TP5: Gradateur monophasé sur charge RL

I. Objectif

- ✓ Représentation et analyse des tensions d'un gradateur monophasé avec différentes variantes de la charge et différents angles de retard à l'amorçage.
- ✓ Détermination de la caractéristique de commande de la valeur efficace du courant circulant dans la charge.

II. Manipulations

II.1. Gradateur monophasé

1. Réaliser le montage suivant :

2. Allure dans le temps des tensions et des courants

a. Observer à l'oscilloscope les courbes:

de la tension alternative d'alimentation canal I

la tension de sortie (de charge) u_{α} et de la tension v_{T1} et v_{T2} aux bornes de T1 et T2 pour les angles de retard $\alpha = 45^{\circ}, 135^{\circ}$. Canal II

b. Observer par l'intermédiaire de l'ampli séparateur et du canal II de l'oscilloscope les courbes dans le temps de :

courant i_{T1} du thyristor T_1 , courant i_{T2} du thyristor T_2 et courant de charge i_{α} pour des angles de retard $\alpha = 45^{\circ}, 135^{\circ}$.

3. Mesure des courants et tensions

a. Mesurer les grandeurs suivantes et les reporter dans le tableau suivant Mesurer les grandeurs suivantes et les reporter dans le tableau suivant

lpha en degrés	0°	30°	60°	90°	120°	150°	180°
U_{lpha} / V							
$I_{TAV1lpha}$ / A							
$I_{TRMS1lpha}$ / A							
I_{α}/V							

F.H Page 2

4. Résultats d'exploitation :

lpha en degrés	0°	30°	60°	90°	120°	150°	180°
I_{α}/I_{0} expérimentale							
I_{lpha}/I_0 théorique							

5. Analyses et commentaires

- a. Décrire brièvement les courbes obtenues à partir de l'observation sur oscilloscope.
- **b.** Représenter la caractéristique de commande du courant de charge $\frac{I_{\alpha}}{I_0} = f(\alpha)$