

SIGMA ALGEBRAS

Why

For general measure theory, we need an algebra of sets closed under countable unions; we define such an object.¹

Definition

A countably summable subset algebra is a subset algebra for which (1) the base set is distinguished (2) the complement of a distinguished set is distinguished (3) the union of a sequence of distinguished sets is distinguished.

The name is justified, as each countably summable subset algebra is a subset algebra, because the union of A_1, \ldots, A_n coincides with the union of $A_1, \ldots, A_n, A_n, A_n, A_n \cdots$.

We call the set of distinguished sets a sigma algebra (or sigma field) on the base set. This language is justified (as for a regular subset algebra) by the closure properties of the sigma algebra under the usual set operations. We sometimes write are σ -algebra and σ -field.

A $sub-\sigma$ -algebra (sub-sigma-algebra) is a subset of a sigma algebra which is itself a sigma algebra.

Notation

Let (A, \mathcal{A}) be a countably summable subset algebra. We often say "let \mathcal{A} be a sigma algebra on A." Since the largest element of the sigma algebra is the base set, we can also say (without ambiguity): "let \mathcal{A} be a sigma algebra." In this last case, the base set is $\cup \mathcal{A}$.

Examples

Example 1. For any set A, 2^A is a sigma algebra.

Example 2. For any set A, $\{A,\varnothing\}$ is a sigma algebra.

¹Future editions will make no reference to measure theory. The entire development will be for follow the historical development for handling integration.

Example 3. Let A be an infinite set. Let A the collection of finite subsets of A. A is not a sigma algebra.

Example 4. Let A be an infinite set. Let A be the collection subsets of A such that the set or its complement is finite. A is not a sigma algebra.

Proposition 1. The intersection of a family of sigma algebras is a sigma algebra.

Example 5. For any infinite set A, let A be the set

$$\{B \subset A \mid |B| \le \aleph_0 \lor |C_A(B)| \le \aleph_0\}.$$

 \mathcal{A} is an algebra; the countable/co-countable algebra.²

²Future editions will clean up and modify these examples.

