

Our Data

Burn Severity Data

Key Variables:

- Area
- Low Threshold
- Moderate Threshold
- High threshold
- Greenness threshold

US Counties Data

Key Variables:

- Temperature
- Palmer Drought severity index (PDSI)
- Population

Exploratory Data Analysis

Levels of Burn

- Data separated into 3 levels of burn severity
- Most severed areas being the high threshold and least burned areas means lower threshold

Population, Amount of Area burned, burn severity

PDSI Levels

PDSI shows how dry an area is, negative values mean drier and positive means more wet

Average Temperature

Greenness of Land at Time of Fire

Greenness of an area has a negative relationship here. The greener the area is means that the burn was less severe. This data is categorical unlike our other models that we used previously.

CONCLUSIONS

- Results were not exactly as we expected them to be
 - o Temperature had an inverse relationship with burn severity
 - o P-Values and R-Squared values very poor
- Success when it came to finding important factors that lead to the severity of forest fires
- Had a lot of trouble when it came to scraping and gathering the data itself
 - Only could use August 2010 data
 - Octoparse kept crashing on us

Maybe more data would have led to better overall predictive performance