PRÁCTICA 2

1) Método de la iteración de punto fijo

Se desea resolver la ecuación: $x^3 - x - 1 = 0$ en el intervalo [1, 2]. Haz un programa en C que lleve a cabo 100 iteraciones de punto fijo con $x_0 = 2$ y las siguientes funciones:

a)
$$g(x) = \frac{2x^3 + 1}{3x^2 - 1}$$
 b) $g(x) = x^3 - 1$ c) $g(x) = \sqrt{\frac{x+1}{x}}$ d) $g(x) = \sqrt{\frac{x^2 + 1}{x}}$

¿Qué ocurre en cada caso?

(Solución: a) Se observa con el programa como las iteraciones convergen a 1.32472, que es la solución del problema planteado. Desde el punto de vista teórico, podemos ver cómo lo que se hace en realidad es usar el método de Newton-Raphson y la convergencia estaba a priori asegurada con $x_0 = 2$ por verificarse las condiciones de la regla de Fourier.

- b) Método del punto fijo con $g(x) = x^3 1$. Convergencia no asegurada a priori desde el punto de vista teórico, por no verificarse las condiciones del teorema de convergencia global. De hecho, se obtiene divergencia.
- c) Método del punto fijo con $g(x) = \sqrt{\frac{x+1}{x}}$. Convergencia asegurada a priori a la solución del problema para cualquier $x_0 \in [1,2]$ ya que podemos demostrar que en este caso se verifican las condiciones del teorema de la convergencia global de la iteración de punto fijo.
- d) Se obtiene convergencia pero no a la solución de nuestro problema que es 1.32472 sino a 1.46557 y eso ocurre porque esta función no sirve para resolver la ecuación original sino otra diferente).

2) Convergencia lineal del punto fijo.

Queremos resolver la ecuación $x^2 - 5x + 6 = 0$ mediante la técnica del punto fijo. Para ello, se transforma en la ecuación $x = \frac{x^2 + 6}{5}$, usando $g(x) = \frac{x^2 + 6}{5}$. Como g(2) = 2 y además g'(2) = 0.8 sabemos que la convergencia local está asegurada. Además ocurre que $\lim_{n \to \infty} \frac{|e_n|}{|e_{n-1}|} = |g'(2)| = 0.8$.

Comprueba que se obtienen los resultados de la siguiente tabla partiendo de $x_0 = 1.5$:

iteración	X _n	$ e_n / e_{n-1} $
0	1.5	
1	1.65	0.7
2	1.74	0.73
3	1.808	0.7489
4	1.85	0.761731
10	1.96642	0.7915
20	1.99653	0.79913
40	1.99996	0.79999 ≈ 0.8
60	1.999999	0.799999 ≈ 0.8

3) Comparación de convergencia lineal y cuadrática.

En clase de teoría hemos visto que la ecuación $x^3 + 4x^2 - 10 = 0$ tenía una única solución en el intervalo [1, 2] que era s = 1.3652230013 y en este ejercicio queremos comparar la velocidad de la convergencia usando dos métodos distintos:

- > Con la iteración de punto fijo con $g(x) = \frac{1}{2} \sqrt{10 x^3}$ (convergencia lineal)
- Con el método de Newton-Raphson (convergencia cuadrática)

Efectuar 5 iteraciones de cada método partiendo de $x_0 = 1$.

(Solución: $|x_5 - s| = 0.0099$ para el primero y $|x_5 - s| = 0.000007$ para el segundo)

4) Método de Newton-Raphson para raíces múltiples.

Comprueba que x = 1 es una raíz doble de la ecuación $x^3 - 5x^2 + 7x - 3 = 0$. Partiendo de $x_0 = 0$ compara la velocidad de convergencia cuando se usa el método de Newton-Raphson sin modificar y modificado, comprobando los resultados de la siguiente tabla:

iteración	x_n (sin modificar)	x_n (modificado)
1	0.42857	0.857142
2	0.685714	0.995391
3	0.832865	0.999994
4	0.913329	1
5	0.955783	1
6	0.977655	1

7	0.988766	1
8	0.994367	1

5) Búsqueda del máximo de una función.

1.77572))

Estamos interesados en buscar el máximo de una función f(x) en un intervalo [a,b]. Vamos a suponer que se trata de una función "unimodal" en el intervalo [a,b], y eso quiere decir que existe un único número p en el intervalo[a,b] tal que f(x) es creciente en [a,p] y decreciente en [p,a]. Vamos a ver en este ejercicio dos formas diferentes de calcular el máximo.

<u>Método 1:</u> Una forma de resolver este problema, sería tomar dos puntos intermedios dentro del intervalo, que llamaremos c y d, y evaluar la función en esos puntos: si f(c) < f(d) entonces la solución p está en el subintervalo [c, b] y para la siguiente iteración será éste el intervalo de búsqueda; si f(c) > f(d), entonces la solución p está en el subintervalo [a, d] y, de nuevo, el intervalo de búsqueda en la siguiente iteración será éste subintervalo, como se observa en las siguientes figuras:

Vamos a suponer que el intervalo se divide en tres partes iguales siendo c y d los dos puntos interiores. Aplicar este método llevando a cabo 20 iteraciones para $f(x) = 2\operatorname{sen}(x) - \frac{x^2}{10}$ en el intervalo [0, 4].

Tomando $\stackrel{\wedge}{p}$ como el punto medio del último subintervalo [a,b] calculado, la estimación del máximo de la función sería: $\stackrel{\wedge}{p}$, $\stackrel{\wedge}{f(p)}$).

<u>Método 2:</u> Otra forma de resolver el problema sería calcular las soluciones de la ecuación f'(x) = 0 con cualquiera de los métodos estudiados en este tema. Por ejemplo, emplea 3 iteraciones de Newton-Raphson con $x_0 = 2$. Entonces: $\hat{p} = x_3$, siendo el máximo $(\hat{p}, f(\hat{p}))$. (Solución: 1) Máximo en el punto (1.42752, 1.77572); 2) Máximo en el punto (1.42755, 1.77572)