CheggSolutions - Thegdp

Chemistry

Topic: Chemical Equilibrium

Given:

 $\label{eq:K = 1.4 \times 10^{-9}} $$ Initial [A] = 0.24 \text{ text} \{ mol/L \} $$ Initial [B] = 0.36 \text{ text} \{ mol/L \} $$$

For the equilibrium reaction:

3A(g) + B(g) \rightleftharpoons C(g) + 2D(g)

To find: Concentrations of all chemicals at equilibrium.

Step-by-Step Solution:

Step 1: Write down the equilibrium expression

The equilibrium constant expression K for the reaction:

 $K = \frac{[C][D]^2}{[A]^3[B]}$

Explanation:

The equilibrium constant expression is derived based on the balanced chemical equation, mixing the products over reactants, each raised to the power of their coefficients in the balanced equation.

Step 2: Set up the ICE Table

	[A] (mol/L)	[B] (mol/L)	[C] (mol/L)	[D] (mol/L)
I	0.24	0.36	0	0
С	-3x	-X	+x	+2x
Е	0.24 - 3x	0.36 - x	x	2x

Explanation:

The ICE table setup helps to visualize the change during equilibrium from the initial concentration to the equilibrium concentration by introducing a variable x.

Step 3: Substitute the equilibrium concentrations into the equilibrium expression

Substitute the equilibrium concentrations into the expression [C] = x, [D] = 2x, [A] = 0.24 - 3x and [B] = 0.36 - x:

 $K = \frac{[C][D]^2}{[A]^3[B]}$

 $K = \frac{x \cdot (2x)^2}{(0.24 - 3x)^3 \cdot (0.36 - x)}$

Explanation:

To solve for x, assuming that x is very small (due to the small value of K), simplifies the calculation.

Step 4: Simplify and solve for x

Assume x is very small, thus 0.24 - 3x \approx 0.24 and 0.36 - x \approx 0.36:

1.4 \times $10^{-9} = \frac{4x^3}{0.0248832}$

1.4 \times $10^{-9} * 0.0248832 = 4x^3$

 $3.483648 \times 10^{-11} = 4x^3$

 $x^3 = \frac{3.483648 \times 10^{-11}}{4}$

 $x^3 = 8.70912 \times 10^{-12}$

 $x = \sqrt{3}{8.70912 \times 10^{-12}}$

 $x = 2.058 \times 10^{-4} \text{ mol/L}$

Explanation.

By simplifying and solving the cubic equation, the equilibrium concentration for [C] (which is x) is calculated.

Step 5: Calculate the equilibrium concentrations of all species

Using $x = 2.058 \times 10^{-4}$:

Explanation:

By substituting x back into the equilibrium concentrations from the ICE table, the final concentrations for all species are calculated.

Final Solution

$$\begin{split} & [A]_{eq} = 0.239382 \mid text\{ mol/L \} \\ & [B]_{eq} = 0.359794 \mid text\{ mol/L \} \\ & [C]_{eq} = 2.058 \mid times 10^{-4} \mid text\{ mol/L \} \\ & [D]_{eq} = 4.116 \mid times 10^{-4} \mid text\{ mol/L \} \end{split}$$