Health Informatics Group Project: Athletics Performance Analytics

Assignment Overview

Your team will work with a real-world collegiate athletics database containing performance metrics from multiple tracking systems (Hawkins force plates, Kinexon GPS/accelerometry, and Vald strength testing). This multi-part group assignment will challenge you to extract insights from health/performance data using Python and SQL.

Learning Objectives:

- Connect to and query relational databases using Python
- · Clean and transform data
- Perform exploratory data analysis on longitudinal (repeat) performance metrics
- Create data visualizations to communicate findings
- Work collaboratively

Database Overview

The athletics database contains performance data from multiple tracking systems integrated into a single unified table.

Main Table:

research_experiment_refactor_test - Single unified table containing all performance metrics from three data sources:

- Hawkins (force plates)
- Kinexon (GPS/accelerometry)
- Vald (strength testing)

Table Schema:

Column	Туре	Description
id	BIGINT	Unique record identifier (auto-increment)
playername	VARCHAR(255)	Anonymized player identifier (e.g., PLAYER_001, PLAYER_002)
timestamp	DATETIME	Date and time of the measurement/session
device	VARCHAR(50)	Specific device/equipment used for measurement
metric	VARCHAR(255)	Name of the performance metric being measured

Column	Туре	Description	
value	DECIMAL(20,6)	Numeric value of the metric	
team	VARCHAR(255)	Sport/team affiliation (e.g., Football, Soccer, Basketball)	
session_type	VARCHAR(255)	Type of session (e.g., Practice, Game, Training) - only relevant for Kinexon	
session_description	TEXT	Detailed description of the session	
function_description	VARCHAR(255)	Movement or exercise description	
data_source	VARCHAR(50)	Original data source (Hawkins, Kinexon, or Vald)	
created_at	TIMESTAMP	Record creation timestamp	

Key Features:

- Long Format Data: Each row represents one metric measurement for one player at one point in time
- **Anonymized Players**: All player names are replaced with codes (PLAYER_001, etc.) to protect privacy
- Multi-Source Integration: Combines data from three different sports performance systems
- Longitudinal Data: Multiple measurements per player over time enable trend analysis

Understanding the Data Structure:

This table uses long format (also called "narrow" or "tidy" format), which means:

- Each metric gets its own row
- A single player test session may generate dozens or hundreds of rows
- Example: If PLAYER_001 does a jump test that measures 5 different metrics, there will be 5 rows with the same timestamp

Example:

PROFESSEUR: M.DA ROS

playername team	timestamp 	device metric 	value
- PLAYER_001 Football	2024-09-15 10:30:00	·	2.45
PLAYER_001 Football PLAYER_001	•	0 Hawkins Jump Height(m) 0 Hawkins Peak Force(N)	0.52
Football PLAYER_002 Football	2024-09-15 10:35:00	0 Hawkins mRSI	2.12

Why long format?

- Efficient storage when you have many metrics
- Flexible easy to add new metrics without changing table structure
- Common in healthcare/research databases
- You'll practice transforming this to "wide format" for analysis

Part 1: Database Connection & Data Exploration

Objectives:

- · Establish database connection
- Understand data structure and quality
- Generate summary statistics

Tasks:

1.1 Database Setup (Individual)

Each team member should:

- Set up Python environment with required libraries (sqlalchemy, pandas, pymysql)
- Successfully connect to the database (credentials will be provided)
- Test connection by querying the research_experiment_refactor_test table

Deliverable: Screenshot showing successful connection and first 10 rows from the table

1.2 Data Quality Assessment (Group)

As a team, create a Python script that answers:

- 1. How many unique athletes are in the database?
- 2. How many different sports/teams are represented?
- 3. What is the date range of available data?
- 4. Which data source (Hawkins/Kinexon/Vald) has the most records?
- 5. Are there any athletes with missing or invalid names?
- 6. How many athletes have data from multiple sources (2 or 3 systems)?

Deliverable: Python script (part1_exploration.py) with documented code and a 1-page summary report

1.3 Metric Discovery & Selection (Group)

Create a query/script that:

- Lists the top 10 most common metrics for Hawkins data (filter by data_source = 'Hawkins')
- Lists the top 10 most common metrics for Kinexon data (filter by data_source = 'Kinexon')
- Lists the top 10 most common metrics for Vald data (filter by data_source = 'Vald')
- Identifies how many unique metrics exist across all data sources

For each data source, show the date range and record count for the top metrics

Deliverable: Add to part1_exploration.py with printed output

1.4 Brief Review Of Literature & Metric Selection (Group)

Based on your metric discovery, conduct a very brief literature review (does not need to follow and abide by PRISMA framework due to limited time allowed):

- 1. Select 5 metrics that are well-represented in your data (good sample size, multiple teams)
- 2. Research each metric using Google Scholar, PubMed, or sports science databases:
 - What does this metric measure?
 - Why is it important for athletic performance?
 - What are normal/elite values?
 - What does existing research say about this metric?
- 3. Identify a research gap or question:
 - Is there limited research on this metric in certain sports?
 - Are there unexplored relationships (e.g., metric X vs. injury risk)?
 - Could you compare across teams/positions in novel ways?

Deliverable:

- Short report (2-3 pages) in part1_literature_review.pdf that includes:
 - Summary of the selected metrics and why you chose them
 - Brief review for each (3-5 key citations per metric)
 - Potential research question or hypothesis based on identified gaps
 - Justification for why your analysis will be valuable

Note: The rest of the assignment should focus on YOUR selected metrics, not necessarily mRSI (which is used as an example in the instructions).

Part 2: Data Cleaning & Transformation

IMPORTANT: From this point forward, all analyses should focus on YOUR selected metrics from Part 1. The examples that mention specific metrics (like mRSI) are just illustrations - replace them with your chosen metrics.

Objectives:

- Handle missing data and outliers for your selected metrics
- Transform data from long to wide format
- Create derived metrics based on your research question

Tasks:

2.1 Missing Data Analysis (Group)

Focusing on **your selected metrics** from Part 1:

- 1. Identify which of your selected metrics have the most NULL or zero values
- 2. For each sport/team, calculate what percentage of athletes have at least 5 measurements for your selected metrics
- 3. Identify athletes who haven't been tested in the last 6 months (for your selected metrics)
- 4. Determine if you have sufficient data to answer your research question

Deliverable: Python script (part2_cleaning.py) with summary statistics

2.2 Data Transformation Challenge (Group)

The data is in "long format" (one row per metric per timestamp). Transform it to "wide format" for easier analysis.

Create a function that:

- Takes a player name (e.g., "PLAYER_001") and your selected metrics as input
- Returns a pandas DataFrame with:
 - Columns: timestamp, [your selected metrics]
 - One row per test session
 - o Properly handles missing values

Test your function on at least 3 different athletes from different teams.

Deliverable: Add transformation function to part2 cleaning.py with example outputs

2.3 Create a Derived Metric (Group)

Athletes are often compared to team averages. Using your selected metric(s), create code that:

- 1. Calculates the mean value for each team (using the team column)
- 2. For each athlete measurement, calculates their percent difference from their team's average
- 3. Identifies the top 5 and bottom 5 performers relative to their team mean
- 4. Optional: Create z-scores or percentile rankings
 - Z-score tutorial: SciPy stats.zscore
 - Percentile tutorial: NumPy percentile
 - Example: Calculating z-scores in pandas

Deliverable: Extend part2_cleaning.py with this analysis

Part 3: Longitudinal Analysis & Visualization

REMINDER: Continue using **YOUR selected metrics** and relate all findings back to your literature review and research question.

Objectives:

- Analyze trends over time for your selected metrics
- Create meaningful visualizations that support your research question
- Identify performance patterns and compare to published literature

Tasks:

3.1 Individual Athlete Timeline (Pair Work)

Select 2 athletes from a team of your choice and use your selected metrics:

- 1. Create line plots showing their metric values over time (recommended: last 6-12 months)
- 2. Identify their best and worst performance dates
- 3. Calculate if they show improvement or decline trend (simple linear regression acceptable)
- 4. Relate your findings to your literature review are the trends expected? Surprising?

Deliverable: Jupyter notebook (part3_viz_individual.ipynb) with plots and interpretation

3.2 Team Comparison Analysis (Pair Work)

Compare two different teams/sports using the team column and your selected metrics:

- 1. Create box plots or violin plots comparing your selected metric(s) between teams
- 2. Calculate statistical significance (t-test or ANOVA as appropriate)
- 3. Create a visualization showing testing frequency by team over time
- 4. Interpret results in context of your literature review:
 - o Do differences make sense given sport demands?
 - How do values compare to published norms (if available)?
 - What might explain the differences or similarities?

Deliverable: Jupyter notebook (part3_viz_comparison.ipynb) with plots and statistical tests

3.3 Dashboard Metric (Full Group)

Create a summary visualization that shows:

- Total number of tests per month (all systems combined)
- Breakdown by data source (stacked bar chart recommended)
- Identify any gaps or unusual patterns in data collection

Deliverable: Add to part3_viz_comparison.ipynb

Part 4: Research Synthesis & Application

REMINDER: Your deliverables should demonstrate how your analysis addresses the research gap you identified in Part 1.

Objectives:

- Create evidence-based performance monitoring tools
- Synthesize findings into a research report
- Communicate practical implications for coaches/trainers
- Present findings professionally

Tasks:

4.1 Performance Monitoring Flag System (Group)

Design a flagging system based on your selected metrics and literature review:

Your Task:

- 1. Based on your literature review, define 2-3 clinically/performance-relevant thresholds:
 - Examples: metric declined by X% compared to baseline
 - Metric below/above published risk threshold
 - Athlete hasn't been tested in >30 days
 - Left/right asymmetry if using bilateral metrics
 - Deviation from team norms
- 2. Justify your thresholds using evidence from your literature review
- 3. Create a script that identifies athletes meeting your flag criteria
- 4. Output a CSV with: playername, team, flag reason, metric value, last test date

Deliverable:

- Python script (part4_flags.py)
- Output CSV (part4_flagged_athletes.csv)
- Brief justification document (1 page) explaining your thresholds

4.2 Research Synthesis & Recommendations (Group)

Synthesize your findings into a research report (3-4 pages) that includes:

- 1. Introduction: Your research question and why it matters (based on literature gaps)
- 2. Methods:
 - Description of your selected metrics
 - o Data filtering and cleaning approach
 - Statistical methods used
- 3. Results:
 - Key findings from your analyses
 - o Tables and figures with appropriate captions
 - Statistical test results

4. Discussion:

- How do your findings relate to existing literature?
- What gaps did your analysis address?
- What are the practical implications for coaches/trainers?
- What surprised you? What confirmed existing knowledge?
- 5. Limitations & Future Directions:
 - Data limitations (missing values, sample size, etc.)
 - What additional data would be helpful?
 - Recommendations for future research
- 6. References: Full citations for your literature review

Deliverable: PDF report (part4_research_synthesis.pdf)

4.3 Final Presentation (Group)

Create a 10-12 minute presentation covering:

- 1. Introduction (2 min):
 - Your research question/hypothesis
 - Why it matters (the gap you're addressing)
 - Your selected metrics and why
- 2. Methods (2 min):
 - Data overview and quality assessment
 - Analysis approach
- 3. Key Findings (4 min):
 - o Main results with visualizations
 - Statistical findings
 - Comparison to literature
- 4. Practical Applications (2 min):
 - Your performance monitoring flag system
 - o Recommendations for coaches/trainers
 - How your findings fill the identified gap
- 5. Limitations & Future Work (1 min):
 - Data challenges you encountered
 - o What additional research is needed
- 6. **Q&A** (1-2 min)

Deliverable: Presentation slides (PowerPoint/PDF) uploaded to your GitHub repo

Technical Requirements

Required Python Libraries:

```
import pandas as pd
import sqlalchemy
from sqlalchemy import create_engine, text
import pymysql
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
from scipy import stats
```

Database Connection Template:

```
from sqlalchemy import create_engine
import pandas as pd

# Connection string (credentials will be provided)
engine = create_engine(
    "mysql+pymysql://username:password@host:port/database_name")

# Example query
query = "SELECT * FROM research_experiment_refactor_test LIMIT 10"
df = pd.read_sql(query, engine)

# Close connection when done
engine.dispose()
```

Code Quality Expectations:

- Use meaningful variable names
- Comment complex logic
- Don't hardcode secret/database connection string values use variables/parameters that load from .env files

Submission Guidelines

GitHub Repository Setup (Required)

IMPORTANT: All work must be submitted via GitHub.

- 1. Repository Name: 507_groupproject_2025
- 2. Owner: One team member creates the repository
- 3. Collaborators: Owner must add:
 - All team members with **Admin** rights
 - Instructor: hantswilliams with Admin rights
- 4. Repository Settings:
 - Public
 - Must include a comprehensive README.md

To add collaborators:

- 1. Go to your repository on GitHub
- 2. Click Settings → Collaborators and teams
- 3. Click Add people
- 4. Search for GitHub username

5. Select role: Admin6. Send invitation

Required collaborators:

- All team members
- hantswilliams (instructor)

File Structure:

```
507_groupproject_2025/
── README.md (with group member names, roles, and contributions)
— references.md (full bibliography in APA or similar format)
— .env.example (template for database credentials - DO NOT include
actual credentials)
____.gitignore (exclude .env, data files, etc.)
  - part1_exploration.py
part1_summary.pdf
part1_literature_review.pdf (NEW - your metric selection and lit
review)
part2_cleaning.py
 — part3_viz_individual.ipynb
  part3_viz_comparison.ipynb
 — part4_flags.py
 — part4_flagged_athletes.csv
part4_flag_justification.pdf (NEW - explain your thresholds)
  - part4_research_synthesis.pdf (NEW - replaces sport_analysis.pdf)

    final_presentation.pdf
```

Grading Rubric (100 points):

Points	Details
25	Data exploration (10), Metric selection & lit review (10), Research question (5)
20	Missing data analysis (8), Transformation (7), Derived metrics (5)
20	Individual timeline (7), Team comparison (8), Statistical rigor (5)
25	Flag system with justification (10), Research synthesis report (15)
5	Clean code, comments, GitHub organization, reproducibility
5	Clarity, professionalism, time management, Q&A responses
	25 20 20 25 5

Component Points Details

TOTAL 100

Important Notes:

- GitHub Repository: You MUST create a repository named 507_groupproject_2025 and add hantswilliams as a collaborator with Admin rights. Failure to do so will result in point deductions.
- **Data Privacy:** All athlete identifiers are anonymized (PLAYER_001, etc.). Do not attempt to identify individuals. This data is for research/educational purposes only.
- **Collaboration:** Work is expected to be collaborative, but each member should contribute code. When you submit to github, I should see multiple collaborators with their own commits. I do not want to see one single contributor to the repo.
- Resources: You may use any resources, but please cite any external code/algorithms used in a markdown file called references.md
- **Security:** Never commit database credentials or **.env** files to GitHub. Use **.gitignore** to exclude sensitive files.

Helpful Hints

PROFESSEUR: M.DA ROS

Setting Up Your GitHub Repository

1. Create .gitignore file (to protect sensitive data):

```
# Environment variables and credentials
env
*.env
# Python
__pycache___/
*.py[cod]
*$py.class
*.S0
# Jupyter Notebook
.ipynb_checkpoints
*.ipynb_checkpoints/
# Data files (if you download data locally)
* CSV
*.pkl
*.xlsx
!*_example.csv # Allow example files
# IDEs
.vscode/
.idea/
```

```
*.swp
*.swo

# OS
.DS_Store
Thumbs.db
```

2. Create .env.example file (template for teammates):

```
# Database Configuration
# Copy this file to .env and fill in your actual credentials
DB_HOST=your_database_host
DB_USER=your_username
DB_PASSWORD=your_password
DB_NAME=database_name
DB_TABLE=research_experiment_refactor_test
```

3. README.md should include:

- Project title and description
- Team member names and roles
- Setup instructions (how to install dependencies)
- How to run each script
- Database connection instructions
- Project structure overview

Common Challenges & Solutions:

- 1. Challenge: Timestamp is stored as DATETIME but may need addition formatting
 - Solution: Use pd.to_datetime()
- 2. **Challenge:** Some metrics have parentheses and special characters
 - Solution: Use backticks in SQL: `Jump Height(m)` or use metric = 'Jump Height(m)' in WHERE clause
- 3. Challenge: Data in long format is hard to analyze
 - Solution: Use pandas.pivot_table() or pandas.pivot() to transform to wide format
- 4. Challenge: Too much data to load at once
 - Solution: Filter by team, data_source, or date range in SQL query first

```
query = """
SELECT * FROM research_experiment_refactor_test
WHERE team = 'Football'
```

```
AND timestamp >= '2024-01-01'
```

- 5. Challenge: Values stored as DECIMAL but may have NULLs
 - Solution: Use pd.to_numeric(df['value'], errors='coerce') or df['value'].fillna(0)
- 6. Challenge: Filtering by data source
 - Solution: Use the data_source column:

```
hawkins_data = df[df['data_source'] == 'Hawkins']
kinexon_data = df[df['data_source'] == 'Kinexon']
vald_data = df[df['data_source'] == 'Vald']
```

Sample Queries to Get Started:

Example 1: Explore available metrics by data source

```
-- See what metrics are available from each system
SELECT data_source, metric, COUNT(*) as record_count
FROM research_experiment_refactor_test
GROUP BY data_source, metric
ORDER BY data_source, record_count DESC;
```

Example 2: Find metrics with good sample sizes

```
-- Find metrics that have been measured frequently
SELECT metric,
       COUNT(DISTINCT playername) as num_athletes,
       COUNT(*) as total_measurements,
       MIN(timestamp) as earliest_date,
       MAX(timestamp) as latest_date
FROM research_experiment_refactor_test
WHERE value IS NOT NULL
GROUP BY metric
HAVING num athletes >= 10 -- At least 10 different athletes
ORDER BY total_measurements DESC
LIMIT 20;
```

Example 3: Get data for YOUR selected metric

```
-- Replace 'YOUR_METRIC' with your chosen metric
SELECT playername, team, timestamp, metric, value, data_source
FROM research_experiment_refactor_test
WHERE metric = 'YOUR_METRIC' -- e.g., 'Jump Height(m)', 'Peak
Force(N)', etc.
  AND value IS NOT NULL
ORDER BY playername, timestamp;
```

Example 4: Compare metric across teams

```
-- Replace 'YOUR_METRIC' with your chosen metric
SELECT team,
       COUNT(DISTINCT playername) as num_athletes,
       AVG(value) as mean_value,
       STDDEV(value) as std_value,
       MIN(value) as min_value,
       MAX(value) as max_value
FROM research_experiment_refactor_test
WHERE metric = 'YOUR_METRIC'
  AND team IS NOT NULL
  AND value IS NOT NULL
GROUP BY team
ORDER BY mean_value DESC;
```

Example 5: Get longitudinal data for one athlete

```
SELECT timestamp, metric, value, device, session_type
FROM research_experiment_refactor_test
WHERE playername = 'PLAYER 001'
  AND metric IN ('YOUR_METRIC_1', 'YOUR_METRIC_2') -- Your selected
metrics
ORDER BY timestamp, metric;
```

Extension Opportunities (Optional - Extra Credit)

For groups wanting an additional challenge:

- 1. Interactive Dashboard: Create a simple web dashboard using Dash or Streamlit
- 2. Advanced Statistics: Implement mixed-effects models to account for individual repeated measures

Resources that you might find helpful

PROFESSEUR: M.DA ROS

Literature Search Resources:

Databases for Sports Science & Performance:

- Google Scholar Broad academic search
- PubMed Biomedical and health sciences
- SPORTDiscus Sports & sports medicine (via library)
- ResearchGate Access to researchers and papers

Useful Search Terms:

- Your metric name + "athletic performance"
- Your metric + "reliability" or "validity"
- Your metric + specific sport (e.g., "football", "soccer")
- "Force plate assessment" / "GPS tracking" / "Strength testing"
- "Injury risk" + your metric
- "Normative values" + your metric

Key Journals:

- Journal of Strength and Conditioning Research
- Sports Medicine
- International Journal of Sports Physiology and Performance
- British Journal of Sports Medicine
- Medicine & Science in Sports & Exercise

Data Visualization:

- Matplotlib Tutorials
- Seaborn Gallery

Statistics:

PROFESSEUR: M.DA ROS

- SciPy Stats Module
- Statistics How To Plain language stats explanations