Quinta ayudantía Inducción sobre lenguajes y gramáticas

Teresa Becerril Torres terebece1508@ciencias.unam.mx

de febrero de 2023

Ejercicio 3

Lenguaje:

Sea
$$\Sigma = \{0, 1\}$$
 y $L = (0+1)^*$

Gramática:

Sea $G=(\Sigma,\Delta,S,R)$ una gramática, donde $\Sigma=\{0,\,1\}$, $\Delta=\{S\}$, S es el inicial, y las reglas R están dadas por:

$$S \to 0S \mid 1S$$
$$S \to \varepsilon \mid 0 \mid 1$$

Ejercicio 3 - $L \subseteq L(G)$

Por demostrar que la gramática G puede derivar al lenguaje L utilizando inducción sobre la estructura de las cadenas $(L \subseteq L(G))$.

Base:

- Sea $w=\varepsilon$, tenemos que $\varepsilon\in\Sigma^*$ y la gramática G tiene una regla de producción $S\to\varepsilon$ entonces $S\Rightarrow_G\varepsilon$ por lo tanto $G\models\varepsilon$.
- Sea w=0, tenemos que $0\in \Sigma$ y la gramática G tiene una regla de producción $S\to 0$ entonces $S\Rightarrow_G 0$ por lo tanto $G\models 0$.
- Sea w=1, tenemos que $1\in \Sigma$ y la gramática G tiene una regla de producción $S\to 1$ entonces $S\Rightarrow_G 1$ por lo tanto $G\models 1$.

Ejercicio 3 - $L \subseteq L(G)$

Hipótesis de inducción:

Supongamos que $w \in \Sigma^*$ y que $S \Rightarrow_G^* w$.

Paso inductivo:

Por demostrar que se cumple para w=xa con $x\in \Sigma^*$ y $a\in \Sigma$:

$$S \Rightarrow_G^* xa$$

Por hipótesis de inducción y por las reglas de producción de G:

- $S \Rightarrow_G 0S \Rightarrow_G^* xS \Rightarrow_G xa$ entonces $S \Rightarrow_G^* xa$.
- $S \Rightarrow_G 1S \Rightarrow_G^* xS \Rightarrow_G xa$ entonces $S \Rightarrow_G^* xa$.

Por lo que $G \models w$ y concluimos que la gramática G puede derivar al lenguaje L. Por lo tanto $L \subseteq L(G)$.

Ejercicio 3 - $L(G) \subseteq L$

Por demostrar que el lenguaje de la gramática está contenido en el lenguaje L utilizando inducción sobre las derivaciones de la gramática.

Base:

Sea $S\Rightarrow w$, es decir, la derivación se produce en un paso. La gramática G tiene tres producciones que derivan en un sólo paso:

- Sea $S \to \varepsilon$ por lo que $w = \varepsilon$ y $\varepsilon \in \Sigma^*$ por lo tanto $w \in L$.
- Sea $S \to 0$ por lo que w = 0 y $0 \in \Sigma$ por lo tanto $w \in L$.
- Sea $S \to 1$ por lo que w = 1 y $1 \in \Sigma$ por lo tanto $w \in L$.

Ejercicio 3 - $L(G) \subseteq L$

Hipótesis de inducción:

Supongamos que $S\Rightarrow_G^* x$ en n pasos y que $x\in \Sigma^*.$

Paso inductivo

Por demostrar que $S \Rightarrow_G^* w$ en n+1 y $w \in \Sigma^*$.

La gramática G tiene dos producciones que derivan en más de un paso: $S \to 0S$ y $S \to 1S$.

Como $S \Rightarrow_G^* w$ entonces tenemos dos casos:

• Si w=xa y $a\in \Sigma$ entonces $S\Rightarrow_G 0S\Rightarrow_G^* xa$, por H.I. sabemos que la derivación $S\Rightarrow_G^* x$ sucede en n pasos y que $x\in \Sigma^*$, por lo que $S\Rightarrow_G xa$ se produce en n+1 pasos y $xa\in \Sigma^*$ por definición de concatenación. Por lo tanto $w\in L$.

Ejercicio 3 - $L(G) \subseteq L$

• Si w=xa y $a\in \Sigma$ entonces $S\Rightarrow_G 1S\Rightarrow_G^* xa$, por H.I. sabemos que la derivación $S\Rightarrow_G^* x$ sucede en n pasos y que $x\in \Sigma^*$, por lo que $S\Rightarrow_G xa$ se produce en n+1 pasos y $xa\in \Sigma^*$ por definición de *concatenación*. Por lo tanto $w\in L$.

Concluimos que el lenguaje de la gramática está contenido en el lenguaje L. Por lo tanto $L(G)\subseteq L$.

$$\therefore L = L(G)$$

Ejercicio 4

Lenguaje:

Sea
$$\Sigma = \{a, b\}$$
 y $L = (b + ab)^*$

Gramática:

Sea $G=(\Sigma,\Delta,S,R)$ una gramática, donde $\Sigma=\{a,\,b\}$, $\Delta=\{S,\,B\}$, S es el inicial, y las reglas R están dadas por:

$$S \to bS \mid aB$$
$$S \to \varepsilon \mid b$$
$$B \to bS$$

Ejercicio 4 - $L \subseteq L(G)$

Por demostrar que la gramática G puede derivar al lenguaje L utilizando inducción sobre la estructura de las cadenas $(L \subseteq L(G))$.

Base:

- Sea $w=\varepsilon$, tenemos que $\varepsilon\in\Sigma^*$ y la gramática G tiene una regla de producción $S\to\varepsilon$ entonces $S\Rightarrow_G\varepsilon$ por lo tanto $G\models\varepsilon$.
- Sea w=b, tenemos que $b\in \Sigma$ y la gramática G tiene una regla de producción $S\to b$ entonces $S\Rightarrow_G b$ por lo tanto $G\models \varepsilon.$

Ejercicio 4 - $L \subseteq L(G)$

Hipótesis de inducción:

Supongamos que $w \in L$ y que $S \Rightarrow_G^* w$.

Paso inductivo:

Por demostrar que se cumple para w=xc con $x\in L$ y $c\in \Sigma$:

$$S \Rightarrow_G^* xc$$

Por hipótesis de inducción y por las reglas de producción de G:

- $S \Rightarrow_G bS \Rightarrow_G^* xS \Rightarrow_G xc$ por lo tanto $S \Rightarrow_G^* xc$
- $S \Rightarrow_G aB \Rightarrow_G^* xS \Rightarrow_G xc$ por lo tanto $S \Rightarrow_G^* xc$

Por lo que $G \models w$ y concluimos que la gramática G puede derivar al lenguaje L. Por lo tanto $L \subseteq L(G)$.

Ejercicio 4 - $L(G) \subseteq L$

Por demostrar que el lenguaje de la gramática está contenido en el lenguaje L utilizando inducción sobre las derivaciones de la gramática.

Base:

Sea $S\Rightarrow w$, es decir, la derivación se produce en un paso. La gramática G tiene dos producciones que derivan en un sólo paso:

- Sea $S \to \varepsilon$ por lo que $w = \varepsilon$ y $\varepsilon \in \Sigma^*$ por lo tanto $w \in L$.
- Sea $S \to b$ por lo que w = b y $b \in \Sigma$ por lo tanto $w \in L$.

Ejercicio 4 - $L(G) \subseteq L$

Hipótesis de inducción:

Supongamos que $S \Rightarrow_G^* x$ en n pasos y que $x \in L$.

Paso inductivo

Por demostrar que $S \Rightarrow_G^* w$ en n+1 y $w \in L$

La gramática G tiene dos producciones iniciales que derivan en más de un paso: $S \to bS$ y $S \to aB$.

Como $S \Rightarrow_G^* w$ entonces tenemos dos casos:

• Si w=xc y $c\in \Sigma$ entonces $S\Rightarrow_G bS\Rightarrow_G^* xc$, por H.I. sabemos que la derivación $S\Rightarrow_G^* x$ sucede en n pasos y que $x\in L$, por lo que $S\Rightarrow_G xc$ se produce en n+1 pasos y $xc\in L$ por definición de concatenación. Por lo tanto $w\in L$.

Ejercicio 4 - $L(G) \subseteq L$

• Si w=xc y $c\in \Sigma$ entonces $S\Rightarrow_G aB\Rightarrow_G^*xc$, por H.I. sabemos que la derivación $S\Rightarrow_G^*x$ sucede en n pasos y que $x\in L$, por lo que $S\Rightarrow_G xc$ se produce en n+1 pasos y $xc\in L$ por definición de concatenación. Por lo tanto $w\in L$.

Concluimos que el lenguaje de la gramática está contenido en el lenguaje L. Por lo tanto $L(G)\subseteq L$.

$$\therefore L = L(G)$$

