Information Theory Practice Set 8

Lakshmi Prasad Natarajan

Solutions are not to be returned

Practice Set

1. Recall that the MAP rule (maximum a posteriori decision) minimizes the average probability of error in a Bayesian detection problem. In the binary hypothesis testing situation, let $\theta=0$ denote the hypothesis $H_0: X \sim P_0$ and let $\theta=1$ denote the hypothesis $H_1: X \sim P_1$. Let $P[\theta=0]=\pi_0=1-P[\theta=1]$. Then the MAP rule is

Choose
$$\hat{\theta} = 0$$
 if $P[\theta = 0|X = x] \ge P[\theta = 1|X = x]$
Choose $\hat{\theta} = 1$ otherwise.

This MAP rule minimizes the probability of error $P[\theta \neq \hat{\theta}]$

Use this information to solve Problem 11.16(b) in Cover & Thomas (exercise problem at the end of Chapter 11).

- 2. From Cover & Thomas, Exercise problems at the end of Chapter 11: 11.12
- 3. Consider the binary hypothesis testing problem, with notation as used in the lectures. Show that the likelihood ratio $L(X) = P_1(X)/P_2(X)$ is a sufficient statistic of X for hypothesis testing. You can use the Fisher factorization theorem to prove this result.
- 4. (From Polyanskiy & Wu) Consider P_1 vs. P_2 hypothesis testing problem. For each $\alpha \in [0,1]$, let $\beta^*(\alpha)$ denote the minimum possible type-II error under the condition that the type-I error is at the most α .
 - (a) We say that two distributions P_1 and P_2 are mutually singular with respect to each other, if there exists a subset $A \subset \mathcal{X}$ such that $P_1[A] = 1$ and $P_2[A] = 0$. Plot β^* as a function of α if P_1 and P_2 are mutually singular.
 - (b) Plot $\beta^*(\alpha)$ if $P_1 = P_2$.
- 5. Show that for any binary hypothesis testing problem and for any choice of $\alpha \in [0,1]$ there exists a randomized test with both type-I and type-II errors equal to α .
- 6. Bound on β under likelihood ratio test (Polyanskiy & Wu). Let A be the acceptance region under the deterministic likelihood ratio test $A = \{x : P_1(x)/P_2(x) > T\}$. Then, $\alpha = P_1[A^c]$. The following derivation gives a bound on β . You must verify the correctness of each step.

$$\beta = P_2[A]$$

$$= \sum_{x \in A} P_2(x)$$

$$\leq \sum_{x \in A} P_1(x)/T$$

$$= \frac{(1 - \alpha)}{T}.$$

1

Note that this implies $\beta \leq \frac{1}{T}$.

- 7. Can you provide examples of binary hypothesis testing problems for which
 - (a) $\alpha = 0$, $\beta = 1$ is a Pareto-optimal point.
 - (b) $\alpha = 0$, $\beta = 1$ is NOT a Pareto-optimal point.

8. Consider the P_1 versus P_2 hypothesis testing problem based on n iid observations X_1, \ldots, X_n . Consider a test for n observations with acceptance region $A_n \subset \mathcal{X}^n$. Let α_n and β_n be the type-I and type-II errors of this test.

You must show that there exists a test based on n+1 observations with type-I and type-II errors equal to α_n and β_n , respectively. That is, identify an acceptance region $A_{n+1} \subset \mathcal{X}^{n+1}$ with the same value of type-I and type-II errors as the test based on n observations.