OPTICALLY COUPLED BILATERAL SWITCH NON-ZERO CROSSING TRIAC

APPROVALS

UL recognised, File No. E91231

'X' SPECIFICATION APPROVALS

- VDE 0884 in 3 available lead forms : -
 - STD
 - G form
 - SMD approved to CECC 00802

DESCRIPTION

The MOC302_ series are optically coupled isolators consisting of a Gallium Arsenide infrared emitting diode coupled with a light activated silicon bilateral switch performing the functions of a triac mounted in a standard 6 pin dual-in-line package.

FEATURE

• Options :-

10mm lead spread - add G after part no. Surface mount - add SM after part no. Tape&reel - add SMT&R after part no.

- High Isolation Voltage $(5.3kV_{RMS}, 7.5kV_{PK})$
- 400V Peak Blocking Voltage
- All electrical parameters 100% tested
- Custom electrical selections available

APPLICATIONS

- CRTs
- Power Triac Driver
- Motors
- Consumer appliances
- Printers

ABSOLUTE MAXIMUM RATINGS (25 °C unless otherwise noted)

Storage Temperature ______ -55°C-+150°C Operating Temperature _____ -40°C-+100°C Lead Soldering Temperature _____ 260°C (1.6mm from case for 10 seconds)

Input-to-output Isolation Voltage (Pk)_7500 Vac (60 Hz , 1sec. duration)

INPUT DIODE

Forward Current	_ 50mA
Reverse Voltage	_ 6V
Power Dissipation	70mW
(derate linearly 0.93mW/°C above 25°C	C)

OUTPUT PHOTO TRIAC

Off-State Output Terminal Voltage	400V
RMS Forward Current	100mA
Forward Current (Peak)	1A
Power Dissipation	300mW
(derate linearly 4.0mW/°C above 25°C)

POWER DISSIPATION

Total Power Dissipation ————	330mW
(derate linearly 4.4mW/°C above 25°C)	

ISOCOM COMPONENTS LTD

Unit 25B, Park View Road West, Park View Industrial Estate, Brenda Road Hartlepool, Cleveland, TS25 1YD Tel: (01429) 863609 Fax: (01429) 863581

ISOCOM INC

1024 S. Greenville Ave, Suite 240, Allen, TX 75002 USA Tel: (214) 495-0755 Fax: (214) 495-0901 e-mail info@isocom.com http://www.isocom.com

DB91045m-AAS/A2

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ Unless otherwise noted)

	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITION
Input	Forward Voltage (V_F) Reverse Current (I_R)		1.2	1.5 100	V μA	$I_{F} = 10mA$ $V_{R} = 6V$
Output	Peak Off-state Current (I_{DRM}) Peak Blocking Voltage (V_{DRM}) On-state Voltage (V_{TM}) Critical rate of rise of off-state Voltage (dv/dt) (note 1) Critical rate of rise of commutating Voltage (dv/dt) (note 1)	400 0.1	1.5 10 0.2	3.0	nA V V V/μs V/μs	$V_{DRM} = 400 \text{V (note 1)}$ $I_{DRM} = 100 \text{nA}$ $I_{TM} = 100 \text{mA (peak)}$ $I \text{ load} = 15 \text{mA,}$ $V_{IN} = 30 \text{V (fig 1.)}$
Coupled	Input Current to Trigger (I_{FT})(note 2) MOC3020 MOC3021 MOC3022 MOC3023		100	30 15 10 5	mA mA mA mA	$V_D = 3V$ (note 2)
	Input to Output Isolation Voltage $V_{\rm ISO}$	5300 7500			$egin{array}{c} V_{_{RMS}} \ V_{_{PK}} \end{array}$	See note 3 See note 3

Note 1. Test voltage must be applied within dv/dt rating. Note 2. Guaranteed to trigger at an I_F value less than or equal to max. I_{FT} , recommended I_F lies between Rated I_{FT} and absolute max. I_{FT} . Note 3. Measured with input leads shorted together and output leads shorted together.

FIGURE 1

8/8/01

RMS On-state Current vs. Ambient Temperature

Normalised Repetitive Peak Off-state Voltage vs. Ambient Temperature

Forward Current vs. Ambient Temperature

On-state Voltage vs. Ambient Temperature

Normalised Input Trigger Current vs. Ambient Temperature

On-state Current vs. On-state Voltage

This datasheet has been downloaded from:

www. Data sheet Catalog.com

Datasheets for electronic components.