

Técnicas de PLN aplicadas a classificação de textos

# 1 - A representação Bag of Words e o problema da tokenização por espaços



#### O problema da tokenização por espaços

- As pessoas podem pontuar de forma diferente.
- Frase 1:
  - Eu tive nota dez, pois estudei muito.
- A tokenização por espaços gera:
  - ["Eu", "tive", "nota", "dez," ,"pois", "estudei", "muito."]
- Frase 2:
  - Eu tive nota dez pois, estudei muito.
- A tokenização por espaços gera:
  - ["Eu", "tive", "nota", "dez", "pois,", "estudei", "muito"]



#### O problema da tokenização por espaços

- A representação bag of words usa todos os tokens de todas as frases!
- Comparando as frases com bag of words o resultado é diferente quando deveria ser igual.
- Frase 1: Eu tive nota dez, pois estudei muito.

| Eu | tive | nota | dez, | pois | estudei | muito. | dez | pois, | muito |
|----|------|------|------|------|---------|--------|-----|-------|-------|
| 1  | 1    | 1    | 1    | 1    | 1       | 1      | 0   | 0     | 0     |

• Frase 2: Eu tive nota dez pois, estudei muito.

| Eu | tive | nota | dez, | pois | estudei | muito. | dez | pois, | muito |
|----|------|------|------|------|---------|--------|-----|-------|-------|
| 1  | 1    | 1    | 0    | 0    | 1       | 0      | 1   | 1     | 1     |

#### Opções do pacote tokenize do NLTK

- from nltk.tokenize import WhitespaceTokenizer
- Tokeniza uma string pelos espaços em branco (espaço, tabulação, nova linha).
- from nltk.tokenize import WordPunctTokenizer
- Tokeniza uma string pelos espaços em branco (espaço, tabulação, nova linha) e caracteres não alfabéticos (",", "!", ".", "\$" etc.)
  - Frase: O hambúrguer me custou R\$ 30,00.
  - Tokens: ["O", "hambúrguer", "me", "custou", "R", "\$", "30", ",", "00", "."]



#### Pontuação como stop words

- As pontuações nos textos tem baixa relevância para a análise de sentimento.
- No nosso contexto as pontuações são stop words ("palavras" irrelevantes)
- punctuation é uma string com um conjunto de pontuações que vamos usar de referência para remover dos textos.





# 2 - O problema das variações de acentuação e de maiúsculas e minúsculas



#### E a variação da acentuação?

- Acertando ou errando, é comum que as pessoas acentuem de forma diferente.
  - Frase 1:
    - Meu tênis é muito bonito.
  - Frase 2:
    - Meu tenis e muito bonito.
- O significado de ambas as frases é o mesmo, mas a aprendizagem automática pode não compreender isso.



#### Representação de caracteres

- Um caractere é o menor componente possível de um texto.
  - 'A', 'B', 'C', 'È' e 'θ' são exemplos.
- Os caracteres variam de acordo com o idioma ou contexto que você está falando.
- Unicode é um padrão usado no mundo todo para manipular texto de qualquer sistema de escrita.
- Em 2016 o Unicode tinha suporte para mais de 120.000 caracteres.

| , 00B8   | È 00C8 | Ø 00D8 | è 00E8 | Ø 00F8        |
|----------|--------|--------|--------|---------------|
| 1 00B9   | É 0009 | Ù 00D9 | é 00E9 | ù 00F9        |
| 0 00BA   | Ê 00CA | Ú 00DA | ê DOEA | Ú DOFA        |
| » 00BB   | Ë 00CB | Û 00DB | ë ooeb | û oofb        |
| 1/4 00BC | J 00CC | Ü 00DC | 1 00EC | Ü OOFC        |
| 1/2 00BD | [ OOCD | Ýoodd  | [ OOED | ý oofd        |
| 3/4 00BE | Î OOCE | Þ 00DE | î OOEE | <b>b</b> 00FE |
| ¿ 00BF   | Ï 00CF | ß 00DF | Ï OOEF | ÿ 00FF        |



- Muitos caracteres do Unicode são incompatíveis com aplicações especificas. Precisamos normalizar para os caracteres da aplicação.
- A biblioteca Unidecode converte dados Unicode para caracteres compatíveis com o que pode ser feito com um teclado no idioma inglês.
- Inglês não usa acentos, então removeremos acentos!



#### Sensibilidade a maiúsculas e minúsculas?

- Sabemos que as frases abaixo vão ser tratadas como iguais quanto independente da acentuação:
  - Esse filme é horrível!
  - esse filme é horrível!
  - ESSE FILME É HORRÍVEL!
- Mas nossa classificação automática ainda está case-sensitive!
  - Esse != esse
  - filme != Filme
  - horrível != HORRÍVEL



#### Sensibilidade a maiúsculas e minúsculas?

- A função lower() converte maiúsculas em minúsculas
- frase = "O Delorean é do Dr Brown"
- print(frase.lower())
  - resultado: o delorean é do dr brown
- Essa é a normalização em minúsculas, também chamada de case folding.



## 3 - Considerando as diversas flexões e derivações das palavras



#### Flexões e derivações de palavras?

- Flexão é a modificação de uma palavra para expressar diferentes categorias gramaticais, como modo, tempo, voz, aspecto, pessoa, número, gênero e caso.
- As flexões criam pequenas diferenças no significado das palavras, criando novas palavras
  - vocabulários enormes.
- As pessoas erram as flexões com frequência.
  - confundem humanos e máquinas.





#### Stemização!

- Processo de reduzir palavras flexionadas (ou derivadas) ao seu tronco (stem), base ou raiz.
- Nossa máquina verá as palavras ótimo, ótima, ótimos, ótimas, como a mesma palavra:
  - otim
- Nossa máquina verá as palavras péssimo, péssima, péssimos e péssimas como a mesma palavra:
  - pessim

Técnicas de PLN aplicadas a classificação de textos

### 4 - TF-IDF



#### A frequência das palavras importa?

- O número de vezes que uma palavra ocorre em um determinado documento é chamado de frequência de termo, comumente abreviado como TF.
- Filme é uma palavra muito comum em textos sobre filmes, então tem alta frequência!
- Que palavra abaixo é mais importante para a análise de sentimentos?
  - Assisti um filme otimo.
  - Assisti um filme pessimo.



#### A frequência das palavras importa!

• Assisti um filme otimo.

| Assisti | um | filme | ótimo | péssimo |
|---------|----|-------|-------|---------|
| 1       | 1  | 1     | 1     | 0       |

• Assisti um filme pessimo.

| Assisti | um | filme | ótimo | péssimo |
|---------|----|-------|-------|---------|
| 1       | 1  | 1     | 0     | 1       |

• As palavras filme, pessimo e otimo nao tem a mesma importancia mas tem o mesmo valor de frequencia em cada frase.



#### Ponderando a frequência

- TF-IDF é uma ponderação das frequências para indicar as palavras mais informativas de um contexto.
- IDF pode ser traduzido como o inverso da frequência nos documentos.
  - Diz quantos documentos tem a palavra.
- O TF-IDF é a divisão do TF pelo IDF.



#### Ponderando a frequência

• O TF-IDF padrão do conjunto de frases ["Assisti um filme otimo., Assisti um filme pessimo]

|         | Assisti  | filme    | péssimo  | um       | ótimo    |
|---------|----------|----------|----------|----------|----------|
| Frase 1 | 0.448321 | 0.448321 | 0.000000 | 0.448321 | 0.630099 |
| Frase 2 | 0.448321 | 0.448321 | 0.630099 | 0.448321 | 0.000000 |

Agora medimos quais palavras são mais informativas em cada frase!



## 5 - Ngrams



#### A ordem das palavras importa pouco?

- As palavras isoladas não guardam toda a semântica de um texto.
  - Mas o filme não é ruim, é muito ruim.
  - Mas o filme não é ruim, ruim é muito.
- Ambas as frases tem as mesmas palavras, mas tem sentimentos diferentes.
- N-gram é uma sequência contendo n elementos.
- 1-gram, ou unigrama, tem 1 elemento, e usamos esses até agora.
- 2-gram, ou bigrama, tem 2 elementos.
- Tem algum bigrama que diferencie melhor nossas duas frases acima?



#### Extraindo informação com ngram

Bag of words com bigramas

|         | Mas o | o filme | filme não | não é | é ruim | ruim é | é muito | muito ruim |
|---------|-------|---------|-----------|-------|--------|--------|---------|------------|
| Frase 1 | 1     | 1       | 1         | 1     | 1      | 0      | 1       | 1          |
| Frase 2 | 1     | 1       | 1         | 1     | 1      | 1      | 1       | 0          |

- Com ngrams podemos extrair mais informação das frases
- Aumenta o vocabulário do aprendizado, cuidado!



