

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN FACULTAD DE CIENCIAS FÍSICO MATEMÁTICAS

Simuladores Moleculares

Dinámica molecular con el potencial de Lennard-Jones en dos dimensiones para diferntes densidades usando un termostado isocinético Omar Gonzalez Amezcua

Nombre: Matricula: Giovanni Gamaliel López Padilla 1837522

Se propuso un sistema de dos dimensiones conformado por átomos de carbono bajo el potencial de Lennard-Jones donde estuvo en contacto a un termostato isocinético, se realizaron varias simulaciones variando su densidad y la temperatura del termostato, todos bajo la misma temperatura inicial. Se obtuvo que los átomos tienden a estar más agrupados cuando la densidad y la temperatura del termostato estan con niveles bajo, en comparación cuando se tiene al sistema con una densidad y temperatura del termostato alta, en donde los átomos tienden a agruparse a diferentes distancias. Palabras clave: Potencial de Lennard-Jones, distribución radial, dos dimensiones, termostato isocinético.

I. INTRODUCCIÓN

II. OBJETIVO GENERAL

Realizar la implementación del termostato isocinético en la simulación bidimensional de átomos de Carbono afectados por el potencial de Lennard-Jones.

III. OBJETIVO ESPECÍFICO

- Observar el cambio en las distancias radiales variando la densidad y la temperatura del termostato.
- Monitorear la energía total del sistema a lo largo de la simulación.
- Monitorear la temperatura del sistema a lo largo de la simulación para verificar que el termostato se encuentra realizando su acción.

IV. MARCO TEÓRICO

El potencial de Lennard-Jones describe la energía potencial de interacción entre dos átomos o moleculas netros sujetos a dos fuerzas distintas, una fuerza que tiene mayor acción cuando la distancia entre las dos sistemas es grande y la otra fuerza de interacción tiene una mayor acción a corta distancia. Este potencial tiene la siguiente forma:

$$V(r) = 4\epsilon \left[\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^{6} \right] \tag{1}$$

donde:

- V es el potencial intermolecular entre dos átomos o partículas.
- ϵ es la profundidad del valle que define que tan fuerte es la atracción entre partículas.
- σ es la distancia a la cual el potencial entre dos partículas es igual a cero.
- r es la distancia de separación entre dos partículas

Los parámetros ϵ y σ son ajustados para reproducir datos experimentales o pueden ser dedudidos de resultados a partir de cálculos de química cuántica. La fígura 1 es el potencial de Lennard-Jones con $\epsilon=1$ y $\sigma=1$.

En donde expone una gráfica de potenciales universales para estructuras de gráfito, y la que tenemos se asemeja en comportamiento a pesar de no tener la estrucura de un grafito. Teniendo el potencial de la ecuación 1, podemos deducir la fuerza, ya que esta puede ser deducida a partir de aplicar el gradiente a la función V(r), teniendo así la siguiente expresión:

$$\vec{F}(r) = 48\epsilon \left(\frac{\sigma^{12}}{r^{13}} - \frac{1}{2}\frac{\sigma^6}{r^7}\right)\hat{r}$$
 (2)

Figura 1: Potencial y fuerza de Lennard-Jones

reescribiendo las ecuaciones 1 y 2 para tener la suma de estas en un sistema de n particulas se tiene lo siguiente:

$$U_{t} = \left\langle \sum_{i=1}^{N} \sum_{j< i}^{N} V_{i}, j(|r_{j} - r_{i}|) \right\rangle_{t}$$
 (3)

$$F_i = \frac{48}{\sigma^2} \sum_{i \neq i} \left[\left(\frac{\sigma}{r_{ij}} \right)^{14} - \frac{1}{2} \left(\frac{\sigma}{r_{ij}} \right)^8 \right] (r_j - r_i) \tag{4}$$

Teniendo ya la dinámica se este sistema podemos ir monitoreando la energía cinética de la siguiente manera:

$$T_t = \left\langle \sum_{i=1}^N \frac{1}{2} m |v_i(t)|^2 \right\rangle \tag{5}$$

Dimensión Número de átomos ϵ			σ	ρ	Número de pasos	T_0
2	784	1	1	Variable*	$2x10^{3}$	0.6

Tabla I: Parámetros para la simulación para las diferentes dimensiones.

Figura 2: Distribución radial de la estructura

por lo tanto, la energía total para un tiempo t será:

V. RESULTADOS

$$E_t = T_t + U_t \tag{6}$$

El control de temperatura isocinético es un método el cual las velocidades son escalonadas por un parámetros λ a intervalos regulares, el objetivo de esto es obtener una simulación estable con energía cinética media adecuada a la establecida con el termostato.

Este parámetro λ es igual a lo siguiente:

$$\lambda = \sqrt{\frac{T_0}{\tau}} \tag{7}$$

donde τ esta definido como:

$$\tau = \langle T \rangle \tag{8}$$

Y la manera que actuará el termostato a lo largo de la simulación es el siguiente:

$$p_i'(t + \Delta t) = \lambda p_i(t + \Delta t) \tag{9}$$

Figura 3: temperatura del sistema para varias densidades y temperaturas del termostato a lo largo de la simulación

Figura 4: Energía total a lo largo de la simulación de las densidades seleccionadas variando la temperatura del termostato.

VI. CÓDIGO

- V. V. Begun, M. I. Gorenstein, and O. S. Zozulya. Fluctuations in the canonical ensemble. *Physical Review C - Nuclear Physics*, 72(1):1–13, 2005.
- [2] J. M. Borjas-Mayorga, M. E. Grimaldo-Reyna, F. J. Almaguer-Martínez, O. González-Amezcua, and J. R. Cantú-González. Monte Carlo simulation for a gas of hard spheres in d-dimensional space: Equilibrium structure and state equations. Revista Mexicana de Fisica E, 65(2):206–212, 2019.
- [3] S H Chastain. A simulation experiment with a canonical ensemble. (April 2013):8–11, 2016.
- [4] Carlos E. Fiore, Vera B. Henriques, and Mario J. De Oliveira. Canonical and microcanonical Monte Carlo simulations of lattice-gas mixtures. *Journal of Chemical Physics*, 125(16):1–9, 2006.
- [5] Hiqmet Kamberaj. Molecular Dynamics Methods in Simulations of Macromolecules. pages 189–280, 2020.
- [6] Pascal Viot. Numerical Simulation in Statistical Physics Lecture in Master 2 "Physics of complex systems" and "Modeling, Statistics and Algorithms for out-of-equilibrium systems. 2015.