Association Rules

Basket Market Analysis

Dante Conti, Sergi Ramirez, (c) IDEAI

2025-10-20

Table of contents

0.1	Almacenamiento de datos de transacciones	2
	0.1.1 Formato de matriz binaria	2
	0.1.2 Formato de lista $(basket)$	2
0.2	R	2
0.3	Python	6
0.4	Mlxtend	6
0.5	Arules	7
0.6	Generación de les reglas de asociación a partir de conjuntos de elementos freceuntes	7
	0.6.1 A Priori	7
0.7	R	7
0.8	Python	9
	0.8.1 Eclat	9
0.9	R	9
0.10	Python	10
	0.10.1 FP-Growth	11
0.11	R	11
0.12	Python	11
0.13	Generación de reglas y criterios de selección	11
	0.13.1 Soporte (Support)	11
	0.13.2 Confianza (Confidence)	12
	0.13.3 Elevación $(Lift)$	12
	0.13.4 Apalancamiento (Leverage)	12
	0.13.5 Conviction	12
	0.13.6 Zhangs Metric	13
0.14	R	13
0.15	Python	15
0.16	Poda de las reglas de asociación	16

0.17	Visualización	de reglas															18
0.18	R																18

0.1 Almacenamiento de datos de transacciones

0.1.1 Formato de matriz binaria

Cada fila representa una transacción y cada columna representa uno de los posibles ítems que podrían formar parte de ella. Las celdas de la matriz se rellenan con valores binarios (1 o 0) que indican si un artículo está presente (1) o ausente (0) en una transacción concreta.

Este es el formato de entrada que utilizan la mayoría de algoritmos, sin embargo, no suele ser el más adecuado para almacenar las transacciones ya que requiere conocer de antemano todos los posibles ítems para crear las columnas y, dado que cada transacción suele contener solo una pequeña proporción de los posibles ítems, la mayoría de valores son cero (sparse).

0.1.2 Formato de lista (basket)

Cada transacción se representa como una lista de los ítems que forman parte de ella y se le asigna un identificador único por transacción. Este formato es más eficiente desde el punto de vista de la memoria, ya que sólo almacena los elementos presentes en cada transacción.

0.2 R

```
## ---libs-----
# install.packages("devtools")
# devtools::install_github("rsquaredacademy/mbar")
library(readxl)
library(mbar)
library(arules)
library(arulesViz)
library(magrittr)
library(dplyr)
library(lubridate)
library(forcats)
library(ggplot2)
```

```
## ---preprocess-----
mba_data <- read_excel("online-retail.xlsx")</pre>
transactions <- mbar_prep_data(mba_data, InvoiceNo, Description)
head(transactions)
# A tibble: 6 x 1,114
    item_1 item_2 item_3 item_4 item_5 item_6 item_7 item_8 item_9 item_10 item_11
    <chr> <chr< <chr> <
                                                                                                                                                                11 11
1 WHITE~ "WHIT~ "CREA~ "KNIT~ "RED ~ "SET ~ "GLAS~ ""
                                                                                                                                              11 11
                                                  11 11
2 HAND ~ "HAND~ ""
                                                                 11.11
                                                                                 11.11
                                                                                                11.11
                                                                                                               11 11
                                                                                                                               11 11
                                                                                                                                              11 11
                                                                                                                                                                11 11
3 ASSOR~ "POPP~ "POPP~ "FELT~ "IVOR~ "BOX ~ "BOX ~ "BOX ~ "HOME~ "LOVE ~ "RECIP~
4 JAM M~ "RED ~ "YELL~ "BLUE~ ""
                                                                                 11 11
                                                                                                11 11
                                                  11 11
                                                                                 11 11
                                                                                                11.11
                                                                                                               11 11
                                                                                                                               11 11
                                                                                                                                              11 11
5 BATH ~ ""
6 ALARM~ "ALAR~ "ALAR~ "PAND~ "STAR~ "INFL~ "VINT~ "SET/~ "ROUN~ "SPACE~ "LUNCH~
# i 1,103 more variables: item 12 <chr>, item 13 <chr>, item 14 <chr>,
         item_15 <chr>, item_16 <chr>, item_17 <chr>, item_18 <chr>, item_19 <chr>,
        item_20 <chr>, item_21 <chr>, item_22 <chr>, item_23 <chr>, item_24 <chr>,
        item_25 <chr>, item_26 <chr>, item_27 <chr>, item_28 <chr>, item_29 <chr>,
      item 30 <chr>, item 31 <chr>, item 32 <chr>, item 33 <chr>, item 34 <chr>,
        item_35 <chr>, item_36 <chr>, item_37 <chr>, item_38 <chr>, item_39 <chr>,
         item_40 <chr>, item_41 <chr>, item_42 <chr>, item_43 <chr>, ...
## ----read data------
(basket_data <- read.transactions("transaction_data.csv", format = "basket",
    sep = ","))
transactions in sparse format with
  25901 transactions (rows) and
  10085 items (columns)
## ----summary----
summary(basket_data)
transactions as itemMatrix in sparse format with
  25901 rows (elements/itemsets/transactions) and
  10085 columns (items) and a density of 0.001660018
most frequent items:
WHITE HANGING HEART T-LIGHT HOLDER
                                                                                                  REGENCY CAKESTAND 3 TIER
                                                                  1999
                                                                                                                                              1914
```

JUMBO BAG RED RETROSPOT PARTY BUNTING 1806 1488 LUNCH BAG RED RETROSPOT (Other) 1404 425005

element (itemset/transaction) length distribution:
sizes

sizes	3														
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1454	4578	1727	1208	942	891	781	715	696	683	612	642	547	530	543	555
16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
537	479	459	491	428	405	328	311	280	248	261	235	221	233	224	175
32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47
174	145	149	139	122	119	100	117	98	94	102	93	72	73	74	71
48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63
69	68	59	70	49	49	54	57	42	32	42	39	34	40	22	27
64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79
30	24	34	28	25	21	23	26	14	17	24	11	18	14	13	10
80	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95
16	18	15	10	9	16	13	16	13	7	8	12	12	8	7	7
96	97	98	99	100	101	102	103	104	105	106	107	108	109	110	111
4	7	9	5	8	8	4	5	7	2	3	7	9	4	7	4
112	113	114	115	116	117	118	119	120	121	122	123	124	125	126	127
2	7	1	1	4	7	6	2	3	5	4	4	2	5	6	2
129	130	131	132	133	134	135	136	137	138	139	140	141	142	143	144
1	4	3	6	6	3	4	3	2	1	1	3	8	5	3	4
145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160
4	6	2	3	1	4	3	2	4	7	3	3	5	2	4	5
162	163	164	167	168	169	170	171	172	173	174	175	176	177	178	179
1	2	1	3	5	2	2	4	3	1	3	5	1	2	2	2
180	181	182	183	184	185	186	187	189	190	192	193	194	196	197	198
2	1	2	1	2	1	1	2	2	1	1	5	1	2	3	2
201	202	204	205	206	207	208	209	212	213	215	219	220	224	226	227
1	1	2	2	1	3	3	2	1	2	2	7	1	3	3	1
228	230	232	234	236	238	240	241	244	248	249	250	252	256	257	258
1	2	1	2	1	2	2	2	1	1	2	2	1	1	1	1
260	261	263	265	266	270	272	281	284	285	298	299	301	303	304	305
2	1	2	1	1	1	1	1	1	2	1	2	1	1	1	3
312	314	316	320	321	326	327	329	332	333	338	339	341	344	348	350
2	1	1	2	1	1	1	1	1	1	1	1	1	2	1	1
360	365	367	375	391	394	398	400	402	405	411	419	422	429	431	442
2	1	1	3	1	1	1	1	1	1	1	2	1	1	2	1
447	460	468	471	477	509	514	530	587	627	1114					
1	1	1	1	1	1	1	1	1	1	1					

0.3 Python

0.4 MIxtend

0.5 Arules

0.6 Generación de les reglas de asociación a partir de conjuntos de elementos freceuntes

0.6.1 A Priori

Propuesto por Agrawal and Srikant en 1994 es uno de los primeros algoritmos desarrollados para la identificación de itemsets frecuentes en bases de datos con transacciones, y posterior conversión a reglas de asociación. Si bien sucesivas modificaciones del algoritmo original han conseguido mejoras notables en su rendimiento, sigue siendo muy empleado. Este algoritmo tiene dos etapas:

- Identificar todos los itemsets que ocurren con una frecuencia por encima de un determinado límite (itemsets frecuentes).
- Convertir los itemsets frecuentes en reglas de asociación.

----generate rules-----

0.7 R

```
rules <- apriori(basket_data, parameter = list(supp=0.009, conf=0.8,
    target = "rules", maxlen = 4))
Apriori
Parameter specification:
 confidence minval smax arem aval original Support maxtime support minlen
                                                              0.009
        0.8
               0.1
                      1 none FALSE
                                               TRUE
 maxlen target ext
      4 rules TRUE
Algorithmic control:
 filter tree heap memopt load sort verbose
    0.1 TRUE TRUE FALSE TRUE
                                 2
                                      TRUE
Absolute minimum support count: 233
set item appearances ...[0 item(s)] done [0.00s].
```

```
checking subsets of size 1 2 3 4
 done [0.01s].
writing ... [22 rule(s)] done [0.00s].
creating S4 object ... done [0.00s].
## ----rules summary-----
summary(rules)
set of 22 rules
rule length distribution (lhs + rhs):sizes
 2 3 4
11 9 2
   Min. 1st Qu. Median
                          Mean 3rd Qu.
                                          Max.
  2.000
         2.000
                 2.500
                         2.591
                                  3.000
                                          4.000
summary of quality measures:
                                                            lift
    support
                     confidence
                                        coverage
 Min.
        :0.009034
                   Min.
                          :0.8035
                                            :0.009614 Min.
                                                               :22.59
                                    \mathtt{Min}.
 1st Qu.:0.010453 1st Qu.:0.8530
                                     1st Qu.:0.011592
                                                       1st Qu.:25.02
 Median :0.013223
                                                       Median :55.94
                   Median :0.8868
                                     Median :0.014362
 Mean
       :0.012760
                    Mean
                         :0.9120
                                     Mean
                                           :0.014061
                                                       Mean
                                                              :48.55
 3rd Qu.:0.014362
                    3rd Qu.:1.0000
                                     3rd Qu.:0.014362
                                                        3rd Qu.:61.23
 Max.
        :0.018339
                        :1.0000
                                          :0.021544
                                                               :71.30
                    Max.
                                     Max.
                                                       Max.
     count
        :234.0
 Min.
 1st Qu.:270.8
 Median :342.5
 Mean
       :330.5
 3rd Qu.:372.0
 Max. :475.0
mining info:
        data ntransactions support confidence
                           0.009
                    25901
 basket_data
                                          0.8
 apriori(data = basket_data, parameter = list(supp = 0.009, conf = 0.8, target = "rules", mag
```

set transactions ...[10085 item(s), 25901 transaction(s)] done [0.06s].

sorting and recoding items ... [508 item(s)] done [0.00s].

creating transaction tree ... done [0.00s].

0.8 Python

```
from mlxtend.frequent_patterns import apriori
frequent_itemsets = apriori(df, min_support=0.6, use_colnames=True)
frequent_itemsets
```

	support	itemsets
0	0.8	(Eggs)
1	1.0	(Kidney Beans)
2	0.6	(Milk)
3	0.6	(Onion)
4	0.6	(Yogurt)
5	0.8	(Eggs, Kidney Beans)
6	0.6	(Onion, Eggs)
7	0.6	(Milk, Kidney Beans)
8	0.6	(Onion, Kidney Beans)
9	0.6	(Kidney Beans, Yogurt)
10	0.6	(Onion, Eggs, Kidney Beans)

0.8.1 Eclat

En el 2000, Zaki propuso un nuevo algoritmo para encontrar patrones frecuentes (itemsets frecuentes) llamado Equivalence Class Transformation (Eclat). La principal diferencia entre este algoritmo y el Apriori es la forma en que se escanean y analizan los datos. El algoritmo Apriori emplea transacciones almacenadas de forma horizontal (lista o basket), es decir, todos los elementos que forman una misma transacción están en la misma línea. El algoritmo Eclat, sin embargo, analiza las transacciones en formato vertical, donde cada línea contiene un único ítem y el identificador de las transacciones en las que aparece ese ítem.

0.9 R

```
algorithmic control:
    sparse sort verbose
        7 -2 TRUE

Absolute minimum support count: 233

create itemset ...
set transactions ...[10085 item(s), 25901 transaction(s)] done [0.06s].
sorting and recoding items ... [508 item(s)] done [0.00s].
creating sparse bit matrix ... [508 row(s), 25901 column(s)] done [0.00s].
writing ... [742 set(s)] done [0.21s].
Creating S4 object ... done [0.00s].

inspect(sort(rules_ECLAT, by = 'support')[1:10])
```

	items	support	count
[1]	{WHITE HANGING HEART T-LIGHT HOLDER}	0.07717849	1999
[2]	{REGENCY CAKESTAND 3 TIER}	0.07389676	1914
[3]	{JUMBO BAG RED RETROSPOT}	0.06972704	1806
[4]	{PARTY BUNTING}	0.05744952	1488
[5]	{LUNCH BAG RED RETROSPOT}	0.05420640	1404
[6]	{ASSORTED COLOUR BIRD ORNAMENT}	0.05030694	1303
[7]	{SET OF 3 CAKE TINS PANTRY DESIGN}	0.04914868	1273
[8]	{PACK OF 72 RETROSPOT CAKE CASES}	0.04521061	1171
[9]	{LUNCH BAG BLACK SKULL.}	0.04347322	1126
[10]	{POSTAGE}	0.04223775	1094

0.10 Python

```
from mlxtend.frequent_patterns import fpmax
frequent_itemsets = fpmax(df, min_support=0.6, use_colnames=True)
frequent_itemsets
```

```
support itemsets
0 0.6 (Onion, Eggs, Kidney Beans)
1 0.6 (Milk, Kidney Beans)
2 0.6 (Kidney Beans, Yogurt)
```

0.10.1 FP-Growth

En el 2000, Zaki propuso un nuevo algoritmo para encontrar patrones frecuentes (itemsets frecuentes) llamado Equivalence Class Transformation (Eclat). La principal diferencia entre este algoritmo y el Apriori es la forma en que se escanean y analizan los datos. El algoritmo Apriori emplea transacciones almacenadas de forma horizontal (lista o basket), es decir, todos los elementos que forman una misma transacción están en la misma línea. El algoritmo Eclat, sin embargo, analiza las transacciones en formato vertical, donde cada línea contiene un único ítem y el identificador de las transacciones en las que aparece ese ítem.

0.11 R

0.12 Python

```
from mlxtend.frequent_patterns import fpgrowth
frequent_itemsets = fpgrowth(df, min_support=0.6, use_colnames=True)
frequent_itemsets
```

	support	itemsets
0	1.0	(Kidney Beans)
1	0.8	(Eggs)
2	0.6	(Yogurt)
3	0.6	(Milk)
4	0.6	(Onion)
5	0.8	(Eggs, Kidney Beans)
6	0.6	(Kidney Beans, Yogurt)
7	0.6	(Milk, Kidney Beans)
8	0.6	(Onion, Eggs)
9	0.6	(Onion, Kidney Beans)
10	0.6	(Onion, Eggs, Kidney Beans)

0.13 Generación de reglas y criterios de selección

0.13.1 Soporte (Support)

El soporte es una métrica asociada al conjunto de *items* y no a las reglas de asociación en si. Existen los siguientes tipos de soporte:

- soporte antecedente: Proporción de transacciones que contienen el antecedente (A)
- soporte consecuente: Proporción de transacciones que contienen el consecuente (C)

• soporte: Proporción de transacciones que combinan el antecedente (A) y el consecuente (C)

El soporte se utiliza para medir la abundancia o frecuencia (significancia o importancia) de un *item sets* en una base de datos.

$$Support(A \to C) = support(A \cup C)$$

El rango del soporte va entre 0 y 1.

0.13.2 Confianza (Confidence)

La confianza de una regla $A \to C$ es la probabilidad de ver el consecuente en una transacción, dado que también contiene el antecedente. La regla no es simétrica y su valor máximo es 1 que significa que el consecuente y el antecedente siempre ocurren juntos y el mínimo es 0.

$$confidence(A \rightarrow C) = \frac{support(A \rightarrow C)}{support(A)}$$

0.13.3 Elevación (Lift)

La métrica de elevación se utiliza comúnmente para medir con qué frecuencia el antecedente y el consecuente de una regla $A \to C$ ocurren juntos con mayor frecuencia de lo que esperaríamos si fueran estadísticamente independientes. Si A y C son independientes, la puntuación de elevación será exactamente 1.

$$lift(A \rightarrow C) = \frac{confidence(A \rightarrow C)}{support(C)}, range: [0, \infty)$$

0.13.4 Apalancamiento (Leverage)

El apalancamiento calcula la diferencia entre la frecuencia observada de A y C apareciendo juntos y la frecuencia esperada si A y C fueran independientes. Un valor de apalancamiento de 0 indica independencia.

$$leverage(A \rightarrow C) = support(A \rightarrow C) - support(A) \cdot support(C), range: [-1, 1]$$

0.13.5 Conviction

Un valor alto de convicción significa que el consecuente depende en gran medida del antecedente. Por ejemplo, en el caso de una puntuación de confianza perfecta, el denominador se convierte en 0 (debido a 1 - 1), por lo que la puntuación de convicción se define como 'inf'. Similar al caso de la elevación, si los elementos son independientes, la convicción es 1.

$$Conviction(A \rightarrow C) = \tfrac{1-support(C)}{1-confidence(A \rightarrow C)}, range: [0, \infty)$$

0.13.6 Zhangs Metric

Mide tanto la asociación como la disociación. El valor oscila entre -1 y 1. Un valor positivo (> 0) indica asociación y un valor negativo, disociación.

```
ZhangMetric(A \rightarrow C) = \frac{confidence(A \rightarrow C) - confidence(A' \rightarrow C)}{max(confidence(A \rightarrow C), confidence(A' \rightarrow C))}, range: [-1, 1]
```

0.14 R

```
## ----inspect rules-----
basket_rules <- sort(rules, by = 'confidence', decreasing = TRUE)
inspect(basket_rules[1:10])</pre>
```

```
lhs
                                                                               support conf
                                         rhs
[1] {BACK DOOR}
                                      => {KEY FOB}
                                                                           0.009613528 1.0
[2] {SET 3 RETROSPOT TEA}
                                      => {SUGAR}
                                                                           0.014362380 1.0
[3] {SUGAR}
                                      => {SET 3 RETROSPOT TEA}
                                                                           0.014362380 1.0
[4] {SET 3 RETROSPOT TEA}
                                      => {COFFEE}
                                                                           0.014362380 1.0
[5] {SUGAR}
                                      => {COFFEE}
                                                                           0.014362380 1.0
[6] {SHED}
                                      => {KEY FOB}
                                                                           0.011273696 1.0
[7] {SET 3 RETROSPOT TEA,
     SUGAR}
                                      => {COFFEE}
                                                                           0.014362380 1.0
[8] {COFFEE,
     SET 3 RETROSPOT TEA}
                                      => {SUGAR}
                                                                           0.014362380 1.0
[9] {COFFEE,
     SUGAR}
                                      => {SET 3 RETROSPOT TEA}
                                                                           0.014362380 1.0
[10] {PINK REGENCY TEACUP AND SAUCER,
     REGENCY CAKESTAND 3 TIER,
     ROSES REGENCY TEACUP AND SAUCER => {GREEN REGENCY TEACUP AND SAUCER} 0.009999614 0.8
```

```
## ----top rules by support-----
supp_rules <- sort(rules, by = 'support', decreasing = TRUE)
top_rules <- supp_rules[1:10]
inspect(top_rules)</pre>
```

```
[3] {SET 3 RETROSPOT TEA} => {SUGAR}
                                                                      0.01436238 1.0
[4] {SUGAR}
                                   => {SET 3 RETROSPOT TEA}
                                                                      0.01436238 1.0
[5] {SET 3 RETROSPOT TEA}
                                    => {COFFEE}
                                                                      0.01436238 1.0
[6] {COFFEE}
                                    => {SET 3 RETROSPOT TEA}
                                                                      0.01436238 0.8
[7] {SUGAR}
                                    => {COFFEE}
                                                                      0.01436238 1.0
[8] {COFFEE}
                                    => {SUGAR}
                                                                      0.01436238 0.8
[9] {SET 3 RETROSPOT TEA,
     SUGAR}
                                    => {COFFEE}
                                                                      0.01436238 1.0
[10] {COFFEE,
     SET 3 RETROSPOT TEA}
                                    => {SUGAR}
                                                                      0.01436238 1.0
## ----top rules by confidence-----
supp_rules <- sort(rules, by = 'confidence', decreasing = TRUE)</pre>
top_rules <- supp_rules[1:10]</pre>
inspect(top_rules)
    lhs
                                      rhs
                                                                         support conf
                                  => {KEY FOB}
[1] {BACK DOOR}
                                                                     0.009613528 1.0
                                  => {SUGAR}
[2] {SET 3 RETROSPOT TEA}
                                                                     0.014362380 1.0
                                  => {SET 3 RETROSPOT TEA}
[3] {SUGAR}
                                                                     0.014362380 1.0
[4] {SET 3 RETROSPOT TEA}
                                  => {COFFEE}
                                                                     0.014362380 1.0
                                  => {COFFEE}
[5] {SUGAR}
                                                                     0.014362380 1.0
[6] {SHED}
                                   => {KEY FOB}
                                                                     0.011273696 1.0
[7] {SET 3 RETROSPOT TEA,
     SUGAR}
                                   => {COFFEE}
                                                                     0.014362380 1.0
[8] {COFFEE,
     SET 3 RETROSPOT TEA}
                                  => {SUGAR}
                                                                     0.014362380 1.0
[9] {COFFEE,
                                   => {SET 3 RETROSPOT TEA} 0.014362380 1.0
     SUGAR}
[10] {PINK REGENCY TEACUP AND SAUCER,
     REGENCY CAKESTAND 3 TIER,
     ROSES REGENCY TEACUP AND SAUCER => {GREEN REGENCY TEACUP AND SAUCER} 0.009999614 0.8
```

```
## ----top rules by lift-----
supp_rules <- sort(rules, by = 'lift', decreasing = TRUE)
top_rules <- supp_rules[1:10]
inspect(top_rules)</pre>
```

```
[3] {SUGAR}
                                 => {SET 3 RETROSPOT TEA}
                                                            0.014362380
[4] {COFFEE, SET 3 RETROSPOT TEA} => {SUGAR}
                                                            0.014362380
[5] {COFFEE, SUGAR}
                                => {SET 3 RETROSPOT TEA}
                                                            0.014362380
[6] {BACK DOOR}
                               => {KEY FOB}
                                                            0.009613528
[7] {SHED}
                               => {KEY FOB}
                                                            0.011273696
[8] {REGENCY TEA PLATE GREEN} => {REGENCY TEA PLATE ROSES} 0.010347091
                               => {COFFEE}
[9] {SET 3 RETROSPOT TEA}
                                                            0.014362380
[10] {COFFEE}
                                => {SET 3 RETROSPOT TEA}
                                                            0.014362380
    confidence coverage lift count
[1] 0.8863636 0.010192657 71.29722 234
[2] 1.0000000 0.014362380 69.62634 372
[3] 1.0000000 0.014362380 69.62634 372
[4] 1.0000000 0.014362380 69.62634 372
[5] 1.0000000 0.014362380 69.62634 372
[6] 1.0000000 0.009613528 61.23168 249
[7] 1.0000000 0.011273696 61.23168 292
[8] 0.8322981 0.012431952 55.99313 268
[9] 1.0000000 0.014362380 55.94168 372
[10] 0.8034557 0.017875758 55.94168 372
```

0.15 Python

```
from mlxtend.frequent_patterns import association_rules
association rules(frequent itemsets, metric="confidence", min threshold=0.7)
```

	antecedents	consequents	 certainty	kulczynski
0	(Eggs)	(Kidney Beans)	 0.000	0.900
1	(Kidney Beans)	(Eggs)	 0.000	0.900
2	(Yogurt)	(Kidney Beans)	 0.000	0.800
3	(Milk)	(Kidney Beans)	 0.000	0.800
4	(Onion)	(Eggs)	 1.000	0.875
5	(Eggs)	(Onion)	 0.375	0.875
6	(Onion)	(Kidney Beans)	 0.000	0.800
7	(Onion, Eggs)	(Kidney Beans)	 0.000	0.800
8	(Onion, Kidney Beans)	(Eggs)	 1.000	0.875
9	(Eggs, Kidney Beans)	(Onion)	 0.375	0.875
10	(Onion)	(Eggs, Kidney Beans)	 1.000	0.875
11	(Eggs)	(Onion, Kidney Beans)	 0.375	0.875

[12 rows x 14 columns]

0.16 Poda de las reglas de asociación

```
## ----what influenced purchase of sugar-----
sugar_rules <- apriori(basket_data, parameter = list(supp = 0.009, conf = 0.8),</pre>
  appearance = list(default = "lhs", rhs = "SUGAR"))
Apriori
Parameter specification:
 confidence minval smax arem aval original Support maxtime support minlen
        0.8
                      1 none FALSE
                                               TRUE
                                                          5
                                                              0.009
               0.1
 maxlen target ext
     10 rules TRUE
Algorithmic control:
 filter tree heap memopt load sort verbose
    0.1 TRUE TRUE FALSE TRUE
                                       TRUE
Absolute minimum support count: 233
set item appearances ...[1 item(s)] done [0.00s].
set transactions ...[10085 item(s), 25901 transaction(s)] done [0.06s].
sorting and recoding items ... [508 item(s)] done [0.00s].
creating transaction tree ... done [0.00s].
checking subsets of size 1 2 3 4 done [0.01s].
writing ... [3 rule(s)] done [0.00s].
creating S4 object ... done [0.00s].
rules_sugar <- sort(sugar_rules, by = "confidence", decreasing = TRUE)</pre>
inspect(rules_sugar)
    lhs
                                     rhs
                                              support
                                                         confidence coverage
[1] {SET 3 RETROSPOT TEA}
                                  => {SUGAR} 0.01436238 1.0000000 0.01436238
[2] {COFFEE, SET 3 RETROSPOT TEA} => {SUGAR} 0.01436238 1.0000000 0.01436238
[3] {COFFEE}
                                   => {SUGAR} 0.01436238 0.8034557 0.01787576
    lift
             count
[1] 69.62634 372
[2] 69.62634 372
[3] 55.94168 372
```

```
## ----what purchases did sugar influence-----
sugar_rules <- apriori(basket_data, parameter = list(supp = 0.009, conf = 0.8),</pre>
  appearance = list(default = "rhs", lhs = "SUGAR"))
Apriori
Parameter specification:
 confidence minval smax arem aval originalSupport maxtime support minlen
              0.1
                     1 none FALSE
                                            TRUE
                                                       5
                                                           0.009
 maxlen target ext
     10 rules TRUE
Algorithmic control:
 filter tree heap memopt load sort verbose
    0.1 TRUE TRUE FALSE TRUE
                                     TRUE
Absolute minimum support count: 233
set item appearances ...[1 item(s)] done [0.00s].
set transactions ...[10085 item(s), 25901 transaction(s)] done [0.06s].
sorting and recoding items ... [508 item(s)] done [0.00s].
creating transaction tree ... done [0.00s].
checking subsets of size 1 2 done [0.00s].
writing ... [2 rule(s)] done [0.00s].
creating S4 object ... done [0.00s].
rules_sugar <- sort(sugar_rules, by = "confidence", decreasing = TRUE)
inspect(rules_sugar)
                                             confidence coverage
    lhs
              rhs
                                    support
[1] {SUGAR} => {SET 3 RETROSPOT TEA} 0.01436238 1
                                                  0.01436238 69.62634
```

[1] 372

count

[2] {SUGAR} => {COFFEE}

[2] 372

0.01436238 1

0.01436238 55.94168

0.17 Visualización de reglas

0.18 R

```
## ----plot rules-----
plot(basket_rules)
```



```
## ----plot rules-----
plot(top_rules, method = "graph", engine = "igraph")
```

Graph for 10 rules

size: support (0.009 – 0.014) color: lift (55.942 – 71.297)

REGENCY TEA PLATE ROSES

REGENCY TEGENATE PINK