Chennai Mathematical Institute

Time Series Analysis (Endsem Exam)

December 18, 2021

Marks: 30 Time: 30 Minutes (10:00 AM to 10:30 AM)

Important Instructions

This is a multiple choice question paper with possibly more than one correct answer to a question. The marks will be given only for the choice of **all correct** answers to a question. No partial marks for incomplete choice of correct answers.

Please ensure that your answers reach the email ID **mas1221@gmail.com** by not later than **10:35 am**. Submissions beyond 10:35 am will be given **zero** marks as the endsem score.

Send your answer sheet as a PDF with the file name **your name endsem.pdf**; for example, **yash jain endsem.pdf**.

- 1. Which of the following can be inferred from the AR (1) model with intercept $\alpha = 0.8$ and coefficient $\beta = 0.2$?
 - (a) The autocorrelation function $\rho(k)$ decays exponentially to zero.
 - (b) The variance of the process is equal to 0.04 σ^2 , where σ^2 is the variance of the white noise.

[2]

- (c) The mean of the process is equal to 1.
- (d) The time series is not stationary.

2. Which of the following processes is stationary? Here, $\{\epsilon_t\} \sim WN(0, \sigma^2)$.

- (a) $Y_t = 0.3 + Y_{t-1} + \epsilon_t \epsilon_{t-1}$, with $Y_0 = 0 = \epsilon_0$
- (b) $Y_t = Y_{t-1} + \epsilon_t \epsilon_{t-1}$, with $Y_0 = 0 = \epsilon_0$
- (c) An MA(2) process with $\theta_1 = e^{-3}$ and $\theta_2 = 1.01$

(d)
$$Y_t = \alpha + \epsilon_t$$

- 3. High frequency data is required to study
 - (a) daily volatility
 - (b) weekly volatility
 - (c) intraday volatility
 - (d) monthly volatility [1]
- 4. We say that the ARCH effect is present in a stationary ARMA model if
 - (a) the residuals are uncorrelated.
 - (b) the squared residuals are uncorrelated.
 - (c) the residuals are correlated.
 - (d) the squared residuals are correlated.
- 5. Consider the stationary AR (2) model $Y_t = 0.01 + 0.02Y_{t-2} + \epsilon_t$, where $\epsilon_t \sim N(0,1)$. Let $\{Y_1,Y_2,...,Y_{100}\}$ be the given data with $Y_{99} = 0.02$ and $Y_{100} = -0.01$. Let FEV denote the forecast error variance. Then

[2]

[5]

- (a) $\hat{Y}_{101} = 0.0104$ with FEV = 1.
- (b) $\hat{Y}_{101} = 0.0098$ with FEV = 1.0004.
- (c) $\hat{Y}_{102} = 0.0098$ with FEV = 1.
- (d) $\hat{Y}_{102} = 0.0104$ with FEV = 1.0004. [6]
- 6. Let $\{Y_t\} \sim ARIMA(1,3,1)$; that is, $Y_t^{(3)} = \alpha + \beta Y_{t-1}^{(3)} + \theta \epsilon_{t-1} + \epsilon_t$. Then
 - (a) $Y_t = \alpha + (1+\beta)Y_{t-1} 3(1-\beta)Y_{t-2} + 3(1+\beta)Y_{t-3} \beta Y_{t-4} + \theta \epsilon_{t-1} + \epsilon_t$.
 - (b) $Y_t = \alpha + (3+\beta)Y_{t-1} 3(1+\beta)Y_{t-2} + (3\beta+1)Y_{t-3} \beta Y_{t-4} + \theta \epsilon_{t-1} + \epsilon_t$
 - (c) $Y_t = \alpha + (3 \beta)Y_{t-1} + 3(1 + \beta)Y_{t-2} + (\beta + 1)Y_{t-3} \beta Y_{t-4} + \theta \epsilon_{t-1} + \epsilon_t$.
 - (d) $Y_t = \alpha (3+\beta)Y_{t-1} + 3(1+\beta)Y_{t-2} + (\beta+1)Y_{t-3} + \beta Y_{t-4} + \theta \epsilon_{t-1} + \epsilon_t$.

7. Consider the model, due to Roll, given by $P_t = P_t^* + I_t(\frac{S}{2})$, where $\{I_t\}$ is a sequence of i.i.d. random variables with $P[I_t = +1] = 0.5 = 1 - P[I_t = -1]$, S is the BAS. Suppose that the true price P_t^* is an MA(1) process given by,

$$P_t^* = \epsilon_{t-1} + \epsilon_t,$$

where $\{\epsilon_t\} \sim WN(0, \sigma^2)$. Also, assume that the two sequences $\{I_t\}$ and $\{\epsilon_t\}$ are independent. Then

- (a) Correlation $(\Delta P_t, \Delta P_{t-1}) = -\frac{(S^2/4)}{\sigma^2 + (S^2/2)}$.
- (b) Correlation $(\Delta P_t, \Delta P_{t-1}) = -\frac{(S^2/2)}{2\sigma^2 + (S^2/4)}$.
- (c) Correlation $(\Delta P_t, \Delta P_{t-1}) = -\frac{(S^2/4)}{\sigma^2 + (S^2/4)}$.

(d) Correlation
$$(\Delta P_t, \Delta P_{t-1}) = -\frac{(S^2/4)}{2\sigma^2 + (S^2/2)}$$
. [5]

- 8. Let $\{Y_t\}$ be a given stationary time series with stationary mean μ , variance δ^2 and the auto-covariance function $\lambda(k)$, $k \geq 0$. Let $\{Y_t^{(1)}\}$ be the first difference series of $\{Y_t\}$. Then $\{Y_t^{(1)}\}$ is stationary with
 - (a) $V[Y_t^{(1)}] = 2\{\delta^2 + \lambda(1)\}\$ and $Cov(Y_t^{(1)}, Y_{t+k}^{(1)}) = \lambda(k) \lambda(k-1) + \lambda(k+1).$
 - (b) $V[Y_t^{(1)}] = \{\delta^2 \lambda(1)\}$ and $Cov(Y_t^{(1)}, Y_{t+k}^{(1)}) = 2\lambda(k) + \lambda(k-1) \lambda(k+1)$.
 - (c) $V[Y_t^{(1)}] = \{\delta^2 + \lambda(1)\}$ and $Cov(Y_t^{(1)}, Y_{t+k}^{(1)}) = \lambda(k) 2\lambda(k-1) + \lambda(k+1)$.
 - (d) $V[Y_t^{(1)}] = 2\{\delta^2 \lambda(1)\}$ and $Cov(Y_t^{(1)}, Y_{t+k}^{(1)}) = 2\lambda(k) \lambda(k-1) \lambda(k+1)$. [5]

THE END