Test di Calcolo Numerico

Ingegneria Informatica 11/01/2014

COGNOME NOME		
Μ	ATRICOLA	
RISPOSTE		
1)		
2)		
3)		
4)		
5)		

N.B. Le risposte devono essere giustificate e tutto deve essere scritto a penna con la massima chiarezza.

Test di Calcolo Numerico

Ingegneria Informatica 11/01/2014

1) Si determini l'eerore relativo nel calcolo della funzione

$$f(x,y) = \frac{x}{x+y} \, .$$

- 2) Dire se le seguenti affermazioni sono vere o sono false.
 - a) A^3 matrice convergente $\Longrightarrow A$ matrice convergente;
 - b) A matrice convergence \implies A^3 matrice convergence;
 - c) $||A||_1 = 1.01 \Longrightarrow A$ matrice non convergente;
 - d) $\rho(A) = 1.001 \Longrightarrow A$ matrice non convergente.
- 3) $\alpha = 2$ è punto fisso di una funzione $\phi(x)$ e risulta $\phi'(x) = \frac{1}{2} + \frac{1}{4}(x-2)^2$ per $x \in [1,3]$. Scegliendo $x_0 = \frac{3}{2}$, il metodo iterativo $x_{n+1} = \phi(x_n)$ risulta convergente?
- 4) Data la tabella di valori

determinare i valori del parametro reale α che rendono minimo il grado del polinomio di interpolazione.

5) Per approssimare l'integrale $I=\int_0^1 (1+x)f(x)dx$ si utilizza la formula di quadratura

$$J_0(f) = a_0 f(x_0) .$$

Determinare il peso a_0 ed il nodo x_0 che danno la formula con grado di precisione massimo indicando tale grado di precisione.

SOLUZIONE

1) Considerando l'algoritmo

$$r_1 = x + y$$
, $r_2 = \frac{x}{r_1}$,

si ottiene l'espressione dell'errore relativo

$$\epsilon_f = \epsilon_2 - \epsilon_1 + \frac{y}{x+y} (\epsilon_x - \epsilon_y)$$
.

2) a), b), d) sono implicazioni vere mentre c) è una implicazione falsa.

3) La funzione $\phi'(x)$ risulta positiva (per ogni x reale) e minore o uguale a $\frac{3}{4}$ per ogni $x \in [1,3]$. Sono quindi verificate le ipotesi del Teorema di Convergenza Locale per cui il metodo risulta convergente scegliendo come punto iniziale $x_0 = \frac{3}{2}$.

4) Dal quadro delle differenze divise si ricava che il polinomio di interpolazione risulta di grado minimo se $\alpha=0$ o $\alpha=3$. In particolare, il polinomio di interpolazione è $P_3(x)=x^2-x$.

5) Imponendo che la formula sia esatta per f(x) = 1 e f(x) = x si ottiene il sistema

$$\begin{cases} a_0 = \frac{3}{2} \\ a_0 x_0 = \frac{5}{6} \end{cases}$$

da cui si ricava $a_0 = \frac{3}{2}$ e $x_0 = \frac{5}{9}$.

La formula ottenuta non risulta esatta per $f(x) = x^2$ per cui il grado di precisione è m = 1.