10과 [실습] 범주 vs 숫자

1.환경준비

• 라이브러리 불러오기

In [1]:

```
import pandas as pd
import numpy as np
import random as rd

import matplotlib.pyplot as plt
import seaborn as sns

import scipy.stats as spst
```

- 데이터 불러오기 : 다음의 예제 데이터를 사용합니다.
 - ① 타이타닉 생존자
 - ② 보스톤 시, 타운별 집값
 - ③ 다이아몬드 가격
 - ④ 뉴욕 공기 오염도

In [2]:

- 1 # 타이타닉 데이터
- 2 titanic = pd.read_csv('https://raw.githubusercontent.com/DA4BAM/dataset/master/titanic.
- 3 titanic.head()

Out[2]:

	Passengerld	Survived	Pclass	Title	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin
0	1	0	3	Mr	male	22.0	1	0	A/5 21171	7.2500	NaN
1	2	1	1	Mrs	female	38.0	1	0	PC 17599	71.2833	C85
2	3	1	3	Miss	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN
3	4	1	1	Mrs	female	35.0	1	0	113803	53.1000	C123
4	5	0	3	Mr	male	35.0	0	0	373450	8.0500	NaN
4											•

In [3]:

- 1 # 다이아몬드 가격
- 2 diamonds = pd.read_csv('https://raw.githubusercontent.com/DA4BAM/dataset/master/diamond
- 3 diamonds = diamonds.sample(3000, random_state = 2022)
- 4 diamonds.head()

Out[3]:

	carat	cut	color	clarity	depth	table	price	x	У	z
50989	0.31	Ideal	G	VS2	61.6	55.0	544	4.37	4.39	2.70
42221	0.33	Ideal	Е	IF	62.1	55.0	1289	4.43	4.46	2.76
42307	0.41	Ideal	F	VVS1	62.1	57.0	1295	4.75	4.79	2.96
27207	2.02	Very Good	F	SI1	62.7	59.0	17530	7.97	8.03	5.02
22207	1.50	Good	Н	VS1	63.4	59.0	10256	7.20	7.29	4.59

In [4]:

- 1 # 보스톤 집값 데이터
- 2 boston = pd.read_csv('https://raw.githubusercontent.com/DA4BAM/dataset/master/boston2_N
- 3 boston.head()

Out[4]:

	crim	indus	chas	nox	rm	age	dis	rad	tax	ptratio	black	Istat	medv	znź
0	0.00632	2.31	0	0.538	6.575	65.2	4.0900	1	296	15.3	396.90	4.98	24.0	1.(
1	0.02731	7.07	0	0.469	6.421	78.9	4.9671	2	242	17.8	396.90	9.14	21.6	0.0
2	0.02729	7.07	0	0.469	7.185	61.1	4.9671	2	242	17.8	392.83	4.03	34.7	0.0
3	0.03237	2.18	0	0.458	6.998	45.8	6.0622	3	222	18.7	394.63	2.94	33.4	0.0
4	0.06905	2.18	0	0.458	7.147	54.2	6.0622	3	222	18.7	396.90	5.33	36.2	0.0
4														•

In [5]:

```
1 # 뉴욕시 공기 오염도 데이터

2 air = pd.read_csv('https://raw.githubusercontent.com/DA4BAM/dataset/master/air2.csv')

3 air['Date'] = pd.to_datetime(air['Date'])

4 air['Month'] = air.Date.dt.month

5 air['Weekday'] = air.Date.dt.weekday

6 air.head()
```

Out[5]:

	Ozone	Solar.R	Wind	Temp	Date	Month	Weekday
0	41	190.0	7.4	67	1973-05-01	5	1
1	36	118.0	8.0	72	1973-05-02	5	2
2	12	149.0	12.6	74	1973-05-03	5	3
3	18	313.0	11.5	62	1973-05-04	5	4
4	19	NaN	14.3	56	1973-05-05	5	5

범주별 숫자를 비교할 때 사용되는 방식은 범주별 평균 비교 입니다.

2.범주 --> 숫자 : 시각화

- ① titanic 생존여부에 따라 나이에 차이가 있을까요?
 - 평균 barplot으로 시각화 해 봅시다.

In [6]:

```
1 # sns.barplot는 두 범주의 평균 비교 sns.barplot
2 sns.barplot(x="Survived", y="Age", data=titanic)
3 plt.show()
```


In [7]:

```
sns.boxplot(x="Survived", y="Age", data=titanic)
plt.show()
```


• 위 두 범주간에 평균에 차이가 있나요?

In []:

1

- ② titanic 성별에 따라 운임에 차이가 있을까요?
 - 평균 barplot으로 시각화 해 봅시다.

In [8]:

```
1 # sns.barplot는 두 범주의 평균 비교 sns.barplot
2 sns.barplot(x="Sex", y="Fare", data=titanic)
3 plt.show()
```


In [9]:

```
sns.boxplot(x="Sex", y="Fare", data=titanic)
plt.show()
```


• 위 범주간 평균에 차이가 있나요?

In []:

1

- ③ titanic 승선지역(Embarked)에 따라 나이에 차이가 있을까요?
 - 평균 barplot으로 시각화 해 봅시다.

In [10]:

```
1 # sns.barplot는 두 범주의 평균 비교 sns.barplot
2 sns.barplot(x="Embarked", y="Age", data=titanic)
3 plt.show()
```


In [11]:

```
sns.boxplot(x="Embarked", y="Age", data=titanic)
plt.show()
```


• 위 범주간 평균에 차이가 있나요?

In []:

1

- ④ diamonds color에 따른 가격에 차이가 있을까요?
 - 평균 barplot으로 시각화 해 봅시다.

In [12]:

```
1 # sns.barplot는 두 범주의 평균 비교 sns.barplot
2 sns.barplot(x="color", y="price", data= diamonds)
3 plt.show()
```


In [13]:

```
sns.boxplot(x="color", y="price", data= diamonds)
plt.show()
```


• 위 범주간 평균에 차이가 있나요?

In []:

1

3.수치화 : t-test(두 범주), anova(세 범주 이상)

- ① titanic 생존여부에 따라 나이에 차이가 있을까요?
 - t-test를 수행해 봅시다.

In [14]:

```
1 # 먼저 범주별로 데이터를 나눕시다.
2
3 died = titanic.loc[titanic['Survived']==0, 'Age']
4 survived = titanic.loc[titanic['Survived']==1, 'Age']
```

In [15]:

```
1 # t-test를 수행
2 spst.ttest_ind(died, survived)
```

Out[15]:

Ttest_indResult(statistic=2.6686741711011606, pvalue=0.007753857024893963)

• t-test 결과를 해석해 봅시다.

```
In [ ]:
```

1

- ② titanic 성별에 따라 운임에 차이가 있을까요?
 - t-test를 수행해 봅시다.

In [16]:

```
1 # 먼저 범주별로 데이터를 나눕시다.
2 male = titanic.loc[titanic['Sex']=='male', 'Fare']
3 female = titanic.loc[titanic['Sex']=='female', 'Fare']
```

In [17]:

```
1 # t-test를 수행
2 spst.ttest_ind(male, female)
```

Out[17]:

Ttest_indResult(statistic=-5.529140269385719, pvalue=4.2308678700429995e-08)

• t-test 결과를 해석해 봅시다.

In []:

1

- ③ titanic 승선지역(Embarked)에 따라 나이에 차이가 있을까요?
 - 분산분석(anova)을 수행해 봅시다.

In [18]:

```
1 # 먼저 범주별로 데이터를 나눕시다.
2 e_s = titanic.loc[titanic['Embarked']=='S', 'Age']
3 e_q = titanic.loc[titanic['Embarked']=='Q', 'Age']
4 e_c = titanic.loc[titanic['Embarked']=='C', 'Age']
```

In [19]:

```
1 # anova를 수행
2 spst.f_oneway(e_s, e_q, e_c)
```

Out[19]:

F_onewayResult(statistic=1.5519517205674485, pvalue=0.2124081352616724)

• anova 결과를 해석해 봅시다.

```
In [ ]:
```

1

- ④ diamonds color에 따른 가격에 차이가 있을까요?
 - 분산분석(anova)을 수행해 봅시다.

In [20]:

```
1 # 먼저 범주별로 데이터를 나눕시다.
2 D = diamonds.loc[diamonds['color']=='D', 'price']
3 E = diamonds.loc[diamonds['color']=='E', 'price']
4 F = diamonds.loc[diamonds['color']=='F', 'price']
5 G = diamonds.loc[diamonds['color']=='G', 'price']
6 H = diamonds.loc[diamonds['color']=='H', 'price']
7 I = diamonds.loc[diamonds['color']=='I', 'price']
8 J = diamonds.loc[diamonds['color']=='J', 'price']
```

In [21]:

```
1 # anova를 수행
2 spst.f_oneway(D, E, F, G, H, I, J)
```

Out[21]:

F_onewayResult(statistic=8.748551345095596, pvalue=1.80447619297854e-09)

• anova 결과를 해석해 봅시다.

In []:

1