UM-Bridge Workshop 2022

The interface between UQ and models

Anne Reinarz (Durham University, UK) Linus Seelinger (Heidelberg University, Germany)

Goals

Teach how to use UM-Bridge

Initiate new collaborations between UQ and model experts

Advance the UQ software ecosystem through common interfaces, unified benchmarks and access to cloud-based HPC $\,$

Content

- Talks presenting aspects of UM-Bridge
- Project sessions, (optional) practical exercises
- Invited talks about current projects
- Discussions

Locations

- Lecture hall: Talks
- Breakout room: Practical sessions, discussions
- Lobby: Breaks, socializing

Private areas and spotlight areas control visibility

Platform sponsor: digiLab Solutions

- First of a kind solutions to solve the biggest challenges of today
- Closing the skills gap by training people to deploy "AI in the wild"
- 4-day week company based in the southwest of the UK

ightarrow https://www.digilab.co.uk/

Intro

Why Uncertainty Quantification (UQ)?

- "Don't focus on the skinny black line"
 - US Hurricane Center
- Uncertain data

 uncertain prediction / inferences.

UQ: Quantify this!

Given observations, how likely is a parameter? And what quantity of interest is therefore likely?

Given observations, how likely is a parameter? And what quantity of interest is therefore likely?

Given observations, how likely is a parameter? And what quantity of interest is therefore likely?

Given observations, how likely is a parameter? And what quantity of interest is therefore likely?

Cannot invert F, therefore Bayesian problem!

Bayesian Inverse Problems

By Bayes' rule, probability of parameter θ given data y is

$$\pi(\theta) := \pi_{post}(\theta|y) \propto \pi_{prior}(\theta) \pi_{likelihood}(y|\theta),$$

where likelihood encodes trust in data. For normal dist. observation error with covariance matrix Σ_{obs} :

$$\pi_{likelihood}(y|\theta) \propto \exp(-\frac{1}{2}(F(\theta)-y)^{\top}\Sigma_{obs}^{-1}(F(\theta)-y)).$$

Forward model F enters here!

MHMCMC

Algorithm 1 Metropolis-Hastings Markov Chain Monte Carlo

```
Input: Starting point \theta_0 \in \mathbb{R}^n, density \pi, parameter \Sigma, sample num. M. Output: Sequence of samples \{\theta_k\}_{k=0}^N approximating distribution of \pi. for m \leftarrow 1 to M do Draw \tilde{\theta} from q(\cdot|\theta^{m-1}) \sim \mathcal{N}(\theta^{m-1}, \Sigma) With probability \alpha = \min\left\{1, \frac{\pi(\tilde{\theta})q(\theta^{m-1}|\tilde{\theta})}{\pi(\theta^{m-1})q(\tilde{\theta}|\theta^{m-1})}\right\}, do \theta^m \leftarrow \tilde{\theta}; else \theta^m \leftarrow \theta^{m-1} end for
```

Hamiltonian Monte Carlo

Algorithm 2 Hamiltonian Monte Carlo

```
Input: Starting point \theta_0 \in \mathbb{R}^n, density \mathcal{L}(\theta) := \log(\pi(\theta)), parameters L and \epsilon, M.
Output: Sequence of samples \{\theta_k\}_{k=0}^N approximating distribution of \pi.
     for m \leftarrow 1 to M do
             Sample r^0 \sim \mathcal{N}(0, I)
             \theta^m \leftarrow \theta^{m-1}, \tilde{\theta} \leftarrow \theta^{m-1}, \tilde{r} \leftarrow r^0
             for i \leftarrow 1 to L do
                    \tilde{\theta}, \tilde{r} \leftarrow \text{Leapfrog}(\tilde{\theta}, \tilde{r}, \epsilon)
             end for
            With probability \alpha = \min \left\{ 1, \frac{\exp(\mathcal{L}(\tilde{\theta}) - \frac{1}{2}\tilde{r} \cdot \tilde{r})}{\exp(\mathcal{L}(\theta^{m-1}) - \frac{1}{n}r^0 \cdot r^0)} \right\}, do \theta^m \leftarrow \tilde{\theta}, r^m \leftarrow -\tilde{r}
     end for
     function Leapfrog(\theta, r, \epsilon)
             \tilde{r} \leftarrow r + (\epsilon/2) \nabla_{\theta} \mathcal{L}(\theta)
            \tilde{\theta} \leftarrow \theta + \epsilon \tilde{r}
             \tilde{r} \leftarrow \tilde{r} + (\epsilon/2) \nabla_{\theta} \mathcal{L}(\theta)
             return \tilde{\theta}. \tilde{r}
     end function
```

Newton's Method

Algorithm 3 Newton's method for optimization

Input: Starting point $x_0 \in \mathbb{R}^n$, density π .

Output: Approx. local minimum x_N .

for
$$k \leftarrow 0$$
 to $N-1$ **do**

$$x_{k+1} \leftarrow x_k - H_{\pi}^{-1}(x_k) \nabla \pi(x_k)$$

end for

UQ and Model in Math

Model in UQ: (Often) Just a function $F: \mathbb{R}^n \to \mathbb{R}^m$ with some of the following:

- Model evaluation $F(\theta)$,
- Gradient $v^{\top}J(\theta)$,
- Jacobian action $J(\theta)v$,
- Hessian action $H(\theta)v$.
- \rightarrow Simple, model-agnostic interface!

Model **software** and UQ **software**: Not so easy!

Conflicts in buildsystems, dependencies, languages, parallelization; need experts from both sides, ...

UQ and Model in Math

Model in UQ: (Often) Just a function $F : \mathbb{R}^n \to \mathbb{R}^m$ with some of the following:

- Model evaluation $F(\theta)$,
- Gradient $v^{\top}J(\theta)$,
- Jacobian action $J(\theta)v$,
- Hessian action $H(\theta)v$.
- → Simple, model-agnostic interface!

Model software and UQ software: Not so easy!

Conflicts in buildsystems, dependencies, languages, parallelization; need experts from both sides, ...

UM-Bridge: Abstract interface in

software

UM-Bridge: Model Abstraction in Software

Interface mimics math

Established approach in large-scale web services (\rightarrow microservices)

Requires: Minimal extension of software on each side

Achieves:

- Coupling across languages / frameworks
- Separation of concerns between UQ and model experts
- Containers: Portable, reproducible models

UM-Bridge: Bridging Languages and Frameworks

Requires only HTTP and JSON support \rightarrow almost every language Full integrations for various languages and frameworks

Supported languages

Language / framework	Client support	Server support
C++	✓	✓
MATLAB	planned	×
Python	✓	✓
R	✓	×
MUQ	√	✓
PyMC (4.x)	✓	Х
QMCPy	√	×
Sparse Grids MATLAB Kit	planned	X
tinyDA	✓	×

Python client interface

Connect to model

```
import umbridge
model = umbridge.HTTPModel("http://localhost:4242", "forward")
```

Display input / output dimensions

```
print(model.get_input_sizes())
print(model.get_output_sizes())
```

Evaluate model

```
{\color{red} \textbf{print}} \, (\, \mathsf{model} \, (\, [\, [\, 0.0 \, \, , \, \, \, 10.0 \,]\, ]\, ) \, )
```

Optionally, pass configuration options

```
print(model([[0.0, 10.0]], {"level": 0}))
```

C++ client interface

Connect to model

```
umbridge:: HTTPModel\ model("http://localhost:4242",\ "forward");\\
```

Display input / output dimensions

```
\begin{array}{lll} std::cout << \ model.\ GetInputSizes() << \ std::endI; \\ std::cout << \ model.\ GetOutputSizes() << \ std::endI; \end{array}
```

Evaluate model

```
\begin{split} & \mathsf{std} :: \mathsf{vector} {<} \mathsf{std} :: \mathsf{vector} {<} \mathsf{double} {>\!\!\!>} & \mathsf{outputs} \\ &= \mathsf{model}.\, \mathsf{Evaluate} \big( \big\{ \big\{ 100.0 \,, \,\, 18.0 \big\} \big\} \big) \,; \end{split}
```

Optionally, pass configuration options

```
json config;
config["level"] = 0;
model.Evaluate(input, config);
```

Python server interface

Define model

```
class TestModel(umbridge.Model):
    def get_input_sizes(self): # Number and dimensions of input vectors
        return [1]

def get_output_sizes(self): # Number and dimensions of output vectors
        return [1]

def __call__(self, parameters, config={}):
        output = parameters[0][0] * 2 # Do something with the input
        return [[output]]

def supports_evaluate(self):
        return True
```

Serve model via HTTP

```
testmodel = TestModel()
umbridge.serve_model(testmodel, 4242)
```

Demo

Demo

UM-Bridge Demo

Upcoming topics

UM-Bridge: Containerization - Portable Models

- Run tsunami model as easy as docker run -p 4242:4242 linusseelinger/model-exahype-tsunami
- Evaluate model in python:
 model = umbridge.HTTPModel('localhost:4242', 'forward')
 model([[0.1,0.4]])

UM-Bridge: UQ Benchmarks

UQ Benchmarks

Navigation

Quickstart Guide
Analytic-GaussianMisture Benchmark
ExallyPit-Tsunami
Benchmark
Inferring material
properties of a
cantilevered beam
Analytic-Banana
Benchmark
Analytic-Donut
Benchmark
Analytic-Funnel
Benchmark

Euler-Bernoulli Beam Quick search

ExaHyPE-Tsunami Model

Overview

In this benchmark we model the propagation of the 2011 To boks tournami by solving the both water equations. For the numerical solution of the PDE, we apply an ADER-DG suchbod implemented in the ExalPyEf Enumevoir. The aim is to obtain the parameters describing the initial displacements from the data of two available burys located near the Japanese coat.

Authors

Anne Reinarz

Run

docker run -it -p 4243:4243 linusseelinger/model-exahype-tsunami

Properties

Mapping	Dimensions	Description	
inputSizes	[2]	x and y coordinates of a proposed tsunami origin	
outputSizes	[1]	Arrival time and maximum water height at two buoy points	
	-		

Feature	Supported
Evaluate	True
Gradient	False
ApplyJacobian	False
ApplyHessian	False

Config Type Default Description

| chooses the model level to run (see below for fur-

- Portable, reproducible models and UQ problems
- Several models, Bayesian posteriors, analytic densities
- Automated testing and building
- Partially-automated documentation

Overview: Cloud Infrastructure

Servers for rent, (very) different levels of abstraction possible

Kubernetes: "Container orchestration" - fully reproducible HPC setups

Conclusions

Conclusions

- Universal UQ / model interface, following maths
- Easy to use in various languages and frameworks
- Opens up new possibilities for UQ:
 - Portable models, separation of concerns via containers
 - Library of reproducible UQ benchmark problems
 - Easy scaling to HPC in the cloud