Symbols & Logical Syntax in \LaTeX

Lewis Britton

Greek & Hebrew Characters

Alphabetical Letters

A, α	\Alpha, \alpha	Ι, ι	\Iota, \iota	Ρ, ρ, ρ	\Rho, \rho, \varrho
B, β	\Beta, \beta	K, κ, \varkappa	\Kappa, \kappa, \varkappa	Σ , σ , ς	\Sigma, \sigma, \varsigma
Γ, γ	\Gamma, \gamma	$\Lambda,~\lambda$	\Lambda, \lambda	T, τ	\Tau, \tau
$\Delta, \ \delta$	\Delta, \delta	M, μ	\Mu, \mu	Υ , υ	\Upsilon, \upsilon
E, ϵ , ε	\Epsilon, \epsilon, \varepsilon	N, ν	\Nu, \nu	Φ, ϕ, φ	\Phi, \phi, \varphi
Z, ζ	\Zeta, \zeta	Ξ, ξ	\Xi, \xi	Χ, χ,	\Chi, \chi
H, η	\Eta, \eta	О, о	\Omicron, \omicron	$\Psi, \ \psi$	\Psi, \psi
Θ , θ , ϑ	\Theta, \theta, \vartheta	Π, π, ϖ	\Pi, \pi, \varpi	Ω, ω	\Omega, \omega

Miscellaneous Characters & Punctuation

F	\digamma	C	\complement	_	\angle	3	\Im	G	\Game
×	\aleph	ℓ	\ell	4	\measuredangle	R	∖Re	E	\Finv
コ	\beth	ð	\eth	∢	\sphericalangle	ប	\mho	∂	\partial
٦	\daleth	\hbar	\hbar	$\sqrt{}$	\surd	p	\wp	TM , ©	\trademark, \copyright
ב	\gimel	ħ	\hslash	Ц	\natural	k	\Bbbk	\pounds , \$	\pounds, \\$
\imath	\imath	Т	\top	#	\sharp	Ø	\emptyset	\Diamond , \Diamond	\diamondsuit, \lozenge
J	\jmath	1	\bot	Ь	\flat	∞	\infty	\Diamond	\heartsuit
∇	\nabla	§	\S	Δ	\vartriangle	□, □	\Box, \square	*	\clubsuit
\triangle	\triangle	Ø	\varnothing	▽	\triangledown	♦	\Diamond	^	\spadesuit
A	\blacktriangle		\blacksquare		\diagdown	∃	\exists	*	\bigstar
▼	\blacktriangledown	•	\blacklozenge	/	\diagup	∌	\nexists		

Text Mode Miscellaneous Characters & Punctuation

ó	\'{o}	ō	\b{o}	ŏ	\v o	Ø, ø	\0, \0	•	\P	£, \$	$, \$
ò	\'{o}	ò	\.{o}	ó	\d o	Å, å	\AA, \a	§	\S	!, ?	!,?
ö	\"{o}	ó	\d{o}	ô	\r o	Æ,æ	\AE, \ae	†	\dag	., ,	., ,
ô	\^{o}	Q	\c{o}	ő	\H o	ß	\ss	‡	\ddag	٠, ٠,	·, ,
õ	\~{o}	ŏ	\u{o}	o	\t o	1	\i	TM , ©	\trademark, \copyright	","	", " or "
ō	\={o}	ő	\H{o}	oo	\t{oo}	1	\i	(R), (R)	\textregistered, \circledR	:, ;	:,;

Basic Math Mode

Alphabets

$XYX \ xyz$	XYZ\ xyz	XYZ xyz	$\mathbf{XYZ} \times \mathbf{xyz}$	XYZ	\mathbb{XYZ}
$XYZ \ xyz$	\mathnormal{XYZ\ xyz}	XYZ xyz	$XYZ \ xyz$	xyz	\mathcal{XYZ}
$XYZ \ xyz$	$XYZ \ xyz$	XYZ xyz	$XYZ\ xyz$	XY3	XYZ
XYZ vvz	\mathrm{XVZ\ xvz}				

${\rm Spacing}$

xyz	xyz	Default math	abad		a\!b\mspace{-3mu}c\negthinspace d	Neg. 3mu 'thin'
x y z	x\ y\ z	Expanded	dad		a\negmedspace b\mspace{-4mu}c\negmedspace d	Neg. 4mu 'medium'
$\sin x \cos y$	\sin x\cos y	Operator	død		a\negthickspace b\mspace{-5mu}c\negthickspace d	Neg. 5mu 'thick'
abcd	ab\mspace{3mu}c\thinspace d	3mu 'thin'	a	b	ab	Width of 'xxx'
$a\ b\ c\ d$	a\:b\mspace{4mu}c\medspace d	4mu 'medium'		-	- (
a h c d	a):h/menace{5mu}c/thickenace d	5mu 'thick'				

Math Accents & Constructs

Note that most basic accents can be stacked. For example, $\accepte{acute\{x\}}$ yields \acute{x} . Or, $\accepte{acute\{x\}}$ yields \acute{x} .

ź	\acute{x}	\dot{x}	\dot{x}	\overline{xyz}	\overline{xyz}	$\leftarrow \frac{xyz}{abc}$	\xleftarrow[abc]{xyz}	$\sum_{}^{K}$	\overset{K}{\sum}
\grave{x}	\grave{x}	\ddot{x}	\ddot{x}	xyz	\underline{xyz}	\xrightarrow{xyz} \xrightarrow{abc}	\xrightarrow[abc]{xyz}	$\sum_{k=1}$	lem:lem:lem:lem:lem:lem:lem:lem:lem:lem:
\bar{x}	\bar{x}	ž	$\c \c \$	\overrightarrow{xyz}	\overrightarrow{xyz}	\widehat{xyz}	\overbrace{xyz}	\sqrt{x}	\sqrt{x}
\hat{x}	\hat{x}	\vec{x}	\vec{x}	xyz	\overleftarrow{xyz}	xyz	\underbrace{xyz}	$\sqrt[n]{x}$	\sqrt[n]{x}
\tilde{x}	\tilde{x}	\widehat{xyz}	\widehat{xyz}	\overrightarrow{xyz}	\overleftrightarrow{xyz}	f, f', f'	f, f', f\prime		
$reve{x}$	\breve{x}	\widetilde{xyz}	\widetilde{xyz}	$\frac{abc}{xyz}$	\frac{abc}{xyz}	$\sum_{i=1}^{x} \sum_{k=1}^{j} a_{ik}$	$\left\{_y^x\right\}_{k^j}\sim$		

Binary Relations

Note that you can produce according negations by either adding the \not command as a prefix or ordinarily by preceding the commands with 'n'. For example, \not= or \neq turns = to \neq .

<	<	>	>	=	=	€	\in	∋	\ni or \owns
\leq	$\leq or \leq o$	\geq	\geq or \ge	≡	\equiv	-	\vdash	-	\dashv
«	\11	>>	\gg	Ė	\doteq		\mid	П	\parallel
\prec	\prec	>	\succ	~	\sim	_	\smile		\frown
\preceq	\preceq	≥	\succeq	~	\simeq	∃	\exists	_	\lnot or \neg
\subset	\subset	\supset	\supset	\approx	\approx	⊨	\models	上	\perp
\subseteq	\subseteq	\supseteq	\supseteq	\simeq	\cong	\asymp	\asymp	\propto	\propto
	\sqsubset		\sqsupset	M	Join	≠	\neq	\forall	\forall
	\sqsubseteq		\sqsupseteq	\bowtie	\bowtie	∉	\notin	٧, ١	\prime, \backprime

...

Binary Operators

Standard Operators

							•						
+ ± × ÷ U	+ \pm \times \div \cup \sqcup	- ∓ · \ ∩ □	- \mp \cdot \setminus \cap \sqcap		\oplus \odot \otimes \bigti		< ⊕ ⊘ ○ ▷ ▷	\land or \wedge \ominus \oslash \bigcirc \bigtriangledown \triangleright		\lhd \unlhd \bullet \ast \diamond \amalg	△ △ ○ · · · ·	\rhd \unrhd \circ \star \wr \uplus	
	Large Operators												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								oigcup 🛇	\bigopl \bigotin \bigodo	mes \(\frac{1}{\lambda}\)	bigvee \bigwee	edge	
						Func	tions						
arcs	cos \cos exp \exp lim inf \liminf sec \sec \frac{\overlim}{\overlim} \text{ \varliminf}												
cosh cosh gcd lm sup limsup cot cot hom hom ln ln				sinh	\sinh	226_0^1	\operator		26}_0^1				

Delimiters

Note that you can produce according relatively sized symbols by preceding the commands with \left or \right. For example, \left(\frac{abc}{xyz}\right) turns $(\frac{abc}{xyz})$ to $(\frac{abc}{xyz})$. Sometimes commands can be preceded with '1' or 'r' e.g., \left xyz\rVert makes ||xyz||. Thus, giving the \Vert command properties of paired symbols.

sup

Standard Delimiters

((l	\lbrack or [(\Langle	L	\lfloor	'	\ulcorner	1	\uparrow
))]	\rbrack or]	>	\rangle	[\lceil	٦	\urcorner	↓	\downarrow
	\vert o	or {	\lbrace or $\$	Γ	\lceil	/	/	L	\llcorner	1	\Uparrow
	\Vert o	or \ }	\rbrace or \}	L	\lfloor	\	\backslash	٦	\rcorner	↓	\Downarrow

${\bf Large\ Delimiters}$

ι	\lgroup	ر	\rgroup	_	\lmoustache	_	\rmoustache		\arrowvert	\Arrowvert	\bracevert

Arrows

Q

\curvearrowright

\rightsquigarrow

Matrices & Arrays

\curvearrowleft

\leadsto

Note that any of the following can also be displayed inline as well as stand-alone. It's recommended that you use smallmatrix for this. Thus, you must preced and succeed \begin and \end smallmatrix with \left<delimiter> and \right<delimiter>, respectively. For example, $\end{smallmatrix}$ & b & c\\x & y & z\end{smallmatrix}\right) yields $\left(\begin{smallmatrix} a & b & c \\ x & y & z \end{smallmatrix} \right)$.

\circlearrowleft

\leftrightsquigarrow

\circlearrowright

\multimap

(*)

Basic Syntax

Array Environment

Note that arrays operate in the same manner as tables such that they permit column alignment 1, c and r etc., columns can be divided using pipes (|) new row lines with $\$, and the use of $\$ to name a few examples. Columns are separated the same as within tables; with (n-1) & ampersand symbols, for n columns. Some simple examples follow.

Relative Font Sizes

Math Mode

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \qquad \text{displaystyle x=\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}} \qquad \text{displaystyle x=\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}} \qquad \text{textstyle x=\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}} \qquad \text{scriptstyle x=\frac{-b \pm \sqrt{b^2 - 4a$$

Text Mode

tiny	\tiny{tiny}	normal	\normalsize{normal}	huge	\huge{huge}
script	\scriptsize{script}	large	\large{large}		
footnote	\footnotesize{footnote}	Large	\Large{Large}	Huge	\Huge{Huge}
small	\small{small}	LARGE	\LARGE{LARGE}		