TAREFA 10 - MÉTODOS NUMÉRICOS II
Pedro Henrique Dantos Barros - 415083 José Georgne Doores de Oliveiro - 405052
· Calcular es Autovalores e Autovetores
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\frac{1}{p/\lambda} = 4 - \sqrt{7} \begin{cases} 1 + \sqrt{7} & 2 & 1 \\ 2 & -1 + \sqrt{7} & 1 \\ 1 & 1 & -2 + \sqrt{7} \end{cases} \begin{cases} x_1 & 0 \\ x_2 & = 0 \\ x_3 & 0 \end{cases}$
$p/\lambda = 2$ $\begin{bmatrix} 3 & 2 & 1 \\ 2 & 1 & 1 \\ 1 & 0 \end{bmatrix}$ $\begin{bmatrix} x_1 \\ x_2 \\ 0 \end{bmatrix}$
$3 \times 1 + 2 \times_0 + \times_3 = 0$ vetor possive ($2 \times_1 + \times_2 + \times_3 = 0$ (X1, \times_2 , \times_3) = (1, -1, -1) $\times_1 + \times_2 = 0$

PanAmericana

 $=-\lambda^3+2\lambda^2-\lambda=0$ $\begin{vmatrix} \frac{1}{3} - \lambda & -\frac{1}{3} & -\frac{1}{3} \\ -\frac{1}{3} & \frac{1}{3} - \lambda & -\frac{1}{3} & = 0 \end{vmatrix}$ $\begin{vmatrix} -\frac{1}{3} & -\frac{1}{3} & \frac{1}{3} - \lambda \\ -\frac{1}{3} & -\frac{1}{3} & \frac{1}{3} - \lambda \end{vmatrix}$ $\lambda_1 = 0$ $\lambda_2 = 1$ 3. X1 - X2/3 - X3/3 = 0 - X1/7 - X2/3 + 3/2. X3=0 VETOR POSSIVEL $-X_{1}/3-X_{2}/3-X_{3}/3=0$ $(X_{1},X_{2},X_{5})=(1,-1,0)$ $\int \left(\frac{1}{3} - \lambda\right)^{3} + \frac{2}{37} - 3 \cdot \left(\frac{1}{9} \cdot \left(\frac{1}{3} - \lambda\right)\right) =$ + 1/3 1/3 1/3 1/3 1/3 1/3 = M4 1/3 1/3 1/3 $=-\lambda^3+\lambda^2=0$ $\lambda_1 = 0$

