Laplace-Experiment

Ein Zufallsexperiment mit n verschiedenen möglichen Ergebnissen, die alle dieselbe Wahrscheinlichkeit, alse $\frac{1}{n}$ haben. Die Wahrscheinlichkeit eines Ereignisses $E\subseteq\Omega$ wird für diesen Fall folgendermassen definiert:

$$P(E) = \frac{|E|}{|\Omega|} = \frac{\text{Anzahl günstige Ergebnisse}}{\text{Anzahl aller Ergebnisse}} \tag{1}$$

Dieses P heisst auch Gleichverteilung.

Produkte

Wenn es bei einem mehrstufigen Auswahlprozess für das 1. Objekt n_1 Möglichkeiten, für das 2. Objekt n_2 Möglichkeiten, ..., und für das k-te Objekt n_k Möglichkeiten gibt, dann gibt es für den gesamten Auswahlprozess $n_1 * n_2 * \cdots * n_k$ Möglichkeiten.

$$|A_1 \times A_2 \times \dots \times A_k| = |A_1| * |A_2| * \dots * |A_k|$$
 (2)

Summen

Wenn es n_1 Objekte mit Eigenschaft 1, n_2 Objekte mit Eigenschaft 2, ..., n_k Objekte mit Eigenschaft k gibt, und kein Objekt zwei der Eigenschaften gleichzeitig besitzt, dann gibt es insgesamt $n_1 + n_2 + \ldots + n_k$ Objekte die eine der Eigenschaft besitzen.

$$|A_1 \cup A_2 \cup \dots \cup A_k| = |A_1| + |A_2| + \dots + |A_k| \tag{3}$$

Fakultät

Wir ziehen n mal ohne Zurücklegen mit Beachtung der Reihenfolge aus einer Urne mit n Kugeln. Dan gibt es n*(n-1)*...*2*1 Möglichkeiten.

$$n! := n * (n-1) * \dots * 2 * 1 \sim \sqrt{2 * \pi * n} * (\frac{n}{e})^n$$
 (4)

Binominalkoeffizient

 $\binom{n}{k}$ gibt die Anzahl aller k-elementigen Teilmengen einer n-elementigen Menge an.

$$\binom{n}{k} := \frac{n!}{(n-k)! * k!} \tag{5}$$

Urnenmodel

	zurücklegen	nicht zurücklegen
geordnet	n^k	$n!$ oder $\frac{n!}{(n-k)!}$
ungeordnet	$\binom{k+n-1}{k}$	$\binom{n}{k} = \frac{n!}{k!(n-k)!}$

Wahrscheinlichkeit

Eien Wahrscheinlichkeit $P: 2^{\Omega} \to [0,1]$ erfüllt:

$$P(\Omega) = 1 \tag{6}$$

$$\forall E \subseteq \Omega : P(E^c) = 1 - O(E) \tag{7}$$

$$P(0) = 0 (8)$$

$$P(E_1 \cup E_2 \cup E_3 \cup \dots) = P(E_1) + P(E_2) + P(E_3) + \dots$$
 (9)

$$\forall E_1, E_2 \subseteq \Omega : P(E_1 \cup E_2) = P(E_1) + P(E_2) - P(E_1 \cap E_2)$$
(10)

$$E = \{e_1, e_2, \dots\} \to P(E) = P(\{e_1\}) + P(\{e_2\}) + \dots$$
 (11)

Z-Dichte

Die Funktion $f_P: \Omega \to [0,1]$ mit $f_P(w) = P(\{w\})$ heisst Zähldichte von P.

$$P(E) = \sum_{e \in E} f_P(e) \tag{12}$$

$$P(E) = \sum_{e \in \Omega} f_P(e) = 1 \tag{13}$$

bedingte Wahrscheinlichkeit

Es sei $B \subseteq \Omega$ mit P(B) > 0. Dann heisst P(A|B) (elementare) bedingte Wahrscheibnlichkeit von A unter B.

$$P(A|B) := \frac{P(A \cap B)}{P(B)} \tag{14}$$

Formel von Bayes:

$$P(A|B) = \frac{P(A)}{P(B)} * P(B|A)$$

$$\tag{15}$$

totele Wahrscheinlichkeit

Es sei $B_i (i \in I)$ eine Zerlegung von Ω (d.h. die B_i sind paarweise disjunkt und $\Omega = U_{i \in I} B_i$) mit $P(B_i) > 0$.

$$P(A) = \sum_{i \in I} P(A|B_i) * P(B_i)$$
 (16)

positive prädiktive Wert

Für 0 < P(A) < 1 gilt mit $\Omega = A \cup A^c$ insbesondere:

$$P(A|B) = \frac{P(A) * P(A|B)}{P(B|A) * P(A) + P(B|A^c) * P(A^c)}$$
(17)

stochastische Unabhängigkeit

Zwei Ereignisse $A, B \subseteq \Omega$ heissen stochastisch unabhängig, falls

$$P(A \cap B) = P(A) * P(B) \equiv \underbrace{P(A|B)}_{P(A \cap B)} = P(A) \leftarrow (B) \neq 0]$$
(18)

Mehrstufige Zufallsexperimente

Gegeben ist eine Urne mit 4 weissen und 2 schwarzen Kugeln. Wir ziehen dreimal ohne Zurücklegen: Was ist die Warhscheinlichkeit A: "Dritte Kugel weiss"?

$$\Omega = \{w, s\} \times \{w, s\} \times \{w, s\} \text{ und } A = \{(w, w, w), (w, s, w), (s, w, w), (s, s, w)\}$$

$$P(A) = f(w, w, w) + f(w, s, w) + f(s, w, w) + f(s, s, w)$$
(19)

Verteilungsfunktion

Es sei $X:\Omega\to X$ eine Zufallsvariable, wobei $X\in\mathbb{R}$ eine endliche oder abzählbare Menge ist. Zudem sei f die Zähldichte von X.

$$F(x) = P(X \le x) = \sum_{t \in X: t \le x} f(t)$$

$$\tag{20}$$

Erwartungswert, Varianz & Standardabweichung

$$E(X) = \sum_{x \in X} x * f(x) = \sum_{x \in X} x * P(X = x)$$
 (21)

$$V(X) = \sum_{x \in X} (x - E)^2 * f(x) = \sum_{x \in X} (x - E)^2 * P(X = x) = E(X^2) - E(X)^2$$
 (22)

$$\sigma(X) = \sqrt{V(X)} \tag{23}$$

Bernoulli-Verteilung

Treffer (WK p), nicht Treffer

$$X \sim B(p) : P(0) = 1 - p$$
 (24)

$$P(1) = p \tag{25}$$

$$E(X) = p (26)$$

$$V(X) = p * (1 - p) (27)$$

Binomial-Verteilung

Anzahl Treffer $(WK\ p)$ in n unabhängigen Versuchen

$$X \sim Bin(n,p) : P(X=k) = \binom{n}{k} * p^k * (1-p)^{n-k}, k = 0, 1, \dots, n$$
 (28)

$$E(X) = n * p \tag{29}$$

$$V(X) = n * p * (1 - p) \tag{30}$$

geometirsche-Verteilung

Versuche bis erster Treffer (WK p) in unabhängigen Veruschen

$$X \sim Geo(n, p) : P(X = k) = (1 - p)^{k-1} * p, k = 0, 1, ..., n$$
 (31)

$$E(X) = \frac{1}{p} \tag{32}$$

$$V(X) = \frac{1-p}{p^2} \tag{33}$$

Poisson-Verteilung

Verteilung für seltene Ereignisse mit im Schnitt λ Ereignisse pro Zeit/Ort

$$X \sim Poi(\lambda) : P(X = k) = \frac{\lambda^k}{k!} * e^{-\lambda}, k = 0, 1, \dots, n$$
 (34)

$$E(X) = \lambda \tag{35}$$

$$V(X) = \lambda \tag{36}$$

Eigenschaften

$$E(X+Y) = E(X) + E(Y) \tag{37}$$

$$E(a * X) = a * E(X) \tag{38}$$

$$E(X+c) = E(X) + c \tag{39}$$

$$V(X+c) = V(X) \tag{40}$$

$$V(a*X) = a^2 * V(X) \tag{41}$$

$$E(g(X)) = \sum_{x} g(x) * P(X = x) \leftarrow [\mathbb{R} \to \mathbb{R}]$$
(42)

$$E(g(X)) \neq g(E(X)) \tag{43}$$

by Jan Fässler