

S1 Teknik Telekomunikasi Fakultas Teknik Elektro Universitas Telkom

TTH3A4 - Sistem Komunikasi

Modulasi Digital: ASK dan PSK

Tujuan Pembelajaran

- Mengetahui konsep dan jenis-jenis modulasi digital
- Mengetahui konsep bit, simbol, BER, SER, bandwidth dan hubungannya dengan jenis modulasi
- Mengetahui prinsip modulasi & demodulasi M-ASK dan menghitung probabilitas error
- Mengetahui prinsip modulasi & demodulasi M-PSK dan menghitung probabilitas error

Outline

- Block Sistem Komunikasi Digital
- · Definisi, Jenis dan Pertimbangan Pemilihan Modulasi
- Konsep Probabilitas Error
- Phase Shift Keying
 - BPSK
 - QPSK
- Amplitude Shift Keying

Konsep Modulasi

Modulasi

Modulasi:

Proses penumpangan sinyal informasi pada sinyal carrier

Tujuan Modulasi:

- Menyesuaikan sinyal dengan media transmisi
 - contoh : sinyal diubah jadi Cahaya untuk media transmisi Fiber Optik, sinyal diubah menjadi gelombang elektromagnetik untuk radio dan satelit
- Proses translasi sinyal baseband ke sinyal bandpass (sinyal termodulasi) → memisahkan sinyal yang berbeda, misal 2 stasiun radio

Demodulasi:

Merupakan kebalikan proses modulasi untuk mendapatkan kembali sinyal informasi yang ditumpangkan

Jenis Modulasi

Pada gelombang radio modulasi dapat dilakukan dengan mengubah sifat sinyal carrier:

Amplituda, frekuensi, phasa

Modulasi Analog:

- AM (Amplitude Modulation)
- PM (Phase Moduation)
- FM (Frequency Modulation)

Modulasi Digital:

- ASK (Amplitude Shift Keying)
- PSK (Phase Shift Keying)
- FSK (Frequency Shift Keying)
- QAM (Quadrature Amplitude Modulation)

Carrier: $c(t) = A\cos(2\pi f_c t + \theta)$

Amplitude

Frequency

Phase

Modulasi Digital

 Modulasi digital adalah modulasi di mana sinyal informasi yang akan dimodulasi adalah sinyal digital yang berbentuk bit 1 dan 0

- Bit 1 dan 0 ini akan diubah menjadi symbol dalam proses modulasi
- Bit rate: kecepatan data (bit) sebelum masuk modulator
- symbol rate: kecepatan symbol keluaran modulator
- Satu symbol bisa mewakili lebih dari 1 bit

Modulasi Digital

- Jika terdapat 2 symbol di sebut binary (BASK, BPSK, BFSK)
 - 1 symbol mewakili 1 bit
- Jika terdapat 4 symbol: 4ASK, 4FSK, 4PSK
 - 1 symbol mewakili 2 bit
 - → 4PSK jika perbedaan sudut fasanya masing-masing adalah 90°, disebut QPSK (Quadrature Phase Shift Keying)
- Jika terdapat 8 symbol: 8 ASK, 8FSK, 8PSK
 - 1 symbol mewakili 3 bit
- Dst

simbol	bit
S1	0
S2	1

Simbol	bit
S1	00
S2	01
S3	10
s4	11

Simbol	Bit	Simbol	Bit
S1	000	S5	100
S2	001	S6	101
S3	010	S7	110
S4	011	S8	111

Bit Rate vs Simbol Rate

1. Suatu system menggunakan modulasi QPSK. Jika bit rate sebelum modulator adalah 1 Mbps, berapakah symbol rate keluaran modulator?

Jawab:

Pada QPSK 1 symbol mewakili 2 bit, maka jika terdapat 1 juta bit bit per detik (1 Mbps), maka jumlah symbol perdetik adalah 1 juta/2 = 500.000 symbol per detik (500 ksps)

2. Jika system menggunakan modulasi 16QAM dan bit rate sebelum modulator adalah 4 Mbps, berapakah symbol rate keluaran modulator?

Jawab:

Modulasi 16 QAM berarti terdapat 16 symbol, sehingga setiap symbol bisa mewakili 4 bit. Jika terdapat 4 juta bit bit per detik (4 Mbps), maka jumlah symbol perdetik adalah 4 juta/4 = 1.000.000 symbol per detik (1 Msps)

Bandwidth Sinyal Termodulasi

1. The Raised cosine filter:

Ketidakidealan filter menyebabkan pelebaran bandwidth yang disebut roll off factor

Baseband
$$W_{\text{sSB}} = (1+r)\frac{R_s}{2}$$

Passband
$$W_{DSB} = (1+r)R_s$$

Bandwidth Sinyal Termodulasi

- Bandwidth sinyal termodulasi tergantung symbol rate
- · Contoh:

Passband	$W_{\rm DSB} = (1+r)R_{\rm s}$
----------	--------------------------------

Bit Rate (Rb)	Modulasi	Simbol Rate (Rs)	BW (asumsi roll off Factor =0)
1 Mbps	BPSK	1 Msps	1 Mhz
1 Mbps	QPSK	500 ksps	500 kHz
1 Mbps	16 PSK	250 ksps	250 kHz

- Semakin tinggi level modulasi, semakin kecil bandwidth yang dibutuhkan
- Semakin tinggi level modulasi, semakin kecil jarak antar symbol untuk daya yang sama
 → Probabilitas error semakin besar
- Trade off antara bandwidth dan probabilitas error

Pertimbangan Pemilihan Jenis Modulasi

- Kehandalan/ probabilitas error
- Bit rate yang tinggi
- Efisiensi Spektral
- Efisiensi daya
- Biaya implementasi yang rendah

Amplitude Shift Keying (ASK)

Definisi dan Persamaan ASK

 ASK, merupakan modulasi digital yang merepresentasikan suatu set sinyal atau simbol dengan variasi nilai amplitude dari sinyal carriernya.

Jumlah simbol	Modulasi	Bit per simbol
2	BASK	1
4	4ASK	2
8	8ASK	3
16	16ASK	4

Persamaan Umum

$$s_i(t) = \sqrt{\frac{2E_i}{T}} \cos(\omega_c t + \phi)$$

$$\sqrt{E_i}$$
 Adalah nilai amplituda yang merupakan variabel

• Persamaan Menggunakan fungsi basis ψ_1

$$s_i(t) = a_i \psi_1(t) \quad i = 1, ..., M$$

$$\psi_1(t) = \sqrt{\frac{2}{T}} \cos(\omega_c t + \phi)$$

$$a_i = \sqrt{E_i}$$

Binary Amplitude Shift Keying (BASK)

• 2 symbol. Satu symbol mewakili satu bit

Simbol	bit	Amplituda
s1	1	A1
s2	0	A2

$$s_i(t) = \sqrt{\frac{2E_i}{T}} \cos(\omega_c t + \phi)$$

Gambar Sinyal, Amplituda A1 dan A2

Diagram konstelasi

On-Off Keying: Jika salah satu amplitudanya 0

4 Amplitude Shift Keying (4ASK)

4 symbol. Satu symbol mewakili 2 bit

Simbol	Bit	Amplituda
S1	00	25%
S2	01	50%
S3	10	75%
S4	11	100%

Gambar Sinyal

Diagram konstelasi

Pulse Amplitude modulation (M-PAM)

 Modulasi yang mirip dengan ASK, satu dimensi, tetapi fasanya 0 dan 180° dengan amplitude yang sama.

$$s_i(t) = a_i \sqrt{\frac{2}{T}} \cos(\omega_c t)$$

$$s_{i}(t) = a_{i}\psi_{1}(t) \quad i = 1, ..., M$$

$$\psi_{1}(t) = \sqrt{\frac{2}{T}}\cos(\omega_{c}t)$$

$$a_{i} = (2i - 1 - M)\sqrt{E_{g}}$$

$$E_{i} = \|\mathbf{s}_{i}\|^{2} = E_{g}(2i - 1 - M)^{2}$$

$$E_{s} = \frac{(M^{2} - 1)}{3}E_{g}$$

[Sorour Falahati, "Modulation, Demodulation and Coding Course,2005]

"00"	"01"	"11"	"10"
\mathbf{S}_1	\mathbf{S}_2	\mathbf{S}_3	\mathbf{S}_{4}
$-3\sqrt{E_g}$	$-\sqrt{E_g}$	$\sqrt{E_g}$	$3\sqrt{E_g}$

Simbol	Bit	Amplituda
S1	00	$-3\sqrt{E_g}$
S2	01	$-\sqrt{E_g}$
S3	11	$\sqrt{E_g}$
S4	10	$3\sqrt{E_g}$

- Eg=Energi symbol minimum
- Es = Energi rata-rata simbol.
- M = jumlah simbol

Coherent Detection ASK/ PAM

4-ASK:

Jika Probabilitas kemunculan masingmasing simbol sama atau equiprobable maka threshold berada pada titik tengah antar 2 simbol

Error terjadi jika amplitude noise, $n_1 = r_1 - \mathbf{s}_m$, melebihi setengah jarak symbol yang berdekatan. Untuk symbol yang berada di tepi, error hanya terjadi hanya pada satu arah.

Probabilitas Error M-PAM

• Error terjadi jika noise, $n_1 = r_1 - s_m$ melebihi setengah jarak dari symbol yang berdekatan. Untuk symbol yang di tepi, error terjadi hanya satu arah.

$$P_{e}(\mathbf{s}_{m}) = \Pr\left(|n_{1}| = |r_{1} - \mathbf{s}_{m}| > \sqrt{E_{0}}\right) \text{ for } 1 < m < M;$$

$$P_{e}(\mathbf{s}_{1}) = \Pr\left(n_{1} = r_{1} - \mathbf{s}_{1} > \sqrt{E_{0}}\right) \text{ and } P_{e}(\mathbf{s}_{M}) = \Pr\left(n_{1} = r_{1} - \mathbf{s}_{M} < -\sqrt{E_{0}}\right)$$

$$P_{E}(M) = \frac{1}{M} \sum_{m=1}^{M} P_{e}(\mathbf{s}_{m}) = \frac{M-2}{M} \Pr(|n_{1}| > \sqrt{E_{0}}) + \frac{1}{M} \Pr(|n_{1}| > \sqrt{E_{0}}) + \frac{1}{M} \Pr(|n_{1}| < -\sqrt{E_{0}})$$

$$= \frac{2(M-1)}{M} \Pr(|n_{1}| > \sqrt{E_{0}}) = \frac{2(M-1)}{M} \int_{\sqrt{E_{0}}}^{\infty} p_{n_{1}}(n) dn = \frac{2(M-1)}{M} Q\left(\sqrt{\frac{2E_{0}}{N_{0}}}\right)$$

$$E_s = (\log_2 M)E_b = \frac{(M^2 - 1)}{3}E_0$$

$$P_{E}(M) = \frac{2(M-1)}{M} Q \left(\sqrt{\frac{6\log_{2}M}{M^{2}-1} \frac{E_{b}}{N_{0}}} \right)$$

Gaussian pdf with zero mean and variance_{V₀/2}

$$P_{E}(M) = \frac{2(M-1)}{M} Q \left(\sqrt{\frac{6(M^{2}-1)}{3(M^{2}-1)}} \frac{E_{0}}{N_{0}} \right) = 2 \left(1 - \frac{1}{M} \right) Q \left(\sqrt{\frac{2E_{0}}{N_{0}}} \right)$$

Catatan ASK

- Binary ASK adalah salah satu bentuk awal modulasi digital yang digunakan dalam radio telegraph.
- ASK Sangat terpengaruh oleh Noise AWGN karena informasi dalam bentuk perbedaan amplitude. Noise AWGN bersifat additive, sehingga sangat mempengaruhi amplitude sinyal
- ASK sudah jarang digunakan dalam system komunikasi digital

Phase Shift Keying

Pada PSK, symbol satu dan yang lain dibedakan berdasarkan fasanya.

Jumlah simbol	Modulasi	Beda fasa (derajat)
2	BPSK	180
4	QPSK	90
8	8PSK	45
16	16PSK	22.5

Persamaan Umum

$$s_i(t) = \sqrt{\frac{2E_s}{T}} \cos\left(\omega_c t + \frac{2\pi i}{M}\right)$$

M adalah jumlah simbol

$$i = 0,1,2,...,M-1$$

• Persamaan Menggunakan fungsi basis ψ_1 dan ψ_2

$$s_{i}(t) = a_{i1}\psi_{1}(t) + a_{i2}\psi_{2}(t) \quad i = 1, ..., M$$

$$\psi_{1}(t) = \sqrt{\frac{2}{T}}\cos(\omega_{c}t) \quad \psi_{2}(t) = -\sqrt{\frac{2}{T}}\sin(\omega_{c}t)$$

$$a_{i1} = \sqrt{E_{s}}\cos\left(\frac{2\pi i}{M}\right) \quad a_{i2} = \sqrt{E_{s}}\sin\left(\frac{2\pi i}{M}\right)$$

$$E_{s} = E_{i} = \|\mathbf{s}_{i}\|^{2}$$

Diagram Konstelasi Modulasi PSK

- Diagram konstelasi menggambarkan magnitude (panjang vector) dan fasa (besar sudut)
- Satu lingkaran menyatakan besar fasa 360°, dimulai dari sudut fasa 0° pada sumbu horizontal positif
- Pada Modulasi PSK, magnitude dari tiap symbol sama, fasanya yang berbeda-beda
- Tiap symbol akan merepresentasikan bit-bit informasi
- Jarak antar symbol (eucledian distance) menentukan probabilitas error, semakin dekat jaraknya semakin tinggi probabilitas error

BPSK

QPSK

8PSK

Spektral Daya Modulasi PSK

Diagram konstelasi menggambarkan magnitude (panjang vector) dan fasa (besar sudut)

$$B = \frac{2}{T} \tag{7.135}$$

where T is the symbol duration. But the symbol duration T is related to the bit duration T_b by (7.133). Moreover, the bit rate $R_b = 1/T_b$. Hence, we may redefine the channel bandwidth of (7.135) in terms of the bit rate as

$$B = \frac{2R_{\rm b}}{\log_2 M} \tag{7.136}$$

 $T = T_{\rm h} \log_2 M$

Binary Phase Shift Keying (BPSK)

- Sinyal binary "1" dan "0" direpresentasikan dengan simbol s₁(t) dan s₂(t).
- Jarak fasa antar kedua symbol adalah180 derajat (diambil jarak terjauh agar probabilitas error kecil)
- Probabilitas error kecil karena jarak antar symbol besar tetapi bandwidth tidak efisien (1 symbol mewakili 1 bit)
- Sederhana utk diimplementasikan

Persamaan BPSK

- Berdasar persamaan umum : $s_i(t) = \sqrt{\frac{2E_s}{T}} \cos\left(\omega_c t + \frac{2\pi i}{M}\right)$
- Maka persamaan untuk symbol BPSK:

$$s_0(t) = \sqrt{\frac{2E_s}{T}} \cos\left(\omega_c t + \frac{2\pi 0}{2}\right) = \sqrt{\frac{2E_s}{T}} \cos(\omega_c t)$$

$$s_1(t) = \sqrt{\frac{2E_s}{T}} \cos\left(\omega_c t + \frac{2\pi 1}{2}\right) = \sqrt{\frac{2E_s}{T}} \cos(\omega_c t + \pi)$$

Gambar sinyal

- Es = Energi per simbol
- T = Periode symbol
- M = jumlah simbol
- П radian = 180°

Persamaan BPSK

• Jika dinyatakan dengan fungsi basis: $\psi_1(t)$

$$\psi_1(t) = \sqrt{\frac{2}{T}} \cos(\omega_c t)$$

Maka persamaan untuk symbol BPSK :

$$s_0(t) = \sqrt{E_s} \psi_1(t)$$
$$s_1(t) = -\sqrt{E_s} \psi_1(t)$$

• Diagram Konstelasi:

Probabilitas Error BPSK

Dari diagram konstelasi

- Jarak antar symbol $\|\mathbf{s}_1 \mathbf{s}_2\| = 2\sqrt{E_s}$
- Sehingga untuk p(s1) = p(s2)

$$P_e = P_e(s_1) = P_e(s_2) = Q\left(\frac{\|\mathbf{s}_1 - \mathbf{s}_2\|/2}{\sqrt{N_0/2}}\right)$$

• Pada BPSK
$$E_s = E_b$$
, maka

$$BER = Q\left(\sqrt{\frac{2E_b}{N_0}}\right)$$

$$P_e(BPSK) = Q\left(\frac{2\sqrt{E_s}/2}{\sqrt{N_0/2}}\right) = Q\left(\frac{\sqrt{E_s}}{\sqrt{N_0/2}}\right) = Q\left(\sqrt{\frac{2E_s}{N_0}}\right)$$

Modulator & Demodulator BPSK

Modulator BPSK ditunjukkan pada gambar berikut:

Bandwidth BPSK

Gambar spectral frekuensi dan Bandwidth sinyal BPSK adalah sbb:

$$BW_{BPSK} = 2BW_{baseband} = \frac{2R_s}{2}$$

Karena pada BPSK rate symbol sama dengan rate bit maka

$$BW_{BPSK} = \frac{2R_b}{2} = R_b$$

- Teknik modulasi multilevel : 4 symbol → 2 bit per symbol
- · Lebih efisien spektrum, lebih kompleks receiver.
- Dua kali lebih efisien bandwidth daripada BPSK

Persamaan QPSK

- Berdasar persamaan umum : $s_i(t) = \sqrt{\frac{2E_s}{T}} \cos\left(\omega_c t + \frac{(2i-1)\pi}{M}\right)$
- (perhatikan terdapat sedikit modifikasi pada persamaan umum pada bagian fasa. Ini akan menentukan besar sudut)
- Maka persamaan untuk symbol QPSK

$$s_1(t) = \sqrt{\frac{2E_s}{T}} \cos\left(\omega_c t + \frac{\pi}{4}\right) = \sqrt{\frac{2E_s}{T}} \cos\left(\omega_c t + 45^o\right)$$

$$s_2(t) = \sqrt{\frac{2E_s}{T}} \cos\left(\omega_c t + \frac{3\pi}{4}\right) = \sqrt{\frac{2E_s}{T}} \cos\left(\omega_c t + 135^o\right)$$

$$s_3(t) = \sqrt{\frac{2E_s}{T}} \cos\left(\omega_c t + \frac{5\pi}{4}\right) = \sqrt{\frac{2E_s}{T}} \cos\left(\omega_c t + 225^o\right)$$

$$s_3(t) = \sqrt{\frac{2E_s}{T}} \cos\left(\omega_c t + \frac{7\pi}{4}\right) = \sqrt{\frac{2E_s}{T}} \cos\left(\omega_c t + 315^o\right)$$

Persamaan QPSK

Apabila persamaan QPSK dijabarkan, maka kan menjadi :

$$s_i(t) = \sqrt{\frac{2E_s}{T}} \cos\left(\frac{(2i-1)\pi}{4}\right) \cos(\omega_c t) - \sqrt{\frac{2E_s}{T}} \sin\left(\frac{(2i-1)\pi}{4}\right) \sin(\omega_c t)$$

Jika dinyatakan dengan fungsi basis:

$$\psi_1(t) = \sqrt{\frac{2}{T}}\cos(\omega_c t)$$

$$\psi_2(t) = \sqrt{\frac{2}{T}}\sin(\omega_c t)$$

Maka persamaan untuk symbol QPSK:

$$s_i(t) = \sqrt{E_s} \cos\left(\frac{(2i-1)\pi}{4}\right) \psi_1(t) - \sqrt{E_s} \sin\left(\frac{(2i-1)\pi}{4}\right) \psi_2(t)$$

Diagram Konstelasi :

Perbandingan bandwidth BPSK dan QPSK

Bandwidth

 Perbandingan Rate simbol BPSK dan QPSK

$$R_{BPSK} = R_b = R_s$$
$$R_{OPSK} = R_b = 2R_s$$

 Bandwidth QPSK dinyatakan dengan:

$$BW_{QPSK} = 2BW_{baseband} = \frac{2R_s}{2} = \frac{R_b}{2}$$

Modulator & Demodulator QPSK

Modulator dan demodulator QPSK ditunjukkan pada gambar berikut:

Detektor QPSK

Probabilitas Error QPSK

Probabilitas error pada QPSK dapat didekati dengan memandangnya sebagai 2 penerima BPSK di mana kanal inphase dan quadrature saling independent (orthogonal).

Dua penerima BPSK tersebut mempunyai karakteristik sebagai berikut :

- Energi sinyal per bit = Es/2
- Rapat spectral Noise = No/2

Maka probabilitas error tiap kanal menggunakan probabilitas BPSK

$$P_e(BPSK) = Q\left(\sqrt{\frac{2E_b}{N_0}}\right) \qquad P_e' = Q\left(\sqrt{\frac{E_s}{N_0}}\right)$$

Sehingga probabilitas benar simbol QPSK:

$$P_c = \left(1 - p_a\right)^2$$

$$P_{e}(QPSK) = 1 - P_{c} = 1 - \left(1 - Q\left(\sqrt{\frac{E_{s}}{N_{0}}}\right)\right)^{2} = 2Q\left(\sqrt{\frac{E_{s}}{N_{0}}}\right) + Q^{2}\left(\sqrt{\frac{E_{s}}{N_{0}}}\right)$$

Untuk Es/No>>1, maka suku kuadrat bisa diabaikan, sehingga probabilitas error QPSK menjadi

$$P_e(QPSK) \approx 2Q\left(\sqrt{\frac{E_s}{N_0}}\right) = 2Q\left(\sqrt{\frac{2E_b}{N_0}}\right)$$

Probabilitas Error QPSK

Jika dihitung berdasarkan diagram konstelasi dan rumus :

$$P_e = P_e(s_1) = P_e(s_2) = Q\left(\frac{\|\mathbf{s}_1 - \mathbf{s}_2\|/2}{\sqrt{N_0/2}}\right)$$

Jarak antar $\|\mathbf{s}_1 - \mathbf{s}_2\| = \sqrt{2E_s}$ $\|\mathbf{s}_1 - \mathbf{s}_4\| = \sqrt{2E_s}$ $\|\mathbf{s}_1 - \mathbf{s}_3\| = 2\sqrt{E_s}$ symbol

$$\|\mathbf{s}_1 - \mathbf{s}_4\| = \sqrt{2E_s} \qquad \|\mathbf{s}_1 - \mathbf{s}_4\|$$

$$\|\mathbf{s}_1 - \mathbf{s}_3\| = 2\sqrt{E_s}$$

Sehingga untuk p(s1) = p(s2) = p(s3) = p(s4)

Dengan menggunakan kode grey, BER = $\frac{1}{2}$ x SER

$$P_e(QPSK) = P_e(s_2 | s_1) + P_e(s_4 | s_1) + P_e(s_3 | s_1)$$

$$P_{e}(QPSK) = Q\left(\frac{\sqrt{2E_{s}}/2}{\sqrt{N_{0}/2}}\right) + Q\left(\frac{\sqrt{2E_{s}}/2}{\sqrt{N_{0}/2}}\right) + Q\left(\frac{2\sqrt{E_{s}}/2}{\sqrt{N_{0}/2}}\right)$$

$$P_e(QPSK) = Q\left(\sqrt{\frac{E_s}{N_0}}\right) + Q\left(\sqrt{\frac{E_s}{N_0}}\right) + Q\left(\sqrt{\frac{2E_s}{N_0}}\right) = 2Q\left(\sqrt{\frac{E_s}{N_0}}\right) + Q\left(\sqrt{\frac{2E_s}{N_0}}\right)$$

$$BER = Q\left(\sqrt{\frac{E_s}{N_0}}\right) = Q\left(\sqrt{\frac{2E_b}{N_0}}\right)$$

BER pada QPSK sama dengan BPSK, tetapi SER berbeda

$$P_e(QPSK) \approx 2Q\left(\sqrt{\frac{E_s}{N_0}}\right)$$

Dengan mengabaikan Pe(s3|s1)

Sesuai dengan persamaan umum PSK:

$$s_i(t) = \sqrt{\frac{2E_s}{T}} \cos\left(\omega_c t + \frac{2\pi}{M}(i-1)\right) \qquad i = 1, 2, ..., M$$

- Selain BPSK dan QPSK juga bisa dikembangkan menjadi 8PSK, 16PSK, dst.
- Untuk 8PSK:

$$P_e = P_e(s_2 \mid s_1) + P_e(s_3 \mid s_1) + P_e(s_4 \mid s_1) + P_e(s_5 \mid s_1) + P_e(s_6 \mid s_1) + P_e(s_7 \mid s_1) + P_e(s_8 \mid s_1)$$

 Pe(s₂|s₁) = probabilitas error jika dikirim s1 dan diterima sebagai s2

Struktur Penerima M-PSK

Demodulasi: sinyal terima diubah ke dalam sinyal baseband, difilter, dan di-sampling

Tipe Demodulasi: koheren dan non koherent

Deteksi: melakukan proses deteksi dengan menggunakan Detektor ML

[Sorour Falahati, "Modulation, Demodulation and Coding Course, 2005]

Probabilitas Error M - PSK

 Jarak antar symbol 1 dengan symbol 2 dan symbol 1 dengan symbol 8 adalah jarak yang terdekat dan memberikan probabilitas error paling besar

$$d_{12} = d_{18} = 2\sqrt{E_s} \sin\left(\frac{\pi}{M}\right)$$

 Dengan hanya memperhitungkan Pe(s2|s1) dan Pe(s8|s1) dan mengabaikan probabilitas error untuk symbol yang lain, maka probabiltas error untuk M-PSK secara umum adalah :

$$P_e = 2Q \left(\sqrt{\frac{2E_s}{N_0}} \sin \left(\frac{\pi}{M} \right) \right)$$

Terima kasih dan selamat belajar.