$1.\underline{\text{USE CASE}}$

S.No	Name	Description	Notation
1	System Boundary	The scope of a system can be represented by a system boundary	
2	Use case	A sequences of actions (it must be a verb)	PurchaseTicket
3	Actor	User (or) someone / something outside the system that interacts with the system (it must be a noun)	<u>•</u>
4	Association	It corresponds to a sequence of actions between the actor and use case	
5	Generalization	Inheritance relationship between model elements of same type	

S.No	Name	Description	Notation
6	Include	It specifies how the behavior of the inclusion use case is inserted into the behavior defined for the base use case	< <include>></include>
7	Extend	How the behavior of the extension use case can be inserted into the behavior defined for the base use case	< <extend>></extend>
9	Note	Note is generally used to write comment in use case diagram	Note

$\frac{\textbf{Use Case Diagram for Online Movie Booking}}{\underline{\textbf{System}}}$

2. CLASS DIAGRAM

S.No	Name	Description	Notation
1	Classes and interface	They are used to show the different objects in a system, their attributes, their operations and the relationships among them.	Class name Attributes Operations
2	Object	An object is an instance or occurrence of a class	Object: Class
3	Aggregation	An aggregation describes a group of objects and how you interact with them.	
4	Composition	Composition represents whole-part relationships and is a form of aggregation.	
5	Dependency	Dependency relationship is a relationship in which one element, the client, uses or depends on another element, the supplier.	Therend

S.No	Name	Description	Notation
6	Generalization	Generalization is a relationship in which one model element (the child) is based on another model element (the parent).	R
7	Association	Association is a relationship between two classifiers, such as classes or use cases, that describes the reasons for the relationship and the rules that govern the relationship.	
8	Multiplicity		Multiplicity Symbol Meaning 1 One and only one 01 Zero or one MN From M to N (natural language) * From zero to any positive integer 0* From one to any positive integer

Class Diagram for Online Movie Booking System

3. SEQUENCE DIAGRAM

S.No	Name	Descri	ption		Notation		
1	Class Roles or Participants		oles describe the way a will behave in context	an		:Object	component
2	Activation or Execution Occurrence/ Scope	time a	ion boxes represent the n object needs to ete a task.		Activation or Exc	ocution Occurrence	
3	Diagram Boundry					< Diagram's Label > < Diagram's Content Are	ia >
S.No	Name	Descri	ption	Not	ation		
3	Messages	repres	ges are arrows that ent communication en objects.			:Object	lifeline
4	Lifelines	roles o	es represent either or object instances that pate in the sequence modeled.		Clipct		
S.No	Name		Description			Notation	I KARPAGALLA
1	Synchronous Messa	age	A synchronous message requires a response before the interaction can continue.				Synchronous
2	Asynchronous Mes	Asynchronous messages of reply for interaction to co				\longrightarrow	Simple, also used for asynchronous
3	Reply or Return Me	essage	ssage A reply message is drawn we line and an open arrowheat back to the original lifeline		d pointing	<	Reply or return message
4	Self Message		A message an object sends to itself, usually shown as a U shaped arrow pointing back to itself.				Self message

Sequence Diagram for Online Movie Booking System

4. ACTIVITY DIAGRAM

S.No	Name	Description	Notation
1	Initial State or Start Point	Represents the initial action state or the start point for any activity diagram	Start Point/Initial State
2	Activity or Action State	An action state represents the non-interruptible action of objects.	Activity
3	Action Flow	Action flows, also called edges and paths, illustrate the transitions from one action state to another	Action Flow
4	Object Flow	Object flow refers to the creation and modification of objects by activities. An object flow arrow from an action to an object means that the action creates or influences the object.	Activity Object Flow Class/Object

S.No	Name	Description	Notation
5	Decisions and Branching	When an activity requires a decision prior to moving on to the next activity, add a diamond between the two activities.	Decision Symbol
6	Guards	In UML, guards are a statement written next to a decision diamond that must be true before moving next to the next activity.	No Guard Symbols IAction Synchronization
7	Synchronization	A fork node is used to split a single incoming flow into multiple concurrent flows. A join node joins multiple concurrent flows back into a single outgoing flow.	Activity Fork node Activity Activity Join node
			Activity

S.No	Name	Description	Notation
8	Merge Event	A merge event brings together multiple flows that are not concurrent.	Merge
9	Final State or End Point	An arrow pointing to a filled circle nested inside another circle represents the final action state	End Point Symbol
10	Swimlanes	Swimlanes group related activities into one column.	

Activity Diagram for Online Movie Booking System

