

Data Structures and Algorithms

Dr. N. L. Bhanu Murthy Computer Science & Information Systems Department

Lower Bound on Sorting Algorithms (comp based)

- What is the best we can do on comparison based sorting?
- ✓ Best worst-case sorting algorithm (so far) is O(N log N)
- Can we do better (or) Can we prove a lower bound on the sorting problem, independent of the algorithm?
- ✓ For comparison sorting, we can show lower bound of $\Omega(N \log N)$

Decision Tree for Sorting Algorithms

A *decision tree* is a binary tree where:

- Each node
 - lists all left-out open possibilities (for deciding)
- Path of each node
 - represents a decided sorted prefix of elements
- Each branch
 - represents an outcome of a particular comparison
- Each leaf
 - represents a particular ordering of the original array elements

- The left subtree shows subsequent comparisons if $a_i \le a_j$.
- The right subtree shows subsequent comparisons if $a_i \ge a_j$.

- The left subtree shows subsequent comparisons if $a_i \le a_j$.
- The right subtree shows subsequent comparisons if $a_i \ge a_j$.

- The left subtree shows subsequent comparisons if $a_i \le a_j$.
- The right subtree shows subsequent comparisons if $a_i \ge a_j$.

- The left subtree shows subsequent comparisons if $a_i \le a_i$.
- The right subtree shows subsequent comparisons if $a_i \ge a_j$.

Each leaf contains a permutation $\langle \pi(1), \pi(2), ..., \pi(n) \rangle$ to indicate that the ordering $a_{\pi(1)} \le a_{\pi(2)} \le ?$ $\le a_{\pi(n)}$ has been established.

Decision Tree for Sorting Algorithms

- ✓ The logic of any sorting algorithm that uses comparisons can be represented by a decision tree
- ✓ In the worst case, the number of comparisons used by the algorithm equals the HEIGHT OF THE DECISION TREE
- ✓ In the average case, the number of comparisons is the average of the depths of all leaves
- ✓ There are N! different orderings of N elements

Lower bound for decision-tree sorting

Theorem. Any decision tree that can sort n elements must have height $\Omega(n \lg n)$.

Proof. The tree must contain $\geq n!$ leaves, since there are n! possible permutations.

A height-h binary tree has $\leq 2^h$ leaves.

```
Thus, n! \le 2^h.

\therefore h \ge \lg(n!) (lg is mono. increasing)

\ge \lg ((n/e)^n) (Stirling's formula)

= n \lg n - n \lg e

= \Omega(n \lg n).
```

since n lg n – n lg e >= 1/2 n lg n for all n $>= n_0$ (take n_0 to be 100)

Problem Complexity

```
the time complexity of Problem P is O(f(n)) if there exists an O(f(n))-time algorithm that solves Problem P
```

```
the time complexity of Problem P is \Omega(f(n)) if any algorithm that solves Problem P requires \Omega(f(n)) time.
```

Optimal Algorithm

We say that Algorithm A is an optimal algorithm for Problem P in terms of worst-case time complexity if

- Algorithm A runs in time O(f(n)); and
- the time complexity of Problem P is $\Omega(f(n))$ in the worst case.

Corollary. Merge sort and Heap Sort are asymptotically optimal comparison sorting algorithms.

- the time complexity of Problem P is O(f(n)), i.e.
 - there exists an O(f(n))-time algorithm that solves Problem P; and
- the time complexity of Problem P is $\Omega(f(n))$, i.e.
 - any algorithm that solves Problem P requires $\Omega(f(n))$ time.

Comparing P and Q

We say that Problem P is no harder than Problem Q in terms of (worst-case) time complexity if there exists a function f(n) such that

- the (worst-case) time complexity of Problem P is O(f(n)); and
- the (worst-case) time complexity of Problem Q is $\Omega(f(n))$.

Comparing P and Q

We say that Problem P is (strictly) easier than Problem Q in terms of (worst-case) time complexity if there exists a function f(n) such that

- the (worst-case) time complexity of Problem P is O(f(n)); and
- the (worst-case) time complexity of Problem Q is $\omega(f(n))$

or

- the (worst-case) time complexity of Problem P is o(f(n)); and
- the (worst-case) time complexity of Problem Q is $\Omega(f(n))$.

Thank You!!