

EIE4512 - Digital Image Processing

Totorial

Qin Wang

qinwang@cuhk.edu.cn School of Science and Engineering The Chinese University of Hong Kong, Shen Zhen

February 28, 2019

Agenda

Corrupt an image with noise

Spatial noise filter

Adaptive spatial filter

Wiener Filter

Bilateral Filter

Corrupt an image with noise

Degradation Function

$$g(x, y) = H[f(x, y)] + \eta(x, y)$$

- Function Definition
 g = imnoise(f, type, parameters)
- Adding Gaussian noise of mean m, variance var g = imnoise(f, 'gaussian', m, var)
- Adding Gaussian noise with zero-mean, local variance V g = imnoise(f, 'localvar', V)
- Corrupting Image with salt and pepper noise with density d g = imnoise(f, 'salt & pepper', d)

香港中文大學 (深圳) The Chinese University of Hong Kong, Shenzhen

Spatial noise filter

Spatial filtering on image G using a TYPE filter of size M by N.

F = SPFILT(G, TYPE, M, N, PARAMETER)

Ex:following

```
F = SPFILT(G, 'amean', M, N)
                                   Arithmetic mean filtering.
F = SPFILT(G, 'gmean', M, N)
                                   Geometric mean filtering.
F = SPFILT(G, 'hmean', M, N)
                                   Harmonic mean filtering.
F = SPFILT(G, 'chmean', M, N, Q)
                                   Contraharmonic mean
                                   filtering of order Q. The
                                   default is Q = 1.5.
F = SPFILT(G, 'median', M, N)
                                   Median filtering.
F = SPFILT(G, 'max', M, N)
                                   Max filtering.
F = SPFILT(G, 'min', M, N)
                                   Min filtering.
```

香港中文大學(深圳) The Chinese University of Hong Kong, Shenzhen

Adaptive Spatial Filter

Algorithm

Level A: If $z_{min} < z_{med} < z_{max}$, go to level B

Else increase the window size

If window size $\leq S_{\text{max}}$, repeat level A

Else output z_{med}

Level B: If $z_{\min} < z_{xy} < z_{\max}$, output z_{xy}

Else output z_{med}

An M-function implements Adaptive Spatial Filter, g is the input image, Smax is the maximum size of the adaptive filter window.

f = adpmedian(g, Smax)

Wiener Filter

Formula

$$\hat{F}(u,v) = \left[\frac{1}{H(u,v)} \frac{|H(u,v)|^2}{|H(u,v)|^2 + S_{\eta}(u,v)/S_f(u,v)}\right] G(u,v)$$

 Wiener filtering is implemented in IPT using function deconvwnr

J = deconvwnr(I,PSF)
J = deconvwnr(I,PSF,NSR)

J = deconvwnr(I,PSF,NCORR,ICORR)

Bilateral Filter

▶ Bilateral filtering of images with Gaussian kernels.

Bilateral Filter

Sigma Parameters turning.

Practice

➤ Trying to implement Bilateral Filter by yourself.(note: reference the code on the GitHub)