

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ : G01N 33/50, 33/52, C07K 14/705, C12N 15/00, 15/12		A1	(11) International Publication Number: WO 99/47921 (43) International Publication Date: 23 September 1999 (23.09.99)		
(21) International Application Number: PCT/US99/02852		(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).			
(22) International Filing Date: 9 February 1999 (09.02.99)					
(30) Priority Data: 09/040,961 18 March 1998 (18.03.98) US					
(71) Applicant: PHARMACOPEIA, INC. [US/US]; 3000 Eastpark Boulevard, Cranbury, NJ 08512 (US).					
(72) Inventors: DAMAJ, Bassam, B.; 4121 Town Court North, Lawrenceville, NJ 08648 (US). HORLICK, Robert, A.; 29 Bradford Lane, Plainsboro, NJ 08536 (US). ROBBINS, Alan, K.; 112 South Road, Wilmington, DE 19809 (US).					
(74) Agents: JACOBS, Seth, H. et al.; Darby & Darby P.C., 805 Third Avenue, New York, NY 10022-7513 (US).					
(54) Title: CO-EXPRESSION OF G _{ia} PROTEIN AND G _i PROTEIN COUPLED RECEPTOR TO ENHANCE SIGNAL TRANSDUCTION RESPONSES					
(57) Abstract					
<p>A method for detecting compounds that bind to a G_i protein coupled receptor which comprises the steps of culturing a cell in a medium under conditions wherein G_{ia} protein and a G_i protein coupled receptor are co-expressed, contacting the cell with a test compound, and assaying the cell for a cellular response to the compound, the response being an increase in the cytoplasmic calcium concentration, where the cell has been transfected with a gene encoding a G_i protein coupled receptor and a gene coding for G_{ia} protein capable of coupling to said G_i protein coupled receptor. Cells useful in such methods, and methods for making such cells, are also provided.</p>					

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	IU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norway	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon	KR	Republic of Korea	PT	Portugal		
CN	China	KZ	Kazakhstan	RO	Romania		
CU	Cuba	LC	Saint Lucia	RU	Russian Federation		
CZ	Czech Republic	LI	Liechtenstein	SD	Sudan		
DE	Germany	LK	Sri Lanka	SE	Sweden		
DK	Denmark	LR	Liberia	SG	Singapore		
EE	Estonia						

**Co-EXPRESSION OF G_{ia} PROTEIN AND G_i PROTEIN COUPLED RECEPTOR TO
ENHANCE SIGNAL TRANSDUCTION RESPONSES**

FIELD OF THE INVENTION

10 The invention relates to methods for rapidly assaying for agonism or antagonism of G_i protein coupled receptors and to cells which can serve as assay systems for evaluating such agonism or antagonism. The invention relates particularly to methods for rapidly assaying for agonist and antagonist compounds which bind to G_i protein coupled receptors which stimulate intracellular calcium mobilization, such as
15 the nociceptin receptor, and particularly chemokine receptors such as CCR3, CCR2, and the interleukin 8 receptor type B.

BACKGROUND OF THE INVENTION

G proteins (guanine nucleotide binding regulatory proteins) are integral parts of regulatory mechanisms that operate in all human cells. Impairing G protein function can affect a cell's response to hormonal signals, e.g., by interfering with intracellular metabolic pathways. This can cause development or maintenance of a wide variety of disease states.

When functioning normally, G proteins act as essential parts of signal transducing mechanisms by which extracellular hormones and neurotransmitters convey
25 their signals through the plasma membrane of the cell and thus elicit appropriate intracellular responses.

These signal transducing mechanisms comprises three distinct components:

- 1) a receptor protein with an extracellular binding site specific for a
30 given agonist or hormone;
- 2) a membrane-bound effector protein that when activated catalyzes the formation or facilitates the transport of an intracellular second messenger, such as adenylyl cyclase which converts ATP to cyclic AMP (cAMP); and
- 3) a protein which functions as a communicator between these two.

G proteins fulfill this function as communicator between receptor and effector proteins in the generation of intracellular responses to extracellular hormones and agonists.

G proteins are composed of three polypeptide subunits: G alpha (or G_a), G beta (or G_b) and G gamma (or G_g). The G_b and G_g polypeptide subunits occur in living cells as a heterodimer, commonly referred to as a "bg" dimer. The conformation of these subunits and their degree of association with each other change during the signal transducing mechanism. These changes are associated with the hydrolysis of the nucleotide guanosine triphosphate (GTP) to form guanosine diphosphate (GDP) and free phosphate (GTPase activity). The binding sites for GTP and GDP, and the GTPase catalytic site, reside in the alpha subunit of the G protein.

An example of a G protein cycle which occurs when a signal is conveyed across the cell membrane is as follows:

In an unstimulated cell the G proteins are found in a resting state in which alpha, beta and gamma subunits are complexed together and GDP is bound to G_a . The binding of an appropriate hormone or agonist to the receptor changes its conformation and causes it to activate the G protein by displacing GDP and allowing GTP to bind. This is the rate-limiting step in the G protein cycle. When GTP is bound to G_a it may dissociate from bg and is able to bind to, and activate, adenylate cyclase, which releases cAMP into the cytoplasm. GTP is then hydrolysed to GDP G_a and the cycle is complete.

A series of complex interactions has evolved to allow signal amplification, such that a single hormone-receptor complex can trigger the production of several hundred second messenger molecules, such as cAMP. cAMP is a potent second messenger that binds to and activates protein kinase A (PKA). PKA was first shown to play a role in glycogen metabolism and is now known to influence a variety of processes, including transcription.

This system also allows several different receptors to interact with a signal-generating enzyme. The receptors can activate the enzyme or inhibit it. For example, distinct alpha subunits G_{sa} (stimulatory) and G_{ia} (inhibitory) combine with the bg complex to form stimulatory or inhibitory G proteins. An example of a receptor that interacts with G_i to lower the concentration of cAMP is the alpha 2-adrenergic receptor. Integration of signals from G_s and G_i allows the level of cAMP in the cell to be fine-tuned in response to several different extracellular agonists.

Although G proteins were first identified and characterized in relation to the adenylyl cyclase system discussed above, it is now known that they are involved in many aspects of cell signaling. In particular, certain G proteins act in signal transducing pathways that activate phospholipase C. This enzyme catalyzes the

5 hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP_2) to form diacylglycerol (DG) and inositol 1,4,5-triphosphate (IP_3). DG activates protein kinase C (PKC) which phosphorylates a certain sub-set of cellular proteins and modulates their activity. For example, PKC is important in controlling intracellular pH and in transcriptional activation of specific genes. IP_3 is a small water-soluble molecule that causes the
10 release of calcium ions (Ca^{2+}) from intracellular stores. Ca^{2+} is a potent intracellular messenger in several metabolic and homeostatic pathways.

Many drugs are currently directed at hormone receptors. Examples include beta-adrenergic agents used in the treatment of asthma, and "beta-blockers" used in the treatment of high blood pressure. Assays for chemical compounds that act
15 at particular G protein coupled receptors have typically been based on the use of radioligands, where either the drug of interest is radiolabeled and its binding to receptor directly assayed, or the ability of a compound of interest to displace a known radioligand from a receptor of interest is assayed. Radioligand binding assays, however, use dangerous and expensive radioisotopes, and require disposal of
20 radioactive reagents and supplies. Also, these assays are not as amenable to high-throughput systems as are assays which monitor intracellular processes such as calcium release.

Various methods have been developed to assay for receptor/ligand interactions without using radioactive reagents. For example, to assay G protein
25 coupled signal transduction pathways that involve the release of intracellular calcium stores, direct detection methods have been developed that precipitate calcium with alizarin sulfonate.

Receptors are normally present in very low numbers on the surfaces of cells that are useful in such assays. Therefore, when performing receptor activation
30 assays it is common to first overexpress the receptor of interest by introducing into cells DNA which is capable of expressing the receptor.

However, merely overexpressing the desired receptor may not allow generation of sufficient signal. For example, when the receptor is activated, it may

not transduce sufficient intracellular calcium to allow unambiguous detection. This problem has been found by the present inventors to be particularly present with respect to detection of intracellular calcium release associated with the activation of G_i coupled receptors.

5 Thus, when G_i coupled receptors are overexpressed in cells, the calcium release achieved by exposure of the cells to receptor agonist or antagonist compounds can be too low for reliable measurement, i.e., the resulting signal strength may be too low for an efficient assay. Thus, there is a need for a method to increase the second messenger signal strength generated by agonist binding to receptor-overexpressing
10 cells. The signal generated by agonist binding must be sufficiently robust that a decrease in signal, e.g., in response to antagonist binding, is detectable.

SUMMARY OF THE INVENTION

It has been determined that expression of transfected DNA encoding a G_{ia} protein subunit that couples to a co-expressed receptor that couples to a G_i protein
15 will obviate the "signal strength" problem referred to above, and will produce a significant and reproducible intracellular calcium signal that can be reliably detected.

In one aspect, the invention relates to a method for assaying a test compound for its effect on a G_i protein coupled receptor. The method involves contacting a cell with the test compound and assaying the cell for cytoplasmic calcium
20 concentration. According to the invention, the cell employed in such an assay has been transfected with a gene encoding a G_i protein coupled receptor and with a gene coding for a G_{ia} protein capable of coupling to the G_i protein coupled receptor to increase cytoplasmic calcium upon binding of an agonist to the G_i protein coupled receptor.

25 In another aspect, the present invention relates to a cell useful for high- or low-throughput assays to determine if a compound binds to a G_i protein coupled receptor, the cell comprising transfected DNA which expresses a G_i coupled receptor, transfected DNA which expresses a G_{ia} protein subunit, and an intracellular calcium release mechanism which produces a detectable signal as measurable by fluorescence
30 of a fluorophore in response to agonist compound binding to the receptor when the G_i protein coupled receptor is coexpressed with the G_{ia} protein subunit.

In yet another aspect, the invention relates to a method for producing a cell for detecting compounds which bind to a G_i protein coupled receptor which

comprises the steps of transfecting a cell with a gene which codes for a G_i protein coupled receptor, transfecting the cell with a gene which codes for a G_{ia} protein capable of coupling to the receptor, and culturing the cell in medium under conditions in which the G_{ia} protein and the G_i protein coupled receptor are co-expressed in the
5 cell.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1a is a depiction of the pHEBo vector.

Figure 1b is a depiction of the p394 vector.

Figure 1c is a depiction of the pcmvmcs1 vector.

10 Figure 1d is a depiction of the pcDM8 vector.

Figure 1e is a depiction of the pm3ar vector.

Figure 1f is a depiction of the pm3CCR3 vector.

15 Figure 1g is a schematic showing the modification of the CCR3 gene by the addition of a signal sequence coding region.

Figure 1h is a depiction of the pm3CCR3sp vector.

Figure 2a is a depiction of the pE3 vector.

Figure 2b is a depiction of the pE3delta vector.

Figure 2c is a depiction of the pPur vector.

Figure 2d is a depiction of the pE3pur vector.

20 Figure 2e is a depiction of the pEpurGia2 vector.

Figure 3 is the nucleotide sequence of the pCEP4 vector.

Figure 4 is the nucleotide sequence of the pCDM8 vector.

Figure 5 is the nucleotide sequence of the pBSIISK+ vector.

Figure 6 is the nucleotide sequence of the pPur vector.

25 Figure 7 is a bar graph illustrating the stability of the Kd for agonist in CCR3 receptor and CCR3 receptor/G_{ia2} protein transfected cells.

Figure 8 is a bar graph illustrating the stability of the receptor number per cell in CCR3 receptor and CCR3 receptor/G_{ia2} protein transfected cells.

30 Figure 9 is a bar graph illustrating the increases in calcium mobilization in response to eotaxin either in cells transfected with the CCR3 receptor alone or in cells cotransfected with the CCR3 receptor and G_{ia2} protein.

Figure 10 is a bar graph illustrating the increases in calcium mobilization in response to nociceptin either in cells transfected with the nociceptin

receptor alone or in cells cotransfected with the nociceptin receptor and G_{ia2} protein.

Figure 11 is a graph representing a time course illustrating the increase in the concentration of intracellular calcium in response to the CCR2 agonist MCP-1 either in cells transfected with the CCR2 receptor alone or in cells cotransfected with 5 the CCR2 receptor and G_{ia2} protein.

Figure 12 is graph showing the dose-response relationship for increases in cytoplasmic calcium as a result of exposure of cells to interleukin 8 either in cells transfected with the interleukin 8 receptor type B alone or in cells cotransfected with the interleukin receptor type B and G_{ia2} protein.

10 DETAILED DESCRIPTION OF THE INVENTION

All patents, patent applications, and publications referred to herein are hereby incorporated by reference in their entirety. In case of a conflict in description or terminology, the present disclosure is intended to control.

Definitions:

15 "G_i protein" as used herein refers to the heterotrimeric guanine nucleotide binding proteins G_{i1}, G_{i2}, and G_{i3}, including those from any animal species (e.g. mouse), and derivatives having mutated sequences such as G_{ip2}.

"Transfecting" as used herein means to introduce exogenous DNA into a cell.

20 "Codes for" as used herein means the property of a DNA polynucleotide to be transcribed by an RNA polymerase into messenger RNA, which messenger RNA can in turn be translated into a polypeptide. The polypeptide so produced is said to be "coded for" by the DNA polynucleotide.

25 G protein "coupling" to a receptor as used herein means the activation of a guanine nucleotide binding protein by the interaction of a cell surface receptor with an agonist for that receptor.

"Culturing" as used herein means the incubation of cells in a medium sufficient for the maintenance of cell division and cellular physiological processes.

30 "Co-expressed" as used herein means that at least two proteins are synthesized in a cell as a result of the introduction into the cell of DNA foreign to the cell.

"Cellular response" as used herein means the response of a cell to the activation of a G protein by an agonist-bound receptor, or the response of a cell to the

presence of a receptor antagonist, and includes second messenger responses such as the opening or closing of ionic channels, such as calcium or potassium channels, the activation or inhibition of adenylyl cyclase, which catalyzes the conversion of ATP to cyclic AMP, and the activation of phospholipase C, which cleaves phosphatidylinositol 5 4,5 bisphosphate into diacylglycerol and inositol triphosphate (IP₃).

"Native DNA" of a cell or cell line is the DNA complement of a defined cell or cell line prior to the introduction, by any means, of exogenous DNA into the cell or cell line.

"Integrated" as used herein with regard to DNA refers to DNA that has 10 been transfected into a cell which has been incorporated into the native DNA of a cell.

"Stably transfected" as used herein means the introduction into and maintenance of exogenous DNA into a cell or cell line by integration into the host chromosome or by episomal transfection for at least 2 weeks and preferably more than 4 months.

15 "Transiently transfected" as used herein means the introduction into and maintenance of exogenous DNA in a cell or cell line for a limited period of time. If the DNA is derived from an integrating construct, then transience is defined as 0 to 5 days post transfection or until detectable signal has faded into insignificance. If the DNA is derived from a replicating, episomal construct, then transience is defined as 0 20 to 21 days post transfection, or until detectable signal has faded into insignificance. A detectable signal can be the direct detection of the transfected DNA, for example by Southern blotting or PCR, or detection of an RNA transcribed from the DNA, or detection of a protein expressed by the DNA.

A "DNA construct" as used herein means a polynucleotide which 25 contains an open reading frame which encodes a protein, and includes any promoter, transcription initiation, transcription termination, or other nucleotide sequences which might facilitate expression of the encoded protein.

An "intracellular calcium release mechanism" as used herein means any combination of cellular proteins which, when activated, function to cause the release of 30 calcium ions from intracellular stores into the cytoplasm of the cell.

G_i protein coupled receptors, such as the C-C chemokine receptor 3 (CCR3), C-C chemokine receptor 2 (CCR2), interleukin 8 receptor type B (CXCR2), and nociceptin receptor (NociR), must physically couple to G_i proteins in order to

transduce extracellular stimuli into intracellular signals that lead to functional responses. We have developed an assay for detecting agonists and antagonists of G_i protein coupled receptors. The assay is particularly useful in high throughput screening to determine compounds that are useful as drug candidates.

5 When expressed from exogenously introduced DNA constructs, G_i protein coupled receptors can be expressed at low levels on the surface of the transfected cells; they may also overwhelm the endogenous cellular mechanism for transducing extracellular signals into intracellular responses. The signals generated by activation of such expressed receptors can be weak. We have determined that when
10 performing assays relying on mobilization of calcium from intracellular stores, weakness in signal strength can be obviated by transfecting cells which express G_i protein coupled receptors with a DNA construct which encodes a G_{ia} protein subunit capable of coupling to the receptor. This can be done, for example, by cotransfected cells with separate constructs encoding the G_i protein coupled receptor and G_{ia} protein
15 subunit, or by transfecting a single construct which encodes both a G_i protein coupled receptor and a G_{ia} protein subunit.

Coexpression of the G_{ia} subunit has been determined to have a positive effect on intracellular calcium mobilization. It has been determined in particular that G_{ia} protein subunits transduce signal generated by G_i coupled receptors to release
20 intracellular calcium stores. It is known that G protein bg dimers are required in the signal transduction pathway from G_i coupled receptors to the activation of phospholipase C (which ultimately results in the release of intracellular calcium stores). See, e.g., Wu, D. et al., *Science* 261:101 (1993); Slepak, V.Z. et al., *J. Biol. Chem.* 270:4037 (1995); and Arai, H. et al., *Proc. Natl. Acad. Sci.* 94:14495 (1997). We
25 have determined that expression of G_{ia} protein subunits can act to stimulate calcium release in response to receptor activation. Furthermore, expression of bg dimers or phospholipase C b (PLCb) is not required.

DNA, VECTORS, and HOST CELLS

30 In practicing the present invention, many conventional techniques in molecular biology, microbiology, and recombinant DNA are used. Such techniques are well known and are explained fully in, for example, Sambrook et al., 1989, *Molecular Cloning: A Laboratory Manual*, Second Edition, Cold Spring Harbor

Laboratory Press, Cold Spring Harbor, New York; *DNA Cloning: A Practical Approach*, Volumes I and II, 1985 (D.N. Glover ed.); *Oligonucleotide Synthesis*, 1984, (M.L. Gait ed.); *Nucleic Acid Hybridization*, 1985, (Hames and Higgins); *Transcription and Translation*, 1984 (Hames and Higgins eds.); *Animal Cell Culture*, 5 1986 (R.I. Freshney ed.); *Immobilized Cells and Enzymes*, 1986 (IRL Press); Perbal, 1984, *A Practical Guide to Molecular Cloning*; the series, *Methods in Enzymology* (Academic Press, Inc.); *Gene Transfer Vectors for Mammalian Cells*, 1987 (J. H. Miller and M. P. Calos eds., Cold Spring Harbor Laboratory); and *Methods in Enzymology* Vol. 154 and Vol. 155 (Wu and Grossman, and Wu, eds., respectively).

10 Insertion of nucleic acids (typically DNAs) encoding the receptor and G_{ia} polypeptides into a vector to create a DNA construct for transfection is easily accomplished when the termini of both the DNAs and the vector comprise compatible restriction sites. If this cannot be done, it may be necessary to modify the termini of the DNAs and/or vector by digesting back single-stranded DNA overhangs generated 15 by restriction endonuclease cleavage to produce blunt ends, or to achieve the same result by filling in the single-stranded termini with an appropriate DNA polymerase.

Alternatively, any restriction site desired may be produced, e.g., by ligating nucleotide sequences (linkers) onto the termini. Such linkers may comprise specific oligonucleotide sequences that define desired restriction sites. Restriction sites 20 can also be generated by the use of the polymerase chain reaction (PCR). See, e.g., Saiki *et al.*, 1988, *Science* 239:48. The cleaved vector and the DNA fragments may also be modified if required by homopolymeric tailing.

Nucleic acids utilized in the invention may be isolated directly from well-known cells. Alternatively, the polymerase chain reaction (PCR) method can be 25 used to produce the nucleic acids of the invention, using either chemically synthesized strands or genomic material as templates. Primers used for PCR can be synthesized using the sequence information provided herein and can further be designed to introduce appropriate new restriction sites, if desirable, to facilitate incorporation into a given vector for recombinant expression. A clone containing DNA expressing G_{ia2} is 30 available from the American Type Culture Collection, Rockville, MD, Cat. No. 63311, and the sequence of G_{ia2} protein is available from Genbank, accession number M13963. The sequence of a G_{ia1} protein is available from Genbank, accession number M17219, and the sequence of a G_{ia3} protein is also available from Genbank, accession

number M20597. A clone containing DNA expressing G_{i_2} is available from the American Type Culture Collection, Rockville, MD, Cat. No. 63312; the DNA has the sequence $G_{i_2}Q205L$.

The nucleic acids employed in the present invention may be flanked by native regulatory sequences, i.e., those that are found associated with the relevant gene in the genome of the organism from which the gene is isolated, or may be associated with heterologous sequences, including promoters, enhancers, response elements, signal sequences, polyadenylation sequences, introns, 5'- and 3'- noncoding regions, and the like. The nucleic acids may also be modified by many means known in the art. Non-limiting examples of such modifications include methylation, "caps", substitution of one or more of the naturally occurring nucleotides with an analog, internucleotide modifications such as, for example, those with uncharged linkages (e.g., methyl phosphonates, phosphotriesters, phosphoroamidates, carbamates, etc.) and with charged linkages (e.g., phosphorothioates, phosphorodithioates, etc.).

The invention employs nucleic acid vectors, or DNA constructs comprising nucleic acid sequences which code for the G_{i_a} protein or G_i coupled receptors. It is understood that if desired, functional derivatives or fragments thereof may be employed to the same effect.

A large number of well-known vectors can be used in the invention for expression in a variety of eukaryotic hosts. For example, the G_{i_a} protein or G_i coupled receptors may be expressed by transfecting known mammalian expression vectors, such as vectors available commercially from, e.g., Invitrogen Corporation, Carlsbad, CA, such as pcDNA1.1 for transient transfection, and pcDNA3.1, pcDNA3.1/zeo or pcDNA3.1/hyg, pRc/RSV or pRc/CMV2 for stable transfection, employing appropriate eukaryotic host cells, and using methods disclosed herein or otherwise known to those skilled in this art.

Recombinant cloning vectors employed in the invention can include one or more replication systems for cloning or expression, one or more markers for selection in the host, e.g. antibiotic resistance, and one or more expression cassettes. The inserted G_{i_a} protein and G_i coupled receptor coding sequences may be synthesized by standard methods, isolated from natural sources, or prepared as hybrids. Ligation of the G_{i_a} protein and G_i coupled receptor coding sequences to transcriptional regulatory elements and/or to other amino acid coding sequences is achieved by known

methods. Suitable host cells may be transformed/transfected/infected as appropriate by any suitable method including electroporation, CaCl_2 mediated DNA uptake, microinjection, and microprojectile based transfection.

A large number of transcription initiation and termination regulatory regions that can be employed in the invention have been isolated by those skilled in this art and shown to be effective in the transcription and translation of heterologous proteins in eukaryotic host cells. These regions, methods of isolating them and ways to manipulate them are well-known in the art.

Advantageously, vectors and DNA constructs employed in the invention also include a transcription regulatory element (i.e., a promoter) operably linked to the nucleotide sequence encoding the protein to be expressed. The promoter may optionally contain operator portions and/or ribosome binding sites. Suitable promoters for mammalian cells include without limitation viral promoters such as those from Epstein-Barr Virus (EBV), Simian Virus 40 (SV40), Rous sarcoma virus (RSV), adenovirus (ADV), and bovine papilloma virus (BPV). Mammalian cells may also require terminator sequences and poly(A) addition sequences. Enhancer sequences, which increase expression, may also be included. Sequences which cause amplification of the gene may also be desirable. These sequences are well described in the art.

Nucleic acids encoding G_{ia} or G_i coupled receptor polypeptides may also be introduced into cells by known recombination methods. For example, such nucleic acids can be introduced into a cell to effect homologous recombination at the site of a corresponding endogenous gene or a sequence with substantial identity to the gene. Other known recombination-based methods such as nonhomologous recombination or deletion of endogenous genes by homologous recombination may also be used.

Preferably, separate episomal plasmids are used for expression of the G_i coupled receptor and the G_{ia} protein subunit. Each such episome preferably contains its own selectable marker. The two episomes may be co-transfected simultaneously into the same cell to produce a pool of stably transformed cells available for use in high-throughput screening assays. Such cells are advantageously obtained within about 2 weeks.

Transformation methods in which either the gene encoding the G_i coupled receptor or the gene encoding the G_{ia} subunit (or both) is integrated into the host nuclear material are less preferred, as the time required to obtain a cell line in this

manner which stably expresses either protein is normally from three to six months. Using the preferred episomal expression system of the invention, the need for clonal selection of stably transfected cells is eliminated, assayable cell lines are generated in weeks rather than months, and the cellular response achievable in response to receptor activation is significantly enhanced.

The preferred episomal expression system of the invention employs episomes bearing an EBV origin of replication in a permissive cell type expressing the EBNA1 protein for recombinant receptor binding assays. Primate and canine cell lines are preferred as host cells. Rodent cells are not preferred since they are not permissive for EBNA1/EBV oriP interactions, i.e., rodent cells do not permit replication of EBV oriP based vectors.

HEK-293 cells are particularly preferred and are available from the American Type Culture Collection (ATCC), Rockville, MD, Accession Number CRL-1573. HEK-293 cells that constitutively express EBNA1 are most preferred, and are commercially available from Invitrogen Corporation, Carlsbad, CA.

If desired, episomes can be used for the construction of integratively stable cell lines that express EBNA1. That is, the episomes of the invention can be used to transfect cells, and rather than replicate independently, the genes encoded on the episomes can be integrated into the chromosomes of the host cell, thereby allowing replication along with the host cell's DNA. If episomes are employed which also express the EBNA1 protein, then any permissive cell line can be used to practice the invention, regardless of whether or not it pre-expresses EBNA1.

The preferred episomally co-transfected cell lines of the invention remain stably transfected for at least 5 months after transfection, preferably as demonstrated by ligand-induced cellular responses, northern blot analysis of steady state RNA levels (encoding receptor and G protein), and western blot analysis of G protein levels.

In order to detect the release of intracellular calcium stores in response to stimulation of G_i coupled receptors by agonists, or the inhibition of such release due to binding of antagonists to G_i coupled receptors, both direct and indirect measurements can be used. Such methods are well-known in this art. For example, direct detection methods are well-known that precipitate calcium with alizarin sulfonate. Other well-known direct detection methods use photoproteins that fluoresce

when bound to calcium, such as aequorin and obelion. Recently, non-protein fluorescent indicators of calcium release have been developed for use in direct detection; these include Fura-2/AM, Indo-1/AM, and Fluo-3/AM and their derivatives. Such fluorescent probes are commercially available, and can be obtained from

5 Molecular Probes, Eugene, OR; Teflabs, Texas; and Sigma Chemical Co., St. Louis, MO.

Other known methods for direct detection of calcium use metallochromic indicators such as murexide, arsenazo III, and antipyrylazo III.

Calcium release can be indirectly measured using patch clamps (which
10 record calcium release in single cells), mini/microelectrodes, and vibrating calcium electrodes.

Confocal microscopy permits sensitive visual detection of fluorescence due to calcium. Methods of screening using confocal microscopy are described in U.S. patent application Serial No. 08/868,280 filed June 3, 1997.

15 The method of the invention can be carried out as part of a high throughput screening of a library of compounds for binding to receptor. In one embodiment of the invention, the method is carried out with a plurality of compounds to be screened, preferably at least about 96 compounds, such as when using a 96 well microtitre plate. Such assays can also be performed in the 1536 well plate described in
20 U.S. patent application serial no. 60/037,636, filed February 18, 1997. The library of compounds to be screened can be quite large, e.g., containing more than 100,000 compounds.

It is preferred that the compounds assayed in the high throughput method be derived from combinatorial libraries on polymer beads. By synthesizing
25 sufficient compound on each bead for a few assays, compound handling is reduced or eliminated.

Preferably, the library compounds are eluted from the beads and evaporated to dryness in microtiter plates in preparation for the assay. Compounds on beads can be released by photocleavage, or another type of cleavage. Cleavage of
30 photocleavable linkers is preferred. Such linkers, and methods for their cleavage, are described in Barany et al. (1985) *J. Am. Chem. Soc.* 107:4936. Examples of other linkers and the relevant cleavage reagents are described in WO 94/08051.

Using combinatorial libraries prepared on beads, the identity of active

compounds is preferably determined using the encoding system described in WO 94/08051 and in WO 95/30642. In this system, chemical tags encoding the identities of the compounds are applied to the solid supports. The identity of the compound on a given support can be determined by detaching the chemical tags from the support,

5 identifying the tags by, e.g., gas chromatography, and correlating the identities of tags with the identity of the compound. Once an active compound is identified, the corresponding bead (which had contained the compound) can be examined, and the identity of the compound determined by releasing the tags and decoding by this method.

10 The following examples are intended to illustrate the invention only, and are not intended to be limiting in any way. Many variations and adaptations of the present invention will be apparent to those of ordinary skill in the art, and these are intended to be included within the scope of the invention.

EXAMPLE 1: CONSTRUCTION OF EPISOMAL EXPRESSION VECTORS

15 **A. Construction of pHEBO Vector**

The pHEBo vector was made using commercially available vectors. The sequence of vector pBR322 (Genbank accession number synpbr322) from nucleotide 1 to nucleotide 772 was ligated to the nucleotide sequence of vector pCEP4, SEQ ID NO: 1, Figure 3, from position 8146 to 10376 (Invitrogen, Carlsbad, CA, Cat. No. V004-50). To this construct was ligated pCEP4 nucleotides 1333 to 5500. Prior to ligation, fragments were PCR amplified or joined using preexisting restriction sites. The resulting plasmid contained the Epstein Barr Virus (EBV) origin of replication (oriP), a hygromycin resistance marker (hyg) transcribed from the minimal Herpes Simplex Virus (HSV) thymidine kinase (tk) promoter, and was terminated with the tk 25 poly adenylation signal (poly(A)), in vector pBR322. The pHEBo vector is shown schematically in Figure 1a.

B. Construction of pcmvms1 Vector

Vector p394 was constructed according to Colberg-Poley, A.M. et al. *J Virol.* 1992 Jan; 66(1): 95-105. Briefly, the vector can be made by cloning the CMV 30 IE promoter (which can be obtained from vector pCEP4, SEQ ID NO: 1, nucleotide 1132 to 474) into the EcoRV site of pBSIISK(+) SEQ ID NO: 6. Oligonucleotides 5'- ATATCATAATATGTACATTATTTG-3', SEQ ID NO: 13 and 5'- TCGCGACGTCTCCGTGTAGGCGATCTGACGGTTCACTAAAC-3', SEQ ID NO:

14 were used to amplify the promoter.

The SV40 poly(A) signal, which can be obtained, e.g., from pCEP4, SEQ ID NO: 1 (from the native BsaBI site at nucleotide 176 to the native BamHI site at position 412) was cloned into the SmaI and BamHI sites of pBSSK(+)CMVIE.

5 Using the remaining EcoRI and PstI sites in between the CMV promoter and SV40 poly(A), a multicloning site was added using oligonucleotides:

5'-AATTCGCGACGCGTGATATCTGCAGGCCTAGATCTCTAGATAAGTAAT
GATCATGCA-3', SEQ ID NO: 15

and

10 5'-TGATCATTACTTATCTAGAGATCTAGGCCTGCAGATATCACGCGTCGCG-3',
SEQ ID NO: 2, yielding vector p394.

Vector p394 (Figure 1b), was cleaved with HindIII and BamHI to yield a 1.3 kb HindIII - BamHI fragment containing the cytomegalovirus immediate early promoter (CMV), a multicloning site region (mcs), and the SV40 poly(A) region.

15 This fragment, which comprises an "expression cassette" was cloned into the HindIII and BamHI sites of pHEBo to yield pcmvmcs1 (Figure 1c). The mcs contains the following restriction enzyme sites: Esp3I, EcoRI, NruI, MluI, EcoRV, PstI, StuI, BglII. The mcs in vector pcmvmcs1 was replaced with the following sites: Esp3I, AgeI, StuI, KpnI, AvrII, XhoI, by a synthetic oligonucleotide linker that contained 20 overhangs compatible with the Esp3I and BglII sites. The BglII site was not recreated by the oligonucleotide linker (Figure 2e). This vector was designated pcmvmcs3.

C. Construction of pm3ar Vector

An intron (called IVS or "intervening sequence") was added to the expression cassette (defined herein as the CMVIE-mcs-poly(A) containing nucleotides) 25 as follows. A XhoI - BamHI fragment containing the SV40 early intron and poly(A) signals was excised from vector pCDM8 (Invitrogen, Carlsbad, CA; Figures 1d and 4), SEQ ID NO: 3. The poly(A)-containing fragment was removed from vector pcmvmcs3 by digestion with restriction enzymes XhoI and BamHI, and the XhoI-BamHI fragment from pCDM8 was added, generating vector pm3ar (Figure 1e).

D. CCR3 Expression Vector

An episomal vector which codes for the C-C chemokine receptor 3 ("CCR3") was constructed. The coding region for the receptor was obtained by PCR amplification of genomic DNA, using the oligonucleotide 5'-

GTGAAATGACAACCTCACTAGATAACAG-3', SEQ ID NO: 4 as the sense primer, and 5'-CTGACCTAAAACACAATAGAGAGT-3', SEQ ID NO: 5, as the antisense primer. The PCR fragment obtained was cloned into the EcoRV site of pBSIISK+ (Figure 5)(a Bluescript vector commercially available from Stratagene, La Jolla, CA,

5 Stratagene Cat. No. 212205, Genbank accession number 52325), SEQ ID NO. 6. The coding region was excised from pBSIISK+ using the restriction enzymes SpeI and NsiI, and the fragment containing DNA coding for CCR3 was cloned into the AvrII and Sse8387I sites of vector pm3ar (Figure 1e) to generate episomal expression construct pm3CCR3 (Figure 1f).

10 A hydrophobic signal sequence was added to the CCR3 coding sequence by PCR (see Figure 1g). Vector pm3CCR3 was used as a template and oligonucleotide 144, 5'-TGTGATTGTCAGCAGGATTATG-3' SEQ ID NO: 7 (which begins at nucleotide +390 and maps 3' to the unique BglII restriction site on the vector) and oligonucleotide 143, 5'-GTTCTGTCTGCTGCCACTG

15 CTCGAGGGCTCAAACAAACCTCACTAGATAACAGTTGAG-3', SEQ ID NO: 8 (which overlaps the CCR3 coding sequence and contains a long tail encoding approximately two-thirds of the hydrophobic signal sequence) were used as primers. The resulting 428 base pair fragment was then used as a template for PCR, using oligonucleotide 144, SEQ ID NO: 7 and oligonucleotide 142, GAGCAGCCGGCACC

20 ACCATGGCTCTGTCTGGGTTCTGACTGTTCTGCTCTGCTGCCACTG, SEQ ID NO: 9 (which encodes the remainder of the hydrophobic signal sequence and contains a Kozak consensus sequence for efficient initiation of translation). The resulting 461 base pair fragment was digested with NgoMI and BglII and cloned into the AvrII and BglII sites of pm3CCR3 to generate expression vector pm3CCR3sp

25 (Figure 1h).

E. Construction of pE3 Vector

Vector pm3ar (Figure 1e) was altered to provide an additional set of cloning sites immediately upstream from the CMVIE promoter. The new sites were added using a synthetic oligonucleotide linker 5'-

30 CGATCACGTGCAGCTGAGATCTA-3', SEQ ID NO: 10, that contained the restriction sites, ClaI, AscI, BssHII, PacI, HindIII and overhangs compatible with the ClaI and HindIII sites of pm3ar. The new vector was designated pE3 (Figure 2a).

F. Construction of pE3delta Vector

Vector pE3delta (Figure 2b) was generated by the digestion of vector pE3 with BstBI and BspLU11I to remove the hygromycin coding region. The hygromycin coding region was replaced with a synthetic oligonucleotide linker 5'-CATGTAGATCTCAGCTGCACGTGAT-3', SEQ ID NO: 11 containing multiple

5 cloning sites.

G. Construction of pE3pur Vector

Vector pE3pur (Figure 2d) was constructed by the digestion of vector pE3delta with PvuII and BspLU11I followed by ligation to a PvuII - BglIII fragment (Figure 2c) obtained from vector pPur (Clontech, Cat. No. 6156-1, Genbank accession number U07648, SEQ ID NO: 12, Figure 6). The PvuII - BglIII fragment from vector pPur contains the SV40 promoter, a puromycin resistance gene, and an SV40 poly(A) tail.

H. G_{ia2} Expression Vector

Vector pBN31, which contains the wildtype sequence for murine G_{ia2} cloned into the EcoRI site of vector pCDNAI, was obtained from the American Type Culture Collection (ATCC), Cat. No. 63311, Rockville, MD. pE3pur vector (Figure 2d) was digested with KpnI and XhoI, which correspond to restriction sites found within the multicloning regions at the 5' and 3' ends, respectively, of the G_{ia2} coding region. The vector obtained from the ATCC was also digested with KpnI and XhoI, and a fragment containing the G_{ia2} coding region was excised. This fragment was cloned into the KpnI and XhoI sites of vector pE3pur, to produce vector pEpurGia2 (Figure 2e). This vector was used without further modification to transfect cells.

EXAMPLE 2: TRANSFECTION OF CELLS AND MAINTENANCE OF STABLY TRANSFECTED CELL LINES

25 293E cells (HEK-293 cells which constitutively express the Epstein-Barr virus nuclear antigen-1, commercially available from Invitrogen Corp., Carlsbad, CA, cat. no. R620-07) were transfected using the calcium phosphate or lipofectamine procedures as described in Sambrook et al., (1989) "Molecular Cloning: A Laboratory Manual," Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 1633-30 1634.

T75 flasks containing approximately 1 x 10⁶ 293E cells were transfected with plasmid p3ARccr3 with or without cotransfection with pEpurGia2. 5 mg of each plasmid was used in the transfection reaction, with 62 ml of 2 M CaCl₂ in enough

water to achieve a final volume of 500 ml. To this solution was added 500 ml of HEPES-buffered saline ("HBS") and the entire 1 ml of solution was added directly to the T75 culture medium (12 ml of Dulbecco's Modified Eagle Medium, "DMEM", supplemented with 10% fetal bovine serum, penicillin 100 units/ml, streptomycin 100 mg/ml, glutamine 2 mM, hereinafter called "complete DMEM"). The transfection mix was allowed to remain on the cells for 48 hours at which time the cells were washed once with phosphate buffered saline and re-fed selective media (complete DMEM supplemented with 1 mg/ml puromycin and 250 mg/ml hygromycin, hereinafter called "selective media"). The selective media was changed at day 5 post-transfection (i.e., day 5 after the transfection mix was removed) and again when the cells approached confluence, at which time cells were routinely split, i.e., "passed" between 1:4 and 1:50 in fresh selective media as needed. Frozen stocks of cells were made at cell passage 3.

EXAMPLE 3: STABILITY OF EXPRESSION FROM EPISOMES

Cells expressing either the CCR3 receptor, or both the CCR3 receptor and G_{ia2} protein, generated according to Example 2, were assayed for agonist binding characteristics. The cells were incubated in ¹²⁵I-eotaxin at concentrations ranging from 45 pM to 300 nM. Specific binding was determined at each concentration, as was the maximum binding for a given number of cells. Based on these values, the Kd for eotaxin was determined at the end of 1 to 5 months after vector transfection. As can be seen from Figure 7, the Kd for the cells was stable, remaining between 0.2 and 0.3 nM for the entire five months for the cotransfected cells, and between 0.2 and 0.5 nM for the cells containing CCR3 receptors which were not coexpressed with G_{ia2}.

In addition to the stability observed for Kd values, the total receptor number was also stable over the five month period, regardless of whether the CCR3 receptor was coexpressed with G_{ia2} protein or not. In particular, Figure 8 shows that the receptor number in the singly transfected and cotransfected cells was approximately equal and stable over the entire 5 month assay period, at about 20,000 receptors per cell.

The stability of the Kd of the receptors for agonist over time is important, as variations in Kd, particularly increases in Kd, could lead to false negative responses in assays for compounds that bind to receptors.

EXAMPLE 4: ASSAYS FOR CALCIUM MOBILIZATION IN RESPONSE TO RECEPTOR BINDING OF AGONIST COMPOUNDS

Assays were conducted utilizing the methods described in S.R. McColl and R.H. Naccache, *Methods in Enzymology* 288:301-309, 1997, "Calcium

5 Mobilization Assays". Cell suspensions (10^7 cells/ml) were loaded with the fluorescent probe Fluo-3/AM (Teflabs, Texas) at 2 mM for 60 minutes at room temperature. The cells were washed, resuspended at $2-4 \times 10^6$ cells/ml in Hanks' Buffered Salt Solution, made 1.6 mM in CaCl_2 and 10 mM in HEPES (HBSS). Mock transfected cells, cells transfected with the CCR3 receptor only, cells transfected with $\text{G}_{\text{ia}2}$ protein only, and
10 cells cotransfected with CCR3 receptor and with $\text{G}_{\text{ia}2}$ protein were then incubated in medium which comprised 100 nM of the CCR3 receptor agonist eotaxin. The cells' fluorescence was measured in a spectrofluorometer (Model SLM, Bowman Series 2, SLM-Aminco, Champagne, IL) at both the excitation wavelength, i.e., 506 nm, and the emission wavelength, i.e., 526 nm, for the chromophore. Internal calcium
15 concentrations were calculated as described in Tsien, et al., *J. Cell. Biol.* 94:3325 (1982). Each assay was individually calibrated.

Upon addition of receptor agonist, a nearly four-fold increase in fluorescence was detected in the cells which co-expressed the CCR3 receptor and $\text{G}_{\text{ia}2}$ protein compared to the fluorescence achieved in the cells transfected with the CCR3
20 receptor alone (Figure 9). No calcium increases were observed in mock-transfected cells or in cells transfected with the G-proteins alone upon stimulation with eotaxin. The data demonstrate that the episomally expressed receptor/G-protein alpha subunit signal transduction apparatus is useful as early as two weeks post transfection, and is stable for at least 20 weeks.

25 A similar experiment was performed using the nociceptin receptor. The results shown in Figure 10 demonstrate that upon addition of nociceptin receptor agonist, a two-fold increase in fluorescence was detected in the cells which co-expressed the nociceptin receptor and $\text{G}_{\text{ia}2}$ protein compared to the fluorescence achieved in the cells transfected with the nociceptin receptor alone. Again, receptor
30 and G protein alpha subunit expression from episomes provided for readily assayable calcium responses in as little as two weeks.

Figure 11 shows the increase in calcium flux that can be obtained in cells cotransfected with the CCR2 receptor and $\text{G}_{\text{ia}2}$ relative to the calcium release

obtainable in cells transfected with only the CCR2 receptor in response to the chemokine MCP-1 (30 nM). The experiment was performed 2 months after transfection or cotransfection of cells. As can be seen from Figure 11, calcium release in cotransfected cells in response to exposure to CCR2 agonist MCP-1 was 5 significantly greater than in cells which only expressed the CCR2 receptor.

Calcium release in response to increasing concentrations of interleukin 8 was evaluated in cells expressing either the interleukin 8 receptor type B alone, or the interleukin 8 receptor type B coexpressed with $G_{i\alpha 2}$. The cells had been transfected 1 month prior to the assay. As can be seen from the data presented in Figure 12, there 10 was an increase in the amount of calcium released from the cotransfected cells relative to the calcium released by the cells which were transfected only with the interleukin 8 receptor type B. These data are consistent with those presented for the CCR3, CCR2, and nociceptin receptors.

Thus, these data demonstrate that coexpression of G_i alpha proteins with 15 G_i protein coupled receptors provides for consistent increases in calcium signaling, allowing for more sensitive and reliable assays for receptor binding compounds, i.e., agonists and antagonists.

WHAT IS CLAIMED IS:

1. A method for assaying a test compound for its effect on a G_i protein coupled receptor which comprises the steps of:
 - contacting said cell with a test compound; and
 - assaying said cell for calcium concentration in the cytoplasm of said cell;

said cell having been transfected with a gene encoding a G_i protein coupled receptor and with a gene coding for G_{ia} protein capable of coupling to said G_i protein coupled receptor to increase said cytoplasmic calcium upon binding of an agonist to said G_i protein coupled receptor.
2. The method of claim 1 wherein said test compound is a receptor antagonist.
3. The method of claim 1 wherein said test compound is a receptor agonist.
4. The method of claim 1 wherein said gene coding for a G_{ia} protein codes for G_{ia2}.
5. The method of claim 1 wherein said gene coding for a G_{ia} protein codes for G_{ia1} or G_{ia3}.
6. The method of claim 1 wherein said gene coding for a G_i protein coupled receptor and said gene coding for a G_{ia} protein capable of coupling to said receptor are expressed from separate DNA constructs.
7. The method of claim 1 wherein said gene coding for a G_i protein coupled receptor and said gene coding for a G_{ia} protein capable of coupling to said receptor are expressed from a single DNA construct.
8. The method of claim 1 comprising direct measurement of said cytoplasmic calcium concentration within said cell.

9. The method of claim 1 comprising indirect measurement of said cytoplasmic calcium concentration within said cell.

10. The method of claim 1 wherein said gene coding for said G_i protein coupled receptor is integrated in chromosomal DNA of said cell.

11. The method of claim 1 wherein said gene coding for said G_i protein coupled receptor is expressed by a stably transfected episomal expression vector.

12. The method of claim 1 wherein said gene coding for said G_i protein coupled receptor is expressed by a transiently transfected expression vector.

13. The method of claim 1 wherein said gene coding for said G_{ia} protein is integrated in said native DNA of said cell.

14. The method of claim 1 wherein said gene coding for said G_{ia} protein is expressed by a stably transfected episomal expression vector.

15. The method of claim 1 wherein said gene coding for said G_{ia} protein is expressed by a transiently transfected expression vector.

16. The method of claim 11 wherein said gene coding for said G_{ia} protein is expressed by a stably transfected episomal expression vector.

17. The method of claim 16 wherein said G_i protein coupled receptor is selected from the group consisting of the C-C chemokine receptor 3, the C-C chemokine receptor 2, the interleukin 8 type B receptor, and the nociceptin receptor.

18. The method of claim 16 wherein said assaying comprises:
detecting fluorescence produced by said cell;
said cell having been loaded with a fluorophore that fluoresces in the presence of calcium.

19. The method of claim 18 wherein said fluorophore is Fura-2/AM, Indo-1/AM, or Fluo-3/AM.

20. The method of claim 1 wherein said cell has not also been transfected with genes encoding $G_{i\beta}/G_{i\gamma}$ dimer or phospholipase C β .

21. The method of claim 1 wherein said test compound is a receptor antagonist and is contacted with said cell in the presence of a receptor agonist, and wherein said step of contacting decreases said calcium concentration compared with the calcium concentration of said cells contacted with said receptor agonist alone.

22. A cell useful for assaying a test compound for its effect on a G_i protein coupled receptor, said cell comprising:

transfected DNA which expresses a G_i coupled receptor;
transfected DNA which expresses a G_{ia} protein subunit; and
an intracellular calcium release mechanism which produces a detectable signal as measured by fluorescence of a fluorophore in response to agonist compound binding to said receptor when said G_i protein coupled receptor is coexpressed with said G_{ia} protein subunit.

23. The cell of claim 22 wherein said DNA which expresses a G_i coupled receptor is exogenous DNA that has been stably integrated into chromosomal DNA of said cell.

24. The cell of claim 22 wherein said DNA which expresses a G_i coupled receptor is contained in a stably transfected episomal expression vector.

25. The cell of claim 22 wherein said DNA which expresses a G_i coupled receptor is contained in a transiently transfected episomal expression vector.

26. The cell of claim 22 wherein said DNA which expresses a G_{ia} protein subunit is exogenous DNA stably integrated into chromosomal DNA of said cell.

27. The cell of claim 22 wherein said DNA which expresses a G_{ia} protein subunit is contained in a stably transfected episomal expression vector.

28. The cell of claim 22 wherein said DNA which expresses a G_{ia} protein subunit is contained in a transiently transfected expression vector.

29. The cell of claim 22 wherein said G_i protein coupled receptor is selected from the group consisting of the C-C chemokine receptor 3, the C-C chemokine receptor 2, the interleukin 8 type B receptor, and the nociceptin receptor.

30. The cell of claim 22 wherein said fluorophore is Fura-2/AM, Indo-1/AM, or Fluo-3/AM.

31. The cell of claim 22 which has not also been transfected with genes encoding G_{ib}/G_i dimer or phospholipase C β .

32. A method for producing a cell for detecting compounds which bind to a G_i protein coupled receptor which comprises the steps of:

transflecting a cell with a gene which codes for a G_i protein coupled receptor;

transflecting said cell with a gene which codes for a G_{ia} protein capable of coupling to said receptor; and

culturing said cell in medium under conditions in which the G_{ia} protein and the G_i protein coupled receptor are co-expressed in said cell.

33. The method of claim 32 wherein said gene coding for a G_i protein coupled receptor and said gene coding for a G_{ia} protein capable of coupling to said receptor are each expressed from a different DNA construct.

34. The method of claim 32 wherein said gene coding for a G_{ia} protein codes for a member selected from the group consisting of G_{ia1} and G_{ia3}.

35. The method of claim 32 wherein said gene coding for a G_{ia}

protein codes for G_{ia2}.

1/33

FIG. 1a**FIG. 1b****SUBSTITUTE SHEET (RULE 26)**

2/33

FIG. 1c**FIG. 1d****SUBSTITUTE SHEET (RULE 26)**

3/33

FIG. 1e**FIG. 1f**

SUBSTITUTE SHEET (RULE 26)

4/33

FIG. Ig**FIG. Ih****SUBSTITUTE SHEET (RULE 26)**

5/33

FIG. 2a**FIG. 2b**

6/33

FIG. 2c**FIG. 2d****SUBSTITUTE SHEET (RULE 26)**

7/33

FIG. 2e

FIG. 3a

1 TCTAGAGTCG ACCGGTCATG GCTGGCCCC GACACCCGCC AACACCCGCT
 51 GACGGCCCT GACGGCTTG TCTGCTCCG GCATCCGCTT ACAGACAAGC
 101 TGTGACCGTC TCGGGAGCT GCATGTGTCA GAGGTGTTCA CCGTCATCAC
 151 CGAACCGGC GAGGCAGCC GATCATAATC AGCCATACCA CATTGTAGA
 201 GGTTTACTT GCTTTAAAAA ACTTCCCCAC CTCCCCCTGA ACCTGAAACA
 251 TAAAATGAAT GCAATTGTTG TTGTTAACTT GTTTATTGCA GCTTATAATG
 301 GTTACAAATA AAGCAATAGC ATCACAAATT TCACAAATAA AGCATTTTT
 351 TCACTGGCAT CTAGTTGTTG TTGTTCCAAA CTCATCAATG TATCTTATCA
 401 TGTCTGGATC CGGCCTTGCC GGCCTGAGC GGCGCTAGC AAGCTTGCTA
 451 GCAGGCTGGTA CCCAGCTTCT AGAGATCTGA CGGTTCACTA AACGAGCTCT
 501 GCTTATATAG ACCTCCCACC GTACACGGCT ACCGCCATT TGGGTCAACG
 551 GGGGGGGTT ATTACGACAT TTGAAAGT CCCGGTGTGATT TTGGTGCCTA
 601 AACAAACTCC CATTGACGTC AATGGGTGG AGACTTGGAA ATCCCCGTGA
 651 GTCAAACCC TATCCACGCC TATGGTGTGA CTGCCAAAC CGCATCACCA
 701 TGGTAATAGC GATGACTAAT ACGTAGATGT ACTGCCAAGT AGGAAAGTCC
 751 CGTAAGGTCA TGTACTGGC ATAATGCCAG GGGGGCCATT TACCGTCATT
 801 GACGTCATAA GGGGGGAC TTGGCATATG ATACACTTGA TGTACTGCCA
 851 AGTGGGCAGT TTACCGTAAA TACTCCACCC ATTGACGTC ATGGAAAGTC
 901 CCTATTGGCG TTACTATGGG AACATACGTC ATTATGACG TCAATGGCCG
 951 GGGGTGTTG GGCGGTCAAGC CAGGGGGGCC ATTACCGTAA AGTTATGTAA
 1001 CGCGGAACTC CATATATGGG CTATGAACTA ATGACCCCGT AATTGATTAC

A

9/33

FIG. 3b

A	TATTAATAAC	TAGTCAATAA	TCAATGTCAA	CATGGGGTC	ATATTGGACA
1051	TGAGCCAATA	TAATATGTACA	TATTATGATA	TAGATAAAC	GTATGCAATG
1101	GCCAAATAGCC	AATATTGATT	TATGCTTAT	AACCAATGAC	TAATATGGCT
1151	AATTGCCAAT	ATTGATTCAA	TGTATAGATC	TTCCATACT	ACCAAGTTCTG
1201	CGCCCTGCAGC	AATGCCAACAA	CGTGGCCCCG	ATCTGGCGATG	ATAAGCTGTG
1251	AAACATGAGA	ATTGGTCCGAC	TAGCTTGGCA	CGCCAGAAAT	CCGGCGGGTG
1301	GTTTTGGG	GTGGGGGTG	TTTGGCAGCC	ACAGACGCC	GGTGGTCTGTG
1351	TGCGCCAGT	ACATGGCGTC	CATGGCCAGG	CCATCCAAA	ACCATGGGT
1401	TGTCTGCTCA	GTCCAGTCGT	GGACCAGACC	CCACGCAACG	CCAAAAATAA
1451	TAACCCCCAC	GAACCATAAA	CCATTCCCCA	TGGGGGACCC	CGTCCCCAAC
1501	CCACGGGGCC	AGTGGCTATG	GCAGGGCCTG	CCGGCCCCGAC	GTGGCTGGCG
1551	AGCCCCTGGC	CTTCACCCGA	ACTTGGGGG	TGGGGTGGGG	AAAAGGAAGA
1601	AACGGGGCG	TATTGGCCC	AATGGGGTCT	CGGTGGGGTA	TCGACAGAGT
1651	GCCAGCCCCG	GGACCGAAC	CCGGGTTTAT	GAACAAACGA	CCCAACACCC
1701	GTGCGTTTTA	TTCTGTCTT	TTATTGCGT	CATAGGGCGG	GTTCCCTTCG
1751	GTATTGTCCTC	CTTCCGTTGT	TCAGTTAGCC	TCCCCCATCT	CCCCTATTCC
1801	TTGCCCCCTG	GACGAGTGT	GGGGGTGCG	TTTCCACTAT	GGGGAGTAC
1851	TTCTACACAG	CCATGGTCC	AGACGGCCGC	GCTTCTGGGG	GGGATTGTG
1901	TACGGCCGAC	AGTCCCCGCT	CCGGATCGGA	CGATTGCGTC	GCATGGACCC
1951	TGCCCTCAAG	CTGCATCATC	GAAATGCCCC	TCAACCAAGC	TCTGATAAGAG
2001	TTGGTCAAGA	CCAATGGGA	GCATAATACGC	CCGGAGCCG	GGGGATCCCTG
2051	CAAGCTCCGG	ATGCCCTCCGC	TCGAAGTAGC	GGGTCTGTG	CTCCATACAA
2101					B

FIG. 3C

B

2151	GCCAACCACG	GCCTCCAGAA	GAAGATGTTC	GCGACCTCGT	ATTGGGAATC
2201	CCGAACATC	GCCTCGCTCC	AGTCAAATGAC	CGCTGTTATG	CGGCCATTGT
2251	CCGTCAAGAC	ATTGTTGGAG	CCGAAATCCG	CGTGCACGAG	GTGCCGGACT
2301	TCGGGCAGT	CCTCGGCCA	AAGCATCAGC	TCATCGAGAG	CCTGCCGGAC
2351	GGACGGCACTG	ACGGTGTTCGT	CCATCACAGT	TTCGCCAGTGA	TACACATGGG
2401	GATCAGCAAT	CGGGCATATG	AAATCACGCC	ATGTAGTGTAA	TTGACCCGATT
2451	CCTTGGGGTC	CGAATGGGGC	GAACCCGCTC	GTCITGGCTAA	GATGGGCCGC
2501	AGCGATCGCA	TCCATGGCCT	CGGGGACCGG	CTGCAGAACAA	GCGGGCAGTT
2551	CGGTTTCAGG	CAGGTCTTGC	AACGTGACAC	CCTGTGCACG	GCGGGAGATG
2601	CAATAGGTCA	GGCTCTCGCT	GAATTCCCCA	ATGTCAGCA	CTTCCCGGAAT
2651	CGGGAGGGCG	GGCGATGCAA	AGTGGCGATA	AAACATAACGA	TCTTTGTAGA
2701	AACCATCGGC	GCAGCTATT	ACCCGGAGGA	CATATCCACG	CCCTCCCTACA
2751	TCGAAGCTGA	AAGCACCGAGA	TTCTCGCCC	TCCGAGAGCT	GCATCAGGTC
2801	GGAGACGGCTG	TGGAACCTTT	CGATCAGAAA	CTTCTCGACA	GACGTCGGGG
2851	TGAGTTCAAGG	CTTTTCATA	TCTCATGGCC	CGGGATCTGC	GGCACGGCTGT
2901	TGACCGCTGTT	AAGGGGGTCG	CTGGAGGGTC	GCTCGGGTGT	CGAGGGCCACA
2951	CGCGTCACCT	TAATATGCGA	AGTGGACCTG	GGACCCGGCC	GCCCCGACTG
3001	CATCTGGTGT	TTCGAATTTCG	CCAATGACAA	GACGGCTGGGC	GGGGTTTGTG
3051	TCATCATAGA	ACTAAAGACA	TGCAAATATA	TTTCTTCGG	GGACACCGCC
3101	AGCAAACGGCG	AGCAACGGGC	CACGGGGATG	AAGCAGGGCA	TGGCGGGCGA
3151	CGCGCTGGGC	TACGTCTTGC	TGGCGTTTCG	GACGGCGGGC	TGGATGGCCT

C

FIG. 3d

C _____ C

3201	TCCCCATTAT	GATTCTTCTC	GCTTCCGGCG	GCATCGGGAT	CCCCGGTTG
3251	CAGGCCATGC	TGTCCAGGCA	GGTAGATGAC	GACCATCAGG	GACAGCTTCA
3301	AGGATCGCTC	GCGGCTCTTA	CCAGCCTAAC	TTCGATCACT	GGACCGCTGA
3351	TCGTCA CGGC	GATTATGCC	GCCTCGGCCA	GCACATGGAA	CGGGTTGGCA
3401	TGGATTGTAG	GCGCCGCCCT	ATACCTTGTC	TGCCTCCCCG	CGTTGGCTCG
3451	CGGTGCATGG	AGCCGGCCA	CCTCCGACCTG	AATGGAAGGC	GGCGGCACCT
3501	CGCTAACGGA	TTCACCACTC	CAAGAATTGG	AGCCAATCAA	TTCTTGCGGA
3551	GAACTGTGAA	TGGCAAACC	AACCCATTGGC	AGAACATATC	CATCGCGTCC
3601	GCCATCTCCA	GCAGCCGCAC	GCGGCCAGC	AAAAGCCAG	GAACCGTAAA
3651	AAGGCCCGT	TGCTGGCGTT	TTTCCATAGG	CTCCGGCCCC	CTGACGGAGCA
3701	TCACAAAAT	CGACGCTCAA	GTCAGAGGTG	GCGAAACCCG	ACAGGACTAT
3751	AAAGATACCA	GGCGTTCCC	CCTGGAAGCT	CCCTCGTGC	CTCTCCTGTT
3801	CCGACCCCTGC	CGCTTACCGG	ATACCTGTCC	GCCTTTCTCC	CTTCGGGAAG
3851	CGTGGCGCTT	TCTCATAGCT	CACGCTGTAG	GTATCTCAGT	TCGGTGTAGG
3901	TCGTTTCGCTC	CAAGCTGGGC	TGTGTGCACG	AACCCCCGT	TCAGCCCGAC
3951	CGCTGGCGCT	TATCCGGTAA	CTATCGTCTT	GAGTCCAACC	CGGTAAGACA
4001	CGACTTTATCG	CCACTGGCAG	CAGCCACTGCG	TAACAGGATT	ACGAGAGCGA
4051	GGTATGTAGG	CGGTGCTACA	GAGTTCTTGA	AGTGGTGGCC	TAACTACGGC
4101	TACACTAGAA	GGACAGTATT	TGGTTATCTGC	GCTCTGCTGA	AGCCAGTTAC
4151	CTTCGGAAAA	AGAGTTGGTA	GCTCTTGATC	CGGCAAACAA	ACCACCGCTG
4201	GTAGGGTGG	TTTTTTGTT	TGCAAGCAGC	AGATTACGG	CAGAAAAAA
4251	GGATCTCAAG	AAGATCCTT	GATCTTTCTT	ACGGGGTCTG	ACGCTCAGTG

D _____ D

12/33

Me
Fig

D	4301	GAACGAAAC	TCACGTTAAG	GGATTCTGGT	CATGAGATTA	TCAAAAGGA
	4351	TCTTCACCTA	GATCCTTTA	AATTAAAAT	GAAGTTTAA	ATCAAATCTAA
	4401	AGTATATAG	AGTAAACTTG	GTCTGACAGT	TACCAATGCT	TAATCAGTGA
	4451	GGCACCTATC	TCAGCGATCT	GTCTTATTTCG	TTCATCCATA	GTGCCCCGTGAC
	4501	TCCCCGTCGT	GTAGATAACT	ACGATACGGG	AGGGCTTACC	ATCTGGCCCC
	4551	AGTGCTGCAA	TGATACCGCG	AGACCCACGC	TCACCCGGCTC	CAGATTATTC
	4601	AGCAATAAAC	CAGGCCAGCCC	GAAGGGCCGA	GGCAGAACT	GGTCCCTGGCAA
	4651	CTTATCCGC	CTCCATCCAG	TCTATTAAATT	GTGCCCCGGA	AGCTAGAGTA
	4701	AGTAGTTCGC	CAGTTAATAG	TTGCGCAAC	GTGTTGGCACA	TTGCTGAGGG
	4751	CATCGTGGTG	TCACGGCTCGT	CGTTGGTAT	GGCTTCATTC	AGCTCCGGTT
	4801	CCCAACGATC	AAGGGGAGTT	ACATGATCCC	CCATGTTGTG	AAAAAAGCG
	4851	GTTAGCTCCT	TCGGTCTCC	GATCCGGTGT	AGAAGTAAGT	TGGCCGGCAGT
	4901	GTATCACTC	ATGGTTATGG	CAGGCACTGCA	TAATTCTCTT	ACTGTCATGC
	4951	CATCCGTAAG	ATGGTTTCT	GTGACTGGTG	AGTACTCAAC	CAAGTCATTTC
	5001	TGAGAATAGT	GTATGGGGCG	ACCGAGTTGC	TCTGGCCCC	CGTCAACACG
	5051	GGATAATACC	GGGCCACATA	GCAGAACCTT	AAAAGTGGTC	ATCATTTGGAA
	5101	AACGTTCTTC	GGGGCGAAAA	CTCTCAAGGA	TCTTACCGCT	GTGAGATCC
	5151	AGTTCGATGT	AUCCCACTCG	TGCACCCAAAC	TGATCTTCAG	CATCTTTTAC
	5201	TTTCACCGC	GTTTCTGGGT	GAGCAAAAC	AGGAAGGCAA	AATGCCCAA

FIG. 3f**E**

5251	AAAAGGGAAT	AAGGGCCACA	CGGAAATGTT	GAATACTCAT	ACTCTTCCTT
5301	TTTCAATATT	ATTGAAGCATT	TTATCAGGGT	TATTTGTCAC	TGAGGGATA
5351	CATATTGAA	TGTATTAGA	AAAATAAACAA	AATAGGGGTT	CCGGGCCACAT
5401	TTCCCCGAAA	AGTGCCACCT	GACGTCTAAG	AAACCATTAT	TATCATGACA
5451	TTAACCTATA	AAAATAGGGG	TATCACGGGG	CCCTTCGTC	TTCAAGAATT
5501	CTCATGTTG	ACAGCTTATC	ATCGATAAAGC	TGATCCTCAC	AGGGCCGACCC
5551	CAGCTTTCT	TCCGTTGCC	CAGTAGGCATC	TCTGTCTGGT	GACCTTGAG
5601	AGGAAGAGGA	GGGGTCCCGA	GAATCCCCAT	CCCTACCGTC	CAGCAAAAG
5651	GGGGACGGGG	AATTGAGGC	CTGGCTTGAG	GCTCAGGACG	CAAATCTGAA
5701	GGATGTTCAAG	CGGGAGTTT	CGGGGCTGCG	AGTAATTGGT	GATGAGGACG
5751	AGGATGGTTC	GGAGGATGGG	GAATTTCAG	ACCTGGATCT	GTCTGACAGC
5801	GACCATGAAG	GGGATGAGGG	TGGGGGGCT	GTTGGAGGG	GCAGGAGTCT
5851	GCACTCCCTG	TATTCACTGA	GCGTCGGTCTA	ATAAAGATGT	CTATTGATCT
5901	CTTTTAGTGT	GAATCATGTC	TGACGGAGGG	CCAGGTACAG	GACCTGGAAA
5951	TGGCCTAGGA	GAGAAGGGAG	ACACATCTGG	ACCAGAAGGC	TCCGGGGCA
6001	GTGGACCTCA	AAGAAGGGGG	GGTGAATAACC	ATGGACGAGG	ACGGGAAAGA
6051	GGACGGGGAC	GAGGGGGGG	AAGACCAAGGA	GCCCCGGGGCG	GCTCAGGATC
6101	AGGGCCAAGA	CATAGAGATG	GTGTCCGGAG	ACCCCACAAA	CGTCCAAGTT
6151	GCATTGGCTG	CAAAGGGACC	CACGGTGGAA	CAGGAGCAGG	AGCAGGAGCG
6201	GGAGGGCAG	GAGCAGGAGG	GGCAGGAGCA	GGAGGAGGG	CAGGAGCAGG
6251	AGGAGGGCA	GGAGGGCAG	GAGGGGGGG	AGGGCCAGG	GCAGGAGGAG
6301	GGGCAGGAGC	AGGAGGGGG	CCAGGAGGGG	CAGGAGGGC	AGGAGGAGGA
6351	GGAGGGCAG	GAGCAGGAGG	AGGGCCAGGA	GGGGCAGGAG	CAGGAGGAGG

F

14/33

FIG. 3g

F

6401	GGCAGGGAGG	GCAGGGAGGG	CAGGAGCCAGG	AGGAGGGGCC	GGAGCCAGGAG
6451	GAGGGGCAGG	AGGGGCAGGA	GCAGGGAGGG	GGGCAGGGAG	GGCAGGGAGG
6501	GCAGGGCAG	GAGGGGGGCC	AGGAGCCAGGA	GGGCAGGGAG	GGGCAGGGAG
6551	GGCAGGGCA	GGAGGGGCAG	GAGCAGGGAGG	AGGGCAGGA	GGGCAGGGAG
6601	GGGCAAGGAC	AGGAGGGCCA	GGAGCAGGGAG	GGCAGGGAGG	AGGAGGGGCC
6651	GGAGCAGGAG	GGGCAGGGAG	GGCAGGGAGGA	GGAGGGGCAG	AGGGGGCAGG
6701	AGCAGGGAGG	GCAGGGAGGG	CAGGAGCCAGG	AGGAGGGGCC	GGAGGGGCCAG
6751	GAGCAGGGAG	AGGGGCAGGA	GGGGCAGGGAG	CAGGAGGGGC	AGGAGGGGCC
6801	GGAGCAGGAG	GGGCAGGGAG	GGCAGGGAGCA	GGAGGGGCAG	GGAGGGCAGG
6851	AGCAGGGAGA	GGGGCAGGGAG	CAGGAGGGGC	AGGAGGGAGA	GGTGGAGGCC
6901	GGGGTCCGAGG	AGGCAGTGGA	GGCCGGGGTC	GAGGAGGTAG	TGGAGGGCGG
6951	GGTCGAGGAG	GTAGTGGAGG	CCGGCCCCGT	AGAGGACGTG	AAAGAGGCCAG
7001	GGGGGGAAGT	CGTGAAAGAG	CCAGGGGGAG	AGGTCTGTGGA	CGTGGAGAAA
7051	AGAGGCCCAAG	GAGTCCCAGT	AGTCAGTCAT	CATCATCCCG	GTCTCCACCG
7101	CCGAGGGCCC	CTCCAGGTAG	AAGGCCATT	TTCCACCCCTG	TAGGGGAAGC
7151	CGATTTATT	GAATAACCACC	AAGAACGGTGG	CCCAGATGGT	GAGCCTGACG
7201	TGCCCCCCGGG	AGCGATAAGAG	CAGGGCCCCCG	CAGATGACCC	AGGAGGAAGGC
7251	CCAAGCACTG	GACCCCCGGG	TCAGGGGTGAT	GGAGGGCAGGC	GCAAAAAAGG
7301	AGGGTGGTTT	GGAAAGGCATC	GTGGTCAAGG	AGGTTCACAC	CCGAAATTG
7351	AGAACATTGC	AGAACGTTTA	AGAGCTCTCC	TGGCTAGGAG	TCACGTTAGAA
7401	AGGACTACCG	ACGAAGGAAC	TTGGGTGCGCC	GGTGTGTCG	TATATGGAGG
7451	TAGTAAGACC	TCCCTTACA	ACCTAAGGGC	AGGAACGTGCC	CTTGCTATTG

G

15/33

FIG. 3

SUBSTITUTE SHEET (RULE 26)

16 / 33

FIG. 3j

	H	H	I
8551	AATTAGGATA	GCATATACTA	CCCTAATCTC
8601	CCCCGGATACA	GATTAGGATA	TATAGGATA
8651	GCATATGCTA	CCCAGATATA	CCCAGATATA
8701	AATTAGGATA	GCATATACTA	GATTAGGATA
8751	CCCAGATATA	GATTAGGATA	GCATATGCTA
8801	GCATATGCTA	TCCAGATATT	CCCAGATATA
8851	AGCCCACCGT	GCTCTCAGCG	TGGTAGTAT
8901	TGCTTGGGC	TCAGGGCAA	ATGCTACCA
8951	AATCGGCC	CTATCTTGGC	TGTTGCTTCC
9001	GGGTGCCATT	AGTGGTTTGT	AGATCGCAGC
9051	GGGGTTACAA	TCAGCCAAGT	ACTTATGCA
9101	GCAGGGCGGC	GTGTGGGGC	GTATTGCA
9151	AAAAGAGTG	GCCACTTGTG	GTGCGGTAGT
9201	CCGTTTAATT	TTCGGGGTG	GGCCCCATG
9251	CGGGGTCCAC	TCTCTTCCC	GGCTGGAGC
9301	TCACCTGTCT	TGGTCCCTGC	CCAGTGTGT
9351	TATTGCACTA	GGATTATGTG	ACAAACATGGT
9401	GACATCCAGT	CTTACGGCT	TCTTAATAAC
9451	AGATATTCA	AATGTTTCAT	CCAGTGTAA

FIG. 3j

I _____ J

9501	TTGTGAGGGT	TATATTGGTG	TCATAGGCACA	ATGCCACCAAC	TGAACCCCCC
9551	GTCCAATTT	TATTCTGGGG	GGGTCACCTG	AAACCTTGT	TTCGAGCACC
9601	TCACATACAC	CTTAACCTGTC	ACAACCTCAGC	AGTTATTCTA	TTAGCTAAC
9651	GAAGGAGAAT	GAAGAACCGAG	GCGAACGATT	AGGAGAGTTC	ACTGCCCGCT
9701	CCTTGATCTT	CAGCCACTG	CCTTGTGACT	AAAATGGTTC	ACTACCCCTG
9751	TGGAATCCCTG	ACCCCATGTA	AATAAAACCG	TGACAGCTCA	TGGGGTGGGA
9801	GATATCGCTG	TTCCCTTAGGA	CCCTTTACT	AACCCTAATT	CGATAGCATA
9851	TGCTTCCCGT	TGGGTAACAT	ATGCTATTGA	ATTAGGGTTA	GTCTGGATAG
9901	TATATACTAC	TACCCGGAA	GCATATGCTA	CCCGTTAGG	GTTAACAAAGG
9951	GGGCCTTATA	AACACTATTG	CTAATGCCCT	CTTGAGGGTC	CGCTTATCGG
10001	TAGCTACACA	GGCCCCTCTG	ATTGACGTTG	GTGTAGGCCTC	CCGTAGTCTT
10051	CCTGGGGCCC	TGGGAGGTAC	ATGTCCCCCA	GCATTGGTGT	AAGAGCTTCA
10101	GCCAAGAGTT	ACACATAAAG	GCAATGTTGT	GTTGCAGTCC	ACAGACTGCA
10151	AAGTCTGCTC	CAGGATGAAA	GCCACTCAGT	GTRGGCAAAT	GTGGCACATCC
10201	ATTATAAGG	ATGTCAACTA	CAGTCAGAGA	ACCCCTTTGT	GTTTGGTCCC
10251	CCCCCGTGT	ACATGTGGAA	CAGGGCCAG	TTGGCAAGTT	GTACCAACCA
10301	ACTGAAGGGA	TTACATGCAC	TGCCCCGGA	AGAAGGGCA	GAGATGCCGT
10351	AGTCAGGTTT	AGTCAGGTT	GCGGGGGC		

18/33

FIG. 4a

1	GGCGTAATCT	GCTGCTTGCA	AACAAAAAAA	CCACCGCTAC	CAGCGGTGGT
51	TTGTTTGCCT	GATCAAGAGC	TACCAACTCT	TTTTCGGAAG	GTAACCTGGCT
101	TCAGCAGAGC	GCAGATACCA	AATACTGTCC	TTCTAGTGTAA	GCCGTAGTTA
151	GGCCACCACT	TCAAAGAACTC	TGTAGCACCG	CCTACATACC	TCGCTCTGCT
201	AATCCTGTTA	CCAGTGGCTG	CTGCCAGTGG	CGATAAGTCG	TGTCTTACCG
251	GGTTGGACTC	AAGACGATAG	TTACCGGATA	AGGCCAGCG	GTCGGGCTGA
301	ACGGGGGTT	CGTGCACAGA	GCCCAGCTTG	GAGCGAACGA	CCTACACCGA
351	ACTGAGATACT	CTACAGCGTG	AGCATTTGAGA	AAGGCCACG	CTTCCCGAAG
401	GGAGAAAGGC	GGACAGGTAT	CCGGTAAGCG	GCAGGGTGG	AACAGGGAGAG
451	CGCACGAGGG	AGCTTCCAGG	GGGAAACGCC	TGCTATCTT	ATGATCCTGT
501	CGGGTTTCCG	CACCTCTGAC	TTGAGCGTGT	ATTTTTGTGA	TGCTCGTCAG
551	GGGGGGGGAG	CCATATGAAA	AACGCCAGCA	ACGCAAGCTA	GCTTCTAGCT
601	AGAAATTGTA	AACGTTAATA	TTTTGTTAAA	ATTCCGCTTA	AATTTTTGT
651	AAATCAGCTC	ATTTTTAAC	CAATAGGCCG	AAATGGCAA	AATCCCTTAT
701	AAATCAAAG	ATAGCCCCGA	GATAGGGTTG	AGTGTGTTTC	CAGTTTGAA
751	CAAGAGTCCA	CTATTAAGA	ACGTGGACTC	CAACGTCAA	GGCGGAAAAAA
801	CCGTCTATCA	GGCGGATGGC	CGCCCACTAC	GTGAACCATC	ACCCAAATCA
851	AGTTTTTGG	GGTCGAGGTG	CCGTAAGCA	CTAAATCGGA	ACCCTAAAGG
901	GAGCCCCCGA	TTTAGAGCTT	GACGGGAAA	GCGGGGAAC	GTGGCGAGAA
951	AGGAAGGGAA	GAAAGCGAAA	GGAGGGGGCG	CTAGGGGCT	GGCAAGTGTA
1001	GGGGTCACCC	TGCGCGTAAAC	CACCAACACCC	GCCGCGCTTA	ATGCGCCGCT
1051	ACAGGGCGCG	TACTATGGTT	GCTTTGACGA	GACCGTATAA	C GTGCTTTC

A

FIG. 4 b**A**

1101	TCGTTGGAAT	CAGAGGGAA	GCTAACAGG	AGGCCGATT	AAGGGATT
1151	AGACAGGAAC	GGTACGCCAG	CTGGATTAC	GCGGTCTTTC	TCAACGTAAC
1201	ACTTTACAGC	GGCGGGTCAT	TTGATATGAT	GCCCCCGCT	TCCCGATAAG
1251	GGAGCAGGCC	AGTAAAGCA	TTACCCGTGG	TGGGGTTCCC	GAGCGGCCAA
1301	AGGGAGGAGA	CTCTAAATCT	GCCGTCATCG	ACTTCGAAGG	TTCGAATCCT
1351	TCCCCCACCA	CCATCACTTT	CAAAGTCCG	AAAGAATCTG	CTCCCTGCTT
1401	GTGTGTTGGA	GGTGGCTGAG	TAGTGGCGGA	GTAAAATTAA	AGCTACAAACA
1451	AGGCAAGGCCT	TGACCCGACAA	TTGCATGAAG	AATCTGCTTA	GGGTTAGGGC
1501	TTTTCGGCTG	CTTCGGATG	TACGGGCCAG	ATATACGGCT	TGACATGTAT
1551	TATTGACTAG	TTATTAAATAG	TAATCAATTAA	CGGGGTCAATT	AGTTCAATGC
1601	CCATATATGG	AGTTCCGGCT	TACATAACTT	ACGGTAAATG	GCCC GGCTGG
1651	CTGACCGCCC	AACGACCCCC	GCCCATTGAC	GTCAATAATG	ACGTATGTTT
1701	CCATAGTAAC	GCCAATAGGG	ACTTCCATT	GACGTCAATG	GGTGGACTAT
1751	TTACGGTAAA	CTGGCCACTT	GGCAGTACAT	CAAGTGTATC	ATATGCCAAG
1801	TACGCCCCCT	ATTGACGTCA	ATGACGGTAA	ATGGCCGCC	TGGCATATG
1851	CCCAGTACAT	GACCTTATGG	GACTTTCTTA	CTTGGCAGTA	CATCTACGTA
1901	TTAGTCATCG	CTATTACCAT	GGTGATGGGG	TTTTGGCAGT	ACATCAATGG
1951	GCGTGGATAG	CGGTTTGACT	CACGGGGAT	TCCAAGTCTC	CACCCCCATTG
2001	ACGTCAATGG	GAGTTTGTTT	TGGCACCAA	ATCAACGGGA	CTTTCCAAAA
2051	TGTCTGTAACA	ACTCCGGCCC	ATTGACGGCA	ATGGGGGTA	GGCGGTGTACG
2101	GTGGGAGGTC	TATATAAGCA	GAGCTCTCTG	GCTAACTAGA	GAACCCACTG

B

FIG. 4c

B

2151	CTTACTGGCT	TATCGAAATT	AATA CGACTC	ACTATAGGGA	GACCCAAAGCT
2201	TCTTAGAGATC	CCTCGAACCTC	GAGATCCATT	GTGCTGGCGC	GGATTCTTTA
2251	TCACTGATAA	GTGGTGGAC	ATATTATGTT	TATCAGTGAT	AAAGTGTCAA
2301	GCATGACAAA	GTGCGAGCCC	AATA CAGTGA	TCCGTGCCG	CCCTGGACTG
2351	TTGAACGAGG	TCGGCGTAGA	CGGTCTGACG	ACACGCCAAC	TGGCGGAACG
2401	GT"TGCGGTG	CAGCAGCCGG	CGCTTTACTG	GCACCTCAGG	ACAAGCGGG
2451	CGCTGCTCGA	CGCACTGGCC	GAAGGCCATGC	TGGCGGAGAA	TCATACGCTT
2501	CGGTGCCGAG	AGCCGAGCAC	GAUTGGCGCT	CATTCTCGAT	CGGGAATCCC
2551	GCAGCTTCAG	GCAGGGCGCTG	CTCGCCTAC	GCCAGCACAA	TGGATCTCGA
2601	GGGATCTCC	ATACCTACCA	GTTCCTGGCC	TGCAGGTCGC	GGCCGGGACT
2651	CTAGAGGATC	TTTGTGAAGG	AACCTTACTT	CTGTGGTGTG	ACATAATTGG
2701	ACAAACTACC	TACAGAGATT	TAAGGCTCTA	AGGTAATAT	AAAATTTTA
2751	AGTGTATAAT	GIGTTAAACT	ACTGATTCTA	ATIGTTGTGG	TATTTTAGAT
2801	TCCAACC"AT	GGAACTTATG	AATGGGAGCA	GTGGTGGAAAT	GCCTTTAATG
2851	AGGAAAACCT	GTTTTGCTCA	GAAGAAATGC	CATCTAGTGA	TGATGAGGCT
2901	ACTGCTGA	CTCAAACATT	TACTCCTCCA	AAAAGAAGA	GAAAGGTAGA
2951	AGACCCCAAG	GACTTTCCTT	CAGAATTGGT	AAGTTTTTG	AGTCATGCTG
3001	TGTTTAGTAA	TAGAACTCTT	GCTTGCTTTG	CTATTACAC	CAAAAGGAA
3051	AAAGCTGCAC	TGCTATACAA	GAAATTATG	AAAAAATATT	TGATGTATAG
3101	TGCCTTGACT	AGAGATCATA	ATCAGCCATA	CCACATTGT	AGAGGTTTTA
3151	CTTGCTTTAA	AAAACCTCCC	ACACCTCCCC	CTGAAACCTGA	AACATAAAAT
3201	GAATGCAATT	GTTGTTGTTA	ACTTGTGTTAT	TGCAGCTTAT	AATGGTTACA

C

FIG. 4d

C

3251	AATAAGCAA	TAGCATCACA	AATTCAACA	ATAAAGCATT	TTTATCACTG
3301	CATTCTAGTT	GTTGGTTGTGTC	CAAACATC	AATGTTATCTT	ATCATGTC
3351	GATCCCGCCA	TGGTATCAAC	GCCATATTTC	TATTACAGT	AGGGACCTCT
3401	TCGTTGTGTA	GGTACCGCTG	TATTCTTAGG	GAATATAGT	AGGCACCTTG
3451	AACTGTCTGC	ATCAGCCATA	TAGCCCCCGC	TGTTGACTT	ACAAACACAG
3501	GCACAGTACT	GACAAACCCA	TACACCTCCCT	CTGAAATACC	CATAGTTGCT
3551	AGGGCTGTCT	CGGAACCTCAT	TACACCCCTAC	CAAGTGAGAG	CTGTAATTTC
3601	GCGATCAAGG	GCAGGGAGGG	CTTCTCCAGA	TAAAATAGCT	TCTGCCGAGA
3651	GTCCCCGTAAG	GGTAGACACT	TCAGCTTAATC	CCTCGATGAG	GTCTACTAGA
3701	ATAGTCAGTG	CGGCTCCCAT	TTTGAAGAATT	CACTTACTTG	ATCAGCTTCA
3751	GAAGATGGCC	GAGGGCCTCC	AACACAGTAA	TTTCCCTCCC	GACTCTAAA
3801	ATAGAAAATG	TCAAGTCAGT	TAAGGAGGAA	GTGGACTAAC	TGACGGCAGCT
3851	GGCCGTGGGA	CATCCTCTTT	TAATTAGTTG	CTAGGCAACG	CCCTCCAGAG
3901	GGCGTGTGGT	TTTGCAGAG	GAAGCAAAAG	CCTCTCCACC	CAGGCCTAGA
3951	ATGTTCCAC	CCAATCATT	CTATGACAAC	AGCTGTTTT	TITAGTATTA
4001	AGCAGAGGCC	GGGGACCCCT	GGGGCCGGCTT	ACTCTGGAGA	AAAAGAAGAG
4051	AGGCATTGTA	GAGGCTTCCA	GAGGCAACTT	GTCAAAACAG	GACTGCTCT
4101	ATTCTGTCA	CACTGTCAGT	CCCTGTCACA	AGGTCCAGCA	CTTCCATACC
4151	CCCTTTAATA	AGCAGTTGG	GAACGGGTGC	GGGTCTTACT	CGGCCATCC
4201	CGCCCTTAAC	TCCGCCAGT	TCCGCCATT	CTCCGCCCA	TGGCTGACTA
4251	ATTTTTTTA	TTATGCGAGA	GGCGGAGGCC	GCCTCGGGCT	CTGAGCTATT
4301	CCAGAAAGTAG	TGAGGAGGCT	TTTTTGGAGG	CCTAGGCTTT	TGCAAAAGC
4351			TAATTTC		

FIG. 5a

CACCTAAATTGTAAGCGTTAATAATTGTTAAATTCGGCTTAAATTGCTCATTTTAACCA
 ATAGGCCAAATCGGCAAATCCCTTAAATCAGAACGACTCCAAAGGAATAAGACCC
 GAAACAAGAGTCCAACTTAAAGAACGTGGACTCCAACGTCAAAGGGCGAAAACC
 ACTACCGTGAACCATCACCCCTAAATCAAGTTTTGGGTCGAGGTGCCGTAAGC
 GAGCCCCCGATTAGAGCTTGACGGGAAAGGGGAAACCTGGCGAGAAAGGA
 GGGCCTAGGGGCTGGCAAGTGTAGCGGTACGCTGCCGTAACCC
 ACAGGGGGCTGGCGAAAGGGGATGTGCAAGGGGATTAAAGTTGGGTAACGCC
 ACGCCAGCTGGCGAAAGGGGACTTAAGCTGAAATTGTAATA
 TTGTAAGGACGGCCAGTGAATTGTAATA
 CGACGGTATCGATAAGCTTGATATCGAAATTCCCTTGCG
 GGTGGAGGCTCCAGGCTTGTGTTCCCTTAGTGAGGGTTAAATT
 CTGTGTGAAATTGTTACCAATTCCACACACATA
 CCTTAATGAGTGAGCTAACATCACATTAAATT
 AGCTGCATTAAATGAAATCGGCCAACGCCGGGGAGGG
 CTGACTCGGCTGGCTCGGTGTGCTGGCTCCGGTATCAGCT
 CAGAAATCAGGGATAACGCAGGAAGAACATGAG
 CGTTGCTGGCGTTTCCATAGGCTCCGGCCCTGACG
 GAAACCCCACAGGACTATAAGATAACCAGGG
 TGCGCTTACCGGATAACCTGTCCGCTTCT
 ATCTCAGTTGGGTAGGTCTGGCTGTTG
 A

FIG 5b

A

CCTTATCCGGTAACATCGTCTTGAGTCCAACCCGGTAAGACGACTTATGCCACTGGCAGGCCACTGGTA
ACAGGATTAGCAGGGGTATGTAGGGCTACAGAGTTCTTGAAAGTGGCTTAACCTACGGCTACACTA
GAAGGACAGTATTGGTATCTGGCTCTGGCTGAGCCAGTTACCTTCGGAAAAGAGTTGGTAGCTCTTGATCCG
GCAAACAACCCGCTGGTAGCGGTCTTGTGCAAGCAGCAGATTACGGCAGAAAAGGATCTC
AAGAAGATCCCTTGATCTTGTCTCACCTAGATCCTAACCTTAATGAAAGTTAAATCAATCTAAAGTATAT
TGAGATTCAAAGGATCTCACCTAACCTTAATGCTTAATCAAGTGAGGCAACCTATCTAGCGATCTGGCTTATTTCGTT
CATCCATAGTTGCCTGACTCCCCGTGCTGATAGATAACTACGATACTGGGCTTACCATCTGGCCCCAGTGCTG
CAATGATAACGGCAGACCCACGGCTCACCGCTCCAGATTATCAGCAATAACGGCAAGCCAGGGAAAGGGCCAGC
GCAGAAAGTGGCCTGCAACTTATCCGCTCCATCCAGTCTTAATTGGTGGGTGTCACGCTCGTTGGTATGG
CGCCAGTTAATAGTTGCGCAACGTTCCCAAGGATCAAGGCTACGGCATGCCATGCTTGGGTGCAAAAAGGGTTAGCT
CTTCATTCAAGCTCCGGTCCGATCGTTGAGTAAGTCAAGGCTTGGCCAGTGTATTCACTCATGGTTATGCCACACTGCATA
ATTCTTACTGTCATGCCATCCGTAAGATGGCTTCTGACTGGTAGTCAACCAAGTCATCTGAGAAT
AGTGTATGGGGGACCGAGTTGCTCTGGCTCAATACGGATAATAACGGCAACTGGCACA
AAGTGGCTCATGGAAAAGGTTCTCAAGGATCTCCGGCTTACGGCTTGGGCAACT
TGTAAACCCACTCGTGCACCCAACTGATCTCAGCATCTTACGGCTTCTGGGTGAGCAAAACAG
GAAGGGCAAAATGCCGAAAAGGAAATAAGGGGAATAGTGAATACTCATACTCTTCCCTTCAAT
ATTATGAAAGCATTATCAGGGTTATTGTAATGATACTGAGGGATACATTTGATGGTCTCATGGGGCACTTCCCCGAAAGTGC
TAGGGGTTCCGGCACATTCCCCGAAAGTGC

SUBSTITUTE SHEET (RULE 26)

FIG. 6a

1 CTGTGGAATG TGTGTCAGTT AGGGTGTGGA AAGGTGCAAG GCTCCCCAG GGGCAGAAGT
 61 ATGCCAAAGCA TGCATCTCAA TTAGTCAGCA ACCAGGTGTG GAAAGTCCC AGGCTCCCCA
 121 GCAGGCCAGAA GTATGCAAAG CATGCATCTC AATTAGTCAG CAACCATAGT CCCGGCCCTA
 181 ACTCCGCCCA TCCCGCCCT AACTCCGCC AGTTCCGCC ATTCTCCGCC CCATGGCTGA
 241 CTAATTTTT TTATTATGC AGAGGCCAG GCCGCCCTCGG CCTCTGAGCT ATTCCAGAAG
 301 TAGTGAGGAG GCTTTTGG ACCGCTTAGGC TTTTGCAAAA AGCTTGCATG CCTGCAGGTC
 361 GGCCGCCACG ACCGGTGCCG CCACCATCCC CTGACCCACG CCCCTGACCC CTCACAAGGA
 421 GACGACCTTC AGGCACCCCTC GCGCCGGCGT TGCCGACTA CGGCCACCC CGGCCACCCG
 481 CCCGGCCGT TACAGCCA CGGTGGCCCT CGGTGGCGTCC GACGACGTCC
 541 TCGACCCGGA CGGCCACATC GAGGGGGTCA CGGAGCTGCA AGAACCTCTC CTCACGGCG
 601 TCGGGCTCGA CATCGGCAAG GTGTTGGGTG CGGACCGACGG CGGGCGGGTGC
 661 CCACGCCGA GAGCGTCGA GCGGGGGCGG TGTTGGCGA GATGGGGCC CGCATGGCCG
 721 AGTTGAGGG TTCCCGCTG GCGCGGCAGC AACAGATGGA AGGCTCTTG GCGCCGACC
 781 GGGCCAAAGGA GCGGGCTGG TTCCCTGGCA CGTGGGGCGT CTCGGGGCAC
 841 AGGGTCTGGG CAGGGCCGTC GTGCTCCCCG GAGTGGGGC GGCGGAGGCC CACCAGGGCA
 901 CCGCCTTCCT GGAGACCTCC GCGGGGGCA ACCTCCCCCTT CTACGAGCGG CTCGGCTTC
 961 CCGTCACCCG CGACGTCGAG GTGCCCCGAG GACCCGGCAGC CTGGTGCATG ACCGGCAAGC
 1021 CCGGTGCCCTG ACGCCCCC CACGACCCGGC AGCGCCCCGAC CGAAAGGAGC GCACGACCC
 1081 ATGGCTCCGA CGMAAGGGCA CCCGGGGGGC CCGGCCGACC CCGCACCCGC CCCCGAGGCC
 1141 CACCGACTCT AGAGGATCAT AATCAGCCAT ACCACATTG TAGAGGTTTT ACTTGCTTTA
 1201 AAAAACCTCC CACACCTCCC CCTGAACCTG AACATAAAAA TGAATGCAAT TGTGTGTTGTTA

A

FIG. 6b**A**

1261 AACTTGTGTTA TTGCAGCTTA TAATGGCTTA AAATAAGCA ATAGCATCAC AAATTCCACA
 1321 AATAAAGCATT TTTTTCACT GCATTCTAGT TGTGGTTGT CCAAACCTCAT CAATGTATCT
 1381 TATCATGTCT GGATCCCCAG GAAGCTCCTC TGTGTCCCTCA TAAACCTAA CCTCCTCTAC
 1441 TTGAGGGAC ATTCCAATCA TAGGCTGCC TAGGCTGCC ATCCACCCCTC ATCCACCCCTC TGTTAATTAG
 1501 GTCACTTAAC AAAAAGAAA TTGGGTAGGG GTTTTTCACA GACCGCTTC TAAGGGTAAT
 1561 TTAAATAAT CTGGGAAGTC CCTTCCACTG CTGTTCCA GAAGTGTCCA GAAGTGTGG TAACAGCCC
 1621 ACAAAATGTCA ACAGGAGAAA CATACAAGCT GTCAAGCTTGTG CACAAGGCC CAACACCCCTG
 1681 CTCATCAAGA AGCACTGTGG TTGCTGTGTT AGTAATGTGC AAAACAGGAG GCACATTTTC
 1741 CCCACCTGTG TAGGTTCCAA AATATCTAGT GTTTTCATT TTACTTGGAT CAGGAACCCA
 1801 GCACTCCACT GGATAAGCAT TATCCTTATC CAAACAGCC TTGTGGTCAG TTGTGGTCAG
 1861 CTGACTGTCA ACTGTAGCAT TTTTGGGT TACAGTTTGAA GCAGGATATT TGGTCCCTGTA
 1921 GTTGTCAAC ACACCCCTGCA GCTCCAAAGG TTCCCCACCA ACAGCAAAAA ATGAAATT
 1981 TGACCCCTGTA ATGGGTTTTC CAGCACCAATT TTCATGAGTT TTTGTGTCC CTGAATGCAA
 2041 GTTTAACATA GCAGTTACCC CAATAACCTC AGTTTAACA GTAACAGCTT CCCACATCAA
 2101 AATATTTCGA CAGGTTAAGT CCTCATTTAA ATTAGGCCAA GGAAATTCTTG AAGACGAAAG
 2161 GGCCTCGTGA TACGCCCTATT TTATAGGTT AATGTCTATGA TAATAATGGT TTCTTAGACG
 2221 TCAGGGTGGCA CTTFTCGGGG AAATGTGGC GGAACCCCTA TTIGTTTATT TTTCTAAATA
 2281 CATTCAAATA TGTATCCGCT CATGAGACAA TAACCCTGAT AAATGCTTCATA ATAATATTGAA
 2341 AAAAGGAAGA GTATGAGTAT TCAACATTTC CGTGTGGCC TTATTCCTT TTTGGGGCA
 2401 TTTTGCCTTC CTGTTTTC TCACCCAGAA ACGCTGGTGA AAGTAAAGA TGCTGAAGA
 2461 CAGTTGGGTG CACCGAGTGGG TTACATCGAA CTGGATCTCA ACAGGGTAA GATCCTTGAG
 2521 AGTTTGTGCGCC CCGAAGAACG TTAAAGCAATG ATGAGCACTT TTAAAGTCT GCTATGTGGC

B

26/33

FIG. 6c

B ————— C

2581	GCGGTATTAT	CCCGTGTGA	CGCCGGCAA	GAGCAACTCG	GTCGCCGCAT	ACACTATTCT
2641	CAGAATGACT	TGGTTGAGTA	CTCACCGTC	ACAGAAAAGC	ATCTTACGGA	TGGCATGACA
2701	GTAAGAGAAAT	TATGCAGTGC	TGCCATAACC	ATGAGTGATA	ACACTGGGCC	CAACTTACTT
2761	CTGACAAACGA	TCGGAGGACC	GAAGGAGCTA	ACCGCTTTT	TGCACAAACAT	GGGGGATCAT
2821	GTAACTCGCC	TTGATCGTTG	GGAACCGGAG	CTGAATGAAAG	CCATACCAA	CGACGAGCGT
2881	GACACCACGA	TGCCCTGCAGC	AATGGCAACA	ACGTTGCGCA	AACTATTAAC	TGGCGAACTA
2941	CTTACTCTAG	CTTCCCCGCA	ACAATTAAATA	GACTGGATGG	AGGCGGATAAA	AGTTGCAGGA
3001	CCACTCTGC	GCTCGGCCCCT	TCIGGCTGGC	TGGTTTATG	CTGATAAATC	TGGAGCCGGT
3061	GAGCGTGGGT	CTCGCGGTAT	CATTGCAGCA	CTGGGGCCAG	ATGGTAAGCC	CTCCCGTATC
3121	GTAGTTATCT	ACACGACGGG	GAGTCAGGCA	ACTATGGATG	AACGAAATAG	ACAGATCGCT
3181	GAGATAGGTG	CCTCACTGAT	TAAGCATGG	TAACTGTCAG	ACCAAGTTA	CTCATATA
3241	CTTTAGATTG	ATTAAACT	TCATTTAA	TTAAAGGA	TCTAGGTGAA	GATCCTTTT
3301	GATAATCTCA	TGACCAAAAT	CCCTTAACGT	GAGTTTCGTT	TCCACTGAGC	GTCAAGACCC
3361	GTAGAAAAGA	TCAAAGGATC	TTCTTGAGAT	CCTTTTTC	TGCCCGTAAAT	CTGCTGCTTG

27/33

FIG. 6d

C C

3421	CAAACAAAAA	AACCACCGCT	ACCAGGGCT	GTTTGTGTC	CGGATCAAGA	GCTACCAACT
3481	CTTTTTCCGA	AGGTAACCTGG	CTTCAGCAGA	GCGCAGATAAC	CAAATACTGT	CCTTCTAGTG
3541	TAGCCGTAGT	TAGGCCACCA	CTTCAAGAAC	TCTGTAGGCAC	CGCCTACATA	CCTCGCTCTG
3601	CTAATCCTGT	TACCAGTGGC	TGCTTGCCAGT	GGCGATAAAGT	CGTGTCTTAC	CGGGTTGGAC
3661	TCAAGACGGAT	AGTTACCGGA	TAAGGGCAG	CGGTGGGCT	GAACGGGGGG	TTCGTGCACA
3721	CAGCCAGGCT	TGGAGCGAAC	GACCTACACC	GAACGTGAGAT	ACCTACAGGG	TGAGCTATGA
3781	GAAAGGCCA	CGCTTCCCCA	AGGGAGAAAG	GGGGACAGGT	ATCCGGTAAG	CGGCAGGGTC
3841	GGAACAGGAG	AGCGCACGAG	GGAGGCTCCA	GGGGAAACG	CCTGGTATCT	TTATAGTCT
3901	GTCGGGTTTC	GCCACCTCTG	ACTTGAGCCT	CGATTTTGT	GATGCTCGTC	AGGGGGGG
3961	AGCCTATGGA	AAAACGCCAG	CAACGCCGCC	TTTTTACGGT	TCCTGGCCTT	TTGCTGGCCT
4021	TTGCTCACA	TGTTCTTTCC	TGCGTTATCC	CCTGATCTG	TGGATAACCG	TATTAACGCC
4081	TTTGAGTGAG	CTGATACCGC	TCGCCGCAGC	CGAACGACCG	AGCGCAGCGA	GTCAGTGAGC
4141	GAGGAAGGGG	AAGAGGCCT	GATGCCGTAT	TTTCTCCTTA	CGCATCTGTG	CGGTATTTCAG
4201	CACCGCATAT	GGTGCACCT	CAGTACATC	TGCTCTGATG	CGGCATAGTT	AAGCCAG

28/33

FIG. 7**SUBSTITUTE SHEET (RULE 26)**

29/33

FIG. 8

FIG. 9**SUBSTITUTE SHEET (RULE 26)**

31/33

FIG. 10

32/33

FIG. 11**SUBSTITUTE SHEET (RULE 26)**

33/33

FIG. 12

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US99/02852

A. CLASSIFICATION OF SUBJECT MATTER

IPC(6) : G01N 33/50, 33/52; C07K 14/705; C12N 15/00, 15/12
 US CL : 435/7.2, 69.1, 320.1; 536/23.1; 530/402

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S. : 435/7.2, 69.1, 320.1; 536/23.1; 530/402

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

Please See Extra Sheet.

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	KUANG, Y. et al. Selective G Protein Coupling by C-C Chemokine Receptors. J. Biol. Chem. 23 February 1996, Vol. 271, No. 8, pages 3975-3978, see entire document.	1-35
Y	HERRLICH, A et al. Involvement of Gs and Gi Proteins in Dual Coupling of the Luteninizing Hormone Receptor to Adenylyl Cyclase and Phospholipase C. J. Biol. Chem. 12 July 1996, Vol. 271, No. 28, pages 16764-16772, see entire document.	1-35
Y	DAMAJ, B. B. et al. Physical Association of Gi2 Alpha with Interleukin-8 Receptors, J. Biol. Chem. 31 May 1996, Vol. 271, No. 22, pages 12783-12789, see entire document.	1-35

 Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents:	"T"	later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"A" document defining the general state of the art which is not considered to be of particular relevance	"X"	document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"E" earlier document published on or after the international filing date	"Y"	document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)	"&"	document member of the same patent family
"O" document referring to an oral disclosure, use, exhibition or other means		
"P" document published prior to the international filing date but later than the priority date claimed		

Date of the actual completion of the international search

28 MAY 1999

Date of mailing of the international search report

12 JUL 1999

Name and mailing address of the ISA/US
Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231

Facsimile No. (703) 305-3230

Authorized officer
D. Lawrence Tor
NIRMAL S. BASI

Telephone No. (703) 308-0196

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US99/02852

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	BERVEN, L. A. et al. Evidence That the Pertussis Toxin-sensitive Trimeric GTP-binding Protein Gi2 is required for Agonist- and Store-Activated Ca2+ Inflow in Hepatocytes. <i>J. Biol. Chem.</i> 27 October 1995, Vol. 270, No. 43, pages 25893-25897, see entire document.	1-35
Y	MAGOVCEVIC, I. et al. Regional Localization of the Human G Protein Alpha i2 (GNA12) Gene: Assignment to 3p21 and a Related Sequence (GNA12L) to 12p12-p13. <i>Genomics</i> , 1992, Vol. 12, pages 125-129, see entire document.	1-35
Y	MILLER, B. A. et al. Role of Pertussis Toxin-Sensitive Guanosine Triphosphate-Binding Proteins in the Response of Erythroblasts to Erythropoietin. <i>Blood</i> . 01 February 1991, Vol. 77, No. 3, pages 486-492, see entire document.	1-35
Y	MILLER, B. A. et al. G-protein Alpha Subunit Gi-alpha 2 Mediates Erythropoietin Signal transduction in Human Erythroid Precursors. <i>J. Clin. Invest.</i> 1996, Vol. 98, No. 8, pages 1728-1736, see entire document.	1-35
Y	TANG, T. et al Antisense Oligodeoxynucleotide to the Gi2 protein Alpha Subunit Sequence Inhibits an Opioid-Induced Increase in the Intracellular Free Calcium Concentration in ND8-47 Neuroblastoma X Dorsal Root Ganglion Hybrid Cells. <i>Mol. Pharmacol.</i> 1995, Vol. 48, pages 189-193, see entire document.	1-35
Y	ZHU, x. et al. G Protein subunits and the Stimulation of Phospholipase C by Gs- and Gi-coupled Receptors: Lack of Receptor Selectivity of G-alpha-16 and Evidence for a Synergic Interaction between G-beta-gamma and Alpha-subunit of a Receptor-Activated G Protein. <i>Proc. Natl. Acad. Sci. USA</i> , April 1996, Vol. 93, pages 2827-2831, see entire document.	1-35
Y	OFFERMANNS, S. et al. Transfected Muscarine Acetylcholine Receptors Selectively Couple to Gi-Type Proteins and Gq/11. <i>Mol. Pharmacol.</i> 1994, Vol. 45, pages 890-898, see entire document.	1-35
Y	DICKENSON, J. M. et al. Activation of Phospholipase C by G-protein Beta-gamma-Subunits in DDT1MF-2 Cells. <i>E. J. Pharmacol.</i> 1995, Vol. 288, No. 3, pages 393-398, see entire document.	1-35
Y	DORN, G. W. et al. Alpha21-Adrenergic Receptor Stimulated calcium Release is Transduced by Gi-Associated G-beta-gamma-Mediated Activation of Phospholipase C. <i>Biochemistry</i> , 1997, Vol 36, pages 6475-6723, see entire document.	1-35

Form PCT/ISA210 continuation sheet (1st sheet) July 1999
90, pages 6475-6723, see entire document.

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US99/02852

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	BOYER, J. L. et al. Selective Activation of Phospholipase C by Recombinant G-Protein Alpha- and Beta-gamma-Subunits. <i>J. Biol. Chem.</i> 28 January 1994, Vol 269, No. 4, pages 2814-2819, see entire document.	1-35
Y	ARAGAY, A. M. et al. The G-alpha-q and G-alpha-11 Proteins Couple the Thyrotropin-releasing Hormone Receptor to Phospholipase C in GH3 Rat Pituitary Cells. <i>J. Biol. Chem.</i> 15 December 1992, Vol. 267, No. 35, pages 24983-24988, see entire document.	1-35
Y	BOYER, J. I. et al. Beta-Gamma-Subunit Activation of G-Protein-Regulated Phospholipase C. <i>J. Biol. Chem.</i> 15 December 1992, Vol. 267, No. 35, pages 25451-25456, see entire document.	1-35
Y	NEYLON, C. B. et al. Thrombin-induced Ca ²⁺ Mobilization in Vascular Smooth Muscle Utilizes a Slowly Ribosylating Pertussis Toxin-sensitive G protein. <i>J. Biol. Chem.</i> 15 April 1992, Vol. 267, No. 11, pages 7295-7302, see entire document.	1-35
Y	DUZIC, E. et al. Factors Determining the Specificity of Signal Transduction by Guanine Nucleotide-binding Protein-Coupled Receptors. <i>J. Biol. Chem.</i> 15 May 1992, Vol 267, No. 14, pages 9844-9851, see entire document.	1-35
Y	CLAPHAM, D. E. Intracellular Signalling: More Jobs for G-beta-gamma. <i>Current Biology</i> . 1996, Vol. 6, No. 7, pages 814-816, see entire document.	1-35

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US99/02852

B. FIELDS SEARCHED

Electronic data bases consulted (Name of data base and where practicable terms used):

APS, MEDLINE, JAPIO, BIOSIS, SCISEARCH, WPIDS

Search terms: g protein, calcium, gi, gia, gia2, gia3, gil, gi2 gi3, chemokine, interleukin, fluorescence, fura, indo, fluo, phosphorylase C, episomal