

Advanced Topics in Software Verification

Gerwin Klein, June Andronicku Miki Tanaka, Johannes Åman Pohjola

T3/2022

Last time...

程序代写代做 CS编程辅导

- → Simply typed lam \sim s: λ
- ightharpoonup Typing rules for λ riables, type contexts
- $\rightarrow \beta$ -reduction in λ -included ubject reduction
- \rightarrow β -reduction in λ^{\rightarrow} always terminates
- → Types and terms Wisabelle: cstutorcs

Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

Content

程序代写代做 CS编程辅导

下71147 00% 下4117	
→ Foundations & Principles	
 Intro, Lambe natural deduction 	[1,2]
• Higher Orde 🗱 👼 🔀 r (part 1)	$[2,3^a]$
Term rewritike Term rewritik	[3,4]
→ Proof & Specification Techniques	
 Proof & Specification Techniques Inductively defined sets, rule induction 	[4,5]
Datatype industipm niemitipe of the Param Help	[5,7]
 General recursive functions, termination proofs 	$[7^{b}]$
 Proof automationalls autopart @163.com 	[8]
 Hoare logic, proofs about programs, invariants 	[8,9]
• C verificatio QQ: 749389476	[9,10]
 Practice, questions, exam prep https://tutores.com 	[10 ^c]

^aa1 due; ^ba2 due; ^ca3 due

程序代写代做 CS编程辅导

Preview: Proofs in Isabelle Assignment Project Exam Help

Email: tutores@163.com

QQ: 749389476

Proofs in Isabelle

程序代写代做 CS编程辅导

General schema:

lemma name: "<go: apply <method>

apply <method>

done

WeChat: cstutorcs

Assignment Project Exam Help

→ Sequential application of methods until all subgoals are splyed 389476

The Proof State

程序代写代做 CS编程辅导

1.
$$\bigwedge x_1 \dots x_p . \llbracket A \rrbracket \longrightarrow B$$

2. $\bigwedge y_1 \dots y_q . \llbracket C \rrbracket \longrightarrow D$

 $x_1 \dots x_p$ Parameters

A₁...A_n Local segumptions Actual (sub)goal

Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

Isabelle Theories

程序代写代做 CS编程辅导

Syntax:

theory MyTh imports $ImpTh_1$. begin

(declarations, definitions, theorems, proofs, ...)*
end WeChat: cstutorcs

- → MyTh: name of theory Must live in file MyTh. thy
- → ImpTh_i: name of imported theories import transitive.

Unless you need something 49989476 theory MyTh imports Main begin ... end https://tutorcs.com

Natural Deduction Rules

程序代写代做 CS编程辅导

$$\frac{A \quad B}{A \wedge B}$$
 conjl

$$\begin{array}{c|c} \blacksquare & \blacksquare & \blacksquare \\ \hline \bullet & \blacksquare & A \land B & \blacksquare A; B \blacksquare \\ \hline \bullet & \hline & C \\ \hline \end{array} \text{ conjE}$$

$$\frac{A}{A \lor B} \xrightarrow{B} \frac{B}{A \lor B} \text{ disjected costutors} \xrightarrow{C} \frac{A \lor B}{C} \xrightarrow{A} \xrightarrow{B} C \xrightarrow{B} C \text{ disjE}$$

$$\dfrac{A \Longrightarrow B}{A \longrightarrow B}$$
 impl

$$\frac{A \Longrightarrow B}{A \longrightarrow B} \text{ impl} \qquad \frac{\text{Assignment Project/Exam Help}}{C} \text{ impE}$$

$$\text{Email: tutorcs@163.com}$$

QQ: 749389476

For each connective (\(\lambda, \times, \text{ etc} \): https://tutorcs.com
introduction and elimination rules

Proof by assumption

程序代写代做 CS编程辅导

proves

1.
$$[B_1; ...; B_m] \Longrightarrow WeChat: cstutorcs$$

by unifying C with ones of the Project Exam Help

Email: tutorcs@163.com

There may be more than one matching B_i and multiple unifiers.

QQ: 749389476 Backtracking!

https://tutorcs.com Explicit backtracking command: back

Intro rules

程序代写代做 CS编程辅导

Intro rules decompo \blacksquare \blacksquare \blacksquare e to the right of \Longrightarrow . a \blacksquare \blacksquare \blacksquare \blacksquare e = cintro-rule>)

Intro rule $[A_1; ...; A_k]$ Chat Acstmeses

→ To prove A it suffices to show $A_1 ... A_n$ Assignment Project Exam Help

Applying rule [A1; Eniali] tutores @toesubgood C:

- \rightarrow unify A and C
- \rightarrow replace C with $n \sim 3.5 \times 10^{-10} \cdot 10$

Intro rules: example

程序代写代做 CS编程辅导

To prove subgoal A - can use: $\frac{P\Longrightarrow Q}{P\longrightarrow Q}$ impl

(in Isabelle: $impl : (A) \Longrightarrow P \longrightarrow Q$)

Recall:

Applying rule $[A_1; ...; A_n] \xrightarrow{\text{WeChat: cstutorcs}} A$ to subgoal C:

- → unify A and C Assignment Project Exam Help
- → replace *C* with *n* new subgoals $A_1 ... A_n$ Email: tutorcs@163.com

Here: QQ: 749389476

- \rightarrow unify... $?P \longrightarrow ?Q$ with $A \longrightarrow A$
- → replace subgoal... https://hutpres.f.fom $A \longrightarrow A$) with $[A] \Longrightarrow A$ (which can be proved with: apply assumption)

Elim rules

程序代写代做 CS编程辅导

Elim rules decompose on the left of \Longrightarrow . $a_{ij} = e_{ij} = e_{ij}$

Elim rule $[A_1; ...; A_V]$ Chat A_{cs} means

→ If I know A_1 and want to prove A it suffices to show $A_2 ... A_n$ Assignment Project Exam Help

Applying rule $[A_1; E_{\text{mid}}]$ tutor cs @ to cs @ to cs | C: Like **rule** but also

- → unifies first premise of rule with an assumption
- → eliminates that assumption https://tutorcs.com

Elim rules: example

程序代写代做 CS编程辅导

To prove
$$\llbracket B \land A \rrbracket \Longrightarrow A$$
 we can use: $P \land Q$ $\llbracket P; Q \rrbracket \Longrightarrow Q$

(in Isabelle: conjE : \blacksquare \blacksquare \blacksquare \blacksquare); $\llbracket ?P; ?Q \rrbracket \Longrightarrow ?R \rrbracket \Longrightarrow ?R$)

Recall: WeChat: cstutorcs

Applying rule $[A_1; ...; A_n] \Longrightarrow A$ to subgoal C: Like **rule** but also Assignment Project Exam Help

- → unifies first premise of rule with an assumption
- → eliminates that assumption

Here:

- QQ: 749389476
- → unify... ?*R* with https://tutorcs.com
- \rightarrow and also unify... $?P \land ?Q$ with assumption $B \land A$
- → replace subgoal... $\llbracket B \land A \rrbracket \Longrightarrow A$ with $\llbracket B; A \rrbracket \Longrightarrow A$ (which can be proved with: **apply** assumption)

程序代写代做 CS编程辅导

Demo

WeChat: cstutorcs

Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

More Proof Rules

Iff, Negation, True and False

程序代写代做 CS编程辅导

$$\frac{A \Longrightarrow B \quad B \Longrightarrow A}{A = B} \quad \text{iffD1} \quad \frac{A = B}{A \Longrightarrow B} \quad \text{iffD2} \quad Assignment Project Exam Help}$$

$$\frac{A \Longrightarrow B \quad B \Longrightarrow A}{A \Longrightarrow B} \quad \text{iffD1} \quad \frac{A \Longrightarrow B}{A \Longrightarrow B} \quad \text{iffD2} \quad Assignment Project Exam Help}$$

$$\frac{A \Longrightarrow False}{\neg A} \quad \text{notl} \quad \frac{Email: tutorcs@163 \cdot CAMA}{P} \quad \text{notE}$$

$$\frac{A \Longrightarrow False}{\neg A} \quad \text{notE}$$

Equality

程序代写代做 CS编程辅导

 $\overline{t=t}$ refl

$$\frac{r=s \quad s=t}{r=t} \text{ trans}$$

Email: tutorcs@163.com

Rarely needed ex QQtl\(\frac{749388476}{100} mplicitly by term rewriting

Classical

程序代写代做 CS编程辅导

$$\frac{\neg A \Longrightarrow F}{A} \xrightarrow{\text{Chat: cstutorc} A} \Longrightarrow A \text{ classical}$$
Assignment Project Exam Help

- excluded-middle ccontr and classical mail: tutores @ 163.com not derivable from the other rules.
- → if we include True True derivable

They make the topic total make the t

Cases

程序代写代做 CS编程辅导

WeChat: cstutorcs

Assignment Project Exam Help Isabelle can do case distinctions on arbitrary terms:

Email: tutorcs@163.com apply (case_tac term)

QQ: 749389476

Safe and not so safe

程序代写代做 CS编程辅导

Safe rules preserve ty conjl, in the first iffl, refl, ccontr, classical, conjE, disjE $\frac{A}{A \wedge B} \text{Conjt cstutorcs}$

Unsafe rules can turn sign both good for the wall one

disjl1, disjl2ilimpEriff@116ff.P2mpotE

 $\frac{A}{A}\sqrt{R}$: distibution of the second se

https://tutorcs.com

Apply safe rules before unsafe ones

程序代写代做 CS编程辅导

Demo

WeChat: cstutorcs

Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

What we have learned so far...

程序代写代做 CS编程辅导

- \rightarrow natural deduction $, \lor, \longrightarrow, \neg$, iff...
- → proof by assumpt or rule, elim rule
- → safe and unsafe ru
- → indent your proofs! (one space per subgoal)
- → prefer implicit backfracking (childhing) or rule_tac, instead of back
- → prefer and defer Assignment Project Exam Help
- → oops and sorry

Email: tutorcs@163.com

QQ: 749389476