CS 601.442/642 - Modern Cryptography

Midterm Exam

Deadline: October 20; 2020, 11:59 PM EST

Instructor: Abhishek Jain

Instructions

• All submissions must be made via Gradescope. No late submissions will be accepted.

• Please add the following declaration on the first page of your submission:

"I have neither given nor received any unauthorized aid on this exam. I understand that this exam must be taken without the aid of any other online resources **besides** the lecture slides/videos, resources posted on the course website and the handouts sent via email. The work contained herein is wholly my own. I understand that violation of these rules, including using an unauthorized aid or collaborating with another person/student, may result in my receiving a 0 on this exam."

- 1. (10 points) One-Way Functions: Let f be a function such that $f: \{0,1\}^n \to \{0,1\}^{\log n}$, where n is the security parameter. Show that f is *not* a one-way function.
- 2. (15 points) Pseudorandom Generators: Let \mathbb{G} be a cyclic group of prime order q with generator g. Consider the following function $PRG : \mathbb{Z}_q^3 \mapsto \mathbb{G}^5$.

$$\mathsf{PRG}(x, y_1, y_2) \coloneqq (g^x, g^{y_1}, g^{xy_1}, g^{y_2}, g^{xy_2}),\,$$

where $x, y_1, y_2 \stackrel{\$}{\leftarrow} \mathbb{Z}_q$ constitute the seed. Prove that the above construction is a secure Pseudorandom Generator.

- 3. **Pseudorandom Functions:** Let $\{f_k\}_k$ be a family of PRFs, where $f_k : \{0,1\}^n \mapsto \{0,1\}^n$ and $k \in \{0,1\}^n$. Let us consider the following two ways of increasing the input space of this family of functions from $\{0,1\}^n$ to $\{0,1\}^{2n}$ without increasing the key length:
 - (a) (10 points) Let $g_k(x_1||x_2) = f_k(x_1)||f_k(x_2)$. Show that the resulting family $\{g_k\}_k$ is not a secure family of PRFs.
 - (b) (15 points) Let $g_k(x_1||x_2) = f_{f_k(x_1)}(x_2)$. Show that $\{g_k\}_k$ is a secure family of PRFs.
- 4. (15 points) Key Exchange and Encryption: Let NIKE = (Alice, Bob, ComputeAliceKey, ComputeBobKey) be the tuple of algorithms associated with a non-interactive key exchange scheme defined as follows:
 - $(\mathsf{msg}_A, \mathsf{st}_A) \leftarrow \mathsf{Alice}(1^n)$: It takes the security parameter as input and outputs a message msg_A that Alice sends to Bob and Alice's private state st_A .
 - $(\mathsf{msg}_B, \mathsf{st}_B) \leftarrow \mathsf{Bob}(1^n)$: It takes the security parameter as input and outputs a message msg_B that Bob sends to Alice and Bob's private state st_B .
 - $key_A \leftarrow ComputeAliceKey(msg_B, st_A)$: It takes as input the message msg_B sent by Bob along with Alice's private state st_A and outputs a key key_A .

• $\text{key}_B \leftarrow \text{ComputeBobKey}(\text{msg}_A, \text{st}_B)$: It takes as input the message msg_A sent by Alice along with Bob's private state st_B and outputs a key key_B .

These algorithms satisfy the following two properties:

• Correctness: Let Alice and Bob's keys be computed as $\ker_A \leftarrow \mathsf{ComputeAliceKey}(\mathsf{msg}_B, \mathsf{st}_A)$ and $\ker_B \leftarrow \mathsf{ComputeBobKey}(\mathsf{msg}_A, \mathsf{st}_B)$ respectively, where $(\mathsf{msg}_A, \mathsf{st}_A) \leftarrow \mathsf{Alice}(1^n)$ and $(\mathsf{msg}_B, \mathsf{st}_B) \leftarrow \mathsf{Bob}(1^n)$. Then, it holds that

$$\Pr[\mathsf{key}_A = \mathsf{key}_B] = 1$$

• Security: Let the transcript of the NIKE scheme be trans := $(\mathsf{msg}_A, \mathsf{msg}_B)$ where $(\mathsf{msg}_A, \mathsf{st}_A) \leftarrow \mathsf{Alice}(1^n)$ and $(\mathsf{msg}_B, \mathsf{st}_B) \leftarrow \mathsf{Bob}(1^n)$ and $r \overset{\$}{\leftarrow} \mathcal{K}$ be a uniformly sampled value from its key-space. Then, it holds that

$$(\text{key}_A, \text{trans}) \equiv (\text{key}_A, \text{trans}) \approx_c (r, \text{trans})$$

Construct an IND-CPA secure public-key encryption scheme PKE = (Gen, Enc, Dec) from NIKE = (Alice, Bob, ComputeAliceKey, ComputeBobKey) and prove its security.