Quadratic Equation and Inequalition(Inequalities)

AI24BTECH11027 - R Sumanth

C MCQs with One Correct Answer

1) If l, m, n are real, $l \neq m$, then the roots by the equation: (1979)

 $(l-m) x^2 - 5 (l+m) x - 2 (l-m)$

- a) Real and equal
- b) complex
- c) Real and unequal
- d) None of the above
- 2) The equation x+2y+2z = 1 and 2x+4y+4z = 9 have (1979)
 - a) Only one solution
 - b) Only two solutions
 - c) Infinite number of solutions
 - d) None of these.
- 3) if x, y and z are real and different and $u = x^2 + 4y^2 + 9z^2 6yz 3zx 2xy$, then u is always. (1979)
 - a) non negative
 - b) zero
 - c) non positive
 - d) none of the above
- 4) let a > 0, b > 0 and c > 0. Then the roots of the equation $ax^2 + bx + c = 0$ (1979)
 - a) are real and negative
 - b) have negative real parts
 - c) both (a) and (b)
 - d) none of the above
- 5) Both the roots of the equations (x b)(x c) + (x a)(x c) + (x a)(x b) = 0 are always (1980)
 - a) positive
 - b) real
 - c) negative
 - d) none of these.
- 6) The least value of the expression $2log_{10}x log_x(0.01)$, for x > 1, is (1980)
 - a) 10
 - b) 2
 - c) -0.01
 - d) none of these.
- 7) If $(x^2 + px + 1)$ is a factor of $(ax^3 + bx + c)$,

then (1980)

1

- a) $a^2 + c^2 = -ab$
- b) $a^2 c^2 = -ab$
- c) $a^2 c^2 = ab$
- d) none of these
- 8) The no of real solution in equation $|x^2| 3|x| + 2 = 0$ is (1982 2 Marks)
 - a) 4
 - b) 1
 - c) 3
 - d) 2
- 9) Two towns A and B are 60 km apart. A school is to built to serve 150 students in a town B. If the total distance to be travelled by all 200 students is to be as small as possible, then the school should be build at (1982 2 Marks)
 - a) town B
 - b) 45 km from town A
 - c) town A
 - d) 45 km from town B
- 10) If p, q, r are any real numbers, then (1982 2 Marks)

a) $\max(p, q, r) < \max(p, q)$

- b) $\min(p, q) = \frac{1}{2}(p + q |p q|)$
- c) $\max(p,q) < \min(p,q,r)$
- d) none of these
- 11) The largest interval for which $x^{12} x^9 + x^4 x + 1 > 0$ is (1982 2 Marks)
 - a) $-4 < x \le 0$
 - b) 0 < x < 1
 - c) -100 < x < 100
 - d) $-\infty < x < \infty$
- 12) The equation $x \frac{2}{x-1} = 1 \frac{2}{x-1}$ has (1984 2 marks)
 - a) no root
 - b) one root
 - c) two equal roots
 - d) infinitely many roots
- 13) If $a^2 + b^2 + c^2 = 1$, then ab + bc + ca lies in the interval (1984 2 Marks)
 - a) $[\frac{1}{2}, 2]$

- b) [-1, 2]
- c) $[-\frac{1}{2}, 1]$ d) $[-1, \frac{1}{2}]$
- 14) If $log_{0.3}(x-1) < log_{0.09}(x-1)$, then x lies in the interval (1985 - 2 Marks)
 - a) $(2, \infty)$
 - b) (1, 2)
 - c) (-2, -1)
 - d) none of these
- 15) If α, β are the roots of $x^2 + px + q = 0$ and α^4, β^4 are the roots of $x^2 rx + s = 0$, then the equation $x^2 4qx + 2q^2 r = 0$ has always (1989 - 2 Marks)
 - a) two real roots
 - b) two positive roots
 - c) two negative roots
 - d) one positive and one negative root