Relazione di laboratorio - Pendolo semplice

Misura del periodo di un pendolo semplice

Federico Cesari

Indice

1	Scopo dell'esperienza
2	Premesse teoriche
3	Scelta strumento di misura
4	Dipendenza dall'angolo 4.1 Confronto parametri parabola 4.2 g
5	Dipendenza dalla lunghezza 5.1 Confronto parametri retta
6	Dipendenza dalla massa
7	Conclusioni

1 Scopo dell'esperienza

2 Premesse teoriche

3 Scelta strumento di misura

Al fine di stabilire il migliore strumento di misura per le succesive misurazioni, registro 8 misure del periodo del pendolo prima con un angolo di partenza $\theta=5^\circ$ e poi con $\theta=30^\circ$ utilizzando un cronometro analogico, uno digitale e una fotocellula. Lo strumento che mostrerà discrepanze significative tra il periodo calcolato con $\theta=5^\circ$ e $\theta=30^\circ$ sarà quello utilizzato per i testi successivi.

Prova testo jakldsjfklsajdf òkdsa f dasjfaskljfd ksajd fas falkdsfjlksajfksajfk adsf jlkdsajfòlkas jfòlas jfòa jsdf dsfjka jsdklfjsaò jfkdsaj flkdsaf lkjdsaflk jdslkjf kdsafjlkdsajflkjdsadkfjkdsajfkdagirutjpJQFN LKSDKF JASD FJDSAK JFLKSAJ FKDS ds fkasjf ksajk djfsa asdflksadjfòlkasj òlka

	C.Analogico	C. Digitale	Fotocellula
	$T(s) \pm 0.2s$	$T(s) \pm 0.01s$	$T(s) \pm 0.001s$
	1.6	1.63	1.702
$\theta = 5^{\circ}$	1.7	1.65	1.703
	1.5	1.60	1.703
	1.7	1.71	1.703
	1.7	1.71	1.703
	1.7	1.65	1.702
	1.6	1.70	1.703
	1.7	1.70	1.703
$\bar{\mathbf{T}}(\mathbf{s})$	1.65	1.67	1.703
$\sigma_{ar{T}}$	0.05	0.02	0.000

	C.Analogico	C. Digitale	Fotocellula
	$T(s) \pm 0.2s$	$T(s) \pm 0.01s$	$T(s) \pm 0.001s$
	1.8	1.65	1.733
$\theta = 30^{\circ}$	1.7	1.67	1.733
	1.6	1.70	1.733
	1.7	1.62	1.733
	1.7	1.70	1.731
	1.8	1.72	1.733
	1.7	1.80	1.733
	1.6	1.69	1.732
$\bar{\mathbf{T}}(\mathbf{s})$	1.70	1.69	1.715
$\sigma_{ ilde{T}}$	0.08	0.03	0.0005

Ora

4 Dipendenza dall'angolo

Figure 1: $T(\sin(\theta/2)^2)$

Figure 2: Rappresentazione grafica dei dati sperimentali con errori ridotti.

4.1 Confronto parametri parabola

4.2 g

Calcolo il valore di g:

$$T_0 = 2\pi \sqrt{\frac{l}{g}} \qquad \rightarrow \qquad T_0^2 = 4\pi^2 \frac{l}{g}$$

$$g = \frac{4l\pi^2}{T_0^2}$$

poiché sappiamo che

$$T = T_0 + \frac{T_0}{4}y \qquad \rightarrow \qquad y = 4\frac{T - T_0}{T_0} \qquad \rightarrow \qquad y = 4\frac{T}{T_0} - 4$$

$$b = \frac{4}{T_0} \qquad \rightarrow \qquad T_0 = \frac{4}{b}$$

Quindi

$$g = \frac{l\pi^2}{4}b^2$$

Calcolo l'errore associato a g:

$$\begin{split} \sigma_g &= \sqrt{\left(\frac{\partial g}{\partial l}\right)^2 \sigma_l^2 + \left(\frac{\partial g}{\partial b}\right)^2 \sigma_b^2} \\ \sigma_g &= \sqrt{\left(\frac{b^2 \pi^2}{4}\right)^2 \sigma_l^2 + \left(\frac{l b \pi^2}{2}\right)^2 \sigma_b^2} \end{split}$$

Test Z per g

Ottengo $g = \dots$ Scelgo livello di significatività = 0.05.

5 Dipendenza dalla lunghezza

Figure 3: Rappresentazione grafica dei dati sperimentali con errori.

5.1 Confronto parametri retta

6 Dipendenza dalla massa

7 Conclusioni