MNE for MEG/EEG data processing: What's up?

A. Gramfort¹, M. Luessi², E. Larson³, D.A. Engemann⁴, D. Strohmeier⁵ C. Brodbeck⁶, R. Goj⁷, M. Jas⁸, T. Brooks⁶, L. Parkkonen⁸, M. Hämäläinen² ¹Telecom ParisTech, CNRS LTCI - CEA/Neurospin ²MGH, Harvard Med. School, USA ³U. of Washington, USA ⁴CNS (INM-3), Juelich Research Center, Germany ⁵TU Ilmenau, Germany ⁷Stirling, UK ⁸AALTO, Helsinki ⁶New York U., USA

The MNE Software Vision

- ■State-of-the-art methods, documented and tested
- Open development: collaboration between several centers
- ■Share the best practices, promote reproducible research

Software Features

Preprocessing

- Review raw data, filter, correct ECG / EOG with SSPs, ICA Forward & inverse modeling
- FreeSurfer structural data: Automatic forward modeling
- ■MNE dSPM sLORETA (TF-)M×NE LCMV DICS

Statistics (sensor and source spaces)

- Time-Frequency (Phase-Locking, Induced Power)
- Parametric and non-parametric stats, with clustering
- Decoding/MVPA (SVM, ...)
- **Connectivity** (sensor and source spaces)
- Functional and effective connectivity measures

http://martinos.org/mne

A. Gramfort, M. Luessi, E. Larson, D. Engemann, D. Strohmeier, C. Brodbeck, L. Parkkonen, M. Hämäläinen software for processing MEG and EEG data, Neuroimage, 2014

A. Gramfort, M. Luessi, E. Larson, D. Engemann, D. Strohmeier, C. Brodbeck, R. Goj, M. Jas, T. Brooks, L. Parkkonen, M. Hämäläinen, MEG and EEG data analysis with MNE-Python, Frontiers in Neuroscience, 2013

MNE-Python

- ■Python: general-purpose, high-level language
- Free: can run on a cluster without license problems
- Permissive BSD license: allows use in commercial products

100k May 2014 Code: 50401 Comments: 24466 Blanks: 14497 Code Comments Blanks

Learn more

- Mailing list: mne_analysis@nmr.mgh.harvard.edu
- ■http://martinos.org/mne/ (general doc)
- http://martinos.org/mne/dev/whats_new.html
- http://mne-tools.github.com/mne-python-intro-slides
- ■http://martinos.org/mne/auto_examples/ (> 70 demos)

The MNE Software Family MNE-C - MNE-Matlab - MNE-Python

http://github.com/mne-tools

From raw to dSPM in < 30 lines of code

```
mne.io.Raw(fname)
                                                                                                          # load data
                                                                               raw.info['bads'] = ['MEG 2443', 'EEG 053'] # mark bad channels
■46 contributors in last 12 months \approx 13 person-years of effort # band-pass filter data in beta band, and save it raw.filter(13.0, 30.0, filter_length=4096, n_jobs='cuda') raw.save(fname[:-4] + '_beta.fif')
                                                                               # extract epochs
                                                                               picks = mne.find_events(raw)
picks = mne.find_events(raw)
                                                                               # compute evoked response and noise covariance, and plot evoked
                                                                               evoked = epochs.average()
                                                                                   = mne.compute_covariance(epochs, tmax=0)
                                                                               evoked.plot()
                                                                                 compute inverse operator
                                                                               fwd_fname = 'sample_audvis-meg-eeg-oct-6-fwd.fif'
                                                                               fwd = mne.read_forward_solution(fwd_fname, surf_ori=True)
                                                                               inv = mne.minimum_norm.make_inverse_operator(raw.info, fwd, cov, loose=0.2)
                                                                               # compute inverse solution
                                                                               stc = mne.minimum_norm.apply_inverse(evoked, inv, lambda2=1 / 3.0 ** 2,
                                                                                                                      method = 'dSPM')
                                                                               # morph it to average brain for group study
stc_avg = mne.morph_data('sample', 'fsaverage', stc, 5, smooth=5)
                                                                               stc_avg.plot()
```


