

ООО «ЭС ЭНД ЭЙ ЛАБ» 192007, Город Санкт-Петербург, вн.тер. г. Муниципальный Округ Волковское, пр-кт Лиговский, дом 150, литера А, офис 612, помещение 27H sa-lab.dev

# Продукт CraneWare.App

Описание архитектуры

## Основные положения

Описание технической архитектуры программного продукта «CraneWare.App» (далее Продукт).

| Свойство                 | Значение                                                                                 |
|--------------------------|------------------------------------------------------------------------------------------|
| Наименование<br>продукта | CraneWare.App                                                                            |
| Разработчик              | OOO "S&A Lab"                                                                            |
| Адрес разработчика       | 192007, г. Санкт-Петербург, Лиговский проспект, д.150 литера А, офис 612, помещение 27н. |
| Сайт разработчика        | sa-lab.dev                                                                               |

### Обзор

CraneWare.App — это помощник оператору грузоподъемной техники в быстрой оценке её технического состояния и готовности к работе. Предназначен для отслеживания текущих рабочих параметров оборудования техники, а также для облегчения поиска и анализа неисправностей. Он применим к:

- Промышленным грузоподъемным механизмам
- Грузоподъемным механизмам грузовых судов

# Описание программного продукта

CraneWare.App — Система мониторинга грузоподъемных механизмов

Программный продукт, выступающий в качестве помощника оператора грузоподъёмной техники. Предназначен для быстрого определения технического состояния и готовности к работе, мониторинга непосредственно во время работы и помощи при поиске и анализе неисправностей.

### Основные функции

- Отображение параметров различных агрегатов грузоподъёмного механизма в реальном времени для оператора;
- Управление оператором режимами работы грузоподъёмного механизма;
- Отображение и хранение параметров-событий, возникающих в агрегатах грузоподёмного механизма;
- Отображение и хранение аварийных ситуаций, возникающих в агрегатах грузоподёмного механизма. Сброс аварий после устранения аварийных ситуаций;
- Контроль оператором процесса компенсации качки.

# Архитектура - Обзор решений

#### Основные компоненты системы

- Бэкенд
  - База данных (БД)
  - АРІ сервер
  - Модуль мониторинга значений ПЛК
- Фронтенд
  - Домен сущности системы
  - Инфраструктура внешние взаимодествия
  - Презентация визуализация информации, взаимодействие с пользователем

Связь между элементами системы осуществляется посредством сообщений, передаваемых по TCP/IP.

### Общая структурная схема



Схема 1. Общая структурная схема

# Архитектура - Описание элементов

## АРІ-Сервер

- Хранение данных
- Структурированный доступ
- Защита данных



Схема 1. Структурная схема модуля АРІ-Сервер

## СМА-Сервер

- Периодический опрос ПЛК с фиксированной частотой
- Отслеживание событий и аварий
- Сохранение истории событий и аварий в БД



Link - Механизм асинхронного взимодествия между модулями и потоками приложения посредствам передачи сообщений. Схема 2. Структурная схема модуля СМА-Сервер

#### СМА-Клиент

- Домен сущности системы
- Инфраструктура внешние взаимодествия
- Презентация визуализация информации, взаимодействие с пользователем



Схема 3. Структурная схема модуля АРІ-Сервер

# Стратегия

### Масштабируемость

Модульная архитектура применямых решений, стандартизация интерфейсов позволяют легко модифицировать и расширять отдельные модули и их количество, тем самым наращивать функционал приложения в целом.

#### Надежность

- Все модули приложения функционируют самостоятельно и сбои в модулях не приводят к фатальным ошибкам всего приложения.
- Все модули имеют встроенную систему логирования для оперативной локализации проблем.
- Исходный код всех модулей приложения снабжен системой автотестирования, что позволяет избегать ошибок в атомарных единицах и повышает надежность софта в целом.

#### Безопасность

- Взаимодействие между модулями приложения оссуществляемое по открытым каналам связи может быть зашифровано.
- Подключение к модулям хранения и обработки данных осуществляется с применением надежных механизмов авторизации.

# Инфраструктура и развертывание программного обеспечения

#### Требования к среде и аппаратному обеспечению

- Поддерживаемые операционные системы
  - Linux

Для эффективной работы приложения рекомендуется использовать многоядерные современные процессоры и высокоскоростные память и носители информации:

- В варианте "тонкий клиент" (сервер на одной машине, клиент на другой):
  - Для сервера:
    - процессор минимум Intel Core i7 (4 и более ядер)
    - RAM DDR4/DDR5 ot 16 GB
    - SSD NVMe (or 3000 MBps)
  - Для клиента:
    - процессор минимум Intel Celeron (4 и более ядер)
    - RAM DDR4/DDR5 ot 8 GB
    - HDD
- В варианте размещения всех компонентов на одной машине:
  - процессор минимум Intel Core i7 (4 и более ядер)
  - RAM DDR4/DDR5 ot 16 GB
  - ∘ SSD NVMe (or 3000 MBps)

#### **Установка**

 Для удобной установки приложения все модули собираются в установочные пакеты с полным списком зависимостей