#### Choice of Prior Distributions

STA721 Linear Models Duke University

Merlise Clyde

September 17, 2015

### Bayesian Estimation

Model

$$\mathbf{Y} \sim \mathsf{N}(\mathbf{X}\boldsymbol{\beta}, \mathbf{I}_n/\phi)$$

precision  $\phi = 1/\sigma^2$ 

Normal-Gamma Conjugate prior  $NG(\mathbf{b}_0, \Phi_0, \mathbf{v}_0, SS_0)$ 

$$\Phi_{n} = \mathbf{X}^{T}\mathbf{X} + \Phi_{0} 
\mathbf{b}_{n} = \Phi_{n}^{-1}(\mathbf{X}^{T}\mathbf{X}\hat{\boldsymbol{\beta}} + \Phi_{0}\mathbf{b}_{0}) 
\nu_{n} = \nu_{0} + n 
SS_{n} = SSE + SS_{0} + \hat{\boldsymbol{\beta}}^{T}\mathbf{X}^{T}\mathbf{X}\hat{\boldsymbol{\beta}} + \mathbf{b}_{0}^{T}\Phi_{0}\mathbf{b}_{0} - \mathbf{b}_{n}^{T}\Phi_{n}\mathbf{b}_{n} 
\hat{\sigma}_{n}^{2} \equiv SS_{n}/\nu_{n}$$

Posterior Distribution

$$eta \mid \phi, \mathbf{Y} \sim \mathsf{N}(\mathbf{b}_n, (\phi \Phi_n)^{-1})$$
 $\phi \mid \mathbf{Y} \sim \mathsf{G}(\frac{\nu_n}{2}, \frac{\nu_n \hat{\sigma}_n^2}{2})$ 

### Marginal Distribution from Normal-Gamma

#### Theorem

Let  $\theta \mid \phi \sim N(m, \frac{1}{\phi}\Sigma)$  and  $\phi \sim G(\nu/2, \nu \hat{\sigma}^2/2)$ . Then  $\theta$   $(p \times 1)$  has a p dimensional multivariate t distribution

$$\theta \sim t_{\nu}(m,\hat{\sigma}^2\Sigma)$$

with density

$$p(oldsymbol{ heta}) \propto \left[1 + rac{1}{
u} rac{(oldsymbol{ heta} - oldsymbol{m})^T \Sigma^{-1} (oldsymbol{ heta} - oldsymbol{m})}{\hat{\sigma}^2}
ight]^{-rac{
u+v}{2}}$$

# Marginal Posterior Distribution of $oldsymbol{eta}$

$$eta \mid \phi, \mathbf{Y} \sim \mathsf{N}(\mathbf{b}_n, \phi^{-1}\Phi_n^{-1})$$
  
 $\phi \mid \mathbf{Y} \sim \mathsf{G}\left(\frac{\nu_n}{2}, \frac{\mathsf{SS}_n}{2}\right)$ 

Let  $\hat{\sigma}^2 = SS_n/\nu_n$  (Bayesian MSE) Then the marginal posterior distribution of  $\beta$  is

$$\boldsymbol{\beta} \mid \mathbf{Y} \sim t_{\nu_n}(\mathbf{b}_n, \hat{\sigma}^2 \Phi_n^{-1})$$

Any linear combination  $\lambda^T \beta$ 

$$\lambda^T \boldsymbol{\beta} \mid \mathbf{Y} \sim t_{\nu_n}(\lambda^T \mathbf{b}_n, \hat{\sigma}^2 \lambda^T \Phi_n^{-1} \lambda)$$

has a univariate t distribution with  $\mathbf{v}_n$  degrees of freedom

#### Predictive Distribution

Suppose  $\mathbf{Y}^* \mid \boldsymbol{\beta}, \phi \sim \mathsf{N}(\mathbf{X}^*\boldsymbol{\beta}, \mathbf{I}/\phi)$  and is conditionally independent of  $\mathbf{Y}$  given  $\boldsymbol{\beta}$  and  $\phi$ 

What is the predictive distribution of  $\mathbf{Y}^* \mid \mathbf{Y}$ ?

$$\mathbf{Y}^* = \mathbf{X}^* \boldsymbol{\beta} + \boldsymbol{\epsilon}^*$$
 and  $\boldsymbol{\epsilon}^*$  is independent of  $\mathbf{Y}$  given  $\phi$ 

$$\mathbf{X}^*\boldsymbol{\beta} + \boldsymbol{\epsilon}^* \mid \phi, \mathbf{Y} \sim \mathsf{N}(\mathbf{X}^*\mathbf{b}_n, (\mathbf{X}^*\boldsymbol{\Phi}_n^{-1}\mathbf{X}^{*T} + \mathbf{I})/\phi)$$

$$\mathbf{Y}^* \mid \phi, \mathbf{Y} \sim \mathsf{N}(\mathbf{X}^*\mathbf{b}_n, (\mathbf{X}^*\boldsymbol{\Phi}_n^{-1}\mathbf{X}^{*T} + \mathbf{I})/\phi)$$

$$\phi \mid \mathbf{Y} \sim \mathsf{G}\left(\frac{\nu_n}{2}, \frac{\hat{\sigma}^2\nu_n}{2}\right)$$

$$\mathbf{Y}^* \mid \mathbf{Y} \sim t_{\nu_n}(\mathbf{X}^*\mathbf{b}_n, \hat{\sigma}^2(\mathbf{I} + \mathbf{X}^*\boldsymbol{\Phi}_n^{-1}\mathbf{X}^T))$$

#### Alternative Derivation

Conditional Distribution:

$$f(\mathbf{Y}^* \mid \mathbf{Y}) = \frac{f(\mathbf{Y}^*, \mathbf{Y})}{f(\mathbf{Y})}$$

$$= \frac{\iint f(\mathbf{Y}^*, \mathbf{Y} \mid \beta, \phi) p(\beta, \phi) d\beta d\phi}{f(\mathbf{Y})}$$

$$= \frac{\iint f(\mathbf{Y}^* \mid \beta, \phi) f(\mathbf{Y} \mid \beta, \phi) p(\beta, \phi) d\beta d\phi}{f(\mathbf{Y})}$$

$$= \iint f(\mathbf{Y}^* \mid \beta, \phi) p(\beta, \phi \mid \mathbf{Y}) d\beta d\phi$$

Complete the "Square" or quadratic to integrate out  ${\cal B}$ , then integrate out  $\phi$ 

### Conjugate Priors

#### Definition

A class of prior distributions  $\mathcal{P}$  for  $\boldsymbol{\theta}$  is conjugate for a sampling model  $p(y \mid \boldsymbol{\theta})$  if for every  $p(\boldsymbol{\theta}) \in \mathcal{P}$ ,  $p(\boldsymbol{\theta} \mid \mathbf{Y}) \in \mathcal{P}$ .

#### Advantages:

- Closed form distributions for most quantities; bypass MCMC for calculations
- Simple updating in terms of sufficient statistics "weighted average"
- Interpretation as prior samples prior sample size
- Elicitation of prior through imaginary or historical data
- limiting "non-proper" form recovers MLEs

Choice of conjugate prior?

#### Unit Information Prior

Unit information prior  $\boldsymbol{\beta} \mid \phi \sim \mathsf{N}(\hat{\boldsymbol{\beta}}, \mathit{n}(\mathbf{X}^T\mathbf{X})^{-1}/\phi)$ 

- Fisher Information is  $\phi \mathbf{X}^T \mathbf{X}$  based on a sample of n observations
- Inverse Fisher information is covariance matrix of MLE
- "average information" in one observation is  $\phi \mathbf{X}^T \mathbf{X}/n$
- center prior at MLE and base covariance on the information in "1" observation
- Posterior mean

$$\frac{n}{1+n}\hat{\boldsymbol{\beta}} + \frac{1}{1+n}\hat{\boldsymbol{\beta}} = \hat{\boldsymbol{\beta}}$$

Posterior Distribution

$$oldsymbol{eta} \mid \mathbf{Y}, \phi \sim \mathsf{N}\left(\hat{oldsymbol{eta}}, rac{n}{1+n} (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1} \phi^{-1}
ight)$$

Cannot represent real prior beliefs; double use of data but has the "right" behaviour.

### Zellner's g-prior

Zellner's g-prior(s)  $\beta \mid \phi \sim N(\mathbf{b}_0, g(\mathbf{X}^T\mathbf{X})^{-1}/\phi)$ 

$$eta \mid \mathbf{Y}, \phi \sim \mathsf{N}\left(rac{g}{1+g}\hat{oldsymbol{eta}} + rac{1}{1+g}\mathbf{b_0}, rac{g}{1+g}(\mathbf{X}^T\mathbf{X})^{-1}\phi^{-1}
ight)$$

- Invariance: Require posterior of  $\mathbf{X}\boldsymbol{\beta}$  equal the posterior of  $\mathbf{X}\mathbf{H}\alpha$  ( $\mathbf{a}_0=\mathbf{H}^{-1}\mathbf{b}_0$ ) ( take  $\mathbf{b}_0=\mathbf{0}$ )
- Choice of g?
- $\frac{g}{1+g}$  weight given to the data
- Fixed g effect does not vanish as  $n \to \infty$
- Use g = n or place a prior distribution on g

### Shrinkage

Posterior mean under g-prior with  $\mathbf{b}_0=0$   $\frac{g}{1+g}\hat{\boldsymbol{\beta}}$ 



## Jeffreys Prior

Jeffreys proposed a default procedure so that resulting prior would be invariant to model parameterization

$$p(\theta) \propto |\Im(\theta)|^{1/2}$$

where  $\Im(\theta)$  is the Expected Fisher Information matrix

$$\mathbb{J}(\theta) = -\mathsf{E}\left[\left[\frac{\partial^2 \log(\mathcal{L}(\theta))}{\partial \theta_i \partial \theta_j}\right]\right]$$

#### Fisher Information Matrix

Log Likelihood

$$\log(\mathcal{L}(\boldsymbol{\beta}, \phi)) = \frac{n}{2} \log(\phi) - \frac{\phi}{2} \|(\mathbf{I} - \mathbf{P_x})\mathbf{Y}\|^2 - \frac{\phi}{2} (\boldsymbol{\beta} - \hat{\boldsymbol{\beta}})^T (\mathbf{X}^T \mathbf{X}) (\boldsymbol{\beta} - \hat{\boldsymbol{\beta}})$$

$$\frac{\partial^{2} \log \mathcal{L}}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}^{T}} = \begin{bmatrix} -\phi(\mathbf{X}^{T}\mathbf{X}) & -(\mathbf{X}^{T}\mathbf{X})(\boldsymbol{\beta} - \hat{\boldsymbol{\beta}}) \\ -(\boldsymbol{\beta} - \hat{\boldsymbol{\beta}})^{T}(\mathbf{X}^{T}\mathbf{X}) & -\frac{n}{2}\frac{1}{\phi^{2}} \end{bmatrix} \\
E\left[\frac{\partial^{2} \log \mathcal{L}}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}^{T}}\right] = \begin{bmatrix} -\phi(\mathbf{X}^{T}\mathbf{X}) & \mathbf{0}_{p} \\ \mathbf{0}_{p}^{T} & -\frac{n}{2}\frac{1}{\phi^{2}} \end{bmatrix} \\
\mathfrak{I}((\boldsymbol{\beta}, \phi)^{T}) = \begin{bmatrix} \phi(\mathbf{X}^{T}\mathbf{X}) & \mathbf{0}_{p} \\ \mathbf{0}_{p}^{T} & \frac{n}{2}\frac{1}{\phi^{2}} \end{bmatrix}$$

# Jeffreys Prior

Jeffreys Prior

$$p_{J}(\boldsymbol{\beta}, \phi) \propto |\mathfrak{I}((\boldsymbol{\beta}, \phi)^{T})|^{1/2}$$

$$= |\phi(\mathbf{X}^{T}\mathbf{X}|^{1/2} \left(\frac{n}{2} \frac{1}{\phi^{2}}\right)^{1/2}$$

$$\propto \phi^{p/2-1} |\mathbf{X}^{T}\mathbf{X}|^{1/2}$$

$$\propto \phi^{p/2-1}$$

Improper prior  $\iint p_J(\beta,\phi) d\beta d\phi$  not finite

### Formal Bayes Posterior

$$p(\boldsymbol{\beta}, \phi \mid \mathbf{Y}) \propto p(\mathbf{Y} \mid \boldsymbol{\beta}, \phi) \phi^{p/2-1}$$

if this is integrable, then renormalize to obtain formal posterior distribution

$$eta \mid \phi, \mathbf{Y} \sim \mathsf{N}(\hat{eta}, (\mathbf{X}^T \mathbf{X})^{-1} \phi^{-1})$$
  
 $\phi \mid \mathbf{Y} \sim \mathsf{G}(n/2, \|\mathbf{Y} - \mathbf{X}\hat{eta}\|^2/2)$ 

Limiting case of Conjugate prior with  $\boldsymbol{b}_0=0,~\Phi=\boldsymbol{0},~\nu_0=0$  and  $SS_0=0$ 

Posterior does not depend on dimension p;

Jeffreys did not recommend using this

### Independent Jeffreys Prior

- Treat  $\beta$  and  $\phi$  separately ("orthogonal parameterization")
- $p_{IJ}(\beta) \propto |\Im(\beta)|^{1/2}$
- $p_{IJ}(\phi) \propto |\Im(\phi)|^{1/2}$

$$\mathfrak{I}((\boldsymbol{\beta}, \phi)^{T}) = \begin{bmatrix} \phi(\mathbf{X}^{T}\mathbf{X}) & \mathbf{0}_{\rho} \\ \mathbf{0}_{\rho}^{T} & \frac{n}{2}\frac{1}{\phi^{2}} \end{bmatrix} \\
p_{IJ}(\boldsymbol{\beta}) \propto |\phi\mathbf{X}^{T}\mathbf{X}|^{1/2} \propto 1 \\
p_{IJ}(\phi) \propto \phi^{-1}$$

Independent Jeffreys Prior is

$$p_{IJ}(\beta,\phi) \propto p_{IJ}(\beta)p_{IJ}(\phi) = \phi^{-1}$$

#### Formal Posterior Distribution

With Independent Jeffreys Prior

$$p_{IJ}(\beta,\phi) \propto p_{IJ}(\beta)p_{IJ}(\phi) = \phi^{-1}$$

Formal Posterior Distribution

$$\beta \mid \phi, \mathbf{Y} \sim \mathsf{N}(\hat{\beta}, (\mathbf{X}^T \mathbf{X})^{-1} \phi^{-1})$$

$$\phi \mid \mathbf{Y} \sim \mathsf{G}((n-p)/2, \|\mathbf{Y} - \mathbf{X}\hat{\beta}\|^2/2)$$

$$\beta \mid \mathbf{Y} \sim t_{n-p}(\hat{\beta}, \hat{\sigma}^2 (\mathbf{X}^T \mathbf{X})^{-1})$$

Bayesian Credible Sets  $p(\beta \in C_{\alpha}) = 1 - \alpha$  correspond to frequentist Confidence Regions

$$rac{oldsymbol{\lambda}^Toldsymbol{eta}-oldsymbol{\lambda}\hat{eta}}{\sqrt{\hat{\sigma}^2oldsymbol{\lambda}^T(oldsymbol{\mathsf{X}}^Toldsymbol{\mathsf{X}})^{-1}oldsymbol{\lambda}}}\sim t_{n-
ho}$$

# Disadvantages of Conjugate Priors

#### Disadvantages:

 Results may have be sensitive to prior "outliers" due to linear updating

- Cannot capture all possible prior beliefs
- Mixtures of Conjugate Priors