

tpu.ru

Системный анализ процессов химической технологии

Расчет химико-технологической схемы процесса каталитического риформинга

Чузлов Вячеслав Алексеевич к.т.н., доцент ОХИ ИШПР

Упрощенная блок-схема процесса каталитического риформинга

КИНЕТИЧЕСКАЯ МОДЕЛЬ ПРОЦЕССА РИФОРМИНГА

^{*}Ancheyta, Jorge. Modeling and simulation of catalytic reactors for petroleum refining / Jorge Ancheyta. 2011.

КИНЕТИЧЕСКАЯ МОДЕЛЬ ПРОЦЕССА РИФОРМИНГА

Кинетические и термодинамические параметры химических реакций процесса риформинга

	1	1 1/=	I				1 1/=		ALL 57 /	i		1 1 /=		ALL 5 /
Nº	Реакция	k, ч ⁻¹ (T =	Еа, кДж /		Nº	Реакция	k, ч ⁻¹ (T =	Еа, кДж /	ΔН кДж /	Nº	Реакция	k, ч ⁻¹ (T =		
	544 > 144 + 149	763.15 K)	МОЛЬ	/ моль		D7 110 \ D5 D0	763.15 K)	моль	моль	40	110) 10 0110	763.15 K)	/ моль	моль
1	P11→N11+H2	0.0356	188.41	60.9	25	P7+H2→P5+P2	0.0018	230.27	-43.34	49	N8→A8+3H2	0.215	125.6	201.71
2	P11+H2→P10+P1	0.0075	230.27	-54.2	26	P7+H2→P4+P3	0.0043	230.27	-42.2	50	N8+H2→N7+P1	0.0007	230.27	-57.9
3	P11+H2→P9+P2	0.01	230.27	-43.44	27	P6→N6+H2	0	188.41	44.1	51	N7+H2→P7	0.0019	188.41	-33
4	P11+H2→P8+P3	0.0135	230.27	-42	28	P6→MCP+H2	0.0042	188.41	60.5	52	N7→A7+3H2	0.0788	125.6	204.93
5	P11+H2→P7+P4	0.0135	230.27	-43.6	29	P6+H2→P5+P1	0.0018	230.27	-54.1	53	N6+H2→P6	0.0204	188.41	-44.1
6	P11+H2→P6+P5	0.0191	230.27	-43.3	30	P6+H2→P4+P2	0.0016	230.27	-43.64	54	N6→A6+3H2	0.1368	125.6	206.18
7	P10→NI0+H2	0.0243	188.41	36.5	31	P6+H2→2P3	0.0025	230.27	-40.5	55	N6→MCP	0.004	188.41	16.4
8	PL0+H2→P9+P1	0.0015	230.27	-54.3	32	P5+H2→P4+P1	0.0018	230.27	-54.6	56	MCP+H2→P6	0.0008	188.41	-60.5
9	PI0+H2→P8+P2	0.0054	230.27	-43.54	33	P5+H2→P3+P2	0.0022	230.27	-42.14	57	MCP→N6	0.0238	188.41	-16.4
10	PI0+H2→P7+P3	0.016	230.27	-42	34	N11+H2→P11	0.005	188.41	-60.9	58	A11+4H2→P11	0.0016	188.41	-236.7
11	PI0+H2→P6+P4	0.0095	230.27	-43.7	35	N11→A11+3H2	0.6738	125.6	175.8	59	A11+H2→A10+P1	0.0006	167.47	-54.92
12	PI0+H2→2P5	0.0095	230.27	-43.2	36	N11+H2→N10+P1	0.0134	230.27	-78.6	60	A11+H2→A9+P2	0.0006	167.47	-43.11
13	P9→N9+H2	0.05	188.41	35.8	37	N11+H2→N9+P2	0.0134	230.27	-68.54	61	A10+4H2→P10	0.0016	188.41	-235.98
14	P9+H2→P8+P1	0.003	230.27	-54.3	38	N11+H2→N8+P3	0.008	230.27	-66.2	62	A10+H2→A9+P1	0.0006	167.47	-53.25
15	P9+H2→P7+P2	0.0039	230.27	-43.44	39	N10+H2→P10	0.0054	188.41	-36.5	63	A10+H2→A8+P2	0.0006	167.47	-41.11
16	P9+H2→P6+P3	0.0068	230.27	-42	40	N10→A10+3H2	0.3198	125.6	199.48	64	A10+H2→A7+P3	0	167.47	-40.05
17	P9+H2→P5+P4	0.0058	230.27	-43.5	41	N10+H2→N9+P1	0.0134	230.27	-55	65	A9+4H2→P9	0.0016	188.41	-237.03
18	P8→N8+H2	0.0266	188.41	36.7	42	N10+H2→N8+P2	0.0134	230.27	-43.34	66	A9+H2→A8+P1	0.0005	167.47	-52.92
19	P8+H2→P7+P1	0.0019	230.27	-54.2	43	N10+H2→N7+P3	0.008	230.27	-45.5	67	A9+H2→A7+P2	0.0005	167.47	-42.54
20	P8+H2→P6+P2	0.0056	230.27	-43.44	44	N9+H2→P9	0.0054	188.41	-35.8	68	A8+4H2→P8	0.0011	188.41	-238.41
21	P8+H2→P5+P3	0.0034	230.27	-41.8	45	N9→A9+3H2	0.2205	125.6	201.23	69	A8+H2→A7+P1	0.0001	167.47	-54.68
22	P8+H2→2P4	0.007	230.27	-43.8	46	N9+H2→N8+P1	0.0127	230.27	-53.4	70	A7+4H2→P7	0.0016	188.41	-237.93
23	P7→N7+H2	0.0076	188.41	33	47	N9+H2→N7+P2	0.0127	230.27	-46.24	71	A6+3H2→N6	0.0015	125.6	-206.18
24	P7+H2→P6+P1	0.0027	230.27	-54.3	48	N8+H2→P8	0.0025	188.41	-36.7					

4

5

КИНЕТИЧЕСКАЯ МОДЕЛЬ ПРОЦЕССА РИФОРМИНГА

Свойства индивидуальных компонентов

	Обозначение	М	SG	RON	$C_p = A + B \cdot T + C \cdot T^2 + D \cdot T^3$				11° 1 / mal
Компонент	в модели	IVI	30	KON	Α	В	С	D	H _f °, J / mol
P11	c[0]	156.313	0.7439	-14.1	-8.40E+00	1.05E+00	-5.80E-04	1.24E-04	-270500.00
P10	c[1]	142.286	0.7342	-16.01	-7.91E+00	9.61E-01	-5.29E-04	1.13E-07	-249800.00
P9	c[2]	128.259	0.7217	-17	-8.37E+00	8.73E-01	-4.83E-04	1.03E-07	-229200.00
P8	c[3]	114.232	0.7068	-19	-6.10E+00	7.71E-01	-4.20E-04	8.86E-08	-208600.00
P7	c[4]	100.205	0.6882	0	-5.15E+00	6.76E-01	-3.65E-04	7.66E-08	-187900.00
P6	c[5]	86.178	0.664	24.8	-4.41E+00	5.82E-01	-3.12E-04	6.49E-08	-167300.00
P5	c[6]	72.151	0.631	61.7	-3.63E+00	4.87E-01	-2.58E-04	5.31E-08	-146500.00
P4	c[7]	58.124	0.5844	93.8	9.49E+00	3.31E-01	-1.11E-04	-2.82E-09	-126200.00
Р3	c[8]	44.094	0.5077	98.9	-4.22E+00	3.06E-01	-1.59E-04	3.22E-08	-103900.00
P2	c[9]	30.07	0.3564	0	5.41E+00	1.78E-01	-6.94E-05	8.71E-09	-84740.00
P1	c[10]	16.043	0.3	0	1.93E+01	5.21E-02	1.20E-05	-1.13E-08	-74900.00
N11	c[11]	154.297	0.8006	70	-5.83E+01	1.13E+00	-6.54E-04	1.47E-07	-209600.00
N10	c[12]	140.26	0.8031	70.31	-6.30E+01	1.08E+00	-6.31E-04	1.40E-07	-213300.00
N9	c[13]	126.243	0.7977	17.8	-6.25E+01	9.89E-01	-5.80E-04	1.29E-07	-193400.00
N8	c[14]	112.216	0.7922	45.6	-6.39E+01	8.89E-01	-5.11E-04	1.10E-07	-171900.00
N7	c[15]	98.189	0.774	74.8	-6.19E+01	7.84E-01	-4.54E-04	9.37E-08	-154900.00
N6	c[16]	84.162	0.7834	83	-5.45E+01	6.11E-01	-2.52E-04	1.32E-08	-123200.00
MCP	c[17]	84.162	0.7536	91.3	-5.01E+01	6.38E-01	-3.64E-04	8.01E-08	-106800.00
A11	c[18]	148.25	0.8624	110	-4.22E+01	9.77E-01	-6.26E-04	1.57E-07	-33800.00
A10	c[19]	134.222	0.8646	100.4	-2.30E+01	7.93E-01	-4.40E-04	8.57E-08	-13820.00
A9	c[20]	120.195	0.8665	101.5	-3.13E+01	7.49E-01	-4.60E-04	1.08E-07	7830.00
A8	c[21]	106.168	0.8718	107.9	-4.31E+01	7.07E-01	-4.81E-04	1.30E-07	29810.00
A7	c[22]	92.141	0.8718	120.1	-2.44E+01	5.13E-01	-2.77E-04	4.91E-08	50030.00
A6	c[23]	78.114	0.8844	108	-3.39E+01	4.74E-01	-3.02E-04	7.13E-08	82980.00
H2	c[24]	2.016	9.00E-05	0	2.71E+01	9.27E-03	-1.38E-05	7.65E-09	0.00

Описание класса Flow

Поля	Описание
mass_flow_rate: real	Массовый расход, кг / ч
mole_flow_rate: real	Мольный расход, кмоль / ч
<pre>volume_flow_rate: real</pre>	Объемный расход, м³/ч
mass_fractions: array of real	Массовые доли
mole_fractions: array of real	Мольные доли
<pre>volume_fractions: array of real</pre>	Объемные доли
molar_fractions: array of real	Молярные концентрации, моль / л
temperature: real	Температура потока, К
pressure: real;	Давление потока, МПа
density: real	Плотность потока, г / см³
molar_mass: real	Средняя молекулярная масса потока, г /моль
heat_capacity: real	Массовая теплоемкость, кДж / кг

Описание класса Flow

Методы	Описание
<pre>constructor (mass_flow_rate: real;</pre>	Создает новый экземпляр класса Flow, заполняя
<pre>mass_fractions: array of real;</pre>	все поля.
temperature,	
<pre>pressure: real)</pre>	

Функции для пересчета составов

Пересчет массовых долей в молярные концентрации (моль / л):

$$c_i = \frac{\omega_i \cdot \rho \cdot 1000}{Mr_i}$$

где ω_i - массовая доля i-го компонента; ρ - плотность потока, г / см³; Mr_i - молярная масса i-го компонента, г / моль.

Пересчет молярных концентраций в массовые доли:

$$\rho = \sum_{i=1}^{n} c_i \cdot Mr_i \qquad \qquad \omega_i = \frac{c_i \cdot Mr_i}{\rho}$$

где ω_i - массовая доля i-го компонента; ρ - плотность потока, г / см³; Mr_i - молярная масса i-го компонента, г / моль.

Описание класса Reactor

Поля	Описание
length := 0.0;	Длина реактора, м.
diameter := 0.0;	Диаметр реактора, м.
volume := 0.0;	Объем реактора, м³.

Методы	Описание		
_	Создает новый экземпляр класса Reactor, заполняя все поля.		
	Выполняет расчет процесса каталитического риформинга для одного реактора. Возвращает объект класса Flow.		

Параметры процесса

Состав сырья и ВСГ, мас. доли

Компонент	Сырье	ВСГ
P11	0.0077	0.0000
P10	0.0682	0.0000
P9	0.0857	0.0000
P8	0.1202	0.0000
P7	0.1241	0.0000
P6	0.1441	0.0000
P5	0.0926	0.0000
P4	0.0000	0.0000
P3	0.0000	0.0000
P2	0.0000	0.0000
P1	0.0000	0.1000
N11	0.0000	0.0000
N10	0.0087	0.0000
N9	0.0356	0.0000
N8	0.0404	0.0000
N7	0.0595	0.0000
N6	0.0423	0.0000
MCP	0.0064	0.0000
A11	0.0096	0.0000
A10	0.0134	0.0000
A9	0.0424	0.0000
A8	0.0577	0.0000
A7	0.0302	0.0000
A6	0.0112	0.0000
H2	0.0000	0.9000

Технологические условия

Парамтер	Значение
Температура, К	763.15
Давление, МПа	0.105
Расход сырья, кг / ч	26600
Расход ВСГ, кг / ч	3700
Длина реактора, м	4.902
Диаметр реактора, м	2.438

