Algebra: Chapter 0 Exercises Chapter 2, Section 1

David Melendez

May 5, 2017

Problem 1.3. Prove that $(gh)^{-1} = h^{-1}g^{-1}$ for all elements g, h of a group G.

Proof. We have (by associativity) that $(gh)(g^{-1}h^{-1}) = e$. But $(gh)(gh)^{-1} = e$, so by cancellation $(gh)^{-1} = h^{-1}g^{-1}$.

Problem 1.4. Suppose that $g^2 = e$ for all elements g of a group G; prove that G is commutative.

Proof.
$$gh = ghe = gh(hg)^2 = ghhghg = gghg = hg$$

Problem 1.5. Prove that ever row and every column of the 'multiplication table' of a group contains all elements of the group exactly once.

Solution. That every row of a group G's multiplication table is 'sudoku complete' (if you will) is equivalent to the following:

Proposition. For every $g, h \in G$ $g \neq h$, there exists a unique $x \in G$ such that gx = h.

Proof. Putting $x = g^{-1}h$, we have $gx = gg^{-1}h = h$. If any y satisfies this property, we have

$$gx = h = gy \implies gx = gy$$

 $\implies g^{-1}x = g^{-1}y$
 $\implies x = y$

The proof for columns is entirely analogous.

Problem 1.6. Prove that there is only *one* possible multiplication table for G if G has exactly 1, 2, or 3 elements. Analyze the possible multiplication tables for groups with exactly 4 elements, and show that there are two distinct tables, up to reordering the elements of G. Solution.

- 1. The proof for |G| = 1 is trivial.
- 2. For |G| = 2 and $e, a \in G$, we have ee = e, ea = a, and ae = e. Since each element of a group must have an inverse, we must also have $a = a^{-1}$ (since $e \neq a^{-1}$), so $a^2 = e$.
- 3. For |G| = 3, consider the table:

•	e	a	b
е	е	a	b
a	a	?	?
b	b	?	?

We can complete the table like a sudoku puzzle using problem 1.5. Since ea = a, we cannot have $a^2 = a$. Since eb = b, we can't have $a^2 = e$ since that would force ab = b. Hence, $a^2 = b$.

	е	a	b
е	е	a	b
a	a	b	?
b	b	?	?

The rest of the table is forced by problem 1.5.

	e	a	b
е	е	a	b
a	a	b	е
b	b	е	a

4. Consider the table for |G| = 4:

•	e	a	b	c
е	е	a	b	c
a	a	?	?	?
b	b	?	?	?
С	С	?	?	?

For this table we have two distinct cases: where $a^2 = e$ and where $a^2 = b$. The case where $a^2 = c$ is the same as where $a^2 = b$ up to reordering.

First consider $a^2 = e$:

	e	a	b	c
е	е	a	b	c
a	a	е	?	?
b	b	?	?	?
С	С	?	?	?

We can complete the rest of the table using problem 1.5:

•	e	a	b	c
е	е	a	b	c
a	a	е	С	b
b	b	c	е	a
c	С	b	a	е

Notice that we can also fill the table out this way:

•	e	a	b	c
е	е	a	b	c
a	a	е	С	b
b	b	С	a	е
С	С	b	е	a

As it turns out, this is equivalent to the case where $a^2 = b$, but with b and a switched (that is, up to reordering):

•	e	a	b	\mathbf{c}
е	е	a	b	c
a	a	b	С	е
b	b	c	е	a
С	С	е	a	b

Problem 1.8. Let G be a finite abelian group, with exactly one element f of order 2. Prove that $\prod_{g \in G} g = f$.

Proof. Since every element of G has an inverse and the order of composition doesn't matter (since G is abelian), we have, with each $g_j \in G$,

$$\prod_{g \in G} g = e \cdot f \cdot (g_1 \cdot g_1^{-1}) \cdot (g_2 \cdot g_2^{-1}) \cdots (g_n \cdot g_n^{-1})$$

$$= e \cdot f \cdot (e)(e) \cdots (e)$$

$$= f$$

where n = |G| - 2

Problem 1.9. Let G be a finite group of order n and let m be the number of elements $g \in G$ of order exactly 2. Prove that n - m is odd.

Proof. We can divide the elements of G into three classes: elements of order 1, elements of order 2, and elements of order greater than 2:

1. The only group element of order 1 is the identity e.

- 2. We have assumed that there are m elements of order 2.
- 3. Note that for every element g with |g| > 2, we also have a distinct g^{-1} , meaning that there are an even number of these elements.

Taking these three classes into consideration, we have |G|=n=1+m+2j where j is a nonnegative integer. Hence n-m=2j+1 as desired.

Problem 1.10. Suppose the order of g is odd. What can you say about the order of g^2 ?

Solution.
$$|g^2| = \frac{\text{lcm}(2,|g|)}{2} = |g|$$

Problem 1.11. Prove that for all g, h in a group G, |gh| = |hg|.

Solution. Since $gh = h(gh)h^{-1}$, we just need to prove that $|aga^{-1}| = |g|$ for $a, g \in G$ (as is given in the problem as a hint).

Proof. Note that, with n = |g|,

$$(aga^{-1})^n = ag(a^{-1}a)g(a^{-1}a)\cdots ga^{-1}$$

= $a(g^n)a^{-1}$
= aa^{-1}
= e

Since n is the smallest positive integer that makes the g's vanish like this, we have $|aga^{-1}| = n = |g|$.

Problem 1.12. In the group of 2×2 matrices, consider

$$g = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \qquad , \qquad h = \begin{pmatrix} 0 & 1 \\ -1 & -1 \end{pmatrix}$$

Verify that |g| = 4, |h| = 3, and $|gh| = \infty$.

Solution. The first two are a trivial application of matrix multiplication.

Consider the product $gh = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$. We will work with its corresponding linear map

Proposition. $|gh| = \infty$

Proof. Consider the corresponding linear map $T \in \mathcal{L}(\mathbb{R}^2)$. Let x, y be a basis of \mathbb{R}^2 . We then have, from the matrix, that

$$Tx = x$$
$$Ty = x + y$$

(This is enough to define T since T is linear). It then follows that T^n is as follows:

$$T^n x = x$$
$$T^n y = nx + y$$

Finding the order of gh then boils down to solving $T^n = I$ for n. Since $T^n x = x$, we just need to solve $T^n y = y$.

$$T^{n}y = y$$

$$\implies nx + y = y$$

$$\implies nx = 0$$

$$\implies n = 0$$

Since no integer other than 0 gives $T^n = (gh)^n = e$, we have $|gh| = \infty$.

Problem 1.13. Give an example showing that |gh| is not necessarily lcm(|g|, |h|) even if g and h commute.

Solution. Let $h = g^{-1}$ and $g \neq e$. Then clearly g and h commute, but $lcm(|g|, |h|) = |g| \neq |gh| = 1$.

Problem 1.14. As a counterpoint to Exercise 1.13, prove that if g and h commute, and gcd(|g|,|h|) = 1, then |gh| = |g||h|. (Hint: let N = |gh|; then $g^N = (h^{-1})^N$. What can you say about this element?)

Proof. We will prove, with |gh| = N, |g| = m, |h| = n, that N|mn and mn|N. Note that since g and h commute, $(gh)^{mn} = g^{nm}h^{mn} = e$. Hence, N|mn. Now, consider $(gh)^N$. Note that since $(gh)^N = e$, we have $g^N = (h^N)^{-1} = (h^{-1})^N$. Then, since $(g^N)^n \left((h^{-1})^N\right)^n = h^{-Nn} = e$, we have m|Nn. Similarly, n|Nm. It then follows, since $\gcd(m,n)=1$, that m|N and n|N. Finally, since m and n are coprime, it follows from this that N must be a product of the prime factors of n, the prime factors of m, and some other positive integer, showing that mn|N, as desired.

j++j