

Nombre:	Company
Nombre:	Grupo:

Dr. Enrique García Trinidad Universidad Tecnológica Fidel Velázquez https://sites.google.com/site/mysillyrobots phd.enrique.garcia@ieee.org

Práctica 2

Entradas digitales

2.1. Material

El material enlistado es necesario para la realización de la práctica 2.

Ct	Dispositivo	Descripción	Eti.
1	ATmega328P-PU	Microcontrolador AVR RISC 8-bit 20Mhz	U1
1	Regulador L7805CV	Regulador de voltaje 5V 1 A	IC1
1	Capacitor cerámico de $0.1\mu F$ 50V	Código: 104	C1
1	Capacitor electrolítico de $470\mu F$ 25V	Tolerancia $\pm 20 \%$	C2
1	Capacitor electrolítico de $220\mu F$ 25V	Tolerancia $\pm 20 \%$	C3
4	Resistencia de $220\Omega \ 1/4W$	Código: Rojo, rojo, café, oro	R11, R13,
			R15, R17
7	Resistencia de $330\Omega~1/4W$	Código: Naranja, naranja, café, oro	R1R4,
			R9, R19,
			R20
2	Resistencia de $1k\Omega 1/4W$	Código: Café, negro, rojo, oro	R14, R18
7	Resistencia de $10 \text{k}\Omega \ 1/4 \text{W}$	Código: Café, negro, naranja, oro	R5R8,
			R10, R12,
			R16
1	Push button (Microswitch)	Tipo push, 4 o 2 terminales	S1
1	Dip-switch	4 vías	SW1
7	Led 5mm difuso	Color rojo	LED1
			$\dots \text{LED7}$
2	Sensores CNY70	Sensor óptico reflexivo	U\$1, U\$2
2	Transistores BC547	Transistor NPN	Q1, Q2
2	Metro de alambre para protoboard		
1	Protoboard		
1	Grabador Usbasp	Grabador microcontroladores AVR 8-bit	J3
1	Fuente de alimentación de 12V 2A	Eliminador de voltaje	J2
1	Computadora con puerto USB		

2.2. Conexión de los componentes

 \blacksquare Conecte el circuito base de acuerdo a la Figura 2.1:

Figura 2.1: Conexión del circuito base .

- Conecte su fuente de alimentación. Con un multímetro cheque que realmente VCC tenga el valor de 5.0V. Borre el contenido de la memoria del microcontrolador.
- Conecte el diagrama de la práctica 2 de acuerdo a la Figura 2.2:

Figura 2.2: Conexión de la práctica 2.

2.3. Ejercicio 1

- Inicie el software Codevision AVR. Cree un nuevo proyecto dando click en el menú New>Project.
- Cuando el software pregunte si queremos usar el asistente CodeWizardAVR le indicamos que No.
- Posteriormente debemos dar el nombre prac02 al proyecto.
- Después seleccionemos el modelo del microncontrolador de la lista: ATmega328P.
 Al final presionamos OK.
- En la siguiente ventana que se muestra, configuremos la velocidad del oscilador en la ficha C Compiler y en Clock: establecemos 1.000 Mhz. Al final presionamos OK.

Figura 2.3: Estableciendo la velocidad del oscilador.

Modifique el código como se muestra a continuación:

```
#include <mega328p.h>

void main(void)
{
   //Declaración de variables
   bit sw0, sw1, sw2, sw3;
   bit sens0, sens1;

/* Configuración E/S
    Puerto D:
    PD7=Salida, Estado Inicial= Vcc
    PD6=Salida, Estado Inicial= Vcc
```

```
PD5=Salida, Estado Inicial= Vcc
    PD4=Salida, Estado Inicial= Vcc
    PD3=Entrada, Pull-up
    PD2=Entrada, Pull-up
    PD1=Entrada, Pull-up
    PDO=Entrada, Pull-up
    Puerto C:
    PC3=Salida, Estado Inicial= Vcc
    PC2=Salida, Estado Inicial= Vcc
    PC1=Entrada, Pull-up
    PC0=Entrada, Pull-up
DDRD = 0 xF0;
PORTD = 0 xFF;
 DDRC=0 \times 0C;
 PORTC=0x0F;
while (1)
     //Lectura del estado del DipSwitch
     sw0=PIND.0;
     sw1=PIND.1;
     sw2=PIND.2;
     sw3=PIND.3;
     //Lectura del estado de los sensores
     sens0=PINC.0;
     sens1=PINC.1;
     //Pulso de salida para los Leds (PD)
     PORTD.4=sw0;
     PORTD.5=sw1;
     PORTD.6=sw2;
     PORTD.7=sw3;
     //Pulso de salida para los Leds (PC)
     PORTC.2=sens0;
     PORTC.3=sens1;
    }
}
```

• Compile el proyecto eligiendo desde el menú Project>Build All. Una compilación correcta arrojará la información No errors, No warnings

- Descargue el archivo que resulto de la compilación prac02.hex en la memoria
 Flash del microcontrolador.
- Muestre el circuito funcionando al profesor, para que le sea tomado en cuenta.

2.4. Ejercicio 2.

Modifique el código como se muestra a continuación:

```
#include <mega328p.h>
#include <delay.h>
#define xtal 1000000L
void main(void)
 //Declaración de variables
unsigned char lecturaSW;
 const unsigned int tiempo = 500;
bit sens0, sens1;
   Configuración E/S
    Puerto D:
    PD7=Salida, Estado Inicial= Vcc
    PD6=Salida, Estado Inicial= Vcc
    PD5=Salida, Estado Inicial= Vcc
    PD4=Salida, Estado Inicial= Vcc
    PD3=Entrada, Pull-up
    PD2=Entrada, Pull-up
    PD1=Entrada, Pull-up
    PD0=Entrada, Pull-up
    Puerto C:
    PC3=Salida, Estado Inicial= Vcc
    PC2=Salida, Estado Inicial= Vcc
    PC1=Entrada, Pull-up
    PCO=Entrada, Pull-up
DDRD = 0 \times F0;
PORTD = 0 xFF;
DDRC=0 \times 0C;
PORTC = 0 \times OF;
while (1)
    {
```

```
//Lectura de los estados de los sensores y Dip-Switch
sens0=PINC.0;
sens1=PINC.1;
lecturaSW=PIND & OxOF;
if (lecturaSW == 0 x 0 E)
 //Prende todos los Leds
PORTD = 0 \times 00;
else if(lecturaSW == 0 x 0 D)
 //Prende y apaga con temporización todos los Leds
PORTD = 0 \times 00;
 delay_ms(tiempo);
PORTD = 0 xF0;
 delay_ms(tiempo);
else if(lecturaSW==0x0B)
 //Efecto Walking
 PORTD = 0 \times E0;
 delay_ms(tiempo);
 PORTD = 0 \times D0;
 delay_ms(tiempo);
 PORTD = 0 \times B0;
 delay_ms(tiempo);
 PORTD = 0 \times 70;
 delay_ms(tiempo);
}
else if(lecturaSW==0x07)
 //Efecto Walking Inverso
 PORTD = 0 \times 70;
 delay_ms(tiempo);
 PORTD = 0 \times B0;
 delay_ms(tiempo);
 PORTD = 0 \times D0;
 delay_ms(tiempo);
 PORTD = 0 \times E0;
 delay_ms(tiempo);
}
else
{
 //Apaga todos los Leds
 PORTD = 0 xF0;
```

```
if((sens0==0) && (sens1==0))
{
    PORTC.2=0;
    PORTC.3=0;
}
else
{
    PORTC.2=1;
    PORTC.3=1;
}
}
```

• Compile, grabe y muestre el resultado al profesor para su evaluación.