Модуль "Прикладная космонавтика"

Габзетдинов Р.И. Университетская гимназия

1 Актуальность и адресность модуля

Знания и умения, полученные в ходе изучения материала этого курса, могут использоваться для реализации различных проектных работ, в частности НИРов, ОКРов и НИОКРов, выбора дальнейшей специализации в такой быстроразвивающейся и обладающей высоким потенциалом области науки и бизнеса как космонавтика.

Модуль расчитан на школьников 9-11 класса технически-ориентированных профилей, в первую очередь инженерного.

2 Цель

Целью данного модуля, помимо популяризации космической отрасли среди перспективной молодежи, является развитие у учеников навыков решения базовых и продвинутых задач НИР, ОКР и НИОКР космической отрасли, получение теоретических знаний аспектов ракето и спутникостроения, возможность реализации проектов учащихся.

3 Задачи

- 1. Теоретический материал, содержащий темы необходимые для проектирования и расчета движения космических аппаратов и их систем
- 2. Теоретический материал, содержащий исторический опыт применения различных инженерных и иных решений в отрасли
- 3. Теоретический материал, содержащий информацию по современным течениям и векторам развития космической отрасли
- 4. Лабораторные работы, нацеленные на развитие навыков мат. моделирования и программирования
- 5. Лабораторные работы, нацеленные на развитие инженерных навыков
- 6. Лабораторные работы, нацеленные на развитие навыков работы с специализированным ПО
- 7. Проектные работы, нацеленные на развитие творческих, инженерных, и иных навыков

4 Структура курса

Nº	Название	Академ.	Комментарий
		часов	•
В3	Вводное занятие	4	Два вводных занятия
T1	Теормин астрономия	8	Введение в небмех(4), Солнечная
			система(4)
T2	Теормин орб. маневры	8	Виды орбит(2), Маневрирование(2),
			Межпланетные перелеты(4)
T3	Теормин системы РН	8	РД(6), ascent path(2), остальное(2)
T4	Теормин системы КА	6	Ориентация и СУ(4), СЭП(2),
			остальное(4)
T5	Теормин	6	СЖО, скрубберы, СРЗ(4), САС,
	пилотирумые КА		СВИП(2)
Л1	Лабораторная работа 1	8	Вычисление маневров
			спутников-ретрансляторов
Л2	Лабораторная работа 2	8	Расчет маневров АМС "Вояджер - 2"
Л3	Лабораторная работа 3	14	Посадка АМС на поверхность Луны
			(тела без атмосферы)
Л4	Лабораторная работа 4	6	Выбор ДУ для ракет-носителей и
			спутниковых платформ
Л5	Лабораторная работа 5	10	Вывод полезной нагрузки на
			заданную орбиту
Л6	Лабораторная работа 6	8	Разработка циклограммы полета КА
Л7	Лабораторная работа 7	14	Разработка концепции ЖРД с
			помощью ПО RPA Lite
Д1	Программирование	6	Python/C++ KOS
Д2	История	10	Ранняя космонавтика(2),
	космонавтики		Пилотируемая космонавтика до 81
			года(6), АМС(4), космические
			станции (4), современность(4),
			дополнительно(2)
Д3	Обоснование миссий	4	Обоснование ценности миссий при их
			разработке
Д4	Дополнительные часы	12	Мат. аппарат, досдачи работ,
			повторение
П1	Проект 1	-	Концепт спутника формата Cubesat
П2	Проект 2	-	Концепт малого АМС
	Итого	140	2 занятия в неделю - 35 недель

5 Зачет по модулю

Формат получения зачета по модулю на выбор ученика:

- Сдача минимум 4 лабораторных работСдача теоретического минимума по как минимум 3 темамЧастичная / полная реализация собственного проекта