Основы наивной теории множеств.

Станислав Олегович Сперанский

Материалы лекций: ссылка Литература:

- K. Hrbacek and T. Jech. Introduction to Set Theory. 3rd ed., revised and expanded. Marcel Dekker, Inc., 1999.
- T. Jech. Set Theory. 3rd ed., revised and expanded. Springer, 2002.

Будем рассматривать как базовые выражения "x равен (совпадает с) y" ("x = y") "x лежит в y" (" $x \in y$ ").

Определение 1 (Наиваная схема аксиом выделения). Пусть $\Phi(x)$ — произвольное условие на объекты. Тогда существует X, что $\forall u(\Phi(u) \leftrightarrow u \in X)$. В этом случае X обозначается как $\{u \mid \Phi(u)\}$.

Утверждение 1 (парадокс Рассела). Пусть $R = \{u \mid u \notin u\}$. Тогда R не может лежать в себе u не может не лежать в себе одновременно.

Из-за данного парадокса будем рассматривать только условия, образованные переменными $u \in = \neg, \land, \lor, \leftarrow, \leftrightarrow, \forall, \exists$.

Определение 2 (аксиомы ZFC (= ZF (аксиомы Цермело-Френкеля) + C (аксиома выбора))).

Ext) "Аксиома экстенциональности":

$$\forall X \forall Y (\forall u (u \in X \leftrightarrow u \in Y) \leftrightarrow X = Y)$$

Empty) "Аксиома пустого множества":

$$\exists \varnothing \ \forall u \ (u \notin \varnothing)$$

Pair) "Аксиома пары":

$$\forall X \, \forall Y \, \exists Z (\forall u \, (u \in Z \leftrightarrow (u = X \lor u = Y)))$$

Обозначение: $Z = \{X, Y\}$.

Sep) "Схема аксиом выделения":

$$\forall \Phi(x) \quad \forall X \exists Y \ \forall u \ (u \in Y \leftrightarrow (u \in X \land \Phi(u)))$$

Обозначение: $Y = \{u \in X \mid \Phi(u)\}.$

Следствие. Операторы

$$X \cap Y := \{ u \mid u \in X \land u \in Y \}$$
$$X \setminus Y := \{ u \in X \mid u \notin Y \}$$
$$\bigcap X := \{ u \mid \forall v \in X \mid u \in v \}$$

определены корректно.

Union) "Аксиома объединения":

$$\forall X \,\exists Y \,\forall u \,(u \in Y \leftrightarrow \exists v \,(v \in X \land u \in v))$$

Обозначение: $Y = \bigcap X$.

Следствие. Оператор

$$X \cup Y := \bigcup \{X, Y\} = \{u \mid u \in X \land u \in Y\}$$

определён корректно.

Power) Пусть $x \subseteq y := \forall v \{v \in x \to v \in y\}$. "Аксиома степени":

$$\forall X \,\exists Y \,\forall u \,(u \in Y \leftrightarrow u \subseteq X)$$

Обозначение: $Y = \mathcal{P}(X) := \{u \mid u \subseteq X\}$. $\mathcal{P}(X)$ — "множество-степень X" или "булеан X".

Определение 3. Упорядоченная пара — это объект от некоторых X_1 и Y_1 , который равен другому такому объекту от X_2 и Y_2 тогда и только тогда, когда $X_1 = X_2 \wedge Y_1 = Y_2$.

Определение 4. Декартово произведение X и Y $(X \times Y) - \{(x;y) \mid x \in X \land y \in Y\}$.

Замечание 1. Можно нелсожно показать, что декартово произведение определено корректно.

Inf) Пусть Ind(X) := $\emptyset \in X \land \forall u (u \in X \land u \cup \{u\} \in X)$. Если Ind(X), то X называется индуктивным. "Аксиома бесконечности": существует индуктивное множество.

Repl) "Схема аксиом подстановки":

$$\forall \Phi(x,y)$$

$$\forall x \, \forall y_1 \, \forall y_2 \, ((\Phi(x,y_1) \land \Phi(x,y_2)) \to y_1 = y_2) \to$$

$$\forall X \, \exists Y \, \forall y \, (y \in Y \leftrightarrow \exists x (x \in X \land \Phi(x,y)))$$

Reg) "Аксиома регулярности":

$$\forall X (X \neq \emptyset \rightarrow \exists u (u \in X \land X \cap u = \emptyset))$$

1 Отношения.

Определение 5. Бинарное (или двухместное) отношение R между X и Y — подмножество $X \times Y$. Если Y = X, R называется бинарным (или двухместным) отношением на X. Обозначение: $(x,y) \in R \Leftrightarrow xRy$.

Определение 6.

$$\mathrm{dom}(R) := \{u \in X \mid \exists v \quad uRv\}$$
 "область определения R " $\mathrm{range}(R) := \{v \in Y \mid \exists u \quad uRv\}$ "область значений R " $R[U] := range(R \cap (U \times Y))$ $R^{-1} := \{(y,x) \mid (x,y) \in R\}$

Замечание 2.

$$\operatorname{range}(R) = \operatorname{dom}(R^{-1}) = R[X]$$

$$\operatorname{range}(R^{-1}) = \operatorname{dom}(R) = R^{-1}[Y]$$

Определение 7. Бинарные отношнения можно естественным образом комбинировать: для любых отношений R и Q между X и Y, Y и Z соответственно отношение

$$S = R \circ Q := \{(x, z) \in X \times Z \mid \exists y : xRy \land yQz\}$$

называется композицией R и Q.

Определение 8. Тождественное отображение на $X-id_X:=\{(x,x)\mid x\in X\}.$

Замечание 3. Тождественное отображение при композиции (не важно, правой или левой) с другим отношением не меняет его.

Определение 9. Отношение R между X и Y называется функциональным, если

$$\forall x \ \forall y_1 \ \forall y_2 \ ((xRy_1 \land xRy_2) \rightarrow y_1 = y_2).$$

Определение 10. Функция из X в Y — функциональное отношение R между X и Y, в котором $\mathrm{dom}(R) = X$.