西条 - オキシダント予測の分析 (SARIMAX)

Model Parameters: Prefecture code: 38 Station code: 38206050 Station name: 西条 Target item: Ox(ppm) Number of data points in the train set: 13367 Number of data points in the test set: 5730 Forecast horizon (hours): 24 Model: SARIMAX (multi-output) Elapsed time: 2 min 21 sec Number of used features: 140 NO(ppm), NO2(ppm), U, V, Ox(ppm)_lag1 Ox(ppm)_lag2, Ox(ppm)_lag3, Ox(ppm)_lag4, Ox(ppm)_lag5, Ox(ppm)_lag6 Ox(ppm)_lag7, Ox(ppm)_lag8, Ox(ppm)_lag9, Ox(ppm)_lag10, Ox(ppm)_lag11 Ox(ppm)_lag12, Ox(ppm)_lag13, Ox(ppm)_lag14, Ox(ppm)_lag15, Ox(ppm)_lag16 Ox(ppm)_lag17, Ox(ppm)_lag18, Ox(ppm)_lag19, Ox(ppm)_lag20, Ox(ppm)_lag21 Ox(ppm)_lag22, Ox(ppm)_lag23, NO(ppm)_lag1, NO(ppm)_lag2, NO(ppm)_lag3 NO(ppm)_lag4, NO(ppm)_lag5, NO(ppm)_lag6, NO(ppm)_lag7, NO(ppm)_lag8 NO(ppm)_lag9, NO(ppm)_lag10, NO(ppm)_lag11, NO(ppm)_lag12, NO(ppm)_lag13 NO(ppm) lag14, NO(ppm) lag15, NO(ppm) lag16, NO(ppm) lag17, NO(ppm) lag18 NO(ppm)_lag19, NO(ppm)_lag20, NO(ppm)_lag21, NO(ppm)_lag22, NO(ppm)_lag23 NO2(ppm)_lag1, NO2(ppm)_lag2, NO2(ppm)_lag3, NO2(ppm)_lag4, NO2(ppm)_lag5 NO2(ppm)_lag6, NO2(ppm)_lag7, NO2(ppm)_lag8, NO2(ppm)_lag9, NO2(ppm)_lag10 NO2(ppm)_lag11, NO2(ppm)_lag12, NO2(ppm)_lag13, NO2(ppm)_lag14, NO2(ppm)_lag15 NO2(ppm)_lag16, NO2(ppm)_lag17, NO2(ppm)_lag18, NO2(ppm)_lag19, NO2(ppm)_lag20 NO2(ppm)_lag21, NO2(ppm)_lag22, NO2(ppm)_lag23, U_lag1, U_lag2 U_lag3, U_lag4, U_lag5, U_lag6, U_lag7 U_lag8, U_lag9, U_lag10, U_lag11, U_lag12 U_lag13, U_lag14, U_lag15, U_lag16, U_lag17
U_lag13, U_lag14, U_lag15, U_lag16, U_lag17
U_lag18, U_lag19, U_lag20, U_lag21, U_lag22
U_lag23, V_lag1, V_lag2, V_lag3, V_lag4
V_lag5, V_lag6, V_lag7, V_lag8, V_lag9
V_lag10, V_lag11, V_lag12, V_lag13, V_lag14
V_lag15, V_lag16, V_lag17, V_lag18, V_lag19
V_lag20, V_lag21, V_lag22, V_lag23, Ox(ppm)_roll_mean_3 Ox(ppm)_roll_std_6, NO(ppm)_roll_mean_3, NO(ppm)_roll_std_6, NO2(ppm)_roll_mean_3, NO2(ppm)_roll_std_6 $U_roll_mean_3, \ U_roll_std_6, \ V_roll_mean_3, \ V_roll_std_6, \ Ox(ppm)_diff_1$ Ox(ppm)_diff_2, Ox(ppm)_diff_3, NO(ppm)_diff_3, NO2(ppm)_diff_3, U_diff_3 V_diff_3, hour_sin, hour_cos, dayofweek, is_weekend Metrics per Forecast Step: $Ox(ppm)_t+01 - R^2$: nan, MAE: 0.0008, RMSE: 0.0008 $Ox(ppm)_t+02 - R^2$: nan, MAE: 0.0023, RMSE: 0.0023 Ox(ppm) t+03 - R²: nan, MAE: 0.0024, RMSE: 0.0024 Ox(ppm)_t+04 - R2: nan, MAE: 0.0014, RMSE: 0.0014 Ox(ppm) t+05 - R2: nan, MAE: 0.0011, RMSE: 0.0011 Ox(ppm)_t+06 - R2: nan, MAE: 0.0044, RMSE: 0.0044 Ox(ppm)_t+07 - R²: nan, MAE: 0.0013, RMSE: 0.0013 Ox(ppm)_t+08 - R²: nan, MAE: 0.0040, RMSE: 0.0040 Ox(ppm)_t+09 - R²: nan, MAE: 0.0045, RMSE: 0.0045 Ox(ppm)_t+10 - R2: nan, MAE: 0.0048, RMSE: 0.0048 Ox(ppm)_t+11 - R2: nan, MAE: 0.0007, RMSE: 0.0007 Ox(ppm)_t+12 - R2: nan, MAE: 0.0099, RMSE: 0.0099 Ox(ppm)_t+13 - R²: nan, MAE: 0.0175, RMSE: 0.0175 Ox(ppm)_t+14 - R2: nan, MAE: 0.0162, RMSE: 0.0162 Ox(ppm)_t+15 - R2: nan, MAE: 0.0165, RMSE: 0.0165 Ox(ppm)_t+16 - R²: nan, MAE: 0.0178, RMSE: 0.0178 $Ox(ppm)_t+17 - R^2$: nan, MAE: 0.0048, RMSE: 0.0048 Ox(ppm)_t+18 - R²: nan, MAE: 0.0031, RMSE: 0.0031 Ox(ppm)_t+19 - R²: nan, MAE: 0.0033, RMSE: 0.0033 Ox(ppm) t+20 - R²: nan, MAE: 0.0018, RMSE: 0.0018 Ox(ppm)_t+21 - R2: nan, MAE: 0.0042, RMSE: 0.0042 Ox(ppm)_t+22 - R2: nan, MAE: 0.0046, RMSE: 0.0046 Ox(ppm)_t+23 - R²: nan, MAE: 0.0195, RMSE: 0.0195 Ox(ppm)_t+24 - R²: nan, MAE: 0.0223, RMSE: 0.0223