FMI, Mate, Anul I Logică matematică

$\mathbf{E}\mathbf{x}$	้ ล	m	en
1.1X	$\boldsymbol{\alpha}$		

Nume:	
Prenume: _	
Crupa	

P1	P2	Р3	P4	P5	P6	P7	P8	P9	Oficiu	TOTAL
/1	/1,5	/1,5	/1	/1	/1,5	/1,5	/3	/2	1	/15

1 Teoria mulţimilor

- (P1) [1 punct] Fie E o mulţime nevidă cel mult numărabilă. Să se arate că există o funcţie surjectivă $g: \mathbb{N} \to E$.
- (P2) [1,5 puncte] Fie A mulţimea tuturor submulţimilor nevide ale lui $\mathbb N$ având 6 sau 4 elemente. Demonstraţi că A este numărabilă.
- $(\mathbf{P3})$ [1,5 puncte] Demonstrați că

$$|(8,9) \cup [10,11]| = |[8,9) \cup \{10,11\}| = |[8,9] \cup \{3k \mid k \in \mathbb{N}\}| = \mathfrak{c}.$$

2 Logica propozițională

(P4) [1 punct] Arătați că pentru orice formule σ, α, χ , avem:

$$(\alpha \lor \chi) \to \sigma \sim (\alpha \to \sigma) \land (\chi \to \sigma).$$

- (P5) [1 punct] Fie Σ , Θ mulțimi satisfiabile de formule ale logicii propoziționale LP astfel încât
 - (i) $\Sigma \subseteq \Theta$;
 - (ii) pentru orice formulă φ , avem că dacă $\Sigma \cup \{\varphi\}$ este satisfiabilă, atunci $\varphi \in \Sigma$.

Să se arate că $\Sigma = \Theta$.

(P6) [1,5 puncte] Fie ψ , σ formule în logica propozițională LP. Să se arate că

$$\vdash \sigma \rightarrow (\psi \lor \sigma).$$

(P7) [1,5 puncte] Fie LP logica propozițională. Pentru orice $k \in \mathbb{N}$, definim evaluarea $e_k : V \to \{0,1\}$ astfel: pentru orice $n \in \mathbb{N}$,

$$e_k(v_n) := \begin{cases} 0, & \operatorname{dacă} n = k; \\ 1, & \operatorname{dacă} n \neq k. \end{cases}$$

Notăm $\mathcal{E} := \{e_k \mid k \in \mathbb{N}\}$. Să se arate că nu există $\Delta \subseteq Form$ astfel încât $Mod(\Delta) = \mathcal{E}$.

(P8) [3 puncte]

- (i) Să se aducă formula $\varphi := \neg(v_5 \leftrightarrow v_6)$ la FND și FNC folosind transformări sintactice.
- (ii) Să se aducă formula $\psi := (v_6 \wedge v_5) \rightarrow \neg v_7$ la FND și FNC folosind funcția booleană asociată.

3 Logica de ordinul întâi

(P9) [2 puncte]

(i) Fie \mathcal{L} un limbaj de ordinul I care conţine un simbol de relaţie unară S. Să se arate că pentru orice \mathcal{L} -structură \mathcal{A} ,

$$\mathcal{A} \vDash \exists v_4 \forall v_5 (S(v_4) \to S(v_5)).$$

(ii) Să se dea exemplu de limbaj $\mathcal L$ de ordinul I și de formule φ,χ ale lui $\mathcal L$ astfel încât

$$\forall y\varphi \vee \forall y\chi \not \vDash \exists y(\varphi \wedge \chi),$$
unde y este o variabilă.