PH2101

Tutorial and Homework 1

January 15, 2016

1. (**Tutorial question**) Imagine a room containing 14 people, whose ages are as follows:

one person aged 14

one person aged 15

three people aged 16

two people aged 22

two people aged 24

five people aged 25

- (a) Compute the average of the squares of the ages $\langle j^2 \rangle$, and the square of the average of the ages $\langle j \rangle^2$.
- (b) Determine Δj for each j, and compute $\sigma = \sqrt{\langle (\Delta j)^2 \rangle}$.
- (c) Use your results in (a) and (b) to check that $\sigma = \sqrt{\langle j^2 \rangle \langle j \rangle^2}$.
- 2. (Tutorial question) The needle on a broken car speedometer is free to swing, and bounces perfectly off the pins at either end, so that if you give it a flick, it is equally likely to come at rest at any angle between 0 and π .
 - (a) What is the probability density, $\rho(\theta)$? Graph $\rho(\theta)$ as a function of θ , from $-\frac{\pi}{2}$ to $\frac{3\pi}{2}$.
 - (b) Compute $\langle \theta \rangle, \langle \theta^2 \rangle$, and σ for this distribution.
 - (c) Compute $\langle \sin(\theta) \rangle$, $\langle \cos(\theta) \rangle$, and $\langle \cos^2(\theta) \rangle$.

3. (Homework Question) Consider a Gaussian distribution,

$$\rho(x) = A \exp(-\lambda (x - a)^2) \tag{1}$$

where A, a and λ are constants.

- (a) What is the value of A?
- (b) Find $\langle x \rangle, \langle x^2 \rangle$, and σ
- (c) Sketch the graph of $\rho(x)$

let I be the age of the people.

.T	14	15	16	22	24	25
N(J)	1	1	3	2	2	5
P(Z=j)	14	14	3 14	214	2 14	5 14

Pubability Distribution F2 (Table) (P.D.F.)

$$\Sigma NG) = 1+1+3+2+2+5 = 14$$

(9)
$$\langle j^2 \rangle = \frac{\sum_{i=1}^{n} j^2 P(J=j)}{1 + 15^2 (\frac{1}{14}) + 16^2 (\frac{3}{14}) + 22^2 (\frac{2}{14}) + 24^2 (\frac{2}{14}) + 25^2 (\frac{5}{14})}$$

$$= \frac{3217}{7}$$
 $\langle j \rangle^2 = \left[\sum_{4i} j P(J=j) \right]^2$

$$= \left[\frac{1}{4} \left(\frac{1}{4} \right) + \frac{1}{4} \left(\frac{1}{4} \right) + \frac{1}{4} \left(\frac{2}{4} \right) + \frac{2}{4} \left(\frac{2}{4} \right) + \frac{2}{4} \left(\frac{5}{4} \right) \right]^{2}$$

$$= 21^{2} = 44$$

(b)	J	14	15	16	22	24	25	
	4j=j- <j></j>	7	-6	- 5	1	3	4	
1	P(5=3)	14	14	3 (4	214	2 14	5 14	

$$\Rightarrow \qquad 5 = \sqrt{\frac{130}{7}}$$

(c)
$$6^2 = \langle j^2 \rangle - \langle j \rangle^2$$

$$= \frac{3217}{7} - 441$$

$$= \frac{130}{7} \Rightarrow 6 = \sqrt{\frac{130}{7}}$$

(a)
$$A.(T) = 1 \Rightarrow A = \frac{1}{T}$$

$$\rho(\theta) = \begin{cases} \frac{1}{\pi} & 0 \le \theta \in \pi \\ 0 & \text{otherwise} \end{cases}$$

0~ U(0, T) Uniform cts dift?

(b)
$$\langle \Phi \rangle = E(\theta) = \int_{-\infty}^{\infty} \Theta \cdot \rho(\Phi) d\Phi$$

$$= \frac{1}{\pi} \int_{0}^{\pi} \Theta d\Phi = \frac{1}{2\pi} \left[\Theta^{2} \int_{0}^{\pi} = \frac{1}{2\pi} \left(\pi^{2} \right) \right] = \frac{\pi}{2}.$$

of
$$E(\theta) = \langle \theta \rangle = \frac{\pi_{+0}}{2} = \frac{\pi}{2}$$

$$\langle \Theta_{S} \rangle = E(\Theta_{S}) = \int_{\infty}^{\infty} \Theta_{S} \rho(\Theta_{S}) d\Theta = \frac{1}{11} \int_{0}^{\infty} \Theta_{S} d\Theta = \frac{3\pi}{11} [\Theta_{S}]_{0}^{\infty} = \frac{3}{11} [\Theta_{S}]$$

$$\vec{\Theta} = \sqrt{\alpha}r(\theta) = \langle \theta^2 \rangle - \langle \theta \rangle^2 = \frac{\pi^2}{3} - \left(\frac{\pi}{2}\right)^2 = \frac{\pi^2}{12}.$$

$$= \vec{\Theta} = \frac{\pi}{12} = \frac{\pi}{2\sqrt{2}}$$

Note:
$$X \sim U(a, b)$$
 $E(x) = \frac{a+b}{2}$ $V(cr(x)) = \frac{(b-a)^2}{12}$

$$f(x) = \begin{cases} \frac{1}{b-q} & q \in X \leq b \\ 0 & \text{otherwise} \end{cases}$$

Pf:
$$E(X) = \int_{-\infty}^{\infty} x f(x) dx$$

$$= \int_{b-a}^{b} \frac{x}{b} dx$$

$$= \int_{b-a}^{b} \left[\frac{x^2}{b^2} \right]_a^b$$

$$= \int_{b-a}^{a} \left[\frac{x^2}{b^2} \right]_a^b$$

$$E(x^{2}) = \int_{a}^{b} x^{2} f(x) dx = \int_{b-a}^{b} \frac{x^{2}}{b-a} dx$$

$$= \frac{1}{b-a} \left[\frac{x^{3}}{3} \right]_{a}^{b} = \frac{b^{3}-a^{3}}{3(b-a)}$$

$$= \frac{(b-a)(a^2+ab+b^2)}{3(b-a)} = \frac{a^2+ab+b^2}{3}$$

Hence
$$Var(X) = E(X^2) - (E(X))^2$$

$$= \frac{\alpha^2 + \alpha b + b^2}{3} - (\frac{\alpha + b}{2})^2$$

$$= \frac{4(\alpha^2 + \alpha b + b^2) - 3(\alpha^2 + 2\alpha b + b^2)}{12}$$

$$= \frac{\alpha^2 - 2\alpha b + b^2}{12} = \frac{(b - \alpha)^2}{12}$$

$$< (c) \langle Sin(\theta) \rangle = \int_{-\infty}^{\infty} sin(\theta) \cdot \rho(\theta) d\theta = \int_{-\infty}^{\pi} \frac{sin\theta}{\pi} d\theta = \frac{-1}{\pi} [sin(\theta)]_{0}^{\pi} = \frac{2}{\pi}$$

$$< (cos(\theta)) \rangle = \int_{-\infty}^{\infty} cos(\phi) \cdot \rho(\phi) d\phi = \int_{-\pi}^{\pi} \frac{cos(\phi)}{\pi} d\theta = \frac{1}{\pi} [sin(\theta)]_{0}^{\pi} = 0.$$

$$< (cos(2\theta)) \rangle = \sum_{-\infty}^{\infty} cos(\phi) \cdot \rho(\phi) d\phi = \int_{-\pi}^{\pi} \frac{cos(\phi)}{\pi} d\theta = \frac{1}{\pi} [sin(\theta)]_{0}^{\pi} = 0.$$

$$< (cos(2\theta)) \rangle = 2 cos(2\theta) - 1 = \frac{1}{2\pi} [\frac{1}{2} Sin(2\phi) + \theta]_{0}^{\pi}$$

$$= \frac{1}{2\pi} [\frac{1}{2} Sin(2\phi) + \theta]_{0}^{\pi}$$

$$= \frac{1}{2\pi} [\frac{1}{2} Sin(2\phi) + \theta]_{0}^{\pi}$$