Simulation of data

Yuze Kang, Yijie Zhao, Shuyu Duan, Rachel Oh

2020/10/8

Data Simulation

We should have total 6 variables obtained from the results of survey. We used R and tidyverse to simulate data for estimation and analysis. (Wickham et al. 2019; R Core Team 2020) Some real data from the past are referenced in order to make the simulation results closer to the real situation.

Age

(1) For age, from Statistics Canada we've known the number of people of each age group in Ontario population, in this case we divide population into 4 groups(0–18, 19–49, 50–89, 90 and over), and by calculation the percentages are 21%, 41%, 37% and 1% respectively.(see Statistics Canada, n.d.)

```
# Size of population(Number of simulations)
N<-100000
set.seed(538)
# Age
# We assume in each age group, ages appears at equal probability, so it follows a uniform distribution.
Age_0_18<-runif(N* 0.21, min = 0, max = 18)
Age_19_49<-runif(N*0.41, min = 19, max = 49)
Age_50_89<-runif(N*0.37, min = 50, max = 89)
Age_90_over<-runif(N*0.010, min = 90, max = 110)
#This is the simulated Age data
Age_all<-c(Age_0_18, Age_19_49, Age_50_89, Age_90_over)
# Shuffle the data
Age<-sample(Age_all)</pre>
```

Gender

(2) For Gender, we assume the ratio of female and male is 1:1.

```
set.seed(233)
#Gender
gender_types<-c("Female","Male")
Gender<-sample(gender_types, N, replace = T)</pre>
```

District

(3) For district the person is living in, there are total 124 districts in Ontario, we assume each person has the equal probability to live in any district.

```
set.seed(304)
#District
District<-sample(1:124, N, replace = T)</pre>
```

Political party

(4) We referenced the results of election in 2019 and will simulate according to the vote share in Ontario.(CBCNews, n.d.)

```
*LIB: 41.4%

*CON: 33.2%

*NDP: 16.8%

*GRN: 6.2%

*IND: 0.4%

*PP: 1.6%

*OTH: 0.4%

set.seed(347)

#Political Party supported

#Simulate according to the past vote share
Poli_Parties<-c("LIB","CON","NDP","GRN","IND","PP","OTH")
PoliticalP_supported<-sample(Poli_Parties,N,prob = c(0.414, 0.332, 0.168, 0.062, 0.004, 0.016, 0.004),
```

Education Level

(5) We referenced from the 2016 education attainment status in Canada, and will simulate according to this. (see Canada, n.d.a)

```
*Bachelor's degree or higher: 28.5\%
```

```
set.seed(302)
#Education level
Edu_level_types<-c("Bachelor or higher", "University below bachelor's", "College diploma", "Apprenticeshing Edu_level<-sample(Edu_level_types, N, prob = c(0.285, 0.031, 0.224, 0.108, 0.237, 0.115), replace = T)</pre>
```

^{*}University below bachelor's 3.1%

^{*}College diploma 22.4%

^{*}Apprenticeship or other trades certificate 10.8%

^{*}High school diploma 23.7%

^{*}No certificate, diploma or degree 11.5%

Income

(6) We simulate income in the same way we simulate age. We referenced an after-taxed income results in 2018, from Statistics Canada. (Canada, n.d.b)

```
set.seed(303)
#2018 after taxed
Income_under_15000<- runif(N*0.2, min = 0, max = 14999)
Income_15000_24999<- runif(N*0.2, min = 15000, max = 24999)
Income_25000_39999<- runif(N*0.2, min = 25000, max = 39999)
Income_40000_59999<- runif(N*0.2, min = 40000, max = 59999)
Income_60000_over<- runif(N*0.2, min = 60000, max = 500000)
Income_all<-c(Income_under_15000, Income_15000_24999,Income_25000_39999,Income_40000_59999,Income_60000
#shuffle
Income<-sample(Income_all)</pre>
```

Now we combine all variables together to for a new data frame, then sample from these observations.

```
set.seed(305)
#Combine together
All_together.df<-tibble(Age, Gender, PoliticalP_supported, Edu_level, Income, District)
#Sampling, using SRS, randomly pick from the data frame.
sample_selcet_rows<-sample(N,10000)
sample_dataset<-All_together.df[sample_selcet_rows,]</pre>
```

Simulation

By using tidyverse and R functions and references of several real-world data-sets, we acquired a sample data set for further estimation and analysis.

```
glimpse(sample_dataset)
```

Firstly we filter out people that is under 18, who is not eligible to vote for election.

```
Sample_clean<-sample_dataset %>% filter(Age>=18)
sample_size<-nrow(Sample_clean)</pre>
```

Then, we look at the vote share in the remaining voters:

References

Canada, Statistics. n.d.a. "Chart 1 Educational Attainment¹ for the Population Aged 25 to 64, Canada, 2016." https://www150.statcan.gc.ca/n1/daily-quotidien/171129/cg-a001-eng.htm.

——. n.d.b. "Table 11-10-0238-01 Distribution of Market, Total and After-Tax Income of Individuals, Canada, Provinces and Selected Census Metropolitan Areas." https://doi.org/https://doi.org/10.25318/1110023801-eng.

CBCNews. n.d. "Federal Election 2019 Live Results." https://doi.org/https://newsinteractives.cbc.ca/elections/federal/2019/results/.

R Core Team. 2020. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/.

Statistics Canada. n.d. "Table 17-10-0005-01 Population Estimates on July 1st, by Age and Sex." https://doi.org/https://doi.org/10.25318/1710000501-eng.

Wickham, Hadley, Mara Averick, Jennifer Bryan, Winston Chang, Lucy D'Agostino McGowan, Romain François, Garrett Grolemund, et al. 2019. "Welcome to the tidyverse." *Journal of Open Source Software* 4 (43): 1686. https://doi.org/10.21105/joss.01686.