

LOW NOISE DUAL OPERATIONAL AMPLIFIER

■ LOW VOLTAGE NOISE: 4.5nV/√Hz ■ HIGH GAIN BANDWIDTH PRODUCT:

15MHz

■ HIGH SLEW RATE: **7V/µs**■ LOW DISTORTION: 0.002%

■ EXCELLENT FREQUENCY STABILITY

■ ESD PROTECTION 2kV

DESCRIPTION

The LM833 is a monolithic dual operational amplifier particularly well suited for audio applications. It offers low voltage noise (4.5nV/ $\sqrt{\text{Hz}}$) and high frequency performances (15MHz Gain Bandwidth product, $7V/\mu s$ slew rate).

In addition the LM833 has also a very low distortion (0.002%) and excellent phase/gain margins.

ORDER CODE

Part Number	Temperature	Package		
Fait Nullibei	Range	N D		
LM833	-40°C, +105°C	•	•	

N = Dual in Line Package (DIP)
D = Small Outline Package (SO) - also available in Tape & Reel (DT)

PIN CONNECTIONS (top view)

November 2001 1/7

SCHEMATIC DIAGRAM (1/2 LM833)

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	
V _{CC}	Supply Voltage	±18 or +36	V
V_{id}	Differential Input Voltage - note 1)	±30	V
V _i	Input Voltage - see note 1	±15	V
	Output Short Circuit Duration	Infinite	S
T _{oper}	Operating Free-Air Temperature Range	-40 to 105	°C
T _j	Junction Temperature	+150	°C
T _{stg}	Storage Temperature	-65 to +150	°C
Ptot	Maximum Power Dissipation - note ²⁾	500	mW

Either or both input voltages must not exceed the magnitude of Vcc⁺ or Vcc⁻.

OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
V_{CC}	Supply Voltage	±2.5 to ±15	V

2/7

^{2.} Power dissipation must be considered to ensure maximum junction temperature (Tj) is not exceeded.

ELECTRICAL CHARACTERISTICS

 V_{CC}^+ = +15V, V_{CC}^- = -15V, T_{amb} = 25°C (unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Unit
V _{io}	Input Offset Voltage ($R_s = 10\Omega$, $V_0 = 0V$, $V_{ic} = 0V$)		0.3	5	mV
DV _{io}	Input Offset Voltage Drift $R_s = 10\Omega$, $V_o = 0V$, $T_{min} \le T_{amb} \le T_{max}$.		2		μV/°C
I _{io}	Input Offset Current (V _o = 0V, V _{ic} = 0V)		25	200	nA
I _{ib}	Input Bias Current ($V_0 = 0V, V_{ic} = 0V$)		300	1000	nA
V _{icm}	Input Common Mode Voltage Range	±12	±14		V
A _{vd}	Large Signal Voltage Gain ($R_L = 2k\Omega$, $V_0 = \pm 10V$)	90	100		dB
±V _{opp}	Output Voltage Swing (V $_{id}$ = ±1V) $R_{L} = 2.0k\Omega$ $R_{L} = 2.0k\Omega$ $R_{L} = 10k\Omega$ $R_{L} = 10k\Omega$	10 12	13.7 -14 13.9 -14.4	-10 -12	V
CMR	Common-mode Rejection Ratio (V _{ic} = ±13V)	80	100		dB
SVR	Supply Voltage Rejection Ratio $(V_{CC}^+ / V_{CC}^- = +15V / -15V \text{ to } +5V / -5V)$	80	105		dB
I _{CC}	Supply Current (V _o = 0V, All amplifiers)		4	8	mA
SR	Slew Rate ($V_i = -10V$ to +10V, $R_L = 2k\Omega$, $A_V = +1$)	5	7		V/µs
GBP	Gain Bandwidth Product ($R_L = 2k\Omega$, $C_L = 100pF$, $f = 100kHz$)	10	15		MHz
В	Unity Gain Bandwidth (Open loop)		9		MHz
φm	Phase Margin ($R_L = 2k\Omega$)		60		Degrees
e _n	Equivalent Input Noise Voltage ($R_S = 100\Omega$, $f = 1kHz$)		4.5		$\frac{\text{nV}}{\sqrt{\text{Hz}}}$
i _n	Equivalent Input Noise Current (f = 1kHz)		0.5		<u>pA</u> √Hz
THD	Total Harmonic Distortion ($R_L = 2k\Omega$, $f = 20Hz$ to $20kHz$, $V_o = 3V_{rms}$, $A_V = +1$)		0.002		%
V _{O1} /V _{O2}	Channel Separation (f = 20Hz to 20kHz)		120		dB
FPB	Full Power Bandwidth ($V_0 = 27V_{pp}$, $R_L = 2k\Omega$, THD $\leq 1\%$)		120		kHz

TOTAL SUPPLY CURRENT vs SUPPLY VOLTAGE

OUTPUT SHORT CIRCUIT CURRENT vs OUTPUT VOLTAGE

OUTPUT VOLTAGE vs SUPPLY VOLTAGE

OUTPUT VOLTAGE vs SUPPLY VOLTAGE

EQUIVALENT INPUT NOISE VOLTAGE vs FREQUENCY

THD + NOISE vs FREQUENCY

4/7

VOLTAGE GAIN AND PHASE vs FREQUENCY

THD + NOISE vs Vout

PACKAGE MECHANICAL DATA

8 PINS - PLASTIC DIP

Dimensions -	Millimeters			Inches			
	Min.	Тур.	Max.	Min.	Тур.	Max.	
Α		3.32			0.131		
a1	0.51			0.020			
В	1.15		1.65	0.045		0.065	
b	0.356		0.55	0.014		0.022	
b1	0.204		0.304	0.008		0.012	
D			10.92			0.430	
Е	7.95		9.75	0.313		0.384	
е		2.54			0.100		
e3		7.62			0.300		
e4		7.62			0.300		
F			6.6			0260	
i			5.08			0.200	
L	3.18		3.81	0.125		0.150	
Z			1.52			0.060	

6/7

PACKAGE MECHANICAL DATA

8 PINS - PLASTIC MICROPACKAGE (SO)

Dimensions -	Millimeters			Inches			
	Min.	Тур.	Max.	Min.	Тур.	Max.	
А			1.75			0.069	
a1	0.1		0.25	0.004		0.010	
a2			1.65			0.065	
a3	0.65		0.85	0.026		0.033	
b	0.35		0.48	0.014		0.019	
b1	0.19		0.25	0.007		0.010	
С	0.25		0.5	0.010		0.020	
c1			45°	(typ.)			
D	4.8		5.0	0.189		0.197	
E	5.8		6.2	0.228		0.244	
е		1.27			0.050		
e3		3.81			0.150		
F	3.8		4.0	0.150		0.157	
L	0.4		1.27	0.016		0.050	
М			0.6			0.024	
S	8° (max.)						

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

© The ST logo is a registered trademark of STMicroelectronics

© 2001 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States © http://www.st.com

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.