Visualization with Matplotlib

We'll now take an in-depth look at the Matplotlib tool for visualization in Python. Matplotlib is a multiplatform data visualization library built on NumPy arrays, and designed to work with the broader SciPy stack. It was conceived by John Hunter in 2002, originally as a patch to IPython for enabling interactive MATLAB-style plotting via gnuplot from the IPython command line. IPython's creator, Fernando Perez, was at the time scrambling to finish his PhD, and let John know he wouldn't have time to review the patch for several months. John took this as a cue to set out on his own, and the Matplotlib package was born, with version 0.1 released in 2003. It received an early boost when it was adopted as the plotting package of choice of the Space Telescope Science Institute (the folks behind the Hubble Telescope), which financially supported Matplotlib's development and greatly expanded its capabilities.

One of Matplotlib's most important features is its ability to play well with many operating systems and graphics backends. Matplotlib supports dozens of backends and output types, which means you can count on it to work regardless of which operating system you are using or which output format you wish. This cross-platform, everything-to-everyone approach has been one of the great strengths of Matplotlib. It has led to a large userbase, which in turn has led to an active developer base and Matplotlib's powerful tools and ubiquity within the scientific Python world.

In recent years, however, the interface and style of Matplotlib have begun to show their age. Newer tools like ggplot and ggvis in the R language, along with web visualization toolkits based on D3js and HTML5 canvas, often make Matplotlib feel clunky and old-fashioned. Still, I'm of the opinion that we cannot ignore Matplotlib's strength as a well-tested, cross-platform graphics engine. Recent Matplotlib versions make it relatively easy to set new global plotting styles (see "Customizing Matplotlib: Configurations and Stylesheets" on page 282), and people have been developing new packages that build on its powerful internals to drive Matplotlib via cleaner, more

modern APIs—for example, Seaborn (discussed in "Visualization with Seaborn" on page 311), ggplot, HoloViews, Altair, and even Pandas itself can be used as wrappers around Matplotlib's API. Even with wrappers like these, it is still often useful to dive into Matplotlib's syntax to adjust the final plot output. For this reason, I believe that Matplotlib itself will remain a vital piece of the data visualization stack, even if new tools mean the community gradually moves away from using the Matplotlib API directly.

General Matplotlib Tips

Before we dive into the details of creating visualizations with Matplotlib, there are a few useful things you should know about using the package.

Importing matplotlib

Just as we use the np shorthand for NumPy and the pd shorthand for Pandas, we will use some standard shorthands for Matplotlib imports:

```
In[1]: import matplotlib as mpl
    import matplotlib.pyplot as plt
```

The plt interface is what we will use most often, as we'll see throughout this chapter.

Setting Styles

We will use the plt.style directive to choose appropriate aesthetic styles for our figures. Here we will set the classic style, which ensures that the plots we create use the classic Matplotlib style:

```
In[2]: plt.style.use('classic')
```

Throughout this section, we will adjust this style as needed. Note that the stylesheets used here are supported as of Matplotlib version 1.5; if you are using an earlier version of Matplotlib, only the default style is available. For more information on stylesheets, see "Customizing Matplotlib: Configurations and Stylesheets" on page 282.

show() or No show()? How to Display Your Plots

A visualization you can't see won't be of much use, but just how you view your Matplotlib plots depends on the context. The best use of Matplotlib differs depending on how you are using it; roughly, the three applicable contexts are using Matplotlib in a script, in an IPython terminal, or in an IPython notebook.

Plotting from a script

If you are using Matplotlib from within a script, the function plt.show() is your friend. plt.show() starts an event loop, looks for all currently active figure objects, and opens one or more interactive windows that display your figure or figures.

So, for example, you may have a file called *myplot.py* containing the following:

```
# ----- file: myplot.py -----
import matplotlib.pyplot as plt
import numpy as np
x = np.linspace(0, 10, 100)
plt.plot(x, np.sin(x))
plt.plot(x, np.cos(x))
plt.show()
```

You can then run this script from the command-line prompt, which will result in a window opening with your figure displayed:

```
$ python myplot.py
```

The plt.show() command does a lot under the hood, as it must interact with your system's interactive graphical backend. The details of this operation can vary greatly from system to system and even installation to installation, but Matplotlib does its best to hide all these details from you.

One thing to be aware of: the plt.show() command should be used only once per Python session, and is most often seen at the very end of the script. Multiple show() commands can lead to unpredictable backend-dependent behavior, and should mostly be avoided.

Plotting from an IPython shell

It can be very convenient to use Matplotlib interactively within an IPython shell (see Chapter 1). IPython is built to work well with Matplotlib if you specify Matplotlib mode. To enable this mode, you can use the %matplotlib magic command after starting ipython:

```
In [1]: %matplotlib
Using matplotlib backend: TkAgg
In [2]: import matplotlib.pyplot as plt
```

At this point, any plt plot command will cause a figure window to open, and further commands can be run to update the plot. Some changes (such as modifying properties of lines that are already drawn) will not draw automatically; to force an update, use plt.draw(). Using plt.show() in Matplotlib mode is not required.

Plotting from an IPython notebook

The IPython notebook is a browser-based interactive data analysis tool that can combine narrative, code, graphics, HTML elements, and much more into a single executable document (see Chapter 1).

Plotting interactively within an IPython notebook can be done with the %matplotlib command, and works in a similar way to the IPython shell. In the IPython notebook, you also have the option of embedding graphics directly in the notebook, with two possible options:

- %matplotlib notebook will lead to *interactive* plots embedded within the notebook
- %matplotlib inline will lead to *static* images of your plot embedded in the notebook

For this book, we will generally opt for %matplotlib inline:

```
In[3]: %matplotlib inline
```

After you run this command (it needs to be done only once per kernel/session), any cell within the notebook that creates a plot will embed a PNG image of the resulting graphic (Figure 4-1):

```
In[4]: import numpy as np
    x = np.linspace(0, 10, 100)

fig = plt.figure()
    plt.plot(x, np.sin(x), '-')
    plt.plot(x, np.cos(x), '--');
```


Figure 4-1. Basic plotting example

Saving Figures to File

One nice feature of Matplotlib is the ability to save figures in a wide variety of formats. You can save a figure using the savefig() command. For example, to save the previous figure as a PNG file, you can run this:

```
In[5]: fig.savefig('my_figure.png')
```

We now have a file called *my_figure.png* in the current working directory:

```
In[6]: !ls -lh my_figure.png
-rw-r--r-- 1 jakevdp staff
                               16K Aug 11 10:59 my_figure.png
```

To confirm that it contains what we think it contains, let's use the IPython Image object to display the contents of this file (Figure 4-2):

```
In[7]: from IPython.display import Image
       Image('my_figure.png')
```


Figure 4-2. PNG rendering of the basic plot

In savefig(), the file format is inferred from the extension of the given filename. Depending on what backends you have installed, many different file formats are available. You can find the list of supported file types for your system by using the following method of the figure canvas object:

```
In[8]: fig.canvas.get_supported_filetypes()
Out[8]: {'eps': 'Encapsulated Postscript',
          'jpeg': 'Joint Photographic Experts Group',
         'jpg': 'Joint Photographic Experts Group',
         'pdf': 'Portable Document Format',
         'pgf': 'PGF code for LaTeX',
         'png': 'Portable Network Graphics',
         'ps': 'Postscript',
         'raw': 'Raw RGBA bitmap',
         'rgba': 'Raw RGBA bitmap',
```

```
'svg': 'Scalable Vector Graphics',
'svgz': 'Scalable Vector Graphics',
'tif': 'Tagged Image File Format',
'tiff': 'Tagged Image File Format'}
```

Note that when saving your figure, it's not necessary to use plt.show() or related commands discussed earlier.

Two Interfaces for the Price of One

A potentially confusing feature of Matplotlib is its dual interfaces: a convenient MATLAB-style state-based interface, and a more powerful object-oriented interface. We'll quickly highlight the differences between the two here.

MATLAB-style interface

Matplotlib was originally written as a Python alternative for MATLAB users, and much of its syntax reflects that fact. The MATLAB-style tools are contained in the pyplot (plt) interface. For example, the following code will probably look quite familiar to MATLAB users (Figure 4-3):

```
In[9]: plt.figure() # create a plot figure

# create the first of two panels and set current axis
plt.subplot(2, 1, 1) # (rows, columns, panel number)
plt.plot(x, np.sin(x))

# create the second panel and set current axis
plt.subplot(2, 1, 2)
plt.plot(x, np.cos(x));
```


Figure 4-3. Subplots using the MATLAB-style interface

It's important to note that this interface is *stateful*: it keeps track of the "current" figure and axes, which are where all plt commands are applied. You can get a reference to

these using the plt.gcf() (get current figure) and plt.gca() (get current axes) routines.

While this stateful interface is fast and convenient for simple plots, it is easy to run into problems. For example, once the second panel is created, how can we go back and add something to the first? This is possible within the MATLAB-style interface, but a bit clunky. Fortunately, there is a better way.

Object-oriented interface

The object-oriented interface is available for these more complicated situations, and for when you want more control over your figure. Rather than depending on some notion of an "active" figure or axes, in the object-oriented interface the plotting functions are *methods* of explicit Figure and Axes objects. To re-create the previous plot using this style of plotting, you might do the following (Figure 4-4):

```
In[10]: # First create a grid of plots
    # ax will be an array of two Axes objects
fig, ax = plt.subplots(2)

# Call plot() method on the appropriate object
ax[0].plot(x, np.sin(x))
ax[1].plot(x, np.cos(x));
```


Figure 4-4. Subplots using the object-oriented interface

For more simple plots, the choice of which style to use is largely a matter of preference, but the object-oriented approach can become a necessity as plots become more complicated. Throughout this chapter, we will switch between the MATLAB-style and object-oriented interfaces, depending on what is most convenient. In most cases, the difference is as small as switching plt.plot() to ax.plot(), but there are a few gotchas that we will highlight as they come up in the following sections.

Simple Line Plots

Perhaps the simplest of all plots is the visualization of a single function y = f(x). Here we will take a first look at creating a simple plot of this type. As with all the following sections, we'll start by setting up the notebook for plotting and importing the functions we will use:

```
In[1]: %matplotlib inline
    import matplotlib.pyplot as plt
    plt.style.use('seaborn-whitegrid')
    import numpy as np
```

For all Matplotlib plots, we start by creating a figure and an axes. In their simplest form, a figure and axes can be created as follows (Figure 4-5):

```
In[2]: fig = plt.figure()
ax = plt.axes()
```


Figure 4-5. An empty gridded axes

In Matplotlib, the *figure* (an instance of the class plt.Figure) can be thought of as a single container that contains all the objects representing axes, graphics, text, and labels. The *axes* (an instance of the class plt.Axes) is what we see above: a bounding box with ticks and labels, which will eventually contain the plot elements that make up our visualization. Throughout this book, we'll commonly use the variable name fig to refer to a figure instance, and ax to refer to an axes instance or group of axes instances.

Once we have created an axes, we can use the ax.plot function to plot some data. Let's start with a simple sinusoid (Figure 4-6):

```
In[3]: fig = plt.figure()
    ax = plt.axes()

x = np.linspace(0, 10, 1000)
    ax.plot(x, np.sin(x));
```


Figure 4-6. A simple sinusoid

Alternatively, we can use the pylab interface and let the figure and axes be created for us in the background (Figure 4-7; see "Two Interfaces for the Price of One" on page 222 for a discussion of these two interfaces):

Figure 4-7. A simple sinusoid via the object-oriented interface

If we want to create a single figure with multiple lines, we can simply call the plot function multiple times (Figure 4-8):

```
In[5]: plt.plot(x, np.sin(x))
       plt.plot(x, np.cos(x));
```


Figure 4-8. Over-plotting multiple lines

That's all there is to plotting simple functions in Matplotlib! We'll now dive into some more details about how to control the appearance of the axes and lines.

Adjusting the Plot: Line Colors and Styles

The first adjustment you might wish to make to a plot is to control the line colors and styles. The plt.plot() function takes additional arguments that can be used to specify these. To adjust the color, you can use the color keyword, which accepts a string argument representing virtually any imaginable color. The color can be specified in a variety of ways (Figure 4-9):

```
In[6]:
plt.plot(x, np.sin(x - 0), color='blue')  # specify color by name
plt.plot(x, np.sin(x - 1), color='g')  # short color code (rgbcmyk)
plt.plot(x, np.sin(x - 2), color='0.75')  # Grayscale between 0 and 1
plt.plot(x, np.sin(x - 3), color='#FFDD44')  # Hex code (RRGGBB from 00 to FF)
plt.plot(x, np.sin(x - 4), color=(1.0,0.2,0.3))  # RGB tuple, values 0 and 1
plt.plot(x, np.sin(x - 5), color='chartreuse'); # all HTML color names supported
```

Figure 4-9. Controlling the color of plot elements

0.0

If no color is specified, Matplotlib will automatically cycle through a set of default colors for multiple lines.

Similarly, you can adjust the line style using the linestyle keyword (Figure 4-10):

```
In[7]: plt.plot(x, x + 0, linestyle='solid')
       plt.plot(x, x + 1, linestyle='dashed')
       plt.plot(x, x + 2, linestyle='dashdot')
       plt.plot(x, x + 3, linestyle='dotted');
       # For short, you can use the following codes:
       plt.plot(x, x + 4, linestyle='-') # solid
       plt.plot(x, x + 5, linestyle='--') # dashed
       plt.plot(x, x + 6, linestyle='-.') # dashdot
       plt.plot(x, x + 7, linestyle=':'); # dotted
```


Figure 4-10. Example of various line styles

If you would like to be extremely terse, these linestyle and color codes can be combined into a single nonkeyword argument to the plt.plot() function (Figure 4-11):

```
In[8]: plt.plot(x, x + 0, '-g') # solid green
      plt.plot(x, x + 1, '--c') # dashed cyan
      plt.plot(x, x + 2, '-.k') # dashdot black
       plt.plot(x, x + 3, ':r'); # dotted red
```