21-120: Differential and Integral Calculus Recitation #17 Outline: 10/29/24

1. Given that

$$\lim_{x \to a} f(x) = 0 \qquad \lim_{x \to a} g(x) = 0 \qquad \lim_{x \to a} h(x) = 1 \qquad \lim_{x \to a} p(x) = \infty \qquad \lim_{x \to a} q(x) = \infty$$

which of the following limits are indeterminate forms? For those that are not, evaluate the limit where possible.

(a)
$$\lim_{x \to a} (f(x) - p(x))$$
 (d) $\lim_{x \to a} (f(x))^{g(x)}$ (f) $\lim_{x \to a} (h(x))^{p(x)}$ (h) $\lim_{x \to a} (p(x))^{q(x)}$ (b) $\lim_{x \to a} (p(x) - q(x))$

(b)
$$\lim_{x \to a} (p(x) - q(x))$$

(c)
$$\lim_{x \to a} (p(x) + q(x))$$
 (e) $\lim_{x \to a} (f(x))^{p(x)}$ (g) $\lim_{x \to a} (p(x))^{f(x)}$ (i) $\lim_{x \to a} \sqrt[q(x)]{p(x)}$

Solution:

- (a) This limit yields the form $0-\infty$, which is not an indeterminate form. The limit evaluates to
- (b) This limit yields an indeterminate form of type $\infty \infty$.
- (c) This limit yields the form $\infty + \infty$, which is not an indeterminate form. The limit evaluates to $+\infty$.
- (d) This limit yields an indeterminate form of type 0^0 .
- (e) This limit yields the form 0^{∞} , which is not an indeterminate form. The limit evaluates to 0.
- (f) This limit yields an indeterminate form of type 1^{∞} .
- (g) This limit yields an indeterminate form of type ∞^0 .
- (h) This limit yields the form ∞^{∞} , which is not an indeterminate form. The limit evaluates to ∞ .
- (i) The function inside this limit can be written as $p(x)^{1/q(x)}$, so the limit yields an indeterminate form of type ∞^0 .

2. Find the limit using l'Hospital's rule.

(a)
$$\lim_{x \to 0} (\csc x - \cot x)$$
 (c) $\lim_{x \to 0^+} x^{\sqrt{x}}$ (e) $\lim_{x \to 1} (2 - x)^{\tan(\pi x/2)}$ (b) $\lim_{t \to \infty} (x - \ln x)$ (d) $\lim_{x \to \infty} x^{e^{-x}}$ (f) $\lim_{x \to 0^+} (1 + \sin(3x))^{1/x}$

Solution:

(a) $\lim_{x \to \infty} (\csc x - \cot x)$

Rewrite the expressions in terms of sine and cosine:

$$\csc x - \cot x = \frac{1}{\sin x} - \frac{\cos x}{\sin x} = \frac{1 - \cos x}{\sin x}.$$

As $x \to 0$, both the numerator and denominator approach zero, giving the indeterminate form $\frac{0}{0}$. Apply l'Hôpital's rule:

$$\lim_{x \to 0} (\csc x - \cot x) \stackrel{0/0}{=} \lim_{x \to 0} \frac{1 - \cos x}{\sin x} = \lim_{x \to 0} \frac{\sin x}{\cos x} = 0.$$

(b) $\lim_{x\to\infty} (x-\ln x)$

As $x \to \infty$, both x and $\ln x$ approach infinity, giving the indeterminate form $\infty - \infty$. We can rewrite the expression as:

$$x - \ln x = \ln(e^x) + \ln(x^{-1}) = \ln\left(\frac{e^x}{x}\right).$$

Thus, we have:

$$\lim_{x \to \infty} (x - \ln x) = \lim_{x \to \infty} \ln \left(\frac{e^x}{x} \right).$$

Since the logarithm is continuous, we can interchange the limit and the logarithm:

$$\lim_{x \to \infty} \ln \left(\frac{e^x}{x} \right) = \ln \left(\lim_{x \to \infty} \frac{e^x}{x} \right).$$

Now, we evaluate the limit inside the logarithm:

$$\lim_{x \to \infty} \frac{e^x}{x} \stackrel{\infty/\infty}{=} \lim_{x \to \infty} \frac{e^x}{1} = \infty.$$

Therefore, we have:

$$\lim_{x \to \infty} \ln\left(\frac{e^x}{x}\right) = \ln(\infty) = \infty.$$

Hence, the final result is:

$$\lim_{x \to \infty} (x - \ln x) = \infty.$$

(c) $\lim_{x\to 0^+} x^{\sqrt{x}}$

Let $y = \lim_{x \to 0^+} x^{\sqrt{x}}$. Taking the natural logarithm of both sides, we have:

$$\ln y = \ln \left(\lim_{x \to 0^+} x^{\sqrt{x}} \right) = \lim_{x \to 0^+} \sqrt{x} \ln x.$$

The interchange of limit and logarithm is valid because the logarithm is continuous. As $x \to 0^+$, $\sqrt{x} \ln x$ approaches $0 \cdot (-\infty)$, giving the indeterminate form $0 \cdot (-\infty)$. Rewrite and apply L'Hôpital's rule:

$$\lim_{x \to 0^+} \sqrt{x} \ln x = \lim_{x \to 0^+} \frac{\ln x}{1/\sqrt{x}} \stackrel{-\infty/\infty}{=} \lim_{x \to 0^+} \frac{1/x}{-\frac{1}{2}x^{-3/2}} = \lim_{x \to 0^+} (-2\sqrt{x}) = 0.$$

Therefore,

$$ln y = -\infty \implies y = e^0 = 1.$$

(d) $\lim_{x\to\infty} x^{e^{-x}}$

Let $y = \lim_{x \to \infty} x^{e^{-x}}$. Taking the natural logarithm of both sides, we have:

$$\ln y = \ln \left(\lim_{x \to \infty} x^{e^{-x}} \right) = \lim_{x \to \infty} e^{-x} \ln x.$$

The interchange of limit and logarithm is valid because the logarithm is continuous. As $x \to \infty$, e^{-x} approaches 0 and $\ln x$ approaches ∞ , giving the indeterminate form $0 \cdot \infty$. We can rewrite this expression to apply L'Hôpital's rule:

$$\lim_{x \to \infty} e^{-x} \ln x = \lim_{x \to \infty} \frac{\ln x}{e^x} \stackrel{\infty/\infty}{=} \lim_{x \to \infty} \frac{1/x}{e^x} = \lim_{x \to \infty} \frac{1}{xe^x} = 0.$$

Thus, we find:

$$ln y = 0 \implies y = e^0 = 1.$$

(e) $\lim_{x\to 1} (2-x)^{\tan(\pi x/2)}$

Let $y = \lim_{x \to 1} (2 - x)^{\tan(\pi x/2)}$. Taking the natural logarithm of both sides, we have:

$$\ln y = \ln \left(\lim_{x \to 1} (2 - x)^{\tan(\pi x/2)} \right) = \lim_{x \to 1} \tan \left(\frac{\pi x}{2} \right) \ln(2 - x).$$

The interchange of limit and logarithm is valid because the logarithm is continuous. As $x \to 1$, $\ln(2-x)$ approaches 0 and $\tan\left(\frac{\pi x}{2}\right)$ approaches either $+\infty$ or $-\infty$ depending on whether x approaches 1 from the left or the right. Let's focus on the limit as $x \to 1^-$ (the case of $x \to 1^+$ is similar and will give the same result). Then we have indeterminate form of type $\infty \cdot 0$. We can rewrite this expression to apply L'Hôpital's rule:

$$\lim_{x \to 1^{-}} \tan\left(\frac{\pi x}{2}\right) \ln(2-x) = \lim_{x \to 1^{-}} \frac{\ln(2-x)}{\cot\left(\frac{\pi x}{2}\right)} \stackrel{0/0}{=} \lim_{x \to 1^{-}} \frac{-\frac{1}{2-x}}{-\frac{\pi}{2}\csc^{2}\left(\frac{\pi x}{2}\right)} = \frac{2}{\pi}.$$

Similarly,

$$\lim_{x \to 1^+} \tan\left(\frac{\pi x}{2}\right) \ln(2 - x) = \frac{2}{\pi}.$$

Thus, we find:

$$\ln y = \frac{2}{\pi} \implies y = e^{2/\pi}.$$

(f) $\lim_{x\to 0^+} (1+\sin(3x))^{1/x}$

Let $y = \lim_{x \to 0^+} (1 + \sin(3x))^{1/x}$. Taking the natural logarithm of both sides, we have:

$$\ln y = \ln \left(\lim_{x \to 0^+} (1 + \sin(3x))^{1/x} \right) = \lim_{x \to 0^+} \frac{1}{x} \ln(1 + \sin(3x)).$$

The interchange of limit and logarithm is valid because the logarithm is continuous. As $x \to 0^+$, $\sin(3x)$ approaches 0, giving us the indeterminate form $\frac{0}{0}$. We can rewrite this expression to apply L'Hôpital's rule:

$$\lim_{x \to 0^+} \frac{\ln(1 + \sin(3x))}{x} \stackrel{0/0}{=} \lim_{x \to 0^+} \frac{\frac{3\cos(3x)}{1 + \sin(3x)}}{1} = 3.$$

Thus, we find:

$$\ln y = 3 \implies y = e^3$$
.

3. Suppose f is a positive function. If $\lim_{x\to a} f(x) = 0$ and $\lim_{x\to a} g(x) = \infty$, show that

$$\lim_{x \to a} (f(x))^{g(x)} = 0.$$

This shows that 0^{∞} is not an indeterminate form.

Solution:

Let

$$y = \lim_{x \to a} (f(x))^{g(x)}.$$

Taking the natural logarithm of both sides and interchanging the limit with logarithm, as well as using logarithm laws, gives us:

$$\ln y = \lim_{x \to a} g(x) \ln(f(x)) = \lim_{x \to a} g(x) \cdot \lim_{x \to a} \ln(f(x)).$$

(Note that since f is positive for all x, $\ln(f(x))$ is defined for all x.) Since $\lim_{x\to a} f(x) = 0$, we have:

$$\lim_{x\to a}\ln(f(x))=\ln(\lim_{x\to a}f(x))=-\infty.$$

(Here we also used that f is a positive function.) Thus, since $\lim_{x\to a} g(x) = \infty$, we have

$$\ln \gamma = \infty \cdot (-\infty) = -\infty.$$

Therefore, we have $y = e^{\ln y} = e^{-\infty} = 0$.