

TP - Graficador de Curvas Mylanga

 $\overline{02/07/2014}$ Teoria de Lenguajes

Integrante	LU	Correo electrónico			
Emilio Almansi					
Santiago Etchegoyen	272/04	santiagoe@fibertel.com.ar			

Facultad de Ciencias Exactas y Naturales

Universidad de Buenos Aires

Ciudad Universitaria - (Pabellón I/Planta Baja) Intendente Güiraldes 2160 - C1428EGA Ciudad Autónoma de Buenos Aires - Rep. Argentina

$$\label{eq:TelFax: formula} \begin{split} \text{Tel/Fax: (54 11) 4576-3359} \\ \text{http://www.fcen.uba.ar} \end{split}$$

1	Intr	roduccion	3			
2	Res	olución y aclaraciones	4			
	2.1	Generalidades	4			
	2.2	Gramática	5			
	2.3	Flex	7			
	2.4	Bison	9			
	2.5		13			
		•	13			
			19			
3	Ejei	mplos y resultados	27			
	3.1	Códigos correctos y resultados generados	27			
			27			
		3.1.2 Segundo ejemplo: Seno	28			
			29			
	3.2	·	31			
			31			
			31			
		3.2.3 Tercer ejemplo	31			
4	Pre	guntas	32			
	4.1	Si queremos que las condiciones sean booleanos solamente cómo podemos verificar esto estáticamente? Cómo incide en la gramática? Cómo lo resuelven otros lengua-	32			
	4.2	jes de programación?	J2			
	4.2		32			
	4.3					
	-		32			

1 Introduccion

Se debe programar un compilador que parsee y ejecute código perteneciente al lenguaje "MyLanga". Un programa bien formado en dicho lenguaje es una secuencia de definiciones de funciones, seguida de una última sentencia de ploteo. Dicha sentencia define un rango similar a un for de una variable (o de un rango de Smalltalk, ya que define un desde-hasta y un step para cada iteración) y toma dos funciones como parámetro que son las que generan un x,y en cada iteración. Estos puntos son devueltos para graficarse mediante gnuplot.

El lenguaje tiene una sintaxis similar a C. En particular los operadores lógicos y aritméticos se pueden considerar idénticos. Al igual que while e if y sus guardas. Las diferencias más notables con respecto a C serían:

- Falta de ; al final de cada instrucción.
- Posibilidad de definir funciones sin llaves para el cuerpo cuando el mismo es de una sola instrucción.
- Cuando el cuerpo del if tiene una sola instrucción se agrega el keyword **then** si se desea evitar llaves.
- Constante **pi**.
- Las variables no se declaran ni se especifica estáticamente su tipo.

Otro problema a tener en cuenta es la detección de errores y la devolución de mensajes declarativos cuando los hubiera.

2 Resolución y aclaraciones

2.1 Generalidades

Para la resolución del problema planteado se decidió utilizar dos de las herramientas propuestas en clase. Flex para generar el analizador léxico que provea los tokens del código MyLanga, y Bison como generador del parser que recibe dichos tokens. Desde el código bison se agrega además la lógica para construir el AST que luego se ejecutará recursivamente.

Algunas aclaraciones de la implementación:

- Además de los nodos del árbol que representan un grupo de funciones, una instrucción, un if, etc, hay un objeto global que se utiliza para generar scopes. El mismo se comporta como un stack y se utiliza para saber que variables son visibles tanto a la hora de parsear como ejecutar el código. Cuando se llama a una función, se pushea un estado nuevo al stack dejando vacía la definición de variables (excepto por los parámetros si hay alguno). Una vez que se retorna de la función, se popea el stack para volver al estado inicial del llamador.
- Agregamos la funcionalidad de escribir sentencias directamente en el comando plot. Es decir, en vez de definir por ejemplo una función que haga x+x, podemos escribirlo directamente en plot. Esto en particular hace que algunos casos que en los tests propuestos debieran dar un error, en nuestro compilador sean aceptados como válidos.
- Se agregó la compatibilidad con código que hace recursión explícita.

2.2 Gramática

Definimos la siguiente gramática $G = \langle \{ Program, Seq_fun_def, Fun_def, Lst_id, Lst_id2, Block, Seq_stmt, Stmt, Pred, Expr, Lst_expr, Lst_expr2, Plot_cmd <math>\}$, $\{ for, plot, if, then, else, while, return, function, pi, id, int, float, <math>+, -, *, /, \land, ., ... =, ||, \&\&, !, <, <=, ==, >=, >, (,), \{, \} \}$, P, Program > donde P son las siguientes producciones:

$Program \rightarrow Seq_fun_def Plot_cmd$

Una programa válido es una secuencia de funciones y un comando plot.

```
Seq\_fun\_def \rightarrow Fun\_def \mid Seq\_fun\_def Fun\_def
```

Una secuencia de funciones es una función o una secuencia seguida de una función.

```
Fun\_def \rightarrow function id ( Lst\_id ) Block
```

Una función bien definida es un ID de función seguido de los parámetros (lista de ids) rodeados por paréntesis y por último un bloque de instrucciones.

```
Lst_id \rightarrow \lambda \mid Lst_id2
```

Una lista de parámetros es o bien una lista vacía o una con parámetros.

```
Lst_id2 \rightarrow id \mid Lst_id2, id
```

Una lista con parámetros es o un ID o una lista seguida de una coma y otro ID.

```
Block \rightarrow Stmt \mid \{ Seq\_stmt \}
```

Un bloque de instrucciones es o bien una única instrucción o una secuencia de instrucciones entre llaves.

```
Seq\_stmt \rightarrow Stmt \mid Seq\_stmt Stmt
```

Una secuencia de instrucciones es o bien una instrucción o una secuencia seguida de una instrucción.

```
\begin{array}{l} \operatorname{Stmt} \to \operatorname{id} = \operatorname{Expr} \\ | \ \operatorname{if} \ \operatorname{Pred} \ \operatorname{then} \ \operatorname{Block} \\ | \ \operatorname{if} \ \operatorname{Pred} \ \operatorname{then} \ \operatorname{Block} \ \operatorname{else} \ \operatorname{Block} \\ | \ \operatorname{while} \ \operatorname{Pred} \ \operatorname{block} \end{array}
```

return Expr

Las instrucciones son o bien una asignación, un if (con y sin else), un while o un return.

```
Pred → Expr < Expr

| Expr <= Expr

| Expr == Expr

| Expr >= Expr

| Expr > Expr

| Pred || Pred

| Pred && Pred

|! Pred

| ( Pred )
```

Los predicados se componen mediante operadores binarios o negaciones. También pueden estar rodeados por paréntesis.

```
\begin{array}{l} \operatorname{Expr} \to \operatorname{int} \\ | \operatorname{float} \\ | \operatorname{pi} \\ | \operatorname{id} \\ | \operatorname{Expr} + \operatorname{Expr} \\ | \operatorname{Expr} - \operatorname{Expr} \\ | \operatorname{Expr} * \operatorname{Expr} \\ | \operatorname{Expr} / \operatorname{Expr} \\ | \operatorname{Expr} \wedge \operatorname{Expr} \\ | - \operatorname{Expr} \\ | \operatorname{id} \left( \operatorname{Lst\_expr} \right) \\ | \left( \operatorname{Expr} \right) \end{array}
```

Las expresiones son o bien literales de enteros y flotantes, o un id de variable, o una operación aritmética entre expresiones. También pueden ser llamados a funciones, la negativización, o la constante pi. Por último, también pueden estar rodeadas por paréntesis.

```
\text{Lst\_expr} \to \lambda \mid \text{Lst\_expr2}
```

Una lista de expresiones es o bien una lista vacía o una con expresiones.

```
\text{Lst\_expr2} \rightarrow \text{Expr} \mid \text{Lst\_expr2} , Expr
```

Una lista con expresiones es o una expresión o una lista seguida de una coma y otra expresión.

 $Plot_cmd \rightarrow plot$ (Expr , Expr) for id = Expr .. Expr .. Expr

Por último el comando plot recibe dos expresiones a llamar y un for con 3 expresiones con un valor, un tope y un incremento para una variable id.

2.3 Flex

```
%{
#include <string>
#include <iostream>
using namespace std;
#include "mylanga_ast.h"
#include "mylanga_sem_types.h"
#include "mylanga_error.h"
#define YYSTYPE mylanga_sem_types
#include "parser.hpp"
extern "C" int yywrap() { }
int line_num = 1;
%x IN_SINGL_COMMENT
%x IN_MULTI_COMMENT
<INITIAL>{
                           BEGIN(IN_SINGL_COMMENT);
"//"
"/*"
                           BEGIN(IN_MULTI_COMMENT);
[\t]
\n
                           ++line_num;
"for"
                           yylval._int = KW_FOR; return KW_FOR;
                          yylval._int = KW_PLOT; return KW_PLOT;
"plot"
                          yylval._int = KW_IF; return KW_IF;
yylval._int = KW_THEN; return KW_THEN;
"if"
"then"
                           yylval._int = KW_ELSE; return KW_ELSE;
"else"
"while"
                           yylval._int = KW_WHILE; return KW_WHILE;
"return"
                           yylval._int = KW_RETURN; return KW_RETURN;
                           yylval._int = KW_FUNCTION; return KW_FUNCTION;
"function"
                           yylval._int = KW_PI; return KW_PI;
"pi"
[a-zA-Z][a-zA-Z0-9_]*
                           yylval._id = mp<id>(yytext, yyleng); return ID;
                           yylval._str = mp<string>(yytext, yyleng); return INT_LITERAL;
[0-9]+
[0-9]+\.[0-9]+
                           yylval._str = mp<string>(yytext, yyleng); return FP_LITERAL;
                           yylval._int = OP_PLUS; return OP_PLUS;
" + "
" - "
                           yylval._int = OP_MINUS; return OP_MINUS;
"*"
                           yylval._int = OP_MULT; return OP_MULT;
"/"
                           yylval._int = OP_DIV; return OP_DIV;
,
, ~ !!
                           yylval._int = OP_EXP; return OP_EXP;
";"
                           yylval._int = SEMICOLON; return SEMICOLON;
                          yylval._int = COMMA; return COMMA;
","
".."
                          yylval._int = ELLIPSIS; return ELLIPSIS;
yylval._int = EQUAL; return EQUAL;
" = "
" | | "
                          yylval._int = L_OR; return L_OR;
"&&"
                          yylval._int = L_AND; return L_AND;
                          yylval._int = L_NOT; return L_NOT;
" ! "
"<"
                           yylval._int = REL_LT; return REL_LT;
" <= "
                           yylval._int = REL_LEQ; return REL_LEQ;
"=="
                          yylval._int = REL_EQ; return REL_EQ;
">="
                           yylval._int = REL_GEQ; return REL_GEQ;
                          yylval._int = REL_GT; return REL_GT;
">"
"("
                           yylval._int = LPAREN; return LPAREN;
")"
                           yylval._int = RPAREN; return RPAREN;
"{"
                           yylval._int = LBRACE; return LBRACE;
"}"
                           yylval._int = RBRACE; return RBRACE;
                           cerr << MYLANGA_LEXER_ERROR(line_num) << "u|u" << "Tokenunou
    \tt reconocido_{\sqcup} \verb|\"" << string(yytext, yyleng) << "\"." << endl; yyterminate();
<IN_SINGL_COMMENT>{
                           BEGIN(INITIAL);
\n
```

Definimos todos los tokens posibles según el lenguaje MyLanga. Cabe destacar que para hacer comentarios multilínea se hace uso de un cambio de contexto en Flex que solo puede retornar al contexto original una vez que lee el token de fin de comentario.

2.4 Bison

```
#include <list>
#include <iostream>
using namespace std;
#include "mylanga_fp_t.h"
#include "mylanga_ast.h"
#include "mylanga_sem_types.h"
#include "mylanga_error.h"
#define YYSTYPE mylanga_sem_types
extern int line_num; int temp;
extern ptr<ast_program> pg;
extern int yylex();
void yyerror(const char *s) { cerr << MYLANGA_SYNTAX_ERROR(line_num) << endl; }</pre>
/* terminales de la gramática */
%token <_id> ID
%token <_str> INT_LITERAL
%token <_str> FP_LITERAL
%token <_int> KW_FOR KW_PLOT KW_IF KW_THEN KW_ELSE KW_WHILE KW_RETURN KW_FUNCTION KW_PI
%token <_int> EQUAL COMMA SEMICOLON ELLIPSIS
%token <_int> REL_EQ REL_LT REL_LEQ REL_GEQ REL_GT
%token <_int> LPAREN RPAREN LBRACE RBRACE
%token <_int> OP_PLUS OP_MINUS OP_MULT OP_DIV OP_EXP
/* no terminales de la gramática */
%type <_pg> program
%type <_fd> fun_def
%type <_pc> plot_cmd
%type <_bl> block
%type <_st> stmt
%type <_ex> expr
%type <_pr> pred
%type <_fds> seq_fun_def
%type <_sts> seq_stmt
%type <_ids> lst_id
%type <_ids> _lst_id
%type <_exs> lst_expr
%type <_exs> _lst_expr
/* precedencia de operadores */
%right KW_THEN KW_ELSE
%left L_OR
%left L_AND
%left L_NOT
%left OP_PLUS OP_MINUS
%left OP_MULT OP_DIV
%left UMINUS
%left OP_EXP
/* símbolo distinguido de la gramática */
```

```
%start program
program
  : seq_fun_def plot_cmd
                                      { pg = $$ = mp<ast_program>($1, $2, line_num); }
  // error handling
  | seq_fun_def
                                       { pg = $$ = mp<ast_program>($1, mp<ast_syntax_error>("Falta")
       \tt definir_{\sqcup}la_{\sqcup}instrucci\'on_{\sqcup}de_{\sqcup}plot.", \ line\_num), \ line\_num); \ \}
                                       { pg = $$ = mp<ast_program>(mp<list<ptr<ast_fun_def>>>(1, mp<
  | plot cmd
       ast_syntax_error > ("Nouseudefinióuningunaufunción.", line_num)), $1, line_num); }
                                       { pg = $$ = mp<ast_program>(mp<list<ptr<ast_fun_def>>>(1, mp<
       ast_syntax_error > ("Nouseudefinióuningunaufunción.", line_num)), mp < ast_syntax_error > ("Faltaudefinirulauinstrucciónudeuplot.", line_num), line_num); }
 : KW_FUNCTION ID LPAREN 1st_id RPAREN block
                                       { $$ = mp<ast_fun_def>($2, $4, $6, line_num); }
  // error handling
  | KW_FUNCTION ID LPAREN 1st_id RPAREN /* */
                                      { $$ = mp<ast_syntax_error>("Laudefiniciónudeulaufunciónu\',"
                                            + *$2 + "\'uestáuincompleta.", line_num); }
 ;
plot_cmd
  : KW_PLOT LPAREN expr COMMA expr RPAREN
    KW_FOR ID EQUAL expr ELLIPSIS expr ELLIPSIS expr
                                       { $$ = mp<ast_plot_cmd>($3, $5, $8, $10, $12, $14, line_num);
                                             7
  // error handling
  | KW_PLOT expr
    KW_FOR ID EQUAL expr ELLIPSIS expr ELLIPSIS expr
                                       { $$ = mp<ast_syntax_error>("En_{\square}la_{\square}instrucción_{\square}plot,_{\square}se_{\square}
                                            espera_{\sqcup}un_{\sqcup}par_{\sqcup}(fx(\dots),fy(\dots))_{\sqcup}luego_{\sqcup}de_{\sqcup}la_{\sqcup}palabra_{\sqcup} \setminus "
                                            plot\".", line_num); }
  | KW_PLOT LPAREN expr COMMA expr RPAREN /* */
                                       { $$ = mp<ast_syntax_error>("En_{\square}la_{\square}instrucción_{\square}plot,_{\square}falta_{\square}
                                            \tt definir_{\sqcup}un_{\sqcup}rango_{\sqcup}de_{\sqcup}evaluaci\'on.", line_num); \ \}
block
                                       { $$ = mp<ast_block>(mp<list<ptr<ast_stmt>>>(1, $1), line_num
 : stmt
      ): }
  | LBRACE seq_stmt RBRACE
                                      { $$ = mp<ast_block>($2, line_num); }
  // error handling
  | LBRACE RBRACE
                                      { $$ = mp<ast_syntax_error>("Un_bloque_de_instrucciones_no_
       puede_ser_vacío.", line_num); }
stmt
 : ID EQUAL expr
                                                    { $$ = mp<ast_var_assign_stmt>($1, $3, line_num);
  | KW_IF pred KW_THEN block
                                                    { $$ = mp<ast_if_then_stmt>($2, $4, line_num); }
  | KW_IF pred KW_THEN block KW_ELSE block
                                                  { $$ = mp<ast_if_then_else_stmt>($2, $4, $6,
       line_num); }
  | KW_WHILE pred block
                                                     { $$ = mp<ast_while_stmt>($2, $3, line_num); }
  | KW_RETURN expr
                                                     { $$ = mp<ast_return_stmt>($2, line_num); }
  // error handling
  | error EQUAL expr
                                                                            { $$ = mp<ast_syntax_error>("
       Instrucci\'on_{\sqcup} de_{\sqcup} asignaci\'on_{\sqcup} inv\'alida.", line\_num); \ \}
  I ID EQUAL error
                                                                           { $$ = mp<ast_syntax_error>("
       La_{\sqcup} expresi\'on_{\sqcup} de_{\sqcup} lado_{\sqcup} derecho_{\sqcup} de_{\sqcup} la_{\sqcup} asignaci\'on_{\sqcup} es_{\sqcup} inv\'alida.", line\_num); \ \}
  Lauguardaudeuunuifudebeuseruunupredicadouconuvalorubooleano.", temp); }
  | KW_WHILE expr { temp = line_num; } block
                                                                           { $$ = mp < ast_syntax_error > ("
```

```
\texttt{La} \sqcup \texttt{guarda} \sqcup \texttt{de} \sqcup \texttt{un} \sqcup \texttt{while} \sqcup \texttt{debe} \sqcup \texttt{ser} \sqcup \texttt{un} \sqcup \texttt{predicado} \sqcup \texttt{con} \sqcup \texttt{valor} \sqcup \texttt{booleano."} \text{, temp); } \}
  | KW_IF pred { temp = line_num; } block
                                                                        { $$ = mp<ast_syntax_error>("
      Falta_{\sqcup}la_{\sqcup}palabra_{\sqcup}clave_{\sqcup}'then'_{\sqcup}en_{\sqcup}la_{\sqcup}instrucci\'on_{\sqcup}if.", temp); \}
  | KW_IF error
                                                                         { $$ = mp<ast_syntax_error>("
       Lauguardaudeluifuesuinválida.", line_num); }
  | KW_WHILE error
                                                                         { $$ = mp<ast_syntax_error>("
      Lauguardaudeluwhileuesuinvalida.", line_num); }
  | KW_RETURN error
                                                                         { $$ = mp<ast_syntax_error>("
      Lauexpresiónudeuretornouesuinválida.", line_num); }
expr
  : INT_LITERAL
                                     { $$ = mp<ast_literal_expr>(stofp_t(*$1), line_num); }
  | FP_LITERAL
                                     { $$ = mp<ast_literal_expr>(stofp_t(*$1), line_num); }
  | KW_PI
                                     { $$ = mp<ast_literal_expr>(FP_T_PI, line_num); }
                                     { $$ = mp<ast_id_expr>($1, line_num); }
  I TD
  | expr OP_PLUS expr
                                     { $$ = mp<ast_bin_op_expr>($1, $2, $3, line_num); }
  | expr OP_MINUS expr
                                     { $$ = mp<ast_bin_op_expr>($1, $2, $3, line_num); }
  | expr OP_MULT expr
                                     { $$ = mp<ast_bin_op_expr>($1, $2, $3, line_num); }
  | expr OP_DIV expr
                                     { $$ = mp<ast_bin_op_expr>($1, $2, $3, line_num); }
                                     { $$ = mp<ast_uny_op_expr>($1, $2, line_num); }
  | OP_MINUS expr %prec UMINUS
  | expr OP_EXP expr
                                     { $$ = mp<ast_bin_op_expr>($1, $2, $3, line_num); }
  | ID LPAREN lst_expr RPAREN
                                     { $$ = mp<ast_fun_call_expr>($1, $3, line_num); }
                                     { $$ = $2; }
  | LPAREN expr RPAREN
  // error handling
  | expr OP_PLUS error
                                      { $$ = mp<ast_syntax_error>("Expresiónuinválida.", line_num)
      ; }
  | expr OP_MINUS error
                                      { $$ = mp<ast_syntax_error>("Expresión_inválida.", line_num)
      ; }
  | expr OP_MULT error
                                      { $$ = mp < ast_syntax_error > ("Expresión inválida.", line_num)
      ; }
  | expr OP_DIV error
                                      { $$ = mp < ast_syntax_error > ("Expresión inválida.", line_num)
      ; }
  | expr OP_EXP error
                                      { $$ = mp<ast_syntax_error>("Expresiónuinválida.", line_num)
      : }
  | LPAREN error RPAREN
                                      { $$ = mp<ast_syntax_error>("Expresión_inválida.", line_num)
      ; }
pred
  : expr REL_LT expr
                                     { $$ = mp<ast_rel_pred>($1, $2, $3, line_num); }
  | expr REL_LEQ expr
                                     { $$ = mp<ast_rel_pred>($1, $2, $3, line_num); }
  | expr REL_EQ expr
                                     { $$ = mp<ast_rel_pred>($1, $2, $3, line_num); }
  | expr REL_GEQ expr
                                     { $$ = mp<ast_rel_pred>($1, $2, $3, line_num); }
                                     { $$ = mp<ast_rel_pred>($1, $2, $3, line_num); }
  | expr REL_GT expr
                                     { $$ = mp<ast_bin_l_pred>($1, $2, $3, line_num); }
  | pred L_OR pred
  \label{local_local_local} \mbox{ | pred $L_AND$ pred}
                                     { $$ = mp<ast_bin_l_pred>($1, $2, $3, line_num); }
  | L_NOT pred
                                     { $$ = mp<ast_uny_l_pred>($1, $2, line_num); }
                                     { $$ = $2; }
  | LPAREN pred RPAREN
  // error handling
  | expr REL_LT error
                                      { $$ = mp<ast_syntax_error>("Predicado_inválido", line_num);
  | expr REL_LEQ error
                                      { $$ = mp<ast_syntax_error>("Predicado_inválido", line_num);
       }
  | expr REL_EQ error
                                      { $$ = mp<ast_syntax_error>("Predicado_inválido", line_num);
  | expr REL_GEQ error
                                      { $$ = mp<ast_syntax_error>("Predicado_inválido", line_num);
  | expr REL_GT error
                                      { $$ = mp < ast_syntax_error > ("Predicado_inválido", line_num);
       }
  | pred L_OR error
                                      { $ = mp<ast_syntax_error>("Predicado_inválido", line_num);
  | pred L_AND error
                                      { $$ = mp<ast_syntax_error>("Predicado_inválido", line_num);
  I I. NOT error
                                      { $$ = mp<ast syntax error>("Predicado inválido", line num):
       }
seq_fun_def
```

```
: fun_def
                                 { $$ = mp<list<ptr<ast_fun_def>>>(1, $1); }
 | seq_fun_def fun_def
                                 { $$ = $1; $$->push_back($2); }
seq_stmt
                                 { $$ = mp<list<ptr<ast_stmt>>>(1, $1); }
 : stmt
 | seq_stmt stmt
                                 { $$ = $1; $$->push_back($2); }
lst id
 : /* */
                                 { $$ = mp<list<ptr<id>>>(); }
                                 { $$ = $1; }
 | _lst_id
lst id
                                 { $$ = mp<list<ptr<id>>>(1, $1); }
 : ID
 | _lst_id COMMA ID
                                 { $$ = $1; $$->push_back($3); }
lst_expr
 : /* */
                                 { $$ = mp<list<ptr<ast_expr>>>(); }
 | _lst_expr
                                 { $$ = $1; }
_lst_expr
                                 { $$ = mp<list<ptr<ast_expr>>>(1, $1); }
 : expr
 | _lst_expr COMMA expr
                                 { $$ = $1; $$->push_back($3); }
```

Las reglas de bison son muy similares a las de la gramática definida anteriormente. La principal diferencia es que se agregan reglas de error para que matcheen explícitamente algunos casos de error específicos y de esa manera poder devolver mensajes más declarativos. A su vez se ve como se arma el árbol AST que luego será utilizado para la ejecución del código. Es decir, al programa se le agrega una instancia de su bloque de funciones y su llamado a plot. Al bloque de funciones se le va empujando cada función definida. Dentro de cada función se agrega cada instrucción, etc.

2.5 Implementación del AST

2.5.1 Definición de clases y estructuras

Primero definimos todas las clases que se usaron para implementar el AST. Se puede ver que son las mismas que se llaman desde las reglas de Bison.

```
#ifndef MYLANGA_AST_H
#define MYLANGA_AST_H
#include "mylanga_fp_t.h"
#include "mylanga_ast_meta.h"
#include <string>
#include <list>
#include <stack>
#include <map>
using namespace std;
typedef string id;
#include <memory>
template <typename T>
using ptr = shared_ptr<T>;
#define mp make_shared
struct ast_expr;
struct ast_literal_expr;
struct ast_id_expr;
struct ast_bin_op_expr;
struct ast_uny_op_expr;
struct ast_pred;
struct ast_rel_pred;
struct ast_bin_l_pred;
struct ast_uny_l_pred;
struct ast_fun_call_expr;
struct ast_stmt;
struct ast_block;
struct ast_var_assign_stmt;
struct ast_if_then_stmt;
struct ast_if_then_else_stmt;
struct ast_while_stmt;
struct ast_return_stmt;
struct ast_plot_cmd;
struct ast_fun_def;
struct ast_program;
struct ast_syntax_error;
#define ast_node_fields
                                           ١
  int, _ln
#define ast_program_fields
 ptr < list < ptr < ast_fun_def >>> , _fds ,
  ptr < ast_plot_cmd >, _pc
#define ast_fun_def_fields
  ptr<id>, _id,
 ptr < list < ptr < id >>> , _ids ,
  ptr<ast_block>, _bl
#define ast_plot_cmd_fields
 ptr<ast_expr>, _ex_x,
ptr<ast_expr>, _ex_y,
  ptr<id>, _id,
  ptr<ast_expr>, _ex1,
 ptr<ast_expr>, _ex2,
  ptr <ast_expr>, _ex3
\#define ast_block_fields
```

```
#define ast_var_assign_stmt_fields
 ptr<id>, _id,
 ptr<ast_expr>, _ex
#define ast_if_then_stmt_fields
 ptr<ast_pred>, _pr,
 ptr < ast_block > , _bl
#define ast_if_then_else_stmt_fields
 ptr<ast_pred>, _pr,
 ptr<ast_block>, _bl1,
 ptr <ast_block >, _b12
#define ast_while_stmt_fields
 ptr<ast_pred>, _pr,
 ptr <ast_block >, _bl
#define ast_return_stmt_fields
                                       \
 ptr<ast_expr>, _ex
#define ast_rel_pred_fields
 ptr<ast_expr>, _ex1,
 int, _op,
 ptr<ast_expr>, _ex2
#define ast_bin_l_pred_fields
 ptr<ast_pred>, _pr1,
 int, _op,
 ptr<ast_pred>, _pr2
#define ast_uny_l_pred_fields
 int, _op,
 ptr<ast_pred>, _pr
{\tt \#define\ ast\_literal\_expr\_fields}
 fp_t, _vl
#define ast_id_expr_fields
                                       ١
 ptr<id>, _id
#define ast_bin_op_expr_fields
 ptr<ast_expr>, _ex1,
 int, _op,
 ptr<ast_expr>, _ex2
\verb|#define ast_uny_op_expr_fields|\\
 int, _op,
 ptr<ast_expr>, _ex
\verb|#define ast_fun_call_expr_fields|
 ptr<id>, _id,
 ptr<list<ptr<ast_expr>>>, _exs
#define ast_syntax_error_fields
                                       ١
  string, _str
struct symbol table
 void define_fun(ptr<ast_fun_def> _fd);
 void undefine_fun(ptr<ast_fun_def> _fd);
 ptr <ast_fun_def > get_fun_def(ptr <id > _id);
 void open_scope();
 void close_scope();
  void declare_var(ptr<id> _id);
 bool var_is_declared(ptr<id> _id);
```

ptr<list<ptr<ast_stmt>>>, _sts

```
void set_var(ptr<id> _id, fp_t value);
  maybe_fp_t get_var(ptr<id> _id);
  bool var_is_set(ptr<id> _id);
  map < id, ptr < ast_fun_def >> functions;
  stack <map <id, fp_t>> scopes;
ን:
/* * * * * * * * *
                                      * * * * * * * * * * */
struct ast_node
 ast_node() {}
  ast_node(ctor_params(ast_node_fields))
   : init list(ast node fields) {}
  virtual ~ast_node() {}
 field_decls(ast_node_fields);
struct ast_expr : virtual ast_node
 ast_expr() {}
 virtual ~ast_expr() {}
  virtual bool is_valid(symbol_table& sym) = 0;
  virtual fp_t eval(symbol_table& sym) = 0;
  virtual bool is_plottable() { return false; };
struct ast_literal_expr : virtual ast_node, ast_expr
 ast_literal_expr() {}
  ast_literal_expr(ctor_params(ast_literal_expr_fields), int _ln)
   : init_list(ast_literal_expr_fields), ast_node(_ln) {}
  ~ast_literal_expr() {}
  virtual bool is_valid(symbol_table& sym);
  fp_t eval(symbol_table& sym);
 field_decls(ast_literal_expr_fields);
}:
struct ast_id_expr : virtual ast_node, ast_expr
  ast_id_expr() {}
 ast_id_expr(ctor_params(ast_id_expr_fields), int _ln)
   : init_list(ast_id_expr_fields), ast_node(_ln) {}
  ~ast_id_expr() {}
  virtual bool is_valid(symbol_table& sym);
  fp_t eval(symbol_table& sym);
 field_decls(ast_id_expr_fields);
};
struct ast_bin_op_expr : virtual ast_node, ast_expr
  ast_bin_op_expr() {}
  ast_bin_op_expr(ctor_params(ast_bin_op_expr_fields), int _ln)
   : init_list(ast_bin_op_expr_fields), ast_node(_ln) {}
  ~ast_bin_op_expr() {}
  virtual bool is_valid(symbol_table& sym);
 fp_t eval(symbol_table& sym);
  field_decls(ast_bin_op_expr_fields);
struct ast_uny_op_expr : virtual ast_node, ast_expr
  ast_uny_op_expr() {}
  ast_uny_op_expr(ctor_params(ast_uny_op_expr_fields), int _ln)
   : init_list(ast_uny_op_expr_fields), ast_node(_ln) {}
```

```
~ast_uny_op_expr() {}
  virtual bool is_valid(symbol_table& sym);
  fp_t eval(symbol_table& sym);
 field_decls(ast_uny_op_expr_fields);
ን:
struct ast_fun_call_expr : virtual ast_node, ast_expr
  ast fun call expr() {}
  ast_fun_call_expr(ctor_params(ast_fun_call_expr_fields), int _ln)
   : init_list(ast_fun_call_expr_fields), ast_node(_ln) {}
  ~ast_fun_call_expr() {}
  virtual bool is_valid(symbol_table& sym);
  virtual fp_t eval(symbol_table& sym);
  virtual bool is_plottable() { return true; };
  field_decls(ast_fun_call_expr_fields);
struct ast_pred : virtual ast_node
 ast_pred() {}
  virtual ~ast_pred() {}
  virtual bool is_valid(symbol_table& sym) = 0;
 virtual bool test(symbol_table& sym) = 0;
struct ast_rel_pred : virtual ast_node, ast_pred
{
 ast_rel_pred() {}
  {\tt ast\_rel\_pred(ctor\_params(ast\_rel\_pred\_fields),\ int\ \_ln)}
    : init_list(ast_rel_pred_fields), ast_node(_ln) {}
  ~ast_rel_pred() {}
  virtual bool is_valid(symbol_table& sym);
  virtual bool test(symbol table& sym):
 field_decls(ast_rel_pred_fields);
struct ast_bin_l_pred : virtual ast_node, ast_pred
 ast_bin_l_pred() {}
  ast_bin_l_pred(ctor_params(ast_bin_l_pred_fields), int _ln)
   : init_list(ast_bin_l_pred_fields), ast_node(_ln) {}
  ~ast_bin_l_pred() {}
  virtual bool is_valid(symbol_table& sym);
  virtual bool test(symbol_table& sym);
 field_decls(ast_bin_l_pred_fields);
};
struct ast_uny_l_pred : virtual ast_node, ast_pred
  ast_uny_l_pred() {}
  ast_uny_l_pred(ctor_params(ast_uny_l_pred_fields), int _ln)
   : init_list(ast_uny_l_pred_fields), ast_node(_ln) {}
  ~ast_uny_l_pred() {}
  virtual bool is_valid(symbol_table& sym);
  virtual bool test(symbol_table& sym);
 field_decls(ast_uny_l_pred_fields);
}:
struct ast_stmt : virtual ast_node
 ast stmt() {}
  virtual ~ast_stmt() {}
  virtual bool is_valid(symbol_table& sym) = 0;
  virtual maybe_fp_t exec(symbol_table& sym) = 0;
```

```
struct ast_block : virtual ast_node
  ast_block() {}
  ast_block(ctor_params(ast_block_fields), int _ln)
   : init_list(ast_block_fields), ast_node(_ln) {}
  ~ast_block() {}
  virtual bool is_valid(symbol_table& sym);
  virtual maybe_fp_t exec(symbol_table& sym);
 field_decls(ast_block_fields);
};
struct ast_var_assign_stmt : virtual ast_node, ast_stmt
ſ
 ast_var_assign_stmt() {}
  ast_var_assign_stmt(ctor_params(ast_var_assign_stmt_fields), int _ln)
   : init_list(ast_var_assign_stmt_fields), ast_node(_ln) {}
  ~ast_var_assign_stmt() {}
  virtual bool is_valid(symbol_table& sym);
  virtual maybe_fp_t exec(symbol_table& sym);
  field_decls(ast_var_assign_stmt_fields);
};
struct ast_if_then_stmt : virtual ast_node, ast_stmt
  ast_if_then_stmt() {}
  ast_if_then_stmt(ctor_params(ast_if_then_stmt_fields), int _ln)
   : init_list(ast_if_then_stmt_fields), ast_node(_ln) {}
  ~ast_if_then_stmt() {}
  virtual bool is_valid(symbol_table& sym);
  virtual maybe_fp_t exec(symbol_table& sym);
 field_decls(ast_if_then_stmt_fields);
}:
struct ast_if_then_else_stmt : virtual ast_node, ast_stmt
  ast_if_then_else_stmt() {}
  ast_if_then_else_stmt(ctor_params(ast_if_then_else_stmt_fields), int _ln)
   : init_list(ast_if_then_else_stmt_fields), ast_node(_ln) {}
  ~ast_if_then_else_stmt() {}
  virtual bool is_valid(symbol_table& sym);
  virtual maybe_fp_t exec(symbol_table& sym);
 field_decls(ast_if_then_else_stmt_fields);
};
struct ast_while_stmt : virtual ast_node, ast_stmt
  ast_while_stmt() {}
  {\tt ast\_while\_stmt(ctor\_params(ast\_while\_stmt\_fields),\ int\ \_ln)}
   : init_list(ast_while_stmt_fields), ast_node(_ln) {}
  ~ast_while_stmt() {}
  virtual bool is_valid(symbol_table& sym);
  virtual maybe_fp_t exec(symbol_table& sym);
  field_decls(ast_while_stmt_fields);
struct ast_return_stmt : virtual ast_node, ast_stmt
  ast_return_stmt() {}
  ast_return_stmt(ctor_params(ast_return_stmt_fields), int _ln)
   : init list(ast return stmt fields), ast node( ln) {}
  ~ast_return_stmt() {}
  virtual bool is_valid(symbol_table& sym);
  virtual maybe_fp_t exec(symbol_table& sym);
  field_decls(ast_return_stmt_fields);
```

```
};
struct ast_plot_cmd : virtual ast_node
  ast_plot_cmd() {}
  ast_plot_cmd(ctor_params(ast_plot_cmd_fields), int _ln)
   : init_list(ast_plot_cmd_fields), ast_node(_ln) {}
  ~ast_plot_cmd() {}
  virtual bool is_valid(symbol_table& sym);
 virtual void plot(symbol_table& sym);
 field_decls(ast_plot_cmd_fields);
struct ast_fun_def : virtual ast_node, enable_shared_from_this <ast_fun_def >
 ast fun def() {}
 ast_fun_def(ctor_params(ast_fun_def_fields), int _ln)
   : init_list(ast_fun_def_fields), ast_node(_ln) {}
  ~ast_fun_def() {}
  virtual bool is_valid(symbol_table& sym);
 field_decls(ast_fun_def_fields);
{\tt struct\ ast\_program\ :\ virtual\ ast\_node}
  ast_program() {}
  ast_program(ctor_params(ast_program_fields), int _ln)
   : init_list(ast_program_fields), ast_node(_ln) {}
  ~ast_program() {}
 virtual bool run();
 field_decls(ast_program_fields);
struct ast_syntax_error : virtual ast_node, ast_program, ast_fun_def,
 ast_plot_cmd, ast_block, ast_stmt, ast_pred, ast_expr
  ast_syntax_error() {}
 ast_syntax_error(ctor_params(ast_syntax_error_fields), int _ln)
   : init_list(ast_syntax_error_fields), ast_node(_ln) {}
  ~ast_syntax_error() {}
  virtual bool is_valid(symbol_table& sym);
  virtual fp_t eval(symbol_table& sym);
 virtual bool test(symbol_table& sym);
  virtual maybe_fp_t exec(symbol_table& sym);
  virtual void plot(symbol_table& sym);
  virtual bool run();
 field_decls(ast_syntax_error_fields);
};
```

#endif /* MYLANGA_AST_H */

18

2.5.2 Implementación de clases y estructuras

Finalmente, su implementación.

```
#include <iostream>
#include <cmath>
using namespace std;
#include "mylanga_fp_t.h"
#include "mylanga_ast.h"
#include "mylanga_sem_types.h"
#include "mylanga_error.h"
#define YYSTYPE mylanga_sem_types
#include "parser.hpp"
void symbol_table::define_fun(ptr<ast_fun_def> _fd)
  functions[*(_fd->_id)] = _fd;
void symbol_table::undefine_fun(ptr<ast_fun_def> _fd)
  functions.erase(*(_fd->_id));
ptr<ast_fun_def> symbol_table::get_fun_def(ptr<id> _id)
  return (functions.count(*_id) > 0) ? functions[*_id] : nullptr;
void symbol_table::open_scope()
  scopes.emplace();
void symbol_table::close_scope()
  scopes.pop();
void symbol_table::declare_var(ptr<id> _id)
  set_var(_id, 0.0);
bool symbol_table::var_is_declared(ptr<id> _id)
  return get_var(_id).is_valid;
void symbol_table::set_var(ptr<id> _id, fp_t value)
  if (scopes.empty())
  {
    MYLANGA_INTERNAL_ERROR();
  auto& scope = scopes.top();
  scope[*_id] = value;
\verb|maybe_fp_t symbol_table::get_var(ptr<id>_id)|\\
  if (scopes.empty())
   MYLANGA_INTERNAL_ERROR();
```

```
auto& scope = scopes.top();
     return (scope.count(*_id) > 0) ? maybe_fp_t(scope[*_id]) : maybe_fp_t();
fp_t ast_literal_expr::eval(symbol_table& sym)
    return _vl;
fp_t ast_id_expr::eval(symbol_table& sym)
     maybe_fp_t var = sym.get_var(_id);
     if (not var.is_valid)
          // runtime error
          cerr << MYLANGA_RUNTIME_ERROR << "_| | " << \
               "Lectura_{\sqcup}de_{\sqcup}la_{\sqcup}variable_{\sqcup}\)'" << *_id << "\'_{\sqcup}sin_{\sqcup}haberle_{\sqcup}asignado_{\sqcup}previamente_{\sqcup}un_{\sqcup}valor." << *_id << "\'_{\sqcup}sin_{\sqcup}haberle_{\sqcup}asignado_{\sqcup}previamente_{\sqcup}un_{\sqcup}valor." << *_id << "\'_{\sqcup}sin_{\sqcup}haberle_{\sqcup}asignado_{\sqcup}previamente_{\sqcup}un_{\sqcup}valor." << *_id << "\'_{\sqcup}sin_{\sqcup}haberle_{\sqcup}asignado_{\sqcup}previamente_{\sqcup}un_{\sqcup}valor." << *_id << *_id
                              endl;
          MYLANGA_END_ABRUPTLY();
     return var.value;
fp_t ast_bin_op_expr::eval(symbol_table& sym)
{
     switch (_op)
          case OP_PLUS: return _ex1->eval(sym) + _ex2->eval(sym);
          case OP_MINUS: return _ex1->eval(sym) - _ex2->eval(sym);
          case OP_MULT: return _ex1->eval(sym) * _ex2->eval(sym);
case OP_DIV: return _ex1->eval(sym) / _ex2->eval(sym);
          case OP_EXP: return pow(_ex1->eval(sym), _ex2->eval(sym));
    MYLANGA_INTERNAL_ERROR();
fp_t ast_uny_op_expr::eval(symbol_table& sym)
     switch (op)
          case OP_MINUS: return - _ex->eval(sym);
    MYLANGA_INTERNAL_ERROR();
fp_t ast_fun_call_expr::eval(symbol_table& sym)
     list<fp_t> args;
     for (auto _{\tt ex} : *_{\tt exs})
          args.push_back(_ex->eval(sym));
     sym.open_scope();
     ptr<ast_fun_def> _fd = sym.get_fun_def(_id);
      auto arg_it = args.begin();
     for (auto _param_id : *(_fd->_ids))
          sym.set_var(_param_id, *arg_it++);
     maybe_fp_t ret = _fd->_bl->exec(sym);
     sym.close_scope();
     if (not ret.is_valid)
```

```
// runtime error
    cerr << MYLANGA_RUNTIME_ERROR << "_{\sqcup}|_{\sqcup}" << \setminus
      "La_{\sqcup} funci\'on_{\sqcup} \backslash " \  \  << \  \  *\_id \  \  << \  \  " \setminus '_{\sqcup} se_{\sqcup} ejecut\'o_{\sqcup} sin_{\sqcup} retornar_{\sqcup} un_{\sqcup} valor." \  \  << endl;
    MYLANGA_END_ABRUPTLY();
  return ret.value;
bool ast_rel_pred::test(symbol_table& sym)
  switch (_op)
  {
    case REL_LT: return _ex1->eval(sym) < _ex2->eval(sym);
    case REL_LEQ: return _ex1->eval(sym) <= _ex2->eval(sym);
    case REL_EQ: return _ex1->eval(sym) == _ex2->eval(sym);
    case REL_GEQ: return _ex1->eval(sym) >= _ex2->eval(sym);
    case REL_GT: return _ex1->eval(sym) > _ex2->eval(sym);
  }
  MYLANGA_INTERNAL_ERROR();
bool ast_bin_l_pred::test(symbol_table& sym)
  switch (_op)
    case L_OR: return _pr1->test(sym) or _pr2->test(sym);
    case L_AND: return _{pr1}->test(sym) and _{pr2}->test(sym);
 MYLANGA_INTERNAL_ERROR();
bool ast_uny_l_pred::test(symbol_table& sym)
  switch (_op)
  {
    case L_NOT: return not _pr->test(sym);
 MYLANGA_INTERNAL_ERROR();
maybe_fp_t ast_block::exec(symbol_table& sym)
  maybe_fp_t ret;
  for (auto _{st} : *_{sts})
    ret = _st->exec(sym);
    if (ret.is_valid) break;
 }
 return ret;
maybe_fp_t ast_var_assign_stmt::exec(symbol_table& sym)
  sym.set_var(_id, _ex->eval(sym));
  return maybe_fp_t();
maybe_fp_t ast_if_then_stmt::exec(symbol_table& sym)
 maybe_fp_t ret;
```

```
if (_pr->test(sym))
    ret = _bl->exec(sym);
 return ret;
maybe_fp_t ast_if_then_else_stmt::exec(symbol_table& sym)
 maybe_fp_t ret;
  if (_pr->test(sym))
   ret = _bl1->exec(sym);
  else
   ret = _b12 \rightarrow exec(sym);
 return ret;
maybe_fp_t ast_while_stmt::exec(symbol_table& sym)
 maybe_fp_t ret;
 while (_pr->test(sym))
   ret = _bl->exec(sym);
   if (ret.is_valid) break;
 return ret;
maybe_fp_t ast_return_stmt::exec(symbol_table& sym)
 return maybe_fp_t(_ex->eval(sym));
void ast_plot_cmd::plot(symbol_table& sym)
  sym.open_scope();
 fp_t range_from = _ex1->eval(sym),
 range_step = _ex2->eval(sym),
range_to = _ex3->eval(sym);
  for (fp_t x = range_from; x <= range_to; x += range_step)</pre>
  {
    sym.set_var(_id, x);
   fp_t x_value = _ex_x->eval(sym),
   y_value = _ex_y->eval(sym);
    cout << x_value << "_{\sqcup}" << y_value << endl;
  }
  sym.close_scope();
bool ast_literal_expr::is_valid(symbol_table& sym)
{
 return true;
bool ast_id_expr::is_valid(symbol_table& sym)
  bool res = true;
  if (not sym.var_is_declared(_id))
  {
    cerr << MYLANGA_PARSE_ERROR(_ln) << "u|u" << \
```

```
"La_{\sqcup}variable_{\sqcup}\'," << *\_id << "\'_{\sqcup}no_{\sqcup}se_{\sqcup}encuentra_{\sqcup}previamente_{\sqcup}declarada." << endl;
    return res;
bool ast_bin_op_expr::is_valid(symbol_table& sym)
       bool res = true:
       res = _ex1->is_valid(sym) and res;
       res = _ex2->is_valid(sym) and res;
      return res;
bool ast_uny_op_expr::is_valid(symbol_table& sym)
      bool res = true;
      res = _ex->is_valid(sym) and res;
     return res;
bool ast_fun_call_expr::is_valid(symbol_table& sym)
       bool res = true;
        do
        {
                ptr<ast_fun_def> _fd = sym.get_fun_def(_id);
                if (_fd == nullptr)
                         cerr << MYLANGA_PARSE_ERROR(_ln) << "u|u" << \
                               "Laufunciónu\'" << *_id << "\'unouseuencuentraudefinida." << endl;
                        res = false; break;
                if (_fd->_ids->size() != _exs->size())
                {
                        cerr << MYLANGA_PARSE_ERROR(_ln) << "u|u" << \
                                  "La_{\sqcup}funci\'on_{\sqcup}" << (*(_fd->_id)) << "_{\sqcup}recibe_{\sqcup}" << to_string(_fd->_ids->size()) << \setminus (fd->_ids->size()) << (fd->size()) << (fd
                                  "\_parámetro(s), \_pero\_es\_invocada\_con\_" << to\_string(\_exs->size()) << \setminus to\_string(\_exs->size()) << to_string(\_exs->size()) << t
                                 "_argumento(s)." << endl;
                      res = false; break;
       } while (false);
       for (auto _ex : *_exs)
              res = _ex->is_valid(sym) and res;
       return res;
bool ast_rel_pred::is_valid(symbol_table& sym)
      bool res = true;
       res = _ex1->is_valid(sym) and res;
       res = _ex2->is_valid(sym) and res;
       return res:
bool ast_bin_l_pred::is_valid(symbol_table& sym)
     bool res = true;
      res = _pr1->is_valid(sym) and res;
       res = _pr2->is_valid(sym) and res;
     return res;
```

```
bool ast_uny_l_pred::is_valid(symbol_table& sym)
 bool res = true;
 res = _pr->is_valid(sym) and res;
 return res;
bool ast_block::is_valid(symbol_table& sym)
 bool res = true;
 for (auto _st : *_sts)
   res = _st->is_valid(sym) and res;
 return res;
bool ast_var_assign_stmt::is_valid(symbol_table& sym)
 bool res = true;
 res = _ex->is_valid(sym) and res;
 sym.declare_var(_id);
 return res;
bool ast_if_then_stmt::is_valid(symbol_table& sym)
 bool res = true;
  res = _pr->is_valid(sym) and res;
 res = _bl->is_valid(sym) and res;
 return res;
bool ast_if_then_else_stmt::is_valid(symbol_table& sym)
 bool res = true:
 res = _pr->is_valid(sym) and res;
res = _bl1->is_valid(sym) and res;
 res = _b12->is_valid(sym) and res;
 return res;
bool ast_while_stmt::is_valid(symbol_table& sym)
 bool res = true;
 res = _pr->is_valid(sym) and res;
res = _bl->is_valid(sym) and res;
 return res;
bool ast_return_stmt::is_valid(symbol_table& sym)
 bool res = true;
 res = _ex->is_valid(sym) and res;
 return res;
bool ast_plot_cmd::is_valid(symbol_table& sym)
 bool res = true;
 sym.open_scope();
```

```
do
    res = _ex1->is_valid(sym) and res;
    res = _ex2->is_valid(sym) and res;
res = _ex3->is_valid(sym) and res;
    if (not res) break;
     fp_t range_from = _ex1->eval(sym),
    range_step = _ex2->eval(sym),
    range_to = _ex3->eval(sym);
    if (not (range_from <= range_to and 0 < range_step))</pre>
       cerr << MYLANGA_PARSE_ERROR(_ln) << "u|u" << \
          "En_{\sqcup}la_{\sqcup}instrucción_{\sqcup}de_{\sqcup}plot, _{\sqcup}el_{\sqcup}rango_{\sqcup}de_{\sqcup}evaluación_{\sqcup}es_{\sqcup}inválido; _{\sqcup}un_{\sqcup}rango_{\sqcup}válido_{\sqcup}a\ldots d\ldots b
               _{\sqcup} \texttt{debe}_{\sqcup} \texttt{cumplir}_{\sqcup} \texttt{a}_{\sqcup} \mathord{<=_{\sqcup}} \texttt{b}_{\sqcup} \texttt{y}_{\sqcup} \texttt{0}_{\sqcup} \mathord{<_{\sqcup}} \texttt{d."} \;\; << \;\; \texttt{endl} \; ;
       res = false;
     if (not (_ex_x->is_plottable() and _ex_y->is_plottable()))
       cerr << MYLANGA_PARSE_ERROR(_ln) << "_{\sqcup}|_{\sqcup}" << \setminus
          función." << endl;
      res = false;
     sym.declare_var(_id);
    res = _ex_x->is_valid(sym) and res;
     res = _ex_y->is_valid(sym) and res;
  } while (false);
  sym.close_scope();
  return res;
bool has_repeated_elements(ptr<list<ptr<id>>> _ids);
bool ast_fun_def::is_valid(symbol_table& sym)
  bool res = true;
  if (sym.get_fun_def(_id) != nullptr)
     cerr << MYLANGA_PARSE_ERROR(_ln) << "_{\sqcup} |_{\sqcup} " << \setminus
       "La_{\cup}funci\'on_{\cup}\'," << *\_id << "\',_{\cup}ya_{\cup}est\'a_{\cup}definida." << endl;
    res = false;
  if (has_repeated_elements(_ids))
     cerr << MYLANGA_PARSE_ERROR(_ln) << "_{\sqcup}|_{\sqcup}" << \setminus
       "Laufunciónu\'" << *_id << "\'ucontieneuparámetrosurepetidosuenusuudefinición." << endl;
    res = false:
  }
  // para soportar recursión
  sym.define_fun(shared_from_this());
  svm.open scope():
  for (auto _{\rm id} : *_{\rm ids})
    sym.declare_var(_id);
  res = _bl->is_valid(sym) and res;
  sym.close_scope();
  sym.undefine_fun(shared_from_this());
  return res;
```

```
}
bool has_repeated_elements(ptr<list<ptr<id>>> _ids)
 for (auto _id1 : *_ids)
   for (auto _{id2} : *_{ids})
     if (_id1 != _id2 and *_id1 == *_id2)
       return true;
 return false;
/* * * * * *
bool ast_program::run()
 symbol_table sym;
  bool is_valid = true;
  for (auto _fd : *_fds)
   if (not (_fd->is_valid(sym)))
     is_valid = false;
     continue;
   sym.define_fun(_fd);
 is_valid = _pc->is_valid(sym) and is_valid;
 if (is_valid)
   _pc->plot(sym);
 return is_valid;
bool ast_syntax_error::is_valid(symbol_table& sym)
 cerr << MYLANGA_SYNTAX_ERROR(_ln) << "_|| " << _str << endl;
 return false;
fp_t ast_syntax_error::eval(symbol_table& sym)
 MYLANGA_INTERNAL_ERROR();
bool ast_syntax_error::test(symbol_table& sym)
 MYLANGA_INTERNAL_ERROR();
maybe_fp_t ast_syntax_error::exec(symbol_table& sym)
 MYLANGA_INTERNAL_ERROR();
void ast_syntax_error::plot(symbol_table& sym)
 MYLANGA_INTERNAL_ERROR();
bool ast_syntax_error::run()
 MYLANGA_INTERNAL_ERROR();
```

3 Ejemplos y resultados

3.1 Códigos correctos y resultados generados

3.1.1 Primer ejemplo: Parábola

```
function id(x)

return x

plot (id(x), id(x * x)) for x = -10 ... 0.5 ... 10
```

Este ejemplo simple define la función identidad y en base a eso ploteamos una parábola cuadrática con X entre -10 y 10. Cabe destacar que si bien el ejemplo parece trivial, hace uso de una de las particularidades del lenguaje que es la de definir funciones con cuerpos sin llaves cuando hay una sola instrucción.

El ejemplo devuelve los siguientes puntos esperados:

-10 100 -9.5 90.25 -9 81 -8.5 72.25 ... 9.5 90.25 10 100

A su vez graficados obtenemos:

3.1.2 Segundo ejemplo: Seno

```
function fact(n) {
  if n < 2 then
    return 1
  i = 1
 while n > 0 {
   i = i * n
   n = n - 1
 return i
}
function sin(x) {
 x2 = x * x
 res = 0
 power_x = x
 sign = 1
  i = 0
 while i < 30 {
    res = res + sign * power_x / fact(2 * i + 1)
    power_x = power_x * x^2
    sign = - sign
    i = i + 1
 return res
}
function id(x)
 return x
plot (id(x), sin(x)) for x=0..0.1..2*pi
```

Este segundo ejemplo nos deja ver algunas funcionalidades más complejas del lenguaje como las estructuras de control while e if. Podemos observar también que ocurren llamados entre funciones ya que sin llama a fact. También se observan asignaciones y operaciones aritméticas más complejas. Por último, vemos que se puede llamar a la constante pi. Cabe destacar que en este ejemplo hay bloques de instrucciones con y sin llaves en el mismo código.

El ejemplo devuelve los siguientes puntos esperados:

```
-0.1 0.0998334
-0.2 0.198669
-0.3 0.29552
...
6.2 -0.0830894
```

A su vez graficados obtenemos la sinusoide esperada:

3.1.3 Tercer ejemplo: Superficie 3D!

```
function fact(n) {
   if \ n < 2 \ then
     return 1
   i = 1
   while n > 0 {
     i = i * n
     n = n - 1
  {f return} i
}
function \sin(x) {
   while x > 2 * pi  {
     x = x - 2 * pi
  \mathbf{x}2 \; = \; \mathbf{x} \; * \; \mathbf{x}
   \mathrm{res} \, = \, 0
   power_x = x
   sign = 1
   i = 0
   \mathbf{while} \;\; \mathrm{i} \; < \; 30 \;\; \{
     res = res + sign * power_x / fact(2 * i + 1)
      power_x = power_x * x2
      \mathrm{sign} \, = - \, \, \mathrm{sign}
```

```
i = i + 1
 return res
function cos(x) {
 while x > 2 * pi  {
   x = x - 2 * pi
 x2 = x * x
  res = 0
 power_x = 1
 sign = 1
  i = 0
 while i < 30 {
    res = res + sign * power_x / fact(2 * i)
    power_x = power_x * x2
    sign = - sign
    i = i + 1
  }
 return res
}
plot (\cos(1 * t) - \cos(200 * t) ^3, \sin(200 * t) - \sin(2 * t) ^4)
for t = 0..0.001..2*pi
```

Este tercer ejemplo además de ser el más intrincado de los tres propuestos, hace uso de otras dos funcionalidades no vistas en los anteriores. Primero una menor que es la de un *if* con *then* y un bloque de una sola instrucción. Luego, el uso del comando plot con una instrucción en lugar de una función. Como vemos, ambos argumentos de la función plot no son llamados a funciones, sino instrucciones con operaciones aritméticas que a su vez llaman funciones. Esta es una de las modificaciones que propusimos al lenguaje pedido en el enunciado. Si hubiéramos querido hacer

```
\cos(1 * t) - \cos(200 * t) \hat{3}
```

tendríamos que haber hecho una función que hiciera eso y llamarla desde plot. En su lugar, la modificación permite hacerlo inline.

No presentamos los puntos ya que no son de una función conocida y por lo tanto no es simple encontrarle la lógica. Sin embargo, obtenemos el siguiente plot esperado:

- 3.2 Códigos con errores
- 3.2.1 Primer ejemplo
- 3.2.2 Segundo ejemplo
- 3.2.3 Tercer ejemplo

4 Preguntas

4.1 Si queremos que las condiciones sean booleanos solamente cómo podemos verificar esto estáticamente? Cómo incide en la gramática? Cómo lo resuelven otros lenguajes de programación?

Nuestra implementación ya contiene este tipo de chequeo de forma estática en la etapa de parseo. Obviamente esto implicó un cambio particular en la gramática que fue el de separar dos tipos de instrucciones entre predicados y el resto de las expresiones. De esta manera las instrucciones con una guarda, solo matchean si lo que está entre paréntesis es de tipo predicado.

Otra manera es la tradicional de manejar estos errores en lenguajes fuertemente tipados, que es mediante la declaración explícita del tipo de todas las variables y de todas las funciones. De esta manera el compilador sabe (o puede saberlo si se quiere hacer el chequeo) cual es el tipo de la expresión en la guarda. Es el tipo de chequeos que se puede n hacer en lenguajes como C, C++, Pascal, etc.

Otra metodología es la inferencia de tipos. Es decir, que ante la ausencia de hints de tipo de las funciones y las variables, el compilador mediante un algoritmo de inferencia de tipos deduce el tipo más general que puede cumplir con las operaciones de la instrucción. Mediante este tipo de chequeos se puede saber si la evaluación de la expresión puede retornar un booleano o no (en este caso, ya que es lo que nos interesa). Es muy común en los lenguajes funcionales fuertemente tipados. C++ es capaz de hacerlo desde el standard 11.

Existen también otras metodologías híbridas nacidas de los compiladores JIT. En general se tratan de tener compiladas más de una versión de la misma función con todas sus signaturas posibles, lo cual permitiría encontrar la versión que devuelva un booleano en la expresión evaluada.

4.2 Por qué no hacen falta terminadores de sentencia (ej .';') como en C/C++? Expliquen por qué hacen falta en esos lenguajes y por qué no en nuestro caso?

El principal motivo por el cual C y C++ tienen ; es que el mismo se usa como punto de secuencia. Es decir que todo efecto colateral de la expresión no puede afectar a la evaluación de las posteriores. Nuestro lenguaje no tiene efectos colaterales, con lo cual no es necesario este tipo de separaciones.

4.3 Si quisiéramos que no importe el orden en que están definidas las funciones dentro del código, cómo lo haríamos? Y para soportar recursión?

En nuestra implementación se mantiene un diccionario de símbolos donde se van agregando las funciones definidas a medida que se va parseando el código. En ese mismo momento se hace un chequeo de validez de una expresión fijándose que los llamados a funciones sean a funciones definidas (es decir que esté en el diccionario). Como esto se hace en el órden de parseo, no nos permite hacer lo preguntado. Para cambiarlo habría que postergar ese chequeo hasta que esté finalizado el parseo de todo el bloque completo de definición de funciones, o simplemente no chequearlo y fallar en tiempo de ejecución.

Para soportar recursión explícita es más simple. Basta con agregar al chequeo que la función esté en el diccionario o que sea la misma que se está definiendo. Si la función finalmente se define correctamente no tendremos ningún problema ya que la función existe, y si no, igualmente generaremos otro error que fue el que causó que no se pueda definir en un primer lugar. En particular la implementación nuestra soporta recursión explícita.