Lab 1: Prelab

Joshua Emele <jemele@acm.org>

October 2, 2015

1 Theory Problems

1.1 Spectrum of AM modulated signals

Figure 1: A sketch of the frequency spectrum of the baseband signal S(f).

Figure 2: A sketch of the frequency spectrum of the amplitude-modulated passband signal $\tilde{S}(f)$.

Figure 3: A sketch of the frequency spectrum of the demodulated signal.

1.2 Frequency demodulation errors

Figure 4: A sketch of the frequency spectrum of the demodulated signal with frequency error x = 0.

As frequency error is introduced, the alias baseband copies shift past each other. Because f_c dominates f_{max} , we assume f_c is at least several orders of magnitude larger than f_{max} .

The frequency error is now a magnitude larger than before, but is still relatively small because f_c is several order of magnitude larger than f_{max} .

Even as the aliased copies slide past each other at baseband with the introduction of frequency error, the Nyquist rate of the baseband signal is unaffected because f_{max} remains unchanged.

Figure 5: A sketch of the frequency spectrum of the demodulated signal with frequency error $x = \frac{f_{max}}{10f_c}$. Note that spectral copies at $\pm 2f_c$ exist but are not visible in the figure.

Figure 6: A sketch of the frequency spectrum of the demodulated signal with frequency error $x = \frac{f_{max}}{f_c}$. Note that spectral copies at $\pm 2f_c$ exist but are not visible in the figure.

1.3 Phase demodulation errors

An AM signal $\tilde{s}(t) = A \cos(2\pi f_c t)$ where A is a constant is demodulated by $\cos(2\pi f_c t + \phi)$ where ϕ represents a phase error.

An expression for the demodulated signal $d(t, \phi)$ as a function of the phase error ϕ is given by:

$$d(t,\phi) = A \cos(2\pi f_c t)\cos(2\pi f_c t + \phi) \tag{1}$$

The period of the carrier f_c is given by $T = \frac{1}{f_c}$.

If the demodulated signal $d(t, \phi)$ is integrated over a time period T that is many times the period of the carrier (i.e., N T, where N >= 2), the value of the integral without phase error ($\phi = 0$) is given by:

$$M_0 = \int_0^{\frac{2}{f}} A \cos(2\pi f_c t) \cos(2\pi f_c t)$$

$$= \frac{1}{f}$$
(2)

The value of the integral with phase error $(\phi \neq 0)$ over the same period is given by:

$$M_{1} = \int_{0}^{\frac{2}{f}} A \cos(2\pi f_{c}t)\cos(2\pi f_{c}t + \phi)$$

$$= \frac{\cos(\phi)}{f}$$
(3)

The maximum phase error ϕ that can be tolerated for the demodulated signal to ensure the amplitude is within ten percent of the amplitude without a phase error is given by:

$$\frac{M_0}{M_1} \le 10$$

$$\sec(\phi) \le 10$$

$$|\phi| \le \sec^{-1}(10)$$

$$|\phi| < 0.4706$$

$$(4)$$

1.4 Agilent tutorial on Spectrum Analyzers

The resolution bandwidth required to resolve signals separated by 50 kHz that differ by 40 dB in power is given by:

$$-40 * log_{10}\left(\left(\frac{50000}{\frac{B}{2\sqrt{(2^{(1/4)}-1)}}}\right)^{2} - 1\right) = -40dB, solve for B$$

$$B = 13115$$
(5)

2 Matlab/Simulink Simulations