MIS 131: Information Systems Administration

Part VII: Database Systems Architecture

Conceptual Layers of an Information System

- Presentation
 - The actual user interface
- Presentation logic
 - Any processing done in UI (e.g. editing input data)
- Application logic
 - Logic and processing required to support actual business application and rules
- Data manipulation
 - Commands and logic to store and retrieve data
- Data layer
 - Actual stored data

System Architecture

- Centralized
 - Central computer corporate databases (e.g. mainframe)
 - Personal computer databases
- Distributed
 - File server computing
 - Client/server computing
 - Network computing
- Segregation of layers depends on architecture

Centralized Architecture

 Host-based - processing is performed in the host computer only

Distributed Systems

- File server computing
 - Single file serves as database; must be downloaded to client
 - Processing is performed in the client computer only
 - Only use of file server is to store and transport the DB

Distributed Systems

- Client/server computing
 - Processing is performed in both client and database server
 - Selected data is sent to client

Distributed Systems

- Network computing (Internet-based)
 - Application server, database server, and client are separate
 - Usually uses thin clients

Client/Server Computing

 A solution in which the various IS application layers are distributed between client and server

Client

- Present the user interface
- Forms queries or commands in specific language (e.g. SQL)
- May be thin or thick client

Server

- Responds to queries with requested data
- Hides server system from client and from end user

Advantages of Client/Server

- Leverage the benefits of microcomputer technology
- Allows most of the processing to be close to the source as possible, improving response time and reducing network traffic
- Facilitates the use of GUI available on the client
- Allows for and encourages acceptance of open systems

Issues in Client/Server

- Server must be able to grow as more clients are added
- Gateways from server to existing mainframe or mini will be necessary for data sharing amongst different databases
- Capabilities must be provided for server for back-up/recovery, security, and uninterrupted power

Issues in Client/Server

- More complex because it requires close communication between server and client for proper database processing
- No standards for distributing processing between client and server
- Sophisticated front end often required high end micros

Tiered Architecture in C/S Systems

- Distributed presentation
 - A solution in which the presentation layer (and probably the presentation logic) is shifted from server of a legacy system to GUI client
 - Sometimes called the poor person's client/server system
 - Advantage: Very few changes in system
 - Disadvantage: Functionality not improved

Tiered Architecture in C/S Systems

- Distributed data
 - Also known as two-tiered client/server computing
 - Simplest form of true client/server computing
 - Places the information system's stored data on a server and business logic and user interface on the clients

Tiered Architecture in C/S Systems

- Distributed data and application
 - Also called three-tiered or n-tiered client/server computing
 - Data and data manipulation layer placed on one server; application logic layer has its own server
 - Clients execute a minimum of the overall system's components

Distributed Databases

- Distributed Database
 - Single logical database
 - Physically located in multiple computers
 - Interconnected by networks data is shared
 - Homogeneous and heterogeneous databases
- Decentralized Database
 - Collection of independent databases
 - Physically located in multiple computers
 - Not connected by networks no sharing of data

Advantages of Distributed Databases

- Increased reliability and availability
- Local control
- Modular growth
- Lower communication costs
- Faster response

Disadvantages of Distributed Databases

- Software costs and complexity
- Data integrity
- Slow response if not properly distributed or queries not formulated properly

Options for Distributed Databases

- Data replication
- Horizontal partitioning
- Vertical partitioning
- Combination of above

Data Replication

- Store a copy of the database in two or more sites
- Advantages
 - Reliability
 - Fast response
- Disadvantages
 - Large storage requirements
 - Complexity and cost of updating

Horizontal Partitioning

- Some rows of a relation are put in one site and another set of rows in another site, etc.
- Advantages
 - Local optimization
 - Security
- Disadvantages
 - Inconsistent access speed
 - Back-up vulnerability

Vertical Partitioning

- Some columns of a relation are projected in one site and another set of columns in another site, etc.
- Advantages and disadvantages are same as horizontal partitioning

Horizontal vs. Vertical Partitioning

- Horizontal partitioning supports an organizational design in which functions are replicated (e.g. branches)
- Vertical partitioning applies across organizational functions with reasonably separate data requirements (e.g. departments)

Distributed DBMS

- The DBMS that coordinates access to data at various nodes.
- Determine the location from which to retrieve requested data
- If necessary, translate request from one node to a proper request to another node
- Provide data management functions such as security, concurrency, deadlock control, query optimization, and failure recovery

Objectives of Distributed DBMS

- Location transparency
 - Even if data is located in different sites, it can be treated as if it were all located in one site
- Replication transparency
 - Even if the data is replicated, it maybe treated as if it were a single item on a single site

Objectives of Distributed DBMS

- Failure transparency
 - Either all the actions of a transaction are committed or none at all
- Concurrency transparency
 - For concurrent transactions, each transaction appears as if it were the only activity in the system

Middleware

- Utility software that interfaces systems built with incompatible technologies
- Sometimes called plumbing because it connects two sides of an application and passes data between them
- Said to be the "slash" in client / server

Classes of Middleware

- Presentation middleware
- Application middleware
- Database middleware

Presentation Middleware

- Allows a programmer to build UI components that can talk to web browsers or desktop GUI
- Corresponds to presentation logic framework
- Example
 - HTTP allows the programmer to communicate with a browser through a standard interface

Application Middleware

- Enables two programmer-written processes (programs) on two different processors to communicate with one another in whatever way suited to the overall application
- Corresponds to the application logic framework
- Essential in multi-tier application development
- Examples
 - Remote procedure calls (RPCs)
 - Message queues
 - Object request brokers (ORBs)

Database Middleware

- Allows a programmer to pass SQL commands to a database engine for processing
- Corresponds to the data manipulation logic framework
- Examples
 - ODBC
 - -JDBC