Tarea 3 (Solución)

Álgebra Superior 1, 2025-4

Profesor: Luis Jesús Trucio Cuevas. Ayudante: Hugo Víctor García Martínez.

Ej. 1 (2.5 pts) Se dice que una función $h: X \to Y$ es **constante** si y sólo si para cualesquiera $x, y \in X$ se tiene que h(x) = h(y).

- i) Demuestra que la composición de funciones constantes es una función constante.
- ii) Encuentra dos funciones *no* constantes; $f : \mathbb{N} \to \mathbb{Z}$ y $g : \mathbb{Z} \to \mathbb{N}$, cuya composición (la función $g \circ f : \mathbb{N} \to \mathbb{N}$) sea constante.

Solución. (i) Supongamos que $f:A\to B$ y $g:B\to C$ son funciones constantes. Como $g\circ f$ tiene dominio A y codominio C, habremos de verificar que:

$$\forall x, y \in A((g \circ f)(x) = (g \circ f)(y))$$

En efecto, sean $x, y \in A$ cualesquiera, entonces:

$$(g \circ f)(x) = g(f(x))$$
 Def. de composición
 $= g(f(y))$ f es constante
 $= (g \circ f)(y)$ Def. de composición

por lo que $g \circ f$ es constante.

(ii) Sea $f: \mathbb{N} \to \mathbb{Z}$ definida como f(n) = 0 si n es par; y, f(n) = 1 si n es impar. Y definimos $g: \mathbb{Z} \to \mathbb{N}$ como g(z) = z(z-1).

Notemos que f no es constante, ya que f(2) = 0, f(1) = 1 y $2 \ne 1$; y, g tampoco es constante, ya que g(2) = 2, g(3) = 6 y $2 \ne 3$. Sin embargo, para cada $n \in \mathbb{N}$ se tiene que:

- a) Si n es par, entonces f(n) = 0 y g(f(n)) = g(0) = 0.
- b) Si *n* es impar, entonces f(n) = 0 y g(f(n)) = g(1) = 0.

Por lo tanto, para cualesquiera $x, y \in \mathbb{N}$, $(g \circ f)(x) = 0 = (g \circ f)(y)$, probando que $g \circ f$ es constante.

Ej. 2 (2.5 pts) En cada inciso, determina si la correspondiente función es inyectiva, sobreyectiva, o biyectiva. Demuestra la conclusión a la que llegaste (es decir, prueba si la función tiene o no la propiedad que se afrima).

- i) $h: \{0,1,2\} \to \{x,y\}$ definida como $h=\{(0,x),(1,x),(2,y)\}$, aquí $x \neq y$.
- ii) $g : \mathbb{R} \to \mathbb{R}$ dada, para cada $x \in \mathbb{R}$, por g(x) = 4x + 55.
- iii) $f: \mathbb{N} \to \mathcal{P}(\mathbb{N})$ dada, para cada $n \in \mathbb{N}$, por $f(n) = \{0, n\}$.

Solución. (i) Notese que $x \in \text{ima}(h)$ ya que x = h(0); y, $y \in \text{ima}(h)$ pues y = h(1). Por lo tanto $\{x,y\} \subseteq \text{ima}(h)$, y como $\{x,y\}$ es codominio de h, ima $(h) \subseteq \{x,y\}$. Así que ima $(h) = \{x,y\}$, esto es, h es sobreyectiva.

Pero h no es inyectiva, pues h(0) = h(1) = x y $0 \ne 1$. Así, h tampoco es biyectiva.

(ii) Esta funcion es biyectiva, en efecto, si $x, y \in \mathbb{R}$ son tales que g(x) = g(y), entonces 4x + 55 = 4y + 55, de donde 4x = 4y y con ello x = y; esto es, g **es inyectiva**.

Por otra parte, si $r \in \mathbb{R}$ es cualquiera, $t := \frac{r-55}{4}$ es un elemento de dom $(g) = \mathbb{R}$ que satisface:

$$g(t) = g\left(\frac{r-55}{4}\right) = 4\left(\frac{r-55}{4}\right) + 55 = (r-55) + 55 = r$$

lo cual prueba, por la arbitrariedad de r, que g es sobreyectiva. Así, g es biyectiva.

(iii) Por último, f no es sorbeyectiva. Notemos que para cada $n \in \mathbb{N}$ se cumple que $0 \in f(n) = \{0, n\}$, esto implica que $f(n) \neq \emptyset$, así que $\forall n \in f(n) \neq \emptyset$, lo cual muestra que \emptyset no está en la imagen de f. Pero \emptyset es un elemento de $\mathcal{P}(\mathbb{N})$, ya que $\emptyset \subseteq \mathbb{N}$, de forma que ima $(f) \neq \mathcal{P}(\mathbb{N})$, mostrando que f no es sobreyectiva, así, tampoco es biyectiva.

Ahora, f sí es inyectiva. En efecto, sean $n, m \in \mathbb{N}$ y supongamos que f(n) = f(m), entonces $\{0, n\} = \{0, m\}^1$, como $n \in \{0, m\}$ entonces n = 0 o n = m (por definición de par) y se tienen dos casos:

- i) Si n = 0, $\{0, n\} = \{0, 0\} = \{0\}$; pero por hipótesis, $\{0, n\} = \{0, m\}$; asi que $\{0, m\} = \{0\}$. Como $m \in \{0, m\} = \{0\}$, es necesario que m = 0. En este caso n = m (ambos son 0).
- ii) Si n = m, entonces en este caso n = m.

En cualquier caso n=m, mostrando que $\forall n, m \in \mathbb{N}(f(n)=f(m) \to n=m)$, es decir f **es inyectiva**. \Diamond

Ej. 3 (2.5 pts) Sean A y B conjuntos arbitrarios y $f:A\to B$. Demuestra que las siguientes proposiciones son equivalentes:

- i) $\forall X \subseteq A \ \forall Y \subseteq A \ (f[X \setminus Y] \subseteq f[X] \setminus f[Y]).$
- ii) $\forall U \subseteq A \ \forall V \subseteq A \ (f[U] \cap f[V] \subseteq f[U \cap V]).$

¹Como esta igualdad *no es de pares ordenados* no se puede concluir directo que 0 = 0 y n = m, hay que hacer algo mas.

Demostración. (i) \rightarrow (ii) Supongamos que $\forall X \subseteq A \ \forall Y \subseteq A \ (f[X \setminus Y] \subseteq f[X] \setminus f[Y])$. Veamos que $\forall U \subseteq A \ \forall V \subseteq A \ (f[U] \cap f[V] \subseteq f[U \cap V])$

Sean U, V subconjuntos de A, veamos que ocurre la contención $f[U] \cap f[V] \subseteq f[U \cap V]$. Efectivamente, sea $l \in f[U] \cap f[V]$ cualquier elemento. Así, existen $u \in U$ y $v \in V$ tales que l = f(u) y l = f(v). Como $\{u\}, \{v\} \subseteq A$, por hipótesis se tiene que:

$$f[\{u\} \setminus \{v\}] \subseteq f[\{u\}] \setminus f[\{v\}]$$

pero $f[\{u\}] \setminus f[\{v\}] = \{l\} \setminus \{l\} = \emptyset$, por lo que $f[\{u\} \setminus \{v\}] = \emptyset$ y así $\{u\} \setminus \{v\} = \emptyset$, luego $\{u\} \subseteq \{v\}$ y por lo tanto u = v. Esto prueba que $u \in V$, así que $u \in U \cap V$ y como l = f(u), entonces $l \in f[U \cap V]$. Por lo que $f[U] \cap f[V] \subseteq f[U \cap V]$.

(ii) \rightarrow (i) Supongamos que $\forall U \subseteq A \ \forall V \subseteq A \ (f[U] \cap f[V] \subseteq f[U \cap V])$, veamos que se satisface $\forall X \subseteq A \ \forall Y \subseteq A \ (f[X \setminus Y] \subseteq f[X] \setminus f[Y])$.

Supongamos que $X, Y \subseteq A$, verifiquemos que $f[X \setminus Y] \subseteq f[X] \setminus f[Y]$. Sea $l \in f[X \setminus Y]$ cualquiera, entonces existe $x \in X \setminus Y$ tal que l = f(x). Esto muestra que $l \in f[X]$ (ya que $x \in X$), resta ver entonces que $l \notin f[Y]$.

Por contradicción, supongamos que $l \in f[Y]$, entonces existe $y \in Y$ tal que l = f(y), pero, como $\{x\}, \{y\} \subseteq A$, aplicando la hipótesis se tiene que:

$$f[\{x\}] \cap f[\{y\}] \subseteq f[\{x\} \cap \{y\}]$$

pero $l \in f[\{x\}] \cap f[\{y\}]$, entonces $l \in f[\{x\} \cap \{y\}]$, lo cual implica que $\{x\} \cap \{y\} \neq \emptyset$, por lo que x = y. Esto es un absurdo, ya que $x \in X \setminus Y$ y $y \ni Y$. El absurdo surge de suponer que $l \in f[Y]$, por lo tanto $l \notin f[Y]$, y asi $l \in f[X] \setminus f[Y]$, lo cual demuestra $f[X \setminus Y] \subseteq f[X] \setminus f[Y]$.

Ej. 4 (2.5 pts) Sean X, Y y A conjuntos tales que $A \subseteq X$ y sea $f : X \to Y$ cualquier función. Definamos $i : A \to X$ para cada $a \in A$ como i(a) = a. Demuestra que para cualquier subconjunto $B \subseteq Y$ se da la igualdad $(f \circ i)^{-1}[B] = A \cap f^{-1}[B]$.

Demostración. Sea $B \subseteq Y$ cualquera, veamos que $(f \circ i)^{-1}[B] = A \cap f^{-1}[B]$.

(⊆) Sea $x \in (f \circ i)^{-1}[B]$, entonces $(f \circ i)(x) \in B$. Por definición de composición y de i: $(f \circ i)(x) = f(i(x)) = f(x)$, así que $f(x) \in B$ y con ello $x \in f^{-1}[B]$. Además, como dom $(f \circ i) = A$, entonces $(f \circ i)^{-1}[B] \subseteq A$, por lo que $x \in A$. Esto es, $x \in A \cap f^{-1}[B]$, por lo que:

$$(f \circ i)^{-1}[B] \subseteq A \cap f^{-1}[B]$$

(⊇) Sea $y \in A \cap f^{-1}[B]$ cualquiera. Entonces $y \in A$ y $y \in f^{-1}[B]$, de esto último $f(y) \in B$. Además, dado que $y \in A$, entonces $(f \circ i)(y) = f(i(y)) = f(y)$, por lo que $(f \circ i)(y) \in B$, mostrando que $y \in (f \circ i)^{-1}[B]$.

$$A\cap f^{-1}[B]\subseteq (f\circ i)^{-1}[B]$$