INF442 Projet 09 data anonymization

Jiale Ning & Yunhao Chen

May 2021

May 2021

Table des matières

- Description du problème
- 2 Algorithmes
 - Régression logistique
 - One-vs-all
- 3 Détails de l'implémentation
- Des résultats
- Conclusion

Description du problème

- ullet données privées o problèmes légaux o données anonymes
- problème de classification
- série de données: CONLL 2003. Pré-traitement: vocabulaires $\stackrel{BERT}{\longrightarrow}$ représentation vectorielle

May 2021

Description du problème

Chaque mot accompagné par un Named-Entity-Recognition (NER) label, comme : O (rien en particulier), MISC, PERS (label qui nous intéresse) and LOC (localisation).

- sub-problème 1: label PERS contre le reste
- sub-problème 2: classification multinomiale

Algorithmes - Régression logistique

• Modèle (Classification binaire): On définit $\delta_1 = \sigma([1 \times^T]\beta)$ et $\delta_0 = 1 - \delta_1$ où $x \in \mathbb{R}^d$ et $\beta \in \mathbb{R}^{d+1}$. On suppose que, $\mathbb{P}(Y = 1|X = x) = \delta_1$ et $\mathbb{P}(Y = 0|X = x) = \delta_0$ où y=1 est le label pour "PER" et y=0 pour le reste.

On fit notre modèle par maximisation de la vraisemblance "régularisée" $I(\beta)$:

$$\begin{split} \hat{\beta} &= \underset{\beta}{\textit{argmax}} \ \textit{I}(\beta) \\ &= \underset{\beta}{\textit{argmax}} \ \sum_{i=1}^{n} \textit{log} \ \mathbb{P}(Y = y_{i} | X = x_{i}; \beta) - \lambda \|\beta\|_{2}^{2} \end{split}$$

On obtient l'expression de $\nabla I(\beta)$ et $\nabla^2 I(\beta)$.

• Régression logistique régularisée avec méthode de Newton : INIT: $\hat{\beta} \leftarrow 1$ //arbitrary vector REPEAT: $\hat{\beta} \leftarrow \hat{\beta} - (\bigtriangledown^2 I(\hat{\beta}))^{-1} \bigtriangledown I(\hat{\beta})$ UNTIL CONVERGENCE ($\|\hat{\beta}_{updated} - \hat{\beta}\| > defaultEps$)

Algorithmes - One-vs-all

Le problème original : Named Entity Recognition (NER)

- Plusieurs labels: il y a 5 classes dans le base de données: "O", "PER", "MISC", "LOC", "ORG", dont les labels qu'on donne sont 0, 1, 2, 3, 4 respectivement.
- Classification en classes multiples : l'approche "one-vs-all".
- Étapes de "one-vs-all" :
 - entraı̂ner 1 classifieur $\beta \in \mathbb{R}^{d+1}$ pour chaque classe y pour discriminer cette classe (label 1) du reste de données (label 0).
 - attribuer chaque nouvelle observation $\mathbf{x} \in \mathbb{R}^d$ à la classe $\underset{y=0,1,2,3,4}{\operatorname{argmax}} \ \delta_1 = \underset{y=0,1,2,3,4}{\operatorname{argmax}} \ \sigma([1\mathbf{x}^T]\beta) \ \text{où} \ \sigma(\mathbf{t}) = \frac{1}{1+\exp(\mathbf{t})}.$

Détails de l'implémentation

```
class Dataset {
  private:
    int m_dim; //The dimension of the dataset.
    int m_nsamples; //The number of instances / samples.
    std::vector<std::vector<double> > m_instances;
    //The dataset is stored as a vector of double vectors.
};
```

```
class Classification{
protected:
   Dataset* m_dataset; //The pointer to a dataset.
   std::vector<int> m_labels; //a vector storing the labels
public:
   virtual int Estimate(const Eigen::VectorXd & x , double
        threshold=0.5) const = 0;
}; // pure virtual function
```

Détails de l'implémentation

```
class ConfusionMatrix {
private:
    int m_confusion_matrix[2][2]; //The actual confusion matrix as a
        2 by 2 array.
};
```

Détails de l'implémentation

- confusion matrix: $C_{i,j} := \frac{1}{m} \# \{ \text{points of class } j \text{ predicted as being in } i \}$
 - \blacktriangleright true positives (TP) for class i: points of this class correctly predicted in i
 - \blacktriangleright false positives (FP) for class i: points of other classes incorrectly predicted in i
 - ▶ true negatives (TN) for class i: points of $j \neq i$ predicted in $l \neq i$ (possibly with $l \neq j$)
 - ▶ false negatives (FN) for class i: points of i predicted in some $j \neq i$

Comment utiliser les programmes test_LR.cpp et test_LR_multinomial.cpp?

- ▶ ./test_LR (train_data_file) (train_label_file) (test_data_file) (test_label_file) (lambda)
- ▶ ./test_LR_multinomial (train_data_file) (test_data_file) (lambda)

Résultats - classification binaire pour identifier "PER"

Changer le paramètre λ en fixant defaultEps=7 :

execution time: 23630ms		execution time: 17820ms				execution time: 14740ms					
	Predicted				Predicted				Predic	Predicted	
	0	1			0	1			0	1	
Actual 0 1	4515 89	160 236	Actual	0 1	4584 60	91 265	Actual	0 1	4593 59	82 266	
Error rate		0.0498	Error r	ate		0.0302	Error r	ate		0.0282	
		0.0342246	False alarm rate		e	0.0194652		False alarm rate		0.0175401	
Detection rate		0.726154	Detecti	on rate		0.815385	Detecti	on rate		0.818462	
F-score		0.654646	F-score			0.778267	F-score			0.79049	
Precision		0.59596	Precisi	on		0.744382	Precisi	on		0.764368	
(a) $\lambda=3$			(b) $\lambda = 5$				(c) $\lambda = 7$				
execution time: 14720ms			execution time: 14530ms				execution time: 14830ms				
		Predicted				Predicted				Predicted	
	0	1			0	1			0	1	
Actual 0	4611	64	Actual	0	4627	48	Actual	0	4632	43	
1	68	257		1	79	246		1	92	233	
Error rate 0.0264		Error rate 0.025			0.0254	Error rate 0.027					
False alarm rate 0.		0.0136898	False alarm rate				0.0102674 False alarm rat		te	0.00919786	
Detection rate 0.3		0.790769	Detection rate			0.756923				0.716923	
F-score		0.795666	F-score			0.79483		F-score		0.775374	
Precision		0.800623	Precisio	on		0.836735	Precisi	on		0.844203	
(d) $\lambda = 9$			(e) $\lambda=11$				(f) $\lambda = 13$				

On voit que $\lambda \in [7,9]$ nous donne une meilleure performance.

Results - classification binaire pour identifier "PER"

Changer le paramètre defaultEps en fixant λ =7 :

(i) d	efault E	ps = 9	(k) c	defaultE	ps = 11	(I) d	lefaultEps	s = 13
False alarm rate 0.017 Detection rate 0.818 F-score 0.790		0.0282 0.0175401 0.818462 0.79049 0.764368	Error rate False alarm rate Detection rate F-score Precision		0.0306 0.0218182 0.843077 0.78174 0.728723	Error rate False alarm rate Detection rate F-score Precision		0.0338 0.0258824 0.852308 0.766252 0.69598
Actual 0	Pre 0 459 59	dicted 1 3 82 266	Actual 6	0 457	dicted 1 3 102 274	Actual 0		cted 1 121 277
(g) a		E <i>ps</i> = 3	()	defaultE	•	()	defaultEp	
False alarm rate 0.010 Detection rate 0.584 F-score 0.672		0.037 0.0106952 0.584615 0.672566 0.791667	Error rate False alarm rate Detection rate F-score Precision		0.0292 0.0143316 0.756923 0.77116 0.785942	Detection rate F-score		0.0282 0.0175401 0.818462 0.79049 0.764368
Actual 0	Pre 0 462 135		Actual 6	9 469	dicted 1 3 67 246	Actual 0		ted 1 82 266
execution time: 69570ms		execution	n time: 176	20ms	execution time: 13850ms			

Les résultats obtenus en prenant default $Eps \in [7, 9]$ sont les mêmes et ont la F-score la plus haute. On obtient le seuil de convergence : [7,9].

Results - classification en multi-classes

Maleureusement, on n'a pas eu des résultats constructifs.

```
The total precision of multinomial logistic regression is 0.2794
The macro f score is -nan
The micro f score is 0.234052
                 Predicted
Actual 0
                 750
        1
                 1877
                         2280
Error rate
                         0.394
False alarm rate
                         0.11032
Detection rate
                         0.548472
F-score
                         0.698315
Precision
                         0.960809
                Predicted
Actual 0
                 2330
                         2345
        1
                 184
                         141
Error rate
                         0.5058
False alarm rate
                         0.501604
Detection rate
                         0.433846
F-score
                         0.10032
Precision
                         0.0567176
                 Predicted
                3050
                         1835
Actual
                74
                         41
Error rate
                         0.3818
False alarm rate
                         0.37564
Detection rate
                         0.356522
F-score
                         0.0411853
Precision
                         0.021855
                 Predicted
Actual
                 4799
        1
                 197
Error rate
                         9.9492
False alarm rate
                         0.000832813
Detection rate
F-score
                         -nan
```

Precision

Conclusion

- source code partage sur Github
- méthode de travail
- une bonne expérience de projet