PATENT ABSTRACTS OF JAPAN

(11)Publication number:

62-186112

(43)Date of publication of application: 14.08.1987

(51)Int.CI.

(22)Date of filing:

F23D 11/38

(21)Application number: 61-025483

07.02.1986

(71)Applicant: BABCOCK HITACHI KK

(72)Inventor: TAKAHASHI YOSHITAKA

NOZAWA MASAHITO KAWANO TAKASHI SAKAMOTO KIMIYA MASAI TADAHISA KODA FUMIO

(54) FUEL SPRAY NOZZLE DEVICE OF BURNER FOR LIQUID FUEL COMBUSTION

(57)Abstract:

PURPOSE: To reduce an amount of an unburnt content, an amount of smoke, and production of NOX, by a method wherein a mixing hole, mixing together fuel and a spraying medium, is formed, mixture fluid, producing a jet, is collided within a mixing chamber with other fuel to promote automization and uniformize, and the mixture fluid is injected through an injection nozzle.

CONSTITUTION: Fuel 3 is divided at the inlet of a sprayer head 18 into flows to a number of fuel inlet holes 7. A medium 4, flowing through an inner cylinder 2, is gudied through a medium inlet hole 6 to a mixing hole 8, and is collided with fuel through the holes 7 at angle $\ddot{\rm a}$. The angle $\ddot{\rm a}$ is preferably about 80W100°. Secondly, fuel dispersed by the mixing hole 8 further flows in an inner mixing chamber 9. In this case, it is desirable that the axis of each mixing hole 8 crosses a point B on a central axis 19 of the nozzle at an angle $\acute{\rm a}$. The fuels are collided with each other again, and they are uniformly dispersed for atomization. The angle $\acute{\rm a}$ is preferably 30° or more. An outlet injection nozzle 17 is formed in the shape of a truncated cone which is spread toward the end, and an attaching angle $\^{\rm a}$ of the hole 17 with the central axis of the nozzle is set to 90W180°.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

⑩ 日本国特許庁(JP)

① 特許出願公告

許 公 報(B2) ⑫特

平5-50646

®Int.Cl.5

識別記号

庁内整理番号

2000公告 平成5年(1993)7月29日

F 23 D 11/38

E 8918-3K

発明の数 1 (全5頁)

❷発明の名称	流体燃料燃焼用パーナの焼	*料噴霧ノズル装置
•	O 11 -22 -21	1-25483
伊発明 者	高 艦 芳 孝	広島県呉市宝町 6番 9号 バブコック日立株式会社呉工場 内
@発 明 者	野 沢 雅 人	東京都千代田区大手町二丁目 6 番 2 号 パプコック日立株 式会社内
@発明者	川 野 敬	広島県呉市宝町 6番 9号 パプコック日立株式会社呉工場 内
⑦発 明 者	坂 本 公 哉	広島県呉市宝町 6番 9 号 バブコック日立株式会社呉工場 内
@発 明 者	政 井 忠 久	広島県呉市宝町 6番 9号 パプコック日立株式会社呉工場 内
@発明者	幸田 女夫	広島県呉市宝町 6番 9号 パブコック日立株式会社呉工場 内
勿出 願 人	パブコツク日立株式会 社	東京都千代田区大手町2丁目6番2号
四代 理 人	弁理士 川北 武長	
審査官	和泉等	

1

の特許請求の範囲

1 流体燃料燃焼用パーナの燃料噴霧ノズルにお いて、燃料を供給する燃料通路と、該燃料を微細 粒に粉砕する媒体を供給する媒体通路とを交差さ するごとくなした混合孔を少なくとも 2個以上設 け、上記混合孔はそれぞれの孔を流出した燃料と 媒体の混合流体が、互いに衝突するごとき関係位 置に設置するとともに、上記混合流体の衝突位置 には、衝突による燃料撤細粒の均一化を計る内混 10 (従来の技術) 合室を設け、かつ内混合室よりノズル先端部に向 け複数個の出口噴出孔を設けて、内混合室で均一 化された燃料と媒体の混合流体を外部に噴射する ごとく構成したことを特徴とする流体燃料燃焼用 パーナの燃料噴霧ノズル装置。

2

発明の詳細な説明

(産業条の利用分野)

本発明は流体燃料燃焼用パーナの燃料噴霧ノズ ル装置に係り、特に油燃料や油と微粉炭の混合燃 せた交差部を有し、かつ内部で燃料を媒体で粉砕 5 料であるCOM燃料 (Coal and Oil Mixture) お よび水と微粉炭の混合燃料であるCWM燃料 (Coal and Water Mixture) などの流体燃料を 微粒化して噴霧し、燃焼させるパーナ用噴霧ノズ ル装置に関するものである。

液体燃料またはスラリ燃料を燃焼させるには、 従来よりそれら燃料を噴霧して微粒化することに より、燃焼用空気との接触表面面積を大きくして 炉内で燃焼させる方式が多くとられている。その 15 場合燃料の微粒化には、燃料自身の持つている圧 力などの微粒化を助けるエネルギのほかに、圧縮

3

空気や蒸気などを噴霧媒体として用い、それらの 気体が持つエネルギの力を借りて燃料の噴霧微粒 化を行なう二流体噴霧方式が、微粒化を効率よく 行なう手段として知られている。

第5図はその中のもつとも実績の多い代表的な 一つであるYジェット式パーナノズルの側断面図 を示す。このノズルは、液体を供給するための内 笛1および外筒2と、二つの流体を混合し微粒化 をはかるスプレヤプレート5とから構成される。 スプレヤプレート5の内部には、ドリルによつて 10 ノズル装置を提供するものである。 加工させる丸孔状の霧化媒体入口孔 6、燃料入口 孔7と、この両者がY形に合流する混合孔8が設 けられている。通常は円管状の内筒1内を空気ま たは蒸気などの霧化媒体4が通り、外筒2と内筒 料(COMまたはCWM)3が通る。

孔の数はパーナの容量(単位時間あたりの燃料 の噴霧量)により異なるが、通常は3~10個の噴 出孔17がノズル中心軸XXに対し同心円上に、 いは非対称に配置さている。

(発明が解決しようとする問題点)

本発明者らの最近の実験によれば(未公開)、 噴霧に対し最も重要な部分は、混合孔 8 において 二つの流体が合流する部分から、外部へ噴出する 25 (実施例) 出口孔17の出口端部にいたる間の孔の形状であ ることがわかつた。さらに薪化媒体と燃料との衝 突時の力関係が問題で、燃料の流速あるいは慣性 力が霧化媒体より大きいと、直進する霧化媒体の 膜のままの状態で噴出したり、反対に、第5図に 示すように噴霧媒体の流れの流速とそれによる慣 性力が燃料のそれより大きいと、燃料は噴霧媒体 と充分に混合されず、混合孔の合流個所で曲が 両方の場合とも全体的にみて燃料の微粒化が充分 には行なわれず、粗大粒子が生成されてしまうこ とが判明した。粗大粒子の燃料は炉内で完全には 燃焼されず、燃焼排ガス中の未燃分やばいじんを 増加する原因となる。

本発明の目的は、燃料と噴霧媒体が均一に混合 し、燃料の微粒化を促進し得る流体燃料燃焼用パ ーナの燃料噴霧ノズル装置を提供することにあ る。

(問題点を解決するための手段)

本発明は上記した問題点を解決するため、噴霧 ノズル内に、燃料と噴霧媒体を混合させる混合孔 を2個以上設け、ここで混合され噴流となつた混 合流体を、混合孔の後流部に設けた混合室内で互 いに衝突させ微粒化を促進するとともに、混合室 内で混合流体の微粒化の均一化を行なつたのち、 ノズル出口端に設けた噴射孔を通して、燃焼炉内 に噴射し微粒化の仕上げを行なうごとく構成した

すなわち、本発明は、流体燃料燃焼用パーナの 燃料噴霧ノズルにおいて、燃料を供給する燃料通 路と、該燃料を微細粒に粉砕する媒体を供給する 媒体通路とを交差させた交差部を有し、かつ内部 1の間の環状通路33を液体燃料またはスラリ燃 15 で燃料を媒体で粉砕するごとくなした混合孔を少 なくとも2個以上設け、上記混合孔はそれぞれの 孔を流出した燃料と媒体の混合流体が、互いに衝 突するごとき関係位置に設置するとともに、上記 混合流体の衝突位置には、衝突による燃料微細粒 外拡がりを持つた状態に、かつ軸に対し対称ある 20 の均一化を計る内混合室を設け、かつ内混合室よ りノズル先端部に向け複数個の出口噴出孔を設け て、内混合室で均---化された燃料と媒体の混合流 体を外部に噴射するごとく構成したことを特徴と する。

第1図は本発明の一実施例を示す燃料噴霧ノズ ル装置の断面図である。内筒 1 および外筒 2 の同 心軸19上の二重管先端にスプレヤヘッド18お よびスプレヤプレート5が取り付けられている。 流れを横切り混合孔の対抗壁8aに沿つて燃料液 30 内箇内燃料通路32を流体燃料3が通り、内筒と 外筒の間の環状通路33を霧化媒体(通常、蒸気 または空気が用いられるが、以下、霧化媒体を略 して単に媒体という)が通る。つぎに燃料および 媒体はそれぞれスプレヤヘッド18に設けられた り、壁 8 b に沿つて液膜のまま噴出してしまう。 35 燃料入口孔 7 および媒体入口孔 8 を通り円筒上の 孔で構成されている混合室8にて衝突混合した 後、スプレヤヘッド18とスプレヤプレート5に て構成される内混合室8内に入り、スプレヤプレ ート5に設けられた先端拡大形のテーパ状の噴出 40 孔17から燃焼炉内へ噴射される。出口噴出孔1 7の入口部は、内混合室9の先端内面34に対し て、孔17の軸心を直角とせず外開きに傾斜させ るため、ノズル軸心19に対して外側に位置する 部分11は、鋭角のエツジ部を形成している。

5

第2図は第1図におけるノズルをA方向から見 た正面図であり、噴出孔17はノズル軸心19に 対し放射状にかつ面35上で円周方向6等分の位 置に6個配置されている。

さて、二流体噴霧における燃料の微粒化は、蒸 気あるいは空気の媒体のもつエネルギを、流体燃 料やスラリ燃料の粉砕と微粒化に、いかに効率よ く用いられるか、すなわち、運動量の交換がどれ だけ効率よく行なわれているかにかかつている。

18の入口において、多数の燃料入口孔7に分け られるが、この場合ノズル中心軸18に対しそれ ぞれ約45度の拡がり角度をもつように構成され る。このとき、固体粒子と液体からなるスラリ燃 るが、孔7の角度を直角に近い急角度をとらせる ことなく、上述したように約45度のなだらかな角 度としたので、燃料が流路32から孔7に分岐す る部分でのスラリ中の固体粒子の滞留が防止で 燃料パーナの起動、停止時において燃料をパージ する場合にも燃料を滞留させず排出することがで きる。

つぎに、外筒2内を通つてきた媒体4が燃料入 口孔7と相対応して設けられた媒体入口孔6から 25 この角度以上とすることが好ましい。 混合孔 B に導かれ、ここで孔 7 からの燃料と角度 δでもつて衝突する。角度δは80~100度程度が 好ましいが、とくに約90度とするのが好ましい。 ここで重要なのは、媒体孔6を衝突直前で絞つて ある。直前の絞りは媒体の整流と加速を行ない、 燃料への衝突をムラなく大きな力となして燃料の 微粒化を良好に行なうためであり、また衝突角度 δを上記したのは、媒体および燃料の運動エネル ギを有効に衝突粉砕に変換するためである。な 35 お、衝突角度δを100度以上とする方が衝突エネ ルギが大きくなるが、その場合は、媒体と燃料の 両方の流れを互いに妨げる働きが大きくなるた め、むやみに圧力が上昇したり、一方の圧力の影 くなる。このため、δは80~100度程度がよく、 特にδ=約90度とすることがもつとも好ましい。

つぎに、混合孔 8 にて分散された燃料はさらに 内混合室9内に流入する。このとき、各混合孔8

の軸心を、ノズルの中心軸19上の一点Bに角度 αでもつて交差するようにすることが好ましい。 これによつて、各混合孔 8 にて十分に分散微粒化 できなかつた燃料が再度相互に衝突されるため、 5 全体的に均一に分散され微粒化される。このとき の衝突角αは、その衝突によりそれぞれの速度エ ネルギを有効に粉砕に活用するため30度以上とす ることが好ましく、180度のときがもつともその 衝突効果は大きい。ただし、前記した第1の衝突 第1図において燃料3は、まずスプレヤヘッド 10 部と同様の理由により、約90度とすることが運用 上は好ましい。

第3の特徴としては、内混合室9を設けている 点で、これによつて衝突後の分散・微粒化に必要 な滞留時間を確保し、スラリ混合体の均一化を計 料においては固体粒子が孔7に詰まり易いのであ 15 ることができ、粗粒や燃料の液膜が残ることを防 止することができる。

最後の仕上げともいえる構造上の特徴として は、スプレヤプレート5に設けられた出口噴出孔 17を先拡がりの切頭円錐状とし、かつ、ノズル き、スムーズに燃料を通すことができる。また、 20 中心軸に対して孔 **1 7** の取付角β を90度以上180 度以下とした点である。噴出孔17の拡がり角Y は、通常二流体噴霧時の液体拡がり角が約20度で ある結果を得たので、孔17の内壁面での混合流 体粒の接触再凝集を防止するために、少なくとも

噴出孔17を先拡がりの切頭円錐状(したがつ て孔17の中心軸を含む面での切断面は先拡がり のテーパ状となる)とすることと、拡がり角βを 前記した値にすることによつて、図に示すように いることと、衝突角度 8 を上記角度にすることで 30 内混合室の先端内壁面 3 4 と出口噴出孔 1 7 の入 口部とは、鋭角の楔形エツジ部 1 1 をノズル中心 軸19からもつとも遠い個所に形成し、角噴出孔 17の11部と反対側すなわちノズル中心軸に近い 個所では鈍角部36を形成する。

エッジ部11は内混合室から燃焼路内経噴出す る際の燃料粒子を、媒体の大気圧への圧力降下に よる高速エネルギによつて超微細粒に砕く効果を 有し、一方鈍角部は媒体と燃料の混合流体 10 が **直進して外部の炉内に出ようとする際に衝突する** 響を他方の流体が受け易くなつて流量制御が難し 40 壁の役目を果たし、ここで燃料はさらに微細な粒 となる。このため、出口噴出孔の1孔はある程度 の長さが必要であるとともに、孔の拡がり角では あまり大きくない方が効果を発揮し易い。またエ ッジ部 1 1 は鋭角が小さいほど燃料の細粒化には 効果があるが、欠陥や摩耗の面を考慮すると極端 に小さくはできない。このため、孔17の拡がり 角γは25~60度程度にとるのが実用的である。

噴出孔17の軸心の拡がり角βは、第4図に示 すようにパーナ装置を構成するスロート12やエ 5 うにすることも本発明に含まれる。 アレジスタ13との関係において、ノズル50の 位置関係をみると、エアレジスタを経て炉内に入 る燃焼用空気14と混合を促進する上で、できる だけ大きくとることが好ましいが、燃焼用空気の は、パーナ、スロート12の壁面に燃料が付着し て都合が悪い。したがつて、噴出孔17の拡がり 角βは、空気流14のノズル軸方向の速度ベクト ルのノズルのスプレヤプレート5からの燃料噴出 料の種類やノズルの噴射容量などの条件によつて 異なるが、β=90~180度とするのが、着火と安 定燃焼の点から好ましい。

以上、本発明の実施例の説明で述べた特徴点は 採用すれば少ない媒体量、媒体圧力にて微細な噴 霧燃料が得られる。

本発明を実施することにより得られる微細な噴 霧燃料粒子は、パーナノズル部を出た直後の初期 着火性を向上し、その結果、パーナからの燃料噴 25 (3) 微細燃料粒による着火性の向上によつて 霧直後での雰囲気温度を高くできる。これまでの 発明者らによる低NOx燃焼パーナの開発での経 験により、低NOx燃焼を行なうにはパーナから 火炉に噴射された燃料を、まず高温の還元火炎と することにより、第2次の完全燃焼を行なうこと が必要であることがわかつた(特願昭58-172147 参照)。したがつて、本発明は低NOx燃焼用パー ナに好適に適用することができる。

料3は内筒内の通路32から燃料入口孔7を経て 混合孔8に供給され、一方、媒体は内筒1と外筒 2の間の環状通路33を通り、媒体入口孔6を経

て混合孔Bに供給されることを示したが、本発明 はこの実施例に限定させるものではなく、媒体を 内筒内通路32から供給し、燃料を環状通路33 から供給するようにしても差し支えなく、このよ

第3図は本発明の他の実施例を示すもので、第 1 図のものと異なる点は、内混合室からノズル外 部に燃料を噴射するための出口噴出孔17の孔中 心軸が、ノズル中心軸と交差せず、第2図と第3 流れ4によつて燃料の噴出流が曲げられない場合 10 図を比較して明らかなように、ノズル中心輸から 出る放射軸YYに対し角βだけ偏心した構造とし たことである。この場合は、スプレヤプレート5 に設けた出口噴出孔17の長さが第2図に示した ものに比し長くとれるため、内混合室9から出る 流の速度ベクトルとの相対関係にて決定され、燃 15 燃料 10 が確実に出口噴出孔壁面に衝突し微粒化 が向上する。

(発明の効果)

本発明を実施すれば、流体の微粒化が十分に行 なわれる結果、

- 各々独立して採用しても効果があるが、複合して 20 (1) 媒体使用量を低減し、かつ噴霧燃料の粗粒子 形成を防止した微細噴霧粒を達成できる。
 - (2) 微細噴霧粒によって燃料の着火と燃焼の安定 性が向上し、未燃分、ばいじん量を低減でき る。
 - NOxを低減した燃焼が可能となる。

図面の簡単な説明

第1図は本発明の一実施例を示すパーナノズル の側断面図、第2図は第1図のA方向からみた正 して一次燃焼を行ない、ついで燃焼用空気を追加 30 面図、第3図は他の実施例を示すノズル正面図、 第4図は本発明によるノズル装置を設置したとき のパーナ全体構成説明図、第5図は従来のパーナ 用ノズル装置を示す側断面図である。

1 ……内筒、2 ……外筒、5 ……スプレヤプレ なお、第1図にて本発明の実施例において、燃 35 ート、6·····媒体入口孔、7·····燃料入口孔、8 ······混合孔、 9······内混合室、 1 7······出口喷出 孔、18……スプレヤヘッド、19……ノズル中 心軸。

第 | 図

1:內筒

2:外筒 3:燃料 4:媒体

5: スプレヤプレート

6:媒体入口孔

7:燃料入口孔 8:混合孔

9:内混合室 17:出口嗅出孔

18: スプレヤヘッド

第2四

第4図

第3図

第5図

