Suppose that $(s_n : n \ge 1)$ and $(t_n : n \ge 1)$ are sequences satisfying $t_1 = 1, s_1 = 2, t_2 = 5$ and $s_2 = 6$ and for all $n \ge 3$:

$$s_n = 6s_{n-1} + 2s_{n-2}$$
$$t_n = 5t_{n-1} + 6s_{n-2}$$

Prove that for all $n \geq 2, t_n \geq 4t_{n-1}$.

Proof: We have two cases.

- Assume n=2. Then we have $t_2 \geq 4t_1$. The inequality is equivalent to $5 \geq 4$.
- Assume n > 2. Therefore by algebraic manipulation we have

$$4t_{n-1} \ge 5t_{n-1}$$

$$\ge 5t_{n-1} + 6t_{n-2}$$

$$= t_n.$$

Prove that for all $n \geq 1, t_n \leq s_n$. We have three cases.

- Assume n = 1. Then we have $t_1 \leq s_1$, which is equivalent to $1 \leq 2$.
- Assume n=2. Then we have $t_2 \leq s_2$, which is equivalent to $5 \leq 6$.
- Assume n > 2. By the principal of mathematical induction for all $k \in \mathbb{N}$ if k < n then we have $s_k \le n_k$. Since n 1, n 2 < n, then by the induction hypothesis we have $t_{n-2} \le s_{n-2}, t_{n-1} \le s_{n-1}$. Note that by the first claim proved we have for all $n > 2, t_{n-1} \ge 4t_{n-2}$ Therefore by algebraic manipulation we have

$$t_n = 5t_{n-1} + 6t_{n-2}$$

$$= 5t_{n-1} + 4t_{n-2} + 2t_{n-2}$$

$$\leq 6t_{n-1} + 2t_{n-2}$$

$$\leq 6s_{n-1} + 2s_{n-2}$$

$$= s_n.$$

Therefore $t_n \leq s_n$.