Lab of Computer Network: BufferBloat Fall 2024

Report 6 — October 10

Lecturer: Wu Qinghua Completed by: Zhang Jiawei

6.1 实验内容

- 1. 根据附件材料中提供的脚本, 重现 PPT 中 h1(发送方) 在对 h2 进行 iperf 的同时测量 h1 的拥塞窗口值 (cwnd)、r1-eth1 的队列长度 (qlen)、h1 与 h2 间的往返延迟 (rtt) 的实验结果;
- 2. 变化 r1-eth1 的队列大小,考察其对 iperf 吞吐率和上述三个指标的影响;
- 3. 根据附件材料中提供的脚本,重现 PPT 中 Tail Drop、RED、CoDel 三种队列管理算法的实验结果。

6.2 实验结果与分析

6.2.1 重现 BufferBloat 实验

取 maxq 为 100, 在终端中输入:

sudo python3 reproduce_bufferbloat.py --maxq 100

程序会输出三个.txt 文件, 我使用了 python 脚本读取这三个文件中的内容, 获得相应数据, 并输出所绘制曲线图。重现实验结果如下:

1. CWND 结果

图 6.1. CWND 重现结果

与 PPT 中的结果十分一致。

2. QLEN 结果

图 6.2. QLEN 重现结果

与 PPT 中的结果十分一致。

3. RTT 结果

图 6.3. RTT 重现结果

与 PPT 中的曲线走势较为一致,均有显著周期性的上升下降趋势。但由于相邻 ping 程序间隔会发生变动,导致实验结果与 PPT 中的结果有一定差异。

6.2.2 变化队列大小对 iperf 吞吐率和指标的影响

分别取 maxq 为 100、80、60、40、20,实验结果如下:

1. CWND 结果

图 6.4. CWND 变化 maxq 结果

刚开始测试时,拥塞窗口达到峰值,随后迅速回落至队列大小相近水平,随时间推移,拥塞窗口逐渐增大,接着随着丢包,拥塞窗口迅速回落,循环往复。

2. QLEN 结果

图 6.5. QLEN 变化 maxq 结果

同样,刚开始接收到数据包,队列长度迅速增大,当队列长度达到最大值时,开始丢包,队列长度迅速回落,循环往复。随着 maxq 增大,队列长度的峰值逐渐增大,丢包周期和变化幅度也逐渐增大,BufferBloat 现象更加明显。

3. RTT 结果

图 6.6. RTT 变化 maxq 结果

RTT 随着队列长度的变化,也呈现出周期性的上升下降趋势,且与队列长度的变化趋势一致。随着 maxq 增大,RTT 的峰值逐渐增大,变化幅度也逐渐增大。由于 ping 程序输出不稳定,图中曲线可能出现数据丢失(如图中 maxq 为 20 时的水平线段)。

4. iperf 吞吐率结果

图 6.7. iperf 吞吐率变化 maxq 结果

刚开始接收到数据包, iperf 吞吐率也迅速增大, 之后迅速回落, 稳定在 10Mbps 左右, 这正是链路的带宽。此外也观察到吞吐率会有周期性的向下波动, 这是由于队列长度的变化导致的丢包, 从而导致 iperf 吞吐率的波动。

6.2.3 重现队列管理算法实验

分别使用 Tail Drop、RED、CoDel 三种队列管理算法,在终端中输入:

sudo python3 mitigate_bufferbloat.py -a taildrop # or -a red or -a codel

实验结果如下:

图 6.8. RTT 重现队列管理算法实验结果

可以看出, Tail Drop 算法的 RTT 显著高于 RED 和 CoDel 算法,且 CoDel 算法的 RTT 表现更佳。而且 Tail Drop 曲线出现了较稳定峰值,说明实验较为准确。

6.3 实验总结

通过本次实验, 我成功重现了 BufferBloat 实验, 并且观察到了队列大小对 iperf 吞吐率和指标的影响, 这让我更加深入地理解了数据包对了的工作原理和 BufferBloat 现象。此外, 我还重现了 Tail Drop、RED、CoDel 三种队列管理算法的实验, 发现 CoDel 算法的 RTT 表现更佳, 这也让我对队列管理算法有了更深入的了解。