

ICPSR 21600

National Longitudinal Study of Adolescent to Adult Health (Add Health), 1994-2008 [Public Use]

Kathleen Mullan Harris
University of North Carolina-Chapel Hill

J. Richard Udry
University of North Carolina-Chapel Hill

Wave I: Network Variables Codebook/Questionnaire

Inter-university Consortium for Political and Social Research P.O. Box 1248 Ann Arbor, Michigan 48106 www.icpsr.umich.edu

Terms of Use

The terms of use for this study can be found at: http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies//terms

Information about Copyrighted Content

Some instruments administered as part of this study may contain in whole or substantially in part contents from copyrighted instruments. Reproductions of the instruments are provided as documentation for the analysis of the data associated with this collection. Restrictions on "fair use" apply to all copyrighted content. More information about the reproduction of copyrighted works by educators and librarians is available from the United States Copyright Office.

NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS

The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material. Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be "used for any purpose other than private study, scholarship, or research." If a user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of "fair use," that user may be liable for copyright infringement.

ICPSR 21600

National Longitudinal Study of Adolescent to Adult Health (Add Health), 1994-2008 [Public Use]

Wave I: Network Variables

Original P.I. Documentation

National Longitudinal Study of Adolescent Health

Network Variables Code Book

Carolina Population Center University of North Carolina at Chapel Hill

January 2001

Add Health Network Variables Code Book

PART I: Introduction

DATA COLLECTION

TECHNICAL DETAILS OF ADD HEALTH NETWORK DATA

Response Rates

Valid Nomination Data

DEFINITIONS AND CONVENTIONS

Definitions

Coding of Race and Ethnicity

Mathematical Conventions

Missing Data

PART II: Summary List of Add Health Network Variables

PART III: Construction of Add Health Network Variables

INDIVIDUAL-LEVEL MEASURES

Basic Network Descriptors

Ego-centered Network Measures

Sociometric characteristics of ego-networks

Ego-network heterogeneity measures for grade, race, and age

Ego-network behavior/attribute means for in-school questionnaire items

SCHOOL-LEVEL MEASURES

Measures of Global Network Structure

Measures of Segregation and Group Salience for Grade, Race, and Sex

PART IV: References

Appendix: Ordered SAS Proc Contents Output

Additional Information about the Constructed Network Variables

PART I: Introduction

A primary aim of the Add Health study is to carefully measure the major social contexts affecting the health and well-being of adolescents. Unlike many other large-scale demographic studies, Add Health rests on a clustered design, in part to facilitate the collection of extensive social network data. Social networks are a direct link between individuals and the social structure in which they are embedded; for adolescents, networks of peers and friends are one of the most important social contexts. Because the Add Health study collected network data from all students who attended each participating school, both individual and school-level networks can be examined. This unique design enables us to comprehensively measure the structure of the extended friendship network in which each respondent is embedded, as well as to describe the overall social structure of the respondent's particular school.

In order to facilitate the use of Add Health network data, we have constructed a wide array of network variables from responses to the friendship nomination section of the Add Health inschool questionnaire. These variables measure network characteristics at both the individual and school levels

DATA COLLECTION

The Add Health in-school questionnaire was administered to 90,118 students attending 145 schools in 80 communities. Details about the overall sample and design of the Add Health study are provided in Bearman, Jones, and Udry (1997). In the friendship section of the Add Health inschool questionnaire, the respondent was asked to nominate up to five male and five female friends from the roster of all students enrolled in the respondent's school and in the sister school. Once friends were nominated, the respondent entered each friend's identification number on the questionnaire. If the friend was not found on the roster, the respondent was asked to indicate if (1) the friend went to the school; (2) the friend went to the sister school; or (3) the friend did not go to either the respondent's school or the sister school.

TECHNICAL DETAILS OF ADD HEALTH NETWORK DATA

Response rates

Because we wish to provide substantively useful variables, only schools in which more than 50 percent of the student body completed the questionnaire are used to calculate the network measures described here. Relying on global network characteristics from schools with incomplete data would provide misleading images of the school's social structure.

Valid nomination data

To construct a friendship social network, it is necessary to uniquely identify both the respondent and the alters that he or she nominates as a friend. All students who completed the in-school questionnaire were assigned a unique identification number, and were provided with a roster that identified all enrolled students in their school and the sister school. However, not all respondents' names appeared on the roster from which friends were identified (rosters were sometimes incomplete or contained errors), and not all students whose names were on the rosters completed the questionnaire (students were absent or did not participate in the study).

Considering only those students who completed questionnaires, we define respondents whose names appeared on the school roster as *uniquely nominatable*, and respondents whose names did not appear on a school roster are defined as *uniquely non-nominatable*. For the purposes of constructing friendship networks, all friendship nominations made by both the *uniquely nominatable* and the *uniquely non-nominatable* respondents fell into one of four nomination statuses:

- 1. Nominations to friends whose name appeared on the respondent's school roster and who also completed the in-school questionnaire
- 2. Nominations to friends whose name appeared on the roster of the respondent's sister school and who also completed the in-school questionnaire.
- 3. Nominations to friends identified by the respondent with a special code, specifically
 - a. Friends who attended the respondent's school but whose names were not on the school roster (special code 9999)
 - b. Friends attending the sister school but whose names were not on the school roster (special code 8888)
 - c. Friends who did not attend the respondent's school or sister school, (special code 7777)
- 4. Nominations to friends whose names appeared on one of the school rosters but who did not fill out the questionnaire.

The cross-classification of friendship nominations from nominator type to nomination status is summarized in Table 1. This table shows that the vast majority of all friendship nominations are to other students enrolled in the same school as the respondent. Approximately 15 percent of all respondents' friends did not attend either their school or their sister school. Approximately 8 percent of all friendship nominations were to individuals whose names were not on the school rosters. These nominations may be to students new to the school, or to students known only by nicknames. Because these nominations do not uniquely identify an individual, they are not included in the construction of the friendship networks on which most of the network measures described in this code book are based.

In general, the network measures described in this code book consider only those nominations in which both the sender and receiver of the friendship nomination are uniquely identifiable students who completed an in-school questionnaire. Exceptions to this rule are identified when specific measures are described.

Table 1: Distribution of friendship nominations by nominator and nomination status

To Nomination Status

	10 Nomination Status								
From Nominator	UNIQUELY NOMINATABLE SAME SCHOOL	UNIQUELY NOMINATABLE SISTER SCHOOL	SPECIAL CODES	UNMATCHED NOMINATIONS	TOTAL N OF NOMINATIONS SENT				
UNIQUELY NOMINATABLE RESPONDENT Respondent's name was on the roster (N = 75,871 respondents)	314,938	5,481	124,689	64,835	509,943				
ROW % COLUMN %	62% 96%	1% 94%	24% 91%	13% 94%	100%				
UNIQUELY NON- NOMINATABLE RESPONDENT Respondent's name was not on the roster (N = 6,758 respondents) ROW % COLUMN %	13,527 44% 4%	354 1% 6%	12,674 41% 9%	4,141 14% 6%	30,696 100%				
TOTAL	100%	100%	100%	100%					
N = 82,629 respondents	328,465	5,835	137,363	68,976	540,639				

For further information about the distribution of nominations in the Add Health network data, see Bearman and Moody 1997.

DEFINITIONS AND CONVENTIONS

Definitions

EGO Respondent

ALTER Student in the same school as ego who is eligible to be

nominated as a friend

SISTER SCHOOL Sample school in the same community as ego's school.

If ego attends a high school, the sister school is generally the junior high or middle school that sends the majority of its students to ego's high school. If ego attends a junior high or middle school, the sister school is the high school ego is most likely to attend. If ego's school contains

grades 7-12 there is no sister school.

NODE Unique member of a network TIE Nomination of j as a friend of i

DYAD Pair of tied nodes

SYMMETRIC DYAD Dyad in which ego's nomination of alter is

reciprocated

ASYMMETRIC DYAD Dyad in which ego's nomination of alter is not

reciprocated

GEODESIC The shortest path between two nodes
OUT-DEGREE Number of alters nominated by ego
Number of alters who nominate ego

EGO'S SEND-NETWORK Ego and the set of alters nominated by ego EGO'S RECEIVE-NETWORK Ego and the set of alters who nominate ego

EGO'S SEND- AND RECEIVE-NETWORK

The union of ego's send-network and ego's receive-

network

TOTAL FRIENDSHIP NETWORK

CATEGORICAL ATTRIBUTE

Complete school-level friendship matrix

An attribute which divides a population is

An attribute which divides a population into mutually exclusive sub-populations. Categorical attributes

used here are sex, race, grade, and age.

TRAIT A characteristic which defines a sub-population in terms of a categorical attribute. Examples are male, female, black, white, 8th graders, 16 year

olds

IN-GROUP PREFERENCE The tendency for persons sharing a trait to nominate

each other.

OUT-GROUP PREFERENCE The tendency for persons to nominate those who do

not share a particular trait with them.

Coding of Race and Ethnicity

The race and ethnicity questions in the Add Health study allowed respondents to chose multiple racial and ethnic backgrounds. In order to calculate ego-network heterogeneity measures and school-level segregation indices, we created a categorical race/ethnicity variable, using the following logic.

Respondent was classified as:

WHITE if he/she marked white as his/her only race and did not claim a Hispanic

background

BLACK if he/she marked black as his/her only race and did not claim a Hispanic

background

HISPANIC if he/she claimed a Hispanic background, regardless of racial background

ASIAN if he/she marked Asian as their only race and did not mark Hispanic

background

OTHER all other responses

If any of the four specific racial/ethnic groups comprised less than 2 percent of the total population of a particular school, that group was recoded to OTHER for all school-level segregation indices.

Mathematical Conventions

The formulas used to construct all variables are provided in the variable description section of this code book, along with the appropriate references. Within formulas, **bold** typeface refers to matrices, normal typeface to scalars. Subscripts are in row-column order. Thus \mathbf{D}_{ij} refers to the cell located in the *i*th row and *j*th column of the matrix \mathbf{D} .

Missing Data

As noted above, network measures were not calculated for schools with low response rates or for individual respondents with problematic identification numbers. Beyond these cases, particular network measures are missing for certain respondents, due to substantive or mathematical reasons. For example, the female saliency index is missing for those students who attend allmale schools. The conditions under which particular measures will be missing are outlined in the variable description section of this code book.

PART II: Summary List of Add Health Network Variables

INDIVIDUAL-LEVEL MEASURES

Basic Network Descriptors	
In-degree	IDGX2
Out-degree	ODGX2
Number of nominations outside of school	NOUTNOM
Number of nominations to sister school	TAB113
Bonacich centrality, $\beta = 0.1$	BCENT10X
Reach	
Reach in three steps	
Mean geodesic distance	
Proximity prestige	
Influence domain (in-reach)	INFLDMN
Ego has a best male friend	
Ego has a best female friend	
Best male friend reciprocates	
Best male friend reciprocates as best friend	
Best female friend reciprocates	
Best female friend reciprocates as best friend	
Ego send-network density Size of ego send-network Ego receive-network density Size of ego receive-network Ego send- and receive-network density Size of ego send- and receive-network Ego-network heterogeneity measures for grade, race, and	NESNERNERNERESRDENNESR
Grade	
Ego send-network	
Network heterogeneity	EHSGRD
Proportion of grades represented	ERSNGRD
Number of cases used to calculate heterogenei	ty NEHSGRD
Ego receive-network	
Network heterogeneity	
Proportion of grades represented	
Number of cases used to calculate heterogenei	ty NEHRGRD
Ego send- and receive-network	
Network heterogeneity	
Proportion of grades represented	
Number of cases used to calculate heterogenei	ty NEHGRD

Race	
Ego send-network	
Network heterogeneity	EHSRC5
Proportion of races represented	ESRNRC5
Number of cases used to calculate heterogeneity	NEHSRC5
Egos receive-network	
Network heterogeneity	EHRRC5
Proportion of races represented	ERRNRC5
Number of cases used to calculate heterogeneity Ego send- and receive-network	NEHRRC5
Network heterogeneity	EHRC5
Proportion of races represented	
Number of cases used to calculate heterogeneity	
Age	
Ego send-network	
Network heterogeneity	EHSAGE
Proportion of ages represented	
Number of cases used to calculate heterogeneity	
Ego receive-network	
Network heterogeneity	EHRAGE
Proportion of ages represented	ERRNAGE
Number of cases used to calculate heterogeneity	NEHRAGE
Ego send- and receive-network	
Network heterogeneity	EHAGE
Proportion of ages represented	
Number of cases used to calculate heterogeneity	NEHAGE
Ego-network behavior/attribute means for in-school questi	onnaire items
(where the in-school questionnaire item number, as shown in	
replaces < x > .)	11
Based on ego's send-network:	
Behavior/attribute mean	AXS <x></x>
Number of alters with valid data on attribute	
Based on ego receive-network:	
Behavior/attribute mean	AXR <x></x>
Number of alters with valid data on attribute	NAR <x></x>
Based on ego send- and receive-network:	
Behavior/attribute mean	
Number of alters with valid data on attribute	NA < x >

SCHOOL-LEVEL MEASURES

Measures of Global Network Structure	
Density	DENX2
Density at maximum reach	RCHDEN
Relative density	RELDEN
Proportion symmetric dyads	
Proportion asymmetric dyads	
Mutuality index	
Measures of Segregation and Group Salience for C	Grade, Race, and Sex
Grade segregation index	SEG1S3
7th grade salience index	SS37
8th grade salience index	SS38
9th grade salience index	
10th grade salience index	SS310
11th grade salience index	
12th grade salience index	SS312
Race segregation index	SEG1RCE5
White salience index	
Black salience index	SRCE52
Hispanic salience index	SRCE53
Asian salience index	
Other salience index	SRCE55
Sex segregation index	SEG1S2
Male salience index	
Female salience index	SS21

PART III: Construction of Add Health Network Variables

INDIVIDUAL-LEVEL MEASURES

Basic Network Descriptors

In-degree (IDGX2)

The number of times ego is nominated by other students in the school.

$$IDGX2_{i} = \sum_{j} X_{ji}$$

Where

 $\sum_{i} X_{ji}$ = the sum of the *i*th column of the total friendship network **X**

Out-degree (ODGX2)

The number of people respondent nominates in the school.

$$ODGX2_{i} = \sum_{j} X_{ij}$$

Where

 $\sum_{i} X_{ij}$ = the sum of the *i*th row of the total friendship network **X**

Students were allowed to nominate up to 10 people. If a student skipped this entire section, ODGX2=0.

Number of nominations outside the school (NOUTNOM)

The number of people ego nominates from outside the school.

$$NOUTNOM_i = \sum t7777_i, t8888_i, tpaired_i$$

Where:

t7777_i = tie to student who attends neither ego's school nor the sister school

t8888_i = tie to student who attends the sister school but is not on the roster

tsister_i = tie to student who attends the sister school and is on roster

Number of matched nominations to sister school (TAB113)

The number of valid alters ego nominates from the sister school.

$$TAB113_i = \sum tpaired_i$$

Where:

tpaired_i = tie to student who attends the paired school

Cases are missing if there is no sister school. Ties are omitted if they do not reference a valid student identification number.

Bonacich centrality, β = 0.1 (BCENT10X)

Ego's centrality, weighted by the centrality of those to whom he/she sends ties (Bonacich 1987).

$$BCENT10X(\alpha, \beta)_i = \alpha(I - \beta X)^{-1}XI$$

Where:

 α = a scaling vector

 β = power weight (here = 0.1)

I = identity matrix

X = total friendship network

1 = column of 1s

If ODGX2 = 0 then BCENT10X = 0.

Reach (REACH)

Maximum number of alters ego can reach in the total friendship network.

$$REACH_i = \sum_{j} B_{ij}$$

Where:

 $\bf B$ is the reachability matrix of $\bf X$

such that:

 \mathbf{D} = geodesic distance matrix of the total friendship network \mathbf{X} and

$$\mathbf{B}_{ij} = 1 \text{ if } \mathbf{D}_{ij} > 0$$

If ODGX2 = 0 then REACH = 0.

Reach in three steps (REACH3)

A step refers to the length of a path from i to j. If i nominates j and j nominates k and k nominates k, then i and k are three steps apart. The value of the variable REACH3 is the total number of alters ego can reach in three steps.

$$REACH3_i = \sum_j B_{ij}$$

Where:

B is a variant of the reachability matrix of **X** such that:

 \mathbf{D} = geodesic distance matrix of the total friendship network \mathbf{X} nd

$$\mathbf{B}_{ij} = 1 \text{ if } 0 < \mathbf{D}_{ij} < 4$$

If ODGX2 = 0 then REACH3=0.

Mean geodesic distance (IGDMEAN)

Average path length between ego and ego's complete set of reachable alters.

$$IGDMEAN_{i} = \frac{\sum_{j} D_{ij}}{\sum_{j} B_{ij}}$$

Where:

B is the reachability matrix of **X** such that

 \mathbf{D} = geodesic distance matrix of the total friendship network \mathbf{X} and

11

$$\mathbf{B}_{ij} = 1 \text{ if } \mathbf{D}_{ij} > 0$$

If ODGX2= 0 then IGDMEAN is missing.

Proximity prestige (PRXPREST)

Measures the prestige of ego relative to the number of people who can reach ego (Wasserman and Faust 1994:203-205).

$$PRXPREST_{i} = \frac{\frac{I_{i}}{(g-1)}}{\sum_{j} \frac{d(n_{j}, n_{i})}{I_{i}}}$$

Where:

 I_i = influence domain of i, which is equal to the number of alters who can reach i (see below)

g = number of nodes in X

 $d(n_i,n_i)$ =length of the geodesic distance between actor j to actor i

If IDGX2 = 0 then PRXPREST is missing.

Influence domain (INFLDMN)

Number of alters who can reach ego.

$$INFLDMN_i = \sum_j B_{ji}$$

Where:

B is the reachability matrix of **X** such that:

such that:

 \mathbf{D} = geodesic distance matrix of the total friendship network \mathbf{X} and

$$\mathbf{B}_{ij} = 1 \text{ if } \mathbf{D}_{ij} > 0$$

If IDGX2 = 0 then IGFLDMN = 0.

Ego has a best male friend (HAVEBMF)

Dummy variable indicating whether ego nominated a male friend in the school as his/her best friend.

 $HAVEBMF_i = 0$ ego did not nominate a male best friend $HAVEBMF_i = 1$ ego nominated a male best friend

Ego has a best female friend (HAVEBFF)

Dummy variable indicating whether ego nominated a female friend in the school as his/her best friend.

 $HAVEBFF_i = 0$ ego did not nominate a female best friend $HAVEBFF_i = 1$ ego nominated a female best friend

Best male friend reciprocates (BMFRECIP)

Dummy variable indicating whether the person ego nominated as his/her best male friend nominated ego a friend.

BMFRECIP_i = 0 ego's best friend did not reciprocate a friendship

nomination

BMFRECIP_i = 1 ego's best friend reciprocated with a friendship

nomination

If ego has no best male friend, or if the best male friend did not complete the questionnaire, BMFRECIP is missing.

Best male friend reciprocates as best friend (BMFRECBF)

Dummy variable indicating whether the person ego nominated as his/her best male friend nominated ego as his best friend.

BMFRECIP_i = 0 ego's best friend did not reciprocate as best friend ego's best friend reciprocated as best friend

If ego has no best male friend, or if the best male friend did not complete the questionnaire, BMFRECBF is missing.

Best female friend reciprocates (BFFRECIP)

Dummy variable indicating whether the person ego nominated as his/her best female friend nominated ego as any type of friend.

BFFRECIP_i = 0 ego's best friend did not reciprocate a friendship

nomination

BFFRECIP_i = 1 ego's best friend reciprocated with a friendship

nomination

If ego has no best female friend, or if the best female friend did not complete the questionnaire, BFFRECIP is missing.

Best female friend reciprocates as best friend (BFFRECBF)

Dummy variable indicating whether the person ego nominated as his/her best female friend nominated ego as her best friend.

BFFRECIP_i = 0 ego's best friend did not reciprocate as best friend BFFRECIP_i = 1 ego's best friend reciprocated as best friend

If ego has no best female friend, or if the best female friend did not complete the questionnaire, BMFRECBF is missing.

Ego-centered Network Measures

Ego-centered networks are composed of ego and a set of alters directly tied to ego. The set of alters in a particular type of ego network is defined in one of three ways: (1) those alters nominated by ego, the $ego\ send-network$; (2) alters nominating ego, the $ego\ receive-network$; or (3) the union of ego's send- and receive-networks (the $ego\ send-$ and receive-network). All three types of ego networks include ties sent from any node in the network to any other node in the ego network. Thus if ego sends ties to j and k, a tie from j to k is part of ego's send-network (as are ties from k to j, j to ego, and k to ego). We have calculated sociometric characteristics, heterogeneity measures, and attribute means for each of the three types of ego networks.

Sociometric characteristics of ego-networks. For each ego with valid network data, we have calculated the density and size of each of the three types of ego networks.

Ego send-network density (ESDEN)

Density of the network composed of ego and the set of alters nominated by ego

$$ESDEN_{i} = \frac{\sum S}{S \bullet (s - I)}$$

Where:

S = total ego send-network s = number of nodes in S

If ODGX2 = 0 then ESDEN is missing.

Size of ego send-network (NES)

Number of alters nominated by ego, plus ego.

$$NES_i = s$$

Where:

s = the number of nodes in S

If ODGX2 = 0 then NES = 1.

Ego receive-network density (ERDEN)

Density of the network composed of ego and the set of alters who nominate ego

$$ERDEN_i = \frac{\sum R}{r \bullet (r-1)}$$

Where:

R = total ego receive-network

r = number of nodes in R

If IDGX2 = 0 then ERDEN is missing.

Size of ego receive-network (NER)

Number of alters who nominate ego, plus ego.

$$NER_i = r$$

Where:

r = the number of nodes in \mathbf{R}

If IDGX2 = 0 then NER = 1.

Ego send- and receive-network density (ESRDEN)

Density of the network composed of ego, the set of alters nominated by ego, and the set of alters who nominate ego.

$$ESRDEN_i = \frac{\sum SR}{sr \bullet (sr - 1)}$$

Where:

SR = total ego send- and receive-network

sr = number of nodes in SR

If ODGX2 = 0 and IDGX2 = 0 then ESRDEN is missing.

Size of ego send- and receive-network (NESR)

Number of alters who are nominated by ego or who nominate ego, plus ego.

$$NESR_{i} = sr$$

Where:

sr = the number of nodes in SR

If ODGX2 = 0 and IDGX2 = 0 then NER = 1.

Ego-network heterogeneity measures for grade, race, and age. For each of the three types of ego networks, we calculate a heterogeneity measure for three categorical attributes: grade, race, and age. Three variables are associated with each network/attribute combination: a heterogeneity score, the proportion of all traits present in the school which are represented in the ego network, and the number of nodes in the network used to calculate the heterogeneity score.

Heterogeneity measures. This family of variables assesses the heterogeneity of an ego network with respect to the traits of a categorical attribute. The formula used to calculate ego-network heterogeneity with respect to attribute A is:

$$HETEROGENEITY_{iA} = 1 - \left[\sum_{1}^{n} \left(\frac{A_k}{en} \right)^2 \right]$$

Where:

A = the categorical attribute

 A_k = the number of nodes with trait k in the ego network

en = the number of nodes in the ego network with valid data on A

n = the total number of traits of A represented in the ego network

HETEROGENEITY_{iA} is missing if ego is the only member of the underlying ego network, or if all members of the ego network (including ego) have missing data on attribute A. If all members of the ego network who have valid data on attribute A share the same trait, HETEROGENEITY_{iA} = 0.

Proportion of possible traits represented in ego network. This family of variables is a measure of the sheer diversity of the ego network, with respect to the number of traits present in ego's school.

$$PROPORTION_{iA} = \frac{n_i}{n_s}$$

Where:

A =the categorical attribute

 n_i = the total number of traits of A represented in the ego network n_s = the total number of traits of A represented in ego's school

PROPORTION_{iA} is missing if HETEROGENEITY_{iA} is missing.

Number of cases used to calculate heterogeneity. This family of variables is a sheer count of the number of cases in the ego network with valid data on attribute A.

$$NofCASES_{iA} = en$$

Where:

en = the number of nodes in the ego network with valid data on A

 $NofCASES_{iA}$ is missing if $HETEROGENEITY_{iA}$ is missing.

Variable names for heterogeneity and related measures. Variable names are shown in the table below, where within each cell, the first variable is the heterogeneity score, the second is the proportion of traits represented, and the third is the number of cases used to calculate heterogeneity.

Attribute

Type of Ego Network	Grade	RACE	AGE
	EHSGRD	EHSRC5	EHSAGE
	ERSNGRD	ESRNRC5	ERSNAGE
EGO SEND-NETWORK	NEHSGRD	NEHSRC5	NEHSAGE
	EHRGRD	EHRRC5	EHRAGE
	ERRNGRD	ERRNRC5	ERRNAGE
EGO RECEIVE-NETWORK	NEHRGRD	NEHRRC5	NEHRAGE
	EHGRD	EHRC5	EHAGE
EGO SEND- AND	ERNGRD	ERNRC5	ERNAGE
RECEIVE-NETWORK	NEHGRD	NEHRC5	NEHAGE

Ego-network behavior/attribute means for in-school questionnaire items. For most of the behavior and attribute variables on the Add Health in-school questionnaire, means are provided for each of three types of ego networks (send, receive, and send and receive). Mean values exclude ego and any alters with missing values on the attribute or behavior variable. We also provide the number of alters in the ego network with valid data on x as a separate variable, to aid in reliability checks. Additionally, we have calculated mean values for two variables constructed from the in-school questionnaire: grade point average (GPA) and the number of extracurricular activities (NUMACT). ¹

Mean values on behavior and attribute measures. This family of variables provides the mean value of ego's peers (defined by a particular ego network) on behavior and attribute measures from the in-school questionnaire. The range of $MEAN_{ix}$ is the same as the range of x.

$$MEAN_{ix} = \frac{\sum x_{j}}{nj}$$

Where:

x = the in-school behavior or attribute variable

 x_i = the value of x for the jth member of the ego network

nj = the number of nodes in the ego network with valid data on x (excluding ego)

Missing values are a function of missing values on x and the degree of the actor. If ODGX2 = 0, then all means calculated on ego's send-network are missing. If IDGX2 = 0, then all means calculated on ego's receive-network are missing. If both ODGX2 = 0 and IDGX2 = 0, then means calculated on ego's send- and receive-network are missing.

 $^{^{1}}$ GPA is the mean grade across four core subjects from the in-school questionnaire (items S10a - S10d). Grades are weighted as follows: A = 4, B = 3, C = 2, D or F = 1. GPA was calculated using only valid responses.

NUMACT is the number of extra curricular activities reported by the respondent. NUMACT is top-coded at 10, since inspection of the responses of those reporting more than 10 extra curricular activities (approximately 1 percent of the sample) appeared unreliable. For example, many of these students reported that they participated in every activity listed; others claimed to participate in every sport.

N of alters in the ego network with valid data on x. This family of variables reports the number of alters in the ego network with valid data on x.

$$NofCASES_{ix} = ej$$

Where:

ej = the number of nodes in the ego network with valid data on x, (excluding ego)

NofCASES_{ix} is missing if MEAN_{ix} is missing.

Variable names for mean values and related measures. The conventions used to form the variable names for the mean values on the in-school behavior and attribute measures are shown in the table below. To form actual variable names, replace $\langle x \rangle$ by the in-school item number. A complete list of these variables is included in the Appendix.

Behavior or Attribute x

Type of Ego Network	MEAN OF ALTER SET	N of valid alters
EGO SEND-NETWORK	AXS <x></x>	NAS <x></x>
EGO RECEIVE-NETWORK	AXR <x></x>	NAR <x></x>
EGO SEND- AND RECEIVE-NETWORK	AX <x></x>	NA< <i>x</i> >

SCHOOL-LEVEL MEASURES

School-level measures are calculated using all valid nominations from students at the school to other students at the school. All students from a single school will have the same values for all school-level measures.

Measures of Global Network Structure

Density (DENX2)

The number of actual ties in the total friendship network divided by the number of possible ties in the total friendship network.

$$DENX2 = \frac{\sum X}{\left(g \bullet (g - I)\right)}$$

Where:

X = total friendship network g = number of nodes in X

Density at maximum reach (RCHDEN)

The proportion of all ties filled when reach maximized.

$$RCHDEN = \frac{\sum B}{g \bullet (g - l)}$$

Where:

 $\bf B$ is the reachability matrix of $\bf X$

such that:

 \mathbf{D} = geodesic distance matrix of the total friendship network \mathbf{X} and

$$\mathbf{B}_{ij} = 1 \text{ if } \mathbf{D}_{ij} > 0$$

$$\mathbf{g} = \text{number of nodes in } \mathbf{X}$$

Relative density (RELDEN)

Observed density divided by maximum possible density given out-degree = 10.

$$RELDEN = \frac{DENX2}{[(10 \bullet g) / (g \bullet (g-1))]}$$

Where:

g = number of nodes in the total friendship network X

Proportion symmetric dyads (PTCMUT)

Proportion of all dyads that are symmetric.

$$PTCMUT = \frac{M}{D}$$

Where:

M = number of mutual dyads within the total friendship network X

D = number of dyads within the total friendship network X

Proportion asymmetric dyads (PTCASY)

Proportion of all dyads that are asymmetric.

$$PTCASY = \frac{A}{D}$$

Where:

A = number of asymmetric dyads within the total friendship

network X

D = total number of dyads within the total friendship network X

Mutuality index (RHO2)

Katz and Powell's (1955) mutuality index. Measures the tendency for actors in a group to reciprocate choices. The index is based on the expected number of mutual dyads given a random network with the same distribution of out-ties as that observed in the data (Wasserman and Faust 1994, formula 13.14).

$$RHO2 = \frac{2(g-l)^2 M - L^2 + L_2}{L(g-l)^2 - L^2 + L_2}$$

Where:

g = number of nodes in the total friendship network X

M = number of mutual dyads

L = sum of the out-degree of the total friendship network X

 L_2 = sum of the squares of the out-degree of the total friendship

network X

Measures of Segregation and Group Salience for Grade, Race, and Sex

One useful way to compare the social structure of schools is in terms of how much students sharing categorical attributes tend to choose each other as friends. For three fundamental categorical attributes, sex, grade, and race, we have constructed measures of school-level segregation and trait-specific measures of salience. The school-level measures assess the overall level of inter-group segregation, relative to a null of random mixing across groups. The trait specific measures of salience assess the strength of the in-group preference of students with a

particular trait to choose other students with the same trait as friends (i.e., girls' preference for girls as friends, blacks' preference for blacks as friends, seniors' preference for seniors as friends).

Segregation indices. The segregation indices are a modification of Freeman's (1978) index; for the Add Health data, we generalize from two traits to multiple traits and allow for positive outgroup preference. Segregation indices are calculated as follows:

$$SEGREGATION_{A} = \frac{Expected(CrossTraitTies) - Observed(CrossTraitTies)}{Expected(CrossTraitTies)}$$

where *cross trait ties* refers to the total number of ties sent from each set of nodes sharing one trait to all nodes not sharing that trait, summed across all traits.

The expected number of *cross trait ties* is the sum of the expected values for each possible trait-trait combination, omitting ties between nodes sharing a trait. The expected number of ties sent from trait k to trait l is equal to the total number of ties sent by those with trait k multiplied by the probability that a tie from a node with trait k is sent to a node with trait k. This probability is a function of the relative size of the groups sharing each trait, and is calculated as:

$$p(g_{kl}) = \frac{g_k \bullet g_l}{g_k \bullet (g-1)}$$

Where:

 g_k = the number of nodes with trait k g_l = the number of nodes with trait l

g = the number of nodes in the total friendship network X

Thus,

$$Expected(CrossTraitTies) = \sum_{k} \sum_{l} (T_k) \bullet (p(g_{kl}))$$

Where:

 T_k = total number of ties sent by those with trait k

 p_{kl} = probability that a tie from a node with trait k is sent to a node with trait l

and

 $k \neq l$

The segregation index has a theoretical minimum of -1 (pure out-group preference) and a theoretical maximum of 1 (pure in-group preference, or total segregation). A value of 0 indicates no group-preference: ties are sent randomly with respect to this categorical attribute.

In general, rare traits have large influences on the segregation indices. Therefore, we required that at least 2 percent of a school's population must have exhibited a trait before we included it in the segregation index calculations. We note, however, that 2 percent of a small school is only a few students, and therefore urge caution when using these measures.

Where applicable, we provide grade (SEG1S3), race (SEG1RCE5), and sex (SEG1S2) segregation indices for all schools with valid network data.

Salience indices. Salience indices measure trait-specific in-group preferences. We define ingroup preference as the extent to which persons with a particular trait tend to nominate other persons with the same trait as their friends.

The formula used to calculate the salience index is drawn from Rytina and Morgan (1982).

$$SALIENCE_k = \frac{t_{kk} / T_k}{g_k / g}$$

Where:

k = relevant trait

 t_{kk} = number of ties sent by those with trait k to those with trait k

 T_k = total number of ties sent by those with trait k

 g_k = number of nodes with trait k

g = total number of nodes in the network

For each school with valid network data, we provide salience indices for the following traits (variable names are in parentheses):

GRADE		RAC	E	SEX	
7th	.(SS37)	White	(SRCE51)	Male(SS20)	
8th	.(SS38)	Black	(SRCE52)	Female(SS21)	
9th	.(SS39)	Hispanic	(SRCE53)		
10th	.(SS310)	Asian	(SRCE54)		
11th	.(SS311)	Other	(SRCE55)		
12th	.(SS312)				

If less than 2 percent of the school has a particular trait, the associated salience index is set to missing. When students with the same trait do not send any ties to one another, the salience index = 0.

PART IV: References

- Bearman, Peter S., Jo Jones, and J. Richard Udry, J. 1997. The National Longitudinal Study of Adolescent Health: Research Design. [WWW document]. URL: http://www.cpc.unc.edu/projects/addhealth/design.html
- Bearman, Peter S. and James Moody. 1997. "Add Health Network Data." Unpublished.
- Bonacich, Phililp. 1987. "Power and Centrality: A Family of Measures." *American Journal of Sociology* 92:1170-1182.
- Freeman, Linton C. 1978. "Segregation in Social Networks." *Sociological Methods and Research* 6(4):411-430.
- Katz, Leo and Powell, James H. 1955. "Measurement of the Tendency Toward Reciprocation of Choice." *Sociometry* 18:659-665.
- Rytina, Steve and David L. Morgan. 1982. "The Arithmetic of Social Relations: The Interplay of Category and Network." *American Journal of Sociology* 88:88-113.
- Wasserman, Stanley and Katherine Faust. 1994. *Social Network Analysis: Methods and Applications*. Cambridge and New York, Cambridge University Press.

APPENDIX: Ordered SAS Proc Contents Output

-----Variables Ordered by Position-----

#	Variable	Туре	Len	Pos	Label
1	AID	Char	8	0	Respondent Identifier
3	SIZE	Num	8	18	Number of questionnaires in school
4	IDGX2	Num	8	26	In-Degree: TFN
5	ODGX2	Num	8	34	Out-Degree: TFN
6	NOUTNOM	Num	8	42	Number of ties sent outside the school
7	TAB113	Num	8	50	Ties: Matchable to Other School
8	BCENT10X	Num	8	58	Bonacich Centrality P=.1
9	REACH	Num	8	66	N reachable alters: TFN
10	REACH3	Num	8	74	N reachable alters 3 steps: TFN
11	IGDMEAN	Num	8	82	mean dist to reachable alters
12	PRXPREST	Num	8	90	Proximity Prestige
13	INFLDMN	Num	8	98	Influence Domain
14	HAVEBMF	Num	8	106	R has a Best Male Friend
15	HAVEBFF	Num	8	114	R has a best Female friend
16	BMFRECIP	Num	8	122	Best Male Frnd Recip (any)
17	BMFRECBF	Num	8	130	Best Male Frnd Recip. as BF
18	BFFRECIP	Num	8	138	Best Female Frnd Recip. (any)
19	BFFRECBF	Num	8	146	Best Female Frnd Recip as BF
20	ESDEN	Num	8	154	Density: Ego Send Net
21	NES	Num	8	162	Size: Ego Send Net
22	ERDEN	Num	8	170	Density: Ego Recieve Net
23	NER	Num	8	178	Size: Ego Recieve Net
24	ESRDEN	Num	8	186	Density: Ego S&R net
25	NESR	Num	8	194	Size: Ego Send & Recv Net
26	EHSGRD	Num	8	202	Ego SEND net Heterogeneity: GRADE
27	ERSNGRD	Num	8	210	Prop. GRD rep in ego network
28 29	NEHSGRD	Num	8	218	# of cases used: EHSGRD
30	EHRGRD ERRNGRD	Num Num	8 8	226 234	Ego RECV net Heterogeneity: GRD
31	NEHRGRD	Num	8	242	Prop. GRD rep in ego RECV network # of cases used: EHRGRD
32	EHGRD	Num	8	250	Eqo S&R net Heterogeneity: GRADE
33	ERNGRD	Num	8	258	Prop. GRADE rep in ego network
34	NEHGRD	Num	8	266	# of cases used: EHGRD
35	EHSRC5	Num	8	274	Ego SEND net Heterogeneity: Race(5)
36	ESRNRC5	Num	8	282	Prop. Race(5) rep in ego SEND network
37	NEHSRC5	Num	8	290	# of cases used: EHSRC5
38	EHRRC5	Num	8	298	Ego RECV net Heterogeneity: Race(5)
39	ERRNRC5	Num	8	306	Prop. Race(5) rep in ego RECV network
40	NEHRRC5	Num	8	314	# of cases used: EHRRC5
41	EHRC5	Num	8	322	Ego S&R net Heterogeneity: Race(5)
42	ERNRC5	Num	8	330	Prop. Race(5) rep in ego network
43	NEHRC5	Num	8	338	# of cases used: EHRC5
44	EHSAGE	Num	8	346	Ego SEND net Heterogeneity: AGE
45	ERSNAGE	Num	8	354	Prop. AGE rep in ego network
46	NEHSAGE	Num	8	362	# of cases used: EHSAGE
47	EHRAGE	Num	8	370	Ego RECV net Heterogeneity: AGE
48	ERRNAGE	Num	8	378	Prop. AGE rep in ego RECV network
49	NEHRAGE	Num	8	386	# of cases used: EHRAGE
50	EHAGE	Num	8	394	Ego S&R net Heterogeneity: AGE
51	ERNAGE	Num	8	402	Prop. AGE rep in ego network
52	NEHAGE	Num	8	410	# of cases used: EHAGE
53	AXSGPA	Num	8	418	Send alter mean: gpa
54	AXSNACT	Num	8	426	Send alter mean: numact
55	AXSS1	Num	8	434	Send alter mean: s1
56	AXSS2	Num	8	442	Send alter mean: s2
57	AXSS3	Num	8	450	Send alter mean: s3

58	AXSS45A	Num	8	458	Send alter mean: s45a
59	AXSS45B	Num	8	466	Send alter mean: s45b
60	AXSS45C	Num	8	474	Send alter mean: s45c
61	AXSS45D	Num	8	482	Send alter mean: s45d
62	AXSS45E	Num	8	490	
63	AXSS45F	Num	8	498	Send alter mean: s45f
64	AXSS46A	Num	8	506	Send alter mean: s46a
65	AXSS46B	Num	8	514	Send alter mean: s46b
66	AXSS46C	Num	8	522	Send alter mean: s46c
67	AXSS46D	Num	8	530	Send alter mean: s46d
68	AXSS47		8	538	
		Num			
69	AXSS48	Num	8	546	Send alter mean: s48
70	AXSS49	Num	8	554	Send alter mean: s49
71	AXSS50	Num	8	562	Send alter mean: s50
72	AXSS59A	Num	8	570	Send alter mean: s59a
73	AXSS59B	Num	8	578	Send alter mean: s59b
74	AXSS59C	Num	8	586	Send alter mean: s59c
75	AXSS59D	Num	8	594	Send alter mean: s59d
76	AXSS59E	Num	8	602	Send alter mean: s59e
77	AXSS59F	Num	8	610	Send alter mean: s59f
78	AXSS59G	Num	8	618	Send alter mean: s59g
79	AXSS60A	Num	8	626	Send alter mean: s60a
80	AXSS60B	Num	8	634	Send alter mean: s60b
81	AXSS60C	Num	8	642	Send alter mean: s60c
82	AXSS60D	Num	8	650	Send alter mean: s60d
83	AXSS60E	Num	8	658	
84	AXSS60F	Num	8	666	Send alter mean: s60f
85	AXSS60G	Num	8	674	Send alter mean: s60g
86	AXSS60H	Num	8	682	Send alter mean: s60h
87	AXSS60I	Num	8	690	Send alter mean: s60i
88	AXSS60J	Num	8	698	Send alter mean: s60j
89	AXSS60K	Num	8	706	Send alter mean: s60k
90	AXSS60L	Num	8	714	Send alter mean: s601
91	AXSS60M	Num	8	722	Send alter mean: s60m
92	AXSS60N	Num	8	730	Send alter mean: s60n
93	AXSS600	Num	8	738	Send alter mean: s600
94	AXSS62A	Num	8	746	Send alter mean: s62a
95	AXSS62B	Num	8	754	Send alter mean: s62b
96	AXSS62C	Num	8	762	Send alter mean: s62c
97	AXSS62D	Num	8	770	Send alter mean: s62d
98	AXSS62E	Num	8	778	Send alter mean: s62e
99	AXSS62F	Num	8	786	Send alter mean: s62f
	AXSS62G				Send after mean: s62g
100		Num	8	794	3
101	AXSS62H	Num	8	802	Send alter mean: s62h
102	AXSS62I	Num	8	810	Send alter mean: s62i
103	AXSS62J	Num	8	818	Send alter mean: s62j
104	AXSS62K	Num	8	826	Send alter mean: s62k
105	AXSS62L	Num	8	834	Send alter mean: s621
106	AXSS62M	Num	8	842	Send alter mean: s62m
107	AXSS62N	Num	8	850	Send alter mean: s62n
108	AXSS620	Num	8	858	Send alter mean: s620
109	AXSS62P	Num	8	866	Send alter mean: s62p
110	AXSS62Q	Num	8	874	Send alter mean: s62q
111	AXSS62R	Num	8	882	Send alter mean: s62r
112	AXSS63	Num	8	890	Send alter mean: s63
113	AXSS64	Num	8	898	Send alter mean: s64
114	NASGPA	Num	8	906	Ego Net Denominator axsgpa
115	NASNACT	Num	8	914	Eqo Net Denominator axsnact
116	NASS1	Num	8	922	Ego Net Denominator axss1
					_
117	NASS2	Num	8	930	Ego Net Denominator axss2
118	NASS3	Num	8	938	Ego Net Denominator axss3
119	NASS45A	Num	8	946	Ego Net Denominator axss45a
120	NASS45B	Num	8	954	Ego Net Denominator axss45b

101	NACCAEC	Mum	0	0.60	Eco :	Mo+	Donominator	21122152
121 122	NASS45C	Num	8 8	962	_		Denominator	
	NASS45D	Num		970	_		Denominator	
123	NASS45E	Num	8	978			Denominator	
124	NASS45F	Num	8	986	_		Denominator	
125	NASS46A	Num	8	994	_		Denominator	
126	NASS46B	Num	8	1002	_		Denominator	
127	NASS46C	Num	8	1010	_		Denominator	
128	NASS46D	Num	8	1018	_		Denominator	
129	NASS47	Num	8	1026	_		Denominator	
130	NASS48	Num	8	1034	_		Denominator	
131	NASS49	Num	8	1042	_		Denominator	
132	NASS50	Num	8	1050	_		Denominator	
133	NASS59A	Num	8	1058	_		Denominator	
134	NASS59B	Num	8	1066	_		Denominator	
135	NASS59C	Num	8	1074	_		Denominator	
136	NASS59D	Num	8	1082	_		Denominator	
137	NASS59E	Num	8	1090			Denominator	
138	NASS59F	Num	8	1098			Denominator	
139	NASS59G	Num	8	1106	_		Denominator	_
140	NASS60A	Num	8	1114			Denominator	
141	NASS60B	Num	8	1122	_		Denominator	
142	NASS60C	Num	8	1130	_		Denominator	
143	NASS60D	Num	8	1138	_		Denominator	
144	NASS60E	Num	8	1146	_		Denominator	
145	NASS60F	Num	8	1154			Denominator	
146	NASS60G	Num	8	1162			Denominator	
147	NASS60H	Num	8	1170	_		Denominator	
148	NASS60I	Num	8	1178	_		Denominator	
149	NASS60J	Num	8	1186	_		Denominator	_
150	NASS60K	Num	8	1194	_		Denominator	
151	NASS60L	Num	8	1202	_		Denominator	
152	NASS60M	Num	8	1210	_		Denominator	
153	NASS60N	Num	8	1218	_		Denominator	
154	NASS600	Num	8	1226	_		Denominator	
155	NASS62A	Num	8	1234	_		Denominator	
156	NASS62B	Num	8	1242	_		Denominator	
157	NASS62C	Num	8	1250	_		Denominator	
158	NASS62D	Num	8	1258			Denominator	
159	NASS62E	Num	8	1266	_		Denominator	
160	NASS62F	Num	8	1274	_		Denominator	
161	NASS62G	Num	8	1282	_		Denominator	_
162	NASS62H	Num	8	1290	_		Denominator	
163	NASS62I	Num	8	1298	_		Denominator	
164	NASS62J	Num	8	1306			Denominator	
165	NASS62K	Num	8	1314	_		Denominator	
166	NASS62L	Num	8	1322	_		Denominator	
167	NASS62M	Num	8	1330	_		Denominator	
168	NASS62N	Num	8	1338	_		Denominator	
169	NASS620	Num	8	1346	_		Denominator	
170	NASS62P	Num	8	1354			Denominator	
171	NASS62Q	Num	8	1362	_		Denominator	_
172	NASS62R	Num	8	1370	_		Denominator	
173	NASS63	Num	8	1378	_		Denominator	
174	NASS64	Num	8	1386			Denominator	
175	AXRGPA	Num	8	1394			alter mean:	
176	AXRNACT	Num	8	1402			alter mean:	
177	AXRS1	Num	8	1410			alter mean:	
178	AXRS2	Num	8	1418			alter mean:	
179	AXRS3	Num	8	1426			alter mean:	
180	AXRS45A	Num	8	1434			alter mean:	
181	AXRS45B	Num	8	1442			alter mean:	
182	AXRS45C	Num	8	1450			alter mean:	
183	AXRS45D	Num	8	1458	kec1	eve	alter mean:	545Q

184	AXRS45E	Num	8	1466	Recieve	alter mean:	s45e
185	AXRS45F	Num	8	1474		alter mean:	
186	AXRS46A	Num	8	1482		alter mean:	
187	AXRS46B	Num	8	1490		alter mean:	
188	AXRS46C	Num	8	1498		alter mean:	
189	AXRS46D	Num	8	1506		alter mean:	
190	AXRS47	Num	8	1514		alter mean:	
191	AXRS47	Num	8	1522		alter mean:	
191		Num	8			alter mean:	
193	AXRS49		8	1530		alter mean:	
	AXRS50	Num		1538			s50
194	AXRS59A	Num	8	1546		alter mean:	
195	AXRS59B	Num	8	1554		alter mean:	
196	AXRS59C	Num	8	1562		alter mean:	
197	AXRS59D	Num	8	1570		alter mean:	
198	AXRS59E	Num	8	1578		alter mean:	
199	AXRS59F	Num	8	1586		alter mean:	
200	AXRS59G	Num	8	1594	Recieve	alter mean:	s59g
201	AXRS60A	Num	8	1602	Recieve	alter mean:	s60a
202	AXRS60B	Num	8	1610		alter mean:	
203	AXRS60C	Num	8	1618		alter mean:	
204	AXRS60D	Num	8	1626	Recieve	alter mean:	s60d
205	AXRS60E	Num	8	1634		alter mean:	
206	AXRS60F	Num	8	1642	Recieve	alter mean:	s60f
207	AXRS60G	Num	8	1650	Recieve	alter mean:	s60g
208	AXRS60H	Num	8	1658	Recieve	alter mean:	s60h
209	AXRS60I	Num	8	1666		alter mean:	
210	AXRS60J	Num	8	1674		alter mean:	
211	AXRS60K	Num	8	1682		alter mean:	_
212	AXRS60L	Num	8	1690		alter mean:	
213	AXRS60M	Num	8	1698		alter mean:	
214	AXRS60N	Num	8	1706		alter mean:	
215	AXRS600	Num	8	1714		alter mean:	
216	AXRS62A	Num	8	1722		alter mean:	
217	AXRS62B	Num	8	1730		alter mean:	
218	AXRS62C	Num	8	1738		alter mean:	
219	AXRS62D	Num	8	1746		alter mean:	
220		Num	8			alter mean:	
	AXRS62E AXRS62F		8	1754			
221		Num		1762		alter mean:	
222	AXRS62G	Num	8	1770		alter mean:	_
223	AXRS62H	Num	8	1778		alter mean:	
224	AXRS62I	Num	8	1786		alter mean:	
225	AXRS62J	Num	8	1794		alter mean:	
226	AXRS62K	Num	8	1802		alter mean:	
227	AXRS62L	Num	8	1810		alter mean:	
228	AXRS62M	Num	8	1818		alter mean:	
229	AXRS62N	Num	8	1826		alter mean:	
230	AXRS620	Num	8	1834		alter mean:	
231	AXRS62P	Num	8	1842		alter mean:	-
232	AXRS62Q	Num	8	1850	Recieve	alter mean:	s62q
233	AXRS62R	Num	8	1858	Recieve	alter mean:	s62r
234	AXRS63	Num	8	1866	Recieve	alter mean:	s63
235	AXRS64	Num	8	1874		alter mean:	
236	NARGPA	Num	8	1882	Ego Net	Denominator	axrgpa
237	NARNACT	Num	8	1890	Ego Net	Denominator	axrnact
238	NARS1	Num	8	1898	Ego Net	Denominator	axrs1
239	NARS2	Num	8	1906	Ego Net	Denominator	axrs2
240	NARS3	Num	8	1914	Ego Net	Denominator	axrs3
241	NARS45A	Num	8	1922	_	Denominator	
242	NARS45B	Num	8	1930		Denominator	
243	NARS45C	Num	8	1938	_	Denominator	
244	NARS45D	Num	8	1946	_	Denominator	
245	NARS45E	Num	8	1954	_	Denominator	
246	NARS45F	Num	8	1962	_	Denominator	
		- '	-		500		

247	NARS46A	Num	8	1970	Ego	Net	Denominator axrs46a
248	NARS46B	Num	8	1978	Ego	Net	Denominator axrs46b
249	NARS46C	Num	8	1986	Ego	Net	Denominator axrs46c
250	NARS46D	Num	8	1994	_		Denominator axrs46d
251	NARS47	Num	8	2002	_		Denominator axrs47
					_		
252	NARS48	Num	8	2010	_		Denominator axrs48
253	NARS49	Num	8	2018	Ego	Net	Denominator axrs49
254	NARS50	Num	8	2026	Ego	Net	Denominator axrs50
255	NARS59A	Num	8	2034	Eqo	Net	Denominator axrs59a
256	NARS59B	Num	8	2042	Eao	Net	Denominator axrs59b
257	NARS59C	Num	8	2050	_		Denominator axrs59c
			8		_		
258	NARS59D	Num		2058	_		Denominator axrs59d
259	NARS59E	Num	8	2066			Denominator axrs59e
260	NARS59F	Num	8	2074	Ego	Net	Denominator axrs59f
261	NARS59G	Num	8	2082	Ego	Net	Denominator axrs59g
262	NARS60A	Num	8	2090	Ego	Net	Denominator axrs60a
263	NARS60B	Num	8	2098	_		Denominator axrs60b
264	NARS60C	Num	8	2106	_		Denominator axrs60c
					_		
265	NARS60D	Num	8	2114	_		Denominator axrs60d
266	NARS60E	Num	8	2122	_		Denominator axrs60e
267	NARS60F	Num	8	2130	Ego	Net	Denominator axrs60f
268	NARS60G	Num	8	2138	Ego	Net	Denominator axrs60g
269	NARS60H	Num	8	2146	Ego	Net	Denominator axrs60h
270	NARS60I	Num	8	2154	_		Denominator axrs60i
271	NARS60J	Num	8	2162	_		Denominator axrs60j
					_		-
272	NARS60K	Num	8	2170	_		Denominator axrs60k
273	NARS60L	Num	8	2178	_		Denominator axrs601
274	NARS60M	Num	8	2186	Ego	Net	Denominator axrs60m
275	NARS60N	Num	8	2194	Ego	Net	Denominator axrs60n
276	NARS600	Num	8	2202	Ego	Net	Denominator axrs600
277	NARS62A	Num	8	2210	Eao	Net	Denominator axrs62a
278	NARS62B	Num	8	2218	_		Denominator axrs62b
279	NARS62C	Num	8	2226	_		Denominator axrs62c
					_		
280	NARS62D	Num	8	2234	_		Denominator axrs62d
281	NARS62E	Num	8	2242	_		Denominator axrs62e
282	NARS62F	Num	8	2250	Ego	Net	Denominator axrs62f
283	NARS62G	Num	8	2258	Ego	Net	Denominator axrs62g
284	NARS62H	Num	8	2266	Ego	Net	Denominator axrs62h
285	NARS62I	Num	8	2274	Ego	Net	Denominator axrs62i
286	NARS62J	Num	8	2282	Eao	Net	Denominator axrs62j
287	NARS62K	Num	8	2290	_		Denominator axrs62k
	NARS62L	Num	8	2298	_		Denominator axrs621
288					_		
289	NARS62M	Num	8	2306	_		Denominator axrs62m
290	NARS62N	Num	8	2314			Denominator axrs62n
291	NARS620	Num	8	2322			Denominator axrs620
292	NARS62P	Num	8	2330	Ego	Net	Denominator axrs62p
293	NARS62Q	Num	8	2338	Ego	Net	Denominator axrs62q
294	NARS62R	Num	8	2346	Eao	Net	Denominator axrs62r
295	NARS63	Num	8	2354	_		Denominator axrs63
296	NARS64		8		_		Denominator axrs64
		Num		2362	_		
297	AXGPA	Num	8	2370			er mean: gpa
298	AXNUMACT	Num	8	2378	S&R	alte	er mean: numact
299	AXS1	Num	8	2386	S&R	alte	er mean: s1
300	AXS2	Num	8	2394	S&R	alte	er mean: s2
301	AXS3	Num	8	2402	S&R	alte	er mean: s3
302	AXS45A	Num	8	2410			er mean: s45a
303	AXS45B	Num	8	2418			er mean: s45b
304	AXS45C	Num	8	2426			er mean: s45c
305	AXS45D	Num	8	2434			er mean: s45d
306	AXS45E	Num	8	2442			er mean: s45e
307	AXS45F	Num	8	2450	S&R	alte	er mean: s45f
308	AXS46A	Num	8	2458	S&R	alte	er mean: s46a
309	AXS46B	Num	8	2466			er mean: s46b

						_
310	AXS46C	Num	8	2474		alter mean: s46c
311	AXS46D	Num	8	2482	S&R	alter mean: s46d
312	AXS47	Num	8	2490	S&R	alter mean: s47
313	AXS48	Num	8	2498		alter mean: s48
314	AXS49	Num	8	2506		alter mean: s49
315	AXS50	Num	8	2514	S&R	alter mean: s50
316	AXS59A	Num	8	2522	S&R	alter mean: s59a
317	AXS59B	Num	8	2530	S&R	alter mean: s59b
318	AXS59C	Num	8	2538		alter mean: s59c
319	AXS59D	Num	8	2546		alter mean: s59d
320	AXS59E	Num	8	2554	S&R	alter mean: s59e
321	AXS59F	Num	8	2562	S&R	alter mean: s59f
322	AXS59G	Num	8	2570	S&R	alter mean: s59q
323	AXS60A	Num	8	2578		alter mean: s60a
324	AXS60B	Num	8	2586		alter mean: s60b
325	AXS60C	Num	8	2594	S&R	alter mean: s60c
326	AXS60D	Num	8	2602	S&R	alter mean: s60d
327	AXS60E	Num	8	2610	S&R	alter mean: s60e
328	AXS60F	Num	8	2618		alter mean: s60f
	AXS60G					
329		Num	8	2626		alter mean: s60g
330	AXS60H	Num	8	2634	S&R	alter mean: s60h
331	AXS60I	Num	8	2642	S&R	alter mean: s60i
332	AXS60J	Num	8	2650	S&R	alter mean: s60j
333	AXS60K	Num	8	2658		alter mean: s60k
334	AXS60L	Num	8	2666		alter mean: s601
335	AXS60M	Num	8	2674		alter mean: s60m
336	AXS60N	Num	8	2682	S&R	alter mean: s60n
337	AXS600	Num	8	2690	S&R	alter mean: s60o
338	AXS62A	Num	8	2698	S&R	alter mean: s62a
339	AXS62B	Num	8	2706		alter mean: s62b
340	AXS62C	Num	8	2714		alter mean: s62c
341	AXS62D	Num	8	2722	S&R	alter mean: s62d
342	AXS62E	Num	8	2730	S&R	alter mean: s62e
343	AXS62F	Num	8	2738	S&R	alter mean: s62f
344	AXS62G	Num	8	2746		alter mean: s62g
345	AXS62H	Num	8	2754		alter mean: s62h
346	AXS62I	Num	8	2762		alter mean: s62i
347	AXS62J	Num	8	2770	S&R	alter mean: s62j
348	AXS62K	Num	8	2778	S&R	alter mean: s62k
349	AXS62L	Num	8	2786	S&R	alter mean: s621
350	AXS62M	Num	8	2794		alter mean: s62m
351	AXS62N	Num	8	2802		alter mean: s62n
352	AXS620	Num	8	2810	S&R	alter mean: s620
353	AXS62P	Num	8	2818	S&R	alter mean: s62p
354	AXS62Q	Num	8	2826	S&R	alter mean: s62q
355	AXS62R	Num	8	2834	S&R	alter mean: s62r
356	AXS63	Num	8	2842		alter mean: s63
357	AXS64	Num	8	2850		alter mean: s64
358	NAGPA	Num	8	2858	Ego	Net Denominator axgpa
359	NANUMACT	Num	8	2866	Ego	Net Denominator axnumact
360	NAS1	Num	8	2874	Eao	Net Denominator axs1
361	NAS2	Num	8	2882	_	Net Denominator axs2
					_	
362	NAS3	Num	8	2890		Net Denominator axs3
363	NAS45A	Num	8	2898	_	Net Denominator axs45a
364	NAS45B	Num	8	2906	Ego	Net Denominator axs45b
365	NAS45C	Num	8	2914	Ego	Net Denominator axs45c
366	NAS45D	Num	8	2922	_	Net Denominator axs45d
					_	
367	NAS45E	Num	8	2930	_	Net Denominator axs45e
368	NAS45F	Num	8	2938	_	Net Denominator axs45f
369	NAS46A	Num	8	2946	Ego	Net Denominator axs46a
370	NAS46B	Num	8	2954	Ego	Net Denominator axs46b
371	NAS46C	Num	8	2962	_	Net Denominator axs46c
372	NAS46D	Num	8	2970	_	Net Denominator axs46d
J / Z	MUDIO	ıvuiii	O	△ <i>Э I</i> ∪	щgО	MCC DEHOMITHATOL av2400

2		3.7		0000	T 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
373	NAS47	Num	8	2978	Ego Net Denominator axs47
374	NAS48	Num	8	2986	Ego Net Denominator axs48
375	NAS49	Num	8	2994	Ego Net Denominator axs49
376	NAS50	Num	8	3002	Ego Net Denominator axs50
377	NAS59A	Num	8	3010	Ego Net Denominator axs59a
378	NAS59B	Num	8	3018	Ego Net Denominator axs59b
379	NAS59C	Num	8	3026	Ego Net Denominator axs59c
380	NAS59D	Num	8	3034	Ego Net Denominator axs59d
381	NAS59E	Num	8	3042	Ego Net Denominator axs59e
382	NAS59F	Num	8	3050	Ego Net Denominator axs59f
383	NAS59G	Num	8	3058	Ego Net Denominator axs59g
384	NAS60A	Num	8	3066	Ego Net Denominator axs60a
					_
385	NAS60B	Num	8	3074	Ego Net Denominator axs60b
386	NAS60C	Num	8	3082	Ego Net Denominator axs60c
387	NAS60D	Num	8	3090	Ego Net Denominator axs60d
388	NAS60E	Num	8	3098	Ego Net Denominator axs60e
389	NAS60F	Num	8	3106	Ego Net Denominator axs60f
390	NAS60G	Num	8	3114	Ego Net Denominator axs60g
391	NAS60H	Num	8	3122	Ego Net Denominator axs60h
392	NAS60I	Num	8	3130	Ego Net Denominator axs60i
393	NAS60J	Num	8	3138	Ego Net Denominator axs60j
394	NAS60K	Num	8	3146	Ego Net Denominator axs60k
395	NAS60L	Num	8	3154	Ego Net Denominator axs601
396	NAS60M	Num	8	3162	Ego Net Denominator axs60m
397	NAS60N	Num	8	3170	Ego Net Denominator axs60n
398	NAS600	Num	8	3178	Ego Net Denominator axs60o
399	NAS62A	Num	8	3176	Ego Net Denominator axs62a
			8	3194	5
400	NAS62B	Num			Ego Net Denominator axs62b
401	NAS62C	Num	8	3202	Ego Net Denominator axs62c
402	NAS62D	Num	8	3210	Ego Net Denominator axs62d
403	NAS62E	Num	8	3218	Ego Net Denominator axs62e
404	NAS62F	Num	8	3226	Ego Net Denominator axs62f
405	NAS62G	Num	8	3234	Ego Net Denominator axs62g
406	NAS62H	Num	8	3242	Ego Net Denominator axs62h
407	NAS62I	Num	8	3250	Ego Net Denominator axs62i
408	NAS62J	Num	8	3258	Ego Net Denominator axs62j
409	NAS62K	Num	8	3266	Ego Net Denominator axs62k
410	NAS62L	Num	8	3274	Ego Net Denominator axs621
411	NAS62M	Num	8	3282	Ego Net Denominator axs62m
412	NAS62N	Num	8	3290	Ego Net Denominator axs62n
413	NAS620	Num	8	3298	Ego Net Denominator axs620
414	NAS62P	Num	8	3306	Ego Net Denominator axs62p
415	NAS62Q	Num	8	3314	Ego Net Denominator axs62q
416	NAS62R	Num	8	3322	Ego Net Denominator axs62r
417	NAS63	Num	8	3330	Ego Net Denominator axs63
418	NAS64	Num	8	3338	Ego Net Denominator axs64
419	DENX2	Num	8	3346	Total Network Density: TFN
420	RCHDEN	Num	8	3354	Density at maximum Reach
421		Num	8	3362	Density/Max Pos. Den
421	RELDEN PCTMUT		8	3370	PCT dyads mutual
		Num			
423	PCTASY	Num	8	3378	Pct dyads Asysmetric
424	RHO2	Num	8	3386	Katz and Powells Mutuality index
425	SEG1S3	Num	8	3394	Freeman Seg Index: Grade
426	SS37	Num	8	3402	Saliency Index: Grade=7
427	SS38	Num	8	3410	Saliency Index: Grade=8
428	SS39	Num	8	3418	Saliency Index: Grade=9
429	SS310	Num	8	3426	Saliency Index: Grade=10
430	SS311	Num	8	3434	Saliency Index: Grade=11
431	SS312	Num	8	3442	Saliency Index: Grade=12
432	SEG1RCE5	Num	8	3450	Freeman Seg Index: Race/Ethnic(5)
433	SRCE51	Num	8	3458	Saliency Index: Race(5)=White
434	SRCE52	Num	8	3466	Saliency Index: Race(5)=Black
435	SRCE53	Num	8	3474	Saliency Index: Race(5)=Hispanic

436	SRCE54	Num	8	3482	Saliency Index: race(5)=Asian
437	SRCE55	Num	8	3490	Saliency Index: Race(5)=Other
438	SEG1S2	Num	8	3498	Freeman Seg Index: Gender (1=Fem)
439	SS20	Num	8	3506	Saliency Index: Gender=Male
440	SS21	Num	8	3514	Saliency Index: Gender=Female

Additional Information about the Constructed Network Variables

Some of the in-school variables used in constructing the network measures were re-coded before the network measures were calculated. Because of this, the values for the in-school variables will not be comparable to the corresponding values of the calculated network measures.

The recoded in-school variables are:

In-school		Codes used to construct the
variable name	Codes from in-school questionnaire	network measures
		recoded to:
S2 *	1 = male	0 = male
	2 = female	1 = female
		reversed the codes to:
	1 = I try very hard to do my best.	1 = I never try at all.
S48	2 = I try hard enough, but not as hard	2 = I don't try very hard.
	as I could.	3 = I try hard enough, but not as
	3 = I don't try very hard.	hard as I could.
	4 = I never try at all.	4 = I try very hard to do my best.
		recoded to:
S49	0 = no	1 = yes
	1 = yes	2 = no
		reversed the codes to:
	1 = strongly agree	1 = strongly disagree
S62a to S62r	2 = agree	2 = disagree
3024 10 3021	3 = neither agree or disagree	3 = neither agree or disagree
	4 = disagree	4 = agree
	5 = strongly disagree	5 = strongly agree

Algorithm for recoding the network variables so they match the in-school variables:

- 1. Subtract (1 + highest value of the Add Health variable) from the network measure to make the network measure correspond to the in-school value of the variable.
- 2. Example: mean of S48 before recoding = 1.7632006 mean of S48 after reverse coding = 3.237994

highest value of unrecoded S48 = 4 highest value of S48 + 1 = 5

5 - 3.237994 = 1.7632006 gives you the same value as before recoding.

* Does not need to be recoded but the user should be aware of the differences in codes.