CENG 415 Evrimsel Hesaplama

Bölüm 4: Temsil, Mutasyon ve Rekombinasyon

Şevket Umut Çakır

Pamukkale Üniversitesi

8 Kasım 2020

Temsil, Mutasyon ve Rekombinasyon

- Temsil ve çeşitlilik(varyasyon) operatörlerinin rolleri
- Genomların en yaygın temsilleri:
 - İkili(binary)
 - Tamsayı
 - Gerçek-değerli ya da kayan noktalı
 - Permütasyon
 - Ağaç

Evrimsel Hesaplama Şeması

Genel Şema

Temsil ve Varyasyon Operatörlerinin Rolü

- Bir EA geliştirmenin ilk ve en zor aşaması: Problem için doğru temsili seçmek
- Varyasyon operatörleri: Mutasyon ve çaprazlama
- İhtiyaç duyulan varyasyon operatörleri seçilen temsile bağlıdır
- TSP(GSP)
 - Mümkün temsil biçimleri nelerdir?

- İlk temsil biçimlerinden biridir
- Genotip, bir dizi ikili rakamdan oluşur

Mutasyon

- Her bir geni bağımsız olarak p_m olasılığı ile değiştir
- p_m mutasyon oranı olarak adlandırılır
 - lacktriangle Genellikle $rac{1}{pop\"ulasyon\ boyutu}$ ile $rac{1}{kromozom\ uzunlureve{g}u}$ arasında değişir

- Mutasyon değişken etkiye sahip olabilir(grey kod kullanın)
 - ightharpoonup 00000000 ightarrow 10000000: değişiklik çok büyük

Tek noktalı çaprazlama(1-point crossover)

- ullet İki ebeveyn için rastgele bir nokta seçin [1,I-1]
- Ebeveynleri bu geçiş noktasında ayırın
- Kuyrukları değiş tokuş ederek çocukları oluşturun
- p_c tipik olarak (0.6, 0.9) aralığında

parents	0000000000000000000000
children	0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Alternatif Çaprazlama Operatörleri

- Neden başka çaprazlama operatörlerine ihtiyacımız var?
- Tek noktalı çaprazlamanın performansı değişkenlerin temsilde belirme sırasına bağlıdır
 - Birbirine yakın genleri bir arada tutma olasılığı daha yüksektir
 - Ebeveynin zıt uçlarındaki genleri bir arada tutamaz
 - Bu durum konumsal ön yargı(positional bias) olarak bilinir
 - Problemimizin yapısı bilindiğinde faydalanılabilir, fakat genellikle böyle değildir

n-noktalı Çaprazlama

- Rastgele n çaprazlama noktası seçilir
- Bu noktalardan parçalanır
- Ebeveynler arasında değişen parçalar yapıştırılır
- 1-noktalı çaprazlamanın genel halidir(yine de biraz konumsal önyargı içerir)

Birörnek Çaprazlama(Uniform Crossover)

- Ebeveynlerden birisine yazı, diğerine tura verelim
- İlk çocuğun her bir geni için bir para(yazı-tura) atalım
- İkinci çocuk için genin ters kopyasını oluşturalım
- Kalıtım konumdan bağımsızdır

parents	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
children	0 1 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 1
	1 0 1 1 0 0 0 0 1 1 1 0 1 0 0 1 1 0

Çaprazlama VEYA Mutasyon

- On yıllık uzun tartışma: Hangisi daha iyi / gerekli
- Cevap:(en azından oldukça geniş bir uzlaşma)
 - Probleme bağlıdır, fakat
 - Genellikle her ikisine de sahip olmak iyidir
 - Her ikisinin de başka rolü vardır
 - Yalnızca mutasyon bulunan EA mümkündür, yalnızca çaprazlama bulunan EA çalışmaz

Çaprazlama VEYA Mutasyon

- Keşif(Exploration): Arama alanında gelecek vaat eden alanları keşfetmek, yani problem hakkında bilgi edinmek
- Sömürü(Exploitation): Gelecek vaat eden bir alanda optimizasyon yapmak, yani bilgiyi kullanmak
- Aralarında işbirliği VE rekabet var
- Çaprazlama keşif amaçlıdır, iki (ebeveyn) alan "arasında" bir yerde bir alana büyük bir sıçrama yapar
- Mutasyon sömürücüdür, rastgele küçük sapmalar yaratır, böylece ebeveynin yakınında (alanında) kalır

Çaprazlama VEYA Mutasyon

- Yalnızca çaprazlama, iki ebeveynden gelen bilgileri birleştirebilir
- Yalnızca mutasyon yeni bilgiler sunabilir (aleller)
- Çaprazlama popülasyonun alel frekanslarını değiştirmez
- Optimuma ulaşmak için genellikle "şanslı" bir mutasyona ihtiyacınız vardır

Tamsayı Temsili

- Günümüzde genel olarak sayısal değişkenleri doğrudan kodlamanın daha iyi olduğu kabul edilmektedir (tam sayılar, kayan nokta değişkenleri)
- Bazı problemlerin doğal olarak tamsayı değişkenleri vardır, ör. görüntü işleme parametreleri (sonraki sayfa)
- Diğerleri, sabit bir kümeden kategorik değerler alır, ör. mavi, yeşil, sarı, pembe
- n-noktalı / birörnek çaprazlama çalışır
- Bit-çevirme(bit-fliping) mutasyonu genişletilebilir
 - ▶ "Sürünme"(creep), yani benzer değere geçme olasılığı daha yüksektir
 - Her gene p olasılığı ile küçük bir(pozitif veya negatif) değer ekleme
 - Rastgele sıfırlama(random resetting), özellikle kategori verilerinde
 - p_m olasılığı ile yeni bir değer rastgele olarak seçilir
- Çaprazlama, ikili temsildeki ile aynı

Tamsayı Temsili

Görüntü İşleme Katlama Örneği

- ullet Bir çok problem gerçek-değerli bir doğaya sahiptir $f:\mathbb{R}^n o\mathbb{R}$
- Örnek: Ackley'in fonksiyonu(evrimsel hesaplamada sıklıkla kullanılır)

$$f(x) = -20 \cdot e^{-0.2\sqrt{\frac{1}{n}} \sum_{i=1}^{n} x_i^2} - e^{\frac{1}{n} \sum_{i=1}^{n} \cos(2\pi x_i)} + 20 + e$$

Gerçek değerlerin bit dizileri ile temsili

 $\{a_1,\cdots,a_n\}\in\{0,1\}^L$ șeklinde temsil edilen $z\in[x,y]\subseteq\mathbb{R}$

- $[x,y] \rightarrow \{0,1\}^L$ ters çevrilebilir olmalıdır(genotip başına bir fenotip)
- $\Gamma: \{0,1\}^L \to [x,y]$ temsili tanımlar $\Gamma(a_1,\cdots,a_L) = x + \frac{y-x}{2^L-1} \cdot \left(\sum_{j=0}^{L-1} a_{L-j} \cdot 2^j\right)$
- Sonsuz değer aralığında sadece 2^L değer mevcut
- L, olası maksimum çözüm hassasiyetini belirler
- ullet Yüksek hassasiyet o uzun kromozomlar (yavaş eğitim)

Birörnek Mutasyon

• Kayan noktalı sayıların genel şeması

$$\overline{x} = \langle x_1, \cdots, x_l \rangle \rightarrow \overline{x'} = \langle x'_1, \cdots, x'_l \rangle$$

 $x_i, x'_i \in [LB_i, UB_i]$

- Birörnek mutasyon $\overline{x'}$, $[LB_i, UB_i]$ arasından rastgele olarak seçilir
- İkili temsildeki bit çevirmeye(bit-fliping) ve tamsayı temsilindeki rastgele sıfırlamaya(random reseting) benzer

Birörnek Olmayan Mutasyon

- Birörnek olmayan mutasyonlar
 - Çoğu şema olasılıklıdır, ancak genellikle değerde yalnızca küçük bir değişiklik yapar
 - ▶ En yaygın yöntem, her değişkene $N(0, \sigma)$ Gauss dağılımından alınan rastgele sapma eklemek ve uygun aralığa kısıtlamaktır($[LB_i, UB_i]$ varsa) $x_i' = x_i + N(0, \sigma)$
 - Standart sapma σ , mutasyon adım boyutu, değişim miktarını belirler(dağılımdan seçilen sayıların $\frac{2}{3}$ 'ü $[-\sigma, +\sigma]$ aralığındadır)

Normal(Gauss) Dağılım

Normal(Gauss) Dağılım

Şekil: Normal(Gauss) Dağılım

Kendinden Uyarlamalı(Self-Adaptive) Mutasyon

- Adım boyutları genoma dahil edilir, varyasyon ve seçime dahil edilir $\langle x_1, \dots, x_n, \sigma \rangle$
- Mutasyon adım boyutu kullanıcı tarafından ayarlanmaz, ancak çözümle birlikte gelişir
- Evrimsel araştırma sürecinin farklı aşamalarında farklı mutasyon stratejileri uygun olabilir

Kendinden Uyarlamalı(Self-Adaptive) Mutasyon

- ullet Önce σ 'yı mutasyona uğrat
- Net mutasyon etkisi $< x, \sigma > \rightarrow < x', \sigma' >$
- Sıralama önemli:
 - ightharpoonup önce $\sigma o \sigma'$
 - sonra $x \to x' = x + N(0, \sigma)$
- Gerekçe: yeni $< x', \sigma' >$ iki kez değerlendirilir
 - ightharpoonup Eğer f(x') iyiyse x' iyidir
 - $ightharpoonup \sigma'$, oluşturduğu x' iyiyse iyidir
- Mutasyon sırasını tersine çevirmek işe yaramaz

Bir σ ile ilintisiz(uncorrelated) mutasyon

- Kromozomlar: $\langle x_1, \dots, x_n, \sigma \rangle$
 - $\sigma' = \sigma \cdot e^{\tau \cdot N(0,1)}$
 - $x_i' = x_i + \sigma' \cdot N(0,1)$
- ullet Tipik olarak "öğrenme oranı(learning rate)" $au \propto rac{1}{\sqrt{n}}$
- Sınır kuralı: $\sigma' < \varepsilon_0 \Rightarrow \sigma' = \varepsilon_0$

Bir σ ile ilintisiz(uncorrelated) mutasyon

Eşit olasılığa sahip mutantlar

Daire: Oluşturulma şansı aynı olan mutantlar

n adet σ ile ilintisiz(uncorrelated) mutasyon

- Kromozomlar: $\langle x_1, \cdots, x_n, \sigma_1, \cdots, \sigma_n \rangle$

 - $x_i' = x_i + \sigma_i' \cdot N_i(0,1)$
- İki öğrenme oranı:
 - ightharpoonup au' genel öğrenme oranı
 - ightharpoonup au koordinat tabanlı öğrenme oranı
- ullet $au' \propto rac{1}{\sqrt{2n}}$ ve $au \propto rac{1}{\sqrt{2\sqrt{n}}}$
- Sınır kuralı: $\sigma_i' < \varepsilon_0 \Rightarrow \sigma_i' = \varepsilon_0$

n adet σ ile ilintisiz(uncorrelated) mutasyon

Eşit olasılığa sahip mutantlar

İlintili mutasyonlar

- Kromozomlar: $\langle x_1, \dots, x_n, \sigma_1, \dots, \sigma_n, \alpha_1, \dots, \alpha_k \rangle$, $k = \frac{n \cdot (n-1)}{2}$
- Kovaryans matrisi(covariance matrix) C şu şekilde tanımlanır:
 - $c_{ii} = \sigma_i^2$
 - $ightharpoonup c_{ij} = 0$ eğer i ve j ilintili değilse
 - $ightharpoonup c_{ij} = \frac{1}{2}(\sigma_i^2 \sigma_j^2) tan(2\alpha_{ij})$ eğer i ve j ilintili ise

İlintili mutasyonlar

Mutasyon mekanizması şöyle olur:

- $\sigma'_i = \sigma_i \cdot e^{\tau' \cdot N(0,1) + \tau \cdot N_i(0,1)}$
- $\bullet \ \alpha'_j = \alpha_j + \beta \cdot N(0,1)$
- x' = x + N(0, C')
 - $\rightarrow x_1, \dots, x_n > \text{vektörünü temsil eder}$
 - ightharpoonup C', lpha değerlerinin mutasyonunun ardından kovaryans matrisi C'yi temsil eder
- $\tau \propto \frac{1}{\sqrt{2\sqrt{n}}}$, $\tau' \propto \frac{1}{\sqrt{2n}}$ ve $\beta \approx 5^{\circ}$
- $\sigma_i' < \varepsilon_0 \Rightarrow \sigma_i' = \varepsilon_0$
- $|\alpha_i'| > \pi \Rightarrow \alpha_i' = \alpha_i' 2\pi sign(\alpha_i')$
- Kovaryans Matris Adaptasyon Evrim Stratejisi (CMA-ES) muhtemeter sayısal optimizasyon için en iyi EA'dır, bkz. CEC-2005 yarışması

İlintili mutasyonlar

Eșit olasılığa sahip mutantlar

Elips: Oluşturulma şansı aynı olan mutantlar

Çaprazlama Operatörleri

- Ayrık:
 - ightharpoonup z çocuğundaki her bir alel değeri, ebeveynlerin birinden(x,y) eşit olasılıkla gelir $z_i = x_i$ veya y_i
 - n-noktalı veya birörnek kullanılabilir
- Ortada:
 - Ebeveynler arasında çocuk oluşturma fikrinden yararlanır(aritmetik rekombinasyon olarak da bilinir)
 - $ightharpoonup z_i = \alpha \cdot x_i + (1 \alpha)y_i, \ \alpha \ \mathsf{degeri:} \ 0 \le \alpha \le 1$
 - $ightharpoonup \alpha$ parametresinin değeri:
 - sabit: birörnek aritmetik çaprazlama
 - değişken (Örn: popülasyonun yaşına bağlı)
 - her seferinde rastgele seçilir

Tek Aritmetik Çaprazlama

- Ebeveynler: $\langle x_1, \dots, x_n \rangle$ ve $\langle y_1, \dots, y_n \rangle$
- Rastgele bir tek gen(k) seçin
- Çocuk 1: $\langle x_1, \dots, x_{k-1}, \alpha \cdot y_k + (1-\alpha) \cdot x_k, \dots, x_n \rangle$
- Diğer çocuk için tersini oluştur, ör: $\alpha = 0.5$

Basit Aritmetik Çaprazlama

- Ebeveynler: $\langle x_1, \dots, x_n \rangle$ ve $\langle y_1, \dots, y_n \rangle$
- Rastgele bir tek gen(k) seçin ve bu noktadan sonra değerleri karıştırın
- Çocuk 1:

$$< x_1, \cdots, x_k, \alpha \cdot y_{k+1} + (1-\alpha) \cdot x_{k+1}, \cdots, \alpha \cdot y_n + (1-\alpha) \cdot x_n > 0$$

• Diğer çocuk için tersini oluştur, ör: $\alpha = 0.5$

Tam Aritmetik Çaprazlama

- Ebeveynler: $\langle x_1, \cdots, x_n \rangle$ ve $\langle y_1, \cdots, y_n \rangle$
- Rastgele bir tek gen(k) seçin ve bu noktadan sonra değerleri karıştırın
- Çocuk 1: $\alpha \cdot \overline{x} + (1 \alpha) \cdot \overline{y}$
- Diğer çocuk için tersini oluştur, ör: $\alpha = 0.5$

Karışım(Blend) Çaprazlama

- Ebeveynler: $\langle x_1, \dots, x_n \rangle$ ve $\langle y_1, \dots, y_n \rangle$
- $x_i < y_i$ olduğunu varsayalım
- $\bullet \ d_i = y_i x_i$
- Rastgele örnek: $z_i = [x_i \alpha d_i, x_i + \alpha d_i]$ aralığında

Farklı olası çocuklara genel bakış

- Tek aritmetik çaprazlama: $\{s_1, s_2, s_3, s_4\}$
- ullet Basit / tam aritmetik çaprazlama: iç kutu, ($lpha = \mathsf{0.5}$ için w)
- Karışım çaprazlama: dış kutu

Gerçek-değerli ya da Kayan-noktalı Temsil

Çoklu Ebeveyn Çaprazlaması

- Evrimsel hesaplamayı doğanın pratikleri tarafından kısıtlamayabiliriz
- Mutasyonun n=1 ebeveyni ve "geleneksel" çaprazlamanın n=2 ebeveyni kullandığını düşünürsek, n>2 araştırılmaya değerdir
- 1960'lardan beri ortalıkta, hala nadir ama araştırmalar işe yaradığını gösteriyor

Gerçek-değerli ya da Kayan-noktalı Temsil

Çoklu Ebeveyn Çaprazlaması, tip 1

- Fikir: ebevenleri parçalara ayırın ve yeniden birleştirin
- Örnek: n ebeveyn için çapraz geçiş(çaprazlama)
 - ightharpoonup n-1 çaprazlama noktası seçin(her ebeveynde aynı noktalar)
 - Ebeveynlerin parçalarından n tane çocuğu, köşegen boyunca etrafını sararak oluşturun

Bu operatör 1 noktalı çaprazlamayı genelleştirir

Gerçek-değerli ya da Kayan-noktalı Temsil

Çoklu Ebeveyn Çaprazlaması, tip 2

- Fikir: (gerçek değerli) alellerin aritmetik kombinasyonu
- n ebeveyn için aritmetik çaprazlama
 - Çocuktaki i. alel ebeveynlerdeki i. alellerin ortalamasıdır
- Çocuk ağırlık merkezi olur
- Genetik algoritmada garip olabilir, evrim stratejisinde uzun süredir bilinen ve kullanılan

- Sıralama problemleri özel bir tür oluşturur
- Görev(veya çözüm), bazı nesnleri belirli bir sıraya göre düzenlemektir
- Örnek: Üretim planlama: önemli olan hangi öğelerin diğerlerinden önce planlandığıdır(sıra)
- Örnek: Gezgin satıcı problemi(TSP): önemli olan hangi öğelerin yan yana oluştuğudur(komşuluk)
- Bu problemler genellikle bir permütasyon olarak ifade edilir
 - n değişken varsa, temsil, her biri bir kez beliren n tamsayının listesi gibidir

TSP Örneği

Problem:

- Verilen n şehir için
- En kısa uzunluğa sahip tam turu bul

Kodlama:

- ► Şehirleri 1, 2, · · · , *n* şeklinde numaralandır
- ▶ Bir tam tur bir permütasyona eşittir(örn: n=4 için [1,2,3,4,], [3,4,2,1] mümkün)
- Arama uzayı BÜYÜKTÜR: 30 şehir için 30! $\approx 10^{32}$ mümkün tur sayısı vardır

Mutasyon

- Normal mutasyon operatörleri kabul edilemez çözümlere yol açar
 - Örneğin bit-tabanlı mutasyon için i. genin değeri j olsun
 - ▶ i. gen için k değerine geçmek, k'nin iki defa yer almasına ve j'nin kaybolmasına neden olacaktır
- Bu nedenle en az iki değer değiştirilmelidir
- Mutasyon parametresi artık bazı operatörlerin her konumda ayrı ayrı uygulamak yerine tüm dizeye bir kez uygulanması olasılığını yansıtır

Yer değiştirme(swap) mutasyonu

• Rastgele iki alel seç ve yerlerini değiştir

Araya ekleme(insert) mutasyonu

- Rastgele iki alel seç
- İkinciyi birincinin arkasına gelecek şekilde taşı ve diğerlerini kaydır
- Bu işlem, sıralama ve komşuluk bilgisinin çoğunu koruyacaktır

Karıştırma(scramble) mutasyonu

- Genlerin rastgele bir alt kümesini seçin
- Bu konumlardaki alelleri rastgele yeniden düzenleyin

Ters çevirme(inverse) mutasyonu

- Rastgele iki alel seçin ve aralarındaki alt dizeyi ters çevirin
- Çoğu komşuluk bilgisini korur(sadece ikisi bozulur) fakat sıralama bilgisi bozulur

Çaprazlama operatörleri

 "Normal" çaprazlama operatörleri genellikle kabul edilemez çözümlere yol açacaktır

 İki ebeveynden gelen sıralama ve komşuluk bilgilerini birleştirmeye odaklanan bir çok özelleşmiş operatör tasarlanmıştır

Order çaprazlama

- Fikir, öğelerin meydana geldiği göreceli düzeni korumaktır
- Sözde kod:
 - İlk ebeveynden rastgele bir bölüm seçin
 - 2 Bu bölümü ilk çocuğa kopyalayın
 - Birinci kısımda olmayan sayıları ilk çocuğa kopyalayın:
 - kopyalanan parçanın kesim noktasından başlayarak,
 - ikinci ebeveyndeki sırayı kullanarak
 - sona ulaşınca başa dönerek
 - Ebeveyn rollerinin tersine çevrildiği ikinci çocuk için benzer

Order çaprazlama

Rastgele seçilen alt kümeyi birinci ebeveynden kopyala

Kalan kısmı ikinci ebeveynden 1,9,3,8,2 sırasıyla kopyala

Kısmen eşleşmiş çaprazlama(PMX)

- P1 ve P2 için sözde kod:
 - Rastgele iki geçiş noktası seçin ve aralarındaki segmenti ilk ebeveynden (P1) ilk çocuğa kopyalayın.
 - İlk geçiş noktasından başlayarak, ikinci ebeveynin (P2) bu segmentinde kopyalanmamış olan öğeleri arayın.
 - 3 Bunların her biri için (i diyelim), P1'den yerine hangi öğenin (j diyelim) kopyalandığını görmek için yavruya bakın.
 - i'yi P2'de j'nin işgal ettiği konuma yerleştirin, çünkü j'yi oraya koymayacağımızı biliyoruz (zaten dizimizde olduğu gibi).
 - P2'de j'nin işgal ettiği yer yavruda zaten bir k öğesi tarafından doldurulmuşsa, P2'de k'nin işgal ettiği konuma i'yi koyun.
 - Çaprazlama bölümdeki unsurları ele aldıktan sonra, bu yavruda kalan pozisyonlar P2'den doldurulabilir ve ikinci çocuk, ebeveyn rolleri tersine çevrilerek benzer şekilde yaratılır.

Kısmen eşleşmiş çaprazlama(PMX)

PMX Örnek

Döngü(cycle) çaprazlama

Temel fikir: Her alel, konumu ile birlikte bir ebeveynden gelir. Sözde kod:

- Aşağıdaki şekilde P1'den alel döngüsü yapın:
 - P1'in ilk aleli ile başlayın
 - De Pe'de aynı konumdaki alele bakın
 - P1'de aynı alelin pozisyonuna gidin
 - Bu aleli döngüye ekleyin
 - P1'deki ilk alele rastlayana kadar adım b'den d'ye kadar olan kısmı tekrarlayın
- İlk çocuktaki döngünün alellerini birinci ebeveynde sahip oldukları pozisyonlara yerleştirin
- Sonraki döngüyü ikinci ebeveynden alın

Döngü(cycle) çaprazlama

Adım 1: döngüleri belirle

Adım 2: alternatif döngüleri çocuklara kopyala

Kenar(edge) çaprazlama

- elemanİki ebeveynde hangi kenarların bulunduğunu listeleyen bir tablo oluşturarak başlar, eğer her ikisi için de ortak bir kenar varsa + ile işaretlenir
- Örn: [1 2 3 4 5 6 7 8 9] ve [9 3 7 8 2 6 5 1 4]

Element	Edges	Element	Edges
1	2,5,4,9	6	2,5+,7
2	1,3,6,8	7	3,6,8+
3	2,4,7,9	8	2,7+,9
4	1,3,5,9	9	1,3,4,8
5	1,4,6+		

Kenar(edge) çaprazlama

- Rastgele bir başlangıç elemanı seçin ve çocuğa ekleyin
- @ mevcut_eleman=kayit atamasını yapın
- Tabloda mevcut elemana olan tüm referansları silin
- Listeyi mevcut eleman için kontrol edin:
 - Eğer ortak kenar varsa, sıradaki eleman olarak bunu seçin
 - Aksi halde listedeki en kısa listeye sahip olan elemanı seçin
 - Eşitlik durumunda rastgele(standart olması için küçük olan)
- Boş bir liste gelmişse
 - Rastgele bir eleman seçilir

Kenar(edge) çaprazlama

Element	Edges	Element	Edges
1	2,5,4,9	6	2,5+,7
2	1,3,6,8	7	3,6,8+
3	2,4,7,9	8	2,7+,9
4	1,3,5,9	9	1,3,4,8
5	1,4,6+		

Choices	Element	Reason	Partial
	selected		result
All	1	Random	[1]
2,5,4,9	5	Shortest list	[1 5]
4,6	6	Common edge	[1 5 6]
2,7	2	Random choice (both have two items in list)	[1 5 6 2]
3,8	8	Shortest list	[1 5 6 2 8]
7,9	7	Common edge	[1 5 6 2 8 7]
3	3	Only item in list	[1 5 6 2 8 7 3]
4,9	9	Random choice	[1 5 6 2 8 7 3 9]
4	4	Last element	[156287394]

Kenar çaprazlama örnek

Eleman	Komşuluk
1	
2	
3	
4	
5	
6	
7	
8	

	Seçenekler	Seçilen	Sebep	Kısmi Çözü
	hepsi	5	rastgele seçim	5
ĺ				
ĺ				
ĺ				
Ī				

- Ağaçlar evrensel bir biçimdir
- Aritmetik ifade: $2 \cdot \pi + ((x+3) \frac{y}{5+1})$
- Mantiksal ifade: $(x \land True) \implies ((x \lor y) \lor (z \iff (x \land y)))$
- Kaynak kod:

```
i = 1;
while(i < 20)
{
          i = i + 1;
}</pre>
```


$$2\cdot\pi+\big(\big(x+3\big)-\tfrac{y}{5+1}\big)$$

$$(x \land \mathit{True}) \implies ((x \lor y) \lor (z \iff (x \land y)))$$

i=1; while(i<20){i=i+1;}

- Genetik algoritma, evrim stratejisi, evrimsel programlama yöntemlerinde kromozomlar doğrusal yapılardır(bit dizesi, tamsayı dizesi, gerçek-sayı vektörü, permütasyon gibi)
- Ağaç yapılı kromozomlar doğrusal olmayan yapılardır
- Genetik algoritma, evrim stratejisi, evrimsel programlama yöntemlerinde kromozom boyutu sabittir
- Genetik programlamadaki ağaçlar derinlik ve genişlik olarak değişiklik gösterebilir

- Sembolik ifadeler aşağıdakilerle tanımlanabilir
 - Terminal kümesi T
 - Fonksiyon kümesi F(fonksiyon sembollerinin arite bilgisi/parametre sayısı ile)
- Aşağıdaki genel özyinelemeli tanımlama benimsenir
 - ▶ Her $t \in T$ doğrudur
 - ▶ Eğer $f \in F$, arity(f) = n ve e_1, \dots, e_n doğru ifadelerse $f(e_1, \dots, e_n)$ doğrudur
 - Doğru ifadelerin başka biçimi yoktur
- Genel olarak genetik programlamada ifadelerin türü yoktur(aynı türden)(kapanış(closure) özelliği: herhangi bir $f \in F$, $g \in F$ fonksiyonunu argüman olarak alabilir)

Mutasyon

En yaygın mutasyon: rastgele seçilen alt ağacı rastgele oluşturulmuş ağaçla değiştirin

Mutasyon

- Mutasyonun iki parametresi vardır:
 - Mutasyonu seçme olasılığı p_m
 - Değiştirilecek alt ağacın kökü olarak bir iç nokta seçme olasılığı
- Dikkat çekici bir şekilde p_m 'nin 0 [2] veya 0.05 gibi çok küçük olması önerilir[1]
- Çocuğun boyutu ebeveynin boyutunu aşabilir

Rekombinasyon

- En yaygın rekombinasyon: ebeveynler arasında rastgele seçilen iki alt ağaç değişimi
- Rekombinasyonun iki parametresi vardır:
 - Rekombinasyonu seçme olasılığı p_c
 - Her ebeveynin içinde çaprazlama noktası olarak bir iç nokta seçme olasılığı
- Yavruların boyutu ebeveynlerinkini aşabilir

Rekombinasyon

Şekil: Ebeveyn 1

Şekil: Ebeveyn 2

Rekombinasyon

Şekil: Çocuk 1

Şekil: Çocuk 2

Kaynaklar

Wolfgang Banzhaf, Peter Nordin, Robert E Keller, and Frank D Francone.

Genetic programming: An Introduction. Springer, 1998.

Genetic programming: on the programming of computers by means of natural selection, volume $1. \,$

MIT press, 1992.

