1 目的

resonance tube により音叉の振動数を測定すること.

2 理論

算術平均の確率誤差

$$r_a = \pm 0.6745 \sqrt{\frac{[v^2]}{n(n-1)}} \tag{1}$$

$$[v^2] = \sum_{i=1}^n v_i^2 = \sum_{i=1}^n (q_i - \bar{q})^2$$
 (2)

$$Q = F(q_i, q_2, \dots) \tag{3}$$

 $Q:, q_1, q_2, ...$ の誤差をそれぞれ $r: r_1, r_2, ...$ として,

$$r^{2} = \left(\frac{\partial F}{\partial q_{1}}r_{1}\right)^{2} + \left(\frac{\partial F}{\partial q_{2}}r_{2}\right)^{2} + \dots$$

$$(4)$$

 q_i : 測定值, n: 測定回数, \bar{q} : 平均值

振動数の導出

 $0^{\circ}C$,1 気圧における空気中の音の速度を V_0 とすると

$$V_0 = \sqrt{\frac{\gamma p_0}{\rho_0}} = \sqrt{\frac{1.403 \times 1.013 \times 10^6}{331.4 \times 10^2}} = 331.4 \times 10^2 [cm/sec]$$
 (5)

となる. ただし γ は空気の比熱比, p_0 は標準気圧, ρ_0 は空気の密度である.

実際に空気中を音が伝播する時には,その時の温度および湿度に対する補正を行わなければならない. 温度 t[$^{\circ}C$], 気圧 p[hPa], 水蒸気の分圧 e[hPa] の時の伝播速度 V は,

$$V = V_0(1 + 0.00183t)\{1 + (3/16)(e/p)\} = 331.4 \times 10^2(1 + 0.00183t)\{1 + (3/16)(e/p)\}$$
 [cm/sec] (6)

で与えられる.

実験の便宜上同一種類の進行波と後退派との干渉により生ずる定常波 (stationary wave) を用いる.

図 1 のように下部に水面がある管中を音波が進行して定常波ができる場合,粗なる媒質より密なる媒質への反射面では筋 (node) を生ずる。すなわち入射波と反射波との間に $\pi radian$ (すなわち $\lambda/2[cm]$) なる位相差を考えなければならないが逆に蜜より疎への反射面には腹 (loop) を生ずるゆえ,位相差を考える必要はない。このような定常波の節間または腹間の距離は $\lambda/2[cm]$ に等しい。今昔の波長を $\lambda[cm]$,振動数を $\nu[sec^{-1}]$ とすれば

$$\nu = V/\lambda \quad [Hz] \tag{7}$$

となる関係がある. したがって V は (7) を用い、 λ を測定して音叉の振動数 ν を計算することができる.

3 実験方法

- 1. 共鳴管 AB の中に水を入れて水面が管口 A の近くに来るように C を上げる. 水面が A の近くに来た時 C の下の cock を閉じて C を下の方に置いていく. 音叉をゴムハンマー (プラスチック) でたたいて管端に持って来る と同時に C の下の cock を開くと、水面は徐々に下って行くが音叉が水面上の気柱と共鳴する時には音が大き くなり共鳴の位置を知ることができる.
- 2. 水面が最低位に来た時にCのcockを閉じてCを充分上の方に置き直す.
- 3. 再び音叉を鳴らしながら C の下の cock を開き水面を上げて前と同様に共鳴点を求めていく.
- 4. 同様の実験を繰り返して、その共鳴点の位置, N_1, N_2, N_3, \dots を各2回読み取り各々 y_1, y_2, \dots とする.
- 5. 別紙「連続して繰り返される測定」にしたがって共鳴時の波長 λ を求めることができる.
- 6. 室温 $t[^{\circ}C]$, 大気圧 p[hPa] および水蒸気の分圧 e[hPa] を文末の表より知れば、(6) より、その時の音速 V を求めることができる.
- 7. λ と V が求まれば (6) にしたがってその音叉の振動数 ν が測定できる
- 8.3種の音叉につき各音叉の振動数を求める.

*図 2 の上部に示すように定常波の loop は開口端 A と厳密には一致しない.今 N_1 より $\lambda/4$ の点をとり L_0 と すれば L_0 は A より X だけ外になる.すなわち $X=(\lambda/4)-AN_1$ であって X と管の半径 r との比を口端補正 (terminal correction) と呼びこれを実験的に定めれば $X/r=0.55\sim0.85$ となる.

*音叉の振動数は温度の上昇と共に少し減少する. $0[^{\circ}C]$ および $t[^{\circ}C]$ における振動数を ν_0, ν とすれば $\nu_0 = \nu(1+0.000112t)$ によって求めた振動数を $0[^{\circ}C]$ の振動数に書き直すこともできる.

*音叉はゴムハンマー (プラスチック) 以外のもので叩いてはならない. 硬いもので強く叩いて傷をつけると振動数に変化を生ずるし,強く叩いたことにより多くの倍音を生じて正しい音叉の基本音と混乱を生ずる.

夷	τk σ)飽和	蒸気	压(e))

	表. 水の飽和蒸気圧(e)					単位	立:[hPa]			
温度〔℃〕	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
15	17.057	17.167	17.278	17.390	17.502	17.614	17.728	17.842	17.956	18.071
16	18.187	18.304	18.421	18.539	18.658	18.777	18.897	19.017	19.138	19.260
17	19.383	19.506	19.630	19.755	19.880	20.006	20.133	20.260	20.388	20.517
18	20.647	20.777	20.908	21.040	21.172	21.305	21.439	21.574	21.709	21.845
19	21.982	22.120	22.258	22.397	22.537	22.678	22.819	22.961	23.104	23.248
20	23.392	23.538	23.684	23.831	23.978	24.127	24.276	24.426	24.577	24.729
21	24.882	25.035	25.189	25.344	25.500	25.657	25.814	25.973	26.132	26.292
22	26.453	26.615	26.777	26.941	27.105	27.271	27.437	27.604	27.772	27.941
23	28.110	28.281	28.452	28.625	28.798	28.972	29.148	29.324	29.501	29.679
24	29.858	30.037	30.218	30.400	30.583	30.766	30.951	31.136	31.323	31.511
25	31.699	31.889	32.079	32.270	32.463	32.656	32.851	33.046	33.243	33.440
26	33.639	33.838	34.039	34.240	34.443	34.647	34.852	35.057	35.264	35.472
27	35.681	35.891	36.102	36.315	36.528	36.742	36.958	37.174	37.392	37.611
28	37.831	38.052	38.274	38.497	38.722	38.947	39.174	39.402	39.631	39.861
29	40.092	40.325	40.558	40.793	41.029	41.266	41.505	41.744	41.985	42.227
30	42.470	42.715	42.960	43.207	43.455	43.705	43.955	44.207	44.460	44.715
31	44.970	45.227	45.485	45.745	46.005	46.267	46.531	46.795	47.061	47.328
32	47.597	47.867	48.138	48.410	48.684	48.959	49.236	49.514	49.793	50.074
33	50.356	50.639	50.924	51.210	51.497	51.786	52.077	52.368	52.662	52.956
34	53.252	53.550	53.848	54.149	54.451	54.754	55.059	55.365	55.672	55.981
35	56.292	56.604	56.918	57.233	57.549	57.868	58.187	58.508	58.831	59.155

図 1 実験装置概略図

図2 開口端補正

4 データ処理・結果

実験を行う前に,使用する管管に記載された 150[cm] の目盛りと実際の長さとのスケールを計測することで,補正値を算出した.

表1 管の補正

n	実測値 [cm]
1	149.70
2	149.90
3	150.00
4	149.65
5	149.70
Sum	748.95
Ave	149.79

 $\frac{149.79}{150} = 0.9986$ より,実測値に補正値 0.9986 をかけた補正後の値を用いて,波長を求める.

4.1 音叉 1(1400Hz)

波長 λ の導出

表 2 共鳴点の測定値

n	1回目 [cm]	2 回目 [cm]	平均値 [cm]	補正後 $N_i[cm]$
1	4.80	4.75	4.78	4.77
2	17.80	17.40	17.60	17.58
3	29.55	29.65	29.60	29.56
4	42.30	42.45	42.38	42.32
5	54.15	54.20	54.18	54.10
6	66.75	66.80	66.78	66.68
7	79.20	79.30	79.25	79.14

共鳴点の個数が奇数個であるため、桁数が揃っている $N_2 \sim N_7$ のデータを用いて波長を以下のように算出する.

表3 音叉の波長

	$(3/2)\lambda = N_{i+3} - N_i[cm]$	$\lambda[cm]$	$v_{\lambda}[\mathrm{cm}]$	$v_{\lambda}^2 \times 10^4 [cm^2]$
i=2	36.52	24.349	-0.200	398.88078
i=3	37.12	24.749	0.200	398.88078
i=4	36.82	24.549	0.000	0.00000
Sum		73.647	0.000	797.76157
Ave		24.549		

よって λ の最確値は $\lambda = 24.549[cm]$.

確率誤差は理論 (1) より,
$$r_{\lambda}=\pm 0.6745\sqrt{\frac{797.76157\times 10^{-4}}{3\times 2}}=\pm 0.077776[cm].$$

伝播速度 ∨ の導出

表 4 温度 t, 気圧 p, 水蒸気の分圧 e の測定値

n	$t[^{\circ}C]$	p[hPa]	e[hPa]
1	23.8	1001.0	29.5010
2	23.8	1000.9	29.5010
3	23.6	1000.9	29.1480
4	23.5	1000.2	28.9720
5	23.5	1000.1	28.9720
Sum	118.2	5003.1	146.0940
Ave	23.64	1000.6	29.21880

表より, t, p, e の最確値はそれぞれ, $t=23.64[^{\circ}C]$, p=1000.6[hPa], e=29.21880[hPa].

したがって理論 (6) より、伝播速度 V の最確値は、

$$V = 331.4 \times 10^2 (1 + 0.00183 \times 23.64) \{1 + (3/16) \times \frac{29.21880}{1000.6}\} = 34762.97 [cm/sec].$$

表 5 温度 t の誤差

n	$v_t[^{\circ}C]$	$v_t^2 \times 10^4 [^{\circ}C^2]$
1	0.16	256.00000
2	0.16	256.00000
3	-0.04	16.00000
4	-0.14	196.00000
5	-0.14	196.00000
Sum	0.00	920.00000

よって理論 (1) より, t の確率誤差 r_t は $r_t = \pm 0.6745 \sqrt{\frac{920.00000 \times 10^{-4}}{5 \times 4}} = \pm 0.0457468 [^{\circ}C].$

表 6 気圧 p の誤差

n	$v_p[hPa]$	$v_p^2 \times 10^4 [hPa]$
1	0.38	1444.00000
2	0.28	784.00000
3	0.28	784.00000
4	-0.42	1764.00000
5	-0.52	2704.00000
Sum	0.00	7480.00000

よって理論 (1) より,
$$p$$
 の確率誤差 r_p は $r_p=\pm 0.6745 \sqrt{\frac{7480.00000\times 10^{-4}}{5\times 4}}=\pm 0.1304421 [hPa].$

表7 水蒸気の分圧 e の誤差

n	$v_e[hPa]$	$v_e^2 \times 10^4 [hPa^2]$
1	0.28	796.36840
2	0.28	796.36840
3	-0.07	50.12640
4	-0.25	609.10240
5	-0.25	609.10240
Sum	0.00	2861.06800

よって理論 (1) より, e の確率誤差 r_e は $r_e = \pm 0.6745 \sqrt{\frac{2861.06800 \times 10^{-4}}{5 \times 4}} = \pm 0.0806735 [hPa]$.

したがって理論 (4) より, V の確率誤差 r_V は,

$$r_V^2 = \left(\frac{\partial V}{\partial t}r_t\right)^2 + \left(\frac{\partial V}{\partial p}r_p\right)^2 + \left(\frac{\partial V}{\partial e}r_e\right)^2 = (2.789561)^2 + (0.024677)^2 + (0.522647)^2 = 8.055417[(cm/sec)^2]$$

 $r_V = \pm 2.838207 [cm/sec].$

振動数 ν の導出

理論
$$(7)$$
 より、振動数 u の最確値は $u = \frac{V}{\lambda} = \frac{34762.97}{24.549} = 1416.07[Hz].$

確率誤差 r_{ν} は理論 (4) より,

$$r_{\nu}^{2} = \left(\frac{\partial \nu}{\partial V} r_{V}\right)^{2} + \left(\frac{\partial \nu}{\partial \lambda} r_{\lambda}\right)^{2} = (0.115614)^{2} + (4.486370)^{2} = 20.140885[Hz^{2}]$$

 $r_{\nu} = \pm 4.487860[Hz].$

$$\therefore \nu = 1416.07 \pm 4.487860 = (1.416 \pm 0.004) \times 10^{3} [Hz].$$

4.2 音叉 2(1600Hz)

波長 λ の導出

表 8 共鳴点の測定値

n	1 回目 [cm]	2 回目 [cm]	平均値 [cm]	補正後 $N_i[cm]$
1	4.25	4.20	4.23	4.22
2	14.65	14.70	14.68	14.65
3	25.90	25.80	25.85	25.81
4	36.55	36.55	36.55	36.50
5	47.45	47.55	47.50	47.43
6	58.25	58.30	58.28	58.19
7	68.75	68.85	68.80	68.70
8	79.80	79.90	79.85	79.74

表 9 音叉の波長

	$2\lambda = N_{i+4} - N_i[cm]$	$\lambda[cm]$	$v_{\lambda}[\mathrm{cm}]$	$v_{\lambda}^2 \times 10^6 [cm^2]$
i=1	43.21	21.607	-0.003	9.738300
i=2	43.54	21.769	0.159	25329.319316
i=3	42.89	21.445	-0.165	27354.885797
i=4	43.24	21.620	0.009	87.644704
Sum		86.441	0.000	52781.588117
Ave		21.610		

よって λ の最確値は $\lambda = 21.610[cm]$.

確率誤差は理論 (1) より,
$$r_{\lambda}=\pm0.6745\sqrt{\frac{52781.588117\times 10^{-6}}{4\times 3}}=\pm0.044733[cm].$$

伝播速度 ∨ の導出

表 10 温度 t, 気圧 p, 水蒸気の分圧 e の測定値

n	$t[^{\circ}C]$	p[hPa]	e[hPa]
1	23.4	1000.1	28.7980
2	23.3	1000.1	28.6250
3	23.3	1000.1	28.6250
4	23.2	1000.1	28.4520
5	23.1	1000.2	28.2810
Sum	116.3	5000.6	142.781
Ave	23.26	1000.1	28.5562

表より, t, p, e の最確値はそれぞれ, $t=23.26 [^{\circ}C]$, p=1000.1[hPa], e=28.5562[hPa].

したがって理論 (6) より、伝播速度 V の最確値は、

$$V = 331.4 \times 10^2 (1 + 0.00183 \times 23.26) \{1 + (3/16) \times \frac{28.5562}{1000.1}\} = 34735.60 [cm/sec].$$

表 11 温度 t の誤差

n	$v_t[^{\circ}C]$	$v_t^2 \times 10^4 [^{\circ}C^2]$
1	0.14	196.00000
2	0.04	16.00000
3	0.04	16.00000
4	-0.06	36.00000
5	-0.16	256.00000
Sum	0.00	520.00000

よって理論 (1) より,
$$t$$
 の確率誤差 r_t は $r_t = \pm 0.6745 \sqrt{\frac{520.00000 \times 10^{-4}}{5 \times 4}} = \pm 0.0343929 [^{\circ}C]$.

表 12 気圧 p の誤差

n	$v_p[hPa]$	$v_p^2 \times 10^4 [hPa]$
1	-0.02	4.00000
2	-0.02	4.00000
3	-0.02	4.00000
4	-0.02	4.00000
5	0.08	64.00000
Sum	0.00	80.00000

よって理論 (1) より, p の確率誤差 r_p は $r_p = \pm 0.6745 \sqrt{\frac{80.00000 \times 10^{-4}}{5 \times 4}} = \pm 0.0134900 [hPa]$.

表 13 水蒸気の分圧 e の誤差

n	$v_e[hPa]$	$v_e^2 \times 10^4 [hPa^2]$
1	0.24	584.67240
2	0.07	47.33440
3	0.07	47.33440
4	-0.10	108.57640
5	-0.28	757.35040
Sum	0.00	1545.26800

よって理論 (1) より, e の確率誤差 r_e は $r_e=\pm 0.6745 \sqrt{\frac{1545.26800\times 10^{-4}}{5\times 4}}=\pm 0.0592883 [hPa]$.

したがって理論 (4) より, V の確率誤差 r_V は,

$$r_V^2 = \left(\frac{\partial V}{\partial t}r_t\right)^2 + \left(\frac{\partial V}{\partial p}r_p\right)^2 + \left(\frac{\partial V}{\partial e}r_e\right)^2 = (2.096965)^2 + (0.002495)^2 + (0.384038)^2 = 4.544751[(cm/sec)^2]$$

 $r_V = \pm 2.131842[cm/sec].$

振動数 ν の導出

理論
$$(7)$$
 より、振動数 u の最確値は $u = \frac{V}{\lambda} = \frac{34735.60}{21.610} = 1607.36 [Hz].$

確率誤差 r_{ν} は理論 (4) より,

$$r_{\nu}^{2} = \left(\frac{\partial \nu}{\partial V} r_{V}\right)^{2} + \left(\frac{\partial \nu}{\partial \lambda} r_{\lambda}\right)^{2} = (0.098649)^{2} + (3.327244)^{2} = 11.080285[Hz^{2}]$$

 $r_{\nu} = \pm 3.328706[Hz].$

 $\therefore \nu = 1607.36 \pm 3.328706 = (1.607 \pm 0.003) \times 10^{3} [Hz].$

4.3 音叉 3(1800Hz)

波長 λ の導出

表 14 共鳴点の測定値

n	1回目 [cm]	2 回目 [cm]	平均値 [cm]	補正後 $N_i[cm]$
1	3.75	3.85	3.80	3.79
2	12.55	12.60	12.58	12.56
3	22.65	22.75	22.70	22.67
4	32.80	32.30	32.55	32.50
5	42.25	42.40	42.33	42.27
6	51.90	51.90	51.90	51.83
7	61.70	61.95	61.83	61.74
8	71.35	71.45	71.40	71.30

表 15 音叉の波長

	$2\lambda = N_{i+4} - N_i[cm]$	$\lambda[cm]$	$v_{\lambda}[{ m cm}]$	$v_{\lambda}^2 \times 10^4 [cm^2]$
i=1	38.47	19.236	-0.215	463.640482
i=2	39.27	19.635	0.184	338.990237
i=3	39.07	19.535	0.084	70.992210
i=4	38.80	19.398	-0.053	28.143688
Sum		77.803	0.000	901.766616
Ave		19.451		

よって λ の最確値は $\lambda = 19.451[cm]$.

確率誤差は理論 (1) より, $r_{\lambda}=\pm 0.6745\sqrt{\frac{901.766616\times 10^{-4}}{4\times 3}}=\pm 0.058471[cm].$

伝播速度 V の導出

表 16 温度 t, 気圧 p, 水蒸気の分圧 e の測定値

n	$t[^{\circ}C]$	p[hPa]	e[hPa]
1	23.1	1000.2	28.2810
2	23.1	1000.3	28.2810
3	23.2	1000.2	28.4520
4	23.4	1000.1	28.7980
5	23.5	1000.1	28.9720
Sum	116.3	5000.9	142.784
Ave	23.26	1000.2	28.5568

表より, t,p,e の最確値はそれぞれ, $t=23.26 [^{\circ}C], \quad p=1000.2 [hPa], \quad e=28.5568 [hPa].$

したがって理論(6)より、伝播速度Vの最確値は、

$$V = 331.4 \times 10^2 (1 + 0.00183 \times 23.26) \{1 + (3/16) \times \frac{28.5568}{1000.2}\} = 34735.60 [cm/sec].$$

表 17 温度 t の誤差

n	$v_t[^{\circ}C]$	$v_t^2 \times 10^4 [^{\circ}C^2]$
1	-0.16	256.00000
2	-0.16	256.00000
3	-0.06	36.00000
4	0.14	196.00000
5	0.24	576.00000
Sum	0.00	1320.00000

よって理論 (1) より,
$$t$$
 の確率誤差 r_t は $r_t = \pm 0.6745 \sqrt{\frac{1320.00000 \times 10^{-4}}{5 \times 4}} = \pm 0.0547966 [^{\circ}C]$.

表 18 気圧 p の誤差

n	$v_p[hPa]$	$v_p^2 \times 10^4 [hPa]$
1	0.02	4.00000
2	0.12	144.00000
3	0.02	4.00000
4	-0.08	64.00000
5	-0.08	64.00000
Sum	0.00	280.00000

よって理論 (1) より,
$$p$$
 の確率誤差 r_p は $r_p=\pm 0.6745 \sqrt{\frac{280.00000\times 10^{-4}}{5\times 4}}=\pm 0.0252375 [hPa].$

表 19 水蒸気の分圧 e の誤差

n	$v_e[hPa]$	$v_e^2 \times 10^4 [hPa^2]$
1	-0.28	760.65640
2	-0.28	760.65640
3	-0.10	109.83040
4	0.24	581.77440
5	0.42	1723.91040
Sum	0.00	3936.82800

よって理論 (1) より,
$$e$$
 の確率誤差 r_e は $r_e=\pm 0.6745 \sqrt{\frac{3936.82800\times 10^{-4}}{5\times 4}}=\pm 0.0946325 [hPa].$

したがって理論 (4) より, V の確率誤差 r_V は,

$$r_V^2 = \left(\frac{\partial V}{\partial t}r_t\right)^2 + \left(\frac{\partial V}{\partial p}r_p\right)^2 + \left(\frac{\partial V}{\partial e}r_e\right)^2 = (3.340999)^2 + (0.004667)^2 + (0.612942)^2 = 11.537991[(cm/sec)^2]$$

 $r_V = \pm 3.396762 [cm/sec].$

振動数 ν の導出

理論 (7) より、振動数
$$u$$
の最確値は $u = \frac{V}{\lambda} = \frac{34735.60}{19.451} = 1785.81[Hz].$

確率誤差 r_{ν} は理論 (4) より,

$$r_{\nu}^{2} = \left(\frac{\partial \nu}{\partial V} r_{V}\right)^{2} + \left(\frac{\partial \nu}{\partial \lambda} r_{\lambda}\right)^{2} = (0.174633)^{2} + (5.368287)^{2} = 28.849003[Hz^{2}]$$

 $r_{\nu} = \pm 5.371127[Hz].$

 $\therefore \nu = 1785.81 \pm 5.371127 = (1.786 \pm 0.005) \times 10^{3} [Hz].$

5 考察

音叉 1~3 までの振動数を算出したが、それぞれの算出された値と公称値の誤差率は以下のようになった.

表 20 音叉 1~3 の振動数の公称値との誤差率

音叉	誤差率 [%]
1	+0.8~1.4
2	+0.3~0.6
3	-0.5~1.0

この表より、3つとも概ね同じ精度で実験をできていると考えられる。また、音叉 1 に関しては、計算の都合上、共鳴点のデータをひとつ省いてしまっているため、(表 2,表 3 参照) 誤差率が他の 2 つよりも大きくなっていると考えられる。

また,この実験では温度,湿度,気圧を計測し,伝播速度 V を求めたが, ν の確率誤差の誤差伝播の式からも分かるとおり, ν の誤差は V よりも λ に大きく左右されるため,上表の誤差の原因は共鳴点測定時における個人差や人的要因が大きいと考える.