2020年 TI 杯大学生电子设计竞赛

E 题: 放大器非线性失真研究装置

1. 任务

设计并制作一个放大器非线性失真研究装置,其组成如图1所示,图中的 K_1 和 K_2 为 1×2切换开关,晶体管放大器只允许有一个输入端口和一个输出端口。

图 1 放大器非线性失真研究装置组成框图

2. 要求

 K_1 和 K_2 均投到各自的"1"端子,外接信号源输出频率 $\frac{1 \text{kHz}}{1 \text{kHz}}$ 、峰峰值 $\frac{20 \text{mV}}{1 \text{kHz}}$ 的正弦波作为晶体管放大器输入电压 u_i ,要求输出无明显失真及四种失真波形 u_o ,且 u_o 的峰峰值不低于 2 V。外接示波器测量晶体管放大器输出电压 u_o 波形。

(1) 放大器能够输出无明显失真的正弦电压 u_o	(10分)
(2) 放大器能够输出有"顶部失真"的电压 u_o	(15分)
(3) 放大器能够输出有"底部失真"的电压 u_o	(15分)
(4) 放大器能够输出有"双向失真"的电压 u_o	(15分)
(5) 放大器能够输出有"交越失真"的电压 u_o	(15分)
(6) 分别测量并显示上述五种输出电压 u_o 的"总谐波失真"近似值	(20分)
(7) 其他	(10分)
(8) 设计报告	(20分)

项 目	主要内容	满分
方案论证	比较与选择,方案描述。	3
理论分析与计算	系统相关参数设计	5
电路与程序设计	系统组成,原理框图与各部分电路图,系统软 件与流程图。	5

测试方案与测试结果	测试结果完整性,测试结果分析。	5
设计报告结构及规范性	摘要,正文结构规范,图表的完整与准确性。	2
	总分	20

3. 说明

- (1)限用晶体管、阻容元件、模拟开关等元器件设计并实现图1中的受控晶体管放大器,其输出的各种失真或无明显失真的信号必须出自该晶体管放大电路,禁用预存失真波形数据进行D/A转换等方式输出各种失真信号。
 - (2) 在设计报告中,应结合电路设计方案阐述出现各种失真的原因。
 - (3) 无明显失真及四种具有非线性失真电压 и。的示意波形如图 2 所示:

图2 无明显失真及四种具有非线性失真的 u_0 示意波形

(4) 总谐波失真定义:

线性放大器输入为正弦信号时,其<mark>非线性失真</mark>表现为输出信号中出现谐波分量,常用<mark>总谐波失真(THD: total harmonic distortion)</mark>衡量线性放大器的非线性失真程度。

THD定义: 若线性放大器输入电压 $\mathbf{u}_i = U_i \cos \omega t$, 其含有非线性失真的输出交流电

压为 $\mathbf{u}_{o} = \mathbf{u}_{o1} \cos(\boldsymbol{\omega t} + \boldsymbol{\varphi}_{1}) + \mathbf{U}_{o2} \cos(2\boldsymbol{\omega t} + \boldsymbol{\varphi}_{2}) + \mathbf{U}_{o3} \cos(3\boldsymbol{\omega t} + \boldsymbol{\varphi}_{3}) + \mathbf{L} + \mathbf{U}_{on} \cos(\boldsymbol{n\omega t} + \boldsymbol{\varphi}_{n}),$ 则有:

THD =
$$\frac{\sqrt{U_{o2}^2 + U_{o3}^2 + U_{o4}^2 + L + U_{on}^2}}{U_{o1}} \times 100\%$$

在完成设计要求的第(6)项时, 谐波取到五次即可,即

THD
$$\approx \frac{\sqrt{U_{o2}^2 + U_{o3}^2 + U_{o4}^2 + U_{o5}^2}}{U_{o1}} \times 100\%$$

- (5) 对THD自动测量期间,不得有任何人工干预。
- (6) **K**₁和 **K**₂ 的 "2" 端子用于作品测试。