

Approximate Cell Decomposition

4-connected graph

• Each cell is connected to four neighbors (N, S, E, W)

Can we get "finer" paths with the same resolution?

4-connected versus 8-connected

8-connected graph

- Each cell is connected to eight neighbors (N, S, E, W, NE, SE, NW, SW)

- Graph construction:
 - connect cells to neighbor of neighbors
 - path is restricted to 22.5° degrees

16-connected grid

convert into a graph

- Approximate Cell Decomposition:
 - what to do with partially blocked cells?

convert into a graph

search the graph for a least-cost path from s_{start} to s_{goal}

• Approximate Cell Decomposition:

- what to do with partially blocked cells?
- make it untraversable incomplete (may not find a path that exists)

convert into a graph

search the graph for a least-cost path from s_{start} to s_{goal}

- Approximate Cell Decomposition:
 - what to do with partially blocked cells?
 - make it traversable incorrect (may return valid paths when none exist)

so, what's the solution?

convert into a graph

search the graph for a least-cost path from s_{start} to s_{goal}

- Approximate Cell Decomposition:
 - solution 1:

- expensive, especially in high-I

convert into a graph

search the graph for a least-cost path from s_{start} to s_{goal}

- Approximate Cell Decomposition:
 - solution 2:
 - make the discretization adaptive

convert into a graph

search the graph for a least-cost path from s_{start} to s_{goal}

Graph Search

Background: Planning as Tree Search

Perform tree-based search (need cost function *c*)

- Construct the root of the tree as the start state, and give it value 0
- While there are unexpanded leaves in the tree
 - \checkmark Find the leaf s with the lowest value
 - lacktriangleright For each action, create a new child leaf of s
 - ▼ Set the value of each child as:

$$g(s) = g(parent(s)) + c(parent(s), s)$$

where $c(s, s')$ is the cost of moving from s to s'

Background: What action to choose?

Depth-first search
Breadth-first search
Best-first search

Djikstra (1959)

Single-source shortest path problem for routing

• Hart (1968)

A* algorithm

Ref: Wikipedia

Background: What action to choose?

How to determine the lowest-cost child to consider next?

- 1 Shallowest next (breadth-first)
 - Guaranteed shortest
 - Storage intensive
- 2 Deepest next (depth-first)
 - No optimality
 - Potentially storage cheap

3 A*

- Optimal
- Complete
- Efficient if good heuristics are used

Searching Graphs for a Least-cost Path

Total_cost $(s_{Init}, s, s_{Goal}) = running_cost (s_{Init}, s) + cost_to_go(s, s_{Goal})$

Searching Graphs for a Least-cost Path

Estimate g(s), the $running_cost(s_{Init}, s)$, for each state s.

- g(s) an estimated cost of a least-cost path from s_{Init} to s
- optimal values satisfy: $g(s) = \min_{p \in predecessor(s)} g(p) + c(p,s)$

A* Search

The cost of each state s = g(s) + h(s)

Where g(s) is an optimal running cost for state s and

h(s) is an (under)estimated cost to reach the goal state from state s.

What is a good heuristic that under-estimates the cost to go?

A* Search (Heuristic)

Each state gets a value

$$f(s) \neq g(s) + h(s)$$

Actual (minimal) cost: c*(s,g) = 25

Estimated cost from Cost incurred here to the goal: from the star "heuristic" cost

For example (4-connected)

$$-g(s)=4$$

$$- h(s) = ||s-g||$$

= sqrt(8²+13²)
= 15.3

A* Search

minimal cost from s to s_{Goal}

Heuristic function must be:

- admissible: for every state s, $h(s) \le c *(s, s_{Goal})$
- consistent (satisfy triangle inequality): $h(s_{Goal}, s_{Goal}) = 0 \text{ and for every } s \neq s_{goal}, h(s) \leq c(s, succ(s)) + h(succ(s))$
- Consistency implies admissibility (not necessarily the other way around)

Dijkstra VS A*

A*

Ref: Wikipedia

