计算机组成原理与系统结构

第五章 存储体系

http://jpkc.hdu.edu.cn/computer/zcyl/dzkjdx/

5.2 主存储器

❖ 特点:

- 主存储器可以被 CPU 直接存取(访问)。
- 一般由半导体材质构成 。
- 随机存取:读写任意存 储单元所用时间是相同 的,与单元地址无关。
- 与辅存相比,速度快, 价格高,容量小。

* 主存的操作:

- 读存储器操作:
- 写存储器操作:

5.2 主存储器

❖ 主存储器按其功能可分为 RAM 和 ROM。

随机读写存储器RAM

只读存储器ROM

高性能的主存储器

一、随机读写存储器 RAM

一、随机读写存储器 RAM

静态存储器(SRAM

2 动态存储器(DRAM

3 SRAM和DRAM的对比

1、静态存储器(SRAM)

(1) SRAM 存储位元

X地址

译码线

- ❖ "1" 状态:T1 截止, T2导通
- ❖ "0"状态:
 T2 截止, T1
 导通

 T_3

I/O

六管 MOS 静态存储器结构

Y地址译码线

Vcc

 T_4

 T_2

 T_6

Ī/O

(2) SRAM 存储器

❖地址译码方式:

- 线性译码方式: n 位地址线, 经过一 维译码后, 有 2ⁿ 根选择线。
- 双向译码方式

(2) SRAM 存储器

双向译码方式n 位地址分为行、列地址分别译码

2114 SRAM 存储器

❖ 1K×4 位

SRAM 存储器的读写

❖ 1K×4 位

(3) SRAM 存储器的特点

- ❖ 使用双稳态触发器表示 0 和 1 代码。
- ❖ 电源不掉电的情况下,信息稳定保持(静态)。
- ❖ 存取速度快,集成度低(容量小),价格高。
- ❖ 常用作高速缓冲存储器 Cache。

2、动态存储器(DRAM)

(1) DRAM 存储位元

- ❖ "1"状态: 电容 C 上有电荷
- ❖ "0"状态: 电容 C 上无电荷
- ❖ 再生:读出后信息可能被破坏,需要重写。
- ❖ 刷新: 经过一段时间后,信息可能丢失,需要重写。

单管 MOS 动态存储器结构

SRAM 的读周期

SRAM 的写周期

(2) DRAM 存储器

DRAM的读/写过程

(3) DRAM的刷新方式

- ❖ 刷新周期: 从上一次刷新结束到下一次对整个 DRAM 全部刷新一遍为止,这一段时间间隔称为刷新周期。
- ❖ 刷新操作: 即是按行来执行内部的读操作。由刷新计数器 产生行地址,选择当前要刷新的行,读即刷新,刷新一行 所需时间即是一个存储周期。
- ❖ 刷新行数:单个芯片的单个矩阵的行数。
 - 对于内部包含多个存储矩阵的芯片,各个矩阵的同一行 是被同时刷新的。
 - 对于多个芯片连接构成的 DRAM, DRAM 控制器将选中所有芯片的同一行来进行逐行刷新。
- ❖ 单元刷新间隔时间: DRAM 允许的最大信息保持时间; 一般 为 2ms。
- 刷新方式:集中式刷新、分散式刷新和异步式刷新。

例: 64K×1 位 DRAM 芯片中,存储电路由 4 个独立的 128×128 的存储矩阵组成。设存储器存储周期为 500ns,

集中单元刷新间隔是 2ms。

- ❖ 在 2ms 单元刷新间隔时间内,集中对 128 行刷新一遍,所 需时间 128×500ns=64μs,其余时间则用于访问操作。
- ❖ 在内部刷新时间(64μs)内,不允许访存,这段时间被称为死时间。

- * 在任何一个存储周期内,分为访存和刷新两个子周期。
 - 访存时间内,供 CPU 和其他主设备访问。
 - 在刷新时间内,对 DRAM 的某一行刷新。
- ❖ 存储周期为存储器存储周期的两倍, 即 500ns×2 = 1 μ s
- \Rightarrow 刷新周期缩短,为 128× 1 μ s = 128 μ s 。在 2ms 的单元刷新间隔时间内,对 DRAM 刷新了 2ms÷128 μs 遍

0

0

异步式刷新

- ❖异步刷新采取折中的办法,在 2ms 内分散地把各行刷新一遍
- ❖避免了分散式刷新中不必要的多次刷新,提高了整机速度; 同时

又解决了集中式刷新中"死区"时间过长的问题。

❖刷新信号的周期的 2ms/128=個新625μs。让刷新电路每隔

```
15 生一命刷新信号,刷新广行。
```


(4) DRAM 存储器的特点

- ❖ 使用半导体器件中分布电容上有无电荷来表示 0 和 1 代码。
- ❖ 电源不掉电的情况下,信息也会丢失,因此需要不断刷新。
- ❖ 存取速度慢,集成度高(容量大),价格低。
- ❖ 常用作内存条。

3、SRAM和DRAM的对比

SRAM	DRAM	
Cache		

二、只读存储器 ROM

- *** MROM**
- *PROM
- ***EPROM**
- **❖ E²PROM**
- Flash Memory

几种非易失性存储器的比较

存储器	类别	擦除方式	能否单 字节修 改	写机制
MROM	只读	不允许	否	掩膜位写
PROM	写一次读多 次	不允许	否	电信号
EPROM	写多次读多 次	紫外线擦除 ,脱机改写	否	电信号
E ² PROM	写多次读多 次	电擦除,在 线改写	能	电信号
Flash Memory	写多次读多 次	电擦除,在 线改写	否	电信号

三、高性能的主存储器

- ❖ EDRAM, 即增强型 DRAM
- ❖ CDRAM, 带 Cache 的 DRAM
- ❖ EDO RAM (Extended Data Out RAM)。也称"扩展数据输出 RAM"
- ❖ SDRAM (Synchronous Dynamic RAM), 也称"同步 DRAM"。
- * RDRAM (Rambus DRAM)
- ❖ DDR SDRAM (双倍速率 SDRAM), 简称 DDR。

The Engl