Conversor Termoeléctrico

André Ramos Gonçalo Quintal Pedro Silva Rui Claro

6 de Maio de 2009

Introdução

Os fenómenos termoeléctricos correspondem à conversão de temperatura em diferença de potencial, e vice versa, numa junção bimetálica. Estes são designados por efeito de Seebeck, de Peltier e de Thomson.

O efeito de Seebeck¹ consiste no facto de que surge num circuito composto por dois metais distintos um gradiente de tensão, ∇V , sempre que se aplica no circuito um gradiente de temperatura, ∇T . A tensão termoeléctrica no circuito é dada por:

$$V = \int_{T_1}^{T_2} S_{ab}(T) dT$$

em que S_{ab} é o coeficiente de Seebeck para o par de metais em causa e $S_{ab}=\frac{dV}{dT}$

O efeito de Peltier 2 corresponde ao inverso do anteriormente exposto, i.e., se, mais uma vez num circuito com junções bimetálicas, fizer circular corrente uma das junções irá retirar calor do meio enquanto que a outra o libertará estabelecendo-se uma diferença de temperatura entre elas. Esta troca de calor, por unidade de tempo, Q entre as duas junções é proporcional à corrente aplicada I, segundo a expressão:

$$Q = \Pi_{ab} \cdot I$$

onde Π_{ab} é o coeficiente de Peltier para o par de metais considerado.

Experiência realizada

Esta experiência consiste numa célula de Peltier(veja-se a figura 1 para o esquema de montagem) colocada entre duas placas metálicas. Na placa superior está ligada uma resistência, a qual será a nossa fonte quente. Na placa inferior, está ligado um tubo de água com um pequeno buraco para

a placa entrar em contacto com a água, fazendo a nossa fonte fria. Uma pequena bomba irá bombear a água , fazendo com que esta retire calor da célula. Este sistema está monitorizado por quatro sensores de temperatura, para a fonte quente, fonte fria e entrada e saida de água da fonte fria.

Decidindo medir o caudal de água no final de cada medição, começamos a experiência por ligar a bomba de água e arranjar um caudal que fosse rápido o suficiente para poder retirar calor da célula, mas conseguindo haver diferença na entrada como na saída da fonte fria. Ligámos a fonte quente com uma tensão de 10V, seleccionámos 5 ohm na resistência de carga e esperámos que o sistema atingisse o equilíbrio de temperaturas (equilíbrio térmico). Após atingido o equilíbrio, registámos as temperaturas e medimos o caudal. seguida, mudámos o valor da resistência de carga para 2 ohm e esperámos pelo novo equilíbrio. Atingindo este, registámos as temperaturas e procedemos ao cálculo da resistência óptima. Após o cálculo, mudámos o valor da resistência para o valor que calculámos e procedemos as medições de todos os valores para os valores de tensão 7V, 10V, 13V e 16V, após atingido o equilíbrio em cada novo valor de tensão. No final de cada medição, medimos o caudal.

A seguir, retirámos a resistência de carga do sistema e ajustámos a tensão de modo a tentar atingir a temperatura da medição de 7V. Após o ajuste, registámos o valor da nova tensão e fizemos o mesmo para a medição de 16V.

Para a segunda parte(montagem da figura 2), substituimos a resistência de carga por um gerador de tensão e aplicámos uma tensão no primeiro gerador até a célula de Peltier atingir os 18C. Registámos todos os valores necessários.

¹Este efeito foi inicialmente notado por Thomas Seebeck em 1821 por mover agulhas magnéticas pelo que se julgou priemeiramente tratar-se de "termomagnetismo", o campo magnético não mais era que o induzido pela corrente eléctrica

²Descoberto por Jean-Charles Peltier em 1834 ou seja 13 anos após o efeito de Seebeck

Resultados

A carga óptima que máximiza o rendimento do funcionamento da célula nas condições do procedimento I é de:

$$R_{2_O} = 4,58 \pm 0,64 \Omega$$

As potências envolvidas no sistema são:

E_1	P_{Perdas}
7	$2,37 \pm 0,23$
10	$3,36 \pm 0,30$
13	$0,88 \pm 0,45$
16	$0,72 \pm 0,57$

T_a	P'_{FF}
31, 25	$0,24 \pm 0,0005$
70,55	$7,23 \pm 0,0009$

E_1	P_{FQ}	$P_{Conv} \times 10^{-2}$	ΓFF .		nento corrigid	o Resistencia	ter-
7	$2,43 \pm 0,04$	$0,5 \pm 0,2$	0.05 ± 0.19	ı			
10	$5,54 \pm 0,05$	$2,3 \pm 0,4$	$2,16 \pm 0,25$	V_2	eff	$eff_{teorica}$]
13	$8,29 \pm 0,07$	$4,7 \pm 0,6$	$7,36 \pm 0,37$	2, 36	1.86 ± 0.37	$2,52 \pm 0,02$	ĺ
16	$12,54 \pm 0,08$	$10,0 \pm 00,8$	$11,71 \pm 0,48$	0,23	$1,91 \pm 0,66$	$3,26 \pm 0,04$	

Os rendimentos obtidos para cada tensão aplicada foram os seguintes:

Análise de resultados

E_1	η_1	η_2	$\eta_{teorico}$ Conclusão e críticas
7	$0,19 \pm 0,073$	9,19±???	$20,72 \pm 0,29$
10	$0,41 \pm 0,074$	$1,07 \pm 0,06$	$32, 22 \pm 0, 19 \ 35, 38 \pm 0, 14$ ibliografia
13	$0,57 \pm 0,071$	$0,65 \pm 0,04$	$35,38 \pm 0,14$
16	$0,80 \pm 0,069$	$0,86 \pm 0,03$	$39,52 \pm 0,10$

A contabilização do balanço das potências levou-nos a calcular as seguintes potências de perdas do sistema:

Figura 1: Esquema de montagem 1

Figura 2: Esquema de montagem 2

Anexo

Esquemas de montagem

Gráficos obtidos