- 1. S'han de marcar les respostes correctes, i pot haver-hi més d'una resposta correcta (o cap).
- 2. Cada resposta incorrecta penalitza.
- 3. Marcades en blau les respostes correctes

EXEMPLES DE QÜESTIONS:

- 1. La proposició $\forall x \exists y (2y + 6 = x)$, amb domini \mathbb{Z} , és:
 - i. Certa.
 - ii. Certa si el domini és el conjunt d'enters senars.
 - iii. Falsa.
 - iv. Certa si el domini és el conjunt d'enters parells.
- 2. Siguin x,y reals positius, i siguin:

(1)
$$x > \sqrt{5xy}$$
 (2) $x > 5y$ (3) $\sqrt{xy} > y\sqrt{5}$.

Es té:

- $(1) \Leftrightarrow (2)$ però no és cert $(1) \Leftrightarrow (3)$.
- $(1) \Leftrightarrow (2)$ però no és cert $(2) \Leftrightarrow (3)$.
- (1), (2) *i* (3) són equivalents.
- Cap de les respostes anteriors és certa.
- 3. En el conjunt dels nombres reals considerem l'enunciat:

$$\forall x, y, z \ (x \le \frac{y+z}{2} \lor y \le \frac{x+z}{2} \lor z \le \frac{x+y}{2})$$

Dieu si és cert o fals i com es pot justificar l'afirmació.

- Fals, i la demostració es pot fer donant un contraexemple.
- Cert, i la demostració es pot fer per contrarecíproc.
- Fals, i la demostració es pot fer per prova directa.
- Cert, i la demostració es pot fer per reducció a l'absurd.
- 4. La proposició $\forall x (P(x) \land Q(x))$:
 - a. És certa si $\forall x P(x)$ és certa.
 - b. És falsa si $\forall x \neg P(x)$ és certa.
 - c. És certa si $\exists x \ Q(x)$ és certa.

- d. És certa si $\forall x P(x) \land \forall x Q(x)$ és certa.
- e. És certa si $\forall x P(x) \land \forall x Q(x)$ és falsa.
- f. És certa si $\forall x (P(x) \lor Q(x))$ és certa.
- g. Cap de les anteriors és certa.
- 5. L'equivalència $(\phi \land \psi) \rightarrow \theta \equiv \phi \rightarrow (\psi \rightarrow \theta)$:
 - a. És sempre falsa.
 - b. És sempre certa.
 - c. Depèn de qui siguin φ, ψ .
 - d. És falsa quan φ és una contradicció.
 - e. És certa si φ, ψ són equivalents.
- 6. Domini \mathbb{R} . Si $P(x) : x^2 < 9$, Q(x) : x < 3
 - Per a qualsevol x, es té $Q(x) \Rightarrow P(x)$.
 - Per a qualsevol x, es té $P(x) \Rightarrow Q(x)$.
 - Si el domini és el conjunt $(0,+\infty)$ llavors es té, per a qualsevol x, $P(x) \Rightarrow Q(x)$.
 - Si el domini és el conjunt $(0,+\infty)$ llavors es té, per a qualsevol x, $P(x) \Leftrightarrow Q(x)$.
- 7. Volem demostrar $B \lor C$:
 - i. Hem de demostrar dues coses: B i C.
 - ii. És suficient demostrar $B \land C \Rightarrow Absurd$.
 - iii. És suficient demostrar una de les dues: B, C.
 - iv. És suficient demostrar $\neg B \land \neg C \Rightarrow Absurd$.
 - v. És equivalent a demostrar $\neg C \Rightarrow \neg B$.
 - vi. És suficient demostrar $\neg C \Rightarrow \neg B$.
 - vii. És suficient demostrar $\neg C \Rightarrow B$.
 - viii. Pregunta incorrecta (eliminada)
 - ix. Cap de les respostes anteriors és certa.

- 8. Prenent domini el conjunt dels enters, la proposició "Tot enter positiu és més gran que un enter parell" es pot formalitzar:
 - $\forall x (x > 0 \rightarrow \exists y (2 | y \land x > y)).$
 - $\forall x \ (\forall y (\neg(2|y) \lor x \le y) \to x \le 0).$
 - $\forall x (\forall y (\neg (2|y) \land x \le y) \rightarrow x \le 0).$
 - $\forall x (x > 0 \land \exists y (2|y \land x > y)).$
 - $\forall x (x \le 0 \lor \exists y (2 | y \land x > y)).$
 - 9. Definim una successió recursivament així: $a_1 = 0$, i si $n \ge 2$, $a_n = a_{n/p} + 1$, on p és el primer més petit que divideix n. Es vol demostrar per inducció que P(n): " a_n és la suma dels exponents que apareixen a la descomposició factorial de n en primers" és cert per a tot $n \ge 1$. Si la tesi és P(n):
 - En el pas inductiu usem: $P(n-2) \land P(n-1)$.
 - En el pas inductiu usem: $P(2) \land ... \land P(n-1)$.
 - En el pas inductiu usem: P(n-1).
 - \circ En el pas inductiu usem: a_{n-1} és la suma dels exponents que apareixen a la descomposició factorial de n-1 en primers.
 - \circ En el pas inductiu usem: $a_{n/p}$ és la suma dels exponents que apareixen a la descomposició factorial de n/p en primers.
 - Cap de les respostes anteriors és certa.