Programmable Logic Devices

- An IC that contains large numbers of gates, flip-flops, etc. that can be configured by the user to perform different functions is called a Programmable Logic Device (PLD).
- The internal logic gates and/or connections of PLDs can be changed/configured by a programming process.
- One of the simplest programming technologies is to use fuses.
- In the original state of the device, all the fuses are intact.
- Programming the device involves blowing those fuses along the paths that must be removed in order to obtain the particular configuration of the desired logic function.

Types of PLDs

- 1. SPLDs (Simple Programmable Logic Devices)
 - □ROM (Read-Only Memory)
 - □PLA (Programmable Logic Array)
 - □PAL (Programmable Array Logic)
 - □GAL (Generic Array Logic)
- 2. CPLD (Complex Programmable Logic Device)
- 3. FPGA (Field-Programmable Gate Array)

Device	AND-array	OR-array
PROM	Fixed	Programmable
PLA	Programmable	Programmable
PAL	Programmable	Fixed
GAL	Programmable	Fixed

Source: Morris Mano

Programming By Blowing Fuses

(a) Before programming.

(b) After programming.

OR-PLD Notation

OR gate before programming

OR gate after programming

AND-PLD Notation

AND gate before programming

AND gate after programming

Read-Only Memory

- A block diagram of a ROM is shown below. It consists of k address inputs and n data outputs.
- The number of words in a ROM is determined from the fact that k address input lines are needed to specify 2^k words.

Fig. 7-9 ROM Block Diagram

Source: Morris Mano

Construction of ROM

- Each output of the decoder represents a memory address.
- Each OR gate must be considered as having 32 inputs.
- A 2^k X n ROM will have an internal k X 2^k decoder and n OR gates.

Fig. 7-10 Internal Logic of a 32×8 ROM

Source: Morris Mano

Truth table of ROM

- A programmable connection between to lines is logically equivalent to a switch that can be altered to either be close or open.
- Intersection between two lines is sometimes called a crosspoint.

Inputs						Outputs							
14	13	12	11	10		A7	A6	A5	A4	A3	A2	A1	AO
0	0	0	0	0		1	0	1	1	0	1	1	0
0	0	0	0	1		O	0	0	1	1	1	O	1
0	0	0	1	0		1	1	0	0	0	1	0	1
0	O	0	1	1		1	0	1	1	O	0	1	0
		- 5						:					
1	1	1	0	0		0	0	0	O	1	0	0	1
1	1	1	0	1		1	1	1	O	O	0	1	0
1	1	1	1	0		0	1	O	0	1	0	1	0
1	1	1	1	1		0	0	1	1	0	0	1	1

Programming the ROM

In Table 7-3, $0 \rightarrow$ no connection $1 \rightarrow$ connection Address 3 = 10110010 is permanent storage using fuse link

Fig. 7-11 Programming the ROM According to Table 7-3

Using a PROM for logic design

(a) Truth table.

(b) PROM realization.

Quick Quiz

PAL refers to ______

- a) Programmable Array Loaded
- b) Programmable Logic Array
- c) Programmable Array Logic
- d) Programmable AND Logic

Quick quiz

The inputs in the PLD is given through

- a) NAND gates
- b) OR gates
- c) NOR gates
- d) AND gates