Introdução à Inteligência Artificial

Trabalho Prático 3: Curva Braquistócrona

1. Introdução

Utilizámos este trabalho prático para aprender conceitos base de computação evolucionária. Neste caso, o objetivo era criar uma aproximar uma curva braquistócrona, sabendo o seu ponto inicial e final.

2. Meta 1 - Modelação e desenvolvimento do algoritmo genético

Com base no Package de exemplo disponibilizado, criámos funções de Recombinação de N-Pontos, Elitismo e Seleção por Torneio. Para além disso, permitimos a alteração de vários parâmetros pelo utilizador; mais especificamente, passámos a permitir a parameterização de:

- O número de indivíduos passados de uma geração para a outra.
- Probabilidade de mutação por gene.
- Probabilidade de recombinação.
- Tamanho dos torneios.

Para além dos parâmetros disponibilizados inicialmente.

Adicionámos também a possibilidade de ver, a cada geração, o indivíduo com melhor e pior fitness, a fitness média, e o desvio padrão.

3. Meta 2 - Experimentação e análise

Uma boa parameterização é muito importante em problemas de computação evolucionária. Como tal, fizémos uma grande variedade de testes para verificar qual era o conjunto de parâmetros que oferecia a melhor relação entre precisão de resultados e custo computacional. As experiências efetuadas podem ser vistas no anexo deste relatório.

3.1 Análise dos Resultados

Após os testes efetuados, conseguimos obter várias conclusões relativamente aos parâmetros desejados. Concretamente:

Número de indivíduos preservados pelo elitismo: Obtivémos bons resultados utilizando elitismo para 50 indivíduos. Aumentar este valor ligeiramente devolve bons resultados na mesma, mas diminuir começa a dar problemas. Neste parâmetro, é muito importante encontrar um bom equilíbrio que tenha em conta o tamanho da população.

Tamanho dos Torneios: Escolhemos manter o torneio com 3 indivíduos, porque era como obtinhamos melhores valores para "best" e "mean" nas estatísticas recolhidas.

Velocidade Inicial: Mantivémos a velocidade relativamente baixa, pois notámos nos testes que aumentá-la demasiado começava a dar problemas. Particularmente com mais de 70, os resultados começavam a ser muito inconsistentes.

Número de Track Points: É importante que o número de trackpoints seja adequado ao tamanho da curva. Quanto maior ela for, maior o número de trackpoints deve ser. No nosso caso, utilizámos 20 trackpoints.

Tamanho da População: Com menos de 300 indivíduos, a curva representada começa a dar maus resultados. No entanto, ao aumentar demasiado este valor, o custo computacional começa a ser muito alto. Considerámos que 500 devolve uma boa relação entre os dois.

Número de Gerações: Tal como o tamanho da população, necessitamos de mais de 300 gerações para obter bons resultados. 700 oferecia uma boa relação qualidade/custo computacional.

Probabilidade de Mutação: O melhor valor que encontrámos foi 0.01. Ao aumentar a probabilidade, torna-se demasiado provável alterar alguns dos indivíduos com melhor aptidão, o que piora os resultados obtidos.

Probabilidade de Recombinação: Manter a probabilidade de recombinação alta (0.8) demonstrou bons resultados. Quando a tentámos diminuir, obtivémos curvas que se afastavam muito do esperado.

4. Implementação de funções

4.1. Recombinação de N-Pontos

É pedido ao utilizador que insira um número de pontos de recombinação (numberOfCrossoverPoints). É sorteado esse número de pontos de entre todos os Trackpoints de cada indivíduo.

A imagem abaixo representa esses pontos com linhas verticais.

(Source: http://www.geatbx.com/docu/algindex-03.html)

É agora efetuado um ciclo iterativo em que os trackpoints do indivíduo 2 vão sendo atribuídos ao indivíduo 1 (e vice versa) até chegarmos a um Crossover Point. Quando isto acontece, ambos os indivíduos são deixados intactos até se atingir outro Crossover Point, quando o ciclo recomeça. Isto repete-se até não termos mais trackpoints para verificar.

Assim, é obtida uma maior variedade genética, mas com base nos melhores indivíduos, visto que apenas os escolhidos pela Seleção por Torneio são considerados. Sem recombinação, chegariamos rapidamente a um ponto em que deixava de haver melhorias.

4.2 Elitismo

Para nos certificarmos que os melhores indivíduos não são substituídos, aplicamos uma função de elitismo no início de cada geração. Assim, um número de indivíduos correspondente a um parâmetro inserido pelo utilizador (numElit) é preservado de geração para geração.

Fazemos isto ordenando-os pela sua aptidão e passando imediatamente os melhores para a geração seguinte. No entanto, eles podem ainda assim ser selecionados para crossover e mutação.

4.3 Seleção Por Torneio

É importante que os indivíduos escolhidos para crossover tenham uma aptidão adequada. Como tal, para os escolher efetuamos Seleção por Torneio.

Em primeiro lugar, é escolhido aleatoriamente um número escolhido pelo utilizador de indivíduos. De entre os escolhidos, é selecionado o que tiver melhor apitdão.

Esta seleção é efetuada duas vezes por iteração do ciclo de criação da nova população, de forma a termos dois indivíduos com os quais efetuar Recombinação de cada vez.

Como se trata de um **problema de minimização**, certificámo-nos que escolhíamos os indivíduos cuja função de aptidão devolvia valores mais baixos.

5. Conclusão

Com este trabalho tivemos a oportunidade de trabalhar com a abordagem evolucionária para encontrar uma aproximação da curva braquistócrona, conseguindo obter e melhorar as nossas competências nas áreas de experimentação e implementação deste tipo de problemas.

Chegámos à conclusão que a experimentação foi muito importante na realização deste trabalho pois foi necessário realizar muitas experiências para obtermos os resultados que procuravamos e tirar conclusões acerca deste trabalho.

João Craveiro 2013136429 PL7 João Faria 2013136446 PL7 João Vieira 2013136370 PL7

ANEXO

Probabilidade de Mutação aumentada para 0.05:

Probabilidade de Mutação aumentada para 0.1:

Probabilidade de Recombinação diminuida para 0.1 (Mutação também 0.1):

Trackpoints reduzidos para 4:

Número do elitism reduzido para 25:

Número do elitismo aumentado para 75:

Tamanho do torneio aumentado para 30:

Tamanho do torneio aumentado para 75:

Velocidade inicial aumentada para 10:

Velocidade inicial aumentada para 70:

Coordenadas X alteradas para obter curva maior:

