L. Vandenberghe ECE133A (Fall 2018)

16. Algorithm stability

- cancellation
- numerical stability

Example

two expressions for the same function

$$f(x) = \frac{1 - (\cos x)^2}{x^2}$$

$$g(x) = \frac{(\sin x)^2}{x^2}$$

- results of $\cos x$ and $\sin x$ were rounded to 10 significant digits
- other calculations are exact
- plot shows function at 100 equally spaced points between -0.01 and 0.01

Evaluation of f

evaluate f(x) at $x = 5 \cdot 10^{-5}$

calculate cos x and round result to 10 digits

$$\cos x = 0.9999999875000...$$
 $\Rightarrow 0.9999999988$

• evaluate $f(x) = (1 - \cos(x)^2)/x^2$ using rounded value of $\cos x$

$$\frac{1 - (0.9999999988)^2}{(5 \cdot 10^{-5})^2} = 0.9599\dots$$

has only one correct significant digit (correct value is 0.9999...)

Evaluation of g

evaluate g(x) at $x = 5 \cdot 10^{-5}$

calculate sin x and round result to 10 digits

• evaluate $f(x) = \sin(x)^2/x^2$ using rounded value of $\cos x$

$$\frac{(\sin x)^2}{x^2} \approx \frac{(0.4999999998 \cdot 10^{-5})^2}{(5 \cdot 10^{-5})^2} = 0.9999 \dots$$

has about ten correct significant digits

Conclusion: f and g are equivalent mathematically, but not numerically

Cancellation

$$\hat{a} = a(1 + \Delta a), \qquad \hat{b} = b(1 + \Delta b)$$

- *a*, *b*: exact values
- \hat{a} , \hat{b} : approximations with unknown relative errors Δa , Δb
- relative error in $\hat{x} = \hat{a} \hat{b} = (a b) + (a\Delta a b\Delta b)$ is

$$\frac{|\hat{x} - x|}{|x|} = \frac{|a\Delta a - b\Delta b|}{|a - b|}$$

if $a \simeq b$, small Δa and Δb can lead to very large relative errors in x

this is called **cancellation**; cancellation occurs when:

- we subtract two numbers that are almost equal
- one or both numbers are subject to error

Example

cancellation occurs in the example when we evaluate the numerator of

$$f(x) = \frac{1 - (\cos x)^2}{x^2}$$

- $1 \simeq (\cos x)^2$ when x is small
- there is a rounding error in $\cos x$

Numerical stability

refers to the accuracy of an algorithm in the presence of rounding errors

- an algorithm is *unstable* if rounding errors cause large errors in the result
- rigorous definition depends on what 'accurate' and 'large error' mean
- instability is often, but not always, caused by cancellation

Examples from earlier lectures

- solving linear equations by LU factorization without pivoting
- Cholesky factorization method for least squares

Roots of a quadratic equation

$$ax^2 + bx + c = 0 \qquad (a \neq 0)$$

Algorithm 1: use the formulas

$$x_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}, \qquad x_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

unstable if $b^2 \gg |4ac|$

- if $b^2 \gg |4ac|$ and $b \le 0$, cancellation occurs in x_2 ($-b \simeq \sqrt{b^2 4ac}$)
- if $b^2 \gg |4ac|$ and $b \ge 0$, cancellation occurs in x_1 ($b \simeq \sqrt{b^2 4ac}$)
- in both cases b may be exact, but the squareroot introduces small errors

Roots of a quadratic equation

$$ax^2 + bx + c = 0 \qquad (a \neq 0)$$

Algorithm 2: use fact that roots x_1 , x_2 satisfy $x_1x_2 = c/a$

• if $b \le 0$, calculate

$$x_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}, \qquad x_2 = \frac{c}{ax_1}$$

• if b > 0, calculate

$$x_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}, \qquad x_1 = \frac{c}{ax_2}$$

no cancellation when $b^2 \gg |4ac|$

Exercises

- chop(x,n) rounds x to n significant decimal digits
- for example chop(pi,4) returns 3.1420000000000

Exercise 1: cancellation occurs in $(1 - \cos x)/\sin x$ when $x \approx 0$

```
>> x = 1e-2;
>> (1 - chop(cos(x), 4)) / chop(sin(x), 4)
ans =
```

0

(exact value is about 0.005)

give a stable alternative method

Exercise 2: evaluate

$$\sum_{k=1}^{3000} k^{-2} = 1.6446$$

rounding all intermediate results to 4 digits

```
>> sum = 0;
>> for k = 1:3000
        sum = chop(sum + 1/k^2, 4);
    end
>> sum
sum =
1.6240
```

- result has only two correct digits
- not caused by cancellation (there are no subtractions)

explain and propose a better method

Exercise 3: the number e = 2.7182818... can be defined as

$$e = \lim_{n \to \infty} (1 + 1/n)^n$$

this suggests an algorithm for calculating e: take a large n and evaluate

$$\hat{e} = (1 + 1/n)^n$$

results:

n	ê	Number of correct digits
104	2.718145926	4
10^{8}	2.718281798	7
10^{12}	2.718523496	4
10^{16}	1.000000000	0

explain

Exercise 4: on page 2.11 we showed that for an n-vector x,

$$\mathbf{std}(x)^2 = \frac{1}{n} ||x - \mathbf{avg}(x)\mathbf{1}||^2 = \frac{1}{n} \left(||x||^2 - \frac{(\mathbf{1}^T x)^2}{n} \right)$$

we evaluate the second expression for n = 10 and

a negative number! explain and suggest a better method