Lecture C2. Discrete Time Markov Chain 2

Sim, Min Kyu, Ph.D., mksim@seoultech.ac.kr

- I. Stationary distribution
- 2 II. Numerical approach for stationary distribution
- III. Limiting probailities
- IV. When [limit=stationary] falls apart.

I. Stationary distribution

I. Stationary distribution

Warm-up

Exercise 1

Suppose we are considering the soda problem with ${f P}=rac{coke}{pepsi}egin{pmatrix} 0.7 & 0.3 \\ 0.5 & 0.5 \end{pmatrix}$, and there are 20 people who drink coke today and 10 people who drink pepsi today. What will happen tomorrow?

Exercise 2

Again with the soda problem with

$$\mathbf{P} = \frac{coke}{pepsi} \begin{pmatrix} 0.7 & 0.3 \\ 0.5 & 0.5 \end{pmatrix}$$

Suppose that we happen to have a distribution of S_k on day k such as $a_k = (5/8, 3/8)$.

- What is a_{k+1} ?
- What is a_{k+2} ?
- What is a_{∞} ?

Once you get into "this" distribution, the distribution will not ever change over time! Does it worth having a special name?

Definition

Definition 1 (stationary distribution)

For a DTMC with state space S and transition probability matrix \mathbf{P} , a vector \mathbf{v} whose length is |S| is said to be a *stationary distribution* if

- $\mathbf{v}_i \geq 0$ for all $i \in S$ and $\sum_{i \in S} \mathbf{v}_i = 1$
- $\mathbf{v} = \mathbf{v}P$

Remark 1

The two bullets in the above definition can be understood as:

- v is a legit distribution.
- Going through a transition does not change the distribution.

Discussion

- "The distribution does not change" does not mean that there is no movement between states.
- It is rather that movement flows coincide for each state.
- In other words, it is not a *static* equilibrium but a *dynamic* equilibrium.
- It is called *steady state* in a way, it looks steady from outside look.
- Under the steady state, (inflow) $_i = (\text{outflow})_i$ for $\forall i \in S$

Flow balance equation

I. Stationary distribution

Computation of stationary distribution

Using definition

Using flow balance equation

II. Numerical approach for stationary distribution

Mathematical aspects

• Remind that for a DTMC with S and $\mathbf P$, a vector $\mathbf v$ of length |S| is a stationary distribution if 1) $\mathbf v_i \geq 0$ for all $i \in S$ and $\sum_{i \in S} \mathbf v_i = 1$ and 2) $\mathbf v = \mathbf v P$.

Remark 2

3 With a DTMC's transition matrix \mathbf{P} , the number of solution to $\mathbf{x} = \mathbf{x}\mathbf{P}$ is either one or infinite. In other words, the stationary distribution always exists, and it may be unique or infinite.

Exercise 3

General linear system $A\mathbf{x} = \mathbf{b}$ has the number of solutions: 0, or 1, or ∞ . However, the Remark implies that $\mathbf{x} = \mathbf{x}\mathbf{P}$ is always consistent. Prove that it always has a solution.

Method 1 - eigen-decomposition

Remark 3

 $\mathbf{x}\mathbf{P} = \mathbf{x} \Rightarrow \mathbf{P}^t \mathbf{x}^t = \mathbf{x}^t \Rightarrow \mathbf{P}^t \mathbf{x}^t = 1 \cdot \mathbf{x}^t$. That is, a stationary distribution \mathbf{v} is nothing but an eigenvector of \mathbf{P}^t , corresponding to its eigenvalue 1.

```
P <- array(c(0.7, 0.5, 0.3, 0.5), dim = c(2,2))
eigen(t(P)) # eigen-decomposition for P^t

## eigen() decomposition
## $values
## [1] 1.0 0.2
##

## $vectors
## [,1] [,2]
## [1,] 0.8574929 -0.7071068
## [2,] 0.5144958 0.7071068
```

• It can be seen that the matrix P^t has eigenvalue 1.

 The eigenvector corresponding to eigenvalue 1 needs to be normalized so that it becomes a legit distribution.

```
x_1 <- eigen(t(P))$vectors[,1]
x_1
## [1] 0.8574929 0.5144958
v <- x_1/sum(x_1)
v
## [1] 0.625 0.375</pre>
```

• The stationary distribution is found!

Method 2 - system of linear equation

Remark 4

The two conditions for stationary distribution can be written in vector notation as follows.

- **1 v1** = 1, where **1** is a column vector whose length is |S|.
- $\mathbf{0} \mathbf{vP} = \mathbf{v}$
- The first condition can be described as

$$(-\mathbf{v}-)\begin{pmatrix}1\\1\\1\end{pmatrix}=1$$

 \bullet The second condition can be developed as $vP=v\Rightarrow vP=vI\Rightarrow v(P-I)=0$

$$(- \quad \mathbf{v} \quad -) \left(- \quad P \stackrel{|}{-} I \quad - \right) = \begin{pmatrix} 0 & 0 & 0 \end{pmatrix}$$

• These can be concatenated to a single system of linear equations.

$$(- \quad \mathbf{v} \quad -) \begin{pmatrix} - & P - I & -1 \\ - & P - I & -1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 & 1 \end{pmatrix}$$

Now, we are ready to make the following remark.

Remark 5

Letting $\mathbf{A} = [\mathbf{P} - \mathbf{I} | \mathbf{1}]$ and $\mathbf{b} = [\mathbf{0}^t \ 1]^t$ gives $\mathbf{v} \mathbf{A} = \mathbf{b}$. Since \mathbf{A} is not a square matrix but a dimension of $|S| \times |S| + 1$, the stationary distribution can be found by:

$$\mathbf{v}\mathbf{A} = \mathbf{b}$$

$$\Rightarrow \mathbf{A}^{t}\mathbf{v}^{t} = \mathbf{b}^{t}$$

$$\Rightarrow \mathbf{A}\mathbf{A}^{t}\mathbf{v}^{t} = \mathbf{A}\mathbf{b}^{t}$$

$$\Rightarrow \mathbf{v}^{t} = (\mathbf{A}\mathbf{A}^{t})^{-1}\mathbf{A}\mathbf{b}^{t}$$

[2,] 0.375

```
P \leftarrow array(c(0.7, 0.5, 0.3, 0.5), dim = c(2,2))
n < -nrow(P) # n=|S|
I <- diag(n) # identity matrix</pre>
A <- cbind(P-I, rep(1,n))
b \leftarrow array(c(rep(0,n),1), dim = c(1, n+1))
Α
##
         [,1] [,2] [,3]
## [1,] -0.3 0.3
## [2,] 0.5 -0.5
b
##
         [,1] [,2] [,3]
## [1,]
            0
                       1
```

```
• Using \mathbf{A}\mathbf{A}^t\mathbf{v}^t = \mathbf{A}\mathbf{b}^t,
```

```
v <- solve(A %*% t(A), A %*% t(b))</pre>
ν
##
          [,1]
## [1,] 0.625
```

III. Limiting probailities

Motivation

- \bullet n-step transition probability: $\mathbb{P}(S_{t+n}=j|S_t=i)=\mathbf{P}^n_{ij}$
- Letting $n \to \infty$ to see what happens!

```
library(expm) # provides matrix power
P \leftarrow array(c(0.7, 0.5, 0.3, 0.5), dim = c(2,2))
Р
##
        [,1] [,2]
## [1,] 0.7 0.3
## [2,] 0.5 0.5
P %*% P # matrix multiplication
        [,1] [,2]
## [1,] 0.64 0.36
## [2,] 0.60 0.40
P %^% 3
##
         [,1] [,2]
## [1,] 0.628 0.372
```

```
P %^% 4

## [,1] [,2]

## [1,] 0.6256 0.3744

## [2,] 0.6240 0.3760

P %^% 20

## [,1] [,2]

## [1,] 0.625 0.375

## [2,] 0.625 0.375
```

[2,] 0.620 0.380

- The limiting distribution exists in this case.
- Each row of matrix converges to stationary distribution.

$$\mathbf{P}^{\infty} = \begin{pmatrix} 5/8 & 3/8 \\ 5/8 & 3/8 \end{pmatrix} = \begin{pmatrix} - & \mathbf{v} & - \\ - & \mathbf{v} & - \end{pmatrix}$$

• In the long run, what happens today has little effect. That is, limiting probability is independent of initial state. Initial distribution does not matter in the long run.

[2,]

1 0

• The limiting distribution may or may not exist. For example,

```
\leftarrow array(c(0, 1, 1, 0), dim = c(2,2))
Ρ
##
         [,1][,2]
## [1,]
## [2,]
            1
P %^% 2
##
         [,1] [,2]
## [1,]
            1
## [2,]
                 1
            0
P %^% 3
         [,1][,2]
##
## [1,]
```

Using [limiting probabilities = stationary distribution]

- If I do this for 10 years (3650 days) from now, then how many days I will drink Pepsi?
- Suppose Pepsi is \$1 and Coke is \$1.5. How much on average I spend on soda in a month?
- In the above question of 'staying at a certain state costs' is an example of Markov reward process (MRP).

• Suppose there are a billion customers (who has same type of consuming pattern) like me in the world. You are working for Pepsi and like to boost Pepsi \rightarrow Pepsi probability from 0.5 to 0.6 by marketing. On average, how much additional revenue will be generated by this change for a day?

IV. When [limit=stationary] falls apart.

When things not going well 1: Periodic MC

- Transition diagram
- Demonstration

$$\mathbf{P} = \begin{pmatrix} 0 & 0.5 & 0 & 0.5 \\ 0.5 & 0 & 0.5 & 0 \\ 0 & 0.5 & 0 & 0.5 \\ 0.5 & 0 & 0.5 & 0 \end{pmatrix}$$

- Observations
 - Limiting probability NOT exists
 - Stationary distribution is unique
- Remedy
 - \bullet $\lim_{n o \infty} rac{\mathbf{P}^{n+1} + \mathbf{P}^{n+2} + \ldots + \mathbf{P}^{n+d}}{d}$ exists and same as stationary distribution.

When things not going well 2: Reducible MC

- Transition diagram
- Demonstration

$$\mathbf{P} = \frac{Coke}{Pepsi} \begin{pmatrix} 0.7 & 0.3 & 0 & 0 \\ 0.5 & 0.5 & 0 & 0 \\ 0 & 0 & 0.6 & 0.4 \\ Miller & 0 & 0 & 0.3 & 0.7 \end{pmatrix}$$

- Observations
 - Limiting probability exists.
 - But, Limiting probability depends on the initial state.
 - ullet Stationary distribution is not unique (∞)

000000

IV. When [limit=stationary] falls apart.

OOO●OOOOOOO

Summary of observations

For a *finite* state space MC,

MC	Limiting	Stationary	Remark
Irreducible	Exists, indep.	Unique	NICE!
Aperiodic	of initial state		
Irreducible	Not Exists	Unique	Remedy by
Periodic			average of d
Reducible	Exists, dependent		Deeper look
Aperiodic	on initial state	maybe ∞	

A few definitions (1)

- Accessibility
 - Def. A state i can reach state j and write $i \to j$ if $\exists n \text{ s.t. } P_{ij}^n > 0$.
 - •
 - Def. State i and j are said to *communicate* and write $i \leftrightarrow j$ if $i \rightarrow j$ and $j \rightarrow i$.
 - Def. A group of states that communicate is said to be a *class*.

III. Limiting proballities 000000 IV. When [limit=stationary] falls apart. 0000000000000

A few definitions (2)

- Reducibility
 - ullet Def. MC S_n is said to be *irreducible* if all states communicate.
 - ullet Def. MC S_n is said to be *irreducible* if \exists only one class.
 - $\bullet\,$ Def. MC S_n is said to be $\mathit{reducible}$ unless $\mathit{irreducible}.$

A few definitions (3)

- Periodicity
 - Def. For a state $i \in S$, period $d(i) := gcd\{n, P_{ii}^n > 0\}$.
 - Def. MC S_n is said to be *periodic* if $\exists i$ with d(i) > 1.
 - ullet Def. MC S_n is said to be aperiodic if not periodic.
 - Remark: Periodicity is class property. (Class shares period; $i\leftrightarrow j\Rightarrow d(i)=d(j)$)

So, when does it go well?

- \bullet Theorem: If a finite DTMC S_n is aperiodic and irreducible, then all of the followings hold:
 - Limiting probabilities exists
 - Stationary distribution is unique.
 - Stationary distribution = Limiting probabilities.
- Above theorem can be also written as:
 - ullet Finite, Aperiodic, Irreducible $\Rightarrow \lim_{n o \infty} \mathbf{P}^n_{ij} = \mathbf{v}_j, \, \forall i,j \in S$
- In these "nice" cases, we can talk about things like "The long-run fraction of time that the MC spends in each state".
- In these "nice" cases, we can calculate limiting probability by solving stationary distribution.

cat(str)

If I only had an hour to chop down a tree, I would spend the first 45 minutes sharpening my axe. - A. Lincoln