LINUX

Windows Subsystem for Linux (WSL)

Watch YouTube of WSL Ubuntu

Install via Microsoft Store: Ubuntu \rightarrow Launch \rightarrow Terminal-based.

All code/syntax/command, scripts are present in CODE.txt

https://github.com/Shouryanpatil/A-Guide-to-Basic-RNA-Seq

Download SRA Toolkit

YouTube Video - https://www.youtube.com/watch?v=E1n-Z2HDAD0

Bash code

```
mkdir SRA_TOOLKIT

cd SRA_TOOLKIT

wget --output-document sratoolkit.tar.gz https://ftp-
trace.ncbi.nlm.nih.gov/sra/sdk/current/sratoolkit.current-ubuntu64.tar.gz

tar -vxzf sratoolkit.tar.gz

export PATH=$PWD/sratoolkit.3.0.0-ubuntu64/bin

which fastq-dump

# extra export PATH=/usr/bin:/bin:$PATH

# extra source ~/.bashrc

which fastq-dump

vdb-config -i # Set directory want to data to download
```

Conda

YouTube Video - https://www.youtube.com/watch?v=AshsPB3KT-E

Bash code

Mine was /mnt/e/SRA TOOLKIT

wget https://repo.anaconda.com/archive/Anaconda3-2024.10-1-Linux-x86_64.sh

```
ls
chmod +X Anaconda3-2024.10-1-Linux-x86_64.sh
ls
./Anaconda3-2024.10-1-Linux-x86_64.sh
>>> Press Enter
```

```
Enter
yes
conda config --set auto_activate_base false

conda config --show channels
conda config --add channels conda-forge
conda config --add channels bioconda
conda config --show channels

conda env list
conda create -n bioinformatics
```

FastQC, Trimmomatic, HISAT2, Samtools, featureCounts

Bash

```
conda activate bioinformatics

conda --version

# verify conda is installed.

conda update conda

# update conda to latest version.

y

conda install -y -c bioconda fastqc trimmomatic hisat2 samtools subread

conda install -c conda-forge libgcc-ng
```

1. Download Sample Data

GSE295831 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE295831)

https://www.ncbi.nlm.nih.gov/Traces/study/?acc=PRJNA1256454&o=acc_s%3Aa

Disease Data

```
shouryan@DESKTOP-1J9QB57:/mnt/e/SRA_TOOLKIT$ prefetch -v SRR33341769
shouryan@DESKTOP-1J9QB57:/mnt/e/SRA_TOOLKIT$ prefetch -v SRR33341768
shouryan@DESKTOP-1J9QB57:/mnt/e/SRA_TOOLKIT$ prefetch -v SRR33341767
shouryan@DESKTOP-1J9QB57:/mnt/e/SRA_TOOLKIT$ prefetch -v SRR33341766
Control Data
shouryan@DESKTOP-1J9QB57:/mnt/e/SRA_TOOLKIT$ prefetch -v SRR33341765
shouryan@DESKTOP-1J9QB57:/mnt/e/SRA_TOOLKIT$ prefetch -v SRR33341764
shouryan@DESKTOP-1J9QB57:/mnt/e/SRA_TOOLKIT$ prefetch -v SRR33341763
shouryan@DESKTOP-1J9QB57:/mnt/e/SRA_TOOLKIT$ prefetch -v SRR33341762
```

2. Convert .sra to .fastq

```
$ fasterq-dump SRR33341769 -0 ./fastq_output/
                : 9,459,651
spots read
                : 9,459,651
reads read
reads written
                : 9,459,651
shouryan@DESKTOP-1J9
                              /e/SRA_TOOLKIT$ fasterq-dump SRR33341768 -0 ./fastq_output/
spots read
                : 13,839,532
                : 13,839,532
reads read
reads written
               : 13,839,532
                              /e/SRA_TOOLKIT$ fasterq-dump SRR33341767 -0 ./fastq_output/
spots read
                : 10,271,382
reads read
                : 10,271,382
                : 10,271,382
reads written
                              nt/e/SRA_TOOLKIT$ fasterq-dump SRR33341766 -0 ./fastq_output/
^Cshouryan@DESKTOP-1J9QB57:/r
spots read
               : 10,155,851
reads read
                  10,155,851
reads written
                : 10,155,851
```

spots read:

Number of sequencing records (in SRA format, each "spot" is one sequencing event).

For single-end data, 1 spot = 1 read.

reads read:

Number of actual sequencing reads found in the .sra file.

Since it's single-end, this is equal to spots.

reads written:

Number of reads successfully written to the .fastq file.

```
SRA_TOOLKIT$ fasterq-dump SRR33341765 -0 ./fastq_output/
spots read
                : 11,158,408
                : 11,158,408
reads read
                : 11,158,408
reads written
shouryan@DESKTOP-1J9QB57:/mnt/e/SRA_TOOLKIT$ fasterq-dump SRR33341764 -0 ./fastq_output/
spots read
                : 9,601,077
               : 9,601,077
: 9,601,077
reads read
reads written
shouryan@DESKTOP-1J9QB57:/mnt/e/SRA_TOOLKIT$ fasterq-dump SRR33341763 -0 ./fastq_output/
               : 10,715,477
spots read
               : 10,715,477
reads read
reads written
                : 10,715,477
shouryan@DESKTOP-1J9
                            int/e/SRA_TOOLKIT$ fasterg-dump SRR33341762 -0 ./fastq_output/
                : 8,881,242
spots read
reads read
                : 8,881,242
reads written : 8,881,242
```

Move fastq file to working directory

3. Quality control

Activated Conda

```
shouryan@DESKTOP-1J9QB57:/mnt/e/Project/NGS/fastq_output$ conda activate bioinformatics (bioinformatics) shouryan@DESKTOP-1J9QB57:/mnt/e/Project/NGS/fastq_output$
```

FASTQ

```
(bioinformatics) shouryan@DESKTOP-1J9QB57:/mnt/e/Project/NGS/fastq_output$ fastqc_reports (bioinformatics) shouryan@DESKTOP-1J9QB57:/mnt/e/Project/NGS/fastq_output$ fastqc_SRR33341769.fastq -o fastqc_reports/ (bioinformatics) shouryan@DESKTOP-1J9QB57:/mnt/e/Project/NGS/fastq_output$ fastqc_SRR33341768.fastq -o fastqc_reports/ (bioinformatics) shouryan@DESKTOP-1J9QB57:/mnt/e/Project/NGS/fastq_output$ fastqc_SRR33341767.fastq -o fastqc_reports/ (bioinformatics) shouryan@DESKTOP-1J9QB57:/mnt/e/Project/NGS/fastq_output$ fastqc_SRR33341766.fastq -o fastqc_reports/ (bioinformatics) shouryan@DESKTOP-1J9QB57:/mnt/e/Project/NGS/fastq_output$ fastqc_SRR33341765.fastq -o fastqc_reports/ (bioinformatics) shouryan@DESKTOP-1J9QB57:/mnt/e/Project/NGS/fastq_output$ fastqc_SRR33341764.fastq -o fastqc_reports/ (bioinformatics) shouryan@DESKTOP-1J9QB57:/mnt/e/Project/NGS/fastq_output$ fastqc_SRR33341763.fastq -o fastqc_reports/ (bioinformatics) shouryan@DESKTOP-1J9QB57:/mnt/e/Project/NGS/fastq_output$ fastqc_SRR33341763.fastq -o fastqc_reports/ (bioinformatics) shouryan@DESKTOP-1J9QB57:/mnt/e/Project/NGS/fastq_output$ fastqc_SRR33341763.fastq -o fastqc_reports/ (bioinformatics) shouryan@DESKTOP-1J9QB57:/mnt/e/Project/NGS/fastq_output$ fastqc_SRR33341762.fastq -o fastqc_reports/
```


Figure 1 Explanation (Simple and Short):

- **A.** The graph shows the quality of each base in sequencing reads.
 - Green area = very good quality (Phred score > 28)
 - Orange area = acceptable quality (Phred score > 20)
 - Red area = poor quality (Phred score 0–20)
- **B.** This graph shows how much GC content (Guanine + Cytosine) is in the reads.
 - Blue line = expected (normal) GC content for the organism
 - Red line = actual GC content in your sample

4. Trim adapters and reads of low quality using Trimmomatic

Keep the file *adapters file.fa* in working folder

My data is single end data so I was using *TruSeq3-SE*

TruSeq3-SE file - https://github.com/usadellab/Trimmomatic/blob/main/adapters/TruSeq3-SE.fa

```
trimmomatic SE -threads 4 -phred33 \
<input_file.fastq> \
<output_file.trimmed.fastq> \
ILLUMINACLIP:<adapters_file.fa>:2:30:10 \
LEADING:3 \
TRAILING:3 \
SLIDINGWINDOW:4:15 \
```

(bioinformatics) shouryan@DESKTOP-1J9QB57:/mnt/e/Project/NGS/fastq_output\$ trimmomatic SE -threads 4 -phred33 SRR33341769.fastq trimmed_fastq/Sample_1_1_trimmed_fastq/Samp

And other 7 manually code

OR

Run script

```
(bioinformatics) shouryan@DESKTOP-1J9QB57:/mnt/e/Project/NGS/fastq_output$ nano trim_all.sh (bioinformatics) shouryan@DESKTOP-1J9QB57:/mnt/e/Project/NGS/fastq_output$ chmod +x trim_all.sh (bioinformatics) shouryan@DESKTOP-1J9QB57:/mnt/e/Project/NGS/fastq_output$ ./trim_all.sh
```

trim_all.sh contain

```
#!/bin/bash
# Make sure output directory exists
mkdir -p trimmed fastq
# Array of input files and corresponding sample names
declare -a samples=(
 "SRR33341769 Sample_1_1"
 "SRR33341768 Sample_1_2"
 "SRR33341767 Sample_1_3"
 "SRR33341766 Sample 1 4"
 "SRR33341765 Sample_2_1"
 "SRR33341764 Sample 2 2"
 "SRR33341763 Sample_2_3"
 "SRR33341762 Sample_2_4"
# Path to adapter file (adjust if needed)
ADAPTER="TruSeq3-SE.fa"
# Loop through each sample and run Trimmomatic
for entry in "${samples[@]}"; do
 read SRR ID SAMPLE NAME <<< "$entry"
 echo "Trimming $SAMPLE NAME ($SRR ID)..."
```

```
trimmomatic SE -threads 4 -phred33 \

"${SRR_ID}.fastq" \

"trimmed_fastq/${SAMPLE_NAME}_trimmed.fastq" \

ILLUMINACLIP:$ADAPTER:2:30:10 \

LEADING:3 \

TRAILING:3 \

SLIDINGWINDOW:4:15 \

MINLEN:36

echo "Finished $SAMPLE_NAME"

done

echo "All samples trimmed."
```

5. Run quality control again on trimmed files

```
(bioinformatics) shouryan@DESKTOP-1J9QB57:/mnt/e/Project/NGS/fastq_output$ mkdir fastqc_trimmed_reports (bioinformatics) shouryan@DESKTOP-1J9QB57:/mnt/e/Project/NGS/fastq_output$ fastqc trimmed_fastq/*.fastq -o fastqc_trimmed_reports
```

6. Align to genome using HISAT2

Create directory and download genome data of human

```
(bioinformatics) shouryan@DESKTOP-1J9QB57:/mnt/e/Project/NGS$ mkdir genome_index (bioinformatics) shouryan@DESKTOP-1J9QB57:/mnt/e/Project/NGS$ cd genome_index/ (bioinformatics) shouryan@DESKTOP-1J9QB57:/mnt/e/Project/NGS/genome_index$ wget https://genome-idx.s3.amazonaws.com/hisat/grch38_genome.tar.gz (bioinformatics) shouryan@DESKTOP-1J9QB57:/mnt/e/Project/NGS/genome_index$ ls grch38_genome.tar.gz (bioinformatics) shouryan@DESKTOP-1J9QB57:/mnt/e/Project/NGS/genome_index$ tar -xvzf grch38_genome.tar.gz
```

Create directory to place data at desired location

```
(bioinformatics) shouryan@DESKTOP-1J9QB57:/mnt/e/Project/NGS/genome_index$ cd .. (bioinformatics) shouryan@DESKTOP-1J9QB57:/mnt/e/Project/NGS$ mkdir aligned_bam (bioinformatics) shouryan@DESKTOP-1J9QB57:/mnt/e/Project/NGS$ cd aligned_bam (bioinformatics) shouryan@DESKTOP-1J9QB57:/mnt/e/Project/NGS/aligned_bam$ mkdir aligned_sam (bioinformatics) shouryan@DESKTOP-1J9QB57:/mnt/e/Project/NGS/aligned_bam$ cd ..
```

Know align to genome using HISAT2

```
(bioinformatics) shouryan@DESKTOP-1J9QB57:/mnt/e/Project/NGS$ hisat2 -x genome_index/grch38/genome \
-U trimmed_fastq/Sample_1_1_trimmed.fastq \
-S aligned_bam/aligned_sam/Sample_1_1.sam
```

do for rest of sample other 7 manually

OR

Run script

```
(bioinformatics) shouryan@DESKTOP-1J9QB57:/mnt/e/Project/NGS$ nano align_all.sh (bioinformatics) shouryan@DESKTOP-1J9QB57:/mnt/e/Project/NGS$ chmod +x align_all.sh (bioinformatics) shouryan@DESKTOP-1J9QB57:/mnt/e/Project/NGS$ ./align_all.sh
```

7. File conversion

Move to folder there sam file

Create other directory to keep the data in particular folder

```
(bioinformatics) shouryan@DESKTOP-1J9QB57:/mnt/e/Project/NGS$ cd aligned_bam (bioinformatics) shouryan@DESKTOP-1J9QB57:/mnt/e/Project/NGS/aligned_bam$ mkdir raw_bam (bioinformatics) shouryan@DESKTOP-1J9QB57:/mnt/e/Project/NGS/aligned_bam$ mkdir sorted_bam
```

Then convert .sam file to .bam (manually)

```
(bioinformatics) shouryangDESK100-139QB57:/mnt/e/Project/NGS/aligned_bam$ cd .. (bioinformatics) shouryangDESKTOP-139QB57:/mnt/e/Project/NGS$ samtools view -5 -b aligned_bam/aligned_sam/Sample_1_1.sam > aligned_bam/raw_bam/Sample_1_1.ba m (bioinformatics) shouryangDESKTOP-139QB57:/mnt/e/Project/NGS$ samtools sort aligned_bam/raw_bam/Sample_1_1.bam -o aligned_bam/sorted_bam/Sample_1_1_sorted.bam m [Dam_sort_core] merging from 3 files and 1 in-memory blocks... (bioinformatics) shouryangDESKTOP-139QB57:/mnt/e/Project/NGS$ samtools index aligned_bam/sorted_bam/Sample_1_1_sorted.bam
```

Step	Command	Why It's Needed
Convert	samtools view	Convert .sam to .bam (compressed)
Sort	samtools sort	Required for indexing and downstream tools
Index	samtools index	Enables fast querying & visualization

OR

Create Script convert_sort_index_all.sh

```
(bioinformatics) shouryan@DESKTOP-1J9QB57:/mnt/e/Project/NGS$ nano convert_sort_index_all.sh (bioinformatics) shouryan@DESKTOP-1J9QB57:/mnt/e/Project/NGS$ chmod +x convert_sort_index_all.sh (bioinformatics) shouryan@DESKTOP-1J9QB57:/mnt/e/Project/NGS$ ./convert_sort_index_all.sh
```

8. Count reads per gene using featureCounts

Download file and unzip it

```
(bioinformatics) shouryan@DESKTOP-1J9Q857:/mmt/e/Project/Mo.$ wget https://ftp.ensembl.org/pub/release-114/gtf/homo_sapiens/Homo_sapiens.GRCh38.114.gtf.gz --2025-06-19 10:34:52-- https://ftp.ensembl.org/pub/release-114/gtf/homo_sapiens.GRCh38.114.gtf.gz (bioinformatics) shouryan@DESKTOP-1J9Q857:/mmt/e/Project/NGS$ gunzip Homo_sapiens.GRCh38.114.gtf.gz
```

Make folder and Move file to that folder

```
(bioinformatics) shouryan@DESKTOP-1J9QB57:/mnt/e/Project/NGS$ mkdir -p annotation (bioinformatics) shouryan@DESKTOP-1J9QB57:/mnt/e/Project/NGS$ mv Homo_sapiens.GRCh38.114.gtf annotation/
```

Create new folder and run featureCounts command

```
(bioinformatics) shouryan@DESKTOP-1J9QB57:/mnt/e/Project/NGS$ mkdir -p counts
(bioinformatics) shouryan@DESKTOP-1J9QB57:/mnt/e/Project/NGS$ featureCounts -T 8 -a annotation/Homo_sapiens.GRCh38.114.gtf \
-o counts/read_counts.txt \
```

Next in we convert read count.txt to proper .csv file

RStudio

Set up

Open RStudio

- On left side *File > New project > New Directory > New Project >

(Write Directory name *RNASeq)

(Create project as subdirectory of:

In this select your working directory) > Create Project

- File > New File > R Script
- File > Save AS > (write a name of your file) > Save

1. Install Required packages

```
### This installs the BiocManager package
install.packages("BiocManager")

### This installs the core packages of Bioconductor
BiocManager::install()

### DESeg2 package
BiocManager::install("DESeq2")

### A human genome-wide annotation package.
BiocManager::install("org.Hs.eg.db")

### A package to create heatmaps
install.packages("pheatmap")

### A package for data visualization
install.packages("ggplot2")

### An extension of ggplot2 that prevents overlapping labels in plots
install.packages("ggrepel")
```

Load package

```
### load an installed package so that you can use its functions, datasets, and tools
library(BiocManager)
library(DESeq2)
library(org.Hs.eg.db)
library(AnnotationDbi)
library(pheatmap)
library(ggplot2)
library(ggrepel)
```

Get working directory

```
### Get Working Directory
getwd()
```

Set Working directory

```
### Set Working Directory
setwd("E:/Project/NGS/RStudio/RNASeq")
```

Command	Meaning	Use Case		
getwd()	Get current folder path	Check where R is operating		
setwd()	Change current folder	Set where to read/write files easily		

2. Clean and Load data

Before loading data keep read counts.txt file in working folder where RNA SEQ.R file is

```
### Read all lines
lines <- readLines("read_counts.txt")
### Check number of columns in each line
line_lengths <- sapply(strsplit(lines, "\t"), length)</pre>
### Keep only lines with 14 columns (i.e., correct ones)
clean_lines <- lines[line_lengths == 14]</pre>
### Write cleaned data to new file
writeLines(clean_lines, "clean_read_counts.txt")
# Read the cleaned file
counts_txt <- read.delim("clean_read_counts.txt", header = TRUE, row.names = 1, sep = "\t")</pre>
### Remove unwanted columns by name (if they exist)
unwanted_cols <- c("Chr", "Start", "End", "Strand", "Length")
counts_txt <- counts_txt[ , !(colnames(counts_txt) %in% unwanted_cols)
### Clean column names
colnames(counts_txt) <- gsub(".*(Sample_\\d+_\\d+).*", "\\1", colnames(counts_txt))</pre>
### Save as CSV
write.csv(counts_txt, "read_counts.csv")
```

Output of this code is

	Sample_1_1	Sample_1_2	Sample_1_3	Sample_1_4	Sample_2_1	Sample_2_2	Sample_2_3	Sample_2_4
ENSG0000	1	6	11	5	112	75	71	62
ENSG0000	0	0	0	0	0	0	0	0
ENSG0000	222	295	162	176	131	126	162	106
ENSG0000	0	0	0	0	0	0	0	0
ENSG0000	0	0	0	0	0	0	1	0
ENSG0000	0	0	0	0	0	0	0	0
ENSG0000	221	285	250	247	224	223	251	219
ENSG0000	0	0	0	0	0	0	0	0
ENSG0000	0	0	0	0	0	0	0	0
ENSG0000	76	121	98	65	216	312	341	298
ENSG0000	173	258	160	181	66	114	116	139
ENSG0000	0	1	3	0	0	0	1	0
ENSG0000	0	0	0	0	0	0	0	0
ENSG0000	1	0	1	0	0	0	0	0
ENSG0000	0	0	1	1	1	1	0	0
ENSG0000	0	0	0	0	0	0	0	0
ENSG0000	0	0	0	0	0	0	1	0

```
### Load from CSV
Counts <- read.delim("read_counts.csv", header = TRUE, row.names = 1, sep = ",")
```

Keeping only genes with row sums greater than 50
Counts <- Counts[which(rowSums(Counts) > 50),]

RNA_SEQ.R × Counts ×						
_	Sample_1_1	Sample_1_2 [‡]	Sample_1_3 [‡]	Sample_1_4 [‡]	Sample_2_1 [‡]	Sample_
ENSG00000142611	1	6	11	5	112	
ENSG00000157911	222	295	162	176	131	
ENSG00000142655	221	285	250	247	224	
ENSG00000149527	76	121	98	65	216	
ENSG00000171621	173	258	160	181	66	
ENSG00000173614	58	94	83	65	55	
ENSG00000204624	208	310	215	172	244	

3. Run DESeq2

```
> colnames(Counts)
[1] "Sample_1_1" "Sample_1_2" "Sample_1_3" "Sample_1_4" "Sample_2_1" "Sample_2_2'
[7] "Sample_2_3" "Sample_2_4"
### Define the experimental condition
### Create the coldata data frame
coldata <- data.frame(</pre>
  row.names = colnames(Counts),
  condition = condition
### Create the DESeg2 Dataset
dds <- DESeqDataSetFromMatrix(</pre>
  countData = Counts,
  colData = coldata,
  design = ~ condition
### Run DESeq
dds <- DESeq(dds)
### Variance Stabilizing Transformation (VST)
vsdata <- vst(dds, blind = FALSE)</pre>
```

PCA Plot plotPCA(vsdata, intgroup = "condition")

Dispersion Plot plotDispEsts(dds)

4. Pairwise comparisons between samples

```
### Classify genes for volcano plot
sigs_disease_vs_control.dfSdiffexpressed <- "NO"
sigs_disease_vs_control.dfSdiffexpressed[sigs_disease_vs_control.dfSlog2FoldChange > 0.6 & sigs_disease_vs_control.dfSpvalue < 0.05] <- "UP"
sigs_disease_vs_control.dfSdiffexpressed[sigs_disease_vs_control.dfSlog2FoldChange < -0.6 & sigs_disease_vs_control.dfSpvalue < 0.05] <- "DOWN"
```

```
### Save output
write.csv(sigs_disease_vs_control.df, "DEGs_disease_vs_control.csv")
```

Out file of sigs_disease_vs_control.df

5. Generating an ordered list of DEGs

It helps you:

- See which genes are most strongly up- or down-regulated
- Prioritize biologically meaningful DEGs

```
### Sort by absolute log2 fold change
sigs_disease_vs_control_sorted <-
    sigs_disease_vs_control.df[order(abs(sigs_disease_vs_control.df$log2FoldChange), decreasing = TRUE), ]
### Export only GeneID and log2FC
log2FC_file <- "DEGs_disease_vs_control_log2FC.txt"</pre>
```

Output of DEGs disease vs control log2FC.txt

```
GeneID log2FoldChange
ENSG00000075891 -12.7736068227375
ENSG00000117983 11.3772474576757
ENSG00000112837 11.3203219300267
ENSG00000165092 11.0001018842619
ENSG00000167244 10.7837646368326
```

```
write.table(
  data.frame(
    GeneID = rownames(sigs_disease_vs_control_sorted),
    log2FoldChange = sigs_disease_vs_control_sorted$log2FoldChange
),
  file = log2FC_file,
  sep = "\t",
  quote = FALSE,
  row.names = FALSE,
  col.names = TRUE
)
```

```
### Export GeneID + log2FC + p-value + padj (FDR)
pvalue_file <- "DEGs_disease_vs_control_with_pvalues.txt"

write.table(
   data.frame(
        GeneID = rownames(sigs_disease_vs_control_sorted),
        log2FoldChange = sigs_disease_vs_control_sorted$log2FoldChange,
        pvalue = sigs_disease_vs_control_sorted$pvalue,
        padj = sigs_disease_vs_control_sorted$pvalue,
        padj = sigs_disease_vs_control_sorted$padj
),
        file = pvalue_file,
        sep = "\t",
        quote = FALSE,
        row.names = FALSE,
        col.names = TRUE
)</pre>
```

Summary

Step	Purpose
Sort by	log2FC
Export TXT table	Input to downstream tools like GOrilla, DAVID, Enrichr
Add p-value & FDR	Let reviewers or readers assess statistical strength
Use in volcano/heatmap	Easy to visualize and annotate top genes
Reproducible and shareable	Keeps your pipeline clean and documented

6. Generate heatmaps

Output Heatmap

7. A) Generating volcano plots

Volcano plot

Print the plot
print(volcano_plot)

theme_minimal() +

7. B) Generating volcano plots with labelled DEGs

Volcano plot with Labelled DEGs

