MODERN ALGEBRA CSE PYQs

2019

1. 1a

Let G be a finite group, H and K subgroups of G such that $K \subset H$. Show that (G:K) = (G:H)(H:K).

2. 2a

If G and H are finite groups whose orders are relatively prime, then prove that there is only one homomorphism from G to H, the trivial one.

3. 2b

Write down all quotient groups of the group Z_{12} .

10

4. 3d

Let a be an irreducible element of the Euclidean ring R, then prove that R/(a) is a field.

5. 1a

Let R be an integral domain with unit element. Show that any unit in R[x] is a unit in R.

6. 2a

Show that the quotient group of $(\mathbb{R}, +)$ modulo \mathbb{Z} is isomorphic to the multiplicative group of complex numbers on the unit circle in the complex plane. Here \mathbb{R} is the set of real numbers and \mathbb{Z} is the set of integers.

7. 3a

Find all the proper subgroups of the multiplicative group of the field (\mathbb{Z}_{13} , $+_{13}$, \times_{13}), where $+_{13}$ and \times_{13} represent addition modulo 13 and multiplication modulo 13 respectively.

2017

8. 1b

Let G be a group of order n. Show that G is isomorphic to a subgroup of the permutation group $\mathbf{S}_{\mathbf{n}}$.

9. 2c

Let F be a field and F[X] denote the ring of polynomials over F in a single variable X. For $f(X),\,g(X)\in F[X]$ with $g(X)\neq 0,$ show that there exist $q(X),\,r(X)\in F[X]$ such that degree (r(X))< degree (g(X)) and

 $f(X) = q(X) \cdot g(X) + r(X).$

20

10.3a

Show that the groups $\mathbb{Z}_5 \times \mathbb{Z}_7$ and \mathbb{Z}_{35} are isomorphic.

11. 1a

Let K be a field and K[X] be the ring of polynomials over K in a single variable X. For a polynomial $f \in K[X]$, let (f) denote the ideal in K[X] generated by f. Show that (f) is a maximal ideal in K[X] if and only if f is an irreducible polynomial over K.

12, 2b

Let p be a prime number and \mathbf{Z}_{p} denote the additive group of integers modulo p. Show that every non-zero element of \mathbf{Z}_{p} generates \mathbf{Z}_{p} .

13. 3a

Let K be an extension of a field F. Prove that the elements of K, which are algebraic over F, form a subfield of K. Further, if $F \subset K \subset L$ are fields, L is algebraic over K and K is algebraic over F, then prove that L is algebraic over F.

14. 4a

Show that every algebraically closed field is infinite.

15

15. 1a

How many generators are there of the cyclic group G of order 8? Explain.

Taking a group $\{e, a, b, c\}$ of order 4, where e is the identity, construct composition tables showing that one is cyclic while the other is not.

5+5=10

16. 1b

Give an example of a ring having identity but a subring of this having a different identity.

17. 2a

If R is a ring with unit element 1 and ϕ is a homomorphism of R onto R', prove that $\phi(1)$ is the unit element of R'.

18. 4a

Do the following sets form integral domains with respect to ordinary addition and multiplication? If so, state if they are fields: 5+6+4=15

- (i) $b\sqrt{2}$ के रूप की संख्याओं का समुच्चय, जहाँ b परिमेय संख्या है The set of numbers of the form $b\sqrt{2}$ with b rational
- (ii) सम पूर्णांकों का समुच्चय The set of even integers
- (iii) धनात्मक पूर्णांकों का समुच्चय

 The set of positive integers

19. 1a

Let G be the set of all real 2×2 matrices $\begin{bmatrix} x & y \\ 0 & z \end{bmatrix}$, where $xz \neq 0$. Show that G is a group under matrix multiplication. Let N denote the subset $\left\{ \begin{bmatrix} 1 & \alpha \\ 0 & 1 \end{bmatrix} : \alpha \in \mathbb{R} \right\}$. Is N a normal subgroup of G? Justify your answer.

20. 2a

Show that \mathbb{Z}_7 is a field. Then find $([5] + [6])^{-1}$ and $(-[4])^{-1}$ in \mathbb{Z}_7 .

21. 3a

Show that the set $\{a + b\omega : \omega^3 = 1\}$, where a and b are real numbers, is a field with respect to usual addition and multiplication.

22. 4a

Prove that the set $\mathbb{Q}(\sqrt{5}) = \{a + b\sqrt{5} : a, b \in \mathbb{Q}\}$ is a commutative ring with identity.

2013

23. 1a

Show that the set of matrices $S = \left\{ \begin{pmatrix} a & -b \\ b & a \end{pmatrix} \middle| a, b \in \mathbb{R} \right\}$ is a field under the usual binary operations of matrix addition and matrix multiplication. What are the additive and multiplicative identities and what is the inverse of $\begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$? Consider the map $f: \mathbb{C} \to S$ defined by $f(a+ib) = \begin{pmatrix} a & -b \\ b & a \end{pmatrix}$. Show that f is an isomorphism. (Here \mathbb{R} is the set of real numbers and C is the set of complex numbers.)

24. 1b

Give an example of an infinite group in which every element has finite 10 order.

25. 2a

What are the orders of the following permutations in S10?

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 1 & 8 & 7 & 3 & 10 & 5 & 4 & 2 & 6 & 9 \end{pmatrix} \text{ and } (1 & 2 & 3 & 4 & 5) (6 & 7).$$
 10

26. 2b

What is the maximal possible order of an element in S_{10} ? Why? Give an example of such an element. How many elements will there be in S_{10} of 13 that order?

27. 3a

Let $J = \{a + bi \mid a, b \in \mathbb{Z}\}$ be the ring of Gaussian integers (subring of \mathbb{C}). Which of the following is J: Euclidean domain, principal ideal domain, unique factorization domain? Justify your answer.

28.3b

(b) Let R^C = ring of all real valued continuous functions on [0, 1], under the operations

$$(f+g) = f(x) + g(x)$$

(fg)
$$x = f(x) g(x)$$
.

$$Let \ M \, = \, \Bigg\{ \, f \in R^C \, \left| \, f \bigg(\frac{1}{2} \bigg) \, = \, \, 0 \, \, \right\} \!.$$

Is M a maximal ideal of R? Justify your answer.

15

29. 1a

1. (a) How many elements of order 2 are there in the group of order 16 generated by a and b such that the order of a is 8, the order of b is 2 and $bab^{-1} = \bar{a}^{-1}$.

30. 2a

(a) How many conjugacy classes does the permutation group S₅ of permutations 5 numbers have? Write down one element in each class (preferably in terms of cycles).

31. 3a

3. (a) Is the ideal generated by 2 and X in the polynomial ring Z[X] of polynomials in a single variable X with coefficients in the ring of integers Z, a principal ideal? Justify your answer.

32. 4a

4. (a) Describe the maximal ideals in the ring of Gaussian integers $\mathbb{Z}[i] = \{a + bi \mid a, b \in \mathbb{Z}\}.$

33. 1a

1. (a) Show that the set

$$G = \{f_1, f_2, f_3, f_4, f_5, f_6\}$$

of six transformations on the set of Complex numbers defined by

$$f_1(z) = z, f_2(z) = 1 - z$$

$$f_3(z) = \frac{z}{(z-1)}, f_4(z) = \frac{1}{z}$$

$$f_5(z) = \frac{1}{(1-z)}$$
 and $f_6(z) = \frac{(z-1)}{z}$

is a non-abelian group of order 6 w.r.t. composition of mappings.

34. 1e

- (e) (i) Prove that a group of Prime order is abelian.
 - (ii) How many generators are there of the cyclic group (G, ·) of order 8?

35. 2a

2. (a) Give an example of a group G in which every proper subgroup is cyclic but the group itself is not cyclic.

36. 3a

3. (a) Let F be the set of all real valued continuous functions defined on the closed interval [0, 1]. Prove that (F, +, ·) is a Commutative Ring with unity with respect to addition and multiplication of functions defined pointwise as below:

37. 4a

4. (a) Let a and b be elements of a group, with $a^2 = e$, $b^6 = e$ and $ab = b^4a$.

Find the order of ab, and express its inverse in each of the forms a^mb^n and b^ma^n . 20

2010

38. 1a

(a) Let $G = \mathbb{R} - \{-1\}$ be the set of all real numbers omitting -1. Define the binary relation * on G by a*b=a+b+ab. Show (G,*) is a group and it is abelian

39. 1b

(b) Show that a cyclic group of order 6 is isomorphic to the product of a cyclic group of order 2 and a cyclic group of order 3. Can you generalize this? Justify.

40. 2a

2. (a) Let (\mathbb{IR}^*, \cdot) be the multiplicative group of nonzero reals and $(GL(n, \mathbb{IR}), X)$ be the multiplicative group of $n \times n$ non-singular real matrices. Show that the quotient group $GL(n, \mathbb{IR})/SL(n, \mathbb{IR})$ and (\mathbb{IR}^*, \cdot) are isomorphic where

 $SL(n, IR) = \{A \in GL(n, IR) / \det A = 1\}.$ What is the centre of GL(n, IR)?

41, 2b

(b) Let $C = \{ f : I = [0, 1] \rightarrow \mathbb{R} | f \text{ is continuous} \}.$

Show C is a commutative ring with 1 under pointwise addition and multiplication.

Determine whether C is an integral domain. Explain.

42, 3a

ţ

3. (a) Consider the polynomial ring Q[x]. Show $p(x) = x^3 - 2$ is irreducible over Q. Let I be the ideal in Q[x] generated by p(x). Then show that Q[x]/I is a field and that each element of it is of the form $a_0 + a_1t + a_2t^2$ with a_0 , a_1 , a_2 in Q and t = x + I.

43.3b

(b) Show that the quotient ring $\mathbb{Z}[i]/(1+3i)$ is isomorphic to the ring $\mathbb{Z}/10\mathbb{Z}$ where $\mathbb{Z}[i]$ denotes the ring of Gaussian integers.

44. 1a

(a) If R is the set of real numbers and R₊ is the set of positive real numbers, show that R under addition (R, +) and R₊ under multiplication (R₊, ·) are isomorphic. Similarly if Q is the set of rational numbers and Q₊ the set of positive rational numbers, are (Q, +) and (Q₊, ·) isomorphic? Justify your answer.

45. 1b

(b) Determine the number of homomorphisms from the additive group Z₁₅ to the additive group Z₁₀.
 (Z_n is the cyclic group of order n).

46. 2a

2. (a) How many proper, non-zero ideals does the ring Z₁₂ have? Justify your answer. How many ideals does the ring Z₁₂ ⊕ Z₁₂ have? Why?

2+3+4+6=15

47. 2b

(b) Show that the alternating group on four letters A has no subgroup of order 6.

48. 3a

Show that Z[X] is a unique factorization domain that is not a principal ideal domain (Z is the ring of integers). Is it possible to give an example of principal ideal domain that is not a unique factorization domain? (Z [X] is the ring of polynomials in the variable X with integer.) 15

49.3b

(b) How many elements does the quotient ring $\frac{\mathbb{Z}_{5}[X]}{(X^{2}+1)}$ have? Is it an integral domain? Justify yours answers.