Preparation for Saudi Arabia Team 2021

June Session: Junior Balkan Mathematics Olympiad

Nikola Petrović

Lesson 5

Elementary geometry

Problems:

- 1. Let the incircle of $\triangle ABC$ touch BC, CA and AB respectively at D, E and F. Let K be a point on the same side of FE with respect to A such that $\angle KFE = \angle ACB$ and $\angle KEF = \angle ABC$. Show that $KD \perp BC$.
- 2. In an acute triangle ABC, let O be the circumcenter and P a point on the opposite side of BO with respect to point A such that AO = AP and $AP \perp BO$. Let Q be the midpoint of OP and let R be the point on the opposite side of AB with respect to C such that AR = RB and $\angle ARB = 90^{\circ}$. Prove that $PR = \sqrt{2} \cdot BQ$.
- 3. Given a triangle ABC let the angular bisector of $\angle BAC$ intersect BC at D. Let M be the midpoint of BD. Let a circle through A and tangent to line BC at D intersect the second time AM at P and AC at Q (P, $Q \neq A$). Prove that B, P and Q are collinear.
- 4. Let ABCD be a convex quadrilateral such that $\angle BCD = \angle CDA = 120^{\circ}$. We construct equilateral triangles ACE and BDF such that E and D are on the same side of AC and F and C are on the same side of BD. Let AE and DF intersect in X and let CE and BF intersect in Y. Prove that AC, BD and XY are concurrent.
- 5. Let ABCD be a cyclic quadrilateral (inscribed in a circle) such that neither $\triangle ABC$ not $\triangle ADC$ are equilateral. Let E be the midpoint of the diagonal AC. Let the line through D perpendicular to the Euler line of $\triangle ABC$ and the line through B perpendicular to the Euler line of $\triangle ADC$ intersect in F. Let G be the point on the segment EF such that GF = 2GE. Prove that GB = GD.
- 6. Let k be the circumcircle of a triangle ABC. A circle l with center O passes through B and C and meets the segments AC and AB again at D and E respectively. Let $P \neq A$ be the point at which the circumcircle of $\triangle ADE$ meets k. Prove that $AP \perp PO$.
- 7. The circles C_1 and C_2 touch each other externally at D, and touch a circle ω internally at B and C, respectively. Let A be an intersection point of ω and the common tangent to C_1 and C_2 at D. Lines AB and AC meet C_1 and C_2 again at K and K, respectively, and the line K0 meets K1 again at K2 and K3. Prove that the lines K4 and K5 are concurrent.
- 8. Let ABC be a triangle with AB = AC, and let M be the midpoint of BC. Let P be a point such that PB < PC and PA is parallel to BC. Let X and Y be points on the lines PB and PC, respectively, so that B lies on the segment PX, C lies on the segment PY, and $\angle PXM = \angle PYM$. Prove that the quadrilateral APXY is cyclic.