目录

第8章	Cortex-M4-通用定时器	
8.1	STM32 通用定时器概述	2
	8.1.1 STM32 通用定时器简介	
	8.1.2 STM32 通用定时器特征	
8.2	通用定时器框架	
	基本时基单元	
	STM32 通用定时器时钟源部分	
	8.4.1 内部时钟源	
	8.4.2 外部时钟源模式 2	
	8.4.3 外部时钟源模式 1	
8.5	STM32 通用定时器比较输出	
	8.5.1 比较输出原理(重点)	
	8.5.2 比较输出框架(重点)	
	8.5.3 比较输出相关寄存器分析	
	8.5.4 STM32 比较输出功能实验	16
8.6	STM32 通用定时器捕获输入	
	8.6.1 捕获输入原理	21
	8.6.2 捕获输入框架	21
	8.6.3 捕获输入实验	
8.7		. 错误!未定义书签。
	8.7.1 DWM 输入分验	进设大会义 4 文

第8章 Cortex-M4-通用定时器

8.1 STM32 通用定时器概述

8.1.1 STM32 通用定时器简介

- 1. TIM2 到 TIM5 简介(TIM2 TIM3 TIM4 TIM5) 通用定时器包含一个 16 位或 32 位自动重载计数器,<mark>该计数器由可编程预分频器驱动</mark>。 它们可用于多种用途,包括测量输入信号的脉冲宽度(输入捕获)或生成输出波形(输出比较和 PWM)。 使用定时器预分频器和 RCC 时钟控制器预分频器,可将脉冲宽度和波形周期从几微秒调制到几毫秒。 这些定时器彼此完全独立,不共享任何资源。
- 2. TIM9 到 TIM14 简介(TIM9 TIM10 TIM11 TIM12 TIM13 TIM14)
 TIM9 到 TIM14 通用定时器包含一个 16 位自动重载计数器,该计数器由可编程预分频器驱动。
 它们可用于多种用途,包括测量输入信号的脉冲宽度(输入捕获),或者生成输出波形(输出比较、PWM)。
 使用定时器预分频器和 RCC 时钟控制器预分频器,可将脉冲宽度和波形周期从几微秒调制到几毫秒。
 TIM9 到 TIM14 定时器彼此完全独立,不共享任何资源。

8.1.2 **STM32** 通用定时器特征

- 1. TIM2 到 TIM5 主要特性 通用 TIMx 定时器具有以下特性:
 - 16 位 (TIM3 和 TIM4) 或 32 位 (TIM2 和 TIM5) 递增、递减和递增/递减自动重载计数器。
 - 16 位可编程预分频器(PSC),用于对计数器时钟频率进行分频(即运行时修改),分频系数介于 1 到 65536 之间。
 - 多达 4 个独立通道,可用于:
 - 一 输入捕获
 - 一 输出比较
 - PWM 生成(边沿和中心对齐模式)
 - 一 单脉冲模式输出
 - 使用外部信号控制定时器且可实现多个定时器互连的同步电路。 定时一个小时,1us 。
 - 发生如下事件时生成中断请求(让对应的标志位置一):
 - 一 更新事件: 计数器上溢/下溢、计数器初始化(通过软件(UG)或内部/外部触发(硬件))(UIF置一)
 - 一 触发事件(计数器启动、停止、初始化或通过内部/外部触发计数)
 - 一 输入捕获 捕获标志置一
 - 一 输出比较 比较标志置一
 - 支持定位用增量(正交)编码器和霍尔传感器电路(测速)
 - 外部时钟触发输入或逐周期电流管理
- . TIM9/TIM14 主要特性

TIM9 到 TIM14 通用定时器具有以下特性: (对这个模块的高度性概括)

● 16 位自动重载递增计数器(属于中等容量器件)

- 16 位可编程预分频器,用于对计数器时钟频率进行分频(即运行时修改),分频系数介于 1 和 65536 之间
- 多达 2 个独立通道,可用于:
- 一 输入捕获
- 一 输出比较
- PWM 生成(边沿对齐模式)
- 一 单脉冲模式输出
- 使用外部信号控制定时器且可实现多个定时器互连的同步电路
- 发生如下事件时生成中断:
- 一 更新: 计数器上溢、计数器初始化(通过软件或内部触发)
- 一 触发事件(计数器启动、停止、初始化或者由内部触发计数)
- 一 输入捕获
- 一 输出比较
- 3. TIM10/TIM11 和 TIM13/TIM14 主要特性

通用定时器 TIM10/TIM11 和 TIM13/TIM14 具有以下特性:

- 16 位自动重载递增计数器
- 16 位可编程预分频器,用于对计数器时钟频率进行分频(即运行时修改),分频系数

介于 1 和 65536 之间

- 独立通道,可用于:
- 一 输入捕获
- 一 输出比较
- PWM 生成(边沿对齐模式)
- 一 单脉冲模式输出
- 发生如下事件时生成中断:
- 一 更新: 计数器上溢、计数器初始化(通过软件)
- 一 输入捕获
- 一 输出比较

8.2 通用定时器框架

8.3 基本时基单元

时基单元包括:

- 计数器寄存器 (TIMx_CNT)
- 预分频器寄存器 (TIMx_PSC)
- 自动重载寄存器 (TIMx_ARR)

预分频器寄存器:决定计数器计一次数的时间 自动重载寄存器:决定计数器计多少次

8.4 STM32 通用定时器时钟源部分

有三种时钟源

▋ 15.3.3 时钟选择

| <u>内部时钟源(CK INT)</u>

📗 外部时钟源模式1

📗 外部时钟源模式 2

一般选择内部时钟源(稳定)

8.4.1 内部时钟源

如果禁止从模式控制器(TIMx_SMCR 寄存器中 SMS=000) 当对 CEN 位写入 1 时,预分频器的时钟就由内部时钟 CK INT 提供。

位 2:0 SMS: 从模式选择 (Slave mode selection)

选择外部信号时,触发信号 (TRGI) 的有效边沿与外部输入上所选的极性相关(请参见输入控制寄存器和控制寄存器说明)。

000: 禁止从模式——如果 CEN = "1", 预分频器时钟直接由内部时钟提供。

8.4.2 外部时钟源模式 2

通过在 TIMx_SMCR 寄存器中写入 ECE=I 可选择此模式。 计数器可在外部触发输入 ETR 出现上升沿或下降沿时计数。

位 14 ECE: 外部时钟使能 (External clock enable)

此位可使能外部时钟模式 2。

0: 禁止外部时钟模式 2

1: 使能外部时钟模式 2。计数器时钟由 ETRF 信号的任意有效边沿提供。

8.4.3 外部时钟源模式 1

当 TIMx_SMCR 寄存器中的 SMS=111 时,可选择此模式。计数器可在选定的输入信号上出现上升沿或下降沿时计数。

位 2:0 SMS: 从模式选择 (Slave mode selection)

选择外部信号时,触发信号 (TRGI) 的有效边沿与外部输入上所选的极性相关(请参见输入控制寄存器和控制寄存器说明)。

000: 禁止从模式——如果 CEN = "1", 预分频器时钟直接由内部时钟提供。

001:编码器模式 1——计数器根据 TI1FP1 电平在 TI2FP2 边沿递增/递减计数。

010:编码器模式 2---计数器根据 TI2FP2 电平在 TI1FP1 边沿递增/递减计数。

011: 编码器模式 3—— 计数器在 TI1FP1 和 TI2FP2 的边沿计数, 计数的方向取决于另外一个信号的电平。

100: 复位模式——在出现所选触发输入 (TRGI) 上升沿时,重新初始化计数器并生成一个寄存器更新事件。

101: 门控模式——触发输入 (TRGI) 为高电平时使能计数器时钟。只要触发输入变为低电平,计数器立即停止计数(但不复位)。计数器的启动和停止都是受控的。

110: 触发模式——触发信号 TRGI 出现上升沿时启动计数器(但不复位)。只控制计数器的启动。

111:外部时钟模式 1——由所选触发信号 (TRGI) 的上升沿提供计数器时钟。

上面介绍了关于时钟模式的三种选择: 1、内部时钟源

2、外部时钟模式2

3、外部时钟模式1

8.5 STM32 通用定时器比较输出

8.5.1 比较输出原理(重点)

位 6:4 OC1M: 输出比较 1 模式 (Output compare 1 mode)

110: PWM 模式 1——在递增计数模式下,只要 TIMx_CNT<TIMx_CCR1, 通道 1 便为有效状态,否则为无效状态。在递减计数模式下,只要 TIMx_CNT>TIMx_CCR1, 通道 1 便为无效状态 (OC1REF=0), 否则为有效状态 (OC1REF=1)。
111: PWM 模式 2——在递增计数模式下,只要 TIMx_CNT<TIMx_CCR1, 通道 1 便为无

111: PWM 模式 2——在速增计数模式 F,只要 TIMx_CNT<TIMx_CCR1, 通道 1 便为无效状态,否则为有效状态。在递减计数模式 F,只要 TIMx_CNT>TIMx_CCR1, 通道 1 便为有效状态,否则为无效状态。

CCR1的不能超过ARR的值

1、时钟树效果

Figure 5. STM32F40xxx block diagram

2、GPIO 口复用映射关系

Z

							Table	9. Alterr	nate funct	tion ma	pping						
		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13		
Pe	ort	sys	TIM1/2	TIM3/4/5	TIM8/9/10 /11	I2C1/2/3	SPI1/SPI2/ I2S2/I2S2e xt	SPI3/I2Sext /I2S3	USART1/2/3/ I2S3ext	UART4/5/ USART6	CAN1/2 TIM12/13/ 14	OTG_F\$/ OTG_H\$	ЕТН	FSMC/SDIO /OTG_FS	DCMI	AF14	AF15
	PAO	-	TIM2_CH1_ ETR	TIM 5_CH1	TIM8_ETR	-	-	-	USART2_CTS	UART4_TX	-	-	ETH_MII_CRS	-	-	-	EVENTOUT
	PA1	-	TIM2_CH2	TIM5_CH2			-		USART2_RTS	UART4_RX	-		ETH_MII _RX_CLK ETH_RMIIREF _CLK				EVENTOUT
	PA2	-	TIM2_CH3	TIM5_CH3	TIM9_CH1		-	-	USART2_TX	-	-	-	ETH_MDIO	-	-	-	EVENTOUT
	PA3	-	TIM2_CH4	TIM5_CH4	TIM9_CH2	-			USART2_RX		-	OTG_HS_ULPI_ D0	ETH_MII_COL				EVENTOUT
	PA4	-				-	SPI1_NSS	SPI3_NSS I2S3_WS	USART2_CK	-	-	-	-	OTG_HS_SOF	DCMI_ HSYNC	-	EVENTOUT
	PA5	-	TIM2_CH1_ ETR		TIMB_CH1N	-	SPI1_SCK	-		-	-	OTG_HS_ULPI_ CK	-	-	-	-	EVENTOUT
	PA6		TIM1_BKIN	TIM3_CH1	TIM8_BKIN		SPI1_MISO			-	TIM13_CH1		-		DCMI_PIXCK	-	EVENTOUT
Port A	PA7	-	TIM1_CH1N	TIM3_CH2	TIMB_CH1N	-	SPI1_MOSI			-	TIM14_CH1	-	ETH_MII_RX_DV ETH_RMII _CRS_DV		-		EVENTOUT
	PA8	MCO1	TIM1_CH1	-	-	12C3_SCL	-	. '	USART1_CK	-	-	OTG_FS_SOF	-	-	-	-	EVENTOUT
	PA9		TIM1_CH2			I2C3_ SMBA		-	USART1_TX		-	-	-	-	DCMI_D0		EVENTOUT
	PA10	-	TIM1_CH3					\rightarrow	USART1_RX	-	-	OTG_FS_ID	-	-	DCMI_D1	-	EVENTOUT
	PA11	-	TIM1_CH4		-	-	-	-	USART1_CTS	-	CAN1_RX	OTG_FS_DM	-	-	-	-	EVENTOUT
	PA12	-	TIM1_ETR		-				USART1_RTS		CAN1_TX	OTG_FS_DP		-	-	-	EVENTOUT
	PA13	JTMS- SWDIO				-			-		-	-	-		-		EVENTOUT
	PA14	JTCK- SWCLK		-		-				-	-	-	-				EVENTOUT
	PA15	JTDI	TIM 2_CH1 TIM 2_ETR			-	SPI1_NSS	SPI3_NSS/ I2S3_WS			-		-		-	-	EVENTOUT

信盈达教育 源自深圳始于 2008 全国直营 深圳北京上海广州 南京郑州成都武汉 济南南宁 10+城市 12 家直营中心 官网: www. edu118. com 全国免费电话: 400-8788-909 质量监督电话: 0755-26457584 信盈达科技 版权所有 侵权必究 ₹ 77 K ₹ 0

8.5.3 比较输出相关寄存器分析

8.5.3.1 TIMx 控制寄存器 1(TIMx_CR1)

偏移地址: 0x00

复位值: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		Paga	rund			CKE	[1:0]	ARPE	CI	MS	DIR	ОРМ	URS	UDIS	CEN
		Rese	rveu			rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

位 9:8 CKD: 时钟分频 (Clock division)(与滤波器相关)

此位域指示定时器时钟 (CK_INT) 频率与数字滤波器所使用的采样时钟 (ETR、 TIx) 之间的分频比,

00: $tDTS = tCK INT \square$

01: $tDTS = 2 \times tCK INT$

10: $tDTS = 4 \times tCK INT \square$

11: 保留

位 7 ARPE: 自动重载预装载使能 (Auto-reload preload enable)

0: TIMx ARR 寄存器不进行缓冲 (自动重载寄存要不要影子寄存器)

1: TIMx ARR 寄存器进行缓冲

位 6:5 CMS: 中心对齐模式选择 (Center-aligned mode selection)

00: 边沿对齐模式。计数器根据方向位 (DIR) 递增计数或递减计数。

01: 中心对齐模式 1。计数器交替进行递增计数和递减计数。仅当计数器递减计数时,配置为输出的通道(TIMx CCMRx 寄存器中的 CxS=00)的输出比较中断标志才置 1。

10: 中心对齐模式 2。计数器交替进行递增计数和递减计数。仅当计数器递增计数时,配置为输出的通道(TIMx CCMRx 寄存器中的 CxS=00)的输出比较中断标志才置 1。

11: 中心对齐模式 3。计数器交替进行递增计数和递减计数。当计数器递增计数或递减计数时,配置为输出的通道(TIMx_CCMRx 寄存器中的 CxS=00)的输出比较中断标志都会置 1。注意: 只要计数器处于使能状态 (CEN=1),就不得从边沿对齐模式切换为中心对齐模式。

位 4 DIR: 方向 (Direction)

0: 计数器递增计数

1: 计数器递减计数

注意: 当定时器配置为中心对齐模式或编码器模式时,该位为只读状态。

位 3 OPM: 单脉冲模式 (One-pulse mode)

0: 计数器在发生更新事件时不会停止计数

1: 计数器在发生下一更新事件时停止计数(将 CEN 位清零)

位 2 URS: 更新请求源 (Update request source)

此位由软件置 1 和清零,用以选择 UEV 事件源。

0: 使能时, 所有以下事件都会生成更新中断或 DMA 请求。此类事件包括:

- 计数器上溢/下溢
- 将 UG 位置 1
- 通过从模式控制器生成的更新事件
- 1: 使能时, 只有计数器上溢/下溢会生成更新中断或 DMA 请求。

位 1 UDIS: 更新禁止 (Update disable)

此位由软件置 1 和清零,用以使能/禁止 UEV 事件生成。

- 0: 使能 UEV。更新 (UEV) 事件可通过以下事件之一生成:
- 计数器上溢/下溢

信盈达教育 源自深圳始于 2008 全国直营 深圳北京上海广州 南京郑州成都武汉 济南南宁 10+城市 12 家直营中心官网: www. edu118. com 全国免费电话: 400-8788-909 质量监督电话: 0755-26457584 信盈达科技 版权所有 侵权必究

き9页共22页

- 将 UG 位置 1
- 通过从模式控制器生成的更新事件

然后缓冲的寄存器将加载预装载值。

1: 禁止 UEV。不会生成更新事件,各影子寄存器的值(ARR、 PSC 和 CCRx)保持不变。但如果将 UG 位置 1,或者从从模式控制器接收到硬件复位,则会重新初始化计数器和预分频器。

位 0 CEN: 计数器使能 (Counter enable)

0: 禁止计数器

1: 使能计数器

注意: 只有事先通过软件将 CEN 位置 1,才可以使用外部时钟、门控模式和编码器模式。而触发模式可通过硬件自动将 CEN 位置 1。

在单脉冲模式下,当发生更新事件时会自动将 CEN 位清零。

8.5.3.2 TIMx 控制寄存器 2 (TIMx_CR2)

偏移地址: 0x04

复位值: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			Poss	ned				TI1S		MMS[2:0]		CCDS		Reserved	
			Hese	erved				rw	rw	rw	rw	rw		neserved	

8.5.3.3 TIMx 从模式控制寄存器 (TIMx SMCR)

偏移地址: 0x08

复位值: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ETP	ECE	ETPS	S[1:0]		ETF	[3:0]		MSM		TS[2:0]		Res.		SMS[2:0]	
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	nes.	rw	rw	rw

位 15 ETP: 外部触发极性 (External trigger polarity)

此位可选择将 ETR 还是 ETR 用于触发操作

- 0: ETR 未反相, 高电平或上升沿有效
- 1: ETR 反相, 低电平或下降沿有效

位 14 ECE: 外部时钟使能 (External clock enable)

此位可使能外部时钟模式 2。

0: 禁止外部时钟模式 2□

- 1: 使能外部时钟模式 2。计数器时钟由 ETRF 信号的任意有效边沿提供。
- 1: 将 ECE 位置 1 与选择外部时钟模式 1 并将 TRGI 连接到 ETRF (SMS=111 且 TS=111) 具有相同效果。
- 2: 外部时钟模式 2 可以和以下从模式同时使用: 复位模式、门控模式和触发模式。不过此类情况下 TRGI 不得连接 ETRF (TS 位不得为 111)。
- 3: 如果同时使能外部时钟模式 1 和外部时钟模式 2,则外部时钟输入为 ETRF。

位 13:12 ETPS: 外部触发预分频器 (External trigger prescaler)

外部触发信号 ETRP 频率不得超过 CK_INT 频率的 1/4。可通过使能预分频器来降低 ETRP 频率。这种方法在输入快速外部时钟时非常有用。

00: 预分频器关闭

01: 2 分频 ETRP 频率

信盈达教育 源自深圳始于 2008 全国直营 深圳北京上海广州 南京郑州成都武汉 济南南宁 10+城市 12 家直营中心官网: www.edu118.com 全国免费电话:400-8788-909 质量监督电话:0755-26457584 信盈达科技 版权所有 侵权必究

き10 页 共 22 页

11: 8 分频 ETRP 频率

位 11:8 ETF[3:0]: 外部触发滤波器 (External trigger filter)

此位域可定义 ETRP 信号的采样频率和适用于 ETRP 的数字滤波器滤波时间。数字滤波器由事件计数器组成,每 N 个事件才视为一个有效边沿:

0000: 无滤波器, 按 fDTS 频率进行采样

0001: fSAMPLING=fCK INT, N=2□ 滤波频率的问题?

0010: fSAMPLING=fCK INT, N=4□

0011: fSAMPLING=fCK INT, N=8□

0100: fSAMPLING=fDTS/2, N=6

0101: fSAMPLING=fDTS/2, N=8

0110: fSAMPLING=fDTS/4, N=6

0111: fSAMPLING=fDTS/4, N=8

1000: fSAMPLING=fDTS/8, N=6

1001: fSAMPLING=fDTS/8, N=8

1010: fSAMPLING=fDTS/16, N=5

1011: fSAMPLING=fDTS/16, N=6□

1100: fSAMPLING=fDTS/16, N=8

1101: fSAMPLING=fDTS/32, N=5

1110: fSAMPLING=fDTS/32, N=6

1111: fSAMPLING=fDTS/32, N=8

位 7 MSM: 主/从模式 (Master/Slave mode)

0: 不执行任何操作

1: 当前定时器的触发输入事件(TRGI)的动作被推迟,以使当前定时器与其从定时器实现 完美同步(通过 TRGO)。此设置适用于单个外部事件对多个定时器进行同步的情况。

位 6:4 TS: 触发选择 (Trigger selection)

此位域可选择将要用于同步计数器的触发输入。

000: 内部触发 0 (ITR0)□

001: 内部触发 1(ITR1)。

010: 内部触发 2(ITR2)。

011: 内部触发 3 (ITR3)。

100: TII 边沿检测器 (TIIF ED)□

101: 滤波后的定时器输入 1 (TI1FP1)□

110: 滤波后的定时器输入 2 (TI2FP2)□

111: 外部触发输入 (ETRF)

有关各定时器 ITRx 含义的详细信息,请参见第 428 页的表 76: TIMx 内部触发连接。

注意: 这些位只能在未使用的情况下(例如, SMS=000 时)进行更改,以避免转换时出现错误的边沿检测。

位 3 保留,必须保持复位值。

位 2:0 SMS: 从模式选择 (Slave mode selection)

选择外部信号时,触发信号 (TRGI) 的有效边沿与外部输入上所选的极性相关(请参见输入控制寄存器和控制寄存器说明)。

000: 禁止从模式—如果 CEN ="1", 预分频器时钟直接由内部时钟提供。

001: 编码器模式 1—计数器根据 TI1FP1 电平在 TI2FP2 边沿递增/递减计数。

010: 编码器模式 2—计数器根据 TI2FP2 电平在 TI1FP1 边沿递增/递减计数。

011: 编码器模式 3—计数器在 TI1FP1 和 TI2FP2 的边沿计数,计数的方向取决于另外一

信盈达教育 源自深圳始于 2008 全国直营 深圳北京上海广州 南京郑州成都武汉 济南南宁 10+城市 12 家直营中心官网: www.edu118.com 全国免费电话:400-8788-909 质量监督电话:0755-26457584 信盈达科技 版权所有 侵权必究

第11 页 共 22 页

个信号的电平。

100: 复位模式—在出现所选触发输入 (TRGI) 上升沿时,重新初始化计数器并生成一个寄存器更新事件。

101: 门控模式— 触发输入 (TRGI) 为高电平时使能计数器时钟。只要触发输入变为低电平,计数器立即停止计数(但不复位)。计数器的启动和停止都是受控的。

110: 触发模式—触发信号 TRGI 出现上升沿时启动计数器(但不复位)。只控制计数器的启动。

111: 外部时钟模式 1—由所选触发信号 (TRGI) 的上升沿提供计数器时钟。

注意: 如果将 TIIF ED 选作触发输入 (TS=100),则不得使用门控模式。实际上, TIIF 每次转

换时, TIIF ED 都输出 1 个脉冲,而门控模式检查的则是触发信号的电平。

8.5.3.4 TIMx DMA/中断使能寄存器 (TIMx_DIER)

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Res.	TDE	Res	CC4DE	CC3DE	CC2DE	CC1DE	UDE	Res.	TIE	Res	CC4IE	CC3IE	CC2IE	CC1IE	UIE
nes.	rw	nes	rw	rw	rw	rw	rw	nes.	rw	nes	rw	rw	rw	rw	rw

位 4 CC4IE: 捕获/比较 4 中断使能 (Capture/Compare 1 interrupt enable)

0: 禁止 CC4 中断。

1: 使能 CC4 中断。

位 3 CC3IE: 捕获/比较 3 中断使能 (Capture/Compare 1 interrupt enable)

0: 禁止 CC3 中断

1: 使能 CC3 中断

位 2 CC2IE: 捕获/比较 2 中断使能 (Capture/Compare 1 interrupt enable)

0: 禁止 CC2 中断

1: 使能 CC2 中断

位 1 CC1IE: 捕获/比较 1 中断使能 (Capture/Compare 1 interrupt enable)

0: 禁止 CC1 中断

1: 使能 CC1 中断

位 0 UIE: 更新中断使能 (Update interrupt enable)

0: 禁止更新中断

1: 使能更新中断

8.5.3.5 TIMx 状态寄存器 (TIMx_SR) 比较输出实验

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
51		Reserved		CC4OF	CC3OF	CC2OF	CC10F	Rese	nuod	TIF	Res	CC4IF	CC3IF	CC2IF	CC1IF	UIF
		neserved		rc_w0	rc_w0	rc_w0	rc_w0	Hese	ei veu	rc_w0	nes	rc_w0	rc_w0	rc_w0	rc_w0	rc_w0

位 4 CC4IF: 捕获/比较 4 中断标志 (Capture/Compare 4 interrupt flag)

请参见 CC1IF 说明

位 3 CC3IF: 捕获/比较 3 中断标志 (Capture/Compare 3 interrupt flag)

请参见 CC1IF 说明

位 2 CC2IF: 捕获/比较 2 中断标志 (Capture/Compare 2 interrupt flag)

请参见 CC1IF 说明

位 1 CC1IF: 捕获/比较 1 中断标志 (Capture/compare 1 interrupt flag)

如果通道 CC1 配置为输出:

信盈达教育 源自深圳始于 2008 全国直营 深圳北京上海广州 南京郑州成都武汉 济南南宁 10+城市 12 家直营中心官网: www. edu118. com 全国免费电话: 400-8788-909 质量监督电话: 0755-26457584 信盈达科技 版权所有 侵权必究

第12页共22页

当计数器与比较值匹配时,此标志由硬件置 1,中心对齐模式下除外(请参见 TIMx CR1 寄 存器中的 CMS 位说明)。但需要通过软件清零。

0: 不匹配

1: TIMx CNT 计数器的值与 TIMx CCR1 寄存器的值匹配。当 TIMx CCR1 的值大于 TIMx ARR 的值时, CC1IF 位将在计数器发生上溢(递增计数模式和增减计数模式下)或下 溢(递减计数模式下)时变为高电平。

如果通道 CC1 配置为输入:

此位将在发生捕获事件时由硬件置 1。通过软件或读取 TIMx CCR1 寄存器将该位清零。

- 0: 未发生输入捕获事件
- 1: TIMx CCR1 寄存器中已捕获到计数器值(IC1 上已检测到与所选极性匹配的边沿)

位 0 UIF: 更新中断标志 (Update interrupt flag)

● 该位在发生更新事件时通过硬件置 1。但需要通过软件清零。

0: 未发生更新。

- 1: 更新中断挂起。该位在以下情况下更新寄存器时由硬件置 1:
- 上溢或下溢 (对于 TIM2 到 TIM5) 以及当 TIMx CR1 寄存器中 UDIS=0 时。
- TIMx CR1 寄存器中的 URS=0 且 UDIS=0, 并且由软件使用 TIMx EGR 寄存器中的 UG 位重新初始化 CNT 时。

TIMx CR1 寄存器中的 URS=0 且 UDIS=0, 并且 CNT 由触发事件重新初始化时(参见同步 控制寄存器说明)。

8.5.3.6 TIMx 事件生成寄存器 (TIMx_EGR)

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				Danamiad					TG	Dec	CC4G	CC3G	CC2G	CC1G	UG
			<u>'</u>	Reserved					w	Res.	w	w	w	w	w

位 4 CC4G: 捕获/比较 4 生成 (Capture/compare 1 generation)

请参见 CC1G 说明

位 3 CC3G: 捕获/比较 3 生成 (Capture/compare 1 generation)

请参见 CC1G 说明

位 2 CC2G: 捕获/比较 2 生成 (Capture/compare 1 generation)

请参见 CC1G 说明

位 1 CC1G: 捕获/比较 1 生成 (Capture/compare 1 generation)

此位由软件置 1 以生成事件,并由硬件自动清零。

- 0: 不执行任何操作
- 1: 通道 1 上生成捕获/比较事件:

如果通道 CC1 配置为输出:

使能时, CCIIF 标志置 1 并发送相应的中断或 DMA 请求。

如果通道 CC1 配置为输入:

TIMx CCR1 寄存器中将捕获到计数器当前值。使能时, CC1IF 标志置 1 并发送相应的中断 或 DMA 请求。如果 CC1IF 标志已为高电平, CC1OF 标志将置 1。

位 0 UG: 更新生成 (Update generation)

该位可通过软件置 1,并由硬件自动清零。

- 0: 不执行任何操作
- 1: 重新初始化计数器并生成寄存器更新事件。请注意,预分频器计数器也将清零(但预分频 比不受影响)。如果选择中心对齐模式或 DIR=0 (递增计数), 计数器将清零; 如果 DIR=1 (递减计数),计数器将使用自动重载值 (TIMx ARR)。

信盈达教育 源自深圳始于 2008 全国直营 深圳北京上海广州 南京郑州成都武汉 济南南宁 10+城市 12 家直营中心 官网:www.edu118.com 全国免费电话:400-8788-909 质量监督电话:0755-26457584 信盈达科技 版权所有 侵权必究 页 22 # 页 33

第14页共22页

8.5.3.7 TIMx 捕获/比较模式寄存器 1 (TIMx_CCMR1)

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
OC2CE	(OC2M[2:0]	OC2PE	OC2FE	CCas	S[1:0]	OC1CE	(OC1M[2:0)]	OC1PE	OC1FE	CC19	S[1:0]
	IC2F	[3:0]		IC2PS	C[1:0]	0020	5[1.0]		IC1F	[3:0]		IC1PS	SC[1:0]	COR	5[1.0]
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

位 7 OC1CE: 输出比较 1 清零使能 (Output compare 3 clear enable)

OC1CE: 输出比较 1 清零使能 (Output Compare 1 Clear Enable)

0: OC1Ref 不受 ETRF 输入影响

1: ETRF 输入上检测到高电平时, OC1Ref 立即清零。

位 6:4 OC1M: 输出比较 1 模式 (Output compare 1 mode)

这些位定义提供 OC1 和 OC1N 的输出参考信号 OC1REF 的行为。 OC1REF 为高电平有效,而 OC1 和 OC1N 的有效电平则取决于 CC1P 位和 CC1NP 位。

000: 冻结—输出比较寄存器 TIMx_CCR1 与计数器 TIMx_CNT 进行比较不会对输出造成任何影响。(该模式用于生成时基)。

001: 将通道 1 设置为匹配时输出有效电平。当计数器 TIMx_CNT 与捕获/ 比较寄存器 1 (TIMx CCR1) 匹配时, OC1REF 信号强制变为高电平。

010: 将通道 1 设置为匹配时输出无效电平。当计数器 TIMx_CNT 与捕获/ 比较寄存器 1 (TIMx CCR1) 匹配时, OC1REF 信号强制变为低电平。

011: 翻转—TIMx CNT=TIMx CCR1 时, OC1REF 发生翻转。

100: 强制变为无效电平—OC1REF 强制变为低电平。

101: 强制变为有效电平—OC1REF 强制变为高电平。

110: PWM 模式 1— 在递增计数模式下,只要 TIMx_CNT<TIMx_CCR1,通道 1 便为有效状态,否则为无效状态。在递减计数模式下,只要 TIMx_CNT>TIMx_CCR1,通道 1 便为无效状态 (OC1REF=0),否则为有效状态 (OC1REF=1)。

111: PWM 模式 2— 在递增计数模式下,只要 TIMx_CNT<TIMx_CCR1,通道 1 便为无效状态,否则为有效状态。在递减计数模式下,只要 TIMx_CNT>TIMx_CCR1,通道 1 便为有效状态,否则为无效状态。

注意: 在 PWM 模式 1 或 PWM 模式 2 下,仅当比较结果发生改变或输出比较模式由"冻结"模式切换到"PWM"模式时, OCREF 电平才会发生更改。

位 3 OC1PE: 输出比较 1 预装载使能 (Output compare 1 preload enable)

0: 禁止与 TIMx_CCR1 相关的预装载寄存器。可随时向 TIMx_CCR1 写入数据,写入后将立即使用新值。

1: 使能与 TIMx_CCR1 相关的预装载寄存器。可读/写访问预装载寄存器。 TIMx_CCR1 预装载值在每次生成更新事件时都会装载到活动寄存器中。

注意: 1: 只要编程了 LOCK 级别 3(TIMx_BDTR 寄存器中的 LOCK 位)且 CC1S=00(通 道配置为输出),便无法修改这些位。

2: 只有单脉冲模式下才可在未验证预装载寄存器的情况下使用 PWM 模式(TIMx_CR1 寄存器中的 OPM 位置 1)。其它情况下则无法保证该行为。

位 2 OC1FE: 输出比较 1 快速使能 (Output compare 1 fast enable)

此位用于加快触发输入事件对 CC 输出的影响。

0: 即使触发开启, CC1 也将根据计数器和 CCR1 值正常工作。触发输入出现边沿时,激活 CC1 输出的最短延迟时间为 5 个时钟周期。

信盈达教育 源自深圳始于 2008 全国直营 深圳北京上海广州 南京郑州成都武汉 济南南宁 10+城市 12 家直营中心官网: www. edu118. com 全国免费电话: 400-8788-909 质量监督电话: 0755-26457584 信盈达科技 版权所有 侵权必究

- 1: 触发输入上出现有效边沿相当于 CC1 输出上的比较匹配。随后,无论比较结果如何,
- OC 都设置为比较电平。采样触发输入和激活 CC1 输出的延迟时间缩短为 3 个时钟周期。

仅当通道配置为 PWM1 或 PWM2 模式时, OCFE 才会起作用。

位 1:0 CC1S: 捕获/比较 1 选择 (Capture/Compare 1 selection)

此位域定义通道方向(输入/输出)以及所使用的输入。

00: CC1 通道配置为输出。

01: CC1 通道配置为输入, IC1 映射到 TI1 上。

10: CC1 通道配置为输入, IC1 映射到 TI2 上。

11: CC1 通道配置为输入, IC1 映射到 TRC 上。此模式仅在通过 TS 位(TIMx_SMCR 寄

存器)选择内部触发输入时有效

注意: 仅当通道关闭时(TIMx CCER 中的 CC1E=0),才可向 CC1S 位写入数据。

8.5.3.8 TIMx 捕获/比较模式寄存器 2 (TIMx_CCMR2)

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
OC4CE	(OC4M[2:0)]	OC4PE	OC4FE		2(1.0)	OC3CE	(OC3M[2:0)]	OC3PE	OC3FE	CC3	2(1.0)
	IC4F	[3:0]		IC4PS	C[1:0]	0040	S[1:0]		IC3F	[3:0]		IC3PS	SC[1:0]	CCS	S[1:0]
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

8.5.3.9 TIMx 捕获/比较使能寄存器 (TIMx CCER)

15	5	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
CC4	INP	Res.	CC4P	CC4E	CC3NP	Res.	ССЗР	CC3E	CC2NP	Res.	CC2P	CC2E	CC1NP	Res.	CC1P	CC1E
rv		nes.	rw	rw	rw	nes.	rw	rw	rw	nes.	rw	rw	rw	nes.	rw	rw

位 3 CC1NP: 捕获/比较 1 输出极性 (Capture/Compare 1 output Polarity)。

CC1 通道配置为输出:

在这种情况下, CCINP 必须保持清零

CC1 通道配置为输入:

此位与 CC1P 配合使用,用以定义 TI1FP1/TI2FP1 的极性。请参见 CC1P 说明。

位 2 保留,必须保持复位值。

位 1 CC1P: 捕获/比较 1 输出极性 (Capture/Compare 1 output Polarity)。

CC1 通道配置为输出:

0: OC1 高电平有效

1: OC1 低电平有效

CC1 通道配置为输入:

CCINP/CCIP 位可针对触发或捕获操作选择 TIIFP1 和 TI2FP1 的极性。

00: 非反相/上升沿触发

电路对 TIxFP1 上升沿敏感 (在复位模式、外部时钟模式或触发模式下执行捕获或触发操

作), TIxFP1 未反相 (在门控模式或编码器模式下执行触发操作)。

01: 反相/下降沿触发

电路对 TIxFP1 下降沿敏感 (在复位模式、外部时钟模式或触发模式下执行捕获或触发操

作), TIxFP1 反相 (在门控模式或编码器模式下执行触发操作)。

10: 保留,不使用此配置。

11: 非反相/上升沿和下降沿均触发

电路对 TIxFP1 上升沿和下降沿都敏感(在复位模式、外部时钟模式或触发模式下执行捕获或

信盈达教育 源自深圳始于 2008 全国直营 深圳北京上海广州 南京郑州成都武汉 济南南宁 10+城市 12 家直营中心官网: www.edu118.com 全国免费电话:400-8788-909 质量监督电话:0755-26457584 信盈达科技 版权所有 侵权必究

き15 页 共 22 页

触发操作), TIxFP1 未反相(在门控模式下执行触发操作)。编码器模式下不得使用此配置。

位 0 CC1E: 捕获/比较 1 输出使能 (Capture/Compare 1 output enable)。

CC1 通道配置为输出:

0: 关闭 - - OC1 未激活

1: 开启 - - 在相应输出引脚上输出 OC1 信号

CC1 通道配置为输入:

此位决定了是否可以实际将计数器值捕获到输入捕获/比较寄存器 1 (TIMx CCR1) 中。

0: 禁止捕获

1: 使能捕获

8.5.3.10 TIMx 计数器 (TIMx_CNT)

8.5.3.11 TIMx 预分频器 (TIMx_PSC)

8.5.3.12 TIMx 自动重载寄存器 (TIMx_ARR)

8.5.3.13 TIMx 捕获/比较寄存器 1 (TIMx_CCR1) (改变占空比)

8.5.3.14 TIMx 捕获/比较寄存器 2 (TIMx_CCR2)

8.5.3.15 TIMx 捕获/比较寄存器 3 (TIMx_CCR3)

8.5.3.16 TIMx 捕获/比较寄存器 4 (TIMx_CCR4)

8.5.4 STM32 比较输出功能实验

8.5.4.1 硬件设计

采用 PWM 波来实现对 LED 亮度控制。

		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11
Po	ort	sys	TIM1/2	TIM3/4/5	TIM8/9/10 /11	I2C1/2/3	SPI1/SPI2/ I2S2/I2S2e xt	SPI3/I2Sext /I2S3	USART1/2/3/ I2S3ext	UART4/5/ USART6	CAN1/2 TIM12/13/ 14	OTG_FS/ OTG_HS	ЕТН
	PA0	-	TIM2_CH1_ ETR	TIM 5_CH1	TIM8_ETR	-	-	-	USART2_CTS	UART4_TX			ETH_MII_(
	PA1	-	TIM2_CH2	TIM5_CH2	-	-	-	-	USART2_RTS	UART4_RX	-	-	ETH_MI _RX_CL ETH_RMII_ _CLK
	PA2		TIM2_CH3	TIM5_CH3	TIM9_CH1	-	-	-	USART2_TX		-		ETH_MD
	PA3	-	TIM2_CH4	TIM5_CH4	TIM9_CH2	-	-	-	USART2_RX	-	-	OTG_HS_ULPI_ D0	ETH_MII_(
	PA4	-	-	-	-	-	SPI1_NSS	SPI3_NSS I2S3_WS	USART2_CK	-	-	-	-
	PA5	-	TIM2_CH1_ ETR	-	TIM8_CH1N	-	SPI1_SCK	-	-	-	-	OTG_HS_ULPI_ CK	-
	PA6	-	TIM1_BKIN	TIM3_CH1	TIM8_BKIN	-	SPI1_MISO	-	-	-	TIM13_CH1	-	-
Port A	PA7	-	TIM1_CH1N	TIM3_CH2	TIM8_CH1N	-	SPI1_MOSI	-	-	-	TIM14_CH1	-	ETH_MII_RX ETH_RW _CRS_D
	PA8	MCO1	TIM1_CH1		-	I2C3_SCL	-	-	USART1_CK	-	-	OTG_FS_SOF	-
	PA9	•	TIM1_CH2	-	-	I2C3_ SMBA	-	-	USART1_TX	-	-	-	-
1	PA10		TIM1_CH3	-	-	-	-	-	USART1_RX	-	-	OTG_FS_ID	-

由图可知

PA6 可以复用 TIM3 CH1 也可以复用到 TIM13 CH1。

8.5.4.2 软件设计

配置流程:

- 1. 初始化 GPIO 口
 - (1) 打开 GPIOA 时钟---这个告诉你用哪个寄存器。
 - (2) 将 PA6 选择位复用--
 - (3) 将 PA6 复用为 AF2 TIM3 CH1 的输出信号到达 PA6
- 2. 初始化定时器
 - (1) 打开 TIM3 的时钟
 - (2) 配置 CR1 寄存器—针对 CR1 寄存器的每个位给大家都详细介绍了
 - (3) 选择时钟源(内部时钟源)
 - (4) 配置预分频值和自动重装寄存器(时基单元 PWM 波周期)
- 3. 配置输出通道 ---- 今天讲的寄存器密切相关
 - (1) 往 CCR1 寄存器写值 --- 设置比较值
 - (2) 选择输出模式
 - (3) 选择比较寄存器有影子寄存器
 - (4) 产生更新事件
 - (5) 不受 ETRF 影响 -- 不受外部输入影响
 - (6) 选择 PWM 模式(1, 2)
 - (7) 选择参考输出波形与输出波形反不反相
 - (8) 使能 CC1 通道
- 4. 使能计数器

程序编写步骤:

1、初始化 GPIO

第一步: //.1 初始化 PA6

RCC->AHB1ENR |= (0x1 << 0);//打开 PA 的时钟

6.3.12 RCC AHB1 外设时钟使能寄存器 (RCC_AHB1ENR)

RCC AHB1 peripheral clock enable register

偏移地址: 0x30 复位值: 0x0010 0000

访问: 无等待周期, 按字、半字和字节访问。

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16																
Reser- ved	OTGHS ULPIEN	OTGHS EN	ETHMA CPTPE N	ETHMA CRXEN	ETHMA CTXEN	ETHMA CEN	Reserved												UP DE						Reserved DMA2EN DMA1E		CCMDATA RAMEN	Res.	BKPSR AMEN	Rese	erved
	rw	rw	rw	rw	rw	rw			rw	rw	1.		rw		_																
15	14	13	12	11	10	9	8	7	6	5	/4/	3	2	1	,0)																
	Reserved	i	CRCEN		Reserve	i	GPIOIE N	GPIOH EN	GPIOGE N	GPIONS	GPIOEEN	GPIOD EN	GPIOC EN	GPIOB EN	GPIOA EN																
			rw				rw	rw	rw	-W	rw	rw	rw	rw	1																
			•												Л																

第二步: GPIOA->MODER &= ~(0xf << 12);

GPIOA->MODER = (0x2 << 12)://将 PA6 配置为复用功能

GPIO 端口模式寄存器 (GPIOx_MODER) (x = A..I)

GPIO port mode register 偏移地址: 0x00

复价值:

- 0xA800 0000 (端口A)
- 0x0000 0280 (端口 B) 0x0000 0000 (其它端口)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16				
MODER15[1:0]		MODER14[1:0]		MODE	DDER13[1:0] M		R12[1:0]	MODER11[1:0]		MODER11[1:0]		MODER11[1:0] MODER		MODER10[1:0]		MODER9[1:0]		MODER8[1:0]	
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw				
15	14	13	12	-11	10	9	8	7	6	5	4	3	2	1	0				
MODE	R7[1:0]	MODE	R6[1:0]	MODE	R5[1:0]	MODE	R4[1:0]	MODE	R3[1:0]	MODE	FR2[1:0]	MODER1[1:0]		MODER0[1					
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw				

ODERy[1:0]: 端口 x 配置位 (Port x configuration bits) (y = 0..15) 这些位通过软件写入,用于配置 I/O 方向模式。 00:输入(复位状态) 01:通用输出模式

第三步: GPIOA->AFR[0] &=~(0xf << 24);

GPIOA->AFR[0] |= (0x2 << 24);//将 PA6 复用到 TIM3 CH1 上

7.4.9 GPIO 复用功能低位寄存器 (GPIOx AFRL) (x = A..I)

GPIO alternate function low register

偏移地址: 0x20 复位值: 0x0000 0000

31 30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
AFRL7[3:0] AF					L6[3:0]	6[3:0] AFRL5[3:0]					AFRL4[3:0]				
rw rw	rw	rw	rw	rw 1	rw	rw	rw	rw	rw	rw	rw	rw	IW	rw	
15 14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
AFR	L3[3:0]			AF	L2[3:0]	AFRL1[3:0] AFRL0[3:0]						.0[3:0]			
rw rw	rw	rw	rw	rw	IW	rw	rw	rw	rw	rw	rw	rw	IW	rw	
					(用于)	配置复	用功能 Ⅰ	/O .							

2、TIM3 初始化

第一步: RCC->APB1ENR |= (0x1 << 1);//打开 TIM3 的时钟

用于 STM32F42xxx 和 STM32F43xxx 的 RCC APB1 外设时钟使能寄存器 (RCC APB1ENR)

RCC APB1 peripheral clock enable registe

偏移地址: 0x40

	偏移地址: 0x40													开启定时器时钟					
	复位值: 0x0000 0000															444371			
		访问:	尤等符	周期,	按子、	牛子木	中子市	万回。											
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17		16			
UART8 EN	UART7 EN	DAC EN	PWR EN	Reser- ved	CAN2 EN	CAN1 EN	Reser- ved	I2C3 EN	I2C2 EN	I2C1 EN	UART5 EN	UART4 EN	USART3 EN	USA E	RT2	Reser-			
rw	rw	rw	rw	vea	rw	rw	veu	rw	rw	rw	rw	rw	rw		,	Ve0			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1		0			
SPI3 EN	SPI2 EN	Reserved		WWDG EN	Rese	erved	TIM14 EN	TIM13 EN	TIM 12 EN	TIM7 EN	TIM6 EN	TIM5 EN	TIM4 EN	TM Et		TIM2 EN			
rw	rw			rw			rw	rw	rw	rw	rw	rw	rw	IM	r	rw			

第二步: TIM3->SMCR &=~(0x7 << 0);//选择时钟源(内部时钟)

000: 禁止从模式——如果 CEN = "1", 预分频器时钟直接由内部时钟提供。

第三步: TIM3->CR1 = 0; //配置 CR1 寄存器

 $TIM3->CR1 \models (0x1 << 2); //只有计数器上溢或者下溢才能让 UIF 置一$

信盈达教育 源自深圳始于 2008 全国直营 深圳北京上海广州 南京郑州成都武汉 济南南宁 10+城市 12 家直营中心 官网: www. edu118. com 全国免费电话: 400-8788-909 质量监督电话: 0755-26457584 信盈达科技 版权所有 侵权必究 位 2 URS: 更新请求源 (Update request source)

此位由软件置 1 和清零,用以选择 UEV 事件源。

0: 使能时,所有以下事件都会生成更新中断或 DMA 请求。此类事件包括:

- 计数器上溢/下溢

将 UG 位置 1

通过从模式控制器生成的更新事件

1: 使能时,只有计数器上溢/下溢会生成更新中断或 DMA 请求。

第四步: TIM3->PSC = 84 - 1;//设置预分频值 计数器计一次的时间: 1us TIM3->ARR = 1000 - 1;//设置重载值 计数器计 1000 PWM 周期=1ms

3、配置 TIM3 的通道

第一步: TIM3->CCR1 = 990://写比较值 990us 高 10us 低

如果通道 CC1 配置为输入: CCR1 为上一个输入捕获 1 事件 (IC1) 发生时的计数器值。

第二步: TIM3->CCMR1 &=~(0x3 << 0);//输出模式

位 1:0 CC1S: 捕获/比较 1 选择 (Capture/Compare 1 selection)

此位域定义通道方向(输入/输出)以及所使用的输入。

00: CC1 通道配置为输出。

01: CC1 通道配置为输入, IC1 映射到 TI1 上。

10: CC1 通道配置为输入, IC1 映射到 TI2 上。

11: CC1 通道配置为输入,IC1 映射到 TRC 上。此模式仅在通过 TS 位(TIMx_SMCR 寄存器)选择内部触发输入时有效

注意: 仅当通道关闭时(TIMx_CCER 中的 CC1E = 0),才可向 CC1S 位写入数据。

第三步: TIM3->CCMR1 |= (0x1 << 3);//CCR1 有影子寄存器

位 3 OC1PE: 输出比较 1 预装载使能 (Output compare 1 preload enable)

0: 禁止与 $TIMx_CCR1$ 相关的预装载寄存器。可随时向 $TIMx_CCR1$ 写入数据,写入后将立即使用新值。

1: 使能与 TIMx_CCR1 相关的预装载寄存器。可读/写访问预装载寄存器。TIMx_CCR1 预装载值在每次生成更新事件时都会装载到活动寄存器中。

注意: 1: 只要编程了 LOCK 级别 3 (TIMx_BDTR 寄存器中的 LOCK 位) 且 CC1S=00 (通道配置为输出),便无法修改这些位。

2: 只有单脉冲模式下才可在未验证预装载寄存器的情况下使用 PWM 模式(TIMx_CR1 寄存器中的 OPM 位置 1)。其它情况下则无法保证该行为。

第四步: TIM3->EGR = (0x1 << 0);//产生一次更新事件

外 DWM 将水。如木 OOTH 你吃口炒用吧」,OOTOI 你吃你里:

位 0 UG: 更新生成 (Update generation)

该位可通过软件置 1,并由硬件自动清零。

0: 不执行任何操作

1: 重新初始化计数器并生成寄存器更新事件。请注意,预分频器计数器也将清零(但预分频比不受影响)。如果选择中心对齐模式或 DIR=0(递增计数),计数器将清零;如果 DIR=1(递减计数),计数器将使用自动重载值 (TIMx_ARR)。

第五步: TIM3->CCMR1 &= ~(0x7 << 4);

TIM3->CCMR1 |= (0x6 << 4);//PWM 模式 1

第19页共22页

OCIM: 输出比较 1 模式 (Output compare 1 mode)
这些位定义提供 OCI 和 OCIN 的转趾参考信号 OCIREF 的行为。OCIREF 为离电平有
效、而 OCI 和 OCIN 的有效电声则取决于 CCIP 位和 CCINP 位。
000: 统治——输出比较寄存器 TIMA、CCR1 与计数器 TIMA、CNT 进行比较不会对输出造成
任何影响。(该域上用于生成对基)。
001: 持通道 1 设置为匹配时输出有效电平、当计数器 TIMA、CNT 与捕获/比较寄存器 1
(TIMA、CCR1) 匹配时。OCIREF 信号强制变为底电平。
001: 超速道 1 设置为匹配时输出无效电平。当计数器 TIMA、CNT 与捕获/比较寄存器 1
(TIMA、CCR1) 匹配时。OCIREF 信号强制变为底电平。
101: 超制交为无效电平——OCIREF 信制变量为发电平。
101: 组制变为无效电平——OCIREF 强制变为底电平。
101: 强制变为在效电平——OCIREF 强制变为底电平。
110: PWM 模式 1——在逻辑计数模式下,只要 TIMA、CNT-TIMA、CCR1,通道 1 使为有数余数,否则为有效处态(OCIREF=1)。
111: PWM 模式 1——在逻辑计数模式下,只要 TIMA、CNT-TIMA、CCR1,通道 1 使为有数余数。(OCIREF—9)。否则为有效处态(OCIREF=1)。
111: PWM 模式 2——在继续计数模式下,只要 TIMA、CNT-TIMA、CCR1,通道 1 使为有数块态。可则为有效状态。它可用EF=1)。 位 6:4 OC1M: 输出比较 1 模式 (Output compare 1 mode)

第六步: TIM3->CCMR1 &= ~(0x1 << 7);//oc1ref 不受外部信号影响

江思: 汉二巡坦大河内(TIMA_COEN TIT) COSE = U/, 月 时间 COSO 亚马八双猴

位7 OC1CE: 輸出比较 1 清零使能 (Output compare 3 clear enable)

OC1CE: 输出比较 1 清琴使能 (Output Compare 1 Clear Enable) 0: OC1Ref 不受 ETRF 输入影响

1: ETRF 输入上检测到高电平时, OC1Ref 立即清零。

第七步: TIM3->CCER &=~(0x1 << 1);//不反相

位 1 CC1P: 捕获/比较 1 输出极性 (Capture/Compare 1 output Polarity).

CC1 通道配置为输出:

0: OC1 高电平有效 1: OC1 低电平有效

CC1 通道配置为输入

CC1NP/CC1P 位可针对触发或捕获操作选择 TI1FP1 和 TI2FP1 的极性。

00: 非反相/上升沿触发

电路对 TixFP1 上升沿敏感(在复位模式、外部时钟模式或触发模式下执行捕获或触发操

作), TlxFP1未反相 (在门控模式或编码器模式下执行触发操作)。 01: 反相/下降沿触发

电路对 TixFP1 下降沿敏感 (在复位模式、外部时钟模式或触发模式下执行捕获或触发操

TixFP1 反相 (在门控模式或编码器模式下执行触发操作)。

10: 保留, 不使用此配置。

11: 非反相/上升沿和下降沿均触发

电路对 TixFP1 上升沿和下降沿都敏感(在复位模式、外部时钟模式或触发模式下执行捕获或 触发操作),TlxFP1未反相(在门控模式下执行触发操作)。编码器模式下不得使用此配置。

TIM3->CCER |= (0x1 << 0);//使能通道

位 0 CC1E: 捕获/比较 1 输出使能 (Capture/Compare 1 output enable)。

CC1 通道配置为输出:

0: 关闭——OC1 未激活

一在相应输出引脚上输出 OC1 信号 1: 开启-

CC1 通道配置为输入:

此位决定了是否可以实际将计数器值捕获到输入捕获/比较寄存器 1 (TIMx_CCR1) 中。

0: 禁止捕获

1: 使能捕获

第八步: //4.使能计数器

TIM3->CR1 = (0x1 << 0);

位 0 CEN: 计数器使能 (Counter enable)

0: 禁止计数器

1: 使能计数器

注意: 只有事先通过软件将 CEN 位置 1, 才可以使用外部时钟、门控模式和编码器模式 发模式可通过硬件自动将 CEN 位置 1。

在单脉冲模式下,当发生更新事件时会自动将 CEN 位清零。

页 22 # 页 2

8.6 STM32 通用定时器捕获输入

8.6.1 捕获输入原理

设置为边沿检测,预分频器设置的是1分频,当捕获到计数器值时,进入中断去读 CCR1 的值按键按下时:产生上升沿,

按键松开时:产生下降沿

8.6.2 捕获输入框架

8.6.3 捕获输入实验

8.6.3.1 硬件分析

由图可知

KEY1 连接 PAO, PAO 可以复用到 TIM5 CH1 上, 所以可以利用 TIM5 CH1 来捕获 KEY1 按键按下的时间

8.6.3.2 软件设计

配置流程

- 1.初始 GPIO 口
 - (1)打开 GPIOA 时钟
 - (2)配置为复用模式
 - (3)将 PA0 复用为 AF2
- 2.初始 TIM5 定时器
 - (1)打开 TIM5 时钟
 - (2)配置 CR1 寄存器
 - (3)选择时钟源(内部时钟源)
 - (4)设置 PSC 和 ARR(UG)
- 3.配置输入通道1
 - (1)配置滤波器频率
 - (2)配置边沿检测(上下升沿)
 - (3)配置为输入模式,并且将 IC1 映射到 TI1
 - (4)配置分频系数
 - (5)使能捕获
- 4.使能捕获1中断和更新中断
- 5.设置 TIM5 的中断优先级
- 6.使能 NVIC 响应中断
- 7.使能计数器
- 8.编写中断服务函数(处理)