数据隐私方法伦理和实践 Methodology, Ethics and Practice of Data Privacy

6. 隐私检测 Privacy Detection

张兰 中国科学技术大学 计算机学院 2020春季

Privacy risks is horrible but hard to detect.

Ignored details

Additional metadata

Content correlation

教你如何通过照片找到王珞丹的家

这名网友先是通过<mark>筛选王珞丹的博客和微博</mark> 从其中筛选出几张比较有价值的照片

Aim to answer:

Is the data private? & Why?

Consensus of Privacy Detection

Privacy Related Factors

Private Data

Could be:

- Metadata
- · Specific parts of data
- · Specific connections between parts of data
- ...

Methods should be effective and interpretable

Overview of Privacy Detection Techniques

- War-defined methods
 - Define private related factors by user

- Machine Learning Based Methods
 - Discover private related factors in a data driven way

Privacy Detection Techniques

Take image, a representative modal of unstructed data, as an example:

- War-defined Methods
 - Image-level user survey
 - Object-level user survey
- Machine Learning Based Method
 - Content sensitiveness
 - Multimodal fusion

Privacy Detection Techniques

Take image, a representative modal of unstructed data, as an example:

- War-defined Methods
 - Image-level user survey
 - Object-level user survey
- Machine Learning Based Method
 - Content sensitiveness
 - Multimodal fusion

User-defined Methods – Image Level

- PicAlert!: A System for Privacy-Aware Image Classification and Retrieval
 - Aim to search related images with key word/Predict privacy label of a new image
 - Main work
 - Label data manually (image-level)
 - Extract features and train a classifier

Figure 1: System architecture overview.

User-defined Methods – Image Level

- An image-level privacy dataset
 - Obtain image privacy dataset with label by crowdsourcing
 - 37535 images from Flickr
 - 81 judgers between 10 and 59 years old
 - Each picture was labeled private or public if at least 75% of the judges were of the same opinion.
 - 4701 images are labeled as private; 27405 images are labeled as public; remainder are labeled as undecidable
- Features and Classifier
 - Features: SIFT
 - Classifier: SVM

User-defined Methods – Image Level

An example of search results

Figure 3: Private and public search results for the query "cristiano ronaldo" (June 06 2012).

Privacy Detection Techniques

Take image, a representative modal of unstructed data, as an example:

- War-defined Methods
 - Image-level user survey
 - Object-level user survey
- Machine Learning Based Method
 - Content sensitiveness
 - Multimodal fusion

- Towards a visual privacy advisor: Understanding and predicting privacy risks in images [2]
 - Aim to predict risk
 - Main work
 - Identify privacy attributes manually from multiple sources
 - EU Data Protection Directive 95/46/EC
 - US Privacy Act of 1974
 - Relevant attributes on Twitter/Flickr/Reddit/...
 - Label data manually (object-level)
 - Conduct user study to discover user privacy preference
 - Attribute detection & privacy risk prediction

- The Visual Privacy(VISPR) Dataset: An object-level privacy dataset
 - Data Collection:
 - 22167 images from Flickr
 - Compilation of 68 privacy attributes from multiple sources:
 - EU Data Protection Directive 95/46/EC
 - US Privacy Act
 - The rules on prohibiting sharing personal information on various social networking websites (e.g., Twitter, Reddit, Flickr)
 - Data Labeling:
 - 68 privacy attributes of Images are labeled

Label distribution of VISPR Dataset

Figure 2: Label distribution in our dataset. Y-axis indicates the number of images.

Images	22,167
Labels	115,742
Avg Labels/Image	5.22
Max Images/Label	10,460
Min Images/Label	44

- War Study
 - 30 user profiles
 - 305 unique AMT workers
 - Workers rate images and 68 private attributes in VISPR independently
 - Higher score indicate greater sensitivity to privacy

- Privacy risk prediction
 - Identify user profile
 - Attribute detection
 - Privacy risk prediction

Definition 1. Privacy Risk Score. For some image x, attributes $y \in [0,1]^A$ and user preference $u \in [0,5]^A$, the privacy risk score of image x containing attributes y on user u is $\max_a y_a u_a$

- An interesting finding in VISPR
 - Users often fail to enforce their privacy preferences when sharing images online.

Privacy Detection Techniques

Take image, a representative modal of unstructed data, as an example:

- W User-defined Methods
 - Image-level user survey
 - Object-level user survey
- Machine Learning Based Method
 - Content sensitiveness
 - Multimodal fusion

- iprivacy: Image privacy protection by identifying sensitive objects via deep multi-task learning
 - Aim to predict privacy label of image
 - Main work:
 - Align privacy setting(Privacy/Public/Shared with acquaintance/...) to object classes
 - Detect private object classes via DNN
 - Use DNN to detect classes
 - Use top-down hierarchical clustering to improve efficiency

» Automatic object-privacy alignment

- Extract feature by DNN
 - Full set of 1000 object classes
 - 1000-dimensional sparse representation vector X
- Clustering images according to KI
 - Number of clusters K is a parameter

$$\kappa_{I}(X_{i}, X_{j}) = \sum_{l=1}^{1000} \delta(X_{i}^{l}, X_{j}^{l}) \qquad \delta(X_{i}^{l}, X_{j}^{l}) = \begin{cases} 1, & \text{if } X_{i}^{l} = X_{j}^{l} = 1; \\ 0, & \text{otherwise} \end{cases}$$

- Align privacy relevance score
 - For each cluster:
 - Calculate relevance score between each object class and each privacy setting

$$\gamma(C_i, t) = \frac{\parallel \Psi(C_i, t) \parallel}{\parallel \Psi(C, P) \parallel} \quad t \in P$$

• Align the privacy setting with highest γ to the object class

- » Refine privacy relevance score
 - Construct co-occurrence network
 - The object classes, which have large values of cooccurrences $\phi(.,.)$, are connected to form an object cooccurrence network.

$$\phi(C_i, C_j) = \rho(C_i, C_j) \log \frac{\rho(C_i, C_j)}{\rho(C_i) + \rho(C_j)}$$

$$\rho(C_i, C_j) = \frac{N(C_i, C_j)}{N}, \quad \rho(C_i) = \frac{N(C_i)}{N}, \quad \rho(C_j) = \frac{N(C_j)}{N}$$

- Refine privacy relevance score on co-occurrence network by random walk
 - Update score iteratively:

For each t, let
$$\rho_{0}(C_{i},t)=\gamma(C_{i},t)$$

$$\rho_k(C_i, t) = \theta \sum_{C_j \in \Omega_{C_i}} \rho_{k-1}(C_i, t) \psi_{ij} + (1 - \theta) \gamma(C_i, t)$$

where,
$$\psi_{ij} = \frac{\phi(C_i, C_j)}{\sum_{C_k \in \Omega_{C_i}} \phi(C_i, C_k)}$$

- Align privacy setting t with biggest ρ to Ci
 - 268 object classes is identified as privacy-sensitive classes

Fig. 6. A small part of our object co-occurrence network.

- » Results of privacy alignment
 - Obtain 268 privacy-sensitive object classes from 1000 TABLE I Classes The short list of privacy-sensitive object classes identifed by this work.

- ·	T				
Categories	Privacy-Sensitive Object Classes				
Human Beings	portrait, people in birthday party, human				
	body, human hair, human face, human eye,				
	human neck, people in award, mannequin				
	modeling, customer, · · ·				
Family	baby, children, relatives/family, friend, hus-				
	band, wife, parents, brother, sister, cousin,				
	kids at play, african american, couple, · · ·				
Woman	girl, explicit women, female surf ng, · · ·				
Ethic	erotic, · · ·				
House	home, bedroom, restroom, indoor, kitchen,				
	•••				
Clothes	suit, bikini, maillot, · · ·				
Activity	drinking, wedding, swimming, bathing,				
	working boys, sitting on boys, f shing, birth-				
	day parties, travel, vacations, fun summer				
	vacation, · · ·				
Work Lab	science lab, laptop, computer, personal, · · ·				

- » Results of privacy alignment
 - Obtain 268 privacy-sensitive object classes from 1000 classes

Categories	Public Object Classes			
Nature & Scenery	mountain, island, rock, sand, sea, coast,			
	lake, river, sunset, sky, landscape, lakeside,			
	sandbar, beach, cartoon, fre, ice, water,			
	fashion, · · ·			
Animal	pets, dog, cat, bird, wild animals, f sh, · · ·			
Plant	f ower, tree, asian f oral, · · ·			
Season	winter, sprint, summer, autumn, · · ·			
Transportation	road, traff c, boat, car, ···			
Building	House outside, garden, bridge, shopping cen-			
	ter,park, bank, · · ·			
Planet	moon, sun, earth, · · ·			
City Signs	New York, Washington, Beijing, · · ·			

Privacy Detection Techniques

Take image, a representative modal of unstructed data, as an example:

- W User-defined Methods
 - Image-level user survey
 - Object-level user survey
- Machine Learning Based Method
 - Content sensitiveness
 - Multimodal fusion

- Dynamic Deep Multi-modal Fusion for Image Privacy Prediction
 - Both image content, e.g. scene and object, and tags affect image privacy.
 - Different images have different privacy factors

Sir	Single modality is correct			Multiple modalities is correct			
Image	Tags	Base classifiers	Image	Tags	Base classifiers		
	bed, studio	scene: 0.62		girl, baby	scene: 0.49		
	dining table	object: 0.5		indoor, people	object: 0.87		
(a)	speakers, music	tags: 0.29	(d)	canon	tags: 0.97		
65.59	birthday	scene: 0.57		people, party	scene: 0.92		
	night	object: 0.78		awesome, tea	object: 0.38		
(b)	party, life	tags: 0.39	(e)	bed, blanket	tags: 0.7		
© TOEIC	toeic, native	scene: 0.02		indoor, fun	scene: 0.92		
Valued Po-	speaker, text	object: 0.15		party	object: 0.73		
(c)	document, pen	tags: 0.86	(f)	people	tags: 0.77		

- Dynamic fusion of three base classifiers
 - Three base classifiers: Object, Scene and Tag classifiers
 - Train 'competence' classifiers respectively to control the fusion process of base classifiers.

Feature
Extraction

Identification
of
Neighborhoods

Competence'
Features
Construction

Competence'
Competence'
Classifier
Training

>> Features

 Three base features by CNN: Train 3 base classifiers on the corresponding modality feature sets

Object (F^o) : 1000 dimension

Scene (F^s): 365 dimension

Image Tags (F^t) : 265 dimension

- Combination feature: Using in 'Neighoods identification' Object + Scene + Tag (F^{ost}): $f^{cat}(F^o, F^s, F^t)$
- Privacy profile feature: Using in 'Neighoods identification' $\overline{T} = \bigcup_{B_i \in \mathcal{B}} \{ P(Y_T = private | T, B_i), P(Y_T = public | T, B_i) \}$

Feature
Extraction

Identification
of
Neighborhoods

Competence'
Features
Construction

Competence'
Competence'
Classifier
Training

- Identification of Neighborhoods
 - Find neighbors according to F^{ost} and \overline{T} by cosine similarity.
- " 'Competence' Features Construction
 - ϕ^{o} , ϕ^{s} , ϕ^{t} are used to train corresponding competence classifiers
 - Each ϕ is consist of three parts:
 - ϕ^1 is the prediction results of Neighbors N_V^T by current base classifier
 - ϕ^2 is the prediction results of Neighbors N_P^T by current base classifier
 - ϕ^3 is the prediction results of input Image by current base classifier

#1 Neighborhoods

Feature
Extraction

Identification
of
Neighborhoods

Competence'
Features
Construction

Competence'
Features
Construction

Competence'
Training

" 'Competence' Classifier Training

- Three competence classifiers $C = \{C^o, C^s, C^t\}$
- To train "competence" classifiers $C_i \in C$, we consider label Li = 1 if base classifier $B_i \in B$ predicts the correct privacy of a target image, otherwise 0.

Dynamic Fusion

- Dynamic voting: Dynamically determine the subset of most competent base classifiers
- Thresholding: If the competence score is greater than 0.5, then base classifier B_i is identified as competent to predict the privacy of target image
- The competence score is used as weight in final fusion

An illustration of the proposed approach

Experiment Results

Dataset is PicAlert

		Private	Private Public		Overall					
Features	Precision	Recall	F1-score	Precision	Recall	F1-score	Accuracy (%)	Precision	Recall	F1-score
DMFP	0.752	0.627	0.684	0.891	0.936	0.913	86.36	0.856	0.859	0.856
"Competence" Features										
DMFP $-\phi_1$	0.777	0.553	0.646	0.874	0.951	0.911	85.74	0.849	0.852	0.844
DMFP $-\phi_2$	0.74	0.565	0.641	0.875	0.939	0.906	85.11	0.842	0.846	0.84
DMFP $-\phi_3$	0.752	0.627	0.683	0.891	0.936	0.913	86.35	0.856	0.859	0.856

Table 3: Evaluation of dynamic multi-modal fusion for privacy prediction (DMFP).

Model	(a)	(b)	(c)	(d)
DMFP	1	1	1	×
Object	×	1	1	X
Scene	1	X	/	X
Tags	1	1	X	X

Figure 4: Predictions for private images.

Reference

- [1] Zerr, Sergej, Stefan Siersdorfer, and Jonathon Hare. "PicAlert! a system for privacy-aware image classification and retrieval." Proceedings of the 21st ACM international conference on Information and knowledge management. 2012.
- [2] Orekondy, Tribhuvanesh, Bernt Schiele, and Mario Fritz. "Towards a visual privacy advisor: Understanding and predicting privacy risks in images." Proceedings of the IEEE International Conference on Computer Vision. 2017.
- [3]Yu, Jun, et al. "iPrivacy: image privacy protection by identifying sensitive objects via deep multi-task learning." IEEE Transactions on Information Forensics and Security 12.5 (2016): 1005-1016.
- [4] Tonge, Ashwini, and Cornelia Caragea. "Dynamic deep multi-modal fusion for image privacy prediction." The World Wide Web Conference. 2019.

Exercise in it is a series in the series in

Exercise

- **»** Ex.1
 - Read a paper about Privacy detection and write a report.
- **»** Ex.2
 - Reproduce the deep random walk in [3].
- **»** Ex.3
 - *Reproduce the dynamic fusion algorithm in [4]

THANKS! Any questions?

You can find me at:

-) @username
- w user@mail.me

