LÝ THUYẾT TÍNH TOÁN

BÀI 3: ÔTÔMAT HỮU HẠN KHÔNG ĐƠN ĐỊNH

Phạm Xuân Cường Khoa Công nghệ thông tin cuongpx@tlu.edu.vn

Nội dung bài giảng

1. Khái niệm

2. Sự tương đương giữa NFA và DFA

3. Định nghĩa hình thức

4. Toán tử chính quy với NFA

Khái niệm

Không đơn định

Không đơn định: Ở mỗi thời điểm có thể tồn tại vài lựa chọn cho trạng thái tiếp theo

Không đơn định là sự tổng quát hóa của đơn định \to Mọi Ôtômat hữu hạn đơn định đều là Ôtômat hữu hạn không đơn định **Thuật ngữ:**

- FSM (Finite State Machine) = DFA (Deterministic Finite State Automaton) → Ôtômat hữu hạn đơn định
- NFA (Nondeterministic Finite State Automaton) \to Ôtômat hữu hạn không đơn định

NFA hoạt động như thế nào?

Chọn đường đi như thế nào?

Cạnh epsilon: Có thể đi đến trạng thái sau mà không cần phải đọc thông tin gì cả

Ví dụ

Cho NFA đoán nhận tất cả các chuỗi mà chứa chuỗi con **011110** sau:

Đoán nhận chuỗi: $0100011110101 \rightarrow Chấp thuận/Bác bỏ?$

NFA hoạt động như thế nào?

 ${\bf NFA}$ chấp nhận 1 xâu khi tồn tại một đường đi nào đó đạt được trạng thái chấp thuận

Ví dụ NFA

Cho NFA sau:

Hãy đoán nhận chuỗi: 010110

Sự tương đương giữa NFA và DFA

Sự tương đương giữa NFA và DFA

Định lý 1

Mọi NFA đều có thể biến đổi thành DFA tương đương

Ví dụ: Đoán nhận tất cả các chuỗi trên bộ $\{0,1\}^*$ mà có chữ số 0 ở vị trí thứ 2 tính từ cuối lên

NFA

DFA

Ví dụ

Thiết kế NFA đoán nhận tất cả các chuỗi mà nó chứa các chuỗi con 0100 hoặc 0111

Định nghĩa hình thức

Định nghĩa hình thức

• Ôtômat hữu hạn không đơn định \equiv bộ 5 (hay 5 chiều)

$$M = (Q, \Sigma_{\varepsilon}, \delta, q_0, F)$$

Trong đó:

- Q: Tập trạng thái (hữu hạn)
- Σ_{ϵ} : Bộ chữ, tập hữu hạn các ký tự
- δ: Hàm dịch chuyển

$$\delta \colon Q \ x \ \Sigma_{\epsilon} \to Q$$

- $\mathbf{q_0}$: Trạng thái bắt đầu $(\mathbf{q_0} \in \mathbf{Q})$
- \mathbf{F} : Là tập các trạng thái kết thúc ($\mathbf{F} \subseteq \mathbf{Q}$)

Ví dụ NFA

• δ:

• **Q**: {a,b,c,d}

• Σ_{ε} : $\{0,1,\varepsilon\}$

• **q**₀: a

• **F**: {d}

		0	1	ε
thái	а	С	b	Ø
	b	$\{a,d\}$	$\{a,d\}$	Ø
Trạng	С	а	d	Ø
F	d	b	С	С

 Σ_{ϵ}

Sự tương đương giữa NFA và DFA

Định lý 2

Mọi NFA đều có một DFA tương đương Hai máy là **tương đương** nếu chúng đoán nhận cùng 1 ngôn ngữ

Chứng minh (Bằng việc xây dựng)

Ý tưởng:

- Cho NFA $\mathbf{M} = (\mathbf{Q}, \mathbf{\Sigma}, \delta, \mathbf{q}_0, \mathbf{F})$
- Xây dựng DFA $\mathbf{M'}=(\mathbf{Q'},\!\Sigma',\!\delta',\!\mathbf{q_0'},\!F')$ để đoán nhận cùng ngôn ngữ với NFA trên

Chứng minh sự tương đương giữa NFA và DFA

- $\mathbf{Q'} = P(\mathbf{Q}) = 2^{\mathbf{Q}}$ $\mathbf{Q} = \{A,B,C\} \Rightarrow \mathbf{Q'} = \{\emptyset,A,B,C,AB,AC,BC,ABC\}$
- $\bullet \ \mathbf{q}_0' = \{\mathbf{q}_0\}$
- $\mathbf{F'} = \{ \mathsf{R} \in \mathbf{Q'} \mid \mathsf{R} \text{ chứa tất cả các trạng thái chấp thuận } \}$ $\mathbf{Q} = \{ \mathsf{A}, \underline{B}, \underline{C} \} \Rightarrow \mathbf{Q'} = \{ \emptyset, \mathsf{A}, \underline{B}, \underline{C}, \underline{AB}, \underline{AC}, \underline{BC}, \underline{ABC} \}$
- $\delta'(R,a) = \{q \mid q \in Q \text{ và } q \in \delta(r,a) \text{ } r \in R \} = \bigcup_{r \in R} \delta(r,a)$

DFA: $\delta(bc,1) = \{abc\}$

NFA:
$$\delta(b,1) = \{b,c\}$$

 $\delta(c,1) = \{a,c\}$

Chứng minh sự tương đương giữa NFA và DFA

Xét cạnh ϵ , ta định nghĩa 1 bao đóng ϵ :

 $\mathsf{E}(\mathsf{R}) = \{\mathsf{q} \mid \mathsf{q} \text{ có thể đến được từ } \mathsf{R} \text{ bằng việc di chuyển theo } \mathsf{0} \\ \text{hoặc nhiều mũi tên } \epsilon\}$

Ví dụ:

Chứng minh sự tương đương giữa NFA và DFA

- Chỉnh sửa lại hàm chuyển đổi $\delta'(R,a) = \{q \mid q \in Q \text{ và } q \in E(\delta(r,a)) \mid r \in R \}$
- Chỉnh sửa lại trạng thái bắt đầu của DFA ${\bf q}_0' = {\bf E}(\{{\bf q}_0\})$
- ightarrow Kết thúc chứng minh

Ví dụ: Chuyển NFA thành DFA

$$\mathsf{M'} = (\mathsf{Q'}, \mathsf{\Sigma'}, \delta', \mathsf{q}_0', \mathsf{F'})$$

- $\bullet \ \ \textbf{Q} = \{1,2,3\} \Rightarrow \textbf{Q'} = \{\emptyset,1,2,3,12,13,23,123\}$
- Σ' = {a,b}
- $\mathbf{q}_0' = \mathsf{E}(\{\mathbf{q}_0\}) = \mathsf{E}(1) = \{13\}$
- $\mathbf{F'} = \{1,12,13,123\}$

Ví dụ: Chuyển NFA thành DFA

δ':

		Σ '		
		а	b	
	Ø	Ø	Ø	
	1	Ø	2	
thái	2	23	3	
90 1	3	13	Ø	
Trạng 1	12	23	23	
F	13	13	2	
	23	123	3	
	123	123	23	

Ví dụ: Chuyển NFA thành DFA

Toán tử chính quy với NFA

Toán tử chính quy (Nhắc lại)

Giả sử A, B là các ngôn ngữ. Ta có các toán tử chính quy sau:

- Hợp (Union): $A \cup B = \{ x \mid x \in A \text{ hoặc } x \in B \}$
- Ghép tiếp (Concatenate): $A \circ B = \{ xy \mid x \in A \text{ và } y \in B \}$
- Sao (Closure): $A^* = \{x_1x_2 \dots x_k \mid k \geq 0 \text{ và mỗi } x_i \in A \}$

```
Ví dụ: Giả sử ta có bộ chữ \Sigma = \{a,b,c,\ldots,z\} A = \{aa,b\}, B = \{x,yy\} A \cup B = \{aa,b,x,yy\} A \circ B = \{aax,aayy,bx,byy\} A^* = \{\epsilon,aa,b,aaaa,aab,baa,bb,aaaaaa,aaab,aabaa,aabb,\ldots\}
```

Định lý 1

Lớp các ngôn ngữ chính quy là đóng đối với toán tử **hợp** \Leftrightarrow Nếu A_1 và A_2 là ngôn ngữ chính quy thì $A_1 \cup A_2$ cũng là ngôn ngữ chính quy

Chứng minh ĐL 1 (chi tiết)

- NFA $\mathbf{N}_1 = (\mathbf{Q}_1, \mathbf{\Sigma}, \delta_1, \mathbf{q}_1, \mathbf{F}_1)$ đoán nhận A_1
- NFA $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ đoán nhận A_2
- Xây dựng NFA N = (Q,Σ,δ,q₀,F) đoán nhận A₁ ∪ A₂ Trong đó:
 - $Q = Q_1 \cup Q_2 \cup \{q_0\}$
 - $q_0 = Một trạng thái mới$
 - $F = \{ \left(r_1, r_2 \right) \mid r_1 \in F_1 \text{ hoặc } r_2 \in F_2 \} = F_1 \cup F_2$

$$\delta(q,a) = \begin{cases} \delta_1(q,a) & \text{n\'eu } q \in \mathsf{Q}_1 \\ \delta_2(q,a) & \text{n\'eu } q \in \mathsf{Q}_2 \\ \{\mathsf{q}_1,\mathsf{q}_2\} & \text{n\'eu } q = \mathsf{q}_0 \text{ và } a = \varepsilon \\ \{\} & \text{n\'eu } q = \mathsf{q}_0 \text{ và } a \neq \varepsilon \end{cases}$$

Định lý 2

Lớp các ngôn ngữ chính quy là đóng đối với toán tử **ghép tiếp** \Leftrightarrow Nếu A_1 và A_2 là ngôn ngữ chính quy thì $A_1 \circ A_2$ cũng là ngôn ngữ chính quy

Chứng minh ĐL 2 (chi tiết)

- $Q = Q_1 \cup Q_2$
- $q_0 = q_1$
- $F = F_2$

$$\delta(q,a) = \begin{cases} \delta_1(q,a) & \text{n\'eu } q \in \mathsf{Q}_1 \\ \delta_2(q,a) & \text{n\'eu } q \in \mathsf{Q}_2 \\ \delta_1(q,a) \cup \{\mathsf{q}_2\} & \text{n\'eu } q = \mathsf{F}_1 \text{ và } a = \epsilon \\ \delta_1(q,a) & \text{n\'eu } q = \mathsf{q}_0 \text{ và } a \neq \epsilon \end{cases}$$

Định lý 3

Lớp các ngôn ngữ chính quy là đóng đối với toán tử sao \Leftrightarrow Nếu A_1 là ngôn ngữ chính quy thì A_1^* cũng là ngôn ngữ chính quy

Chứng minh ĐL 3 (chi tiết)

- Q = $\{q_0\} \cup Q_1$
- $q_0 = Một trạng thái mới$
- $F = \{q_0\} \cup F_1$

$$\delta(q,a) = \begin{cases} \delta_1(q,a) & \text{n\'eu } q \in \mathsf{Q}_1 \text{ và } q \not \in \mathsf{F}_1 \\ \delta_1(q,a) & \text{n\'eu } q \in \mathsf{F}_1 \text{ và } a \neq \varepsilon \\ \delta_1(q,a) \cup \{\mathsf{q}_1\} & \text{n\'eu } q \in \mathsf{F}_1 \text{ và } a = \varepsilon \\ \{q_1\} & \text{n\'eu } q = \mathsf{q}_0 \text{ và } a = \varepsilon \\ \{\} & \text{n\'eu } q = \mathsf{q}_0 \text{ và } a \neq \varepsilon \end{cases}$$

