Overview of SC-FDMA

YunXiang LIU, Leo

INFINITUS, Nanyang Technological University
Yingcai Experimental School, University of Electronic Science and Technology
of China

liuyunxiang1991@gmail.com

October 19, 2012

WARNING

Do not trust all the ideas I'll say!! Keep thinking!!

WARNING

Do not trust all the ideas I'll say!! Keep thinking!!

Undergraduate Student

WARNING

Do not trust all the ideas I'll say!! Keep thinking!!

Undergraduate Student

Interact

Introduction to Principle of SC-FDMA System

- Introduction to Principle of SC-FDMA System
 - 1. Structure of SC-FDMA

- Introduction to Principle of SC-FDMA System
 - 1. Structure of SC-FDMA
 - 2. Mathmatical Model

- Introduction to Principle of SC-FDMA System
 - 1. Structure of SC-FDMA
 - 2. Mathmatical Model
 - 3. Key techniques in the SC-FDMA

- Introduction to Principle of SC-FDMA System
 - 1. Structure of SC-FDMA
 - 2. Mathmatical Model
 - 3. Key techniques in the SC-FDMA

 Comparison SC-FDMA System to OFDMA System and DS-CDMA System

- Introduction to Principle of SC-FDMA System
 - 1. Structure of SC-FDMA
 - 2. Mathmatical Model
 - 3. Key techniques in the SC-FDMA

 Comparison SC-FDMA System to OFDMA System and DS-CDMA System

Summary, Conclusions and Thoughts

- Introduction to Principle of SC-FDMA System
 - 1. Structure of SC-FDMA
 - 2. Mathmatical Model
 - 3. Key techniques in the SC-FDMA

 Comparison SC-FDMA System to OFDMA System and DS-CDMA System

Summary, Conclusions and Thoughts

Principle of SC-FDMA System

Principle of SC-FDMA System

Block diagram of SC-FDMA system

Fig: Structure of SC-FDMA system

- Introduction to Principle of SC-FDMA System
 - Structure of SC-FDMA
 - 2. Mathmatical Model
 - 3. Key techniques in the SC-FDMA

 Comparison SC-FDMA System to OFDMA System and DS-CDMA System

Summary, Conclusions and Thoughts

DFT operation

$$X^u = F_M d^u$$

$$d^{u} = [d_{1}^{u}, d_{2}^{u}, \dots, d_{M}^{u},]^{T}$$

$$[F_M]_{p,q} = (1/\sqrt{M}) e^{-j2\pi (pq/M)}$$

DFT operation

$$X^u = F_M d^u$$

where

$$d^{u} = [d_{1}^{u}, d_{2}^{u}, \dots, d_{M}^{u},]^{T}$$

$$[F_M]_{p,q} = (1/\sqrt{M}) e^{-j2\pi(pq/M)}$$

Subcarrier Mapping

$$\overline{X^u} = M_T^u X^u$$

where M_T^u is subcarrier mapping matrix

DFT operation

$$X^u = F_M d^u$$

where

$$d^{u} = [d_{1}^{u}, d_{2}^{u}, \dots, d_{M}^{u},]^{T}$$

$$[F_M]_{p,q} = (1/\sqrt{M}) e^{-j2\pi(pq/M)}$$

Subcarrier Mapping

$$\overline{X^u} = M_T^u X^u$$

where M_T^u is subcarrier mapping matrix (talk later)

IDFT operation

$$x^u = F_N^{-1} M_T^u X^u$$

IDFT operation

$$x^u = F_N^{-1} M_T^u X^u$$

• add CP

$$\overline{x^u} = P_{add} F_N^{-1} M_T^u X^u$$

$$P_{add} = [\mathit{C}, \mathit{I}_{\mathit{N}}]^{\mathit{T}}$$

$$C = [0_{N_C \times (M-N_C)}, I_{N_C}]^T$$

Mathmatical Model-Channel and Reciever

Propagation in the Channel

$$\overline{y} = \sum_{u=1}^{U} \overline{E^u} H^u \overline{x^u} + n$$

$$[\overline{E^u}]_{n,n}=e^{j2\pi\varepsilon_u n/N}, n=0,......,N+N_C-1$$
 and H^u is an $(N+N_C)\times(N+N_C)$ matrix

Mathmatical Model-Channel and Reciever

Propagation in the Channel

$$\overline{y} = \sum_{u=1}^{U} \overline{E^u} H^u \overline{x^u} + n$$

where

$$\overline{[E^u]}_{n,n}=e^{j2\pi\varepsilon_u n/N}, n=0,......,N+N_C-1$$
 and H^u is an $(N+N_C)\times(N+N_C)$ matrix

After Remove the CP

$$y = P_{rem}\overline{y} = \sum_{u=1}^{U} E^{u} H_{C}^{u} x^{u} + \overline{n}$$

$$P_{rem} = [0_{(N \times N_C)}, I_N]$$

Mathmatical Model-Reciever

DFT opearation in the receiver

$$Y = F_N y = \sum_{u=1}^{U} F_N E^u H_C^u x^u + F_N \overline{n}$$

$$\Rightarrow Y = \sum_{u=1}^{U} \Omega_{cir}^u \Lambda^u \bar{X}^u + N$$

$$\Omega_{cir}^u = F_N E^u F_N^{-1}$$

Mathmatical Model-Reciever

· DFT opearation in the receiver

$$Y = F_N y = \sum_{u=1}^{U} F_N E^u H_C^u x^u + F_N \overline{n}$$

$$\Rightarrow Y = \sum_{u=1}^{U} \Omega_{cir}^u \Lambda^u \overline{X}^u + N$$

where

$$\Omega_{cir}^u = F_N E^u F_N^{-1}$$

• Use a Trick

$$H_c^u = F_N^{-1} \Lambda^u F_N$$

Mathmatical Model-FDE

FDE operation

$$\overline{Y} = W^k M_R^k Y$$

where \boldsymbol{W}^k is the M by M diagonal equalisation matrix, \boldsymbol{M}_R^k is de-mapping process

Mathmatical Model-IDFT

M by M IDFT operation

$$\hat{d}^{k} = F_{M}^{-1} \bar{Y}^{k} = A^{k} d^{k} + \bar{A}^{k} d^{k} + \sum_{\substack{u=1\\u \neq k}}^{U} B^{u} d^{u} + \hat{n}$$

Mathmatical Model-IDFT

M by M IDFT operation

$$\hat{d}^{k} = F_{M}^{-1} \bar{Y}^{k} = A^{k} d^{k} + \bar{A}^{k} d^{k} + \sum_{\substack{u = 1 \\ u \neq k}}^{U} B^{u} d^{u} + \hat{n}$$

The structure of all components of the equation above:

$$\begin{split} &\boldsymbol{A}^k = \operatorname{diag}(\boldsymbol{F}_N^{-1} \, \boldsymbol{W}^k \boldsymbol{\Omega}_d^k \boldsymbol{\Lambda}_d^k \boldsymbol{F}_N) \\ &\bar{\boldsymbol{A}}^k = \boldsymbol{F}_N^{-1} \, \boldsymbol{W}^k \boldsymbol{\Omega}_d^k \boldsymbol{\Lambda}_d^k \boldsymbol{F}_N - \boldsymbol{A}^k \\ &\overline{\overline{n}} = \boldsymbol{F}_N^{-1} \, \boldsymbol{W}^k \boldsymbol{M}_R^k \boldsymbol{N} \\ &\boldsymbol{B}_i = \boldsymbol{F}_N^{-1} \, \boldsymbol{W}^k \boldsymbol{\Omega}_r^u \boldsymbol{\Lambda}_d^u \boldsymbol{F}_N \end{split}$$

Mathmatical Model-IDFT

· M by M IDFT operation

$$\hat{d}^{k} = F_{M}^{-1} \bar{Y}^{k} = A^{k} d^{k} + \bar{A}^{k} d^{k} + \sum_{\substack{u=1\\u \neq k}}^{U} B^{u} d^{u} + \hat{n}$$

The structure of all components of the equation above:

$$\begin{split} \boldsymbol{A}^k &= diag(\boldsymbol{F}_N^{-1} \, \boldsymbol{W}^k \boldsymbol{\Omega}_d^k \boldsymbol{\Lambda}_d^k \boldsymbol{F}_N) \\ \bar{\boldsymbol{A}}^k &= \boldsymbol{F}_N^{-1} \, \boldsymbol{W}^k \boldsymbol{\Omega}_d^k \boldsymbol{\Lambda}_d^k \boldsymbol{F}_N - \boldsymbol{A}^k \\ \overline{\overline{\boldsymbol{n}}} &= \boldsymbol{F}_N^{-1} \, \boldsymbol{W}^k \boldsymbol{M}_R^k \, \boldsymbol{N} \\ \boldsymbol{B}_i &= \boldsymbol{F}_N^{-1} \, \boldsymbol{W}^k \boldsymbol{\Omega}_r^u \boldsymbol{\Lambda}_d^u \boldsymbol{F}_N \end{split}$$

where $\Omega^k_d=M^k_R\Omega^k_{cir}M^k_T$ is interference with the kth user's data, $\Omega^u_r=M^k_R\Omega^u_{cir}M^u_T$ is the interference from the uth user, $\Lambda^u_d=M^u_R\Lambda^uM^u_T$ is the channel of uth user

- Introduction to Principle of SC-FDMA System
 - 1. Structure of SC-FDMA
 - 2. Mathmatical Model
 - 3. Key techniques in the SC-FDMA

 Comparison SC-FDMA System to OFDMA System and DS-CDMA System

Summary, Conclusions and Thoughts

Cyclic prefix prevents inter-block interference

- Cyclic prefix prevents inter-block interference
- Channel Matrix

- Cyclic prefix prevents inter-block interference
- Channel Matrix

 Make linear convolution of the channel impulse response look like a circular convolution

Key Technique-Subcarrier Mapping

Key Technique-Subcarrier Mapping

Distributed Subcarrier Mapping

Key Technique-Subcarrier Mapping

Distributed Subcarrier Mapping
 Symbols are equally spaced across the entire channel bandwidth

- Distributed Subcarrier Mapping
 - Symbols are equally spaced across the entire channel bandwidth
 - a. Be allocated over the entire bandwidth
 - b. Frequency diversity
 - c. Channel-dependent scheduling
 - d. Interleaved FDMA is a special case of distributed mode

- Distributed Subcarrier Mapping
 - Symbols are equally spaced across the entire channel bandwidth
 - a. Be allocated over the entire bandwidth
 - b. Frequency diversity
 - c. Channel-dependent scheduling
 - d. Interleaved FDMA is a special case of distributed mode
- Localized Subcarrier Mapping

- Distributed Subcarrier Mapping
 - Symbols are equally spaced across the entire channel bandwidth
 - a. Be allocated over the entire bandwidth
 - b. Frequency diversity
 - c. Channel-dependent scheduling
 - d. Interleaved FDMA is a special case of distributed mode
- Localized Subcarrier Mapping Symbols are assigned to N adjacent subcarriers

- Distributed Subcarrier Mapping
 - Symbols are equally spaced across the entire channel bandwidth
 - a. Be allocated over the entire bandwidth
 - b. Frequency diversity
 - c. Channel-dependent scheduling
 - d. Interleaved FDMA is a special case of distributed mode
- Localized Subcarrier Mapping

Symbols are assigned to N adjacent subcarriers

- a. Occupy consecutive subcarriers
- b. Channel-dependent scheduling provides multi-user diversity

Different subcarrier mapping schemes

$$\{x_n\} : \boxed{x_0 \mid x_1 \mid x_2 \mid x_3}$$

$$\qquad \qquad \qquad \qquad \mathsf{DFT} (X_k = \sum_{n=0}^{N-1} x_n e^{-j\frac{2\pi}{N}nk}, N = 4)$$

$$\{X_k\} : \boxed{X_0 \mid X_1 \mid X_2 \mid X_3}$$

$$\{X_{1,IFDMA}\} \quad \boxed{X_0 \mid \mathbf{O} \mid \mathbf{O} \mid X_1 \mid \mathbf{O} \mid \mathbf{O} \mid X_2 \mid \mathbf{O} \mid \mathbf{$$

frequency

Fig: An example of different subcarrier mapping schemes for N=4, Q=3 and M=12

Interleaved FDMA

$$\widetilde{x}_m (= \widetilde{x}_{Nq+n}) = \frac{1}{Q} e^{j2\pi \frac{mr}{M}} \cdot x_{(m)_{\text{mod } N}}$$

where $M=Q\cdot N$, $m=N\cdot q+n(0\leq q\leq Q-1,0\leq n\leq N-1)$, r is the amount of the frequency shift

Interleaved FDMA

$$\widetilde{x}_m (= \widetilde{x}_{Nq+n}) = \frac{1}{Q} e^{j2\pi \frac{mr}{M}} \cdot x_{(m)_{\text{mod } N}}$$

where $M=Q\cdot N$, $m=N\cdot q+n(0\leq q\leq Q-1,0\leq n\leq N-1)$, r is the amount of the frequency shift

A magic thing about IFDMA:

Interleaved FDMA

$$\widetilde{x}_m(=\widetilde{x}_{Nq+n}) = \frac{1}{Q}e^{j2\pi\frac{mr}{M}} \cdot x_{(m)_{\text{mod }N}}$$

where $M=Q\cdot N$, $m=N\cdot q+n(0\leq q\leq Q-1,0\leq n\leq N-1)$, r is the amount of the frequency shift

 A magic thing about IFDMA: DFT-IDFT reduces to multiply each input symbol by a complex number with unit magnitude and repeating the input sequence with proper phase rotation Q times

Time domain and frequency domain of Interleaved FDMA

Key Technique-Time domain Symbol of LFDMA and conventional DFDMA

Key Technique-Time domain Symbol of LFDMA and conventional DFDMA

LFDMA

$$y_n = y_{Q \cdot m + q} = \left\{ \begin{array}{c} \frac{1}{Q} x(n) \mod M, q = 0 \\ \frac{1}{Q} \cdot (1 - e^{j2\pi \frac{q}{Q}}) \cdot \frac{1}{M} \sum_{p=0}^{M-1} \frac{x_p}{1 - e^{j2\pi \{\frac{(m-p)}{M} + \frac{q}{QM}\}}}, q \neq 0 \end{array} \right.$$

Key Technique-Time domain Symbol of LFDMA and conventional DFDMA

LFDMA

$$y_n = y_{Q \cdot m + q} = \left\{ \begin{array}{c} \frac{1}{Q} x(n) \mod M, q = 0 \\ \frac{1}{Q} \cdot (1 - e^{j2\pi \frac{q}{Q}}) \cdot \frac{1}{M} \sum_{p=0}^{M-1} \frac{x_p}{1 - e^{j2\pi \{\frac{(m-p)}{M} + \frac{q}{QM}\}}}, \, q \neq 0 \end{array} \right.$$

DFDMA

$$y_n = y_{Q \cdot m + q} = \left\{ \begin{array}{c} \frac{\frac{1}{Q} \cdot x_{(\widetilde{Q}(n) \mod M)}, q = 0}{\frac{1}{Q} \cdot \left(1 - e^{j2\pi \frac{\widetilde{Q}}{Q}q}\right) \cdot \frac{1}{M} \sum\limits_{p = 0}^{M-1} \frac{x_p}{1 - e^{j2\pi \{\frac{\widetilde{Q}(m - p)}{M} + \frac{\widetilde{Q}q}{QM}\}}}, q \neq 0 \end{array} \right.$$

Outline

- Introduction to Principle of SC-FDMA System
 - 1. Structure of SC-FDMA
 - 2. Mathmatical Model
 - 3. Key techniques in the SC-FDMA

 Comparison SC-FDMA System to OFDMA System and DS-CDMA System

Summary, Conclusions and Thoughts

SC-FDMA VS DS-CDMA/FDE

SC-FDMA VS DS-CDMA/FDE

PAPR Comparison between SC-FDMA and OFDMA

SC-FDMA VS DS-CDMA/FDE

PAPR Comparison between SC-FDMA and OFDMA

BER performence between SC-FDMA and OFDMA

SC-FDMA VS DS-CDMA/FDE

PAPR Comparison between SC-FDMA and OFDMA

BER performence between SC-FDMA and OFDMA

CFO and TO Comparison between SC-FDMA and OFDMA

· Both spread narrow-band data into broader band

They achieve processing gain or spreading gain from spreading

They both maintain low PAPR because of the single carrier transmission

· Both spread narrow-band data into broader band

· They achieve processing gain or spreading gain from spreading

They both maintain low PAPR because of the single carrier transmission

 $^{\bullet}$ Exchanging the roles of spreading sequence and data sequence, DS-CDMA = IFDMA

Conventional Spreading VS Exchanged Spreading

 PAPR Comparison in different subcarrier mapping schemes and distinct modulation techniques

- PAPR Comparison in different subcarrier mapping schemes and distinct modulation techniques
- PAPR Comparison in different roll-off factors

- PAPR Comparison in different subcarrier mapping schemes and distinct modulation techniques
- PAPR Comparison in different roll-off factors

Channel Bandwidth	5MHz
Sampling Rate	5 mega-samples per second
Data Modulation format	QPSK&16QAM
Pulse shaping	Yes
Roll-off factor	1
Transmitter IFFT Size	512
Subcarrier Spacing	9.765625 kHz(=5 MHz/512)
SC-FDMA Input Block Size	16 symbols
SC-FDMA Input FFT Size	16
Bandwidth Spreading Factor	32 (=512/16)
Filter Type	Raised-cosine Filter

Different Subcarrier Mapping and Distinct Modulation Techniques

Different Subcarrier Mapping and Distinct Modulation Techniques

SC-FDMA VS OFDMA, Localized VS Interleaved, 16QAM VS OFDMA

Different Subcarrier Mapping and Distinct Modulation Techniques

 SC-FDMA VS OFDMA, Localized VS Interleaved, 16QAM VS OFDMA CCDF is complementary cumulative distribution function

Different Roll-off Factor

Different Roll-off Factor

Different roll-off factor in interleaved subcarrer mapping

Different Roll-off Factor

Different roll-off factor in interleaved subcarrer mapping

Pulse shaping significantly influences PAPR only in IFDMA

BER simulation parameters

BER simulation parameters

Channel Bandwidth	5 MHz
Sampling rate	5 mega-samples per second
Data modulation format	QPSK
Pulse shaping	None
Cyclic prefix	20 samples(4 μs)
Transmitter IFFT size	512
Subcarrier spacing	9.765625 kHz(=5 MHz/512)
SC-FDMA input block size	16 symbols
Subcarrier mapping	Interleaved
Channel estimation	Perfect
Equalization	Zero forcing or minimum mean square error(MMSE)
Channel coding	None
Detection	Hard decision
Number of iteration	10^6

BER simulation performance (SC-FDMA VS OFDMA)

BER simulation performance (SC-FDMA VS OFDMA)

BER simulation performance (SC-FDMA VS OFDMA)

OFDMA -two curves coincide strictly

$$R = Fhx + Fn \Rightarrow R = (FhF^{-1})Fx + N \Rightarrow R = HX + N$$

BER simulation performance (SC-FDMA VS OFDMA)

• OFDMA -two curves coincide strictly $\mathbf{ZF}\text{-}D = H^{-1}(HX+N) <====> \mathbf{MMSE} \ D = \Lambda^{-1}H^*(HX+N)$ where $\Lambda = diag(|H_1|^2 + \sigma^2,, |H_L|^2 + \sigma^2)$

BER simulation performance (SC-FDMA VS OFDMA)

SC-FDMA with **ZF equalization** ====>Low SNR: noise dominates

BER simulation performance (SC-FDMA VS OFDMA)

• SC-FDMA with **ZF equalization** ====>Low SNR: noise dominates ===> Deep fading enlarge the noise ===> May cause error burst The noise part after IDFT: $\sum_n e^{i\theta_n} \frac{N_n}{H_n}$

BER simulation performance (SC-FDMA VS OFDMA)

SC-FDMA with **ZF equalization** ====>High SNR: fading dominates

BER simulation performance (SC-FDMA VS OFDMA)

SC-FDMA with **ZF equalization** ====>High SNR: fading dominates
 ===> total influences are same

BER simulation performance (SC-FDMA VS OFDMA)

• SC-FDMA with **MMSE equalization** ====>Low SNR: noise dominates

BER simulation performance (SC-FDMA VS OFDMA)

 SC-FDMA with MMSE equalization ====>Low SNR: noise dominates ===> Same performance between OFDMA and SC-FDMA

BER simulation performance (SC-FDMA VS OFDMA)

• SC-FDMA with **MMSE equalization** ====>High SNR: fading dominates

BER simulation performance (SC-FDMA VS OFDMA)

• SC-FDMA with **MMSE equalization** ====>High SNR: fading dominates ===> MMSE prevents noise enlargement ===> IDFT averages the noise The noise part after IDFT: $\sum_n e^{i\theta_n} \frac{H_n^* N_n}{|H_n|^2 + \sigma^2}$

· SC-FDMA with Carrier Frequency Offset - MMSE

· SC-FDMA with Carrier Frequency Offset - MMSE

SC-FDMA with Carrier Frequency Offset and Time Offset - MMSE

· SC-FDMA with Carrier Frequency Offset - MMSE

SC-FDMA with Carrier Frequency Offset and Time Offset - MMSE

Fig. 2. BER performance of SC-FDMA without and with IC cancellation. N = 64, K = 4, M = 16, L = 2, 4-QAM, No CFO and TO. IC removes residual interference and improves performance.

Fig. 3. Comparison of BER performance between SC-FDMA and OFDMA with CFO. $V_0 = 64$, K = 4, M = 16, AQAM, L = 2, e = [0.1, 0.2, -0.15, -0.3], No TO. User 1 is desired user. SC-FDMA (with out C) performs worse than OFDMA in the presence of CFO. With the proposed PIC, however, SC-FDMA recovers its frequency diversity advantage and outnerfroms OFDMA.

Fig. 4. Comparison of BER performance between SC-FDMA and OFDMA with CFO and TO. N=64. K=4. M=16. 4-QAM. L=2. $\epsilon=[0.1,0.2,-0.15,-0.3]$. $\mu=[-1,-5,1,5]$. User 1 is desired user. With the proposed PIC, SC-FDMA recovers its frequency diversity advantage and outperforms OFDMA.

Fig. 3. Comparison of BER performance between SC-FDMA and OFDMA with CFO. N = 64, K = 4, M = 16, 4QAM, L = 2, $\epsilon = [0.1, 0.2, -0.15, -0.3]$, No TO. User 1 is desired user. SC-FDMA (with out E) performs worse than OFDMA in the presence of CFO. With the proposed PIC, however, SC-FDMA recovers its frequency diversity advantage and cauperforms OFDMA.

Fig. 4. Comparison of BER performance between SC-FDMA and OFDMA with CFO and TO. N=64. K=4. M=16. 4-QAM. L=2. $\epsilon=[0.1,0.2,-0.15,-0.3]$. $\mu=[-1,-5,1,5]$. User 1 is desired user. With the proposed PIC, SC-FDMA recovers its frequency diversity advantage and outperforms OFDMA.

Only CFO: Without Parallel Interference Canceler
 The BER in OFDMA is better than that in SC-FDMA

Fig. 3. Comparison of BER performance between SC-FDMA and OFDMA with CFO. N = 64, K = 4, M = 16, 4/QM, L = 2, $\epsilon = [0.1, 0.2, -0.15, -0.3]$, No TO. User l is desired user. SC-FDMA (without El) performs worse than OFDMA in the presence of CFO. With the proposed PIC, however, SC-FDMA recovers its frequency diversity advantage and cauperforms OFDMA.

Fig. 4. Comparison of BER performance between SC-FDMA and OFDMA with CFO and TO. N=64. K=4. M=16. 4-QAM. L=2. $\epsilon=[0.1,0.2,-0.15,-0.3]$. $\mu=[-1,-5,1,5]$. User 1 is desired user. With the proposed PIC, SC-FDMA recovers its frequency diversity advantage and outperforms OFDMA.

 Only CFO: Without Parallel Interference Canceler SC-FDMA suffers more from CFO

Fig. 3. Comparison of BER performance between SC-FDMA and OFDMA with CFO. N = 64, K = 4, M = 16, 4QAM, L = 2, $\epsilon = [0.1, 0.2, -0.15, -0.3]$, No TO. User 1 is desired user. SC-FDMA (with out E) performs worse than OFDMA in the presence of CFO. With the proposed PIC, however, SC-FDMA recovers its frequency diversity advantage and cauperforms OFDMA.

Fig. 4. Comparison of BER performance between SC-FDMA and OFDMA with CFO and TO. N=64. K=4. M=16. 4-QAM. L=2. $\epsilon=[0.1,0.2,-0.15,-0.3]$. $\mu=[-1,-5,1,5]$. User 1 is desired user. With the proposed PIC, SC-FDMA recovers its frequency diversity advantage and outperforms OFDMA.

Only CFO: With Parallel Interference Canceler
 1st stage PIC makes OFDMA reach OFDMA's ideal performance.

Fig. 3. Comparison of BER performance between SC-FDMA and OFDMA with CFO. N = 64, K = 4, M = 16, 4/QM, L = 2, $\epsilon = [0.1, 0.2, -0.15, -0.3]$, No TO. User l is desired user. SC-FDMA (without R) performs worse than OFDMA in the presence of CFO. With the proposed PIC, however, SC-FDMA recovers its frequency diversity advantage and aupperforms OFDMA.

Fig. 4. Comparison of BER performance between SC-FDMA and OFDMA with CFO and TO. N=64. K=4. M=16. 4-QAM. L=2. $\epsilon=[0.1,0.2,-0.15,-0.3]$. $\mu=[-1,-5,1,5]$. User 1 is desired user. With the proposed PIC, SC-FDMA recovers its frequency diversity advantage and outperforms OFDMA.

Only CFO: With Parallel Interference Canceler
 1st stage PIC makes OFDMA reach OFDMA's ideal performance.
 SC-FDMA is better than OFDMA in BER performance in 3rd and 4th stage.

Fig. 3. Comparison of BER performance between SC-FDMA and OFDMA with CFO. N = 64, K = 4, M = 16, 4QAM, L = 2, $\epsilon = [0.1, 0.2, -0.15, -0.3]$, No TO. User 1 is desired user. SC-FDMA (with out E) performs worse than OFDMA in the presence of CFO. With the proposed PIC, however, SC-FDMA recovers its frequency diversity advantage and cauperforms OFDMA.

Fig. 4. Comparison of BER performance between SC-FDMA and OFDMA with CFO and TO. N=64. K=4. M=16. 4-QAM. L=2. $\epsilon=[0.1,0.2,-0.15,-0.3]$. $\mu=[-1,-5,1,5]$. User 1 is desired user. With the proposed PIC, SC-FDMA recovers its frequency diversity advantage and outperforms OFDMA.

 Only CFO: With Parallel Interference Canceler SC-FDMA recovers its frequency diversity and outperforms OFDMA

Fig. 3. Comparison of BER performance between SC-FDMA and OFDMA with CFO. N = 64, K = 4, M = 16, 4QAM, L = 2, $\epsilon = [0.1, 0.2, -0.15, -0.3]$, No TO. User 1 is desired user. SC-FDMA (with out E) performs worse than OFDMA in the presence of CFO. With the proposed PIC, however, SC-FDMA recovers its frequency diversity advantage and cauperforms OFDMA.

Fig. 4. Comparison of BER performance between SC-FDMA and OFDMA with CFO and TO. N=64. K=4. M=16. 4-QAM. L=2. $\epsilon=[0.1,0.2,-0.15,-0.3]$. $\mu=[-1,-5,1,5]$. User 1 is desired user. With the proposed PIC, SC-FDMA recovers its frequency diversity advantage and outperforms OFDMA.

 Only CFO and TO: Without Parallel Interference Canceler Same performance

Fig. 3. Comparison of BER performance between SC-FDMA and OFFDMA with CFO. N = 64, K = 4, M = 16, 4 QAM, L = 2, $\epsilon = [0.1, 0.2, -0.15, -0.3]$. No TO. User l is desired user, SC-FDMA (without E) performs worse than OFDMA in the presence of CFO. With the proposed PIC, however, SC-FDMA recovers its frequency diversity advantage and cauperforms OFDMA.

Fig. 4. Comparison of BER performance between SC-FDMA and OFDMA with CFO and TO. N=64. K=4. M=16. 4-QAM. L=2. $\epsilon=[0.1,0.2,-0.15,-0.3]$. $\mu=[-1,-5,1,5]$. User 1 is desired user. With the proposed PIC, SC-FDMA recovers its frequency diversity advantage and outperforms OFDMA.

 Only CFO and TO: With Parallel Interference Canceler SC-FDMA has superiority over OFDMA with three or four stages of PIC

Outline

- Introduction to Principle of SC-FDMA System
 - 1. Structure of SC-FDMA
 - 2. Mathmatical Model
 - 3. Key techniques in the SC-FDMA

 Comparison SC-FDMA System to OFDMA System and DS-CDMA System

Summary, Conclusions and Thoughts

 SC-FDMA is an alternative technique for multiple access, which has similar structure and performance to OFDMA

 SC-FDMA is an alternative technique for multiple access, which has similar structure and performance to OFDMA

An attractive advantage of SC-FDMA over OFDMA is low PAPR

 SC-FDMA is an alternative technique for multiple access, which has similar structure and performance to OFDMA

An attractive advantage of SC-FDMA over OFDMA is low PAPR

 There is a trande-off between out-of-band radiation and PAPR due to pulse shaping

 SC-FDMA is an alternative technique for multiple access, which has similar structure and performance to OFDMA

An attractive advantage of SC-FDMA over OFDMA is low PAPR

 There is a trande-off between out-of-band radiation and PAPR due to pulse shaping

 Uncode SC-FDMA has better BER performance than OFDMA in MMSE due to frequency diversity

• SC-FDMA is an alternative technique for multiple access, which has **similar** structure and performance to OFDMA

An attractive advantage of SC-FDMA over OFDMA is low PAPR

 There is a trande-off between out-of-band radiation and PAPR due to pulse shaping

 Uncode SC-FDMA has better BER performance than OFDMA in MMSE due to frequency diversity

 SC-FDMA suffers more from CFO while PIC could restore the frequency diversity

Why could SC-FDMA be treated as single carrier, which has low PAPR?

Why could SC-FDMA be treated as single carrier, which has low PAPR?

From Project Officer LuoSheng's opinion

Why could SC-FDMA be treated as single carrier, which has low PAPR?

From Project Officer LuoSheng's opinion

• From Dr. Nguyen's view

SC-FDMA is a pre-DFT OFDMA

SC-FDMA is a pre-DFT OFDMA

Is pre-DFT the most attractive and efficient pre-coding for OFDMA?

Reference

• Please feel free to e-mail liuyunxiang1991@gmail.com for a reference list.

Thanks to Prof.GUAN

Thanks to Prof.GUAN

Thanks to Project Officer LuoSheng

Thanks to Prof.GUAN

Thanks to Project Officer LuoSheng

• Thanks to **Dr. Nguyen**

Thanks to Prof.GUAN

Thanks to Project Officer LuoSheng

Thanks to Dr. Nguyen

Thanks to Audiences here!

Thanks

YunXiang LIU