Threat modeling and Security architectures

Debdeep Mukhopadhyay Mainack Mondal

CS 60065 Autumn 2020

Roadmap

- Basic security analysis
 - Threat modelling
 - Adversary modelling
- Design principles for security

How to do basic security analysis for a system?

- Question: Is a given system secure OR how do you secure the system?
 - What do we intend to protect? (system model)
 - Who is the attacker or the threat? (threat model)
 - What are the security requirements? (Security Goals)
 - What security approaches can be effective? (Solution)

1. System model

- Understand architecture of the system
- Enumerate asset and their value in the system
- Possible questions you should ask:
 - What are the exact assets? (be as specific as possible)
 - What is the operating value (can be \$, can be man hours)
 - What is the impact if this asset if breached?

Question: What is the system model for protecting against password guessing attack on a banking website?

2. Threat modelling

- Identify potential attackers (script-kiddies, hacker-forhire, your ex, a nation state?)
- Enumerate attacker resources
- Estimate number of attacks, probability of attack

Common adversary types / adversary attributes in threat models

- Attacker action
 - Passive (eavesdropping), Active (man-in-the-middle attack)
- Attacker capability
 - Script kiddies to nation states (decides how resilient your solution should be)
- Attacker access
 - External (can only observe the system), Internal (inside the system, e.g., compromised user account)

Common adversary types / adversary attributes in threat models

- Attacker action
 - Passive (eavesdropping), Active (man-in-the-middle attack)
- Attacker capability
 - Script kiddies to nation states (decides how resilient your solution should be)
- Attacker access
 - External (can only observe the system), Internal (inside the system, e.g., compromised user account)

Question: What is the threat model for protecting against password guessing attack on a banking website?

Schema for modelling adversaries

Named group of adversaries (categorical schema)

	Named group of adversaries
1	Foreign intelligence (including government-funded agencies)
2	cyber-terrorists or politically-motivated adversaries
3	industrial espionage agents (perhaps funded by competitors)
4	organized crime syndicate
5	lesser criminals and crackers (i.e., individuals who break into computers)
6	malicious insiders (including disgruntled employees)
7	non-malicious employees (often security-unaware)

Schema for modelling adversaries

Named group of adversaries (categorical schema)

	Named group of adversaries
1	Foreign intelligence (including government-funded agencies)
2	cyber-terrorists or politically-motivated adversaries
3	industrial espionage agents (perhaps funded by competitors)
4	organized crime syndicate
5	lesser criminals and crackers (i.e., individuals who break into computers)
6	malicious insiders (including disgruntled employees)
7	non-malicious employees (often security-unaware)

Also targeted vs. generic attacks

Threat modelling

Approaches

Architectural diagrams (data-flow, user-flow diagram)

Attack trees (creating possible attack vectors)

Checklists

STRIDE

Threat modelling

Approaches

Architectural diagrams (data-flow, user-flow diagram)

Attack trees (creating possible attack vectors)

Checklists

STRIDE

Example: Attack tree

Example: Attack tree

Practical example: https://tools.ietf.org/html/draft-convery-bgpattack-01#page-6

Checklists

Laundry list of all possible attacks

Good basic choice

The security tester need to adapt to the tested system

STRIDE

Look for the following attacks:

- Spoofing: attempts to impersonate a principal
- Tampering: unauthorized altering
- Repudiation: denying responsibility for past actions.
- Information disclosure: unauthorized release of data
- Denial of service
- Escalation of privilege: obtaining privileges to access often critical resources

Which of the security properties break for each?

3. Security goals

- What are your security requirements
 - Confidentiality (encryption)
 - Integrity (cryptographic hashes)
 - Authenticity (MAC or keyed hash)
 - Availability (DDoS)
 - Auditability (Blockchain, tamper-proof-logs)
 - Access control
 - Privacy
 - Plausible deniability ...

4. Designing systems

- Security via policy
 - Pass a law and make it illegal
- Use cryptography and security primitives
 - Encryption, hashes, VPNs, firewalls
- Make your system resilient to attack
 - Keep updated copies of systems (hot standby)
- Detection and recovery
 - Intrusion detection system, Redundancy etc.

Pitfalls of security

- Can't protect against everything
 - expensive and inconvenient

- Identify most likely avenues of attack
 - Identify *likely* attackers and their resources?
 - Identify likely consequences financial loss or personal loss?
 - Accept your design will not defend against all attacks
 - Identify where will it not help? (is that reasonable)

You need to think like an attacker

- Adversary target assets, not defenses
 - Will try to exploit weakest part of the defenses (bribing, social engineering)

Summary

- Security is important AND difficult
- Security is NOT absolute
 - Your solution will depend on YOUR system model, threat/attacker model, security goals
 - Shoot for at least "raising the bar"

- Bonus: System and attack model of obtaining encrypted data
 - Security by obscurity
 - Kerckhoffs's law/Shannon's maxim ("Enemy knows the system")

Roadmap

- Basic security analysis
 - Threat modelling
 - Adversary modelling
- Design principles for security

Some secure system design principles

- Make defaults safe (e.g., use https by default)
- Make the design open: more eyeballs, often better security
- Principle of least privilege: E.g., never use a root account (use "sudo")
- Least surprise: User mental model should align with your system design
- Never trust the input: Always verify (integrity, authentication etc.)
- Isolation: compartmentalize resources (e.g., hardware isolation, disk partition, virtualization, sandboxing, firewalls)
- KISS (Keep-it-simple-stupid): Keep designs as simple and small as possible (e.g., TPM)
 - minimize the trust base
 - Minimizes attack surface

Some secure system design principles

- Make defaults safe (e.g., use https by default)
- Make the design open: more eyeballs, often better security
- Principle of least privilege: E.g., never use a root account (use "sudo")
- Least surprise: User mental model should align with your system design
- Never trust the input: Always verify (integrity, authentication etc.)
- Isolation: compartmentalize resources (e.g., hardware isolation, disk partition, virtualization, sandboxing, firewalls)
- KISS (Keep-it-simple-stupid): Keep designs as simple and small as possible (e.g., TPM)
 - minimize the trust base
 - Minimizes attack surface