# AI and Machine Learning, Homework3

Author: Ying Yiwen Number: 12210159

## Contents

|          | Code Implementation |                             |   |
|----------|---------------------|-----------------------------|---|
|          | 1.1                 | Read in Data and Split Data | 2 |
|          | 1.2                 | SGD Update Realization      | 3 |
|          | 1.3                 | BGD Update Realization      | 3 |
|          |                     | Performance Evaluation      |   |
| <b>2</b> | Model Result        |                             | 5 |
|          | 2.1                 | SGD Update Method           | 5 |
|          | 2.2                 | BGD Update Method           |   |

## 1 Code Implementation

#### 1.1 Read in Data and Split Data

First, we need to read in the csy-format wine data. Then randomly remove a class.

```
def read dataset():
       # read dataset
2
       column_names = [
3
        'Class Label', 'Alcohol', 'Malic Acid', 'Ash', 'Alcalinity of Ash',
4
        'Magnesium', 'Total Phenols', 'Flavanoids', 'Nonflavanoid Phenols',
5
        'Proanthocyanins', 'Color Intensity', 'Hue', 'OD280/OD315 of Diluted Wines',
6
        'Proline'
7
8
       data = pd.read_csv('wine.data', header=None, names=column_names)
9
       # randomly remove a class
10
       unique_classes = data['Class Label'].unique()
11
       class to remove = np.random.choice(unique classes)
12
       data_filtered = data[data['Class Label'] != class_to_remove]
13
14
        print(data_filtered)
       return data_filtered
15
```

As the class label may add difficulty to perception, we change the label to be 1 and -1.

```
def convert labels(y):
       \# convert labels to -1 and 1
2
3
       converted labels = []
       y = np.array(y)
4
       for label in y:
5
        if label == y[0]:
6
       converted labels.append(-1)
7
8
       converted_labels.append(1)
9
       return np. array (converted labels)
10
```

The data format is hard to use for subsequent operations, so we need to split x and y (features and labels).

```
def split_data(data_filtered):
    # split data into features and labels
    data_filtered = data_filtered.sample(frac=1)
# separate features and labels
    x = data_filtered.iloc[:, 1:]
    y = data_filtered.iloc[:, 0]
    y = convert_labels(y)
    return x, y
```

Then split the data into train set and test set by 0.7:0.3.

```
def split_test_and_train(x, y):
    # split data into train and test
    x_train = x.iloc[:int(len(x)*0.7), :]
    x_test = x.iloc[int(len(x)*0.7):, :]
    y_train = y[:int(len(y)*0.7)]
    y_test = y[int(len(y)*0.7):]
    return x_train, x_test, y_train, y_test
```

#### 1.2 SGD Update Realization

SGD is stochastic gradient descent. It use only one input sample to update model weights at the same time.

```
def sgd_update(self, X, y, X_test, y_test):
2
        # stochastic gradient descent
        break out = False
3
        epoch_no_improve = 0
4
        for n in range (self.n iter):
5
            for i, x in enumerate(X):
6
                 # predict the label of x
7
                 y \text{ pred} = \text{self.} \text{ predict}(x)
8
                 \# print(f"Predicted label:{y\_pred}, Actual label:{y[i]}")
9
                 # compute loss
10
11
                 loss = self. loss(y[i], y_pred)
                 self.loss.append(loss)
12
                 # compute test loss
13
                 test loss = self. loss batch(y test, self. predict(X test))
14
                 self.test_loss.append(test_loss)
15
                 # check if break out
16
                 if self.tol is not None:
17
                     if loss < self.best_loss - self.tol:</pre>
18
                          # update best loss
19
                          self.best loss = loss
20
                          epoch_no_improve = 0
21
22
                      elif np.abs(loss - self.best_loss) < self.tol:
                          # no improvement
23
                          epoch no improve += 1
24
                     if epoch no improve >= self.patience:
25
                          print (f"Early stopping at epoch {n}")
26
                          break out = True
27
28
                          break
                     else:
29
                          epoch_no_improve = 0
30
                 # compute gradient and update weights
31
                 grad = self.\_gradient(x, y[i], y\_pred)
32
                 self.W = self.W - self.lr * grad
33
            \# print(f"Epoch:\{n\}, Train Loss:\{loss\}, Test Loss:\{test\_loss\}")
34
            # check if break out
35
            if break out:
36
            break out = False
37
                 break
38
```

#### 1.3 BGD Update Realization

BGD means batch gradient descent, so it use the whole train set as input at a time to update model weights.

```
def batch update(self, X, y, X test, y test):
1
       # batch gradient descent
2
       break out = False
3
       epoch_no_improve = 0
4
       for n in range (self.n_iter):
5
6
           \# predict the label of x
           y_pred = self._predict(X)
7
           # compute loss
8
```

```
loss = self.\_loss\_batch(y, y\_pred)
9
            self.loss.append(loss)
10
11
            # compute test loss
            test_loss = self._loss_batch(y_test, self._predict(X_test))
12
13
            self.test loss.append(test loss)
            # check if break out
14
            if self.tol is not None:
15
                 if loss < self.best loss - self.tol:</pre>
16
                     # update best loss
17
                     self.best\_loss = loss
18
                     epoch_no_improve = 0
19
                 elif np.abs(loss - self.best loss) < self.tol:
20
                     # no improvement
21
                     epoch no improve += 1
22
                 if epoch_no_improve >= self.patience:
23
                      print(f"Early stopping at epoch {n}")
24
                     break out = True
25
                     break
26
                 else:
27
                     epoch no improve = 0
28
            # compute gradient and update weights
29
            grad = self.\_gradient\_batch(X, y, y\_pred)
30
            self.W = self.W - self.lr * grad
31
        \# \ print(f"Epoch:\{n\}, \ Train \ Loss:\{loss\}, \ Test \ Loss:\{test\_loss\}")
32
        # check if break out
33
34
        if break out:
        break\_out = False
35
            break
36
```

#### 1.4 Performance Evaluation

After fitting, the loss may can't totally express the performance of the fitted weights. Instead, we can use accuracy, precision, recall, F1 score to evaluate the model.

```
def evaluate (self, X, y):
2
         \# predict the label of X
         y_pred = self._predict(self._preprocess_data(X))
3
         y_pred = np. where (y_pred > 0, 1, -1)
4
         # evaluate model accuracy, precision, recall, f1 score
5
        TP = sum((y_pred[i] = 1) \text{ and } (y[i] = 1) \text{ for } i \text{ in } range(len(y)))
6
        FP = sum((y \text{ pred}[i] = 1) \text{ and } (y[i] = -1) \text{ for } i \text{ in } range(len(y)))
7
        TN = sum((y_pred[i] = -1) \text{ and } (y[i] = -1) \text{ for } i \text{ in } range(len(y)))
8
        FN = sum((y_pred[i] = -1) \text{ and } (y[i] = 1) \text{ for } i \text{ in } range(len(y)))
9
         accuracy = (TP + TN) / (TP + TN + FP + FN)
10
         precision = TP / (TP + FP)
11
         recall = TP / (TP + FN)
12
         f1 = 2 * precision * recall / (precision + recall)
13
         print(f"Accuracy:{accuracy}, Precision:{precision}, Recall:{recall}, F1:{f1}")
14
```

### 2 Model Result

#### 2.1 SGD Update Method

Using the stochastic gradient descent, we can fit the weights to classify the label well.





(a) Running Result of SGD

(b) SGD Loss Function

Fig. 1: The Result of SGD Fitting Method

In this test, the compiler randomly chooses label 2 and 3, so there's 119 sample data.

Superparameters: n of iteration: 10000, loss rate: 1.5e-05, tolerance: 1e-09, patience: 100, initial W: random(14) \* 0.5 It doesn't early stop in 10000 epoch.

The fitted result is:

 $\begin{aligned} & \text{Weights:} [\ 0.12563116 \ -0.37798228 \ 0.79441656 \ 0.07969217 \ -0.04810611 \ -0.04637937 \ -0.15193388 \ -0.69934258 \ 0.01612361 \ -0.22493533 \ 1.24322253 \ 0.01744011 \ -0.69453407 \ 0.00938956] \end{aligned}$ 

Accuracy: 0.9663865546218487, Precision: 0.94, Recall: 0.979166666666666, F1: 0.9591836734693877

#### 2.2 BGD Update Method

Using the batch gradient descent, we can fit the weights to classify the label well.





(a) Running Result of BGD

(b) BGD Loss Function

Fig. 2: The Result of BGD Fitting Method

In this test, the compiler randomly chooses label 1 and 3, so there's 107 sample data.

Superparameters: n of iteration: 100000, loss rate: 6e-06, tolerance: 1e-06, patience: 30, initial W: random(14) \* 0.5

It early stops at epoch 80403.

The fitted result is:

 $Weights: [\ 0.3134287\ -0.00442641\ 0.08008495\ 0.33965656\ -0.00977624\ -0.04008422\ 0.33048559\ 0.23659116\ 0.32755149]$ 

0.14897802 -0.0825915 0.45600696 0.18250337 0.00155206]

Accuracy:1.0, Precision:1.0, Recall:1.0, F1:1.0