Friction drag coefficient for steady, constant property, 2-D, uniform flow over a flat plate:

Laminar:
$$C_{Df} = 1.328 Re_{\ell}^{-1/2}$$
 $Re_{\ell} < 5 \times 10^5$

Mixed or Transitional:
$$C_{Df} = 0.0743 Re_{\ell}^{-1/5} - \frac{1740}{Re_{\ell}}$$
 $5 \times 10^5 < Re_{\ell} < 10^7$

$$C_{Df} = \frac{0.455}{\left(\log Re_{\ell}\right)^{2.58}} - \frac{1700}{Re_{\ell}}$$
 $5 \times 10^5 < Re_{\ell} < 10^9$

Turbulent (smooth plate):
$$C_{Df} = 0.0743 \ Re_{\ell}^{-1/5}$$
 $5 \times 10^5 < Re_{\ell} < 10^7$

$$C_{Df} = \frac{0.455}{\left(\log Re_{\ell}\right)^{2.58}}$$
 5×10⁵ < Re_{\ell} < 10⁹

Turbulent (completely turbulent):
$$C_{Df} = \left[1.89 - 1.62 \log \left(\frac{\varepsilon}{\ell}\right)\right]^{-2.5}$$
 see Table 8.1 for ε

where $Re_{\ell} = U \; \ell / v$ is Reynolds number, U is free stream velocity, v is kinematic viscosity, ℓ is plate length, b is plate width, ε is plate roughness, and \mathscr{D}_f is drag force due to friction.

Streamlines for cylinder in uniform cross flow for a range of Reynolds numbers.

Drag coefficient, C_D , versus Reynolds number, Re, where \mathcal{D} is total drag, U is uniform velocity, D is diameter, A_p is projected frontal area, ρ is density, and μ is viscosity.

Strong differences in laminar and turbulent separation on an 8.5-in. bowling ball entering water at 25 ft/s: (a) smooth ball, laminar boundary layer; (b) same entry, turbulent flow induced by patch of nose-sand roughness (NAVAIR Weapons Division Historical Archives.)

Two objects of considerably different size that have the same drag force.

Drag coefficient as a function of Froude number and hull characteristics for that portion of the drag due to the generation of waves (Inui, *Wave Making Resistance of Ships*, 1962).

Effect of angle of attack, α , and aspect ratio, $\mathcal{L} = b/c$ where b is span and c is chord length, on lift coefficient, C_L , and drag coefficient, C_D , for typical airfoils.

(a) uniform flow past a cylinder

(b) free vortex at center of cylinder

(c) uniform flow past rotating cylinder

S = stagnation point (highest pressure) "(a) + (b) = (c)"

Rotating cylinder with separation

Lift coefficient, C_L , and drag coefficient, C_D , versus spin ratio, $SR = (\omega D)/(2U)$, for a spinning smooth sphere where:

 ω rate of rotation

D diameter

U uniform velocity

Re Reynolds number

 ρ density

v kinematic viscosity

 \mathcal{Q} lift

