

THE INVERSE PROBLEM THE INVERSE BROBLEM

... and the use of Python-Implemented Gradient Descent Techniques.

Tomás Gómez Álvarez-Arenas

OUTLINE

1. The Inverse Problem (IP):

Definition & examples

- 2. IP applications.
- 3. IP main elements.
- 4. IP optimization algorithms.

Gradient Descent algorithms (GDA) for IP.

5. A Python implentation of GDA for IP.

Examples.

Data

KNOWLEDGE

REGRESSION

INVERSE PROBLEM

MACHINE LEARNING

BAYESIAN INFERENCE

STATISTICAL ANALISYS

1. THE INVERSE PROBLEM: [IP] DEFINITION & EXAMPLES

DIRECT PROBLEM.

DIRECT PROBLEM

Model parameters:

 $h_0 = 55 \text{ m}$ g = 9.81 m/s² Model (law):

 $h(t) = h_0 - 1/2 g t^2$

PREDICT:

h at any t

IP: DEFINITION.

INVERSE PROBLEM

Model parameters: h_0 , g

GIVEN

Model (law):

$$h(t) = h_0 - 1/2 g t^2$$

& h at some t

IP EXAMPLE: GRAVITATIONAL WAVES

DIRECT PROBLEM

INVERSE PROBLEM

$$\mathcal{M} = \frac{(m_1 m_2)^{3/5}}{(m_1 + m_2)^{1/5}} = \frac{c^3}{G} \left[\frac{5}{96} \pi^{-8/3} f^{-11/3} \dot{f} \right]^{3/5},$$

Parameters

Hanford, Washington (H1)

IP EXAMPLE: ECHOGRAPHIC SIGNALS

DIRECT PROBLEM

INVERSE PROBLEM

Thicknesses (x2)
Densities (x2)
Elastic constant (x2)
Mechanical damping (x2)
Freq. dep. MD (x2)

2. IP APPLICATIONS

- 1. Obtention of model parameters .
- 2. Model confirmation.
- 3. Model selection. Ockham's razor

3. IP MAIN ELEMENTS

INVERSE PROBLEM

MODEL (f):

$$y^*_i = f(\beta_j, x_i)$$

DATA

 X_i, Y_i

OPTIMIZATION

ALGORITHM

OUTPUT

MODEL PARAMETERS:

IP vs ML

MACHINE LEARNING

INVERSE PROBLEM

INVERSE PROBLEM

Well-posed Ill-posed problems

Hadamard principles (Existence, uniqueness, stability)

"One can find the desired result to any degree of specified precision - provided one is prepared to work hard enough*"

*Working hard enough: making enough measurements with enough accuracy and then doing enough computations

4. IP OPTIMIZATION ALGORITHMS

OPTIMIZATION ALGORITHMS (just a few of them...)

NA: Newton algorithms.

GNA: Gauss-Newton algorithm.

BFGS: Broyden–Fletcher–Goldfarb–Shanno algorithm (1970).

NMA: Nelder-Mead algorithm (1965).

PA: Powell's algorithm (1964).

LMA: Levenberg–Marquardt algorithm (1944-1963).

GDA: Gradient Descent algorithms.

PYTHON IMPLEMENTATION OF OPTIMIZATION ALGORITHMS (just a few of them...)

scipy.optimize

http://docs.scipy.org/doc/scipy/reference/optimize.html

Optimization and root finding

Sherpa

http://cxc.cfa.harvard.edu/contrib/sherpa47b/

Levenberg-Marquardt, Nelder-Mead Simplex or Monte Carlo/Differential Evolution.

PyQt-Fit

https://anaconda.org/pypi/pyqt-fit

Regression toolbox and GUI

LMFIT

Non-Linear Least-Square Minimization and Curve-Fitting for Python https://lmfit.github.io/lmfit-py/

High-level interface for scipy.optimize, extends LMA.

PYTHON IMPLEMENTATION OF OPTIMIZATION ALGORITHMS (just a few of them...)

scipy.optimize

http://docs.scipy.org/doc/scipy/reference/optimize.html
Optimization and root finding

The minimize function supports the following methods:

- minimize(method='Nelder-Mead')
- minimize(method='Powell')
- minimize(method='CG')
- minimize(method='BFGS')
- minimize(method='Newton-CG')
- minimize(method='L-BFGS-B')
- minimize(method='TNC')
- minimize(method='COBYLA')
- minimize(method='SLSQP')
- minimize(method='dogleg')
- minimize(method='trust-ncg')

GRADIENT DESCENT ALGORITHMS FOR IPs.

PYTHON IMPLEMENTATION OF GRADIENT DESCENT ALGORITHMS

https://github.com/mattnedrich/GradientDescentExample

http://tillbergmann.com/blog/articles/python-gradient-descent.html

http://scikit-learn.org/stable/modules/sgd.html

http://www.r-bloggers.com/r-and-python-gradient-descent/

KEY ELEMENTS OF GDA FOR IP.

IP:

GDA:

Data set: y_i ; x_i

Initial guess: β_i

Model: $y = f([\beta_i], x)$

Step size (constant / variable)

Error function

Constrains: $C_k(\beta^*) = 0$

Optimization algorithm (GDA)

1. Set initial guess

$$f(\{\beta^0_i, x_i\})$$

 $||y_i - f(\{\beta^0_i, x_i\})||$: $\Delta\{\beta^0_i\}$: error is not minimum

Set a discretization step: δ

DATA

Model (f)

$$X_i, y_i$$

$$y^*_i = f(\beta_i \pm \delta, x_i)$$

$$f(\{\beta^0_j \pm \delta, x_i\})$$

$$||y_i - f(\{\beta^0_j \pm \delta, x_i\})||$$
: $\Delta\{\beta^0_i \pm \delta\}$: error

DATA	M ODEL (<i>f</i>)	
X_i , Y_i	$y_i^* = f(\beta_i \pm \delta, x_i)$	

Dimension	Volume
N = 3:	27
N = 4:	81
N = 5:	243
N = 6:	729
N = 7:	2187
N = 8:	6561

$$f(\{\beta_i^0 \pm \delta, x_i\})$$

$$||y_i - f(\{\beta^0_j \pm \delta, x_i\})||$$
: $\Delta\{\beta^0_i \pm \delta\}$: error

Systematic approach:

Search all points in V Take $\{\beta_i\}$ / $\Delta\{\beta_i\}_{min}$

Stochastic approach:

Random search of V Stop searching when:

$$\Delta\{\beta_i\} < \Delta\{\beta_0\}$$

	Systematic	Stochastic
Computational cost:	Cte. 3 ^N	Var. 1 → 3^N
Incremental improve:	Optimum	< Optimum
Avoid local minima:	??	May be
Same solution:	Yes	NO

5. Take a step.

Take a step:
$$2\vec{\delta} = 2\left(\vec{\beta}' - \vec{\beta}_0\right)$$

$$\vec{\beta}_0 = \vec{\beta}_0 + 2\vec{\delta}$$

5. A PYTHON IMPLEMENTATION OF GDA FOR IPs.

... a simple code example built from scratch.

CODE DESCRIPTION

https://github.com/PyDataMadrid2016/Conference-Info/

20160409 1530 The solution of inverse problems

6. Examples.

Basic examples
Signals in time domain
Complex high dimensional problems

6. Examples (I)

Basic Examples.

Linear regression Polynomial fitting

Data:

$$y^* = a x + b + noise$$

a,b = (1.0, 10.0)

Model:

$$y = a x + b$$

Objective:

Find value of function parameters: (a,b) that minimize the error (L2 norm) between calculated (y) and data (y*).

Stochastic Gradient Descent (SGD) Discretization step (DS): δ = 0.01

Path to fitting... (in the parameters space)

Target value: (1.0, 10.0)

Initial guess: (1.5, 5.0)

 $GG.plot\ pathN((GG2,GG3),(0,1),True,pa,pb)$

Target value: (1.0, 10.0)

Initial guess: (1.5, 5.0)

Run GD Run scipy.linregress Run SGD 200 times...

Only take Error < Error_min + 5%

Target value: (1.0, 10.0)

Initial guess: (1.5, 5.0)

Run GD Run scipy.linregress Run SGD 200 times...

Only take Error < Error_min + 0.5%

Target value: (1.0, 10.0)

Initial guess: (1.5, 5.0)

Run GD

Run scipy.linregress

Run SGD 200 times...

Only take Error < Error min + 0.5%

Target value: (1.0, 10.0)

Initial guess: (1.5, 5.0)

Run GD

Run scipy.linregress

Run SGD 200 times...

Only take Error < Error min + 5%

Data:

$$y^* = a x^2 + bx + c + noise$$

Model:

$$y = a x^2 + bx + c$$

Stochastic Gradient Descent (SGD) $\delta = 0.005$

Path to fitting... (in the parameters space)

Target value: (1.0, 3.0, 10.0)

Initial guess: (1.7, 2.7, 7.0)

Stochastic Gradient Descent (SGD) $\delta = 0.005$

GG.plot_path2(GG2,(0,1),True,pa,pb)

Target value: (1.0, 3.0 10.0)

Initial guess: (1.7, 2.7, 7.0)

Run GD

Run *numpy.polyfit*

Run SGD 200 times...

Only take Error < Error min + 10%

Target value: (1.0, 3.0 10.0)

Initial guess: (1.7, 2.7, 7.0)

Run GD

Run *numpy.polyfit*

Run SGD 200 times...

Only take Error < Error_min + 0.5%

6. Examples (II)

Signals in the time domain.

Damped oscillator Linear chirp Linear-gained chirp

Example 3: Damped oscillator

Data:

 $y^* = (a \sin x + j b \cos x) \exp(-cx) + noise$

Model:

 $y = (a \sin x + j b \cos x) \exp(-cx)$

Stochastic Gradient Descent (SGD) δ = 0.005

Example 3: Damped oscillator

Target value: (2.0, 0.5, 0.1)

Initial guess: (1.5, 0.3, 0.2)

Run GD

Run SGD 50 times...

Stochastic Gradient Descent (SGD)

 $\delta = 0.005$

GG.plot_path2(GG2,(0,1),True,pa,pb)

Example 4: Linear chirp

$$S(t) = w(t)\sin[\phi_0 + 2\pi f_1 t + \pi B/T t^2]$$

Initial guess error:

B/T ≈ 10%

 $f_1 \approx 20\%$

 $\phi_0 \approx$ 0.4 rad

Stochastic Gradient Descent (SGD) δ = 0.005

Example 4: Gained linear chirp

$$S(t) = w(t)\sin[\phi_0 + 2\pi f_1 t + \pi B/T t^2]$$

Initial guess error:

$$f_1 \approx 20\%$$

 $\phi_{0} \approx$ 0.4 rad

Stochastic Gradient Descent (SGD) $\delta = 0.005$

Linear chirp

$$S(t) = w(t)\sin[\phi_0 + 2\pi f_1 t + \pi B/T t^2]$$

Initial guess error:

B/T
$$\approx$$
 20% \rightarrow trapped in loc. min.

$$f_1 \approx 20\%$$

$$\phi_0 \approx 0.4 \text{ rad}$$

Gained linear chirp

Transform: FFT

Time domain \rightarrow frequency domain

6. Examples (III)

Signals in the frequency domain.

Large dimensional problems

Echographic signal: single layer

Echographic signal: layered plate

Example 5: Ultrasonic transmission through a layer of tissue

$$S(t) = f(\beta, t)$$

$$S^*(\omega) = f^*(\beta, \omega)$$

\omega: frequency

$$\beta = \{t, \rho, v, \alpha, n\}$$

t: thickness

 ρ : density

v: us velocity

 α : us attenuation

n: variation of α with freq.

Dimension = 5 $(V_{search} = 242 \text{ pts.})$

Example 5: Ultrasonic transmission through a layer of tissue

 $S^*(\omega) = f^*(M,L)$ \omega: frequency

$$\beta = \{t, \rho, v, \alpha, n\}$$

t: thickness

 ρ : density

v: us velocity

 α : us attenuation

n: variation of α with freq.

Dimension = 5 $(V_{search} = 242 \text{ pts.})$

Example 5:

Ultrasonic transmission through a layer of tissue

FFT

S(t) = f(M, L)

M: medium: Zm

L: layer of tissue t, ρ , v, α , n

t: thickness

 ρ : density

v: us velocity

 α : us attenuation

n: variation of α with freq

Dimension = 4 $(V_{search} = 81 pts.)$

Example 5: Ultrasonic transmission through a layer of tissue

FFT

S(t) = f(M,L)

M: medium: Zm

L: layer of tissue t, ρ , v, α , n

t: thickness

 ρ : density

v: us velocity

 α : us attenuation

n: variation of α with freq

Dimension = 4 $(V_{search} = 81 pts.)$

 ω : frequency

Example 5: Ultrasonic transmission through a layer of tissue

GG.plot_path2(GG2,(0,1),True,pa,pb)

Example 5: Ultrasonic transmission through a layer of tissue

L: layer of tissue t, ρ , v, α , n

t: thickness

 ρ : density

v: us velocity

 α : us attenuation

n: variation of α with freq

Dimension = 5 $(V_{search} = 242 \text{ pts.})$

 $S^*(\omega) = f^*(M,L)$

 ω : frequency

Example 5: Ultrasonic transmission through a layer of tissue

GG.plot_path2(GG2,(0,1),True,pa,pb)

Parameters separation/aggregation:

$$\beta_i$$
, $i = 1...N$; $3^{N}-1$

P subsets of parameters (example P = 2):

$$\beta_{i}^{1}$$
, $i = 1...K$; $3^{K}-1$
 β_{i}^{2} , $i = 1...L$; $3^{L}-1$
 $M = K + L$

Perform SGDA on β^1 + early stop Perform SGDA on β^2 + early stop

Example 6: Ultrasonic transmission through a layered tissue

10 parameters in the model: IG for them all VS = 59049

Simplify the data set (reduction)

Simplify the model (one layer: 5 params)

Apply parameters gathering (3 + 2)

Solve the new IP (- - - -) early stop

Generate IG for whole IP 5 params \rightarrow 10 params

Solve the whole IP

Solve the whole IP

Ill-posed problem (infinite solutions)

Adding constrains: (total thickness is know) $10 \rightarrow 9$

IG Further constrains.

Data

KNOWLEDGE

Q&A

BUT NOT: $IP[Q&A] = A&Q \rightarrow ILL-POSED$

