14; Момент импульса тела относительно неподвижной оси вращения. Момент инерции тела относительно оси. Уравнение динамики вращательного движения твердого тела относительно неподвижной оси.

Рассмотрим ключевые понятия: **момент импульса тела относительно неподвижной оси вращения**, **момент инерции тела относительно оси** и **уравнение динамики вращательного движения твёрдого тела**.

1. Момент импульса тела относительно неподвижной оси вращения

Момент импульса — это величина, характеризующая вращательное движение тела вокруг оси.

Формула:

$$L=I\omega$$
,

где:

- L момент импульса,
- I момент инерции тела относительно оси вращения,
- ω угловая скорость.

Направление:

• Момент импульса направлен вдоль оси вращения по правилу правого винта.

2. Момент инерции тела относительно оси (1)

Момент инерции — это величина, характеризующая распределение массы тела относительно оси вращения. Он зависит от формы тела и расположения оси.

Формула:

Для системы из N материальных точек:

$$I = \sum_{i=1}^{N} m_i r_i^2,$$

где:

- m_i масса i-й точки,
- r_i расстояние от i-й точки до оси вращения.

Для непрерывного тела:

$$I = \int r^2 dm$$
,

где:

- *d m* элемент массы,
- r расстояние от элемента массы до оси вращения.

Примеры моментов инерции:

- Тонкий стержень (ось через центр): $I = \frac{1}{12} m l^2$.
- Сплошной цилиндр (ось через центр): $I = \frac{1}{2} m R^2$.
- **Шар** (ось через центр): $I = \frac{2}{5} mR^2$.

3. Уравнение динамики вращательного движения твёрдого тела

Уравнение динамики связывает момент силы с изменением момента импульса.

Формулировка:

$$M = I \alpha$$
,

где:

- M момент силы, действующий на тело,
- I момент инерции тела,
- α угловое ускорение.

Вывод:

- 1. Момент импульса: $L = I \omega$.
- 2. Производная момента импульса:

$$\frac{dL}{dt} = I \frac{d\omega}{dt} = I \alpha$$
.

3. Согласно уравнению моментов:

$$\frac{dL}{dt} = M$$
.

4. Отсюда:

$$M = I \alpha$$
.

4. Пример

Пример 1: Момент инерции тонкого стержня

Тонкий стержень массой $m=2\,\mathrm{kr}$ и длиной $l=1\,\mathrm{M}$ вращается вокруг оси, проходящей через его центр. Найдём момент инерции:

$$I = \frac{1}{12} m l^2 = \frac{1}{12} \cdot 2 \cdot 1^2 = \frac{1}{6} \text{ kr } \cdot \text{cdotp M}^2.$$

Пример 2: Уравнение динамики вращательного движения

Цилиндр массой $m=5\,\mathrm{kr}$ и радиусом $R=0.5\,\mathrm{M}$ вращается под действием момента силы $M=10\,\mathrm{H}\,\mathrm{cdotp\,M}$. Найдём угловое ускорение:

1. Момент инерции:

$$I = \frac{1}{2} m R^2 = \frac{1}{2} \cdot 5 \cdot 0, 5^2 = 0,625 \,\mathrm{kr} \cdot \mathrm{cdotp} \,\mathrm{m}^2.$$

2. Угловое ускорение:

$$\alpha = \frac{M}{I} = \frac{10}{0,625} = 16 \text{ рад/c}^2.$$

5. Итог

- Момент импульса тела относительно оси вращения: $L = I \omega$.
- Момент инерции тела:
 - о Для системы точек: $I = \sum m_i r_i^2$.
 - о Для непрерывного тела: $I = \int r^2 d m$.
- Уравнение динамики вращательного движения: $M = I \alpha$.

Эти понятия и уравнения широко используются для анализа вращательного движения твёрдых тел.