Билет №1

- 1. Сформулировать критерий Дарбу об интегрируемости функции
- 2. Найти неопределенный интеграл: $\int x\sqrt{1+3x}dx$
- 3. Найти определенный интеграл: $\int_0^{\ln 2} x e^x dx$
- 4. Эллипс задан параметрически следующим видом:

$$\begin{cases} x = a * \cos t \\ y = b * \sin t \\ a > b \end{cases}$$

Найти длину эллипса в общем виде.

Билет №2

- 1. Докажите, что $\int f^{-1}(x)dx = x*f(x) F(f^{-1}(x)) + C$. где $f^{-1}(x)$ обратная к f(x) функция
- 2. Найти неопределенный интеграл: $\int \frac{dx}{\sqrt{tg(x)}}$
- 3. Найти определенный интеграл: $\int_0^{2\pi} \frac{dx}{1+\epsilon \cos x}; 0 \le \epsilon < 1$
- 4. $f(x) = xe^x$, $W(x): f(W(x)) \equiv x$ Найти $\int W(x)dx$

Билет №3

- 1. Определение интеграла по Риману
- 2. Найти неопределенный интеграл: $\int arctg(x)dx$
- 3. Найти определенный интеграл: $\int_0^e \ln x^2 dx$
- 4. Найти значения α , при которых интеграл $\int_0^{\inf} \frac{dx}{x^{\alpha}}$ имеет конечное значение (сходится). Подсказка: $\int_a^{\inf} f(x) dx = \lim_{b \to \inf} \int_a^b f(x) dx = \lim_{b \to \inf} F(b) F(a)$

Билет №4 без говна

1

- 1. Длина дуги в полярных координатах
- 2. Найти неопределенный интеграл: $\int (1-\frac{2}{x})^2 e^x dx$
- 3. Найти определенный интеграл: $\int_0^a b \sqrt{1-\frac{x^2}{a^2}} dx$; $\ a>b$
- 4. Найти длину дуги: $\phi \in [0, 2\pi]; \quad r(\phi) = \frac{tg(\phi)}{\cos \phi}$