

- ★ Green Device Available
- ★ Super Low Gate Charge
- ★ Excellent CdV/dt effect decline
- ★ Advanced high cell density Trench technology

Description

The XR8G02S is the high performance complementary N-ch and P-ch MOSFETs with high cell density, which provide excellent RDSON and gate charge for most of the synchronous buck converter applications.

The XR8G02S meet the RoHS and Green

Product Summary

BVDSS	RDSON	ID
20V	12mΩ	8A
-20V	16mΩ	-8A

SOP8 Pin Configuration

Absolute Maximum Ratings

0hl	Parameter	Rati	ng	
Symbol	Parameter	N-Ch	P-Ch	Units
V _{DS}	Drain-Source Voltage	20	-20	V
V_{GS}	Gate-Source Voltage	±12	±12	V
I _D @Ta=25°C	Continuous Drain Current, V _{GS} @ 10V ¹	8	-8	Α
I _D @Ta=100°C	Continuous Drain Current, V _{GS} @ 10V ¹	5	-5	Α
I _{DM}	Pulsed Drain Current ²	32	-30	А
EAS	Single Pulse Avalanche Energy ³			mJ
P _D @T _C =25°C	Total Power Dissipation ⁴	2	1.5	W
T _{STG}	Storage Temperature Range	-55 to 150	-55 to 150	°C
TJ	Operating Junction Temperature Range	-55 to 150	-55 to 150	°C

Thermal Data

Symbol	Parameter	Тур.	Max.	Unit
R _{0JA}	Thermal Resistance Junction-Ambient ¹			°C/W
R _{0JC}	Thermal Resistance Junction-Case ¹			°C/W

1

N-Channel Electrical Characteristics (TJ=25℃ unless otherwise specified)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V , I _D =250uA	20			V
△BV _{DSS} /△T _J	BVDSS Temperature Coefficient	Reference to 25°C , I _D =1mA				V/°C
D	Static Drain-Source On-Resistance ²	V _{GS} =4.5V , I _D =21A		12	16	0
R _{DS(ON)}	Static Drain-Source On-Resistance	V _{GS} =2.5V , I _D =13A		16	20.5	mΩ
V _{GS(th)}	Gate Threshold Voltage	\\ -\\ -250\	0.5	0.75	1.2	V
$\Delta V_{GS(th)}$	$V_{GS}=V_{DS}$, $I_{D}=250$ uA					mV/°C
1	Drain Source Leakage Current	V _{DS} =20V , V _{GS} =0V , T _J =25°C			1	
I _{DSS}	Drain-Source Leakage Current	V _{DS} 20V , V _{GS} =0V , T _J =55°C				⊢ uA
I _{GSS}	Gate-Source Leakage Current	$V_{GS} = \pm 12V$, $V_{DS} = 0V$			±100	nA
R _g	Gate Resistance	V _{DS} =0V , V _{GS} =0V , f=1MHz				Ω
Qg	Total Gate Charge (4.5V)			15		
Q _g Total Gate Charge (4.5V) Q _{gs} Gate-Source Charge		V_{DS} =15V , V_{GS} =4.5V , I_{D} =10A		2		nC
Q _{gd}	Gate-Drain Charge			5.2		
T _{d(on)}	Turn-On Delay Time			9		
Tr	Rise Time	V _{DD} =10V , V _{GS} =4.5V ,		25		
T _{d(off)}	Turn-Off Delay Time	$R_G=3\Omega$, I $_D=10A$		37		ns
T _f	Fall Time			14		
C _{iss}	Input Capacitance			700		
Coss	Output Capacitance	V _{DS} =10V , V _{GS} =0V , f=1MHz		132		pF
C _{rss}	Reverse Transfer Capacitance			114		

Diode Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
ls	Continuous Source Current ^{1,4}	V _G =V _D =0V , Force Current			20	Α
VsD	Diode Forward Voltage ²	V _{GS} =0V , I _S =21A , T _J =250			1.2	V
t _{rr}	Reverse Recovery Time	IF=21A ,di/dt=100A / μs ,				nS
Qrr	Reverse Recovery Charge	T _J = 2 5 C				nC

Notes:1. Repetitive Rating: Pulse Width Limited by Maximum Junction Temperature

2. Pulse Test: Pulse Width≤300µs, Duty Cycle≤0.5%

P-Channel Electrical Characteristics (TJ=25°C unless otherwise specified)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V , I _D =-250uA	-20			V
⊿BV _{DSS} /⊿T _J	BV _{DSS} Temperature Coefficient	Reference to 25°C , I _D =-1mA				V/°C
Б	Otatia Danier Carrier On Basistana 2	V _{GS} =-4.5V , I _D =-13A		16	21	
R _{DS(ON)}	Static Drain-Source On-Resistance ²	V _{GS} =-2.5V , I _D =-10A		20	26	mΩ
V _{GS(th)}	Gate Threshold Voltage	\\ -\\ \ \ - 250\	-0.4	-0.7	-1	V
$\Delta V_{GS(th)}$						mV/°C
I _{DSS} Drain-Source Leakage Current	Dunin Course Looke to Cument	V _{DS} =-20V , V _{GS} =0V , T _J =25°C			-1	
IDSS	Drain-Source Leakage Current	V _{DS} =-20V, V _{GS} =0V , T _J =100°C				uA
I _{GSS}	Gase-Source Leakage Current V _{GS} =±12V , V _{DS} =0V				±100	nA
gfs	gfs Forward Transconductance V _{DS} =-5V , I _D =-20A					S
R _g	Gate Resistance	V _{DS} =0V , V _{GS} =0V , f=1MHz				Ω
Q_g	Total Gate Charge			33.7		
Q _{gs}	Gate-Source Charge	V _{DS} =-10V , V _{GS} =-4.5V , I _D =-13A		3.5		nC
Q_gd	Gate-Drain Charge			10.5		
T _{d(on)}	Turn-On Delay Time			11		
Tr	Rise Time	V _{GS} =-4.5V, V _{DS} =-10V,		35		
T _{d(off)}	Turn-Off Delay Time	I_D =-13A, R_{GEN} =10 Ω		30		ns
T _f	Fall Time			10		
C _{iss}	Input Capacitance			1200		
Coss	Output Capacitance	V _{DS} =-10V , V _{GS} =0V , f=1MHz		191		pF
C _{rss}	Reverse Transfer Capacitance			168		

Diode Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Is	Continuous Source Current ^{1,5}	V _G =V _D =0V , Force Current			-20	А
V _{SD}	Diode Forward Voltage ²	V _{GS} =0V , I _S =-13A , T _J =25°C			-1.2	V

Notes:1. Repetitive Rating: Pulse Width Limited by Maximum Junction Temperature

2. Pulse Test: Pulse Width≤300µs, Duty Cycle≤2%

Typical Performance Characteristics-N

-: 4 0 1 101 1 11

Figure 3:On-resistance vs. Drain Current

Figure 5: Gate Charge Characteristics

Figure 2: Typical Transfer Characteristics

Figure 4: Body Diode Characteristics

Figure 6: Capacitance Characteristics C(pF)

Figure 7: Normalized Breakdown Voltage vs. Junction Temperature

Figure 9: Maximum Safe Operating Area

Figure.11: Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

Figure 8: Normalized on Resistance vs. Junction Temperature

Figure 10: Maximum Continuous Drain Current vs. Ambient Temperature

Typical Performance Characteristics-P

Figure1: Output Characteristics

Figure 3:On-resistance vs. Drain Current

Figure 5: Gate Charge Characteristics

Figure 2: Typical Transfer Characteristics

Figure 4: Body Diode Characteristics

Figure 6: Capacitance Characteristics

Figure 7: Normalized Breakdown Voltage vs. Junction Temperature

Figure 9: Maximum Safe Operating Area

Figure.11: Maximum Effective Transient Thermal Impedance, Junction-to-Case

Figure 8: Normalized on Resistance vs. Junction Temperature

Figure 10: Maximum Continuous Drain Current vs. Case Temperature

SOP-8 Package Information

Symbol	Dimensions	In Millimeters	Dimensions	s In Inches	
	Min.	Max.	Min.	Max.	
А	1.350	1.750	0.053	0.069	
A1	0.100	0.250	0.004	0.010	
A2	1.350	1.550	0.053	0.061	
b	0.330	0.510	0.013	0.020	
С	0.170	0.250	0.006	0.010	
D	4.700	5.100	0.185	0.200	
E	3.800	4.000	0.150	0.157	
E1	5.800	6.200	0.228	0.244	
е	1.270(BSC)		0.050(BSC)		
L	0.400	1.270	0.016	0.050	
θ	0°	8°	0°	8°	