Il Sequências e Séries Numéricas

1 Sequências:

Uma seguinia é uma punção ujo dominio é um subconjunto dos mímeros noturais e seu contradominio são os reais, i.e.,

$$f: DCN \longrightarrow IR$$

$$m \longmapsto f(n) = am.$$

Podemos representar a següilmia por uma lista:

ande ni o endice do tumo an.

Exemplos de seguências:

a)
$$\left\{\begin{array}{c} M \\ M+1 \end{array}\right\}_{M=1}^{\infty}$$
 Note que $a_{M} = \frac{M}{M+1}$

$$\left(\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \dots, \frac{M}{M+1}, \dots\right)$$

b)
$$\{\sqrt{M-3}\}$$
 = $\{0, 1, \sqrt{2}, \sqrt{3}, \dots, \sqrt{M-3}, \dots\}$.

c)
$$\left\{ \frac{(-1)^m (m+1)}{3^m} \right\}_{M \geqslant 1} = \left(\frac{-2}{3}, \frac{3}{9}, \frac{-4}{27}, \dots, \frac{(-1)^m (m+1)}{3^m}, \dots \right)$$

			2/	025
Exemplo 1:	Ache uma	Joanula	plo tur	no geral an
da sigirêm	ia	l	,	
(3	-4 9	, = 6)	
(5	25 12	5 625	/	
				#1.
Obs: 01= 5	1) 1+1		TANGE TAL	
			TOX.	
a2 = -	$\frac{4}{5} = (-1)^{2+1} (3)$	3+1)	an = (-1	$\binom{m+1}{5^m}$
2	5		- C	5 ^m
Qz = _5	$= (-1)^{3+1} (4-5)^{3+1}$	+1)		
123	5 5.3		4 (0)	
	im an=L →∞	au an	n → L qu	' M → ∞
se, para co	ida E>O,	existir "	un inte	ro N Tal que
	$M > N \Rightarrow$	lam-L	1< &.	L-E < am < L+
		, an agas	Tarin	
	0 0	(, , , ,) , , ,	, ,	4
- E	an az L	-E L	- E "3 ")
the same		1 . 1	7	- X
Exemplo 2 Con	sidure a se	9. 1 m Jm >	· · · · · · · · · · · · · · · · · · ·	$\left(\frac{1}{3}, \frac{1}{4}, \cdots\right)$
Pauce que	lim 1 = 0	. De ja	to, se to	zinarmos E>C
tilihra	2100 TG 1/400	13.00		

 $Fx = \frac{1}{x}$ interior N>0 t.g. tilibra

(5)

As leis de limites the são válidas pl seguên
Teorema 2: Se Ban's e Bon's forum seguilmias constante, então:
(a) $\lim_{N\to\infty} (an \pm bn) = \lim_{N\to\infty} an \pm \lim_{N\to\infty} bn$
(b) $\lim_{N\to\infty} (can) = c \lim_{N\to\infty} an$
(c) $\lim_{n\to\infty} (an.bn) = (\lim_{n\to\infty} an) \cdot (\lim_{n\to\infty} bn)$
(c) $\lim_{M\to\infty} (am.bn) = (\lim_{M\to\infty} am) \cdot (\lim_{M\to\infty} bm)$ (d) $\lim_{M\to\infty} (\frac{an}{bn}) = \frac{\lim_{M\to\infty} an}{\lim_{M\to\infty} bn}$, disde que $\lim_{M\to\infty} bn \neq 0$.
(e) $\lim_{M\to\infty} a_M^p = \left[\lim_{M\to\infty} a_M\right]^p$, so $p>0$ o $a_M>0$.
Teorema 3 (do confronto).
5e an ≤ bn ≤ cn para n > no; e lim an = L = lim cn, então
$\lim_{M\to\infty} b_M = L$
Teorema 4. lim lant = 0, então lim an = 0
Exemplo 3: Calcule
1) lim n 2) lim ln M M + 00 M + 1
tilibra

