BA9221 BA9221F

Digital-to-analog converter, 12 bit

The BA9221 and BA9221F are 12-bit D/A converters.

These ICs have a very fast conversion time. They are for use on machines with a digital-to-analog control system.

Features

- available in DIP20 and SOP22 packages
- 12-bit monotonic conversion
- full scale current (I_{FS}) = 4 mA
- setting speed is as low as 250 ns
- built in reference supply voltage
- can be as multipliers

Applications

- · digital audio equipment
- · digital control attenuators
- electrical musical instruments
- servo controllers
- digitally controlled power supply

Dimensions (Units: mm)

BA9221 (DIP20)

BA9221F (SOP22)

Pin connections

Block diagram

Absolute maximum ratings ($T_a = 25^{\circ}C$)

Parameter		Symbol	Limits	Unit	Conditions	
Power supply voltage		V _{cc}	+7	V		
		V _{EE}	-18	'		
Power dissipation	BA9221	P _d	600	mV	Reduce power by 6 mW/°C for each degree above 25°C.	
	BA9221F] 'd	550		Reduce power by 5.5 mW/°C for each degree above 25°C.	
Reference input pin V ₁₄ , V ₁₅		V ₁₄ , V ₁₅	V _{EE} ~ V _{CC}	V		
Logic input pin		V _{IN}	-5 ~ V _{CC}	V		
Operating temperature	Tonr		-25 ~ +70 -25 ~ +55	- °C		
Storage temperature		T _{stg}	−50 ~ +125	°C		

Code formats

Data input		Analog output		
MSB	LSB	V _O (V)		
011111111111	1	9.9951		
011111111111	0	9.9902		
000000000000	1	0.0049		
00000000000	0	0.0000		
111111111111	1	-0.0049		
100000 00000	1	-9.9951		
100000 00000	0	-10.0000		

Electrical characteristics (T_a = 25°C, V_{CC} = +5 V, V_{EE} = -15 V)

Parameter	Symbol	Min	Typical	Max	Unit	Conditions	Test figure
Resolving power		12	12	12	bit		1
Monotonality		12	12	12	bit		1
Differential nonlinearity	DNL	12			LSB		1
Nonlinearity	NL			0.05	%FS	April 1	1
Full scale current	I _{FS}		3.999		mA	V _{REF} = 10.000 V	1
Current temperature coefficient, full scale	TCI _{FS}		±10		ppm/°C		1
Current asymmetry, full scale	I _{FSS}			±2.0	μΑ	I _{FS} - I _{FS}	1
Current, zero scale	lzs	. =		0.1	μΑ		1
Setting time	t _S		250		ns	$T_a = 25^{\circ}C$	3
High level logic input voltage	V _{IH}	2.0			V		6
Low level logic input voltage	V _{IL}			0.8	V		6
Logic input current	I _{IN}			60	μΑ	V _{IN} = 5 V ~ +5 V	6
Reference power supply input current	I _{REF}	0.2	1.0	1.1	mA		2
Reference power supply input bias current	1 ₁₅		-0.5	-2.0	μА		1
Reference power supply input slew rate	dl/dt	4.0	8.0		mA/μs	$R_{14} = 800 \ \Omega, V_{CC} = 0 \ pF$	4
Power supply voltage	PSS+			±0.0001	%FS/%	$V_{EE} = 4.5 \text{ V} \sim 5.5 \text{ V},$ $V_{CC} = -15 \text{ V}$	1
dependance	PSS-			±0.0001	%FS/%	$V_{EE} = 13.5 \text{ V} \sim -16.5 \text{ V},$ $V_{CC} = 5 \text{ V}$	1
Power supply voltage	V _{CC}	4.5		5.5	٧	V _{OUT} = 0 V	1
. Once supply voltage	V _{EE}	-18		-10.8			1
Operating current	lcc l		11.0	18.0	mA	$V_{CC} = 5 \text{ V}, V_{EE} = -15 \text{ V}$	6
	I _{EE}		-16.0	-22.0		CC - 2 v, vEE = -13 v	6
Power consumption	P _d			420	mW	$V_{CC} = 5 \text{ V}, V_{EE} = -15 \text{ V}$	6

Test circuits

Figure 1 DNL, NL, I_{FS}, I_{FSS}, I_{ZS}, P_{SS+}, and P_{SS-} test circuit

Figure 2 I_{REF} test circuit

Figure 3 Setting time test circuit

Figure 4 Reference power supply input slew rate test circuit

Figure 5 Input HIGH and LOW and input current IIN test circuit

Figure 6 Circuit current I_{CC} and I_{EE} test circuit

Figure 7 Application example 1—Simple D/A converter

Figure 8 Application example 2—D/A converter structure

Note Adjust gain by putting potentiometer in series with R $\scriptstyle 1$ or R $\scriptstyle 2$

Precautions for use

The pin connections for the BA9221 and the BA9221F are different. Be careful when using these ICs interchangeably.