On the Stability of Spectral Graph Filters – a Probabilistic Perspective

Ning Zhang¹, Henry Kenlay², Mihai Cucuringu¹, Xiaowen Dong¹

¹University of Oxford,

²Exscientia

Graph Signal Processing Workshop, June 2024

Preliminary: graph signals and spectral graph filter

Graph signal: signals indexed by vertices of a graph, denoted as $\mathbf{x} \in \mathbb{R}^n$.

Figure: Examples of graph signals from [SM13]

Preliminary: graph signals and spectral graph filter

Graph signal: signals indexed by vertices of a graph, denoted as $\mathbf{x} \in \mathbb{R}^n$.

Spectral graph filter

A spectral graph filter is defined as

$$g(G) = \mathbf{U}g(\Lambda)\mathbf{U}^T,$$

where \mathbf{U} and Λ come from the eigendecomposition of graph shift operator $\mathbf{S} = \mathbf{U}\Lambda\mathbf{U}^T$, and a $g(\Lambda)$ is a function applied on each of the eigenvalues.

Preliminary: graph signals and spectral graph filter

Graph signal: signals indexed by vertices of a graph, denoted as $\mathbf{x} \in \mathbb{R}^n$.

Spectral graph filter

A spectral graph filter is defined as

$$g(G) = \mathbf{U}g(\Lambda)\mathbf{U}^T,$$

where \mathbf{U} and $\mathbf{\Lambda}$ come from the eigendecomposition of graph shift operator $\mathbf{S} = \mathbf{U}\mathbf{\Lambda}\mathbf{U}^T$, and a $g(\mathbf{\Lambda})$ is a function applied on each of the eigenvalues.

Signal embedding: For input graph signal \mathbf{x} , its embedding $g(G)\mathbf{x} \in \mathbb{R}^n$.

Stability of spectral graph filters

Real-world networks may be inaccurate due to noise or adversarial attacks.

Stability of spectral graph filters

Real-world networks may be inaccurate due to noise or adversarial attacks. Q: When a graph G is perturbed to G_p , how much does the output embedding change?

Stability of spectral graph filters

Real-world networks may be inaccurate due to noise or adversarial attacks.

Q: When a graph G is perturbed to G_p , how much does the output embedding change?

Existing definitions (worst-case view) [KTD20, KTD21, GBR20, LMBB18]

Existing works consider the worst possible graph signals and define the **embedding stability** as

$$\sup_{\mathbf{x}\neq0}\frac{\left\|g(G)\mathbf{x}-g\left(G_{p}\right)\mathbf{x}\right\|_{2}}{\left\|\mathbf{x}\right\|_{2}}=\left\|g\left(G\right)-g\left(G_{p}\right)\right\|=\left\|\mathbf{E}_{g}\right\|$$
(1)

where $\|\mathbf{E}_q\|$ denotes the spectral norms of \mathbf{E}_q .

Missing in worst-case analysis

Experiment:

Create a graph perturbation \mathbf{E}_g . Sample 10000 graph signals from unit length sphere.

A new framework from probabilistic view

Q: When a graph G is perturbed to G_p , how stable the overall output embedding is?

Our probabilistic formulation

Consider graph signal as random vector $\mathbf{X} = (X_1, \dots, X_n)^T$ drawn from an arbitrary distribution \mathcal{D} with mean μ and covariance matrix \mathbf{K} . The stability of filter g under perturbation is measured by

$$\mathbb{E}_{oldsymbol{X} \sim \mathcal{D}}[\|\mathbf{E}_g oldsymbol{X}\|_2^2]$$

A new probabilistic framework

Theorem 1 (simplified)

Assume the input graph signal $\boldsymbol{X} \in \mathbb{R}^n$ is sampled from a distribution \mathcal{D} with covariance matrix \mathbf{K} (WLOG $\mathbb{E}[\boldsymbol{X}] = 0$). Then the output embedding perturbation $\mathbf{E}_q \boldsymbol{X}$ is a random vector with

$$\mathbb{E}_{\boldsymbol{X} \sim \mathcal{D}}[\|\mathbf{E}_{g}\boldsymbol{X}\|_{2}^{2}] = \langle \mathbf{K}, \mathbf{E}_{g}^{T}\mathbf{E}_{g} \rangle.$$
 (2)

Moreover, for any c > 0, we have

$$\mathbb{P}(\|\mathbf{E}_{g}\boldsymbol{X}\|^{2} \ge (1+c)\langle \mathbf{K}, \mathbf{E}_{g}^{T}\mathbf{E}_{g}\rangle) \le \frac{1}{1+c}$$
(3)

Average stability v.s. worst-case stability

Example. X sampled uniformly at random from the unit length sphere.

Our bound: $\frac{1}{n} \|\mathbf{E}_q\|_F^2$; Worst-case bound: $\|\mathbf{E}_q\|^2$

Average stability v.s. worst-case stability

Example. X sampled uniformly at random from the unit length sphere.

Our bound: $\frac{1}{n} \|\mathbf{E}_q\|_F^2$; Worst-case bound: $\|\mathbf{E}_q\|^2$

(c) $rank(\mathbf{E}_a) = n$

Theorem 2

We consider an unweighted and undirected simple graph with graph filter ${\bf L}.$ Under edge perturbations ${\cal P},$

$$\mathbb{E}_{\boldsymbol{X} \sim \mathcal{D}}[\|\mathbf{E}_{g}\boldsymbol{X}\|^{2}] = 2 \sum_{(u,v) \in \mathcal{P}} \mathcal{R}(u,v) + \sum_{(u,v),(u,v') \in \mathcal{P}} \sigma_{uv}\sigma_{uv'}(\mathcal{R}(u,v) + \mathcal{R}(u,v') - \mathcal{R}(v,v')),$$

where $\mathcal{R}(u,v)$ is defined as

$$\mathcal{R}(u,v) \triangleq \mathbb{E}[(X_u - X_v)^2] = \text{Var}(X_u) + \text{Var}(X_v) - 2\text{Cov}(X_u, X_v).$$

Setting:

Create Erdős-Rényi graph G.

Assume graph signal X is smooth, i.e., $X \sim \mathcal{N}(\mathbf{0}, \mathbf{K})$, where $\mathbf{K} = \mathbf{L}^{\dagger}$.

Consider $g(G) = \mathbf{L}$

Goal: perturbed 20 edges to achieve large average embedding perturbation.

Figure: Erdős-Rényi graph (n = 50, p = 0.1)

(b) Random attack

Conclusions

A probabilistic framework. We propose a probabilistic framework for analysing the graph filter stability. This new framework is *representative* and does *not rely on any assumptions of generative distribution*.

Interpretble analysis. We relate robustness to spectral and spatial properties of the signal covariance or graph structure.

References I

- [GBR20] Fernando Gama, Joan Bruna, and Alejandro Ribeiro. Stability properties of graph neural networks. *IEEE Transactions on Signal Processing*, 68:5680–5695, 2020.
- [KTD20] Henry Kenlay, Dorina Thanou, and Xiaowen Dong. On the stability of polynomial spectral graph filters. In ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 5350–5354. IEEE, 2020.
- [KTD21] Henry Kenlay, Dorina Thanou, and Xiaowen Dong. Interpretable stability bounds for spectral graph filters. In *International conference on machine learning*, pages 5388–5397. PMLR, 2021.

References II

- [LMBB18] Ron Levie, Federico Monti, Xavier Bresson, and Michael M Bronstein. Cayleynets: Graph convolutional neural networks with complex rational spectral filters. *IEEE Transactions on Signal Processing*, 67(1):97–109, 2018.
 - [SM13] Aliaksei Sandryhaila and José MF Moura. Discrete signal processing on graphs. *IEEE transactions on signal processing*, 61(7):1644–1656, 2013.