Intro to immune repertoire sequencing and analysis

Maggie Russell

tfcb 2022 November 29, 2022

- learn about immune repertoire sequencing
- familiarize with immune repertoire data
- work through an example analysis

• learn about immune repertoire sequencing

- learn about immune repertoire sequencing
 - what are immune repertoires?

Adaptive immunity is essential for our survival

T cell receptors recognize antigen fragments bound to MHC

The collection of TCRs in an individual comprises their TCR repertoire

- learn about immune repertoire sequencing
 - what are immune repertoires?
 - how are they formed?

Let's use a water pipe as an analogy for TCR repertoire formation...

We can sample a repertoire using sequencing

Repertoire data + statistical models can be used to understand these processes

- learn about immune repertoire sequencing
 - what are immune repertoires?
 - how are they formed?
 - how are they sequenced?

Pre-processed repertoire sequencing example output

cdr3_nucseq	cdr3	v_gene	d_gene	j_gene	v_trim	d0_trim	d1_trim	j_trim	vd_insert	dj_insert	vd_insert_nucs	dj_insert_nucs
<chr></chr>	<chr></chr>	<chr></chr>	<chr></chr>	<chr></chr>	<int></int>	<int></int>	<int></int>	<int></int>	<int></int>	<int></int>	<chr></chr>	<chr></chr>
TGTGCCAGCAGCTTGAATCACGAGCAGTACTTC	CASSLNHEQYF	TRBV5-6*01	TRBD2*02	TRBJ2-7*01	1	3	13	5	4	0	AATC	
TGCGCCAGCAGCTTGGCAGAGACCCAGTACTTC	CASSLAETQYF	TRBV5-1*01	TRBD1*01	TRBJ2-5*01	2	9	0	4	0	0		
TGCGCCAGTCGAGCGGCGAGCTCCTACAATGAGCAGTTCTTC	CASRAASSYNEQFF	TRBV5-1*01	TRBD2*01	TRBJ2-1*01	9	6	5	0	4	2	GTCG	GC
TGTGCCAGCAGCTTAAATCTGGTGAGGTACGAGCAGTACTTC	CASSLNLVRYEQYF	TRBV7-2*01	TRBD2*02	TRBJ2-7*01	2	11	1	4	8	0	AATCTGGT	
TGTGCCTGGTCAGGGGGCCCAAACACTGAAGCTTTCTTT	CAWSGGPNTEAFF	TRBV30*01	TRBD1*01	TRBJ1-1*01	5	4	0	2	1	3	Т	ACC
TGTGCCACCGAACGAGGGCCCCAAGAGACCCAGTACTTC	CATERGPQETQYF	TRBV2*03	TRBD1*01	TRBJ2-5*01	10	5	3	1	7	2	CCGAACG	CC
TGTGCCAGCATAGCGGGAGGTGAGCAGTTCTTC	CASIAGGEQFF	TRBV28*01	TRBD2*02	TRBJ2-1*01	7	6	3	9	1	2	Т	GG
TGTGCCTGGAGCTCCCTCCCTGGCGGGAGAACAATGAGCAGTTCTTC	CAWSSLPGGENNEQFF	TRBV30*01	TRBD2*01	TRBJ2-1*01	3	7	3	5	11	3	CTCCCTCCCTG	AGA
TGTGCCAGCAGTTATCAGGTCACTGAAGCTTTCTTT	CASSYQVTEAFF	TRBV6-6*02	TRBD1*01	TRBJ1-1*01	4	4	5	4	2	2	AT	TG
TGTGCCAGCGCCCAGGGCTCGGATACAATCAGCCCCAGCATTTT	CASGPGLGYNQPQHF	TRBV5-5*01	TRBD2*02	TRBJ1-5*01	7	12	0	3	5	8	GGCCC	ATAGGCTC
TGTGCCAGTGCGGGATTCTATGGCTACACCTTC	CASAGFYGYTF	TRBV6-1*01	TRBD1*01	TRBJ1-2*01	9	7	2	4	3	3	TGC	TTA
TGTGCCAGTGCAGGGTACACCGGGGAGCTGTTTTTT	CASAGYTGELFF	TRBV2*03	TRBD1*01	TRBJ2-2*01	9	4	4	3	2	2	TG	TG
TGTGCCATCAGTGAATACAATGAGCAGTTCTTC	CAISEYNEQFF	TRBV10-3*01	TRBD1*01	TRBJ2-1*01	3	3	6	8	2	0	AT	
TGTGCCATCAGTAACACCGGGGAGCTGTTTTTT	CAISNTGELFF	TRBV10-3*02	TRBD2*02	TRBJ2-2*01	6	5	10	2	0	0		
TGTGCCAGTAGCCCTACCCGGTCTGGAAACACCATATATTTT	CASSPTRSGNTIYF	TRBV19*01	TRBD2*02	TRBJ1-3*01	7	5	9	1	4	5	GCCC	GGCCC
TGTGCCACCAGCAGAGGATCGGGGGCTAGCGGGTGTTGAGCAGTTCTTC	CATSRGSGLAGVEQFF	TRBV15*02	TRBD2*01	TRBJ2-1*01	1	4	4	9	8	3	GATCGGGG	TGT
TGTGCCAGCAGCTTAACGGTGGGGTCAGGAGAGACCCAGTACTTC	CASSLTVGSGETQYF	TRBV7-3*01	TRBD2*01	TRBJ2-5*01	1	9	3	4	4	5	CGGT	GGACT

- learn about immune repertoire sequencing
 - what are immune repertoires?
 - how are they formed?
 - how are they sequenced?
 - what are some common areas of repertoire analysis?

clonotype

diversity

dynamics

defining antigen

recognition breadth

using network

analysis

B cell receptors/ antibodies

- learn about immune repertoire sequencing
 - what are immune repertoires?
 - how are they formed?
 - how are they sequenced?
 - what are some common areas of repertoire analysis?
- familiarize with immune repertoire data
- work through an example analysis

