Improper Integrals

Type 1: Infinite Intervals

FIGURE 1

$$A(t) = \int_{1}^{t} \frac{1}{x^{2}} dx = -\frac{1}{x} \bigg|_{1}^{t} = 1 - \frac{1}{t}$$

$$\lim_{t \to \infty} A(t) = \lim_{t \to \infty} \left(1 - \frac{1}{t} \right) = 1$$

$$\int_{1}^{\infty} \frac{1}{x^{2}} dx = \lim_{t \to \infty} \int_{1}^{t} \frac{1}{x^{2}} dx = 1$$

1 Definition of an Improper Integral of Type 1

(a) If $\int_a^t f(x) dx$ exists for every number $t \ge a$, then

$$\int_{a}^{\infty} f(x) \ dx = \lim_{t \to \infty} \int_{a}^{t} f(x) \ dx$$

provided this limit exists (as a finite number).

(b) If $\int_{t}^{b} f(x) dx$ exists for every number $t \leq b$, then

$$\int_{-\infty}^{b} f(x) dx = \lim_{t \to -\infty} \int_{t}^{b} f(x) dx$$

provided this limit exists (as a finite number).

The improper integrals $\int_a^\infty f(x) dx$ and $\int_{-\infty}^b f(x) dx$ are called **convergent** if the corresponding limit exists and **divergent** if the limit does not exist.

(c) If both $\int_a^\infty f(x) \ dx$ and $\int_{-\infty}^a f(x) \ dx$ are convergent, then we define

$$\int_{-\infty}^{\infty} f(x) dx = \int_{-\infty}^{a} f(x) dx + \int_{a}^{\infty} f(x) dx$$

In part (c) any real number a can be used (see Exercise 74).

EXAMPLE 1 Determine whether the integral $\int_{1}^{\infty} (1/x) dx$ is convergent or divergent. SOLUTION According to part (a) of Definition 1, we have

$$\int_{1}^{\infty} \frac{1}{x} dx = \lim_{t \to \infty} \int_{1}^{t} \frac{1}{x} dx = \lim_{t \to \infty} \ln|x| \Big]_{1}^{t}$$
$$= \lim_{t \to \infty} (\ln t - \ln 1) = \lim_{t \to \infty} \ln t = \infty$$

FIGURE 4 $\int_{1}^{\infty} (1/x^2) dx$ converges

FIGURE 5 $\int_{1}^{\infty} (1/x) dx$ diverges

EXAMPLE 2 Evaluate
$$\int_{-\infty}^{0} xe^{x} dx$$
.

EXAMPLE 3 Evaluate
$$\int_{-\infty}^{\infty} \frac{1}{1+x^2} dx$$
.

FIGURE 6

EXAMPLE 4 For what values of p is the integral

$$\int_{1}^{\infty} \frac{1}{x^{p}} dx$$

convergent?

$$\int_{1}^{\infty} \frac{1}{x^{p}} dx \text{ is convergent if } p > 1 \text{ and divergent if } p \le 1.$$

Type 2: Discontinuous Integrands

FIGURE 7

FIGURE 8

FIGURE 9

3 Definition of an Improper Integral of Type 2

(a) If f is continuous on [a, b) and is discontinuous at b, then

$$\int_a^b f(x) \ dx = \lim_{t \to b^-} \int_a^t f(x) \ dx$$

if this limit exists (as a finite number).

(b) If f is continuous on (a, b] and is discontinuous at a, then

$$\int_a^b f(x) \ dx = \lim_{t \to a^+} \int_t^b f(x) \ dx$$

if this limit exists (as a finite number).

The improper integral $\int_a^b f(x) dx$ is called **convergent** if the corresponding limit exists and **divergent** if the limit does not exist.

(c) If f has a discontinuity at c, where a < c < b, and both $\int_a^c f(x) \ dx$ and $\int_c^b f(x) \ dx$ are convergent, then we define

$$\int_a^b f(x) \ dx = \int_a^c f(x) \ dx + \int_c^b f(x) \ dx$$

EXAMPLE 5 Find
$$\int_2^5 \frac{1}{\sqrt{x-2}} dx$$
.

FIGURE 10

EXAMPLE 6 Determine whether $\int_0^{\pi/2} \sec x \, dx$ converges or diverges.

EXAMPLE 7 Evaluate $\int_0^3 \frac{dx}{x-1}$ if possible.

EXAMPLE 8 Evaluate $\int_0^1 \ln x \, dx$.

FIGURE 11

A Comparison Test for Improper Integrals

Comparison Theorem Suppose that f and g are continuous functions with $f(x) \ge g(x) \ge 0$ for $x \ge a$.

- (a) If $\int_a^\infty f(x) \ dx$ is convergent, then $\int_a^\infty g(x) \ dx$ is convergent.
- (b) If $\int_a^\infty g(x) \ dx$ is divergent, then $\int_a^\infty f(x) \ dx$ is divergent.

FIGURE 12

V EXAMPLE 9 Show that $\int_0^\infty e^{-x^2} dx$ is convergent.

FIGURE 13

EXAMPLE 10 The integral $\int_{1}^{\infty} \frac{1 + e^{-x}}{x} dx$ is divergent by the Comparison Theorem because

$$\frac{1+e^{-x}}{x} > \frac{1}{x}$$

TABLE 2

t	$\int_1^t \left[(1 + e^{-x})/x \right] dx$
2	0.8636306042
5	1.8276735512
10	2.5219648704
100	4.8245541204
1000	7.1271392134
10000	9.4297243064