DIE ZWEITE FUNDAMENTALFORM KRÜMMUNG

Alfons Preis und Arthur Sedivy

ÜBERBLICK

- Gauß-Abbildung (= Einheitsnormalenfeld)
- Weingarten-Abbildung (= Differentiation davon)
- Die zweite Fundamentalform (= eine symm. Bilinearform, verknüpft mit der 1.FF)
- Krümmung (von Kurven zu Flächen)
- Satz von Meusnier (2.FF zur Berechnung der Krümmung von Flächen)

GAUß-ABBILDUNG

o Sei $S \subset \mathbb{R}^3$ eine orientierbare reguläre Fläche mit glattem Einheitsnormalenfeld N. Als Abbildung aufgefasst heißt

$$N: S \rightarrow S^2$$

auch Gauß-Abbildung

WEINGARTEN-ABBILDUNG

o Sei S \subset \mathbb{R}^3 eine reguläre Fläche mit Orientierung gegeben durch das Einheitsnormalenfeld N. Der Endomorphismus

$$W_p: T_p S \to T_p S$$

$$W_p(X) = -d_p N(X)$$

heißt Weingarten-Abbildung

Beispiele zur Weingarten-Abbildung

 \circ Kugel S^2 bzw $r \cdot S^2$

o X-Y-Ebene

Abb. 82

 \circ Zylinder S¹ x \mathbb{R}

Abb. 84

WIE SCHAUT'S AUS UND WIE KOMME ICH DORT HIN

• Zweite Fundamentalform:

$$II_p(X,Y) = I_p(W_p(X),Y), \qquad X,Y \in T_pS$$

• **Proposition 3.3.5.** Sei $S \subset \mathbb{R}^3$ eine orientierbare reguläre Fläche mit Weingarten-Abbildung $W_p: T_pS \to T_pS, p \in S$. Dann ist W_p selbstadjungiert bzgl. der ersten Fundamentalform.

WAS WIR VERGESSEN HABEN

Weingarten-Abbildung

$$W_p = -d_p N(X)$$

Satz von Schwarz

Sei $U \subseteq \mathbb{R}^3$ eine offene Menge sowie $f: U \to \mathbb{R}$ mindestens p-mal partiell differenzierbar und sind alle p-ten partiellen Ableitungen in U zumindest noch stetig, so ist die Reihenfolge der Differentiation in allen q-ten partiellen Ableitungen mit $q \le p$ unerheblich

ZWEITE FUNDAMENTALFORM

 Durch Zusammenfügen des Erlernten erhalten wir:

Zweite Fundamentalform:

$$II_p(X,Y) = I_p(W_p(X),Y), \qquad X,Y \in T_pS$$

LOKALE KOORDINATEN

• Definieren wir wie folgt:

$$h_{ij}(u) = \left\langle \frac{\partial^2 F}{\partial u^j \partial u^i}(u), N(p) \right\rangle, \qquad i, j = 1, 2$$

Krümmung einer Kurve

o Sei $S \subset \mathbb{R}^3$ eine orientierbare Fläche mit glattem Einheitsnormalenfeld $N, p \in S$. Sei $c: (-\varepsilon, \varepsilon) \to S$ eine nach Bogenlänge parametrisierte Kurve mit c(0) = p. Aufgefasst als Raumkurve in \mathbb{R}^3 hat c in 0 die Krümmung $\kappa(0)$, die im Fall $\kappa(0) \neq 0$ durch

$$\ddot{c}(0) = \kappa(0) \cdot n(0)$$

gegeben ist, wobei n(0) der Normalenverkor an c ist.

Krümmung von Flächen

 \circ Gesamtkrümmung von c: Krümmung von c innerhalb von S und Krümmung von S.

$$n(0) = n(0)^{tang} + n(0)^{senk}$$

$$mit \ n(0)^{senk} = \langle n(0), N(p) \rangle N(p)$$

Also

$$\ddot{c}(0) = \kappa(0) \cdot n(0)^{tang} + \kappa(0) \cdot \langle n(0), N(p) \rangle N(p)$$

Normalkrümmung

Definition

$$\kappa_{nor} \coloneqq \langle \ddot{c}(0), N(p) \rangle = \begin{cases} \kappa(0) \cdot \langle n(0), N(p) \rangle, & \text{falls } \kappa(0) \neq 0 \\ 0, & \text{falls } \kappa(0) = 0 \end{cases}$$

 κ_{nor} ist die Normalkrümmung von S im Punkt p in Richtung $\dot{c}(0)$.

Zusammenfassung vor dem Höhepunkt

Normalkrümmung

$$\kappa_{nor} = \langle \ddot{c}(0), N(p) \rangle$$

• Weingarten-Abbildung:

$$W_p(X) = -d_p N(X)$$

• Zweite Fundamentalform:

$$II_p(X,Y) = I_p(W_p(X),Y), \qquad X,Y \in T_pS$$

SATZ 3.6.1: MEUSNIER

o Sei $S \subset \mathbb{R}^3$ eine orientierbare reguläre Fläche mit Einheitsnormalfeld N und zweiter Fundamentalform II. Sei $p \in S$. Sei $c : (-\varepsilon, \varepsilon) \to S$ eine nach Bogenlänge parametrisierte Kurve mit c(0) = p. Dann gilt für die Normalkrümmung κ_{nor} von c:

$$\kappa_{nor} = II(\dot{c}(0), c(\dot{0}))$$

Insbesondere haben alle nach Bogenlänge parametrisierten Kurven in S durch p mit demselben Tangentialvektor dieselbe Normalkrümmung.

BEZÜGLICH NORMALKRÜMMUNG

Abb. 89

ZUSAMMENFASSUNG

- Gauß-Abbildung (= Einheitsnormalenfeld)
 - $N: S \rightarrow S^2$
- Weingarten-Abbildung (= Differentiation davon)
 - $W_p(X) = -d_p N(X)$
- Die zweite Fundamentalform (= eine symm. Bilinearform, verknüpft mit der 1.FF)
 - $II_p(X,Y) = I_p(W_p(X),Y)$
- Krümmung (von Kurven zu Flächen)
 - $\kappa_{nor} = \langle \ddot{c}(0), N(p) \rangle$
- Satz von Meusnier (2.FF zur Berechnung der Krümmung von Flächen)
 - $\kappa_{nor} = II(\dot{c}(0), c(\dot{0}))$

DANKE FÜR DIE AUFMERKSAMKEIT