13 - Směrování, směrovací tabulky, směrovací protokoly

Směrování

- L3 vrstva (síťová)
- · v síti vidíme pouze zařízení, která se nachází ve stejné síti
- pro přesun z naší sítě do jiné potřebujeme router
 - · router ovšem taky vidí pouze sítě, do kterých patří
- tento problém řeší směrování
 - o data, která nemůžeme doručit přímo, doručíme někomu jinému:
 - tomu, kdo je bude moci doručit přímo (last-hop)
 - tomu, kdo je blíže k cíli (mezilehlý router)
 - tomu, kdo má větší šanci najít správnou cestu (default-route)
- směrování = proces hledání nejlepší cesty pro data, která nelze doručit přímo přes síť

Směrovací tabulka

- · routing table
- · v RAM paměti routeru
- · udržuje informace, jak doručit data do neznámých sítí
- každý záznam obsahuje:
 - o adresu cílové sítě + masku
 - o gateway sítě
 - název odchozího rozhraní
 - IP adresu dalšího routeru
 - metrika (výhodnost cesty)
- jelikož se v tabulce můžou nacházet duplicity, router postupně hledá shodu s nejvýhodnější cestou

IPv4 Route Table				
Active Routes:				
Network Destinatio	n Netmask	Gateway	Interface	Metric
0.0.0.0	0.0.0.0	192.168.94.1	192.168.94.93	25
127.0.0.0	255.0.0.0	On-link	127.0.0.1	331
127.0.0.1	255.255.255.255	On-link	127.0.0.1	331
127.255.255.255	255.255.255.255	On-link	127.0.0.1	331
192.168.94.0	255.255.255.0	On-link	192.168.94.93	281
192.168.94.93	255.255.255.255	On-link	192.168.94.93	281
192.168.94.255	255.255.255.255	On-link	192.168.94.93	281
224.0.0.0	240.0.0.0	On-link	127.0.0.1	331
224.0.0.0	240.0.0.0	On-link	192.168.94.93	281
255.255.255.255	255.255.255.255	On-link	127.0.0.1	331
255.255.255.255	255.255.255.255	On-link	192.168.94.93	281

Default route

- má nulovou masku (0.0.0.0/0)
- je nejméně specifická
- shoduje se se všemi adresami a vyhodnocuje se jako poslední
- IP datagram je pomocí default route předán nadřazenému routeru
 - o pokud nadřazený router zná cestu, pošle tam datagram
 - o pokud ne, předá datagram o úroveň výše dalšímu routeru

Metrika

- vypočítává kvalitu trasy
- · čím méně, tím lépe
- počítá se podle různých parametrů:
 - o počet hopů, cena, rychlost, stabilita, zatíženost

Směrovací protokoly

- záznamy se do směrovací tabulky přidávají buď ručně, nebo automaticky
- ručně přidané záznamy = statické routy
 - rychlé, bezpečné
 - o nevhodné pro velké sítě
- automaticky přidané záznamy = dynamické routy
 - o pomocí směrovacích protokolů
 - router se naučí cestu k sítím, které nezná
 - o stačí nastavit pouze jednou a poté fungují samy
 - o přizpůsobují se topologii sítě (při výpadku hledají alternativu)

Statické směrování vs dynamické směrování

- u dynamického směrování nemusí administrátor znát topologii sítě
- jakékoliv změny se okamžitě šíří díky směrovacím protokolům
- jednodušší administrace, protokol dělá část práce za admina
- u statického směrování lze na pevno nastavit cesty
 - větší bezpečnost
- je málo flexibilní a nemůže se dostatečně konfigurovat

Dynamické směrovací protokoly

RIP

- Routing Information Protocol
- nejjednoduší protokol s jednoduchou konfigurací
- hloupá metrika
- první verze (RIP) posílal směrovací tabulky broadcastem, což zatěžovalo síť
- druhá verze (RIPv2) posílá směrovací tabulky multicastem, navíc umí pracovat s podsítěmi a maskami sítě (CIDR)
- nejnovější verze (RIPng) má podporu IPv6 a umožňuje provádět lepší autentizace

EIGRP

- Enhanced Interior Gateway Routing Protocol
- pravidelně kontroluje, zda je trasa k dispozici
- · místo směrovací tabulky posílá změny topologie
- · podpora pro CIDR a proměnnou délku podsítí
 - Classless Inter-Domain Routing
 - maska je určena počtem bitů, nikoliv třídou IP adres
- MD5 autentizace

OSPF

- · Open Shortest Path Find
- provádí změny v tabulce na základě změn v síti
- · nejpoužívanější v samosprávých systémech
- · routery kontrolují okolní routery
- je velmi paměťově náročný

BGP

· Border Gateway Protocol

- používají ho provideři (ISP)
- směrovací tabulky obsahují stovky tisíc záznamů
- vyměňují se pouze informace o změnách, nikoliv celé tabulky

Link-state protokoly

- pro správu sítě v rámci jedné domény (např. firma)
- router zjišťuje, zda má v síti další routery a testuje jejich dostupnost
- poté routery informuje o jejich sousedech
 - každý router ví o všech ostatních
- takto zmapuje celou síť
- podle toho pro packet určuje nejlepší cestu
- pro rozlehlejší sítě nutno rozdělit na části kvůli zatěžování sítě

Distance-vector protokoly

- · routery neznají strukturu sítě, pouze své nejbližší sousedy
- vyměňují si kompletní kopii směrovacích tabulek
- routery periodicky vysílají a díky grafovému algoritmu vypočítají vzdálenost do ostatních uzlů
- vzniká riziko zacyklení