Clase # 10 de Análisis 3

Equipo clases a LATEX

20 de noviembre de 2020

Índice

1.	Teorema	1
2.	Teorema	1
3.	Teorema	2
4.	Teorema	2
5 .	Teorema	2
6.	Teorema	2

1. Teorema

Sea $\vec{f}: S \subset \mathbb{R}^n \to \mathbb{R}$, S abierto un campo vectorial continuamente diferenciable y supongamos que el jacobiano $J(\vec{x}_0) = \det[D\vec{f}(\vec{x}_0)] \neq 0$ en un punto $\vec{x}_0 \in S$. Entonces existe un entorno $\mathcal{B}_r(\vec{x}_0)$ en el que \vec{f} es uno a uno.

2. Teorema

Sea $\vec{f} = (f_1, f_2, ..., f_n)$ tal que $f_i = S \subset \mathbb{R}^n \to \mathbb{R}, S$ abierto, f_i con derivadas parciales continuas en S. Sea $T = \vec{f}(S)$ y supongamos que el jacobiano de \vec{f} evaluado en $\vec{x}_0 \in S$ no se anula $J(\vec{x}_0) \neq 0$ Entonces existen: una función \vec{g} determinada de forma única y dos conjuntos abiertos $H \subset S$ y $V \subset F$ tales que:

- 1. $\vec{x}_0 \in H, \ \vec{f}(\vec{x}_0) \in V$
- 2. V = f(H)
- 3. \vec{f} es uno a uno en H
- 4. \vec{g} está definida en V, g(V) = H y, además, $\vec{g}(\vec{f}(\vec{x}_0)) = \vec{x}, \quad \forall \vec{x} \in H$
- 5. \vec{g} es continuamente diferenciable en V

3. Teorema

Sean K una esfera abierta en \mathbb{R}^n con centro en \vec{x}_0 y \overline{K} su correspondiente esfera cerrada. Sea $\vec{f} = (f_1, ..., f_n)$ una función vectorial $\vec{f} : K : \mathbb{R}^n \to \mathbb{R}^n$ y supongamos que $D_j f_i(\vec{x})$ existen si $\vec{x} \in K$. Supongamos también que \vec{f} es uno a uno en \overline{K} y que el jacobiano $J_{\vec{f}}(\vec{x}_0) \neq 0$ en K. Entonces f(K) contiene un entorno del punto $\vec{f}(\vec{x}_0)$.

4. Teorema

Sea \vec{f} una función vectorial continua en un entorno conjunto compacto S de \mathbb{R}^m y supongamos $\vec{f}(S) \subset \mathbb{R}^n$. Supongamos, además que \vec{f} es uno a uno en S. En estas condiciones, f^{-1} es contínua en $\vec{f}(S)$.

5. Teorema

Sea \vec{f} una función continua en un conjunto compacto S de \mathbb{R}^m y supongamos que $\vec{f}(S) \subset \mathbb{R}^k$. Entonces $\vec{f}(S)$ es un conjunto compacto .

6. Teorema

Sea $\vec{f} = (f_1, ..., f_n)$ una función vectorial definida en un conjunto abierto S de \mathbb{R}^{n+k} cuyos valores pertenecen a \mathbb{R}^n . $(\vec{f}: S \subseteq \mathbb{R}^{n+k} \to \mathbb{R}^n)$.

Supongamos que \vec{f} es continuamente diferenciable en S. Sea $(\vec{x}_0, \vec{t}_0) \in S$ tal que $\vec{f}(\vec{x}_0, \vec{t}_0) = 0$. Supongamos que $det[D_j f_i(\vec{x}_0, \vec{t}_0)] \neq 0$. Entonces existe un entorno k-dimencional T_{\bullet} de \vec{t}_0 y una y solo una función vectorial $\vec{g}: T_{\bullet} \subset \mathbb{R}^k \mathbb{R}^n$, tal que

- 1. \vec{g} es continuamente diferenciable en T_{\bullet}
- 2. $\vec{g}(\vec{t}_0) = \vec{x}_0$
- 3. $\vec{f}(\vec{g}(\vec{t}_0), \vec{t}) = 0, \forall \vec{t} \in T_{\bullet}$