Machine Programming

Lecture 4 – Functional Specifications for Synthesis

Ziyang Li

Dimensions in Program Synthesis

The Course So Far

Behavioral Specification

- What should the program do?
- I. Examples
- 2. Types
- 3. Functional Specifications
- 4. Partial Programs
- 5. Natural Language

Synthesis Strategy

- How do we find such a program?

Enumeration

- Enumerating all programs with a grammar
- Bottom-up vs top-down

Structural Specification

- What is the space of the programs?

Context-Free / Regular Tree Grammar Expr e ::= c | e + e | e * e

Today


```
F([3, 2, 1]) = [1, 2, 3]

F([2, 1]) = [1, 2]

F([]) = []
```

```
F([3, 2, 1]) = [1, 2, 3]
F([2, 1]) = [1, 2]
F([]) = []
What is F?
```

```
reverse([3, 2, 1]) = [1, 2, 3]

reverse([2, 1]) = [1, 2]

reverse([]) = []

What is F?
```

```
sort([3, 2, 1]) = [1, 2, 3]
sort([2, 1]) = [1, 2]
sort([]) = []
What is F?
```

```
reverse([3, 2, 1]) = [1, 2, 3]
   reverse([2, 1]) = [1, 2]
       reverse([]) = []
   sort([3, 2, 1]) = [1, 2, 3]
      sort([2, 1]) = [1, 2]
          sort([]) = []
```

What is F?

Is Type Enough?

```
reverse : List[int] -> List[int]
reverse([3, 2, 1]) = [1, 2, 3]
   reverse([2, 1]) = [1, 2]
       reverse([]) = []
    sort : List[int] -> List[int]
   sort([3, 2, 1]) = [1, 2, 3]
      sort([2, 1]) = [1, 2]
          sort([]) = []
```

```
\forall x, y \in \text{List[Int]}, reverse(x) = y \Rightarrow
len(x) = len(y) \land \forall i \in \{1 \dots len(x)\}, x_i = y_{len(y)+1-i}
```

```
\forall x, y \in \text{List[Int]}, sort(x) = y \Rightarrow
len(x) = len(y) \land \forall i \in \{1 \dots len(x)\}, y_{i+1} > y_i
```

```
reverse([3, 2, 1]) = [1, 2, 3]
reverse([2, 1]) = [1, 2]
reverse([]) = []
```

```
sort([3, 2, 1]) = [1, 2, 3]
sort([2, 1]) = [1, 2]
sort([]) = []
```

```
\forall x, y \in \text{List[Int]}, reverse(x) = y \Rightarrow
len(x) = len(y) \land \forall i \in \{1 \dots len(x)\}, x_i = y_{len(y)+1-i}
```

- 1. Input and output has the same length;
- 2. The *i*-th element in x is the same as (n + 1 i)-th element in y

```
\forall x, y \in \text{List[Int]}, sort(x) = y \Rightarrow
len(x) = len(y) \land \forall i \in \{1 \dots len(x)\}, y_{i+1} > y_i
```

```
reverse([3, 2, 1]) = [1, 2, 3]
reverse([2, 1]) = [1, 2]
reverse([]) = []
```

```
sort([3, 2, 1]) = [1, 2, 3]
sort([2, 1]) = [1, 2]
sort([]) = []
```

```
\forall x, y \in \text{List[Int]}, reverse(x) = y \Rightarrow
len(x) = len(y) \land \forall i \in \{1 \dots len(x)\}, x_i = y_{len(y)+1-i}
```

reverse([3, 2, 1]) = [1, 2, 3] reverse([2, 1]) = [1, 2] reverse([]) = []

- 1. Input and output has the same length;
- 2. The i-th element in x is the same as (n + 1 i)-th element in y

```
\forall x, y \in \text{List[Int]}, sort(x) = y \Rightarrow
len(x) = len(y) \land \forall i \in \{1 \dots len(x)\}, y_{i+1} > y_i
```

sort([3, 2, 1]) = [1, 2, 3] sort([2, 1]) = [1, 2]sort([]) = []

- 1. Input and output has the same length;
- 2. In result y, the i-th element is always less than or equal to the (i + 1)-th element

Pre-condition:

 $\forall x, y \in \text{List[Int]}, sort(x) = y \Rightarrow$ $len(x) = len(y) \land \forall i \in \{1 \dots len(x)\}, y_{i+1} > y_i$

Pre-condition:

 $x \in \text{List}[\text{Int}]$

x is an integer list

 $\forall x, y \in \text{List[Int]}, sort(x) = y \Rightarrow$ $len(x) = len(y) \land \forall i \in \{1 \dots len(x)\}, y_{i+1} > y_i$

Pre-condition:

 $x \in \text{List[Int]}$

x is an integer list

$$\forall x, y \in \text{List[Int]}, sort(x) = y \Rightarrow$$

 $len(x) = len(y) \land \forall i \in \{1 ... len(x)\}, y_{i+1} > y_i$

Post-condition:

 $y \in \text{List}[\text{Int}]$

len(x) = len(y)

 $y_{i+1} \ge y_i$

y is an integer list

y and x has the same length

Latter element in y always

bigger than or equal to

previous element

Form: Pre- and Post-Conditions

Premise: All valid inputs to a function MUST satisfy

Pre-condition:

 $x \in \text{List}[\text{Int}]$

x is an integer list

Promise: all outputs WILL satisfy if the premise holds

$\forall x, y \in \text{List[Int]}, sort(x) = y \Rightarrow$ $len(x) = len(y) \land \forall i \in \{1 \dots len(x)\}, y_{i+1} > y_i$

Post-condition:

 $y \in \text{List[Int]}$

len(x) = len(y)

 $y_{i+1} \ge y_i$

y is an integer list

y and x has the same length

Latter element in y always

bigger than or equal to

previous element

Pre- and Post-Conditions in the Wild

Russol (Rust) #[requires(self.len() > 0)] method Find(a: array<int>, key: int) returns (index: int) fn peek(&self) -> &T { ensures 0 <= index ==> index < a.Length && a[index] == key ensures index < 0 ==> forall k :: 0 <= k < a.Length ==> a[k] != keytodo!() index := 0; int main() { while index < a.Length int i; int j= VERIFIER nondet int(); {{ True }} int n= VERIFIER nondet int(); if a[index] == key { return; } assume abort if not(n < 100000); while $X \neq 0$ do index := index + 1;int a[n]: X := X - 1end assume abort if not(j>0 && j < 10000); index := -1: $\{\{X = 0\}\}$ for(i=1;i<n;i++) { int abs_val(int x) int k= VERIFIER nondet int(); Software Foundations / _Pre_ true assume abort if not(k>0 && k < 10000); Dafnv Hoare Logic (Coq) Post (retval >= 0) a[i]=i+j+k;if (x < 0) { return -x; for(i=1;i<n;i++) __VERIFIER_assert(a[i]>=(i+2)); } else { return x: return 0; SV-Comp (C) Checked-C

Pre- and Post-Condition Practice

```
def insert(list: List[int], elem: int) -> List[int]:

def sqrt(x: float) -> float:

def matrix_mul(a: Tensor, b: Tensor) -> Tensor:
```

Pre-condition

$$x \in \text{List}[\text{Int}]$$
 $n = len(x)$

$$y = sort(x)$$

Is this post-condition complete?

$$y \in \text{List[Int]}$$

$$y \in \text{List}[\text{Int}] \quad \forall i. 0 \le i < n-1 \Rightarrow y[i] \le y[i+1]$$

Input: [1, 2, 3, 4, 5]

Pre-condition

$$x \in \text{List}[\text{Int}]$$
 $n = len(x)$

$$y = sort(x)$$

Is this post-condition complete? X

Post-condition

$$y \in \text{List[Int]}$$

$$y \in \text{List}[\text{Int}] \quad \forall i. 0 \le i < n-1 \Rightarrow y[i] \le y[i+1]$$

Output: [1, 2, 3, 4, 5, 6]

Pre-condition

$$x \in \text{List}[\text{Int}]$$
 $n = len(x)$

$$y = sort(x)$$

Attempt 2:

Is this post-condition complete?

$$y \in \text{List[Int]}$$
 $\forall i. 0 \le i < n-1 \Rightarrow y[i] \le y[i+1]$
 $len(y) = n$

Input: [1, 2, 3, 4, 5]

Pre-condition

$$x \in \text{List}[\text{Int}]$$
 $n = len(x)$

$$y = sort(x)$$

Attempt 2:

Is this post-condition complete? X

$$y \in \text{List[Int]}$$
 $\forall i. 0 \le i < n-1 \Rightarrow y[i] \le y[i+1]$
 $len(y) = n$

Pre-condition

$$x \in \text{List}[\text{Int}]$$
 $n = len(x)$

$$y = sort(x)$$

Attempt 3:

Is this post-condition complete?

$$y \in \text{List[Int]} \quad \forall i. 0 \le i < n-1 \Rightarrow y[i] \le y[i+1]$$

$$len(y) = n$$

$$\forall i. \, 0 \le i < n-1 \Rightarrow \exists j. \, x[i] = y[j]$$

Pre-condition

$$x \in \text{List}[\text{Int}]$$
 $n = len(x)$

$$y = sort(x)$$

Attempt 3:

Is this post-condition complete?

$$y \in \text{List}[\text{Int}] \quad \forall i. 0$$

$$\forall i. \, 0 \le i < n - 1 \Rightarrow y[i] \le y[i + 1]$$

$$len(y) = n$$

$$\forall i. 0 \le i < n-1 \Rightarrow \exists j. x[i] = y[j]$$

$$\forall i. \, 0 \le i < n - 1 \Rightarrow \exists j. \, y[i] = x[j]$$

Input: [1, 2, 3, 4, 2]

Pre-condition

$$x \in \text{List}[\text{Int}]$$
 $n = len(x)$

$$y = sort(x)$$

Attempt 3:

Is this post-condition complete? X

Post-condition

Output: [1, 2, 3, 4, 4]

$$y \in \text{List[Int]}$$
 $\forall i. 0 \le i < n-1 \Rightarrow y[i] \le y[i+1]$
 $len(y) = n$

$$\forall i. \, 0 \le i < n-1 \Rightarrow \exists j. \, x[i] = y[j]$$

$$\forall i. \, 0 \le i < n-1 \Rightarrow \exists j. \, y[i] = x[j]$$

y = sort(x)

Pre-condition $x \in \text{List}[\text{Int}]$ n = len(x)

Attempt 4:

Is this post-condition complete? <

Post-condition

 $y \in \text{List}[\text{Int}]$ $\forall i. 0 \le i < n-1 \Rightarrow y[i] \le y[i+1]$ len(y) = n $\exists p: \mathbb{Z}_n \to \mathbb{Z}_n, p \text{ is a permutation,}$ $\forall i. 0 \le i < n \Rightarrow y[i] = x[p(i)]$

Difficult to specify complete functional specification!

Leveraging Rust Types for Program Synthesis

JONÁŠ FIALA, ETH Zurich, Switzerland
SHACHAR ITZHAKY, Technion, Israel
PETER MÜLLER, ETH Zurich, Switzerland
NADIA POLIKARPOVA, University of California, San Diego, USA
ILYA SERGEY, National University of Singapore, Singapore

```
Rust type +
functional spec

[#requires ...]
[#ensures ...]
fn target(x: T<sub>1</sub>...) -> T

[#pure]
fn f(x: T<sub>1</sub>...) -> T
...
```

Contributions. In summary, this paper makes the following contributions:

- Synthetic Ownership Logic (SOL), a variant of Separation Logic that is targeted to program synthesis of well-typed Rust programs from type signatures and functional specifications.
- RusSOL, the first synthesizer for Rust code from functional correctness specifications. We built RusSOL by integrating SOL into SuSLik's general-purpose proof search framework.
- An extensive evaluation of RusSOL with regard to utility and performance. We show that it is capable of synthesizing a large number of non-trivial heap-manipulating Rust programs, in a matter of seconds, and that required annotations are on average 27% shorter than the code.

Specification itself has a language

- First-order logic operators:
 - \forall , \exists , =, \neq , \land , \lor , \neg , \Rightarrow , ...
- Base types, commonly used types, and their predicates
 - Int, Bool, Set[T], List[T], ...
 - +, -, \times , \div , ::, \cup , \cap , \in , [.], &&, ||,!, len, ...
- Logic systems to specify program behaviors
 - Memory (Separation Logic): {.}, →, *, ...
 - Temporal Behavior (Temporal Logic): Globally, Next, Finally, ...
 - Mathematical Objects: Permutation, ...

```
\{x \mapsto a * y \mapsto b\} void swap(loc x, loc y) \{x \mapsto b * y \mapsto a\}
```

Specification itself has a language

Syntax

+ Semantics

- First-order logic operators:
 - ∀,∃,=,≠, ∧, ∨, ¬,⇒,...
- Base types, commonly used types, and their predicates
 - Int, Bool, Set[T], List[T], ...
 - +, -, \times , \div , ::, \cup , \cap , \in , [.], &&, ||,!, len, ...
- Logic systems to specify program behaviors
 - Memory (Separation Logic): $\{.\}, \mapsto, *, ...$
 - Temporal Behavior (Temporal Logic): Globally, Next, Finally, ...
 - Mathematical Objects: Permutation, ...

Specification itself has a language

Syntax

- \forall , \exists , =, \neq , \land , \lor , \neg , \Rightarrow , ...

First-order logic operators:

- Base types, commonly used types, and their predicates
 - Int, Bool, Set[T], List[T], ...
 - +, -, \times , \div , ::, \cup , \cap , \in , [.], &&, ||,!, len, ...
- Logic systems to specify program behaviors
 - Memory (Separation Logic): $\{.\}, \mapsto, *, \dots$
 - Temporal Behavior (Temporal Logic): Globally, Next, Finally, ...
 - Mathematical Objects: Permutation, ...

Semantics

???

Specification itself has a language

Syntax

+

Semantics

- First-order logic operators:
 - ∀,∃,=,≠, ∧, ∨, ¬,⇒,...
- Base types, commonly used types, and their predicates
 - Int, Bool, Set[T], List[T], ...
 - +, -, \times , \div , ::, \cup , \cap , \in , [.], &&, ||,!, len, ...
- Logic systems to specify program behaviors
 - Memory (Separation Logic): {.}, ↦, *, ...
 - Temporal Behavior (Temporal Logic): Globally, Next, Finally, ...
 - Mathematical Objects: Permutation, ...

$$\{P\}\ c\ \{Q\}$$

Proof-Theoretic Semantics

$$[[c]] \vDash P \rightarrow Q$$

Operational Alignment Semantics

Verification of Program with a Specification

{Pre-condition} Program {Post-condition}

$$\{P\} c \{Q\}$$

Verification of Program with a Specification

{Pre-condition} Program {Post-condition}

$$\{P\} c \{Q\}$$

Verification of Program with a Specification

{Pre-condition} Program {Post-condition}

$$\{P\} c \{Q\}$$

$$\forall x, P(x) \Rightarrow Q(c(x))$$

$$\forall x, P(x) \Rightarrow Q(c(x))$$

```
x: Int
int abs(int x) {
  int y;
  if (x >= 0) // B1
    y = x; // B2
  else
    y = -x; // B3
  return y; // B4
(y = -x \lor y = x) \land y \ge 0
```

$$\forall x, P(x) \Rightarrow Q(c(x))$$

```
int abs(int x) {
  \{x: Int\}
  int y;
  if (x >= 0) // B1
                                                  Goal: (y = -x \lor y = x) \land y \ge 0
    y = x; // B2
  else
    y = -x; // B3
  return y; // B4
```

$$\forall x, P(x) \Rightarrow Q(c(x))$$

```
int abs(int x) {
  \{x: Int\}
  int y;
  \{x: Int, y: Int\}
  if (x >= 0) // B1
                                                    Goal: (y = -x \lor y = x) \land y \ge 0
    y = x; // B2
  else
    y = -x; // B3
  return y; // B4
```

$$\forall x, P(x) \Rightarrow Q(c(x))$$

```
int abs(int x) {
  \{x: Int\}
  int y;
  \{x: Int, y: Int\}
  if (x >= 0) // B1
     \{x: \text{Int, } y: \text{Int, } x \ge 0\}
                                                           Goal: (y = -x \lor y = x) \land y \ge 0
     y = x; // B2
  else
     y = -x; // B3
  return y; // B4
```

$$\forall x, P(x) \Rightarrow Q(c(x))$$

```
int abs(int x) {
  \{x: Int\}
  int y;
  \{x: Int, y: Int\}
  if (x >= 0) // B1
     \{x: \text{Int, } y: \text{Int, } x \ge 0\}
                                                            Goal: (y = -x \lor y = x) \land y \ge 0
     y = x; // B2
     {x: Int, y: Int, x \ge 0, x = y}
  else
     y = -x; // B3
   return y; // B4
```

$$\forall x, P(x) \Rightarrow Q(c(x))$$

```
int abs(int x) {
  \{x: Int\}
  int y;
  \{x: Int, y: Int\}
  if (x >= 0) // B1
     \{x: \text{Int, } y: \text{Int, } x \ge 0\}
     y = x; // B2
     {x: Int, y: Int, x \ge 0, x = y}
  else
     {x: Int, y: Int, x < 0}
     y = -x; // B3
  return y; // B4
```

Goal: $(y = -x \lor y = x) \land y \ge 0$

$$\forall x, P(x) \Rightarrow Q(c(x))$$

```
int abs(int x) {
  \{x: Int\}
  int y;
  \{x: Int, y: Int\}
  if (x >= 0) // B1
     \{x: \text{Int, } y: \text{Int, } x \ge 0\}
     y = x; // B2
     {x: Int, y: Int, x \ge 0, x = y}
  else
     {x: Int, y: Int, x < 0}
     y = -x; // B3
     {x: Int, y: Int, x < 0, y = -x}
  return y; // B4
```

Goal: $(y = -x \lor y = x) \land y \ge 0$

$$\forall x, P(x) \Rightarrow Q(c(x))$$

```
int abs(int x) {
   \{x: Int\}
   int y;
  \{x: Int, y: Int\}
   if (x >= 0) // B1
     \{x: \text{Int, } y: \text{Int, } x \ge 0\}
                                                                  Goal: (y = -x \lor y = x) \land y \ge 0
     y = x; // B2
     {x: Int, y: Int, x \ge 0, x = y}
  else
     {x: Int, y: Int, x < 0}
     y = -x; // B3
     {x: Int, y: Int, x < 0, y = -x}
   \{x: \text{Int, } y: \text{Int, } (x < 0 \land y = -x) \lor (x \ge 0 \land x = y)\}
   return y; // B4
```

$$\forall x, P(x) \Rightarrow Q(c(x))$$

```
int abs(int x) {
  int y;
  if (x \ge 0) // B1
     y = x; // B2
                                                            Goal: (y = -x \lor y = x) \land y \ge 0
     y = -x; // B3
  \{x: \text{Int, } y: \text{Int, } (x < 0 \land y = -x) \lor (x \ge 0 \land x = y)\}
  return y; // B4
```

$$\forall x, P(x) \Rightarrow Q(c(x))$$

```
int abs(int x) {
  int y;
                                         \{x: \text{Int, } y: \text{Int, } (x < 0 \land y = -x) \lor (x \ge 0 \land x = y)\}
  if (x \ge 0) // B1
     y = x; // B2
                                                   Goal: (y = -x \lor y = x) \land y \ge 0
     y = -x; // B3
  return y; // B4
```

$$\forall x, P(x) \Rightarrow Q(c(x))$$

```
int abs(int x) {
  int y;
                                           \{x: \text{Int, } y: \text{Int, } (x < 0 \land y = -x) \lor (x \ge 0 \land x = y)\}
  if (x \ge 0) // B1
     y = x; // B2
                                                     Goal: (y = -x \lor y = x) \land y \ge 0
     y = -x; // B3
```

return y; // B4

$$\forall x, P(x) \Rightarrow Q(c(x))$$

return y; // B4

```
int abs(int x) {
  int y;
                                          \{x: \text{Int, } y: \text{Int, } (x < 0 \land y = -x) \lor (x \ge 0 \land x = y)\}
  if (x \ge 0) // B1
     y = x; // B2
                                                    Goal: (y = -x \lor y = x) \land y \ge 0
     y = -x; // B3
                                                            Z3 Theorem Prover!
```

Can you write a python program with Z3 to check the satisfiability of the following

```
\{x: \text{Int,y:Int, } (x<0 \land y=-x) \lor (x \ge 0 \land x=y)\} => \text{Goal: } (y=-x \lor y=x) \land y \ge 0
```

Thought for 16s

Here's a tiny Z3Py script that checks **validity** of your implication by asking Z3 to find a counterexample to $pre \ \ \ \neg goal$. If that is **unsat**, then the implication holds for all integers x, y.

```
Copy code
python
# pip install z3-solver (if not already installed)
from z3 import *
# Vars
x, y = Ints('x y')
# Specification
pre = Or(And(x < 0, y == -x),
          And(x \ge 0, x == y)
goal = And(Or(y == -x, y == x),
           y >= 0
# Check validity by searching for a counterexample to pre → goal
s = Solver()
s.add(pre, Not(goal))
res = s.check()
```

$$\forall x, P(x) \Rightarrow Q(c(x))$$

```
int abs(int x) {
  int y;
                                          \{x: \text{Int, } y: \text{Int, } (x < 0 \land y = -x) \lor (x \ge 0 \land x = y)\}
  if (x \ge 0) // B1
     y = x; // B2
                                                    Goal: (y = -x \lor y = x) \land y \ge 0
     y = -x; // B3
                                                             Z3 Theorem Prover!
```

return y; // B4

Software Foundations: Hoare Logic (Coq)

```
{{ True }} →>>
\{\{m = m\}\}
  X := m
                              \{\{X = m\}\} \rightarrow \infty
                              \{\{(x = m \land p = p)\}\};
  z := p;
                              \{\{X = m \land Z = p\}\} \rightarrow \infty
                              \{\{ Z - X = p - m \}\}
  while X \neq 0 do
                              \{\{ Z - X = p - m \land X \neq 0 \}\} \rightarrow \infty
                              \{(Z-1)-(X-1)=p-m\}
     z := z - 1
                              \{(Z - (X - 1) = p - m)\};
     X := X - 1
                              \{\{ z - x = p - m \}\}
  end
\{\{ Z - X = p - m \land \neg (X \neq 0) \}\} \rightarrow \infty
\{\{ z = p - m \}\}
```

```
(A) {l.len > 0 | self: List(l)}
   match self { // Destr.List
     List::Nil => {
     (B) {l.len > 0 \land l = {\delta: Nil, len: 0} | emp}
      (D) {false | emp}
         unreachable!() // Unreachable
      (c) {result: T}}
     List::Cons { elem, next } => {
     \rightarrow(E) {l = ... \mid elem: T * next: Box}
        drop!(next); // Drop
        \{l = \dots \mid \text{elem: T}\}
         let result = elem; // Rename
      (F) {l = \dots \mid result: T}
      (c) {result: T}}
   {result: T}
```

Leveraging Rust Types for Program Synthesis (Fiala et. al., 2023)

Z3 Theorem Prover!

Satisfiability Modulo Theories (SMT) Solver

Others: CVC3, CVC4, CVC5, Beaver, UCLID, veriT, ...

 $\{P\}$ c $\{Q\}$

Z3 Theorem Prover!

Satisfiability Modulo Theories (SMT) Solver

Others: CVC3, CVC4, CVC5, Beaver, UCLID, veriT, ...

Specification language

Syntax

- First-order logic operators:
 - ∀,∃,=,≠, ∧, ∨, ¬,⇒,...
- Base types, commonly used types, and their predicates
 - Int, Bool, Set[T], List[T], ...
 - +, -, \times , \div , ::, \cup , \cap , \in , [.], &&, ||,!, len, ...
- Logic systems to specify program behaviors
 - Memory (Separation Logic): {.}, →, *, ...
 - Temporal Behavior (Temporal Logic): Globally, Next, Finally, ...
 - Mathematical Objects: Permutation, ...

Semantics

$$\{P\}\ c\ \{Q\}$$

Proof-Theoretic Semantics

Structural Specification

Target Language Syntax & Semantics Types

Structural Specification

Target Language
Syntax & Semantics
Types

Bottom-up Enumerator Top-Down Enumerator Deductive Synthesis Large Language Model

 ${P} c {Q}$

$$\{P\}\ c\ \{Q\}$$
 \longrightarrow Z3 Theorem Prover!

$$\forall x, P(x) \Rightarrow Q(c(x)) \rightarrow \begin{tabular}{c} Z3 \label{eq:definition} \hline Z3 \l$$

```
x, y = Ints('x y')
# Original pre and goal
pre = Or(And(x < 0, y == -x),
          And(x \ge 0, x == y))
goal = And(Or(y == -x, y == x),
           y >= 0
# 1) Try to find a counterexample to the original implication
s = Solver()
s.add(pre, Not(goal))
r = s.check()
print("Counterexample to original (pre → goal)?", r)
if r == sat:
    m = s.model()
    print("Counterexample model:", "x =", m[x], ", y =", m[y])
else:
    print("No counterexample; implication is VALID.")
```


- There is NO FREE LUNCH!
 - Where do you get the functional specifications?
 - Where do you get the language for functional specifications? Is it expressive enough to model program behaviors?
 - Is your functional specification complete?
 - How do you deal with Loops?
 - Loops need "Loop Invariants" for an automated theorem prover to function
 - How do you get the loop invariants?
 - Z3: How long does it take for Z3 to verify your {P} c {Q} proposition?
 - Often time, Z3 cannot deal with extremely large programs, and will timeout
 - Who is doing the simplification?
 - Verification <> Synthesis interplay overhead and deficiency?

Refinement Type as Functional Specification:

```
def abs(x: int) -> int:
    ...

def abs(x: int) -> {v: int | v >= 0}:
    ...
```

• "Multi-Modal" Program Synthesis

Structural Specification

Target Language
Syntax & Semantics
Partial Program; Templates

•••

Behavioral Specification

Examples
Counter Examples
Functional Specifications
Refinement Types
Natural Language

Synthesizer

Bottom-up Enumerator Top-Down Enumerator Deductive Synthesis Large Language Model

••

• "Multi-Modal" Program Synthesis

Structural Specification

Target Language
Syntax & Semantics
Partial Program; Templates

• • •

Behavioral Specification

Examples

Counter Examples
Functional Specifications
Refinement Types

Natural Language

Synthesizer

Bottom-up Enumerator Top-Down Enumerator Deductive Synthesis Large Language Model

• •

Week 2

Assignment 1

- https://github.com/machine-programming/assignment-1
- Autograder Up on GradeScope (Finally!)
- There is OOM issue on GradeScope that you need to manage!
- Due Date Sep 16 (Extended for 5 days from Sep 11)

Logistics

- There should be an increase in class capacity (25-30)
- Everyone who has been following should be able to get in
- Send me an email if you are newly enrolled