1. Eigenvalues

Let $A \in \mathbb{R}^{n \times n}$ have the eigendecomposition $P\Lambda P^{-1}$ where $\Lambda \in \mathbb{R}^{n \times n}$ is a diagonal matrix with entries consisting of the eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$ and $P \in \mathbb{R}^{n \times n}$ is an invertible matrix. Note that this is equivalent to stating that A is diagonalizable via the transformation,

$$P^{-1}AP = \Lambda. (1)$$

(a) Show that $A^m = P\Lambda^m P^{-1}$, for integer $m \ge 1$.

(b) Show that determinant of A is the product of its eigenvalues, i.e.

$$\det(A) = \prod_{i=1}^{n} \lambda_i. \tag{2}$$

HINT: We have the identity det(XY) = det(X) det(Y).

2. Least Squares and Gram-Schmidt

Consider the least squares problem

$$\vec{x}^* = \underset{\vec{x} \in \mathbb{R}^n}{\operatorname{argmin}} \left\| A\vec{x} - \vec{b} \right\|_2^2 \tag{3}$$

where $A \in \mathbb{R}^{m \times n}$, $\vec{b} \in \mathbb{R}^m$ and assume A is full column rank. One way to solve this least-squares problem is to use Gram-Schmidt Orthonormalization (GSO). Using GSO, the matrix A can be written as,

$$A = QR = \begin{bmatrix} Q_1 & Q_2 \end{bmatrix} \begin{bmatrix} R_1 \\ 0 \end{bmatrix} \tag{4}$$

where Q is an orthonormal matrix and R is an upper-triangular matrix. The columns of Q_1 form an orthonormal basis for the range space $\mathcal{R}(A)$ and columns of Q_2 form an orthonormal basis for $\mathcal{R}(A)^{\perp}$. Moreover, R_1 is upper triangular and invertible.

(a) Show that the squared norm of the residual is given by

$$\|\vec{r}\|_{2}^{2} := \|\vec{b} - A\vec{x}\|_{2}^{2} = \|Q_{1}^{\top}\vec{b} - R_{1}\vec{x}\|_{2}^{2} + \|Q_{2}^{\top}\vec{b}\|_{2}^{2}.$$
 (5)

(b) Find \vec{x}^* such that the squared norm of the residual in (5) is minimized. Your expression for \vec{x}^* should only use some or all of the following terms: Q_1, Q_2, R_1, \vec{b} .

(c) Check if the expression for \vec{x}^* obtained in the previous part is equivalent to the one obtained by the formula, $\vec{x}^* = (A^\top A)^{-1} A^\top \vec{b}$.

3. Invertibility of $A^{\top}A$

In this problem, we show that if the matrix $A \in \mathbb{R}^{m \times n}$ has a full column rank, then the matrix $A^{\top}A$ is invertible.

(a) Show that if a vector \vec{x} is in the null space of A then \vec{x} is in the null space of $A^{\top}A$.

(b) Conversely, show that if \vec{x} is in the null space of $A^{\top}A$ then \vec{x} is in the null space of A.

(c) Given that matrix A has a full column rank, what can you say about its null space? What does this imply about the null space and invertibility of the matrix $A^{T}A$?