Ensembles définis inductivement, récursivité

Soit A un ensemble (fini). Un mot sur A est une suite finie d'élément de A. On définit l'opération de concaténation sur les mots de A comme étant u.v est la suite u suivie de la suite v. On note ϵ la suite vide (le mot sans lettre). On note A^* l'ensemble des mots sur A.

Exercice 1 Palindromes

Soit V un ensemble. Donner une définition inductive des palindromes sur V.

 $Correction: \epsilon$ est un palindrome.

Si $x \in V$ alors x est un palindrome.

Si u est un palindrome et $x \in V$, xux est un palindrome

Exercice 2

Soit $V = \{a, b, c\}$. Donner une définition inductive de l'ensemble X des mots non vides sur V tels que deux lettres consécutives soient distinctes.

Correction : $\{a,b,c\} \subset X$

Si $xu \in X$, et x' = x alors $x'xu \in X$

Exercice 3

On définit inductivement l'ensemble $X \subset \{a,b\}^*$ de la façon suivante : $\epsilon \in X$; si $u \in X$ alors $a.u.b \in X$.

Montrer que $X = \{a^n b^n \mid n \in \mathbb{N}\}.$

Par convention $a^0 = \epsilon$

Correction: Correction:

- $X \subset \{a^nb^n \mid n \in \mathbb{N}\}$: Par induction sur la définition de X.
 - $-\epsilon \in \{a^nb^n \mid n \in \mathbb{N}\}$: trivial.
 - Si $u \in Xetu \in \{a^nb^n \mid n \in \mathbb{N}\}$, on montre que $a.u.b \in \{a^nb^n \mid n \in \mathbb{N}\}$. Puisque $u \in \{a^nb^n \mid n \in \mathbb{N}\}$ alors il existe n_0 t.q. $u = a^{n_0}b^{n_0}$ et donc $a.u.b = a^{n_0+1}b^{n_0+1} \in \{a^nb^n \mid n \in \mathbb{N}\}$.
- $\{a^nb^n \mid n \in \mathbb{N}\} \subset X$: par induction sur n.
 - $-a^0b^0 = \epsilon \in X$
 - Si $a^nb^n \in X$ alors $a^{n+1}b^{n+1} = a.a^n.b^n.b \in X$

Exercice 4

Soit $V = \{a, x\}$. On définit X le sous-ensemble de V^* formé des mots contenant une seule fois le symbole x.

- 1) Donner une définition inductive de X.
- 2) Soit A le sous-ensemble de X définit par $xa \in A$; et si $m \in A$ alors $ama \in A$. Montrer que si $m \in A$ alors m contient un nombre impaire de a.

Correction:

- $x \in X$
- Si $u \in X$ alors $ua \in X$
- Si $u \in X$ alors $au \in X$

Par récurrence sur n.

Exercice 5

On considère le sous-ensemble D de $\mathbb{N} \times \mathbb{N}$ défini inductivement par : $(n,0) \in D$; si $(n,n') \in D$ alors $(n,n+n') \in D$.

1) Donner quelques éléments de D.

2) Montrer que pour deux entiers n et n', $(n, n') \in D$ si et seulement s'il existe $k \in \mathbb{N}$, tel que n' = kn.

Correction:

Par double inclusion.

• $D \subset \{(n,kn)|(n,k) \in \mathbb{N}^2\} = F$: Par induction sur D. $(n,0) \in F$: trivial.

 $\operatorname{Si}(n,m) \in D \text{ et } (n,m) \in F \text{ , on a donc } m = kn \text{ pour un certain } k \text{ et donc } (n,n+m) = (n,n+kn) = (n,(k+1)n) \in F \text{ and } k \text{ et donc } (n,n+m) = (n,n+kn) = (n,(k+1)n) \in F \text{ and } k \text{ et donc } (n,n+m) = (n,n+kn) = (n,(k+1)n) \in F \text{ et donc } (n,n+m) = (n,(k+1)n) \in F \text{ et donc } (n,(k+1)n) = (n,(k+1)n) \in F \text{ et donc }$

• $F \subset D$ Soit $n \in \mathbb{N}$, on montre par récurrence sur k $P_n(k) = def$ "alors $(n, kn) \in D$ ". k = 0: trivial

Si $(n, kn) \in D$ alors $(n, (k+1)n) = (n, n+kn) \in D$.

Exercice 6

On considère l'ensemble $X\subset \mathbb{N}^2$ définit inductivement par l'élément de base (0,0) et par les règles d'inférence suivantes :

$$\frac{(a,b)}{(a+1,b+1)} I_1 \qquad \qquad \frac{(a,b)}{(a+1,b)} I_2$$

- 1) Donner quelques éléments de X.
- 2) Pour chaque élément suivant dire s'il appartient à X ou non. Si oui , donnez l'arbre de construction, sinon justifiez.
 - a) (3,3)
 - b) (2,5)
 - c) (4,2)
- 3) Donner une définition non inductive des éléments de X.

Correction:

- 1) (0,0), (1,0), (1,1), (2,0), (2,1)
- 2) Oui, Non, Oui
- 3) C'est l'ensemble des couple $(x, y) \in \mathbb{N}^2$ tels que $x \ge y$.

Preuve:

D'une part, on montre que tous les couples (x, y) tels que $x \ge y$ sont des théorèmes. On applique la deuxième règle x - y fois et la première ensuite y fois.

D'autre part, on montre que tous les théorème sont des couples $(x,y) \in \mathbb{N}^2$ tels que $x \geq y$. Par induction sur la déduction :

- (a) C'est vrai pour l'axiome.
- (b) Si $x \ge y$ alors $x + 1 \ge y + 1$.
- (c) Si $x \ge y$ alors $x + 1 \ge y$.

Exercice 7

On considère l'ensemble $X\subset\mathbb{N}^3$ définit inductivement par l'élément de base (0,0,0) et par les règles d'inférence suivantes :

$$\frac{(a,b,c)}{(a+1,b+1,c)} I_1 \qquad \qquad \frac{(a,b,c)}{(a+1,b,c+1)} I_2$$

- 1) Donner quelques éléments de X.
- 2) Pour chaque élément suivant dire s'il appartient à X ou non. Si oui , donnez l'arbre de construction, sinon justifiez.
 - a) (2,1,1)
 - b) (3,2,2)
 - c) (5,2,3)

3) Donner une définition non inductive des éléments de X.

Correction:

- 1) (0,0,0), (1,0,1), (1,1,0), (2,2,0), (2,1,1)
- 2) Oui, Non, Oui
- 3) C'est l'ensemble des couple $(x, y, z) \in \mathbb{N}^2$ tels que x = y + z.

Preuve:

D'une part, on montre que tous les couples (x, y, z) tels que x = y + z sont des théorèmes. On applique la deuxième règle z fois et la première ensuite y fois.

D'autre part, on montre que tous les théorème sont des couples $(x,y,z)\in\mathbb{N}^2$ tels que x=y+z. Par induction sur la déduction :

- (a) C'est vrai pour l'élément de base.
- (b) Si x = y + z alors x + 1 = y + 1 + z.
- (c) Si x = y + z alors x + 1 = y + z + 1.

Exercice 8

Montrer que toute fonction totale f de $\mathbb N$ dans $\mathbb N$ décroissance est récursive.

Exercice 9

Indiquer en justifiant brièvement votre réponse quelles sont, parmi les fonctions suivantes, celles qui sont récursives et celles qui ne le sont pas :

- 1) f(n) =le nombre de programmes de moins de n symboles
- 2) f(n) = 0 s'il y a une infinité de programme P tel que P(0) = n, f(n) = 1 sinon.
- 3) f(n) = n-ième chiffre dans le développement décimal de π
- 4) f(l) = 1 pour tout $l \in \mathbb{N}$ s'il existe $n, m, p \in \mathbb{N} \setminus \{0\}$ et $q \in \mathbb{N} \setminus \{0, 1, 2\}$ tels que $m^q + n^q = p^q$. f(l) = 0 pour tout $l \in \mathbb{N}$ sinon.
- 5) f(n) = 1 si $P_n(k) \neq 0$ pour tout $k \in \mathbb{N}$. f(n) = 0 sinon.