DÉVELOPPEZ UNE PREUVE DE CONCEPT

OPENCLASSROOMS - INGÉNIEUR MACHINE LEARNING

THIBAUD GROSJEAN - MAI 2022

OBJECTIFS

- Implémenter une technique de pointe
- Définir le plan de travail prévisionnel
- Mener le travail de recherche
- Réaliser un état de l'Art
- Comparer les performances à un modèle baseline

BIBLIOGRAPHIE

- Ashish Vaswani et al, Attention Is All You Need, 2017
- Kevin Clark et al., ELECTRA: Pre-Training Text Encoders Aa Discriminators Rather Than Generators, 2020
- Pengcheng He et al., DeBERTaV3: Improving DeBERTa using ELECTRA-Style Pre-Training with Gradient-Disentangled Embedding Sharing, 2021
- Francesco Barbieri et al., TWEETEVAL: Unified Benchmark and Comparative Evaluation for Tweet Classification, 2020
- Daniel Loureiro et al., TimeLMs: Diachronic Language Models from Twitter, 2022

TRANFORMEURS

- Transductif
- Parallelisable
- Auto-Attention
- Auto-Supervisé
- Compréhension statistique

TRANFORMEURS

- CNN
- Séquentialité

The → The big red dog big → The big red dog red → The big red dog dog → The big red dog

Attention Vectors

[0.71	0.04	0.07	0.18] ¹
[0.01	0.84	0.02	$[0.13]^T$
[0.09	0.05	0.62	$[0.24]^T$
[0.03	0.03	0.03	$[0.91]^T$

ATTENTION

- Qu'est-ce que l'attention ?
- Attention par produit scalaire
- Optimisation
- Encodeur
- Encodeur-Décodeur

```
The FBI is chasing a criminal on the run.
The FBI is chasing a criminal on the run.
     FBI is chasing a criminal on the run.
     FBI is chasing a criminal on the run.
     FBI is chasing a criminal on the run.
The
     FBI is
              chasing a criminal on the run.
              chasing a criminal on the run.
     FBI is
The
     FBI is
              chasing a
                          criminal on the run.
The
The
              chasing
                          criminal on the run.
     FBI is
                          criminal
The
              chasing a
                                        the run.
                                   on
```

ATTENTION

Décodeur

ATTENTION

- Attention à têtes multiples
- Parallélisation
- Attention Démêlée

ARCHITECTURE

- 6+6 layers d'attention
- 768 neurones de préclassification
- Drop-out (0.3)
- Neurones de classification

SÉQUENCES

- Vecteurs
 - Input ids (tokens)
 - Input types
 - Attention masks
 - Labels (cibles)
- Longueur de séquence: 100

PIPELINE

- Simple en apparence...
- Mais complexe
- Le *Tokenizer* permet d'inverser les *logits* du modèle

Model	Wiki+Book	OpenWebText	Stories	CC-News	Giga5	ClueWeb	Common Crawl	CC100
	16GB	38GB	31GB				110GB	2.5TB
BERT	√							
XLNet	✓				√	✓	✓	
RoBERTa	✓	√	✓	√				
DeBERTa	√	√	√					
DeBERTa _{1.5B}	✓	✓	✓	✓				
DeBERTaV3	✓	✓	✓	✓				
mDeBERTa _{base}								√

PRÉ-ENTRAINEMENT

- Réprésentations de langage
- <u>161GB</u>
- Puissance de calcul massive

PRÉ-ENTRAINEMENT

- NSP
- MLM
- Tokens corrompus "['MASK']"
- 15%
- RTD (ELECTRA)

SÉQUENCES & GRADIENTS

- Tug of war
- Partage de séquences (ES)
- Non partage de séquences (NES)
- GDES

JEU DE DONNÉES

- TWEETEVAL Emotion
- 5052 tweets
 - Entrainement: 3257
 - Validation: 374
 - Test: 1421
- 4 classes
 - Anger
 - Joy
 - Optimism
 - Sadness

JEU DE DONNÉES

- Distributions déséquilibrée
- La classe modale "anger" représente 43% de jeu d'entrainement
- Score : F1 macro-moyenné

IMPLÉMENTATION

Classe Modale Régression Logistique (weighted) Universal Sentence Encoder

BERT (base)

DeBERTaV3 (base)

IMPLÉMENTATION

- Sickit Learn
- HuggingFace
- PyTorch
- Google Colab (TPU)
- Weights and Biases
- transformers_sentiment_imdb.ipynb

Validation CM LR USE BERT (base) DeBERTaV3 (base) 14.9 30.5 45.1 71.4 <u>76.8</u> F1 macro 42.7 43.8 60.6 77.5 83.6 Accuracy

RÉSULTATS

• Jeu de validation

Test CM LR USE BERT (base) TimeLMS DeBERTaV3 (base) 28.2 54.4 F1 macro 14.0 77.2 80.2 82.4 65.1 39.2 41.8 80.5 84.7 Accuracy

RÉSULTATS

• Jeu de test

CONCLUSION

- Exploration technique transversale
- Découverte de Pytorch et Weights & Biases
- Classification multiple déséquilibrée
- 4 algorithmes implémentés
- Score supérieur au benchmark (jeu de test)

ÉCHANGE & QUESTIONS

Merci de votre attention!