PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:		(11) International Publication Number: WO 96/30043
A61K 39/00, 39/02, G01N 35/537	A1	(43) International Publication Date: 3 October 1996 (03.10.96
(21) International Application Number: PCT/US9		CA, CH, CN, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IS
(22) International Filing Date: 25 March 1996 (25	5.03.9	5) JP, KE, KG, KP, KR, KZ, LK, LR, LS, LT, LU, LV, MI MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SI SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, UZ, VN, ARIP
(30) Priority Data: 08/410,058 24 March 1995 (24.03.95)	ι	patent (KE, LS, MW, SD, SZ, UG), Eurasian patent (AM
(71) Applicant: OPHIDIAN PHARMACEUTICALS [U 5445 East Cheryl Parkway, Madison, WI 53711 (U)		
(72) Inventors: CARROLL, Sean, B.; 3066 Streb Way, Grove, WI 53527 (US). STAFFORD, Douglas, Laranie Court, Madison, WI53719 (US). PADIES V.; 5743 Timber View Court, Fitchburg, WI 53711	C.; Nish	1 With international search report.
(74) Agents: CARROLL, Peter, G. et al.; Medlen & Carrol 2200, 220 Montgomery Street, San Francisco, CA (US).		

(54) Title: TREATMENT FOR VEROTOXIN-PRODUCING ESCHERICHIA COLI

(57) Abstract

The present invention includes methods for generating neutralizing antitoxin directed against verotoxins. In particular, the antitoxin directed against these toxins is produced in avian species using soluble recombinant verotoxin proteins. This avian antitoxin is designed so as to be administrable in therepressic amounts and may be in any form (i.e., as a solid or in aqueous solution). These antitoxins are useful in the treatment of humans and other animals intoxicated with at least one bacterial toxin, as well as for diagnostic assays to detect the presence of toxin in a sample.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States parry to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM Ameriia GB United Kingdom MW Malawi

AT	Austria	GE	Georgia	MX	Mexico
AU	Australia	GN	Guinea	NE	Niger
BB	Barbados	GR	Greece	NL	Netherlands
BE	Belgium	HU	Hungary	NO	Norway
BF	Burkina Faso	IE	Ireland	NZ	New Zealand
BG	Bulgaria	IT	Italy	PL	Poland
BJ	Benin	JP	Japan	PT	Portugal
BR	Brazil	KE	Kenya	RO	Romania
BY	Belarus	KG	Kyrgystan	RU	Russian Federation
CA	Canada	KP	Democratic People's Republic	SD	Sudan
CF	Central African Republic		of Korea	SE	Sweden
CG	Congo	KR	Republic of Korea	SG	Singapore
CH	Switzerland	KZ	Kazakhstan	SI	Slovenia
CI	Côte d'Ivoire	u	Liechtenstein	SK	Slovakia
CM	Cameroon	LK	Sri Lanka	SN	Senegal
CN	China	LR	Liberia	SZ	Swaziland
CS	Czechoslovakia	LT	Lithuania	TD	Chad
CZ	Czech Republic	LU	Luxembourg	TG	Togo
DE	Germany	LV	Larvia	TJ	Tajikistan
DK	Denmark	MC	Monaco	TT	Trinidad and Tobago
EE	Estonia	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	UG	Uganda
FI	Finland	ML	Mali	US	United States of America
FR	France	MN	Mongolia	UZ	Uzbekistan
GA	Gabon	MR	Mauntania	VN	Viet Nam

TREATMENT FOR VEROTOXIN-PRODUCING ESCHERICHIA COLL

FIELD OF THE INVENTION

5

10

15

20

25

30

The present invention relates to antitoxin therapy for humans and other animals, and diagnostic assays to detect toxins. Antitoxins which neutralize the pathologic effects of Escherichia coli toxins, such as verotoxin are provided.

BACKGROUND OF THE INVENTION

A. Escherichia coli as a Pathogenic Organism

Excherichia coli is the organism most commonly isolated in clinical microbiology laboratories, as it is usually present as normal flora in the intestines of humans and other animals. However, it is an important cause of intestinal, as well as extraintestinal infections. For example, in a 1984 survey of nosocomial infections in the United States, E. coli was associated with 30.7% of the urinary tract infections. 11.5% of the surgical wound infections. 6.4% of the lower respiratory tract infections. 10.5% of the primary bacteremia cases, 7.0% of the cutaneous infections, and 7.4% of the other infections (J.J. Farmer and M.T. Kelly, "Enterobacteriaceae." in Manual of Clinical Microbiology, Balows et al.(eds), American Society for Microbiology, [1991], p. 365). Surveillance reports from England. Wales and Ireland for 1986 indicate that E. coli was responsible for 5.473 cases of bacteremia spinal fluid specimens, there were 58 cases, with 10 fatalities (J.J. Farmer and M.T. Kelly, "Enterobacteriaceae." in Manual of Clinical Microbiology, Balows et al.(eds), American Society for Microbiology, [1991], p. 366). There are no similar data for United States, as these are not reportable diseases in this country.

Studies in various countries have identified certain serotypes (based on both the O and H antigens) that are associated with the four major groups of *E. coli* recognized as enteric pathogens. Table 1 lists common serotypes included within these groups. The first group includes the classical enteropathogenic serotypes ("EPEC"): the next group includes those that produce heat-labile or heat-stable enterotoxins ("ETEC"): the third group includes the enteroinvasive strains ("EIEC") that mimic *Shigella* strains in their ability to invade and multiply within intestinal epithelial cells: and the fourth group includes strains and serotypes that cause hemorrhagic colitis or produce Shiga-like toxins (or verotoxins) ("VTEC" or "EHEC" [enterohemmorrhagic *E. coli*]).

Table 1.
Pathogenic E. coli Serotypes

Group	Associated Serotypes
Enterotoxigenic (ETEC)	O6:H16: O8:NM: O8:H9: O11:H27: O15:H11: O20:NM: O25:NM: O25:H42: O27:H7: O27:H20: O63:H12: O78:H11: O78:H12: O85:H7: O114:H21: O115:H21: O126:H9: O128ac:H7: O114:H21: O128ac:H12: O128ac:H12: O128ac:H12: O128ac:H12: O149:H4: O159:H4: O159:H20: O166:H27: and O167:H5
Enteropathogenic (EPEC)	O26:NM: O26:H11; O55:NM: O55:H6: O86:NM: O86:H2; O86:H34: O111ab:NM: O111ab:H2: O111ab:H12: O111ab:H21: O114:H2: O119-H6: O125ac:H21: O127:NM: O127:H6: O127:H9; O127:H21: O128ab:H2; O142:H6: and O158:H25
Enteroinvasive (EIEC)	O28ac;NM; O29;NM; O112ac;NM; O115;NM; O124;NM; O124;H7; O124;H30; O135;NM; O136;NM; O143;NM; O144;NM; O152;NM; O164;NM; and O167;NM
Verotoxin-Producing (VTEC))	O1:NM: O2:H5: O2:H7: O4:NM: O4:H10; O5:NM: O5:H16: O6:H1: O18:NM: 018:H7: O25:NM: O26:NM: O26:H11: O26:H32: O38:H21: O39:H4: O45:H2: O50:H7: O55:H7: O55:H10: O82:H8: O84:H2: O91:NM: O91:H21: O103:H2: O111:NM: O111:H8: O111:H30: O111:H34: O113:H7: O113:H21: O114:H48: O115:H10: O117:H4; O118:H12: O118:H30: O121:NM: O121:H19: O125:NM: O125:H8: O126:NM: O126:H8: O128:H12: O128:H2: O128:H8: O128:H12: O138:H3: O126:NM: O125:H25: O146:H21: O153:H25: O145:NM: O157:H7: O153:H19: O165:NM: O165:H25

B. Verotoxin Producing Strains of E. coli

5

10

15

20

Although all of these disease-associated serotypes cause potentially life-threatening disease. E. coli O157:H7 and other verotoxin-producing strains have recently gained widespread public attention in the United States due to their recently recognized association with two serious extraintestinal diseases. hemolytic uremic syndrome ("HUS") and thrombotic thrombocytopenic purpura ("TTP"). Worldwide, E. coli O157:H7 and other verotoxin-producing E. coli (VTEC) are an increasingly important human health problem. First identified as a cause of human illness in early 1982 following two outbreaks of food-related hemorrhagic colitis in Oregon and Michigan (M.A. Karmali, "Infection by Verocytotoxin-Producing Escherichia coli," Clin. Microbiol. Rev., 2:15-38 [1989]; and L. W. Riley, et al. "Hemorrhagic colitis associated with a rare Escherichia coli scrotype," New Ene. J. Med.,

308: 681-685 [1983]), the reported incidence of VTEC-associated disease has risen steadily, with outbreaks occurring in the U.S., Canada, and Europe.

With increased surveillance, E. coli O157:H7 has been recognized in other areas of the world including Mexico. China, Argentina, Belgium, and Thailand (N. V. Padhye and M. P. Doyle, "Escherichia coli O157:H7: Epidemiology, pathogenesis and methods for detection in food," J. Food. Prot., 55: 555-565 [1992]: and P. M. Griffin and R. V. Tauxe, "The epidemiology of infections caused by Escherichia coli O157:H7, other enterohemorrhagic E. coli, and the associated hemolytic uremic syndrome," Epidemiol, Rev., 13: 60 [1991]).

5

10

15

20

25

30

The disease attracted national attention in the U.S. after a major outbreak in the Pacific Northwest that was associated with consumption of undercooked E. coli O157:H7contaminated hamburgers. Over 700 hundred people fell ill (more than 170 were hospitalized) and four young children died (P. Recer, "Experts call for irradiation of meat to protect against food-borne bacteria." Associated Press. 7/12/94 [1994]). Several outbreaks since then have underscored the potential severity and multiple mechanisms for transmission of VTEC-associated diseases (M. Bielaszewská et al., "Verotoxigenic (enterohaemorrhagic) Escherichia coli in infants and toddlers in Czechoslovakia," Infection 18: 352-356 [1990]; A. Caprioli et al., "Hemolytic-uremic syndrome and Vero cytotoxin-producing Escherichia coli infection in Italy, "J. Infect. Dis., 166: 184-158 [1992]; A. Caprioli, et al., "Community-wide Outbreak of Hemolytic-Uremic Syndrome Associated with Non-O157 Verocytotoxin-Producing Escherichia coli." J. Infect. Dis., 169: 208-211 [1994]; N. Cimolai, "Low frequency of high level Shiga-like toxin production in enteropathogenic Escherichia coli serogroups," Eur. J. Pediatr., 151: 147 [1992]; and R. Voelker., "Panel calls E. coli screening inadequate." Escherichia coli O157:H7--Panel sponsored by the American Gastroenterological Association Foundation in July 1994, Medical News & Perspectives, J. Amer. Med. Assoc., 272: 501 [1994]).

While O157:H7 is currently the predominant *E. coli* serotype associated with illness in North America, other serotypes (as shown in Table 1, and in particular O26:H11, O113:H21, O91:H21 and O111:NM) also produce verotoxins which appear to be important in the pathogenesis of gastrointestinal manifestations and the hemolytic uremic syndrome (P. M. Griffin and R. V. Tauxe, "The epidemiology of infections caused by *Escherichia coli* O157:H7, other enterohemorrhagic *E. coli*, and the associated hemolytic uremic syndrome," Epidemiol. Rev., 13: 60 [1990]: M. M. Levine, *et al.*, "Antibodies to Shiga holotoxin and to two synthetic peptides of the B subunit in sera of patients with *Shigella dysenteriae* 1

dysentery." J. Clin. Microbiol.. 30: 1636-1641 [1992]: and C. R. Dorn. et al., "Properties of Vero cytotoxin producing Escherichia coli of human and animal origin belonging to serotypes other than O157:H7." Epidemiol. Infect., 103: 83-95 [1989]). Since organisms with these serotypes have been shown to cause illness in humans they may assume greater public health importance over time (P. M. Griffin and R. V. Tauxe. "The epidemiology of infections caused by Escherichia coli O157:H7, other enterohemorrhagic E. coli. and the associated hemolytic uremic syndrome," Epidemiol. Rev., 13: 60 [1990]).

Clinicians usually observe cases of hemolytic uremic syndrome ("HUS") clustered in a geographic region. However, small outbreaks are likely to be missed because many laboratories do not routinely screen stool specimens for *E. coli* O157:H7. Many cases related to non-commercial food preparation also probably go unrecognized. Nonetheless, *E. coli* O157:H7 is responsible for a large number of cases, as more than 20,000 cases of *E. coli* O157:H7 infection are reported annually in the U.S., with 400–500 deaths from HUS. However, these estimates were compiled when only 11 states mandated reporting of *E. coli* O157:H7. Twenty-nine states have recently made *E. coli* O157:H7 infection a reportable disease (R. Voelker, "Panel calls *E. coli* screening inadequate: *Escherichia coli* O157:H7; panel sponsored by the American Gastroenterological Association Foundation in July 1994, Medical News & Perspectives," J. Amer. Med. Assoc., 272: 501 [1994]). Indeed, the Centers for Disease Control recently added *E. coli* O157:H7 to their list of reportable diseases ("Public Health Threats." Science 267:1427 (1995)).

C. Nature of Verotoxin-Induced Disease

5

10

15

20

25

30

Risk factors for HUS progression following infection with *E. coli* O157:H7 include age (very young or elderly), bloody diarrhea, leukocytosis, fever, large amounts of ingested pathogen, previous gastrectomy, and the use of antimicrobial agents (in particular, trimethoprim-sulfamethoxazole)(A. A. Harris *et al.*, "Results of a screening method used in a 12 month stool survey for *Escherichia coli* O157:H7." J. Infect. Dis., 152: 775-777 [1985]: and M. A. Karmali, "Infection by Verocytotoxin-producing *Escherichia coli*." Clin. Microbiol. Rev., 2: 15-38 [1989]).

As indicated above. E. coli O157:H7 is associated with significant morbidity and mortality. The spectrum of illness associated with E. coli O157:H7 infection includes asymptomatic infection, mild uncomplicated diarrhea, hemorrhagic colitis, HUS, and TTP". Hemorrhagic colitis (or "ischemic colitis") is a distinct clinical syndrome characterized by

5

10

15

20

25

30

sudden onset of abdominal cramps—likened to the pain associated with labor or appendicitis—followed within 24 hours by watery diarrhea. One to two days later, the diarrhea turns grossly bloody in approximately 90% of patients and has been described as "all blood and no stool" (C. H. Pai et al., "Sporadic cases of hemorrhagic colitis associated with Escherichia coli O157:H7," Ann. Intern. Med., 101: 738-742 [1984]: and R. S. Remis et al., "Sporadic cases of hemorrhagic colitis associated with Escherichia coli O157:H7," Ann. Intern. Med., 101: 738-742 [1984]). Vomiting may occur, but there is little or no fever. The time from ingestion to first loose stool ranges from 3–9 days (with a mean of 4 days) L. W. Riley et al., "Hemorrhagic colitis associated with a rare Escherichia coli serotype." New Eng. J. Med., 308: 681-685 [1983]; and D. Pudden et al., "Hemorrhagic colitis in a nursing home." Ontario Can. Dis. Weekly Rpt., 11: 169-170 [1985]), and the duration of illness ranges generally from 2–9 days (with a mean of 4 days).

HUS is a life-threatening blood disorder that appears within 3–7 days following onset of diarrhea in 10–15% of patients. Those younger than 10 years and the elderly are at particular risk. Symptoms include renal glomerular damage, hemolytic anemia (rupturing of erythrocytes as they pass through damaged renal glomeruli), thrombocytopenia and acute kidney failure. Approximately 15% of patients with HUS die or suffer chronic renal failure. Indeed, HUS is a leading cause of renal failure in childhood (reviewed by M.A. Karmali. "Infection by Verocytotoxin-producing Escherichia coli." Clin. Microbiol. Rev.. 2: 15–38 [1989]). Currently, blood transfusion and dialysis are the only therapies for HUS.

TTP shares similar histopathologic findings with HUS, but usually results in multiorgan microvascular thrombosis. Neurological signs and fever are more prominent in TTP, compared with HUS. Generally occurring in adults, TTP is characterized by microangiopathic hemolytic anemia, profound thrombocytopenia, fluctuating neurologic signs, fever and mild azotemia (H. C. Kwaan, "Clinicopathological features of thrombotic thrombocytopenic purpura," Semin, Hematol., 24: 71-81 [1987]; and S. J. Machin, "Clinical annotation: Thrombotic thrombocytopenic purpura," Br. J. Hematol., 56: 191-197 [1984]). Patients often die from microthrombi in the brain. In one review of 271 cases, a rapidly progressive course was noted, with 75% of patients dying within 90 days (E.L. Amorosi and J.E. Ultmann, "Thrombotic thrombocytopenic purpura: Report of 16 cases and review of the literature," Med., 45:139-159 (1966).

Other diseases associated with E. coli O157:H7 infection include hemorrhagic cystitis and balantitis (W. R. Grandsen et al., "Hemorrhagic cystitis and balantitis associated with

verotoxin-producing Escherichia coli O157:H7," Lancet ii: 150 [1985]). convulsions, sepsis with other organisms and anemia (P. C. Rowe et al., "Hemolytic anemia after childhood Escherichia coli O157:H7 infection: Are females at increased risk?" Epidemiol. Infect., 106: 523-530 [1991]).

5

10

15

20

25

30

D. Mechanism of Pathogenesis

Verotoxins are strongly linked to *E. coli* O157:H7 pathogenesis. All clinical isolates of *E. coli* O157:H7 have been shown to produce one or both verotoxins (VT1 and VT2) (C. A. Bopp et al., "Unusual Verotoxin-producing Escherichia coli associated with hemorrhagic colitis." J. Clin. Microbiol., 25: 1486-1489 [1987]). Both of these toxins are cytotoxic to Vero (African green monkey kidney) and HeLa cells. and cause paralysis and death in mice (A. D. O'Brien et al., "Purification of Shigella dysenteriae 1 (Shiga) like toxin from Escherichia coli O157:H7 strain associated with hemorrhagic colitis." Lancet ii: 573 [1983]). These toxins are sometimes referred to in the literature as Shiga-like toxins I and II (SLT-I and SLT-II. respectively), due to their similarities with the toxins produced by Shigella. Indeed, much of our understanding of *E. coli* VTs is based on information accumulated on Shiga toxins. Shiga toxin. first described in 1903, has been recognized as one of the most potent bacterial toxins for eukaryotic cells (reviewed by M.A. Karmali. "Infection by Verocytotoxin-producing Escherichia coli." Clin. Microbiol. Rev., 2: 15-38 [1989]). Hereinafter, the VT convention will be used; thus, VT1 and VT2 correspond to SLT-I and SLT-II. respectively.

While the pathogenic mechanism of *E. coli* O157:H7 infection is incompletely understood, it is believed that ingested organisms adhere to and colonize the intestinal mucosa, where toxins are released which cause endothelial cell damage and bloody diarrhea. It is also postulated that hemorrhagic colitis progresses to HUS when verotoxins enter the bloodstream, damaging the endothelial cells of the microvasculature and triggering a cascade of events resulting in thrombus deposition in small vessels. These microthrombi occlude the microcapillaries of the kidneys (particularly in the glomeruli) and other organs, resulting in their failure (J. J. Byrnes and J. L. Moake, "TTP and HUS syndrome: Evolving concepts of pathogenesis and therapy." Clin. Hematol., 15: 413-442 [1986]; and T. G. Cleary, "Cytotoxin-producing *Escherichia coli* and the hemolytic uremic syndrome." Pediatr. Clin. North Am., 35: 485-501 [1988]). Verotoxins entering the bloodstream may also result in direct kidney cytotoxicity.

VT1 is immunologically and structurally indistinguishable from Shiga toxin produced by Shigella dysenteriae (A. D. O'Brien et al., "Purification of Shigella dysenteriae 1 (Shiga) like toxin from Escherichia coli O157:H7 strain associated with hemorrhagic colitis," Lancet ii: 573 [1983]). VT1 and VT2 holotoxins each consist of one A and five B subunits (A. Donohue-Rolfe et al., "Purification of Shiga toxin and Shiga-like toxins I and II by receptor analog affinity chromatography with immobilized P1 glycoprotein and production of cross reactive monoclonal antibodies," Infect. Immun. 57: 3888-3893 [1989]: and A. Donohue-Rolfe et al., "Simplified high yield purification of Shigella toxin and characterization of subunit composition and function by the use of subunit-specific monoclonal and polyclonal antibodies," J. Exp. Med., 160: 1767-1781 [1984]). The toxic A subunit is enzymatically active, while the B subunit binds the holotoxin to the recentor on the target eukaryotic cell.

5

10

15

20

25

30

Crystal structure analysis of Shiga holotoxin and VT1 B subunit pentamers have shown that the holotoxin assembles with the C-terminal end of the A subunit associating with, and inserting within, a pentamer of B chains (P. E. Stein et al., "Crystal structure of the cell-binding B oligomer of verotoxin-1 from E. coli," Nature 355: 748-750 [1992]: and M.E. Fraser et al., "Crystal structure of the holotoxin from Shigella dysenteriae at 2.5 Å resolution." Struct. Biol., 1:59-64 [1994]). This conformation is consistent with the observation that a C-terminally truncated A1 subunit of VT1 is toxic (in a ribosomal inhibition assay), but cannot associate with B subunit pentamers (P. R. Austin et al., "Evidence that the A; fragment of Shiga-like toxin type I is required for holotoxin integrity." Infect. Immun., 62: 1768 [1994]).

The Verotoxin A Subunit. Examination of the crystal structure of Shiga holotoxin indicates that the N-terminus of its A subunit is both surface-exposed and functionally important. Removal of amino acid interval 3–18 of the A subunit completely abolished toxicity (L. P. Perera et al., "Mapping the minimal contiguous gene segment that encodes functionally active Shiga-like toxin II." Infect. Immun., 59: 829-835 [1991]) while removal of interval 25–44 retained toxicity but abolished its association with B subunit pentamers (J. E. Haddad et al., "Minimum domain of the Shiga toxin A subunit required for enzymatic activity," J. Bacteriol., 175: 4970-4978 [1993]). Deletion of the first 13 residues of the homologous ricin A subunit also abolished toxicity, while deletion of the first 9 residues did not (M. J. May, et al., "Ribosome inactivation by ricin A chain: A sensitive method to assess the activity of wild-type and mutant polypeptides." EMBO J. 8: 301-308 [1989]).

The Verotoxin B Subunit. Studies of Shiga toxin B subunit suggest that neutralizing epitopes may also be present at both the N- and C-terminal regions of VT1 and VT2 B

subunits. Polyclonal antibodies raised against peptides from these regions (residues 5–18. 13–26. 7–26. 54–67 and 57–67) show partial neutralization of Shiga toxin (I. Harari and R. Arnon, "Carboxy-terminal peptides from the B subunit of Shiga toxin induce a local and parenteral protective effect," Mol. Immunol., 27: 613–621 [1990]: and I. Harari et al., "Synthetic peptides of Shiga toxin B subunit induce antibodies which neutralize its biological activity," Infect. Immun., 56: 1618–1624 [1988]). Deletion of the last five amino acids of Shiga toxin B (M. P. Jackson et al., "Functional Analysis of the Shiga toxin and Shiga-like toxin Type II variant binding subunits by using site-directed mutagenesis." J. Bacteriol., 172: 653–658 [1990]). or four amino acids of VT2 B (L. P. Perera et al., "Mapping the minimal contiguous gene segment that encodes functionally active Shiga-like toxin II." Infect. Immun., 59: 829–835 [1991]), eliminate toxin activity, while deletion of the last two amino acids of VT2 B subunit reduced cytotoxicity. In contrast, the addition of an 18 or 21 amino acid extension to the native C-terminus of the VT2 B subunit was presumably conformationally correct, as these proteins assembled cytotoxic holotoxin.

5

10

15

20

25

30

Various approaches to express recombinant verotoxins have included individual or coordinate expression of A and B subunits from high-copy number plasmids and expression with fusion partners (J. E. Haddad et al., "Minimum domain of the Shiga toxin A subunit required for enzymatic activity." J. Bacteriol., 175: 4970-4978 ; J. E. Haddad, and M. P. Jackson, "Identification of the Shiga toxin A-subunit residues required for holotoxin assembly." J. Bacteriol., 175: 7652-7657 [1993]; M. P. Jackson et al., "Mutational analysis of the Shiga toxin and Shiga-like toxin II enzymatic subunits." J. Bacteriol., 172: 3346-3350 [1990]; C. J. Hovde et al., "Evidence that glutamic acid 167 is an active-site residue of Shigalike toxin I." Proc. Natl. Acad. Sci., 85: 2568-2572 [1988]; R. L. Deresiewicz et al., "The role of tyrosine-114 in the enzymatic activity of the Shiga-like toxin I A-chain," Mol. Gen. Genet., 241: 467-473 [1993]; T. M. Zollman et al., "Purification of Recombinant Shiga-like Toxin Type I A. Fragment from Escherichia coli." Protein Express.Purific., 5: 291-295 [1994]; K. Ramotar, et al., "Characterization of Shiga-like toxin I B subunit purified from overproducing clones of the SLT-I B cistron," Biochem J., 272; 805-811 [1990]; S. B. Calderwood et al. "A system for production and rapid purification of large amounts of the Shiga toxin Shiga-like toxin 1 B subunit," Infect. Immun., 58: 2977-2982 [1990]; D. W. K. Acheson. et al.. "Comparison of Shiga-like toxin I B-subunit expression and localization in Escherichia coli and Vibrio cholerae by using trc or Iron-regulated promoter systems." Infect. Immun. 61: 1098-1104 [1993]; M. P. Jackson et al., "Nucleotide seguence analysis and

comparison of the structural genes for Shiga-like toxin 1 and Shiga-like toxin II encoded by bacteriophages from *Escherichia coli* 933," FEMS Microbiol. Lett., 44: 109-114 [1987]; J. W. Newland *et al.*, "Cloning of genes for production of *Escherichia coli* Shiga-like toxin type II." Infect. Immun. 55: 2675-2680 [1987]; and F. Gunzer and H. Karch. "Expression of A and B subunits of Shiga-like toxin II as fusions with glutathione *S*-transferase and their potential for use in seroepidemiology." J. Clin. Microbiol.. 31: 2604-2610 [1993]; and D.W. Acheson *et al.*, "Expression and purification of Shiga-like toxin II B subunits." Inf. Immun.. 63:301-308 [1995]). In one case, bench top fermentation techniques yielded 22 mg/liter of soluble recombinant protein (D. W. K. Acheson, *et al.*, "Comparison of Shiga-like toxin I B-subunit expression and localization in *Escherichia coli* and *Vibrio cholerae* by using *trc* or Iron-regulated promoter systems." Infect. Immun. 61: 1098-1104 [1993]). However, there have been no systematic approaches to identifying the appropriate spectrum of VT antigens. preserving immunogen and immunoabsorbant antigenicity and scaling-up.

5

10

15

20

25

30

The receptor for VT1 and VT2 is a globotriaosyl ceramide containing a galactose α -(1-4)- galactose- β -(1-4) glucose ceramide (Gb3) (C. A. Lingwood et al., "Glycolipid binding of natural and recombinant Escherichia coli produced verotoxin in vitro," J. Biol. Chem., 262: 1779-1785 [1987]: and T. Wadell et al., "Globotriaosyl ceramide is specifically recognized by the Escherichia coli verocytotoxin 2." Biochem. Biophys. Res. Commun., 152: 674-679 [1987]). Gb3 is abundant in the cortex of the human kidney and is present in primary human endothelial cell cultures. Hence, the identification of Gb3 as the functional receptor for VT1 and VT2 is consistent with their role in HUS pathogenesis, in which endothelial cells of the renal vasculature are the principal site of damage. Therefore, toxin-mediated pathogenesis may follow a sequence of B subunit binding to Gb3 receptors on kidney cells, toxin internalization, enzymatic reduction of the A subunit to an A1 fragment, binding of the A1 subunit to the 60S ribosomal subunit, inhibition of protein synthesis and cell death (A. D. O'Brien et al., "Shiga and Shiga-like toxins. Microbial Rev., 51: 206-220 [1987]).

The role of verotoxins in the pathogenesis of *E. voli* O157:H7 infections has been further studied in animal models. Infection or toxin challenge of laboratory animals do not produce all the pathologies and symptoms of hemorrhagic colitis. HUS. and TTP which occur in humans. Glomerular damage is noticeably absent. Nonetheless, experiments using animal models implicate verotoxins as the direct cause of hemorrhagic colitis, microvascular damage leading to the failure of kidneys and other organs and CNS neuropathies.

For example, Barrett, et al. delivered VT2 into the peritoneal cavity of rabbits using mini-osmotic pumps (J. J. Barrett et al., "Continuous peritoneal infusion of shiga-like toxin II (SLTII) as a model for SLT II-induced diseases." J. Infect. Dis., 159: 774-777 [1989]). In three days, most animals receiving the toxin developed diarrhea, with intestinal lesions resembling those seen in humans with hemorrhagic colitis. Although there was some evidence of renal dysfunction, none of the rabbits developed HUS. Beery, et al. showed that VT2, when administered intraperitoneally or intravenously to adult mice, produces lesions of the kidneys and colon (J. T. Beery et al., "Cytotoxic activity of Escherichia coli O157:H7 culture filtrate on the mouse colon and kidney," Curr. Microbiol., 11: 335-342 [1984]). Histologic lesions in the kidney included accumulation of numerous exfoliated collecting tubules and marked intracellular vacuolation of proximal convoluted tubular cells.

5

10

15

20

25

30

Sjögren et. al. studied the pathogenesis of an entero-adherent strain of E. coli (RDEC-1) lysogenized with a VT1-containing bacteriophage (VT1-producing RDEC-1) (R. Sjögren et al., "Role of Shiga-like toxin 1 in bacterial enteritis: comparison between isogenic Escherichia coli strains induced in rabbits," Gastroenterol., 106: 306-317 [1994]). In this study, rabbits were challenged with RDEC-1 or VT1-producing RDEC-1 and studied for onset of disease. The VT1-producing variant induced a severe, non-invasive, entero-adherent infection in rabbits which was characterized by serious histological lesions with vascular changes, edema and severe epithelial inflammation. Importantly, vascular changes consistent with endothelial damage were seen in infected animals that was similar to intestinal microvascular changes in humans with E. coli O157:H7 infection. Based on these observations, they concluded that VT1 is an important virulence factor in enterohemorrhagic E. coli O157:H7 infection.

Fuji et. al. described a model in which mice were treated for three days with streptomycin followed by a simultaneous challenge of E. coli O157:H7 orally, and mitomycin intraperitoneally (J. Fuji et al., "Direct evidence of neuron impairment by oral infection with Verotoxin-producing Escherichia coli O157:H7 in mitomycin-treated mice." Infect. Immun. 62: 3447-34453 [1994]). All of the animals died within four days. Immunoelectron-microscopy strongly suggested that death was due to the toxic effects of VT2v (a structural variant of VT2), on both the endothelial cells and neurons in the central nervous system which resulted in fatal acute encephalopathy.

Wadolkowski et al. studied colonization of E. cali O157:H7 in mice. Mice were treated with streptomycin and fed 1010 E. cali O157:H7 (E. A. Wadolkowski et al., "Mouse

model for colonization and disease caused by enterohemorrhagic Escherichia coli O157:H7." Infect. Immun., 58: 2438-2445 [1990]: and E. A. Wadolkowski et al., "Acute renal tubular necrosis and death of mice orally infected with Escherichia coli strains that produce Shigalike toxin Type II." Infect. Immun., 58: 3959-3965 [1990]). All of the mice died due to severe, disseminated, acute necrosis of proximal convoluted tubules. In mouse models, glomerular damage was not observed, but toxic acute renal tubular necrosis was observed which is characteristic of some HUS patients. The failure of mice to show glomerular damage is thought to be due to the absence of a functional globotriaosyl ceramide receptor specific for verotoxins in the glomeruli of the kidneys. Administration of VT2 subunit-specific monoclonal antibodies prior to infection prevented all patholory and death.

E. Current Therapeutic Approaches

5

10

15

20

25

30

E. coli O157:H7 disease is not adequately controlled by current therapy. Patient treatment is tailored to manage fluid and electrolyte disturbances, anemia, renal failure and hypertension. Although E. coli O157:H7 is susceptible to common antibiotics, the role of antibiotics in the treatment of infection has questionable merit. In both retrospective and prospective studies, prophylaxis or treatment with antibiotics such as trimethoprim-sulfamethoxazole, there was either no benefit or an increased risk of developing HUS (T. N. Bokete et al., "Shiga-like toxin producing Excherichia coli in Seattle children: a prospective study," Gastroenterol., 105: 1724-1731 [1993]; A. T. Pavia et al., "Hemolytic uremicsyndrome during an outbreak of Escherichia coli O157:H7 infections in institutions for mentally retarded persons: clinical and epidemiologic observations," J. Pedatr., 116: 544-551 [1990]; F. Proullx et al., "Randomized, controlled trial of antibiotic therapy for Escherichia coli O157:H7 enteritis," J. Pediatr. 121: 299-303 [1992]; and A. L. Carter et al., "A severe outbreak of Escherichia coli O157:H7-associated hemorrhagic colitis in a nursing home." New Eng. J. Med., 317: 1496-1500 [1987]).

The mechanisms by which antibiotics increase the risk of infection or related complications might involve enhancement of toxin production, release of toxins from killed organisms, or alteration of normal competing intestinal flora allowing for pathogen overgrowth (M. A. Karmali, "Infection by Verocytotoxin-producing Escherichia coli," Clin. Microbiol. Rev., 2: 15-38 [1989]). A further concern in the use of antibiotics is the potential acquisition of antimicrobial resistance by E. coli O157:H7 (C. R. Dorn, "Review of foodborne outbreak of Escherichia coli O157:H7 infection in the western United States." JAVMA 203: 1583-1587 [1993]).

In addition, by the time symptoms are serious enough to attract medical attention, it is likely that verotoxins are already entering the systemic circulation or will do so shortly thereafter. Although antimicrobials may help to prevent pathology resulting from the action of toxin on the bowel lumen. However, by the time symptoms of HUS have developed, the patient has ceased shedding organisms. Thus, antimicrobial treatment during HUS disease is of less value, and often contraindicated, due to the increased risk of complications associated with administration of antimicrobials to patients susceptible to development of HUS. Importantly, there is currently no antitoxin commercially available for use in treating affected patients. What is needed is a means to block the progression of disease, without the complications associated with antimicrobial treatment.

DESCRIPTION OF THE DRAWINGS

5

10

15

20

25

30

Figure 1 is an SDS-PAGE of rVT1 and rVT2.

Figure 2 shows HPLC results for rVT1 and rVT2.

Figure 3 shows rVT1 and rVT2 toxicity in Vero cell culture.

Figure 4 shows EIA reactivity of rVT1 and rVT2 antibodies to rVT1.

Figure 5 shows EIA reactivity of rVT1 and rVT2 Antibodies to rVT2.

Figure 6 shows Western Blot reactivity of rVT1 and rVT2 antibodies to rVT's

Panel 6A contains preimmune IgY: Panel 6B contains rVT1 IgY; and

Panel 6C contains rVT2 IgY.

Figure 7 shows neutralization of rVT1 cytotoxicity in Vero cells.

Figure 8 shows neutralization of rVT2 cytotoxicity in Vero cells.

Figure 9 shows renal sections from E. coli O157:H7-infected mice treated with IgY

Panel 9A shows a representative kidney section from a mouse treated with preimmune IgY:

Panel 9B shows a representative kidney sections from a mouse treated with

rVT1: and

Panel 9C shows a representative kidney section from a mouse treated with $rVT2\ IgY$.

Figure 10 shows the fusion constructs of VT components and affinity tags.

DEFINITIONS

5

10

15

20

25

30

To facilitate understanding of the invention, a number of terms are defined below.

As used herein, the term "neutralizing" is used in reference to antitoxins, particularly antitoxins comprising antibodies, which have the ability to prevent the pathological actions of the toxin against which the antitoxin is directed.

As used herein, the term "overproducing" is used in reference to the production of toxin polypeptides in a host cell, and indicates that the host cell is producing more of the toxin by virtue of the introduction of nucleic acid sequences encoding the toxin polypeptide than would be expressed by the host cell absent the introduction of these nucleic acid sequences. To allow ease of purification of toxin polypeptides produced in a host cell it is preferred that the host cell express or overproduce the toxin polypeptide at a level greater than I mg/liter of host cell culture.

As used herein, the term "fusion protein" refers to a chimeric protein containing the protein of interest (i.e., an E. coli verotoxin and/or fragments thereof) joined to an exogenous protein fragment (the fusion partner which consists of a non-toxin protein). The fusion partner may enhance solubility of the E. coli protein as expressed in a host cell, may provide an "affinity tag" to allow purification of the recombinant fusion protein from the host cell or culture supernatant, or both. If desired, the fusion protein may be removed from the protein of interest (i.e., toxin protein or fragments thereof) prior to immunization by a variety of enzymatic or chemical means known to the art.

As used herein, the term "affinity tag" refers to such structures as a "poly-histidine tract" or "poly-histidine tag," or any other structure or compound which facilitates the purification of a recombinant fusion protein from a host cell, host cell culture supernatant, or both. As used herein, the term "flag tag" refers to short polypeptide marker sequence useful for recombinant protein identification and purification.

As used herein, the terms "poly-histidine tract" and "poly-histidine tag," when used in reference to a fusion protein refers to the presence of two to ten histidine residues at either the amino- or carboxy-terminus of a protein of interest. A poly-histidine tract of six to ten residues is preferred. The poly-histidine tract is also defined functionally as being a number of consecutive histidine residues added to the protein of interest which allows the affinity purification of the resulting fusion protein on a nickel-chelate column.

As used herein, the term "chimeric protein" refers to two or more coding sequences obtained from different genes, that have been cloned together and that, after translation, act as

a single polypeptide sequence. Chimeric proteins are also referred to as "hybrid proteins."

As used herein, the term "chimeric protein" refers to coding sequences that are obtained from different species of organisms, as well as coding sequences that are obtained from the same species of organisms.

As used herein, the term "protein of interest" refers to the protein whose expression is desired within the fusion protein. In a fusion protein, the protein of interest will be joined or fused with another protein or protein domain, the fusion partner, to allow for enhanced stability of the protein of interest and/or ease of purification of the fusion protein.

5

10

1.5

20

25

30

As used herein, the term "maltose binding protein" and "MBP" refers to the maltose binding protein of E, coli. A portion of the maltose binding protein may be added to a protein of interest to generate a fusion protein: a portion of the maltose binding protein may merely enhance the solubility of the resulting fusion protein when expressed in a bacterial host. On the other hand, a portion of the maltose binding protein may allow affinity purification of the fusion protein on an amylose resin.

As used herein, the term "purified" or "to purify" refers to the removal of contaminants from a sample. For example, antitoxins are purified by removal of contaminating non-immunoglobulin proteins; they are also purified by the removal of substantially all immunoglobulin that does not bind toxin. The removal of non-immunoglobulin proteins and/or the removal of immunoglobulins that do not bind toxin results in an increase in the percent of toxin-reactive immunoglobulins in the sample. In another example, recombinant toxin polypeptides are expressed in bacterial host cells and the toxin polypeptides are purified by the removal of host cell proteins: the percent of recombinant toxin polypeptides is thereby increased in the sample.

The term "recombinant DNA molecule" as used herein refers to a DNA molecule which is comprised of segments of DNA joined together by means of molecular biological techniques.

The term "recombinant protein" or "recombinant polypeptide" as used herein refers to a protein molecule which is expressed from a recombinant DNA molecule.

The term "native protein" as used herein refers to a protein which is isolated from a natural source as opposed to the production of a protein by recombinant means.

As used herein the term "portion" when in reference to a protein (as in "a portion of a given protein") refers to fragments of that protein. The fragments may range in size from four amino acid residues to the entire amino acid sequence minus one amino acid.

As used herein "soluble" when in reference to a protein produced by recombinant DNA technology in a host cell, is a protein which exists in solution in the cytoplasm of the host cell; if the protein contains a signal sequence, the soluble protein is exported to the periplasmic space in bacterial hosts and is secreted into the culture medium of eukaryotic cells capable of secretion or by bacterial hosts possessing the appropriate genes. In contrast, an insoluble protein is one which exists in denatured form inside cytoplasmic granules (called an inclusion bodies) in the host cell. High level expression (i.e., greater than 1 mg recombinant protein/liter of bacterial culture) of recombinant proteins often results in the expressed protein being found in inclusion bodies in the bacterial host cells. A soluble protein is a protein which is not found in an inclusion body inside the host cell or is found both in the cytoplasm and in inclusion bodies and in this case the protein may be present at high or low levels in the cytoplasm.

5

10

15

20

25

30

A distinction is drawn between a soluble protein (i.e., a protein which when expressed in a host cell is produced in a soluble form) and a "solubilized" protein. An insoluble recombinant protein found inside an inclusion body may be solubilized (i.e., rendered into a soluble form) by treating purified inclusion bodies with denaturants such as guanidine hydrochloride, urea or sodium dodecyl sulfate (SDS). These denaturants must then be removed from the solubilized protein preparation to allow the recovered protein to renature (refold). Not all proteins will refold into an active conformation after solubilization in a denaturant and removal of the denaturant. Many proteins precipitate upon removal of the denaturant. SDS may be used to solubilize inclusion bodies and will maintain the proteins in solution at low concentration. However, dialysis will not always remove all of the SDS (SDS can form micelles which do not dialyze out); therefore, SDS-solubilized inclusion body protein is soluble but not refolded.

As used herein, the term "reporter reagent" or "reporter molecule" is used in reference to compounds which are capable of detecting the presence of antibody bound to antigen. For example, a reporter reagent may be a colorimetric substance which is attached to an enzymatic substrate. Upon binding of antibody and antigen, the enzyme acts on its substrate and causes the production of a color. Other reporter reagents include, but are not limited to fluorogenic and radioactive compounds or molecules.

As used herein the term "signal" is used in reference to the production of a sign that a reaction has occurred, for example, binding of antibody to antigen. It is contemplated that signals in the form of radioactivity, fluorogenic reactions, and enzymatic reactions will be

used with the present invention. The signal may be assessed quantitatively as well as qualitatively.

As used herein, the term "therapeutic amount" refers to that amount of antitoxin required to neutralize the pathologic effects of *E. coli* toxin in a subject.

As used herein, the term "acute intoxication" is used in reference to cases of *E. coli* infection in which the patient is currently suffering from the effects of toxin (*e.g. E. coli* verotoxins or enterotoxins). Signs and symptoms of intoxication with the toxin may be immediately apparent. Or, the determination of intoxication may require additional testing, such as detection of toxin present in the patient's fecal material.

As used herein, the term "at risk" is used in references to individuals who have been exposed to *E. coli* and may suffer the symptoms associated with infection or disease with these organisms, especially due to the effects of verotoxins.

SUMMARY OF THE INVENTION

5

10

15

20

25

30

The present invention relates to antitoxin therapy for humans and other animals. Antitoxins which neutralize the pathologic effects of *E. coli* toxins are generated by immunization of avian hosts with recombinant toxin fragments. In one embodiment, the present invention contemplates a method of treatment administering at least one antitoxin directed against at least a portion of an *Escherichia coli* verotoxin in an aqueous solution in therapeutic amount that is administrable to an intoxicated subject. It is contemplated that the intoxicated subject will be either an adult or a child

In a preferred embodiment, the *E. coli* verotoxin is recombinant. In one embodiment, the antitoxin is an avian antitoxin. In an alternative embodiment, the recombinant *E. coli* verotoxin is a fusion protein comprising a non-verotoxin protein sequence and a portion of the *Escherichia coli* verotoxin VT1 sequence. In one embodiment of the *E. coli* fusion protein, the fusion protein comprises a non-verotoxin protein sequence and a portion of the *Escherichia coli* verotoxin VT2 sequence.

Various routes of administration, are contemplated for providing the *E. coli* antitoxin(s) to an affected individual, including but not limited to, parenteral as well as oral routes of administration. In a particularly preferred embodiment, the route of administration is parenteral.

The present invention also includes the embodiment of a method of prophylactic treatment in which an antitoxin directed against at least one E. coli verotoxin in an aqueous

solution in therapeutic amount that is parenterally administrable, and is administered to at least one subject at risk of diarrheal disease. It one embodiment, the antitoxin is parenterally administered.

In one embodiment, the subject is at risk of developing extra-intestinal complications of *E. coli* infections, including but not limited to, hemolytic uremic syndrome, thrombotic thrombocytopenic purpura, etc.

5

10

15

20

25

30

The present invention also includes the embodiment of a composition which comprises neutralizing antitoxin directed against at least one *E. coli* verotoxin in an aqueous solution in therapeutic amounts. In one particularly preferred embodiment, the *E. coli* verotoxin is a recombinant toxin. In an alternative embodiment, the recombinant *E. coli* verotoxin is a fusion protein comprising a non-verotoxin protein sequence and a portion of the *E. coli* verotoxin VT1 sequence. In another embodiment, the recombinant *E. coli* verotoxin is a fusion protein comprising a non-verotoxin protein sequence and a portion of the *E. coli* verotoxin VT2 sequence. In yet another embodiment, the composition of the antitoxin is directed against a portion of at least one *Escherichia coli* verotoxin. In one embodiment, the portion of *Escherichia coli* is selected from the group consisting of subunit A and subunit B of VT1. In an alternative embodiment, the portion of *Escherichia coli* is selected from the group consisting of subunit A and subunit B of VT2. Indeed, the invention contemplates an antitoxin that is directed against a portion of at least one *Escherichia coli* verotoxin. In one embodiment, the antitoxin is an avian antitoxin.

The present invention also comprises a method of treatment of enteric bacterial infections comprising administering an avian antitoxin directed against at least one verotoxin produced by *E. coli* in an aqueous solution in therapeutic amount, to at least one infected subject. In one preferred embodiment, the avian antitoxin is administered parenterally.

In another embodiment, the *E. coli* is selected from the group consisting of *Escherichia coli* serotypes O157:H7. O1:NM: O2:H5: O2:H7: O4:NM: O4:H10: O5:NM: O5:H16: O6:H1; O18:NM: O18:H7. O25:NM: O26:H11: O26:H32: O38:H21: O39:H4: O45:H2: O50:H7: O55:H7: O55:H10: O82:H8: O84:H2: O91:NM: O91:H21: O103:H2: O111:NM: O111:H8: O111:H3: O111:H3: O113:H7: O113:H21: O114:H48: O115:H10: O117:H4: O118:H12: O118:H3: O102:NM: O125:H19: O125:NM: O125:M8: O126:NM: O126:H8: O128:H12: O138:H2: O128:H12: O138:H2: O128:H2: O12

Escherichia coli verotoxin. In another embodiment, the antitoxin is cross-reacts with at least one Escherichia coli verotoxin. In yet another embodiment, the antitoxin is reactive against toxins produced by members of the genus Shigella, including S. dysenteriae.

The present invention also contemplates uses for the toxin fragments in vaccines and diagnostic assays. The fragments may be used separately as purified, soluble antigens or, alternatively, in mixtures or "cocktails." The present invention thus comprises a method for detecting Escherichia coli verotoxin in a sample in which a sample an antitoxin raised against Escherichia coli verotoxin, and a reporter reagent capable of binding the antitoxin are provided. The antitoxin is added to the sample, so that the antitoxin binds to the E. coli verotoxin in the sample. In one embodiment, the antitoxin is an avian antitoxin. In an alternative embodiment, the method further comprises the steps of washing unbound antitoxin from the sample, adding at least one reporter reagent to the sample, so that said reporter reagent binds to any antitoxin that is bound, washing the unbound reporter reagent from the sample and detecting the reporter reagent bound to the antitoxin bound to the Escherichia coli verotoxin, so that the verotoxin is detected. In one embodiment, the detecting is accomplished through any means, such as enzyme immunoassay, radioimmunoassay, fluorescence immunoassay, flocculation, particle agglutination, and in situ chromogenic assay. In one preferred embodiment, the sample is a biological sample. In an alternative preferred embodiment, the sample is an environmental sample.

DESCRIPTION OF THE INVENTION

5

10

15

20

25

30

The present invention contemplates treating humans and other animals intoxicated with at least one bacterial toxin. It is contemplated that administration of antitoxin will be used to treat patients effected by or at risk of symptoms due to the action of bacterial toxins. It is also contemplated that the antitoxin will be used in a diagnostic assay to detect the presence of toxins in samples. The organisms, toxins and individual steps of the present invention are described separately below.

I. Antibodies Directed Against E. coli and Associated Toxins

A preferred embodiment of the method of the present invention is directed toward obtaining antibodies against various *E. coli* serotypes, their toxins, enzymes or other metabolic by-products, cell wall components, or synthetic or recombinant versions of any of these compounds. It is contemplated that these antibodies will be produced by immunization

of humans or other animals. It is not intended that the present invention be limited to any particular toxin or any species of organism. In one embodiment, toxins from all *E. coli* serotypes are contemplated as immunogens. Examples of these toxins include the verotoxins VT1 and VT2.

It is not intended that antibodies produced against one toxin will only be used against that toxin. It is contemplated that antibodies directed against one toxin may be used as an effective therapeutic against one or more toxin(s) produced by other E. coli serotypes, or other toxin producing organisms (e.g., Shigella, Bacillus cereus, Staphylococcus aureus, Streptococcus mutans, Acinetobacter calcoaceticus, Pseudomonas aeruginosa, other Pseudomonas species. Vibrio species, Clostridium species, etc.). It is further contemplated that antibodies directed against the portion of the toxin which binds to mammalian membranes can also be used against other organisms. It is contemplated that these membrane binding domains are produced synthetically and used as immunogens.

II. Obtaining Antibodies In Non-Mammals

5

10

15

20

25

30

A preferred embodiment of the method of the present invention for obtaining antibodies involves immunization. However, it is also contemplated that antibodies may be obtained from non-mammals without immunization. In the case where no immunization is contemplated, the present invention may use non-mammals with preexisting antibodies to toxins as well as non-mammals that have antibodies to whole organisms by virtue of reactions with the administered antigen. An example of the latter involves immunization with synthetic peptides or recombinant proteins sharing epitopes with whole organism components.

In a preferred embodiment, the method of the present invention contemplates immunizing non-mammals with bacterial toxin(s). It is not intended that the present invention be limited to any particular toxin. In one embodiment, toxins from all E. coli serotypes are contemplated as immunogens.

A particularly preferred embodiment involves the use of bacterial toxin protein or fragments of toxin proteins produced by molecular biological means (i.e., recombinant toxin proteins). In a preferred embodiment, the immunogen comprises recombinant VT1 and/or VT2.

When immunization is used, the preferred non-mammal is from the class Avex. All birds are contemplated (e.g., duck, ostrich, emu, turkey, etc.). A preferred bird is a chicken. Importantly, chicken antibody does not fix mammalian complement (See H.N. Benson et al.,

J. Immunol. 87:616 [1961]). Thus, chicken antibody will normally not cause a complement-dependent reaction (A.A. Benedict and K. Yamaga, "Immunoglobulins and Antibody Production in Avian Species," in Comparative Immunology (J.J. Marchaloni, ed.), pp. 335-375. Blackwell, Oxford [1966]). Thus, the preferred antitoxins of the present invention will not exhibit complement-related side effects observed with antitoxins presently known.

5

10

15

20

25

30

When birds are used, it is contemplated that the antibody will be obtained from either the bird serum or the egg. A preferred embodiment involves collection of the antibody from the egg. Laying hens transport immunoglobulin to the egg yolk ("IgY") in concentrations equal to or exceeding that found in serum (See R. Patterson et al., J. Immunol, 89:272 (1962): and S.B. Carroll and B.D. Stollar, J. Biol. Chem. 258:24 [1983]). In addition, the large volume of egg yolk produced vastly exceeds the volume of serum that can be 'afely obtained from the bird over any given time period. Finally, the antibody from eggs is more pure and more homogeneous: there is far less non-immunoglobulin protein (as compared to serum) and only one class of immunoglobulin is transported to the volk.

When considering immunization with toxins, one may consider modification of the toxins to reduce the toxicity. In this regard, it is not intended that the present invention be limited by immunization with modified toxin. Unmodified ("native") toxin is also contemplated as an immunogen.

It is also not intended that the present invention be limited by the type of modification

- if modification is used. The present invention contemplates all types of toxin modification,
including chemical and heat treatment of the toxin. In one embodiment, glutaraldehyde
treatment of the toxin is contemplated. In an alternative embodiment, formaldehyde treatment
of the toxin is contemplated.

It is not intended that the present invention be limited to a particular mode of immunization: the present invention contemplates all modes of immunization, including subcutaneous, intramuscular, intraperitoneal, and intravenous or intravascular injection, as well as per or administration of immunogen.

The present invention further contemplates immunization with or without adjuvant. As used herein, the term "adjuvant" is defined as a substance known to increase the immune response to other antigens when administered with other antigens. If adjuvant is used, it is not intended that the present invention be limited to any particular type of adjuvant -- or that the same adjuvant, once used, be used all the time. While the present invention contemplates all types of adjuvant, whether used separately or in combinations, the preferred use of

adjuvant is the use of Complete Freund's Adjuvant followed sometime later with Incomplete Freund's Adjuvant. The invention also contemplates the use of fowl adjuvant commercially available from RIBI, as well as Quil A adjuvant commercially available from Accurate Chemical and Scientific Corporation, and Gerbu adjuvant also commercially available (GmDP: C.C. Biotech Corp.).

When immunization is used, the present invention contemplates a wide variety of immunization schedules. In one embodiment, a chicken is administered toxin(s) on day zero and subsequently receives toxin(s) in intervals thereafter. It is not intended that the present invention be limited by the particular intervals or doses. Similarly, it is not intended that the present invention be limited to any particular schedule for collecting antibody. The preferred collection time is sometime after day 35.

Where birds are used and collection of antibody is performed by collecting eggs, the eggs may be stored prior to processing for antibody. It is preferred that eggs be stored at 4°C for less than one year.

It is contemplated that chicken antibody produced in this manner can be bufferextracted and used analytically. While unpurified, this preparation can serve as a reference for activity of the antibody prior to further manipulations (e.g., immunoalfinity purification).

III. Increasing The Effectiveness Of Antibodies

5

10

15

20

25

30

When purification is used, the present invention contemplates purifying to increase the effectiveness of both non-mammalian antitoxins and mammalian antitoxins. Specifically, the present invention contemplates increasing the percent of toxin-reactive immunoglobulin. The preferred purification approach for avian antibody is polyethylene glycol (PEG) separation.

The present invention contemplates that avian antibody be initially purified using simple, inexpensive procedures. In one embodiment, chicken antibody from eggs is purified by extraction and precipitation with PEG. PEG purification exploits the differential solubility of lipids (which are abundant in egg yolks) and yolk proteins in high concentrations of PEG 8000 (Polson et al., Immunol, Comm. 9:495 [1980]). The technique is rapid, simple, and relatively inexpensive and yields an immunoglobulin fraction that is significantly more pure, in terms of contaminating non-immunoglobulin proteins than the comparable ammonium sulfate fractions of mammalian sera and horse antibodies. The majority of the PEG is removed from the precipitated chicken immunoglobulin by treatment with ethanol. Indeed.

PEG-purified antibody is sufficiently pure that the present invention contemplates the use of PEG-purified antitoxins in the passive immunization of intoxicated humans and animals.

IV. Treatment

5

10

15

20

25

30

The present invention contemplates antitoxin therapy for humans and other animals intoxicated by bacterial toxins. A preferred method of treatment is by parenteral administration of antitoxin

A. Dosage Of Antitoxin

It was noted by way of background that a balance must be struck when administering currently available antitoxin which is usually produced in large animals such as horses: sufficient antitoxin must be administered to neutralize the toxin, but not so much antitoxin as to increase the risk of untoward side effects. These side effects are caused by: i) patient sensitivity to foreign (e.g., horse) proteins: ii) anaphylactic or immunogenic properties of non-immunoglobulin proteins: iii) the complement fixing properties of mammalian antibodies: and/or iv) the overall burden of foreign protein administered. It is extremely difficult to strike this balance when, as noted above, the degree of intoxication (and hence the level of antitoxin therapy needed) can only be approximated.

The present invention contemplates significantly reducing side effects so that this balance is more easily achieved. Treatment according to the present invention contemplates reducing side effects by using PEG-purified antitoxin from birds.

In one embodiment, the treatment of the present invention contemplates the use of PEG-purified antitoxin from birds. The use of yolk-derived, PEG-purified antibody as antitoxin allows for the administration of: 1) non (mammalian-complement-fixing, avian antibody; 2) a less heterogeneous mixture of non-immunoglobulin proteins; and 3) less total protein to deliver the equivalent weight of active antibody present in currently available antitoxins. The non-mammalian source of the antitoxin makes it useful for treating patients who are sensitive to horse or other mammalian sera.

As is true in cases of botulism, the degree of an individual's exposure to E, coli toxin and the prognosis are often difficult to assess, and depend upon a number of factors (e.g., the quantity of contaminated food ingested, the toxigenicity and serotype of E, coli strain ingested, etc.). Thus, the clinical presentation of a patient is usually a more important consideration than a quantitative diagnostic test, for determination of dosage in antitoxin

administration. Indeed, for many toxin-associated diseases (e.g., botulism, tetanus, diphtheria, etc.), there is no rapid, quantitative test to detect the presence of the toxin or organism. Rather, these toxin-associated diseases are medical emergencies which mandate immediate treatment. Confirmation of the etiologic agent must not delay the institution of therapy, as the condition of an affected patient may rapidly deteriorate. In addition to the initial treatment with antitoxin, subsequent doses may be indicated, as the patient's disease progresses. The dosage and timing of these subsequent doses is dependent upon the signs and symptoms of disease in each individual patient.

It is contemplated that the administration of antitoxin to an affected individual would involve an initial injection of an approximately 10 ml dose of immune globulin (with less than approximately 1 gram of total protein). In one preferred embodiment, it is contemplated that at least 50% of the initial injection comprises immune globulin. It is also contemplated that more purified immune globulin be used for treatment, wherein approximately 90% of the initial injection comprises immune globulin. When more purified immune globulin is used, it is contemplated that the total protein will be less than approximately 100 milligrams. It is also contemplated that additional doses be given, depending upon the signs and symptoms associated with *E. coli* verotoxin disease progression.

B. Delivery Of Antitoxin

5

10

15

20

25

30

Although it is not intended to limit the route of delivery, the present invention contemplates a method for antitoxin treatment of bacterial intoxication in which delivery of antitoxin is parenteral or oral.

In one embodiment, antitoxin is parenterally administration be limited to a particular route. Indeed, it is contemplated that all routes of parenteral administration will be used. In one embodiment, parenteral administration is accomplished via intramuscular injection. In an alternative embodiment, parenteral administration is accomplished via intravenous injection.

In another embodiment, antitoxin is delivered in a solid form (e.g., tablets). In an alternative embodiment antitoxin is delivered in an aqueous solution. When an aqueous solution is used, the solution has sufficient ionic strength to solubilize antibody protein, yet is made palatable for oral administration. The delivery solution may also be buffered (e.g., carbonate buffer, pH 9.5) which can neutralize stomach acids and stabilize the antibodies when the antibodies are administered orally. In one embodiment the delivery solution is an

5

10

15

20

25

30

aqueous solution. In another embodiment the delivery solution is a nutritional formula. Preferably, the delivery solution is infant or a dietary supplement formula (e.g., Similac®, Ensure®, and Enfamil®). Yet another embodiment contemplates the delivery of lyophilized antibody encapsulated or microencapsulated inside acid-resistant compounds.

Methods of applying enteric coatings to pharmaceutical compounds are well known to the art (companies specializing in the coating of pharmaceutical compounds are available; for example. The Coating Place [Verona. WI] and AAI [Wilmington. NC]). Enteric coatings which are resistant to gastric fluid and whose release (i.e., dissolution of the coating to release the pharmaceutical compound) is pH dependent are commercially available (for example, the polymethacrylates Eudragit® L and Eudragit® S [Röhm Tech Inc., Malden, MA]). Eudragit® S is soluble in intestinal fluid from pH 7.0; this coating can be used to microencapsulate lyophilized antitoxin antibodies and the particles are suspended in a solution having a pH above or below pH 7.0 for oral administration. The microparticles will remain intact and undissolved until they reached the intestines where the intestinal pH would cause them to dissolve thereby releasing the antitoxin.

The invention contemplates a method of treatment which can be administered for treatment of acute intoxication. In one embodiment, antitoxin is administered orally in either a delivery solution or in tablet form, in therapeutic dosage, to a subject intoxicated by the bacterial toxin which served as immunogen for the antitoxin. In another embodiment of treatment of acute intoxication, a therapeutic dosage of the antitoxin in a delivery solution, is parenterally administered.

The invention also contemplates a method of treatment which can be administered prophylactically. In one embodiment, antitoxin is administered orally, in a delivery solution, in therapeutic dosage, to a subject to prevent intoxication of the subject by the bacterial toxin which served as immunogen for the production of antitoxin. In another embodiment, antitoxin is administered orally in solid form such as tablets or as microencapsulated particles. Microencapsulation of lyophilized antibody using compounds such as Eudragit® (Rohm GmbH) or polyethylene glycol, which dissolve at a wide range of pH units, allows the oral administration of solid antitoxin in a liquid form (i.e., a suspension) to recipients unable to tolerate administration of tablets (e.g., children or patients on feeding tubes). In one preferred embodiment, the subject is a child. In another embodiment, antibody raised against whole bacterial organism is administered orally to a subject, in a delivery solution, in therapeutic

dosage. In yet another preferred embodiment of prophylactic treatment, a therapeutic dosage of the antitoxin in a delivery solution, is parenterally administered.

V. Multivalent Vaccines Against E. coli Strains

The invention contemplates the generation of multivalent vaccines for the protection of an organism (particularly humans) against several E. coli strains. Of particular interest is a vaccine which stimulates the production of a humoral immune response to E. coli O157:H7. O26:H11. O113:H21. O91:H21, and O111:NM, in humans. The antigens comprising the vaccine preparation may be native or recombinantly produced toxin proteins from the E. coli serotypes listed above. When native toxin proteins are used as immunogens they are generally modified to reduce the toxicity. It is contemplated that glutaraldehyde-modified toxin proteins will be used. In an alternative embodiment, is formaldehyde-modified toxin proteins will be used.

The invention contemplates that recombinant *E. coli* verotoxin proteins be used in conjunction with either native toxins or toxoids from other organisms as antigens in a multivalent vaccine preparation. It is also contemplated that recombinant *E. coli* toxin proteins be used in the multivalent vaccine preparation.

VI. Detection Of Toxin

5

10

15

20

25

30

The invention contemplates detecting bacterial toxin in a sample. The term "sample" in the present specification and claims is used in its broadest sense. On the one hand it is meant to include a specimen or culture (e.g., microbiological cultures). On the other hand, it is meant to include both biological and environmental samples.

Biological samples may be animal, including human, fluid, solid (e,g,.stool) or tissue, as well as liquid and solid food and feed products and ingredients such as dairy items, vegetables, meat and meat by-products, and waste. Biological samples may be obtained from all of the various families of common domestic animals, including but not limited, to bovines (e,g,.stoological) days, portions (e,g,.stoological) swine), equines (e,g,.stoological) days, canines (e,g,.stoological) days, lagamorphs (e,g,.stoological) and felines (e,g,.stoological) and intended that samples may be obtained from feral or wild animals, including, but not limited to, such animals as ungulates (e,g,.stoological) deer), bear, fish, lagamorphs, rodents, etc.

Environmental samples include environmental material such as surface matter, soil, water and industrial samples, as well as samples obtained from food and dairy processing

instruments, apparatus, equipment, utensils, disposable and non-disposable items. These examples are not to be construed as limiting the sample types applicable to the present invention

5

10

15

20

25

30

The invention contemplates detecting bacterial toxin by a competitive immunoassay method that utilizes recombinant toxin VT1 and toxin VT2 proteins, antibodies raised against recombinant bacterial toxin proteins. A fixed amount of the recombinant toxin proteins are immobilized to a solid support (e.g., a microtiter plate) followed by the addition of a biological sample suspected of containing a bacterial toxin. The biological sample is first mixed with affinity-purified or PEG fractionated antibodies directed against the recombinant toxin protein. A reporter reagent is then added which is capable of detecting the presence of antibody bound to the immobilized toxin protein. The reporter substance may comprise an antibody with binding specificity for the antitoxin attached to a molecule which is used to identify the presence of the reporter substance. If toxin is present in the sample, this toxin will compete with the immobilized recombinant toxin protein for binding to the anti-recombinant antibody thereby reducing the signal obtained following the addition of the reporter reagent. A control is employed where the antibody is not mixed with the sample. This gives the hitchest (or reference) signal.

The invention also contemplates detecting bacterial toxin by a "sandwich" immunoassay method that utilizes antibodies directed against recombinant bacterial toxin proteins. Affinity-purified antibodies directed against recombinant bacterial toxin proteins are immobilized to a solid support (e.g., microtiter plates). Biological samples suspected of containing bacterial toxins are then added followed by a washing step to remove substantially all unbound antitoxin. The biological sample is next exposed to the reporter substance, which binds to antitoxin and is then washed free of substantially all unbound reporter substance. The reporter substance may comprise an antibody with binding specificity for the antitoxin attached to a molecule which is used to identify the presence of the reporter substance. Identification of the reporter substance in the biological tissue indicates the presence of the bacterial toxin.

It is also contemplated that bacterial toxin be detected by pouring liquids (e.g., soups and other fluid foods and feeds including nutritional supplements for humans and other animals) over immobilized antibody which is directed against the bacterial toxin. It is contemplated that the immobilized antibody will be present in or on such supports as cartridges, columns, beads, or any other solid support medium. In one embodiment, following

the exposure of the liquid to the immobilized antibody, unbound toxin is substantially removed by washing. The liquid is then exposed to a reporter substance which detects the presence of bound toxin. In a preferred embodiment the reporter substance is an enzyme. Ruorescent dye, or radioactive compound attached to an antibody which is directed against the toxin (i.e., in a "sandwich" immunoassay). It is also contemplated that the detection system will be developed as necessary (e.g., the addition of enzyme substrate in enzyme systems; observation using fluorescent light for fluorescent dye systems; and quantitation of radioactivity for radioactive systems).

10 EXPERIMENTAL

5

15

20

25

30

The following examples serve to illustrate certain preferred embodiments and aspects of the present invention and are not to be construed as limiting the scope thereof.

In the disclosure which follows, the following abbreviations apply: °C (degrees Centigrade): rpm (revolutions per minute); BSA (bovine serum albumin); ELISA (enzymelinked immunosorbent assay): IgG (immunoglobulin G): IgY (immunoglobulin Y); IP (intraperitoneal): SC (subcutaneous): H₂O (water): HCl (hydrochloric acid): LD₁₀₀ (lethal dose for 100% of experimental animals); aa (amino acid); HPLC (high performance liquid chromatography): Kda (kilodaltons); gm (grams); µg (micrograms); mg (milligrams); ng (nanograms); µl (microliters); ml (milliliters); mm (millimeters); nm (nanometers); µm (micrometer); M (molar); mM (millimolar); MW (molecular weight); sec (seconds); min(s) (minute/minutes): hr(s) (hour/hours): MgCl₂ (magnesium chloride): NaCl (sodium chloride): Na₂CO₃ (sodium carbonate): OD₃₈₀ (optical density at 280 nm): OD₆₈₀ (optical density at 600 nm); PAGE (polyacrylamide gel electrophoresis); PBS [phosphate buffered saline (150 mM NaCl, 10 mM sodium phosphate buffer, pH 7.2)]; PEG (polvethylene glycol); SDS (sodium dodecyl sulfate); Tris (tris(hydroxymethyl)aminomethane); w/y (weight to yolume); y/y (volume to volume): Amicon (Amicon, Inc., Beverly, MA); Amresco (Amresco, Inc., Solon, OH); ATCC (American Type Culture Collection, Rockville, MD); BBL (Baltimore Biologics Laboratory. (a division of Becton Dickinson), Cockeysville, MD); Becton Dickinson (Becton Dickinson Labware. Lincoln Park, NJ); BioRad (BioRad, Richmond, CA); Biotech (C-C Biotech Corp., Poway, CA); Charles River (Charles River Laboratories, Wilmington, MA); Falcon (e.g. Baxter Healthcare Corp., McGaw Park, IL and Becton Dickinson); Fisher Biotech (Fisher Biotech, Springfield, NJ); GIBCO (Grand Island Biologic Company/BRL, Grand Island, NY); Mallinckrodt (a division of Baxter Healthcare Corp., McGaw Park, IL);

5

10

15

20

25

30

Millipore (Millipore Corp., Marlborough, MA); New England Biolabs (New England Biolabs, Inc., Beverly, MA); Novagen (Novagen, Inc., Madison, WI); Pharmacia (Pharmacia, Inc., Piscataway, NJ); Qiagen (Qiagen, Chatsworth, CA); Showdex (Showa Denko America, Inc., New York, NY); Sigma (Sigma Chemical Co., St. Louis, MO); RIBI (RIBI Immunochemical Research Inc., Hamilton, MT); Accurate Chemical and Scientific Corp., (Accurate Chemical and Scientific Corp., Hicksville, NY); Kodak (Eastman-Kodak, Rochester, NY); and Stratagene (Stratagene, La Jolia, CA).

When a recombinant protein is described in the specification it is referred to in a short-hand manner by the amino acids in the toxin sequence present in the recombinant protein rounded to the nearest 10. The specification gives detailed construction details for all recombinant proteins such that one skilled in the art will know precisely which amino acids are present in a given recombinant protein.

The first set of Examples (Examples 1-5) was designed to develop an antidote to E coli O157:H7 verotoxins and evaluate its effectiveness in vitro and in vivo. In the first experiments, high titer verotoxin antibodies were generated in laying hens hyperimmunized with chemically detoxified and/or native verotoxins. These Laying hens were immunized with either recombinant E. coli O157:H7 VT1 or VT2 (rVT1 and rVT2) treated with glutaraldehyde and mixed with adjuvant.

Next, toxin-reactive polyclonal antibodies were isolated by bulk fractionation from egg yolks pooled from hyperimmunized hens. Large quantities of polyclonal antibodies (IgY) were harvested from resulting eggs using a two-step polyethylene glycol fractionation procedure.

Third, the immunoreactivity and yields of VT IgY were analyzed by analytical immunochemical methods (e.g., enzyme immunoassay (EIA) and Western blotting). EIA and Western blot analysis showed that the resulting egg preparations contained high titer IgY that reacted with both the immunizing and the heterologous toxins (i.e., rVT1 IgY reacted against both rVT1 and rVT2, and vice versa).

Fourth, VT neutralization potency was analyzed *in vitro* using a Vero cytotoxicity assay. Vero cytotoxicity of rVT1 and rVT2 could be completely inhibited by VT IgY. These antibodies also demonstrated substantial verotoxin cross-neutralization.

Fifth, the efficacy of passively administered axian verotoxin antibodies in preventing the lethal effects of verotoxin poisoning was assessed in a mouse disease model. Toxin neutralizing antibodies were administered by parenteral dosing regimens to assess the most

effective strategy for therapeutic intervention. Efficacy of verotoxin antibodies was demonstrated using multiple murine disease models. In these experiments, antibodies prevented both the morbidity and lethality of homologous and heterologous toxins using a toxin/antitoxin premix format; mice infected orally with a lethal dose of viable E. coli O157:H7 were protected from both morbidity and lethality when treated parenterally four hours post-infection with either rVT1 or rVT2 antibodies; and mice given a lethal dose of E. coli O91:H21 (a particularly virulent strain which only produces VT2c, a VT2 structural variant) and treated parenterally up to 10 hours later with rVT1 lgY administered parenterally were protected from both morbidity and lethality.

10

15

25

30

5

EXAMPLE 1

TOXIN ANALYSIS AND IMMUNIZATION

Purified recombinant *E. coli* O157:H7 verotoxins, rVT1 and rVT2, were obtained from Denka Sieken Co., Ltd. (Tokyo, Japan). Toxin genes were isolated, inserted into expression plasmids, and expressed in *E. coli*. Recombinant proteins were then purified by ammonium sulfate precipitation, ion exchange chromatography on DEAE Sephacryl and hydroxyapatite, and gel filtration chromatography by the supplier. Upon receipt, toxins were analyzed to verify identity, purity and toxicity, as described below.

A. Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE).

Samples of each toxin (2 μg) were heat-denatured in a buffer containing SDS and β-mercaptoethanol followed by electrophoresis on 10–20% gradient gels (Bio-Rad, Richmond, CA). Resolved polypeptide bands were visualized using the silver stain procedure of C.R. Merril. et al., "Ultrasensitive stain for proteins in polyacrylamide gels shows regional variation in cerebrospinal fluid proteins." Science 211: 1437-1438 (1981).

VT1 and VT2 are each composed of subunit A and multiple copies of subunit B. Subunit A is often nicked into fragments A1 and A2 which are linked by a disulfide bridge. As shown in Figure 1, when separated by SDS-PAGE in the presence of β -mercaptoethanol, rVT1 resolved into 3 bands that corresponded to subunit A (~31 Kda), fragment A1 (~27 Kda) and a mixture of subunit B and fragment A2 (~4 Kda). Similarly, rVT2 resolved into subunit A (~33 Kda), fragment A1 (~27 Kda) and a mixture of subunit B and fragment A2 (~8 Kda) (Figure 1). In this Figure, rVT1 is in Lane 1, and rVT2 is in Lane 2; the positions of

molecular weight markers (Kda) are shown at the left. VT component polypeptides are identified at the right.

These results are consistent with previous reports of VT1 and VT2 purified from naturally occurring toxigenic strains (V. V. Padhye et al., "Purification and Physicochemical Properties of a Unique Vero Cell Cytotoxin From Escherichia coli O157;H7." Biochem. Biophys. Res. Commun., 139: 424-430 [1986]; and F. B. Kittel et al., "Characterization and inactivation of verotoxin 1 produced by Escherichia coli O157;H7." J. Agr. Food Chem., 39: 141-145 [1991]).

B. High Performance Liquid Chromatography (HPLC).

Chromatography was performed at room temperature (RT) under isocratic conditions using a Waters \$10 HPLC pump. Eluted protein was measured using a Waters 490E programmable multi-wavelength detector (Millipore Corp., Milford, MA). The VT's were separated on an 8 x 300 mm (ID) Shodex KW803 column, using 10 mM sodium phosphate.

0.15 M NaCl. pH 7.4 (phosphate buffered saline [PBS]) as the mobile phase at a flow rate of 1 ml/min.

The purity of non-denatured rVT's was assessed by HPLC. As shown in the chromatographs in Figure 2, each toxin eluted at approximately 10 min, as a single absorbance peak at 280 nm. By integration of the area under each peak, the rVT's were shown to be >99% pure.

C. Vero Cell Cytotoxicity Assay.

5

10

15

20

25

30

Cytotoxic activity of rVT1 and rVT2 was assessed using modified procedures of Padhye. et al. (V. V. Padhye et al., "Purification and Physicochemical Properties of a Unique Vero Cell Cytotoxin From Escherichia coli O157:H7." Biochem. Biophys. Res. Commun., 139: 424-430 [1986]), and McGee. et al. (Z. A. McGee. et al., "Local induction of tumor necrosis factor as molecular mechanism of mucosal damage by gonococci." Microbial Pathogenesis 12: 333-341 [1992]). Microtiter plates (96 well. Falcon. Microtest III) were inoculated with approximately 1 x 10⁴ Vero cells (ATCC. CCL81) per well (100 µl) and incubated overnight at 37°C in the presence of 5% CO₂ to form Vero cell monolayers rVT1 and rVT2 solutions were serially diluted in Medium 199 supplemented with 5% fetal bovine serum (Life Technologies, Grand Island, NY), added to each well of the microtiter plates and incubated at 37°C for 18–24 hrs. Adherent (viable) cells were stained with 0.3% crystal

violet (Mallinckrodt) in 2% ethanol. Excess stain was rinsed away and the stained cells were solubilized by adding 100 µl of 1% SDS to each well. Absorbance of each well was measured at 570 nm, and the percent cytotoxicity of each test sample was calculated using the following formula:

% Vero Cytotoxicity = [1 - (Absorbance Sample/Absorbance Control)] x 100

To determine whether the rVT's possessed potency equivalent to published cytotoxicity values, a Vero cell cytotoxicity assay was performed (Figure 3). Between 0.01-10.000 pg of either rVT1 or rVT2 was added to Vero cells. The amounts of rVT causing 50% cell death (CDen), as calculated by second degree polynomial curve fitting were 0.97 pg and 1.5 pg, for rVT1 and rVT2, respectively. These results are consistent with CDs values reported previously for naturally occurring VT1 and VT2 in the range 1-35 pg and 1-25 pg. respectively (M. Petric et al., Purification and biological properties of Escherichia coli verocytotoxin." FEMS Microbiol. Lett., 41: 63-68 [1987]; V. L. Tesh, et al., "Comparison of relative toxicities of Shiga-Like toxins Type 1 and Type 11 for mice." Infect. 1mmun., 61: 3392-3402 [1993]: N. Dickie et al., "Purification of an Escherichia coli Serogroup O157:H7 verotoxin and its detection in North American hemorrhagic colitis isolates." J. Clin. Microbiol., 27: 1973-1978 [1989]; and U. Kongmuang, et al., "A simple method for purification of Shiga or Shiga-Like toxin from Shigella dysenteriae and Escherichia coli O157:H7 by immunoaffinity chromatography." FEMS Microbiol. Lett., 48: 379-383 [1987]). It has been observed that toxicity is lost with storage, explaining why higher amounts of toxin were used in the neutralization assays described below.

D. Mouse Lethal Dose Determination.

5

10

15

20

30

To verify rVT1 and rVT2 toxicity, male (20–22 g) CD-1 mice were injected intraperitoneally with varying amounts of rVT1 or rVT2 in 200 μ L phosphate buffer. Doses were selected based on published LD₅₀ values for VT1 and VT2 in CD-1 mice. To minimize the sacrifice of live animals, a full statistical toxin LD₅₀ was not determined. Mice were observed for morbidity and mortality over 7-day period.

Further confirmation of rVT toxicity was obtained from mouse lethality experiments (Table 2). Mice were injected intraperitoneally with varying amounts of either rVT1 or rVT2 and observed 7 days for mortality. Within 72–120 hrs. post-injection, all of the mice died

from 100 ng of rVT1 or 10 ng of rVT2, respectively. This lethality study served as a verification of expected toxicity but not as a statistical determination of LD_{s0}. Nonetheless, these results were consistent with toxicity studies which reported LD_{s0} values in CD-1 mice of $0.4-2.0~\mu g$ for purified VT1 and $0.001-1.0~\mu g$ for purified VT2 (V. L. Tesh, et al.,

5 "Comparison of relative toxicities of Shiga-Like toxins Type I and Type II for mice," Infect. Immun.. 61: 3392-3402 [1993]; and A. D. O'Brien. and G. D. LaVeck. "Purification and characterization of Shigella dysenteriae I-like toxin produced by Escherichia coli." Infect. Immun. 40: 675-683 [1983]).

Table 2. Lethality of rVT1 in CD-1 Mice

ng VT1 Injected	Survivors/Total	Hours Post-Injection
	7 /7	24 ± 2
100	5/7	48 ± 2
	0/7	72 ± 2
	7/7	24 ± 2
10	7/7	48 ± 2
	7/7	72 ± 2
1.0	6/6	24 ± 2
	6/6	48 ± 2
	6/6	72 ± 2

20

10

15

Table 3. Lethality of rVT2 in CD-1 Mice

ng VT2 Injected	Survivors/Total	Hours Post-Injection
	3/6	48 ± 2
10	2/6	72 ± 2
	0/6	120 ± 2
1.0	5/6	48 ± 2
	4/6	72 ± 2
	0/6	120 ± 2
0.1	6/6	48 ± 2
	6/6	72 ± 2
	6/6	120 ± 2

The recombinant toxins used in these studies thus appeared to contain protein components and toxicities consistent with literature reports for native toxins. Based on these structural and functional analyses, the rVT's were considered suitable as antigens to generate specific axian antibodies.

20 E. Antigen Preparation.

5

10

15

25

30

Lyophilized samples, rVT1 and rVT2 were received and each was reconstituted with 2.5 mL of deionized water to a final concentration of 100 µg/ml in phosphate buffer. To form a toxoid, the solutions were then treated with 0.4% glutaraldehyde (Mallinckrodt) at 4°C overnight and stored at -20°C thereafter. When needed, toxoid was thawed and mixed 5:1 (volume:volume) with GERBU adjuvant (C. C. Biotech Corporation, Poway, CA). White Leghorn laying hens were injected subcutaneously with 25 µg of either rVT1 or rVT2 toxoid in adjuvant at 2–3 week intervals.

EXAMPLE 2

PEG EXTRACTION OF EGG YOLK ANTIBODY

Hyperimmune eggs were collected after 3 immunizations with toxoid. Egg yolks were separated from whites, pooled according to their immunogen group and blended with 4 volumes of 10 mM sodium phosphate, 150 mM NaCl, pH 7.4 (PBS). Polyethylene glycol

8000 (PEG) (Amresco. Solon. OH) was then added to a final concentration of 3.5% and the mixture centrifuged at 10,000 x g for 10 min. to remove the precipitated lipid fraction. IgY-rich supernatant was filtered through cheesecloth and PEG was again added to a final concentration of 12%. The solution was centrifuged as above and the resulting supernatant discarded. The IgY pellet was then dissolved in PBS to either the original (1X PEG IgY) or $\frac{1}{2}$ of the original (4X PEG IgY) yolk volume. filtered through a 0.45 μ membrane and stored at 4°C.

EXAMPLE 3 ANTITOXIN IMMUNOASSAYS

A. Enzyme Immunoassay (EIA).

5

10

15

20

25

30

EIA was used to monitor antibody responses during the immunization course. Wells of 96-well Pro-Bind microtiter plates (Falcon, through Scientific Products, McGaw Park, IL) were each coated with 1 µg of rVT's (not toxoid) in PBS overnight at 2-8°C. Wells were washed 3 times with PBS containing 0.05% Tween-20 (PBS-T) to remove unbound antigen, and the remaining protein binding sites were blocked with PBS containing 1 mg/ml BSA for 60 min, at room temperature (RT), IgY, diluted in PBS, was then added to the wells and incubated for 1 hr, at 37°C. Wells were washed as before to remove unbound primary antibody and incubated for 1 hr, at 37°C with alkaline phosphatase-conjugated rabbit-anti-chicken IgG (Sigma Chemical Company, St. Louis, MO) diluted 1:1000 in PBS-T. Wells were again washed and 1 mg/ml p-nitrophenyl phosphate (Sigma Chemical Company, St. Louis, MO) in 50 mM Na₂CO₃ 10 mM MgCl₂ pH 9.5 was added and allowed to incubate at RT. Phosphatase activity was detected by absorbance at 410 nm using a Dynatech MR700 microtiter plate reader.

Laying Leghorn hens were immunized as described above (Example 1, part E), using glutaraldehyde-treated rVT's. Following several immunizations, eggs were collected and IgY harvested by PEG fractionation. Figures 4 and 5 show rVT1 or rVT2 specific antibody responses detected using EIA at dilutions of the original yolk IgY concentration of 1:30,000 and 1:6.000, respectively. IgY fractionated similarly from unimmunized hens (i.e., preimmune antibody) did not react with either antigen at test dilutions above 1:50. Although these EIA results indicate significant antibody responses, prior experience with other toxin antigens has shown that optimization of immunization regimens, including increasing the amount of

antigen, can yield titers in excess of 1:100.000 (B. S. Thalley, et al., "Development of an Avian Antitoxin to Type A Botulinum Neurotoxin." in Botulinum and Tetanus Neurotoxins:

Neurotransmission and Biomedical Aspects. B. R. DasGupta, (ed.) [Plenum Press, New York, 1993] pp. 467-472). As may be expected due to their structural homology and consistent with previous reports (e.g., V. V. Padhye et al., "Production and characterization of monoclonal antibodies to verotoxins 1 and 2 from Escherichia coli O157:H7." J. Agr. Food Chem., 39: 141-145 [1989]; S. C. Head et al., "Purification and characterization of verocytotoxin 2."

FEMS Microbiol. Lett., 51: 211-216 [1988]; and N. C. Strockbine et al., "Characterization of Monoclonal Antibodies against Shiga-Like Toxin from Escherichia coli." Infect. Immun., 50: 695-700 [1985]). Figures 4 and 5 also demonstrate that antibodies generated against one toxin cross-reacted in vitro with the other toxin.

B. Western Blot Analysis.

5

10

15

20

25

30

Western blots (Figure 6) performed to determine the reactivity of rVT antibodies against constituent VT polypeptides showed that rVT1 and rVT2 antibodies reacted with subunit A and fragment A1 of either toxin, and with subunit B and fragment A2 of rVT1 only. In this Figure, Panel A contains preimmune IgY, Panel B contains rVT1 IgY, and Panel C contains rVT2 IgY. Lane 1 in each panel contains rVT1 (2µg) and Lane 2 contains rVT2 (2µg). Preimmune IgY was largely nonreactive to either rVT. Both rVT IgY preparations, however, failed to react with subunit B and fragment A2 of rVT2. Some explanations for this lack of measurable reactivity might include poor immunogenicity, denaturation of the immunogen during glutaraldehyde treatment, loss of conformational epitopes due to detergent or reducing agent, or poor transfer to nitrocellulose.

To resolve the high and low molecular weight components. 2 µg each of rVT1 and rVT2 were separated by SDS-PAGE (described above) and then transferred to nitrocellulose paper using the Milliblot-SDE system (Millipore, Medford, MA) according to the manufacturer's instructions. Paper strips were stained temporarily with Ponceau S (Sigma Chemical Company, St. Louis, MO) to visualize the polypeptides and then blocked overnight in PBS containing 5% dry milk. Each strip was agitated gently in IgY diluted in PBS-T for 2 hrs. at RT. Strips were each washed with three changes of PBS-T to remove unbound primary antibody and incubated for 2 hrs. at RT with goat anti-chicken alkaline phosphatase (Kirkegaard and Perry, Gaithersburg, MD) diluted 1:500 in PBS-T containing 1 mg/ml BSA. The blots were washed as before and rinsed in 50 mM Na₂CO₂, pH 9.5. Strips were

submerged in alkaline-phosphatase substrate (5-bromo-4-chloro-3-indolyl-phosphate/nitroblue tetrazolium (Kirkegaard and Perry) until sufficient signal was observed. Color development was stopped by flooding the blots with water.

EXAMPLE 4

IN VITRO TOXIN NEUTRALIZATION: VERO CELL ASSAY

IgY neutralization of rVT1 and rVT2 was assessed using the modified Vero cytotoxicity assay described above (Example 1, part C). Various concentrations of IgY, diluted in Medium 199 supplemented with 5% fetal bovine serum (GIBCO), were mixed with sufficient toxin to cause 50% cell death and allowed to incubate at 37°C for 60 minutes. These toxin/antibody mixtures were then added to Vero cell-coated microtiter plate wells according to the procedure described above (Example 1, part C).

The toxin neutralization capacity of the rVT antibodies was analyzed first using a Vero cell toxicity assay. The results in Figure 7 show that rVT1 IgY neutralized completely the cytotoxic activity of rVT1 at an endpoint dilution of 1/320. Furthermore, rVT2 IgY neutralized the heterologous rVT1 toxin, but at a higher endpoint concentration.

In a similar experiment (see Figure 8), rVT1 and rVT2 antibodies were each able to neutralize rVT2 at equivalent endpoint dilutions. This strong cross-neutralization correlates with the observed strong cross-reactivity of VT1 lgY with VT2 A seen on Western blots (Figure 6). These results show that lgY antibodies are able to neutralize effectively VT cytotoxicity and that the antibodies can cross-neutralize structurally-related heterologous toxins.

25

30

20

5

10

15

EXAMPLE 5

TOXIN NEUTRALIZATION: MOUSE ASSAYS

A. Toxin Challenge Model.

lgY in PBS was premixed with a lethal dose of toxin (as determined above) and injected intraperitoneally into male CD-1 (20–22 gm) mice. Mice were observed for a 7-day period for signs of intoxication such as ruffled fur. huddling and disinclination to move, followed by hind leg paralysis, rapid breathing and death. Untreated, infected mice usually died within 12 hrs. after signs of severe illness (i e), within 48–72 hrs. post-injection).

5

15

20

25

30

Once it was demonstrated that rVT antibodies were able to neutralize rVT cytotoxicity in vitro, protection experiments were next performed in mice. First, animals were challenged with rVT premixed with rVT lgY to determine whether toxin lethality could be neutralized under conditions optimal for antigen/antibody reaction. Tables 4 and 5 show that antibodies premixed with the homologous toxin (e.g., rVT1 with rVT1 lgY) prevented lethality of rVT. Preimmune IgY was unable to neutralize either toxin in these studies.

Table 4
Neutralization of rVT1 Using rVT IgY

100 ng rVT2 Premixed*	Survivors/Total	р
Preimmune Antibody	0/12	
rVT1 Antibody	12/12	< 0.001
rVT2 Antibody	12/12	< 0.001

*Toxin was pre-mixed with IgY and incubated for 1 hour at room temperature prior to administration.

Table 5

Neutralization of rVT2 Using rVT IgY

10 ng rVT1 Premixed*	Survivors/Total	p
Preimmune Antibody	0/12	
rVT1 Antibody	12/12	< 0.001
rVT2 Antibody	12/12	< 0.001

*Toxin was pre-mixed with IgY and incubated for 1 hour at room temperature prior to administration.

Antibodies premixed with the heterologous toxin (e.g., rVT2 with rVT1 IgY) also prevented lethality in vivo. These data are in contrast to previous observations where rabbit polyclonal antibodies generated against either toxin were cross-reactive with the heterologous toxin by EIA and Western blot, but were unable to neutralize the heterologous toxin in either Vero cell cytotoxicity and mouse lethality assays (S. C. Head, et al., "Serological differences between verocytotoxin 2 and Shiga-like toxin II." Lancet ii: 751 [1988]; S. C. Head et al., "Purification and characterization of verocytotoxin 2." FEMS Microbiol. Lett., 51: 211-216

[1988]; N. C. Strockbine et al., "Characterization of Monoclonal Antibodies against Shiga-Like Toxin from Escherichia coli." Infect. Immun., 50: 695-700 [1985]; and V. V. Padhye et al., "Purification and Physicochemical Properties of a Unique Vero Cell Cytotoxin From Escherichia coli O157:H7." Biochem. Biophys. Res. Commun., 139: 424-430 [1986]).

However, Head et al., showed that VT2 B-subunit specific monoclonal antibodies neutralized VT1 weakly in a Vero cytotoxicity assay (S. C. Head, et al., "Serological differences between verocytotoxin 2 and Shiga-like toxin II." Lancet ii: 751 [1988]). In a report by Donohue-Rolfe, et al., a VT2 B subunit-specific monoclonal antibody neutralized both VT1 and VT2 completely in a Hela cytotoxicity assay (A. Donohue-Rolfe et al., "Purification of Shiga toxin and Shiga-like toxins I and II by receptor analog affinity chromatography with immobilized P1 glycoprotein and production of cross reactive monoclonal antibodies," Infect. Immun., 57: 3888-3893 [1989]).

These results showed for the first time complete cross-neutralization in Vero cell cytotoxicity and mouse lethality assays, revealing that VT1 and VT2 do indeed share common neutralizing epitopes. These results may indicate that hens generate different antibody specificities as compared to mammals, and/or that differences in immunization methods might have maintained the immunogenicity of conformational epitopes necessary for cross-neutralization. Nonetheless, this cross-neutralization suggests that IgY antibodies may contain the range of reactivities essential for an effective antitoxin.

20

25

30

5

10

15

B. Viable organism infection model.

Streptomycin-resistant *E. coli* O157:H7 (strain 933 cu-rev) or *E. coli* O91:H21 (strain B2I 1) (both kindly provided by Dr. Alison O'Brien, Dept. of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD) were used in a murine infection model described by Wadolkowski, *et al.* (E. A. Wadolkowski *et al.*, "Mouse model for colonization and disease caused by enterohemorrhagic *Escherichia coli* O157:H7." Infect. Immun., 58: 2438-2445 [1990]). Organisms were grown in Luria broth and incubated overnight at 37°C in an Environ Shaker (Lab Line, Melrose Park, IL) (T. Maniatis *et al.*, Molecular Cloning: a Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, N. Y., [1982]). Bacterial suspensions were centrifuged at 6700 x g for 5 minutes. The resulting pellet was then washed twice with sterile PBS and resuspended in sterile 20% (w/v) sucrose. Five to 8 week-old male CD-1 mice were provided drinking water containing 5 mg/ml streptomycin sulfate *ad libitum* for 24 hrs. Food and water were then withheld for

another 16–18 hrs. after which mice were challenged orally with 10¹⁰ streptomycin-resistant *E. coli* O157:H7 or O91:H21. Mice were housed individually and permitted food and water containing 5 mg/ml streptomycin sulfate. IgY was injected intraperitoneally at varying times post-infection and animals observed for both morbidity and mortality for 10 days.

To monitor bacterial colonization in animals, 1 gram of feces was collected, homogenized, and plated onto MacConkey agar medium (Difco Laboratories, Detroit, MI) containing 100 µg/ml streptomycin and incubated at 37°C as described by Wadolkowski, et al. (E. A. Wadolkowski et al., "Mouse model for colonization and disease caused by enterohemorrhagic Escherichia coli O157:H7," Infect. Immun., 58: 2438-2445 [1990]). The serotype of E. coli O157:H7, 933 cu-rev excreted in feces was confirmed by slide agglutination with O- and H-specific antisera (Difco Laboratories, Detroit, MI).

Kidneys were removed from experimental animals and fixed in 10% buffered neutral formalin. Sections of parafilm-embedded tissue were stained with hematoxylin and eosin (General Medical Laboratories, Madison. WI) and examined by light microscopy. All tissue sections were coded to avoid bias before microscopic examination to determine renal pathology.

The toxin neutralization ability of rVT IgY was further studied using a streptomycintreated CD-1 mouse infection model. This model was chosen because it produces definitive systemic pathology and reproducible mortality.

In contrast to previous studies by Wadolkowski, et al. (E. A. Wadolkowski et al., "Acute renal tubular necrosis and death of mice orally infected with Escherichia coli strains that produce Shiga-like toxin Type II." Infect. Immun., 58: 3959-3965 [1990]), where mice were given subunit-specific monoclonal antibodies prior to infection, the mice in this study were inoculated orally with 2 x 10¹⁰ viable E. coli O157:H7 (strain 933 cu-rev) and treated with rVT IgY 4 hrs. following inoculation. Fecal cultures showed that 10⁵-10⁶ challenge organisms per gram of feces were shed throughout the course of the experiment, thus confirming that infection was established. Tables 6 and 7 show that animals treated with either rVT1 or rVT2 IgY were protected from lethality caused by infection (p<0.01 and p<0.001, respectively) and that preimmune IgY failed to provide protection to the mice.

25

5

10

15

Table 6
Protection of Mice From E. coli O157:H7
With rVT1 IgY

IgY Treatment	Survivors/Total	p	Morbidity/Total
Preimmune Antibody	0/5		5/5
rVT1 Antibody	9/10	< 0.01	1/10

^{*}IgY was administered intraperitoneally 4 hours following infection, and once daily for 10 days thereafter.

5

10

15

20

25

30

35

Table 7
Protection of Mice From E. coli O157:H7
With rVT2 IgY

IgY Treatment	Survivors/Total	p	Morbidity/Total
Preimmune Antibody	0/6		6/6
rVT2 Antibody	10/10	< 0.005	0/10

*IgY was administered intraperitoneally 4 hours following infection, and once daily for 10 days thereafter.

Renal histopathology (see Figure 9) of the control (preimmune IgY) animals showed dilation, degeneration and renal tubular necrosis with no glomerular damage. This is consistent with previous reports showing that renal tubular involvement occurs predominantly in this streptomycin-treated mouse infectivity model (E. A. Wadolkowski et al., "Acute renal tubular necrosis and death of mice orally infected with Escherichia coli strains that produce Shiga-like toxin Type II," Infect. Immun., 58: 3959-3965 [1990]). Importantly, none of the survivors exhibited similar signs of morbidity though treated with IgY 4 hrs. after infection (see Figure 9).

Furthermore, avian antibodies generated against rVT1 were able to prevent both mortality and morbidity in a mouse model where VT2 alone is implicated in the pathogenesis and lethality of *E. coli* O157:H7 strain 933 cu-rev (E. A. Wadolkowski *et al.*, "Acute renal tubular necrosis and death of mice orally infected with *Escherichia coli* strains that produce Shiga-like toxin Type II." Infect. Immun., 58: 3959-3965 [1990]).

To assess the broader utility of the IgY verotoxin antibodies in treating VTECassociated disease, the mouse infectivity study was performed using a more virulent VTEC serotype known to produce VT2c—a structural variant of VT2—but not VT1 (S. W. Linderen

et al., "Virulence of enterohemorrhagic Escherichia coli O91:H21 clinical isolates in an orally infected mouse model," Infect. Immun., 61: 3832-3842 [1993]).

Mice were inoculated orally with 5 x 10° E. coli O91:H21 (strain B2F1) and treated subsequently with IgY. Notably, the heterologous rVT1 IgY protected strongly against the lethal effects of the VT2c structural variant, even when administered as long as 10 hrs. following infection (Table 8). Ten hours was the longest treatment window tested in this study. Only 1 of the 8 animals treated with rVT1 IgY died (p <0.02), and those that survived showed no overt signs of renal histopathology (i.e., acute bilateral tubular necrosis). It can thus be concluded that rVT1 IgY completely neutralized toxicity of VT2c, indicating its potential as a therapeutic for at least one other pathogenic VTEC.

5

10

15

25

30

Table 8
Protection of Mice From E. coli O91:H21
With rVT1 IgV

lgY Treatment	Survivors/Total	p	Morbidity/Total
Preimmune Antibody	0/7		7/7
rVT1 Antibody	7/8	< 0.02	1/8

*1gY was administered intraperitoneally 10 hours following infection, and once daily for 8 days thereafter.

These Examples highlight several important findings supporting the feasibility of using verotoxin antitoxin. First, polyclonal IgY generated against either VT1 or VT2 from E. coli O157:H7, cross-reacted with and fully cross-neutralized the toxicity of the non-immunizing toxin both in vitro and in vivo. Second, recombinant toxins fully neutralized the toxicity of naturally-occurring toxins produced by E. coli O157:H7 during the course of infection. Third, antibodies generated against rVT1 from E. coli O157:H7 could prevent morbidity and mortality in mice infected orally with lethal doses of E. coli O91:H21, a particularly virulent strain which only produces VT2c, suggesting their utility in preventing systemic sequelae. Because VT1 is identical to Shiga-toxin (A. D. O'Brien et al., "Shiga and Shiga-like toxins. Microbial Rev., 51: 206-220 [1987]), VT antibodies may also be useful in preventing complications stemming from Shigella dysenteriae infection. Finally, animals treated with VT

IgY were protected against both death and kidney damage when treated as long as 10 hrs. after infection, supporting the hypothesis that a window for antitoxin intervention exists.

These studies strongly support the use of parenterally-administered, toxin-specific IgY as a antitoxin to prevent life-threatening complications associated with E. voli O157:H7 and other VTEC infections. It is contemplated that this approach would be most useful in preventing HUS and other complications when administered after the onset of bloody diarrhea and before the presentation of systemic disease.

5

10

15

20

25

30

The VT IgY developed in these studies were shown to react with and neutralize both recombinant and naturally-occurring VT. The antibody titers as measured by EIA are indicative of reasonable antibody production in the hen, however much higher production levels can be obtained with larger immunizing doses.

The results from these Examples clearly demonstrate the feasibility and provide the experimental basis for development of an avian antidote for E. coli O157:H7 verotoxins suitable for use in humans. In contrast to previous reports showing that rabbit polyclonal VT1 and VT2 antibodies cross-reacted, but did not cross-neutralize the heterologous toxin in Vero cytotoxicity or in mouse lethality studies (e.g., V. V. Padhye et al., "Production and characterization of monoclonal antibodies to verotoxins 1 and 2 from Escherichia coli O157:H7," J. Agr. Food Chem., 39: 141-145 [1989]; S. C. Head et al.. "Purification and characterization of verocytotoxin 2." FEMS Microbiol. Lett., 51: 211-216 [1988]; and N. C. Strockbine et al.. "Characterization of monoclonal antibodies against Shiga-like toxin from Escherichia coli," Infect. Immun., 50: 695-700 [1985]), these data provide the first demonstration of cross-neutralization in vivo. Antibodies against one toxin neutralized completely the heterologous toxin in both Vero cytotoxicity and mouse lethality assays. Both rVT1 and rVT2 antibodies also prevented morbidity (as assessed by renal histopathology) and mortality in mice infected with lethal doses of E. coli O157:H7 - the etiologic agent in 90% of the documented cases of hemolytic uremic syndrome (HUS) in the U.S. (P. M. Griffin and R. V. Tauxe. "The epidemiology of infections caused by Escherichia coli O157:H7, other enterohemorrhagic E. coli, and the associated hemolytic uremic syndrome." Epidemiol. Rev., 13: 60 [1990]). With at least two other VTEC serotypes known to cause HUS, the finding that rVT1 antibodies neutralized a VT2 variant produced by E. coli O91:H21 suggests that avian polyclonal antibodies may provide an effective antidote against other verotoxinproducing E. coli. These data also show for the first time, that antibodies may be administered after infection and still protect against morbidity and mortality.

EXAMPLE 6

EXPRESSION OF TOXIN GENES

The previous Examples clearly showed that avian polyclonal antibodies to recombinant toxins protected animals infected with verotoxigenic *E. coli*. This Example includes expression of toxin genes (A and B subunits alone and together as whole toxins) in suitable prokaryotic expression systems to achieve high levels of VT antigen production.

The sequence of the toxin gene has been determined (see e.g., M.P. Jackson et al.,
"Nucleotide sequence analysis and comparison of the structural genes for Shiga-like toxin I
and Shiga-like toxin II encoded by bacteriophages from Escherichia coli 933," 44:109
[1987]). The coding regions of the A and B subunits of VT-1 are listed in SEQ ID NOS:1
and 3, respectively. The corresponding amino acid sequence of the A and B subunits of the
VT-1 toxin are listed in SEQ ID NOS:2 and 4, respectively. The coding regions of the A and
B subunits of VT-2 are listed in SEQ ID NOS:5 and 7, respectively. The corresponding
amino acid sequence of the A and B subunits of the VT-2 toxin are listed in SEQ ID NOS:6
and 8, respectively. In addition, SEQ ID NOS:9 and 10 list the sequences which direct the
expression of a poly-cistronic RNA capable of directing the translation of both the A and B
subunits from the VT-1 and VT-2 genes respectively.

In choosing a strategy for recombinant VT antigen production, there are three primary technical factors to consider. First, the appropriate VT antigen components representing the spectrum of toxin epitopes encountered in nature must be utilized. Second, the protein antigens must be expressed at sufficient levels and purity to enable immunization and large-scale antibody purification. Third, the neutralizing epitopes must be preserved in the immunogen and immunoabsorbant. Approaches that offer the greatest promise for high level expression of periplasmically localized, native, affinity-tagged proteins were developed. Figure 10 shows the fusion constructs of VT components and affinity tags.

5

10

15

20

25

30

A. Expression of affinity-tagged C-terminal constructs.

The VT1 and VT2 A and B subunits (SEQ ID NOS:1, 3, 5 and 7) are cloned into the pET-23b vector (Novagen). This vector is designed to allow expression of native proteins containing C-terminal poly-His tags. The vector utilizes a strong T7 polymerase promoter to drive high level expression of target proteins. The methionine initiation codon is engineered to contain a unique Ndel restriction enzyme site (CATATG). The VT1 and VT2 genes are engineered to convert the signal sequence methionine codon into a Ndel site utilizing PCR

mutagenesis. PCR primers were designed which contain the sequence GCCAT fused to the first 20-24 bases of the genes (starting at the ATG start codon of the signal tag: SEQ ID NOS:12-19, see Table below). Upon PCR amplification, the 5' start codon of each gene is converted to an Ndel site, compatible with the pET-23 vector-encoded Ndel site, allowing cloning of the amplified genes into the vector without the addition of vector-encoded amino acids.

Primers containing the C-terminal 7 codons of each gene (21 bases) fused to the sequence <u>CTCGAG</u>CC were synthesized, in order to add a C-terminal poly-His tag to each gene. The underlined bases are an *Xhol* site, that is compatible with the *Xhol* site of the pET-23 vector. These primers precisely delete the native stop codons, and when cloned into the pET-23 vector, add a C-terminal extension of "LeuGluHisHisHisHisHisHis" (SEQ ID NO: 11). The following table lists the primer pairs are utilized to create PCR fragments containing the A and B subunits derived from VT-1 and VT-2 toxin genes suitable for insertion into the pET-23b vector.

Table 9

5

10

15

20

25

30

Toxin Gene and Subunit	N-terminal Primer	C-terminal Primer
VT-1 Subunit A	SEQ ID NO:12	SEQ ID NO:13
VT-1 Subunit B	SEQ ID NO:14	SEQ ID NO:15
VT-2 Subunit A	SEQ ID NO:16	SEQ ID NO:17
VT-2 Subunit B	SEQ ID NO:18	SEQ ID NO:19
VT-1 Subunits A and B	SEQ ID NO:12	SEQ ID NO:15
VT-2 Subunits A and B	SEQ ID NO:16	SEQ ID NO:19

Thus, utilizing PCR amplification with the above modified N- and C-terminal primers, the A and B subunits of VT1 and VT2 are expressed as proteins containing an 8 amino acid C-terminal extension bearing an poly-histidine affinity tag. The amino acid sequence of the histidine-tagged VT-1 A subunit produced by expression from the pET-23b vector is listed in SEQ ID NO:21 (the associated DNA sequence is listed in SEQ ID NO:20): the amino acid sequence of the histidine-tagged VT-1 B subunit is listed in SEQ ID NO:23 (the associated

5

10

15

20

25

30

DNA sequence is listed in SEQ ID NO:22); the amino acid sequence of the histidine-tagged VT-2 A subunit is listed in SEQ ID NO:25 (the associated DNA sequence is listed in SEQ ID NO:24); the amino acid sequence of the histidine-tagged VT-2 B subunit is listed in SEQ ID NO:27 (the associated DNA sequence is listed in SEO ID NO:26).

Both subunits may be expressed from a single expression constructs by utilizing SEQ ID NOS:12 and 15 to prime synthesis of the VT-1 toxin gene and SEQ ID NOS:16 and 19 to prime synthesis of the VT-2 toxin gene. The resulting PCR products are cleaved with Ndel and λhol , as described for the cloning of the subunit genes into the pET-23b vector.

Expression of the A and B subunits from such an expression vector, results in the expression of a native A subunit and a his-tagged B subunit. As the A and B subunits assemble into a complex, the presence of the his-tag on only the B subunit is sufficient to allow purification of the holotoxin on metal chelate columns as described below.

The proofreading Pfii polymerase (Stratagene) is utilized for PCR amplification to reduce the error rate during amplification. Genomic DNA from an $E.\ coli$ O157:H7 strain is utilized as template DNA. Following the PCR, the amplification products are digested with Ndel and Xhol and cloned into the pCR-Script SK cloning vehicle (Stratagene) to permit DNA sequence analysis of the amplified products. The DNA sequence analysis is performed to ensure that no base changes are introduced during amplification. Once the desired clones are identified by DNA sequencing, the inserts are then excised utilizing Nde1 and Xhol, and cloned into a similarly cut pET-23b vector to create the expression constructs. According to the published sequences, neither the VT1 nor VT2 genes contain either of these restriction sites.

The poly-His-tagged proteins produced by expression of the VT-1 and VT-2 gene sequences in the pET-23b constructs are then purified by IMAC. This method uses metal-chelate affinity chromatography to purify native or denatured proteins which have histidine tails (see e.g., K. J. Petty, "Metal-Chelate Affinity Chromatography," in Current Protocols in Molecular Biology, Supplement 24, Unit 10.11B [1993]).

B. Expression of Toxin Containing N-terminal Affinity Tags

Two expression systems, pMal-p2 and pFLAG-1 are utilized to attach an N-terminal affinity tag to the A subunits from the VT-1 and VT-2 toxins.

MBP-tagged constructs. To construct A chains containing the maltose binding protein (MBP) at the N-terminus of the A subunit, PCR amplified gene products are cloned into the

pMal-p2 vector (New England Biolabs) as C-terminal fusions to a periplasmically-secreted version of the MBP. The MBP selectively binds to amylose resins and serves as an affinity tag on the MBP/A subunit fusion protein. The pMal-p2 vector contains an engineered factor Xa cleavage site, which permits the removal of the affinity tag (i.e., MBP) from the fusion protein after purification.

The MBP/A subunit fusions are generated as follows. The VT1 and VT2 A subunits are PCR-amplified utilizing the following DNA primers. SEQ ID NOS:28-31: SEQ ID NOS:28 and 29 comprise the 5' and 3' primers, respectively, for the amplification of the VT1 A subunit; SEQ ID NOS:30 and 31 comprise the 5' and 3' primers, respectively, for the amplification of the VT2 A subunit. In both cases, the 5' or N-terminal primer contains the sequence CGGAATTC fused to the first codon of the mature polypeptide (rather than the start of the signal peptide, since the MBP signal peptide is utilized). These 5' primers contain an engineered EcoRI site that is not contained internally in either gene, that is compatible with the EcoRI site of the pMal-p2 vector. The 3' or C-terminal primers incorporate an Xhol site as described above for the generation of the His-tagged toxins, but in this case, the 3' primer is designed to include the natural termination codon of the A subunits.

The genes are amplified, cloned into pCR-Script SK, and sequenced as described above. The inserts are then excised with EcoRI and XhoI, and cloned into EcoRI/Sa/I-cleaved pMaI-p2 vector (Sa/I and XhoI sites are compatible). This construct allows expression and secretion of the VT1 and VT2 A subunit genes as C-terminal fusions with MBP. The amino acid sequence of the MBP/VT-1A fusion protein is listed in SEQ ID NO:33 (the associated DNA sequence is listed in SEQ ID NO:32). The amino acid sequence of the MBP/VT-2A fusion protein is listed in SEQ ID NO:35 (the associated DNA sequence is listed in SEQ ID NO:35).

The resulting fusion proteins are then affinity purified on an amylose column and the bound fusion protein is eluted under mild conditions by competition with maltose. The MBP N-terminal-tagged A subunits are cleaved with factor Xa and the MBP is removed by chromatography on an amylose column. The resulting A subunits which contain a 4 amino acid N-terminal extension are then used as immunogens.

30

25

5

10

15

20

Flag tag constructs. In an alternative embodiment, the VT1 and VT2 A subunit genes are engineered to contain the "flag tag" through the use of the pFLAG-1 vector system. The flag tag is located between the OmpA secretion signal sequence and the authentic N-

terminus of the target protein in the pFlag-1 vector. To construct N-terminal flag-tagged A chains, the *EcoRI/XhoI* A subunit PCR fragments (generated as described above for the MBP fusion proteins) are cloned into identically cleaved pFlag-1 vector (Eastman-Kodak), to produce an expression construct utilizing the *OmpA* signal peptide for secretion of A subunit fusion proteins containing the flag peptide at the N-terminus. After secretion, the periplasmic protein contains the N-terminal 8 amino acid flag tag, followed by 4 vector-encoded amino acids fused to the recombinant A subunit. The amino acid sequence of the flag tag/VT-1 A subunit fusion protein is listed in SEQ ID NO:37 (the associated DNA sequence is listed in SEQ ID NO:38).

The flag tag fusion proteins are then purified by immunoaffinity chromatography utilizing a calcium-dependent monoclonal antibody (Antiflag M1: Eastman-Kodak). Mild elution of purified protein is achieved by chelating the calcium in the column buffer with ethylenediamine tetraacetic acid (EDTA).

C. Evaluation of fusion construct expression.

5

10

15

20

25

30

The fusion constructs described above are expressed in *E. coli* strain BL21, or T7 polymerase-containing derivatives [e.g., BL21(DE3), BL21(DE3) pLysS, BL21(DE3)pLysE] (Novagen) for pET plasmids, and periplasmically-secreted recombinant protein purified by affinity chromatography. Recombinant proteins are analyzed for correct conformation by testing the following parameters:

- a) It is believed that the B subunit must associate into pentamers to be conformationally correct. This is assessed by reducing and native SDS-PAGE analyses of native and chemically-cross-linked proteins and sizing HPLC;
- It is believed that a properly folded A subunit is expected to retain its native enzymatic activity. This is tested by its capacity to inhibit protein synthesis in an in vitro toxicity assay;
- c) It is believed that in vitro toxicity of assembled recombinant holotoxin is compared to commercially available holotoxins to determine whether recombinant A and B subunits can assemble into functional holotoxin. The

purified N-terminal-tagged A subunits (after cleavage and purification from MBP or untreated flag-tagged proteins) are combined *in vitro* with the corresponding B chains, and their toxicity evaluated utilizing a quantitative microtiter cytotoxicity assay, such as that described by M.K. Gentry and M. Dalrymple, "Quantitative Microtiter Cytotoxicity Assay for *Shigella* Toxin." J. Clin. Microbiol., 12:361-366 (1980).

PCT/US96/04093 WO 96/30043

SEQUENCE LISTING

(1) GENERAL INFORMATION:

- (i) APPLICANT: OPHIDIAN PHARMACEUTICALS, INC.
- (ii) TITLE OF INVENTION: TREATMENT FOR VEROTOXIN-PRODUCING E. COLT
- (iii) NUMBER OF SECUENCES: 39
- (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: MEDLEN & CARROLL
 - (B) STREET: 220 MONTGOMERY STREET. SUITE 2200
 - (C) CITY: SAN FRANCISCO (D) STATE: CALIFORNIA
 - (E) COUNTRY: UNITED STATES OF AMERICA
 - (F) ZIP: 94104
- (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.25
- (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER:
 - (B) FILING DATE: (C) CLASSIFICATION:
- (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: CARROLL, PETER G. (B) REGISTRATION NUMBER: 32,837
 - (C) REFERENCE/DOCKET NUMBER: OPHD-02171
 - (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: (415) 705-8410 (B) TELEFAX: (415) 397-8338
- (2) INFORMATION FOR SEO ID NO:1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 945 base pairs
 - (B) TYPE: nucleic acid (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 1..945
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:
- ATG AAA ATA ATT ATT TTT AGA GTG CTA ACT TTT TTC TTT GTT ATC TTT Met Lys Ile Ile Ile Phe Arg Val Leu Thr Phe Phe Phe Val Ile Phe 48 10
- TCA GTT AAT GTG GTG GCG AAG GAA TTT ACC TTA GAC TTC TCG ACT GCA 96 Ser Val Asn Val Val Ala Lys Glu Phe Thr Leu Asp Phe Ser Thr Ala
- AAG ACG TAT GTA GAT TCG CTG AAT GTC ATT CGC TCT GCA ATA GGT ACT 144 Lys Thr Tyr Val Asp Ser Leu Asn Val Ile Arg Ser Ala Ile Gly Thr
- CCA TTA CAG ACT ATT TCA TCA GGA GGT ACG TCT TTA CTG ATG ATT GAT Pro Leu Gln Thr Ile Ser Ser Gly Gly Thr Ser Leu Leu Met Ile Asp 50 6.0

WO 96/30043 PCT/US96/04c **

AGT Ser 65	Gly	TCA Ser	GGG	GAT Asp	AAT Asn 70	Leu	TTT	GCA Ala	GTT Val	GAT Asp 75	Val	AGA Arg	GGG Gly	ATA	GAT Asp 80	240
GCA Ala	GAG	GAA Glu	GGG Gly	CGG Arg 85	Phe	AAT Asn	AAT Asn	CTA Leu	. CGG . Arg . 90	Leu	ATT	GT1 Val	GAA Glu	CGA Arg	AAT Asn	288
AAT Asn	TTA Leu	TAT	GTG Val 100	Thr	GGA Gly	TTT	GTT Val	AAC Asn 105	Arg	ACA Thr	AAT Asn	AAT Asn	GTT Val 110	TTT Phe	TAT	336
CGC Arg	TTT	GCT Ala 115	GAT Asp	TTT Phe	TCA Ser	CAT His	GTT Val 120	Thr	TTT Phe	CCA Pro	GGT Gly	ACA Thr 125	Thr	GCG	GTT Val	384
ACA Thr	TTG Leu 130	TCT	GGT Gly	GAC Asp	AGT Ser	AGC Ser 135	TAT Tyr	ACC Thr	ACG Thr	TTA Leu	CAG Gln 140	CGT Arg	GTT Val	GCA Ala	GGG Gly	432
ATC Ile 145	AGT Ser	CGT Arg	ACG Thr	GGG Gly	ATG Met 150	CAG Gln	ATA Ile	AAT Asn	CGC Arg	CAT His 155	TCG Ser	TTG Leu	ACT Thr	ACT Thr	TCT Ser 160	480
TAT Tyr	CTG Leu	GAT Asp	TTA Leu	ATG Met 165	TCG Ser	CAT His	AGT Ser	GGA Gly	ACC Thr 170	TCA Ser	CTG Leu	ACG Thr	CAG Gln	TCT Ser 175	GTG Val	528
GCA Ala	AGA Arg	GCG Ala	ATG Met 180	TTA Leu	CGG Arg	TTT Phe	GTT Val	ACT Thr 185	GTG Val	ACA Thr	GCT Ala	GAA Glu	GCT Ala 190	TTA Leu	CGT Arg	576
TTT Phe	CGG Arg	CAA Gln 195	ATA Ile	CAG Gln	AGG Arg	GGA Gly	TTT Phe 200	CGT Arg	ACA Thr	ACA Thr	CTG Leu	GAT Asp 205	GAT Asp	CTC Leu	AGT Ser	624
GGG Gly	CGT Arg 210	TCT	TAT Tyr	GTA Val	ATG Met	ACT Thr 215	GCT Ala	GAA Glu	GAT Asp	GTT Val	GAT Asp 220	CTT Leu	ACA Thr	TTG Leu	AAC Asn	672
TGG Trp 225	GGA Gly	AGG Arg	TTG Leu	AGT Ser	AGC Ser 230	GTC Val	CTG Leu	CCT Pro	GAC Asp	TAT Tyr 235	CAT His	GGA Gly	CAA Gln	GAC Asp	TCT Ser 240	720
GTT Val	CGT Arg	GTA Val	GGA Gly	AGA Arg 245	ATT Ile	TCT Ser	TTT Phe	GGA Gly	AGC Ser 250	ATT Ile	AAT Asn	GCA Ala	Ile	CTG Leu 255	GGA Gly	768
AGC Sei	GTG Val	Ala	TTA Leu 260	ATA Ile	CTG Leu	AAT Asn	Cys	CAT His 265	CAT His	CAT His	GCA Ala	TCG Ser	CGA Arg 270	GTT Val	GCC Ala	816
AGA Arg	ATG Met	GCA Ala 275	TCT Ser	GAT Asp	GAG Glu	Phe	CCT Pro 280	TCT Ser	ATG Met	TGT Cys	Pro	GCA Ala 285	GAT Asp	GGA Gly	AGA Arg	864
Val	CGT Arg 290	GGG Gly	ATT Ile	ACG Thr	His	AAT Asn 295	AAA Lys	ATA Ile	TTG Leu	Trp	GAT Asp 300	TCA Ser	TCC Ser	ACT Thr	CTG Leu	912
GGG Gly 305	GCA Ala	ATT Ile	CTG Leu	Met	CGC Arg 310	AGA Arg	ACT . Thr	ATT Ile	Ser	AGT Ser 315						945

(2) INFORMATION FOR SEQ ID NO:2:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 315 amino acids

(B) TYPE: amino acid (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEO ID NO:2: Met Lys Ile Ile Ile Phe Arg Val Leu Thr Phe Phe Phe Val Ile Phe Ser Val Asn Val Val Ala Lys Glu Phe Thr Leu Asp Phe Ser Thr Ala Lys Thr Tyr Val Asp Ser Leu Asn Val Ile Arg Ser Ala Ile Gly Thr Pro Leu Gln Thr Ile Ser Ser Gly Gly Thr Ser Leu Leu Met Ile Asp Ser Gly Ser Gly Asp Asn Leu Phe Ala Val Asp Val Arg Gly Ile Asp Ala Glu Glu Gly Arg Phe Asn Asn Leu Arg Leu Ile Val Glu Arg Asn Asn Leu Tyr Val Thr Gly Phe Val Asn Arg Thr Asn Asn Val Phe Tyr Arg Phe Ala Asp Phe Ser His Val Thr Phe Pro Gly Thr Thr Ala Val Thr Leu Ser Gly Asp Ser Ser Tyr Thr Thr Leu Gln Arg Val Ala Gly Ile Ser Arg Thr Gly Met Gln Ile Asn Arg His Ser Leu Thr Thr Ser Tyr Leu Asp Leu Met Ser His Ser Gly Thr Ser Leu Thr Gln Ser Val Ala Arg Ala Met Leu Arg Phe Val Thr Val Thr Ala Glu Ala Leu Arg Phe Arg Gln Ile Gln Arg Gly Phe Arg Thr Thr Leu Asp Asp Leu Ser Gly Arg Ser Tyr Val Met Thr Ala Glu Asp Val Asp Leu Thr Leu Asn Trp Gly Arg Leu Ser Ser Val Leu Pro Asp Tyr His Gly Gln Asp Ser Val Arg Val Gly Arg Ile Ser Phe Gly Ser Ile Asn Ala Ile Leu Gly Ser Val Ala Leu Ile Leu Asn Cys His His His Ala Ser Arg Val Ala Arg Met Ala Ser Asp Glu Phe Pro Ser Met Cys Pro Ala Asp Gly Arg Val Arg Gly Ile Thr His Asn Lys Ile Leu Trp Asp Ser Ser Thr Leu 290 295 300 Gly Ala Ile Leu Met Arg Arg Thr Ile Ser Ser

(2) INFORMATION FOR SEQ ID NO:3:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 267 base pairs (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 1..267
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

ATG AAA AAA ACA TTA TTA ATA GCT GCA TCG CTT TCA TTT TTT TCA GCA Met Lys Lys Thr Leu Leu Ile Ala ala Ser Leu Ser Phe Phe Ser Ala 10 15

AGT GCG CTG GCG ACG CCT GAT TGT GTA ACT GGA AAG GTG GAG TAT ACA Ser Ala Leu Ala Thr Pro Asp Cys Val Thr Gly Lys Val Glu Tyr Thr

48

96

AAA TAT AAT GAT GAC GAT ACC TTT ACA GTT AAA GTG GGT GAT AAA GAA Lys Tyr Asn Asp Asp Asp Thr Phe Thr Val Lys Val Gly Asp Lys Glu

TTA TTT ACC AAC AGA TGG AAT CTT CAG TCT CTT CTT CTC AGT GCG CAA 192
Leu Phe Thr Asn Arg Trp Asn Leu Gln Ser Leu Leu Leu Ser Ala Gln 50 55

ATT ACG GGG ATG ACT GTA ACC ATT AAA ACT AAT GCC TGT CAT AAT GGA 240 Ile Thr Gly Met Thr Val Thr Ile Lys Thr Asn Ala Cys His Asn Gly 65 70 80

GGG GGA TTC AGC GAA GTT ATT TTT CGT
Gly Gly Phe Ser Glu Val Ile Phe Arg

- (2) INFORMATION FOR SEQ ID NO:4:
 - (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 89 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

Met Lys Lys Thr Leu Leu Ile Ala Ala Ser Leu Ser Phe Phe Ser Ala 1 5 10 15

Lys Tyr Asn Asp Asp Asp Thr Phe Thr Val Lys Val Gly Asp Lys Glu

Leu Phe Thr Asn Arg Trp Asn Leu Gln Ser Leu Leu Leu Ser Ala Gln 50 55 60

Ile Thr Gly Met Thr Val Thr Ile Lys Thr Asn Ala Cys His Asn Gly 65 70 80

- Gly Gly Phe Ser Glu Val Ile Phe Arg
- (2) INFORMATION FOR SEQ ID NO:5:

PCT/US96/04093 WO 96/30043

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 954 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 1..954

	(xi) SE	QUEN	CE D	ESCR	IPTI	ON:	SEQ	ID N	0:5:						
	Lys														TTT Phe	48
															CAA Gln	96
									ATA Ile						ACC Thr	144
									ACA Thr							192
									GAT Asp						GTC Val 80	240
									CTG Leu 90							288
									GCA Ala						CGT Arg	336
									CCC Pro							384
									CTG Leu							432
GAA Glu 145	CGT Arg	TCC Ser	GGA Gly	ATG Met	CAA Gln 150	ATC Ile	AGT Ser	CGT Arg	CAC His	TCA Ser 155	CTG Leu	GTT Val	TCA Ser	TCA Ser	TAT Tyr 160	480
									ACA Thr 170							528
AGA Arg	GCA Ala	GTT Val	CTG Leu 180	CGT Arg	TTT Phe	GTC Val	ACT Thr	GTC Val 185	ACA Thr	GCA Ala	GAA Glu	GCC Ala	TTA Leu 190	CGC Arg	TTC Phe	576
						Phe			GCA Ala							624
					Pro				GAC Asp	Leu						672

	ATC Ile								720
	GGG Gly								768
	GTT Val								816
	AAT Asn								864
	ATA Ile 290								912
	CTG Leu								954

(2) INFORMATION FOR SEQ ID NO:6:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 318 amino acids (B) TYPE: amino acid

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

Arg	Gln	Ile 195	Gln	Arg	Glu	Phe	Arg 200	Gln	Ala	Leu	Ser	Glu 205	Thr	Ala	Pro	
Val	Tyr 210	Thr	Met	Thr	Pro	Gly 215	Asp	Val	Asp	Leu	Thr 220	Leu	Asn	Trp	Gly	
Arg 225	Ile	Ser	Asn	Val	Leu 230	Pro	Glu	Tyr	Arg	Gly 235	Glu	Asp	Gly	Val	Arg 240	
Val	Gly	Arg	Ile	Ser 245	Phe	Asn	Asn	Ile	Ser 250	Ala	Ile	Leu	Gly	Thr 255	Val	
Ala	Val	Ile	Leu 260	Asn	Cys	His	His	Gln 265	Gly	Ala	Arg	Ser	Val 270	Arg	Ala	
Val	Asn	Glu 275	Glu	Ser	Gln	Pro	Glu 280	Cys	Gln	Ile	Thr	Gly 285	Asp	Arg	Pro	
Val	11e 290	Lys	Ile	Asn	Asn	Thr 295	Leu	Trp	Glu	Ser	Asn 300	Thr	Ala	Ala	Ala	
Phe 305	Leu	Asn	Arg	Lys	Ser 310	Gln	Phe	Leu	Tyr	Thr 315	Thr	Gly	Lys			
(2)	INFO	ORMA:	rion	FOR	SEQ	ID 1	10:7									
	(ii)	() ()	A) LE B) TY C) ST D) TO	PE: PANI	nucl EDNE	eic SS: line	acio doub ar	l ole								
		FE/	TURE	: :			(gc.	.02	/							
			A) NA B) LO				67									
	(xi)	SEC	UEN	E DE	SCRI	PTIC	N: 5	EQ 1	D NO	:7:						
ATG Met 1	AAG Lys	AAG Lys	ATG Met	TTT Phe 5	ATG Met	GCG Ala	GTT Val	TTA Leu	TTT Phe 10	GCA Ala	TTA Leu	GCT Ala	TCT Ser	GTT Val 15	AAT Asn	48
GCA Ala	ATG Met	GCG Ala	GCG Ala 20	GAT Asp	TGT Cys	GCT Ala	AAA Lys	GGT Gly 25	AAA Lys	ATT Ile	GAG Glu	TTT Phe	TCC Ser 30	AAG Lys	TAT Tyr	96
AAT Asn	GAG Glu	GAT Asp 35	GAC Asp	ACA Thr	TTT Phe	ACA Thr	GTG Val 40	AAG Lys	GTT Val	GAC Asp	GGG Gly	AAA Lys 45	GAA Glu	TAC Tyr	TGG Trp	144
ACC Thr	AGT Ser 50	CGC Arg	TGG Trp	AAT Asn	CTG Leu	CAA Gln 55	CCG Pro	TTA Leu	CTG Leu	CAA Gln	AGT Ser 60	GCT Ala	CAG Gln	TTG Leu	ACA Thr	192
GGA Gly 65	ATG Met	ACT Thr	GTC Val	ACA Thr	ATC Ile 70	AAA Lys	TCC Ser	AGT Ser	ACC Thr	TGT Cys 75	GAA Glu	TCA Ser	GGC Gly	TCC Ser	GGA Gly 80	240
			GTG Val													267

(2) INFORMATION FOR SEQ ID NO:8:

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 89 amino acids

(B) TYPE: amino acid (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEO ID NO:8:

Met Lys Lys Met Phe At Ala Val Leu Phe Ala Leu Ala Ser Val Asn 1 10 10 10 Ala Met Ala Ala Asp Cys Ala Lys Gly Lys Ile Glu Phe Ser Lys Tyr 30 Asn Glu Asp Asp Thr Phe Thr Val Lys Val Asp Gly Lys Glu Tyr Trp 40 Asp Asp Thr Phe Thr Val Lys Val Asp Gly Lys Glu Tyr Trp 50 Ser Arg Trp Asn Leu Gln Pro Leu Leu Gln Ser Ala Gln Leu Thr 50 55 For Thr Cys Glu Ser Gly Ser Gly Met Thr Val Thr 16 Lys Ser Ser Thr Cys Glu Ser Gly Ser Gly 80 80

Phe Ala Glu Val Gln Phe Asn Asn Asp 85 (2) INFORMATION FOR SEQ ID NO:9:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1241 base pairs
 - (B) TYPE: nucleic acid (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

ATGAAAATAA TTATTTTTAG AGTGCTAACT TTTTTCTTTG TTATCTTTTC AGTTAATGTG 60 GTGGCGAAGG AATTTACCTT AGACTTCTCG ACTGCAAAGA CGTATGTAGA TTCGCTGAAT 120 GTCATTCGCT CTGCAATAGG TACTCCATTA CAGACTATTT CATCAGGAGG TACGTCTTTA 180 CTGATGATTG ATAGTGGCTC AGGGGATAAT TTGTTTGCAG TTGATGTCAG AGGGATAGAT 240 GCAGAGGAAG GGCGGTTTAA TAATCTACGG CTTATTGTTG AACGAAATAA TTTATATGTG 300 ACAGGATTTG TTAACAGGAC AAATAATGTT TTTTATCGCT TTGCTGATTT TTCACATGTT 360 ACCTTTCCAG GTACAACAGC GGTTACATTG TCTGGTGACA GTAGCTATAC CACGTTACAG 420 CGTGTTGCAG GGATCAGTCG TACGGGGATG CAGATAAATC GCCATTCGTT GACTACTTCT 480 TATCTGGATT TAATGTCGCA TAGTGGAACC TCACTGACGC AGTCTGTGGC AAGAGCGATG 540 TTACGGTTTG TTACTGTGAC AGCTGAAGCT TTACGTTTTC GGCAAATACA GAGGGGATTT 600 CGTACAACAC TGGATGATCT CAGTGGGCGT TCTTATGTAA TGACTGCTGA AGATGTTGAT 660 CTTACATTGA ACTGGGGAAG GTTGAGTAGC GTCCTGCCTG ACTATCATGG ACAAGACTCT 720 GTTCGTGTAG GAAGAATTTC TTTTGGAAGC ATTAATGCAA TTCTGGGAAG CGTGGCATTA 780 ATACTGAATT GTCATCATCA TGCATCGCGA GTTGCCAGAA TGGCATCTGA TGAGTTTCCT 840 TCTATGTGTC CGGCAGATGG AAGAGTCCGT GGGATTACGC ACAATAAAAT ATTGTGGGAT 900

TCATCCACTC TGGGGGCAAT TCTGATGCGC AGAACTATTA GCAGTTGAAC AGGGGGTAAA	960
TAAAGGAGTT AAGCATGAAA AAAACATTAT TAATAGCTGC ATCGCTTTCA TTTTTTTCAG	1020
CAAGTGCGCT GGCGACGCCT GATTGTGTAA CTGGAAAGGT GGAGTATACA AAATATAATG	1080
ATGACGATAC CTTTACAGTT AAAGTGGGTG ATAAAGAATT ATTTACCAAC AGATGGAATC	1140
TTCAGTCTCT TCTTCTCAGT GCGCAAATTA CGGGGATGAC TGTAACCATT AAAACTAATG	1200
CCTGTCATAA TGGAGGGGGA TTCAGCGAAG TTATTTTTCG T	1241
(2) INFORMATION FOR SEQ ID NO:10:	
(i) SEQUENCE CHARACTERISTICS: (A) LENOTH 1235 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:	
ATGAAGTGTA TATTATTTAA ATGGGTACTG TGCCTGTTAC TGGGTTTTTC TTCGGTATCC	60
TATTCCCGGG AGTTTACGAT AGACTTTTCG ACCCAACAAA GTTATGTCTC TTCGTTAAAT	120
AGTATACGGA CAGAGATATC GACCCCTCTT GAACATATAT CTCAGGGGAC CACATCGGTG	180
TCTGTTATTA ACCACACCCA CGGCAGTTAT TTTGCTGTGG ATATACGAGG GCTTGATGTC	240
TATCAGGCGC GTTTTGACCA TCTTCGTCTG ATTATTGAGC AAAATAATTT ATATGTGGCA	300
GGGTTCGTTA ATACGGCAAC AAATACTTTC TACCGTTTTT CAGATTTTAC ACATATATCA	360
GTGCCCGGTG TGACAACGGT TTCCATGACA ACGGACAGCA GTTATACCAC TCTGCAACGT	420
GTCGCAGCGC TGGAACGTTC CGGAATGCAA ATCAGTCGTC ACTCACTGGT TTCATCATAT	480
CTGGCGTTAA TGGAGTTCAG TGGTAATACA ATGACCAGAG ATGCATCCAG AGCAGTTCTG	540
CGTTTTGTCA CTGTCACAGC AGAAGCCTTA CGCTTCAGGC AGATACAGAG AGAATTTCGT	600
CAGGCACTGT CTGAAACTGC TCCTGTGTAT ACGATGACGC CGGGAGACGT GGACCTCACT	660
CTGAACTGGG GGCGAATCAG CAATGTGCTT CCGGAGTATC GGGGAGAGGA TGGTGTCAGA	720
GTGGGGAGAA TATCCTTTAA TAATATATCA GCGATACTGG GGACTGTGGC CGTTATACTG	780
AATTGCCATC ATCAGGGGGC GCGTTCTGTT CGCGCCGTGA ATGAAGAGAG TCAACCAGAA	840
TGTCAGATAA CTGGCGACAG GCCTGTTATA AAAATAAACA ATACATTATG GGAAAGTAAT	900
ACAGCTGCAG CGTTTCTGAA CAGAAAGTCA CAGTTTTTAT ATACAACGGG TAAATAAAGG	960
AGTTAAGCAT GAAGAAGATG TTTATGGCGG TTTTATTTGC ATTAGCTTCT GTTAATGCAA	1020
TGGCGGCGGA TTGTGCTAAA GGTAAAATTG AGTTTTCCAA GTATAATGAG GATGACACAT	1080
TTACAGTGAA GGTTGACGGG AAAGAATACT GGACCAGTCG CTGGAATCTG CAACCGTTAC	1140
TGCAAAGTGC TCAGTTGACA GGAATGACTG TCACAATCAA ATCCAGTACC TGTGAATCAG	1200

GCTCCGGATT TGCTGAAGTG CAGTTTAATA ATGAC
(2) INFORMATION FOR SEQ ID NO:11:

⁽¹⁾ SEQUENCE CHARACTERISTICS: (A) LENGTH: 8 amino acids

(B) TYPE: amino acid (C) STRANDEDNESS: unknown (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: peptide	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:	
Leu Glu His His His His His 1	
(2) INFORMATION FOR SEQ ID NO:12:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 hase pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOFOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:	
GCCATATGAA AATAATTATT TTTAGAGTG	29
(2) INFORMATION FOR SEQ ID NO:13:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:	
GGCTCGAGAC TGCTAATAGT TCTGCGCAT	29
(2) INFORMATION FOR SEQ ID NO:14:	
(i) SEQUENCE CHARACTERISTICS: (A) LEWGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:	
GCCATATGAA AAAAACATTA TTAATAGC	28
(2) INFORMATION FOR SEQ ID NO:15:	
(1) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (C) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:	
GGCTCGAGAC GAAARATAAC TTCGCTGAA	29
(2) INFORMATION FOR SEQ ID NO:16:	
(i) sequence characteristics:	

(A) LENGTH: 29 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:	
GCCATATGAA GTGTATATTA TTTAAATGG	29
(2) INFORMATION FOR SEQ ID NO:17:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:	
GGCTCGAGTT TACCCGTTGT ATATAAAAAC	3.0
(2) INFORMATION FOR SEQ ID NO:18:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 26 base pairs (B) TYPE: nucleic acid (C) STRANDEDMESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:	
CGCATATGAA GAAGATGTTT ATGGCG	26
(2) INFORMATION FOR SEQ ID NO:19:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 base pairs (B) TYPE: nucleic acid (C) STRANDEDMESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:	
GGCTCGAGGT CATTATTAAA CTGCACTTC	29
(2) INFORMATION FOR SEQ ID NO:20:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 969 base pairs (B) TYPE: nucleic acid (C) STRANDEDINES: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic)	
(1x) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 1969	
(x1) SEQUENCE DESCRIPTION: SEQ ID NO:20:	
ATG AAA ATA ATT ATT TTT AGA GTG CTA ACT TIT TTC TTT GTT ATC TTT	48

Met 1	Lys	Ile	Ile	Ile	Phe	Arg	[Va]	Leu	Thr 10		Phe	Phe	· Val	. Ile	Phe	
TCA Ser	GTT Val	AAT	GTG Val 20	Val	GCG Ala	AAG Lys	GAA Glu	TTT Phe 25	Thr	Leu	GAC Asp	TTC Phe	Ser 30	Thi	GCA Ala	96
AAG Lys	Thr	TAT Tyr 35	Val	GAT Asp	TCG Ser	CTG Leu	AAT Asn 40	(Val	Ile	CGC	TCT	GCA Ala 45	Ile	GGT Gly	ACT Thr	144
CCA Pro	Leu 50	Gln	ACT Thr	ATT	TCA Ser	TCA Ser	Gly	GGT	ACG	TCT	TTA Leu 60	Leu	ATG Met	ATT	GAT Asp	192
AGT Ser 65	Gly	TCA Ser	GGG Gly	GAT Asp	AAT Asn 70	Leu	TTT Phe	GCA Ala	GTT Val	GAT Asp 75	GTC Val	AGA Arg	GGG Gly	ATA	GAT Asp 80	240
GCA Ala	GAG Glu	GAA Glu	GGG Gly	CGG Arg 85	Phe	AAT Asn	AAT Asn	CTA Leu	CGG Arg 90	CTT	ATT	GTT Val	GAA Glu	CGA Arg 95	AAT Asn	288
AAT Asn	TTA Leu	TAT	GTG Val 100	ACA Thr	GGA Gly	TTT	GTT Val	AAC Asn 105	AGG Arg	ACA Thr	AAT Asn	AAT Asn	GTT Val 110	TTT	TAT Tyr	336
CGC Arg	TTT	GCT Ala 115	GAT Asp	TTT	TCA Ser	CAT	GTT Val 120	ACC Thr	TTT Phe	CCA Pro	GGT Gly	ACA Thr 125	ACA Thr	GCG Ala	GTT Val	384
Thr	Leu 130	Ser	GGT Gly	Asp	Ser	Ser 135	Tyr	Thr	Thr	Leu	Gln 140	Arg	Val	Ala	Gly	432
ATC Ile 145	AGT Ser	CGT Arg	ACG Thr	GGG Gly	ATG Met 150	CAG Gln	ATA Ile	AAT Asn	CGC	CAT His 155	TCG Ser	TTG Leu	ACT Thr	ACT Thr	TCT Ser 160	480
TAT Tyr	CTG Leu	GAT Asp	TTA Leu	ATG Met 165	TCG Ser	CAT His	AGT Ser	GGA Gly	ACC Thr 170	TCA Ser	CTG Leu	ACG Thr	CAG Gln	TCT Ser 175	GTG Val	528
GCA Ala	AGA Arg	GCG Ala	ATG Met 180	TTA Leu	CGG Arg	TTT Phe	GTT Val	ACT Thr 185	GTG Val	ACA Thr	GCT Ala	GAA Glu	GCT Ala 190	TTA Leu	CGT Arg	576
TTT Phe	CGG Arg	CAA Gln 195	ATA Ile	CAG Gln	AGG Arg	GGA Gly	TTT Phe 200	CGT Arg	ACA Thr	ACA Thr	CTG Leu	GAT Asp 205	GAT Asp	CTC Leu	AGT Ser	624
GGG Gly	CGT Arg 210	TCT Ser	TAT Tyr	GTA Val	Met	ACT Thr 215	GCT Ala	GAA Glu	GAT Asp	Val	GAT Asp 220	CTT Leu	ACA Thr	TTG Leu	AAC Asn	672
TGG Trp 225	GGA Gly	AGG Arg	TTG Leu	AGT Ser	AGC Ser 230	GTC Val	CTG Leu	CCT Pro	Asp	TAT Tyr 235	CAT	GGA Gly	CAA Gln	GAC Asp	TCT Ser 240	720
GTT Val	CGT Arg	GTA Val	GGA Gly	AGA Arg 245	ATT Ile	TCT Ser	TTT Phe	GGA Gly	AGC Ser 250	ATT Ile	AAT Asn	GCA Ala	Ile	CTG Leu 255	GGA Gly	768
AGC Ser	GTG Val	Ala	TTA Leu 260	ATA Ile	CTG Leu	AAT Asn	Cys	CAT His 265	CAT His	CAT His	GCA Ala	Ser	CGA Arg 270	GTT Val	GCC Ala	816
AGA Arg	Met	GCA Ala 275	TCT Ser	GAT Asp	GAG Glu	Phe	CCT Pro 280	TCT Ser	ATG Met	TGT Cys	Pro	GCA Ala 285	GAT Asp	GGA Gly	AGA Arg	864

GTC CGT GGG ATT ACG CAC AAT AAA ATA TTG TGG GAT TCA TCC ACT CTG
Val Arg Gly Ile Thr His Ash Lys Ile Leu Trp Asp Ser Ser Thr Leu
290
GGG GCA ATT CTG ATG CGC AGA ACT ATT AGC AGT CTC GAG CAC CAC CAC
Gly Ala Ile Leu Met Arg Arg Thr Ile Ser Ser Leu Glu His His His His
305
CAC CAC CAC
CAC
CAC CAC CAC
969

(2) INFORMATION FOR SEO ID NO:21:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 323 amino acids (B) TYPE: amino acid

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:21: Met Lys 1le 1le 1le Phe Arg Val Leu Thr Phe Phe Phe Val 1le Phe Ser Val Asn Val Val Ala Lys Glu Phe Thr Leu Asp Phe Ser Thr Ala Lys Thr Tyr Val Asp Ser Leu Asn Val Ile Arg Ser Ala Ile Gly Thr Pro Leu Gln Thr Ile Ser Ser Gly Gly Thr Ser Leu Leu Met Ile Asp Ser Gly Ser Gly Asp Asn Leu Phe Ala Val Asp Val Arg Gly 11e Asp Ala Glu Glu Gly Arg Phe Asn Asn Leu Arg Leu Ile Val Glu Arg Asn Asn Leu Tyr Val Thr Gly Phe Val Asn Arg Thr Asn Asn Val Phe Tyr Arg Phe Ala Asp Phe Ser His Val Thr Phe Pro Gly Thr Thr Ala Val Thr Leu Ser Gly Asp Ser Ser Tyr Thr Thr Leu Gln Arg Val Ala Gly Ile Ser Arg Thr Gly Met Gln Ile Asn Arg His Ser Leu Thr Thr Ser 155 Tyr Leu Asp Leu Met Ser His Ser Gly Thr Ser Leu Thr Gln Ser Val Ala Arg Ala Met Leu Arg Phe Val Thr Val Thr Ala Glu Ala Leu Arg Phe Arg Gln Ile Gln Arg Gly Phe Arg Thr Thr Leu Asp Asp Leu Ser 200 Gly Arg Ser Tyr Val Met Thr Ala Glu Asp Val Asp Leu Thr Leu Asn Trp Gly Arg Leu Ser Ser Val Leu Pro Asp Tyr His Gly Gln Asp Ser

Val Arg Val Gly Arg 1le Ser Phe Gly Ser Ile Asn Ala Ile Leu Gly

- 61 -

Ser Val Ala Leu Ile Leu Asn Cys His His His Ala Ser Arg Val Ala 265 Arg Met Ala Ser Asp Glu Phe Pro Ser Met Cys Pro Ala Asp Gly Arg 280 Val Arg Gly Ile Thr His Asn Lys Ile Leu Trp Asp Ser Ser Thr Leu Gly Ala Ile Leu Met Arg Arg Thr Ile Ser Ser Leu Glu His His His 310 315 His His His (2) INFORMATION FOR SEO ID NO:22: (1) SEQUENCE CHARACTERISTICS: (A) LENGTH: 294 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic) (ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 1..294 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:22: ATG AAA AAA ACA TTA TTA ATA GCT GCA TCG CTT TCA TTT TTT TCA GCA 48 Met Lys Lys Thr Leu Leu Ile Ala Ala Ser Leu Ser Phe Phe Ser Ala 5 AGT GCG CTG GCG ACG CCT GAT TGT GTA ACT GGA AAG GTG GAG TAT ACA Ser Ala Leu Ala Thr Pro Asp Cys Val Thr Gly Lys Val Glu Tyr Thr 96 AAA TAT AAT GAT GAC GAT ACC TTT ACA GTT AAA GTG GGT GAT AAA GAA 144 Lys Tyr Asn Asp Asp Asp Thr Phe Thr Val Lys Val Gly Asp Lys Glu TTA TTT ACC AAC AGA TGG AAT CTT CAG TCT CTT CTC AGT GCG CAA 192 Leu Phe Thr Asn Arg Trp Asn Leu Gln Ser Leu Leu Leu Ser Ala Gln ATT ACG GGG ATG ACT GTA ACC ATT AAA ACT AAT GCC TGT CAT AAT GGA Ile Thr Gly Met Thr Val Thr Ile Lys Thr Asn Ala Cys His Asn Gly 240 GGG GGA TTC AGC GAA GTT ATT TTT CGT CTC GAG CAC CAC CAC CAC 288 Gly Gly Phe Ser Glu Val Ile Phe Arg Leu Glu His His His His His 85 9.0 CAC TG 294 His (2) INFORMATION FOR SEC ID NO: 23: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 97 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein (xi) SEQUENCE DESCRIPTION: SEO ID NO:23:

Met Lys Lys Thr Leu Leu Ile Ala Ala Ser Leu Ser Phe Phe Ser Ala

1 Ser Ala Leu Ala Thr Pro Asp Cys Val Thr Gly Lys Val Glu Tyr Thr Lys Tyr Asn Asp Asp Asp Thr Phe Thr Val Lys Val Gly Asp Lys Glu Leu Phe Thr Asn Arg Trp Asn Leu Gln Ser Leu Leu Leu Ser Ala Gln Ile Thr Gly Met Thr Val Thr Ile Lys Thr Asn Ala Cys His Asn Gly Gly Gly Phe Ser Glu Val Ile Phe Arg Leu Glu His His His His His

His

- (2) INFORMATION FOR SEO ID NO:24:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 981 base pairs
 - (B) TYPE: nucleic acid (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (ix) FEATURE: (A) NAME/KEY: CDS
 - (B) LOCATION: 1..981
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:
- ATG AAG TGT ATA TTA TTT AAA TGG GTA CTG TGC CTG TTA CTG GGT TTT Met Lys Cys Ile Leu Phe Lys Trp Val Leu Cys Leu Leu Leu Gly Phe 5 10 TCT TCG GTA TCC TAT TCC CGG GAG TTT ACG ATA GAC TTT TCG ACC CAA

48

- Ser Ser Val Ser Tyr Ser Arg Glu Phe Thr Ile Asp Phe Ser Thr Gln CAA AGT TAT GTC TCT TCG TTA AAT AGT ATA CGG ACA GAG ATA TCG ACC 144
- Glm Ser Tyr Val Ser Ser Leu Asn Ser Ile Arg Thr Glu Ile Ser Thr 192
- CCT CTT GAA CAT ATA TCT CAG GGG ACC ACA TCG GTG TCT GTT AAC Pro Leu Glu His Ile Ser Gln Gly Thr Thr Ser Val Ser Val Ile Asn
- CAC ACC CAC GGC AGT TAT TTT GCT GTG GAT ATA CGA GGG CTT GAT GTC 240 His Thr His Gly Ser Tyr Phe Ala Val Asp Ile Arg Gly Leu Asp Val
- TAT CAG GCG CGT TTT GAC CAT CTT CGT CTG ATT ATT GAG CAA AAT AAT 288 Tyr Gln Ala Arg Phe Asp His Leu Arg Leu Ile Ile Glu Gln Asn Asn
- TTA TAT GTG GCA GGG TTC GTT AAT ACG GCA ACA AAT ACT TTC TAC CGT Leu Tyr Val Ala Gly Phe Val Asn Thr Ala Thr Asn Thr Phe Tyr Arg 105
- TTT TCA GAT TTT ACA CAT ATA TCA GTG CCC GGT GTG ACA ACG GTT TCC Phe Ser Asp Phe Thr His Ile Ser Val Pro Gly Val Thr Thr Val Ser
- ATG ACA ACG GAC AGC AGT TAT ACC ACT CTG CAA CGT GTC GCA GCG CTG Met Thr Thr Asp Ser Ser Tyr Thr Thr Leu Gln Arg Val Ala Ala Leu 140

PCT/US96/04093 WO 96/30043

GAA Glu 145	CGT	TCC	GGA Gly	ATG Met	CAA Gln 150	ATC Ile	AGT Ser	CGT Arg	CAC His	TCA Ser 155	CTG Leu	GTT Val	TCA Ser	TCA Ser	TAT Tyr 160	480
CTG Leu	GCG Ala	TTA Leu	ATG Met	GAG Glu 165	TTC Phe	AGT Ser	GGT Gly	AAT Asn	ACA Thr 170	ATG Met	ACC Thr	AGA Arg	GAT Asp	GCA Ala 175	TCC Ser	528
AGA Arg	GCA Ala	GTT Val	CTG Leu 180	CGT Arg	TTT Phe	GTC Val	ACT Thr	GTC Val 185	ACA Thr	GCA Ala	GAA Glu	GCC Ala	TTA Leu 190	CGC Arg	TTC Phe	576
					GAA Glu											624
					CCG Pro											672
CGA Arg 225	ATC Ile	AGC Ser	AAT Asn	GTG Val	CTT Leu 230	CCG Pro	GAG Glu	TAT Tyr	CGG Arg	GGA Gly 235	GAG Glu	GAT Asp	GGT Gly	GTC Val	AGA Arg 240	720
GTG Val	GGG Gly	AGA Arg	ATA Ile	TCC Ser 245	TTT Phe	AAT Asn	AAT Asn	ATA Ile	TCA Ser 250	GCG Ala	ATA Ile	CTG Leu	GGG Gly	ACT Thr 255	GTG Val	768
					TGC Cys											816
					CAA Gln	Pro										864
					AAT Asn					Ser						912
TTT Phe 305	CTG Leu	AAC Asn	AGA Arg	AAG Lys	TCA Ser 310	CAG Gln	TTT Phe	TTA Leu	Tyr	ACA Thr 315	ACG Thr	GGT Gly	AAA Lys	Leu	GAG Glu 320	960
CAC His			His		CAC His	TG										981
(2)	INFO	RMAT	ION	FOR	SEQ	ID N	0:25	:								
	,															

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 326 amino acids (B) TYPE: amino acid

 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (x1) SEQUENCE DESCRIPTION: SEQ ID NO:25:
- Met Lys Cys Ile Leu Phe Lys Trp Val Leu Cys Leu Leu Gly Phe
- Ser Ser Val Ser Tyr Ser Arg Glu Phe Thr Ile Asp Phe Ser Thr Gln
- Gln Ser Tyr Val Ser Ser Leu Asn Ser Ile Arg Thr Glu Ile Ser Thr 35 40 45
- Pro Leu Glu His Ile Ser Gln Gly Thr Thr Ser Val Ser Val Ile Asn 50 55 60

```
His Thr His Gly Ser Tyr Phe Ala Val Asp Ile Arg Gly Leu Asp Val
Tyr Gln Ala Arg Phe Asp His Leu Arg Leu Ile Ile Glu Gln Asn Asn
Leu Tyr Val Ala Gly Phe Val Asn Thr Ala Thr Asn Thr Phe Tyr Arg
Phe Ser Asp Phe Thr His Ile Ser Val Pro Gly Val Thr Thr Val Ser
Met Thr Thr Asp Ser Ser Tyr Thr Thr Leu Gln Arg Val Ala Ala Leu
Glu Arg Ser Gly Met Gln Ile Ser Arg His Ser Leu Val Ser Ser Tyr
Leu Ala Leu Met Glu Phe Ser Gly Asn Thr Met Thr Arg Asp Ala Ser
Arg Ala Val Leu Arg Phe Val Thr Val Thr Ala Glu Ala Leu Arg Phe
Arg Gln Ile Gln Arg Glu Phe Arg Gln Ala Leu Ser Glu Thr Ala Pro
Val Tyr Thr Met Thr Pro Gly Asp Val Asp Leu Thr Leu Asn Trp Gly
Arg Ile Ser Asn Val Leu Pro Glu Tyr Arg Gly Glu Asp Gly Val Arg
Val Gly Arg Ile Ser Phe Asn Asn Ile Ser Ala Ile Leu Gly Thr Val
Ala Val Ile Leu Asn Cys His His Gln Gly Ala Arg Ser Val Arg Ala
            260
                                265
Val Asn Glu Glu Ser Gln Pro Glu Cys Gln Ile Thr Gly Asp Arg Pro
                            280
Val Ile Lys Ile Asn Asn Thr Leu Trp Glu Ser Asn Thr Ala Ala Ala
                        295
Phe Leu Asn Arg Lys Ser Gln Phe Leu Tyr Thr Thr Gly Lys Leu Glu
His His His His His
                325
```

(2) INFORMATION FOR SEQ ID NO:26:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 294 base pairs

(B) TYPE: nucleic acid

- (C) STRANDEDNESS: single (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (ix) FEATURE: (A) NAME/REY: CDS (B) LOCATION: 1...294
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:26:

ATG AAG AAG ATG TTT ATG GCG GTT TTA TTT GCA TTA GCT TCT GTT AAT Met Lys Lys Met Phe Met Ala Val Leu Phe Ala Leu Ala Ser Val Asn 100 100 115

GCA Ala	ATG Met	GCG Ala	GCG Ala 20	GAT Asp	TGT Cys	GCT Ala	AAA Lys	GGT Gly 25	Lys	ATT	GAG Glu	TTT Phe	Ser 30	Lys	TAT	9
AAT	GAG Glu	GAT Asp 35	GAC Asp	ACA Thr	TTT Phe	ACA Thr	GTG Val 40	Lys	GTT Val	GAC Asp	GGG Gly	AAA Lys 45	Glu	TAC Tyr	TGG	14
ACC Thr	AGT Ser 50	CGC Arg	TGG Trp	AAT Asn	CTG Leu	CAA Gln 55	CCG Pro	TTA Leu	CTG Leu	CAA Gln	AGT Ser 60	GCT Ala	CAG Gln	TTG Leu	ACA Thr	19
GGA Gly 65	ATG Met	ACT Thr	GTC Val	ACA Thr	ATC Ile 70	AAA Lys	TCC Ser	AGT Ser	ACC Thr	TGT Cys 75	GAA Glu	TCA Ser	GGC Gly	TCC Ser	GGA Gly 80	24
TTT Phe	GCT Ala	GAA Glu	GTG Val	CAG Gln 85	TTT Phe	AAT Asn	AAT Asn	GAC Asp	CTC Leu 90	GAG Glu	CAC His	CAC	CAC	CAC His 95	CAC His	28
CAC His	TG															29
(2)	INFO	RMAT	NOI	FOR	SEQ	ID N	10:2	7:								
(2) INFORMATION FOR SEQ ID NO;27: (1) SEQUENCE CHARACTERISTICS: (A) LENGTH: 97 amino acids (B) TYPE: amino acid (C) TOPOLOGY: linear																
	(i	.i) N	OLEC	ULE	TYPE	: pr	otei	n								
	(3)	i) S	EQUE	NCE	DESC	RIPT	ION:	SEC	ID	NO:2	27:					
Met 1	Lys	Lys	Met	Phe 5	Met	Ala	Val	Leu	Phe 10	Ala	Leu	Ala	Ser	Val 15	Asn	
Ala	Met	Ala	Ala 20	Asp	Cys	Ala	Lys	Gly 25	Lys	Ile	Glu	Phe	Ser 30	Lys	Tyr	
Asn	Glu	Asp 35	Asp	Thr	Phe	Thr	Val 40	Lys	Val	Asp	Gly	Lys 45	Glu	Tyr	Trp	
Thr	Ser 50	Arg	Trp	Asn	Leu	Gln 55	Pro	Leu	Leu	Gln	Ser.	Ala	Gln	Leu	Thr	
Gly 65	Met	Thr	\al	Thr	Ile 70	Lys	Ser	Ser	Thr	Cys 75	Glu	Ser	Gly	Ser	Gly 80	
Phe	Ala	Glu	Val (Gln 85	Phe .	Asn .	Asn	Asp	Leu 90	Glu	His	Hıs	His	His 95	His	
His																
(2)	INFO	RMAT	ION :	FOR	SEQ	ID N	0:28	:								
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 32 base pairs (B) TYPE: nucleic acid (C) STRANDENNESS: single (D) TOPOLOGY: linear															

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:28:

CGGAATTCAA GGAATTTACC TTAGACTTCT CG

(2) INFORMATION FOR SEQ ID NO:29:

(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 28 base pairs (B) TYPE: nucleic acid (C) STRANDEDMESS: single (D) TOPOLOGY: linear	
(ii)	MOLECULE TYPE: DNA (genomic)	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:29:	
GGCTCGAG*	TC AACTGCTAAT AGTTCTGC	2
(2) INFO	RMATION FOR SEQ ID NO:30:	
(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 32 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii)	MOLECULE TYPE: DNA (genomic)	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:30:	
CGGAATTC	CG GGAGTTTACG ATAGACTTTT CG	3:
(2) INFOR	RMATION FOR SEQ ID NO:31:	
(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii)	MOLECULE TYPE: DNA (genomic)	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:31.	
GGCTCGAGT	TT ATTTACCCGT TGTATATAA	2.9
(2) INFOR	RMATION FOR SEQ ID NO:32:	
Yil	SEQUENCE CHARACTERISTICS: (A) LENGTH 127 base pairs (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(11)	MOLECULE TYPE: DNA (genomic)	
(1X)	FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 12127	
(x1)	SEQUENCE DESCRIPTION: SEQ ID NO:32:	
ATG AAA A Met Lys I 1	ATA AAA ACA GGT GCA CGC ATC CTC GCA TTA TCC GCA TTA ACG Te Lys Thr Gly Ala Arg Ile Leu Ala Leu Ser Ala Leu Thr 5 10	48
ACG ATG A Thr Met M	TG TTT TCC GCC TCG GCT CTC GCC AAA ATC GAA GAA GGT AAA let Phe Ser Ala Ser Ala Leu Ala Lys Ile Glu Glu Gly Lys 20 25	96
Leu Val I	TC TGG ATT AAC GGC GAT AAA GGC TAT AAC GGT CTC GCT GAA le Trp 1le Asn Gly Asp Lys Gly Tyr Asn Gly Leu Ala Glu 35 45	144
GTC GGT A Val Gly L	AG AAA TTO GAG AAA GAT ACO GGA ATT AAA GTO ACO GTT GAG ys Lys Phe Glu Lys Asp Thr Gly Ile Lys Val Thr Val Glu	192

	50					55					60					
											Val				GGC Gly 80	240
GAT Asp	GGC Gly	CCT	GAC Asp	ATT Ile 85	ATC Ile	TTC Phe	TGG Trp	GCA Ala	CAC His	Asp	CGC	TTT	GGT	GGC Gly 95	TAC	288
GCT Ala	CAA Gln	TCT	GGC Gly 100	CTG Leu	TTG Leu	GCT Ala	GAA Glu	ATC Ile 105	Thr	CCG	GAC Asp	AAA Lys	GCG Ala 110	Phe	CAG Gln	336
GAC Asp	AAG Lys	CTG Leu 115	Tyr	CCG Pro	TTT Phe	ACC Thr	TGG Trp 120	Asp	GCC Ala	GTA Val	CGT Arg	TAC Tyr 125	Asn	GGC Gly	AAG Lys	384
CTG Leu	ATT Ile 130	GCT Ala	TAC Tyr	CCG Pro	ATC Ile	GCT Ala 135	GTT Val	GAA Glu	GCG Ala	TTA Leu	TCG Ser 140	CTG Leu	ATT	TAT Tyr	AAC Asn	432
					AAC Asn 150											480
CTG Leu	GAT Asp	AAA Lys	GAA Glu	CTG Leu 165	AAA Lys	GCG Ala	AAA Lys	GGT Gly	AAG Lys 170	AGC Ser	GCG Ala	CTG Leu	ATG Met	TTC Phe 175	AAC Asn	528
CTG Leu	CAA Gln	GAA Glu	CCG Pro 180	TAC Tyr	TTC Phe	ACC Thr	TGG Trp	CCG Pro 185	CTG Leu	ATT Ile	GCT Ala	GCT Ala	GAC Asp 190	GGG Gly	GGT Gly	576
TAT Tyr	GCG Ala	TTC Phe 195	AAG Lys	TAT Tyr	GAA Glu	AAC Asn	GGC Gly 200	AAG Lys	TAC Tyr	GAC Asp	ATT Ile	AAA Lys 205	GAC Asp	GTG Val	GGC Gly	624
GTG Val	GAT Asp 210	AAC Asn	GCT Ala	GGC Gly	GCG Ala	AAA Lys 215	GCG Ala	GGT Gly	CTG Leu	ACC Thr	TTC Phe 220	CTG Leu	GTT Val	GAC Asp	CTG Leu	672
ATT Ile 225	AAA Lys	AAC Asn	AAA Lys	CAC His	ATG Met 230	AAT Asn	GCA Ala	GAC Asp	ACC Thr	GAT Asp 235	TAC Tyr	TCC Ser	ATC Ile	GCA Ala	GAA Glu 240	720
GCT Ala	GCC Ala	TTT Phe	AAT Asn	AAA Lys 245	GGC Gly	GAA Glu	ACA Thr	GCG Ala	ATG Met 250	ACC Thr	ATC Ile	AAC Asn	GGC Gly	CCG Pro 255	TGG Trp	768
					GAC Asp		Ser									816
					GGT Gly	Gln										864
Ser					GCC Ala					Lys						912

TTC Phe 305	Leu	GAA Glu	AAC Asr	TAT	CTC Leu 310	Leu	ACT Thr	GAT Asp	GAA Glu	GGT Gly 315	' Let	GA2 1 Glu	GC0 Ala	GT:	AAT Asn 320	960
					Gly					Lys					A GAG 1 Glu 5	1008
TTG Leu	GCG Ala	AAA Lys	GAT Asp 340	Pro	CGT Arg	ATT	GCC	GCC Ala 345	Thr	ATG Met	GAA Glu	AAC Asn	GCC Ala 350	Glr	AAA Lys	1056
GGT Gly	GAA Glu	ATC Ile 355	Met	Pro	AAC Asn	ATC	CCG Pro 360	Gln	ATG Met	TCC	GCT	TTC Phe 365	Trp	TAT	GCC Ala	1104
GTG Val	CGT Arg 370	ACT Thr	GCG Ala	GTG Val	ATC	AAC Asn 375	GCC Ala	GCC Ala	AGC Ser	GGT Gly	CGT Arg 380	Gln	ACT	GTC Val	GAT Asp	1152
GAA Glu 385	GCC Ala	CTG Leu	AAA Lys	GAC Asp	GCG Ala 390	CAG Gln	ACT Thr	TCG Ser	AGC Ser	TCG Ser 395	AAC Asn	AAC Asn	AAC Asn	AAC	AAT Asn 400	1200
AAC Asn	AAT Asn	AAC Asn	AAC Asn	AAC Asn 405	Leu	GGG Gly	ATC Ile	GAG Glu	GGA Gly 410	AGG Arg	ATT	TCA Ser	GAA Glu	TTC Phe 415	AAG Lys	1248
GAA Glu	TTT Phe	ACC Thr	TTA Leu 420	GAC Asp	TTC Phe	TCG Ser	ACT Thr	GCA Ala 425	AAG Lys	ACG Thr	TAT	GTA Val	GAT Asp 430	TCG Ser	CTG Leu	1296
AAT Asn	GTC Val	ATT Ile 435	CGC Arg	TCT Ser	GCA Ala	ATA Ile	GGT Gly 440	ACT Thr	CCA Pro	TTA Leu	CAG Gln	ACT Thr 445	ATT	TCA Ser	TCA Ser	1344
GGA Gly	GGT Gly 450	ACG Thr	TCT Ser	TTA Leu	CTG Leu	ATG Met 455	ATT Ile	GAT Asp	AGT Ser	GGC Gly	TCA Ser 460	GGG Gly	GAT Asp	AAT Asn	TTG Leu	1392
TTT Phe 465	GCA Ala	GTT Val	GAT Asp	GTC Val	AGA Arg 470	GGG Gly	ATA Ile	GAT Asp	GCA Ala	GAG Glu 475	GAA Glu	GGG Gly	C G G A rg	TTT Phe	AAT Asn 480	1440
AAT Asn	CTA Leu	CGG Arg	CTT Leu	ATT Ile 485	GTT Val	GAA Glu	CGA Arg	AAT Asn	AAT Asn 490	TTA Leu	TAT Tyr	GTG Val	ACA Thr	GGA Gly 495	TTT Phe	1488
GTT Val	AAC Asn	AGG Arg	ACA Thr 500	AAT Asn	AAT Asn	GTT Val	TTT Phe	TAT Tyr 505	CGC Arg	TTT Phe	GCT Ala	GAT Asp	TTT Phe 510	TCA Ser	CAT His	1536
GTT Val	ACC Thr	TTT Phe 515	CCA Pro	GGT Gly	ACA Thr	ACA Thr	GCG Ala 520	GTT Val	ACA Thr	TTG Leu	TCT Ser	GGT Gly 525	GAC Asp	AGT Ser	AGC Ser	1584
Tyr	ACC Thr 530	ACG Thr	TTA Leu	CAG Gln	CGT Arg	GTT Val 535	GCA Ala	GGG Gly	ATC Ile	AGT Ser	CGT Arg 540	ACG Thr	GGG Gly	ATG Met	CAG Gln	1632
ATA Ile 545	AAT Asn	CGC Arg	CAT His	TCG Ser	TTG Leu 550	ACT Thr	ACT Thr	TCT Ser	TAT Tyr	CTG Leu 555	GAT Asp	TTA Leu	ATG Met	TCG Ser	CAT His 560	1680
AGT Ser			Ser					Val					Leu			1728
GTT . Val																1776

			580					585					590			
TTT Phe	CGT Arg	ACA Thr 595	ACA Thr	CTG Leu	GAT Asp	GAT Asp	CTC Leu 600	AGT Ser	GGG Gly	CGT Arg	TCT	TAT Tyr 605	GTA Val	ATG Met	ACT Thr	1824
			GTT Val													1872
			TAT Tyr													1920
TTT Phe	GGA Gly	AGC Ser	ATT Ile	AAT Asn 645	GCA Ala	ATT Ile	CTG Leu	GGA Gly	AGC Ser 650	GTG Val	GCA Ala	TTA Leu	ATA Ile	CTG Leu 655	AAT Asn	1968
			CAT His 660													2016
			TGT Cys													2064
			TGG Trp													2112
	ATT Ile		AGT Ser	TG												2127

- (2) INFORMATION FOR SEQ ID NO:33:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 708 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:33:

Met Lys lie Lys Thr Gly Ala Arg lie Leu Ala Leu Ser Ala Leu Thr 15

Thi Met Met Phe Ser Ala Ser Ala Leu Ala Lys lie Glu Gly Lys 25

Leu Val Ile Trp Ile Asn Gly Asp Lys Gly Tyr Asn Gly Leu Ala Glu 55

Val Gly Lys Lys Phe Glu Lys Asp Thr Gly Ile Lys Val Thr Val Glu 55

Find Asp Lys Leu Glu Glu Lys Phe Pro Gln Val Ala Ala Thr Gly 70

Ala Gln Ser Gly Pro Asp lie Ile Phe Trp Ala His Asp Arg Phe Gly Gly Tyr 85

Ala Gln Ser Gly Leu Leu Ala Glu Ile Thr Pro Asp Lys Ala Phe Gln 100

Asp Lys Leu Tyr Pro Phe Thr Tro Asp Asp Ala Val Arg Tyr Asn Gly Lys 115

Leu Ile Ala Tyr Pro Ile Ala Val Glu Ala Leu Ser Leu Ile Tyr Asn

	130	0				135	5				140)			
Lys 145		Leu	ı Le	ı Pro	150	Pro	Pro	Lys	Thi	Trp 155		Gl	ı Ile	e Pro	Ala 160
Leu	Asp	Lys	s Gl	1 Let 165	Lys	Ala	Lys	Gl;	Lys 170	s Ser	Ala	Le:	ı Met	Phe 175	e Asn
Leu	Glr	Glu	1 Pro	Туг	Phe	Thr	Tr	Pro 185	Lei	ılle	Ala	Ala	190	Gly	Gly
Tyr	Ala	Phe 199	Lys	Tyr	Glu	Asn	Gly 200	/ Lys	Туг	Asp	Ile	Lys 205	Asp	Val	Gly
Val	Asp 210	Asr	n Ala	Gly	Ala	Lys 215	Ala	Gly	Leu	Thr	220		val	Asp	Leu
Ile 225	Lys	Asr	1 Lys	His	Met 230	Asn	Ala	Asp	Thr	235	Tyr	Ser	Ile	Ala	Glu 240
Ala	Ala	Phe	Asr	Lys 245		Glu	Thr	Ala	Met 250	Thr	Ile	Asn	Gly	Pro 255	
Ala	Trp	Ser	260		Asp	Thr	Ser	Lys 265	Val	Asn	Tyr	Gly	Val 270	Thr	Val
Leu	Pro	Thr 275	Phe	Lys	Gly	Gln	Pro 280		Lys	Pro	Phe	Val 285	Gly	Val	Leu
Ser	Ala 290	Gly	Ile	Asn	Ala	Ala 295	Ser	Pro	Asn	Lys	Glu 300	Leu	Ala	Lys	Glu
Phe 305	Leu	Glu	Asn	Tyr	Leu 310	Leu	Thr	Asp	Glu	Gly 315	Leu	Glu	Ala	Val	Asn 320
Lys	Asp	Lys	Pro	Leu 325	Gly	Ala	Val	Ala	Leu 330	Lys	Ser	Tyr	Glu	Glu 335	Glu
Leu	Ala	Lys	Asp 340	Pro	Arg	Ile	Ala	Ala 345	Thr	Met	Glu	Asn	Ala 350	Gln	Lys
Gly	Glu	Ile 355	Met	Pro	Asn	Ile	Pro 360	Gln	Met	Ser	Ala	Phe 365	Trp	Tyr	Ala
Val	370			Val		375				Gly	380				-
385					390					Ser 395					400
Asn	Asn	Asn	Asn	Asn 405	Leu	Gly	Ile	Glu	Gly 410	Arg	Ile	Ser	Glu	Phe 415	Lys
Glu	Phe	Thr	Leu 420	Asp	Phe	Ser	Thr	Ala 425	Lys	Thr	Tyr	Val	Asp 430	Ser	Leu
Asn		Ile 435	Arg	Ser	Ala	Ile	Gly 440	Thr	Pro	Leu	Gln	Thr 445	Ile	Ser	Ser
Gly	450		Ser	Leu	Leu	Met 455	Ile	Asp	Ser	Gly	Ser 460	Gly	Asp	Asn	Leu
465	Ala			Val	Arg 470	Gly	Ile	Asp	Ala	Glu 475	Glu	Gly	Arg	Phe	Asn 480
	Leu			485					490	Leu				495	
Val	Asn	Arg	Thr 500	Asn	Asn	Val	Phe	Tyr 505	Arg	Phe	Ala	Asp	Phe 510	Ser	His

- 71 -

```
Val Thr Phe Pro Gly Thr Thr Ala Val Thr Leu Ser Gly Asp Ser Ser
                             520
Tyr Thr Thr Leu Gln Arg Val Ala Gly Ile Ser Arg Thr Gly Met Gln
                         535
Ile Asn Arg His Ser Leu Thr Thr Ser Tyr Leu Asp Leu Met Ser His
545
Ser Gly Thr Ser Leu Thr Gln Ser Val Ala Arg Ala Met Leu Arg Phe
Val Thr Val Thr Ala Glu Ala Leu Arg Phe Arg Gln Ile Gln Arg Gly
Phe Arg Thr Thr Leu Asp Asp Leu Ser Gly Arg Ser Tyr Val Met Thr
Ala Glu Asp Val Asp Leu Thr Leu Asn Trp Gly Arg Leu Ser Ser Val
Leu Pro Asp Tyr His Gly Gln Asp Ser Val Arg Val Gly Arg Ile Ser
Phe Gly Ser Ile Asn Ala Ile Leu Gly Ser Val Ala Leu Ile Leu Asn
Cys His His His Ala Ser Arg Val Ala Arg Met Ala Ser Asp Glu Phe
Pro Ser Met Cys Pro Ala Asp Gly Arg Val Arg Gly Ile Thr His Asn
                            680
Lys Ile Leu Trp Asp Ser Ser Thr Leu Gly Ala Ile Leu Met Arg Arg
                        695
                                            700
Thr Ile Ser Ser
705
(2) INFORMATION FOR SEQ ID NO:34:
     (i) SEQUENCE CHARACTERISTICS:
          (A) LENGTH: 2136 base pairs
          (B) TYPE: nucleic acid
          (C) STRANDEDNESS: single
          (D) TOPOLOGY: linear
   (ii) MOLECULE TYPE: DNA (genomic)
   (ix) FEATURE:
          (A) NAME/KEY: CDS
          (B) LOCATION: 1..2136
    (xi) SEQUENCE DESCRIPTION: SEQ ID NO:34:
```

ATG AAA ATA AAA ACA GGT GCA CGC ATC CTC GCA TTA TCC GCA TTA ACG
Met Lys Ile Lys Thr Gly Ala Arg Ile Leu Ala Leu Ser Ala Leu Thr
10 15

ACG ATG ATG TTT TCC GCC TCG GCT CTC GCC AAA ATC GAA GAA GGT AAA
Thr Met Met Phe Ser Ala Ser Ala Leu Ala Lys Ile Glu Glu Gly Lys
20 20

CTG GTA ATC TGG ATT AAC GGC GAT AAA GGC TAT AAC GGT CTC GCT GAA
Leu Val Ile Trp Ile Asn Gly Asp Lys Gly Tyr Asn Gly Leu Ala Glu
35

GTC GGT AAG AAA TTC GAG AAAA GAT ACC GGA ATT AAA GTC ACC GTT GAG
GTC GGT AAG AAA TTC GAG AAAA GAT ACC GGA ATT AAA GTC ACC GTT GAG
Val Gly Lys Lys Phe Glu Lys Asp Thr Gly Ile Lys Val Thr Val Glu

CAT His	Pro	GAT Asp	Lys	CTG Leu	GAA Glu 70	Glu	AAA Lys	TTC Phe	CC#	CAG Gln 75	Va:	GC0 Ala	GCA Ala	ACT Thi	GGC Gly 80	240
					Ile					Asp					TAC	288
				Leu					Thr					Phe	CAG Gln	336
GAC Asp	AAG Lys	CTG Leu 115	Tyr	CCG Pro	TTT	ACC Thr	TGG Trp 120	Asp	GCC Ala	GTA Val	CGT	TAC Tyr 125	Asn	GGC	AAG Lys	384
CTG Leu	ATT Ile 130	Ala	TAC	CCG Pro	ATC Ile	GCT Ala 135	GTT Val	GAA Glu	GCG Ala	TTA Leu	TCG Ser 140	Leu	ATT	TAT	AAC Asn	432
	Asp														GCG Ala 160	480
		AAA Lys														528
CTG Leu	CAA Gln	GAA Glu	CCG Pro 180	TAC Tyr	TTC Phe	ACC Thr	TGG Trp	CCG Pro 185	CTG Leu	ATT Ile	GCT Ala	GCT Ala	GAC Asp 190	GGG Gly	GGT Gly	576
		TTC Phe 195														624
GTG Val	GAT Asp 210	AAC Asn	GCT Ala	GGC Gly	GCG Ala	AAA Lys 215	GCG Ala	GGT Gly	CTG Leu	ACC Thr	TTC Phe 220	CTG Leu	GTT Val	GAC Asp	CTG Leu	672
		AAC Asn														720
		TTT Phe														768
GCA Ala	TGG Trp	TCC Ser	AAC Asn 260	ATC Ile	GAC Asp	ACC Thr	AGC Ser	AAA Lys 265	GTG Val	AAT Asn	TAT Tyr	GGT Gly	GTA Val 270	ACG Thr	GTA Val	816
		ACC Thr 275				Gln										864
AGC Ser	GCA Ala 290	GGT Gly	ATT Ile	AAC Asn	GCC Ala	GCC Ala 295	AGT Ser	CCG Pro	AAC Asn	AAA Lys	GAG Glu 300	CTG Leu	GCG Ala	AAA Lys	GAG Glu	912
TTC Phe 305	CTC Leu	GAA Glu	AAC Asn	TAT Tyr	CTG Leu 310	CTG Leu	ACT Thr	GAT Asp	Glu	GGT Gly 315	CTG Leu	GAA Glu	GCG Ala	GTT Val	AAT Asn 320	960
		AAA Lys						Ala					Glu			1008
TTG Leu	GCG Ala	AAA Lys	GAT Asp	CCA Pro	CGT Arg	ATT	GCC Ala	GCC Ala	ACC Thr	ATG Met	GAA Glu	AAC Asn	GCC Ala	CAG Gln	AAA Lys	1056

			340)				345	5				350)		
GG7 Gl ₃	GAJ Glu	A ATO	≗ Met	ccc Pro	AAC Asr	ATO	9 CCC	Glr	ATO Met	S TCC	GCT	T TTO a Phe 365	Tr	TA'	GCC Ala	1104
GT0 Val	370	Thi	GCC Ala	GTC Val	ATC Ile	AAC Asr 375	Ala	GCC	AGC Ser	GGT	CGT Arg 380	g Glr	ACT Thi	r GTC r Val	GAT Asp	1152
GAA Glu 385	Ala	CTC Leu	AAA Lys	GAC Asp	GCG Ala 390	Gln	ACT	TCG	AGC Ser	Ser 395	Asr	AAC Asr	AAC	AAC Asr	AAT Asn 400	1200
AAC	AAT Asn	AAC Asn	AAC Asn	AAC Asn 405	Leu	GGG	ATC Ile	GAG Glu	GGA Gly 410	Arg	ATT	TCA Ser	GAA Glu	Phe 415	CGG Arg	1248
GAG Glu	TTT	ACG Thr	ATA Ile 420	Asp	TTT Phe	TCG Ser	ACC Thr	CAA Gln 425	Gln	AGT Ser	TAT	GTC Val	TCT Ser 430	Ser	TTA Leu	1296
AAT Asn	AGT Ser	ATA Ile 435	Arg	ACA Thr	GAG Glu	ATA Ile	TCG Ser 440	ACC Thr	CCT Pro	CTT Leu	GAA Glu	CAT His	ATA	TCT	CAG Gln	1344
GGG Gly	ACC Thr 450	ACA Thr	TCG Ser	GTG Val	TCT Ser	GTT Val 455	ATT Ile	AAC Asn	CAC His	ACC Thr	CAC His 460	GGC	AGT Ser	TAT	TTT Phe	1392
GCT Ala 465	GTG Val	GAT Asp	ATA Ile	CGA Arg	GGG Gly 470	CTT	GAT Asp	GTC Val	TAT Tyr	CAG Gln 475	GCG Ala	CGT Arg	TTT Phe	GAC Asp	CAT His 480	1440
CTT Leu	CGT Arg	CT3 Leu	ATT Ile	ATT Ile 485	GAG Glu	CAA Gln	AAT Asn	AAT Asn	TTA Leu 490	TAT Tyr	GTG Val	GCA Ala	GGG Gly	TTC Phe 495	GTT Val	1488
AAT Asn	ACG Thr	GCA Ala	ACA Thr 500	AAT Asn	ACT Thr	TTC Phe	TAC Tyr	CGT Arg 505	TTT Phe	TCA Ser	GAT Asp	TTT	ACA Thr 510	CAT His	ATA Ile	1536
TCA Ser	GTG Val	CCC Pro 515	GGT Gly	GTG Val	ACA Thr	ACG Thr	GTT Val 520	TCC Ser	ATG Met	ACA Thr	ACG Thr	GAC Asp 525	AGC Ser	AGT Ser	TAT Tyr	1584
ACC Thr	ACT Thr 530	CT3 Leu	CAA Gln	CGT Arg	GTC Val	GCA Ala 535	GCG Ala	CTG Leu	GAA Glu	CGT Arg	TCC Ser 540	GGA Gly	ATG Met	CAA Gln	ATC Ile	1632
AGT Ser 545	CGT Arg	CAC His	TCA Ser	CTG Leu	GTT Val 550	TCA Ser	TCA Ser	TAT Tyr	CTG Leu	GCG Ala 555	TTA Leu	ATG Met	GAG Glu	TTC Phe	AGT Ser 560	1680
GGT Gly	AAT Asn	ACA Thr	ATG Met	ACC Thr 565	AGA Arg	GAT Asp	GCA Ala	TCC Ser	AGA Arg 570	GCA Ala	GTT Val	CTG Leu	CGT Arg	TTT Phe 575	GTC Val	1728
ACT Thr	GTC Val	ACA Thr	GCA Ala 580	GAA Glu	GCC Ala	TTA Leu	Arg	TTC Phe 585	AGG Arg	CAG Gln	ATA Ile	CAG Gln	AGA Arg 590	GAA Glu	TTT Phe	1776
CGT Arg	CAG Gln	GCA Ala 595	CTG Leu	TCT Ser	GAA Glu	Thr	GCT Ala 600	CCT Pro	GTG Val	TAT Tyr	Thr	ATG Met 605	ACG Thr	CCG Pro	GGA Gly	1824
Asp	GTG Val 610	GAC Asp	CTC Leu	ACT Thr	Leu	AAC Asn 615	TGG Trp	GGG Gly	CGA Arg	Ile	AGC Ser 620	AAT Asn	GTG Val	CTT Leu	CCG Pro	1872

- 74 -

TAT Tyr								1920
ATA Ile								1968
CAG Gln								2016
TGT Cys								2064
TGG Trp 690								2112
TTA Leu			TA					2136

- (2) INFORMATION FOR SEQ ID NO:35:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 711 amino acids
 - (B) TYPE: amino acid (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:35:

Tyr Ala Phe Lys Tyr Glu Asn Gly Lys Tyr Asp Ile Lys Asp Val Gly 200 Val Asp Asn Ala Gly Ala Lys Ala Gly Leu Thr Phe Leu Val Asp Leu Ile Lys Asn Lys His Met Asn Ala Asp Thr Asp Tyr Ser Ile Ala Glu Ala Ala Phe Asn Lys Gly Glu Thr Ala Met Thr Ile Asn Gly Pro Trp Ala Trp Ser Asn Ile Asp Thr Ser Lys Val Asn Tyr Gly Val Thr Val Leu Pro Thr Phe Lys Gly Gln Pro Ser Lys Pro Phe Val Gly Val Leu Ser Ala Gly Ile Asn Ala Ala Ser Pro Asn Lys Glu Leu Ala Lys Glu 290 295 300 Phe Leu Glu Asn Tyr Leu Leu Thr Asp Glu Gly Leu Glu Ala Val Asn Lys Asp Lys Pro Leu Gly Ala Val Ala Leu Lys Ser Tyr Glu Glu Glu Leu Ala Lys Asp Pro Arg Ile Ala Ala Thr Met Glu Asn Ala Gln Lys Gly Glu Ile Met Pro Asn Ile Pro Gln Met Ser Ala Phe Trp Tyr Ala Val Arg Thr Ala Val Ile Asn Ala Ala Ser Gly Arg Gln Thr Val Asp Glu Ala Leu Lys Asp Ala Gln Thr Ser Ser Ser Asn Asn Asn Asn Asn 390 Asn Asn Asn Asn Asn Leu Gly Ile Glu Gly Arg Ile Ser Glu Phe Arg Glu Phe Thr Ile Asp Phe Ser Thr Gln Gln Ser Tyr Val Ser Ser Leu 425 Asn Ser Ile Arg Thr Glu Ile Ser Thr Pro Leu Glu His Ile Ser Gln Gly Thr Thr Ser Val Ser Val Ile Asn His Thr His Gly Ser Tyr Phe 455 Ala Val Asp Ile Arg Gly Leu Asp Val Tyr Gln Ala Arg Phe Asp His Leu Arg Leu Ile Ile Glu Gln Asn Asn Leu Tyr Val Ala Gly Phe Val Asn Thr Ala Thr Asn Thr Phe Tyr Arg Phe Ser Asp Phe Thr His Ile Ser Val Pro Gly Val Thr Thr Val Ser Met Thr Thr Asp Ser Ser Tyr Thr Thr Leu Gln Arg Val Ala Ala Leu Glu Arg Ser Gly Met Gln Ile Ser Arg His Ser Leu Val Ser Ser Tyr Leu Ala Leu Met Glu Phe Ser Gly Asn Thr Met Thr Arg Asp Ala Ser Arg Ala Val Leu Arg Phe Val

- 76 -

565 570 Thr Val Thr Ala Glu Ala Leu Arg Phe Arg Gln Ile Gln Arg Glu Phe Arg Gln Ala Leu Ser Glu Thr Ala Pro Val Tyr Thr Met Thr Pro Gly 600 Asp Val Asp Leu Thr Leu Asn Trp Gly Arg Ile Ser Asn Val Leu Pro Glu Tyr Arg Gly Glu Asp Gly Val Arg Val Gly Arg Ile Ser Phe Asn Asn Ile Ser Ala Ile Leu Gly Thr Val Ala Val Ile Leu Asn Cys His 650 His Gln Gly Ala Arg Ser Val Arg Ala Val Asn Glu Glu Ser Gln Pro Glu Cys Gln Ile Thr Gly Asp Arg Pro Val Ile Lys Ile Asn Asn Thr Leu Trp Glu Ser Asn Thr Ala Ala Ala Phe Leu Asn Arg Lys Ser Gln Phe Leu Tyr Thr Thr Gly Lys (2) INFORMATION FOR SEQ ID NO:36: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 981 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic) (ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 1..981 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:36: ATG AAA AAG ACA GCT ATC GCG ATT GCA GTG GCA CTG GCT GGT TTC GCT Met Lys Lys Thr Ala Ile Ala Ile Ala Val Ala Leu Ala Gly Phe Ala 48 ACC GTT GCG CAA GCT GAC TAC AAG GAC GAC GAT GAC AAG AAG CTT GAA 96 Thr Val Ala Gln Ala Asp Tyr Lys Asp Asp Asp Asp Lys Lys Leu Glu 20 25 TTC AAG GAA TTT ACC TTA GAC TTC TCG ACT GCA AAG ACG TAT GTA GAT 144 Phe Lys Glu Phe Thr Leu Asp Phe Ser Thr Ala Lys Thr Tyr Val Asp TCG CTG AAT GTC ATT CGC TCT GCA ATA GGT ACT CCA TTA CAG ACT ATT Ser Leu Asn Val Ile Arg Ser Ala Ile Gly Thr Pro Leu Gln Thr Ile TCA TCA GGA GGT ACG TCT TTA CTG ATG ATT GAT AGT GGC TCA GGG GAT 240 Ser Ser Gly Gly Thr Ser Leu Leu Met Ile Asp Ser Gly Ser Gly Asp AAT TTG TTT GCA GTT GAT GTC AGA GGG ATA GAT GCA GAG GAA GGG CGG 288 Asn Leu Phe Ala Val Asp Val Arg Gly Ile Asp Ala Glu Glu Gly Arg TTT AAT AAT CTA CGG CTT ATT GTT GAA CGA AAT AAT TTA TAT GTG ACA 336

- 77 -

Phe	e Asr	Asn	Leu 100	Arg	J Lei	Ile	Val	Glu 105	a Arg	Asr	Asr	1 Leu	1 Ty:		l Thr	
GG# Gly	TTT Phe	Val	Asn	AGG	ACA Thr	AAT Asn	AAT Asn 120	Val	TTT Phe	TAT	CGC	Phe 125	Ala	GAT Asp	Phe	384
TCA	CAT His	Val	ACC	TTT	Pro	GGT Gly 135	ACA Thr	ACA Thr	GCG Ala	GTT Val	ACA Thr 140	Leu	TCT Ser	GG1	GAC Asp	432
AGT Ser 145	Ser	TAT	ACC Thr	ACG	TTA Leu 150	Gln	CGT Arg	GTT Val	GCA Ala	GGG Gly 155	Ile	AGT Ser	CGT	ACG	GGG Gly 160	480
ATG Met	CAG Gln	ATA	AAT Asn	CGC Arg 165	His	TCG Ser	TTG Leu	ACT Thr	ACT Thr 170	TCT Ser	TAT Tyr	CTG Leu	GAT Asp	TTA Leu 175	ATG Met	528
TCG Ser	CAT	AGT Ser	GGA Gly 180	ACC Thr	TCA Ser	CTG Leu	ACG Thr	CAG Gln 185	Ser	GTG Val	GCA Ala	AGA Arg	GCG Ala 190	ATG Met	TTA Leu	576
CGG Arg	TTT Phe	GTT Val 195	ACT Thr	GTG Val	ACA Thr	GCT Ala	GAA Glu 200	GCT Ala	TTA Leu	CGT Arg	TTT Phe	CGG Arg 205	CAA Gln	ATA Ile	CAG Gln	624
AGG Arg	GGA Gly 210	TTT Phe	CGT Arg	ACA Thr	ACA Thr	CTG Leu 215	GAT Asp	GAT Asp	CTC Leu	AGT Ser	GGG Gly 220	CGT Arg	TCT Ser	TAT Tyr	GTA Val	672
ATG Met 225	ACT Thr	GCT Ala	GAA Glu	GAT Asp	GTT Val 230	GAT Asp	CTT Leu	ACA Thr	TTG Leu	AAC Asn 235	TGG Trp	GGA Gly	AGG Arg	TTG Leu	AGT Ser 240	720
AGC Ser	GTC Val	CTG Leu	CCT Pro	GAC Asp 245	TAT Tyr	CAT His	GGA Gly	CAA Gln	GAC Asp 250	TCT Ser	GTT Val	CGT Arg	GTA Val	GGA Gly 255	AGA Arg	768
ATT Ile	TCT Ser	TTT Phe	GGA Gly 260	AGC Ser	ATT Ile	AAT Asn	Ala	ATT Ile 265	CTG Leu	GGA Gly	AGC Ser	GTG Val	GCA Ala 270	TTA Leu	ATA Ile	816
CTG Leu	AAT Asn	TGT Cys 275	CAT His	CAT His	CAT His	Ala	TCG Ser 280	CGA Arg	GTT Val	GCC Ala	Arg	ATG Met 285	GCA Ala	TCT Ser	GAT Asp	864
GAG Glu	TTT Phe 290	CCT Pro	TCT Ser	ATG Met	Cys	CCG Pro 295	GCA Ala	GAT Asp	GGA Gly	Arg	GTC Val 300	CGT Arg	GGG Gly	ATT Ile	ACG Thr	912
CAC His 305	AAT Asn	AAA Lys	ATA Ile	Leu	TGG Trp 310	GAT Asp	TCA Ser	TCC Ser	ACT Thr	CTG Leu 315	GGG Gly	GCA Ala	ATT Ile	Leu	ATG Met 320	960
CGC Arg	AGA Arg	ACT Thr	Ile	AGC Ser 325	AGT Ser	TG										981

- (2) INFORMATION FOR SEQ ID NO:37:
 - (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 326 amino acids
 (B) TYPE: amino acid
 (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (x1) SEQUENCE DESCRIPTION: SEQ ID NO:37:

Met Lys Lys Thr Ala Ile Ala Ile Ala Val Ala Leu Ala Gly Phe Ala Thr Val Ala Gln Ala Asp Tyr Lys Asp Asp Asp Lys Lys Leu Glu Phe Lys Glu Phe Thr Leu Asp Phe Ser Thr Ala Lys Thr Tyr Val Asp Ser Leu Asn Val Ile Arg Ser Ala Ile Gly Thr Pro Leu Gln Thr Ile Ser Ser Gly Gly Thr Ser Leu Leu Met Ile Asp Ser Gly Ser Gly Asp Asn Leu Phe Ala Val Asp Val Arg Gly Ile Asp Ala Glu Glu Gly Arg Phe Asn Asn Leu Arg Leu Ile Val Glu Arg Asn Asn Leu Tyr Val Thr Gly Phe Val Asn Arg Thr Asn Asn Val Phe Tyr Arg Phe Ala Asp Phe Ser His Val Thr Phe Pro Gly Thr Thr Ala Val Thr Leu Ser Gly Asp Ser Ser Tyr Thr Thr Leu Gln Arg Val Ala Gly Ile Ser Arg Thr Gly 150 155 Met Gln Ile Asn Arg His Ser Leu Thr Thr Ser Tyr Leu Asp Leu Met Ser His Ser Gly Thr Ser Leu Thr Gln Ser Val Ala Arg Ala Met Leu Arg Phe Val Thr Val Thr Ala Glu Ala Leu Arg Phe Arg Gln Ile Gln Arg Gly Phe Arg Thr Thr Leu Asp Asp Leu Ser Gly Arg Ser Tyr Val Met Thr Ala Glu Asp Val Asp Leu Thr Leu Asn Trp Gly Arg Leu Ser Ser Val Leu Pro Asp Tyr His Gly Gln Asp Ser Val Arg Val Gly Arg 245 250 255 Ile Ser Phe Gly Ser Ile Asn Ala Ile Leu Gly Ser Val Ala Leu Ile 265 Leu Asn Cys His His Ala Ser Arg Val Ala Arg Met Ala Ser Asp Glu Phe Pro Ser Met Cys Pro Ala Asp Gly Arg Val Arg Gly Ile Thr His Asn Lys Ile Leu Trp Asp Ser Ser Thr Leu Gly Ala Ile Leu Met Arg Arg Thr Ile Ser Ser

- (2) INFORMATION FOR SEO ID NO:38:
 - (1) SEQUENCE CHARACTERISTICS: (A) LENGTH: 990 base pairs

 - (B) TYPE: nucleic acid (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 1..990

	(xi) SE	QUEN	CE D	ESCR	IPTI	ON:	SEQ	ID N	10:38	:					
ATG Met 1	Lys	AAG Lys	ACA Thr	GCT Ala	Ile	GCG Ala	ATT	GCA Ala	A GTG Val	. Ala	CTC Let	G GCT	GG:	Phe	GCT Ala	48
ACC Thr	GTT Val	GCG Ala	CAA Gln 20	Ala	GAC Asp	TAC	Lys	GAC Asp	Asp	GAT Asp	GAC Asi	Lys	Lys 30	Let	GAA Glu	96
TTC Phe	CGG Arg	GAG Glu 35	TTT Phe	ACG Thr	ATA Ile	GAC Asp	TTT Phe 40	Ser	ACC	CAA Gln	Gln	AGT Ser 45	Tyr	GTC Val	TCT Ser	144
TCG Ser	TTA Leu 50	AAT Asn	AGT Ser	ATA Ile	CGG Arg	ACA Thr 55	GAG Glu	ATA	TCG	ACC Thr	Pro 60	Leu	GAA Glu	CAT His	ATA Ile	192
TCT Ser 65	CAG Gln	GGG Gly	ACC Thr	ACA Thr	TCG Ser 70	GTG Val	TCT Ser	GTT Val	ATT	AAC Asn 75	CAC	ACC Thr	CAC	GGC Gly	AGT Ser 80	240
TAT Tyr	TTT Phe	GCT Ala	GTG Val	GAT Asp 85	ATA Ile	CGA Arg	GGG Gly	CTT Leu	GAT Asp 90	GTC Val	TAT	CAG Gln	GCG Ala	CGT Arg 95	TTT	288
GAC Asp	CAT His	CTT Leu	CGT Arg 100	CTG Leu	ATT Ile	ATT Ile	GAG Glu	CAA Gln 105	AAT Asn	AAT Asn	TTA Leu	TAT Tyr	GTG Val 110	GCA Ala	GGG Gly	336
TTC Phe	GTT Val	AAT Asn 115	ACG Thr	GCA Ala	ACA Thr	AAT Asn	ACT Thr 120	TTC Phe	TAC Tyr	CGT Arg	TTT Phe	TCA Ser 125	GAT Asp	TTT Phe	ACA Thr	384
CAT His	ATA Ile 130	TCA Ser	GTG Val	CCC Pro	GGT Gly	GTG Val 135	ACA Thr	ACG Thr	GTT Val	TCC Ser	ATG Met 140	ACA Thr	ACG Thr	GAC Asp	AGC Ser	432
AGT Ser 145	TAT Tyr	ACC Thr	ACT Thr	CTG Leu	CAA Gln 150	CGT Arg	GTC Val	GCA Ala	GCG Ala	CTG Leu 155	GAA Glu	CGT Arg	TCC Ser	GGA Gly	ATG Met 160	480
CAA Gln	ATC Ile	AGT Ser	CGT Arg	CAC His 165	TCA Ser	CTG Leu	GTT Val	TCA Ser	TCA Ser 170	TAT Tyr	CTG Leu	GCG Ala	TTA Leu	ATG Met 175	GAG Glu	528
TTC Phe	AGT Ser	GGT Gly	AAT Asn 180	ACA Thr	ATG Met	ACC Thr	AGA Arg	GAT Asp 185	GCA Ala	TCC Ser	AGA Arg	GCA Ala	GTT Val 190	CTG Leu	CGT Arg	576
TTT Phe	Val	ACT Thr 195	GTC Val	ACA Thr	GCA Ala	Glu	GCC Ala 200	TTA Leu	CGC Arg	TTC Phe	AGG Arg	CAG Gln 205	ATA Ile	CAG Gln	AGA Arg	624
GAA Glu	TTT Phe 210	CGT Arg	CAG Gln	GCA Ala	Leu	TCT Ser 215	GAA Glu	ACT Thr	GCT Ala	Pro	GTG Val 220	TAT Tyr	ACG Thr	ATG Met	ACG Thr	672
Pro 225	GGA Gly	GAC Asp	GTG Val	Asp	CTC Leu 230	ACT Thr	CTG Leu	AAC Asn	Trp	GGG Gly 235	CGA Arg	ATC Ile	AGC Ser	Asn	GTG Val 240	720
CTT Leu	CCG Pro	GAG Glu	TAT Tyr	CGG Arg	GGA Gly	GAG Glu	GAT Asp	GGT Gly	GTC Val	AGA Arg	GTG Val	GGG Gly	AGA Arg	ATA Ile	TCC Ser	768

816

912

960

990

245 250 TTT AAT AAT ATA TCA GCG ATA CTG GGG ACT GTG GCC GTT ATA CTG AAT Phe Asn Asn Ile Ser Ala Ile Leu Gly Thr Val Ala Val Ile Leu Asn 260 265 TGC CAT CAT CAG GGG GCG CGT TCT GTT CGC GCC GTG AAT GAA GAG AGT Cys His His Gln Gly Ala Arg Ser Val Arg Ala Val Asn Glu Glu Ser 280 CAA CCA GAA TGT CAG ATA ACT GGC GAC AGG CCT GTT ATA AAA ATA AAC Gln Pro Glu Cys Gln Ile Thr Gly Asp Arg Pro Val Ile Lys Ile Asn AAT ACA TTA TGG GAA AGT AAT ACA GCT GCA GCG TTT CTG AAC AGA AAG Asn Thr Leu Trp Glu Ser Asn Thr Ala Ala Ala Phe Leu Asn Arg Lys 305 310 TCA CAG TTT TTA TAT ACA ACG GGT AAA TA Ser Gln Phe Leu Tyr Thr Thr Gly Lys (2) INFORMATION FOR SEC ID NO:39: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 329 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein (xi) SEQUENCE DESCRIPTION: SEQ ID NO:39: Met Lys Lys Thr Ala Ile Ala Ile Ala Val Ala Leu Ala Gly Phe Ala

Thr Val Ala Gln Ala Asp Tyr Lys Asp Asp Asp Lys Lys Leu Glu Phe Arg Glu Phe Thr Ile Asp Phe Ser Thr Gln Gln Ser Tyr Val Ser Ser Leu Asn Ser Ile Arg Thr Glu Ile Ser Thr Pro Leu Glu His Ile Ser Gln Gly Thr Thr Ser Val Ser Val Ile Asn His Thr His Gly Ser Tyr Phe Ala Val Asp Ile Arg Gly Leu Asp Val Tyr Gln Ala Arg Phe Asp His Leu Arg Leu Ile Ile Glu Gln Asn Asn Leu Tyr Val Ala Gly Phe Val Asn Thr Ala Thr Asn Thr Phe Tyr Arg Phe Ser Asp Phe Thr His Ile Ser Val Pro Gly Val Thr Thr Val Ser Met Thr Thr Asp Ser Ser Tyr Thr Thr Leu Gln Arg Val Ala Ala Leu Glu Arg Ser Gly Met Glm Ile Ser Arg His Ser Leu Val Ser Ser Tyr Leu Ala Leu Met Glu Phe Ser Gly Asn Thr Met Thr Arg Asp Ala Ser Arg Ala Val Leu Arg Phe Val Thr Val Thr Ala Glu Ala Leu Arg Phe Arg Gln Ile Glm Arg

		195					200					205			
Glu	Phe 210	Arg	Gln	Ala	Leu	Ser 215	Glu	Thr	Ala	Pro	Val 220	Tyr	Thr	Met	Thr
Pro 225	Gly	Asp	Val	Asp	Leu 230	Thr	Leu	Asn	Trp	Gly 235	Arg	Ile	Ser	Asn	Val 240
Leu	Pro	Glu	Tyr	Arg 245	Gly	Glu	Asp	Gly	Val 250	Arg	Val	Gly	Arg	Ile 255	Ser
Phe	Asn	Asn	11e 260	Ser	Ala	Ile	Leu	Gly 265	Thr	Val	Ala	Val	Ile 270	Leu	Asn
Cys	His	His 275	Gln	Gly	Ala	Arg	Ser 280	Val	Arg	Ala	Val	Asn 285	Glu	Glu	Ser
Gln	Pro 290	Glu	Cys	Gln	Ile	Thr 295	Gly	Asp	Arg	Pro	Val 300	Ile	Lys	Ile	Asn
Asn 305	Thr	Leu	Trp	Glu	Ser 310	Asn	Thr	Ala	Ala	Ala 315	Phe	Leu	Asn	Arg	Lys 320
Ser	Gln	Phe	Leu	Tyr 325	Thr	Thr	Gly	Lys							

- 82 -

CLAIMS

What is claimed is:

10

15

20

- A method of treatment comprising:
 - a) providing:
 - antitoxin directed against at least a portion of an Escherichia coli verotoxin in an aqueous solution in therapeutic amount that is administrable, and
 - ii) an intoxicated subject; and
 - b) administering said antitoxin to said subject.
 - 2. The method of Claim 1 wherein said Escherichia coli verotoxin is recombinant.
 - The method of Claim 1 wherein said antitoxin is an avian antitoxin.
 - 4. The method of Claim 2 wherein said recombinant Escherichia coli verotoxin is a fusion protein comprising a non-verotoxin protein sequence and a portion of the Escherichia coli verotoxin VT1 sequence.
 - 5. The method of Claim 2 wherein said recombinant Escherichia coli verotoxin is a fusion protein comprising a non-verotoxin protein sequence and a portion of the Escherichia coli verotoxin VT2 sequence.
- The method of Claim 1 wherein said subject is an adult.
 - 7. The method of Claim 1 wherein said subject is a child.
 - The method of Claim 1 wherein said administering is parenteral.
 - 9. The method of Claim 1 wherein said administering is oral.

10. A method of prophylactic treatment comprising:

a) providing:

5

15

- an antitoxin directed against at least one Escherichia coli verotoxin in an aqueous solution in therapeutic amount that is parenterally administrable, and
 - at least one subject is at risk of diarrheal disease; and
- b) parenterally administering said antitoxin to said subject.
- 11. The method of Claim 10, wherein said subject is at risk of developing extraintestinal complications of Escherichia coli infection.
 - The method of Claim 11, wherein said extra-intestinal complication is hemolytic uremic syndrome.
 - A composition comprising neutralizing antitoxin directed against at least one Escherichia coli verotoxin in an aqueous solution in therapeutic amounts.
 - The composition of Claim 13 wherein said Escherichia cali verotoxin is a recombinant toxin.
 - 15. The composition of Claim 14 wherein said recombinant Escherichia coli verotoxin is a fusion protein comprising a non-verotoxin protein sequence and a portion of the Escherichia coli verotoxin VT1 sequence.
- 25 16. The composition of Claim 14 wherein said recombinant Escherichia coli verotoxin is a fusion protein comprising a non-verotoxin protein sequence and a portion of the Escherichia coli verotoxin VT2 sequence.
- 17. The composition of Claim 14 wherein said antitoxin is directed against a 30 portion of at least one Escherichia coli verotoxin.
 - The composition of Claim 14 wherein said portion of Escherichia coli is selected from the group consisting of subunit A and subunit B of VT1.

 The composition of Claim 14 wherein said portion of Escherichia coli is selected from the group consisting of subunit A and subunit B of VT2.

- The composition of Claim 14 wherein said antitoxin is directed against a
 portion of at least one Escherichia coli verotoxin.
 - 21. The composition of Claim 14 wherein said antitoxin is an ayian antitoxin.
 - 22. A method of treatment of enteric bacterial infections comprising:
 - a) providing:

10

- an avian antitoxin directed against at least one verotoxin produced by Escherichia coli in an aqueous solution in therapeutic amount that is parenterally administrable, and
 - ii) at least one infected subject; and
- b) parenterally administering said avian antitoxin to said subject.
- 23. The method of Claim 18 wherein said Escherichia coli is selected from the group consisting of Escherichia coli serotypes O157:H7, O1:NM; O2:H5; O2:H7; O4:NM; O4:H10; O5:NM; O5:H16; O6:H1; O18:NM; O18:H7; O25:NM; O26:NM; O26:H11; O26:H32; O36:H2; O36:H2; O50:H7; O55:H7; O55:H10; O82:H8; O84:H2; O91:NM; O91:H2; O103:H2; O111:NM; O111:H30; O111:H34; O113:H7; O113:H21; O114:H48; O115:H10; O117:H4; O118:H12; O118:H30; O121:NM; O121:H19; O125:MM; O125:H8; O126:NM; O126:H2; O126:H25; O126:NM; O125:H25; O136:H25; O
 - The method of Claim 22 wherein said antitoxin comprises antitoxin directed against at least one Escherichia coli verotoxin.
- 30 25. The method of Claim 22 wherein said antitoxin is cross-reactive with at least one Escherichia colt verotoxin.

26. The method of Claim 22 wherein said antitoxin is reactive against toxins produced by members of the genus *Shipella*.

- The method of Claim 26, wherein said antitoxin is reactive against toxins
 produced by Shigella dysenteriae.
 - 28. A method for detecting Escherichia coli verotoxin in a sample comprising:
 - a) providing:

10

15

20

- a sample:
- ii) an antitoxin raised against Escherichia coli verotoxin; and
- iii) a reporter reagent capable of binding said antitoxin: and
- adding said antitoxin to said sample so that said antitoxin binds to the Escherichia coli verotoxin in said sample.
- The method of Claim 28, wherein said antitoxin is an avian antitoxin.
 - 30. The method of Claim 28, further comprising the steps of:
 - washing said unbound antitoxin from said sample:
 - adding said reporter reagent to said sample so that said reporter reagent binds to said bound antitoxin;
 - e) washing said unbound reporter reagent from said sample; and
 - f) detecting said reporter reagent bound to said antitoxin bound to the Escherichia coli verotoxin so that the verotoxin is detected.
- 25 31. The method of Claim 30 wherein said detecting is selected from the group consisting of enzyme immunoassay, radioimmunoassay, fluorescence immunoassay, flocculation, particle agglutination, and in situ chromogenic assay.
 - 32. The method of Claim 30 wherein said sample is a biological sample.
 - 33. The method of Claim 30 wherein said sample is an environmental sample.

Figure 1. SDS-PAGE of rVT1 and rVT2

rVT1 (Lane 1) and rVT2 (Lane 2). Positions of molecular weight markers (Kda) are shown at the left. VT component polypeptides are identified at the right.

Figure 2.

HPLC of rVT1

HPLC of rVT2

Figure 3. rVT1 and rVT2 Toxicity in Vero Cell Culture

Figure 4.
EIA Reactivity of rVT1 and rVT2 Antibodies to rVT1

Figure 5.
EIA Reactivity of rVT1 and rVT2 Antibodies to rVT2

Figure 6.
Western Blot Reactivity of rVT1 and rVT2 Antibodies to rVT's

In this Figure, Panel A contains preimmune IgY, Panel B contains rVT1 IgY, and Panel C contains rVT2 IgY. Lane 1 in each panel contains rVT1 (2µg) and Lane 2 contains rVT2 (2 µg).

Figure 7.

Neutralization of rVT1 Cytotoxicity in Vero Cells

Figure 8.

Neutralization of rVT2 Cytotoxicity in Vero Cells

Figure 9.

Renal Sections from E. coli O157:H7-Infected Mice Treated with IgV

Representative kidney sections from mice treated with preimmune (Panel A), rVTI (Panel B) or rVT2 (Panel C) IgV 4 hrs. after infection.

Figure 10.
Fusion Constructs of VT Components and Affinity Tags

INTERNATIONAL SEARCH REPORT

International application No. PCT/US96/04093

Relevant to claim No.

OT ASSIT	ICATION	OFSER	HCCT.	MATTER

IPC(6) :: A61K 39/00, 39/02; G01N 35/537

US CL . Please See Extra Sheet.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S. | 424/134.1, 141.1, 150.1, 157.1, 164.1, 169.1, 192.1, 200.1, 236.1, 241.1, 801, 804, 809, 826, 435/7.37; 436/538, 542, 543.547

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used).

Please See Extra Sheet.

Custom of document, with indication, where appropriate, of the relevant passages

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category.	Charles of Greatment, was indicated, where appropriate, of the felevant passages	receium to emini i i
Y	BOYD et al. Serological Responses to the B Subunit of Shiga- Like Toxin 1 and Its Peptide Fragments Indicate that the B Subunit Is a Vaccine Candidate To Counter the Action of the Toxin. Infection and Immunity. March 1991, Vol. 59, No. 3, pages 750-757.	1-33
Y	US 5,326,559 A (MILLER) 05 July 1994, columns 4-7.	1-33
X Y	US 5,164,298 A (LINGWOOD et al) 17 November 1992, columns 10-13.	28, 30, 31, 32, 33 1-27 and 29
Y	US 4,748,018 A (STOLLE et al) 31 May 1988, column 4, lines 25-55.	3, 21, 22, 29

X	Further documents are listed in the continuation of Box C	2.	See patent family annex
	Special categories of cited distancins this unrent defining the general state of the art which is not considered to be of particular relevance.	Т	later document published after the international filing date or priority date and not in contlict with the application but died to understand the principle or theory underlying the invention
4.	article document purished of or electric national titue date	•X.	document of particular relevance; the claimed invention cannot be considered novel or claimet be considered to involve an incentive step
.0.	document which may throw doubts on priority claims) or which is exical to exhibited the publication date of another enabour or other special crossing specificall document referring to an oral develorance uses exhibition or other	٠٢٠	when the document is taken alone document of particular relevance, the claimed invention cannot be considered to arvolve an inventive step when the document is combined with one or more other such speciments, such combination
ne.	therais document published prior to the international filing date but later than the prior to date claimed	٠٧.	tiong observes to a person skilled in the first document member of the same parent family
Date (of the actual completion of the international search		mailing of the international search report
10 J	ULY 1996	7 /	AUG 1996
Com Box	ling mading address of the ISA/US attenue of Patents and Tradenticks PCT imagion, D.C. 20231		CHEL FREED

Telephone No (703) 308-0196

Form PCT ISA/210 (second sheet)day 1992)*

Facsimile No. - 703) 305-3230

INTERNATIONAL SEARCH REPORT

International application No. PCT/US96/04093

C (Continua	ation). DOCUMENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where appropriate, of the relevan	t passages	Relevant to claim No
Y	US 4,550,019 A (POLSON) 29 October 1985, column 4 68.	, lines 46-	3, 21, 22, 29
Y	US 5,204,097 A (ARNON et al) 20 April 1993, column 1-16, column 3, lines 33-56 and column 5, lines 53-67.	2, lines	2 and 14

INTERNATIONAL SEARCH REPORT

International application No. PCT/US96/04093

A. CLASSIFICATION OF SUBJECT MATTER. US CL.

424/134.1, 141.1, 150.1, 157.1, 164.1, 169.1, 192.1, 200.1, 236.1, 241.1, 801, 804, 809, 826, 435/7.37; 436/538, 542, 543-547

B. FIELDS SEARCHED

Electronic data bases consulted (Name of data base and where practicable terms used):

BIOSIS, MEDLINE, APS

search terms: verotoxin, verocytoxin, shiga, rvt1, rvt2, rslt1 or rslt2, vacem? or treat?, recombinant