Universitatea Tehnică din Cluj-Napoca Catedra de Calculatoare

Cub Led Muzical 4x4x4

Student: Bîrluțiu Claudiu-Andrei

Grupa 30236

Data 4.12.2021

Cuprins

1. Introducere	
2. Stabilire cazuri de utilizare	
3. Componente Hardware necesare	
4. Proiectare Hardware	
5. Specificație software	

1. Introducere

În lucrarea de față sunt prezentate etapele de proiectare și implementare software a unui cub led muzical de dimensiune 4x4x4 ce este comandat prin intermediul unei plăci de dezvoltare Mega 2560.

Cubul a fost realizat prin conectarea a 64 de led-uri de culoare albastră. Gruparea led-urilor s-a făcut pe 4 nivele a câte 16 led-uri. Catodurile led-urilor au fost grupate pe nivele, în timp ce anodul a fost conectat la comun pe coloane. De asemnea, sistemului creat s-a adăugat o boxă audio de 8 Ohm pentru a reda 3 melodii MerryChristmas, TheGodFather song și TheLionTears. În timpul rulării melodiilor se va reda cu ajuturol cubului de led-uri niște animații ce se vor sincroniza cu durata notelor muzicale.

Pentru controlul sistemului creat s-a atașat un modul Bluetooth HC-05. Prin intermediul aplicației mobile *Serial Bluetooth Terminal* se pot trimite comenzi pentru a schimba melodia și jocul de lumini.

2. Stabilire cazuri de utilizare

Înaintea de proiectarea propriu zisă a sistemului s-au fixat principalele cerințe pe care să le îndeplinească și cazurile de utilizare.

S-a hotărât crearea unei structuri cubice formată din 64 de led-uri care să ofere posibilitatea adăugării unor animații luminoase sincrone cu melodiile redate cu ajutorul boxei audio.

Principalele cazuri de utilizare sunt descrise în următoarea digaramă use-case:

Figure 1: Use Case

Pentru controlul sistemului, utilizatorul trebuie să folosească aplicația *Serial Bluetooth Terminal* disponibila pe *Magazin Play* (https://play.google.com/store/apps/details? https://play.google.com/store/apps/details? https://play.google.com/store/apps/details? https://play.google.com/store/apps/details? id=de.kai morich.serial bluetooth terminal&hl=en&gl=US) . Dispozitivul cu care trebuie să se împerecheze utilizatorul se numește **Claudiu,** iar parola este **1234**. După conectarea la dispozitivul Bluetooth se vor putea trimite următoarele comenzi:

- 0 animație pe melodia MerryChristmas;
- 1 animație pe melodia TheGodFtaher;
- 2 animație pe melodia TheLionTears
- 3 animație clipire
- 4 animație umplere nivele
- 5 aprinderea tuturor led-urilor
- 6 animație aprindere led-uri random

3. Componente Hardware necesare

În continuare vor fi specificate principalele componente folosite în realizarea sistemului.

- Placă de dezvoltare compatibilă arduino mega 2560
- 64 led-uri 5mm de culoare albastră și tensiunea de deschidere de 3.3 V
- 16 rezistențe de 330 Ohmi
- 4 rezistențe de 20 KOhmi
- 4 tranzistotri NPN-2222A
- tweeter Demo, 8 Ohm/91 dB, 3KHz-20KHz
- breadboard 400 puncte
- placă de prototipizare
- fire
- modul Bluetooth HC-05

Figure 2: Placă compatibilă cu mega 2560

Descriere modul Bluetooth HC-05:

Este un modul care poate adăuga funcții Wireless în două direcții (full-duplex) pentru comunicarea între 2 micronctrolere ca de exemplu placa Arduino și telefonul mobil. Modulul comunică prin intermediul interfeței USART la o rată baud de 9600.

Pinii disponibili ai dispozitivului sunt:

Figure 3: Modul Bluetooth HC-05

- **EN**: Dacă e conectat la nivel logic 1 înainte de a se alimenta modulul, acesta intră în modul de configurare. În acest mod modulul așteaptă comenzi de tip AT prin interfața serială, la un Baud Rate de 38400 biți pe secundă.
- **VCC**: pin de alimentare +5V
- **GND**: pin de masă
- **TXD**: pin de transmisie al interfeței seriale
- **RXD**: pin de recepție al interfeței seriale
- **STATE**: starea conexiunii. Acest pin este conectat la LED-ul de pe modul. În funcție de modul în care clipește acest LED, modulul este în una din cele trei stări:
- Clipire odată la 2 secunde: Modulul este în modul de configurare (de comandă).
- ➤ Clipire rapidă: Modulul așteaptă conexiuni acest mod ar trebui să fie activ -la pornirea sistemului.

Clipire de două ori în 1 secundă: Conexiune stabilită, se pot transmite şi recepţiona date

4. Proiectare Hardware

În continuare e prezentată proiectarea hardware a sistemului. Pentru simiplitate s-au creat mai multe schematice pentru a ilustra legarea componentelor. Cum s-a specificat în partea de introducere, cele 64 led-uri au fost grupate în 4 straturi sau nivele de câte 16 led-uri fiecare. În cadrul unui nivel, toate catod-urile led-urilor au fost legate împreună sub forma unei matrice de 4x4. Legătura între nivele s-a realizat legarea anodurilor led-urile de pe pozițiile echivalente, formânduse astfel 16 coloane cu 4 led-uri pentru fiecare coloană. Având această structură, fiecare din cele 64 de led-uri pot fi adresate individual prin activarea nivelului la care se află și a poziției date de coloană specifică.

Figure 4: Grupare led-uri

Deoarece tesniunea de deschidere a led-urilor este de aproximativ 3.3 V, iar de la ieșirea plăcii de dezvoltare se furnizează o tesniune de +5V, înseamnă că avem nevoie de rezistențe pentru a nu arde led-urile. Se vor folosi 16 rezsitențe de 3300hm, pentru fiecare coloană de led-uri. De asemnea, pentru comanda nivelelor, s-au folosit 4 tranzistori. Colectorii acestor tranzistori au fost conectați la cele 4 nivele, iar bazele acestora au fost duse la port-urile de ieșire ale plăcii pentru a putea comanda activarea unui nivel, dar înainte de a conecta la placă s-au pus 4 rezistențe de 20KOhmi. Emitorii s-au conectat la GND.

În umătoarea figură se observă schematicul sistemului. De remarcat este conectarea în cruce a liniilor de transmisie și recepție a modulului bluetooth și placa Mega 2560.

Figure 5: Schema bloc

5. Specificație software

Pentru implematarea logicii de aprindere și stingere a led-urilor s-au folosit porturile A, C și B. PORTA și PORTC au fost setate ca ieșiri spre cele 16 coloane ale cubului, pe când PORTB a fost setat pentru ieșirea dusă spre cele 4 nivele ale cubului.

```
DDRA = 0xFF; //primele 8 coloane {1,...8}
DDRC = 0xFF; //restul de 8 coloane {9,16}
DDRB = 0xFF; //pentru nivel

Exemplu aprindere led 15 de la nivelul 2:
    PORTC = 0x40;
    PORTB = 0x02;
    PORTA = 0x00;
```

Deoarece s-a dorit controlul sistemului prin intermediul modulului bluetooth, astfel încât în momentul când se primește o comandă prin linia serială să se treacă la execuția instrucțiunii dorite s-a recurs la folosirea întreruperilor pentru a verifica dacă s-a primit ceva pe linia serială. La fiecare secundă se va vevrifica dacă s-a primit ceva de la modulul bluetooth prin funcția *Serial1.available()*; care va returna numărul de bytes primit pe linia serială. În funcție de primul byte primit pe linia serială, se va decide ce acțiune se va executa în continuare. Pentru a putea citi serial, în setup se va porni comunicația serială pe pini Tx1 și Rx1 ai plăcii cu baud rate-ul 9600.

Pentru generarea melodiilor s-a folosit funcția *tone*(...) ce are ca parametri pin -ul ce permite formarea unui semnal PWN (pin 8 de exemplu), frecvvența notei și durata acesteia.

6. Bibliografie

Melodiile sunt preluate de pe https://github.com/robsoncouto/arduino-songs