Bisimulation

Lecture #23 of Model Checking

Joost-Pieter Katoen

Lehrstuhl 2: Software Modeling & Verification

E-mail: katoen@cs.rwth-aachen.de

January 27, 2009

Overview Lecture #23

- ⇒ Bisimulation equivalence
 - Quotient transition system

Implementation relations

- A binary relation on transition systems
 - when does a transition systems correctly implements another?
- Important for system synthesis
 - stepwise refinement of a system specification TS into an "implementation" TS'
- Important for system analysis
 - use the implementation relation as a means for abstraction
 - replace $TS \models \varphi$ by $TS' \models \varphi$ where $\mid TS' \mid \ll \mid TS \mid$ such that:

$$TS \models \varphi \text{ iff } TS' \models \varphi \text{ or } TS' \models \varphi \Rightarrow TS \models \varphi$$

- ⇒ Focus on state-based *bisimulation* and *simulation*
 - definition: what is bisimulation?
 - logical characterization: which logical formulas are preserved by bisimulation?

Bisimulation equivalence

Let $TS_i = (S_i, Act_i, \rightarrow_i, I_i, AP, L_i)$, i=1, 2, be transition systems

A *bisimulation* for (TS_1, TS_2) is a binary relation $\mathcal{R} \subseteq S_1 \times S_2$ such that:

- 1. $\forall s_1 \in I_1 \exists s_2 \in I_2. (s_1, s_2) \in \mathcal{R}$ and $\forall s_2 \in I_2 \exists s_1 \in I_1. (s_1, s_2) \in \mathcal{R}$
- 2. for all states $s_1 \in S_1$, $s_2 \in S_2$ with $(s_1, s_2) \in \mathcal{R}$ it holds:
 - (a) $L_1(s_1) = L_2(s_2)$
 - (b) if $s_1' \in \textit{Post}(s_1)$ then there exists $s_2' \in \textit{Post}(s_2)$ with $(s_1', s_2') \in \mathcal{R}$
 - (c) if $s_2' \in \textit{Post}(s_2)$ then there exists $s_1' \in \textit{Post}(s_1)$ with $(s_1', s_2') \in \mathcal{R}$

 TS_1 and TS_2 are bisimilar, denoted $TS_1 \sim TS_2$, if there exists a bisimulation for (TS_1, TS_2)

Bisimulation equivalence

$$s_1 \rightarrow s_1' \qquad \qquad s_1 \rightarrow s_1'$$

 ${\mathcal R}$ can be completed to ${\mathcal R}$

$$s_2 \longrightarrow s_2'$$

and

$$s_1 \longrightarrow s'_1$$

 ${\cal R}$ can be completed to ${\cal R}$

$$s_2 \rightarrow s_2'$$
 $s_2 \rightarrow s$

Example (1)

$$\mathcal{R} = \Big\{ (s_0, t_0), (s_1, t_1), (s_2, t_2), (s_2, t_3), (s_3, t_4) \Big\}$$

is a bisimulation for (TS_1, TS_2) where $AP = \{ pay, beer, sprite \}$

Example (2)

 $TS_1 \not\sim TS_3$ for $AP = \{ pay, beer, sprite \}$

But: $\{(s_0, u_0), (s_1, u_1), (s_1, u_2), (s_2, u_3), (s_2, u_4), (s_3, u_3), (s_3, u_4)\}$ is a bisimulation for (TS_1, TS_3) for $AP = \{pay, drink\}$

\sim is an equivalence

For any transition systems TS, TS_1 , TS_2 and TS_3 over AP:

TS ∼ *TS* (reflexivity)

 $TS_1 \sim TS_2$ implies $TS_2 \sim TS_1$ (symmetry)

 $TS_1 \sim TS_2$ and $TS_2 \sim TS_3$ implies $TS_1 \sim TS_3$ (transitivity)

Bisimulation on paths

Whenever we have:

$$s_0 \rightarrow s_1 \rightarrow s_2 \rightarrow s_3 \rightarrow s_4 \dots$$
 \mathcal{R}
 t_0

this can be completed to

$$s_0 \rightarrow s_1 \rightarrow s_2 \rightarrow s_3 \rightarrow s_4 \dots$$
 $\mathcal{R} \qquad \mathcal{R} \qquad \mathcal{R} \qquad \mathcal{R} \qquad \mathcal{R}$
 $t_0 \rightarrow t_1 \rightarrow t_2 \rightarrow t_3 \rightarrow t_4 \dots$

proof: by induction on index i of state s_i

Bisimulation vs. trace equivalence

$$TS_1 \sim TS_2$$
 implies $Traces(TS_1) = Traces(TS_2)$

bisimilar transition systems thus satisfy the same LT properties!

Overview Lecture #23

- Bisimulation equivalence
- ⇒ Quotient transition system

Bisimulation on states

 $\mathcal{R} \subseteq S \times S$ is a *bisimulation* on *TS* if for any $(s_1, s_2) \in \mathcal{R}$:

- $L(s_1) = L(s_2)$
- if $s_1' \in \textit{Post}(s_1)$ then there exists an $s_2' \in \textit{Post}(s_2)$ with $(s_1', s_2') \in \mathcal{R}$
- if $s_2' \in \textit{Post}(s_2)$ then there exists an $s_1' \in \textit{Post}(s_1)$ with $(s_1', s_2') \in \mathcal{R}$

 s_1 and s_2 are *bisimilar*, $s_1 \sim_{TS} s_2$, if $(s_1, s_2) \in \mathcal{R}$ for some bisimulation \mathcal{R} for TS

 $s_1 \sim_{\mathit{TS}} s_2$ if and only if $\mathit{TS}_{s_1} \sim \mathit{TS}_{s_2}$

Coarsest bisimulation

 \sim_{TS} is a bisimulation, an equivalence, and the coarsest bisimulation for TS

Quotient transition system

For $TS = (S, Act, \rightarrow, I, AP, L)$ and bisimulation $\sim_{TS} \subseteq S \times S$ on TS let

$$TS/\sim_{TS} = (S', \{\tau\}, \rightarrow', I', AP, L'),$$
 the *quotient* of TS under \sim_{TS}

where

$$\bullet \ S' = S/\sim_{\mathit{TS}} = \ \{ \ [s]_{\sim} \mid s \in S \ \} \ \text{with} \ [s]_{\sim} \ = \ \{ \ s' \in S \mid s \sim_{\mathit{TS}} s' \ \}$$

- \rightarrow' is defined by: $\frac{s \xrightarrow{\alpha} s'}{[s]_{\sim} \xrightarrow{\tau'} [s']_{\sim}}$
- $I' = \{ [s]_{\sim} \mid s \in I \}$
- $L'([s]_{\sim}) = L(s)$

note that $TS \sim TS/\sim_{TS}$ Why?

A ternary semaphore and its quotient

The Bakery algorithm

```
Process 1:
                                               Process 2:
        while true {
                                                       while true {
           . . . . . .
     x_1 := x_2 + 1;
                                                n_2: x_2 := x_1 + 1;
n_1:
      wait until(x_2 = 0 | |x_1 < x_2|) {
                                                w_2: wait until(x_1 = 0 || x_2 < x_1) {
w_1:
          ... critical section ...}
                                                         ... critical section ...}
c_1:
                                                c_2:
          x_1 := 0;
                                                          x_2 := 0;
           . . . . . .
```

this algorithm can be applied to arbitrary many processes

Example path fragment

process P_1	process P_2	x_1	x_2	effect
n_1	n_2	0	0	P_1 requests access to critical section
w_1	n_2	1	0	P_2 requests access to critical section
w_1	w_2	1	2	P_1 enters the critical section
c_1	w_2	1	2	P_1 leaves the critical section
n_1	w_2	0	2	P_1 requests access to critical section
w_1	w_2	3	2	P_2 enters the critical section
w_1	c_2	3	2	P_2 leaves the critical section
w_1	n_2	3	0	P_2 requests access to critical section
w_1	w_2	3	4	P_2 enters the critical section

Bakery algorithm transition system

infinite state space due to possible unbounded increase of counters

Data abstraction

Function f maps a reachable state of TS_{Bak} onto an abstract one in TS_{Bak}^{abs}

Let $s=\langle \ell_1,\ell_2,x_1=b_1,x_2=b_2\rangle$ be a state of TS_{Bak} with $\ell_i\in\{n_i,w_i,c_i\}$ and $b_i\in\mathbb{I}\!\mathbb{N}$

Then:

$$f(s) \ = \begin{cases} \langle \ell_1, \ell_2, x_1 = 0, x_2 = 0 \rangle & \text{if } b_1 = b_2 = 0 \\ \langle \ell_1, \ell_2, x_1 = 0, x_2 > 0 \rangle & \text{if } b_1 = 0 \text{ and } b_2 > 0 \\ \langle \ell_1, \ell_2, x_1 > 0, x_2 = 0 \rangle & \text{if } b_1 > 0 \text{ and } b_2 = 0 \\ \langle \ell_1, \ell_2, x_1 > x_2 > 0 \rangle & \text{if } b_1 > b_2 > 0 \\ \langle \ell_1, \ell_2, x_1 > x_2 > 0 \rangle & \text{if } b_1 > b_2 > 0 \end{cases}$$

It follows: $\mathcal{R} = \{ (s, f(s)) \mid s \in S \}$ is a bisimulation for $(\textit{TS}_\textit{Bak}, \textit{TS}_\textit{Bak}^\textit{abs})$ for any subset of $\textit{AP} = \{ \textit{noncrit}_i, \textit{wait}_i, \textit{crit}_i \mid i = 1, 2 \}$

Bisimulation quotient

$$TS_{Bak}^{abs} = TS_{Bak}/\sim \text{ for } AP = \{ \textit{crit}_1, \textit{crit}_2 \}$$

Remarks

- Data abstraction yields a bisimulation relation
 - in this example; typically a simulation relation is obtained
- $TS_{Bak}^{abs} \models \varphi$ with, e.g.,:
 - $\Box(\neg \textit{crit}_1 \lor \neg \textit{crit}_2)$ and $(\Box \diamondsuit \textit{wait}_1 \Rightarrow \Box \diamondsuit \textit{crit}_1) \land (\Box \diamondsuit \textit{wait}_2 \Rightarrow \Box \diamondsuit \textit{crit}_2)$
- Since $TS_{Bak}^{abs} \sim TS_{Bak}$, it follows $TS_{Bak} \models \varphi$
- Note: $Traces(TS_{Bak}^{abs}) = Traces(TS_{Bak})$
 - but checking trace equivalence is PSPACE-complete
 - while checking bisimulation equivalence is in poly-time