Submission for BAW-SYMPOLY

OTIS (internal use)

Michael Middlezong

September 23, 2024

Example (04). Show that $a^4 + b^4 \ge a^3b + ab^3$ for a, b > 0.

Z68B4C1C

Walkthrough. For the purposes of this example, assume you don't know AM-GM or Muirhead, etc. The goal is to show how to solve the problem with "bare hands". We will prove $a^4 + b^4 - a^3b - ab^3 \ge 0$.

- (a) Noting that equality holds when a = b, what factor must divide the left-hand side?
- (b) Imagine fixing b, and treating the left-hand side as a polynomial P(a). It has a root at a = b. If you also know that $P \ge 0$ everywhere, what kind of root must that root be?
- (c) Use this to factor the left-hand side completely. (There should be three factors.)

The condition a, b > 0 isn't actually used here but makes things simpler to think about.

Example (AIME 2010, 04). Compute the maximum possible value of $a^3 + b^3 + c^3$ over all real numbers (a, b, c) satisfying

$$a^3 = abc + 2$$

$$b^3 = abc + 6$$

$$c^3 = abc + 20.$$

10AIME9

Walkthrough.

- (a) Express $a^3 + b^3 + c^3$ in terms of abc. Thus it suffices to compute abc.
- (b) Find a way to get a quadratic equation in abc.
- (c) Solve for *abc* and use it to get the final answer.

Example (Evan Chen, Fall 2015, $0 \clubsuit$). Let a, b, c be the distinct roots of the polynomial

$$P(x) = x^3 - 10x^2 + x - 2015.$$

The cubic polynomial Q(x) is monic and has distinct roots $bc - a^2$, $ca - b^2$, $ab - c^2$. What is the sum of the coefficients of Q?

150M0F12

Walkthrough. This can be done with brute force, by actually finding Q, but there is a trick to it.

- (a) Show the answer is given by $Q(1) = (1 bc + a^2)(1 ca + b^2)(1 ab + c^2)$.
- (b) Show that ab + bc + ca = 1.
- (c) Prove that Q(1) = 2015000.

Example (USAMO 1975/3, $0 \clubsuit$). If P(x) denotes a polynomial of degree n such that $P(k) = \frac{k}{k+1}$ for $k = 0, 1, 2, \ldots, n$, determine P(n+1).

75AM03

Walkthrough. The main idea is to define Q(x) = (x+1)P(x) - x.

- (a) Compute $\deg Q$ (in terms of n).
- (b) Determine the roots of Q.
- (c) Use (a) and (b) to establish the factorization, of Q up to a constant factor.
- (d) Show that Q(-1) = 1 and use this to conclude that the leading coefficient of Q is equal to

$$c = \frac{(-1)^{n+1}}{(n+1)!}.$$

- (e) Compute Q(n+1).
- (f) Prove that $P(n+1) = \frac{n+1+(-1)^{n+1}}{n+2}$

Example (HMMT 2023 T2, $0 \clubsuit$). Prove there don't exist pairwise distinct complex numbers a, b, c, and d such that

$$a^{3} - bcd = b^{3} - cda = c^{3} - dab = d^{3} - abc.$$

23HMMTT2

Walkthrough. There is a brute-force approach along the lines of taking

$$a^3 - b^3 = bcd - cda$$

and factoring out the common a - b.

- (a) Use this idea to show that $a^2 + b^2 = c^2 + d^2$.
- **(b)** Similarly, show that $a^2 + c^2 = b^2 + d^2$, and $a^2 + d^2 = b^2 + c^2$.

However, I think the following Vieta-based approach is more conceptually nice, since it does not require any factoring and obviously generalizes to more variables.

- (c) Let's assume $abcd \neq 0$. By scaling, show that we may in fact assume abcd = 1.
- (d) Conclude that we may define the number k by

$$k := a^3 - \frac{1}{a} = \dots = d^3 - \frac{1}{d}.$$

(e) Let

$$P(X) = (X - a)(X - b)(X - c)(X - d).$$

Find the coefficients of P in terms of k.

- (f) Derive a contradiction by noticing P(0) = -1.
- (g) Weed out the edge case abcd=0 we didn't address earlier. This gives a complete solution to the problem.

Practice problems

Instructions: Solve [40.]. If you have time, solve [52.].

The Law speaks: you are cast out. You are un-dwarf. I AM A WITNESS!

Angarthing in The Hammer of Thursagan, from The Battle for Wesnoth

Problem 1 (Added by Eric Wang, 2♣)

Let r, s, and t be the three roots of the equation

$$8x^3 + 1001x + 2008 = 0.$$

Compute $(r+s)^3 + (s+t)^3 + (t+r)^3$.

The sum of the roots is 0. The desired quantity is then

$$-t^3 - r^3 - s^3$$

which is 753 by Newton sums.

Problem 2 (USAMO 1973/4, 2♣)

Determine all triples (x, y, z) of complex numbers satisfying

$$x + y + z = 3,$$

 $x^{2} + y^{2} + z^{2} = 3,$
 $x^{3} + y^{3} + z^{3} = 3.$

Consider the cubic polynomial (t-x)(t-y)(t-z). From Newton's sums and Vieta's, this cubic polynomial must equal $t^3 - 3t^2 + 3t - 1$. The only factorization of this is $(t-1)^3$, so the only solution must be (x,y,z) = (1,1,1).

Problem 3 (Canada 1996, added by Haozhe Yang, 24)

If α , β , and γ are the roots of $x^3 - x - 1 = 0$, compute $\frac{1+\alpha}{1-\alpha} + \frac{1+\beta}{1-\beta} + \frac{1+\gamma}{1-\gamma}$.

It is easy to show that $1 - \alpha$, $1 - \beta$, and $1 - \gamma$ are the roots of the polynomial

$$x^3 - 3x^2 + 2x + 1$$

using Vieta's.

Then, we can easily calculate the desired expression using Vieta's as well. The answer is -7.

Problem 4 (HMMT November 2016 Guts, added by Rohan Bodke, 2♣)

Let r_1 , r_2 , r_3 , r_4 be the complex roots of the polynomial $x^4 - 4x^3 + 8x^2 - 7x + 3$. Calculate

$$\frac{r_1^2}{r_2^2 + r_3^2 + r_4^2} + \frac{r_2^2}{r_1^2 + r_3^2 + r_4^2} + \frac{r_3^2}{r_1^2 + r_2^2 + r_4^2} + \frac{r_4^2}{r_1^2 + r_2^2 + r_3^2}.$$

08AIME7

73AM04

96CAN1

16HMNTGUTS27

By Newton's sums, the sum of the squares of the roots is 0. This means each term in the requested expression is -1, giving us a total answer of -4.

Problem 5 (NIMO #8, 2♣)

Let x, y, z be complex numbers satisfying

$$x^2 + 5y = 10x$$

$$y^2 + 5z = 10y$$

$$z^2 + 5x = 10z.$$

Find the sum of all possible values of z.

NIMO85

Problem 6 (USAMO 1984/1, 2♣)

The product of two of the four roots of the quartic equation $x^4 - 18x^3 + kx^2 + 200x - 1984 = 0$ is -32. Determine k.

84AM01

Notice that we can write the polynomial as

$$(x^2 + ax - 32)(x^2 + bx + 62)$$

for constants a and b. Expanding this and matching coefficients, we get the system of equations

$$a+b=-18$$

$$62a - 32b = 200.$$

We can solve this system to get a = -4, b = -14. We also know k = 30 + ab from the earlier expansion, so k = 86.

Required Problem 7 (34)

The cubic $x^3 - 7x^2 + 3x + 2$ has irrational roots r > s > t. There exists a unique set of rational numbers A, B, and C, such that the cubic $x^3 + Ax^2 + Bx + C$ has r + s as a root. What is A + B + C?

JASONMAO

Consider the polynomial with roots r + s, s + t, and r + t. We will find its coefficients and show that it is the desired polynomial. Using Vieta's, we can see that

$$A = -2(r + s + t) = -14.$$

We can also see that

$$B = (r+s)(s+t) + (s+t)(r+t) + (r+s)(r+t).$$

Expanding and simplifying with Vieta's and Newton sums, we get B=52.

The C term is slightly more involved, but we can use a combination of Newton sums, Vieta's, and grouping of terms to get C = -23.

All these terms are rational, so overall, our answer is A + B + C = -14 + 52 - 23 = 15.

Problem 8 (AIME II 2020, added by Benjamin Wang-Tie, 3♣)

Let $P(x) = x^2 - 3x - 7$, and let Q(x) and R(x) be two quadratic polynomials also with the coefficient of x^2 equal to 1. David computes each of the three sums P + Q, P + R, and Q + R and is surprised to find that each pair of these sums has a common root, and these three common roots are distinct. If Q(0) = 2, compute R(0).

20AIMEII11

Problem 9 (AIME I 2019, added by Joshua Im, 2♣)

For distinct complex numbers $z_1, z_2, \ldots, z_{673}$, the polynomial

$$(x-z_1)^3(x-z_2)^3\cdots(x-z_{673})^3$$

can be expressed as $x^{2019} + 20x^{2018} + 19x^{2017} + g(x)$, where g(x) is a polynomial with complex coefficients and with degree at most 2016. Compute

$$\sum_{1 \le j < k \le 673} z_j z_k.$$

19AIME10

Problem 10 (Austria 2016/6, added by Abdullahil Kafi, 3♣)

Let a, b, c be three integers for which the sum

$$\frac{ab}{c} + \frac{ac}{b} + \frac{bc}{a}$$

is an integer. Prove that each of the three numbers

$$\frac{ab}{c}$$
, $\frac{ac}{b}$, $\frac{bc}{a}$

is an integer.

16AUT6

Problem 11 (2♣)

Factor the polynomial

$$a(b-c)^3 + b(c-a)^3 + c(a-b)^3$$
.

ZEAC3666

We notice that the polynomial vanishes whenever a = b, a = c, or b = c. So, the polynomial is divisible by (a-b)(a-c)(b-c). We know the last factor must be a multiple of a+b+c. We can match the coefficient of ab^3 to get that the factored form is

$$(a-b)(a-c)(b-c)(-a-b-c).$$

Problem 12 (3♣)

Let a, b, c be real numbers. Prove that

$$a^{3} + b^{3} + c^{3} = (a + b + c)^{3}$$
 if and only if $a^{5} + b^{5} + c^{5} = (a + b + c)^{5}$.

H1883820

Problem 13 (2♣)

Let a, b, c, d be distinct real numbers such that

$$a+b+c+d=0$$
 and $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}=0.$

Prove that two of the four numbers have sum zero.

BMCQ54

We notice that quartic polynomial with roots a, b, c, d is even, and the result follows.

Problem 14 (AIME II 2003, added by Lincoln Liu, 3♣)

Consider the polynomials $P(x) = x^6 - x^5 - x^3 - x^2 - x$ and $Q(x) = x^4 - x^3 - x^2 - 1$. Given that z_1, z_2, z_3 , and z_4 are the roots of Q(x) = 0, find $P(z_1) + P(z_2) + P(z_3) + P(z_4)$.

O3AIMEII9

Write

$$P(x) = (x^2 + x)Q(x) + x^2 - x + 1.$$

Then,

$$\sum_{i=1}^{4} P(z_i) = \sum_{i=1}^{4} ((x^2 + x)Q(x) + x^2 - x + 1)$$

$$= \sum_{i=1}^{4} (x^2 - x + 1)$$

$$= \sum_{i=1}^{4} x^2 - \sum_{i=1}^{4} x + \sum_{i=1}^{4} 1$$

$$= 3 - 1 + 4 = \boxed{6}.$$

Problem 15 (CMIMC 2018 A9, 9♣)

Given the polynomial identity

$$(x^2 - 3x + 1)^{1009} = \sum_{k=0}^{2018} a_k x^k$$

calculate the remainder when $a_0^2 + a_1^2 + \cdots + a_{2018}^2$ is divided by 2017.

18CMIMCA9

Required Problem 16 (Stanford Math Tournament 2011, 34)

Let P(x) be a polynomial of degree 2011 such that P(1) = 0, P(2) = 1, P(4) = 2, ..., and $P(2^{2011}) = 2011$. Find the coefficient of x^1 in P.

11SMTA7

We can notice that the polynomial P(2x) - P(x) - 1 has roots $x = 2^i$ for $0 \le i \le 2010$. Thus, we can write

$$P(2x) - P(x) - 1 = c(x - 2^{0})(x - 2^{1}) \cdots (x - 2^{2010}).$$

Plugging in x = 0, we can find $\frac{1}{c} = 1 + 2 + \cdots + 2010$ (denote by S this sum).

Now, let a be the coefficient of the linear term in P(x). Then, the linear term of P(2x) - P(x) - 1 is 2ax - ax = ax. So, it suffices to find the linear coefficient of $c(x-2^0)(x-2^1)\cdots(x-2^{2010})$.

For this, we can use Vieta's. We end up with

$$a = 2^S + 2^{S-1} + \dots + 2^{S-2010}$$

We can simplify this to $a = 2 - \frac{1}{2^{2010}}$.

Problem 17 (5♣)

Let a, b, c be integers with $c \neq 0$. Suppose the cubic polynomial $x^3 + ax^2 + bx + c$ has roots $r \leq s \leq t$. Show that $\frac{r}{s} + \frac{s}{t} + \frac{t}{r}$ can be written as $u \pm \sqrt{v}$ for some rational numbers u and v.

NOTVIETA

Problem 18 (Mock ARML 2022, added by Shaheem Samsudeen, 2♣)

Let a, b, c complex numbers with ab + bc + ca = 61 such that

$$\frac{1}{b+c} + \frac{1}{c+a} + \frac{1}{a+b} = 5$$
$$\frac{a}{b+c} + \frac{b}{c+a} + \frac{c}{a+b} = 32.$$

Find the value of abc.

H3233958

Required Problem 19 (Stanford Math Tournament 2013, 34)

Let
$$a = -\sqrt{3} + \sqrt{5} + \sqrt{7}$$
, $b = \sqrt{3} - \sqrt{5} + \sqrt{7}$, $c = \sqrt{3} + \sqrt{5} - \sqrt{7}$. Compute

$$\frac{a^4}{(a-b)(a-c)} + \frac{b^4}{(b-c)(b-a)} + \frac{c^4}{(c-a)(c-b)}.$$

13SMTA9

Putting the three terms over a common denominator and factoring the numerator, we can find that the expression equals

$$a^{2} + b^{2} + c^{2} + ab + bc + ca$$

We can rewrite this as $(a + b + c)^2 - (ab + bc + ca)$.

Let $x = \sqrt{3}$, $y = \sqrt{5}$, $z = \sqrt{7}$, and S = a + b + c = x + y + z. Then, our desired expression is

$$S^{2} - [(S-2x)(S-2y) + (S-2y)(S-2z) + (S-2z)(S-2x)].$$

We can simplify this to get the answer of

$$2S^2 - 4(xy + yz + zx) = 30.$$

Problem 20 (Ritwin Narra, 5♣)

Fix an integer $n \neq 1$. Prove that if real numbers a, b, c, d satisfy

$$a + b + c + d = a^n + b^n + c^n + d^n = 0$$

then two of a, b, c, d sum to 0.

Z5394300

Required Problem 21 (Black MOP 2012, 5♣)

Let ABC be a triangle and let h_A , h_B , h_C be the lengths of the altitudes from A, B, and C. Let a = BC, b = CA, c = AB. Suppose that

$$\sqrt{a + h_B} + \sqrt{b + h_C} + \sqrt{c + h_A} = \sqrt{a + h_C} + \sqrt{b + h_A} + \sqrt{c + h_B}.$$

Prove that triangle ABC is isosceles.

12BLACKMOP

Let $\sqrt{a+h_B}$, $\sqrt{b+h_C}$, and $\sqrt{c+h_A}$ be the roots of a polynomial.

Then, we claim this polynomial also has roots $\sqrt{a+h_C}$, $\sqrt{b+h_A}$, and $\sqrt{c+h_B}$. This can be shown with Vieta's and Newton sums, along with the fact that

$$(a + h_B)(b + h_C)(c + h_A) = (a + h_C)(b + h_A)(c + h_B),$$

which can be shown by expanding and simplifying using the triangle area formula.

Thus, we have three cases:

- 1. $\sqrt{a+h_B} = \sqrt{a+h_C}$. Let A be the area of the triangle. Then it is obvious that b=c.
- 2. $\sqrt{a+h_B} = \sqrt{b+h_A}$. We can derive that a=b or ab=-1, the latter of which is impossible.
- 3. $\sqrt{a+h_B} = \sqrt{c+h_B}$. Obviously a = c.

In any case, the triangle is isosceles.

Problem 22 (Added by Jason Lee, 5.)

Consider all complex numbers k for which there exist complex numbers a, b, c, d and e satisfying

$$\frac{a}{b} + \frac{b}{c} = 1$$

$$\frac{b}{c} + \frac{c}{d} = 2$$

$$\frac{c}{d} + \frac{d}{e} = 3$$

$$\frac{d}{e} + \frac{e}{a} = 4$$

$$\frac{e}{a} + \frac{a}{b} = k.$$

Find the sum of all possible values of k^4 .

H2954369

Remark. For the previous problem by Jason Lee, avoid using a calculator — you can solve it with rather little arithmetic if you set it up correctly.

Problem 23 (Prove the Newton sums in the reading, $5\clubsuit$)

Suppose the complex-coefficient polynomial

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_0$$

has complex roots z_1, z_2, \ldots, z_n . For each $d \geq 0$, define $p_d = z_1^d + z_2^d + \cdots + z_n^d$. Prove that for every integer $k \geq 1$ we have the identity

$$a_n p_k + a_{n-1} p_{k-1} + \dots + a_{n-(k-1)} p_1 + k \cdot a_{n-k} = 0.$$

where we by convention let $a_i = 0$ if i < 0.

ZC01F573

Required Problem 24 (Longlist 1985/19, 94)

Solve over \mathbb{R} the system of simultaneous equations

$$\sqrt{x} - \frac{1}{y} - 2w + 3z = 1,$$

$$x + \frac{1}{y^2} - 4w^2 - 9z^2 = 3,$$

$$x\sqrt{x} - \frac{1}{y^3} - 8w^3 + 27z^3 = -5,$$

$$x^2 + \frac{1}{y^4} - 16w^4 - 81z^4 = 15.$$

85LL19

After the obvious substitution we have

$$a+b-c-d = 1$$

$$a^{2}+b^{2}-c^{2}-d^{2} = 3$$

$$a^{3}+b^{3}-c^{3}-d^{3} = -5$$

$$a^{4}+b^{4}-c^{4}-d^{4} = 15.$$

Guessing small integer solutions, we find that (a, b, c, d) = (1, -2, -1, -1) is a solution. We claim that it is the only solution (up to swapping a and b).

Notice that we can write

$$a^{n} + b^{n} + (-1)^{n} + (-1)^{n} = c^{n} + d^{n} + (-2)^{n} + 1^{n}$$

for n = 1, 2, 3, 4. This means that the Newton sums of the polynomials with roots $\{a, b, -1, -1\}$ and $\{c, d, -2, 1\}$ are the same. This uniquely determines the polynomial (up to leading coefficient). Thus, the multisets of roots must be equal, and we are done. Finally, our original substitution requires a to be positive, so the only solution is

$$(x,y,w,z) = \left(1, \frac{1}{2}, -\frac{1}{2}, \frac{1}{3}\right).$$

Problem 25 ($\overline{\mathbb{Z}}$ is a ring, $9\clubsuit$)

Suppose that α and β are complex numbers and monic polynomials $P,Q\in\mathbb{Z}[x]$ satisfy $P(\alpha)=Q(\beta)=0$.

- (a) Show that there is monic polynomial $R \in \mathbb{Z}[x]$ such that $R(\alpha + \beta) = 0$.
- (b) Show that there is a monic polynomial $S \in \mathbb{Z}[x]$ such that $S(\alpha\beta) = 0$.

Z40B5559

Problem 26 (HMMT 2020, added by Guanjie Lu, 9♣)

Let $P(x) = x^{2020} + x + 2$. Let Q(x) be the monic polynomial of degree $\binom{2020}{2}$ whose roots are the pairwise products of the roots of P(x). Let α satisfy $P(\alpha) = 4$. Compute the sum of all possible values of $Q(\alpha^2)^2$.

20HMMTA9