

Finnish National Ontologies for the Semantic Web

- Towards a Content and Service Infrastructure

<u>Eero Hyvönen</u>, Arttu Valo, Ville Komulainen, Katri Seppälä, Tomi Kauppinen, Tuukka Ruotsalo, Mirva Salminen, and Anu Ylisalmi

Helsinki University of Technology and University of Helsinki Semantic Computing Research Group (SeCo) http://www.seco.tkk.fi

Content

- Why a semantic web infrastructure is needed?
 - Problem
 - Theses for the solution
- FinnONTO Finnish Semantic Web Infrastructure Project
 - Goals
 - Solutions
 - First results

The Problem

- Four Facts
 - Semantic Web = next generation WWW
 - Ontologies = the "silver bullet" of the Semantic Web
 - Finnish ontologies = there were none
 - Something should be done about it!
- If shared ontologies are not available, then
 - machine semantics on the web cannot be created,
 - the web will not be interoperable,
 - content creation work will be duplicated, and
 - web applications are more difficult and expensive to create.

3

Theses Underlying FinnONTO (1)

- The Semantic Web needs a content infrastructure
 - like traffic needs roads
 - like energy service needs power stations & network
 - like telecommunication needs GSM etc. systems
- Major components of the infrastructure
 - shared reference ontologies
 - ontology services
 - international standards

Theses Underlying FinnONTO (2)

- Thesauri -> ontologies
 - Human readability -> machine understandability
- National "ontologization" should be started
 - Content interoperability between different domains needed
 - Core ontologies should be maintained publicly
 - » Supports wide commitment to their usage
 - Core ontologies should be free and Open Source
 - » Supports wide usage and interoperability
- Business opportunities can be based on the infrastructure
 - Application specific ontologies
 - Semantic web applications

5

FinnONTO-project

- Goal
 - Demonstrate benefits of a national semantic web infrastructure
 - Start an inter-organizational process towards it
- Time table
 - 9/2003-10/2005 and 10/2005-5/2007
- Organization
 - 28 public organizations & companies
 - » provide content and funding
 - 5 university labs, most research done by SeCo
- Volume
 - next year 0,8Me/year

Three Major Goals

HELSINKI UNIVERSITY OF TECHNOLOGY Media Technology

- 1. Develop open source core ontologies
 - General Finnish Thesaurus YSA
 - -> General Finnish Ontology YSO
 - Other related ontologies
- 2. Provide public ontology services
 - ONKI Server
- 3. Application demonstrations: Semantic portals
 - Eating our own "dog food"

__

1. Develop Core Open Source Ontologies

HELSINKI UNIVERSITY OF TECHNOLOGY Media Technology

- Motto: Thesauri -> Ontologies
- YSO Finnish Upper Ontology
- Other related core ontologies
 - Places
 - » Including historical place name/are development
 - Actors
 - » People, companies, organizations, ...
 - Domain specific ontologies
 - » Cultural concepts, photography, history, health, ...

Case: YSO Finnish Upper Ontology

- Basis: ~23.000 terms of YSA Thesaurus, 179 domains
 - Typical thesaurus (LT/NT, RT, ...)
 - Taxomies only partialle developed
 - Widely used by human indexers in different domains
- Our experience of using thesauri on the semantic web
 - Not enough: lightweight ontologies and manual work is needed!
 - » Examples will be given
 - For semantic searching and browsing

_

Making YSA into an ontology YSO

HELSINKI UNIVERSITY OF TECHNOLOGY Media Technology

- The process
 - 1. Transformation into RDF(S)/OWL
 - » Mechanical transformation into a Protege-2000 project
 - » Result: objects with following semantic properties:
 - · Labels in different languages
 - Larger/Narrower term LT/NT
 - Related term RT
 - 2. Hyponymy construction by hand: solving basic semantical problems
 - » Terminology construction
 - » Disambiguating individuals from classes
 - » Disambiguating concept meanings
 - » Disambiguating LT/NT meanings
 - » Ensuring subclass transitivity
 - 3. Enriching the ontology
 - » Disambiguating RT meanings
 - » Ontology population

Terminology Construction

- Two basic choices
 - Terms attached to ontology concepts
 - » Problem:
 - lots of terms may refer to a concept
 - -E.g. different languages
 - term usage may be context dependent
 - -E.g. conventions used in organizations
 - Separate modular terminologies (our choice)
 - » Problem:
 - managing different terminologies

1.

Disambiguating Individuals from Classes

- An example from YSA thesaurus
 - "Halley comet" LT "comet"
 - Problem: "Halley comet" is an individual of the class "comet" but the machine does not know this
 - » There can be many comets with properties inherited from the class "comet" (and its super classes)
 - » There cannot be several "Halley comets"
 - » An individual cannot belong to several classes but classes can
 - This is a convention e.g. in Protege

Disambiguating Concepts

HELSINKI UNIVERSITY OF TECHNOLOGY Media Technology

- An example from YSA thesaurus
 - Term "johtaminen" (directing) can mean
 - » Directing an organization
 - » Directing a musical performance
 - » Leading electricity
 - » Leading to some place (e.g. a road)
 - » ...
 - Problem: semantic confusion for the machine
 - » E.g., what to retrieve for keyword "johtaminen"
 - Solution: represent different meanings by different concepts
 - » At least major semantic distinctions should be made

13

Disambiguating LT/NT Meanings

HELSINKI UNIVERSITY OF TECHNOLOGY Media Technology

- LT/NT relation has many meanings
 - the machine cannot disambiguate them although humans can
- An example from YSA thesaurus
 - "hospital" LT "health care institution" "comet" LT "solar system"
 - Problem of semantical confusion:
 - » "hospital" subClassOf "health care institution"
 - OK: hospitals inherit properties of health care institutions
 - » "comet" subClassOf "solar system"
 - WRONG: a comet is not a solar system and does not have own planets etc.
- Solution:
 - "hospital" subClassOf "health care institution" "comet" partOf "solar system"

Ensuring Subclass Transitivity

- An example from YSA thesaurus
 - "fuel oil" LT "oil" "pine oil" LT "oil" "oil" LT "diggings"
 - Problem: "pine oil" is not "diggings" but "fuel oil" is
 - » The machine cannot understand the difference although humans can
- Solution
 - Differentiate multiple meanings of "oil"
 - Create two subClassOf hierarchies

Disambiguating RT relations

HELSINKI UNIVERSITY OF TECHNOLOGY Media Technology

- Example from YSA:
 - "Solar wind" RT "Northern lights"
- Solution approach:
 - Identify a small set of generic role relations
 - Use frames (cf. e.g. FrameNet):
 - Events are of central importance
 - Event types can be characterized by a set of roles
 - E.g. selling/buying event may have roles Agent, Recipient, Location
 - Terms sell/buy refer to the same event
- For example:

 - "Solar wind" RT "Northern lights"-> "causes1" source "Solar wind" result "Northern lights"
- This work will be first tested in domain specific applications

2. Ontology Server ONKI

- Problem
 - A single authority cannot manage large multi-domain ontologies
 - » E.g., maintaining YSA is difficult
 - Ontologies have to be developed collaboratively by domain expert groups
 - » However, this leads to organizational difficulties
- Support is needed for
 - distributed development,
 - versioning,
 - publishing, and
 - usage through the web.
- Solution: ONKI server with its services
 - Support development and publishing processes
 - Support usage as web services

Collaborative Ontology Development in ONKI

- Basic workflow
 - Each inter-related ontology in maintained by a domain expert group DEG
 - » DEG maintains its own concepts as an ontology
 - » DEG publishes new versions of it in ONKI
 - » Each concept is "owned" by one DEG
 - Other groups can "borrow" concepts from their owners by using "proxies"
 - » Properties can be inherited from the home ontology
 - » Concepts can be modified locally
 - When an owner of a concept modifies her ontology
 - » changes are documented as instances of changes (an ontology)
 - » changes are stored in ONKI when a new version is committed there
 - When a borrower wants to update his ontology to match a new version of a dependent ontology
 - » change history can point out possible problems to her and
 - » can help her in making the needed updates
- Design and implementation is underway

19

ONKI Browser: A Use Example

HELSINKI UNIVERSITY OF TECHNOLOGY Media Technology

- Setting
 - A legacy cataloging system in a museum
 - The museum is convinced that cultural ontologies are needed for indexing collection artifacts
 - "How can be start producing semantic metadata in practice?"
- Problem:
 - How to find right up-to-date labels, URIs, etc. for metadata?
 - How to transfer them easily into the database?
- Solution:
 - Using ONKI as a web service
 - » Search & browsing functions
 - » Copying URIs etc. data into the local system

