ALGEBRA Chapter 13

LEYES DE EXPONENTES
PARA LA POTENCIACIÓN

HELICO MOTIVATING

HELICO RETO

"NUNCA he encontrado una persona tan ignorante que no se pueda aprender algo de ella"

HELICO THEORY CHAPTHER 13

COCIENTE NOTABLE

FORMA GENERAL:

Sea la división

$$\frac{x^a \pm y^b}{x^p \pm y^q}$$

genera un cociente notable (CN) cuando se cumple:

$$\frac{a}{p} = \frac{b}{q} = n \qquad ; n \in \mathbb{N}, n \ge 2$$

donde n es el número de términos del CN.

I. Si la división es exacta $[R(x,y) \equiv 0]$ se cumple:

$$\frac{x^a \pm y^b}{x^p \pm y^q} = Q(x, y)$$

II. Si la división es inexacta $[R(x, y) \not\equiv 0]$ se cumple:

$$\frac{x^a \pm y^b}{x^p \pm y^q} = Q(x, y) + \frac{R(x, y)}{x^p \pm y^q}$$

Consideramos CN a los originados por divisiones exactas.

HELICO | THEORY

CASO I:
$$\frac{x^a-x^a}{x^a}$$

 $\frac{CASO \ I:}{x^p - v^q} \quad ; \quad (n \in \mathbb{N}, n \ge 2)$

<u>Ejemplos:</u>

$$\frac{x^5 - y^5}{x - y} = x^4 + x^3y + x^2y^2 + xy^3 + y^4$$

$$n = \frac{5}{1} \implies n = 5 \text{ t\'erminos}$$

$$\frac{x^{16} - y^{24}}{x^2 - y^3} = x^{14} + x^{12}y^3 + x^{10}y^6 + x^8y^9 + x^6y^{12} + x^4y^{15} + x^2y^{18} + y^{21}$$

$$n = \frac{16}{2} = \frac{24}{3} \implies n = 8 \text{ términos}$$

HELICO | THEORY

CASO II:
$$\frac{x^a - y^b}{x^p + y^q} ; \quad (\forall n \ par, n \ge 2)$$

<u>Ejemplos:</u>

$$\frac{x^{35} - y^{28}}{x^5 + y^4} = x^{30} - x^{25}y^4 + x^{20}y^8 - x^{15}y^{12} + x^{10}y^{16} - x^5y^{20} + y^{24}$$

$$n = \frac{35}{5} = \frac{28}{4} \implies n = 7 \text{ términos}$$

$$\frac{x^{36} - y^{12}}{x^6 + y^2} = x^{30} - x^{24}y^2 + x^{18}y^4 - x^{12}y^6 + x^6y^8 - y^{10}$$

$$n = \frac{36}{6} = \frac{12}{2} \implies n = 6 \text{ t\'erminos}$$

$$\frac{\textit{CASO III:}}{x^p + y^q} \; ; \quad (\forall n \; impar)$$

Ejemplos:

$$\frac{x^{21} + y^{42}}{x^3 + y^6} = x^{18} - x^{15}y^6 + x^{12}y^{12} - x^9y^{18} + x^6y^{24} - x^3y^{30} + y^{36}$$

$$n = \frac{21}{3} = \frac{42}{6} \implies n = 7 \text{ términos}$$

$$\frac{x^{45}+1}{x^5+1} = x^{40} - x^{35} + x^{30} - x^{25} + x^{20} - x^{15} + x^{10} - x^5 + 1$$

$$n = \frac{45}{5} \implies n = 9 \text{ términos}$$

TÉRMINO DE LUGAR k:

$$\frac{x^a \pm y^b}{x^p \pm y^q} \quad ; \quad \frac{a}{p} = \frac{b}{q} = n \quad ; \quad (\forall n \ge 2 \; ; \; n \in \mathbb{N})$$

$$T_k = \pm (x^p)^{n-k} (y^q)^{k-1}$$

TÉRMINO CENTRAL:

I. Cuando el valor de n es impar:

$$T_{\mathcal{C}} = T_{\left(\frac{n+1}{2}\right)} \implies k = \left(\frac{n+1}{2}\right) \implies T_{\mathcal{C}} = \pm (x^p, y^q)^{\frac{n-1}{2}}$$

II. Cuando el valor de n es par:

$$Lugar(T_{c_1}) = \left(\frac{n}{2}\right) \qquad \Longrightarrow \qquad k = \left(\frac{n}{2}\right) \in \mathbb{N}$$

$$Lugar(T_{C_2}) = \left(\frac{n+2}{2}\right) \qquad \Longrightarrow \qquad k = \left(\frac{n+2}{2}\right) \in \mathbb{N}$$

HELICO PRACTICE CHAPTHER 13

Calcule el valor de **b** en

$$\frac{x^b-y^{15}}{x^2-y^3}$$

Si genera un cociente notable.

Resolución:

Si genera un C.N entonces se cumple que:

$$\frac{b}{2} = \frac{15}{3} = n \text{ ($\#$ términos del C.N)}$$

$$\frac{b}{2} = 5$$

$$\rightarrow b = 10$$

Rpta:

Obtenga el valor de a en el siguiente cociente notable

$$\frac{x^{a-3}-y^{a+1}}{x^3-y^4}$$

4a - 12 = 3a + 3

a = 15

Resolución:

Si genera un C.N entonces se cumple que:

$$\frac{a-3}{3} = \frac{a+1}{4} = n \text{ (# términos del C.N)}$$

$$4(a-3) = 3(a+1)$$

$$4a - 3a = 3 + 12$$

$$\therefore a = 15$$

Rpta:

Determine el **término central** en el cociente notable de:

$$\frac{x^{13}-y^{13}}{x^1-y}$$

Resolucióna

Si genera un C.N entonces se cumple que:

$$Lugar(Tc) = \frac{n+1}{2}$$

$$Lugar(Tc) = \frac{13+1}{2} = 7 \rightarrow k = 7$$

$$n(\text{# t\'erminos del C.N}) = \frac{13}{1} = 13$$

Entonces el Término General (T_k)

$$t_k = (signo)(x^1)^{n-k}(y^1)^{k-1}$$

$$t_7 = (signo)(x^1)^{n-k}(y^1)^{k-1}$$

Indique el número de términos del cociente notable.

$$\frac{x^{n-4}-y^{n+3}}{x^5-y^6}$$

Resolución:

Si genera un C.N entonces se cumple que:

$$\frac{n-4}{5} = \frac{n+3}{6} = n(\# \text{ términos del C. N})$$

$$\frac{6(n-4)}{6n-4} = \frac{5(n+3)}{6n-24} = \frac{(\# \text{ términos})}{6n-5n} = \frac{15+24}{6n-5n} = \frac{n}{6}$$

Rpta

(#t'erminos)n = 7

Calcule el grado absoluto del término central del siguiente cociente notable.

$$\frac{x^{n+7}-y^{n-4}}{x^3-y^2}$$

Resolución:

Si genera un C.N entonces se cumple que:

$$Lugar(Tc) = \frac{n+1}{2}$$

$$Lugar(Tc) = \frac{11+1}{2} = 6$$

$$\frac{n+7}{3} = \frac{n-4}{2} = 11 (\# t \'erminos del C.N)$$

$$2(n + 7) \circ \underline{\text{pronogenel T4}} \text{ formino General } (T_k)$$

$$2n + 14 \quad \underline{t_k} = (signo)(x^3)^{n-k}(y^2)^{k-1}$$

$$2n + 14 \quad \underline{t_k} = (signo)(x^3)^{n-k}(y^2)^{k-1}$$

$$4 + 12 \quad \underline{\text{Estamosxen}} \text{ let 1} (y \text{ egso}) \text{ de C. N}$$

$$4 + 12 \quad \underline{\text{Elstamosxen}} \text{ let 1} (y \text{ egso}) \text{ de C. N}$$

$$+ 12 \quad \underline{\text{Elstamosxen}} \text{ let 1} (y^2) \text{ est is } k$$

$$+ n = 26 \text{ sea 18 Also of MPR pta: GA = 25}$$

Indique el grado del término central del cociente notable y él te indicará lo que gastó diariamente, en soles, María en el colegio Saco Oliveros.

$$\frac{x^{27} - y^{36}}{x^{3} - y^{4}}$$

¿Cuánto gastó diariamente?

Resolución:

Si genera un C.N entonces se cumple que:

$$Lugar(Tc) = \frac{n+1}{2}$$

Lugar(Tc) =
$$\frac{9+1}{2} = 5 \rightarrow k = 5$$

$$\frac{27}{3} = \frac{36}{4} = \frac{2}{4} (\# t\'{e}rminos del C.N)$$

Entonces el Término General (T_k)

$$t_{k} = (signo)(x^{3})^{n-k}(y^{4})^{k-1}$$

$$Ettam(x^{3})^{n} = el(y^{4}) = aso de C.N$$

$$El_{signa} = sea_{2} p + el(y^{4}) = aso de C.N$$

$$t_{5} = x^{2} p + el(y^{4}) = aso de C.N$$

$$t_{5} = x^{2} p + el(y^{4}) = aso de C.N$$

$$t_{6} = x^{2} p + el(y^{4}) = aso de C.N$$

$$t_{7} = aso de C.N$$

$$t_{8} = aso de C.N$$

Luego de obtener cada cociente notable

$$A = \frac{x^4 - 1}{x - 1}$$
; $B = \frac{x^4 - 1}{x + 1}$; Determine A-B

$$A = x^{3} + x^{2} + x^{4} + 1$$

$$A = x^{3} + x^{2} + x^{4} + 1$$

$$B = \frac{x^{n}x^{4} - y^{1}}{x} = x^{4-1} - x^{4-2} \cdot y + x^{4-3} \cdot y^{2} - x^{4-4}y^{1} + \dots - y^{n-1}$$

$$A - B = x^3 + x^2 + x^2 + 1 - x^3 + x^2 - x^2 + 1$$

Rpta:
$$A - B = 2x^2 + 2$$

Reduzca

$$T = \frac{x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1}{x^3 + x^2 + x + 1}$$

Resolución:

$$\frac{x^n - y^n}{x - y} = x^{n-1} + x^{n-2} \cdot y + x^{n-3} \cdot y^2 + x^{n-4}y^3 + \dots + y^{n-1}$$

$$A = \frac{x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1}{x^3 + x^2 + x + 1} = \frac{x^{8-1} + x^{8-2} \cdot 1 + x^{8-3} \cdot 1^2 + x^{8-4} \cdot 1^3 + \dots + 1}{x^{4-1} + x^{4-2} \cdot 1 + x^{4-3} \cdot 1^2 + x^{4-4} \cdot 1^3}$$

$$A = \frac{\frac{x^{8} - 1}{x - 1}}{\frac{x^{4} - 1}{x - 1}} = \frac{(x^{8} - 1)(x - 1)}{(x^{4} - 1)(x - 1)} = \frac{(x^{4})^{2} - 1}{x^{4} - 1} = \frac{(x^{4} + 1)(x^{4} - 1)(a - b)(a - b)(a - b)}{(x^{4} - b)(a - b)(a + b)}$$

$$Rpta: A = x^{4} + 1$$