```
library(tidyverse)
 library(data.table)
 getwd()
 setwd("/Users/zhangzihao/Desktop/duke/613/HW/a3/Data")
 datstu <- fread("datstu_v2.csv")</pre>
 datsss <- fread("datsss.csv")</pre>
 datjss <- fread("datjss.csv")</pre>
 programs <- datstu[,11:16] %>% unlist() %>% unique()
 length(programs) #33
 nrow(datstu) #340823
 unique(datsss$schoolcode) %>% length() #898
  length(programs) #33
[1] 33
> nrow(datstu) #340823
[1] 340823
 unique(datsss$schoolcode) %>% length() #898
[1] 898
c1 <- datstu %>% select(schoolcode1, choicepgm1)
c2 <- datstu %>% select(schoolcode2, choicepgm2)
c3 <- datstu %>% select(schoolcode3, choicepgm3)
c4 <- datstu %>% select(schoolcode4, choicepgm4)
c5 <- datstu %>% select(schoolcode5, choicepgm5)
c6 <- datstu %>% select(schoolcode6, choicepgm6)
rbind(c1,c2,c3,c4,c5,c6,use.names=F) %>% unique() %>% nrow() #3086
[1] 3086
sch_dis_1 <- datsss[,3:4]</pre>
sch_dis_1 <- sch_dis_1[!duplicated(sch_dis_1$schoolcode),]</pre>
sch_dis_2 <- datstu[,c(5:10, 17)]
sch_dis_2 <- pivot_longer(sch_dis_2, !jssdistrict, values_to = "schoolcode")
sch_dis <- left_join(sch_dis_2,sch_dis_1,by="schoolcode")
sch_dis$same_dis = 0
for (i in 1:nrow(sch_dis)){
  if (isTRUE(c(sch_dis$jssdistrict[i]) == c(sch_dis$sssdistrict[i]))){
    sch_dis\sime_dis[i] = 1
sch_dis$number_same = 0
  sch\_dis\number\_same[c((i-1)*6+1)] = sum(sch\_dis\same\_dis[c((i-1)*6+1):c(i*6)])
a <- filter(sch_dis,sch_dis$number_same >= 2)
nrow(a)
  > nrow(a)
  [1] 199208
```

```
admit <- datstu
admit <- cbind(admit,datstu[,1])</pre>
admit <- admit[order(rankplace,)]</pre>
x \leftarrow matrix(0, nrow = nrow(admit))
admit <- cbind(admit,x)</pre>
admit <- admit[,-19]
colnames(admit)[19] <- c("school_admit")
admit <- admit %>% na.omit()
count <- admit %>% group_by(rankplace) %>% count()
 for (i in 1:42361){
    admit[i,19] = admit[i,1]
for (i in 42362:72822){
  admit[i,19] = admit[i,2]
for (i in 72823:100658){
   admit[i,19] = admit[i,3]
 for (i in 100659:124926){
  admit[i,19] = admit[i,4]
   admit[i,19] = admit[i,5]
 for (i in 128802:131670){
   admit[i,19] = admit[i,6]
 number_adimit <- admit %>% group_by(school_admit) %>% count()
 number_adimit
school_admit <sup>‡</sup> n
            10101
                          374
            10102
                          389
            10103
            10104
                          209
            10105
            10106
                          359
            10107
                          288
            10108
            10109
            10110
                          447
                          274
admit_sch <- admit[,8:9]</pre>
cut_off <- left_join(datstu,admit_sch,by = "V1") %>% na.omit()
cut_off <- cut_off[,c(2,19)]</pre>
cut_off %>% group_by(school_admit) %>% summarise(min(score))
cut_off %>% group_by(school_admit) %>% summarise(mean(score))
                    oup_by(school_admit) %>%    summarise(min(score))
   school_admit `min(score)
                           <int>
192
            <u>10</u>101
                             284
343
           <u>10</u>102
<u>10</u>103
                              316
            10104
10105
10106
                             245
260
293
281
248
257
            10107
10108
10109
```

```
school_admit `mean(score)
                            259
           10101
                            320.
           10102
                            394.
           <u>10</u>103
           <u>10</u>104
                            351
           10105
                            340.
           10106
           <u>10</u>107
           <u>10</u>108
                            303
10
           <u>10</u>109
                            282.
    with 508 more rows
pro <- datstu[,c(2,5:16,18)]</pre>
pro <- cbind(pro,datstu[,1])</pre>
pro <- pro[order(rankplace,)]</pre>
x <- matrix(0, nrow = nrow(pro))
pro <- cbind(pro,x)
colnames(pro)[16] <- c("school_admit")</pre>
pro <- pro %>% na.omit()
count <- pro %>% group_by(rankplace) %>% count()
for (i in 1:as.numeric(count[1,2])){
  pro[i,16] = pro[i,2]
for (i in as.numeric(count[1,2]+1):as.numeric(count[1,2]+count[2,2])){
  pro[i,16] = pro[i,3]
 for (i in as.numeric(count[2,2]+1):as.numeric(count[1,2]+count[2,2]+count[3,2])){
 pro[i,16] = pro[i,4]
  r (i in as.numeric(count[3,2]+1):as.numeric(count[1,2]+count[2,2]+count[3,2]+count[4,2])){
  pro[i,16] = pro[i,5]
for (i in as.numeric(count[4,2]+1):as.numeric(count[1,2]+count[2,2]+count[3,2]+count[4,2]+count[5,2])){
  pro[i,16] = pro[i,6]
 for (i in as.numeric(count[5,2]+1):as.numeric(count[1,2]+count[2,2]+count[3,2]+count[4,2]+count[5,2]+count[6,2])){
  pro[i,16] = pro[i,7]
# I slightly improve the last method, then is "program"
y <- matrix("NA",nrow = nrow(pro))</pre>
pro <- cbind(pro,y)</pre>
colnames(pro)[17] <- c("program_admit")
for (i in 1:as.numeric(count[1,2])){
  pro[i,17] = pro[i,8]</pre>
for (i in as.numeric(count[1,2]+1):as.numeric(count[1,2]+count[2,2])){
  pro[i,17] = pro[i,9]
  or (i in as.numeric(count[2,2]+1):as.numeric(count[1,2]+count[2,2]+count[3,2])){
  pro[i,17] = pro[i,10]
 for (i in as.numeric(count[3,2]+1):as.numeric(count[1,2]+count[2,2]+count[3,2]+count[4,2])){
  pro[i,17] = pro[i,11]
 for (i in as.numeric(count[4,2]+1):as.numeric(count[1,2]+count[2,2]+count[3,2]+count[4,2]+count[5,2])){
 pro[i,17] = pro[i,12]
for (i in as.numeric(count[5,2]+1):as.numeric(count[1,2]+count[2,2]+count[3,2]+count[4,2]+count[5,2]+count[6,2])){
  pro[i,17] = pro[i,13]
new_pro <- pro[,c(1,15:17)]</pre>
new_pro <- new_pro %>% na.omit()
new_pro <- new_pro[!apply(new_pro == "", 1, all),] # delete the blank
new_pro <- new_pro %>% mutate(sch_pro = paste0(school_admit,sep = ",",program_admit))
colnames(new_pro)[3] <- "schoolcode"
new_pro2 <- left_join(new_pro,datsss,by = "schoolcode") %>% na.omit()
new_pro2 <- new_pro2[!apply(new_pro2
```

```
new_an <- new_pro2 %% group_by(sch_pro) %% count()
colnames(new_an) <- c("sch_pro","admit_number")
new_pro2 <- left_join(new_pro2,new_an,by = "sch_pro")

cutoff <- new_pro %% group_by(sch_pro) %% summarise(min(score))
cutoff <- cutoff[-1,]
new_pro2 <- left_join(new_pro2,cutoff,by = "sch_pro")

quality <- new_pro %% group_by(sch_pro) %% summarise(mean(score))
quality <- quality[-1,]
new_pro2 <- left_join(new_pro2,quality,by = "sch_pro")

school <- new_pro2[,c(5,7:13)]
school <- school %% group_by(sch_pro) %% filter (!duplicated(sch_pro))</pre>
```

Iname ÷	sssdistrict ‡	ssslong ‡	ssslat ‡	admit_number ‡	min(score) ‡	mean(score) 💠
AMPA SENIOR HIGH TECHNICAL	Abura/Asebu/Kwamankese (Abura Dunkwa)	-1.19708836	5.130001	160	208	251.9250
AMPA SENIOR HIGH TECHNICAL	Abura/Asebu/Kwamankese (Abura Dunkwa)	-1.19708836	5.130001	32	224	245.2500
AMPA SENIOR HIGH TECHNICAL	Abura/Asebu/Kwamankese (Abura Dunkwa)	-1.19708836	5.130001	104	216	254.7692
FI PRESBY SENIOR HIGH. SCHOOL, ABETIFI	Kwahu South (Mpraeso)	-0.63552868	6.619226	345	269	304.1449
FI PRESBY SENIOR HIGH. SCHOOL, ABETIFI	Kwahu South (Mpraeso)	-0.63552868	6.619226	140	272	301.1071
FI PRESBY SENIOR HIGH. SCHOOL, ABETIFI	Kwahu South (Mpraeso)	-0.63552868	6.619226	115	257	297.4348
FI PRESBY SENIOR HIGH. SCHOOL, ABETIFI	Kwahu South (Mpraeso)	-0.63552868	6.619226	110	252	288.1818
FI PRESBY SENIOR HIGH. SCHOOL, ABETIFI	Kwahu South (Mpraeso)	-0.63552868	6.619226	90	254	290.0556
TI TECH. INST., ABETIFI	Kwahu South (Mpraeso)	-0.63552868	6.619226	140	204	238.4000
TI TECH. INST., ABETIFI	Kwahu South (Mpraeso)	-0.63552868	6.619226	14	246	246.0000
SENIOR HIGH SCHOOL, ABOR	Keta	0.85305578	5.907464	248	216	256.6290
SENIOR HIGH SCHOOL, ABOR	Keta	0.85305578	5.907464	592	207	269.0068
SENIOR HIGH SCHOOL, ABOR	Keta	0.85305578	5.907464	708	211	267.9548
SENIOR HIGH SCHOOL, ABOR	Keta	0.85305578	5.907464	240	214	264.6000

```
# 3
sch <- admit
colnames(sch)[19] <- "schoolcode"
distant <- left_join(sch,datsss,by="schoolcode")
distant <- select(distant,c("\1.x", "schoolcode", "jssdistrict"))
distant <- distant[!duplicated(distant$schoolcode),]
colnames(distant)[1] <- "student"
y <- datjss
distant <- left_join(distant,y,by = "jssdistrict")
colnames(distant)[5] <- "jsslong"
colnames(distant)[6] <- "jsslat"
distant <- left_join(distant,datsss,by = "schoolcode")
distant <- distant \% select(ssslong,jsslong,jsslat,ssslat)
distant <- distant \% select(ssslong - jsslong) * cos(jsslat/57.3)) \(^2 + (69.172 * (ssslat - jsslat))\(^2 + (69.172 * (ssslat - jsslat))\)</pre>
```

```
*** ssslong *** jsslong *** jsslat *** ssslat *** dist ***

1 -1.1970884 -1.00538456 5.401725 5.130001 22.96873

2 -1.1970884 -1.00538456 5.401725 5.130001 22.96873

3 -1.1970884 -1.00538456 5.401725 5.130001 22.96873

4 -1.1970884 -1.00538456 5.401725 5.130001 22.96873

5 -0.6355287 -0.47498974 5.944515 6.619226 47.96028

6 -0.6355287 -0.47498974 5.944515 6.619226 47.96028

7 -0.6355287 -0.47498974 5.944515 6.619226 47.96028

8 -0.6355287 -0.47498974 5.944515 6.619226 47.96028

8 -0.6355287 -0.47498974 5.944515 6.619226 47.96028

9 -0.6355287 -0.47498974 5.944515 6.619226 47.96028

10 -0.6355287 -0.35609409 6.436071 6.619226 23.00930

11 -0.6355287 -0.35609409 6.436071 6.619226 23.00930

12 -0.6355287 -0.35609409 6.436071 6.619226 23.00930

13 -0.6355287 -0.35609409 6.436071 6.619226 23.00930

14 -0.6355287 -0.35609409 6.436071 6.619226 23.00930
```

```
# 4
# 4.1
scode_rev <- datsss[,3]
scode_rev <- scode_rev[!duplicated(scode_rev$schoolcode),]
scode_rev$scode_rev <- substr(scode_rev$schoolcode, 1, 3)

# it is a list. then we may change the data in the datstu

datstu_4 <- datstu
datstu_4$scode_rev1 <- substr(datstu_4$schoolcode1, 1, 3)
datstu_4$scode_rev2 <- substr(datstu_4$schoolcode2, 1, 3)
datstu_4$scode_rev3 <- substr(datstu_4$schoolcode3, 1, 3)
datstu_4$scode_rev4 <- substr(datstu_4$schoolcode4, 1, 3)
datstu_4$scode_rev5 <- substr(datstu_4$schoolcode5, 1, 3)
datstu_4$scode_rev6 <- substr(datstu_4$schoolcode6, 1, 3)</pre>
```

scode_rev1	\$ scode_rev2	scode_rev3 ‡	scode_rev4 [‡]	scode_rev5 [‡]	scode_rev6 ‡	pgm_rev6 [‡]	pgm_rev5 [‡]	pgm_re
501	501	502	502	507	509	arts	economics	arts
701	706	701	701	706	706	arts	economics	arts
507	507	501	507	516	507	economics	economics	econon
905	904	901	909	901	903	arts	others	others
518	517	502	502	516	502	economics	arts	arts
101	501	517	502	506	516	economics	economics	arts
803	804	803	804	805	809	arts	arts	arts
403	404	404	403	402	403	others	others	others
213	213	212	212	202	201	arts	arts	science
801	904	505	509	505	505	arts	arts	arts
518	506	505	506	506	509	arts	arts	econon
100	905	801	905	902	906	others	science	science
306	306	309	309	306	309	arts	economics	econon
801	801	801	801	804	810	others	others	econor

```
# 4.2
science <- c("General Science")
arts <- c("General Arts", "Visual Arts")
economics <- c("Business", "Home Economics")

datstu_4 <- within(datstu_4, {
    pgm_rev1 = "others"
    pgm_rev1[choicepgm1 %in% arts] = "arts"
    pgm_rev1[choicepgm1 %in% economics] = "economics"
    pgm_rev1[choicepgm1 %in% science] = "science"
    pgm_rev1[is.na(pgm_rev1) == T] = "others"

pgm_rev2 = "others"
    pgm_rev2[choicepgm2 %in% arts] = "arts"
    pgm_rev2[choicepgm2 %in% economics] = "economics"
    pgm_rev2[choicepgm2 %in% science] = "science"
    pgm_rev2[choicepgm2 %in% science] = "science"
    pgm_rev2[is.na(pgm_rev2) == T] = "others"</pre>
```

```
pgm_rev3 = "others"
pgm_rev3[choicepgm3 %in% arts] = "arts"
pgm_rev3[choicepgm3 %in% science] = "science"
pgm_rev3[choicepgm3 %in% science] = "science"
pgm_rev3[is.na(pgm_rev3) == T] = "others"

pgm_rev4 = "others"
pgm_rev4[choicepgm4 %in% arts] = "arts"
pgm_rev4[choicepgm4 %in% science] = "science"
pgm_rev4[choicepgm4 %in% science] = "science"
pgm_rev4[is.na(pgm_rev4) == T] = "others"

pgm_rev5 = "others"
pgm_rev5[choicepgm5 %in% arts] = "arts"
pgm_rev5[choicepgm5 %in% economics] = "economics"
pgm_rev5[choicepgm5 %in% science] = "science"
pgm_rev5[is.na(pgm_rev5) == T] = "others"
```

```
pgm_rev6 = "others"
pgm_rev6[choicepgm6 %in% arts] = "arts"
pgm_rev6[choicepgm6 %in% economics] = "economics"
pgm_rev6[choicepgm6 %in% science] = "science"
pgm_rev6[is.na(pgm_rev6) == T] = "others"
})
```

pgm_rev5 [‡]	pgm_rev4 [‡]	pgm_rev3 [‡]	pgm_rev2 [‡]	pgm_rev1 [‡]	choice_rev1 ‡	choice_rev2 ‡	choice_rev3 ‡	choice_rev4
economics	arts	arts	arts	economics	501,economics	501,arts	502,arts	502,arts
economics	arts	arts	economics	arts	701,arts	706,economics	701,arts	701,arts
economics	economics	economics	economics	economics	507,economics	507,economics	501,economics	507,econom
others	others	others	arts	arts	905,arts	904,arts	901,others	909,others
arts	arts	economics	arts	economics	518,economics	517,arts	502,economics	502,arts
economics	arts	arts	arts	arts	101,arts	501,arts	517,arts	502,arts
arts	arts	arts	arts	arts	803,arts	804,arts	803,arts	804,arts
others	others	arts	arts	arts	403,arts	404,arts	404,arts	403,others
arts	science	science	economics	economics	213,economics	213,economics	212,science	212,science
arts	arts	arts	arts	arts	801,arts	904,arts	505,arts	509,arts
arts	economics	economics	arts	economics	518,economics	506,arts	505,economics	506,econom
science	science	science	science	science	100,science	905,science	801,science	905,science
economics	economics	arts	others	economics	306,economics	306,others	309,arts	309,econor
others	economics	economics	economics	economics	801,economics	801,economics	801,economics	801,econom

```
# 4.3
datstu_4 <- datstu_4 %>% mutate(choice_rev1 = paste0(scode_rev1,sep = ",",pgm_rev1)) %>%
mutate(choice_rev2 = paste0(scode_rev2,sep = ",",pgm_rev2)) %>%
mutate(choice_rev3 = paste0(scode_rev3,sep = ",",pgm_rev3)) %>%
mutate(choice_rev4 = paste0(scode_rev4,sep = ",",pgm_rev4)) %>%
mutate(choice_rev5 = paste0(scode_rev5,sep = ",",pgm_rev5)) %>%
mutate(choice_rev6 = paste0(scode_rev6,sep = ",",pgm_rev5))
```

choice_rev1 🕏	choice_rev2 [‡]	choice_rev3 [‡]	choice_rev4 🕏	choice_rev5 [‡]	choice_rev6 🗦
501,economics	501,arts	502,arts	502,arts	507,economics	509,arts
701,arts	706,economics	701,arts	701,arts	706,economics	706,arts
507,economics	507,economics	501,economics	507,economics	516,economics	507,economics
905,arts	904,arts	901,others	909,others	901,others	903,arts
518,economics	517,arts	502,economics	502,arts	516,arts	502,economics
101,arts	501,arts	517,arts	502,arts	506,economics	516,economics
803,arts	804,arts	803,arts	804,arts	805,arts	809,arts
403,arts	404,arts	404,arts	403,others	402,others	403,others
213,economics	213,economics	212,science	212,science	202,arts	201,arts
801,arts	904,arts	505,arts	509,arts	505,arts	505,arts
518,economics	506,arts	505,economics	506,economics	506,arts	509,arts
100,science	905,science	801,science	905,science	902,science	906,others
306,economics	306,others	309,arts	309,economics	306,economics	309,arts
801,economics	801,economics	801,economics	801,economics	804,others	810,others

```
datstu4 <- datstu_4 %>% select(V1,score,rankplace,choice_rev1,choice_rev2,choice_rev3,choice_rev4,choice_rev5,choice_rev6)
 datstu4 <- datstu4[order(rankplace,)]
count <- datstu4 %>% group_by(rankplace) %>% count()
  for (i in 1:as.numeric(count[1,2])){
   datstu4$admit[i] = datstu4$choice_rev1[i]
 for (i in as.numeric(count[1,2]+1):as.numeric(count[1,2]+count[2,2])){
    datstu4$admit[i] = datstu4$choice_rev2[i]
 for (i in as.numeric(count[2,2]+1):as.numeric(count[1,2]+count[2,2]+count[3,2])){
    datstu4$admit[i] = datstu4$choice_rev3[i]
 for (i in as.numeric(count[3,2]+1):as.numeric(count[1,2]+count[2,2]+count[3,2]+count[4,2])){
    datstu4$admit[i] = datstu4$choice_rev4[i]
 datstu4$admit[i] = datstu4$choice_rev5[i]
  or (i in as.numeric(count[5,2]+1):as.numeric(count[1,2]+count[2,2]+count[3,2]+count[4,2]+count[5,2]+count[6,2])){

datstu4$admit[i] = datstu4$choice_rev6[i]
cutoff <-datstu4 %>% group_by(admit) %>% summarise(min(score))
cutoff <- cutoff[-1,]
datstu_new <- left_join(datstu4,cutoff,by = "admit")</pre>
quality <-datstu_new %>% group_by(admit) %>% summarise(mean(score))
quality <- quality[-1,]
datstu_new <- left_join(datstu_new,quality,by = "admit")</pre>
datstu_new <- datstu_new %-% group_by(admit) %-% filter (!duplicated(admit))
new_cq <- datstu_new[,10:12] %-% na.omit()</pre>
                † min(score) † mean(score)
                                       284.5549
                            192
1 304.economics
2 304,others
                                       290.1190
3 210,arts
                            198
                                       314.3445
4 210,economics
                            201
                                       313.0429
5 210, science
                                       342.4231
6 902,others
                                       253.2619
7 705,economics
8 705,arts
                                       274.8638
9 213,arts
                            204
                                       296.1403
10 213.economics
                                       294.9786
                            206
11 213 others
                                       283,9068
                            206
2 213.science
                                       327.0606
.3 203,arts
                            208
                                       322.6435
.4 203,economics
```

```
# 4.5
datstu5 <- datstu_4[order(-score), ]
datstu5 <- datstu5[1:20000,]
```

V1 =	score ‡	agey 🕏	male ‡	schoolcode1 ‡	schoolcode2 ‡	schoolcode3 ‡	schoolcode4 ‡	schoolcode5 ‡	schoolcode6 ‡	choicepgm1
335624	469	15		30107	30107	50102	21501	10403	10119	General Science
318458	468	15		21003	40107	30106	10201	NA	NA	General Science
318492	467	15		21003	20102	21302	20402	10504	21503	General Science
335584	467	15		30107	21103	20301	21501	NA	NA	General Science
318422	466	15		21003	20104	21303	20402	NA	NA	General Science
318525	466	15		21003	20102	10105	21302	20603	21006	General Science
335568	465	14		30107	50201	50102	10112	NA	NA	General Science
335629	465	15		30107	20301	30301	30106	21007	20603	General Science
335722	465	15		30107	30107	20301	20301	10205	10210	General Science
239799	464	14		30103	10102	10202	10117	10205	10116	General Science
268535	464	15		30104	30102	30905	30601	10210	10203	General Science
289149	464	15		50110	20102	40104	30401	20105	21006	General Science
335866	464	16		30107	30107	21103	21103	NA	NA	General Science
335901	464	15		30107	30107	30107	30107	NA	NA	General Science

```
data <- datstu5
   data$choice_rev1 <- as.numeric(as.factor(data$choice_rev1))</pre>
   score <- select(data,score)</pre>
  choice <- select(data,choice_rev1)</pre>
  n_choice <- choice[!duplicated(choice$choice_rev1),]</pre>
  nrow(n_choice)
  score <- as.matrix(score)</pre>
  like_fun <- function(par,score,choice,data){</pre>
         n_i = nrow(score)
         n_j = nrow(n_choice)
        out = mat.or.vec(n_i,n_j)
        par1 = par[1:n_j-1]
         par2 = par[n_j:(2*n_j-2)]
        out[,1] = 0
        for (j in 1:(n_j-1)){
  out[,j+1] = par1[j] + par2[j] * score
       prob = exp(out)
       prob = sweep(prob, MARGIN = 1, STATS = rowSums(prob), FUN = "/")
       prob choice = NULL
        for (z in 1:n_i){
            prob_choice[z] = prob[z,]
       prob_choice[prob_choice>0.99999] = 0.99999
prob_choice[prob_choice<0.00001] = 0.00001</pre>
       like = sum(log(prob_choice))
       return(-like)
    result = optim(n,
                                                          fn=like_fun,
                                                          method = 'BFGS',
control = list(trace = 6, maxit = 3000),
                                                           score = score,
                                                           choice = choice,
                                                          data = data
    out_logit <- result
   result$par
    result$value
            0.4945196491 0.5605091848 0.2928970144 0.5806552824 -0.0555830747 0.6511623994 0.9730458325 -0.3896163432
            -0.5300413053 \ -0.3564809901 \ -0.7513058279 \ \ 0.1442976347 \ -0.8551723124 \ \ 0.7931857882 \ \ 0.4801902627 \ \ 0.7060436746 \ \ 0.7931857882 \ \ 0.4801902627 \ \ 0.7060436746 \ \ 0.7931857882 \ \ 0.7931857882 \ \ 0.7931857882 \ \ 0.7931857882 \ \ 0.7931857882 \ \ 0.7931857882 \ \ 0.7931857882 \ \ 0.7931857882 \ \ 0.7931857882 \ \ 0.7931857882 \ \ 0.7931857882 \ \ 0.7931857882 \ \ 0.7931857882 \ \ 0.7931857882 \ \ 0.7931857882 \ \ 0.7931857882 \ \ 0.7931857882 \ \ 0.7931857882 \ \ 0.7931857882 \ \ 0.7931857882 \ \ 0.7931857882 \ \ 0.7931857882 \ \ 0.7931857882 \ \ 0.7931857882 \ \ 0.7931857882 \ \ 0.7931857882 \ \ 0.7931857882 \ \ 0.7931857882 \ \ 0.7931857882 \ \ 0.7931857882 \ \ 0.7931857882 \ \ 0.7931857882 \ \ 0.7931857882 \ \ 0.7931857882 \ \ 0.7931857882 \ \ 0.7931857882 \ \ 0.7931857882 \ \ 0.7931857882 \ \ 0.7931857882 \ \ 0.7931857882 \ \ 0.793185782 \ \ 0.793185782 \ \ 0.793185782 \ \ 0.793185782 \ \ 0.793185782 \ \ 0.793185782 \ \ 0.793185782 \ \ 0.793185782 \ \ 0.793185782 \ \ 0.793185782 \ \ 0.793185782 \ \ 0.793185782 \ \ 0.793185782 \ \ 0.793185782 \ \ 0.793185782 \ \ 0.793185782 \ \ 0.793185782 \ \ 0.793185782 \ \ 0.793185782 \ \ 0.793185782 \ \ 0.793185782 \ \ 0.793185782 \ \ 0.793185782 \ \ 0.793185782 \ \ 0.793185782 \ \ 0.793185782 \ \ 0.793185782 \ \ 0.793185782 \ \ 0.793185782 \ \ 0.793185782 \ \ 0.793185782 \ \ 0.793185782 \ \ 0.793185782 \ \ 0.793185782 \ \ 0.793185782 \ \ 0.793185782 \ \ 0.793185782 \ \ 0.793185782 \ \ 0.793185782 \ \ 0.793185782 \ \ 0.793185782 \ \ 0.793185782 \ \ 0.793185782 \ \ 0.793185782 \ \ 0.793185782 \ \ 0.793185782 \ \ 0.793185782 \ \ 0.793185782 \ \ 0.793185782 \ \ 0.793185782 \ \ 0.793185782 \ \ 0.793185782 \ \ 0.793185782 \ \ 0.793185782 \ \ 0.793185782 \ \ 0.793185782 \ \ 0.793185782 \ \ 0.793185782 \ \ 0.793185782 \ \ 0.793185782 \ \ 0.793185782 \ \ 0.793185782 \ \ 0.793185782 \ \ 0.793185782 \ \ 0.793185782 \ \ 0.793185782 \ \ 0.793185782 \ \ 0.793185782 \ \ 0.793185782 \ \ 0.793185782 \ \ 0.793185782 \ \ 0.793185782 \ \ 0.793185782 \ \ 0.793185782

      0.5892855735
      0.8866877416
      -0.8337877905
      -0.0648775720
      0.7181951189
      0.4782690625
      -0.7915115487
      0.6625639135

      0.1571571408
      -0.6124679549
      -0.0281252395
      0.7872906500
      -0.2128377226
      -0.3483333485
      0.5437121391
      0.9544018195

      -0.2152902232
      -0.3816896644
      0.7982811518
      -0.5943525420
      -0.5138788382
      0.1952546821
      0.8518465455
      -0.6884270818

            -0.0487754522 -0.0189024732 -0.3724321234 \quad 0.0891752383 \quad 0.4343819218 -0.3441586699 \quad 0.0251909331 -0.80987311111 -0.80987311111 -0.80987311111 -0.80987311111 -0.80987311111 -0.80987311111 -0.8098731111 -0.8098731111 -0.8098731111 -0.8098731111 -0.8098731111 -0.8098731111 -0.8098731111 -0.8098731111 -0.8098731111 -0.8098731111 -0.8098731111 -0.8098731111 -0.8098731111 -0.8098731111 -0.8098731111 -0.8098731111 -0.8098731111 -0.8098731111 -0.8098731111 -0.8098731111 -0.8098731111 -0.8098731111 -0.8098731111 -0.8098731111 -0.8098731111 -0.8098731111 -0.8098731111 -0.8098731111 -0.8098731111 -0.8098731111 -0.8098731111 -0.8098731111 -0.8098731111 -0.8098731111 -0.8098731111 -0.8098731111 -0.8098731111 -0.8098731111 -0.8098731111 -0.8098731111 -0.8098731111 -0.8098731111 -0.8098731111 -0.8098731111 -0.8098731111 -0.809873111 -0.809873111 -0.8098731111 -0.8098731111 -0.8098731111 -0.8098731111 -0.8098731111 -0.8098731111 -0.8098731111 -0.8098731111 -0.80987311 -0.809873111 -0.809873111 -0.80987311 -0.8098731111 -0.80987311 -0.809873111 -0.809873111 -0.80987311 -0.80987311 -0.80987311 -0.80987311 -0.80987311 -0.80987311 -0.80987311 -0.80987311 -0.80987311 -0.80987311 -0.80987311 -0.80987311 -0.80987311 -0.80987311 -0.80987311 -0.8098731 -0.8098731 -0.80987311 -0.80987311 -0.8098731 -0.8098731 -0.8098731 -0.8098731 -0.8098731 -0.8098731 -0.8098731 -0.8098731 -0.8098731 -0.8098731 -0.8098731 -0.8098731 -0.8098731 -0.8098731 -0.8098731 -0.8098731 -0.8098731 -0.8098731 -0.8098731 -0.8098731 -0.8098731 -0.8098731 -0.8098731 -0.8098731 -0.8098731 -0.8098731 -0.8098731 -0.8098731 -0.8098731 -0.8098731 -0.8098731 -0.8098731 -0.8098731 -0.809874 -0.809874 -0.809874 -0.809874 -0.809874 -0.809874 -0.809874 -0.809874 -0.809874 -0.809874 -0.809874 -0.809874 -0.809874 -0.809874 -0.809874 -0.809874 -0.809874 -0.809874 -0.809874 -0.809874 -0.809874 -0.809874 -0.809874 -0.809874 -0.809874 -0.809874 -0.809874 -0.809874 -0.809874 -0.809874 -0.809874 -0.809874 -0.809874 -0.809874 -0.809874 -0.809874 -0.809874 -0.809874 -0.809874 -0.8
            57]
              0.7721571801 -0.7244460830 0.0253010886 -0.3955216985 0.2443955899 0.1531632482 -0.9970123991 0.6959534329
657
              817
[1] 230258.5
```

```
# Marginal effect
prob_fun <- function(par,score,choice,data){
    n_i = nrow(score)
    n_j = nrow(n_choice)
    out = mat.or.vec(n_i,n_j)
    |
    par1 = par[1:n_j-1]
    par2 = par[n_j:(2*n_j-2)]
    out[,1] = 0

for (j in 2:(n_j-1)){
    out[,j+1] = par1[j] + par2[j] * score
}

return(out)
}</pre>
```

```
param <- result$par
prob <- prob_fun(param, score, choice, data)
prob <- exp(prob)
prob <- sweep(prob, MARGIN = 1, STATS = rowSums(prob), FUN = "/")
b_i_bar <- apply(prob,1,function(x) return(sum(b_j*x)))
Mar_e <- data.frame(prob *(b_j - b_i_bar))
apply(Mar_e, MARGIN = 2, mean)</pre>
```

```
X2
                                      Х3
0.000000e+00
              0.000000e+00
                           0.000000e+00
                                         0.000000e+00
0.000000e+00 1.084991e-273 5.154587e-320
                                         0.000000e+00
          Х9
                       X10
                                     X11
                                                   X12
0.000000e+00 0.000000e+00 1.607207e-235 8.474277e-256
                                                   X16
0.000000e+00
             0.000000e+00 3.452718e-295 1.589270e-285
         X17
                       X18
                                     X19
                                                   X20
             0.000000e+00 3.051854e-225 1.727217e-254
0.000000e+00
0.000000e+00
             0.000000e+00
                           0.000000e+00
                                         0.000000e+00
         X25
                       X26
                                     X27
                           0.000000e+00
7.554818e-205
             0.000000e+00
                                         0.000000e+00
```

```
# 6
install.packages("mlogit")
install.packages("dfidx")
library(dfidx)
library(mlogit)

quality1 <- quality
colnames(quality1)[1] <- "choice_rev2"
data1 <- left_join(data, quality1,by = "choice_rev2")
# the "choice_rev1" has been changed, so i choose choice_rev2, which won't change the mean

con_choise <- data1$choice_rev1
con_quality <- data1$quality

data2 <- mlogit.data(data1, varying = 37:282, shape = "wide", sep = '_', choice = "choice_rev1")
# i failed in this step, but i will type the function</pre>
```

```
con_fun1 <- function(par, choice, quality) {
    choice = con_choice
    quality = con_quality
    n_i = nrow(data)
    n_j = 246 # same with above
    out = mat.or.vec( n_i,n_j )

    out[,1] = 0

    int = par[1:n_j-1]
    qua = par[ (n_j) ]
    for (i in 1:n_i) {
        out[i,] = qua * quality[i]
    }

    for (i in 2:n_j) {
        out[,i] = out[,i] + int[ (i-1) ]
    }

    prob = exp(out)
    prob = sweep(prob, MARGIN=1, FUN="/", STATS=rowSums(prob))</pre>
```

```
prob_choice = NULL
for (j in j:n_i){
   prob_choice[j] = prob[j, choice_rev1[j] ]
}
prob_choice[prob_choice > 0.999999] = 0.999999
prob_choice[prob_choice < 0.000001] = 0.000001
like = sum( log(prob_choice))
return(- like)
}</pre>
```

```
# Marginal effect
v prob_fun <- function(par,quality,choice,data){
    n_i = nrow(quality)
    n_j = nrow(n_choice)
    out = mat.or.vec(n_i,n_j)
    |
    par1 = par[1:n_j-1]
    par2 = par[n_j]
    out = par2 *quality[,1]

v for (j in 2:(n_j-1)){
    out = cbind(par2*quality[,j+1]+out,par1[j])
    }
    return(out)
* }</pre>
```

```
# 7
# 7.1
# we should choose the second model.
# because in the second model, removing "others" has more influence on school's characteristics rather than individual's.
# 7.2
| library(stringr)
out_other <- data %>% filter( str_detect(choice_rev1, "others") == T )
# delete the "other"
# i failed in conditional logit, but i will show the function.

Con_fun1 <- function(par, choice, quality) {
   choice = con_choice
   quality = con_quality
   n_i = nrow(data)
   n_j = 246
   out = mat.or.vec( n_i,n_j )</pre>
```

```
out[,1] = 0

int = par[1:n_j-1]
qua = par[ (n_j) ]

for (i in 1:n_i) {
    out[i,] = qua * quality[i]

}

for (i in 2:n_j) {
    out[,i] = out[,i] + int[ (i-1) ]

}

prob = exp(out)
prob = sweep(prob, MARGIN=1, FUN="/", STATS=rowSums(prob))
prob_choice = NULL
for (j in j:n_i){
    prob_choice[j] = prob[j, choice_rev1[j] ]

}

prob_choice[prob_choice >0.999999] = 0.999999
prob_choice[prob_choice <0.000001] = 0.000001
like = sum( log(prob_choice))
return(- like)</pre>
```