

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7 : C12N 9/02, 15/52, A61K 35/00		A1	(11) International Publication Number: WO 00/47725 (43) International Publication Date: 17 August 2000 (17.08.00)
(21) International Application Number: PCT/GB00/00431 (22) International Filing Date: 10 February 2000 (10.02.00) (30) Priority Data: 9903019.9 10 February 1999 (10.02.99) GB		(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).	
(71) Applicant (for all designated States except US): MICROBIOLOGICAL RESEARCH AUTHORITY [GB/GB]; CAMR, Porton Down, Salisbury, Wiltshire SP4 0JG (GB). (72) Inventors; and (75) Inventors/Applicants (for US only): MINTON, Nigel [GB/GB]; Microbiological Research Authority, CAMR, Porton Down, Salisbury, Wiltshire SP4 0JG (GB). ANLEZARK, Gill [GB/GB]; Microbiological Research Authority, CAMR, Porton Down, Salisbury, Wiltshire SP4 0JG (GB). VAUGHAN, Thomas [GB/GB]; Department of Biology, University of York, P.O. Box 373, York YO10 5YW (GB). (74) Agent: HARDING, Charles, D.; D. Young & Co., 21 London Road, Southampton SO15 2AD (GB).		Published <i>With international search report. Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.</i>	
(54) Title: NITROREDUCTASE ENZYMES			
(57) Abstract			
<p>The present invention relates to polypeptides and proteins having nitroreductase activity. The invention also relates to DNA and genes encoding these nitroreductases, and to methods of obtaining such enzymes, DNA and genes. In a particularly preferred aspect, the nitroreductase enzymes demonstrate preferential catalytic conversion of the alkylating agent CB1954 into its highly cytotoxic 4-hydroxylamine (4HX) derivative, this derivative demonstrating anticarcinoma properties. Accordingly, the catalytic activity of the nitroreductase enzymes of the present invention may be employed to achieve catalysis of CB1954 into its cytotoxic derivative in a site-directed manner, such as by Directed-Enzyme Prodrug Therapy (DEPT).</p>			

B5

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NK	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norway	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon	KR	Republic of Korea	PT	Portugal		
CN	China	KZ	Kazakhstan	RO	Romania		
CU	Cuba	LC	Saint Lucia	RU	Russian Federation		
CZ	Czech Republic	LI	Liechtenstein	SD	Sudan		
DE	Germany	LK	Sri Lanka	SE	Sweden		
DK	Denmark	LR	Liberia	SG	Singapore		

NITROREDUCTASE ENZYMES

The present invention relates to polypeptides and proteins having nitroreductase activity, to DNA and genes encoding these nitroreductases and to methods of obtaining such enzymes, DNA and genes.

A number of cancer therapies are based upon or exploit the conversion of a non-toxic prodrug into a toxic derivative.

One example concerns the monofunctional alkylating agent CB1954, which exhibits extreme toxicity towards the Walker 256 rat carcinoma as a result of the presence of a DT-diaphorase enzyme (DTD) which reduces the 4-nitro group of CB1954 to give a highly cytotoxic 4-hydroxylamine (4HX) derivative. CB1954 does not have the same effect on human carcinomas because human cells lack this enzyme but would be effective against human tumours if an enzyme such as DTD were externally supplied, e.g. in a Directed-Enzyme Prodrug Therapy (DEPT). The rat DTD, however, has a relatively poor specific activity for CB1954. The *E.coli* B nitroreductase enzyme (NfnB) was isolated as a more effective alternative and is the subject of EP-A-0540263. It exhibits a higher specific activity for CB1954, compared with the rat enzyme and is, therefore, currently the preferred enzyme in anti-cancer DEPT strategies.

Whilst the known *E.coli* enzyme receives widespread attention from cancer biologists seeking to develop gene based DEPT strategies, it has a number of drawbacks. These mostly relate to its activity against the preferred prodrug, CB1954 - it has a relatively high K_m and low K_{cat} , and converts CB1954 into equimolar amounts of a relatively innocuous 2-hydroxylamino derivative (2HX) in addition to the highly cytotoxic 4-hydroxylamino species (4HX).

In relation to this specific prodrug, it is hence desired to provide an

alternative to the known *E.coli* enzyme.

Additionally, and more generally, analogues of CB1954 and prodrugs other than CB1954 are known and further such precursors of potential toxic agents may become the focus of future therapies. In relation to all of these it is desired to provide further enzymes capable of use in converting prodrugs into drugs, e.g. for clinical uses.

It is an object of the present invention to provide nitroreductase enzymes, in particular nitroreductase enzymes for converting CB1954 and analogues thereof into drugs. It is a further object of the present invention to provide DNA and genes encoding nitroreductases, which DNA and genes in particular are incorporated into pharmaceutical compositions for prodrug therapies.

The present invention is based upon the discovery, purification, gene sequencing and/or expression of nitroreductases in bacteria and other microorganisms with hitherto unknown properties in converting prodrugs such as CB1954 into toxic derivatives. These nitroreductases possess properties which alone or in combination offer potential improvements compared with the known enzymes in this technology. The nitroreductases of the invention may be divided into different families based upon such characteristics as activity, product spectrum and/or amino acid sequence, and each given nitroreductase may fall into more than one of these families.

The present invention provides, in a first aspect, a nitroreductase enzyme, characterised in that it preferentially reduces CB1954 to a product that is a cytotoxic 4-hydroxylamine (4HX) derivative.

The enzymes of this aspect of the present invention confer the advantage that the product they generate from CB1954 contains a greater proportion

of the cytotoxic 4HX derivative then the non-cytotoxic 2-hydroxylamino derivative. In preferred embodiments of the invention, the product is substantially entirely the cytotoxic derivative. The enzymes may hence be more efficient than those of the art as the enzymes of the invention produce more cytotoxic product for a given amount of pro-drug.

The present invention further provides, in a second aspect, a nitroreductase enzyme, characterised in that it reduces a prodrug to a toxic derivative with a K_m of less 700 micromolar, wherein the prodrug is selected from CB1954 and analogues thereof or other bioreductive drugs (Denny et al, B.J. Cancer, 1996, 74, pp S32-S38). The enzymes of the second aspect of the invention offer an advantage over the known *E.coli*- derived enzyme in that they have a lower K_m (K_m of *E.coli* NfnB for CB1954 is around 862 micromolar) and thus have a higher affinity for substrate. Twenty nitrogen mustard analogues of CB1954 are described by Friedlos et al (J Med Chem, 1997, 40, 1270-1275).

More preferably, the K_m of the enzymes of the second aspect of the invention is less than 300 micromolar.

In a third aspect, the present invention provides a nitroreductase enzyme characterised in that it reduces a prodrug to a toxic derivative with a K_{cat} of at least 8, wherein the prodrug is selected from CB1954 and analogues thereof.

The enzymes of this aspect of the invention offer an improvement over that of the art, specifically the *E.coli* enzyme, in that they have an improved K_{cat} - i.e a higher value than for *E.coli* NfnB indicating a higher turnover of substrate by the enzyme. In preferred embodiments of this aspect of the invention, the K_{cat} of the enzymes is at least 10.

In a fourth aspect of the invention, there is provided a nitroreductase

enzyme characterised in that it reduces CB1954 to a toxic derivative, it reduces SN23862 to a toxic derivative, it can use NADH and/or NADPH as electron donor and in that it shares no more than 50% sequence identity with the *E.coli* NfnB sequence. Preferably, the sequence identity is about 5 25% or less, this sequence identity being measured using the MEGALIGN (registered trade mark) software.

It has already been discussed how the known *E.coli* nitroreductase is well characterised and is fully sequenced. The nitroreductases of the fourth 10 aspect thus represent a class of enzymes having nitroreductase activity, or being nitroreductase-like, which nevertheless are so different in amino acid sequence from the *E.coli* enzyme as to represent a separate family of nitroreductases.

15 This aspect of the invention thus advantageously provides a further class of nitroreductase enzymes for use e.g. in prodrug therapies.

The invention still further provides, in a fifth aspect, a nitroreductase 20 enzyme characterised in that it reduces CB1954 or an analogue thereof to a toxic derivative, in that it shares at least 50% sequence identity with the rat DTD sequence and in that it does not contain a domain that is the same as or corresponds to amino acids 51 to 82 of the rat DTD sequence.

25 Sequence identity is suitably measured in the same way as described above - in relation to the fourth aspect.

To determine whether a given nitroreductase contains a domain that is the 30 same as or corresponds to amino acids 51 to 82 of the rat DTD sequence, the amino acid sequence of the given nitroreductase and of the rat DTD sequence are aligned using a conventional sequence alignment program, such as MEGALIGN (registered trade mark) made by DNASTAR, Inc.

- 5 -

If the alignment program indicates that there are no amino acids in the given sequence that, following the algorhythm of the program, are held to correspond to those at positions 51-82 of the rat DTD sequence then it is concluded that the rat domain is lacking from the given sequence.

5

This aspect of the invention thus provides a further class of nitroreductase enzymes for conversion e.g. of prodrugs into drugs. A nitroreductase in this class may also be obtained by deleting amino acid residues that correspond to residues 51-82 of the rat DTD from a known mammalian enzyme.

10

The nitroreductases of the invention may also be NADPH dependant. This property further distinguishes some enzymes of the invention from the known *E.coli* enzyme and the rat DTD.

15

It has been found that enzymes having one or more of the properties described may be obtained from bacteria of the family *Bacillus*, in particular a *Bacillus* selected from *B. amyloliquefaciens*, *B. subtilis*, *B. pumilis*, *B. laetus*, *B. thermoflavus*, *B. licheniformis* and *B. alkophilus*. This finding is of surprise in that at least three nitroreductase enzymes have been found in some species, in particular *B.subtilis*, *B.lautus* and *B.pumilis*, and as nitroreductases having the advantageous properties of the invention have not hitherto been identified in these bacteria, the currently used nitroreductase being obtained from *E.coli*.

20

In specific embodiments of the invention described in more detail below, a nitroreductase has a sequence selected from SEQ ID Nos 2, 4, 6, 8, 10, 12, 14, 16, 17, 18, 19, 20, 21, 23, 25, 27 and 29.

25

It has further been found that nitroreductases according to the invention may fall into more than one aspects of the invention. It is hence preferred that a nitroreductase of the invention possesses the properties of at least

two aspects of the invention, and more preferably at least three aspects of the invention.

5 A specific embodiment of the invention is a nitroreductase of SEQ ID NO:2 obtained from *B. amyloliquefaciens* this enzyme converts CD194 into substantially only the cytotoxic derivative, hence falling into the first aspect of the invention, but also has a K_m that is improved compared to the *E.coli* enzyme, hence falling also into the second aspect of the invention.

10 A further specific embodiment of the invention is a nitroreductase from *B.subtilis*, SEQ ID NO:9. This enzyme has a better K_{cat} than the *E.coli* enzyme, its K_{cat} being about 15 compared with about 6 for the *E.coli* enzyme, and hence falls into the third aspect of the invention. Additionally, 15 this enzyme falls into the fourth aspect of the invention in that it reduces both CB1954 and SN23862 but shares less than 30% sequence identity with the *E.coli* sequence. Another *B.subtilis* enzyme, SEQ ID NO:11 is similarly in both the third and fourth aspects of the invention, having a K_{cat} of about 15.

20 From the examples set out below it will be apparent how the further specific embodiments of the invention fall into at least two and even three aspects of the invention.

25 The enzymes of the invention are of use in enzyme directed prodrug therapy. Accordingly, it is preferred that they are provided in purified form.

30 A sixth aspect of the invention provides a pharmaceutical composition comprising a nitroreductase enzyme according to any of the first to fifth aspects of the invention in combination with a pharmaceutically acceptable carrier.

As mentioned above, the nitroreductase of the invention are of use in

therapies such as directed-enzyme prodrug therapies. In these therapies, it is required to deliver the nitroreductase to the target site. This delivery can be achieved by delivering the enzyme itself or by delivering a DNA or gene coding for the enzyme.

5

In an example of the enzyme of the invention in use, a pharmaceutical composition is designed for a directed-enzyme prodrug therapy, and comprises a pharmaceutically acceptable carrier and a compound for converting a prodrug into a drug, wherein a compound is composed of at least a nitroreductase according to any of the first to fifth aspects of the invention conjugated to a targeting moiety.

10
15 The targeting moiety can suitably comprise an antibody specific for a target cell. Alternatively, the targeting moiety is a moiety preferentially accumulated by or taken up by a target cell.

A further example of delivery of the enzyme of the invention is achieved in a gene therapy-based approach for targeting cancer cells, as described in WO 95/12678. As described by Knox R.J. et al, the basis of this further prodrug therapy is delivery of a drug susceptibility gene into target, usually tumour or cancer, cells. The gene encodes a nitroreductase that catalyses the conversion of a prodrug into a cytotoxic derivative. The nitroreductase itself is not toxic and cytotoxicity used to treat the tumour cells arises after administration of a prodrug which is converted into the cytotoxic form. A bystander effect may be observed as cytotoxic drug may diffuse into neighbouring cells.

20
25
30 Thus, in this gene-based therapy, the nitroreductase is expressed inside a cell, in contrast to other delivery systems in which, for example, the enzyme itself is delivered accompanied by a targeting moiety.

Targeting of gene-based therapies may be achieved by providing a virus or

liposome with altered surface components so that the delivery vehicle is recognised by target cells. Typically, transcriptional elements are chosen so that the gene coding for the nitroreductase enzyme will be expressed in the target cells, and preferably substantially only in the target cells. A number of viral-based vectors are suitable for this delivery. Retro-viral based vectors typically infect replicating cells. Adenoviral vectors and lentiviral-vectors are also believed to be suitable.

This delivery technology has been demonstrated by Bridgewater et al (Eur J Cancer 31a, 236-2370, 1995). A recombinant retrovirus encoding a nitroreductase was used to infect mammalian cells, it being observed that infected cells expressing the nitroreductase were killed by application of CB1954.

Accordingly, a further aspect of the invention provides the use of a DNA sequence coding for a nitroreductase of the invention in manufacture of a medicament for prodrug therapy.

The medicament may take the form of a viral vector, comprising a DNA encoding the nitroreductase of the invention operatively coupled to a promoter for expression of the DNA. The medicament may take the form of a mini-gene comprising a DNA operatively linked to a promoter for expression of the DNA, the mini-gene being suitable for inclusion or incorporation into a targeting vehicle such as a microparticle.

Thus, an embodiment of the invention provides a viral vector comprising a nucleotide sequence encoding a nitroreductase according to any of aspects 1 to 5 of the invention, which nitroreductase converts a prodrug into a cytotoxic drug, and also a kit comprising the viral vector and the prodrug, and also a method of treatment of tumours which comprises administering an effective amount of the viral vector together with an effective amount of the prodrug.

The preparation and administration of these viral vectors may be substantially as described in WO 95/12678, the contents of which is incorporated herein by reference. The present invention relates to providing nitroreductase enzymes and genes and DNA coding therefore.

5 The uses of those enzymes and genes may be as set out in WO 95/12678.

A nitroreductase can also be delivered by putting a gene of the invention into a bacteria that selectively colonises tumours, such as a clostridial (Lemmon et al, Gene Therapy, 1997, 4, 791-796) or *Salmonella* species.

10 A further aspect of the invention provides an isolated DNA encoding a nitroreductase according to any of the first to fifth aspects of the invention. The DNAs of this further aspect of the invention, and also the DNAs incorporated into vectors of the invention, preferably comprise a sequence 15 which is selected from SEQ ID NOs: 1, 3, 5, 7, 9, 11, 13, 15, 22, 24, 26 or 28, together with fragments, derivatives and analogs thereof retaining nitroreductase activity according to one of the first to fifth aspects of the invention. The fragments, derivatives and analogs are suitably selected from sequences which retain at least 70% identity with the specific 20 embodiments of the invention, or preferably at least 90% identity and most preferably at least 95% identity.

25 The enzymes of the invention can also be obtained by purification from cell extracts and may also be obtained by recombinant expression of DNA. A still further aspect of the invention lies in a method of preparing a nitroreductase enzyme, comprising expressing a gene in a bacterial cell, wherein the gene codes for a nitroreductase enzyme of the invention.

30 In an example of the invention described below in more detail, the gene expressed is a *Bacillus* gene or is a gene obtained by substitution, deletion and/or addition of nucleotides in or to a *Bacillus* gene.

The invention also provides the use of a nitroreductase according to any of the aspects of the invention in manufacture of a medicament for anti-tumour therapy, and the use of a compound comprising a nitroreductase according to any aspect of the invention conjugated to a targeting moiety in manufacture of a medicament for anti-tumour therapy.

5

The invention is now illustrated by the following specific examples and in the accompanying sequence listing in which:

SEQ ID NO: 2 is a nitroreductase from *B.amyloliquefaciens* (coded for by SEQ ID NO: 1) and designated "Bam YrwO";

10 SEQ ID NO: 4 is a nitroreductase from *B.subtilis* (coded for by SEQ ID NO: 3) and designated "Bs YwrO";

SEQ ID NO: 6 is a nitroreductase from *B.subtilis* (coded for by SEQ ID NO: 5) and designated "YrkL";

15 SEQ ID NO: 8 is a nitroreductase from *B.subtilis* (coded for by SEQ ID NO: 7) and designated "YdeQ";

SEQ ID NO: 10 is a nitroreductase from *B.subtilis* (coded for by SEQ ID NO: 9) and designated "Ydgl";

20 SEQ ID NO: 12 is a nitroreductase from *B.subtilis* (coded for by SEQ ID NO: 11) and designated "YodC";

SEQ ID NO: 14 is a nitroreductase from *E.coli* (coded for by SEQ ID NO: 13) and designated "YabF"

25 SEQ ID NO: 16 is a nitroreductase from *E.coli* (coded for by SEQ ID NO: 15) and designated "YheR";

SEQ ID NO: 17 is a nitroreductase from *H.influenzae*;

SEQ ID NO: 18 is a nitroreductase from *T.aquaticus*;

SEQ ID NO: 19 is a nitroreductase from *Synechocystis sp* PCC 6803;

SEQ ID NO: 20 is a nitroreductase from *A.fulgidus*;

SEQ ID NO: 21 is a nitroreductase from *A.fulgidus*.

30 SEQ ID NO: 23 is a nitroreductase from *Campylobacter jejuni* (coded for by SEQ ID NO: 22);

SEQ ID NO: 25 is a nitroreductase from *Porphyromonas gingivalis*

(coded for by SEQ ID NO: 24);

SEQ ID NO: 27 is a nitroreductase from *Yersinia pestis* (coded for by SEQ ID NO: 26); and

SEQ ID NO: 29 is a nitroreductase from *Helicobacter pylori* (coded for by SEQ ID NO: 28).

5

The invention is also illustrated by reference to the accompanying Tables 1-4 and Figures 1 and 2, in which Figs 1 and 2 show sequence comparisons as set out in more detail in Example 8.

10

Example 1

A Nitroreductase Enzyme/Gene from *Bacillus amyloliquefaciens*

Briefly, extracts of *Bacillus amyloliquefaciens* were shown to possess 15 nitroreductase activity. To purify this activity, crude cell extracts were subjected to ammonium sulphate, fractionation and anion exchange chromatography. The purified material was subject to N-terminal amino acid sequence analysis and the information obtained used to cloned the gene via a PCR-based strategy. Following determination of its nucleotide 20 sequence the gene was overexpressed in *E. coli* and the resultant recombinant protein purified and characterised see table 1.

This analysis showed that the enzyme had properties which were distinct 25 from that of *E.coli* NfnB. Thus the protein had a more favourable K_m for CB1954 (1.5-fold lower than the *E. coli* B NfnB) and furthermore converted CB1954 into the 4HX form alone. It also differed from the *E. coli* B NfnB in that the enzyme showed no activity against the prodrug SN23862.

The isolated enzyme/gene represents a significant improvement over the 30 *E.coli* NfnB enzyme with respect to its activity against the prodrug CB1954 ie., it produces only the 4HX derivative and has an improved K_m for CB1954.

A comparison of the amino acid sequence of the isolated enzyme revealed that it shared a very low level of homology to the rat DTD (c. 25%), but exhibited high homology (70% sequence identity) with the predicted product of a gene that has been discovered in the *Bacillus subtilis* genome sequencing project, designated *ywrO*. On this basis, we have designated the cloned *Bacillus amyloliquefaciens* gene *ywrO*, and its encoded enzyme YwrO.

YwrO BAM is a tetrameric flavoprotein (monomeric molecular mass approximately 22.5 kDa by SDS-PAGE, native molecular mass approximately 90 kDa by gel filtration). Although it shares sequence homology with rat DTD it differs in its enzymic properties in that it can use only NADPH as cofactor (K_m 40 μ M). In common with DTD it can reduce CB1954 but not SN23862, reduction of CB1954 resulting in formation of the 4HX product only (K_m 617 μ M, k_{cat} 8.2). It shows a high affinity for the quinone menadione (K_m 3.4 μ M) and has azoreductase and flavin reductase activity (K_m for FMN 53 μ M, K_m for FAD 209 μ M).

In more detail, N-terminal amino acid sequencing of the purified *Bacillus amyloliquefaciens* nitroreductase enzyme resulted in the following sequence, Met-Lys-Val-Leu-Val-Leu-Ala-Val-His-Pro-Asp-Met-Glu-Asn-Ser-Ala-Val-Asn. When this sequence was used to search available protein databases strong homology was noted with the predicted amino acid sequence of a hypothetical protein, YrkL, identified in the *Bacillus subtilis* genome sequencing project. Significant homology was also evident with two proteins, YabF and YheR, identified during the course of the determination of the *Escherichia coli* genome. These three hypothetical proteins shared weak homology with a number of mammalian quinone reductases and NAD(P)H-oxidoreductases, such as the rat DTD.

30

In view of this observation, a strategy was formulated whereby sequence homology between the identified bacterial proteins, together with the

determined N-terminal amino acid sequence of the discovered *Bacillus amyloliquefaciens* enzyme, was used to amplify a region of the desired encoding gene from the *Bacillus amyloliquefaciens* genome. The one primer utilised in PCR was a degenerate oligonucleotide sequence which 5 corresponded to a DNA sequence capable of coding for the N-terminal octa-peptide Val-His-Pro-Asp-Met-Glu-Asn. It was composed of the following nucleotides, 5'-GTNCAYCCNGATATGGARAA-3', where Y indicates the presence of a T or C, R indicates the presence of A or G, and N indicates the presence of either T, C, G or A. The second primer was 10 based on the hypothetical sequence His-Gly-Trp-Ala-Tyr-Gly which was found to be entirely conserved between the hypothetical bacterial proteins YrkL (*Bacillus subtilis*) and YabF (*E.coli*), and partially conserved in YheR (*E.coli*). The degenerate oligonucleotide mixture synthesised corresponded to the antisense DNA coding strand, viz., 5'-CCRTANGCCCANCCRTG-3'.

15

<i>E.coli</i>	YheR (90-95)	Arg Gly Phe Ala Ser Gly
<i>E.coli</i>	YabF (84-89)	His Gly Trp Ala Tyr Gly
<i>B.subtilis</i>	YrkL (85-90)	His Gly Trp Ala Tyr Gly

20

The two primers were employed in PCR using chromosomal DNA isolated from *Bacillus amyloliquefaciens* and an amplified DNA fragment of the expected size (approximately 230 bp) obtained. This was cloned into plasmid pCR2.1 TOPO (Invitrogen) and its nucleotide sequence determined. Translation of the sequence obtained demonstrated the presence of an 25 open reading frame which encoded a polypeptide which shared 66% sequence similarity with YrkL.

30

To obtain the entire structural gene, an approach was employed based on inverse PCR. In essence, *B. amyloliquefaciens* DNA was cleaved with the restriction enzyme *Sty*/ and the fragments generated circularised through their subsequent incubation with DNA ligase. The ligated DNA was then used as the template for a PCR employing two divergent primers based on

the sequenced 220 bp fragment. These were BamNTR11 (5'-GCTTATTGACCGCTGAG-3') and BamNTR14 (5'-GTACAGTGCGCCTCCGC-3'). A 2.9 kb fragment was generated, cloned into pCR2.1TOPO (Invitrogen) and the sequence of the insert determined. This allowed the identification of the nucleotide sequence of the remaining parts of the *B. amyloliquefaciens* gene. Using this information, a contiguous copy of the entire structural gene was amplified from the *B. amyloliquefaciens* chromosome using primers which encompassed the translational start codon (5'-GGTGTGATACATATGAAAGTATTG-3') and resided 3' to the translational stop codon (5'-CGGGGATTGAAATTCTTCAGG-3'). The primer at the 5'-end of the gene was designed such the sequence immediately 5' to the ATG start codon became CAT. This change created an *Nde*I restriction site (CATATG), thereby allowing the cloning of the gene into the equivalent site of the expression vector pMTL1015. This manipulation facilitated the subsequent overexpression of the gene, as insertion of the gene at this point positions the start codon at an optimum distance from the vector borne ribosome binding site.

The strategy employed to clone the BM YwrO gene could be similarly employed to clone further genes encoding novel nitroreductases. This would involve purifying the desired enzyme activity from a cell lysate, and then determining the N-terminal sequence. The data obtained could then be used to design an oligonucleotide primer corresponding to the sense strand of the DNA encoding part or all of the determined amino acid sequence. This primer could then be used, in conjunction with a second primer, to amplify part of the gene encoding the nitroreductase from the chromosome of the bacterial host using PCR. The second primer would correspond to the antisense strand of an internal portion of the targeted gene. Its design would be based on regions of homology which are conserved amongst the type of nitroreductase family that is sought. Thus, in the case of the DTD-like family, the oligonucleotide would, for example be based on the conserved motif His-Gly-Trp-Ala-Tyr-Gly (ie., amino acid

residues 85-90 in the BS YrkL protein). In the case of the NfnB-like family, the oligonucleotide could be based on the motif Glu-Arg-Tyr-Val-Pro-Val-Met (ie., amino acid residues 170-176 in the BS YodC protein).

5 Such amplified fragments could then be cloned and sequenced, and new primers designed based on this sequence to isolate the flanking regions of the gene by PCR. Once these have been cloned and sequenced, the entire, contiguous structural gene may be amplified using primers which extend beyond the 5' and 3' end of the translational start and stop codons.

10 Cloning of genes encoding novel nitroreductases may also be achieved without recourse to N-terminal sequencing of the enzyme, or even its purification. This would involve basing the sequence of both of the oligonucleotides used in the initial PCR reaction on amino acid sequence motifs conserved amongst the two identified nitroreductase families.
15 Thus, in the case of the NfnB-like family, a sense primer (eg., 5'-ATTCTAAAGAAGAGCTGACGGAA-3') based on the motif Ile-Ser-Lys-Glu-Glu-Leu-Thr-Glu (ie., amino acid residues 13 to 20 of BS YodC) could be employed with the an antisense primer (eg., 5'-CATTACCGGTACATAGCGTTC-3') based on the sequence motif Glu-Arg-
20 Tyr-Val-Pro-Val-Met (ie., amino acid residues 170 to 176). In the case of the DTD-family a sense primer (eg., 5'-CATCCGGATATGGAAAAT-3') based on the motif His-Pro-Asp-Met-Glu-Asn (ie., amino acid residues to 9 to 14 of BM YwrO) could be employed with the an antisense primer (eg., 5'-TCCATATGCCCATCCATA-3') based on the sequence motif Tyr-Gly-Trp-Ala-Tyr-Gly (ie., amino acid residues 85 to 90). Once amplified, the rest of the gene could be isolated using the same procedure as outlined above.

25 30 Example 2

Bacillus subtilis Nitroreductases

- 16 -

As indicated above in Example 1, comparative analysis of the *B. subtilis* genome sequence with the amino acid sequence of the isolated *B. amyloliquefaciens* enzyme demonstrated the existence of an enzyme (YwrO) which shared 70% sequence identity. Unexpectedly, *B. subtilis* was found to possess two homologues, YrkL and YdeQ, which share 54% and 51% sequence homology, respectively, with the *B. amyloliquefaciens* enzyme. All three enzymes share no homology with the *E. coli* NfnB. They do, however, exhibit weak similarity (c. 25%) to the rat DT-Diaphorase (DTD). Whilst these proteins share a low level of sequence similarity to DTD, and other mammalian equivalents, they are characteristically smaller. This is because of the absence of an extensive internal protein domain at the N-terminus of the protein. Thus, the functional equivalent domain of the rat DTD between amino acid residues 51 to 82, are missing from the BM YwrO protein. In addition, the rat DTD has an extra COOH-terminal domain. These bacterial enzymes are thus distinct from their mammalian equivalents.

A further analysis of the *B. subtilis* genome, demonstrated that two homologues of the *E. coli* NfnB gene were present. Their encoded proteins (Ydgl and YodC) share a barely detectable level of sequence conservation with EC NfnB, of around 20% sequence identity.

Bacillus subtilis was thus found to carry at least 5 different enzymes with nitroreductase activity. These are split into two families, thus:-

25 DTD-like - 3 members:- YwrO, YrkL, YdeQ
 NfnB-like - 2 members:- Ydgl, YodC

Example 3

30 Recombinant Production of Nitroreductases from *Bacillus subtilis*
The DNA encoding all 5 *B. subtilis* nitroreductase enzymes were cloned

from genomic DNA using PCR and the resultant genes, following authentication by nucleotide sequencing, subcloned into a proprietary CAMR expression vector (pMTL1015). The expression clones generated have been used to overproduce each of the 5 proteins and the enzymic activity of each assessed in crude lysates. This analysis has demonstrated that whilst the *B. subtilis* YwrO shares similar properties to the *B. amyloliquefaciens* homologue (ie., converts CB1954 to the 4HX derivative alone, but is inactive against SN23862), YrkL and YdeQ have no activity against either of the two prodrugs tested (CB1954 or SN23862) but they may be active against other prodrugs.

Despite the extremely limited sequence similarity to EC NfnB, Ydgl and YodC are active against both CB1954 and SN23862. They do, however, produce both the 2HX and 4HX derivatives of CB1954. Their characterisation has shown that they turn over CB1954 at higher rates than EC NfnB (YodC k_{cat} 58, Ydgl k_{cat} 30.3 cf 6 for NfnB). Both show a high affinity for menadione and flavins, but they differ in that whereas Ydgl uses both NADH and NADPH, YodC shows a preference for the latter. The native molecular mass of YodC (approximately 90kDa) indicates that it is tetrameric (molecular mass estimated from amino acid sequence and by SDS-PAGE being approximately 22 kDa) whereas Ydgl appears to be a dimer in the native state (molecular mass by gel filtration approximately 49 kDa).

These finding are further illustrated in Table 2.

Example 4

***Bacillus lautus & Bacillus pumilis* nitroreductases**

From 103 soil sample isolates tested, two strains (*Bacillus pumilis* CP044 and *Bacillus lautus* CP060) had been previously chosen as possessing extracts which showed the most rapid reduction of both CB1954 and

SN23862. Purification experiments demonstrated that the activity in both extracts was distributed across three distinct peaks. The presence of more than one enzyme activity is consistent with our discovery of multiple forms of proteins in *Bacillus* able to turnover prodrugs. Eventual purification of the 5 three enzymes of *B. pumilis* CPO44 revealed that no one candidate exhibited properties which were an improvement on the *E.coli* NfnB enzyme. In contrast, the proteins in peak 1 and peak 3 of the *B.lautus* CPO60 were determined to offer advantage over NfnB.

10 Thus, whilst the enzyme in peak 1 did not produce the required 4HX derivative of CB1954, it exhibited a 4-fold lower Km with the prodrug SN23862. The enzyme of peak 3 was, however, deemed to be of greatest value as it converted CB1954 solely into the 4HX derivative and had a Km approximately 4-fold lower than NfnB. Furthermore, it also had activity 15 against SN23862. In this respect it shares the properties of both the *Bacillus* DTD-like family (ie., it produces only the 4HX derivative) and the NfnB-like family (ie., it is active against SN23862) - these findings are illustrated in Table 3.

20 **Example 5**

N-terminal Sequencing of *B. lautus* Nitroreductase

Electrophoretic separation of the peak 3 demonstrated that 4 protein bands 25 were present which could account for the observed prodrug activity. All four were subjected to N-terminal amino acid sequencing and the activity localised to the fourth protein band from which the nitroreductase may be purified.

Example 6

30

Detection of Nitroreductase Activity in Thermophile Extracts

As an alternative source novel enzymes, a preliminary screen of CAMRs

thermophile collection was undertaken. Enzymes from this source may have the advantage of greater stability, and therefore longevity of action. Strains were selected on the basis either of sensitivity to CB1954, or those which are resistant but which impart a yellow/golden coloration to agar containing prodrug.

Two of these strains (*B. thermoflavus* and *B. licheniformis*) generated the cytotoxic 4HX form and were selected for further study.

10 **Example 7**

Identification Of Further Nitroreductase Enzymes

Having identified the two families of nitroreductase in *Bacillus*, a search was undertaken of both finished and unfinished genomes for homologues, using YwrO and YodC/NfnB. On the basis of this search homologues of YwrO were identified in the genomes of *Yersinia pestis* and *Porphyromonas gingivalis*, and homologues of NfnB in the genomes of *Pyrococcus furiosus*, *Haemophilus influenza*, *Synechocystis* PCC 6803, *Campylobacter jejuni*, *Archaeoglobus*, *Helicobacter pylori*, *Heliocbacter fulgidus* and *Thermus aquaticus*.

In addition to the above, two *E.coli* genes were found to be homologues of rat DTD and YwrO, and were designated Yher and YabF. They were discovered to share the characteristic of YwrO in that they lack the internal protein domain found in the rat DTD enzyme and functional mammalian homologues.

(i) *P.gingivalis* YwrO homologue

P.gingivalis YwrO homologue is a dimeric flavoprotein with native molecular mass estimated by gel filtration at 40 kDa. Although it shares sequence homology with DTD and forms only the 4HX reduction product of CB1954

- 20 -

(K_m 1200 μ M, k_{cat} 3.2), it differs from DTD in that it is active with SN23862 and it can only use NADH as cofactor (cf DTD which can use either NADH or NADPH and is inactive with SN23862). It can reduce azodyes but it is inactive with menadione or flavins.

(ii) *C.jejuni* NfnB homologue

C.jejuni NfnB homologue produces only the 4HX reduction product of CB1954 (K_m 143 μ M, k_{cat} 11.2) using NADPH as cofactor and it is also active with SN23862. It can use the quinone menadione as substrate as well as azodyes and the flavins FMN and FAD.

(iii) *Archaeoglobus fulgidus* NfnB homologue

Archaeoglobus fulgidus NfnB homologue is a dimeric flavoprotein of 42 kDa native molecular mass, producing the 4HX derivative of CB1954 only (K_m 690 μ M, k_{cat} 56.2) using NADPH as cofactor. It is also active with SN23862 and menadione (K_m 9 μ M), but does not decolourise azodyes and has only weak flavin reductase activity.

(iv) *H.influenzae* and *H.pylori* NfnB homologues

Both these enzymes are dimeric flavoproteins and form the 4HX reduction product of CB1954 using NADPH in preference to NADH, but have no activity with azodyes. The former also lacks activity with the quinone menadione and flavins FMN or FAD. Both however have weak activity with SN23862 and may be active with other prodrugs.

(v) *Y pestis* nfnB homologue and *Synechocystis* YwrO homologue

Both these proteins reduce CB1954 but produce only the relatively non-toxic 2HX derivative using NADPH as cofactor. They do however show

- 21 -

activity with SN23862 and the former can also reduce azodyes.

Example 8

Comparison of Nitroreductase Sequences

We compared the amino acid sequences of nitroreductases according to the invention with each other and with known rat, human and *E.coli* sequences, and the results are illustrated in Figures 1 and 2. In Figure 1, rat, mouse and two human sequences make up the first four lanes for comparison purposes. It is evident that nitroreductases of the invention are lacking a sequence from positions 51-82 of the rat sequence.

In Figure 2, sequences of nitroreductases of the invention are compared with the known *E.coli* sequence, which is designated nfmB in the second-to-last lane.

The invention thus provides nitroreductase enzymes, DNA and genes therefor and methods of obtaining such enzymes and of using the enzymes and DNA coding therefor in clinical applications.

- 22 -

ENZYME ACTIVITY	M.Wt (kDa)	CB1954		SN23862 Km
		Product	Km	
<i>B. pumilis</i> CP044				
Peak 1	ND	4HX	v. low	ND
Peak 2	ND	4HX	>1000	ND
Peak 3	ND	2/4HX	999	ND
<i>B.lautus</i> CP060				
Peak 1	35	2HX	211	325
Peak 2	42	4HX	>2000	none
Peak 3	47	4HX	257	active

Table 3: Fractionation of nitroreductase activity in cell extracts of *Bacillus laetus* and *Bacillus pumilis*

STRAIN	CB1954			SN23862	
	Product	NADH	NADPH	NADH	NADPH
1078	2/4HX	13.8	22.6	8.5	17.6
2122 ^a	2/4HX	36.6	56.0	33.4	62.8
6012 ^b	4>2HX	15.2	37.8	8.2	35.2
6013 ^c	2HX	9.8	49.4	6.4	39.0
6031 ^d	2HX	11.9	42.1	8.2	33.8
6036	2HX	10.7	26.7	7.3	26.2
6044	2HX	4.0	21.3	4.5	9.9

Table 4: Characteristics of nitroreductase activity of thermophiles identified as being sensitive to CB1954
[Identified as *Bacillus thermoflavus* ^a, *Bacillus licheniformis* ^b, *Bacillus licheniformis* ^c, *Bacillus alkophilus* ^d]

- 23 -

ENZYME ACTIVITY	M.Wt (kDa)	CB1954		SN23862 Km
		Product	Km	
<i>B. pumilis</i> CP044				
Peak 1	ND	4HX	v. low	ND
Peak 2	ND	4HX	>1000	ND
Peak 3	ND	2/4HX	999	ND
<i>B. lautus</i> CP060				
Peak 1	35	2HX	211	325
Peak 2	42	4HX	>2000	none
Peak 3	47	4HX	257	active

Table 3: Fractionation of nitroreductase activity in cell extracts of *Bacillus lautus* and *Bacillus pumilis*

STRAIN	CB1954			SN23862	
	Product	NADH	NADPH	NADH	NADPH
1078	2/4HX	13.8	22.6	8.5	17.6
2122 ^a	2/4HX	36.6	56.0	33.4	62.8
6012 ^b	4>2HX	15.2	37.8	8.2	35.2
6013 ^c	2HX	9.8	49.4	6.4	39.0
6031 ^d	2HX	11.9	42.1	8.2	33.8
6036	2HX	10.7	26.7	7.3	26.2
6044	2HX	4.0	21.3	4.5	9.9

Table 4: Characteristics of nitroreductase activity of thermophiles identified as being sensitive to CB1954
[Identified as *Bacillus thermophilus* ^a, *Bacillus licheniformis* ^b, *Bacillus licheniformis* ^c, *Bacillus alkophilus* ^d]

CLAIMS

1. A nitroreductase characterised in that it preferentially reduces CB1954 to a cytotoxic 4-hydroxylamine (4HX) derivative instead of a non-cytotoxic 2-hydroxylamine derivative.
5
2. A nitroreductase according to Claim 1 further characterised in that it reduces CB1954 to the 4HX derivative with a K_m of less than 700 micromolar.
10
3. A nitroreductase according to Claim 1 or 2 further characterised in that it is NADPH dependant.
15
4. A nitroreductase according to any of Claims 1 to 3, further characterised in that it reduces CB1954 to a cytotoxic 4-hydroxylamine (4HX) derivative substantially without producing the non-cytotoxic 2-hydroxylamine derivative.
20
5. A nitroreductase according to any of Claims 1 to 4 which reduces the prodrug to the toxic derivative with a K_{cat} of at least 8.
25
6. A nitroreductase according to any of Claims 1 to 5, which reduces CB1954 or an analogue thereof to a toxic derivative, shares at least 50% sequence identity with the rat DTD sequence and does not contain a domain that is the same as or corresponds to amino acids 51 to 82 of the rat DTD sequence.
30
7. A nitroreductase characterised in that it reduces a prodrug to a toxic derivative with a K_m of less 700 micromolar, wherein the prodrug is selected from CB1954 and analogues thereof.
30
8. A nitroreductase according to Claim 7 which reduces the prodrug to

- 25 -

the toxic derivative with a K_m of less 300 micromolar.

9. A nitroreductase according to Claim 7 or 8 which reduces the prodrug to the toxic derivative with a K_{cat} of at least 8.

5

10. A nitroreductase according to Claim 9 which reduces the prodrug to the toxic derivative with a K_{cat} of at least 10.

10

11. A nitroreductase according to any of Claims 7 to 10, further characterised in that it reduces CB1954 to a toxic derivative, it reduces SN23862 to a toxic derivative, it can use both NADH and NADPH as electron donor and in that it shares no more than 30% sequence identity with the *E.coli* NfnB sequence.

15

12. A nitroreductase according to any of Claims 7 to 11 further characterised in that it shares at least 50% sequence identity with the rat DTD sequence and in that it does not contain a domain that is the same as or corresponds to amino acids 51 to 82 of the rat DTD sequence.

20

13. A nitroreductase characterised in that it reduces a prodrug to a toxic derivative with a K_{cat} of at least 8.

25

14. A nitroreductase according to Claim 13, further characterised in that it reduces CB1954 to a toxic derivative, it reduces SN23862 to a toxic derivative, it can use both NADH and NADPH as electron donor and in that it shares no more than 30% sequence identity with the *E.coli* NfnB sequence.

30

15. A nitroreductase according to Claim 13 or 14, further characterised in that it reduces CB1954 or an analogue thereof to a toxic derivative, in that it shares at least 50% sequence identity with the rat DTD sequence and in that it does not contain a domain that is the same as or corresponds

- 26 -

to amino acids 51 to 82 of the rat DTD sequence.

16. A nitroreductase characterised in that it reduces CB1954 to a toxic derivative, it reduces SN23862 to a toxic derivative, it can use both NADH 5 and NADPH as electron donor and in that it shares no more than 30% sequence identity with the *E.coli* NfnB sequence.

17. A nitroreductase according to Claim 16, wherein the sequence identity is about 25% or less.

10 18. A nitroreductase characterised in that it reduces CB1954 or an analogue thereof to a toxic derivative, in that it shares at least 50% sequence identity with the rat DTD sequence and in that it does not contain a domain that is the same as or corresponds to amino acids 51 to 15 82 of the rat DTD sequence.

19. Use of a DNA sequence coding for a nitroreductase according to any preceding Claim in manufacture of a medicament for prodrug therapy.

20 20. A viral vector, comprising
(a) a DNA encoding nitroreductase according to any of
Claims 1 to 18 operatively coupled to
(b) a promoter for expression of the DNA.

25 21. A mini-gene comprising
(a) a DNA encoding nitroreductase according to any of
Claims 1 to 18 operatively coupled to
(b) a promoter for expression of the DNA.

30 22. A pharmaceutical composition comprising a nitroreductase according to any of Claims 1 to 18 in combination with a pharmaceutically acceptable carrier.

- 27 -

23. A pharmaceutical composition for use in a directed-enzyme prodrug therapy, comprising a pharmaceutically acceptable carrier and a compound for converting a prodrug into a drug, wherein a compound comprises a nitroreductase according to any of Claims 1 to 18 conjugated to a targeting moiety.

5

24. A pharmaceutical composition according to Claim 23 wherein the targeting moiety comprises an antibody specific for a target cell.

10 25. A pharmaceutical composition according to Claim 23 wherein the targeting moiety is a moiety preferentially accumulated by or taking up by a target cell.

15 26. A method of preparing a nitroreductase, comprising expressing a gene in a bacterial cell, wherein the gene codes for a nitroreductase according to any of Claims 1 to 18.

27. Use of a nitroreductase according to any of Claims 1-18 in manufacture of a medicament for anti-tumour therapy.

20 28. Use of a compound comprising a nitroreductase according to any of Claims 1 to 18 conjugated to a targeting moiety in manufacture of a medicament for anti-tumour therapy.

Fig. 1

DTD-Like Proteins

The aligned proteins are: NQO1_rat, NAD(P)H-quinone oxidoreductase 1 (brown rat); NQO1_mouse, NAD(P)H-quinone oxidoreductase 1 (mouse); NQO1_human, NAD(P)H-quinone oxidoreductase 1 (human); NQO2_human, NAD(P)H-quinone oxidoreductase 2 (human); Yersinia; un-named homologue (*Yersinia pestis*); yheR_Ecoli, yheR (*Escherichia coli*); ywrQsubtil, ywrQ (*Bacillus subtilis*); ywrQ_amylo, ywrQ (*Bacillus amyloliquefaciens*); yrkLsubtil, yrkL (*Bacillus subtilis*); ydeQsubtil, ydeQ (*Bacillus subtilis*); Porph_ging, un-named homologue (*Porphyromonas gingivalis*); and; yabF_Ecoli, yabF (*Escherichia coli*)

2 / 2

ydgl-Bs	---MIEKTNDYMEEMKGRRSIRNEDPAVKNSKEMTPELLEATTAPESSVNAQFWPLFVWIDG
yodC-Bs	-----ETNTDGVLLRASVREPDNTAPFPEQELTEPELTAKAPSANNLOHWEETVPE
Synechocystis	-----HDTYDALYTORRSVRHISDEDRHITABERKSHAAIQAFMSFNOLWRS-----
Taq	MEATGPEDDAKTAALNRHSIARKD.PPPEGLLRETEAALRAPSAWNLOQEWHLVWBD
Sal_typhim	-----EDITSVALORYSTKAADPSKRILTAEEAKTKTLOYSPPSTNSQPWHEFAVST
nfnb_entcl	-----EDITSVALKRHSTRKAADSKKLTAEEAKTKTLOYSPPSTNSQPWHEFAVST
nfnB	-----EDITSVALKRHSTRKAADSKKLTPBQABQTKTLOYSPPSTNSQPWHEFAVST
Haem_inf	-MTOETREQHEEFHQRSSTVMDPKKIDDEFBCCLTCRLSPSSVGSEPNKBRUHQE
	1.....107.....20.....30.....40.....50.....
ydgl-Bs	PBGRPEEPPLAS....ENOTOMTTSSAVLAVPFDMMNNAQYLEEISKAVELGYMPGEVKD
yodC-Bs	BNQKQRTESSAVVAILEDLKAMINNGEVHAAALASQGYITDEIXQ
Synechocystis	BESKRAPELPVRA....NOAQCTDASLDTVAADVNAWDKDPAREWRA.....PREVAN
Taq	POLEQTREKYE....NOAQCTDASLDTVAADVNAWDKDPAREWRA.....DALAHDEVIEHPGVQSERRE
Sal_typhim	FATRRAZRE..AA....EGQAHMVEAFVVEVLVADLE....DALAHDEVIEHPGVQSERRE
nfnb_entcl	EGRGRARAKSAGNYTFNERKCIDASHVVVFCAKTAMODAWLERVVDQEEADGRFTPEA
nfnB	EGKARARAKSAGNYVFNERKCIDASHVVVFCAKTAMODAWLERVVDQEEADGRFTPEA
Haem_inf	EGKARARAKSAGNYVFNERKCIDASHVVVFCAKTAMODAWLERVVDQEEADGRFTPEA
	KTLEEEKPFPSWGM.....NQHDNCSEEVVILAKKNARYD.SPFIVEVMARKGLNAEQQQ
	61.....70.....80.....90.....100.....110.....
ydgl-Bs	RQIAAEATAHSEKLPQVN.....RIETBLIDGGELVSMELHITAPAGYDHINHICGDNEKE
yodC-Bs	TLLGOENGAGQS...EQFA.....RDSAFLNASLAAMELGEGTAKCIVDICALGGFNKEQY
Synechocystis	YLVGAEEESFEGEKP.QEQ.....RDEAQSEGEGAMONLMLPDKKALMGYDSCPPIGFEDLQKE
Taq	AQKDAACRRAFAMGQEAR.....RIGASGOSYKLEPGYLILLLAYGLGIVPMI.GEDPERM
Sal_typhim	KLANDKGRFFADAEHRVSL.EKDDHQKAKQVYLNVGNELLIGVAAAGLDAVPIEGFDAEVL
nfnb_entcl	KLANDKGRFFADAEHRVSL.EKDDQHMAKQVYLNVGNELLIGVAAAGLDAVPIEGFDAEVL
nfnB	KLANDKGRFFADAEHRVSL.EKDDQHMAKQVYLNVGNELLIGVAAAGLDAVPIEGFDAEVL
Haem_inf	KALTKEALQEEDEKLLENDETTLPLHCSKOTYALPNNLTCRSPACEDSPPIEGHHTKMS
	121.....130.....140.....150.....160.....170.....
ydgl-Bs	AETEGGLDKEEVPLVTESECKAAADEGV.....ASYRLEPDETELEWK-----
yodC-Bs	QKQSDHE.SERIVVPLPTESECKAKVPAH.....QSNRLEPESKVSTMP-----
Synechocystis	AELVAKPPAD.LAIGPMVAECKRATMELAF.....GKRSNSPGRPPLGKLLCLTKVWWCLAI
Taq	RALILGLFSHAIIPA.EVANGYPAAEGH.....PSHRLPLERVVLQR-----
Sal_typhim	DAEEFGIREKGTTSLVNVPVGHHHSVDEDWVAGPKSRPLPLTETEV-----
nfnb_entcl	DEEFGCLBEEKGTTSLVNVPVGHHHSVDEDWVAGPKSRPLPLTETEV-----
nfnB	DAEEFGLEEKGTTSLVNVPVGHHHSVDEDWVAGPKSRPLPLTETEV-----
Haem_inf	NECLMEEGLFDQKEYAVSVATFGYRSRDIAKSRKGLEEVVKWUG.....
	181.....190.....200.....210.....220.....230.....

NfnB-Like Proteins

The aligned proteins are: ydgl-Bs; ydgl (*Bacillus subtilis*); yodC-Bs; yodC (*Bacillus subtilis*); Synechocystis, argA (*Synechocystis* PCC 6803); Taq, NOX, THETH (*Thermus aquaticus*); Sal_typhim, nfnB (*Salmonella typhimurium*); nfnb_entcl, nfnB (*Enterobacter cloacae*); nfnB, nfnB (*Escherichia coli* B), and; Haem_inf, YC78_HAEIN (*Haemophilus influenzae*).

- 1 -

SEQUENCE LISTING

<110> Microbiological Research Authority

<120> Nitroreductase Enzymes

<130> gws/21226-seq

<140>
<141>

<160> 27

<170> PatentIn Ver. 2.1

<210> 1
<211> 525
<212> DNA
<213> Bacillus amyloliquefaciens<220>
<221> CDS
<222> (1)..(525)

<400> 1

gtg aaa gta ttg gta tta	gct gtt cac cct gac atg	gag aac tca	gct	48
Met Lys Val Leu Val	Leu Ala Val His Pro	Asp Met Glu Asn Ser	Ala	
1	5	10	15	

gtc aat aag gca tgg gca gaa tta	aaa cat gat gaa ctc acg	96
Val Asn Lys Ala Trp Ala Glu Glu	Leu Lys Lys His Asp Glu Leu Thr	
20	25	30

gtc cgt gag ctt tat aaa gaa tat ccg gac	ggg caa atc gat gct gaa	144
Val Arg Glu Leu Tyr Lys Glu Tyr Pro	Asp Gly Gln Ile Asp Ala Glu	
35	40	45

aag gaa cgt cag ctg ttt gaa cag tat gac	ccg atc gta ttt caa ttt	192
Lys Glu Arg Gln Leu Cys Glu Gln Tyr Asp Arg	Ile Val Phe Gln Phe	
50	55	60

ccg ctg tat tgg tac agt gct cct tta	aaa aca tgg atg gat	240
Pro Leu Tyr Trp Tyr Ser Ala Pro Pro Leu	Leu Lys Thr Trp Met Asp	
65	70	75

cat gtg ctg tcg tac ggc tgg gcc tac ggc	tcc aaa gga aag gct ctg	288
His Val Leu Ser Tyr Gly Trp Ala Tyr Gly	Ser Lys Gly Lys Ala Leu	
85	90	95

cat ggc aaa gaa ttg atg ctg gct tcc gta	ggg gct gcc gga gag gat	336
His Gly Lys Glu Leu Met Leu Ala Val Ser	Val Gly Ala Gly Glu Asp	
100	105	110

gca tac cag gca gga ggg tca aac cac	ttt aca ttg agc gag ctg tta	384
Ala Tyr Gln Ala Gly Gly Ser Asn His	Phe Thr Leu Ser Glu Leu Leu	
115	120	125

agg ccg ttt cag gca atg gct aat ttt aca	ggg gat gct ggg acc tat ttg ccg	432
Arg Pro Phe Gln Ala Met Ala Asn Phe Thr	Gly Met Thr Tyr Leu Pro	
130	135	140

gct ttc gcg ctg tac ggt gta aat ggg	gct gat gct ggg acg gat att cat	480
Ala Phe Ala Leu Tyr Gly Val Asn Gly	Ala Asp Ala Thr Asp Ile His	
145	150	155

gac aat gcc aaa cgt ctg gct tac ata aag	aaa tca ttt taa	525
---	-----------------	-----

- 2 -

Asp Asn Ala Lys Arg Leu Ala Ala Tyr Ile Lys Lys Ser Phe	175
165	170

<210> 2
<211> 175
<212> PRT
<213> Bacillus amyloliquefaciens

<400> 2	
Val Lys Val Leu Val Leu Ala Val His Pro Asp Met Glu Asn Ser Ala	
1	5
	10
	15

Val Asn Lys Ala Trp Ala Glu Glu Leu Lys Lys His Asp Glu Leu Thr	
20	25
	30

Val Arg Glu Leu Tyr Lys Glu Tyr Pro Asp Gly Gln Ile Asp Ala Glu	
35	40
	45

Lys Glu Arg Gln Leu Cys Glu Gln Tyr Asp Arg Ile Val Phe Gln Phe	
50	55
	60

Pro Leu Tyr Trp Tyr Ser Ala Pro Pro Leu Leu Lys Thr Trp Met Asp	
65	70
	75
	80

His Val Leu Ser Tyr Gly Trp Ala Tyr Gly Ser Lys Gly Lys Ala Leu	
85	90
	95

His Gly Lys Glu Leu Met Leu Ala Val Ser Val Gly Ala Gly Glu Asp	
100	105
	110

Ala Tyr Gln Ala Gly Gly Ser Asn His Phe Thr Leu Ser Glu Leu Leu	
115	120
	125

Arg Pro Phe Gln Ala Met Ala Asn Phe Thr Gly Met Thr Tyr Leu Pro	
130	135
	140

Ala Phe Ala Leu Tyr Gly Val Asn Gly Ala Asp Ala Thr Asp Ile His	
145	150
	155
	160

Asp Asn Ala Lys Arg Leu Ala Ala Tyr Ile Lys Lys Ser Phe	
165	170
	175

<210> 3
<211> 528
<212> DNA
<213> Bacillus subtilis

<220>
<221> CDS
<222> (1)..(528)

<400> 3	
atg aaa ata ttg gtt ttg gca gtg cat cct cat atg gag acc tca gtt	48
Met Lys Ile Leu Val Leu Ala Val His Pro His Met Glu Thr Ser Val	
1	5
	10
	15

gtt aat aag gcg tgg gct gag gaa ttg agt aaa cat gac aat atc aca	96
Val Asn Lys Ala Trp Ala Glu Glu Leu Ser Lys His Asp Asn Ile Thr	
20	25
	30

gta cgg gat ctt tat aag gaa tac ccg gat gaa gcg ata gat gtt gcg	144
Val Arg Asp Leu Tyr Lys Glu Tyr Pro Asp Glu Ala Ile Asp Val Ala	
35	40
	45

aag gaa cag cag ctg tgc gag gaa tac gat cgg att gtc ttt caa ttc	192
---	-----

- 3 -

Lys Glu Gln Gln Leu Cys Glu Glu Tyr Asp Arg Ile Val Phe Gln Phe			
50	55	60	
ccg cta tat tgg tac agc tct ccg ctc ttg aaa aaa tgg cag gat			240
Pro Leu Tyr Trp Tyr Ser Ser Pro Pro Leu Leu Lys Lys Trp Gln Asp			
65	70	75	80
ctt gtg ctg act tat ggc tgg gct ttt ggt tca gaa gga aat gcc ttg			288
Leu Val Leu Thr Tyr Gly Trp Ala Phe Gly Ser Glu Gly Asn Ala Leu			
85	90	95	
cat ggc aag gag ctg atg ctg gct gta tca aca ggg agc gaa gca gaa			336
His Gly Lys Glu Leu Met Leu Ala Val Ser Thr Gly Ser Glu Ala Glu			
100	105	110	
aaa tat caa gcg ggc gga gca aat cat tac tcg atc agt gag cta ttg			384
Lys Tyr Gln Ala Gly Gly Ala Asn His Tyr Ser Ile Ser Glu Leu Leu			
115	120	125	
aaa cca ttt cag gcc acg agt aat ctg atc ggc atg aag tat ctg cct			432
Lys Pro Phe Gln Ala Thr Ser Asn Leu Ile Gly Met Lys Tyr Leu Pro			
130	135	140	
cca tat gtg ttc tat ggc gtg aat tat gca gct gca gag gat att tct			480
Pro Tyr Val Phe Tyr Gly Val Asn Tyr Ala Ala Glu Asp Ile Ser			
145	150	155	160
cac agt gca aaa cgg tta gcc gaa tac atc cag cag cct ttt gtt taa			528
His Ser Ala Lys Arg Leu Ala Glu Tyr Ile Gln Gln Pro Phe Val			
165	170	175	

<210> 4
<211> 176
<212> PRT
<213> Bacillus subtilis

<400> 4			
Met Lys Ile Leu Val Leu Ala Val His Pro His Met Glu Thr Ser Val			
1	5	10	15
Val Asn Lys Ala Trp Ala Glu Glu Leu Ser Lys His Asp Asn Ile Thr			
20	25	30	
Val Arg Asp Leu Tyr Lys Glu Tyr Pro Asp Glu Ala Ile Asp Val Ala			
35	40	45	
Lys Glu Gln Gln Leu Cys Glu Glu Tyr Asp Arg Ile Val Phe Gln Phe			
50	55	60	
Pro Leu Tyr Trp Tyr Ser Ser Pro Pro Leu Leu Lys Lys Trp Gln Asp			
65	70	75	80
Leu Val Leu Thr Tyr Gly Trp Ala Phe Gly Ser Glu Gly Asn Ala Leu			
85	90	95	
His Gly Lys Glu Leu Met Leu Ala Val Ser Thr Gly Ser Glu Ala Glu			
100	105	110	
Lys Tyr Gln Ala Gly Gly Ala Asn His Tyr Ser Ile Ser Glu Leu Leu			
115	120	125	
Lys Pro Phe Gln Ala Thr Ser Asn Leu Ile Gly Met Lys Tyr Leu Pro			
130	135	140	
Pro Tyr Val Phe Tyr Gly Val Asn Tyr Ala Ala Glu Asp Ile Ser			
145	150	155	160

- 4 -

His Ser Ala Lys Arg Leu Ala Glu Tyr Ile Gln Gln Pro Phe Val
165 170 175

```
<210> 5
<211> 525
<212> DNA
<213> Bacillus subtilis
```

<220>
<221> CDS
<222> (1) .. (525)

<400> 5
 atg aaa aca tta gtt atc gtt ata cat cct aat ttg gaa acg tct gtt
 Met Lys Thr Leu Val Ile Val Ile His Pro Asn Leu Glu Thr Ser Val
 1 5 10 15

 gtc aac aaa acc tgg atg aat cgt tta aag caa gag aaa gac att acg
 Val Asn Lys Thr Trp Met Asn Arg Leu Lys Gln Glu Lys Asp Ile Thr
 20 25 30

 gtt cat gac ctg tac ggt gaa tac cct aat ttt atc att gat gta gaa
 Val His Asp Leu Tyr Gly Glu Tyr Pro Asn Phe Ile Ile Asp Val Glu
 35 40 45

 aaa gag cag cag ctc ctg tta gat cat gag cgt atc gtt ttt cag ttc
 Lys Glu Gln Gln Leu Leu Leu Asp His Glu Arg Ile Val Phe Gln Phe
 50 55 60

 cca atg tat tgg tac agc agt ccc gcg tta ctc aaa caa tgg gaa gat
 Pro Met Tyr Trp Tyr Ser Ser Pro Ala Leu Leu Lys Gln Trp Glu Asp
 65 70 75 80

 gat gtg tta aca cat ggc tgg gct tat gga act gga gga act aaa ttg
 Asp Val Leu Thr His Gly Trp Ala Tyr Gly Thr Gly Gly Thr Lys Leu
 85 90 95

 cat gga aaa gaa cta ctc tta gct atc tcc tca ggc gca cag gaa tct
 His Gly Lys Glu Leu Leu Ala Ile Ser Ser Gly Ala Gln Glu Ser
 100 105 110

 gat tat caa gca ggc gga gaa tat aat atc acg atc agc gag ctt atc
 Asp Tyr Gln Ala Gly Gly Glu Tyr Asn Ile Thr Ile Ser Glu Leu Ile
 115 120 125

 aga ccg ttt caa gtc act gct aac tat ata gga atg cgt ttt ctt cct
 Arg Pro Phe Gln Val Thr Ala Asn Tyr Ile Gly Met Arg Phe Leu Pro
 130 135 140

 gcg ttt aca caa tat ggg aca ctt cat ctt tca aaa gaa gat gtt aag
 Ala Phe Thr Gln Tyr Gly Thr Leu His Leu Ser Lys Glu Asp Val Lys
 145 150 155 160

 aac agt gcg gag aga ttg gtt gac tat ctt aaa gcc gag cat taa
 Asn Ser Ala Glu Arg Leu Val Asp Tyr Leu Lys Ala Glu His
 165 170 175

```
<210> 6
<211> 175
<212> PRT
<213> Bacillus subtilis
```

<400> 6
Met Lys Thr Leu Val Ile Val Ile His Pro Asn Leu Glu Thr Ser Val
1 5 10 15

- 5 -

Val Asn Lys Thr Trp Met Asn Arg Leu Lys Gln Glu Lys Asp Ile Thr
 20 25 30

Val His Asp Leu Tyr Gly Glu Tyr Pro Asn Phe Ile Ile Asp Val Glu
 35 40 45

Lys Glu Gln Gln Leu Leu Leu Asp His Glu Arg Ile Val Phe Gln Phe
 50 55 60

Pro Met Tyr Trp Tyr Ser Ser Pro Ala Leu Leu Lys Gln Trp Glu Asp
 65 70 75 80

Asp Val Leu Thr His Gly Trp Ala Tyr Gly Thr Gly Gly Thr Lys Leu
 85 90 95

His Gly Lys Glu Leu Leu Leu Ala Ile Ser Ser Gly Ala Gln Glu Ser
 100 105 110

Asp Tyr Gln Ala Gly Gly Glu Tyr Asn Ile Thr Ile Ser Glu Leu Ile
 115 120 125

Arg Pro Phe Gln Val Thr Ala Asn Tyr Ile Gly Met Arg Phe Leu Pro
 130 135 140

Ala Phe Thr Gln Tyr Gly Thr Leu His Leu Ser Lys Glu Asp Val Lys
 145 150 155 160

Asn Ser Ala Glu Arg Leu Val Asp Tyr Leu Lys Ala Glu His
 165 170 175

<210> 7
<211> 594
<212> DNA
<213> Bacillus subtilis

<220>
<221> CDS
<222> (1)..(594)

atg gat cat atg aaa aca ctc gta ctc gtt gta cat ccg aat ata gaa	48
Met Asp His Met Lys Thr Leu Val Leu Val Val His Pro Asn Ile Glu	
1 5 10 15	
tcc tct cgt atc aat aaa aag tgg aaa gaa gcc gtt tta agt gaa cca	96
Ser Ser Arg Ile Asn Lys Lys Trp Lys Glu Ala Val Leu Ser Glu Pro	
20 25 30	
gat gta act gtc cat gat ctt tat gaa aaa tat cgc gat caa cca att	144
Asp Val Thr Val His Asp Leu Tyr Glu Lys Tyr Arg Asp Gln Pro Ile	
35 40 45	
gat gtg gaa ttt gaa caa cag cag ctc ctg gcc cat gac cgt atc gtt	192
Asp Val Glu Phe Glu Gln Gln Leu Leu Ala His Asp Arg Ile Val	
50 55 60	
ttt cag ttt cca tta tac tgg tac agc agc cca ccg ctt tta aaa cag	240
Phe Gln Phe Pro Leu Tyr Trp Tyr Ser Ser Pro Pro Leu Leu Lys Gln	
65 70 75 80	
tgg ttt gat gaa gtg ttt acg ttt ggc tgg gct cat ggt ccc ggc gga	288
Trp Phe Asp Glu Val Phe Thr Phe Gly Trp Ala His Gly Pro Gly Gly	
85 90 95	
aat aaa ttg aag ggg aaa gag tgg gta act gcc atg tcc atc ggt tca	336
Asn Lys Leu Lys Gly Lys Glu Trp Val Thr Ala Met Ser Ile Gly Ser	

100	105	110	
cct gaa cac tct tat caa gcc ggc gga tat aac ttg ttt tcg ata agc Pro Glu His Ser Tyr Gln Ala Gly Gly Tyr Asn Leu Phe Ser Ile Ser 115 120 125			384
gag ctg aca aaa ccg ttc caa gca tct gcc cat tta gta ggc atg acc Glu Leu Thr Lys Pro Phe Gln Ala Ser Ala His Leu Val Gly Met Thr 130 135 140			432
tat ctg cct tcc ttt gcc gaa tat cgc gcc aat aca atc agt gac caa Tyr Leu Pro Ser Phe Ala Glu Tyr Arg Ala Asn Thr Ile Ser Asp Gln 145 150 155 160			480
gaa att gcc gaa agt gcg aat cgg tat gta aag cat att aca aat ata Glu Ile Ala Glu Ser Ala Asn Arg Tyr Val Lys His Ile Thr Asn Ile 165 170 175			528
gaa tta aac ccg aag gtt cgc ctg caa agg tat ttg aaa cag ctg gag Glu Leu Asn Pro Lys Val Arg Leu Gln Arg Tyr Leu Lys Gln Leu Glu 180 185 190			576
agt gtc gat tta aca taa Ser Val Asp Leu Thr 195			594

<210> 8

<211> 198

<212> PRT

<213> Bacillus subtilis

<400> 8

Met	Asp	His	Met	Lys	Thr	Leu	Val	Leu	Val	Val	His	Pro	Asn	Ile	Glu
1				5			10				15				

Ser	Ser	Arg	Ile	Asn	Lys	Lys	Trp	Lys	Glu	Ala	Val	Leu	Ser	Glu	Pro
	20				25				30						

Asp	Val	Thr	Val	His	Asp	Leu	Tyr	Glu	Lys	Tyr	Arg	Asp	Gln	Pro	Ile
35				40				45							

Asp	Val	Glu	Phe	Glu	Gln	Gln	Leu	Leu	Ala	His	Asp	Arg	Ile	Val
50				55				60						

Phe	Gln	Phe	Pro	Leu	Tyr	Trp	Tyr	Ser	Ser	Pro	Pro	Leu	Leu	Lys	Gln
65				70				75				80			

Trp	Phe	Asp	Glu	Val	Phe	Thr	Phe	Gly	Trp	Ala	His	Gly	Pro	Gly	Gly
		85					90				95				

Asn	Lys	Leu	Lys	Gly	Lys	Glu	Trp	Val	Thr	Ala	Met	Ser	Ile	Gly	Ser
						100		105			110				

Pro	Glu	His	Ser	Tyr	Gln	Ala	Gly	Gly	Tyr	Asn	Leu	Phe	Ser	Ile	Ser
115					120				125						

Glu	Leu	Thr	Lys	Pro	Phe	Gln	Ala	Ser	Ala	His	Leu	Val	Gly	Met	Thr
130				135				140							

Tyr	Leu	Pro	Ser	Phe	Ala	Glu	Tyr	Arg	Ala	Asn	Thr	Ile	Ser	Asp	Gln
145				150				155			160				

Glu	Ile	Ala	Glu	Ser	Ala	Asn	Arg	Tyr	Val	Lys	His	Ile	Thr	Asn	Ile
165					170				175						

Glu	Leu	Asn	Pro	Lys	Val	Arg	Leu	Gln	Arg	Tyr	Leu	Lys	Gln	Leu	Glu
-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----

- 7 -

180

185

190

Ser Val Asp Leu Thr
195

```
<210> 9  
<211> 630  
<212> DNA  
<213> Bacillus subtilis
```

<220>
<221> CDS
<222> (1) .. (630)

<400> 9
 atg atc aaa aca aac gat ttt atg gaa att atg aaa ggc cgc cgt tct
 Met Ile Lys Thr Asn Asp Phe Met Glu Ile Met Lys Gly Arg Arg Ser
 1 5 10 15
 atc cgc aac tat gat ccg gca gta aaa atc agc aaa gaa gaa atg aca
 Ile Arg Asn Tyr Asp Pro Ala Val Lys Ile Ser Lys Glu Glu Met Thr
 20 25 30
 gag atc tta gag gaa gca aca act gcc cca tct tct gtt aac gcg cag
 Glu Ile Leu Glu Glu Ala Thr Thr Ala Pro Ser Ser Val Asn Ala Gln
 35 40 45
 cca tgg cgt ttt ctt gtc att gac agc ccg gaa gga aaa gaa aag ctc
 Pro Trp Arg Phe Leu Val Ile Asp Ser Pro Glu Gly Lys Glu Lys Leu
 50 55 60
 gca ccg ctt gca agc ttt aac caa aca caa gtc aca aca tca tct gct
 Ala Pro Leu Ala Ser Phe Asn Gln Thr Gln Val Thr Thr Ser Ser Ala
 65 70 75 80
 gtc atc gct gta ttt gca gac atg aac aac gca gac tat cta gaa gaa
 Val Ile Ala Val Phe Ala Asp Met Asn Asn Ala Asp Tyr Leu Glu Glu
 85 90 95
 atc tat tca aaa gcc gtg gaa ctt ggt tac atg ccg cag gag gtc aaa
 Ile Tyr Ser Ala Val Glu Leu Gly Tyr Met Pro Gln Glu Val Lys
 100 105 110
 gac aga caa atc gcc gcg ctg acc gca cat ttt gaa aag ctt ccg gca
 Asp Arg Gln Ile Ala Ala Leu Thr Ala His Phe Glu Lys Leu Pro Ala
 115 120 125
 cag gtc aac cgt gaa acg atc ctg att gac gga ggt ctt gtt tcc atg
 Gln Val Asn Arg Glu Thr Ile Leu Ile Asp Gly Gly Leu Val Ser Met
 130 135 140
 cag ctg atg ctg act gca cgc gcg cat ggc tac gat aca aac ccg atc
 Gln Leu Met Leu Thr Ala Arg Ala His Gly Tyr Asp Thr Asn Pro Ile
 145 150 155 160
 ggc gga tac gat aaa gaa aac atc gcg gaa acc ttc gga tta gat aaa
 Gly Gly Tyr Asp Lys Glu Asn Ile Ala Glu Thr Phe Gly Leu Asp Lys
 165 170 175
 gaa cgt tat gta ccg gtt atg cta ctt tct atc gga aaa gca gca gac
 Glu Arg Tyr Val Pro Val Met Leu Leu Ser Ile Gly Lys Ala Ala Asp
 180 185 190
 gaa ggc tat gct tcc tac cgt ctg ccg att gat aca att gca gaa tgg
 Glu Gly Tyr Ala Ser Tyr Arg Leu Pro Ile Asp Thr Ile Ala Glu Trp
 195 200 205

- 8 -

aaa taa
Lys
210

630

<210> 10
<211> 210
<212> PRT
<213> Bacillus subtilis

<400> 10
Met Ile Lys Thr Asn Asp Phe Met Glu Ile Met Lys Gly Arg Arg Ser
1 5 10 15
Ile Arg Asn Tyr Asp Pro Ala Val Lys Ile Ser Lys Glu Glu Met Thr
20 25 30
Glu Ile Leu Glu Glu Ala Thr Thr Ala Pro Ser Ser Val Asn Ala Gln
35 40 45
Pro Trp Arg Phe Leu Val Ile Asp Ser Pro Glu Gly Lys Glu Lys Leu
50 55 60
Ala Pro Leu Ala Ser Phe Asn Gln Thr Gln Val Thr Thr Ser Ser Ala
65 70 75 80
Val Ile Ala Val Phe Ala Asp Met Asn Asn Ala Asp Tyr Leu Glu Glu
85 90 95
Ile Tyr Ser Lys Ala Val Glu Leu Gly Tyr Met Pro Gln Glu Val Lys
100 105 110
Asp Arg Gln Ile Ala Ala Leu Thr Ala His Phe Glu Lys Leu Pro Ala
115 120 125
Gln Val Asn Arg Glu Thr Ile Leu Ile Asp Gly Gly Leu Val Ser Met
130 135 140
Gln Leu Met Leu Thr Ala Arg Ala His Gly Tyr Asp Thr Asn Pro Ile
145 150 155 160
Gly Gly Tyr Asp Lys Glu Asn Ile Ala Glu Thr Phe Gly Leu Asp Lys
165 170 175
Glu Arg Tyr Val Pro Val Met Leu Leu Ser Ile Gly Lys Ala Ala Asp
180 185 190
Glu Gly Tyr Ala Ser Tyr Arg Leu Pro Ile Asp Thr Ile Ala Glu Trp
195 200 205

Lys
210

<210> 11
<211> 609
<212> DNA
<213> Bacillus subtilis

<220>
<221> CDS
<222> (1)...(609)

<400> 11
atg acg aat act ctg gat gtt tta aaa gca cgt gca tct gta aag gaa 48
Met Thr Asn Thr Leu Asp Val Leu Lys Ala Arg Ala Ser Val Lys Glu
1 5 10 15

- 9 -

tat gat aca aat gcc ccg atc tct aag gag gag ctg act gag cta tta Tyr Asp Thr Asn Ala Pro Ile Ser Lys Glu Glu Leu Thr Glu Leu Leu 20 25 30	96
gac ctt gcc act aaa gcg cct tct gct tgg aac ctt cag cat tgg cat Asp Leu Ala Thr Lys Ala Pro Ser Ala Trp Asn Leu Gln His Trp His 35 40 45	144
ttt aca gta ttc cac agc gat gaa tca aaa gcg gag ctt ctt cct gta Phe Thr Val Phe His Ser Asp Glu Ser Lys Ala Glu Leu Leu Pro Val 50 55 60	192
gcg tat aat caa aaa caa atc gtt gag tct tct gct gtt gtt gcc att Ala Tyr Asn Gln Lys Gln Ile Val Glu Ser Ser Ala Val Val Ala Ile 65 70 75 80	240
tta ggc gat tta aag gca aat gaa aac ggt gaa gaa gtt tat gct gaa Leu Gly Asp Leu Lys Ala Asn Glu Asn Gly Glu Glu Val Tyr Ala Glu 85 90 95	288
tta gca agc caa ggc tat att acg gat gaa atc aaa caa aca ttg ctc Leu Ala Ser Gln Gly Tyr Ile Thr Asp Glu Ile Lys Gln Thr Leu Leu 100 105 110	336
ggc caa atc aac ggt gct tac caa agc gag caa ttc gca cgt gat tcc Gly Gln Ile Asn Gly Ala Tyr Gln Ser Glu Gln Phe Ala Arg Asp Ser 115 120 125	384
gct ttc tta aat gct tct tta gct gct atg cag ctt atg att gcc gca Ala Phe Leu Asn Ala Ser Leu Ala Ala Met Gln Leu Met Ile Ala Ala 130 135 140	432
aaa gca aaa ggt tat gac act tgc gca atc ggc gga ttt aac aaa gag Lys Ala Lys Gly Tyr Asp Thr Cys Ala Ile Gly Gly Phe Asn Lys Glu 145 150 155 160	480
cag ttc caa aag caa ttt gat atc agt gag cgc tat gtt ccg gtt atg Gln Phe Gln Lys Phe Asp Ile Ser Glu Arg Tyr Val Pro Val Met 165 170 175	528
ctt att tca atc ggc aaa gca gtg aag cct gcg cat caa agc aac cgt Leu Ile Ser Ile Gly Lys Ala Val Lys Pro Ala His Gln Ser Asn Arg 180 185 190	576
ctg ccg ctt tca aaa gta tca act tgg ctg taa Leu Pro Leu Ser Lys Val Ser Thr Trp Leu 195 200	609
 <210> 12 <211> 203 <212> PRT <213> Bacillus subtilis	
 <400> 12 Met Thr Asn Thr Leu Asp Val Leu Lys Ala Arg Ala Ser Val Lys Glu 1 5 10 15	
Tyr Asp Thr Asn Ala Pro Ile Ser Lys Glu Glu Leu Thr Glu Leu Leu 20 25 30	
Asp Leu Ala Thr Lys Ala Pro Ser Ala Trp Asn Leu Gln His Trp His 35 40 45	
Phe Thr Val Phe His Ser Asp Glu Ser Lys Ala Glu Leu Leu Pro Val 50 55 60	

- 10 -

Ala	Tyr	Asn	Gln	Lys	Gln	Ile	Val	Glu	Ser	Ser	Ala	Val	Val	Ala	Ile
65															80
Leu	Gly	Asp	Leu	Lys	Ala	Asn	Glu	Asn	Gly	Glu	Glu	Val	Tyr	Ala	Glu
	85														95
Leu	Ala	Ser	Gln	Gly	Tyr	Ile	Thr	Asp	Glu	Ile	Lys	Gln	Thr	Leu	Leu
	100														110
Gly	Gln	Ile	Asn	Gly	Ala	Tyr	Gln	Ser	Glu	Gln	Phe	Ala	Arg	Asp	Ser
	115														125
Ala	Phe	Leu	Asn	Ala	Ser	Leu	Ala	Ala	Met	Gln	Leu	Met	Ile	Ala	Ala
	130														140
Lys	Ala	Lys	Gly	Tyr	Asp	Thr	Cys	Ala	Ile	Gly	Gly	Phe	Asn	Lys	Glu
	145														160
Gln	Phe	Gln	Lys	Gln	Phe	Asp	Ile	Ser	Glu	Arg	Tyr	Val	Pro	Val	Met
	165														175
Leu	Ile	Ser	Ile	Gly	Lys	Ala	Val	Lys	Pro	Ala	His	Gln	Ser	Asn	Arg
	180														190
Leu	Pro	Leu	Ser	Lys	Val	Ser	Thr	Trp	Leu						
	195														200

<210> 13
<211> 555
<212> DNA
<213> Escherichia coli

<220>
<221> CDS
<222> (1)...(555)

<400> 13																
atg	atg	tct	cag	cca	gcg	aaa	gtt	ttg	ctg	ctg	tat	gcc	cat	ccg	gaa	
Met	Met	Ser	Gln	Pro	Ala	Lys	Val	Leu	Leu	Leu	Tyr	Ala	His	Pro	Glu	
1															15	
tct	cag	gac	tgc	gtg	qca	aac	cg	gt	ctg	ctt	aaa	ccg	gcc	acg	cag	
Ser	Gln	Asp	Ser	Val	Ala	Asn	Arg	Val	Leu	Leu	Lys	Pro	Ala	Thr	Gln	
															30	
ctc	agc	aat	gtt	acc	gtg	cac	gac	ctt	tac	g	cac	tat	ccc	gat	ttt	
Leu	Ser	Asn	Val	Thr	Val	His	Asp	Leu	Tyr	Ala	His	Tyr	Pro	Asp	Phe	
															45	
ttt	att	gat	atc	ccc	cgt	gag	cag	gca	tta	ctg	cg	gag	cac	gag	gtg	
Phe	Ile	Asp	Ile	Pro	Arg	Glu	Gln	Ala	Leu	Leu	Arg	Glu	His	Glu	Val	
															50	
att	gtc	ttt	cag	cat	cct	ctt	tat	acc	tat	agc	tgc	ccg	g	ct	ctg	
Ile	Val	Phe	Gln	His	Pro	Leu	Tyr	Thr	Tyr	Ser	Cys	Pro	Ala	Leu	Leu	
															60	
aaa	gag	tgg	ctg	gac	cg	gta	tta	agt	cgt	ggt	ttt	gcc	agc	ggg	ccg	
Lys	Glu	Trp	Leu	Asp	Arg	Val	Leu	Ser	Arg	Gly	Phe	Ala	Ser	Gly	Pro	
															85	
gga	gga	aac	caa	ctg	g	g	aag	tac	tgg	cgt	agc	gtg	att	acc	acc	
Gly	Gly	Asn	Gln	Leu	Ala	Gly	Lys	Tyr	Trp	Arg	Ser	Val	Ile	Thr	Thr	
															100	
ggc	gag	ccg	gaa	agt	gct	tac	cgt	tat	gac	g	ctg	aat	cgc	tac	ccg	
															105	
															110	

- 11 -

Gly	Glu	Pro	Glu	Ser	Aia	Tyr	Arg	Tyr	Asp	Ala	Leu	Asn	Arg	Tyr	Pro
115							120						125		
atg	agc	gat	gtg	ctg	cgc	ccc	ttt	gaa	ctg	gcg	gca	atg	tgc	cgg	432
Met	Ser	Asp	Val	Leu	Arg	Pro	Phe	Glu	Leu	Ala	Ala	Gly	Met	Cys	
130							135						140		
atg	cat	tgg	tta	agt	ccc	atc	att	att	tac	tgg	gcg	aga	cgg	caa	480
Met	His	Trp	Leu	Ser	Pro	Ile	Ile	Ile	Tyr	Trp	Ala	Arg	Arg	Gln	
145						150					155			160	
gca	cag	gag	ctg	gcg	agc	cac	gcc	aga	gcc	tac	ggt	gac	tgg	ctg	528
Ala	Gln	Glu	Leu	Ala	Ser	His	Ala	Arg	Ala	Tyr	Gly	Asp	Trp	Leu	
							165			170				175	
aat	ccg	ctg	tct	cca	gga	ggc	cgc	tga							555
Asn	Pro	Leu	Ser	Pro	Gly	Gly	Arg								
							180			185					
<210> 14															
<211> 185															
<212> PRT															
<213> Escherichia coli															
<400> 14															
Met	Met	Ser	Gln	Pro	Ala	Lys	Val	Leu	Leu	Leu	Tyr	Ala	His	Pro	Glu
1						5				10					15
Ser	Gln	Asp	Ser	Val	Ala	Asn	Arg	Val	Leu	Leu	Lys	Pro	Ala	Thr	Gln
				20					25					30	
Leu	Ser	Asn	Val	Thr	Val	His	Asp	Leu	Tyr	Ala	His	Tyr	Pro	Asp	Phe
						35		40				45			
Phe	Ile	Asp	Ile	Pro	Arg	Glu	Gln	Ala	Leu	Leu	Arg	Glu	His	Glu	Val
						50		55				60			
Ile	Val	Phe	Gln	His	Pro	Leu	Tyr	Thr	Tyr	Ser	Cys	Pro	Ala	Leu	Leu
						65		70		75					80
Lys	Glu	Trp	Leu	Asp	Arg	Val	Leu	Ser	Arg	Gly	Phe	Ala	Ser	Gly	Pro
						85			90					95	
Gly	Gly	Asn	Gln	Leu	Ala	Gly	Lys	Tyr	Trp	Arg	Ser	Val	Ile	Thr	Thr
						100			105				110		
Gly	Glu	Pro	Glu	Ser	Ala	Tyr	Arg	Tyr	Asp	Ala	Leu	Asn	Arg	Tyr	Pro
						115		120				125			
Met	Ser	Asp	Val	Leu	Arg	Pro	Phe	Glu	Leu	Ala	Ala	Gly	Met	Cys	Arg
							130		135				140		
Met	His	Trp	Leu	Ser	Pro	Ile	Ile	Ile	Tyr	Trp	Ala	Arg	Arg	Gln	Ser
						145		150			155			160	
Ala	Gln	Glu	Leu	Ala	Ser	His	Ala	Arg	Ala	Tyr	Gly	Asp	Trp	Leu	Ala
						165			170				175		
Asn	Pro	Leu	Ser	Pro	Gly	Gly	Arg								
					180				185						

```
<210> 15  
<211> 531  
<212> DNA  
<213> Escherichia coli
```

- 12 -

<220>
<221> CDS
<222> (1)..(531)

<400> 15
 atg att ctt ata att tat gcg cat ccg tat ccg cat cat tcc cat gcg 48
 Met Ile Leu Ile Ile Tyr Ala His Pro Tyr Pro His His Ser His Ala
 1 5 10 15
 aat aaa cgg atg ctt gaa cag gca agg acg ctg gaa ggc gtc gaa att 96
 Asn Lys Arg Met Leu Glu Gln Ala Arg Thr Leu Glu Gly Val Glu Ile
 20 25 30
 cgc tct ctt tatcaa ctc tat cct gac ttc aat atc gat att gcc gcc 144
 Arg Ser Leu Tyr Gln Leu Tyr Pro Asp Phe Asn Ile Asp Ile Ala Ala
 35 40 45
 gag cag gag gcg ctg tct cgc gcc gat ctg atc gtc tgg cag cat ccg 192
 Glu Gln Glu Ala Leu Ser Arg Ala Asp Leu Ile Val Trp Gln His Pro
 50 55 60
 atg cag tgg tac agc att cct ccg ctc ctc aaa ctt tgg atc gat aaa 240
 Met Gln Trp Tyr Ser Ile Pro Pro Leu Leu Lys Leu Trp Ile Asp Lys
 65 70 75 80
 gtt ttc tcc cac ggc tgg gct tac ggt cat ggc ggc acg gcg ctg cat 288
 Val Phe Ser His Gly Trp Ala Tyr Gly His Gly Gly Thr Ala Leu His
 85 90 95
 ggc aaa cat ttg ctg tgg gcg gtg acg acc ggc ggc ggg gaa agc cat 336
 Gly Lys His Leu Leu Trp Ala Val Thr Thr Gly Gly Glu Ser His
 100 105 110
 ttt gaa att ggt gcg cat ccg ggc ttt gat gtg ctg tcg cag ccg cta 384
 Phe Glu Ile Gly Ala His Pro Gly Phe Asp Val Leu Ser Gln Pro Leu
 115 120 125
 cag gcg acg gca atc tac tgc ggg ctg aac tgg ctg cca ccg ttt gcc 432
 Gln Ala Thr Ala Ile Tyr Cys Gly Leu Asn Trp Leu Pro Pro Phe Ala
 130 135 140
 atg cac tgc acc ttt att tgt gac gac gaa acc ctc gaa ggg cag gcg 480
 Met His Cys Thr Phe Ile Cys Asp Asp Glu Thr Leu Glu Gly Gln Ala
 145 150 155 160
 cgt cac tat aag caa cgt ctg ctg gaa tgg cag gag gcc cat cat gga 528
 Arg His Tyr Lys Gln Arg Leu Leu Glu Trp Gln Glu Ala His His Gly
 165 170 175
 tag

```
<210> 16
<211> 177
<212> PRT
<213> Escherichia coli
```

```

<400> 16
Met Ile Leu Ile Ile Tyr Ala His Pro Tyr Pro His His Ser His Ala
      1           5           10          15

Asn Lys Arg Met Leu Glu Gln Ala Arg Thr Leu Glu Gly Val Glu Ile
      20          25          30

Arg Ser Leu Tyr Gln Leu Tyr Pro Asp Phe Asn Ile Asp Ile Ala Ala
      35          40          45

```

- 13 -

Glu Gln Glu Ala Leu Ser Arg Ala Asp Leu Ile Val Trp Gln His Pro
50 55 60

Met Gln Trp Tyr Ser Ile Pro Pro Leu Leu Lys Leu Trp Ile Asp Lys
65 70 75 80

Val Phe Ser His Gly Trp Ala Tyr Gly His Gly Gly Thr Ala Leu His
85 90 95

Gly Lys His Leu Leu Trp Ala Val Thr Thr Gly Gly Glu Ser His
100 105 110

Phe Glu Ile Gly Ala His Pro Gly Phe Asp Val Leu Ser Gln Pro Leu
115 120 125

Gln Ala Thr Ala Ile Tyr Cys Gly Leu Asn Trp Leu Pro Pro Phe Ala
130 135 140

Met His Cys Thr Phe Ile Cys Asp Asp Glu Thr Leu Glu Gly Gln Ala
145 150 155 160

Arg His Tyr Lys Gln Arg Leu Leu Glu Trp Gln Glu Ala His His
165 170 175

Gly

<210> 17

<211> 222

<212> PRT

<213> Haemophilus influenzae

<400> 17

Met Thr Gln Leu Thr Arg Glu Gln Val Leu Glu Leu Phe His Gln Arg
1 5 10 15

Ser Ser Thr Arg Tyr Tyr Asp Pro Thr Lys Lys Ile Ser Asp Glu Asp
20 25 30

Phe Glu Cys Ile Leu Glu Cys Gly Arg Leu Ser Pro Ser Ser Val Gly
35 40 45

Ser Glu Pro Trp Lys Phe Leu Val Ile Gln Asn Lys Thr Leu Arg Glu
50 55 60

Lys Met Lys Pro Phe Ser Trp Gly Met Ile Asn Gln Leu Asp Asn Cys
65 70 75 80

Ser His Leu Val Val Ile Leu Ala Lys Lys Asn Ala Arg Tyr Asp Ser
85 90 95

Gln Gln Gln Ala Ala Leu Thr Lys Tyr Lys Ala Leu Gln Glu Glu Asp
100 105 110

Met Lys Leu Leu Glu Asn Asp Arg Thr Leu Phe Asp Trp Cys Ser Lys
115 120 125

Gln Thr Tyr Ile Ala Leu Ala Asn Met Leu Thr Gly Ala Ser Ala Leu
130 135 140

Gly Ile Asp Ser Cys Pro Ile Glu Gly Phe His Tyr Asp Lys Met Asn
145 150 155 160

Glu Cys Leu Ala Glu Glu Gly Leu Phe Asp Pro Gln Glu Tyr Ala Val
165 170 175

Lys Ser Arg Lys Gly Leu Asp Glu Val Val Lys Trp Val Gly

- 14 -

180

185

190

<210> 18
<211> 207
<212> PRT
<213> Thermus aquaticus

<400> 18
Met Glu Ala Thr Leu Pro Val Leu Asp Ala Lys Thr Ala Ala Leu Lys
1 5 10 15
Arg Arg Ser Ile Arg Arg Tyr Arg Lys Asp Pro Val Pro Glu Gly Leu
20 25 30
Leu Arg Glu Ile Leu Glu Ala Ala Leu Arg Ala Pro Ser Ala Trp Asn
35 40 45
Leu Gln Pro Trp Arg Ile Val Val Val Arg Asp Pro Ala Thr Lys Arg
50 55 60
Ala Leu Arg Glu Ala Ala Phe Gly Gln Ala His Val Glu Glu Ala Pro
65 70 75 80
Val Val Leu Val Leu Tyr Ala Asp Leu Glu Asp Ala Leu Ala His Leu
85 90 95
Gln Lys Gln Ala Ile Gln Arg Ala Phe Ala Ala Met Gly Gln Glu Ala
100 105 110
Arg Lys Ala Trp Ala Ser Gly Gln Ser Tyr Ile Leu Leu Gly Tyr Leu
115 120 125
Leu Leu Leu Glu Ala Tyr Gly Leu Gly Ser Val Pro Met Leu Gly
130 135 140
Phe Asp Pro Glu Arg Val Arg Ala Ile Leu Gly Leu Pro Ser Arg Ala
145 150 155 160
Ala Ile Pro Ala Leu Val Ala Leu Gly Tyr Pro Ala Glu Glu Gly Tyr
165 170 175
Pro Ser His Arg Leu Pro Leu Glu Arg 0 Val Val Leu Trp Arg
180 185 0 190

<210> 19
<211> 212
<212> PRT
<213> Synechocystis PCC6803

<400> 19
Met Asp Thr Phe Asp Ala Ile Tyr Gln Arg Arg Ser Val Lys His Phe
1 5 10 15
Asp Pro Asp His Arg Leu Thr Ala Glu Glu Glu Arg Lys Leu His Glu
20 25 30
Ala Ala Ile Gln Ala Pro Thr Ser Phe Asn Ile Gln Leu Trp Arg Phe
35 40 45
Leu Ile Ile Arg Asp Pro Gln Leu Arg Gln Thr Ile Arg Glu Lys Tyr
50 55 60
Gly Asn Gln Ala Gln Met Thr Asp Ala Ser Leu Leu Ile Leu Val Ala
65 70 75 80

- 15 -

Ala	Asp	Val	Asn	Ala	Trp	Asp	Lys	Asp	Pro	Ala	Arg	Tyr	Trp	Arg	Asn
85							90							95	
Phe	Tyr	Gly	Gly	Lys	Pro	Gln	Leu	Gln	Arg	Asp	Glu	Ala	Gln	Arg	Ser
100							105						110		
Ile	Gly	Met	Ala	Met	Gln	Asn	Leu	Met	Leu	Ala	Ala	Lys	Ala	Met	Gly
115							120						125		
Tyr	Asp	Ser	Cys	Pro	Met	Ile	Gly	Phe	Asp	Leu	Gln	Lys	Val	Ala	Glu
130							135						140		
Leu	Val	Lys	Leu	Pro	Ala	Asp	Tyr	Ala	Ile	Gly	Pro	Met	Val	Ala	Ile
145							150						155		160
Gly	Lys	Arg	Thr	Glu	Asp	Ala	Pro	Gly	Lys	Arg	Arg	Ser	Asn	Ser	Pro
165								170						175	
Cys	Leu	Ala	Ile												
180															

<210> 20

<211> 172

<212> PRT

<213> Archaeoglobus fulgidus

<400> 20

Met	Glu	Cys	Leu	Asp	Leu	Leu	Phe	Arg	Arg	Val	Ser	Ile	Arg	Lys	Phe
1							5					10		15	

Thr	Gln	Asp	Asp	Val	Asp	Asp	Glu	Ile	Leu	Met	Lys	Ile	Leu	Glu	Ala
20							25					30			

Gly	Asn	Ala	Ala	Pro	Ser	Ala	Gly	Asn	Leu	Gln	Ala	Arg	Asp	Phe	Val
35							40					45			

Val	Ile	Arg	Asn	Pro	Glu	Thr	Lys	Lys	Arg	Leu	Ala	Met	Ala	Ala	Leu
50							55					60			

Lys	Gln	Met	Phe	Ile	Ala	Glu	Ala	Pro	Val	Val	Ile	Val	Val	Cys	Ala
65							70					75		80	

Asn	Tyr	Pro	Arg	Ser	Met	Arg	Val	Tyr	Gly	Glu	Arg	Gly	Arg	Leu	Tyr
85							90					95			

Ala	Glu	Gln	Asp	Ala	Thr	Ala	Ala	Ile	Glu	Asn	Ile	Leu	Leu	Ala	Val
100							105					110			

Thr	Ala	Leu	Asn	Leu	Gly	Ala	Val	Trp	Val	Gly	Ala	Phe	Asp	Glu	Glu
115							120					125			

Gln	Val	Ser	Glu	Ile	Leu	Glu	Leu	Pro	Glu	Tyr	Val	Arg	Pro	Met	Ala
130							135					140			

Ile	Ile	Pro	Ile	Gly	His	Pro	Ala	Glu	Asn	Pro	Ser	Pro	Arg	Asn	Arg
145							150					155		160	

Tyr	Pro	Val	Ser	Met	Leu	Thr	His	Phe	Glu	Lys	Trp				
165							170								

<210> 21

<211> 174

<212> PRT

<213> Archaeoglobus fulgidus

- 16 -

<400> 21
 Met Glu Glu Cys Leu Lys Met Ile Tyr Thr Arg Arg Ser Ile Arg Val
 1 5 10 15
 Tyr Ser Asp Arg Gln Ile Ser Asp Glu Asp Ile Glu Lys Ile Leu Lys
 20 25 30
 Ala Ala Met Leu Ala Pro Ser Ala Gly Asn Glu Gln Pro Trp His Phe
 35 40 45
 Ile Val Val Arg Asp Arg Glu Met Leu Lys Lys Met Ser Glu Ala Phe
 50 55 60
 Thr Phe Gly Gln Met Leu Pro Asn Ala Ser Ala Ala Ile Val Val Cys
 65 70 75 80
 Ala Asp Pro Lys Leu Ser Lys Tyr Pro Tyr Asp Met Trp Val Gln Asp
 85 90 95
 Cys Ser Ala Ala Thr Glu Asn Ile Leu Leu Ala Ala Arg Cys Leu Gly
 100 105 110
 Ile Gly Ser Val Trp Leu Gly Val Tyr Pro Arg Glu Glu Arg Met Lys
 115 120 125
 Ala Leu Arg Glu Leu Leu Gly Ile Pro Glu Asn Ile Val Val Phe Ser
 130 135 140
 Val Val Ser Leu Gly Tyr Pro Lys Asp Glu Lys Asp Phe Tyr Glu Ala
 145 150 155 160
 Asp Asp Arg Phe Asn Pro Asp Arg Ile His Arg Glu Lys Trp
 165 170

<210> 22
<211> 606
<212> DNA
<213> Campylobacter jejuni

<220>
<221> CDS
<222> (1)...(606)

<400> 22
 atg aaa aaa gaa ctt gaa att ttt agc aca aga tat tct tgt aga aat 48
 Met Lys Lys Glu Leu Glu Ile Phe Ser Thr Arg Tyr Ser Cys Arg Asn
 1 5 10 15
 ttt aaa aat gaa aaa ctc aaa aaa gag gat tta aat tct att tta gaa 96
 Phe Lys Asn Glu Lys Leu Lys Lys Glu Asp Leu Asn Ser Ile Leu Glu
 20 25 30
 ata gca aga tta agc ccc agt tcc ttg gga ctg gaa cct tgg aaa ttt 144
 Ile Ala Arg Leu Ser Pro Ser Ser Leu Gly Leu Glu Pro Trp Lys Phe
 35 40 45
 ata gta gtg caa gat gag aaa aga aaa gaa gaa ctt tct aaa att tgc 192
 Ile Val Val Gln Asp Glu Lys Arg Lys Glu Leu Ser Lys Ile Cys
 50 55 60
 aat caa caa aaa cat gta aaa gat tgt gct gca tta att ata atc att 240
 Asn Gln Gln Lys His Val Lys Asp Cys Ala Ala Leu Ile Ile Ile
 65 70 75 80
 tca aga ctt gat ttt ttg gat tat ttt gaa gaa aaa ctt aga aaa aga 288
 Ser Arg Leu Asp Phe Leu Asp Tyr Phe Glu Glu Lys Leu Arg Lys Arg

- 17 -

85	90	95	
gat atg agt gaa aca gaa atg caa aaa cgc tta gat act tat atg cct Asp Met Ser Glu Thr Glu Met Gln Lys Arg Leu Asp Thr Tyr Met Pro	100	105	336
		110	
ttt tta aaa tct cta aat caa gaa caa aaa ata tct tat gca aga gaa Phe Leu Lys Ser Leu Asn Gln Glu Gln Lys Ile Ser Tyr Ala Arg Glu	115	120	384
		125	
caa gct cat ata gct cta gct agc ata ctt tac agt gct aat gct tta Gln Ala His Ile Ala Leu Ala Ser Ile Leu Tyr Ser Ala Asn Ala Leu	130	135	432
		140	
aat ata gca agc tgc act ata ggt ggt ttt gat aaa gaa aag ctt gat Asn Ile Ala Ser Cys Thr Ile Gly Gly Phe Asp Lys Glu Lys Leu Asp	145	150	480
		155	160
tct tat tta tca ctt gat att caa aaa gaa aga tca agt ttg gtg gtg Ser Tyr Leu Ser Leu Asp Ile Gln Lys Glu Arg Ser Ser Leu Val Val	165	170	528
		175	
gct tta gga tat tgc aac gat aaa aaa aat cct caa aaa aat cgt ttt Aia Leu Gly Tyr Cys Asn Asp Lys Lys Asn Pro Gln Lys Asn Arg Phe	180	185	576
		190	
agt ttt gat gaa gtt gta aaa ttt att taa Ser Phe Asp Glu Val Val Lys Phe Ile	195	200	606

<210> 23
<211> 202
<212> PRT
<213> Campylobacter jejuni

<400> 23			
Met Lys Lys Glu Leu Glu Ile Phe Ser Thr Arg Tyr Ser Cys Arg Asn	1	5	15
Phe Lys Asn Glu Lys Leu Lys Glu Asp Leu Asn Ser Ile Leu Glu	20	25	30
Ile Ala Arg Leu Ser Pro Ser Ser Leu Gly Leu Glu Pro Trp Lys Phe	35	40	45
Ile Val Val Gln Asp Glu Lys Arg Lys Glu Glu Leu Ser Lys Ile Cys	50	55	60
Asn Gln Gln Lys His Val Lys Asp Cys Ala Ala Leu Ile Ile Ile	65	70	80
Ser Arg Leu Asp Phe Leu Asp Tyr Phe Glu Glu Lys Leu Arg Lys Arg	85	90	95
Asp Met Ser Glu Thr Glu Met Gln Lys Arg Leu Asp Thr Tyr Met Pro	100	105	110
Phe Leu Lys Ser Leu Asn Gln Glu Gln Lys Ile Ser Tyr Ala Arg Glu	115	120	125
Gln Ala His Ile Ala Leu Ala Ser Ile Leu Tyr Ser Ala Asn Ala Leu	130	135	140
Asn Ile Ala Ser Cys Thr Ile Gly Gly Phe Asp Lys Glu Lys Leu Asp	145	150	160

- 18 -

Ser Tyr Leu Ser Leu Asp Ile Gln Lys Glu Arg Ser Ser Leu Val Val
 165 170 175

Ala Leu Gly Tyr Cys Asn Asp Lys Lys Asn Pro Gln Lys Asn Arg Phe
 180 185 190

Ser Phe Asp Glu Val Val Lys Phe Ile
 195 200

<210> 24
 <211> 522
 <212> DNA
 <213> Porphyromonas gingivalis

<220>
 <221> CDS
 <222> (1)...(522)

<400> 24		48
atg aaa aaa acg ctc gta ata gtc gtt cac ccc gat ttg acc aaa tcc		
Met Lys Lys Thr Leu Val Ile Val Val His Pro Asp Leu Thr Lys Ser		
1 5 10 15		
gtt atc aac aag gct tgg gcc aaa gcc atc gaa ggt gca gcc act atc		96
Val Ile Asn Lys Ala Trp Ala Lys Ala Ile Glu Gly Ala Ala Thr Ile		
20 25 30		
cac cat ctc tac gaa cag tat ccg aac gga caa atc gat cta gca cat		144
His His Leu Tyr Glu Gln Tyr Pro Asn Gly Gln Ile Asp Leu Ala His		
35 40 45		
gaa caa gcc ctg ctg gag gct cat gac cgc atc gtc ttc caa ttc ccc		192
Glu Gln Ala Leu Leu Glu Ala His Asp Arg Ile Val Phe Gln Phe Pro		
50 55 60		
ctc tat tgg tat gca gct ccc tat ctg ctg aag aag tgg atg gac gag		240
Leu Tyr Trp Tyr Ala Ala Pro Tyr Leu Leu Lys Lys Trp Met Asp Glu		
65 70 75 80		
gtc ttt act gag ggc tgg gcc tat ggt gcc ggt gga gac aag atg gag		288
Val Phe Thr Glu Gly Trp Ala Tyr Gly Ala Gly Gly Asp Lys Met Glu		
85 90 95		
ggt aaa gaa atc tgt gca gca gtc tcc tgc gga tca ccc aaa tca gct		336
Gly Lys Glu Ile Cys Ala Ala Val Ser Cys Gly Ser Pro Lys Ser Ala		
100 105 110		
ttt gcc gaa gga gca cag caa tgc cac acg ctg cga agc tac ttg aat		384
Phe Ala Glu Gly Ala Gln Gln Cys His Thr Leu Arg Ser Tyr Leu Asn		
115 120 125		
gta ttc gac ggg ata gct gct ttc ctg cgc gct cga ttc acc ggc tac		432
Val Phe Asp Gly Ile Ala Ala Phe Leu Arg Ala Arg Phe Thr Gly Tyr		
130 135 140		
cat gcc tgc tac gat tcc tac aat cct cgc ctg ccg gaa atg ctg ccg		480
His Ala Cys Tyr Asp Ser Tyr Asn Pro Arg Leu Pro Glu Met Leu Pro		
145 150 155 160		
gcc aac tgc gaa gcc tat ctc cgc ttt atc aaa gga gaa tga		522
Ala Asn Cys Glu Ala Tyr Leu Arg Phe Ile Lys Gly Glu		
165 170		

<210> 25
 <211> 174

<212> PRT

<213> Porphyromonas gingivalis

<400> 25

Met	Lys	Lys	Thr	Leu	Val	Ile	Val	Val	His	Pro	Asp	Leu	Thr	Lys	Ser
1				5				10						15	
Val	Ile	Asn	Lys	Ala	Trp	Ala	Lys	Ala	Ile	Glu	Gly	Ala	Ala	Thr	Ile
	20						25							30	
His	His	Leu	Tyr	Glu	Gln	Tyr	Pro	Asn	Gly	Gln	Ile	Asp	Leu	Ala	His
	35						40					45			
Glu	Gln	Ala	Leu	Leu	Glu	Ala	His	Asp	Arg	Ile	Val	Phe	Gln	Phe	Pro
	50					55					60				
Leu	Tyr	Trp	Tyr	Ala	Ala	Pro	Tyr	Leu	Leu	Lys	Lys	Trp	Met	Asp	Glu
	65					70				75			80		
Val	Phe	Thr	Glu	Gly	Trp	Ala	Tyr	Gly	Ala	Gly	Gly	Asp	Lys	Met	Glu
	85						90					95			
Gly	Lys	Glu	Ile	Cys	Ala	Ala	Val	Ser	Cys	Gly	Ser	Pro	Lys	Ser	Ala
	100						105					110			
Phe	Ala	Glu	Gly	Ala	Gln	Gln	His	Thr	Leu	Arg	Ser	Tyr	Leu	Asn	
	115						120				125				
Val	Phe	Asp	Gly	Ile	Ala	Ala	Phe	Leu	Arg	Ala	Arg	Phe	Thr	Gly	Tyr
	130						135				140				
His	Ala	Cys	Tyr	Asp	Ser	Tyr	Asn	Pro	Arg	Leu	Pro	Glu	Met	Leu	Pro
	145						150				155			160	
Ala	Asn	Cys	Glu	Ala	Tyr	Leu	Arg	Phe	Ile	Lys	Gly	Glu			
	165						170								

<210> 26

<211> 552

<212> DNA

<213> Yersinia pestis

<220>

<221> CDS

<222> (1)...(552)

<400> 26

atg	atg	ttg	cag	ccg	aag	gtt	ttg	ctg	ctg	tat	gcc	cat	ccg	gaa	48
Met	Met	Leu	Gln	Pro	Pro	Lys	Val	Leu	Leu	Tyr	Ala	His	Pro	Glu	
1				5				10					15		
tca	cag	gac	tcg	gtc	gct	aac	cgg	gtt	tta	ctg	caa	ccg	gta	cag	96
Ser	Gln	Asp	Ser	Val	Ala	Asn	Arg	Val	Leu	Leu	Gln	Pro	Val	Gln	Gln
	20						25				30				
tta	gaa	cat	gtc	act	gtg	cac	gat	ctt	tat	gca	cat	tat	ccg	gat	ttc
Leu	Glu	His	Val	Thr	Val	His	Asp	Leu	Tyr	Ala	His	Tyr	Pro	Asp	Phe
	35						40				45				144
ttt	att	gat	att	cat	cat	gag	cag	caa	ttg	cta	cgt	gat	cat	caa	gtt
Phe	Ile	Asp	Ile	His	His	Glu	Gln	Gln	Leu	Leu	Arg	Asp	His	Gln	Val
	50					55				60					192
att	gtt	ttt	caa	cat	cct	tta	tat	act	tac	agt	tgc	cct	gca	tta	ctg
Ile	Val	Phe	Gln	His	Pro	Leu	Tyr	Thr	Tyr	Ser	Cys	Pro	Ala	Leu	Leu
	65					70				75			80		240

- 20 -

aaa gag tgg ttg gat cgg gta ctg gca cgt ggt ttc gcc aat ggc gtt Lys Glu Trp Leu Asp Arg Val Leu Ala Arg Gly Phe Ala Asn Gly Val 85 90 95	288
ggc ggc cat gca ctg acg gga aag cac tgg cgc tcg gtg att acc acc Gly Gly His Ala Leu Thr Gly Lys His Trp Arg Ser Val Ile Thr Thr 100 105 110	336
ggt gag cag gag gga act tac cgt att ggg gga tat aac cgt tac cca Gly Glu Gln Glu Gly Thr Tyr Arg Ile Gly Gly Tyr Asn Arg Tyr Pro 115 120 125	384
atg gaa gac att ctg cgt cct ttc gaa ttg acg gcg gct atg tgc cat Met Glu Asp Ile Leu Arg Pro Phe Glu Leu Thr Ala Ala Met Cys His 130 135 140	432
atg cat tgg att aat ccg atg att att tac tgg gcc aga cgc caa aag Met His Trp Ile Asn Pro Met Ile Ile Tyr Trp Ala Arg Arg Gln Lys 145 150 155 160	480
ccg gaa aca ctc gcc agt cac gca caa gct tat gtg caa tgg ctg cag Pro Glu Thr Leu Ala Ser His Ala Gln Ala Tyr Val Gln Trp Leu Gln 165 170 175	528
tca ccg ctc acg aga gga ctc tga Ser Pro Leu Thr Arg Gly Leu 180	552

<210> 27
<211> 184
<212> PRT
<213> Yersinia pestis

<400> 27 Met Met Leu Gln Pro Pro Lys Val Leu Leu Leu Tyr Ala His Pro Glu 1 5 10 15
Ser Gln Asp Ser Val Ala Asn Arg Val Leu Leu Gln Pro Val Gln Gln 20 25 30
Leu Glu His Val Thr Val His Asp Leu Tyr Ala His Tyr Pro Asp Phe 35 40 45
Phe Ile Asp Ile His His Glu Gln Gln Leu Leu Arg Asp His Gln Val 50 55 60
Ile Val Phe Gln His Pro Leu Tyr Thr Tyr Ser Cys Pro Ala Leu Leu 65 70 75 80
Lys Glu Trp Leu Asp Arg Val Leu Ala Arg Gly Phe Ala Asn Gly Val 85 90 95
Gly Gly His Ala Leu Thr Gly Lys His Trp Arg Ser Val Ile Thr Thr 100 105 110
Gly Glu Gln Glu Gly Thr Tyr Arg Ile Gly Gly Tyr Asn Arg Tyr Pro 115 120 125
Met Glu Asp Ile Leu Arg Pro Phe Glu Leu Thr Ala Ala Met Cys His 130 135 140
Met His Trp Ile Asn Pro Met Ile Ile Tyr Trp Ala Arg Arg Gln Lys 145 150 155 160
Pro Glu Thr Leu Ala Ser His Ala Gln Ala Tyr Val Gln Trp Leu Gln 165 170 175

- 21 -

Ser Pro Leu Thr Arg Gly Leu
180

<210> 28
<211> 633
<212> DNA

<213> Helicobacter pylori

<400> 28
atgaaaatttt tggatcaaga aaaaaagaaga caattgctaa acgagcgcca ttcttgcaag 60
atgttcgaca gccattatga gttttctagt gaagaattag aagaaatcgc tgaaatcgct 120
aggctatcgc caagcttta caaacacgcag ccatggcatt ttgtgtatggt tactaataag 180
gatttaaaaa aacaaattgc agcgcacage tatttaatg aagaaatgtat taaaagcgct 240
tcagcgtaa tggtggtatg ctctttaaaa cccagcgagt tggtacccac tggccactac 300
atgcaaaacc ttacccgga gtcttataag gtttagatgtat cccctcttt tgctcaaattg 360
cttggcgtga gattcaacca cagcatgcaa aaattagaaa gctatattt ggagcaatgc 420
tatatcgctg tggggcaaattt ttgcattggc gtgagcttaa tgggatttggatggcatt 480
attggaggct ttgatccttt aaaagtgggc gaagttttag aagagcgtat caataaacct 540
aaaatcgcat gcttgatcgat tttgggcaag agggtggcag aagcgagcca aaaatcaaga 600
aaatcaaaag ttgatgccat tacttggttg tga 633

<210> 29
<211> 210
<212> PRT
<213> Helicobacter pylori

<400> 29
Met Lys Phe Leu Asp Gln Glu Lys Arg Arg Gln Leu Leu Asn Glu Arg
1 5 10 15
His Ser Cys Lys Met Phe Asp Ser His Tyr Glu Phe Ser Ser Glu Glu
20 25 30
Leu Glu Glu Ile Ala Glu Ile Ala Arg Leu Ser Pro Ser Ser Tyr Asn
35 40 45
Thr Gln Pro Trp His Phe Val Met Val Thr Asn Lys Asp Leu Lys Lys
50 55 60
Gln Ile Ala Ala His Ser Tyr Phe Asn Glu Glu Met Ile Lys Ser Ala
65 70 75 80
Ser Ala Leu Met Val Val Cys Ser Leu Lys Pro Ser Glu Leu Leu Pro
85 90 95
Thr Gly His Tyr Met Gln Asn Leu Tyr Pro Glu Ser Tyr Lys Val Arg
100 105 110
Val Ile Pro Ser Phe Ala Gln Met Leu Gly Val Arg Phe Asn His Ser
115 120 125
Met Gln Lys Leu Glu Ser Tyr Ile Leu Glu Gln Cys Tyr Ile Ala Val
130 135 140
Gly Gln Ile Cys Met Gly Val Ser Leu Met Gly Leu Asp Ser Cys Ile

- 22 -

145	150	155	160
Ile Gly Gly Phe Asp Pro Leu Lys Val Gly Glu Val Leu Glu Glu Arg			
165	170	175	
Ile Asn Lys Pro Lys Ile Ala Cys Leu Ile Ala Leu Gly Lys Arg Val			
180	185	190	
Ala Glu Ala Ser Gln Lys Ser Arg Lys Ser Lys Val Asp Ala Ile Thr			
195	200	205	
Trp Leu			
210			

INTERNATIONAL SEARCH REPORT

International Application No
PCT/GB 00/00431

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 C12N9/02 C12N15/52 A61K35/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 C12N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

WPI Data, EPO-Internal, STRAND, BIOSIS

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	EP 0 540 263 A (CANCER RES CAMPAIGN TECH) 5 May 1993 (1993-05-05) cited in the application the whole document ---	1-3,5-28
X	WO 95 12678 A (CONNORS THOMAS ;KNOX RICHARD (GB); SHERWOOD ROGER (GB); CANCER RES) 11 May 1995 (1995-05-11) the whole document especially figure 6, examples 1-4 ---	1-3,5-28
X	DE 42 21 830 A (BIOTECHNOLOG FORSCHUNG GMBH) 28 January 1993 (1993-01-28) the whole document ---	1-3,5-28
		-/-

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered to be of particular relevance
"E" earlier document but published on or after the International filing date
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
"O" document referring to an oral disclosure, use, exhibition or other means
"P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
"&" document member of the same patent family

Date of the actual completion of the international search	Date of mailing of the international search report
13 July 2000	25/07/2000
Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Authorized officer Panzica, G

INTERNATIONAL SEARCH REPORTInternational Application No
PCT/GB 00/00431**C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT**

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	EP 0 547 876 A (CHISSO CORP) 23 June 1993 (1993-06-23) abstract claim 4; figure 4 ----	1-3,5-28
X	ANTELmann H. ET AL.: "First step from a two-dimensional protein index towards a response-regulation map for <i>Bacillus subtilis</i> " ELECTROPHORESIS, vol. 18, no. 8, 1997, pages 1451-1463, XP000923464 the whole document ----	1-3,5-28
X	WO 98 57662 A (BURKE PHILIP JOHN ;ENZACTA R & D LTD (GB); KNOX RICHARD JOHN (GB)) 23 December 1998 (1998-12-23) abstract figure 6; example 1 -----	1-3,5-28