Optična rotacija raztopine saharoze

Matija Zanjkovič, Mesarec Tilen, Petauer Maja

Junij 2025

Uvod

- Raziskovali smo optično rotacijo polarizirane svetlobe.
- Kaj je optična rotacija in zakaj se pojavi?
- Enantiomeri: zrcalne slike, ki se ne prekrivajo.

Kiralnost in optična aktivnost

- Voda ni enantiomer (simetrična).
- Sladkorji (glukoza, fruktoza, saharoza) so kiralni.
- Kiralnost: različne lastnosti v kiralnem okolju.
- Optična rotacija: enantiomeri rotirajo polarizirano svetlobo v nasprotni smeri.

Cilji in teorija

- Izmeriti specifično rotacijo saharoze v vodi pri različnih koncentracijah in dveh valovnih dolžinah (rdeča, zelena).
- Preveriti Drudejev model disperzije.

$$[\alpha]_{\lambda}^{\mathsf{T}} = \frac{\alpha}{c \cdot I}$$

$$[[\alpha]] = \left\lceil \frac{\circ \cdot dm}{g \cdot mL} \right\rceil$$

Eksperimentalna izvedba

- Priprava raztopin saharoze različnih koncentracij.
- Merjenje kota rotacije z laserjem (rdeča in zelena).
- Uporaba polarizatorjev in LoggerPro.

slike/setup.png

Merjene količine

- ► Koncentracija saharoze c (g/mL)
- Valovna dolžina λ (nm)
- ▶ Kot rotacije α (°)
- Dolžina cevi / (dm)

Primer rezultatov – meritve

<i>c</i> [g/mL]	α_r [°]	α_z [°]	$\Delta \alpha$ [°]
0.000	75	79	2
0.030	90	96	2
0.050	102	110	2
0.070	115	126	2
0.090	131	136	2
0.100	137	141	2

Izračun specifične rotacije

$$[\alpha] = \frac{\alpha}{c \cdot L}$$

- Primer za rdečo:
- $[\alpha]_{c=0.030} = 43 \ (1 \pm 0.36)$
- $[\alpha]_{c=0.100} = 54 \ (1 \pm 0.14)$
- Primer za zeleno:
- $[\alpha]_{c=0.030} = 49 \ (1 \pm 0.33)$
- $[\alpha]_{c=0.100} = 56 \ (1 \pm 0.14)$

Povprečna specifična rotacija

$$\overline{[\alpha]}_{\mathsf{rde\check{c}a}} = \mathsf{50}$$

$$\overline{[lpha]}_{
m rde\check{c}a} = 50$$
 $\overline{[lpha]}_{
m zelena} = 54$

Med - analiza

▶ Naravni med: glukoza in fruktoza (36 : 41)

$$[\alpha]_{glukoza} = 53, [\alpha]_{fruktoza} = -92$$

▶ $[\alpha]_{med} = -24$

▶ Sintetični med: 7 – 89

Table 1. Minimum (min), maximum (max) and average (avg) specific angle values of honey of different botanical origin, including adulterated (diluted) samples.

$[\alpha]_D^{20}$	Diluted (n = 7) *	Chestnut $(n = 4)$	Coniferous $(n = 3)$	Oak (n = 10)	Thistle $(n = 2)$	Thyme (n = 1)
min	+7.2	-11.5	-8.1	-11.3	-18.8	
max	+89.2	+18.4	+9.0	-0.2	+2.5	
avg	+40.2	+0.3	-1.8	-7.5	-8.3	-8.3
$[\alpha]_D^{20}$	Coriander (n = 1)	Rapeseed (n = 1)	Polyfloral (n = 2)	Acacia (n = 3)	Linden (n = 2)	Mixed (n = 5)
min			-16.9	-19.2	-16.3	-35.2
max			-14.8	-14.1	-15.8	-9.3
avg	-9.4	-11.2	-15.9	-16.0	-16.1	-17.0

^{*} n is the number of samples measured for the individual honey types.

Rezultati za med

- ▶ Prvi med: $[\alpha]_{med_1} = -70 \pm 87$
- ▶ Drugi med: $[\alpha]_{med_2} = 52 \pm 65$
- Velike napake zaradi majhnega kota in koncentracije.
- ► Med₁ kristaliziral, med₂ ni.

Table 1. Minimum (min), maximum (max) and average (avg) specific angle values of honey of different botanical origin, including adulterated (diluted) samples.

$[\alpha]_D^{20}$	Diluted (n = 7) *	Chestnut (n = 4)	Coniferous (n = 3)	Oak (n = 10)	Thistle (n = 2)	Thyme (n = 1)
min	+7.2	-11.5	-8.1	-11.3	-18.8	
max	+89.2	+18.4	+9.0	-0.2	+2.5	
avg	+40.2	+0.3	-1.8	-7.5	-8.3	-8.3
$[\alpha]_D^{20}$	Coriander (n = 1)	Rapeseed (n = 1)	Polyfloral (n = 2)	Acacia (n = 3)	Linden (n = 2)	Mixed (n = 5)
min			-16.9	-19.2	-16.3	-35.2
max			-14.8	-14.1	-15.8	-9.3

^{*} n is the number of samples measured for the individual honey types.

Zaključek

- Optična rotacija saharoze potrjuje teorijo o optični aktivnosti.
- Drudejev model dobro opiše odvisnost od valovne dolžine.
- Analiza medu: možno razlikovanje naravnega in umetnega medu.

Literatura

D. Gerginova, V. Kurteva, S. Simova, *Optical Rotation—A Reliable Parameter for Authentication of Honey?*, Molecules, 27(24), 8916, 2022.