Eksamenssæt 4

Opgave 1 - Opstil en lineær regressionsmodel for *participation* hvor du bruger de beskrevne forklarende variable.

(a) - Estimer modellen vha. OLS og kommenter på resultaterne.

MANGLER FORKLARING AF LPM + SVAGHEDER U ER PER DEFINITION HETEROSKEDASTIC - DER BRUGES ROBUST SE

```
model_ols = lm(participation ~ income + age + agesq + educ + youngkids + oldkids + foreign, data = data
robust_ols = coeftest(model_ols, vcov = vcovHC(model_ols, type = "HCO"))
screenreg(list(OLS = model_ols, OLS_robust_se = robust_ols), digits = 4)
```

```
##
               OLS
                            OLS_robust_se
## -----
## (Intercept) -0.3686
                            -0.3686
##
               (0.2530)
                            (0.2358)
               -0.0035 *** -0.0035 ***
## income
               (0.0007)
                            (0.0006)
##
## age
                0.0634 *** 0.0634 ***
##
               (0.0129)
                            (0.0119)
               -0.0009 *** -0.0009 ***
## agesq
               (0.0002)
                            (0.0001)
##
                0.0068
                            0.0068
## educ
                (0.0060)
                            (0.0059)
##
## youngkids
               -0.2390 *** -0.2390 ***
##
                (0.0314)
                            (0.0302)
               -0.0475 **
                            -0.0475 **
## oldkids
               (0.0172)
##
                            (0.0175)
## foreign
                0.2572 ***
                            0.2572 ***
##
               (0.0401)
                            (0.0401)
## R^2
                0.1901
## Adj. R^2
                0.1836
## Num. obs.
               872
## *** p < 0.001; ** p < 0.01; * p < 0.05
```

#summary(model_ols)

Alle signifikante på 0,1% pånær oldkids på 1% og educ er ikke signifikant. INGEN FORSKEL PGA ROBUST SE

(b) - Test om den partielle effekt af uddannelse er forskellig fra nul.

For at teste hvorvidt den partielle effekt af en variabel er forskellig fra nul bruges en t-test. Hvorvidt nulhypotesen afvises afhænger af den beregnede t-score og dertilhørende p-værdi

$$H_0: \beta_4 = 0$$

$$H_1: \beta_4 \neq 0$$

T-scoren beregnes ud fra den estimerede β samt den tilhørende standardafvigelse. Dette kan gøres, da nulhypotesen er, at den faktiske værdi er nul, hvorfor dette led ikke indgår i formlen.

$$t = \frac{\hat{\beta}_j}{se(\hat{\beta}_j)}$$

I nedenstående vil de robuste standardafvigelser blive benyttet til udregningen af t-scoren

Kritisk værdi ved 5% = 1.9626913

Kritisk værdi vec 1% = 2.5814857

t = 0.0068/0.0059

t-score = 1.1525424

(c) - Test om den partielle effekt af alder er forskellig fra nul.

T-test?

Opgave 2 - Opstil både en logit- og en probit-model for par t i cipat ion hvor du bruger de beskrevne forklarende variable.

(a) - Estimer modellerne.

```
screenreg(list("LPM OLS" = model_ols, Logit = logit, Probit = probit))
```

##				
##	=========		========	========
##		LPM OLS	Logit	Probit
##				
##	(Intercept)	-0.37	-4.39 ***	-2.67 ***
##		(0.25)	(1.30)	(0.78)
##	income	-0.00 ***	-0.02 ***	-0.01 ***
##		(0.00)	(0.00)	(0.00)
##	age	0.06 ***	0.33 ***	0.20 ***
##		(0.01)	(0.07)	(0.04)
##	agesq	-0.00 ***	-0.00 ***	-0.00 ***
##		(0.00)	(0.00)	(0.00)
##	educ	0.01	0.04	0.02
##		(0.01)	(0.03)	(0.02)
##	youngkids	-0.24 ***	-1.18 ***	-0.71 ***
##		(0.03)	(0.17)	(0.10)
##	oldkids	-0.05 **	-0.24 **	-0.14 **
##		(0.02)	(0.08)	(0.05)
##	foreign	0.26 ***	1.19 ***	0.73 ***
##		(0.04)	(0.20)	(0.12)
##				
##	R^2	0.19		
##	Adj. R^2	0.18		
##	Num. obs.	872	872	872
##	AIC		1032.15	1031.65
##	BIC		1070.32	1069.82
##	Log Likelihood		-508.08	-507.83
##	Deviance		1016.15	1015.65
##	=========		========	========
##	*** p < 0.001;	** p < 0.01;	* p < 0.05	

ESTIMATER FOR LOGIT OG PROBIT KAN IKKE FORTOLKES SOM DE ER

- (b) Test om den partielle effekt af uddannelse er forskellig fra nul.
- (c) Test om den partielle effekt af alder er forskellig fra nul vha. et likelihoodratio-test.

Opgave 3 - Vi vil gerne sammenligne den partielle effekt af income på tværs af modellerne. Beregn average partial effect (APE) og kommenter på resultaterne.

BRUGER ROBUST SE

```
ape_logit = logitmfx(logit, data = data, atmean=F, robust = T)
screenreg(list(ape_logit = ape_logit), digits = 4)
##
## ==========
             ape_logit
## income
               -0.0046 ***
               (0.0010)
##
               0.0657 ***
## age
##
               (0.0139)
               -0.0009 ***
## agesq
               (0.0002)
##
               0.0077
## educ
##
               (0.0060)
## youngkids
               -0.2350 ***
               (0.0403)
##
## oldkids
               -0.0470 **
##
               (0.0176)
               0.2466 ***
## foreign
                (0.0409)
## -----
## Num. obs.
              872
## Log Likelihood -508.0766
## Deviance 1016.1533
## AIC
             1032.1533
## BIC
              1070.3196
## ============
## *** p < 0.001; ** p < 0.01; * p < 0.05
ape_logit
## Call:
## logitmfx(formula = logit, data = data, atmean = F, robust = T)
##
## Marginal Effects:
##
               dF/dx
                     Std. Err. z
                                            P>|z|
         ## income
         ## age
         ## agesq
          0.007705869 0.006036510 1.27654
## educ
                                         0.2017634
## youngkids -0.235006974  0.040327957 -5.82740  0.0000000056299 ***
```

```
## oldkids -0.046973245 0.017550880 -2.67640 0.0074417 **
## foreign 0.246583549 0.040923752 6.02544 0.0000000016865 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## dF/dx is for discrete change for the following variables:
##
## [1] "foreign"
```

Opgave 4 - Vi vil gerne sammenligne den partielle effekt af *foreign* på tværs af modellerne. Beregn APE og kommenter på resultaterne.

Opgave 5 - Hvorfor er APE at foretrække frem for partial effect at the average (PEA)?

Opgave 6 - Sammenlign modellernes evne til at prædiktere ved at beregne percent correctly predicted for hver model.