SE274 Data Structure

Lecture 8: Search Trees, Part 3

(textbook: Chapter 11, Splay Tree, 2-4 Tree)
Apr 20, 2020

Instructor: Sunjun Kim

Information&Communication Engineering, DGIST

Recap: Binary Search Trees

- A binary search tree is a binary tree storing keys (or key-value items) at its nodes and satisfying the following property:
 - Let u, v, and w be three nodes such that u is in the left subtree of v and w is in the right subtree of v. We have

$$key(u) \le key(v) \le key(w)$$

 External nodes do not store items, instead we consider them as None An inorder traversal of a binary search trees visits the keys in increasing order

Recap: Tree Rotation Operation

Recap: Trinode reconstruction

- Nodes: (a,b,c) -> inorder listing of the three positions x, y, z
- Sub-trees: (T_1, T_2, T_3, T_4) -> inorder listing of the four subtrees

Recap: AVL Tree

- AVL trees are balanced
- An AVL Tree is a binary search tree such that for every internal node v of T, the heights of the children of v can differ by at most 1

An example of an AVL tree where the heights are shown next to the nodes:

AVL Trees 5

Splay Trees

Splay tree principle

Reorder the recenctly accessed item to the <u>root</u>

- In non-random access, O(1) is often expected.
 - Best data structure for a cache application.

Splay Trees are Binary Search Trees

- BST Rules:
 - entries stored only at internal nodes
 - keys stored at nodes in the left subtree of v are less than or equal to the key stored at v
 - keys stored at nodes in the right subtree of v are greater than or equal to the key stored at v
- An inorder traversal will return the keys in order

Searching in a Splay Tree: Starts the Same as in a BST

- Search proceeds down the tree to found item or an external node.
- Example: Search for time with key 11.

Example Searching in a BST, continued

• search for key 8, ends at an internal node.

Splay Trees do Rotations after Every Operation (Even Search)

- new operation: *splay*
 - splaying moves a node to the root using rotations

right rotation

makes the left child x of a node y into y's parent; y becomes the right child of x

left rotation

makes the right child y of a node x into x's parent; x becomes the left child of y

Visualizing the Splaying cases

Visualizing the Splaying cases

Splaying Example

- let x = (8,N)
 - x is the right child of its parent, which is the left child of the grandparent
 - left-rotate about y, then rightrotate around z

Splaying Example, Continued

- now x is the left child of the root
- right-rotate around root

Example Result of Splaying

- tree might not be more balanced
- e.g. splay (40,X)
 - before, the depth of the shallowest leaf is 3 and the deepest is 7
 - after, the depth of shallowest leaf is 1 and deepest is 8

Splay Tree Definition

- a splay tree is a binary search tree where a node is splayed after it is accessed (for a search or update)
 - deepest internal node accessed is splayed
 - splaying costs O(h), where h is height of the tree
 - which is still O(n) worst-case
 - O(h) rotations, each of which is O(1)

Splay tree search/insertion/deletion

Search for a key k

- If k is found at position p, we splay p.
- Else, we splay the leaf position which the search was terminated.

Insert a key k

- Do a regular BST insertion.
- The newly created internal node for *k* is then splayed.

Delete a key k

- Do a regular BST deletion.
- Splay the parent of the actually removed node.

Splay tree insertion example

Splay tree deletion example

Amortized Analysis of Splay Trees

- Running time of each operation is proportional to time for splaying.
 => with a tree height h, it's O(h).
 - In the worst-case, h = n.
- Amortized performance of Splay tree operations are done in O(log n).
 - Refer the textbook Chapter 11.4.4 for the detailed analysis (the analysis is out of the scope of this course).

Python Implementation

```
class SplayTreeMap(TreeMap):
     """Sorted map implementation using a splay tree."""
     #----- splay operation ------
     def _splay(self, p):
       while p != self.root():
         parent = self.parent(p)
         grand = self.parent(parent)
         if grand is None:
           # zig case
10
           self._rotate(p)
         elif (parent == self.left(grand)) == (p == self.left(parent)):
11
           # zig-zig case
           self._rotate(parent)
                                               # move PARENT up
13
           self._rotate(p)
                                               # then move p up
14
15
         else:
           # zig-zag case
           self._rotate(p)
                                                # move p up
           self._rotate(p)
                                               # move p up again
18
19
20
     #----- override balancing hooks -----
21
     def _rebalance_insert(self, p):
       self._splay(p)
23
24
     def _rebalance_delete(self, p):
       if p is not None:
         self._splay(p)
28
     def _rebalance_access(self, p):
29
       self._splay(p)
```


Multi-Way Search Tree

- A multi-way search tree is an ordered tree such that
 - Each internal node has at least two children
 - When d is the number of children, the node stores d-1 key-element items (k_i, o_i) , where...
 - For a node with children $v_1 v_2 \dots v_d$ storing keys $k_1 k_2 \dots k_{d-1}$
 - keys in the subtree of v_1 are less than k_1
 - keys in the subtree of v_i are between k_{i-1} and k_i (i = 2, ..., d-1)
 - keys in the subtree of v_d are greater than k_{d-1}
 - The leaves store no items and serve as placeholders

Multi-Way Inorder Traversal

- We can extend the notion of inorder traversal from binary trees to multi-way search trees
- Namely, we visit item (k_i, o_i) of node v between the recursive traversals of the subtrees of v rooted at children v_i and v_{i+1}
- An inorder traversal of a multi-way search tree visits the keys in increasing order

Multi-Way Searching

- Similar to search in a binary search tree
- A each internal node with children $v_1 v_2 \dots v_d$ and keys $k_1 k_2 \dots k_{d-1}$
 - $k = k_i$ (i = 1, ..., d 1): the search terminates successfully
 - $k < k_1$: we continue the search in child v_1
 - $k_{i-1} < k < k_i$ (i = 2, ..., d-1): we continue the search in child v_i
 - $k > k_{d-1}$: we continue the search in child v_d
- Reaching an external node terminates the search unsuccessfully
- Example: search for 30

(2,4) Trees

- A (2,4) tree (also called 2-4 tree or 2-3-4 tree) is a multi-way search with the following properties
 - Node-Size Property: every internal node has at most four children
 - Depth Property: all the external nodes have the same depth
- Depending on the number of children, an internal node of a (2,4) tree is called a 2-node, 3-node or 4-node

Height of a (2,4) Tree

• Theorem: A (2,4) tree storing n items has height $O(\log n)$ Proof:

- Let h be the height of a (2,4) tree with n items
- Since there are at least 2^i items at depth i = 0, ..., h-1 and no items at depth h, we have

$$n \ge 1 + 2 + 4 + \dots + 2^{h-1} = 2^h - 1$$

- Thus, $h \le \log (n+1)$
- Searching in a (2,4) tree with n items takes $O(\log n)$ time

depth items

Insertion

- We insert a new item (k, o) at the parent v of the leaf reached by searching for k
 - We preserve the depth property but
 - We may cause an overflow (i.e., node *v* may become a 5-node)
- Example: inserting key 30 causes an overflow

Overflow and Split

- We handle an overflow at a 5-node v with a split operation:
 - let $v_1 \dots v_5$ be the children of v and $k_1 \dots k_4$ be the keys of v
 - node v is replaced nodes v' and v''
 - v' is a 3-node with keys $k_1 k_2$ and children $v_1 v_2 v_3$
 - v'' is a 2-node with key k_4 and children $v_4 v_5$
 - key k_3 is inserted into the parent u of v (a new root may be created)
- The overflow may propagate to the parent node u

Insetion Example

Insert - overflown

First split - overflown

Second split

Insertion – more examples

Analysis of Insertion

Algorithm put(k, o)

- 1. We search for key *k* to locate the insertion node *v*
- 2. We add the new entry (k, o) at node v
- 3. while overflow(v)if isRoot(v)create a new empty root above v $v \leftarrow split(v)$

- Let T be a (2,4) tree with n items
 - Tree T has $O(\log n)$ height
 - Step 1 takes O(log n) time because we visit O(log n) nodes
 - Step 2 takes O(1) time
 - Step 3 takes O(log n) time because each split takes
 O(1) time and we perform
 O(log n) splits
- Thus, an insertion in a (2,4) tree takes $O(\log n)$ time

Deletion

- We reduce deletion of an entry to the case where the item is at the node with leaf children
- Otherwise, we replace the entry with its inorder successor (or, equivalently, with its inorder predecessor) and delete the latter entry
- Example: to delete key 24, we replace it with 27 (inorder successor)

Underflow and Fusion

- Deleting an entry from a node v may cause an underflow, where node v becomes a 1-node with one child and no keys
- To handle an underflow at node v with parent u, we consider two cases
- Case 1: the adjacent siblings of *v* are 2-nodes
 - Fusion operation: we merge v with an adjacent sibling w and move an entry from u to the merged node v'
 - After a fusion, the underflow may propagate to the parent u

Underflow and Transfer

- To handle an underflow at node v with parent u, we consider two cases
- Case 2: an adjacent sibling w of v is a 3-node or a 4-node
 - Transfer operation:
 - 1. we move a child of w to v
 - 2. we move an item from u to v
 - 3. we move an item from w to u
 - After a transfer, no underflow occurs

Deletion - Example

Deletion – Example (cont.)

Remove 13 Remove 14 Underflow

Analysis of Deletion

- Let T be a (2,4) tree with n items
 - Tree T has $O(\log n)$ height
- In a deletion operation
 - We visit $O(\log n)$ nodes to locate the node from which to delete the entry
 - We handle an underflow with a series of $O(\log n)$ fusions, followed by at most one transfer
 - Each fusion and transfer takes O(1) time
- Thus, deleting an item from a (2,4) tree takes $O(\log n)$ time

Comparison of Map Implementations

	Search	Insert	Delete	Notes
Hash Table	1 expected	1 expected	1 expected	no ordered map methodssimple to implement
Skip List	log n high prob.	log n high prob.	log n high prob.	randomized insertionsimple to implement
AVL and (2,4) Tree	log <i>n</i> worst-case	log <i>n</i> worst-case	log <i>n</i> worst-case	complex to implement