实验报告2

学号	姓名
20337025	崔璨明

1、实验内容

基于Cliff Walk例子实现SARSA、Q-learning算法,要求如下:

- This is a standard undiscounted, episodic task, with start and goal states, and the usual actions causing movement up, down,right, and left.
- Reward is -1 on all transitions except those into the region marked as Cliff. Stepping into this region incurs a reward -100 and sends the agent instantly back to the start.

2、核心思路

在该问题中,对每个状态进行编号,并建立相应的Q-table,在每次的迭代中,初始化状态为角色位于起点,每个状态有四个动作(上下左右),每一步转移的reward都设为-1,若采取某一动作后若到达了边界则待在原地,若到达了悬崖则返回起点,reward设为-100,并设置一个符号变量flag来判断某次迭代是否终止,若到达了终点则该次迭代终止,保留Q表,然后重新开始。

2-1 Q-learning

根据以上条件,采用Q-learning算法,该算法的伪代码如下:

Initialize $Q(s, a), \forall s \in S, a \in A(s)$, arbitrarily, and $Q(terminal-state, \cdot) = 0$ Repeat (for each episode):

Initialize S

Repeat (for each step of episode):

Choose A from S using policy derived from Q (e.g., ε -greedy)

Take action A, observe R, S'

$$Q(S, A) \leftarrow Q(S, A) + \alpha [R + \gamma \max_a Q(S', a) - Q(S, A)]$$

 $S \leftarrow S'$:

until S is terminal

参数解释:

 $\epsilon-greedy$ 是用在决策上的一种策略,比如 epsilon = 0.9 时, 就说明有90% 的情况会按照Q-table 的max-value选择行为, 10% 的情况使用随机选择的行为。

α: 学习率, 来决定这次的误差有多少是要被学习的

 γ :对未来 reward 的衰减值.

2-2 SARAS

saras算法假设前一时刻的状态价值的值 $q_{t-1}(s_{t-1}$ 是最优的,利用当前的行动状态值 $q_{t-1}(s_t,a_t)$ 和奖励值 r_t 来更新 $q_t(s_t,a_t)$,公式如下:

$$q_t(s_t, a_t) = q_{t-1}(s_{t-1}, a_{t-1}) + rac{1}{N}(r_t + \gamma * q_{t-1}(s_t, a_t) - q_{t-1}(s_{t-1}, a_{t-1}))$$

算法伪代码如下:

Initialize $Q(s, a), \forall s \in S, a \in A(s)$, arbitrarily, and $Q(terminal-state, \cdot) = 0$ Repeat (for each episode):

Initialize S

Choose A from S using policy derived from Q (e.g., ε -greedy)

Repeat (for each step of episode):

Take action A, observe R, S'

Choose A' from S' using policy derived from Q (e.g., ε -greedy)

$$Q(S,A) \leftarrow Q(S,A) + \alpha \left[R + \gamma Q(S',A') - Q(S,A) \right]$$

 $S \leftarrow S'; A \leftarrow A';$

until S is terminal

参数解释:

 $\epsilon-greedy$ 是用在决策上的一种策略,比如 epsilon = 0.9 时, 就说明有90% 的情况会按照Q-table 的max-value选择行为, 10% 的情况使用随机选择的行为。

α: 学习率, 来决定这次的误差有多少是要被学习的

 γ : 对未来 reward 的衰减值.

3、关键代码展示

根据伪代码, python实现如下:

3-1 Q-learning

```
# Q-learning
def q_learning():
   Q table=np.zeros((rows*cols,4)) #Q表
   clif_map=np.zeros((rows,cols)) #地图,用于每次存储路径
   rw list=[] #记录Reward的变化
   for step in range(episodes):
       #初始化S
       sum=0
       pos=(3,0)# 起点
       end flag=False# 结束标志
       clif map=np.zeros((rows,cols))# 记录路径
       clif map[3][0]=1
       while(not end flag):#判断是否到达目的地
           loc=int(12 * pos[0] + pos[1]) #计算此时的状态
          mov=epsilon_greedy(loc,Q_table) #根据Q表用epsilon_greedy选择动作
           pos=move(pos,mov) # 移动
          clif_map[pos[0]][pos[1]]=1
           new_loc=int(12 * pos[0] + pos[1]) #计算新状态
          new loc,rwd, end flag= reward(new loc) #计算reward并判断是否结束或掉下悬崖
           sum+=rwd
          max_q_s_a=find_max(Q_table,pos) #选取当前状态最大Q表项
           # 根据公式更新Q表
          Q_table[loc][mov]=Q_table[loc][mov]+alpha*(rwd+(gamma*max_q_s_a)-
Q_table[loc][mov])
           pos=(int(new_loc/12),int(new_loc%12)) #更新位置
       rw list.append(sum)
   return clif_map,Q_table,rw_list
```

3-2 Saras

```
# sarsa

def sarsa():
    Q_table=np.zeros((rows*cols,4))#Q表
    clif_map=np.zeros((rows,cols))#地图,用于每次存储路径
    rw_list=[]
    for step in range(episodes):
        sum=0
        pos=(3,0)# 起点
```

```
end_flag=False# 结束标志
       clif_map=np.zeros((rows,cols))
       clif map[3][0]=1
       loc=int(12 * pos[0] + pos[1])
       mov=epsilon_greedy(loc,Q_table)
       while(not end_flag):
           loc=int(12 * pos[0] + pos[1])#当前状态
           pos=move(pos,mov)#根据动作进行移动
           clif_map[pos[0]][pos[1]]=1
           new_loc=int(12 * pos[0] + pos[1])#新的状态
           new loc,rwd, end flag= reward(new loc)#计算reward
           sum+=rwd
           #选择下一个状态的新动作
           next_mov=epsilon_greedy(new_loc,Q_table)
           q_s_a=Q_table[new_loc][next_mov]
           # 根据公式更新Q表
           Q_table[loc][mov]=Q_table[loc][mov]+alpha*(rwd+(gamma*q_s_a)-
Q_table[loc][mov])
           #更新位置和动作
           mov=next mov
           pos=(int(new_loc/12),int(new_loc%12))
       rw_list.append(sum)
   return clif_map,Q_table,rw_list
```

4、实验结果

初始条件设置为:

```
episodes = 500 #迭代次数
epsilon = 0.05 #选择随机方向的概率
alpha = 0.5 #学习率
gamma = 0.99 #衰减值
```

运行程序,得到分别使用Q-learning和sarsa算法的实验结果如下:

路径图: (绿色为可走区域,黄色为路径,紫色为悬崖):

Q-learning path

最后得到的Q-table如下:

Q learnig table:
-11.113 -10.441 -9.939 -9.320 -8.628 -8.168 -7.236 -6.309 -5.365 -4.889 -3.931 -3.268 -11.335 -10.848 -10.150 -9.740 -8.617 -7.992 -6.885 -6.040 -5.639 -4.307 -2.986 -2.229 -11. 987 -11.074 -10.759 -10.062 -9.391 -8.341 -7.605 -6.779 -5.848 -4.872 -3.489 -2.970 -12.248 0.000 0

在每次迭代的过程中,reward的总和的变化图如下,其中橙色的曲线为sarsa算法的reward总和变化,蓝色的曲线为q-learning算法的reward总和变化:

我们可以看到在on-line训练中,Q-learning的表现要比Sarsa差,但q-learning最后得到的结果比sarsa要好。并且通过分析可以看出两个算法的区别,Sarsa是一种on-policy算法,Q-learning是一种off-policy算法。Sarsa选取的是一种保守的策略,在更新Q值的时候已经为未来规划好了动作,对错误和死亡比较敏感。而Q-learning每次在更新的时候选取的是最大化Q的方向,而当下一个状态时,再重新选择动作,Q-learning是一种鲁莽、大胆、贪婪的算法,对于死亡和错误并不在乎。

5、实验心得

通过这次实验,我基于Cliff Walk例子实现了Q-learning算法和Sarsa算法,及时复习了课上所学的内容,并对两种算法有了更加深刻的理解,也对这两种算法的区别和各自的优点有了更深的体会。除此之外,通过将所学知识应用于实际问题中,我的代码编写能力和实践能力都有所提示,这让我受益匪浅。