LÖSUNGSSKIZZE zur Probeklausur vom 17. Juni 2013

Gegeben sei dieser gewichtete Graph: Berechnen Sie mit Hilfe des Dijkstra-Algorithmus den kürzesten Weg von v0 nach v8.

Lösung:

Losung	· —								
	v0	v1	v2	v3	v4	v5	v6	v7	v8
Entf	0								
Vorg	v0								
OK									
Entf	0	2	5		3			8	
Vorg	v0	v0	v0		v1			v0	
OK	t	t			t				
Entf	0	2	4	7	3	10		8	
Vorg	v0	v0	v4	v2	v1	v2		v0	
OK	t	t	t	t	t				
Entf	0	2	4	7	3	9	14	8	16
Vorg	v0	v0	v4	v2	v1	v3	v5	v0	v7
OK	t	t	t	t	t	t	t	t	
Entf	0	2	4	7	3	9	14	8	15
Vorg	v0	v0	v4	v2	v1	v3	v5	v0	v6
OK	t	t	t	t	t	t	t	t	t

Der kürzeste Weg hat die Länge 15 mit v0 - v1 - v2 - v3 - v5 - v6 - v8.

Aufgabe II:	15 Punkte
Wahr oder Falsch?? Jeweils Bitte begründen Sie Ihre Aussage. Jeweils	
 Es gibt bipartite 5-reguläre Graphen. Begründung: Z.B. mit G = (V, E) und V = {v_i, w_i 1 ≤ i ≤ 5} bipartit mit {v_i 1 ≤ i ≤ 5} ∩ {w_i 1 ≤ i ≤ 5} = 5-regulär, da jeder Knoten v_i 5 adjazente Kanund da jeder Knoten w_j 5 adjazente Knoten w_j 5 adja	$E = \{(v_i, w_j) 1 \le i, j \le 5\}$ $E = \emptyset \text{ und}$ $E = \{(v_i, w_j) 1 \le i, j \le 5\}$ $E = \emptyset \text{ und}$ $E = \{(v_i, w_j) 1 \le i, j \le 5\}$ $E = \emptyset \text{ und}$ $E = \{(v_i, w_j) 1 \le i, j \le 5\}$ $E = \emptyset \text{ und}$ $E = \{(v_i, w_j) 1 \le i, j \le 5\}$ $E = \emptyset \text{ und}$ $E = \{(v_i, w_j) 1 \le i, j \le 5\}$ $E = \emptyset \text{ und}$ $E = \{(v_i, w_j) 1 \le i, j \le 5\}$ $E = \emptyset \text{ und}$ $E = \{(v_i, w_j) 1 \le i, j \le 5\}$ $E = \emptyset \text{ und}$ $E = \{(v_i, w_j) 1 \le i, j \le 5\}$ $E = \emptyset \text{ und}$ $E = \{(v_i, w_j) 1 \le i, j \le 5\}$ $E = \emptyset \text{ und}$ $E = \{(v_i, w_j) 1 \le i, j \le 5\}$ $E = \{(v_i, w_j$
 2. In einem vollständigen Graphen gibt es mindestens so viele Eulerkreise wie Knoter Begründung: Für ein K_n mit geradem n > 0 ist für alle v ∈ ungerade, also gibt es gar keinen Eulerkreis. 	
3. Es gibt Bäume mit genau einem Blatt $\boxed{\mathbf{X}}$ Nämlich der Baum, der aus einem Knoten bes	
 In jedem Netzwerk ist der Fluss, der jeder Kante den Wert 1 zuordnet, zulä Begründung: Denn, wenn ein innerer Knoten den Knotengra Knoten verletzt. 	<u> </u>
 5. Es gibt k-reguläre Graphen mit k > 1, die Bär Begründung: Die Blätter eines Baumes haben immer den k-regulär sein mit k > 1. 	

Gegeben die folgende Adjazenzmatrix:

$$A(G) = \begin{pmatrix} 0 & 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 \end{pmatrix}$$

Lösung:

1. Geben Sie bitte den dazugehörigen Graphen G an:

2. Geben Sie bitte die dazugehörige Inzidenzmatrix ${\cal M}(G)$ an:

3. Was bedeutet die Addition zweier Adjazenzmatrizen, also $A(G_1) + A(G_2)$? Graph hat ebensoviele Knoten, aber die Kanten werden aufaddiert.

$$\mathbf{BSP} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 2 & 1 \\ 2 & 0 & 0 \\ 1 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 0 & 1 \\ 2 & 1 & 1 \end{pmatrix}$$

In dem Graph hier gehöre die durchgezogenen Kanten zum ersten und die gestrichelten zum zweiten Graph und beide zu Ergebnisgraph.

Gegeben sei der folgende Graph G.

2. Geben Sie eine Reihefolge der Knoten und den gefärbten graphen an, so dass der einfachen Greedy-Algorithmus eine nicht optimale Färbung erreicht. .. 9 Punkte

Lösung:

 $v_9, v_5, v_7, v_2, v_4, v_6, v_8, v_1, v_3$ ergibt folgende nicht optimale Färbung mit 4 Farben

Beweisen Sie bitte, dass für einen ungerichteten, schlichten Graphen G mit Maximalgrad $\Delta(G)$ die chromatische Zahl $\chi(G) \leq \Delta(G) + 1$ ist.

Tip: Induktion!

Lösung:

Vollständige Induktion über die Knotenzahl n und für alle Graphen mit Maximalgrad $\Delta(G)$.

- IA n=1. Maximalgrad ist 0 und wir färben mit einer Farbe, also $\chi(G)=1=0+1=$ $\Delta(G)+1$
- IB Für alle Graphen mit n Knoten gilt $\chi(G) \leq \Delta(G) + 1$.
- IS Sei G ein Graph mit n+1 Knoten und Maximalgrad $\Delta(G)$.

Wir entfernen aus G einen beliebigen Knoten v zusammen mit den höchstens $\Delta(G)$ inzidenten Kanten. Der Restgraph sei $G' = G \setminus v$:

Der Maximalgrad von G' ist höchstens so groß wie der von G, also $\Delta(G') \leq \Delta(G)$, und kann nach Induktionsvoraussetzung mit $\Delta(G')+1$ Farben gefärbt werden. Dabei benutzen die ursprünglichen Nachbarn von v höchstens $\Delta(G')$ Farben.

Jetzt können wir v mit einer der verbliebenen Farben färben und zusammen mit den entfernten Kanten wieder in den Graphen G' einfügen.

Das ist dann eine korrekte Färbung von G mit höchstens $\Delta(G) + 1$ Farben, dann muss die kleinste Färbung auch kleiner sein, also $\chi(G) \leq \Delta(G) + 1$.

Gegeben dieser vollständige und gewichtete Graph K_6 . Finden Sie mit dem "Nächstgelegener Knoten"-algorithmus einen möglichst kurze Rundreise, die bei v1 beginnt.

Lösung	r:
LOSGII	٠.

Tour	Kosten	kürzeste Tour; nächster Knoten
v1 - v1	0	v6
v1 - v6 - v1	60	v2
v1 - v2 - v6 - v1	120	v3
v1 - v3 - v2 - v6 - v1	160	
v1 - v2 - v3 - v6 - v1	140	v5
v1 - v2 - v6 - v3 - v1	180	
v1 - v5 - v2 - v3 - v6 - v1	180	v4
v1 - v2 - v5 - v3 - v6 - v1	200	
v1 - v2 - v3 - v5 - v6 - v1	215	
v1 - v2 - v3 - v6 - v5 - v1	225	
v1 - v4 - v5 - v2 - v3 - v6 - v1	280	
v1 - v5 - v4 - v2 - v3 - v6 - v1	335	
v1 - v5 - v2 - v4 - v3 - v6 - v1	315	
v1 - v5 - v2 - v3 - v4 - v6 - v1	280	
v1 - v5 - v2 - v3 - v6 - v4 - v1	260	gefundeneTour

Erläutern Sie, die Mächtigkeit von Graphgrammatiken. Nehmen Sie Bezug auf die Turingmaschinen und erläutern Sie die zugrunde liegenden Konstruktionen. . 15 Punkte Lösung:

Die Graphgrammatiken sind Turing-mächtig. Es kann gezeigt werden, dass es für jede Turing-Maschine eine Graphgrammatik gibt, die dieselben Schritte durchführt. Dafür wird zu einer beliebigen, deterministischen Turing-Maschine (TM) mit verlängerbarem Band eine Graphgrammatik GG konstruiert. Für die Anfangskonfiguration des Bandes wird ein Startgraph S gewählt, der aus einem Pfad, besteht, dessen Kanten den Feldern der TM entsprechen und mit den gleichen Zeichen markiert sind wie die Zellen des Bandes.

Für jeden der fünf möglichen Übergänge der TM, gibt es genau eine Regel, die das Verhalten auf dem Band wiederspiegelt:

Aufgabe VIII:		15 l	Punkte
---------------	--	------	--------

- 2. Gibt es
 - mindestens so viele schwache wie starke Komponenten oder
 - mindestens so viele starke wie schwache Komponenten?

Bitte begründen Sie Ihre Antwort. 10 Punkte

Lösung: _

Es gibt mindestens so viele starke wie schwache Komponenten, denn a) jede schwache Komponente kann mehrere starke enthalten, aber b) nicht umgekehrt.

- a), weil es Konten u, v geben kann, so dass es einen Pfad von u nach v gibt, also diese beiden Konten schwach zusammenhängend sind, aber keinen Pfad von v nach u, also diese beiden Konten nicht stark zusammenhängend sind.
- b) wenn zwei Knoten nicht schwach zusammenhängend sind, dann gibt es keinen Pfad, also können sie auch nicht stark zusammenhängend sein.