Universidade Federal de Pernambuco (UFPE)

Centro de Informática (CIn)

Graduação em Ciência da Computação e Engenharia da Computação

Lógica para Computação (IF673) 2º Semestre de 2010 1ª Prova

04 de Outubro de 2010

1. (1,0) (Conjuntos Indutivos)

Defina indutivamente o conjunto de todas as cadeias binárias que têm o formato $1^k 00^k$ ($k \ge 0$), identificando: (i) base da indução; (ii) função(ões) geradora(s); (iii) maior conjunto indutivo. Diga (argumentando apropriadamente) se o conjunto definido é livremente gerado.

2. (1,0) (Sintaxe da Lógica Proposicional)

Mostre, por indução, que, para toda fórmula A da lógica proposicional, o número de subfórmulas de A é no máximo igual ao número de nós da árvore sintática de A. (Obs.: Defina recursivamente as funções necessárias para a formalização do problema, e use indução para provar o enunciado.)

3. (1,0) (Consistência e Conseqüência Lógica)

Prove que, para todo conjunto Γ de proposições, e toda proposição φ ,

Se
$$\Gamma \cup \{\varphi\}$$
 for inconsistente, então $\Gamma \models \neg \varphi$.

4. (2.0) (Métodos Algorítmicos p/ SAT e Correlatos)

Verifique, usando (i) tableaux analíticos; (ii) método da resolução;

se:
$$\{A \lor (B \land C), \neg E, (A \lor B) \rightarrow (D \lor E), \neg A\} \models C \land D.$$

5. (**1,0**) (Método da Dedução Natural)

Verifique, usando o método da dedução natural, se

$$\{\neg B, (\neg A \lor C), \neg (C \land \neg B)\} \models (\neg A \lor B)$$

6. (1,0) (Dedução Natural)

Escreva as regras que descartam suposições no sistema de Dedução Natural.

7. (1,0) (Propriedades de Sistemas Dedutivos)

Defina precisamente as propriedades que todo sistema dedutivo deve ter para que seja considerado confiável. Explique o significado dos símbolos "\-" e "\=".

8. (1,0) (Normalização de Provas)

Examine a seguinte árvore de prova em dedução natural e diga se está na forma normal. Em caso negativo, identifique as redundâncias (mostrando em cada caso qual(is) é(são) a(s) fórmula(s) máxima(s)), e aplique o procedimento de normalização

para obter sua forma normal:

$$\frac{[A \land B]}{B} \qquad [B \to C] \qquad \frac{[A \land B]}{A}$$

$$\frac{C}{A} \qquad A$$

$$\overline{(B \to C) \to A}$$

$$\overline{(A \land B) \to ((B \to C) \to A)}$$

9. (1,0) (Satisfatibilidade, Custo Computacional)

Para cada uma das afirmações abaixo diga se é VERDADEIRA (V) ou FALSA (F). (**Obs. uma resposta errada anula uma resposta certa.**)

- (i) Para testar se um conjunto Γ é satisfatível, é suficiente testar um número de valorações que é proporcional ao número de variáveis que aparecem em Γ .
- (ii) O custo computacional do problema " $\varphi \in SAT$?" usando-se o método da resolução é o mesmo que quando se usa o método dos tableaux analíticos, qualquer que seja a proposição $\varphi \in PROP$.
- (iii) Dada uma proposição ψ e um conjunto de proposições Θ , se $\Theta \models \psi$ então $\Theta \cup \{\psi\}$ é satisfatível.(iv) Se um método algorítmico de prova é tal que toda vez que $\Gamma \not\models \varphi$, temos $\Gamma \not\models \varphi$, então podemos afirmar que ele é completo.

EXTRA (1,0) (SOMENTE PARA QUEM FALTOU UMA MINI-PROVA)

Mostre que, dado um conjunto Γ , para quaisquer proposições φ, ψ ,

$$\Gamma \models \varphi \rightarrow \psi \qquad \text{se e somente se} \qquad \Gamma \cup \{\varphi\} \models \psi$$