

Universidad Tecnológica de la Mixteca

Clave DGP: 200089

Ingeniería en Computación

PROGRAMA DE ESTUDIOS

NOMBRE DE LA ASIGNATURA

Computación Flexible

SEMESTRE	CLAVE DE LA ASIGNATURA	TOTAL DE HORAS
Noveno	025095IA	85

OBJETIVO(S) GENERAL(ES)DE LA ASIGNATURA

Dar a conocer los principios y fundamentos básicos de los modelos de Redes Neuronales Artificiales (RNA) y la lógica difusa. Se espera que el estudiante identifique y sea capaz de implementar los modelos más populares de RNAs supervisadas y no supervisadas, así como conocer los principios de incertidumbre, lógica difusa y sistemas difusos. El alumno deberá estar capacitado para determinar en qué situaciones es conveniente resolver un problema utilizando alguno de los modelos descritos en el temario.

TEMAS Y SUBTEMAS

- Introducción a las Redes Neuronales Artificiales (RNAs).
 - 1.1. Redes Neuronales Biológicas.
 - 1.2. Principios del Diseño de RNAs.
 - 1.3. Principios del Entrenamiento de RNAs.
 - 1.4. Casos de éxito.
- La Neurona Adaline y Madaline.
 - 2.1. Estructura Adaline.
 - 2.2. Funciones de Error.
 - 2.3. Gradientes y Búsquedas de Máximos y Mínimos.
 - 2.4. Ajuste de pesos por diferentes estrategias en Adaline.
 - 2.5. Estructura Básica Madaline.
 - 2.6. Reglas de Entrenamiento Madaline
 - 2.7. Modelado de Funciones Booleanas.
- El Perceptrón.
 - 3.1. Estructura Básica.
 - 3.2. Funciones de Activación.
 - 3.3. Ajuste de pesos por Descenso Escalonado.
 - 3.4. El Problema de Representación.
- Retropropagación.
 - 4.1. Funciones de Error.
 - 4.2. Algoritmo de Retropropagación de una sola capa oculta.
 - 4.3. Algoritmos de Retropropagación Modificados.
- La Red de Kohonen.
 - 5.1. Mapas Auto-Organizativos.
 - 5.2. Principios Neurofisiológicos.
 - 5.3. Entrenamiento de la Red Unidimensional de Kohonen.
 - 5.4. Visualización de Clusters.
- La Incertidumbre.
 - 6.1. La incertidumbre en la naturaleza.

- 6.2. La naturaleza humana.
- 6.3. La vaguedad de las palabras.
- 6.4. Sistemas que manipulan la incertidumbre.
- 7. Los conjuntos difusos.
 - 7.1. El principio de extensión.
 - 7.2. La relación entre la incertidumbre y los conjuntos difusos.
 - 7.3. Las funciones de membresía.
 - 7.4. Las variables y etiquetas lingüísticas.
 - 7.5. El centroide de un conjunto difuso.7.6. Las propiedades de los conjuntos difusos.
- 8. La Lógica Difusa.
 - 8.1. Las operaciones en conjuntos difusos.
 - 8.2. Operaciones lógicas de conjuntos difusos.
 - 8.3. Las relaciones y composiciones difusas.
- 9. Los Sistemas Difusos.
- 9.1. De lo definido a lo difuso.
 - 9.2. Las reglas difusas y la base de conocimiento.
 - 9.3. La fusificación.
 - 9.4. La máquina de inferencia.
 - 9.5. Los métodos de defusificación.
- 10. Aplicaciones de los Sistemas Difusos
 - 10.1. Los sistemas difusos como aproximadores universales.
 - 10.2. Los sistemas difusos aplicados al control.
 - 10.3. Diseñando sistemas difusos.

ACTIVIDADES DE APRENDIZAJE

Exposición de los temas del curso por parte del profesor en pizarrón y apoyándose en material didáctico que ayude a ilustrar los conceptos impartidos (transparencias, equipo de proyección digital); asignación de lectura de artículos de investigación de frontera en el área de Redes Neuronales Artificiales y la lógica difusa; asignación de diseño e implementación de proyectos en donde se apliquen los conocimientos adquiridos.

CRITERIOS Y PROCEDIMIENTOS DE EVALUACION Y ACREDITACIÓN

Para aprobar el curso se realizarán tres evaluaciones parciales (50 %) y una evaluación final (50%). Para cada evaluación se realizará un examen y se evaluarán tareas y proyectos. El examen tendrá un valor mínimo de 50% y las tareas y proyectos un valor máximo de 50%.

Adicionalmente se recomienda:

El alcance y requerimientos de los proyectos los asignará el profesor a cargo.

BIBLIOGRAFÍA (TIPO, TITULO, AUTOR, EDITORIAL Y AÑO)

Básica:

- A First Course in Fuzzy and Neural Control. Nguyen, H. T., Prasad, N. R., Walker, C. L., & Walker, E. A. Chapman & Hall/CRC. 2003.
- Fuzzy logic with engineering applications. Ross, T. J. University of N. M. Fuzzy logic with engineering applications.
- Neural Networks and Learning Machines. 3rd Edition. Haykin, Simon O. Prentice Hall. 2008.
- 4. Una Introducción al Cómputo Neuronal Artificial, 1ra. Edición. Pérez Aguila, Ricardo El Cid Editor, Argentina. 2012.

Consulta:

- 1. Neural Networks: A Systematic Introduction. Rojas, Raul. Springer. 1996.
- 2. Uncertainty, fuzzy logic, and signal processing. Signal Processing, 80(6), 913–933. Mendel, J. M. 2000.
- 3. Neural Networks Theory. Galushkin, Alexander I. Springer. 2010.
- Principles of Artificial Neural Networks, 3rd Edition. Graupe, Daniel. Advanced Series in Circuits and Systems, World Scientific Publishing Company. 2013.

PERFIL PROFESIONAL DEL DOCENTE

El docente deberá contar con el grado de Doctor en Ciencias de la Computación o grado de Doctor en un área afín. Deberá estar inmerso en la especialidad de Inteligencia Artificial y de preferencia con publicaciones y trabajo comprobado en el área de Redes Neuronales Artificiales y/o Lógica Difusa.

DR. AGUSTIN SANTIAGO ALVARADO VICE-RECTOR ACADÉMICO

VICE-RECTORIA ACADÉMICA

JEFATURA DE CARRERA Ingenieria en computación