

A Functional Near-Infrared Spectroscopy (fNIRS) System for Monitoring **Cerebral Blood Flow in Response to Cranial Nerve Stimulation**

1. Department of Biomedical Engineering, Purdue University 2. Department of Biomedical Engineering, University of Wisconsin Madison 3. Department of Neurological Surgery, University of Wisconsin Madison 4. Wisconsin Institute for Translational Neuroengineering

Background

Functional near-infrared spectroscopy (fNIRS)

- Non-invasive
- Monitors hemodynamics
- Utilizes optical absorption properties of hemoglobin in the blood

Cranial Nerve Stimulation

 Cranial nerve stimulation causes changes to cerebral blood flow

Project Goal

This project details the design of an fNIRS device that interfaces with an electrophysiological system, allowing for synchronized stimulation and hemodynamic recordings

Device Design

Design specifications for the fNIRS were set based Tucker-**Davison Technologies** (TDT) system requirements

Detector Design

- A photodiode emits current in response to light
- A Transimpedance Amplifier (TIA) converts that current to voltage
- TIA component values were calculated and simulated

Emitter Design

- Hemoglobin absorbs light
- Deoxygenated <790nm
- Oxygenated >790nm
- LEDs of 730nm and 850nm

TDT Port Design

 Designed and labeled PCBs that fit over the TDT connector pins

$$R_f \le \frac{V_{max}}{I_{max}} = \frac{500mV}{40uA} = 12.5 \, k\Omega$$

$$f_{BW} \le \frac{f_s}{4} = \frac{20kHz}{4} = 5kHz$$

$$f_{BW} = \frac{1}{2\pi R_f C_f}$$

$$C_f \ge \frac{1}{2\pi^{*10}k\Omega^{*5}kHz} = 3.18nF$$

Prototype on Perfboard

Device Fabrication

PCB Design

- PCBs were designed in **KiCAD**
- Custom footprints
- Decoupling capacitors were placed near power sources

TDT Port Connectors

Initial Iteration Issues

- The pins did not fit the connector perfectly
- Motion artifacts could be seen while testing

Emitter

Detector

Printed and Soldered Boards

TDT Raw Outputs while Generating Motion Artifacts Visualized

Design Validation

Verification Test	Result
Preliminary PCB Testing (Multimeter)	No unwanted shorts
Maximum voltage under bright light	<400 mV
LED Functionality testing with TDT	LEDs flash
FNIRs with against skin testing	Detector can read signals from the LEDs on the TDT
Accelerometer XYZ testing	XYZ acceleration can be seen on TDT

FFT of LED through Skin

Next Steps

- Design an apparatus to hold the fNIRS against the skin
- Real time analysis of blood flow changes
- Improve user interface and documentation for the TDT

Acknowledgements

This work was made possible through the support of the UW-Madison SURE Program, Professor Kip Ludwig, all my lab mates. Thank you!

Open-Source Files

If you would like the design files or component information for this project, please visit our GitHub

Contact Information

Hailey "Lee" Haglid Haglid@purdue.edu

Dr. Kip Ludwig Kip.Ludwig@wisc.edu

Accelerometer

sitting

Participants

Motion Artifacts

Movement can

create voltage

hemodynamics

Stimulating nerves

muscle activation

spikes unrelated to

can cause off target

naturally move while

- An accelerometer was added to the design to capture motion
- Acceleration in the XYZ directions can be measured and quantified

Accelerometer PCBs

Second Iteration

