

CONVERGING STANDARDS FOR SMART CITIES: NEXT STEPS IN THE W3C

Eric Siow Michael McCool Part 1 – Crossing the Chasm through Standards Convergence

Part 2 – Standards Development Progress and Plans

OUTLINE

Part 1

- State of the Union Internet of Things (IoT)
 - Where are we?
- History of cellular standards & lessons for Smart Cities
- A Look at Smart Cities
- What can the W3C and ASEAN Smart Cities Community Do?

Part 2

- Convergence plan for IoT data standards
- Discussion and ideas for collaboration

Smart Cities - PART 1

Crossing the Chasm through Standards Convergence

Eric Siow Intel Corporation

STATE OF THE UNION (IOT)

- IoT is about 11 years old
- Hype has been much greater than present reality
- IoT is "biting off more than it can chew":
- Trying to address too many markets
- Involves too many and mostly uncoordinated SDOs and SIGs
- Investments in IoT may be at risk

Smart City investments also face the same issues

"Life is really simple, but we insist on making it complicated."

Confucius

IOT DATA AND METADATA STANDARDS MAP

Discovery	Ingestion	Exchange	Modeling	Consumption
Descriptions	Encoding	Protocols	Semantics	Query
W3C: RDF Schema/SHACL			W3C: RDF/JSON-LD	W3C: SPARQL
W3C: WoT Thing Descriptions			OGS: O&M	W3C: OWL
LF: Swagger/OpenAPI			iot.schema.org)
RAML			Haystack	
Microsoft: DTDL			W3C: SSN	
W3C: HTML		IETF: HTTP	ETSI: NGSI-LD	
		IETF: CoAP		
JSON Schema			005	
OPC-UA			OCF: oneiota	SQL
OPC-UA XML Schema		OMG: DDS	Zigbee	SQL
Oasis: TOSCA/UDD		Oasis: MQTT	ZWave	
Oasis: SAML	IETF: CBOR	Oasis: AMQP	LwM2M/IPSO	
	IETF: JSON		OneM2M	
	W3C: XML	IETF: ICN	One Data Model	IETF: COIN
	YAML	JETE JD/TOD/JJDD		
		IETF: IP/TCP/UDP	IETF: YANG	

OCF

A LOOK AT HISTORY OF CELLULAR STANDARDS

40-YEAR HISTORY OF CELLULAR STANDARDS EVOLUTION

LESSONS FROM THE HISTORY OF CELLULAR STANDARDS

- Market fragmentation is costly (especially to early adopters)
 - High R&D expense
 - High implementation and upgrade cost
 - Risk of vendor lock-in
 - Lacks interoperability
 - Risk of obsolescence
- Collaboration & co-operations amongst regional regulatory agencies, network operators and equipment vendors drove convergence

Can we apply these lessons to accelerate Smart Cities?

A LOOK AT SMART CITIES

KEY CHALLENGES FACING SMART CITIES

- Lack of coalescence around a set of complementary standards
 - Increases cost of deployment; hinders scalability, interoperability and evolution
 - Need to simplify: Prioritize and define requirements → create product profiles
- Regional regulatory differences adding to confusion
 - Diverse requirements impede the scalability of the market
 - Need regulatory agencies to participate and help with standardization requirement
- Lack of interoperability wastes up to 40% of IoT value⁽¹⁾
- Cities and technology partners may waste up to \$321 billion by 2025⁽²⁾

(1) https://www.mckinsey.com/business-functions/digital-mckinsey/our-insights/the-internet-of-things-the-value-of-digitizing-the-physical-world
(2) https://machinaresearch.com/news/smart-cities-could-waste-usd341-billion-by-2025-on-non-standardized-iot-deployments/

CROSSING THE CHASM (SMART CITIES)

Adapted from "Crossing The Chasm" by Geoffrey Moore

Cross together as Allies to Early Majority:

- 1. Simplify technical complexity
- 2. Standardize key elements needed for interoperability
- 3. Lower deployment risk and lower cost through economy of scale
- 4. Be reference standard for industry peers to drive proliferation

WHAT CAN W3C AND ASEAN SMART CITIES DO?

- Join and form a W3C Smart Cities Interest Group
 - Align on common problems and areas of focus e.g. interoperability
 - Define technical requirements & product profiles
 - Strategically rally other regions to build critical mass
- Drive standards convergence
 - In the W3C
 - In co-ordination with other SDOs
- Focus on a Platform: Data Service & Interoperability
 - Easier to align: Most pressing shared problem
 - Enable different devices and platforms to interoperable
 - Plays to W3C's and WoT's Core competences

Charter: Focus on what would be most impactful to ecosystem

Smart Cities - PART 2

Standards Development Progress and Plans

Dr. Michael McCool Intel Corporation

WHAT CAN THE W3C DO?

Lead an intentional and concerted drive towards convergence

- Avoid contributing to further fragmentation
- Gather use cases and product profiles to define standards requirements
- Work with leading implementers and influencers to drive alignment
- Liaise with other relevant standards & SIGs to drive convergence
- Leverage and extend existing standards in the W3C and elsewhere
- Identify gaps and develop new standards only when necessary

RELEVANT W3C STANDARDS AND GROUPS

RDF and SPARQL:

Representation and query of linked semantic data.

JSON-LD 1.1:

Structured semantic data in a form compatible with modern web services.

Web of Things (WoT):

Descriptive metadata providing a unifying view of existing IoT services.

Decentralized Identifiers (DID):

Privacy-preserving secure identifiers for devices, services, and people.

Spatial Data on the Web:

Vocabularies and best practices for spatial and geolocation data.

Automotive:

Open web platform for exposing vehicle signals information.

W3C WEB OF THINGS (WOT)

- W3C Working Group whose goal is adapting web technologies to IoT
- Initial standard is a Thing Description (TD) metadata format
 - TD describes the interactions of an IoT device ("Thing")
 - Applications use a high-level interaction model to interact with Things
 - Interaction model is based on simple properties, actions, and events
- Low-level details are automated
 - TDs also include protocol binding information for low-level protocols
 - It is not necessary for applications to deal with low-level protocols

OTHER RELEVANT STANDARDS

XML, JSON, CBOR, ... + HTTP, CoAP, MQTT, OMQ, AMQP, ...

Various data payload representations + various communication protocols.

OpenAPI/Swagger:

Descriptive metadata for HTTP-based web services.

JSON Schema:

Data models for JSON payloads (often extended to CBOR, XML, etc).

JSONPath:

JSON-based query language (see also XPath for XML)

One Data Model/IoTschema:

Emerging collaboration on a common semantic framework for IoT services.

OAuth2:

Flexible authentication framework allowing fine-grained access controls.

IOT DATA AND METADATA STANDARDS MAP: CURRENT STATUS

Discovery	Ingestion	Exchange	Modeling	Consumption
Descriptions	Encoding	Protocols	Semantics	Query
W3C: RDF Schema/SHACL			W3C: RDF/JSON-LD	W3C: SPARQL
W3C: WoT Thing Descriptions			OGS: O&M	W3C: OWL
LF: Swagger/OpenAPI			iot.schema.org)
RAML			Haystack	
Microsoft: DTDL			W3C: SSN	
W3C: HTML		IETF: HTTP	ETSI: NGSI-LD	
		IETF: CoAP		
JSON Schema				
OPC-UA			OCF: oneiota	SQL
OPC-UA XML Schema		OMG: DDS	Zigbee	SQL
Oasis: TOSCA/UDDI		Oasis: MQTT	ZWave	
Oasis: SAML	IETF: CBOR	Oasis: AMQP	LwM2M/IPSO	
	IETF: JSON		OneM2M	
	W3C: XML	IETF: ICN	One Data Model	IETF: COIN
	YAML			
		IETF: IP/TCP/UDP	IETF: YANG	

IOT DATA AND METADATA STANDARDS MAP: GOAL

Discovery	Ingestion	Exchange	Modeling	Consumption
Descriptions	Encoding	Protocols	Semantics	Query
W3C: RDF Sche	ema/SHACL		W3C: RDF/JSON-LD	W3C: SPARQL
W3C: Resou	urce/Service Descriptions			W3C: OWL
W3C: Data S	Schema			
W3C: HTML		IETF: HTTP		
OPC-UA		IETF: CoAP		
			W3C/ISO: IoT Schema	
Oasis: TOSCA/UDDI		OMG: DDS		SQL
Oasis: SAML	W3C: JSON-LD 1.1	Oasis: MQTT		
	IETF: CBOR	Oasis: AMQP		
	IETF: JSON			
	W3C: XML	IETF: ICN		IETF: COIN
	IETF: YAML			
	Structured Linked Data	IETF: IP/TCP/UDP	IETF: YANG	

IOT DATA AND METADATA STANDARDS CONVERGENCE TIMELINE

CALLS TO ACTION

- 1. Define Smart City Use Cases and Requirements
 - Motivate standards convergence with focused objectives
- 2. Identify and Target Gaps

Example: Semantic definitions for Smart City services.

3. Eliminate Redundancy

Example: Multiple service descriptions

→ Single unified service description

4. Expand Generality of Existing Standards

Example: JSON Schema only defined for JSON

→ Data Schema suitable for all relevant payload encodings.