MATH 133 Midterm # 1 Review Midterm Exam Date: October 7 - October 9

Some study advice:

- 1. Go through the tutorial questions, and try to re-solve them on your own. Verify with the solutions posted on myCourses, and if you have any doubts visit office hours!
- 2. Don't try to memorize solutions from the in-class problems, homeworks, or tutorials. Work to understand why.
- 3. Draw things out! Geometrically seeing things helps you build intuition, and try to practice drawing by hand as calculators are not permitted on exams.
- 4. To help build intuition, generate examples (and counter-examples) of subspaces, bases, linearly independent and dependent sets, etc. on your own.

0. Preliminaries

- Notation:
 - " \in ": we use this notation to denote that an element is in a set. E.g.: suppose $A = \{1, 2, 3, 4\}$. Then, we write $1 \in A$.
 - " \subseteq ": we use this to say that a set is inside another set. E.g.: Suppose $A = \{1, 2, 3, 4\}$. Then we write $\{1, 2\} \subseteq A$.
- Mathematical terminology:
 - A set is just a collection of items. We do not demand anything else (no need to span, be closed under anything, etc.).
 - Vectors will be denoted by \vec{v} :

$$\vec{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} \in \mathbb{R}^n \text{ and } v_1, v_2, ..., v_n \in \mathbb{R}.$$

1. Linear Systems of Equations

• Suppose I have the system of linear equations:

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1m}x_m = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2m}x_m = b_2$$

$$\vdots$$

$$a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nm}x_m = b_n.$$

- The **matrix of coefficients** for the above system is given by:

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1m} \\ a_{21} & a_{22} & \cdots & a_{2m} \\ \vdots & \ddots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nm} \end{bmatrix}.$$

- The **augmented** matrix for the above system is given by:

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1m} & b_1 \\ a_{21} & a_{22} & \cdots & a_{2m} & b_2 \\ \vdots & \ddots & \ddots & \vdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nm} & b_n \end{bmatrix}$$

1

- When performing **Gaussian elimination** to solve a system of linear equations, we can use the following three elementary row operations on the augmented matrix:
 - 1. Exchanging two rows: $R_i \leftrightarrow R_j$.
 - 2. Multiplying a row by a scalar $k \in \mathbb{R}$: $R_i \to kR_i$.
 - 3. Adding one row to another: $R_i \to R_i + R_j$.

The goal is to bring the augmented matrix to **row echelon form (REF)** or **reduced row echelon form (RREF)**:

- 1. A matrix is in **row echelon form** if:
 - (a) All rows consisting of only zeros are at the bottom.
 - (b) The **leading coefficient** of a non-zero row is strictly to the right of the leading coefficient to the row above it.
- 2. A matrix is in reduced row echelon form if:
 - (a) It's in row echelon form
 - (b) Leading entry in each non-zero row is 1 (called a **leading one**).
 - (c) Each column containing a leading one has zeroes in all other entries.
- A system of linear equations can be either **consistent** or **inconsistent**.
 - Consistent: there is at least one solution (one unique solution or infinitely many solutions).
 I cannot have 2 solutions, 3 solutions, 133 solutions, etc.; only one or infinitely many why?
 - **Inconsistent**: there are no solutions.
- Variables can be either **free** or **leading** variables.
 - Leading variables: variables that correspond to leading ones when in RREF. The other variables are free variables.
 - The **rank** of a coefficient matrix is the number of leading ones when the matrix is in RREF.
- Vector equations of lines. Suppose I have a line given by the following "vector equation":

$$L(t) = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} + t \begin{bmatrix} a_1 \\ a_2 \end{bmatrix}. \tag{1}$$

This line is taking the span of the vector $\begin{bmatrix} a_1 \\ a_2 \end{bmatrix}$, and "shifting" it to the vector $\begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$. In other words, this is a line that goes through the point (b_1, b_2) with slope $\frac{a_2}{a_1}$. Convince yourself that this is true; don't just memorize this!

2. Span and Linear (In)dependence

- Linear Combination: a linear combination of $\vec{v}_1, ..., \vec{v}_n$ is an expression of the form $c_1\vec{v}_1 + ... + c_n\vec{v}_n$ where $c_1, ..., c_n \in \mathbb{R}$.
 - A linear relation between $\vec{v}_1, ..., \vec{v}_n$ is an expression of the form:

$$c_1 \vec{v}_1 + \dots + c_n \vec{v}_n = 0.$$

• The **span** of vectors $\vec{v}_1, ..., \vec{v}_n$, denoted span $(\vec{v}_1, ..., \vec{v}_n)$, is the set of all possible linear combinations of these vectors. Informally, it's the set of all vectors I can "reach" with $\vec{v}_1, ..., \vec{v}_n$. Common mistake: Note that a set, in general, is *not* the same as the span of vectors in the set, i.e.:

$$\{v_1, v_2\} \neq \text{span}(v_1, v_2).$$

• A homogeneous system of linear equations is one where all the constant terms are zero. The augmented matrix looks like:

$$\begin{bmatrix} * & * & \cdots & * & 0 \\ * & * & \cdots & * & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ * & * & \cdots & * & 0 \end{bmatrix}.$$

• Vectors $\vec{v}_1, ..., \vec{v}_n \in \mathbb{R}^n$ are **linearly independent** if and only if the only linear relation between them is the trivial one, i.e.:

$$c_1\vec{v}_1 + c_2\vec{v}_2 + \dots + c_n\vec{v}_n = 0 \iff c_1 = c_2 = \dots = c_n = 0.$$

Otherwise, the vectors are linearly dependent.

- A subspace of \mathbb{R}^n is a non-empty subset $V \subseteq \mathbb{R}^n$ with the following properties:
 - 1. "Closed under addition": For all $\vec{v}, \vec{w} \in V, \vec{v} + \vec{w} \in V$, AND
 - 2. "Closed under scalar multiplication": For all $\vec{v} \in V$ and all $k \in \mathbb{R}$, $k \cdot \vec{v} \in V$.
- Facts about subspaces:
 - Note that (2) implies that $\vec{0} \in V$ if V is a subspace. If you are unsure, check it!
 - The span of vectors $\vec{v}_1,...,\vec{v}_k \in \mathbb{R}^n$ forms a subspace of \mathbb{R}^n . If you are unsure, check it!
 - Say I want to know if a set of vectors $\vec{v}_1, ..., \vec{v}_n$ spans a subspace V. Then I take an arbitrary vector $\vec{v}_0 \in V$, and show that the system of equations $c_1\vec{v}_1 + ... + c_n\vec{v}_n = \vec{v}_0$ is consistent. If you are unsure why this works, check it!
- The vectors $\vec{v}_1, ..., \vec{v}_k \in V$ are said to be a **basis** of V if they:
 - 1. Span V AND
 - 2. are linearly independent.

In other words, a basis for V is the most efficient way to span all of V.

- The **dimension** of the set V is the number of vectors in a basis of V.
- I need at least N vectors to span an N-dimensional space V. Common mistake: A common mistake in tutorials I've seen is students understanding why the vectors

$$\vec{v}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \vec{v}_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix},$$

cannot span all of \mathbb{R}^3 , but incorrectly thinking that if I had some non-zero entry in the 3rd row, i.e,:

$$\vec{v}_1 = \begin{bmatrix} 1\\0\\c_1 \end{bmatrix}, \vec{v}_2 = \begin{bmatrix} 0\\1\\c_2 \end{bmatrix}, c_1, c_2 \neq 0.$$

then I can span all of \mathbb{R}^3 since the z-component is non-zero. This is totally false, since I am not given complete freedom with my c_1, c_2 since they must change with the other two components of the vector, which will still constrain me to a plane.

– The standard basis vectors of \mathbb{R}^n are written as $\vec{e_i}$ where i = 1, 2, ..., n. They are the vectors of zeroes with a 1 in the ith row:

$$\mathbb{R}^2: \ \vec{e}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \ \vec{e}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
$$\mathbb{R}^3: \vec{e}_1 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \ \vec{e}_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \ \vec{e}_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

3. Linear Transformations

- An $m \times n$ matrix is a matrix with m rows and n columns.
- There are two ways to view matrix multiplication: the **column view** and the **row view**.
 - 1. Column View: the product of a matrix and a vector is a linear combination of the columns of the matrix. Let $\vec{c_i}$ denote the ith column of the matrix A.

$$A \cdot \vec{x} = \begin{bmatrix} \vec{c}_1 & \vec{c}_2 & \dots & \vec{c}_n \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \vec{c}_1 \cdot x_1 + \vec{c}_2 \cdot x_2 + \dots + \vec{c}_n \cdot x_n.$$
 (2)

- 2. **Row view**: the product of a matrix and a vector is the dot product of the rows with the vector.
 - **Dot product**: takes as input two vectors \vec{v}_1 and \vec{v}_2 and gives us as an output a scalar $\vec{v}_1 \cdot \vec{v}_2 \in \mathbb{R}$:

$$\vec{v}_1 \cdot \vec{v}_2 = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix} \cdot \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} := u_1 v_1 + u_2 v_2 + \dots + u_n v_n.$$

So the row view is given by:

$$A\vec{x} = \begin{bmatrix} \vec{r}_1 \\ \vec{r}_2 \\ \vdots \\ \vec{r}_n \end{bmatrix} \vec{x} = \begin{bmatrix} \vec{r}_1 \cdot \vec{x} \\ \vec{r}_2 \cdot \vec{x} \\ \vdots \\ \vec{r}_n \cdot \vec{x} \end{bmatrix}$$

- Linear Transformation: $T: \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation if:
 - 1. "T preserves vector addition": for every $\vec{x}, \vec{y} \in \mathbb{R}^n$, $T(\vec{x} + \vec{y}) = T(\vec{x}) + T(\vec{y})$.
 - 2. "T preserves scalar multiplication": for every $\vec{x} \in \mathbb{R}^n$, $c \in \mathbb{R}$, $T(c\vec{x}) = cT(\vec{x})$.

 $T:\mathbb{R}^n\to\mathbb{R}^m$ is a linear transformation is equivalent to T being induced by an $m\times n$ matrix A.