# Algorytmy i struktury danych

Algorytmy dokładne i przybliżone na przykładzie zagadnienia plecakowego

Ewa Figielska



Ewa Figielska

# **0-1** problem plecakowy

### Sformułowanie

Dysponujemy kwotą w wysokości b, którą w nadchodzącym roku możemy zainwestować w realizację pewnych projektów. Rozważamy n projektów. Dla każdego projektu j znamy wymagane dla niego nakłady  $a_j$  oraz spodziewany zysk  $c_j$ . Celem jest wybór do realizacji zbioru projektów, tak żeby budżet nie został przekroczony, a spodziewany zysk był maksymalizowany.

## Metody rozwiązywania:

- 1. Wygenerowanie wszystkich podzbiorów zbioru projektów algorytm dokładny.
- 2. Algorytm programowania dynamicznego algorytm dokładny.
- 3. Algorytm zachłanny algorytm przybliżony.

# Wyznaczenie i ocena wszystkich możliwych podzbiorów projektów

Przykład, dane:

12

5

(algorytm wykładniczy dokładny)

|    |             |             |                                | n=4 b=10                                     |  |  |  |  |  |  |
|----|-------------|-------------|--------------------------------|----------------------------------------------|--|--|--|--|--|--|
|    |             | całkowite ( | całkowity                      | projekt 1 2                                  |  |  |  |  |  |  |
|    | podzbiór    | nakłady     | zysk                           | zysk 3 9 nakłady 2 5                         |  |  |  |  |  |  |
| 1  | Ø           | 0           | 0                              | Dla n projektów:                             |  |  |  |  |  |  |
| 2  | <b>{1</b> } | 2           | 3                              | liczba wszystkich podzbiorów = $2^n$         |  |  |  |  |  |  |
| 3  | {2}         | 5           | 9                              | , .                                          |  |  |  |  |  |  |
| 4  | {3}         | 6           | 12                             | Złożoność obliczeniowa: $O(2^n)$             |  |  |  |  |  |  |
| 5  | <b>{4</b> } | 5           | 8                              | , ,                                          |  |  |  |  |  |  |
| 6  | {1,2}       | 7           | 12                             |                                              |  |  |  |  |  |  |
| 7  | {1,3}       | 8           | 15                             |                                              |  |  |  |  |  |  |
| 8  | {1,4}       | 7           | 11                             |                                              |  |  |  |  |  |  |
| 9  | {2,3}       | 11          |                                | roczony - rozwiązanie niedopuszczalne        |  |  |  |  |  |  |
| 10 | {2,4}       | 10          |                                | największy zysk (17) - rozwiązanie optymalne |  |  |  |  |  |  |
| 11 | {3,4}       | 11          | 11 rozwiązanie niedopuszczalne |                                              |  |  |  |  |  |  |
| 12 | {1,2,3}     | 13          | 13 rozwiązanie niedopuszczalne |                                              |  |  |  |  |  |  |
| 13 | {1,2,4}     | 12          | 12 rozwiązanie niedopuszczalne |                                              |  |  |  |  |  |  |
| 14 | {1,3,4}     | 13          | 13 rozwiązanie niedopuszczalne |                                              |  |  |  |  |  |  |
| 15 | {2,3,4}     |             | 16 rozwiązanie niedopuszczalne |                                              |  |  |  |  |  |  |
| 16 | {1,2,3,4}   | 18          | 18 rozwiązanie niedopuszczalne |                                              |  |  |  |  |  |  |



Dla każdego projektu j rozważamy wszystkie możliwe decyzje (inwestować, nie inwestować).

Podejmujemy decyzję, która daje większy zysk (gdzie zysk jest liczony jako suma największego zysku po rozważeniu projektu j-1 i zysku z decyzji podjętej dla projektu j

Rozwiązanie optymalne: największy zysk (równy 17) otrzymamy inwestując w projekty 2 i 4

Złożoność obliczeniowa jest wielomianem od rozmiaru problemu oraz wielkości występujących w nim liczb, O(nb)

3

6

4

8

### Algorytm zachłanny

(algorytm wielomianowy przybliżony)

- 1 Umieść projekty na liście w kolejności nierosnących wartości ilorazu zysk/nakłady
- 2 Wybieraj do realizacji kolejne projekty z listy, tak aby nie przekroczyć budżetu

#### Kolejność: **3, 2, 4, 1**

| 4 pominięty - nie dysponujemy wystarczającym budżetem 1 wybrany {3,1} 15 2 |                                                     |          |           |           |  |  |
|----------------------------------------------------------------------------|-----------------------------------------------------|----------|-----------|-----------|--|--|
| 2                                                                          | pominięty - nie dysponujemy wystarczającym budżetem |          |           |           |  |  |
| 3                                                                          | wybrany                                             | {3}      | 12        | 4         |  |  |
| projekt                                                                    | decyzja                                             | wynikowy | zysk      | budżet    |  |  |
|                                                                            |                                                     | zbiór    | całkowity | pozostały |  |  |

### Rozwiązanie przybliżone:

Inwestujemy w projekty 3 i 1, co daje zysk 15

#### Ocena dokładności algorytmu przybliżonego:

Należy wyznaczyć względne odchylenie rozwiązania przybliżonego od wartości optymalnej

$$\delta = \frac{|z^{opt} - z|}{z^{opt}} \times 100\%$$

 $z^{opt}$  rozwiązanie optymalne (właściwie: wartość funkcji celu dla rozwiązania optymalnego)

z rozwiązanie przybliżone

 $\delta$  względne odchylenie rozwiązania otrzymanego algorytmem przybliżonym od wartości optymalnej

Na podstawie otrzymanych rozwiązań mamy:

$$\delta = \frac{|z^{opt} - z|}{z^{opt}} \times 100\% = \frac{17 - 15}{17} \times 100\% = \frac{2}{17} \times 100\% = 11.77\%$$

Złożoność obliczeniowa = złożoności obliczeniowej zastosowanego alorytmu sortowania, np.

O(nlog n)

Przykład, dane:

b=10

3

2

1.50

9

1.80

3

12

6

2.00

4

8

5

1.60

n=4

zysk

projekt

nakłady

zysk/nakłady