

EXPNO: 4 DATE: 19.09.25

VERIFICATION OF THEVENIN'S

THEOREM

AIM:

To verify Theverin's theorem practically and theoretically for the eywer DC circuit.

APPARATUS REQUIRED:

SL.	APPARATUS	SPECIFICATION	QUANTITY
1.	Regulated Power Supply (RPS)	(0-39 V	1
2.	voltmeter	(0-30 V) MC	1
3.	Ammeter	(D-10MA) MC	1
4.	Resista	470-2,560-2 1K-12	2,1,1
5.	Bread Board	-	1
6.	Multimeter	_	1

To measure	IL
V, Cvolt	IL (amps)
10	286 mA

TABULAR COLUMN : 2

To measure Rth 0 r RN From circuit diagram 2, Rth: 797-12

TABULAR COLUMN: 3 To measure VAR Or Voe

vi	V+n	
(voets)	(volts)	
10	5V	

MODEL CALCULATION:

Practical value of IL (from tabulation) = 2.3
Verification of the venin's theorem

1L = Vth /(R+++RL) = 2.22 mA

Theoretical calculation of II, Rth (RN and Vth for the egiven circuit.

PROCEDURE:

- 1. Make the connections as free the circuit diagram: 1
- 2. Vary the RPS and set an input Vollage of 10V.
- 3. Note down the voltmeter reading (Vi) and ammeter reading (Ti) in Tabular column 1.
- 4. Switch off the supply and make connections for Circuit Diagram 2.
- 5. Measure the Thevenir's resistance RTh = Norton's resistance RN.
- 6. Switch off the supply and make connection for circuit diagram 3.
- 7. Set an input Voltage of 10v in the RPS and note down the voltmeter readings Vi and Vth (= Voc) in tabular columns: 3
- 8. switch off the supply and make connection for well diagram 4.
- 9. set an input Voltage of 10V in the RPS and note down the voltmeter reading V: and armeter reading IN (=150) an tabular column 4.

CALCULATION

By voltage division sule

VIE = V3 x R3 [No aurent will flow R1+R3 through R2 when R2 is onen circuit].

V+8: 10 V x 470-0 = 5 V

V+ = 5 V

Rth: R1 and R3 in parallel when voltage source is short concented.

Rth = 470 × 470 + 560 = 255 + 560 = 79512 470 + 470

Rth = 795 -2

Firding IL:

Rth in selves with RL: Rear = RL+Rth = 1.793K-12

IL= V = 5V Rea 1.795×103-0 = 2.79mA. 10. Drew the thevenin's eavivalent circuit diagrams and Norton's eavivalent circuit as shown in circuit

11. Calculate the IL value using the formula IL= Vth /(Rth +RL)

Norton's theorem

IL= IN* RN / (RN+RL)

12. Theoretically verily the Norton's theorem.

RESULT:

Thus The venin's theorem is veritted practically and theoretically.