Analyse Approfondie Chapitre 1: Les nombres réels

Table des matières

1. Introduction.	1
1.1. Minoration, Majoration	1
1.2. Supremum et infimum.	2
2. Fonctions dans \mathbb{R}	3
2.1. Valeur absolue.	3
2.2. Partie entière.	3
3. Irrationalitée	3

1. Introduction.

Définition 1.1: L'ensemble des nombres réels \mathbb{R} muni de l'addition et de la multiplication et de la relation d'ordre est caracterisé par

- 1. Sa commutativité,
- 2. Son ordre total,
- 3. \mathbb{R} est Dedekind complet.

Définition 1.2 (Dedekind-complet): On dit qu'un ensemble est Dedekind-complet si toute partie non vide de cet ensemble admet une borne supérieure.

1.1. Minoration, Majoration...

Définition 1.1.1 (Majorant): Soit $A \subset \mathbb{R}$, $M \in \mathbb{R}$. On dit que M est un majorant si $\forall x \in A, M \geq x$.

Définition 1.1.2 (Minorant): Soit $A\subset\mathbb{R},\ m\in\mathbb{R}.$ On dit que m est un minorant si $\forall x\in A, m\leq x.$ i.e

Définition 1.1.3 (Partie majorée): On dit qu'une partie de \mathbb{R} est majorée si elle admet un majorant. A est majorée $\Leftrightarrow \exists M \in \mathbb{R}, \forall x \in A, M \geq x$.

Définition 1.1.4 (Partie minorée): On dit qu'une partie de \mathbb{R} est minorée si elle admet un minorant. A est minorée $\Leftrightarrow \exists m \in \mathbb{R}, \forall x \in A, m \leq A$.

Définition 1.1.5 (Partie bornée): Soit $A \subset \mathbb{R}$, $R \in \mathbb{R}$. On dit que A est bornée si $\forall x \in A, -R \leq x \leq R$.

1.2. Supremum et infimum.

Définition 1.2.1 (Borne supérieure): Soit $A \subset \mathbb{R}$, $S \in \mathbb{R}$. On dit que S est la borne supérieure de A si S est le plus petit des majorants. On la note $S = \sup(A)$.

Proposition 1.2.1: Soit $A \subset \mathbb{R}$ et $S \in \mathbb{R}$ alors

$$S = \sup(A) \Leftrightarrow \begin{cases} \forall x \in A, x \leq S \\ \forall \varepsilon > 0, \exists x \in A, S - \varepsilon < x \leq S \end{cases}$$

Définition 1.2.2 (Borne inférieure): Soit $A \subset \mathbb{R}$, $I \in \mathbb{R}$. On dit que I est la borne supérieure de A si et seulement si I est le plus grand des minorants. On la note $I = \inf(A)$

Proposition 1.2.2: Soit $A \subset \mathbb{R}$ et $I \in \mathbb{R}$ alors

$$I = \inf(A) \Leftrightarrow \begin{cases} \forall x \in A, x \ge I \\ \forall \varepsilon > 0, \exists x \in A, I + \varepsilon > x \ge I \end{cases}$$

Proposition 1.2.3: Si une partie de \mathbb{R} admet une borne supérieure alors cette dernière est unique.

 $Dcute{e}$ monstration: Supposons que S_1 et S_2 soient deux bornes supérieures de A. Puisque S_1 est un majorant, $\forall x \in A, S_1 \geq x$. Or S_2 est le plus petit des majorants donc $S_2 \leq S_1$. De même, on a $S_1 \leq S_2$ donc par ordre total de \mathbb{R} , $S_1 = S_2$

Remarque: On note $\sup A=+\infty$ si A est une partie de $\mathbb R$ non-majorée. On note $\inf A=-\infty$ si A est une partie de $\mathbb R$ non-minorée.

Définition 1.2.3 (Intervalle): Une partie I de \mathbb{R} est un intervalle si

$$\forall x, z \in I, \forall y \in \mathbb{R}, x < y < z \Rightarrow y \in I$$

Théorème 1.2.1: \mathbb{R} est archimédien:

$$\forall \varepsilon > 0, \forall A > 0, \exists n \in \mathbb{N}, \varepsilon n > A.$$

 $\begin{array}{ll} \textit{D\'{e}monstration}\colon \text{ Soit } \ \varepsilon>0, A>0. \ \text{Supposons par l'absurde que } \ \forall n\in\mathbb{N}, n\varepsilon\leq A. \ \text{Alors } \\ E:=\{n\varepsilon\mid n\in\mathbb{N}\} \text{ est non-vide et major\'e}. \ \text{Ainsi}\ M:=\sup(E) \text{ existe. Puiseque } M-\varepsilon \text{ n'est pas un majorant de } E, \text{ il existe } n\in\mathbb{N} \text{ tel que } n\varepsilon>M-\varepsilon. \ \text{Ainsi}, \ (n+1)\varepsilon>M. \ \text{D'où une contradiction.} \end{array}$

2. Fonctions dans \mathbb{R} .

2.1. Valeur absolue.

Définition 2.1.1 (Valeur absolue): On définit la fonction valeur absolue par :

$$\text{abs } |\cdot|: \mathbb{R} \to \mathbb{R}; x \mapsto \begin{cases} x \text{ si } x \geq 0 \\ -x \text{ si } x \leq 0 \end{cases}$$

Proposition 2.1.1: Soit $x, y \in \mathbb{R}$,

- 1. $|x| = |y| \Leftrightarrow (x = y \text{ ou } x = -y)$
- 2. $|x+y| \le |x| + |y|$
- 3. $||x| |y|| \le |x y|$

Proposition 2.1.2: Soit $a, x \in \mathbb{R}$, alors:

- 1. Si $a \ge 0$, $|x| = a \Leftrightarrow (x = a \text{ ou } x = -a)$
- 2. $|x| \le a \Leftrightarrow -a \le x \le a$
- 3. $|x| < a \Leftrightarrow -a < x < a$
- 4. $|x| \ge a \Leftrightarrow (x \ge a \text{ ou } x \le -a)$
- 5. $|x| > a \Leftrightarrow (x > a \text{ ou } x \leftarrow a)$

2.2. Partie entière.

Théorème 2.2.1: Pour tout $x \in \mathbb{R}$, il existe un unique $n \in \mathbb{Z}$ tel que $n \le x < n+1$ On dit que n est la partie entière de x, que l'on note $\lfloor x \rfloor$

Corollaire 2.2.1.1:
$$\forall x \in \mathbb{R}, \lfloor x \rfloor \leq x < \lfloor x \rfloor + 1$$
 $\forall x \in \mathbb{R}, x - 1 < \lfloor x \rfloor \leq x$

3. Irrationalitée

Théorème 3.1: $\sqrt{2} \notin \mathbb{Q}$

Démonstration: Supposons par l'absurde $\sqrt{2} \in \mathbb{Q}$. Alors il existe $a,b \in \mathbb{Z}$ tq $\sqrt{2} = \frac{a}{b} \Leftrightarrow b\sqrt{2} = a \Leftrightarrow 2b^2 = a^2$. Donc 2 apparait un nombre de fois impair dans la décomposition en facteur premier à gauche de l'équation et un nombre de fois pair à droite de l'équation. Or d'parès le théorème fondamental de l'arithmetique, la décomposition en facteur premier est unique. On obtient donc une contradiction. Ainsi, $\sqrt{2} \in \mathbb{R} \setminus \mathbb{Q}$.

3

Théorème 3.2: \mathbb{Q} est dense dans \mathbb{R} i.e $\forall x, y \in \mathbb{R}, x < y \Rightarrow \exists q \in \mathbb{Q}, x < q < y$.

Démonstration: Soit $x, y \in \mathbb{R}$ tels que x < y. Posons $\varepsilon := y - x > 0$.

Comme \mathbb{R} est archimédien, il existe $n \in \mathbb{N} \setminus \{0\}$ tel que $n\varepsilon > 1$, c'est-à-dire $\frac{1}{n} < \varepsilon$.

Posons m := |nx| + 1.

Alors $nx < m \le nx + 1 \Rightarrow x < \frac{m}{n} \le x + \frac{1}{n} < x + \varepsilon = y$.

Ainsi, $q = \frac{m}{n} \in \mathbb{Q}$ vérifie x < q < y

Théorème 3.3: $\mathbb{R} \setminus \mathbb{Q}$ est dense dans \mathbb{R} . $\Leftrightarrow \exists x, y \in \mathbb{R}, x < y \Rightarrow \exists z \in \mathbb{R} \setminus \mathbb{Q}, x < z < y$.

Démonstration: Soit $x, y \in \mathbb{R}, x < y$.

D'après la diapositive précédente, il existe

 $q \in \mathbb{Q}, x < q < y$. De même, il existe $p \in \mathbb{Q}, x . Ainsi, on a <math>x .$

Posons $s := p + \frac{\sqrt{2}}{2}(p - q)$.

Alors s in $\mathbb{R} \setminus \mathbb{Q}$, sinon on a urait $\sqrt{2} = 2 \frac{s-p}{q-p} \in \mathbb{Q}$. De plus p < s < q puis que $0 < \frac{\sqrt{2}}{2} < 1$. On a bien construit $s \in \mathbb{R} \setminus \mathbb{Q}$ vérifiant x < s < y. \square

Chapitre 2: Continuité uniforme:

Définition 3.1 (Continuité): Soit $f: D \to \mathbb{R}$ une fonction définie sur $D \subset \mathbb{R}$. On dit que f est continue si $\forall x_1 \in D, \forall \varepsilon > 0, \exists \eta > 0, \forall x_2 \in D, |x_1 - x_2| < \eta \Rightarrow |f(x_1) - f(x_2)| < \varepsilon$

Définition 3.2 (Continuité uniforme): Soit $f: D \to \mathbb{R}$ fonction dé- $D \subset \mathbb{R}$. On dit que f est uniformément continue $\forall \varepsilon>0, \exists \eta>0, \forall x_1,x_2\in D, |x_1-x_2|<\eta \Rightarrow |f(x_1)-f(x_2)|<\varepsilon.$

 $\it Remarque$: Le quantificateur universel sur x_1 est positionné différemment dans les deux définitions. Ainsi:

- 1. La continuité est une notion locale puisque η depend de epsilon et de x_1 .
- 2. La continuité uniforme est une notion globale pusique η doit être choisit indépendamment de x_1 et dépendre seulement de ε (η dépend du comportement de f sur tout son domaine).

Définition 3.3 (k-lipschitzienne): Une fonction $f: I \to \mathbb{R}$ est dite k-lipschitzienne s'il existe k > 0 tel que

$$\forall x_1, x_2 \in I, |f(x_1) - f(x_2)| \le k|x_1 - x_2|$$

Proposition 3.1: Soit $f: I \to \mathbb{R}$ une fonction k lipschitzienne. Alors f est uniformément continue.

 $\begin{array}{l} \textit{D\'{e}monstration} \colon \text{Soit } f: I \to \mathbb{R} \text{ une fonction } k \text{ lipschitzienne. Soit } \varepsilon > 0. \text{ Posons } \eta = \frac{\varepsilon}{k}. \\ \text{On a } |x_1 - x_2| \le \eta \Rightarrow |f(x_1) - f(x_2)| \le k|x_1 - x_2| \le k\eta = \varepsilon. \text{ Ainsi, } f \text{ est uniform\'{e}ment continue.} \end{array}$

Proposition 3.2: Soit $f: I \to \mathbb{R}$ une fonction dérivable sur un intervalle I. Si f' est bornée alors f est uniformément continue.

Démonstration: Soit $f:I\to\mathbb{R}$ une fonction continue et dérivable, $M\in\mathbb{R}$ tel quel $\forall x\in I, f'(x)\leq M$

On a f continue sur I un segment, et f dérivable sur I ouvert. Donc d'apres le théorème d'inégalité des accroissements finis, on a $\forall x_1,x_2\in\mathbb{R}, |f(x_1)-f(x_2)|\leq M(x_1-x_2)$. Posons $\eta=\frac{\varepsilon}{M}$. On a

$$|f(x_1) - f(x_2)| \le M|x_1 - x_2| \le M\eta = \varepsilon$$

donc f est uniformément continue.

Proposition 3.3: Soit $f: \mathbb{R}_+ \to \mathbb{R}$. Si f est uniformément continue, il existe $a, b \in \mathbb{R}$ tel que pour tout $x \in \mathbb{R}_+$, $f(x) \leq ax + b$

Proposition 3.4: Soit $f: \mathbb{R}_+ \to \mathbb{R}$ une fonction continue. Si $\lim_{x \to +\infty} \frac{f(x)}{x} = l \in \mathbb{R}$, f est uniformément continue.

Théorème 3.4 (de Heine): Soit $f:[a,b]\to\mathbb{R}$ une fonction continue. Alors elle est uniformément continue.