Warm-Up Problem 1

If 45mL of water added to 250mL of a 0.75 M K₂SO₄ solution, what will be the molarity (concentration) of the diluted solution?

ANS: 0.64mol/L

Warm-Up Problem 2

Ms. Narang makes a 250mL solution of NaOH. The concentration is 1.23mol/L. What mass of NaOH is in the solution?

ANS: 12.3g

Remember...

- C1V1 = C2V2 used for DILUTIONS (meaning liquid in liquid solutions)
- n = C x V and m = n x M used for making solutions from a solid solute

PRECIPITATION REACTIONS

Example #1: No precipitate

<u>NaCl in water</u>

NaCl is *soluble* in water. Solid NaCl dissociates into Na⁺ and Cl⁻ ions in aqueous solution:

$$NaCl_{(s)} \rightarrow Na^{+}_{(aq)} + Cl^{-}_{(aq)}$$

Ions break away from the dissolving crystal.

The solution consists of aqueous Na⁺ and Cl⁻ ions.

Example #2: Precipitate forms

Possible new combinations of cations and anions

$$\frac{\text{Pb(NO}_3)_2}{\text{(aq)}} + \frac{2\text{NaI}}{\text{(aq)}} \rightarrow \frac{\text{PbI}_2}{\text{(aq)}} + \frac{2\text{NaNO}_3}{\text{(aq)}}$$

Solubility Rules

Applies to	Statement	Exceptions
Li , Na , K , NH ₄	Group IA and ammonium compounds are soluble.	<u>—</u>
$C_2H_3O_2^-, NO_3^-$	Acetates and nitrates are soluble.	
Cl ⁻ , Br ⁻ , I ⁻	Most chlorides, bromides, and iodides are soluble.	AgCl, Hg ₂ Cl ₂ , PbCl ₂ , AgBr, HgBr ₂ , Hg ₂ Br ₂ , PbBr ₂ , AgI, HgI ₂ , Hg ₂ I ₂ , PbI ₂
SO_4^{2-}	Most sulfates are soluble.	CaSO ₄ , SrSO ₄ , BaSO ₄ , Ag ₂ SO ₄ , Hg ₂ SO ₄ , PbSO ₄
CO_3^{2-}	Most carbonates are insoluble.	Group IA carbonates, (NH ₄) ₂ CO ₃
PO ₄ ³⁻	Most phosphates are insoluble.	Group IA phosphates, (NH ₄) ₃ PO ₄
S^{2-}	Most sulfides are insoluble.	Group IA sulfides, (NH ₄) ₂ S
OH ⁻	Most hydroxides are insoluble.	Group IA hydroxides, Ca(OH) ₂ , Sr(OH) ₂ ,
	Ion Solubility Exceptions	Ba(OH) ₂
	NO ₃ ⁻ soluble none CIO ₄ ⁻ soluble none CI ⁻ soluble except Ag ⁺ , House except Ag ⁺ , House except Ca ²⁺ , Ending Except Group SO ₄ ²⁻ soluble except Group PO ₄ ³⁻ insoluble except Group PO ₄ ³⁻ insoluble except Group Soluble except Group Ha ²⁺ , Sr ²⁺ Soluble none NH ₄ ⁺ soluble none	g ₂ ² +, Pb ² + Ba ² +, Sr ² +, g ⁺ IA and NH ₄ + IA and NH ₄ + IA, *Ca ² +,
	K+ soluble none *slightly	y soluble

CHEMICAL EQUATIONS

There are three basic types of chemical equations: Chemical, Ionic, & Net ionic.

Chemical EQUATIONS are written as if all substances were molecular, even though some substances may exist as ions.

$$HCI(aq) + NaOH(aq) \rightarrow NaCI(aq) + H_2O(I)$$

CHEMICAL EQUATIONS

IONIC EQUATIONS have the substances which exist as ions (i.e. dissociate in water) written in Note: H₂O does not break into ions

$$H^{+}_{(aq)} + Cl^{-}_{(aq)} + Na^{+}_{(aq)} + OH^{-}_{(aq)} \rightarrow Na^{+}_{(aq)} + Cl^{-}_{(aq)} + H_{2}O_{(1)}$$

 Precipitation, Acid/base, and Redox reactions can all be written depicting the appropriate substances as ions.

CHEMICAL EQUATIONS

NET IONIC EQUATIONS are ionic equations with the Spectator ions removed.

$$H^+_{(aq)} + OH^-_{(aq)} \rightarrow H_2O_{(1)}$$

• SPECTATOR IONS do not participate in a reaction (that is they do not react to form a new substance). Common Spectator ions are Group I, many Group II, and NO_3^- (nitrate) and $C_2H_3O_2^-$ (acetate) ions.

Net Ionic Equations

Balanced Chemical Equation:

$$Pb(NO_3)_{2(aq)} + 2NaI_{(aq)} \rightarrow PbI_{2(s)} + 2NaNO_{3(aq)}$$

"Complete Ionic" Equation:

$$Pb^{2+}_{(aq)} + 2NO_{3(aq)}^{-} + 2Na^{+}_{(aq)} + 2I^{-}_{(aq)} \rightarrow PbI_{2(s)} + 2Na^{+}_{(aq)} + 2NO_{3(aq)}^{-}$$

Cancel the "spectator ions" that appear on both sides of the arrow

$$Pb^{2+}_{(aq)} + 2NO_{3(aq)}^{-} + 2Na_{(aq)}^{+} + 2I_{(aq)}^{-} \rightarrow PbI_{2(s)} + 2Na_{(aq)}^{+} + 2NO_{3(aq)}^{-}$$

"Net Ionic" Equation:

$$+21^{\circ}$$
 $\rightarrow Pbl_{2(s)}$

Balanced Molecular Equation:

$$Ba(NO_3)_{2(aq)}$$
 + $Ni(NO_3)_{2(aq)}$ + $BaSO_{4(s)}$ Ni $SO_{4(aq)}$

Balanced Molecular Equation:

Complete Ionic Equation:

$$Ba^{2+}_{(aq)} + 2NO_3^{1-}_{(aq)} + Ni^{2+}_{(aq)} + SO_4^{2-}_{(aq)}$$

$$Ni^{2+}_{(aq)} + 2NO_3^{1-}_{(aq)} + BaSO_4_{(s)}$$

Balanced Molecular Equation:

Complete Ionic Equation:

$$Ba^{2+} + 2NO_{3 (aq)} + Ni^{2+} + SO_{4 (aq)} + BaSO_{4}$$
(s)

Balanced Molecular Equation:

$$\operatorname{Ba(NO_3)_{2(aq)}}^+$$
 $\longrightarrow \operatorname{Ni(NO_3)_{2(aq)}}^+ \operatorname{BaSO_{4(s)}}$
 $\operatorname{NiSO_{4(aq)}}$

Complete Ionic Equation:

$$Ba^{2+}$$
 + 2NO_{3 (aq)} + Ni²⁺ (aq) + SO_{4 (aq)} + BaSO₄

Net Ionic Equation(s)

HCl is an acid because it dissociates in water to produce $H^+(aq)$ ions.

NaOH is a base because it produces $OH^-(aq)$ ions when added to water.

What is the Net Ionic Equation for the reaction: $HCl_{(aq)} + NaOH_{(aq)}$?

$$HCl_{(aq)} + NaOH_{(aq)} \longrightarrow H_2O_{(l)} + NaCl_{(aq)}$$

$$H^{+}_{(aq)} + OH_{(aq)} \longrightarrow H_2O_{(l)}$$

PRACTICE PROBLEMS

Balance the following molecular equations then write both the ionic & net ionic equations:

1.
$$_Na_2CO_3(aq) + _HNO_3(aq) \rightarrow _H_2CO_3(aq) + _NaNO_3(aq)$$

Note: carbonic acid decomposes into carbon dioxide and water.

2.
$$_KBr(aq) + _I_2(g) \rightarrow _KI(aq) + _Br_2(l)$$

3.
$$_AICI_3(aq) + __K_3PO_4(aq) \rightarrow __AIPO_4(s) + __KCI(aq)$$

Answers to PRACTICE PROBLEMS

.
$$Na_2CO_3(aq) + 2 HNO_3(aq) \rightarrow H_2CO_3(aq) + 2 NaNO_3(aq)$$

lote: carbonic acid decomposes into carbon dioxide and water.

onic:
$$2Na^{+}_{(aq)} + CO_{3}^{2-}_{(aq)} + 2H^{+}_{(aq)} + 2NO_{3}^{2-}_{(aq)} \rightarrow H_{2}O(I) + CO_{2}(g) + 2Na^{+}_{(aq)} + 2NO_{3}^{2-}_{(aq)}$$

Net ionic:
$$CO_3^{2-}$$
 (aq) + $2H^+$ (aq) $\rightarrow H_2O(I) + CO_2(g)$

2.
$$2KBr(aq) + I_{2}(g) \rightarrow 2 KI(aq) + Br_{2}(l)$$

Ionic: $2K^{+}_{(aq)} + 2Br^{-}_{(aq)} + I_{2}(g) \rightarrow 2K^{+}_{(aq)} + 2I^{-}_{(aq)} + Br_{2}(l)$

Net ionic:
$$2Br^{-}_{(aq)} + I_{2}(g) \rightarrow 2I^{-}_{(aq)} + Br_{2}(I)$$

S.
$$AICI_{3}(aq) + \underline{K_{3}PO_{4}(aq)} \rightarrow \underline{AIPO_{4}(s) + 3} KCI(aq)$$

Ionic: $AI^{3+}_{(aq)} + 3CI^{-}_{(aq)} + 3K^{+}_{(aq)} + PO_{4}^{3-}_{(aq)} \rightarrow AIPO_{4}(s) + 3K^{+}_{(aq)} + 3CI^{-}_{(aq)}$

Net ionic:
$$Al^{3+}_{(aq)} + PO_4^{3-}_{(aq)} \rightarrow AlPO_4(s)$$

All ions are aqueous states!!

MORE PRACTICE

Balance the following chemical equations then write both the ionic & net ionic equations:

1.
$$-Na_2SO_4(aq) + -AICI_3(aq) \rightarrow -AI_2(SO_4)_3(aq) + -NaCI(aq)$$

2. __NaBr(aq) + __Cl₂(g)
$$\rightarrow$$
 __ NaCl(aq) + __Br₂(l)

3.
$$_SbCl_3(aq) + _Na_2S(aq) \rightarrow _Sb_2S_3(s) + _NaCl(aq)$$

4.
$$_Mg(OH)_2(aq) + __H_2SO_4(aq) \rightarrow __H_2O(I) + __MgSO_4(aq)$$

Net Ionic Equations Revisited:

- 1) Write the (balanced!) molecular equation first
 - Reaction products: swap cations and anions
 - Predict solubility (using Solubility rules)
- 2) Write the complete ionic equation next
 - (s) compounds don't ionize
 - (aq) compounds do ionize

ion subscripts in the molecular equation become coefficients in the complete ionic equation!

- 3) Write the net ionic equation next
 - cancel spectator ions

The net ionic equation is a "simplified" form of the complete ionic equation