Fuzzy PID Controller for a Attitude Hold System

Amanda McGee Dr. Kelly Cohen

Overview

- Fuzzy Logic Basics
- Problem Statement
- Fuzzy PID 1st Try
 - 3 Membership Functions
- Fuzzy PID 2nd Try
 - 7 Membership Functions
- Results

Shades of Gray

- Fuzziness is grayness
- Bivalent logic vs. Fuzzy logic
- At what point during eating an apple does the apple switch from being an apple to not being an apple?

Fuzzy Logic Flow

Fuzzy Grader (MATLAB)

Fuzzy Grader
 calculates an exam
 grade as a function of
 the amount of
 studying done and
 the amount of sleep
 the night prior to the
 exam

Applications of FIS Editor Values

Fuzzy Grader (MATLAB) – Rule Editor Graders File Edit View Options

- Seventeen rules are defined in the rule editor, i.e.
 - If there is little studying and some sleep then the exam is failed
 - If there is no studying or no sleep then the exam is completely failed
 - If there is moderate studying and a full night's sleep then the exam grade is an A
 - If there is an endless amount of studying then the exam is aced
- Each rule has a weighted value which is a constant that is multiplied by the result of the fuzzy operator and is applied directly before implication

FUZZY FLIGHT CONTROL

Motivation

- A fly-by-wire flight control system for a modern fighter aircraft allows for implementation of stability augmentation for dynamic performance and also for autopilot modes.
- Robust control laws have the potential to be effective for multiple flight conditions, including degraded performance due to partial aircraft failure.

Research Objective

 The main aim is to examine the effectiveness of a fuzzy logic based PID pitch attitude hold system for a F-4 fighter jet.

Method

 MATLAB/SIMULINK models were used to compare the effectiveness of fuzzy PID controller to a more conventional PID controller

PLANT MODELS

- This plant set consists of marginally stable and unstable cases, and presents an interesting control challenge.
- All plant models include actuator dynamics modeled as 10/(s+10) i.e. a time constant of 0.1 seconds.
- Investigate several degraded variants of this basic flight condition.
- A 50% reduction in the static longitudinal stability derivative, $C_{m\alpha}$, and a 50% reduction in the pitch damping derivative, C_{mq} .

Plant Cases

Flight Condition	Transfer Function
Approach	3361 s^2 + 1357 s + 102.2
	230.6 s^5 + 2508 s^4 + 2161 s^3 + 1406 s^2 + 63.04 s + 32.01
Approach, 50% Deg Cma,	3361 s^2 + 1372 s + 105
Cmq	230.6 s^5 + 2472 s^4 + 1731 s^3 + 744.8 s^2 + 36.92 s + 16
F4 Subsonic Cruise	9.99e004 s^2 + 5.105e004 s + 623.4
	877.6 s^5 + 9884 s^4 + 1.82e004 s^3 + 7.114e004 s^2 - 61.19 s - 114.1
F4 Supersonic Cruise	1.3e005 s^2 + 2.183e004 s - 31.29
	1742 s^5 + 1.83e004 s^4 + 3.553e004 s^3 + 2.677e005 s^2 + 1247 s + 123.9

Simulink Model

Cincinnati

Kd Membership Functions and Rules

Membership Functions

Rules

1st Try

		νd	Rate		
		Kd	Negative	Zero	Positive
	Error	Negative	Negative Big	Zero	Negative Small
•		Zero	Zero	Zero	Zero
		Positive	Positive Small	Zero	Positive Big

2nd Try

		Vd	Rate		
		Kd	Negative	Zero	Positive
	Error	Negative	Zero	Medium	Very Big
		Zero	Medium	Medium Big	Very Big
		Positive	Very Big	Very Big	Very Big

Rep Membership Functions and Rules

Membership Functions

Rules

1st Try

		l/n	Rate		
		Кр	Negative	Zero	Positive
	Error	Negative	Negative Big	Zero	Negative Small
		Zero	Zero	Zero	Zero
		Positive	Positive Small	Zero	Positive Big

2nd Try

	V n	Rate		
	Кр	Negative	Zero	Positive
Error	Negative	Very Big	Very Big	Very Big
	Zero	Zero	Medium Small	Small
	Positive	Very Big	Very Big	Very Big

Ki Membership Functions and Rules

Membership Functions

Rules

1st Try

	V:	Rate		
	Ki	Negative	Zero	Positive
Error	Negative	Negative Big	Zero	Negative Small
	Zero	Zero	Zero	Zero
	Positive	Positive Small	Zero	Positive Big

2nd Try

	Ki	Rate		
	NI	Negative	Zero	Positive
Error	Negative	Medium	Medium	Medium
	Zero	Medium Small	Zero	Medium Small
	Positive	Medium	Medium	Medium

Results for Approach Condition

New Kd7 Membership Functions

New Kd7 Rules

			1					
7		Rate						
	Kd	Negative Big	Negative	Negative Small	Zero	Positive Small	Positive	Positive Big
Erroi	Negative Big	Zero	Small	Small	Medium Small	Big	Big	Very Big
	Negative	Small	Small	Medium Small	Medium Small	Big	Medium Big	Very Big
	Negative Small	Small	Medium Small	Big	Big	Big	Very Big	Very Big
	Zero	Medium Small	Big	Big	Medium Big	Medium Big	Very Big	Very Big
	Positive Small	Big	Big	Big	Medium Big	Very Big	Very Big	Very Big
	Positive	Big	Medium Big	Very Big	Very Big	Very Big	Very Big	Very Big
U	Positive Big	Very Big	Very Big	Very Big	Very Big	Very Big	Very Big	Very Big

New Kp7 Membership Functions

New Kp7 Rules

	10								
7			Rate						
		Кр	Negative Big	Negative	Negative Small	Zero	Positive Small	Positive	Positive Big
Eı	rror	Negative Big	Very Big	Very Big	Very Big	Very Big	Very Big	Very Big	Very Big
		Negative	Medium Big	Medium Big	Medium Big	Very Big	Very Big	Very Big	Very Big
		Negative Small	Big	Big	Big	Big	Medium Big	Medium Big	Very Big
		Zero	Zero	Small	Medium Small	Big	Big	Big	В
		Positive Small	Big	Big	Big	Big	Medium Big	Medium Big	Very Big
		Positive	Medium Big	Medium Big	Medium Big	Very Big	Very Big	Very Big	Very Big
U		Positive Big	Very Big	Very Big	Very Big	Very Big	Very Big	Very Big	Very Big

New Ki7 Membership Functions

New Ki7 Rules

				1					
			Rate						
		Ki	Negative Big	Negative	Negative Small	Zero	Positive Small	Positive	Positive Big
	Error	Negative Big	Medium Small	Medium Small	Medium Small	Medium Small	Medium Small	Medium Small	Medium Small
-		Negative	Medium	Medium	Medium	Medium	Medium	Medium	Medium
		Negative Small	Medium	Medium	Medium Small	Medium Small	Medium Small	Medium	Medium
		Zero	Big	Big	Zero	Medium Small	Zero	Big	Big
		Positive Small	Medium	Medium	Medium Small	Medium Small	Medium Small	Medium	Medium
		Positive	Medium	Medium	Medium	Medium	Medium	Medium	Medium
UI	oiversi. Cir	Positive Big	Medium Small	Medium Small	Medium Small	Medium Small	Medium Small	Medium Small	Medium Small

Results for 7 Membership Functions – Approach Condition

Results for 7 Membership Functions – Degraded Approach Condition

Results for 7 Membership Functions – Subsonic Cruise Condition

Results for 7 Membership Functions – Supersonic Cruise Condition

Conclusions

- For both approach cases examined the fuzzy PID controller had a faster rise time and a faster settling time than the conventional controller
- Fuzzy PID also has a larger overshoot than the conventional PID controller
- For both the subsonic and supersonic cases the fuzzy PID controller has a greater overshoot than the conventional PID controller, but both controllers settle to about the same value in the same amount of time

Lessons Learned

- Order of inputs into the fuzzy controller matter
- The complexity of the controller increases proportionally to the number of membership functions
- Tuning the membership functions and rules becomes easier with a greater number of membership functions (more controllable)
- Next Steps:
 - Improve controller for subsonic and supersonic cruise conditions
 - Investigate stability of results

References

- Bossert D. E., and Cohen K., 2001, "Design of Fuzzy Pitch Attitude Hold Systems for a Fighter Jet", AIAA -2001 – 4084, AIAA Guidance, Navigation, and Control Conference, The Queen Elizabeth Hotel, Montreal, Quebec, Canada, 6 - 9 August 2001
- Bossert D. E., and Cohen K., 2002, "PID and Fuzzy Logic Pitch Attitude Hold Systems for a Fighter Jet", AIAA-2002-4646, AIAA Guidance, Navigation, and Control Conference, Monterey, California, 5-8 August 2002
- Cohen K., Vick A., "Longitudinal Stability Augmentation using a Fuzzy Logic based PID Controller"

Questions?

