PHAETHON

Userguide

Dimitris Stamatellos

November 11, 2015

1 Source code

You can download the code by typing in a terminal (git need to be available on your system):

```
git clone https://github.com/distamio/phaethon.git
cd phaethon
```

This command will create a directory phaethon, with the following files and subdirectories (among others)

phaethon		
Name	Description	
Makefile		
makefiletai.mk		
params.dat	general parameters, including flow control, ambient and stellar radiation field,	
	SEDs and intensity maps	
params.grid.dat	parameters relating to the grid construction	
main	directory containing the main code routines	
exec	directory where executables and required files are put	
grid.spherical	contains the routines for constructing the grid, and grid related routines, e.g.	
	advance photon, find photon cell, find photon origin, grid density profile	
isrf	contains the data for the ambient radiation field	
opacity.0H5_0.1_200	contains the opacity tables for OH5 (Ossenkopf & Henning, column 5) opacity.	
	The tables are constucted for temperatures up to 200K, with temperature	
	resolution of 0.1 K. Other opacities are available. Please check as they may	
	not be up-to-date.	
utils	various routines for analysing results	
userguide	contains the userguide	

To update the code from GitHub, change into the phaethon directory and type:

git pull https://github.com/distamio/phaethon.git

2 Building and running the code

After you configure Makefile to your liking you build the code by typing make. This will copy everything the code needs to run in the directory exec (including the sample files params.dat & params.grid.dat. To run the code move into exec and type phaethon. During your run there is information printed on the screen and the following output files are produced:

Output files		
File name	Description	
incells.dat	information about the initial state of your system (eg. cells, density, temperature)	
outcells.dat	information about the initial state of your system (eg. cells, density, temperature, energy absorbed per cell)	
Av.r.dat	shows the optical visual extinction vs radius (for spherically symmetric cores	
restart.dat	information needed when restarting a run	
step.info	information about how long it takes the code to run	
sed.id.lbin.mbin	SEDs for a specific photon id for a specific direction (lbin,mbin)	
iso.fs.id.lbin.mbin	intensity maps for a specific λ (fs) photon id for a specific direction (lbin,mbin) (NXPIXELS × NYPIXELS)	
isodata.fs.id	radial intensity profiles for a specific photon id (this is only for spherically symmetric cores	
intercount.s		
fnum.star.0.dat		
fnum.star.cgs.0.dat		

	Photon ids
id	Description
0	all photons are counted
1	only direct photons from the radiation source are counted (i.e. if they do not have any interaction
	at all with the system)
2	only photons coming from a part system are counted (set by R_ORIGIN in params.grid.dat)
3	only scattered photons are counted (just scattered!)
4	only reprocessed photons are counted (absorbed and maybe scattered)

	Makefile		
Variable name	Description	Recommended values	S
CC	sets the c compiler	gcc	
OPENMP	compile the paraller version	0: NO 1: YES	×
OPTIMISE	optimisation level	3	?
PROFILE	sets the -p -pg flag for time profiling	0: NO 1: YES	?
MAIN_DIR	directory of the main code	\$(PWD)/main	
GRIDDIR	directory of the grid making code	\$(PWD)/grid.spherical	
OPACITY_DIR	directory of opacity	\$(PWD)/opacity.0H5_0.	1_20
ISRFD_IR	directory of the ambient radiation field	,,, ,	
EXEC_DIR	directory to put executable and required files	\$(PWD)/exec	
	Grid		
SPHERICAL	sets a spherically symmetric grid and adjusts code for	0: NO 1: YES	
	better performance (note: other options maybe disabled		•
	when this flag is on)		
DIM	refers to the 'dimensions' of the physical system 3: fully	3, 2, 4	
	3D system, 2: azimuthal and θ , $-\theta$ symmetry (e.g. flat-		•
	tened cloud, disc), 4: azimuthal symmetry		
	SEDs & Intensity maps		<u>I</u>
NFBINS	number of frequency bins to put escaping photons	120	
FS	number of wavelenghts to calculate intensity maps	1-10	$\sqrt{}$
NLBINS	number of polar angles (theta) to calculate intensity maps	1-10	$\sqrt{}$
NMBINS	number of azimuthal angles (phi) to calculate intensity	1-10	$\sqrt{}$
	maps		
DO_ISOMAP	calculate SEDs and isophotal maps?	0: NO 1: YES	
NBBINS	number of radial bins to calculate intensity (only for	80	
	SPHERICAL case)		
NXPIXELS	number of xpixels for intensity maps	128	
NYPIXELS	number of ypixels for intensity maps	128	
ISODIM	refers to the 'dimensions' of the appearence of the sys-	3, 2, 4	
	tem (i.e. SEDs and intensity maps). The physical system		
	maybe 3D but may look the same from different direc-		
	tions when viewed e.g. in long wavelengths. 3: fully 3D		
	system, 2: azimuthal and θ , $-\theta$ symmetry (e.g. flattened		
	cloud, disc), 4: azimuthal symmetry		
EXTRA_SYMMETRY			×
SPHERICAL_ISOMAP	calculates intensity maps assuming that the system is	0, 1	?
	spherically symmetric (it just makes radial bins and com-		
	putes averages)		
SPHERICAL_SED	calculates SEDs assuming that the system looks the same	0, 1	
	from all viewing angles (counting all available photons)		
	Other options		
NO_INTERACTION	photons escape without any interactions (for testing)	0: NO 1: YES	
MULTIPLE_PHOTONS			×
TREE_INFO_OUT			×
INFO_OUTPUT	output info as photon propagates (for testing)		
NO_OPA_TABLE	there is an opacity equation not a table		×
DUST_MIX	use 2 types of dust		×
INC_SHADOW_PHOTON			×
LENGTH_UNIT	length unit for inputing in params.dat and	PC or AU	
	params.grid.dat		
SPH_SIMULATION	RT in SPH snapshots		×

params.dat (I)				
Variable name	Description	Value(s)	S	
	Control options			
OUTPUT_FACTOR	how often to output data (in units of total photon number)	0.1		
RESTART	is the run a restart?	0: NO 1:YES		
MORE	is the run adding another luminosity source to existing run?	0: NO 1:YES		

params.dat (II)			
Variable name	Description	Value(s)	S
	Ambient radiation field		
ISRF	is there an ambient radiation field	0: NO 1:YES	
ISRF_NPACKETS	number of ambient radiation field photon packets to use	10^{8}	
R_ISRF==R_MAX	are ambient photons injected from cloud radius	0: NO 1:YES	
R_ISRF	radius from which ambient photons are injected from (if above	0.3	
	is 0) (pc or AU)		
ISRF_MULTIPLY	value you multiply ambient radiation field (to weaken or	1	
	strengthen)		
ISRF_IGNORE_SCATTE	Rignore ISRF scattering photons when making SED	1	
STAR_ISRF_TEMP	temperature of the star-like (blackbody) ambient field	20	?
DILUTION	STAR_ISRF :: value you multiply star-like ambient radiation	1	?
	field		
	Stellar radiation field		
MANUAL_STAR	include an extra star in the simulation?	0: NO, 1: YES	
MANUAL_STAR_TYPE	type of star included (star.type)	0: star in the	
		centre of coor-	
		dinates 3: star	
		outside cloud	
STAR_NPACKETS	number of stellar photons to use	10^{7}	
STAR_RADIUS	star radius (in solar radii)	1-3	
STAR_X	star x-location (pc or AU)	0	
STAR_Y	star y-location (pc or AU)	0	
STAR_Z	star z-location (pc or AU)	20000 AU	
STAR_MASS	star mass (in solar masses)	0	
STAR_TEMP	star temperature (K)	6000	

params.dat (III)			
Variable name	Description	Value(s)	S
	SED & Intensity maps parameters		
DISTANCE	distance of the object (from Earth, in pc)	2000	
DTHETA	tolerance angle from observer's line-of-sight to count photons	0.05	
	$[0,1]$ (in units of π)		
SL1	lower λ (in μm) of placing escaping photons in λ -bins	0.005	
SL2	upper λ	4000	
F0	$1^{\mathrm{st}}\lambda$ to calculate intensity map	10	
F1	$2^{ m nd}\lambda$	850	
F2	$3^{ m rd}\lambda$		
F3	$4^{ ext{th}}\lambda$		
F4	$5^{ ext{th}}\lambda$		
F5	$6^{ ext{th}}\lambda$		
F6	$7^{ ext{th}}\lambda$		
F7	$8^{ ext{th}}\lambda$		
F8	$9^{ ext{th}}\lambda$		
F9	$10^{ ext{th}}\lambda$		
XMIN	minimum x coordinate of intensity map (in pc or AU)		
XMAX	maximum x		
YMIN	minimum y		
YMAX	maximum y		
THETAO	$1^{\mathrm{st}}\theta$ of observer to calculate intensity map		
THETA1	$2^{ m nd} heta$		
THETA2	$3^{\mathrm{rd}} heta$		
THETA3	$4^{ ext{th}} heta$		
THETA4	$5^{ m th} heta$		
THETA5	$6^{ ext{th}} heta$		
THETA6	$7^{ ext{th}} heta$		
THETA7	$8^{ ext{th}} heta$		
THETA8	$8^{ ext{th}} heta$		
THETA9	$10^{ h} heta$		
PHIO	$1^{\mathrm{st}}\phi$ of observer to calculate intensity map		
PHI1	$2^{ m nd}\phi$		
PHI2	$3^{ m rd}\phi$		
PHI3	$4^{ m th}\phi$		
PHI4	$5^{ m th} \phi$		
PHI5	$6^{ m th}\phi$		
PHI6	$7^{ m th} \phi$		
PHI7	$8^{ m th}\phi$		
PHI8	$9^{ ext{th}} \dot{\phi}$		
PHI9	$10^{ m th}\phi$		

params.dat (IV)			
Variable name	Description	Value(s)	S
	Dust parameters		
DUST_TEMP	Dust destruction temperature (in K)	1200	
SCATTER_MULTIPLY	multiply scattering opacity $(k_s cat)$ by this factor	1.0	
G_SCATTER		0.5	
	Propagate photons	·	
STEP_MFP			
STEP_DENS			
STEP_R			
STEP_CELL			
INNER_STEP_SIZE			

grid.1

Prestellar/protostellar cores (3 types of geometries: spherical, flattened, comet-like, with/without disc around the protostar), with/withouth jets. Discs can work independently (by setting ENVELOPE to 0).

grid :: params.grid.dat			
Variable name	Description	Value(s)	S
	Cloud/Core parameters		
CDENSO	central density (in cm ⁻³)	10^{5}	
RO	flattening radius (in AU or PC, as set in Makefile)	0.3	
R_MAX_CORE	size of core (in AU or PC)	0.5	
R_MAX	size of core and ambient cloud (sets auto to 0 if MC-	0.7	
	CELLS=0) (in AU or PC)		
R_ORIGIN	radius within which photons are counted with id=2	0.5	
DENS_EXT_FACTOR	ratio of cloud density to the core density at R_MAX_CORE	0.8	
R_DUST	size of the innermost cell (in units of R_MAX_CORE)	0.01	
MU	mean mocular weight	2.3	
BECELLS	number of radial cells-1 to divide the core (≥ 2)	102	
MCCELLS	number of radial cells to divide the ambient cloud (≥ 0)	10	
NLCELLS	number of polar cells-1 to divide the cloud (≥ 2)	10	?
NMCELLS	number of azimuthal cells-1 to divide the cloud (≥ 2)	10	
LINEAR	radial cells have 1: equal widths 0: equal log widths	0 or 1	
ISOANGLES	polar cells have 1: equal angles 2: equal cosines	0 or 1	
FTAU_POINTS	number of points to use to calculate $ au_{\text{visual}}$ for the cloud &	1000	
	core		
GEOMETRY	1: spherical cloud, 2: flattened cloud, 3: comet-like cloud	1, 2, 3	
SIN_POWER	Sine exponent (p) in the density profile	1, 2, 4	
ASYMMETRY_FACTOR	Relates to A and sets how pronounces the asymmetry is	>=1 & < 3	
	Disc around central star parameters		
DISC	is there a disc around the central source?	0: No, 1: Yes	
DISC_CDENSO	Disc density at 1AU from the central source (cm^{-3})		
DISC_THETA_OPENING	Up to what angle (in units of DISC_ALPHA, from the mid-	2 - 5	
	plane) the disc extends		
DISC_R	Size of disc (in AU)	5 - 100 AU	
DISC_ALPHA	thickness-to-radius ratio (z/R) of the disc		
DISC_AMBIENT_DENS	the density at angles (theta) outside		?
	DISC_THETA_OPENING*DISC_ALPHA		
DISC_INNER_GAP	Size of the gap around the central source in AU (this is always	0.1 - 2 AU	
	>= the dust destruction radius)		
DISC_INNER_GAP==R_DUST	Set the inner disc gap the same as R_DUST?		
Jet from central star parameters			
JET	Is there a jet from the central star?	0: No, 1: Yes	
JET_DENS	Density in the the jet cavity(cm ⁻³)	10^{3}	
JET_BETA		3	
JET_THETA	(in unit of π)	0.027	

SPHERICAL CLOUD

$$n = n_0 \; \frac{1}{1 + (r/R_0)^2} \tag{1}$$

 n_0 : CDENS0 R_0 : R0

FLATTENED CLOUD

$$n(r,\theta) = n_0 \frac{1 + A\left(\frac{r}{R_0}\right)^2 \left[\sin(\theta)\right]^p}{\left[1 + \left(\frac{r}{R_0}\right)^2\right]^2} . \tag{2}$$

 n_c is the density at the centre of the core, and r_0 the scale length. A is a factor that determines the equatorial-to-polar optical depth ratio e (i.e. the optical depth from the centre to the surface of the core at $\theta=90$ divided by the optical depth from the centre to the surface of the core at $\theta=0$), see page 84 of my thesis.

p: SIN_POWERE: relates to A