Class 12:Pathway Analysis from RNA-Seq Results

Hong (PID: A16558957)

2/26/2022

library(DESeq2)

```
## Loading required package: S4Vectors
## Loading required package: stats4
## Loading required package: BiocGenerics
## Attaching package: 'BiocGenerics'
## The following objects are masked from 'package:stats':
##
##
       IQR, mad, sd, var, xtabs
## The following objects are masked from 'package:base':
##
##
       anyDuplicated, append, as.data.frame, basename, cbind, colnames,
##
       dirname, do.call, duplicated, eval, evalq, Filter, Find, get, grep,
       grepl, intersect, is.unsorted, lapply, Map, mapply, match, mget,
##
##
       order, paste, pmax, pmax.int, pmin, pmin.int, Position, rank,
##
       rbind, Reduce, rownames, sapply, setdiff, sort, table, tapply,
##
       union, unique, unsplit, which.max, which.min
## Attaching package: 'S4Vectors'
## The following objects are masked from 'package:base':
##
##
       expand.grid, I, unname
## Loading required package: IRanges
## Loading required package: GenomicRanges
## Loading required package: GenomeInfoDb
## Loading required package: SummarizedExperiment
```

```
## Loading required package: MatrixGenerics
## Loading required package: matrixStats
##
## Attaching package: 'MatrixGenerics'
## The following objects are masked from 'package:matrixStats':
##
##
       colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse,
##
       colCounts, colCummaxs, colCummins, colCumprods, colCumsums,
       colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs,
##
##
       colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats,
##
       colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds,
##
       colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads,
##
       colWeightedMeans, colWeightedMedians, colWeightedSds,
       colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet,
##
##
       rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods,
       rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps,
##
##
       rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins,
##
       rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks,
       rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars,
##
##
       rowWeightedMads, rowWeightedMeans, rowWeightedMedians,
##
       rowWeightedSds, rowWeightedVars
## Loading required package: Biobase
## Welcome to Bioconductor
##
##
       Vignettes contain introductory material; view with
##
       'browseVignettes()'. To cite Bioconductor, see
       'citation("Biobase")', and for packages 'citation("pkgname")'.
##
##
## Attaching package: 'Biobase'
## The following object is masked from 'package:MatrixGenerics':
##
##
       rowMedians
## The following objects are masked from 'package:matrixStats':
##
##
       anyMissing, rowMedians
metaFile <- "GSE37704_metadata.csv"</pre>
countFile <-"GSE37704_featurecounts.csv"</pre>
countData = read.csv(countFile, row.names=1)
head(countData)
```

```
##
                    length SRR493366 SRR493367 SRR493368 SRR493369 SRR493370
## ENSG0000186092
                       918
                                   0
                                              0
                                                        0
                                                                   0
                                                                              0
## ENSG00000279928
                                              0
                                                        0
                       718
                                   0
                                                                   0
                                                                              0
                                  23
                                                        29
                                                                  29
## ENSG00000279457
                      1982
                                             28
                                                                             28
## ENSG0000278566
                       939
                                   0
                                              0
                                                        0
                                                                   0
                                                                              0
                                   0
                                              0
                                                        0
                                                                   0
                                                                              0
## ENSG00000273547
                       939
## ENSG0000187634
                      3214
                                 124
                                            123
                                                      205
                                                                 207
                                                                            212
##
                    SRR493371
## ENSG0000186092
                            0
                            0
## ENSG0000279928
## ENSG00000279457
                           46
## ENSG0000278566
                            0
## ENSG00000273547
                            0
## ENSG0000187634
                          258
colData = read.csv(metaFile, row.names=1)
head(colData)
                  condition
## SRR493366 control_sirna
## SRR493367 control_sirna
## SRR493368 control_sirna
## SRR493369
                  hoxa1 kd
## SRR493370
                  hoxa1_kd
## SRR493371
                  hoxa1_kd
```

Q. Complete the code below to remove the troublesome first column from countData

```
countData <- as.matrix(countData[,-1])
head(countData)</pre>
```

##		SRR493366	SRR493367	SRR493368	SRR493369	SRR493370	SRR493371
##	ENSG00000186092	0	0	0	0	0	0
##	ENSG00000279928	0	0	0	0	0	0
##	ENSG00000279457	23	28	29	29	28	46
##	ENSG00000278566	0	0	0	0	0	0
##	ENSG00000273547	0	0	0	0	0	0
##	ENSG00000187634	124	123	205	207	212	258

Complete the code below to filter countData to exclude genes (i.e. rows) where we have 0 read count across all samples (i.e. columns).

```
zero.vals <- which(countData[,1:2]==0, arr.ind=TRUE)
to.rm <- unique(zero.vals[,1])
mycounts <- countData[-to.rm,]
head(mycounts)</pre>
```

```
##
                    SRR493366 SRR493367 SRR493368 SRR493369 SRR493370 SRR493371
## ENSG00000279457
                           23
                                      28
                                                29
                                                           29
                                                                      28
                                                                                46
## ENSG0000187634
                          124
                                     123
                                               205
                                                          207
                                                                     212
                                                                               258
## ENSG0000188976
                         1637
                                    1831
                                              2383
                                                         1226
                                                                   1326
                                                                              1504
## ENSG0000187961
                          120
                                     153
                                               180
                                                          236
                                                                     255
                                                                               357
## ENSG0000187583
                                      48
                                                65
                                                                      48
                           24
                                                           44
                                                                                64
## ENSG0000187642
                            4
                                       9
                                                16
                                                           14
                                                                      16
                                                                                16
```

```
dds = DESeqDataSetFromMatrix(countData=mycounts,
                              colData=colData,
                              design=~condition)
## Warning in DESeqDataSet(se, design = design, ignoreRank): some variables in
## design formula are characters, converting to factors
dds = DESeq(dds)
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
dds
## class: DESeqDataSet
## dim: 13761 6
## metadata(1): version
## assays(4): counts mu H cooks
## rownames(13761): ENSG00000279457 ENSG00000187634 ... ENSG00000276345
    ENSG00000271254
## rowData names(22): baseMean baseVar ... deviance maxCooks
## colnames(6): SRR493366 SRR493367 ... SRR493370 SRR493371
## colData names(2): condition sizeFactor
res = results(dds, contrast=c("condition", "hoxa1_kd", "control_sirna"))
    Call the summary() function on your results to get a sense of how many genes are up or down-
    regulated at the default 0.1 p-value cutoff.
summary(res)
##
## out of 13761 with nonzero total read count
## adjusted p-value < 0.1
## LFC > 0 (up)
                      : 4328, 31%
                      : 4474, 33%
## LFC < 0 (down)
## outliers [1]
                      : 0, 0%
## low counts [2]
                      : 0, 0%
## (mean count < 0)
## [1] see 'cooksCutoff' argument of ?results
```

[2] see 'independentFiltering' argument of ?results

Q. Improve this plot by completing the below code, which adds color and axis labels

```
mycols <- rep("gray", nrow(res) )
mycols[ abs(res$log2FoldChange) > 2 ] <- "red"
inds <- (res$padj < 0.01) & (abs(res$log2FoldChange) > 2 )
mycols[ inds ] <- "blue"
plot( res$log2FoldChange, -log(res$padj), col=mycols, xlab="Log2(FoldChange)", ylab="-Log(P-value)" )</pre>
```


Q. Use the mapIDs() function multiple times to add SYMBOL, ENTREZID and GENENAME annotation to our results by completing the code below.

```
library("AnnotationDbi")
library("org.Hs.eg.db")
##
columns(org.Hs.eg.db)
##
    [1] "ACCNUM"
                        "ALIAS"
                                        "ENSEMBL"
                                                        "ENSEMBLPROT"
                                                                        "ENSEMBLTRANS"
##
    [6] "ENTREZID"
                        "ENZYME"
                                        "EVIDENCE"
                                                        "EVIDENCEALL"
                                                                        "GENENAME"
                        "GO"
                                         "GOALL"
                                                        "IPI"
                                                                        "MAP"
        "GENETYPE"
                        "ONTOLOGY"
        "OMIM"
                                        "ONTOLOGYALL"
                                                        "PATH"
                                                                        "PFAM"
   [16]
        "PMID"
                        "PROSITE"
                                         "REFSEQ"
                                                        "SYMBOL"
                                                                        "UCSCKG"
##
   [21]
   [26] "UNIPROT"
res$symbol = mapIds(org.Hs.eg.db,
                     keys=row.names(res),
                     keytype="ENSEMBL",
                     column="SYMBOL",
                     multiVals="first")
```

'select()' returned 1:many mapping between keys and columns

```
res$entrez = mapIds(org.Hs.eg.db,
                    keys=row.names(res),
                    keytype="ENSEMBL",
                    column="ENTREZID",
                    multiVals="first")
## 'select()' returned 1:many mapping between keys and columns
             mapIds(org.Hs.eg.db,
res$name =
                    keys=row.names(res),
                    keytype="ENSEMBL",
                    column="GENENAME",
                    multiVals="first")
## 'select()' returned 1:many mapping between keys and columns
head(res, 10)
## log2 fold change (MLE): condition hoxa1_kd vs control_sirna
## Wald test p-value: condition hoxa1 kd vs control sirna
## DataFrame with 10 rows and 9 columns
##
                    baseMean log2FoldChange
                                                             stat
                                                                       pvalue
##
                   <numeric>
                                  <numeric> <numeric>
                                                        <numeric>
                                                                    <numeric>
## ENSG0000279457
                     29.9136
                                  0.1802410 0.3128743
                                                         0.576081 5.64560e-01
## ENSG00000187634 183.2296
                                  0.4259300 0.1357991
                                                         3.136471 1.70994e-03
## ENSG00000188976 1651.1881
                                 -0.6927121 0.0549826 -12.598761 2.14486e-36
## ENSG00000187961 209.6379
                                  0.7299474 0.1279936
                                                        5.702998 1.17718e-08
## ENSG0000187583
                     47.2551
                                  0.0393402 0.2613090
                                                        0.150550 8.80330e-01
## ENSG0000187642
                     11.9798
                                  0.5397049 0.5013479
                                                        1.076508 2.81700e-01
## ENSG00000188290 108.9221
                                  2.0563306 0.1914001 10.743624 6.35019e-27
## ENSG0000187608
                                                        2.567054 1.02567e-02
                    350.7169
                                  0.2570463 0.1001328
## ENSG00000188157 9128.4394
                                  0.3899096 0.0481440
                                                         8.098821 5.54943e-16
## ENSG00000131591 156.4791
                                  0.1968739 0.1409590
                                                         1.396675 1.62511e-01
##
                                    symbol
                                                entrez
                                                                          name
                          padj
##
                     <numeric> <character> <character>
                                                                   <character>
## ENSG00000279457 6.53784e-01
                                    WASH9P
                                             102723897 WAS protein family h..
## ENSG00000187634 3.52201e-03
                                    SAMD11
                                                148398 sterile alpha motif ...
## ENSG00000188976 2.40943e-35
                                                 26155 NOC2 like nucleolar ...
                                     NOC2L
## ENSG00000187961 4.06810e-08
                                    KLHL17
                                                 339451 kelch like family me..
## ENSG00000187583 9.12748e-01
                                                 84069 pleckstrin homology ...
                                   PLEKHN1
## ENSG00000187642 3.68486e-01
                                                 84808 PPARGC1 and ESRR ind..
                                     PERM1
## ENSG00000188290 5.26099e-26
                                                 57801 hes family bHLH tran..
                                      HES4
## ENSG00000187608 1.87489e-02
                                     ISG15
                                                  9636 ISG15 ubiquitin like...
## ENSG00000188157 2.94735e-15
                                      AGRN
                                                 375790
                                                                         agrin
## ENSG00000131591 2.29875e-01
                                  C1orf159
                                                  54991 chromosome 1 open re..
```

Q. Finally for this section let's reorder these results by adjusted p-value and save them to a CSV file in your current project directory.

```
res = res[order(res$pvalue),]
write.csv(res, file ="deseq_results.csv")
```

library(pathview)

[67] "11253"

[73] "113451"

[85] "122481"

[79] "1160"

##

##

##

##

"11282"

"113612"

"116285"

"122622"

```
## Pathview is an open source software package distributed under GNU General
## Public License version 3 (GPLv3). Details of GPLv3 is available at
## http://www.gnu.org/licenses/gpl-3.0.html. Particullary, users are required to
## formally cite the original Pathview paper (not just mention it) in publications
## or products. For details, do citation("pathview") within R.
## The pathview downloads and uses KEGG data. Non-academic uses may require a KEGG
## license agreement (details at http://www.kegg.jp/kegg/legal.html).
library(gage)
##
library(gageData)
data(kegg.sets.hs)
data(sigmet.idx.hs)
head(kegg.sets.hs, 3)
## $'hsa00232 Caffeine metabolism'
## [1] "10" "1544" "1548" "1549" "1553" "7498" "9"
##
## $'hsa00983 Drug metabolism - other enzymes'
  [1] "10"
                "1066"
                        "10720"
                                 "10941"
                                         "151531" "1548"
                                                          "1549"
                                                                   "1551"
##
   [9] "1553"
                "1576"
                        "1577"
                                 "1806"
                                         "1807"
                                                  "1890"
                                                           "221223" "2990"
## [17] "3251"
                "3614"
                        "3615"
                                 "3704"
                                         "51733"
                                                  "54490"
                                                          "54575"
                                                                   "54576"
  [25] "54577"
                "54578"
                        "54579"
                                 "54600"
                                         "54657"
                                                  "54658"
                                                          "54659"
                                                                   "54963"
  [33] "574537" "64816"
                        "7083"
                                 "7084"
                                         "7172"
                                                  "7363"
                                                          "7364"
                                                                   "7365"
  [41] "7366"
                "7367"
                        "7371"
                                 "7372"
                                         "7378"
                                                  "7498"
                                                          "79799"
                                                                   "83549"
                        "9"
                                 "978"
##
  [49] "8824"
                "8833"
##
## $'hsa01100 Metabolic pathways'
##
     [1] "10"
                    "100"
                                "10007"
                                           "100137049" "10020"
                                                                  "10026"
     [7] "100510686" "10063"
                                                                  "10201"
##
                                "10157"
                                           "10170"
                                                       "10195"
##
    [13] "10229"
                    "10312"
                                "10317"
                                           "10327"
                                                       "10331"
                                                                  "1036"
##
    [19] "10380"
                    "10390"
                                "1040"
                                           "10400"
                                                       "10402"
                                                                  "10423"
##
     [25] "10449"
                    "10476"
                                "10554"
                                           "10555"
                                                       "10558"
                                                                  "1056"
##
    [31] "10588"
                    "10606"
                                "10621"
                                           "10622"
                                                       "10623"
                                                                  "10632"
    [37] "10654"
                    "1066"
                                                       "10690"
                                                                  "10714"
##
                                "10678"
                                           "10682"
     [43] "10720"
                    "10768"
                                "10797"
                                           "10826"
                                                       "10841"
                                                                  "10855"
##
##
     [49] "10873"
                    "10901"
                                "10905"
                                           "10941"
                                                       "10975"
                                                                  "10993"
     [55] "10998"
                                           "1109"
##
                    "11019"
                                "11041"
                                                       "11112"
                                                                  "11128"
     [61] "1119"
                     "1120"
                                "11226"
                                           "11227"
                                                       "11232"
                                                                  "112483"
##
```

"113026"

"119548"

"123745"

"1152"

"11320"

"1158"

"120227"

"123876"

"11343"

"121278"

"1159"

"124"

"11285"

"114805"

"117248"

"123099"

##	[91]	"124454"	"124975"	"125"	"125061"	"125965"	"125981"
##	[97]	"126"	"126328"	"126792"	"127"	"127124"	"128"
##	[103]	"128869"	"129607"	"129642"	"130"	"130013"	"131"
##	[109]	"1312"	"131669"	"132"	"132158"	"1327"	"132789"
##	[115]	"1329"	"1337"	"1339"	"1340"	"134147"	"1345"
##	[121]	"1349"	"1350"	"1351"	"135152"	"1352"	"1353"
##	[127]	"1355"	"1371"	"1373"	"137964"	"138050"	"138429"
##	[133]	"139596"	"140838"	"1431"	"144193"	"144245"	"145226"
##	[139]	"146664"	"1491"	"15"	"1503"	"150763"	"151056"
##	[145]	"151531"	"1537"	"154141"	"1543"	"1544"	"1548"
##	[151]	"1549"	"155066"	"1551"	"1553"	"1555"	"1557"
##	[157]	"1558"	"1559"	"1562"	"1571"	"1573"	"157506"
##	[163]	"1576"	"1577"	"1579"	"158"	"1581"	"1582"
##	[169]	"1583"	"1584"	"1585"	"1586"	"1588"	"1589"
##	[175]	"159"	"1593"	"1594"	"1595"	"160287"	"1603"
##	[181]	"1606"	"1607"	"1608"	"160851"	"1609"	"1610"
##	[187]	"1621"	"162417"	"162466"	"1629"	"1633"	"1635"
##	[193]	"1638"	"1644"	"1650"	"166929"	"168391"	"169355"
##	[199]	"170712"	"171568"	"1716"	"1717"	"1718"	"1719"
##	[205]	"1723"	"1737"	"1738"	"1743"	"1757"	"178"
##	[211]	"1786"	"1787"	"1788"	"1789"	"1798"	"18"
##	[217]	"1806"	"1807"	"1841"	"1854"	"189"	"1890"
##	[223]	"1892"	"191"	"192134"	"1962"	"197258"	"199857"
##	[229]	"201595"	"2023"	"2026"	"2027"	"203"	"204"
##	[235]	"205"	"2053"	"2058"	"210"	"211"	"212"
##	[241]	"2131"	"2132"	"2134"	"2135"	"2137"	"216"
##	[247]	"217"	"218"	"2180"	"2181"	"2182"	"2184"
##	[253]	"219"	"2194"	"220"	"2203"	"221"	"221223"
##	[259]	"221823"	"222"	"2222"	"2224"	"223"	"2235"
##	[265]	"224"	"226"	"2271"	"22845"	"22856"	"229"
##	[271]	"22928"	"22929"	"22934"	"22978"	"230"	"23057"
##	[277]	"231"	"23193"	"23236"	"23305"	"23382"	"23396"
##	[283]	"23417"	"23475"	"23483"	"23498"	"23530"	"23545"
##	[289]	"23553"	"23556"	"2356"	"23600"	"23649"	"23761"
##	[295]	"239"	"240"	"242"	"245972"	"245973"	"246"
##	[301]	"246721"	"247"	"248"	"249"	"250"	"251"
##	[307]	"2523"	"2524"	"2525"	"2526"	"2527"	"2528"
##	[313]	"2529"	"2530"	"2531"	"253558"	"2538"	"2539"
##	[319]	"254531"	"2548"	"256435"	"2571"	"2572"	"25796"
##	[325]	"2581"	"2582"	"2583"	"25834"	"2584"	"2585"
##	[331]	"2588"	"25885"	"2589"	"2590"	"25902"	"2591"
##	[337]	"2592"	"259230"	"2593"	"259307"	"2595"	"2597"
##	[343]	"26007"	"26035"	"2618"	"262"	"26227"	"26229"
##	[349]	"26275"	"26279"	"2628"	"26289"	"2629"	"26290"
##	[355]	"26301"	"2632"	"26330"	"2639"	"2643"	"2645"
##	[361]	"2650"	"2651"	"2673"	"2678"	"2683"	"2686"
##	[367]	"2687"	"270"	"27010"	"27034"	"27087"	"27089"
##	[373]	"27090"	"271"	"2710"	"2712"	"27124"	"27165"
##	[379]	"272"	"2720"	"27235"	"2729"	"2730"	"27306"
##	[385]	"2731"	"27349"	"27430"	"2744"	"2746"	"2747"
##	[391]	"275"	"2752"	"276"	"2762"	"277"	"278"
##	[397]	"279"	"2799"	"28"	"280"	"2805"	"2806"
##	[403]	"2821"	"283208"	"283871"	"284098"	"284541"	"2875"
##	[409]	"290"	"29071"	"2937"	"2954"	"29796"	"2987"

##	[415]	"29880"	"2990"	"29906"	"29920"	"29922"	"29925"
##	[421]	"29926"	"29929"	"29947"	"29958"	"29968"	"30"
##	[427]	"3028"	"3030"	"3032"	"3033"	"3034"	"3067"
##	[433]	"3073"	"3074"	"3081"	"30814"	"30815"	"30833"
##	[439]	"30834"	"3098"	"3099"	"31"	"3101"	"314"
##	[445]	"3141"	"3145"	"3155"	"3156"	"3157"	"3158"
##	[451]	"316"	"317749"	"32"	"3242"	"3251"	"326625"
##	[457]	"3283"	"3284"	"3290"	"3291"	"3292"	"3293"
##	[463]	"3294"	"3295"	"33"	"3340"	"3373"	"337876"
##	[469]	"339221"	"34"	"340485"	"341392"	"3417"	"3418"
##	[475]	"3419"	"341947"	"3420"	"3421"	"3422"	"3423"
##	[481]	"3425"	"348158"	"349565"	"35"	"353"	"36"
##	[487]	"3612"	"3613"	"3614"	"3615"	"3620"	"3628"
##	[493]	"3631"	"3632"	"3633"	"3636"	"37"	"3703"
##	[499]	"3704"	"3705"	"3706"	"3707"	"3712"	"374291"
##	[505]	"374378"	"3795"	"38"	"383"	"384"	"387787"
##	[511]	"39"	"3906"	"391013"	"3938"	"3939"	"3945"
##	[517]	"3948"	"3990"	"4047"	"4048"	"4051"	"4056"
##	[523]	"411"	"4121"	"4122"	"4124"	"4128"	"4129"
##	[529]	"4143"	"4144"	"4190"	"4191"	"4199"	"4245"
##	[535]	"4247"	"4248"	"4249"	"427"	"4329"	"435"
##	[541]	"4351"	"4357"	"438"	"440"	"440138"	"440567"
##	[547]	"441024"	"441531"	"442117"	"445"	"4507"	"4508"
##	[553]	"4509"	"4512"	"4513"	"4514"	"4519"	"4522"
##	[559]	"4524"	"4535"	"4536"	"4537"	"4538"	"4539"
##	[565]	"4540"	"4541"	"4548"	"4594"	"4597"	"4598"
##	[571]	"4669"	"4694"	"4695"	"4696"	"4697"	"4698"
##	[577]	"47"	"4700"	"4701"	"4702"	"4704"	"4705"
##	[583]	"4706"	"4707"	"4708"	"4709"	"471"	"4710"
##	[589]	"4711"	"4712"	"4713"	"4714"	"4715"	"4716"
##	[595]	"4717"	"4718"	"4719"	"4720"	"4722"	"4723"
##	[601]	"4724"	"4725"	"4726"	"4728"	"4729"	"4731"
##	[607]	"48"	"4830"	"4831"	"4832"	"4833"	"4837"
##	[613]	"4842"	"4843"	"4846"	"4860"	"4907"	"493911"
##	[619]	"4942"	"4952"	"4953"	"4967"	"498"	"50"
##	[625]	"5009" "5049"	"501"	"5033"	"5048"	"50484" "506"	"50487"
##	[631] [637]		"5050"	"5051"	"5053"		"50614"
## ##	[643]	"50617" "5096"	"50700" "51"	"50814" "51004"	"509" "5105"	"5091" "51056"	"5095" "5106"
##	[649]	"51074"	"51082"	"51084"	"51102"	"51109"	"51144"
##	[655]	"51166"	"51179"	"51181"	"51196"	"51227"	"51251"
##	[661]	"51268"	"513"	"5130"	"51301"	"51380"	"51382"
##	[667]	"514"	"51477"	"51478"	"515"	"51540"	"516"
##	[673]	"5160"	"51601"	"51604"	"51606"	"5161"	"5162"
##	[679]	"5167"	"5169"	"517"	"51703"	"51727"	"51728"
##	[685]	"51733"	"51763"	"518"	"51805"	"51809"	"5198"
##	[691]	"521"	"5211"	"5213"	"5214"	"522"	"5223"
##	[697]	"5224"	"5226"	"523"	"5230"	"5232"	"5236"
##	[703]	"525"	"526"	"527"	"5277"	"5279"	"528"
##	[709]	"5281"	"5283"	"5286"	"5287"	"5288"	"5289"
##	[715]	"529"	"5297"	"5298"	"5313"	"5315"	"5319"
##	[721]	"5320"	"5321"	"5322"	"533"	"5330"	"5331"
##	[727]	"5332"	"5333"	"5335"	"53354"	"5336"	"5337"
##	[733]	"5338"	"534"	"535"	"53630"	"537"	"5372"

##	[739]	"5373"	"539"	"53947"	"5406"	"5407"	"5408"
##	[745]	"5409"	"54107"	"54187"	"5422"	"5424"	"5425"
##	[751]	"5426"	"5427"	"5428"	"5430"	"5431"	"5432"
##	[757]	"5433"	"5434"	"54344"	"5435"	"5436"	"54363"
##	[763]	"5437"	"5438"	"5439"	"5440"	"5441"	"5444"
##	[769]	"5445"	"5446"	"54480"	"54490"	"54575"	"54576"
##	[775]	"54577"	"54578"	"54579"	"54600"	"54657"	"54658"
##	[781]	"54659"	"54675"	"5471"	"54802"	"548596"	"548644"
##	[787]	"549"	"54947"	"54963"	"54965"	"5498"	"54988"
##	[793]	"54995"	"55163"	"55191"	"55224"	"55229"	"55256"
##	[799]	"55276"	"55300"	"55301"	"55304"	"55312"	"55361"
##	[805]	"5538"	"55454"	"55500"	"55512"	"55568"	"5557"
##	[811]	"5558"	"55627"	"55650"	"55703"	"55750"	"55753"
##	[817]	"55790"	"55808"	"55821"	"55902"	"55907"	"56052"
##	[823]	"5625"	"56267"	"5631"	"5634"	"56474"	"56623"
##	[829]	"56624"	"56655"	"56848"	"56894"	"56895"	"56898"
##	[835]	"56901"	"56913"	"56922"	"56953"	"56994"	"570"
##	[841]	"57016"	"57026"	"57134"	"5723"	"5730"	"5740"
##	[847]	"5742"	"5743"	"57452"	"574537"	"57678"	"57804"
##	[853]	"57818"	"57834"	"5805"	"5831"	"5832"	"5833"
##	[859]	"58510"	"5859"	"586"	"5860"	"587"	"593"
##	[865]	"594"	"5980"	"60490"	"60495"	"6120"	"6184"
##	[871]	"6185"	"622"	"6240"	"6241"	"6296"	"6303"
##	[877]	"6307"	"6309"	"6342"	"635"	"6389"	"6390"
##	[883]	"6391"	"63917"	"6392"	"64087"	"64131"	"64132"
##	[889]	"64409"	"64425"	"6448"	"64579"	"64600"	"646625"
##	[895]	"6470"	"6472"	"6476"	"64768"	"6480"	"64802"
##	[901]	"64816"	"6482"	"6483"	"6484"	"6487"	"6489"
##	[901]	"64902"	"65220"	"65263"	"654364"	"6609"	"661"
##	[913]	"6610"	"6611"	"6652"	"6675"	"6677"	"669"
##	[919]	"6697"	"6713"	"6718"	"6723"	"683"	"686"
##	[925]	"6888"	"6898"	"6916"	"6999"	"7054"	"7083"
##	[925]	"7084"	"7086"	"7108"	"7166"	"7167"	"7173"
##	[931]	"7263"	"7264"	"729020"	"7298"	"7299"	"7306"
##	[943]	"7357"	"7358"	"7360"	"7363"	"7364"	"7365"
##	[943]	"7366"	"7367"	"7368"	"7371"	"7372"	"7378"
	[955]	"7381"	"7384"	"7385"	"7386"	"7388"	"7389"
##	[961]	"7390"					
##	[967]	"7915"	"7498" "79178"	"7841" "7923"	"790" "79369"	"79053" "7941"	"79087" "79586"
##	[973]	"79611"	"79623"	"79646"	"79695"	"79717"	"79796"
##	[979]	"79799"	"79814"	"79868"	"79888"	"7991"	"80025"
##	[985]	"80055"	"80142"	"80146"	"80201"	"80270"	"80308"
##	[991]	"80339"	"80347"	"8050"	"81490"	"81579"	"81616"
##	[997]	"81849"	"81888"	"8277"	"8309"	"8310"	"83440"
##	[1003]	"83549"	"8372"	"8382"	"8394"	"8395"	"8398"
##	[1003]	"8399"	"84002"	"84076"	"84172"	"84245"	"84265"
##	[1005]	"84274"	"84284"	"84532"	"84618"	"84620"	"84647"
##	[1013]	"84649"	"84693"	"847"	"84701"	"84706"	"84720"
##	[1021]	"84735"	"84803"	"84812"	"84890"	"84920"	"84992"
##	[1027]	"8509"	"8513"	"8525"	"8526"	"8527"	"8529"
##	[1033]	"85365"	"8540"	"85465"	"8560"	"8564"	"8566"
##	[1039]	"8608"	"8611"	"8612"	"8613"	"8630"	"8639"
##	[1045]	"8659"	"8681"	"8692"	"8693"	"8694"	"8702"
##	[1051]	"8703"	"8704"	"8705"	"8706"	"8707"	"8708"
##	[1091]	0100	0104	0100	0100	0101	0100

```
## [1063] "873"
                                   "874"
                                                "875"
                       "8733"
                                                            "8760"
                                                                         "8789"
## [1069] "8790"
                       "8801"
                                   "8802"
                                                "8803"
                                                            "8813"
                                                                         "8818"
## [1075] "8821"
                       "883"
                                   "8833"
                                                "8854"
                                                            "8867"
                                                                         "8869"
## [1081] "8871"
                       "8877"
                                   "8879"
                                                "8942"
                                                            "8972"
                                                                         "8974"
                                   "9"
                                                                         "9061"
## [1087] "89869"
                       "8992"
                                                "90423"
                                                            "9060"
## [1093] "9091"
                       "9114"
                                   "91373"
                                               "9162"
                                                            "91734"
                                                                         "9197"
## [1099] "9245"
                       "92483"
                                   "9249"
                                               "9296"
                                                            "93034"
                                                                         "93183"
                                                "9377"
                                                                         "9388"
## [1105] "9331"
                       "9348"
                                   "9374"
                                                            "9380"
## [1111] "94005"
                       "9453"
                                   "9468"
                                                "9487"
                                                            "9488"
                                                                         "9489"
## [1117] "95"
                                                "952"
                       "9514"
                                   "9517"
                                                            "9533"
                                                                         "9536"
## [1123] "9550"
                       "9551"
                                   "9563"
                                                "9588"
                                                            "9615"
                                                                         "978"
## [1129] "9791"
                       "9942"
                                   "9945"
foldchanges = res$log2FoldChange
names(foldchanges) = res$entrez
head(foldchanges)
                 54855
##
        1266
                             1465
                                       2034
                                                  2150
## -2.422685 3.201862 -2.313714 -1.888000 3.344481
                                                        2.392259
keggres = gage(foldchanges, gsets=kegg.sets.hs)
attributes(keggres)
## $names
## [1] "greater" "less"
                            "stats"
```

head(keggres\$less)

```
##
                                                     p.geomean stat.mean
## hsa04110 Cell cycle
                                                  1.888472e-05 -4.205434
## hsa03030 DNA replication
                                                  1.209058e-04 -3.871120
## hsa04114 Oocyte meiosis
                                                  7.921929e-04 -3.206473
## hsa05130 Pathogenic Escherichia coli infection 1.030329e-03 -3.177012
## hsa03440 Homologous recombination
                                                  4.227051e-03 -2.734017
## hsa00010 Glycolysis / Gluconeogenesis
                                                  6.053365e-03 -2.563476
##
                                                         p.val
                                                                     q.val
## hsa04110 Cell cycle
                                                  1.888472e-05 0.003852483
## hsa03030 DNA replication
                                                  1.209058e-04 0.012332395
## hsa04114 Oocyte meiosis
                                                  7.921929e-04 0.052546804
## hsa05130 Pathogenic Escherichia coli infection 1.030329e-03 0.052546804
## hsa03440 Homologous recombination
                                                  4.227051e-03 0.172463682
## hsa00010 Glycolysis / Gluconeogenesis
                                                  6.053365e-03 0.205814401
##
                                                  set.size
## hsa04110 Cell cycle
                                                       119 1.888472e-05
## hsa03030 DNA replication
                                                        36 1.209058e-04
## hsa04114 Oocyte meiosis
                                                        95 7.921929e-04
## hsa05130 Pathogenic Escherichia coli infection
                                                      48 1.030329e-03
## hsa03440 Homologous recombination
                                                       28 4.227051e-03
## hsa00010 Glycolysis / Gluconeogenesis
                                                        44 6.053365e-03
```

```
pathview(gene.data=foldchanges, pathway.id="hsa04110")
## 'select()' returned 1:1 mapping between keys and columns
## Info: Working in directory /Users/kainguyen/Desktop/BIMM143/class 12
## Info: Writing image file hsa04110.pathview.png
pathview(gene.data=foldchanges, pathway.id="hsa04110", kegg.native=FALSE)
## 'select()' returned 1:1 mapping between keys and columns
## Info: Working in directory /Users/kainguyen/Desktop/BIMM143/class 12
## Info: Writing image file hsa04110.pathview.pdf
keggrespathways <- rownames(keggres$greater)[1:5]</pre>
# Extract the 8 character long IDs part of each string
keggresids = substr(keggrespathways, start=1, stop=8)
keggresids
## [1] "hsa05323" "hsa04060" "hsa04142" "hsa05332" "hsa04640"
pathview(gene.data=foldchanges, pathway.id=keggresids, species="hsa")
## 'select()' returned 1:1 mapping between keys and columns
## Info: Working in directory /Users/kainguyen/Desktop/BIMM143/class 12
## Info: Writing image file hsa05323.pathview.png
## 'select()' returned 1:1 mapping between keys and columns
## Info: Working in directory /Users/kainguyen/Desktop/BIMM143/class 12
## Info: Writing image file hsa04060.pathview.png
## 'select()' returned 1:1 mapping between keys and columns
## Info: Working in directory /Users/kainguyen/Desktop/BIMM143/class 12
## Info: Writing image file hsa04142.pathview.png
## Info: some node width is different from others, and hence adjusted!
## 'select()' returned 1:1 mapping between keys and columns
```

```
## Info: Working in directory /Users/kainguyen/Desktop/BIMM143/class 12
## Info: Writing image file hsa05332.pathview.png
## 'select()' returned 1:1 mapping between keys and columns
## Info: Working in directory /Users/kainguyen/Desktop/BIMM143/class 12
## Info: Writing image file hsa04640.pathview.png
    Q. Can you do the same procedure as above to plot the pathyiew figures for the top 5 down-
    reguled pathways?
keggrespathwaysdown <- rownames(keggres$less)[1:5]</pre>
# Extract the 8 character long IDs part of each string
keggresidsdown = substr(keggrespathwaysdown, start=1, stop=8)
keggresidsdown
## [1] "hsa04110" "hsa03030" "hsa04114" "hsa05130" "hsa03440"
pathview(gene.data=foldchanges, pathway.id=keggresidsdown, species="hsa")
## 'select()' returned 1:1 mapping between keys and columns
## Info: Working in directory /Users/kainguyen/Desktop/BIMM143/class 12
## Info: Writing image file hsa04110.pathview.png
## 'select()' returned 1:1 mapping between keys and columns
## Info: Working in directory /Users/kainguyen/Desktop/BIMM143/class 12
## Info: Writing image file hsa03030.pathview.png
## 'select()' returned 1:1 mapping between keys and columns
## Info: Working in directory /Users/kainguyen/Desktop/BIMM143/class 12
## Info: Writing image file hsa04114.pathview.png
## 'select()' returned 1:1 mapping between keys and columns
## Info: Working in directory /Users/kainguyen/Desktop/BIMM143/class 12
## Info: Writing image file hsa05130.pathview.png
## 'select()' returned 1:1 mapping between keys and columns
## Info: Working in directory /Users/kainguyen/Desktop/BIMM143/class 12
## Info: Writing image file hsa03440.pathview.png
```

```
data(go.sets.hs)
data(go.subs.hs)
# Focus on Biological Process subset of GO
gobpsets = go.sets.hs[go.subs.hs$BP]
gobpres = gage(foldchanges, gsets=gobpsets, same.dir=TRUE)
lapply(gobpres, head)
## $greater
##
                                                               p.geomean stat.mean
## GO:0007156 homophilic cell adhesion
                                                            3.574409e-05 4.065745
## GO:0016339 calcium-dependent cell-cell adhesion
                                                            6.624322e-04 3.414326
## GO:0048729 tissue morphogenesis
                                                            9.629642e-04 3.113452
## GO:0002009 morphogenesis of an epithelium
                                                           1.036665e-03 3.093930
## G0:1901617 organic hydroxy compound biosynthetic process 1.825666e-03 2.937016
## GO:0035295 tube development
                                                            2.137116e-03 2.867380
                                                                   p.val
                                                                            q.val
## GO:0007156 homophilic cell adhesion
                                                            3.574409e-05 0.1348982
## GO:0016339 calcium-dependent cell-cell adhesion
                                                            6.624322e-04 0.6085845
## GO:0048729 tissue morphogenesis
                                                            9.629642e-04 0.6085845
## GO:0002009 morphogenesis of an epithelium
                                                           1.036665e-03 0.6085845
## GO:1901617 organic hydroxy compound biosynthetic process 1.825666e-03 0.6085845
## GO:0035295 tube development
                                                            2.137116e-03 0.6085845
                                                            set.size
                                                                             exp1
## GO:0007156 homophilic cell adhesion
                                                                 91 3.574409e-05
## GO:0016339 calcium-dependent cell-cell adhesion
                                                                 25 6.624322e-04
## GO:0048729 tissue morphogenesis
                                                                356 9.629642e-04
## GO:0002009 morphogenesis of an epithelium
                                                                289 1.036665e-03
## GO:1901617 organic hydroxy compound biosynthetic process
                                                                119 1.825666e-03
## GO:0035295 tube development
                                                                 335 2.137116e-03
##
## $less
##
                                              p.geomean stat.mean
## GO:0000279 M phase
                                           1.070282e-15 -8.081854 1.070282e-15
## GO:0048285 organelle fission
                                           1.486831e-14 -7.771854 1.486831e-14
## GO:0000280 nuclear division
                                           2.849163e-14 -7.694716 2.849163e-14
## GO:0007067 mitosis
                                           2.849163e-14 -7.694716 2.849163e-14
## GD:0000087 M phase of mitotic cell cycle 9.351196e-14 -7.522114 9.351196e-14
## G0:0007059 chromosome segregation 2.074373e-11 -6.899759 2.074373e-11
                                                  q.val set.size
                                           4.039243e-12
## GO:0000279 M phase
                                                            471 1.070282e-15
## GO:0048285 organelle fission
                                                             362 1.486831e-14
                                           2.688185e-11
## GO:0000280 nuclear division
                                           2.688185e-11
                                                             339 2.849163e-14
## GO:0007067 mitosis
                                           2.688185e-11
                                                            339 2.849163e-14
## GO:0000087 M phase of mitotic cell cycle 7.058283e-11
                                                             349 9.351196e-14
## GO:0007059 chromosome segregation
                                                             136 2.074373e-11
                                           1.304781e-08
## $stats
##
                                                           stat.mean
                                                                          exp1
## GO:0007156 homophilic cell adhesion
                                                            4.065745 4.065745
```

3.414326 3.414326

GO:0016339 calcium-dependent cell-cell adhesion

Q: What pathway has the most significant "Entities p-value"? Do the most significant pathways listed match your previous KEGG results? What factors could cause differences between the two methods?