CrInGeCrInGe Production. Super cringe introduction here: Let's calculate smth with expression given:

$$2.000 \cdot x^{3.000}$$

Firstly, let's insert all constants and simplify it:

 $2.000 \cdot x^{3.000}$

BRITISH SCIENTISTS WERE SHOCKED, WHEN THEY COUNT THIS EXPRESSION IN THE POINT (x=0.000)IT'S VALUE = 0.000000!!!

1 step: finding a derivation of function:

x

here it is:

1.000

2 step: finding a derivation of function:

 $x^{3.000}$

here it is:

 $3.000\cdot x^{2.000}$

3 step: finding a derivation of function:

2.000

here it is:

0.000

4 step: finding a derivation of function:

 $2.000 \cdot x^{3.000}$

here it is:

 $2.000 \cdot 3.000 \cdot x^{2.000}$

Congratulations! The first derivation of the expression is:

 $2.000 \cdot 3.000 \cdot x^{2.000}$

IN THE POINT (x = 0.000)IT'S VALUE = 0.0000000 !!! Let's calculate the 2 derivation of the expression: Calculating the 1 derivation of the expression: 1 step: finding a derivation of function:

 \boldsymbol{x}

here it is:

1.000

2 step: finding a derivation of function: $x^{3.000}$ here it is: $3.000\cdot x^{2.000}$ 3 step: finding a derivation of function: 2.000 here it is: 0.0004 step: finding a derivation of function: $2.000\cdot x^{3.000}$ here it is: $2.000 \cdot 3.000 \cdot x^{2.000}$ Calculating the 2 derivation of the expression: 1 step: finding a derivation of function: here it is: 1.000 2 step: finding a derivation of function: $x^{2.000}$ here it is: $2.000 \cdot x$ 3 step: finding a derivation of function: 3.000

here it is:

0.000

4 step: finding a derivation of function:

 $3.000\cdot x^{2.000}$

here it is:

 $3.000 \cdot 2.000 \cdot x$

5 step: finding a derivation of function:

2.000

here it is:

0.000

6 step: finding a derivation of function:

 $2.000 \cdot 3.000 \cdot x^{2.000}$

here it is:

 $2.000\cdot3.000\cdot2.000\cdot x$

Finally... The 2 derivation of the expression:

 $2.000\cdot3.000\cdot2.000\cdot x$

BRITISH SCIENTISTS WERE SHOCKED, WHEN THEY COUNT THE 2 DERIVATION OF THIS EXPRESSION!!! IN THE POINT (x = 0.000)IT'S VALUE = 0.000000!!!

Partial derivation of the expression on the variable 'x':

 $2.000 \cdot 3.000 \cdot x^{2.000}$

IN THE POINT (x = 0.000) IT'S VALUE = 0.0000000!!!

Full derivation:

 $\sqrt{(2.000 \cdot 3.000 \cdot x^{2.000})^{2.000}}$

IN THE POINT (x = 0.000) IT'S VALUE = 0.000000 !!!

Maklorens formula for x near to 0.000000:

 $2.000\cdot x^{3.000}$

And remainig member is o maloe from:

 $x^{3.000}$

Tangent equation in point 0.000:

0.000