

### 4. Circuit Theorems

- Source Transformations
- Linearity and the Principle of Superposition
- Thévenin's Theorem
- Norton's Theorem
- Maximum Power Transfer Theorem



#### Motivation

- Circuit theorems can greatly simplify circuit analysis and provide insight into the operation of circuits
- For example: What are the consequences of a circuit being composed of linear circuit elements?



## Today's Outline

#### 4. Circuit Theorems

- Practical Sources
- Source Transformations



#### **Practical Sources**

It is commonly observed in practical sources that:

- power is dissipated when a load is attached to the source (for example, a battery warms up when discharged)
- the voltage from a practical voltage source decreases as current is drawn from the source (as from an audio amplifier)
- the current from a practical current source decreases as voltage develops across the terminals of the source (as from a solar cell)

While the origin and nature of these effects can be very complex, the Thévenin and Norton equivalent circuits are very useful models for practical sources.



## Practical Voltage Source

A practical voltage source can often be modeled as a **Thévenin circuit**: a voltage source  $v_{oc}$  called the "**open circuit voltage**" in series with a resistance  $R_{T_{,}}$  called the "**Thévenin resistance**." An ideal voltage source is recovered as  $R_{T_{,}}$  -> 0 $\Omega$  (short).







### **Practical Current Source**

A practical current source can often be modeled as a **Norton circuit**: an independent current source  $i_{sc}$  called the "**short circuit current**" in parallel with a resistance  $R_T$  also called the "**Thévenin resistance**." An ideal current source is recovered as  $R_T \to \infty$  (open).







A portable battery is characterized by an open circuit voltage of 3V. The internal (Thévenin) resistance is known to be  $200m\Omega$ . If a resistive load with  $10\Omega$  equivalent resistance is attached to the battery, what voltage is applied to the load?



#### Strategy:

apply the voltage divider equation





Voltage divider:

$$\begin{split} \frac{\textit{v}_{AB}}{\textit{3V}} &= \frac{10\Omega}{10\Omega + 0.2\Omega} \\ \textit{v}_{AB} &= 0.980 \cdot \textit{3V} \\ &= 2.94 \textit{V} \qquad \text{this is a 2% drop in voltage} \end{split}$$



An HVDC (high-voltage direct-current) power supply line is driven by an 800kV source with  $2\Omega$  internal resistance. Of the total 5GW produced by the HVDC source, 10% of the power is lost in internal resistance, including a 3000km transmission line to the load. What is the resistance of the load, the resistance of the transmission lines, and the voltage at the load?





#### Strategy:

use power and voltage to find resistance





$$P_{del} = I_{AB} \cdot 800 \text{kV}$$
$$I_{AB} = \frac{5 \text{GW}}{800 \text{kV}} = 6.25 \text{kA}$$

$$P_{load} = i_{AB}^{2} \cdot R_{L}$$

$$R_{L} = \frac{0.9 \times 5GW}{(6.25kA)^{2}}$$

$$= 115.2\Omega$$

$$P_{\text{internal}} = i_{AB}^{2} \cdot R_{T}$$

$$R_{T} = \frac{0.1 \times 5GW}{\left(6.25\text{kA}\right)^{2}}$$

$$= 12.8\Omega$$





Voltage divider: 
$$\frac{v_{AB}}{800 \text{kV}} = \frac{115.2\Omega}{12.8\Omega + 115.2\Omega}$$
 
$$v_{AB} = 0.900 \cdot 800 \text{kV}$$
 
$$= 720 \text{kV} \qquad \text{this is a 10\% drop in voltage}$$



## **Source Transformation**

**Source Transformation**: A Thévenin circuit and a Norton circuit are equivalent when their  $i_{AB}$ - $v_{AB}$  diagrams are identical:













### **Source Transformation**

**Proof:** Show that the terminal equations relating  $v_{AB}$  and  $i_{AB}$  are identical for appropriately chosen component values. In other words, the  $i_{AB}$ - $v_{AB}$  diagrams are identical.

#### First analyze the Thévenin circuit:



KVL: 
$$0 = -v_{oc} + v_{R} + v_{AB}$$

Ohm: 
$$v_R = i_{AB} R_T$$

Combining the above:

$$v_{AB} = v_{oc} - i_{AB} R_{T}$$



### **Source Transformation**

Next analyze the Norton circuit:



KCL: 
$$0 = -i_{sc} + i_{R} + i_{AB}$$

Ohm: 
$$i_R = v_{AB} / R_T$$

Combining the above:

$$i_{AB} = i_{SC} - v_{AB}/R_T$$

Comparing the two circuit terminal laws:

$$v_{AB} = v_{OC} - i_{AB} R_{T}$$

$$i_{AB} = i_{SC} - v_{AB} / R_{T} \quad -> \quad v_{AB} = i_{SC} R_{T} - i_{AB} R_{T}$$



The two circuits are thus equivalent when  $v_{oc} = i_{sc} R_T$ .



Reduce the following circuit to a single Norton equivalent circuit with respect to the terminals A and B.



#### Strategy:

use transformations between Thévenin and Norton equivalent circuits,
 working from left to right







Transform Thévenin circuit on the left into a Norton circuit.

$$i_{sc} = v_{oc} / R_{T}$$

$$= 24V/4\Omega$$

$$= 6A$$





Transform circuit on the left into a Norton circuit.

$$i_{sc} = 2A + 6A = 8A$$







Transform circuit on the left into a Thévenin circuit.

$$v_{\text{oc}} = i_{\text{sc}} R_{\text{T}}$$
  
= 8A 4\Omega





Use series equivalent resistance and transform circuit on the left into a Norton circuit.



$$R_T\!\!=4\Omega+4\Omega=8\Omega$$

$$i_{sc} = v_{oc} / R_{T}$$

$$= 32V/8\Omega$$

$$= 4A$$





Use parallel equivalent resistance to create a Norton circuit.



$$R_{\tau} = 8\Omega \mid |1\Omega|$$
$$= \frac{8\Omega \cdot 1\Omega}{8\Omega + 1\Omega} = \frac{8}{9}\Omega$$