

Model Development Phase Template

Date	06-06-2024
TeamID	739759
Project Title	DETECTION OF PHISHING WEBSITE FROM URLS
Maximum Marks	4 Marks

Initial Model Training Code, Model Validation and Evaluation Report

Theinitialmodeltrainingcodewillbeshowcasedinthefuturethroughascreenshot. Themodel validation and evaluation report will include classification reports, accuracy, and confusion matrices for multiple models, presented through respective screenshots.

InitialModelTrainingCode:


```
[35]: #Splitting data as independent and dependent
        #removing index column in independent dataset
        x=ds.iloc[:,1:31].values
        y=ds.iloc[:, -1].values
        print(x,y)
        [[ 37. 19. 0. ... 0. 0. [77. 23. 1. ... 0. 0. [126. 50. 1. ... 0. 0.
         [105. 16. 1... 0. 0. 0.]
[38. 30. 0... 0. 0. 0.]
[477. 14. 1... 0. 0. 1.]] ['legitimate' 'phishing' 'phishing' ... 'legitimate' 'legitimate'
          'phishing']
[36]: y=ds.iloc[:, -1].values
[36]: array(['legitimate', 'phishing', 'phishing', ..., 'legitimate', 'legitimate', 'phishing'], dtype=object)
[37]: import pandas as pd
        from sklearn.model_selection import train_test_split
        # Split data after x and y are defined
        x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=0)
```

```
[38]: from sklearn.linear_model import LogisticRegression
      model = LogisticRegression(max_iter=10000)
      model.fit(x_train, y_train) # Use model to fit the training data
[38]: -
            LogisticRegression
      LogisticRegression(max_iter=10000)
[39]: model.fit(x_train,y_train)
[39]: LogisticRegression
      LogisticRegression(max_iter=10000)
[40]: y_pred1=model.predict(x_test)
[41]: y_pred1 = model.predict(x_test) # Predict labels (if not already done)
      from sklearn.metrics import accuracy_score
      accuracy = accuracy_score(y_test, y_pred1)
      print(f"Logistic Regression Accuracy: {accuracy:.4f}") # Print accuracy with formatting
      Logistic Regression Accuracy: 0.8027
```


Model Validation and Evaluation Report:

Model	Classification Report	F1 Scor e	Confusion Matrix
Logistic Regressi on	[[37, 19, 0, 0, 0, 0,] [77, 23, 1, 0, 0, 0,] [126, 50, 1, 0, 0, 0,] [105, 16, 1, 0, 0, 0,] [33, 30, 0, 0, 0, 0,] [47, 14, 1, 0, 0, 1,]['legitimate' 'phishing' 'phishing' 'legitimate' 'legitimate' 'phishing']	80%	

470.4	da Enterprise						T
Decision Tree	-					79%	<pre>confusion_matrix(y_test,ypred) array([[62, 13],</pre>
KNN	print(classification_report Loan will be Approved Loan will not be Approved accuracy macro avg weighted avg	t(y_test,ypr precision 0.60 0.67 0.63 0.64	2000	f1-score 0.59 0.68 0.64 0.63 0.64	50 support 75 94 169 169	64%	<pre>confusion_matrix(y_test,ypred) array([[43, 32],</pre>
Gradient Boosting	print(classification_report Loan will be Approved Loan will not be Approved accuracy macro avg weighted avg	precision 0.71 0.85 0.78 0.79		0.78 0.77	5upport 75 94 169 169	78%	<pre>confusion_matrix(y_test,ypred) array([[63, 12],</pre>