Using Machine Learning Models for Diabetes Evaluation

Dallas Grandy, John Hoffman

Why use Machine Learning?

- About 11% of the world has Diabetes
 - 90% of those with it have Type 2.

- Faster/Earlier detection and Diagnosis.
 - Faster care leads to a healthier life.
 - The earlier your diagnosed, the easier it is to handle the effects.
- Less testing is needed to confirm the diagnosis.
 - If you require fewer tests, it lowers cost and patient time.

Project Goal

 The goal of the project was to find the type of model that would be the most feasible for clinical use.

- Various models were tested for this project.
 - Logistic regression, SVM, K-NN, MLP Model, etc.
- If a substantial model can be found that provides high accuracy it can be used to help physician catch earlier stage diabetes.

Current Issues with Evaluation

- Imbalanced data set, only 8.5% are diabetes positive
- The data does not specify Type 1 or 2
- The overall low recall in several models

No explainability with our best Model MLP

Code Evaluation

	Accur acy	Precision Class 0	Precis ion	Recall Class 2	Recall Class 1	F1 Class 0 Avg	F1 Class 1 Avg	Time
LR	0.96	0.97	0.86	0.99	0.64	0.98	0.73	0.037 sec
Tree	0.97	0.97	0.97	1	0.69	0.98	0.80	6 Sec
MLP	0.97	0.97	0.99	1	0.81	0.99	0.81	130 Sec
SVM	0.97	0.97	0.98	1	0.65	0.98	0.78	840 Sec
Forest	0.97	0.97	0.98	1	0.69	0.98	0.81	139 Sec
KNN	0.96	0.97	0.88	0.99	0.63	0.98	0.74	7 Sec

Working Demo

- Read in the data
- Preprocess
 - Dummy variables for smoking
 - One hot encode gender
 - Scale: 'age', 'bmi', 'HbA1c_level', 'blood_glucose_level'
- Test Train split
 - 0 80%-20%
- Model Building
 - Gridsearch
 - K-fold Cross validation k=5

Conclusion / Results

- Our Multi-Layer Perceptron model provided the highest accuracy as well as F1 scores.
 - Coupled with it's relatively fast computation time we believe this model is the best performing.
- If this model is used in a clinical setting, physicians should be made aware of its shortcomings.
 - It's recall on diabetes classification is only 0.81, so edge cases should still be given a test if there predicted as negative.