2. First-Order Logic

Huixing Fang

School of Information Engineering Yangzhou University

Outline

- Syntax
- Semantics
- Satisfiability and Validity
- 4 Substitution
- Normal Forms
- 6 Decidability and Complexity
- Sound and Complete

Function

An n-ary function f takes n terms as arguments. We represent generic FOL functions by symbols f, g, h, f_1 , f_2 , etc. A constant can also be viewed as a 0-ary function.

Example 1

The following are all terms:

- a, a constant (or 0-ary function);
- x, a variable;
- f(a), a unary function f applied to a constant;
- g(x, b), a binary function g applied to a variable x and a constant b;
- f(g(x, f(b))).

Predicate

The propositional variables of PL are generalized to **predicates**. An n-ary predicate takes n terms as arguments. An FOL propositional variable is a 0-ary predicate.

Atom & Literal

An **atom** is \top , \bot , or an *n*-ary predicate applied to *n* terms. A **literal** is an atom or its negation.

Example 2

The following are all literals:

- P, a propositional variable (or 0-ary predicate);
- 2 p(f(x), g(x, f(x))), a binary predicate applied to two terms;

4110 4000 4 5 0 4 5 0 5 9 9 9 9

FOL formula

An FOL formula may be:

- a literal;
- **2** application of a logical connective $(\neg, \land, \lor, \rightarrow, \leftrightarrow)$ to a formula or formulae:
- application of a quantifier to a formula
 - existential quantifier \exists . The formula $\exists x. F[x]$, read "there exists an x such that F[x]";
 - universal quantifier \forall . The formula $\forall x. F[x]$, read "for all x, F[x]".

Quantified variable & Scope

In $\forall x. \ F[x]$ (or $\exists x. \ F[x]$), x is the **quantifier vaiable**, and F[x] is the **scope** of the quantifier $\forall x$ (or $\exists x$). (the scope of the quantified variable x itself)

Example 3

In

$$\forall x. \ p(f(x),x) \to (\exists y. \ \underbrace{p(f(g(x,y)),g(x,y))}_{F}) \land q(x,f(x))$$

the scope of x is F, and the scope of y is G. This formula is read: "for all x, if p(f(x),x) then there exists a y such that p(f(g(x,y)),g(x,y)) and q(x,f(x))".

Bound variable

A variable is **bound** in formula F[x] if there is an occurrence of x in the scope of a binding quantifier $\forall x$ or $\exists x$. Denote by bound(F) the set of bound variables of a formula F.

Free variable

A variable is **free** in formula F[x] if there is an occurrence of x that is not bound by any quantifier. Denote by free(F) the set of free variables of a formula F.

Is it possible that $free(F) \cap bound(F) \neq \emptyset$?

Example 4

$$F: \forall x. \ p(f(x), y) \rightarrow \forall y. \ p(f(x), y),$$

x only occurs bound, while y appears both free (in the antecedent) and bound (in the consequent). Thus, $free(F) = \{y\}$ and $free(F) = \{x, y\}$.

Closed formula

A formula F is **closed** if it does not contain any free variables.

Closure

If free $(F) = \{x_1, ..., x_n\}$, then its **universal closure** is

$$\forall x_1. ... \forall x_n. F \text{ or } \forall *. F,$$

and existential closure is

$$\exists x_1. ... \forall x_n. F \text{ or } \exists *. F.$$

Subformulae

The subformulae of an FOL formula are defined according to an extension of the PL definition of subformula:

- the only subformula of $p(t_1,...,t_n)$, where the t_i are terms, is $p(t_1,...,t_n)$;
- the subformulae of $\neg F$ are $\neg F$ and the subformulae of F;
- the subformulae of $F_1 \wedge F_2$, $F_1 \vee F_2$, $F_1 \to F_2$, $F_1 \leftrightarrow F_2$ are the formula itself and the subformulae of F_1 and F_2 ;
- the subformulae of $\exists x. \ F$ and $\forall x. \ F$ are the formula itself and the subformulae of F.

The strict subformulae of a formula excludes the formula itself.

Subterms

The subterms of an FOL term are defined as follows:

- the only subterm of constant a or variable x is a or x itself, respectively;
- and the subterms of $f(t_1,...,t_n)$ are the term itself and the subterms of $t_1,...,t_n$.

The **strict subterms** of a term excludes the term itself.

Example 5

In

$$F: \forall x. \ p(f(x), y) \rightarrow \forall y. \ p(f(x), y),$$

the subformulae of F are

$$F, p(f(x), y) \rightarrow \forall y. p(f(x), y), \forall y. p(f(x), y), p(f(x), y).$$

The subterms of g(f(x), f(h(f(x)))) are

$$g(f(x), f(h(f(x)))), f(x), f(h(f(x))), h(f(x)), x.$$

Translations of English sentences into FOL:

- Every dog has its day.
 - $\forall x. \ dog(x) \rightarrow \exists y. \ day(y) \land itsDay(x,y);$
- Some dogs have more days than others.
 - $\exists x, y. \ dog(x) \land dog(y) \land \#days(x) > \#days(y)$
- All cats have more days than dogs.

$$\forall x, y. \ dog(x) \land cat(y) \rightarrow \#days(y) > \#days(x)$$

- Fido is a dog. Furrball is a cat. Fido has fewer days than does Furrball.
 - $dog(Fido) \land cat(Furrball) \land \#days(Fido) < \#days(Furrball)$
- Fermat's Last Theorem.

$$\forall n. integer(n) \land n > 2$$

$$\rightarrow$$

$$\forall x, y, z. \ integer(x) \land integer(y) \land integer(z) \land x > 0 \land y > 0 \land z > 0$$

$$\stackrel{-}{\swarrow}^{n} \perp \vee^{n} \neq$$

Outline

- Syntax
- 2 Semantics
- Satisfiability and Validity
- 4 Substitution
- Normal Forms
- 6 Decidability and Complexity
- Sound and Complete

- Formulae of FOL evaluate to the truth values **true** and **false** as in PL.
- Terms of FOL formulae evaluate to values from a specified domain.
- We extend the concept of interpretations to this more complex setting and then define the semantics of FOL in terms of interpretations.

FOL interpretation ${\cal I}$

- The **domain** $D_{\mathcal{I}}$ of \mathcal{I} : a nonempty set of values or objects, such as integers, real numbers, dogs, people, or merely abstract objects;
- $|D_{\mathcal{I}}|$ denotes the **cardinality** or size, of $D_{\mathcal{I}}$.
- The assignment $\alpha \mathcal{I}$ maps constant, variable, function, and predicate symbols to elements, functions, and predicates over $D_{\mathcal{I}}$;
- An interpretation $\mathcal{I}:(\mathcal{D}_{\mathcal{I}},\alpha\mathcal{I})$ is a pair consisting of a domain and an assignment.

Assignment $\alpha \mathcal{I}$

- Each variable symbol x is assigned a valued $x_{\mathcal{I}}$ from $D_{\mathcal{I}}$;
- Each n ary function symbol f is assigned aj n-ary function

$$f_{\mathcal{I}}:D_{\mathcal{I}}^n\to D_{\mathcal{I}}$$

that maps n elements of $D_{\mathcal{I}}$ to an element of $D_{\mathcal{I}}$;

Each n-ary predicate symbol p is assigned an n-ary predicate

$$p_{\mathcal{I}}:D^n_{\mathcal{I}} o \{\mathtt{true},\ \mathtt{false}\}$$

that maps n elements of $D_{\mathcal{I}}$ to a truth value;

- Each **constant** (0-ary function symbol) is assigned a value from $D_{\mathcal{I}}$;
- Each propositional variable (0-ary predicate symbol) is assigned a truth value.

Example 6

The formula

$$F: x + y > z \rightarrow y > z - x$$

contains the binary function symbols + and -, the binary predicate symbol >, and the variables x, y, and z. The domain is the integers, \mathbb{Z} :

$$D_{\mathcal{I}} = \mathbb{Z} = \{..., -2, -1, 0, 1, 2, ...\}.$$

We thus have interpretation $\mathcal{I}: (\mathbb{Z}, \alpha_{\mathcal{I}})$, where:

$$\alpha_{\mathcal{I}}: \{+ \mapsto +_{\mathbb{Z}}, \ - \mapsto -_{\mathbb{Z}}, \ > \mapsto >_{\mathbb{Z}}, \ x \mapsto 10, \ y \mapsto 8, \ z \mapsto 17, \ \ldots \}$$

The elision (...) reminds us that, as always, $\alpha_{\mathcal{I}}$ provides values for the countably infinitely many other constant, function, and predicate symbols.

• Given an FOL formula F and interpretation $\mathcal{I}:(D_{\mathcal{I}},\alpha_{\mathcal{I}})$, we want to compute if F evaluates to **true** (or **false**) under interpretation \mathcal{I} , $\mathcal{I} \models F$ (or $\mathcal{I} \not\models F$).

Semantics

- truth symbols: $\mathcal{I} \models \top$, $\mathcal{I} \not\models \bot$;
- $\alpha_{\mathcal{I}}$ gives meaning $\alpha_{\mathcal{I}}[x]$, $\alpha_{\mathcal{I}}[c]$, and $\alpha_{\mathcal{I}}[f]$ to variables x, constants c, and functions f;
- $\alpha_{\mathcal{I}}[f(t_1,...,t_n)] = \alpha_{\mathcal{I}}[f](\alpha_{\mathcal{I}}[t_1],...,\alpha_{\mathcal{I}}[t_n]);$
- $\alpha_{\mathcal{I}}[p(t_1,...,t_n)] = \alpha_{\mathcal{I}}[p](\alpha_{\mathcal{I}}[t_1],...,\alpha_{\mathcal{I}}[t_n]);$
- $\mathcal{I} \models p((t_1,...,t_n) \text{ iff } \alpha_{\mathcal{I}}[p(t_1,...,t_n)] = \text{true};$
- The logical connectives are handled in FOL in precisely the same way as in PL.

Example 7

Recall the formula

$$F: x + y > z \rightarrow y > z - x$$

the interpretation $\mathcal{I}:(\mathbb{Z},\alpha_{\mathcal{I}})$, where

$$\alpha_{\mathcal{I}}: \{+\mapsto +_{\mathbb{Z}}, \ -\mapsto -_{\mathbb{Z}}, \ >\mapsto >_{\mathbb{Z}}, \ x\mapsto 10, \ y\mapsto 8, \ z\mapsto 17\}.$$

Compute the truth value of F under \mathcal{I} as follows:

1.
$$\mathcal{I} \models x + y > z$$

since
$$\alpha_{\mathcal{I}}[x + y > z] = 10 + 8 > 17$$

2.
$$\mathcal{I} \models y > z - x$$

since
$$\alpha_{\mathcal{I}}[y > z - x] = 8 > 17 - 10$$

3.
$$\mathcal{I} \models F$$

by 1, 2, and the semantics of \rightarrow

x-variant

An x-variant of an interpretation $\mathcal{I}:(\mathbb{Z},\alpha_{\mathcal{I}})$ as an interpretation $\mathcal{J}:(\mathbb{Z},\alpha_{\mathcal{J}})$ such that

- $D_{\mathcal{I}} = D_{\mathcal{J}}$;
- and $\alpha_{\mathcal{I}}[y] = \alpha_{\mathcal{I}}[y]$ for all constant, free variable, function, and predicate symbols y, except possibly x.

Denote by $\mathcal{J}: \mathcal{I} \triangleleft \{x \mapsto v\}$ the x-variant of \mathcal{I} in which $\alpha_{\mathcal{J}}[x] = v$ for some $v \in D_{\mathcal{I}}$.

Semantics

For quntifiers,

$$\mathcal{I} \models \forall x. \ F \quad \text{iff for all } v \in D_{\mathcal{I}}, \ \mathcal{I} \triangleleft \{x \mapsto v\} \models F$$

$$\mathcal{I} \models \exists x. \ F$$
 there exists $v \in D_{\mathcal{I}}$, such that $\mathcal{I} \triangleleft \{x \mapsto v\} \models F$

Example 8

Consider the formula

$$F: \exists x. \ f(x) = g(x)$$

and the interpretation $\mathcal{I}:(D:\{\circ,\bullet\},\alpha_{\mathcal{I}})$ in which

$$\alpha_{\mathcal{I}}: \{f(\circ) \mapsto \circ, \ f(\bullet) \mapsto \bullet, \ g(\circ) \mapsto \bullet, \ g(\bullet) \mapsto \circ\}.$$

Compute the truth value of F under \mathcal{I} as follows:

1.
$$\mathcal{I} \triangleleft \{x \mapsto v\} \not\models f(x) = g(x)$$
 for $v \in D$

2.
$$\mathcal{I} \not\models \exists x. \ f(x) = g(x)$$
 since $v \in D$ is arbitrary

Outline

- Syntax
- 2 Semantics
- Satisfiability and Validity
- 4 Substitution
- Normal Forms
- 6 Decidability and Complexity
- Sound and Complete

- **9** Formula F is said to be **satisfiable** iff there exists an interpretation \mathcal{I} such that $\mathcal{I} \models F$;
- ② Formula F is said to be **valid** iff for all interpretations \mathcal{I} , $\mathcal{I} \models F$;
- **3** Satisfiability and validity are **dual**: F is valid iff $\neg F$ is unsatisfiable.

For arguing the validity of FOL formulae, we extend the semantic argument method from PL to FOL.

Extended Semantic Argument Method

According to the semantics of universal quantification, from $\mathcal{I} \models \forall x. F$, deduce $\mathcal{I} \triangleleft \{x \mapsto v\} \models F$ for any $v \in D_{\mathcal{I}}$.

$$\frac{\mathcal{I} \models \forall x. \ F}{\mathcal{I} \triangleleft \{x \mapsto v\} \models F} \text{ for any } v \in D_{\mathcal{I}}$$

In practice, we usually apply this rule using a domain element ν that was introduced earlier in the proof.

Extended Semantic Argument Method

Similarly, from the semantics of existential quantification, from $\mathcal{I} \not\models \exists x. F$, deduce $\mathcal{I} \triangleleft \{x \mapsto v\} \not\models F$ for any $v \in D_{\mathcal{I}}$. used in the proof.

$$\frac{\mathcal{I} \not\models \exists x. F}{\mathcal{I} \triangleleft \{x \mapsto v\} \not\models F} \text{ for any } v \in D_{\mathcal{I}}$$

Again, we usually apply this rule using a domain element v that was introduced earlier in the proof.

Extended Semantic Argument Method

According to the semantics of existential quantification, from $\mathcal{I} \models \exists x. F$, deduce $\mathcal{I} \triangleleft \{x \mapsto v\} \models F$ for some $v \in D_{\mathcal{I}}$ that has **not** been previously used in the proof.

$$\frac{\mathcal{I} \models \exists x. F}{\mathcal{I} \triangleleft \{x \mapsto v\} \models F} \text{ for a fresh } v \in D_{\mathcal{I}}$$

Extended Semantic Argument Method

Similarly, from the semantics of universal quantification, from $\mathcal{I} \models \forall x. F$, deduce $\mathcal{I} \triangleleft \{x \mapsto v\} \not\models F$ for some $v \in D_{\mathcal{I}}$ that has **not** been previously used in the proof.

$$\frac{\mathcal{I} \not\models \forall x. \ F}{\mathcal{I} \triangleleft \{x \mapsto v\} \not\models F} \text{ for a fresh } v \in D_{\mathcal{I}}$$

Extended Semantic Argument Method

A contradiction exists if two variants of the original interpretation \mathcal{I} disagree on the truth value of an n-ary predicate p for a given tuple of domain values.

$$\begin{split} J: \mathcal{I} \triangleleft ... &\models p(s_1, ..., s_n) \\ \frac{K: \mathcal{I} \triangleleft ... \not\models p(t_1, ..., t_n)}{\mathcal{I} \models \bot} \text{ for } i \in \{1, ..., n\}, \ \alpha_J[s_i] = \alpha_K[t_i] \end{split}$$

Example 9

We prove that

$$F: (\forall x. \ p(x)) \rightarrow (\forall y. \ p(y))$$

is valid. Suppose not; and $\mathcal{I} \not\models F$:

- 1. $\mathcal{I} \not\models F$ assumption
- 2. $\mathcal{I} \models \forall x. \ p(x) \ 1 \text{ and semantics of } \rightarrow$
- 3. $\mathcal{I} \not\models \forall y. \ p(y)$ 1 and semantics of \rightarrow
- 4. $\mathcal{I} \triangleleft \{y \mapsto v\} \not\models p(y)$ 3 and semantics of \forall , for some $v \in \mathcal{D}_{\mathcal{I}}$
- 5. $\mathcal{I} \triangleleft \{x \mapsto v\} \models p(x)$ 2 and semantics of \forall

under \mathcal{I} , p(v) is **false** by 4 and **true** by 5. Thus, F is valid.

Example 10

Consider the following relation between universal and existential quantification:

$$F: (\forall x. \ p(x)) \leftrightarrow (\neg \exists x. \ \neg p(x))$$
.

Suppose not. Then there is an interpretation \mathcal{I} such that $\mathcal{I} \not\models F$. In the first case (forward \rightarrow),

- 1. $\mathcal{I} \models \forall x. \ p(x)$ assumption
- 2. $\mathcal{I} \not\models \neg \exists x. \ \neg p(x)$ assumption
- 3. $\mathcal{I} \models \exists x. \ \neg p(x) \qquad 2 \text{ and } \neg$
- 4. $\mathcal{I} \triangleleft \{x \mapsto v\} \models \neg p(x)$ 3 and \exists , for some $v \in D_{\mathcal{I}}$
- 5. $\mathcal{I} \triangleleft \{x \mapsto v\} \models p(x)$ 1 and \forall

Continue Example 10. For the second case (backward \leftarrow),

1.
$$\mathcal{I} \not\models \forall x. \ p(x)$$
 assumption

2.
$$\mathcal{I} \models \neg \exists x. \neg p(x)$$
 assumption

3.
$$\mathcal{I} \triangleleft \{x \mapsto v\} \not\models p(x)$$
 1 and \forall , for some $v \in D_{\mathcal{I}}$

4.
$$\mathcal{I} \not\models \exists x. \neg p(x)$$
 2 and \neg

5.
$$\mathcal{I} \triangleleft \{x \mapsto v\} \not\models \neg p(x)$$
 4 and \exists

6.
$$\mathcal{I} \triangleleft \{x \mapsto v\} \models p(x)$$
 5 and \neg

Both cases end in contradictions for arbitrary interpretation \mathcal{I} , F is valid.

Example 11

To prove that

$$F: p(a) \rightarrow \exists x. \ p(x)$$

is valid, assume otherwise and derive a contradiction.

$$\mathcal{I} \not\models F$$

assumption

$$\mathcal{I} \models p(a)$$

1 and \rightarrow

$$\mathcal{I} \not\models \exists x. \ p(x)$$

1 and
$$ightarrow$$

$$\mathcal{I} \triangleleft \{x \mapsto \alpha_{\mathcal{I}}[a]\} \not\models p(x)$$

$$3$$
 and \exists

$$\mathcal{I} \models \bot$$

Because lines 2 and 4 are contradictory, F is valid.

Outline

- Syntax
- 2 Semantics
- Satisfiability and Validity
- Substitution
- Normal Forms
- Opecidability and Complexity
- Sound and Complete

Renaming

If variable x is **quantified** in F so that F has the form $F[\forall x. \ G[x]]$, then the **renaming** of x to fresh variable x' produces the formula $F[\forall x'. \ G[x']]$.

By the semantics of universal/existential quantification, the original and final formulae are equivalent.

Example 12

Renaming the bound variable x to fresh variable x' in

$$F: p(x) \wedge \forall x.q(x,y)$$

produces

$$F': p(x) \wedge \forall x'. q(x', y)$$
.

Substitution

A substitution is a map from FOL formulae to FOL formulae:

$$\sigma: \{F_1 \to G_1, ..., F_n \to G_n\}$$
.

- **①** As in PL, domain(σ) = { F_1 , ..., F_n } and range(σ) = { G_1 , ..., G_n };
- ② $F\sigma$: application of σ to F, replacing each occurrence of F_i in F by G_i simultaneously;
- ③ If F_j , F_k ∈ domain(σ), and F_k is a strict subformula of F_j , replace occurrences of F_j by G_j .

Example 13

Consider formula

$$F: (\forall x. \ p(x,y)) \rightarrow q(f(y),x)$$

and substitution

$$\sigma: \{x \mapsto g(x), \ y \mapsto f(x), \ q(f(y),x) \mapsto \exists x. \ h(x,y)\} \ .$$

Then

$$F\sigma: (\forall x. \ p(g(x), f(x))) \rightarrow \exists x. \ h(x, y)$$
.

Example 14

Consider formula

$$F: \exists y. \ p(x,y) \land p(y,x)$$

and substitution

$$\sigma: \{\exists y. \ p(x,y) \mapsto p(x,a)\}$$
,

where a is a constant. Then $F\sigma = ?$.

Example 13

Consider formula

$$F: (\forall x. \ p(x,y)) \rightarrow q(f(y),x)$$

and substitution

$$\sigma: \{x \mapsto g(x), y \mapsto f(x), q(f(y),x) \mapsto \exists x. h(x,y)\}$$
.

Then

$$F\sigma: (\forall x. \ p(g(x), f(x))) \rightarrow \exists x. \ h(x, y) \ .$$

Example 14

Consider formula

$$F: \exists y. \ p(x,y) \land p(y,x)$$

and substitution

$$\sigma: \{\exists y. \ p(x,y) \mapsto p(x,a)\}$$
,

where a is a constant. Then $F\sigma = ?$. F. The scope of the quantifier $\exists y$ in F is $p(x,y) \land p(y,x)$ not just p(x,y).

- Syntax
- 2 Semantics
- Satisfiability and Validity
- 4 Substitution
 - Safe Substitution
 - Schema Substitution
- Normal Forms
- Decidability and Complexity
- Sound and Complete

4.1 Safe Substitution

Free Variables of Substitution

Define for a substitution σ its set of free variables:

$$V_{\sigma} = \bigcup_{i} (\mathtt{free}(F_i) \cup \mathtt{free}(G_i))$$
 .

 V_{σ} consists of the free variables of all formulae F_i and G_i of the domain and range of σ .

Safe Substitution

Compute the safe substitution $F\sigma$ of formula F as follows:

- For each quantified variable x in F such that $x \in V\sigma$, rename x to a fresh variable to produce F';
- **2** Compute $F'\sigma$.

4.1 Safe Substitution

Example 15

Consider again formula

$$F: (\forall x. \ p(x,y)) \rightarrow q(f(y),x)$$

and substitution

$$\sigma: \{x \mapsto g(x), y \mapsto f(x), q(f(y), x) \mapsto \exists x. h(x, y)\}$$
.

To compute the safe substitution $F\sigma$, first compute free variables

$$V\sigma = \operatorname{free}(x) \cup \operatorname{free}(g(x)) \cup \operatorname{free}(y) \cup \operatorname{free}(f(x))$$

 $\cup \operatorname{free}(q(f(y), x)) \cup \operatorname{free}(\exists x. h(x, y))$
 $= \{x, y\}$

Then

• As $x \in V\sigma$, after renaming, $F': (\forall x'. p(x', y)) \rightarrow q(f(y), x)$;

 $P'\sigma: (\forall x'.\ p(x',f(x))) \to \exists x.\ h(x,y).$

4.1 Safe Substitution

Example 16

Consider formula

$$F: (\forall z.p(z,y)) \rightarrow q(f(y),x)$$
,

in which the quantified variable has a different name than any free variable of F or the substitution

$$\sigma: \{x \mapsto g(x), y \mapsto f(y), q(f(y), x) \mapsto \exists w. h(w, y)\}$$
.

The safe substitution is the unrestricted substitution

$$F\sigma: (\forall z. \ p(z, f(y))) \rightarrow \exists w. \ h(w, y)$$
.

Proposition 17 (Substitution of Equivalent Formulae)

Consider substitution

$$\sigma: \{F_1 \mapsto G_1, ..., F_n \mapsto G_n\}$$

such that for each i, $F_i \Leftrightarrow G_i$. Then $F \Leftrightarrow F\sigma$ when $F\sigma$ is computed as a safe substitution.

- Syntax
- Semantics
- Satisfiability and Validity
- 4 Substitution
 - Safe Substitution
 - Schema Substitution
- Normal Forms
- Decidability and Complexity
- Sound and Complete

Formula Schema

A formula schema H, e.g., $(\forall x. \ F) \leftrightarrow (\neg \exists x. \ \neg F)$:

- contains at least one placeholder $F_1, F_2, ...$;
- 2 may have side conditions that specify that certain variables do not occur free in the placeholders.

Schema Substitution

Consider a substitution σ mapping placeholders to FOL formulae. A schema substitution is an (unrestricted) application of σ to a formula schema.

A schema substitution is **legal** only if the substitution σ **obeys** the side conditions of the formula schema.

Example 18

Recall from Example 10 that

$$(\forall x. \ p(x)) \leftrightarrow (\neg \exists x. \ \neg p(x))$$

is valid. Rewrite the formula using placeholders:

$$H: (\forall x. \ F) \leftrightarrow (\neg \exists x. \ \neg F)$$
.

H is a formula schema. The validity of

$$G: (\forall x. \exists y. q(x,y)) \leftrightarrow (\neg \exists x. \neg \exists y. q(x,y)s)$$

is derivable from H by the schema substitution $H\sigma$ (syntactically identical to G) by:

$$\sigma: \{F \mapsto \exists y. \ q(x,y)\}$$
.

Example 19

Consider the formula schema with side condition

$$H: (\forall x. F) \leftrightarrow F \quad \text{provided } x \not\in \texttt{free}(F)$$
.

If we disregard the side condition, then H is an invalid formula schema as, for example,

$$G_1: (\forall x. \ p(x)) \leftrightarrow p(x)$$
,

obtained from H by schema substitution

$$\sigma: \{F \mapsto p(x)\} ,$$

is invalid. However, σ is disallowed by the side condition. A legal schema substituion can be:

$$\sigma: \{F \mapsto \exists y. \ p(z,y)\}$$
,

which obeys H's side condition.

Example 20

To prove the validity of

$$H: (\forall x. F) \leftrightarrow F \text{ provided } x \notin \texttt{free}(F)$$
,

consider the two directions of \leftrightarrow . First (\rightarrow) ,

- 1. $\mathcal{I} \models \forall x. F$ assumption
- 2. $\mathcal{I} \not\models F$ assumption
- 3. $\mathcal{I} \models F$ 1, \forall , since $x \notin \text{free}(F)$
- 4. $\mathcal{I} \models \bot$ 2, 3

Second (\leftarrow), similar to the first case. Thus, H is a valid formula schema.

Proposition 21 (Formula Schema)

If H is a valid formula schema and σ is a substitution obeying H's side conditions, then H σ is also valid.

The valid PL formula

$$(P \rightarrow Q) \leftrightarrow (\neg P \lor Q)$$

can be treated as a valid formula schema:

$$(F_1 \to F_2) \leftrightarrow (\neg F_1 \lor F_2)$$
.

In general, valid propositional templates are valid formulae schemata.

Outline

- Syntax
- Semantics
- Satisfiability and Validity
- 4 Substitution
- Normal Forms
- 6 Decidability and Complexity
- Sound and Complete

- The normal forms of PL extend to FOL;
- An FOL formula F can be transformed into negation normal form (NNF) by using the procedure in PL augmented with these two equivalences:

$$\neg \forall x. \ F[x] \Leftrightarrow \exists x. \neg F[x] ,$$
$$\neg \exists x. \ F[x] \Leftrightarrow \forall x. \neg F[x] .$$

Example 22

Find a formula in NNF that is equivalent to

$$G: \forall x. \ (\exists y. \ p(x,y) \land p(x,z)) \rightarrow \exists w. \ p(x,w) \ .$$

Each formula below is equivalent to G and is obtained from the previous one through an application of an equivalence.

1.
$$\forall x. (\exists y. p(x,y) \land p(x,z)) \rightarrow \exists w. p(x,w)$$

 $\downarrow F_1 \rightarrow F_2 \Leftrightarrow \neg F_1 \lor F_2$

2.
$$\forall x. \ \neg(\exists y. \ p(x,y) \land p(x,z)) \lor \exists w. \ p(x,w)$$

$$\downarrow \neg \exists x. \ F[x] \Leftrightarrow \forall x. \ \neg F[x]$$

3.
$$\forall x. (\forall y. \neg (p(x,y) \land p(x,z))) \lor \exists w. p(x,w)$$

 $\downarrow \neg (F_1 \land F_2) \Leftrightarrow \neg F_1 \lor \neg F_2$

4.
$$\forall x. (\forall y. \neg p(x, y) \lor \neg p(x, z)) \lor \exists w. p(x, w)$$

Prenex Normal Form (PNF)

A formula is in prenex normal form (PNF) if all of its quantifiers appear at the beginning of the formula:

$$Q_1x_1....Q_nx_n. F[x_1,...,x_n]$$
,

where $Q_i \in \{\forall, \exists\}$ and F is quantifier-free.

Example 23

FOL formula in PNF:

$$\forall x. \exists y. \forall z. p(x,y) \land q(y,z)$$

• An FOL formula is in CNF (or DNF) if it is in PNF and its main quantifier-free subformula is in CNF (or DNF).

Translation of FOL Formula into PNF

To compute an equivalent PNF F' of FOL formula F,

- Convert F into NNF formula F_1 .
- ② When multiple quantified variables have the same name, rename them to fresh variables, resulting in F_2 .
- **3** Remove all quantifiers from F_2 to produce quantifier-free formula F_3 .
- \bullet Add the quantifiers before F_3 ,

$$F_4: Q_1x_1....Q_nx_n. F_3$$
,

where the Q_i are the quantifiers such that if Q_j is in the scope of Q_i in F_1 , then i < j.

Example 24

Find a PNF equivalent of

$$F: \forall x. \neg (\exists y. p(x,y) \land p(x,z)) \lor \exists y. p(x,y).$$

1. Write F in NNF:

$$F_1: \ \forall x. \ (\forall y. \ \neg p(x,y) \lor \neg p(x,z)) \lor \exists y. \ p(x,y) \ .$$

2. Rename quantified variables:

$$F_2: \forall x. \ (\forall y. \ \neg p(x,y) \lor \neg p(x,z)) \lor \exists w. \ p(x,w)$$
.

3. Remove all quantifiers to produce quantifier-free formula

$$F_3: \neg p(x,y) \vee \neg p(x,z) \vee p(x,w)$$
.

4. Add the quantifiers before F_3 :

$$F_4: \forall x. \ \forall y. \ \exists w. \ \neg p(x,y) \lor \neg p(x,z) \lor p(x,w)$$
.

Outline

- Syntax
- 2 Semantics
- Satisfiability and Validity
- 4 Substitution
- Normal Forms
- 6 Decidability and Complexity
- Sound and Complete

6 Decidability and Complexity

Satisfiability as a Language

Let L_{PL} be the set of all satisfiable formulae. That is, the word $w \in L_{PL}$ iff

- w is a syntactically well-formed formulae;
- ② and when w is viewed as a PL formula F, F is satisfiable.

Then the formal decision problem (satisfiability of formulae) is: given a word w, is $w \in L_{PL}$?

Satisfiability of FOL formulae can be similarly formalized as a language question: given a word w, is $w \in L_{FOL}$?

- Syntax
- 2 Semantics
- Satisfiability and Validity
- 4 Substitution
- Normal Forms
- 6 Decidability and Complexity
 - Decidability
 - Complexity
- Sound and Complete

6.1 Decidability

Decidable

A language L is **decidable** if there exists a procedure that, given a word w,

- eventually halts;
- ② and answers yes if $w \in L$;
- 3 and answers no if $w \notin L$.

Other terms for "decidable" are recursive and Turing-decidable.

- A procedure for a decidable language is called an algorithm
- Satisfiability of PL formulae is decidable: the truth-table method is a decision procedure
- A language is undecidable if it is not decidable
- Church and Turing showed that L_{FOL} is undecidable

6.1 Decidability

Semi-Decidable

A language L is **semi-decidable** if there exists a procedure that, given a word w,

- **1** halts and **answers** *yes* **iff** $w \in L$;
- 2 halts and answers no if $w \notin L$;
- **3** or does not halt if $w \notin L$.

Other terms for "semi-decidable" are partially decidable, recursively enumerable, and Turing-recognizable.

- ullet Unlike a decidable language, the procedure is only guaranteed to halt if $w \in L$
- The terms "Turing-decidable" and "Turing-recognizable" arise from Alan Turing's classic formalization of procedures as Turing machines

- Syntax
- 2 Semantics
- Satisfiability and Validity
- 4 Substitution
- Normal Forms
- 6 Decidability and Complexity
 - Decidability
 - Complexity
- Sound and Complete

Polynomial-Time Decidable

A language L is **polynomial-time decidable**, or in **PTIME** (also, in **P**), if there exists a procedure that, given w,

- **1** answers *yes* when $w \in L$;
- 2 answers no when $w \notin L$;
- and halts in a number of steps that is at most proportionate to some polynomial of the size of w.
 - Determining if the word w is a well-formed FOL formula is polynomial-time decidable (standard parsing methods).

Nondeterministic-Polynomial-Time Decidable

A language L is **nondeterministic-polynomial-time decidable**, or in **NPTIME** (also, in **NP**), if there exists a **nondeterministic** procedure that, given w,

- **1** guesses a witness W to the fact that $w \in L$ that is at most proportionate in size to some polynomial of the size of w;
- ② checks in time at most proportionate to some polynomial of the size of w that W really is a witness to $w \in L$;
- and answers yes if the check succeeds and no otherwise.

 L_{PL} is in NP, nondeterministic procedure for deciding satisfiable:

- parse the input w as formula F (return no if w is not a well-formed PL formula);
- guess an interpretation I, which is linear in the size of w;
- \bullet check that $I \models F$.

co-NP

A language L is in **co-NP** if its **complement** language L is in NP.

- Unsatisfiability of PL formulae is in co-NP as satisfiability is in NP
- It is not known if unsatisfiability of PL formulae is in NP
- A satisfiable PL formula has a polynomial size witness of its satisfiability

NP-hard

A language L is **NP-hard** if every instance $v \in L'$ of every other NP decidable language L' can be **reduced** to deciding an instance $w_{L'}^v \in L$. Moreover, the size of $w_{L'}^v$ must be at most proportionate to some polynomial of the size of v.

NP-complete

A language *L* is **NP-complete** if it is in NP and is NP-hard.

- L_{PL} is NP-complete. L_{PL} (also called **SAT**) was the first language shown to be NP-complete
- ullet The Cook-Levin theorem shows that all NP-languages L can be reduced to L_{PL}

Standard Notation

1 O(f(n)): the set of all functions of at most order f(n), a function g(n) is of at most order f(n) if there exist a scalar $c \ge 0$ and an integer $n_0 \ge 0$ such that

$$\forall n \geq n_0. \ g(n) \leq cf(n) \ .$$

② $\Omega(f(n))$: the set of all functions of at least order f(n), a function g(n) is of at least order f(n) if there exist a scalar $c \ge 0$ and an integer $n_0 \ge 0$ such that

$$\forall n \geq n_0. \ g(n) \geq cf(n) \ .$$

3 $\Theta(f(n))$: the set of all functions of precisely order f(n).

$$\Theta(f(n)) = O(f(n)) \cap \Omega(f(n))$$

Example 25

- **1** $3n^2 + n \in O(n^2)$;
- **2** $3n^2 + n \in \Omega(n^2)$;
- **3** $3n^2 + n \in \Theta(n^2)$;
- **3** $n^2 + n \in O(2^n)$;
- **6** $3n^2 + n \in \Omega(n)$;
- $3n^2 + n \notin \Omega(2^n);$
- $311 + 11 \neq 32(2),$
- **3** $3n^2 + n \notin \Theta(2^n)$;
- $2^n \in \Omega(n^3);$
- $\bigcirc 2^n \notin O(n^3).$

Complexity of Decision Problem

A decision problem D has time complexity:

- O(f(n)) if there exists an algorithm P for D and a function $g(n) \in O(f(n))$ such that P runs in time at most g(n) on input of size n
- ② $\Omega(f(n))$ if there exists a function $g(n) \in \Omega(f(n))$ such that all algorithms P for D runs in time at least g(n) on input of size n.
- **3** $\Theta(f(n))$ if it has time complexities $\Omega(f(n))$ and O(f(n)).

Outline

- Syntax
- 2 Semantics
- Satisfiability and Validity
- 4 Substitution
- Normal Forms
- Openion of the complexity and Complexity
- Sound and Complete

7 Sound and Complete

Semantic Argument Method: To show FOL formula F is valid, assume $\mathcal{I} \not\models F$, and derive a contradiction $\mathcal{I} \models \bot$ in all branches.

Theorem 26 (Sound)

If every branch of a semantic argument proof of $\mathcal{I} \not\models F$ closes (i.e., reaches $\mathcal{I} \models \bot$), then F is valid

Theorem 27 (Complete)

Each valid formula F has a semantic argument proof in which every branch is closed (i.e., reaches $\mathcal{I} \models \bot$).

Example 28

Consider the formula $F: p \land (\neg q \lor \neg p)$. The semantic tableauf of F is

$$\begin{array}{ccc}
p \wedge (\neg q \vee \neg p) \\
\downarrow \\
p, \neg q \vee \neg p \\
\swarrow & \searrow \\
p, \neg q & p, \neg p \\
\odot & \times
\end{array}$$

- The initial formula labels the root of the tree, each node has one or two child
- \bullet A leaf labeled by a set of literals containing a complementary pair of literals is marked \times
- A leaf labeled by a set not containing a complementary pair is marked
 .

A concise presentation of the rules for creating a semantic tableau can be given if formulas are classified according to their principal operator

Classification of α -formulae and β -formulae

For α -formulae: α -formulas are conjunctive and are satisfiable only if both subformulas α_1 and α_1 are satisfied:

α	α_1	α_2
$\neg \neg A_1$	A_1	
$A_1 \wedge A_2$	A_1	A_2
$\neg (A_1 \lor A_2)$	$\neg A_1$	$\neg A_2$
$\neg (A_1 o A_2)$	A_1	$\neg A_2$
$A_1 \leftrightarrow A_2$	$A_1 o A_2$	$A_2 o A_1$

A concise presentation of the rules for creating a semantic tableau can be given if formulas are classified according to their principal operator

Classification of α -formulae and β -formulae

For β -formulae: β -formulas are disjunctive and are satisfied even if only one of the subformulas β_1 or β_2 is satisfiable:

β	eta_1	β_2
$\neg (B_1 \wedge B_2)$	$\neg B_1$	$\neg B_2$
$\overline{B_1 \vee B_2}$	B_1	B_2
$B_1 \rightarrow B_2$	$\neg B_1$	B_2
$\neg (B_1 \leftrightarrow B_2)$	$\neg (B_1 o B_2)$	$\neg (B_2 o B_1)$

Algorithm of Construction of a semantic tableau

Input: A formula ϕ of propositional logic

Output: A semantic tableau $\mathcal T$ for ϕ all of whose leaves are marked.

Initially, \mathcal{T} is a tree consisting of a single root node labeled with the singleton set $\{\phi\}$. This node is not marked.

Repeat the following step as long as possible: Choose an unmarked leaf ℓ labeled with a set of formulas $U(\ell)$ and apply construction rules.

Algorithm of Construction of a semantic tableau

Construction rules:

- $U(\ell)$ is a set of literals. Mark the leaf closed \times if it contains a complementary pair of literals. If not, mark the leaf open \odot .
- $U(\ell)$ is not a set of literals. Choose a formula in $U(\ell)$ which is not a literal. Classify the formula as an α -formula A or as a β -formula B:
 - A is an α -formula. Create a new node ℓ' as a child of ℓ and label ℓ' with:

$$U(\ell') = (U(\ell) - \{A\}) \cup \{A_1, A_2\}.$$

• B is an β -formula. Create a new node ℓ' and ℓ'' as children of ℓ . Label ℓ' with:

$$U(\ell') = (U(\ell) - \{B\}) \cup \{B_1\},\$$

and label ℓ'' with:

$$U(\ell'') = (U(\ell) - \{B\}) \cup \{B_2\}.$$

Definition 29 (Completed Tableau, Closed, Open)

A tableau whose construction has terminated is a **completed** tableau. A completed tableau is **closed** if all its leaves are marked closed. Otherwise (if some leaf is marked open), it is **open**.

Theorem 30

The construction of a tableau for any formula ϕ **terminates**. When the construction terminates, all the leaves are marked \times or \odot .

• A branch can always be extended if its leaf is labeled with a set of formulas that is not a set of literals.

7.2 Proof of Soundness and Completeness

Theorem 31 (Soundness and Completeness)

Let $\mathcal T$ be a completed tableau for a formula A. A is unsatisfiable if and only if $\mathcal T$ is closed.

Corollary 32

Formula A is satisfiable if and only if \mathcal{T} is open.

Proof: A is satisfiable iff (by definition) A is not unsatisfiable iff \mathcal{T} is not closed iff (by definition) \mathcal{T} is open.

Corollary 33

Formula A is valid if and only if the tableau for $\neg A$ closes.

Proof: A is valid iff $\neg A$ is unsatisfiable iff the tableau for $\neg A$ closes.

- More general theorem: if \mathcal{T}_n , the subtree rooted at node n of \mathcal{T} , closes then the **set of formulas** U(n) **labeling** n is unsatisfiable
- For simplicity, use $A_1 \wedge A_2$ and $B_1 \vee B_2$ as representatives of the classes of α and β -formulas

Proof: The proof is by induction on the height h_n of the node n in \mathcal{T}_n

- Base Case: $h_n = 0$, and assume that T_n closes. $(h_n = 0) \Rightarrow n$ is a leaf $\Rightarrow U(n)$ contains complementary pair \Rightarrow unsatisfiable.
- Inductive Step: let n be a node such that $h_n > 0$ in \mathcal{T}_n . Show that: \mathcal{T}_n is closed $\Rightarrow U(n)$ is unsatisfiable. **Assume:** for any node m of height $h_m < h_n$, if \mathcal{T}_m closes, then U(m) is unsatisfiable.

Since $h_n > 0$, the rule for some α - or β -formula was used to create the children of n:

Two Cases:

- $U(n) = \{A_1 \land A_2\} \cup U_0$ and $U(n') = \{A_1, A_2\} \cup U_0$ for some (possibly empty) set of formulas U_0
- ② $U(n) = \{B_1 \lor B_2\} \cup U_0$, $U(n') = \{B_1\} \cup U_0$, and $U(n'') = \{B_2\} \cup U_0$ for some (possibly empty) set of formulas U_0

First Case: Clearly, $\mathcal{T}_{n'}$ is also a closed tableau and since $h_{n'}=h_n-1$, by the inductive hypothesis $U(n')=\{A_1,A_2\}\cup U_0$ is unsatisfiable. Let \mathcal{I} be an arbitrary interpretation.

- **1** $\not\vdash A_0$ for some formula $A_0 \in U_0$. But $U_0 \subset U(n)$ so U(n) is also unsatisfiable
- ② Otherwise, $\mathcal{I} \models A_0$ for all $A_0 \in U_0$ so $\mathcal{I} \not\models A_1$ or $\mathcal{I} \not\models A_2$. Suppose that

$$\mathcal{I} \not\models A_1$$
.

By the definition of the semantics of \wedge , this implies that

$$\mathcal{I} \not\models A_1 \wedge A_2$$
.

Since $A_1 \wedge A_2 \in U(n)$, U(n) is unsatisfiable. A similar argument holds if $\mathcal{I} \not\models A_2$.

Second Case: Clearly, $\mathcal{T}_{n'}$ and $\mathcal{T}_{n''}$ are also closed tableaux and since $h_{n'} \leq h_n - 1$ and $h_{n''} \leq h_n - 1$, by the inductive hypothesis $U(n') = \{B_1\} \cup U_0$ and $U(n'') = \{B_2\} \cup U_0$ are both unsatisfiable. Let \mathcal{I} be an arbitrary interpretation.

- **1** $\not\vdash B_0$ for some formula $B_0 \in U_0$. But $U_0 \subset U(n)$ so U(n) is also unsatisfiable
- ① Otherwise, $\mathcal{I} \models B_0$ for all $B_0 \in U_0$ so $\mathcal{I} \not\models B_1 \quad \text{since } U(n') \text{ is unsatisfiable },$ $\mathcal{I} \not\models B_2 \quad \text{since } U(n'') \text{ is unsatisfiable.}$

By the definition of the semantics of \vee , this implies that

$$\mathcal{I} \not\models B_1 \vee B_2$$
.

Since $B_1 \vee A_2 \in U(n)$, U(n) is unsatisfiable.

Completeness

The theorem to be proved is:

If A is unsatisfiable then every tableau for A closes.

Rather than prove the above, we prove the contrapositive:

If some tableau for A is open, then A is satisfiable.

Example 34

The tableau for formula $F = p \land (\neg q \lor \neg p) \text{ is: } p \land (\neg q \lor \neg p)$ $\downarrow \\ p, \neg q \lor \neg p$

$$p, \neg q$$
 $p, \neg p$

 $\mathcal{I}: \{p \mapsto \top, q \mapsto \bot\}$ satisfies F

Implication and Contrapositive

$$P \rightarrow Q \Leftrightarrow \neg P \lor Q \Leftrightarrow \neg \neg Q \lor \neg P \Leftrightarrow \neg Q \rightarrow \neg P$$

There are four steps in the proof:

- Define a property of sets of formulas;
- Show that the union of the formulas labeling nodes in an open branch has this property;
- Prove that any set having this property is satisfiable;
- Note that the formula labeling the root is in the set.

Step-1: Define a property of sets of formulas;

Definition 35 (Hintikka set)

Let U be a set of formulas. U is a **Hintikka set** iff:

- For all atoms p appearing in a formula of U, either $p \notin U$ or $\neg p \notin U$.
- ② If $A \in U$ is an α -formula, then $A_1 \in U$ and $A_2 \in U$.
- **3** If $B \in U$ is a β -formula, then $B_1 \in U$ or $B_2 \in U$.

Example 36

We claim that $U = \{p, p \lor (\neg q \land \neg p)\}$ is a Hintikka set.

- Condition (1) obviously holds since there is only one literal p in U and $\neg p \notin U$.
- 2 Condition (2) is vacuous.
- **3** For Condition (3), $B = p \lor (q \land \neg q) \in U$ is a β -formula and $B_1 = p \in U$.

Step-2: Show that the union of the formulas labeling nodes in an open branch has this property;

Theorem 37

Let ℓ be an open leaf in a completed tableau $\mathcal T$. Let $U=\bigcup_i U(i)$, where i runs over the set of nodes on the branch from the root to ℓ . Then U is a Hintikka set.

Proof:

- If a literal p or $\neg p$ appears for the first time in U(n) for some n, the literal will be copied into U(k) for all nodes k on the branch from n to ℓ .
- This means that all literals in U appear in $U(\ell)$.
- Since the branch is open, no complementary pair of literals appears in $U(\ell)$, so Condition (1) holds for U.

Continue Proof:

- Suppose that $A \in U$ is an α -formula.
- Since the tableau is completed, A was the formula selected for decomposing at some node n in the branch from the root to ℓ .
- Then $\{A_1, A_2\} \subseteq U(n') \subseteq U$, so Condition (2) holds.
- Suppose that $B \in U$ is a β -formula
- Since the tableau is completed, B was the formula selected for decomposing at some node n in the branch from the root to ℓ .
- Then either $B_1 \in U(n') \subseteq U$ or $B_2 \in U(n') \subseteq U$, so Condition (3) holds.

Step-3: Prove that any set having this property is satisfiable;

Theorem 38 (Hintikka's Lemma)

Let U be a Hintikka set. Then U is satisfiable.

Proof: We define an interpretation and then show that the interpretation is a model of U. Let \mathcal{P}_U be set of all **atoms** appearing in all formulas of U. **Define an interpretation** $\mathcal{I}: \mathcal{P}_U \to \{\top, \bot\}$ as follows:

$$\mathcal{I} \models p$$
 if $p \in U$, $\mathcal{I} \not\models p$ if $\neg p \in U$, $\mathcal{I} \models p$ if $p \not\in U$ and $\neg p \not\in U$.

Since U is a Hintikka set, by Condition (1), every atom in \mathcal{P}_U is given exactly one value.

Continue Proof: We show by structural induction that for any $A \in U$, $\mathcal{I} \models A$:

- If A is an atom p, then $\mathcal{I} \models A$ because $\mathcal{I} \models p$ since atom $p \in U$.
- If A is a negated atom $\neg p$, then since $\neg p \in U$, $\mathcal{I} \not\models p$, so $\mathcal{I} \not\models A$.
- If A is an α -formula, by Condition (2) $A_1 \in U$ and $A_2 \in U$. By the inductive hypothesis, $\mathcal{I} \models A_1$ and $\mathcal{I} \models A_2$, so $\mathcal{I} \models A$ by definition of the conjunctive operators.
- If A is β -formula B, by Condition (3) $B_1 \in U$ or $B_2 \in U$. By the inductive hypothesis, $\mathcal{I} \models B_1$ or $\mathcal{I} \models B_2$, so $\mathcal{I} \models A$ by definition of the disjunctive operators.

Step-4: Note that the formula labeling the root is in the set. *Proof of Completeness:*

- Let \mathcal{T} be a completed open tableau for A.
- Then U, the union of the labels of the nodes on an open branch, is a Hintikka set by Theorem 37.
- Theorem 38 shows an interpretation \mathcal{I} can be found such that U is simultaneously satisfiable in \mathcal{I} .
- A, the formula labeling the root, is an element of U so $\mathcal{I} \models A$.

Summary

- How one constructs an FOL formula. Variables, terms, function symbols, predicate symbols, atoms, literals, logical connectives, quantifiers
- What an FOL formula means. Truth values true and false. Interpretations: domain and assignments
- Whether an FOL formula evaluates to true under any or all interpretations. Semantic argument method
- Substitution, which is a tool for manipulating formulae and making general claims. Safe and schema substitutions. Substitution of equivalent formulae. Valid schemata
- A normal form is a set of syntactically restricted formulae such that every FOL formula is equivalent to some member of the set
- A review of decidability, complexity theory and meta-theorems.