

Character Formulas from Lusztig Varieties and Affine Springer Fibers

Minh-Tâm Quang Trinh

Yale University

This talk is about...

- 1 Braids
- 2 Lusztig Varieties
- 3 Springer Fibers
- 4 Affine Springer Fibers

This talk is about...

- 1 Braid
- 2 Lusztig Varieties
- 3 Springer Fibers
- 4 Affine Springer Fibers

1 Braids The braid group $Br_n =$

$$\left\langle \sigma_1, \dots, \sigma_{n-1}, \left| \begin{array}{c} \sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}, \\ \sigma_i \sigma_j = \sigma_j \sigma_i \text{ when } |i-j| > 1 \end{array} \right. \right\rangle$$

appears in knot theory and representation theory.

$$\sigma_i$$

A link is a collection of circles (tamely) embedded in \mathbb{R}^3 . Knot theory is about isotopy invariants of links.

(Alexander) Every link is the closure of some braid.

$$\bigcap_{\alpha \in B_1} - \bigoplus_{\hat{a} = \text{closure of } \alpha}$$

1 Braids The braid group $Br_n =$

$$\left\langle \sigma_1, \dots, \sigma_{n-1}, \left| \begin{array}{c} \sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}, \\ \sigma_i \sigma_j = \sigma_j \sigma_i \text{ when } |i-j| > 1 \end{array} \right\rangle$$

appears in knot theory and representation theory.

A link is a collection of circles (tamely) embedded in \mathbb{R}^3 . Knot theory is about isotopy invariants of links.

(Alexander) Every link is the closure of some braid.

$$\bigcap_{\alpha \in B_{\lambda}} - \bigcap_{\hat{a} = \text{closure of } \alpha}$$

Let $G = SL_n$ and B its upper-triangular subgroup.

Let $R(q) = \{Z\text{-valued functions on } G(\mathbf{F}_q)/B(\mathbf{F}_q)\}.$

(Iwahori) There is a surjective homomorphism

$$\mathbf{Z}Br_n \twoheadrightarrow H_n(q) := \operatorname{End}_{G(\mathbf{F}_q)}(R(q)).$$

To describe it, recall the Bruhat decomposition

$$G = \bigsqcup_{w \in S_n} B\dot{w}B.$$

Let $h_{w} \curvearrowright R(q)$ be the Hecke operator

$$h_w(\mathbf{1}_{xB(\mathbf{F}_q)}) = \sum_{y^{-1}x \in B\dot{w}B} \mathbf{1}_{yB(\mathbf{F}_q)}.$$

Iwahori sends $\sigma_i \mapsto h_{s_i}$, where $s_i = (i, i+1)$.

1 Braids The braid group $Br_n =$

$$\left\langle \sigma_1, \dots, \sigma_{n-1}, \left| \begin{array}{c} \sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}, \\ \sigma_i \sigma_j = \sigma_j \sigma_i \text{ when } |i-j| > 1 \end{array} \right\rangle$$

appears in knot theory and representation theory.

$$\sigma_i$$
 $[\cdots] \sum_{i=1}^{n} [\cdots]$

A link is a collection of circles (tamely) embedded in ${\bf R}^3$. Knot theory is about isotopy invariants of links.

(Alexander) Every link is the *closure* of some braid.

Let $G = SL_n$ and B its upper-triangular subgroup.

Let $R(q) = \{ \mathbf{Z}$ -valued functions on $G(\mathbf{F}_q)/B(\mathbf{F}_q) \}$.

(Iwahori) There is a surjective homomorphism

$$\mathbf{Z}Br_n \twoheadrightarrow \underline{H_n(q)} := \operatorname{End}_{G(\mathbf{F}_q)}(R(q)).$$

To describe it, recall the Bruhat decomposition

$$G = \bigsqcup_{w \in S_n} B\dot{w}B.$$

Let $h_{w} \curvearrowright R(q)$ be the Hecke operator

$$h_w(\mathbf{1}_{xB(\mathbf{F}_q)}) = \sum_{y^{-1}x \in B\dot{w}B} \mathbf{1}_{yB(\mathbf{F}_q)}.$$

Iwahori sends $\sigma_i \mapsto h_{s_i}$, where $s_i = (i, i+1)$.

Let $G = SL_n$ and B its upper-triangular subgroup. Let $R(q) = \{ \mathbf{Z}$ -valued functions on $G(\mathbf{F}_q)/B(\mathbf{F}_q) \}$.

(Iwahori) There is a surjective homomorphism

$$\mathbf{Z}Br_n \twoheadrightarrow \mathbf{H}_n(q) := \operatorname{End}_{G(\mathbf{F}_q)}(R(q)).$$

To describe it, recall the Bruhat decomposition

$$G = \bigsqcup_{w \in S_n} B\dot{w}B.$$

Let $h_{\boldsymbol{w}} \curvearrowright R(q)$ be the Hecke operator

$$h_w(\mathbf{1}_{xB(\mathbf{F}_q)}) = \sum_{y^{-1}x \in B\dot{w}B} \mathbf{1}_{yB(\mathbf{F}_q)}.$$

Iwahori sends $\sigma_i \mapsto h_{s_i}$, where $s_i = (i, i+1)$.

The Hecke algebra

$$H_n := rac{\mathbf{Z}[\mathsf{q}]Br_n}{\langle \sigma_i^2 - (\mathsf{q} - 1)\sigma_i - \mathsf{q}
angle}$$

is a generic version: $H_n|_{q\to q} = H_n(q)$.

Jones-Ocneanu used traces $H_n \xrightarrow{\mu_n} \mathbf{Q}(\mathbf{q})[a^{\pm 1}]$ to construct the HOMFLYPT link invariant.

If $L = \hat{\beta}$ for some n and $\beta \in Br_n$, then

$$HOMFLYPT(\hat{\beta}) = (-a)^{e(\beta)} \mu_n(\beta),$$

where $e: Br_n \to \mathbf{Z}$ is the writhe map $\sigma_i \mapsto 1$.

Surprisingly, special values of HOMFLYPT are famous polynomials in combinatorics: q-Catalan numbers, q-Kirkman numbers, etc.

The Hecke algebra

$$H_n := rac{\mathbf{Z}[\mathsf{q}]Br_n}{\langle \sigma_i^2 - (\mathsf{q} - 1)\sigma_i - \mathsf{q}
angle}$$

is a generic version: $H_n|_{q\to q} = H_n(q)$.

Jones-Ocneanu used traces $H_n \xrightarrow{\mu_n} \mathbf{Q}(\mathbf{q})[a^{\pm 1}]$ to construct the HOMFLYPT link invariant.

If $L = \hat{\beta}$ for some n and $\beta \in Br_n$, then

$$HOMFLYPT(\hat{\beta}) = (-a)^{e(\beta)} \mu_n(\beta),$$

where $e: Br_n \to \mathbf{Z}$ is the writhe map $\sigma_i \mapsto 1$.

Surprisingly, special values of HOMFLYPT are famous polynomials in combinatorics: ${\tt q}\text{-}{\rm Catalan}$ numbers, ${\tt q}\text{-}{\rm Kirkman}$ numbers, ${\it etc.}$

2 Lusztig Varieties We can geometrize Iwahori.

Fix a positive braid $\beta = \sigma_{i_1} \cdots \sigma_{i_\ell}$. (Deligne) The variety

$$\frac{\mathcal{O}(\beta)}{\mathcal{O}(\beta)} = \left\{ (g_0 B, g_1 B, \dots, g_{\ell} B) \middle| \begin{array}{c} g_{j-1}^{-1} g_j \in B \dot{s}_{i_j} B \\ \text{for } j = 1, \dots, \ell \end{array} \right\}$$

only depends on β , not $(i_1, i_2, \dots, i_{\ell})$, up to isomorphisms that fix $g_0 B$ and $g_{\ell} B$.

In fact, if we fix \bar{g}_0, \bar{g}_ℓ such that $\bar{g}_0^{-1}\bar{g}_\ell \in B\dot{w}B$, then

$$\left| \left\{ \vec{g}B \in O(\beta)(\mathbf{F}_q) \middle| \begin{array}{c} g_0 B = \bar{g}_0 B, \\ g_\ell B = \bar{g}_\ell B \end{array} \right\} \right|$$

is the coefficient of h_w when we expand β in the Hecke operator basis of $H_n(q)$.

The Hecke algebra

$$H_n := \frac{\mathbf{Z}[\mathsf{q}]Br_n}{\langle \sigma_i^2 - (\mathsf{q} - 1)\sigma_i - \mathsf{q} \rangle}$$

is a generic version: $H_n|_{q\to q} = H_n(q)$.

Jones-Ocneanu used traces $H_n \xrightarrow{\mu_n} \mathbf{Q}(\mathbf{q})[a^{\pm 1}]$ to construct the HOMFLYPT link invariant. If $L = \hat{\beta}$ for some n and $\beta \in Br_n$, then

$$HOMFLYPT(\hat{\beta}) = (-a)^{e(\beta)} \mu_n(\beta),$$

where $e: Br_n \to \mathbf{Z}$ is the writhe map $\sigma_i \mapsto 1$.

Surprisingly, special values of HOMFLYPT are famous polynomials in combinatorics: q-Catalan numbers, q-Kirkman numbers, etc.

2 Lusztig Varieties We can geometrize Iwahori.

Fix a positive braid $\beta = \sigma_{i_1} \cdots \sigma_{i_\ell}$.

(Deligne) The variety

$$\frac{\mathcal{O}(\beta)}{\mathcal{O}(\beta)} = \left\{ (g_0 B, g_1 B, \dots, g_{\ell} B) \middle| \begin{array}{c} g_{j-1}^{-1} g_j \in B \dot{s}_{i_j} B \\ \text{for } j = 1, \dots, \ell \end{array} \right\}$$

only depends on β , not $(i_1, i_2, \dots, i_{\ell})$, up to isomorphisms that fix $g_0 B$ and $g_{\ell} B$.

In fact, if we fix \bar{g}_0, \bar{g}_ℓ such that $\bar{g}_0^{-1}\bar{g}_\ell \in B\dot{w}B$, then

$$\left| \left\{ \vec{g}B \in O(\beta)(\mathbf{F}_q) \middle| \begin{array}{c} g_0 B = \bar{g}_0 B, \\ g_\ell B = \bar{g}_\ell B \end{array} \right\} \right|$$

is the coefficient of h_w when we expand β in the Hecke operator basis of $H_n(q)$.

2 Lusztig Varieties We can geometrize Iwahori

Fix a positive braid $\beta = \sigma_{i_1} \cdots \sigma_{i_\ell}$.

(Deligne) The variety

$$O(\beta) = \left\{ (g_0 B, g_1 B, \dots, g_{\ell} B) \middle| \begin{array}{c} g_{j-1}^{-1} g_j \in B \dot{s}_{i_j} B \\ \text{for } j = 1, \dots, \ell \end{array} \right\}$$

only depends on β , not $(i_1, i_2, \dots, i_{\ell})$, up to isomorphisms that fix g_0B and $g_{\ell}B$.

In fact, if we fix \bar{g}_0, \bar{g}_ℓ such that $\bar{g}_0^{-1}\bar{g}_\ell \in B\dot{w}B$, then

$$\left| \left\{ \bar{g}B \in O(\beta)(\mathbf{F}_q) \middle| \begin{array}{c} g_0 B = \bar{g}_0 B, \\ g_\ell B = \bar{g}_\ell B \end{array} \right\} \right|$$

is the coefficient of h_w when we expand β in the Hecke operator basis of $H_n(q)$.

For any $x \in G(\mathbf{F}_q)$, form the braid Lusztig variety

$$\mathcal{B}(\beta)_x = \{ \vec{g}B \in O(\beta) \mid g_\ell B = xg_0 B \}.$$

(Shende–Treumann–Zaslow) Up to a monomial in q,

$$\frac{|\mathcal{B}(\beta)_1(\mathbf{F}_q)|}{|\mathrm{PGL}_n(\mathbf{F}_q)|}$$

is the "highest" a-degree of HOMFLYPT ($\hat{\beta})$ at $\mathsf{q}\to q.$

Example Let n=2 and $\beta=\sigma_1^3\in Br_2$.

$$O(\beta) \simeq \{ \vec{g} \in (\mathbf{P}^1)^4 \mid g_0 \neq g_1 \neq g_2 \neq g_3 \},$$

 $\mathcal{B}(\beta)_1 \simeq \{ \vec{g} \in (\mathbf{P}^1)^3 \mid g_1 \neq g_2 \neq g_3 \}.$

 PGL_2 acts simply transitively on the latter.

Indeed, Homflypt
$$(\widehat{\sigma_1^3}) = a^2(\mathsf{q} + \mathsf{q}^{-1}) - a^4$$
.

For any $x \in G(\mathbf{F}_q)$, form the braid Lusztig variety

$$\mathcal{B}(\beta)_x = \{ \vec{g}B \in O(\beta) \mid g_\ell B = xg_0 B \}.$$

(Shende–Treumann–Zaslow) Up to a monomial in q,

$$\frac{|\mathcal{B}(\beta)_1(\mathbf{F}_q)|}{|\mathrm{PGL}_n(\mathbf{F}_q)|}$$

is the "highest" a-degree of HOMFLYPT($\hat{\beta}$) at $q \to q$.

Example Let n=2 and $\beta=\sigma_1^3\in Br_2$.

$$O(\beta) \simeq \{ \vec{g} \in (\mathbf{P}^1)^4 \mid g_0 \neq g_1 \neq g_2 \neq g_3 \},$$

 $\mathcal{B}(\beta)_1 \simeq \{ \vec{g} \in (\mathbf{P}^1)^3 \mid g_1 \neq g_2 \neq g_3 \}.$

 PGL_2 acts simply transitively on the latter.

Indeed, HOMFLYPT(
$$\widehat{\sigma_1^3}$$
) = $a^2(q+q^{-1})-a^4$.

3 Springer Fibers How to access other a-degrees? One way uses Springer theory. Observe that

$$\mathcal{B}_x := \mathcal{B}(1)_x = \{gB \mid gB = xgB\}$$

is the usual Springer fiber over z, whose cohomology defines a character of S_n : namely,

$$Q_x(w) := \sum_i q^i \operatorname{tr}(w \mid H^{2i}(\mathcal{B}_x)).$$

Most interesting over the unipotent variety $\mathcal{U} \subseteq G$. Thm 1 (T) Let

$$Q_{\beta}(w) = \frac{1}{|\operatorname{PGL}_n(\mathbf{F}_q)|} \sum_{u \in \mathcal{U}(\mathbf{F}_q)} |\mathcal{B}(\beta)_u(\mathbf{F}_q)| Q_u(w).$$

Then $(\chi_{(n-k,1,\ldots,1)}, Q_{\beta})_{S_n}$ sees the kth a-degree.

For any $x \in G(\mathbb{F}_q)$, form the braid Lusztig variety

$$\mathcal{B}(\beta)_x = \{ \vec{g}B \in O(\beta) \mid g_\ell B = xg_0 B \}.$$

(Shende–Treumann–Zaslow) Up to a monomial in q,

$$\frac{\mathcal{B}(\beta)_1(\mathbf{F}_q)}{\mathrm{PGL}_n(\mathbf{F}_q)}$$

is the "highest" a-degree of HOMFLYPT($\hat{\beta}$) at $q \to q$.

Example Let n=2 and $\beta=\sigma_1^3\in Br_2$.

$$O(\beta) \simeq \{ \vec{g} \in (\mathbf{P}^1)^4 \mid g_0 \neq g_1 \neq g_2 \neq g_3 \},$$

 $\mathcal{B}(\beta)_1 \simeq \{ \vec{g} \in (\mathbf{P}^1)^3 \mid g_1 \neq g_2 \neq g_3 \}.$

 PGL_2 acts simply transitively on the latter.

Indeed, HOMFLYPT
$$(\widehat{\sigma_1^3}) = a^2(q + q^{-1}) - a^4$$
.

3 Springer Fibers How to access other a-degrees?

One way uses Springer theory. Observe that

$$\mathcal{B}_x := \mathcal{B}(1)_x = \{ gB \mid gB = xgB \}$$

is the usual Springer fiber over z, whose cohomology defines a character of S_n : namely,

$$Q_x(w) := \sum_i q^i \mathrm{tr}(w \mid \mathrm{H}^{2i}(\mathcal{B}_x)).$$

Most interesting over the unipotent variety $\mathcal{U} \subseteq G$.

Thm 1 (T) Let

$$Q_{\beta}(w) = \frac{1}{|\mathrm{PGL}_n(\mathbf{F}_q)|} \sum_{u \in \mathcal{U}(\mathbf{F}_q)} |\mathcal{B}(\beta)_u(\mathbf{F}_q)| Q_u(w).$$

Then $(\chi_{(n-k,1,...,1)}, Q_{\beta})_{S_n}$ sees the kth a-degree.

3 Springer Fibers How to access other a-degrees
One way uses Springer theory. Observe that

$$\mathcal{B}_x := \mathcal{B}(1)_x = \{gB \mid gB = xgB\}$$

is the usual Springer fiber over z, whose cohomology defines a character of S_n : namely,

$$Q_x(w) := \sum_i q^i \operatorname{tr}(w \mid H^{2i}(\mathcal{B}_x)).$$

Most interesting over the unipotent variety $\mathcal{U} \subseteq G$ Thm 1 (T) Let

$$Q_{\beta}(w) = \frac{1}{|\operatorname{PGL}_n(\mathbf{F}_q)|} \sum_{u \in \mathcal{U}(\mathbf{F}_q)} |\mathcal{B}(\beta)_u(\mathbf{F}_q)| Q_u(w).$$

Then $(\chi_{(n-k,1,\ldots,1)}, Q_{\beta})_{S_n}$ sees the kth a-degree.

Example Again, let n=2 and $\beta=\sigma_1^3\in Br_2$.

$$\begin{split} |\mathcal{B}(\beta)u| &= \left\{ \begin{array}{ll} |\mathrm{PGL}_2| & u=1,\\ q^3 & u\neq 1, \end{array} \right. \\ Q_u &= \left\{ \begin{array}{ll} 1+q\,\mathrm{sgn} & u=1,\\ 1 & u\neq 1. \end{array} \right. \end{split}$$

Moreover, $PGL_2(\mathbf{F}_q) \curvearrowright \mathcal{U}(\mathbf{F}_q) - \{1\}$ transitively, with stabilizer of size q.

$$\begin{split} Q_{\beta} &= \frac{|\mathrm{PGL}_2|}{|\mathrm{PGL}_2|} \cdot (1 + q \, \mathrm{sgn}) + \frac{q^3}{q} \cdot 1 \\ &= 1 + q^2 + q \, \mathrm{sgn}. \end{split}$$

Thm 2 (T) The cohomology of $\mathcal{U}(\beta) \times_{\mathcal{U}} \mathcal{U}(1)$ sees finer invariants of $\hat{\beta}$, where

$$\label{eq:ubar} {\color{blue} {\mathcal U}(\beta)} = \{(u,\vec{g}B) \mid u \in {\color{blue} {\mathcal U}}, \, \vec{g}B \in {\color{blue} {\mathcal B}}(\beta)_u\}.$$

Example Again, let n = 2 and $\beta = \sigma_1^3 \in Br_2$.

$$|\mathcal{B}(\beta)_u| = \begin{cases} |PGL_2| & u = 1, \\ q^3 & u \neq 1, \end{cases}$$
$$Q_u = \begin{cases} 1 + q \operatorname{sgn} & u = 1, \\ 1 & u \neq 1. \end{cases}$$

Moreover, $PGL_2(\mathbf{F}_q) \sim \mathcal{U}(\mathbf{F}_q) - \{1\}$ transitively, with stabilizer of size q.

$$\begin{split} Q_{\beta} &= \frac{|\mathrm{PGL}_2|}{|\mathrm{PGL}_2|} \cdot (1 + q \, \mathrm{sgn}) + \frac{q^3}{q} \cdot 1 \\ &= 1 + q^2 + q \, \mathrm{sgn}. \end{split}$$

Thm 2 (T) The cohomology of $\mathcal{U}(\beta) \times_{\mathcal{U}} \mathcal{U}(1)$ sees finer invariants of $\hat{\beta}$, where

$$\mathcal{U}(\beta) = \{(u, \vec{g}B) \mid u \in \mathcal{U}, \, \vec{g}B \in \mathcal{B}(\beta)_u\}.$$

The full twist $\pi = (\sigma_1 \cdots \sigma_{n-1})^n$ generates $Z(Br_n)$.

Thm 3 (T) Suppose $\beta^m = \pi^d$ for some d, m > 0. Then up to a monomial, $Q_{\beta}(w)$ equals

$$\frac{\operatorname{sgn}(w)}{\det(1-qw\mid \mathfrak{h})} \sum_{\lambda \vdash n} q^{c(\lambda)d/m} D_{\lambda}(e^{2\pi id/m}) \chi_{\lambda}(w)$$

where:

- h is the reflection representation.
- $c(\lambda)$ is the sum of *contents* of λ .
- $D_{\lambda}(t) = K_{\lambda,(1^n)}(t)$ is the fake degree of λ .

Proof uses the character theory of S_n and H_n .

Example Again, let n = 2 and $\beta = \sigma_1^3 \in Br_2$.

$$|\mathcal{B}(\beta)u| = \begin{cases} |PGL_2| & u = 1, \\ q^3 & u \neq 1, \end{cases}$$
$$Q_u = \begin{cases} 1 + q \operatorname{sgn} & u = 1, \\ 1 & u \neq 1. \end{cases}$$

Moreover, $PGL_2(\mathbf{F}_q) \sim \mathcal{U}(\mathbf{F}_q) - \{1\}$ transitively, with stabilizer of size q.

$$\begin{split} Q_{\beta} &= \frac{|\mathrm{PGL}_2|}{|\mathrm{PGL}_2|} \cdot (1 + q \, \mathrm{sgn}) + \frac{q^3}{q} \cdot 1 \\ &= 1 + q^2 + q \, \mathrm{sgn}. \end{split}$$

Thm 2 (T) The cohomology of $\mathcal{U}(\beta) \times_{\mathcal{U}} \mathcal{U}(1)$ sees finer invariants of $\hat{\beta}$, where

$$\mathcal{U}(\beta) = \{(u, \vec{g}B) \mid u \in \mathcal{U}, \vec{g}B \in \mathcal{B}(\beta)_u\}.$$

The full twist $\pi = (\sigma_1 \cdots \sigma_{n-1})^n$ generates $Z(Br_n)$.

Thm 3 (T) Suppose $\beta^m = \pi^d$ for some d, m > 0.

Then up to a monomial, $Q_{\beta}(w)$ equals

$$\frac{\operatorname{sgn}(w)}{\det(1-qw\mid \mathfrak{h})} \sum_{\lambda \vdash n} q^{c(\lambda)d/m} D_{\lambda}(e^{2\pi id/m}) \chi_{\lambda}(w)$$

where:

- h is the reflection representation.
- $c(\lambda)$ is the sum of *contents* of λ .
- $D_{\lambda}(t) = K_{\lambda,(1^n)}(t)$ is the fake degree of λ .

Proof uses the character theory of S_n and H_n .

The full twist $\pi = (\sigma_1 \cdots \sigma_{n-1})^n$ generates $Z(Br_n)$.

Thm 3 (T) Suppose $\beta^m = \pi^d$ for some d, m > 0. Then up to a monomial, $Q_{\beta}(w)$ equals

$$\frac{\operatorname{sgn}(w)}{\det(1-qw\mid \mathfrak{h})} \sum_{\lambda \vdash n} q^{c(\lambda)d/m} D_{\lambda}(e^{2\pi i d/m}) \chi_{\lambda}(w)$$

where:

- h is the reflection representation
- $c(\lambda)$ is the sum of *contents* of λ
- $D_{\lambda}(t) = K_{\lambda,(1^n)}(t)$ is the fake degree of λ .

Proof uses the character theory of S_n and H_r

Thm 3 generalizes to any reductive G.

Replace S_n with the Weyl group W.

Replace c with $c(\chi)=\sum_{t \text{ refl.}} \frac{\chi(t)}{\chi(1)}$ and fake degrees with generic degrees:

$$\label{eq:definition} \frac{\mathcal{D}_\chi(t) \in \mathbf{Q}[t] \quad \text{such that } R(q) = \bigoplus_{\chi \in \mathrm{Irr}(W)} \chi_q^{\oplus D_\chi(q)}.$$

When m = n and gcd(d, n) = 1, the formula simplifies:

$$(\text{monomial}) \cdot \left| \frac{\det(1 - q^d w \mid \mathfrak{h})}{\det(1 - q w \mid \mathfrak{h})} \right| =: \Pi_q^{(d)}.$$

 $\Pi_q^{(d)}$ is the character of a rational parking space. (triv, $\Pi_q^{(d)})_W$ is a rational q-Catalan number.

Thm 3 generalizes to any reductive G.

Replace S_n with the Weyl group W.

Replace c with $c(\chi)=\sum_{t~{\rm refl.}}\frac{\chi(t)}{\chi(1)}$ and fake degrees with generic~degrees:

$$\label{eq:definition} \frac{D_\chi(t) \in \mathbf{Q}[t] \quad \text{such that } R(q) = \bigoplus_{\chi \in \mathrm{Irr}(W)} \chi_q^{\oplus D_\chi(q)}.$$

When m = n and gcd(d, n) = 1, the formula simplifies:

$$(\text{monomial}) \cdot \left| \frac{\det(1 - q^d w \mid \mathfrak{h})}{\det(1 - q w \mid \mathfrak{h})} \right| =: \Pi_q^{(d)}.$$

 $\Pi_q^{(d)}$ is the character of a rational parking space. $(\text{triv}, \Pi_q^{(d)})_W$ is a rational q-Catalan number.

4 Affine Springer Fibers Now work over C.

Rational parking spaces form modules over rational Cherednik algebras = rational DAHAs:

$$\mathfrak{H}_W = \frac{\mathbf{C}W \ltimes (\mathrm{Sym}(\mathfrak{h}) \otimes \mathrm{Sym}(\mathfrak{h}^{\vee}))}{\langle \operatorname{relations} \rangle}.$$

finite Springer	affine Springer
G	$G(\!(z)\!)$
G/B	$G(\!(z)\!)/I$
W	$\widetilde{W} = W \ltimes X^{\vee}$
$\mathbf{C}W \ltimes \mathrm{Sym}(\mathfrak{h})$	$\mathbf{C}\widetilde{W} \ltimes \mathrm{Sym}(\mathfrak{h})$ or \mathfrak{H}_W

Above:

- G((z)) is the loop group G((z))(R) := G(R((z))).
- I is the preimage of B in G[[z]].
- X^{\vee} is the cocharacter lattice of B.

Thm 3 generalizes to any reductive G.

Replace S_n with the Weyl group W.

Replace c with $c(\chi)=\sum_{t \text{ refl.}} \frac{\chi(t)}{\chi(1)}$ and fake degrees with generic degrees:

$$D_{\chi}(t) \in \mathbf{Q}[t]$$
 such that $R(q) = \bigoplus_{\chi \in Irr(W)} \chi_q^{\oplus D_{\chi}(q)}$.

When m = n and gcd(d, n) = 1, the formula simplifies:

$$(\text{monomial}) \cdot \left| \frac{\det(1 - q^d w \mid \mathfrak{h})}{\det(1 - q w \mid \mathfrak{h})} \right| =: \Pi_q^{(d)}.$$

 $\Pi_q^{(d)}$ is the character of a rational parking space.

 $(\mathsf{triv}, \Pi_q^{(d)})_W$ is a rational q-Catalan number.

4 Affine Springer Fibers Now work over C.

Rational parking spaces form modules over rational Cherednik algebras = rational DAHAs:

$$\mathfrak{H}_W = \frac{\mathbf{C}W \ltimes (\operatorname{Sym}(\mathfrak{h}) \otimes \operatorname{Sym}(\mathfrak{h}^{\vee}))}{\langle \operatorname{relations} \rangle}.$$

affine Springer

mitte Springer	annie Springer
G	$G(\!(z)\!)$
G/B	$G(\!(z)\!)/I$
W	$\widetilde{W} = W \ltimes X^{\vee}$
$\mathbf{C}W \ltimes \mathrm{Sym}(\mathfrak{h})$	$\mathbf{C}\widetilde{W} \ltimes \operatorname{Sym}(\mathfrak{h}) \text{ or } \mathfrak{H}_W$

Above:

- G((z)) is the loop group G((z))(R) := G(R((z))).
- I is the preimage of B in G[[z]].

finite Springer

• X^{\vee} is the cocharacter lattice of B.

4 Affine Springer Fibers Now work over C.

Rational parking spaces form modules over rational Cherednik algebras = rational DAHAs:

$$\mathfrak{H}_W = \frac{\mathbf{C}W \ltimes (\mathrm{Sym}(\mathfrak{h}) \otimes \mathrm{Sym}(\mathfrak{h}^{\vee}))}{\langle \operatorname{relations} \rangle}.$$

 $\begin{array}{ll} \text{finite Springer} & \text{affine Springer} \\ G & G(\!(z)\!) \\ G/B & G(\!(z)\!)/I \\ W & \widetilde{W} = W \ltimes X^\vee \\ \mathbf{C}W \ltimes \mathrm{Sym}(\mathfrak{h}) & \mathbf{C}\widetilde{W} \ltimes \mathrm{Sym}(\mathfrak{h}) \text{ or } \mathfrak{H}_W \end{array}$

Above

- G((z)) is the loop group G((z))(R) := G(R((z)))
- I is the preimage of B in G[[z]]
- X^{\vee} is the cocharacter lattice of B

Henceforth, we consider Springer fibers over the Lie algebras ${\mathfrak g}$ and ${\mathfrak g}(\!(z)\!),$ not the groups.

$$x: \quad \mathcal{B}_x = \{ gB \in G/B \mid g^{-1}xg \in \mathfrak{b} \},$$

$$\gamma = \gamma(z): \quad \mathcal{B}_{\gamma}^{\text{aff}} = \{ gI \in G((z))/I \mid g^{-1}\gamma g \in \mathfrak{I} \}.$$

The table hides some key differences:

In the finite case, \mathcal{B}_x is interesting for x nilpotent, and eas(ier) for x regular semisimple.

In the affine case, $\mathcal{B}_{\gamma}^{\text{aff}}$ is terribly infinite for $\gamma = \gamma(z)$ nilpotent, but interesting for $\gamma(z)$ regular semisimple.

Example If
$$G = \operatorname{SL}_2$$
 and $\gamma(z) = \begin{pmatrix} 0 & 1 \\ z^3 & 0 \end{pmatrix}$, then $\mathcal{B}_{\gamma}^{\operatorname{aff}} \simeq \mathbf{P}^1 \sqcup_{\operatorname{pt}} \mathbf{P}^1$.

Henceforth, we consider Springer fibers over the Lie algebras \mathfrak{g} and $\mathfrak{g}((z))$, not the groups.

$$x: \quad \mathcal{B}_x = \{ gB \in G/B \mid g^{-1}xg \in \mathfrak{b} \},$$

$$\gamma = \gamma(z): \quad \mathcal{B}_{\gamma}^{\text{aff}} = \{ gI \in G((z))/I \mid g^{-1}\gamma g \in \mathfrak{I} \}.$$

The table hides some key differences:

In the finite case, \mathcal{B}_x is interesting for x nilpotent, and eas(ier) for x regular semisimple.

In the affine case, $\mathcal{B}_{\gamma}^{\text{aff}}$ is terribly infinite for $\gamma = \gamma(z)$ nilpotent, but interesting for $\gamma(z)$ regular semisimple.

Example If
$$G = \operatorname{SL}_2$$
 and $\gamma(z) = \begin{pmatrix} 0 & 1 \\ z^3 & 0 \end{pmatrix}$, then $\mathcal{B}_{\gamma}^{\operatorname{aff}} \simeq \mathbf{P}^1 \sqcup_{\operatorname{pt}} \mathbf{P}^1$.

Fixing $\nu = d/m > 0$ in lowest terms, $\mathbf{C}^{\times} \curvearrowright \mathfrak{g}(\!(z)\!)$:

$$c_{\nu} \gamma(z) = c^{2d\rho^{\vee}} \gamma(c^{2m} z) c^{-2d\rho^{\vee}},$$

where $2\rho^{\vee} = \sum_{\alpha \in \Phi^+} \alpha^{\vee}$.

Let $\mathfrak{g}((z))_{\nu,k}$ be the weight-2k eigenspace.

Lemma If γ is an eigenvector for \cdot_{ν} , then the induced action on $G(\!(z)\!)/I$ fixes $\mathcal{B}_{\gamma}^{\mathrm{aff}}$.

Lemma $\mathfrak{g}((z))_{\nu,0}$ is the Lie algebra of a connected reductive group \underline{L}_{ν} . Moreover,

$$(G((z))/I)^{\mathbf{C}^{\times}} = \bigsqcup_{w \in W_{\nu} \setminus \widetilde{W}} L_{\nu} w I/I,$$

where W_{ν} is the Weyl group of L_{ν} .

Henceforth, we consider Springer fibers over the Lie algebras $\mathfrak g$ and $\mathfrak g(\!(z)\!)$, not the groups.

$$x: \quad \mathcal{B}_x = \{gB \in G/B \mid g^{-1}xg \in \mathfrak{b}\},\$$

$$\gamma = \gamma(z): \quad \mathcal{B}_{\gamma}^{\text{aff}} = \{gI \in G((z))/I \mid g^{-1}\gamma g \in \mathfrak{I}\}.$$

The table hides some key differences:

In the finite case, \mathcal{B}_x is interesting for x nilpotent, and eas(ier) for x regular semisimple.

In the affine case, $\mathcal{B}_{\gamma}^{\text{aff}}$ is terribly infinite for $\gamma = \gamma(z)$ nilpotent, but interesting for $\gamma(z)$ regular semisimple.

Example If
$$G = \operatorname{SL}_2$$
 and $\gamma(z) = \begin{pmatrix} 0 & 1 \\ z^3 & 0 \end{pmatrix}$, then $\mathcal{B}_{\gamma}^{\operatorname{aff}} \simeq \mathbf{P}^1 \sqcup_{\operatorname{pt}} \mathbf{P}^1$.

Fixing $\nu = d/m > 0$ in lowest terms, $\mathbf{C}^{\times} \curvearrowright \mathfrak{g}((z))$:

$$c \cdot_{\nu} \gamma(z) = c^{2d\rho^{\vee}} \gamma(c^{2m} z) c^{-2d\rho^{\vee}},$$

where $2\rho^{\vee} = \sum_{\alpha \in \Phi^+} \alpha^{\vee}$.

Let $\mathfrak{g}((z))_{\nu,k}$ be the weight-2k eigenspace.

 $\mbox{Lemma} \quad \mbox{If γ is an eigenvector for \cdot_{ν}, then the induced action on $G(\!(z)\!)/I$ fixes $\mathcal{B}^{\rm aff}_{\gamma}$. }$

Lemma $\mathfrak{g}((z))_{\nu,0}$ is the Lie algebra of a connected reductive group L_{ν} . Moreover,

$$(G((z))/I)^{\mathbf{C}^{\times}} = \bigsqcup_{w \in W_{\nu} \setminus \widetilde{W}} L_{\nu} w I/I,$$

where W_{ν} is the Weyl group of L_{ν} .

Fixing $\nu = d/m > 0$ in lowest terms, $\mathbb{C}^{\times} \curvearrowright \mathfrak{g}(\!(z)\!)$:

$$c \cdot_{\nu} \gamma(z) = c^{2d\rho^{\vee}} \gamma(c^{2m} z) c^{-2d\rho^{\vee}},$$

where $2\rho^{\vee} = \sum_{\alpha \in \Phi^+} \alpha^{\vee}$.

Let $\mathfrak{g}((z))_{\nu,k}$ be the weight-2k eigenspace.

Lemma If γ is an eigenvector for \cdot_{ν} , then the induced action on $G(\!(z)\!)/I$ fixes $\mathcal{B}_{\gamma}^{\mathrm{aff}}$.

Lemma $\mathfrak{g}(\!(z)\!)_{\nu,0}$ is the Lie algebra of a connected reductive group L_{ν} . Moreover,

$$(G((z))/I)^{\mathbf{C}^{\times}} = \bigsqcup_{w \in W_{\nu} \setminus \widetilde{W}} L_{\nu} w I/I,$$

where W_{ν} is the Weyl group of L_{ν} .

Henceforth, $\gamma \in \mathfrak{g}((z))_{\nu,d}$.

By Springer, $\widetilde{W} \cap \mathrm{H}^*_c(\mathcal{B}^{\mathrm{aff}}_{\gamma}), \mathrm{H}^*_{c,\mathbf{C}^{\times}}(\mathcal{B}^{\mathrm{aff}}_{\gamma}).$

(Sommers) If m is the Coxeter number of W, then:

- L_{ν} is a torus, so $(\mathcal{B}_{\gamma}^{\mathrm{aff}})^{\mathbf{C}^{\times}} \hookrightarrow \widetilde{W}$.
- Writing $H_{\mathbf{C}^{\times}}^*(pt) = \mathbf{C}[\epsilon]$, we have

$$\mathrm{H}_{c}^{*}(\mathcal{B}_{\gamma}^{\mathrm{aff}}) \simeq \mathrm{H}_{c,\mathbf{C}^{\times}}^{*}(\mathcal{B}_{\gamma}^{\mathrm{aff}})|_{\epsilon \to 1} \simeq \mathrm{H}^{0}((\mathcal{B}_{\gamma}^{\mathrm{aff}})^{\mathbf{C}^{\times}}).$$

• For $w \in W$, we have

$$\operatorname{tr}(w \mid \operatorname{H}_{c}^{*}(\mathcal{B}_{\gamma}^{\operatorname{aff}})) = \lim_{q \to 1} \frac{\det(1 - q^{d}w \mid \mathfrak{h})}{\det(1 - qw \mid \mathfrak{h})} \ .$$

Example In the previous SL_2 example, $\gamma \in \mathfrak{g}((z))_{\nu,3}$. Recall $\mathcal{B}_{\gamma}^{aff} = \mathbf{P}^1 \sqcup_{pt} \mathbf{P}^1$. It turns out $|(\mathcal{B}_{\gamma}^{aff})^{\mathbf{C}^{\times}}| = 3$.

•

Henceforth, $\gamma \in \mathfrak{g}((z))_{\nu,d}$.

By Springer, $\widetilde{W} \curvearrowright \mathrm{H}^*_c(\mathcal{B}^{\mathrm{aff}}_{\gamma}), \mathrm{H}^*_{c,\mathbf{C}^{\times}}(\mathcal{B}^{\mathrm{aff}}_{\gamma}).$

(Sommers) If m is the Coxeter number of W, then:

- L_{ν} is a torus, so $(\mathcal{B}_{\gamma}^{\mathrm{aff}})^{\mathbf{C}^{\times}} \hookrightarrow \widetilde{W}$.
- Writing $H_{\mathbf{C}^{\times}}^*(pt) = \mathbf{C}[\epsilon]$, we have

$$\mathrm{H}_{c}^{*}(\mathcal{B}_{\gamma}^{\mathrm{aff}}) \simeq \mathrm{H}_{c,\mathbf{C}^{\times}}^{*}(\mathcal{B}_{\gamma}^{\mathrm{aff}})|_{\epsilon \to 1} \simeq \mathrm{H}^{0}((\mathcal{B}_{\gamma}^{\mathrm{aff}})^{\mathbf{C}^{\times}}).$$

• For $w \in W$, we have

$$\operatorname{tr}(w \mid \operatorname{H}_c^*(\mathcal{B}_{\gamma}^{\operatorname{aff}})) = \lim_{q \to 1} \frac{\det(1 - q^d w \mid \mathfrak{h})}{\det(1 - q w \mid \mathfrak{h})} \ .$$

Example In the previous SL_2 example, $\gamma \in \mathfrak{g}((z))_{\nu,3}$.

Recall $\mathcal{B}_{\gamma}^{\text{aff}} = \mathbf{P}^1 \sqcup_{\text{pt}} \mathbf{P}^1$. It turns out $|(\mathcal{B}_{\gamma}^{\text{aff}})^{\mathbf{C}^{\times}}| = 3$.

(Goresky–Kottwitz–MacPherson) For general ν ,

$$(\mathcal{B}_{\gamma}^{\mathrm{aff}})^{\mathbf{C}^{\times}} = \bigsqcup_{w \in W_{\nu} \setminus \widetilde{W}} \mathrm{Hess}_{\gamma, w},$$

a disjoint union of $partial\ Hessenberg\ varieties$

$$\operatorname{Hess}_{\gamma,w} = \{ g P_{\nu,w} \in L_{\nu} / P_{\nu,w} \mid g^{-1} \gamma g \in \mathfrak{P}_{\nu,w} \},$$

where
$$P_{\nu,w} := L_{\nu} \cap \dot{w} I \dot{w}^{-1}$$
 and $\mathfrak{P}_{\nu,w} = \text{Lie}(P_{\nu,w})$.

They are smooth. They can be empty.

If $\operatorname{Hess}_{\gamma,w} \neq \emptyset$, then its codim in $L_{\nu}/P_{\nu,w}$ is

$$\left\{ \begin{array}{l} \text{hyperplanes } H \\ \text{in } X^{\vee} \otimes \mathbf{R} \text{ between} \\ \nu \rho^{\vee} \text{ and } w \cdot \frac{1}{n} \rho^{\vee} \\ \end{array} \right. \left. \begin{array}{l} H(\xi) = \langle \alpha, \xi \rangle + k, \\ \langle \alpha, \nu \rho^{\vee} \rangle = \nu, \\ \alpha \in \Phi, \ k \in \mathbf{Z} \\ \end{array} \right\} \right|.$$

Proof uses Moy-Prasad theory.

Henceforth, $\gamma \in \mathfrak{g}((z))_{\nu,d}$.

By Springer,
$$\widetilde{W} \curvearrowright \mathrm{H}^*_c(\mathcal{B}^{\mathrm{aff}}_{\gamma}), \mathrm{H}^*_{c,\mathbf{C}^{\times}}(\mathcal{B}^{\mathrm{aff}}_{\gamma}).$$

(Sommers) If m is the Coxeter number of W, then:

- L_{ν} is a torus, so $(\mathcal{B}_{\gamma}^{\mathrm{aff}})^{\mathbb{C}^{\times}} \hookrightarrow \widetilde{W}$.
- Writing $H^*_{\mathbf{C}^{\times}}(pt) = \mathbf{C}[\epsilon]$, we have

$$\mathrm{H}_{c}^{*}(\mathcal{B}_{\gamma}^{\mathrm{aff}}) \simeq \mathrm{H}_{c,\mathbf{C}^{\times}}^{*}(\mathcal{B}_{\gamma}^{\mathrm{aff}})|_{\epsilon \to 1} \simeq \mathrm{H}^{0}((\mathcal{B}_{\gamma}^{\mathrm{aff}})^{\mathbf{C}^{\times}}).$$

• For $w \in W$, we have

$$\operatorname{tr}(w \mid \operatorname{H}_{c}^{*}(\mathcal{B}_{\gamma}^{\operatorname{aff}})) = \lim_{q \to 1} \frac{\det(1 - q^{d}w \mid \mathfrak{h})}{\det(1 - qw \mid \mathfrak{h})} .$$

Example In the previous SL_2 example, $\gamma \in \mathfrak{g}((z))_{\nu,3}$. Recall $\mathcal{B}^{\mathrm{aff}}_{\gamma} = \mathbf{P}^1 \sqcup_{\mathrm{pt}} \mathbf{P}^1$. It turns out $|(\mathcal{B}^{\mathrm{aff}}_{\gamma})^{\mathbf{C}^{\times}}| = 3$.

(Goresky–Kottwitz–MacPherson) For general ν ,

$$(\mathcal{B}_{\gamma}^{\mathrm{aff}})^{\mathbf{C}^{\times}} = \bigsqcup_{w \in W_{\nu} \setminus \widetilde{W}} \mathrm{Hess}_{\gamma, w},$$

a disjoint union of $partial\ Hessenberg\ varieties$

$$\operatorname{Hess}_{\gamma, \boldsymbol{w}} = \{ g P_{\nu, \boldsymbol{w}} \in L_{\nu} / P_{\nu, \boldsymbol{w}} \mid g^{-1} \gamma g \in \mathfrak{P}_{\nu, \boldsymbol{w}} \},$$

where $P_{\nu,w} := L_{\nu} \cap \dot{w} I \dot{w}^{-1}$ and $\mathfrak{P}_{\nu,w} = \text{Lie}(P_{\nu,w})$.

They are smooth. They can be empty.

If $\operatorname{Hess}_{\gamma,w} \neq \emptyset$, then its codim in $L_{\nu}/P_{\nu,w}$ is

$$\left| \left\{ \begin{array}{l} \text{hyperplanes } H \\ \text{in } X^{\vee} \otimes \mathbf{R} \text{ between} \\ \nu \rho^{\vee} \text{ and } w \cdot \frac{1}{n} \rho^{\vee} \\ \end{array} \right| \left. \begin{array}{l} H(\xi) = \langle \alpha, \xi \rangle + k, \\ \langle \alpha, \nu \rho^{\vee} \rangle = \nu, \\ \alpha \in \Phi, \ k \in \mathbf{Z} \\ \end{array} \right\} \right|.$$

Proof uses Moy-Prasad theory.

(Goresky–Kottwitz–MacPherson) For general ν ,

$$(\mathcal{B}_{\gamma}^{\mathrm{aff}})^{\mathbf{C}^{\times}} = \bigsqcup_{w \in W_{\nu} \setminus \widetilde{W}} \mathrm{Hess}_{\gamma, w},$$

a disjoint union of partial Hessenberg varieties

$$\operatorname{Hess}_{\gamma,w} = \{ g P_{\nu,w} \in L_{\nu} / P_{\nu,w} \mid g^{-1} \gamma g \in \mathfrak{P}_{\nu,w} \},$$

where $P_{\nu,w} := L_{\nu} \cap \dot{w} I \dot{w}^{-1}$ and $\mathfrak{P}_{\nu,w} = \text{Lie}(P_{\nu,w})$.

They are smooth. They can be empty.

If $\operatorname{Hess}_{\gamma,w} \neq \emptyset$, then its codim in $L_{\nu}/P_{\nu,w}$ is

$$\left\{ \begin{array}{l} \text{hyperplanes } H \\ \text{in } X^{\vee} \otimes \mathbf{R} \text{ between} \\ \nu \rho^{\vee} \text{ and } w \cdot \frac{1}{n} \rho^{\vee} \\ \end{array} \right. \left. \begin{array}{l} H(\xi) = \langle \alpha, \xi \rangle + k, \\ \langle \alpha, \nu \rho^{\vee} \rangle = \nu, \\ \alpha \in \Phi, \ k \in \mathbf{Z} \\ \end{array} \right\} \right|.$$

Proof uses Moy-Prasad theory.

Conj (T) For general ν , the representation

$$W \curvearrowright \mathrm{H}^*_{c,\mathbf{C}^{\times}}(\mathcal{B}^{\mathrm{aff}}_{\gamma})|_{\epsilon \to 1}$$

contains a summand whose character is the $q \to 1$ limit of our earlier formula:

$$\frac{\operatorname{sgn}(w)}{\det(1-qw\mid\mathfrak{h})}\sum_{\chi\in\operatorname{Irr}(W)}q^{c(\chi)\nu}D_{\chi}(e^{2\pi i\nu})\chi(w).$$

Dream For certain choices $\gamma \iff \beta$,

$$\mathcal{B}_{\gamma}^{\mathrm{aff}}$$
 and $[(\mathcal{U}(\beta) \times_{\mathcal{U}} \tilde{\mathcal{U}})/G]$

have the "same" Springer theory.

Thank you for listening.