

National University of Computer & Emerging Sciences

Department	Department of Computer Science	Dept. Code	CS
Course Title	Operating System	Course Code	CS220
Pre-requisite(s)	Data Structures and Algorithms	Credit Hrs.	3+1

Course	
Objective:	

PLO	Program Learning Outcome (PLO) Statement		
02	Problem Analysis: Identify, formulate, research literature, and analyse complete		
	computing problems, reaching substantiated conclusions using first principles o		
	mathematics, natural sciences, and computing sciences.		
03	Design/Develop Solutions: Design solutions for complex computing problems		
	and design systems, components, and processes that meet specified needs with		
	appropriate consideration for public health and safety, cultural, societal, and		
	environmental considerations.		
05	Modern Tool Usage: Create, select, and apply appropriate techniques, resources		
	and modern computing tools, including prediction and modelling for complex		
	computing problems.		

CLO	Course Learning Outcome (CLO)	Domain	Taxonomy Level	PLO	Tools
01	Understand the characteristics of different structures of the Operating Systems and identify the core functions of the Operating Systems.	Cognitive	3	2	A, M1,F
02	Analyze and evaluate the algorithms of the core functions of the Operating Systems and explain the major performance issues with regard to the core functions.	Cognitive	4	3	A,M2,F
03	Demonstrate the knowledge in applying system software and tools available in modern operating systems.	Cognitive	5	5	A,P,F

Text Book(s)	Title	Operating system Concepts 10 th Edition	
	Author	Abraham Silberschatz	
Ref. Book(s)	Title	Modern Operating Systems	
	Author	Andrew S. Tanenbaum	
	Title	Operating System Internal Designs & Principles	
	Author	William Stallings	

National University of Computer & Emerging Sciences

Week	Course Contents/Topics	Chapter	CLO
01	Introduction to Operating system: basic OS definition, computer organization, I/O, DMA, mass storage, protection, UMA and NUMA architecture, symmetric & asymmetric	1	1
	clustering, security, computing platforms.		
02	Operating system structure: basic concept CLI, GUI, scripts, API, system programming & goals, OS design principles.	2	1,5
03	Operating system structure: (Continue)	2	1,5
04	Process Concept: basic concept, scheduler types, Queues, process creation, interprocess communication methods.	3	1,2,3
05	Process scheduling Algorithm: pre-emptive & non – preemptive, FCFS, SJF, SRTF, Priority, RR, multiprocessor, real –time scheduling.	5	1,2,3
06	Mid-I Term Exam		
07	Multi-threaded Programming: basic control blocks, thread models, thread concepts, process vs. threads, data and task parallelism, Amdahl's law, pthread APIs, OpenMP introduction.	4	2,3,5
08	Process Synchronization: concurrency,race condition, critical section, Peterson solution, test and set instruction, mutex, semaphore. Classical problems such as bounder buffer, reader writer, dinning philosopher.	6,7.1	2,3,
09	Process Synchronization: (Continue)	6,7.1	2,3,
10	Memory Management: basic memory definition, dynamic allocation, problems of dyamic allocation, swapping, fragmentation, segmentation, paging, structure of page tables, System architecture.	9	1,2
11	Mid-II Term Exam		
12	Virtual Memory: basic VM concept, demand paging, COW,page replacement algos, FIFO, optimal,LRU,second chance,frame allocation,thrashing,kernel memory, buddy, slab allocation.	10	1,2
13	Virtual Memory: (Continue)	10	1,2
14	Deadlock: basic concept, detection, prevention, avoidance, banker's algorithm, resource allocation algo, safety algo.	8	1,2
15	Disk Scheduling: (FCFS, SSTF,SCAN,CSCAN)	11 till 11.2.3	1,2

Assessment Plan:

Assessment	Weight	
	age	
Class Activities	5%	
Assignment	5%	
Projects	10%	
Midterm Exams	30%	
Final	50%	

National University of Computer & Emerging Sciences