Complementi di Algebra

Alessio Borzì

Indice

Teoria	dei campi	5
1.1	Alcuni richiami di algebra	5
1.2	Estensione di Campi	8
1.3	Campi finiti	0
1.4	Estensioni separabili	1
1.5	Polinomi simmetrici	4
1.6	Teorema dell'elemento primitivo	7
1.7	Estensioni normali	0
Teoria	di Galois 3	3
2.1	Isomorfismi di campi	3
2.2	Gruppo di Galois	6
2.3	Corrispondenza di Galois	9
2.4	Teorema fondamentale dell'algebra	3
2.5	Estensioni ciclotomiche	4
2.6	Costruzioni con riga e compasso	7
	2.6.1 Tre problemi classici	2
	2.6.2 Problema della ciclotomia	3
2.7	Gruppi Risolubili	5
2.8	Estensioni cicliche	C
2.9	Risolubilità di polinomi	4
2.10	Discriminante di un polinomio	1
2.11	Formula risolutiva di una cubica	2

Teoria dei campi

1.1 Alcuni richiami di algebra

Lemma 1.1.1. Sia $\phi: A \to B$ un omomorfismo di anelli con A anello unitario e B dominio unitario. Se ϕ non \grave{e} l'omomorfismo nullo allora $\phi(1_A) = 1_B$.

Dimostrazione.

$$\phi(1_A) = \phi(1_A \cdot 1_A) = \phi(1_A) \cdot \phi(1_A)$$

da cui essendo $\phi(1_A) \neq 0$ (ϕ diverso è dall'omomorfismo nullo) e dalla legge dell'annullamento del prodotto (valida in B in quanto dominio) otteniamo $\phi(1_A) = 1_B$.

Corollario 1.1.2. Se \mathbb{F} è un sottocampo di \mathbb{K} allora $1_{\mathbb{F}} = 1_{\mathbb{K}}$

Dimostrazione. Basta utilizzare il lemma precedente considerando l'inclusione canonica $i: \mathbb{F} \to \mathbb{K}$ con $i(\alpha) = \alpha \quad \forall \alpha \in \mathbb{F} \subseteq \mathbb{K}$.

Definizione 1.1.3. Sia A un anello unitario, definiamo la funzione $\phi : \mathbb{Z} \to A$ con

$$\phi(n) = \begin{cases} n \cdot 1_A & n > 0 \\ 0 & n = 0 \\ -\phi(-n) & n < 0 \end{cases}$$

(dove, se $n \in \mathbb{Z}$ e $a \in A$, intendiamo $n \cdot a = \underbrace{a + a + \dots + a}_{n \text{ volte}}$).

É facile verificare che ϕ è un omomorfismo di anelli e risulta immediatamente che $\phi(1) = 1_A$. Quindi il nucleo di ϕ è un ideale di \mathbb{Z} , in simboli ker $\phi \leq \mathbb{Z}$, ma ricordando che \mathbb{Z} è un anello a ideali principali (PID) deve esistere un intero $r \geq 0$ tale che ker $\phi = (r)$. L'intero r è detto **caratteristica** dell'anello A, e verrà indicata con ch(A) = r.

Osservazione 1.1.4. La caratteristica di A è il più piccolo intero $r \ge 0$ tale che $r \cdot a = 0$ $\forall a \in A$, in quanto r genera $\ker \phi$ e inoltre, dato che $r \cdot 1_A = 0$, si ha

$$r \cdot a = r \cdot (1_A \cdot a) = (r \cdot 1_A) \cdot a = 0 \cdot a = 0.$$

Osserviamo inoltre che vale anche il viceversa, cioè che il più piccolo intero $r \geq 0$ tale che $r \cdot a = 0 \quad \forall a \in A$ coincide con ch(A).

Proposizione 1.1.5. Se A è un dominio allora ch(A) è uguale a 0 oppure a un intero p primo.

Dimostrazione. Considerando $\phi: \mathbb{Z} \to A$ abbiamo che Im $\phi \leq A$, quindi Im ϕ risulterà anch'essa un dominio. In base al primo teorema dell'isomorfismo abbiamo

$$\mathbb{Z}/\ker\phi\simeq\operatorname{Im}\phi$$

dunque $\ker \phi$ è un ideale primo di \mathbb{Z} in quanto $\operatorname{Im} \phi$ è un dominio. Allora $\ker \phi$ risulterà uguale all'ideale nullo (0), in questo caso $\operatorname{ch}(A) = 0$, oppure $\ker \phi = (p)$ con $p \geq 0$ intero primo, in questo caso $\operatorname{ch}(A) = p$.

Lemma 1.1.6. Sia A un dominio con ch(A) = p primo, allora

$$\forall a, b \in A \quad (a+b)^p = a^p + b^p$$

Dimostrazione. Dalla formula del binomio di Newton

$$(a+b)^p = \sum_{i=0}^n \binom{p}{i} a^i b^{p-i},$$

osserviamo che per ogni $i \in \{1, 2, \dots, p-1\}$ abbiamo

$$p \nmid i!, p \nmid (p-i)!, p \mid p! \Rightarrow p \mid \binom{p}{i} = \frac{p!}{i!(p-i)!}$$

da cui

$$(a+b)^p = \sum_{i=0}^n \binom{p}{i} a^i b^{p-i} = a^p + b^p.$$

Corollario 1.1.7. Se \mathbb{K} è un campo allora $ch(\mathbb{K})$ è uquale a 0 o p, con p primo.

Lemma 1.1.8. Se S e T sono due sottocampi di \mathbb{K} allora $S \cap T \subseteq \mathbb{K}$ è un sottocampo di \mathbb{K}

Dimostrazione.

- $S \cap T$ è un sottoanello di \mathbb{K} ;
- in $S \cap T$ vale la proprietà commutativa in quanto vale in \mathbb{K} ;
- l'unità di S e l'unità di T coincidono con l'unità di \mathbb{K} , quindi esse sono uguali tra loro, pertanto l'unità di \mathbb{K} coinciderà a sua volta con l'unità di $S \cap T$;
- per ogni $\alpha \in S \cap T$ esiste l'inverso in S e in T che però è unico in quanto è l'inverso di α anche in \mathbb{K} , quindi l'inverso di α apparterrà a $S \cap T$.

Definizione 1.1.9. Si chiama **sotto campo primo** (o **fondamentale**) P di un campo \mathbb{K} il più piccolo sottocampo contenuto in \mathbb{K} , o equivalentemente l'intersezione di tutti i sottocampi di \mathbb{K} .

6

Proposizione 1.1.10. Sia \mathbb{K} un campo.

- 1. Se $ch(\mathbb{K}) = p$ allora $P \simeq \mathbb{Z}_p$ (con p primo).
- 2. Se $ch(\mathbb{K}) = 0$ allora $P \simeq \mathbb{Q}$.

Dimostrazione.

1. Se $ch(\mathbb{K}) = p$ allora, considerando $\phi : \mathbb{Z} \to \mathbb{K}$ come definita precedentemente, si ha $\ker \phi = (p)$ quindi

$$\operatorname{Im} \phi \simeq \mathbb{Z}/\ker \phi = \mathbb{Z}/(p) \simeq \mathbb{Z}_p$$

pertanto $\mathbb{Z}_p \simeq \operatorname{Im} \phi \leq \mathbb{K}$, cioè con abuso di notazione $\mathbb{Z}_p \subseteq \mathbb{K}$. Abbiamo così dimostrato che ogni campo di caratteristica p contiene un sottocampo isomorfo a \mathbb{Z}_p . Adesso dato che ogni sottocampo di \mathbb{K} avrà anch'esso caratteristica pari a p, dall'affermazione precedente segue che ogni sottocampo di \mathbb{K} contiene una copia isomorfa a \mathbb{Z}_p , quindi risulta $P = \mathbb{Z}_p$.

2. Se $ch(\mathbb{K}) = 0$ allora $\ker \phi = (0)$ quindi

$$\operatorname{Im} \phi \simeq \mathbb{Z}/\ker \phi = \mathbb{Z}/(0) \simeq \mathbb{Z}$$

pertanto $\mathbb{Z} \simeq \operatorname{Im} \phi \leq \mathbb{K}$, cioè con abuso di notazione $\mathbb{Z} \subseteq \mathbb{K}$. Adesso consideriamo l'applicazione $\bar{\phi} : \mathbb{Q} \to \mathbb{K}$ con $\bar{\phi}\left(\frac{n}{m}\right) = \phi(n) \cdot \phi(m)^{-1}$. Mostriamo che $\bar{\phi}$ è un'immersione di \mathbb{Q} in \mathbb{K} :

• $\bar{\phi}$ è ben definita. Infatti $\phi(m)$ ha inverso $\forall m \in \mathbb{Z} \setminus \{0\}$. Inoltre se

$$\frac{n}{m} = \frac{a}{b} \Rightarrow nb = ma \Rightarrow \phi(n)\phi(b) = \phi(m)\phi(a) \Rightarrow$$

$$\Rightarrow \phi(n)\phi(m)^{-1} = \phi(a)\phi(b)^{-1} \Rightarrow \bar{\phi}\left(\frac{n}{m}\right) = \bar{\phi}\left(\frac{a}{h}\right).$$

- $\bar{\phi}$ è omomorfismo in quanto lo è ϕ .
- $\bar{\phi}$ è iniettivo, cio
è $\ker \bar{\phi} = \{0_{\mathbb{K}}\}$ infatti sia $\frac{n}{m} \in \ker \bar{\phi}$ allora

$$\bar{\phi}\left(\frac{n}{m}\right) = \phi(n)\phi(m)^{-1} = 0_{\mathbb{K}} \Rightarrow \phi(n) = 0_{\mathbb{K}} \Rightarrow n = 0 \Rightarrow \frac{n}{m} = 0.$$

Abbiamo così dimostrato che ogni campo di caratteristica 0 contiene un sottocampo isomorfo a \mathbb{Q} . Adesso dato che ogni sottocampo di \mathbb{K} avrà anch'esso caratteristica pari a 0, dall'affermazione precedente segue che ogni sottocampo di \mathbb{K} contiene una copia isomorfa a \mathbb{Q} , quindi risulta $P = \mathbb{Q}$.

Riportiamo qui un importante teorema senza darne dimostrazione.

Teorema 1.1.11. (Teorema di Ruffini) Sia \mathbb{K} un campo e $f(x) \in \mathbb{K}[x]$ un polinomio. Se $\alpha \in \mathbb{K}$ è una radice di f(x) (cioè tale che $f(\alpha) = 0$) allora il polinomio $x - \alpha$ divide f(x) in $\mathbb{K}[x]$.

Definizione 1.1.12. Sia $f(x) = a_n x^n + \cdots + a_1 x + a_0 \in \mathbb{K}[x]$. Si chiama **derivata** formale di f il polinomio¹ $f'(x) = n \cdot a_n x^{n-1} + \cdots + a_2 x + a_1$.

Osserviamo che, se $f, g \in \mathbb{K}[x]$, valgolo le proprietà

1.
$$(f+g)' = f' + g'$$

$$2. (f \cdot g)' = f' \cdot g + f \cdot g'$$

Definizione 1.1.13. Sia $f(x) \in \mathbb{K}[x]$ un polinomio $e \alpha \in \mathbb{K}$ una sua radice, chiamiamo **molteplicità** di α come radice di f il massimo intero m tale che $(x - \alpha)^m$ divida f(x), cioè

$$m = \max\{n \in \mathbb{Z} : (x - \alpha)^n | f(x)\}.$$

Se la radice α di f ha molteplicità m > 1 allora è detta radice multipla.

Proposizione 1.1.14. Il polinomio $f(x) \in \mathbb{K}[x]$ ha $\alpha \in \mathbb{K}$ come radice multipla se e solo se $f(\alpha) = f'(\alpha) = 0$.

Dimostrazione.

 \Rightarrow Per ipotesi abbiamo che $f(x) = (x - \alpha)^m \cdot g(x)$ con m > 1, quindi

$$f'(x) = m(x - \alpha)^{m-1} \cdot g(x) + (x - \alpha)^m \cdot g'(x)$$

da cui $f'(\alpha) = 0$.

 \Leftarrow Per ipotesi sappiamo che $f(x) = (x - \alpha) \cdot g(x)$, quindi

$$f'(x) = g(x) + (x - \alpha) \cdot g'(x)$$

sapendo che $f'(\alpha) = 0$ otteniamo $f'(\alpha) = g(\alpha) = 0$, da cui $g(x) = (x - \alpha) \cdot h(x)$, dunque $f(x) = (x - \alpha) \cdot g(x) = (x - \alpha)^2 \cdot h(x)$.

1.2 Estensione di Campi

Definizione 1.2.1. Siano \mathbb{F} e \mathbb{K} due campi. Se \mathbb{F} è un sottocampo di \mathbb{K} diremo che \mathbb{K} è un'estensione di \mathbb{F} e l'inclusione $\mathbb{F} \subseteq \mathbb{K}$ verrà chiamata estensione di campi.

Osservazione 1.2.2. Data l'estensione di campi $\mathbb{F} \subseteq \mathbb{K}$, \mathbb{K} può essere visto come \mathbb{F} spazio vettoriale una volta definita l'operazione di prodotto esterno

$$\bullet: \mathbb{F} \times \mathbb{K} \to \mathbb{K} \quad dove \quad a \bullet \alpha = a \cdot \alpha \quad \forall a \in \mathbb{F}, \forall \alpha \in \mathbb{K}.$$

Infatti $(\mathbb{K}, +)$ è ancora un gruppo abeliano, inoltre $\forall a, b \in \mathbb{F}, \alpha, \beta \in \mathbb{K}$

1.
$$(a+b) \bullet \alpha = (a+b) \cdot \alpha = a \cdot \alpha + b \cdot \beta = a \bullet \alpha + b \bullet \beta$$

¹Nello scrivere $i \cdot a_i$ con $i \in \mathbb{Z}$ e $a_i \in \mathbb{K}$ stiamo utilizzando ancora una volta la notazione utilizzata in precedenza.

2.
$$a \bullet (\alpha + \beta) = a \cdot (\alpha + \beta) = a \cdot \alpha + a \cdot \beta = a \bullet \alpha + a \bullet \beta$$

3.
$$(a \cdot b) \bullet \alpha = (a \cdot b) \cdot \alpha = a \cdot (b \cdot \alpha) = a \bullet (b \bullet \alpha)$$

4.
$$1_{\mathbb{F}} \bullet \alpha = 1_{\mathbb{F}} \cdot \alpha = 1_{\mathbb{K}} \cdot \alpha = \alpha$$

ciò prova che K con il prodotto esterno definito in precedenza è un F-spazio vettoriale.

Definizione 1.2.3. Data l'estensione $\mathbb{F} \subseteq \mathbb{K}$, se $\dim_{\mathbb{F}} \mathbb{K} < \infty$ allora $\mathbb{F} \subseteq \mathbb{K}$ è detta estensione finita, altrimenti estensione infinita, inoltre chiamiamo $\dim_{\mathbb{F}} \mathbb{K} = [\mathbb{K} : \mathbb{F}]$ grado dell'estensione.

Teorema 1.2.4. Sia $\mathbb{F} \subseteq \mathbb{K}$ un'estensione di campi e V uno spazio vettoriale su \mathbb{K} . Chiaramente V è anche uno spazio vettoriale su \mathbb{F} se consideriamo la restrizione a \mathbb{F} del prodotto esterno. Sotto queste ipotesi abbiamo che $\dim_{\mathbb{F}} V$ è finita se e solo se $\dim_{\mathbb{K}} V$ e $[\mathbb{K} : \mathbb{F}]$ sono finite, in tal caso

$$\dim_{\mathbb{F}} V = \dim_{\mathbb{K}} V \cdot [\mathbb{K} : \mathbb{F}]$$

Dimostrazione.

- ⇒ Supponiamo che $\dim_{\mathbb{F}} V = n$, sia $\{v_1, v_2, \dots, v_n\}$ una base di V su \mathbb{F} . Dato che $\mathbb{F} \subseteq \mathbb{K}$ si ha che i vettori v_i generano linearmente V su \mathbb{K} da cui $\dim_{\mathbb{K}} V \leq \dim_{\mathbb{F}} V = n$. Sia adesso $v \in V$, consideriamo il sottospazio $\mathbb{K}v = \{e \cdot v : e \in \mathbb{K}\} \subseteq V$, risulta $[\mathbb{K} : \mathbb{F}] = \dim_{\mathbb{F}} \mathbb{K}v \leq \dim_{\mathbb{F}} V = n$.
- \Leftarrow Viceversa, sia $\{v_1, v_2, \dots, v_h\}$ una base di V su \mathbb{K} e $\{e_1, e_2, \dots, e_k\}$ una base di \mathbb{K} su \mathbb{F} , proviamo che l'insieme di vettori

$$\{e_1v_1, \dots, e_kv_1, e_1v_2, \dots, e_kv_2, \dots, e_1v_h, \dots, e_kv_h\} = \bigcup_{i=1}^h \{e_1v_i, \dots, e_kv_i\}$$

è una base di V su \mathbb{F} . Per fare ciò osserviamo che per un qualunque $v \in V$ possiamo scrivere

$$v = \sum_{i=1}^{h} a_i v_i \quad a_i \in \mathbb{K}$$

inoltre per ogni $a_i \in \mathbb{K}$ possiamo scrivere

$$a_i = \sum_{j=1}^k b_{ij} e_j \quad b_{ij} \in \mathbb{F}$$

ottenendo infine

$$v = \sum_{i=1}^{h} a_i v_i = \sum_{i=1}^{h} \sum_{j=1}^{k} b_{ij} e_j v_i$$

da cui segue che i vettori $e_j v_i$ sono un sistema di generatori di V su \mathbb{F} , rimane da dimostrare che essi sono linearmente indipendenti. Supponiamo che

$$\sum_{i=1}^{h} \sum_{j=1}^{k} a_{ij} e_j v_i = \underline{0} \quad a_{ij} \in \mathbb{F}$$

ponendo $b_i = \sum_{j=1}^k a_{ij} e_j$ otteniamo

$$\sum_{i=1}^{h} b_i v_i = 0$$

da cui dalla lineare indipendenza dei vettori v_i segue che $b_i = 0$ per ogni i, cioè

$$b_i = \sum_{j=1}^k a_{ij} e_j = 0$$

in modo analogo, dalla lineare indipendenza dei vettori e_j segue $a_{ij} = 0$ per ogni i e j. Questo prova che i vettori $e_j v_i$ sono una base di V su \mathbb{F} , la relazione tra le dimensioni risulta adesso ovvia in quanto la base di V su \mathbb{F} è formata da hk vettori.

Un caso particolare del teorema precedente è quando lo spazio vettoriale V considerato è anch'esso un campo.

Corollario 1.2.5. Se \mathbb{F} , \mathbb{K} e \mathbb{E} sono tre campi tali che $\mathbb{F} \subseteq \mathbb{K} \subseteq \mathbb{E}$ allora l'estensione $\mathbb{F} \subseteq \mathbb{E}$ è finita se e solo se lo sono $\mathbb{F} \subseteq \mathbb{K}$ e $\mathbb{K} \subseteq \mathbb{E}$, inoltre

$$[\mathbb{E}:\mathbb{F}]=[\mathbb{E}:\mathbb{K}][\mathbb{K}:\mathbb{F}]$$

Definizione 1.2.6. Sia $\mathbb{F} \subseteq \mathbb{K}$ un'estensione di campi e siano $\alpha_1, \alpha_2, \ldots, \alpha_n \in \mathbb{K}$. Sia \mathcal{F} la famiglia di tutti i sottocampi di \mathbb{K} contenenti \mathbb{F} e $\alpha_1, \alpha_2, \ldots, \alpha_n$. Osserviamo che $\mathbb{K} \in \mathcal{F} \neq \emptyset$. Definiamo

$$\mathbb{F}(\alpha_1, \alpha_2, \dots, \alpha_n) = \bigcap_{T \in \mathcal{F}} T$$

Proposizione 1.2.7. Sia $\mathbb{F} \subseteq \mathbb{K}$ un'estensione di campi $e A = \{\alpha_1, \alpha_2, \dots, \alpha_n\} \subseteq \mathbb{K}$, $B = \{\beta_1, \beta_2, \dots, \beta_m\} \subseteq \mathbb{K}$, abbiamo

$$\mathbb{F}(A \cup B) = \mathbb{F}(A)(B)$$

Dimostrazione.

- \subseteq Abbiamo $A \cup B \subseteq \mathbb{F}(A) \cup B \subseteq \mathbb{F}(A)(B) \Rightarrow \mathbb{F}(A \cup B) \subseteq \mathbb{F}(A)(B)$ in quanto $\mathbb{F}(A \cup B)$ è il più piccolo sottocampo di \mathbb{K} che contiene $A \cup B$ ed \mathbb{F} .
- \supseteq Analogamente $\mathbb{F}(A) \cup B \subseteq \mathbb{F}(A \cup B) \Rightarrow \mathbb{F}(A)(B) \subseteq \mathbb{F}(A \cup B)$

Proposizione 1.2.8. Sia $\mathbb{F} \subseteq \mathbb{K}$ un'estensione di campi $e \alpha_1, \alpha_2, \ldots, \alpha_n \in \mathbb{K}$. Il campo $\mathbb{F}(\alpha_1, \alpha_2, \ldots, \alpha_n)$ è del tipo

$$\mathbb{F}(\alpha_1, \alpha_2, \dots, \alpha_n) = \left\{ \frac{f(\alpha_1, \alpha_2, \dots, \alpha_n)}{g(\alpha_1, \alpha_2, \dots, \alpha_n)} : f, g \in \mathbb{F}[x_1, \dots, x_n], g(\alpha_1, \dots, \alpha_n) \neq 0 \right\},\,$$

Dimostrazione. Chiamiamo l'insieme della tesi Δ .

- \subseteq Poiché $\mathbb{F} \subseteq \Delta$ e $\alpha_1, \alpha_2, \ldots, \alpha_n \in \Delta$ basta provare che Δ è un campo.
 - $-\Delta$ è un sottoanello di \mathbb{K} in quanto se $a,b\in\Delta$ allora si verifica facilmente che anche $a-b,a\cdot b\in\Delta$.
 - $-\Delta$ è commutativo in quanto lo è \mathbb{K} .
 - $-\Delta$ è unitario poiché $\forall g \in \mathbb{F}[x_1,\ldots,x_n]$ con $g(\alpha_1,\alpha_2,\ldots,\alpha_n) \neq 0$ si ha

$$\frac{g(\alpha_1, \alpha_2, \dots, \alpha_n)}{g(\alpha_1, \alpha_2, \dots, \alpha_n)} = 1_{\mathbb{K}} \in \Delta.$$

- Se $(f/g)(\alpha_1, \alpha_2, \dots, \alpha_n) \in \Delta \setminus \{0_\Delta\}$ allora $f(\alpha_1, \alpha_2, \dots, \alpha_n) \neq 0$ quindi $(g/f)(\alpha_1, \alpha_2, \dots, \alpha_n) \in \Delta$, cioè ogni elemento non nullo ha il suo inverso in Δ .

Definizione 1.2.9. Un'estensione $\mathbb{F} \subseteq \mathbb{K}$ è detta **finitamente generata** (f.g.) se $\exists \alpha_1, \alpha_2, \ldots, \alpha_n \in \mathbb{K} : \mathbb{F}(\alpha_1, \alpha_2, \ldots, \alpha_n) = \mathbb{K}$. Nel caso in cui n = 1 l'estensione è detta **semplice**.

Proposizione 1.2.10. *Se l'estensione* $\mathbb{F} \subseteq \mathbb{K}$ *è finita allora è anche finitamente generata.*

Dimostrazione. Per ipotesi $[\mathbb{K} : \mathbb{F}] = n$. Sia $\mathcal{B} = \{b_1, b_2, \dots, b_n\}$ una base di \mathbb{K} in \mathbb{F} , allora $\forall y \in \mathbb{K}, \exists ! y_1, \dots, y_n \in \mathbb{F} : y = y_1b_1 + \dots + y_nb_n$, quindi $y \in \mathbb{F}(b_1, \dots, b_n)$ cioè $\mathbb{K} \subseteq \mathbb{F}(b_1, \dots, b_n) \Rightarrow \mathbb{K} = \mathbb{F}(b_1, \dots, b_n)$.

Definizione 1.2.11. $Sia \mathbb{F} \subseteq \mathbb{K}$ un'estensione di campi. Un elemento $\alpha \in \mathbb{K}$ è **algebrico** $su \mathbb{F}$ se $\exists f \in \mathbb{F}[x] \setminus \{\underline{0}\} : f(\alpha) = 0$. Se $\alpha \in \mathbb{K}$ non è algebrico $su \mathbb{F}$ allora è **trascendente** $su \mathbb{F}$.

Quando diremo che $\alpha \in \mathbb{C}$ è algebrico o trascendente, senza specificare il campo \mathbb{F} , intenderemo su \mathbb{Q} .

Osservazione 1.2.12. Ogni $\alpha \in \mathbb{F}$ è algebrico su \mathbb{F} in quanto banalmente α è radice del polinomio $x - \alpha \in \mathbb{F}[x]$. In questo caso $\mathbb{F} = \mathbb{F}(\alpha)$.

Abbiamo visto che un'estensione finita è finitamente generata. Il seguente esempio mostra che non vale il viceversa.

Esempio 1.2.13. Consideriamo \mathbb{Q} , $\pi \in \mathbb{R}$. L'estensione semplice $\mathbb{Q} \subseteq \mathbb{Q}(\pi)$ non è finita. Infatti se per assurdo $[\mathbb{Q}(\pi):\mathbb{Q}]=n$ allora considero n+1 elementi del tipo $1,\pi,\pi^2,\ldots,\pi^n\in\mathbb{Q}(\pi)$. Essi devono essere linearmente dipendenti, quindi $\exists a_0,a_1,\ldots,a_n\in\mathbb{Q}$ non tutti nulli tali che $a_0+a_1\pi+\cdots+a_n\pi^n=0$, contro la trascendenza di π in \mathbb{Q} (che non dimostriamo).

Definizione 1.2.14. L'estensione $\mathbb{F} \subseteq \mathbb{K}$ è detta **algebrica** se ogni $\alpha \in \mathbb{K}$ è algebrico su \mathbb{F} .

Esempio 1.2.15. L'estensione $\mathbb{R} \subseteq \mathbb{C}$ è algebrica. Infatti ogni numero complesso $\alpha = a + ib \in \mathbb{C}$ $(a, b \in \mathbb{R})$ è algebrico su \mathbb{R} in quanto considerando il polinomio a coefficienti reali

$$p(x) = x^2 - 2ax + a^2 + b^2 = (x - (a+ib))(x - (a-ib))$$

esso è un polinomio non nullo (il coefficiente di secondo grado è diverso da zero) che si annulla in α .

Teorema 1.2.16. Ogni estensione $\mathbb{F} \subseteq \mathbb{K}$ finita è anche algebrica.

Dimostrazione. Per ipotesi $[\mathbb{K} : \mathbb{F}] = n$, allora $\forall \alpha \in \mathbb{K}$ gli elementi $1, \alpha, \ldots, \alpha^n$ sono l.d. su \mathbb{F} , quindi $\exists a_0, a_1, \ldots, a_n \in \mathbb{F}$ non tutti nulli tali che $a_0 + a_1\alpha + \ldots + a_n\alpha^n = 0$, cioè posto $f(x) = a_0 + a_1x + \ldots + a_nx^n \in \mathbb{F}[x] \setminus \{\underline{0}\}$ si ha $f(\alpha) = 0$, quindi α è algebrico su \mathbb{F} . Dall'arbitrarietà di α segue che l'estensione $\mathbb{F} \subseteq \mathbb{K}$ è algebrica.

Proposizione-Definizione 1.2.17. Sia $\mathbb{F} \subseteq \mathbb{K}$ un'estensione di campi $e \alpha \in \mathbb{K}$. L'applicazione $\phi_{\alpha} : \mathbb{F}[x] \to \mathbb{K}$ con $\phi_{\alpha}(f(x)) = f(\alpha)$ è un omomorfismo di anelli, con

$$\operatorname{Im} \phi_{\alpha} = \{ f(\alpha) : f(x) \in \mathbb{F}[x] \} = \mathbb{F}[\alpha].$$

Tale omomorfismo è detto omomorfismo di valutazione.

Dimostrazione. $\forall f, g \in \mathbb{F}[x]$

- $\phi_{\alpha}(f+g) = (f+g)(\alpha) = f(\alpha) + g(\alpha) = \phi_{\alpha}(f) + \phi_{\alpha}(g)$
- $\phi_{\alpha}(f \cdot g) = (f \cdot g)(\alpha) = f(\alpha) \cdot g(\alpha) = \phi_{\alpha}(f) \cdot \phi_{\alpha}(g)$

Proposizione-Definizione 1.2.18. Sia $\mathbb{F} \subseteq \mathbb{K}$ un'estensione di campi $e \alpha \in \mathbb{K}$ algebrico su \mathbb{F} . Esiste un unico polinomio monico di grado minimo che abbia α come radice e che sia irriducibile in \mathbb{F} . Quest'ultimo è detto **polinomio minimo** di α in \mathbb{F} e si indica con $p_{\alpha}^{\mathbb{F}}(x)$.

Dimostrazione. Consideriamo ker $\phi_{\alpha} \leq \mathbb{F}[x]$. $\mathbb{F}[x]$ è un dominio euclideo con valutazione pari al grado del polinomio. Nei domini euclidei sappiamo che gli ideali sono tutti principali e sono generati dall'elemnto di valutazione minima, quindi ker $\phi_{\alpha} = (f(x))$ con $f(x) \neq \underline{0}$ (altrimenti α non sarebbe algebrico su \mathbb{F}) di grado minimo su ker ϕ_{α} . Inoltre abbiamo

$$\mathbb{F}[x]/\ker\phi_{\alpha}\simeq\operatorname{Im}\phi_{\alpha}\leq\mathbb{K}$$

così facendo $\operatorname{Im} \phi_{\alpha}$ risulterà un dominio (poiché sottoanello di \mathbb{K}), quindi $\ker \phi_{\alpha}$ sarà un ideale primo di $\mathbb{F}[x]$ e pertanto ogni suo generatore risulterà primo quindi sarà anche irriducibile. Poiché (f(x)) = (af(x)) per ogni $a \in \mathbb{F}$ e che l'insieme $\{af(x) : a \in \mathbb{F}\}$ ha un solo polinomio monico (che si ottiene quando a è l'inverso del coefficiente di grado massimo di f(x)) segue che esisterà un unico polinomio monico di grado minimo irriducibile di $\ker \phi_{\alpha}$ (cioè che abbia α come radice).

Il polinomio minimo di un elemento dipende rispetto a quale campo viene considerato, come mostra il seguente

Esempio 1.2.19. Consideriamo la seguente estensione $\mathbb{Q} \subseteq \mathbb{C}$. Il polinomio minimo di $i\sqrt[4]{2} \in \mathbb{C}$ in \mathbb{Q} è $x^4 - 2 \in \mathbb{Q}[x]$, mentre il polinomio minimo dello stesso elemento in $\mathbb{Q}(\sqrt{2})$ è $x^2 + \sqrt{2} \in \mathbb{Q}(\sqrt{2})[x]$.

Osservazione 1.2.20. Sia $\mathbb{F} \subseteq \mathbb{K}$ un'estensione di campi e $\alpha \in \mathbb{K}$. Se $f \in \mathbb{F}[x]$ è irriducibile, monico ed è tale che $f(\alpha) = 0$ allora f(x) è di grado minimo tale che $f(\alpha) = 0$, cioè è il polinomio minimo di α in \mathbb{F} .

Osservazione 1.2.21. $Sia \mathbb{F} \subseteq \mathbb{K}$ un'estensione di campi e $\alpha, \beta \in \mathbb{K}$. $Se \alpha e \beta$ hanno lo stesso polinomio minimo f(x) in \mathbb{F} allora

$$\mathbb{F}[\alpha] = \operatorname{Im} \phi_{\alpha} \simeq \mathbb{F}[x]/(f(x)) \simeq \operatorname{Im} \phi_{\beta} = \mathbb{F}[\beta]$$

Proposizione 1.2.22. Sia $\mathbb{F} \subseteq \mathbb{K}$ un'estensione di campi $e \alpha \in \mathbb{K}$ algebrico su \mathbb{F} . Gli elementi di $\mathbb{F}[\alpha]$ si esprimono in modo unico nella forma $a_0 + a_1\alpha + \ldots + a_{n-1}\alpha^{n-1}$ con $a_i \in \mathbb{F}$ $e \ n = deg(f)$ dove $f \in \mathbb{F}[x]$ è il polinomio minimo di α in \mathbb{F} .

Dimostrazione. Sia $a \in \mathbb{F}[\alpha]$, allora $a = p(\alpha)$ per qualche $p(x) \in \mathbb{F}[x]$. Eseguiamo la divisione euclidea del polinomio p per f:

$$\exists q, r \in \mathbb{F}[x] : p(x) = q(x) \cdot f(x) + r(x)$$

con $r(x) = \underline{0}$ oppure $\deg(r) < \deg(f) = n$, quindi a = 0 oppure $a = p(\alpha) = r(\alpha)$ con $\deg(r) < n$. Questo prova l'esistenza degli $a_i \in \mathbb{F}$.

Per l'unicità supponiamo che esistano $a_i, b_i \in \mathbb{F}$ tali che

$$a = \sum_{i=0}^{n-1} a_i \alpha^i = \sum_{i=0}^{n-1} b_i \alpha^i$$

allora consideriamo il polinomio

$$u(x) = \sum_{i=0}^{n-1} (a_i - b_i)x^i$$

per quanto scritto prima abbiamo $u(\alpha) = 0$, inoltre, se u fosse non nullo, si avrebbe $\deg(u) \leq n - 1 < n = \deg(f)$ e questo contraddirebbe la minimalità del grado di f, quindi dev'essere $u = \underline{0}$, cioè $a_i = b_i \quad \forall i \in \{0, \dots, n-1\}$.

Teorema 1.2.23. Sia $\mathbb{F} \subseteq \mathbb{K}$ un'estensione di campi. Un elemento $\alpha \in \mathbb{K}$ è algebrico se e solo se $\mathbb{F}[\alpha] = \mathbb{F}(\alpha)$.

Dimostrazione.

 \Rightarrow É ovvio che $\mathbb{F}[\alpha] \subseteq \mathbb{F}(\alpha)$. Viceversa, essendo $\mathbb{F}[x]$ un dominio euclideo ogni suo ideale generato da un elemento irriducibile è massiamle, quindi se consideriamo il polinomio minimo $f(x) \in \mathbb{F}[x]$ di α in \mathbb{F} abbiamo che l'ideale (f(x)) è massiamle, quindi dato che $\mathbb{F}[\alpha] = \mathbb{F}[x]/(f(x))$, $\mathbb{F}[\alpha]$ è campo. Infine $\mathbb{F}[\alpha]$ contiene sia \mathbb{F} che α quindi $\mathbb{F}(\alpha) \subseteq \mathbb{F}[\alpha]$, da cui l'uguaglianza.

 \Leftarrow Per ipotesi si ha $\mathbb{F}[\alpha] = \mathbb{F}(\alpha)$, quindi possiamo scrivere

$$\frac{1}{\alpha} \in \mathbb{F}(\alpha) = \mathbb{F}[\alpha] \Rightarrow \frac{1}{\alpha} = \sum_{i=0}^{n-1} a_i \alpha^i \quad a_i \in \mathbb{F}$$

da cui moltiplicando ambo i membri dell'ultima uguaglianza per α e portando tutto a primo membro otteniamo

$$\sum_{i=0}^{n-1} a_i \alpha^{i+1} - 1 = 0$$

cioè il polinomio non nullo

$$p(x) = \sum_{i=0}^{n-1} a_i x^{i+1} - 1 \in \mathbb{F}[x]$$

si annulla in α , pertanto α è algebrico su \mathbb{F} .

Corollario 1.2.24. Se $\alpha \in \mathbb{K}$ è algebrico su \mathbb{F} allora $[\mathbb{F}(\alpha) : \mathbb{F}] = \deg(f(x))$ con $f \in \mathbb{F}[x]$ polinomio minimo di α in \mathbb{F} . In altri termini, ogni estensione semplice tramite un elemento algebrico è finita.

Dimostrazione. Basta osservare che, se $n = \deg(f)$, l'insieme $\{1, \alpha, \alpha^2, \dots, \alpha^{n-1}\}$ forma una base di $\mathbb{F}(\alpha)$ in \mathbb{F} . Infatti se per assurdo gli elementi $1, \alpha, \alpha^2, \dots, \alpha^{n-1}$ fossero linearmente dipendenti sarebbe possibile trovare un polinomio g di grado minore o uguale a n-1 che abbia α come radice, contro la minimalità del grado di f. Inoltre essi generano tutto $\mathbb{F}(\alpha)$ per il teorema precedente.

Corollario 1.2.25. Sia $\mathbb{F} \subseteq \mathbb{K}$ un'estensione di campi. Se $\alpha_1, \alpha_2, \ldots, \alpha_n \in \mathbb{K}$ sono algebrici su \mathbb{F} allora

$$[\mathbb{F}(\alpha_1, \alpha_2, \dots, \alpha_n) : \mathbb{F}] \le \prod_{i=1}^n d_i$$

con $d_i = \deg(f_i(x))$ dove $f_i(x)$ è il polinomio minimo di α_i in \mathbb{F} .

Dimostrazione. Osserviamo che

$$\mathbb{F}(\alpha_1, \alpha_2, \dots, \alpha_i)(\alpha_{i+1}) = \mathbb{F}(\alpha_1, \alpha_2, \dots, \alpha_i, \alpha_{i+1})$$

dal momento che se α_i è algebrico su \mathbb{F} lo è anche su $\mathbb{F}(\alpha_1, \alpha_2, \dots, \alpha_{n-1})$ la seguente catena di estensioni

$$\mathbb{F} \subseteq \mathbb{F}(\alpha_1) \subseteq \ldots \subseteq \mathbb{F}(\alpha_1, \ldots, \alpha_{n-2}) \subseteq \mathbb{F}(\alpha_1, \ldots, \alpha_{n-1}, \alpha_n)$$

è una catane di estensioni finite, da cui

$$[\mathbb{F}(\alpha_1, \alpha_2, \dots, \alpha_n) : \mathbb{F}] = \prod_{i=1}^n [\mathbb{F}(\alpha_1, \dots, \alpha_i) : \mathbb{F}(\alpha_1, \dots, \alpha_{i-1})].$$

Osserviamo adesso che, detto $p_i(x) \in \mathbb{F}(\alpha_1, \dots, \alpha_{i-1})[x]$ il polinomio minimo di α_i in $\mathbb{F}(\alpha_1, \dots, \alpha_{i-1})$, abbiamo che $(p_i(x)) = \ker \phi_{\alpha_i}$, quindi dal momento che $f_i \in \mathbb{F}[x] \subseteq \mathbb{F}(\alpha_1, \dots, \alpha_{i-1})[x]$ e $f_i(\alpha_i) = 0$ deve aversi $f_i \in (p_i(x))$ quindi $p_i|f$, ciò implica che deg $(p_i) \leq \deg(f_i) = d_i$. Dal corollario precedente abbiamo $[\mathbb{F}(\alpha_1, \dots, \alpha_i) : \mathbb{F}(\alpha_1, \dots, \alpha_{i-1})] = \deg(p_i) \leq d_i$, pertanto

$$[\mathbb{F}(\alpha_1, \alpha_2, \dots, \alpha_n) : \mathbb{F}] \le \prod_{i=1}^n d_i$$

Corollario 1.2.26. Un'estensione di campi $\mathbb{F} \subseteq \mathbb{K}$ è finitamente generata e algebrica se e solo se è finita.

Dimostrazione.

- \Rightarrow Per ipotesi $\mathbb{F} \subseteq \mathbb{K}$ è f.g. quindi devono esistere $\alpha_1, \alpha_2, \ldots, \alpha_n \in \mathbb{K}$ tali che $\mathbb{F}(\alpha_1, \alpha_2, \ldots, \alpha_n) = \mathbb{K}$. $\mathbb{F} \subseteq \mathbb{K}$ è algebrica, pertanto $\alpha_1, \alpha_2, \ldots, \alpha_n$ saranno algebrici su \mathbb{F} , allora in base al corollario precedente l'estensione $\mathbb{F} \subseteq \mathbb{F}(\alpha_1, \alpha_2, \ldots, \alpha_n) = \mathbb{K}$ è finita.
- ← Già dimostrato nei risultati precedenti.

Proposizione-Definizione 1.2.27. Sia $\mathbb{F} \subseteq \mathbb{K}$ un'estensione di campi. Gli elementi di \mathbb{K} algebrici su \mathbb{F} formano un campo detto **chiusura algebrica di** \mathbb{F} **in** \mathbb{K}

Dimostrazione. Siano $\alpha, \beta \in \mathbb{K}$ algebrici su \mathbb{F} , per un corollario precedente l'estensione $\mathbb{F} \subseteq \mathbb{F}(\alpha, \beta)$ è finita quindi anche algebrica. Dunque gli elementi $\alpha \pm \beta, \alpha\beta, \alpha\beta^{-1}$ sono tutti algebrici su \mathbb{F} , questo prova che gli elementi di \mathbb{K} algebrici su \mathbb{F} formano un campo. \square

Corollario 1.2.28. Se \mathbb{F} , \mathbb{K} e \mathbb{E} sono tre campi tali che $\mathbb{F} \subseteq \mathbb{K} \subseteq \mathbb{E}$ allora l'estensione $\mathbb{F} \subseteq \mathbb{E}$ è algebrica se e solo se lo sono $\mathbb{F} \subseteq \mathbb{K}$ e $\mathbb{K} \subseteq \mathbb{E}$

Dimostrazione.

- \Rightarrow È ovvio che, essendo $\mathbb{K} \subseteq \mathbb{E}$, se l'estensione $\mathbb{F} \subseteq \mathbb{E}$ è algebrica allora lo è anche $\mathbb{F} \subset \mathbb{K}$.
 - Sia $\alpha \in \mathbb{E}$, per ipotesi $\exists f \in \mathbb{F}[x] \setminus \{\underline{0}\} : f(\alpha) = 0$, ma essendo $\mathbb{F} \subseteq \mathbb{K}$ si ha $f \in \mathbb{F}[x] \subseteq \mathbb{K}[x]$, quindi α è algebrico su \mathbb{K} . Questo prova che $\mathbb{K} \subseteq \mathbb{E}$ è algebrica.
- \Leftarrow Sia $\alpha \in \mathbb{E}$, per ipotesi

$$\exists f(x) = a_0 + a_1 x + \ldots + a_n x^n \in \mathbb{K}[x] \setminus \{\underline{0}\} : f(\alpha) = 0.$$

L'estensione $\mathbb{F} \subseteq \mathbb{F}(a_0, a_1, \ldots, a_n)$ è algebrica poiché ognuno degli $a_i \in \mathbb{K}$ è algebrico su \mathbb{F} per ipotesi. Dal momento che $f \in \mathbb{F}(a_0, \ldots, a_n)[x]$ allora α è algebrico su $\mathbb{F}(a_0, \ldots, a_n)$. Consideriamo adesso le estensioni

$$\mathbb{F} \subseteq \mathbb{F}(a_0,\ldots,a_n) \subseteq \mathbb{F}(a_0,\ldots,a_n,\alpha)$$

ognuna di esse è algebrica in quanto α è algebrico su $\mathbb{F}(a_0,\ldots,a_n)$, quindi l'estensione $\mathbb{F}\subseteq\mathbb{F}(a_0,\ldots,a_n,\alpha)$ è algebrica, in particolare α è algebrico su \mathbb{F} . Questo prova che l'estensione $\mathbb{F}\subseteq\mathbb{E}$ è algebrica.

Teorema 1.2.29. Sia $\mathbb{F} \subseteq \mathbb{K}$ un'estensione di campi. Se $\alpha \in \mathbb{K}$ è trascendente su \mathbb{F} allora $\mathbb{F}(\alpha) \simeq \mathbb{F}(x)$.

Dimostrazione. Sia $\phi : \mathbb{F}(x) \to \mathbb{F}(\alpha)$ con

$$\phi\left(\frac{f(x)}{g(x)}\right) = \frac{f(\alpha)}{g(\alpha)} \quad \forall f, g \in \mathbb{F}[x], g \neq \underline{0}.$$

È facile verificare che ϕ è un omomorfismo di anelli. Inoltre ϕ è suriettivo poiché, per una proposizione precedente, si ha

$$\mathbb{F}(\alpha) = \left\{ \frac{f(\alpha)}{g(\alpha)} : f, g \in \mathbb{F}[x], g \neq \underline{0} \right\}.$$

Verifichiamo che ϕ è iniettivo. Abbiamo che

$$\frac{f(x)}{g(x)} \in \ker \phi \Leftrightarrow \frac{f(\alpha)}{g(\alpha)} = 0 \Leftrightarrow f(\alpha) = 0 \Leftrightarrow f = \underline{0}$$

(l'ultima equivalenza è vera per la trascendenza di α su \mathbb{F}), da cui ker $\phi = \{\underline{0}\}$, cioè ϕ è iniettivo. Dunque ϕ è un isomorfismo di anelli.

Lemma 1.2.30. Se $p(x) \in \mathbb{F}[x]$ è irriducibile con $\deg p(x) = n > 1$ allora esiste un'estensione $\mathbb{F} \subseteq \mathbb{K}$ con $[\mathbb{K} : \mathbb{F}] = n$ nella quale p(x) ha una radice.

Dimostrazione. Dato che $\mathbb{F}[x]$ è un dominio euclideo e p(x) è irriducibile, l'ideale I = (p(x)) è massimale, qundi il quoziente $\mathbb{F}[x]/I$ è un campo.

Consideriamo adesso l'immersione $\varphi : \mathbb{F} \to \mathbb{F}[x]$, la proiezione naturale $\pi : \mathbb{F}[x] \to \mathbb{F}[x]/I$ e infine la composizione $\phi = \pi \circ \varphi : \mathbb{F} \to \mathbb{F}[x]/I$. ϕ è composizione di omomorfismi di anelli quindi è un omomorfismo di anelli, inoltre esso è non banale quindi è iniettivo (se non fosse iniettivo avremo che $\{\underline{0}\} \subseteq \ker \phi \subseteq \mathbb{F}$, cioè \mathbb{F} avrebbe un ideale proprio, il che è impossibile poiché \mathbb{F} è un campo), in altri termini ϕ è un'immersione (scriviamo impropriamente $\mathbb{F} \subseteq \mathbb{F}[x]/I$).

Proviamo che

$$p(t) = a_0 + a_1 t + \ldots + a_n t^n \in \mathbb{F}[t]$$

visto come polinomio in $(\mathbb{F}[x]/I)[t]$ ha come radice $\bar{x} = x + I \in \mathbb{F}[x]/I$, infatti

$$p(\bar{x}) = p(x+I) = (a_0+I) + (a_1+I)(x+I) + \dots + (a_n+I)(x+I)^n =$$
$$= (a_0 + a_1x + \dots + a_nx^n) + I = p(x) + I = I = 0_{\frac{\mathbb{F}[x]}{I}}.$$

La tesi segue ponendo $\mathbb{K} = \mathbb{F}(\bar{x}) \subseteq \mathbb{F}[x]/I$.

Osserviamo che $\mathbb{K} = \mathbb{F}(\bar{x}) = \mathbb{F}[\bar{x}] = \mathbb{F}[x]/I$, in quanto \bar{x} è algebrico su \mathbb{F} e p(x) è irriducibile, quindi $(p_{\bar{x}}^{\mathbb{F}}(x)) = (p(x))$.

Proposizione 1.2.31. Se $f \in \mathbb{F}[x]$ con deg f = n allora esiste un'estensione $\mathbb{F} \subseteq \mathbb{K}$ in cui f si spezza in fattori lineari. Inoltre $[\mathbb{K} : \mathbb{F}] \leq n!$.

Dimostrazione. Procediamo per induzione su n.

Se n=1 banalmente $\mathbb{K}=\mathbb{F}$.

Supponiamo il teorema vero fino a n-1 e dimostriamolo per n.

Sia p(x) un fattore irriducibile di f(x). Se deg p = 1 allora f(x) = p(x)q(x) con deg q = n - 1, per l'ipotesi induttiva q(x) si spezza linearmente in \mathbb{K} , quindi anche f dato che p è gia un fattore lineare, inoltre

$$[\mathbb{K} : \mathbb{F}] \le (n-1)! < n!$$

e questo prova l'asserto.

Supponiamo adesso $\deg p > 1$. Abbiamo $\mathbb{F} \subseteq \mathbb{F}[x]/(p(x)) = \mathbb{E}$. Dal lemma precedente sappiamo che p(x) ha come radice $\bar{x} = x + (p(x))$. Applicando il teorema di Ruffini in $\mathbb{E}[x]$ otteniamo $p(x) = (x - \bar{x})q(x)$ per qualche $q \in \mathbb{E}[x]$. Dal fatto che p(x)|f(x) abbiamo che $f(x) = p(x)h(x) = (x - \bar{x})q(x)h(x)$, per qualche $h \in \mathbb{F}[x] \subseteq \mathbb{E}[x]$, con deg $q \cdot h = n - 1$. Per l'ipotesi induttiva applicata al polinomio $q \cdot h$ (sul campo \mathbb{E}) esiste un'estensione $\mathbb{E} \subseteq \mathbb{K}$ in cui q(x)h(x) si spezza in fattori lineari e $[\mathbb{K} : \mathbb{E}] \leq (n - 1)!$. Dunque $f(x) = (x - \bar{x})q(x)h(x)$ si spezza linearmente in \mathbb{K} , inoltre, poiché deg $p \leq n$ e $\mathbb{E} = \mathbb{F}(\bar{x})$ si ha $[\mathbb{E} : \mathbb{F}] \leq n$, quindi

$$[\mathbb{K} : \mathbb{F}] = [\mathbb{K} : \mathbb{E}] \cdot [\mathbb{E} : \mathbb{F}] < (n-1)! \cdot n = n!.$$

Definizione 1.2.32. Sia $f \in \mathbb{F}[x]$ con deg $f(x) \geq 1$, un campo $\mathbb{K} \supseteq \mathbb{F}$ si dice **campo di** spezzamento di f su \mathbb{F} se

- 1. f si spezza in fattori lineari in $\mathbb{K}[x]$ ($\Leftrightarrow f$ ha tutte le radici in \mathbb{K}).
- 2. Se $\alpha_1, \ldots, \alpha_n \in \mathbb{K}$ sono le radici distinte di f allora $\mathbb{K} = \mathbb{F}(\alpha_1, \ldots, \alpha_n)$.

Osservazione 1.2.33. Dalla proposizione precedente segue che se $\mathbb{F}(\alpha_1, \ldots, \alpha_n)$ è il campo di spezzamento di $f \in \mathbb{F}[x]$ su \mathbb{F} allora l'estensione $\mathbb{F} \subseteq \mathbb{F}(\alpha_1, \ldots, \alpha_n)$ è finita (oppure, più semplicemente, osservando che ognugno degli α_i è algebrico su \mathbb{F}).

Teorema 1.2.34. Siano \mathbb{F} e \mathbb{F}' due campi. Supponiamo che esista un isomorfismo ψ : $\mathbb{F} \to \mathbb{F}'$, allora ψ induce un isomorfismo di anelli $\tilde{\psi}: \mathbb{F}[x] \to \mathbb{F}'[x]$ dove

Se
$$f(x) = \sum_{i=0}^{n} a_i x^i \in \mathbb{F}[x]$$
 allora $\tilde{\psi}(f(x)) = \sum_{i=0}^{n} \psi(a_i) x^i \in \mathbb{F}'[x]$.

Sia adesso $f \in \mathbb{F}[x]$ un polinomio e $f' = \tilde{\psi}(f) \in \mathbb{F}'[x]$. Se \mathbb{K} è il campo di spezzamento di f su \mathbb{F} e \mathbb{K}' sia il campo di spezzamento di f' su \mathbb{F}' allora esiste $\phi : \mathbb{K} \to \mathbb{K}'$ isomorfismo tale che $\phi_{|\mathbb{F}} = \psi$.

Dimostrazione. Sia degf=n, pertanto $[\mathbb{K}:\mathbb{F}]=m\leq n!.$ Procediamo per induzione su m.

Se m=1 banalmente $\phi=\psi$.

Supponiamo il teorema vero fino a m-1, dimostriamolo per m. Sia $[\mathbb{K} : \mathbb{F}] = m > 1$ e p(x) un fattore irriducibile di f(x) con deg p(x) = r > 1. Essendo \mathbb{K} campo di spezzamento

di f(x) e p(x)|f(x) allora tutte le radici di p(x) stanno in \mathbb{K} . Sia $\alpha \in \mathbb{K}$ una radice di p(x) allora

$$\mathbb{F} \subseteq \mathbb{F}[\alpha] = \mathbb{F}(\alpha) = \frac{\mathbb{F}[x]}{(p(x))}.$$

Sia $p'(x) = \tilde{\psi}(p(x)) \in \mathbb{F}'[x]$, p'(x) è irriducibile in $\mathbb{F}'[x]$, come prima \mathbb{K}' contiene tutte le radici di p'(x). Sia $\alpha' \in \mathbb{K}'$ una radice di p'(x), allora come prima

$$\mathbb{F}' \subseteq \mathbb{F}'[\alpha'] = \mathbb{F}'(\alpha') = \frac{\mathbb{F}'[x]}{(p'(x))}.$$

Consideriamo adesso la proiezione naturale $\pi': \mathbb{F}'[x] \to \mathbb{F}'[x]/(p'(x))$. La composizione $\pi' \circ \tilde{\psi}: \mathbb{F}[x] \to \mathbb{F}'[x]/(p'(x))$ risulterà un omomorfismo di anelli suriettivo (poiché entrambi $\tilde{\psi}$ e π' sono omomorfismi suriettivi), inoltre

$$\ker(\pi' \circ \tilde{\psi}) = \left\{ g \in \mathbb{F}[x] : \tilde{\psi}(g(x)) + (p'(x)) = (p'(x)) \right\} = \left\{ g \in \mathbb{F}[x] : \tilde{\psi}(g(x)) \in (p'(x)) \right\} = (p(x))$$

per il primo teorema dell'isomorfismo esiste un isomorfismo $\tau: \mathbb{F}[\alpha] \to \mathbb{F}'[\alpha']$ con

$$\tau(g(x) + (p(x))) = \psi(g(x)) + (p'(x)) \quad \forall g \in \mathbb{F}[x] \Longrightarrow \tau_{\mathbb{F}} = \psi$$

$$\mathbb{F}[x] \xrightarrow{\pi' \circ \tilde{\psi}} \mathbb{F}'[x]/(p'(x))$$

$$\pi \xrightarrow{\tau} \tau$$

$$\mathbb{F}[x]/(p(x))$$

(ricordiamo che
$$\frac{\mathbb{F}[x]}{(p(x))} = \mathbb{F}[\alpha], \frac{\mathbb{F}'[x]}{(p'(x))} = \mathbb{F}[\alpha']$$
).

Inoltre abbiamo che $[\mathbb{F}[\alpha]]$: \mathbb{F} = deg p(x) = r > 1, $[\mathbb{K} : \mathbb{F}] = m$ da cui

$$[\mathbb{K} : \mathbb{F}[\alpha]] = \frac{[\mathbb{K} : \mathbb{F}]}{[\mathbb{F}[\alpha] : \mathbb{F}]} = \frac{m}{r} < m.$$

Osserviamo che $f \in \mathbb{F}[x] \subseteq \mathbb{F}(\alpha)[x]$ e \mathbb{K} è campo di spezzamento di f su $\mathbb{F}(\alpha)$, infatti $\mathbb{K} = \mathbb{F}(\alpha_1, \ldots, \alpha_n) = \mathbb{F}(\alpha)(\alpha_1, \ldots, \hat{\alpha_i}, \ldots, \alpha_h)$, per lo stesso motivo \mathbb{K}' è campo di spezzamento di f' su $\mathbb{F}'[\alpha']$. Possiamo dunque applicare l'ipotesi induttiva (rispetto ai campi $\mathbb{F}[\alpha]$ e $\mathbb{F}'[\alpha']$) quindi esisterà un isomorfismo $\phi : \mathbb{K} \to \mathbb{K}'$ tale che $\phi_{|\mathbb{F}[\alpha]} = \tau$, ma dal momento che $\tau_{|\mathbb{F}} = \psi$ e $\mathbb{F} \subseteq \mathbb{F}(\alpha)$ avremo che $\phi_{|\mathbb{F}} = \tau_{|\mathbb{F}} = \psi$. Pertanto ϕ è l'isomorfismo cercato. \square

Proposizione-Definizione 1.2.35. Un campo \mathbb{F} è algebricamente chiuso se vale almeno una delle seguenti proprietà tra di loro equivalenti

- 1. Ogni polinomio non costante $f \in \mathbb{F}[x] \setminus \mathbb{F}$ ha almeno una radice in \mathbb{F} .
- 2. I soli polinomi irriducibili in $\mathbb{F}[x]$ sono quelli di grado 1.
- 3. Ogni polinomio non costante $f \in \mathbb{F}[x] \setminus \mathbb{F}$ si spezza linearmente in $\mathbb{F}[x] \iff f$ ha tutte le radici in \mathbb{F}).

4. Se $\mathbb{F} \subseteq \mathbb{K}$ è un'estensione algebrica allora $\mathbb{F} = \mathbb{K}$ ($\Leftrightarrow \mathbb{F}$ non ha estensioni algebriche proprie).

Dimostrazione.

- (1) \Rightarrow (2) Sia $f \in \mathbb{F}[x] \setminus \mathbb{F}$, se deg f(x) = 1 allora f è irriducibile, altrimenti se deg f(x) > 1, sia $\alpha \in \mathbb{F}$ una radice di f, per il teorema di Ruffini $f(x) = (x \alpha)g(x)$ con deg $g \ge 1$, cioè f è riducibile.
- $(2) \Rightarrow (3)$ Basta osservare che essendo $\mathbb{F}[x]$ un UFD ogni polinomio $f \in \mathbb{F}[x] \setminus \mathbb{F}$ è prodotto finito di irriducibili che per ipotesi sono i polinomi di grado 1.
- (3) \Rightarrow (4) Sia $\alpha \in \mathbb{K}$, per ipotesi $\exists f \in \mathbb{F}[x] \setminus \mathbb{F} : f(\alpha) = 0$, quindi α è radice di f e pertanto $\alpha \in \mathbb{F}$, questo prova che $\mathbb{K} \subseteq \mathbb{F} \Rightarrow \mathbb{K} = \mathbb{F}$.
- $(4) \Rightarrow (1)$ Sia $f \in \mathbb{F}[x] \setminus \mathbb{F}$ e α una radice di f in qualche estensione. L'estensione $\mathbb{F} \subseteq \mathbb{F}(\alpha)$ è algebrica quindi $\mathbb{F} = \mathbb{F}(\alpha)$, cioè $\alpha \in \mathbb{F}$.

Dalla (3) della precedente proposizione segue che un campo algebricamente chiuso \mathbb{F} è campo di spezzamento di ogni polinomio $f \in \mathbb{F}[x]$.

Definizione 1.2.36. Una estensione $\mathbb{F} \subseteq \overline{\mathbb{F}}$ si dice **chisura algebrica** di \mathbb{F} se

- 1. $\mathbb{F} \subseteq \overline{\mathbb{F}}$ è algebrica.
- 2. $\overline{\mathbb{F}}$ è algebricamente chiuso.

Proposizione 1.2.37. Sia $\mathbb{F} \subseteq \mathbb{K}$ un'estensione algebrica. Se ogni polinomio $f \in \mathbb{F}[x]$ si spezza linearmente in $\mathbb{K}[x]$ allora \mathbb{K} è una chiusura algebrica di \mathbb{F} .

Dimostrazione. Per ipotesi $\mathbb{F} \subseteq \mathbb{K}$ è algebrica, basta quindi dimostrare che \mathbb{K} è algebricamente chiuso. Sia $\mathbb{K} \subseteq \mathbb{E}$ un'estensione algebrica e sia $\alpha \in \mathbb{E}$. α è algebrico su \mathbb{F} quindi per ipotesi il suo polinomio minimo in \mathbb{F} si spezza linearmente in $\mathbb{K}[x]$ da cui $\alpha \in \mathbb{K}$, cioè $\mathbb{E} = \mathbb{K}$ da cui \mathbb{K} è algebricamente chiuso.

Teorema 1.2.38. $Se \mathbb{F} \ \dot{e} \ un \ campo \ allora$

- 1. Esiste una chiusura algebrica di \mathbb{F} (che indicheremo con $\overline{\mathbb{F}}$).
- 2. Se $\mathbb{F} \subseteq \mathbb{K}$ è un'estensione algebrica allora esiste $\phi : \mathbb{K} \to \overline{\mathbb{F}}$ omomorfismo iniettivo tale che $\phi_{|\mathbb{F}} = 1_{\mathbb{F}}$.
- 3. Due chiusure algebriche sono isomorfe mediante un isomorfismo che lascia fisso \mathbb{F} .

Dimostrazione.

1. Sia $\Sigma = \{\mathbb{K} \text{ campo} : \mathbb{F} \subseteq \mathbb{K} \text{ algebrica} \}$. Osserviamo che $\mathbb{F} \in \Sigma \neq \emptyset$, Σ rispetto alla relazione \subseteq è un insieme parzialmente ordinato, infine ogni catena $\mathbb{K}_1 \subseteq \mathbb{K}_2 \subseteq \ldots \subseteq \mathbb{K}_n \subseteq \ldots$ in Σ ammette maggiorante $\bigcup_i \mathbb{K}_i$. Siamo nelle ipotesi del lemma di Zorn quindi esiste $\overline{\mathbb{F}} \in \Sigma$ massimale, quindi $\overline{\mathbb{F}}$ risulterà algebricamente chiuso per definizione. Inoltre, essendo $\mathbb{F} \subseteq \overline{\mathbb{F}}$ algebrica, $\overline{\mathbb{F}}$ risulterà una chiusura algebrica di \mathbb{F} .

- 2. Omessa
- 3. Siano \mathbb{K} e $\overline{\mathbb{F}}$ due chiusure algebriche di \mathbb{F} . Dal punto (2) esiste un omomorfismo $\phi : \mathbb{K} \to \overline{\mathbb{F}}$ tale che $\phi_{|\mathbb{F}} = 1_{\mathbb{F}}$. Dunque $\mathbb{F} \subseteq \mathbb{K} \simeq \phi(\mathbb{K}) \subseteq \overline{\mathbb{F}}$, inoltre considerando che $\mathbb{F} \subseteq \overline{\mathbb{F}}$ è algebrica si ha $\phi(\mathbb{K}) = \overline{\mathbb{F}}$.

Dal precedente teorema segue che la chiusura algebrica di un campo \mathbb{K} (che indicheremo con $\overline{\mathbb{K}}$) è unica a meno di isomorfismi.

Corollario 1.2.39. Se $\mathbb{F} \subseteq \mathbb{K}$ è un'estensione algebrica allora $\overline{\mathbb{F}} \simeq \overline{\mathbb{K}}$.

Dimostrazione. L'estensione $\mathbb{F} \subseteq \overline{\mathbb{K}}$ è algebrica quindi esiste un omomorfismo iniettivo $\phi : \overline{\mathbb{K}} \to \overline{\mathbb{F}}$ tale che $\phi_{|\mathbb{F}} = 1_{\mathbb{F}}$. Poiché $\mathbb{F} \subseteq \overline{\mathbb{K}} \simeq \phi(\overline{\mathbb{K}}) \subseteq \overline{\mathbb{F}}$, essendo $\overline{\mathbb{K}} \simeq \phi(\overline{\mathbb{K}}) \subseteq \overline{\mathbb{F}}$ un'estensione algebrica e $\overline{\mathbb{K}}$ algebricamente chiuso si ha $\overline{\mathbb{K}} \simeq \phi(\overline{\mathbb{K}}) = \overline{\mathbb{F}}$.

L'insieme $\overline{\mathbb{Q}}$ è detto **campo dei numeri algebrici**. Osserviamo che si ha $[\overline{\mathbb{Q}}:\mathbb{Q}] = \infty$, infatti se per assurdo $[\overline{\mathbb{Q}}:\mathbb{Q}] = n$ allora essendo il polinomio minimo di ${}^{n+1}\sqrt{2}$ in \mathbb{Q} uguale a $x^{n+1} - 2 \in \mathbb{Q}[x]$ abbiamo che $\mathbb{Q} \subseteq \mathbb{Q}[{}^{n+1}\sqrt{2}] \subseteq \overline{\mathbb{Q}}$ con $[\mathbb{Q}[{}^{n+1}\sqrt{2}]:\mathbb{Q}] = n+1$, assurdo.

1.3 Campi finiti

Definizione 1.3.1. Un campo \mathbb{K} si dice finito se $|\mathbb{K}| < \infty$, infinito se non è finito.

Osservazione 1.3.2. Se un campo \mathbb{K} è finito allora necessariamente $ch(\mathbb{K}) > 0$, altrimenti se fosse $ch(\mathbb{K}) = 0$ si avrebbe $\mathbb{Q} \subseteq \mathbb{K}$ con $|\mathbb{Q}| = \infty$, contro il fatto che \mathbb{K} è finito.

Proposizione 1.3.3. Se \mathbb{K} è un campo finito allora $|\mathbb{K}| = p^m$ con $p = ch(\mathbb{K})$ e $m \in \mathbb{N} \setminus \{0\}$.

Dimostrazione. Per quanto finora dimostrato deve aversi $ch(\mathbb{K}) = p$ con p primo. Dunque $\mathbb{Z}_p \subseteq \mathbb{K}$ e pertanto \mathbb{K} è uno spazio vettoriale su \mathbb{Z}_p . Essendo $|\mathbb{K}| < \infty$ allora esiste un insieme finito di generatori di \mathbb{K} (come spazio vettoriale) quindi $\dim_{\mathbb{Z}_p} \mathbb{K} = m$, da cui $\mathbb{K} \simeq \mathbb{Z}_p^m$ cioè $|\mathbb{K}| = |\mathbb{Z}_p^m| = p^m$.

Proposizione 1.3.4. Se \mathbb{K} è un campo finito con $|\mathbb{K}| = p^m$ allora \mathbb{K} è campo di spezzamento del polinomio $x^{p^m} - x \in \mathbb{Z}_p[x]$.

Dimostrazione. (\mathbb{K}^* , ·) è un gruppo abeliano finito ($\mathbb{K}^* = \mathbb{K} \setminus \{0_{\mathbb{K}}\}$), dal teorema di Lagrange sappiamo che

$$\forall a \in \mathbb{K}^* \quad a^{o(\mathbb{K}^*)} = 1_{\mathbb{K}} \quad \text{con } o(\mathbb{K}^*) = p^m - 1$$

quindi

$$a^{p^m-1} = 1_{\mathbb{K}} \Rightarrow a^{p^m} = a \Rightarrow a^{p^m} - a = 0,$$

cioè ogni elemento di \mathbb{K} è radice del polinomio $x^{p^m} - x \in \mathbb{Z}_p[x]$. Ma $x^{p^m} - x$ ha al più p^m radici, pertanto \mathbb{K} è costituito da tutte e sole le radici di $x^{p^m} - x$ e quindi $x^{p^m} - x$ si spezza linearmente in \mathbb{K} .

Teorema 1.3.5. Sia p un numero primo. Per ogni $m \in \mathbb{N} \setminus \{0\}$ esiste un campo \mathbb{K} tale che $|\mathbb{K}| = p^m$, inoltre due campi con p^m elementi sono tra loro isomorfi.

Dimostrazione. Consideriamo il polinomio $x^{p^m} - x \in \mathbb{Z}_p[x]$ e sia \mathbb{L} il suo campo di spezzamento. L'estensione $\mathbb{Z}_p \subseteq \mathbb{L}$ è finita, in quanto $\mathbb{L} = \mathbb{Z}_p(\alpha_1, \alpha_2, \dots, \alpha_h)$ con α_i radici di $x^{p^m} - x$, dunque $|\mathbb{L}| < \infty$. Sia $\mathbb{K} = \{\alpha \in \mathbb{L} : \alpha^{p^m} - \alpha = 0\} \subseteq \mathbb{L}$, proviamo che \mathbb{K} è un campo. Siano $a, b \in \mathbb{K}^*$ allora

$$(ab)^{p^m} = a^{p^m}b^{p^m} = ab \neq 0 \Rightarrow ab \in \mathbb{K}^*,$$

questo prova che (\mathbb{K}^*, \cdot) è un sottogruppo di (\mathbb{L}^*, \cdot) (ricordiamo che \mathbb{L}^* è finito); inoltre, dato che \mathbb{L} ha caratteristica p e $\mathbb{K} \subseteq \mathbb{L}$, dal lemma (1.1.6) abbiamo che

$$(a+b)^p = a^p + b^p$$

quindi, applicando ripetutamente la precedente formula si ha

$$(a+b)^{p^m} = a^{p^m} + b^{p^m} = a+b \Rightarrow a+b \in \mathbb{K}$$

e questo prova che $(\mathbb{K},+)$ è un sottogruppo di $(\mathbb{L},+)$ da cui \mathbb{K} è un sottocampo di \mathbb{L} . Inoltre essendo \mathbb{L} il campo di spezzamento di $x^{p^m}-x$ esso è il più piccolo campo contenente tutte le radici di $x^{p^m}-x$ pertanto $\mathbb{L}=\mathbb{K}$. Inoltre, dato che $D(x^{p^m}-x)=p^mx^{p^m-1}-1=-1\neq 0 \quad \forall x\in\mathbb{K}$, allora $x^{p^m}-x$ non ha radici multiple quindi le sue radici sono tutte distinte, dunque $|\mathbb{K}|=p^m$.

Inoltre se \mathbb{F} è un campo con $|\mathbb{F}| = p^m$ allora \mathbb{F} è campo di spezzamento di $x^{p^m} - x \in \mathbb{Z}_p[x]$, quindi $\mathbb{F} \simeq \mathbb{K}$.

Lemma 1.3.6. Sia G un gruppo abeliano finito. Se $a, b \in G$ allora esiste $c \in G$ tale che o(c) = m.c.m.(o(a), o(b)).

(segue dal teorema di struttura dei gruppi abeliani finiti)

Proposizione 1.3.7. Se \mathbb{K} è un campo finito allora (\mathbb{K}^*, \cdot) è un gruppo ciclico.

Dimostrazione. Dal momento che \mathbb{K} è un campo finito allora $|\mathbb{K}| = p^m$. Sia $h = p^m - 1 = |\mathbb{K}^*|$ e $n = m.c.m.(o(a) : a \in \mathbb{K}^*)$, applicando il precedente lemma ricorsivamente sappiamo che esiste $c \in \mathbb{K}^* : o(c) = n$. Dal teorema di Lagrange sappiamo che $n = o(c) \mid h = |\mathbb{K}^*|$, in particolare $n \leq h$. Il polinomio $x^n - 1$ ha al più n radici, poiché $\forall a \in \mathbb{K}^*$ $a^n = 1$ in quanto $n = m.c.m.(o(a) : a \in \mathbb{K}^*)$ allora deve aversi $h \leq n$, da cui $n = h = o(c) = |\mathbb{K}^*|$ quindi $\mathbb{K}^* = \mathcal{G}(c)$.

1.4 Estensioni separabili

Proposizione 1.4.1. Sia $f \in \mathbb{F}[x]$. Se $g = MCD(f, f') \in \mathbb{F}[x]$ allora f ha radici multiple se e solo se deg $g(x) \geq 1$.

Dimostrazione. f ha radici multiple $\Leftrightarrow \exists a \in \mathbb{K} \supseteq \mathbb{F} : f(a) = f'(a) = 0 \Leftrightarrow (x - a) \mid f, f' \text{ (in } \mathbb{K}[x]) \Leftrightarrow (x - a) \mid g \text{ (in } \mathbb{K}[x]) \Leftrightarrow \deg g(x) \geq 1.$

Osservazione 1.4.2. Se $f, g \in \mathbb{F}[x]$ e $\mathbb{F} \subseteq \mathbb{K}$ allora MCD(f, g) è indipendente dal campo in cui viene calcolato in quanto si ottiene con l'algoritmo euclideo che lavora con i coefficienti di f e g, quindi in ogni caso $MCD(f, g) \in \mathbb{F}[x]$.

Definizione 1.4.3.

- 1. Un polinomio $f \in \mathbb{F}[x]$ si dice **separabile** nel suo campo di spezzamento se tutte le sue radici sono distinte.
- 2. Sia $\mathbb{F} \subseteq \mathbb{K}$ e $\alpha \in \mathbb{K}$ algebrico su \mathbb{F} . α è detto **separabile** su \mathbb{F} se è tale il suo polinomio minimo in \mathbb{F} .
- 3. Un'estensione $\mathbb{F} \subset \mathbb{K}$ è detta **separabile** se ogni $\alpha \in \mathbb{K}$ è separabile su \mathbb{F} .

Lemma 1.4.4. Sia $\mathbb{F} \subseteq \mathbb{L} \subseteq \mathbb{K}$ una catena di estensioni di campi. Se $\mathbb{F} \subseteq \mathbb{K}$ è separabile allora lo sono anche $\mathbb{F} \subseteq \mathbb{L}$ e $\mathbb{L} \subseteq \mathbb{K}$.

Dimostrazione. Se $\alpha \in \mathbb{L} \subseteq \mathbb{K}$ allora $\alpha \in \mathbb{K}$ quindi α è separabile su \mathbb{F} . Questo prova che l'estensione $\mathbb{F} \subseteq \mathbb{L}$ è separabile.

Sia $\alpha \in \mathbb{K}$, α è separabile su \mathbb{F} quindi $p_{\alpha}^{\mathbb{F}}(x) \in \mathbb{F}[x] \subseteq \mathbb{L}[x]$ ha tutte le radici distinte, inoltre dato che $\mathbb{F} \subseteq \mathbb{L}$ si ha $p_{\alpha}^{\mathbb{L}}(x)|p_{\alpha}^{\mathbb{F}}(x)$ quindi anche $p_{\alpha}^{\mathbb{L}}(x) \in \mathbb{L}[x]$ ha tutte le radici distinte, da cui $\alpha \in \mathbb{K}$ è separabile su \mathbb{L} . Ciò prova che l'estensione $\mathbb{L} \subseteq \mathbb{K}$ è separabile.

Lemma 1.4.5. Se $f \in \mathbb{F}[x]$ con deg $f(x) \ge 1$ e $ch(\mathbb{F}) = 0$ allora $f' \ne 0$.

Dimostrazione. Dato che deg $f(x) \ge 1$ allora possiamo scrivere

$$f(x) = a_n x^n + \ldots + a_1 x + a_0$$

con $a_n \neq 0$. Per assurdo supponiamo che

$$f'(x) = n \cdot a_n x^{n-1} + \ldots + 2 \cdot a_2 x + a_1 = \underline{0}.$$

Poiché $a_n \neq 0$ si ha $n \cdot a_n = a_n(n \cdot 1) = 0 \Rightarrow n \cdot 1 = 0$ contro $ch(\mathbb{F}) = 0$, assurdo.

Corollario 1.4.6. Sia $f \in \mathbb{F}[x]$ irriducibile con deg $f(x) \geq 1$ allora

- 1. Se $ch(\mathbb{F}) = 0$ allora $f \ \dot{e}$ separabile.
- 2. Se $ch(\mathbb{F}) = p$ allora f non \grave{e} separabile $\iff \exists g \in \mathbb{F}[x] : f(x) = g(x^p)$.

Dimostrazione.

- 1. Dal lemma precedente sappiamo che $f' \neq \underline{0}$, inoltre dal momento che deg $f'(x) < \deg f(x)$ con f irriducibile allora necessariamente MCD(f, f') = 1, cioè f non ha radici multiple quindi è separabile.
- 2. Se $f' \neq \underline{0}$ allora analogamente al punto precedente f è separabile. Se $f' = \underline{0}$ allora MCD(f, f') = f con deg $f(x) \geq 1$ quindi f ha radici multiple, cioè f non è separabile. Così facendo abbiamo dimostrato che

$$f$$
 non è separabile $\iff f' = \underline{0}$.

Adesso basta provare che

$$f' = 0 \iff \exists q \in \mathbb{F}[x] : f(x) = q(x^p).$$

⇒ Supponiamo

$$f(x) = a_n x^n + \ldots + a_1 x + a_0$$

allora

$$f'(x) = n \cdot a_n x^{n-1} + \ldots + 2 \cdot a_2 x + a_1 = 0$$

da cui $i \cdot a_i = a_i(i \cdot 1) = 0$. Poiché $ch(\mathbb{F}) = p$ allora se $p \nmid i$ deve aversi $a_i = 0$, pertanto

$$f(x) = a_{ph}x^{ph} + \ldots + a_{2p}x^{2p} + a_px^p + a_0$$

dove $h \in \mathbb{N}$ è tale che $ph \leq n < p(h+1)$. Ponendo

$$g(x) = a_{ph}x^h + \ldots + a_{2p}x^2 + a_px + a_0$$

otteniamo $f(x) = g(x^p)$.

 \Leftarrow Banale dato che $ch(\mathbb{F}) = p$.

Corollario 1.4.7. Se \mathbb{F} è un campo con $ch(\mathbb{F}) = 0$, allora ogni estensione $\mathbb{F} \subseteq \mathbb{K}$ algebrica è anche separabile.

Dimostrazione. Basta osservare che ogni elemento $\alpha \in \mathbb{K}$ algebrico su \mathbb{F} risulta separabile in quanto il suo polinomio minimo per definizione è irriducibile, quindi in base al risultato precedente esso è separabile.

Proposizione 1.4.8. Se \mathbb{F} è un campo finito allora ogni estensione $\mathbb{F} \subseteq \mathbb{K}$ algebrica è separabile.

Dimostrazione. Sia $\alpha \in \mathbb{K}$ e $p(x) \in \mathbb{F}[x]$ il suo polinomio minimo in \mathbb{F} . L'estensione $\mathbb{F} \subseteq \mathbb{F}(\alpha)$ è finita in quanto α è algebrico su \mathbb{F} , quindi $|\mathbb{F}(\alpha)| < \infty$ cioè $|\mathbb{F}(\alpha)| = p^m$. In questo modo $\mathbb{F}(\alpha)$ è campo di spezzamento di $x^{p^m} - x$, inoltre $D(x^{p^m} - x) = -1$ pertanto $x^{p^m} - x$ non ha radici multiple, ma $\alpha \in \mathbb{F}(\alpha)$ è radice di $x^{p^m} - x$ dunque, se p(x) è il polinomio minimo di α su \mathbb{F} allora $p(x) \mid x^{p^m} - x$, in particolare p(x) ha tutte le radici distinte, cioè α è separabile. Ciò prova che l'estensione $\mathbb{F} \subseteq \mathbb{K}$ è separabile.

Dai risultati precedenti si nota facilmente che il concetto di separabilità è significativo nel caso in cui \mathbb{F} è infinito e $ch(\mathbb{F}) > 0$.

Vediamo adesso un esempio di estensione non separabile.

Esempio 1.4.9. Sia t un'indeterminata su \mathbb{Z}_p e $u = t^p$ con p primo. Poniamo $\mathbb{K} = \mathbb{Z}_p(t)$ e $\mathbb{F} = \mathbb{Z}_p(u)$, si ha

$$\mathbb{F} = \mathbb{Z}_p(u) = \mathbb{Z}_p(t^p) \subseteq \mathbb{Z}_p(t) = \mathbb{K}.$$

Osserviamo che u è trascendente su \mathbb{Z}_p , infatti se per assurdo u fosse algebrico esisterebbe $f \in \mathbb{Z}_p[x] \setminus \{\underline{0}\} : f(u) = 0 \Leftrightarrow f(t^p) = 0$ contro il fatto che t è un'indeterminata su \mathbb{Z}_p . Questo prova anche che u è irriducibile in $\mathbb{Z}_p[u]$ (infatti se u fosse algebrico su \mathbb{Z}_p allora $\mathbb{Z}_p[u] = \mathbb{Z}_p(u)$ quindi u sarebbe un invertibile di $\mathbb{Z}_p[u]$).

Il polinomio $x^p - u \in (\mathbb{Z}_p[u])[x]$ è irriducibile per il criterio di Eisenstein (è un polinomio primitivo e u è primo in $\mathbb{Z}_p[u]$, in quanto essendo $\mathbb{Z}_p[u]$ dominio euclideo ogni

elemento irriducibile è primo) quindi, applicando il lemma di Gauss, è irriducibile anche in $\mathbb{Z}_p(u)[x] = \mathbb{F}[x]$. Poiché

$$(x^p - u)(t) = t^p - t^p = 0,$$

t è una radice del polinomio $x^p - u$ ed essendo tale polinomio monico e irriducibile allora esso è il polinomio minimo di t in \mathbb{F} . Osserviamo infine che $x^p - u$ si fattorizza in $\mathbb{K}[x]$ come seque

$$x^{p} - u = x^{p} - t^{p} = (x - t)^{p}$$

quindi $x^p - u$ ha una sola radice di molteplicità p, pertanto t non è separabile e di conseguenza l'estensione algebrica

$$\mathbb{F} \subseteq \mathbb{F}(t) = \mathbb{Z}_p(u)(t) = \mathbb{Z}_p(t^p, t) = \mathbb{Z}_p(t) = \mathbb{K}$$
 (t è algebrico su \mathbb{F})

non è separabile.

1.5 Polinomi simmetrici

Definizione 1.5.1. Si chiamano **monomi** tutti i polinomi di $\mathbb{F}[x_1, x_2, \dots, x_n]$ del tipo $x_1^{i_1} x_2^{i_2} \dots x_n^{i_n}$.

Definiamo il grado del monomio $x_1^{i_1}x_2^{i_2}\dots x_n^{i_n}$ come il numero

$$\deg(x_1^{i_1}x_2^{i_2}\dots x_n^{i_n}) = i_1 + i_2 + \dots + i_n.$$

Sia

$$f(x_1, x_2, \dots, x_n) = \sum_{i=1, i_2, \dots, i_n} a_1^{i_1} x_2^{i_2} \dots x_n^{i_n} \in \mathbb{F}[x_1, x_2, \dots, x_n],$$

definiamo il grado del polinomio f come il numero

$$\deg f = \max\{\deg(x_1^{i_1}x_2^{i_2}\dots x_n^{i_n}): a_{i_1,i_2,\dots,i_n} \neq 0\}$$

Utilizziamo la seguente notazione: se $\alpha = (i_1, i_2, \dots, i_n) \in \mathbb{N}^n$ allora poniamo

$$\underline{x}^{\alpha} = x_1^{i_1} x_2^{i_2} \dots x_n^{i_n}.$$

Sia \mathcal{M} l'insieme di tutti i monomi di $\mathbb{F}[x_1, x_2, \dots, x_n]$. Vogliamo introdurre su \mathcal{M} un ordinamento totale che soddisfi la proprietà

$$\forall \alpha, \beta, \gamma \in \mathbb{N}^n \quad \underline{x}^{\alpha} \le \underline{x}^{\beta} \Rightarrow \underline{x}^{\alpha+\gamma} \le \underline{x}^{\beta+\gamma}. \tag{1.1}$$

Definizione 1.5.2. Si chiama ordinamento lessicografico graduato, indicato con \leq_{deglex} , la relazione su \mathcal{M}

$$x_1^{i_1} x_2^{i_2} \dots x_n^{i_n} \le x_1^{j_1} x_2^{j_2} \dots x_n^{j_n} \Longleftrightarrow \begin{cases} i_1 + \dots + i_n < j_1 + \dots + j_n \\ oppure \\ i_1 + \dots + i_n = j_1 + \dots + j_n \ e \ i_1 = j_1, \dots, i_k = j_k, i_{k+1} < j_{k+1} \end{cases}$$

Si verifica facilmente che \leq_{deglex} è un ordinamento totale su \mathcal{M} e soddisfa la (1.1).

Definizione 1.5.3. Sia $f = c_1 m_1 + \ldots + c_n m_n \in \mathbb{F}[x_1, \ldots, x_n]$ con $m_i \in \mathcal{M}$ e $c_i \in \mathbb{F} \setminus \{0\}$ e supponiamo che $m_j \leq m_1 \, \forall j \in \{1, \ldots, n\}$. Diamo le seguenti definizioni:

$$egin{aligned} lm(f) &= m_1 & \emph{leading monomial} \ lc(f) &= c_1 & \emph{leading coefficient} \ lt(f) &= c_1 m_1 & \emph{leading term} \end{aligned}$$

Dalla definizione segue subito che se $f, g \in \mathbb{F}[x_1, x_2, \dots, x_n]$ allora

$$lm(f \cdot g) = lm(f) \cdot lm(g)$$

$$lc(f \cdot g) = lc(f) \cdot lc(g)$$

$$lt(f \cdot g) = lt(f) \cdot lt(g)$$

Osservazione 1.5.4. Fissato un $m \in \mathcal{M}$ esiste un numero finito di monomi più piccoli di m.

Definizione 1.5.5. Un polinomio $f \in \mathbb{F}[x_1, \dots, x_n]$ simmetrico se

$$\forall \sigma \in S_n \quad f(x_1, x_2, \dots, x_n) = f(x_{\sigma(1)}, x_{\sigma(2)}, \dots, x_{\sigma(n)}).$$

Definizione 1.5.6. I polinomi

$$\sigma_1(x_1, \dots, x_n) = \sum_{i=1}^n x_i$$

$$\sigma_2(x_1, \dots, x_n) = \sum_{1 \le i < j \le n} x_i x_j$$

$$\vdots$$

$$\sigma_k(x_1, \dots, x_n) = \sum_{1 \le i_1 < \dots < i_n \le n} x_{i_1} \dots x_{i_n}$$

$$\vdots$$

$$\sigma_n(x_1, \dots, x_n) = \prod_{i=1}^n x_i$$

sono detti polinomi simmetrici elementari.

Osserviamo che i polinomi simmetrici elementari sono tutti simmetrici, infatti se consideriamo il polinomio

$$g(x_1, \dots, x_n, x) = (x - x_1)(x - x_2) \dots (x - x_n) = \prod_{i=1}^n (x - x_i) \in \mathbb{F}[x_1, x_2, \dots, x_n][x]$$

ponendo $\sigma_0(x_1,\ldots,x_n)=1$, si ha

$$g(x_1, \dots, x_n, x) = \sum_{i=0}^{n} (-1)^i \sigma_i(x_1, \dots, x_n) x^{n-i}$$

poiché ovviamente

$$\forall \sigma \in S_n \quad g(x_1, \dots, x_n, x) = \prod_{i=1}^n (x - x_i) = \prod_{i=1}^n (x - x_{\sigma(i)}) = g(x_{\sigma(1)}, \dots, x_{\sigma(n)}, x)$$

dal principio di identità dei polinomi otteniamo che

$$\forall \sigma \in S_n \quad \sigma_i(x_1, \dots, x_n) = \sigma_i(x_{\sigma(1)}, \dots, x_{\sigma(n)}) \quad \forall i \in \{1, \dots, n\}.$$

Teorema 1.5.7. (Teorema fondamentale sui polinomi simmetrici) Ogni polinomio simmetrico di $\mathbb{F}[x_1, x_2, \dots, x_n]$ si scrive in modo unico come un polinomio a coefficienti in \mathbb{F} nelle variabili di polinomi simmetrici elementari.

Dimostrazione. (dimostriamo solo l'esistenza) Sia $f \in \mathbb{F}[x_1, x_2, \dots, x_n]$ un polinomio simmetrico e sia $lt(f) = \alpha x_1^{h_1} x_2^{h_2} \dots x_n^{h_n}$. Proviamo che $h_n \leq h_{n-1} \leq \dots \leq h_1$. Per assurdo supponiamo che $\exists i \in \{1, \dots, n\} : h_{i+1} > h_i$, allora, dato che f è simmetrico, considerando la permutazione $\sigma = (i \ i+1) \in S_n$ otteniamo che il monomio $\alpha x_1^{h_1} \dots x_i^{h_{i+1}} x_{i+1}^{h_i} \dots x_n^{h_n}$ dev'essere un monomio di f, ma

$$x_1^{h_1} \dots x_i^{h_i} x_{i+1}^{h_{i+1}} \dots x_{h_n}^n < x_1^{h_1} \dots x_i^{h_{i+1}} x_{i+1}^{h_i} \dots x_{h_n}^n$$

contro il fatto che $lt(f) = x_1^{h_1} \dots x_i^{h_i} x_{i+1}^{h_{i+1}} \dots x_{h_n}^n$, assurdo. In questo modo si ha

$$h_1 - h_2 \ge 0, \dots, h_{n-1} - h_n \ge 0,$$

quindi possiamo considerare il polinomio $g_1 = \alpha \sigma_1^{h_1 - h_2} \sigma_2^{h_2 - h_3} \dots \sigma_{n-1}^{h_{n-1} - h_n} \sigma_n^{h_n}$: Ricordando le proprietà del leading term abbiamo

$$lt(g_1) = \alpha x_1^{h_1 - h_2} (x_1 x_2)^{h_2 - h_3} \dots (x_1 \dots x_n)^{h_n} = \alpha x_1^{h_1} \dots x_n^{h_n} = lt(f)$$

quindi $lt(f-g_1) < lt(f)$. Adesso ci sono due possiblità: se $lt(f-g_1) = \beta \in \mathbb{F}$ allora $f = g_1 + \beta \in \mathbb{F}[\sigma_1, \dots, \sigma_n]$ e si ha la tesi, altrimenti, dato che i monomi piu piccoli di lt(f) sono in numero finito, reiteriamo il procedimento sul polinomio $f-g_1$. Così facendo dopo un numero finito k di passi dovremmo ottenerene

$$f = g_1 + g_2 + \ldots + g_k + \beta \in \mathbb{F}[\sigma_1, \ldots, \sigma_n]$$

Corollario 1.5.8. $Sia\ f(x) \in \mathbb{F}[x]$ un polinomio monico con $\deg f \geq 1$ e siano $\alpha_1, \alpha_2, \ldots, \alpha_n$ tutte le sue radici in qualche estensione $\mathbb{K} \supseteq \mathbb{F}$. Se $p(x_1, x_2, \ldots, x_n) \in \mathbb{F}[x_1, x_2, \ldots, x_n]$ è un polinomio simmetrico allora $p(\alpha_1, \alpha_2, \ldots, \alpha_n) \in \mathbb{F}$.

Dimostrazione. Dal teorema fondamentale sui polinomi simmetrici sappiamo che esiste $\tilde{p} \in \mathbb{F}[x_1, \dots, x_n]$ tale che

$$p(x_1,\ldots,x_n)=\tilde{p}\big(\sigma_1(x_1,\ldots,x_n),\sigma_2(x_1,\ldots,x_n),\ldots,\sigma_n(x_1,\ldots,x_n)\big).$$

Ma scrivendo la fattorizzazione di f

$$f(x) = \prod_{i=1}^{n} (x - \alpha_i) = \sum_{i=0}^{n} (-1)^i \sigma_i(\alpha_1, \dots, \alpha_n) x^{n-i} \in \mathbb{F}[x]$$

otteniamo $\sigma_i(\alpha_1,\ldots,\alpha_n) \in \mathbb{F}$ per ogni $i \in \{1,\ldots,n\}$, da cui

$$p(\alpha_1,\ldots,\alpha_n) = \tilde{p}(\sigma_1(\alpha_1,\ldots,\alpha_n),\ldots,\sigma_n(\alpha_1,\ldots,\alpha_n)) \in \mathbb{F}$$

1.6 Teorema dell'elemento primitivo

Teorema 1.6.1. (Teorema dell'elemento primitivo, versione debole)

Se $\mathbb{F} \subseteq \mathbb{K}$ è un'estensione finitamente generata e separabile allora esiste $\gamma \in \mathbb{K} : \mathbb{F}(\gamma) = \mathbb{K}$. γ è detto **elemento primitivo**.

Dimostrazione. Dividiamo la dimostrazione in due casi.

- 1. Supponiamo \mathbb{F} finito. Dato che l'estensione $\mathbb{F} \subseteq \mathbb{K}$ è finita (poiché finitamente generata e algebrica) allora anche \mathbb{K} risulterà finito. Dunque (\mathbb{K}^*,\cdot) è un gruppo ciclico e pertanto $\mathbb{K} = \mathbb{F}(\gamma)$ per qualche $\gamma \in \mathbb{K}^*$.
- 2. Supponiamo \mathbb{F} infinito. Per ipotesi $\mathbb{K} = \mathbb{F}(\delta_1, \dots, \delta_n)$, procediamo per induzione su n.
 - Se n = 1 il teorema è banale.
 - Se n=2 allora $\mathbb{K}=\mathbb{F}(\alpha,\beta)$ con $\alpha,\beta\in\mathbb{K}$. Sia $p_{\alpha}(x)$ il polinomio minimo di α in \mathbb{F} e siano $\alpha=\alpha_1,\alpha_2,\ldots,\alpha_r$ le sue radici (distinte per ipotesi) con $r=\deg p_{\alpha}$. Analogamente sia $p_{\beta}(x)$ il polinomio minimo di β in \mathbb{F} e siano $\beta=\beta_1,\beta_2,\ldots,\beta_s$ le sue radici (distinte per ipotesi) con $s=\deg p_{\beta}$. Poniamo

$$\lambda_{i,j} = \frac{\alpha - \alpha_i}{\beta_i - \beta} \in \mathbb{K} \quad i \in \{1, \dots, r\}, j \in \{2, \dots, s\}.$$

Poiché \mathbb{F} è infinito esiste $\lambda \in \mathbb{F}$ tale che $\lambda \neq \lambda_{i,j} \forall i \in \{1, ..., r\}, \forall j \in \{2, ..., s\}$. Sia $\gamma = \alpha + \lambda \beta \in \mathbb{K}$, abbiamo

$$(\beta_j - \beta)\lambda \neq \alpha - \alpha_i \Rightarrow \gamma = \alpha + \lambda\beta \neq \alpha_i + \lambda\beta_j.$$

Adesso consideriamo i due polinomi

$$h_1(x) = p_{\alpha}(\gamma - \lambda x) \in \mathbb{F}(\gamma)[x]$$

$$h_2(x) = p_{\beta}(x) \in \mathbb{F}[x] \subseteq \mathbb{F}(\gamma)[x].$$

Il polinomio h_1 ha β come radice, infatti $h_1(\beta) = p_{\alpha}(\gamma - \lambda \beta) = p_{\alpha}(\alpha) = 0$, inoltre per ogni $j \in \{2, ..., s\}$ abbiamo $h_1(\beta_j) \neq 0$, infatti se esistesse un indice $\bar{j} \in \{2, ..., s\}$ tale che $h_1(\beta_{\bar{j}}) = p_{\alpha}(\gamma - \lambda \beta_{\bar{j}}) = 0$ allora $\gamma - \lambda \beta_j = \alpha_i$ per qualche $i \in \{1, ..., r\}$, quindi si avrebbe $\gamma = \alpha + \lambda \beta = \alpha_i + \lambda \beta_j$, assurdo. Dunque si ha

$$MCD(h_1, h_2) = x - \beta \in \mathbb{F}(\gamma)[x] \Rightarrow \alpha = \gamma - \lambda \beta \in \mathbb{F}(\gamma)$$

da cui $\mathbb{K} = \mathbb{F}(\alpha, \beta) \subseteq \mathbb{F}(\gamma) \subseteq \mathbb{K} \Rightarrow \mathbb{K} = \mathbb{F}(\gamma)$.

• Adesso Supponiamo il teorema vero per m < n con $n \ge 3$ e proviamolo per n. Abbiamo

$$\mathbb{F} \subseteq \mathbb{F}(\delta_1, \delta_2, \dots, \delta_{n-1}) \subseteq \mathbb{F}(\delta_1, \delta_2, \dots, \delta_{n-1}, \delta_n) = \mathbb{K},$$

per l'ipotesi induttiva $\exists \beta \in \mathbb{F}(\delta_1, \dots, \delta_{n-1})$ tale che $\mathbb{F}(\delta_1, \dots, \delta_{n-1}) = \mathbb{F}(\beta)$, quindi $\mathbb{K} = \mathbb{F}(\beta, \delta_n)$, sempre per l'ipotesi induttiva $\exists \gamma \in \mathbb{K}$ tale che $\mathbb{K} = \mathbb{F}(\gamma)$.

Vediamo una generalizzazione del precedente teorema.

Teorema 1.6.2. (Teorema dell'elemento primitivo, versione forte)

Se $\mathbb{F} \subseteq \mathbb{F}(\delta_1, \delta_2, \ldots, \delta_n)$ è un'estensione di campi con δ_i separabile su \mathbb{F} per ogni $i \in \{1, \ldots, n\}$ allora esiste $\gamma \in \mathbb{F}(\delta_1, \delta_2, \ldots, \delta_n)$ separabile su \mathbb{F} tale che $\mathbb{F}(\delta_1, \delta_2, \ldots, \delta_n) = \mathbb{F}(\gamma)$.

Dimostrazione. Come prima dividiamo la dimostrazione in due casi.

- 1. Se \mathbb{F} è finito allora poiché i δ_i sono tutti algebrici su \mathbb{F} l'estensione $\mathbb{F} \subseteq \mathbb{F}(\delta_1, \delta_2, \dots, \delta_n)$ è finita, quindi anche $\mathbb{F}(\delta_1, \delta_2, \dots, \delta_n)$ è finito, analogamente al teorema precedente esiste $\gamma \in \mathbb{F}(\delta_1, \delta_2, \dots, \delta_n)$ tale che $\mathbb{F}(\delta_1, \delta_2, \dots, \delta_n) = \mathbb{F}(\gamma)$. Inoltre, essendo $\mathbb{F}(\gamma)$ campo di spezzamento del polinomio $x^{p^m} x$ (dove $|\mathbb{F}(\gamma)| = p^m$) che ha tutte le radici distinte esso coinciderà con il polinomio minimo di γ su \mathbb{F} , da cui γ è separabile su \mathbb{F} .
- 2. Supponiamo \mathbb{F} infinito. La dimostrazione è del tutto analoga al teorema precedente eccetto la separabilità di γ su \mathbb{F} nel caso n=2. Utilizzando la stessa notazione di prima abbiamo $\mathbb{F} \subseteq \mathbb{F}(\alpha, \beta)$ con α, β separabili su \mathbb{F} , $p_{\alpha}(x)$ il polinomio minimo di α in \mathbb{F} e $\alpha = \alpha_1, \alpha_2, \ldots, \alpha_r$ le sue radici (distinte per ipotesi) con $r = \deg p_{\alpha}, p_{\beta}(x)$ il polinomio minimo di β in \mathbb{F} e $\beta = \beta_1, \beta_2, \ldots, \beta_s$ le sue radici (distinte per ipotesi) con $s = \deg p_{\beta}$. Poiché \mathbb{F} è infinito esiste $\lambda \in \mathbb{F}$ tale che

$$\lambda \neq \frac{\alpha_h - \alpha_i}{\beta_j - \beta_k}$$
 $i, h \in \{1, \dots, r\}$
 $j, k \in \{1, \dots, s\}, j \neq k$.

Per costruzione abbiamo $\alpha_i + \lambda \beta_j \neq \alpha_h + \lambda \beta_k$ al variare degli indici i, j, k, h. Sia $\gamma = \alpha + \lambda \beta$. Usando lo stesso procedimento della precedente dimostrazione abbiamo $\mathbb{F}(\gamma) = \mathbb{F}(\alpha, \beta)$. Proviamo che γ è separabile su \mathbb{F} . Sia $p_{\gamma}(x)$ il polinomio minimo di γ su \mathbb{F} e sia

$$s(x) = \prod_{i=1}^{s} p_{\alpha}(x - \lambda \beta_i).$$

Osserviamo che $s(\gamma) = s(\alpha + \lambda \beta) = 0$ in quanto per j = 1 risulta

$$p_{\alpha}(\gamma - \lambda \beta) = p_{\alpha}(\alpha + \lambda \beta - \lambda \beta) = p_{\alpha}(\alpha) = 0.$$

Proviamo che $s(x) \in \mathbb{F}[x]$. Sia

$$S(x_1, x_2, \dots, x_s, x) = \prod_{j=1}^s p_{\alpha}(x - \lambda x_j) \in \mathbb{F}[x_1, \dots, x_s, x],$$

esso è un polinomio simmetrico nelle x_1, \ldots, x_s , sviluppando i prodotti possiamo scrivere

$$S(x_1, \dots, x_s, x) = \sum_{i=1}^{r \cdot s} q_i(x_1, \dots, x_s) x^i$$

con $r \cdot s = \deg S$ e $q_i \in \mathbb{F}[x_1, \dots, x_s]$ polinomi simmetrici per ogni $i \in \{1, \dots, r \cdot s\}$. Per un precedente corollario sui polinomi simmetrici abbiamo che $q_i(\beta_1, \dots, \beta_s) \in \mathbb{F}$, da cui

$$s(x) = S(\beta_1, \dots, \beta_s, x) = \sum_{i=1}^{r \cdot s} q_i(\beta_1, \dots, \beta_s) x^i \in \mathbb{F}[x].$$

Inoltre $s(\gamma) = 0 \Rightarrow p_{\gamma}(x) \mid s(x)$ in $\mathbb{F}[x]$. Osserviamo che s(x) ha tutte le radici distinte, infatti

$$p_{\alpha}(x) = (x - \alpha_1) \cdot \dots \cdot (x - \alpha_r) \Rightarrow$$

$$\Rightarrow p_{\alpha}(x - \lambda \beta_j) = (x - \alpha_1 - \lambda \beta_j) \dots (x - \alpha_r - \lambda \beta_j) =$$

$$= (x - (\alpha_1 + \lambda \beta_j)) \dots (x - (\alpha_r + \lambda \beta_j))$$

da cui possiamo scrivere

$$s(x) = \prod_{j=1}^{s} p_{\alpha}(x - \lambda \beta_j) = \prod_{i=1}^{r} \prod_{j=1}^{s} (x - (\alpha_i + \lambda \beta_j))$$

quindi s(x) ha tutte le radici distinte per la scelta di λ , ma dato che $p_{\gamma}(x) \mid s(x)$ ne segue che γ è separabile su \mathbb{F} .

Vediamo adesso un esempio di estensione finita che non è né semplice né separabile.

Esempio 1.6.3. Sia $\mathbb{K} = \mathbb{Z}_p(t, v)$ con t, v indeterminate su \mathbb{Z}_p . Poniamo $t^p = u, v^p = w$ (come dimostrato in un precedente esempio anche u e w sono indeterminate su \mathbb{Z}_p) e sia

$$\mathbb{F} = \mathbb{Z}_p(u, w) \subseteq \mathbb{Z}_p(t, v) = \mathbb{K}.$$

Analogamente all'esempio precedente, t e v non sono separabili su \mathbb{F} e hanno polinomi minimi su \mathbb{F} rispettivamente $x^p - u, x^p - w \in \mathbb{F}[x]$. Quindi t ovviamente è algebrico su \mathbb{F} , inoltre v è algebrico su $\mathbb{F}(t)$ in quanto il polinomio $x^p - w$ visto in $\mathbb{F}(t)[x]$ continua a essere irriducibile per il criterio di Eisenstein. Dunque considerando la catena di estensioni $\mathbb{F} \subseteq \mathbb{F}(t) \subseteq \mathbb{F}(t,v) = \mathbb{K}$ ne segue $[\mathbb{K} : \mathbb{F}] = p^2$.

Per assurdo supponiamo che $\mathbb{F} \subseteq \mathbb{K}$ sia semplice, cioè $\exists z \in \mathbb{K} : \mathbb{F}(z) = \mathbb{K}$. Ma dato che $\mathbb{K} = \mathbb{Z}_p(t, v)$, z sarà del tipo

$$z = \frac{a_{0,0} + a_{1,0}t + a_{0,1}v + a_{1,1}tv + \dots}{b_{0,0} + b_{1,0}t + b_{0,1}v + b_{1,1}tv + \dots} \quad con \ a_{i,j}, b_{h,k} \in \mathbb{Z}_p$$

adesso dato che $ch(\mathbb{Z}_p) = p$, dal lemma (1.1.6) risulta

$$z^{p} = \frac{a_{0,0}^{p} + a_{1,0}^{p}t^{p} + a_{0,1}^{p}v^{p} + a_{1,1}^{p}t^{p}v^{p} + \dots}{b_{0,0}^{p} + b_{1,0}^{p}t^{p} + b_{0,1}^{p}v^{p} + b_{1,1}^{p}t^{p}v^{p} + \dots} = \frac{a_{0,0}^{p} + a_{1,0}^{p}u + a_{0,1}^{p}w + a_{1,1}^{p}uw + \dots}{b_{0,0}^{p} + b_{1,0}^{p}u + b_{0,1}^{p}w + b_{1,1}^{p}uw + \dots}$$

quindi $z^p \in \mathbb{Z}_p(u, w) = \mathbb{F}$, allora z è radice del polinomio $x^p - z^p \in \mathbb{F}[x]$, pertanto $[\mathbb{K} : \mathbb{F}] = p$, assurdo.

Osserviamo inoltre che per ogni $\lambda, \mu \in \mathbb{F}$ con $\lambda \neq \mu$, dal momento che l'estensione $\mathbb{F} \subseteq \mathbb{K}$ non è semplice deve aversi

$$\mathbb{F} \subseteq \mathbb{F}(t + \lambda v) \subseteq \mathbb{K}$$

$$\mathbb{F} \subseteq \mathbb{F}(t + \mu v) \subseteq \mathbb{K}.$$

Proviamo che $\mathbb{F}(t+\lambda v)\neq\mathbb{F}(t+\mu v)$, infatti se si avesse l'ugualianza allora

$$t + \lambda v \in \mathbb{F}(t + \lambda v)$$

$$t + \mu v \in \mathbb{F}(t + \lambda v)$$

da cui $t + \lambda v - (t + \mu v) = (\lambda - \mu)v \in \mathbb{F}(t + \lambda v) \Rightarrow v \in \mathbb{F}(t + \lambda v)$ dal momento che $\lambda - \mu \neq 0$, quindi anche $t = (t + \lambda v) - \lambda v \in \mathbb{F}(t + \lambda v)$, cioè $\mathbb{F}(t + \lambda v) = \mathbb{F}(t, v) = \mathbb{K}$, assurdo. Da ciò possiamo concludere che tra \mathbb{F} e \mathbb{K} ci sono infiniti campi intermedi, dato che $|\mathbb{F}| = |\mathbb{Z}_p(u, v)| = \infty$.

1.7 Estensioni normali

Teorema 1.7.1. Sia $f \in \mathbb{F}[x]$, \mathbb{K} campo di spezzamento di f e $g \in \mathbb{F}[x]$ irriducibile. Se g ha una radice in \mathbb{K} allora g ha tutte le radici in \mathbb{K} .

Dimostrazione. Possiamo supporre che f e g siano monici, quindi essendo g irriducibile e monico esso è il polinomio minimo di ogni sua radice. Siano $\alpha_1, \alpha_2, \ldots, \alpha_n \in \mathbb{K}$ le radici di f, allora

$$\mathbb{K} = \mathbb{F}(\alpha_1, \alpha_2, \dots, \alpha_n) = \mathbb{F}[\alpha_1, \alpha_2, \dots, \alpha_n],$$

quindi se $\beta \in \mathbb{K}$ è una radice di g allora $\beta = h(\alpha_1, \alpha_2, \dots, \alpha_n)$, con $h(x_1, x_2, \dots, x_n) \in \mathbb{F}[x_1, x_2, \dots, x_n]$. Sia

$$s(x) = \prod_{\sigma \in S_n} \left(x - h(\alpha_{\sigma(1)}, \alpha_{\sigma(2)}, \dots, \alpha_{\sigma(n)}) \right) \in \mathbb{K}[x],$$

dato che $\beta = h(\alpha_1, \alpha_2, \dots, \alpha_n)$ abbiamo $s(\beta) = 0$. Proviamo che $s(x) \in \mathbb{F}[x]$. Sia

$$S(x_1, x_2, \dots, x_n, x) = \prod_{\sigma \in S_n} (x - h(x_{\sigma(1)}, x_{\sigma(2)}, \dots, x_{\sigma(n)})) \in \mathbb{F}[x_1, x_2, \dots, x_n][x],$$

 $S(x_1, x_2, \ldots, x_n, x)$ è simmetrico nelle x_1, x_2, \ldots, x_n , sviluppando i prodotti abbiamo

$$S(x_1, x_2, \dots, x_n, x) = \sum_{i=0}^{n!} q_i(x_1, x_2, \dots, x_n) x^i,$$

dal momento che $S(x_1, x_2, \ldots, x_n, x) = S(x_{\sigma(1)}, x_{\sigma(2)}, \ldots, x_{\sigma(n)}, x) \quad \forall \sigma \in S_n$, dal principio di identità dei polinomi applicato rispetto a x risulta che tutti i polinomi $q_i(x_1, x_2, \ldots, x_n)$ sono simmetrici. Per un precedente corollario, dato che $\alpha_1, \ldots, \alpha_n$ sono le radici di f, abbiamo $q_i(\alpha_1, \alpha_2, \ldots, \alpha_n) \in \mathbb{F}$ per ogni $i \in \{0, \ldots, n\}$, quindi otteniamo $S(\alpha_1, \ldots, \alpha_n, x) = s(x) \in \mathbb{F}[x]$. Inoltre essendo β radice di s(x) allora g(x)|s(x) in quanto g è il polinomio minimo di ogni sua radice. Ma per definizione s(x) si fattorizza linearmente in $\mathbb{K}[x]$, ne segue che g(x) ha tutte le radici in \mathbb{K} .

Definizione 1.7.2. Un'estensione $\mathbb{F} \subseteq \mathbb{K}$ algebrica è detta **normale** se ogni polinomio irriducibile di $\mathbb{F}[x]$ avente una radice in \mathbb{K} ha tutte le radici in \mathbb{K} .

Ad esempio l'estensione $\mathbb{F} \subseteq \overline{\mathbb{F}}$ è sempre normale.

Esempio 1.7.3. L'estensione $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt[3]{2})$ non è normale, infatti $x^3 - 2 \in \mathbb{Q}[x]$ è un polinomio irriducibile (per il criterio di Eisenstein) e ha solamente $\sqrt[3]{2}$ come radice in $\mathbb{Q}(\sqrt[3]{2})$. Pertanto dall'ultimo teorema segue che $\mathbb{Q}(\sqrt[3]{2})$ non può essere campo di spezzamento di alcun polinomio in $\mathbb{Q}[x]$.

Proposizione 1.7.4. Sia $\mathbb{F} \subseteq \mathbb{K}$ un'estensione di campi. \mathbb{K} è campo di spezzamento di un polinomio in $\mathbb{F}[x]$ se e solo se $\mathbb{F} \subseteq \mathbb{K}$ è finita e normale.

Dimostrazione.

- \Rightarrow Segue dal teorema precedente.
- \Leftarrow Per ipotesi $\mathbb{F} \subseteq \mathbb{K}$ è finita, cioè è algebrica e finitamente generata, quindi esistono $\alpha_1, \alpha_2, \ldots, \alpha_n \in \mathbb{K}$ algebrici su \mathbb{F} tali che $\mathbb{K} = \mathbb{F}(\alpha_1, \alpha_2, \ldots, \alpha_n)$. Sia, per ogni $i = 1, \ldots, n, \ p_i(x)$ il polinomio minimo di α_i su \mathbb{F} e sia $f(x) = p_1(x) \ldots p_n(x)$. Dato che $p_i(x)$ è irriducibile con radice $\alpha_i \in \mathbb{K}$, dal fatto che l'estensione $\mathbb{F} \subseteq \mathbb{K}$ è normale sappiamo che $p_i(x)$ si spezza linearmente in $\mathbb{K}[x]$, quindi anche f(x) si spezza linearmente in $\mathbb{K}[x]$, cioè \mathbb{K} è campo di spezzamento di f(x).

Teoria di Galois

2.1 Isomorfismi di campi

Un omomorfismo di campi non è altro che un omomorfismo di anelli tra due campi. Come abbiamo visto in (1.1.2) ogni omomorfismo di campi non nullo è unitario, ed inoltre, poiché un campo è privo ideali non banali, è anche iniettivo.

Definizione 2.1.1. Un omomorfismo di campi non nullo $\varphi : \mathbb{F} \to \mathbb{K}$ è detto **isomorfismo** di \mathbb{F} in \mathbb{K} o anche **immersione** di \mathbb{F} in \mathbb{K} .

L'uso del termine "isomorfismo" nella precedente definizione è improprio, infatti in questo caso abbiamo che \mathbb{F} è isomorfo a $\varphi(\mathbb{F}) \subseteq \mathbb{K}$, quindi \mathbb{F} e \mathbb{K} risulteranno isomorfi se e solo se φ è anche suriettivo.

Proposizione 2.1.2. Se $\varphi : \mathbb{F} \to \mathbb{K}$ è un isomorfismo di \mathbb{F} in \mathbb{K} allora $ch(\mathbb{F}) = ch(\mathbb{K})$. Inoltre se $P_{\mathbb{F}}$ e $P_{\mathbb{K}}$ sono i campi primi rispettivamente di \mathbb{F} e di \mathbb{K} allora $\varphi(P_{\mathbb{F}}) = P_{\mathbb{K}}$.

Dimostrazione. Dalla definizione di caratteristica, poiché $\varphi(n \cdot 1_{\mathbb{F}}) = n \cdot \varphi(1_{\mathbb{F}}) = n \cdot 1_{\mathbb{K}}$ segue facilmente $ch(\mathbb{F}) = ch(\mathbb{K})$. Da (1.1.10) sappiamo che $P_{\mathbb{F}} \simeq P_{\mathbb{K}}$, inoltre dalla minimalità di $P_{\mathbb{K}}$ abbiamo $P_{\mathbb{K}} \subseteq \varphi(P_{\mathbb{F}}) \simeq P_{\mathbb{F}}$ da cui segue $P_{\mathbb{K}} = \varphi(P_{\mathbb{F}})$.

Sia $\varphi : \mathbb{K} \to \mathbb{K}$ un automorfismo. Dal fatto che $\varphi(a \cdot 1) = a \cdot \varphi(1) = a \cdot 1$ segue che φ ristretto al campo primo P di \mathbb{K} ci dà l'identità su P.

Definizione 2.1.3. Sia $\mathbb{F} \subseteq \mathbb{K}$ un'estensione di campi $e \varphi : \mathbb{F} \to \mathbb{E}$ un isomorfismo di \mathbb{F} in \mathbb{E} . Un'estensione di φ a \mathbb{K} è un isomorfismo di campi $\sigma : \mathbb{K} \to \mathbb{E}$ tale che $\sigma_{\mathbb{F}} = \varphi$.

Proposizione 2.1.4. Se $\varphi : \mathbb{F} \to \overline{\mathbb{F}}$ è l'immersione canonica (è un isomorfismo da \mathbb{F} in $\overline{\mathbb{F}}$), $\alpha \in \overline{\mathbb{F}}$ e $\mathbb{K} = \mathbb{F}(\alpha)$ allora φ si estende a \mathbb{K} in al più $n = [\mathbb{K} : \mathbb{F}] = \deg p_{\alpha}^{\mathbb{F}}(x)$ modi.

Dimostrazione. Banalmente esiste almeno un'estensione di φ a \mathbb{K} , basta considerare l'immersione canonica di \mathbb{K} in $\overline{\mathbb{F}}$. Sia $\phi : \mathbb{K} \to \overline{\mathbb{F}}$ un'estensione di φ a \mathbb{K} . Essendo α algebrico su \mathbb{F} allora $\mathbb{K} = \mathbb{F}[\alpha] = \mathbb{F}[\alpha]$. Pertanto se $\beta \in \mathbb{K} = \mathbb{F}[\alpha]$ si ha

$$\beta = b_0 + b_1 \alpha + \ldots + b_{n-1} \alpha^{n-1} \quad b_i \in \mathbb{F}$$

da cui

$$\phi(\beta) = b_0 + b_1 \phi(\alpha) + \ldots + b_{n-1} \phi(\alpha)^{n-1},$$

in quanto $b_i \in \mathbb{F}$ e $\phi_{|\mathbb{F}} = \varphi$. Ne segue che l'estensione ϕ è univocamente determinata da $\phi(\alpha)$. Se

$$p_{\alpha}^{\mathbb{F}}(x) = a_0 + a_1 x + \ldots + a_n x^n$$

è il polinomio minimo di α in \mathbb{F} , risulta

$$p_{\alpha}^{\mathbb{F}}(\phi(\alpha)) = a_0 + a_1\phi(\alpha) + \dots + a_n\phi(\alpha)^n =$$

$$= \phi(a_0) + \phi(a_1)\phi(\alpha) + \dots + \phi(a_n)\phi(\alpha^n) =$$

$$= \phi(a_0 + a_1\alpha + \dots + a_n\alpha^n) = \phi(0) = 0.$$

Dunque $\phi(\alpha) \in \overline{\mathbb{F}}$ deve essere una delle n radici di $p_{\alpha}^{\mathbb{F}}(x)$. Ma dato che $\phi(\alpha)$ determina univocamente segue che ci sono al più n estensioni di ϕ .

Osservazione 2.1.5. Se $\alpha \in \mathbb{K}$ è separabile su \mathbb{F} , allora φ si estende a $\mathbb{K} = \mathbb{F}(\alpha)$ in esattamente n modi. Infatti per ogni radice α_i di $p_{\alpha}^{\mathbb{F}}(x)$ possiamo considerare l'estensione $\phi : \mathbb{K} \to \overline{\mathbb{F}}$ con $\phi(\alpha) = \alpha_i$, essendo le radici di $p_{\alpha}^{\mathbb{F}}(x)$ tutte distinte avremo almeno n estensioni.

Definizione 2.1.6. Sia $\mathbb{F} \subseteq \mathbb{K}$ un'estensione algebrica, definiamo

$$\mathscr{I}(\mathbb{K}/\mathbb{F}) = \{ \psi : \mathbb{K} \to \overline{\mathbb{F}} : \psi \text{ isomorfismo di } \mathbb{K} \text{ in } \overline{\mathbb{F}}, \psi_{|\mathbb{F}} = 1_{\mathbb{F}} \}$$

Teorema 2.1.7. Se $\mathbb{F} \subseteq \mathbb{K}$ è un'estensione finita allora

$$|\mathscr{I}(\mathbb{K}/\mathbb{F})| \leq [\mathbb{K} : \mathbb{F}].$$

Se ciascuno dei generatori dell'estensione $\mathbb{F} \subseteq \mathbb{K}$ è separabile su \mathbb{F} , allora vale l'uguaglianza.

Dimostrazione. Per ipotesi $\mathbb{K} = \mathbb{F}(\alpha_1, \alpha_2, \dots, \alpha_r), n = [\mathbb{K} : \mathbb{F}]$ con α_i algebrici su \mathbb{F} . Consideriamo la catena di estensioni

$$\mathbb{F} \subseteq \mathbb{F}(\alpha_1) \subseteq \mathbb{F}(\alpha_1, \alpha_2) \subseteq \ldots \subseteq \mathbb{F}(\alpha_1, \alpha_2, \ldots, \alpha_r)$$

e poniamo $m_i = [\mathbb{F}(\alpha_1, \alpha_2, \dots, \alpha_i) : \mathbb{F}(\alpha_1, \alpha_2, \dots, \alpha_{i-1})]$, quindi $n = m_1 m_2 \dots m_r$. Dalla proposizione precedente sappiamo che l'immersione canonica $\varphi : \mathbb{F} \to \overline{\mathbb{F}}$ si estende a $\mathbb{F}(\alpha_1)$ in al più m_1 modi, ognuna di queste estensioni si estende a sua volta a $\mathbb{F}(\alpha_1, \alpha_2)$ in al più m_2 modi, e così via fino a $\mathbb{F}(\alpha_1, \alpha_2, \dots, \alpha_r) = \mathbb{K}$. Ne segue che

$$|\mathscr{I}(\mathbb{K}/\mathbb{F})| < m_1 m_2 \dots m_r = n = [\mathbb{K} : \mathbb{F}].$$

Nel caso in cui ciascuno degli α_i è separabile su \mathbb{F} , dal teorema dell'elemento primitivo (versione forte) esiste $\gamma \in \mathbb{K}$ separabile su \mathbb{F} tale che $\mathbb{K} = \mathbb{F}(\gamma)$. La tesi adesso segue facilmente dalla proposizione e dall'osservazione precedente.

Osservazione 2.1.8. Sia $\mathbb{F} \subseteq \mathbb{L} \subseteq \mathbb{K}$ una catena di estensioni algebriche. Risulta

$$\mathscr{I}(\mathbb{K}/\mathbb{L}) \subset \mathscr{I}(\mathbb{K}/\mathbb{F}),$$

infatti, essendo $\mathbb{F} \subseteq \mathbb{L}$ algebrica si ha $\overline{\mathbb{F}} = \overline{\mathbb{L}}$, quindi ogni estensione dell'immersione $\psi : \mathbb{L} \to \overline{\mathbb{F}}$ può essere vista come estensione di $\psi_{\mathbb{F}}$.

Definizione 2.1.9. Sia $\mathbb{F} \subseteq \mathbb{K}$ un'estensione algebrica e $T \subseteq \mathscr{I}(\mathbb{K}/\mathbb{F})$. Definiamo

$$\mathbb{K}^T = \{ \alpha \in \mathbb{K} : \phi(\alpha) = \alpha, \, \forall \phi \in T \}.$$

 \acute{E} di facile dimostrazione che \mathbb{K}^T risulta un campo, esso è detto **campo fissato da** T.

Osservazione 2.1.10. Dalla definizione per ogni $T \subseteq \mathscr{I}(\mathbb{K}/\mathbb{F})$ risulta $\mathbb{F} \subseteq \mathbb{K}^T \subseteq \mathbb{K}$. Inoltre abbiamo già visto che per ogni campo intermedio $\mathbb{F} \subseteq \mathbb{L} \subseteq \mathbb{K}$ abbiamo $\mathscr{I}(\mathbb{K}/\mathbb{L}) \subseteq \mathscr{I}(\mathbb{K}/\mathbb{F})$. Dunque, posti $\mathcal{A} = \{\mathbb{L} \text{ campo } : \mathbb{F} \subseteq \mathbb{L} \subseteq \mathbb{K}\}, \mathcal{B} = \{T \subseteq \mathscr{I}(\mathbb{K}/\mathbb{F})\}, ha senso considerare le due applicazioni$

$$\epsilon: \mathcal{A} \to \mathcal{B}, \quad \epsilon(\mathbb{L}) = \mathscr{I}(\mathbb{K}/\mathbb{L})$$

$$\eta: \mathcal{B} \to \mathcal{A}, \quad \eta(T) = \mathbb{K}^T.$$

Quindi se $\mathbb{F} \subseteq \mathbb{L} \subseteq \mathbb{K}$ allora $(\eta \circ \epsilon)(\mathbb{L}) = \mathbb{K}^{\mathscr{I}(\mathbb{K}/\mathbb{L})}$, mentre se $T \subseteq \mathscr{I}(\mathbb{K}/\mathbb{F})$ allora $(\epsilon \circ \eta)(T) = \mathscr{I}(\mathbb{K}/\mathbb{K}^T)$. Inoltre dalle definizioni si ha

$$\mathbb{L} \subseteq \mathbb{K}^{\mathscr{I}(\mathbb{K}/\mathbb{L})} = (\eta \circ \epsilon)(\mathbb{L})$$

$$T \subseteq \mathscr{I}(\mathbb{K}/\mathbb{K}^T) = (\epsilon \circ \eta)(T).$$

Utilizzando la notazione dell'osservazione precedente, vogliamo studiare i casi in cui $\epsilon \circ \eta = 1_A$ e $\eta \circ \epsilon = 1_B$.

Lemma 2.1.11. Per ogni $\mathbb{L} \in \mathcal{A}$ si ha $\mathscr{I}(\mathbb{K}/\mathbb{L}) = \mathscr{I}(\mathbb{K}/\mathbb{K}^{\mathscr{I}(\mathbb{K}/\mathbb{L})})$.

Dimostrazione.

 \subseteq Sia $\varphi \in \mathscr{I}(\mathbb{K}/\mathbb{L})$, per definizione $\forall \alpha \in \mathbb{K}^{\mathscr{I}(\mathbb{K}/\mathbb{L})}$ risulta $\varphi(\alpha) = \alpha$. Dunque, sempre per definizione, si ha $\varphi \in \mathscr{I}(\mathbb{K}/\mathbb{K}^{\mathscr{I}(\mathbb{K}/\mathbb{L})})$.

 \supseteq Segue dal fatto che $\mathbb{L} \subseteq \mathbb{K}^{\mathscr{I}(\mathbb{K}/\mathbb{L})}$

Proposizione 2.1.12. Se $\mathbb{F} \subseteq \mathbb{K}$ è un'estensione finita e separabile allora per ogni $\mathbb{L} \in \mathcal{A}$ si ha $\mathbb{L} = \mathbb{K}^{\mathscr{I}(\mathbb{K}/\mathbb{L})}$ (cioè $\eta \circ \epsilon = 1_{\mathcal{A}}$).

Dimostrazione. Per ipotesi l'estensione $\mathbb{F} \subseteq \mathbb{K}$ è finita e separabile, quindi lo è anche $\mathbb{E} \subset \mathbb{K}$ per ogni $\mathbb{E} \in \mathcal{A}$. In base al teorema precedente abbiamo

$$[\mathbb{K}:\mathbb{L}] = |\mathscr{I}(\mathbb{K}/\mathbb{L})| = |\mathscr{I}(\mathbb{K}/\mathbb{K}^{\mathscr{I}(\mathbb{K}/\mathbb{L})})| = [\mathbb{K}:\mathbb{K}^{\mathscr{I}(\mathbb{K}/\mathbb{L})}]$$

da cui essendo $\mathbb{L} \subseteq \mathbb{K}^{\mathscr{I}(\mathbb{K}/\mathbb{L})} \subseteq \mathbb{K}$ ne segue $[\mathbb{K}^{\mathscr{I}(\mathbb{K}/\mathbb{L})} : \mathbb{L}] = 1$, cioè $\mathbb{L} = \mathbb{K}^{\mathscr{I}(\mathbb{K}/\mathbb{L})}$.

Osservazione 2.1.13. Se $\mathbb{F} \subseteq \mathbb{K}$ è finita e separabile allora $\eta \circ \epsilon = 1_{\mathcal{A}}$. Pertanto ϵ è iniettiva, ciò vuol dire che $|\mathcal{A}| \leq |\mathcal{B}|$. Inoltre dal fatto che $|\mathcal{I}(\mathbb{K}/\mathbb{F})| = [\mathbb{K} : \mathbb{F}]$ ed essendo \mathcal{B} l'insieme delle parti di $\mathcal{I}(\mathbb{K}/\mathbb{F})$, segue che la cardinalità di \mathcal{B} è finita. Dunque anche \mathcal{A} è insieme finito, o in altri termini esistono un numero finito di campi intermedi tra \mathbb{F} e \mathbb{K} .

2.2 Gruppo di Galois

Definizione 2.2.1. Sia $\mathbb{F} \subseteq \mathbb{K}$ un'estensione di campi. Si chiama **gruppo di Galois** dell'estensione $\mathbb{F} \subset \mathbb{K}$ l'insieme

$$\mathcal{G}(\mathbb{K}/\mathbb{F}) = \{ \varphi : \mathbb{K} \to \mathbb{K} : \varphi \ automorfismo , \varphi_{\mathbb{F}} = 1_{\mathbb{F}} \} \subseteq Aut(\mathbb{K})$$

Proposizione 2.2.2. $\mathcal{G}(\mathbb{K}/\mathbb{F})$ è un sottogruppo di $\operatorname{Aut}(\mathbb{K})$.

Dimostrazione. Per ogni $\sigma_1, \sigma_2 \in \mathcal{G}(\mathbb{K}/\mathbb{F})$ e ogni $\alpha \in \mathbb{F}$ abbiamo $(\sigma_1 \circ \sigma_2^{-1})(\alpha) = \sigma_1(\sigma_2^{-1}(\alpha)) = \sigma_1(\alpha) = \alpha$ ad cui $\sigma_1 \circ \sigma_2^{-1} \in \mathcal{G}(\mathbb{K}/\mathbb{F})$.

Osservazione 2.2.3. Se $\mathbb{F} \subseteq \mathbb{L} \subseteq \mathbb{K}$ è una catena di estensione di campi allora

$$\mathcal{G}(\mathbb{K}/\mathbb{L}) \leq \mathcal{G}(\mathbb{K}/\mathbb{F}),$$

infatti ogni automorfismo di $\mathcal{G}(\mathbb{K}/\mathbb{L})$ lascia fisso \mathbb{L} , quindi lascia fisso anche $\mathbb{F} \subseteq \mathbb{L}$.

Osservazione 2.2.4. Se $\mathbb{F} \subseteq \mathbb{K}$ è algebrica allora

$$\mathcal{G}(\mathbb{K}/\mathbb{F}) \subseteq \mathscr{I}(\mathbb{K}/\mathbb{F}).$$

Infatti in questo caso $\mathbb{F} \subseteq \mathbb{K} \subseteq \overline{\mathbb{F}}$ quindi per ogni $\varphi \in \mathcal{G}(\mathbb{K}/\mathbb{F})$ abbiamo $\varphi : \mathbb{K} \to \mathbb{K} \subseteq \overline{\mathbb{F}}$ con $\varphi_{|\mathbb{F}} = 1_{\mathbb{F}}$, cioè $\varphi \in \mathcal{I}(\mathbb{K}/\mathbb{F})$.
Inoltre se $\mathbb{F} \subset \mathbb{K}$ è anche finita allora

$$|\mathcal{G}(\mathbb{K}/\mathbb{F})| \le |\mathscr{I}(\mathbb{K}/\mathbb{F})| \le [\mathbb{K}:\mathbb{F}].$$

Osservazione 2.2.5. Siano $\mathbb{F} \subseteq \mathbb{K}$ un'estensione algebrica, $f \in \mathbb{F}[x_1, x_2, \dots, x_n]$ e $\beta_1, \beta_2, \dots, \beta_n \in \mathbb{K}$. Se $\varphi \in \mathscr{I}(\mathbb{K}/\mathbb{F})$ allora $\varphi(f(\beta_1, \beta_2, \dots, \beta_n)) = f(\varphi(\beta_1), \varphi(\beta_2), \dots, \varphi(\beta_n))$ in quanto φ lascia fissi gli elementi di \mathbb{F} . In particolare se $\mathbb{F} \subseteq \mathbb{K}$ è anche finitamente generata allora esistono $\alpha_1, \alpha_2, \dots, \alpha_n \in \mathbb{K}$ tali che $\mathbb{K} = \mathbb{F}(\alpha_1, \alpha_2, \dots, \alpha_n) = \mathbb{F}[\alpha_1, \alpha_2, \dots, \alpha_n]$, quindi ogni $\varphi \in \mathscr{I}(\mathbb{K}/\mathbb{F})$ è univocamente determinato da $\varphi(\alpha_1), \varphi(\alpha_2), \dots, \varphi(\alpha_n)$. Inoltre

$$p_{\alpha_i}^{\mathbb{F}}(\varphi(\alpha_i)) = \varphi(p_{\alpha_i}^{\mathbb{F}}(\alpha_i)) = \varphi(0) = 0$$

quindi $\varphi(\alpha_i)$ deve essere una radice di $p_{\alpha_i}^{\mathbb{F}}(x)$. Se vogliamo che $\varphi \in \mathcal{G}(\mathbb{K}/\mathbb{F}) \subseteq \mathscr{I}(\mathbb{K}/\mathbb{F})$, allora $\varphi(\alpha_i)$ deve essere una radice di $p_{\alpha_i}^{\mathbb{F}}(x)$ che sta in \mathbb{K} .

Dall'osservazione precedente, se l'estensione $\mathbb{F} \subseteq \mathbb{K}$ è anche normale, segue che ogni radice di $p_{\alpha_i}^{\mathbb{F}}$ sta automaticamente in \mathbb{K} per cui abbiamo il seguente

Corollario 2.2.6. Se l'estensione $\mathbb{F} \subseteq \mathbb{K}$ è finita e normale allora

$$\mathcal{G}(\mathbb{K}/\mathbb{F}) = \mathscr{I}(\mathbb{K}/\mathbb{F})$$

Esempio 2.2.7. L'estensione $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt[3]{2})$ è finita ma non è normale, infatti il polinomio $x^3 - 2 \in \mathbb{Q}[x]$ è irriducibile in $\mathbb{Q}[x]$ ma ha una sola radice in $\mathbb{Q}(\sqrt[3]{2})$. Il gruppo di Galois $\mathcal{G}(\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q})$ è formato solo dall'identità, mentre $\mathcal{I}(\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q})$ ha tre e elementi, precisamente gli isomorfismi di $\mathbb{Q}(\sqrt[3]{2})$ in $\overline{\mathbb{Q}}$ che mandano $\sqrt[3]{2}$ rispettivamente nelle tre radici del polinomio $x^3 - 2$. Pertanto in questo caso $\mathcal{G}(\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q}) \subsetneq \mathcal{I}(\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q})$.

Analogamente a quanto fatto prima diamo la seguente definizione.

Definizione 2.2.8. Sia $\mathbb{F} \subseteq \mathbb{K}$ un'estensione di campi e $T \subseteq \mathcal{G}(\mathbb{K}/\mathbb{F})$. Definiamo

$$\mathbb{K}^T = \{ \alpha \in \mathbb{K} : \phi(\alpha) = \alpha, \, \forall \phi \in T \}.$$

 \acute{E} di facile dimostrazione che \mathbb{K}^T risulta un campo, esso è detto **campo fissato da** T.

Lemma 2.2.9. Se $\mathbb{F} \subseteq \mathbb{K}$ è un'estensione di campi allora

$$\mathcal{G}(\mathbb{K}/\mathbb{F}) = \mathcal{G}(\mathbb{K}/\mathbb{K}^{\mathcal{G}(\mathbb{K}/\mathbb{F})})$$

Dimostrazione. Del tutto analoga a quanto fatto in (2.1.11).

Teorema 2.2.10. (Teorema di Galois) $Sia \mathbb{F} \subseteq \mathbb{K}$ un'estensione finita. Sono equivalenti:

- 1. $\mathbb{F} \subseteq \mathbb{K}$ è normale e separabile.
- 2. \mathbb{K} è campo di spezzamento di un polinomio $f \in \mathbb{F}[x]$ separabile.
- 3. $|\mathcal{G}(\mathbb{K}/\mathbb{L})| = [\mathbb{K} : \mathbb{L}] \ per \ ogni \ campo \ \mathbb{L} \ tale \ che \ \mathbb{F} \subseteq \mathbb{L} \subseteq \mathbb{K}$.
- \mathcal{L} . $\mathbb{F} = \mathbb{K}^{\mathcal{G}(\mathbb{K}/\mathbb{F})}$.

Dimostrazione.

- (1) \Rightarrow (2) Per ipotesi esistono $\alpha_1, \alpha_2, \ldots, \alpha_n \in \mathbb{K}$ tali che $\mathbb{K} = \mathbb{F}(\alpha_1, \alpha_2, \ldots, \alpha_n)$. Siano $p_i(x) = p_{\alpha_i}^{\mathbb{F}}(x)$. Consideriamo solo i polinomi $p_i(x)$ distinti e, a meno di riordinamento degli indici, supponiamo siano $p_1(x), p_2(x), \ldots, p_r(x)$. Sia $f(x) = p_1(x)p_2(x) \ldots p_r(x)$. Dato che ogni polinomio $p_i(x)$ è irriducibile in $\mathbb{F}[x]$ e ha una radice in \mathbb{K} , essendo l'estensione $\mathbb{F} \subseteq \mathbb{K}$ normale segue che tutte le radici di $p_i(x)$ stanno in \mathbb{K} , quindi \mathbb{K} è campo di spezzamento di f(x). Proviamo che f è separabile. Dato che l'estensione $\mathbb{F} \subseteq \mathbb{K}$ è separabile ogni $\alpha_i \in \mathbb{K}$ è separabile su \mathbb{F} quindi ogni polinomio $p_i(x)$ ha tutte le radici distinte. Inoltre se per assurdo esiste $\beta \in \mathbb{K}$ tale che $p_i(\beta) = p_j(\beta) = 0$ allora $p_i(x) = p_j^{\mathbb{F}}(x) = p_j(x)$ in quanto $p_i(x)$ e $p_j(x)$ sono irriducibili e monici, contro il fatto che p_i e p_j sono distinti, assurdo. Ciò prova che f è separabile.
- (2) \Rightarrow (3) Per ipotesi \mathbb{K} è campo di spezzamento di $f \in \mathbb{F}[x]$, quindi l'estensione $\mathbb{F} \subseteq \mathbb{K}$ è finita e normale, pertanto $\mathcal{G}(\mathbb{K}/\mathbb{F}) = \mathcal{I}(\mathbb{K}/\mathbb{F})$. Inoltre $\mathbb{K} = \mathbb{F}(\alpha_1, \alpha_2, \dots, \alpha_n)$ con α_i radici distinte di f. Siano $p_i(x) = p_{\alpha_i}^{\mathbb{F}}(x)$, allora per ogni $i \in \{1, 2, \dots, n\}$ $p_i(x)|f(x)$ da cui $p_i(x)$ è separabile, quindi ogni α_i è separabile su \mathbb{F} . Per (2.1.7) abbiamo

$$[\mathbb{K}:\mathbb{F}]=|\mathscr{I}(\mathbb{K}/\mathbb{F})|=|\mathcal{G}(\mathbb{K}/\mathbb{F})|.$$

Se adesso consideriamo un generico campo \mathbb{L} tale che $\mathbb{F} \subseteq \mathbb{L} \subseteq \mathbb{K}$, la tesi segue ripetendo quanto fatto in precedenza considerando il polinomio f in $\mathbb{L}[x] \supseteq \mathbb{F}[x]$.

 $(3) \Rightarrow (4) \ \text{Dato che } \mathbb{F} \subseteq \mathbb{K}^{\mathcal{G}(\mathbb{K}/\mathbb{F})} \subseteq \mathbb{K}, \text{ dal lemma precedente abbiamo } \mathcal{G}(\mathbb{K}/\mathbb{F}) = \mathcal{G}(\mathbb{K}/\mathbb{K}^{\mathcal{G}(\mathbb{K}/\mathbb{F})}),$ quindi risulta

$$[\mathbb{K}:\mathbb{F}] = |\mathcal{G}(\mathbb{K}/\mathbb{F})| = |\mathcal{G}(\mathbb{K}/\mathbb{K}^{\mathcal{G}(\mathbb{K}/\mathbb{F})})| = [\mathbb{K}:\mathbb{K}^{\mathcal{G}(\mathbb{K}/\mathbb{F})}],$$

da cui segue $\mathbb{F} = \mathbb{K}^{\mathcal{G}(\mathbb{K}/\mathbb{F})}$.

(4) \Rightarrow (1) Dato che $\mathbb{F} \subseteq \mathbb{K}$ è finita, sappiamo che $\mathcal{G}(\mathbb{K}/\mathbb{F})$ è finito, quindi poniamo $\mathcal{G}(\mathbb{K}/\mathbb{F}) = \{\varphi_1, \varphi_2, \dots, \varphi_n\}$, con $\varphi_1 = 1_{\mathbb{K}}$. Sia $\alpha \in \mathbb{K}$ e siano $\alpha = \alpha_1, \alpha_2, \dots, \alpha_m$ le immagini distinte di α tramite gli elementi $\varphi_i \in \mathcal{G}(\mathbb{K}/\mathbb{F})$ in modo che $\alpha_i = \varphi_i(\alpha)$, quindi $m \leq n$. Osserviamo che $\varphi_i \in \mathcal{G}(\mathbb{K}/\mathbb{F})$ induce una permutazione su $A = \{\alpha_1, \alpha_2, \dots, \alpha_m\} \subseteq \mathbb{K}$. Infatti $\varphi_i(\alpha_j) = \varphi_i(\varphi_j(\alpha)) = (\varphi_i \circ \varphi_j)(\alpha) = \varphi_k(\alpha) = \alpha_k$, quindi $\varphi_i(A) \subseteq A$, inoltre essendo φ_i un automorfismo di \mathbb{K} essa è iniettiva e dato che A è un insieme finito allora φ_i è biettiva su A. Sia

$$h(x) = \prod_{i=1}^{m} (x - \alpha_i) = \sum_{i=0}^{m} a_i x^{n-i},$$

dove $a_i = (-1)^i \sigma_i(\alpha_1, \dots, \alpha_m)$ con $\sigma_i(x_1, \dots, x_m) \in \mathbb{F}[x_1, \dots, x_m]$ polinomi simmetrici elementari. Per quanto osservato prima abbiamo che per ogni $\varphi \in \mathcal{G}(\mathbb{K}/\mathbb{F})$ e ogni $i \in \{0, 1, \dots, m\}$

$$\varphi(a_i) = (-1)^i \varphi(\sigma_i(\alpha_1, \dots, \alpha_m)) = (-1)^i \sigma_i(\varphi(\alpha_1), \dots, \varphi(\alpha_m))$$
$$= (-1)^i \sigma_i(\alpha_{\tau(1)}, \dots, \alpha_{\tau(m)}) = (-1)^i \sigma_i(\alpha_1, \dots, \alpha_m) = a_i$$

per qualche $\tau \in S_m$. Dunque $a_i \in \mathbb{K}^{\mathcal{G}(\mathbb{K}/\mathbb{F})} = \mathbb{F}$ (per ipotesi), quindi $h(x) \in \mathbb{F}[x]$. Adesso poiché $h(\alpha) = 0$ allora $p_{\alpha}^{\mathbb{F}}(x)|h(x)$. Inoltre per ogni $\varphi \in \mathcal{G}(\mathbb{K}/\mathbb{F})$ abbiamo

$$p_{\alpha}^{\mathbb{F}}(\varphi(\alpha)) = \varphi(p_{\alpha}^{\mathbb{F}}(\alpha)) = \varphi(0) = 0$$

quindi ogni α_i è radice di $p_{\alpha}^{\mathbb{F}}(x)$, da cui $h(x)|p_{\alpha}^{\mathbb{F}}(x)$, cioè $h(x)=p_{\alpha}^{\mathbb{F}}(x)$. Per ipotesi gli α_i sono tutti distinti quindi α è separabile, inoltre abbiamo che ogni radice di $p_{\alpha}^{\mathbb{F}}(x)$ sta in \mathbb{K} . Ciò prova che l'estensione $\mathbb{F}\subseteq\mathbb{K}$ è separabile e normale.

Osservazione 2.2.11. Osserviamo che, se $\mathbb{F} \subseteq \mathbb{K}$ è un'estensione finita, dal lemma precedente segue che

$$\mathbb{K}^{\mathcal{G}(\mathbb{K}/\mathbb{F})} = \mathbb{K}^{\mathcal{G}(\mathbb{K}/\mathbb{K}^{\mathcal{G}(\mathbb{K}/\mathbb{F})})},$$

quindi, visto che $\mathbb{K}^{\mathcal{G}(\mathbb{K}/\mathbb{F})} \subseteq \mathbb{K}$ è un'estensione finita in quanto lo è $\mathbb{F} \subseteq \mathbb{K}$, per il punto (4) del teorema di Galois applicato al campo $\mathbb{K}^{\mathcal{G}(\mathbb{K}/\mathbb{F})}$ l'estensione $\mathbb{K}^{\mathcal{G}(\mathbb{K}/\mathbb{F})} \subseteq \mathbb{K}$ è di Galois.

Definizione 2.2.12. Un'estensione $\mathbb{F} \subseteq \mathbb{K}$ si dice **di Galois** o **Galoissiana** se è finita, normale e separabile (o, equivalentemente, se è finita e soddisfa una delle quattro condizioni del teorema precedente).

Corollario 2.2.13. $Sia \mathbb{F} \subseteq \mathbb{L} \subseteq \mathbb{K}$ una catena di estensioni di campi. $Se \mathbb{F} \subseteq \mathbb{K}$ è di Galois lo è anche $\mathbb{L} \subseteq \mathbb{K}$.

Dimostrazione. Per ipotesi \mathbb{K} è il campo di spezzamento di un polinomio $f(x) \in \mathbb{F}[x]$ separabile. Si ha $f(x) \in \mathbb{F}[x] \subseteq \mathbb{L}[x]$ da cui \mathbb{K} è campo di spezzamento di $f(x) \in \mathbb{L}[x]$ separabile, pertanto $\mathbb{L} \subseteq \mathbb{K}$ è di Galois.

Corollario 2.2.14. Sia $\mathbb{F} \subseteq \mathbb{F}(\alpha_1, \alpha_2, \dots, \alpha_n)$ un'estensione di campi. Se $\alpha_1, \alpha_2, \dots, \alpha_n$ sono separabili su \mathbb{F} allora $\mathbb{F} \subseteq \mathbb{F}(\alpha_1, \alpha_2, \dots, \alpha_n)$ è separabile.

Dimostrazione. Dal teorema dell'elemento primitivo (versione forte) esiste $\gamma \in \mathbb{F}(\alpha_1, \alpha_2, \dots, \alpha_n)$ tale che $\mathbb{F}(\gamma) = \mathbb{F}(\alpha_1, \alpha_2, \dots, \alpha_n)$ con γ separabile su \mathbb{F} . Il polinomio $p_{\gamma}^{\mathbb{F}}(x)$ è separabile, sia \mathbb{L} il suo campo di spezzamento. Dal teorema di Galois sappiamo che l'estensione $\mathbb{F} \subseteq \mathbb{L}$ è separabile da cui, visto che $\mathbb{F} \subseteq \mathbb{F}(\alpha_1, \alpha_2, \dots, \alpha_n) \subseteq \mathbb{L}$, allora anche $\mathbb{F} \subseteq \mathbb{F}(\alpha_1, \alpha_2, \dots, \alpha_n)$ è separabile.

2.3 Corrispondenza di Galois

Osservazione 2.3.1. Sia $\mathbb{F} \subseteq \mathbb{K}$ un'estensione di Galois. Dalla definizione, per ogni $T \subseteq \mathcal{G}(\mathbb{K}/\mathbb{F})$ risulta $\mathbb{F} \subseteq \mathbb{K}^T \subseteq \mathbb{K}$. Inoltre abbiamo già visto che per ogni campo intermedio $\mathbb{F} \subseteq \mathbb{L} \subseteq \mathbb{K}$ abbiamo $\mathcal{G}(\mathbb{K}/\mathbb{L}) \leq \mathcal{G}(\mathbb{K}/\mathbb{F})$. Dunque, posti $\mathcal{A} = \{\mathbb{L} \ campo : \mathbb{F} \subseteq \mathbb{L} \subseteq \mathbb{K}\}, \mathcal{B} = \{T \leq \mathcal{G}(\mathbb{K}/\mathbb{F})\}, ha senso considerare le due applicazioni$

$$\epsilon: \mathcal{A} \to \mathcal{B}, \quad \epsilon(\mathbb{L}) = \mathcal{G}(\mathbb{K}/\mathbb{L})$$

$$\eta: \mathcal{B} \to \mathcal{A}, \quad \eta(T) = \mathbb{K}^T.$$

Dato che $\mathbb{F} \subseteq \mathbb{K}$ è di Galois, in base al teorema di Galois sappiamo che per ogni $\mathbb{L} \in \mathcal{A}$ si ha $\mathbb{L} = \mathbb{K}^{\mathcal{G}(\mathbb{K}/\mathbb{F})} = \mathbb{K}^{\mathcal{I}(\mathbb{K}/\mathbb{F})}$, cioè $\eta \circ \epsilon = 1_{\mathcal{A}}$.

Il nostro obbiettivo sarà quello di provare che

- $H = \mathcal{G}(\mathbb{K}/\mathbb{K}^H) \quad \forall H \in \mathcal{B}, \text{ cioè } \epsilon \circ \eta = 1_{\mathcal{B}}.$
- $\mathbb{F} \subseteq \mathbb{L}$ di Galois $\Leftrightarrow \mathcal{G}(\mathbb{K}/\mathbb{L}) \preceq \mathcal{G}(\mathbb{K}/\mathbb{F}) \quad \forall \mathbb{L} \in \mathcal{A}$.

Vediamo adesso una generalizzazione del punto (3) del teorema di Galois.

Proposizione 2.3.2. Un'estensione finita $\mathbb{F} \subseteq \mathbb{K}$ è di Galois $\Leftrightarrow |\mathcal{G}(\mathbb{K}/\mathbb{F})| = [\mathbb{K} : \mathbb{F}].$

Dimostrazione.

- \Rightarrow Segue dal punto (3) del teorema di Galois.
- ← Risulta

$$[\mathbb{K}:\mathbb{K}^{\mathcal{G}(\mathbb{K}/\mathbb{F})}] \geq |\mathcal{G}(\mathbb{K}/\mathbb{K}^{\mathcal{G}(\mathbb{K}/\mathbb{F})})| = |\mathcal{G}(\mathbb{K}/\mathbb{F})| = [\mathbb{K}:\mathbb{F}] \geq [\mathbb{K}:\mathbb{K}^{\mathcal{G}(\mathbb{K}/\mathbb{F})}],$$

dove l'ultima ugualianza è vera per ipotesi. Pertanto segue $[\mathbb{K} : \mathbb{F}] = [\mathbb{K} : \mathbb{K}^{\mathcal{G}(\mathbb{K}/\mathbb{F})}]$ e poiché $\mathbb{F} \subseteq \mathbb{K}^{\mathcal{G}(\mathbb{K}/\mathbb{F})} \subseteq \mathbb{K}$ si ha $[\mathbb{K}^{\mathcal{G}(\mathbb{K}/\mathbb{F})} : \mathbb{F}] = 1$, quindi $\mathbb{F} = \mathbb{K}^{\mathcal{G}(\mathbb{K}/\mathbb{F})}$. Dunque l'estensione $\mathbb{F} \subset \mathbb{K}$ è di Galois.

Osservazione 2.3.3. Sia $f \in \mathbb{F}[x]$ separabile con $n = \deg f(x)$ e sia \mathbb{K} il suo campo di spezzamento. L'estensione $\mathbb{F} \subseteq \mathbb{K}$ è di Galois e inoltre se $\alpha_1, \alpha_2, \ldots, \alpha_n \in \mathbb{K}$ sono le radici di f allora $\mathbb{K} = \mathbb{F}(\alpha_1, \alpha_2, \ldots, \alpha_n)$. Osserviamo che ogni $\varphi \in \mathcal{G}(\mathbb{K}/\mathbb{F})$ induce una permutazione su $\{\alpha_1, \alpha_2, \ldots, \alpha_n\}$, infatti, come abbiamo visto in precedenza, ogni $\varphi(\alpha_i)$ deve essere ancora una radice di f e φ è iniettiva (quindi biettiva) su $\{\alpha_1, \alpha_2, \ldots, \alpha_n\}$. In altri termini, per ogni $\varphi \in \mathcal{G}(\mathbb{K}/\mathbb{F})$ esiste $\sigma \in S_n$ tale che $\varphi(\alpha_i) = \alpha_{\sigma(i)}$ per ogni $i \in \{1, 2, \ldots, n\}$. Consideriamo dunque l'applicazione $\psi : \mathcal{G}(\mathbb{K}/\mathbb{F}) \to S_n$ con $\psi(\varphi) = \sigma$ in modo tale che $\varphi(\alpha_i) = \alpha_{\sigma(i)}$. Facciamo vedere che ψ è un omomorfismo di gruppi. Siano $\varphi_1, \varphi_2 \in \mathcal{G}(\mathbb{K}/\mathbb{F})$, poniamo $\sigma_1 = \psi(\varphi_1)$, $\sigma_2 = \psi(\varphi_2)$, per ogni $i \in \{1, 2, \ldots, n\}$ si ha

$$\alpha_{\psi(\varphi_1\circ\varphi_2)(i)} = (\varphi_1\circ\varphi_2)(\alpha_i) = \varphi_1(\varphi_2(\alpha_i)) = \varphi_1(\alpha_{\sigma_2(i)}) = \alpha_{\sigma_1(\sigma_2(i))} = \alpha_{(\sigma_1\circ\sigma_2)(i)}$$

39

da cui

$$\psi(\varphi_1 \circ \varphi_2) = \sigma_1 \circ \sigma_2 = \psi(\varphi_1) \circ \psi(\varphi_2).$$

Inoltre ψ è iniettivo, infatti se $\varphi \in \ker \psi$ allora $\psi(\varphi)$ è l'identità su S_n , cioè per ogni $i \in \{1, 2, ..., n\}$ si ha $\varphi(\alpha_i) = \alpha_i$, quindi $\varphi = 1_{\mathbb{K}}$.

Abbiamo così dimostrato che $\mathcal{G}(\mathbb{K}/\mathbb{F})$ è isomorfo a un sottogruppo di S_n^2 . Inoltre abbiamo che $[\mathbb{K} : \mathbb{F}] = |\mathcal{G}(\mathbb{K}/\mathbb{F})|$ divide n! (in generale sappiamo che $[\mathbb{K} : \mathbb{F}] \leq n!$).

Definizione 2.3.4. Un sottogruppo H di S_n è detto **transitivo** (o che **opera transitivamente** sull'insieme $\{1, 2, ..., n\}$) se $\forall i, j \in \{1, 2, ..., n\}$ esiste $\tau \in H$ tale che $\tau(i) = j$.

Ad esempio S_n è transitivo, infatti basta considerare $\forall i, j \in \{1, 2, \dots, n\}$ $\tau = (i \ j)$.

Proposizione 2.3.5. Sia $f \in \mathbb{F}[x]$ separabile con $n = \deg f(x)$ e sia \mathbb{K} il suo campo di spezzamento. Il sottogruppo $\psi(\mathcal{G}(\mathbb{K}/\mathbb{F})) \leq S_n$ è transitivo $\Leftrightarrow f$ è irriducibile

Dimostrazione.

 \Rightarrow Sia $h(x) \in \mathbb{F}[x]$ un fattore irriducibile di f(x) e sia $\alpha \in \mathbb{K}$ una sua radice. Per ipotesi, per ogni altra radice $\beta \in \mathbb{K}$ di f(x) esiste $\varphi \in \mathcal{G}(\mathbb{K}/\mathbb{F})$ tale che $\varphi(\alpha) = \beta$. Pertanto

$$h(\beta) = h(\varphi(\alpha)) = \varphi(h(\alpha)) = \varphi(0) = 0,$$

cioè ogni radice di f è anche radice di h, da cui f(x) = h(x) irriducibile.

 \Leftarrow Senza perdita di generalità possiamo supporre f(x) monico. Siano $\alpha, \beta \in \mathbb{K}$ due radici di f. Dato che f è irriducibile e monico abbiamo $p_{\alpha}^{\mathbb{F}}(x) = p_{\beta}^{\mathbb{F}}(x) = f(x)$, quindi

$$\mathbb{F}[\alpha] \simeq \frac{\mathbb{F}[x]}{(f(x))} \simeq \mathbb{F}[\beta]$$

dove i precedenti isomorfismi sono realizzati in questo modo:

$$p(\alpha) \to p(x) + (f(x)) \to p(\beta) \text{ con } p(x) \in \mathbb{F}[x]$$

quindi $\alpha \to x + (f(x)) \to \beta$ e per ogni $a \in \mathbb{F}$ risulta $a \to a + (f(x)) \to a$. Dunque esiste un isomorfismo $\phi : \mathbb{F}[\alpha] \to \mathbb{F}[\beta]$ tale che $\phi(\alpha) = \beta$ e $\phi_{|\mathbb{F}} = 1_{\mathbb{F}}$. A questo punto basta considerare un'estensione φ di ϕ a \mathbb{K} , avremo $\varphi \in \mathscr{I}(\mathbb{K}/\mathbb{F}) = \mathscr{G}(\mathbb{K}/\mathbb{F})$ (poiché $\mathbb{F} \subseteq \mathbb{K}$ è di Galois) con $\varphi(\alpha) = \beta$.

Proposizione 2.3.6. Se $\mathbb{F} \subseteq \mathbb{K}$ è un'estensione di Galois allora per ogni sottogruppo $H \leq \mathcal{G}(\mathbb{K}/\mathbb{F})$ risulta $H = \mathcal{G}(\mathbb{K}/\mathbb{K}^H)$.

²Osserviamo che in generale $|\mathcal{G}(\mathbb{K}/\mathbb{F})|$ e *n* possono anche essere diversi, quindi quanto dimostrato è diverso dal teorema di Cayley

Dimostrazione. Dato che $\mathbb{F} \subseteq \mathbb{K}^H \subseteq \mathbb{K}$ dal teorema di Galois abbiamo $[\mathbb{K} : \mathbb{K}^H] = |\mathcal{G}(\mathbb{K}/\mathbb{K}^H)|$, quindi basta provare $[\mathbb{K} : \mathbb{K}^H] \leq |H|$, in questo modo si avrebbe

$$|\mathcal{G}(\mathbb{K}/\mathbb{K}^H)| = [\mathbb{K} : \mathbb{K}^H] \le |H| \le |\mathcal{G}(\mathbb{K}/\mathbb{K}^H)|$$

da cui $|H| = |\mathcal{G}(\mathbb{K}/\mathbb{K}^H)| \Rightarrow H = \mathcal{G}(\mathbb{K}/\mathbb{K}^H)$ in quanto insiemi finiti.

Essendo l'estensione $\mathbb{F} \subseteq \mathbb{K}$ di Galois allora anche $\mathbb{K}^H \subseteq \mathbb{K}$ è di Galois, in particolare essa è finita e separabile, pertanto dal teorema dell'elemento primitivo esiste $\alpha \in \mathbb{K}$ tale che $\mathbb{K}^H(\alpha) = \mathbb{K}$. Poniamo $H = \{\varphi_1, \varphi_2, \dots, \varphi_n\}$ e consideriamo il polinomio

$$h(x) = \prod_{i=1}^{n} (x - \varphi_i(\alpha)) = \sum_{i=0}^{n} a_i x^i$$

dove i coefficiente a_i sono i polinomi simmetrici elementari di n variabili calcolati in $\varphi_1(\alpha), \varphi_2(\alpha), \ldots, \varphi_n(\alpha)$. Poiché in base al teorema di Cayley ogni $\varphi_i \in H$ induce una permutazione sull'insieme $\{\varphi_1(\alpha), \varphi_2(\alpha), \ldots, \varphi_n(\alpha)\}$, infatti

$$\varphi_i\Big(\{\varphi_1(\alpha),\varphi_2(\alpha),\ldots,\varphi_n(\alpha)\}\Big)=\Big\{(\varphi_i\circ\varphi_1)(\alpha),(\varphi_i\circ\varphi_2)(\alpha),\ldots,(\varphi_i\circ\varphi_n)(\alpha)\Big\},$$

allora $\varphi_j(a_i) = a_i \quad \forall i, j$, quindi $a_i \in \mathbb{K}^H$, cioè $h(x) \in \mathbb{K}^H[x]$. Inoltre α è una radice di h(x) quindi $p_{\alpha}^{\mathbb{K}^H}(x)|h(x)$ da cui

$$[\mathbb{K} : \mathbb{K}^H] = \deg p_{\alpha}^{\mathbb{K}^H}(x) \le \deg h(x) = |H|.$$

In base ai risultati precedenti e utilizzando la stessa notazione dell'osservazione (2.3.1) enunciamo il seguente

Teorema 2.3.7. (Teorema fondamentale della teoria di Galois)

 $Sia \mathbb{F} \subseteq \mathbb{K}$ un'estensione di Galois. Valgono i seguenti fatti.

- 1. Le applicazioni ϵ e η sono una l'inversa dell'altra.
- 2. $\forall \mathbb{L} \in \mathcal{A} \quad [\mathbb{K} : \mathbb{L}] = |\mathcal{G}(\mathbb{K}/\mathbb{L})|.$
- 3. Per ogni $\mathbb{L} \in \mathcal{A}$ l'estensione $\mathbb{F} \subseteq \mathbb{L}$ è di Galois $\Leftrightarrow \mathcal{G}(\mathbb{K}/\mathbb{L}) \leq \mathcal{G}(\mathbb{K}/\mathbb{F})$ (in questo caso si ha $\mathcal{G}(\mathbb{L}/\mathbb{F}) \simeq \mathcal{G}(\mathbb{K}/\mathbb{F})/\mathcal{G}(\mathbb{K}/\mathbb{L})$).

Dimostrazione. Proviamo il punto (3), i punti (1) e (2) seguono dai risultati precedenti.

 \Rightarrow Sia $\Omega: \mathcal{G}(\mathbb{K}/\mathbb{F}) \to \mathcal{G}(\mathbb{L}/\mathbb{F})$ con $\Omega(\sigma) = \sigma_{|\mathbb{L}}$. Ω è ben definita infatti per ogni $\sigma \in \mathcal{G}(\mathbb{K}/\mathbb{F})$ $\sigma(\mathbb{L}) \subseteq \overline{\mathbb{F}}$ quindi $\sigma_{|\mathbb{L}} \in \mathcal{F}(\mathbb{L}/\mathbb{F}) = \mathcal{G}(\mathbb{L}/\mathbb{F})$ in quanto l'estensione $\mathbb{F} \subseteq \mathbb{L}$ è di Galois. Mostriamo che Ω è un omomorfismo di gruppi. Siano $\sigma_1, \sigma_2 \in \mathcal{G}(\mathbb{K}/\mathbb{F})$, si ha

$$\Omega(\sigma_1 \circ \sigma_2) = (\sigma_1 \circ \sigma_2)_{|\mathbb{T}_{\bullet}} = \sigma_1_{|\mathbb{T}_{\bullet}} \circ \sigma_2_{|\mathbb{T}_{\bullet}} = \Omega(\sigma_1) \circ \Omega(\sigma_2).$$

Dunque abbiamo

$$\ker \Omega = \{ \sigma \in \mathcal{G}(\mathbb{K}/\mathbb{F}) : \Omega(\sigma) = \sigma_{|\mathbb{L}} = 1_{\mathbb{L}} \} = \mathcal{G}(\mathbb{K}/\mathbb{L}) \leq \mathcal{G}(\mathbb{K}/\mathbb{F}),$$

da cui

$$\frac{\mathcal{G}(\mathbb{K}/\mathbb{F})}{\mathcal{G}(\mathbb{K}/\mathbb{L})} \simeq \operatorname{Im} \Omega \leq \mathcal{G}(\mathbb{L}/\mathbb{F}),$$

adesso

$$|\mathcal{G}(\mathbb{L}/\mathbb{F})| = [\mathbb{L} : \mathbb{F}] = \frac{[\mathbb{K} : \mathbb{F}]}{[\mathbb{K} : \mathbb{L}]} = \frac{|\mathcal{G}(\mathbb{K}/\mathbb{F})|}{|\mathcal{G}(\mathbb{K}/\mathbb{L})|} = |\operatorname{Im}\Omega| \leq |\mathcal{G}(\mathbb{L}/\mathbb{F})|$$

pertanto $|\mathcal{G}(\mathbb{L}/\mathbb{F})| = |\operatorname{Im}\Omega| \Rightarrow \mathcal{G}(\mathbb{L}/\mathbb{F}) = \operatorname{Im}\Omega$, da cui la tesi.

 \Leftarrow Proviamo che $\sigma(\mathbb{L}) \subseteq \mathbb{L}$ per ogni $\sigma \in \mathcal{G}(\mathbb{K}/\mathbb{F})$. Per ipotesi $\mathcal{G}(\mathbb{K}/\mathbb{L}) \preceq \mathcal{G}(\mathbb{K}/\mathbb{F})$ pertanto se $\tau \in \mathcal{G}(\mathbb{K}/\mathbb{L})$ e $\sigma \in \mathcal{G}(\mathbb{K}/\mathbb{F})$ allora $\sigma^{-1}\tau\sigma \in \mathcal{G}(\mathbb{K}/\mathbb{L})$ da cui, per ogni $\alpha \in \mathbb{L}$ risulta $(\sigma^{-1}\tau\sigma)(\alpha) = \alpha$, cioè $\tau(\sigma(\alpha)) = \sigma(\alpha)$. Dall'arbitrarietà di $\tau \in \mathcal{G}(\mathbb{K}/\mathbb{L})$ segue che $\sigma(\alpha) \in \mathbb{K}^{\mathcal{G}(\mathbb{K}/\mathbb{L})} = \mathbb{L}$, poiché $\mathbb{L} \subseteq \mathbb{K}$ è di Galois. Dunque $\sigma(\mathbb{L}) \subseteq \mathbb{L}$. In altri termini, per ogni $\sigma \in \mathcal{G}(\mathbb{K}/\mathbb{F})$, $\sigma_{|\mathbb{L}} \in \mathcal{G}(\mathbb{L}/\mathbb{F})$. In questo modo possiamo considerare come prima l'omomorfismo di gruppi $\Omega : \mathcal{G}(\mathbb{K}/\mathbb{F}) \to \mathcal{G}(\mathbb{L}/\mathbb{F})$ con $\Omega(\sigma) = \sigma_{|\mathbb{L}}$. Di nuovo

$$\ker \Omega = \{ \sigma \in \mathcal{G}(\mathbb{K}/\mathbb{F}) : \Omega(\sigma) = \sigma_{|\mathbb{L}} = 1_{\mathbb{L}} \} = \mathcal{G}(\mathbb{K}/\mathbb{L}) \Rightarrow$$
$$\Rightarrow \frac{\mathcal{G}(\mathbb{K}/\mathbb{F})}{\mathcal{G}(\mathbb{K}/\mathbb{L})} \simeq \operatorname{Im} \Omega \leq \mathcal{G}(\mathbb{L}/\mathbb{F})$$

con ancora

$$|\mathcal{G}(\mathbb{L}/\mathbb{F})| \leq [\mathbb{L}:\mathbb{F}] = \frac{[\mathbb{K}:\mathbb{F}]}{[\mathbb{K}:\mathbb{L}]} = \frac{|\mathcal{G}(\mathbb{K}/\mathbb{F})|}{|\mathcal{G}(\mathbb{K}/\mathbb{L})|} = |\operatorname{Im}\Omega| \leq |\mathcal{G}(\mathbb{L}/\mathbb{F})|$$

di conseguenza $[\mathbb{L}:\mathbb{F}]=|\mathcal{G}(\mathbb{L}/\mathbb{F})|$ che, essendo $\mathbb{F}\subseteq\mathbb{L}$ finita, prova la tesi.

Definizione 2.3.8. Sia $\mathbb{F} \subseteq \mathbb{L} \subseteq \mathbb{K}$ una catena di estensioni di campi e $\sigma \in \mathcal{G}(\mathbb{K}/\mathbb{F})$. Il campo $\sigma(\mathbb{L})$ è detto **coniugato** di \mathbb{L} .

Proposizione 2.3.9. Sia $\mathbb{F} \subseteq \mathbb{L} \subseteq \mathbb{K}$ una catena di estensioni di campi. Per ogni $\sigma \in \mathcal{G}(\mathbb{K}/\mathbb{F})$ risulta

$$\mathcal{G}(\mathbb{K}/\sigma(\mathbb{L})) = \sigma \mathcal{G}(\mathbb{K}/\mathbb{L})\sigma^{-1}.$$

Dimostrazione.

$$\tau \in \mathcal{G}(\mathbb{K}/\sigma(\mathbb{L})) \Leftrightarrow \forall \alpha \in \mathbb{L} \quad \tau(\sigma(\alpha)) = \sigma(\alpha) \Leftrightarrow \forall \alpha \in \mathbb{L} \quad (\sigma^{-1}\tau\sigma)(\alpha) = \alpha \Leftrightarrow$$
$$\Leftrightarrow \sigma^{-1}\tau\sigma \in \mathcal{G}(\mathbb{K}/\mathbb{L}) \Leftrightarrow \tau \in \sigma\mathcal{G}(\mathbb{K}/\mathbb{L})\sigma^{-1}.$$

2.4 Teorema fondamentale dell'algebra

Teorema 2.4.1. (Teorema fondamentale dell'algebra) Ogni polinomio in $\mathbb{C}[x]$ di grado positivo ammette radici in \mathbb{C} .

Prima di dimostrare il teorema fondamentale dell'algebra (TFA), abbiamo bisogno di due lemmi.

Lemma 2.4.2. Un polinomio $f(x) \in \mathbb{R}[x]$ monico di grado dispari ammette una radice in \mathbb{R} .

Dimostrazione. Basta osservare che $\lim_{x\to\pm\infty} f(x) = \pm\infty$, quindi $\exists x_0, x_1 \in \mathbb{R}$ tali che $f(x_0) < 0$ e $f(x_1) > 0$, essendo f(x) una funzione continua essa assume tutti i valori tra $f(x_0)$ e $f(x_1)$ (teorema dei valori intermedi), quindi esiste $\bar{x} \in [x_0, x_1]$ tale che $f(\bar{x}) = 0$.

Lemma 2.4.3. (TFA) \iff ogni polinomio $f(x) \in \mathbb{R}[x]$ di grado positivo ha almeno una radice in \mathbb{C} .

Dimostrazione.

⇒ Ovvio

 \Leftarrow Sia $f(x) \in \mathbb{C}[x]$ di grado positivo e $h(x) = f(x)\bar{f}(x)$. Risulta $\bar{h}(x) = \bar{f}(x)\bar{f}(x) = \bar{f}(x)f(x) = h(x)$ quindi $h(x) \in \mathbb{R}[x]$. Per ipotesi $\exists \alpha \in \mathbb{C} : h(\alpha) = 0$, cioè $f(\alpha)\bar{f}(\alpha) = 0$. Adesso si ha $f(\alpha) = 0$ oppure $\bar{f}(\alpha) = 0$, cioè $0 = \bar{0} = \bar{f}(\alpha) = f(\bar{\alpha})$, in ogni caso f ha una radice in \mathbb{C} .

In base al lemma precedente per dimostrare il TFA basta dimostrare che ogni polinomio a coefficienti in \mathbb{R} ha \mathbb{C} come campo di spezzamento.

Dimostrazione (TFA). Sia $f(x) \in \mathbb{R}[x]$ e \mathbb{L} il campo di spezzamento di $f(x)(x^2+1) \in \mathbb{R}[x]$, quindi $\mathbb{R} \subseteq \mathbb{C} \subseteq \mathbb{L}$ e $\mathbb{L} = \mathbb{C}(\alpha_1, \alpha_2, \dots, \alpha_r) = \mathbb{R}(i, \alpha_1, \alpha_2, \dots, \alpha_r)$ dove le α_i sono le radici di f. L'estensione $\mathbb{R} \subseteq \mathbb{L}$ è di Galois in quanto è normale e finita essendo \mathbb{L} campo di spezzamento di un polinomio in $\mathbb{R}[x]$, ed è separabile poiché $ch(\mathbb{R}) = 0$. Pertanto $|\mathcal{G}(\mathbb{L}/\mathbb{R})| = [\mathbb{L} : \mathbb{R}] = [\mathbb{L} : \mathbb{C}][\mathbb{C} : \mathbb{R}] = 2^{t+1}m$, con m dispari. Dal teorema di Sylow esiste $H \subseteq \mathcal{G}(\mathbb{L}/\mathbb{R}) : o(H) = 2^{t+1}$, quindi $\mathbb{R} \subseteq \mathbb{L}^H \subseteq \mathbb{L}$ con $[\mathbb{L} : \mathbb{L}^H] = |\mathcal{G}(\mathbb{L}/\mathbb{L}^H)| = |H| = 2^{t+1}$. Inoltre

$$[\mathbb{L}^H:\mathbb{R}] = \frac{[\mathbb{L}:\mathbb{R}]}{[\mathbb{L}:\mathbb{L}^H]} = \frac{2^{t+1}m}{2^{t+1}} = m.$$

Poiché l'estensione $\mathbb{R} \subseteq \mathbb{L}^H$ è finita e separabile per il teorema dell'elemento primitivo $\exists \beta \in \mathbb{L}^H : \mathbb{L}^H = \mathbb{R}(\beta)$. Il grado del polinomio $p_{\beta}^{\mathbb{R}}(x)$ è m che è dispari quindi dal lemma precedente deve risultare m=1, altrimenti $p_{\beta}^{\mathbb{R}}(x)$ sarebbe riducibile. Dunque $\beta \in \mathbb{R} \Rightarrow \mathbb{L}^H = \mathbb{R}$ e risulta $[\mathbb{L} : \mathbb{R}] = 2^{t+1}$, quindi $[\mathbb{L} : \mathbb{C}] = 2^t$. Se per assurdo t > 0 allora esiste $N \leq \mathcal{G}(\mathbb{L}/\mathbb{C}) : o(N) = 2^{t-1}$ da cui

$$[\mathbb{L}:\mathbb{L}^N] = |\mathcal{G}(\mathbb{L}/\mathbb{L}^N)| = |N| = 2^{t-1} \Rightarrow [\mathbb{L}^N:\mathbb{C}] = 2.$$

Pertanto deve esistere un polinomio $p(x) \in \mathbb{C}[x]$ irriducibile di grado 2. Verifichiamo che ciò è assurdo facendo vedere che, se $p(x) = ax^2 + bx + c$, allora esso ha per radici

$$\frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \in \mathbb{C}.$$

Per fare ciò basta provare che la radice quadrata di un elemento in \mathbb{C} sta in \mathbb{C} . Sia $z = \alpha + i\beta \in \mathbb{C}$, proviamo che esiste $w = x + iy \in \mathbb{C} : (x + iy)^2 = \alpha + i\beta$, si ha

$$\begin{cases} x^2 - y^2 = \alpha \\ 2xy = \beta \end{cases} \Rightarrow \begin{cases} x^2 + (-y^2) = \alpha \\ x^2(-y^2) = -\frac{\beta^2}{4} \end{cases}$$

troviamo x e y risolvendo l'equazione a coefficienti in \mathbb{R} $t^2 - \alpha t - \frac{\beta^2}{4} = 0$, ottenendo

$$x^{2} = \frac{\alpha + \sqrt{\alpha^{2} + \beta^{2}}}{2}, \quad y^{2} = \frac{-\alpha + \sqrt{\alpha^{2} + \beta^{2}}}{2}$$

da cui scegliamo i valori di x e y per cui $2xy = \beta$. Ciò prova che ogni polinomio in $\mathbb{C}[x]$ di secondo grado è riducibile, assurdo. Quindi dev'essere t = 0 cioè $\mathbb{C} = \mathbb{L}$.

2.5 Estensioni ciclotomiche

Definizione 2.5.1. Una radice n-esima dell'unità $\epsilon \in \mathbb{C}$ è detta **primitiva** se è un generatore del gruppo moltiplicativo delle radici n-esime dell'unità.

Osservazione 2.5.2. Se $\epsilon \in \mathbb{C}$ è una radice n-esima primitiva dell'unità allora lo è anche ϵ^i se e solo se MCD(n,i)=1. Dunque per ogni $n \in \mathbb{N}$ esistono $\varphi(n)$ radici n-esime primitive dell'unità, dove $\varphi : \mathbb{N} \to \mathbb{N}$ è la funzione di Eulero. Sappiamo che le radici n-esime dell'unità sono del tipo

$$\epsilon_k = \cos\left(\frac{2\pi k}{n}\right) + i\sin\left(\frac{2\pi k}{n}\right) \in \mathbb{C}$$

quindi le radici n-esime primitive dell'unità sono tutte e sole le ϵ_i con MCD(n,i)=1.

Definizione 2.5.3. Se $\epsilon \in \mathbb{C}$ è una radice n-esima primitiva dell'unità l'estensione $\mathbb{Q} \subset \mathbb{Q}(\epsilon)$ è detta **ciclotomica**.

Osservazione 2.5.4. Se $\epsilon \in \mathbb{C}$ è una radice n-esima primitiva dell'unità allora l'estensione ciclotomica $\mathbb{Q} \subseteq \mathbb{Q}(\epsilon) = \mathbb{Q}(1, \epsilon, \epsilon^2, \dots, \epsilon^{n-1})$ è di Galois, infatti è finita e normale in quanto $\mathbb{Q}(\epsilon)$ è campo di spezzamento di $x^n - 1 \in \mathbb{Q}[x]$ e separabile poiché $ch(\mathbb{Q}) = 0$.

Vogliamo adesso calcolare il polinomio minimo di una radice n-esima primitiva dell'unità $\epsilon \in \mathbb{C}$ su \mathbb{Q} . Poniamo

$$f_n(x) = \prod_{MCD(n,i)=1} (x - \epsilon^i),$$

quindi deg $f_n(x) = \varphi(n)$. Adesso per definizione sappiamo che

$$x^{n} - 1 = \prod_{i=0}^{n-1} (x - \epsilon^{i}),$$

inoltre MCD(n,i) è sempre un divisore di n, quindi al variare di d' divisore di n si ha

$$\prod_{i=0}^{n-1} (x - \epsilon^i) = \prod_{d'|n} \left(\prod_{MCD(n,i)=d'} (x - \epsilon^i) \right)$$

ma ad ogni divisore d' di n corrisponde un'altro divisore d di n tale che dd' = n, quindi $\epsilon^{d'}$ è una radice d-esima dell'unità. Adesso se MCD(n, i) = d' allora $i = \lambda d'$ con

$$MCD(n, i) = MCD(dd', \lambda d') = d' \Rightarrow MCD(d, \lambda) = 1.$$

Dunque

$$\prod_{d'|n} \left(\prod_{MCD(n,i)=d'} (x - \epsilon^i) \right) = \prod_{d|n} \left(\prod_{MCD(d,\lambda)=1} \left(x - (\epsilon^{d'})^{\lambda} \right) \right) = \prod_{d|n} f_d(x).$$

Pertanto

$$x^n - 1 = \prod_{d|n} f_d(x).$$

Proposizione 2.5.5. Per ogni $n \in \mathbb{N}$, $f_n(x) \in \mathbb{Z}[x]$.

Dimostrazione. Procediamo per induzione su n. Se n=1 banalmente $f_1(x)=x-1 \in \mathbb{Z}[x]$.

Supponiamo che $f_m(x) \in \mathbb{Z}[x]$ per ogni m < n. Abbiamo

$$x^n - 1 = \prod_{d|n} f_d(x) = h(x) f_n(x)$$
 dove $h(x) = \prod_{d|n,d < n} f_d(x) \in \mathbb{Z}[x],$

quindi $f_n(x) = \frac{x^{n-1}}{h(x)} \in \mathbb{Z}(x) \subseteq \mathbb{Q}(x)$, ma essendo $f_n(x)$ un polinomio si ha $f_n(x) \in \mathbb{Q}[x]$. Infine esiste $a \in \mathbb{Z}$ tale che $af_n(x) \in \mathbb{Z}[x]$ è primitivo, scriviamo

$$a(x^n - 1) = h(x)(af_n(x))$$

da cui essendo $x^n - 1$ e h(x) monici dal lemma di Gauss uguagliando i contenuti di ambo i membri otteniamo a = 1, cioè $f_n(x) \in \mathbb{Z}[x]$.

Proposizione 2.5.6. Per ogni $n \in \mathbb{N}$ e ogni radice n-esima primitiva dell'unità $\epsilon \in \mathbb{C}$ $f_n(x) = p_{\epsilon}^{\mathbb{Q}}(x)$.

Dimostrazione. Poniamo per semplicità $p(x) = p_{\epsilon}^{\mathbb{Q}}(x)$. Dalla definizione $f_n(\epsilon) = 0$ quindi $p(x)|f_n(x)$, cioè esiste $h(x) \in \mathbb{Q}[x]$ tale che $f_n(x) = p(x)h(x)$. I polinomi $f_n(x)$ e p(x) sono entrambi monici quindi anche h(x) deve essere monico. Dunque $p(x), h(x) \in \mathbb{Q}[x]$ sono

primitivi, da cui esistono $a, b \in \mathbb{Z}$ tali che i polinomi $a p(x), b h(x) \in \mathbb{Z}[x]$ sono primitivi. Possiamo scrivere

$$ab f_n(x) = (a p(x))(b h(x)),$$

uguagliando i contenuti di ambo i membri in base al lemma di Gauss otteniamo ab = 1, cioè $a = b = \pm 1$ (visto che $a, b \in \mathbb{Z}$). In ogni caso $p(x), h(x) \in \mathbb{Z}[x]$.

Sia adesso $q \in \mathbb{N}$ primo con n (MCD(n,q) = 1), ci basta provare che $p(\epsilon^q) = 0$, infatti dall'arbitrarietà di q primo con n seguirebbe che ogni radice n-esima primitiva dell'unità è radice di p(x) cioè $f_n(x)|p(x)$ da cui la tesi.

Supponiamo dapprima che q sia primo. Abbiamo

$$0 = f_n(\epsilon^q) = p(\epsilon^q)h(\epsilon^q).$$

Se $h(\epsilon^q) = 0$ allora ϵ è radice di $h(x^q)$, pertanto $p(x)|h(x^q)$, cioè $h(x^q) = p(x)l(x)$. Posto $h(x) = a_0 + a_1x + \ldots + a_rx^r$ allora, dato che $a^q \equiv a \pmod{q}$ (piccolo teorema di Fermat), considerando il polinomio $\bar{h}(x)$ come h(x) visto in \mathbb{Z}_q , abbiamo (in base al Lemma 1.1.6)

$$\bar{h}(x^q) = a_0 + a_1 x^q + \dots + a_r (x^r)^q = a_0^q + a_1^q x^q + \dots + a_n^q (x^r)^q =$$

$$= (a_0 + a_1 x + \dots + a_r x^r)^q = (\bar{h}(x))^q.$$

Dunque $\bar{p}(x)\bar{l}(x) = \bar{h}(x^q) = (\bar{h}(x))^q$, quindi ogni fattore irriducibile di $\bar{p}(x) \in \mathbb{Z}_q[x]$ è anche fattore di $(\bar{h}(x))^q$, cioè di $\bar{h}(x)$, ma

$$x^n - 1 = \bar{g}(x)\bar{f}_n(x) = \bar{g}(x)\bar{p}(x)\bar{h}(x),$$

quindi il polinomio $x^n - 1 \in \mathbb{Z}_q[x]$ ha radici multiple nel suo campo di spezzamento. Tuttavia $D(x^n - 1) = nx^{n-1}$ (con $n \neq 0 \pmod{q}$), pertanto $x^n - 1$ non può avere radici multiple, assurdo. Dunque $h(\epsilon^q) \neq 0$, cioè dev'essere $p(\epsilon^q) = 0$.

Sia adesso q primo con n non necessariamente primo e sia $q = q_1 q_2 \dots q_t$ la sua scomposizione in fattori primi, quindi

$$\epsilon^q = (((\epsilon^{q_1})^{q_2})^{\dots})^{q_t},$$

per quanto dimostrato prima sappiamo che $p_{\epsilon}^{\mathbb{Q}}(\epsilon^{q_1}) = 0$ da cui $p_{\epsilon}^{\mathbb{Q}}(x) = p_{\epsilon^{q_1}}^{\mathbb{Q}}(x)$, analogamente $p_{\epsilon^{q_1}}^{\mathbb{Q}}((\epsilon^{q_1})^{q_2}) = 0$ da cui $p_{\epsilon^{q_1}}^{\mathbb{Q}}(x) = p_{(\epsilon^{q_1})^{q_2}}^{\mathbb{Q}}(x)$. Reiterando il processo fino a q_t otteniamo $p_{\epsilon}^{\mathbb{Q}}(x) = p_{\epsilon^q}^{\mathbb{Q}}(x)$, cioè $p(\epsilon^q) = 0$.

Osservazione 2.5.7. Dalla precedente proposizione segue che se $\epsilon \in \mathbb{C}$ è una radice n-esima primitiva dell'unità allora

$$[\mathbb{Q}(\epsilon):\mathbb{Q}] = \deg f_n(x) = \varphi(n).$$

Corollario 2.5.8. Se $\epsilon \in \mathbb{C}$ è una radice n-esima primitiva dell'unità allora

$$\mathcal{G}(\mathbb{Q}(\epsilon)/\mathbb{Q}) \simeq U_n,$$

dove U_n è il gruppo moltiplicativo degli elementi di \mathbb{Z}_n primi con n (cioè gli elementi invertibili di \mathbb{Z}_n).

Dimostrazione. Per quanto visto prima ogni elemento $\phi \in \mathcal{G}(\mathbb{Q}(\epsilon)/\mathbb{Q})$ è univocamente determinato da $\phi(\epsilon)$ che deve essere una radice di $f_n(x)$, cioè una radice n-esima primitiva dell'unità, quindi $\phi(\epsilon) = \epsilon^i$ per qualche i primo con n, ovvero $i \in U_n$. Dunque

$$\mathcal{G}(\mathbb{Q}(\epsilon)/\mathbb{Q}) = \{\phi_i : \phi_i(\epsilon) = \epsilon^i, i \in U_n\}.$$

Sia allora $\psi : \mathcal{G}(\mathbb{Q}(\epsilon)/\mathbb{Q}) \to U_n$ con $\psi(\phi_i) = i$. ψ è un isomorfismo in quanto è ovviamente suriettivo e iniettivo, inoltre è un'omomorfismo di gruppi, infatti

$$\psi(\phi_i \circ \phi_j) = \psi(\phi_{ij}) = ij = \psi(\phi_i)\psi(\phi_j).$$

2.6 Costruzioni con riga e compasso

In questo capitolo ci occuperemo di costruzioni che fanno uso solo di una riga (infinitamente lunga e non graduata), un compasso e due punti U e O che forniscono la lunghezza unitaria.

Definizione 2.6.1. Una costruzione con riga e compasso (o euclidea) è una successione A_1, A_2, \ldots, A_n di punti, rette o circonferenze dove $A_1 = O$, $A_2 = U$, soddisfacenti le proprietà

- 1. Se A_i è una retta allora deve essere una retta passante per due punti A_j , A_k con j, k < i.
- 2. Se A_i è una circonferenza allora ha centro in un punto A_j con j < i e raggio di lunghezza uguale a quella di un segmento $\overline{A_s}A_t$ con s, t < i.
- 3. Se A_i è un punto allora è uguale a U o ad O oppure è intersezione di due rette o due circonferenze o una retta e una circonferenza già costruiti.

Vediamo qualche esempio di costruzione con riga e compasso.

Esempio 2.6.2. Costruiamo l'asse di un segmento dato:

$$A_1 = O$$

$$A_2 = U$$

 $A_3 = circonferenza di centro O e raggio \overline{OU}$

 $A_4 = circonferenza di centro U e raggio \overline{OU}$

 $A_5 = primo punto di intersezione di <math>A_3 e A_4$

 $A_6 = secondo punto di intersezione di A_3 e A_4$

 $A_7 = retta \ per \ A_5 \ e \ A_6$

 A_7 è l'asse cercato.

Esempio 2.6.3. Costruiamo un riferimento cartesiano:

$$A_1 = O$$
 $A_2 = U$
 $A_3 = retta\ per\ O\ e\ U$
 $A_4 = circonferenza\ di\ centro\ O\ e\ raggio\ \overline{OU}$
 $A_5 = punto\ di\ interesezione\ di\ A_3\ e\ A_4$
 \vdots

 $A_{10} = asse \ del \ segmento \ \overline{A_5U}$

Abbiamo omesso la costruzione di un asse di un segmento già vista nell'esempio precedente.

Esempio 2.6.4. Costruiamo una retta parallela a una retta data passante per un punto esterno dato:

$$A_{1} = O$$

$$A_{2} = U$$

$$A_{3} = retta \ per \ O \ e \ U$$

$$A_{4} = P \ (punto \ dato)$$

$$\vdots$$

$$A_{9} = asse \ del \ segmento \ \overline{OU}$$

$$A_{10} = punto \ di \ intersezione \ di \ A_{9} \ e \ A_{3}$$

$$A_{11} = circonferenza \ di \ centro \ P \ e \ raggio \ \overline{A_{10}P}$$

$$A_{12} = ulteriore \ punto \ d'intersezione \ tra \ A_{9} \ e \ A_{11}$$

$$\vdots$$

$$A_{17} = asse \ del \ segmento \ \overline{A_{10}A_{12}}$$

A₁₇ è la retta cercata. Abbiamo omesso la costruzione di un asse di un segmento già vista nell'esempio precedente. La precedente non è esattamente una costruzione euclidea, lo è nel caso in cui il punto P sia stato costruito precedentemente in qualche modo.

Esempio 2.6.5. Costruiamo la bisettrice di un angolo:

$$A_1 = O$$
 $A_2 = U$
 $A_3 = retta \ per \ O \ e \ U$
 $A_4 = retta \ data$
 $A_5 = circonferenza \ di \ centro \ O \ e \ raggio \ \overline{OU}$
 $A_6 = punto \ di \ interesezione \ tra \ A_4 \ e \ A_5$
 $(vogliamo \ bisecare \ U\hat{O}A_6)$
 \vdots
 $A_{11} = asse \ del \ segmento \ \overline{UA_6}$

 A_{11} è la bisettrice cercata. Abbiamo omesso la costruzione di un asse di un segmento già vista in un esempio precedente. Di nuovo la precedente non è esattamente una costruzione euclidea, lo è nel caso in cui la retta A_4 sia stata costruita precedentemente in qualche modo.

Definizione 2.6.6. Un numero reale $a \in \mathbb{R}$ è detto **euclideo** (o **costruibile**) se è possibile costruire un segmento di lunghezza |a| (o equivalentemente se è possibile costruire il punto (a,0)). Un numero complesso $a+ib \in \mathbb{C}$ è detto **euclideo** (o **costruibile**) se sono euclidei $a,b \in \mathbb{R}$ (o equivalentemente se è possibile costruire il punto (a,b)).

Osservazione 2.6.7. Dalla definizione segue subito che se $a \in \mathbb{R}$ è costruibile allora lo è anche -a.

Proposizione 2.6.8. Sia

$$\mathbb{E} = \{ a \in \mathbb{R} : a \ \dot{e} \ euclideo \}.$$

 $\mathbb{E} \ \dot{e} \ un \ campo \ e \ si \ ha \ \mathbb{Q} \subseteq \mathbb{E} \subseteq \mathbb{R}.$

Dimostrazione. Siano $a, b \in \mathbb{E}$, possiamo costruire i punti $P_1 = (a, 0)$ e $P_2 = (b, 0)$. Il segmento $\overline{P_1P_2}$ ha lunghezza $b-a \in \mathbb{E}$. Supponiamo adesso che b > a > 0, proviamo che $ab^{-1} \in \mathbb{E}$. Costruiamo un riferimento cartesiano e i punti (b, 0), (b+a, 0). Costruiamo la bisettrice del primo e terzo quadrante e la circonferenza di centro O e raggio \overline{OU} , sia P il punto d'intersezione tra la circonferenza e la bisettrice. Costruiamo la retta r passante per i punti P e (b, 0) e la retta s parallela a r e passante per il punto (b+a, 0). Sia C il punto d'intersezione tra s e la bisettrice. Risulta

$$1: b = \overline{PC}: a \Rightarrow \overline{PC} = ab^{-1} \in \mathbb{E}.$$

Nella costruzione abbiamo fatto uso delle costruzioni viste negli esempi precedenti. É ovvio che $\mathbb{E} \subseteq \mathbb{R}$, da cui si ha $ch(\mathbb{E}) = 0$, dunque $\mathbb{Q} \subseteq \mathbb{E} \subseteq \mathbb{R}$.

Teorema 2.6.9. Un numero reale $\alpha \in \mathbb{R}$ è euclideo se e solo se esiste una catena di campi

$$\mathbb{Q} = \mathbb{K}_0 \subset \mathbb{K}_1 \subset \ldots \subset \mathbb{K}_{t-1} \subset \mathbb{K}_t \subset \mathbb{R}$$

tale che $\alpha \in \mathbb{K}_t$ e $[\mathbb{K}_{i+1} : \mathbb{K}_i] = 2$ per ogni $i \in \{0, 1, \dots, t-1\}$.

Dimostrazione.

 \Rightarrow Il punto $P=(\alpha,0)$ è costruibile quindi esiste una successione di punti, rette e circonferenze

$$A_1, A_2, \dots, A_r = P.$$
 (2.2)

che sia una costruzione con riga e compasso. Sia l il numero di punti presenti in (2.2) (compreso P). Procediamo per induzione su l con l'ipotesi aggiuntiva che oltre

alle coordinate di P anche quelle degli altri punti appartengano a \mathbb{K}_t . Se l=1 allora $O \equiv P$ quindi $\alpha = 0$ e la catena è $\mathbb{Q} = \mathbb{K}_0 \subseteq \mathbb{R}$. Supponiamo adesso la tesi vera per quei punti che si possono costruire con una successione del tipo (2.2) in cui compaiono al massimo l-1 punti. Sia Q l'(l-1)-esimo punto della successione (2.2), per l'ipotesi induttiva esiste una catena di campi

$$\mathbb{Q} = \mathbb{K}_0 \subseteq \mathbb{K}_1 \subseteq \ldots \subseteq \mathbb{K}_{n-1} \subseteq \mathbb{K}_n \subseteq \mathbb{R},$$

inoltre le coordinate dei punti di (2.2) appartengono a \mathbb{K}_n . Distinguiamo tre casi in cui il punto P è ottenuto tramite intersezione di due rette, di una retta e una circonferenza o di due circonferenze, dove le rette e le circonferenze hanno equazioni a coefficienti in \mathbb{K}_n .

Nel primo caso le coordinate di P sono ottenute da un sistema del tipo

$$\begin{cases} ax + by + c = 0 \\ a'x + b'y + c' = 0 \end{cases}$$

sostituendo troviamo le soluzioni $x, y \in \mathbb{K}_n$ coordinate di P. La tesi è quindi ottenuta dalla catena $\mathbb{Q} = \mathbb{K}_0 \subseteq \ldots \subseteq \mathbb{K}_n \subseteq \mathbb{R}$.

Nel secondo caso le coordinate di P sono ottenute da un sistema del tipo

$$\begin{cases} a'x + b'y + c' = 0\\ x^2 + y^2 + dx + ey + f = 0 \end{cases}$$

eliminando una variabile otteniamo un'equazione del tipo $ax^2 + bx + c = 0$ con $a, b, c \in \mathbb{K}_n$, da cui

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \in \mathbb{K}_n(\sqrt{b^2 - 4ac}).$$

Essendo $\sqrt{b^2-4ac}$ radice del polinomio $x^2-b^2+4ac\in\mathbb{K}_n[x]$ il grado dell'estensione $\mathbb{K}_n\subseteq\mathbb{K}_n(\sqrt{b^2-4ac})$ può essere al più 2. Se $[\mathbb{K}_n(\sqrt{b^2-4ac}):\mathbb{K}_n]=1$ allora $x,y\in\mathbb{K}_n$ e analogamente al caso precedente la tesi è acquisita. Se invece $[\mathbb{K}_n(\sqrt{b^2-4ac}):\mathbb{K}_n]=2$ allora la tesi è ottenuta dalla catena di campi

$$\mathbb{Q} = \mathbb{K}_0 \subset \mathbb{K}_1 \subset \ldots \subset \mathbb{K}_{n-1} \subset \mathbb{K}_n \subset \mathbb{K}_n (\sqrt{b^2 - 4ac}) = \mathbb{K}_{n+1} \subset \mathbb{R}.$$

Nel terzo caso le coordinate di P sono ottenute da un sistema del tipo

$$\begin{cases} x^2 + y^2 + ax + by + c = 0 \\ x^2 + y^2 + a'x + b'y + c' = 0 \end{cases}$$

che si riduce facilmente a un sistema del tipo

$$\begin{cases} x^2 + y^2 + ax + by + c = 0\\ (a' - a)x + (b' - b)y + (c' - c) = 0 \end{cases}$$

che rappresenta l'intersezione di una retta e una circonferenza, riconducendoci al caso precedente.

 \Leftarrow Procediamo per induzione su t. Se t=0 allora $\alpha \in \mathbb{K}_0 = \mathbb{Q} \subseteq \mathbb{E}$ quindi α è euclideo. Supponiamo la tesi vera fino a t-1 e proviamo il teorema per t. Per ipotesi $\alpha \in \mathbb{K}_t$, adesso se $\alpha \in \mathbb{K}_{t-1}$ la tesi è acquisita, altrimenti se $\alpha \notin \mathbb{K}_{t-1}$ abbiamo

$$\mathbb{K}_{t-1} \subsetneq \mathbb{K}_{t-1}(\alpha) \subseteq \mathbb{K}_t \quad \text{con } [\mathbb{K}_t : \mathbb{K}_{t-1}] = 2,$$

allora dev'essere $[\mathbb{K}_{t-1}(\alpha) : \mathbb{K}_{t-1}] = 2$. Dunque $p_{\alpha}^{\mathbb{K}_{t-1}}(x) = x^2 + \beta x + \gamma \in \mathbb{K}_{t-1}[x]$ con $\beta, \gamma \in \mathbb{K}_{t-1}$ euclidei per l'ipotesi induttiva. Pertanto α , essendo radice di $p_{\alpha}^{\mathbb{K}_{t-1}}(x)$, è del tipo

$$\alpha = \frac{-\beta \pm \sqrt{\beta^2 - 4\gamma}}{2},$$

quindi α è costruibile se e solo se lo è $\sqrt{\beta^2 - 4\gamma} \in \mathbb{R}$. Dato che β e γ sono costruibili, è sufficiente dimostrare che in generale se $b \in \mathbb{R}^+$ è costruibile allora lo è anche \sqrt{b} (si noti che $\beta^2 - 4\gamma \ge 0$ in quanto $\alpha \in \mathbb{R}$).

Supponiamo $b \in \mathbb{R}^+$ costruibile e di aver costruito il punto P = (b+1,0), continuiamo la costruzione con i seguenti passaggi:

$$\begin{array}{l} A_1 = O \\ A_2 = U \\ \vdots \\ A_n = P \\ \vdots \\ A_{n+5} = \text{asse del segmento } \overline{OP} \\ A_{n+6} = \text{retta per O e U} \\ A_{n+7} = \text{punto d'intersezione tra } A_{n+5} \in A_{n+6} = M \\ A_{n+8} = \text{circonferenza di centro M e raggio } \overline{OM} \\ A_{n+9} = \text{circonferenza di centro U e raggio } \overline{OU} \\ A_{n+10} = \text{punto d'intersezione tra } A_{n+9} \in A_{n+6} \\ \vdots \\ A_{n+15} = \text{asse del segmento } \overline{OA_{n+10}} \\ A_{n+16} = \text{punto d'intersezione tra } A_{n+8} \in A_{n+15} = R \\ \end{array}$$

Il segmento cercato è \overline{UR} , infatti il triangolo ORP è rettangolo poiché è inscritto in una semicirconferenza quindi per il secondo teorema di Euclide l'altezza relativa all'ipotenusa \overline{UR} è medio proporzionale tra le proiezioni dei due cateti sull'ipotenusa, cioè i segmenti \overline{OU} e \overline{UP} di lunghezza rispettivamente 1 e b. Pertanto si ha

$$1: \overline{UR} = \overline{UR}: b \quad \Rightarrow \quad \overline{UR} = \sqrt{b}.$$

Corollario 2.6.10. Se $\alpha \in \mathbb{R}$ è euclideo allora è anche algebrico e deg $p_{\alpha}^{\mathbb{Q}}(x) = 2^m$ o in altri termini $[\mathbb{Q}(\alpha) : \mathbb{Q}] = 2^m$ per qualche $m \in \mathbb{N}$.

Dimostrazione. Per ipotesi esiste una catena di campi

$$\mathbb{Q} = \mathbb{K}_0 \subseteq \mathbb{K}_1 \subseteq \ldots \subseteq \mathbb{K}_{t-1} \subseteq \mathbb{K}_t \subseteq \mathbb{R}$$

con $\alpha \in \mathbb{K}_t$ e $[\mathbb{K}_t : \mathbb{Q}] = 2^t$. Considerando la catena $\mathbb{Q} \subseteq \mathbb{Q}(\alpha) \subseteq \mathbb{K}_t$ abbiamo

$$2^t = [\mathbb{K}_t : \mathbb{Q}] = [\mathbb{K}_t : \mathbb{Q}(\alpha)][\mathbb{Q}(\alpha) : \mathbb{Q}] \Rightarrow [\mathbb{Q}(\alpha) : \mathbb{Q}] = 2^m.$$

2.6.1 Tre problemi classici

Il precedente corollario ci permette di affrontare i famosi **tre problemi classici** dell'antichità:

- 1. Quadratura del cerchio, cioè il problema di costruire, mediante riga e compasso, un quadrato che abbia area uguale a un cerchio dato.
- 2. **Duplicazione del cubo**, cioè la costruzione, mediante riga e compasso, di un cubo di volume doppio a un cubo dato.
- 3. **Trisezione dell'angolo**, cioè la costruzione, mediante riga e compasso, di un angolo di ampiezza pari a un terzo di un angolo dato.

Il problema della quadratura del cerchio è equivalente alla costruzione di un segmento di lunghezza $\sqrt{\pi}$ che è equivalente alla costruibilità di π . Sappiamo però che π è trascendente (Lindemann, 1882) di conseguenza non essendo algebrico non può essere costruibile, ne segue l'impossibilità della quadratura del cerchio.

Il problema della duplicazione del cubo è equivalente alla costruzione di un segmento di lunghezza $\sqrt[3]{2}$. Sappiamo però che $[\mathbb{Q}(\sqrt[3]{2}):\mathbb{Q}]=3$, quindi $\sqrt[3]{2}$ in base al corollario precedente non è costruibile, ne segue l'impossibilità di duplicare un cubo.

Il problema della trisezione di un dato angolo 3φ (che si suppone costruibile, nel senso che lo sia il punto $(\cos(3\varphi), \sin(3\varphi))$) è equivalente alla costruzione del punto $(\cos\varphi, \sin\varphi)$, cioè alla costruibilità di $\cos\varphi$ dato che $\sin\varphi$ è radice del polinomio $x^2 - 1 + \cos^2\varphi$. Poiché

$$\cos(3\varphi) = 4\cos^3\varphi - 3\cos\varphi,$$

allora $\cos \varphi$ è radice del polinomio $p(x) = 4x^3 - 3x - \cos(3\varphi) \in \mathbb{Q}(\cos(3\varphi))[x]$. Inoltre si ha $\cos(3\varphi) \in \mathbb{Q}(\cos(\varphi))$. Dunque

$$\mathbb{Q} \subseteq \mathbb{Q}(\cos(3\varphi)) \subseteq \mathbb{Q}(\cos(\varphi)).$$

Pertanto se p(x) fosse irriducibile allora esso coninciderebbe con il polinomio minimo di $\cos(\varphi)$ su $\mathbb{Q}(\cos(3\varphi))$, quindi si avrebbe

$$[\mathbb{Q}(\cos(\varphi)):\mathbb{Q}] = [\mathbb{Q}(\cos(\varphi)):\mathbb{Q}(\cos(3\varphi))][\mathbb{Q}(\cos(3\varphi)):\mathbb{Q}] = 3\cdot[\mathbb{Q}(\cos(3\varphi)):\mathbb{Q}] \neq 2^m,$$

da cui $cos(\varphi)$ non sarebbe costruibile.

Viceversa se p(x) fosse riducibile allora il polinomio minimo di $\cos \varphi$ su $\mathbb{Q}(\cos(3\varphi))$ sarà di grado al più 2. Sia

$$\mathbb{Q} = \mathbb{K}_0 \subseteq \mathbb{K}_1 \subseteq \ldots \subseteq \mathbb{K}_{t-1} \subseteq \mathbb{K}_t \subseteq \mathbb{R}$$

un catena di campi per cui $\cos(3\varphi) \in \mathbb{K}_t$ e $[\mathbb{K}_{i+1} : \mathbb{K}_t] = 2$ (una tale catena esiste poiché $\cos(3\varphi)$ è costruibile per ipotesi). Allora il polinomio minimo di $\cos(\varphi)$ su \mathbb{K}_t divide il polinomio minimo di $\cos(\varphi)$ su $\mathbb{Q}(\cos(3\varphi))$ di grado al più due, quindi $\deg p_{\cos(\varphi)}^{\mathbb{K}_t}(x) \leq 2$, da cui possiamo allungare la catena con $\mathbb{K}_t \subseteq \mathbb{K}_t(\cos(\varphi))$ visto che quest'ultima è un'estensione di grado al più 2, da cui $\cos(\varphi)$ risulterà costruibile.

Dunque, per quanto detto finora, $\cos(\varphi)$ è costruibile se e solo se il polinomio p(x) è riducibile.

Sia ad esempio $3\varphi = \frac{\pi}{3}$ allora $\cos(3\varphi) = \frac{1}{2}$ e $\cos\varphi$ è radice del polinomio $8x^2 - 6x - 1 \in \mathbb{Q}[x]$ che è irriducibile non avendo radici razionali. Quindi $\cos\varphi$ non è costruibile.

2.6.2 Problema della ciclotomia

Il problema della ciclotomia o divisione della circonferenza (dal greco ciclos cerchio e $tom\acute{e}$ tagliare) è il problema di suddividere una circonferenza in n parti uguali o ciò che è lo stesso di inscrivere un poligono regolare di n lati in una circonferenza.

Costruire un poligono regolare di n lati \mathcal{P}_n di centro O e con uno dei vertici coincidente con U è equivalente alla costruzione di tutti i suoi vertici $\mathcal{P}_{n,k}$ numerati rispetto a $k=0,\ldots,n-1$ in senso antiorario i quali corrispondono alle radici n-esime dell'unità. Dato che queste ultime possono essere ottenute a partire dalla radice n-esima primitiva dell'unità

$$\epsilon = \cos\left(\frac{2\pi}{n}\right) + i\sin\left(\frac{2\pi}{n}\right),\,$$

il problema si riduce alla costruibilità di $\epsilon \in \mathbb{C}$.

Teorema 2.6.11. $\epsilon \in \mathbb{C}$ è euclideo $\iff \varphi(n) = 2^m$ per qualche $m \in \mathbb{N}$.

Dimostrazione.

 \Rightarrow Sia $\epsilon = a + ib$ con $a, b \in \mathbb{R}$ euclidei tali che $a^2 + b^2 = 1$. In particolare se a è euclideo allora esiste una catena di campi

$$\mathbb{Q} = \mathbb{K}_0 \subseteq \ldots \subseteq \mathbb{K}_t \subseteq \mathbb{R}$$

con $a \in \mathbb{K}_t$ e $[\mathbb{K}_{i+1} : \mathbb{K}_i] = 2$ per ogni $i \in \{0, \dots, t-1\}$. b è radice del polinomio $x^2 + a^2 - 1 \in \mathbb{K}_t[x]$ pertanto $[\mathbb{K}_t(b) : \mathbb{K}_t] \leq 2$, in ogni caso $[\mathbb{K}_t(b) : \mathbb{Q}] = 2^h$ dove h è uguale a t o t+1, ne segue $[\mathbb{K}_t(b,i) : \mathbb{Q}] = 2^{h+1}$ con $\epsilon \in \mathbb{K}_t(b,i)$. Adesso considerando la catena $\mathbb{Q} \subseteq \mathbb{Q}(\epsilon) \subseteq \mathbb{K}_t(b,i)$, dato che $\mathbb{Q} \subseteq \mathbb{Q}(\epsilon)$ è un'estensione ciclotomica, abbiamo

$$2^{h+1} = [\mathbb{K}_t(b,i):\mathbb{Q}] = [\mathbb{K}_t(b,i):\mathbb{Q}(\epsilon)][\mathbb{Q}(\epsilon):\mathbb{Q}] \Rightarrow \varphi(n) = [\mathbb{Q}(\epsilon):\mathbb{Q}] = 2^m.$$

 \Leftarrow Basta provare che $a=\cos\left(\frac{2\pi}{n}\right)$ è costruibile. L'estensione $\mathbb{Q}\subseteq\mathbb{Q}(\epsilon)$ è un'estensione ciclotomica, quindi è di Galois. Sia $\sigma:\mathbb{Q}(\epsilon)\to\overline{\mathbb{Q}}$ con $\sigma(\epsilon)=\overline{\epsilon}$. Osserviamo che $\sigma\in\mathcal{G}(\mathbb{Q}(\epsilon)/\mathbb{Q})$ infatti σ manda ϵ in $\overline{\epsilon}$ che è ancora una radice di $p_{\epsilon}^{\mathbb{Q}}(x)$ e l'estensione $\mathbb{Q}\subseteq\mathbb{Q}(\epsilon)$ è di Galois, quindi in particolare è normale. Abbiamo $\mathbb{Q}\subseteq\mathbb{Q}(\epsilon)^{\mathcal{G}(\sigma)}\subseteq\mathbb{Q}(\epsilon)$ dove

$$\mathcal{G}(\sigma) = \{1, \sigma\} \leq \mathcal{G}(\mathbb{Q}(\epsilon)/\mathbb{Q}), \quad [\mathbb{Q}(\epsilon) : \mathbb{Q}(\epsilon)^{\mathcal{G}(\sigma)}] = |\mathcal{G}(\sigma)| = 2.$$

Osserviamo che σ manda $\alpha \in \mathbb{Q}(\epsilon)$ nel suo coniugato $\overline{\alpha}$, quindi i numeri lasciati fissi da σ sono tutti e soli i numeri reali di $\mathbb{Q}(\epsilon)$, pertanto $\mathbb{Q}(\epsilon)^{\mathcal{G}(\sigma)} \subseteq \mathbb{R}$, in particolare $a = \cos\left(\frac{2\pi}{n}\right) \in \mathbb{Q}(\epsilon)^{\mathcal{G}(\sigma)}$. Essendo

$$\mathcal{G}(\mathbb{Q}(\epsilon)/\mathbb{Q}) \simeq U_n$$
 abeliano con $|\mathcal{G}(\mathbb{Q}(\epsilon)/\mathbb{Q})| = [\mathbb{Q}(\epsilon) : \mathbb{Q}] = \varphi(n) = 2^m$

abbiamo $\mathcal{G}(\sigma) \leq \mathcal{G}(\mathbb{Q}(\epsilon)/\mathbb{Q})$ quindi dal teorema fondamentale della teoria di Galois l'estensione $\mathbb{Q} \subseteq \mathbb{Q}(\epsilon)^{\mathcal{G}(\sigma)}$ è di Galois e inoltre

$$\mathcal{G}(\mathbb{Q}(\epsilon)^{\mathcal{G}(\sigma)}/\mathbb{Q}) \simeq \frac{\mathcal{G}(\mathbb{Q}(\epsilon)/\mathbb{Q})}{\mathcal{G}(\sigma)} \Rightarrow |\mathcal{G}(\mathbb{Q}(\epsilon)^{\mathcal{G}(\sigma)}/\mathbb{Q})| = 2^{m-1}.$$

Dalle proprietà dei gruppi di ordine la potenza di un primo esiste la catena di sottogruppi

$$\{e\} = H_0 \le H_1 \le \ldots \le H_{m-2} \le H_{m-1} = \mathcal{G}(\mathbb{Q}(\epsilon)^{\mathcal{G}(\sigma)}/\mathbb{Q})$$

con $|H_i|=2^i$ e $H_i \leq H_{i+1}$ per ogni $i \in \{0,1,\ldots,m-2\}$. Dunque per la corrispondenza di Galois esiste la catena di campi

$$\mathbb{Q} = \mathbb{K}_0 \subseteq \mathbb{K}_1 \subseteq \ldots \subseteq \mathbb{K}_{m-2} \subseteq \mathbb{K}_{m-1} = \mathbb{Q}(\epsilon)^{\mathcal{G}(\sigma)} \subseteq \mathbb{R}$$

con
$$\mathbb{K}_i = \left(\mathbb{Q}(\epsilon)^{\mathcal{G}(\sigma)}\right)^{H_{m-1-i}}$$
, $\left[\mathbb{K}_{i+1} : \mathbb{K}_i\right] = 2$ per ogni $i \in \{0, 1, \dots, m-2\}$ e $a = \cos\left(\frac{2\pi}{n}\right) \in \mathbb{Q}(\epsilon)^{\mathcal{G}(\sigma)}$ quindi a è costruibile.

Ci chiediamo adesso per quali $n \in \mathbb{N}$ esiste $m \in \mathbb{N}$ tale che $\varphi(n) = 2^m$. Se

$$n = 2^r p_1^{s_1} \dots p_h^{s_h}$$

è la scomposizione in fattori primi di n allora imponendo

$$\varphi(n) = 2^{r-1} p_1^{s_1-1} (p_1 - 1) \dots p_h^{s_h-1} (p_h - 1) = 2^m$$

otteniamo $s_1 = 1, \dots, s_h = 1$ e inoltre $p_i - 1$ deve essere una potenza di 2.

Proposizione 2.6.12. Sia p primo dispari. Se $p-1=2^k$ allora $k=2^u$ per qualche $u \in \mathbb{N}$.

Dimostrazione. Supponiamo che $k=2^u m$ con m dispari, allora

$$p = (2^{2^u})^m + 1 = (2^{2^u} + 1)((2^{2^u})^{m-1} - (2^{2^u})^{m-2} + \dots + (-1)^{m-2}2^{2^u} + (-1)^{m-1})$$

ma essendo p primo deve risultare m=1, cioè $p=2^{2^u}+1$.

Definizione 2.6.13. I primi della forma $2^{2^n} + 1$ sono detti **primi di Fermat**.

Corollario 2.6.14. Un poligono regolare di $n \geq 3$ lati è costruibile se e solo se

$$n = 2^m \ oppure \ n = 2^m p_1 p_2 \dots p_s$$

dove p_1, p_2, \ldots, p_s sono primi di Fermat distinti.

2.7 Gruppi Risolubili

Definizione 2.7.1. Un gruppo G è detto risolubile se esiste una catena finita di sotto-gruppi di G

$$\{e\} = K_0 \le K_1 \le \ldots \le K_{n-1} \le K_n = G$$

tale che $K_i \subseteq K_{i+1}$ e K_{i+1}/K_i è abeliano per ogni $i \in \{0, 1, ..., n-1\}$. Una tale catena è detta **risolvente** per G.

Osservazione 2.7.2. Ogni gruppo G abeliano è risolubile tramite la catena risolvete $\{e\} \leq G$.

Ogni p-gruppo è risolubile tramite la catena

$$\{e\} = K_0 \le K_1 \le \ldots \le K_{n-1} \le K_n = G$$

 $con |K_i| = p^i \ e \ K_i \le K_{i+1} \ con \ K_{i+1}/K_i \ abeliano \ in \ quanto \ |K_{i+1}/K_i| = \frac{p^{i+1}}{p^i} = p.$

Lemma 2.7.3. Siano G e G' due gruppi con G abeliano. Se esiste un omomorfismo $f: G \to G'$ suriettivo allora anche G' è abeliano.

Dimostrazione. Per ipotesi per ogni $x', y' \in G'$ esistono $x, y \in G$ tali che f(x) = x', f(y) = y', da cui si ha

$$x'y' = f(x)f(y) = f(xy) = f(yx) = f(y)f(x) = y'x'.$$

Teorema 2.7.4. Sia G un gruppo.

- 1. Se G è risolubile allora ogni sottogruppo $H \leq G$ è risolubile.
- 2. Se G è risolubile e $H \subseteq G$ allora G/H è risolubile.
- 3. Se $N \triangleleft G$ e G/N sono risolubili allora G è risolubile.
- 4. Se G è finito e risolubile allora esiste una caten finita

$$\{e\} = K_0 \le K_1 \le \ldots \le K_{n-1} \le K_n = G$$

tale che K_{i+1}/K_i è ciclico di ordine primo.

Dimostrazione.

1. Per ipotesi esiste una catena risolvente per G

$$\{e\} = K_0 < K_1 < \ldots < K_{n-1} < K_n = G.$$

Consideriamo la catena

$$\{e\} = K_0 \cap H < K_1 \cap H < \dots < K_{n-1} \cap H < K_n \cap H = G \cap H = H,$$

abbiamo $K_i \cap H \leq K_{i+1} \cap H$ infatti siano $k \in K_i \cap H$ e $h \in K_{i+1} \cap H$ allora $hkh^{-1} \in K_i \cap H$ in quanto $hkh^{-1} \in K_i$ essendo $K_i \leq K_{i+1}$ e $hkh^{-1} \in H$ poiché $h, k \in H$.

Inoltre $(K_{i+1} \cap H)/(K_i \cap H)$ è abeliano infatti sia $\phi = \pi_{|K_{i+1} \cap H|} : K_{i+1} \cap H \to K_{i+1}/K_i$ la restrizione a $K_{i+1} \cap H$ della proiezione canonica di K_{i+1} su K_{i+1}/K_i . Risulta

$$\ker \phi = \{k \in K_{i+1} \cap H : \phi(k) = K_i\} = \{k \in K_{i+1} \cap H : k \in K_i\} = K_i \cap H$$

pertanto dal teorema dell'isomorfismo

$$(K_{i+1} \cap H)/(K_i \cap H) \simeq \operatorname{Im} \phi \leq K_{i+1}/K_i$$
 abeliano,

ne segue che anche $(K_{i+1} \cap H)/(K_i \cap H)$ è abeliano, quindi H è risolubile.

2. Tramite la proiezione canonica π possiamo mettere in corrispondenza biunivoca i sottogruppi di G contenenti N e i sottogruppi di G/N. Per ipotesi esiste una catena risolvente per G

$$\{e\} = K_0 \le K_1 \le \ldots \le K_{n-1} \le K_n = G.$$

Dal momento che $N \leq G$ se $K \leq G$ è un sottogruppo di G allora lo è anche KN. Dunque possiamo considerare la catena

$$N = K_0 N \le K_1 N \le \ldots \le K_n N = G.$$

Sia $H_i = \pi(K_iN) = K_iN/N \leq G/N$, proviamo che $H_i \leq H_{i+1}$. Basta provare che $K_iN \leq K_{i+1}N$, infatti da ciò seguirebbe $\pi(K_iN) \leq \pi(K_{i+1}N)$, cioè $H_i \leq H_{i+1}$. Sia $k_i\tilde{n} \in K_iN$ e $k_{i+1}n \in K_{i+1}N$, risulta

$$(k_{i+1}n)^{-1}(k_i\tilde{n})(k_{i+1}n) = n^{-1}k_{i+1}^{-1}k_i\tilde{n}k_{i+1}n$$

visto che $N \leq G$ allora $k_{i+1}^{-1} \tilde{n} k_{i+1} = \tilde{n}' \in N$ quindi $\tilde{n} k_{i+1} = k_{i+1} \tilde{n}'$, da cui

$$n^{-1}k_{i+1}^{-1}k_{i}\tilde{n}k_{i+1}n = n^{-1}k_{i+1}^{-1}k_{i}k_{i+1}\tilde{n}'n.$$

Adesso visto che $K_i \leq K_{i+1}$ allora $k_{i+1}^{-1}k_ik_{i+1} = k_i' \in K_i$. Con un ragionamento analogo al precedente otteniamo $n^{-1}k_i' = k_i''n' \in K_iN = NK_i$, pertanto

$$n^{-1}k_{i+1}^{-1}k_ik_{i+1}\tilde{n}'n = n^{-1}k_i'\tilde{n}'n = k_i''n'\tilde{n}'n \in K_iN$$

Proviamo che H_{i+1}/H_i è abeliano. In base al terzo teorema dell'isomorfismo abbiamo

$$H_{i+1}/H_i = \frac{NK_{i+1}/N}{NK_i/N} \simeq NK_{i+1}/NK_i$$

quindi ci basta provare che NK_{i+1}/NK_i è abeliano. Consideriamo l'immersione $\phi: K_{i+1} \to NK_{i+1}$ e la proiezione $\pi: NK_{i+1} \to NK_{i+1}/NK_i$ e sia $\psi = \pi \circ \phi$. Dunque si ha $\psi: K_{i+1} \to NK_{i+1}/NK_i$ con $\psi(k) = kNK_i = kK_iN$, quindi per qualunque $k' \in kK_i$ abbiamo $\psi(k') = k'K_iN = kK_iN$. Quest'ultima osservazione ci permette di concludere che ker $\psi \supseteq K_i$ e che l'applicazione $\tilde{\psi}: K_{i+1}/K_i \to NK_{i+1}/NK_i$ con $\tilde{\psi}(kK_i) = \psi(k) = kNK_i$ è ben definita ed è un omomorfismo suriettivo. Pertanto dal lemma precedente segue che NK_{i+1}/NK_i è abeliano.

3. Per ipotesi esiste una catena risolvente per N

$$\{e\} = K_0 \le K_1 \le \ldots \le K_n = N,$$

e una catena risolvente per G/N

$$\{N\} = H_0 \le H_1 \le \ldots \le H_m = G/N.$$

Sia $\pi: G \to G/N$ la proiezione naturale e $K_{n+i} = \pi^{-1}(H_i)$ per $i \in \{0, \dots, m\}$. Abbiamo quindi $N \leq K_{n+i} \leq G$ con $K_{n+i} \leq K_{i+1}$ visto che $H_i \leq H_{i+1}$. Inoltre essendo $H_i = \pi(K_{n+i}) = K_{n+i}/N$ abbiamo

$$K_{n+i+1}/K_{n+i} \simeq \frac{K_{n+i+1}/N}{K_{n+i}/N} = H_{i+1}/H_i$$
 abeliano.

Per quanto osservato prima la catena

$$\{e\} = K_0 < K_1 < \ldots < K_n < K_{n+1} < \ldots < K_{n+m} = G$$

è una catena risolvente per G.

4. Procedimao per induzione su m = |G|. Per m = 1 o m = p primo la catena $\{e\} \leq G$ soddisfa le ipotesi. Supponiamo la tesi vera per gruppi di ordine minore di m e proviamolo per G, con |G| = m. Per ipotesi G ammette una catena risolvente

$$\{e\} \le K_1 \le \ldots \le K_n = G.$$

Adesso $\overline{G} = G/K_{n-1}$ è abeliano, quindi \overline{G} ammette un sottogruppo di ordine un qualunque divisore di $|\overline{G}|$. Sia p un divisore primo di $|\overline{G}|$ e $\overline{H} \leq \overline{G}$ con $|\overline{H}| = \frac{|\overline{G}|}{p}$. Consideriamo la proiezione naturale $\pi : G \to G/K_{n-1} = \overline{G}$. Sia $H = \pi^{-1}(\overline{H})$ con $|H| = \frac{|G|}{p}$, poiché $\overline{H} \leq \overline{G}$ allora $H \leq G$ con |G/H| = p, quindi G/H è ciclico. Dato che |H| < |G| posso applicare l'ipotesi induttiva su H ottenendo la catena

$$\{e\} = H_0 \le H_1 \le \dots \le H_{k-1} \le H_k = H \le G$$

da cui la tesi.

Osservazione 2.7.5. Il punto 4 del precedente teorema ci dice che possiamo raffinare la catena risolvente di un gruppo risolubile finito in modo tale che K_{i+1}/K_i sia ciclico di ordine primo.

A questo punto ci chiediamo per quali n il gruppo simmetrico S_n sia risolubile.

n=1 $S_1=\{e\}$ è banalmente risolubile.

n=2 S_2 è abeliano quindi è risolubile.

57

n=3 S_3 è risolubile. Considerando infatti $A_3 \subseteq S_3$ il sottogruppo delle permutazioni pari la catena

$$\{e\} \le A_3 \le S_3$$

è una catena risolvente per S_3 in quanto $|S_3/A_3| = 2$ quindi S_3/A_3 è abeliano.

 $n=4~S_4$ è risolubile. Consideriamo infatti $A_4 \unlhd S_4$ il gruppo delle permutazioni pari e

$$V = \{(1), (12)(34), (13)(24), (14)(23)\} \le A_4$$

V è abeliano essendo |V|=4. Inoltre osserviamo che due permutazioni coniugate hanno la stessa struttura ciclica in cicli disgiunti e viceversa, cioè due permutazioni con la stessa struttura sono coniugati in S_n . Da ciò otteniamo $V \subseteq A_4$. Dunque la catena

$$\{e\} \le V \le A_4 \le S_4$$

è risolvente per S_4 .

Vediamo adesso di studiare la risolubilità di S_n per $n \geq 5$.

Lemma 2.7.6. Per ogn $n \geq 5$, A_n è generato da 3-cicli.

Dimostrazione. Sappiamo che ogni $\sigma \in A_n$ è prodotto di trasposizioni $\sigma = \tau_1 \circ \tau_2 \circ \ldots \circ \tau_{2k}$. Siano $i \neq j$, distinguiamo due casi:

- 1. $\tau_i = (ab), \tau_i = (ac) \Rightarrow \tau_i \circ \tau_i = (acb).$
- 2. $\tau_i = (a \, b), \tau_j = (c \, d) \Rightarrow \tau_i \circ \tau_j = (a \, c \, b)(c \, b \, d).$

In ogni caso σ , dato che è una permutazione pari, risulterà prodotto di 3-cicli (non necessariamente disgiunti).

Lemma 2.7.7. Per ogni $n \geq 5$ due qualsiasi 3-cicli sono coniugati in A_n .

Dimostrazione. Siano $\sigma_1 = (a b c), \sigma_2 = (e f g)$. Sappiamo che $\exists \tau \in S_n$ tale che

$$(abc) = \tau(efg)\tau^{-1} \text{ con } \tau = \begin{pmatrix} \dots & a & b & c & \dots \\ \dots & e & f & g & \dots \end{pmatrix}.$$

Se $\tau \in A_n$ la tesi è acquisita. Altrimenti, poiché $n \geq 5$ esistono $l, m \neq a, b, c$ tali che

$$\tau = \begin{pmatrix} \dots & a & b & c & \dots & l & m & \dots \\ \dots & e & f & g & \dots & \tau(l) & \tau(m) & \dots \end{pmatrix}.$$

Dunque possiamo considerare $\overline{\tau} = (\tau(l) \tau(m))\tau \in A_n$, avremo come prima

$$(a b c) = \overline{\tau}(e f g) \overline{\tau}^{-1}$$

da cui la tesi. \Box

Teorema 2.7.8. S_n non è risolubile per $n \geq 5$.

Dimostrazione. Supponiamo per assurdo che S_n sia risolubile. Allora lo sarà anche $A_n \leq S_n$. Proviamo che A_n non ha sottogruppi normali non banali. In questo modo l'unica catena risolvente per A_n dovrebbe essere $\{(1)\} \leq A_n$, ma A_n non è abeliano quindi ciò sarebbe assurdo.

Sia $\{(1)\} \subseteq H \subseteq A_n$, mostriamo che $H = A_n$. Proviamo che in H vi è almeno un 3-ciclo. Sia $\varphi \in H$ con $\varphi \neq (1)$ la sostituzione che lascia fissi il maggior numero possibile di elementi. Supponiamo per assurdo che φ non sia un 3-ciclo. Distinguiamo due casi

- 1. Nella fattorizzazione di φ in cicli disgiunti compare almeno un ciclo di lunghezza maggiore o uguale a 3. Abbiamo due casi
 - (a) φ è un ciclo di lunghezza almeno 5

$$\varphi = (i j k l m \dots)$$

(b) φ ha almeno due fattori e uno di essi deve spostare almeno 3 elementi

$$\varphi = (i j k \ldots)(l m \ldots) \ldots$$

2. φ è prodotto di trasposizioni disgiunte

$$\varphi = (i j)(k l) \dots$$

Poiché $n \geq 5$ allora $\exists m \neq i, j, k, l$. Nei due casi sia $\beta = (k \, l \, m) \in A_n$. Visto che $H \leq A_n$ allora $\beta \varphi \beta^{-1} \in H$. Proviamo che $(1) \neq \beta \varphi \beta^{-1} \varphi^{-1} \in H$ lascia fissi più elementi di φ .

1.
$$\varphi(j) = k, \varphi^{-1}(k) = j$$
, da cui

$$\beta\varphi\beta^{-1}\varphi^{-1}(k) = \beta\varphi\beta^{-1}(j) = \beta\varphi(j) = \beta(k) = l \neq k \Rightarrow \beta\varphi\beta^{-1}\varphi^{-1} \neq (1).$$

Inoltre

$$\beta \varphi \beta^{-1} \varphi^{-1}(j) = \beta \varphi \beta^{-1}(i) = \beta \varphi(i) = \beta(j) = j,$$

quindi $\beta \varphi \beta^{-1} \varphi^{-1}$ lascia fissi tutti gli elementi lasciati fissi da φ (e da β) più l'elemnto j, assurdo.

2. $\varphi(k) = \varphi^{-1}(k) = l$, da cui

$$\beta\varphi\beta^{-1}\varphi^{-1}(k) = \beta\varphi\beta^{-1}(l) = \beta\varphi(k) = \beta(l) = m \neq k \Rightarrow \beta\varphi\beta^{-1}\varphi^{-1} \neq (1).$$

Inoltre

$$\beta\varphi\beta^{-1}\varphi^{-1}(j) = \beta\varphi\beta^{-1}(i) = \beta\varphi(i) = \beta(j) = j,$$

$$\beta\varphi\beta^{-1}\varphi^{-1}(i) = \beta\varphi\beta^{-1}(j) = \beta\varphi(j) = \beta(i) = i,$$

quindi $\beta \varphi \beta^{-1} \varphi^{-1}$ lascia fissi tutti gli elementi lasciati fissi da φ tranne al più l'elemento m, con l'aggiunta degli elementi i, j, assurdo.

Quindi in H ci sono tutti i coniugati del 3-ciclo, cioè H possiede tutti i 3-cicli. Dal lemma precedente abbiamo $A_n \subseteq H$, cioè $H = A_n$.

2.8 Estensioni cicliche

Nel seguito supporremo $ch(\mathbb{K}) = 0$.

Definizione 2.8.1. Sia $\mathbb{F} \subseteq \mathbb{K}$ un'estensione finita, con $[\mathbb{K} : \mathbb{F}] = |\mathscr{I}(\mathbb{K}/\mathbb{F})| = n$ (visto che l'estensione è anche separabile in quanto ch $(\mathbb{K}) = 0$) e $\mathscr{I}(\mathbb{K}/\mathbb{F}) = \{\sigma_1, \sigma_2, \dots, \sigma_n\}$. Sia $a \in \mathbb{K}$, si definisce la **traccia** di a come l'elemento

$$Tr_{\mathbb{K}/\mathbb{F}}(a) = \sum_{i=1}^{n} \sigma_i(a) \in \overline{\mathbb{F}}.$$

Si definisce la **norma** di a come l'elemento

$$N_{\mathbb{K}/\mathbb{F}}(a) = \prod_{i=1}^{n} \sigma_i(a) \in \overline{\mathbb{F}}.$$

Proposizione 2.8.2. Sia $\mathbb{F} \subseteq \mathbb{K}$ un'estensione di Galois, con $[\mathbb{K} : \mathbb{F}] = |\mathscr{I}(\mathbb{K}/\mathbb{F})| = |\mathscr{I}(\mathbb{K}/\mathbb{F})| = n$ e $\mathscr{I}(\mathbb{K}/\mathbb{F}) = \{\sigma_1, \sigma_2, \dots, \sigma_n\}$. Per ogni $a \in \mathbb{K}$ si ha $Tr_{\mathbb{K}/\mathbb{F}}(a), N_{\mathbb{K}/\mathbb{F}}(a) \in \mathbb{F}$.

Dimostrazione. L'estensione $\mathbb{F} \subseteq \mathbb{K}$ è di Galois quindi $\mathbb{F} = \mathbb{K}^{\mathcal{G}(\mathbb{K}/\mathbb{F})}$. Sia $a \in \mathbb{K}$, per ogni $\sigma_i \in \mathcal{G}(\mathbb{K}/\mathbb{F})$ abbiamo

$$\sigma_i(Tr_{\mathbb{K}/\mathbb{F}}(a)) = \sigma_i\left(\sum_{j=1}^n \sigma_j(a)\right) = \sum_{j=1}^n (\sigma_i \circ \sigma_j)(a) = \sum_{j=1}^n \sigma_j(a) = Tr_{\mathbb{K}/\mathbb{F}}(a) \in \mathbb{K}^{\mathcal{G}(\mathbb{K}/\mathbb{F})} = \mathbb{F}$$

$$\sigma_i(N_{\mathbb{K}/\mathbb{F}}(a)) = \sigma_i\left(\prod_{j=1}^n \sigma_j(a)\right) = \prod_{j=1}^n (\sigma_i \circ \sigma_j)(a) = \prod_{j=1}^n \sigma_j(a) = N_{\mathbb{K}/\mathbb{F}}(a) \in \mathbb{K}^{\mathcal{G}(\mathbb{K}/\mathbb{F})} = \mathbb{F}$$

(nelle penultime uguaglianze abbiamo utilizzato il fatto che gli elementi $\sigma_i \circ \sigma_j$ sono tutti distinti al variare di $j \in \{1, ..., n\}$).

Definizione 2.8.3. Sia $\mathbb{F} \subseteq \mathbb{K}$ un'estensione di Galois. Fissiamo una base $\{a_1, a_2, \dots, a_n\}$ di \mathbb{K} come \mathbb{F} -spazio vettoriale. Si definisce **discriminante** relativo a tale base come

$$\Delta = \det(\sigma_i(a_j)) = \begin{vmatrix} \sigma_1(a_1) & \sigma_1(a_2) & \dots & \sigma_1(a_n) \\ \sigma_2(a_1) & \sigma_2(a_2) & \dots & \sigma_2(a_n) \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_n(a_1) & \sigma_n(a_2) & \dots & \sigma_n(a_n) \end{vmatrix}.$$

Proposizione 2.8.4. Se $\mathbb{F} \subseteq \mathbb{K}$ è un'estensione di Galois, con $[\mathbb{K} : \mathbb{F}] = n$, allora $\Delta \neq 0$

$$\Delta^{2} = \det(Tr(a_{i}a_{j})) = \begin{vmatrix} Tr(a_{1}a_{1}) & Tr(a_{1}a_{2}) & \dots & Tr(a_{1}a_{n}) \\ Tr(a_{2}a_{1}) & Tr(a_{2}a_{2}) & \dots & Tr(a_{2}a_{n}) \\ \vdots & \vdots & \ddots & \vdots \\ Tr(a_{n}a_{1}) & Tr(a_{n}a_{2}) & \dots & Tr(a_{n}a_{n}) \end{vmatrix}$$

Dimostrazione. Sia $A = (\sigma_i(a_i))$ per ogni $i, j \in \{1, \dots, n\}$. Risulta

$$\Delta^2 = \det(A^t) \det(A) = \det(A^t A).$$

Adesso, visto che $A^t = (\sigma_i(a_i))$, ponendo $A^t A = (c_{ij})$ risulta

$$c_{ij} = \sum_{k=1}^{n} \sigma_k(a_i)\sigma_k(a_j) = \sum_{k=1}^{n} \sigma_k(a_i a_j) = Tr(a_i a_j) \Rightarrow \Delta^2 = \det(A^t A) = \det(Tr(a_i a_j)).$$

Sia adesso $T: \mathbb{K} \times \mathbb{K} \to \mathbb{F}$ con $T(a,b) = Tr_{\mathbb{K}/\mathbb{F}}(ab)$. Proviamo che T è una forma bilineare simmetrica. Siano $a,b,c \in \mathbb{K}$ e $\alpha \in \mathbb{F}$

$$T(a+b,c) = Tr_{\mathbb{K}/\mathbb{F}}((a+b)c) = \sum_{i=1}^{n} \sigma_{i}((a+b)c) =$$

$$= \sum_{i=1}^{n} \sigma_{i}(ac) + \sigma_{i}(bc) = Tr_{\mathbb{K}/\mathbb{F}}(ac) + Tr_{\mathbb{K}/\mathbb{F}}(bc) = T(a,c) + T(b,c),$$

$$T(\alpha a,b) = Tr_{\mathbb{K}/\mathbb{F}}(\alpha ab) = \sum_{i=1}^{n} \sigma_{i}(\alpha ab) = \alpha \sum_{i=1}^{n} \sigma_{i}(ab) = \alpha Tr_{\mathbb{K}/\mathbb{F}}(ab) = \alpha T(a,b),$$

$$T(a,b) = Tr_{\mathbb{K}/\mathbb{F}}(ab) = Tr_{\mathbb{K}/\mathbb{F}}(ba) = T(b,a).$$

Dunque T è una forma bilineare la cui matrice associata rispetto alla base $\mathcal{A} = \{a_1, a_2, \dots, a_n\}$ è $[T]_{\mathcal{A}} = (Tr_{\mathbb{K}/\mathbb{F}}(a_i a_j))$. Poiché per ogni $a \in \mathbb{K} \setminus \{0\}$

$$T(a, a^{-1}) = Tr_{\mathbb{K}/\mathbb{F}}(aa^{-1}) = Tr_{\mathbb{K}/\mathbb{F}}(1) = n \neq 0 \quad (ch(\mathbb{K}) = 0),$$

allora la forma bilineare T è non degenere, ciò è equivalente a $\det([T]_{\mathcal{A}}) \neq 0$, cioè $\det(Tr_{\mathbb{K}/\mathbb{F}}(a_ia_j)) = \Delta^2 \neq 0 \Rightarrow \Delta \neq 0$.

Osserviamo che ogni automorfismo di \mathbb{K} come campo che lascia fisso \mathbb{F} è anche un automorfismo di \mathbb{K} come \mathbb{F} -spazio vettoriale, cioè $\mathcal{G}(\mathbb{K}/\mathbb{F}) \subseteq \operatorname{Hom}_{\mathbb{F}}(\mathbb{K},\mathbb{K})$. Infatti sia $\sigma \in \mathcal{G}(\mathbb{K}/\mathbb{F})$, per ogni $x, y \in \mathbb{K}$ e $a \in \mathbb{F}$ abbiamo

- $\sigma(x+y) = \sigma(x) + \sigma(y)$
- $\sigma(ax) = \sigma(a)\sigma(x) = a\,\sigma(x)$

Adesso definiamo il seguente prodotto

$$f \in \operatorname{Hom}_{\mathbb{F}}(\mathbb{K}, \mathbb{K}), \ \alpha \in \mathbb{K} \quad (\alpha \cdot f)(x) = \alpha \ f(x) \quad \forall x \in \mathbb{K}.$$

Osserviamo che se $f \in \operatorname{Hom}_{\mathbb{F}}(\mathbb{K}, \mathbb{K})$ e $\alpha \in \mathbb{K}$ allora anche $\alpha \cdot f \in \operatorname{Hom}_{\mathbb{F}}(\mathbb{K}, \mathbb{K})$, infatti per ogni $x, y \in \mathbb{K}$ e $a \in \mathbb{F}$ abbiamo

- $(\alpha \cdot f)(x+y) = \alpha f(x+y) = \alpha (f(x) + f(y)) = \alpha f(x) + \alpha f(y) = (\alpha \cdot f)(x) + (\alpha \cdot f)(y)$
- $(\alpha \cdot f)(ax) = \alpha f(ax) = a\alpha f(x) = a(\alpha \cdot f)(x)$

Corollario 2.8.5. Se l'estensione $\mathbb{F} \subseteq \mathbb{K}$ è di Galois, con $[\mathbb{K} : \mathbb{F}] = n$ e $\mathcal{G}(\mathbb{K}/\mathbb{F}) = \mathcal{G}(\mathbb{K}/\mathbb{F}) = \{\sigma_1, \sigma_2, \dots, \sigma_n\}$ allora per ogni n-upla $(\alpha_1, \alpha_2, \dots, \alpha_n) \in \mathbb{K}^n \setminus \{\underline{0}\}$ si ha

$$\alpha_1 \sigma_1 + \alpha_2 \sigma_2 + \ldots + \alpha_n \sigma_n \neq 0_{\operatorname{Hom}_{\mathbb{F}}(\mathbb{K},\mathbb{K})}$$

Dimostrazione. Siano $(\alpha_1, \alpha_2, \dots, \alpha_n) \in \mathbb{K}^n$ tale che

$$\alpha_1 \sigma_1 + \alpha_2 \sigma_2 + \ldots + \alpha_n \sigma_n = 0_{\text{Hom}_{\mathbb{F}}(\mathbb{K},\mathbb{K})}$$

e $\{a_1, a_2, \dots, a_n\}$ una base di \mathbb{K} come \mathbb{F} -spazio vettoriale. Risulta

$$\begin{cases} \alpha_1 \sigma_1(a_1) + \alpha_2 \sigma_2(a_1) + \ldots + \alpha_n \sigma_n(a_1) = 0 \\ \alpha_1 \sigma_1(a_2) + \alpha_2 \sigma_2(a_2) + \ldots + \alpha_n \sigma_n(a_2) = 0 \\ \vdots & \vdots & \vdots \\ \alpha_1 \sigma_1(a_n) + \alpha_2 \sigma_2(a_n) + \ldots + \alpha_n \sigma_n(a_n) = 0 \end{cases}$$

il precedente è un sistema omogeneo con matrice associata $(\sigma_i(a_j))$. Dalla proposizione precedente abbiamo $\det(\sigma_i(a_j)) = \Delta \neq 0$ pertanto $(\alpha_1, \alpha_2, \dots, \alpha_n) = \underline{0}$.

Definizione 2.8.6. Un'estensione $\mathbb{F} \subseteq \mathbb{K}$ di Galois è detta **ciclica** di ordine n se $\mathcal{G}(\mathbb{K}/\mathbb{F})$ è un gruppo ciclico di ordine n.

Lemma 2.8.7. (Teorema di Hilbert 90) $Sia \mathbb{F} \subseteq \mathbb{K}$ un'estensione ciclica di ordine n $con \mathcal{G}(\mathbb{K}/\mathbb{F}) = \mathcal{G}(\tau)$. $Se \ a \in \mathbb{K}$ allora

$$N_{\mathbb{K}/\mathbb{F}}(a) = 1 \Longleftrightarrow \exists b \in \mathbb{K} : \ a = \frac{b}{\tau(b)}.$$

Dimostrazione.

⇒ Sia

$$\phi = 1 + a \cdot \tau + a\tau(a) \cdot \tau^2 + \ldots + a\tau(a) \ldots \tau^{n-2}(a) \cdot \tau^{n-1} \in \operatorname{Hom}_{\mathbb{F}}(\mathbb{K}, \mathbb{K}).$$

 ϕ è combinazione lineare a coefficienti in \mathbb{K} non tutti nulli di $\{1, \tau, \dots, \tau^{n-1}\} = \mathcal{G}(\mathbb{K}/\mathbb{F})$. Dal lemma precedente sappiamo che $\phi \neq \underline{0}$, quindi esiste $c \in \mathbb{K}$ tale che $\phi(c) \neq 0$. Sia

$$b = \phi(c) = c + a\tau(c) + a\tau(a)\tau^{2}(c) + \ldots + a\tau(a)\ldots\tau^{n-2}(a)\tau^{n-1}(c),$$

si ha

$$\tau(b) = \tau(c) + \tau(a)\tau^{2}(c) + \tau(a)\tau^{2}(a)\tau^{3}(c) + \ldots + \tau(a)\tau^{2}(a)\ldots\tau^{n-1}(a)\tau^{n}(c)$$

da cui

$$a\tau(b) = a\tau(c) + a\tau(a)\tau^{2}(c) + a\tau(a)\tau^{2}(a)\tau^{3}(c) + \dots + a\tau(a)\tau^{2}(a)\dots\tau^{n-1}(a)\tau^{n}(c) =$$

$$= c + a\tau(c) + a\tau(a)\tau^{2}(c) + a\tau(a)\tau^{2}(a)\tau^{3}(c) + \dots + a\tau(a)\tau^{2}(a)\dots\tau^{n-2}(a)\tau^{n-1}(c) = b$$

in quanto $a\tau(a)\tau^2(a)\dots\tau^{n-1}(a)=N_{\mathbb{K}/\mathbb{F}}(a)=1$ e $\tau^n=1$, ottenendo infine $a=\frac{b}{\tau(b)}$.

 \Leftarrow Sia $b \in \mathbb{K}$ tale che $a = \frac{b}{\tau(b)}$. Abbiamo

$$\tau(a) = \frac{\tau(b)}{\tau^2(b)} \quad \tau^2(a) = \frac{\tau^2(b)}{\tau^3(b)} \quad \dots \quad \tau^{n-1}(a) = \frac{\tau^{n-1}(b)}{\tau^n(b)} = \frac{\tau^{n-1}(b)}{b},$$

pertanto

$$N_{\mathbb{K}/\mathbb{F}}(a) = \prod_{i=0}^{n-1} \tau^{i}(a) = \frac{b}{\tau(b)} \frac{\tau(b)}{\tau^{2}(b)} \dots \frac{\tau^{n-2}(b)}{\tau^{n-1}(b)} \frac{\tau^{n-1}(b)}{b} = 1.$$

Teorema 2.8.8. Sia $\mathbb{F} \subseteq \mathbb{K}$ un'estensione ciclica di ordine n con $\mathcal{G}(\mathbb{K}/\mathbb{F}) = \mathcal{G}(\tau)$. Se \mathbb{F} contiene le radici primitive n-esime dell'unità allora esiste $b \in \mathbb{K}$ tale che

- 1. $b^n = a \in \mathbb{F}$.
- 2. $\mathbb{K} = \mathbb{F}(b)$.
- 3. \mathbb{K} è campo di spezzamento di $x^n a \in \mathbb{F}[x]$.

Dimostrazione. Sia ϵ una radice primitiva n-esima dell'unità, quindi $\epsilon, \epsilon^{-1} \in \mathbb{F}$. Adesso $N_{\mathbb{K}/\mathbb{F}}(\epsilon^{-1}) = (\epsilon^{-1})^n = 1$, dal lemma precedente esiste $b \in \mathbb{K}$ tale che $\epsilon^{-1} = \frac{b}{\tau(b)}$, cioè $\tau(b) = \epsilon b$. Poiché $\tau(b^n) = \tau(b)^n = \epsilon^n b^n = b^n$ allora $b^n = a \in \mathbb{K}^{\mathcal{G}(\mathbb{K}/\mathbb{F})} = \mathbb{F}$ (ogni estensione ciclica è anche di Galois).

Possiamo facilmente dedurre che $\tau^i(b) = \epsilon^i b$ per ogni $i \in \mathbb{N}$, quindi b è lasciato fisso solo da $1_{\mathbb{K}} \in \mathcal{G}(\mathbb{K}/\mathbb{F})$. Consideriamo le estensioni $\mathbb{F} \subseteq \mathbb{F}(b) \subseteq \mathbb{K}$, per la corrispondenza di Galois $\mathbb{F}(b) = \mathbb{K}^H$ con $H \leq \mathcal{G}(\mathbb{K}/\mathbb{F})$. Poiché b è lasciato fisso solo da $1_{\mathbb{K}}$ allora $H = \{1_{\mathbb{K}}\}$, cioè $\mathbb{F}(b) = \mathbb{K}$.

Infine le radici di $x^n - a$ sono $b, \epsilon b, \epsilon^2 b, \dots \epsilon^{n-1} b$. Dunque il campo di spezzamento di $x^n - a \in \mathbb{F}(b, \epsilon b, \dots, \epsilon^{n-1} b) = \mathbb{F}(b) = \mathbb{K}$.

Teorema 2.8.9. Se \mathbb{F} contiene tutte le radici primitive n-esime dell'unità e \mathbb{K} è il campo di spezzamento di $x^n - a \in \mathbb{F}[x]$, allora

- 1. $\mathbb{F} \subseteq \mathbb{K} \ \dot{e} \ di \ Galois.$
- 2. $\mathcal{G}(\mathbb{K}/\mathbb{F})$ è ciclico di ordine m|n.

Dimostrazione. Essendo \mathbb{K} campo di spezzamento di $x^n - a \in \mathbb{F}[x]$, l'estensione $\mathbb{F} \subseteq \mathbb{K}$ è normale, finita e separabile $(ch(\mathbb{K}) = 0)$, quindi è di Galois.

Se b è una radice di $x^n - a$ allora $\mathbb{K} = \mathbb{F}(b, \epsilon b, \dots, \epsilon^{n-1}b) = \mathbb{F}(b)$. Siano $\phi_i \in \mathcal{G}(\mathbb{K}/\mathbb{F})$ con $\phi_i(b) = \epsilon^i b$. Sia adesso $\Omega : \mathcal{G}(\mathbb{K}/\mathbb{F}) \to E_n$, dove $E_n = \mathcal{G}(\epsilon)$ è il gruppo moltiplicativo delle radici n-esime dell'unità, con $\Omega(\phi_i) = \epsilon^i$. Ω è chiaramente iniettivo. Proviamo che esso è un omomorfismo di gruppi. Siano $\phi_i, \phi_i \in \mathcal{G}(\mathbb{K}/\mathbb{F})$, si ha

$$(\phi_i \circ \phi_j)(b) = \phi_i(\epsilon^j b) = \epsilon^i \epsilon^j b,$$

$$\Omega(\phi_i \circ \phi_j) = \epsilon^i \epsilon^j = \Omega(\phi_i) \Omega(\phi_j).$$

Dal teorema dell'isomorfismo abbiamo $\mathcal{G}(\mathbb{K}/\mathbb{F}) \simeq \operatorname{Im} \Omega \leq E_n$. Dunque in base al teorema di Lagrange $\mathcal{G}(\mathbb{K}/\mathbb{F})$ è ciclico di ordine $|\mathcal{G}(\mathbb{K}/\mathbb{F})| = m | n$.

Corollario 2.8.10. Se \mathbb{F} è un campo contenente tutte le radici primitive n-esime dell'unità, allora $\mathbb{F} \subseteq \mathbb{K}$ è ciclica di ordine d|n se e solo se esiste $b \in \mathbb{K}$ tale che $b^n = a \in \mathbb{F}$ con $\mathbb{K} = \mathbb{F}(b)$

Dimostrazione.

 \Rightarrow Per ipotesi d|n quindi esiste $\lambda \in \mathbb{N}$ tale che $\lambda d = n$. Dunque se ϵ è una radice primitiva n-esima dell'unità allora $\rho = \epsilon^{\lambda}$ è una radice primitiva d-esima dell'unità. Pertanto \mathbb{F} contiene tutte le radici d-esime dell'unità, quindi per i teoremi precedenti esiste $b \in \mathbb{K}$ tale che $b^d = a \in \mathbb{F}$, di conseguenza $b^n = b^{\lambda d} = (b^d)^{\lambda} = a^{\lambda} \in \mathbb{F}$, e $\mathbb{K} = \mathbb{F}(b)$.

 \Leftarrow La tesi segue dal teorema precedente in quanto $\mathbb{K} = \mathbb{F}(b) = \mathbb{F}(b, \epsilon b, \dots, \epsilon^{n-1}b)$ è campo di spezzamento del polinomio $x^n - a \in \mathbb{F}[x]$

Sia \mathbb{F} un campo di caratteristica zero. Consideriamo il polinomio $x^n-a\in\mathbb{F}[x]$ e $b\in\overline{\mathbb{F}}$ una sua radice. Se $\epsilon\in\overline{\mathbb{F}}$ è una radice primitiva n-esima dell'unità allora il campo di spezzamento di x^n-a è

$$\mathbb{K} = \mathbb{F}(b, \epsilon b, \dots, \epsilon^{n-1}b) = \mathbb{F}(b, \epsilon) \subseteq \overline{\mathbb{F}}.$$

Dunque l'estensione $\mathbb{F} \subseteq \mathbb{F}(b,\epsilon) = \mathbb{K}$ è di Galois, pertanto lo sono anche $\mathbb{F}(b) \subseteq \mathbb{F}(b,\epsilon)$ e $\mathbb{F}(\epsilon) \subseteq \mathbb{F}(b,\epsilon)$. In generale $\mathbb{F} \subseteq \mathbb{F}(b)$ non è di Galois. Un esempio di tale fatto è dato dall'estensione $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt[3]{2})$ che non è di Galois. Invece l'estensione $\mathbb{F} \subseteq \mathbb{F}(\epsilon)$ è di Galois poiché $\mathbb{F}(\epsilon)$ può essere visto come campo di spezzamento del polinomio

$$f_n(x) = \prod_{MCD(n,i)=1} (x - \epsilon^i) \in \mathbb{Z}[x] \subseteq \mathbb{F}[x].$$

Proposizione 2.8.11. Con le notazioni precedenti, il gruppo $\mathcal{G}(\mathbb{F}(b,\epsilon)/\mathbb{F})$ è risolubile.

Dimostrazione. Con procedimento analogo a quanto fatto per le estensioni ciclotomiche risulta $\mathcal{G}(\mathbb{F}(\epsilon)/\mathbb{F}) \leq U_n$ abeliano. Consideriamo la catena $\mathbb{F} \subseteq \mathbb{F}(\epsilon) \subseteq \mathbb{F}(b, \epsilon)$. Dato che l'estensione $\mathbb{F} \subseteq \mathbb{F}(\epsilon)$ è di Galois allora dal teorema fondamentale della teoria di Galois

$$\mathcal{G}(\mathbb{F}(b,\epsilon)/\mathbb{F}(\epsilon)) \leq \mathcal{G}(\mathbb{F}(b,\epsilon)/\mathbb{F}), \quad \frac{\mathcal{G}(\mathbb{F}(b,\epsilon)/\mathbb{F})}{\mathcal{G}(\mathbb{F}(b,\epsilon)/\mathbb{F}(\epsilon))} \simeq \mathcal{G}(\mathbb{F}(\epsilon)/\mathbb{F}) \leq U_n \text{ abeliano.}$$

Inoltre, applicando il precedente corollario a $\mathbb{F}(\epsilon)$, abbiamo che $\mathcal{G}(\mathbb{F}(\epsilon,b)/\mathbb{F}(\epsilon))$ è ciclico, quindi abeliano. Dunque

$$\{e\} \le \mathcal{G}(\mathbb{F}(b,\epsilon)/\mathbb{F}(\epsilon)) \le \mathcal{G}(\mathbb{F}(b,\epsilon)/\mathbb{F})$$

è una catena risolvente per $\mathcal{G}(\mathbb{F}(b,\epsilon)/\mathbb{F})$.

2.9 Risolubilità di polinomi

Nel seguito supporremo $ch(\mathbb{K}) = 0$.

Definizione 2.9.1. Un'estensione di campi $\mathbb{F} \subseteq \mathbb{K}$ è detta **radicale** se esiste una catena di campi

$$\mathbb{F} = \mathbb{F}_0 \subseteq \mathbb{F}_1 \subseteq \ldots \subseteq \mathbb{F}_{n-1} \subseteq \mathbb{F}_n = \mathbb{K}$$

in modo che $\forall i \in \{1, ..., n\}$ esistono $\alpha_i \in \mathbb{F}_i$ e $s_i \in \mathbb{N} \setminus \{0\}$ tali che $\mathbb{F}_i = \mathbb{F}_{i-1}(\alpha_i)$ e $\alpha_i^{s_i} \in \mathbb{F}_{i-1}$.

Osservazione 2.9.2. Ogni estensione radicale è anche finita, infatti la precedente catena di campi è una catena di estensioni semplici e algebriche dato che ogni α_i è algebrico su \mathbb{F}_{i-1} essendo radice del polinomio $x^{s_i} - \alpha_i^{s_i} \in \mathbb{F}_{i-1}[x]$.

Definizione 2.9.3. Sia $f(x) \in \mathbb{F}[x]$ un polinomio non costante e sia \mathbb{L} il suo campo di spezzamento. f(x) è detto **risolubile per radicali** se esiste una estensione radicale $\mathbb{F} \subset \mathbb{K}$ tale che $\mathbb{L} \subset \mathbb{K}$.

Lemma 2.9.4. Se $\mathbb{F} \subseteq \mathbb{K}$ è un'estensione di Galois e ϵ è una radice primitiva n-esima dell'unità allora

- 1. $\mathbb{F}(\epsilon) \subseteq \mathbb{K}(\epsilon)$ è di Galois.
- 2. $\mathcal{G}(\mathbb{K}(\epsilon)/\mathbb{F}(\epsilon))$ è isomorfo a un sottogruppo di $\mathcal{G}(\mathbb{K}/\mathbb{F})$.
- 3. $\mathcal{G}(\mathbb{K}/\mathbb{F})$ è risolubile $\iff \mathcal{G}(\mathbb{K}(\epsilon)/\mathbb{F}(\epsilon))$ è risolubile.

Dimostrazione.

- 1. Per ipotesi \mathbb{K} è campo di spezzamento di qualche polinomio $f(x) \in \mathbb{F}[x]$ separabile. Se pensiamo $f(x) \in \mathbb{F}(\epsilon)[x]$ allora $\mathbb{K}(\epsilon)$ è campo di spezzamento di $f(x) \in \mathbb{F}(\epsilon)[x]$ separabile pertanto $\mathbb{F}(\epsilon) \subseteq \mathbb{K}(\epsilon)$ è di Galois.
- 2. Sia $\Omega: \mathcal{G}(\mathbb{K}(\epsilon)/\mathbb{F}(\epsilon)) \to \mathcal{G}(\mathbb{K}/\mathbb{F})$ con $\Omega(\varphi) = \varphi_{|\mathbb{K}}$. Ω è un omomorfismo poiché la restrizione della composizione è la composizione delle restrizioni. Inoltre Ω è iniettivo, infatti se $\varphi \in \ker \Omega$ allora $\Omega(\varphi) = \varphi_{|\mathbb{K}} = 1_{\mathbb{K}}$, inoltre essendo $\varphi_{|\mathbb{F}(\epsilon)} = 1_{|\mathbb{F}(\epsilon)}$ allora φ lascia fisso sia \mathbb{K} che ϵ , quindi $\varphi_{|\mathbb{K}(\epsilon)} = 1_{\mathbb{K}(\epsilon)}$. Dunque

$$\mathcal{G}(\mathbb{K}(\epsilon)/\mathbb{F}(\epsilon)) \simeq \operatorname{Im} \Omega \leq \mathcal{G}(\mathbb{K}/\mathbb{F}).$$

3. Osserviamo prima che l'estensione $\mathbb{F} \subseteq \mathbb{K}(\epsilon)$ è di Galois. Infatti per ipotesi \mathbb{K} è campo di spezzamento di un polinomio $f(x) \in \mathbb{F}[x]$, quindi $\mathbb{K}(\epsilon)$ è campo di spezzamento del polinomio $f(x)(x^n-1) \in \mathbb{F}[x]$, pertanto l'estensione $\mathbb{F} \subseteq \mathbb{K}(\epsilon)$ è finita e normale (ed è anche separabile in quanto $ch(\mathbb{K}) = 0$). Inoltre dato che per ipotesi $\mathbb{F} \subseteq \mathbb{K}$ è di Galois e $\mathbb{F} \subseteq \mathbb{F}(\epsilon)$ è di Galois perché estensione ciclotomica, si ha

$$egin{aligned} \mathcal{G}(\mathbb{K}/\mathbb{F}) &\simeq rac{\mathcal{G}(\mathbb{K}(\epsilon)/\mathbb{F})}{\mathcal{G}(\mathbb{K}(\epsilon)/\mathbb{K})}, \ \mathcal{G}(\mathbb{F}(\epsilon)/\mathbb{F}) &\simeq rac{\mathcal{G}(\mathbb{K}(\epsilon)/\mathbb{F})}{\mathcal{G}(\mathbb{K}(\epsilon)/\mathbb{F}(\epsilon))}. \end{aligned}$$

- \Rightarrow Se $\mathcal{G}(\mathbb{K}/\mathbb{F})$ è risolubile allora lo è anche ogni suo sottogruppo. Dal punto 2. abbiamo che $\mathcal{G}(\mathbb{K}(\epsilon)/\mathbb{F}(\epsilon))$ è isomorfo a un sottogruppo di $\mathcal{G}(\mathbb{K}/\mathbb{F})$, quindi è risolubile.
- $\Leftarrow \mathcal{G}(\mathbb{F}(\epsilon)/\mathbb{F}) \leq U_n$ è ciclico, in particolare è abeliano quindi è anche risolubile. Visto che le estensioni $\mathbb{F} \subseteq \mathbb{K}(\epsilon)$ e $\mathbb{F}(\epsilon) \subseteq \mathbb{K}(\epsilon)$ sono di Galois, dal teorema fondamentale della teoria di Galois si ha $\mathcal{G}(\mathbb{K}(\epsilon)/\mathbb{F}(\epsilon)) \leq \mathcal{G}(\mathbb{K}(\epsilon)/\mathbb{F})$. Dunque, poiché i gruppi

$$\mathcal{G}(\mathbb{F}(\epsilon)/\mathbb{F}) \simeq rac{\mathcal{G}(\mathbb{K}(\epsilon)/\mathbb{F})}{\mathcal{G}(\mathbb{K}(\epsilon)/\mathbb{F}(\epsilon))} \quad \mathrm{e} \quad \mathcal{G}(\mathbb{K}(\epsilon)/\mathbb{F}(\epsilon))$$

sono risolubili allora da (2.7.4) segue che anche $\mathcal{G}(\mathbb{K}(\epsilon)/\mathbb{F})$ è risolubile. Infine, dal momento che

$$\mathcal{G}(\mathbb{K}/\mathbb{F}) \simeq rac{\mathcal{G}(\mathbb{K}(\epsilon)/\mathbb{F})}{\mathcal{G}(\mathbb{K}(\epsilon)/\mathbb{K})}$$

sempre da (2.7.4) segue che $\mathcal{G}(\mathbb{K}/\mathbb{F})$ è risolubile.

Veniamo adesso a presentare il teorema culmine della teoria di Galois.

Teorema 2.9.5. (Criterio di risolubilità) Sia $f(x) \in \mathbb{F}[x]$ e \mathbb{L} il suo campo di spezzamento.

$$f(x)$$
 è risolubile per radicali $\iff \mathcal{G}(\mathbb{L}/\mathbb{F})$ è risolubile.

Dimostrazione. Osserviamo che possiamo supporre f(x) separabile, altrimenti si considera il polinomio f(x)/MCD(f, f'). In questo modo l'estensione $\mathbb{F} \subseteq \mathbb{L}$ è di Galois.

⇒ Per ipotesi esiste una catena di estensioni di campi

$$\mathbb{F} = \mathbb{K}_0 \subseteq \mathbb{K}_1 \subseteq \ldots \subseteq \mathbb{K}_s = \mathbb{K}$$

dove per ogni $i \in \{1, ... s\}$ esiste $a_i \in \mathbb{K}_i$ tale che $\mathbb{K}_i = \mathbb{K}_{i-1}(a_i)$ e $a_i^{m_i} \in \mathbb{K}_{i-1}$ per qualche $m_i \in \mathbb{N} \setminus \{0\}$. Inoltre il campo di spezzamento \mathbb{L} di f(x) è contenuto in \mathbb{K} . Proviamo che possiamo estendere la precedente catena a un campo $\tilde{\mathbb{K}} \supseteq \mathbb{K}$ tale che $\mathbb{F} \subseteq \tilde{\mathbb{K}}$ sia di Galois. Sia $\mathscr{I}(\mathbb{K}/\mathbb{F}) = \{\sigma_1, ..., \sigma_t\}$ e consideriamo la seguente catena

$$\mathbb{F} = \mathbb{K}_0 \subseteq \mathbb{K}_1 \subseteq \ldots \subseteq \mathbb{K}_s \subseteq \mathbb{K}_{s+1} \subseteq \ldots \subseteq \mathbb{K}_{(t+1)s} = \tilde{\mathbb{K}}$$

dove per ogni $i \in \{1, \dots, s\}$ e $j \in \{1, \dots, t\}$ il generico passaggio di tale catena è

$$\mathbb{K}_{js+i} = \mathbb{K}_{js+i-1}(\sigma_j(a_i)).$$

Proviamo che esiste $d \in \mathbb{N} \setminus \{0\}$ tale che $\sigma_j(a_i)^d \in \mathbb{K}_{js+i-1}$. $a_i^{m_i} \in \mathbb{K}_{i-1} = \mathbb{F}(a_1, \ldots, a_{i-1})$, quindi

$$a_i^{m_i} = \sum \beta_{k_1 k_2 \dots k_i} a_1^{k_1} a_2^{k_2} \dots a_{i-1}^{k_{i-1}} \in \mathbb{F}(a_1, a_2, \dots, a_{i-1}) = \mathbb{K}_{i-1}$$

da cui

$$\sigma_j(a_i)^{m_i} = \sum \beta_{k_1 k_2 \dots k_i} \sigma_j(a_1)^{k_1} \dots \sigma_j(a_{i-1})^{k_{i-1}} \in \mathbb{F}(\sigma_j(a_1) \dots \sigma_j(a_{i-1})) \subseteq \mathbb{K}_{js+i-1}.$$

Dunque f(x) è risolubile per radicali anche rispetto all'ultima catena considerata. Proviamo che $\mathbb{F} \subseteq \tilde{\mathbb{K}}$ è di Galois. Prima di tutto osserviamo che l'estensione $\mathbb{F} \subseteq \tilde{\mathbb{K}}$ è finita e separabile (ricordiamo che $ch(\mathbb{F}) = 0$), quindi $\mathbb{F} = \tilde{\mathbb{K}}^{\mathscr{I}(\tilde{\mathbb{K}}/\mathbb{F})}$, pertanto ci basta provare che $\mathscr{I}(\tilde{\mathbb{K}}/\mathbb{F}) = \mathscr{I}(\tilde{\mathbb{K}}/\mathbb{F})$. Essendo $\mathbb{F} \subseteq \tilde{\mathbb{K}}$ algebrica si ha $\mathscr{I}(\tilde{\mathbb{K}}/\mathbb{F}) \subseteq \mathscr{I}(\tilde{\mathbb{K}}/\mathbb{F})$. Sia $\varphi \in \mathscr{I}(\tilde{\mathbb{K}}/\mathbb{F})$, proviamo che φ è un automorfismo di $\tilde{\mathbb{K}}$, per fare ciò basta provare che $\varphi(\sigma_j(a_i)) \in \tilde{\mathbb{K}}$ per ogni $i \in \{1, \ldots, s\}, j \in \{1, \ldots, t\}$. Ricordando che

$$\mathbb{K} = \mathbb{F}(a_1, a_2, \dots, a_s) \text{ e che } \tilde{\mathbb{K}} = \mathbb{F}\left(\left\{\sigma_j(a_i): i = 1, \dots, s \atop j = 1, \dots, t\right\}\right),$$

poiché $\sigma_j \in \mathscr{I}(\mathbb{K}/\mathbb{F})$ allora la composizione $\varphi \circ \sigma_j$ agisce nel seguente modo

$$\mathbb{K} \xrightarrow{\sigma_j} \tilde{\mathbb{K}} \xrightarrow{\varphi} \overline{\mathbb{F}}$$

quindi anche $\varphi \circ \sigma_j \in \mathscr{I}(\mathbb{K}/\mathbb{F})$, cioè $\varphi \circ \sigma_j = \sigma_h$, per qualche $h = 1, \ldots, t$. Dunque $\varphi(\sigma_j(a_i)) = \sigma_h(a_i) \in \widetilde{\mathbb{K}}$ per ogni $i = 1, \ldots, s, j = 1, \ldots, t$. Questo prova che $\varphi \in \mathscr{G}(\widetilde{\mathbb{K}}/\mathbb{F})$ pertanto $\mathbb{F} \subseteq \widetilde{\mathbb{K}}$ è di Galois.

Per quanto dimostrato finora possiamo supporre, a meno di estendere la catena di campi, che $\mathbb{F} \subseteq \mathbb{K}$ sia di Galois. Sia m il minimo comune multiplo di m_1, m_2, \ldots, m_s e sia ϵ una radice primitiva m-esima dell'unità. Per il lemma precedente ci basta dimostrare che $\mathcal{G}(\mathbb{L}(\epsilon)/\mathbb{F}(\epsilon))$ è risolubile. Dato che $\mathbb{F} \subseteq \mathbb{K}$ e $\mathbb{F} \subseteq \mathbb{L}$ sono di Galois allora, sempre dal lemma precedente, lo saranno anche $\mathbb{F}(\epsilon) \subseteq \mathbb{K}(\epsilon)$ e $\mathbb{F}(\epsilon) \subseteq \mathbb{L}(\epsilon)$, da cui

$$\mathcal{G}(\mathbb{L}(\epsilon)/\mathbb{F}(\epsilon)) \simeq rac{\mathcal{G}(\mathbb{K}(\epsilon)/\mathbb{F}(\epsilon))}{\mathcal{G}(\mathbb{K}(\epsilon)/\mathbb{L}(\epsilon))},$$

pertanto è sufficiente dimostrare che $\mathcal{G}(\mathbb{K}(\epsilon)/\mathbb{F}(\epsilon))$ è risolubile. Consideriamo la catena

$$\mathbb{F}(\epsilon) = \mathbb{K}_0(\epsilon) \subset \mathbb{K}_1(\epsilon) \subset \ldots \subset \mathbb{K}(\epsilon).$$

Per ogni $i \in \{1, \ldots, s\}$ si ha $\mathbb{K}_{i-1}(\epsilon)(a_i) = \mathbb{K}_i(\epsilon)$ con $a_i^{m_i} \in \mathbb{K}_{i-1} \subseteq \mathbb{K}_{i-1}(\epsilon)$ e quindi a_i è radice del polinomio $x^{m_i} - a_i^{m_i} \in \mathbb{K}_{i-1}(\epsilon)[x]$. Le altre radici si ottengono moltiplicando a_i per le radici m_i -esime dell'unità che possiamo ottenere a partire da ϵ dal momento che $m_i|m$. Dunque tutte le radici di $x^{m_i} - a_i^{m_i}$ stanno in $\mathbb{K}_i(\epsilon)$, ciò vuol dire che $\mathbb{K}_i(\epsilon)$ è campo di spezzamento di $x^{m_i} - a_i^{m_i} \in \mathbb{K}_{i-1}(\epsilon)[x]$. In questo modo abbiamo provato che l'estensione $\mathbb{K}_{i-1}(\epsilon) \subseteq \mathbb{K}_i(\epsilon)$ è di Galois e inoltre per (2.8.10) $\mathcal{G}(\mathbb{K}_i(\epsilon)/\mathbb{K}_{i-1}(\epsilon))$ è ciclico di ordine un divisore di m_i . Applicando la corrispondenza di Galois alla precedente catena considerata otteniamo una catena di gruppi

$$\{e\} = \Gamma_0 \le \Gamma_1 \le \ldots \le \Gamma_{s-1} \le \Gamma_s = \mathcal{G}(\mathbb{K}(\epsilon)/\mathbb{F}(\epsilon)),$$

dove $\Gamma_i = \mathcal{G}(\mathbb{K}(\epsilon)/\mathbb{K}_{s-i}(\epsilon))$ per ogni $i \in \{0, \dots, s\}$. La precedente è una catena risolvente per $\mathcal{G}(\mathbb{K}(\epsilon)/\mathbb{F}(\epsilon))$, infatti per ogni $i \in \{0, \dots, s-1\}$ si ha

$$\Gamma_i = \mathcal{G}(\mathbb{K}(\epsilon)/\mathbb{K}_{s-i}(\epsilon)) \leq \mathcal{G}(\mathbb{K}(\epsilon)/\mathbb{K}_{s-i-1}(\epsilon)) = \Gamma_{i+1},$$

infatti per quanto detto prima $\mathbb{K}_{s-i-1}(\epsilon) \subseteq \mathbb{K}_{s-i}(\epsilon)$ è di Galois e inoltre

$$\frac{\Gamma_{i+1}}{\Gamma_i} = \frac{\mathcal{G}(\mathbb{K}(\epsilon)/\mathbb{K}_{s-i}(\epsilon))}{\mathcal{G}(\mathbb{K}(\epsilon)/\mathbb{K}_{s-i-1}(\epsilon))} \simeq \mathcal{G}(\mathbb{K}_{s-i}(\epsilon)/\mathbb{K}_{s-i-1}(\epsilon)),$$

pertanto Γ_{i+1}/Γ_i è ciclico, quindi abeliano.

 \Leftarrow Siano $m = |\mathcal{G}(\mathbb{L}/\mathbb{F})| = [\mathbb{L} : \mathbb{F}]$ ($\mathbb{F} \subseteq \mathbb{L}$ di Galois) e ϵ radice primitiva m-esima dell'unità. Dal lemma precedente sappiamo che l'estensione $\mathbb{F}(\epsilon) \subseteq \mathbb{L}(\epsilon)$ è di Galois e che $\mathcal{G}(\mathbb{L}(\epsilon)/\mathbb{F}(\epsilon))$ è isomorfo a un sottogruppo di $\mathcal{G}(\mathbb{L}/\mathbb{F})$. Pertanto $[\mathbb{L}(\epsilon) : \mathbb{F}(\epsilon)] = |\mathcal{G}(\mathbb{L}(\epsilon)/\mathbb{F}(\epsilon))|$ divide m. Poniamo $\Gamma = \mathcal{G}(\mathbb{L}(\epsilon)/\mathbb{F}(\epsilon))$. Per il lemma precedente Γ è risolubile, quindi consideriamo una catena risolvente

$$\{e\} = \Gamma_0 \le \Gamma_1 \le \ldots \le \Gamma_{n-1} \le \Gamma_n = \Gamma$$

con $\Gamma_i \leq \Gamma_{i+1}$ e possiamo suppore, in base a (2.7.4), che Γ_{i+1}/Γ_i sia ciclico di ordine un divisore primo di m. Consideriamo la corrispondente catena di sottocampi intermedi

$$\mathbb{F}(\epsilon) = \mathbb{E}_0 \subseteq \mathbb{E}_1 \subseteq \dots \mathbb{E}_{n-1} \subseteq \mathbb{E}_n = \mathbb{L}(\epsilon) \tag{2.3}$$

con $\mathbb{E}_i = \mathbb{L}(\epsilon)^{\Gamma_{n-i}}$ per ogni $i \in \{0, \dots n\}$. Scelto un indice $i \in \{0, \dots, n-1\}$ l'estensione $\mathbb{E}_i \subseteq \mathbb{L}(\epsilon)$ è di Galois in quanto lo è $\mathbb{F}(\epsilon) \subseteq \mathbb{L}(\epsilon)$, inoltre

$$\mathcal{G}(\mathbb{L}(\epsilon)/\mathbb{E}_{i+1}) = \Gamma_{n-(i+1)} \leq \Gamma_{n-i} = \mathcal{G}(\mathbb{L}(\epsilon)/\mathbb{E}_i),$$

pertanto risulta

$$\mathcal{G}(\mathbb{E}_{i+1}/\mathbb{E}_i) \simeq \frac{\mathcal{G}(\mathbb{L}(\epsilon)/\mathbb{E}_i)}{\mathcal{G}(\mathbb{L}(\epsilon)/\mathbb{E}_{i+1})} = \frac{\Gamma_{i+1}}{\Gamma_i}.$$

Dunque $\mathcal{G}(\mathbb{E}_{i+1}/\mathbb{E}_i)$ è ciclico di ordine un divisore di m, da cui per definizione l'estensione $\mathbb{E}_i \subseteq \mathbb{E}_{i+1}$ è ciclica di ordine un divisore di m, diciamo m_i . Inoltre $\mathbb{E}_i \supseteq \mathbb{F}(\epsilon)$ contiene tutte le radici primitive m-esime dell'unità. Pertanto, per (2.8.10), esiste $b_i \in \mathbb{E}_{i+1}$ tale che $b_i^{m_i} \in \mathbb{E}_i$ e $\mathbb{E}_{i+1} = \mathbb{E}_i(b_i)$.

In questo modo abbiamo mostrato che l'estensione $\mathbb{F}(\epsilon) \subseteq \mathbb{L}(\epsilon)$ è radicale tramite la catena (2.3). Visto che $\epsilon^m = 1 \in \mathbb{F}$ possiamo allungare tale catena come segue

$$\mathbb{F} \subseteq \mathbb{F}(\epsilon) = \mathbb{E}_0 \subseteq \mathbb{E}_1 \subseteq \dots \mathbb{E}_{n-1} \subseteq \mathbb{E}_n = \mathbb{L}(\epsilon)$$

ottenendo che $\mathbb{F} \subseteq \mathbb{L}(\epsilon)$ è ancora un'estensione radicale. Infine, poiché $\mathbb{L} \subseteq \mathbb{L}(\epsilon)$ allora f(x) è risolubile per radicali.

Corollario 2.9.6. Ogni polinomio $f(x) \in \mathbb{F}[x]$ di grado 2,3 oppure 4 è risolubile per radicali.

Dimostrazione. Sia \mathbb{L} il campo di spezzamento di f(x). L'estensione $\mathbb{F} \subseteq \mathbb{L}$ è di Galois (ricordiamo che $ch(\mathbb{F}) = 0$). Dunque $\mathcal{G}(\mathbb{L}/\mathbb{F})$ è isomorfo a un sottgruppo di S_n . Per n = 2, 3, 4 sappiamo che S_n è risolubile quindi anche $\mathcal{G}(\mathbb{L}/\mathbb{F})$ è risolubile. Pertanto, alla luce del teorema precedente, f(x) è risolubile per radicali.

Definizione 2.9.7. Si dice polinomio generale di grado n su \mathbb{F} il polinomio

$$f(x) = x^n + a_1 x^{n-1} + \ldots + a_{n-1} x + a_n \in \mathbb{F}(a_1, \ldots, a_n)[x].$$

Lemma 2.9.8. Ogni funzione razionale di $\mathbb{F}(x_1,\ldots,x_n)$ simmetrica si può scrivere sotto forma di funzione razionale nei polinomi simmetrici elementari.

Dimostrazione. Sia

$$\frac{f(x_1,\ldots,x_n)}{g(x_1,\ldots,x_n)} \in \mathbb{F}(x_1,\ldots,x_n),$$

con $g(x_1, ..., x_n) \neq 0$, una funzione razionale simmetrica. Proviamo che esistono due polinomi simmetrici \bar{f}, \bar{g} tali che $f/g = \bar{f}/\bar{g}$. Moltiplichiamo f e g per il prodotto h di tutti gli n!-1 polinomi ottenuti da g scambiando le x_i con tutte le possibili permutazioni

di S_n ad eccezione di quella identica. Il polinomio $\bar{g}=gh$ risulterà così simmetrico. Inoltre anche $\bar{f}=fh$ è simmetrico in quanto

$$fh = (gh)\left(\frac{fh}{gh}\right).$$

Teorema 2.9.9. Il poinomio generale di grado $n \geq 5$ su \mathbb{F} non è risolubile per radicali.

Dimostrazione. Siano x_1, x_2, \ldots, x_n le radici di f(x). Prima di tutto osserviamo che $\mathbb{F}(a_1, \ldots, a_n) \subseteq \mathbb{F}(x_1, \ldots, x_n)$, infatti i coefficienti a_i di f sono uguali a meno del segno ai polinomi simmetrici elementari calcolati in x_1, x_2, \ldots, x_n . Inoltre $\mathbb{F}(x_1, \ldots, x_n)$ è il campo di spezzamento di f(x) su $\mathbb{F}(a_1, \ldots, a_n)$, quindi l'estensione $\mathbb{F}(a_1, \ldots, a_n) \subseteq \mathbb{F}(x_1, \ldots, x_n)$ è di Galois.

Adesso è sufficiente provare che il gruppo di Galois associato all'estensione $\mathbb{F}(a_1,\ldots,a_n)\subseteq \mathbb{F}(x_1,\ldots,x_n)$, è isomorfo a S_n . Per il lemma precedente ogni funzione razionale simmetrica è esprimibile come funzione razionale dei polinomi simmetrici elementari. In altri termini

$$\mathbb{F}(x_1,\ldots,x_n)^{S_n} = \mathbb{F}(\sigma_1,\ldots,\sigma_n) = \mathbb{F}(a_1,\ldots,a_n)$$

$$\mathcal{G}\left(\frac{\mathbb{F}(x_1,\ldots,x_n)}{\mathbb{F}(a_1,\ldots,a_n)}\right) = \mathcal{G}\left(\frac{\mathbb{F}(x_1,\ldots,x_n)}{\mathbb{F}(x_1,\ldots,x_n)^{S_n}}\right) = S_n.$$

Lemma 2.9.10. Per ogni $n \geq 5$ dispari esiste un polinomio $f(x) \in \mathbb{Q}[x]$ irriducibile di grado n che abbia esattamente due radici complesse.

Dimostrazione. Siano $a_1, \ldots, a_{n-2} \in 2\mathbb{Z}$ tali che $a_1 < a_2 < \ldots < a_{n-2}$ con $\sum_{i=1}^{n-2} a_i = 0$ e sia c > 1 un intero pari. Consideriamo $g(x) = (x^2 + c)(x - a_1) \ldots (x - a_{n-2})$. g(x) ha due sole radici complesse $\pm \sqrt{-c}$. Osserviamo che per ogni $i \in \{1, \ldots, n-2\}$ si ha $|g(a_i + 1)| > 2$. Infatti $(a_i + 1)^2 + c > 2$ in quanto c > 1 e $a_i \in 2\mathbb{Z}$. Mentre per ogni $j \in \{1, \ldots, n-2\}$ si ha $|a_i + 1 - a_j| \geq 1$. g(x) ha grado dispari, quindi

$$\lim_{x \to \pm \infty} g(x) = \pm \infty.$$

g(x) è continua e derivabile in tutto \mathbb{R} , quindi, sapendo che

$$q(a_1) = q(a_2) = \ldots = q(a_{n-2}) = 0$$

in base al teorema di Rolle g(x) ha $\frac{n-3}{2}$ massimi relativi. Da ciò deduciamo che la retta di equazione y=2 interseca g(x) in almeno n-3 punti compresi tra a_1 e a_{n-2} , più un altro punto di intersezione per valori di $x>a_{n-2}$. Sia f(x)=g(x)-2. Per quanto detto finora f(x) ha almeno n-2 radici reali. Inoltre f(x) è irriducibile su $\mathbb Q$ per il criterio di Eisenstein (ricordiamo che c è pari). Infatti

$$4 \mid -ca_1a_2 \dots a_{n-2}$$
 quindi $4 \nmid -ca_1a_2 \dots a_{n-2} - 2$.

Proviamo che a meno di scegliere c sufficientemente grande f(x) non ha altre radici reali oltre le n-2 trovate. Risulta

$$f(x) = x^n + \left(-\sum_{i=1}^{n-2} a_i\right) x^{n-1} + \left(c + \sum_{i < j} a_i a_j\right) x^{n-2} + \dots$$

Siano $\alpha_1, \alpha_2, \dots, \alpha_n$ le radici di f. Allora

$$\sum_{i=1}^{n} \alpha_i = \sum_{i=1}^{n-2} a_i = 0,$$

$$-\frac{1}{2} \sum_{i=1}^{n} \alpha_i^2 = \frac{1}{2} \left(\left(\sum_{i=1}^{n} \alpha_i \right)^2 - \sum_{i=1}^{n} \alpha_i^2 \right) = \sum_{i < j} \alpha_i \alpha_j = c + \sum_{i < j} a_i a_j,$$

abbiamo infine

$$\sum_{i=1}^{n} \alpha_i^2 = -2c - 2\sum_{i < i} a_i a_j < 0 \quad \text{per } c >> 0.$$

Dunque f(x) non può avere solo radici reali, pertanto oltre alle n-2 radici reali trovate deve avere altre 2 radici complesse coniugate.

Proposizione 2.9.11. Per ogni $p \geq 5$ primo esiste $f(x) \in \mathbb{Q}[x]$ irriducibile di grado p tale che $\mathcal{G}(\mathbb{L}/\mathbb{Q}) \simeq S_p$ con \mathbb{L} campo di spezzamento di f(x).

Dimostrazione. Sia f(x) irriducibile di grado p con p-2 radici reali e due complesse non reali. Poiché f(x) è irriducibile allora p divide $[\mathbb{L}:\mathbb{Q}]$, infatti se α è una radice di f(x) allora $\mathbb{Q}\subseteq\mathbb{Q}(\alpha)\subseteq\mathbb{L}$ con $[\mathbb{Q}(\alpha):\mathbb{Q}]=p$ quindi

$$[\mathbb{L}:\mathbb{Q}] = [\mathbb{L}:\mathbb{Q}(\alpha)][\mathbb{Q}(\alpha):\mathbb{Q}] = [\mathbb{L}:\mathbb{Q}(\alpha)]p.$$

Poiché $|\mathcal{G}(\mathbb{L}/\mathbb{Q})| = [\mathbb{L} : \mathbb{Q}]$, essendo $\mathbb{Q} \subseteq \mathbb{L}$ di Galois, per il teorema di Cauchy esiste un elemento di ordine p in $\mathcal{G}(\mathbb{L}/\mathbb{Q}) \leq S_p$, cioè un p-ciclo. Proviamo che in $\mathcal{G}(\mathbb{L}/\mathbb{Q})$ vi è una trasposizione. Sia $\tau : \overline{\mathbb{Q}} \to \overline{\mathbb{Q}}$ con $\tau(a+ib) = a-ib$. Si ha che $\tau_{|\mathbb{L}} \in \mathcal{G}(\mathbb{L}/\mathbb{Q})$, infatti τ lascia fisse tutte le radici reali di f e scambia le due radici complesse coniugate. Pertanto $\tau_{|\mathbb{L}}$ è una trasposizione e a meno di riordinare gli indici possiamo suppore che $\tau = (1\,2)$. Sia $\sigma \in \mathcal{G}(\mathbb{L}/\mathbb{Q}) \leq S_p$ il p-ciclo, quindi in σ compaiono tutti gli indici da 1 fino a p, allora esiste $h \in \mathbb{N}$ tale che $\sigma^h(1) = 2$. Dunque a meno di scambiare σ con σ^h e di rinominare i rimanenti p-2 indici possiamo suppore che $\sigma = (1\,2\,\ldots\,p)$. In questo modo otteniamo

$$\sigma^i \tau_{|\mathbb{L}} \sigma^{-i} = (i+1 \ i+2) \in \mathcal{G}(\mathbb{L}/\mathbb{Q}),$$

inoltre

$$\begin{pmatrix} i & i+1 \end{pmatrix} \begin{pmatrix} 1 & i \end{pmatrix} \begin{pmatrix} i & i+1 \end{pmatrix} = \begin{pmatrix} 1 & i+1 \end{pmatrix}$$

in questo modo otteniamo

$$(1 \ 2) (1 \ 3), \dots, (1 \ p) \in \mathcal{G}(\mathbb{L}/\mathbb{Q}),$$

infine per ogni i, j tra 1 e p abbiamo

$$(1 \ j)(1 \ i)(1 \ j) = (i \ j) \in \mathcal{G}(\mathbb{L}/\mathbb{Q}),$$

quindi $\mathcal{G}(\mathbb{L}/\mathbb{Q}) = S_p$.

Osservazione 2.9.12. È possibile provare che questo risultato vale più in generale per ogni $n \geq 5$.

2.10 Discriminante di un polinomio

Definizione 2.10.1. Sia $n \geq 2$ e x_1, x_2, \ldots, x_n indeterminate su \mathbb{F} . Si chiama **discriminante** il polinomio

$$\Delta = \prod_{1 \le i < j \le n} (x_i - x_j)^2 \in \mathbb{F}[x_1, \dots, x_n].$$

Osservazione 2.10.2. Osserviamo subito che il discriminante può essere scritto nel seguente modo

$$\Delta = (-1)^{\binom{n}{2}} \prod_{i \neq j} (x_i - x_j),$$

da cui deduciamo che il discriminante è un polinomio simmetrico.

Dalla definizione si deduce che il discriminante ha una radice quadrata in $\mathbb{F}[x_1,\ldots,x_n]$.

Definizione 2.10.3. Definiamo

$$\sqrt{\Delta} = \prod_{1 \le i < j \le n} (x_i - x_j).$$

Osserviamo che $\sqrt{\Delta}$ non è simmetrico.

Proposizione 2.10.4. $Se \varphi \in S_n \ allora$

$$\varphi(\sqrt{\Delta}) = sgn(\varphi)\sqrt{\Delta}, \quad con \quad sgn(\varphi) = \begin{cases} 1 & \varphi \in A_n \\ -1 & \varphi \in S_n \setminus A_n \end{cases}$$

(dove con $\varphi(\sqrt{\Delta})$ intendiamo il polinomio $\sqrt{\Delta}$ calcolato in $x_{\varphi(1)}, x_{\varphi(2)}, \ldots, x_{\varphi(n)}$).

Dimostrazione. Basta provare che $\tau(\sqrt{\Delta}) = -\sqrt{\Delta}$ se τ è una trasposizione. Supponiamo che $\tau = \begin{pmatrix} i & j \end{pmatrix}$ con i < j, allora τ lascia fissi i fattori di $\sqrt{\Delta}$ i cui indici sono diversi da i e j. Se h > j allora $\tau(x_i - x_h) = (x_j - x_h)$ e allo stesso modo $\tau(x_j - x_h) = (x_i - x_h)$. Analogamente avviene nel caso h < i. Se invece i < h < j allora $\tau(x_i - x_h) = -(x_h - x_j)$ e $\tau(x_h - x_j) = -(x_i - x_h)$, quindi nel prodotto finale il segno verrà compensato. Infine visto che $\tau(x_i - x_j) = -(x_i - x_j)$ allora $\tau(\sqrt{\Delta}) = -\sqrt{\Delta}$, da cui la tesi.

Per n=2,3 scriviamo le formule per esprimere Δ in funzione dei σ_i .

$$n = 2 \quad \Delta = \sigma_1^2 - 4\sigma_2.$$

$$n = 3 \quad \Delta = -4\sigma_2^3 - 27\sigma_3^2 + \sigma_1^2\sigma_2^2 - 4\sigma_1^3\sigma_3 + 18\sigma_1\sigma_2\sigma_3.$$

Definizione 2.10.5. Sia $f(x) \in \mathbb{F}[x]$ un polinomio, \mathbb{L} il suo campo di spezzamento e $\alpha_1, \ldots, \alpha_n \in \mathbb{L}$ le sue radici. Si definisce **discriminante** di f

$$\Delta(f) = \prod_{i < j} (\alpha_i - \alpha_j)^2,$$

e analogamente definiamo

$$\sqrt{\Delta(f)} = \Delta(f) = \prod_{i < j} (\alpha_i - \alpha_j)$$

Osservazione 2.10.6. Dalla definizione segue subito che

$$\Delta(f) \neq 0 \iff f \ \hat{e} \ separabile.$$

Inoltre $\Delta(f)$ non è altro che il polinomio discriminante calcolato nelle radici di f. Essendo il discriminante un polinomio simmetrico, per (1.5.8), abbiamo che $\Delta(f) \in \mathbb{F}$.

Teorema 2.10.7. Sia $f(x) \in \mathbb{F}[x]$, con $ch(\mathbb{F}) \neq 2$, f separabile $e \mathbb{L}$ il campo di spezzamento di f, allora

1. Se
$$\varphi \in \mathcal{G}(\mathbb{L}/\mathbb{F}) \leq S_n$$
 allors $\varphi(\sqrt{\Delta(f)}) = sgn(\varphi)\sqrt{\Delta(f)}$.

2.
$$\mathcal{G}(\mathbb{L}/\mathbb{F}) \leq A_n \iff \sqrt{\Delta} \in \mathbb{F}$$
.

Dimostrazione.

1. Basta applicare la precedente proposizione su $\sqrt{\Delta}$.

2.

$$\sqrt{\Delta(f)} \in \mathbb{F} = \mathbb{L}^{\mathcal{G}(\mathbb{L}/\mathbb{F})} \iff \forall \varphi \in \mathcal{G}(\mathbb{L}/\mathbb{F}) \, \varphi(\sqrt{\Delta(f)}) = \sqrt{\Delta(f)} \iff \forall \varphi \in \mathcal{G}(\mathbb{L}/\mathbb{F}) \, sgn(\varphi) = 1 \iff \mathcal{G}(\mathbb{L}/\mathbb{F}) \subseteq A_n.$$

Corollario 2.10.8. Sia $f(x) \in \mathbb{F}[x]$ irriducibile e separabile con $\deg f = 3$, $ch(\mathbb{F}) \neq 2$ allora

$$\mathcal{G}(\mathbb{L}/\mathbb{F}) = A_3 \iff \sqrt{\Delta(f)} \in \mathbb{F}$$

 $\mathcal{G}(\mathbb{L}/\mathbb{F}) = S_3 \iff \sqrt{\Delta(f)} \notin \mathbb{F}$

Dimostrazione. Si ha $\mathcal{G}(\mathbb{L}/\mathbb{F}) \leq S_3$ e poiché f è irriducibile e $\mathbb{F} \subseteq \mathbb{L}$ è di Galois allora 3 divide $[\mathbb{L} : \mathbb{F}] = |\mathcal{G}(\mathbb{L}/\mathbb{F})|$, quindi, dato che $|S_3| = 6$, $\mathcal{G}(\mathbb{L}/\mathbb{F})$ ha ordine 3 oppure 6, adesso basta applicare il secondo punto del teorema precedente.

2.11 Formula risolutiva di una cubica

Sia $\mathbb{Q} \subseteq \mathbb{F}$ e supponiamo che \mathbb{F} contenga tutte le radici terze dell'unità. Sia

$$f(x) = x^3 + px + q \in \mathbb{F}[x].$$

I coefficienti p e q sono da considerarsi generici. Dunque, se \mathbb{L} è il campo di spezzamento di f allora $\mathcal{G}(\mathbb{L}/\mathbb{F}) \simeq S_3$, per cui $\sqrt{\Delta(f)} \notin \mathbb{F}$, quindi $\mathbb{F} \subsetneq \mathbb{F}(\sqrt{\Delta(f)}) \subseteq \mathbb{L}$, con $[\mathbb{L} : \mathbb{F}] = 6$ e $[\mathbb{F}(\sqrt{\Delta(f)}) : \mathbb{F}] = 2$, pertanto $[\mathbb{L} : \mathbb{F}(\sqrt{\Delta(f)})] = 3$. Inoltre $\mathbb{F} \subseteq \mathbb{L}$ è di Galois, quindi lo è anche $\mathbb{F}(\sqrt{\Delta(f)}) \subseteq \mathbb{L}$. Dunque $|\mathcal{G}(\mathbb{L}/\mathbb{F}(\sqrt{\Delta(f)}))| = [\mathbb{L} : \mathbb{F}(\Delta(f))] = 3$, cioè

$$\mathcal{G}(\mathbb{L}/\mathbb{F}(\sqrt{\Delta(f)})) \simeq A_3,$$

pertanto $\mathcal{G}(\mathbb{L}/\mathbb{F}(\sqrt{\Delta(f)}))$ è anche ciclico, per (2.8.10) esiste $A \in \mathbb{L}$ tale che $A^3 \in \mathbb{F}(\sqrt{\Delta(f)})$, $\mathbb{F}(\sqrt{\Delta(f)}, A) = \mathbb{L}$ e infine se $\mathcal{G}(\mathbb{L}/\mathbb{F}(\sqrt{\Delta(f)})) = \mathcal{G}(\tau)$ allora

$$\omega^{-1} = \frac{A}{\tau(A)}$$
 (ω è una radice terza primitiva dell'unità).

Utilizzando lo stesso procedimento di quanto fatto nelle estensioni cicliche sappiamo che, posto

$$\phi = 1 + \omega^{-1}\tau + \omega^{-1}\tau(\omega^{-1})\tau^{2},$$

se $c \in \mathbb{L}$ è tale che $\phi(c) \neq 0$ allora $A = \phi(c)$. Siano $\alpha_1, \alpha_2, \alpha_3$ le tre radici distinte di f. Possiamo suppore che $\tau = \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$, quindi

$$\phi(\alpha_1) = \alpha_1 + \omega^{-1} \tau(\alpha_1) + \omega^{-1} \tau(\omega^{-1}) \tau^2(\alpha_1) = \alpha_1 + \omega^2 \alpha_2 + \omega \alpha_3.$$

Sia $\sigma = (2 \ 3) \in \mathcal{G}(\mathbb{L}/\mathbb{F})$. Proviamo che $\phi(\alpha_1) \neq \sigma(\phi(\alpha_1))$. Per assurdo se

$$\alpha_1 + \omega^2 \alpha_2 + \omega \alpha_3 = \phi(\alpha_1) = \sigma(\phi(\alpha_1)) = \alpha_1 + \omega^2 \alpha_3 + \omega \alpha_2 \Rightarrow$$
$$\Rightarrow (\omega^2 - \omega)(\alpha_2 - \alpha_3) = 0 \Rightarrow \alpha_2 = \alpha_3, \text{ assurdo.}$$

Dunque $\phi(\alpha_1) \notin \mathbb{L}^{\mathcal{G}(\mathbb{L}/\mathbb{F})} = \mathbb{F}$, quindi dev'essere $\phi(\alpha_1) \neq 0 \in \mathbb{F}$. Ne segue che $A = \phi(\alpha_1) = \alpha_1 + \omega^2 \alpha_2 + \omega \alpha_3$. Inoltre sappiamo che $A^3 \in \mathbb{F}(\sqrt{\Delta(f)})$ quindi $A^3 = c + d\sqrt{\Delta(f)}$ con $c, d \in \mathbb{F}$. Sia $B = \sigma(A) = \alpha_1 + \omega \alpha_2 + \omega^2 \alpha_3$, $B^3 = \sigma(A)^3 = c - d\sqrt{\Delta(f)}$ (σ è una permutazione dispari). Tramite il seguente sistema

$$\begin{cases} \alpha_1 + \alpha_2 + \alpha_3 = 0 \\ \alpha_1 + \omega^2 \alpha_2 + \omega \alpha_3 = A \\ \alpha_1 + \omega \alpha_2 + \omega^2 \alpha_3 = B \end{cases}$$

troviamo le tre radici in funzione di A e B

$$\alpha_1 = \frac{1}{3}(A+B)$$

$$\alpha_2 = \frac{1}{3}(\omega A + \omega^2 B)$$

$$\alpha_3 = \frac{1}{3}(\omega^2 A + \omega B).$$

(si trovano A e B con il procedimento della fotocopia).