第6章 时序逻辑电路

教学内容

§ 6.1 概述

§ 6.2 时序逻辑电路的分析方法

§ 6.3 若干常用的时序逻辑电路

§ 6.4 时序逻辑电路的设计方法

教学要求

一. 重点掌握的内容:

- (1) 时序逻辑电路的概念及电路结构特点;
- (2) 同步时序电路的一般分析方法;
- (3) 同步计数器的一般分析方法;
- (4) 会用置零法和置数法构成任意进制计数器。

二.一般掌握的内容:

- (1) 同步、异步的概念,电路现态、次态、有效 状态、无效状态、有效循环、无效循环、自启动的 概念,寄存的概念;
 - (2) 同步时序逻辑电路设计方法。

6.1 概述

一、组合电路与时序电路的区别

1. 组合电路: 电路的输出只与电路的输入有关, 与电路的前一时刻的状态无关。

2. 时序电路:

电路在某一给定时刻的输出

取决于该时刻电由触发器保存

还取决于前一时刻电路的状态

时序电路:组合电路 + 触发器

电路的状态与时间顺序有关

例:串行加法器,两个多位数从低位到高位逐位相加

时序逻辑电路结构特点:

- ①包含存储电路和组合
- ②存储器状态和输入变量共同决定输出

Fig6.1.2 时序逻辑电路的结构框图

时序电路在任何时刻的稳定输出,不仅与该 时刻的输入信号有关,而且还与电路原来的状态有关。

构成时序逻辑电路的基本单元是触发器。

可以用三个方程组来描述:

$$\begin{cases} y_1 = f_1(x_1, x_2, \Lambda, x_i, q_1, q_2, \Lambda, q_i) \\ M \\ y_j = f_1(x_1, x_2, \Lambda, x_i, q_1, q_2, \Lambda, q_i) \end{cases}$$

⇒输出方程Y = F(X,Q)

$$\begin{cases} z_1 = g_1(x_1, x_2, \Lambda, x_i, q_1, q_2, \Lambda, q_i) \\ M \\ z_k = g_k(x_1, x_2, \Lambda, x_i, q_1, q_2, \Lambda, q_i) \end{cases}$$

⇒ 驱动方程Y = G(X,Q)

$$\begin{cases} q_1^* = h_1(z_1, z_2, \Lambda, z_k, q_1, q_2, \Lambda, q_l) \\ M \\ q_l^* = h_l(z_1, z_2, \Lambda, z_k, q_1, q_2, \Lambda, q_l) \end{cases}$$

⇒状态方程 $Q^* = H(Z,Q)$

二、时序逻辑电路的分类:

按 动 特 点 口

同步时序逻辑电路

所有触发器状态的变化都是在同一时钟信号操作下同时发生。

异步时序逻辑电路

触发器状态的变化不是同时发生。

Mealy型

$$Y = F(X, Q)$$

与X、Q有关

Moore型

$$Y = F(Q)$$

仅取决于电路状态

米利型时序逻辑电路 Mealy型

按输出特点可分为

输出不仅取决于存储电路的状态,而且还决定于电路当前的输入。

穆尔型时序逻辑电路 Moore型

输出仅决定于存储电路的状态,与电路当前的输入无关。

三、时序逻辑电路的功能描述方法

逻辑方程组 卡诺图 状态图 状态机流程图(State Machine Chart) 时序图 逻辑图

1. 逻辑方程组

输出方程:输出变量的逻辑表达式。

驱动方程: (激励方程) 触发器输入信号的逻辑

表达式。

状态方程: (次态方程) 次态输出的逻辑表达式。

驱动方程代入触发器特性方程得状态方程。

时钟方程:控制时钟CLK的逻辑表达式。

2. 状态表

反映输出Z、次态Q* 与输入X、现态Q之 间关系的表格。

X	现态	次态 Q*	輸出

3. 状态图

反映时序电路状态 转换规律,及相应 输入、输出取值关 系的图形。

4. 时序图

时序图又叫工作波形图,它用波形的形式形象地表达了输入信号、输出信号、电路的状态等的取值在时间上的对应关系。

这四种方法从不同侧面突出了时序电路逻辑功能的特点,它们在本质上是相同的,可以 互相转换。

6.2 时序逻辑电路的分析方法

时序电路的分析步骤:

例6.2.1

解: ①写方程组

驱
$$\begin{cases} J_1 = (Q_2 \cdot Q_3)' & K_1 = 1 \\ J_2 = Q_1 & K_2 = (Q_1' \cdot Q_3')' \end{cases}$$
 程 $\begin{cases} J_3 = Q_1 & \cdot Q_2 \end{cases}$ $K_3 = Q_2$

同步时序电路,时钟方程省去。

输出方程 $Y = Q_2 \cdot Q_3$

②求状态方程

将驱动方程代入JK触发器的特性方程

$$Q^* = JQ' + K'Q$$
 中得电路的状态方程:

$$\begin{cases} Q_1^* = J_1 Q_1' + K_1' Q_1 = (Q_2 \cdot Q_3)' \cdot Q_1' \\ Q_2^* = J_2 Q_2' + K_2' Q_2 = Q_1 \cdot Q_2' + Q_1' \cdot Q_3' \cdot Q_2 \\ Q_3^* = J_3 Q_3' + K_3' Q_3 = Q_1 \cdot Q_2 \cdot Q_3' + Q_2' \cdot Q_3 \end{cases}$$

③计算、列状态转换表

 $Q_3^* = Q_1 \cdot Q_2 \cdot Q_3' + Q_2' \cdot Q_3$

			$\exists Q_2 = Q$	$Q_1 \cdot Q_2 + Q_2$		
现	ļ	态		次		$Q_1 \cdot Q_2 \cdot Q_3'$
Q_3	Q_2	Q_1	Q_3^*	Q_2^*	Q_1^*	Y
0	0	0	0	0	1	0
0	0	1	0	1	0	0
0	1	0	0	1	1	0
0	1	1	1	0	0	0
1	0	0	1	0	1	0
$^* = (Q_2 \cdot Q_3)' \cdot Q_1'$			0	0		
$Q_{2}^{*} = Q_{1} \cdot Q_{2}^{\prime} + Q_{1}^{\prime} \cdot Q_{3}^{\prime} \cdot Q_{2}^{\prime} - Q_{2}^{\prime} \cdot Q_{3}^{\prime} \cdot Q_{2}^{\prime}$			0	1		
$\frac{1}{2}$		\mathcal{L}_2	1 23	$\mathbf{\mathcal{L}}_2$	0	1

 $Q_1^* = (Q_2 \cdot Q_3)' \cdot Q_1'$

画状态转换图

$Q_3Q_2Q_1$
/Y

	•	 态		 次	 态	输出
	Q_2		Q_3^*	Q_2^*	Q_1^*	Y
0	0	0	0	0	1	0
0	0	1	0	1	0	0
0	1	0	0	1	1	0
0	1	1	1	0	0	0
1	0	0	1	0	1	0
1	0	1	1	1	0	0
1	1	0	0	0	0	1
1	1	1	0	0	0	1

⑤说明电路功能

这是一个同步七进制加法计数器,能自启动。

例6.2.3

解: ①写方程式

$$egin{array}{ll} rac{\Im}{\Im} & \left\{ D_1 = Q_1' \ D_2 = A \oplus Q_1 \oplus Q_2 \
ight. \end{array}$$

②求状态方程

输出方程

$$Y = ((A'Q_1Q_2)' \cdot (AQ_1'Q_2')')' = A'Q_1Q_2 + AQ_1'Q_2'$$

列状态转 换表

$$\begin{cases} Q_1^* = D_1 = Q_1' \\ Q_2^* = D_2 = A \oplus Q_1 \oplus Q_2 \end{cases}$$

$$Y = A'Q_1Q_2 + AQ_1'Q_2'$$

④作时序图

⑤说明电路功能

A=0时是四进制加法计数器;

A=1时是四进制减法计数器。

*6.2.3 异步时序逻辑电路的分析方法

异步时序电路,时钟方程:

写方程式

$$CP_2 = Q_1$$
, $CP_1 = Q_0$, $CP_0 = CP$

电路没有单独的输出,为穆尔型时序电路。

驱动方程:

$$D_2 = \overline{Q}_2^n$$
, $D_1 = \overline{Q}_1^n$, $D_0 = \overline{Q}_0^n$

2 求状态方程

D触发器的特性方程:

$$Q^{n+1} = D$$

将各触发器的驱动方程代入,即得电路的状态方程:

3 计算、列状态表

$$egin{cases} Q_2^{n+1} = \overline{Q}_2^n & \mathrm{Q}_1 \uparrow \ Q_1^{n+1} = \overline{Q}_1^n & \mathrm{Q}_0 \uparrow \ Q_0^{n+1} = \overline{Q}_0^n & \mathrm{CP} \uparrow \end{cases}$$

	$Q_2^{n+1} = 1 不变$
<	$Q_1^{n+1} = 1 不变$
	$Q_0^{n+1} = \overline{1} = 0, \text{CP} \uparrow$

现 态	次 态	注		
$Q_2^n Q_1^n Q_0^n$	$Q_2^{n+1}Q_1^{n+1}Q_0^{n+1}$	时钟条件		
0 0 0	1 1 1	$CP_0 CP_1 CP_2$		
0 0 1	0 0 0	CP_0		
0 1 0	0 0 1	CP_0 CP_1		
0 1 1	0 1 0	CP_0		
1 0 0	0 1 1	$CP_0 CP_1 CP_2$		
1 0 1	1 0 0	CP_0		
1 1 0	1 0 1	$CP_0 CP_1$		
1 1 1	1 1 0	CP_0		

4

画状态图、时序图

5

电路功能

由状态图可以看出,在时钟脉冲*CP*的作用下,电路的8个状态按递减规律循环变化,即:

000→111→110→101→100→011→010→001→000→... 电路具有递减计数功能,是一个3位二进制异步减法计数器。

6.3 若干常用的时序逻辑电路

寄存器和移位寄存器

一、寄存器

在数字电路中,用来存放二进制数据或代码的电路称为寄存器。

寄存器是由具有存储功能的触发器组合起来构成的。一个触发器可以存储1位二进制代码,存放*n*位二进制代码的寄存器,需用*n*个触发器来构成。

(1) 清零。 $R'_D = 0$,异步 清零。即有:

$$Q_3 Q_2 Q_1 Q_0 = 0000$$

(2) 送数。 $R'_{D}=1$ 时,CLK上升沿送数。即有:

$$Q_3^* Q_2^* Q_1^* Q_0^* = D_3 D_2 D_1 D_0$$

(3) 保持。在 $R'_D = 1$ 、 CLK上升沿以外时间,寄存器内容将保持不变。

二、移位寄存器

单向移位寄存器

首先将4位数据并行置入移位寄存器的4个触发器中,经过4个CP,4位代码将从串行输出端依次输出,实现数据的并行一串行转换。

单向移位寄存器具有以下主要特点:

- (1)单向移位寄存器中的数码,在*CLK*脉冲操作下,可以依次右移或左移。
- (2)n位单向移位寄存器可以寄存n位二进制代码。n个CLK脉冲即可完成串行输入工作,此后可从 Q_0 ~ Q_{n-1} 端获得并行的n位二进制数码,再用n个CLK脉冲又可实现串行输出操作。
- (3) 若串行输入端状态为0,则*n*个*CLK*脉冲后,寄存器便被清零。

双向移位寄存器

2片74LS194A接成8位双向移位寄存器

用双向移位寄存器74LS194组成节日彩灯控制电路 +5V 1kΩ Q=0时 LED亮 .极管 R_D' Q_0 \mathbf{Q}_3 \mathbf{Q}_1 \mathbf{Q}_2 \mathbf{Q}_{3} \mathbf{Q}_1 \mathbf{Q}_2 S_1 S_1 74LS194 74LS194 D_{IR} D_0 D_1 D_2 D_3 D_{IL} CLK +5V D_{IR} D_0 D_1 D_2 D_3 D_{IL} CLK $S_1 = 0, S_0 = 1$ 清0按键 右移控制

本节小结:

寄存器是用来存放二进制数据或代码的电路,是一种基本时序电路。任何现代数字系统都必须把需要处理的数据和代码先寄存起来,以便随时取用。

本节小结:

寄存器分为基本寄存器和移位寄存器 两大类。基本寄存器的数据只能并行输入、 并行输出。移位寄存器中的数据可以在移 位脉冲作用下依次逐位右移或左移,数据 可以并行输入、并行输出,串行输入、串 行输出,并行输入、串行输出,串行输入、 并行输出。

本节小结:

寄存器的应用很广,特别是移位寄存器,不仅可将串行数码转换成并行数码,或将并行数码转换成串行数码,还可以很方便地构 行数码转换成串行数码,还可以很方便地构 成移位寄存器型计数器和顺序脉冲发生器等 电路。

计数器

在数字电路中,能够记忆输入脉冲个数的电路称为计数器。

•用于计数、分频、定时、产生节拍脉冲等 分类:

一、同步计数器

n位二进制同步加法计数器的电路连接规律:

$$egin{aligned} J_0 = K_0 = 1 \ J_1 = K_1 = Q_0 \ J_2 = K_2 = Q_1 Q_0 \ \Lambda \ \Lambda \ J_{n-1} = K_{n-1} = Q_{n-2} Q_{n-3} \Lambda \ Q_1 Q_0 \end{aligned}$$
 输出方程 $C = Q_{n-1} Q_{n-2} \Lambda \ Q_1 Q_0$

计数脉冲 CLK- Q_0 1K FF_0 图6.3.8 1K FF_1 T_2 1J 1K G_1 FF_2 T_3 1K G_2 FF₃ G_3

4位二进制同步加法计数器

若计数脉冲频率为 f_0 ,则 Q_0 、 Q_1 、 Q_2 、 Q_3 端输出脉冲的频率依次为 f_0 的1/2、1/4、1/8、1/16。因此又称为分频器。

4位同步二进制计数器74161功能表

CLK	$\mathbf{R}_{\mathtt{D}}$	LD	EP	ET	工作状态
\times	0	×	×	X	清零
	1	0	×	\times	预置数
X	1	1	0	1	保持
\times	1	1	×	0	保持(C=0)
	1	1	1	1	计数

74161具有异步清零和同步置数功能.

4位同步二进制计数器74163功能表

CLK	$\mathbf{R}_{\mathtt{D}}$	LD	EP	ET	工作状态
<u>_</u>	0	X	×	X	清零
<u>_</u>	1	0	X	\times	预置数
\times	1	1	0	1	保持
\times	1	1	X	0	保持(C=0)
	1	1	1	1	计数

74163具有同步清零和同步置数功能.

74LS163的引脚排列和74LS161相同,不同之处是74LS163采用同步清零方式。

n位二进制同步减法计数器的连接规律:

驱动方程
$$\begin{cases} J_0 = K_0 = 1 \\ J_1 = K_1 = Q_0' \\ J_2 = K_2 = Q_1' \ Q_0' \\ \Lambda \ \Lambda \end{cases}$$

$$J_{n-1} = K_{n-1} = Q_{n-2}' Q_{n-3}' \Lambda \ Q_1' \ Q_0'$$

输出方程
$$B = Q'_{n-1}Q'_{n-2}\Lambda Q'_1 Q'_0$$

284页图6.3.15

用T触发器接成的 同步二进制减法计数器

同步加减计数器

4位集成二进制同步可逆计数器74LS191

4位同步二进制可逆计数器74LS191功能表

CLK_{I}	S'	\mathbf{LD}'	U'/D	工作状态
X	1	1	X	保持
\times	X	0	X	预置数
	0	1	0	加法计数
	0	1	1	减法计数

74LS191具有异步置数功能.

双时钟加/减计数器74LS193

(b) 逻辑功能示意图

74LS193具有异步清零和异步置数功能.

2、同步十进制计数器

同步十进制加法计数器:

在同步二进制加法计数器基础上修改而来.

①加法计数器

基本原理:在四位 二进制计数器基础 上修改,当计到 1001时,则下一个 CLK电路状态回到 0000。

$$T_3 = Q_2Q_1Q_0 \Rightarrow Q_2Q_1Q_0 + Q_3Q_0$$

能自启动!

几个概念

有效状态: 在时序电路中,凡是被利用了的状态。

有效循环:有效状态构成的循环。

无效状态: 在时序电路中,凡是没有被利用的状态。

无效循环: 无效状态若形成循环,则称为无效循环。

自启动: 在CLK作用下,无效状态能自动地进入到有效循环中,则称电路能自启动,否则称不能自启动。

器件实例: 74 160

(CLK	R'_D	LD'	EP	ET	工作状态
	X	0	X	X	X	置 0 (异步)
	Ţ	1	0	X	X	预置数(同步)
	X	1	1	0	1	保持 (包括 C)
	X	1	1	X	0	保持(<i>C</i> =0)
	<u>J</u> L	1	1	1	1	计数

同步十进制加法计数器74LS160与74LS161 逻功能示意图和功能表均相同,所不同的是 74LS160是十进制而74LS161是十六进制。

②减法计数器

基本原理:对二进制减法 计数器进行修改,在0000 $T_0 = 1$ 时减"1"后跳变为1001, 然后按二进制减法计数就 $T_1 = Q_0 \Rightarrow Q_0(Q_0'Q_0')$ 行了。

$$T_2 = \mathbf{Q}_1' \mathbf{Q}_0' \Rightarrow \mathbf{Q}_1' \mathbf{Q}_0' \cdot (\mathbf{Q}_1' \mathbf{Q}_2' \mathbf{Q}_3')'$$

 $T_3 = Q_2' Q_1' Q_0'$

能自启动

③十进制可逆计数器 基本原理一致,电路只用到0000[~]1001的十个状态

实例器件

单时钟: 74190,168

双时钟: 74192

同步十进制可逆计数器也有单时钟和双时钟两种结构形式。属于单时钟的有74LS190等,属于双时钟的有74LS192等。

74LS190与74LS191逻辑图和功能表均相同;

74LS192与74LS193逻辑图和功能表均相同。

二、异步计数器

1、异步二进制计数器

3位异步二进制加法计数器

$$\begin{cases} J_0 = K_0 = 1 \\ J_1 = K_1 = 1 \\ J_2 = K_2 = 1 \end{cases}$$

触发器为下降沿触发,

Q₀接CLK₁,Q₁接CLK₂。

若上升沿触发,则应

 Q_0 ′接CLK₁, Q_1 ′接CLK₂。

3位异步二进制减法计数器

$$\begin{cases} J_0 = K_0 = 1 \\ J_1 = K_1 = 1 \end{cases}$$

$$J_2 = K_2 = 1$$

触发器为下降沿触发, Q_0' 接 CLK_1 , Q_1' 接 CLK_2 。

若上升沿触发,则应 Q'_0 接CLK₁, Q'_1 接CLK₂。

2、异步十进制计数器

若计数脉冲由 CLK_0 端输入,输出由 Q_0 端引出,即得到二进制计数器;若计数脉冲由 CLK_1 端输入,输出由 $Q_1 \sim Q_3$ 引出,即是五进制计数器;若将 CLK_1 与 Q_0 相连,同时以 CLK_0 为输入端,输出由 $Q_0 \sim Q_3$ 引出,则得到8421码十进制计数器。

74LS290功能表

输入					輸出			
$R_{0(1)} R_{0(2)}$	$S_{9(1)} S_{9(2)}$	CLK_0	CLK_1	Q_3	Q_2	Q_1	Q_0	
1	0	×	×	0	0	0	0	
×	1	×	×	1	0	0	1	
0	0	CLK	0	二进制计数				
0	0	0	CLK	五:	进制	计数	ţ	
0	0	CLK	Q_0	842]	l码⊢	┝╫╬	制计数	

异步计数器特点

优点: 结构简单

缺点: (1) 工作频率较低;

(2) 在电路状态译码时存在竞争

一冒险现象。

三、任意进制计数器的构成方法

利用现有的N进制计数器构成任意进制(M)计数器时,如果M\N,则只需一片N进制计数器;如果M\N,则要多片N进制计数器。

实现方法

置零法(复位法)

置数法(置位法)

原理: 计数循环过程中设法跳过N-M个状态

具体方法: 置零法

置数法

状态

异步置零法

异步预置数法

置零法:适用于有清零输入端的集成计数器。原理是不管输出处于哪一状态,只要在清零输入端加一有效电平电压,输出会立即从那个状态回到0000状态,清零信号消失后,计数器又可以从0000开始重新计数。

置数法: 适用于具有预置功能的集成计数器。对 于具有预置数功能的计数器而言,在其计数过程 中,可以将它输出的任意一个状态通过译码,产 生一个预置数控制信号反馈至预置数控制端,在 下一个CLK脉冲作用后,计数器会把预置数输 入端D₀D₁D₂D₃的状态置入输出端。预置数控制 信号消失后,计数器就从被置入的状态开始重新 计数。

任意M进制计数器

利用集成计数器的清零端和置数端实现归零,从而构成按自然 态序进行计数的M 进制计数器的方法。

- 1、用同步清零端或置数端 归零构成M进置计数器
 - (1) 写出状态 S_{M-1} 的二进制代码。
 - (2) 求归零逻辑,即求同步清零端或置数控制端信号的逻辑表达式。
 - (3) 画连线图。

- 2、用异步清零端或置数端 归零构成M进置计数器
- (1) 写出状态系的二进制 代码。
- (2) 求归零逻辑,即求异步清零端或置数控制端信号的逻辑表达式。
 - (3) 画连线图。

在前面介绍的集成计数器中,清零、置数均采用同步方式的有74LS163;均采用异步方式的有74LS193、74LS197、74LS192;清零采用异步方式、置数采用同步方式的有74LS161、74LS160;有的只具有异步预置数功能,如74LS190、74LS191;74LS90则具有异步清零和异步置数功能。

当M<N时,一片N进制计数器即可实现

例6.3.2 解:

置零法

74LS160具有异步清零功能

$$R_D' = (Q_2 \cdot Q_1)'$$

当计数器记成 $Q_3Q_2Q_1Q_0=0110$ 时,与非门输出低电平信号给 R'_D 端,将计数器置零。置零信号不是一个稳定的状态,持续时间很短,有可能导致电路误动作。

改进电路

置数法

74LS160具有同步置数功能

$$LD' = (Q_2 \cdot Q_0)'$$

LD'=0后,还要等下一个CLK信号到来时才置入数据,

而这时LD'=0的信号以稳定地建立了,提高了可靠性。

置数法 (a)置入0000 (b)置入1001

P350 题6.15

当A=1时
$$LD' = (Q_3Q_1Q_0)'$$

其状态转换图如下:

构成十二进制计数器

当
$$A=0$$
时 $LD'=(Q_3Q_0)'$

其状态转换图如下:

构成十进制计数器

例:用集成异步二—五—十进制计数器74LS290接成六进制计数器(模六)。(不用其他元件)。已知74LS290的逻辑示意图和功能表。

74LS290功能表

输入					輸出			
$R_{0(1)} R_{0(2)}$	$S_{9(1)} S_{9(2)}$	CLK_0	CLK_1	Q_3	Q_2	Q_1	Q_0	
1	0	×	×	0	0	0	0	
×	1	×	×	1	0	0	1	
0	0	CLK	0	二进制计数				
0	0	0	CLK	五:	进制	计数	ţ	
0	0	CLK	Q_0	842]	[码⊣	一进行	制计数	

置零法构成六进制

74LS290具有异步清零功能

首先将74LS290接成8421BCD码的十进制计数器,即将 CLK_1 与 Q_0 相连, CLK_0 作为外部计数脉冲CLK。

以下电路连接是否正确?

警告:切不可将输出端相互短路!!

这样接是正确的。

置9法构成六进制 74LS290具有异步置9功能 0000 0001 0010 $Q_3Q_2Q_1Q_0$ 1001 0011 0100 0101 S₉₍₁₎ S₉₍₂₎ R₀₍₁₎ R₀₍₂₎ P₀ 74LS290 $Q_0 Q_1 Q_2$

P344 题6.17

解: 当 $Q_2 = Q_1 = 1$ 时, $S_{91} = S_{92} = 1$,74LS290实现置9功能。 画状态转换图如下:

这是一个七进制计数器

当M>N时,需用多片N进制计数器组合实现

若M可分解为 $M=N_1\times N_2(N_1, N_2均小于N)$,可采用连接方式有:

串行进位方式、并行进位方式、

整体置零方式、整体置数方式

若M为大于N的素数,不可分解,则其连接方式只有:

整体置零方式、整体置数方式

串行进位方式: 以低位片的进位信号作为高位片的时钟输入信号。

并行进位方式: 以低位片的进位信号作为高位片的工作状态控制信号。

整体置零方式: 首先将两片N进制计数器按最简单的方式接成一个大于M进制的计数器,然后在计数器记为M状态时使 $R_D'=0$,将两片计数器同时置零。

整体置数方式: 首先将两片N进制计数器按最简单的方式接成一个大于M进制的计数器, 然后在某一状态下使LD'=0, 将两片计数器同时置数成适当的状态, 获得M进制计数器。

例6.3.3 用两片同步十进制计数器接成百进制计数器.

解: ①并行进位方式

②串行进位方式

例6.3.4 用两片74LS160接成二十九进制计数器.

解: ①整体置零方式

②整体置数方式

补充: 进位信号反馈置数法-----利用进位信号端

(a) 逻辑图

(b) 波形图

四、移位寄存器型计数器

环形计数器

结构特点: $D_0 = Q_3$

四、移位寄存器型计数器

环形计数器

结构特点: $D_0 = Q_3$

状态转换图:

构成四进制计数器,不能自启动.

能自启动的环形计数器:

状态转换图:

n位移位寄存器构成的环形计数器只有n个有效状态,有 2^n -n个无效状态。

扭环形计数器

结构特点: $D_0 = Q'_{n-1}$

状态转换图:

能自启动的扭环形计数器:

状态转换图:

n位移位寄存器构成的扭环形计数器有 2n个有效状态,有2n-2n个无效状态。

- 计数器应用实例
- 例1, 计数器+译码器→顺序节拍脉冲发生器

● 例2, 计数器+数据选择器→序列脉冲发生器

发生的序列: 00010111

distribution of the properties of the properties

例: 设计
$$F_1$$
=110101,110101--- 两组序列信号。 F_2 =010110,010110---

要求用7490(8421BCD计数)及3-8译码器和必要的门电路实现。

解: 先用7490设计一个M6计数器。(采用反馈置0法)

$\mathbf{Q_2}\mathbf{Q_1}\mathbf{Q_0} \mathbf{F_1} \mathbf{F_2}$	☆ 令计数器每一个状态与一位序列
0 0 0 1 0	信号相对应。
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	☆ 由于3-8译码器是最小项译码器所
0 1 0 0 0 0 0 0 1 1 1 1	以要写出 F_1 、 F_2 最小项之和表达式。
1 0 0 0 1	$F_1 = m_0 + m_1 + m_3 + m_5$
1 0 1 1 0	$F_2 = m_1 + m_3 + m_4$
1 1 0	$r_2 - m_1 + m_3 + m_4$

★ 用与非门实现

$$F_{1} = m_{0} + m_{1} + m_{3} + m_{5}$$

$$= m_{0} + m_{1} + m_{3} + m_{5}$$

$$= m_{0} \cdot m_{1} \cdot m_{3} \cdot m_{5}$$

$$= \overline{Y}_{0} \cdot \overline{Y}_{1} \cdot \overline{Y}_{3} \cdot \overline{Y}_{5}$$

$$F_{1}$$

$$F_{2} = m_{1} + m_{3} + m_{4}$$

$$= \overline{Y}_{1} \cdot \overline{Y}_{3} \cdot \overline{Y}_{4}$$

$$= \overline{Y}_{1} \cdot \overline{Y}_{2} \cdot \overline{Y}_{3} \cdot \overline{Y}_{4}$$

$$F_{1}$$

$$F_{2}$$

$$F_{1}$$

$$F_{2}$$

$$F_{3}$$

$$F_{4}$$

$$F_{2}$$

$$F_{3}$$

$$F_{4}$$

$$F_{2}$$

$$F_{3}$$

$$F_{4}$$

$$F_{3}$$

$$F_{4}$$

$$F_{5}$$

$$F_{4}$$

$$F_{5}$$

$$F_{4}$$

$$F_{5}$$

$$F_{6}$$

$$F_{7}$$

$$F_{1}$$

$$F_{2}$$

$$F_{3}$$

$$F_{4}$$

$$F_{5}$$

$$F_{6}$$

$$F_{7}$$

$$F_{1}$$

$$F_{2}$$

$$F_{3}$$

$$F_{4}$$

$$F_{5}$$

$$F_{6}$$

$$F_{7}$$

$$F_{8}$$

$$F_{9}$$

$$F$$

6.4 时序逻辑电路的设计方法

- 6. 4. 1 同步时序逻辑电路的设计方法 设计的一般步骤
- 一、逻辑抽象,求出状态转换图或状态转换表
- 1. 确定输入/输出变量、电路状态数。
- 2. 定义输入/输出逻辑状态以及每个电路状态的含意, 并对电路状态进行编号。
- 3. 按设计要求列出状态转换表,或画出状态转换图。
- 二、状态化简

若两个状态在相同的输入下有相同的输出,并转到同一个次态,则称为等价状态;等价状态可以合并

设计的一般步骤

三、状态分配(编码)

- 1. 确定触发器数目。
- 2. 给每个状态规定一个代码。 (通常编码的取法、排列顺序都依照一定的规律)

四、选定触发器类型 求出状态方程,驱动方程,输出方程。

五、画出逻辑图 六、检查自启动

6.4 时序逻辑电路的设计方法

设计步骤:

根据设计要求

(1) 确定输入、

确定输入、 输出变量及 状态数

画原始 状态图

态图 化剂

最简状 态图

2ⁿ⁻¹<M<2ⁿ

状态 分配

4

检查电路 能否自启 动

画电 路图

选触发器,求时钟、 输出、状态、驱动 方程 例6.4.1 设计一个带有进位输出端的十三进制计数器.

解: 1 建立原始状态图

该电路不需输入端,有进位输出用C表示,规定有进位输出时C=1,无进位输出时C=0。

十三进制计数器 应该有十三个有 效状态,分别用 S_0 、 S_1 、... S_{12} 表示。 画出其状态转换 图:

2 状态化简

状态转换图不需化简。

3 状态分配

因为2³<13<2⁴, 因此取触发器 位数*n*=4。对状 态进行编码, 得到状态转化 表如下:

 状态变		状系	进位输出		
化顺序	Q_3	Q_2	Q_1	Q_0	<i>C</i>
S_0	0	0	0	0	0
	0	0	0	1	0
$egin{array}{c} S_1 \ S_2 \ S_3 \ S_4 \ S_5 \ S_6 \ S_7 \ S_8 \ S_9 \ S_{10} \ \end{array}$	0	0	1	0	0
S_3	0	0	1	1	0
S_4	0	1	0	0	0
S_5	0	1	0	1	0
S_6	0	1	1	0	0
S_7	0	1	1	1	0
S_8	1	0	0	0	0
S_9	1	0	0	1	0
S_{10}	1	0	1	0	0
S_{11}	1	0	1	1	0
S_{12}	1	1	0	0	1
S_0	0	0	0	0	0

选触发器, 求时钟、输出、状态、驱动方程

$\sqrt{Q_1G}$	Q_0			
Q_3Q_2	00	01	11	10
00	0001/0	0010/0	0100/0	0011/0
01	0101/0	0110/0	1000/0	0111/0
11	0000/1	xxxx/x	xxxx/x	xxxx/x
10	1001/0	1010/0	1100/0	1011/0

 状态变		状态	进位输出		
化顺序	Q_3	Q_2	$Q_{\rm l}$	Q_0	C
S_0	0	0	0	0	0
S_1	0	0	0	1	0
S_2	0	0	1	0	0
S_3	0	0	1	1	0
S_4	0	1	0	0	0
S_5	0	1	0	1	0
S_6	0	1	1	0	0
S_7	0	1	1	1	0
S_8	1	0	0	0	0
S_9	1	0	0	1	0
S_{10}	1	0	1	0	0
S_{11}	1	0	1	1	0
S_1 S_2 S_3 S_4 S_5 S_6 S_7 S_8 S_9 S_{10} S_{11} S_{12} S_0	1	1	0	0	1
S_0	0	0	0	0	0

电路次态/输出($Q_3^*Q_2^*Q_1^*Q_0^*/C$)的卡诺图

Q_1	Q_0				`
Q_2	00	01	11	10	
00	0001/0	0010/0	0100/0	0011/0	٦
01	0101/0	0110/0	1000/0	0111/0	H
11	0000/1	xxxx/x	xxxx/x	xxxx/x	- <
10	1001/0	1010/0	1100/0	1011/0	H
2 2			2 2 2 0 .)

Q_1Q_0						
Q_3Q_2	00	01	11	10_		
00	0	1	0			
01	0	1	0	1		
11	0	×	×	×		
10	0		0	1		

*	O'	. 0 0'
$Q_1 =$	$=Q_1'Q_0$	$+Q_1Q_0$

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	`				
Q_1 Q_3Q_2 Q_1G	2 ₀ 00	01	11	10	10
00	0001/0	0010/0	0100/0	0011/0	0
01	0101/0	0110/0	1000/0	0111/0	0
11	0000/1	xxxx/x	××××/×	××××/×	$\stackrel{\times}{\parallel}$
10	1001/0	1010/0	1100/0	1011/0	L
\boldsymbol{z}_0	€3 € 0 ·	2 2 2 0		232	2

若选用4个JK触发器,需将状态方程变换成JK触发器特性方程的标准形式,即 $Q^*=JQ'+K'Q$,找出驱动方程。

$$Q_3^* = Q_3 Q_2' + Q_2 Q_1 Q_0 (Q_3 + Q_3') = (Q_2 Q_1 Q_0) Q_3' + Q_2' Q_3$$

$$Q_2^* = (Q_1 Q_0) Q_2' + (Q_3' Q_1' + Q_3' Q_0') Q_2 = (Q_1 Q_0) Q_2' + Q_3' (Q_1 Q_0)' Q_2$$

$$Q_1^* = Q_0 Q_1' + Q_0' Q_1$$

$$Q_0^* = Q_3' Q_0' + Q_2' Q_0' = (Q_3 Q_2)' Q_0' + 1' Q_0$$

$$Q_3^* = Q_3 Q_2' + Q_2 Q_1 Q_0 (Q_3 + Q_3') = (Q_2 Q_1 Q_0) Q_3' + Q_2' Q_3$$

$$Q_2^* = (Q_1 Q_0) Q_2' + (Q_3' Q_1' + Q_3' Q_0') Q_2 = (Q_1 Q_0) Q_2' + Q_3' (Q_1 Q_0)' Q_2$$

$$Q_1^* = Q_0 Q_1' + Q_0' Q_1$$

$$Q_0^* = Q_3' Q_0' + Q_2' Q_0' = (Q_3 Q_2)' Q_0' + 1' Q_0$$

比较得到触 发器的驱动 方程:

$$J_{3} = Q_{2}Q_{1}Q_{0} K_{3} = Q_{2}$$

$$J_{2} = Q_{1}Q_{0} K_{2} = (Q'_{3}(Q_{1}Q_{0})')'$$

$$J_{1} = Q_{0} K_{1} = Q_{0}$$

$$J_{0} = (Q_{3}Q_{2})' K_{0} = 1$$

$$J_{3} = Q_{2}Q_{1}Q_{0} K_{3} = Q_{2}$$

$$J_{2} = Q_{1}Q_{0} K_{2} = (Q'_{3}(Q_{1}Q_{0})')'$$

$$J_{1} = Q_{0} K_{1} = Q_{0}$$

$$J_{0} = (Q_{3}Q_{2})' K_{0} = 1$$

5 画电路图

6 检查电路能否自启动

$$Q_3^* = (Q_2Q_1Q_0)Q_3' + Q_2'Q_3$$

始状态代人状态方
 $Q_2^* = (Q_1Q_0)Q_2' + Q_3'(Q_1Q_0)'Q_2$

$$Q_1^* = Q_0 Q_1' + Q_0' Q_1$$
大
态转换表对照是否
 $Q_0^* = (Q_3 Q_2)' Q_0'$ 是
否自启动。

由状态转换图可知该电路能够自启动.

例6.4.2 解: 1 建立原始状态图

输入数据作为输入变量,用X表示;检测结果为输出变量,用Y表示。例如:

输入X 101100111011110 输出Y 00000001000110

> 设电路没有输入1 以前的状态为 S_0 ,输入 一个1状态为 S_1 ,连续 输入两个1后的状态为 S_2 ,连续输入3个1以 后的状态为 S_3 。

画状态转换图

2 状态化简

两个状态等价

4 选触发器,求时钟、输出、状态、驱动方程

X	Q_1	Q_0	Q_1^*	Q_0^*	Y
0	0	0	0	0	0
0	0	1	0	0	0
0	1	0	0	0	0
0	1	1	$ \times $	X	X
1	0	0	0	1	0
1	0	1	1	0	0
1	1	0	1	0	1
1	1	1	\perp	Χ	\times

 $(Q_1^*Q_0^*/Y)$

卡诺图

将卡诺图分解,求状态方程和输出方程,并得到驱动方程

5 画电路图

$$\begin{cases} J_1 = XQ_0 \\ K_1 = X' \end{cases} \begin{cases} J_0 = XQ_1' \\ K_0 = 1 \end{cases}$$
 输出方程: $Y = XQ_1$

6 检查电路能否自启动

$$\begin{cases} Q_1^* = XQ_0 + XQ_1 \\ Q_0^* = XQ_1' \ Q_0' \end{cases}$$

由状态转换图可知该电路能够自启动.