

Mathematical Foundations for Data Science (Probability)

Independence of Random Variables, Jointly Discrete Random Variables, Joint PMF, Conditional PMF, Joint PDF, Conditional PDF, Transformations of Random Variables

Karthik P. N.

Assistant Professor, Department of AI

Email: pnkarthik@ai.iith.ac.in

31 August 2024

Independence of Two Random Variables

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Definition (Independence of Two Random Variables)

Let $X : \Omega \to \mathbb{R}$ and $Y : \Omega \to \mathbb{R}$ be random variables with respect to \mathscr{F} .

$$\begin{array}{lll} X \perp \!\!\! \perp Y & \iff & F_{X,Y}(x,y) = F_X(x) \cdot F_Y(y) & \forall x,y \in \mathbb{R} \\ & \iff & \mathbb{P}(\{X \leq x\} \cap \{Y \leq y\}) = \mathbb{P}(\{X \leq x\}) \cdot \mathbb{P}(\{Y \leq y\}) & \forall x,y \in \mathbb{R} \\ & \iff & \{X \leq x\} \perp \!\!\! \perp \{Y \leq y\} & \forall x,y \in \mathbb{R}. \end{array}$$

Implications:

• $\{X \le x\} \perp \{Y > y\}$ for all $x, y \in \mathbb{R}$, i.e.,

$$\mathbb{P}(\{X \leq x, Y > y\}) = \mathbb{P}(\{X \leq x\}) \cdot \mathbb{P}(\{Y > y\}) \qquad \forall x, y \in \mathbb{R}$$

Independence of Two Random Variables

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Definition (Independence of Two Random Variables)

Let $X : \Omega \to \mathbb{R}$ and $Y : \Omega \to \mathbb{R}$ be random variables with respect to \mathscr{F} .

$$\begin{array}{lll} X \perp \!\!\! \perp Y & \iff & F_{X,Y}(x,y) = F_X(x) \cdot F_Y(y) & \forall x,y \in \mathbb{R} \\ & \iff & \mathbb{P}(\{X \leq x\} \cap \{Y \leq y\}) = \mathbb{P}(\{X \leq x\}) \cdot \mathbb{P}(\{Y \leq y\}) & \forall x,y \in \mathbb{R} \\ & \iff & \{X \leq x\} \perp \!\!\! \perp \{Y \leq y\} & \forall x,y \in \mathbb{R}. \end{array}$$

Implications:

• $\{X > x\} \perp \{Y > y\}$ for all $x, y \in \mathbb{R}$, i.e.,

$$\mathbb{P}(\{X > x, Y > y\}) = \mathbb{P}(\{X > x\}) \cdot \mathbb{P}(\{Y > y\}) \qquad \forall x, y \in \mathbb{R}$$

Independence of Two Random Variables

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Definition (Independence of Two Random Variables)

Let $X : \Omega \to \mathbb{R}$ and $Y : \Omega \to \mathbb{R}$ be random variables with respect to \mathscr{F} .

$$\begin{array}{lll} X \perp \!\!\! \perp Y & \iff & F_{X,Y}(x,y) = F_X(x) \cdot F_Y(y) & \forall x,y \in \mathbb{R} \\ & \iff & \mathbb{P}(\{X \leq x\} \cap \{Y \leq y\}) = \mathbb{P}(\{X \leq x\}) \cdot \mathbb{P}(\{Y \leq y\}) & \forall x,y \in \mathbb{R} \\ & \iff & \{X \leq x\} \perp \!\!\! \perp \{Y \leq y\} & \forall x,y \in \mathbb{R}. \end{array}$$

Implications:

• $\{X = x\} \perp \{Y = y\}$ for all $x, y \in \mathbb{R}$, i.e.,

$$\mathbb{P}(\{X=x,Y=y\}) = \mathbb{P}(\{X=x\}) \cdot \mathbb{P}(\{Y=y\}) \qquad \forall x,y \in \mathbb{R}$$

Example

Let X_1 and X_2 be distributed exponentially with parameters $\lambda_1 > 0$ and $\lambda_2 > 0$ respectively. Determine the distribution of $Z = \min\{X_1, X_2\}$.

Jointly Discrete Random Variables

Jointly Discrete Random Variables

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Definition (Jointly Discrete Random Variables)

Random variables $X:\Omega\to\mathbb{R}$ and $Y:\Omega\to\mathbb{R}$ defined with respect to \mathscr{F} are said to be jointly discrete if X and Y are individually discrete random variables.

Joint PMF

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Definition (Joint PMF)

The joint PMF of jointly discrete random variables $X:\Omega\to\mathbb{R}$ and $Y:\Omega\to\mathbb{R}$ defined on \mathscr{F} is a function $p_{X,Y}:\mathbb{R}^2\to[0,1]$ defined as

$$p_{X,Y}(x,y) = \mathbb{P}(\{X=x\} \cap \{Y=y\}), \qquad x,y \in \mathbb{R}.$$

Note:

$$\mathbb{P}(\{(X,Y)\in E_1\times E_2\})=\sum_{x\in E_1}\sum_{\gamma\in E_2}p_{X,\gamma}(x,\gamma)=1,$$

$$\mathbb{P}(\{(X,Y)\in B\})=\sum_{(x,y)\in B\cap (E_1\times E_2)}p_{X,Y}(x,y),\quad B\subseteq \mathbb{R}^2.$$

Properties of Joint PMF

•
$$\sum_{x \in E_1} \sum_{y \in E_2} p_{X,Y}(x,y) = 1$$
.

•
$$p_X(x) = \sum_{y \in F} p_{X,Y}(x,y), \quad x \in \mathbb{R}$$

•
$$p_Y(y) = \sum_{x \in E_1} p_{X,Y}(x,y), \quad y \in \mathbb{R}$$

Conditional PMF

Fix a probability space $(\Omega, \mathcal{F}, \mathbb{P})$.

Definition (Conditional PMF)

Let X, Y be jointly discrete random variables defined with respect to \mathscr{F} . Fix $\gamma \in \mathbb{R}$ such that $p_Y(\gamma) = \mathbb{P}(\{Y = \gamma\}) > 0$. The conditional PMF of X, conditioned on the event $\{Y = \gamma\}$, is a function $p_{X|Y=\gamma} : \mathbb{R} \to [0,1]$ defined as

$$p_{X|Y=y}(x) = rac{\mathbb{P}(\{X=x\}\cap\{Y=y\})}{\mathbb{P}(\{Y=y\})} = rac{p_{X,Y}(x,y)}{p_Y(y)}, \qquad x \in \mathbb{R}$$

defined for all $y \in \mathbb{R}$ such that $p_Y(y) = \mathbb{P}(\{Y = y\}) > 0$.

Conditional PMF

Independence of Two Discrete Random Variables

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Theorem

Let $X : \Omega \to \mathbb{R}$ and $Y : \Omega \to \mathbb{R}$ be discrete random variables with respect to \mathscr{F} . The following statements are equivalent.

- 1. $X \perp \!\!\!\perp Y$.
- 2. $\{X = x\} \perp \{Y = y\}$ for all $x, y \in \mathbb{R}$.
- 3. $p_{X,Y}(x,y) = p_X(x) \cdot p_Y(y)$ for all $x,y \in \mathbb{R}$.
- 4. For all $y \in \mathbb{R}$ such that $p_Y(y) > 0$,

$$p_{X|Y=y}(x)=p_X(x) \qquad \forall x\in\mathbb{R}.$$

Jointly Continuous Random Variables

Jointly Continuous Random Variables

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Let $X : \Omega \to \mathbb{R}$ and $Y : \Omega \to \mathbb{R}$ be random variables defined with respect to \mathscr{F} .

Definition (Jointly Continuous Random Variables)

X and Y are said to be jointly continuous if there exists a function $f_{X,Y}: \mathbb{R}^2 \to [0, +\infty)$ such that the joint CDF of X and Y may be expressed as

$$F_{X,Y}(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f_{X,Y}(u,v) \, dv \, du \qquad \forall x,y \in \mathbb{R}.$$

The function $f_{X,Y}$ is called the joint PDF of X and Y.

Remark:

If *X* and *Y* are individually continuous, then they need not be jointly continuous.

Properties of Joint PDF

$$\bullet \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f_{X,Y}(u,v) \, dv \, du = 1.$$

Properties of Joint PDF

$$\bullet \int\limits_{-\infty}^{+\infty} \int\limits_{-\infty}^{+\infty} f_{X,Y}(u,v) \, dv \, du = 1.$$

•
$$\int\limits_{-\infty}^{+\infty}f_{X,Y}(u,v)\,dv=f_X(u)$$
 for all $u\in\mathbb{R}$.

This says if X and Y are jointly continuous, then X is a continuous RV

Properties of Joint PDF

$$\bullet \int\limits_{-\infty}^{+\infty} \int\limits_{-\infty}^{+\infty} f_{X,Y}(u,v) \, dv \, du = 1.$$

- $\int\limits_{-\infty}^{+\infty} f_{X,Y}(u,v)\,dv=f_X(u)$ for all $u\in\mathbb{R}$.
 - This says if X and Y are jointly continuous, then X is a continuous RV

•
$$\int\limits_{-\infty}^{+\infty} f_{X,Y}(u,v)\,du=f_Y(v)$$
 for all $v\in\mathbb{R}$.

This says if X and Y are jointly continuous, then Y is a continuous RV

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Let $X : \Omega \to \mathbb{R}$ and $Y : \Omega \to \mathbb{R}$ be jointly continuous random variables defined with respect to \mathscr{F} .

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Let $X:\Omega\to\mathbb{R}$ and $Y:\Omega\to\mathbb{R}$ be jointly continuous random variables defined with respect to \mathscr{F} .

Conditional CDF of X conditioned on $\{Y = y\}$: $\mathbb{P}(\{X \le x\} | \{Y = y\})$. However, this conditional probability is not defined because $\mathbb{P}(\{Y = y\}) = 0$.

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Let $X:\Omega\to\mathbb{R}$ and $Y:\Omega\to\mathbb{R}$ be jointly continuous random variables defined with respect to \mathscr{F} .

Conditional CDF of X conditioned on $\{Y = y\}$: $\mathbb{P}(\{X \le x\} | \{Y = y\})$. However, this conditional probability is not defined because $\mathbb{P}(\{Y = y\}) = 0$.

Remedy:

Fix $y \in \mathbb{R}$ and $\varepsilon > 0$ such that $\mathbb{P}\big(\{Y \in (y - \varepsilon, y + \varepsilon)\}\big) > 0$. Define conditional probability with respect to the event $\{Y \in (y - \varepsilon, y + \varepsilon)\}$, and let $\varepsilon \downarrow 0$.

$$\mathbb{P}(\{X \le x\} | \{Y \in (\gamma - \varepsilon, \gamma + \varepsilon)\}) = \frac{\mathbb{P}(\{X \le x\} \cap \{Y \in (\gamma - \varepsilon, \gamma + \varepsilon)\})}{\mathbb{P}(\{Y \in (\gamma - \varepsilon, \gamma + \varepsilon)\})}$$

$$\mathbb{P}(\{X \le x\} | \{Y \in (\gamma - \varepsilon, \gamma + \varepsilon)\}) = \frac{\mathbb{P}(\{X \le x\} \cap \{Y \in (\gamma - \varepsilon, \gamma + \varepsilon)\})}{\mathbb{P}(\{Y \in (\gamma - \varepsilon, \gamma + \varepsilon)\})}$$

$$= \frac{\int\limits_{-\infty}^{x} \int\limits_{\gamma - \varepsilon}^{\gamma + \varepsilon} f_{X,Y}(u, v) \, dv \, du}{\int\limits_{\gamma - \varepsilon}^{\gamma + \varepsilon} f_{Y}(v) \, dv}$$

$$\mathbb{P}(\{X \leq x\} | \{Y \in (\gamma - \varepsilon, \gamma + \varepsilon)\}) = \frac{\mathbb{P}(\{X \leq x\} \cap \{Y \in (\gamma - \varepsilon, \gamma + \varepsilon)\})}{\mathbb{P}(\{Y \in (\gamma - \varepsilon, \gamma + \varepsilon)\})}$$

$$= \frac{\int_{-\infty}^{x} \int_{\gamma - \varepsilon}^{\gamma + \varepsilon} f_{X,Y}(u, v) \, dv \, du}{\int_{\gamma - \varepsilon}^{x} f_{Y}(v) \, dv}$$

$$\approx \frac{\int_{-\infty}^{x} f_{X,Y}(u, \gamma) \, du \cdot 2\varepsilon}{f_{Y}(\gamma) \cdot 2\varepsilon}$$

$$\mathbb{P}(\{X \le x\} | \{Y \in (\gamma - \varepsilon, \gamma + \varepsilon)\}) = \frac{\mathbb{P}(\{X \le x\} \cap \{Y \in (\gamma - \varepsilon, \gamma + \varepsilon)\})}{\mathbb{P}(\{Y \in (\gamma - \varepsilon, \gamma + \varepsilon)\})}$$

$$= \frac{\int_{-\infty}^{x} \int_{\gamma - \varepsilon}^{\gamma + \varepsilon} f_{X,Y}(u, v) \, dv \, du}{\int_{\gamma - \varepsilon}^{x} f_{Y}(v) \, dv}$$

$$\approx \frac{\int_{-\infty}^{x} f_{X,Y}(u, \gamma) \, du \cdot 2\varepsilon}{f_{Y}(\gamma) \cdot 2\varepsilon}$$

$$= \int_{-\infty}^{x} \underbrace{\int_{-\infty}^{x} f_{X,Y}(u, \gamma) \, du}_{\text{conditional PDF}} \, du$$

Conditional CDF for Jointly Continuous Random Variables

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Let $X:\Omega\to\mathbb{R}$ and $Y:\Omega\to\mathbb{R}$ be jointly continuous random variables defined with respect to \mathscr{F} .

Definition (Conditional CDF for Jointly Continuous Random Variables)

The conditional CDF of X, conditioned on the event $\{Y = \gamma\}$, is the function $F_{X|Y=\gamma}: \mathbb{R} \to [0,1]$ defined as

$$F_{X|Y=y}(x) = \int_{-\infty}^{x} \frac{f_{X,Y}(x,y)}{f_{Y}(y)} du, \qquad x \in \mathbb{R},$$

defined for all $y \in \mathbb{R}$ such that $f_Y(y) > 0$.

Conditional PDF for Jointly Continuous Random Variables

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Let $X:\Omega\to\mathbb{R}$ and $Y:\Omega\to\mathbb{R}$ be jointly continuous random variables defined with respect to \mathscr{F} .

Definition (Conditional PDF for Jointly Continuous Random Variables)

The conditional PDF of X, conditioned on the event $\{Y = \gamma\}$, is the function $f_{X|Y=\gamma}: \mathbb{R} \to [0,+\infty)$ defined as

$$f_{X|Y=y}(x) = rac{f_{X,Y}(x,y)}{f_Y(y)}, \qquad x \in \mathbb{R},$$

defined for all $y \in \mathbb{R}$ such that $f_{Y}(y) > 0$.

Independence and Joint Continuity

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Let $X:\Omega\to\mathbb{R}$ and $Y:\Omega\to\mathbb{R}$ be jointly continuous random variables defined with respect to \mathscr{F} .

Definition (Joint Continuity and Independence)

X and Y are independent if

$$f_{X,Y}(x,y) = f_X(x) \cdot f_Y(y) \qquad \forall x,y \in \mathbb{R}.$$

Remark:

•
$$X \perp \!\!\! \perp Y \quad \Longleftrightarrow \quad f_{X|Y=y} = f_X \text{ for all } y \text{ such that } f_Y(y) > 0$$

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Let X and Y be random variables defined with respect to \mathscr{F} .

• If *X* and *Y* are jointly discrete,

$$p_{X|Y=y}(x)=rac{p_{X,Y}(x,y)}{p_{Y}(y)}, \qquad x\in\mathbb{R},\; p_{Y}(y)>0.$$

Furthermore, for any event $A \in \mathscr{F}$,

$$\mathbb{P}(\{X \in A\}|Y = \gamma) = \sum_{x \in A} p_{X|Y = \gamma}(x).$$

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Let X and Y be random variables defined with respect to \mathscr{F} .

• If *X* and *Y* are jointly continuous,

$$f_{X|Y=y}(x) = rac{f_{X,Y}(x,y)}{f_Y(y)}, \qquad x \in \mathbb{R}, f_Y(y) > 0.$$

Furthermore, for any event $A \in \mathcal{F}$,

$$\mathbb{P}(\{X \in A\}|Y = \gamma) = \int_A f_{X|Y = \gamma}(u) du.$$

Example

Let $f_{X,Y}(x,y)=1$ inside the triangle, and 0 elsewhere. Compute the marginal PDFs of X and Y, and the conditional PDF of X conditioned on $\{Y=y\}$ for various values of y. Argue if X and Y are independent.

Transformations of Random Variables

Transformations of Random Variables

Fix $(\Omega, \mathscr{F}, \mathbb{P})$.

Let $X : \Omega \to \mathbb{R}$ be a random variable defined with respect to \mathscr{F} .

Given a function $f: \mathbb{R} \to \mathbb{R}$, our interest is to characterise the CDF/PMF/PDF of the random variable Y = f(X).

For ease of analysis, we shall consider functions f which are continuous and/or differentiable.

Examples

Fix $(\Omega, \mathscr{F}, \mathbb{P})$.

Let $X : \Omega \to \mathbb{R}$ be a random variable defined with respect to \mathscr{F} , with CDF F_X . Determine the CDF of Y = aX + b for some $a, b \in \mathbb{R}$.

Examples

Fix $(\Omega, \mathscr{F}, \mathbb{P})$.

Let $X : \Omega \to \mathbb{R}$ be a random variable defined with respect to \mathscr{F} , with CDF F_X . Determine the CDF of $Y = X^2$.