Sprawozdanie – Laboratorium nr 5

Wyznaczanie wartości własnych macierzy symetrycznej metodą potęgową z redukcją Hotellinga

Tomasz Rajchel 2019/03/28

Wstęp teoretyczny

Metoda potegowa

Metoda potęgowa znajdowania wartości i wektorów własncyh macierzy może być stosowana dla macierzy o elementach rzeczywistych.

Załóżmy że istnieje n liniowo niezależnych wektorów własnych macierzy \mathbf{A} , stanowią bazę przestrzeni liniowej:

$$X_1, X_2, X_3, \ldots, X_n$$

Wówczas dla dowolnego wektora vo

$$v_0 = \sum_{i=1}^n a_i x_i$$

Jeśli λ_i stanowią wartości własne macierzy

$$A v_o = \sum_{i=1}^n a_i \lambda_i x_i$$

$$v_m = A^m v_o = \sum_{i=1}^n a_i \lambda_i^m x_i$$

Zakładamy, że wartości własne tworzą ciąg

$$|\lambda_1| \ge |\lambda_2| \ge |\lambda_3| \ge \dots |\lambda_n|$$

Jeśli λ_i jest dominującą wartościa własną oraz wektor v_0 ma składową w kierunku x_1 to wówczas zachodzi

$$\lim_{m\to\infty}\frac{A^m v_0}{\lambda_1^m}=a_1 x_1$$

Z czego można wysnuć wniosek, że wartość własną można obliczyć następująco

$$\lim_{m\to\infty} \frac{y^T v_{m+1}}{y^T v_m}$$

Dla dowolnego wektora y nieortogonalnego do x_1 . Zazwyczaj y ma 1 na pozycji elementu o największym module w v_{m+1} a na pozostałych 0.

Korzystając ze wzoru:

$$v_m = \lambda_1^m \left[a_1 x_1 + \sum_{i=1}^n \left(\frac{\lambda_i}{\lambda_1} \right)^m a_i x_i \right]$$

Widzimy, że zbieżność zależy od $(\lambda_i/\lambda_1)^m$ jak również od współczynników a_1 czyli od wyboru v_0 . Jeżeli wartość własna o największym module jest zespolona to ciąg nie jest zbieżny.

Wyznaczyliśmy tylko wartość własną o największym module, możemy ją wykorzystać do wyznaczenia kolejnej największej co do modułu wartości własnej tj. λ₂ stosująć redukcję

Redukcja Hottelinga

Za wektor v przyjmujemy lewy wektor własny przynależny do wartości własnej λ_1 . Ale na ogół nie znamy lewych wektorów.

Metoda jest więc skutecza tylko w przypadku macierzy symetrycznych, wtedy lewe wektory są identyczne z prawymi.

$$\mathbf{v} = \mathbf{x}_1$$

$$\mathbf{W}_1 = \mathbf{A} - \lambda_1 \mathbf{x}_1 \mathbf{x}_1^{\mathrm{T}}$$

lub rekurencyjnie

$$W_0 = A$$

$$W_i = W_{i-1} - \lambda_{1-1} x_{i-1} x_{i-1}^T$$

$$i = 1, 2, \dots, n-1$$

Opis zadania

Celem zadania jest wyznaczenie wartośći własnych symetrycznej macierzy \mathbf{A} o wymiarze n = 7, zdefiniowanej następująco:

$$A_{ii} = \sqrt{i+j}$$

Zrobimy to na dwa sposoby. Najpierw metodą bezpośrednią, a potem iteracyjną. W obu przypadkach będziemy korzystać z biblioteki "Numerical Recipes...

Metoda Bezpośrednia

- 1. Inicjalizujemy macierz \mathbf{A} o rozmiarze $\mathbf{n} = 7$.
- 2. Dokonujemy redukcji macierzy **A** do macierzy trójdiagonalnej **T** przy użyciu procedury: tred2(A, n, d, e);

gdzie: A - macierz którą diagonalizujemy, d i e to wektory n-elementowe w których zapisane są składowe diagonali i poddiagonali macierzy wynikowej (trójdiagonalnej).

Macierz A przekształciliśmy do postaci iloczynu:

$$T = P^{-1}AP$$

3. Wyznaczamy wartości własne macierzy **T** (identyczne jak macierzy pierwotnej **A**) używając procedury:

tqli(d, e, n, Z);

gdzie: d i e to wektory otrzymane z procedury tred2(), a Z jest macierzą n × n, w której (w kolumnach) mogą być zapisane wektory własne macierzy T.

Metoda iteracyjna

Będziemy korzystać z metody potęgowej. Algorytm wyznaczania wartości własnych macierzy metodą potęgową jest następujący:

- Ustalamy numer poszukiwanej wartości własnej k = 1, 2, ..., n.
- Przed rozpoczęciem procesu iteracyjnego, dla danego k, deklarujemy wektor startowy, np.: $x_0 = [1, 1, 1, 1, 1, 1, 1]$,
- Dla ustalonego k, w każdej iteracji obliczamy kolejno:

$$x_{i+1} = W_k x_i$$

$$\lambda_i = \frac{x_{i+1}^T \cdot x_i}{x_i^T \cdot x_i}$$

$$x_{i+1} = \frac{x_{i+1}}{\|x_{i+1}\|_2}$$

$$x_i = x_{i+1}$$

Wykonujemy 8 iteracji.

Po zakończeniu procesu iteracyjnego, przeprowadzamy redukcję macierzy:

$$W_{k+1} = W_k - \lambda_k x_k x_k^T$$

Macierz W_{k+1} używamy do znalezienia kolejnej wartości własnej λ_{k+1} . Zakładamy oczywiście, że

$$W_1 = A$$

Wyniki

Macierz A (do dwóch miejsc po przecinku):

$$A = \begin{bmatrix} 1.41 & 1.73 & 2.00 & 2.24 & 2.45 & 2.65 & 2.83 \\ 1.73 & 2.00 & 2.24 & 2.45 & 2.65 & 2.83 & 3.00 \\ 2.00 & 2.24 & 2.45 & 2.65 & 2.83 & 3.00 & 3.16 \\ 2.24 & 2.45 & 2.65 & 2.83 & 3.00 & 3.16 & 3.32 \\ 2.45 & 2.65 & 2.83 & 3.00 & 3.16 & 3.32 & 3.46 \\ 2.65 & 2.83 & 3.00 & 3.16 & 3.32 & 3.46 & 3.61 \\ 2.83 & 3.00 & 3.16 & 3.32 & 3.46 & 3.61 & 3.74 \end{bmatrix}$$

Wartości własne:

Wartość własna	Metoda bezpośrednia	Metoda iteracyjna
λ_1	19.7862	19.7862
λ_2	-0.712341	-0.712341
λ_3	-0.0133178	-0.0133172
λ_4	-0.00033598	-0.000335581
λ_5	-7.10793e-06	-6.55765e-06
λ_6	4.43579e-07	8.71798e-07
λ_7	-4.02198e-07	-5.77264e-08

Zakładając, że wartośc własne wyznaczone metodą bezpośrednią są bardziej dokładne możemy prześledzić dokładność metody iteracyjnej w kolejnych iteracjach. Błędem bezwzględnym określamy różnicę między wartością wyznaczoną iteracyjnie a bezpośrednio.

Widzimy, że już po kilku iteracjach algorytm jest zbieżny, ogranicza nas jedynie precyzja zapisu liczb.

Gdy nie normujemy wektora x podczas wykonywania algorytmu ,tzn nie uwzględniamy poniższej linijki:

$$x_{i+1} = \frac{x_{i+1}}{\|x_{i+1}\|_2}$$

To wyznaczamy poprawnie tylko pierwszą wartość własną λ_1 .

Wnioski

Dla danego problemu metoda potęgowa działa bardzo szybko, dawała dobre wyniki już w kilku iteracjach. Ponadto jest prosta w implementacji. Należy jednak pamiętać, że istnieją przypadki w których nie jest ona zbieżna.