

PATENT
Attorney Docket 3817US (97-1350)

NOTICE OF EXPRESS MAILING

Express Mail Mailing Label Number: EL312578939US
Date of Deposit with USPS: August 27, 1999
Person making Deposit: Jared Turner

APPLICATION FOR LETTERS PATENT

for

**METHOD OF DISPOSING CONDUCTIVE BUMPS ONTO
A SEMICONDUCTOR DEVICE AND SEMICONDUCTOR
DEVICES SO FORMED**

Inventors:
Michael B. Ball
Chad A. Cobbley

Attorneys:
Brick G. Power
Registration No. 38,581
Joseph A. Walkowski
Registration No. 28,765
TRASK, BRITT & ROSSA
P.O. Box 2550
Salt Lake City, Utah 84110
(801) 532-1922

**METHOD OF DISPOSING CONDUCTIVE BUMPS ONTO
A SEMICONDUCTOR DEVICE AND SEMICONDUCTOR
DEVICES SO FORMED**

5

BACKGROUND OF THE INVENTION

Field of the Invention: The present invention relates to methods of disposing conductive structures, such as solder bumps, onto the surfaces of semiconductor devices. In particular, the present invention relates to methods of employing solder masks made of dielectric materials to substantially simultaneously dispose a plurality of solder bumps onto a semiconductor device. More specifically, the present invention relates to conductive structure disposition methods wherein the dielectric solder mask is removable from the semiconductor device or may otherwise be altered during or subsequent to forming the conductive structures to expose the sides, or peripheries, of the conductive structures.

Background of Related Art: Conventionally, metal masks were used to selectively control the application of solder balls to the contact pads through which a semiconductor device would electrically communicate with other devices external thereto. Metal masks have typically been made from molybdenum, which exhibits long-term dimensional stability at high temperature and may be reused.

Dry films have also been used as solder masks. Dry films, which are typically a thin layer of semisolid material that is disposed on a carrier film, may be laminated to the surface of a substrate, such as a printed circuit board ("PCB"), by heat and vacuum lamination processes. The dry film may then be patterned by exposing selected regions to ultraviolet ("UV") light, which hardens the regions of the dry film that are to remain and be used as the solder mask. The uncured regions are removed from the substrate by use of a suitable solvent, such as 1,1,1,-trichloroethane, and the remaining portions of the dry film cured by heat or high-energy UV irradiation.

In addition to metal solder masks and dry films, polymers, such as acrylates and epoxies, have also been used as masks for applying solder to semiconductor device substrates, such as printed circuit boards and bare semiconductor devices. Polymers are typically applied to the surface of the substrate, patterned to expose the contact pads of

the substrate through the polymer, and cured. Polymers may be applied to the surface of a substrate by screen printing, which also patterns the polymer, by curtain coating, by roller coating, or by the use of electrostatic spray. The patterning and curing processes employed with polymeric solder masks depend upon the type of polymer used as the solder mask. For example, photoimaging or mask and etch techniques may be employed to pattern the polymer, while the polymer may be cured by heat (for epoxies) or ultraviolet irradiation (for acrylates).

Solder may be applied to metal, dry film, or polymeric solder masks by known processes, such as by applying solder balls to the apertures of the solder mask, forcing solder paste into the apertures of the solder mask, by casting, or by ultrasonic dipping, wherein the masked substrate is immersed in molten solder, which then fills the apertures of the solder mask.

Following the deposition of solder to contact pads through a metal mask, the apertures of the metal mask must be larger than the cross-section of the solder bumps formed therethrough in order to facilitate removal and reuse of the metal solder mask. While dry film and polymeric solder masks dictate the contact location of a substrate upon which solder bumps are formed or applied, dry film and polymeric solder masks are typically very thin in order to facilitate their retention on or their removal from the substrate. Thus, the apertures of dry film and polymeric solder masks may not define the configuration of solder bumps, rather, dry film and polymeric solder masks are typically used to position spherical solder bumps on the contact pads of a substrate.

Spherical solder bumps and other configurations of relatively short, wide solder bumps may stress the adjacent semiconductor device. Such stress may be caused, for example, by the different coefficients of thermal expansion of the solder and the adjacent substrate or by conformational changes as the solder bump solidifies.

Thin polymeric films, such as adhesive tapes, have also been applied to printed circuit boards to be used as solder masks. United States Patent 5,388,327 (hereinafter “the ‘327 Patent”), which issued to Trabucco on February 14, 1995, and United States Patents 5,497,938 (hereinafter “the ‘938 Patent”) and 5,751,068 (hereinafter “the ‘068 Patent”), which issued to McMahon et al. on March 12, 1996, and

May 12, 1998, respectively, disclose adhesive films that carry pre-formed conductive bumps. The conductive bumps carried by the film are aligned with corresponding contact pads of a printed circuit board, the film is adhered to the printed circuit board, the conductive bumps are each secured to their corresponding contact pad, and the film is removed from the printed circuit board with a solvent. The use of such a carrier film is, however, somewhat undesirable since, during application of the film to the printed circuit board, air pockets may form between the film and the printed circuit board and a sufficient contact between one or more of the conductive bumps and their corresponding contact pads may not be established. Thus, the conductive bumps may not secure sufficiently to their corresponding contact pads on the printed circuit board to establish an adequate electrical connection with the contact pads. Moreover, the use of such an adhesive film to facilitate the disposal of solder bumps on a bare or minimally packaged semiconductor device is not disclosed in the '327 Patent, the '938 Patent, or the '068 Patent.

United States Patents 5,442,852 (hereinafter "the '852 Patent"), 5,504,277 (hereinafter "the '277 Patent"), and 5,637,832 (hereinafter "the '832 Patent"), which issued to Danner on August 22, 1995, April 2, 1996, and June 10, 1997, respectively, each disclose a solder mask that includes an adhesive film with an array of holes therethrough. In use, the holes through the film are aligned with corresponding contact pads of a printed circuit board. Solder balls are then disposed on the contact pads exposed through the holes of the film. The solder mask, however, has a thickness that is significantly less than the height of the solder balls. Thus, the adhesive film solder mask disclosed in the '852, '277, and '832 Patents may be employed to position the solder balls in desired locations, but does not include apertures that define the shape of the solder. Moreover, the use of such an adhesive film to facilitate the disposal of solder bumps on a bare or minimally packaged semiconductor device is not disclosed in the '852, '277, or '832 Patents.

Thus, there is a need for a reliable method of efficiently applying conductive structures, such as solder bumps, of desired configuration to the contact pads of semiconductor device substrates through a solder mask. There is also a need for a solder

mask through which conductive structures of desired configuration can be reliably and efficiently applied to the contact pads of semiconductor device substrates, including bare or minimally packaged semiconductor dice.

5

SUMMARY OF THE INVENTION

The present invention includes a method of disposing solder bumps on a substrate, such as a bare or minimally packaged semiconductor device or a printed circuit board (e.g., the printed circuit board of a ball grid array (“BGA”) package). The method of the present invention employs a solder mask comprising a dielectric film, such as a polymer, silicon oxide, glass (e.g., borophosphosilicate glass (“BPSG”), phosphosilicate glass (“PSG”), or borosilicate glass (“BSG”)), or silicon nitride, with apertures formed therethrough. The present invention also includes solder masks that may be used in the inventive method, as well as semiconductor devices fabricated in accordance with the method of the present invention. As used herein, the term “solder mask” is expansive and not limiting, including structures for application of materials to substrates to form conductive elements, whether metallic or non-metallic.

The method of the present invention includes aligning a film of dielectric material, such as a polymer, silicon oxide, glass, or silicon nitride, with a substrate, such as a bare or minimally packaged semiconductor device or a printed circuit board. The film may be pre-formed or formed during disposal thereof onto the substrate. The film has apertures formed therethrough, which are substantially aligned with contact pads of the substrate, such as the bond pads of a bare or minimally packaged semiconductor device or the terminals of a printed circuit board, so as to expose the contact pads through the solder mask. The apertures are configured to impart a solder bump formed therein with a desired configuration. Apertures may be formed in the solder mask prior to, during, or subsequent to disposal of the solder mask on the substrate.

Conductive material, such as solder, is applied to the contact pads of the substrate through the apertures of the solder mask. Solder may be applied to the contact pads by known techniques, such as by wave solder techniques, which are also referred to as thermosonic dipping, by evaporation, by plating, by screen printing, or by disposing

solder balls in or adjacent the apertures of the solder mask. Other conductive materials, such as conductive elastomers, may alternatively be disposed in the apertures of the solder mask by known processes, such as by screen printing or disposing a quantity of the conductive material in or adjacent each of the apertures of the solder mask. The solder or
5 other conductive material is molten as it is introduced into the apertures or thereafter. As the solder or other conductive material in the apertures of the solder mask becomes molten, conductive structures of the desired shape are substantially simultaneously formed in the apertures and secured to their corresponding contact pads.

When the formed conductive structures have adequately solidified, the solder
10 mask may be substantially removed from the substrate. Depending upon the type of material employed as the solder mask, the solder mask may be removed by peeling the film from the substrate (e.g., if a polymer is used as the solder mask), by use of suitable solvents (e.g., if a polymer is used as the solder mask), by etching the film from the substrate (e.g., if a polymer, silicon oxide, glass, or silicon nitride is used as the solder
15 mask), or otherwise, as known in the art. Alternatively, the thickness of the solder mask may be reduced to expose the sides, or peripheries, of the conductive structures. For example, if the solder mask is comprised of a polymeric material that may be shrunken when exposed to a certain chemical or chemicals, to a plasma, or to radiation, the solder mask may be shrunken to expose the sides, or peripheries, of the conductive structures formed therewith. As another example, the thickness of the solder mask may be reduced
20 by etching the dielectric material.

One embodiment of a semiconductor device according to the present invention, which represents an intermediate point in the method of the present invention, includes a substrate having contact pads on an active surface thereof and a solder mask comprising a dielectric material disposed over the active surface. The solder mask has a thickness that
25 is substantially the same as the desired height of the conductive structures to be formed with the solder mask. The solder mask also includes apertures through which selected ones of the contact pads are exposed and into which conductive material is disposable. Thus, the conductive structures of the semiconductor device have not yet been exposed
30 by removing or reducing the thickness of the solder mask. In one variation, the substrate

is a bare or minimally packaged semiconductor die and the contact pads are the bond pads of the semiconductor die. In another variation, the substrate is a printed circuit board and the contact pads are the terminals of the printed circuit board.

In another embodiment of a semiconductor device according to the present invention, a solder mask made of dielectric material is disposed on an active surface of a substrate. The thickness of the solder mask is reduced (e.g., the layer is shrunken or etched). Conductive structures are secured to and communicate electrically with the contact pads of the substrate, extend through apertures of the reduced-thickness solder mask, and protrude from the solder mask. In one variation, the substrate is a bare or minimally packaged semiconductor die and the contact pads are the bond pads of the semiconductor die. In another variation, the substrate is a printed circuit board and the contact pads are the terminals of the printed circuit board.

Other features and advantages of the present invention will become apparent to those of ordinary skill in the art through consideration of the ensuing description, the accompanying drawings, and the appended claims.

BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

FIG. 1 is a perspective schematic representation of a semiconductor device according to the present invention;

FIG. 2 is a cross-sectional representation illustrating the placement of a solder mask on a semiconductor device;

FIG. 3 is a cross-sectional representation illustrating the disposal of conductive material in the apertures of the solder mask of FIG. 2;

FIG. 4A is a cross-sectional representation illustrating the removal of the solder mask of FIG. 3 from the semiconductor device to expose the conductive structures on the contact pads of the semiconductor device;

FIG. 4B is a cross-sectional representation illustrating a reduction in the thickness of the solder mask of FIG. 3 to expose the conductive structures on the contact pads of the semiconductor device;

FIG. 5 is a cross-sectional representation illustrating a variation of the configuration of a solder bump fabricated by the method of the present invention;

FIG. 6 is a cross-sectional representation illustrating a second variation of the configuration of a solder bump fabricated by the method of the present invention;

5 FIG. 7 is a cross-sectional representation illustrating a third variation of the configuration of a solder bump fabricated by the method of the present invention;

FIG. 8 is a cross-sectional representation illustrating a fourth variation of the configuration of a solder bump fabricated by the method of the present invention; and

10 FIG. 9 is a schematic representation, in perspective view, of a semiconductor wafer including a plurality of unsingulated, conductively bumped semiconductor dice.

DETAILED DESCRIPTION OF THE INVENTION

With reference to FIG. 1, a semiconductor device 10 according to the present invention, which includes a substrate 12 with integrated circuitry thereon and contact pads 14 (*see* FIGs. 2-8) in electrical communication with the integrated circuitry is illustrated. As depicted, substrate 12 is a semiconductor die and contact pads 14 are the bond pads of the semiconductor die. Typically and conventionally, the bond pads, when used with a tin/lead solder, may be coated with a plurality of superimposed metal layers to enhance the bonding of the solder to the metal of the bond pad. Further, contact pads may be offset from the bond pads and connected thereto by circuit traces extending over the active surface so as to rearrange an input/output pattern of bond pads to a pattern more suitable for an array of conductive bumps. Semiconductor device 10 also includes a solder mask 16 comprised of dielectric material disposed over an active surface 13 of substrate 12. Solder mask 16 includes apertures 18 aligned substantially over contact pads 14. Conductive structures 24 are disposed in apertures 18 so as to communicate electrically with their corresponding contact pads 14 exposed to apertures 18. As used herein, the term "semiconductor die" encompasses partial and full wafers as well as other non-wafer based substrates, including by way of example only silicon on sapphire ("SOS"), silicon on glass ("SOG") and, in general, silicon on insulator ("SOI") substrates.

While semiconductor device 10 is depicted as including a semiconductor die, solder masks and conductive structures within the scope of the present invention may also be disposed on other types of substrates, such as printed circuit boards and other substrates with electrical circuitry and electrical contact pads thereon.

5 An exemplary method for fabricating semiconductor device 10 is illustrated in FIGs. 2-4B. FIG. 2 illustrates the alignment of a solder mask 16 with features on active surface 13 of substrate 12 and the disposal of solder mask 16 on active surface 13. Specifically, apertures 18 through solder mask 16 are substantially aligned with corresponding contact pads 14 on active surface 13. Thus, contact pads 14 are each exposed through their corresponding aperture 18.

10

As an example of the manner in which solder mask 16 may be disposed on active surface 13, a solder mask 16 comprising a film of a dielectric material with pre-formed apertures 18 therethrough may be aligned with the features of active surface 13, such as contact pads 14, and secured (e.g., by a pressure sensitive adhesive) to active surface 13.

15 Preferably, the material from which solder mask 16 is made is a non-conductive polymer, such as a polyimide, that withstands the temperatures of the molten conductive materials, such as solders (e.g., temperatures from about 190° C. to about 260° C.) or conductive elastomers, to be disposed within apertures 18 without undergoing substantial conformational changes and without substantially degrading. Alternatively, solder mask 16 can be made of other dielectric materials, such as silicon oxide, glass (e.g., BPSG, PSG, or BSG), or silicon nitride. Apertures 18 may be pre-formed through the film of dielectric material by known laser ablation or laser drilling processes, by known mask and etch processes, or by other known micron-scale and submicron-scale processes for patterning the particular dielectric material employed as solder mask 16.

20

25 Alternatively, a layer of photoimagable polymeric material, such as a photoimagable polyimide, may be disposed on active surface 13 by known processes, such as by spin-on techniques by curtain coating, by roller coating or by use of electrostatic spray. Solder mask 16 and the apertures 18 therethrough may then be formed from the layer of photoimagable material by known photoimaging processes, thereby substantially exposing contact pads 14 to apertures 18 and through solder

30

mask 16. Again, the photoimagable polymeric material preferably withstands the temperatures of molten conductive material (e.g., solders, metals, and metal alloys) to be disposed within apertures 18 without undergoing substantial conformational changes or substantial degradation.

5 As another alternative, solder mask 16 may be fabricated by disposing a layer of dielectric material, such as a nonphotoimagable polyimide, silicon oxide, glass, or silicon nitride, on active surface 13 of substrate 12 by known processes. For example, known spin-on techniques may be employed to form layers of polymeric material and glass on active surface 13. As another example, layers of polymeric material may also be
10 disposed on active surface 13, by curtain coating, by roller coating, by use of electrostatic spray, or by screen printing, which also patterns the layer of polymeric material substantially simultaneously with disposing the polymeric material on active surface 13. Known chemical vapor deposition (“CVD”) techniques may be employed to dispose a layer of silicon oxide, glass, or silicon nitride on active surface 13.

15 Apertures 18 may be formed through the dielectric material by known processes, such as by disposing a photomask over regions of the layer of dielectric material that are to remain on active surface 13 and by removing the dielectric material located above contact pads 14 through holes in the photomask. For example, known isotropic (e.g., wet chemical etching) and anisotropic, or dry, etch processes, such as barrel plasma etching (“BPE”) and reactive ion etching (“RIE”) processes may be employed to form
20 apertures 18 through a layer of polymeric material. Etching processes may likewise be used to form apertures 18 through silicon oxide, glass, and silicon nitride solder masks 16.

With reference to FIG. 3, a quantity of conductive material 22 is then disposed
25 within each aperture 18 of solder mask 16. Conductive material 22 may be disposed within apertures 18 in molten or liquid form, as a powder, or as a paste. If solder, such as a tin/lead solder, is employed as conductive material 22, known processes may be employed to apply flux and the solder to the exposed surface of solder mask 16 and to dispose the solder within apertures 18. For example, known wave solder processes or
30 solder ball disposition techniques may be employed to dispose the solder conductive

material 22 into apertures 18. While in apertures 18, conductive material 22 is liquified, which permits conductive material 22 to substantially fill each aperture 18. As the conductive material solidifies, it bonds to the portions of contact pads 14 exposed through apertures 18, forming conductive structures 24 that are electrically linked to each of the contact pads 14 exposed to apertures 18. The shape of each conductive structure 24 is determined by the shape of the aperture 18 in which conductive structure 24 was formed.

Alternatively, other types of conductive materials, such as z-axis and other conductive or conductor-filled elastomers, other metals, and metal alloys, may be similarly disposed within apertures 18 and in contact with contact pads 14 to form conductive structures 24. If a conductive elastomer is employed as the conductive material 22 used to form conductive structures 24, the conductive elastomer will preferably not adhere substantially to or diffuse substantially into adjacent regions of the material of solder mask 16.

Referring now to FIG. 4A, a method of exposing the sides, or peripheries, of conductive structures 24 is illustrated. Once conductive structures 24 have been formed on contact pads 14, solder mask 16 may be removed from active surface 13 of substrate 12. Solder mask 16 may be peeled from active surface 13, removed therefrom by use of a suitable solvent, such as antimony trichloride when solder mask 16 is fabricated from a polyimide material, or etched from active surface 13 by known processes. If an etchant is employed to remove solder mask 16, the etchant preferably removes the material of solder mask 16 with selectivity over conductive material 22 of conductive structures 24. If an elastomeric conductive material is employed to fabricate conductive structures 24, the technique by which solder mask 16 is removed from active surface 13 preferably does not substantially affect the configurations of the elastomeric conductive structures 24.

FIG. 4B illustrates a method of exposing the sides, or peripheries, of conductive structures 24 by reducing the thickness of solder mask 16 relative to the height of conductive structures 24. The thickness of solder mask 16 may be reduced by use of a suitable solvent or by etching the material of solder mask 16. If an etchant is employed

to reduce the thickness of solder mask 16, the etchant preferably removes the material of solder mask 16 with selectivity over conductive material 22 of conductive structures 24.

Alternatively, other means of reducing the thickness of solder mask 16 may also be employed, such as shrinking a polymeric solder mask 16 with an oxygen plasma, another type of plasma, with chemical shrinking agents, or by exposing solder mask 16 to radiation. An exemplary method of shrinking small spheres made of polystyrene, polydivinylbenzene, or polytoluene is disclosed in United States Patent 5,510,156, which issued to Zhao on April 23, 1996, the disclosure of which is hereby incorporated by this reference in its entirety. If an elastomeric material is employed to fabricate conductive structures 24, the technique by which the thickness of solder mask 16 is reduced preferably does not substantially affect the configurations of the elastomeric conductive structures 24.

Although FIGs. 2-4B illustrate substantially cylindrically configured conductive structures 24, conductive structures of other shapes are also within the scope of the present invention. FIGs. 5-8 illustrate some alternatively configured conductive structures that may be fabricated in accordance with the method of the present invention.

With reference to FIG. 5, a conductive structure 24' that tapers inward from the top portion thereof toward contact pad 14 is shown. Thus, the portion of conductive structure 24' adjacent to contact pad 14 is the narrowest portion of conductive structure 24'. The aperture 18 (*see* FIGs. 2-4B) within which conductive structure 24' is formed may be defined through solder mask 16 by known processes, such as isotropic etching processes, that will provide an aperture 18 having a configuration complementary to that of conductive structure 24'.

FIG. 6 illustrates a conductive structure 24" that tapers outward from the top portion thereof toward contact pad 14. As illustrated, the thickest portion of conductive structure 24" is adjacent to contact pad 14, while the narrowest portion of conductive structure 24" is the top thereof. The aperture 18 (*see* FIGs. 2-4B) within which conductive structure 24' is formed may be defined through solder mask 16 by known processes, such as isotropic etching processes, that will provide an aperture 18 having a configuration complementary to that of conductive structure 24'.

FIG. 7 illustrates a conductive structure 24" with an upper portion 24a" having a transverse cross section taken along the height of upper portion 24a" of substantially uniform configuration. A lower portion 24b" of conductive structure 24" is located between contact pad 14 and upper portion 24a". The transverse cross section taken along the height of lower portion 24b" also has a substantially uniform configuration. Lower portion has a smaller transverse cross section than upper portion 24a". The aperture 18 (see FIGs. 2-4B) within which conductive structure 24" is formed may be defined by disposing a photomask of the type disclosed in United States Patent 5,741,624, which issued to Jeng et al. on April 21, 1998, the disclosure of which is hereby incorporated in its entirety by this reference. Material of the solder mask 16 may then be removed by known etching process through holes in the photomask to define stepped apertures 18 over contact pads 14.

Turning to FIG. 8, another conductive structure 124 is illustrated. Conductive structure 124 has an outwardly curved center portion, which is thicker than the ends of conductive structure 124. Known processes, such as isotropic etching techniques, may be employed to form apertures 18 through solder mask 16 (see FIGs. 2-4B) within which conductive structure 124 may be formed.

Of course, solder masks 16 having different shapes of apertures 18, as well as solder masks 16 having apertures 18 with combinations of different shapes, are also within the scope of the present invention. Accordingly, the present invention also includes semiconductor devices with combinations of different shapes of conductive structures on the contact pads of the semiconductor devices.

FIG. 9 illustrates that the above-described processes may be employed to form conductive structures on substrates 12 (FIGs. 1-8), in this case semiconductor dice, before the semiconductor dice have been singulated from a semiconductor wafer 30. Accordingly, semiconductor wafers 30 including a plurality of unsingulated, conductively bumped substrates 12 are also within the scope of the present invention. Individual conductively bumped semiconductor devices 10 may subsequently be singulated from semiconductor wafer 30 by known singulation processes, such as by the use of a wafer saw 40.

Although the foregoing description contains many specifics and examples, these should not be construed as limiting the scope of the present invention, but merely as providing illustrations of some of the presently preferred embodiments. Similarly, other embodiments of the invention may be devised which do not depart from the spirit or scope of the present invention. The scope of this invention is, therefore, indicated and limited only by the appended claims and their legal equivalents, rather than by the foregoing description. All additions, deletions and modifications to the invention as disclosed herein and which fall within the meaning of the claims are to be embraced within their scope.

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
229
230
231
232
233
234
235
236
237
238
239
239
240
241
242
243
244
245
246
247
248
249
249
250
251
252
253
254
255
256
257
258
259
259
260
261
262
263
264
265
266
267
268
269
269
270
271
272
273
274
275
276
277
278
279
279
280
281
282
283
284
285
286
287
288
289
289
290
291
292
293
294
295
296
297
298
299
299
300
301
302
303
304
305
306
307
308
309
309
310
311
312
313
314
315
316
317
318
319
319
320
321
322
323
324
325
326
327
328
329
329
330
331
332
333
334
335
336
337
338
339
339
340
341
342
343
344
345
346
347
348
349
349
350
351
352
353
354
355
356
357
358
359
359
360
361
362
363
364
365
366
367
368
369
369
370
371
372
373
374
375
376
377
378
379
379
380
381
382
383
384
385
386
387
388
389
389
390
391
392
393
394
395
396
397
398
399
399
400
401
402
403
404
405
406
407
408
409
409
410
411
412
413
414
415
416
417
418
419
419
420
421
422
423
424
425
426
427
428
429
429
430
431
432
433
434
435
436
437
438
439
439
440
441
442
443
444
445
446
447
448
449
449
450
451
452
453
454
455
456
457
458
459
459
460
461
462
463
464
465
466
467
468
469
469
470
471
472
473
474
475
476
477
478
479
479
480
481
482
483
484
485
486
487
488
489
489
490
491
492
493
494
495
496
497
498
499
499
500
501
502
503
504
505
506
507
508
509
509
510
511
512
513
514
515
516
517
518
519
519
520
521
522
523
524
525
526
527
528
529
529
530
531
532
533
534
535
536
537
538
539
539
540
541
542
543
544
545
546
547
548
549
549
550
551
552
553
554
555
556
557
558
559
559
560
561
562
563
564
565
566
567
568
569
569
570
571
572
573
574
575
576
577
578
579
579
580
581
582
583
584
585
586
587
588
589
589
590
591
592
593
594
595
596
597
598
599
599
600
601
602
603
604
605
606
607
608
609
609
610
611
612
613
614
615
616
617
618
619
619
620
621
622
623
624
625
626
627
628
629
629
630
631
632
633
634
635
636
637
638
639
639
640
641
642
643
644
645
646
647
648
649
649
650
651
652
653
654
655
656
657
658
659
659
660
661
662
663
664
665
666
667
668
669
669
670
671
672
673
674
675
676
677
678
679
679
680
681
682
683
684
685
686
687
688
689
689
690
691
692
693
694
695
696
697
698
698
699
699
700
701
702
703
704
705
706
707
708
709
709
710
711
712
713
714
715
716
717
718
719
719
720
721
722
723
724
725
726
727
728
729
729
730
731
732
733
734
735
736
737
738
739
739
740
741
742
743
744
745
746
747
748
749
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
798
799
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
898
899
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
988
989
989
990
991
992
993
994
995
996
997
998
998
999
999
1000