НИУ ВШЭ, ПИ, Экзамен, 4 модуль 2019/2020 учебного года Вариант 266

Фамилия, Имя:

Группа:

Задание	1	2	3	4	5	6	7	Сумма	Оценка
Bec	0,6	1,4	2	1,8	1,4	2	1	10,2	
Балл									

- 1. а) Сформулируйте критерий диагональности матрицы оператора.
 - б) Дайте определение параболы как геометрического места точек. Выпишите её каноническое уравнение.
- 2. В базисе $e_1 = \begin{pmatrix} -1 \\ -1 \end{pmatrix}, e_2 = \begin{pmatrix} -2 \\ -1 \end{pmatrix}$ линейный оператор ϕ имеет матрицу $A = \begin{pmatrix} 0 & 1 \\ 3 & -3 \end{pmatrix}$. В какое множество под действием ϕ перейдет прямая, заданная уравнением $-x_1 + x_2 = -1$? Координаты даны в стандартном базисе. Ответ также запишите в стандартном базисе.
- 3. Оператор задан своей матрицей $A = \begin{pmatrix} -31 & 132 \\ -9 & 38 \end{pmatrix}$ в некотором базисе.
 - (a) Существует ли базис, в котором матрица данного оператора диагональна? Если «да», предъявите матрицу перехода к этому базису и сам диагональный вид. Если «нет», то найдите жорданову нормальную форму матрицы оператора и предъявите матрицу перехода к соответствующему базису.
 - (б) Вычислите матрицу A^n .
- 4. Найти сингулярное разложение для матрицы:

$$A = \left(\begin{array}{ccc} 3 & 0 & 3 \\ 4 & 0 & 4 \end{array}\right)$$

- 5. Оператор задан своей матрицей $A = \begin{pmatrix} -4 & 5 \\ 3 & -4 \end{pmatrix}$ в некотором базисе. Можно ли его представить в виде композиции оператора с верхнетреугольной матрицей (причем с положительными элементами на главной диагонали) и ортогонального оператора? Если «да», то предъявите матрицы этих операторов. Если «нет», то объясните почему это невозможно.
- 6. Уравнение $2x^2 + 2y^2 4xy 5\sqrt{2}x + 3\sqrt{2}y 6 = 0$ линии второго порядка на плоскости привести к каноническому виду с помощью ортогонального преобразования и сдвига, указав:
 - а) одно из преобразований перехода от заданной системы координат к канонической системе координат,
 - б) канонический вид уравнения линии.
 - в) Определить тип кривой. На плоскости построить каноническую систему координат, в которой схематично изобразить кривую.
- 7. При каком значении параметра a расстояние от точки A(-3,2,-1) до линейного подпространства в \mathbb{R}^3 , порожденного векторами (3,-2,0) и $(1,\frac{-2}{3},a)$, будет наименьшим, и чему оно равно?