MATH 321 WEEK 5 CLAIMED PROBLEM SOLUTIONS

KENAN INCE

- (1) 1.5.9
 - (a) Show that $\sqrt{2}$, $\sqrt[3]{2}$, and $\sqrt{2} + \sqrt{3}$ are algebraic.
 - (i) $\sqrt{2}$ is a root of $x^2 2$.
 - (ii) $\sqrt[3]{2}$ is a root of $x^3 2$.
 - (iii) Let $x = \sqrt{2} + \sqrt{3}$. Then $(x \sqrt{2})^2 = (\sqrt{3})^2 = 3$, and hence

$$x^2 - 2\sqrt{2}x + 2 = 3$$

so that $x^2 - 1 = 2\sqrt{2}x$. Squaring both sides gives

$$x^4 - 2x^2 + 1 = 4(2)x^2$$

$$x^4 - 10x^2 + 1 = 0.$$

Hence, $\sqrt{2} + \sqrt{3}$ is a root of $x^4 - 10x^2 + 1$.

(b) Show that $A_n = \{\text{roots of degree-}n \text{ polynomials with integer coefficients}\}$ is countable. One way of doing this is as follows. Note that every polynomial has a finite number of roots. So if we could count degree-n polynomials with integer coefficients, we could count their roots—a countable union of finite sets is countable. (This fact is easily proved by slightly modifying

the proof of Theorem 1.5.8(i).) Let $P(n,\mathbb{Z})$ be the set of degree-n polynomials with integer coefficients, and let $\mathbb{Z}_{\neq 0}^n = \{(a_1, a_2, \dots, a_n) : a_i \in \mathbb{Z} \forall i, a_1 \neq 0\}$. Define $f: P(n,\mathbb{Z}) \to \mathbb{Z}_{\neq 0}^n$ by

$$f(a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0) = (a_n, a_{n-1}, a_{n-2}, \dots, a_0).$$

We claim f is 1-1 and onto.

(i) 1-1: let $P_1 = a_n x^n + \dots + a_1 x + a_0$ and $P_2 = b_n x^n + b_{n-1} x^{n-1} + \dots + b_1 x + b_0$, and assume $f(P_1) = f(P_2)$. Then

$$(a_n, \ldots, a_1, a_0) = f(P_1) = f(P_2) = (b_n, \ldots, b_1, b_0)$$

implying that $a_n = b_n$, $a_{n-1} = b_{n-1}$, ..., $a_1 = b_1$, and $a_0 = b_0$. Thus, $P_1 = P_2$, showing that f is 1-1.

(ii) Onto: let $a = (a_1, a_2, \dots, a_n) \in \mathbb{Z}_{\neq 0}^n$. Then

$$a = f(a_1x^n + a_2x^{n-1} + \dots + a_{n-1}x + a_n).$$

(c) Let A be the set of all algebraic numbers. Since countable unions of countable sets are countable by Theorem 1.5.8, and since A_n is countable for all $n \in \mathbb{N}$,

$$A = \bigcup_{n=1}^{\infty} A_n$$
 is countable.

Let T be the set of transcendental numbers. Then $\mathbb{R} = A \sqcup T$, where \sqcup denotes a disjoint union. Since A is countable, we must have that T is uncountable, for otherwise, \mathbb{R} would be the union of two countable sets and hence countable itself.

(2) Prove Theorem 1.6.1:

Theorem 1. The open interval (0,1) is uncountable.

- (a) Since $b_1 \neq a_{11}$ by definition $(b_1 = 2 \text{ if } a_{11} \neq 2 \text{ and } b_1 = 3 \text{ if } a_{11} = 2)$, it must be that $x \neq f(1)$.
- (b) Since $b_2 \neq a_{22}$, and in general $b_n \neq a_{nn}$, by definition, it follows that $x \neq f(2)$ and, in general, $x \neq f(n)$ for any $n \in \mathbb{N}$.
- (c) This contradicts the claim that we have enumerated all elements of (0,1) in the list $\{f(n): n \in \mathbb{N}\}$, since $x \in (0,1)$ but $x \notin \{f(n): n \in \mathbb{N}\}$.

- (3) 1.6.8
 - (a) Suppose that $a' \in B$. This implies that $a' \in f(a') = B$. But B is defined as the set of all elements that aren't in their images, so that that $a' \notin B$ by definition. Contradiction.
 - (b) Suppose that $a' \notin B$. This implies that $a' \notin f(a')$. But by the definition of B, this means that $a' \in B$, giving a contradiction.
- (4) 1.6.9

Exercise 1.6.9. It is unlikely that there is a reasonably simple way to explicitly define a 1–1, onto mapping from $P(\mathbf{N})$ to \mathbf{R} . A more fruitful strategy is to make use of the ideas in Exercise 1.5.5 and 1.5.11. In particular, we have seen earlier in this section that $\mathbf{R} \sim (0,1)$. It is also true that $P(\mathbf{N}) \sim S$ where S is the set of all sequences consisting of 0s and 1s from Exercise 1.6.4. To see why, let $A \in P(\mathbf{N})$ be an arbitrary subset of \mathbf{N} . Corresponding to this set A is the sequence (a_n) where $a_n = 1$ if $n \in A$ and $a_n = 0$ otherwise. It is straightforward to show that this correspondence is both 1–1 and onto, and thus $P(\mathbf{N}) \sim S$.

With a nod to Exercise 1.5.5, we can conclude that $P(\mathbf{N}) \sim \mathbf{R}$ if we can demonstrate that $S \sim (0,1)$. Proving this latter fact is easier, but it is still not easy by any means. One way to avoid some technical details, is to use the Schröder-Bernstein Theorem (Exercise 1.5.11). Rather than finding a 1–1, onto function, the punchline of this result is that we will be done if we can find two 1–1 functions, one mapping (0,1) into S, and the other mapping S into (0,1). There are a number of creative ways to produce each of these functions.

Let's focus first on mapping (0,1) into S. A fairly natural idea is to think in terms of binary representations. Given $x \in (0,1)$ let's inductively define a sequence (x_n) in the following way. First, bisect (0,1) into the two parts (0,1/2) and [1/2,1). Then set $x_1 = 0$ if x is in the left half, and $x_1 = 1$ if x is in the right half. Now let I be whichever of these two intervals contains x, and bisect it using the same convention of including the midpoint in the right half. As before we set $x_2 = 0$ if x is in the left half of I and $x_2 = 1$ if x is in the right half. Continuing this process inductively, we get a sequence $(x_n) \in S$ that is uniquely determined by the given $x \in (0,1)$, and thus the mapping is 1–1.

It may seem like this mapping is onto S but it falls just short. Because of our convention about including the midpoint in the right half of each interval, we never get a sequence that is eventually all 1s, nor do we get the sequence of all 0s. This is fixable. The collection of all sequences in S that are NOT in the range of this mapping form a countable set, and it is not too hard to show that the cardinality of S with a countable set removed is the same as the cardinality of S. The other option is to use the Schröder–Bernstein Theorem mentioned previously. Having found a 1–1 function from (0,1) into S, we just need to

produce a 1–1 function that goes the other direction. An example of such a function would be the one that takes $(x_n) \in S$ and maps it to the real number with decimal expansion $x_1x_2x_3x_4...$ Because the only decimal expansions that aren't unique involve 9s, we can be confident that this mapping is 1–1.

The Schröder–Bernstein Theorem now implies $S \sim (0,1)$, and it follows that $P(\mathbf{N}) \sim \mathbf{R}$.