International Rectifier

IRF8721PbF

HEXFET® Power MOSFET

SO-8

V_{DSS}	R _{DS(on)} max	Qg
30V	$8.5 \text{m}\Omega@V_{GS} = 10V$	8.3nC

8 ____ D

5 D

Top View

Applications _____

- Control MOSFET of Sync-Buck Converters used for Notebook Processor Power
- Control MOSFET for Isolated DC-DC Converters in Networking Systems

Benefits

- Very Low Gate Charge
- Low R_{DS(on)} at 4.5V V_{GS}
- Low Gate Impedance
- Fully Characterized Avalanche Voltage and Current
- 20V V_{GS} Max. Gate Rating
- Lead-Free

Description

S III

Absolute Maximum Ratings

	Parameter	Max.	Units
V_{DS}	Drain-to-Source Voltage	30	V
V_{GS}	Gate-to-Source Voltage	± 20	
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ 10V	14	
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ 10V	11	Α
I _{DM}	Pulsed Drain Current ①	110	1
P _D @T _A = 25°C	Power Dissipation	2.5	W
P _D @T _A = 70°C	Power Dissipation	1.6	
	Linear Derating Factor	0.02	W/°C
T_{J}	Operating Junction and	-55 to + 150	°C
T _{STG}	Storage Temperature Range		

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JL}$	Junction-to-Drain Lead ©		20	°C/W
$R_{\theta JA}$	Junction-to-Ambient @S	_	50	

Notes ① through ⑤ are on page 9

IRF8721PbF

Static @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
BV _{DSS}	Drain-to-Source Breakdown Voltage	30			٧	$V_{GS} = 0V, I_{D} = 250\mu A$
$\Delta \mathrm{BV}_{\mathrm{DSS}}\!/\!\Delta \mathrm{T}_{\mathrm{J}}$	Breakdown Voltage Temp. Coefficient		0.021		V/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance		6.9	8.5	mΩ	V _{GS} = 10V, I _D = 14A ③
			10.6	12.5		V _{GS} = 4.5V, I _D = 11A ③
$V_{GS(th)}$	Gate Threshold Voltage	1.35		2.35	٧	$V_{DS} = V_{GS}$, $I_D = 25\mu A$
$\Delta V_{GS(th)}$	Gate Threshold Voltage Coefficient		-6.2		mV/°C	
I _{DSS}	Drain-to-Source Leakage Current		_	1.0	μΑ	$V_{DS} = 24V$, $V_{GS} = 0V$
				150		$V_{DS} = 24V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage			100	nA	V _{GS} = 20V
	Gate-to-Source Reverse Leakage			-100		$V_{GS} = -20V$
gfs	Forward Transconductance	27			S	$V_{DS} = 15V, I_{D} = 11A$
Q_g	Total Gate Charge		8.3	12		
Q _{gs1}	Pre-Vth Gate-to-Source Charge		2.0			V _{DS} = 15V
Q_{gs2}	Post-Vth Gate-to-Source Charge		1.0		nC	$V_{GS} = 4.5V$
Q_{gd}	Gate-to-Drain Charge		3.2			I _D = 11A
Q_{godr}	Gate Charge Overdrive		2.0			See Fig. 16a and 16b
Q_{sw}	Switch Charge (Q _{gs2} + Q _{gd})		4.2			
Q _{oss}	Output Charge		5.0		nC	$V_{DS} = 16V, V_{GS} = 0V$
R_{G}	Gate Resistance		1.8	3.0	Ω	
t _{d(on)}	Turn-On Delay Time		8.2			$V_{DD} = 15V, V_{GS} = 4.5V$
t _r	Rise Time		11			I _D = 11A
t _{d(off)}	Turn-Off Delay Time		8.1		ns	$R_G = 1.8\Omega$
t _f	Fall Time		7.0			See Fig. 15a
C _{iss}	Input Capacitance		1040			V _{GS} = 0V
C _{oss}	Output Capacitance		229		рF	V _{DS} = 15V
C _{rss}	Reverse Transfer Capacitance		114]	f = 1.0MHz

Avalanche Characteristics

	Parameter	Тур.	Max.	Units
E _{AS}	Single Pulse Avalanche Energy ②		68	mJ
I _{AR}	Avalanche Current ①		11	Α

Diode Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current			3.1		MOSFET symbol
	(Body Diode)				Α	showing the
I _{SM}	Pulsed Source Current			112		integral reverse
	(Body Diode) ①					p-n junction diode.
V_{SD}	Diode Forward Voltage			1.0	V	$T_J = 25^{\circ}C, I_S = 11A, V_{GS} = 0V$ ③
t _{rr}	Reverse Recovery Time		14	21	ns	$T_J = 25^{\circ}C, I_F = 11A, V_{DD} = 15V$
Q_{rr}	Reverse Recovery Charge		15	23	nC	di/dt = 300A/μs ③
t _{on}	Forward Turn-On Time	Intrinsio	turn-or	time is	negligib	le (turn-on is dominated by LS+LD)

International TOR Rectifier

IRF8721PbF

 $(V) \begin{tabular}{lllll} & V_{DS}, Drain-to-Source Voltage (V) \\ & V_{OS} \\ & V_{OS}$

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

IRF8721PbF

International
Rectifier

16 I_D= 11A V_D'_S= 24V V_{GS}, Gate-to-Source Voltage (V) VDS= 15V 12 8 4 0 0 5 10 15 20 25 Q_q, Total Gate Charge (nC)

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 8. Maximum Safe Operating Area

IRF8721PbF

Fig 9. Maximum Drain Current Vs. Case Temperature

Fig 10. Threshold Voltage Vs. Temperature

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

Fig 12. On-Resistance vs. Gate Voltage

Fig 14a. Unclamped Inductive Test Circuit

Fig 15a. Switching Time Test Circuit

Fig 13. Maximum Avalanche Energy vs. Drain Current

Fig 14b. Unclamped Inductive Waveforms

Fig 15b. Switching Time Waveforms www.irf.com

International Rectifier

IRF8721PbF

Fig 16a. Gate Charge Test Circuit

Fig 16b. Gate Charge Waveform

Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs

SO-8 Package Outline

Dimensions are shown in milimeters (inches)

_	DIM	INC	HES	MILLIMETERS			
Ľ	IIVI	MIN	MAX	MIN	MAX		
	Α	.0532	.0688	1.35	1.75		
	A1	.0040	.0098	0.10	0.25 0.51 0.25		
	b	.013	.020	0.33			
Г	С	.0075	.0098	0.19			
Г	D	.189	.1968	4.80	5.00		
	Ε	.1497 .1574		3.80	4.00		
	е	.050 B	.050 BASIC		1.27 BASIC		
-	e 1	.025 BASIC		0.635 BASIC			
	Н	.2284	.2440	5.80	6.20		
	K	.0099 .0196		0.25	0.50		
	L	.016	.050	0.40	1.27		
	у	0° 8°		0°	8°		

NOTES:

- 1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994.
- 2. CONTROLLING DIMENSION: MILLIMETER
- 3. DIMENSIONS ARE SHOWN IN MILLIMETERS (INCHES).
- 4. OUTLINE CONFORMS TO JEDEC OUTLINE MS-012AA
- (5) DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.15 (.006).
- (6) DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.25 (.010).
- [7] DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO A SUBSTRATE.

SO-8 Part Marking Information

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

International IOR Rectifier

IRF8721PbF

SO-8 Tape and Reel

Dimensions are shown in milimeters (inches)

- NOTES.

 1. CONTROLLING DIMENSION: MILLIMETER.

 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES).

 3. OUTLINE CONFORMS TO EIA-481 & EIA-541.
 - Ø 330.00 (12.992) MAX. 14.40 (.566) 12.40 (.488)

CONTROLLING DIMENSION : MILLIMETER.
 OUTLINE CONFORMS TO EIA-481 & EIA-541

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

- ① Repetitive rating; pulse width limited by max. junction temperature.
- ② Starting $T_J = 25^{\circ}C$, L = 1.09mH, $R_G = 25\Omega$, $I_{AS} = 11A$.
- ③ Pulse width \leq 400µs; duty cycle \leq 2%.
- When mounted on 1 inch square copper board.

Data and specifications subject to change without notice. This product has been designed and qualified for the Consumer market. Qualification Standards can be found on IR's Web site.

> International IOR Rectifier

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information.07/2007