Thermoelectric Properties of Self Assemble TiO₂/SnO₂ Nanocomposites

Fred Dynys*, NASA-Glenn, USA; Ali Sayir, Alp Sehirlioglu, Case Western Reserve University, USA

Recent advances in improving efficiency of thermoelectric materials are linked to nanotechnology. Thermodynamically driven spinodal decomposition was utilized to synthesize bulk nanocomposites. TiO₂/SnO₂ system exhibits a large spinodal region, ranging from 15 to 85 mole % TiO₂. The phase separated microstructures are stable up to 1400 °C. Semiconducting TiO₂/SnO₂ powders were synthesized by solid state reaction between TiO₂ and SnO₂. High density samples were fabricated by pressureless sintering. Self assemble nanocomposites were achieved by annealing at 1000 to 1350 °C. X-ray diffraction reveal phase separation of (Ti_xSn_{1-x})O₂ type phases. The TiO₂/SnO₂ nanocomposites exhibit n-type behavior; a power factor of 70 μW/mK² at 1000 °C has been achieved with penta-valent doping. Seebeck, thermal conductivity, electrical resistivity and microstructure will be discussed in relation to composition and doping.

Thermoelectric Properties of Self Assemble TiO₂/SnO₂ Nanocomposites

Fred Dynys, NASA-Glenn, USA Ali Sayir, CWRU, USA Alp Sehirlioglu, CWRU, USA

Program Support: NASA Radioisotope Power Systems

Heat to Electric Power Generation

Objective: High Conversion Efficiency

•Reduces Mass, Volume & Cost

Space Power Generation

Waste Heat to Power

- Waste Heat is one of our most under utilized energy resources
- U.S.-energy consumption ~29 tera-kWh (10¹²) Barrels of Oil – 170 giga-barrels (10⁹)
- World-energy consumption ~120 tera- kWh (10¹²)
- 20-65 percent is lost in the form of heat
- Maximizes efficiency
- Reduces CO₂ emission

Nanotechnology

Figure of Merit

3.5

(RTI)

Bi₂Te₃ allov

FIGURE OF MERIT (ZT)max

0.5

S - Seebeck coefficient

 σ – electrical conductivity

κ– thermal conductivity

$$\eta_{\text{max}} = \frac{\Delta T}{T_{hot}} \frac{\sqrt{1 + ZT} - 1}{\sqrt{1 + ZT} + T_{cold} / T_{hot}}$$

State)

kutterudites Fleurial)

Dresselhaus

- **Phonon Scattering:**
- Alloying

Atom disorder

- •Anharmonic vibrations
- Supperlattices
- Crystal Structures
- ·Nano-technology

Fleurial/Chen – JPL/MIT

■ PbTe allov

Si_{0.8}Ge_{0.2} alloy

Fabrication of Nanostructure Solids

Goal: Preservation of the nanostructure during fabrication.

Spinodal Decomposition

Desired Features

- •~50 nm grains
- •High Temperature
- •Wide Composition
- •Large ∆ Mass

Transparent Conducting Oxides

Insulator/Semiconductor/Conductor

- •Large Bandgap 2.4-3.8 ev
- •N-type –Degenerate Semiconductor

Fig. 10. TEM image of $(Ti_{0.5}/Sn_{0.5})O_2$ ceramics annealed for 48 h.

Shultz & Stubican, JACS, 53, 1970

Electrical Conductivity

тсо	σ (S/m) @ RT
ITO	8x10 ⁵
ln_2O_3	1x10 ⁶
SnO ₂	2.5x10 ⁵
ZnO	8.3x10 ⁵
ZnO:Al	7.7x10 ⁴
CdSnO ₂	7.7x10 ⁵
CdO:In	1.7x10 ⁶

ZnO:Al ZT~0.6 @ 1000 °C

Experimental

SnO₂

Purity: 99.9%

APS: 50 nm SSA: $14.2 \text{ m}^2/\text{g}$

TiO₂ Rutile Purity: 99.99 %

APS: 20 nm.

 $SSA: > 30 \text{ m}^2/\text{g}$

Dopants CoO,MnO₂ Ta₂O₅ In₂O₃

TiO₂/SnO₂ 50/50 mol % 75/25 mol % 25/75 mol %

Powder Mixing

Compaction Die Press

Reactive Sintering 1250-1550 °C

Anneal 72 Hrs

Thermal Conductivity

- Laser Flash Method- Thermal Diffusivity
- Standard
- Specific Heat- C_p Laser Flash
- •Thermal Conductivity ($K = \alpha \rho C_p$)

Seebeck/Resistivity

ΔT 0-50 °C/Furnace RT-1000 °C

Sintering

 $50/50 \text{ TiO}_2/\text{SnO}_2$

75/25 TiO₂/SnO₂

SnO₂ Sintering-Inhibited

- •Surface Diffusion <1100 °C
- •Evaporation >1100 °C $SnO_2 \rightarrow SnO + \frac{1}{2}O_{2(g)}$

Sintering Aids-SnO₂

•MnO, CoO, CuO, ZnO

$$CoO \rightarrow Co_{Ti.Sn}^{"} + V_{O}^{\bullet \bullet}$$

50/50 TiO₂/SnO₂

Ta₂O₅ & In₂O₃ **Ineffective Sintering Aids**

$$Ta_2O_5 \rightarrow 2Ta_{Ti,Sn}^{\bullet} + 2e' + \frac{1}{2}O_2$$

$$In_2O_3 \rightarrow 2In'_{Ti,Sn} + 2V_O^{\bullet}$$

XRD-Phases

$$\begin{split} Sintered - & (Ti_{0.8}Sn_{0.2})O_2 \\ Reduced - & TiO_2, \ Rutile \\ & (Ti_{0.8}Sn_{0.2})O_2 \end{split}$$

75/25 TiO₂/SnO₂

XRD-Phases

Sintered – $(Ti_{0.8}Sn_{0.2})O_2$ Annealed – $(Ti_{0.8}Sn_{0.2})O_2$ 1250 °C Reduced – TiO_2 , Rutile $(Ti_{0.8}Sn_{0.2})O_2$

XRD-Phases

Sintered – TiO₂, Rutile SnO₂, In₂O₃ Annealed – TiO₂, Rutile 1250 °C SnO₂, In₂O₃

Phase Separation

1% CoO XRD

 $\begin{array}{c} \text{Sintered} - & (\text{Ti}_{0.8}\text{Sn}_{0.2})\text{O}_2 \\ & (\text{Ti}_{0.2}\text{Sn}_{0.8})\text{O}_2 \\ \text{Annealed} - & (\text{Ti}_{0.9}\text{Sn}_{0.1})\text{O}_2 \\ \text{1000 °C} & (\text{Ti}_{0.1}\text{Sn}_{0.9})\text{O}_2 \end{array}$

1% MnO XRD

 $\begin{array}{c} Sintered - \; (Ti_{0.8}Sn_{0.2})O_2 \\ \qquad \qquad (Ti_{0.2}Sn_{0.8})O_2 \\ Annealed - \; (Ti_{0.9}Sn_{0.1})O_2 \\ 1000 \; ^{\circ}C \qquad (Ti_{0.1}Sn_{0.9})O_2 \end{array}$

50/50 TiO₂/SnO₂

XRD-Phases

 $Sintered - (Ti_{0.8}Sn_{0.2})O_2 \\ (Ti_{0.2}Sn_{0.8})O_{2} \\ TiO_2 \\ Annealed - (Ti_{0.2}Sn_{0.8})O_2 \\ 1000 \ ^{o}C \quad (Ti_{0.9}Sn_{0.1})O_2 \\$

XRD-Phases

Sintered – $(Ti_{0.8}Sn_{0.2})O_2$ $(Ti_{0.1}Sn_{0.9})O_2$ Annealed – $(Ti_{0.2}Sn_{0.8})O_2$ $1000 \, ^{\circ}C$ $(Ti_{0.9}Sn_{0.1})O_2$ Microstructure
Coarsening

(a) 1600 °C

Grain Boundary Phases Segregation

Electrical Conductivity

- •Ta₂O₅ Increases σ E_a~0.25 ev
- • $(Ti_xSn_{1-x})O_{2-v}$ Oxygen Deficiency Increases σ E_a ~0.06 ev
- •Co-doping-Ta₂O₅/CoO Increases $\sigma E_a \sim 0.5$ -0.7 ev
- •In₂O₃, MnO & CoO Ineffective in Enhancing σ E_a~1-4.2 ev

Seebeck Coefficient

- •N-type
- •Large Seebeck coefficients >-400 μV/K
- •Large Seebeck coefficient Low σ
- • $(Ti_{0.5}Sn_{0.5})O_{2-y}$ low Seebeck ~ 0

Thermal Conductivity

Compositions

```
1% MnO-50 TiO<sub>2</sub>
1% CoO-50 TiO<sub>2</sub>
1% MnO-75 TiO<sub>2</sub>
1% CoO-75 TiO<sub>2</sub>
1% MnO-25 TiO<sub>2</sub>
1% CoO- 25TiO<sub>2</sub>
1\%\text{Ta}_{2}\text{O}_{5}/0.5\%
 CoO-25 TiO<sub>2</sub>
```

- •Compositions exhibit low $\kappa 1.7$ to 6.8 W/mK
- •Observe no dependence on composition or post treatments
- •Spinodal Decomposition κ reduction?
- •Best $ZT \sim 0.05$

In Summary

- •TiO₂/SnO₂ compositions exhibit low thermal conductivity. Reduction in thermal conductance by spinodal microstructure has not been isolated.
- •Improvements in electrical conductivity is needed. Grain boundary phases could be detrimental. Ta_2O_5 or oxygen deficiency enhances electrical conductivity.
- •Sintering aids are required to densify equal-molar and tin oxide rich compositions. MnO and CoO promoted phase separation.