Übungsblatt 10

Aufgabe 1 (Router, Layer-3-Switch, Gateway)

- 1. Welchen Zweck haben **Router** in Computernetzen? (Erklären Sie auch den Unterschied zu Layer-3-Switches.)
- 2. Welchen Zweck haben **Layer-3-Switches** in Computernetzen? (Erklären Sie auch den Unterschied zu Routern.)
- 3. Welchen Zweck haben **Gateways** in Computernetzen?
- 4. Warum sind **Gateways** in der Vermittlungsschicht von Computernetzen heutzutage selten nötig?

Aufgabe 2 (Adressierung in der Vermittlungsschicht)

- 1. Was ist die Bedeutung von **Unicast** in der Vermittlungsschicht von Computernetzen?
- 2. Was ist die Bedeutung von **Broadcast** in der Vermittlungsschicht von Computernetzen?
- 3. Was ist die Bedeutung von **Anycast** in der Vermittlungsschicht von Computernetzen?
- 4. Was ist die Bedeutung von **Multicast** in der Vermittlungsschicht von Computernetzen?
- 5. Warum enthält der **Adressraum** von IPv4 nur 4.294.967.296 Adressen?
- 6. Warum wurde das klassenlose Routing Classless Interdomain Routing (CIDR) eingeführt?
- 7. Beschreiben Sie in einfachen Worten die Funktionsweise von CIDR. Legen Sie den Schwerpunkt auf die Art und Weise, wie IP-Adressen behandelt und Subnetze erstellt werden.

Inhalt: Themen aus Foliensatz 10 Seite 1 von 6

Aufgabe 3 (Adressierung in der Vermittlungsschicht)

Berechnen Sie für jede Teilaufgabe die erste und letzte Hostadresse, die Netzadresse und die Broadcast-Adresse des Subnetzes.

IP-Adresse:	151.175.31.100	10010111.10101111.00011111.01100100)
Netzmaske:	255.255.254.0	11111111.11111111.11111110.0000000)
Netzadresse?			_
Erste Hostadresse?			_
Letzte Hostadresse?			_
Broadcast-Adresse?			_
IP-Adresse:	151.175.31.100	10010111.10101111.00011111.01100100)
Netzmaske:	255.255.255.240	11111111.11111111.11111111.11110000)
Netzadresse?			_
Erste Hostadresse?			_
Letzte Hostadresse?			_
Broadcast-Adresse?			_
IP-Adresse:	151.175.31.100	10010111.10101111.00011111.01100100)
Netzmaske:	255.255.255.128	11111111.11111111.11111111.10000000)
Netzadresse?			_
Erste Hostadresse?			_
Letzte Hostadresse?			_
Broadcast-Adresse?			_

binäre Darstellung	dezimale Darstellung	binäre Darstellung	dezimale Darstellung	
10000000	128	11111000	248	
11000000	192	11111100	252	
11100000	224	11111110	254	
11110000	240	11111111	255	

Aufgabe 4 (Adressierung in der Vermittlungsschicht)

In jeder Teilaufgabe überträgt ein Sender ein IP-Paket an einen Empfänger. Berechnen Sie für jede Teilaufgabe die Subnetznummern von Sender und Empfänger und geben Sie an, ob das IP-Paket während der Übertragung das Subnetz verlässt oder nicht.

Inhalt: Themen aus Foliensatz 10 Seite 2 von 6

Prof. Dr. Christian Baun FB 2: Informatik und Ingenieurwissenschaften Betriebssysteme und Rechnernetze (SS2018) Frankfurt Univ. of Appl. Sciences

Sender: 11001001.00010100.11011110.00001101 201.20.222.13 Netzmaske: 11111111.11111111.1111111.11110000 255.255.255.240

Empfänger: 11001001.00010100.11011110.00010001 201.20.222.17 Netzmaske: 11111111.11111111.1111111.11110000 255.255.255.240

Subnetznummer des Senders?

Subnetznummer des Empfängers?

Verlässt das IP-Paket das Subnetz [ja/nein]?

Sender:00001111.11001000.01100011.0001011115.200.99.23Netzmaske:11111111.11000000.00000000.0000000255.192.0.0

Empfänger: 00001111.11101111.00000001.00000001 15.239.1.1 Netzmaske: 11111111.11000000.00000000.00000000 255.192.0.0

Subnetznummer des Senders?

Subnetznummer des Empfängers?

Verlässt das IP-Paket das Subnetz [ja/nein]?

Aufgabe 5 (Adressierung in der Vermittlungsschicht)

Berechnen Sie für jede Teilaufgabe Netzmaske und beantworten Sie die Fragen.

1. Teilen Sie das Klasse C-Netz 195.1.31.0 so auf, das 30 Subnetze realisierbar sind.

Inhalt: Themen aus Foliensatz 10 Seite 3 von 6

Netzadresse: 11000011.00000001.00011111.00000000	195.1.31.0
Anzahl Bits für Subnetznummern?	
Netzmaske:	
Anzahl Bits für Hostadressen?	

Anzahl Hostadressen pro Subnetz?

2. Teilen Sie das Klasse A-Netz 15.0.0.0 so auf, das 333 Subnetze realisierbar sind.

3. Teilen Sie das Klasse B-Netz 189.23.0.0 so auf, das 20 Subnetze realisierbar sind.

Netzadresse: 10111101.00010111.00000000.00000000 189.23.0.0

Anzahl Bits für Subnetznummern?

Netzmaske: ______.___.___.___.___.___.___.

Anzahl Bits für Hostadressen?

Anzahl Hostadressen pro Subnetz?

4. Teilen Sie das Klasse C-Netz 195.3.128.0 in Subnetze mit je 17 Hosts auf.

5. Teilen Sie das Klasse B-Netz 129.15.0.0 in Subnetze mit je 10 Hosts auf.

binäre Darstellung	dezimale Darstellung	binäre Darstellung	dezimale Darstellung
10000000	128	11111000	248
11000000	192	11111100	252
11100000	224	11111110	254
11110000	240	11111111	255

Inhalt: Themen aus Foliensatz 10 Seite 4 von 6

Aufgabe 6 (Private IP-Adressbereiche)

Nennen Sie die drei privaten IP-Adressbereiche.

Aufgabe 7 (Adressierung in der Vermittlungsschicht)

Geben Sie für jede Teilaufgabe die korrekte Netzmaske an.

- 1. Maximal viele Subnetze mit je 5 Hosts in einem Klasse B-Netz.
- 2. 50 Subnetze mit je 999 Hosts in einem Klasse B-Netz.
- 3. 12 Subnetze mit je 12 Hosts in einem Klasse C-Netz.

Quelle: Jörg Roth. Prüfungstrainer Rechnernetze. Vieweg (2010)

Aufgabe 8 (IPv6)

1.

2.

• 2001::2:0:0:1

Vereinfachen Sie die folgende IPv6-Adressen:	
• 1080:0000:0000:0000:0007:0700:0003:316b	
Lösung:	
• 2001:0db8:0000:0000:f065:00ff:0000:03ec	
Lösung:	
• 2001:0db8:3c4d:0016:0000:0000:2a3f:2a4d	
Lösung:	
• 2001:0c60:f0a1:0000:0000:0000:0000:0001	
Lösung:	
• 2111:00ab:0000:0004:0000:0000:0000:1234	
Lösung:	
Geben Sie alle Stellen der folgenden vereinfachten IPv6-Adressen an	1:

Inhalt: Themen aus Foliensatz 10 Seite 5 von 6

	Lösung:	:	:	:	:	:	:	:	
•	2001:db8:0:c::1c								
	Lösung:	:	:	:	:	:	:	:	
•	1080::9956:0:0:234								
	Lösung:	:	:	:	:	:	:	:	
•	2001:638:	208:e	f34:::	91ff:	0:542	4			
	Lösung:	:	:	:	:	:	:	:	
•	2001:0:85a4::4a1e:370:7112								
	Lösung:	:	:	:	:	:	:	:	

Inhalt: Themen aus Foliensatz 10