Bruchez et al. Docket No.: IVGN 620.2 CIP Serial No. 10/735.608

Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, or claims in the application.

Listing of Claims:

 (currently amended): A semiconductor nanoparticle complex comprising a semiconductor nanoparticle bound <u>non-covalently</u> to a <u>plurality of</u> cationic polymers capable of enhancing the transport of the semiconductor nanoparticle across a biological membrane, wherein the semiconductor nanoparticle is a semiconductor nanocrystal core surrounded by a semiconductor shell, and wherein the cationic polymer contains 5 to 25 contiguous Lys and/or Arg residues.

(canceled)

- 3. (previously presented): The semiconductor nanoparticle complex of claim 1, wherein the semiconductor nanocrystal core is selected from the, group consisting of ZnS, ZnSe, ZnTe, CdS, CdSe, CdTe, HgS, HgSe, HgTe, MgS, MgSe, MgTe, CaS, CaSe, CaTe, SrS, SrSe, SrTe, BaS, BaSe, BaTe, GaN, GaP, GaAs, GaSb, InN, InP, InAs, InSb, AlAs, AIP, A1Sb, A1S, Ge, Si, Pb, PbS. PbSe, an alloy thereof, and a mixture thereof.
- (previously presented): The semiconductor nanoparticle complex of claim 3, wherein the semiconductor nanocrystal core is CdSe.

(canceled)

- 6. (previously presented): The semiconductor nanoparticle complex of claim 4, wherein the semiconductor shell comprises a semiconductor material selected from the group consisting of ZnS, ZnSe, ZnTe, CdS, CdSe, CdTe, HgS, HgSe, HgTe, MgS, MgSe, MgTe, CaS, CaSe, CaTe, SrS, SrSe, SrTe, BaS, BaSe, BaTe, GaN, GaP, GaAs, GaSb, InN, InP, InAs, InSb, AIAs, ALP, AISb, AIS, Ge, Si, Pb, PbS, PbSe, an alloy thereof, and a mixture thereof.
 - 7. (original): The semiconductor nanoparticle complex of claim 6, wherein the

Bruchez et al. Docket No.: IVGN 620.2 CIP Serial No. 10/735.608

semiconductor shell is 7nS

8-9. (canceled)

- 10. (previously presented): The semiconductor nanoparticle complex of claim 1, wherein the cationic polymer has 9 Arg residues.
- (original): The semiconductor nanoparticle complex of claim 1, wherein the biological membrane is a cell membrane.
- 12. (currently amended): A semiconductor nanocrystal complex comprising a semiconductor nanocrystal bound non-covalently to a plurality of cationic polymers capable of enhancing the transport of the semiconductor nanocrystal across a cell membrane, wherein the semiconductor nanocrystal comprises a core and a shell, wherein the core and the shell are each selected from the group consisting of ZnS, ZnSe, ZnTe, CdS, CdSe, CdTe, HgS, HgSe, HgTe, MgS, MgSe, MgTe, CaS, CaSe, CaTe, SrS, SrSe, SrTe, BaS, BaSe, BaTe, GaN, GaP, GaAs, GaSb, InN, InP, InAs, InSb, AlAs, AlP, A1Sb, A1S, Ge, Si, Pb, PUS, PbSe, an alloy thereof, and a mixture thereof wherein the cationic polymer has from 6 to 25 contiguous Lys and/or Arg residues.
- 13. (original): The semiconductor nanocrystal complex of claim 12, wherein the core is CdSe and the shell is 7nS

14-15. (canceled)

- (previously presented): The semiconductor nanocrystal conjugate of claim 13, wherein the cationic polymer comprises 6 to 25 contiguous Lys and/or Arg residues.
- 17. (withdrawn): A method of enhancing the transport of a semiconductor nanoparticle across a biological membrane comprising contacting a cell with the semiconductor nanoparticle complex of claim 1, under conditions that provide for the transport of the semiconductor nanoparticle across the biological membrane.

Bruchez et al. Docket No.: IVGN 620.2 CIP

Serial No. 10/735.608

18. (withdrawn): A method of enhancing the transport of a semiconductor nanocrystals across a cell membrane comprising contacting a cell with the semiconductor nanocrystal complex of claim 12, under conditions that provide for the transport of the semiconductor nanoparticle across the cell membrane.

- 19. (withdrawn): A method of enhancing the transport of a semiconductor nanocrystals across a cell membrane comprising contacting a cell with the semiconductor nanocrystal complex of claim 14, under conditions that provide for the transport of the semiconductor nanoparticle across the cell membrane.
- 20. (withdrawn): A method of enhancing the transport of a semiconductor nanocrystals across a cell membrane comprising contacting a cell with the semiconductor nanocrystal complex of claim 16, under conditions that provide for the transport of the semiconductor nanoparticle across the cell membrane.
 - 21. (withdrawn): The method of claim 18, wherein the cell is prokaryotic.
 - 22. (withdrawn): The method of claim 18, wherein the cell is eukaryotic.
- 23. (withdrawn): The method of claim 22, wherein the cell is a mammalian cell selected from the group consisting of a human cell, a mouse cell, a rat cell, a bovine cell, and a hamster cell.
 - 24. (withdrawn): A method of distinguishably identifying a cell, comprising:
 - (a) providing a cell; and
- (b) contacting the cell with a semiconductor nanoparticle complex according to claim under conditions in which the semiconductor nanoparticle is transported across the cell membrane to provide a labeled cell, thereby identifying the cell.
 - 25. (withdrawn): A method of distinguishably identifying a cell, comprising:
 - (a) providing a cell; and
- (b) contacting the cell with a semiconductor nanocrystal complex according to claim 12
 under conditions in which the semiconductor nanocrystal is transported across the cell membrane

Bruchez et al. Docket No.: IVGN 620.2 CIP Serial No. 10/735.608

to provide a labeled cell, thereby identifying the cell.

- 26. (withdrawn): A method of distinguishably identifying a cell, comprising:
- (a) providing a cell; and
- (b) contacting the cell with a semiconductor nanocrystal complex according to claim 14 under conditions in which the semiconductor nanocrystal is transported across the cell membrane to provide a labeled cell, thereby identifying the cell.
 - 27. (withdrawn): A method of distinguishably identifying a cell, comprising:
 - (a) providing a cell; and
- (b) contacting the cell with a semiconductor nanocrystal complex according to claim 16 under conditions in which the semiconductor nanocrystal is transported across the cell membrane to provide a labeled cell, thereby identifying the cell.
 - 28. (withdrawn): The method of claim 25, wherein the cell is prokaryotic.
 - 29. (withdrawn): The method of claim 25, wherein the cell is eukaryotic.
- (withdrawn): The method of claim 29, wherein the cell is a mammalian cell selected from the group consisting of a human cell, a mouse cell, a rat cell, a bovine cell, and a hamster cell.
 - 31. (withdrawn): A method of identifying a cell in a mixed population of cells, comprising:
 - (a) providing a first cell;
- (b) contacting the cell with a semiconductor nanoparticle complex according to claim 1 under conditions in which the semiconductor nanoparticle is transported across the cell membrane to provide an encoded first cell;
- (c) mixing the encoded first cell with a second cell distinct therefrom to form a mixed population of cells;
 - (d) culturing the mixed population of cells;
 - (e) exposing the cultured mixed population of cells to an excitation energy source; and
 - (f) detecting a semiconductor nanoparticle code to identify the encoded cell.

Bruchez et al. Docket No.: IVGN 620.2 CIP Serial No. 10/735.608

32. (withdrawn): A method of identifying a cell in a mixed population of cells, comprising:

- (a) providing a first cell;
- (b) contacting the cell with a semiconductor nanocrystal complex according to claim 12 under conditions in which the semiconductor nanocrystal is transported across the cell membrane to provide an encoded first cell;
- (c) mixing the encoded first cell with a second cell distinct therefrom to form a mixed population of cells:
 - (d) culturing the mixed population of cells;
 - (e) exposing the cultured mixed population of cells to an excitation energy source; and
 - (f) detecting a semiconductor nanocrystal code to identify the encoded cell.
 - 33. (withdrawn): A method of identifying a cell in a mixed population of cells, comprising:
 - (a) providing a first cell;
- (b) contacting the cell with a semiconductor nanocrystal complex according to claim 14
 under conditions in which the semiconductor nanocrystal is transported across the cell membrane
 to provide an encoded first cell;
- mixing the encoded first cell with a second cell distinct therefrom to form a mixed population of cells;
 - (d) culturing the mixed population of cells;
 - (e) exposing the cultured mixed population of cells to an excitation energy source; and
 - (f) detecting a semiconductor nanocrystal code to identify the encoded cell.
- 34. (withdrawn): A method of identifying a cell in a mixed population of cells, comprising:
 - (a) providing a first cell;
- (b) contacting the cell with a semiconductor nanocrystal complex according to claim 16 under conditions in which the semiconductor nanocrystal is transported across the cell membrane to provide an encoded first cell;
- (c) mixing the encoded first cell with a second cell distinct therefrom to form a mixed population of cells:
 - (d) culturing the mixed population of cells;
 - (e) exposing the cultured mixed population of cells to an excitation energy source; and
 - (f) detecting a semiconductor nanocrystal code to identify the encoded cell.

Docket No : IVGN 620 2 CIP Bruchez et al.

Serial No. 10/735.608

35. (withdrawn): The method of claim 32, wherein the cell is prokaryotic.

- 36. (withdrawn): The method of claim 32, wherein the cell is eukaryotic.
- 37. (withdrawn): The method of claim 36, wherein the cell is a mammalian cell selected from the group consisting of a human cell, a mouse cell, a rat cell, a bovine cell, and a hamster cell.
- 38. (currently amended): A kit comprising a semiconductor nanoparticle complex according to claim [[]] 1 and instructions for using the semiconductor nanoparticle complex.
- 39. (previously presented): A kit comprising a semiconductor nanocrystal complex according to claim 12 and instructions for using the semiconductor nanocrystal complex.
- 40. (previously presented): A kit comprising a semiconductor nanocrystal complex according to claim 10 and instructions for using the semiconductor nanocrystal complex.
- 41. (previously presented): A kit comprising a semiconductor nanocrystal complex according to claim 16 and instructions for using the semiconductor nanocrystal complex.
- 42. (currently amended): A semiconductor nanoparticle complex comprising a semiconductor nanoparticle bound non-covalently to a plurality of cationic polymers capable of enhancing the transport of the semiconductor nanoparticle across a biological membrane, wherein the semiconductor nanoparticle is a semiconductor nanocrystal core surrounded by a semiconductor shell, wherein the cationic polymer is selected from the group consisting of poly-Llysine, poly-L-ornithine, poly-L-arginine, poly-L-homoarginine, poly-L-diaminobutyric acid, poly-Lhistidine, the D-optical isomers thereof and copolymers thereof.
- 43 (previously presented): The semiconductor nanoparticle complex of claim 42. wherein the cationic polymer comprises 4 to 25 contiguous Lys or Arg residues.
 - 44. (new); The semiconductor nanoparticle complex of claim 1, wherein the Arg residues

Bruchez et al. Docket No.: IVGN 620.2 CIP Serial No. 10/735,608

are D-arginine.

45. (new): The semiconductor nanoparticle complex of claim 1, wherein the semiconductor nanoparticle is coupled to streptavidin, avidin, or neutravidin, and the cationic polymer is coupled to biotin.