Computer VisionFitting and Alignment

Dr. Mrinmoy Ghorai

Indian Institute of Information Technology
Sri City, Chittoor

Fitting and Alignment

Fitting: find the parameters of a model that best fit the data

Alignment: find the parameters of the transformation that best align matched points

Fitting and alignment

 Choose a parametric model to represent a set of features

simple model: lines

simple model: circles

complicated model: face shape

complicated model: car

Fitting and Alignment: Methods

- Global optimization / Search for parameters
 - Least squares fit
 - Robust least squares
 - Iterative closest point (ICP)

- Hypothesize and test
 - Generalized Hough transform
 - RANSAC

Simple example: Fitting a line

- •Data: $(x_1, y_1), ..., (x_n, y_n)$
- •Line equation: $y_i = mx_i + b$
- •Find (m, b) to minimize

$$E = \sum_{i=1}^{n} (y_i - mx_i - b)^2$$

- •Data: $(x_1, y_1), ..., (x_n, y_n)$
- •Line equation: $y_i = mx_i + b$
- •Find (m, b) to minimize

$$E = \sum_{i=1}^{n} (y_i - mx_i - b)^2$$

- •Data: $(x_1, y_1), ..., (x_n, y_n)$
- •Line equation: $y_i = m x_i + b$
- •Find (m, b) to minimize

$$E = \sum_{i=1}^{n} (y_i - mx_i - b)^2$$

$$E = \sum_{i=1}^{n} \left[\begin{bmatrix} x_i & 1 \end{bmatrix}_{b}^{m} - y_i \right]^2 = \begin{bmatrix} x_1 & 1 \end{bmatrix}_{m}^{m} \begin{bmatrix} y_1 \\ \vdots & \vdots \\ x_n & 1 \end{bmatrix}_{b}^2$$

- •Data: $(x_1, y_1), ..., (x_n, y_n)$
- •Line equation: $y_i = m x_i + b$
- •Find (m, b) to minimize

$$E = \sum_{i=1}^{n} (y_i - mx_i - b)^2$$

$$E = \sum_{i=1}^{n} \left(\begin{bmatrix} x_i & 1 \end{bmatrix}_{b}^{m} - y_i \right)^2 = \begin{bmatrix} x_1 & 1 \end{bmatrix}_{m}^{m} - \begin{bmatrix} y_1 \\ \vdots & \vdots \\ x_n & 1 \end{bmatrix}_{b}^2 - \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}^2 = \|\mathbf{A}\mathbf{p} - \mathbf{y}\|^2$$

- •Data: $(x_1, y_1), ..., (x_n, y_n)$
- •Line equation: $y_i = m x_i + b$
- •Find (m, b) to minimize

$$E = \sum_{i=1}^{n} (y_i - mx_i - b)^2$$

$$E = \sum_{i=1}^{n} \left(\begin{bmatrix} x_i & 1 \end{bmatrix}_{b}^{m} - y_i \right)^2 = \left\| \begin{bmatrix} x_1 & 1 \end{bmatrix}_{m}^{m} - \begin{bmatrix} y_1 \\ \vdots & \vdots \\ x_n & 1 \end{bmatrix} \right\|^2 = \left\| \mathbf{A} \mathbf{p} - \mathbf{y} \right\|^2$$
$$= \mathbf{y}^T \mathbf{y} - 2(\mathbf{A} \mathbf{p})^T \mathbf{y} + (\mathbf{A} \mathbf{p})^T (\mathbf{A} \mathbf{p})$$

- •Data: $(x_1, y_1), ..., (x_n, y_n)$
- •Line equation: $y_i = m x_i + b$
- •Find (m, b) to minimize

$$E = \sum_{i=1}^{n} (y_i - mx_i - b)^2$$

$$E = \sum_{i=1}^{n} \left[\begin{bmatrix} x_i & 1 \end{bmatrix} \begin{bmatrix} m \\ b \end{bmatrix} - y_i \right]^2 = \left\| \begin{bmatrix} x_1 & 1 \end{bmatrix} \begin{bmatrix} m \\ \vdots & \vdots \\ x_n & 1 \end{bmatrix} \right\|^2 = \left\| \mathbf{A} \mathbf{p} - \mathbf{y} \right\|^2$$
$$= \mathbf{y}^T \mathbf{y} - 2(\mathbf{A} \mathbf{p})^T \mathbf{y} + (\mathbf{A} \mathbf{p})^T (\mathbf{A} \mathbf{p})$$
$$\frac{dE}{dp} = 2\mathbf{A}^T \mathbf{A} \mathbf{p} - 2\mathbf{A}^T \mathbf{y} = 0$$

- •Data: $(x_1, y_1), ..., (x_n, y_n)$
- •Line equation: $y_i = m x_i + b$
- •Find (m, b) to minimize

$$E = \sum_{i=1}^{n} (y_i - mx_i - b)^2$$

$$E = \sum_{i=1}^{n} \left[\begin{bmatrix} x_i & 1 \end{bmatrix}_{b}^{m} - y_i \right]^2 = \begin{bmatrix} x_1 & 1 \end{bmatrix}_{m}^{m} - \begin{bmatrix} y_1 \\ \vdots & \vdots \\ x_n & 1 \end{bmatrix}_{b}^2 = \|\mathbf{A}\mathbf{p} - \mathbf{y}\|^2$$

$$= \mathbf{y}^T \mathbf{y} - 2(\mathbf{A}\mathbf{p})^T \mathbf{y} + (\mathbf{A}\mathbf{p})^T (\mathbf{A}\mathbf{p})$$

$$\frac{dE}{dp} = 2\mathbf{A}^T \mathbf{A}\mathbf{p} - 2\mathbf{A}^T \mathbf{y} = 0$$

$$\mathbf{A}^T \mathbf{A} \mathbf{p} = \mathbf{A}^T \mathbf{y} \Longrightarrow \mathbf{p} = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{y}$$

Hypothesize and test

- Hough Transform
- RANSAC Algorithm

- 1. Propose parameters
- 2. Score the given parameters
- Choose from among the set of parameters
- 4. Possibly refine parameters using inliers

Hough Transform: Outline

1. Create a grid of parameter values

2. Each point votes for a set of parameters, incrementing those values in grid

3. Find maximum or local maxima in grid

P.V.C. Hough, *Machine Analysis of Bubble Chamber Pictures*, Proc. Int. Conf. High Energy Accelerators and Instrumentation, 1959

$$y = m x + b$$

P.V.C. Hough, *Machine Analysis of Bubble Chamber Pictures*, Proc. Int. Conf. High Energy Accelerators and Instrumentation, 1959

$$y = m x + b$$

P.V.C. Hough, *Machine Analysis of Bubble Chamber Pictures*, Proc. Int. Conf. High Energy Accelerators and Instrumentation, 1959

$$y = m x + b$$

P.V.C. Hough, *Machine Analysis of Bubble Chamber Pictures*, Proc. Int. Conf. High Energy Accelerators and Instrumentation, 1959

$$y = m x + b$$

P.V.C. Hough, *Machine Analysis of Bubble Chamber Pictures*, Proc. Int. Conf. High Energy Accelerators and Instrumentation, 1959

$$y = m x + b$$

P.V.C. Hough, *Machine Analysis of Bubble Chamber Pictures*, Proc. Int. Conf. High Energy Accelerators and Instrumentation, 1959

Issue: parameter space [m,b] is unbounded...

Use a polar representation for the parameter

$$x\cos\theta + y\sin\theta = \rho$$

P.V.C. Hough, *Machine Analysis of Bubble Chamber Pictures*, Proc. Int. Conf. High Energy Accelerators and Instrumentation, 1959

Issue: parameter space [m,b] is unbounded...

Use a polar representation for the parameter

$$x\cos\theta + y\sin\theta = \rho$$

P.V.C. Hough, *Machine Analysis of Bubble Chamber Pictures*, Proc. Int. Conf. High Energy Accelerators and Instrumentation, 1959

Issue: parameter space [m,b] is unbounded...

Use a polar representation for the parameter

$$x\cos\theta + y\sin\theta = \rho$$

P.V.C. Hough, *Machine Analysis of Bubble Chamber Pictures*, Proc. Int. Conf. High Energy Accelerators and Instrumentation, 1959

Issue: parameter space [m,b] is unbounded...

Use a polar representation for the parameter

$$x\cos\theta + y\sin\theta = \rho$$

Need to adjust grid size or smooth

Need to adjust grid size or smooth

Issue: spurious peaks due to uniform noise

1. Image → Canny

2. Canny \rightarrow Hough votes

3. Hough votes → Edges

Find peaks and post-process

Hough transform for circles

Circle: center (a,b) and radius r

$$(x_i - a)^2 + (y_i - b)^2 = r^2$$

For a fixed radius r

36 Kristen Grauman

Hough transform conclusions

Good

- Robust to outliers: each point votes separately
- Fairly efficient (much faster than trying all sets of parameters)
- Provides multiple good fits

Hough transform conclusions

Good

- Robust to outliers: each point votes separately
- Fairly efficient (much faster than trying all sets of parameters)
- Provides multiple good fits

Bad

- Some sensitivity to noise
- Bin size trades off between noise tolerance, precision, and speed/memory
 - Can be hard to find sweet spot
- Not suitable for more than a few parameters
 - grid size grows exponentially

Hough transform conclusions

Good

- Robust to outliers: each point votes separately
- Fairly efficient (much faster than trying all sets of parameters)
- Provides multiple good fits

Bad

- Some sensitivity to noise
- Bin size trades off between noise tolerance, precision, and speed/memory
 - Can be hard to find sweet spot
- Not suitable for more than a few parameters
 - grid size grows exponentially

Common applications

- Line fitting (also circles, ellipses, etc.)
- Object instance recognition (parameters are position/scale/orientation)
- Object category recognition (parameters are position/scale)

(RANdom SAmple Consensus):

Fischler & Bolles in '81.

Algorithm:

- 1. Sample (randomly) the number of points required to fit the model
- **2. Solve** for model parameters using samples
- 3. Score by the fraction of inliers within a preset threshold of the model

Line fitting example

Algorithm:

- 1.Sample (randomly) the number of points required to fit the model (#=2)
- 2.Solve for model parameters using samples
- 3.Score by the fraction of inliers within a preset threshold of the model

Line fitting example

Algorithm:

- Sample (randomly) the number of points required to fit the model (#=2)
- 2. Solve for model parameters using samples
- 3. Score by the fraction of inliers within a preset threshold of the model

Line fitting example

$$N_I = 6$$

Algorithm:

- **1.Sample** (randomly) the number of points required to fit the model (#=2)
- 2.Solve for model parameters using samples
- 3.Score by the fraction of inliers within a preset threshold of the model

Algorithm:

- 1. Sample (randomly) the number of points required to fit the model (#=2)
- 2. Solve for model parameters using samples
- 3. Score by the fraction of inliers within a preset threshold of the model

Algorithm:

- 1. Sample (randomly) the number of points required to fit the model (#=2)
- **2. Solve** for model parameters using samples
- 3. Score by the fraction of inliers within a preset threshold of the model

Algorithm:

- 1. Sample (randomly) the number of points required to fit the model (#=2)
- 2. Solve for model parameters using samples
- 3. Score by the fraction of inliers within a preset threshold of the model

- 1.Sample (randomly) the number of points required to fit the model (#=2)
- **2.Solve** for model parameters using samples
- **3.Score** by the fraction of inliers within a preset threshold of the model

How to choose parameters?

- Number of samples N
 - Choose N so that, with probability p, at least one random sample is free from outliers (e.g. p=0.99) (outlier ratio: e)
- Number of sampled points s
 - Minimum number needed to fit the model
- Distance threshold δ
 - Choose δ so that a good point is likely (e.g., prob=0.95) within threshold

How to choose parameters?

- Number of samples N
 - Choose N so that, with probability p, at least one random sample is free from outliers (e.g. p=0.99) (outlier ratio: e)
- Number of sampled points s
 - Minimum number needed to fit the model
- Distance threshold δ
 - Choose δ so that a good point is likely (e.g., prob=0.95) within threshold

$$N = log(1-p)/log(1-(1-e)^{s})$$

How to choose parameters?

- Number of samples N
 - Choose N so that, with probability p, at least one random sample is free from outliers (e.g. p=0.99) (outlier ratio: e)
- Number of sampled points s
 - Minimum number needed to fit the model
- ullet Distance threshold δ
 - Choose δ so that a good point is likely (e.g., prob=0.95) within threshold

threshold								
$N = \log(1-p) / \log(1-(1-e)^{s})$	proportion of outliers \emph{e}							
	S	5%	10%	20%	25%	30%	40%	50%
	2	2	3	5	6	7	11	17
	3	3	4	7	9	11	19	35
	4	3	5	9	13	17	34	72
	5	4	6	12	17	26	57	146
	6	4	7	16	24	37	97	293
	7	4	8	20	33	54	163	588
	8	5	9	26	44	78	272	1177

RANSAC conclusions

Good

- Robust to outliers
- •Applicable for larger number of objective function parameters than Hough transform
- Optimization parameters are easier to choose than Hough transform

RANSAC conclusions

Good

- Robust to outliers
- Applicable for larger number of objective function parameters than Hough transform
- Optimization parameters are easier to choose than Hough transform

Bad

- Computational time grows quickly with fraction of outliers and number of parameters
- •Not as good for getting multiple fits (though one solution is to remove inliers after each fit and repeat)

RANSAC conclusions

Good

- Robust to outliers
- Applicable for larger number of objective function parameters than Hough transform
- Optimization parameters are easier to choose than Hough transform

Bad

- Computational time grows quickly with fraction of outliers and number of parameters
- •Not as good for getting multiple fits (though one solution is to remove inliers after each fit and repeat)

Common applications

- Computing a homography (e.g., image stitching)
- Estimating fundamental matrix (relating two views)

Things to remember

- Least Squares Fit
 - closed form solution
 - robust to noise
 - not robust to outliers
- Hough transform
 - robust to noise and outliers
 - can fit multiple models
 - only works for a few parameters (1-4 typically)
- RANSAC
 - robust to noise and outliers
 - works with a moderate number of parameters (e.g, 1-8)

Acknowledgements

- Thanks to the following researchers for making their teaching/research material online
 - Forsyth
 - Steve Seitz
 - Noah Snavely
 - J.B. Huang
 - Derek Hoiem
 - D. Lowe
 - A. Bobick
 - S. Lazebnik
 - K. Grauman
 - R. Zaleski
 - Leibe
 - And many more