CORRECTION SERIE 3

Cours : Vérification formelle **Filière/Classe :** 3^{ème} ING

Exercice 1:

Pour chacune des formules suivantes, construire un automate de Büchi correspondant :

- 1. $\mathbf{F}(\mathbf{G}a)$.
- 2. $\mathbf{G}(a \vee \neg \mathbf{X}b)$.
- 3. *a***U**<u>*b*</u>.

Correction:

1. $\varphi = \mathbf{FG}a = \mathbf{G}a \vee \mathbf{X}\varphi = (a \wedge \mathbf{XG}a) \vee \mathbf{X}\varphi$.

$\mathbf{G}a = a \wedge \mathbf{X}\mathbf{G}a$.

Après minimisation:

2. $\varphi = \mathbf{G}(a \vee \neg \mathbf{X}b) = (a \vee \neg \mathbf{X}b) \wedge \mathbf{X}\varphi = (a \wedge \mathbf{X}\varphi) \vee (\mathbf{X} \neg b \wedge \mathbf{X}\varphi) = (a \wedge \mathbf{X}\varphi) \vee (\mathbf{X}(\neg b \wedge \varphi)).$

$$\neg b \land \varphi = \neg b \land \mathbf{G}(a \lor \neg \mathbf{X}b) = \neg b \land ((a \lor \neg \mathbf{X}b) \land \mathbf{X}\varphi) = (\neg b \land \mathbf{X}\varphi \land a) \lor (\neg b \land \mathbf{X}\varphi \land \neg \mathbf{X}b) = (\neg b \land a \land \mathbf{X}\varphi) \lor (\neg b \land \mathbf{X}(\varphi \land \neg b)).$$

Après minimization (les états à regrouper sont numérotés ci-haut) :

b

Pour **T** (true), c'est une formule toujours vraie, donc c'est une boucle vers le même état étiqueté par True. Ceci est applicable pour toute formule dont la formule X est True. Pour les états finaux, le seul état qui n'est pas un F-formule (U-formule) est celui étiqueté par (*b*,**T**).

Exercice 2:

- 1. Pour chacune des formules suivantes construire un automate de Büchi correspondant :
 - a. $G(p \Rightarrow F(q \lor c))$.
 - b. $F(p \land G(\neg q \land \neg c))$.
- 2. Pour la structure de Kripke K suivante, vérifier si K \models G(p \Rightarrow F(q \lor c)).

Correction:

1.

a.
$$\varphi = \mathbf{G}(p \Rightarrow \mathbf{F}(q \lor c)) = \mathbf{G}(\neg p \lor \mathbf{F}(q \lor c)) = (\neg p \lor \mathbf{F}(q \lor c)) \land \mathbf{X}(\varphi) = (\neg p \lor (q \lor c)) \lor \mathbf{X}(\mathbf{F}(q \lor c))) \land \mathbf{X}(\varphi) = (\neg p \land \mathbf{X}(\varphi)) \lor (q \land \mathbf{X}(\varphi)) \lor (c \land \mathbf{X}(\varphi)) \lor (\mathbf{X}(\mathbf{F}(q \lor c))) \land \mathbf{X}(\varphi)) = \psi_1 \lor \psi_2 \lor \psi_3 \lor \psi_4$$

 ψ_1 , ψ_2 et ψ_3 ont les mêmes arcs que φ .

$$\psi_4 = (\mathbf{F}(q \lor c) \land \varphi) = \mathbf{F}(q \lor c) \land \mathbf{G}(\neg p \lor \mathbf{F}(q \lor c)) = \mathbf{F}(q \lor c) \land (\neg p \lor \mathbf{F}(q \lor c)) \land$$

$$\mathbf{X}(\mathbf{G}(\neg p \vee \mathbf{F}(q \vee c))) = \mathbf{F}(q \vee c) \wedge \mathbf{X}(\mathbf{G}(\neg p \vee \mathbf{F}(q \vee c))) = (q \vee c) \vee \mathbf{X}(\mathbf{F}(q \vee c)) \wedge \mathbf{X}(\mathbf{G}(\neg p \vee \mathbf{F}(q \vee c))) = ((q \wedge \mathbf{X}(\varphi)) \vee (c \wedge \mathbf{X}(\varphi)) \vee (\mathbf{X}(\mathbf{F}(q \vee c)) \wedge \mathbf{X}(\mathbf{G}(\neg p \vee \mathbf{F}(q \vee c)))) = \psi_2 \vee \psi_3 \vee \psi_4$$

Notez que $y \wedge (y \vee z) = y$.

Le seul état qui contient une sous-formule $\mathbf{X}\psi$ tel que ψ est une formule-U est ψ_4 , c'est donc le seul état non final. L'automate est décrit ci-dessous (construit avec le l'application GOAL) avec $\phi = s_0$, $\psi_1 = s_1$, $\psi_2 = s_2$, $\psi_3 = s_3$, $\psi_4 = s_4$.

Après minimisation:

b. De façon analogue, vous obtiendrez l'automate de Buchi pour $\mathbf{F}(p \wedge \mathbf{G}(\neg q \wedge \neg c))$.

Il est à noter que lorsqu'une proposition n'apparait pas, c'est qu'elle peut être vraie ou fausse. Par exemple, à l'état A, nous avons toutes les combinaisons possibles de p, c et q. A l'état B, nous avons deux possibilités : $\neg q \land \neg c \land p$ et $\neg q \land \neg c \land \neg p$.

2. Remarquez que $\neg \phi = \neg \mathbf{G}(p \Rightarrow \mathbf{F}(q \lor c)) = \mathbf{F}(p \land \mathbf{G}(\neg q \land \neg c))$. Il suffit donc de montrer que l'intersection de $\neg \phi$ avec K est vide. Nous devrions passer à l'automate de Buchi correspondant à K (voir cours ch3 page 34 et 35). Notez que tous les états de l'automate représentant K sont finaux. Egalement, nous enrichissons l'automate par les transitions qui ne sont pas vérifiées, par exemple de l'état q_1 à l'état q_2 , uniquement c est vraie, nous ajoutons donc $\neg p$ et $\neg q$ (ceci est différent pour l'automate de Buchi de la propriété). Voici le modèle modifié.

Ci-dessous le produit des deux automates :

Un état de cet automate ne peut progresser que si les deux états qui le constituent peuvent le faire aussi. Par exemple, de l'état q_2 , A il peut passer à :

- q_1,A : par la transition $\neg c$, p, $\neg q$ (il est à noter que A peut faire cette transition puisque toutes les transitions à partir de A vers A sont possibles).
- q_3 , A: par la transition $\neg c$, p, $\neg q$ (il est à noter que A peut faire cette transition puisque toutes les transitions à partir de A vers A sont possibles).
- q_1, B : par la transition $\neg c, p, \neg q$ (il est à noter que B peut faire cette transition puisque les deux transitions possible de B vers B sont $\neg c, p, \neg q$ et $\neg c, \neg p, \neg q$).

Ici le <u>langage du produit des automates est vide</u> puisqu'il n'existe pas de chemin infini qui, partant de l'état initial, visite un état acceptant une <u>infinité de fois</u>. La formule est donc non satisfaite.