Nanoscale Imaging with Atomic Force Microscopy

Alex Stram

Outline

- Background
 - Two dimensional (2D) materials
 - Why Atomic Force Microscopy (AFM)?
- My work
 - Microwave Impedance Microscopy (MIM) of 2D materials
 - Photo-generated free electron physics

2D materials

Two-Dimensional Electron Gas! (2DEG)

Why Atomic Force Microscopy (AFM)?

- Resolution >> light
- AFM enables new
 2D material
 research

Microwave Impedance Microscopy (MIM)

Incident wave: $e^{i(kx-\omega t)}$ with f~1*GHz*

Reflected wave: $e^{i(k'x-\omega t)}$

Microwave Impedance Microscopy (MIM)

Continuity Equation

$$abla \cdot \left(J_{\mathrm{f}} + \frac{\partial D}{\partial t}\right) = 0.$$
 $J_{\mathrm{f}} = \sigma E \quad D = \varepsilon E$
 $-\nabla \cdot \left(\sigma \nabla V + \frac{\partial (\varepsilon \nabla V)}{\partial t}\right) = 0.$

Simulation

$$-\nabla \cdot [(\sigma - i\omega\varepsilon)\nabla V] = 0.$$

$$J = J_{\rm f} + \frac{\partial D}{\partial t} = -(\sigma - i\omega\varepsilon)\nabla V$$

2D material research

Simulation

Experiment

Photo-generated free electrons

Experimental Parameters

- Laser wavelength
 - $\hbar\omega$ > E_g
- Laser intensity → # of photons → # of free electrons → conductivity

Solar Cells
Photon Detectors

Topography

880nm 880nm

Conclusion

- AFM allows nanoscale observation
 - New data collection techniques
- MIM is a unique conductivity measurement
 - No electrodes required
 - Nanoscale resolution

Novel Light-Matter interactions (QM)

