MEASUREMENT & INSTRUMENT LABORATORY 3

Temperature Measurement

วัตถุประสงค์

- 1.ศึกษาระบบการทำงานของ Resistance Temperature Detector (RTD)
- 2.ศึกษาระบบการทำงานของ RTD Transmitter
- 3.เข้าใจหลักการทำงานของ Basic Signal Conditioner
- 4.สามารถนำหลักการทำงานของ RTD, RTD Transmitter มาประยุกต์ใช้งานได้

ทฤษฎีที่เกี่ยวข้อง

ชนิดของเครื่องวัดอุณหภูมิ

1. Mechanical

- LIG (Liquid in Glass Thermometer or Glass Thermometer)

เป็นอุปกรณ์วัดอุณหภูมิที่ทำงานโดยอาศัยหลักการเปลี่ยนแปลงสมบัติเชิงกล ด้วยหลักการ ขยายตัวหรือหดตัวของของเหลว โดยเมื่อของเหลวได้รับความร้อน ทำให้อุณหภูมิ (temperature) เพิ่มสูงขึ้นจะขยายตัว และหดตัวลงเมื่ออุณหภูมิ ของเหลวลดลง อุปกรณ์วัดชนิดนี้มีของเหลวบรรจุอยู่ ภายในหลอดแก้วปิด โดยของเหลวที่ใช้ต้องไม่เปลี่ยนสถานะในสภาวะการใช้งาน ของเหลวที่นิยมบรรจุ ภายในหลอดแก้ว ได้แก่ ปรอทหรือแอลกอฮอล์ โดยเลือกใช้ตามย่านการวัด (range) อุณหภูมิ หาก ต้องการวัดอุณหภูมิในช่วงที่มีค่าต่ำ ควรเลือกใช้แอลกอฮอล์บรรจุภายในหลอดแก้ว เนื่องจากแอลกอฮอล์ มีความไว (sensitivity) ต่อการเปลี่ยนแปลงของอุณหภูมิมากกว่าปรอทและมีราคาถูกกว่า ส่วนการ ใช้งานในช่วงที่มีอุณหภูมิสูงควรเลือกใช้ปรอท เนื่องจากแอลกอฮอล์เป็นของเหลวที่มีจุดเดือดค่อนข้างต่ำ (ประมาณ 76 องศาเซลเซียส) ถ้าใช้วัดอุณหภูมิที่สูงกว่าจุดเดือดของแอลกอฮอล์ทำให้เกิดการเปลี่ยน สถานะจากของเหลวกลายเป็นไจได้ ทำให้เครื่องมืควัดเกิดการเสียหาย

Measurement & Instrument Laboratory 3 | Automation Engineering KMITL

LJG (Liquid in Glass Thermometer or Glass Thermometer)

- Fill Thermal or remote Thermometer

เป็นอุปกรณ์วัดอุณหภูมิชนิดหนึ่งที่ใช้สำหรับอ่านค่าอุณหภูมิที่บริเวณใช้งานหรือที่เรียกว่าเกจวัด อุณหภูมิ (Temperature Gauge) เป็นเครื่องมือวัดอุณหภูมิที่บริเวณใช้งานอีกประเภทหนึ่งที่มีการ ใช้งานกันในอุตสาหกรรม

Fill Thermal or remote Thermometer

- Bimetal

เป็นอุปกรณ์วัดอุณหภูมิที่ทำงานโดยอาศัยหลักการเปลี่ยนแปลงทางกล ประกอบด้วยแถบโลหะ สองชนิด เช่น ชนิด A และ B ที่มีค่าสัมประสิทธิ์การขยายตัวจากความร้อนไม่เท่ากัน (αA และ αB) นำมาทาบติดกันสนิท เมื่อได้รับความร้อนโลหะทั้งสองเกิดการขยายตัวอย่างไม่เท่ากัน ทำให้แถบโลหะเกิด การโก่ง โดยทั่วไปอุปกรณ์วัดอุณหภูมิชนิดนี้มีย่านอุณหภูมิใช้งานอยู่ในช่วง -75 ถึง 550 องศาเซลเซียส

Bimetal

2. Electrical

- Thermocouple (TC)

คืออุปกรณ์วัดอุณหภูมิโดยใช้หลักการเปลี่ยนแปลงอุณหภูมิหรือความร้อนเป็นแรงเคลื่อนไฟฟ้า (emf) เทอร์โมคัปเปิลทำมาจากโลหะตัวนำที่ต่างชนิดกัน 2 ตัว (แตกต่างกันทางโครงสร้างของอะตอม) นำมาเชื่อมต่อปลายทั้งสองเข้าด้วยกันที่ปลายด้านหนึ่ง เรียกว่าจุดวัดอุณหภูมิ ส่วนปลายอีกด้านหนึ่ง ปล่อยเปิดไว้ เรียกว่าจุดอ้างอิง หากจุดวัดอุณหภูมิและจุดอ้างอิงมีอุณหภูมิต่างกันก็จะทำให้มีการ

นำกระแสในวงจรเทอร์โมคัปเปิลทั้งสองข้าง ปรากฏการณ์ดังกล่าวนี้ค้นพบโดย Thomus Seebeck นักวิทยาศาสตร์ชาวเยอรมันในปี ค.ศ.1821 ดังรูป เป็นวงจรที่ใช้อธิบายผลของซีแบ็คดังกล่าว

วงจรที่ใช้อธิบายผลของซี่แบ็ค

Thermocouple

- Resistance Temperature Detector (RTD)

อาร์ทีดี คือ ตัวเซ็นเซอร์อุณหภูมิที่ใช้หลักการเปลี่ยนแปลงค่าความต้านทานของโลหะซึ่งค่าความ ต้านทานดังกล่าวจะมีค่าเพิ่มตามอุณหภูมิ ความต้านทานของโลหะที่เพิ่มเมื่ออุณหภูมิเพิ่มขึ้นนี้ เรียกว่า "สัมประสิทธิ์การเปลี่ยนแปลงอุณหภูมิแบบบวก " (Positive Temperature Coefficient ; PTC) นอกจากนี้อาร์ทีดียังมีชื่อเรียกได้อีกอย่างว่า " เทอร์โมมิเตอร์แบบค่าความต้านทาน " (Resistance Temperatures)

RTD ทำจากลวดโลหะที่มีความยาวค่าหนึ่ง ซึ่งที่ 0 °C จะมีค่าความต้านทานค่าหนึ่งตามที่ กำหนด ลวดโลหะนี้จะพันอยู่บนแกนที่เป็นฉนวนไฟฟ้า มีคุณสมบัติทนต่อความร้อน และต้องมีสัมประสิทธิ์ การขยายตัวสัมพันธ์กับการขยายตัวของขดลวด RTD จะถูกบรรจุอยู่ใน Metal Sheath ฉนวนที่ใช้ เป็นพวกแมกนีเซียมออกไซด์ หรืออะลูมิเนียมออกไซด์

RTD

อุปกรณ์ที่ใช้ในการทดลอง

1. RTD PT100,PT1000

2. Terminal

3. ตัวต้านทาน

4. Hart Scientific

5. Multi-meter

6. สายไฟ

7. RTD Transmitter

8. Power Supply

9. คีมจับ คีมตัด

10. ไขควง

11. คัตเตอร์

LAB 3.1 หาค่าความต้านทานจากRTDที่กำหนดให้

เมื่อ R_o = ความต้านทานที่ $0^{\circ}C$ ถ้า $PT100 = 100 \ \Omega$, $PT1000 = 1000 \ \Omega$ $A = 3.908 \times 10^{-3}$ $B = -5.775 \times 10^{-7}$

- 1.คำนวณหาค่าความต้านทาน(R) ของRTD PT100, PT1000 จากสมการด้านบน
- 2.ใช้Multi-meterวัดความต้านทานRTD PT100ที่ 0°C โดยจุ่มPT100ลงไปที่ Hart Scientific ที่ 0°C วัด3ครั้ง หาค่าเฉลี่ย บันทึกผลลงในตาราง
- 3.ใช้Multi-meterวัดความต้านทานRTD PT100ที่ T_{ATM} หรือที่อุณหภูมิห้อง (≈ 30°C) วัด 3ครั้ง หาค่าเฉลี่ย บันทึกผลลงในตาราง
- 4.ใช้Multi-meterวัดความต้านทานRTD PT100ที่ 100°C โดยจุ่มPT100ลงไปที่ Hart Scientific ที่ 100°Cวัด3ครั้ง หาค่าเฉลี่ย บันทึกผลลงในตาราง
- 5.ทำเหมือนข้อ 2, 3, 4 แต่เปลี่ยนเป็นRTD PT1000

6.คำนวณหา A, B ของPT100และPT10000 จากสมการ $R(t) = R_o(1 + At + Bt^2)$

ผลการทดลอง

PT100

T (°c)	Rคำนวณ (Ω)	Rทดลอง(Ω)			
		ครั้งที่1	ครั้งที่2	ครั้งที่3	เฉลี่ย
0	100	100	103	102	101.67
T _{ATM}	111.67	112	112	112	112
100	138.5025	135	137	135	135.67

PT1000

T (°c)	Rคำนวณ (Ω)	Rทดลอง(Ω)			
		ครั้งที่ 1	ครั้งที่2	ครั้งที่3	เฉลี่ย
0	1000	1005	1006	1005	1005.33
T _{ATM}	1116.72	1121	1121	1121	1121
100	1385.025	1383	1382	1381	1382

PT100

แทนค่า t=100

$$135.67 = 101.67(1 + A(100) + B(100^{2}))$$

$$1.334 = 1 + 10^{2}A + 10^{4}B$$

$$0.334 = 10^{2}(A + 10^{2}B)$$

$$0.334 \times 10^{-2} = A + 10^{2}B$$
(1)

แทนค่า t=30

$$112 = 101.67(1 + A(30) + B(30^{2}))$$

$$1.102 = 1 + 30A + 30^{2}B$$

$$0.102 = 30(A + 30B)$$

$$0.34 \times 10^{-2} = A + 30B$$

$$(1) - (2); -0.006 \times 10^{-2} = 70B$$

$$B = -8.5714 \times 10^{-7}$$

แทนค่า
$$B=-8.5714\times 10^{-7}$$
 ในสมการ (2) $0.34\times 10^{-2}=A+30(-8.5714\times 10^{-7})$ $A=3.4257\times 10^{-3}$

PT1000

แทนค่า t=100

$$1382 = 1005.33(1 + A(100) + B(100^{2}))$$

$$1.375 = 1 + 10^{2}A + 10^{4}B$$

$$0.375 = 10^{2}(A + 10^{2}B)$$

$$0.375 \times 10^{-2} = A + 10^{2}B$$
(1)

แทนค่า t=30

$$1121 = 1005.33(1 + A(30) + B(30^{2}))$$
$$1.115 = 1 + 30A + 30^{2}B$$
$$0.115 = 30(A + 30B)$$

$$0.383 \times 10^{-2} = A + 30B$$
 (2)
$$(1) - (2); -0.008 \times 10^{-2} = 70B$$

$$B = -1.1428 \times 10^{-6}$$
 แทนค่า $B = -1.1428 \times 10^{-6}$ ในสมการ(2)
$$0.383 \times 10^{-2} = A + 30(-1.1428 \times 10^{-6})$$
 $A = 3.8643 \times 10^{-3}$

LAB3.2 Basic Signal Conditioner for temp Measurement

เงื่อนไข I ที่อุณหภูมิ $0^{\circ}\mathrm{C} \leq 10~mA$ จงหา V_{s} , R_{1}

- 1.คำนวณหา $V_{\scriptscriptstyle S}$, R_1 (กำหนด $V_{\scriptscriptstyle S}=12V$) ของ ${\sf PT1000}$
- 2.เลือกหยิบRตามที่เราคำนวณได้ (หรือเลือกค่าRที่ใกล้เคียงที่สุดกับที่เราคำนวณได้) เพื่อหาค่ากระแส (I)จริง
- 3.ทำการต่อวงจรตามรูป

- 4. วัดความดันไฟฟ้าRTD PT100ที่ 0°C โดยจุ่มPT100ลงไปที่ Hart Scientific ที่ 0°C วัด 3ครั้ง หาค่าเฉลี่ย บันทึกผลลงในตาราง
- 5.วัดความดันไฟฟ้าRTD PT100ที่ T_{ATM} หรือที่อุณหภูมิห้อง (≈ 30°C) วัด3ครั้ง หาค่าเฉลี่ย บันทึกผลลงในตาราง
- 6.วัดความดันไฟฟ้าRTD PT100ที่ 100°C โดยจุ่มPT100ลงไปที่ Hart Scientific ที่ 100°Cวัด3ครั้ง หาค่าเฉลี่ย บันทึกผลลงในตาราง

7.ทำเหมือนข้อ 4, 5, 6 แต่เปลี่ยนเป็นRTD PT1000

แสดงวิธีการคำนวณ

PT100

$$V_{\rm S}=12~V$$
 , $R_{RTD}=100~\Omega$, $I=10~mA$

$$R = \frac{V}{I}$$

$$R_1 + 100 = \frac{12}{10 \times 10^{-3}} = 1200$$

$$R_1=1100\,\Omega$$
 (เลือกใช้ $R=1500\,\Omega$)

หากระแส
$$I_{\mathfrak{\widehat{q}_{3}}}$$
; $I=rac{V}{R}=rac{12}{1500+101.67}=7.49~mA$

PT1000

$$V_{\scriptscriptstyle S}=12~V$$
 , $R_{RTD}=1000~\Omega$, $I=10~mA$

$$R = \frac{V}{I}$$

$$R_1 + 1000 = \frac{12}{10 \times 10^{-3}} = 1200$$

$$R_1=200~\Omega~$$
 (เลือกใช้ $R=300~\Omega)$

หากระแด
$$I_{\widehat{\mathfrak{A}_{33}}}$$
; $I=rac{V}{R}=rac{12}{300+1005.33}=9.19~mA$

ผลการทดลอง

PT100

Т	Vคำนวณ	Vทดลอง(V)			
(°c)	(V)				
		ครั้งที่1	ครั้งที่2	ครั้งที่3	เฉลี่ย
0	0.762	0.76	0.76	0.75	0.757
T _{ATM}	0.834	0.83	0.80	0.83	0.82
100	0.995	0.95	0.95	0.96	0.953

PT1000

Т	Vคำนวณ	Vทดลอง(V)			
(°c)	(V)				
		ครั้งที่1	ครั้งที่2	ครั้งที่3	เฉลี่ย
0	9.242	9.30	9.34	9.35	9.33
T _{ATM}	9.466	9.55	9.53	9.52	9.533
100	9.859	9.71	9.72	9.72	9.717

LAB3.3 RTD Transmitter

1.ทำการต่อวงจรตามรูป

- 2. วัดกระแสไฟฟ้าRTD PT100ที่ 0°C โดยจุ่มPT100ลงไปที่ Hart Scientific ที่ 0°C วัด3
- 3.วัดกระแสไฟฟ้าRTD PT100ที่ T_{ATM} หรือที่อุณหภูมิห้อง (≈30°C) วัด3ครั้ง หาค่าเฉลี่ยบันทึก ผลลงในตาราง
- 4.วัดกระแสไฟฟ้าRTD PT100ที่ 100°C โดยจุ่มPT100ลงไปที่ Hart Scientific ที่ 100°Cวัด3ครั้ง หาค่าเฉลี่ย บันทึกผลลงในตาราง

ผลการทดลอง

%	T(°C)	I(mA)	AS Found	AS Left
			Iทดลอง(mA)	Iทดลอง(mA)
0	0	4	4.12	4.00
	T _{ATM}	8.8	9.35	2.82
100	100	20	20.2	20.00

$$y=mx+c$$

$$m=\frac{\Delta y}{\Delta x}=\frac{20-4}{100-0}=\frac{16}{100}=0.16$$
 จะได้ $y=0.16x+c$ แทนค่า $x=100,y=20$
$$20=0.16(100)+c$$

$$20=16+c$$

จะได้สมการ
$$y=0.16x+4$$
 หรือ $x=rac{y-4}{0.16}$

สรุปผลการทดลอง

c = 4

จากการทดลองทำให้ทราบว่าหลักการทำงานของ RTD คือจะแปลผันค่าความต้านทานตาม อุณหภูมิที่เพิ่มขึ้น ยิ่งอุณหภูมิเพิ่มขึ้นความต้านทานก็จะเพิ่มขึ้นตาม ยิ่งอุณหภูมิลดความต้านทานก็จะ ลดลง เช่น RTD PT100 ที่ 0 °C ค่าความต้านทาน = 100 Ω ที่อุณหภูมิ T_{ATM} ค่าความต้านทาน = 111.67 Ω ที่อุณหภูมิ 100°C ค่าความต้านทาน = 138.5025 Ω , RTD PT1000 ที่ 0 °C ค่าความต้านทาน = 1000 Ω ที่อุณหภูมิ T_{ATM} ค่าความต้านทาน = 1116.72 Ω ที่อุณหภูมิ 100°C ค่าความต้านทาน = 1385.025 Ω

RTD Transmitter จะมีหลักการทำงานคือการเปลี่ยนค่าความต้านทาน R ให้เป็น แรงดันไฟฟ้า V แล้วเปลี่ยนเป็นค่ากระแส I โดยใช้สมการ V = IR ที่อุณหภูมิ 0 °C ค่ากระแสจะเท่ากับ 4.0 mA และที่อุณหภูมิ 100 °C ค่ากระแสเท่ากับ 20.0 mA หากค่ากระแสที่ 0 °C, 100 °C ไม่เท่ากับ 4.0 mA และ 20.0 mA ตามลำดับ เราสามารถปรับค่าได้โดยการหมุนค่า Zero และ Span บน RTD Transmitter เพื่อให้ได้ค่ากระแสตามที่เราต้องการ