

课程 > Unit 5: Continuous... > Lec. 9: Conditionin... > 19. Exercise: Joint ...

19. Exercise: Joint CDFs

Exercise: Joint CDFs

3/3 points (graded)

a) Is it always true that if x < x', then $F_{X,Y}(x,y) \le F_{X,Y}(x',y)$?

b) Suppose that the random variables X and Y are jointly continuous and take values on the set where $0 \le x,y \le 1$. Is $F_{X,Y}(x,y) = (x+2y)^2/9$ a legitimate joint CDF? Hint: Consider $F_{X,Y}(0,1)$

c) Suppose that the random variables X and Y are jointly continuous and take values on the unit square, i.e., $0 \le x \le 1$ and $0 \le y \le 1$. The joint CDF on that set is of the form xy(x+y)/2. Find an expression for the joint PDF which is valid for (x,y) in the unit square. Enter an algebraic function of x and y using standard notation.

STANDARD NOTATION

Solution:

- a) Since x < x', the event $\{X \le x, Y \le y\}$ is a subset of the event $\{X \le x', Y \le y\}$, and therefore $F_{X,Y}(x,y) = \mathbf{P}(X \le x, Y \le y) \le \mathbf{P}(X \le x', Y \le y) = F_{X,Y}(x',y)$.
- b) Since the random variables are nonnegative, we have $F_{X,Y}(0,1) = \mathbf{P}(X \le 0 \text{ and } Y \le 1) = \mathbf{P}(X = 0 \text{ and } Y \le 1) \le \mathbf{P}(X = 0) = 0$, where the last equality holds because X is a continuous random variable. But zero is different from $(0+2\cdot 1)^2/9$. Therefore, we do not have a legitimate joint CDF.
- c) The joint CDF is of the form $x^2y/2 + y^2x/2$. The partial derivative with respect to x is $xy + y^2/2$. Taking now the partial derivative with respect to y, we obtain x + y.

提交

You have used 2 of 3 attempts