

CLAIMS

1. A compound of formula

wherein:

- 5 (a) all of X, Y and Z are CH; or (b) one of X, Y and Z is N and the rest of X, Y
and Z are CH; or (c) two of X, Y and Z are N and the other of X, Y and Z is CH; or
(d) all of X, Y and Z are N;

A is A¹ or A²;

A¹ is R⁴R⁵N-C(O)-

or

The chemical structure shows a five-membered heterocyclic ring containing sulfur and nitrogen. The nitrogen atom is at the top position, double-bonded to the sulfur atom. A methyl group is attached to the carbon atom adjacent to the nitrogen. An R⁶ group is attached to the carbon atom adjacent to the sulfur.

10 A² is chosen from R⁷C(O)NH-, R⁷S(O)₂NH-, R⁴NH-, and R⁴O-;

Q is chosen from heteroaryl, aryl, $-\text{CH}_2\text{R}^{13}$, $-\text{CH}=\text{N}-\text{OCH}_3$, and

W is chosen from H, Cl, F, R⁸, C₁-C₄-alkylaryl, -OR⁸, -SR⁸, -NR⁹R¹⁰ and -NHC(O)R¹¹, with the proviso that when two of X, Y and Z are

15 N and Q is imidazolyl, W may not be H, Cl, F or R⁸;

R^1 is chosen from alkyl, cycloalkyl, alkenyl, C_1 - C_3 -alkyloxcycloalkyl, heterocyclyl, C_1 - C_3 -alkylheterocyclyl, aryl, C_1 - C_3 -alkylaryl, heteroaryl, C_1 - C_3 -alkylheteroaryl, (C_1 - C_3 -alkyloxy)alkyl, (C_1 - C_3 -

a'
Cont

- 20 R^2 is alkyloxy)cycloalkyl, (C_1 - C_3 -alkylthio)alkyl, (C_1 - C_3 -alkylthio)cycloalkyl and (C_1 - C_3 -alkylsulfonyl)alkyl;
- 25 R^3 is H or C_1 - C_6 -alkyl, or, when n is zero, R^2 and R^3 taken together may form a 5- to 7-membered ring structure optionally containing O, S or NR¹²;
- 30 R^4 is chosen from H, aryl, heteroaryl, C_1 - C_4 -alkyl substituted with from one to three aryl or heteroaryl residues,
- and
- 35 R^5 is H or C_1 - C_3 -alkyl, with the proviso that both R^3 and R^5 cannot be alkyl;
- 40 R^6 is aryl;
- R^7 is aryl or C_1 - C_3 -alkylaryl;
- R^8 is chosen from alkyl, aryl, heteroaryl, substituted alkyl, C_1 - C_4 -alkylaryl, C_1 - C_4 -alkylheterocyclyl and C_1 - C_4 -alkylheteroaryl;
- R^9 is chosen from H, alkyl, alkenyl, substituted alkyl, cycloalkyl, aryl, alkoxy, heteroaryl, fluoroalkyl, C_1 - C_4 -alkylcycloalkyl, (C_1 - C_4 -alkoxy)alkyl, (C_1 - C_4 -alkoxycarbonyl)alkyl, (C_1 - C_4 -alkylthio)alkyl,

*Q' 1
cont*

- 45 R¹⁰ is heterocyclyl, C₁-C₄-alkylheterocyclyl, C₁-C₄-alkylaryl, and C₁-C₄-alkylheteroaryl;
 R⁹ and R¹⁰ taken together may form a 5- to 7-membered ring structure optionally containing O, S, SO, SO₂ or NR¹², said ring optionally substituted with -OH, -CN, -COOH or -COOCH₃;
- 50 R¹¹ is aryl;
- R¹² is chosen from H, C₁-C₃-alkyl, alkoxy carbonyl, methoxyacetyl and aryl;
- R¹³ is chosen from -OH, -O-THP, 1-imidazolyl, and 1-pyrrolyl;
- m is zero or one; and
- n is zero or one, with the proviso that when A is A², m and n cannot both be zero.

2. A pyrimidine according to claim 1 of formula

wherein:

two of X, Y and Z are N and the third is CH.

3. A 4-pyrimidinamine according to claim 2, wherein Z is CH, having the formula

a'
cont

4. A 4-pyrimidinamine according to claim 3 wherein Q is chosen from imidazolyl, methylimidazolyl, pyrrolyl, methylpyrrolyl, pyrazolyl, methylpyrazolyl, hydroxymethylimidazolyl, (dimethylaminomethyl)imidazolyl, furanyl, methylfuranyl, thienyl, oxazolyl, thiazolyl, pyridinyl, quinolinyl, 1-methylpyrimidin-2-onyl, phenyl, fluorophenyl, hydroxymethyl, tetrahydropyranyloxymethyl, imidazolylmethyl, pyrrolylmethyl, -CH=N-OCH₃, and
- 5.
5. A 4-pyrimidinamine according to claim 4 wherein:
- Q is chosen from pyrrol-1-yl, imidazol-1-yl, furan-3-yl, 2-methylimidazol-1-yl and 4-methylimidazol-1-yl;
- A is R⁴R⁵N-C(O)-;
- W is Cl, NHR⁹, N(CH₃)R⁹, OR⁸, SR⁸, R⁸, morpholin-4-yl,
 $\text{---N} \begin{array}{c} \text{S} \\ | \\ \text{O}_2 \end{array}$ or $\text{---N} \begin{array}{c} \text{S} \\ | \\ \text{O}_2 \end{array} \text{---N---R}^{12}$;
- R¹ is chosen from alkyl, cycloalkyl, C₁-C₃-alkylaryl, C₁-C₃-alkylcycloalkyl, C₁-C₃-alkylheterocyclyl, C₁-C₃-alkylheteroaryl ;
- R², R³ and R⁵ are H;
- R⁸ is C₁-C₄-alkylaryl

Q'
Cont

SEARCHED INDEXED
2014-2015

20 R⁹ is chosen from hydrogen, alkyl, substituted alkyl, (C₁-C₄)-alkoxy, C₁-C₄-alkylcycloalkyl, C₁-C₄-alkylaryl, heterocyclyl, C₁-C₄-alkylheteroaryl, C₁-C₄-alkylheterocyclyl; and
m and n are zero.

6. A 4-pyrimidinamine according to claim 5 wherein W is NHR⁹ and
 R⁹ is chosen from hydrogen; methyl; ethyl; 2,2,2-trifluoroethyl; allyl; cyclopropyl; 2-cyanoethyl; propargyl; methoxy; methoxyethyl; cyclopropyl; cyclopropylmethyl; (methylthio)ethyl; 3-methoxypropyl; 3-pyridyl; 2-(3-pyridyl)ethyl; 2-(2-pyridyl)ethyl; 3-pyridylmethyl; 4-pyridylmethyl; 4-pyridylmethyl-N-oxide; 2-pyridazinylmethyl; sulfolan-3-yl; 3-tetrahydrofuranyl; 2-tetrahydrofuranylmethyl; 3-(1-imidazolyl)propyl; 1-t-butoxycarbonyl-4-piperidinyl; 1-t-butoxycarbonyl-4-piperidinylmethyl; 2-(hydroxyimino)propyl; 2-(methoxyimino)propyl; 2-oxo-1-propyl; and

wherein

R¹⁴ is chosen from H, Cl, F, CN, NO₂, SO₂NH₂, CF₃, COOCH₃, OCH₃, OH, SO₂CH₃, N(CH₃)₂ and COOH;
 R¹⁵ is chosen from H, OCH₃ and Cl; and
 p is 1 or 2.

7. A 4-pyrimidinamine according to claim 5 wherein W is

and

*Q1
Cont*

R¹² is t-butoxycarbonyl, methoxyacetyl or phenyl.

8. A 4-pyrimidinamine according to claim 2 wherein

Z is CH;

A is

, or

5 R¹ is chosen from n-butyl; cyclohexylmethyl; cyclopentylmethyl; 2-methylpropyl; 3-methyl-1-butyl; cyclohexyl; 2,2-dimethylpropyl; benzyl; 2-thienylmethyl; 1-t-butoxycarbonyl-4-piperidinyl; 4-chlorobenzyl; 2-pyranylmethyl; 4-pyranylmethyl; 4-pyranyl and 1,1-dimethylethyl;

10 R² and R³ are H;

Q is imidazolyl or pyrrolyl;

W is NHR⁹; and

R⁹ is alkyl, cycloalkyl or

R¹⁴ is chosen from H, Cl, F, CN, NO₂, SO₂NH₂, CF₃, COOCH₃, OCH₃,

15 SO₂CH₃, N(CH₃)₂ and COOH; and

R¹⁵ is chosen from H, OCH₃, and Cl.

9. A pyrimidine according to claim 2 wherein:

A is R⁴R⁵N-C(O)-

R¹ is chosen from isopropyl; n-butyl; cyclohexylmethyl; cyclopentylmethyl; naphthylmethyl; cyclohexylethyl; 2-

5 methylpropyl; 3-methyl-1-butyl; cyclohexyl; 2,2-dimethylpropyl;

*a
cont*

benzyl; 2-thienylmethyl; 1-*t*-butoxycarbonyl-4-piperidinyl; 4-methoxybenzyl; 4-chlorobenzyl; 3,4-dichlorobenzyl; 2-pyranylmethyl; 4-pyranylmethyl; 4-pyranyl and 1,1-dimethylethyl; and

10 R², R³ and R⁵ are H.

10. A pyrimidine according to claim 9 wherein:

R⁴ is pyridinyl, pyridinylmethyl, tetrahydronaphthalenyl, indanylmethyl, furanylmethyl, substituted phenyl, or

R¹⁶ is chosen from H, Cl, F, CN, NO₂, SO₂NH₂, CF₃, CH₃, COOCH₃, OCH₃, SO₂CH₃, SOCH₃, N(CH₃)₂, tetrazol-5-yl, CONH₂, C(=NOH)NH₂ and COOH; and

15 R¹⁷ is chosen from H, OCH₃, F and Cl.

11. A pyrimidine according to claim 9 wherein R⁴ is

of J¹ and J² is H and the other is H, Cl or CN and G is chosen from -CN₂-, -CH₂CH₂-, -OCH₂-, -O- and -CH₂N(lower alkyl)-.

12. A 2-pyrimidinamine according to claim 2, wherein Y is CH, having the formula

A'
cont

13. A 2-pyrimidinamine according to claim 11 wherein Q is chosen from imidazolyl, pyrrolyl, pyridinyl, fluorophenyl and 2-thienyl.

14. A 2-pyrimidinamine according to claim 13 wherein

- A is $R^4R^5N-C(O)-$;
- 5 W is H, Cl, NHR⁹ or OR⁸;
- R¹ is chosen from alkyl and C₁-C₃-alkylcycloalkyl;
- R², R³ and R⁵ are H;
- R⁴ is C₁-C₄-alkylaryl or C₁-C₄-alkylheteroaryl;
- R⁸ is C₁-C₄-alkylaryl;
- 10 R⁹ is chosen from hydrogen, alkyl, fluoroalkyl, (C₁-C₄-alkoxy)alkyl, (C₁-C₄-alkylthio)alkyl, C₁-C₄-alkylcycloalkyl, C₁-C₄-alkylaryl, heterocyclyl, C₁-C₄-alkylheteroaryl, C₁-C₄-alkylheterocyclyl; and m and n are zero.

15. A 2-pyrimidinamine according to claim 14 wherein W is NHR⁹ and

- R⁹ is

- R¹⁴ is chosen from H, F, Cl, CN, NO₂, SO₂NH₂, CF₃, COOCH₃, OCH₃, SO₂CH₃, N(CH₃)₂ and COOH; and

a'
cont

5 R⁵ is chosen from H, OCH₃ and Cl.

16. A 4-pyrimidinamine according to claim 2, wherein X is CH, having the formula

17. A 4-pyrimidinamine according to claim 16 wherein Q is chosen from imidazolyl and pyrrolyl and m and n are zero.

18. A 4-pyrimidinamine according to claim 17 wherein:

A is R⁴R⁵N-C(O)-;

W is NHR⁹;

R¹ is chosen from cyclohexylmethyl; 2-methylpropyl and 3-methyl-1-butyl;

5

R², R³ and R⁵ are H; and

R⁴ and R⁹ are benzyl or substituted benzyl.

19. A triazine according to claim 1, wherein all of X, Y, and Z are N, having the formula

*C1
Cont*

SEARCHED NOV 2010

20. A triazine according to claim 19 wherein Q is chosen from imidazolyl and pyrrolyl.

21. A triazine according to claim 20 wherein:

A is $R^4R^5N-C(O)-$;

W is NHR^9 ;

R¹ is chosen from cyclohexylmethyl; 2-methylpropyl and 3-methyl-1-butyl;

5

R², R³ and R⁵ are H; and

R⁴ and R⁹ are benzyl or substituted benzyl.

✓
22. An aniline according to claim 1, wherein all of X, Y and Z are CH, having the formula

wherein Q is chosen from imidazolyl and pyrrolyl.

A/
Cont
23. An aniline according to claim 22 wherein:

A is $R^4R^5N-C(O)-$;

W is NHR^9 ;

R¹ is chosen from alkyl, cycloalkyl, C₁-C₃-alkylaryl and C₁-C₃-alkylcycloalkyl;

5 R², R³ and R⁵ are H;

R⁴ is C₁-C₄-alkylaryl;

R⁹ is ;

R¹⁴ is chosen from H, Cl, CN, NO₂, SO₂NH₂, CF₃, COOCH₃, OCH₃,
10 SO₂CH₃, N(CH₃)₂ and COOH,

R¹⁵ is chosen from H, OCH₃ and Cl; and
m and n are zero.

24. A compound according to claim 1 wherein m and n are zero and R² is H having the R configuration at the carbon to which R² is attached.

25. A compound according to claim 1 wherein m and n are zero and R¹ = R².

26. A compound according to claim 1 wherein R⁴ is

*Q1
Cont*

having the R configuration at the carbon indicated with an asterisk.

27. A pyrimidine according to claim 12 wherein R^4 is

having the R configuration at the carbon indicated with an asterisk.

28. A compound of formula

wherein:

- (a) all of X, Y and Z are CH; or (b) one of X, Y and Z is N and the rest of X, Y and Z are CH; or (c) two of X, Y and Z are N and the other of X, Y and Z is CH; or (d) all of X, Y and Z are N;

A is A^1 or A^2 ;

A^1 is $R^4R^5N-C(O)-$

or

A^2 is chosen from $R^7C(O)NH-$, $R^7S(O)_2NH-$, R^4NH- , and R^4O- ;

Q is chosen from aryl, $-CH_2R^{13}$, $-CH=N-OCH_3$ and

A'
cont

heteroaryl other than 1-imidazolyl and 1-triazolyl;

W is chosen from H, Cl, F, R⁸, C₁-C₄-alkylaryl, -OR⁸, -SR⁸, -NR⁹R¹⁰ and -NHC(O)R¹¹, with the proviso that when two of X, Y and Z are N and Q is imidazolyl, W may not be H, Cl, F or R⁸;

R¹ is chosen from alkyl, cycloalkyl, alkenyl, C₁-C₃-alkylcycloalkyl, heterocyclyl, C₁-C₃-alkylheterocyclyl, aryl, C₁-C₃-alkylaryl, heteroaryl, C₁-C₃-alkylheteroaryl, (C₁-C₃-alkyloxy)alkyl, (C₁-C₃-alkyloxy)cycloalkyl, (C₁-C₃-alkylthio)alkyl, (C₁-C₃-alkylthio)cycloalkyl and (C₁-C₃-alkylsulfonyl)alkyl;

R² is H or C₁-C₃-alkyl, or R¹ and R² taken together form a 5- to 7-membered ring structure optionally containing O, S or NR¹²;

R³ is H or C₁-C₆-alkyl, or, when n is zero, R² and R³ taken together may form a 6-membered ring, which may be fused to a six-membered saturated or aromatic carbocycle;

R⁴ is chosen from H, aryl, heteroaryl, C₁-C₄-alkyl substituted with from one to three aryl or heteroaryl residues,

and J² are independently chosen from H, F, Cl, CN, NO₂ and CH₃, and G is chosen from -CH₂-, -CH₂CH₂-, -CH₂CH₂CH₂-, -OCH₂-, -CH₂O-, -CH₂CH₂O-, -OCH₂CH₂-, -O-, -N(lower alkyl)-, -N(lower alkyl)CH₂-, -CH₂N(lower alkyl)-, -S-, -SO-, -SO₂-, -CH₂S-, -SCH₂-, -CH₂SO-, -SOCH₂-, -CH₂SO₂-, and -SO₂CH₂-;

Q¹
cont

- R⁵ is H or C₁-C₃-alkyl, with the proviso that both R³ and R⁵ cannot be alkyl;
- R⁶ is aryl;
- R⁷ is aryl or C₁-C₃-alkylaryl;
- R⁸ is chosen from alkyl, aryl, heteroaryl, substituted alkyl, C₁-C₄-alkylaryl, C₁-C₄-alkylheterocyclyl and C₁-C₄-alkylheteroaryl;
- R⁹ is chosen from H, alkyl, alkenyl, substituted alkyl, cycloalkyl, aryl, alkoxy, heteroaryl, fluoroalkyl, C₁-C₄-alkylcycloalkyl, (C₁-C₄-alkoxy)alkyl, (C₁-C₄-alkoxycarbonyl)alkyl, (C₁-C₄-alkylthio)alkyl, heterocyclyl, C₁-C₄-alkylheterocyclyl, C₁-C₄-alkylaryl, and C₁-C₄-alkylheteroaryl;
- R¹⁰ is H or C₁-C₃-alkyl, or
R⁹ and R¹⁰ taken together may form a 5- to 7-membered ring structure optionally containing O, S, SO, SO₂ or NR¹², said ring optionally substituted with -OH, -CN, -COOH or -COOCH₃;
- R¹¹ is aryl;
- R¹² is chosen from H, C₁-C₃-alkyl, alkoxy carbonyl, methoxyacetyl and aryl;
- R¹³ is chosen from -OH, -OTHP, 1-imidazolyl, and 1-pyrrolyl;
- m is zero or one; and
- n is zero or one, with the proviso that when A is A², m and n cannot both be zero.

*A¹
Cont*

29. A pyrimidine according to claim 28 of formula

wherein:

two of X, Y and Z are N and the third is CH.

30. A 4-pyrimidinamine according to claim 29, wherein Z is CH, having the formula

31. A 4-pyrimidinamine according to claim 30 wherein Q is chosen from methylimidazolyl, pyrrolyl, methylpyrrolyl, pyrazolyl, methylpyrazolyl, furanyl, methylfuranyl, thienyl, oxazolyl, thiazolyl, pyridinyl, quinolinyl, 1-methylpyrimidin-2-onyl, phenyl, fluorophenyl, hydroxymethyl, 2-imidazolyl, tetrahydropyranyloxymethyl, imidazolylmethyl, pyrrolylmethyl, -CH=N-OCH₃, and

a'
cont

32. A 4-pyrimidinamine according to claim 31 wherein:
- Q is chosen from pyrrol-1-yl, imidazol-1-yl, furan-3-yl, 2-methylimidazol-1-yl and 4-methylimidazol-1-yl;
- 10 A is $R^4R^5N\text{C(O)-}$;
- W is Cl, NHR^9 , $N(CH_3)R^9$, OR^8 , SR^8 , R^8 , morpholin-4-yl,

 or
 $\text{---N} \begin{array}{c} \text{---} \\ | \\ \text{C}_6\text{H}_4 \\ | \\ \text{---S} \text{O}_2 \end{array} \text{---N---R}^{12}$;
- 15 R^1 is chosen from alkyl, cycloalkyl, $C_1\text{-}C_3$ -alkylaryl, $C_1\text{-}C_3$ -alkylcycloalkyl, $C_1\text{-}C_3$ -alkylheterocyclyl, $C_1\text{-}C_3$ -alkylheteroaryl;
- R^2 , R^3 and R^5 are H;
- R^8 is $C_1\text{-}C_4$ -alkylaryl
- 20 R^9 is chosen from hydrogen, alkyl, substituted alkyl, ($C_1\text{-}C_4$)-alkoxy, $C_1\text{-}C_4$ -alkylcycloalkyl, $C_1\text{-}C_4$ -alkylaryl, heterocyclyl, $C_1\text{-}C_4$ -alkylheteroaryl, $C_1\text{-}C_4$ -alkylheterocyclyl; and
- m and n are zero.
33. A 4-pyrimidinamine according to claim 32 wherein W is NHR^9 and
- R^9 is chosen from hydrogen; methyl; ethyl; 2,2,2-trifluoroethyl; allyl; cyclopropyl; 2-cyanoethyl; propargyl; methoxy; methoxyethyl; cyclopropyl; cyclopropylmethyl; (methylthio)ethyl; 3-methoxypropyl; 3-pyridyl; 2-(3-pyridyl)ethyl; 2-(2-pyridyl)ethyl; 3-pyridylmethyl; 4-pyridylmethyl; 4-pyridylmethyl-N-oxide; 2-pyridazinylmethyl; sulfolan-3-yl; 3-tetrahydrofuranyl; 2-tetrahydrofurylmethyl; 3-(1-imidazolyl)propyl; 1-t-butoxycarbonyl-4-piperidinyl; 1-t-butoxycarbonyl-4-piperidinylmethyl; 2-(hydroxyimino)propyl; 2-(methoxyimino)propyl; 2-oxo-1-propyl; and

A¹
cont

- wherein
- 15 R¹⁴ is chosen from H, Cl, F, CN, NO₂, SO₂NH₂, CF₃, COOCH₃, OCH₃, OH, SO₂CH₃, N(CH₃)₂ and COOH;
- 15 R¹⁵ is chosen from H, OCH₃ and Cl; and
- p is 1 or 2.
34. A 4-pyrimidinamine according to claim 32 wherein W is
-
- and
- R¹² is t-butoxycarbonyl, methoxyacetyl or phenyl.
35. A 4-pyrimidinamine according to claim 29 wherein
- Z is CH;
- A is
-
- or
- 5 R¹ is chosen from n-butyl; cyclohexylmethyl; cyclopentylmethyl; 2-methylpropyl; 3-methyl-1-butyl; cyclohexyl; 2,2-dimethylpropyl; benzyl; 2-thienylmethyl; 1-t-butoxycarbonyl-4-piperidinyl; 4-chlorobenzyl; 2-pyranyl methyl; 4-pyranyl methyl; 4-pyranyl and 1,1-dimethylethyl;
- 10 R² and R³ are H;
- Q is pyrrolyl;
- W is NHR⁹; and
- R⁹ is alkyl, cycloalkyl or
-

A¹
Cont

R¹⁴ is chosen from H, Cl, F, CN, NO₂, SO₂NH₂, CF₃, COOCH₃, OCH₃, SO₂CH₃, N(CH₃)₂ and COOH; and

R¹⁵ is chosen from H, OCH₃ and Cl.

36. A pyrimidine according to claim 29 wherein:

A is R⁴R⁵N-C(O)

R¹ is chosen from isopropyl; n-butyl; cyclohexylmethyl;

cyclopentylmethyl; naphthylmethyl; cyclohexylethyl; 2-

methylpropyl; 3-methyl-1-butyl; cyclohexyl; 2,2-dimethylpropyl;

benzyl; 2-thienylmethyl; 1-t-butoxycarbonyl-4-piperidinyl; 4-

methoxybenzyl; 4-chlorobenzyl; 3,4-dichlorobenzyl; 2-

pyranylmethyl; 4-pyranylmethyl; 4-pyranyl and 1,1-dimethylethyl;

R², R³ and R⁵ are H;

10 R⁴ is pyridinyl, pyridinylmethyl, indanylmethyl, furanylmethyl, tetrahydronaphthalenyl, substituted phenyl, or

R¹⁶;

R¹⁷;

R¹⁶ is chosen from H, Cl, F, CN, NO₂, SO₂NH₂, CF₃, CH₃, COOCH₃, OCH₃, SO₂CH₃, N(CH₃)₂ and COOH; and

R¹⁷ is chosen from H, OCH₃, F and Cl.

37. A pyrimidine according to claim 29 wherein R⁴ is

38. A pyrimidine according to claim 37 wherein one of J¹ and J² is H and the other is H, Cl or CN and G is chosen from -CH₂-, -CH₂CH₂-, -OCH₂-, -O- and -CH₂N(lower alkyl)-.

a'
Cont

39. A 2-pyrimidinamine according to claim 29, wherein Y is CH, having the formula

40. A 2-pyrimidinamine according to claim 39 wherein Q is chosen from pyrrolyl, pyridinyl, fluorophenyl and 2-thienyl.

41. A 2-pyrimidinamine according to claim 40 wherein

- A is $R^4R^5N-C(O)-$;
- 5 W is H, Cl, NHR^9 or OR^8 ;
- R^1 is chosen from alkyl and C_1-C_3 -alkylcycloalkyl;
- R^2 , R^3 and R^5 are H;
- R^4 is C_1-C_4 -alkylaryl or C_1-C_4 -alkylheteroaryl;
- R^8 is C_1-C_4 -alkylaryl;
- 10 R^9 is chosen from hydrogen, alkyl, fluoroalkyl, $(C_1-C_4$ -alkoxy)alkyl, $(C_1-C_4$ -alkylthio)alkyl, C_1-C_4 -alkylcycloalkyl, C_1-C_4 -alkylaryl, heterocyclyl, C_1-C_4 -alkylheteroaryl, C_1-C_4 -alkylheterocyclyl; and m and n are zero.

42. A 2-pyrimidinamine according to claim 41 wherein W is NHR^9 and

- R^9 is

A'
Cont

- R¹⁴ is chosen from H, F, Cl, CN, NO₂, SO₂NH₂, CF₃, COOCH₃, OCH₃, SO₂CH₃, N(CH₃)₂ and COOH; and
 5 R¹⁵ is chosen from H, OCH₃ and Cl.

43. A 2-pyrimidineamine according to claim 39 wherein R⁴ is

chosen from -CH₂-, -CH₂CH₂-, -OCH₂-, -O- and -CH₂N(lower alkyl)-.

44. A 4-pyrimidinamine according to claim 29, wherein X is CH, having the formula

45. A 4-pyrimidinamine according to claim 44 wherein Q is pyrrolyl and m and n are zero.

46. A 4-pyrimidinamine according to claim 45 wherein:

A is R⁴R⁵N-C(O)-;

W is NHR⁹;

R¹ is chosen from cyclohexylmethyl; 2-methylpropyl and 3-methyl-1-butyl;

5

*A¹
cont*

R², R³ and R⁵ are H; and
R⁴ and R⁹ are benzyl or substituted benzyl.

47. A 4-pyrimidineamine according to claim 44 wherein R⁴ is

10 chosen from -CH₂-, -CH₂CH₂-, -OCH₂-, -O- and -CH₂N(lower alkyl)-.

48. A pharmaceutical composition comprising a pharmaceutically acceptable carrier and a compound according to claim 1.

49. A pharmaceutical composition according to claim 48 additionally comprising a steroidal or nonsteroidal antiinflammatory drug (NSAID).

50. A pharmaceutical composition according to claim 48 additionally comprising a nonsteroidal antiinflammatory drug (NSAID).

51. A pharmaceutical composition according to claim 50 wherein said NSAID is chosen from arylpropionic acids, arylacetic acids, arylbutyric acids, fenamic acids, arylcarboxylic acids, pyrazoles, pyrazolones, salicylic acids; and oxicams.

52. A pharmaceutical composition according to claim 48 additionally comprising a cyclooxygenase inhibitor.

53. A pharmaceutical composition according to claim 52 wherein said cyclooxygenase inhibitor is ibuprofen or a salicylic acid derivative.

a'
Cont

54. A pharmaceutical composition according to claim 48 additionally comprising a selective cyclooxygenase-2 inhibitor.
55. A pharmaceutical composition according to claim 54 wherein said selective cyclooxygenase-2 inhibitor is rofecoxib or celecoxib.
56. A pharmaceutical composition according to claim 48 additionally comprising a selective cyclooxygenase-1 inhibitor.
57. A pharmaceutical composition according to claim 48 additionally comprising a steroidal antiinflammatory drug.
58. A pharmaceutical composition according to claim 57 wherein said steroidal antiinflammatory drug is chosen from finasteride, beclomethasone and hydrocortisone.
59. A pharmaceutical composition comprising a pharmaceutically acceptable carrier and a compound according to claim 28.
60. A pharmaceutical composition according to claim 59 additionally comprising a steroidal or nonsteroidal antiinflammatory drug (NSAID).
61. A pharmaceutical composition according to claim 59 additionally comprising a nonsteroidal antiinflammatory drug (NSAID).
62. A pharmaceutical composition according to claim 61 wherein said NSAID is chosen from arylpropionic acids, arylacetic acids, arylbutyric acids, fenamic acids, arylcarboxylic acids, pyrazoles, pyrazolones, salicylic acids; and oxicams.

P04TTE09 = DELETED

63. A pharmaceutical composition according to claim 59 additionally comprising a cyclooxygenase inhibitor.
64. A pharmaceutical composition according to claim 63 wherein said cyclooxygenase inhibitor is ibuprofen or a salicylic acid derivative.
65. A pharmaceutical composition according to claim 59 additionally comprising a selective cyclooxygenase-2 inhibitor.
66. A pharmaceutical composition according to claim 65 wherein said selective cyclooxygenase-2 inhibitor is rofecoxib or celecoxib.
67. A pharmaceutical composition according to claim 59 additionally comprising a selective cyclooxygenase-1 inhibitor.
68. A pharmaceutical composition according to claim 59 additionally comprising a steroidal antiinflammatory drug.
69. A pharmaceutical composition according to claim 68 wherein said steroidal antiinflammatory drug is chosen from finasteride, beclomethasone and hydrocortisone.
70. A method of treating a condition resulting from inappropriate bradykinin receptor activity comprising administering to a subject in need of such treatment a therapeutically effective amount of a compound of formula I

*a
cont*

I

wherein:

(a) all of X, Y and Z are CH; or (b) one of X, Y and Z is N and the rest of X, Y and Z are CH; or (c) two of X, Y and Z are N and the other of X, Y and Z is CH; or (d) all of X, Y and Z are N;

A is A^1 or A^2 ;

A^1 is $R^4R^5N-C(O)-$

or

A^2 is chosen from $R^7C(O)NH-$, $R^7S(O)_2NH-$, R^4NH- , and R^4O- ;

Q is chosen from heteroaryl, aryl, $-CH_2R^{13}$, $-CH=N-OCH_3$ and

W is chosen from H, Cl, F, R^8 , C_1-C_4 -alkylaryl, $-OR^8$, $-SR^8$, $-NR^9R^{10}$ and $-NHC(O)R^{11}$, with the proviso that when two of X, Y and Z are N and Q is imidazolyl, W may not be H, Cl, F or R^8 ;

a'
cont

- R¹ is chosen from alkyl, cycloalkyl, alkenyl, C₁-C₃-alkylcycloalkyl, heterocyclyl, C₁-C₃-alkylheterocyclyl, aryl, C₁-C₃-alkylaryl, heteroaryl, C₁-C₃-alkylheteroaryl, (C₁-C₃-alkyloxy)alkyl, (C₁-C₃-alkyloxy)cycloalkyl, (C₁-C₃-alkylthio)alkyl, (C₁-C₃-alkylthio)cycloalkyl and (C₁-C₃-alkylsulfonyl)alkyl;
- R² is H or C₁-C₃-alkyl, or R¹ and R² taken together form a 5- to 7-membered ring structure optionally containing O, S or NR¹²;
- R³ is H or C₁-C₆-alkyl, or, when n is zero, R² and R³ taken together may form a 6-membered ring, which may be fused to a six-membered saturated or aromatic carbocycle;
- R⁴ is chosen from H, aryl, heteroaryl, C₁-C₄-alkyl substituted with from one to three aryl or heteroaryl residues,
- and , wherein J¹
- and
- and J² are independently chosen from N, F, Cl, CN, NO₂ and CH₃, and G is chosen from -CH₂-, -CH₂CH₂-, -CH₂CH₂CH₂-, -OCH₂-, -CH₂O-, -CH₂CH₂O-, -OCH₂CH₂-, -O-, -N(lower alkyl)-, -N(lower alkyl)CH₂-, -CH₂N(lower alkyl)-, -S-, -SO-, -SO₂-, -CH₂S-, -SCH₂-, -CH₂SO-, -SOCH₂-, -CH₂SO₂-, and -SO₂CH₂-,
- R⁵ is H or C₁-C₃-alkyl, with the proviso that both R³ and R⁵ cannot be alkyl;
- R⁶ is aryl;
- R⁷ is aryl or C₁-C₃-alkylaryl;
- R⁸ is chosen from alkyl, aryl, heteroaryl, substituted alkyl, C₁-C₄-alkylaryl, C₁-C₄-alkylheterocyclyl and C₁-C₄-alkylheteroaryl;

cont

R^9 is chosen from H, alkyl, alkenyl, substituted alkyl, cycloalkyl, aryl, alkoxy, heteroaryl, fluoroalkyl, C_1 - C_4 -alkylcycloalkyl, (C_1 - C_4 -alkoxy)alkyl, (C_1 - C_4 -alkoxycarbonyl)alkyl, (C_1 - C_4 -alkylthio)alkyl, heterocyclyl, C_1 - C_4 -alkylheterocyclyl, C_1 - C_4 -alkylaryl, and C_1 - C_4 -alkylheteroaryl;

R^{10} is H or C_1 - C_3 -alkyl, or

R^9 and R^{10} taken together may form a 5- to 7-membered ring structure optionally containing O, S, SO, SO_2 or NR^{12} , said ring optionally substituted with -OH, -CN, -COOH or -COOCH₃;

R^{11} is aryl;

R^{12} is chosen from H, C_1 - C_3 -alkyl, aloxycarbonyl, methoxyacetyl and aryl;

R^{13} is chosen from -OH, -OTHP, 1-imidazolyl, and 1-pyrrolyl;

m is zero or one; and

n is zero or one, with the proviso that when A is A^2 , m and n cannot both be zero.

71. A method according to claim 70 wherein said compound is a pyrimidine of the formula

wherein:

two of X, Y and Z are N and the third is CH.

A
cont

72. The method according to claim 70 wherein said condition resulting from inappropriate bradykinin receptor activity is diabetic vasculopathy, post-capillary resistance or diabetic symptoms associated with insulitis.
73. The method according to claim 72 wherein said diabetic symptoms associated with insulitis comprise hyperglycemia, diuresis, proteinuria and increased nitrite and kallikrein urinary excretion.
74. The method according to claim 70 wherein said condition resulting from inappropriate bradykinin receptor activity is inflammation, edema, liver disease, asthma, rhinitis, or septic shock.
75. The method according to claim 70 wherein said condition resulting from inappropriate bradykinin receptor activity is pain or hyperalgesia.
76. The method according to claim 75 wherein said pain is chronic pain, pain associated with inflammation or dental pain.
77. The method of treating pain or hyperalgesia according to claim 75 additionally comprising administering a steroidal or nonsteroidal antiinflammatory drug (NSAID).
78. The method of treating pain or hyperalgesia according to claim 77 wherein an NSAID is administered.
79. The method of treating pain or hyperalgesia according to claim 75 additionally comprising administering a cyclooxygenase inhibitor.

R
cont

SEARCHED.....
INDEXED.....
SERIALIZED.....
FILED.....

80. The method of treating pain or hyperalgesia according to claim 79 wherein said cyclooxygenase inhibitor is a selective cyclooxygenase-2 inhibitor.
81. The method of treating pain or hyperalgesia according to claim 79 wherein said cyclooxygenase inhibitor is a selective cyclooxygenase-1 inhibitor.
82. The method according to claim 70 wherein said condition resulting from inappropriate bradykinin receptor activity is multiple sclerosis.
83. The method according to claim 70 wherein said condition resulting from inappropriate bradykinin receptor activity is atherosclerosis.
84. The method according to claim 70 wherein said condition resulting from inappropriate bradykinin receptor activity is Alzheimer's disease or closed head trauma.
85. A method for stimulating hair growth or preventing hair loss comprising administering to a subject in need of such treatment a therapeutically effective amount of a compound formula I according to claim 70.
86. A compound of formula
- The chemical structure shows a 1,2-dihydroimidazole ring system. At position 2, there is a halogen atom labeled 'Hal'. At position 4, there is a pyridine ring attached via a double bond. The nitrogen atom of the pyridine ring is labeled 'E'.
- wherein E is halogen or methylthio and Hal is halogen.
87. A compound according to claim 86 wherein Hal is chlorine.

*Q/
Cont*

88. A compound according to claim 86 wherein Hal is fluorine.

89. A compound according to claim 86 wherein E is methylthio and Hal is chlorine.

90. A compound according to claim 86 of formula

91. A compound of formula

wherein X is -CN or halogen and L is -CH₂- or -N(CH₃)-

92. A compound of formula

93. A compound of formula

*a
cont*

having the R absolute stereochemistry at the asymmetric carbon, wherein X is -CN or halogen and L is -CH₂- , -O- or -N(CH₃)-.

94. A compound of formula

wherein X is -CN or halogen.