## Class 9: Structural Bioinformatics pt.1

Noel Lim (PID: A17652474)

The main database for structural data is called the PBD (Protein Data Bank). Let's see what it contains:

Data from: https://www.rcsb.com/stats

Read this into R

```
pdbdb <- read.csv("Data Export Summary.csv")</pre>
```

and answer the following questions:

Q1: What percentage of structures in the PDB are solved by X-Ray and Electron Microscopy.

#### pdbdb\$Total

```
[1] "195,610" "12,318" "13,720" "4,531" "213" "22"
```

I need to remove the comma and convert to numeric to do math:

```
as.numeric( sub(",","", pdbdb$Total) )
```

```
[1] 195610 12318 13720 4531 213 22
```

I could turn this into a function to fix the whole table or any future table I read like this:

```
x <- pdbdb$Total
as.numeric( sub(",","",x))</pre>
```

[1] 195610 12318 13720 4531 213 22

```
comma2numeric <- function(x) {</pre>
  as.numeric( sub(",","", x))
```

### Test it

```
comma2numeric(pdbdb$X.ray)
```

```
[1] 167192
             9639
                    8730
                           2869
                                    170
                                            11
```

```
apply(pdbdb, 2, comma2numeric)
```

Warning in FUN(newX[, i], ...): NAs introduced by coercion

|      | Molecular.Type | X.ray  | EM    | NMR   | Multiple.methods | Neutron | Other | Total  |
|------|----------------|--------|-------|-------|------------------|---------|-------|--------|
| [1,] | NA             | 167192 | 15572 | 12529 | 208              | 77      | 32    | 195610 |
| [2,] | NA             | 9639   | 2635  | 34    | 8                | 2       | 0     | 12318  |
| [3,] | NA             | 8730   | 4697  | 286   | 7                | 0       | 0     | 13720  |
| [4,] | NA             | 2869   | 137   | 1507  | 14               | 3       | 1     | 4531   |
| [5,] | NA             | 170    | 10    | 33    | 0                | 0       | 0     | 213    |
| [6,] | NA             | 11     | 0     | 6     | 1                | 0       | 4     | 22     |

## Or try a different read/import function:

```
library(readr)
pdbdb <- read_csv("Data Export Summary.csv")</pre>
```

Delimiter: ","

-- Column specification ------

Rows: 6 Columns: 8

chr (1): Molecular Type

dbl (3): Multiple methods, Neutron, Other

num (4): X-ray, EM, NMR, Total

- i Use `spec()` to retrieve the full column specification for this data.
- i Specify the column types or set `show\_col\_types = FALSE` to quiet this message.

## sum(pdbdb\$Total)

[1] 226414

```
sum(pdbdb$`X-ray`)/sum(pdbdb$Total) * 100
```

[1] 83.30359

```
sum(pdbdb$EM)/sum(pdbdb$Total) * 100
```

[1] 10.18091

Q2: What proportion of structures in the PDB are protein?

```
pdbdb$Total[1]/ sum(pdbdb$Total) * 100
```

[1] 86.39483

Q3: Type HIV in the PDB website search box on the home page and determine how many HIV-1 protease structures are in the current PDB?

## Mol\*

Mol\* (pronounced "molstar") is a new web-based molecular viewer than we will need to learn the basics of here.

https://molstar.org/viewer/

We will use PDB code: 1HSG



Figure 1: First image from the start

Some more custom images:



Figure 2: The all important catalytic ASP25 amino acids  $\,$ 



Figure 3: Surface display showing Merk compound in the peptide binding pocket



Figure 4: Close up view of binding site with drug and HOH 308

## The Bio3D package

The bio3d package allows us to do all sorts of structural bioinformatics work in R. Let's start with how it can read these PDB files:

```
pdb <- read.pdb("1hsg")</pre>
```

Note: Accessing on-line PDB file

pdb

Call: read.pdb(file = "1hsg")

Total Models#: 1

```
Total Atoms#: 1686, XYZs#: 5058 Chains#: 2 (values: A B)
    Protein Atoms#: 1514 (residues/Calpha atoms#: 198)
     Nucleic acid Atoms#: 0 (residues/phosphate atoms#: 0)
     Non-protein/nucleic Atoms#: 172 (residues: 128)
     Non-protein/nucleic resid values: [ HOH (127), MK1 (1) ]
   Protein sequence:
     PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKMIGGIGGFIKVRQYD
      QILIEICGHKAIGTVLVGPTPVNIIGRNLLTQIGCTLNFPQITLWQRPLVTIKIGGQLKE
      ALLDTGADDTVLEEMSLPGRWKPKMIGGIGGFIKVRQYDQILIEICGHKAIGTVLVGPTP
      VNIIGRNLLTQIGCTLNF
+ attr: atom, xyz, seqres, helix, sheet,
       calpha, remark, call
attributes(pdb)
$names
[1] "atom"
            "xyz"
                     "segres" "helix" "sheet" "calpha" "remark" "call"
$class
[1] "pdb" "sse"
head(pdb$atom)
  type eleno elety alt resid chain resno insert
                                                    X
                                                                 z o
1 ATOM
                N < NA >
                         PRO
                                           <NA> 29.361 39.686 5.862 1 38.10
          1
                                 Α
2 ATOM
          2
               CA <NA>
                         PRO
                                 Α
                                      1 <NA> 30.307 38.663 5.319 1 40.62
3 ATOM
          3
              C <NA>
                         PRO
                               Α
                                      1 <NA> 29.760 38.071 4.022 1 42.64
4 ATOM
          4
               O <NA>
                         PRO
                                       1 <NA> 28.600 38.302 3.676 1 43.40
                                 Α
          5
                         PRO
                                     1 <NA> 30.508 37.541 6.342 1 37.87
5 ATOM
               CB <NA>
                                Α
                                       1
6 ATOM
          6
               CG <NA>
                         PRO
                                 Α
                                           <NA> 29.296 37.591 7.162 1 38.40
  segid elesy charge
1 <NA>
           N
               <NA>
2 <NA>
           C <NA>
3 <NA>
           C <NA>
4 <NA>
           O <NA>
```

5 <NA>

6 <NA>

C <NA>

C <NA>

# pdbseq(pdb)[25]

25 "D"

Q7. How many amino acid residues are there in this pdb object?

```
sum(pdb$calpha)
```

[1] 198

## length(pdbseq(pdb))

[1] 198

Q8. Name one of the two non-protein residues?

HOH and MK1

Q9. How many protein chains are in this structure?

2

## unique(pdb\$atom\$chain)

[1] "A" "B"

## Predicting functional motions of a single structure

Let's do a bioinformatics prediction of functional motions - i.e. the movements that one of these molecules needs to make to do its stuff

```
adk <- read.pdb("6s36")
```

```
Note: Accessing on-line PDB file PDB has ALT records, taking A only, rm.alt=TRUE
```

```
Call: read.pdb(file = "6s36")
   Total Models#: 1
     Total Atoms#: 1898, XYZs#: 5694 Chains#: 1 (values: A)
    Protein Atoms#: 1654 (residues/Calpha atoms#: 214)
     Nucleic acid Atoms#: 0 (residues/phosphate atoms#: 0)
     Non-protein/nucleic Atoms#: 244 (residues: 244)
     Non-protein/nucleic resid values: [ CL (3), HOH (238), MG (2), NA (1) ]
   Protein sequence:
      MRIILLGAPGAGKGTQAQFIMEKYGIPQISTGDMLRAAVKSGSELGKQAKDIMDAGKLVT
      DELVIALVKERIAQEDCRNGFLLDGFPRTIPQADAMKEAGINVDYVLEFDVPDELIVDKI
      VGRRVHAPSGRVYHVKFNPPKVEGKDDVTGEELTTRKDDQEETVRKRLVEYHQMTAPLIG
      YYSKEAEAGNTKYAKVDGTKPVAEVRADLEKILG
+ attr: atom, xyz, seqres, helix, sheet,
        calpha, remark, call
# Perform flexibility prediction
m <- nma(adk)
 Building Hessian...
                           Done in 0.013 seconds.
 Diagonalizing Hessian... Done in 0.259 seconds.
plot(m)
```







Write out multi-model PDB file that we can use to make an animation of the predicted motions.

I can open this in Mol\* to play the trajectory...