Functional Analysis-Spring 2024

Paul Carmody Assignment #5– April 18, 2024

- p. 200 #2,3,4,5,6,10.
- 2. Let H be a Hilbert space and $T: H \to H$ a bijective bounded linear operator whose inverse is bounded. Show that $(T^*)^{-1}$ exists and

$$(T^*)^{-1} = (T^{-1})^*$$

$$(TT^{-1})^* = (T^{-1})^*T^*$$

$$TT^{-1} = T^*(T^*)^{-1}$$

$$(T^{-1})^*T^* = ((T^*)^{-1})^*T^{**}$$

- 3. if (T_n) is a sequence of bounded linear operators on a Hilbert space adn $T_n \to T$, show that $T_n^* \to T^*$.
- 4. Let H_1 and H_2 be Hilbert spaces and $T: H_1 \to H_2$ a bounded linear operator. If $M_1 \subset H_1$ and $M_2 \subset H_2$ are such that $T(M_1) \subset M_2$, show that $M_1^{\perp} \subset T^*(M_2^{\perp})$.
- 5. Let M_1 and M_2 in Prov. 4 be closed subspaces. Show that then $T(M_1) \subset M_2$ if and only if $M_1^{\perp} \supset T^*(M_2^{\perp})$.
- 6. If $M_1 = \mathcal{N}(T) = \{x \mid Tx = 0\}$ in Prob. 4, show that
 - (a) $T^*(H_2) \subset M_1^{\perp}$
 - (b) $[T(H_1)]^{\perp} \subset \mathcal{N}(T^*)$
 - (c) $M_1 = [T^*(H_2)]^*$
- 10. (Right shift operator) Let (e_n) be a total orthonormal sequence in a separable Hilbert space H and define the right shift operator to be the linear operator $T: H \to H$ such that $Te_n = e_{n+1}$ for $n = 1, 2, \cdots$. Explain the name. Find the range, null space, norm and Hilbert-adjoint operator of T.

- p. 207 #4, 5
- 4. Show that for any bounded linear operator T on H, the operators

$$T_1 = \frac{1}{2}(T + T^*)$$
 and $T_3 = \frac{1}{2i}(T - T^*)$

are self-adjoint. Show that

$$T = T_1 + iT_2 \ T^* = T_1 = iT_2.$$

Show uniquness, that is, $T_1 + iT_2 = S_1 + iS_2$ implies $S_i = T_i$ and $S_2 = T_2$; here, S_1 and S_2 are self-adjoint by assumption.

5. On \mathbb{C}^2 (cf. 3.1-4) let the operator $T: \mathbb{C}^2 \to \mathbb{C}^2$ be defined by $Tx = (\xi_1 + i\xi_2, \xi - i\xi_2)$, where $x = (\xi_1, \xi_2)$. Find T^* . Show that we have $T^*T = TT^* = 2I$. Find T_1 and T_2 as defined in prob. 4.