Inverse Problems

$$\mathbf{y} = \mathbf{Uf} + \mathbf{w}$$

 $\mathbf{w} \sim \mathcal{N}(\mathbf{0}, \sigma^2 Id)$

Inpainting

U masking

Deblurring

U subsampling

U convolution $\mathbf{w} \sim \mathcal{N}(\mathbf{0}, \sigma^2 Id)$

Gaussian Mixture Models of Patches

$$\mathbf{y}_i = \mathbf{U}_i \mathbf{f}_i + \mathbf{w}_i$$
 where $\mathbf{w}_i \sim \mathcal{N}(\mathbf{0}, \sigma^2 Id)$

- K Gaussian distributions or PCAs $\{\mathcal{N}(\mu_k, \Sigma_k)\}_{1 \leq k \leq K}$
- $\mathbf{f}_i \sim \mathcal{N}(\mu_k, \Sigma_k)$

Gaussian Mixture Models of Patches

$$\mathbf{y}_i = \mathbf{U}_i \mathbf{f}_i + \mathbf{w}_i$$
 where $\mathbf{w}_i \sim \mathcal{N}(\mathbf{0}, \sigma^2 Id)$

- Estimate $\{(\mu_k, \Sigma_k)\}_{1 \leq k \leq K}$ from $\{\mathbf{y}_i\}_{1 \leq i \leq I}$
- Identify the Gaussian k_i that generates $\mathbf{f}_i \ \forall i$
- Estimate $\tilde{\mathbf{f}}_i$ from $\mathcal{N}(\mu_{k_i}, \Sigma_{k_i}) \ \forall i$

Efficiently solved via MAP-EM

Structured and Collaborative Sparsity

Sparse estimate

 Full degree of freedom in atom selection

v.s.

Piecewise linear estimate

- Linear collaborative filtering in each basis.
- Nonlinear basis selection, degree of freedom $K \sim 10$.

Experiments: Inpainting

Zoom (original)

20% available 6.69 dB

PLE 30.07 dB

Experiments: Zooming

