```
In [1]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

In [4]: df=pd.read_csv("C:/Users/USER/Desktop/Datasets/Social_Network_Ads.csv")
 df

Out[4]:

	User ID	Gender	Age	EstimatedSalary	Purchased
0	15624510	Male	19	19000	0
1	15810944	Male	35	20000	0
2	15668575	Female	26	43000	0
3	15603246	Female	27	57000	0
4	15804002	Male	19	76000	0
395	15691863	Female	46	41000	1
396	15706071	Male	51	23000	1
397	15654296	Female	50	20000	1
398	15755018	Male	36	33000	0
399	15594041	Female	49	36000	1

400 rows × 5 columns

In [6]: del df["User ID"] df

Out[6]:

	Gender	Age	EstimatedSalary	Purchased
0	Male	19	19000	0
1	Male	35	20000	0
2	Female	26	43000	0
3	Female	27	57000	0
4	Male	19	76000	0
395	Female	46	41000	1
396	Male	51	23000	1
397	Female	50	20000	1
398	Male	36	33000	0
399	Female	49	36000	1

400 rows × 4 columns

Out[12]:

	Gender	Age	EstimatedSalary
0	Male	19	19000
1	Male	35	20000
2	Female	26	43000
3	Female	27	57000
4	Male	19	76000
395	Female	46	41000
396	Male	51	23000
397	Female	50	20000
398	Male	36	33000
399	Female	49	36000

400 rows × 3 columns

```
In [13]: y
```

Out[13]:		Purchased
	0	0
	1	0
	2	0
	3	0
	4	0
	395	1
	396	1
	397	1
	398	0
	399	1

400 rows × 1 columns

In [14]: x.describe()

Out[14]:

	Age	EstimatedSalary
count	400.000000	400.000000
mean	37.655000	69742.500000
std	10.482877	34096.960282
min	18.000000	15000.000000
25%	29.750000	43000.000000
50%	37.000000	70000.000000
75%	46.000000	88000.000000
max	60.000000	150000.000000

```
In [19]: x["Gender"].value_counts()
```

Out[19]: Female 204 Male 196

Name: Gender, dtype: int64

```
In [20]: x.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 400 entries, 0 to 399
Data columns (total 3 columns):

Column Non-Null Count Dtype
----0 Gender 400 non-null object
1 Age 400 non-null int64
2 EstimatedSalary 400 non-null int64

dtypes: int64(2), object(1)
memory usage: 9.5+ KB

In [21]: x.isnull().sum()

Out[21]: Gender 0
Age 0
EstimatedSalary 0
dtype: int64

In [23]: x.hist()

In [25]: boxplot=x.boxplot()

In [29]: newx=pd.get_dummies(x)

In [30]: newx

Out[30]:

	Age	EstimatedSalary	Gender_Female	Gender_Male
0	19	19000	0	1
1	35	20000	0	1
2	26	43000	1	0
3	27	57000	1	0
4	19	76000	0	1
•••				
395	46	41000	1	0
396	51	23000	0	1
397	50	20000	1	0
398	36	33000	0	1
399	49	36000	1	0

400 rows × 4 columns

In [31]: from sklearn.model_selection import train_test_split
 x_train, x_test, y_train, y_test = train_test_split(newx, y, test_size = 0.2)

In [33]: x_train

_			
α	.+-	1 7 7) (
ΟL	ıL		ווכ

	Age	EstimatedSalary	Gender_Female	Gender_Male
378	41	87000	0	1
233	49	86000	0	1
24	46	23000	0	1
151	41	45000	0	1
377	42	53000	1	0
10	26	80000	1	0
120	36	75000	1	0
165	18	86000	1	0
118	40	59000	0	1
31	27	137000	1	0

320 rows × 4 columns

In [34]: y_test

Out[34]:

	Purchased
123	0
86	0
181	0
271	1
193	0
235	1
111	0
394	0
302	1
351	0

80 rows × 1 columns

```
In [36]: from sklearn.preprocessing import StandardScaler
         scale = StandardScaler()
         x_train = scale.fit_transform(x_train)
         x_test = scale.transform(x_test)
```

```
In [37]: from sklearn.naive bayes import GaussianNB
         clf= GaussianNB()
         clf.fit(x_train, y_train)
         C:\Users\USER\anaconda3\lib\site-packages\sklearn\utils\validation.py:63: DataC
         onversionWarning: A column-vector y was passed when a 1d array was expected. Pl
         ease change the shape of y to (n_samples, ), for example using ravel().
           return f(*args, **kwargs)
Out[37]: GaussianNB()
In [38]: y_pred = clf.predict(x_test)
         y pred
Out[38]: array([0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0,
                0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1,
                0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
                0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0], dtype=int64)
In [40]: from sklearn.metrics import confusion matrix, accuracy score
         CM=confusion_matrix(y_test, y_pred)
In [42]: AS=accuracy_score(y_test, y_pred)
In [43]: CM
Out[43]: array([[49, 1],
                [ 6, 24]], dtype=int64)
In [44]: AS
Out[44]: 0.9125
 In [ ]:
```