

Ottawa Hull K1A 0C9

(21) (A1) 2,106,497
(22) 1993/09/20
(43) 1994/03/22

(51) INTL.CL. ⁵ C07D-277/56; C07D-213/82; C07D-231/14; C07D-307/68;
C07D-309/28; C07D-327/06; C07D-333/38; C07C-259/10;
A01N-037/28; A01N-043/02; A01N-043/40; A01N-043/78

(19) (CA) APPLICATION FOR CANADIAN PATENT (12)

(54) N-Hydroxy-N-Phenylcarboxamides, Their Preparation and
Compositions Containing Them for Controlling Harmful
Fungi

(72) Eicken, Karl - Germany (Federal Republic of);
Ammermann, Eberhard - Germany (Federal Republic of);
Lorenz, Gisela - Germany (Federal Republic of);

5,075,847

(71) Same as inventor

(30) (DE) P 42 31 518.2 1992/09/21

(57) 7 Claims

Notice: This application is as filed and may therefore contain an
incomplete specification.

Industrie Canada Industry Canada

3488

Canada

2106497

N-Hydroxy-N-phenylcarboxamides, their manufacture, and agents containing them for combatting injurious fungi

5 ABSTRACT OF THE DISCLOSURE:

1. N-Hydroxy-N-phenylcarboxamides of the formula I

10

15

where:

R is substituted or unsubstituted alkyl, alkoxy, alkenyl, alkenyloxy, alkynyl, alkynyloxy, cycloalkyl, cycloalkenyl, cycloalkyloxy, cycloalkenyloxy or phenyl;

20

A is one of the radicals A1 to A7

25

30

35

where

X is -CH₂-, -S-, -SO- or -SO₂-;

40

Y is -O- or -S-;

R¹, R², R⁴, R⁵ and R⁷ are halogen, alkyl or haloalkyl;

R³ and R⁶ are hydrogen, halogen or alkyl;

n is 1 or 2;

45

methods of manufacturing them, agents containing them, and their use for combatting injurious fungi.

2106497

O.Z. 0050/43543

N-HYDROXY-N-PHENYLCARBOXAMIDES, THEIR PREPARATION
AND COMPOSITIONS CONTAINING THEM FOR CONTROLLING
HARMFUL FUNGI

The present invention relates to N-hydroxy-
5 N-phenylcarboxamides of the formula I

where the substituents have the following meanings:

R is C_2-C_{12} -alkyl, C_2-C_{12} -alkoxy, C_3-C_{12} -alkenyl,
 C_3-C_{12} -alkenyloxy, C_3-C_6 -alkynyl, C_3-C_6 -alkynyloxy,
10 where these groups can be partially or completely
halogenated; C_3-C_7 -cycloalkyl, C_4-C_7 -cycloalkenyl,
 C_3-C_7 -cycloalkoxy or C_4-C_7 -cycloalkenyloxy, where
these rings can carry one to 3 C_1-C_4 -alkyls; phenyl
which can carry one to five halogen atoms and/or one
15 to three of the following radicals: C_1-C_4 -alkyl,
 C_1-C_4 -haloalkyl, C_1-C_4 -alkoxy, C_1-C_4 -haloalkoxy,
 C_1-C_4 -alkylthio or C_1-C_4 -haloalkylthio;

A is a cyclic radical from the group consisting of the
formulae A1 to A7:

A1

A2

A3

A4

A5

A6

A7

where the substituents have the following meanings:

20 X is $-CH_2-$, $-S-$, $-SO-$ or $-SO_2-$;
Y is $-O-$ or $-S^-$;
R¹, R², R⁴, R⁵ and R⁷ are halogen, C_1-C_4 -alkyl or

C_1-C_4 -haloalkyl;

R^3 and R^6 are hydrogen, halogen or C_1-C_4 -alkyl;

n is 1 or 2, where the radicals R^3 can be different if the value of n is 2.

5 The invention additionally relates to the preparation of these compounds, compositions containing them and their use for controlling harmful fungi, in particular Botrytis.

10 N-(2-Chlorophenyl)-2-chloronicotinamide is known from the literature as a fungicidal active compound (DE-A 2 417 216).

It is an object of the present invention to provide novel fungicidally active compounds having an improved spectrum of action.

15 We have found that this object is achieved by the compounds I defined at the beginning.

We have additionally found processes for preparing these compounds, compositions containing them and their use for controlling harmful fungi.

20 The compounds I are in general obtained by reacting a carboxylic acid halide of the formula II in a manner known per se (eg. J. March, Advanced Organic Chemistry, 2nd Ed., 1977, 382 ff., McGraw-Hill) with an N-hydroxyaniline of the formula III in the presence of a
25 base.

The radical Hal in the formula II is a halogen such as chlorine, bromine or iodine, in particular chlorine or bromine.

This reaction is customarily carried out at
30 temperatures from $-20^\circ C$ to $100^\circ C$, preferably $-10^\circ C$ to

50°C.

Suitable solvents are:

aliphatic hydrocarbons such as pentane, hexane, cyclohexane and petroleum ether, aromatic hydrocarbons such as
5 toluene, o-, m- and p-xylene, halogenated hydrocarbons such as dichloromethane, chloroform and chlorobenzene, ethers such as diethyl ether, diisopropyl ether, tert-butyl methyl ether, dioxane, anisole and tetrahydrofuran, nitriles such as acetonitrile and propionitrile, ketones
10 such as acetone, methyl ethyl ketone, diethyl ketone and tert-butyl methyl ketone, alcohols such as methanol, ethanol, n-propanol, isopropanol, n-butanol and tert-butanol, and also dimethyl sulfoxide and dimethyl-formamide, particularly preferably toluene, xylene and
15 tetrahydrofuran.

Mixtures of the solvents mentioned can also be used.

Suitable bases are generally inorganic compounds such as alkali metal and alkaline earth metal hydroxides
20 such as lithium hydroxide, sodium hydroxide, potassium hydroxide and calcium hydroxide, alkali metal and alkaline earth metal oxides such as lithium oxide, sodium oxide, calcium oxide and magnesium oxide, alkali metal and alkaline earth metal hydrides such as lithium
25 hydride, sodium hydride, potassium hydride and calcium hydride, alkali metal amides such as lithium amide, sodium amide and potassium amide, alkali metal and alkaline earth metal carbonates such as lithium carbonate and calcium carbonate and also alkali metal hydrogen-carbonates such as sodium hydrogencarbonate, and organo-metallic compounds, in particular alkali metal alkyls such as methyllithium, butyllithium and phenyllithium, alkylmagnesium halides such as methylmagnesium chloride and also alkali metal and alkaline earth metal alkoxides
30 such as sodium methoxide, sodium ethoxide, potassium ethoxide, potassium tert-butoxide and dimethoxymagnesium, additionally organic bases, e.g. tertiary amines such as
35

trimethylamine, triethylamine, tri-isopropylethylamine and N-methylpiperidine, pyridine, substituted pyridines such as collidine, lutidine and 4-dimethylaminopyridine and also bicyclic amines.

5 Sodium hydrogencarbonate, sodium carbonate, triethylamine and pyridine are particularly preferred.

The bases are in general employed in equimolar amounts based on the compound II. However, they can also be used in an excess of from 5 mol% to 30 mol%, 10 preferably 5 mol% to 10 mol%, or - in the case of the use of tertiary amines - if appropriate as a solvent.

The starting materials are in general reacted with one another in equimolar amounts. It may be advantageous for the yield to employ II in an excess of from 15 1 mol% to 20 mol%, preferably 1 mol% to 10 mol%, based on III.

The starting substances of the formulae II and III needed for preparing the compounds I are known in the literature (Houben-Weyl, Methoden der org. Chemie 20 (Methods of Organic Chemistry), Vol. 10/1, pp. 1138-1148) or can be prepared according to the literature cited.

With respect to their use in fungicidal compositions, suitable compounds of the formula I are those in which the substituents have the following meanings:

25 R is C₂-C₁₂-alkyl such as ethyl and straight-chain or branched propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl and dodecyl, particularly straight-chain or branched C₃-C₁₀-alkyl such as propyl, 1-methylethyl, butyl, 1-methylpropyl, 30 2-methylpropyl, 1,1-dimethylethyl, n-pentyl, 1-methylbutyl, 2-methylbutyl, 3-methylbutyl, 1,2-dimethylpropyl, 1,1-dimethylpropyl, 2,2-dimethylpropyl, 1-ethylpropyl, n-hexyl, 1-methylpentyl, 2-methylpentyl, 3-methylpentyl, 35 4-methylpentyl, 1,2-dimethylbutyl, 1,3-dimethylbutyl, 1,3-dimethylbutyl, 2,3-dimethylbutyl, 1,1-dimethylbutyl, 2,2-dimethylbutyl, 3,3-dimethyl-

butyl, 1,1,2-trimethylpropyl, 1,2,2-trimethylpropyl,
1-ethylbutyl, 2-ethylbutyl, 1-ethyl-3-methylpropyl,
n-heptyl, 1-methylhexyl, 1-ethylpentyl, 2-ethyl-
pentyl, 1-propylbutyl, octyl, 1-methylheptyl,
2-methylheptyl, 1-ethylhexyl, 2-ethylhexyl,
1-propylpentyl, 2-propylpentyl, nonyl, 1-methyl-
octyl, 2-methyloctyl, 1-ethylheptyl, 2-ethylheptyl,
1-propylhexyl, 2-propylhexyl, decyl, 1-methylnonyl,
2-methylnonyl, 1-ethyloctyl, 2-ethyloctyl, 1-propyl-
heptyl and 2-propylheptyl, in particular propyl,
1-methylethyl, butyl, 1-methylbutyl, 2-methylbutyl,
1,1-dimethylethyl, pentyl, 1-methylbutyl, hexyl,
heptyl and 1-methylheptyl, where these groups can be
partially or completely halogenated, i.e. the
hydrogens of these groups can be partially or com-
pletely replaced by halogens such as fluorine,
chlorine and bromine, in particular fluorine and
chlorine, for example haloalkyl such as chloro-
methyl, dichloromethyl, trichloromethyl, fluoro-
methyl, difluoromethyl, trifluoromethyl, chloro-
fluoromethyl, dichlorofluoromethyl, chlorodifluoro-
methyl, 1-fluoroethyl, 2-fluoroethyl, 2,2-difluoro-
ethyl, 2,2,2-trifluoroethyl, 2-chloro-2-fluoroethyl,
2-chloro-2,2-difluoroethyl, 2,2-dichloro-2-fluoro-
ethyl, 2,2,2-trichloroethyl and pentafluoroethyl;

C_2-C_{12} -alkoxy such as ethoxy and straight-chain or
branched propoxy, butoxy, pentoxy, hexyloxy, heptyl-
oxy, octyloxy, nonyloxy, decyloxy, undecyloxy and
dodecyloxy, particularly straight-chain or branched
 C_2-C_{10} -alkoxy such as ethoxy, propoxy, 1-methyl-
ethoxy, butoxy, 1-methylpropoxy, 2-methylpropoxy,
1,1-dimethylethoxy, n-pentoxy, 1-methylbutoxy,
2-methylbutoxy, 3-methylbutoxy, 1,2-dimethylpropoxy,
1-ethylpropoxy, n-hexyloxy, 1-methylpentoxy,
2-methylpentoxy, 3-methylpentoxy, 4-methylpentoxy,
1,2-dimethylbutoxy, 1,3-dimethylbutoxy,

2,3-dimethylbutoxy, 1,2-dimethylbutoxy,
2,2-dimethylbutoxy, 3,3-dimethylbutoxy, 1,1,2-tri-
methylpropoxy, 1,2,2-trimethylpropoxy, 1-ethyl-
butoxy, 2-ethylbutoxy, 1-ethyl-2-methylpropoxy,
5
n-heptyloxy, 1-methylhexyloxy, 2-methylhexyloxy,
3-methylhexyloxy, 4-methylhexyloxy, 5-methylhexyl-
oxy, 1-ethylpentoxy, 2-ethylpentoxy, 1-propylbutoxy,
octyloxy, 1-methylheptyloxy, 2-methylheptyloxy,
1-ethylhexyloxy, 2-ethylhexyloxy, 1-propylpentoxy,
10 2-propylpentoxy, nonyloxy, 1-methyloctyloxy,
2-methyloctyloxy, 1-ethylheptyloxy, 2-ethylheptyl-
oxy, 1-propylhexyloxy, 2-propylhexyloxy, decyloxy,
1-methylnonyloxy, 2-methylnonyloxy, 1-ethyloctyloxy,
15 2-ethyloctyloxy, 1-propylheptyloxy and 2-propyl-
heptyloxy, in particular ethoxy, propoxy, 1-methyl-
ethoxy, butoxy, 1-methylpropoxy, 2-methylpropoxy,
1,1-dimethylethoxy, pentoxy, hexyloxy and 2-ethyl-
hexyloxy, where these groups can be partially or
completely halogenated, ie. the hydrogens of these
20 groups can be partially or completely replaced by
halogens such as fluorine, chlorine and bromine, in
particular fluorine and chlorine, for example halo-
alkoxy such as chloromethoxy, dichloromethoxy,
trichloromethoxy, fluoromethoxy, difluoromethoxy,
25 trifluoromethoxy, chlorofluoromethoxy, dichloro-
fluoromethoxy, chlorodifluoromethoxy, 1-fluoro-
ethoxy, 2-fluoroethoxy, 2,2-difluoroethoxy,
2,2,2-trifluoroethoxy, 2-chloro-2-fluoroethoxy,
2-chloro-2,2-difluoroethoxy, 2,2-dichloro-2-fluoro-
ethoxy, 2,2,2-trichloroethoxy and pentafluoroethoxy;

30 C₃-C₁₂-alkenyl such as straight-chain or branched
propenyl, butenyl, pentenyl, hexenyl, heptenyl,
octenyl, nonenyl, decenyl, undecenyl and dodecenyl,
particularly straight-chain or branched
35 C₃-C₁₀-alkenyl such as 2-propenyl, 2-butenyl,
3-butenyl, 1-methyl-2-propenyl, 2-methyl-2-propenyl,

2-pentenyl, 3-pentenyl, 4-pentenyl, 1-methyl-
2-butenyl, 2-methyl-2-butenyl, 3-methyl-2-butenyl,
1-methyl-3-butenyl, 2-methyl-3-butenyl, 3-methyl-
3-butenyl, 1,1-dimethyl-2-propenyl, 1,2-dimethyl-
5 2-propenyl, 1-ethyl-2-propenyl, 2-hexenyl,
3-hexenyl, 4-hexenyl, 5-hexenyl, 1-methyl-
2-pentenyl, 2-methyl-2-pentenyl, 3-methyl-
2-pentenyl, 4-methyl-2-pentenyl, 1-methyl-
3-pentenyl, 2-methyl-3-pentenyl, 3-methyl-
10 3-pentenyl, 4-methyl-3-pentenyl, 1-methyl-
4-pentenyl, 2-methyl-4-pentenyl, 3-methyl-
4-pentenyl, 4-methyl-4-pentenyl, 1,1-dimethyl-
2-but enyl, 1,1-dimethyl-3-butenyl, 1,2-dimethyl-
2-but enyl, 1,2-dimethyl-3-butenyl, 1,3-dimethyl-
15 2-but enyl, 1,3-dimethyl-3-butenyl, 2,2-dimethyl-
3-but enyl, 2,3-dimethyl-2-but enyl, 2,3-dimethyl-
3-but enyl, 1-ethyl-2-but enyl, 1-ethyl-3-but enyl,
2-ethyl-2-but enyl, 2-ethyl-3-but enyl, 1,1,2-tri-
methyl-2-propenyl, 1-ethyl-1-methyl-2-propenyl,
20 1-ethyl-2-methyl-2-propenyl, 1-methyl-2-pentenyl,
2-methyl-2-pentenyl, 1-methyl-3-pentenyl, 2-methyl-
3-pentenyl, 1-methyl-2-hexenyl, 2-methyl-2-hexenyl,
1-methyl-3-hexenyl, 2-methyl-3-hexenyl, 1-ethyl-
2-pentenyl, 2-ethyl-2-pentenyl, 1-ethyl-3-pentenyl,
25 2-ethyl-3-pentenyl, 1-methyl-2-heptenyl, 2-methyl-
2-heptenyl, 1-methyl-3-heptenyl, 2-methyl-
3-heptenyl, 1-ethyl-2-hexenyl, 2-ethyl-2-hexenyl,
1-ethyl-3-hexenyl, 2-ethyl-3-hexenyl, 1-methyl-
2-octenyl, 2-methyl-2-octenyl, 1-methyl-3-octenyl,
30 2-methyl-3-octenyl, 1-ethyl-2-heptenyl, 2-ethyl-
2-heptenyl, 1-ethyl-3-heptenyl, 2-ethyl-3-heptenyl,
1-ethyl-2-octenyl, 2-ethyl-2-octenyl, 1-ethyl-
3-octenyl and 2-ethyl-3-octenyl, in particular
1-propenyl, 2-propenyl, 1-methylethenyl, 1-methyl-
2-propenyl, 2-methyl-2-propenyl, 1-ethyl-2-propenyl,
35 1-methyl-2-but enyl, 1-ethyl-2-but enyl, 1-(1-methyl-
ethyl)-2-but enyl, 1-butyl-2-but enyl, 1-methyl-

2-pentenyl and 1,4-dimethyl-2-pentenyl, where these groups can be partially or completely halogenated, ie. the hydrogens of these groups can be partially or completely replaced by halogens such as fluorine, chlorine and bromine, in particular fluorine and chlorine, in particular 3-chloro-2-propenyl and 2,3-dichloro-2-propenyl;

C₃-C₁₂-alkenyloxy such as straight-chain or branched propenyloxy, butenyloxy, pentenyloxy, hexenyloxy, heptenyloxy, octenyloxy, nonenyloxy, decenyloxy, undecenyloxy and dodecenyloxy, particularly straight-chain or branched C₃-C₁₀-alkenyloxy such as 2-propenyloxy, 2-butenyloxy, 3-butenyloxy, 1-methyl-2-propenyloxy, 2-methyl-2-propenyloxy, 2-pentenyl-oxy, 3-pentenyl-oxy, 4-pentenyl-oxy, 1-methyl-2-butenyloxy, 2-methyl-2-butenyloxy, 3-methyl-2-butenyloxy, 1-methyl-3-butenyloxy, 2-methyl-3-butenyloxy, 3-methyl-3-butenyloxy, 1,1-dimethyl-2-propenyloxy, 1,2-dimethyl-2-propenyloxy, 1-ethyl-2-propenyloxy, 2-hexenyloxy, 3-hexenyloxy, 4-hexenyloxy, 5-hexenyloxy, 1-methyl-2-pentenyl-oxy, 2-methyl-2-pentenyl-oxy, 3-methyl-2-pentenyl-oxy, 4-methyl-2-pentenyl-oxy, 1-methyl-3-pentenyl-oxy, 2-methyl-3-pentenyl-oxy, 3-methyl-3-pentenyl-oxy, 4-methyl-3-pentenyl-oxy, 1-methyl-4-pentenyl-oxy, 2-methyl-4-pentenyl-oxy, 3-methyl-4-pentenyl-oxy, 4-methyl-4-pentenyl-oxy, 1,1-dimethyl-2-butenyloxy, 1,1-dimethyl-3-butenyloxy, 1,2-dimethyl-2-butenyloxy, 1,2-dimethyl-3-butenyloxy, 1,3-dimethyl-2-butenyloxy, 1,3-dimethyl-3-butenyl-oxy, 2,2-dimethyl-3-butenyloxy, 2,3-dimethyl-2-butenyloxy, 2,3-dimethyl-3-butenyloxy, 1-ethyl-2-butenyloxy, 1-ethyl-3-butenyloxy, 2-ethyl-2-butenyloxy, 2-ethyl-3-butenyloxy, 1,1,2-trimethyl-2-propenyl-oxy, 1-ethyl-1-methyl-2-propenyl-oxy, 1-ethyl-2-methyl-2-propenyl-oxy, 1-methyl-2-pentenyl-

oxy, 2-methyl-2-pentenyloxy, 1-methyl-3-pentenyloxy,
2-methyl-3-pentenyloxy, 1-methyl-2-hexenyloxy,
2-methyl-2-hexenyloxy, 1-methyl-3-hexenyloxy,
2-methyl-3-hexenyloxy, 1-ethyl-2-pentenyloxy,
5 2-ethyl-2-pentenyloxy, 1-ethyl-3-pentenyloxy,
2-ethyl-3-pentenyloxy, 1-methyl-2-heptenyloxy,
2-methyl-2-heptenyloxy, 1-methyl-3-heptenyloxy,
2-methyl-3-heptenyloxy, 1-ethyl-2-hexenyloxy,
2-ethyl-2-hexenyloxy, 1-ethyl-3-hexenyloxy, 2-ethyl-
10 3-hexenyloxy, 1-methyl-2-octenyloxy, 2-methyl-
2-octenyloxy, 1-methyl-3-octenyloxy, 2-methyl-
3-octenyloxy, 1-ethyl-2-heptenyloxy, 2-ethyl-
2-heptenyloxy, 1-ethyl-3-heptenyloxy, 2-ethyl-
3-heptenyloxy, 1-ethyl-2-octenyloxy, 2-ethyl-
15 2-octenyloxy, 1-ethyl-3-octenyloxy and 2-ethyl-
3-octenyloxy, in particular 2-propenyloxy, 1-methyl-
2-propenyloxy, 2-methyl-2-propenyloxy, 2-pentenyl-
oxy, 3-pentenyloxy, 1-methyl-2-butenyloxy and
1-methyl-2-pentenyloxy, where these groups can be
20 partially or completely halogenated, ie. the
hydrogens of these groups can be partially or com-
pletely replaced by halogens such as fluorine,
chlorine and bromine, in particular fluorine and
chlorine, in particular 3-chloro-2-propenyloxy,
25 2,3-dichloro-2-propenyloxy and 2,3,3-trichloro-
2-propenyloxy;

C₃-C₆-alkynyl such as 2-propynyl, 2-butynyl, 3-
butynyl, 1-methyl-2-propynyl, 2-pentynyl, 3-pent-
30 ynyl, 4-pentynyl, 1-methyl-3-butynyl, 2-methyl-3-
butynyl, 1-methyl-2-butynyl, 1,1-dimethyl-2-propyn-
yl, 1-ethyl-2-propynyl, 2-hexynyl, 3-hexynyl, 4-
alkynyl, 5-hexynyl, 1-methyl-2-pentynyl, 1-methyl-3-
pentynyl, 1-methyl-4-pentynyl, 2-methyl-3-pentynyl,
2-methyl-4-pentynyl, 3-methyl-4-pentynyl, 4-methyl-
35 2-pentynyl, 1,2-dimethyl-2-butynyl, 1,1-dimethyl-3-
butynyl, 1,2-dimethyl-3-butynyl, 2,2-dimethyl-3-

butynyl, 1-ethyl-2-butynyl, 1-ethyl-3-butynyl, 2-ethyl-3-butynyl and 1-ethyl-1-methyl-2-propynyl, in particular 2-propynyl, 2-butynyl and 3-butynyl, where these groups can be partially or completely halogenated, ie. the hydrogens of these groups can be partially or completely replaced by halogens such as fluorine, chlorine and bromine, in particular fluorine and chlorine, for example 3-chloro-2-propynyl, 3-chloro-2-butynyl and 4-chloro-3-butynyl;

5

10 C₃-C₆-alkynyloxy such as 2-propynyloxy, 2-butynyloxy, 3-butynyloxy, 1-methyl-2-propynyloxy, 2-pentynyloxy, 3-pentynyloxy, 3-pentynyloxy, 4-pentynyloxy, 1-methyl-3-butynyloxy, 2-methyl-3-butynyloxy, 1-methyl-2-butynyloxy, 1,1-dimethyl-2-propionyloxy, 1-ethyl-2-propynyloxy, 2-hexynyloxy, 3-hexynyloxy, 4-alkynyloxy, 5-hexynyloxy, 1-methyl-2-pentynyloxy, 1-methyl-3-pentynyloxy, 1-methyl-4-pentynyloxy, 2-methyl-3-pentynyloxy, 2-methyl-4-pentynyloxy, 3-methyl-4-pentynyloxy, 4-methyl-3-pentynyloxy,

15

20 1,1-dimethyl-2-butynyloxy, 1,1-dimethyl-3-butynyl-oxy, 1,2-dimethyl-3-butynyloxy, 2,2-dimethyl-3-butynyloxy, 1-ethyl-2-butynyloxy, 1-ethyl-3-butynyl-oxy, 2-ethyl-3-butynyloxy and 1-ethyl-1-methyl-2-propynyloxy, preferably 2-propynyloxy, 2-butynyloxy, 1-methyl-2-propynyloxy and 1-methyl-2-butynyloxy, 2-propynyloxy, 2-butynyloxy, 3-butynyloxy and 1-methyl-2-propynyloxy, where these groups can be partially or completely halogenated, ie. the hydrogens of these groups can be partially or completely replaced by halogens such as fluorine, chlorine and bromine, in particular fluorine and chlorine, for example 3-chloro-2-propynyloxy, 3-chloro-2-butynyl-oxy and 4-chloro-3-butynyloxy;

25

30

35 C₃-C₆-cycloalkyl such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and cycloheptyl, where these

rings can carry one to 3 C₁-C₄-alkyls such as methyl, ethyl, propyl, 1-methylethyl, butyl, 1-methylpropyl, 2-methylpropyl and 1,1-dimethylethyl;

5 C₄-C₁-cycloalkenyl such as cyclobutenyl, cyclopentenyl, cyclohexenyl and cycloheptenyl, where these rings can carry one to three C₁-C₄-alkyls such as methyl, ethyl, propyl, 1-methylethyl, butyl, 1-methylpropyl, 2-methylpropyl and 1,1-dimethylethyl;

10 C₃-C₁-cycloalkoxy such as cyclopropoxy, cyclobutoxy, cyclopentoxy, cyclohexyloxy and cycloheptyloxy, where these rings can carry one to 3 C₁-C₄-alkyls such as methyl, ethyl, propyl, 1-methylethyl, butyl, 1-methylpropyl, 2-methylpropyl and 1,1-dimethylethyl;

15 or C₄-C₁-cycloalkenyloxy such as 1-cyclobutenyloxy, 2-cyclobutenyloxy, 1-cyclopentyloxy, 2-cyclopentyloxy, 3-cyclopentyloxy, 1-cyclohexenyloxy, 2-cyclohexenyloxy, 3-cyclohexenyloxy, 1-cycloheptynyloxy, 2-cycloheptynyloxy, 3-cycloheptynyloxy and 4-cycloheptynyloxy, where these rings can carry one to 3 C₁-C₄-alkyls such as methyl, ethyl, propyl, 1-methylethyl, butyl, 1-methylpropyl, 2-methylpropyl and 1,1-dimethylethyl;

20 phenyl, which can carry one to five halogens such as fluorine, chlorine, bromine and iodine, in particular fluorine, chlorine and bromine, and/or one to three of the following radicals:

- 25
- C₁-C₄-alkyl as mentioned above;
 - C₁-C₄-haloalkyl as mentioned above;
 - 30 - C₁-C₄-alkoxy as mentioned above;
 - C₁-C₄-haloalkoxy as mentioned above;
 - C₁-C₄-alkylthio such as methylthio, ethylthio,

propylthio, 1-methylethylthio, butylthio, 1-methylpropylthio, 2-methylpropylthio and 1,1-dimethylethylthio;

- or C₁-C₄-haloalkylthio, particularly C₁-C₂-haloalkylthio such as chloromethylthio, dichloromethylthio, trichloromethylthio, fluoromethylthio, difluoromethylthio, trifluoromethylthio, chlorofluoromethylthio, dichlorofluoromethylthio, chlorodifluoromethylthio, 1-fluoroethylthio, 2-fluoroethylthio, 2,2-difluoroethylthio, 2,2,2-trifluoroethylthio, 2-chloro-2-fluoroethylthio, 2-chloro-2,2-difluoroethylthio, 2,2-dichloro-2-fluoroethylthio, 2,2,2-trichloroethylthio and pentafluoroethylthio.

- 15 A is a cyclic radical from the group consisting of the formulae A1 to A7:

where the substituents have the following meanings:

- X is -CH₂-, -S-, -SO- or -SO₂-;
- Y is -O- or -S-;
- 20 R¹, R², R⁴, R⁵ and R⁷ independently of one another are halogen such as fluorine, chlorine and bromine, C₁-C₄-alkyl as mentioned above, or C₁-C₄-haloalkyl as mentioned above;
- R³ and R⁶ independently of one another are hydrogen, halogen such as fluorine, chlorine and bromine or

C_1-C_4 -alkyl as mentioned above;

n is 1 or 2, where the radicals R^3 can be different if the value of n is 2.

With respect to the biological action, 5 particularly preferred compounds of the formula I are those in which R has the abovementioned meanings and A is a cyclic radical from the group consisting of the formulae A1 to A7, where X and Y have the abovementioned meaning and the substituents are the following radicals:

10 R^1 is halogen such as fluorine, chlorine and bromine, methyl or C_1 -haloalkyl such as chloromethyl, dichloromethyl, trichloromethyl, fluoromethyl, difluoromethyl, trifluoromethyl, chlorofluoromethyl, dichlorofluoromethyl and chlorodifluoromethyl;

15 R^2 is halogen such as fluorine, chlorine and bromine or C_1 -haloalkyl such as chloromethyl, dichloromethyl, trichloromethyl, fluoromethyl, difluoromethyl, trifluoromethyl, chlorofluoromethyl, dichlorofluoromethyl and chlorodifluoromethyl;

20 R^3 is hydrogen or methyl;

n is 1 or 2, where the radicals R^3 can be different if the value of n is 2;

R^4 is halogen such as fluorine, chlorine and bromine or methyl;

25 R^5 is methyl or C_1 -haloalkyl such as chloromethyl, dichloromethyl, trichloromethyl, fluoromethyl, difluoromethyl, trifluoromethyl, chlorofluoromethyl, dichlorofluoromethyl and chlorodifluoromethyl;

R^6 is hydrogen, halogen such as fluorine, chlorine and bromine or methyl;

30 R^7 is halogen such as fluorine, chlorine and bromine, methyl or C_1 -haloalkyl such as chloromethyl, dichloromethyl, trichloromethyl, fluoromethyl, difluoromethyl, trifluoromethyl, chlorofluoromethyl, dichlorofluoromethyl and chlorodifluoromethyl.

In particular, those compounds of the formula I are preferred in which R has the abovementioned meaning

and A is a cyclic radical from the group consisting of the formulae A1 to A7, where X and Y have the above-mentioned meaning and the substituents are the following groups:

- 5 R¹ is chlorine, bromine, iodine, methyl or trifluoromethyl;
R² is chlorine or trifluoromethyl;
R³ is hydrogen or methyl;
n is 1 or 2, where the radicals R³ can be different if
10 the value of n is 2;
R⁴ is chlorine or methyl;
R⁵ is methyl, difluoromethyl or trifluoromethyl;
R⁶ is hydrogen, chlorine or methyl;
R⁷ is chlorine, methyl or trifluoromethyl.

15 Particularly preferred compounds of the formula I
are summarized in the following Tables A to G.

2106497

15

Table A

	R ¹	R
10	CF ₃	i-C ₃ H ₇
	CF ₃	n-C ₃ H ₇
15	CF ₃	n-C ₄ H ₉
	CF ₃	sec.-C ₄ H ₉
	CF ₃	i-C ₄ H ₉
	CF ₃	tert.-C ₄ H ₉
20	CF ₃	n-C ₅ H ₁₁
	CF ₃	sec-C ₅ H ₁₁
	CF ₃	n-C ₆ H ₁₃
	CF ₃	n-C ₇ H ₁₅
25	CF ₃	sec.-C ₇ H ₁₅
	CF ₃	1-methylvinyl
	CF ₃	2-methylvinyl
	CF ₃	allyl
	CF ₃	2-methylallyl
30	CF ₃	2-ethylallyl
	CF ₃	1-methylallyl
	CF ₃	1-ethylallyl
	CF ₃	1-methyl-2-butenyl
35	CF ₃	1-ethyl-2-butenyl
	CF ₃	1-isopropyl-2-butenyl
	CF ₃	1-n-butyl-2-butenyl
	CF ₃	1-methyl-2-pentenyl
40	CF ₃	1,4-dimethyl-2-pentenyl
	CF ₃	propargyl
	CF ₃	2-butynyl
	CF ₃	3-butynyl
	CF ₃	ethoxy
45	CF ₃	propoxy
	CF ₃	1-methylethoxy

	R ¹	R
5	CF ₃	n-butoxy
	CF ₃	1-methylpropoxy
	CF ₃	2-methylpropoxy
	CF ₃	1,1-dimethylethoxy
	CF ₃	n-pentyloxy
10	CF ₃	n-hexyloxy
	CF ₃	2-ethylhexyloxy
	CF ₃	2-propenyloxy
	CF ₃	2-butenyloxy
	CF ₃	2-methyl-2-propenyloxy
15	CF ₃	2-pentenyloxy
	CF ₃	3-pentenyloxy
	CF ₃	3-chloro-2-propenyloxy
	CF ₃	2,3-dichloro-2-propenyloxy
	CF ₃	2,3,3-trichloropropenyloxy
20	CF ₃	2-propynyloxy
	CF ₃	2-butynyloxy
	CF ₃	3-butynyloxy
	CF ₃	1-methyl-2-propynyloxy
	CF ₃	cyclopropyl
25	CF ₃	cyclobutyl
	CF ₃	cyclopentyl
	CF ₃	cyclohexyl
	CF ₃	2-cyclopentenyl
	CF ₃	1-cyclopentenyl
30	CF ₃	2-cyclohexenyl
	CF ₃	1-cyclohexenyl
	CF ₃	cyclopentyloxy
	CF ₃	cyclohexyloxy
	CF ₃	2-cyclopentenyloxy
35	CF ₃	2-cyclohexenyloxy
	CF ₃	phenyl
	C1	i-C ₃ H ₇
	C1	n-C ₃ H ₇
	C1	n-C ₄ H ₉
40	C1	sec.-C ₄ H ₉
	C1	i-C ₄ H ₉
	C1	tert.-C ₄ H ₉

2106497

17

	R ¹	R
5	C1	n-C ₅ H ₁₁
	C1	sec.-C ₅ H ₁₁
	C1	n-C ₆ H ₁₃
	C1	n-C ₇ H ₁₅
	C1	sec.-C ₇ H ₁₅
	C1	1-methylvinyl
10	C1	2-methylvinyl
	C1	allyl
	C1	2-methylvinyl
	C1	2-ethylallyl
	C1	1-methylallyl
	C1	1-ethylallyl
15	C1	1-methyl-2-but enyl
	C1	1-ethyl-2-but enyl
	C1	1-isopropyl-2-but enyl
	C1	1-n-buty l-2-but enyl
	C1	methyl-2-pentenyl
	C1	1,4-dimethyl-2-pentenyl
20	C1	propargyl
	C1	2-butynyl
	C1	3-butynyl
	C1	ethoxy
	C1	propoxy
	C1	1-methylethoxy
25	C1	n-butoxy
	C1	1-methylpropoxy
	C1	2-methylpropoxy
	C1	1,1-dimethylmethoxy
	C1	n-pentyloxy
	C1	n-hexyloxy
30	C1	2-ethylhexyloxy
	C1	2-propenyloxy
	C1	2-butenyloxy
	C1	2-methyl-2-propenyloxy
	C1	2-pentenyloxy
	C1	3-pentenyloxy
35	C1	3-chloro-2-propenyloxy
	C1	2,3-dichloro-2-propenyloxy
40		
45		

2106497

18

R ¹	R
5	C1 2,3,3-trichloropropenyoxy
	C1 2-propynyloxy
	C1 2-butynyloxy
	C1 3-butynyloxy
	C1 1-methyl-2-propynyloxy
10	C1 cyclopropyl
	C1 cyclobutyl
	C1 cyclopentyl
	C1 cyclohexyl
	C1 2-cyclopentenyl
15	C1 1-cyclopentenyl
	C1 2-cyclohexenyl
	C1 1-cyclohexenyl
	C1 cyclopentyloxy
	C1 cyclohexyloxy
20	C1 2-cyclopentenyloxy
	C1 2-cyclohexenyloxy
	C1 phenyl

25

30

35

40

45

19

Table B

5

I.2

10	R ²	R
	C1	i-C ₃ H ₇
	C1	n-C ₃ H ₇
	C1	n-C ₄ H ₉
15	C1	sec.-C ₄ H ₉
	C1	i-C ₄ H ₉
	C1	tert.-C ₄ H ₉
	C1	n-C ₅ H ₁₁
20	C1	sec.-C ₅ H ₁₁
	C1	n-C ₆ H ₁₃
	C1	n-C ₇ H ₁₅
	C1	sec.-C ₇ H ₁₅
25	C1	1-methylvinyl
	C1	2-methylvinyl
	C1	allyl
	C1	2-methylallyl
	C1	2-ethylallyl
30	C1	1-methylallyl
	C1	1-ethylallyl
	C1	1-methyl-2-butenyl
	C1	1-ethyl-2-butenyl
35	C1	1-isopropyl-2-butenyl
	C1	1-n-butyl-2-butenyl
	C1	1-methyl-2-pentenyl
	C1	1,4-dimethyl-2-pentenyl
40	C1	propargyl
	C1	2-butynyl
	C1	3-butynyl
	C1	ethoxy
45	C1	propoxy
	C1	1-methylethoxy
	C1	n-butoxy

2106497

20

	R ²	R
5	C1	1-methylpropoxy
	C1	2-methylpropoxy
	C1	1,1-dimethylethoxy
	C1	n-pentyloxy
	C1	n-hexyloxy
	C1	2-ethylhexyloxy
10	C1	2-propenyloxy
	C1	2-butenyloxy
	C1	2-methyl-2-propenyloxy
	C1	2-pentenyloxy
	C1	3-pentenyloxy
	C1	3-chloro-2-propenyloxy
15	C1	2,3-dichloro-2-propenyloxy
	C1	2,3,3-trichloropropenyloxy
	C1	2-propynyloxy
	C1	2-butynyloxy
	C1	3-butynyloxy
	C1	1-methyl-2-propynyloxy
20	C1	cyclopropyl
	C1	cyclobutyl
	C1	cyclopentyl
	C1	cyclohexyl
	C1	2-cyclopentenyl
	C1	1-cyclopentenyl
25	C1	2-cyclohexenyl
	C1	1-cyclohexenyl
	C1	cyclopentyloxy
	C1	cyclohexyloxy
	C1	2-cyclopentenyloxy
	C1	2-cyclohexenyloxy
30	C1	i-C ₃ H ₇
	C1	n-C ₃ H ₇
	C1	n-C ₄ H ₉
	C1	sec.-C ₄ H ₉
	C1	i-C ₄ H ₉
	C1	tert.-C ₄ H ₉
35	C1	n-C ₅ H ₁₁
	C1	sec.-C ₅ H ₁₁

21 2106497

R ²	R
5	Cl n-C ₆ H ₁₃
	Cl n-C ₇ H ₁₅
	Cl sec.-C ₇ H ₁₅
	Cl ethoxy
	Cl propoxy
10	Cl 1-methylethoxy
	Cl n-butoxy
	Cl 1-methylpropoxy
	Cl 2-methylpropoxy
	Cl 1,1-dimethylethoxy
15	Cl n-pentyloxy
	Cl n-hexyloxy
	Cl cyclopentyl
	Cl phenyl

20

25

30

35

40

45

22

2106497

Table C

5

I.3

10

	X	R
15	CH ₂	i-C ₃ H ₇
	CH ₂	n-C ₃ H ₇
	CH ₂	n-C ₄ H ₉
	CH ₂	sec.-C ₄ H ₉
	CH ₂	i-C ₄ H ₉
20	CH ₂	tert.-C ₄ H ₉
	CH ₂	n-C ₅ H ₁₁
	CH ₂	sec.-C ₅ H ₁₁
	CH ₂	n-C ₆ H ₁₃
	CH ₂	n-C ₇ H ₁₅
25	CH ₂	sec.-C ₇ H ₁₅
	CH ₂	1-methylvinyl
	CH ₂	2-methylvinyl
	CH ₂	allyl
	CH ₂	2-methylallyl
30	CH ₂	2-ethylallyl
	CH ₂	1-methylallyl
	CH ₂	1-ethylallyl
	CH ₂	1-methyl-2-butenyl
	CH ₂	1-ethyl-2-butenyl
35	CH ₂	1-isopropyl-2-buteneyl
	CH ₂	1-n-butyl-2-buteneyl
	CH ₂	1-methyl-2-pentenyl
	CH ₂	1,4-dimethyl-2-pentenyl
	CH ₂	propargyl
40	CH ₂	2-butyanyl
	CH ₂	3-butyanyl
	CH ₂	ethoxy
	CH ₂	propoxy

2106497

23

	X	R
5	CH ₂	1-methylethoxy
	CH ₂	n-butoxy
	CH ₂	1-methylpropoxy
	CH ₂	2-methylpropoxy
10	CH ₂	1,1-dimethylethoxy
	CH ₂	n-pentyloxy
	CH ₂	n-hexyloxy
	CH ₂	2-ethylhexyloxy
	CH ₂	2-propenyloxy
	CH ₂	2-butenyloxy
15	CH ₂	2-methyl-2-propenyloxy
	CH ₂	2-pentenyloxy
	CH ₂	3-pentenyloxy
	CH ₂	3-chloro-2-propenyloxy
20	CH ₂	2,3-dichloro-2-propenyloxy
	CH ₂	2,3,3-trichloropropenyloxy
	CH ₂	2-propynyloxy
	CH ₂	2-butynyloxy
25	CH ₂	3-butynyloxy
	CH ₂	1-methyl-2-propynyloxy
	CH ₂	cyclopropyl
	CH ₂	cyclobutyl
30	CH ₂	cyclopentyl
	CH ₂	cyclohexyl
	CH ₂	2-cyclopentenyl
	CH ₂	1-cyclopentenyl
35	CH ₂	2-cyclohexenyl
	CH ₂	1-cyclohexenyl
	CH ₂	cyclopentyloxy
	CH ₂	cyclohexyloxy
40	CH ₂	2-cyclopentenyloxy
	CH ₂	2-cyclohexenyloxy
	S	i-C ₃ H ₇
	S	n-C ₃ H ₇
45	S	n-C ₄ H ₉
	S	sec.-C ₄ H ₉
	S	i-C ₄ H ₉
	S	tert.-C ₄ H ₉

2106497

24

	X	R
5	S	n-C ₅ H ₁₁
	S	sec.-C ₅ H ₁₁
	S	n-C ₆ H ₁₃
	S	n-C ₇ H ₁₅
	S	sec.-C ₇ H ₁₅
10	S	ethoxy
	S	propoxy
	S	1-methylethoxy
	S	n-butoxy
	S	1-methylpropoxy
15	S	2-methylpropoxy
	S	1,1-dimethylethoxy
	S	n-pentyloxy
	S	n-hexyloxy
	S	cyclopentyl
20	S	phenyl

25

30

35

40

45

Table D

5

I.4

10

	R ³	R	Y
15	H	i-C ₃ H ₇	o
	H	n-C ₃ H ₇	o
	H	n-C ₄ H ₉	o
	H	sec.-C ₄ H ₉	o
	H	i-C ₄ H ₉	o
20	H	tert.-C ₄ H ₉	o
	H	n-C ₅ H ₁₁	o
	H	sec.-C ₅ H ₁₁	o
	H	n-C ₆ H ₁₃	o
	H	n-C ₇ H ₁₅	o
25	H	sec.-C ₇ H ₁₅	o
	H	ethoxy	o
	H	propoxy	o
	H	1-methylethoxy	o
	H	n-butoxy	o
30	H	1-methylpropoxy	o
	H	2-methylpropoxy	o
	H	1,1-dimethylethoxy	o
	H	n-pentyloxy	o
	H	n-hexyloxy	o
35	H	cyclopentyl	o
	H	cyclohexyl	o
	H	2-cyclopentenyl	o
	H	1-cyclopentenyl	o
	H	2-cyclohexenyl	o
40	H	1-cyclohexenyl	o
	H	cyclopentyloxy	o
	H	cyclohexyloxy	o
	H	2-cyclopentenyloxy	o
	H	2-cyclopentenyl	o
45	H	2-cyclopentenyl	o
	H	2-cyclopentenyl	o

26

2106497

	R ³	R	Y
	H	2-cyclohexenylxy	O
5	CH ₃	i-C ₃ H ₇	O
	CH ₃	n-C ₃ H ₇	O
	CH ₃	n-C ₄ H ₉	O
	CH ₃	sec.-C ₄ H ₉	O
10	CH ₃	i-C ₄ H ₉	O
	CH ₃	tert.-C ₄ H ₉	O
	CH ₃	n-C ₅ H ₁₁	O
	CH ₃	sec.-C ₅ H ₁₁	O
	CH ₃	n-C ₆ H ₁₃	O
15	CH ₃	n-C ₇ H ₁₅	O
	CH ₃	sec.-C ₇ H ₁₅	O
	CH ₃	ethoxy	O
	CH ₃	propoxy	O
20	CH ₃	1-methylmethoxy	O
	CH ₃	n-butoxy	O
	CH ₃	1-methylpropoxy	O
	CH ₃	2-methylpropoxy	O
25	CH ₃	1,1-dimethylmethoxy	O
	CH ₃	n-pentyloxy	O
	CH ₃	n-hexyloxy	O
	CH ₃	cyclopentyl	O
	CH ₃	phenyl	O

30

35

40

45

Table E

	R ⁴	R	Y
10	CH ₃	i-C ₃ H ₇	O
	CH ₃	n-C ₃ H ₇	O
	CH ₃	n-C ₄ H ₉	O
15	CH ₃	sec.-C ₄ H ₉	O
	CH ₃	i-C ₄ H ₉	O
	CH ₃	tert.-C ₄ H ₉	O
	CH ₃	n-C ₅ H ₁₁	O
20	CH ₃	sec.-C ₅ H ₁₁	O
	CH ₃	n-C ₆ H ₁₃	O
	CH ₃	n-C ₇ H ₁₅	O
	CH ₃	sec.-C ₇ H ₁₅	O
25	CH ₃	ethoxy	O
	CH ₃	propoxy	O
	CH ₃	1-methylmethoxy	O
	CH ₃	n-butoxy	O
	CH ₃	1-methylpropoxy	O
30	CH ₃	2-methylpropoxy	O
	CH ₃	1,1-dimethylmethoxy	O
	CH ₃	n-pentyloxy	O
	CH ₃	n-hexyloxy	O
35	CH ₃	cyclopentyl	O
	CH ₃	cyclopentenyl	O
	CH ₃	i-C ₃ H ₇	S
	CH ₃	n-C ₃ H ₇	S
40	CH ₃	n-C ₄ H ₉	S
	CH ₃	sec.-C ₄ H ₉	S
	CH ₃	i-C ₄ H ₉	S
	CH ₃	tert.-C ₄ H ₉	S
45	CH ₃	n-C ₅ H ₁₁	S
	CH ₃	sec.-C ₅ H ₁₁	S
	CH ₃	n-C ₆ H ₁₃	S

2106497

28

	R ⁴	R	Y
5	CH ₃	n-C ₇ H ₁₅	S
	CH ₃	sec.-C ₇ H ₁₅	S
	CH ₃	ethoxy	S
	CH ₃	propoxy	S
	CH ₃	1-methylethoxy	S
	CH ₃	n-butoxy	S
10	CH ₃	1-methylpropoxy	S
	CH ₃	2-methylpropoxy	S
	CH ₃	1,1-dimethylethoxy	S
	CH ₃	n-pentyloxy	S
	CH ₃	n-hexyloxy	S
	CH ₃	cyclopentyl	S
15	CH ₃	cyclopentenyl	S

20

25

30

35

40

45

Table F

10

	R ⁵	R ⁶	R
15	CH ₃	H	i-C ₃ H ₇
	CH ₃	H	n-C ₃ H ₇
	CH ₃	H	n-C ₄ H ₉
	CH ₃	H	sec.-C ₄ H ₉
20	CH ₃	H	i-C ₄ H ₉
	CH ₃	H	tert.-C ₄ H ₉
	CH ₃	H	n-C ₅ H ₁₁
	CH ₃	H	sec.-C ₅ H ₁₁
25	CH ₃	H	n-C ₆ H ₁₃
	CH ₃	H	n-C ₇ H ₁₅
	CH ₃	H	sec.-C ₇ H ₁₅
	CH ₃	H	1-methylvinyl
30	CH ₃	H	2-methylvinyl
	CH ₃	H	allyl
	CH ₃	H	2-methylallyl
	CH ₃	H	2-ethylallyl
35	CH ₃	H	1-methylallyl
	CH ₃	H	1-ethylallyl
	CH ₃	H	1-isopropyl-2-butenyl
	CH ₃	H	1-n-butyl-2-butenyl
40	CH ₃	H	1-methyl-2-pentenyl
	CH ₃	H	1, 4-dimethyl-2-pentenyl
	CH ₃	H	propargyl
	CH ₃	H	2-butynyl
45	CH ₃	H	3-butynyl
	CH ₃	H	ethoxy
	CH ₃	H	propoxy

2106497

30

	R ⁵	R ⁶	R
5	CH ₃	H	1-methylethoxy
	CH ₃	H	n-butoxy
	CH ₃	H	1-methylpropoxy
	CH ₃	H	2-methylpropoxy
10	CH ₃	H	1,1-dimethylethoxy
	CH ₃	H	n-pentyloxy
	CH ₃	H	n-hexyloxy
	CH ₃	H	2-ethylhexyloxy
15	CH ₃	H	2-propenylloxy
	CH ₃	H	2-butenylloxy
	CH ₃	H	2-methyl-2-propenylloxy
	CH ₃	H	2-pentenylloxy
20	CH ₃	H	3-pentenylloxy
	CH ₃	H	3-chloro-2-propenylloxy
	CH ₃	H	2,3-dichloro-2-propenylloxy
	CH ₃	H	2,3,3-trichloropropenylloxy
25	CH ₃	H	2-propynylloxy
	CH ₃	H	2-butynylloxy
	CH ₃	H	3-butynylloxy
	CH ₃	H	1-methyl-2-propynylloxy
30	CH ₃	H	cyclopropyl
	CH ₃	H	cyclobutyl
	CH ₃	H	cyclopentyl
	CH ₃	H	cyclohexyl
35	CH ₃	H	2-cyclopentenyl
	CH ₃	H	1-cyclopentenyl
	CH ₃	H	2-cyclohexenyl
	CH ₃	H	1-cyclohexenyl
40	CH ₃	H	cyclopentylloxy
	CH ₃	H	cyclohexylloxy
	CH ₃	H	2-cyclopentenyloxy
	CH ₃	H	2-cyclohexenyloxy
45	CF ₃	H	i-C ₃ H ₇
	CF ₃	H	n-C ₃ H ₇
	CF ₃	H	n-C ₄ H ₉
	CF ₃	H	sec.-C ₄ H ₉
	CF ₃	H	i-C ₄ H ₉
	CF ₃	H	tert.-C ₄ H ₉

31

2106497

	R ⁵	R ⁶	R
5	CF ₃	H	n-C ₅ H ₁₁
	CF ₃	H	sec.-C ₅ H ₁₁
	CF ₃	H	n-C ₆ H ₁₃
	CF ₃	H	n-C ₇ H ₁₅
	CF ₃	H	sec.-C ₇ H ₁₅
	CF ₃	H	ethoxy
10	CF ₃	H	propoxy
	CF ₃	H	1-methylethoxy
	CF ₃	H	n-butoxy
	CF ₃	H	1-methylpropoxy
15	CF ₃	H	2-methylpropoxy
	CF ₃	H	1,1-dimethylethoxy
	CF ₃	H	n-pentyloxy
20	CF ₃	H	n-hexyloxy
	CF ₃	H	cyclopentyl
	CF ₃	H	cyclopentenyl
	CF ₃	H	phenyl

25

30

35

40

45

Table G

	R ⁷	R ⁶	R
10	CF ₃	CH ₃	i-C ₃ H ₇
	CF ₃	CH ₃	n-C ₃ H ₇
15	CF ₃	CH ₃	n-C ₄ H ₉
	CF ₃	CH ₃	sec.-C ₄ H ₉
20	CF ₃	CH ₃	i-C ₄ H ₉
	CF ₃	CH ₃	tert.-C ₄ H ₉
25	CF ₃	CH ₃	n-C ₅ H ₁₁
	CF ₃	CH ₃	sec.-C ₅ H ₁₁
30	CF ₃	CH ₃	n-C ₆ H ₁₃
	CF ₃	CH ₃	n-C ₇ H ₁₅
35	CF ₃	CH ₃	sec.-C ₇ H ₁₅
	CF ₃	CH ₃	1-methylvinyl
40	CF ₃	CH ₃	2-methylvinyl
	CF ₃	CH ₃	allyl
45	CF ₃	CH ₃	2-methylallyl
	CF ₃	CH ₃	2-ethylallyl
	CF ₃	CH ₃	1-methylallyl
	CF ₃	CH ₃	1-ethylallyl
	CF ₃	CH ₃	1-methyl-2-butenyl
	CF ₃	CH ₃	1-ethyl-2-butenyl
	CF ₃	CH ₃	1-isopropyl-2-butenyl
	CF ₃	CH ₃	1-n-butyl-2-butenyl
	CF ₃	CH ₃	1-methyl-2-pentenyl
	CF ₃	CH ₃	1,4-dimethyl-2-pentenyl
	CF ₃	CH ₃	propargyl
	CF ₃	CH ₃	2-butynyl
	CF ₃	CH ₃	3-butynyl
	CF ₃	CH ₃	ethoxy
	CF ₃	CH ₃	propoxy
	CF ₃	CH ₃	1-methylethoxy

	R ⁷	R ⁶	R
5	CF ₃	CH ₃	n-butoxy
	CF ₃	CH ₃	1-methylpropoxy
	CF ₃	CH ₃	2-methylpropoxy
	CF ₃	CH ₃	1,1-dimethylethoxy
	CF ₃	CH ₃	n-pentyloxy
10	CF ₃	CH ₃	n-hexyloxy
	CF ₃	CH ₃	2-ethylhexyloxy
	CF ₃	CH ₃	2-propenyloxy
	CF ₃	CH ₃	2-butenyloxy
	CF ₃	CH ₃	2-methyl-2-propenyloxy
15	CF ₃	CH ₃	2-pentenyloxy
	CF ₃	CH ₃	3-pentenyloxy
	CF ₃	CH ₃	3-chloro-2-propenyloxy
	CF ₃	CH ₃	2,3-dichloro-2-propenyloxy
	CF ₃	CH ₃	2,3,3-trichloropropenyloxy
20	CF ₃	CH ₃	2-propynyloxy
	CF ₃	CH ₃	2-butynyloxy
	CF ₃	CH ₃	3-butynyloxy
	CF ₃	CH ₃	1-methyl-2-propynyloxy
	CF ₃	CH ₃	cyclopropyl
25	CF ₃	CH ₃	cyclobutyl
	CF ₃	CH ₃	cyclopentyl
	CF ₃	CH ₃	cyclohexyl
	CF ₃	CH ₃	2-cyclopentenyl
	CF ₃	CH ₃	1-cyclopentenyl
30	CF ₃	CH ₃	2-cyclohexenyl
	CF ₃	CH ₃	1-cyclohexenyl
	CF ₃	CH ₃	cyclopentyloxy
	CF ₃	CH ₃	cyclohexyloxy
	CF ₃	CH ₃	2-cyclopentenyloxy
35	CF ₃	CH ₃	2-cyclohexenyloxy
	CH ₃	CH ₃	i-C ₃ H ₇
	CH ₃	CH ₃	n-C ₃ H ₇
	CH ₃	CH ₃	n-C ₄ H ₉
	CH ₃	CH ₃	sec.-C ₄ H ₉
40	CH ₃	CH ₃	i-C ₄ H ₉
	CH ₃	CH ₃	tert.-C ₄ H ₉
	CH ₃	CH ₃	n-C ₅ H ₁₁

34

2106497

	R ⁷	R ⁶	R
5	CH ₃	CH ₃	sec.-C ₅ H ₁₁
	CH ₃	CH ₃	n-C ₆ H ₁₃
	CH ₃	CH ₃	n-C ₇ H ₁₅
	CH ₃	CH ₃	sec.-C ₇ H ₁₅
	CH ₃	CH ₃	ethoxy
	CH ₃	CH ₃	propoxy
10	CH ₃	CH ₃	1-methylethoxy
	CH ₃	CH ₃	n-butoxy
	CH ₃	CH ₃	1-methylpropoxy
	CH ₃	CH ₃	2-methylpropoxy
	CH ₃	CH ₃	1,1-dimethylethoxy
	CH ₃	CH ₃	n-pentyloxy
15	CH ₃	CH ₃	n-hexyloxy
	CH ₃	CH ₃	cyclopentyl
	CH ₃	CH ₃	cyclopentenyl
	CH ₃	CH ₃	phenyl
20	CH ₃	CH ₃	
	CH ₃	CH ₃	
	CH ₃	CH ₃	
	CH ₃	CH ₃	
	CH ₃	CH ₃	

25

30

35

40

45

2106497

35

The novel active ingredients are particularly suitable for protecting various materials against degradation or destruction by bacteria or fungi or from being attacked by and covered with microorganisms. Examples of materials which can be preserved or microbicidally finished with the novel active ingredients are glues and adhesives, starch solutions, wax emulsions, clay emulsions, sizes, finishes, spinning baths, gelatine formulations, putty, joint sealants, cooling lubricants, drilling oils, fuels, plastic dispersions, emulsion paints, textiles, leather, raw hides and cosmetics. The compounds are also suitable as anti-slime agents in the paper industry, in cooling towers and in air moistening units.

The compounds I are also suitable for protecting the following plant species against attack by microorganisms:

cereals (e.g., wheat, barley, rye, oats, rice, sorghum and related species); beets (e.g., sugar and fodder beets); pomes, drupes and aggregate fruit (e.g., apples, pears, plums, peaches, 20 almonds, cherries, strawberries, raspberries and blackberries); legumes (e.g., beans, lentils, peas, soybeans); oil-yielding crops (e.g., rape, mustard, poppies, olives, sunflowers, coco-nuts, castor-oil beans, cocoa beans, groundnuts); cucurbits (e.g., pumpkins, cucumbers, melons); fiber-yielding plants (e.g., 25 cotton, flax, hemp, jute); citrus fruit (e.g., oranges, lemons, grapefruit, tangerines); vegetables (e.g., spinach, lettuce, asparagus, cabbage varieties, carrots, onions, tomatoes, potatoes, paprika); laurel species (e.g., avocado, cinnamomum, camphor) or plants such as Indian corn, tobacco, nuts, coffee, sugar cane, 30 tea, grapes, hops, and banana and rubber trees. For the purposes of the present invention, the term "plants" is also taken to mean all types of other green growth, whether ornamentals, grassy areas, embankments, or generally low-growing cover crops.

35 For example the following microorganisms may be combatted with the novel compounds I:

Straphylococcus aureus, Escherichia coli, Klebsielle pneumoniae, Citrobacter freundii, Proteus vulgaris, Pseudomonas aeruginosa, 40 Desulfovibrio desulfuricans, Streptovorticillium rubrireticuli, Aspergillus niger, Aspergillus versicolor, Penicillium funiculosum, Penicillium expansum, Penicillium glaucum, Paecilomyces variotii, Trichoderma viride, Chaetomium globosum, Aspergillus ams-telodami, Phoma pigmentovora, Phoma violacea, Aureobasidium pul-lulans, Saccharomyces cerevisiae, Alternaria tenuis, Stemphylium macrosporoideum, Cladosporium herbarum, Cladosporium resinae, Candida albicans, Trichophyton mentagrophytes, Geotrichum candi-

2106497

36

dans, *Monilia sitophila*, *Scenedesmus quadricauda*, *Chlorella vulgaris*, *Nostoc muscorium*, *Oscillatoria limosa* and *Anabaena constricta*.

- 5 The novel substances can be converted into conventional formulations such as solutions, emulsions, suspensions, dusts, powders, pastes and granules. The application forms depend entirely on the purposes for which they are intended; they should at all events ensure a fine and uniform distribution of the active ingredient.
- 10 The formulations are produced in known manner, for example by extending the active ingredient with solvents and/or carriers, with or without the use of emulsifiers and dispersants; if water is used as solvent, it is also possible to employ other organic solvents as auxiliary solvents. Suitable auxiliaries for this
- 15 purpose are solvents such as aromatics (e.g., xylene), chlorinated aromatics (e.g., chlorobenzenes), paraffins (e.g., crude oil fractions), alcohols (e.g., methanol, butanol), ketones (e.g., cyclohexanone), amines (e.g., ethanalamine, dimethylformamide), and water; carriers such as ground natural minerals (e.g.,
- 20 kaolins, aluminas, talc and chalk) and ground synthetic minerals (e.g., highly disperse silica and silicates); emulsifiers such as nonionic and anionic emulsifiers (e.g., polyoxyethylene fatty alcohol ethers, alkyl sulfonates and aryl sulfonates); and dispersants such as lignin-sulfite waste liquors and methylcellulose.

The fungicides generally contain from 0.1 to 95, and preferably from 0.5 to 90, wt% of active ingredient. The active ingredients are used in a purity of from 90 to 100, and preferably from 95 to 30 100, % (according to the NMR/HPLC/GC spectrum).

Usual application concentrations are - based on the weight of the material to be protected - from 0.001 to 5, and preferably from 0.01 to 2, wt% of active ingredient; when the active ingredients are used for treating water, in oil production, in drilling and cutting oils, fuels, in swimming baths, cooling towers, air moistening units or in the paper industry, amounts of from 5 to 500 ppm are sufficient. Ready-to-use disinfectant solutions contain for instance from 0.5 to 10wt% of active ingredient.

40 Examples of such formulations are given below:

I. A solution of 90 parts by weight of compound no. 3 and 10 parts by weight of N-methyl- α -pyrrolidone, which is suitable for 45 application in the form of very fine drops.

2106497

37

II. A mixture of 20 parts by weight of compound no. 4, 80 parts by weight of xylene, 10 parts by weight of the adduct of 8 to 10 moles of ethylene oxide and 1 mole of oleic acid-N-monoethanolamide, 5 parts by weight of the calcium salt of dodecylbenzenesulfonic acid, and 5 parts by weight of the adduct of 40 moles of ethylene oxide and 1 mole of castor oil. By finely dispersing the mixture in 100,000 parts by weight of water, an aqueous dispersion is obtained.

10 III. An aqueous dispersion of 20 parts by weight of compound no. 1, 40 parts by weight of cyclohexanone, 30 parts by weight of isobutanol, 20 parts by weight of the adduct of 40 moles of ethylene oxide and 1 mole of castor oil. A mixture of this dispersion with 100,000 parts by weight of water contains 0.02wt% of
15 the active ingredient.

IV. An aqueous dispersion of 20 parts by weight of compound no. 3, 25 parts by weight of cyclohexanol, 65 parts by weight of a mineral oil fraction having a boiling point between 210 and 280°C,
20 and 10 parts by weight of the adduct of 40 moles of ethylene oxide and 1 mole of castor oil. The mixture of this dispersion with 100,000 parts by weight of water contains 0.02wt% of the active ingredient.

25 V. A hammer-milled mixture of 80 parts by weight of compound no. 2, 3 parts by weight of the sodium salt of diisobutylnaphthalene- α -sulfonic acid, 10 parts by weight of the sodium salt of a lignin-sulfonic acid obtained from a sulfite waste liquor, and 7 parts by weight of powdered silica gel. By finely dispersing the
30 mixture in 20,000 parts by weight of water, a spray liquor containing 0.1wt% of the active ingredient is obtained.

VI. An intimate mixture of 3 parts by weight of compound no. 1 and 97 parts by weight of particulate kaolin. The dust contains
35 3wt% of the active ingredient.

VII. An intimate mixture of 30 parts by weight of compound no. 4, 92 parts by weight of powdered silica gel and 8 parts by weight of paraffin oil sprayed onto the surface of this silica
40 gel. This formulation of the active ingredient exhibits good adherence.

VIII. A stable aqueous dispersion of 40 parts by weight of compound no. 2, 10 parts of the sodium salt of a phenolsulfonic acid-urea-formaldehyde condensate, 2 parts of silica gel and 48 parts of water, which dispersion can be further diluted.

2106497

38

IX. A stable oily dispersion of 20 parts by weight of compound no. 3, 2 parts by weight of the calcium salt of dodecylbenzenesulfonic acid, 8 parts by weight of a fatty alcohol polyglycol ether, 2 parts by weight of the sodium salt of a phenolsulfonic acid-urea-formaldehyde condensate and 68 parts by weight of a paraffinic mineral oil.

X. A hammer-milled mixture of 10 parts by weight of compound no. 1, 4 parts by weight of the sodium salt of diisobutylnaphthalene-
10 α -sulfonic acid, 20 parts by weight of the sodium salt of a lignin-sulfonic acid obtained from a sulfite waste liquor, 38 parts by weight of silica gel, and 38 parts by weight of kaolin. By finely dispersing the mixture in 10,000 parts by weight of water, a spray liquor containing 0.1wt% of the active ingredient
15 is obtained.

Used alone, the active ingredients act as low-foaming biocides. A significant increase in the action of biocidal formulations containing these compounds is achieved if tri-C₆- to C₁₂-alkylmethylammonium salts, preferably in amounts of from 20 to 40wt%, based on the weight of compounds of the general formula I, are added.

The active ingredients may also be mixed with other, prior art, microbicides. In many instances, a synergistic effect is
25 achieved, i.e., the microbicidal action of the mixture is greater than the added actions of its individual components.

Prior art microbicides may be added to the novel substances in a weight ratio of from 1:100 to 100:1.

30

Examples of such active ingredients are as follows:

2-(thiocyanomethylthio)-benzothiazole

1-[2-(2,4-dichlorophenyl)-2-(2-propenylloxy)-ethyl]-1H-imidazole

35 2,4,5,6-tetrachloroisophthalodinitrile

methylene bisthiocyanate

tributyltin oxide, naphthenate, benzoate, salicylate

mercaptobenzothiazole

1,2-benzisothiazolone and its alkali metal salts

40 alkali metal compounds of N'-hydroxy-N-cyclohexyldiazenium oxide

2-(methoxycarbonylamino)-benzimidazole

2-methyl-3-oxo-5-chlorothiazolin-3-one

trihydroxymethylnitromethane

glutardialdehyde

45 chloroacetamide

polyhexamethylene bisguanide

5-chloro-2-methyl-4-isothiazolin-3-one + magnesium salts

2106497

39

- 3,5-dimethyltetrahydro-1,3,5-2H-thiadiazine-2-thione
hexahydrotriazine
N,N-methylolchloroacetamide
2-n-octyl-4-isothiazolin-3-one
5 oxazolidines
bisoxazolidines
2,5-dihydro-2,5-dialkoxy-2,5-dialkylfurans
diethyldodecylbenzylammonium chloride
dimethyloctadecyltrimethylbenzylammonium chloride
10 dimethyldidecylammonium chloride
dimethyldodecylammonium chloride
trimethyltetradecylammonium chloride
benzyldimethylalkyl-(C₁₂-C₁₈)-ammonium chloride
dichlorobenzyldimethyldodecylammonium chloride
15 cetylpyridinium chloride
cetylpyridinium bromide
cetyltrimethylammonium chloride
laurylpyridinium chloride
laurylpyridinium bisulfate
20 benzyldodecyldi(beta-oxyethyl)-ammonium chloride
dodecylbenzyltrimethylammonium chloride
n-alkyldimethylbenzylammonium chloride
(alkyl radical: 40% C₁₂, 50% C₁₄, 10% C₁₆)
lauryldimethylethylammonium ethyl sulfate
25 n-alkyldimethyl-(1-naphthylmethyl)-ammonium chloride
(alkyl radical: 98% C₁₂, 2% C₁₄)
cetyltrimethylbenzylammonium chloride
lauryldimethylbenzylammonium chloride

30 Examples of further compounds which may be admixed are:

1,3-dimethylol-5,5-dimethylhydantoin
dimethylolurea
tetramethylolacetylenediurea
35 dimethylolglyoxalmonoureine
hexamethylenetetramine
glyoxal
glutardialdehyde
N-methylolchloroacetamide
40 1-(hydroxymethyl)-5,5-dimethylhydantoin
1,3-bis-(hydroxymethyl)-5,5-dimethylhydantoin
imidazolidinylurea
1-(3-chloroallyl)-3,5,7-triaza-1-azonia-adamantan chloride
1,3-bis-(β-ethylhexyl)-5-methyl-5-amino-hexahdropyrimidine
45 1,3,5-tris-(hydroxethyl)-1,3,5-hexahydrotriazine
1,2-dibromo-2,4-dicyanobutane
5-bromo-5-nitro-1,3-dioxane

2106497

40

- 2-bromo-2-nitropropanediol
1,1'-hexamethylene-bis-[5-(4-chlorophenyl)-biguanide]
4,4-diaminodiphenoxypy propane
2-bromo-2-nitropropane-1,3-diol
5 sorbic acid and its salts
p-hydroxybenzoic acid and its esters and salts
zinc-2-pyridinethiol-N-oxide
2-[(hydroxymethyl)amino]-ethanol
dithio-2,2'-bis(benzmethylamide)
10 5-chloro-2-(2,4-dichlorophenoxy)-phenol
thio-bis-(4-chlorophenol)
o-phenylphenol
chloromethyl-diiodomethylsulfone
p-chlorophenyl-3-iodopropargylformal.

15

Synthesis examples

The directions given in the synthesis examples below were used,
after appropriate modification of the starting materials, to ob-
20 tain further compounds I. The compounds thus obtained are listed
in the tables below with their physical data.

1. N-hydroxy-N-(2-propylphenyl)-2-chloronicotinamide

25

30

At 0°C, 14 ml of water and 19.6 g of sodium bicarbonate are added to a solution of 15.1 g of 2-n-propylphenylhydroxylamine in 75 ml of a 2:1 mixture of ether and ligroin, and 13.6 g of 2-chloronicotinamide is then dripped in while stirring vigorously. The mix-
35 ture is stirred overnight at room temperature and then suction filtered. The residue is stirred for 15 minutes in 10% strength sodium bicarbonate solution, suction filtered, dissolved in ethyl acetate and dried, and the solvent is evaporated off under re-
duced pressure. From the crude product (14.6 g) there is iso-
40 lated, after recrystallization from ethanol, 12.5 g of 2-chloro-
nicotic acid-N-hydroxy-2-n-propylanilide of m.p. 134-135°C.

45

41

2106497

Table 1

5

10	Example no.	R	A	Phys. data
1	CH(CH ₃) ₂	2-Cl-pyridin-3-yl		107-111°C
2	CH ₂ CH ₂ CH ₃	2-Cl-pyridin-3-yl		134-135°C
3	CH ₂ CH(CH ₃) ₂	2-Cl-pyridin-3-yl		oil
4	phenyl	2-Cl-pyridin-3-yl		112-115°C
5	CH ₂ CH(CH ₃) ₂	2-CH ₃ , 4-CF ₃ -thiazol-4-yl		oil
6	phenyl	2-CH ₃ , 4-CF ₃ -thiazol-4-yl		173-175°C
7	CH ₂ CH(CH ₃) ₂	2,4-(CH ₃) ₂ -thiazol-4-yl		oil
20	8	phenyl	2,4-(CH ₃) ₂ -thiazol-4-yl	58-62°C

Examples demonstrating biological action:

Action on Botrytis cinerea

25

Slices of green paprika pods were sprayed to runoff with aqueous suspensions containing (dry basis) 80% of the active ingredient and 20% of emulsifier. After the sprayed-on layer had dried, the slices were sprayed with a spore suspension [1.7.10⁶ spores per ml; 2% biomalt; water] of the fungus Botrytis cinerea and then kept for 4 days at 18°C and in high humidity.

After this period, the untreated controls exhibited 90% fungus attack, whereas the paprika slices treated with 500 ppm of compounds nos. 1 and 2 exhibited 5% attack at most.

At an application rate of 1000 ppm of compounds nos. 1 and 2 the paprika slices exhibited no attack at all, whereas the slices treated with 1000 ppm of 2-chloronicotinic acid-2-chloroanilide exhibited 90% attack, just as the untreated controls.

45

We claim:

1. N-Hydroxy-N-phenylcarboxamides of the formula I

5

10

where:

15 R is C₂-C₁₂-alkyl, C₂-C₁₂-alkoxy, C₃-C₁₂-alkenyl, C₃-C₁₂-alkenyloxy, C₃-C₆-alkynyl or C₃-C₆-alkynyloxy, where these groups are partially or completely halogenated;

20 C₃-C₇-cycloalkyl, C₄-C₇-cycloalkenyl, C₃-C₇-cycloalkyloxy or C₄-C₇-cycloalkenyloxy, where these rings may bear from one to three C₁-C₄-alkyl groups;

25 phenyl, which may bear from one to five halogen atoms and/or from one to three of the following radicals:

C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy, C₁-C₄-haloalkoxy, C₁-C₄-alkylthio or C₁-C₄-haloalkylthio;

30 A is a cyclic radical selected from the group of formulae A1 to A7

30

A1

A2

A3

A4

35

A5

A6

A7

40

45

where:

2106497

43

- X is $-\text{CH}_2-$, $-\text{S}-$, $-\text{SO}-$ or $-\text{SO}_2-$;
Y is $-\text{O}-$ or $-\text{S}-$;
 R^1 , R^2 , R^4 , R^5 and R^7 are halogen, $\text{C}_1\text{-C}_4$ -alkyl or $\text{C}_1\text{-C}_4$ -haloalkyl;
- 5 R^3 and R^6 are hydrogen, halogen or $\text{C}_1\text{-C}_4$ -alkyl;
n is 1 or 2, and the radicals R^3 may be different when n is 2.
2. N-Hydroxy-N-phenylcarboxamides of the formula I as claimed in
10 claim 1, where R has the meanings given in claim 1 and A is a cyclic radical selected from the group having the formulae A1 to A7, where X and Y have the meanings given in claim 1 and the substituents have the following meanings:
- 15 R^1 is halogen, methyl or C_1 -haloalkyl;
 R^2 is halogen or C_1 -haloalkyl;
 R^3 is hydrogen or methyl;
n is 1 or 2, and the radicals R^3 may be different when n is 2;
- 20 R^4 is halogen or methyl;
 R^5 is methyl or C_1 -haloalkyl;
 R^6 is hydrogen, halogen or methyl;
 R^7 is halogen, methyl or C_1 -haloalkyl.
- 25 3. N-Hydroxy-N-phenylcarboxamides of the formula I as claimed in
claim 1, where R has the meanings given in claim 1 and A is
cyclic radical selected from the group having the formulae A1
to A7, where X and Y have the meanings given in claim 1 and
the substituents have the following meanings:
- 30 R^1 is chloro, bromo, iodo, methyl or trifluoromethyl;
 R^2 is chloro or trifluoromethyl;
 R^3 is hydrogen or methyl;
n is 1 or 2, and the radicals R^3 may be different when n is 2;
- 35 R^4 is chloror or methyl;
 R^5 is methyl, difluoromethyl or trifluoromethyl;
 R^6 is hydrogen, chloro or methyl;
 R^7 is chloro, methyl or trifluoromethyl.
- 40 4. An agent for combatting injurious fungi, containing a fungicidal amount of a compound of the formula I as claimed in
claim 1, 2 or 3, and inert additives.

45

2106497

44

5. A process for combatting injurious fungi, wherein the fungi, their habitat and/or the plants or materials to be kept free from fungi are treated with a fungicidally effective amount of a compound of the formula I as claimed in claim 1, 2 or 3.
6. The use of compounds I as claimed in claim 1, 2 or 3 for combatting injurious fungi.
7. The use of compounds I as claimed in claim 1, 2 or 3 for combatting Botrytis.

15

20

25

30

35

40

45

SUBSTITUTE
REPLACEMENT

SECTION is not Present

Cette Section est Absente