Workshop Week 10 - COMP20008 2021

1. Consider the following data set for a binary class problem:

Feature A	Feature B	Class Label
T	F	+
${ m T}$	T	+
${ m T}$	Γ	+
${ m T}$	F	_
${ m T}$	Γ	+
\mathbf{F}	F	_
${ m F}$	F	_
${ m F}$	F	_
${ m T}$	Γ	_
\mathbf{F}	F	_

We wish to select the feature that best predicts the class label using the χ^2 method.

- Write down the observed and expected contingency tables for feature A
- Calculate the $\chi^2(A,Class)$ value.
- Using the table below, conclude whether feature A is independent of the class label for p=0.05.

df	P = 0.05	P = 0.01	P = 0.001
1	3.84	6.64	10.83
2	5.99	9.21	13.82
3	7.82	11.35	16.27
4	9.49	13.28	18.47
5	11.07	15.09	20.52
6	12 59	16.81	22 46

• Repeat the process for feature B and decide which feature could be best used for predicting the class label.

Observed table:

A	A=T	A=F	Total
Class=+	4	0	4
Class=-	2	4	6
Total	6	4	10

Expected table:

Degrees of freedom =
$$(2-1) \times (2-1) = 1$$

Lookup value in table (3.84). Since our calculated χ^2 value is greater than the critical value in the table, conclude A is not independent of Class for p = 0.05

For feature B:

Observed table:

В	B=T	B=F	Total
Class=+	3	1	4
Class=-	1	5	6
Total	4	6	10

Expected table:

В	B=T	B=F	Total
Class=+	1.6	2.4	4
Class=-	2.4	3.6	6
Total	4	6	10

$$\chi^{2}(B, Class) = \frac{(3-1.6)^{2}}{1.6} + \frac{(1-2.4)^{2}}{2.4} + \frac{(1-2.4)^{2}}{3.6} + \frac{(5-3.6)^{2}}{3.6} = 3.40$$

Degrees of freedom =
$$(2-1) \times (2-1) = 1$$

Lookup value in table (3.84). Since our calculated χ^2 value is less than the critical value in the table, conclude B is independent of Class for p = 0.05

Feature A best predicts class label.