LAUNCHING

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

dataset_1=pd.read_csv("general_data.csv")

dataset_1.head()

Out[5]:

Age Attrition ... YearsSinceLastPromotion YearsWithCurrManager

0 51 No ... 0

1 31 Yes ... 1 4

2 32 No ... 0 3

3 38 No ... 7 5

4 32 No ... 0 4

[5 rows x 24 columns]

DATA CLEANSING

dataset_1.isnull()

Out[7]:

Age Attrition ... YearsSinceLastPromotion YearsWithCurrManager

0 False False ... False

1 False False ... False False

2 False False ... False

3 False False ... False

ATTRITION-ASSIGNMENT-DAY-07 | SRIDHAR

4	False	False	False	False

...

4405 False False ... False

4406 False False ... False

4407 False False ... False

4408 False False ... False

4409 False False ... False

[4410 rows x 24 columns]

dataset_1.duplicated()

Out[8]:

- 0 False
- 1 False
- 2 False
- 3 False
- 4 False

4405 False

4406 False

4407 False

4408 False

4409 False

Length: 4410, dtype: bool

dataset_1.drop_duplicates()

Out[11]:

Age Attrition ... YearsSinceLastPromotion YearsWithCurrManager

0	51	No	0	0
1	31	Yes	1	4

[4410 rows x 24 columns]

Univariate Analysis

dataset3=dataset_1[['Age','DistanceFromHome','Education','MonthlyIncome',
'NumCompaniesWorked', 'PercentSalaryHike','TotalWorkingYears', 'TrainingTimesLastYear',
'YearsAtCompany','YearsSinceLastPromotion', 'YearsWithCurrManager']].describe()

Index	Age	istanceFromHom	Education	MonthlyIncome	mCompaniesWor	PercentSalaryHike	TotalWorkingYear	ainingTimesLastY	YearsAtCompany	rsSinceLastPromo	arsWithCurrMar
count	4410	4410	4410	4410	4391	4410	4401	4410	4410	4410	4410
mean	36.9238	9.19252	2.91293	65029.3	2.69483	15.2095	11.2799	2.79932	7.00816	2.18776	4.12313
std	9.1333	8.10503	1.02393	47068.9	2.49889	3.65911	7.78222	1.28898	6.12514	3.2217	3.56733
min	18	1	1	10090	0	11	0	0	0	0	0
25%	30	2	2	29110	1	12	6	2	3	0	2
50%	36	7	3	49190	2	14	10	3	5	1	3
75%	43	14	4	83800	4	18	15	3	9	3	7
max	60	29	5	199990	9	25	40	6	40	15	17

dataset3=dataset_1[['Age','DistanceFromHome','Education','MonthlyIncome',
'NumCompaniesWorked', 'PercentSalaryHike','TotalWorkingYears', 'TrainingTimesLastYear',
'YearsAtCompany','YearsSinceLastPromotion', 'YearsWithCurrManager']].median()

Index	0
Age	36
DistanceFrom	7
Education	3
MonthlyIncome	49190
NumCompanies	2
PercentSalar	14
TotalWorking	10
TrainingTime	3
YearsAtCompa	5
YearsSinceLa	1
YearsWithCur	3

dataset3_mode=dataset_1[['Age','DistanceFromHome','Education','MonthlyIncome', 'NumCompaniesWorked', 'PercentSalaryHike','TotalWorkingYears', 'TrainingTimesLastYear', 'YearsAtCompany','YearsSinceLastPromotion', 'YearsWithCurrManager']].mode()

ı	Index	Age	istanceFromHom	Education	MonthlyIncome	mCompaniesWor	PercentSalaryHike	TotalWorkingYear	siningTimesLastY	YearsAtCompany	rsSinceLastPromo	arsWithCurrMana _e
ı	0	35	2	3	23420	1	11	10	2	5	0	2
ı												

dataset3_mean=dataset_1[['Age','DistanceFromHome','Education','MonthlyIncome', 'NumCompaniesWorked', 'PercentSalaryHike','TotalWorkingYears', 'TrainingTimesLastYear', 'YearsAtCompany','YearsSinceLastPromotion', 'YearsWithCurrManager']].mean()

Index	0
Age	36.9238
DistanceFrom	9.19252
Education	2.91293
MonthlyIncome	65029.3
NumCompanies	2.69483
PercentSalar	15.2095
TotalWorking	11.2799
TrainingTime	2.79932
YearsAtCompa	7.00816
YearsSinceLa	2.18776
YearsWithCur	4.12313

dataset3_var=dataset_1[['Age','DistanceFromHome','Education','MonthlyIncome', 'NumCompaniesWorked', 'PercentSalaryHike','TotalWorkingYears', 'TrainingTimesLastYear', 'YearsAtCompany','YearsSinceLastPromotion', 'YearsWithCurrManager']].var()

Index	0
Age	83.4172
DistanceFrom	65.6914
Education	1.04844
MonthlyIncome	2.21548e+09
NumCompanies	6.24444
PercentSalar	13.3891
TotalWorking	60.563
TrainingTime	1.66146
YearsAtCompa	37.5173
YearsSinceLa	10.3793
YearsWithCur	12.7258

dataset3_skew=dataset_1[['Age','DistanceFromHome','Education','MonthlyIncome', 'NumCompaniesWorked', 'PercentSalaryHike','TotalWorkingYears', 'TrainingTimesLastYear', 'YearsAtCompany','YearsSinceLastPromotion', 'YearsWithCurrManager']].skew()

Index	0
Age	0.413005
DistanceFrom	0.957466
Education	-0.289484
MonthlyIncome	1.36888
NumCompanies	1.02677
PercentSalar	0.820569
TotalWorking	1.11683
TrainingTime	0.552748
YearsAtCompa	1.76333
YearsSinceLa	1.98294
YearsWithCur	0.832884

dataset3_kurt=dataset_1[['Age','DistanceFromHome','Education','MonthlyIncome', 'NumCompaniesWorked', 'PercentSalaryHike','TotalWorkingYears', 'TrainingTimesLastYear', 'YearsAtCompany','YearsSinceLastPromotion', 'YearsWithCurrManager']].kurt()

Index	0
Age	-0.405951
DistanceFrom	-0.227045
Education	-0.560569
MonthlyIncome	1.00023
NumCompanies	0.00728748
PercentSalar	-0.302638
TotalWorking…	0.912936
TrainingTime	0.491149
YearsAtCompa	3.92386
YearsSinceLa	3.60176
YearsWithCur…	0.167949
YearsAtCompa YearsSinceLa	3.92386 3.60176

<u>Inference from the analysis:</u>

- All the above variables show positive skewness; while Age & Mean_distance_from_home are leptokurtic and all other variables are platykurtic.
- The Mean_Monthly_Income's IQR is at 54K suggesting company wide attrition across all income bands
- Mean age forms a near normal distribution with 13 years of IQR

OUTLIERS

There's no regression found while plotting Age, MonthlyIncome, TotalWorkingYears, YearsAtCompany, etc., on a scatter plot

plt.boxplot(dataset_1.Age)

 $plt.boxplot(dataset_1.MonthlyIncome)$

Monthly Income is Right skewed with several outliers

In [26]: plt.scatter(dataset_1.MonthlyIncome,dataset_1.YearsAtCompany)

ATTRITION-ASSIGNMENT-DAY-07 | SRIDHAR

