

Nome: José Antônio Alvarenga Netto - 32333\_\_\_\_\_\_\_\_ Data: 19 de junho de 2018

1. Controle de Qualidade. Os dados a seguir foram obtidos em um ensaio R&R. Determine os parâmetros  $\%R\&R_{VT}$  e  $\%R\&R_{TOL}$  desses processos de medição e indique se eles são adequados ou não e o motivo (Extraído do livro Fundamentos de Metrologia Científica e Industrial de Armando Albertazzi G. Jr. e André R. de Souza,  $2^a$  edição, página 409).

|               | Peças     |       |       |       |       |       |       |       |       |       |
|---------------|-----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Operadores    |           | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     |
|               | Medição 1 | 76.75 | 76.37 | 76.81 | 76.95 | 76.18 | 76.68 | 76.82 | 76.67 | 77.04 |
| A             | Medição 2 | 77.08 | 76.7  | 76.59 | 76.62 | 77.13 | 76.36 | 76.83 | 76.57 | 76.75 |
|               | Medição 3 | 76.37 | 76.35 | 76.72 | 77.03 | 77.1  | 76.47 | 76.69 | 76.77 | 76.89 |
|               | Medição 1 | 76.9  | 76.66 | 76.78 | 76.95 | 76.79 | 76.71 | 76.94 | 77.13 | 77.05 |
| В             | Medição 2 | 76.91 | 76.9  | 76.95 | 76.67 | 76.99 | 76.87 | 76.94 | 76.99 | 76.72 |
|               | Medição 3 | 77.12 | 76.87 | 76.63 | 76.91 | 76.33 | 76.84 | 76.4  | 76.68 | 76.93 |
|               | Medição 1 | 76.23 | 76.77 | 76.79 | 76.24 | 76.7  | 77.26 | 77.01 | 76.71 | 77.27 |
| $\mid C \mid$ | Medição 2 | 76.99 | 76.19 | 77.3  | 76.96 | 77.36 | 77.13 | 76.89 | 76.59 | 77.15 |
|               | Medição 3 | 77.08 | 76.53 | 76.88 | 77.51 | 77.07 | 76.3  | 76.96 | 77.4  | 76.28 |

2. Ajuste Linear. Para determinar a constante de elasticidade de uma mola, um estudante pendura várias massas M em uma extremidade da mola e mede a sua correspondente dimensão l. Os resultados obtidos estão apresentados na Tabela 1. Como a força  $mg = k(l-l_0)$  é o comprimento da mola sem distensão, esses dados devem se ajustar a uma reta,  $l = l_0 + (g/k)m$ . Faça um ajuste por mínimos quadrados para essa reta, considerando os dados apresentados, e determine as melhores estimativas para  $l_0$  e para k. Calcule o comprimento l e sua incerteza para o peso de 1kg (Extraído do livro Introdução à análise de erros de John R. Taylor,  $2^a$  edição, página 200).

| Peso $m$ (gramas)    | 200  | 300  | 400  | 500 | 600  | 700  | 800  | 900  |
|----------------------|------|------|------|-----|------|------|------|------|
| Comprimento $l$ (cm) | 4.52 | 5.63 | 5.77 | 7.1 | 7.18 | 7.66 | 8.41 | 8.69 |

Tabela 1: Comprimento versus peso para uma mola M.

3. Medidas Correlacionadas. Considere o modelo matemático abaixo para medição de uma resistência com base nos valores simultaneamente observados de corrente e voltagem sob condições ambientais idênticas, utilizando um voltímetro e um amperímetro (ambos os instrumentos estavam com escala selecionada visando a menor incerteza associada ao conjunto de medições em questão, ver Tabelas 3 e 4), considerando a influência de correlação entre as variáveis e tendo ciência de que a temperatura ambiente estava oscilando entre 24°C e 25°C. Determine a incerteza no cálculo de R com 99.73% de confiança de acordo com a quantidade de algarismos significativos de acordo com o Método de Monte Carlo.

$$R = (V_a + V_{resol} + V_{calib} + V_{temp})/(I_a + I_{resol} + I_{calib} + I_{temp})$$
, sendo:

| N          | 1      | 2      | 3      | 4      | 5       | 6      | 7       | 8       |
|------------|--------|--------|--------|--------|---------|--------|---------|---------|
| $V_a(V)$   | 9.77   | 9.01   | 8.3    | 8.93   | 10.09   | 9.82   | 10.86   | 11.71   |
| $I_a (mA)$ | 96.744 | 90.514 | 82.654 | 90.284 | 101.018 | 97.915 | 108.264 | 116.458 |

Tabela 2: Medições simultâneas de voltagem e corrente

| Faixa                | Precisão           |
|----------------------|--------------------|
| 200mV, 2V, 20V, 200V | $\pm (0.5\% + 3D)$ |
| 1000V                | $\pm (1.0\% + 5D)$ |

Tabela 3: Incerteza do voltímetro de 3 1/2 dígitos, segundo o certificado de calibração, válida para temperatura ambiente oscilando entre  $-10^{\circ}C$  e  $40^{\circ}C$ .

| Faixa | Incerteza          |
|-------|--------------------|
| 20mA  | $\pm (0.8\% + 3D)$ |
| 200mA | $\pm (1.2\% + 4D)$ |
| 20A   | $\pm (2.0\% + 5D)$ |

Tabela 4: Incerteza do amperímetro de 5 1/2 dígitos, segundo o certificado de calibração, válida para temperatura de  $23^{\circ}C \pm 5^{\circ}C$  e umidade relativa < 75%.