Classification

Mai H. Nguyen, Ph.D.

What is Classification?

- Given input variables, predict target variable.
 - Model needs to learn relationship between input data and target
 - Target variable is categorical
 - Other names for 'target'
 - label, class, class variable, output

Data for Classification

Classification is **supervised** learning.

Target Variable in Classification

- •In classification, the target variable is always of categorical type
- Binary Classification
 - One of two classes for target
- Multiclass or Multinomial Classification
 - One of many classes for target
 - "many" = more than 2
- Multilabel Classification
 - One or more classes for target

Building Classification Model

- Goal: Get model outputs to match targets
- Learning algorithm used to adjust model parameters to minimize difference between outputs and targets
- Parameters are learned or estimated from data
 - "fitting the model", "training the model", "build model"

Building Classification Model

Building vs. Applying Model

Adjust model parameters

Test model on new data

Generalization

Overfitting

http://stats.stackexchange.com/questions/192007/what-measures-you-look-at-the-determine-over-fitting-in-linear-regression

Underfitting

Model has not learned structure of data

Just Right

Model has learned distribution of data

Overfitting

Model is fitting to noise in data

Overfitting

Underfitting
High training error
High test error

Just Right
Low training error
Low test error

Overfitting
Low training error
High test error

Overfitting & Generalization

- Reasons for overfitting
 - Training set is too small
 - Model is too complex, i.e., has too many parameters
- Overfitting leads to poor generalization
 - Model that overfits will not generalize well to new data

Overfitting & Generalization

Validation set

 One way to address overfitting and estimate generalization performance

·ldea:

- Divide training set into multiple datasets
 - Training set: Used to fit model parameters to data
 - Validation set: Used to validate model performance
- Monitor performance on training and validation sets to determine when to stop training.

Validation with Holdout Set

- Overfitting is occurring if training error decreases while validation error increases.
- Model with best generalization performance is one with lowest validation error.

Cross-Validation

K-fold cross-validation

- Partition data into k disjoint datasets
- For each iteration, use 1 partition for validation and the rest for training.
- Repeat process k times. Each partition is used for validation exactly once.

 Overall error estimate (generalization performance) is average of error rates for k iterations.

	◄ Total Number of Dataset — ▶	http://stackoverflow.com/que stions/31947183/how-to-
Experiment 1		implement-walk-forward- testing-in-sklearn
Experiment 2		Training
Experiment 3		Validation
Experiment 4		
Experiment 5		

Decision Tree

- Hierarchical structure with nodes and directed edges
- Root and internal nodes have test conditions
- Leaf nodes have class labels
- Paths from root to leaf represent classification rules

Classification Using Decision Tree

- Traverse tree from root to leaf
- At each node, answer to test condition determines child node to move to
- Category at leaf node determines label for sample

Constructing Decision Tree

- Split data into "pure" regions
- Classification decision based on these regions

Constructing Decision Tree

- Start with all samples at a node
- Partition samples based on input to create purest subsets
- Repeat to partition data into successively purer subsets
- Also referred to as 'tree induction'

Tree Induction

Split 1

• Split 2

Split 3

Decision Boundaries

Resulting model

Decision Tree Classification

Pros

- Resulting tree often simple to understand and interpret
- Tree induction algorithms relatively computationally inexpensive

Cons

- Induction algorithms make locally optimal decisions. No guarantee of globally optimal model
- Small variants in data can generate different trees

Ensemble Methods

· "ensemble":

a group producing a single effect (from Merriam-Webster)

• Idea:

Combine several simple models into more complex one

•Approach:

- Construct a set of models from training data
- Prediction is made by combining outputs of the multiple models
 - Classification: Combine votes of classifiers

Ensemble Methods

Advantage

 Ensemble learning generates more robust model with is less susceptible to overfitting and generalizes better

Rationale

- Ensemble with majority voting
 - •Base classifiers may make mistakes, but ensemble will misclassify a pattern only if over half of base classifiers are incorrect.
- Intuitively, combining decisions from multiple "experts" may be more reliable than relying on a single "expert"

Approaches

- Bagging
- Boosting

Ensemble Method: Bagging

- Bagging stands for "bootstrap aggregation"
- Approach:
 - Sample training data set with replacement to construct bootstrap samples
 - Build separate classifier on each bootstrap sample
 - Each classifier predicts class label for unknown record
 - Bagged classifier takes majority vote
- Generalization can be improved since variance of individual base classifiers is reduced

Random Forest

"forest"

- Ensemble method
 - •Model is composed of set of decision trees => forest!

"random"

- For each tree, only subset of variables used to determine best split.
- Subset of attributes is determined randomly.

• Idea:

To improve generalization over single decision tree

Random Forest – Illustration

Randomness in Random Forest

Randomness can be incorporated in several ways:

- Forest-RI
 - •Random attribute selection: At each node, randomly select subset of input attributes to consider in splitting node.
- Forest-RC
 - •Random combinations of attributes: At each node, randomly select subset of input attributes to be linearly combined. These new attributes are considered in splitting node.
- Randomly select best split:
 - •At each node, randomly select one of F best splits.

Random Forest

- Ensemble of decision tree classifiers
 - Bagging is used to generate bootstrap samples for base decision trees
 - Base decision tree built by using only subset of attributes to determine split at each node
 - Subset of attributes is determined randomly
 - Final classification is based on the majority vote

Boosting Methods

Ensemble approach

Uses multiple models for prediction

Boosting

- Combine set of weak learners to create final strong learner
- Base models ("weak learners") added iteratively until no further improvements can be made or max number of models have been added
- Weighted aggregation of base models' outputs used as final prediction

AdaBoost

Adaptive Boosting

 Adaptive: New models are built based on errors from previous ones.

Main ideas

- Misclassified samples are weighted more
- New models focus more on samples that are difficult for existing models
- Models are weighted relative to their predictive performance
- Final prediction is weighted average of base models

XGBoost

Gradient Boosting

- New models are trained to minimize residuals (i.e., errors) of existing models
- Loss function combines error and penalty term for model complexity
- Gradient descent used to minimize loss when adding new models

eXtreme Gradient Boosting

- Implementation of gradient boosted trees
- Optimized for execution speed and model performance
- Uses parallelization and distributed computing to speed computation

Ensemble Models

- In practice, often results in improved performance due to lower variance
- Training takes longer
- Ensembles more difficult to understand than single models.
 - But can provide feature importance

Classification – Key Points

Classification task

Predict categorical variable from input variables

Overfitting & Generalization

- Avoid overfitting to have model generalize to new data
- Techniques: use validation set (e.g., cross-validation)

Algorithms

- Decision Trees, Random Forest, Boosting Algorithms
- Others: k-nearest-neighbor, naïve Bayes, logistic regression, neural networks, ...

Sources

- A. Liaw et al. Package 'randomForest'. Retrieved from https://cran.r-project.org/web/packages/randomForest/randomForest.pdf
- P. Tan, M. Steinbach, & V. Kumar. *Introduction to Data Mining*. Pearson: 2005.
- T. Therneau, B. Atkinson, & B. Ripley. Package 'rpart'. Retrieved from https://cran.r- project.org/web/packages/rpart/index.html
- XGBoost: https://xgboost.readthedocs.io/en/latest/

Questions?

Classification Hands-On

- Predict whether it will rain tomorrow
 - Decision tree
 - Random forest
- Using same Australian weather dataset from EDA hands-on

