Projet robotique

Titre du projet : robot kuka KR 6 R700-2

Encadré par : Ms Houssein LAMINE

Elaboré par : salsabil khadraoui

Niveau d'étude : M1 TAGE

FICHE TECHNIQUE DU ROBOT

KR 6 R700-2

Technical data

Maximum reach	726 mm
Maximum payload	6.8 kg
Pose repeatability (ISO 9283)	± 0.02 mm
Number of axes	6
Mounting position	Floor, Ceiling; Wall; Desired angle
Footprint	208 mm x 208 mm
Weight	approx. 53 kg

Axis data

Motion range	
A1	±170 °
A2	-190 / 45 °
A3	-12° / 156 °
A4	±185 *
A5	±120 °
A6	±350 °

Operating conditions

Ambient temperature during opera-	0 °C to 45 °C (273 K to 318 K)
tion	

Protection rating

Protection rating (IEC 60529)	IP65 / IP67
Protection rating, robot wrist (IEC	IP65 / IP67

Controller

Controller	KR C5 micro;
	KR C4 smallsize-2;
	KR C4 compact

Certificates

ESD	requirements	IEC61340-5-1; ANSI/ESD	S20.20

Cycle time

Workspace graphic

Payload diagram

The KR 6 R700-2 is designed for a rated payload of 6 kg in order to optimize the dynamic performance of the robot. With reduced load center distances and favorable supplementary loads, a maximum payload of up to 6.8 kg can be mounted. The specific KUKA Load case must be verified using KUKA. For further consultation, please contact KUKA Service.

Mounting flange

Details provided about the properties and usability of the products are purely for information purposes and do not constitute a guarantee of these characteristics. The extent of goods delivered and services performed is determined by the subject matter of the specific contract. No liability accepted for errors or omissions.

0000-290-000 / 1/19.1 / 07.03.2024 / en

KUKA Deutschland GmbH Zugspitzstrasse 140, 88165 Augsburg, Germany. Tel.: +49 821 797-4000, www.kuka.com

1) Table_DH:

i	hetai	di	ai	αi
1	θ 1	400	0	$\pi/2$
2	θ 2	0	360	0
3	θ 3	365	25	$\pi/2$
4	θ 4	0	0	$-\pi/2$
5	θ 5	0	0	$\pi/2$
6	θ 6	90	0	0

2) La matrice homogène associée au tableau :

```
T =[ cos(thetai), -sin(thetai)*cos(alphai), sin(thetai)*sin(alphai), ai*cos(thetai);
sin(thetai), cos(thetai)*cos(alphai), -cos(thetai)*sin(alphai), ai*sin(thetai);
0 , sin(alphai) , cos(alphai) , di;
0 , 0 , 0 , 1];
```

3) Code Matlab du modèle geomtrique du robot avec animation :

```
syms thetai alphai ai di
T =[ cos(thetai), -sin(thetai)*cos(alphai), sin(thetai)*sin(alphai),
ai*cos(thetai);
sin(thetai), cos(thetai)*cos(alphai) , -cos(thetai)*sin(alphai), ai*sin(thetai);
0 , sin(alphai) , cos(alphai) , di ;
0,0,0,1];
00=[0;0;0];
figure(1)
syms q1 a
thetai=q1;di=a;ai=0;alphai=pi/2;
T01=subs(T);
syms q2 b
thetai=q2;di=0;ai=b;alphai=0;
T12=subs(T);
T02=T01*T12;T02=simplify(T02);
syms q3 c d
thetai=q3;di=c;ai=d;alphai=pi/2;
T23=subs(T);
T03=T02*T23;T03=simplify(T03);
syms q4
thetai=q4;di=0;ai=0;alphai=-pi/2;
T34=subs(T);
T04=T03*T34;T04=simplify(T04);
syms q5
thetai=q5;di=0;ai=0;alphai=pi/2;
T45=subs(T);
T05=T04*T45;T05=simplify(T05);
syms q6 e
thetai=q6;di=e;ai=0;alphai=0;
T56=subs(T);
T06=T05*T56;T06=simplify(T06);
q1_range = deg2rad(0:2:45);
```

```
q2\_range = deg2rad(0:2:90);
q3_range = deg2rad(-45:2:45);
q4\_range = deg2rad(0:2:45);
q5_range = deg2rad(-60:2:60);
q6\_range = deg2rad(0:2:90);
for i = 1:max([length(q1_range), length(q2_range), length(q3_range),
length(q4_range), length(q5_range), length(q6_range)])
    q1 = q1_range(min(i, length(q1_range)));
    q2 = q2_range(min(i, length(q2_range)));
    q3 = q3_range(min(i, length(q3_range)));
    q4 = q4_range(min(i, length(q4_range)));
    q5 = q5_range(min(i, length(q5_range)));
    q6 = q6_range(min(i, length(q6_range)));
    a = 400;
    T01num=double(subs(T01));
    01=T01num(1:3,4);
    b=360;
    T02num=double(subs(T02));
    02=T02num(1:3,4);
    c=365;d=25;
    T03num=double(subs(T03));
    03=T03num(1:3,4);
    T04num=double(subs(T04));
    04=T04num(1:3,4);
    T05num=double(subs(T05));
    05=T05num(1:3,4);
    e = 90;
    T06num=double(subs(T06));
    O6=T06num(1:3,4);
plot3(00(1),00(2),00(3),'o');
hold on
plot3(01(1),01(2),01(3),'o');
plot3(02(1),02(2),02(3),'o');
plot3(03(1),03(2),03(3),'o');
plot3(04(1),04(2),04(3),'o');
plot3(05(1),05(2),05(3),'o');
plot3(06(1),06(2),06(3),'o');
plot3([00(1),01(1),02(1),03(1),04(1),05(1),06(1)],[00(2),01(2),02(2),03(2),04(2),0
5(2),06(2)],[00(3),01(3),02(3),03(3),04(3),05(3),06(3)], LineWidth=2);
xlim([-1000 1000]);
ylim([-1000 1000]);
zlim([0 1500]);
xlabel('X');
ylabel('Y');
zlabel('Z');
pause(0.1)
view(3);
hold off;
end
nop=1;
```