Random Numbers

- In many applications, want to be able to generate random numbers, permutations, etc.
 - Since computers are deterministic, true randomness does not exist
 - Settle for <u>pseudo-randomness</u>: sequence of numbers that *looks* random, but is deterministically generated
 - Most random number generators use a "linear congruential generator" (LCG):
 - Start with a seed number X₀
 - Next "random" number given by: $X_{n+1} = (aX_n + c) \mod m$
 - Effectiveness is very sensitive to choice of a, c, and m
 - Note: the sequence of random numbers must eventually cycle

The rand() Function

- In C/C++, there exists a function for generating pseudo-random numbers: int rand(void)
 - Part of <stdlib.h> library
 - Returns integer between 0 and RAND_MAX, inclusive
 - Values supposed to be "uniformly" distributed in range
 - RAND_MAX guaranteed to be at least 32767 (often larger)
 - In most implementations, uses LCG
 - Seeded using: void srand(unsigned int seed)
 - o Often set to current system time: srand(time(NULL));
 - For our purposes, we accept approximation:
 (rand()/((double)RAND_MAX + 1)) ~ Uni[0, 1)

Shuffling Deck of Cards

- Want to generate a random permutation of set
 - E.g., completely shuffle a deck of cards
 - Want all permutations to be equally likely

```
void shuffle(int arr[], int n) {
  for(int i = n - 1; i > 0; i--) {
    double u = uniformRand(0, 1); // u in [0, 1)
    // pick one of "remaining" i positions
    int pos = (int)((i + 1) * u);
    swap(arr[i], arr[pos]);
}
```

Bad, But Common, Shuffle

Common mistake in creating random permutation

```
void badShuffle(int arr[], int n) {
  for(int i = 0; i < n; i++) {
    double u = uniformRand(0, 1); // u in [0, 1)
    // pick any position
    int pos = (int)(n * u);
    swap(arr[i], arr[pos]);
  }
}</pre>
```

- Has nⁿ execution paths, but only n! permutations
- Consider n = 3:
 - $_{\circ}$ Can generate $3^3 = 27$ possible execution paths
 - But, only 3! = 6 possible permutations
 - o 27 / 6 = 4.5 (not integer), so not all permutations equally likely!

Another Good Way to Shuffle

Common (easy) way to shuffle

```
void shuffle(int arr[], int n) {
   double *keys = new double[n];
   for(int i = 0; i < n; i++) {
      keys[i] = uniformRand(0, 1); // u in [0, 1)
   }
   SortUsingKeys(arr, keys, n);
   delete[] keys;
}</pre>
```

- Pros: all permutations equally likely, easy to code
- Cons: O(n log n) due to sort vs. O(n) for our first method

Computing Integrals

- Given ability to generate numbers ~ Uni(0, 1)
 - Want to compute (approximate) value of an integral
 - Useful when integral has no closed form
 - Or may have closed form, but don't know how to derive it
 - Basic idea
 - Consider graph of function
 - Throw "darts" at graph
 - Determine percentage below function
 - Multiply by area into which you threw darts
 - Square: (domain of integral) x (maximum value of function)
 - This is called "Monte Carlo Integration"
 - Named after area in Monaco known for its casinos

Monte Carlo Integration

• Consider integral: $\int_0^2 e^x dx$

```
double integrate() {
   // number of "darts" to throw
   int NUM POINTS = 1000000;
   int numBelowFn = 0;
   for(int i = 0; i < NUM POINTS; <math>i++) {
      double x = uniformRand(0, 1) * 2.0;
      double y = uniformRand(0, 1) * exp(2.0);
      if (y < \exp(x)) numBelowFn++;
   double fraction = (double)numBelowFn/NUM POINTS;
   return (2.0 * exp(2.0) * fraction);
```

How Well Does This Do?

- Consider integral: $\int_0^2 e^x dx$
 - Analytically:

$$\int_0^2 e^x dx = e^x \Big|_0^2 = e^2 - 1 \approx 6.389$$

Monte Carlo Integration:

NUM_POINTS	Computed value (to 4 significant digits)
10	5.911
100	6.650
1,000	6.872
10,000	6.239
100,000	6.387
1,000,000	6.391
10,000,000	6.388

Computing Statistics Via Simulation

Recall example:

```
int Recurse()
{
   int x = randomInt(1, 3); // Equally likely values
   if (x == 1) return 3;
   else if (x == 2) return (5 + Recurse());
   else return (7 + Recurse());
}
```

- Wanted to compute E[Y]
 - Analytically, derived E[Y] = 15
- Can approximate by simulation: run algorithm many times, compute average

How Well Does This Do?

Recall example:

```
int Recurse()
{
   int x = randomInt(1, 3); // Equally likely values
   if (x == 1) return 3;
   else if (x == 2) return (5 + Recurse());
   else return (7 + Recurse());
}
```

Simulation

```
# of runs Average value (to 5 significant digits)
10 16.800
100 15.080
1,000 15.920
10,000 14.844
100,000 14.977
1,000,000 14.999
```

Generating Distributions

- Given ability to generate numbers ~ Uni(0, 1)
 - How can we generate other distributions?
 - First method we consider is "Inverse Transform"
 - Want to simulate a continuous distribution function F
 - Let U ~ Uni(0, 1)
 - Define $X = F^{-1}(U)$ (inverse: $F^{-1}(a) = b \Leftrightarrow F(b) = a$)
 - Note: $P(X \le x) = P(F^{-1}(U) \le x) = P(U \le F(x)) = F(x)$
 - Thus, X will have distribution F
 - Can use method for discrete distributions with some modification

Continuous Inverse Transform

- Need to invert distribution function
 - Want to generate exponential distribution: X ~ Exp(λ)
 - CDF: $F(X = x) = 1 e^{-\lambda x}$ where $x \ge 0$
 - To compute inverse, let $F(X) = 1 e^{-\lambda x} = u$, solve for x: $e^{-\lambda x} = 1 - u \Leftrightarrow -\lambda x = \log(1 - u) \Leftrightarrow x = -\log(1 - u)/\lambda$
 - So, $F^{-1}(U = u) = x = -\log(1 u)/\lambda$
 - Since U ~ Uni(0, 1), also have (1 − U) ~ Uni(0, 1)
 - Simplify: $X = F^{-1}(U) = -\log(U)/\lambda$
- Note: closed-form inverse may not always exist
 - Normal distribution doesn't have closed-form inverse

Discrete Inverse Transform

- Recall form of CDF for discrete distribution:
 - Here is F(X = x) where $X \sim Poi(3)$:

Generate U ~ Uni(0, 1)

- (e.g., u = 0.7)
- As x increases, determine first $F(x) \ge U$ (e.g., x = 4)
- Return that value of x

Bring on the Code

- Discrete inverse transform
 - Assumes PMF, p(x), available for distribution modeled
 - Here, assume distribution over non-negative integers
 - E.g., Bernoulli, Binomial, Poisson, many others

```
int discreteInverseTransform() {
   double u = uniformRand(0, 1);  // u in [0, 1)
   int x = 0;
   double F_so_far = p(x);
   while (F_so_far < u) {
        x++;
        F_so_far += p(x);
   }
   return x;
}</pre>
```

Rejection Filtering – Idea

- Want to simulate random variable X with PDF f(x)
 - Draw graph of f(x):

- Throw "darts" at graph
 - If dart under f(x) then return x coordinate
 - Otherwise, repeat throwing darts until on lands under f(x)
- If PDF has infinite tails, then "cover" it with another PDF

Rejection Filtering – Implementation

- Want to simulate random variable X with PDF f(x)
 - Assume we can simulate Y with PDF g(y)

```
o where Y has same support as X

double rejectionFilter() {
    while (true) {
        double u = uniformRand(0, 1); // u in [0, 1)
        double y = randomValueFromDistributionOfY();
        if (u <= f(y)/(c * g(y))) return y;
    }
}</pre>
```

where constant $c \ge f(y)/g(y)$ for all y

- Number iterations of loop ~ Geo(1/c)
- Proof of correctness in Ross, Chap. 10.2.2

Generating Normal Random Variable

Want to simulate random variable Z ~ N(0, 1)

$$f(z) = \frac{1}{\sqrt{2\pi}} e^{-z^2/2} \quad \text{where} \quad -\infty < z < \infty$$

- PDF for |Z|: $f(z) = \frac{2}{\sqrt{2\pi}} e^{-z^2/2}$ where $0 \le z < \infty$
- Will simulate using Y ~ Exp(1) (from inverse transform)

∘ PDF:
$$g(y) = e^{-y}$$
 where $0 \le y < \infty$

$$\frac{f(x)}{g(x)} = \sqrt{\frac{2}{\pi}}e^{-(x^2 - 2x)/2} = \sqrt{\frac{2}{\pi}}e^{-(x^2 - 2x + 1)/2 + 1/2} = \sqrt{\frac{2e}{\pi}}e^{-(x - 1)^2/2} \le \sqrt{\frac{2e}{\pi}} = c$$

• So, we obtain:
$$\frac{f(x)}{c \cdot g(x)} = e^{-(x-1)^2/2}$$

Applying Rejection Filtering

```
c = \sqrt{\frac{2e}{\pi}} \approx 1.32
• Note: \frac{f(x)}{c \cdot g(x)} = e^{-(x-1)^2/2}
   double rejectionFilterNormal() {
       while (true) {
         double u = uniformRand(0, 1); // u in [0, 1)
         // Y ~ Exp(1) using inverse transform method
         double y = -\ln(\text{uniformRand}(0, 1));
         if (u \le \exp(-((y - 1)*(y - 1)) / 2)) return y;
   double normal() {
       double x = rejectionFilterNormal();
       double u = uniformRand(0, 1);
       if (u < 0.5) return (x);
       else return (-x);
```