MathSAT5 (Nonlinear) at the SMT Competition 2019

Ahmed Irfan¹, Alessandro Cimatti², Alberto Griggio², Roberto Sebastiani³

Stanford University, USA
 Fondazione Bruno Kessler, Italy
 University of Trento, Italy

- SMT Competition 2019, Lisbon, Portugal -

MathSAT5 (Nonlinear)

MathSAT5, a DPLL(T) solver

- supports most SMT-LIB theories + functionalities (e.g unsat cores, interpolation, ALLSMT)
- supports nonlinear arithmetic on reals & integers + transcendental functions (sin(), exp())
 - based on incremental linearization: abstraction/refinement to SMT(QF_UFLA)
 - multiplication, sin() and exp() modeled by uninterpreted functions
 - incrementally axiomatized on demand by linear constraints

Participation and Configurations

- - Single query track: OF ANIA OF ALIFNIA OF NIA OF NIA OF NIA OF LIENIA OF LIENIA OF LIENIA
 - Incremental track: QF_ANIA, QF_AUFBVNIA, QF_NIA, QF_UFNIA.
 - Unsat Core track: QF_ANIA, QF_AUFNIA, QF_NIA, QF_NRA, QF_UFNIA, QF_UFNRA
- Submitted versions
- MathSAT default: public release version 5.5.4 +minor fixes, ≈ as described in our SAT'18 paper
 MathSAT-na-ext: MathSAT default
- use of lazier strategy for the instantiation of linearization lemmas;
- try to minimize the Boolean assignment that are given to theory solvers;
 - Ilinearization lemmas learnt only temporarily

MathSAT5 (Nonlinear)

MathSAT5, a DPLL(T) solver

- supports most SMT-LIB theories + functionalities (e.g unsat cores, interpolation, ALLSMT)
- supports nonlinear arithmetic on reals & integers + transcendental functions (sin(), exp())
 - based on incremental linearization: abstraction/refinement to SMT(QF_UFLA)
 - multiplication, sin() and exp() modeled by uninterpreted functions
 - incrementally axiomatized on demand by linear constraints

Participation and Configurations

- Categories:
 - Single query track: QF_ANIA, QF_AUFNIA, QF_NIA, QF_NIRA, QF_NRA, QF_UFNIA, QF_UFNRA.
 - Incremental track: QF_ANIA, QF_AUFBVNIA, QF_NIA, QF_UFNIA.
 - Unsat Core track: QF_ANIA, QF_AUFNIA, QF_NIA, QF_NIRA, QF_NRA, QF_UFNIA, QF_UFNRA.
- Submitted versions:
 - MathSAT default: public release version 5.5.4 +minor fixes, \approx as described in our SAT'18 paper
 - MathSAT-na-ext: MathSAT default
 - $+\;$ use of lazier strategy for the instantiation of linearization lemmas
 - + try to minimize the Boolean assignment that are given to theory solvers;
 - use bi-implication
 - linearization lemmas learnt only temporarily

MathSAT5 (Nonlinear)

MathSAT5, a DPLL(T) solver

- supports most SMT-LIB theories + functionalities (e.g unsat cores, interpolation, ALLSMT)
- supports nonlinear arithmetic on reals & integers + transcendental functions (sin(), exp())
 - based on incremental linearization: abstraction/refinement to SMT(QF_UFLA)
 - multiplication, sin() and exp() modeled by uninterpreted functions
 - incrementally axiomatized on demand by linear constraints

Participation and Configurations

- Categories:
 - Single query track: QF_ANIA, QF_AUFNIA, QF_NIA, QF_NIRA, QF_NRA, QF_UFNIA, QF_UFNRA.
 - Incremental track: QF_ANIA, QF_AUFBVNIA, QF_NIA, QF_UFNIA.
 - Unsat Core track: QF_ANIA, QF_AUFNIA, QF_NIA, QF_NRA, QF_UFNIA, QF_UFNRA.
- Submitted versions:
 - MathSAT default: public release version 5.5.4 +minor fixes, \approx as described in our SAT'18 paper
 - MathSAT-na-ext: MathSAT default
 - + use of lazier strategy for the instantiation of linearization lemmas;
 - + try to minimize the Boolean assignment that are given to theory solvers;
 - + use bi-implication tangent lemmas:
 - + linearization lemmas learnt only temporarily