Datenbanktheorie SS 16

Deduktive Datenbanksysteme

Problem: Transitiver Abschluss ist in PL1 nicht formulierbar (mit zustandsabhängiger Formulierung möglich)

Diskussion:

Typ 5:
$$q_1(...), ..., q_n(...) : -.$$

Typ 6: $q_1(...), ..., q_n(...) : -p_1(...), ..., p_m(...).$
 \Rightarrow Übungsaufgabe

Nur Typ 1 und Typ 4: $q(...): -p_1(...), ..., p_n(...), n \ge 0$ (ist die Hornklauselform und wird bei definiten Datenbanken genutzt)

Definite Datenbanken

$$q(\dots): -.(\text{Fakt})$$

$$q(\dots): -p_1(\dots), \dots, p_n(\dots).(\text{deduktive Regel}, p_{1-n} \text{ Teilziele})$$

$$(1)$$

- Mit IBen (Integritätsbedingungen) (+ Typ2, Typ3) (: $-p_1(...), ..., p_n(...)$)
- Typ5 + Typ6 \Rightarrow Disjunktive Datenbank
- Definite Datenbank + negative Atome im Rumpf von Hornklauseln erlaubt ⇒ Volles Datalog

Formulierung von Anfragen

Klauseln vom Typ: : $-p_1(...)$,, $p_n(...)$, geschrieben ? $-p_1(...)$,, $p_n(...)$ Beispiele:

- \bullet ? -ag(X,m).
 - Bedeutung: Welche Kurse bietet 'm' an?
 - DRC: (x) / ANGEBOT(X, m)
- ? ag(a3, m).
 - Bedeutung: Bietet 'm' den Kurs 'a3' an?
 - DRC: () / ANGEBOT(a3, m)
- ? ag(X, m), bl(X, s, j).

Datenbanktheorie SS 16

- Bedeutung: Gib alle von 'm' angebotene Kurse, die 's' als Wiederholer belegt hat
- DRC: (x) / ANGEBOT(x, 'm') \wedge BELEGUNG(x, 's', 'y')
- Wie ist (x) / ANGEBOT $(x, 'm') \land (\exists y)$ BELEGUNG(x, 's', y) formulierbar?
 - Bedeutung: Gib die Dozenten der von s als Wiederholer belegte Kurse
 - Formulierung: ? Ksm(X). Ksm(X) : -ag(X, m), bl(X, s, y)
 - Bequemer: ? ag(X, Y*), bl(X, s, y)., * Kennzeichnet die Ausgabevariable

In Anfragesprachen werden Vergleichsausdrücke benötigt. Dazu sind in Datalog spezielle vordefinierte Prädikate vorhanden. Für jeden Vergleichsoperator wird die Existenz eines solchen Prädikates angenommen.

Zunächst: Beschränkte Variablen in Regeln. Sei eine Regel r gegeben:

- Jede Variable, die als Argument in einem gewöhnlichen Prädikat im Rumpf von r vorkommt ist beschränkt.
- Jede Variable, die in einem Teilziel X = c oder c = X von r vorkommt, ist beschränkt.
- Eine Variable X ist beschränkt, wenn sie in einem Teilziel X = Y oder Y = X von r vorkommt mit Y ist schon als beschränkt bekannt.

Definition: sicher

Eine Regel heißt sicher, wenn alle in ihr vorkommenden Variablen beschränkt sind.

Beispiele:

- Kls(X,Y): -bl(Z,s,j), ag(Z,Y), X=Z. sicher
- vsj(X,Y):-bl(Y,s,j). nicht sicher (X ist nicht beschränkt)
- vs(X,Y):-vs(X,Z), kp(Z,Y). sicher, wenn vs terminiert
- $kla(Z,Y):-bl(Z,V,j), aq(Z,Y), V \neq s.$ sicher