

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA BAIANO

Bacharelado em Sistemas de Informação

UTILIZAÇÃO DE REDES NEURAIS NA ANÁLISE E PREVISÃO DE SÉRIES TEMPORAIS METEOROLÓGICAS EM ITAPETINGA-BA

Lucas Silva de Oliveira

Itapetinga - Bahia 6 de fevereiro de 2025

UTILIZAÇÃO DE REDES NEURAIS NA ANÁLISE E PREVISÃO DE SÉRIES TEMPORAIS METEOROLÓGICAS EM ITAPETINGA-BA

Lucas Silva de Oliveira

Trabalho de Conclusão de Curso apresentado como requisito parcial para obtenção do título de Bacharel em Sistemas de Informação.

Orientador(a): Prof(a). Dr(a). Nome do(a) Orientador(a).

Itapetinga - Bahia 6 de fevereiro de 2025

UTILIZAÇÃO DE REDES NEURAIS NA ANÁLISE E PREVISÃO DE SÉRIES TEMPORAIS METEOROLÓGICAS EM ITAPETINGA-BA

Lucas Silva de Oliveira

Trabalho de Conclusão de Curso apresentado como requisito parcial para obtenção do título de Bacharel em Sistemas de Informação.

BANCA EXAMINADORA:

 $\operatorname{Prof}(a)$. $\operatorname{Dr}(a)$. Nome $\operatorname{do}(a)$ Orientador(a) (Orientador(a)) IFBAIANO

Prof(a). Dr(a). Nome do(a) Avaliador(a) Instituição

Prof(a). Dr(a). Nome do(a) Avaliador(a) Instituição

Agradecimentos

Agradeço a...

Resumo

Aqui fica o resumo em português.

Palavras-chave: redes neurais, séries temporais, meteorologia.

Resumo

Aqui fica o resumo em inglês.

 ${\bf Keywords}: \ {\bf neural} \ {\bf networks}, \ {\bf time} \ {\bf series}, \ {\bf meteorology}.$

Sumário

1	INTRODUÇÃO 1
1.1	OBJETIVOS
1.2	JUSTIFICATIVA
1.3	ORGANIZAÇÃO DOS CAPÍTULOS
2	FUNDAMENTAÇÃO TEÓRICA
2.1	Séries Temporais
2.1.1	Estacionariedade
2.1.2	Decomposição
2.1.3	Modelos
2.2	Redes Neurais
2.2.1	Histórico
2.2.1.1	Perceptrons
2.2.2	Componentes das Redes Neurais
2.2.3	Processo de Treinamento
2.2.3.1	Aprendizado Supervisionado e Não Supervisionado
2.2.3.2	Pre-Processamento dos Dados
2.2.3.2.1	Limpeza de Dados
2.2.3.2.2	Integração de Dados
2.2.3.2.3	Transformação de Dados
2.2.3.2.4	Redução de Dados
2.2.3.3	Overfitting e Undefitting
2.2.3.4	Técnicas de Validação
2.2.3.4.1	Hold-Out
2.2.3.4.2	K-Fold
2.2.3.4.3	Leave-One-Out
2.2.3.4.4	Bootstrap
2.2.3.5	Métricas de Avaliação
2.2.4	Arquitetura
2.2.4.1	Multi Layer Perceptron
2.2.4.2	Redes Neurais Recorrentes
2.2.4.3	Redes Neurais Convolucionais
2.2.4.4	Long Short-Term Memory (LSTM)
3	METODOLOGIA

3.1	Obtenção dos Dados
3.2	Preparação dos Dados
4	RESULTADOS
5	CONSIDERAÇÕES FINAIS
	REFERÊNCIAS

1 INTRODUÇÃO

Aqui é onde ficara a introdução da problemática

1.1 OBJETIVOS

O presente projeto tem como objetivo utilizar redes neurais artificiais para analisar e prever variações meteorológicas no município de Itapetinga-BA ao longo do tempo. A pesquisa busca identificar padrões sazonais, tendências climáticas de longo prazo e possíveis anomalias, contribuindo para o planejamento urbano, agrícola e ambiental da região.

- Analisar séries temporais de temperatura, precipitação e outros parâmetros climáticos em Itapetinga-BA, aplicando diferentes arquiteturas de redes neurais.
- Identificar tendências de aquecimento, variações na distribuição de chuvas e outros impactos ambientais, utilizando modelos de previsão baseados em aprendizado profundo.
- Comparar as previsões geradas pelos modelos com os dados históricos, a fim de detectar anomalias e avaliar possíveis mudanças climáticas na região.

1.2 JUSTIFICATIVA

Suspeita-se que as mudanças ambientais e climáticas tenham como principal responsável a ação humana, impulsionada pela intensa atividade industrial. A revolução industrial marcou o início dessa transformação, promovendo a adoção de novas fontes de energia e o fortalecimento do consumo de combustíveis fósseis, como o carvão mineral inicialmente e, posteriormente, o petróleo (MENDONÇA, 2006).

À vista disso, nas últimas décadas, os debates sobre as mudanças climáticas e a necessidade de uma sociedade mais consciente e participativa na preservação ambiental e no desenvolvimento sustentável se tornaram cada vez mais intensos. Em 1972, ao identificar a vulnerabilidade do planeta Terra, houve um esforço mundial conjunto em entender os problemas ambientais e ponderar medidas para previnir e amenizar determinados crises.

A Conferência das Nações Unidas para o Meio Ambiente Humano, também conhecida como Conferência de Estocolmo, realizada em 1972 na cidade de Estocolmo, na Suécia, foi um marco histórico por ser a primeira conferência global com foco no meio ambiente. Durante o evento, deu-se início à estruturação de mecanismos de proteção ambiental, que foram ampliados na Segunda Conferência das Nações Unidas sobre o Meio Ambiente e

Desenvolvimento, realizada em 1992, conhecida como Rio-92. Nessas conferências, foram estabelecidos diversos acordos para a proteção do meio ambiente, da biodiversidade e de outros aspectos relacionados à sustentabilidade, como a Agenda 21 (PASSOS, 2009).

Entretanto, de acordo com relatório especial publicado em 2020 pelo Painel Intergovernamental sobre Mudanças Climáticas (IPCC), desde o período pré-industrial, a temperatura média do ar na superfície da Terra quase dobrou em relação à média global registrada anteriormente. Além disso, estima-se que 23% das emissões antrópicas de gases de efeito estufa sejam provenientes de atividades relacionadas à agricultura, silvicultura e outras práticas agrícolas.

No Brasil, em 2019, logo após o início do mandato do governo eleito no ano anterior, as invasões às terras indígenas por grupos ilegais, como garimpeiros, foram retomadas. Como resultado, a taxa de desmatamento em junho daquele ano já apresentava um aumento alarmante de 60% em relação ao mesmo mês do ano anterior. Além disso, houve uma intensificação de atividades ilícitas, como a grilagem de terras, mineração clandestina e exploração madeireira na Amazônia (FILHO, 2020).

Filho (2020) afirma que esse aumento foi impulsionado pelos questionamentos levantados pelo então presidente da República, Jair Messias Bolsonaro, que colocava em dúvida a veracidade das informações fornecidas por órgãos públicos responsáveis pelo monitoramento ambiental. Além disso, suas declarações sobre a desarticulação do sistema de regulação ambiental reforçaram, entre seus apoiadores, a percepção de que havia uma espécie de "liberação total". Isso resultou na intensificação de práticas prejudiciais ao meio ambiente, à saúde pública e ao tecido social.

Segundo dados do MapBiomas, o Brasil já havia perdido cerca de 20% de suas áreas naturais até 1985. Entre 1985 e 2023, essa perda se intensificou, aumentando em mais 13%, atingindo um total de 33% do território nacional. A velocidade alarmante dessa transformação na cobertura e no uso do solo contribui significativamente para o agravamento dos riscos climáticos no país. No ano de 2023, a Bahia se destacou como o segundo estado com maior taxa de desmatamento. Em comparação com 2022, houve um aumento de 27% na área desmatada, sendo o Cerrado o bioma mais afetado, respondendo por 67% do total. Na sequência, aparecem a Caatinga e a Mata Atlântica como os biomas mais impactados pelo desmatamento no estado (POLCRI, 2024).

1.3 ORGANIZAÇÃO DOS CAPÍTULOS

Este trabalho está dividido da seguinte forma: No capítulo 2, é apresentado uma visão geral dos conceitos teóricos que fundamentam este projeto, como séries temporais, suas características e modelos de previsão. Além disso, é introduzido o conceito de redes neurais, abordando seus componentes, aprendizado, métricas e arquiteturas mais comuns. O capítulo 3 detalha os métodos e técnicas utilizados na pesquisa. No capítulo 4, são

mostrados os resultados obtidos. Por fim, no capítulo 5, são apresentamos as considerações finais, destacando as principais contribuições do trabalho e propondo direções para futuras pesquisas.

2 FUNDAMENTAÇÃO TEÓRICA

Neste capítulo, são apresentados os principais conceitos e fundamentos necessários para a compreensão, entendimento e progresso deste trabalho.

2.1 Séries Temporais

Muitas pessoas, em algum momento, já imaginaram como seria prever o futuro e ter acesso a informações sobre eventos ou situações de suas vidas. Essa curiosidade reflete um desejo universal, mas também uma necessidade presente em diversas áreas, como na gestão governamental, no setor financeiro e em contextos sociais. Nesse cenário, surge o conceito de Série Temporal, definido como um conjunto de observações organizadas sequencialmente no tempo, representadas por x_t , com cada valor correspondente a um instante específico t (BOX et al., 2015). O estudo de Séries Temporais permite não apenas compreender as características de fenômenos que evoluem ao longo do tempo, mas também desenvolver e ajustar modelos estatísticos capazes de explicar ou prever o comportamento dos dados observados.

De acordo com (BROCKWELL; DAVIS, 2002), séries temporais podem ser classificadas discretas e continuas, uma série temporal é discreta quando o conjunto t_0 de tempos em que as observações são feitas é um conjunto discreto, como o caso de observações que são realizadas em um determinado intervalo de tempo fixo. Sendo representada por:

$$T = \{t_1, \dots, t_n\}, \quad \{X_t : t \in T\}$$
 (2.1)

E seríes temporais continuas quando suas observações são obtidas continualmente no tempo. Sendo expressa por:

$$T = [t_1, t_2], \quad \{X(t) : t \in T\}$$
(2.2)

2.1.1 Estacionariedade

A estacionariedade refere-se ao comportamento dos valores de uma série temporal ao longo do tempo. Uma série é classificada como estacionária quando seus dados flutuam de maneira aleatória em torno de uma média fixa, mantendo-se em um estado de equilíbrio ao longo do período analisado. Contudo, na prática, muitas séries temporais do cotidiano não apresentam essa característica, exibindo tendências, sazonalidades ou outras formas de variação que indicam a presença de não estacionariedade (MORETTIN; TOLOI, 2018).

2.1.2 Decomposição

Costa (2019) destaca que ao iniciar a análise de uma série temporal é de alta valia utilizar de gráficos criados sequencialmente no tempo, visto que isso pode revelar determinados padrões de comportamento e algumas características que podem estar presentes nos dados, como tendência, sazonalidade, ciclidade e ruído, também conhecido como erro aleatório.

A tendência (μ_t) apresenta um padrão de comportamento de grandezas em relação à variável tempo. De forma geral, elas revelam umc

A ciclidade (ψ_t) pode ser

A sazonalidade (γ_t) pode ser

O ruído (ϵ_t) é

2.1.3 Modelos

2.2 Redes Neurais

O cérebro humano é um sistema de grande complexidade, não linear e altamente paralelo, composto por cerca de 10 bilhões de neurônios. Cada neurônio está conectado, em média, a outros 10 bilhões de neurônios, formando uma vasta e sofistiada rede. Na estrutura de um neurônio, destaca-se o corpo celular, também chamado de soma, que é responsável por integrar os sinais recebidos. Os neurônios possuem canais de entrada, chamados dendritos, que recebem informações de outros neurônios, e canais de saída, chamados axônios, que transmitem essas informações. Os dendritos são considerados as "zonas receptivas" do neurônio, enquanto os axônios funcionam como "linhas de transmissão".

Os neurônios se comunicam por meio de sinais eletroquímicos. Os dendritos recebem essas informações de outros neurônios através dos axônios. Quando o conjunto de sinais recebidos é suficientemente forte para ativar o neurônio, este gera um impulso elétrico que percorre seu axônio. Esse sinal eletroquímico coordena e organiza a atividade neuronal, permitindo ao cérebro realizar diversas formas de processamento de maneira extremamente eficiente, muitas vezes mais rápida do que os computadores digitais convencionais (HAYKIN, 2009).

A Figura 1 mostra a estrutura do neurônio:

Ao entender de forma simples o poder de processamento que o ce

2.2.1 Histórico

As redes neurais são frequentemente consideradas um complemento à computação tradicional. Curiosamente, John von Neumann, amplamente reconhecido como o pai da

Figura 1 – Célula piramidial.

Fonte: The University Of Queensland.

computação moderna devido à sua proposta da arquitetura que possibilitou a criação do computador de programa armazenado, demonstrava grande interesse em modelar o funcionamento do cérebro humano. Esse interesse levantou debates entre pesquisadores sobre a possível interação entre as ideias de von Neumann e os primórdios das redes neurais. Alguns estudiosos destacam indícios que sugerem a visão de von Neumann sobre as direções futuras do desenvolvimento dos computadores (FAUSETT, 1994).

Neste capítulo, serão destacados alguns marcos significativos que tiveram um papel fundamental no avanço e desenvolvimento da área de redes neurais.

2.2.1.1 Perceptrons

Em 1958, o psicólogo Frank Rosenblatt publicou um artigo que, pela primeira vez, descreveu de forma algorítmica o funcionamento de um modelo de rede neural para aprendizagem supervisioanda. Essa publicação inspirou inúmeros pesquisadores a direcionarem seus esforços para estudos sobre redes neurais, explorando diversos aspectos dessa temática ao longo das décadas de 1960 e 1970 (HAYKIN, 2009).

Figura 2 – Fluxo do perceptron.

Fonte: Haykin (2009).

Como apresentado na Figura 2, o perceptron consiste de um único neurônio com pesos sinápticos ajustáveis e um viés. Ele possui uma camada de entrada (a retina) conectada aos pesos e uma camada de saída. Seu funcionamento baseia-se em um combinador linear seguido por uma função de ativação que realiza uma função linear. Esse nó somador (o neurônio) calcula uma combinação linear das entradas aplicadas às suas sinapses, além de incorporar um viés aplicado externamente que ajusta a posição da função de ativação. O resultado dessa soma é passado à função de ativação, que produz uma saída de +1 se a entrada for positiva, ou -1, se for negativa.

O perceptron é um classificador binário, pois resolve apenas problemas de classificação de padrões linearmente separáveis, ou seja, é capaz de lidar exclusivamente com problemas nos quais duas classes podem ser separadas por uma linha em um hiperplano (HAYKIN, 2009).

2.2.2 Componentes das Redes Neurais

2.2.3 Processo de Treinamento

Sistemas de aprendizado de máquina podem ser categorizados de acordo com o tipo de treinamento que eles recebem. O aprendizado supervisionado ocorre quando o modelo é treinado por meio de exemplos explicítos. Em contrapartida, no aprendizado não supervisionado, não há a definição de exemplos explicítos para orientar o modelo. Além disso, existem diversas boas práticas para garantir que o modelo consiga realizar um bom aprendizado e métricas para avalia-lo

2.2.3.1 Aprendizado Supervisionado e Não Supervisionado

No aprendizado supervisionado, o modelo é treinado com pares de dados (x, y), onde x representa os dados de entrada e y o valor esperado (ou rótulo). Durante o treinamento, o modelo compara as previsões feitas com os valores reais utilizando uma função de perda, que mede o erro. Em seguida, seus parâmetros são ajustados iterativamente, geralmente por meio de métodos como o gradiente descendente, para minimizar esse erro e melhorar a precisão das previsões.

No aprendizado não supervisionado, o modelo não recebe o par de dados (x, y), mas apenas as entradas x. A partir disso, ele busca identificar padrões, estruturas ou associações presentes nos dados, ajustando os pesos de acordo com o objetivo do método utilizado.

2.2.3.2 Pre-Processamento dos Dados

Antes de treinar um modelo com algoritmos de aprendizado de máquina, é imprescindível realizar o pré-processamento dos dados. Esse processo assegura que os dados estejam padronizados, consistentes e adequados, permitindo que os modelos alcancem um desempenho superior e resultados confiáveis nas métricas de avaliação. Para isso, são utilizadas técnicas que evitam problemas como dados ausentes, inconsistências, valores conflitantes e incongruentes. Essas técnicas são geralmente divididas em quatro categorias principais: limpeza, integração, transformação e redução de dados (SILVA, 2021; OLIVEIRA, 2024).

2.2.3.2.1 Limpeza de Dados

Um problema comum em conjuntos de dados (datasets) é a presença de valores faltantes (ou nulos), que podem ocorrer devido a diferentes fatores. Esses fatores incluem registros manuais realizados de forma inadequada, falhas em sistemas de extração, transformação e carregamento de dados (ETL) ou até mesmo problemas em sensores de dispositivos autônomos. A presença de valores faltantes compromete tanto a qualidade dos dados quanto o desempenho do treinamento de modelos de machine learning, caso não seja tratada adequadamente. Sivakumar e Gunasundari (2017) apresentam algumas abordagens eficazes para lidar com essa problemática, como:

- Exclusão de linhas do dataset que contenham valores faltantes.
- Preenchimento dos valores ausentes utilizando métricas estatísticas, como a média ou mediana, para gerar estimativas aproximadas que mantenham a coerência do conjunto de dados.

2.2.3.2.2 Integração de Dados

É o processo de combinar dados provenientes de diversas fontes, ecossistemas e tecnologias, de maneira adequada e coerente. Durante esse processo de integração, podem surgir problemas, como inconsistências nos dados e redundâncias no conjunto de dados gerado (SIVAKUMAR; GUNASUNDARI, 2017; SILVA, 2021; OLIVEIRA, 2024)

2.2.3.2.3 Transformação de Dados

Nesse estágio, os dados são transformados em formatos adequados para utilização no modelo. Sivakumar e Gunasundari (2017) e Oliveira (2024) definem algumas atividades executadas nesta etapa:

- Uso de normalização para ajustar os valores dos dados a uma escala comum, permitindo fácil comparação entre diferentes atributos.
- Eliminação de ruídos com técnicas de suavização.
- Aplicação de técnicas de agregação para resumir dados complexos e detalhados.
- Generalização de valores específicos em categorias mais amplas, como, por exemplo, a generalização de faixas etárias.

2.2.3.2.4 Redução de Dados

Nessa etapa, são utilizadas metodos para reduzir o volume de dados que serão analisados, visando maior velocidade de processamento e melhora na eficiência do processo, mas sem comprometer a qualidade e integridade dos dados originais. Sivakumar e Gunasundari (2017) indicam algumas estrategias, sendo elas:

- Redução de dimensionalidade do *dataset*, removendo atributos que não melhoram a perfomance do modelo.
- Utilização de operações de agregação de dados para resumo de informações.
- Utilização de técnicas de *encoding* para compactação de dados.

2.2.3.3 Overfitting e Undefitting

- 2.2.3.4 Técnicas de Validação
- 2.2.3.4.1 Hold-Out
- 2.2.3.4.2 K-Fold
- 2.2.3.4.3 Leave-One-Out

2.2.3.4.4 Bootstrap

2.2.3.5 Métricas de Avaliação

Vide que a utilização de modelos de *machine learning* é com o foco de predizer determinados eventos atráves de métodos estáticos e probabilisticos. A exatidão da previsão é o fator crucial em avaliar a qualidade de um modelo. Sousa (2011) apresenta a Tabela 1 com as métricas mais comuns para avaliar as previsões dos modelos.

Tabela 1 – Cálculo de erros

Designação	Fórmula
Erro Absoluto Médio (MAE)	$\frac{1}{n} \sum_{t=1}^{n} e_t $
Erro Quadrático Médio (MSE)	$\frac{1}{n}\sum_{t=1}^{n}(e_t)^2$
Raiz do Erro Quadrático Médio (RMSE)	$\sqrt{\frac{1}{n}\sum_{t=1}^{n}(e_t)^2}$
Erro Percentual Absoluto Médio (MAPE)	$\frac{1}{n} \sum_{t=1}^{n} \left(\frac{ e_t }{ y_t } \right) 100$

Fonte: Sousa (2011)

2.2.4 Arquitetura

2.2.4.1 Multi Layer Perceptron

O algoritmo de backpropagation ajusta os pesos da rede neural para reduzir o erro entre a saída prevista e o valor esperado. O erro é calculado e propagado pelas camadas até atingir um nível mínimo aceitável (MARANGONI, 2010).

Grus (2021) apresenta o funcionamento padrão do treinamento de uma rede neural utilizando o algoritmo de backpropagation como método de ajuste dos pesos. Considera-se que a rede possui n, os quais são ajustados de acordo com o seguinte procedimento:

- 1. Realiza-se o feed-forward, em que as entradas são processadas para produzir as saídas de todos os neurônios;
- Como o algoritmo é supervisionado, os valores esperados das saídas são conhecidos.
 Assim, calcula-se uma função de perda, geralmente definida como a soma dos erros quadráticos entre as saídas reais e as esperadas;
- O gradiente dessa função de perda é calculado em relação aos pesos dos neurônios de saída;
- 4. Os gradientes e os erros são propagados para trás com o objetivo de calcular os gradientes associados aos pesos dos neurônios ocultos;
- 5. Atualizam-se os pesos aplicando um passo em direção ao gradiente descendente, controlado por um parâmetro denominado learning rate (taxa de aprendizagem).

2.2.4.2 Redes Neurais Recorrentes

2.2.4.3 Redes Neurais Convolucionais

2.2.4.4 Long Short-Term Memory (LSTM)

3 METODOLOGIA

No decorrer deste capítulo são abordados ambiente e metodologia utilizada durante o desenvolvimento do presente trabalho.

3.1 Obtenção dos Dados

Para a aplicação de modelos de previsão, é essencial dispor de uma quantidade significativa de dados para o treinamento, validação e teste do modelo, bem como para a inferência dessas informações sobre a população como um todo. No Brasil, o Instituto Nacional de Meteorologia (INMET) é o órgão responsável pelo Banco de Dados Meteorológicos (BDMEP), planejado para coletar, armazenar, processar e disponibilizar dados e informações sobre variáveis meteorológicas.

Esses dados podem ser gerados localmente, por meio de estações meteorológicas convencionais ou automáticas, ou captados remotamente, utilizando sensores orbitais, radares, entre outros dispositivos (VIANNA et al., 2017). O Banco de Dados Meteorológicos para Ensino e Pesquisa (BDMEP), em particular, reúne informações meteorológicas diárias provenientes das estações da rede do INMET, seguindo as normas técnicas da Organização Meteorológica Mundial (INMET, s.d.).

3.2 Preparação dos Dados

4 RESULTADOS

5 CONSIDERAÇÕES FINAIS

Referências

- BOX, G. E. P. et al. *Time Series Analysis: Forecasting and Control.* 5th. ed. Hoboken, NJ: John Wiley & Sons, 2015.
- BROCKWELL, P. J.; DAVIS, R. A. Introduction to Time Series and Forecasting. Second. [S.l.]: Springer, 2002.
- CLIMáTICAS, P. I. sobre M. Mudança do clima e terra: sumário para formuladores de políticas. Brasília: Ministério da Ciência, Tecnologia, Inovações e Comunicações (MCTI), 2020. Relatório especial sobre mudança do clima, desertificação, degradação da terra, manejo sustentável da terra, segurança alimentar e fluxos de gases de efeito estufa em ecossistemas terrestres. ISBN 978-92-9169-154-8. Disponível em: https://repositorio.mcti.gov.br/handle/mctic/5301.
- COSTA, E. S. d. Análise da Série Temporal de Precipitação Total Mensal do Município de Cruz das Almas-BA. Brasil: [s.n.], 2019. Trabalho monográfico apresentado para obtenção do grau de bacharel em Ciências Exatas e Tecnológicas.
- FAUSETT, L. Fundamentals of Neural Networks: Architectures, Algorithms, and Applications. First. [S.l.]: Prentice Hall, 1994.
- FILHO, H. B. Bolsonaro, meio ambiente, povos e terras indígenas e de comunidades tradicionais: Uma visada a partir da amazônia. *Cadernos de Campo (São Paulo 1991)*, v. 29, p. e178663, 12 2020.
- GRUS, J. Data Science do Zero: Noções Fundamentais com Python. 2. ed. Rio de Janeiro, Brasil: Alta Books, 2021. 416 p. ISBN 978-8550811765.
- HAYKIN, S. Neural Networks and Learning Machines. Third. Upper Saddle River, NJ: Pearson Education, 2009.
- MARANGONI, P. H. Redes Neurais Artificiais para Previsão de Séries Temporais no Mercado Acionário. Florianópolis: Universidade Federal de Santa Catarina UFSC, 2010. Trabalho de Conclusão de Curso (Graduação em Ciências Econômicas).
- MENDONÇA, F. Aquecimento global e suas manifestações regionais e locais: alguns indicadores da região sul do brasil. *Revista Brasileira de Climatologia*, v. 2, 2006.
- MORETTIN, P. A.; TOLOI, C. M. C. Análise de Séries Temporais: Modelos Lineares Univariados (Volume 1). 3. ed. São Paulo: Blucher, 2018. 474 p. ISBN 978-8521213512.
- OLIVEIRA, J. V. de. Análise comparativa de algoritmos de aprendizado de máquina aplicados ao Campeonato Brasileiro de Futebol. 2024. Trabalho de Conclusão de Curso (TCC).
- PASSOS, P. N. Calmon de. A conferÊncia de estocolmo como ponto de partida para a proteÇÃo internacional do meio ambiente. *Revista Direitos Fundamentais & Democracia*, v. 6, n. 6, 2009. Disponível em: https://revistaeletronicardfd.unibrasil.com.br/index.php/rdfd/article/view/18.

- POLCRI, M. Bahia desmata área equivalente a 737 campos de futebol por dia: o estado ocupa a segunda posição no ranking nacional, atrás apenas do Maranhão. 2024. Disponível em: https://www.correio24horas.com.br/minha-bahia/bahia-desmata-area-equivalente-a-737-campos-de-futebol-por-dia-0624.
- SILVA, D. F. B. F. d. Pré-processamento de Dados e Comparação entre Algoritmos de Machine Learning para a Análise Preditiva de Falhas em Linhas de Produção para o Controlo. Tese (Doutorado) Instituto Superior de Engenharia do Porto, 2021.
- SIVAKUMAR, A.; GUNASUNDARI, R. A survey on data preprocessing techniques for bioinformatics and web usage mining. *International Journal of Pure and Applied Mathematics*, v. 117, n. 20, 2017.
- SOUSA, J. A. V. Aplicação de Redes Neuronais na Previsão de Vendas para Retalho. Dissertação (Dissertação de Mestrado) Faculdade de Engenharia da Universidade do Porto (FEUP), Porto, Portugal, 2011. Orientador na FEUP: Engº. Eduardo José Rego Gil Costa; Orientador no INESC Porto: Engº. Rui Diogo Rebelo.
- VIANNA, L. F. d. N. et al. Bancos de dados meteorológicos: Análise dos metadados das estações meteorológicas no estado de santa catarina, brasil. *Revista Brasileira de Meteorologia*, v. 32, n. 1, p. 53–64, jan 2017.