Tropical Linear Spaces in Phylogenetics

Daniel Irving Bernstein

North Carolina State University dibernst@ncsu.edu

https://arxiv.org/abs/1702.05141

May 27, 2016

Phylogenetics Motivation

The rooted tree below suggests an evolutionary history among eight species

	dog	bear	raccoon	weasel	seal	sea lion	cat	monkey
dog	0	41	41	42	41	41	89	143
bear	41	0	17	42	35	35	89	143
raccoon	41	17	0	42	35	35	89	143
weasel	42	42	42	0	42	42	89	143
seal	41	35	35	42	0	15	89	143
sea lion	41	35	35	42	15	0	89	143
cat	89	89	89	89	89	89	0	143
monkey	143	143	143	143	143	143	143	0

Phylogenetics Motivation

	dog	bear	raccoon	weasel	seal	sea lion	cat	monkey
dog	0	32	48	51	50	48	98	148
bear	32	0	26	34	29	33	84	136
raccoon	48	26	0	42	44	44	92	152
weasel	51	34	42	0	44	38	86	142
seal	50	29	44	44	0	24	89	142
sea lion	48	33	44	38	24	0	90	142
cat	98	84	92	86	89	90	0	148
monkey	148	136	152	142	142	142	148	0

Pairwise immunological distances between species¹

Question

There is no way to display this dataset on a tree like the previous slide. What are the "closest" hypothetical datasets that can be?

¹Sarich 1969

Ultrametrics

Definition

A dissimilarity map on finite set X is a function $\mathbf{d}: X \times X \to \mathbb{R}$ such that

- **1** $\mathbf{d}(x,y) = \mathbf{d}(y,x)$ and
- **2** $\mathbf{d}(x,x) = 0$.

Equivalently, a dissimilarity map is a symmetric matrix with all zeros on the diagonal.

Definition

We say that $\mathbf{d}(\cdot, \cdot)$ is an *ultrametric* if for all $x, y, z \in X$ the maximum of $\mathbf{d}(x, y), \mathbf{d}(y, z)$ and $\mathbf{d}(x, z)$ is attained twice.

Proposition

A dissimilarity map can be expressed on a rooted tree if and only if it is an ultrametric. The leaf-labeled tree associated to an ultrametric is called its topology.

Motivating Question and Background

Question

Given a dissimilarity map \mathbf{d} , which ultrametrics are nearest to \mathbf{d} in the I^{∞} -norm? Do they all have the same topology?

In 2000, Chepoi and Fichet gave a polynomial-time algorithm for computing the coordinate-wise maximum ultrametric that is I^{∞} -nearest to a given dissimilarity map.

Theorem (Ardila and Klivans, 2006)

The set of ultrametrics on a finite set of size n is exactly the Bergman fan of the complete graph on n vertices.

The above theorem gives a strong connection to tropical geometry which is one motivation for use of the I^{∞} -norm.

Multiple closest topologies

The ultrametrics closest in the I^{∞} -norm to Sarich's dataset are distance 9 away. Four different binary tree topologies are represented, shown below.

Question

What structure does the set of I^{∞} -nearest ultrametrics have?

Tropical Arithmetic

Definition

The *tropical semiring* is the extended real numbers $\mathbb{R} \cup \{-\infty\}$ where tropical addition is defined as

$$a \oplus b := \max\{a, b\}$$

and tropical multiplication is defined as

$$a \odot b := a + b$$
.

Definition

The tropical semi-module is $(\mathbb{R} \cup \{-\infty\})^n$. If $x, y \in (\mathbb{R} \cup \{-\infty\})^n$, then $x \oplus y$ is the vector whose *i*th entry is $x_i \oplus y_i$. If $\alpha \in \mathbb{R} \cup \{-\infty\}$ then the *i*th entry of $\alpha \odot x$ is $\alpha \odot x_i$.

$$\begin{pmatrix} 1 \\ 2 \end{pmatrix} \oplus 1 \odot \begin{pmatrix} -\infty \\ 2 \end{pmatrix} \quad = \quad \begin{pmatrix} 1 \\ 2 \end{pmatrix} \oplus \begin{pmatrix} -\infty \\ 3 \end{pmatrix} \quad = \quad \begin{pmatrix} 1 \\ 3 \end{pmatrix}$$

7 / 18

Tropical Convexity

In what follows, $v_1, \ldots, v_k \in (\mathbb{R} \cup \{-\infty\})^n$.

Definition

A tropical polytope is the tropical convex hull of a finite set of points. That is, a set of the form

$$tconv(\{v_1,\ldots,v_k\}) := \{\lambda_1 \odot v_1 \oplus \cdots \oplus \lambda_k \odot v_k : \lambda_1,\ldots,\lambda_k \in \mathbb{R} \cup \{-\infty\} \text{ and } \lambda_1 \oplus \cdots \oplus \lambda_k = 0\}.$$

Definition

A tropical polyhedral cone is a set of the form

$$\mathsf{tcone}(\{v_1,\ldots,v_k\}) := \{\lambda_1 \odot v_1 \oplus \cdots \oplus \lambda_k \odot v_k : \lambda_1,\ldots,\lambda_k \in \mathbb{R} \cup \{-\infty\}\}.$$

Example

Consider the tropical polytope

$$\mathsf{tconv}\{(1,0),(0,1)\} = (0,1) \bullet (1,0)$$

It contains the points

$$(1,1) = 0 \odot (1,0) \oplus 0 \odot (0,1)$$
$$(\frac{1}{2},1) = (-\frac{1}{2} \odot (1,0)) \oplus (0 \odot (0,1))$$
$$(1,\frac{1}{2}) = (0 \odot (1,0)) \oplus (-\frac{1}{2} \odot (0,1))$$

(note
$$0 \oplus 0 = 0 \oplus -\frac{1}{2} = 0$$
).

Tropical polytopes and I^{∞} -nearest ultrametrics

Proposition (B. 2017)

The set of ultrametrics that are I^{∞} -nearest to a given dissimilarity map **d** is a tropical polytope.

Proposition (Develin-Sturmfels 2004)

Given a tropical polytope P, there exists a unique finite subset $V \subset P$ such that P = tconv V. The elements of V are called the tropical vertices of P.

We give an algorithm that computes a superset of the tropical vertices of the set of ultrametrics I^{∞} -nearest to a given dissimilarity map.

Proposition (B. 2017)

All ultrametrics l^{∞} -nearest to **d** have the same topology if and only if all the tropical vertices have the same topology.

Algorithm

Algorithm idea:

- Ompute maximal I[∞]-nearest ultrametric using algorithm of Chepoi and Fichet
- Slide internal nodes of the tree down until either creating a new polytomy, or sliding any further would increase I[∞] distance
- Repeat
- Return the ultrametrics such that at most one internal node can still be moved down

$$\mathbf{d} = \begin{matrix} A & B & C & D \\ A & 0 & 2 & 4 & 6 \\ 2 & 0 & 8 & 10 \\ C & 0 & 4 & 8 & 0 & 12 \\ D & 6 & 10 & 12 & 0 \end{matrix} \right)$$

d is distance 3 from nearest ultrametric

Tropical Polytope of Nearest Ultrametrics

Partial dissimilarity maps

Question

Given a dissimilarity map where only some of the entries are known, is it possible to fill in the missing entries so that the result is an ultrametric?

The partial dissimilarity map above on the left can be completed to an ultrametric while the one on the right cannot.

Bergman Fans

Definition

Let G be a graph with edge set E. The Bergman fan of G is

$$\tilde{\mathcal{B}}(G) := \{x \in \mathbb{R}^E : \text{if } C \text{ is a circuit of } G, \\ \text{then the maximum of } \{x_i : i \in C\} \text{ is attained twice} \}.$$

Example

Let K_4 be the complete graph on 4 vertices. The edge-labeled graph on the left represents an element of $\tilde{\mathcal{B}}(K_4)$ whereas the one on the right does not.

Bergman fans and (partial) ultrametrics

Theorem (Ardila and Klivans, 2006)

The set of ultrametrics on a finite set of size n is exactly the Bergman fan of the complete graph on n vertices.

Proposition (B. 2017)

Let \mathbf{d} be a partial dissimilarity map supported on graph G. Then \mathbf{d} can be completed to an ultrametric if and only if \mathbf{d} lies on the Bergman fan of G.

	Α	В	C	D
Α	/ 0	5	7	9 \
В	$\begin{pmatrix} 0 \\ 5 \\ 7 \\ 9 \end{pmatrix}$	0	7	9
C	7	7	0	9
D	\ 9	9	9	0 <i>/</i>

Generalizing results on ultrametrics

Theorem (Ardila, 2004)

Bergman fans of graphs are tropical polyhedral cones. The Chipoi-Fichet algorithm for computing the coordinate-wise maximum I^{∞} -nearest ultrametric extends to Bergman Fans.

Theorem (B. 2017)

Let G be a graph with edge set E and let $x \in \mathbb{R}^E$. Then the subset of the Bergman fan $\mathcal{B}(G)$ of points that are I^{∞} -nearest to x is a tropical polytope. We have an algorithm for computing its tropical vertices.

Key idea for algorithm:

- Generalize notion of ultrametric topology so that elements of arbitrary Bergman fans can be assigned a topology
- All the pieces of the algorithm for ultrametrics now have a generalization

References

Federico Ardila.

Subdominant matroid ultrametrics.

Annals of Combinatorics, 8:379-389, 2004.

Federico Ardila and Caroline J. Klivans.

The Bergman complex of a matroid and phylogenetic trees.

Journal of Combinatorial Theory, Series B, 96(1):38 – 49,2006.

Daniel Irving Bernstein.

L-infinity optimization to Bergman fans of matroids with an application to phylogenetics.

https://arxiv.org/abs/1702.05141, 2017.

Victor Chepoi and Bernard Fichet.

L-infinity optimization via subdominants.

Journal of Mathematical Psychology, 44, 600-616, 2000.

Mike Develin and Bernd Sturmfels.

Tropical convexity.

Documenta Mathematica, 9:1-27, 2004.

Vincent M Sarich.

Pinniped phylogeny.

Systematic Biology, 18(4):416-422, 1969.

Topology for Elements of Bergman Fans

Definition

A hierarchy of connected flats \mathcal{F} of a matroid \mathcal{M} is a collection of connected flats of \mathcal{M} such that

- $0 \emptyset \in \mathcal{F}$, and
- ② If $F, G \in \mathcal{F}$ then $F \subseteq G$, $G \subseteq F$, or $F \cap G = \emptyset$

Proposition (B. 2017)

If $w \in \tilde{\mathcal{B}}(\mathcal{M})$ then there exists a unique hierarchy of connected flats \mathcal{F} such that for each $F \in \mathcal{F}$

- **1** w is constant on $F \setminus \bigcup_{G \in \mathcal{F}} G \in \mathcal{F}$