AlexNet, VGG, GoogleNet and ResNet

Presented by Zhengxia Zou 18 Aug. 2018

- Basic components of CNN
- AlexNet
- VGG
- GoogleNet
- ResNet

Basic components of CNN

C: Convolutional layer

Nonlinear mapping layer

P : Pooling layer

Basic components of CNN

- **C**: Convolutional layer
- N : Nonlinear mapping layer
- P : Pooling layer

LeNet-5

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. *Proceedings of the IEEE*, 1998.

AlexNet

Krizhevsky, Alex, I. Sutskever, and G. E. Hinton. "ImageNet classification with deep convolutional neural networks." *NIPS*, 2012.

2012 ImageNet top-5 test error: 1st: 15.3%, 2nd: 26.2%

AlexNet

Key points of AlexNet

- Rectified Linear Unit (ReLU)
- Dropout
- Local Response Normalization (LRN)

VGG

Karen Simonyan, Andrew Zisserman. "Very Deep Convolutional Networks for Large-Scale Image Recognition." *ICLR*, 2015. (arXiv 2014)

VGG

Key points of VGG

- Increasing depth (16-19 layers)
- Using very small (3x3) convolution filters (instead of 5x5 and 7x7)

27 parameters

49 parameters:

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, et, al. "Going Deeper with Convolutions." *CVPR*, 2015. (arXiv 2014)

(a) Inception module, naïve version

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, et, al. "Going Deeper with Convolutions." *CVPR*, 2015. (arXiv 2014)

(b) Inception module with dimensionality reduction

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, et, al. "Going Deeper with Convolutions." *CVPR*, 2015. (arXiv 2014)

(b) Inception module with dimensionality reduction

Key points of GoogleNet (Inception v1-v4)

- Multiscale convolutions
- Increasing both of the width and depth (22 layers)
- Batch Normalization (BN)

$$\hat{x}^{(k)} = \frac{x^k - E[x^k]}{\sqrt{Var[x^k]}}$$
 Act as a pre-processing step: shifting inputs of each layer to zero-mean and unit variance $y^{(k)} = \gamma^k \hat{x}^{(k)} + \beta^{(k)}$

Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun. "Deep Residual Learning for Image Recognition." *CVPR*, 2016, best paper. (arXiv 2015)

Motivation

To ease the training of networks that are much deeper than those used previously.

Building Block of ResNet

"bottleneck" version

$$\mathbf{y} = \mathcal{F}(\mathbf{x}, \{W_i\}) + \mathbf{x}.$$

- **C**: Convolutional layer
- N : Nonlinear mapping layer
- **P**: Pooling layer

layer name	output size	18-layer	34-layer	50-layer	101-layer	152-layer
conv1	112×112	7×7, 64, stride 2				
	56×56	3×3 max pool, stride 2				
conv2_x		$\left[\begin{array}{c} 3 \times 3, 64 \\ 3 \times 3, 64 \end{array}\right] \times 2$	$\left[\begin{array}{c} 3 \times 3, 64 \\ 3 \times 3, 64 \end{array}\right] \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$
conv3_x	28×28	$\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right] \times 2$	$\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right] \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$ \begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4 $	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 8$
conv4_x	14×14	$\left[\begin{array}{c} 3\times3,256\\ 3\times3,256 \end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,256\\ 3\times3,256 \end{array}\right]\times6$	$ \left[\begin{array}{c} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{array}\right] \times 6 $	$ \left[\begin{array}{c} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{array}\right] \times 23 $	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 36$
conv5_x	7×7	$ \begin{bmatrix} 3\times3,512\\3\times3,512 \end{bmatrix}\times2 $	$\left[\begin{array}{c} 3\times3,512\\ 3\times3,512 \end{array}\right]\times3$	$ \left[\begin{array}{c} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{array}\right] \times 3 $	$ \begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3 $	$ \left[\begin{array}{c} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{array}\right] \times 3 $
	1×1	average pool, 1000-d fc, softmax				
FLOPs		1.8×10^9	3.6×10^9	3.8×10^9	7.6×10^9	11.3×10^9

Key points of ResNet

- Learning Residuals
- Much easier to optimize
- Gain accuracy from considerably increased depth (152 layers)

Apply to other tasks

Comparison

@ Kaiming He, ICML2016 Tutorial Revolution of Depth AlexNet, 8 layers VGG, 19 layers GoogleNet, 22 layers ResNet, 152 layers (ILSVRC 2012) (ILSVRC 2014) (ILSVRC 2014) (ILSVRC 2015) ImageNet Cls. Top5-err: 15.3% 7.3% 6.7% 3.57%

Comparison

@ Alfredo Canziani, Adam Paszke, Eugenio Culurciello. An Analysis of Deep Neural Network Models for Practical Applications. arXiv 2016.

