

Maths

Stationary Points 2ii

Stationary Points 2ii

Part A Find coordinate Find the coordinates of the stationary points on the curve $y = x^3 - 3x^2 + 4$. Enter the x and y coordinates of the stationary point with the greatest x coordinate. Enter the *x*-coordinate:

Enter the *y*-coordinate:

The following symbols may be useful: \boldsymbol{x}

Determine whether the stationary point whose coordinates you entered is a maximum point or a minimum point. Inconclusive Minimum Maximum

Stationary point

Part B

Part C Range of *x*

For which range of values of x does $x^3 - 3x^2 + 4$ decrease as x increases?

What form does your answer take? Choose from the list below, where a and b are constants and a < b, and then find a and/or b.

- \bigcirc x < a
- $x \le a$
- $\bigcirc x > a$
- $x \ge a$
- $\bigcirc a < x < b$
- $a \le x \le b$
- x < a or x > b
- $x \le a \text{ or } x \ge b$

Write down the value of a.

Write down the value of b (or if your chosen form has no b, write "n").

The following symbols may be useful: n

Used with permission from UCLES, A level, January 2006, Paper 4721, Question 6

All materials on this site are licensed under the $\underline{\textbf{Creative Commons license}}$, unless stated otherwise.

Maths

Maxima and Minima: Problems 2ii

Maxima and Minima: Problems 2ii

A curve has equation $y = 3x^3 - 7x + \frac{2}{x}$

Part A Verify stationary point

Verify the curve has a stationary point when x = 1.

More practice questions?

Part B Nature of stationary point

Determine the nature of this stationary point.

Minimum

Neither/inconclusive

Maximum

Part C Tangent to curve

The tangent to the curve at this stationary point meets the y-axis at the point Q. Find the y-coordinate of Q.

Used with permission from UCLES, A Level, June 2014, Paper 4721, Question 8.

All materials on this site are licensed under the **Creative Commons license**, unless stated otherwise.

<u>Home</u> Maths

Stationary Points 2i

Stationary Points 2i

Part A Find minimum Find the coordinates of the minimum point of the curve $y = (x + 2)(x^2 - 3x + 5)$. Enter the x and ycoordinates below. Enter the *x*-coordinate:

The following symbols may be useful: \boldsymbol{x}

Enter the *y*-coordinate:

Part B	Finding nature of stationary point
Н	ow did you know that the stationary point in part A was a minimum point?
	At this point, $\frac{d^2y}{dx^2}$ is negative.
	At this point, $\frac{dy}{dx}$ is zero.
	At this point, $\frac{d^2y}{dx^2}$ is positive.
Part C	Calculate discriminant
Ca	alculate the discriminant of $x^2 - 3x + 5$. Enter the exact value.
Part D	Explain
Ex	explain why $(x+2)(x^2-3x+5)$ is always positive whenever $x > -2$.
	Easier question?

Used with permission from UCLES, A Level, January 2012, Paper 4721, Question 7 $\,$

All materials on this site are licensed under the $\underline{\textbf{Creative Commons license}}$, unless stated otherwise.

Home Maths Calculus Differentiation Minimising the area

Minimising the area

A rectangular cuboid has a base with sides of length a and b and a height c. Its volume V and height c are fixed. By following the steps below find expressions in terms of V and c for the values of a and b which will minimise the surface area a of the cuboid, find an expression for this minimum surface area and check that this is indeed a minimum.

The following symbols may be useful: V, a, b, c

Write down the equation for the surface area A of the rectangular cuboid in terms of a, b and c.

Differentiate with respect to a the expression for A you found in Part A (since V and c are fixed you may treat them as constants). Hence find in terms of V and c an expression for the value of a for which the surface area A is minimised.

The following symbols may be useful: \mbox{V} , \mbox{c}

Find, in terms of V and c, the expression for b corresponding to this value of a.

Part C The minimum area Find an expression for the minimum surface area in terms of V and c. The following symbols may be useful: V, $\ c$

Part D Check that the area is a minimum

Find, at the value of a deduced in Part B, an expression in terms of V and c for the second derivative of A with respect to a; convince yourself that the value of the second derivative indicates that the value of A is a minimum at this point.

The fol	llowina	symbols	may he	useful: V.	_

Created for isaacphysics.org by Julia Riley

All materials on this site are licensed under the **Creative Commons license**, unless stated otherwise.

Maths

Stationary Points 4ii

Stationary Points 4ii

Enter <i>x</i> coordinate:			
The following symbols may be use	·ful: x		
3 .y 2y 23 dec			

Part A Find coordinates

Determine whether this stationary point is a maximum or a minimum. Maximum Minimum

Part B

Maxima or Minima

Part C Range of *x*

For what range of values of x does $x^4 + 32x$ increase as x increases? Give your answer in the form of an inequality.

The following symbols may be useful: <, <=, >, >=, \times

All materials on this site are licensed under the **Creative Commons license**, unless stated otherwise.

Maths

Maxima and Minima: Problems 1i

Maxima and Minima: Problems 1i

A cuboid has an volume of exactly $8 \,\mathrm{m}^3$. The base of the cuboid is a square with side length x metres. The surface area of the cuboid is $A \,\mathrm{m}^2$.

Part A Find expression for A

Part C Find minimum
Find the value of x which gives the smallest surface area of the cuboid.
The following symbols may be useful: x
Used with permission from UCLES, A level, June 2006, Paper 4721, Question 8.
All materials on this site are licensed under the Creative Commons license , unless stated otherwise.

Maths

Stationary Points 1ii

Stationary Points 1ii

The curve $y = x^3 - kx^2 + x - 3$ has two stationary points.

Part A Differentiate

Find $\frac{dy}{dx}$.

The following symbols may be useful: k, $\ x$

Given that there is a stationary point when $x = 1$, find the value of k .
The following symbols may be useful: k
Part C Differentiate twice
Find $\frac{\mathrm{d}^2 y}{\mathrm{d} x^2}$.
The following symbols may be useful: x
Hence determine whether the stationary point is a minimum or a maximum.
Maximum
Minimum
Part D Find coordinate
Find the <i>x</i> -coordinate of the other stationary point.
The following symbols may be useful: x
Used with permission from UCLES, A Level, June 2009, Paper 4721, Question 10.
All materials on this site are licensed under the Creative Commons license , unless stated otherwise.

Find k

Part B

Maths

Stationary Points 1i

Stationary Points 1i

Part A Find stationary points Find the coordinates of the stationary points on the curve $y = 2x^3 - 3x^2 - 12x - 7$. Enter the x and ycoordinates of the stationary point with the largest x coordinate. Enter the *x* coordinate:

Enter the y coordinate:

The following symbols may be useful: \boldsymbol{x}

art B	Nature of stationary points
De	etermine whether each stationary point is a minimum or maximum point. Identify the nature of the stationary
pg	int whose coordinates you have entered in Part A.

Maximum

Part C Expand and simplify

Expand and simplify $(x+1)^2(2x-7)$.

The following symbols may be useful: \boldsymbol{x}

Part D Sketch

Hence sketch the curve $y = 2x^3 - 3x^2 - 12x - 7$, indicating the coordinates of all stationary points and intercepts with the axes. In order to check your answer, give the value of the intercept with the *y*-axis.

Used with permission from UCLES, A Level, Paper 4721 specimen, Question 8.

All materials on this site are licensed under the **Creative Commons license**, unless stated otherwise.

Maths

Maxima and Minima: Problems 1ii

Maxima and Minima: Problems 1ii

Figure 1: The diagram shows a rectangular enclosure, with a wall forming one side. A rope, of length 20 metres, is used to form the remaining three sides. The width of the enclosure is x metres, and the area of the enclosure is $A \text{ m}^2$.

Part A **Express as equation** Show that A can be expressed in the form $px - qx^2$, and find this expression. The following symbols may be useful: \boldsymbol{x} Use differentiation Part B Use differentiation to find the maximum value of *A*. The following symbols may be useful: A Used with permission from UCLES, A Level, June 2007, Paper 4721, Question 5. All materials on this site are licensed under the **Creative Commons license**, unless stated otherwise.