Topología: Relación de problemas del Tema 2

Grado en Matemáticas, Doble Grado en Física y Matemáticas, Doble Grado en Ing. Informática y Matemáticas Universidad de Granada

Curso 2023-2024

- 1. Sean (X,d) e (Y,d') espacios métricos. Diremos que una aplicación $f:(X,d)\to (Y,d')$ es **lipschitziana** si existe K>0 tal que $d'(f(x),f(y))\leq Kd(x,y)$ para todo $x,y\in X$. Prueba que toda aplicación lipschitziana es una aplicación continua.
- 2. Sean (X, d) un espacio métrico y $A \subseteq X$. Demuestra que la aplicación $f: (X, \mathcal{T}_d) \to (\mathbb{R}, \mathcal{T}_u)$ dada por $f(x) = d(x, A) = \inf\{d(x, a) \mid a \in A\}$ es continua.
- 3. Sean (X, \mathcal{T}) un espacio topológico y $f, g: (X, \mathcal{T}) \to (\mathbb{R}, \mathcal{T}_u)$ aplicaciones continuas. Entonces las aplicaciones $f+g: (X, \mathcal{T}) \to (\mathbb{R}, \mathcal{T}_u)$ definida como (f+g)(x) = f(x)+g(x) y $f \cdot g: (X, \mathcal{T}) \to (\mathbb{R}, \mathcal{T}_u)$ definida como $(f \cdot g)(x) = f(x) \cdot g(x)$ son continuas.
- 4. Sea $f:(X,\mathcal{T})\longrightarrow (Y,\mathcal{T}')$ una aplicación. Demuestra que equivalen:
 - a) f es continua.
 - b) $f^{-1}(\operatorname{int}(B)) \subset \operatorname{int}(f^{-1}(B)), \forall B \subset Y.$
 - c) $\partial(f^{-1}(B)) \subset f^{-1}(\partial B), \forall B \subset Y.$
- 5. Sean $(X,\mathcal{T}), (Y,\mathcal{T}')$, dos espacios topológicos, $f:(X,\mathcal{T})\to (Y,\mathcal{T}')$ una aplicación continua y sobreyectiva. Demuestra que si $D\subset X$ es un subconjunto denso, entonces f(D) es denso en Y. Demuestra, mediante un contraejemplo, que si f(D) es denso, D no tiene por qué serlo.
- 6. Sean $(X, \mathcal{T}), (Y, \mathcal{T}')$, dos espacios topológicos y $f: (X, \mathcal{T}) \to (Y, \mathcal{T}')$ una aplicación.
 - a) Demuestra que si f es continua y $\{x_n\}_{n\in\mathbb{N}}$ es una sucesión en X que converge a x_0 entonces $\{f(x_n)\}_{n\in\mathbb{N}}$ es una sucesión en Y que converge a $f(x_0)$.
 - b) Demuestra que si (X, \mathcal{T}) es un espacio topológico 1AN tal que para toda sucesión $\{x_n\}_{n\in\mathbb{N}}$ que converge a x_0 se tiene que $\{f(x_n)\}_{n\in\mathbb{N}}$ es una sucesión que converge a $f(x_0)$, entonces f es continua.
 - c) Demuestra que b) no es cierto en general si se elimina la condición 1AN.
- 7. Se considera en $\mathbb N$ la topología $\mathcal T$ del ejercicio 10 de la Relación 1. Caracteriza las aplicaciones continuas de $(\mathbb N,\mathcal T)$ en sí mismo.
- 8. Sean (X, \mathcal{T}) , (Y, \mathcal{T}') , dos espacios topológicos, $f:(X, \mathcal{T}) \to (Y, \mathcal{T}')$ una aplicación. Si $A \subseteq X$, entonces $f_{|A}$ puede ser continua sin que f sea continua en los puntos de A.

- 9. Sean (X, \mathcal{T}) , (Y, \mathcal{T}') , dos espacios topológicos y $f:(X, \mathcal{T}) \to (Y, \mathcal{T}')$ una aplicación. Demuestra que f es continua en x_0 si y solo si existe $U \in \mathcal{T}$ con $x_0 \in U$ tal que $f_{|U}:(U, \mathcal{T}_U) \to (Y, \mathcal{T}')$ es continua en x_0 . ¿Es cierta la equivalencia anterior si sustituimos U abierto conteniendo a x_0 por C cerrado conteniendo a x_0 ?
- 10. Demuestra que una aplicación $f:(X,\mathcal{T}_{x_0})\to (Y,\mathcal{T}_{y_0})$ es continua si y solo si es constante o $f(x_0)=y_0$. Deduce que $(X,\mathcal{T}_{x_0})\cong (X,\mathcal{T}_{x_1})$ para todo par de puntos $x_0,x_1\in X$.
- 11. Demuestra que todo subespacio afín $S \subset \mathbb{R}^n$ es un cerrado de $(\mathbb{R}^n, \mathcal{T}_u)$.
- 12. Consideremos el espacio (X, \mathcal{T}) donde $X = \{a, b, c, d\}$ y

$$\mathcal{T} = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{b, c, d\}\}.$$

Sea $f:(X,\mathcal{T})\to (X,\mathcal{T})$ la aplicación dada por f(a)=b, f(b)=d, f(c)=b, f(d)=c. Estudia en qué puntos la aplicación f es continua. ¿Es f abierta o cerrada?

- 13. Se considera $f:(\mathbb{R},\mathcal{T})\to(\mathbb{R},\mathcal{T})$ dada por $f(x)=\mathrm{sen}(x)$, siendo (\mathbb{R},\mathcal{T}) la recta diseminada (Ejercicio 16 de la Relación 1). Estudia si f es continua, abierta o cerrada.
- 14. Sea $\chi_{[0,\frac{1}{2}]}:([0,1],(\mathcal{T}_u)_{[0,1]})\to (\{0,1\},\mathcal{T}_D)$ la función característica del intervalo $[0,\frac{1}{2}]$. Demuestra que $\chi_{[0,\frac{1}{2}]}$ es sobreyectiva, abierta, cerrada, pero no es continua.
- 15. Demuestra que las proyecciones $p_i: (\mathbb{R}^n, \mathcal{T}_u) \to (\mathbb{R}, \mathcal{T}_u)$ dadas por $p_i(x_1, \dots, x_n) = x_i$, $i = 1, \dots, n$, son aplicaciones abiertas pero no cerradas.
- 16. Demuestra que la aplicación $f: (\mathbb{R}^n, \mathcal{T}_u) \to ([0, +\infty), (\mathcal{T}_u)_{[0, +\infty)})$ dada por f(x) = ||x|| es abierta, y que $g: (\mathbb{R}^n, \mathcal{T}_u) \to (\mathbb{R}, \mathcal{T}_u)$ dada por g(x) = ||x|| no lo es.
- 17. Sea $A \subseteq \mathbb{R}^n$ con $A \in \mathcal{C}_{\mathcal{T}_u}$ y $f: (A, (\mathcal{T}_u)_{|A}) \to (\mathbb{R}^m, \mathcal{T}_u)$ continua, y tal que $f^{-1}(B)$ es acotado en \mathbb{R}^n para cada $B \subseteq \mathbb{R}^m$ acotado. Demuestra que entonces f es cerrada. Deduce que la función g del ejercicio anterior y las funciones polinómicas $p: (\mathbb{R}, \mathcal{T}_u) \to (\mathbb{R}, \mathcal{T}_u)$ son cerradas.
- 18. Demuestra que toda afinidad $f:(\mathbb{R}^n,\mathcal{T}_u)\to(\mathbb{R}^n,\mathcal{T}_u)$ es un homeomorfismo. Utiliza este resultado para construir un homeomorfismo:
 - a) Entre cualesquiera bolas abiertas, cualesquiera bolas cerradas y cualesquiera esferas de (\mathbb{R}^n, d_n) .
 - b) El cilindro circular $\mathbb{S}^1 \times \mathbb{R}$ y el cilindro elíptico $C = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + \frac{y^2}{4} = 1\}$ de \mathbb{R}^3 .
- 19. Sea X un conjunto. Demuestra que toda aplicación biyectiva $f:(X,\mathcal{T}_{CF})\to (X,\mathcal{T}_{CF})$ es un homeomorfismo.
- 20. Encuentra un contraejemplo que demuestre que la siguiente afirmación es falsa: Si existen aplicaciones continuas e inyectivas $f:(X,\mathcal{T})\to (Y,\mathcal{T}')$ y $g:(Y,\mathcal{T}')\to (X,\mathcal{T})$ entonces (X,\mathcal{T}) e (Y,\mathcal{T}') son homeomorfos.
- 21. Demuestra que toda aplicación $f:(\mathbb{R},\mathcal{T}_u)\to(\mathbb{R},\mathcal{T}_u)$ estrictamente creciente (decreciente) y continua es un embebimiento.

22. Sea $A \subseteq \mathbb{R}^n$, $A \neq \emptyset$ y $f: (A, (\mathcal{T}_u)_A) \to (\mathbb{R}, \mathcal{T}_u)$ una función continua. Se define el **grafo** de f como el como el subconjunto de \mathbb{R}^{n+1} dado por:

$$G(f) = \{(x, f(x)) \mid x \in A\}$$
.

Demuestra que:

- a) $(A, (\mathcal{T}_u)_A)$ es homeomorfo a $(G(f), (\mathcal{T}_u)_{G(f)})$.
- b) La bola cerrada $\overline{B}(0,1) \subset \mathbb{R}^n$ es homeomorfa a $\mathbb{S}^+ = \{(x,t) \in \mathbb{S}^n \mid t \geq 0\} \subset \mathbb{R}^{n+1}$.
- c) Las cuádricas $C_1 = \{(x, y, z) \in \mathbb{R}^3 \mid z = x^2 + y^2\}, C_2 = \{(x, y, z) \in \mathbb{R}^3 \mid z = x^2 y^2\}$ y $C_3 = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 - z^2 = 0, z \ge 0\}$ son homeomorfas a \mathbb{R}^2 .
- 23. Demuestra que $f:([0,1),(\mathcal{T}_u)_{[0,1)})\to (\mathbb{S}^1,(\mathcal{T}_u)_{\mathbb{S}^1})$ dada por $f(t)=(\cos(2\pi t),\sin(2\pi t))$ es continua y biyectiva pero no es un homeomorfismo.
- 24. Sea $(\mathbb{R}, \mathcal{T}_S)$ la recta de Sorgenfrey. Se define la aplicación $f: \mathbb{R} \to \mathbb{R}$ dada por

$$f(x) = \begin{cases} e^x & \text{si} \quad x < 0, \\ 3 & \text{si} \quad x \ge 0. \end{cases}$$

- a) Estudia la continuidad de $f: (\mathbb{R}, \mathcal{T}_u) \to (\mathbb{R}, \mathcal{T}_u), f: (\mathbb{R}, \mathcal{T}_S) \to (\mathbb{R}, \mathcal{T}_S), f$ $(\mathbb{R}, \mathcal{T}_u) \to (\mathbb{R}, \mathcal{T}_S) \text{ y } f: (\mathbb{R}, \mathcal{T}_S) \to (\mathbb{R}, \mathcal{T}_u).$
- b) Estudia si las aplicaciones anteriores son abiertas o cerradas.
- 25. Demuestra que "ser metrizable" es una propiedad topológica.
- 26. Sean (X, \mathcal{T}) e (Y, \mathcal{T}') espacios topológicos. Demuestra que si (X, \mathcal{T}) e (Y, \mathcal{T}') son dos espacios topológicos metrizables si y solo si $(X \times Y, \mathcal{T} \times \mathcal{T}')$ es un espacio topológico metrizable.
- 27. Sean $X = \{a, b, c\}, Y = \{u, v\}, \mathcal{T}_X = \{\varnothing, X, \{a\}, \{b, c\}\}, \mathcal{T}_Y = \{\varnothing, Y, \{u\}\}$. Halla la topología producto $\mathcal{T}_X \times \mathcal{T}_Y$.
- 28. Encuentra tres espacios topológicos (X, \mathcal{T}) , (Y, \mathcal{T}') y (Z, \mathcal{T}'') tales que $(X \times Y, \mathcal{T} \times \mathcal{T}') \cong (X \times Z, \mathcal{T} \times \mathcal{T}'')$ pero $(Y, \mathcal{T}') \not\cong (Z, \mathcal{T}'')$.
- 29. Sean (X,\mathcal{T}) e (Y,\mathcal{T}') espacios topológicos y sean $A\subseteq X$ y $B\subseteq Y.$ Demuestra que
 - a) $\operatorname{int}_{X\times Y}(A\times B) = \operatorname{int}_X(A)\times \operatorname{int}_Y(B)$.
 - b) $\operatorname{cl}_{X\times Y}(A\times B) = \operatorname{cl}_X(A)\times \operatorname{cl}_Y(B)$.
 - c) $\partial_{X\times Y}(A\times B) = (\operatorname{cl}_X(A)\times \partial_Y(B)) \cup (\partial_X(A)\times \operatorname{cl}_Y(B)).$
 - d) $(\mathcal{T} \times \mathcal{T}')_{A \times B} = \mathcal{T}_A \times \mathcal{T}'_B$.
 - e) $A \times B \in \mathcal{T} \times \mathcal{T}'$ si y solo si $A \in \mathcal{T}$ y $B \in \mathcal{T}'$.
 - f) $A \times B \in \mathcal{C}_{\mathcal{T} \times \mathcal{T}'}$ si y solo si $A \in \mathcal{C}_{\mathcal{T}}$ y $B \in \mathcal{C}_{\mathcal{T}'}$.
 - g) $A \times B$ es denso en $X \times Y$ si y solo si A es denso en X y B es denso en Y.
- 30. Sean (X, \mathcal{T}_{CF}) e (Y, \mathcal{T}_{CF}) espacios topológicos con la topología cofinita. Demuestra que $\mathcal{T}_{CF} \times \mathcal{T}_{CF}$ no tiene por qué ser la topología cofinita en $X \times Y$.

- 31. Sean (X, \mathcal{T}_{x_0}) e (Y, \mathcal{T}_{y_0}) espacios topológicos con la topología del punto incluido. Demuestra que $\mathcal{T}_{x_0} \times \mathcal{T}_{y_0}$ no tiene por qué ser la topología $\mathcal{T}_{(x_0,y_0)}$ en $X \times Y$.
- 32. En el espacio topológico producto $(\mathbb{R} \times \mathbb{R}, \mathcal{T}_u \times \mathcal{T}_S)$ calcula la clausura, el interior y la frontera del conjunto $[1,2) \times [1,2)$. Estudia también si la aplicación $f:(\mathbb{R}^2, \mathcal{T}_u) \to (\mathbb{R}^2, \mathcal{T}_u \times \mathcal{T}_S)$ dada por f(x,y) = (y,x) es continua.
- 33. Sea $f:(X,\mathcal{T}) \to (Y,\mathcal{T}')$ una aplicación continua, abierta y sobreyectiva. Entonces, (Y,\mathcal{T}') es T_2 si y sólo si $\Delta_f = \{(x,y) \in X \times X \mid f(x) = f(y)\}$ es un subconjunto cerrado de $(X \times X, \mathcal{T} \times \mathcal{T})$. Deduce de aquí que un espacio topológico (X,\mathcal{T}) es Hausdorff si y sólo si el conjunto $\Delta = \{(x,x) \in X \times X \mid x \in X\}$ es cerrado en $(X \times X, \mathcal{T} \times \mathcal{T})$.
- 34. Sean (X, \mathcal{T}) e (Y, \mathcal{T}') dos espacios topológicos con (Y, \mathcal{T}') Hausdorff y sean $f, g: (X, \mathcal{T}) \to (Y, \mathcal{T}')$ aplicaciones continuas. Si existe un subconjunto $A \subset X$ tal que f(x) = g(x) para todo $x \in A$ entonces f(x) = g(x) para todo $x \in \overline{A}$. Demuestra que si A es denso en X entonces f = g.
- 35. Consideremos el espacio topológico $(\mathbb{R}^2, \mathcal{T}_D \times \mathcal{T})$ donde $\mathcal{T} = \{\emptyset, \mathbb{R}, \mathbb{Q}, \mathbb{R} \setminus \mathbb{Q}\}.$
 - a) Encuentra una base de entornos, si es posible numerable, de cada punto de \mathbb{R}^2 .
 - b) Encuentra un subconjunto no vacío $A \subseteq \mathbb{R}^2$ que sea abierto y cerrado a la vez.
 - c) Sea $L = \{(x, y) \in \mathbb{R}^2 \mid y = x\}$. ¿Es cerrado L? ¿Cuál es la topología $(\mathcal{T}_D \times \mathcal{T})_L$?
- 36. Sea $f:(\mathbb{R},\mathcal{T}_u)\to(\mathbb{R},\mathcal{T}_u)$ una aplicación continua que verifica la siguiente igualdad $f(x+y)=f(x)f(y), \forall x,y\in\mathbb{R}$. Demuestra que $f\equiv 0$ o $f(x)=a^x$ para algún a>0.
- 37. Sea $f:(X,\mathcal{T})\to (Y,\mathcal{T}')$ una aplicación continua y sobreyectiva tal que para cada $y\in Y$ existe un entorno N verificando que $f|_{f^{-1}(N)}:f^{-1}(N)\to N$ es una identificación. Demuestra que f es una identificación.
- 38. Sean (X, \mathcal{T}) e (Y, \mathcal{T}') espacios topológicos. Demuestra que si $f: (X, \mathcal{T}) \to (Y, \mathcal{T}')$ es una aplicación continua, sobreyectiva y admite una inversa continua por la derecha (es decir, existe $g: (Y, \mathcal{T}') \to (X, \mathcal{T})$ tal que $f \circ g = Id_Y$) entonces f es una identificación.
- 39. En \mathbb{R}^2 consideramos la siguiente relación de equivalencia

$$(x,y)R(x',y') \Leftrightarrow x^2 + y = (x')^2 + y'$$

Demuestra que $(\mathbb{R}^2/R, \mathcal{T}_u/R)$ es homeomorfo a $(\mathbb{R}, \mathcal{T}_u)$.

- 40. Demuestra que la proyección $p:X\to X/A$ es una biyección continua de $X\setminus A$ en su imagen. Demuestra también que es un homeomorfismo si A es abierto o cerrado.
- 41. Da un ejemplo de un espacio topológico (X, \mathcal{T}) y un subconjunto $A \subset X$ ni abierto ni cerrado tales que $X \setminus A$ no sea homeomorfo a $X/A \setminus \{[A]\}$.
- 42. Da un ejemplo de un espacio topológico (X, \mathcal{T}) y una relación de equivalencia R en X tal que (X, \mathcal{T}) sea Hausdorff pero $(X/R, \mathcal{T}/R)$ no lo sea.
- 43. Da un ejemplo de un espacio topológico (X, \mathcal{T}) y una relación de equivalencia R en X tal que (X, \mathcal{T}) sea 2AN pero $(X/R, \mathcal{T}/R)$ no lo sea.

44. Sea (X,\mathcal{T}) un espacio topológico e I=[0,1]. Se denomina cono de X al espacio topológico cociente

$$\left(\frac{X \times I}{X \times \{0\}}, \frac{\mathcal{T} \times \mathcal{T}_u}{X \times \{0\}}\right) .$$

Demuestra que que el cono de $(\mathbb{S}^n, (\mathcal{T}_u)_{\mathbb{S}^n})$ es homeomorfo a $(\overline{B^{n+1}}, (\mathcal{T}_u)_{\overline{B^{n+1}}})$ para $n \geq 0$.

- 45. Sea X = [0,2] y $A = \{0,1,2\}$. Demuestra que $(X/A, (\mathcal{T}_u)_X/A)$ es homeomorfo a $(C_1 \cup C_{-1}, (\mathcal{T}_u)_{C_1 \cup C_{-1}})$, donde C_1 es la circunferencia de radio 1 centrada en (1,0) y C_{-1} es la circunferencia de radio 1 centrada en (-1,0).
- 46. ¿Qué espacio se obtiene si en una banda de Möbius se identifican todos los puntos de su borde?
- 47. Demuestra que \mathbb{RP}^2 es homeomorfo al cociente $((I \times I)/R, (\mathcal{T} \times \mathcal{T})/R)$ donde R es la menor relación que contiene a (t,0)R(1-t,1) y (0,s)R(1,1-s) y \mathcal{T} es la topología usual de I.
- 48. Sea $X=\{(x,y)\in\mathbb{R}^2\mid 1\leq \|(x,y)\|\leq 2\}$. Se define una relación de equivalencia en X de la siguiente forma: (x,y)R(x',y') si y sólo si (x,y)=(x',y') o $\|(x,y)\|-\|(x',y')\|=\pm 1$ y $(x,y)=\lambda(x',y'),\ \lambda>0$. Demuestra que el espacio cociente es homeomorfo al toro.