin(2\pi\frac{3f_0}{5}t) + (A_0/5)\sin(2\pi\frac{5f_0}{5}t) + (A_0/7)\sin(2\pi\frac{7f_0}{5}t)$$

Получаем спектр частот $\frac{f_0}{5}...7f_0$.

Пропускная способность: 10 Mbps				
Частота основной гармоники сигнала 11111	0 Гц			
Верхняя граница частот в передаваемом сообщении	35000000 Гц			
Нижняя граница частот в передаваемом сообщении	1000000 Гц			
Необходимая полоса пропускания	1000000:35000000 Гц			
Пропускная способность: 100 1	Mbps			
Частота основной гармоники сигнала 11111	0 Гц			
Верхняя граница частот в передаваемом сообщении	$350000000\ \Gamma$ ц			
Нижняя граница частот в передаваемом сообщении	10000000 Гц			
Необходимая полоса пропускания	10000000:350000000 Гц			
Пропускная способность: 1000	Mbps			
Частота основной гармоники сигнала 11111	0 Гц			
Верхняя граница частот в передаваемом сообщении	3500000000 Гц			
Нижняя граница частот в передаваемом сообщении	100000000 Гц			
Необходимая полоса пропускания	1000000000:35000000000 Гц			

Определение среднего значения частоты передаваемого сообщения

Частота	Участки	Кол-во битовых интервалов	Отношение к f_0
f_1	1 и 0	42	$f_0/1$
f_2	11 и 00	42	$f_0/2$
f_3	111 и 000	36	$f_0/3$
f_4	1111 и 0000	20	$f_0/4$
f_5	11111 и 00000	10	$f_0/5$

$$f_{mean} = 42/150*f_1 + 42/150*f_2 + 36/150*f_3 + 20/150*f_4 + 10/150*f_5$$

Пропускная способность, Mbps	f_{mean} , Гц
10	2733333
100	27333333
1000	273333333

5.2 Скремблирование 5-7

Для скремблирования был выбран полином $A_i \oplus B_{i-5} \oplus B_{i-7}$, так как по сравнению с полиномом 3-5 интервалы меньшей длины занимают больше битовых интервалов.

B_0	A_0	1	1
B_1	A_1	1	1
B_2	A_2	0	0
B_3	$\overline{A_3}$	1	1
B_4	A_4	0	0
B_5	$A_5 \oplus B_0$	0 \oplus 1	1
B_6	$A_6 \oplus B_1$	0 \oplus 1	1
B_7	$A_7 \oplus B_2 \oplus B_0$	1 + 0 + 1	0
B_8	$A_8 \oplus B_3 \oplus B_1$	$1 \oplus 1 \oplus 1$	1
B_9	$A_9 \oplus B_4 \oplus B_2$	1 + 0 + 0	1
B_{10}	$A_{10} \oplus B_5 \oplus B_3$	$1 \oplus 1 \oplus 1$	1
B_{11}	$A_{11} \oplus B_6 \oplus B_4$	0 \oplus 1 \oplus 0	1
B_{12}	$A_{12} \oplus B_7 \oplus B_5$	0 \oplus 0 \oplus 1	1
B_{13}	$A_{13} \oplus B_8 \oplus B_6$	$0 \oplus 1 \oplus 1$	0
B_{14}	$A_{14} \oplus B_9 \oplus B_7$	0 \oplus 1 \oplus 0	1
B_{15}	$A_{15} \oplus B_{10} \oplus B_8$	0 \oplus 1 \oplus 1	0
B_{16}	$A_{16} \oplus B_{11} \oplus B_9$	$1 \oplus 1 \oplus 1$	1
B_{17}	$A_{17} \oplus B_{12} \oplus B_{10}$	$1 \oplus 1 \oplus 1$	1
B_{18}	$A_{18} \oplus B_{13} \oplus B_{11}$	$1 \oplus 0 \oplus 1$	0
B_{19}	$A_{19} \oplus B_{14} \oplus B_{12}$	$1 \oplus 1 \oplus 1$	1
B_{20}	$A_{20} \oplus B_{15} \oplus B_{13}$	$0 \oplus 0 \oplus 0$	0
B_{21}	$A_{21} \oplus B_{16} \oplus B_{14}$	$0 \oplus 1 \oplus 1$	0
$\mid B_{22} \mid$	$A_{22} \oplus B_{17} \oplus B_{15}$	0 \oplus 1 \oplus 0	1
B_{23}	$A_{23} \oplus B_{18} \oplus B_{16}$	0 \oplus 0 \oplus 1	1
B_{24}	$A_{24} \oplus B_{19} \oplus B_{17}$	$1 \oplus 1 \oplus 1$	1
B_{25}	$A_{25} \oplus B_{20} \oplus B_{18}$	1 ⊕ 0 ⊕ 0	1
B_{26}	$A_{26} \oplus B_{21} \oplus B_{19}$	1 + 0 + 1	0
B_{27}	$A_{27} \oplus B_{22} \oplus B_{20}$	0 + 1 + 0	1
$ B_{28} $	$A_{28} \oplus B_{23} \oplus B_{21}$	0 \oplus 1 \oplus 0	1
B_{29}	$A_{29} \oplus B_{24} \oplus B_{22}$	$1 \oplus 1 \oplus 1$	1
B_{30}	$A_{30} \oplus B_{25} \oplus B_{23}$	$1 \oplus 1 \oplus 1$	1
B_{31}	$A_{31} \oplus B_{26} \oplus B_{24}$	0 + 0 + 1	1

Результат скремблирования:

Физическое кодирование

Для кодирования полученного сообщения будем использовать потенциальный код NRZ.

Из рис. 6 легко понять, что T_{min} достигается при кодировании чередующихся сигналов, из чего следует, что $T_{min}=T_0$ и $f_{max}=f_0$. Для определения T_{max} найдем участок с минимальным чередованием. Для данного вида кодирования такой участок достигается

Рис. 6: Кодирование первых четырех байт потенциальным кодом NRZ

при передаче последовательности из 6 символов 1, следовательно $T_{max}=6T_0$, а $f_{min}=\frac{f_0}{6}$.

Разложение в ряд Фурье для сигнала представляющего из себя последовательность чередующихся единиц и нулей будет иметь вид:

$$A_0\sin(2\pi f_0t) + (A_0/3)\sin(2\pi 3f_0t) + (A_0/5)\sin(2\pi 5f_0t) + (A_0/7)\sin(2\pi 7f_0t)$$

Аналогичное разложение для сигнала с чередующимися последовательностями из 6 единиц и нулей будет иметь вид:

$$A_0\sin(2\pi\frac{f_0}{6}t) + (A_0/3)\sin(2\pi\frac{3f_0}{6}t) + (A_0/5)\sin(2\pi\frac{5f_0}{6}t) + (A_0/7)\sin(2\pi\frac{7f_0}{6}t)$$

Получаем спектр частот $\frac{f_0}{6}...7f_0$.

Пропускная способность: 10 Mbps				
Частота основной гармоники сигнала 11111	0 Гц			
Верхняя граница частот в передаваемом сообщении	$35000000\ \Gamma$ ц			
Нижняя граница частот в передаваемом сообщении	833333 Гц			
Необходимая полоса пропускания	833333 : 35000000 Гц			
Пропускная способность: 100 М	Ibps			
Частота основной гармоники сигнала 11111	0 Гц			
Верхняя граница частот в передаваемом сообщении	$350000000\ \Gamma$ ц			
Нижняя граница частот в передаваемом сообщении	8333333 Гц			
Необходимая полоса пропускания	$8333333:350000000$ Γ ц			
Пропускная способность: 1000 1	Mbps			
Частота основной гармоники сигнала 11111	0 Гц			
Верхняя граница частот в передаваемом сообщении	3500000000 Гц			
Нижняя граница частот в передаваемом сообщении	83333333 Гц			
Необходимая полоса пропускания	$83333333 : 35000000000 \Gamma$ ц			

Частота	Участки	Кол-во битовых интервалов	Отношение к f_0
f_1	1 и 0	38	$f_0/1$
f_2	11 и 00	36	$f_0/2$
f_3	111 и 000	6	$f_0/3$
f_4	11111 и 00000	10	$f_0/5$
f_5	1111 и 0000	24	$f_0/4$
f_6	111111 и 000000	6	$f_0/6$

$$f_{mean} = 38/120*f_1 + 36/120*f_2 + 6/120*f_3 + 10/120*f_4 + 24/120*f_5 + 6/120*f_6$$

Пропускная способность, Mbps	f_{mean} , Гц
10	2791666
100	27916666
1000	279166666

5.3 Сравнение логических методов кодирования

Тип	Ст-ть	В-ть рассхинхрон.	Помехоустойчивость	Полоса пропускания	Избыточность
4B5B	min	сред	Запрещен. комбинации	3.4 ГГц	25%
Скремблинг	max	сред	Нет	3.42	0%

Для данного сообщения метод кодирования 4B5B будет более удачным. Не смотря на то, что он имеет 25% избыточности (что с учетом размера сообщения совсем не много), он дешевле в реализации и обладает свойством выявления ошибок за счет запрещенных комбинаций, помимо этого он обладает немного меньшей необходимой шириной пропускания.