TECHNICAL UNIVERSITY OF BERLIN

Faculty II - Mathematics and Natural Sciences

Institute of Mathematics

Dr. D. Peschka, A. Selahi

Numerical Mathematics II for Engineers

Homework Assignment 6 Submitted on December 2nd, 2019

	by Group 5				
	Kagan Atci	338131	Physical E	ngineering,	M.Sc.
	Navneet Singh	380443	Scientific	Computing,	M.Sc.
	Riccardo Parise	412524	Scientific	Computing,	M.Sc.
	Daniel V. Herrmannsdoerfer	412543	Scientific	Computing,	M.Sc.
Exercise 1					
a)					
b)					
c)					
Exercise 2					
a)					
b)					
c)					

Exercise 3

a) Please refer to the online submitted a06e03getPDE.py file.

Numerical Mathematics II for Engineers

b and c) The grid size was empirically defined as $N = 20 + 10\sqrt{\varepsilon^{-1}}$.

Figure 1 | Functions f(x), k(x) and u_h evaluated for $\varepsilon = 0.1, 0.01, 0.001, 0.0001$ The function k(x) will behave as a Heaviside step function for $\varepsilon \to 0$.

2 Assignment 6