Analysis of Algorithms

Data Structures and Algorithms for Computational Linguistics III (ISCL-BA-07)

Çağrı Çöltekin ccoltekin@sfs.uni-tuebingen.de

University of Tübingen Seminar für Sprachwissenschaft

Winter Semester 2020/21

What are we analyzing?

• So far, we frequently asked: 'can we do better?'

What are we analyzing?

- So far, we frequently asked: 'can we do better?'
- Now, we turn to the questions of
 - what is better?
 - how do we know an algorithm is better than the other?

What are we analyzing?

- So far, we frequently asked: 'can we do better?'
- Now, we turn to the questions of
 - what is better?
 - how do we know an algorithm is better than the other?
- There are many properties that we may want to improve
 - correctness
 - robustness
 - simplicity
 - ..
 - In this lecture, *efficiency* will be our focus
 - in particular time efficiency/complexity

How to determine running time of an algorithm?

write the code, experiment

- A possible approach:
 - Implement the algorithm
 - Test with varying input
 - Analyze the results

How to determine running time of an algorithm?

write the code, experiment

- A possible approach:
 - Implement the algorithm
 - Test with varying input
 - Analyze the results

- A few issues with this approach:
 - Implementing something that does not work is not productive (or fun)
 - It is often not possible cover all potential inputs
 - If your version takes 10 seconds less than a version reported 10 years ago, do you really have an improvement?

How to determine running time of an algorithm?

write the code, experiment

- A possible approach:
 - Implement the algorithm
 - Test with varying input
 - Analyze the results

- A few issues with this approach:
 - Implementing something that does not work is not productive (or fun)
 - It is often not possible cover all potential inputs
 - If your version takes 10 seconds less than a version reported 10 years ago, do you really have an improvement?
- A formal approach offers some help here

Some functions to know about

Family	Definition
Constant	f(n) = c
Logarithmic	$f(n) = \log_b n$
Linear	f(n) = n
N log N	$f(n) = n \log n$
Quadratic	$f(n) = n^2$
Cubic	$f(n) = n^3$
Other polynomials	$f(n) = n^k$, for $k > 3$
Exponential	$f(n) = b^n$, for $b > 1$
Factorial	f(n) = n!

• We will use these functions to characterize running times of algorithms

Some functions to know about

the picture - why we care about their difference

Some functions to know about

the bigger picture

A few facts about logarithms

• Logarithm is the inverse of exponentiation:

$$x = \log_b n \iff b^x = n$$

- We will mostly use base-2 logarithms. For us, no-base means base-2
- Additional properties:

$$\begin{aligned} \log xy &= \log x + \log y \\ \log \frac{x}{y} &= \log x - \log y \\ \log x^{\alpha} &= \alpha \log x \\ \log_b x &= \frac{\log_k x}{\log_b b} \end{aligned}$$

• Logarithmic functions grow (much) slower than linear functions

Polynomials

- A degree-0 polynomial is a constant function (f(n) = c)
- Degree-1 is linear (f(n) = n + c)
- Degree-2 is quadratic $(f(n) = n^2 + n + c)$
- ..
- We generally drop the lower order terms (soon we'll explain why)
- Sometimes it will be useful to remember that

$$1+2+3+\ldots+n=\frac{n(n+1)}{2}$$

Combinations and permutations

- $n! = n \times (n-1) \times ... \times 2 \times 1$
- Permutations:

$$P(n,k) = n \times (n-1) \times \ldots \times (n-k-1) = \frac{n!}{(n-k)!}$$

• Combinations 'n choose k':

$$C(n,k) = \binom{n}{k} = \frac{P(n,k)}{P(k,k)} = \frac{n!}{(n-k)! \times k!}$$

- Induction is an important proof technique
- It is often used for both proving the correctness and running times of algorithms
- It works if we can enumerate the steps of an algorithm (loops, recursion)
 - Show that base case holds.
 - Assume the result is correct for n, show that it also holds for n + 1

Example: show that 1 + 2 + 3 + ... + n = n(n + 1)/2

• Base case, for n=1

$$(1 \times 2)/2 = 1$$

Assuming

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

$$\sum_{i=1}^{n+1} i = \frac{(n+1)(n+2)}{2}$$

Example: show that 1 + 2 + 3 + ... + n = n(n + 1)/2

• Base case, for n=1

$$(1 \times 2)/2 = 1$$

Assuming

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

$$\sum_{i=1}^{n+1} i = \frac{(n+1)(n+2)}{2}$$

$$\frac{n(n+1)}{2} + (n+1)$$

Example: show that 1 + 2 + 3 + ... + n = n(n + 1)/2

• Base case, for n=1

$$(1 \times 2)/2 = 1$$

Assuming

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

$$\sum_{i=1}^{n+1} i = \frac{(n+1)(n+2)}{2}$$

$$\frac{n(n+1)}{2} + (n+1) = \frac{n(n+1) + 2(n+1)}{2}$$

Example: show that 1 + 2 + 3 + ... + n = n(n + 1)/2

• Base case, for n=1

$$(1 \times 2)/2 = 1$$

Assuming

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

$$\sum_{i=1}^{n+1} i = \frac{(n+1)(n+2)}{2}$$

$$\frac{n(n+1)}{2} + (n+1) = \frac{n(n+1) + 2(n+1)}{2} = \frac{(n+1)(n+2)}{2}$$

Formal analysis of running time of algorithms

- We are focusing on characterizing running time of algorithms
- The running time is characterized as a function of input size
- We are aiming for an analysis method
 - independent of hardware / software environment
 - does not require implementation before analysis
 - considers all possible inputs

How much hardware independence?

How much hardware independence?

quite, but not completely: we assume a RAM model of computing

- Characterized by random access memory (RAM) (e.g., in comparison to a sequential memory, like a tape)
- We assume the system can perform some primitive operations (addition, comparison) in constant time
- The data and the instructions are stored in the RAM
- The processor fetches them as needed, and executes following the instructions
- This is largely true for any computing system we use in practice

RAM model: an example

- Processing unit performs basic operations in constant time
- Any memory cell with an address can be accessed in equal (constant) time
- The instructions as well as the data is kept in the memory
- There may be other, specialized registers
- Modern processing units also employ a 'cache'

Formal analysis of running time

- Simply count the number of primitive operations
- Primitive operations include:
 - Assignment
 - Arithmetic operations
 - Comparing primitive data types (e.g., numbers)
 - Accessing a single memory location
 - Function calls, return from functions
- Not primitive operations:
 - loops, recursion
 - comparing sequences

Focus on the worst case

- Algorithms are generally faster on certain input than others
- In most cases, we are interested in the worst case analysis
 - Guaranteeing worst case is important
 - It is also relatively easier: we need to identify the worst-case input
- Average case analysis is also useful, but
 - requires defining a distribution over possible inputs
 - often more challenging

Counting primitive operations

example: nearest points, the naive algorithm

```
def shortest distance(points):
    n = len(points)
                                                    # 1 (constant?)
                                                    # 1 (constant)
    min = 0
    for i in range(n):
                                                    # n. times
        for i in range(i):
                                                    # i times
            d = distance(points[i], points[j])
                                                    # 1 (constant)
            if min > d:
                                                    # 1 (constant)
                                                    # 1 (constant)
                min = d
                                                    # 1 (constant)
    return min
```

$$T(n) = 2 + (1 + 2 + 3 + ... + n - 1) \times 3 + 1$$
$$= 3 \times \frac{(n-1)(n-2)}{2} + 3$$

Big-O notation

- Big-O notation is used for indicating an upper bound on running time of an algorithm as a function of running time
- If running time of an algorithm is O(f(n)), its running time grows proportional to f(n) as the input size n grows
- More formally, given functions f(n) and g(n), we say that f(n) is O(g(n)) if there is a constant c>0 and integer $n_0\geqslant 1$ such that

$$f(n) \le c \times g(n)$$
 for $n \ge n_0$

• Sometimes the notation f(n) = O(g(n)) is also used, but beware: this equal sign is not symmetric

Big-O example $T(n) = n^2 - 2n + 5 \text{ is } O(n^2)$

$$T(n) = n^2 - 2n + 5$$
 is $O(n^2)$

Big-O example $T(n) = n^2 - 2n + 5 \text{ is } O(n^2)$

$$T(n) = n^2 - 2n + 5$$
 is $O(n^2)$

Not surprising: $T(n) < n^2$ for $n \ge 3$

Big-O, another example $T(n) = n^2 + 3n$ is $O(n^2)$

Big-O, another example

$$T(n) = n^2 + 3n \text{ is } O(n^2)$$

$$T(n) < 2 \times n^2 \text{ for } n \geqslant 4$$

Big-O, yet another example

but n^2 is not O(n) – proof by picture

Back to the function classes

Family	Definition
Constant	f(n) = c
Logarithmic	$f(n) = \log_b n$
Linear	f(n) = n
N log N	$f(n) = n \log n$
Quadratic	$f(n) = n^2$
Cubic	$f(n) = n^3$
Other polynomials	$f(n) = n^k$, for $k > 3$
Exponential	$f(n) = b^n$, for $b > 1$
Factorial	f(n) = n!

• None of these functions can be expressed as a constant factor of another

Drop the lower order terms

- In the big-O notation, we drop the constants and lower order terms
 - Any polynomial degree d is $O(n^d)$ $10n^3 + 4n^2 + n + 100$ is $O(n^3)$
 - Drop any lower order terms: $2^n + 10n^3$ is $O(2^n)$
- Use the simplest expression:
 - -5n + 100 is O(5n), but we prefer O(n)
 - $-4n^2+n+100$ is $O(n^3)$,
- Transitivity: if f(n) = O(g(n)), and g(n) = O(h(n)), then f(n) = O(h(n))
- Additivity: if both f(n) and g(n) are O(h(n)) f(n) + g(n) is O(h(n))

$$f(n) = O(f(n))$$
 $7n-2 = n$
 $3n^3 - 2n^2 + 5$

f(n)	O(f(n))
7n-2 $3n^3-2n^2+5$	
$3\log n + 5$	

f(n)	O(f(n))
$7n-2$ $3n^3-2n^2+5$	n^3
$3\log n + 5$ $\log n + 2^n$	$\log n$

f(n)	O(f(n))
$ 7n-2 3n^3-2n^2+5 3\log n+5 \log n+2^n 10n^5+2^n $	n n ³ log n 2 ⁿ

f(n)	O(f(n))
7n-2	n
$3n^3 - 2n^2 + 5$ $3\log n + 5$	n ³ log n
$\log n + 2^n$	2^n
$10n^5 + 2^n$	2 ⁿ
$\log 2^n$	

f(n)	O(f(n))
7n-2	n
$3n^3 - 2n^2 + 5$	n^3
$3\log n + 5$	$\log n$
$\log n + 2^n$ $10n^5 + 2^n$	2 ⁿ 2 ⁿ
$\log 2^n$	n
$2^{n} + 4^{n}$	10

f(n)	O(f(n))
7n - 2	n
$3n^3 - 2n^2 + 5$	n^3
$3\log n + 5$	$\log n$
$\log n + 2^n$	2^n
$10n^5 + 2^n$	2^n
$\log 2^n$	n
$2^{n} + 4^{n}$	4 ⁿ
100×2^n	

f(n)	O(f(n))
7n - 2	n
$3n^3 - 2n^2 + 5$	n^3
$3\log n + 5$	$\log \mathfrak{n}$
$\log n + 2^n$	2^n
$10n^5 + 2^n$	2^n
$\log 2^n$	n
$2^{n} + 4^{n}$	4 ⁿ
100×2^{n}	2 ⁿ
n2 ⁿ	

f(n)	O(f(n))
7n-2	n
$3n^3 - 2n^2 + 5$	n^3
$3\log n + 5$	$\log n$
$\log n + 2^n$	2 ⁿ
$10n^5 + 2^n$	2^n
$\log 2^n$	n
$2^{n} + 4^{n}$	4 ⁿ
100×2^n	2^n
n2 ⁿ	$n2^n$
$\log n!$	

f(n)	O(f(n))
7n-2	n
$3n^3 - 2n^2 + 5$	n^3
$3\log n + 5$	$\log n$
$\log n + 2^n$	2^n
$10n^5 + 2^n$	2^n
$\log 2^n$	n
$2^{n} + 4^{n}$	4 ⁿ
100×2^{n}	2^n
n2 ⁿ	$n2^n$
$\log n!$	$n \log n$

Big-O: back to nearest points

```
def shortest distance(points):
    n = len(points)
                                                    # 1 (constant?)
                                                    # 1 (constant)
    min = 0
    for i in range(n):
                                                    # n. times
        for j in range(i):
                                                    # i times
            d = distance(points[i], points[i])
                                                    # 1 (constant)
            if min > d:
                                                    # 1 (constant)
                min = d
                                                    # 1 (constant)
                                                    # 1 (constant)
    return min
```

$$T(n) = 2 + (1 + 2 + 3 + ... + n - 1) \times 3 + 1$$
$$= 2 \times \frac{(n-1)(n-2)}{3} + 3 = 2/3(n^2 - 3n + 2) + 3$$

Big-O: back to nearest points

```
def shortest distance(points):
    n = len(points)
                                                    # 1 (constant?)
                                                    # 1 (constant)
    min = 0
    for i in range(n):
                                                    # n. times
        for j in range(i):
                                                    # i times
            d = distance(points[i], points[i])
                                                    # 1 (constant)
            if min > d:
                                                    # 1 (constant)
                                                    # 1 (constant)
                min = d
                                                    # 1 (constant)
    return min
```

$$T(n) = 2 + (1 + 2 + 3 + ... + n - 1) \times 3 + 1$$

$$= 2 \times \frac{(n-1)(n-2)}{3} + 3 = 2/3(n^2 - 3n + 2) + 3$$

$$= O(n^2)$$

linear search

• What is the worst-case running time?

```
1 def linear_search(seq, val):
2    i, n = 0, len(seq)
3    while i < n:
4         if seq[i] == val:
5             return i
6         i += 1
7    return None</pre>
```

linear search

```
def linear_search(seq, val):
    i, n = 0, len(seq)
    while i < n:
        if seq[i] == val:
            return i
        i += 1
    return None</pre>
```

- What is the worst-case running time?
 - 2. 2 assignments
 - 3. 2n comparisons, n increment
 - 7. 1 return statemnt

linear search

```
def linear_search(seq, val):
    i, n = 0, len(seq)
    while i < n:
        if seq[i] == val:
            return i
        i += 1
    return None</pre>
```

- What is the worst-case running time?
 - 2. 2 assignments
 - 3. 2n comparisons, n increment
 - 7. 1 return statemnt

$$T(n) = 3n + 3 = O(n)$$

• What is the average-case running time?

linear search

```
def linear_search(seq, val):
    i, n = 0, len(seq)
    while i < n:
        if seq[i] == val:
            return i
        i += 1
    return None</pre>
```

- What is the worst-case running time?
 - 2. 2 assignments
 - 3. 2n comparisons, n increment
 - 7. 1 return statemnt

$$T(n) = 3n + 3 = O(n)$$

- What is the average-case running time?
 - 2. 2 assignments
 - 3. 2(n/2) comparisons, n/2 increment, 1 return

linear search

```
def linear_search(seq, val):
    i, n = 0, len(seq)
    while i < n:
        if seq[i] == val:
            return i
        i += 1
    return None</pre>
```

- What is the worst-case running time?
 - 2. 2 assignments
 - 3. 2n comparisons, n increment
 - 7. 1 return statemnt

$$\mathsf{T}(\mathfrak{n}) = 3\mathfrak{n} + 3 = \mathsf{O}(\mathfrak{n})$$

- What is the average-case running time?
 - 2. 2 assignments
 - 2(n/2) comparisons, n/2 increment, 1 return

$$T(n) = 3/2n + 3 = O(n)$$

What about best case?

linear search

```
def linear_search(seq, val):
    i, n = 0, len(seq)
    while i < n:
        if seq[i] == val:
            return i
        i += 1
    return None</pre>
```

- What is the worst-case running time?
 - 2. 2 assignments
 - 3. 2n comparisons, n increment
 - 7. 1 return statemnt

$$\mathsf{T}(\mathfrak{n}) = 3\mathfrak{n} + 3 = \mathsf{O}(\mathfrak{n})$$

- What is the average-case running time?
 - 2. 2 assignments
 - 2(n/2) comparisons, n/2 increment, 1 return

$$T(n) = 3/2n + 3 = O(n)$$

• What about best case? O(1)

linear search

```
def linear_search(seq, val):
    i, n = 0, len(seq)
    while i < n:
        if seq[i] == val:
            return i
        i += 1
    return None</pre>
```

- What is the worst-case running time?
 - 2. 2 assignments
 - 3. 2n comparisons, n increment
 - 7. 1 return statemnt

$$\mathsf{T}(\mathfrak{n}) = 3\mathfrak{n} + 3 = \mathsf{O}(\mathfrak{n})$$

- What is the average-case running time?
 - 2. 2 assignments
 - 3. 2(n/2) comparisons, n/2 increment, 1 return

$$T(n) = 3/2n + 3 = O(n)$$

• What about best case? O(1)

Note: do not confuse the big-O with the worst case analysis.

Recursive binary search

```
1 def rbs(a, x, L=0, R=n):
      if I. >= R:
        return None
      M = (L + R) // 2
      if a[M] == x:
       return M
      if a[M] > x:
        return rbs(a, x, L,
         \hookrightarrow M - 1)
      else:
        return rbs(a, x, M +
         \hookrightarrow 1, R)
```

• Counting is not easy, but realize that T(n) = c + T(n/2)

```
1 def rbs(a, x, L=0, R=n):
      if I. >= R:
     return None
     M = (L + R) // 2
      if a[M] == x:
      return M
      if a[M] > x:
        return rbs(a, x, L,
         \hookrightarrow M - 1)
      else:
        return rbs(a, x, M +
         \rightarrow 1. R)
```

- Counting is not easy, but realize that T(n) = c + T(n/2)
- This is a recursive formula, it means T(n/2) = c + T(n/4), T(n/4) = c + T(n/8), . . .

```
1 def rbs(a, x, L=0, R=n):
      if I. >= R:
        return None
      M = (L + R) // 2
      if a[M] == x:
        return M
      if a[M] > x:
        return rbs(a, x, L,
         \hookrightarrow M - 1)
      else:
        return rbs(a, x, M +
         \rightarrow 1. R)
```

- Counting is not easy, but realize that T(n) = c + T(n/2)
- This is a recursive formula, it means T(n/2) = c + T(n/4), $T(n/4) = c + T(n/8), \dots$
- So, T(n) = 2c + T(n/4) = 3c + T(n/8)

```
1 def rbs(a, x, L=0, R=n):
      if I. >= R:
        return None
      M = (L + R) // 2
      if a[M] == x:
        return M
      if a[M] > x:
        return rbs(a, x, L,
         \hookrightarrow M - 1)
      else:
        return rbs(a, x, M +
         \rightarrow 1. R)
```

- Counting is not easy, but realize that T(n) = c + T(n/2)
- This is a recursive formula, it means T(n/2) = c + T(n/4), T(n/4) = c + T(n/8), . . .
- So, T(n) = 2c + T(n/4) = 3c + T(n/8)
- More generally, $T(n) = ic + T(n/2^i)$

```
1 def rbs(a, x, L=0, R=n):
      if I. >= R:
        return None
      M = (L + R) // 2
      if a[M] == x:
        return M
      if a[M] > x:
        return rbs(a, x, L,
         \hookrightarrow M - 1)
      else:
        return rbs(a, x, M +
         \rightarrow 1. R)
```

- Counting is not easy, but realize that T(n) = c + T(n/2)
- This is a recursive formula, it means T(n/2) = c + T(n/4), T(n/4) = c + T(n/8), . . .
- So, T(n) = 2c + T(n/4) = 3c + T(n/8)
- More generally, $T(n) = ic + T(n/2^i)$
- Recursion terminates when $n/2^i = 1$, or $n = 2^i$, the good news: $i = \log n$

```
1 \text{ def } rbs(a, x, L=0, R=n):
      if I. >= R:
         return None
      M = (L + R) // 2
      if a[M] == x:
         return M
      if a[M] > x:
         return rbs(a, x, L,
         \hookrightarrow M - 1)
      else:
         return rbs(a, x, M +
         \rightarrow 1. R)
```

- Counting is not easy, but realize that T(n) = c + T(n/2)
- This is a recursive formula, it means T(n/2) = c + T(n/4), T(n/4) = c + T(n/8), . . .
- So, T(n) = 2c + T(n/4) = 3c + T(n/8)
- More generally, $T(n) = ic + T(n/2^i)$
- Recursion terminates when $n/2^i = 1$, or $n = 2^i$, the good news: $i = \log n$
- $T(n) = c \log n + T(1) = O(\log n)$

```
1 \text{ def } rbs(a, x, L=0, R=n):
      if I. >= R:
         return None
      M = (L + R) // 2
      if a[M] == x:
         return M
      if a[M] > x:
         return rbs(a, x, L,
         \hookrightarrow M - 1)
      else:
         return rbs(a, x, M +
         \rightarrow 1. R)
```

- Counting is not easy, but realize that T(n) = c + T(n/2)
- This is a recursive formula, it means T(n/2) = c + T(n/4), T(n/4) = c + T(n/8), . . .
- So, T(n) = 2c + T(n/4) = 3c + T(n/8)
- More generally, $T(n) = ic + T(n/2^i)$
- Recursion terminates when $n/2^i = 1$, or $n = 2^i$, the good news: $i = \log n$
- $T(n) = c \log n + T(1) = O(\log n)$

Recursive binary search

```
1 def rbs(a, x, L=0, R=n):
      if I. >= R:
        return None
      M = (L + R) // 2
      if a[M] == x:
        return M
      if a[M] > x:
        return rbs(a, x, L,
         \hookrightarrow M - 1)
      else:
        return rbs(a, x, M +
         \rightarrow 1. R)
```

- Counting is not easy, but realize that T(n) = c + T(n/2)
- This is a recursive formula, it means T(n/2) = c + T(n/4), T(n/4) = c + T(n/8), . . .
- So, T(n) = 2c + T(n/4) = 3c + T(n/8)
- More generally, $T(n) = ic + T(n/2^i)$
- Recursion terminates when $n/2^i=1$, or $n=2^i$, the good news: $i=\log n$
- $T(n) = c \log n + T(1) = O(\log n)$

You do not always need to prove: for most recurrence relations, there is a way to obtain quick solutions (we are not going to cover it further, see Appendix)

Why asymptotic analysis is important?

'maximum problem size'

- Assume we can solve a problem of size m in a given time on current hardware
- We get a better computer, which runs 1024 times faster
- New problem size we can solve in the same time

Complexity	new problem size
Linear (n)	1024m
Quadratic (n ²)	32m
Exponential (2 ⁿ)	m + 10

- This also demonstrates the gap between polynomial and exponential algorithms:
 - with a exponential algorithm fast hardware does not help
 - problem size for exponential algorithms does not scale with faster computers

pros and cons

• We typically compare algorithms based on their worst-case performance

pros and cons

• We typically compare algorithms based on their worst-case performance pro it is easier, and we get a (very) strong guarantee: we know that the algorithm won't perform worse than the bound

- We typically compare algorithms based on their worst-case performance
 - pro it is easier, and we get a (very) strong guarantee: we know that the algorithm won't perform worse than the bound
 - con a (very) strong guarantee: in some (many?) problems, worst case examples are

- We typically compare algorithms based on their worst-case performance
 - pro it is easier, and we get a (very) strong guarantee: we know that the algorithm won't perform worse than the bound
 - con a (very) strong guarantee: in some (many?) problems, worst case examples are rare
 - In practice you may prefer an algorithm that does better on average (we'll see examples from sorting)

- We typically compare algorithms based on their worst-case performance
 - pro it is easier, and we get a (very) strong guarantee: we know that the algorithm won't perform worse than the bound
 - con a (very) strong guarantee: in some (many?) problems, worst case examples are rare
 - In practice you may prefer an algorithm that does better on average (we'll see examples from sorting)
- Our analyses are based on asymptotic behavior

- We typically compare algorithms based on their worst-case performance pro it is easier, and we get a (very) strong guarantee: we know that the algorithm
 - won't perform worse than the bound
 - con a (very) strong guarantee: in some (many?) problems, worst case examples are rare
 - In practice you may prefer an algorithm that does better on average (we'll see examples from sorting)
- Our analyses are based on asymptotic behavior pro for a 'large enough' input asymptotic analysis is correct

pros and cons

- We typically compare algorithms based on their worst-case performance
 pro it is easier, and we get a (very) strong guarantee: we know that the algorithm won't perform worse than the bound
 - con a (very) strong guarantee: in some (many?) problems, worst case examples are rare
 - In practice you may prefer an algorithm that does better on average (we'll see examples from sorting)
- Our analyses are based on asymptotic behavior
 pro for a 'large enough' input asymptotic analysis is correct
 con constant or lower order factors are not always unimportant

C. Cöltekin, SfS / University of Tübingen

- We typically compare algorithms based on their worst-case performance
 pro it is easier, and we get a (very) strong guarantee: we know that the algorithm won't perform worse than the bound
 - con a (very) strong guarantee: in some (many?) problems, worst case examples are rare
 - In practice you may prefer an algorithm that does better on average (we'll see examples from sorting)
- Our analyses are based on asymptotic behavior
 pro for a 'large enough' input asymptotic analysis is correct
 con constant or lower order factors are not always unimportant
 - A constant factor of 100¹⁰⁰ should probably not be ignored

Big-O relatives

• Big-O (upper bound): f(n) is O(g(n)) if f(n) is asymptotically *less than or equal to* g(n)

$$f(n) \le cg(n)$$
 for $n > n_0$

Big-O relatives

• Big-O (upper bound): f(n) is O(g(n)) if f(n) is asymptotically less than or equal to g(n)

$$f(n) \le cg(n)$$
 for $n > n_0$

• Big-Omega (lower bound): f(n) is $\Omega(g(n))$ if f(n) is asymptotically *greater than or equal to* g(n)

$$f(n) \geqslant cg(n)$$
 for $n > n_0$

Big-O relatives

• Big-O (upper bound): f(n) is O(g(n)) if f(n) is asymptotically less than or equal to g(n)

$$f(n) \le cg(n)$$
 for $n > n_0$

• Big-Omega (lower bound): f(n) is $\Omega(g(n))$ if f(n) is asymptotically *greater than or equal to* g(n)

$$f(n) \geqslant cg(n)$$
 for $n > n_0$

• Big-Theta (upper/lower bound): f(n) is $\Theta(g(n))$ if f(n) is asymptotically *equal to* g(n)

$$f(n)$$
 is $O(g(n))$ and $f(n)$ is $\Omega(g(n))$

Big-O, Big-Ω, Big- Θ : an example

$$T(n) = n^2 + 3n \text{ is } O(n^2)$$

O for
$$c = 2$$
 and $n_0 = 3$
 $T(n) \le cg(n)$ for $n > n_0$

Big-O, Big-Ω, Big- Θ : an example

$$T(n) = n^2 + 3n$$
 is $\Omega(n^2)$

O for
$$c = 2$$
 and $n_0 = 3$

$$T(n) \leqslant cg(n) \text{ for } n > n_0$$

$$\Omega$$
 for $c = 1$ and $n_0 = 0$

$$T(n) \geqslant cg(n)$$
 for $n > n_0$

Big-O, Big-Ω, Big- Θ : an example

$$T(n) = n^2 + 3n \text{ is } \Theta(n^2)$$

O for
$$c = 2$$
 and $n_0 = 3$
 $T(n) \le cq(n)$ for $n > n_0$

$$\Omega \ \mbox{ for } c=1 \mbox{ and } n_0=0$$

$$T(n)\geqslant cg(n) \mbox{ for } n>n_0$$

$$\Theta$$
 for $c = 2$, $n_0 = 3$, $c' = 1$ and $n'_1 = 0$

$$T(n) \leqslant cg(n) \text{ for } n > n_0 \quad \text{and}$$

$$T(n) \geqslant c'g(n) \text{ for } n > n'_0$$

Summary

- Algorithmic analysis mainly focuses on worst-case asymptotic running times
- Sublinear (e.g., logarithmic), Linear and n log n algorithms are good
- Polynomial algorithms may be acceptable in many cases
- Exponential algorithms are bad
- We will return to concepts from this lecture while studying various algorithms
- Reading for this lectures: Goodrich, Tamassia, and Goldwasser (2013, chapter 3)

Summary

- Algorithmic analysis mainly focuses on worst-case asymptotic running times
- Sublinear (e.g., logarithmic), Linear and n log n algorithms are good
- Polynomial algorithms may be acceptable in many cases
- Exponential algorithms are bad
- We will return to concepts from this lecture while studying various algorithms
- Reading for this lectures: Goodrich, Tamassia, and Goldwasser (2013, chapter 3)

Next:

- Common patterns in algorightms
- Sorting algorithms
- Reading: Goodrich, Tamassia, and Goldwasser (2013, chapter 12) up to 12.7

Acknowledgments, credits, references

• Some of the slides are based on the previous year's course by Corina Dima.

9781118476734.

A(nother) view of computational complexity

P, NP, NP-complete and all that

- A major division of complexity classes according to Big-O notation is between
 P polynomial time algorithms
 NP non-deterministic polynomial time algorithms
- A big question in computing is whether P = NP
- All problems in NP can be reduced in polynomial time to a problem in a subclass of NP (*NP-complete*)
 - Solving an NP complete problem in P would mean proving

P = NP

Video from https://www.youtube.com/watch?v=YX40hbAHx3s

Exercise

Sort the functions based on asymptotic order of growth

$\log n^{1000}$	$\log 5^n$
$\mathfrak{n}\log(\mathfrak{n})$	(n)
5 ⁿ	$\binom{\mathfrak{n}}{\mathfrak{n}/2}$
$\log n$	$\log \log n!$
$\log n^{1/\log n}$	\sqrt{n}
$\log n$	n^2
$\log 2^n/\mathfrak{n}$	2 ⁿ
$\log n!$	(n)
$\log 2^n$	$\binom{1}{2}$

Recurrence relations

the master theorem

Given a recurrence relation:

$$\mathsf{T}(\mathsf{n}) = \mathsf{a}\mathsf{T}\left(\frac{\mathsf{n}}{\mathsf{b}}\right) + \mathsf{O}(\mathsf{n}^{\mathsf{d}})$$

a number of sub-problems

b reduction factor or the input

nd amount of work to create and combine sub-problems

$$T(n) = \begin{cases} O(n^d \log(n)) & \text{if } a = b^d \\ O(n^d) & \text{if } a < b^d \\ O(n^{\log_b a}) & \text{if } a = b^d \end{cases}$$

- The theorem is more general than most cases where a = b
- But the theorem is not general for all recurrences: it requires equal splits

Big-O example with recurrence

an informal sketch of complexity of segmentation

• Intuition:

- if n = 1, time is constant: c
- for n = 2 we make two recursive calls 2c
- for n = 3 we make two recursive calls with size 2 (ignoring size 1 calls) $2 \times 2c$
- for n = 4 we make more calls, at least including $2 \times 2 \times 2c$
- for n = 5 we make even more calls, at least including $2 \times 2 \times 2 \times 2c$
- for n we make at least $2^{n-1}c$ calls

Big-O example with recurrence

an informal sketch of complexity of segmentation

• Intuition:

- if n = 1, time is constant: c
- for n = 2 we make two recursive calls 2c
- for n = 3 we make two recursive calls with size 2 (ignoring size 1 calls) $2 \times 2c$
- for n = 4 we make more calls, at least including $2 \times 2 \times 2c$
- for n = 5 we make even more calls, at least including $2 \times 2 \times 2 \times 2c$
- for n we make at least 2^{n-1} c calls

Note that the master theorem is not useful for this algorithm.

blank

blank