EXAMEN de Matemática Discreta y Lógica Matemática (Febrero 2013)

NT.	\sim	ЛP	D	D.

GRUPO:

Lee atentamente las siguientes instrucciones:

- Escribe tu nombre y grupo en el lugar indicado en esta hoja.
- NO puedes usar calculadora. Desconecta el teléfono móvil (si lo tienes contigo).
- El examen dura 2 horas.
- Cada una de las ocho primeras preguntas son tipo test y tienen una única respuesta correcta. Cada pregunta respondida correctamente puntuará 0,75 puntos. Cada pregunta respondida incorrectamente puntuará -0,25 puntos. Las preguntas sin contestar puntuarán 0 puntos.
- En cada una de las preguntas a desarrollar aparece la puntuación máxima que puede obtenerse al responderlas. La mínima puntuación que puede obtenerse en estas preguntas es 0.
- 1. Definimos la relación $R \subseteq \mathbb{N} \times \mathbb{N}$ del siguiente modo:

$$xRy \iff (x \cdot y = x) \qquad (x, y \in \mathbb{N})$$

Indica la respuesta correcta:

\square R es reflexiv

 \square R es antisimétrica

 \square R es antirreflexiva

Ninguna de las respuestas anteriores

- 2. Sea $f: \mathcal{P}(\mathbb{N}) \to \mathbb{N}$ definida como f(A) = (min(A))!. Indica la respuesta correcta:
 - \Box f es inyectiva pero no biyectiva
 - \Box f es suprayectiva pero no biyectiva
 - \Box f es biyectiva
 - ☐ Ninguna de las respuestas anteriores
- 3. Sean $f: \mathbb{N} \to \mathbb{N}$ y $g: \mathbb{N} \to \mathbb{N}$ dos funciones definidas como:

$$f(n) = \begin{cases} 0 & \text{si } n = 0 \\ 1 & \text{si } n = 1 \\ f(2n) + 4 & \text{si } n \geq 2 \\ \text{s. ext. rewritate} \end{cases} \qquad g(n) = \begin{cases} 1 & \text{si } 0 \leq n \leq 1 \\ g(n-2) + 1 & \text{si } \exists k \geq 1 \ : \ n = 2k \\ g(n-1) + 2 & \text{si } \exists k \geq 1 \ : \ n = 2k + 1 \end{cases}$$

Indica la respuesta correcta:

	esta
--	------

 $\fine g$ no lo está $\fine g$ está bien definida, pero f no lo está $\fine g$ $\fine g$ están bien definidas

 $\perp f$ y g no están bien definidas

4.	Sea $R\subseteq \mathcal{P}(\mathbb{N})\times \mathcal{P}(\mathbb{N})$ la relación binaria definida del siguiente modo:
	$ARB \iff min(A) \le min(B) \qquad (A, B \in \mathcal{P}(\mathbb{N}))$
	Dados los siguientes asertos, indica la respuesta ${\bf correcta}$: 1. R es una relación de orden 2. R es una relación de equivalencia
	 □ El primer aserto es cierto, pero el segundo es falso □ El segundo aserto es cierto, pero el primero es falso □ Los dos asertos son ciertos □ Los dos asertos son falsos
5.	Sea A el conjunto $A = \{1, \{1, 2\}, \{2\}, \emptyset\}$. Dados los siguientes asertos, determina el enunciado correcto : 1. $\{1\} \in A$. 2. $\{1\} \subseteq A$.
	El primer aserto es falso; el segundo es cierto.
	Los dos asertos son falsos. Los dos asertos son ciertos.
6.	Dado un conjunto A no vacío y una relación de equivalencia sobre A que cumple la propiedad conexa. ¿Cuántas clases de equivalencia tiene el conjunto cociente A/R ? No tiene ninguna Tiene necesariamente una Puede tener una o más de una Tiene necesariamente más de una
7.	Dado el siguiente conjunto ordenado $A = \{1, 2, 3, 4, 5, 6, 8, 12, 24, 30, 60\}$ con el orden de la divisibilidad. Indica cuál de los siguientes subconjuntos de A es un retículo.
8.	Sea $f: \{p \in \mathbb{N} \mid p \text{ primo}\} \times \{2n \mid n \in \mathbb{N}\} \to \mathbb{N} \times \mathbb{Q}$. Indica la respuesta correcta :
	\square f puede ser suprayectiva pero no puede ser biyectiva
	\Box f puede ser inyectiva pero no puede ser biyectiva
	\Box f puede ser biyectiva
	Ninguna de las respuestas anteriores

9. [0,75 puntos] Dado el conjunto $\mathcal{F} = \{X \in \mathcal{P}(\mathbb{N}) | X \text{ finito y } |X| \text{ primo} \}$ con el orden de inclusión, indica cuáles son sus elementos **extremos** y **extremales**, en el caso de que existan. Esto es, indica su máximo y mínimo, si los hay, o los elementos minimales y maximales que haya. Justifica tu respuesta utilizando únicamente el espacio reservado para ello.

10. [0,75 puntos] Sea $A = \mathbb{N} \setminus \{0,1\}$. Dado $n \in \mathbb{N}$ definimos p_n como el mayor factor primo de n. Sea R la relación binaria sobre el conjunto A definida del siguiente modo:

$$x R y \iff p_x \leq p_y$$

Estudia si R es de orden. Demuéstralo formalmente si es cierto y da un contraejemplo si es falso. Justifica tu respuesta utilizando únicamente el espacio reservado para ello.

11. [2,5 puntos] Demuestra utilizando inducción simple que para todo $n \in \mathbb{N}$ se cumple que

$$\sum_{i=1}^{n} \frac{i-1}{i!} = \frac{n!-1}{n!}$$

Justifica tus pasos. (Puedes utilizar el reverso de la página si lo precisas. (K+1)! (K+1)!