GROTHENDIECK TOPOSES

1. Introduction

In this notes we study Grothendieck topologies and toposes. For prerequisites we assume familiarity with [Mon19].

2. SITES AND SHEAVES

In this section we fix a category C.

Definition 2.1. Let *X* be an object of *C*. A sieve on *X* is a family *S* of arrows of *C* with *X* as a target such that for every $f: Y \to X$ in *S* and every morphisms $g: Z \to Y$ their composition $f \cdot g$ is in *S*.

Every sieve *S* on object *X* of \mathcal{C} corresponds to a subpresheaf of h_X given by

$$C \ni Y \mapsto \{f : Y \to X \mid f \in S\} \in \mathbf{Set}$$

This identifies the collection of sieves on X with the collection of subpresheaves of h_X .

Fact 2.2. Let X be an object of C. The class-theoretic intersection and union of a collection of sieves on X is a sieve on X.

Proof. Left to the reader.

Definition 2.3. Let $\{f_i: X_i \to X\}_{i \in I}$ be a collection of morphisms of \mathcal{C} with codomain in X. Then the intersection of all sieves on X containing $\{f_i\}_{i \in I}$ is called *the sieve generated by* $\{f_i\}_{i \in I}$.

One can directly describe the sieve on X generated by $\{f_i: X_i \to X\}_{i \in I}$ as a class of arrows $f: Y \to X$ in C such that f factors through f_i for some $i \in I$.

Definition 2.4. Let *S* be a sieve on *X* and $f: Y \to X$ be a morphism, then we define a sieve on *Y* by formula

$$f^*S = \{g \in \mathbf{Mor}(\mathcal{C}) \mid \text{ target of } g \text{ is } Y \text{ and } f \cdot g \in S\}$$

We call f^*S the pullback of S along f.

Definition 2.5. For every object X in C the family

$$\{f \in \mathbf{Mor}(\mathcal{C}) \mid \text{ target of } f \text{ is } X\}$$

is a sieve on X. We call it the maximal sieve on X.

Definition 2.6. A Grothendieck topology on C is a collection $\mathcal{J} = \{\mathcal{J}(X)\}_{X \in C}$ such that $\mathcal{J}(X)$ is a class of sieves on X and the following conditions are satisfied.

- (1) The maximal sieve on X is in $\mathcal{J}(X)$.
- **(2)** If $S \in \mathcal{J}(X)$ and $f : Y \to X$, then $f^*S \in \mathcal{J}(Y)$.
- (3) Suppose that $S \in \mathcal{J}(X)$, R is a sieve on X and $f^*R \in \mathcal{J}(\text{dom}(f))$ for every $f \in S$. Then $R \in \mathcal{J}(X)$.

Sieves in class

$$\bigcup_{X \in \mathcal{C}} \mathcal{J}(X)$$

are called covering sieves. A pair (C, \mathcal{J}) consisting of a category C and a Grothendieck topology \mathcal{J} is called *a site*.

1

Proposition 2.7. Let \mathcal{J} be a Grothendieck topology on \mathcal{C} and \mathcal{X} be an object of \mathcal{C} . Then the following assertions hold.

- **(1)** Class $\mathcal{J}(X)$ is closed under finite intersections.
- **(2)** If $S \in \mathcal{J}(X)$ and R is a sieve on X such that $S \subseteq R$, then $R \in \mathcal{J}(X)$.

Proof. We prove **(1)**. For this assume that S and T are covering sieves on X. Then $S \cap T$ is a sieve. Next pick $f: Y \to X$ in S. Note that $f^*(S \cap T) = f^*T \in \mathcal{J}(Y)$. This implies that $S \cap T \in \mathcal{J}(X)$. We prove now **(2)**. Fix $f: Y \to X$ in S. Then f^*R is the maximal sieve on Y due to $S \subseteq R$. Hence $f^*R \in \mathcal{J}(Y)$. Since $S \in \mathcal{J}(X)$, we deduce that $R \in \mathcal{J}(X)$.

Fact 2.8. Let $\mathcal J$ be a Grothendieck topology on $\mathcal C$ and $\mathcal X$ be an object of $\mathcal C$. Suppose that $\mathcal S$ is a covering sieve on $\mathcal X$ and for each $f: \mathcal Y \to \mathcal X$ in $\mathcal S$ pick a covering sieve $\mathcal R_f$ on $\mathcal Y$. Then a family

$$R = \bigcup_{f \in S} f \cdot R_f$$

is a covering sieve on X.

Proof. For every $f: Y \to X$ in S we have $R_f \subseteq f^*R$. By Proposition 2.7 and since R_f is in $\mathcal{J}(Y)$, we deduce that $f^*R \in \mathcal{J}(Y)$. Hence f^*R is a covering sieve for every $f \in S$. This implies that $R \in \mathcal{J}(X)$.

Definition 2.9. Let F be a presheaf on C. Suppose that X is an object of C and S is a sieve on X. We say that a family $\{x_f\}_{f \in S}$ such that $x_f \in S(\text{dom}(f))$ is a matching family for S of elements of F if for every $f: Y \to X$ in S and $g: Z \to Y$ in C we have

$$F(g)(x_f) = x_{f \cdot g}$$

We say that an element $x \in F(X)$ is an amalgamation for the matching family $\{x_f\}_{f \in S}$ if for every $f \in S$ we have $F(f)(x) = x_f$.

Note that if S is a sieve on X viewed as a subpresheaf of h_X , then a matching family for S of elements of F can be viewed as a morphisms of presheaves $S \to F$. This identifies the collection of matching families for S of elements of F with a collection of morphisms $S \to F$ of presheaves. Next suppose that $\{x_f\}_{f \in S}$ is a matching family for S of elements of F. Then amalgamations of $\{x_f\}_{f \in S}$ can be identified by means of Yoneda lemma [Mon19, Theorem 3.3] with morphisms $h_X \to F$ making the following triangle

commutative.

Definition 2.10. Let \mathcal{J} be a Grothendieck topology on \mathcal{C} and F be a presheaf on \mathcal{C} . We say that F is a separated presheaf with respect to \mathcal{J} if for any object X in \mathcal{C} , covering sieve $S \in \mathcal{J}(X)$ and for every matching family $\{x_f\}_{f \in S}$ for S of elements of F there exists at most one amalgamation $x \in F(X)$.

Definition 2.11. Let $\mathcal J$ be a Grothendieck topology on $\mathcal C$ and F be a presheaf on $\mathcal C$. We say that F is a sheaf with respect to $\mathcal J$ if for any object X in $\mathcal C$, covering sieve $S \in \mathcal J(X)$ and for every matching family $\{x_f\}_{f \in S}$ for S of elements of F there exists a unique amalgamation $x \in F(X)$.

In other words $F \in \widehat{\mathcal{C}}$ is a separated presheaf (sheaf) with respect to a Grothendieck topology \mathcal{J} on \mathcal{C} if for any $X \in \mathcal{C}$, sieve $S \in \mathcal{J}(X)$ and morphism $S \to F$ of presheaves there exists at most one (a unique) morphism $h_X \to F$ making the triangle

commutative.

Let \mathcal{J} be a Grothendieck topology on \mathcal{C} . We denote by $\mathbf{PrSh}_s(\mathcal{C},\mathcal{J})$, $\mathbf{Sh}(\mathcal{C},\mathcal{J})$ full subcategories of $\widehat{\mathcal{C}}$ consisting of separated presheaves and sheaves with respect to \mathcal{J} , respectively.

Theorem 2.12. Let $\mathcal J$ be a Grothendieck topology on $\mathcal C$. Then inclusion functors $\mathbf{PrSh}_s(\mathcal C,\mathcal J) \to \widehat{\mathcal C}$, $\mathbf{Sh}(\mathcal C,\mathcal J) \to \widehat{\mathcal C}$ create limits.

Proof. Let $D:I\to \mathbf{PrSh}_S(\mathcal{C},\mathcal{J})$ be a functor and assume that $\left(F,\left\{f_i:F\to D(i)\right\}_{i\in I}\right)$ is a limiting cone over the composition of the functor $D:I\to \mathbf{PrSh}_S(\mathcal{C},\mathcal{J})$ with the inclusion $\mathbf{PrSh}_S(\mathcal{C},\mathcal{J})\to\widehat{\mathcal{C}}$. We show that F is a separated presheaf with respect to \mathcal{J} . Suppose that S is a covering sieve on X and $m:S\to F$ is a morphism that represents certain matching family for S of elements of F. Let $u:S\to h_X$ be the inclusion. Suppose that $p:h_X\to F$ is an amalgamation for m. We need to show that this amalgamation is unique. For this it suffices to observe that from equality $p\cdot u=m$ we derive that $(f_i\cdot p)\cdot u=(f_i\cdot m)$ for $i\in I$. Hence for every $i\in I$ morphism $f_i\cdot p$ is an amalgamation of $f_i\cdot m$. Since D(i) is a separated presheaf for every $i\in I$, this makes $f_i\cdot p$ uniquely determined for $i\in I$. Thus p is uniquely determined itself according to the fact that the cone $\left(F,\left\{f_i\right\}_{i\in I}\right)$ is a limiting cone for D in the category of separated presheaves.

Now assume that $D: I \to \mathbf{Sh}(\mathcal{C}, \mathcal{J})$ is a functor and $\left(F, \left\{f_i: F \to D(i)\right\}_{i \in I}\right)$ is a limiting cone over the composition of the functor $D: I \to \mathbf{Sh}(\mathcal{C}, \mathcal{J})$ with the inclusion $\mathbf{Sh}(\mathcal{C}, \mathcal{J}) \to \widehat{\mathcal{C}}$. We show that F is sheaf with respect to \mathcal{J} . From what we prove above we know that F is a separated presheaf with respect to \mathcal{J} . Suppose that S is a covering sieve on X and $m: S \to F$ is a morphism that represents certain matching family for S of elements of F. Let $u: S \to h_X$ be the inclusion. It suffices to construct an amalgamation $p: h_X \to F$ for m. We define $m_i = f_i \cdot m$ for $i \in I$. Now fix $i \in I$ for a moment. Then $m_i: S \to D(i)$ is a matching family for S of elements of a sheaf D(i). Hence there exists a unique morphism $p_i: h_X \to D(i)$ such that the triangle

is commutative. Now pick a morphism $\alpha : i \rightarrow j$ in I. Then

$$D(\alpha) \cdot p_i \cdot u = D(\alpha) \cdot m_i = m_i = p_i \cdot u$$

According to uniqueness of p_j we deduce that $D(\alpha) \cdot p_i = p_j$. Hence $(h_X, \{p_i\}_{i \in I})$ is a cone over D. Therefore, there exists a unique morphism $p: h_X \to F$ such that $f_i \cdot p = p_i$ for every $i \in I$. Hence

$$f_i \cdot p \cdot u = p_i \cdot u = m_i = f_i \cdot m$$

for every $i \in I$. Thus $p \cdot u = m$ because the cone $(F, \{f_i\}_{i \in I})$ is limiting. Therefore, matching family m for S of elements of F admits an amalgamation p and hence $(F, \{f_i\}_{i \in I})$ is a limiting cone for D in the category of sheaves.

3. Some results on presheaves and matching families

This section contains some technical facts that we use in development of theory in this notes. Let S be an arbitrary sieve on object X in C and F be a presheaf on C. We denote by F(S) the class of matching families for S of elements of F. Suppose now that S is generated by a collection $\mathcal{F} = \{f_i : X_i \to X\}_{i \in I}$. Assume that $\{x_i\}_{i \in I}$ is a collection such that $x_i \in F(X_i)$ for every $i \in I$ and

$$F(g_i)(x_i) = F(g_j)(x_j)$$

for any morphisms $g_i: Y \to X_i$, $g_j: Y \to X_j$ in $\mathcal C$ satisfying $f_i \cdot g_i = f_j \cdot g_j$ for every pair $i, j \in I$. Then $\{x_i\}_{i \in I}$ is called a matching family for $\mathcal F$ of elements of F. The class of matching families for $\mathcal F$ of elements of $\mathcal F$ is denoted by $F(\mathcal F)$. We have canonical injective map $\operatorname{can}_{\mathcal F}: F(\mathcal F) \to \prod_{i \in I} F(X_i)$ and we denote by $\operatorname{res}_{S,\mathcal F}: F(S) \to F(\mathcal F)$ a map that sends $\{x_f\}_{f \in S}$ to $\{x_{f_i}\}_{i \in I}$.

Proposition 3.1. Fix a presheaf F on C and a collection $\mathcal{F} = \{f_i : X_i \to X\}_{i \in I}$ of arrows in C with codomain in X. Let S be a sieve generated by this family. Then $\operatorname{res}_{S,\mathcal{F}}$ is bijective. Moreover, if C admits fiber products, then

$$F(\mathcal{F}) \xrightarrow{\operatorname{can}_{\mathcal{F}}} \prod_{i \in I} F(X_i) \xrightarrow{\langle F(f'_{ij}) \cdot pr_i \rangle_{(i,j)}} \prod_{(i,j) \in I \times I} F(X_i \times_X X_j)$$

is a kernel of a pair of arrows, where for every $(i,j) \in I \times I$ morphisms f'_{ij} and f'_{ji} form a cartesian square

$$X_{i} \times_{X} X_{j} \xrightarrow{f''_{ij}} X_{j}$$

$$\downarrow f_{ij}$$

$$\downarrow f_{j}$$

$$\downarrow f_{j}$$

$$X_{i} \xrightarrow{f_{i}} X$$

Proof. Let $\{x_i\}_{i\in I}$ be a matching family for $\mathcal F$ of elements of F. For every $f:Y\to X$ in S there exists $i\in I$ such that $f=f_i\cdot g_i$ for some $g_i:Y\to X_i$. Indeed, this follows from the fact that $\mathcal F$ generates S. We define $x_f=F(g_i)(x_i)$. Since $\{x_i\}_{i\in I}$ is a matching family for $\mathcal F$ of elements of F, we derive that x_f does not depend on the choice of $i\in I$ and factorization $f=f_i\cdot g_i$. This implies that $\{x_f\}_{f\in S}$ is a matching family for S of elements of F. Now correspondence $\{x_i\}_{i\in I}\mapsto \{x_f\}_{f\in S}$ is the inverse of res $_{S,\mathcal F}$. This proves the first part of the statement.

Let $(x_i)_{i \in I}$ be an element of $\prod_{i \in I} F(X_i)$ such that $F(f'_{ij})(x_i) = F(f''_{ij})(x_j)$ for every pair $(i,j) \in I \times I$. Assume that for some $f: Y \to X$ in S we can write $f = f_i \cdot g_i$ for some $i \in I$ and $g_i: Y \to X_i$ and similarly $f = f_j \cdot g_j$ for some $j \in I$ and $g_j: Y \to X_j$. Then there exist a unique $g: Y \to X_i \times_X X_j$ such that $g_i = f'_{ij} \cdot g$ and $g_j = f''_{ij} \cdot g$. We have

$$F(g_i)(x_i) = F(f'_{ij} \cdot g)(x_i) = F(g) \left(F(f'_{ij})(x_i) \right) = F(g) \left(F(f''_{ij})(x_j) \right) = F(f''_{ij} \cdot g)(x_j) = F(g_j)(x_j)$$

It follows that $\{x_i\}_{i\in I}$ is a matching family for \mathcal{F} of elements of F and $\operatorname{can}_{\mathcal{F}}(\{x_i\}_{i\in I}) = (x_i)_{i\in I}$. This proves that $\operatorname{can}_{\mathcal{F}}$ is a bijection between $F(\mathcal{F})$ and the class of elements $(x_i)_{i\in I} \in \prod_{i\in I} F(X_i)$ such that $F(f'_{ij})(x_i) = F(f''_{ij})(x_j)$ for every pair $(i,j) \in I \times I$. This finishes the proof of the second part of the statement.

Next if $S \subseteq R$ are sieves on X and F is a presheaf, then we denote by $\operatorname{res}_{R,S}: F(R) \to F(S)$ a map given by $\operatorname{res}_{R,S}(\{x_f\}_{f \in R}) = \{x_f\}_{f \in S}$. The next result is a useful technical tool.

Proposition 3.2. Let \mathcal{J} be a Grothendieck topology on \mathcal{C} and F be a separated presheaf with respect to \mathcal{J} . Pick X in \mathcal{C} . If R, S in $\mathcal{J}(X)$ satisfy $S \subseteq R$, then $\operatorname{res}_{R,S} : F(R) \to F(S)$ is injective.

Proof. Let $\operatorname{res}_{R,S}(\{x_f\}_{f\in R})=\{x_f\}_{f\in S}$. We show that $\{x_f\}_{f\in R}$ is uniquely determined by $\{x_f\}_{f\in S}$. For this pick $g\in R$ and consider $\{x_g,f\}_{f\in g^*S}$. This is a subfamily of $\{x_f\}_{f\in S}$. For every $f\in g^*S$ we have $F(f)(x_g)=x_g,f$ and hence x_g is an amalgamation for a matching family $\{x_g,f\}_{f\in g^*S}$ for g^*S of elements of F. Since F is a separated presheaf with respect to \mathcal{J} , we deduce that x_g is uniquely determined with $\{x_g,f\}_{f\in g^*S}$ and hence it is uniquely determined by $\{x_f\}_{f\in S}$. Arrow g is an arbitrary element of R. Thus $\operatorname{res}_{R,S}$ is injective.

4. GROTHENDIECK PRETOPOLOGIES

Let C be a category with fiber products.

Definition 4.1. For every X in \mathcal{C} let $\mathcal{K}(X)$ be a class of collections $\{f_i : X_i \to X\}_{i \in I}$ of arrows in \mathcal{C} with codomain in X. Assume that $\mathcal{K} = \{\mathcal{K}(X)\}_{X \in \mathcal{C}}$ satisfies the following assertions.

- (1) $\{1_X : X \to X\} \in \mathcal{K}(X)$ for every object X in \mathcal{C} .
- (2) If $\{f_i: X_i \to X\}_{i \in I} \in \mathcal{K}(X)$ for some X in \mathcal{C} and $f: Y \to X$ is a morphism, then $\{f_i': X_i \times_X Y \to Y\}_{i \in I} \in \mathcal{K}(Y)$ where f_i' are defined by cartesian squares

$$X_{i} \times_{X} Y \longrightarrow X_{i}$$

$$f'_{i} \downarrow \qquad \qquad \downarrow f_{i}$$

$$Y \longrightarrow f$$

(3) Suppose that $\{f_i: X_i \to X\}_{i \in I} \in \mathcal{K}(X)$ and $\{f_{ij}: X_{ij} \to X_i\}_{j \in J_i} \in \mathcal{K}(X_i)$ for every $i \in I$. Then $\{f_i \cdot f_{ij}: X_{ij} \to X\}_{i \in I, j \in I_i} \in \mathcal{K}(X)$.

Then we say that $K = \{K(X)\}_{x \in C}$ is a Grothendieck pretopology on C.

Proposition 4.2. Suppose that $K = \{K(X)\}_{X \in C}$ is a Grothendieck pretopology on C. For every X in C define

$$\mathcal{J}(X) = \{ S \mid S \text{ is a sieve on } X \text{ and } S \text{ contains some collection in } \mathcal{K}(X) \}$$

Then $\mathcal{J} = {\mathcal{J}(X)}_{X \in \mathcal{C}}$ is a Grothendieck topology on \mathcal{C} .

Proof. Note that for every object X in C we have

$$\{f \in \mathbf{Mor}(\mathcal{C}) \mid \text{ codomain of } f \text{ is } X\} = \text{a sieve on } X \text{ that contains } 1_X$$

According to $\{1_X : X \to X\} \in \mathcal{K}(X)$, we derive that family $\mathcal{J}(X)$ contains the maximal sieve on X. Now suppose that $S \in \mathcal{J}(X)$ and $f : Y \to X$. There exists $\{f_i : X_i \to X\}_{i \in I} \in \mathcal{K}(X)$ that is contained in S. Then f^*S contains $\{f_i' : X_i \times_X Y \to Y\}_{i \in I}$ where f_i' are defined by cartesian squares

$$X_{i} \times_{X} Y \xrightarrow{\qquad \qquad } X_{i}$$

$$f'_{i} \downarrow \qquad \qquad \downarrow f_{i}$$

$$Y \xrightarrow{\qquad \qquad \qquad } X$$

Since we have $\{f_i': X_i \times_X Y \to Y\}_{i \in I} \in \mathcal{K}(Y)$, we deduce that $f^*S \in \mathcal{J}(Y)$. Finally assume that R is a sieve on X, $S \in \mathcal{J}(X)$ and for every $f \in S$ we have $f^*R \in \mathcal{J}(\text{dom}(f))$. By definition there exists $\{f_i: X_i \to X\}_{i \in I} \in \mathcal{K}(X)$ contained in S and for every $i \in I$ there exists $\{f_{ij}: X_{ij} \to X\}_{j \in I_i} \in \mathcal{K}(X_i)$ contained in f_i^*R . Thus R contains $\{f_i \cdot f_{ij}: X_{ij} \to X\}_{i \in I, j \in I_i}$ and this is a family in $\mathcal{K}(X)$. Hence $R \in \mathcal{J}(X)$. **Definition 4.3.** Let \mathcal{K} be a Grothendieck pretopology on \mathcal{C} and \mathcal{J} be a Grothendieck topology on \mathcal{C} given by

$$\mathcal{J}(X) = \{ S \mid S \text{ is a sieve on } X \text{ and } S \text{ contains some collection in } \mathcal{K}(X) \}$$

then we say that \mathcal{J} is a Grothendieck topology generated by \mathcal{K} .

Definition 4.4. Let \mathcal{J} be a Grothendieck topology on \mathcal{C} and \mathcal{K} be a Grothendieck pretopology on \mathcal{C} that generates \mathcal{J} . Then we say that \mathcal{K} is a basis of the Grothendieck topology \mathcal{J} .

The next result characterizes sheaves on sites for which Grothendieck topology is generated by some Grothendieck pretopology.

Theorem 4.5. Let K be a Grothendieck pretopology on C and J be a topology generated by K. Then a presheaf F on C is a sheaf on with respect to J if and only if for every $\{f_i : X_i \to X\}_{i \in I} \in K(X)$ the diagram

$$F(X) \xrightarrow{(F(f_i))_{i \in I}} \prod_{i \in I} F(X_i) \xrightarrow{(F(f'_{ij}) \cdot pr_i)_{(i,j)}} \prod_{(i,j) \in I \times I} F(X_i \times_X X_j)$$

is a kernel of a pair of arrows, where for every $(i,j) \in I \times I$ morphisms f'_{ij} and f'_{ji} form a cartesian square

$$X_{i} \times_{X} X_{j} \xrightarrow{f''_{ij}} X_{j}$$

$$\downarrow f_{ij} \qquad \qquad \downarrow f_{j}$$

$$X_{i} \xrightarrow{f_{i}} X$$

Proof. Suppose that F is a sheaf with respect to \mathcal{J} and $\mathcal{F} = \{f_i : X_i \to X\}_{i \in I}$ be a collection in $\mathcal{K}(X)$. Let S be a sieve generated by $\{f_i\}_{i \in I}$. Then according to Proposition 3.1 we deduce that the diagram

$$F(S) \xrightarrow{\operatorname{can}_{\mathcal{F}} \cdot \operatorname{res}_{S,\mathcal{F}}^{-1}} \prod_{i \in I} F(X_i) \xrightarrow{(F(f'_{ij}) \cdot pr_i)_{(i,j)}} \prod_{(i,j) \in I \times I} F(X_i \times_X X_j)$$

is a kernel diagram. Since F is sheaf in \mathcal{J} and $S \in \mathcal{J}(X)$, we derive that the map $\operatorname{res}_S : F(X) \to F(S)$ that sends $x \in F(X)$ to $\{F(f)(x)\}_{f \in S}$ is a bijection. Hence

$$\langle F(f_i) \rangle_{i \in I} = \operatorname{can}_{\mathcal{F}} \cdot \operatorname{res}_{S,\mathcal{F}}^{-1} \cdot \operatorname{res}_S : F(X) \to \prod_{i \in I} F(X_i)$$

is a kernel of a pair consisting of $\langle F(f'_{ij}) \cdot pr_i \rangle_{(i,j)}$ and $\langle F(f''_{ij}) \cdot pr_j \rangle_{(i,j)}$.

Now assume that F is a presheaf on C and for every collection $\{f_i: X_i \to X\}_{i \in I}$ in K(X) the diagram

$$F(X) \xrightarrow{\langle F(f_i) \rangle_{i \in I}} \prod_{i \in I} F(X_i) \xrightarrow{(F(f'_{ij}) \cdot pr_i)_{(i,j)}} \prod_{(i,j) \in I \times I} F(X_i \times_X X_j)$$

is a kernel pair. Now Proposition 3.1 implies that for any object X and sieve S generated by a collection in $\mathcal{K}(X)$ every matching family for S of elements of F admits a unique amalgamation. In other words for every sieve S on X generated by some collection in $\mathcal{K}(X)$ the map $\operatorname{res}_S : F(X) \to F(S)$ that sends $x \in F(X)$ to $\{F(f)(x)\}_{f \in S}$ is bijective. Consider now any sieve R in $\mathcal{J}(X)$. Then there exists a sieve S on X generated by some collection of $\mathcal{K}(X)$ such that $S \subseteq R$. Consider a commutative triangle

where $\operatorname{res}_{R,S} (\{x_f\}_{f \in R}) = \{x_f\}_{f \in S}$, $\operatorname{res}_R(x) = \{F(f)(x)\}_{f \in R}$ and $\operatorname{res}_S(x) = \{F(f)(x)\}_{f \in S}$. By what we prove above, we deduce that res_S is a bijection. Hence res_R is injective. Thus F is a separated presheaf with respect to \mathcal{J} . By Proposition 3.2 the map $\operatorname{res}_{R,S}$ is injective. Therefore, $\operatorname{res}_{R,S}$, res_R are injective and res_S is bijective and they form a commutative triangle. Hence they are all bijective maps of classes. In particular, res_R is bijective. We deduce that F is a sheaf with respect to \mathcal{J} .

The next result deals with certain set-theoretic issues and is important from the point of view of the next section.

Proposition 4.6. Let K be a Grothendieck pretopology on C and let $\mathcal J$ be a Grothendieck topology generated by K. Assume that the following assertions hold.

- **(1)** For every object X in C the class K(X) is a set.
- **(2)** For every object X in C every collection $\{f_i: X_i \to X\}_{i \in I} \in \mathcal{K}(X)$ is a set.

Then for every presheaf $F \in \widehat{C}$ and every object X in C a colimit

$$F^+(X) = \operatorname{colim}_{S \in \mathcal{J}(X)} F(S)$$

is a set.

5. Sheaf associated to a presheaf

Let $\mathcal C$ be a category. Let $\mathcal J$ be a Grothendieck topology on $\mathcal C$. Let us formulate certain technical set-theoretic assumption on $\mathcal J$.

(*) For any presheaf F on C, object X in C and a covering sieve S there the class F(S) of matching families for S of elements of F form a set and the class

Theorem 5.1. Let F be a presheaf on a Grothendieck site (C, \mathcal{J}) . There exists a sheaf a(F) and a morphism $\eta_F : F \to a(F)$ of presheaves such that for every sheaf G and every morphism of presheaves $p : F \to G$ there exists a unique morphism $r : a(F) \to G$ making the diagram

commutative.

First we construct a separated presheaf F^+ out of F. Fix an object X of C. Suppose that S is a covering sieve on X. Denote by F(S) the set of all matching families for S of elements of F. If $S_1 \subseteq S_2$ are covering sieves on X, then we have a function $F(S_2) \to F(S_1)$ given by restriction. Thus $\{F(S)\}_{S \in \mathcal{J}(X)}$ is a diagram indexed by a directed set $\mathcal{J}(X)$ and we define

$$F^+(X) = \operatorname{colim}_{S \in \mathcal{T}(X)} F(S)$$

Note that for every morphism $f: X_1 \to X_2$ in $\mathcal C$ and for every sieve $S \in \mathcal J(X_2)$ we have a function $F(S) \to F(f^*S)$ given by $F(S) \ni \{s_g\}_{g \in S} \mapsto \{s_{f \cdot g}\}_{g \in f^*S} \in F(f^*S)$. These functions for all $S \in \mathcal J(X_2)$

induce a map

$$F^+(X_2) \to F^+(X_1)$$

and this defines a presheaf F^+ . We also have a morphism of presheaves $i_F^+: F \to F^+$ that sends $x \in F(X)$ to a class in $F^+(X)$ represented by a matching family of the form $\{F(f)(x)\}_{f \in S}$ for every covering sieve S on X.

Lemma 5.1.1. *The following assertions hold.*

- **(1)** F^+ is a separated presheaf.
- **(2)** If F is separated presheaf, then F^+ is a sheaf.

Proof of the lemma. We prove **(1)**. Fix an object $X \in \mathcal{C}$ and a covering sieve S on X. Suppose that $\{x_f\}_{f \in S}$ is a matching family for S of elements of F^+ . Assume that $y, z \in F^+(X)$ are amalgamations of $\{x_f\}_{f \in S}$. Then there exists a covering sieve T on X such that y is represented by some matching family $\{s_f\}_{f \in T}$ for T of elements of F and z is represented by some matching family $\{t_f\}_{f \in T}$ for T of elements of T. Fix a morphism $f: Y \to X$ in T. Then $T^+(f)(y)$ is represented by $\{s_{f \cdot g}\}_{g \in f^*T}$ and $T^+(f)(g)$ is represented by $\{t_f \cdot g\}_{g \in f^*T}$. Moreover, $T^+(f)(g) = x_f = T^+(f)(g)$ and hence there exists a covering sieve T0 of T1 such that T2 of T3 or every T3 or every T4. Now we know that

$$R = \bigcup_{f \in T} f \cdot R_f \subseteq S$$

is a covering sieve on X and matching families $\{s_f\}_{f\in R}$, $\{t_f\}_{f\in R}$ for R of elements of F represent respectively y and z. Since these families are equal, we derive that y=z. This implies that F^+ is separated.

Let us prove (2). Fix an object $X \in \mathcal{C}$ and a covering sieve S on X. Suppose that $\{x_f\}_{f \in S}$ is a matching family for S of elements of F^+ . For every $f: Y \to X$ in S there exists a covering sieve R_f on Y and a matching family $\{s(f)_g\}_{g \in R_f}$ for R_f of elements of F that represents x_f . Formula

$$R = \bigcup_{f \in S} f \cdot R_f$$

defines a covering sieve on X contained in S. We set $r_{f cdot g} = s(f)_g$ for every $f \in S$ and $g \in R_f$. We check now that this definition is independent of choices of $f \in S$ and $g \in R_f$. For this suppose that f_1 , $f_2 \in S$ and $g_1 \in R_{f_1}$, $g_2 \in R_{f_2}$ satisfy $f_1 \cdot g_1 = f_2 \cdot g_2$. Let $Z \in C$ denote a common domain of morphisms g_1 , g_2 . Now $F^+(g_1)(x_{f_1})$ is represented by a matching family $\{s(f_1)_{g_1 \cdot g}\}_{\operatorname{cod}(g) = Z}$ and $F^+(g_2)(x_{f_2})$ is represented by a matching family $\{s(f_2)_{g_2 \cdot g}\}_{\operatorname{cod}(g) = Z}$. According to equality

$$F^+(g_1)(x_{f_1}) = x_{f_1 \cdot g_1} = x_{f_2 \cdot g_2} = F^+(g_2)(x_{f_2})$$

these families represent the same element of $F^+(Z)$. Hence we deduce that there exists a covering sieve T on Z such that $\{s(f_1)_{g_1\cdot g}\}_{g\in T}=\{s(f_2)_{g_2\cdot g}\}_{g\in T}$. Next $s(f_1)_{g_1}$ is an amalgamation for $\{s(f_1)_{g_1\cdot g}\}_{g\in T}$ and $s(f_2)_{g_2}$ is an amalgamation for $\{s(f_2)_{g_2\cdot g}\}_{g\in T}$. By separatedness of F, we derive that $s(f_1)_{g_1}=s(f_2)_{g_2}$. Thus family $\{r_f\}_{f\in R}$ is well defined. By definition it is a matching family for R of elements of F. Hence it defines an element of F(R) and this element represents some $x\in F^+(X)$. Fix now $f\in S$. By definition of F^+ we deduce that $F^+(f)(x)$ is represented by $\{r_{f\cdot g}\}_{g\in f^*R}$. This family contains $\{r_{f\cdot g}\}_{g\in R_f}=\{s(f)_g\}_{g\in R_f}$ and thus $F^+(f)(x)=x_f$. This proves that $\{x_f\}_{f\in S}$ admits an amalgamation. By (1) presheaf F is separated. Hence amalgamation of $\{x_f\}_{f\in S}$ is unique.

Lemma 5.1.2. Let $p: F \to G$ be a morphism of presheaves and assume that G is a sheaf. Then there exists a unique morphism $q: F^+ \to G$ such that the diagram

is commutative.

Proof of the lemma. Fix $X \in C$ and $x \in F^+(X)$. Then there exists a covering sieve S on X and a matching family $\{s_f\}_{f \in S}$ for S of elements of F that represents x. By definitions of F^+ and i_F^+ we have matching family $\{i_F^+(s_f)\}_{f \in S}$ for S of elements of F^+ with x as its amalgamation.

have matching family $\{i_F^+(s_f)\}_{f\in S}$ for S of elements of F^+ with x as its amalgamation. Assume that $q:F^+\to G$ is a morphism such that $p=q\cdot i_F^+$. We have $p(s_f)=q(i_F^+(s_f))$ for every $f\in S$. Therefore, q(x) must be an amalgamation of a matching family $\{p(s_f)\}_{f\in S}=\{q(i_F^+(s_f))\}_{f\in S}$ for S of elements of G. Since G is a separated presheaf, there exists at most one such amalgamation. This proves uniqueness of g.

The existence of such a q is also evident. As G is a sheaf, one picks q(x) to be the amalgamation of a matching family $\{p(s_f)\}_{f \in S}$ for S of elements of G. Verification that uses definitions of F^+ and i_F^+ shows that this gives rise to a morphism $q: F^+ \to G$ which satisfies $p = q \cdot i_F^+$.

Proof of the theorem. We define $a(F) = (F^+)^+$ and $\eta_F = i_{F^+}^+ \cdot i_F^+$. By Lemma 5.1.1 presheaf a(F) is a sheaf. Now suppose that $p: F \to G$ is a morphism of presheaves and G is a sheaf. We apply Lemma 5.1.2 twice to obtain a unique morphism $r: a(F) \to G$ such that $p = r \cdot \eta_F$.

6. Dense subsites

Proposition 6.1. Let (C, \mathcal{J}) be a site and K be its full subcategory. Then the following are equivalent.

- (i) For every object X of C and every S covering sieve in $\mathcal{J}(X)$ there exists a sieve R in $\mathcal{J}(X)$ generated by a collection of morphisms with domains in K and contained in S.
- (ii) For every object X of C there exists a covering sieve S of X generated by a collection of morphisms in C with domains in K.

Proof. The implication (i) \Rightarrow (ii) is obvious. We prove (ii) \Rightarrow (i). Let $f: Y \to X$ be a morphism in S. Since K is dense subcategory of the site (C, \mathcal{J}) , we derive that there exists a covering sieve R_f in $\mathcal{J}(Y)$ generated by a collection of morphisms with domains in K. Now a collection

$$R = \bigcup_{f \in S} f \cdot R_f$$

is a covering sieve on X by Fact 2.8. It is also contained in S and is generated by morphisms with domains in K.

Definition 6.2. Let (C, \mathcal{J}) be a site and \mathcal{K} be a full subcategory of C satisfying equivalent condition of Proposition 6.1. Then \mathcal{K} is called *a dense subcategory of a site* (C, \mathcal{J}) .

Corollary 6.3. Let (C, \mathcal{J}) be a site and K be its dense subcategory. Fix an object X of K and a sieve T in $\mathcal{J}(X)$. Then $T \cap K$ generates a sieve in C contained in $\mathcal{J}(X)$.

Proof. By Proposition 6.1 we derive that there exists a sieve R in $\mathcal{J}(X)$ contained in T and generated by morphisms in K. Now a sieve in C generated by $T \cap K$ contains R and hence is an element of $\mathcal{J}(X)$ according to Proposition 2.7.

Corollary 6.4. Let (C, \mathcal{J}) be a site and K be its dense subcategory. For an object X of K we define $\mathcal{J}_K(X)$ as a collection of all sieves on X of the form $T \cap K$ for T in $\mathcal{J}(X)$. Then \mathcal{J}_K is a Grothendieck topology on K.

Proof. Let X be an object of K. The maximal sieve on X in K is the intersection of the maximal sieve on X in C and K. Hence the former is an element of $\mathcal{J}_K(X)$.

Suppose next that T is a sieve in $\mathcal{J}(X)$ for some object X of \mathcal{K} and let $f: Y \to X$ be a morphism in \mathcal{K} . Then $f^*T \in \mathcal{J}(Y)$ and since we have $f^*(T \cap \mathcal{K}) \subseteq f^*T \cap \mathcal{K}$, we deduce that $f^*(T \cap \mathcal{K}) \in \mathcal{J}_{\mathcal{K}}(Y)$. Thus pullback of an element of $\mathcal{J}_{\mathcal{K}}(X)$ by f is in $\mathcal{J}_{\mathcal{K}}(Y)$.

Finally suppose that X is an object of \mathcal{K} and S, R are sieves on X in \mathcal{K} . Assume that $S \in \mathcal{J}_{\mathcal{K}}(X)$ and $f^*R \in \mathcal{J}_{\mathcal{K}}(\text{dom}(f))$ for every $f \in S$. Let T be a sieve in \mathcal{C} generated by R. Then for every $f \in S$ we have $f^*R \subseteq f^*T$. Since $f^*R \in \mathcal{J}_{\mathcal{K}}(\text{dom}(f))$, we deduce by Corollary 6.3 that sieve in \mathcal{C} generated by f^*R is in $\mathcal{J}(\text{dom}(f))$. This also shows $f^*T \in \mathcal{J}(\text{dom}(f))$. Therefore, f^*T is a covering sieve in \mathcal{C} for every $f \in S$. Since S generates a covering sieve in \mathcal{C} by Corollary 6.3, we deduce that $T \in \mathcal{J}(X)$. Note that $R = T \cap \mathcal{K}$ and hence $R \in \mathcal{J}_{\mathcal{K}}(X)$.

Definition 6.5. Let (C, \mathcal{J}) be a site and \mathcal{K} be its dense subcategory. Then the Grothendieck topology $\mathcal{J}_{\mathcal{K}}$ on \mathcal{K} described in Corollary 6.4 is called *the induced topology on* \mathcal{K} and a pair $(\mathcal{K}, \mathcal{J}_{\mathcal{K}})$ is called *a dense subsite of* (C, \mathcal{J}) .

Theorem 6.6. Let (C, \mathcal{J}) be a site and $K \subseteq C$ be a dense subcategory. Then the embedding $K \hookrightarrow C$ induces a full and faithful functor

$$\mathbf{Sh}(\mathcal{C},\mathcal{J}) \to \mathbf{Sh}(\mathcal{K},\mathcal{J}_{\mathcal{K}})$$

If in addition for every object X of C there exists a covering sieve S in $\mathcal{J}(X)$ generated by a set of morphisms with domains in K, then this functor is an equivalence.

Let F be a presheaf on C and let X be an object of C

Lemma 6.6.1. Let F be a presheaf on C and let X be an object of C. Suppose that S is a sieve on X generated by a collection of morphisms $\mathcal{F} = \{f_i : X_i \to X\}_{i \in I}$. We denote by $F(\mathcal{F})$ the collection of all tuples $\{x_i\}_{i \in I}$ such that $x_i \in F(X_i)$ and for any $i, j \in I$ and morphisms g_i, g_j .

Lemma 6.6.2. Let F be a sheaf on (C, \mathcal{J}) . Fix an object X of C and a sieve S in $\mathcal{J}(X)$ generated by a collection $\{f_i: X_i \to X\}_{i\in I}$ of morphisms.

$$F(S) \xrightarrow{\text{res}} \prod_{i \in I} F(X_i) \xrightarrow{\langle F(f'_{ij}) \cdot pr_i \rangle_{(i,j)}} \prod_{(i,j) \in I \times I} F(X_i \times_X X_j)$$

Proof of the lemma. \Box

Proof. First we prove that this functor is full and faithful. Suppose that $\sigma : F \to G$ is a morphism of sheaves on $(\mathcal{K}, \mathcal{J}_{\mathcal{K}})$.

REFERENCES

 $[Mon19]\ \ Monygham.\ Categories\ of\ presheaves.\ \textit{github\ repository:\ "Monygham/Pedo-mellon-a-minno"}, 2019.$