

Gaussian Process Morphable Models KI, der wir vertrauen können

Marcel Lüthi, Departement Mathematik und Informatik, Universität Basel

Übersicht

- 1. Künstliche Intelligenz und variational Autoencoders
- 2. Gaussian Process Morphable Models
- 3. Modellierung mit Gaussian Process Morphable Models

Anwendungsbeispiel: Design eines Nasenimplantats

Mein Background

Dozent Informatik

Forschung im Bereich Formmodellierung und Bildanalyse

- Probabilistische Modellierung
- Bayessche Methoden / Analysis by Synthesis
- Anwendung in der Medizin

Autor/Maintainer der Opensource Software Scalismo Mitgründer Shapemeans GmbH

Was ist Künstliche Intelligenz?
Intelligence measures an agent's ability to achieve goals in a wide range of environments.
Shane Legg and Marcus Hutter. A collection of definitions of intelligence. 2007.

KI in der Praxis – maschinelles lernen

Manigfaltigkeit-Hypothese

Hochdimensionale Daten der realen Welt liegen auf einer tief-dimensionalen Oberfläche die im hochdimensionalen Raum, beobachteten Raum, eingebettet ist.

Beispielsystem: Variational Autoencoder

Kingma, Durk P., et al. "Semi-supervised learning with deep generative models." *Advances in neural information processing systems* 27 (2014).

Autoencoder als generative Modelle

Anwendungen von generativen Modellen

Datengenerierung

• Testen auf realistischen, aber simulierten Daten

Design von Implantaten

Finde wahrscheinlichste Form zu gegebener Form

Shape und Bildanalyse

- Diagnose
- Operationsplanung
- Statistische Inferenz auf Formen

Gaussian process morphable models

Variational Autoencoder

Gaussian Process Morphable Models

Lüthi, Marcel, et al. "Gaussian process morphable models." *IEEE transactions on pattern analysis and machine intelligence* 40.8 (2017): 1860-1873.

Wann macht Annahme Sinn?

- Formveränderungen sind nicht zu gross
- Ein klarer Mittelwert exisiert
- Punkt-zu-Punkt Korrespondenz existiert
- Rotation/Translation ist normalisiert

Gut fundierte Statistische Theorie

On Growth and Form, D. Thompson, 1917

Modellieren mit GPMMs

Code, Daten und Dokumentation online verfügbar

https://github.com/shape-the-world/nose-implant-case-study

Problemstellung

Datensatz: Öffentliche Gesichter des Basel Face Model (faces.dmi.unibas.ch)

Aus zwei Gesichtern werden viele Gesichter

Modell aus 9 Gesichtern

Beste Rekonstruktion – Leave one out Experiment

Beobachtung: Fehler sind lokal und glatt auslaufend

Modellieren mit Gaussian Prozessen

Fehlende Variabilität kann nachmodelliert werden.

Gelerntes Modell

• $u \sim GP(\mu, k)$

Flexibleres Modell

• $u \sim GP(\mu, k + k_{bias})$

Modelliert fehlende Variabilität

- Technisch: Gauss Kern $k(x, x') = \exp\left(-\frac{\|x x'\|^2}{\sigma^2}\right)$
- Modelliert glatte Deformationen

Modell aus 9 Gesichtern mit zusätzlicher Flexibilität

Beste Rekonstruktion – Leave one out Experiment

Vorhersagen der Nase

Mathematisches Problem Bays'sche lineare Regression Gegeben: Daten x Modelliert: Verteilung $P(x) \sim GP(\mu, k)$ $P(z \mid x)$

Vorhersagen der Nase

Mathematisches Problem

Verteilung möglicher Nasen

Unsicherheit in der Vorhersage kann abgeschätzt und visualisiert werden.

GPMMs – KI der wir vertrauen können

Ziel des maschinellen Lernens

Latenten Raum finden in der wir Daten einfach interpolieren können

Allgemeine KI-Ansätze

- + Enorme Flexibilität Neuronaler dank neuronaler Netze
- + Können beliebige Datenverteilungen repräsentieren
- Schwierig zu verstehen, wenig explizite Annahmen
- Oft sehr datenhungrig

Gaussian Process Morphable Models

- Eingeschränkt auf Normalverteilungen
- Explizite Modellierung benötigt
- + Modellierung passiert im Datenraum
- + Eigenschaften / Limitierungen können vollständig verstanden werden
- + Kann auf kleinen Datensätzen gelernt werden
- + Unsicherheit/Varianz aller Vorhersagen verfügbar

Danke für Ihre Aufmerksamkeit!

Implementation und Daten: https://github.com/shape-the-world/nose-implant-case-study Kontakt: marcel.luethi@unibas.ch

Backup

Lernen der Parameter μ , k des Gauss-Prozesses

Vorverarbeitung:

- Standardisierung von Ort und Ausrichtung
- Punkt-zu-Punkt Korrespondenz herstellen
- Abweichungen von Referenz-form berechnen

Mittelwert:
$$\mu_{PDM}(x) = \overline{u}(x) = \frac{1}{n} \sum_{i=1}^{n} u^{i}(x)$$
Covarianz
$$k_{PDM}(x, x') = \frac{1}{n-1} \sum_{i=1}^{n} (u^{i}(x) - \overline{u}(x)) \left(u^{i}(x') - \overline{u}(x')\right)^{T}$$