Data Structure and Algorithms

Affefah Qureshi Department of Computer Science Iqra University, Islamabad Campus.

Terminology: Parent Child Relations

- All nodes have zero or more child nodes or children.
 - I has three children: J, K and L

- For all nodes other than the root node, there is
 - H is the parent I

Terminology: Degree

- The degree of a node is defined as the number of its children
 - deg(I) = 3
- Nodes with the same parent are siblings
 - J, K, and L are siblings

Terminology: Leaf And Internal Nodes

- Nodes with degree zero are also called leaf nodes
- All other nodes are said to be internal nodes, that is, they are internal to the tree

Terminology: Leaf Nodes Examples

Leaf nodes

Wesley-Hunt, G. D.; Flynn, J. J. "Phylogeny of the Carnivora: basal relationships among the Carnivoramorphans, and assessment of the position of 'Miacoidea'

Terminology: Internal Nodes Example

Internal nodes

Wesley-Hunt, G. D.; Flynn, J. J. "Phylogeny of the Carnivora: basal relationships among the Carnivoramorphans, and assessment of the position of 'Miacoidea'

Terminology: Path

- A path is a sequence of nodes (a₀, a₁, ..., a_n)
 - Where $a_k + 1$ is a child of a_k is
- The length of this path is: n = |nodes in the path| 1
 - For example, the path (B, E, G) has length 2

Terminology: Path Example

Paths of length 10 (11 nodes) and 4 (5 nodes)

Wesley-Hunt, G. D.; Flynn, J. J. "Phylogeny of the Carnivora: basal relationships among the Carnivoramorphans, and assessment of the position of 'Miacoidea'

Terminology: Depth (or Level)

- For each node in a tree, there exists a unique path from the root node to that node
- The length of this path is the depth of the node, e.g.,
 - E has depth 2
 - L has depth 3

Terminology: Depth Example

Nodes of depth up to 17

Wesley-Hunt, G. D.; Flynn, J. J. "Phylogeny of the Carnivora: basal relationships among the Carnivoramorphans, and assessment of the position of 'Miacoidea'

Terminology: Height

- The height of a tree is defined as the maximum depth of any node within the tree
- The height of a tree with one node is 0
 - Just the root node
- For convenience, we define the height of the empty tree to be
 -1

Terminology: Height Example

Height of this tree is 17

17

Wesley-Hunt, G. D.; Flynn, J. J. "Phylogeny of the Carnivora: basal relationships among the Carnivoramorphans, and assessment of the position of 'Miacoidea'

Terminology: Ancestors And Descendants

- If a path exists from node a to node b
 - a is an ancestor of b
 - b is a descendent of a
- Thus, a node is both an ancestor and a descendant of itself
 - We can add the adjective strict to exclude equality
 - a is a strict descendent of b if a is a descendant of b but a ≠ b
- The root node is an ancestor of all nodes

Terminology: Ancestors And Descendants Example

• The descendants of node B are C, D, E, F, and G

B H M

The ancestors of node I are H and A

Terminology: Descendants Example

• All descendants (including itself) of the indicated node

Wesley-Hunt, G. D.; Flynn, J. J. "Phylogeny of the Carnivora: basal relationships among the Carnivoramorphans, and assessment of the position of 'Miacoidea'

Terminology: Ancestors Example

All ancestors (including itself) of the indicated node

Wesley-Hunt, G. D.; Flynn, J. J. "Phylogeny of the Carnivora: basal relationships among the Carnivoramorphans, and assessment of the position of 'Miacoidea'

Terminology: Subtree

- Another approach to a tree is to define the tree recursively
 - A degree-0 node is a tree
- A node with degree n is a tree if it has n children
 - All of its children are disjoint trees (i.e., with no intersecting nodes)
- Given any node a within a tree with root r, the collection of a and all of its descendants is said to be a subtree of the tree with root a

Tree Properties

Property

Number of nodes

Height

Root Node

Leaves

Ancestors of H

Descendants of B

Siblings of E

Left subtree

Value

Example: HTML

HTML document has a tree structure

Example: HTML

HTML document has a tree structure

```
<html>
            <head>
               <title>Hello World!</title>
                                                   heading
            </head>
            <body>
               <h1>This is a <u>Heading</u></h1>
body of page
               This is a paragraph with some
               <u>underlined</u> text.
            </body>
         </html>
                                                    paragraph
                         underlining
```

Example: HTML

The nested tags define a tree rooted at the HTML tag

```
<html>
   <head>
       <title>Hello World!</title>
   </head>
   <body>
       <h1>This is a <u>Heading</u></h1>
       This is a paragraph with some
      <u>underlined</u> text.
   </body
                             html
</html>
                                           body
               head
               title
                                   h1
                          "This is a "
          "Hello World!"
                                    "Heading"
                                   "This is a paragraph with "
                                                                  text.
                                                        "underlined"
```

Binary Tree

- In a binary tree each node has at most two
 - Allows to label the children as left and right

- Likewise, the two sub-trees are referred as
 - Left-hand subtree
 - Right-hand subtree

Binary Tree: Example

• Some variations on binary trees with five nodes

Binary Tree: Full Node

 A full node is a node where both the left and right sub-trees are non-empty trees

Full Binary Tree

- A full binary tree is where each node is:
 - A full node, or
 - A leaf node
- Full binary tree is also called proper binary tree, strictly binary tree or 2-tree

Complete (Or Perfect) Binary Tree

- A complete binary tree of height h is a binary tree where
 - All leaf nodes have the same depth h
 - All other nodes are full

Complete Binary Tree: Recursive Definition

- A binary tree of height h = 0 is perfect
- A binary tree with height h > 0 is perfect
 - If both sub-trees are prefect binary trees of height h − 1

Complete Binary Tree: Example

Complete binary trees of height h = 0, 1, 2, 3 and 4

A complete binary tree with height h has 2^h leaf nodes

- A complete binary tree with height h has 2h leaf nodes
- A complete binary tree of height h has 2^{h + 1} 1 nodes

$$n = 2^{0} + 2^{1} + 2^{2} + ... + 2^{h} = \sum_{j=0}^{h} 2^{j} = 2^{h+1} - 1$$

- A complete binary tree with height h has 2^h leaf nodes
- A complete binary tree of height h has 2^{h + 1} 1 nodes
 - Number of leaf nodes: L = 2^h
 - Number of internal nodes: 2^h 1
 - Total number of nodes: $2L-1 = 2^{h+1} 1$

- A complete binary tree with height h has 2^h leaf nodes
- A complete binary tree of height h has 2^{h + 1} 1 nodes
 - Number of leaf nodes: L = 2^h
 - Number of internal nodes: 2^h 1
 - Total number of nodes: $2L-1 = 2^{h+1} 1$
- A complete binary tree with n nodes has height log₂(n + 1) 1

$$n = 2^{h+1} - 1$$

 $2^{h+1} = n + 1$
 $h + 1 = log_2(n + 1)$
 $\Rightarrow h = log_2(n + 1) - 1$

- A complete binary tree with height h has 2^h leaf nodes
- A complete binary tree of height h has 2^{h + 1} 1 nodes
 - Number of leaf nodes: L = 2^h
 - Number of internal nodes: 2^h 1
 - Total number of nodes: $2L-1 = 2^{h+1} 1$
- A complete binary tree with n nodes has height log₂(n + 1) 1
- Number n of nodes in a binary tree of height h is at least h+1 and at most 2^{h + 1} - 1

Almost (or Nearly) Complete Binary Tree

- Almost complete binary tree of height h is a binary tree in which
 - 1. There are 2^d nodes at depth d for d = 1, 2, ..., h-1
 - Each leaf in the tree is either at level h or at level h- 1
 - 2. The nodes at depth hare as far left as possible

Complete binary tree of height h-1

Almost (or Nearly) Complete Binary Tree

- Almost complete binary tree of height h is a binary tree in which
 - 1. There are 2d nodes at depth d for d = 1, 2, ..., h-1
 - ➤ Each leaf in the tree is either at level h or at level h = 1
 - 2. The nodes at depth h are as far left as possible (Formal?)

Almost (or Nearly) Complete Binary Tree

Condition 2: The nodes at depth h are as far left as possible

- If a node p at depth h-1 has a left child
 - Every node at depth h−1 to the left of p has 2 children
- If a node at depth h−1 has a right child
 - It also has a left child

Not Almost Complete binary tree (condition 2 violated)

Tree ADT

- Data Type: Any type of objects can be stored in a tree
- Accessor methods
 - root() return the root of the tree
 - parent(p) return the parent of a node
 - children(p) return the children of a node
- Query methods
 - size() return the number of nodes in the tree
 - isEmpty() return true if the tree is empty
 - elements() return all elements
 - isRoot(p) return true if node p is the root
- Other methods
 - Tree traversal, Node addition/deletion, create/destroy

Binary Tree Storage

- Contiguous Storage (Array Storage)
- Linked List based Storage

Array Storage

- We are able to store a binary tree as an array
- Traverse tree in breadth-first order, placing the entries into array
 - Storage of elements (i.e., objects/data) starts from root node
 - Nodes at each level of the tree are stored left to right

Array Storage Example

[1]	Α
[2]	В
[3]	С
[4]	D
[5]	Е
[6]	F
[7]	G
[8]	Η
[9]	I

Array Storage Example

 Unused nodes in tree represented by a predefined bit pattern

Array Storage

- The children of the node with index k are in 2k and 2k + 1
- The parent of node with index k is in $k \div 2$

Array Storage Example

- Node 10 has index 5
 - Its children 13 and 23 have indices 10 and 11, respectively

Array Storage Example

- Node 10 has index 5
 - Its children 13 and 23 have indices 10 and 11, respectively
 - Its parent is node 9 with index 5/2 = 2

Array Storage

- Why array index is not started from 0
 - In C++, this simplifies the calculations

```
parent = k >> 1;
left_child = k << 1;
right_child = left_child | 1;
```


3 9 5 14 10 6 8 17 15 13 23 12

Array Storage: Disadvantage

- Why not store any tree as an array using breadth-first traversals?
 - There is a significant potential for a lot of wasted memory
- Consider the following tree with 12 nodes
 - What is the required size of array?

Array Storage: Disadvantage

- Why not store any tree as an array using breadth-first traversals?
 - There is a significant potential for a lot of wasted memory
- Consider the following tree with 12 nodes
 - What is the required size of array? 32
 - What will be the array size if a child is added to node K?

Array Storage: Disadvantage

- Why not store any tree as an array using breadth-first traversals?
 - There is a significant potential for a lot of wasted memory
- Consider the following tree with 12 nodes
 - What is the required size of array? 32
 - What will be the array size if a child is added to node K? double

As Linked List Structure

- We can implement a binary tree by using a class which:
 - Stores an element
 - A left child pointer (pointer to first child)
 - A right child pointer (pointer to second child)

```
class Node{
   Type value;
   Node *LeftChild,*RightChild;
}root;
```

- The root pointer points to the root node
 - Follow pointers to find every other element in the tree
- Leaf nodes have LeftChild and RightChild pointers set to NULL

As Linked List Structure:

Tree Traversal

- To traverse (or walk) the tree is to visit each node in the tree exactly once
 - Traversal must start at the root node
 - > There is a pointer to the root node of the binary tree
- Two types of traversals
 - Breadth-First Traversal
 - Depth-First Traversal

Breadth-First Traversal (For Arbitrary Trees)

- All nodes at a given depth d are traversed before nodes at d+1
- Can be implemented using a queue

Order: ABHCDGIEFJK

Breadth-First Traversal – Implementation

- Create a queue and push the root node onto the queue
- While the queue is not empty:
 - Enqueue all children of the front node onto the queue
 - Dequeue the front node

Depth-First Traversal (For Arbitrary Trees)

- Traverse as much as possible along the branch of each child before going to the next sibling
 - Nodes along one branch of the tree are traversed before backtracking
- Each node could be visited multiple times in such a scheme
 - The first time the node is approached (before any children)
 - The last time it is approached (after all children)

Depth-First Tree Traversal (Binary Trees)

- For each node in a binary tree, there are three choices
 - Visit the node first
 - Visit the one of the subtrees first
 - Visit the both the subtrees first
- These choices lead to three commonly used traversals
 - Inorder traversal: (Left subtree) visit Root (Right subtree)
 - Preorder traversal: visit Root (Left subtree) (Right subtree)
 - Postorder traversal: (Left subtree) (Right subtree) visit Root

Inorder Traversal

- Algorithm
 - 1. Traverse the left subtree in inorder
 - 2. Visit the root
 - 3. Traverse the right subtree in inor

A, B, C, D, E, F, G, H, I, J

Inorder Traversal

- Algorithm
- Traverse the left subtree in inorder
- 2. Visit the root
- 3. Traverse the right subtree in inorder

Example

- Left + Right
- [Left * Right] + [Left + Right]
- (A * B) + [(Left * Right) + E)
- (A * B) + [(C * D) + E]

Inorder Traversal – Implementation

```
void inorder(Node *p) const
   if (p != NULL)
      inorder(p->leftChild);
      cout << p->info << " ";</pre>
      inorder(p->rightChild);
void main () {
   inorder (root);
```

Preorder Traversal

- Algorithm
- 1. Visit the node
- 2. Traverse the left subtree
- 3. Traverse the right subtree

- + Left Right
- + [* Left Right] [+ Left Right]
- + (* AB) [+ * Left Right E]
- +*AB + *CDE

Preorder Traversal – Implementation

```
void preorder(Node *p) const
{
   if (p != NULL)
      cout << p->info << " ";</pre>
      preorder(p->leftChild);
      preorder(p->rightChild);
void main () {
   preorder (root);
```

Postorder Traversal

Algorithm

- 1. Traverse the left subtree
- 2. Traverse the right subtree
- 3. Visit the node

Example

- Left Right +
- [Left Right *] [Left Right+] +
- (AB*) [Left Right * E +]+
- (AB*) [CD*E+]+
- AB*CD*E++

Postorder Traversal – Implementation

```
void postorder(Node *p) const
   if (p != NULL)
      postorder(p->leftChild);
      postorder(p->rightChild);
      cout << p->info << " ";</pre>
void main () {
   postorder (root);
```

Example: Printing a Directory Hierarchy

- Consider the directory structure presented on the left
 - Which traversal should be used?


```
usr/
bin/
local/
var/
adm/
cron/
log/
```

Expression Tree

- Each algebraic expression has an inherent tree-like structure
- An expression tree is a binary tree in which
 - The parentheses in the expression do not appear
 - > Tree representation captures the intent of parenthesis
 - The leaves are the variables or constants in the expression
- The non-leaf nodes are the operators in the expression
 - Binary operator has two non-empty subtrees
 - Unary operator has one non-empty subtree

Convert Postfix into Expression Tree – Algorithm

```
while(not the end of the expression) {
if(the next symbol in the expression is an operand) {
 create a node for the operand;
  push the reference to the created node onto the stack ;
}
if(the next symbol in the expression is a binary operator) {
  create a node for the operator;
  pop from the stack a reference to an operand;
 make the operand the right subtree of the operator node;
  pop from the stack a reference to an operand;
 make the operand the left subtree of the operator node;
  push the reference to the operator node onto the stack ; } }
```

```
while(not the end of the expression)
  if(the next symbol is an operand) {
      create a node for the operand;
      push the reference to the created node onto the stack;
  if(the next symbol is a binary operator) {
      create an operator node;
      pop operant from the stack;
      make the operand the right subtree;
      pop operand from the stack;
      make the operand the left subtree;
      push the operator node onto the stack;
```

}}

Example: a b + c d e + * *


```
while(not the end of the expression)
  if(the next symbol is an operand) {
      create a node for the operand;
      push the reference to the created node onto the stack;
  if(the next symbol is a binary operator) {
      create an operator node;
      pop operant from the stack;
      make the operand the right subtree;
      pop operand from the stack;
      make the operand the left subtree;
      push the operator node onto the stack;
```

```
Example: a b + c d e + * *
```



```
while(not the end of the expression)
                                                                 Example:
  if(the next symbol is an operand) {
                                                                 ab + cde + * *
     create a node for the operand;
      push the reference to the created node onto the stack;
  if(the next symbol is a binary operator) {
     create an operator node;
      pop operant from the stack;
     make the operand the right subtree;
      pop operand from the stack;
     make the operand the left subtree;
      push the operator node onto the stack;
```

}}

```
if(the next symbol is an operand) {
   create a node for the operand;
   push the reference to the created node onto the stack;
if(the next symbol is a binary operator) {
   create an operator node;
   pop operant from the stack;
   make the operand the right subtree;
   pop operand from the stack;
   make the operand the left subtree;
   push the operator node onto the stack;
```

while(not the end of the expression)

```
Example:
a b + c d e + * *
```



```
if(the next symbol is an operand) {
   create a node for the operand;
   push the reference to the created node onto the stack;
if(the next symbol is a binary operator) {
   create an operator node;
   pop operant from the stack;
   make the operand the right subtree;
   pop operand from the stack;
   make the operand the left subtree;
   push the operator node onto the stack;
```

while(not the end of the expression)

```
Example:
a b + c d e + * *
```



```
while(not the end of the expression)
  if(the next symbol is an operand) {
                                                                 Example:
                                                                 ab+cde+
     create a node for the operand;
      push the reference to the created node onto the stack;
  if(the next symbol is a binary operator) {
     create an operator node;
      pop operant from the stack;
     make the operand the right subtree;
      pop operand from the stack;
     make the operand the left subtree;
```

push the operator node onto the stack;

Why Expression Tree?

- Expression trees impose a hierarchy on the operations
 - Terms deeper in the tree get evaluated first
 - Establish correct precedence of operations without using parentheses
- A compiler will read an expression in a language like C++/Java, and transform it into an expression tree
- Expression trees can be very useful for:
 - Evaluation of the expression
 - Generating correct compiler code to actually compute the expression's value at execution time

Evaluating an Expression Tree

- Perform a post-order traversal of the tree
 - Ask each node to evaluate itself
- An operand node evaluates itself by just returning its value
- An operator node has to apply the operator
 - To the results of evaluations from its left subtree and right subtree

Evaluating an Expression Tree – Example

• Expression:

Evaluating an Expression Tree - Implementation

```
evaluate(ExpressionTree t){
      if(t is a leaf)
2
         return value of t's operand;
3
4
      else{
5
     operator = t.element;
     operand1 = evaluate(t.left);
6
     operand2 = evaluate(t.right) ;
8
     return(applyOperator(operand1, operator, operand2);
9
10 }
```

Any Question So Far?

