Đề cương ôn tập thi Olympic cấp trường môn: Đại số

Ngày 19 tháng 12 năm 2023

Mục lục

- 1 Đề cương ôn tập
- $2\,$ Đề mẫu, đề thi tuyển cấp trường (vòng 1) và đáp án
- 3 Một số bài tập mẫu
- $4\,$ Một số bài tập nâng cao

1 Đề cương ôn tập

- (a) Ma trận
 - Các phép toán: Cộng, trừ, nhân và chuyển vị ma trận. Vết của ma trận.
 - Ma trận nghịch đảo.
 - Tìm ma trận thỏa mãn một phương trình cho trước.
 - \bullet Tính lũy thừa cấp cao của ma trận vuông A^n .
- (b) Định thức
 - Tính định thức cấp $n \geq 3$.
- (c) Hệ phương trình tuyến tính
 - Giải hệ phương trình tuyến tính.
 - Giải và biện luận hệ phương trình tuyến tính theo tham số.
- (d) Giá trị riêng, véc tơ riêng
 - Tìm giá trị riêng, véc tơ riêng của ma trận, chéo hóa ma trận.
 - Áp dung chéo hóa để tính A^n .
 - Chứng minh các giá trị riêng của ma trận thỏa mãn điều kiện cho trước.
- (e) Da thức
 - (a) Đa thức một biến: các phép toán của đa thức, phân tích đa thức thành nhân tử.
 - (b) Nghiệm của đa thức.
 - (c) Bài toán xác định đa thức.

2 Đề mẫu, đề thi cấp trường (vòng 1) và đáp án

2.1 Đề mẫu và đáp án 2020–2021

• Đề mẫu 2020–2021

Đề thi Olympic Đại số Cấp Trường Đại học Phenikaa Năm học 2020 – 2021

Thời gian: 90 phút

Câu 1 (3 điểm). Cho ma trận

$$A = \begin{pmatrix} m & 1 & 1 & 1 \\ 1 & m & 1 & 1 \\ 1 & 1 & m & 1 \\ 1 & 1 & 1 & m \end{pmatrix}$$

với $m \in \mathbb{R}$ là tham số.

- (a) Tính A^2 .
- (b) Tính định thức của A theo m.
- (c) Tìm điều kiện của m để tồn tại ma trận nghịch đảo A^{-1} .

Câu 2 (2 điểm). Tìm a để hệ phương trình

$$\begin{cases} x_1 - 3x_3 = -3\\ 2x_1 + ax_2 - x_3 = -2\\ x_1 + 2x_2 + ax_3 = 1 \end{cases}$$

(a) Có nghiệm duy nhất? (b) Có nhiều hơn một nghiệm? Câu 3 (2 điểm). Tính B^{2021} với

$$B = \begin{bmatrix} 3 & 0 & -5 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix}.$$

Câu 4 (3 điểm). Cho ma trận

$$C = \begin{bmatrix} c & b \\ b & c \end{bmatrix}$$

2

với $b, c \in \mathbb{R}$ và $b \neq 0$.

- (a) Chứng minh rằng C luôn có hai giá trị riêng thực λ_1, λ_2 khác nhau.
- (b) Cho $bc = \sqrt{3}$. Chứng minh rằng $\lambda_1^4 + \lambda_2^4 \ge 48$.

• Đáp án đề thi mẫu 2020-2021

Câu 1.

(a) Ta có

$$A^{2} = A.A = \begin{pmatrix} m^{2} + 3 & 2m + 2 & 2m + 2 & 2m + 2 \\ 2m + 2 & m^{2} + 3 & 2m + 2 & 2m + 2 \\ 2m + 2 & 2m + 2 & m^{2} + 3 & 2m + 2 \\ 2m + 2 & 2m + 2 & 2m + 2 & m^{2} + 3 \end{pmatrix}.$$

- (b) $\det(A) = |A| = (m+3)(m-1)^3$.
- (c) Tồn tại A^{-1} khi và chỉ khi $|A| \neq 0 \Leftrightarrow \begin{cases} m \neq -3, \\ m \neq 1. \end{cases}$

Câu 2. Ma trận hệ số và ma trận bổ sung

$$A = \begin{bmatrix} 1 & 0 & -3 \\ 2 & a & -1 \\ 1 & 2 & a \end{bmatrix}, \quad A_{bs} = \begin{bmatrix} 1 & 0 & -3 & -3 \\ 2 & a & -1 & -2 \\ 1 & 2 & a & 1 \end{bmatrix}.$$

(a) Hệ đã cho có nghiệm duy nhất khi và chỉ khi

$$|A| = a^2 + 3a - 10 \neq 0 \Leftrightarrow \begin{cases} a \neq -5, \\ a \neq 2. \end{cases}$$

- (b) Ta xét hai trường hợp sau:
 - a = -5. Biến đổi ma trận bổ sung

$$A_{bs} = \begin{bmatrix} 1 & 0 & -3 & -3 \\ 2 & -5 & -1 & -2 \\ 1 & 2 & -5 & 1 \end{bmatrix}$$

$$\rightarrow \begin{bmatrix} 1 & 0 & -3 & -3 \\ 0 & -5 & 5 & 4 \\ 0 & 2 & -2 & 4 \end{bmatrix} (D_2 - 2D_1 \rightarrow D_2; D_3 - D_1 \rightarrow D_3)$$

$$\rightarrow \begin{bmatrix} 1 & 0 & -3 & -3 \\ 0 & -5 & 5 & 4 \\ 0 & 0 & 0 & 28 \end{bmatrix} (5D_3 + 2D_2 \rightarrow D_3).$$

Do đó $r(A_{bs}) = 3 > r(A) = 2$. Vậy hệ đã cho vô nghiệm.

• a=2. Tương tự ta có $r(A_{bs})=2=r(A)<3=n$ nên hệ đã cho có nhiều hơn một nghiệm (có vô số nghiệm).

Kết luận: a = 2 là giá trị cần tìm.

Câu 3. Ta có $B = 3I_3 - 5M$ với I_3 là ma trận đơn vị cấp 3 và

$$M = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

Dễ thấy $M^2 = 0$ và đo đó $M^k = 0$ với mọi $k \ge 2$.

Khi đó, vì $I_3M=MI_3=M$ và áp dụng công thức nhị thức Newton, ta được

$$\begin{split} B^{2021} &= (3I_3 - 5M)^{2021} \\ &= \sum_{k=0}^{2021} C_{2021}^k (3I_3)^{2021-k} (-5M)^k \\ &= (3I_3)^{2021} + C_{2021}^1 (3I_3)^{2020} (-5M)^1 \\ &= 3^{2021}I_3 - 2021 \times 5 \times 3^{2020}M \\ &= \begin{bmatrix} 3^{2021} & 0 & -2021 \times 5 \times 3^{2020} \\ 0 & 3^{2021} & 0 \\ 0 & 0 & 3^{2021} \end{bmatrix}. \end{split}$$

3

Công thức nhị thức Newton cho trường hợp ma trận A, B với AB = BA như sau:

$$(A+B)^n = \sum_{k=0}^n C_n^k A^k B^{n-k} = \sum_{k=0}^n C_n^k A^{n-k} B^k.$$

Câu 4. Đa thức đặc trưng

$$P_C(\lambda) = \begin{vmatrix} c - \lambda & b \\ b & c - \lambda \end{vmatrix} = \lambda^2 - 2c\lambda + (c^2 - b^2).$$

(a) Phương trình đặc trung

$$P_C(\lambda) = \lambda^2 - 2c\lambda + (c^2 - b^2) = 0$$
 (1)

có $\Delta' = c^2 - (c^2 - b^2) = b^2 > 0$ vì $b \neq 0$. Do đó phương trình đặt trưng (1) luôn có hai nghiệm thực phân biệt λ_1, λ_2 .

Vậy ma trận C luôn có hai giá trị riêng thực phân biệt λ_1, λ_2 .

(b) Dễ thấy $\lambda_1 = c - b$ và $\lambda_2 = c + b$. Ta có

$$\lambda_1^4 + \lambda_2^4 = (c - b)^4 + (c + b)^4$$
$$= 2(c^4 + 6c^2b^2 + b^4).$$

Áp dụng bất đằng thức Cauchy, ta suy ra

$$\lambda_1^4 + \lambda_2^4 \ge 2(2c^2b^2 + 6c^2b^2) = 16(bc)^2 = 48.$$

Dấu bằng xảy ra khi và chỉ khi $|b| = |c| = \sqrt[4]{3}$.

2.2 Đề thi Olympic cấp trường (vòng 1) và đáp án năm 2021–2022

• Đề thi cấp trường năm 2021–2022

TRƯỜNG ĐẠI HỌC PHENIKAA KHOA KHOA HỌC CƠ BẢN BÔ MÔN TOÁN

OLYMPIC TOÁN CẤP TRƯỜNG Năm học 2021–2022

Ngày 17 tháng 03 năm 2022

Môn thi: Đai số tuyến tính

Thời gian làm bài: 90 phút (Không kể thời gian phát đề)

Câu 1 (3,0 điểm). Cho ma trận

$$A = \begin{bmatrix} 1 & x & x^2 & x^3 \\ 1 & 2 & 4 & 8 \\ 1 & -2 & 4 & -8 \\ 1 & 3 & 9 & 27 \end{bmatrix} \quad (x \in \mathbb{R} \text{ là tham số)}.$$

- (a) Tính det(A) theo x;
- (b) Tìm x sao cho A suy biến? (A suy biến tức là không tồn tại ma trận nghịch đảo của A);
- (c) Tìm x để hạng của A bằng 3?

Câu 2 (2,0 điểm). Cho hệ phương trình với tham số m sau:

$$\begin{cases} mx_1 + x_2 + x_3 = 1 \\ x_1 + mx_2 + x_3 = 2 \\ x_1 + x_2 + mx_3 = -3. \end{cases}$$

- (a) Tìm m để hệ phương trình đã cho có nghiệm duy nhất và tính nghiệm duy nhất đó?
- (b) Tìm m để hệ phương trình đã cho có vô số nghiệm?

Câu 3 (2,0 diểm). Cho ma trận

$$C = \begin{bmatrix} 11 & 9 & -3 \\ 24 & 17 & -6 \\ 108 & 81 & -28 \end{bmatrix}.$$

- (a) Tìm ma trận P sao cho $P^{-1}CP$ là ma trận chéo và viết ma trận chéo đó?
- (b) Đặt $S = I_3 + C + C^2 + \cdots + C^{2022}$, với I_3 là ma trận đơn vị cấp 3. Tính $\det(S)$.

Câu 4 (3,0 điểm).

(a) Cho A và B là hai ma trận vuông cấp n thỏa mãn AB = BA. Bằng phương pháp quy nạp toán học, hãy chứng minh rằng

$$(A+B)^p = \sum_{k=0}^p C_p^k A^k B^{p-k} \quad \text{v\'oi } p \in \mathbb{N}.$$

Ở đó ta quy ước $A^0=B^0=I_n,$ với I_n là ma trận đơn vị cấp n;

(b) Cho
$$C = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 2 & 1 \end{bmatrix}$$
. Tính C^{2022} .

Ghi chú:

- Sinh viên được sử dụng tài liệu;
- Cán bộ coi thi không được giải thích gì thêm.
- Đáp án đề thi cấp trường năm 2021-2022

Đáp án Đề thi Olympic cấp trường 2021–2022

SV giải đúng bằng cách khác vẫn được điểm tối đa. Câu 1. $\rm (a)$

$$|A| = (-1) \begin{vmatrix} 1 & 2 & 4 & 8 \\ 1 & x & x^2 & x^3 \\ 1 & -2 & 4 & -8 \\ 1 & 3 & 9 & 27 \end{vmatrix} = (-1) \begin{vmatrix} 1 & 2 & 4 & 8 \\ 0 & x - 2 & x^2 - 4 & x^3 - 8 \\ 0 & -4 & 0 & -16 \\ 0 & 1 & 5 & 19 \end{vmatrix}$$
 (0,5 điểm)

$$= (-1)(-4)(x-2) \begin{vmatrix} 1 & x+2 & x^2+2x+4 \\ 1 & 0 & 4 \\ 1 & 5 & 19 \end{vmatrix} = 20(x-2)(x+2)(x-3)$$
 (0,5 diểm)

(b) Ta có

$$A$$
 suy biến \Leftrightarrow $\det(A) = 0$ (0,5 điểm)

$$\Leftrightarrow \quad x \in \{-2, 2, 3\} \tag{0.5 diểm}$$

•
$$r(A) = 3$$
 nếu và chỉ nếu $det(A) = 0 \Leftrightarrow x \in \{-2, 2, 3\}$ (0,5 điểm)

Câu 2.

(a) Ta có

• Hệ có nghiệm duy nhất khi
$$\det(A) = \Delta = m^3 - 3m + 2 \neq 0 \rightarrow m \notin \{-2, 1\}$$
 (0,5 điểm)

• Ta có

$$\Delta_x = (m+2)(m-1), \quad \Delta_y = 2(m+2)(m-1), \quad \Delta_z = -3(m+2)(m-1) \tag{0.25 diểm}$$

$$x = \frac{1}{m-1}, \quad y = \frac{2}{m-1}, \quad z = \frac{-3}{m-1}$$
 (0,25 điểm)

(b) • Xét $\Delta = 0 \Leftrightarrow m = -2; m = 1.$

• Với
$$m=-2$$
 \rightarrow chỉ ra hệ có vô số nghiệm (0,5 điểm)

• Với
$$m=1$$
 \rightarrow chỉ ra hệ có vô nghiệm. (0.5 diểm)

Câu 3. (a)

- \bullet Giá trị riêng $\lambda_1=2$ và $\lambda_2=\lambda_3=-1$ (bội 2)
- \bullet Véc tơ riêng ứng với $\lambda=2$ là

$$ku_1 = k(1, 2, 9), k \neq 0$$
 (0,5 điểm)

• Véc tơ riêng ứng với $\lambda = -1$ là

$$ku_2 + lu_3 = k(1,0,4) + l(0,1,3)$$
 (0.5 điểm)

(b) Gọi $B = P^{-1}CP$

$$\begin{split} S &= I + C + C^2 + \dots + C^{2022} \\ &= P(I + B + B^2 + \dots + B^{2022})P^{-1} \\ &= P \text{diag}[1 + \lambda_1 + \dots + \lambda_1^{2022}, 1 + \lambda_2 + \dots + \lambda_2^{2022}, 1 + \lambda_3 + \dots + \lambda_3^{2022}]P^{-1} \\ &= P \text{diag}[\lambda_1^{2023} - 1; 1; 1]P^{-1} \end{split} \tag{0.5 diểm}$$

$$V_{ay} \det(S) = \det(P) \det(\operatorname{diag}[\lambda_1^{2023} - 1; 1; 1]) \det(P^{-1}) = \lambda_1^{2023} - 1 = 2^{2023} - 1 \tag{0.5 diểm}$$

Câu 4. (a) Chứng minh bằng phương pháp quy nạp toán học

- Trường hợp p = 0 (0,5 điểm)
- \bullet Trường hợp p=k (0,5 điểm)
- Trường hợp p = k + 1 (0,5 điểm)
- (b) Áp dụng

$$C = A + B, \quad A = I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 0 & 0 & 0 \\ 2 & 0 & 0 \\ 0 & 2 & 0 \end{bmatrix}$$
$$AB = BA = B, \quad B^2 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 2^2 & 0 & 0 \end{bmatrix}, \quad B^k = O, \quad \forall k \ge 3$$
(0,5 điểm)

Theo ý (a), ta có

$$C^{2022} = \sum_{n=0}^{2022} (I+B)^{2022} = \sum_{n=0}^{2022} C_{2022}^n B^n$$

$$= \sum_{n=0}^{2} C_{2022}^n B^n$$

$$= C_{2022}^0 I_3 + C_{2022}^1 B + C_{2022}^2 B^2.$$

$$(0,5 \text{ diểm})$$

• Kết quả đúng (0,5 điểm).

2.3 Đề thi Olympic cấp trường (vòng 1) và đáp án năm 2022–2023

• Đề thi cấp trường năm 2022-2023

TRƯỜNG ĐẠI HỌC PHENIKAA KHOA KHOA HỌC CƠ BẢN BỘ MÔN TOÁN

OLYMPIC TOÁN CẤP TRƯỜNG Năm 2023

Ngày 04 tháng 02 năm 2023

Môn thi: ĐẠI SỐ

Thời gian làm bài: 120 phút (Không kể thời gian phát đề)

Câu 1. (2.0 điểm) Cho a, b, c là ba số đôi một khác nhau. Ký hiệu

$$f(x) = \begin{vmatrix} 1 & 1 & 1 & 1 \\ x & a & b & c \\ x^2 & a^2 & b^2 & c^2 \\ x^3 & a^3 & b^3 & c^3 \end{vmatrix}.$$

- (a) Chứng minh rằng f(a) = f(b) = f(c) = 0.
- (b) Chứng minh f(x) có dạng $mx^3 + nx^2 + px + q$. Tính m theo a, b, c.
- (c) Từ ý (a) và (b), hãy viết biểu thức tường minh theo a, b, c của f(x).

Câu 2. (2.0 điểm) Tìm a để hệ phương trình sau có vô số nghiệm.

$$\begin{cases} x + 2y - 3z = 4 \\ 3x - y + 5z = 2 \\ 4x + y + (a^2 - 14)z = a + 2. \end{cases}$$

Câu 3. (2.0 điểm) Tìm điều kiện đối với các số phức a, b, c, d để có

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^2 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}.$$

Câu 4. (3.0 điểm) Cho dãy số (x_n) xác định bởi

$$\begin{cases} x_0 = s, x_1 = t, \\ x_{n+1} = 5x_n - 6x_{n-1} & (n \ge 1). \end{cases}$$

(a) Tìm ma trận vuông A cỡ 2 thỏa mãn

$$\begin{pmatrix} x_{n+1} \\ x_n \end{pmatrix} = A \begin{pmatrix} x_n \\ x_{n-1} \end{pmatrix} \quad \text{v\'et mọi } n \geq 1.$$

- (b) Tìm một ma trận khả nghịch P và một ma trận chéo D sao cho $A = PDP^{-1}$.
- (c) Tính Aⁿ với n nguyên dương.
- (d) Tìm công thức tổng quát của dãy số (x_n) .

Câu 5. (1.0 điểm) Chứng minh rằng đa thức $x^{3m} + x^{3n+1} + x^{3p+2}$ chia hết cho đa thức $x^2 + x + 1$ với mọi m, n, p nguyên dương.

 \bullet Đáp án đề thi cấp trường năm 2022–2023

ĐÁP ÁN ĐỀ THI OLYMPIC TOÁN CẤP TRƯỜNG Môn ĐẠI SỐ

Câu 1. (2.0 điểm)

• 0.5 điểm

Với x = a, định thức f(a) có hai cột giống nhau nên f(a) = 0. Lập luận tương tư đối với f(b) và f(c).

ullet 1.0 di $m \vec{e}m=0.5$ di $m \vec{e}m+0.5$ di $m \vec{e}m$

Khai triển định thức f(x) theo cột thứ nhất, ta được

$$f(x) = mx^3 + nx^2 + px + q$$
 0.5 điểm

trong đó

$$m = \begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{vmatrix} = \begin{vmatrix} 1 & 0 & 0 \\ a & b-a & c-a \\ a^2 & b^2-a^2 & c^2-a^2 \end{vmatrix} = (b-a)(c-a)(c-b). \quad \boxed{0.5 \text{ di\'em}}$$

Nếu thí sinh viết sai dấu, chẳng hạn b-a thành a-b, thì cho 0.25 điểm.

• 0.5 diểm = 0.25 diểm + 0.25 diểm

Do a, b, c đôi một khác nhau nên m \neq 0, do đó f(x) là một đa thức bậc ba. Thành thử,

$$f(x) = m(x-a)(x-b)(x-c)$$
 . 0.25 diểm

Thay biểu thức của m, ta có được

$$f(x) = (b-a)(c-a)(c-b)(x-a)(x-b)(x-c). \quad \boxed{ \text{0.25 diểm} }$$

Câu 2. (2.0 điểm)

• 1.0 điểm

Lập ma trận hệ số mở rộng và đưa ma trận này về dạng bậc thang.

$$(A|b) = \begin{pmatrix} 1 & 2 & -3 & | & 4 \\ 3 & -1 & 5 & | & 2 \\ 4 & 1 & \alpha^2 - 14 & | & \alpha + 2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & -3 & | & 4 \\ 0 & -7 & 14 & | & -10 \\ 0 & -7 & \alpha^2 - 2 & | & \alpha - 14 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & -3 & | & 4 \\ 0 & -7 & 14 & | & -10 \\ 0 & 0 & \alpha^2 - 16 & | & \alpha - 4 \end{pmatrix}.$$

• 1.0 diểm = 0.5 diểm + 0.5 diểm

Hệ có vô số nghiệm khi và chỉ khi rank $(A|b)=\mathrm{rank}(A)<3.$ Dẫn đến

$$a^2 - 16 = a - 4 = 0$$
 tương đương $a = 4$. 0.5 điểm

Câu 3. (2.0 điểm)

• 0.5 điểm
Tính

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^2 = \begin{pmatrix} a^2 + bc & ab + bd \\ ac + cd & bc + d^2 \end{pmatrix}.$$

• 0.5 điểm

Yêu cầu bài toán cho ta hệ

$$\begin{cases} a^2 + bc &= 0 \\ (a+d)b &= 0 \\ (a+d)c &= 0 \\ d^2 + bc &= 0. \end{cases}$$

• 0.5 điểm

Xét a+d=0, khi đó điều kiện cần tìm là

$$a=-d, a^2+bc=0.$$

• 0.5 điểm

Xét $a + d \neq 0$. Khi đó

$$b = c = 0$$
, $a^2 = d^2 = 0$.

Vô lý vì $a \neq -d$.

Câu 4. (3.0 điểm)

• 0.5 điểm

Ta có

$$x_{n+1} = 5x_n - 6x_{n-1} x_n = 1x_n + 0x_{n-1}$$
.

Suy ra

$$A = \begin{pmatrix} 5 & -6 \\ 1 & 0 \end{pmatrix}.$$

• 1.5 diểm = 0.5 diểm + 0.25 diểm + 0.25 diểm + 0.5 diểmDa thức đặc trưng

$$P_A(x) = x^2 - 5x + 6 = (x - 2)(x - 3).$$

Suy ra giá trị riêng của A là 2 và 3. 0.5 điểm

Với x=2, ta có một véc tơ riêng độc lập tuyến tính $\binom{2}{1}$ 0.25 điểm

Với x=3, ta có một véc tơ riêng độc lập tuyến tính $\binom{3}{1}$ 0.25 điểm

Kết luận

$$P = \begin{pmatrix} 2 & 3 \\ 1 & 1 \end{pmatrix}, \ D = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}. \quad \boxed{0.5 \ \text{di\'em}}$$

• 0.5 điểm

$$A^{n} = \begin{pmatrix} 2 & 3 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 2^{n} & 0 \\ 0 & 3^{n} \end{pmatrix} \begin{pmatrix} 2 & 3 \\ 1 & 1 \end{pmatrix}^{-1}$$
$$= \begin{pmatrix} 3^{n+1} - 2^{n+1} & 3 \cdot 2^{n+1} - 2 \cdot 3^{n+1} \\ 3^{n} - 2^{n} & 3 \cdot 2^{n} - 2 \cdot 3^{n} \end{pmatrix}.$$

ullet 0.5 điểm = 0.25 điểm +0.25 điểm

Ta có

$$\begin{pmatrix} x_{n+1} \\ x_n \end{pmatrix} = A^n \begin{pmatrix} x_1 \\ x_0 \end{pmatrix}. \quad \boxed{0.25 \text{ diểm}}$$

Suy ra

$$\begin{split} x_n &= (3^n - 2^n)x_1 + (3 \cdot 2^n - 2 \cdot 3^n)x_0 \\ &= (t - 2s)3^n + (3s - t)2^n. \quad \boxed{\text{0.25 diểm}} \end{split}$$

Câu 5. (1.0 điểm)

• 0.5 điểm

Ta có

$$\begin{aligned} x^{3m} + x^{3n+1} + x^{3p+2} - (x^2 + x + 1) &= (x^{3m} - 1) + (x^{3n+1} - x) + (x^{3p+2} - x^2) \\ &= (x^{3m} - 1) + x(x^{3n} - 1) + x^2(x^{3p} - 1) \end{aligned}$$

• 0.5 điểm

Ta có

$$\begin{aligned} x^{3m} - 1 &= (x^3 - 1)(x^{3m - 3} + x^{3m - 6} + \dots + 1) \\ &= (x - 1)(x^2 + x + 1)(x^{3m - 3} + x^{3m - 6} + \dots + 1). \end{aligned}$$

Ta có điều phải chứng minh.

3 Một số bài tập mẫu

Bài 1. Tìm x sao cho

$$\begin{vmatrix} 1 & x & x^2 & x^3 \\ 1 & 2 & 4 & 8 \\ 1 & 3 & 9 & 27 \\ 1 & -1 & 1 & -1 \end{vmatrix} = 0.$$

Bài 2. Cho a, b là hai số thực và cho

$$A = \begin{bmatrix} -a & b & 0 & 0 \\ 0 & -a & b & 0 \\ 0 & 0 & -a & b \\ 0 & 0 & 0 & -a \end{bmatrix}.$$

- (a) Tính định thức của A.
- (b) Với các giá trị nào của a, b thì tồn tại ma trận A^{-1} . Khi đó tính A^{-1} .

Bài 3. Tính các định thức (cấp n) sau

$$C_n = \begin{vmatrix} a+b & ab & 0 & 0 & \cdots & \cdots & 0 & 0 & 0 \\ 1 & a+b & ab & 0 & \cdots & \cdots & 0 & 0 & 0 \\ 0 & 1 & a+b & ab & \cdots & \cdots & 0 & 1 & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & \cdots & a+b & ab & 0 \\ 0 & 0 & 0 & 0 & \cdots & \cdots & 1 & a+b & ab \\ 0 & 0 & 0 & 0 & \cdots & \cdots & 0 & 1 & a+b \end{vmatrix}$$
 $(a, b \in \mathbb{R}).$

Bài 4. Chứng minh rằng

$$\begin{bmatrix} \sin \alpha & \cos \alpha \\ -\cos \alpha & \sin \alpha \end{bmatrix}^n = \begin{bmatrix} \sin n\alpha & \cos n\alpha \\ -\cos n\alpha & \sin n\alpha \end{bmatrix} \quad \text{v\'oi mọi } n \in \mathbb{N}.$$

Bài 5. Cho

$$A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}.$$

13

- (a) Tìm ma trận P sao cho $P^{-1}AP$ có dạng chéo. Tìm ma trận chéo đó.
- (b) Tính A^{2021} .

Hướng dẫn: Ta có
$$P = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$$
 và $P^{-1}AP = \begin{bmatrix} 3 & 0 \\ 0 & 1 \end{bmatrix} = D.$

Khi đó $A = PDP^{-1}$ và do đó

$$\begin{split} A^{2021} &= (PDP^{-1})^{2021} = (PDP^{-1})(PDP^{-1}) \cdots (PDP^{-1}) \\ &= PD.D...D.P^{-1} \\ &= PD^{2021}P^{-1} \\ &= \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 3 & 0 \\ 0 & 1 \end{pmatrix}^{2021} \begin{pmatrix} 1/2 & 1/2 \\ -1/2 & 1/2 \end{pmatrix} \\ &= \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 3^{2021} & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1/2 & 1/2 \\ -1/2 & 1/2 \end{pmatrix} \\ &= \begin{pmatrix} (3^{2021} + 1)/2 & (3^{2021} - 1)/2 \\ (3^{2021} - 1)/2 & (3^{2021} + 1)/2 \end{pmatrix}. \end{split}$$

Bài 6. Cho

$$B = \begin{pmatrix} 1 & -2 & 1 \\ -1 & 1 & 0 \\ -2 & 0 & 1 \end{pmatrix}, \quad M = \begin{pmatrix} 0 & -2 & 1 \\ -1 & 0 & 0 \\ -2 & 0 & 0 \end{pmatrix}.$$

- (a) Chứng minh rằng $M^3 = 0$.
- (b) Tính B^{2021} .

Bài 7. Tính A^n và B^n , $n \in \mathbb{N}$ với

$$A = \begin{bmatrix} -3 & 2 \\ 0 & -3 \end{bmatrix}, \quad B = \begin{bmatrix} 2 & 0 & 0 \\ 1 & 2 & 0 \\ 0 & 1 & 2 \end{bmatrix}.$$

Bài 8. Tìm một ma trận X sao cho

$$X^3 - 3X^2 = \begin{bmatrix} -2 & 0\\ 0 & -2 \end{bmatrix}.$$

Bài 9. Tìm tất cả các ma trận thực X sao cho $X^2 + 2X = \begin{bmatrix} -1 & 0 \\ 4 & 3 \end{bmatrix}$.

Bài 10. Tìm tất cả các ma trận vuông cấp hai $X = \begin{pmatrix} a & b \\ 0 & d \end{pmatrix}$ sao cho $X^2 = I_2$ với I_2 là ma trận đơn vị cấp 2.

Bài 11. Cho ma trận

$$A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & -1 \end{bmatrix}.$$

- (a) Tính A^2 và A^{2021} .
- (b) Cho B là ma trận vuông cấp 3 thỏa mãn AB + BA = 0. CMR:

$$B^n = (-1)^n A B^n A \quad n \in \mathbb{N}.$$

Bài 12. Tìm tất cả các ma trận B sao cho AB = BA với

$$A = \begin{bmatrix} 1 & -2 \\ 2 & -4 \end{bmatrix}.$$

Bài 13. Tìm tất cả các ma trân B sao cho AB = BA với

$$A = \begin{bmatrix} 1 & 0 & 1 \\ -1 & 1 & 1 \\ 1 & 2 & 1 \end{bmatrix}.$$

14

Bài 14. Cho $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ có hai giá trị riêng thực λ_1 và λ_2 .

- (a) CMR: $\lambda_1 + \lambda_2 = a + d$ và $\lambda_1 \lambda_2 = \det(A)$.
- (b) CMR: λ_1^2 và λ_2^2 là các giá trị riêng của A^2 .

Bài 15. Cho A là ma trận vuông thực cấp 2.

- (a) CMR ma trận $B=A+A^T$ có ít nhất một giá trị riêng thực $\lambda_1,\lambda_2.$
- (b) CMR: $\lambda_1 \lambda_2 \le 4 \det(A)$.

Bài 16. Giải và biện luận hệ sau theo tham số m

$$\begin{cases} mx_1 + x_2 + x_3 &= 1\\ x_1 + mx_2 + x_3 &= 2\\ x_1 + x_2 + mx_3 &= 3. \end{cases}$$

Bài 17. Giải hệ phương trình sau

$$\begin{cases} x_1 + 2x_2 + 3x_3 + \dots + 2021x_{2021} &= 1 \\ x_2 + 2x_3 + 3x_4 + \dots + 2021x_1 &= 2 \\ \dots & \dots & \dots \\ x_{2021} + 2x_1 + 3x_2 + \dots + 2021x_{2020} &= 2021. \end{cases}$$

4 Một số bài tập nâng cao

BÀI TẬP ÔN TẬP MÔN ĐẠI SỐ OLYMPIC CẤP TRƯỜNG

1. MA TRẬN.

- **1.1.** Cho A là ma trận vuông cấp n thỏa mãn $A^2 A = I_n$. Chứng minh rằng A có ma trận nghich đảo và tìm ma trân nghich đảo của A.
- **1.2.** Cho M, N là các ma trận vuông cấp 3 thỏa mãn $MN = \begin{bmatrix} 5 & -6 & 2 \\ 6 & -7 & 2 \\ 6 & -6 & 1 \end{bmatrix}$
 - a. Tính $(MN)^2$.
 - b. Chứng minh NM khả nghịch. Tìm ma trận nghịch đảo của NM.
- **1.3.** Cho A là ma trận cấp n thỏa mãn $A^2 = A$. Chứng minh rằng ma trận B = 2A I có ma trân nghich đảo.
- **1.4.** Cho ma trận

$$A = \begin{pmatrix} a & b \\ 0 & c \end{pmatrix}; a, b, c \in R$$

- a. Chứng minh rằng nếu $A^{2016} = 0$ thì $A^2 = 0$
- b. Tìm a, b, c sao cho tồn tại $n \in N^*$ để

$$A^n = I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

1.5. Tính

a.
$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}^n$$
 b.
$$\begin{bmatrix} 2 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}^n$$

b.
$$\begin{bmatrix} 2 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

- **1.6.** Tính lũy thừa bậc n của $A = \begin{bmatrix} \cos x & -\sin x \\ \sin x & \cos x \end{bmatrix}$.
- **1.7.** Cho ma trận $A = \begin{bmatrix} 2017 & 1 & -2017 \\ 2016 & 2 & -2017 \\ 2016 & 1 & -2016 \end{bmatrix}$. Xác định các phần tử nằm trên đường chéo chính

của ma trân $S = I + A + A^2 + \cdots + A^{2017}$

1.8. Cho A là ma trận vuông cấp n

$$A = \begin{pmatrix} 2015 & 2016 & \cdots & 2016 \\ 2016 & 2015 & \cdots & 2016 \\ \dots & \dots & \dots & \dots \\ 2016 & 2016 & \cdots & 2015 \end{pmatrix}. \text{ Tính } A^k, \text{ với } k \text{ là số nguyên dương.}$$

1.9. Cho $A, B \in M_n(R)$ thỏa mãn $A^2 = A + B + BA$. Chứng minh rằng AB = BA.

- **1.10.** Cho $A, B \in M_n(R)$ thỏa mãn $AB = 0, B \neq 0$. Chứng minh rằng tồn tại ma trận $C \in M_n(R)$ khác ma trận 0 thỏa mãn AC = CA = 0.
- **1.11.** Cho ma trận vuông A, B cấp n. Vết của ma trận A là tổng tất cả các phần tử trên đường chéo chính của A, kí hiệu Tr(A). Chứng minh rằng:
 - a. Tr(A+B) = Tr(A) + Tr(B).
 - b. $Tr(kA) = kTr(A), k \in \mathbb{R}$.
 - c. Tr(AB) = Tr(BA)
- **1.12.** Chứng minh rằng không tồn tại các ma trận A, B, C, D vuông cấp n sao cho AC + BD = I và CA + BD = I, I là ma trận đơn vị.
- **1.13.** (Đẳng thức Wagner)
 - a. Chứng minh rằng với mọi ma trận A, B, C vuông cấp 2 ta luôn có

$$(AB-BA)^{2}C-C(AB-BA)^{2}=0$$

b. Chứng minh rằng với mọi ma trận A, B, C vuông cấp 2 ta luôn có

$$(AB - BA)^{2016} C - C(AB - BA)^{2016} = 0$$

- **1.14.** Tùy theo giá trị của m, hãy tìm hạng của ma trận $A = \begin{bmatrix} -1 & 2 & 1 & -1 & 1 \\ m & -1 & 1 & -1 & -1 \\ 1 & m & 0 & 1 & 1 \\ 1 & 2 & 2 & -1 & 1 \end{bmatrix}$
- **1.15.** Tìm m để hạng của ma trận sau nhỏ nhất $A = \begin{bmatrix} 3 & 1 & 4 & 1 \\ m & 2 & 3 & 1 \\ 3 & -1 & 1 & 0 \\ 3 & 3 & 7 & 2 \end{bmatrix}$
- **1.16.** Cho ma trận vuông cấp n: $A = \begin{bmatrix} 1 & m & 0 & \dots & 0 & 0 \\ 0 & 1 & m & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \dots & 1 & m \\ m & 0 & 0 & \dots & 0 & 1 \end{bmatrix}$. Tìm m để hạng của ma trận A

nhỏ hơn *n*.

- **1.17.** Chứng minh rằng mọi ma trận hạng r đều có thể phân tích được thành tổng của r ma trận có hạng bằng 1.
- **1.18.** Giả sử A, B là các ma trận vuông cấp n thỏa mãn AB = BA, $A^{2016} = 0$, $B^{2017} = 0$.
 - a. Chứng minh rằng tồn tại số tự nhiên k để $(A+B)^k = 0$.
 - b. Chứng minh rằng r(I+A+B) = r(I-A-B) = n,

2. ĐỊNH THỨC

2.1. Giải phương trình:
$$\begin{vmatrix} 1 & x & x^2 & x^3 \\ 1 & 2 & 4 & 8 \\ 1 & 3 & 9 & 27 \\ 1 & 4 & 14 & 64 \end{vmatrix} = 0$$

2.2. Tính đinh thức:

a.
$$\begin{vmatrix} 1 & 1 & 1 & 1 \\ x_1 & x_2 & x_3 & x_4 \\ x_1^2 & x_2^2 & x_3^2 & x_4^2 \\ x_1^3 & x_2^3 & x_3^3 & x_4^3 \end{vmatrix}$$

b.
$$\begin{vmatrix} a & b & c & d \\ -b & a & d & -c \\ -c & -d & a & b \\ -d & c & -b & a \end{vmatrix}$$

2.3. Tính $\begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix}$ trong đó a,b,c là 3 nghiệm của phương trình bậc $3: x^3 + px + q = 0$.

2.4. Cho m, n, p, q là các nghiệm của phương trình $x^4 - x + 1 = 0$ và

$$A = \begin{bmatrix} m+1 & 1 & 1 & 1 \\ 1 & n+1 & 1 & 1 \\ 1 & 1 & p+1 & 1 \\ 1 & 1 & 1 & q+1 \end{bmatrix}$$

Tính det(A).

2.5. Tính các định thức cấp n sau :

a.
$$\begin{vmatrix} 1 & 2 & 2 & \dots & 2 \\ 2 & 2 & 2 & \dots & 2 \\ 2 & 2 & 3 & \dots & 2 \\ & & & & \dots & \ddots \\ 2 & 2 & 2 & \dots & 2 \end{vmatrix}$$

a.
$$\begin{vmatrix} 1 & 2 & 2 & \dots & 2 \\ 2 & 2 & 2 & \dots & 2 \\ 2 & 2 & 3 & \dots & 2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 2 & 2 & 2 & \dots & 2 \end{vmatrix}$$
b.
$$\begin{vmatrix} 1 & 2 & 3 & \dots & n \\ -1 & 0 & 3 & \dots & n \\ -1 & -2 & 0 & \dots & n \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ -1 & -2 & -3 & \dots & 0 \end{vmatrix}$$

e.
$$D_n = \begin{vmatrix} 1+x^2 & x & 0 & \dots & 0 \\ x & 1+x^2 & x & \dots & 0 \\ 0 & x & 1+x^2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1+x^2 \end{vmatrix}$$

 D_n là định thức cấp n mà các phần tử nằm trên đường chéo chính bằng $1+x^2$, các phần tử thuộc hai đường chéo gần đường chéo chính bằng x và các phần tử còn lại bằng 0.

2.6.

a. A là một ma trận vuông cấp n thỏa mãn $A^{-1} = A$. Chứng minh $\left| \det(A - I) \right| = 0$ hoặc $\left| \det(A - I) \right| = 2^n$.

b. A, B là hai ma trận vuông cùng cấp n thỏa mãn AB - BA = B. Chứng minh det(B) = 0.

- **2.7.** Cho A, B là các ma trận thực vuông cấp n thỏa mãn AB = A + B và $A^{2016} = 0$. Chứng minh rằng det(B) = 0.
- **2.8.** Cho các ma trận vuông A, B thỏa mãn $A^t A = I; B^t B = I$. Biết $\det A \neq \det B$. Chứng minh rằng $\det(A + B) = 0$.
- **2.9.** Cho ma trận vuông cấp n $A = (a_{ij}); a_{ij} = \min(i, j)$. Tính $\det(A)$.
- **2.10.** Cho $A=\left(a_{ij}\right)$ là một ma trận vuông cấp $n\geq 2$ và $A_{11}+A_{12}+\cdots+A_{1n}\neq 0$, trong đó A_{1j} là phần bù đại số của a_{1j} . Chứng minh rằng tồn tại số thực α để

$$\begin{vmatrix} a_{11} + \alpha & a_{12} + \alpha & \dots & a_{1n} + \alpha \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix} = 2016$$

3. HỆ PHƯƠNG TRÌNH TUYẾN TÍNH

3.1. Giải hệ phương trình:

$$\begin{cases} 3x + y - 2z + t - u = 1 \\ 2x - y + 7z - 3t + 5u = 2 \\ x + 3y - 2z + 5t - 7u = 3 \\ 3x - 2y + 7z - 5t + 8u = 3 \end{cases}$$

3.2. Giải hệ phương trình thuần nhất sau:

$$\begin{cases} x_1 + x_2 + x_3 = 0 \\ x_2 + x_3 + x_4 = 0 \\ x_3 + x_4 + x_5 = 0 \\ \dots \\ x_8 + x_9 + x_{10} = 0 \\ x_1 + \dots + x_9 + x_{10} = 0 \\ x_1 + x_2 + \dots + x_{10} = 0 \end{cases}$$

3.3. Giải và biện luận các hệ phương trình sau

a.
$$\begin{cases} mx + y + z + t = 1 \\ x + my + z + t = 1 \\ x + y + mz + t = 1 \end{cases}$$
b.
$$\begin{cases} 2x + y + z + t = 1 \\ x + 2y - z + 4t = 2 \\ x + 7y - 4z + 11t = m \\ 4x + 8y - 4z + 16t = m + 1 \end{cases}$$

3.4. Cho a_{ij} là các số nguyên. Giải hệ:

$$\begin{cases} \frac{1}{2}x_1 = a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \\ \frac{1}{2}x_2 = a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n \\ \dots & \dots & \dots \\ \frac{1}{2}x_n = a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n \end{cases}$$

3.5. Chứng minh rằng hệ phương trình sau có nghiệm khác nghiệm tầm thường:

trong đó $a_{ij} = -a_{ji}$ và n lẻ.

3.6. Tìm m để hệ sau có nghiệm duy nhất

$$\begin{cases} mx + 8z - 7t = m - 1\\ 3x + my + 2z + 4t = m\\ mz + 5t = m^{2} - 1\\ 5z - mt = 2m + 2 \end{cases}$$

3.7. Tùy theo giá trị của m, hãy biện luận số nghiệm của hệ:

$$\begin{cases} mx + y + z + t = m \\ 2x + 3y + 2z + (5m - 3)t = m + 1 \\ (m - 1)x + 3y + 2z + (m^2 + m)t = 4 \end{cases}$$

3.8. Tìm điều kiện của m để hai hệ sau có nghiệm chung

$$\begin{cases} 2x - y + z - 2t + 3u = 3\\ x + y - z - t + u = 1\\ 3x + y + z - 3t + 4u = 2m \end{cases}$$
$$\begin{cases} x - y + 2z - 2mt = 0\\ 2x + y - z + t = m \end{cases}$$

3.9. Cho $a,b,c,d \in \mathbb{R}$. Chứng minh rằng hệ phương trình sau chỉ có nghiệm tầm thường:

$$\begin{cases} (1+a^2)x + by + cz + dt = 0\\ -bx + (1+a^2)y + dz - ct = 0\\ -cx - dy + (1+a^2)z + bt = 0\\ -dx + cy - bz + (1+a^2)t = 0 \end{cases}$$

- 4. ĐA THỨC
 - **4.1.** (Xác định đa thức) Tìm tất cả các đa thức P(x) có hệ số nguyên sao cho

$$P(P'(x)) = P'(P(x)), \forall x \in \mathbb{R}$$

4.2. (*Nghiệm của đa thức*) Cho P(x) là đa thức bậc n có n nghiệm phân biệt $x_1, x_2, ..., x_n$. Chứng minh rằng:

a.
$$\frac{1}{P'(x_1)} + \frac{1}{P'(x_2)} + \dots + \frac{1}{P'(x_n)} = 0.$$

b.
$$\frac{P''(x_1)}{P'(x_1)} + \frac{P''(x_2)}{P'(x_2)} + \dots + \frac{P''(x_n)}{P'(x_n)} = 0.$$

4.3. (Đa thức với yếu tố giải tích) Với mỗi số nguyên dương $n \ge 2$ xét đa thức

$$P_n(x) = nx^n - x^{n-1} - \dots - x - 1$$
. Hỏi $P_n(x)$ có bao nhiều nghiệm thực:

a. Khi
$$n = 2$$
; $n = 3$?

b. Khi
$$n \ge 4$$
?

- **4.4.** (*Tính chia hết của đa thức*) Cho m,n là các số nguyên dương. Chứng minh rằng điều kiện cần và đủ để đa thức $x^m + x^n + 1$ chia hết cho $x^2 + x + 1$ là mn 2 chia hết cho 3.
- **4.5.** Cho đa thức $P(x) = 4x^3 + ax^2 + bx + c$ trong đó a,b,c là các số thực. Hãy tìm a,b,c sao cho $|P(x)| \le 1$ với mọi x thoả mãn $|x| \le 1$.