NC State University

Department of Electrical and Computer Engineering

ECE 463/563: Fall 2019 (Dr. Huiyang Zhou)

Project #2: Branch Prediction

$\mathbf{B}\mathbf{y}$

Sidharth Mehta

NCSU Honor Pledge: "I have neither given nor received unauthorized aid on this test or assignment."

Student's Electronic Signature: Sidharth Mehta

Course Number: 563

BIMODAL PREDICTOR

Trends and comparisons

- 1. With increase in no of index bits for prediction table the misprediction rate drops.
- 2. Misprediction rate gives diminishing returns with increase in number of index bits after a certain point.
- 3. gcc_trace and perl_trace have similar misprediction rate while jpeg trace has a lower misprediction rate.
- 4. jpeg_trace is likely to contain loops.

Best configurations

1. gcc_trace

At m = 13 the predictor gives best size to misprediction ratio after this increasing m doesn't give significant improvements.

2. perl_trace

At m = 12 the predictor gives best size to misprediction ratio after this increasing m doesn't give significant improvements.

3. jpeg_trace

At m = 7 the predictor gives best size to misprediction ratio after this increasing m doesn't give significant improvements.

GSHARE PREDICTOR

Trends and comparisons

- 1. With increase in no of index bits for prediction table the misprediction rate drops.
- 2. Increasing the size of BHR i.e. n is beneficial after a certain value of m (9+).
- 3. Misprediction rate gives diminishing returns with increase in number of index bits after a certain point.
- 4. gcc_trace and perl_trace have similar misprediction rate while jpeg trace has a lower misprediction rate.
- 5. jpeg_trace is likely to contain loops.
- 6. Using BHR doesn't improve prediction therefore traces are less likely to contain branches in patterns.

Justification for taking m as 15

Since we need to include BHR in the design max value of will be 16 to meet 16kB budget.

Best configurations

1. gcc_trace

	n rate
2	2 42.29%
3	2 39.89%
4	2 37.23%
5	2 35.56%
6	2 32.24%
7	2 28.98%
8	2 25.18%
9	2 20.25%
10	2 16.39%
11	2 13.71%
12	2 12.20%
13	2 11.11%
14	2 10.42%
15	2 10.13%
4	4 39.43%
5	4 37.01%
6	4 33.89%
7	4 30.76%
8	4 26.57%
9	4 22.43%
10	4 17.99%
11	4 14.49%
12	4 12.23%
13	4 10.57%
14	4 9.69%
15	4 9.13%
6	6 36.08%
7	6 33.22%
8	6 27.82%
9	6 24.14%
10	6 19.36%
11	6 15.14%
12	6 12.46%
13	6 10.59%
14	6 9.08%
15	6 8.30%
8	8 30.56%
9	8 26.08%
10	8 21.10%
11	8 16.47%
12	8 13.00%
13	8 11.00%
14	8 9.34%
15	8 8.22%

10	10	22.77%
11	10	18.34%
12	10	14.33%
13	10	11.68%
14	10	9.83%
15	10	8.46%
12	12	15.40%
13	12	12.68%
14	12	10.48%
15	12	9.01%
14	14	11.13%
15	14	9.48%

At m = 13 the predictor gives best size to misprediction ratio after this increasing m doesn't give significant improvements.

For m = 13 n = 4 gives best returns.

2. jpeg_trace

2. jpeg_tra	ce	
m n		rate
2	2	14.77%
3	2	13.32%
4	2	14.74%
5	2	22.39%
6	2	8.85%
7	2	8.08%
8	2	7.79%
9	2	7.58%
10	2	7.49%
11	2	7.45%
12	2	7.44%
13	2	7.33%
14	2	7.32%
15	2	7.31%
4	4	15.38%
5	4	12.99%
6	4	9.89%
7	4	8.92%
8	4	7.88%
9	4	7.68%
10	4	7.38%
11	4	7.27%
12	4	7.26%
13	4	7.24%
14	4	7.17%
15	4	7.13%
6	6	10.81%
7	6	9.74%
8	6	8.87%
9	6	8.13%
10	6	7.58%
11	6	7.38%
12	6	7.19%
13	6	7.16%
14	6	7.14%
15	6	7.09%
8	8	9.20%
9	8	8.30%
10	8	7.45%
11	8	7.17%
12	8	6.84%
13	8	6.83%
14	8	6.69%
15	8	6.69%
10	10	7.95%
11	10	7.44%

12	10	7.18%
13	10	7.02%
14	10	6.84%
15	10	6.72%
12	12	7.35%
13	12	7.17%
14	12	6.84%
15	12	6.70%
14	14	6.93%
15	14	6.67%

At m = 9 the predictor gives best size to misprediction ratio after this increasing m doesn't give significant improvements.

For m = 9 n = 2 gives best returns.

3. perl_trace

3. perl_trace	!	
m n		rate
2	2	48.23%
3	2	41.10%
4	2	39.05%
5	2	34.32%
6	2	29.09%
7	2	24.34%
8	2	16.92%
9	2	13.57%
10	2	10.63%
11	2	10.11%
12	2	9.03%
13	2	9.23%
14	2	8.07%
15	2	8.02%
4	4	41.75%
5	4	36.83%
6	4	32.24%
7	4	25.96%
8	4	19.09%
9	4	14.68%
10	4	11.35%
11	4	9.68%
12	4	8.09%
13	4	7.27%
14	4	7.35%
15	4	7.28%
6	6	34.68%
7	6	28.71%
8	6	20.45%
9	6	16.25%
10	6	11.52%
11	6	8.60%
12	6	7.50%
13	6	6.09%
14	6	5.43%
15	6	5.71%
8	8	24.79%
9	8	17.66%
10	8	12.42%
11	8	9.00%
12	8	6.49%
13	8	5.26%
14	8	4.51%
15	8	4.13%
10	10	14.57%
11	10	8.98%

At m = 12 the predictor gives best size to misprediction ratio after this increasing m doesn't give significant improvements.

For m = 12 n = 8 gives best returns.