Exponential Model

James Yang

March 31, 2022

1 Introduction

The exponential model is one where each arm i is assumed to follow an exponential distribution with hazard λ_i . Depending on the design procedure (the test statistic) there are numerous choices of grid spaces and parametrizations of the natural parameter space. This document will focus on the log-rank statistic with two arms (control and a treatment).

2 Model Assumptions

Assume that there are n patients in each of the d=2 arms with independent $X_{ci} \sim E(\lambda_c), X_{ti} \sim E(\lambda_t),$ $i=1,\ldots,n.$ X_c are the samples for the control arm and X_t are for the treatment arm. Then, the distribution of $X \in \mathbb{R}^{n \times 2}$ forms an exponential family with sufficient statistic $T(x) = \left(\sum_{i=1}^{n} x_{ci}, \sum_{i=1}^{n} x_{ti}\right)$ natural parameter $\eta = (-\lambda_c, -\lambda_t)$, and log-partition function $A(\eta) := -n \log(\eta_c \eta_t)$.

3 Grid Space

Since the log-rank statistic only depends on the hazard rate $h = \lambda_t/\lambda_c$, it is convenient to parametrize the natural parameter space as a function of (λ_c, h) . Moreover, we will see in Section 4.4 that we get major computation benefits of parametrizing in the log-space $\theta = (\log(\lambda_c), \log(h))$.

This parametrization defines a mapping $\eta(\theta) = \left(-e^{\theta_1}, -e^{\theta_1+\theta_2}\right)$ from the grid space to the natural parameter space. We conclude this section with the Jacobian and hessian computations needed in the later sections.

$$D_{\theta}\eta(\theta) = \begin{bmatrix} -e^{\theta_1} & 0\\ -e^{\theta_1 + \theta_2} & -e^{\theta_1 + \theta_2} \end{bmatrix}$$
 (1)

$$\nabla_{\theta}^2 \eta_1(\theta) = -e^{\theta_1} e_1 e_1^{\mathsf{T}} \tag{2}$$

$$\nabla_{\theta}^{2} \eta_{2}(\theta) = -e^{\theta_{1} + \theta_{2}} \vec{\mathbf{1}} \vec{\mathbf{1}}^{\top} \tag{3}$$

where e_i is the ith standard basis vector and $\vec{1}$ is a vector of ones.

4 Upper Bound

For any model, we must be able to compute the upper bound estimate. The generalized upper bound estimate requires model-specific quantities, which are given by

Gradient Term :
$$T(x) - \nabla_{\eta} A(\eta)$$

 η transform : $D_{\theta} \eta(\theta) v$

Covariance quadratic form : $u^{\top} \text{Var}(T)_n u$

Covariance quadratic form: $u = \operatorname{Var}(T)_{\eta} u$

$$\text{Max covariance quadratic form}: \sup_{\theta \in R} \left[v^\top (D\eta(\theta))^\top \text{Var} \left(T\right)_{\eta(\theta)} (D\eta(\theta)) v \right]$$

Max covariance and
$$\eta$$
 hessian : $||v||^2 \sum_{k=1}^d \sup_{\theta \in R} \left[||\nabla^2 \eta_k(\theta)||_{op} \sqrt{\operatorname{Var}(T_k)_{\eta(\theta)}} \right]$

for any $v, u \in \mathbb{R}^d$ and a bounded subset $R \subseteq \mathbb{R}^d$.

The next few subsections will derive the formulas for each of the quantities above.

4.1 Gradient Term

As shown in Section 2, we have the form for T(x) and $A(\eta)$.

$$\nabla_{\eta} A(\eta) = -n \left(\eta_c^{-1}, \eta_t^{-1} \right) = n \left(\lambda_c^{-1}, \lambda_t^{-1} \right)$$

This gives us

$$T(x) - \nabla_{\eta} A(\eta) = \left(\sum_{i=1}^{n} x_{ci} - n\lambda_{c}^{-1}, \sum_{i=1}^{n} x_{ti} - n\lambda_{t}^{-1}\right)$$

4.2 η Transform

Using Eq. 1, for any $v \in \mathbb{R}^d$,

$$D_{\theta}\eta(\theta)v = -\begin{bmatrix} e^{\theta_1} & 0\\ e^{\theta_1+\theta_2} & e^{\theta_1+\theta_2} \end{bmatrix}v = -\begin{bmatrix} e^{\theta_1}v_1\\ e^{\theta_1+\theta_2}(v_1+v_2) \end{bmatrix} = -\begin{bmatrix} \lambda_c v_1\\ \lambda_t(v_1+v_2) \end{bmatrix}$$

4.3 Covariance Quadratic Form

The covariance of T is given by

$$\operatorname{Var}\left(T\right)_{\eta} = n \begin{bmatrix} \eta_{c}^{-2} & 0\\ 0 & \eta_{t}^{-2} \end{bmatrix} = n \begin{bmatrix} \lambda_{c}^{-2} & 0\\ 0 & \lambda_{t}^{-2} \end{bmatrix} \tag{4}$$

and so,

$$u^{\top} \operatorname{Var}(T)_n u = n(u_1^2 \lambda_c^{-2} + u_2^2 \lambda_t^{-2})$$

4.4 Max Covariance Quadratic Form

Using Eq. 1, 4,

$$D_{\theta}\eta(\theta)^{\top} \text{Var} (T)_{\eta} D_{\theta}\eta(\theta) = nD_{\theta}\eta(\theta)^{\top} \begin{bmatrix} \eta_{c}^{-2} & 0 \\ 0 & \eta_{t}^{-2} \end{bmatrix} \begin{bmatrix} e^{\theta_{1}} & 0 \\ e^{\theta_{1}+\theta_{2}} & e^{\theta_{1}+\theta_{2}} \end{bmatrix}$$

$$= nD_{\theta}\eta(\theta)^{\top} \begin{bmatrix} e^{-2\theta_{1}} & 0 \\ 0 & e^{-2(\theta_{1}+\theta_{2})} \end{bmatrix} \begin{bmatrix} e^{\theta_{1}} & 0 \\ e^{\theta_{1}+\theta_{2}} & e^{\theta_{1}+\theta_{2}} \end{bmatrix}$$

$$= n \begin{bmatrix} e^{\theta_{1}} & e^{\theta_{1}+\theta_{2}} \\ 0 & e^{\theta_{1}+\theta_{2}} \end{bmatrix} \begin{bmatrix} e^{-\theta_{1}} & 0 \\ e^{-(\theta_{1}+\theta_{2})} & e^{-(\theta_{1}+\theta_{2})} \end{bmatrix}$$

$$= n \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$$

Note the incredible simplification due to our choice of the η transformation. This gives us

$$\sup_{\theta \in R} \left[v^{\top} D_{\theta} \eta(\theta)^{\top} \text{Var} \left(T \right)_{\eta} D_{\theta} \eta(\theta) v \right] = n v^{\top} \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} v$$

4.5 Max Covariance and η Hessian

From Eq. 2, 3,

$$||\nabla^2 \eta_1(\theta)||_{op} = e^{\theta_1} ||e_1 e_1^\top||_{op} = e^{\theta_1}$$
$$||\nabla^2 \eta_2(\theta)||_{op} = e^{\theta_1 + \theta_2} ||\vec{1}\vec{1}^\top||_{op} = e^{\theta_1 + \theta_2} d$$

This gives us

$$||v||^2 \sum_{k=1}^d \sup_{\theta \in R} \left[||\nabla^2 \eta_k(\theta)||_{op} \sqrt{\text{Var}(T_k)_{\eta(\theta)}} \right] = ||v||^2 \sqrt{n} (1+d)$$