Lema de Bombeo para AFD (*Pumping Lemma*)

Alan Reyes-Figueroa Teoría de la Computación

(Aula 10) 21.agosto.2024

Discusión general de "Propiedades"

Propiedad de Finitud

El Lema de Bombeo

El problema de la finitud

- □ Dado un lenguaje regular L, es infinito?
- Comenzar con un DFA para L.
- □ Idea clave: si el DFA tiene n estados, y el lenguaje contiene cualquier cadena de longitud n o mayor, entonces L es infinito.
- □ Caso contrario, el lenguaje es finito.
 - □ Limitado a cadenas de longitud menor a *n*.

Prueba de la idea clave

- □ Si un DFA de n estados acepta una cadena w de longitud n o mayor, entonces debe haber un estado que aparece al menos dos veces en el trayecto de w desde el estado inicial q₀ al estado final q_e de w.
- □ Esto ya que hay al menos n+1 estados a lo largo del trayecto de w.

Prueba de la idea clave

 \rightarrow xyⁱz está en el lenguaje, para todo i \geq 0.

Como y no es la cadena ϵ , todas las cadenas xy^iz (hay infinitas de ellas) están en L.

Finitud

- Aún no tenemos un algoritmo.
- Hay un número infinito de cadenas de longitud > n. No podemos testarlas todas.
- □ Segunda idea clave: si hay una cadena de longitud ≥ n (= número de estados) en L, entonces debe haber una cadena de longitud entre n y 2n-1.

Pueba de la 2^a idea clave

□ Recordemos:

- Podemos elegir y como el primer ciclo a lo largo del trayecto de w.
- \square Así, $|xy| \le n$; en particular, $1 \le |y| \le n$.
- Luego, si w es de longitud 2n o mayor, hay una cadena de menor longitud en L que aún es de longitud n o más.
- □ Reducir hasta obtener algo en [n,2n-1].

Completamos el algoritmo de infinitud

- □ Verificar la pertenencia a L de todas las cadenas de longitudes entre n y 2n-1.
 - ☐ Si alguna es aceptada, entonces L es infinito. Caso contrario, L es finito.
- El peor algoritmo posible.
- □ Mejor idea: buscar la existencia de ciclos entre el estado inicial q_0 y final q_E .

Búsqueda de Ciclos

- 1. Eliminar los estados que no son alcanzables desde el estado inicial q_0 .
- Eliminar los estados que no llegan al estado final q_F.
- 3. Verificar si el grafo de transiciones remanente posee algún ciclo.

El Lema de Bombeo (*Pumping Lemma*)

- □ En lo anterior casi hemos probado, de forma accidental, un resultado que es muy útil para mostrar que ciertos lenguajes no son regulares.
- □ Este es llamado el *lema de bombeo para lenguajes regulares*.

Lema de Bombeo

Para todo lenguaje regular L, estados del DFA para L existe un entero $n \ge 1$, tal que para toda cadena $w \in L$ de longitud $\ge n$ podemos escribir w = xyz, donde:

- 1. $|xy| \leq n$.
- 2. |y| > 0.
- 3. Para todo i ≥ 0 , $xy^iz \in L$.

y corresponde al primer ciclo en el trayecto de w

Número de

Prueba de Lema de Bombeo

- 1. Tomamos n = número de estados del DFA para L
- 2. Tomamos w \in L de longitud \ge n
- Por el principio de las casillas en el trayecto de w hay
 ≥ n+1 estados, de modo que al menos un estado q
 se repite.
- 4. Tome y la subcadena de w del ciclo en q_i

(Observe que y tiene longitud al menos 1, no es la cadena vacía).

- 5. \rightarrow xyⁱz está en el lenguaje, para todo i \geq 0.
- 6. Como y no es la cadena ϵ , todas las cadenas de la forma xyⁱz (hay infinitas de ellas) están en L.

Ejemplo: Lema de Bombeo

Vamos a mostrar que $L = \{0^k 1^k : k \ge 1\}$ no es un lenguaje regular.

- Suponga que sí es. Entonces existe un n ≥ 1 para L que cumple el lema de bombeo.
- □ Tome $w = 0^n 1^n \epsilon L$. Podemos escribir w = xyz, donde $|xy| \le n$, |y| > 0. Esto implica que:
 - 1. $y \neq \epsilon$.
 - 2. x, y consisten sólo de 0's
- \square Pero, por el lema de bombeo, la cadena xyyz \in L.
- ☐ Pero esta cadena tiene (n+1) 0's y n 1's. Absurdo!