

TD 2 - Convexité - coercivité

- \triangleright **Exercice 1.** Soit E un espace vectoriel sur \mathbb{R} .
 - **1.1.** Montrer que toute application norme, définie sur E, est convexe sur E. Que dire de la stricte convexité?
 - **1.2.** Soient f et g deux applications convexes sur C, convexe de E. Montrer que $\forall \lambda \geq 0, \forall \mu \geq 0, \lambda f + \mu g$ est une application convexe sur C.
 - **1.3.** Soient $(f_i)_{i \in I}$, I fini, une famille d'applications convexes définies sur un convexe C de E et à valeurs dans \mathbb{R} . Montrer que la fonction f définie par $f(x) = \sup_{i \in I} f_i(x)$ est une application convexe sur C.

⊳ Exercice 2.

- 2.1. Pensez-vous qu'il existe des fonctions strictement convexes non croissantes à l'infini?
- **2.2.** Pensez-vous qu'il existe des fonctions continues de \mathbb{R} dans \mathbb{R} convexes vérifiant $f(x) \to -\infty$ lorsque $x \to -\infty$ et $x \to +\infty$?
- ightharpoonup Exercice 3. Soit $A \in \operatorname{Sym}(n,\mathbb{R})$. On rappelle que, par définition, A est dite coercive s'il existe $\alpha > 0$ tel que, pour tout $x \in \mathbb{R}^n$,

$$\langle Ax, x \rangle \ge \alpha ||x||^2$$

- où $\langle \cdot, \cdot \rangle$ est le produit scalaire euclidien standard sur \mathbb{R}^n . Montrer que A est définie positive si et seulement si A est coercive.
- ightharpoonup Exercice 4. Soit $f: (\mathbb{R}_+^*)^2 \to \mathbb{R}$, $f(x) = x_1 \ln(x_1) + x_2 \ln(x_2) (x_1 + x_2) \ln(x_1 + x_2)$. Montrer que f est convexe sur $(\mathbb{R}_+^*)^2$ et donner un sous-ensemble C de $(\mathbb{R}_+^*)^2$ sur lequel f soit strictement convexe.
- \triangleright Exercice 5.
 - **5.1.** Dans quel cas une quadratique généralisée $q(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T\mathbf{A}\mathbf{x} + \mathbf{b}^T\mathbf{x} + \mathbf{c}$ est-elle convexe, strictement convexe?
 - **5.2.** On considère le problème aux moindres carrés linéaires

$$f(\beta) = \frac{1}{2} ||y - X\beta||^2.$$

Montrez que f est convexe. Dans quel cas est-elle strictement convexe?