

www.utm.my

Machine Learning

Artificial Intelligence

School of Computing Universiti Teknologi Malaysia

www.utm.my

Machine Learning

How do we teach a machine to learn?

Content

- Machine learning process
- From data to features
- Learning types
 - Supervised learning
 - Unsupervised learning
 - Reinforcement learning
- Machine learning techniques
 - Clustering, classification, regression
- Evaluation metrics
- Computational intelligence

www.utm.my

Machine Learning

Learning Process

Machine Learning Process

www.utm.my

What is Machine Learning?

Computational learning using algorithms to learn from and make predictions on data.

How machine learns?

- Machine learning utilizes techniques of understanding patterns from input data
- Data is used for training by learning algorithm to learn and develop a specific computational model
- Pre-processing involves extracting important features of data
- Model refers to predefined prototype problem solver, produced based on patterns of input data

www.utm.my

Machine Learning

From Data to Features

Some real data

www.utm.my

- In the 1920's, botanists collected measurements on the
 - 1) sepal length
 - 2) sepal width
 - 3) petal length
 - 4) petal width

of 150 iris, 50 from each of three species (setosa, versicolor, virginica)
The measurements became known as **Fisher's iris data**

Iris data

https://www.kaggle.com/arshid/iris-flower-dataset

www.utm.my

About this file

The dataset is a CSV file which contains a set of 150 records under 5 attributes -Petal Length, Petal Width, Sepal Length, Sepal width and Class(Species)

Columns

- sepal length
- sepal width
- petal length
- petal width
- A species

Data to Features

- Collection of data observations and their attributes/features
- Attribute is the properties or characteristics of the data object
- Attribute is aka feature / field / characteristic / variable

# sepal_length 🖃	# sepal_width <u></u>	# petal_length =	# petal_width =	▲ species =
5.1	3.5	1.4	0.2	Iris-setosa
4.9	3	1.4	0.2	Iris-setosa
4.7	3.2	1.3	0.2	Iris-setosa
4.6	3.1	1.5	0.2	Iris-setosa
5	3.6	1.4	0.2	Iris-setosa
5.4	3.9	1.7	0.4	Iris-setosa
4.6	3.4	1.4	0.3	Iris-setosa
5	3.4	1.5	0.2	Iris-setosa
Observation/instances/examples/samples/objects/records				Iris- Class

Features can be from many forms of data; images, audio or text

UTM Real world example: Steps of ML in digital pathological image analysis

www.utm.my

Machine Learning

Learning Types

Learning types

- Supervised learning
 - The correct classes of the training data are known
- Unsupervised learning
 - The correct classes of the training data are NOT known
- Reinforcement learning
 - Machine learn its behavior based on feedback from environment

Learning types

	Supervised Learning	Unsupervised Learning	Reinforcement Learning
Definition	The machine learns by using labelled data	The machine is trained on unlabelled data without any guidance	An agent interacts with its environment by producing actions & discovers errors or rewards
Type of problems	Regression & Classification	Association & Clustering	Reward based
Type of data	Labelled data	Unlabelled data	No pre-defined data
Training	External supervision	No supervision	No supervision
Approach	Map labelled input to known output	Understand patterns and discover output	Follow trail and error method
Popular algorithms	Linear regression, Logistic regression, Support Vector Machine, KNN, etc	K-means, C-means, etc	Q-Learning, SARSA, etc

1. Supervised Learning

2. Unsupervised Learning

Supervised vs unsupervised

www.utm.my

Dataset: Has example inputs and outputs

Objective: Train a model to predict outputs

from future inputs.

Classification

The output variable is a category, such as [yes, no] or [dog, cat, mouse].

Regression

The output variable is a continuous value, such as dollars or credit risk.

Unsupervised Learning

Dataset: Only the inputs are known

Objective: Train a model to find existing patterns in the data to learn more about it.

Association

You want to discover rules that describe your data, such as people that buy beer also tend to buy diapers.

Clustering

You want to discover the inherent categories in the data, such as grouping customers by purchasing behavior.

Kinetica

3. Reinforcement learning

- An agent interacts with the environment trying to take smart actions to maximize cumulative rewards
- The environment is formulated using Markov decision process to search for solutions

Markov Decision Process (MDP)

Markov Decision Process (MDP)

- The agent is acting in an environment
- How the environment reacts to certain actions is defined by a model which we may or may not know
- The agent can stay in one of the many states S of the environment and choose to take one of the many actions A so that it can switch from one state to another
- Which state the agent will arrive is determined by transition probabilities P between states
- Once an action is taken, a reward R is delivered by the environment as feedback

Example of RL for self-driving cab

www.utm.my

- Self-driving cab (agent) must drop off passenger at the right location (R,G,B,Y)
- Passenger is at Y and wants to go to R
 - Rewards; successful dropoff by agent will get +reward, otherwise agent will be penalized/-reward
 - State space; all possible situations the cab can be in
 5 x 5 x 5 x 4 = 500 possible states

5x5 (grid), 5 passengers location (4 in the cab, 1 waiting), 4 locations (R,G,B,Y)

 Action space; six possible actions to be south, north, east, west, pickup and dropoff

RL in real world

- Games
 - AlphaGo, AlphaGo Zero etc
- Robotic
 - (remember Spot from BostonDynamics?)
- Traffic light control
- Web system configuration
- And many more

www.utm.my

Machine Learning

Learning Techniques

Machine learning techniques

- Classification
 - Predict class from observation
- Clustering
 - Group observations into "meaningful" groups
- Regression
 - Predict value from observations

Classification and clustering

Clustering

- Clustering is identifying similar groups of data in a dataset
- We assume that observations in each group are comparatively more similar to observations of that group compared to those of the other groups
- A cluster refers to a collection of data points aggregated together because of certain similarities
- E.g. try to understand customers better so that we can market our products to them better. How do we start?
- E.g. try to find your close-knit groups of friends on Facebook? How will you identify them?

How clustering works

versity ™

www.utm.my

- Choose the number of clusters, K
- Randomly choose initial positions of K centroids
- Assign each of the points to the "nearest centroid" (depends on distance measure)

www.utm.my

- Choose the number of clusters K
- Randomly choose initial positions of K centroids
- Assign each of the points to the "nearest centroid" (depends on distance measure)

www.utm.my

- Choose the number of clusters K
- Randomly choose initial positions of K centroids
- Assign each of the points to the "nearest centroid" (depends on distance measure)
- Re-compute centroid positions
- If solution converges → Stop!

www.utm.my

- Choose the number of clusters K
- Randomly choose initial positions of K centroids
- Assign each of the points to the "nearest centroid" (depends on distance measure)
- Re-compute centroid positions
- If solution converges → Stop!

www.utm.my

- Choose the number of clusters K
- Randomly choose initial positions of K centroids
- Assign each of the points to the "nearest centroid" (depends on distance measure)
- Re-compute centroid positions
 - If solution converges → Stop!

Distance measure for k-mean

www.utm.my

- How should we choose K?
- What type of distance measures can we use, and how to choose between them?
 - Euclidean

$$((x_2 - x_1)^2 + (y_2 - y_1)^2)^{0.5}$$

Sum of absolute differences

$$|x_2 - x_1| + |y_2 - y_1|$$

- 1 Cos(t)
- And more...

- Find similarities among all observations such that similar observations can be put in clusters
- Computing distance from each observation/data point to centroids to obtain well-represented clusters.
- Why are they optimal and suboptimal solution? Can you guess?

Centroid == mean i.e. averaging the data

Data points are allocated to the nearest centroid/cluster as to keep the centroids as small as possible

Optimal solution means it is easier to distinguish between each cluster i.e. better boundary separation

- Find similarities among all observations such that similar observations can be put in clusters
- Computing distance from each observation/data point to the centroids to obtain well-represented clusters.
- Why are they optimal and suboptimal solution? Can you guess?

Classification

- Classification refers to predicting the class of given observations/data points
- Class means targets/labels or sometimes categories
- In classification, we are mapping the input data to specific type of class/category

How classification works

STEP I

Provide the machine learning algorithm categorized or "labeled" input and output data from to learn

STEP 2

Feed the machine new, unlabeled information to see if it tags new data appropriately. If not, continue refining the algorithm

TYPES OF PROBLEMS TO WHICH IT'S SUITED

CLASSIFICATION

Sorting items into categories

REGRESSION

Identifying real values (dollars, weight, etc.)

ech ty™

Classification

- Classification of waste
- You know beforehand each bin category/class of the waste
- How do you decide which waste goes to which bin?
- We learn from the waste i.e. from the data points, then we can decide to which class it belongs to

Classification

- The data that gets input to the classifier may contains four measurements for waste e.g. 1)what material it is made from, 2)size, 3)weight and its 4)biodegradable level
- The job of the classifier then is to output the correct waste type for every input

Classification algorithms

- Decision tree
- Naïve Bayes
- ANN, now evolving into Deep Learning
- Random Forest
- K-Nearest Neighbour
- Support Vector Machine (SVM)
- And many more!

www.utm.my

Machine Learning

Performance Evaluation

How good is the learning model?

- The aim of a model is to be able to produce good results
- Employ another set of data called testing data to evaluate the learning model
 - Can be completely new
 - Blinded dataset from the same resource
 - Smaller part of training data previously separated
 - Rule of thumb for train-test split (holdout method); 70%:30, 80%:20%, 90%:10%

Performance measures / Evaluation metrics

 Confusion matrix to evaluate the performance of ML methods

		Predicted Class		
		Yes	No	
Actual Class	Yes	True Positive (TP)	False Negative (FN)	
	No	False Positive (FP)	True Negative (TN)	

- E.g. of performance measures
 - % game won
 - % correctly classified images
 - % correctly identified text

Confusion matrix

•	Positive labelled example
0	Negative labelled example

 \mathbf{w}

la		Predicted Class		
		Yes	No	
Actual Class	Yes	True Positive (TP)	False Negative (FN)	
	No	False Positive (FP)	True Negative (TN)	

- TP = 9 (positive observation correctly identified as positive)
- TN = 8 (negative observation correctly identified as negative)
- FP = 2 (positive that is false i.e. negative observation incorrectly identified as positive)
- FN = 1 (negative that is false i.e. positive observation incorrectly identified as negative)

Type I error = FP and Type II error = FN

www.utm.my

Type II error (false negative)

Lets say positive test result means 'is pregnant'

Performance measures from confusion matrix

		Predicted Class		
		Yes	No	
Actual Class	Yes	True Positive (TP)	False Negative (FN)	
	No	False Positive (FP)	True Negative (TN)	

- Accuracy = TP+TN / (TP+TN+FP+FN) i.e. 1 error
- Precision = TP/(TP+FP)
- Recall = TP/(TP+FN)
- The closer the score to 1, the better the classifier model
- **High recall, low precision:** This means that most of the positive examples are correctly recognized (low FN) but there are a lot of false positives.
- **Low recall, high precision:** This shows that we miss a lot of positive examples (high FN) but those we predict as positive are indeed positive (low FP)

Activity 2.0: Confusion matrix

Sepal length	Sepal width	Petal length	Petal width	Actual Class	Predicted Class
4.4	3.2	1.3	0.2	1	1
5	3.5	1.6	0.6	1	0
5.1	3.8	1.9	0.4	1	0
4.8	3	1.4	0.3	0	0
5.1	3.8	1.6	0.2	0	0
4.6	3.2	1.4	0.2	0	0
5.3	3.7	1.5	0.2	1	1
5	3.3	1.4	0.2	1	1
7	3.2	4.7	1.4	0	0
6.4	3.2	4.5	1.5	1	1
6.9	3.1	4.9	1.5	1	1
5.5	2.3	4	1.3	0	1
6.5	2.8	4.6	1.5	0	1
5.7	2.8	4.5	1.3	0	0
6.3	3.3	4.7	1.6	0	0
4.9	2.4	3.3	1	1	1
6.6	2.9	4.6	1.3	1	1
5.2	2.7	3.9	1.4	0	1
5	2	3.5	1.4	0	0
5.1	2.3	3.6	1.2	0	1

- Let positive be 1, and negative is 0;
- Given the Iris
 dataset as in the
 table, quantify TP,
 TN, FP and FN
- Determine the accuracy, precision and recall

Activity 2.0 Answer: Confusion matrix

ww I			
		T m	m II
шш	ш. и		. III U

	Predicted:	Predicted:	
	1	0	
Actual:	7	4	
Actual:	2	7	

- TP=7, TN=7, FN=2, FP=4
- Accuracy = TP+TN / (TP+TN+FP+FN) =7+7/(7+7+2+4) = 0.7
- Recall = TP/(TP+FN) = 7/(7+2)=0.78
- Precision = TP/(TP+FP) = 7/(7+4) = 0.64

How real world use ML?

www.utm.my

https://towardsdatascience.com/real-world-examples-of-applied-machine-learning-from-ai-conference-4d4678700c6

Real world examples

- Uber COTA (Customer Obsession Ticket Assistant)
 http://w4nderlu.st/assets/javascript/ViewerJS/#http://w4nderlu.st/content/3-publications/cota-improving-the-speed-and-accuracy-of-customer-support-through-ranking-and-deep-networks/cota-o-reilly-ai-conference-2018.pdf
- AirBNB; categorizing listing photos https://medium.com/airbnb-engineering/categorizing-listing-photos-at-airbnb-f9483f3ab7e3
- ZocDoc; finding in network physicians from insurance cards
 https://www.zocdoc.com/about/blog/tech/making-sense-of-insurance-cards-using-deep-learning/
- Spotify; How does it know your kind of music? https://medium.com/s/story/spotifys-discover-weekly-how-machine-learning-finds-your-new-music-19a41ab76efe

www.utm.my

Computational Intelligence

What methods machines use to learn?

Outline

- What is Al?
- Now, come Computational Intelligence (CI)
- Scope of Cl
- Importance of CI
- CI Techniques
 - Artificial Neural Network
 - Genetic Algorithm
 - Fuzzy Logic

What is AI?

- Ability to interact with the real world
- Reasoning and Planning
- Learning and Adaptation

Now, come Computational Intelligence (CI)

- A methodology involving computing that exhibits an ability to learn and/or to deal with new situations, such that the system is perceived to possess one or more attributes of reason, such as generalization, discovery, association and abstraction (Russel et al, 1998).
- CI is the field of computing that draws from the successes of natural systems to develop new ways of solving computational problems in the real world.

Scope of CI

www.utm.my

 Practical adaptation concepts, paradigms, algorithms and implementations that enable or facilitate appropriate actions (intelligent behavior) in complex and changing environments.

Scope of CI

www.utm.my

- Fuzzy, imprecise or imperfect data
- No available mathematical algorithm
- Optimal solution unknown
- Rapid prototyping required
- Only domain experts available
- Robust system required
- Learning capability

More recently:

- DNA Computing
- Quantum Computing

Importance of CI

- Solve the problems in realistic situation (not ideal) such as fuzzy, imperfect or incomplete, only domain experts available.
- Complementary approaches with mathematical based algorithm solutions
- Encourage new technology development especially in Quantum and DNA computing.

CI Techniques

- Artificial Neural Network
- Genetic Algorithm
- Fuzzy Logic

