(19) 日本国特許庁 (JP)

(12) 公表特許公報(A)

(11)特許出願公表番号

特表平10-511957

(43)公表日 平成10年(1998)11月17日

(51) Int.Cl. ⁸	識別記号		FΙ			
A 6 1 K 9/16			A 6 1 K	9/16	K	
31/70				31/70		
38/00	ABN			39/08	ADZ	
39/08	ADZ			45/00	ADU	
45/00	ADU			47/48	Z	
		審查請求	未請求 予修	潜音查請求 有	(全138頁)	最終質に続く
(21)出願番号	特顯平 8-521279		(71)出顧	人 ザ ポード	オブ・リージ	エンツ オプ
(86) (22)出顧日	平成8年(1996)1月4日	Ī		ザ ユニヴ	ァーシティ オ	プ ミシガン
(85)翻訳文提出日	平成9年(1997)7月7日	Ì		アメリカ合	衆国. 48109-13	280 ミシガン,
(86)国際出願番号	PCT/US96/00	476		アン アー	パー,サウス	ステイト スト
(87)国際公開番号	WO96/20698			リート 30	03, テクノロジ	イ マネージメ
(87)国際公開日	平成8年(1996)7月11日	Ĭ		ント オフ	ィス,ウォルヴ	ェリン タワ
(31)優先権主張番号	08/369, 541			–,	2071	
(32)優先日	1995年1月5日		(72)発明	者 レヴィ, ロ	パート、ジェー	
(33)優先権主張国	米国 (US)			アメリカ合	衆国. 48104 3	シガン、アン
(31)優先権主張番号	08/389, 893			アーパー	, ベルモント :	2241
(32)優先日	1995年2月16日		(74)代理	人 弁理士 岡	部 正夫 (外	11名)
(33)優先権主張国	米国 (US)					
						最終頁に続く

(54) 【発明の名称】 表面改質ナノ微粒子並びにその製造及び使用方法

(57)【要約】

持続放出性生物活性剤送達賦形剤としての生分解性制御 放出性ナノ微粒子であって、生物系の組織又は細胞に該 ナノ微粒子を結合させ、ナノ微粒子の持続放出性を強化 すると共に、ナノ微粒子に包含された生物活性剤を保護 するための表面改質剤を含む。形成後に表面改質しうる サイズ分布が狭い小さな(10nm~15nm、好まし くは20nm~35nm)ナノ微粒子の独特な製造方法 を記載する。表面改質法として、凍結乾燥法により物理 吸着された被覆を形成すること、及びエポキシ誘導化に よりナノ微粒子の表面を目的分子との共有結合に機能さ せることが含まれる。ナノ微粒子はまた、ヒドロキシ末 **端化もしくはエポキシド末端化されていたり、ポリカブ** ロラクトンなどの疎水性セグメントと親水性セグメント とを有する活性化多プロック共重合体であってもよい。 ナノ微粒子は、パルーン血管形成法など介入的心臓又は 血管カテーテル法の一環として平滑筋抑制剤及び抗トロ ンポゲン形成剤の局所血管内投与のほか、骨先祖細胞へ の骨指向遺伝子又は遺伝子セグメントの送達など遺伝子 治療のための組織及び/又は細胞への直接適用、又は蛋

白質/ペプチド系ワクチン送達用の腸溶性カプセル剤の 経口投与に有効である。

【特許請求の範囲】

組成

- 1. 平均径が約300nm未満である生体適合性・生分解性ポリマーのコアからなるナノ微粒子であって、該ナノ微粒子は少なくとも1つの生物活性剤及び/又は少なくとも1つの表面改質剤を随伴又は包含していることを特徴とする持続放出性剤型。
- 2. ナノ微粒子の平均径範囲は、約100~150nmであることを特徴とする 請求の範囲第1項に記載の持続放出性剤型。
- 3. ナノ微粒子の平均径範囲は、約 $10\sim50$ n mであることを特徴とする請求 の範囲第1項に記載の持続放出性剤型。
- 4. 生体適合性・生分解性ポリマーは、合成ポリマーであることを特徴とする請求の範囲第1項に記載の持続放出性剤型。
- 5. 生体適合性・生分解性ポリマーは、ポリエステル、ポリエーテル、ポリ酸無水物、ポリアルキルシアノアクリレート、ポリアクリルアミド、ポリ(オルトエステル)、ポリホスファゼン、ポリアミノ酸、及び生分解性ポリウレタンからなる群から選択される合成ポリマーであることを特徴とする請求の範囲第4項に記載の持続放出性剤型。
- 6. 生体適合性・生分解性ポリマーは、ポリラクチド、ポリグリコリド、及びポリ乳酸ポリグリコール酸共重合体からなる群から選択されるポリエステルであることを特徴とする請求の範囲第5項に記載の持続放出性剤型。
- 7. 生体適合性・生分解性ポリマーは、ポリ乳酸ポリグリコール酸共重合体であることを特徴とする請求の範囲第6項に記載の持続放出性剤型。
- 8. 生体適合性・生分解性ポリマーは、ヒドロキシ末端ポリ(ε —カプロラクトン) —ポリエーテル又はポリカプロラクトンからなる群から選択されるポリエーテルであることを特徴とする請求の範囲第6項に記載の持続放出性剤型。
- 9. ポリエーテルは、エポキシ誘導化され、活性化されているポリカプロラクトンであることを特徴とする請求の範囲第8項に記載の持続放出性剤型。
- 10. 生体適合性・生分解性ポリマーは、天然誘導化ポリマーであることを特徴

とする請求の範囲第1項に記載の持続放出性剤型。

- 11. 生体適合性・生分解性ポリマーは、アラビアゴム、キトサン、ゼラチン、デキストラン、アルブミン、及びアルギネート/デンプンからなる群から選択される天然誘導化ポリマーであることを特徴とする請求の範囲第10項に記載の持続放出性剤型。
- 12. 生物活性剤は、少なくとも1つの薬剤であることを特徴とする請求の範囲 第1項に記載の持続放出性剤型。
- 13.少なくとも1つの薬剤は、心血管剤であることを特徴とする請求の範囲第11項に記載の持続放出性剤型。
- 14. 心血管剤は、刺激剤、抑制剤、抗トロンビン薬、カルシウムチャンネル遮断薬、アンギオテンシン変換酵素(ACE)阻害剤、免疫抑制剤、魚油、生長因子拮抗薬、細胞骨格阻害物質、抗炎症剤、血栓溶解剤、抗増殖薬、心血管疾患のDNA又はアンチセンス治療に適した遺伝物質、蛋白キナーゼ阻害物資、平滑筋遊走阻害物質及び/又は平滑筋収縮阻害物質、及び酸化窒素放出化合物からなる群から選択されることを特徴とする請求の範囲第13項に記載の持続放出性剤型
- 15. 心血管剤は、細胞骨格阻害物質であることを特徴とする請求の範囲第14 項に記載の持続放出性剤型。
- 16. 細胞骨格剤は、サイトカラシンBであることを特徴とする請求の範囲第1 5項に記載の持続放出性剤型。
- 17. 生物活性剤は、抗癌剤であることを特徴とする請求の範囲第12項に記載の持続放出性剤型。
- 18. 抗癌剤は、アルキル化剤、代謝拮抗剤、天然物(例えば、アルカロイド)

毒素、抗生物質、酵素、生体応答修飾物質、ホルモン、拮抗剤、及び癌治療に適 した遺伝物質からなる群から選択されることを特徴とする請求の範囲第17項に 記載の持続放出性剤型。

19. 生物活性剤は、ペプチド又は蛋白質に基づくワクチンであることを特徴と

する請求の範囲第12項に記載の持続放出性剤型。

- 20. 蛋白質に基づくワクチンは、破傷風トキソイドであることを特徴とする請求の範囲第19項に記載の持続放出性剤型。
- 21. 生物活性剤は、核酸であることを特徴とする請求の範囲第12項に記載の 持続放出性剤型。
- 22. 核酸は、DNA、RNA、又はDNAもしくはRNAのオリゴヌクレオチド(センス又はアンチセンス)であることを特徴とする請求の範囲第21項に記載の持続放出性剤型。
- 23. 核酸は、骨指向遺伝子もしくは遺伝子セグメント、又はオリゴヌクレオチドであることを特徴とする請求の範囲第22項に記載の持続放出性剤型。
- 24. 骨指向遺伝子もしくは遺伝子セグメントは、骨形態発生蛋白質(BMP2 及び4など)、TGF-β1-3などトランスフォーミング生長因子、アクチビン、燐蛋白質、オステオネクチン、オステオポンチン、骨シアル蛋白質、オステオカルシン、ビタミンーk依存蛋白質、糖蛋白質、及びコラーゲン(少なくとも I及びII)からなる群から選択されることを特徴とする請求の範囲第23項に記載の持続放出性割型。
- 25. 少なくとも1つの骨誘導塩をさらに含むことを特徴とする請求の範囲第2 2項に記載の持続放出性剤型。
- 26. 核酸は、心血管疾患のDNA又はアンチセンス治療に適し、血小板由来生長因子、トランスフォーミング生長因子(α 及び β)、線維芽細胞生長因子(酸性及び塩基性)、アンギオテンシンII、ヘパリン結合上皮生長因子様分子、インターロイキン-1(α 及び β)、インターロイキン-6、インスリ

ン様生長因子、腫瘍遺伝子、増殖性細胞核抗原、細胞付着分子、及び血小板表面 抗原からなる群から選択されることを特徴とする請求の範囲第22項に記載の持 続放出性剤型。

27. 核酸は、腫瘍抑制遺伝子、サイトカイン産生遺伝子、腫瘍壊死因子αーc DNA、癌胎児性抗原遺伝子、リホカイン遺伝子、毒素媒介遺伝子治療、及びE 6遺伝子及びE 7遺伝子のアンチセンスRNAからなる群から選択される抗癌遺

伝子であることを特徴とする請求の範囲第22項に記載の持続放出性剤型。

- 28. 核酸分解酵素活性を遮断する蛋白質をさらに含むことを特徴とする請求の 範囲第21項に記載の持続放出性剤型。
- 29. 表面改質剤は、1種類以上の合成ポリマー、生体ポリマー、低分子量オリゴマー、天然物、及び界面活性剤からなる群から選択されることを特徴とする請求の範囲第1項に記載の持続放出性剤型。
- 30. 表面改質剤は、カルボキシメチルセルロース、セルロース、酢酸セルロース、フタル酸セルロース、ポリエチレングリコール、ポリビニルアルコール、フタル酸ヒドロキシプロピルメチルセルロース、ヒドロキシプロピルセルロース、カルボキシメチルセルロースのナトリウム塩又はカルシウム塩、非晶質セルロース、ポラキソマー、ポロキサミン、デキストラン、DEAEーデキストラン、ポリビニルピロリドン、ポリスチレン、及びケイ酸からなる群から選択されることを特徴とする請求の範囲第31項に記載の持続放出性剤型。
- 31. 表面改質剤は、蛋白質、ペプチド、糖含有化合物、及び脂質からなる群から選択されることを特徴とする請求の範囲第29項に記載の持続放出性剤型。
- 32. 天然物は、アラビアゴム、ゼラチン、カゼイン、アルブミン、ミオグロビン、ヘモグロビン、及びフィブリノーゲンからなる群から選択されるペプチド/ 蛋白質であることを特徴とする請求の範囲第31項に記載の持続放出性

剤型。

- 33. 天然物は、トラガカント、ソルビトール、マニトール、多糖類、及びペクチンからなる群から選択される糖含有化合物であることを特徴とする請求の範囲第31項に記載の持続放出性剤型。
- 34. 天然物は、レシチン、燐脂質、コレステロール、蜜ろう、羊毛脂、スルホン酸油、ロジン石鹸からなる群から選択される脂質であることを特徴とする請求の範囲第31項に記載の持続放出性剤型。
- 35.表面改質剤は、非イオン界面活性剤、陰イオン界面活性剤、及び陽イオン 界面活性剤からなる群から選択される界面活性剤であることを特徴とする請求の 範囲第29項に記載の持続放出性剤型。

- 36. 表面改質剤は、ポリオキシエチレンソルビタン脂肪酸エステル、ソルビタン脂肪酸エステル、脂肪アルコール、スルホン酸アルキルアリルポリエーテル、及びスルホンコハク酸ナトリウムのジオクチルエステルからなる群から選択される非イオン界面活性剤であることを特徴とする請求の範囲第35項に記載の持続放出性剤型。
- 37. 表面改質剤は、ドデシル硫酸ナトリウム、脂肪酸のナトリウム塩又はカリウム塩、ステアリン酸ポリオキシル、ポリオキシエチレンラウリルエーテル、セスキオレイン酸ソルビタン、トリエタノールアミン、脂肪酸、及び脂肪酸のグリシロールエステルからなる群から選択される陰イオン界面活性剤であることを特徴とする請求の範囲第35項に記載の持続放出性剤型。
- 38. 表面改質剤は、臭化ジドデシルジメチルアンモニウム、臭化セチルトリメチルアンモニム、塩化ベンザルコニウム、塩化ヘキサデシルトリメチルアンモニウム、ジメチルドデシルアミノプロパン、エト硫酸NーセチルーNーエチルモルホリニウムからなる群から選択される陽イオン界面活性剤であることを特徴とする請求の範囲第35項に記載の持続放出性剤型。
- 39. 懸濁化媒体をさらに含むことを特徴とする請求の範囲第1項に記載の持続

放出性剤型。

- 40. 懸濁化媒体は、蒸留水、生理食塩水、トリグリセリド、生理的緩衝剤、血 清又は血清/血漿蛋白質賦形剤、及び組織細胞媒体からなる群から選択されるこ とを特徴とする請求の範囲第39項に記載の持続放出性剤型。
- 41. 懸濁化媒体は、注入領域への適用後にゲル化することを特徴とする請求の 範囲第39項に記載の持続放出性剤型。
- 42. 懸濁化媒体は、ポロキサマー、I型及びII型コラーゲンもしくはプロコラーゲン、ヒドロゲル、シアノアクリレート、及びフィブリン膠剤からなる群から 選択されることを特徴とする請求の範囲第41項に記載の持続放出性剤型。
- 43. 骨セメント、歯科用接着剤、ヒドロキシアパタイト、及び骨セラミックスからなる群から選択される充填剤と密接に組み合わせることを特徴とする請求の範囲第41項に記載の持続放出性剤型。

4 4. ナノ微粒子のカプセル詰めをさらに含むことを特徴とする請求の範囲第1項に記載の持続放出性剤型。

製造方法

疎水剤

- 45. 疎水性生物活性剤用の持続放出薬物送達システムの製造方法において、
- (a) 有機溶媒中に少なくとも1種類の生体適合性・生分解性ポリマーを 溶解するステップと、
- (b) 有機溶媒中に生物活性剤を溶解し、上記ポリマー溶液とこの生物活性剤溶液を合わせて有機相を構成するステップと、
 - (c) 水相に上記有機相を添加するステップと、
- (d) ポリマーの融解点を下回る温度でかつ安定乳剤を形成するに十分なエネルギーで上記の有機相と水相を合わせたものを音波処理するステップと、
 - (e)上記安定なエマルジョンから有機溶媒を蒸発させるステップと、
- (f) 得られたナノ微粒子を残った水相から分離するステップと、を含む ことを特徴とする方法。
- 46. 水相は、乳化剤の水溶液であることを特徴とする請求の範囲第45項に記載の方法。
- 47. 乳化剤の水溶液は、約0. 1%~10%w/v の乳化剤を含み、好ましくは約1%~3%w/v の乳化剤を含むことを特徴とする請求の範囲第46項に記載の方法。
- 48. 乳化剤は、ポリビニルアルコール、ポリオキシエチレンソルビタン脂肪酸エステル、ポリエチレングリコール、トリエタノールアミン脂肪酸エステル、脂肪酸のナトリウム塩及びカリウム塩、ラウリル硫酸酢酸セルロースナトリウム、ポラキソマー、及び第四級アンモニウム化合物からなる群から選択されることを特徴とする請求の範囲第45項に記載の方法。
- 49. ナノ微粒子を凍結乾燥するステップをさらに含むことを特徴とする請求の範囲第45項に記載の方法。
- 50. 凍結乾燥ステップは、ナノ微粒子を少なくとも24~48時間、500ミ

- 51. ナノ微粒子を滅菌するステップをさらに含むことを特徴とする請求の範囲 第49項に記載の方法。
- 52. 滅菌するステップは、ナノ微粒子を滅菌放射に当てるステップを含むことを特徴とする請求の範囲第51項に記載の方法。
- 53. 音波処理するステップにおいて、安定乳剤を形成するに十分なエネルギーの範囲は $35\sim65$ Wであることを特徴とする請求の範囲第 45 項に記載の方法
- 54. 得られたナノ微粒子の表面を改質するステップをさらに含むことを特徴と

する請求の範囲第49項に記載の方法。

- 5 5. 得られたナノ微粒子の表面を改質するステップは、少なくとも1種類の表面改質剤をナノ微粒子に吸着させるステップを含むことを特徴とする請求の範囲第 5 4 項に記載の方法。
- 56. 吸着させるステップは、少なくとも1種類の表面改質剤の溶液中にナノ微粒子を懸濁すると共に、この懸濁液を凍結乾燥し、ナノ微粒子上に被覆を得るステップを含むことを特徴とする請求の範囲第55項に記載の方法。
- 57. 凍結乾燥するステップは、少なくとも24~48時間、500ミリトル以下の真空において-30℃~-55℃下に凍結乾燥器中でナノ微粒子を凍結乾燥させるステップを含むことを特徴とする請求の範囲第56項に記載の方法。
- 58. 表面を改質するステップは、エポキシ誘導化を含むことを特徴とする請求 の範囲第54項に記載の方法。
- 59. エポキシ誘導化は、ナノ微粒子を部分的に加水分解し、表面上に反応基を 生成するステップと、加水分解したナノ微粒子を反応性多官能エポキシドと接触 させ、エポキシ活性化ナノ微粒子を形成するステップと、を含むことを特徴とす る請求の範囲第58項に記載の方法。
- 60. 反応基は、アミノ、酸無水物、カルボキシル、ヒドロキシル、フェノール 、又はスルフヒドリルであることを特徴とする請求の範囲第59項に記載の方法

- 61. 反応性多官能エポキシドは、1,2-エポキシド、1,2-プロピレンオキシド、ブタン及びエタンジグリシジルエーテル、無水エリトリトール、多官能ポリグリセロールポリグリシジルエーテル、及びエピクロロヒドリンからなる群から選択されることを特徴とする請求の範囲第58項に記載の方法。
- 62. エポキシ活性化ナノ微粒子を1種類以上の生物活性剤及び/又は表面改質 剤で反応基と反応させるステップをさらに含むことを特徴とする請求の範囲

第59項に記載の方法。

- 63. 少なくとも1種類の表面改質剤は、1種類以上の合成ポリマー、生体ポリマー、低分子量オリゴマー、天然物、及び界面活性剤からなる群から選択されることを特徴とする請求の範囲第54項に記載の方法。
- 64. 表面を改質するステップは、ポリマーマトリックスに少なくとも1種類の表面改質剤を取り込むステップを含むことを特徴とする請求の範囲第54項に記載の方法。
- 65. ポリマーマトリックスに少なくとも1種類の表面改質剤を取り込むステップは、表面改質特性を有する有機相に少なくとも1種類の生分解性・生体適合性ポリマーを用いるステップを含むことを特徴とする請求の範囲第64項に記載の方法。
- 6 6. 生分解性・生体適合性ポリマーは、エポキシ誘導化・活性化ポリカプロラクトンであることを特徴とする請求の範囲第6 5項に記載の方法。
- 67. 生分解性・生体適合性ポリマーは、シアノアクリレートであることを特徴 とする請求の範囲第65項に記載の方法。

親水剤

- 68. 親水性生物活性剤用の持続放出薬物送達システムの製造方法において、
- (a)無極性有機溶媒中に生体適合性・生分解性ポリマーを溶解するステップと、
- (b) 半極性有機溶媒又は極性溶媒と半極性溶媒を合わせたものの中に親 水性生物活性剤を溶解し、上記ポリマー溶液とこの生物活性剤含有溶液を合わせ

て有機相を構成するステップと、

- (c) 水相に上記有機相を添加するステップと、
- (d) ポリマーの融解点を下回る温度でかつ安定なエマルジョンを形成するに十分なエネルギーで上記の有機相と水相を合わせたものを音波処理する

ステップと、

- (e)上記安定なエマルジョンから有機溶媒を蒸発させるステップと、
- (f)得られたナノ微粒子を残った水相から分離するステップと、を含む ことを特徴とする方法。
- 69. 水相は、乳化剤の水溶液であることを特徴とする請求の範囲第68項に記載の方法。
- 70. 有機相は、得られたナノ微粒子の凝固時に親水性生物活性剤を有機相に有利に分配する剤をさらに含むことを特徴とする請求の範囲第68項に記載の方法
- 71. 有利に分配する剤は、共有錯化剤、pH調整剤、脂質、及び粘度上昇剤の 群から選択されることを特徴とする請求の範囲第70項に記載の方法。
- 72. 有利に分配する剤は、脂肪酸塩である共有錯化剤であることを特徴とする 請求の範囲第71項に記載の方法。
- 73. 有利に分配する剤は、陽イオン脂質又は陰イオン脂質であることを特徴とする請求の範囲第71項に記載の方法。
- 74. 有利に分配する剤は、多価・多陽イオン剤であることを特徴とする請求の 範囲第71項に記載の方法。
- 75. 無極性有機溶媒は、塩化メチレン、クロロホルム、酢酸エチル、テトラヒドロフラン、ヘキサフルオロイソプロパノール、及びヘキサフルオロアセトンセスキ水和物からなる群から選択されることを特徴とする請求の範囲第69項に記載の方法。
- 76. 半極性有機溶媒は、ジメチルアセトアミド、ジメチルスルホキシド、ジメチルホルムアミド、ジオキサン、及びアセトンからなる群から選択されることを 特徴とする請求の範囲第69項に記載の方法。

- 77. ナノ微粒子を凍結乾燥するステップをさらに含むことを特徴とする請求の 範囲第69項に記載の方法。
- 78. 凍結乾燥するステップは、ナノ微粒子を48時間、100ミリトル真空下 に-60℃にさらすことを特徴とする請求の範囲第77項に記載の方法。
- 79. ナノ微粒子を滅菌するステップをさらに含むことを特徴とする請求の範囲 第77項に記載の方法。
- 80. 滅菌するステップは、ナノ微粒子を滅菌放射に当てることを特徴とする請求の範囲第79項に記載の方法。
- 81. 安定なエマルジョンを形成するに十分なエネルギーの範囲は、 $35\sim65$ Wであることを特徴とする請求の範囲第69項に記載の方法。
- 82. 得られたナノ微粒子の表面を改質するステップをさらに含むことを特徴とする請求の範囲第77項に記載の方法。
- 83. 得られたナノ微粒子の表面を改質するステップは、ナノ微粒子に少なくとも1種類の表面改質剤を吸着させるステップを含むことを特徴とする請求の範囲第82項に記載の方法。
- 8 4. 吸着させるステップは、少なくとも 1 種類の表面改質剤の溶液中にナノ微 粒子を懸濁すると共に、懸濁液を凍結乾燥し、ナノ微粒子上に被覆を得るステッ プを含むことを特徴とする請求の範囲第83項に記載の方法。
- 85. 表面を改質するステップは、エポキシ誘導化を含むことを特徴とする請求 の範囲第82項に記載の方法。
- 86. エポキシ活性化ナノ微粒子を、1種類以上の生物活性剤上又は表面改質剤上の反応基と反応させるステップであって、反応基はアミノ、酸無水物、カルボキシル、ヒドロキシル、フェノール、又はスルフヒドリルであってもよいステップをさらに含むことを特徴とする請求の範囲第85項に記載の方法。
- 87. 表面を改質するステップは、ポリマーマトリックスに少なくとも1種類の表面改質剤を取り込むステップを含むことを特徴とする請求の範囲第82項に記載の方法。

蛋白質/ペプチド剤

- 88. 水溶性蛋白質/ペプチド含有生物活性剤用の持続放出薬物送達システムの 製造方法において、
- (a) 水溶液中に水溶性蛋白質/ペプチド含有生物活性剤を溶解し、第1 の水相を形成するステップと、
 - (b) 無極性有機溶媒中にポリマーを溶解するステップと、
- (c)上記有機ポリマー溶液に第1の水相を添加し、一次エマルジョンを 形成するステップと、
- (d)乳化剤の水溶液に一次エマルジョンを乳化させ、水中油中水エマルジョンを形成するステップと、
- (e)上記水中油中水エマルジョンから有機溶媒を蒸発させるステップと
- (f)得られたナノ微粒子を残った水相から分離するステップと、を含む ことを特徴とする方法。
- 89. ナノ微粒子を凍結乾燥するステップをさらに含むことを特徴とする請求の 範囲第88項に記載の方法。
- 90. ステップ(c)は、安定な一次エマルジョンを形成するに十分なエネルギーで蛋白質含有水溶液及び有機溶媒を音波処理することを含むことを特徴とする請求の範囲第88項に記載の方法。
- 91. 乳化剤の水溶液は、脂肪酸のソルビタンエステル、脂肪アルコール、脂肪酸、及び脂肪酸のグリセロールエステルからなる群から選択される油中水エマルジョンを製造するための乳化剤の水溶液であることを特徴とする請求の範囲第88項に記載の方法。
- 92. 乳化剤の水溶液は、脂肪アルコールのポリオキシエチレンエーテル、ポリオキシル脂肪酸エステル、脂肪酸のポリオキシエチレングリコールからなる群から選択される水中油エマルジョン用の乳化剤の水溶液であることを特徴とする請求の範囲第88項に記載の方法。
- 93. 水溶性蛋白質含有生物活性剤は、DNA、RNA、又はDNAもしくはR

NAのオリゴヌクレオチド(センス又はアンチセンス)からなる群から選択される核酸であることを特徴とする請求の範囲第88項に記載の方法。

- 9 4. 水溶性蛋白質含有生物活性剤は、ヌクレアーゼを含有しない DNA である ことを特徴とする請求の範囲第93項に記載の方法。
- 9 5. 水溶液は、ヌクレアーゼを含有せず、及び/又はカルシウム錯化剤を含む ことを特徴とする請求の範囲第9 4項に記載の方法。
- 96. 水溶液は、トリスーEDTA、ジチゾン、ニトロロトリ酢酸、クエン酸塩、シュウ酸塩、酒石酸塩、及びジメルカプロールの群から選択される緩衝剤であることを特徴とする請求の範囲第95項に記載の方法。
- 97. 得られたナノ微粒子の表面を改質するステップをさらに含むことを特徴とする請求の範囲第93項に記載の方法。
- 98. 得られたナノ微粒子の表面を改質するステップは、ナノ微粒子に少なくとも1種類の表面改質剤を吸着させるステップを含むことを特徴とする請求の範囲 第89項に記載の方法。
- 99. 吸着させるステップは、上記少なくとも1種類の表面改質剤を含む溶液中にナノ微粒子を懸濁するステップと、懸濁液を凍結乾燥し、ナノ微粒子上に被覆を得るステップと、を含むことを特徴とする請求の範囲第98項に記載の方法。 100. 表面を改質するステップは、エポキシ誘導化を含むことを特徴とする請
- 101. エポキシ誘導化は、ナノ微粒子を部分的に加水分解し、表面上に反応基を生成するステップと、加水分解したナノ微粒子を反応性多官能エポキシドと接触させ、エポキシ活性化ナノ微粒子を形成するステップと、を含むことを特徴とする請求の範囲第89項に記載の方法。

求の範囲第89項に記載の方法。

102. エポキシ活性化ナノ微粒子を1種類以上の生物活性剤及び/又は表面改

質剤上の反応基と反応させるステップをさらに含むことを特徴とする請求の範囲 第101項に記載の方法。

103. 表面を改質するステップは、ポリマーマトリックスに少なくとも1種類の表面改質剤を取り込むステップを含むことを特徴とする請求の範囲第89項に

記載の方法。

エポキシ誘導化の方法

104. 反応性末端基を有する種類のポリマーの表面を改質する方法において、

触媒の存在下に多官能エポキシド化合物と上記ポリマーを接触させ、エポキシド結合ポリマーを形成するステップと、

エポキシド基と反応する少なくとも1種類の官能基を有する生物活性剤と 上記エポキシド結合ポリマーを反応させ、生物活性剤をポリマーに共有結合させ るステップと、を含むことを特徴とする方法。

105. ポリマーは、アミノ、酸無水物、カルボキシル、ヒドロキシル、フェノール、又はスルフヒドリルからなる群から選択される少なくとも1つの反応性未端基を有することを特徴とする請求の範囲第104項に記載の方法。

106. ポリマーは、ポリラクチド、ポリグリコライド、ポリ乳酸ポリグリコール酸共重合体、及びポリカプロラクトンなどポリエステルからなる群から選択されることを特徴とする請求の範囲第105項に記載の方法。

107. ポリマーは、ポリラクチドポリグリコライド共重合体であることを特徴とする請求の範囲第106項に記載の方法。

108. ポリマーは、多官能エポキシド化合物とポリマーを接触させる前に少なくとも部分的に加水分解することを特徴とする請求の範囲第104項に記載の方法。

109. エポキシド化合物は、エポキシド、ポリエポキシド化合物、又はエポキシ樹脂であることを特徴とする請求の範囲第104項に記載の方法。

110. エポキシド化合物は、1,2ーエポキシド、1,2ープロピレンオキシド、ブタン及びエタンジグリシジルエーテル、無水エリトリトール、多官能ポリグリセロールポリグリシジルエーテル、及びエピクロロヒドリンからなる群から選択されることを特徴とする請求の範囲第109項に記載の方法。

1 1 1 . 触媒は、第三級アミン、グアニジン、イミダゾール、三フッ化ホウ素モ ノエチルアミンなど三フッ化ホウ素付加物、微量金属、ビスホスホネート、及び $PhNH_3+AsF_6$ 型のアンモニウム錯体からなる群から選択されることを特徴 とする請求の範囲第104項に記載の方法。

- 112. 触媒は、光開始に適していることを特徴とする請求の範囲第104項に 記載の方法。
- 113. 触媒は、四塩化チタン及びフェロセン、塩化ジルコノセン、四臭化炭素 及びヨードホルムからなる群から選択されることを特徴とする請求の範囲第11 2項に記載の方法。
- 114. 生物活性剤は、アミノ、酸無水物、カルボキシル、ヒドロキシル、フェノール、又はスルフヒドリルからなる群から選択される少なくとも1つの反応性 末端基を有することを特徴とする請求の範囲第104項に記載の方法。

PCL態様の製造方法

- 115. 親水性及び疎水性のセグメントを有するブロック共重合体を製造する方法において、
 - (a) 有機溶媒に第1のポリマージオールを溶解するステップと、
- (b)第1のポリマージオールに過剰の多官能エポキシドを添加し、多官 能エポキシドのエポキシド基の1つを、第1のポリマージオール末端上のヒドロ キシル基と反応させ、エポキシド末端キャップした第1のポリマー(ブロックA)を形成するステップと、
 - (c) エポキシド末端キャップした第1のポリマーブロックAに過剰の第

2のポリマージオール(ブロックB)を添加し、ヒドロキシル末端BAB型三ブロック共重合体を形成するステップと、を含むことを特徴とする方法。

- 116. ステップ (a) における使用前に、過剰のポリマージオールを多官能エポキシドと反応させることにより、ポリマージオールの分子量を増大するステップをさらに提供することを特徴とする請求の範囲第115項に記載の方法。
- 117. 多官能エポキシドは、1,2-エポキシド、1,2-プロピレンオキシド、ブタン及びエタンジグリシジルエーテル、無水エリトリトール、多官能ポリグリセロールポリグリシジルエーテル、及びエピクロロヒドリンからなる群から選択されることを特徴とする請求の範囲第115項に記載の方法。
- 118. 第1のポリマージオールは、疎水性ポリマージオールであることを特徴

とする請求の範囲第115項に記載の方法。

- 119. 疎水性ポリマージオールは、ポリカプロラクトン、ポリラクチド、ポリ グリコライド、及びポリ乳酸ポリグリコール酸共重合体からなる群から選択され ることを特徴とする請求の範囲第118項に記載の方法。
- 120. 第2のポリマージオールは、親水性ポリマージオールであることを特徴とする請求の範囲第115項に記載の方法。
- 121. 親水性ポリマージオールは、ポリエチレングリコール、ポラキソマー、 及びポリ(酸化プロピレン)からなる群から選択されることを特徴とする請求の 範囲第120項に記載の方法。
- 122. 第1のポリマージオールは、親水性ポリマージオールであることを特徴とする請求の範囲第115項に記載の方法。
- 123. 第2のポリマージオールは、疎水性ポリマージオールであることを特徴とする請求の範囲第122項に記載の方法。
- 124. 多官能エポキシドとBAS型三ブロック共重合体を反応させ、エポキシド末端キャップBAS型三ブロック共重合体を形成するステップをさらに含

むことを特徴とする請求の範囲第115項に記載の方法。

- 125. 生物活性剤をエポキシド末端キャップBAB型三ブロック共重合体に共有的に付着させるために、エポキシド基と反応する少なくとも1つの官能基を有する生物活性剤をエポキシド末端キャップBAB型三ブロック共重合体と反応させるステップをさらに含むことを特徴とする請求の範囲第124項に記載の方法
- 126. ステップ(b)及び(c)を反復し、多ブロック共重合体を形成することを特徴とする請求の範囲第115項に記載の方法。
- 127. 多ブロック共重合体を多官能エポキシドと反応させ、エポキシド末端キャップ多ブロックポリマーを形成するステップをさらに含むことを特徴とする請求の範囲第126項に記載の方法。
- 128. 反応性多ブロック共重合体を洗浄し又は反応させてさらなるエポキシド 反応性をブロックすることを特徴とする請求の範囲第127項に記載の方法。

多ブロック共重合体の組成クレーム

- 129. エポキシ連結により結合された疎水性及び親水性セグメントを有し、ヒドロキシ末端又はエポキシド末端化され、ゲル浸透クロマトグラフィー及び固有粘度により測定された分子量が約6,000~100,000である多ブロック共重合体。
- 130. 疎水性セグメントは、ポリカプロラクトン、ポリラクチド、ポリグリコライド、ポリ乳酸ポリグリコール酸共重合体、生分解性ポリウレタン、ポリ酸無水物、及びポリアミノ酸からなる群から選択されることを特徴とする請求の範囲第129項に記載の多ブロック共重合体。
- 131. 親水性セグメントは、ポリエチレングリコール、ポラキソマー、及びポリ (酸化プロピレン) からなる群から選択されることを特徴とする請求の範囲第129項に記載の多ブロック共重合体。
- 132. ABA、BAB、多ブロック(AB)n又は(BA)n型ポリマー、及びその組合せであって、Aブロックはポリカプロラクトンであると共に、Bブロックはポリエチレングリコール、ポラキサマー、及びポリ(酸化プロピレン)からなる群から選択されることを特徴とする請求の範囲第129項に記載のポリマー。
- 133. 疎水性及び/又は親水性セグメントは拡大され、すなわち、多分子がエポキシ連結により結合されていることを特徴とする請求の範囲第129項に記載のポリマー。
- 134. エポキシ連結により結合した交互に疎水性ポリカプロラクトンセグメント及び親水性ポリエーテルセグメントを有するヒドロキシ末端ポリ(ε -カプロラクトン)-ポリエーテルポリマー。
- 135. HO-PEG-EX252-PCL-EX252-PCL-EX252-PEG-OHであるブロック共重合体。
- 136. HO-F68-EX252-PCL-EX252-PCL-F68-O Hであるブロック共重合体。
- 137. HO-PCL-EX252-F68-EX252-PCL-OHである ブロック共重合体。

138. HO-PCL-EX252-PEG-EX252-PCL-OHであるブロック共重合体。

139. HO-PCL-EX252-PPO-EX252-PCL-OHである ブロック共重合体。

140. ナノ微粒子を含むことを特徴とする請求の範囲第125項に記載の多ブロック共重合体。

使用例の方法

再狭窄

1 4 1. 介入性処置又は疾患の結果としての血管損傷後における再狭窄を予防する方法において、

平均径が約300nm未満である生体適合性・生分解性ポリマーコアを含むナノ微粒子であって、少なくとも1つの生物活性剤及び/又は少なくとも1つの表面改質剤を随伴又は包含している該ナノ微粒子を、損傷性介入の処置前、処置中、又は処置後、血管壁に加圧して注入するステップを含むことを特徴とする方法。

- 142. 圧力は少なくとも 1 atm であり、好ましくは $3\sim 6$ atm であることを特徴とする請求の範囲第 141 項に記載の再狭窄を予防する方法。
- 143. 注入するステップは、カテーテルで実施することを特徴とする請求の範囲第141項に記載の再狭窄を予防する方法。
- 144. ナノ微粒子を注入するステップの前又は該ステップと同時に高張性溶液で血管壁に浸透圧ショックを誘導するステップをさらに含むことを特徴とする請求の範囲第141項に記載の再狭窄を予防する方法。
- 145. 生体適合性・生分解性ポリマーは、ポリエステル、ポリエーテル、ポリ 酸無水物、ポリアルキルシアノアクリレート、ポリアクリルアミド、ポリ(オルトエステル)、ポリホスファゼン、ポリアミノ酸、及び生分解性ポリウレタンか らなる群から選択されることを特徴とする請求の範囲第141項に記載の再狭窄 を予防する方法。
- 146. 生体適合性・生分解性ポリマーは、アラビアゴム、キトサン、ゼラチン

、デキストラン、アルブミン、及びアルギン酸/デンプンからなる群から選択されることを特徴とする請求の範囲第141項に記載の再狭窄を予防する方法。

147. 生物活性剤は、平滑筋阻害剤、収縮作動筋の受容体遮断薬、ナトリウム

/水素アンチポーターの阻害剤、蛋白質阻害剤、ニトロ血管拡張薬、ホスホジエステラーゼ阻害剤、フェノチアジン、生長因子受容体拮抗薬、抗有糸分裂剤、免疫抑制剤、アンチセンスオリゴヌクレオチド、及びプロテインキナーゼ抑制剤からなる群から選択されることを特徴とする請求の範囲第141項に記載の再狭窄を予防する方法。

- 148. 生物活性剤は、サイトカラシンであることを特徴とする請求の範囲第1 47項に記載の再狭窄を予防する方法。
- 149. ナノ微粒子は少なくとも1種類の表面改質剤をさらに含むことを特徴とする請求の範囲第141項に記載の再狭窄を予防する方法。
- 150. 表面改質剤は、1種類以上の合成ポリマー、生体ポリマー、低分子量オリゴマー、天然物、及び界面活性剤からなる群から選択されることを特徴とする 請求の範囲第149項に記載の再狭窄を予防する方法。
- 151. 表面改質剤は、フィブリノーゲン及び/又はDMABであることを特徴とする請求の範囲第150項に記載の再狭窄を予防する方法。
- 152.ナノ微粒子は、約0.1mg/ml以下~300mg/mlの濃度範囲、好ましくは5~30mg/mlの濃度範囲で血管内投与に適した懸濁化媒体で懸濁されることを特徴とする請求の範囲第141項に記載の再狭窄を予防する方法。

骨治療

- 153. 核酸セグメントを骨先祖細胞に転移する方法において、骨先祖細胞を有する組織部位に核酸含有ナノ微粒子含有核酸を注入するステップであって、該ナノ微粒子は、平均径が約300nm未満であると共に、少なくとも1個の核酸及び/又は少なくとも1種類の表面改質剤を随伴又は包含する生体適合性・生分解性ポリマーコアを含むことを特徴とする方法。
- 154. 核酸は、骨形態発生蛋白質(BMP2及び4など)、燐蛋白質、オステオネクチン、オステオポンチン、骨シアル蛋白質、ビタミンーk依存蛋白質、

糖蛋白質、及びコラーゲン(少なくとも I 及びII)からなる群から選択される骨指向遺伝子又は遺伝子セグメントであることを特徴とする請求の範囲第153項に記載の方法。

- 155. 表面改質剤は、1種類以上の合成ポリマー、生体ポリマー、低分子量オリゴマー、天然物、及び界面活性剤からなる群から選択されることを特徴とする請求の範囲第153項に記載の方法。
- 156. ナノ微粒子注入は、注入領域への適用後に懸濁化媒体ゲルに保持されることを特徴とする請求の範囲第153項に記載の方法。
- 157. 懸濁化媒体は、ゲルがポロキサマー、I型コラーゲン又はプロコラーゲン、ヒドロゲル、シアノアクリレート、及びフィブリン膠剤からなる群から選択されることを特徴とする請求の範囲第156項に記載の方法。
- 158. 懸濁化媒体は、少なくとも1つの骨伝導塩をさらに含むことを特徴とする請求の範囲第156項に記載の方法。

【発明の詳細な説明】

表面改質ナノ微粒子並びにその製造及び使用方法

発明の背景

発明の分野

本発明は、持続放出薬物送達システム及びその製造方法に関する。さらに詳しくは、本発明は、生物活性剤の標的送達用の表面改質された生分解性ナノ微粒子、ナノ微粒子の製造方法、ナノ微粒子の製造のための新規なポリマー組成物、及びその使用方法に関する。

関連技術の説明

血管疾患、あるいは癌又は感染症などほかの局所疾患用治療薬の部位特異的送達は、薬物の全身投与では困難である。経口投与、又は末梢静脈内注射された薬物は、患者の体全体にわたって分布し、また代謝を受ける。所望部位に達する薬物の量は多くの場合、大きく減少する。したがって、大量の治療薬を投与する必要があり、これにより多くの場合、不快で望ましくない全身の副作用を来す。したがって、局所疾患を治療するために局所適用が可能な薬物送達システムが必要である。

多くの場合、治療薬の血管内投与には、技術上大きな進歩が認められる。しかし、血管内薬物送達システムの開発には特別な配慮が必要である。例えば、血管内薬物送達システムが凝固や血栓発生の原因となってはならない。さらに、血管系中の一定した血流により薬物は急速に希釈する。したがって、血管内を安全に送達することができると共に、投与部位に保持され、一定時間にわたって治療薬を放出することができる薬物送達システムが必要である。

従来技術の上述した欠点あるいは他の欠点は、注射可能な微小粒子、とくにナ

ノ微粒子で克服することができる。ナノ微粒子は細胞に侵入し、細胞内接合部に 浸透することができる。しかし、これまで、血管壁やその周囲組織内の細胞外基 質など注射部位における微小粒子の付着を強化し、薬物保持を促進するために、 微小粒子に抗トロンボゲン形成特性又は細胞付着特性を付与する方法は成功して いない。 治療薬の血管内投与のための生分解性持続放出ナノ微粒子は、例えば再狭窄など心血管疾患の治療においてきわめて重要とみられる。血管形成術後の冠動脈又はほかの血管の再閉塞は、一般に再狭窄と呼ばれている。典型的には、血管形成術の6カ月以内に、処置冠動脈病変の約30%~50%には再狭窄が認められる。再狭窄の原因となる処置は、先在する動脈疾患を背景とした動脈壁損傷後の急性血栓症の併発を伴いがちである。再狭窄を緩和及び/又は予防する部位特異的治療に有効な活性剤の種類は広範囲に及び、抗トロンボゲン形成剤、生長因子、DNA、オリゴヌクレオチド、抗血小板薬、免疫調節物質、平滑筋細胞抑制剤、サイトカイン、抗炎症薬、及び抗アテローム性動脈硬化薬(例えば、抗脂質薬又は抗石灰化薬)が含まれる。

さまざまな薬物送達方法が再狭窄を予防する薬理学的介入のために考案されている。このような方法のひとつとして、血管の外側における制御放出ポリマー製剤からなる外膜周囲薬物送達システムの侵襲的配置があげられる。薬物ポリマー被覆を有する膨張式バルーン血管形成ステントについても検討されている。しかし、ステント装置は、ステント血管形成術を必要とする条件下の使用に限界があり、またシステムに含めることができる薬物やポリマーの量がステントを構成するストラットやワイヤの表面積にたいして限界があるという不利な点を有する。再狭窄を予防するもうひとつの既知の方法は、再狭窄の原因となる事象を遅らせるための関連薬物の分節動脈注入を含む領域薬物療法である。既知のシステムにより達成された結果は、血流による薬物の急速な洗い出しによりあまり効果的でない。このため、血管系などの部位へのさまざまな治療薬すなわち生物活性剤の

局所、領域及び/又は標的投与のための持続放出薬物送達装置が必要である。も ちろん、同じ必要性は、遺伝子治療、癌治療、限局性感染及び炎症性反応の治療 、及び診断的造影など多くの多様な適用において存在する。

持続放出薬物送達装置の開発においてみられる問題のひとつは、治療薬のマト リックス又は貯留物として用いるのに適した生体適合性・生分解性ポリマーを発 見することであった。さまざまな生分解性ポリマーが合成され、医療の現場にお いて用いられている。しかし、こうした生分解性ポリマーのほとんどは、持続放 出薬物送達システム、とくにナノ微粒子の製造に適していない。一般的に使用されているポリマーは、ポリ乳酸ポリグリコール酸共重合体(PLGA)というポリエステルである。PLGAは生体適合性であるが、比較的急速に分解する。このため、長期持続放出薬物送達システム用としてのPLGAの使用には限界がある。また、PLGA上のヒドロキシ基の数が少ないため、大量の生物活性剤をポリマー鎖に化学的に結合することは困難であった。したがって、関連生物活性剤とのその後の化学的調製及び/又は連結のために、PLGA、及びほかの非反応性ポリマーにさらに反応性の官能基を供給する手段が必要である。また、長期生分解性を有する生体適合性ポリマーのための技術上の必要性もある。

医療分野で使用される別の生分解性ポリマーであるポリカプロラクトンは、長期持続放出能を有する。事実、ポリカプロラクトンは、ステロイドなど疎水性薬剤を取り込む避妊システムに使用されている。残念ながら、ポリカプロラクトンは親水性薬剤、又は急速放出適用には有効ではない。ポリカプロラクトンはまた、そのポリマーを誘導化、すなわち化学的に修飾するために使用可能な反応性官能基をも欠いている。そうした疎水性ポリカプロラクトンブロックを含むが、より望ましい親水性特性、急速な生分解性、及びさらなる誘導化の可能性(例えば、反応性エポキシ基の添加による)をも包含する新しい生分解性ポリマーを形成することが有利とみられる。

一部の研究者は、アルコール型開始剤としてポリグリコールを用いたラクトン

単量体の重合化を開始することにより、ポリラクトンポリエーテルブロック共重合体を合成している。しかし、この方法では、親水性セグメントがブロック共重合体の中央にあるBAB型ブロック共重合体が形成されてしまう。さらにこの方法には低分子量のポリマーしか形成できないという不利な点がある。そこで、ブロック共重合体の疎水性及び分子量を望んだ通りに調整できるように、ABA、BAB、ならびに(AB)。型において疎水性共重合体ブロックと親水性共重合体ブロックを化学的に結合する方法が必要である。さらに、ヘパリン、アルブミン、ワクチン、あるいはほかの関連生体分子への結合など、化学修飾を簡単に行うために、両末端上にヒドロキシ基などの反応性官能基を有するブロック共重合体

に対する大きな必要性がある。

したがって、本発明の目的は、さまざまな治療薬又は生物活性剤の局所及び/ 又は標的投与のための生体適合性・生分解性持続放出薬物送達システムを提供することである。

本発明の別の目的は、血管系を通じて、又はほかの介入手段によりアクセスできる部位でのカテーテルによる局所薬物送達のための持続放出薬物送達システムを提供することである。

また、本発明の目的は、生体適合性・生分解性ポリマー、及びとくにナノ微粒 子を含む持続放出薬物送達システムを製造する方法を提供することでもある。

さらに、本発明の目的は、標的能、保持能、抗トロンボゲン形成等に関して改善された特性を有する生体適合性・生分解性ナノ微粒子を含む持続放出薬物送達システムを製造する方法を提供することである。

また、本発明の目的は超小型ナノ微粒子(例えば、直径 $20\sim35$ n m)を製造する方法を提供することである。

また、本発明の目的は、持続放出薬物送達システムの製造に適した疎水性及び 親水性を有する改善された生体適合性・生分解性ポリマーを提供することである

さらに、本発明の目的は、化学修飾及び/又は関連生物活性剤との結合に適し

た表面上の反応性官能基を有する改善された生体適合性・生分解性ポリマーを提供することである。

また、本発明のもうひとつの目的は、そのほかの場合は比較的不活性である生体適合性・生分解生ポリマーに反応性を付与し、又は活性化する方法を提供することである。

発明の要約

上述した目的又はそのほかの目的は、ナノ微粒子、好ましくは表面改質ナノ微粒子を含む持続放出薬物送達システムを提供する本発明により達成される。ナノ微粒子は、生分解性・生体適合性ポリマー又は生体材料のコアである。本発明によるナノ微粒子の平均径は、典型的には約300nm未満であり、好ましくは1

00nm \sim 150nmであり、さらに好ましくは10nm \sim 50nmであって、そのサイズの分布の幅が狭いものである。

ポリマーのコアは、当該ナノ微粒子コアを含むポリマーマトリックスに取り込まれ、埋めこまれ、混入し、又はその一部をなす生物活性又は生物不活性の剤又は剤の組合せを有することができる。取り込まれた生物活性剤は、ポリマーが加水分解あるいは溶解して生分解するにしたがって放出される。また、ポリマーコアの表面に付着する表面改質剤も典型的には生物活性である。例えば、表面改質剤には、所望部位にナノ微粒子を標的する上で(例えば、抗体として)又は所望部位にナノ微粒子を保持する上で(例えば、細胞接着剤として)役立つものがある。

本明細書で用いられる場合には、「生体適合性ポリマー」又は「生体材料」という用語は、生物の体内にとどめた形での使用に適しているとして知られ、又は知られるようになった合成材料又は天然由来ポリマー材料を指し、すなわち、生物学的に不活性であって、生理学的に許容可能であり、非毒性であると共に、本発明の持続放出薬物送達システムにおいては、使用環境において生分解性又は生

物侵食性であり、すなわち、体により再吸収されうるものである。

本発明の実施における使用に適した生体材料の例として、アラビアゴム、キトサン、ゼラチン、デキストラン、アルブミン、及びアルギン酸/デンプンなどの 天然由来ポリマーのほか、疎水性又は親水性の合成ポリマーがあげられる。

限定されるものではないが、ナノ微粒子を調製するために使用できる生体適合性生分解性合成ポリマーとして、ポリ乳酸、ポリグリコール酸、及びポリ乳酸ポリグリコール共重合体(PLGA)などのポリエステル;ヒドロキシ末端ポリ(
εーカプロラクトン)ーポリエーテル又はポリカプロラクトン(PCL)などのポリエーテル;ポリ酸無水物、nーブチルシアノアクリル酸などのポリアルキルシアノアクリル酸、ポリアクリルアミド、ポリ(オルトエステル)、ポリホスファゼン、ポリアミノ酸、及び生分解性ポリウレタンがあげられる。ポリマーという用語は共重合体及びオリゴマーを含むと解釈されると理解される。

好ましい実施例において、生体適合性・生分解性合成ポリマーは、ポリ乳酸ポ

リグリコール酸共重合体(PLGA、バーミンガム・ポリマー社、アラバマ州、バーミンガムより入手可能)である。例えば、PLGAは、FDA承認され、現在、外科的縫合に使用されている。また、PLGAは、広範囲な分子量のものが市販されており、さまざまな生分解特性が得られる。本発明の実施における使用に適したPLGAの分子量は、約30,000~700,000の範囲であり、典型的には30,000~90,000であって、固有粘度の範囲は0.5~10.5である。

本発明の別の好ましい実施例において、生体適合性・生分解性合成ポリマーは、ポリカプロラクトンであり、詳しくは、疎水性及び親水性セグメントを含む新規なポリカプロラクトン系多ブロック共重合体である。とくに好ましい実施例において、多ブロック共重合体は、以下にさらに完全に述べる通り、エポキシ誘導化され表面活性化されている。

本明細書で使用される場合、「生物活性剤」という用語は、生物系の正常及び

病的行動に影響を及ぼす性質を有する、天然もしくは合成の化合物、又は化合物の組合せを意味する。生物活性は治療的、診断的、予防的、美容的、栄養的などの意味がある。場合により、この生物活性剤は広義には生物不活性であってもよく、賦形剤や充填剤、1種類以上の他の生物活性剤と共に又は協同して作用するアジュバント、あるいは以下でさらに完全に規定する通り、表面改質剤である場合もある。

もちろん、「生物活性剤」という用語には薬剤が含まれ、単独又はほかの薬剤 及び/又は生物活性剤との組合せが含まれる。

本発明の好ましい実施例において、薬剤は心血管剤であり、詳しくは、血管平滑筋細胞の再狭窄の治療に有効である心血管剤である。心血管剤は、血小板由来生長因子、内皮細胞生長因子、線維芽細胞生長因子、平滑筋細胞由来生長因子、インターロイキン1及び6、トランスフォーミング生長因子 $-\beta$ 、低密度リポ蛋白質、血管活性物質(アンギオテンシンII、エピネフリン、ノルエピネフリン、 $-5\,\mathrm{H\,T}$ 、神経ペプチド物質 $P\,\mathrm{\&\,K}$ 、エンドセリン)、トロンビン、ロイコトリン、プロスタグランジン($P\,\mathrm{G\,E}_2$ 、 $P\,\mathrm{G\,L}_2$)、上皮生長因子、腫瘍遺伝子(c

ーmyb、cーmyo、fos)、又は増殖性細胞核抗原などの刺激剤;トランスフォーミング生長因子ー β 、ヘパリン様因子、又は血管弛緩物質などの阻害剤;ヘパリン、ヒルジン、又はヒルログなどの抗トロンビン剤;アスピリン、ジピリダモール、スルフィンピラゾン、サリチル酸、アイコサペンタエン酸、シプロステン、及び血小板糖蛋白質IIb/IIIaなどの抗血小板剤;ニフェジピン、ベラパミル、ジルチアゼムなどのカルシウムチャネル遮断薬、カプトプリル又はシラザプリルなどのアンギオテンシン変換酵素(ACE)阻害剤、ステロイド又はシクロスポリンなどの免疫抑制薬;魚油;アンギオペプチン又はトラジピルなどの生長因子拮抗物質;サイトカラシンなどの細胞骨格抑制剤;デクサメタゾンなどの抗炎症薬、ストレプトキナーゼ又はウロキナーゼなどの血栓溶解薬;及びコルヒチン又はU-86983(アップジョン社、ミシガン州、カラマズー、以下

「U86」)などの抗増殖剤、心血管疾患のDNA又はアンチセンス治療に適した遺伝子材料;スタウロスポリンなどの蛋白質キナーゼ抑制剤、サイトカラシン、スルアミンなどの平滑筋遊走及び/又は収縮抑制剤、及びニトログリセリンなどの硝酸性酸化物放出化合物、もしくはその類似物又は官能同等物があげられる。再狭窄の治療に対するとくに好ましい実施例において、生物活性剤は細胞骨格抑制剤、サイトカラシンBである。

もちろん、心血管疾患のDNA治療又はアンチセンス治療のための遺伝子材料は特に含まれる。具体例には、血小板由来生長因子、トランスフォーミング生長因子(α 及び β)、線維芽生長因子(酸性及び塩基性)、アンギオテンシンII、ヘパリン結合上皮生長因子様分子、インターロイキン-1(α 及び β)、インターロイキン-6、インスリン様生長因子、腫瘍遺伝子、増殖性細胞核抗原、細胞付着分子、及び血小板表面抗原がある。

さらに本発明のほかの態様において、生物活性剤は、破傷風、コレラ毒、ブドウ球菌性エンテロトキシンB、百日咳、肺炎球菌、ブドウ球菌及び連鎖球菌の抗原、あるいは、大腸菌(腸病原性)を含む細菌性ワクチンなどの蛋白質又はペプチド系のワクチン;並びにすべてのAIDS抗原、ウイルス蛋白質(例えば、インフルエンザウイルス蛋白質、アデノウイルスなど)、ナイクロカプセル内の生

ウイルス(例えば、弱毒化ポリオウイルス)、肝炎ウイルス成分、及びロタウイルス成分などのウイルスワクチン蛋白質;ウイルス性及び細菌性多糖類;及びDNA系のワクチンである。とくに好ましい態様において、蛋白質系のワクチンは、破傷風トキソイドである。

癌治療に対するほかの態様において、生物活性剤は抗癌剤であり、詳しくはメクロルエタミン、シクロホスファミド、イホスファミド、メファラン、クロラムブシル、ヘキサメチルメラミン、チオテパ、ブスルファン、カルムスチン、ロムスチン、セムスチン、ステプトゾシン、ダカルバジンなどのアルキル化剤;メトトレキサート、フルオロウラシル、フロクスウリジン、シタラビン、メルカプト

プリン、チオグアニン、ペントスタチンなどの抗代謝剤;アルカロイド(例えば、ビンブラスチン又はビンクリスチン)、毒素(例えば、エトポサイド又はテニポサイド)、抗生物質(例えば、ダクチノマイシン、ダウノルビシン、プレオマイシン、プリカマイシン、ミトマイシン)、及び酵素(例えば、L-アスパラギナーゼ)などの天然物、インターフェロンーαなどの生体応答改変物質、副腎脂質(例えば、デキサメタゾン)、プロゲスチン、エストロゲン、抗エストロゲン、アンドロゲン、ゴナドトロピン放出ホルモン類似物などのホルモン及び遮断薬;シスプラスチン、ミトキサントロン、ヒドロキシ尿素、プロカルバジン又は副腎脂質抑制剤(例えば、ミトタン又はアミノグルテチミド)など種種雑多な薬剤である。ほかの例として、とくに、Rb及びP53、サイトカイン産生遺伝子、腫瘍壊死因子αーcDNA、胎児性癌抗原遺伝子、リンホカイン遺伝子、毒素媒介遺伝子治療、及びE6及びE7遺伝子のアンチセンスRNAなど腫瘍抑制遺伝子などを含む抗癌遺伝子があげられる。

本発明の実施に有効な生物活性剤として、限定されることなく、凝固因子(プロトロンビン)、サイトカイン(血小板由来生長因子、線維芽細胞生長因子)、細胞付着分子(I-Cam、V-Cam、インテグリン)などの酵素;アルブミン、フェリチン、トランスフェリン、カルモジュリンなどの輸送蛋白質;及びアルギニングリシンアラニン(RGDシーケンス)を含有するものなど生物学的に活性なペプチド;核酸(DNA、RNA、オリゴヌクレオチド(センス及びアン

チセンス D N A 及び R N A)、プロタミン、コラーゲン、エラスチン、マトリックス蛋白質(例えば、糖蛋白質、アグリカン、グリカン)などの生体ポリマー、単糖類及び多糖類、デキストラン、寒天、アガロース誘導体、単量体及びポリマー架橋多糖類などの炭水化物;ヘパリン、ヘパラン、硫酸デルマタン、及び関連ポリマーなどのプロトグリカン;燐脂質、コレステロール、トリグリセリド、リポ蛋白質、アポリポ蛋白質などの脂質;界面活性剤、医薬品(とくに、ビスホスホン酸、イオンチャネル剤、及びカルシウムチャネル遮断薬を含む)、造影剤、

及びシアノアクリレート、ポリアミン酸などのポリマーなどを含む合成剤;及び 燐酸カルシウム、ヒドロキシアパタイト、燐酸オクタカルシウム、燐酸トリカリ シウム、又は塩化第二鉄、アルミナ、塩化アルミニウム、又は亜鉛、マグネシウ ム、又はコバルトの塩などの微量金属といった骨ミネラル形成を誘導する骨誘導 性塩があげられる。

さらに別の態様において、生物活性剤は核酸であり、詳しくは、RNA、DNA、あるいはRNA又はDNA(センス及びアンチセンス)のオリゴヌクレオチドである。とくに、骨形態形成蛋白質(BMP2及び4など)、 $TGF-\beta1-3$ などのトランスフォーミング生長因子、アクチビン、ホスホ蛋白質、オステオネクチン、オステオポンチン、骨シアロ蛋白質、オステオカルチン、ビタミンK依存蛋白質、糖蛋白質、及びコラーゲン(少なくともI及びII)などの骨指向性遺伝子又は遺伝子セグメントがあげられる。

本明細書で使用される場合、「表面改質剤」という用語は、以下の機能の1種類以上を実施するように、ナノ微粒子の表面を変化させる性質を有する生物活性剤となりうる化学的又は生物学的化合物と規定される。すなわち、生物系の組織又は細胞にナノ微粒子を結合させること、投与部位における保持を含むナノ微粒子の持続放出特性を強化すること、ナノ微粒子に取り込まれた生物活性剤を保護すること、抗血栓溶解効果を付与すること、懸濁性を改善すること、及び凝集を予防することである。

表面改質剤には、限定されることなく、さまざまな合成ポリマー、生体ポリマー、低分子量オリゴマー、天然物、及び界面活性剤が含まれる。

表面改質剤として有用である合成ポリマーとして、カルボキシメチルセルロース、セルロース、酢酸セルロース、フタル酸セルロース、ポリエチレングリコール(カルボワックス)、ポリビニルアルコール(PVA)、フタル酸ヒドロキシプロピルメチルセルロース、ヒドロキシプロピルセルロース、カルボキシメチルセルロースのナトリウム塩又はカルシウム塩、非結晶性セルロース、(BASF

ニュージャージー州、パーシパニーより入手可能な)酸化エチレン及び酸化プロピレンのブロック共重合体であるプルロニック(登録商標)F68又はF127などのポラキソマー、ポロキサミン(テトロニック908等)、デキストラン、ジメチルアミノエチルデキストラン(DEAEデキストラン)などのデキストランの混合物である膨潤可能ヒドロゲル、ポリビニルピロリドン、ポリスチレン、及びベントナイト又はビーガムなどの珪酸塩があげられる。

天然物として、アラビアゴム、ゼラチン、カゼイン、アルブミン(オボアルブミン、ヒトアルブミン等)、ミオグロビン、ヘモグロビンなどの蛋白質及び脂質、及びソルビトール又はマニトール、多糖類(例えば、フィコール)、及びペクチンなどの糖類があげられる。とくに、レシチン、燐脂質、コレステロール、蜜ろう、羊毛脂肪、スルホン化油、及びロジン石鹸などさまざまな脂質が含まれる。

本発明の範囲にとくに考えられる蛋白質及び脂質として、血管平滑筋結合蛋白質、たとえば、単クローン抗体及び多クローン抗体、抗体のF(ab')2、Fab'、Fab、及びFv断片、生長因子、サイトカイン、ポリペプチドホルモン、細胞外マトリックス受容体を認識する巨大分子(インテグリン及びフィブロネクチン等)、細胞外糖蛋白質(例えば、テナスチン)、コラーゲン、細網、又は弾性線維に親和性を有するペプチドなどの細胞内ストロマ及びマトリックス局在のためのペプチドがあげられる。

癌治療に関する態様において、例えば、表面改質剤として、あるリンパ腫(m y c)、結腸癌(r a s)、癌腫(e r b B)、腺癌(Δ + ン)、乳癌及び肝癌(I L - 6 受容体)、乳癌(E G F 、T G F)などの癌腫にそれぞれ局在するm

yc、ras、bcr/Abl、erbB、 Δ チン、サイトカイン受容体(たとえば IL-6、EGF、TGF、myc)のエピトープと結合する腫瘍細胞結合蛋白質があげられる。

免疫化に対する態様において、表面改質剤として、コレラトキシン又はトキソイドなどのトキシン又はトキソイド、又はその取り込みを強化したり、免疫原性

を増大する同じB鎖の断片があげられる。ほかの表面改質剤として、とくに、ムラミルジペプチド、ブロック共重合体(例えば、プルロニック)、脂質A、及びエントラップドワクチンのワクチン抗原など免疫刺激剤があげられる。

表面改質剤として有効な実例としての非イオン性界面活性剤は、ポリオキシエ チレンソルビタン脂肪酸エステル(ヘラクレス社、デラウェア州、ウィルミント ン、Tweenの商標で市販)、ソルビタン脂肪酸エステル(ヘラクレス社、S panの商標で市販)、セチルアルコール又はステアリルアルコールなどの脂肪 アルコール、スルホン酸アルキルアリルポリエステル(シグマ・ケミカル社、ミ ズーリー州、セントルイス、Triton Xの商標で市販)スルホンコハク酸 ナトリウムのジオクチルエステル(アトラス・パウダー社、デラウェア州、ウィ ルミントン、Aerosol OT (登録商標)の商標で市販)があげられる。 陰イオン界面活性剤として、ドデシル硫酸ナトリウム、脂肪酸のナトリウム塩及 びカリウム塩(オレイン酸ナトリウム、パルミチン酸ナトリウム、ステアリン酸 ナトリウム等)、ステアリン酸ポリオキシル(Mryj (登録商標)、アトラス ・パウダー社)、ポリオキシエチレンラウリルエーテル(Brij(登録商標) 、アトラス・パウダー社)、セスキオレイン酸ソルビタン(Aracel(登録 商標)、アトラス・パウダー社)、トリエタノールアミン、パルミチン酸、ステ アリン酸などの脂肪酸、及びモノステアリン酸グリセロールなど脂肪酸のグリセ ロールエステルがあげられる。陽イオン界面活性剤の例として、臭化ジドデシル ジメチルアンモニウム(DMAB)、臭化セチルトリメチルアンモニウム、塩化 ベンザルコニウム、塩化ヘキサデシルトリメチルアンモニウム、ジメチルドデシ ルアミノプロパン、エト硫酸NーセチルーNーエチルモルホリニウム(アトラス G-263、アトラス・パウダー社)があげられる。

前記の生物活性剤及び表面改質剤は単に例としてあげたものである。生体適合性・生分解性マトリックスに包含されうる、及び/又は被覆又は共有付着によるなど、ポリマーの表面に付着されうる生物活性剤及び/又は表面改質剤は、本発

明に包含される範囲である。概括的に言えば、生物活性剤の分類は、薬剤の疎水性/親水性に基づくナノ微粒子にそれらを包含するために用いられる方法によって決まるカテゴリーに分類されている。

本発明による方法の態様にしたがって、ナノ微粒子は、包含される生物活性剤が疎水性であるか親水性であるか、あるいはDNA含有剤など蛋白質/ペプチドに基づく親水剤であるかどうかにより、単一(水中油)又は多層乳化(水中油中水)を用いた、本明細書中で総称的に「溶媒中乳化蒸発」と呼ばれる方法により調製することができる。半極性生物活性剤については、極性溶媒と無極性溶媒の組合せを用いた共溶媒系を用いて、単一有機相を形成し、この生物活性剤と、水相で乳化された場合に水中油型エマルジョンを形成するポリマーの両方を溶解する。

疎水性生物活性剤については、ポリマー及び疎水性活性剤は有機溶媒中で溶解する。この有機溶液を、洗剤、界面活性剤、又はほかの乳化剤の水溶液に1滴ずつ添加し、音波処理(30秒~20分間、好ましくは約10分間にわたり15~65Wエネルギー出力)により、安定したエマルジョンを形成する。音波処理は、ポリマーを融解させないように、氷浴上で行われる。乳化剤は典型的に約0.1%~10%w/v、好ましくは1%~3%w/v の量で水溶液中に存在する。有機溶媒はエマルジョンから蒸発する。ナノ微粒子は、遠心分離、又は好ましくは超遠心分離(120,000~145,000G)により残った水相から分離し、水で洗浄し、再度遠心分離し、傾斜する。

洗浄したナノ微粒子は音波処理(たとえば、氷浴上で1分間、65W)により水中に再懸濁し、一部の態様においては、貯蔵及び/又はその後の処理のために凍結乾燥する。凍結乾燥は、最初に30~60分間、ドライアイス上でナノ微粒子懸濁液を凍結し、次に少なくとも24~48時間にわたり500ミリトル以下の真空下に約-30 $^{\circ}$ ~~-55 $^{\circ}$ の温度で凍結乾燥機(たとえばモデルFM3S

Lプラス、ザ・ビルティス社、ニューヨーク州、ガーディナーが販売) において

凍結乾燥することにより行う。本明細書における具体的な実施例において、凍結乾燥は、 $24\sim48$ 時間、-550つ温度で551リトルの真空下に行った。凍結乾燥したナノ微粒子は無水環境において40で保存する。

ナノ微粒子は、水がポリマーを侵食しうる程度まで乾燥した形態で保存する。 ナノ微粒子は、従来技術において知られる y 線(2.5 M r a d)又は電子ビー ム技術などの放射線により滅菌することができる。代替案においては、ナノ微粒 子は滅菌成分を用いた滅菌環境下に調製してもよい。もちろん、ナノ微粒子を滅 菌するほかの手段を用いることができる。また、ナノ微粒子は室温で、しかし好 ましくは 4 ℃で保存される。

水中油エマルジョン(例えば、実施例1、8、及び20)を作成するための本発明による方法態様の実施に有効な適切な界面活性剤として、限定されることなく、ポリビニルアルコール、Tweenの商標で市販されているポリオキシエチレンソルビタン脂肪酸エステル(ヘラクレス社、デラウェア州、ウィルミントン)、ポリエチレングリコール、オレイン酸トリエタノールアミンなどトリエタノールアミン脂肪酸エステル、オレイン酸ナトリウムなど脂肪酸のナトリウム塩又はカリウム塩、ラウリル硫酸ナトリウム、酢酸セルロース、BASFより入手可能な酸化エチレン及び酸化プロピレンのブロック共重合体であるプルロニック(商標)F68又はF127などのポラキソマー、臭化ジドデシルジメチルアンモニウム(DMAB)など第四級アンモニウム化合物があげられる。油中水エマルジョン(例えば、多層エマルジョン実施例5及び10の第1エマルジョン)を作成するために、ヘラクレス社によりSpanの商標で市販されている脂肪酸のソルビタンエスエル、脂肪アルコール、脂肪酸、及びモノステアリン酸グリセロールなど脂肪酸のグリセロールエステルが好ましい。

親水性生物活性剤用に、共溶媒システムを用いた方法が開発されている。ポリマーは、塩化メチレン、クロロホルム、酢酸エチル、テトラヒドロフラン、ヘキサフルオロイソプロパノール、又はヘキサフルオロアセトンセスキ水和物など無

極性有機溶媒中に溶解する。水溶性生物活性剤は、ジメチルアセトアミド(DMAC)、ジメチルスルホキシド(DMSO)、ジメチルホルムアミド(DMF)、ジオキサン、及びアセトンなど半極性有機溶媒中で溶解する。組み合わると、結果はポリマーと生物活性剤の両方を包含した有機相となる。この有機相は、疎水性生物活性剤の方法について述べたように乳化剤の水溶液中に乳化する。

一部の態様においては、上記有機溶液に剤を添加し、ナノ微粒子の凝固と同時に親水性生物活性剤を有機相に有利に分配することができる。たとえば、パルミチン酸ナトリウムなど脂肪酸塩は、イブチライドなど陽イオン剤と錯体を形成する陰イオン剤であり、イブチライドを強制的に有機相に移行させる。有機相に有利に分配するほかの薬剤として、水相のpHに影響を及ぼしたり、水相の粘度を増大する剤があげられる。有利に分配する薬剤の具体的な例として、限定されることなく、陽イオン脂質及び陰イオン脂質(生物活性剤の投入量に依存)のほか、ポリリシン及びポルアルギニンを含むプロタミン酸又はポリアミノ酸など多価の多陽イオン剤があげられる。

例えば、蛋白質及びワクチン抗原は水溶性が高いが、蛋白質含有ナノ微粒子を 形成するために多層エマルジョン法が開発された。この方法において、水溶性蛋 白質は蒸留水中に溶解し、第1の水相を形成する。ポリマーは、クロロホルム又 は塩化メチレンなど無極性有機溶媒中に溶解する。この蛋白質含有水溶液は音波 処理で有機溶液中に乳化し、油中水一次エマルジョンを形成する。二次エマルジ ョンは、水中油中水エマルジョンを形成する乳化剤の水溶液に一次エマルジョン を乳化することにより形成される。次に有機溶媒を水中油中エマルジョンから蒸 発させる。こうして得られるナノ微粒子を遠心分離で残った水相から分離し、洗 浄し、前述した通り凍結乾燥する。

予備形成された生体適合性・生分解性ナノ微粒子コアの表面を改質し、さまざまな利点を得ることができる。例えば、局所薬物療法の血管内標的のためには、例えば、フィブロネクチンを包含することにより、動脈壁によるナノ微粒子の保

持を強化することが有効であるとみられる。ワクチンとしての使用のためには、 よりよいアジュバント特性のために粒子の免疫原性を強化することが有効とみら れる。この場合、ムラミルジペプチド、インターロイキン-2、脂質Aなど免疫 刺激剤、及びコレラ毒素又はコレラ毒素のB鎖などワクチン抗原は、ナノ微粒子 の表面に包含及び/又は吸着されると考えられる。もちろん、可能性は無数にあ り、例えば、具体的には抗トロンボゲン形成剤及び粘膜接着剤があげられる。

ほかの利点として、細胞、蛋白質、又は基質への標的、包含生物活性剤の保護、及び持続放出特性の強化があげられる。上述した利点のほか、乾燥剤を組み入れることなどにより、表面を改質し貯蔵寿命を増大することができる。さらに、DMABなど界面活性剤又は洗剤、あるいはマニトール、又はスクロースなど糖又は多糖を表面に配置することにより、保存・乾燥したナノ微粒子を使用前に再懸濁する場合の音波処理の必要を緩和することができる。

予備形成されたナノ微粒子の表面改質は、粒子形成の失敗の原因となる化学的 融和性の問題を回避するという点でとくに有利である。方法態様において、予備 形成されたナノ微粒子の表面は、化学結合なしにナノ微粒子に少なくとも1種類 の表面改質剤を吸着、又は物理的に付着させることにより調製することができる

ナノ微粒子に表面改質剤を吸着させるための有利な方法のひとつは、1種類以上の表面改質剤の溶液中にナノ微粒子を懸濁するステップと、懸濁液を凍結乾燥し、ナノ微粒子上に被覆を生成するステップとを含む。この好ましい方法態様において、予備形成されたナノ微粒子は、濃度が約0.5%~15%w/w、好ましくは約5%の蒸留水中表面改質剤の溶液に懸濁する。典型的には、懸濁液は約100mg~1g、本明細書で示した実施例においては、約200mgのナノ微粒子を含む。

本発明のほかの態様において、表面改質剤は予備形成されたナノ微粒子に共有 結合される。本発明の好適な態様において、ナノ微粒子を含むポリマー材料に反 応性エポキシド側鎖を包含する方法が開発されており、これにより反応性側鎖は

さまざまな薬物送達適用のためにほかの関連分子を共有結合させることができる。この方法は、生分解性調製物の薬物送達研究において広く用いられるポリ乳酸ポリグリコール酸共重合体が内在的に反応基を欠き、したがって、誘導化が困難

である限りとくに有効である。

方法態様において、ナノ微粒子は少なくとも部分的に加水分解され、表面上に 反応基を生成し、PLGAの場合には、ヒドロキシ基を生成する。しかし、PL GAの場合には、ポリマー上の反応性官能基は、アミノ、無水物、カルボキシル 、ヒドロキシル、フェノール、又はスルフヒドリルでもよいと理解すべきである 。反応性官能基が生成された後、ナノ微粒子は反応性多官能エポキシド化合物と 接触し、エポキシ活性化ナノ微粒子を形成する。エポキシ活性化ナノ微粒子は、 アミノ、無水物、カルボキシル、ヒドロキシル、フェノール、又はスルフヒドリ ルである生物活性剤上の反応基と化学的に結合する。

本発明の実施に適したエポキシ化合物は、単量体、ポリエポキシド化合物、又はエポキシ樹脂であってもよい。本発明の実施における使用に適した反応性二官能エポキシド又は多官能エポキシドの例として、限定されることなく、エチレンオキシド又は1,2一プロピレンオキシドなど1,2ーエポキシド、ジグリシジルブタンジオールエーテル、エタンジオールジグリシジルエーテル、又はブタンジオールジグリシジルエーテル(アルドリッチ・ケミカル社、ミズーリー州、セントルイスより入手)などブタン及びエタンジグリシジルエーテル、エリトリトール無水物、ナガシケミカル社(日本、大阪)よりデナコールの商標で販売されている多官能エポキシド、エピクロロヒドリン(アルドリッチ・ケミカル社、ミズーリー州、セントルイス)、シグマ・ケミカル社(ミズーリー州、セントルイス)、シグマ・ケミカル社(ミズーリー州、セントルイス)より入手可能な酵素誘導可能エポキシド、及び光重合可能エポキシド(ピアス社、イリノイ州、ロックフォード)があげられる。好ましい態様において、エポキシ化合物は、多官能ポリグリセロールポリグリシジルエーテルであるデナコールエポキシドである。例えば、デナコールEX512は分子当たり4個のエポ

キシドを有し、デナコールEX521は分子当たり5個のエポキシドを有する。 好ましい態様において、ポリマーは触媒の存在下に多官能エポキシド化合物と 接触する。適切な触媒として、第三級アミン、グアニジン、イミダゾール、三フ ッ化ホウ素モノエチルアミンなど三フッ化ホウ素付加物、ビスホスホナート、微 量金属(例えば、Zn、Sn、Mg、A1)、及びPhNH3+AsF6型のアン モニウム錯体があげられるが、これらに限定されるものではない。ほかの態様に おいて、反応は適切な触媒の存在下に、例えば、紫外線により光開始することが でき、触媒は四塩化チタン及びフェロセン、塩化ジルコノセン、四臭化炭素又は ヨードホルムであってもよい。

本発明のさらに別の方法態様において、表面改質剤は、ナノ微粒子を含むポリマーマトリックスの一部として包含することができる。本発明のこの態様の実施例において、生体接着剤、具体的にはシアノアクリレートである包含表面改質剤を有するナノ微粒子は、有機相において、シアノアクリル酸イソブチルなどシアノアクリレート含有ポリマーを含めることにより形成される。溶媒中乳化蒸発法によりナノ微粒子を形成する場合は(実施例14参照)、シアノアクリレートはポリマーコアの一部となる。生体接着効果を付与するほかのポリマーとして、ヒドロゲル及びプルロニックがあげられる。

本発明によるこの態様のさらに別の実施例において、ポリマーコアは新規なエポキシ誘導化・活性化ポリカプロラクトンである。疎水性セグメント及び親水性セグメントを有するブロック共重合体は、少なくとも以下のステップを含む具体的な反応過程においてヒドロキシル末端基とエポキシド基との多重反応により合成される:

- (a) 有機溶媒中に第1のポリマージオールを溶解するステップ;
- (b)溶解した第1のポリマージオールに過剰の多官能エポキシドを添加し、 多官能エポキシドのエポキシド基のひとつを第1のポリマージオールの末端上の ヒドロキシ基と反応させ、エポキシド末端キャップされた第1のポリマー (ブロ

ックA) を形成するステップ;

(c)過剰の第2のポリマージオール(ブロックB)をエポキシド末端キャップされた第1のポリマーブロックAに添加し、ヒドロキシ末端BAB型三ブロック共重合体を形成するステップ。

本発明によるこの態様の実施における使用に適した多官能エポキシドとして、
1, 2-エポキシド、1, 2-プロピレンオキシド、ブタン及びエタンジグリシジルエーテル、エリトリトール無水物、多官能ポリグリセロールポリグリシジル

エーテル、及びエピクロロヒドリンがあげられる。

一部の態様において、第1のポリマージオールは疎水性であり、たとえばポリカプロラクトン、ポリ乳酸、ポリグリコリド、及びポリ乳酸ポリグリコール酸共重合体である。したがって、第2のポリマージオールは親水性である。具体的な親水性ポリマージオールの例として、ポリエチレングリコール、ポラキソマー、及びポリ(プロピレンオキシド)があげられるが、これらに限定されるものではない。別の態様において、第1のポリマージオールは親水性であり、第2のジオールは疎水性である。

第1のポリマージオールの分子量は、第2のポリマージオールとの組合せ前に エポキシド反応により増大し、得られる多ブロックポリマーの物理特性を調節す ることができる点で有利である。さらに、上述した方法ステップを反復し、望ま しい鎖の長さの多ブロックポリマーを生成することができる。好ましい態様にお いて、ヒドロキシ末端ポリマーはさらに多官能エポキシドと反応させ、エポキシ ド末端キャップされたポリマーを形成することができる。本発明に従った多ブロ ック共重合体はエポキシ連鎖により連結される疎水性及び親水性セグメントを有 し、ゲル浸透クロマトグラフィー及び固有粘度により測定された分子量が約6, 000~100,000で、ヒドロキシ末端又はエポキシド末端を有する。

次にエポキシド末端多ブロックポリマーは、アミノ、無水物、カルボキシル、 ヒドロキシル、フェノール、又はスルフヒドリルなどエポキシ基と反応する少な

くとも1個の官能基を有する生物活性剤と反応させることができる。もちろん、 ヒドロキシ末端ポリマーは、ポリマー鎖に存在する末端ヒドロキシ基、又は多官 能エポキシド基のいずれかにより、生物活性剤と反応することができる。

実際にナノ微粒子を使用するために、ナノ微粒子は蒸留水又は生理的 p H 及び 容積モル浸透圧濃度での通常生理的食塩水で懸濁液に再構成することができる。

ほかの適切な懸濁化媒体として、トリグリセド、生理的緩衝剤、血清又は血清 /血漿蛋白質賦形剤、あるいは血清を含むか又は含まない組織細胞培地があげら れる。もちろん、薬剤組成物との併用で技術上公知の種類の賦形剤や添加剤を添 加してもよい。このような賦形剤として、具体的には、複合剤やシクロデキスト ランなどの浸透強化剤のほか、マニトール、ソルビトール、及びフィコールなど の容積モル浸透圧濃度調節剤があげられる。

別の態様において、ナノ微粒子は注射領域に適用後にゲル化する注射可能懸濁化媒体において供給してもよい。例えば、懸濁化媒体は、BASFによりプルロニックの商標で販売されているようなポロキサマー、又は4℃では液体であるが、37℃で凝固するコラーゲン(I型、II型又はプロコラーゲン)であってもよい。このほかの懸濁化媒体の例として、触媒され、水含有ゲルを形成するプレポリマーのアクリルアミドなどのヒドロゲル、シアノアクリレート、及びフィブリン膠剤(注射後にフィブリンに変わるフィブリノーゲン溶液、エティコン、ニュージャージー州、サマーヴィルなど複数の供給元が市販)があげられる。

典型的には、ナノ微粒子は、懸濁液m 1 当たり 0. 1 m g ~ 懸濁液m 1 当たり 1 0 0 m g の 濃度範囲で注射可能な懸濁液中に存在する。例えば、疎水性抗増殖 剤、U 8 6 を含有する態様では、高い量は動脈損傷の原因となるため、m 1 当たり 1 5 m g のナノ微粒子が好ましい上限である。懸濁液中のナノ微粒子により送達される生物活性剤の投与量は、もちろん、過程中に包含される量によって決まる。当業者であれば、有効な投与量及び所望量の投与に必要なナノ微粒子含有懸濁液の量を確認することができるとみられる。ナノ微粒子は、経口または粘膜経

由などほかの経路による投与にも適し、あるいは筋内投与又は皮下投与も可能で あると理解される。

本発明の原則にしたがって製造されるナノ微粒子は、30日以下~6カ月以上の期間に生分解する。持続放出性剤型におけるPCLによる以前の経験に基づき、生分解性ポリマーがPCLである実施例により、3年間までの生物活性剤の持続放出が得られると考えられる。

図面の簡単な説明

本発明の理解は、添付図と共に以下の詳細な説明を読むことにより促進される .

図1は、滅菌化y線に当てられた本発明にしたがって製造されたナノ微粒子からの疎水性生物活性剤、U86のin vitro放出を示す図である。

図 2 は、e x v i v o イヌモデルにおける動脈試料 1 0 m g 当 たりのナノ微粒子を μ g で表した、U 8 6 含有ナノ微粒子の取り込みに対する表面改質及び懸濁媒体の効果を示す図である。

図3は、本発明のU86含有ナノ微粒子の投与後、過膨張カテーテルバルーンによりブタ動脈において誘発された血管の測定値としての総損傷率を表した新血管内膜/媒体面積比(NI/M)の図である。

図4は、ラットにおける3回の血管形成術誘発損傷後のデキサメタゾン含有P LGAナノ微粒子の局所投与後におけるNI/Mで表した、再狭窄の抑制を示す 図である。

図5は、ポリマーナノ微粒子、詳しくはPLGAナノ微粒子のヒドロキシ末端 基にエポキシド化合物を結合するための合成手順、及び得られるエポキシド末端 ポリマーとへパリンとのその後の結合を示す図である。

図6は、放射能により測定され、一定期間(日)にわたって放出された結合へパリン率(%)で表された、図5における化合物25で示した種類のナノ微粒子からのヘパリンのin vitro放出を示す図である。

図7は、親水性ポリエーテルとみられる親水性セグメント及び疎水性PCLセグメントを有するブロック共重合体の製造の反応手順の例を示す図である。

図8~図11は、図7の反応手順例に従ったブロック共重合体、詳しくは、ポリカプロラクトンジオール(PCLージオール)、親水性ポラキソマープルロニックF68(F68)、ポリエチレングリコール(PEG E4500)及び多官能エポキシド(デナコールEX252)それぞれを製造するための開始材料のスペクトルを示す図である。

図12は、エポキシド(EX252)により連結されている疎水性(PCL) 及び親水性(F68)セグメントを有するヒドロキシ末端ブロック共重合体のスペクトルである。

図13は、PCLとPEGのモル比が75:25のエポキシド(EX252) により連結されている疎水性(PCL)及び親水性(PEG)セグメントを有するヒドロキシ末端ブロック共重合体のスペクトルである。

図14は、図13で示した種類のヒドロキシ末端ブロック共重合体のスペクトルであるが、この共重合体のPCLとPEGのモル比は60:40であり、したがって、図13で示した共重合体よりも親水性ポリマーの割合が大きい。

図15は、実施例18にしたがって製造されたヒドロキシ末端PCL/F68/PCLナノ微粒子に残ったアルブミン(BSA)の割合(%)を示す図であり、時間の関数(日)として、PCL/F68/PCLナノ微粒子とBSAとの物理的混合物又は分散中の残ったアルブミンの量と比較した図である。

図16A~図16Cは、一定期間(日)にわたってナノ微粒子に残った結合へパリンの割合(%)で表した表15の三プロック共重合体を含むナノ微粒子に結合したヘパリンの安定性を示す図であり、詳しくは、三プロック共重合体は、拡大PCLホモポリマー(PCL/PCL)、ポリカプロラクトンのヒドロキシ末端ABA三プロック共重合体、及びプルロニックF68(PCL/F68/PCL)であり、

へパリン及び三ブロック共重合体の緊密物理混合物と比較した図である。

図17は、図16の三ブロック共重合体のヘパリン結合ナノ微粒子からの疎水性生物活性剤U86のin vitro放出を示す図であり、PLGAヘパリン結合ナノ微粒子からのU86のin vitro放出と比較した一定期間(日)にわたって放出されたU86の割合(%)で表した図である。

図18は、デキサメタゾンのin vitro放出を示す図であり、図16(表17)の三ブロック共重合体のナノ微粒子についての一定期間(日)にわたって放出された割合(%)を示す図である。

図19は、15%BSA負荷を有し厚さ150 μ mであるABA三ブロック共重合体膜から放出されるアルブミン(BSA)のin vitro放出を示す図であり、一定期間(日)にわたって放出されたBSAの割合(%)で表した図である。

図20は、本発明の方法にしたがって調製されたPLGAナノ微粒子からのサイトカラシンBのin v i t r o 放出を示す図であり、一定期間(日)にわたって放出された総サイトカラシンBの割合(%)で表した図である。

図21は、破傷風トキソイド負荷ナノ微粒子でのラットの皮下免疫化より得られる免疫応答を示す図であり、免疫化後21日及び30日にIgG(µg/ml)で測定され、従来のみょうばん破傷風トキソイド接合体での皮下免疫化後のラットにおける免疫応答と比較した図である。

図22は、本発明にしたがって製造されたDNA(ルシフェラーゼ)含有PLGAナノ微粒子の試料で移入されたCOS細胞におけるルシフェラーゼ活性(CPM/ μ g蛋白質)を示す図である。

発明の詳細な説明

本発明によるナノ微粒子を形成するためには、処理の間液-液界面の界面エネルギーを減少させることが重要である。界面エネルギーの減少により自然発生的

かつ安定なエマルジョンが生じる。界面エネルギーの減少は水性相または有機相 のいずれかまたは両者に適当な乳化剤を添加することによって達成される。

適当な界面活性剤の使用のほかに、2つの液相の体積比(内側相/外側相の比としては1:9が最適であるが、約4.5:5.5までの範囲も適当である)やポリマー及び生物活性剤の濃度といった種々の形成ファクターを最適化することが全体の粒子サイズに貢献する。ホモジナイザーまたはソニケーターなどの使用により乳化処理中に外部エネルギーが入力されると一方の液体の非常に小さい液滴が他の液相中に形成される。有機溶剤を蒸発させるとそれら液滴は固まって本明細書で"ポリマーコア"と呼ぶ小さい固体粒子となる。水性相または有機相のいずれかに溶解されていた生物活性剤はポリマーコアマトリックスの一部分となる。

以下はナノ微粒子の特定の実施例と本発明によるその製造方法である。

I. <u>ナノ微粒子の製造方法</u>

A. 疎水性生物活性剤を組み込む方法

実施例1:

上記した方法によってナノ微粒子の中に疎水性生物活性剤を組み込むため、典型的方法によりポリマー200mgと薬物60mgを有機溶剤たとえば蒸留した塩化メチレン10mlに溶解する。この薬物/ポリマー有機溶液を、予め塩化メ

チレンで飽和され濾過されていた2w/v %水性PVA溶液(平均分子量30,000乃至70,000)40mlに、滴下により1分間かけて添加する(プローブ型ソニケーターからの55ワットのエネルギー出力での音波処理を伴う)。PVA溶液が水に部分的に溶解可能な塩化メチレンで飽和された。というわけは、塩化メチレンは水性相に添加されると直ちにそれが水中に拡散し、その結果として塩化メチレンが薬物/ポリマー溶液から即座にポリマーを分離させるからである。早期沈殿を回避することは比較的均一な粒子サイズ分布を有するエマルジョ

ンの生成を助長する。使用前に P V A 溶液を濾過するのが有益である。なぜならば市販の P V A (Sigma, St. Louis, MO) は微量の水不溶性のポリマー量の P V A 分子(> 7 0, 0 0 0) を含有しているからである。音波処理を 5 5 ワットで全部で 1 0 分間続ける。これにより水中油型エマルジョンが形成される。磁力撹拌板で室温で 1 8 時間撹拌を続けて溶剤を蒸発させた後、ナノ微粒子を 1 4 5, 0 0 0 g で遠心分離して回収する。回収されたナノ微粒子を蒸留水で三回洗い、氷浴上 1 0 m 1 の蒸留水中で音波処理して再懸濁し、そして 1 0 0 ミリトル真空下一6 0 ℃で 4 8 時間凍結乾燥する。この凍結乾燥したナノ微粒子をさらに 4 8 時間デシケータで乾燥しそして使用するまでデシケータ内、 4 ℃の温度で貯蔵する。

実施例2:

PLGA-脂質ナノ微粒子がPLGA130mgを塩化メチレン10mlに溶解して製造された。脂質溶液(4ml;クロロホルム中脂質10mg/mlの濃度でSigma、St.Louis、MOから入手できる)をPLGA溶液に添加して有機相を形成させる。本実施例における脂質は $L-\alpha-$ ジオレオイルホスファチジルエタノールアミンである。この有機相に疎水性薬物を溶解する。本実施例ではこの薬物はU86(60mg)である。この有機相を音波処理によって2.5 w/v %水性PVA40mlに乳化して水中油型エマルジョンを形成した。開放容器中でこのエマルジョンを16時間撹拌して有機溶剤を蒸発させた。140、000gで超遠心分離してナノ微粒子を回収し、水で三回洗って凍結乾燥した。PLGA-脂

質ナノ微粒子が26%のU86負荷でもって約60%の収率で回収された。平均 粒子直径は100±39nmであった。

本実施例においては、脂質である第二の生物活性剤が分配剤と表面改質剤の両方の働きをする。

実施例3:

疎水性薬物であるデキサメタソンが下記の方法でPLGAナノ微粒子の形に製

剤された。

PLGA600mgを塩化メチレン24mlに溶解する。デキサメタソン(200mg)を別にアセトン4mlとエタノール2mlとの混合物に溶解する。このデキサメタソン溶液をポリマー溶液に添加して有機相を形成させる。この有機相を2%PVA120mlに乳化して水中油型エマルジョンを形成する。撹拌板で18時間撹拌して有機溶剤を室温で蒸発させる。これにより形成されたナノ微粒子を超遠心分離によって回収し、水で三回洗い、再懸濁しそして凍結乾燥する。しかして、薬物負荷量が15.5w/w%、平均粒子サイズが約160nmのナノ微粒子が60%の収率で得られた。

実施例110

疎水性剤にかかわる実施例1記載の技法によって、ただし今回は極性溶剤と半極性溶剤とを含有する共溶剤系を使用して、疎水性プロスタグランジン拮抗体(Upjohn, Kalamazoo, MI)であるシプロステンを含有するPLGAナノ微粒子を製造した。

典型的方法で、PLGA300mgを塩化メチレン7mlとアセトン3mlとの混合物に溶解する。別に、シプロステン(70mg)をジメチルアセトアミド3mlに溶解しそしてこの溶液を上記ポリマー溶液と混合して有機相を形成させる。この有機相を一塩基性リン酸ナトリウムでpH4.5に調整した2%PVA30ml中に、エネルギー出力65ワットにセットしたプローブソニケーターを使用して10分間乳化して水中油型エマルジョンを形成する。このエマルジョンを18時間撹拌する。機溶剤を蒸発させ、ナノ微粒子を超遠心分離によって回収し、水で三回洗い、再懸濁しそして凍結乾燥する。pHの調節は薬物の有機相内

への分配を助長して捕捉効率を向上させるためになされたものである。

シプロステン負荷したナノ微粒子は微小な平均粒子サイズを有していた。薬物 負荷 21.6 w/w %において、平均粒子サイズは $97.4 \pm 38 \text{ nm}$ であった。別のナノ微粒子のバッチでは、薬物負荷 15.5 %において、平均粒子サイズは

82. 8 ± 54 n mであった。試験管内放出試験(pH7. 4のリン酸塩緩衝液、37℃)を行ったところ、組み込まれていた薬物は65日および40日までにそれぞれ100%放出された。

標準的試験管内血小板凝集技術を使用して、最初に遊離シプロステンについて薬量一反応曲線を求め、標準ADP誘発血小板凝集に対する遊離シプロステンの阻害能を測定した。この実験における薬剤のIC50はおよそ0.28 μ g/mlであった。濃度0.3乃至30 μ g/mlのPLGAナノ微粒子(実際のシプロステン濃度は、20%薬物負荷であるので、0.06乃至6 μ g/mlである)を37℃に加熱した血小板の多い血漿試料に添加した。血小板阻害効果を1分後に調べた。ポリマーに組み込まれたシプロステンのIC50は0.59 μ g/mlであった。薬物を全く含有していない、対照としてのPLGAナノ微粒子はアゴニストADPに対してプタ血小板の凝集についてなんら明瞭な作用を示さなかった。遊離シプロステンのIC50を、ナノ微粒子に組み込まれたシプロステンの1C50と比較すると、ポリマーに組み込まれた薬物のおよそ39%が試験管内の系内の血小板に対して利用可能であることがわかる。

B. 疎水性生物活性剤を組み込む方法

実施例4:

疎水性生物活性剤、イブチリドをPLGAナノ微粒子に組み込む実施例を以下に示す。

典型的実施例においては、パルミチン酸ナトリウム塩93mgをジメチルアセトアミド2.25m1と塩化メチレン3m1とからなる共溶剤系に溶解して脂肪酸溶液をつくる。この脂肪酸溶液を水浴上(温度<40°C)で透明溶液が形成されるまで加温する。PLGA(275mg)とイブチリド(25mg;脂肪酸:

イブチリドのモル比は5:1)を上記脂肪酸溶液に添加しそして溶液が透明ゲルとなるまで撹拌する。まだ温いうちに、透明ゲル状溶液を塩化メチレンで飽和されたホウ酸塩緩衝液中で調製された2%PVA溶液20ml(50mM、pH

9. 0、ホウ酸の p Hを 5 Nの H C 1 で調整して製造)に添加する。この混合物を 6 5 ワットのエネルギーで 1 0 分間音波処理して水中油型エマルジョンを形成する。このエマルジョンを磁気撹拌板で 1 8 時間撹拌する。ナノ微粒子を 1 4 5 ,000 g で超遠心分離して回収し、蒸留水で三回洗い、水に再懸濁し、そして4 8 時間凍結乾燥する。この実施例では、ナノ微粒子は 6 0 %の収率で得られ、その平均粒子サイズは 1 4 4 n m、薬物負荷は 7 . 4 w/w %であった(表 3 の 試料 2 2)。

分配剤(この場合は陰イオン脂肪酸(パルミチン酸)であるが)はイオン間相 互作用により陽イオン薬物、イブチリドと錯塩を形成する。このようにして形成 された錯塩は疎水性であり、したがって、有機相の中に分配される。錯塩はまた イオン性でもあるので、生体内崩壊の間に再び薬物と脂肪酸に分離しそして薬物 がナノ微粒子から放出される。

共溶剤系中の半極性溶剤/非極性溶剤の割合は薬物とポリマーの溶解性に依存する。この割合はその共溶剤系が薬剤とポリマーの両者を溶解するように調節されるべきである。当技術分野に通常の知識を有する者は与えられた任意の薬剤/ポリマーの組み合わせに対してそれらの極性に基づいて正しい溶剤の組み合わせを選択することができるであろう。

C. タンパク質/ペプチド親水性生物活性剤を組み込む方法

<u>実施例 5</u>:

この実施例のタンパク質、ウシ血清アルブミン (BSA)をナノ微粒子に組み 込むために水中油中水型複エマルジョン技術が使用された。

典型的製造例においては、BSA (50mg)が水500μ1に溶解される。 塩化メチレン5m1に溶解したPLGA (150mg)からなるポリマー溶液を つくる。プローブソニケーターからの65ワットの出力でBSA溶液をポリマー 溶液中に乳化して一次水中油型エマルジョンを形成する。この一次エマルジョン をさらに65ワットで10分間音波処理してPVA溶液(2.5w/w %、40

m1、分子量30,000乃至70,000) に乳化して水中油中水型複エマルジョンを形成する。この複エマルジョンを撹拌板で18時間撹拌して有機溶剤を除去する。ナノ微粒子を超遠心分離により回収し、水で三回洗い、再懸濁し、そして凍結乾燥する。この技術で製造されたBSA含有ナノ微粒子の収率は57%の収率であった。平均粒子直径は160nm、薬物負荷は18w/w%であった。

D. 超微細ナノ微粒子の製造方法

実施例6:

別の好ましい特定の実施例においては、本発明の原理にしたがって、超微細エマルジョン液滴が形成されるよう界面エネルギーを更に一層低減するために開発された共溶剤系を使用して超微細ナノ微粒子が生成される。ここで超微細ナノ微粒子とは平均直径が10mm乃至50mm、より好ましくは20mm乃至35mmである粒子と定義される。この共溶剤系に加えて、ソニケータープローブにより与えられるエネルギー量を35ワットから65ワットまで増加することも、より微細な粒子サイズを得るために役立つ。また、特定の乳化剤、特にDMABの使用が超微細ナノ微粒子の形成に役立つ。他の陽イオン洗剤、特にセチルトリメチルアンモニウムブロマイド(CTAB)、ヘキシルデシルトリメチルアンモニウムクロライド(CTAC)も同様な結果をもたらすことが判明している。

一つの典型的な実施例においては、共溶剤系は非極性有機溶剤たとえば塩化メ チレン、クロロホルムまたは酢酸エチルと半極性有機溶剤たとえばアセトン、ジ メチルスルホキシド (DMSO) またはジメチルアセトアミドとの組み合わせで ある。

ポリラクトン酸ポリグリコール酸共重合体(100mg)と生物活性剤とをジクロロメタンとジメチルアセトアミド(2:3の容量比)からなる有機共溶剤系5mlに溶解して有機相をつくる。この有機相を、65ワットのエネルギー出力を有するプローブソニケーターを使用して、2.0w/v%PVA(分子量9,000-10,000、80%加水分解)を含有する水性相(20ml)内で、

水浴中10分間音波処理して乳化する。このエマルジョンを室温で18時間撹拌する。このあと、そのエマルジョンを分子量カットオフレベルが12,000乃至14,000の透析管を使用して18時間透析する。次いで、粒子を48時間凍結乾燥しそしてデシケータで乾燥する。

実施例6は疎水性剤を超微細ナノ微粒子に組み込む例であるが、この技術は親水性剤に対して適用することができる。実施例5と同様な複エマルジョン技術(水中油中水型)も使用でき、この場合には親水性生物活性剤が水性相に溶解される。

II. 表面改質技術

下記表1は表面改質剤、その使用目的およびそれら表面改質剤をナノ微粒子に 組み込む方法を簡単に示したものの一部のリストである。この表は例示の目的で 示されているものであり、本発明の実施にあたって考慮される表面改質剤の種類 を限定するものではない。当技術分野に通常の知識を有する者は与えられた目的 に適当な改質剤を選択することができるであろう。

表 1

 表面変性剤	ナノ微粒子表面改質の理由	改質 組込みの方法
ヘパリン	抗凝集因子の導入	エポキシドでナノ微粒子に架橋結合
L – α – ホスファチジル エタノールアミン	動脈吸収改善のための 陽荷電脂質	有機相でナノ微粒子に組込み
シアノアクリレート	バイオ接着性ポリマー	有機相でナノ微粒子に組込み
エポキシド	架橋反応性の増大	PLGAナノ微粒子に共有結合
フィプロネクチン	コラーゲン-特異性結合を 有するタンパク質、 天然細胞接着剤	ナノ微粒子表面上に吸着
フェリチン	レセプタ特異性タンパク質	ナノ微粒子表面上に吸着
リポフェクチン	陽荷電脂質、 細胞膜に対する高い親和性	ナノ微粒子表面上に吸着
ジドデシルメチルアンモ ニウムプロマイド(DMAB)	陽イオン洗剤	ナノ微粒子表面上に吸着
DEAE ーデキストラン	陽イオン多糖	ナノ微粒子表面上に吸着
フィブリノーゲン	血液凝固因子	ナノ微粒子表面上に吸着
ポリクロナール抗体	一般的標的	吸着または共有結合
モノクロナール抗体	高度に特異性標的	吸着または共有結合
リン酸カルシウム、 硫酸バリウム	骨伝導性	ナノ微粒子表面上に吸着

表1から明らかなように、本発明は多種の表面改質方法を包含している。

A. 表面改質剤の吸着

1つの技法では、予め形成されたナノ微粒子の表面は物理的に接着または吸着される表面改質剤のコーティングを付与することによって改質される。

吸着コーティングを付与するための典型的方法においては、表面改質剤が溶剤 に溶解されて溶液がつくられ、そして予め形成されたナノ微粒子がその溶液の中

に懸濁される。つぎにこの懸濁物を凍結乾燥して物理的に接着された、しかし化学結合はしていないコーティングが形成される。より特定的には、ナノ微粒子を音波処理によって水に懸濁する(通常 1 0 mg/mlの濃度で)。つぎに、計算量の

表面改質剤を溶液または乾燥形態で懸濁物に添加する。表面改質剤が溶液の形態で与えられる場合には、溶媒はナノ微粒子を溶解してはならない。適当な溶媒の例は、水、水性緩衝液、生理的塩類溶液、エタノールー水、グリセロールー水、またはこれらの組み合わせである。典型的な場合では、表面改質剤の添加計算量は通常ナノ微粒子の質量に対して5 w/w %である。しかしながら、表面改質剤の量として0.5%から15%までの範囲の量が考慮されうる。表面改質剤含有のナノ微粒子懸濁物は500ミリトルまたはそれ以下の真空下、0乃至−55℃の温度の凍結乾燥器の中で少なくとも24乃至48時間凍結乾燥される。

記載した表面改質剤の濃度範囲は単に例示的なものであり、当技術分野に通常の知識を有する者によって変更できることを留意されたい。なぜならば、その量は治療学的有効量より大過剰であるからである。バイオ材料に高濃度で表面改質剤を不可逆的に結合させることができ、これによって生物活性剤を使用部位に標的到達させることおよび/またはバイオ材料にいくつかの有利な特性を賦与することができることは従来技術を超越する本発明の1つの顕著な利点である。

実施例7

典型的な操作の仕方では、表面改質剤DMABが10mlの水におだやかに渦流撹拌しながら溶解される。ナノ微粒子(95mg、実施例8にしたがって製造されたU-86負荷PLGAナノ微粒子)を水浴上30乃至60秒間音波処理することによって上記の水性DMAB溶液に懸濁される。このあと、表面改質ナノ微粒子懸濁物が常法により凍結乾燥される。

B. 表面改質剤のポリマーマトリックスへの組込み

表面改質剤が水に不溶性の場合は、ナノ微粒子を形成しながらエマルジョンの 有機相に組み込むのが好ましい。

実施例8

疎水性生物活性剤をナノ微粒子に組み込むためには溶媒内乳化-蒸発の方法が 用いられる。この特定の例示的実施例では、U86またはアドレノコルトコイド 、デキサメタソンがモデル疎水性生物活性剤である。5mlの塩化メチレンにP LGAと薬物を溶解する。このPLGA-薬物混合物を、マイクロチッププロー ブソニケーター (Heat Systems, Model XL 2020, Misonix Inc., Farmingdale, NY) を使用して、2.5 w/v %水性PVA (分子量30,000乃至70,0000) 40ml中で氷浴上10分間、65ワットのエネルギー出力で乳化する。このエマルジョンを室温で16時間撹拌して塩化メチレンを蒸発させる。141,000gの超遠心分離によってナノ微粒子を回収する。回収されたナノ微粒子を水で三回洗って48時間凍結乾燥する。しかして、U86含有ナノ微粒子が80%の収率で得られた。これは薬物を15.5 w/w %含有し、平均粒子サイズは110nmである。デキサメタソン含有ナノ微粒子は80%の収率で得られた。これは薬物を16.05 w/w %含有し、平均粒子サイズは108nmである。

実施例8記載の方法によって得られたさらにその他のU86含有ナノ微粒子と表面改質されたナノ微粒子の処方を以下の表2に示す。表2にはさらに、収量、パーセント薬物負荷量およびnm単位の粒子サイズのデータが記載されている。表2に示したすべての表面改質剤はPLGAナノ微粒子のポリマーマトリックスの一部分として組み込まれた。すなわち、本実施例記載の方法にしたがって製剤中ポリマー溶液内に添加された。表面改質剤はパルミチン酸(PA)、蜜蝋(Wax)(これらはいずれも疎水性物質である)、イソブチルシアノアクリレート(IBCNA)(これはバイオ接着剤である)、及びジオレオイルホスファチジルエタノールアミン(DOPE)(これはナノ微粒子の摂取を増進するためのリン脂質である)である。表面改質剤の記号の後に表示されている数値はその製剤中に使用されている表面改質剤の重量(mg)である。たとえば、試料11はIBCNAを108mg含有することを意味する。

表 2

表面	表面改質ナノ微粒子の疎水性薬物、たとえば、U86983結合のための各種処方								
試料	ナノ微粒子の処方				ナノ	微粒子	特性値		
番号	PLGA(mg)	U86 (mg)	表面改質剤	PVA(w/v)	収量(mg)	%負荷	サイズ(nn)		
1	200	4 0	なし	2. 0%/40ml	120, 4	8. 2	88±41		
2	200	4 0	なし	2. 0%/40ml	155. 3	9. 5	100±36		
3	200	4 0	なし	2. 0%/40ml	201. 7	14. 5			
4	200	60	なし	2.0%/40ml	210. 3	23. 24	87±36		
5	200	40	なし	2. 0%/40ml	140. 8	10. 4	140±40		
6	200	40	なし	2. 0%/40ml	128. 1	10	157±45		
7	240	70	なし	2. 5%/40ml	175. 8	18. 1	100±38		
8	200	4 5	*PA/20	2. 0%/40ml	138. 2	13. 6			
9	200	4 5	Wax/20	2. 0%/40ml	159. 1	14. 5	1		
10	108	5 0	++IBCNA/36	2. 5%/40ml	93	23. 3			
11	3 6	5 0	IBCNA/108	2. 5%/40ml	86	18. 7			
1 2	5 0	7 0	IBCNA/150	2. 5%/40ml	176. 2	16	123±37		
13	130	6 0	***DOPE/40	2. 5%/40ml	125. 3	21. 1	100 ± 39		
14	288	9 2	なし	2. 5%/40ml	198. 6	20			
15	288	9 2	なし	2. 5%/80ml	220. 3	20. 4	144±37		
16	300	100	なし	5. 0%/80ml	168. 4	16. 5	119±37		
17	400	160	なし	2. 5%/80ml	367	26. 7	102±40		
18	1200	440	なし	2. 5%/240ml	1283	24. 6	88±51		
19	400	130	なし	2. 5%/160ml	358	13. 1	105±38		

* PA: パルミチン酸、疎水性物質(Waxも同じ)

** IBCNA: イソプチルシアノアクリレート、バイオ接着剤

実施例4記載の方法によって親水性薬物負荷ナノ微粒子が製造された。表3はイブチリド含有PLGAナノ微粒子のための数種類の処方ならびに収量、パーセント薬物負荷量および粒子サイズ (nm)を示す。表3に記載されている添加剤のパルミチン酸は実施例4に記載のごとく分配剤として働く。

表 3

試料	以料 ナノ微粒子の処方		ナノ微粒子特性値				
番号	PLGA (mg)	イブ チリト	添加剤/mg	PVA(w/v)	収量(mg)	%負荷	サイス'(nm)
20	100	2 0	なし	2. 0%/40ml	_	0. 48	_
21	300	40	パルミチン酸*	2.0%/40ml, pH9	_	2	
22	300*	3 0	パルミチン酸**	2.0%/40ml,pH10	_	7. 4	140±50

* パルミチン酸:イブチリドのモル比 1:1

** パルミチン酸:イブチリドのモル比 5:1

300* は固有粘度1. 03のPLGA

実施例9

PLGAナノ微粒子にヘパリンを組み込むための典型的な操作方法では、ヘパリン30mgが水500μ1に溶解されそしてこの溶液が4℃まで冷却される。このヘパリン溶液にナノ微粒子マトリックスコア内にヘパリンを都合よく捕捉するための粘度増進剤としてプルロニックF127(10mg)を添加する。この混合物を塩化メチレン(5ml)中PLGA(150mg)の溶液を使用し、音波処理(氷浴上55ワットのエネルギー出力で10分間)によって乳化し、油中水型エマルジョンをつくる。この油中水型エマルジョンを55ワットで10分間 さらに音波処理して2.5%水性PVA溶液20mlに乳化する。この結果、水中油中水型複エマルジョンが形成される。この複エマルジョンを磁気撹拌板で18時間撹拌して有機溶剤を蒸発させる。ナノ微粒子は超遠心分離またはAmic

きる。回収されたナノ微粒子を未捕捉のヘパリンがなくなるまで洗いそして凍結 乾燥する。この方法による収率は45%であり、平均粒子サイズは90nmそし て薬物負荷は4.8 w/w %であった。抗凝集作用のための標準的APTT試験 法によるこのヘパリン含有ナノ微粒子の評価は次のような結果を示した。すなわ ち、ヘパリンを含有していないPLGAナノ微粒子である対照ナノ微粒子の場合

の凝集時間は13.7秒であった。これに対して、ヘパリン含有ナノ微粒子の凝集時間は>200秒であった。

実施例10

実施例 5 と同じ方法でテタヌストキソイド含有ナノ微粒子を製造した。ただし今回は、テタヌストキソイド(TT)溶液($50\mu1$)は、TTを11mg および界面活性剤、プルロニック F127を1mg 含有していた。TT 含有ナノ微粒子の収率は60%であり、平均粒子サイズは241nmそして薬物負荷は4w/w%(表40 の試料28)であった。

プルロニックF127を加えたBSAおよび/またはTT含有ナノ微粒子のその他の処方が表4に示されている。この場合、プルロニックF127は二重の機能を果たす。すなわち、それは分配を好都合とする粘度増進剤として働き安定なエマルジョンの形成に寄与する。TT含有ナノ微粒子のようなワクチンの場合には、プルロニックF127は免疫反応を高めるアジュバンドとしても働く。

表 4

試料		ナノか	数粒子の処方		ナノ	ナノ微粒子特性値		
番号	PLGA (mg)	BSA, ng	添加剤/mg	PVA(w/v)	収量(mg)	%負荷	サイズ(nm)	
23	150*	50	Pluronic/Ing	2. 5%/40mi	82. 4	17. 9	150±48	
24	150**	50	Pluronic/1mg	2. 5% / 40ml	102. 4	6. 2	-	
25	300*	100	Pluronic/1mg	2. 5%/40ml	113. 2	18	_	
26	300**	100	Pluronic/1mg	2. 5%/40ml	210. 3	23. 2	_	
		BSA/TT						
27	300*	150/4	Pluronic/1mg	5. 0%/20m1	112	14. 3	271±37	
28	150*	0/11	Pluronic/1mg	2. 5%/40ml	_	4. 1	241±32	
29	150*	0/12	Pluronic/1mg	2. 5%/40ml	_	_	238±32	

BSA : ウシ血清アルプミン

TT : テタヌストキソイド

Pluronic: ブルロニックF127

■有粘度1.03のPLGA

** 固有粘度 0. 6の P L G A

実験結果:

試験管内放出試験

試験管内放出試験を実施例8、4および5にしたがって製造されたナノ微粒子について、ダブル拡散チャンパーを使用して実施した。これは拡散チャンパーの2つのコンパートメントがMillipore 使用して実施した。これは拡散チャンパーの2つのコンパートメントがMillipore 停襲(ポアサイズ100nm; Millipore Corp., Bedford, MA)によって分離されているものである。チャンバーの供給側をナノ微粒子の懸濁物(pH7.4、0.154mMの生理学的リン酸塩緩衝液、1mlあたりナノ微粒子5mg)で充填する。受容側は同じ緩衝液で充填する。複数の拡散セルを37℃の室内のシェーカー(110rpm.)の上に置く。定期的に緩衝液の試料を受容側から採取しそして同じ量の新らしい緩衝液で置換する。その受容緩衝液内の薬物濃度をHPLCまたは他の分析法によって定量分析する。この分析データを使用してある時間にわたりナノ微粒子から放出された薬物のパーセントを計算する。

U86含有ナノ微粒子の試験管内放出試験では最初に爆発的に放出がなされ、 そのあと指数関数的減少率で放出がなされることを示した。同じような放出率が 親水性および/またはタンパク質含有ナノ微粒子の場合にも観察された。ガンマ 線照射(2.5 Mrad)による殺菌は図1に示されているようにナノ微粒子から 放出されるU86の試験管内放出特性に影響を及ぼさない。図1は本発明にした がって製造され、殺菌のためのガンマ線照射を受けたナノ微粒子から疎水性生物 活性剤、U86が試験管内で放出されるもようをグラフで表したものである。

粒子サイズ分布はレーザー回折計たとえばNicomp 370 Dynamic Laser Light S cattering Autocorrelator (Nicomp Particle Sizing System, Santa Barbara, C A) または類似の装置で測定できる。分析直前に通常生理的塩類溶液の水に懸濁したナノ微粒子(1 mg/mi)の懸濁物を準備する。本発明によって製造されたナノ微粒子は一般的に200 n m以下、通常は80乃至160 n mの範囲のサイズを有する。ナノ微粒子のサイズ分布の分析結果は均一かつ狭いサイズ分布を示した。

ナノ微粒子を台にのせて金をスタッパリングして走査顕微鏡写真を取った。そ

の結果、粒子は均一な粒子サイズを有しており、表面は滑らかであって、遊離している薬物粒はまったく存在していないことが判明した。

イヌのモデルによる体外動脈摂取試験

本発明の原理にしたがって製造されたナノ微粒子を表面改質の結果としての動脈による摂取について体外試験で評価した。イヌの頚動脈を切除して通常生理的塩類溶液で洗浄して血液を除去しそして両端をガラス棒上2.1 cmの距離で離隔させた2本のガラス毛細管に結びつけてぴんと張った状態(長さ2.7 cm)に保持した。この動脈切片の下端を一時的に結紮して上端に導入されたナノ微粒子懸濁物(2.5乃至10㎡/ml)を0.5psiの圧力下でその動脈切片内に滞留させた。30秒後に動脈切片の下端を開きそして乳酸化加リンゲル液を上端から40㎡/時の流速で30分間その動脈切片に貫流した。この動脈の2cm部分を装置から切り取り、ホモジナイズし、抽出しそしてHPLCによって薬物濃度を調べた。抽出効率と粒子の薬物負荷量は既知であるので、これから動脈切片内に保持されたナノ微粒子の量を算出した。

1つの特定例として、U86を負荷させたPLGAナノ微粒子を実施例8の方法によって製造した。未改質試料(表2の試料15)を比較の目的の対照として使用した。すなわち、各種の表面改質粒子により達成された保持率が対照よりどの位大きいかを比較した。表5に記載されたような表面改質粒子は本明細書に記

載した技術によって(表2の試料17)製造された。

前記した凍結乾燥の技術によって試料ナノ微粒子の上に5%DMAB(試料40万至43)または5%DEAEーデキストラン(試料44万至46)のコーティングを付与した。体外イヌモデルにおける表面改質ナノ微粒子の動脈内保持率の結果が表15に示されている。5w/v %ジドデシルジメチルアンモニウムブロマイド(DMAB-5%)で改質されたナノ微粒子が最も効果が高く、未改質ナノ微粒子(PLGA)と比較して11.4倍も多いナノ微粒子が保持された。

表 5

	体外モデルにおけるU-86ナノ微粒子取り込みに対する表面改質の効果								
	試料の記載	サイズ	U-86負荷	負荷 動脈内に保持された粒子					
	pu, 1-7 v.) pt. 4pt.	(nm)	%	μg/2cm 動脈	試料15に 対する比	効率%			
15	PLGAのみ	144±47	20.4	29.91	1	11.96			
30	エポキシド	120±40	20.4	48.31	1.62	1 9. 3 2			
31	ヘパリン	120±40	20.4	73.51	2.46	29.40			
32	フィプロネクチン	144±47	20.4	52.73	1.76	21.09			
33	フェリチン	144±47	20.4	42.44	1.42	16.98			
34	リポフェクチン0.5%	144±47	20.4	139.6	4.67	5 5. 8 4			
35	リポフェクチン0.5% *	144±47	20.4	177.71	5.94	35.54			
36	DMAB, 2.5%	144±47	20.4	83.67	2.78	3 3. 4 7			
37	DMAB, 5.0%	144±47	20.4	340.87	11.40	68.17			
38	脂質N4(PLGA-脂質	123±37	21.1	68.07	2.28	27.23			
39	LACN#2 (PLGA-Cyan, 2/8	133±35	16.0	92.00	3.08	36.80			
40	DMAB, 5.0%	102±40	26.7	1 2 8. 1 5	_	3 4. 1 7			
41	DMAB, 5.0%	102 ± 40	26.7	89.17	-	23.78			
42	DMAB, 5.0%	102±40	26.7	161.61	_	43.10			
43	DMAB, 5.0%	102±40	26.7	197.12	_	52.57			

44	MB-11, DEAE-デキストラン5. 0 #1	102±40	26.7	92.99	_	24.80
45	MB-11, DEAE-デキストラン5. 0 #2	102±40	26.7	187.77	_	50.07
46	MB-11, DEAE-デキストラン5. 0 #3	102±40	26.7	96.88	_	25.83

* NP懸濁物の濃度は5mg/ml

他はすべて 2.5 ng/ml

DMABとDEAEーデキストランのほかに、5%フィブリノーゲンをPLGAナノ微粒子上に凍結乾燥技術によって付加した。このPLGAナノ微粒子は 130 ± 35 nmの平均粒子サイズを有しそしてフィブリノーゲン付与以前の薬物負荷が14.6%であった。このナノ微粒子を通常生理的塩類溶液または血清と生理的塩類溶液の1:1混合物に懸濁しそして体外イヌ実験部片に注射した。動脈の10mg切片内のナノ微粒子の平均 \pm SE摂取量は、それぞれ、5%DMA

Bの場合が $3.8.03\pm2.42\mu$ g、5%DEAE-デキストランの場合が $3.05\pm3.33\mu$ g、そして5%フィブリノーゲンの場合が $5.2.30\pm4.0\mu$ gであった。

結果をまとめると、DMABによるナノ微粒子の表面改質は組織への保持率を向上させる。DEAEーデキストランで改質されたナノ微粒子は懸濁物において向上した粘度を有する。フィブリノーゲンで改質されたナノ微粒子は血栓形成を促進し、これによって球体を凝集して動脈内摂取を顕著に向上させる。たとえば、DMABとフィブリノーゲンを組み合わせると、初期接着が生じ、続いて血栓が形成され、動脈壁にナノ微粒子を確保して長期効果が保証される。

表面改質に加えて、注入懸濁物中のナノ微粒子の濃度も体外イヌモデルの動脈壁へのナノ微粒子の保持に影響した。表6はこれを示し、通常生理的塩類溶液に表5の試料31と34を、表6に記載した濃度で懸濁した場合の結果が記載されている。

表 6

体外モデルにおけるU-86ナノ微粒子摂取の評価 懸濁物中の粒子濃度の影響						
懸濁物中の	HPLCで測定された 動脈内NP摂取抽出物中の	NP摂取量 *				
初期NP濃度	NP濃度(μg/ml)	(μg/2cm動脈)				

試料31-ヘパリン

5	7 8. 8 1	56.29
1 0	1 3 3. 2 1	95.15

試料34-リポフェクション

2. 5	195.44	139.60
2. 5	179.39	128.13
5	248.80	177.71

^{*} 動脈抽出物内の濃度と、抽出による動脈からのナノ微粒子回収の 所定比率70%(内部標準)から算出。

表6は懸濁物中のナノ微粒子の濃度が増加すると動脈壁によるナノ微粒子の摂取が増加することを示している。

各種の懸濁媒質をナノ微粒子保持に対する効果について体外イヌモデルで研究した。ナノ微粒子(表2の試料19)をDMABとDEAEーデキストランで表面改質した。これらの表面改質粒子の試料を蒸留水、10 v/v %水性DMSOまたは25 v/v %水性グリセリンに懸濁した。DMSOは動脈壁の浸透性を高めるために使用されそしてグリセリンは投与部位に一過性高張ショックを誘発して生物膜を横断する薬物送達を増進させるために使用された。結果は図2に示されているとおりであった。図2は表面改質と懸濁媒質の効果をグラフで表示したものであり、U86含有ナノ微粒子の摂取量が10 mgの動脈検体あたりのナノ微粒子 μ g量で示されている。図2に示すように、高張液(グリセリンー水)に

よって誘発されるような浸透圧ショックあるいは懸濁媒質中の組織浸透性向上剤 (DMSO)の含有は動脈壁によるナノ微粒子の摂取を増加させる。

8、4および5の方法により製造されたナノ微粒子に対する捕捉効率は疎水性薬物の場合約70乃至80%、親水性薬物の場合約45%、そしてタンパク質とワクチンの場合約57乃至67%であった。各種タイプのナノ微粒子の典型的薬物負荷量は4%から28%までである。保持率に及ぼす薬物負荷の影響をDMAB改質ナノ微粒子で調べた。その結果が表7に記載されている。興味あることに、薬物負荷が高くなるほど保持率は低くなっている。この現象は動脈壁にナノ微粒子が残留する能力に影響するナノ微粒子の親水性/疎水性の臨界的変化をきわめてよく反映している。疎水性薬物U86の負荷を高くすると高度に親水性である動脈壁とのナノ微粒子の親和性を低くすることが想定される。しかし、U86の負荷を低くするとより好ましいあるいは全体的な親水反応が可能となる。

表 7

DMAB改質PLGAナノ微粒子を使用して37℃で試験された 体外モデルにおける動脈によるU-86ナノ微粒子の摂取量 粒子サイズと薬物負荷量の影響								
サイズU-86動脈内に保持された試料の記載負荷粒子の量								
	(nm)	(%)	μg/2cm 動脈	保持率(%)				
15 DMAB-5.0%	1 4 4 ± 4 7	18.4	278.64	5 5 . 7 3				
15 DMAB-5.0%	144±47	18.4	3 4 0 . 8 7	68.17				
17 DMAB-5.0%	102±40	26.7	1 2 8 . 1 5	25.63				
17 DMAB-5.0%	102 ± 40	26.7	8 9 . 1 7	17.83				
17 DMAB-5.0%	102±40	26.7	161.61	32.32				
17 DMAB-5.0%	102±40	26.7	197.12	39.43				

ラットモデルにおける生体動脈内摂取実験

本発明の原理によって製造されたナノ微粒子を生体内摂取と保持に関して評価

した。複数の雄のラット、体重400乃至500gのSprague-Dawleyの左頚動脈 を露出させた。 2F Fogarty 塞栓摘出バルーンカテーテル (BSI、Minneapolis, MN)を使用して、露出された動脈の内皮層を除去した。ラットの左または右総頚 動脈内に動脈切開鋏を使用して 1 mmの切れ目(これは動脈切開術としても公知 である)をつくり、出血を防止するため3-0シルク結紮糸でしばった。Fogarty カテーテル(寸法2乃至0 French)を切開部に挿入して動脈部の遠位結紮まで進 めた。カテーテルのバルーン先端を二酸化炭素でふくらませそしてカテーテルを 三回後退前進させて内皮を剥ぐことによって動脈に傷をつくった。このあと、カ テーテルを取り出した。同じ動脈切開位置において、頚動脈の該傷害部にナノ微 粒子懸濁物(200μ1)を注入するため動脈内にカテーテルを挿入した。この 間、一時的に動脈の遠位端を結紮した。60秒後にカテーテルを抜きそして入口 を閉じた。頚動脈の遠位端を開いて通常の血流に戻した。 2 時間後、左右の頚動 脈を試料採取した。動脈試料内の薬物濃度を定量分析して生体内のナノ微粒子の 保持率を評価した。第二の組の実験では、ナノ微粒子を蛍光染料、ローダミンB

を含有するよう調製した。採取された頚動脈を冷凍して横に切断し動脈壁内の粒子の組織構造と位置を調べた。

DMA BおよびDEAEーデキストラン改質ナノ微粒子すなわち表5の試料4 0と43がこのラット生体内実験に使用され、ナノ微粒子が右頚動脈に比較して注入部位(左頚動脈)で優先的に摂取されることの証明が試みられた。しかして、右頚動脈に比較した左頚動脈の10 mg 部分(n=1 1 ラット)の結果は次の通りであった:右頚動脈の摂取量2. 98 ± 0 . 27μ g、これに対して左頚動脈の摂取量は7. 77 ± 1 . 46μ g。同様の結果がデキサメタソン負荷ナノ微粒子の場合にも観察された。すなわち、右頚動脈では検出不能量(n=9 ラット、検出限界0. 1μ g/mg)であり、これに対して左頚動脈の10 mg 部片あたりのナノ微粒子の量は2. 7 ± 1 . 3μ g であった。

デキサメタソンを負荷(15 w/w %;実施例3)し、蛍光標識をつけたナノ

微粒子の組織検査の結果も動脈壁にナノ微粒子がかなり存在していることを示した。

蛍光マーカーとしてローダミンBを含有しているデキサメタソンーPLGAナノ微粒子を通常生理的塩類溶液に懸濁し(50mg/ml)そして上記に説明したようにトリプルバルーン脈管形成層裸出後にラット頚動脈内に注入した。各回75μ1ナノ微粒子懸濁物で多数回(四回)注入を行った。異なる時間間隔(24時間、3日、7日および14日)で動脈の一部を切り取って試料採取しそして冷凍切断して蛍光顕微鏡を使用してナノ微粒子の存在を観察した。注入7日後においても動脈内に蛍光が観察された。

動物モデルにおける長期生体動脈内摂取実験

(1) ブタ

ラットによる生体実験に加えて、体重約30万至40ポンドのブタを使用してナノ微粒子の試験を行った。各供試ブタにおいて冠状動脈の弾性膜を、バルーンチップカテーテルを過度にふくらませて破壊させた。この負傷した部位にWolinksy(28または96ホール)またはD-3バルーンカテーテル(Sci-Med, Minne apolis, MN)を使用して、1万至3気圧で1万至5分間かけてナノ微粒子懸濁物

(2.5乃至10mg/ml)を注入した。2乃至6時間後、冠状動脈を試料採取し、薬物濃度を定量分析してナノ微粒子の保持率を計算した。

表に記載した表面改質を受けた、U86を負荷されたナノ微粒子についての試験結果が表8に示されている。DMABで表面改質されたナノ微粒子は未改質のナノ微粒子よりも多量に保持された。この向上された結合性は表面改質されたナノ微粒子の場合には親和性の組織特異的増加があったことを証明している。

表 8

プタ動脈内におけるU-86ナノ微粒子の生体内保持率 表面改質の効果								
器具	NP改質	NPの 濃度 (mg/ml)	注入 時間 (秒)	全切片中 のNPの 量(μg)	動脈の 乾燥重量 (mg)	動脈10mg 当りのNP の量(μg)		
Wolinsky 96ホール	PLGAのみ PLGAのみ	2. 5 2. 5	30 25	1. 6 0. 2	18.65 16.23	0. 86 0. 12		
Wolinsky 96ホール	747 ロネクチン 747 ロネクチン 脂質 N. P	2. 5 2. 5 2. 5	15 20 20	10. 41 4. 34 5. 35	20. 38 19. 23 15. 45	5. 11 2. 26 3. 46		
	脂質N.P LACN#2B LACN#2B	2. 5 2. 5 2. 5	25 15 20	5. 39 8. 3 8. 81	17. 02 20. 13 19. 76	3. 28 4. 12 4. 46		
Wolinsky 96ホール	DMAB DMAB DMAB	2. 5 2. 5 5	25 20 30	5. 14 8. 06 2. 49	15. 31 14. 98 12. 72	3. 36 5. 38 1. 96		
D 3	DMAB DMAB DMAB	5 5 8 8	300 300 120	16. 21 11. 79 20. 29 52. 15	16. 02 18. 30 18. 76 19. 23	10. 12 6. 44 10. 62 27. 12		

血液循環1時間後の動脈内ナノ微粒子の量は直後に採取した動脈内の量とはそれほど相違していなかった。この結果はナノ微粒子が組織および/または細胞内に浸透してしまっていて、簡単には洗い流されないことを示している。蛍光顕微

鏡検査によってもこのようにナノ微粒子が保持されていることが確認された。2 種類のカテーテル(WolinskyとDispatch)による注入の結果の間には目立った相違はなかった。U86溶液の静脈注射に比べて、ナノ微粒子の局所注入の後ではより低いかつ比較的安定した血漿U86濃度が察された。

5% DMA B表面改質の、U 8 6 負荷され(15 W/W %)そして粒子サイズが 100 乃至 149 n mである P L G A ナノ微粒子を 15 または 30 mg/m1の濃度で通常生理的塩類溶液に懸濁した。このナノ微粒子(N P)をブタに投与し、 30 分後または 1 時間後に屠殺した。この結果を表 9 に示す。

表 9

	ブタ動脈内におけるU-86ナノ微粒子の生体内保持率								
器具と 時間	NPの濃度 (mg/ml)	注入時間 (秒)	全注入量 (ml)	LAD中のNP (μg/10mg)	心筋層のNP (μg/10mg)				
Wolinsky	1 5	2 0	20	44.53	1 5. 7 3				
(30分)	15	15	20	40.51	27.33				
	1 5	4×15	8.0	50.02	52.12				
平均±SD	· -			45.98	28.24				
				±4.48	±14.17				
Dispatch	1 5	240	2 0	51.16	26.34				
(30分)	1 5	240	2 0	43.68	19.70				
Dispatch	3 0	240	2.0	6.80	6.12				
(30分)	3 0	240	2.0	0.97	9.51				

ブタ生体内試験ではナノ微粒子の高濃度($30\,\mathrm{mg/ml}$)の注入は乾燥動脈 $10\,\mathrm{mg}$ あたり約 $45\,\mu$ g の平均摂取量を示した。この測定に使用された左前方下降 冠状動脈(LAD)の長さは約 $1.5\,\mathrm{cm}$ 、重量は約 $15\,\mathrm{mg}$ (乾燥)であった。したがって、処理された LADのおよそ $1\,\mathrm{cm}$ が局所注入によって約 $45\,\mu$ g のナノ微粒子を摂取可能であるといえる。処理された動脈 $1\,\mathrm{cm}$ 内には約 $7\,\mu$ g ネット U86 が存在する。

上記の結果に加えて、Sci-Med Dispatchカテーテルを使用してバルーンによっ

て脈管に傷をつけた後のプタに局所投与されたPLGAナノ微粒子からのU-8 6の制御された放出は、生理的塩類溶液と薬物を含有していないPLGA対照と

に比較して狭窄が顕著に防止される、という結果をもたらした。図3はUpjohn研究所によって標準化された(Am. Heart J., Vol.127, pages 20-31, 1994)動脈のための総傷害指数に対してプロットした中間領域比率で割った新生脈管内膜領域(NI/M)のグラフである。Upjohnテストはバルーンを過度にふくらませることによって誘発された脈管傷害の重度(傷害指数)と新生内膜(NI)異常増殖(増殖指数)の程度とを定量化するものである。傷害指数は内弾性膜破壊長を内弾性膜円周で割って100倍したものである。図3に示したデータは本発明によるナノ微粒子からのU86の局所放出による狭窄の統計的に顕著な減少を示している。

(2) ラット

ラットを使用して同様な長期生体内実験を実施した。DMAB改質U86含有PLGAナノ微粒子(U86負荷14.6%;平均粒子サイズ130±35;懸濁物濃度10g/ml通常生理的塩類溶液)をラットの左冠状動脈に注入しそして注入2時間後、1日後、及び2日後にそれぞれ試料切片を採取した。左動脈の切片10mg内に存在するナノ微粒子の量(μ g)はそれぞれ9.00±0.28、9.19±0.28、および7.95±0.41であった。各ラットの右冠状動脈は対照として使用した。右冠状動脈の切片10mg内のナノ微粒子の量(μ g)はそれぞれ1.01±1.55;2.77±0.24および0.51±0.60であった。

デキサメタソン(15 w/w %)を組み込んだPLGAナノ微粒子を使用した実験において、ラットに冠状動脈のトリプル血管形成術の傷をつけた。ラットを3つの実験グループに分けた: 対照(生物活性剤を含まないナノ微粒子)、デキサメタソン含有ナノ微粒子の腹腔内注射を受けた動物、およびデキサメタソン負荷ナノ微粒子が傷害部位に注入された動物。2週間後に傷を受けた動脈を採取して検査した。図4はデキタメタソン含有ナノ微粒子の局所投与後の狭窄の防止を示すグラフである(統計的に有意味:p>0.006)。データは上述したよ

うなNI/M比として表されている。

イヌの動脈内摂取の急性生体内実験

実施例8と7の方法で製造されたDMAB, DEAEーデキストランおよびフィブリノーゲン(5%)で表面改質されたPLGAナノ微粒子を使用し、イヌで生体実験を実施した。

普通麻酔をかけたイヌにBard脈管形成(angioplasty)カテーテルを使用して両大腿動脈にトリプルバルーン脈管形成術を受けさせた。内皮を剥いだあと、その傷害を受けた大腿部を結紮して単離しそして1気圧で通常生理的塩類溶液中ナノ微粒子の5 mg/ml懸濁物を少量(200 μ1)充填した。動脈壁を修復して出血を防ぎそして60秒後血液をその動脈を通って循環させた。30秒後、動物を安楽死させて傷害を受けた動脈と対側動脈の両方をHPLCによる分析のため採取した。分析の結果、フィブリノーゲンが対照に比較して体外実験でも体内実験でも幾分摂取を向上させたことが判明した。1分間の単離期間の間に動脈内に懸濁されていたナノ微粒子の40乃至50%が実際に動脈壁によって摂取された。対側動脈中には実質的にナノ微粒子はまったく検出されなかった。さらに、フィブリノーゲンでコーティングされたナノ微粒子はDMABでコーティングされたナノ微粒子よりもほぼ一倍半多く摂取された。

実施例7にしたがってフィブリノーゲンおよびDMAB (5%)で表面改質された、U86負荷PLGAナノ微粒子についての試験結果が表10に示されている。このPLGAナノ微粒子は平均粒子サイズが130±35nmそして記載のコーティングを付与する前の薬物負荷は14.6%であった。イヌ#2の右大腿動脈は生体内のナノ微粒子の系統的分配を評価するための対照として分析された。表10の中に"CONTROL"としてリストされているのは非処理イヌから取った動脈である。

表 10

処 置	切片中の NP量 (μg)	動脈の乾燥 重量 (mg)	10mg 動脈中 のNP(μg)	平均±SE
フィブリノーゲン: 左大腿 #1 左大腿 #2	1 2 5. 5 7 9 5. 6 5	30.07	41.76 32.65	3 2. 2 0 ± 3. 2 2
右大腿 #2(対照)	3.69	40.47	0.91	0.91
DMAB: 左大腿 #1 左大腿 #2 左大腿 #3	87.54 43.19 70.57	37.93 18.74 24.12	23.08 23.05 29.26	25.13±1.19
CONTROL	-0.21	32.37	-0.06	-0.06

同様なイヌ生体内実験を投与法を変えて実施した。表10のデータは結紮された動脈部分内に1分間の滞留時間をおいて得られたデータであった。今度は、平均粒子サイズ161±42nm、U86負荷15.5%のPLGAナノ微粒子を5%DMABでコーティングし、通常生理的塩類溶液に懸濁しそして15秒間のさらしで、及び、1分間血液を流すことで間隔をあけた4回の15秒間のさらしのシリーズで、イヌに投与した。表10を見ると、DNABコーティングナノ微粒子は大腿動脈の10mgの部分の中に平均25.13±1.19 μ gの量で保持されている。15秒さらしの結果もほとんど同じ保持量であり、21.46±0.73 μ gであった。しかし、4回15秒さらしシリーズでは保持量は二倍以上となり、49.11±2.42 μ gであった。

同様な実験をラットを使い実施した。U86を負荷させたDMAB改質PLGAナノ微粒子(負荷量15.5%、粒子サイズ 161 ± 42 nm)を通常生理的塩類溶液中10mg/mlの濃度で使用した。これを1回の60秒さらしで投与したところ、DMABコーティングナノ微粒子は左頚動脈の10mg部分の中に平均 $9.00\pm0.28\mu$ gの量で保持された。しかし、4回15秒さらしシリーズ

では保持量は二倍以上となり、 $20.37\pm1.37\mu$ g であった。未処理右頚動脈の10mg 部分からなるこの実験の対照はそれぞれ保持量がわずかに1.0

1 ± 1. 5 5 μ g ≥ 2. 0 8 ± 0. 4 0 μ g σ s > c.

ここに記載した急性イヌ生体内実験では、懸濁物濃度が高いほど、動脈壁のU 86保持量も高くなっている。薬物負荷が15%で5%DMABで表面改質された粒子サイズが120nmのU86負荷PLGAナノ微粒子(実施例8および7記載の方法により製造)を5mg/ml乃至100mg/mlの濃度で15秒間でイヌに投与した。表11は通常生理的塩類溶液中のナノ微粒子の濃度(mg/ml)の関数として動脈10mg部分内に保持されたナノ微粒子の量(μ g)を示す。

表 11

NP濃度 (mg/ml)	切片中の NP量 (μg)	動脈の乾燥 重量(mg)	10mg動脈中 のNP(μg)	平均±SE
5 mg/ml	162.96	71. 33	22. 85	
	106.87	30. 31	21. 24	
	115.73	39. 52	29. 88	24. 5 ± 3. 38
	102.11	47. 23	21.62	
	93.63	45. 65	20. 51	
	138. 58	138.58	19. 73	
1 0 mg/mi	138.09	36. 84	37. 48	38. 95 ± 2. 07
	195. 43	48. 36	40. 41	
1 5 mg/ml	282, 11	46. 7	60. 41	59. 48±0. 66
	288. 87	49. 26	58. 85	
2 0 mg/ml	298. 87	38. 39	77. 85	69. 41 ± 5. 97
	288. 37	34. 67	60. 97	
3 0 mg/mi	377. 45	44. 55	84. 73	83. 73±1. 38
	435.48	52.61	82. 77	
5 O mg/ml	611. 26	62. 3	98. 11	96. 05 ± 2. 92
	405.07	43. 1	93. 98	
100mg/mi	649. 74	58. 44	111. 18	111. 18

C. エポキシによる表面改質剤の共有結合

本発明のさらに別の実施態様においては、表面改質剤が予め形成されたナノ微 粒子に共有的に結合される。本発明の好ましい有利な実施態様においては、反応 性エポキシド側鎖をナノ微粒子からなる重合体材料に組み込む方法が開発され、 その反応性側鎖は各種薬物送達の適用のために興味ある他の分子と共有的に結合 できる。この実施態様を以下に実施例5と86でより詳細に説明する。

ポリ乳酸ポリリコール酸共重合体は生物分解可能な製剤のための薬物送達研究に広く使用されているものであるが本来的に反応基に欠け、それゆえに誘導体化が困難である。各種薬物送達の適用のために興味ある他の分子と共有的結合できる反応性エポキシド側鎖を組み込む方法が開発されてきた。PLGAのほかに、遊離ヒドロキシ基、アミノ基、スルホヒドリル基、カルボキシル基、無水物基、フェノール基またはその他の基を含有しているどんな重合体も本発明の方法によって誘導体化できる。

図5は、エポキシド化合物を重合体ナノ微粒子のヒドロキシル末端基に結合するための合成方法を図式的に示している。図5に示した特定の実施態様においては、ナノ微粒子はPLGA(化合物20)からなり、そして溶剤内乳化—蒸発の技術によって、たとえば、実施例1に記載した技術によって製造される。もちろん、このPLGAナノ微粒子は本発明の方法にしたがってエポキシド誘導体化の前にどんな技術によっても製造してもよい。

予め形成されたPLGAナノ微粒子を液体、例示的には、触媒が添加された緩衝液に懸濁する。図5に示した実施態様では、懸濁媒質はpH5.0のホウ酸塩緩衝剤であり、そして触媒は四フッ化ホウ酸亜鉛、Zn(BF4)2である。適当な触媒は限定されないが、第三アミン、グアニジン、イミダゾール、三フッ化ホウ素付加物たとえば三フッ化ホウ素ーモノエチルアミン、ビスホスホナート、痕跡量の金属(たとえば、Zn、Sn、Mg、A1)およびPhNH3+АsF6のタイプのアンモニウム錯塩を含む。他の実施態様においては、反応は、適当な触

媒、たとえば、四塩化チタンとフェロセン、塩化ジルコノセン、四臭化炭素またはヨードホルムの存在下、UV光によって光開始されうる。

緩衝液のような適当な溶剤に溶解されたエポキシド化合物がナノ微粒子懸濁物に添加されそして反応させてエポキシド結合ポリマー(化合物22)が生成される。図5を参照すると、エポキシ化合物は商品名Danacol(Nagasi Chemicals、大阪、日本;化合物21)で販売されている多官能性エポキシドである。

本発明を実施するために適当なエポキシ化合物はモノマー、ポリエポキシド化

合物またはエポキシ樹脂でもよい。本発明の実施のための使用に適当な反応性の 二官能性または多官能性エポキシドは、限定されないが、1,2ーエポキシドた とえばエチレンオキシドまたは1,2ープロピレンオキシド;ブタンおよびエタ ンジグリシジルエーテルたとえばジグリシジルブタンジオールエーテル、エタン ジオールジグリシジルエーテル、またはブタンジオールジグリシジルエーテル(Aldrich Chemical, St. Louis, MO から入手可能);エリトリオール無水物;D anacolの商品名でNagasi Chemicals、大阪、日本から販売されている多官 能性エポキシド;エピクロルヒドリン(Aldrich Chemical, St. Louis, MO);Si gma Chemicals, St. Louis, MO から入手できる酵素誘導可能なエポキシド;およ び光重合可能なエポキシド(Pierce, Rockford, IL)を含む。Denacolエ ポキシドは多官能性ポリグリセロールポリグリシジルエーテルである。例えば、 Denacol 512は1分子あたり4つのエポキシドを有し、Denaco 1EX512は1分子あたり5つのエポキシドを有している。

エポキシド結合ポリマー(化合物 2 2)の反応性エポキシド基はそのあとエポキシ結合部と反応する官能基、たとえば、アルコール、フェノール、アミン、無水物などを有する各種タイプの生物活性剤と反応させることができる。その結果は官能性化されたポリマーと興味ある生物活性剤(たとえば、化合物 2 4)との間の共有結合である。

図5の実施態様においては、興味ある生物活性剤はヘパリン(化合物24)で

ある。ヘパリンはグリコースアミノグリカンと呼ばれている多様な直鎖アニオン性ムコポリサッカライドの基を含む高度に硫酸化されたポリアニオン性巨大分子(分子量は5,000 乃至30,000)である。ヘパリンは-NH2、-OH、-COOHおよび-OSO3の官能基を含み、それらはすべてエポキシド基と反応しうる。もし、エポキシド結合ポリマーとヘパリンとの間の反応が酸性pH(5.0乃至9.0)で実施されたとすると、その主反応はヘパリンの-NH2基との反応となる。その結果、ヘパリンが共有結合したPLGAナノ微粒子(化合物25)が生成する。もちろん、ヘパリンの-OH基もこのpHでエポキシド基と反応しうる。

以下にエポキシ誘導体化技術の特定の説明のための実施態様を示す。実施例12はヘパリンのエポキシ誘導体化ナノ微粒子の表面への結合を指向しているが、エポキシ誘導体化技術はエポキシ結合部と反応する官能基、たとえばアルコール、フェノール、アミン、無水物などを有する各種の生物活性剤をナノ微粒子に反応させるために使用しうることを理解されたい。抗体を含むタンパク質やペプチドさえもエポキシ改質ナノ微粒子に結合させることができ、それによって抗体媒介薬剤送達システムを得ることができる。特定な実施例は、ヘパリン、ビスホスホナート、DNA、RNA、およびヒドロキシ基またはアミノ基を含有するあるいは反応基を含有するよう誘導体化しうる実質的にいずれの剤も含む。

実施例11

溶剤内乳化-蒸発技術(実施例8と同様)によってPLGAナノ微粒子を製造した。PLGA(150mg)を氷浴上で65ワットのエネルギー出力でプローブソニケータを使用して水性PVA(2.5w/v%、20ml)に乳化した5mlの塩化メチレンに溶解した。この乳化剤を磁気撹拌棒により室温で18時間撹拌して塩化メチレンを蒸発させた。超遠心分離によってナノ微粒子を回収し、水で三回洗いそして3分間音波処理して水に再懸濁した。得られた懸濁物を凍結乾燥した。

凍結乾燥したPLDAナノ微粒子(40mg)を3分間音波処理して、5mlのホウ酸塩緩衝液(50mM、pH5)に懸濁した。特定な本実施態様では、四フッ化ホウ酸亜鉛水和物(12mg)であった触媒を、ナノ微粒子懸濁物に添加した。多官能性エポキシド、Denacol 520(1分子当たり3エポキシド、14mg)を2mlのホウ酸塩緩衝液に溶解した。このエポキシド溶液を室温(37℃)で撹拌しながらナノ微粒子懸濁物に添加した。30分後、ナノ微粒子を超遠心分離によって分離し、水で三回洗って未反応Denacolを除去した。得られた生成物はエポキシ誘導体化ナノ微粒子であった。PLGAナノ微粒子とエポキシドとの反応はプロトンNMRによって確認された。

実施例12

特定の例示的実施態様においては、ヘパリンが、カップリング剤として不動態

化多官能性エポキシドを使用した実施例11のエポキシ誘導体化ナノ微粒子に反応により結合される。各へパリン分子のただ1つの箇所でのみエポキシド基と反応するように、ヘパリンの過剰が使用される。もしへパリンの使用量がそれより少ないと、各へパリンのより多くの箇所でエポキシ基と反応し、抗凝固能の損失が生じてしまうであろう。

実施例11により製造されたPLGAナノ微粒子(40mg)を20m1のホウ酸塩緩衝液に再懸濁した。37℃で撹拌しながらナノ微粒子にホウ酸塩緩衝液(4ml;pH5.0)中へパリン(14mg)の溶液を添加した。へパリン溶液とナノ微粒子をおだやかに撹拌しながら2時間反応させた。ナノ微粒子を未反応へパリンから26時間にわたる超遠心分離と通常生理的塩類溶液に対する透析によって分離した。得られたヘパリン化ナノ微粒子を次に凍結乾燥した。特定の本実施態様のナノ微粒子のヘパリン含有量はトルイジンブルーメタクローム検定によって測定し、7.5 μg/mgナノ微粒子であった。

結合されたヘパリンのトロンボーゲン拮抗作用を活性化部分的トロンボプラスチン (APTT) テストによって評価した。イヌの血清 (0.5 ml) をヘパリ

ン結合ナノ微粒子5mgと混合し、そして振とうしながら37℃で1時間培養した。試験血清のトロンビン時間を標準方法により BBL Fibrosystem Fibrometer (Becton Dickinson Microbiology Systems, Cockeysville, Maryland)を使用して測定した。同じイヌからの血清を対照としてPLGAナノ微粒子と一緒に培養した。200秒以上にわたって凝血形成は生じなかったので、ヘパリン化PLGAナノ微粒子は顕著な抗凝固作用を示した。他方、ヘパリンと反応しない対照粒子では16.7秒で凝血が形成された。

結合されたヘパリンの安定性を放射線標識をつけた¹⁴ C へパリンを使用して、37℃の温度で15日間試験した。その結果は図6に示されている。この図面は、結合されたヘパリンのパーセントとして表した放射能によって測定されたヘパリンの試験管内への放出を示すグラフである。結合されたヘパリンの約30%が最初の5日間の間にナノ微粒子から放出されている。残りの70%は高い安定性をもって結合している。37℃の温度での放出の15日後においてもヘパリンの

約65%はナノ微粒子に結合したままであった。これはヘパリンがナノ微粒子へ 安定な化学結合をしていることを示す。

実施例13

実施例 110 方法により PLGA ナノ微粒子が製造されそしてエポキシ化された。このエポキシ活性化ナノ微粒子(70 mg)を 5 m 1 の重炭酸塩緩衝液、p H 9 . 2 中に懸濁した。 BSA(30 mg)を別に同じ緩衝液 5 m 1 に溶解し、ナノ微粒子懸濁物と混合した。磁気撹拌板で撹拌しながら 37 \mathbb{C} で 24 時間反応させた。得られたナノ微粒子を超遠心分離で集め、水、または、T w e e n -8 0 e

 H_2 Oまたは緩衝液で洗ったエポキシ活性化ナノ微粒子(PLGA/BSA+EP)へ結合したBSAの量を非活性化PLGAナノ微粒子(PLGA/BSA)に結合したBSAの量と表12中で比較した。BSAを含有していないただの未活性化PLGAナノ微粒子を対照として使用した。表12は、エポキシ活性化ナ

ノ微粒子上のはるかに良好なBSAの結合を示している。

表 12

サンプル	Abs. 605nm	B S A (μg)	NPの重量 (mg)	BSA (μg/mgNP)	ネットBSA (μg/mgNP)
PLAG	0. 156	15. 92	9. 35	1. 70	0
PLAG	0. 202	22. 32	10.07	2. 22	0
PLGA/BSA+EP/H20	0. 857	113. 49	5. 74	19. 77	17. 87
PLGA/BSA+EP/緩衝液	0. 943	125. 47	8. 14	15. 41	13. 51
PLGA/BSA/ H ₂ O	0. 350	42. 92	7. 26	5. 91	4. 01
PLGA/BSA/ 緩衝液	0. 250	29. 00	3. 72	7. 80	5. 90

上記した方法により、予め重合されかつ予め形成されたナノ微粒子がエポキシ 活性化され、また誘導体化されたが、本発明の精神と範囲から逸脱することなく 、重合体を構成するモノマーを、たとえば重合前に、反応性エポキシド基で官能 性化することもできることを理解されたい。

D. 表面改質剤のポリマーコアマトリックスへの組み込み

表面改質を与えるいま1つの技術においては、表面改質剤がナノ微粒子コアからなる生物親和性で生物分解可能なポリマーのマトリックに組み込まれる。

(1) 表面改質ポリマーの共同組み込み

本発明のこの一面において、ナノ微粒子ポリマーコアは、少なくとも部分的に、生物分解可能な生物親和性のある、表面改質特性を有するポリマーを含む。以下の実施例14で記載される1つの例示的な特定の実施態様においては、イソブチルシアノアクリレートが溶剤内乳化-蒸発技術の有機相としてPLGAと結合される。この結果としてPLGAーシアノアクリレートポリマーコアを有するナノ微粒子が形成される。シアノアクリレートはナノ微粒子にバイオ接着剤特性を賦与する。もちろん、PLGAに対するシアノアクリレートの量は変更できる。

本発明の原理にしたがって、ヒドロゲルまたはプルロニックのごとき他のポリマーは、PLGAまたは他の生物分解可能な生物親和性ポリマーと一緒に共同組み込みされて、バイオ接着特性を賦与される。さらに、本実施態様はもっぱら例示的なものであり、多くの他のポリマーを、生物分解可能な生物親和性ポリマーと一緒に共同組み込みすることができ、各種の改良された特性を有する組み合わせを形成することを理解されたい。各種の改良された特性には、本明細書で使用される"表面改質剤"に属する諸特性が包含される。

実施例14

代表的製造例においては、PLGA108mgとイソブチルシアノアクリレート(Polyscience, Inc., Warrington, PA)36mgが別々に5mlの塩化メチレンに溶解され、そして後からそれらが組み合われて有機相がつくられた。U86(67mg)をこの有機相からなる溶液に溶解した。この有機相が氷浴上55ワットのエネルギー出力の音波処理によって2.5%w/v水性PVA25mlに乳化された。このエマルジョンから室温で40時間この有機相を蒸発させた。形成されたナノ微粒子を140,000gの超遠心分離によって回収し、水で三

回洗って凍結乾燥した。PLGA-シアノアクリレートナノ微粒子が25%のU 86負荷で約65%の収率をもって得られた。その平均粒子直径は123±37 nmであった。

さらにこの面での本発明のいま1つの実施態様においては、生物親和性、生物 分解可能なポリマーは新規なエポキシ誘導体化され、活性化されたポリカプロラ トンである。医薬の分野で使用ている生物分解可能なポリマーであるポリカプロ ラクトンは長期間維持される放出ポテンシャルを有している。しかし、通常のポ リカプロラクトンは、親水性活性剤のためのあるいは急速放出用途のためのキャ リヤーとしては有用ではない。さらに、ポリカプロラクトンは、ポリマーを誘導 体化するあるいは化学的に改質するのに使用可能な反応性官能基を欠いている。

(2) ポリカプロラクトン含有マルチブロック共重合体

本実施態様においては、ポリ(エチレングリコール)のごとき親水性セグメントがPCLポリマー鎖に導入され、生物活性剤ためのキャリヤーとして有用な新規な生物分解可能なヒドロキシ末端ポリ(ε ーカプロラクトン)ーポリエーテルマルチブロック共重合体が形成される。この新規なポリカプロラクトン系ポリマーは、それゆえに、従来のカプロラクトンよりも望ましい親水性特性、制御可能な生物分解反応速度ならびに前記のごとき反応性エポキシ基の付加によるようなさらに誘導体化の可能性を有している。

有利なことに、本発明によるこの新規なポリカプロラクトン系ポリマーから洗浄剤または乳化剤の付加なしでナノ微粒子を形成することが可能である。たとえば、ポリ(エチレングリコール)ーポリカプロラクトンの有機溶液、または他の類似のタイプの1つの分子の中に親水性部分と疎水性部分との両方を有しているポリマーを水性相に加えるとき、そのポリマー分子の親水性部分(PEG)は水性相の方に向かい、疎水性部分(PCL)はエマルジョン液滴の中心に向かうであろう。しかして、親水性表面を有する疎水性部分からなるナノ微粒子コアが形成される。外方に面するPEGは非常に良好な乳化剤であり、エマルジョンの形成を助ける。さらに、PEGはエマルジョンを安定化し、エマルジョン液滴の凝集を防止する。

疎水性 P C L セグメントと親水性セグメント(これは親水性ポリエーテルでありうる)とのブロック共重合体は、図7に示した反応図式のようにヒドロキル末端基とエポキシド基との間の多重反応によって合成されうる。図7の例示的反応図式は共重合体プロックをABA型、BAB型あるいは(AB)n型に化学結合W0させるために使用することができる。したがって、ブロック共重合体の疎水性と分子量は所望のごとく設計することができる。ブロック共重合体の両端にヒドロキシル基を置くことは、ポリマーの容易な化学的改質、たとえば、ヘパリン、アルブミン、抗体または他のバイオ分子への結合が可能となる。

図7を見ると、化合物30はポリカプロラクトンジオール(PCLージオール)である。市場で入手可能な最も分子量の大きいPCLージオールは3000の分子量を有するものであり、これは、放出が維持される生物分解可能なナノ微粒子として使用される共重合体の主セグメントとして役立つためには長さが十分長くない。考慮される使用温度において固体である、よりポリマー量のPCLージオールを得るために、PCLージオール(化合物30)が二官能性エポキシド化合物たとえばDenacol EX252(化合物31)と2.5:1のモル比で反応させられる。この特定ケースにおいては、PCLージオールがポリマー鎖内の未端基となるように過剰のPCLージオールがこの特別な場合に使用された。この比を逆にすると、すなわちEX252が過剰に存在すると、エポキシド化合物がポリマー鎖の末端基になるであろう。未反応PCLは勾配沈殿によって除去される。この結果、拡大されたPCLージオールが得られ、特定の本実施態様では、HO-PCLーEX252-PCL-OH(化合物33)の構造を有する

この特定な実施態様においては、二官能性エポキシド、DenacolEX 252が使用されたが、二官能性または多官能性エポキシドと本明細書で定義されているいずれの多官能性エポキシド、たとえば、DenacolEX521 またはEX512、あるいはエチレンオキシドや1、2-プロピレンオキシドの ごとき1、<math>2-エポキシドが使用できることを理解されたい。

拡張されたPCL-ジオール化合物33が過剰の二官能性エポキシド化合物と

反応させられてエポキシド基によるPCLージオールの末端キャップが達成される。図7を見ると、二官能性エポキシド化合物31中の2つのエポキシド基の一方がPCLージオール化合物33のヒドロキシル末端と反応し、そして他方のエポキシド基は遊離のまま残り、したがってPCLージオールの両末端はポキシド基によってキャップされる。過剰のエポキシド化合物は沈殿と洗浄によって除去される。この結果、エポキシドでキャップされたPCL、すなわち、EX252ーPCLーEX252、化合物34が生成される。

化合物34(ブロックA)は過剰のポリエーテルジオール(ブロックB)と反応する。図7に示した実施態様では、ポリエーテルジオールはポリエチレングリコール(PEG、分子量4500)、すなわち化合物35である。特有の本実施態様では、ブロックAとブロックBは1:4のモル比で反応させられる。生成した共重合体が沈殿によって集められ、そして過剰のポリエーテルは水で洗浄して除去される。最終的共重合体はエポキシドと結合され、両末端がヒドロキシル基で終端されているBABトリブロック共重合体、すなわち化合物36である。特定の本実施態様では、この化合物36はHOーPEGーEX252ーPCLーEX252ーPEGーOHである。

ABAトリブロック共重合体をつくるためには、反応順序を逆にする。すなわち、ポリエーテルージオールを使用してブロックAを形成し、そしてPCLージオールをプロックBとして使用する。加えて、マルチブロック共重合体が、ABAまたはBABトリブロック共重合体をプレポリマー(化合物33と類似)として使用して形成できる。換言すれば、ABAプレポリマーがエポキシ化合物で末端キャップされ、そしてBABABH集合体を形成するのにBブロックと反応させられ、あるいはABABA共重合体を形成するのにAブロックと反応させられる。当業者は本発明の技術を使用して多数のヒドロキシおよび/またはエポキシ末端ポリマーを案出することができるであろう。

もちろん、他の疎水性ポリマー、たとえば、ポリラクチド、ポリグリコリド、 PLGA、ポリ無水物、ポリアミノ酸または生物分解可能なポリウレタンをブロックA/Bのために使用することができる。ブロックB/Aのために適当な他の 親水性ポリマーはプルロニック(Pluronic) F 6 8 およびプルロニック F 1 2 8 のごときポラキソマー、およびポリ(プロピレンオキシド)(PPO)である。

AとBのポリマーを選択する場合、当業者は特別の用途にとって親水性分子と 疎水性分子との最適なバランスを選択することになろう。親水性のより大きいポ リマーはより速い薬物放出特性を示し、また逆の場合は逆の特性を示す。ポリマ

一の物理的性質たとえば形や薬物系の安定性、ならびにポリマーの分子量は放出 速度に影響を与えるであろう。もちろん、ポリマーの分子量が小さいほど、放出 速度は速くなる。

本発明によって製造されるブロック共重合体の分子量はゲル浸透または固有粘度で測定して30,000万至700,000範囲であり、薬物送達用途のためには約90,000万至100,000の分子量が好ましい。

<u>実施例15</u>

特定の例示的実施態様においては、PCL-ジオール(1.5 mg; 0.5 m M、Polyscience, Inc., Warrington, PA;分子量3,000)を、Denacolor EX252(0.21g; 0.55 mM)と、THF15ml中Zn(BF4)2 触媒(Tポキシド化合物により2重量%)の存在下、37 Cの温度で28時間撹拌しながら反応させた。拡張されたPCL-ジオールを拡張されないジオールから分離するために、<math>T9ンを使用して勾配沈殿が実施されそして沈殿されたポリマーPCL1が遠心分離によって捕集された。拡張されたジオール、T1 の一T2 に対するというで洗って遊離エポキシド分子を除去しそして乾燥した。

実施例16

 PEG末端化合物36、HO-PEG-EX252-PCL-EX252-P

 CL-EX252-PEG-OHは次のようにして製造することができる:

 化合物34(1g)を、PEG2g(化合物35;化合物34対PEGのモル

比は1:3)とZn(BF4)2 20mgが添加された15m1のTHFに溶解する。振とうテーブル上37Cの温度で反応を48時間進行させる。生成したポリマーHO-PEG-EX252-PCL-EX252-PCL-EX252-PEG-OH(化合物36)をヘプタンで沈殿させ、遠心分離し、50m1の水で2回洗う。

実施例 1 7

ABAトリブロック共重合体が、次のポリエーテルをブロックAとして使用し て、図7の例示的一般反応図式にしたがって製造された: PEG E4500、ポラキ ソマー プルロニックF68 (F68) およびプルロニックF127 (F127)およびポリ(プロピレンオキシド)(PPO)。各種のポリエーテルをPCL と一緒にABAトリブロック共重合体に組み入れ、親水性と機械的性質を変えた ポリマー試料が得られた。PPOは分子量4,000の疎水性ポリエーテルポリ マーである。プルロニックは、疎水性ブロックとしてPPOをそして親水性プロ ックとしてポリ(エチレンオキシド) (PEO)を有するジブロック共重合体で ある。プルロニックF127は分子量が約12、600そしてPPOが70%、 PEOが30%である。プルロニックF63は分子量が約6,000そしてPP Oが80%、PEOが20%であり、それゆえに、プルロニックF127よりも 親水性が低い。PEGはこのグループの中で最も親水性のポリエーテルである。 特定の例示的実施態様においては、プルロニックF68(1.5g; 0.25 ミリモル)がDenacol EX252(O. 42g)と、THF15ml中 Zn(BF4)2 40mgの存在下、37℃の温度で6時間撹拌しながら反応させ られた(F68対EX252ののモル比は1:4)。反応混合物は20mlのへ プタン中に沈殿させた。集めた生成物をヘプタン5m1で二回洗って過剰の未反 応エポキシドを除去しそして乾燥した。得られた生成物はエポキシド末端キャッ プしたプルロニックF68 (ブロックA) であった。

このエポキシド末端キャップしたプルロニックF68をPCL-ジオール (2

3 g)と、 $THF15m1中Zn(BF4)_2$ の存在下37℃の温度で48時間撹拌しがら反応させた。ヘプタン中の勾配沈殿を使用して、生成した共重合体を未反応遊離PCLから分離した。沈殿した共重合体を遠心分離で集めて乾燥した。生成されたヒドロキシ末端ABAブロック共重合体はHO-PCL-EX252-F68-EX252-PCL-OHであり、表9ではPCL/F68/PCLと記載されいる。構造式を下記に示す:

実施例 17で製造された ABA及び BABのトリブロック共重合体の一般的外観ならびに物性が表 13に示されている。対応するヒドロキシ末端 BABブロック共重合体、HO-F68-EX252-PCL-EX252-F68-OHは、表 13では F68/PCL/F68と記載されいる。符合"/"は本発明によるエポキシ結合を示す。

この命名法を使用すれば、図7のヒドロキシ末端BABトリブロック共重合体化合物36はPEG/PCL(E)/PEGであり、ここで"(E)"は実施例15で説明したようにPCLがエポキシ結合によって拡張されていることを意味する。もちろん、記号PEG/PCL/PEGはPCL成分に付加的拡張のないヒドロキシ末端BABトリブロック共重合体を意味することになる。対応するABAトリブロック共重合体、HO-PCL-EX252-PEG-EX252-PCL-OH、すなわちPCL/PEG/PCLの構造式を下記に示す。

表 13

ポリマータイプ	形態	水溶解性	膜形成特性
PCL/PEG/PCL	結晶化可能な粉末	不溶	強靭、フレキシブル
PEG/PCL/PCL	結晶化可能な粉末	膨潤	フレキシブル、水中で破れる
PCL/F68/PCL	結晶化可能な粉末	不溶	強靭、フレキシブル
F68/PCL/F68	結晶化可能な粉末	不溶	フレキシブル
PCL/127/PCL	結晶化可能な粉末	膨潤	もろい膜
PCL/PPO/PCL	粘性ワックス	不溶	膜を形成しない

表13を参照すると、薬物送達の点から最も有用なポリマーはPCLとPEGまたはプルロニックF38からつくられた共重合体である。結晶化しないポリマーたとえば高レベルのPPOを含有しているポリマーは機械的強度が低くかつ粘性である。大きい親水性セグメントを有するポリマーたとえばPCLとプルロニック127からなるポリマーは水性相からの分離が困難でありかつ水または体液と接触したときに固体形状を維持しない。成功的薬物送達手段は、体温で固体であり体液の存在でゆっくりと溶解または腐食しまた不燃性でありそして組織/細胞に対して無毒性であるポリマーからなる。他の有利な特徴は高い薬物装填効率、誘導体化能力、安定性および、ある実施態様では、注射可能な液体媒質中に容易に懸濁できることである。

図7の反応図式によりABAトリブロック共重合体が製造されることを証明するため、PCL/F68とPCL/PEG共重合体のNMRスペクトルを溶剤としてCDC13を使用してBruker-360 測定装置で測定した。出発物質と最終共重合体のプロトンNMRスペクトルの比較により分子構造が確認された。

本明細書に報告されているNMR検査のための反応化合物はPCL/PEGまたはPCL/F68(それぞれ実施例13と12参照)であった。しかし、これらのポリマーを薬物送達のために使用するとき、さらにトリブロック共重合体で

あるPCL/PEG/PCLまたはPCL/F68/PCLを形成するためさらに反応を実施しうる。

図8乃至11は出発物質PCLージオール、プルロニック68、PEG E4 500 およびDenacol EX252のスペクトルをそれぞれ示す。PCL /F68共重合体のスペクトルは図12に示されており、上記に提示した分子構造と一致した。出発物質PCL、F68、EX252の化学シフトを図12で観察された化学シフトと比較すると、最終生成物中にはPCLセグメント(位置a、b、c、dにおける化学シフト)とF68セグメント(位置eとfにおける化学シフト)が存在することが認められる。最低強度を有する δ 0.7における小さいピークはDenacol Ex252内の一CH3基のプロトントであるはずである。エポキシド基とヒドロキシル末端基との間の反応は、反応から生じた結合手内のプロトンを表している δ 3.401ppm(プロトン x)における化学シフトによって確認された。最終共重合体の中の一CH2OH末端基は3.1415ppm でのシフトを与えていた。

ブロック共重合体 P C L / P E G のスペクトルは図13 に示されている。このスペクトルは、プロトン f を除き図12と同じシフトを示している。プロトン f は図9及び10のスペクトルに示されているプルロニックF 68 と P E G E 4500の間の差異を表している。図13に示した P C L / P E G ブロック共重合体は P C L : P E G のモル比が75:25であった。

図14のスペクトルにおいて、PCL/PEG共重合体は60:40のPCL 対PEGのモル比を有しており、図13に示したPCL/PEG共重合体の場合 よりも大きい割合のPEGを有していた。Denacol EX252内のプロトンによって生じた化学シフトは比較的非常に小量のためきわめて弱いのであるが、は故意に拡大された。0.71ppm における化学シフト(プロトン h)は Denacol EX252内の一 CH_3 の6個のプロトンを表し、そして2.64ppm におけるピーク r はDenacol EX252内のエポキシド末端

基の一 C H2の2つのプロトンから由来するシフトである。エポキシドがポリマージオールと反応した後、このプロトンrの強度は大きく減少した。h/rの強度比によってこれは確認することができる。反応前にはこの比は図11に示されているように3.6である。共重合体形成後、この比は7.7に変わった(図1

4)。共重合体内には痕跡量の未反応エポキシドが存在する。このことは、一方のエポキシド基をポリージオールの一〇日末端基と反応させ、他方のエポキシド基を遊離のまま残すことができ、したがって過剰のDenacol EX252を使用した場合には1つのエポキシドでキャップされた共重合体を形成することも可能であることを示している。

実施例18

へパリンおよびアルブミンが、多官能性エポキシド化合物、説明的には、Denacol EX521を使用してプロック共重合体の末端ヒドロキシル基に化学結合された。この実施態様では、1分子当りに5つのエポキシド基を有するDenacol EX521が、二官能性Denacol EX252の代わりに結合剤として使用された。したがって、より多数の遊離エポキシド基が結合反応のため利用可能である。Denacol EX521の過剰をポリマー粒子の末端ヒドロキシル基と反応させてエポキシドキャップした末端を形成した。ヘパリンまたはアルブミンのPCL系ポリマー粒子への結合は、エポキシ誘導体化のセクションで上述したように、ポリマー末端の遊離エポキシド基とアルブミンまたはヘパリン分子内のアミノ、ヒドロキシルまたは他の官能基との間の反応と同じである。

実施例17に記載したタイプのPCLとPEGまたはF68のトリプロックABAおよびBAB共重合体がナノ微粒子をつくるために使用された。特定の例示的製造スキームは以下のとおりである:ポリマー100mgを塩化メチレン5mlとアセトン1mlに溶解した。このポリマー溶液を55ワットのエネルギー出力で音波処理しながら20mlの水に加えた。全部で10分間音波処理を続けて

水中油形エマルジョンを形成した。室温で撹拌しながら有機溶剤を16時間蒸発させた。145,000gの超遠心分離によってナノ微粒子を回収し、再懸濁しそして凍結乾燥した。

PCL系ナノ微粒子の表面改質のための例示的な特定実施態様においては、ポリマーナノ微粒子50mgがpH5.0のホウ酸塩緩衝液(0.05モル)10mlに懸濁された。同じ緩衝液5mlに過剰のDenacol EX521(0

. 8 g)を溶解してポリマー粒子懸濁液に加えた。撹拌しながら、触媒の四フッ化ホウ酸亜鉛(Zn(BF4)2;14mg)を加えた。この反応混合物を37%で 30分間振とうした。粒子を遠心分離によって集め、過剰のエポキシ化合物は分離された粒子を水洗することによって除去された。しかして、エポキシドでキャップされたポリマー粒子が得られた。

このエポキシドキャップポリマー粒子を10mlのホウ酸塩緩衝液に再懸濁し、撹拌しながらヘパリンまたはアルブミンを添加した。37℃で5乃至7時間反応させた。最終生成物を遠心分離で集めた。ナノ微粒子を水で三回洗って遊離へパリンまたはアルブミンを除去した。

ポリマー粒子に結合されたヘパリンまたはアルブミンの量を測定するために放射線標識をつけたヘパリン (³Hーヘパリン) とアルブミン (¹4 Cーアルブミン) をカップリング反応に使用した。約5mgの結合した粒子を塩化メチレン5m1に溶解した。この有機溶液を水 (7m1) で三回洗った。まとめた水性抽出物中のヘパリンまたはアルブミンの濃度を液体シンチレーションカウントによって測定し、そしてポリマー粒子内の全ヘパリン量または全アルブミン量を校正プロットから計算した。

表 14 は各種ブロック共重合体粒子へのアルブミン(BSA)の結合の結果を示している。ポリマーPCL/EX252/PCLからつくられたナノ微粒子は拡張されたPCL-ジオール、図 17 の化合物 33 である。

表 14

試 料	BSAの量 (mg)	ポリマーに結合された BSA % (w/w)	BSA結合効率 (%)
PCL/F127/PCL	1.37	15.40	38.50
PEG/PCL/PEG	1.19	11.37	28.43
PCL/PEG/PCL	1.25	1 3. 1 7	32.43
PEG/PCL/PEG/PCL/PEG	1.36	1 3. 2 2	3 3. 0 5
PCL/F68/PCL	0.82	6.46	16.15
PCL/EX252/PCL	0.33	3.51	8.78

表14を見ると、ナノ微粒子に結合したアルブミンの量がポリマーの疎水性により変化することが明らかである。親水性の高いポリマーほど結合率が高くなる。結合はポリマー分子の末端において起こるから、ポリマーの分子量は結合効率の重要なファクターになる。分子量が大きいほど、結合するアルブミンの量は少なくなる可能性がある。当業者は、本発明の実施にあたって、所定の用途に必要なバイオ分子結合に対して、機械的強度が要求される所望分子量をバランスさせる必要があろう。

固体投与形態たとえばインプラントの場合には、長期間にわたる放出が要求され、疎水性ポリマーが有用である。親水性ポリマーは水または組織液に浸透可能であるから、より早く生体内で崩壊する。ナノ微粒子の製造の点から、疎水性/親水性バランスを調整してポリマーが外からの乳化剤なしでナノ微粒子を形成できるようにすべきである。ポリマーが本質的に過度に親水性または過度に疎水性であると、ナノ微粒子を形成するために乳化剤が必要となろう。さらに、ポリマーが親水性すぎると、回収が困難になる。もちろん、親水性ポリマーはより多くの親水性薬物を取り込み、疎水性ポリマーはより多くの親水性薬物を取り込み、疎水性ポリマーはより多くの親水性薬物を取り込み、疎水性ポリマーはより多くの疎水性薬物を取り込む。当業者は、マルチブロックポリマー内の親水性セグメントと疎水性セグメントの

適切な数ならびに相対位置(たとえばBABまたはABA)を決定することによって容易にそれらの特性をコントロールすることができる。

アルブミンが結合されたナノ微粒子の安定性を37℃でpH7.4のリン酸塩緩衝液を含有する拡散チャンバーの中で試験した。実施例18により製造されたPCL/F68/PCLのナノ微粒子を緩衝液に懸濁して連続的に振とうした。周期的に緩衝液のサンプルを採取しそして新しい緩衝液を補充した。採取した緩衝液の放射能を液体シンチレーションカウントによって測定した。この方法によって、PCL/F68/PCLの共重合体に結合したアルブミン(BSA)の安定性を60日間にわたって監視し、そしてBSAとPCL/F68/PCLナノ微粒子との物理的混合物または分散物からなるポリマーと比較した。なお、アルブミンとナノ微粒子の物理的混合物は本発明の一部ではないことを留意されたい

結果は図15に示されている。図15は日数単位の時間の関数としてPCL/F68/PCLに残留するアルブミンのパーセントをグラフで表している。この図15を見ると、化学結合したアルブミンは非常に安定であった。培養62日後においても結合したアルブミンの90%以上が残留している。物理的に混合されたアルブミン/ポリマー試料は最初の5日間に結合試料よりもはるかに急速な漏出を示した。アルブミンのポリマー量ははポリマー粒子からのアルブミンの拡散を妨げることができる。

表15は各種ブロック共重合体粒子にヘパリンを結合させた結果を示す。記載 の各共重合体の粒子には約5w/w %のヘパリンが結合された。

表 15

試料	ヘパリンの量 (mg)	ポリマーに結合された ヘパリン %(w/v)	ヘパリン結合 効率 (%)
PEG/PCL/PEG	0.64	5.87	14.68
PCL/F68/PCL	0.51	4.95	1 2. 3 8
PCL/EX252/PCL	0.46	5.05	1 2. 6 3

へパリンの結合したナノ微粒子を標準APTT試験にかけた。ヘパリンが結合 したナノ微粒子で処理したイヌ血清では200秒以上にわたり凝固が起こらなか った。これによって結合ヘパリンの抗トロンボゲン作用が確認された。これに比 較して、ヘパリン結合されていない粒子では20乃至30秒以内に血液凝固が起 こった。

図16A乃至16Cは、日数単位の期間にわたり残留している結合へパリンの%として表した表15のヘパリン結合ナノ微粒子の安定性を示すグラフである。 化学結合したヘパリンは物理的に混合したものよりも実質的により安定である。 43日後において、化学的に結合した粒子内に残留したヘパリンは約85%であったのに対し、物理的に混合した試料では15%であった。

実施例19

U86とデキサメタソンをPCL系共重合体からなるナノ微粒子に組み込んだ。ナノ微粒子は前記した溶剤内乳化-蒸発技術(実施例18参照)によって製造された。ただし、このブロック共重合体は疎水性と親水性を兼備しているので、最初の水中油形エマルジョンを形成するために界面活性剤は必ずしも必要ではない。

PCL系ポリマーと疎水性薬物を有機溶剤、塩化メチレンに溶解した。この有機相を水性相(これは特別な本実施態様ではリン酸ナトリウム緩衝液(pH8.0)であった)の中で音波処理して水中油形エマルジョンを形成した。有機溶剤を室温で撹拌して蒸発させた。ナノ微粒子を超遠心分離で回収して凍結乾燥した。ブロック共重合体上のヒドロキシル末端基を粒子表面上でヘパリンと結合させた。

特定の例示的実施態様においては、デキサメタソン(35mg)がアセトン0.5mlとエタノール0.3mlとの組み合わせに溶解された。この薬物溶液を5mlの塩化メチレンに溶解されたポリマー溶液(100mg)に混ぜ合わせた。薬物とポリマーを含有している有機相を55ワットのエネルギー出力で音波処理しながら氷浴上で10分間1%PVA溶液20mlに乳化して水中油形エマルジョンを形成した。有機溶剤を16時間室温で蒸発させた。しかして形成されたナ

ノ微粒子を超遠心分離によって回収し、水で三回洗いし、凍結乾燥した。 表16は平均粒子サイズ、薬物装填およびU86含有ナノ微粒子に結合された へパリン結合量を示す。抗トロンボゲン作用がAPTTテストによって確認された。すなわち、ヘパリン結合されたナノ微粒子では200秒以上血液凝固は起こらなかった。F68/PCL/F68の共重合体は、共重合体の両末端に長い遊離の親水性プルロニックF68鎖が存在するために、最小の粒子を形成した。PCL/PEG/PCLブロック共重合体も小さい粒子を形成した。

表 16

試 料	U 8 6 装填 (w/w)	ヘパリン結合 (%)	粒子サイズ (nm)
F 6 8 / P C L / F 6 8	12.8	3.86	1 3 1. 2
PCL/F68/PCL	25.2	2.67	5 8 5 . 8
PCL/PEG/PCL	16.1	4.16	1 6 8 . 5

図17は、日数単位の期間に放出されたU86の%で表示したへパリン結合ナノ微粒子からの試験管内U86放出をグラフで表したものである。33日の期間で、組み込まれたUS86がPCL/PEG/PCLからは約85%放出され、F68/PCL/F68からは75%が放出され、そしてPCL/F68/PCLからは50%が放出されている。33日後においてナノ微粒子は試験管内環境で無傷のまま残った。最初の30日間の粒子からのU86の放出は主として拡散によるものと推定される。残ったU86はポリマーの分解につれてはるかにゆっくりと放出される。図17は、またPLGAナノ微粒子がPCL系トリブロック共重合体よりも多量の薬物を放出することも示している。

本実施例にしたがってデキサメタソン含有ナノ微粒子を製造し、下記の表 1 7 に記載した A B A 型共重合体に組み込んだ。この特定の実施態様では A B A 型共重合体が使用され、したがって未端セグメントは疎水性であるので、媒質を乳化

するために界面活性剤、特に1%水性PVA溶液が使用された。PCLホモポリマー(PCL/EX252/PCL)、図7の化合物33である拡張されたPCLージオールも比較の目的でデキサメタソン含有ナノ微粒子を製造するために使用された。

表17は粒子サイズ、薬物装填およびへパリン結合したデキサメタソン含有ナノ微粒子の標準APTT試験の結果を示す。PCL/F68/PCLナノ微粒子は特に小さな粒子である。すべての粒子が良好な抗トロンボゲン作用を示した。

表 17

試 料	デキサメタソン 負荷 (w/w)	粒子サイズ (nm)	トロンピン時間 (秒)
PCL/PEG/PCL	3 3. 9	1 1 7. 5	>200秒
PCL/F68/PCL	2 2 . 1	7 2. 2	>200秒
PCL/EX252/PCL	28.7	1 7 7. 0	>200秒

図18は、日数単位の期間に試験管内に放出されたデキサメタソンの%を表17に記載した各ナノ微粒子について示すグラフである。21日以内に、組み込まれたデキサメタソンは、PCL/F68/PCLからは約80%が放出され、PCL/PEG/PCLからは65%が、そしてPCLホモポリマーからは50%が放出されている。PCL/F68/PCLナノ微粒子によって証明されているように、粒子サイズが小さいほどそして薬物の装填が低いほど、最初の3日間で急速な放出を生ずる。他方、薬物装填が高い大きい粒子ほど長期間持続する放出を生じ、これは、PCL/PEG/PCLナノ微粒子およびPCL/PCL/PCLナノ微粒子の場合の結果に示されている。

本発明のブロック共重合体は、アルブミン(BSA)のようなバイオ巨大分子の制御された放出のためのマトリックスキャリヤーとしても使用できる。15% BSA含有フィルムを、ABA型ブロック共重合体とPCLホモポリマーから、

130° Fの温度で1トンの圧力で熱間圧縮成形によって製造した。得られた厚さ約150 μ mのフィルムを1×1cmの部片に切りそしてpH7.4リン酸塩緩衝液中37°Cで振とうした。このフィルムから試験管内で放出されたBSAの量をBIO-RAD Protein Assay試薬 (Bio-Rad Company, Hercules, CA) を使用して595nmにおける吸収を測定することによってモニターした。結果が図19に示されている。図19は、日数単位の期間に放出された

%BSAとして表されたBSAの試験管内放出を示すグラフである。図19を見ると、PCL/PEG共重合体からのアルブミンの放出がPCLホモポリマーからの放出よりもはるかに多いことが明らかである。これは、通常疎水性であるポリマータンパク質の共重合体マトリックスからの放出がその疎水性に積極的に関連していることを示唆している。

固体ポリマー粒子と水との間の界面張力に関係する接触角測定を実施し、本発明のいくつかのヒドロキシ末端トリブロック共重合体、PCL/F68/PCL およびPCL/PEG/PCLの親水性/疎水性を疎水性成分対親水性成分のモル比の関数として調べた。結果は表18に示されている。接触角が小さい場合には、そのポリマー表面は親水性であり、逆に接触角が大きい場合には、ポリマー表面は疎水性である。この親水性/疎水性は、例えば経口投与ワクチンによる再狭窄および免疫化の処置または予防のごとき実用の実施態様において、形成されたナノ微粒子の細胞摂取の重要なパラメーターとなりうる。後者の場合では、ポリスチレン粒子のごとき疎水性粒子のパイエル板による摂取はPLGA粒子のごとき親水性粒子による摂取よりもかなり多い。

表 18

	接触データ				
	PCL/F68/PCL				
	F68のモル比(%)	接触角 ± 標準偏差 F68			
1	0.000	6 0. 2 2 0 ± 0. 2 8 0			
2	10.000	49.730 ± 1.520			
3	33.000	34.470 ± 1.360			
4	40.000	24.330 ± 1.380			
5	50.000	20.460 ± 1.470			
6	58.000	16.140 ± 1.020			
	P C L / P	EG/PCL			
	PEGのモル比(%)	接触角 ± 標準偏差 PEG			
1	0.000	60.220 ± 0.280			
2	30.000	3 9. 2 0 0 ± 1.110			
3	50.000	30.020 ± 1.900			
4	58.000	18.550 ± 1.320			
5	80.000	10.780 ± 1.900			

以上の記載から、本発明のPCLブロック共重合体がナノ微粒子に成形できること、ナノ微粒子に抗凝固作用を授与するためへパリンがナノ微粒子表面に共有結合できること、およびタンパク質および/またはペプチドがナノ微粒子表面に結合できそしてそれから放出されうることがわかる。もちろん、本発明のPCL系共重合体は誘導体化可能であり、したがって各種の生物活性剤または表面改質剤と反応させることができる。いくつかの実施態様では、ナノ微粒子の形成のために洗浄剤が必要とされない。さらに加えて、この独創的製剤は標準PCLを使用したものよりもはるかに長時間の破壊持続時間を可能にする。破壊時間は1時

間以下から数ケ月までの範囲にわたることができ、そして報告によれば3年間もの長時間もありうる。たとえば、Darney らの <u>Fertility and Sterility</u>, Vol.

58, pp.137-143 (1992) ; Darney 5の Am. J. Obste. Gynecol., Vol. 145, pp.600-604 (1983) 参照。

ナノ微粒子に加えて、本発明の新規なPCL系共重合体とその製造方法は、ミクロ微粒子、ナノ微粒子、コーティング、バイオ分解可能な単層薬剤貯蔵物または重合体マトリックスおよび/または装置たとえば外科縫合糸、カテーテルチップ、泌尿器カテーテルなどの製造にも適用することができる。

III. 使用例の方法

ナノ微粒子は、血管系を介してまたはその他の介在手段によって接近できる生体内のいずれの場所にたいしても、カテーテル使用による局所性薬剤送達に好適である。従って本発明のナノ微粒子は、カテーテルによる送達システム、特に心臓治療用システムおよび血管の処置における使用を意図したものである。この用途における活性成分としては、デキサメタゾン、コルティコステロイド類、血栓溶解薬、カルシウムチャンネルブロッカー、抗血小板作用剤、U86のような抗増殖剤、細胞骨格阻害剤、DNA、抗炎症剤、および、免疫抑制剤があるが、これらに限定されるものではない。

(1)狭窄再発の防止

本発明の特定の使用法として、このナノ微粒子は、心血管へのカテーテル処置、例えばバルーン血管成形術の、一環として平滑筋抑制剤および抗血栓剤を血管系を介して局所投与するのに好適である。このナノ微粒子はきわめて微細であるために、例えば、血管壁を通り抜けて細胞外空間に自由に侵入できる。

ナノ微粒子は、血栓発生を抑え細胞外基質への接着を強化する一個以上の添加 剤と併用することによって、特に血管内使用に適している。この目的のために特 に有効と判断される添加剤としては、ポリビニールアルコールのような洗浄剤す

なわち界面活性剤、ヘパリン、アルブミン、サイトカイン類、リン脂質および脂肪酸を含む各種脂質、または、これらの混合物がある。 DMABのような洗浄剤で表面改質を行なうと、保持性の点で最良の成績を挙げた。これは上記の実験結果に示した通りである(表6および7参照)。ナノ微粒子の表面電荷を修飾してナノ微粒子に粘膜接着性を与え、さらにこのナノ微粒子にアルブミンを付加する

と、効力はさらに向上する。

本発明のこのような実施態様にとって好適な生物活性剤としては、U86およびデキサメタゾンがある。また、特に有効な実施態様として、サイトカラシンBをPLGAナノ微粒子として処方した。これについては、後述する実施例20に見る通りである。

平滑筋細胞の治療における好ましい治療薬としては、スタウロスポリンなどの プロテインキナーゼ阻害剤や、サイトカラシン類のような平滑筋移動及び/また は収縮阻害剤、スラミン(suramin)、および、ニトログリセリンのような一酸 化窒素放出剤、上記の類似体、および、機能的等価物がある。サイトカラシンは 、アクチンとの相互作用によって平滑筋細胞の移動・収縮を抑制すると考えられ ている。特に、サイトカラシンは、G-アクチンモノマーが重合してF-アクチ ンポリマーとなるのを阻害し、これが次に細胞原形質のマイクロフィラメントを 必要とする細胞機能を抑制して、血管平滑筋の移動と収縮を抑制する。サイトカ ラシン類には、血管平滑筋細胞の収縮・移動の抑制を含め標的細胞代謝にたいす る抑制作用を持つカビの代謝産物が含まれる。サイトカラシンは、通常、フェニ ルアラニン、トリプトファン、または、ロイシンから得られるが、さらに詳細に 、1994年8月4日公開国際出願 WO 94/1607、1994年4月14 日公開 WO 94/07529、日本国特許Nos. 72 01. 925、72 14, 219, 72 08, 533, 72 23, 394, 72 01, 92 4および72 04,164 に記載されている。ここに引用した出版物の本文 を、参照したことによってここに取り込み含めることとする。分子の実例として は、

サイトカラシンA-H、とJ-H、ケトグロボシンA-G、J、および、K、デオキサホミン、プロクシホミン、プロトホミン、ジゴスポリンD-G、アスポカラシンB-Dなどの他に、その機能的等価物や、誘導体がある。本実施例ではサイトカラシンBを好適なモデル化合物として使用する。

本実施例ではサイトカラシン結合ナノ微粒子を直接血管組織に適用しているが 、本発明においては、ナノ微粒子を表面改質して、血管平滑筋細胞結合性タンパ ク質などのナノ微粒子を標的に結合させる結合性タンパク質・ペプチド含有させることが意図されているものである。血管平滑筋結合性タンパク質としては、抗体 (例えば、アフィニティー精製されたモノクローナルおよびポリクローナル抗体、抗体のF(ab')2、Fab'、FabおよびFvフラグメント、および/または補体決定領域(CDR)、または上記の機能的等価物、成長因子、サイトカイン、および、ポリペプチドホルモンなど、および、インテグリンやフィブロネクチン受容体のような細胞外基質受容体を認識する巨大分子がある。さらに、ナノ微粒子を標的に当てる結合タンパク質としては、血管平滑筋細胞の隣接細胞同士や細胞間全体に存在する細胞間質・基質にたいする結合タンパク質がある。これらのペプチドは、コラーゲン上のエピトープ、テナシンのような細胞外糖タンパク質、網状線維や弾性線維、および、その他の細胞間基質と関連する。

実施例20

150mg PLGAを、5mlの塩化メチレンに溶解し、15mgのサイトカラシンB(シグマ化学会社、セントルイス、ミズリー州)を、このポリマー液に溶解した。アセトン(約4ml)を撹拌しながら滴下し、有機相である透明な液が得られるまで続けた。この有機相を超音波振動により2.5%PAV液 20mlに懸濁し、水中油滴懸濁液を形成した。この水中油滴懸濁液を磁気撹拌プレート上で16時間撹拌し、有機溶媒を蒸発させた。得られたナノ微粒子を超遠心で回収し、未捕捉のサイトカラシンBが無くなるまで洗浄してから、48時間凍結乾燥した。この方法による通常の収率は約60%であった。このナノ微粒子は

約7.08%の薬剤負荷を持ち、その平均粒径は145±44.1 n mであった。

サイトカラシン B 負荷ナノ微粒子の細胞内取り込みを測定するために、蛍光色素のクマリン-6 を実施例 2 0 のナノ微粒子処方に組み入れた。具体的には、重さにして約 0. 1%のクマリン-6 を、乳化前に有機相に溶解した。培養霊長類平滑筋細胞 B 0 5 4 (# 2 5 継代)を用いてサイトカラシン-B の取り込みと保持を測定した。標的細胞は 1 0 0 mmのプレートに 2 4 時間培養し、その後、 2 . 5×1 0^5 細胞/プレート(集密単層培養細胞)として使用した。この標的細

胞を、本実施例にしたがって調製したプレート当たり $5 \, \mathrm{m}\, 1$ のサイトカラシン- B含有ナノ微粒子(完全培養液 $1 \, \mathrm{m}\, 1$ 当たり $1 \, 0 \, \mu$ g)に、 $3 \, 7 \, \mathbb{C}\, 1$ 時間暴露した。次に、 $2 \, \mathrm{m}\, 1$ の完全培養液で $2 \, \mathrm{g}$ 洗浄し、さらに $1 \, 0 \, \mathrm{m}\, 1$ の完全培養液を添加した。

細胞をトリプシン/ E D T A 処理ではがして低速遠心で収集した。この細胞ペレットを、PBS/2%ウシ新生児血清/0.05%アジ化ナトリウムに再懸濁した。細胞内へのナノ微粒子の取り込みは、二つの方法で定量した。フローサイトメトリーによる蛍光の直接測定と、細胞から酢酸エチルによって抽出したクマリンー6抽出物に関する蛍光分光学的測定である。結果を下の表19に示す。時間"0"は、細胞収集時刻であり、測定は37℃で2時間と24時間のインキュベーション後に行なった。蛍光データは対数スケールで求め、これを対照との比をとることによって線形数値に変換した。この線形数値はFE値(蛍光強度)として記載する。

表 19

細 胞 の 蛍 光 (フローサイトメトリー)		抽出物中のクマリン		
経過時間 (hrs)	蛍光強度 (FE)	% 保 持	クマリンー 6 (ng)	% 保 持
0	871	100	1. 63	100
2	255	2 9	0.56	3 4
2 4	145	16	0.29	18

サイトカラシン-Bの放出は、ここに記す方法によって、インビトロで30日間に渡り二重拡散チェンバーで測定した。すなわち、37℃における生理リン酸緩衝液(pH7.4、0.154mM)1ml当たり5mgのナノ微粒子である。結果を第20図に示す。これはインビトロにおける経過時間(日数)とサイトカラシン-Bの遊離の関係を表わすグラフであり、実施例20で調製した型のナノ微粒子から、緩衝液中に放出された全サイトカラシン-B量をパーセントで表わしたものである。蛍光色素クマリン-6を含むナノ微粒子の例もインビトロにおいて試験した。これはこの色素の存在が、ナノ微粒子からの活性成分の放出に影響を及ぼすかどうかを確かめるためである。

ナノ微粒子の治療的有効量は、いくつかの因子に左右される。それらの因子としては、ナノ微粒子につけた血管平滑筋結合タンパク質の結合性、注入時の雰囲気圧、治療薬の投与される期間、治療薬が血管部位に滞在する時間、用いた治療薬の性質、ナノ微粒子から治療薬が放出される速度、血管外傷と望まれる治療の性質、および、ナノ微粒子の細胞内および/または細胞間局在、などがある。血管内投与の場合には、ナノ微粒子は注入に適当な懸濁溶媒に懸濁する。その濃度は0.1 mg/ml(あるいはそれ以下)から300mg/mlであることが好ましく、さらに、5から30mg/mlの範囲にあることが好ましい。この濃度のナノ微粒子は、治療的に要求される量を越えているが、まだ「液状」で注入できる。サイトカラシンの場合、血管投与部位において10-3 M から10-12 M濃度が好ましい

本発明の、好ましい実施態様の1つにおいては、前述した方法によって形成されたナノ微粒子はこの目的にために特注した血管形成用カテーテルによって、標的領域に局所的にかつ選択的に注入される。なぜなら投与中血流は一時的に遮断されるからである。本目的のために好適な特注カテーテルがいくつか現在開発段階にある。そのようなカテーテルとして、ウォリンスキーカテーテル(C.R.Bard社、Billerica、マサチューセッツ州)、発送カテーテル(Sci-Med、ミネアポリス、ミネソタ州)、および、Cordis大動脈注入カテーテル(Cordis Corporation、マイアミ レイクス、フロリダ州)がある。米国特許No.4,824,436には、動脈内に血液を含まないチェンバーを形成することのできるカテーテルが記載されている。このチェンバー内にヘパリン溶液のような液体を加圧して輸送するためである。米国特許No.5,049,132には、また別のカテーテルが記載されている。これは液性治療薬の送達に好適である。もちろん当業者であれば、従来のカテーテルを改良して、動脈壁(または、その他の器官壁)へこの新規の薬剤搬送システムを放出するすることは可能である。さらに、特に注入針またはその他のナノ微粒子注入手段も、本発明の範囲の中に含められる

使用法の1つとして、ナノ微粒子を加圧して(例えば、2から10気圧、でき

れば3-6気圧であることが好ましい)血管形成術のような損傷治療の前、最中、または後に血管壁に注入する。好ましい実施態様の1つでは、ナノ微粒子にはへパリンが含まれている。なぜならへパリンは平滑筋細胞の増殖を抑える上に抗血栓作用を持っているからである。さらに、洗浄剤DMABによる表面改質によって、投与部位における保持性に好成績が得られた。ナノ微粒子は血管内壁組織に付着し、ゆっくりと分解して治療薬を放出する。この治療薬は、以下の薬剤のいずれであってもよい。すなわち、細胞内Ca⁻²、および、Ca⁻²結合タンパク質を調節する薬剤、収縮性アゴニストの受容体ブロッカー、ナトリウム・水素アンチポーター阻害剤、プロテアーゼ阻害剤、ニトロ系血管拡張剤、ホスホジエステラーゼ阻害剤、フェノチアジン、成長因子受容体拮抗剤、抗細胞分裂剤、免疫抑制剤、アンチセンスオリゴヌクレオチド、および、プロテインキナーゼ阻害剤を含む平滑筋抑制剤である。

効果的方法の一側面として、ナノ微粒子投与に先立ってまたは同時に、高張液を与えて血管に浸透圧ショックを与えることがある。これによって、薬剤の細胞 内侵入および細胞外基質への浸透がさらに強められる。

本発明の方法は、血管形成術後の再狭窄防止法として開示されているのではあるが、下記の病態にたいするバルーン・カテーテル法のいずれにも適用すること

ができる。その病態とはすなわち、冠状動脈疾患、良性な前立性肥大、チューブで接近できる各種組織の悪性異常、末梢性ないし心臓血管の閉塞、尿道にたいする前立腺その他の侵入物の除去・回復、卵管開放、および、食道狭窄の拡張である。これらの処置によって生ずる組織傷害およびそれによる平滑筋細胞の増殖は、合併症の一因子となることがある。したがって、標的組織または標的細胞集団にたいし、例えばカテーテル、注射針、外科手術などによって局所投与が可能である病態の治療は、本発明の思量の範囲内にある。

特に対象となるのは、本発明にしたがって調製されたナノ微粒子に取り込ませた抗癌剤による癌の治療である。抗癌剤を負荷したナノ微粒子は、当然標的を指向するようにおよび/またはその局所における保持を強化するように、表面を改質することができる。抗癌剤としては、アルキル化剤、例えば、メクローレタミ

ン、シクロホスファミド、イホスファミド、メファラン、クロラムブシル、ヘキサメチルメラミン、チオテパ、ビュスルファン、カルマスチン、ロマスチン、セマスチン、ステプトゾシン、ダカルバジンなど;抗代謝剤、例えば、メトトレキセート、フルオロウラシル、フロクッスウリジン、シタラビン、メルカプトプリン、チオグアニン、ペントスタチンなど;天然物、例えば、アルカロイド類(ビンブラスチンや、ビンクリスチンなど)、毒物類(エトポシドや、テニポシドなど)、抗生物質類(ダクチノマイシン、ダウノルビシン、ブレオマイシン、プリカマイシン、マイトマイシンなど)、および酵素類(L-アスパラギナーゼ)、生物反応修飾剤、例えば、インターフェロン-αなど、ホルモンとホルモン拮抗剤、例えば、副腎皮質ホルモン類(デキサメタゾン)など、プロゲスチン類、エストロゲン類、アンチエストロゲン類、アンドロゲン類、ゴナドトロピン放出ホルモン類似体;その他の薬剤、例えば、シスプラスチン、マイトキサントロン、ヒドキシウレア、プロカルバジン、または、副腎皮質抑制剤(マイトテーンや、アミノグルテシミド)などがある。

(2) 免疫のためのタンパク質・ペプチド・ワクチンの持続放出・

この実施態様においては、ナノ微粒子を腸管可溶性カプセルに入れて経口的に 投与し、腸管に送達することができる。これによって、ナノ微粒子は腸粘膜、ま たはパイエルパッチによって吸収される。この例は、タンパク質・ペプチドによ るワクチンで免疫化するのに有効であるが、パイエルパッチのリンパ組織にたい して遺伝子治療薬を送達するように適応させることもできる。

一般に通常の免疫法は、所期の防御的免疫反応を実現するためには、ある時間間隔をおいて多数回の注射を必要とする。したがって、医療担当者との多数回の接触が必要となる。これは、高い「ドロップアウト」率を招きやすく、特に発展途上国においては費用効率を低下させる。十分量の初回免疫刺激用量に加え1回又は多回の予定追加免疫刺激用量をも含んでいる、1回投与の経口ワクチン免疫化システムを実現できたならば効果的であろう。そのような剤形は投与計画に着実に合わせることができるだけでなく、コストがかからない。したがって市場での競争力が高い。注射針や注射器などを必要としない経口用剤形においては、コス

トはさらに低下する。

ナノ微粒子からの抗原の持続放出、それに続くマクロファージによる処理、および免疫系への提示が免疫反応を生じる。本発明によって調製されたナノ微粒子をカプセルで保護したものを用いて単回経口ワクチンを実施すると、ミョウバン破傷風トキソイドを用いた通常の皮下免疫法によるものと同等の免疫反応を実現することができることが判明した。カプセルは、ナノ微粒子やカプセル内抗原を胃の酵素や酸性 p H から保護するように、また抗原負荷ナノ微粒子を腸管内において一時に放出するように設計されており、これによって、腸管内リンパ組織による取り込みがもっとも好適に行なえる(したがって、その後の腸管膜リンパ節への送達も好適に行なえる)ようになっており、免疫反応を誘発する。

カプセルは、従来技術で既知の型の保護的な持続放出カプセルであってもよいが、1993年7月20日発行米国特許No. 5, 229, 895に開示されて

いる、浸透圧調整、持続放出カプセルが好ましい。この開示をここに引用することによって取り込むことにする。しかしながら、腸管可溶性ポリマーでコートしたカプセルならどんなものでも同じ目的のために用いることができる。このような腸管可溶性ポリマーとしては、酢酸・フタル酸セルロース、シェラック、ユードラジット(Eudragit)(ローム製薬会社、フィラデルフィア、ペンシルバニア州)など、胃の酸性 p H をくぐり抜けて小腸で溶解するものが挙げられる。カプセル内容の放出時間は、従来技術で既知なようにポリマーコートの数や、構造に左右される。

ここに記載する実施態様においては、ナノ微粒子は、「ポート(Port)」 (商標)(TSRL、アンアーバー、ミシッシッピー州)システム・カプセルに 含まれる。これは胃を素通りし、薬剤を腸管の特定部位に放出するように設計さ れた経口性薬剤送達システムである。「ポート」システムの設計は、水のゼラチ ンカプセル内への流入を、ポリマー・フィルムによって調節する方式に基づく。 すなわち、このポリマーフィルムコートが水のカプセル内流入を調節する。カプ セルが腸管を下がるにつれて、水の流入によってカプセル内部に圧が形成され、 これが一時に内容物を押し出す。水の流入はゼラチンのカプセル壁をコートする ポリマーフィルムの厚みを変えることによって調節する。この実施態様において用いられるコートは、水がカプセル内に流入するのを調節する酢酸セルロースであり、また胃酸には耐えるが小腸 p Hでは溶解する酢酸フタル酸セルロースである。カプセルに被せるコート量が増えるにつれて、浸透性や水の流入は低下する。水流入の減少はカプセル内の圧形成の速度を下げ、したがってカプセル破裂までの時間を長引かせる。破裂時間は、例えば4から11%のフィルムコートの場合4から9時間の範囲にある。

放出調節性カプセルに入れる他に、このナノ微粒子を予定の様々の分解期間を 持つように調節して、目的の初回免疫刺激用量・追加免疫刺激用量を実現できる ようにさせてもよい。生物分解性ポリマーの加水分解を遅らせる、抗原非含有の

生物分解性ポリマーの封印コート(単数ないし複数)の処方、さらには、本書に 記載したような表面改質、これらが、分解速度を調節するために用いられる技法 として挙げることのできるものである。

下記の例は、タンパク質性ワクチンとして使用される破傷風トキソイド・ワクチンの送達にナノ微粒子を用いる場合を扱ったものであるが、このシステムは、ワクチンで予防できる疾患にたいし長期の保護的免疫反応を実現するため、その他のワクチン、または、組み合わせワクチンの送達にも有効である。具体的実例としては、細菌性ワクチンとして、例えば破傷風、コレラ毒素、B型肝炎、無細胞百日咳、ブドウ球菌エンテロトキシン B、肺炎球菌、ブドウ球菌と連鎖球菌の抗原、その他、ジフテリア、百日咳、破傷風混合などの諸ワクチン; E. coli(腸内病原性);ウイルス性タンパク質として、例えば、すべてのエイズ抗原、ウイルス性タンパク質(インフルエンザウイルスタンパク質、アデノウイルス、その他);マイクロカプセルに含まれる生ウイルス(弱毒ポリオウイルス)、肝炎ウイルス成分、ロタウイルス成分がある。

経口的に投与した放出調整ナノ微粒子は、全身性免疫反応(IgG)の他に、 分泌性免疫反応(IgA)をも誘発することができる。これは、呼吸器、膣、お よび、腸管粘膜の感染症の予防には特に有効である。

実施例21

破傷風トキソイド(Serum Institute より入手、ピューン、インディアナ州)を、前記実施例 100 水中油中水乳化法により PLGA に負荷した。この方法によって、12% 抗原負荷にたいし、57% 捕捉効率が得られた。粒子径分布から、粒子分布は均一であり、平均粒径は、 154 ± 82.7 n mであることが判明した。破傷風トキソイドが PLGA ナノ微粒子からインビトロで 37% においてリン酸緩衝生理食塩水中に放出される速度は、反応速度論における一次導関数に近似する。

具体的には、破傷風トキソイドと増粘剤(プルロニックF-125(BASF

パーシパニー、ニュージャージー州))を水に溶解する。PLGA(50:50、分子量90,000、本来の粘性1.07、Birmingham Polymers 社、バーミンガム、アラバマ州)を、塩化メチレンに溶解する(3% w/v)。この破傷風トキソイド液と、PLGA液を超音波処理し、油中水の一次乳剤を得る。次に、この一次乳剤を、PVA(2.5% w/v)の水溶液に乳化し、水中油中水・乳剤を形成する。次に有機溶媒を蒸発させ、ナノ微粒子を超遠心によって回収し、水で3回洗浄し、水に再懸濁し凍結乾燥した。

実施例22

陽粘膜およびパイエルパッチリンパ組織における存在を検出するため、BSA と0.05%ローダミン色素を取り込んだナノ微粒子を一群のラット(オス、スプレーグ・ドーリー種、230-250mg)に投与した。この実験に用いたナノ微粒子は、150±48.5nmの粒径を持っていた。蛍光顕微鏡により、パイエルパッチリンパ組織の中にナノ微粒子が有意に取り込まれることが明らかになった。

実施例23

本発明のナノ微粒子をワクチン用薬剤送達システムとして使用する試みは、すでにラットにおける実験において実証済みである。破傷風トキソイド負荷ナノ微粒子(15 Lf)を調製し、これをラットの皮下に注射した。 IgG(μg/ml)で測定した免疫反応を、通常のミョウバン破傷風トキソイド複合体(Pastuer-Me

rieux の製品、米国供給業者 Connaught Laboratories 社、スウィフト・ウォーター、ペンシルバニア州、を通じて購入、5 L f)を皮下に投与したラットの免疫反応と比較した。結果を第21図に示す。この図は、免疫接種後21日目と免疫接種後30日目において、 $1 g G (\mu g/ml)$ で測定した免疫反応をグラフで表わしたものである。

短期間の免疫反応においてはほとんど同一であった。ナノ微粒子の場合、30 日間破傷風トキソイドを放出しつづけ、それによって感作暴露期間を長くし、長

期免疫反応を増強した。さらにこの結果から、破傷風トキソイドの免疫原性はナ ノ微粒子処方によって悪影響を被らないことも証明された。

前記から明らかなように、本発明のナノ微粒子は血管内投与、皮下投与、経口 投与にも適し、薬剤やワクチンの持続性放出ができ、免疫アジュバントとして免 疫付与にも用いることができる。ワクチンは、傍腸管リンパ系にたいする遺伝子 治療の場合と同様、経口的に投与できる。

さらに、ワクチン投与に好適なナノ微粒子は下記のルートを通じて投与することができる。すなわち、筋肉内、皮下、経口、鼻腔、腹腔、直腸、および膣である。

(3) 遺伝子治療

ナノ微粒子は、標的に向けて遺伝材料を送達するのに用いることができる。本 出願においては、ナノ微粒子は経口的に、または粘膜を介して投与するよう処方 されている。このナノ微粒子は、遺伝子治療薬を前述したように小腸を取り囲む リンパ系に向けて持続的に投与することができる。

しかしながら、遺伝材料を含むナノ微粒子を工夫して、注入および/または植え込みによって、その他の細胞や組織に部位特異的に向かわせることもできる。 さらに特に意図したものとして、心臓循環系疾患のDNAすなわち、アンチセンス治療に好適な遺伝子材料がある。そのような材料には、血小板由来成長因子、成長変形因子アルファとベータ、線維芽細胞成長因子(酸性および塩基性)、アンジオテンシン II、ヘパリン結合性上皮成長因子様分子、インターロイキン-1アルファとベータ、インターロイキン-6、インシュリン成長因子、癌遺伝子(

c-myb、c-myo、fosその他)、増殖細胞核抗原、細胞接着分子(細胞内接着分子、血管細胞接着分子、その他)、および血小板表面抗原(IIb/II Ia その他)が含まれる。

もう一つの具体的実施態様として、本発明のナノ微粒子は骨性遺伝子ないし遺 伝子セグメントのような核酸の搬送体として使用してもよい。このナノ微粒子は

核酸を骨細胞や組織に送達して骨の成長や再生を促進する能力を持つ。具体的な実施態様の1つにおいては、骨性遺伝子ないし遺伝子セグメントを、骨幼生細胞に移送して幼生細胞を刺激し、骨形成を増進する。DNA送達ナノ微粒子は目的部位に注入してもよい。すなわちその部位とは、骨、または、腱、軟骨、靭帯のような骨格筋結合組織である。具体的例としては、骨形態発生タンパク質(BMP2と4、および、その他)、TGF-β1-3のようなトランスフォーミング成長因子、アクチビン、ホスホプロテイン、オステオネクチン、オステオポンチン、骨シアロプロテイン、オステオカルシンとその他のビタミン-K依存性タンパク質、アグレカン、グリカンなどの糖タンパク質、および、コラーゲン(I、IIおよび、その他)がある。さらに具体的な例が、現在係属中の1994年2月18日出願の米国特許出願No.08/199、780および、1994年9月3日出願のNo.08/316、650(本願の譲受人に譲渡されている)に記載されている。これらの開示を引用することによってここに取り込むこととする

骨修復にあずかる調節因子は、成長・分化を調節する循環ホルモン、サイトカイン、成長因子、および、その他の分子を含むことが知られている。各種骨成長誘発剤が精製され、ポリペプチドの成長因子様分子であることが判明している。この刺激因子を、骨形態形成タンパク質(BMS)という。これらは骨誘発性ないし骨形成タンパク質(OP)とも呼ばれてきた。現在では、いくつかのBMP遺伝子がクローンされ、BMP-1からBMP-8までの共通命名法で呼ばれている。

BMP2-8は、一般に骨形成性と考えられているが、BMP-1は、もっと

一般的なモルフォゲンに関わる(Shimmell ら、1991)。 BMP-3はまた、オステオジェニンとも呼ばれ(Luyten ら、1989)、 BMP-7はまたOP-1とも呼ばれる(Ozkaynak ら、1990)。 BMPは、トランスフォーミング成長因子 $-\beta$ (TGF $-\beta$)スーパーファミリーに関連又は属し、TGF $-\beta$ 1およびTGF $-\beta$ 2も骨芽機能を調節する(Seitz ら、1992)。 BMP(またはOP)に関し

ては、いくつかのヌクレオチド配列や、ポリペプチドが米国特許に記載されている。例えば、4,795,804、4,877,864、4,968,590、5,108,753である。また、特に、5,108,922にはBMP-1について開示されており、5,166,058と5,103,649にはBMP-2Aが、5,013,649にはBMP-2Bが、5,116,738にはBMP-3が、5,013,649にはBMP-5が、5,116,738にはBMP-3が、5,106,748にはBMP-5が、5,187,076にはBMP-6が、5,108,753と 5,141,905にはBMP-7が、また、5,011,691には、OP-1、COP-5、およびCOP-7が開示されている。さらに、Woznyらの論文は、引用してここに取り込むこととするが、BMP分子クローンとその活性について記載している。上記の文献は、特に特許文献を含めたものは、骨指向性遺伝子セグメント、またはcDNAの調製法について教示している。

新たな骨形成を促す能力を持つと報告されているその他の成長因子やホルモンとしては、酸性線維芽細胞成長因子、エストロゲン、マクロファージコロニー刺激因子、および、副甲状腺ホルモンのようなカルシウム調節因子などがある。骨刺激性タンパク質やポリペプチド類、特に組み換えBMP類の使用についても検討されている。

本発明においては、核酸セグメントを、インビボにおいて、標的部位の骨原細胞ないし組織に移送する。この核酸セグメントは、DNA(2本鎖、または、1本鎖)であってもよいし、RNAであってもよく(例えば、mRNA、tRNA、rRNA)、「コード・セグメント」であってもよく、また、アンチセンス核酸分子であってもよい。したがって、この核酸セグメントは、エクソンのみ、イ

ントロンのみ、および、その両方を含むゲノム配列であってもよく、コードcDNA 領域であってもよく、実際骨原細胞に移送したいと思うどのような構築体であってもよい。直線的な核酸分子やプラスミドを含む、むき出しのDNAないしRNAであってもよく、DNAゲノムを持つウイルスやレトロウイルスを含む各種組み

換えウイルスのゲノム内への機能的挿入体として用いてもよい。

本発明は、骨細胞ないし組織において所望の遺伝子の発現を促進し、その細胞に、特定の所望の表現型を与えるようにして用いてもよい。この発現は、正常に発現される遺伝子の発現をさらに増大するものであってもよいし、自然の環境下では骨原細胞とは正常状態では関わらない遺伝子を発現させるのに用いてもよい。また、別法として、本発明は、そのような細胞ないし組織において自然に発現される遺伝子の発現を抑制し、さらにまた、その表現型を変更・改変するのに用いてもよい。遺伝子抑制は、抑制調整機能を持つタンパク質をコードする遺伝子を発現するというやり方であってもよいし、または、アンチセンス技術を利用してもよい。

骨指向性遺伝子とは、骨形成を促進、または、その増進を補助するタンパク質、ポリペプチドないしペプチド、あるいは、骨の一次成長ないし治癒速度を増進するタンパク質、ポリペプチドないしペプチドをコードする遺伝子ないしDNAコード領域である。さらに、骨栄養遺伝子は、腱・軟骨・靭帯のような骨格結合組織の成長ないし再生を刺激するものであってもよい。骨原細胞とは、新しい骨組織を最終的に形成する能力を持つ、または、そのような組織の形成に貢献するいずれの細胞、または、そのような細胞のすべてを指す。骨原細胞には、特に、幹細胞、マクロファージ、線維芽細胞、血管細胞、骨芽細胞、軟骨芽細胞、破骨細胞などのような様々な段階の分化状態にある各種細胞が含まれる。骨指向性遺伝子、および、そのコードするタンパク質としては、例えば、副甲状腺ホルモン(PTH)やエストロゲンのような循環性ホルモン、様々な成長因子やサイトカイン、化学的指向性または接着性ペプチドやポリペプチド、アクチビンのような分子(米国特許 No. 5, 208, 219、引用したことによって本願に取り

込むこととする)、特異的、骨形態形成タンパク質 (BMP) や、成長因子受容体遺伝子が含まれる。

適当な骨指向性成長因子の実例としては、トランスフォーミング成長因子(T

GF)ファミリー、特にTGF1-4、中でも、TGF- α 、TGF- β 1、TGF- β 2(米国特許No. 5, 168, 051、4, 886, 747、および、4, 742, 033に記載されているが、引用することによって本明細書に取り込むこととする)、および、酸性FGFや、kFGFのような線維芽細胞成長因子(FGF)、顆粒細胞・マクロファージコロニー刺激因子(GMCSF)、上皮成長因子(EGF)、血小板由来成長因子(PDGF)、IGF-1およびIGF-IIを含むインシュリン様成長因子(IGF)、HILDAやDIAという名でも知られる白血病抑制因子(LIF)がある。

好ましい骨指向性遺伝子と、 $DNAセグメントは、TGFスーパーファミリーのものであって、例えば、TGF-<math>\alpha$ 、 $TGF-\beta1$ 、 $TGF-\beta2$ であり、また、BMP遺伝子ファミリーのメンバーがある。もちろん、組み換え遺伝子やDNAセグメントの起源は、処置を施す動物と同種である必要はない。この点で、ヒト由来のものであれ、マウスのであれ、ウシのであれ、どのような組み換え<math>PTH、TGH、または、BMPを用いてもよいことは本明細書の思量の範囲内のことである。遺伝子およびDNAセグメントとは、入手する種の全ゲノム<math>DNAから単離されたDNA分子を指す。<math>DNAセグメントという用語の中には、DNAセグメントや、そのようなセグメントに含まれるさらに小さな断片や、組み換えベクター、例えば、プラスミド、コスミド、ファージ、レトロウイルス、アデノウイルスなども含まれる。

本発明のナノ微粒子は、一つ以上の骨指向性遺伝子ないし核酸セグメントを併合していてもよいし、あるいは、他のタンパク質、ペプチド、製薬学的に活性な薬剤および/または表面改質剤と併用して用いてもよい。

実施例24

DNAまたは、DNA断片の送達に、本発明のナノ微粒子を使用する、その実 例を示す具体的な実施態様として、ルシフェラーゼ・マーカーDNAを、本発明 の原理に則って、PLGAナノ微粒子に取り込ませた。

COS細胞(マウス腎臓上皮)に、インビトロにおいて、ルシフェラーゼをコードするpGL2プラスミド発現ベクターをトランスフェクトさせた。標準感染プロトコルを用いた。簡単に言うと、前日プレートしたCOS細胞を、標準細胞培養液中において、2.5時間 DNA(ルシフェラーゼ、プロメガ、ロスアンジェルス、カリフォルニア州)に暴露した。ただし、この培養液は血清無添加であった。細胞を洗浄し、次に、10%血清添加した培養液でさらに60時間培養した。

DNAの持続放出を定量するよう設計された実験では、プラスミドDNA 2 0 m g を DE A E - デキストランと複合させたものを、 $10~\mu$ g/ml または $20~\mu$ g/ml の濃度で PLG Aナノ微粒子に含ませた DNA と比較した。

ナノ微粒子を調製するために、PLGA(90mg)を、3mlのクロロホルムに溶解した。ヌクレアーゼ非含有BSA(30mg)とDNA(2mg)を、300μlのヌクレアーゼ非含有トリスーEDTAに溶解した。これは、0.1mM EDTAを含むトリス・バッファー(Tris(hydroxymethyl)aminomethane、10mM、pH7.4)である。このDNA含有液を、超音波によって、水浴中8分間、PLGAポリマー液で乳化した。超音波発振は、マイクロチッププローブ超音波発生装置を、55ワット出力で用いて行なった。得られた油中水乳剤を、クロロホルムで飽和させたトリスーEDTAバッファー中の2% w/v PVA(分子量、30-70K)25ml中でさらに乳化した。このために、超音波発生プローブを55ワットで用いた。その結果、油・水中水乳剤が得られた。この油・水中水乳剤を開放容器中、マグネット撹拌子によって18時間撹拌した。さらに2時間減圧し、有機溶媒を完全に蒸発させた。このようにして得られたナノ微粒子を、超遠心によって回収し、トリスーEDTAバッファーで3回洗浄し、48時間凍結乾燥した。このナノ微粒子を乾燥保存した。

DNAは水溶性であるので、乳剤処理で閉じ込め、ポリマー基質の中に分散させた。DNA含有ナノ微粒子の標的への照準は、前述したように表面改質剤によ

って行なった。表面改質剤としては、例えば、特に名を挙げるならば、フェリチン、標的細胞にたいして特異的な抗体、標的細胞上の受容体にたいするマーカータンパク質、または、特殊な脂質被覆がある。

特に注意しなければならないのは、この特別な実施例で使用されるトリスーE DTAは、抗ヌクレアーゼ活性を持っていることで、このため処理中のDNA分解が防止されることである。トリスーEDTAの他にも、ジチゾンのような、カルシウムと複合体を形成する、すなわち、キレート剤、ニトロロ三酢酸、クエン酸塩、シュウ酸塩、酒石酸塩、ジメルカプロールを含むバッファー、または、そのようなバッファーの混合物が、本発明の実施には好適である。カルシウムは、ヌクレアーゼと共に、DNA分解にとって必要な共同因子である。したがって、カルシウムイオンを競合的に除去する、カルシウム錯体形成剤は、カルシウム介在機構によるDNAの損失を緩和する。カルシウム錯体形成剤の使用の他にも、ヒストン、プロタミンやポリリジンのようなある種のタンパク質は、ヌクレアーゼに結合してヌクレアーゼのDNAにたいする損傷作用を阻止する。このナノ微粒子生成工程全体を、ヌクレアーゼ非含有環境、例えば、ヌクレアーゼ非含有血清アルブミン(シグマ化学、セントルイス、ミズーリ州、から入手可能)のようなヌクレアーゼ非含有試薬を用いて実施するのも効果がある。

ナノ微粒子のルシフェラーゼ活性は、市販のキット(ルシフェラーゼ定量システム、Promega 社、ロスアンジェルス、カリフォルニア州)による基質利用定量法で定量した。その方法は、基本的には、メーカーの与えるプロトコールに従った。簡単に言うと、細胞を、2m1のバッファー(50mM トリス酢酸、pH 7. 4、1mM EDTA、1mM ジチオスレイトール、10%グリセロール、1mg/m1 BSA)中でホモジネートした。その直後に、培養細胞溶解試薬 0 . 5m1(プロメガ)を、このホモジネートに加え、よく混ぜ、室温で数分インキュベートした。バックグラウンド活性(1分当たりのカウント数、CPM)を測定するために、透明になったホモジネート $100\mu1$ を、清浄なマイクロ遠心管

に加え、ルシフェラーゼ活性を、室温で1分間シンチレーション・カウンター(

1219 RackBeta シンチレーション・カウンター(L K B 製)、ウォーレス社(ガイサースバーグ、メリーランド州)より入手、全チャンネル開放)で定量した。同じ方法を用いて、ルシフェラーゼ基質保存液 1 m l についてバックグラウンド C P Mを測定した。バックグラウンド活性を一旦定量したら、ホモジネートと基質を混ぜ、直ちにカウントした。酵素活性値は、全タンパク質 1 μ 1 にたいして標準化した。

この結果を第22図にグラフとして示した。このグラフは、各標品について、タンパク質1 μ g当たりのCPMとしてルシフェラーゼ活性をプロットしたものである。各バッチのナノ微粒子に含まれるDNA合計量は、この実験の対照と比べてかなり少なかった。このため、PLGA-10 DNAと名づけたグループは、40ngのDNAしか含んでおらず、PLGA-20 DNAと名づけたグループは、80ngのDNAを含んでいた。さらに、ナノ微粒子からの全DNAの持続放出が終わるのは、実際には30日後であった。これは、モデルタンパク質BSAで、インビトロで行なった放出試験で確かめた結果である。したがって、ナノ微粒子2.5時間暴露というのは、ナノ微粒子の効力テストにとっては厳しいものとなる。なぜなら、この時間では、ほんの微量のDNAしか放出されないからである。にもかかわらず、第22図から、4個のDNA含有ナノ微粒子グループの内、3個において、バックグラウンドを上回る有意なルシフェラーゼが認められた。

本発明のもう一つの具体的実施例においては、超音波振動を用いないナノ微粒 子調製法を開発した。超音波発振は、遺伝材料を損傷する可能性のあることが見 出されている。この損傷作用は、大きな遺伝子では大きくなる。したがって、過 量の有機溶媒、例えば、DMSOやクロロフォルムと、界面活性剤を用いて、超 音波振動なしにナノ微粒子を得る方法が開発された。

実施例 2 5

特に具体的な実施例として、DNA(ルシフェラーゼ、2mg)と、ヌクレアーゼ非含有BSA(30mg)を 300μ 1トリスーEDTAバッファーに溶解し、水相を形成した。この水相を、1%w/vSpan-20を含むクロロ

ホルムに溶解したPLGAポリマー(90mg PLGAを3mlのクロロホルム中に溶解)中にホモジネートし、油中水乳剤を形成した。この一次乳剤をさらに30分ホモジネートして乳化し、あらかじめクロロホルムで飽和させたヌクレアーゼ非含有トリス-EDTAに溶解させて、2% w/v PVA溶液とした。有機溶媒は、室温で、蓋をせずにマグネット撹拌プレート上で18時間撹拌しながら蒸発させた。次に2時間真空にした。生成したナノ微粒子は超遠心によって回収し、トリス-EDTAで3回洗浄し、凍結乾燥した。

骨成長を促進するための骨指向性遺伝子および/またはその他の材料を含むナノ微粒子は、ゲル溶媒に懸濁して、必要部位に投与するようにするとよい。ナノ 微粒子を適用部位に固定するために、ゲル溶媒中のナノ微粒子を、もう一つの材料、特に、骨充填剤、例えば骨セメント、歯科用接着剤、ヒドロキシアパタイトや、骨セラミックスと密に混合してもよい。

本発明はこれまでのところ生分解性ポリマーとの関連において開示されているが、骨成長促進治療に関わる特定の実施例においては、少なくとも一部は不溶性であり、かつ、非生分解性であるナノ微粒子をも考慮の対象とする。このようなナノ微粒子は、不溶なリン酸カルシウム結晶ミネラル成分を含み、例えば、骨誘導性としてもよい、すなわち、新しいミネラル形成を促進させるようにしてもよい。このような不溶性ナノ微粒子は取り込まれて、骨再生組織の成分となる。具体的に含まれるものとしては、すべてのリン酸カルシウムミネラル相であって、この中には、リン酸八カルシウム、非晶性リン酸カルシウム、リン酸三カルシウム、炭酸アパタイト、および、フルオロアパタイト、さらに、前記全てのもののセラミック体が含まれる。

前記の他に、本発明のナノ微粒子は、一般に生物活性剤の送達に広く用いることのできるものである。生物活性剤送達の目的は、治療、診断(画像診断薬)から、美容・栄養へと多岐にわたっている。遺伝子治療におけるナノ微粒子送達は、長期にわたるDNAのトランスフェクションを改善すると期待されている。

本発明は、特殊な実施例や用途との関連において、これまで記載されてきたが 、本分野に精通した人であれば、このように教示されたならば、ここに請求され る発明の精神を超越ないし逸脱することなしに、別様の実施例を生み出すことは 可能であろう。したがって、本開示における図や、記事は、本発明の理解を助け るために提示されたものであって、本発明の範囲を限定するためになされたもの ではないことを了解しなければならない。

【図5】

【図6】

【図7】

36

HO-PEG-EX252-PCL-EX252-PCL-EX252-PEG-0H

【図15】

図 16B

図 16C

[図17]

【図18】

図18

【図19】

【図22】

【国際調査報告】

stional Application No. PCT/US 96/00476 A. CLASSIFICATION OF SUBJECT MATTER IPC 6 A61K9/51 A61K9/16 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) IPC 6 A61K C08J C08G Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Ejectronic data hase consulted during the international search (name of data bate and, where practical, search tarms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Category * Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. JOURNAL OF CONTROLLED RELEASE, 1,4-7, 12,14, vol. 25, no. 1/02, 27 May 1993, AMSTERDAM (NL), 17,18, pages 89-98, XP000361370 39,40, T. NIWA ET AL.: "PREPARATIONS OF 45-48, BIODEGRADABLE NANOSPHERES OF WATER-SOLUBLE 68-71, AND INSOLUBLE DRUGS WITH 75,76 D.L.-LACTIDE/GLYCOLIDE COPOLYMER BY A NOVEL SPONTANEOUS EMULSIFICATION SOLVENT DIFFUSION METHOD, AND THE DRUG RELEASE BEHAVIOR" see the whole document -/--X Further documents are listed in the continuation of box C. X Patent family members are listed in annex. Special categories of cited documents: "T" later document published after the international filing date of priority date and not in conflict with the application but dated to understand the principle or theory underlying the invention "A" document defining the general state of the art which is not considered to be of particular relevance. "E" earlier document but published on or after the international X doctiment of periodian relevance; the claimed invention carmed the considered movel or cannot be considered in involve an inventive step when the document is taken alone filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication dute of another citation or other special reason (as specified) document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the documents so combined with one or more other such documents, such combination being obvious to a person skilled in the safe. 'O' document referring to an oral disclosure, use, exhibition or other focus. *P* document published prior to the international filing date but later than the priority date claimed need mamber of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 08. 12. 97 4 September 1997 Name and marling address of the ISA Authorized officer European Patent Office. P.B. 5818 Patentiaan 2 NL. - 2280 HV Rijwujk Tel. (+31-70) 340-2040, Tz. 31 651 cpo ni, Faz. (+31-70) 340-3016 Niaounakis, M Form PCT/ISA/2IB (second sheet) (July 1992)

ational Application No PCT/US 96/00476

tegory "	anon) DOCUMENTS CONSIDERED TO BE RELEVANT Ciation of document, with indication, where appropriate, of the relevant passages	Relevant to classa No.
	SCIENCE, vol. 263, 18 March 1994, WASHINGTON (US), pages 1600-1603, XP002013571 R. GREF ET AL.: "BIODEGRADABLE LONG-CIRCULATING POLYMERIC NANOSPHERES" see the whole document	1
	JOURNAL OF CONTROLLED RELEASE, vol. 25, no. 1/92, 27 May 1993, AMSTERDAM (NL), pages 145-153, XP000361376 P.D. SCHOLES ET AL: "THE PREPARATION OF SUB-200NM POLY(LACTIDE-CO-GLYCOLIDE) MICROSPHERES FOR SITE-SPECIFIC DRUG DELIVERY"	2
i	see the whole document	45,53, 68,81
K	WO 93 00076 A (MINNESOTA MINING & MFG) 7 January 1993 see page 8 - page 9 see example 1	10,11
K	FR 2 649 321 A (INST NAT SANTE RECH MED) 11 January 1991 see example C	21-23,26
Ą	see page 28	153,154
(JOURNAL OF MICROENCAPSULATION, vol. 5, no. 2, 1988, LONDON (GB), pages 115-127, XP002013572 J. KREUTER: "POSSIBILITIES OF USING NANOPARTICLES AS CARRIERS FOR DRUGS AND VACCINES" see page 118	19
X	EP 0 529 711 A (LABORATORIOS CUSI, S.A.) 3 March 1993 see the whole document	1,2,4-8, 12,29, 31,34
X	WO 91 15193 A (RHONE POULENC RORER 5.A.) 17 October 1991	1-8,12, 29, 31-33,35
	see the whole document	31-33,33
		(

Lational Application No PCT/US 96/00476

(MEDINOVA MEDICAL CONSULTING	1-8, 16-18, 21-23, 26,29, 35-37, 39,40,
	10-18, 21-23, 26,29, 35-37,
	54,55, 63,82, 83,97,98
page 27	33,7.,75
4	1-5,12, 17-19, 21, 29-32, 39,40, 54,55, 82,83
line 12 - line 16 example 3	
ber 1992	9
l, January 1986, AMSTERDAM XP002033952 S ET AL.: "poly(butyl ate) nanoparticles with rface charges"	11,30
	104,105, 108,114
•	104,105, 108,114
	194
A (BASF CORP) 7 September 1990	115
	page 27 A (ALZA CORPORATION) 1 A (ALZA CORPORATION) 1 A (BIOTECH AUSTRALIA PTY. Ober 1992 e document ONTROLLED RELEASE, 1, January 1986, AMSTERDAM XP002033952 S ET AL.: "poly(buty) ate) nanoparticles with rface charges" e document A (TERUMO CORP) 16 January ,4,7,9 A (TERUMO CORP) 18 October ,2,6-8 A (TERUMO CORP) 11 October ,22,23,32 A (BASF CORP) 7 September 1990

emational application No.

PCT/US 96/00476

Box I Observations where certain claims were found unsearchable (Continuation of Rem 1 of first sheet)
This international Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
Claims Nos.: bessure they relate to parts of the International Application that do not comply with the prescribed requirements to such
an extent that no meaning all international Search can be carried out, specifically: Remark: Although claims 141–148, 152–154, 156–158 are directed to a method of treatment of the human/animal body, the search has been carried out and based on the alleged effect of the composition.
3. Claime Nos.: Decause they are decendent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(s).
Box II Observations where unity of levention is faciling (Continuation of Rem 2 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:
 Claims: 1-8, 10-28, 39-44, 88-96, 141-148, 152-154, 156-158(all partly); 45-53, 68-81 Claims: 1-8, 10-28, 39-44, 141-148, 152-154, 156-158(all partly); 9, 29-38, 54-67 82-87, 97-103, 149-151, 155 Claims: 104-114 Claims: 115-140
As all required additional search fees were timely paid by the applicant, this international Search Report covers at searchable claims.
2. As all searchable cizims could be searched without effort justifying an additional lee, this Authority did not invite payment of any additional lee.
As only some of the required additional search fees were timely paid by the applicant, this international Search Report covers only those cizins for which fees were paid, specifically claims Nos.:
No required additional asaron feet were limely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark on Protest The additional search fees were accompanied by the applicant's protest. X No protest accompanied the payment of additional search fees.

Information on patent family members

performal Application No

			PCT/US 96	
Patent document cited in search report	Publication date	Patent family member(s)		Publication date
WO 9300076 A	07-01-93	DE 4120760 EP 0591284 JP 6508369	A	04-03-93 13-04-94 22-09-94
FR 2649321 A	11-01-91	NONE		
EP 529711 A	03-03-93	ES 2034891 AT 150642 DE 4128910 JP 2542149 JP 6057005	T A B	16-12-93 15-04-97 11-02-93 09-10-96 01-03-94
WO 9115193 A	17-16-91	FR 2660556 CA 2076010 DE 69101144 DE 69101144 EP 0523183 ES 2062786	A D T A	11-10-91 07-10-91 17-03-94 26-05-94 20-01-93 16-12-94
WO 9522963 A	31-08-95	AU 1947395 CA 2184242 EP 0740548 HU 75469	! A ! A	11-09-95 31-08-95 06-11-96 28-05-97
WO 9418955 A		AU 6268894 CA 2151742 EP 0684814 JP 8507076 US 5620708	! A ! A ! T	14-09-94 01-09-94 06-12-95 30-07-96 15-04-97
WO 9217167 A		AU 664365 AU 1558097 CA 2084194 EP 0531497 NZ 242220	2 A 1 A 1 A 3 A	16-11-95 02-11-92 03-10-92 17-03-93 27-04-94
EP 0407580 A		JP 124476: JP 256130! DE 6892272: DE 6892272	3 A 3 B 5 D	29-09-89 04-12-96 22-06-95 04-01-96

Form PCT/ISA/310 (patent family annex) (July 1992)

Information on patent family members

-maxional Application No PCT/US 96/00476

JF JF JF DE WC 1-10-89 JF JF DE WC 7-09-90 US AL EF	J 3347389 D 8909069 S 5165919 P 63139901 P 1670954 P 3034739 P 63154180 E 3786927 D 8804183 P 1863913 P 63130069 E 3784518 D 8803814 S 5008334 U 5278696 A 2010819 P 0416082	B A A A C C B A A A A A A A A A A A A A	Publication date 26-03-92 16-10-89 05-10-89 24-11-92 11-06-88 12-06-92 23-05-91 27-06-88 09-09-93 23-12-93 16-06-88 08-04-93 02-06-88 16-04-91 26-09-90 31-08-90 13-03-91
AL WC US 8-10-89 JF J	J 3347389 D 8909069 S 5165919 P 63139901 P 1670954 P 3034739 P 63154180 E 3786927 D 8804183 P 1863913 P 63130069 E 3784518 D 8803814 S 5008334 U 5278696 A 2010819 P 0416082	A A A A A A A A A A A A A A A A A A A	16-10-89 05-10-89 24-11-92 11-06-88 12-06-92 23-05-91 27-06-88 09-09-93 23-12-93 16-06-88 08-08-94 02-06-86 08-04-93 02-06-88 16-04-91 26-09-90 31-08-90 13-03-91
JF JF JF DE WC 1-10-89 JF JF DE WC 7-09-90 US AL EF	P 1670954 P 3034739 P 63154180 E 3786927 E 3786927 0 8804183 	C B A A A A A A A A A A A A A A A A A A	12-06-92 23-05-91 27-06-88 09-09-93 23-12-93 16-06-88 08-08-94 02-06-88 08-04-93 02-06-88 16-04-91 26-09-90 31-08-90 13-03-91
Ji Di WC 7-09-90 US AL C EI JI	P 63130069 E 3784518 O 8803814 S 5008334 U 5278696 A 2010819 P 0416082	A A A A A A	02-06-88 08-04-93 02-06-88
AL C/ EI JI	U 5278696 A 2010819 P 0416082	1 A 3 A 2 A	26-09-90 31-08-90 13-03-91
	S 5169882		26-09-91 08-12-92

Form PCT/ISA/2[0 (patent family access) (July 1992)

フロントページの続き

 (51) Int. Cl. 6
 識別記号
 F I

 A 6 1 K
 47/48
 A 6 1 K
 48/00
 A D U

 C 0 8 G
 65/28
 A 6 1 K
 37/02
 A B N

(81)指定国 EP(AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OA(BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG), AP(KE, LS, MW, SD, SZ, UG), UA(AZ, BY, KZ, RU, TJ, TM), AL, AM, AT, AU, AZ, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IS, JP, KE, KG, KP, KR, KZ, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, US, UZ, VN

- (72)発明者 ラブハセットワー,ヴィノ,ディー. アメリカ合衆国. 48108 ミシガン,アン アーバー,ウォシュテナウ 4844
- (72)発明者 ソン,クンシャン,エス.アメリカ合衆国、48109-0576 ミシガン,アン アーバー,ボックス 0576,クレージ ザ セカンド 5014