Statistica I

Esercitazione 1: distribuzioni di frequenza

Tommaso Rigon

Università Milano-Bicocca

Descrizione del problema

- Il diametro del fusto di un albero viene misurato attraverso uno strumento chiamato "Cavalletto".
- La misura viene effettuata tenendo il cavalletto in posizione perpendicolare al fusto ad una altezza dal terreno di circa 1.30 m, con una precisione non superiore a 1 cm.
- Nell'autunno del 1999 sono stati misurati i diametri di n = 1887 abeti rossi presenti in una zona boschiva a San Vito di Cadore.

I dati grezzi

■ Le misure sono elencate nella tabella seguente, in cui D rappresenta il diametro mentre n_i sono le corrispondenti frequenze assolute.

D	n _j	D	nj								
18	21	28	43	38	45	48	38	58	17	68	7
19	47	29	48	39	41	49	26	59	23	69	1
20	34	30	51	40	43	50	31	60	12	70	5
21	69	31	65	41	49	51	46	61	14	71	0
22	74	32	76	42	45	52	48	62	10	72	6
23	52	33	64	43	42	53	23	63	11	73	9
24	46	34	72	44	39	54	39	64	4	74	0
25	28	35	33	45	40	55	30	65	3	75	4
26	49	36	32	46	47	56	29	66	0	76	0
27	40	37	59	47	35	57	16	67	4	77	2

Domande

- Qual è l'unità statistica di questo problema? Qual è la numerosità campionaria?
- Per i dati riferiti al diametro del fusto si è soliti sintetizzare l'informazione in classi equispaziate di 5 cm.
- Si costruisca tale tabella, usando pertanto gli intervalli (17,22], (22,27], ..., (72,77] e si ottengano:
 - le frequenze assolute,
 - le frequenze relative,
 - le frequenze cumulate assolute e relative.
- Si disegni l'istogramma dei dati utilizzando gli intervalli del punto precedente.
- Si faccia un disegno (anche approssimativo) della funzione di ripartizione.
- Quanto vale la funzione di ripartizione calcolata in 52, ovvero F(52)?
- Quanti sono gli alberi aventi diametro più piccolo di 42.5 cm?

Tabella di frequenze

Classe	Freq. assolute	Freq. relative	Freq. cum. assolute	Freq. cum. relative
(17, 22]	245	0.130	245	0.130
(22, 27]	215	0.114	460	0.244
(27, 32]	283	0.150	743	0.394
(32, 37]	260	0.138	1003	0.532
(37, 42)	223	0.118	1226	0.650
(42, 47)	203	0.108	1429	0.757
(47, 52)	189	0.100	1618	0.857
(52, 57]	137	0.073	1755	0.930
(57, 62)	76	0.040	1831	0.970
(62, 67)	22	0.012	1853	0.982
(67, 72]	19	0.010	1872	0.992
(72, 77]	15	0.008	1887	1.000

Istogramma

Funzione di ripartizione

Commenti ai risultati

- Sia l'istogramma che la funzione di ripartizione mostrano che i diametri degli abeti rossi sono circa compresi tra i 20cm e gli 80cm.
- Il centro della distribuzione, a giudicare dai grafici, si attesta attorno ai 40cm.
- Tuttavia, la distribuzione dei diametri non è uniforme.
- I diametri sono uniformemente distribuiti fino ai 50-55 cm circa, salvo poi decrescere in frequenza. In altre parole, gli alberi di grandi dimensioni sono via via più rari.

Descrizione del problema

- Simon Newcomb ha misurato nel 1882 la velocità della luce.
- Nello specifico, Newcomb ha misurato il tempo necessario alla luce per percorrere una distanza di 7442 metri. Newcomb ha ripetuto l'esperimento n = 66 volte.
- I dati x₁,..., x₆₆ rappresentano le misurazioni della velocità della luce espresse in microsecondi.

Velocità della luce (μ s). Dati di Newcomb

```
[1] 24.828 24.826 24.833 24.824 24.834 24.756 24.827 24.816 24.840
```

[10] 24.798 24.829 24.822 24.824 24.821 24.825 24.830 24.823 24.829

[19] 24.831 24.819 24.824 24.820 24.836 24.832 24.836 24.828 24.825 [28] 24.821 24.828 24.829 24.837 24.825 24.828 24.826 24.830 24.832

[37] 24.836 24.826 24.830 24.822 24.836 24.823 24.827 24.827 24.828

[37] 24.836 24.826 24.830 24.822 24.836 24.823 24.827 24.827 24.828

[46] 24.827 24.831 24.827 24.826 24.833 24.826 24.832 24.832 24.824

[55] 24.839 24.828 24.824 24.825 24.832 24.825 24.829 24.827 24.828

[64] 24.829 24.816 24.823

Dati trasformati

- Risulta comodo cambiare la scala dei dati, per semplificarne la loro analisi.
- In particolare, consideriamo le differenze da 24.8 microsecondi ed esprimiamo queste deviazioni (o scarti) in nanosecondi. In simboli, vogliamo ottenere

$$y_i = 1000 \times (x_i - 24.8), \qquad i = 1, \dots, 66.$$

■ I dati $y_1, ..., y_{66}$ sono espressi nella scala trasformata.

Velocità della luce (scarti da 24.8, in ns). Dati di Newcomb

```
[1]
                                                                           23
      28
          26
              33
                   24
                       34 -44 27
                                    16
                                        40
                                                 29
                                                     22
                                                          24
                                                              21
                                                                  25
                                                                       30
Γ187
      29
          31
                                32
                                             25
               19
                   24
                       20
                           36
                                    36
                                        28
                                                 21
                                                     28
                                                          29
                                                                  25
                                                                       28
                                                                           26
[35]
      30
          32
              36
                   26
                       30
                           22
                                36
                                    23
                                        27
                                            27
                                                28
                                                     27
                                                                       33
                                                                           26
                                                              27
                                                                  26
[52]
      32
          32
               24
                   39
                       28
                           24
                                25
                                    32
                                        25
                                             29
                                                 27
                                                     28
                                                          29
                                                              16
                                                                  23
```

Domande

- Si ottengano il minimo ed il massimo delle misurazioni di Newcomb nella scala trasformata y_1, \ldots, y_{66} .
- Si costruisca una tabella per la scala trasformata, utilizzando gli intervalli (−50, −40], (−40, −30], . . . , (30, 40]. Si ottengano quindi:
 - le frequenze assolute,
 - le frequenze relative,
 - le frequenze cumulate assolute e relative.
- Nella scala trasformata, si calcoli la frazione di misurazioni contemporaneamente maggiore di 20 e minore o uguale di 30.
- Nella scala trasformata, si disegni un istogramma usando gli intervalli (-50, -40], (-40, -30], ..., (30, 40].
- Si ottenga un grafico approssimativo della funzione di ripartizione nella scala originale ed in quella trasformata. Si commentino i risultati.

Tabella di frequenze

■ Il minimo dei dati $y_1, ..., y_{66}$ vale -44, il massimo vale 40.

Classe	nj	fj	N _j	Fj
(-50, -40]	1	0.015	1	0.015
(-40, -30]	0	0.000	1	0.015
(-30, -20]	0	0.000	1	0.015
(-20, -10]	0	0.000	1	0.015
(-10, 0]	1	0.015	2	0.030
(0, 10]	0	0.000	2	0.030
(10, 20]	4	0.061	6	0.091
(20, 30]	43	0.652	49	0.742
(30, 40]	17	0.258	66	1.000

<u>Istogramma</u>

Funzione di ripartizione l

Funzione di ripartizione II

Scala trasformata: differenze in nanosecondi da 24.800

Commenti ai risultati

- Sia l'istogramma che la funzione di ripartizione mettono in chiara evidenza che ci sono due esperimenti anomali, corrispondenti alle osservazioni $y_6 = -44$ e $y_{10} = -2$.
- La quasi totalità dei dati si concentra in valori compresi tra 20 e 40. Questo porta ad ipotizzare che qualcosa sia andato storto nell'esecuzione di questi due esperimenti.
- Una possibilità è escludere questi valori dall'analisi. Rimosse tali osservazioni, è evidente che il centro della distribuzione sia attorno al valore 30 (e non attorno a 0!).
- In alternativa, potremmo utilizzare delle tecniche robuste, come la mediana, che sono affrontate nell'Unità C.
- Sulla base delle recenti misurazioni, il vero valore della velocità della luce, espresso nella scala trasformata, è di 33.0, che sembra confermare questo ragionamento.