Datum:	~	Třída:
4.1.2024	SPŠ CHOMUTOV	A4
Číslo úlohy:	_ , , ,	Příjmení:
13.	Programování AMS – model ohmmetru (Keysight VEE)	Lacek

Zadání:

Vytvořte model dvou rozsahového ohmmetru s automatickou volbou rozsahu.

Schéma:

Tabulka přístrojů:

Název přístroje:	Označení:	Údaje:	Ev. Číslo:
Přepínač	Sw	HP 34903A-20CH. SWITCH	
Zdroj		TSZ 75 2x15 V 5 V	
Zdroj ref. U	Ur	10 V	
Operační zesilovač	OZ	MAA 741 CN	LE 2380
Dekáda	R1	RESISTANCE BOX RM6-N2 CROPICO $0 \Omega - 1 M\Omega$	LE 5131
Dekáda	R2	RESISTANCE BOX RM6-N2 CROPICO $0 \Omega - 1 M\Omega$	LE 5132
Sada rezistorů	Rx	390 Ω − 100 kΩ	
Měřící ústředna	MÚ	HP 34901A-20CH. MPX	LE3 672

Teorie:

Převodník odporu na napětí pomocí invertujícího operačního zesilovače je zařízení, které převádí změny odporu na odpovídající změny napětí. Tento typ převodníku využívá vlastností invertujícího operačního zesilovače pro generování výstupního napětí v závislosti na normálovém odporu připojeném na vstup a měřeném odporu připojeném ve zpětné vazbě.

Tento převodník hraje klíčovou roli v elektronických obvodech a senzorech, kde je potřeba měřit fyzikální veličiny, jako je teplota nebo tlak.

1. Maximální výstupní napětí převodníku je rovno zápornému saturačnímu napětí operačního zesilovače, -12 V.

Postup:

- 1. Zapojíme obvod a nastavíme hodnoty dekád. Za Rx budeme připojovat postupně jednotlivé rezistory ze sady rezistorů
- 2. Nakreslíme si vývojový diagram, podle kterého budeme programovat
- 3. Podle vývojového diagramu naprogramujeme program
- 4. Změříme rezistory

Vývojový diagram:

Výpis programu:

- 1. Nastavení většího rozsahu a změření napětí
- 2. Převedení změřeného záporného napětí na kladné
- 3. Podmínka, pokud je napětí větší než 12 V, odpor se vyhodnotí jako nekonečný (blok 4). Pokud není, vyhodnotí se 2. podmínka (blok 5)
- 4. Text vypisující hodnotu odporu jako "INFINITY"
- 5. Podmínka, pokud je napětí větší než 1,2 V, vypočítá se odpor (blok6). Pokud není, provede se nové měření (blok 7)
- 6. Výpočet odporu s převodem 1 V na 10 kΩ
- 7. Nastavení menšího rozsahu a změření napětí
- 8. Převedení změřeného záporného napětí na kladné
- 9. Podmínka, pokud je napětí menší než 12 mV, odpor se vyhodnotí jako nulový (blok 4). Pokud není, vypočítá se odpor (blok 11)
- 10. Text vypisující hodnotu odporu jako "ZERO"
- 11. Výpočet odporu s převodem 1 V na 1 kΩ
- 12. Spojení všech výstupních signálů do jednoho. Vždy bude aktivní pouze jeden
- 13. Sestavení textového výstupu s proměnou U, která představuje výsledný odpor
- 14. Vypsání hodnoty odporu

Tabulka naměřených hodnot:

Hodnoty rezistorů v sadě rezistorů:

Rx [Ω]
100716,95
82626,50
39614,76
27551,65
10051,62
4685,50
820,32
388,02

Závěr:

Naměřené hodnoty rezistorů leží v toleranci hodnot rezistorů dané jejich barevným označením. Rezistory jsme nezměřili jinou metodou měření, a tedy neznáme jejich přesnou hodnotu, a proto nedokážeme vypočítat přesnost převodníku.

Postup nejprve nakreslit vývojový diagram byl výhodný. Psaní programu bylo mnohem snazší.

Program pro převodník fungoval bez problémů.

Zadání jsme splnili.