If = Seminorm

It
$$T_{x} = \lim_{n \to \infty} T_{0}x_{n}$$
. Well-defined since (x_{n}) cauchy $\Rightarrow (T_{0}x_{n})$ cauchy $T_{0}(x_{n}-x_{m})\| \leq \|T_{0}\|\|x_{n}-x_{m}\|\|$

Thun if X_{n} , $Y_{n} \to X$
$$\|T_{0}(x_{n}-x_{m})\| \leq \|T_{0}\|\|x_{n}-x_{m}\|\|$$
 $\exists N : l : \|x_{n}-x_{n}\| \|y_{n}-x\|| \leq \frac{5}{2} \Rightarrow \|x_{n}-y_{n}\| \leq \delta \Rightarrow \|T_{0}x_{n}-T_{0}y_{n}\| < \epsilon$

so $T_{0}x_{n}-Ty_{n}\to 0$, so $T_{0}x_{n}$, $T_{0}y_{n}\to 0$ Same limit.

Thin ear δv_{n} $T_{0}|_{x_{n}}=T_{0}$, δv_{n} .

Then if $T_{0}=T_{0}$ is $T_{0}=T_{0}=T_{0}$.

$$g \in C^*$$
 given by $g(x) = \lim_{n \to \infty} x_n$
can be extended to l^∞

Variant:
$$C([a,b]) = L^{\infty}([a,b])$$

If $\|f\| = \sup_{x} |f(x)|$

ptwise eval: $\psi_{x}(f) = f(x)$

Quiz

can be extended to

La((a,b)) is not separable

 χ^{*} separable \Longrightarrow X separable.