Álgebra Linear

Giuliano Boava

Introdução

Nos problemas olímpicos, principalmente nos de nível universitário, é comum encontrarmos espaços e subespaços vetoriais, transformações lineares, matrizes, autovalores, autovetores, entre outros conceitos de álgebra linear. O objetivo deste texto é mostrar que, usando apenas ferramentas básicas, é possível resolver diversos problemas envolvendo este tema. Como a álgebra linear é um assunto amplo, optamos por tratar apenas dos problemas que abordam matrizes e suas propriedades.

O texto está dividido em duas seções: uma seção com definições e teoremas e outra com resolução de problemas. Na primeira seção, faremos uma breve introdução à teoria de matrizes, tratando desde as operações básicas até a fatoração de uma matriz na sua forma canônica de Jordan¹. Na segunda seção, veremos como aplicar a teoria em problemas olímpicos.

Apesar de o texto não requerer conhecimento prévio, é aconselhável que o leitor tenha alguma familiaridade com a álgebra linear. Além disso, o conteúdo aqui exposto é extremamente resumido, não sendo recomendado àqueles que pretendem iniciar um curso de álgebra linear. Por fim, visto que o nosso foco são as aplicações da teoria, não demonstraremos os teoremas aqui apresentados. O leitor interessado nas demonstrações pode consultar as referências dispostas no final do texto.

Definições e Propriedades

Uma \mathbf{matriz} real (ou complexa) A com m linhas e n colunas é uma função

$$A: \{1, 2, \dots, m\} \times \{1, 2, \dots, n\} \longrightarrow \mathbb{R} \text{ (ou } \mathbb{C})$$

 $(i, j) \longmapsto A(i, j).$

Esta é uma maneira formal de dizer que uma matriz é uma "tabela" de números. Apesar de a definição tratar uma matriz como função, veremos uma matriz A com m

 $^{^1\}mathrm{Camille}$ Marie Ennemond Jordan (1838-1922) foi um matemático francês. Assim, a pronúncia de seu sobrenome é "Jordân".

linhas e n colunas sob a forma usual

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix},$$

em que a entrada a_{ij} da tabela corresponde a A(i,j) (isto é, o valor da função A em (i,j)). Uma maneira compacta de denotar a matriz acima é $A = (a_{ij})$. O valor a_{ij} da matriz A é denominado **entrada** (i,j) ou (i,j)-ésima **entrada** de A. No contexto matricial, um número, real ou complexo, é normalmente chamado de **escalar**.

Uma matriz com m linhas e n colunas é dita uma matriz $m \times n$ (lê-se m por n). Uma matriz em que n=1 (respectivamente, m=1) é denominada um vetor coluna (respectivamente, vetor linha). Quando m=n, a matriz é dita quadrada de ordem n. Em uma matriz quadrada $A=(a_{ij})$ de ordem n, denominamos por diagonal principal a parcela da matriz formada pelos elementos $a_{11}, a_{22}, \ldots, a_{nn}$. Uma matriz quadrada que possui todos os elementos abaixo (respectivamente, acima) da diagonal principal iguais a 0 é denominada matriz triangular superior (respectivamente, triangular inferior). Uma matriz quadrada em que todos os elementos fora da diagonal principal são iguais a 0 é denominada matriz diagonal. A matriz diagonal de ordem n em que todos os elementos da diagonal principal são iguais a 1 é denominada matriz identidade e é denotada por I_n (ou simplesmente I, quando a ordem estiver subentendida).

Sejam $A = (a_{ij}), B = (b_{ij})$ e $C = (c_{ij})$ matrizes reais (ou complexas) de dimensões $m \times n, m \times n$ e $n \times p$ respectivamente, e seja $\lambda \in \mathbb{R}$ (ou \mathbb{C}) um escalar. A soma das matrizes A e B, denotada por A + B, é definida como a matriz $m \times n$ dada por $A + B = (a_{ij} + b_{ij})$. O **produto** das matrizes A e C, denotado por AC, é definido como a matriz $m \times p$ dada por $AC = (d_{ij})$, em que $d_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \cdots + a_{in}b_{nj}$. A **multiplicação** do escalar λ pela matriz A, denotada por λA , é definida como a matriz $m \times n$ dada por $\lambda A = (\lambda a_{ij})$. A **transposta**² da matriz A, denotada por A^t , é definida como a matriz $n \times m$ dada por $A^t = (a_{ji})$.

É claro da definição que a operação de soma de matrizes é comutativa, associativa e distributiva com relação à multiplicação por escalar. Também é fácil verificar que a soma também é distributiva com relação ao produto matricial (por ambos os lados).

 $^{^2}$ A transposta de uma matriz é, normalmente, utilizada para matrizes reais. A definição também é válida para matrizes complexas mas, neste caso, tal definição não é tão útil. No caso complexo, a operação frequentemente utilizada no lugar da transposta é a operação que associa a uma matriz A, uma outra matriz A^* , denominada adjunta de A. A adjunta da A é a transposta de A com seus elementos conjugados.

Convém observar que o produto matricial não é comutativo! Uma conta um pouco mais trabalhosa é necessária para verificar que o produto matricial é associativo. Estas propriedades podem ser expressas por: A + B = B + A; (A + B) + C = A + (B + C); $\lambda(A + B) = \lambda A + \lambda B$; (A + B)C = AC + BC; C(A + B) = CA + CB; $AB \neq BA$ (em geral) e (AB)C = A(BC). Há algumas propriedades interessantes da transposta: $(A^t)^t = A$; $(A + B)^t = A^t + B^t$; $(\lambda A)^t = \lambda A^t$ e $(AB)^t = B^t A^t$. A matriz identidade definida acima possui papel importante no produto de matrizes: se A é uma matriz $m \times n$, então $I_m A = A = AI_n$. É um bom exercício (porém, entediante) verificar todas essas propriedades.

Definição 1. Seja A uma matriz de quadrada de ordem n. Definimos o **traço** da matriz A, denotado por tr(A), como a soma dos elementos da diagonal principal da matriz A. Em outras palavras, se $A = (a_{ij})$, então $tr(A) = a_{11} + a_{22} + \cdots + a_{nn}$.

Exemplo 1. Se

$$A = \left[\begin{array}{rrr} 1 & 3 & 4 \\ -2 & -3 & 1 \\ 0 & 1 & 0 \end{array} \right],$$

então tr(A) = 1 + (-3) + 0 = -2.

Nosso próximo objetivo é definir o determinante de uma matriz quadrada. É comum, no ensino médio, dar uma definição explícita para o determinante de matrizes de ordem 1, 2 e 3 e definir o determinante de matrizes de ordem maior que 3 recursivamente, usando determinantes de matrizes de ordem inferior. Aqui, adotaremos uma outra definição, que é válida para matrizes de ordens arbitrárias. Antes disso, necessitamos da definição de permutação.

Definição 2. Uma **permutação** do conjunto $\{1, 2, ..., n\}$ é uma bijeção $\sigma : \{1, 2, ..., n\} \longrightarrow \{1, 2, ..., n\}$. A **paridade** de uma permutação σ , denotada por $p(\sigma)$, é definida como o número de pares ordenados $(i, j) \in \{1, 2, ..., n\} \times \{1, 2, ..., n\}$ com i < j, para os quais $\sigma(i) > \sigma(j)$. O **sinal** de uma permutação σ é definido por sign $(\sigma) = (-1)^{p(\sigma)}$.

É comum (e mais prático) representar uma permutação σ por $\sigma = (\sigma(1), \sigma(2), \ldots, \sigma(n))$. Assim, uma permutação pode ser vista como uma n-upla de números naturais distintos (com valores em $\{1, 2, \ldots, n\}$).

Exemplo 2. $\sigma_1 = (3, 4, 1, 5, 2)$ e $\sigma_2 = (2, 3, 4, 5, 1)$ são exemplos de permutações de $\{1, 2, 3, 4, 5\}$. Para σ_1 , há 5 pares ordenados (i, j), com i < j, para os quais $\sigma_1(i) > \sigma_1(j)$; são eles: (1, 3), (1, 5), (2, 3), (2, 5) e (4, 5). Assim, $p(\sigma_1) = 5$. Já para σ_2 , a paridade é 4. Com isso, $sign(\sigma_1) = (-1)^5 = -1$ e $sign(\sigma_2) = (-1)^4 = 1$.

Definição 3. Seja $A = (a_{ij})$ uma matriz quadrada de ordem n. O **determinante** da matriz A, denotado por $\det(A)$ ou |A|, é definido por

$$\det(A) = \sum_{\sigma} \operatorname{sign}(\sigma) a_{1\sigma(1)} a_{2\sigma(2)} \dots a_{n\sigma(n)},$$

em que a soma é tomada sobre todas as permutações³ σ de $\{1, 2, ..., n\}$.

Exemplo 3. Se $A = [a_{11}]$ é uma matriz 1×1 , então só há uma permutação de $\{1\}$ (a saber, a permutação $\sigma = (1)$). Como não há pares (i,j) com i < j neste caso, então a paridade de σ é 0 e, consequentemente, $\operatorname{sign}(\sigma) = 1$. Logo, $\det(A) = a_{11}$. Notemos há duas permutações para $\{1,2\}$: $\sigma_1 = (1,2)$ (com paridade 0) e $\sigma_2 = (2,1)$ (com paridade 1). Assim, no determinante de uma matriz 10 e ordem 11. Aplicando a definição a uma matriz 12 e 13 de ordem 14, obtemos

$$\det(A) = \operatorname{sign}(\sigma_1)a_{1\sigma_1(1)}a_{2\sigma_1(2)} + \operatorname{sign}(\sigma_2)a_{1\sigma_2(1)}a_{2\sigma_2(2)} =$$

$$(-1)^0 a_{11}a_{22} + (-1)^1 a_{12}a_{21} = a_{11}a_{22} - a_{21}a_{12},$$

que é a fórmula passada no ensino médio. Fica como exercício ao leitor desenvolver a definição acima para uma matriz de ordem 3 e verificar que ela é equivalente à definição dada no ensino médio, isto é,

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31} - a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33}.$$

A proposição abaixo lista algumas propriedades do traço e do determinante de uma matriz.

Proposição 1. Se A e B são matrizes quadradas de ordem n, então:

- (i) $\operatorname{tr}(A+B) = \operatorname{tr}(A) + \operatorname{tr}(B)$;
- (ii) tr(AB) = tr(BA):
- (iii) Se $A = (a_{ij})$ é triangular superior, triangular inferior ou diagonal, então $\det(A) = a_{11}a_{22} \dots a_{nn}$;
- (iv) det(AB) = det(A) det(B);
- $(v) \det(A) = \det(A^t);$

³Note que há n! permutações de $\{1, 2, ..., n\}$. Assim, há n! parcelas na soma.

- (vi) Se uma matriz \tilde{A} é obtida a partir de A pela troca da posição de duas linhas (ou colunas), então $\det(\tilde{A}) = -\det(A)$;
- (vii) Se uma matriz \tilde{A} é obtida a partir de A multiplicando-se uma dada linha (ou coluna) por um número $\lambda \in \mathbb{C}$, ent \tilde{a} o $\det(\tilde{A}) = \lambda \det(A)$;
- (viii) Se uma matriz \tilde{A} é obtida a partir de A acrescentando-se a uma linha (ou coluna) um múltiplo de uma outra linha (ou coluna), então $\det(\tilde{A}) = \det(A)$.

Definição 4. Seja A uma matriz $m \times n$. Uma matriz B é dita uma inversa à direita de A se $AB = I_m$. Uma matriz C é dita uma inversa à esquerda de A se $CA = I_n$. Se A possui inversa à direita (respectivamente, à esquerda), então a dita invertível à direita (respectivamente, à esquerda).

Exemplo 4. Considere as matrizes

$$A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & -1 & 1 \end{bmatrix} \quad e \quad B = \begin{bmatrix} 1 & 0 \\ 0 & -1 \\ 0 & 0 \end{bmatrix}.$$

Como $AB = I_2$, então A é uma inversa à esquerda para B e B é uma inversa à direita para A.

Muitos problemas com matrizes são resolvidos analisando o *posto* das matrizes envolvidas. Porém, para se falar de posto, normalmente é necessário falar de espaços vetoriais, combinações lineares e dependência linear. Nos próximos parágrafos, definiremos o posto de uma matriz evitando desenvolver a teoria de espaços vetoriais. Para isso, teremos que "mascarar" propriedades gerais dos espaços vetoriais em casos específicos.

O produto cartesiano⁴ $\mathbb{R} \times \mathbb{R} \times \cdots \times \mathbb{R}$ (n vezes) é denotado por \mathbb{R}^n . Os elementos $\mathbf{v} \in \mathbb{R}^n$ são denominados **vetores** e são da forma $\mathbf{v} = (v_1, v_2, \dots, v_n)$, em que $v_i \in \mathbb{R}$, $1 \leq i \leq n$. Sejam $\mathbf{v} = (v_1, v_2, \dots, v_n)$ e $\mathbf{w} = (w_1, w_2, \dots, w_n)$ vetores e $\lambda \in \mathbb{R}$ um escalar. A **soma** dos vetores \mathbf{v} e \mathbf{w} , denotada por $\mathbf{v} + \mathbf{w}$, é definida como o vetor $\mathbf{v} + \mathbf{w} = (v_1 + w_1, v_2 + w_2, \dots, v_n + w_n)$. A **multiplicação** do escalar λ pelo vetor \mathbf{v} , denotada por $\lambda \mathbf{v}$, é definida como o vetor $\lambda \mathbf{v} = (\lambda v_1, \lambda v_2, \dots, \lambda v_n)$. O vetor $(0, 0, \dots, 0)$ é usualmente denotado por $\mathbf{0}$.

É fácil ver que uma matriz $1 \times n$ ou $n \times 1$ (vetor linha ou vetor coluna) pode ser vista como um vetor de \mathbb{R}^n . Generalizando, as linhas de uma matriz $m \times n$ podem ser vistas como vetores de \mathbb{R}^n , assim como as colunas determinam vetores de \mathbb{R}^m . Precisaremos destas identificações na definição de posto.

⁴A partir daqui, até a definição de posto, tudo o que for feito para \mathbb{R} também será válido para \mathbb{C} .

Definição 5. Um conjunto de vetores $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r\} \subseteq \mathbb{R}^n$ é dito **linearmente dependente (LD)** se existem $\lambda_1, \lambda_2, \dots, \lambda_r \in \mathbb{R}$ não todos nulos tais que

$$\lambda_1 \mathbf{v}_1 + \lambda_2 \mathbf{v}_2 + \dots + \lambda_r \mathbf{v}_r = \mathbf{0}.$$

 $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r\}$ é dito linearmente independente (LI) se não é linearmente dependente.

Exemplo 5. Em \mathbb{R}^2 , os vetores $\mathbf{e}_1 = (1,0)$ e $\mathbf{e}_2 = (0,1)$ são linearmente independentes. De fato, $\lambda_1 \mathbf{e}_1 + \lambda_2 \mathbf{e}_2 = (\lambda_1, \lambda_2)$ e, para que $(\lambda_1, \lambda_2) = (0,0)$, devemos ter $\lambda_1 = \lambda_2 = 0$. Os vetores $\mathbf{v}_1 = (1,2)$ e $\mathbf{v}_2 = (2,4)$ de \mathbb{R}^2 são linearmente dependentes pois $2\mathbf{v}_1 + (-1)\mathbf{v}_2 = \mathbf{0}$. Note que qualquer conjunto de vetores que contém o vetor $\mathbf{0}$ é linearmente dependente.

Definição 6. Seja A uma matriz $m \times n$. O **posto** de A, denotado por posto(A) ou rank(A), é definido como o maior número r para o qual existem r linhas de A linearmente independentes (identificando as linhas de A como vetores de \mathbb{R}^n).

Exemplo 6. Conforme exemplo anterior, a matriz

$$I_2 = \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right],$$

possui posto 2.

Proposição 2. Se A é uma matriz $m \times n$, então:

- (i) $posto(A) = posto(A^t)$, isto é, o número máximo de linhas linearmente independentes coincide com o número máximo de colunas linearmente independentes;
- (ii) $posto(A) \le min\{m, n\};$
- (iii) Se \tilde{A} é uma matriz obtida a partir de A como nos itens (vi) ou (viii) da proposição 1, então $posto(\tilde{A}) = posto(A)$.

O próximo resultado é essencial na resolução de problemas.

Teorema 3. Seja A uma matriz quadrada de ordem n. São equivalentes:

- (i) posto(A) = n;
- (ii) A é invertível à esquerda;
- (iii) A é invertível à direita;

- (iv) $\mathbf{x} = \mathbf{0}$ é único vetor coluna tal que $A\mathbf{x} = \mathbf{0}$ (aqui, $\mathbf{0}$ representa a matriz $n \times 1$ formada somente por zeros);
- (v) Para todo vetor coluna \mathbf{b} de tamanho $n \times 1$, existe único vetor coluna \mathbf{x} tal que $A\mathbf{x} = \mathbf{b}$;
- (vi) $det(A) \neq 0$.

Uma matriz A que não satistaz uma (portanto, todas) das condições acima é dita **singular**. Se uma (consequentemente, todas) das condições acima é satisfeita, então A é denominada **não singular**. Neste caso, A possui única inversa à esquerda, única inversa à direita e tais inversas coincidem. A (única) inversa é denotada por A^{-1} e A é dita **invertível**. Além disso, posto $(A^{-1}) = n$, $\det(A^{-1}) = \det(A)^{-1}$, $(A^{-1})^{-1} = A$ e $\mathbf{x} = A^{-1}\mathbf{b}$ é o único vetor coluna \mathbf{x} do item (v).

Proposição 4. Se A e B são matrizes quadradas do mesmo tamanho, então AB é não singular se, e somente se, A e B são não singulares. Neste caso $(AB)^{-1} = B^{-1}A^{-1}$.

Definição 7. Seja A uma matriz quadrada. Um escalar⁵ $\lambda \in \mathbb{C}$ é dito um **autovalor** de A se existe um vetor coluna \mathbf{x} (com entradas em \mathbb{C}) não nulo tal que $A\mathbf{x} = \lambda \mathbf{x}$. Neste caso, \mathbf{x} é denominado um **autovetor** de A associado a λ .

Exemplo 7. Sejam

$$A = \begin{bmatrix} 4 & -5 \\ 2 & -3 \end{bmatrix} \quad \text{e} \quad \mathbf{x} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}.$$

Como A**x** = (-1)**x** e **x** é não nulo, então $\lambda = -1$ é autovalor de A e **x** é autovetor associado a λ .

Sejam A uma matriz quadrada e λ um autovalor de A. Por definição, existe \mathbf{x} não nulo tal que $A\mathbf{x} = \lambda \mathbf{x}$. Tal equação pode ser reescrita na forma $(\lambda I - A)\mathbf{x} = \mathbf{0}$, sendo I a matriz identidade. Como \mathbf{x} é não nulo, segue do item (iv) do teorema 3 que a matriz $\lambda I - A$ é singular. Assim, pelo item (vi) do mesmo teorema devemos ter $\det(\lambda I - A) = 0$. Por outro lado, se A é uma matriz quadrada e $\lambda \in \mathbb{C}$ satisfaz $\det(\lambda I - A) = 0$, então segue dos itens (iv) e (vi) do teorema 3 que existe vetor coluna \mathbf{x} não nulo tal que $(\lambda I - A)\mathbf{x} = \mathbf{0}$ e, portanto, $A\mathbf{x} = \lambda \mathbf{x}$. Em outras palavras, um escalar $\lambda \in \mathbb{C}$ é autovalor de uma matriz A se, e somente se, $\det(\lambda I - A) = 0$.

Conforme definição de determinante, se A possui ordem n, então $\det(xI - A)$ tem como resultado um polinômio mônico (isto é, um polinômio com coeficiente líder igual

 $^{^5}$ Até agora, em todas as definições, poderíamos trabalhar em $\mathbb R$ ou $\mathbb C$. No caso de autovalores e autovetores, a teoria produz melhores resultados em $\mathbb C$.

a 1) de grau n na variável x. Tal polinômio é denominado **polinômio característico** de A e é denotado por $p_A^c(x)$. Como visto anteriormente, as raízes complexas de $p_A^c(x)$ são, exatamente, os autovalores de A. Pelo teorema fundamental da álgebra, $p_A^c(x)$ possui n raízes complexas (contando multiplicidades). A partir daqui, consideraremos que toda matriz A de ordem n possui n autovalores: as n raízes de $p_A^c(x)$. Se λ é uma raiz de multiplicidade r do polinômio característico, então dizemos que λ é um autovalor de multiplicidade r.

Proposição 5. Sejam A uma matriz quadrada de ordem $n \in \lambda_1, \lambda_2, \dots, \lambda_n \in \mathbb{C}$ seus autovalores. Então:

(i)
$$\operatorname{tr}(A) = \lambda_1 + \lambda_2 + \dots + \lambda_n$$
;

- (ii) $\det(A) = \lambda_1 \lambda_2 \dots \lambda_n$;
- (iii) Para qualquer $\lambda \in \mathbb{C}$, os autovalores de $A + \lambda I$ são $\lambda + \lambda_1, \lambda + \lambda_2, \dots, \lambda + \lambda_n$;
- (iv) Se $\lambda_1, \lambda_2, \ldots, \lambda_r$ são distintos e $\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_r$ são autovetores associados, então o conjunto $\{\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_r\}$ é linearmente independente;
- (v) A é não singular se, e somente se, $\lambda_i \neq 0$, para todo i;
- (vi) Se A é não singular, então os autovalores de A^{-1} são $\lambda_1^{-1}, \lambda_2^{-1}, \dots, \lambda_n^{-1}$;
- (vii) Se A é uma matriz real e simétrica (isto é, $A = A^t$), então $\lambda_i \in \mathbb{R}$, para todo i.

Seja A uma matriz triangular superior, triangular inferior ou diagonal. Aplicando o item (iii) da proposição 1 à matriz xI - A, concluímos que os elementos da diagonal principal de A são seus autovalores.

Se A é uma matriz quadrada real, então $p_A^c(x)$ é um polinômio com coeficientes reais. Logo, os autovalores não reais de A aparecem em pares conjugados.

Para qualquer matriz quadrada A de ordem n defina $A^0 = I_n$ e, para qualquer número inteiro positivo k, defina $A^k = \underbrace{AA \dots A}_{k \text{ vezes}}$. Dessa forma, se $q(x) = a_r x^r + a_{r-1} x^{r-1} + \dots + a_1 x + a_0$ é um polinômio com coeficientes complexos, podemos definir $q(A) = a_r A^r + a_{r-1} A^{r-1} + \dots + a_1 A + a_0 I$. Observe que q(A) é uma matriz e não um escalar.

Definição 8. Seja A uma matriz quadrada. O **polinômio minimal** de A, denotado por $p_A^m(x)$, é o polinômio mônico q(x) (com coeficientes em \mathbb{C}) de menor grau tal que $q(A) = \mathbf{0}$.

 $^{^{6}}$ Aqui, $\mathbf{0}$ representa a matriz quadrada do mesmo tamanho de A formada por zeros em todas as entradas.

Note que não há ambiguidade na definição acima. De fato, suponha que existam dois polinômios $q_1(x)$ e $q_2(x)$ que se encaixam na definição acima. Assim, ambos são mônicos e têm o mesmo grau k, logo $q(x) = q_1(x) - q_2(x)$ é um polinômio de grau menor que k tal que $q(A) = \mathbf{0}$. Se q(x) não é o polinômio nulo, então podemos dividir q(x) pelo seu coeficiente líder e obter um polinômio mônico de grau menor que k que se anula em A, contrariando a minimalidade de k. Portanto, devemos ter q(x) = 0 (isto é, q(x) é o polinômio nulo) e, consequentemente, $q_1(x) = q_2(x)$.

Teorema 6. Sejam A uma matriz quadrada, $p_A^c(x)$ seu polinômio característico e $p_A^m(x)$ seu polinômio minimal. Então:

- $(i) \ \ Para \ qualquer \ polin\^omio \ q(x), \ q(A) = \mathbf{0} \ \ se, \ e \ somente \ se, \ p_A^m(x) \ \ divide \ q(x);$
- (ii) $p_A^m(x)$ divide $p_A^c(x)$, isto \acute{e} , $p_A^c(A) = \mathbf{0}$.

O item (ii) do teorema acima é conhecido como teorema de Cayley-Hamilton.

Teorema 7 (Teorema do Mapeamento Espectral). Sejam A uma matriz quadrada de ordem $n \in \lambda_1, \lambda_2, \ldots, \lambda_n$ seus autovalores. Para qualquer polinômio q(x) (com coeficientes em \mathbb{C}), os autovalores da matriz q(A) são $q(\lambda_1), q(\lambda_2), \ldots, q(\lambda_n)$.

Exemplo 8. Tomando $q(x) = x^k$ no teorema acima, concluímos que se λ é um autovalor de A, então λ^k é um autovalor de A^k .

Definição 9. Duas matrizes quadradas de mesmo tamanho A e B são ditas **seme-lhantes** ou **similares** se existe uma matriz não singular M tal que $A = MBM^{-1}$. Neste caso, a notação $A \sim B$ é empregada. Uma matriz que é semelhante a alguma matriz diagonal é dita **diagonalizável**.

Notemos que $A \sim A$ (pois $A = IAI^{-1}$), que $A \sim B$ implica $B \sim A$ (pois $A = MBM^{-1}$ implica $B = M^{-1}A(M^{-1})^{-1}$) e que $A \sim B$ e $B \sim C$ implicam $A \sim C$ (pois $A = MBM^{-1}$ e $B = NCN^{-1}$ implicam $A = (MN)C(MN)^{-1}$). Em outras palavras, a relação de semelhança entre matrizes é uma relação de equivalência.

Seja A uma matriz quadrada de ordem n e suponha que A possua n autovetores linearmente independentes $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$. Denote por λ_i o autovalor de A associado ao autovetor \mathbf{x}_i . Defina $X = [\mathbf{x}_1 \,|\, \mathbf{x}_2 \,|\, \cdots \,|\, \mathbf{x}_n]$, isto é, X é uma matriz $n \times n$ cujas colunas são os autovetores de A. Denote por Λ a matriz diagonal $n \times n$ cujas entradas na diagonal principal são $\lambda_1, \lambda_2, \dots, \lambda_n$ (nesta ordem). Observe que

$$AX = A[\mathbf{x}_1 \mid \mathbf{x}_2 \mid \cdots \mid \mathbf{x}_n] = [A\mathbf{x}_1 \mid A\mathbf{x}_2 \mid \cdots \mid A\mathbf{x}_n] = [\lambda_1 \mathbf{x}_1 \mid \lambda_2 \mathbf{x}_2 \mid \cdots \mid \lambda_n \mathbf{x}_n] = X\Lambda.$$

Pela proposição 2 e pelo teorema 3, a matriz X é invertível. Logo,

$$AX = X\Lambda \implies AXX^{-1} = X\Lambda X^{-1} \implies A = X\Lambda X^{-1},$$

isto é, A é semelhante a uma matriz diagonal Λ formada pelos autovalores de A. Além disso, a matriz de semelhança X é dada pelos autovetores de A. Por outro lado, se $A = MDM^{-1}$ e D é uma matriz diagonal, então é possível provar que os autovalores de A estão na diagonal principal de D e que as colunas de M são os autovetores de A. Logo, o processo de encontrar uma matriz diagonal que seja semelhante a uma matriz A dada está intimamente relacionado com os autovalores e autovetores de A. Sempre que uma matriz A é escrita sob a forma $A = MDM^{-1}$ com D uma matriz diagonal, os problemas que envolvem A são consideravelmente simplificados. Porém, nem sempre uma matriz é diagonalizável.

Exemplo 9. Seja

$$A = \left[\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right].$$

Afirmamos que A não é diagonalizável. Calculando o polinômio característico de A, obtemos $p_A^c(x) = \det(xI - A) = x^2$. Assim, os dois autovalores de A são iguais a 0. Se A fosse diagonalizável, então $A = MDM^{-1}$, com D uma matriz diagonal com os autovalores de A. Como os autovalores são iguais a 0, D é a matriz nula. Assim, teríamos $MDM^{-1} = \mathbf{0}$ independente da matriz M. Logo, A não é diagonalizável.

A próxima proposição fornece algumas condições suficientes para que uma matriz seja diagonalizável.

Proposição 8. Seja A uma matriz quadrada de ordem n. Então:

- (i) A é diagonalizável se, e somente se, A possui n autovetores linearmente independentes;
- (ii) A é diagonalizável se, e somente se, toda raiz do polinômio minimal de A é simples;
- (iii) A é diagonalizável se possui n autovalores distintos;
- (iv) A é diagonalizável se A é uma matriz real e normal (isto é, $AA^t = A^tA$). Em particular, toda matriz real simétrica é diagonalizável.

Nosso último objetivo é definir matrizes na forma de Jordan. Uma matriz na forma de Jordan é uma matriz que é "quase" diagonal. A utilidade deste conceito é que *toda* matriz é semelhante a uma matriz na forma de Jordan.

Definição 10. Uma matriz quadrada de ordem r da forma

$$\begin{bmatrix} \lambda & 1 & & 0 \\ & \ddots & \ddots & \\ & & \ddots & 1 \\ 0 & & \lambda \end{bmatrix}$$

é denominada um bloco de Jordan de ordem r associado a λ . Uma matriz quadrada A é dita estar na forma canônica de Jordan se

$$A = \left[\begin{array}{ccc} M_1 & & & 0 \\ & M_2 & & \\ & & \ddots & \\ 0 & & & M_m \end{array} \right],$$

em que cada M_i representa um bloco de Jordan.

Exemplo 10. A matriz

está na forma canônica de Jordan.

Teorema 9. Toda matriz quadrada A é semelhante a alguma matriz J na forma canônica de Jordan. Além disso, se \tilde{J} é uma outra matriz na forma canônica de Jordan semelhante a A, então J e \tilde{J} possuem os mesmos blocos de Jordan, com uma possível diferença na ordem dos blocos.

O teorema acima, além de garantir uma decomposição de qualquer matriz quadrada A na forma $A = XJX^{-1}$, também afirma que J é única, a menos da ordem dos blocos. A partir daqui, duas formas de Jordan que diferem apenas pela ordem dos blocos serão consideradas "iguais". Dessa maneira, toda matriz possui única forma de Jordan associada.

Teorema 10. Duas matrizes quadradas de mesmo tamanho A e B são semelhantes se, e somente se, possuem a mesma forma canônica de Jordan.

Se J é a forma de Jordan de A então os elementos da diagonal principal de J são os autovalores de A. Assim, cada autovalor de A está associado a um certo número de blocos em J. Por outro lado, todo bloco de J está associado a algum autovalor de A.

Proposição 11. Sejam A uma matriz quadrada de ordem $n \in \lambda_1, \lambda_2, \ldots, \lambda_k$ os autovalores de A com multiplicidades r_1, r_2, \ldots, r_k , respectivamente (portanto $r_1 + r_2 + \cdots + r_k = n$). Seja J a forma de Jordan de A. Denote por $M_i^1, M_i^2, \ldots, M_i^{l_i}$ os blocos em J associados ao autovalor λ_i e seja d_i^j a ordem do bloco M_i^j . Denote por d_i o maior valor do conjunto $\{d_i^1, d_i^2, \ldots, d_i^{l_i}\}$. Então:

- (i) $d_i^1 + d_i^2 + \cdots + d_i^{l_i} = r_i$, para todo i, isto é, a soma das ordens de todos os blocos associados ao autovalor λ_i coincide com a multiplicadade de λ_i ;
- (ii) O número máximo de autovetores associados a λ_i linearmente independentes é l_i , ou seja, o número de blocos associados a λ_i ;
- (iii) O número máximo de autovetores de A linearmente independentes é $l_1 + l_2 + \cdots + l_k$, ou seja, o número de blocos em J;
- (iv) $posto(A) = n b_0$, em que b_0 representa o número de blocos de J associados ao autovalor 0 (se 0 não é autovalor, então $b_0 = 0$);

(v)
$$p_A^c(x) = (x - \lambda_1)^{r_1} (x - \lambda_2)^{r_2} \cdots (x - \lambda_k)^{r_k};$$

(vi)
$$p_A^m(x) = (x - \lambda_1)^{d_1}(x - \lambda_2)^{d_2} \cdots (x - \lambda_k)^{d_k}$$
.

O próximo resultado mostra que matrizes semelhantes possuem muita semelhança!

Proposição 12. Se A e B são duas matrizes semelhantes, então:

- (i) posto(A) = posto(B);
- (ii) tr(A) = tr(B);
- (iii) $\det(A) = \det(B)$;
- (iv) A e B possuem os mesmos autovalores;
- (v) $p_A^c(x) = p_B^c(x)$;
- (vi) $p_A^m(x) = p_B^m(x)$.

Problemas Envolvendo Matrizes

Esta seção contém uma seleção de problemas olímpicos envolvendo matrizes. Resolveremos alguns deles e o restante ficará como desafio ao leitor. As siglas IMC, OBM e OIMU que aparecem nos problemas se referem à Olimpíada Internacional de Matemática para Estudantes Universitários, à Olimpíada Brasileira de Matemática e à Olimpíada Iberoamericana de Matemática Universitária, respectivamente. As soluções dos problemas deixados como exercício podem ser encontradas nos sites das competições.

Problema 1 (IMC 1995). Seja X uma matriz quadrada não singular com colunas $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$. Seja Y uma matriz com colunas $\mathbf{x}_2, \mathbf{x}_3, \dots, \mathbf{x}_n, \mathbf{0}$. Mostre que as matrizes $A = YX^{-1}$ e $B = X^{-1}Y$ têm posto n-1 e que seus autovalores são todos iguais a θ .

Solução. Notemos que as colunas de Y são combinações lineares das colunas de X (neste caso, as combinações lineares são triviais). Sempre que isso ocorre, é possível encontrar uma matriz T tal que Y = XT. É fácil ver que, nesse caso,

$$T = \begin{bmatrix} 0 & 0 & \cdots & 0 & 0 \\ 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & 0 \end{bmatrix}.$$

Como T é uma matriz triangular, então seus autovalores estão na diagonal principal. Logo, todos os autovalores de T são iguais a 0. Além disso, as n-1 primeiras colunas de T são LI e, portanto, posto(T) = n-1 (note que a última coluna é nula). Por fim, observemos que $A = YX^{-1} = XTX^{-1}$ e que $B = X^{-1}Y = X^{-1}XT = T$. Assim, B = T tem as propriedades requeridas. Usando a proposição 12 e o fato de A e T serem semelhantes, concluímos que os autovalores de A são todos nulos e que posto(A) = n-1.

Problema 2 (IMC 1996). Sejam a_0 e d números reais fixados. Para $j=0,1,\ldots,n$,

defina $a_j = a_0 + jd$. Calcule det(A), sendo

$$A = \begin{bmatrix} a_0 & a_1 & a_2 & \cdots & a_n \\ a_1 & a_0 & a_1 & \cdots & a_{n-1} \\ a_2 & a_1 & a_0 & \cdots & a_{n-2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_n & a_{n-1} & a_{n-2} & \cdots & a_0 \end{bmatrix}.$$

Solução. Resolveremos o problema aplicando repetidas vezes os itens (vii) e (viii) da proposição 1. Para facilitar a escrita, adotaremos a notação $L_i = L_i + \lambda L_j$ para expressar que à linha i da matriz acrescentamos a linha j multiplicada por λ . Uma notação análoga será utilizada nas operações por colunas.

$$\det(A) = \begin{vmatrix} a_0 & a_1 & a_2 & \cdots & a_n \\ a_1 & a_0 & a_1 & \cdots & a_{n-1} \\ a_2 & a_1 & a_0 & \cdots & a_{n-2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_n & a_{n-1} & a_{n-2} & \cdots & a_0 \end{vmatrix} \xrightarrow{C_1 = C_1 + C_{n+1}} \begin{vmatrix} 2a_0 + nd & a_1 & a_2 & \cdots & a_n \\ 2a_0 + nd & a_0 & a_1 & \cdots & a_{n-1} \\ 2a_0 + nd & a_1 & a_0 & \cdots & a_{n-2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 2a_0 + nd & a_{n-1} & a_{n-2} & \cdots & a_0 \end{vmatrix}$$

$$= (2a_0 + nd) \begin{vmatrix} 1 & a_1 & a_2 & \cdots & a_n \\ 1 & a_0 & a_1 & \cdots & a_{n-1} \\ 1 & a_1 & a_0 & \cdots & a_{n-2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & a_{n-1} & a_{n-2} & \cdots & a_0 \end{vmatrix} \begin{vmatrix} 1 & a_1 & a_2 & \cdots & a_n \\ a_{n-1} & a_{n-2} & \cdots & a_0 \end{vmatrix} \begin{vmatrix} 1 & a_1 & a_2 & \cdots & a_n \\ 0 & -d & -d & \cdots & -d \\ 0 & d & -d & \cdots & -d \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & d & d & \cdots & -d \end{vmatrix}$$

$$= (2a_0 + nd)d^n \begin{vmatrix} -1 & -1 & \cdots & -1 \\ 1 & -1 & \cdots & -1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & -1 \end{vmatrix} \xrightarrow{L_i = L_i + L_1}_{i=2,3,\dots,n} (2a_0 + nd)d^n \begin{vmatrix} -1 & -1 & \cdots & -1 \\ 0 & -2 & \cdots & -2 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & -2 \end{vmatrix}$$

$$= (2a_0 + nd)d^n(-1)(-2)^{n-1} = (-1)^n(2a_0 + nd)2^{n-1}d^n.$$

No último passo, usamos que a matriz é triangular superior e, com isso, seu determinante é o produto dos elementos da diagonal principal.

Problema 3 (IMC 2000). Sejam A e B matrizes quadradas de mesmo tamanho tais que posto(AB - BA) = 1. Mostre que $(AB - BA)^2 = 0$.

Solução. Denote por C a matriz AB - BA. Como posto de C é um, segue do item (iv) da proposição 11 que C possui, pelo menos, n-1 autovalores iguais a 0. Notemos

que $\operatorname{tr}(C) = \operatorname{tr}(AB - BA) = \operatorname{tr}(AB) - \operatorname{tr}(BA) = 0$. Logo, pelo item (i) da proposição 5, o outro autovalor também é igual a 0. Novamente pelo item (iv) da proposição 11, descobrimos que a forma de Jordan de C possui n-1 blocos e, portanto, há n-2 blocos de ordem 1 e um bloco de ordem 2. Em outras palavras, a forma de Jordan J de C (a menos da ordem dos blocos) é a matriz com 1 na entrada (1,2) e 0 em todas as outras entradas. Claramente, $J^2 = \mathbf{0}$. Escrevendo $C = XJX^{-1}$ (conforme teorema 9), obtemos que $C^2 = XJX^{-1}XJX^{-1} = XJ^2X^{-1} = \mathbf{0}$.

Problema 4 (IMC 2003). Seja A uma matriz real $n \times n$ tal que $3A^3 = A^2 + A + I$. Mostre que a sequência $(A^k)_{k\geq 1}$ converge para uma matriz idempotente. (Uma matriz B é dita idempotente se $B^2 = B$.)

Solução. Pelo teorema 6, o polinômio minimal de A divide $q(x)=3x^3-x^2-x-1$. Uma das raízes de q(x) é 1 e as outras duas são raízes complexas (conjugadas) de módulo menor que 1. Como todas as raízes de q(x) possuem multiplicidade 1, então o mesmo vale para o polinômio minimal de A. Logo, pela proposição 8, A é diagonalizável e, portanto, $A=X\Lambda X^{-1}$. Note que os possíveis valores na diagonal de Λ são as raízes de q(x). Se $x_1=1, x_2$ e x_3 são as raízes de q(x), então $\lim_{k\to\infty} x_1^k=1$, $\lim_{k\to\infty} x_2^k=0$ e $\lim_{k\to\infty} x_3^k=0$ (pois x_2 e x_3 têm módulo menor que 1). Assim, $P=\lim_{k\to\infty} \Lambda^k$ é uma matriz diagonal com 0's e 1's na diagonal principal e, com isso, idempotente. Visto que $A^k=X\Lambda^kX^{-1}$, então $\lim_{k\to\infty} A^k=\lim_{k\to\infty} X\Lambda^kX^{-1}=XPX^{-1}$. Por fim, basta observar que $(XPX^{-1})^2=XPX^{-1}XPX^{-1}=XP^2X^{-1}=XPX^{-1}$.

Problema 5 (IMC 2003). Sejam A e B matrizes reass $n \times n$ tais que $AB + A + B = \mathbf{0}$. Mostre que AB = BA.

Solução. Observe que (A + I)(B + I) = AB + A + B + I = I. Assim A + I e B + I são inversas uma da outra. Logo, (B + I)(A + I) = I e, com isso, $BA + B + A = \mathbf{0}$. Juntando tal igualdade com a igualdade do enunciado, obtemos o resultado requerido.

Problema 6 (OBM 2002, nível universitário, 1ª fase). Seja A a matriz real $n \times n$

$$A = \left[\begin{array}{cccc} x+y & x & \cdots & x \\ x & x+y & \cdots & x \\ \vdots & \vdots & \ddots & \vdots \\ x & x & \cdots & x+y \end{array} \right].$$

Diga para que valores de x e y a matriz A é invertível e calcule A^{-1} .

Solução. Claramente, se y=0, A não é invertível (pois terá posto, no máximo, 1). A soma das n linhas de A é o vetor $(nx+y, nx+y, \dots, nx+y)$. Assim, se nx+y=0,

as n linhas de A serão LD e, por consequência, posto $(A) \leq n-1$. Portanto, A não é invertível se nx+y=0. Exibiremos a inversa de A se $y \neq 0$ e $nx+y \neq 0$. Observemos que A=xU+yI, em que U é a matriz com todas as entradas iguais a 1. Sempre que uma matriz B invertível pode ser escrita como um polinômio de uma matriz C, então a inversa de B também é um polinômio em C. Em nosso caso, A é um polinômio na matriz U e, portanto A^{-1} também é um polinômio em U. Visto que $U^k=n^{k-1}U$, então todo polinômio em U pode ser escrito como um polinômio de grau 1. Com isso, A^{-1} é da forma aU+bI. Impondo que $I=AA^{-1}=(xU+yI)(aU+bI)$, obtemos $b=\frac{1}{y}$ e $a=-\frac{x}{y(nx+y)}$. Isto mostra que $A^{-1}=\frac{1}{y}I-\frac{x}{y(nx+y)}U$.

Problema 7 (OBM 2008, nível universitário, 2^a fase). Prove que não existe uma matriz real 7×7 com entradas não negativas cujos autovalores (contando com multiplicidade) são: 6, -5, -5, 1, 1, 1 e 1.

Solução. Suponha, por contradição, que exista uma matriz A 7 × 7 com entradas não negativas com tais autovalores. Note que A^k também é uma matriz com entradas não negativas, para qualquer $k \ge 1$. Em particular, $\operatorname{tr}(A^k) \ge 0$. Pelo teorema 7, os autovalores de A^k são 6^k , $(-5)^k$, $(-5)^k$, 1, 1, 1 e 1. Logo, $\operatorname{tr}(A^k) = 6^k + (-5)^k + (-5)^k + 1 + 1 + 1 + 1 \ge 0$, para todo $k \ge 1$. Tomando k = 3, obtemos uma contradição.

Problema 8 (OIMU 2005). Considere matrizes reais quadradas A, B e C de ordem n tais que $A^3 = -I$, $BA^2 + BA = C^6 + C + I$ e C é simétrica. É possível ter n = 2005? Solução. Como $A^3 = -I$, então o polinômio minimal de A divide $q(x) = x^3 + 1$. Em particular, todo autovalor de A deve ser uma raiz de q(x), as quais são $x_1 = -1$, $x_2 = \frac{1+\sqrt{3}i}{2}$ e $x_3 = \frac{1-\sqrt{3}i}{2}$. Afirmamos que -1 não é autovalor de A. De fato, suponha por contadição que exista $\mathbf{x} \neq \mathbf{0}$ tal que $A\mathbf{x} = -\mathbf{x}$. Assim, $(C^6 + C + I)\mathbf{x} = (BA^2 + BA)\mathbf{x} = B\mathbf{x} - B\mathbf{x} = \mathbf{0}$, isto é, 0 é autovalor de $C^6 + C + I$. Sabemos do teorema 7 que os autovalores de $C^6 + C + I$ são da forma $\lambda^6 + \lambda + 1$, em que λ é um autovalor de C. Visto que C é simétrica, então seus autovalores são reais (proposição 5). Portanto, os autovalores de $C^6 + C + I$ são da forma $\lambda^6 + \lambda + 1$, com λ real. Com ferramentas básicas de cálculo, é possível mostrar que $q(x) = x^6 + x + 1 > 0$, para todo $x \in \mathbb{R}$. Logo, 0 não pode ser um autovalor de $C^6 + C + I$, contradição! Assim, os possíveis autovalores de A são $x_2 = \frac{1+\sqrt{3}i}{2}$ e $x_3 = \frac{1-\sqrt{3}i}{2}$. Como A é real, tais autovalores aparecem aos pares, mostrando que a dimensão de A é par. Isto mostra que não podemos ter n = 2005.

Os próximos problemas ficam como exercício. Bom trabalho!

Problema 9 (IMC 1994). (a) Seja A uma matriz $n \times n$, $n \geq 2$, real, simétrica, invertível e com entradas positivas. Mostre que $z_n \leq n^2 - 2n$, sendo z_n o número de entradas nulas em A^{-1} .

(b) Quantas entradas nulas há na inversa da matriz $n \times n$

$$A = \begin{bmatrix} 1 & 1 & 1 & 1 & \cdots & 1 \\ 1 & 2 & 2 & 2 & \cdots & 2 \\ 1 & 2 & 1 & 1 & \cdots & 1 \\ 1 & 2 & 1 & 2 & \cdots & 2 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 2 & 1 & 2 & \cdots & \ddots \end{bmatrix}?$$

Problema 10 (IMC 1997). Seja M uma matriz invertível de ordem 2n, representada na forma de blocos como

$$M = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \quad \text{e} \quad M^{-1} = \begin{bmatrix} E & F \\ G & H \end{bmatrix},$$

em que cada bloco possui ordem n. Mostre que det(M) det(H) = det(A).

Problema 11 (IMC 1999). (a) Mostre que, para qualquer $m \in \mathbb{N}^*$, existe uma matriz real $A \ m \times m \ tal \ que \ A^3 = A + I$.

(b) Mostre que det(A) > 0 para toda matriz real $A \ m \times m$ que satisfaz $A^3 = A + I$.

Problema 12 (IMC 2002). Calcule o determinante da matriz $n \times n$ $A = (a_{ij})$, em que

$$a_{ij} = \begin{cases} (-1)^{|i-j|}, & \text{se } i \neq j, \\ 2, & \text{se } i = j. \end{cases}$$

Problema 13 (IMC 2004). Sejam A uma matriz real 4×2 e B uma matriz real 2×4 tais que

$$AB = \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \\ -1 & 0 & 1 & 0 \\ 0 & -1 & 0 & 1 \end{bmatrix}.$$

Encontre BA.

Problema 14 (IMC 2005). Seja $A = (a_{ij})$ uma matriz $n \times n$ tal que $a_{ij} = i + j$. Encontre o posto de A.

Problema 15 (IMC 2009). Sejam A, B e C matrizes reais quadradas de mesmo tamanho e suponha que A seja invertível. Mostre que se $(A - B)C = BA^{-1}$, então $C(A - B) = A^{-1}B$.

Problema 16 (OBM 2001, nível universitário, 1^a fase). Seja A uma matriz $n \times n$ com $a_{1j} = a_{i1} = 1$ (para quaisquer i e j, $1 \le i, j \le n$) e $a_{i+1,j+1} = a_{ij} + a_{i+1,j} + a_{i,j+1}$ (para quaisquer i e j, $1 \le i, j < n$). Assim,

$$A = \begin{bmatrix} 1 & 1 & 1 & 1 & \cdots \\ 1 & 3 & 5 & 7 & \cdots \\ 1 & 5 & 13 & 25 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix}.$$

 $Calcule \det(A)$.

Problema 17 (OBM 2003, nível universitário, 1ª fase). Sejam A e B matrizes reais $n \times n$ invertíveis. Mostre que se vale a condição $(AB)^k = A^k B^k$ para três valores inteiros consecutivos de k, então AB = BA.

Problema 18 (OIMU 2004). Considere a matriz real quadrada $S = (s_{ij})$ de ordem n e entradas

$$s_{ij} = \sum_{k=1}^{n} k^{i+j}.$$

Calcule det(S).

Referências

- [1] Axler, Sheldon. Linear Algebra Done Right. Second Edition. Springer-Verlag, 1997.
- [2] Meyer, Carl D.. Matrix Analysis and Applied Linear Algebra. Siam, 2000.