Satisfiability Checking SAT Solving

Prof. Dr. Erika Ábrahám

RWTH Aachen University Informatik 2 LuFG Theory of Hybrid Systems

WS 16/17

Given:

• Propositional logic formula φ in CNF.

Question:

■ Is φ satisfiable?

(Is there a model for φ ?)

SAT-solving: Components

- Decision (enumeration)
- Boolean constraint propagation (BCP)
- Conflict resolution and backtracking

SAT-solving: Components

- Decision (enumeration)
- Boolean constraint propagation (BCP)
- Conflict resolution and backtracking

Enumeration algorithm

Enumeration algorithm

```
bool Enumeration (CNF Formula \varphi){
  trail.clear(); //trail is a stack
  while (true) {
     if there are unassigned variables then {
       choose unassigned variable x
       choose value v \in \{0, 1\}
       trail.push(x, v, false)
     } else {
       if all clauses of \varphi are satisfied then return SAT
       while (true){
          if (!trail.empty()) then (x,v,b)=trail.pop()
          else return UNSAT:
          if (!b) {
             trail.push(x, \neg v, true)
             break
```

$$\underbrace{\left(\neg x \lor y \lor z\right)}_{c_1} \land \underbrace{\left(y \lor \neg z\right)}_{c_2} \land \underbrace{\left(\neg x \lor \neg y\right)}_{c_3}$$

For unsatisfiable problems, all assignments need to be checked.

For satisfiable problems, variable and sign ordering might strongly influence the running time.

$$\underbrace{\left(\neg x \lor y \lor z\right)}_{c_1} \land \underbrace{\left(y \lor \neg z\right)}_{c_2} \land \underbrace{\left(\neg x \lor \neg y\right)}_{c_3}$$

Static variable order x < y < z, sign: try positive first

For unsatisfiable problems, all assignments need to be checked.

For satisfiable problems, variable and sign ordering might strongly influence the running time.

$$\underbrace{(\neg x \lor y \lor z)}_{c_1} \land \underbrace{(y \lor \neg z)}_{c_2} \land \underbrace{(\neg x \lor \neg y)}_{c_3}$$

$$\underbrace{(\neg x \lor y \lor z)}_{c_1} \land \underbrace{(y \lor \neg z)}_{c_2} \land \underbrace{(\neg x \lor \neg y)}_{c_3}$$

$$\underbrace{(\neg x \lor y \lor z)}_{c_1} \land \underbrace{(y \lor \neg z)}_{c_2} \land \underbrace{(\neg x \lor \neg y)}_{c_3}$$

Decision heuristics

Dynamic Largest Individual Sum (DLIS): Choose an assignment that increases the most the number of satisfied clauses

- For each variable x, let C_x be the number of unresolved clauses in which x appears positively.
- For each variable x, let $C_{\neg x}$ be the number unresolved clauses in which x appears negatively.
- Let x be a variable for which C_x is maximal ($C_x \ge C_z$ for all variables z).
- Let y be a variable for which $C_{\neg y}$ is maximal ($C_{\neg y} \ge C_{\neg z}$ for all variables z).
- If $C_x > C_{\neg v}$ choose x and assign it TRUE.
- Otherwise choose y and assign it FALSE.
- Requires $\mathcal{O}(\#literals)$ queries for each decision.

$$\underbrace{(\neg x \lor y \lor z)}_{c_1} \land \underbrace{(y \lor \neg z)}_{c_2} \land \underbrace{(\neg x \lor \neg y)}_{c_3} \qquad C_x = 0 \qquad C_y = 2 \qquad C_z = 1$$
$$C_{\neg x} = 2 \quad C_{\neg y} = 1 \quad C_{\neg z} = 1$$

Dynamic Largest Individual Sum (DLIS) variable/sign order

$$\underbrace{\left(\neg x \vee y \vee z\right)}_{c_1} \wedge \underbrace{\left(y \vee \neg z\right)}_{c_2} \wedge \underbrace{\left(\neg x \vee \neg y\right)}_{c_3} \qquad \begin{aligned} C_x &= 0 & C_y &= 2 & C_z &= 1 \\ C_{\neg x} &= 2 & C_{\neg y} &= 1 & C_{\neg z} &= 1 \end{aligned}$$

Dynamic Largest Individual Sum (DLIS) variable/sign order

$$\underbrace{\left(\neg x \vee y \vee z\right)}_{c_1} \wedge \underbrace{\left(y \vee \neg z\right)}_{c_2} \wedge \underbrace{\left(\neg x \vee \neg y\right)}_{c_3} \qquad \begin{aligned} C_x &= 0 & C_y &= 1 & C_z &= 0 \\ C_{\neg x} &= 0 & C_{\neg y} &= 0 & C_{\neg z} &= 1 \end{aligned}$$

$$\underbrace{\left(\neg x \vee y \vee z\right)}_{c_1} \wedge \underbrace{\left(y \vee \neg z\right)}_{c_2} \wedge \underbrace{\left(\neg x \vee \neg y\right)}_{c_3} \qquad \begin{aligned} C_x &= 0 & C_y &= 0 \\ C_{\neg x} &= 0 & C_{\neg y} &= 0 \end{aligned}$$

$$\underbrace{(\neg x \vee y \vee z)}_{c_1} \wedge \underbrace{(y \vee \neg z)}_{c_2} \wedge \underbrace{(\neg x \vee \neg y)}_{c_3} \qquad \begin{array}{c} C_x = 0 & C_y = 0 \\ C_{\neg x} = 0 & C_{\neg y} = 0 \end{array} \qquad \begin{array}{c} C_z = 0 \\ C_{\neg z} = 0 \end{array}$$

$$C_x = 0$$
 $C_y = 0$ $C_z = 0$
 $C_{\neg x} = 0$ $C_{\neg y} = 0$ $C_{\neg z} = 0$

$$\underbrace{\left(\neg x \vee y \vee z\right)}_{c_1} \wedge \underbrace{\left(y \vee \neg z\right)}_{c_2} \wedge \underbrace{\left(\neg x \vee \neg y\right)}_{c_3} \qquad C_x = 0 \qquad C_y = 0 \qquad C_z = 0$$
$$C_{\neg x} = 0 \qquad C_{\neg y} = 0 \qquad C_{\neg z} = 0$$

Decision heuristics

Jersolow-Wang method

Compute for every literal / the following static value:

$$J(I): \sum_{I \in c, c \in \phi} 2^{-|c|}$$

- Choose a literal I that maximizes J(I).
- This gives an exponentially higher weight to literals in shorter clauses

$$J(x) = 0$$
, $J(\neg x) = \frac{1}{8} + \frac{1}{4}$, $J(y) = \frac{1}{8} + \frac{1}{4}$, $J(\neg y) = \frac{1}{4}$, $J(z) = \frac{1}{8}$, $J(\neg z) = \frac{1}{4}$

$$J(x) = 0$$
, $J(\neg x) = \frac{1}{8} + \frac{1}{4}$, $J(y) = \frac{1}{8} + \frac{1}{4}$, $J(\neg y) = \frac{1}{4}$, $J(z) = \frac{1}{8}$, $J(\neg z) = \frac{1}{4}$

$$J(x) = 0$$
, $J(\neg x) = \frac{1}{8} + \frac{1}{4}$, $J(y) = \frac{1}{8} + \frac{1}{4}$, $J(\neg y) = \frac{1}{4}$, $J(z) = \frac{1}{8}$, $J(\neg z) = \frac{1}{4}$

$$J(x) = 0$$
, $J(\neg x) = \frac{1}{8} + \frac{1}{4}$, $J(y) = \frac{1}{8} + \frac{1}{4}$, $J(\neg y) = \frac{1}{4}$, $J(z) = \frac{1}{8}$, $J(\neg z) = \frac{1}{4}$

Decision heuristics

■ We will see other (more advanced) decision heuristics later.

SAT-solving: Components

- Decision (enumeration)
- Boolean constraint propagation (BCP)
- Conflict resolution and backtracking

Status of clause

■ Given a (partial) assignment, a clause can be

satisfied: at least one literal is satisfied

unsatisfied: all literals are assigned but none are statisfied

unit: all but one literals are assigned but none are satisfied

unresolved: all other cases

Example: $c = (x_1 \lor x_2 \lor x_3)$

<i>x</i> ₁	<i>x</i> ₂	<i>X</i> 3	С
1	0		satisfied
0	0	0	unsatisfied
0	0		unit
	0		unresolved

BCP: Unit clauses are used to imply consequences of decisions.

Status of clause

■ Given a (partial) assignment, a clause can be

satisfied: at least one literal is satisfied

unsatisfied: all literals are assigned but none are statisfied unit: all but one literals are assigned but none are satisfied

unresolved: all other cases

Example: $c = (x_1 \lor x_2 \lor x_3)$

<i>x</i> ₁	<i>x</i> ₂	<i>X</i> 3	С
1	0		satisfied
0	0	0	unsatisfied
0	0		unit
	0		unresolved

BCP: Unit clauses are used to imply consequences of decisions.

Some notations:

- Decision Level (DL) is a counter for decisions
- Antecedent(/): unit clause implying the value of the literal / (nil if decision)

$$\underbrace{\left(\neg x \lor y \lor z\right)}_{c_1} \land \underbrace{\left(y \lor \neg z\right)}_{c_2} \land \underbrace{\left(\neg x \lor \neg y\right)}_{c_3}$$

The DPLL algorithm: Enumeration+propagation

The DPLL algorithm: Enumeration+propagation

```
bool DPLL(CNF Formula \varphi){
  trail.clear(); //trail is a global stack of assignments
  if (!BCP()) then return UNSAT;
  while (true) {
     if (!decide()) then return SAT;
     while (!BCP())
       if (!backtrack()) then return UNSAT;
bool BCP() { //more advanced implementation: return false as soon as an unsatisfied clause is detected
  while (there is a unit clause implying that a variable x must be set to a value \nu)
     trail.push(x, v, true);
  if (there is an unsatisfied clause) then return false;
  return true:
```

The DPLL algorithm: Enumeration+propagation (cont)

The DPLL algorithm: Enumeration+propagation (cont)

```
bool decide() {
  if (all variables are assigned) then return false;
  choose unassigned variable x;
  choose value v \in \{0, 1\};
  trail.push(x, v, false);
  return true
bool backtrack() {
  while (true){
     if (trail.empty()) then return false;
     (x,v,b)=trail.pop()
     if (!b) {
       trail.push(x, \neg v, true);
       return true
```

(x) ~ (2x vy) ~ (3y v = v u) ~ (3 v 7u)

Watched literals

■ For BCP, it would be a large effort to check for each propagation the value of each literal in each clause.

Watched literals

- For BCP, it would be a large effort to check for each propagation the value of each literal in each clause.
- One could keep for each literal a list of clauses in which it occurs.

Watched literals

- For BCP, it would be a large effort to check for each propagation the value of each literal in each clause.
- One could keep for each literal a list of clauses in which it occurs.
- It is even enough to watch two literals in each clause such that either one of them is true or both are unassigned.
 If a literal / gets true, we check each clause in which ¬/ is a watched
 - literal (which is now false).
 - If the other watched literal is true, the clause is satisfied.
 - Else, if we find a new literal to watch, we are done.
 - Else, if the other watched literal is unassigned, the clause is unit.
 - Else, if the other watched literal is false, the clause is conflicting.

SAT-solving: Components

- Conflict resolution and backtracking

Implication graph

We represent (partial) variable assignments in the form of an implication graph.

$$(x) \wedge (x \vee u) \wedge (x \vee x \vee u)$$

Implication graph

We represent (partial) variable assignments in the form of an implication graph.

Definition

An implication graph is a labeled directed acyclic graph G = (V, E, L), where

- V is a set of nodes, one for each currently assigned variable and an additional conflict node κ if there is a currently conflicting clause c_{confl} .
- L is a labeling function assigning a lable to each node. The conflict node (if any) is labelled by $L(\kappa) = \kappa$. Each other node n, representing that x is assigned $v \in \{0,1\}$ at decision level d, is labeled with L(n) = (x = v@d); we define literal(n) = x if v = 1 and $literal(n) = \neg x$ if v = 0.
- $E = \{(n_i, n_j) | n_i, n_j \in V, n_i \neq n_j, \neg literal(n_i) \in Antecedent(literal(n_j))\} \cup \{(n, \kappa) | n, \kappa \in V, \neg literal(n) \in c_{confi}\}$ is the set of directed edges where each edge (n_i, n_j) is labeled with Antecedent(literal(n_j)) if $n_j \neq \kappa$ and with c_{confi} otherwise.

$$\underbrace{\left(\neg x \lor y \lor z\right)}_{c_1} \land \underbrace{\left(y \lor \neg z\right)}_{c_2} \land \underbrace{\left(\neg x \lor \neg y\right)}_{c_3}$$

$$\underbrace{\left(\neg x \lor y \lor z\right)}_{c_1} \land \underbrace{\left(y \lor \neg z\right)}_{c_2} \land \underbrace{\left(\neg x \lor \neg y\right)}_{c_3}$$

$$x = 101$$

$$\underbrace{\left(\neg x \lor y \lor z\right)}_{c_1} \land \underbrace{\left(y \lor \neg z\right)}_{c_2} \land \underbrace{\left(\neg x \lor \neg y\right)}_{c_3}$$

$$x = 1@1 \qquad y = 0@1$$

$$\underbrace{\left(\neg x \lor y \lor z\right)}_{c_1} \land \underbrace{\left(y \lor \neg z\right)}_{c_2} \land \underbrace{\left(\neg x \lor \neg y\right)}_{c_3}$$

$$\underbrace{\left(\neg x \vee y \vee z\right)}_{c_1} \wedge \underbrace{\left(y \vee \neg z\right)}_{c_2} \wedge \underbrace{\left(\neg x \vee \neg y\right)}_{c_3}$$

Decisions: {

$$c_{1} = (\neg x_{1} \lor x_{2})$$

$$c_{2} = (\neg x_{1} \lor x_{3} \lor x_{7})$$

$$c_{3} = (\neg x_{2} \lor \neg x_{3} \lor x_{4})$$

$$c_{4} = (\neg x_{4} \lor x_{5} \lor x_{8})$$

$$c_{5} = (\neg x_{4} \lor x_{6} \lor x_{9})$$

$$c_{6} = (\neg x_{5} \lor \neg x_{6})$$

Decisions:
$$\{x_7 = 0@1$$

$$c_{1} = (\neg x_{1} \lor x_{2})$$

$$c_{2} = (\neg x_{1} \lor x_{3} \lor x_{7})$$

$$c_{3} = (\neg x_{2} \lor \neg x_{3} \lor x_{4})$$

$$c_{4} = (\neg x_{4} \lor x_{5} \lor x_{8})$$

$$c_{5} = (\neg x_{4} \lor x_{6} \lor x_{9})$$

$$c_{6} = (\neg x_{5} \lor \neg x_{6})$$

Decisions:
$$\{x_7 = 0@1, x_8 = 0@2\}$$

$$c_1 = (\neg x_1 \lor x_2)$$

$$c_2 = (\neg x_1 \lor x_3 \lor x_7)$$

$$c_3 = (\neg x_2 \lor \neg x_3 \lor x_4)$$

$$c_4 = (\neg x_4 \lor x_5 \lor x_8)$$

$$c_5 = (\neg x_4 \lor x_6 \lor x_9)$$

$$c_6 = (\neg x_5 \lor \neg x_6)$$

$$x_8 = 0@2$$

$$x_7 = 0@1$$

Decisions:
$$\{x_7 = 0@1, x_8 = 0@2, x_9 = 0@3\}$$

$$c_1 = (\neg x_1 \lor x_2)$$

$$c_2 = (\neg x_1 \lor x_3 \lor x_7)$$

$$c_3 = (\neg x_2 \lor \neg x_3 \lor x_4)$$

$$c_4 = (\neg x_4 \lor x_5 \lor x_8)$$

$$c_5 = (\neg x_4 \lor x_6 \lor x_8)$$

$$c_6 = (\neg x_5 \lor \neg x_6)$$

$$x_8 = 002$$

$$x_7 = 0@1$$

$$x_9 = 0@3$$

Decisions:
$$\{x_7 = 0@1, x_8 = 0@2, x_9 = 0@3, x_1 = 1@4\}$$

$$c_1 = (\cancel{x}) \lor x_2)$$

$$c_2 = (\cancel{x}) \lor x_3 \lor x_7)$$

$$c_3 = (\neg x_2 \lor \neg x_3 \lor x_4)$$

$$c_4 = (\neg x_4 \lor x_5 \lor x_8)$$

$$c_5 = (\neg x_4 \lor x_6 \lor x_9)$$

$$c_6 = (\neg x_5 \lor \neg x_6)$$

 $x_8 = 0@2$

$$x_1 = 104$$

$$x_9 = 0@3$$

Decisions:
$$\{x_7 = 0@1, x_8 = 0@2, x_9 = 0@3, x_1 = 1@4\}$$

Decisions:
$$\{x_7 = 0@1, x_8 = 0@2, x_9 = 0@3, x_1 = 1@4\}$$

Decisions: $\{x_7 = 0@1, x_8 = 0@2, x_9 = 0@3, x_1 = 1@4\}$

Decisions:
$$\{x_7 = 0@1, x_8 = 0@2, x_9 = 0@3, x_1 = 1@4\}$$

Decisions: $\{x_7 = 0@1, x_8 = 0@2, x_9 = 0@3, x_1 = 1@4\}$

Decisions:
$$\{x_7 = 0@1, x_8 = 0@2, x_9 = 0@3, x_1 = 1@4\}$$

- Assume that the current (partial) assignment doesn't satisfy our formula.
- Let *L* be a set of literals labeling nodes that form a cut in the implication graph, seperating a conflict node from the roots.
- $\bigvee_{l \in L} \neg l$ is called a conflict clause: its satisfaction is necessary for the satisfaction of the formula.

■ Which conflict clauses should we consider?

- Which conflict clauses should we consider?
- An asserting clause is a conflict clause with a single literal from the current decision level.
 - Backtracking (to the right level) makes it a unit clause.
- Modern solvers consider only asserting clauses.

- Which conflict clauses should we consider?
- An asserting clause is a conflict clause with a single literal from the current decision level.
 Backtracking (to the right level) makes it a unit clause.
- Modern solvers consider only asserting clauses.
- A unique implication point (UIP) is an internal node in the implication graph such that all paths from the last decision to the conflict node go through it.
- The first UIP is the UIP closest to the conflict.

■ Usually, the asserting conflict clause is learnt by adding it to the clause set. However, this is not necessary for completeness.

- Usually, the asserting conflict clause is learnt by adding it to the clause set. However, this is not necessary for completeness.
- Backtrack to the second highest decision level *dl* in the asserting conflict clause (but do not erase it).
- This way the literal with the currently highest decision level will be implied at decision level dl.
- Propagate all new assignments.

- Usually, the asserting conflict clause is learnt by adding it to the clause set. However, this is not necessary for completeness.
- Backtrack to the second highest decision level *dl* in the asserting conflict clause (but do not erase it).
- This way the literal with the currently highest decision level will be implied at decision level dl.
- Propagate all new assignments.
- Q: What happens if the conflict clause has a single literal? For example, from $(x \lor \neg y) \land (x \lor y)$ and decision x = 0, we get (x).

- Usually, the asserting conflict clause is learnt by adding it to the clause set. However, this is not necessary for completeness.
- Backtrack to the second highest decision level *dl* in the asserting conflict clause (but do not erase it).
- This way the literal with the currently highest decision level will be implied at decision level dl.
- Propagate all new assignments.
- Q: What happens if the conflict clause has a single literal? For example, from $(x \lor \neg y) \land (x \lor y)$ and decision x = 0, we get (x).
- A: Backtrack to DL0.

- Usually, the asserting conflict clause is learnt by adding it to the clause set. However, this is not necessary for completeness.
- Backtrack to the second highest decision level *dl* in the asserting conflict clause (but do not erase it).
- This way the literal with the currently highest decision level will be implied at decision level dl.
- Propagate all new assignments.
- Q: What happens if the conflict clause has a single literal? For example, from $(x \lor \neg y) \land (x \lor y)$ and decision x = 0, we get (x).
- A: Backtrack to DL0.
- Q: What happens if the conflict appears at decision level 0?

- Usually, the asserting conflict clause is learnt by adding it to the clause set. However, this is not necessary for completeness.
- Backtrack to the second highest decision level *dl* in the asserting conflict clause (but do not erase it).
- This way the literal with the currently highest decision level will be implied at decision level dl.
- Propagate all new assignments.
- Q: What happens if the conflict clause has a single literal? For example, from $(x \lor \neg y) \land (x \lor y)$ and decision x = 0, we get (x).
- A: Backtrack to DL0.
- Q: What happens if the conflict appears at decision level 0?
- A: The formula is unsatisfiable.

```
if (!BCP()) return UNSAT;
while (true)
{
    if (!decide()) return SAT;
    while (!BCP())
        if (!resolve_conflict()) return UNSAT;
}
```

```
if (!BCP()) return UNSAT
while (true)
{
    if (!decide()) return SAT;
    while (!BCP())
        if (!resolve_conflict()) return UNSAT;
}
```

```
Choose the next variable
                                               and value.
                                               Return false if all variables
              if (!BCP()) return UNSAT
                                               are assigned.
              while (true)
                     if (!decide()) return SAT;
                     while (!BCP())
                           if (!resolve conflict()) return UNSAT;
Boolean constraint propagation.
Return false if reached a conflict
```

```
Choose the next variable
                                                and value.
                                                Return false if all variables
               if (!BCP()) return UNSAT
                                                are assigned.
               while (true)
                     if (!decide()) return SAT;
                     while (!BCP())
                           if (!resolve conflict()) return UNSAT;
                                         Conflict resolution and
Boolean constraint propagation.
                                         backtracking. Return false
Return false if reached a conflict
                                         if impossible.
```

Progress of a DPLL+CDCL-based SAT solver

The binary resolution is a sound (and complete) inference rule:

$$\frac{(\beta \vee a_1 \vee ... \vee a_n) \qquad (\neg \beta \vee b_1 \vee ... \vee b_m)}{(a_1 \vee ... \vee a_n \vee b_1 \vee ... \vee b_m)} (\text{Binary Resolution})$$

■ Example:

$$\frac{(x_1 \lor x_2) \qquad (\neg x_1 \lor x_3 \lor x_4)}{(x_2 \lor x_3 \lor x_4)}$$

■ The binary resolution is a sound (and complete) inference rule:

$$\frac{(\beta \vee a_1 \vee ... \vee a_n) \qquad (\neg \beta \vee b_1 \vee ... \vee b_m)}{(a_1 \vee ... \vee a_n \vee b_1 \vee ... \vee b_m)} (\mathsf{Binary} \; \mathsf{Resolution})$$

■ Example:

$$\frac{(x_1 \lor x_2) \qquad (\neg x_1 \lor x_3 \lor x_4)}{(x_2 \lor x_3 \lor x_4)}$$

What is the relation of resolution and conflict clauses?

■ Consider the following example:

■ Conflict clause: $c_5:(x_2 \vee \neg x_4 \vee x_{10})$

■ Conflict clause: $c_5:(x_2 \vee \neg x_4 \vee x_{10})$

- Assigment order: x_4, x_5, x_6, x_7
 - T1 = Res $(c_4, c_3, x_7) = (\neg x_5 \lor \neg x_6)$
 - T2 = Res(T1, c_2 , x_6) = (¬ x_4 ∨ ¬ x_5 ∨ x_{10})
 - T3 = Res(T2, c_1, x_5) = $(x_2 \lor \neg x_4 \lor x_{10})$

Finding the conflict clause

```
procedure analyze conflict() {
   if (current decision level = 0) return false;
   cl := current conflicting clause;
   while (not stop criterion met(cl)) do {
       lit := last assigned literal(cl);
       var := variable of literal(lit);
       ante := antecedent(var);
       cl := resolve(cl, ante, var);
   add clause to database(cl);
   return true;
                                            lit
                       name
                                                 var
                                                     ante
                       c_4 \qquad (\neg x_6 \lor x_7) \qquad \qquad x_7
                                                X7
                                                    Сз
                             (\neg x_5 \lor \neg x_6) \neg x_6 x_6 c_2
Applied to our example:
                             (\neg x_4 \lor x_{10} \lor \neg x_5) \ \neg x_5 \ x_5 \ c_1
```

 $(\neg x_4 \lor x_2 \lor x_{10})$

C5

Definition

An unsatisfiable core of an unsatisfiable CNF formula is an unsatisfiable subset of the original set of clauses.

Definition

An unsatisfiable core of an unsatisfiable CNF formula is an unsatisfiable subset of the original set of clauses.

■ The set of all original clauses is an unsatisfiable core.

Definition

An unsatisfiable core of an unsatisfiable CNF formula is an unsatisfiable subset of the original set of clauses.

- The set of all original clauses is an unsatisfiable core.
- The set of those original clauses that were used for resolution in conflict analysis during SAT-solving (inclusively the last conflict at decision level 0) gives us an unsatisfiable core which is in general much smaller.

Definition

An unsatisfiable core of an unsatisfiable CNF formula is an unsatisfiable subset of the original set of clauses.

- The set of all original clauses is an unsatisfiable core.
- The set of those original clauses that were used for resolution in conflict analysis during SAT-solving (inclusively the last conflict at decision level 0) gives us an unsatisfiable core which is in general much smaller.
- However, this unsatifiable core is still not always minimal (i.e., we can remove clauses from it still having an unsatisfiable core).

The resolution graph

A resolution graph gives us more information to get a minimal unsatisfiable core.

Resolution graph: Example

Termination

<u>Theorem</u>

It is never the case that the solver enters decision level dl again with the same partial assignment.

Termination

Theorem

It is never the case that the solver enters decision level dl again with the same partial assignment.

Proof.

Define a partial order on partial assignments: $\alpha<\beta$ iff either α is an extension of β or α has more assignments at the smallest decision level at that α and β do not agree.

BCP decreases the order, conflict-driven backtracking also. Since the order always decreases during the search, the theorem holds.

SAT-solving: Components

Back to decision heuristics...

- Decision (enumeration)
- Boolean Constraint Propagation (BCP)
- Conflict resolution and backtracking

Decision heuristics - VSIDS

- VSIDS (variable state independent decaying sum)
- Gives priority to variables involved in recent conflicts.
- "Involved" can have different definitions. We take those variables that occur in clauses used for conflict resolution.

Decision heuristics - VSIDS

- VSIDS (variable state independent decaying sum)
- Gives priority to variables involved in recent conflicts.
- "Involved" can have different definitions. We take those variables that occur in clauses used for conflict resolution.
- **I** Each variable in each polarity has a counter initialized to 0.
- 2 We define an increment value (e.g., 1).
- 3 When a conflict occurs, we increase the counter of each variable, that occurs in at least one clause used for conflict resolution, by the increment value.
 - Afterwards we increase the increment value (e.g., by 1).
- 4 For decisions, the unassigned variable with the highest counter is chosen.
- 5 Periodically, all the counters and the increment value are divided by a constant.

Decision heuristics - VSIDS (cont'd)

- Chaff holds a list of unassigned variables sorted by the counter value.
- Updates are needed only when adding conflict causes.
- Thus decision is made in constant time.

Decision heuristics

VSIDS is a 'quasi-static' strategy:

- static because it doesn't depend on current assignment
- dynamic because it gradually changes. Variables that appear in recent conflicts have higher priority.

This strategy is a conflict-driven decision strategy.

"...employing this strategy dramatically (i.e., an order of magnitude) improved performance..."