$\mathbf{\acute{I}ndice}$

1.	Procesos estocásticos y datos de series temporales					
	1.1. Datos de sección cruzada vs datos de series temporales	3				
	1.2. El desafío	3				
2.	Estacionariedad					
	2.1. Estacionariedad en sentido débil	Ę				
	2.2. Función de autocovarianzas y función de autocorrelación	6				
3.	Transformaciones de realizaciones de procesos estocásticos NO estacionarios					
	3.1. Internat. airline passengers: monthly totals in thousands. Jan 49 – Dec 60 $$	7				
	3.1.1. Trasformación logarítmica de los datos					
	3.1.2. Primera diferencia del logarítmo de los datos	ç				
	3.1.3. Diferencia estacional de la primera diferencia del logarítmo de los datos					
	3.2. Tasa logarítmica de crecimiento					
	3 2 1 Comentarios sobre los datos transformados					

Econometría Aplicada. Lección 1

Marcos Bujosa

2 de abril de 2025

En esta lección veremos algunas transformaciones de los datos para "hacerlos estacionarios"; y daremos interpretación a los datos transformados.

- lección en html
- lección en mybinder

Carga de algunos módulos de python

```
# Para trabajar con los datos y dibujarlos necesitamos cargar algunos módulos de python import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import matplotlib as mpl mpl.rc('text', usetex=True) mpl.rc('text', usetex=True) mpl.rc('text.latex', preamble=r'\usepackage{amsmath}') import matplotlib.pyplot as plt # data visualization import dataframe_image as dfi
```

1. Procesos estocásticos y datos de series temporales

Proceso estocástico es una secuencia de variables aleatorias, X_t donde el índice t recorre el conjunto de números enteros (\mathbb{Z}).

$$X = (..., X_{-2}, X_{-1}, X_0, X_1, ...) = (X_t \mid t \in \mathbb{Z});$$

Muestra es una secuencia finita de datos

$$\boldsymbol{x} = (x_1, x_2, \dots x_n)$$

• Consideraremos cada dato x_t como una realización de X_t .

• Consecuentemente, consideraremos que una muestra es una realización de un tramo finito de un proceso estocástico:

```
(x_1, x_2, \dots x_n) es una realización de (X_t \mid t = 1 : n).
```

1.1. Datos de sección cruzada vs datos de series temporales

Consideremos dos tipos de muestras $\mathbf{x} = (x_1, x_2, \dots x_n)$:

Sección cruzada el índice NO es cronológico. La numeración (la indexación) de cada dato es solo una asignación arbitraria de *etiquetas* que identifican a cada individuo, empresa, objeto, etc. que ha sido medido. Consecuentemente:

- el orden en el que aparecen los datos de la muestra es irrelevante.
- conocer el índice de un dato no permite deducir nada respecto de cualquier otro dato.

Series temporales Corresponden a mediciones de un mismo objeto a lo largo del tiempo. El índice indica el instante de cada medición. Es habitual que el orden cronológico de los datos sea importante para explicar cada uno de ellos.

- con frecuencia la medición en un instante de tiempo está relacionada con otras mediciones próximas en el tiempo. En tal caso...
- no debemos asumir que las variables aleatorias del proceso estocástico subyacente, $X = (X_t \mid t \in \mathbb{Z})$, sean independientes entre sí.

1.2. El desafío

El análisis de series temporales trata sobre la inferencia estadística de muestras que **frecuen**temente NO podemos asumir que sean realizaciones de variables aleatorias *i.i.d.* (*independientes e idénticamente distribuidas*).

Además,

- Aunque el marco ideal es que la serie temporal analizada "sea estacionaria" (abuso del lenguaje que expresa que podemos asumir que la serie es una <u>realización de un</u> proceso estocástico estacionario, es decir, cuyos momentos no dependen del índice t)
- lo habitual es que, por distintos motivos, NO lo sea

```
path = './datos/'
df1 = pd.read_csv(path+'PIB_UEM.csv')
df2 = pd.read_csv(path+'ProduccionCemento.csv')
df3 = pd.read_csv(path+'IBEX35.csv')
df4 = pd.read_csv(path+'ExportacionDeAcero.csv')
#print(df1.head())
df1.plot(x='obs',xlabel='',title='PIB_UEM', figsize=(15,4))
```


df2.plot(x='obs',xlabel='',title='Producción de cemento en España', figsize=(15,4))

df3.plot(x='obs',xlabel='',title='Rendimiento porcentual diario del IBEX 35', figsize=(15,4))

df4.plot(x='obs',xlabel='',title='Exportaciones españolas de acero', figsize=(15,4))

El desafío para el analista es

primero transformar los datos para lograr que sean "estacionarios"

y después transformar los datos estacionarios en "ruido blanco"

(nuevo abuso del lenguaje que expresa que podemos asumir dichos datos transformados son realizaciones de un proceso de ruido blanco, i.e. de media cero e incorrelado.)

2. Estacionariedad

El mayor objetivo del análisis de series temporales es inferir la distribución de $\mathbf{X} = (X_t \mid t \in \mathbb{Z})$ usando una muestra finita (serie temporal) $\mathbf{x} = (x_t \mid t = 1 : n)$.

Así podremos

Predecir datos futuros

Controlar datos futuros

Pero esto es casi imposible si los datos son inestables a lo largo del tiempo Por tanto, algún tipo de estabilidad o estacionariedad es necesaria.

2.1. Estacionariedad en sentido débil

Un proceso estocástico X se dice **estacionario** (en sentido débil) si para todo $t, k \in \mathbb{Z}$

$$E(X_t) = \mu \tag{1}$$

$$Cov(X_t, X_{t-k}) = \gamma_k \tag{2}$$

- (1) sugiere que las realizaciones de X generalmente oscilan entorno a μ .
- (2) entre otras cosas, sugiere que la variabilidad de las realizaciones de X entorno a μ es constante, pues para el caso particular k=0

$$Cov(X_t, X_{t-0}) = Var(X_t) = \gamma_0$$
 para todo t

Por tanto, γ_0 es la varianza común a todas las variables aleatorias del proceso.

Es más, la desigualdad de Chebyshev

$$P(|X_t - \mu| \ge c\sigma) \le \frac{1}{c^2}, \text{ donde } \sigma = \sqrt{\gamma_0}$$

sugiere que para cualquier proceso estacionario (y un c grande), al pintar una realización, tan solo un pequeño porcentaje de los datos caerán fuera de la franja ($\mu - c\sigma, \mu + c\sigma$).

```
import statsmodels.api as sm
np.random.seed(12345)
arparams = np.array([.75, -.25])
maparams = np.array([.65, .35])
ar = np.r_[1, -arparams] # add zero-lag and negate
ma = np.r_[1, maparams] # add zero-lag
y = sm.tsa.arma_generate_sample(ar, ma, 250)
plt.figure(figsize=(15,5))
plt.plot(y)
#plt.savefig("./img/lecc01/stationaryTimeSeriesExample.png")
```


2.2. Función de autocovarianzas y función de autocorrelación

Cuando X es un proceso estocástico (débilmente) estacionario

■ La secuencia $(\gamma_k \mid k \in \mathbb{Z})$, donde $\gamma_k = Cov(X_t, X_{t-k})$ se denomina función de autocovarianzas

Debido a la estacionariedad, la correlación entre X_t y X_{t+k} no depende de t; tan solo depende de la distancia temporal k entre ambas variables.

■ La secuencia $(\rho_k \mid k \in \mathbb{Z})$, donde $\rho_k = \frac{Cov(X_t, X_{t-k})}{\sqrt{Var(X_t)Var(X_{t-k})}} = \frac{\gamma_k}{\gamma_0}$ se denomina función de autocorrelación (ACF).

3. Transformaciones de realizaciones de procesos estocásticos NO estacionarios

Un proceso estocástico $X = (X_t \mid t \in \mathbb{Z})$ puede ser

NO estacionario en media porque $E(X_t)$ depende de t.

NO estacionario en covarianza porque $Cov(X_t, X_{t-k})$ depende de t.

Separar o distinguir ambos tipos de no estacionariedad no es sencillo.

Veamos un ejemplo de serie temporal para la que

- no podemos asumir que sea realización de un proceso estocástico estacionario
- y algunos intentos de transformación para obtener datos "estacionarios"(*) (recuerde que esta expresión, aunque extendida, es un abuso del lenguaje).

3.1. Internat. airline passengers: monthly totals in thousands. Jan 49 – Dec 60

```
# Leemos los datos de un fichero csv y generamos un dataframe de pandas.
OrigData = pd.read_csv('./database/Datasets-master/airline-passengers.csv')
OrigData['Month']=pd.to_datetime(OrigData['Month'])
OrigData=OrigData.set_index(['Month'])
print(OrigData.head())
```

```
plt.figure(figsize=(15,5))
plt.subplot(1, 2, 1)
plt.plot(OrigData['Passengers'])
plt.xlabel("Month")
plt.ylabel(r"Number of Air Passengers, ($\boldsymbol{x}$)")
plt.subplot(1, 2, 2)
plt.hist(OrigData['Passengers'], edgecolor='white', bins=11)
plt.tight_layout()
#plt.savefig("./img/lecc01/airlinepass+hist.png")
```


$$\mathbf{x} = (x_1, \dots x_{114})$$

Serie "no estacionaria" (*):

- La media crece de año en año
- La variabilidad estacional crece de año en año (fíjese en la diferencia entre el verano y el otoño de cada año)

3.1.1. Trasformación logarítmica de los datos

- Al aplicar la función logarítmica transformamos **monótonamente** los datos estabilizando la varianza cuando los valores son mayores que 0.567 (aprox.)
- Pero ocurre lo contrario cuando los valores son pequeños (aumenta el valor absoluto de aquellos entre 0 y 0.567 aprox.). De hecho, $\lim_{x\to 0} \ln(x) = -\infty$.
- Además, el logaritmo no está definido para valores negativos.

```
# Definir el rango de valores para x (empezando desde un número positivo ya que log(0) no está definido)
x = np.linspace(0.01, 7, 400) # Valores de 0.1 a 10
\# Calcular y = log(x)
y = np.log(x)
# Crear el gráfico
plt.figure(figsize=(16, 5))
plt.plot(x, y, label='y = ln(x)')
# Añadir etiquetas y título
plt.xlabel('x')
plt.ylabel('ln(x)')
plt.title('Gráfico de la función logarítmica y = ln(x)')
plt.axhline(0, color='black',linewidth=0.5)
plt.axvline(0, color='black',linewidth=0.5)
plt.grid(color = 'gray', linestyle = '--', linewidth = 0.5)
plt.legend()
#plt.savefiq("./imq/lecc01/funcion logaritmica.pnq")
```



```
# Creamos un nuevo dataframe con los datos originales y varias transformaciones de los mismos

TransformedData = OrigData.copy()

TransformedData['dataLog'] = np.log(OrigData['Passengers'])

TransformedData['dataLogDiff'] = TransformedData['dataLog'].diff(1)

TransformedData['dataLogDiffDiff12'] = TransformedData['dataLogDiff'].diff(12)
```

```
plt.figure(figsize=(15,5))
plt.subplot(1, 2, 1)
plt.plot(TransformedData['dataLog'])
plt.xlabel("Month")
plt.ylabel(r"Log-Passengers, ($\ln\boldsymbol{x}\$) ")
```

```
plt.subplot(1, 2, 2)
plt.hist(TransformedData['dataLog'], edgecolor='white', bins=11)
plt.tight_layout()
#plt.savefig("./img/lecc01/airlinepass_log+hist.png")
```


$$\ln \boldsymbol{x} = \left(\ln(x_1), \dots \ln(x_{114})\right)$$

Ésta tampoco parece la realización de un proceso estocástico estacionario

- Ahora la variabilidad estacional parece mantenerse de año en año
- Pero la media sigue creciendo de año en año

3.1.2. Primera diferencia del logarítmo de los datos

```
plt.figure(figsize=(15,5))
plt.subplot(1, 2, 1)
plt.plot(TransformedData['dataLogDiff'])
plt.xlabel("Month")
plt.ylabel(r"$\nabla\ln\boldsymbol{x}$")
plt.subplot(1, 2, 2)
plt.hist(TransformedData['dataLogDiff'], edgecolor='white', bins=11)
plt.tight_layout()
#plt.savefig("./img/lecc01/airlinepass_logDiff+hist.png")
```


$$y = \nabla \ln x = ([\ln(x_2) - \ln(x_1)], \dots [\ln(x_{114}) - \ln(x_{113})])$$

Esta serie tampoco parece .estacionaria" (*)

■ Hay un *persistente* componente periódico (de naturaleza estacional), debido a que hay pocos viajes en otoño y muchos en Navidad, Semana Santa y verano (i.e., el número esperado de viajeros parece cambiar en función del mes o estación).

3.1.3. Diferencia estacional de la primera diferencia del logarítmo de los datos

```
plt.figure(figsize=(15,5))
plt.subplot(1, 2, 1)
plt.plot(TransformedData['dataLogDiffDiff12'])
plt.xlabel("Month")
plt.ylabel(r"$\nabla_{12}(\nabla\ln\boldsymbol{x})$")
plt.subplot(1, 2, 2)
plt.hist(TransformedData['dataLogDiffDiff12'], edgecolor='white', bins=11)
plt.tight_layout()
#plt.savefig("./img/lecc01/airlinepass_logDiffDiff12+hist.png")
```


$$z = \nabla_{12}(\nabla \ln x) = \nabla_{12}(y) = ((y_{13} - y_1), \dots (y_{113} - y_{101}))$$

Esta serie se aproxima más al aspecto de la realización de un proceso estacionario

- Aunque parece haber más varianza a principios de los 50 que a finales
- De propina, el histograma sugiere una distribución aproximadamente Gaussiana

3.2. Tasa logarítmica de crecimiento

```
START = 100
UnoPorCiento = lambda n0, t: n0 if t<=1 else 1.01 * UnoPorCiento(n0, t-1)
TasaLogCrecimiento = pd.DataFrame({'$y_t$':[UnoPorCiento(START,t+1) for t in range(10)]})
TasaLogCrecimiento['$\\frac{y_t-y_{t-1}}{y_{t-1}}*'] = TasaLogCrecimiento['$y_t$'].pct_change()
TasaLogCrecimiento['$\\ln y_t$'] = np.log(TasaLogCrecimiento['$y_t$'])
TasaLogCrecimiento['$\\;(\\ln y_t-\\ln y_{t-1})$'] = TasaLogCrecimiento['$\\ln y_t$'] - TasaLogCrecimiento['$\\ln y_t$'].shift(TasaLogCrecimiento['$\\frac{y_t-y_{0}}{y_{0}}*'] = TasaLogCrecimiento['$\\ln y_t$'].apply(lambda x: ((x/START)-1))
TasaLogCrecimiento['$\\;(\\ln y_t- \\ln y_{0})$'] = TasaLogCrecimiento['$\\ln y_t$'] - TasaLogCrecimiento['$\\ln y_t$'].iloc[0]
```

La tasa logarítmica de variación de \boldsymbol{y} se define como $z_t = \ln y_t - \ln y_{t-1}$; es decir

$$z = \nabla \ln y = ([\ln(y_2) - \ln(y_1)], \dots [\ln(y_n) - \ln(y_{n-1})])$$

y se aproxima a la tasa de crecimiento (en tanto por uno) si el incremento es pequeño.

	y_t	$\tfrac{y_t-y_{t-1}}{y_{t-1}}$	$\ln y_t$	$(\ln y_t - \ln y_{t-1})$	$\frac{y_t - y_0}{y_0}$	$(\ln y_t - \ln y_0)$
0	100.000000	NaN	4.605170	NaN	0.000000	0.000000
1	101.000000	0.01	4.615121	0.00995	0.010000	0.009950
2	102.010000	0.01	4.625071	0.00995	0.020100	0.019901
3	103.030100	0.01	4.635021	0.00995	0.030301	0.029851
4	104.060401	0.01	4.644972	0.00995	0.040604	0.039801
5	105.101005	0.01	4.654922	0.00995	0.051010	0.049752
6	106.152015	0.01	4.664872	0.00995	0.061520	0.059702
7	107.213535	0.01	4.674823	0.00995	0.072135	0.069652
8	108.285671	0.01	4.684773	0.00995	0.082857	0.079603
9	109.368527	0.01	4.694723	0.00995	0.093685	0.089553

3.2.1. Comentarios sobre los datos transformados

Transformación de la	Comentario
serie temporal	
$y = \{y_t\}, \ t = 1:n$	
$z = \ln y = \{\ln y_t\}$	A veces independiza la volatilidad del nivel. A veces induce normalidad.
$\boldsymbol{z} = \nabla \boldsymbol{y} = \{y_t - y_{t-1}\}$	Indica al crecimiento absoluto entre periodos consecutivos.
$oldsymbol{z} = abla \ln oldsymbol{y}$	Tasa logarítmica de crecimiento. Aproximación del crecimiento relativo
$= \{\ln y_t - \ln y_{t-1}\}$	entre periodos consecutivos.
$oldsymbol{z} = abla abla \ln oldsymbol{y} = abla^2 \ln oldsymbol{y}$	Cambio en la tasa log. de crecimiento. Indica la "aceleración" en el
	crecimiento relativo.
$oldsymbol{z} = abla_s \ln oldsymbol{y}$	Tasa log. de crecimiento acumulada en un ciclo estacional completo $(s \mid$
$= \{\ln y_t - \ln y_{t-s}\}$	períodos). Cuando el período estacional es de un año, se conoce como
	"tasa anual" o "tasa interanual" de crecimiento.
$oldsymbol{z} = abla abla_s \ln oldsymbol{y}$	Cambio en la tasa log. de crecimiento acumulada en un ciclo estacional
	completo. Es un indicador de aceleración en el crecimiento acumulado.