Approche qualitative de la cinétique électrochimique

Elément imposé : mettre en oeuvre un protocole expérimental utilisant des courbes courant-potentiel

Niveau: CPGE - PSI

Courant et vitesse de réaction d'oxydoréduction

Oxydation à l'anode:

$$\beta_1 \operatorname{Red}_1 = \alpha_1 \operatorname{O} x_1 + n e^-$$

Réduction à la cathode :

$$\alpha_2 O x_2 + n e^- = \beta_2 Red_2$$

Bilan: réaction d'oxydoréduction

$$\alpha_2 Ox_2 + \beta_1 Red_1 = \beta_2 Red_2 + \alpha_1 Ox_1$$

Courant et vitesse de réaction d'oxydoréduction

Oxydation à l'anode:

$$\beta_1 Red_1 = \alpha_1 Ox_1 + n e^-$$

	$\beta_1 \operatorname{Red}_1 = \alpha_1 \operatorname{O} x_1 + n e^-$			
E_{ini}	n_{Red1}	n_{Red1}	n_e	
E_t	$n_{Red1} - \beta_1 \xi_0$	$n_{Red1} + n\xi_0$	$n_e + n\xi_0$	

Réduction à la cathode :

$$\alpha_2 O x_2 + n e^- = \beta_2 Red_2$$

	$\alpha_2 O x_2 + n e^- = \beta_2 Red_2$		
E_{ini}	n_{0x2}	n_e	n_{Red2}
E_t	$n_{0x2}-\alpha_2\xi_R$	$n_e - n\xi_R$	$n_{Red2} + \beta_2 \xi_R$

Bilan: réaction d'oxydoréduction

$$\alpha_2 Ox_2 + \beta_1 Red_1 = \beta_2 Red_2 + \alpha_1 Ox_1$$

	$\alpha_2 Ox_2 + \beta_1 Red_1 = \beta_2 Red_2 + \alpha_1 Ox_1$			
E_{ini}	n_{0x2}	n_{Red1}	n_{Red2}	n_{Red1}
E_t	$n_{0x2} - \alpha_2 \xi$	$n_{Red1} - \beta_1 \xi$	$n_{Red2} + \beta_2 \xi$	$n_{Red1} + \beta_1 \xi$

Courant et vitesse de réaction d'oxydoréduction

Oxydation à l'anode:

$$\beta_1 Red_1 = \alpha_1 Ox_1 + ne^-$$

	$\beta_1 \operatorname{Red}_1 = \alpha_1 \operatorname{O} x_1 + n e^-$		
E_{ini}	n_{Red1}	n_{Red1}	n_e
E_t	$n_{Red1} - \beta_1 \xi_0$	$n_{Red1} + n\xi_0$	$n_e + n\xi_O$

 $=>n\xi_o$ moles d'électrons libérés

Réduction à la cathode :

$$\alpha_2 O x_2 + n e^- = \beta_2 Red_2$$

	$\alpha_2 O x_2 + n e^- = \beta_2 Red_2$			
E_{ini}	n_{0x2}	n_e	n_{Red2}	
E_t	$n_{0x2}-\alpha_2\xi_R$	$n_e - n\xi_R$	$n_{Red2} + \beta_2 \xi_R$	

 $=> n\xi_R$ moles d'électrons consommés

Bilan: réaction d'oxydoréduction

$$\alpha_2 Ox_2 + \beta_1 Red_1 = \beta_2 Red_2 + \alpha_1 Ox_1$$

	$\alpha_2 Ox_2 + \beta_1 Red_1 = \beta_2 Red_2 + \alpha_1 Ox_1$			
E_{ini}	n_{0x2}	n_{Red1}	n_{Red2}	n_{Red1}
E_t	$n_{0x2} - \alpha_2 \xi$	$n_{Red1} - \beta_1 \xi$	$n_{Red2} + \beta_2 \xi$	$n_{Red1} + \beta_1 \xi$

$$\xi_R = \xi_O = \xi$$

Présentation: courbe courant-potentiel

Figure 26.3 – Trois modèles de prévision des réactions d'oxydo-réduction.

- (A) Le modèle des E° qui n'est valable que dans l'état standard ([concentration] = 1 mol/L).
- (B) Le modèle de Nernst qui permet de prendre en compte la concentration.
- (C) Le modèle des courbes i/E qui se déduit du modèle de Nernst en basculant l'axe des potentiel de 90 ° puis en ajoutant une nouvelle dimension, celle du courant électrique. Attention à la règle du γ qui pourrait encore s'appliquer, mais en tenant compte des flèches correspondant à l'équation $Cu^{2+} \rightarrow Cu$ et $Fe \rightarrow Fe^{2+}$.

Tracé de courbes i-E – couples de l'eau

Tracé pour deux solutions électrolytiques

- Sulfate de Sodium Na_2SO_4 (1 mol/L)
- Acide Sulfurique H_2SO_4 (1 mol/L)

Réactions possibles :

$$i < 0 : 2H_{(aq)}^{+} + 2e^{-} \rightarrow H_{2(g)}$$

$$(E^{\circ} = 0V, pH = 0)$$

$$i > 0 : H_{2}O_{(l)} \rightarrow \frac{1}{2}O_{2(g)} + 2H_{(aq)}^{+} + 2e^{-}$$

$$(E^{\circ} = 1,24V, pH = 0)$$

Des expériences de la famille Réd-Ox, D. Cachau-Hereillat, De Boeck

Limitation par le transfert de charge

Application : synthèse de l'eau de Javel

Fig. 3 E.1a : réactions aux électrodes lors de l'électrolyse du chlorure de sodium.

A la cathode:

$$2H^{+}_{(aq)} + 2e^{-} \rightarrow H_{2(g)}$$

A l'anode : compétition

$$2Cl_{(aq)}^{-} \rightarrow Cl_{2(aq)} + 2e^{-}$$

$$H_{2}O_{(l)} \rightarrow \frac{1}{2}O_{2}_{(g)} + 2H_{(aq)}^{+} + 2e^{-}$$

Puis en milieu basique:

$$Cl_{2(aq)} + 2HO_{(aq)}^{-} \rightarrow Cl_{(aq)}^{-} + ClO_{(aq)}^{-} + H_2O_{(l)}$$

Des expériences de la famille Réd-Ox, D. Cachau-Hereillat, De Boeck

Application : synthèse de l'eau de Javel

Application des courbes i-E : cas de la pile

Epreuves orales de chimie, F. Porteu, DUNOD