The heuristic idea is the following. Let $(T(t))_{t \geq 0}$ be a lattice semigroup with generator A . Let $f \in D(A)$ and assume that the modulus function θ given by $\theta(g) = |g|$ is differentiable in f (in some sense which has to be made precise). Then one expects that a chain rule holds so that $\theta(T(t)f) = |T(t)|$ is differentiable at t = 0. Since |T(t)f| = T(t)|f|, this implies $|f| \in D(A)$ and $A|f| = d/dt|_{t=0} \theta(T(t)f) = D_{Af} \theta(f) d/dt|_{t=0} T(t)f = (D_{Af}\theta(f)) Af)$ (where the precise meaning of $(D_{Af}\theta(f))Af$ depends on the chain rule which we will have to establish). So we obtain an identity for the generator A which corresponds exactly to the lattice property |T(t)f| = T(t)|f| of the semigroup. We will see in C-II, Sec. 5 that in a Banach lattice with order continuous norm the above argument is rigorous (for all $f \in D(A)$). On $C_O(X)$ we have to use a weak form of the argument and $|f| \in D(A)$ only holds for special $f \in D(A)$ (see Cor. 2.8).

We start by investigating differentiability of the modulus and by establishing a chain rule. For later use we formulate the following definition and proposition for a general Banach space G even though only $G = \mathbb{C}$ will be considered in this section.

<u>Definition</u> 2.2. Let G be a Banach space and θ : G \rightarrow G a mapping. Let f \in G, u \in G. Then θ is called right-sided Gateaux differentiable in f in direction u if

(2.3)
$$D_u^{\theta}(f) := \lim_{t \downarrow 0} 1/t (\theta(f+tu) - \theta(f))$$
 exists.

The mapping 0 is right-sided Gateaux differentiable in f if $D_{\mathbf{u}}^{0}(\mathbf{f})$ exists for all directions $\mathbf{u} \in G$; and if 0 is right-sided Gateaux-differentiable in every point f $\in G$, then we call 0 right-sided Gateaux differentiable.

<u>Proposition</u> 2.3 (chain rule). Let G be a Banach space and $k: \mathbb{R} \to G$ be right-sided differentiable in a $\in \mathbb{R}$ (with right derivative k'(a)). Suppose that $\theta: G \to G$ is a Lipschitz continuous mapping. If θ is right-sided Gateaux-differentiable in k(a) in the direction of k'(a), then $\theta \circ k: \mathbb{R} \to G$ is right-sided differentiable in a and has a right derivative

(2.4)
$$(\theta \circ k)'(a) = D_{k'(a)}\theta(k(a))$$
.