ADVANCED MEMORY SYSTEMS

Mahdi Nazm Bojnordi

Assistant Professor

School of Computing

University of Utah

Programmable Controller

Limitations to Existing Memory Controllers

Modern memory controllers are performance-critical and complex

Programmable Memory Controllers

 Programmability can make a memory controller higher-performance and more flexible

Design Overview

- Key idea: Judicious division of labor between specialized hardware and firmware
 - Request and transaction processing in firmware
 - Configurable timing validation in hardware

Request Processing

A RISC ISA for operating on memory requests

Request Processing

- Queue management with instruction flags
 - R flag enqueues a request
 - T flag dequeues a transaction
- An instruction can be annotated with both R and T flags if needed

Implementation

 Two five-stage pipelines and one configurable timing validation circuit

Emerging Technologies

DRAM Cell Structure

- □ One-transistor, one-capacitor
 - Realizing the capacitor is challenging

- 1T-1C DRAM
- Charge based sensing
- Volatile

DRAM Cell Structure

- □ One-transistor, one-capacitor
 - Realizing the capacitor is challenging

- 1T-1C DRAM
- Charge based sensing
- Volatile

Memory Scaling in Jeopardy

Scaling of semiconductor memories greatly challenged beyond 20nm

Example: DRAM

Memory Scaling in Jeopardy

Scaling of semiconductor memories greatly challenged beyond 20nm

Example: DRAM

Why DRAM Slow?

 Logic VLSI Process: optimized for better transistor performance

 DRAM VLSI Process: optimized for low cost and low leakage

How to reduce distance?

Processing-in-Memory

- Increasing bandwidth by placing processing units on same die with DRAM
- □ Not a new concept!
 - Merged Logic and DRAM (MLD)
 - IBM, Mitsubishi, Samsung, Toshiba, etc.
 - Other efforts
 - FlexRAM
 - IRAM
 - Active Pages
 - **...**

Historical PIM Challenges

- Hard to program (no standard interface)
- □ Embedding logic on modified DRAM process
 - Substantially larger transistors
 - Reduce memory capacity
 - Slower logic and lower performance
- Embedding DRAM on modified logic process
 - Leaky transistors, high refresh rates, increased cost/bit
 - Increased manufacturing complexity

3D Die-Stacking

- Different devices are stacked on top of each other
- Layers are connected by through-silicon vias (TSVs)

- □ Why?
 - Communication between devices bottlenecked by limited
 I/O pins
 - Integrating heterogeneous elements on a single wafer is expensive and suboptimal

3D Stacked Memory

- □ Hybrid Memory Cube (HMC)
 - A logic layer at the bottom

- □ High Bandwidth Memory (HBM)
 - Silicon interposer at the bottom

