GTU, Fall 2020, MATH 101

Continuity at a Point

* Let S be interval or unions of separate intervals. A point $x \in S$ is called an *interior point* of S if there is an open interval (a, b) s.t. $x \in (a, b) \subseteq S$.

Continuity at a Point

* Let S be interval or unions of separate intervals. A point $x \in S$ is called an *interior point* of S if there is an open interval (a, b) s.t. $x \in (a, b) \subseteq S$. If $x \in S$ is not an interior point, then x is called an *endpoint* of S.

- * Let S be interval or unions of separate intervals. A point $x \in S$ is called an *interior point* of S if there is an open interval (a, b) s.t. $x \in (a, b) \subseteq S$. If $x \in S$ is not an interior point, then x is called an *endpoint* of S.
- * For example consider S = [-1, 1].

- * Let S be interval or unions of separate intervals. A point $x \in S$ is called an *interior point* of S if there is an open interval (a, b) s.t. $x \in (a, b) \subseteq S$. If $x \in S$ is not an interior point, then x is called an *endpoint* of S.
- * For example consider S = [-1, 1]. Interior points : (-1, 1) and end points: -1, 1

- * Let S be interval or unions of separate intervals. A point $x \in S$ is called an *interior point* of S if there is an open interval (a,b) s.t. $x \in (a,b) \subseteq S$. If $x \in S$ is not an interior point, then x is called an *endpoint* of S.
- * For example consider S = [-1, 1]. Interior points : (-1, 1) and end points: -1, 1
- * For $S = (-\infty, 0) \cup (0, \infty)$, all points in S is an interior point.

Definition

f is called is **continuous** at an interior point c of its domain if

$$\lim_{x\to c} f(x) = f(c).$$

In otherwise f is called **discontinuous** at c.

Definition

f is called is **continuous** at an interior point c of its domain if

$$\lim_{x\to c} f(x) = f(c).$$

In otherwise f is called **discontinuous** at c.

Consider figure below and investigate the continuity of f at c.

Definition

f is called is **right continuous** at c if

$$\lim_{x\to c+} f(x) = f(c).$$

Definition

f is called is **right continuous** at c if

$$\lim_{x\to c+} f(x) = f(c).$$

f is called is **left continuous** at c if

$$\lim_{x\to c-} f(x) = f(c).$$

Definition

f is called is **right continuous** at c if

$$\lim_{x\to c+} f(x) = f(c).$$

f is called is **left continuous** at c if

$$\lim_{x\to c-} f(x) = f(c).$$

* f is continuous at c iff it is both right continuous and left continuous at c.

Definition

f is called is **right continuous** at c if

$$\lim_{x\to c+} f(x) = f(c).$$

f is called is **left continuous** at c if

$$\lim_{x\to c-} f(x) = f(c).$$

- * f is continuous at c iff it is both right continuous and left continuous at c.
- * Consider the Heaviside function $H(x) = \begin{cases} 1 & \text{if } x \geq 0 \\ 0 & \text{if } x < 0 \end{cases}$ H(x) is continuous for $x \neq 0$. It is right continuous at 0 since $\lim_{x \to 0+} H(x) = H(0)$.

4 D > 4 D > 4 E > 4 E > E 990

Continuity at an endpoint

* f is called is continuous at a left endpoint c of its domain if it is right continuous at c.

- * f is called is continuous at a left endpoint c of its domain if it is right continuous at c.
- * f is called is continuous at a right endpoint c of its domain if it is left continuous at c.

- * f is called is continuous at a left endpoint c of its domain if it is right continuous at c.
- * f is called is continuous at a right endpoint c of its domain if it is left continuous at c.
- * For example, the domain of $f(x) = \sqrt{1-x^2}$ is [-1,1].

- * f is called is continuous at a left endpoint c of its domain if it is right continuous at c.
- * f is called is continuous at a right endpoint c of its domain if it is left continuous at c.
- * For example, the domain of $f(x) = \sqrt{1-x^2}$ is [-1,1]. f is continuous at a right endpoint 1 since $\lim_{x \to 1-} f(x) = 0 = f(1)$. f is continuous at a left endpoint -1 since $\lim_{x \to -1+} f(x) = 0 = f(-1)$.

Continuity on an interval:

* f is continuous on (a, b) if f is continuous at any points $x \in (a, b)$.

Continuity on an interval:

- * f is continuous on (a, b) if f is continuous at any points $x \in (a, b)$.
- * f is continuous on [a, b] if f is continuous on $x \in (a, b)$, and right continuous at a, and left continuous at b.

Continuity on an interval:

- * f is continuous on (a, b) if f is continuous at any points $x \in (a, b)$.
- * f is continuous on [a, b] if f is continuous on $x \in (a, b)$, and right continuous at a, and left continuous at b.
- * *f* is **continuous function** if *f* is continuous at every point of its domain.

Continuity on an interval:

- * f is continuous on (a, b) if f is continuous at any points $x \in (a, b)$.
- * f is continuous on [a, b] if f is continuous on $x \in (a, b)$, and right continuous at a, and left continuous at b.
- * *f* is **continuous function** if *f* is continuous at every point of its domain.

Exercise: Define continuity on (a, b], $(-\infty, b]$, (a, ∞) .

Continuity on an interval:

- * f is continuous on (a, b) if f is continuous at any points $x \in (a, b)$.
- * f is continuous on [a, b] if f is continuous on $x \in (a, b)$, and right continuous at a, and left continuous at b.
- * *f* is **continuous function** if *f* is continuous at every point of its domain.

Exercise: Define continuity on (a, b], $(-\infty, b]$, (a, ∞) .

* $\lim_{x\to 0+} \sqrt{x} = 0$ and $\lim_{x\to a} \sqrt{x} = \sqrt{a} \ (\forall a\in (0,\infty)) \implies \sqrt{x}$ is continuous on $[0,\infty)$.

Note that

- * all polynomials;
- * all rational functions;
- * all rational powers $x^{m/n}$;
- * the trigonometric functions;
- * the absolute value functions |x|;

are continuous whenever they are defined.

* If f and g are both defined on an interval containing c and both are continuous at c,

* If f and g are both defined on an interval containing c and both are continuous at c, then

$$\lim_{x \to c} (f(x) + g(x)) = \lim_{x \to c} f(x) + \lim_{x \to c} g(x) = f(c) + g(c) = (f + g)(c)$$

* If f and g are both defined on an interval containing c and both are continuous at c, then

$$\lim_{x \to c} (f(x) + g(x)) = \lim_{x \to c} f(x) + \lim_{x \to c} g(x) = f(c) + g(c) = (f + g)(c)$$

so f + g is continuous.

* If f and g are both defined on an interval containing c and both are continuous at c, then

$$\lim_{x \to c} (f(x) + g(x)) = \lim_{x \to c} f(x) + \lim_{x \to c} g(x) = f(c) + g(c) = (f + g)(c)$$

so f + g is continuous.

Exercise: Show that f - g, fg, f/g (provided $g(c) \neq 0$), and $(f(x))^{1/n}$ (provided f(c) > 0 if n is even) are continuous.

* If f and g are both defined on an interval containing c and both are continuous at c, then

$$\lim_{x \to c} (f(x) + g(x)) = \lim_{x \to c} f(x) + \lim_{x \to c} g(x) = f(c) + g(c) = (f + g)(c)$$

so f + g is continuous.

Exercise: Show that f - g, fg, f/g (provided $g(c) \neq 0$), and $(f(x))^{1/n}$ (provided f(c) > 0 if n is even) are continuous.

* If f(g(x)) is defined on an interval containing c, and f is continuous at L and $\lim_{x \to c} g(x) = L$, then

$$\lim_{x\to c} f(g(x)) = f(L) = f\left(\lim_{x\to c} g(x)\right).$$

For example,

*
$$2x^{3} + 5$$

* $\frac{x+3}{x^{4}-6}$
* $\sqrt{x^{3} + 2x + 1}$
* $\frac{|x|}{|x+1|}$

are continuous everywhere on their respective domains.

GTU, Fall 2020, MATH 101

* Removable discontinuity: f has a removable discontinuity at a if f is undefined or discontinuous at a but can be (re)defined at hat single point so that it becomes continuous there.

* Removable discontinuity: f has a removable discontinuity at a if f is undefined or discontinuous at a but can be (re)defined at hat single point so that it becomes continuous there.

For example,

* Removable discontinuity: f has a removable discontinuity at a if f is undefined or discontinuous at a but can be (re)defined at hat single point so that it becomes continuous there.

For example,

$$* f(x) = \begin{cases} x & \text{if } x \neq 1 \\ 2 & \text{if } x = 1 \end{cases}$$
 has a removable discontinuity at $x = 1$.

GTU, Fall 2020, MATH 101

Continuous Functions on Closed, Finite Intervals

Continuous Functions on Closed, Finite Intervals

Theorem

The Max.-Min. Theorem

Continuous Functions on Closed, Finite Intervals

Theorem

The Max.-Min. Theorem

Let f(x) be continuous on [a, b], then there exist numbers p and q in [a, b] such that $\forall x \in [a, b]$,

$$f(p) \le f(x) \le f(q)$$
.

Continuous Functions on Closed, Finite Intervals

Theorem

The Max.-Min. Theorem

Let f(x) be continuous on [a, b], then there exist numbers p and q in [a, b] such that $\forall x \in [a, b]$,

$$f(p) \le f(x) \le f(q)$$
.

Thus f has the absolute minimum value m = f(p) and teh absolute maximum value M = f(q).

Continuous Functions on Closed, Finite Intervals

Theorem

The Max.-Min. Theorem

Let f(x) be continuous on [a, b], then there exist numbers p and q in [a, b] such that $\forall x \in [a, b]$,

$$f(p) \le f(x) \le f(q)$$
.

Thus f has the absolute minimum value m = f(p) and teh absolute maximum value M = f(q).

* The theorem says that minimum and maximum values exist; it does not tell us how to find them.

Continuous Functions on Closed, Finite Intervals

Theorem

The Max.-Min. Theorem

Let f(x) be continuous on [a, b], then there exist numbers p and q in [a, b] such that $\forall x \in [a, b]$,

$$f(p) \le f(x) \le f(q)$$
.

Thus f has the absolute minimum value m = f(p) and teh absolute maximum value M = f(q).

- * The theorem says that minimum and maximum values exist; it does not tell us how to find them.
- * The theorem implies that a function that is continuous on a closed, finite interval is **bounded**.

Continuous Functions on Closed, Finite Intervals

Theorem

The Max.-Min. Theorem

Let f(x) be continuous on [a, b], then there exist numbers p and q in [a, b] such that $\forall x \in [a, b]$,

$$f(p) \leq f(x) \leq f(q)$$
.

Thus f has the absolute minimum value m = f(p) and teh absolute maximum value M = f(q).

- * The theorem says that minimum and maximum values exist; it does not tell us how to find them.
- * The theorem implies that a function that is continuous on a closed, finite interval is **bounded**. This means there must exist a number *K* such that

$$|f(x)| \le K$$
 that is $-K \le f(x) \le K$.

Remark: The conclusion of the theorem may fail if f is not continuous or if the interval is not closed.

Remark: The conclusion of the theorem may fail if f is not continuous or if the interval is not closed.

* Consider

$$f(x) = \frac{1}{x^2}$$
 on $(0,1]$.

Remark: The conclusion of the theorem may fail if f is not continuous or if the interval is not closed.

* Consider

$$f(x) = \frac{1}{x^2}$$
 on $(0,1]$.

f is continuous on (0,1]. It is not bounded and it has a minimum value but no maximum value. In fact the minimum value occurs x=1.

Remark: The conclusion of the theorem may fail if f is not continuous or if the interval is not closed.

* Consider

$$f(x) = \frac{1}{x^2}$$
 on $(0,1]$.

f is continuous on (0,1]. It is not bounded and it has a minimum value but no maximum value. In fact the minimum value occurs x=1.

* Consider $f(x) = \begin{cases} x & \text{if } x \neq 1 \\ 0 & \text{if } x = 1 \end{cases}$ on [0,1]. f is discontinuous at x=1. It has minimum value but no maximum value.

Remark: The conclusion of the theorem may fail if f is not continuous or if the interval is not closed.

* Consider

$$f(x) = \frac{1}{x^2}$$
 on $(0,1]$.

f is continuous on (0,1]. It is not bounded and it has a minimum value but no maximum value. In fact the minimum value occurs x=1.

- * Consider $f(x) = \begin{cases} x & \text{if } x \neq 1 \\ 0 & \text{if } x = 1 \end{cases}$ on [0,1]. f is discontinuous at x=1. It has minimum value but no maximum value.
- * Consider

$$f(x) = \frac{1}{x^2}$$
 on $[1/2, 1]$.

Remark: The conclusion of the theorem may fail if f is not continuous or if the interval is not closed.

* Consider

$$f(x) = \frac{1}{x^2}$$
 on $(0,1]$.

f is continuous on (0,1]. It is not bounded and it has a minimum value but no maximum value. In fact the minimum value occurs x=1.

- * Consider $f(x) = \begin{cases} x & \text{if } x \neq 1 \\ 0 & \text{if } x = 1 \end{cases}$ on [0,1]. f is discontinuous at x=1. It has minimum value but no maximum value.
- * Consider

$$f(x) = \frac{1}{x^2}$$
 on $[1/2, 1]$.

f is continuous on [1/2,1]. It is bounded. It has both a maximum and a minimum value.

Continuous Functions on Closed, Finite Intervals

Continuous Functions on Closed, Finite Intervals

Theorem

The Intermediate-Value Theorem

Continuous Functions on Closed, Finite Intervals

Theorem

The Intermediate-Value Theorem

Let f(x) be continuous on [a, b] and d be a value between f(a) and f(b).

Then there exists $c \in (a, b)$ such that f(c) = d.

Continuous Functions on Closed, Finite Intervals

Theorem

The Intermediate-Value Theorem

Let f(x) be continuous on [a, b] and d be a value between f(a) and f(b). Then there exists $c \in (a, b)$ such that f(c) = d.

* Show that $P(x) = x^5 - 4x + 1$ has a root in [0,1].

* Show that $P(x) = x^5 - 4x + 1$ has a root in [0,1]. P(x) is continuous on [0,1] P(0) = 1 > 0 P(1) = -2 < 0

* Show that
$$P(x)=x^5-4x+1$$
 has a root in $[0,1]$.
$$P(x) \text{ is continuous on } [0,1]$$

$$P(0)=1>0$$

$$P(1)=-2<0$$
 by IVT.

* Show that $P(x)=x^5-4x+1$ has a root in [0,1]. P(x) is continuous on [0,1] P(0)=1>0 P(1)=-2<0 by IVT.

* Show that the equation $\sin x = x - 1$ has a solution.

* Show that $P(x)=x^5-4x+1$ has a root in [0,1]. P(x) is continuous on [0,1] P(0)=1>0 P(1)=-2<0 $\Rightarrow \exists c\in [0,1] \text{ s.t. } P(c)=0$

by IVT.

* Show that the equation $\sin x = x - 1$ has a solution. Define $f(x) = \sin x - x + 1 = \sin x - (x - 1)$

* Show that $P(x)=x^5-4x+1$ has a root in [0,1]. P(x) is continuous on [0,1] P(0)=1>0 P(1)=-2<0 $\Rightarrow \exists c \in [0,1] \text{ s.t. } P(c)=0$

by IVT.

* Show that the equation $\sin x = x - 1$ has a solution. Define $f(x) = \sin x - x + 1 = \sin x - (x - 1)$ $f(x) \text{ is continuous on } [0, \pi]$ $f(0) = 1 > 0, f(\pi) = -\pi + 1 < 0$

* Show that $P(x) = x^5 - 4x + 1$ has a root in [0,1]. P(x) is continuous on [0,1] P(0) = 1 > 0 P(1) = -2 < 0 $\Rightarrow \exists c \in [0,1] \text{ s.t. } P(c) = 0$

by IVT.

* Show that the equation $\sin x = x - 1$ has a solution.

Define
$$f(x) = \sin x - x + 1 = \sin x - (x - 1)$$

 $f(x)$ is continuous on $[0, \pi]$
 $f(0) = 1 > 0, f(\pi) = -\pi + 1 < 0$ $\Longrightarrow \exists c \in [0, \pi] \text{ s.t. } f(c) = 0$

* Show that $P(x) = x^5 - 4x + 1$ has a root in [0,1].

$$P(x)$$
 is continuous on $[0,1]$ $P(0) = 1 > 0$ $P(1) = -2 < 0$ $\Rightarrow \exists c \in [0,1] \text{ s.t. } P(c) = 0$

by IVT.

* Show that the equation $\sin x = x - 1$ has a solution.

Define
$$f(x) = \sin x - x + 1 = \sin x - (x - 1)$$
 $f(x)$ is continuous on $[0, \pi]$ $\Rightarrow \exists c \in [0, \pi] \text{ s.t. } f(c) = 0$ by IVT.