Name:	
J#:	Dr. Clontz
Date:	

MASTERY QUIZ DAY 14

Math 237 – Linear Algebra Fall 2017

Version 2

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

Let V be the set of all real numbers with the operations, for any $x, y \in V$, $c \in \mathbb{R}$,

$$x \oplus y = \sqrt{x^2 + y^2}$$
$$c \odot x = cx$$

- (a) Show that the vector addition \oplus is associative.
- (b) Determine if V is a vector space or not. Justify your answer.

Solution: Let $x, y, z \in \mathbb{R}$. Then

$$(x \oplus y) \oplus z = \sqrt{x^2 + y^2} \oplus z$$

$$= \sqrt{(\sqrt{x^2 + y^2})^2 + z^2}$$

$$= \sqrt{x^2 + y^2 + z^2}$$

$$= \sqrt{x^2 + (\sqrt{y^2 + z^2})^2}$$

$$= x \oplus \sqrt{y^2 + z^2}$$

$$= x \oplus (y \oplus z)$$

However, this is not a vector space, as there is no zero vector.

Standard V3.

Mark:
$$\begin{bmatrix} -3 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 5 \\ -1 \\ -2 \end{bmatrix}, \begin{bmatrix} 2 \\ 0 \\ -1 \end{bmatrix}, \text{ and } \begin{bmatrix} 0 \\ 2 \\ -1 \end{bmatrix} \text{ span } \mathbb{R}^3$$

Solution:

$$RREF\left(\begin{bmatrix} -3 & 5 & 2 & 0\\ 1 & -1 & 0 & 2\\ 1 & -2 & -1 & -1 \end{bmatrix}\right) = \begin{bmatrix} 1 & 0 & 1 & 5\\ 0 & 1 & 1 & 3\\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Since the resulting matrix has only two pivot columns, the vectors do not span \mathbb{R}^3 .

Standard V4.

Mark

Let W be the set of all \mathbb{R}^3 vectors $\begin{bmatrix} x \\ y \\ z \end{bmatrix}$ satisfying x+y+z=0 (this forms a plane). Determine if W is a subspace of \mathbb{R}^3 .

Standard S2.

Walk

Determine if the set
$$\left\{ \begin{bmatrix} 0\\1\\1\\1\\2 \end{bmatrix}, \begin{bmatrix} 1\\0\\-1\\0\\2 \end{bmatrix}, \begin{bmatrix} 0\\2\\0\\-1 \end{bmatrix} \right\}$$
 is a basis of \mathbb{R}^4 .

Solution:

$$RREF \left(\begin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & -1 & 0 & 2 \\ 1 & 0 & -1 & 0 \\ 1 & 2 & 0 & -1 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Since this is not the identity matrix, the set is not a basis.

Additional Notes/Marks