

Activity Sheet:

A. Slow Learners

Activity 1: Protocol Identification Table

Problem: Fill in the table below by identifying whether the following statements relate to TCP or UDP.

Statement	TCP/UDP
Connection-oriented	
Suitable for video streaming	
Has error-checking and correction	
No handshake before communication	
Reliable Transmission	

Solution:

Statement	TCP/UDP
Connection-oriented	ТСР
Suitable for video streaming	UDP
Has error-checking and correction	ТСР
No handshake before communication	UDP
Reliable Transmission	ТСР

Activity 2: Port Number Classification

Problem: Match the service with its default port number.

Service	Port Number
HTTP	

DNS	
FTP	
SMTP	
Telnet	
DHCP	

Solution:

Service	Port Number
HTTP	80
DNS	53
FTP	20/21
SMTP	25
Telnet	23
DHCP	67/68

B. Moderate LearnersActivity 1: Address Type

Problem: Match the address types with their correct definitions.

Address Type		Specification	
I.	IP Address	A. Uniquely identifies a service running on a host	
II.	Port Address	B . Combines an IP address and a port number	
III.	Socket Address	C. Uniquely identifies a host on a network (logical address)	
IV.	MAC Address	D . Hardware address that uniquely identifies a device on a LAN	

Solution:

$I \rightarrow C$, $II \rightarrow A$, $III \rightarrow B$, $IV \rightarrow D$

Activity 2: Analyzing Socket Addresses

Problem: Given the following socket addresses, identify and fill in the corresponding:

- IP Address
- Port Number
- Protocol

Socket Address	IP Address	Port Number	Name of Protocol
192.168.1.5:80			
10.0.0.10:53			
172.16.0.2:443			
192.168.100.1:25			
203.0.113.10:67			

Solution:

Socket Address	IP Address	Port Number	Name of Protocol
192.168.1.5:80	192.168.1.5	80	HTTP
10.0.0.10:53	10.0.0.10	53	DNS
172.16.0.2:443	172.16.0.2	443	HTTPS
192.168.100.1:25	192.168.100.1	25	SMTP
203.0.113.10:67	203.0.113.10	67	DHCP

C. Fast Learners

Activity 1: TCP Header Analysis

Problem: A TCP segment is captured with the following hexadecimal header (first 20 bytes only):

0050 1F90 00000001 00000000 5002 7210 A1B2 C3D4

Hentify the following fields:

- 1. What are the source port number and destination port number?
- 2. What is the sequence number?
- 3. What is the acknowledgment number?
- 4. What is the window size?

Solution:

 \star Each pair of hex digits = 1 byte.

★ TCP Header format:

[Source Port (2B), Dest Port (2B), Seq Num (4B), Ack Num (4B), Data
Offset + Flags (2B), Window Size (2B), Checksum (2B), Urgent Pointer (2B)]

- 1. $0050 \rightarrow \text{Source Port} \rightarrow 0x0050 = 80$
- 2. $1F90 \rightarrow Dest Port \rightarrow 0x1F90 = 8080$
- 3. $00000001 \rightarrow \text{Sequence Number} \rightarrow 1$
- 4. $00000000 \rightarrow Acknowledgment Number \rightarrow 0$
- 5. $7210 \rightarrow \text{Window Size} = 0x7210 = 29200$

Activity 2: TCP Congestion Control

Problem: Suppose that the TCP congestion window is set to 18 KB, and a timeout occurs. What will the window size be if the next four transmission bursts are all successful? Assume that 1 MSS is to be 1 KB.

Solution:

At Timeout:

- Setting the slow start threshold (ssthresh) to half of the current congestion window size.
- ❖ Set the congestion window size to 1 MSS.
- **A** Resuming the **slow start phase**.

So now,

Slow start threshold (ssthresh) = 18 MSS / 2 = 9 MSS

Congestion window size (cwnd) = 1 MSS

Slow Start Phase begins:-

- 1. Window size at the start of the 1st transmission = 1 MSS
- 2. Window size at the start of the 2nd transmission = 2 MSS
- 3. Window size at the start of the 3rd transmission = 4 MSS
- 4. Window size at the start of the 4th transmission = 8 MSS
- 5. Window size at the start of the 5th transmission = 9 MSS

After 4 successful transmissions, the window size will be 9 MSS or 9 KB.