Física dos Semicondutores

Para compreender as propriedades dos SC é necessário compreender as propriedades dos eletrões nos SC, nomeadamente:

- a energia, momento e posição do eletrão no SC;
- Saber como é que esses eletrões respondem a uma perturbação externa, por exemplo:
 - um campo elétrico ou
 - um campo magnético.

Cap1- Eletrões em sólidos

- 1.1- Modelo de Drude e suas limitações
- 1.2- Modelo de Sommerfeld Estatística de MB e FD
- 1.3- Partícula como onda- Equação de Schrodinger Superfície de Fermi Densidade de estados

Modelo clássico de condução e Modelo quântico

- Modelo clássico de Drude (1900) (metais)
- Modelo quântico de Sommerfeld (1928) (metais)
- Estrutura de Bandas

1.1- Modelo de Drude e suas limitações

Modelo de Drude (1900)

1860 – Maxwell & Boltzmann: Teoria cinética dos gases (clássica)

1897 – Thompson descobre o electrão

Ideia base de Drude: Espaço disponível para o eletrão num metal.

- 1) Os eletrões (de valência) deslocam-se num metal como as moléculas num gás.
- 2) Os eletrões chocam com os átomos da rede e com outros eletrões.
- 3) Os eletrões quando sujeitos a um campo elétrico são acelerados na direcção do campo.

Ex: carga positiva

Modelo de Drude

O modelo de Drude para condução elétrica foi desenvolvido por Paul Drude (1900) para explicar as propriedades de transporte de eletrões em materiais (especialmente em metais).

O modelo de Drude baseia-se na aplicação da **teoria cinética dos gases** aos eletrões num sólido.

Considera que o material contém:

i) iões positivos imóveis

e

i) um "gás de **eletrões**" clássicos (eletrões de valência)

o movimento dos eletrões é amortecido pelas colisões dos eletrões com os iões

Colisões são caracterizadas por um tempo de relaxamento τ.

<u>Drude</u> teve que introduzir os <u>choques/colisões</u> com a rede para evitar que os electrões fossem indefinidamente acelerados (ou seja para evitar que a corrente aumentasse com o tempo)

Ideia base de Drude: Espaço disponível para o eletrão num metal

Modelo de Drude descreve o sólido como uma "caixa vazia" contendo um gás de eletrões (livres)

Tipicamente num material o volume ocupado pelos "cores" atómicos é cerca de 11 a 15 % do volume total

Tipicamente o número de electrões de condução num sólido é da ordem de 10²²cm⁻³

Figura 1.1: a) Representação esquemática de um átomo livre. b) Num metal, o núcleo e o cerne mantêm a mesma configuração que no átomo livre, mas os electrões de valência separam-se dos iões e formam um gás de electrões, c), que podem mover-se livremente como as partículas de um gás.

Assim,

Na ausência de campo elétrico a velocidade média é zero pois os eletrões estão em movimento aleatório.

Na presença de campo aplicado a componente da velocidade sofre um ligeiro aumento no sentido oposto ao campo (electrões), que atinge, no seu máximo, uma velocidade média v_d (velocidade de "drift" /deriva).

O tempo médio entre choques é τ e o espaço percorrido entre choques denominase livre percurso médio λ . (se se considerar a velocidade segundo xx proporcional ao tempo: τ = τ = τ τ)

Partículas de um gás

Assim, desta análise resulta que:

(Quadro1)

Densidade de corrente, J

Condutividade, σ

 $\mathbf{J} = -\mathbf{ne} \left\langle \mathbf{v} \right\rangle = \frac{\mathbf{ne}^2 \mathbf{E} \lambda}{\mathbf{mv}_d}$

$$\sigma = \frac{J}{E} = \frac{ne^2 \lambda}{mv_d}$$

Mobilidade eléctrica do portador de carga, μ

$$\sigma = \mathbf{ne}\mu$$
 : $\mu = \frac{\mathbf{e}\lambda}{\mathbf{mv_d}}$

 $\lambda = V_d \tau$ é o livre percurso médio

τ tempo livre médio de um portador de carga

$$\mu = q\tau/m$$

Tipicamente para metais:

$$\tau = 10^{-14} - 10^{-15} \, \text{s}$$

$$n = 10^{28} \, \text{m}^{-3}$$

$$\sigma = 0.28 - 2.8 \times 10^6 \, (\Omega \text{m})^{-1}$$

Este modelo simples oferece uma boa explicação para:

- -a condutividade de corrente contínua e alternada em metais: Lei de ohm, resistência eléctrica
- -o efeito Hall em metais, e
- -a condutividade térmica (devida a electrões) em metais.

Teoria de Drude: eletrões como partículas clássicas

Explica σ , κ e a relação entre ambas.

Lei de Wiedemann-Franz: a uma dada Τ, κ/σT= L, a cte de Lorentz

Mas falha pois

- não explica a existência de portadores de **carga positivos** como demonstra o efeito Hall.
- não explica a dependência da condutividade, efeito Hall com a **temperatura**, assim como a dependência de efeito Hall com o campo magnético
- -(não explica a disparidade entre as capacidades caloríficas dos metais em comparação com a dos materiais isolantes.)

Refinamento do modelo de Drude (correcções quânticas):

Sommerfeld- Aplicação da mecânica quântica ao sistema de eletrões

i) Considera os eletrões livres (descritos como funções de onda)

MAS

- ii) Incorpora o princípio de exclusão de Pauli no modelo do gás de eletrões: Estatística de Fermi-Dirac (em vez de Maxwell Boltzmann)
- iii) acrescentando condições fronteira (limite do material)
- iv) Considera que os eletrões de condução estão num potencial constante dentro do material

Teoria de bandas- a "empty box" de Sommerfeld é substituída por um **potencial periódico**.

Permite a compreensão das propriedades básicas e da natureza dos **metais**, **semicondutores** e **isoladores**.

1.2- Modelo de Sommerfeld

Em 1928, Arnold **Sommerfeld** introduziu elementos da mecânica quântica no modelo proposto por Drude: o princípio de exclusão de Pauli e a estatística de Fermi-Dirac.

- electrões são partículas indistinguíveis;
- o estado de um eletrão é determinado pelo seu momento linear, **p**, a sua energia, E, e o seu spin, **s**;
- é proibido haver dois ou mais eletrões com valores idênticos das três variáveis que caracterizam o seu estado (E, p e s).

O principal elemento, que corrige os resultados "mais errados" de Drude, é o princípio de exclusão de Pauli.

A consequência mais importante do modelo de Sommerfeld está relacionada com o calor especifico.

Teoria de Drude: a contribuição dos electrões livres para o calor especifico **é cem** vezes maior do que obtido experimentalmente.

Este paradoxo permaneceu por um quarto de século e só foi ultrapassado pela mecânica quântica, quando se reconheceu que, para eletrões, a distribuição de **Maxwell-Boltzmann** deve ser substituída pela distribuição de **Fermi-Dirac**

Drude: a distribuição de velocidades, tal como a de um gás perfeito, era dada pela distribuição de Maxwell-Boltzmann: o que implica que a contribuição de cada electrão para o calor específico seja de (3/2 k _B)

A velocidade média dos eletrões num metal (da ordem de 10⁷ cm s⁻¹ na teoria de Drude) é substituída pela velocidade de Fermi, que é da ordem de 10⁸ cm s⁻¹

O calor específico é reduzido de um factor de cerca de 100, em excelente concordância com os valores experimentais.

O calor especifico, Cv é dado por:

Nos metais, à temperatura ambiente: $k_BT \ll E_F$

Maxwell-Boltzmann

- descreve a distribuição estatística de partículas materiais em vários estados de energia em equilíbrio térmico, quando a temperatura é alta e a densidade é baixa de forma a tornar os efeitos quânticos negligenciáveis (qualquer fenómeno para os quais a temperatura está acima de poucas dezenas de kelvins)
- O número esperado de partículas com energia Ei é dado por:

$$F(E,T) = Ni = e^{-(Ei - EF/KT)}$$

Fermi-Dirac

- A estatística de Fermi-Dirac é quântica e rege as partículas de spin semi-inteiro, os fermiões.
- O número esperado de partículas com energia Ei é dado por:

$$F(E,T) = \frac{1}{\left(e^{(Ei-EF)}/_{KT}\right) + 1}$$

EF- energia de Fermi- Potencial químico (energia do último nível ocupado a T=0K)

 $K = K_B$ - constante de Boltzmann

FIGURE 1.15. Fermi-Dirac, Boltzmann, and Bose-Einstein distribution functions plotted on a common scale against $(E - \mu)/k_{\rm B}T$.

1.3- Partícula como onda- Equação de Schrodinger

Modelo quântico

Uma vez que os eletrões se comportam como ondas: Hipótese de Broglie

Eletrão/partícula

p=mv; Lei de Newton

Mecânica quântica: o movimento electrónico e descrito por uma equação de onda,

Como é que estas ondas se propagam em meios homogêneos?

meios periódicos?

Em meios homogéneos as ondas

- podem ter qualquer frequência (comprimento de onda)
- Igual amplitude em todos os pontos
- transportam momento e energia entre qualquer dois pontos do meio sem qualquer impedimento.

Em meios periódicos as ondas

- Só podem ter frequências (comprimentos de onda) dentro de faixas ou bandas
- amplitude é modulada pela periodicidade do meio, mas é a mesma em pontos equivalentes do meio.
- Transportam momento e energia entre qualquer dois pontos do meio sem qualquer impedimento.

Formulação de Mec Quântica: Quadro 3

Eletrão livre

Consideremos o movimento de uma partícula (el) livre no espaço, ou seja,

V(x) = 0 (energia potencial do eletrão)

A equação de Schrodinger (equação de onda que governa a evolução da função de onda ψ (posição e momento são obtidos a partir de ψ)) a **1D** é:

$$-\frac{\hbar^2}{2m} \frac{d^2\Psi}{dx^2} = E\Psi \tag{*1}$$

Esta equação tem como solução: ψ (x) = sin kx ou cos kx ou exp (ikx) ou **exp** (-ikx) (*2).

O el livre é representado por uma onda de propagação *contendo um* número contínuo de níveis de Energia

Então, substituindo (*2) em (*1) obtém-se:

$$-\frac{\hbar^2}{2m} \frac{d^2\Psi}{dx^2} = E\Psi$$

$$E = \frac{\hbar^2 k^2}{2m}$$

The energy of the free electron is a parabolic function of its momentum k.

The "free" electron can take any value of energy in a continuous manner. It is worthwhile noting that electrons with momentum k or -k have the same energy. These electrons have the same momentum but travel in opposite directions

Figure 1.1: Energy vs. k for a free electron.

k pode ser considerado como uma medida do momento (velocidade) do eletrão *livre*.

Modelo de Sommerfeld

Aplica o princípio de exclusão de Pauli

Modelo "electrão-num poço de potencial" ("electron-in-a-box" model): assumimos que o electrão de condução pode-se movimentar livremente no material e ignoramos que quando um átomo perde um electrão fica um ião positivamente carregado.

Tem que se calcular os estados possíveis ψ e as energias E dum electrão numa caixa de dimensão L onde a "caixa" é o tamanho do cristal.

Eletrões confinados num cubo de aresta L

Eletrões num cubo de aresta L

As funções de onda são travelling waves em cada direção com condições de contorno periódicas, do tipo:

$$\psi(\vec{R}) = e^{i(k_x x + k_y y + k_z z)} = e^{i(\vec{k} \cdot \vec{R})}$$

Considerando as condições de contorno periódicas (Born-Von Karman):

 ψ (\vec{r}) deve ser continua

е

$$\psi$$
 (\vec{r}) = ψ (\vec{r} +L)

$$\begin{cases} \psi(x, y, z) = \psi(x + L, y, z) \\ \psi(x, y, z) = \psi(x, y + L, z) \\ \psi(x, y, z) = \psi(x, y, z + L) \end{cases}$$

A função de onda que satisfaz a eq. Schrodinger e as condições de contorno tem que ser do tipo:

$$\Psi(\vec{r}) = \exp i (\vec{k}.\vec{r}), \text{ com } \mathbf{k} = \left(\frac{2n\pi}{L}\right)$$

As energias são então:

$$E_n = E_0(k_n) = \frac{\hbar^2 k^2}{2m} = \frac{\hbar^2 4 \pi^2 n^2}{2mL^2}$$

n=0,±1, ±2,...- número quântico que numera os níveis

Verificação: (1D)

$$e^{ik_{\mathcal{X}}x} = e^{ik_{\mathcal{X}}(x+L)}$$

$$e^{ik_{x}x} = e^{ik_{x}(x)} e^{ik_{x}(L)}$$

$$e^{ik_{\chi}(L)}$$
 =1 se e só se = $e^{i2n\pi}$

$$k_{x}L = 2n_{x}\pi$$

$$k_{x} = \frac{2n_{x}\pi}{L}$$

A 3D:
$$k_x = \frac{2n_x\pi}{L} \qquad k_y = \frac{2n_y\pi}{L} \qquad k_z = \frac{2n_z\pi}{L}$$

$$k = \left(\frac{2n\pi}{L}\right)$$

Os vectores de onda \vec{k} permitidos são definidos pelos pontos cujas coordenadas são múltiplos de $2\pi/L$.

As energias são então:

$$E_n = E_0(k_n) = \frac{\hbar^2 k^2}{2m} = \frac{\hbar^2 4 \pi^2 n^2}{2mL^2}$$

n=0, ±1, ±2,...- número quântico que numera os níveis

Both signs of k are permitted and there are two degenerate states at each energy level (except for k = 0), with opposite signs of k and velocity: dependendo do sentido em que o eletrão se move.

1.3.1-????Como ocupar estes níveis?????

Conceitos: Energia de Fermi e Densidade de estados

Consideremos N eletrões num volume V:

I) Os níveis de energia para os eletrões (no volume V):

$$E_n = E_0(k_n) = \frac{\hbar^2 k^2}{2m}$$
, $\mathbf{k} = \left(\frac{2n\pi}{L}\right)$

II) Preencher esses níveis de forma consistente com o princípio de exclusão de Pauli

ASSIM, considerando os els livres e independentes (sem interacção entre si nem com a rede), o **estado fundamental (T=0) do gás de N els** é obtido preenchendo sucessivamente os níveis de energia começando por \vec{k} =0 e colocando 2 els por nível:

$$E(k_n) = \frac{\hbar^2 k^2}{2m}$$

O último nível ocupado designa-se por **nível de Fermi** (e possui uma energia denominada **energia de Fermi-E**_F).

Todos os níveis com E < E_F estão ocupados e todos os níveis com E > E_F estão vazios.

Assim, no estado fundamental de um sistema de N eletrões (a 3D) os estados ocupados podem ser representados por pontos dentro de uma esfera no espaço dos k- designada de esfera de Fermi.

A energia na superfície designa-se Energia de Fermi:

$$E_F(k_F) = (\hbar^2 k_F^2)/2m$$

sendo k_F o raio dado por:

$$\mathsf{K}_F = \left(\frac{3\pi^2 N}{V}\right)^{1/2}$$

Nº total de estados

PS: Volume esfera de raio r: $4/3\pi r^3$

estados dentro da esfera: ocupados e fora da esfera: vazios

O volume da esfera de Fermi é então: $= 4/3(\pi k^3_F)$

Cada estado k permitido ocupa um volume =
$$\left(\frac{2\pi}{L}\right)^3$$
 = = (2 π)3/ V V: volume no espaço real

O número de estados existentes na esfera de Fermi é dado por: $\left(\frac{volume\ da\ esfera}{elemento\ de\ volume}\right)$ Se multiplicado por 2 (de acordo com principio de exclusão de Pauli) dará o número de eletrões do sistema, ou seja N):

$$N = 2 \left(\frac{volume \ da \ esfera}{elemento \ de \ volume} \right)$$

Principio de exclusão de Pauli

elemento de volume:
$$\left(\frac{2\pi}{L}\right)^3$$
 quadro

$$N = 2(4/3(\pi k^3_F)) \left(\frac{L^3}{(2\pi)^3}\right) = \dots = \frac{L^3 k^3_F}{3(\pi)^2} = \frac{V k^3_F}{3(\pi)^2}$$

$$k_F = \left(\frac{3 \, \pi^3 N}{V}\right)^{1/2}$$

 $k_F = \left(\frac{3 \pi^3 N}{V}\right)^{1/2}$ Só depende da concentração de partículas

Re-escrevendo E_F:

$$E_F(k_F) = \frac{\hbar^2 k_F^2}{2m} = \frac{\hbar^2}{2m} \left(\frac{3 \pi^3 N}{V}\right)^{3/2}$$

Relaciona a E_F com a concentração de partículas

1.3.2- O número de estados por unidade de intervalo de energia e de volume designa-se por:

Densidade de estados (DOS)

$$DOS = \frac{dN}{dE}$$

Assim, para E<E_F temos:

$$N = \frac{V k^{3}_{F}}{3(\pi)^{2}}$$

$$k_{F}^{2} = 2mE_{F}/\hbar^{2}$$

$$k_{F}^{3} = (2mE_{F}/\hbar^{2}) (2mE_{F}/\hbar^{2})^{1/2} = (2mE_{F}/\hbar^{2})^{3/2}$$

$$N = \frac{V k^3_F}{3(\pi)^2} = \frac{V}{3(\pi)^2} (2mE_F/\hbar^2)^{3/2}$$

DOS =
$$\frac{dN}{dE} = \frac{d(\frac{V}{3(\pi)^2}(2mE_F/\hbar^2)^{3/2})}{dE}$$

DOS =
$$\frac{dN}{dE} = \frac{d(\frac{V}{3(\pi)^2} (2mE_F/\hbar^2)^{3/2}}{dE} = \dots = \frac{V}{2(\pi)^2} (2m/\hbar^2)^{3/2} (E_F)^{1/2}$$

$$\frac{dN}{dE} = \frac{V}{2(\pi)^2} (2m/\hbar^2)^{3/2} (E_F)^{1/2}$$

É unicamente função da ENERGIA!

$$\frac{dN}{dE} = \frac{V}{2(\pi)^2} (2m/\hbar^2)^{3/2} (E_F)^{1/2} = \frac{m}{\pi^2 \hbar^3} (2m)^{1/2} (E)^{1/2}$$

Por unidade de volume e para qualquer E

FIGURE 1.9. Densities of states for free electrons in one, two, and three dimensions.

Vários "mistérios" permanecem ainda por esclarecer:

- Por que motivo alguns materiais são metais e outros não?
- Em alguns materiais o efeito Hall parece indicar que os portadores de carga têm carga positiva; como é possível o modelo justificar isto?

?Como é que um modelo tão simples fornece resultados tão próximos dos experimentais?

Neste modelo ainda estão ausentes os iões (núcleos atómicos mais electrões do "core")

Modelo do potencial periódico

A interacção entre os iões da rede cristalina e cada electrão origina uma energia potencial que é periódica no espaço.

Quantos eletrões têm níveis acessíveis?

Modelo de Drude: Todos os eletrões de valência.

Modelo quântico: N dado pela densidade de estados (número de estados por unidade de energia) e respetiva probabilidade de preenchimento (distribuição de Fermi-Dirac).

Curiosidade: Eletrão num poço de potencial

Considerando:

 Fixed or box boundary conditions, in which the wave function vanishes at the boundary:

$$\psi(0) = \psi(L) = 0.$$

Um eletrão de massa *m* confinado a um comprimento L, por barreiras infinitas: poço de potencial quadrado

1D

Electrões restritos a uma região finita do espaço, por ex., poço de potencial quadrado infinito:

Electron

Eletrão não penetra nas regiões de barreira de potencial infinita Probabilidade de encontrar o el é nula

Região II:

V(x) finito e nulo (= 0) ψ (x) obedece às cond. fronteira o eletrão possui:

- i) energia potencial nula para x entre 0 e L
- ii) energia potencial infinita fora desta região.

condições fronteira:

 ψ (x) deve ser contínua. Assim, para ψ (x)V(x) ser finita:

$$\psi$$
 (0) = 0 e ψ (L) = 0

Estas condições são satisfeitas unicamente com ψ (x) = sin kx

Como ψ (0) = ψ (L) = 0: sin k0= sin kL = 0; logo kL=n π (n= 1,2,...), ou seja:

$$k=n\pi/L$$

As energias são então:

$$E_n = \frac{\hbar^2 k^2}{2m} = \frac{\hbar^2 \pi^2 n^2}{2mL^2} \qquad E_n = \frac{n^2 k^2 \pi^2}{2mL^2} \ (>0)$$

n=1,2,...- número quântico que numera os níveis

The wave functions are standing waves with this choice. They carry no current.

Níveis de energia do eletrão quantizados

Isto leva à seguinte conclusão:

$$E_n = \frac{n^2 k^2 \pi^2}{2mL^2}$$

Efeitos quânticos (quantização/restrição nas energias permitidas - **níveis discretos**) devido ao tamanho (restrição no movimento do el) devem ser observados em absorção óptica

FIGURE 1.2. Infinitely deep square well in GaAs of width 10 nm along x, showing the first three energy levels and wave functions.

n = 2

 E_3

 E_2

The energy of the electron is quantized. Possible wavefunctions and the probability distributions for the electron are shown.

Optical absorption in a **quantum well** formed by a layer of GaAs surrounded by AlGaAs.

- (a) Potential well in conduction and valence band, showing two bound states in each
- (b) Transitions between states in the quantum well produce absorption lines between the band gaps of the GaAs well and AlGaAs barrier

$$E_n = \frac{n^2 k^2 \pi^2}{2mL^2}$$

Photoluminescence as a function of wavelength for a sample with four quantum wells of different widths, whose conduction and valence bands are shown on the right.