GLYCOLYSIS

Generation of ATP from Metabolic Fuels

- Catabolic process degradative pathway
- Energy stored in sugars (carbohydrates) released to perform biological work
- Transforms GLUCOSE to PYRUVATE under ANAEROBIC conditions
- Glucose enters the cell via a specific transporter protein
- Uses:
 - o Glucose
 - o ATP
 - \circ ADP + Pi
 - o NAD⁺ (necessary co-factor)

- Produces:

- o Pyruvate
- o ATP
- o NADH can be further oxidized under aerobic conditions to make ATP

Reactions of glycolysis occurs in the CYTOSOL

- THREE FATES OF PYRUVATE

Aerobic conditions

• conversion to acetyl CoA (pyruvate dehydrogenase) for use in TCA cycle and oxidative phosphorylation for ATP production

Anaerobic conditions

- Lactate (animal muscles)
- Ethanol (yeast)

TABLE 13-1 | Standard Free Energy Changes for Glucose Catabolism

Catabolic Process	$\Delta extbf{G}^{\circ\prime}$ (kJ \cdot mol $^{-1}$)	
$ \begin{array}{ccc} \hline C_6H_{12}O_6 & \rightarrow & 2C_3H_5O_3^- + 2H^+ \\ \text{(glucose)} & \text{(lactate)} \end{array} $	-196	
${ m C_6H_{12}O_6+6O_2}{ ightarrow}6{ m H_2O}+6{ m H_2O}$ (glucose)	-2850	

- ANABOLIC PROCESS: GLUCONEOGENESIS

- Synthesize glucose FROM pyruvate or lactate
- Increases free glucose concentration

OVERALL REACTION FOR GLYCOLYSIS:

- 10 Step Process some steps tightly regulated
- Each glucose (6 carbons) split into TWO pyruvates (3 carbons each)
- Two molecules of ATP are produced
- Two molecules of NAD+ are reduced to NADH
- TWO PHASES:
 - INVESTMENT PHASE
 - First 5 reactions
 - Glucose is activated by phosphorylation
 - o "Priming reactions" need to invest energy to get more out
 - Uses 2 ATP's per glucose
 - Glucose is converted to TWO molecules of glyceraldehyde 3-phosphate (G3P)
 - DIVIDEND PHASE
 - Second set of 5 reactions
 - Each glyceraldehyde 3-phosphate (G3P) \rightarrow pyruvate
 - Get FOUR ATP's out
 - Net gain of 2 ATP's
- Modest return of energy! Will see big return once pyruvates enter TCA cycle and oxidative phosphorylation.

HANDOUT:

- Not necessary to memorize structures except glucose and pyruvate
- Know types of enzymes and recognize names of intermediates and enzymes
- Know regulatory steps
- Be able to count ATP's and follow what is made or used when and where.

INVESTMENT

DIVIDEND

NET:
2 ATP per GLUCOSE
2 NADH per GLUCOSE

Table 15.1
The reactions of glycolysis with common enzyme names and reaction type

Reaction Number	Reaction	Enzyme ^a	Reaction Type ^b
1	Glucose + ATP → glucose-6-phosphate + ADP	Hexokinase	2
2	Glucose-6-phosphate	Phosphoglucoisomerase	5
3	Fructose-6-phosphate $+$ ATP \rightarrow fructose- 1,6-bisphosphate $+$ ADP	Phosphofructokinase	2
4	Fructose-1,6-bisphosphate \Longrightarrow dihydroxyacetone phosphate + glyceraldehyde-3-phosphate	Aldolase	4
5	Dihydroxyacetone phosphate	Triose phosphate isomerase	5
6	Glyceraldehyde-3-phosphate $+ P_i + NAD^+ \Longrightarrow 1,3$ -bisphosphoglycerate $+ NADH^+$	Glyceraldehyde-3-phosphate dehydrogenase	1
7	1,3-Bisphosphoglycerate + ADP 3-phosphoglycerate + ATP	Phosphoglycerate kinase	2
8	3-Phosphoglycerate	Phosphoglycerate mutase	5
9	2-Phosphoglycerate	Enolase	4
10	Phosphoenolpyruvate + ADP → pyruvate + ATP	Pyruvate kinase	2

^aEnzymes are listed by common names.

^b Reaction type: (1) oxidation–reduction, (2) phosphoryl group transfer, (3) hydrolysis, (4) nonhydrolytic cleavage (addition or elimination), (5) isomerization–rearrangement, and (6) bond formation coupled to ATP cleavage (see Section 14.2).

Figure 15-2 Concepts in Biochemistry, 3/e © 2006 John Wiley & Sons

REACTIONS OF GLYCOLYSIS IN DETAIL Investment Phase

STEP 1: Glucose to glucose-6-phosphate

- Phosphorylation of glucose by **HEXOKINASE**
 - KINASE Enzymes that catalyze the transfer of a phosphoryl group from ATP to an acceptor substrate
 - Type of **TRANSFERASE** enzyme
 - Regulated but not the committed step
 - Glucose-6-phosphate can form glycogen or other pathways

ATP COUNT

- -1 (one ATP used)
- 1st Investment of Energy

Phosphorylation keeps glucose in the cell

STEP 2: Glucose-6-phosphate to fructose-6-phosphate

STEP 3: Fructose-6-phosphate to fructose-1,6-bisphosphate

O₃=POCH₂

$$O_3 = OCH_2 OCH$$

- ENZYME: Phosphofructokinase

- o KINASE same as first step; TRANSFERASE reaction
- o 2nd Investment of energy one more ATP used

- ATP COUNT:

- \circ This step --1
- Overall count -2

- KEY CONTROL STEP - IRREVERSIBLE!!

- Committed step
- o Note HIGHLY negative ΔG° ' means *not* reversible

STEP 4:

Fructose-1,6-bisphosphate → glyceraldehyde-3-phosphate & dihydroxyacetone phosphate

- ENZYME: Aldolase

- Non-hydrolytic Cleavage reaction (type of lyase)
- o Cleaves glucose molecule into 2 molecules
- o ΔG^{0} , -+22.8 kJ/mol; *in vivo* ΔG is less than zero products are quickly consumed. Rapid consumption of products pulls reaction forward.

- ATP COUNT:

- \circ This step 0
- Overall count -2

- Not a regulatory step

STEP 5: Dihydroxyacetone phosphate to glyceraldehyde-3-phosphate

- ENZYME: Triose phosphate isomerase
 - o Isomerization rearrangement reaction
 - Isomerase enzyme
- ATP COUNT:
 - \circ This step -0
 - Overall count -2
- Not a regulatory step

Through 1^{st} 5 steps (Investment Phase) we've USED 2 ATP molecules Steps 6-10 \rightarrow Dividend Phase where the investment pays off!!

Sum: Glucose + 2 ATP → 2 glyceraldehyde-3-phosphate +2 ADP + 2 Pi

Dividend Phase

STEP 6: 2 Glyceraldehyde-3-phosphate to 2 1,3-bisphosphoglycerate

H O CO PO
$$_3^2$$
HCOH + NAD+ + HPO $_4^2$ HCOH + NADH + HPO $_3^2$ CH $_2$ O PO $_3^2$

Glyceraldehyde-
3-phosphate
G3P

- ENZYME: Glyceraldehyde-3-phosphate dehydrogenase
 - DEHYDROGENASE reaction
 - Oxidation Reduction enzymes (also called oxidoreductases)
 - o Reactions generate either NADH, FADH₂ or NADPH
 - This reaction produces NADH
- ATP COUNT:
 - \circ This step 0
 - Overall count -2
 - +2 NADH produced
- Not a regulatory step

STEP 7: (2) 1,3-bisphosphoglycerate to (2) 3-phosphoglycerate

- ENZYME: Phosphoglycerate Kinase
 - Group Transfer reaction KINASE reaction (same as 1 and 3)
 - STEP WHERE ATP IS MADE!!
- ATP COUNT:
 - \circ This step -+2
 - \circ Overall count -2 + 2 = 0
 - +2 NADH overall
- Not a regulatory step

STEP 8: (2) 3-phosphoglycerate to (2) 2-phosphoglycerate

COO⁻
HCOH
HCO PO
$$_3^{2-}$$

CH $_2$ O PO $_3^{2-}$

CH $_2$ OH

3-Phosphoglycerate
(3-PG)

(2-PG)

- ENZYME: Phosphoglycerate Mutase
 - o Isomerization Rearrangement reaction Mutase reaction (same as 2 and 5)
- ATP COUNT:
 - \circ This step 0
 - \circ Overall count -2 + 2 = 0
 - +2 NADH overall
- Not a regulatory step

STEP 9: (2) 2-phosphoglycerate to (2) phosphoenolpyruvate

- ENZYME: Enolase
 - o Non-hydrolytic cleavage reaction (lyase)
- ATP COUNT:
 - \circ This step 0
 - \circ Overall count -2 + 2 = 0
 - +2 NADH overall
- Not a regulatory step

STEP 10: (2) phosphoenolpyruvate to (2) pyruvate

COO⁻

$$C = O - PO_3^{2-} + H^+ + ADP^{3-}$$
 $C = O + ATP^{4-}$
 $C = O$

$$\Delta G^{\circ} = -31.7 \text{ kJ/mol}$$

- ENZYME: Pyruvate Kinase
 - o Group Transfer reaction KINASE reaction (same as 1 and 3)
 - STEP WHERE ATP IS MADE!!
- ATP COUNT:
 - \circ This step -+2
 - o Overall count --2 + 2 + 2 = 2
 - +2 NADH overall
- This is a REGULATED step Not Reversible

GLYCOLYSIS ANIMATION:

http://www.northland.cc.mn.us/biology/Biology1111/animations/glycolysis.html

Table 15.2

The ATP and NADH balance sheet for glycolysis

Number ^a	Reaction per Glucose	ATP Change per Glucose ^b	NADH Change per Glucose ^b
1	Glucose → glucose-6-phosphate	-1	0
3	Fructose-6-phosphate → fructose-1,6-bisphosphate	-1	0
6	2 Glyceraldehyde-3-phosphate ≥ 2 1,3-bisphosphoglycerate	0	+2
7	2 1,3-Bisphosphoglycerate	+2	0
10	2 Phosphoenolpyruvate → 2 pyruvate	+2	0
Total change		+2	+2

^aThe number corresponds to the reaction number in Table 15.1.

Table 15-2 Concepts in Biochemistry, 3/e © 2006 John Wiley & Sons

GLYCOLYSIS THERMODYNAMICS

Can regulate flux through a pathway by adjusting the rate of a reaction with a large free energy change.

- Increast the amount of enzyme
- Alter activity of the enzyme by small molecules

Three steps in glycolysis have large negative ΔG values (1, 3, 10)

Remaining steps are near equilibrium ($\Delta G \sim = 0$)

^b A minus sign indicates loss of ATP by cleavage of a phosphoanhydride bond; a plus sign indicates formation of ATP (from ADP) or NADH (from NAD⁺).

© John Wiley & Sons, Inc. All rights reserved.

As soon as the substrate has gotten past the "dam", the near-equilibrium reactions go with the flow, allowing the pathway intermediates to move toward the final product.

Usually multiple control points (dams) in a metabolic pathway.

The height of each step corresponds to its ΔG value in heart muscle glycolysis. The numbers correspond to the glycolytic enzymes.

REGULATION OF GLYCOLYSIS

- Glycolysis is a highly regulated process
 - o Need to maintain constant levels of energy in cells
 - o Regulation UP and DOWN depends on the cell's need for ATP and NADH
 - o Steps **2, 4-9** have ΔG° values close to **zero**, therefore are essentially operating at **equilibrium**
 - Can go in either direction
 - These steps are common to the GLUCONEOGENESIS pathway
 - \circ Steps 1, 3 and 10 have large negative ΔG° values (not at equilibrium) and are the sites of regulation.

THREE KEY REGULATED STEPS

- 1. **Hexokinase** (Step #1)
 - a. Regulates entry of free glucose into glycolysis
 - b. Controlled by FEEDBACK INHIBITION
 - i. Inhibited by product– glucose-6-phosphate
 - c. NOT the committed step
 - d. Regulates the concentration of glucose-6-phosphate
- 2. **Phosphofructokinase** (PFK) (Step #3)
 - a. Catalyzes phosphorylation of fructose-6-phosphate to fructose-1,6-bisphosphate (FBP)

b. KEY REGULATORY POINT OF GLYCOLYSIS

- c. Valve that controls glycolysis
- d. 1st major committed step can't go back
- e. PFK is **INACTIVE** when [ATP] cell is **HIGH**
 - i. Makes good sense when ATP is high, glycolysis no necessary so turned down at PFK
- f. If [AMP] (low energy precursor of ATP) HIGH, tells cell energy is LOW and to make more ATP
- g. Inhibited by CITRATE physiological form of citric acid
 - i. Citrate formed in TCA cycle from pyruvate
 - ii. Therefore, if cellular [citrate] is sufficient, glycolysis is slowed
- h. ACTIVATED by fructose-2,6-bisphosphate (made when blood glucose conc. high)

3. **Pyruvate Kinase** (Step #10)

- a. Regulates formation of pyruvate from phosphoenolpyruvate
- b. Increase [ATP] inhibits pyruvate kinase and slows pyruvate formation
- o Red blood cells depend on a constant energy supply to maintain structural integrity
 - o Remember that they don't have nuclei or mitochondria
 - o Therefore, glycolysis is the primary source of ATP for red blood cells
- o If energy needs are not met, the RBC's can rupture (called hemolysis) and the blood loss called **hemolytic anemia**
- o 2nd most common form of **hemolytic anemia** is due to deficiency in *pyruvate kinase*
 - Autosomal recessive trait (carriers have no disease)
 - Treated with transfusions and/or splenectomies
 - No simple treatment

Table 15.3
The irreversible reactions of glycolysis that are bypassed in gluconeogenesis

Number ^a	Reaction	Enzyme	$\Delta G^{\circ\prime} (\mathrm{kJ/mol})$
1	Glucose + ATP \rightarrow glucose-6-phosphate + ADP	Hexokinase	-16.7
3	Fructose-6-phosphate + ATP → fructose-1,6-bisphosphate + ADP	Phosphofructokinase	-14.2
10	Phosphoenolpyruvate $+ ADP \rightarrow pyruvate + ATP$	Pyruvate kinase	-31.4

^aThe number corresponds to the reaction number in Table 15.1.

Table 15-3 Concepts in Biochemistry, 3/e © 2006 John Wiley & Sons

ENTRY OF OTHER CARBOHYDRATES INTO GLYCOLYSIS:

1. Dietary Starch

- a. Hydrolyzed in mouth by amylases to glucose monomers
- b. Hydrolyzed in stomach by acid to glucose monomers
- c. Glucose absorbed through intestinal walls to blood and transported
 - i. 1/3 goes to skeletal muscle and heart
 - ii. 1/3 goes to BRAIN needs 100g glucose/day; can't use fatty acids
 - iii. 1/3 goes to liver for storage as glycogen

2. Disaccharides:

- a. Maltose \rightarrow 2 glucose
- b. Sucrose \rightarrow fructose and glucose
- c. Lactose \rightarrow glucose and galactose

maltose +
$$H_2O \rightleftharpoons$$
 2 glucose

sucrose + $H_2O \rightleftharpoons$ fructose + glucose

lactose + $H_2O \rightleftharpoons$ glucose + galactose

Unnumbered figure pg457b Concepts in Biochemistry, 3/e

Fructose and galactose enter glycolysis differently!

o Fructose:

- In muscle, hexokinase phosphorylates fructose and enters pathway as fructose-6-phosphate. One step!
- In liver, multiple steps needed.
 - Fructokinase phosphorylates at position 1
 - Aldolase cleavage
 - Additional phosphorylation
 - Enters as 1 molecule of DHAP that isomerizes to glyceraldehyde-3phosphate
 - Glyceraldehyde product gets phosphorylated and then enters glycolysis as well
 - All 6 carbons enter as two molecules.

o Galactose:

- C4 epimer of glucose
- Requires 5 reactions to transform it to *glucose-6-phosphate* where it can enter glycolytic pathway

Glycerol:

- Released during degradation of TAG's
- 2 Reactions:
 - Phosphoryl transfer
 - Oxidation
- Turns glycerol into dihydroxyacetone phosphate which isomerizes in glycolysis to glyceraldehyde-3-phosphate

Figure 15-3 Concepts in Biochemistry, 3/e © 2006 John Wiley & Sons