QFT Lecture 22

Matei Ionita

April 11, 2013

Spinors

For left-handed spinors:

$$L_a^b(1+\delta\omega) = \delta_a^b + \frac{i}{2}\delta\omega_{\mu\nu}(S_L^{\mu\nu})_a^b$$

Where $S_L^{ij} = \epsilon^{ijk} \frac{\sigma_k}{2}$ are the engular momenta and $S_L^{k0} = \frac{i}{2} \sigma_k$ are the boosts. The defining feature of the spinor representation is $K_k = iJ_k$. Important properties of the Pauli matrices:

- a) $[\sigma_i, \sigma_j] = 2i\epsilon_{ijk}\sigma^k$
- b) $\{\sigma_i, \sigma_j\} = 2\delta_{ij}$ c) $\sigma_k^T = -\epsilon \sigma_k \epsilon^{-1}$ where $\epsilon = \{(0, 1), (-1, 0)\}$

For right-handed spinors, the defining feature is $K_k = -iJ_k$. We have: $S_R^{ij} = \epsilon^{ijk}(-\sigma_k^*/2) = -(S_L^{ij})^*$ and $S_R^{k0} = i\sigma_k^*/2 = -(S_L^{k0})^*$.

Question: how does ψ_a^{\dagger} transform? Like a right-handed spinor. Notation: $(\psi_a)^{\dagger} = \psi_{\dot{a}}^{\dagger}$

Now we want to write down an action for a free theory; it should be quadratic in the fields. For this, we need to form a scalar out of the spinors. Our scalar should be invariant under rotation and boosts: $\psi_2\chi_1 - \psi_1\chi_2$. In particular, for the same field, we get $\psi_2\psi_1 - \psi_1\psi_2$, which will not be 0, since these are anticommuting variables. To shorten notation, we use: $\epsilon^{ab}\psi_a\chi_b = \psi_2\chi_1 - \psi_1\chi_2.$

Let's prove that $\chi^T \epsilon \phi$ is a scalar. Let's see how it behaves under rotations:

$$\chi^T \epsilon \phi \to \left[(1 + \frac{i}{2} \sigma_k \theta) \chi \right]^T \epsilon \left[(1 + \frac{i}{2} \sigma_k \theta) \phi \right]$$

In order to have a real action, we need the mass term to be: $\phi \epsilon \phi + \phi^{\dagger} \epsilon \phi^{dagger}$.

How do we make vectors out of spinors? Use $\psi_{\dot{a}}^{\dagger}, \psi_{b}$. The vector is: $\psi^{\dagger} \bar{\sigma}^{\mu} \chi = \psi_{\dot{a}}^{\dagger} (\bar{\sigma}^{\mu})^{\dot{a}b} \chi_{b}$. Here $\bar{\sigma}^{\mu} = (1, -\sigma_k)$. Similarly $\sigma^{\mu} = (1, \sigma_k)$. Note that this is a real vector if $\psi = \chi$. The Lagrangian for a single left-handed Weyl spinor is:

$$\mathcal{L} = i\psi^{\dagger}\bar{\sigma}^{\mu}\,\partial_{\mu}\,\psi - \frac{1}{2}m\psi\epsilon\psi - \frac{1}{2}m\psi^{\dagger}\epsilon\psi^{\dagger}$$

Note: the kinetic term looks weird. If we try to make it look like the free field: $\partial_{\mu} \psi \epsilon \partial^{\mu} \psi +$ h.c., we get particles with energy that is unbounded below. Let's check that the kinetic term is real:

$$(i\psi^{\dagger}\bar{\sigma}^{\mu}\,\partial_{\mu}\,\psi)^{\dagger} = -i\,\partial_{\mu}\,\psi^{\dagger}\bar{\sigma}^{\mu}\psi$$

Now integrating by parts we get the original term. We obtained an action that is real, scalar and quadratic in the fields. The e.o.m:

$$0 = \frac{\delta S}{\delta \psi^{\dagger}} = i \bar{\sigma}^{\mu} \, \partial_{\mu} \, \psi - m \epsilon \psi^{\dagger}$$

$$0 = \frac{\delta S}{\delta \psi} = -i \bar{\sigma}^{\mu} \, \partial_{\mu} \, \psi^{\dagger} - m \epsilon^{-1} \psi$$

Multiplying through by ϵ in the last eq.:

$$0 = -i\bar{\sigma}^{\mu} \,\partial_{\mu} \,\psi^{\dagger} \epsilon - m\psi$$

Therefore the two equations are:

$$-i\bar{\sigma}^{\mu}\,\partial_{\mu}\,\psi + m\epsilon\psi^{\dagger} = 0$$

$$-i\sigma^{\mu} \,\partial_{\mu} (\epsilon \psi^{\dagger}) + m\psi = 0$$

Writing these in matrix form we get the Dirac equation:

$$\begin{pmatrix} m & -i\sigma^{\mu}\partial_{\mu} \\ -i\bar{\sigma}^{\mu}\partial_{\mu} & m \end{pmatrix} \begin{pmatrix} \psi \\ \epsilon\psi^{\dagger} \end{pmatrix} = 0$$

If we define:

$$\gamma^{\mu} = \left(\begin{array}{cc} 0 & \sigma^{\mu} \\ \bar{\sigma}^{\mu} & 0 \end{array} \right)$$

We get the Dirac equation in the form:

$$(-i\gamma^{\mu}\,\partial_{\mu}+m)\Psi=0$$

The γ matrices have the property: $\{\gamma^{\mu}, \gamma^{\nu}\} = -2\eta^{\mu\nu}$.