Notes on Linear Algebra Done Right

Hao Su

July 16, 2025

Contents

1	Vector Spaces		
	1A	\mathbb{R}^n and \mathbb{C}^n	1
	1B	Definition of Vector Space	2
	1C	Subspaces	Ę
2	Finite-Dimensional Vector Spaces		
	2A	Span and Linear Independence	7

Chapter 1

Vector Spaces

1A \mathbb{R}^n and \mathbb{C}^n

Defn 1.1 Addition and multiplication on \mathbb{C} are defined by

$$(a + bi) + (c + di) = (a + c) + (b + d)i$$

 $(a + bi) \cdot (c + di) = (ac - bd) + (ad + bc)i$

where $a, b, c, d \in \mathbb{R}$.

By properties of \mathbb{R} and 1.1 we obtain properties of \mathbb{C} . By the existence of inverses we define $-\alpha$ and $\frac{1}{\alpha}$, and subtraction and division accordingly.

 \Diamond

◁

◁

Note 1.2 Use \mathbb{F} (i.e., fields) to denote either \mathbb{R} or \mathbb{C} . Elements of \mathbb{F} are *scalars*. Say that x_k is the k^{th} coordinate of the list (x_1, \ldots, x_n) . Lists, when thought of as arrows, are *vectors*. Addition and scalar multiplication on lists are defined componentwise in the standard way.

Exercises

5 Additive inverse of complex arithmetic.

This is due to the additive inverse of real arithmetic.

6 Multiplicative inverse of complex arithmetic.

For $\alpha = a + bi$, where $a \neq 0$, we have $\frac{a - bi}{a^2 + b^2}$ as the multiplicative inverse of α . Thus one exists. Also all the multiplicative inverses of α equals it by real arithmetic.

8 Find two distinct square roots of *i*.

We solve the equation $(a+bi)^2 = i$ to get $\pm \left(\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i\right)$.

1B Definition of Vector Space

We need a space where things act like vectors, which is defined as follows.

Defn 1.3 A vector space over a field \mathbb{F} is a set V equipped with two operations: vector addition $+: V \times V \to V$, and scalar multiplication $\cdot: \mathbb{F} \times V \to V$, satisfying the following axioms:

- 1. (V, +) is an abelian group, i.e.:
 - (a) (Associativity) u + (v + w) = (u + v) + w for all $u, v, w \in V$,
 - (b) (Commutativity) u + v = v + u for all $u, v \in V$,
 - (c) (Identity) There exists an element $0 \in V$ such that v + 0 = v for all $v \in V$,
 - (d) (Inverses) For each $v \in V$, there exists an element $-v \in V$ such that v + (-v) = 0.
- 2. Scalar multiplication satisfies:
 - (a) (Multiplicative identity) $1 \cdot v = v$ for all $v \in V$,
 - (b) (Associativity) $a \cdot (b \cdot v) = (ab) \cdot v$ for all $a, b \in \mathbb{F}, v \in V$,
 - (c) (Distributivity over vector addition) $a \cdot (u+v) = a \cdot u + a \cdot v$ for all $a \in \mathbb{F}$, $u, v \in V$,
 - (d) (Distributivity over field addition) $(a+b) \cdot v = a \cdot v + b \cdot v$ for all $a, b \in \mathbb{F}$, $v \in V$.

The simplest vector space is $\{0\}$.

Defn 1.4 Elements of a vector space are called *vectors* or *points*.

Eg 1.5 For $f, g \in \mathbb{F}^S$ and $\lambda \in \mathbb{F}$, $f + g \in \mathbb{F}^S$ is defined by $\forall x \in S, (f + g)(x) = f(x) + g(x)$ and $\lambda f \in \mathbb{F}^S$ by $\forall x(\lambda f)(x) = \lambda f(x)$. If $S \neq \emptyset$, then \mathbb{F}^S is a vector space over \mathbb{F} . The vector space \mathbb{F}^n is a special case of \mathbb{F}^S , where $S = \{1, 2, ..., n\}$.

Thm 1.6 A vector space has a unique additive identity.

Proof. Suppose 0 and 0' are both additive identities for some vector space V. Then

$$0' = 0' + 0 = 0 + 0' = 0.$$

 \Diamond

 \Diamond

 \Diamond

Thm 1.7 Every element in a vector space has a unique additive inverse.

3

◁

◁

◁

Proof. Suppose $a \in V$ has two additive inverses b and c. Then

$$b = b + (a + c) = (b + a) + c = c.$$

Notations like -v and w-v make sense due to the uniqueness of additive inverses. From now on, V denotes a vector space over \mathbb{F} .

Thm 1.8
$$\forall v \in V, 0v = 0.$$

Proof. We have for any $v \in V$

$$0v = (0+0)v = 0v + 0v.$$

Adding the additive inverse of 0v to both sides of the equation above gives 0 = 0v.

Comment. We have to use distributivity for that's where vector addition and scalar multiplication are connected in 1.3. The first equation holds because $0 \in \mathbb{F}$.

Thm 1.9
$$\forall a \in \mathbb{F}, a0 = 0.$$

Proof. We have for any $a \in \mathbb{F}$

$$a0 = a(0+0) = a0 + a0.$$

Adding the additive inverse of a0 to both sides of the equation above gives 0 = a0.

Similarly, 0 = (1 + (-1))v gives us

Thm 1.10
$$\forall v \in V, (-1)v = -v.$$

Exercises

1 Prove that $\forall v \in V, -(-v) = v$.

$$0 = (-v) + (-(-v)) = v + (-v).$$

2 Suppose $a \in \mathbb{F}, v \in V$, and av = 0. Prove that a = 0 or v = 0.

If $a \neq 0$ we have that $v = (a \cdot \frac{1}{a})v = \frac{1}{a} \cdot (av) = 0$, which is equivalent to what we are asked to prove.

5 Show that (d) of item 1 in 1.3 can be replaced with 1.8.

We are to show the existence of additive inverse from 1.8 and the rest of 1.3.

$$0 = 0v = (1 - 1)v = v + (-1)v.$$

Thus the additive inverse of v exists, namely (-1)v.

6 Let ∞ and $-\infty$ denote two distinct objects, neither of which is in \mathbb{R} . Define an addition and scalar multiplication on $\mathbb{R} \cup \{\infty, -\infty\}$: the sum and product of two real numbers is as usual, and for $t \in \mathbb{R}$ define

$$t\infty = \begin{cases} -\infty & \text{if } t < 0, \\ 0 & \text{if } t = 0, \\ \infty & \text{if } t > 0, \end{cases} \quad t(-\infty) = \begin{cases} \infty & \text{if } t < 0, \\ 0 & \text{if } t = 0, \\ -\infty & \text{if } t > 0, \end{cases}$$

and

$$\begin{split} t+\infty &= \infty + t = \infty + \infty = \infty, \\ t+(-\infty) &= (-\infty) + t = (-\infty) + (-\infty) = -\infty, \\ \infty + (-\infty) &= (-\infty) + \infty = 0. \end{split}$$

With these operations of addition and scalar multiplication, is $\mathbb{R} \cup \{\infty, -\infty\}$ a vector space over \mathbb{R} ? Explain.

Consider $(\mathbb{R} \cup \{\infty, -\infty\}, +)$. Commutativity and existence of identity and inverses holds by definition. However $(u, v, w) = (3, \infty, -\infty)$ violates commutativity, hence $(\mathbb{R} \cup \{\infty, -\infty\}, +)$ is not an abelian group, thus $\mathbb{R} \cup \{\infty, -\infty\}$ not a vector space.

- 8 Suppose V is a real vector space.
 - The complexification of V, denoted by $V_{\mathbb{C}}$, equals $V \times V$. An element of $V_{\mathbb{C}}$ is an ordered pair (u, v), where $u, v \in V$, but we write this as u + iv.
 - Addition on $V_{\mathbb{C}}$ is defined by

$$(u_1 + iv_1) + (u_2 + iv_2) = (u_1 + u_2) + i(v_1 + v_2)$$

for all $u_1, v_1, u_2, v_2 \in V$.

• Complex scalar multiplication on $V_{\mathbb{C}}$ is defined by

$$(a+bi)(u+iv) = (au-bv) + i(av+bu)$$

for all $a, b \in \mathbb{R}$ and all $u, v \in V$.

Prove that with the definitions of addition and scalar multiplication as above, $V_{\mathbb{C}}$ is a complex vector space.

We verify each of the requirements specified by 1.3 by properties of V as an vector space, very much like verifying the properties of \mathbb{C} by those of \mathbb{R} .

Comment. Think of V as a subset of $V_{\mathbb{C}}$ by identifying $u \in V$ with u + i0. The construction of $V_{\mathbb{C}}$ can then be thought of as generalizing the construction of \mathbb{C}^n from \mathbb{R}^n (thought of as a subset of \mathbb{C}^n .)

1C. SUBSPACES 5

1C Subspaces

Defn 1.11 A subset U of V is called a *subspace* of V if U is also a vector space with the same additive identity, addition, and scalar multiplication as on V.

Thm 1.12 $U \subseteq V$ is a subspace of V iff it (1) has the additive identity of V (or is nonempty, because we can take $u \in U$ then $0u \in U$.), (2) is closed under addition, and (3) is closed under scalar multiplication.

Proof. Both directions hold by definition. In paticular, closure ensures that addition and multiplication are reasonably defined $(U \times U \to U \text{ and } \mathbb{F} \times U \to U)$ and properties such as associativity hold because they hold on V and $U \subseteq V$.

Eg 1.13 The set of differentiable real-valued functions f on the interval (0,3) such that f'(2) = b is a subspace of $\mathbb{R}^{(0,3)}$ iff b = 0 for closure under scalar multiplication, which shows the linear structure underlying parts of calculus. The subspaces of \mathbb{R}^2 are precisely $\{0\}$ all lines in \mathbb{R}^2 containing the origin and \mathbb{R} , which intuitively justifies the word "linear".

Defn 1.14 Suppose V_1, \ldots, V_m are subspaces of V. The *sum* of them is

$$V_1 + \dots + V_m = \{v_1 + \dots + v_m | \bigwedge v_i \in V_i\}$$

Thm 1.15 Suppose V_1, \ldots, V_m are subspaces of V. Then $V_1 + \cdots + V_m$ is the smallest subspace of V containing V_1, \ldots, V_m .

Proof. That $V_1 + \cdots + V_m$ is a subspace and contains V_1, \ldots, V_m is trivial. Suppose that V' contains V_1, \ldots, V_m and is a subspace. By 1.14 and closure under addition we have that $V_1 + \cdots + V_m \subseteq V'$, thus the minimality.

Defn 1.16 Suppose V_1, \ldots, V_m are subspaces of V. The sum $V_1 + \cdots + V_m$ is called a *direct sum* if each element of $V_1 + \cdots + V_m$ can be written in only one way as a sum $v_1 + \cdots + v_m$ where each $v_k \in V_k$, denoted $V_1 \oplus \cdots \oplus V_m$.

The definition of direct sum requires every vector in the sum to have a unique representation as an appropriate sum.

Thm 1.17 Suppose V_1, \ldots, V_m are subspaces of V. Then $V_1 + \cdots + V_m$ is a direct sum iff the only way to write 0 as a sum $v_1 + \cdots + v_m$, where each $v_k \in V_k$, is by taking each v_k equal to 0.

Proof. (\Rightarrow is trivial. Consider \Leftarrow .) Suppose for sake of contradiction that $V_1 + \cdots + V_m$ is not a direct sum. Then there exists $v \in V_1 + \cdots + V_m$ such that $v = v'_1 + \cdots + v'_m = v'_1 + \cdots + v'_1 + \cdots + v'_m = v'_1 + \cdots + v'_1 + \cdots$

 $v_1'' + \cdots + v_m''$, where $v_k' \in V_k$ and $v_k'' \in V_k$ for each k and $(v_1', \dots, v_m') \neq (v_1'', \dots, v_m'')$. Then we have $0 = (v_1' - v_1'') + \cdots + (v_m' - v_m'')$ and at least a j such that $v_j' - v_j'' \neq 0$. Hence contradiction.

Thm 1.18 Suppose U and W are subspaces of V. Then

$$U + W$$
 is a direct sum $\Leftrightarrow U \cap W = \{0\}.$

Proof. ⇒: Say that $v \in U \cap W$ and $v \neq 0$, then 0 = v + (-v), where $v \in U$ and $-v \in W$, hence U + W is not a direct sum, and contradiction. \Leftarrow : Say that 0 = a + b, where $a \in U$, $b \in W$, and $a \neq 0$. Then $b = -a \in U$. Hence $b \in U \cap W$ and $b \neq 0$, and contradiction.

Sums of subspaces are analogous to unions of subsets. Similarly, direct sums of subspaces are analogous to disjoint unions of subsets.

Exercises

Chapter 2

Finite-Dimensional Vector Spaces

2A Span and Linear Independence