# **TEST REPORT**

# FCC Part 15 Subpart C

| New Application; | Class I PC; | Class II PC |
|------------------|-------------|-------------|
|------------------|-------------|-------------|

**Product: PAWBO** 

**Model:** PPC-12CL

**Brand: PAWBO** 

**Model Difference:** N/A

FCC ID: 2AETS-PPC12CL

**FCC Rule Part:** §15.247, Cat: DTS

**Applicant:** PAWBO CO., LTD.

Address: 8F., No.708-5, Zhongzheng Rd., Xinzhuang

Dist., New Taipei City 24257, Taiwan

## **Test Performed by: International Standards Laboratory**

<Lung-Tan LAB> \*Site Registration No.

BSMI: SL2-IN-E-0013; MRA TW1036; TAF: 0997; IC: IC4067B-3;

\*Address:

No. 120, Lane 180, Hsin Ho Rd.

Lung-Tan Dist., Tao Yuan City 325, Taiwan \*Tel: 886-3-407-1718; Fax: 886-3-407-1738 Report No.: ISL-15LR338FCDTS

Issue Date: 2015/12/29





Test results given in this report apply only to the specific sample(s) tested and are traceable to national or international standard through calibration of the equipment and evaluating measurement uncertainty

This report MUST not be used to claim product endorsement by TAF, NVLAP or any agency of the Government.

This test report shall not be reproduced except in full, without the written approval of International Standards Laboratory.

Page: 1 of 55

## 2 of 55- FCC ID: 2AETS-PPC12CL

#### VERIFICATION OF COMPLIANCE

**Applicant:** PAWBO CO., LTD.

**Product Description:** PAWBO

**Brand Name:** PAWBO

Model No.: PPC-12CL

**Model Difference:** N/A

FCC ID: 2AETS-PPC12CL

**Date of test:**  $2015/12/17 \sim 2015/12/27$ 

**Date of EUT Received:** 2015/12/17

## We hereby certify that:

All the tests in this report have been performed and recorded in accordance with the standards described above and performed by an independent electromagnetic compatibility consultant, International Standards Laboratory.

The test results contained in this report accurately represent the measurements of the characteristics and the energy generated by sample equipment under test at the time of the test. The sample equipment tested as described in this report is in compliance with the limits of above standards.

Test By:

Dino Chen / Engineer

Prepared By:

Elisa Chen / Specialist

Approved By:

Date: 2015/12/29

Elisa Chen / Specialist

Date: 2015/12/29



# 3 of 55-

# FCC ID: 2AETS-PPC12CL

# Version

| Version No.   | Date | Description                  |
|---------------|------|------------------------------|
| 00 2015/12/29 |      | Initial creation of document |
|               |      |                              |
|               |      |                              |



# **Table of Contents**

| I | GEN        | (ERAL INFORMATION                       |    |
|---|------------|-----------------------------------------|----|
|   | 1.1        | Related Submittal(s) / Grant (s)        |    |
|   | 1.2        | Test Methodology                        |    |
|   | 1.3        | Test Facility                           |    |
|   | 1.4        | Special Accessories                     |    |
|   | 1.5        | Equipment Modifications                 | 7  |
| 2 | SYS        | TEM TEST CONFIGURATION                  | 8  |
|   | 2.1        | EUT Configuration                       | 8  |
|   | 2.2        | EUT Exercise                            | 8  |
|   | 2.3        | Test Procedure                          |    |
|   | 2.4        | Configuration of Tested System          | 9  |
| 3 | SUM        | IMARY OF TEST RESULTS                   | 10 |
| 4 | DES        | CRIPTION OF TEST MODES                  | 10 |
| 5 | CON        | NDUCTED EMISSION TEST                   | 11 |
|   | 5.1        | Standard Applicable:                    |    |
|   | 5.2        | Measurement Equipment Used:             |    |
|   | 5.3        | EUT Setup:                              |    |
|   | 5.4        | Measurement Procedure:                  |    |
|   | 5.5        | Measurement Result:                     | 12 |
| 6 | <b>PEA</b> | K /AVERAGE OUTPUT POWER MEASUREMENT     | 15 |
|   | 6.1        | Standard Applicable:                    | 15 |
|   | 6.2        | Measurement Equipment Used:             | 16 |
|   | 6.3        | Test Set-up:                            |    |
|   | 6.4        | Measurement Procedure:                  |    |
|   | 6.5        | Measurement Result:                     | 17 |
| 7 | 6dB        | Bandwidth                               | 18 |
|   | 7.1        | Standard Applicable:                    |    |
|   | 7.2        | Measurement Equipment Used:             | 18 |
|   | 7.3        | Test Set-up:                            | 18 |
|   | 7.4        | Measurement Procedure:                  | 18 |
|   | 7.5        | Measurement Result:                     | 19 |
| 8 | 100K       | KHZ BANDWIDTH OF BAND EDGES MEASUREMENT |    |
|   | 8.1        | Standard Applicable:                    |    |
|   | 8.2        | Measurement Equipment Used:             |    |
|   | 8.3        | Test SET-UP:                            |    |
|   | 8.4        | Measurement Procedure:                  |    |
|   | 8.5        | Field Strength Calculation:             |    |
|   | 8.6        | Measurement Result:                     |    |
| 9 |            | RIOUS RADIATED EMISSION TEST            |    |
|   | 9.1        | Standard Applicable                     |    |
|   | 9.2        | Measurement Equipment Used:             |    |
|   | 9.3        | Test SET-UP:                            |    |
|   | 9.4        | Measurement Procedure:                  |    |
|   | 9.5        | Field Strength Calculation              |    |
|   | 9.6        | Measurement Result:                     | 39 |

# 5 of 55-

# FCC ID: 2AETS-PPC12CL

| <b>10</b> | Peak | Power Spectral Density         | 46 |
|-----------|------|--------------------------------|----|
|           |      | Standard Applicable:           |    |
|           |      | Measurement Equipment Used:    |    |
|           |      | Test Set-up:                   |    |
|           | 10.4 | Measurement Procedure:         | 46 |
|           |      | Measurement Result:            |    |
| 11        | ANTI | ENNA REQUIREMENT               | 54 |
|           |      | Standard Applicable            |    |
|           |      | Antenna Connected Construction |    |



#### **GENERAL INFORMATION** 1

## General:

| Product Name:    | PAWBO                                 |
|------------------|---------------------------------------|
| Brand:           | PAWBO                                 |
| Model:           | PPC-12CL                              |
| Model different: | N/A                                   |
| Power Supply     | 5Vdc from adaptor, model: STD-05020U2 |
| TestSW Version:  | MT7601 USB QA V1.0.4.0                |
| RFpower setting: | Setting: 0                            |

6 of 55-

## WLAN: 1TX, 1RX

| Wi-Fi           | Wi-Fi Frequency Range (MHz) |                                                                                                                           | Average Tune-Up Power at each port | Modulation<br>Technology |  |
|-----------------|-----------------------------|---------------------------------------------------------------------------------------------------------------------------|------------------------------------|--------------------------|--|
| 802.11b         | 2412 – 2462(DTS)            | Channel 1-11 11 dBm (AV)                                                                                                  |                                    | DSSS                     |  |
| 802.11g         | 2412 – 2462(DTS)            | 11                                                                                                                        | Channel 1-11<br>11 dBm (AV)        |                          |  |
| 002.11          | HT20<br>2412 – 2462(DTS)    | 11                                                                                                                        | Channel 1-11<br>11 dBm (AV)        | OFDM                     |  |
| 802.11n         | HT40<br>2422 – 2452(DTS)    | 7                                                                                                                         | Channel 3-9<br>10 dBm (AV)         |                          |  |
| Power Toleranc  | e:                          | +/- 1.5 dBm                                                                                                               |                                    |                          |  |
| Modulation type | e:                          | CCK, DQPSK, DBPSK for DSSS<br>256QAM.64QAM. 16QAM, QPSK, BPSK for OFDM                                                    |                                    |                          |  |
| Antenna Design  | nation:                     | Fixed PIFA Antenna gain : 4.56 dBi                                                                                        |                                    |                          |  |
|                 |                             | According to KDB662911 D01 SM-MIMO signals could be considered uncorrelated for purposes of directional gain computation. |                                    |                          |  |
|                 |                             | Directional gain = $G_{ANT}$                                                                                              |                                    |                          |  |

The EUT is compliance with IEEE 802.11 b/g/n Standard. **Remark:** The above DUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

**Report Number: ISL-15LR338FCDTS** 



### 1.1 Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for **FCC ID: 2AETS-PPC12CL** filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

#### 1.2 Test Methodology

Both conducted and radiated testing were performed according to the procedures in ANSI C63.4: 2014, ANSI C63.10: 2013 and RSS-Gen: 2010. Radiated testing was performed at an antenna to EUT distance 3 meters.

KDB Document: 558074 D01 DTS Meas Guidance v03r02

#### 1.3 Test Facility

The measurement facilities used to collect the 3m Radiated Emission and AC power line conducted data are located on the address of **International Standards Laboratory** <Lung-Tan LAB> No. 120, Lane 180, Hsin Ho Rd., Lung-Tan Dist., Tao Yuan City 325, Taiwan which are constructed and calibrated to meet the FCC requirements in documents ANSI C63.4: 2014, ANSI C63.10: 2013. FCC Registration Number is: 872200; Designation Number is: TW1036, Canada Registration Number: 4067B-3.

#### 1.4 Special Accessories

Not available for this EUT intended for grant.

#### 1.5 Equipment Modifications

Not available for this EUT intended for grant.



#### 2 SYSTEM TEST CONFIGURATION

#### 2.1 EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

#### 2.2 EUT Exercise

The EUT (Transmitter) was operated in the engineering mode to fix the Tx frequency that was for the purpose of the measurements.

#### 2.3 Test Procedure

#### 2.3.1 Conducted Emissions

The EUT is a placed on as turn table which is 0.8 m above ground plane. According to the requirements in Section 5 and 7 of ANSI C63.4: 2014. Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR 16-1-1 Quasi-Peak and Average detector mode.

#### 2.3.2 Radiated Emissions

The EUT is a placed on as turn table which is 0.8 m/1.5m(Frequency above 1GHz) above ground plane. The turn table shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the max. emission, the relative positions of this hand-held transmitter(EUT) was rotated through three orthogonal axes according to the requirements in Section 6 and 11 of ANSI C63.10: 2013.



# 2.4 Configuration of Tested System

Fig. 1 AC Power line and Radiated/Conducted Emission Configuration



**Table 1 Equipment Used in Tested System** 

| Item | Equipment | Mfr/Brand | Model/<br>Type No. | Series No. | Data Cable | Power Cord |
|------|-----------|-----------|--------------------|------------|------------|------------|
| 1    | Notebook  | HP        | 440                | N/A        | Non-shield | Non-shield |



**Report Number: ISL-15LR338FCDTS** 



## 3 SUMMARY OF TEST RESULTS

| FCC Rules          | Description Of Test              | Result    |  |
|--------------------|----------------------------------|-----------|--|
| §15.207(a)         | AC Power Line Conducted Emission | Compliant |  |
| §15.247(b) (3),(4) | Peak Output Power                | Compliant |  |
|                    | 6dB Bandwidth                    |           |  |
| §15.247(a)(2)      | &                                | Compliant |  |
|                    | 99% Power Bandwidth              |           |  |
| §15.247(d)         | 100 KHz Bandwidth Of             | Compliant |  |
| §13.247(d)         | Frequency Band Edges Comp.       |           |  |
| §15.247(d)         | Spurious Emission                | Compliant |  |
| §15.247(e)         | Peak Power Density               | Compliant |  |
| §15.203            | Antenna Requirement              | Compliant |  |

## 4 DESCRIPTION OF TEST MODES

The EUT has been tested under engineering operating condition.

Test program used to control the EUT for staying in continuous transmitting mode is programmed.

#### 2.4GHz:

802.11 b mode: Channel low (2412MHz) · mid (2437MHz) · high (2462MHz) with 1Mbps lowest data rate are chosen for full testing.

802.11 g mode: Channel low (2412MHz) \( \) mid (2437MHz) \( \) high (2462MHz) \( \) with 6Mbps lowest data rate are chosen for full testing.

802.11 n \_20MHz: Channel low (2412MHz) \cdot mid (2437MHz) \cdot high (2462MHz) \quad with 6.5Mbps lowest data rate are chosen for full testing.

802.11 n  $\_40$ MHz: Channel low (2422MHz)  $\cdot$  mid (2437MHz)  $\cdot$  high (2452MHz) with 13.5Mbps lowest data rate are chosen for full testing.

The worst case 802.11g mode was reported for Radiated Emission.



## 5 CONDUCTED EMISSION TEST

## 5.1 Standard Applicable:

According to §15.207 & RSS-Gen §7.2.4, frequency range within 150KHz to 30MHz shall not exceed the Limit table as below.

| ************************************** |            |          |  |  |  |  |
|----------------------------------------|------------|----------|--|--|--|--|
|                                        | Limits     |          |  |  |  |  |
| Frequency range                        | dB(uV)     |          |  |  |  |  |
| MHz                                    | Quasi-peak | Average  |  |  |  |  |
| 0.15 to 0.50                           | 66 to 56   | 56 to 46 |  |  |  |  |
| 0.50 to 5                              | 56         | 46       |  |  |  |  |
| 5 to 30                                | 60         | 50       |  |  |  |  |

#### Note

1. The lower limit shall apply at the transition frequencies

2. The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz.

5.2 Measurement Equipment Used:

| The state of the s |                    |            |                  |            |            |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|------------|------------------|------------|------------|--|--|--|--|
| Conducted Emission Test Site                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |            |                  |            |            |  |  |  |  |
| EQUIPMENT MFR MODEL SERIAL LAST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |            |                  |            |            |  |  |  |  |
| ТҮРЕ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    | NUMBER     | NUMBER NUMBER    |            |            |  |  |  |  |
| Conduction 04-3<br>Cable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | WOKEN              | CFD 300-NL | Conduction 04 -3 | 07/28/2015 | 07/27/2016 |  |  |  |  |
| EMI Receiver 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Rohde &<br>Schwarz | ESCI 7     | 100887           | 09/08/2015 | 09/07/2016 |  |  |  |  |
| LISN 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ROHDE &<br>SCHWARZ | ENV216     | 101424           | 02/11/2015 | 02/10/2016 |  |  |  |  |
| LISN 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ROHDE &<br>SCHWARZ | ENV216     | 101425           | 03/12/2015 | 03/11/2016 |  |  |  |  |

## 5.3 EUT Setup:

- 1. The conducted emission tests were performed in the test site, using the setup in accordance with the ANSI C63.4: 2014.
- 2. The AC/DC Power adaptor of EUT was plug-in LISN. The EUT was placed flushed with the rear of the table.
- 3. The LISN was connected with 120Vac/60Hz power source.



**Report Number: ISL-15LR338FCDTS** 

#### **5.4** Measurement Procedure:

- 1. The EUT was placed on a table which is 0.8m above ground plane.
- 2. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 3. Repeat above procedures until all frequency measured were complete.

#### **5.5** Measurement Result:

The initial step in collecting conducted data is a spectrum analyzer peak scan of the measurement range. Significant peaks are then marked as shown on the following data page, and these signals are then quasi-peaked.

Note: Refer to next page for measurement data and plots.



# AC POWER LINE CONDUCTED EMISSION TEST DATA

| Operation Mode: | Operation Mode | Test Date: | 2015/12/21 |
|-----------------|----------------|------------|------------|
| Test By:        | Dino           |            |            |



Limit: CISPR22 Class B Conduction

| No. | Frequency<br>(MHz) | QP_R<br>(dBuV) | AVG_R<br>(dBuV) | Correct<br>Factor<br>(dB) | QP<br>Emission<br>(dBuV) | QP<br>Limit<br>(dBuV) | QP<br>Margin<br>(dB) | AVG<br>Emission<br>(dBuV) | AVG<br>Limit<br>(dBuV) | AVG<br>Margin<br>(dB) |
|-----|--------------------|----------------|-----------------|---------------------------|--------------------------|-----------------------|----------------------|---------------------------|------------------------|-----------------------|
| 1   | 0.158              | 34.80          | 13.59           | 9.70                      | 44.50                    | 65.57                 | -21.07               | 23.29                     | 55.57                  | -32.28                |
| 2   | 0.170              | 35.92          | 15.51           | 9.70                      | 45.62                    | 64.96                 | -19.34               | 25.21                     | 54.96                  | -29.75                |
| 3   | 0.182              | 29.20          | 7.69            | 9.69                      | 38.89                    | 64.39                 | -25.50               | 17.38                     | 54.39                  | -37.01                |
| 4   | 0.218              | 26.63          | 7.95            | 9.69                      | 36.32                    | 62.89                 | -26.57               | 17.64                     | 52.89                  | -35.25                |
| 5   | 0.234              | 25.20          | 7.24            | 9.70                      | 34.90                    | 62.31                 | -27.41               | 16.94                     | 52.31                  | -35.37                |
| 6   | 0.334              | 21.83          | 6.83            | 9.69                      | 31.52                    | 59.35                 | -27.83               | 16.52                     | 49.35                  | -32.83                |





Limit: CISPR22 Class B Conduction

| No. | Frequency<br>(MHz) | QP_R<br>(dBuV) | AVG_R<br>(dBuV) | Correct<br>Factor<br>(dB) | QP<br>Emission<br>(dBuV) | QP<br>Limit<br>(dBuV) | QP<br>Margin<br>(dB) | AVG<br>Emission<br>(dBuV) | AVG<br>Limit<br>(dBuV) | AVG<br>Margin<br>(dB) |
|-----|--------------------|----------------|-----------------|---------------------------|--------------------------|-----------------------|----------------------|---------------------------|------------------------|-----------------------|
| 1   | 0.154              | 35.87          | 15.79           | 9.76                      | 45.63                    | 65.78                 | -20.15               | 25.55                     | 55.78                  | -30.23                |
| 2   | 0.162              | 35.00          | 14.31           | 9.76                      | 44.76                    | 65.36                 | -20.60               | 24.07                     | 55.36                  | -31.29                |
| 3   | 0.190              | 35.54          | 9.56            | 9.76                      | 45.30                    | 64.04                 | -18.74               | 19.32                     | 54.04                  | -34.72                |
| 4   | 0.210              | 27.04          | 6.98            | 9.76                      | 36.80                    | 63.21                 | -26.41               | 16.74                     | 53.21                  | -36.47                |
| 5   | 0.234              | 24.48          | 5.44            | 9.77                      | 34.25                    | 62.31                 | -28.06               | 15.21                     | 52.31                  | -37.10                |
| 6   | 0.258              | 26.53          | 5.37            | 9.77                      | 36.30                    | 61.50                 | -25.20               | 15.14                     | 51.50                  | -36.36                |

**Report Number: ISL-15LR338FCDTS** 



#### 6 PEAK /AVERAGE OUTPUT POWER MEASUREMENT

#### **6.1 Standard Applicable:**

According to  $\S15.247(b)(3),(4)(b)$ 

- (3) For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multip802.11n\_40Ms of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode. (4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- (c) Operation with directional antenna gains greater than 6 dBi.
- (1) Fixed point-to-point operation:
- (i) Systems operating in the 2400-2483.5 MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.
- (ii) Systems operating in the 5725-5850 MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted output power.





# **6.2** Measurement Equipment Used:

| Conducted Emission Test Site |         |              |               |            |            |
|------------------------------|---------|--------------|---------------|------------|------------|
| EQUIPMENT                    | MFR     | MODEL        | SERIAL        | LAST       | CAL DUE.   |
| TYPE                         |         | NUMBER       | NUMBER        | CAL.       |            |
| Power Meter 05               | Anritsu | ML2495A      | 1116010       | 07/29/2015 | 07/28/2016 |
| Power Sensor 05              | Anritsu | MA2411B      | 34NKF50       | 07/29/2015 | 07/28/2016 |
| Power Sensor 06              | DARE    | RPR3006W     | 13I00030SNO33 | 11/03/2015 | 11/02/2016 |
| Power Sensor 07              | DARE    | RPR3006W     | 13I00030SNO34 | 11/03/2015 | 11/02/2016 |
| Temperature Chamber          | KSON    | THS-B4H100   | 2287          | 06/05/2015 | 06/04/2016 |
| DC Power supply              | ABM     | 8185D        | N/A           | 09/05/2015 | 09/04/2016 |
| AC Power supply              | EXTECH  | CFC105W      | NA            | 12/27/2015 | 12/26/2016 |
| Attenuator                   | Woken   | Watt-65m3502 | 11051601      | NA         | NA         |
| Splitter                     | MCLI    | PS4-199      | 12465         | 12/27/2015 | 12/26/2017 |
| Spectrum analyzer            | Agilent | N9030A       | MY51360021    | 10/02/2015 | 10/01/2016 |

# 6.3 Test Set-up:



## **6.4** Measurement Procedure:

Refer to section 9.1.3 and 9.2.3 Peak and Average Conducted Output Power Measurement Procedure of KDB Document: 558074 D01 DTS Meas Guidance v03r02





# **6.5** Measurement Result:

802.11b

| Cable loss = 0 | Output Power |       | Limit |
|----------------|--------------|-------|-------|
| СН             | Dete         | ector | (dBm) |
|                | PK           | AV    |       |
|                | (dBm)        | (dBm) |       |
| Low            | 14.58        | 11.12 |       |
| Mid            | 13.56        | 10.03 | 30.00 |
| High           | 12.68        | 9.14  |       |

# 802.11g

| Cable loss = 0 | Output Power |       | Limit |
|----------------|--------------|-------|-------|
| СН             | Detector     |       | (dBm) |
|                | PK           | AV    |       |
|                | (dBm)        | (dBm) |       |
| Low            | 19.26        | 11.10 |       |
| Mid            | 18.85        | 10.09 | 30.00 |
| High           | 18.8         | 9.19  |       |

## 802.11N HT20

| Cable loss = 0 | Output Power |       | Limit |
|----------------|--------------|-------|-------|
| СН             | Detector     |       | (dBm) |
|                | PK           | AV    |       |
|                | (dBm)        | (dBm) |       |
| Low            | 18.94        | 11.09 |       |
| Mid            | 18.57        | 10.02 | 30.00 |
| High           | 17.85        | 9.19  |       |

## 802.11N HT40

| Cable loss = 0 | Output Power |       | Limit |
|----------------|--------------|-------|-------|
| СН             | Detector     |       | (dBm) |
|                | PK           | AV    |       |
|                | (dBm)        | (dBm) |       |
| Low            | 18.85        | 10.29 |       |
| Mid            | 18.44        | 9.63  | 30.00 |
| High           | 18.17        | 9.09  |       |



## 7 6dB Bandwidth

#### 7.1 Standard Applicable:

According to §15.247(a)(2), Systems using digital modulation techniques may operate in the 902 - 928 MHz,2400 - 2483.5 MHz, and 5725 - 5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500kHz.

## 7.2 Measurement Equipment Used:

Refer to section 6.2 for details.

## 7.3 Test Set-up:

Refer to section 6.3 for details.

#### 7.4 Measurement Procedure:

Refer to section 8.1 DTS bandwidth Measurement Procedure of KDB Document: 558074 D01 DTS Meas Guidance v03r02

- 1. Set resolution bandwidth (RBW) = 100KHz.
- 2. Set the video bandwidth (VBW) =300KHz.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.
- 7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission. Compare the resultant bandwidth with the RBW setting of the analyzer. Readjust RBW and repeat measurement.

**International Standards Laboratory** 



## 7.5 Measurement Result:

802.11b

| СН   | Bandwidth<br>(MHz) | Bandwidth<br>(KHz) | Result |
|------|--------------------|--------------------|--------|
| Low  | 10.07              | > 500              | PASS   |
| Mid  | 10.08              | > 500              | PASS   |
| High | 10.07              | > 500              | PASS   |

# 802.11g

| СН   | Bandwidth<br>(MHz) | Bandwidth<br>(KHz) | Result |
|------|--------------------|--------------------|--------|
| Low  | 16.55              | > 500              | PASS   |
| Mid  | 16.56              | > 500              | PASS   |
| High | 16.55              | > 500              | PASS   |

## 802.11n HT20

| СН   | Bandwidth<br>(MHz) | Bandwidth<br>(KHz) | Result |
|------|--------------------|--------------------|--------|
| Low  | 17.65              | > 500              | PASS   |
| Mid  | 17.65              | > 500              | PASS   |
| High | 17.64              | > 500              | PASS   |

## 802.11n HT40

| СН   | Bandwidth<br>(MHz) | Bandwidth<br>(KHz) | Result |
|------|--------------------|--------------------|--------|
| Low  | 36.11              | > 500              | PASS   |
| Mid  | 36.11              | > 500              | PASS   |
| High | 36.34              | > 500              | PASS   |

Note: Refer to next page for plots.



#### 802.11b

## 6dB Band Width Test Data CH-Low



## 6dB Band Width Test Data CH-Mid







802.11g 6dB Band Width Test Data CH-Low





## 6dB Band Width Test Data CH-Mid



6dB Band Width Test Data CH-High





# 802.11n\_20M

## 6dB Band Width Test Data CH-Low



## 6dB Band Width Test Data CH-Mid







## 802.11n 40M

## 6dB Band Width Test Data CH-Low



**Report Number: ISL-15LR338FCDTS** 



## 6dB Band Width Test Data CH-Mid



# 6dB Band Width Test Data CH-High



**Report Number: ISL-15LR338FCDTS** 



## 8 100KHz BANDWIDTH OF BAND EDGES MEASUREMENT

#### 8.1 Standard Applicable:

According to §15.247(c), in any 100 KHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100KHz bandwidth within the band that contains the highest level of the desired power, In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in15.209(a).

# **8.2** Measurement Equipment Used:

## **8.2.1** Conducted Emission at antenna port:

Refer to section 6.2 for details.



**Report Number: ISL-15LR338FCDTS** 



## **8.2.2** Radiated emission:

| 8.2.2 Radiated emissi         | Ch            | amber 14(966)                |                     |            |            |
|-------------------------------|---------------|------------------------------|---------------------|------------|------------|
| EQUIPMENT                     | MFR           | MODEL                        | SERIAL              | LAST       | CAL DUE.   |
| TYPE                          |               | NUMBER                       | NUMBER              | CAL.       |            |
| Spectrum Analyzer 21(26.5GHz) | Agilent       | N9010A                       | MY49060537          | 07/30/2015 | 07/29/2016 |
| Spectrum Analyzer 20(6.5GHz)  | Agilent       | E4443A                       | MY48250315          | 05/21/2015 | 05/20/2016 |
| Spectrum Analyzer 22(43GHz)   | R&S           | FSU43                        | 100143              | 05/23/2015 | 05/22/2016 |
| Dipole antenna                | SCHWARZBECK   | VHAP,30-300                  | 919                 | 12/03/2015 | 12/02/2017 |
| Dipole antenna                | SCHWARZBECK   | UHAP,300-100<br>0            | 1195                | 12/03/2015 | 12/02/2017 |
| Loop Antenna9K-30M            | A.H.SYSTEM    | SAS-564                      | 294                 | 06/17/2015 | 06/16/2017 |
| Bilog Antenna30-1G            | Schaffner     | CBL 6112D                    | 37873               | 06/16/2015 | 06/15/2016 |
| Horn antenna1-18G             | ETS           | 3117                         | 00066665            | 11/27/2015 | 11/26/2016 |
| Horn antenna26-40G(05)        | Com-power     | AH-640                       | 100A                | 01/21/2015 | 01/20/2017 |
| Horn antenna18-26G(04)        | Com-power     | AH-826                       | 081001              | 07/24/2015 | 07/23/2017 |
| Preamplifier9-1000M           | НР            | 8447D                        | NA                  | 03/12/2015 | 03/11/2016 |
| Preamplifier1-18G             | MITEQ         | AFS44-001018<br>00-25-10P-44 | 1329256             | 07/28/2015 | 07/27/2016 |
| Preamplifier1-26G             | EM            | EM01M26G                     | NA                  | 03/11/2015 | 03/10/2016 |
| Preamplifier26-40G            | MITEQ         | JS-26004000-2<br>7-5A        | 818471              | 07/23/2015 | 07/22/2017 |
| Cable1-18G                    | HUBER SUHNER  | Sucoflex 106                 | NA                  | 12/02/2015 | 12/01/2016 |
| Cable UP to 1G                | HUBER SUHNER  | RG 214/U                     | NA                  | 10/02/2015 | 10/01/2016 |
| SUCOFLEX<br>1GHz~40GHz cable  | HUBER SUHNER  | Sucoflex 102                 | 27963/2&3742<br>1/2 | 11/03/2015 | 11/02/2017 |
| Signal Generator              | R&S           | SMU200A                      | 102330              | 03/11/2015 | 02/10/2016 |
| Signal Generator              | Anritsu       | MG3692A                      | 20311               | 11/04/2015 | 11/03/2016 |
| 2.4G Filter                   | Micro-Tronics | Brm50702                     | 76                  | 12/27/2015 | 12/26/2016 |
| 5G Filter                     | Micro-Tronics | Brm50716                     | 005                 | 12/27/2015 | 12/26/2016 |



#### 8.3 Test SET-UP:

# **8.3.1** Conducted Emission at antenna port:

Refer to section 6.3 for details.

## 8.3.2 Radiated emission:

(A) Radiated Emission Test Set-Up, Frequency Below 1000MHz



(B) Radiated Emission Test Set-UP Frequency Over 1 GHz





#### **8.4** Measurement Procedure:

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set center frequency of spectrum analyzer = operating frequency.
- 4. Set the spectrum analyzer as RBW=100kHz, VBW=3\* RBW, Span=25MHz, Sweep = auto
- 5. Mark Peak, 2.390GHz and 2.4835GHz and record the max. level.
- 6. Repeat above procedures until all frequency measured were complete.

Refer to section 11 and 12 emissions in restricted and non-restricted frequency bands Measurement Procedure of KDB Document: 558074 D01 DTS Meas Guidance v03r02

The measurement of unwanted emissions at the edge of the authorized frequency bands can be complicated by the leakage of RF energy from the fundamental emission into the RBW pass band. Thus, for measurements at the band edges, a narrower resolution bandwidth (no less than 10 kHz) can be used within the first 1 MHz beyond the fundamental emission, provided that that measured energy is subsequently integrated over the appropriate reference bandwidth (i.e., 100 kHz or 1 MHz). This integration can be performed using the band power function of the spectrum analyzer or by summing the spectral levels (in linear power units) over the appropriate reference bandwidth.

#### **8.5** Field Strength Calculation:

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

$$FS = RA + AF + CL - AG$$

| Where | FS = Field Strength    | CL = Cable Attenuation Factor (Cable Loss) |
|-------|------------------------|--------------------------------------------|
|       | RA = Reading Amplitude | AG = Amplifier Gain                        |
|       | AF = Antenna Factor    |                                            |

#### **8.6** Measurement Result:

Note: Refer to next page spectrum analyzer data chart and tabular data sheets.



# **Band Edges:**

Radiated Emission: 802.11 b mode

Operation Mode TX CH Low Test Date 2015/12/18

Fundamental Frequency 2412 MHz Test By Dino Temperature 25  $^{\circ}\mathrm{C}$  Humidity 60  $^{\circ}\mathrm{W}$ 

| No | Freq    | Reading | Factor | Level  | Limit  | Over<br>Limit | Remark  | Pol        |
|----|---------|---------|--------|--------|--------|---------------|---------|------------|
|    | MHz     | dBuV    | dB     | dBuV/m | dBuV/m | dB            |         | V/H        |
| 1  | 2390.00 | 14.55   | 31.71  | 46.26  | 54.00  | -7.74         | Average | VERTICAL   |
| 2  | 2390.00 | 27.07   | 31.71  | 58.78  | 74.00  | -15.22        | Peak    | VERTICAL   |
| 3  | 2400.00 | 28.39   | 31.74  | 60.13  | 79.54  | -19.41        | Peak    | VERTICAL   |
| 4  | 2410.02 | 67.78   | 31.76  | 99.54  | F      |               | Peak    | VERTICAL   |
|    |         |         |        |        |        |               |         |            |
| 1  | 2390.00 | 14.38   | 31.71  | 46.09  | 54.00  | -7.91         | Average | HORIZONTAL |
| 2  | 2390.00 | 26.92   | 31.71  | 58.63  | 74.00  | -15.37        | Peak    | HORIZONTAL |
| 3  | 2400.05 | 27.82   | 31.74  | 59.56  | 75.58  | -16.02        | Peak    | HORIZONTAL |
| 4  | 2410.69 | 63.81   | 31.77  | 95.58  | F      |               | Peak    | HORIZONTAL |

#### Remark:

- 1 Measuring frequencies from the lowest internal frequency to the 10th of fundamental frequency
- <sup>2</sup> Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- 3 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- $_{\rm 4}$  Spectrum Peak mode IF bandwidth Setting : 1GHz- 26GHz, RBW= 1MHz, Sweep time= 200 ms., the VBW setting was 3 MHz.
- 5 Spectrum AV mode if bandwidth Setting : 1GHz- 26GHz, RBW= 1MHz, VBW= 10Hz, Sweep time= 200 ms.

Note: "F" denotes fundamental frequency



**31 of 55- FCC ID: 2AETS-PPC12CL** 

**Report Number: ISL-15LR338FCDTS** 

| No | Freq    | Reading | Factor | Level  | Limit  | Over<br>Limit | Remark  | Pol        |
|----|---------|---------|--------|--------|--------|---------------|---------|------------|
|    | MHz     | dBuV    | dB     | dBuV/m | dBuV/m | dB            |         | V/H        |
| 1  | 2483.50 | 14.73   | 31.98  | 46.71  | 54.00  | -7.29         | Average | VERTICAL   |
| 2  | 2483.50 | 26.62   | 31.98  | 58.60  | 74.00  | -15.40        | Peak    | VERTICAL   |
|    |         |         |        |        |        |               |         |            |
| 1  | 2483.50 | 14.72   | 31.98  | 46.70  | 54.00  | -7.30         | Average | HORIZONTAL |
| 2  | 2483.50 | 26.70   | 31.98  | 58.68  | 74.00  | -15.32        | Peak    | HORIZONTAL |

#### Remark:

- 1 Measuring frequencies from the lowest internal frequency to the 10th of fundamental frequency
- 2 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- 3 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- Spectrum Peak mode IF bandwidth Setting: 1GHz- 26GHz, RBW= 1MHz, Sweep time= 200 ms., the VBW setting was 3 MHz.
- 5 Spectrum AV mode if bandwidth Setting : 1GHz- 26GHz, RBW= 1MHz, VBW= 10Hz, Sweep time= 200 ms.



**Report Number: ISL-15LR338FCDTS** 

Radiated Emission: 802.11 g mode

Operation Mode TX CH Low Test Date 2015/12/18

Fundamental Frequency 2412 MHz Test By Dino Temperature 25  $^{\circ}\mathrm{C}$  Humidity 60  $^{\circ}\mathrm{W}$ 

| No | Freq    | Reading | Factor | Level  | Limit  | Over<br>Limit | Remark  | Pol        |
|----|---------|---------|--------|--------|--------|---------------|---------|------------|
|    | MHz     | dBuV    | dB     | dBuV/m | dBuV/m | dB            |         | V/H        |
| 1  | 2390.00 | 17.43   | 31.71  | 49.14  | 54.00  | -4.86         | Average | VERTICAL   |
| 2  | 2390.00 | 31.67   | 31.71  | 63.38  | 74.00  | -10.62        | Peak    | VERTICAL   |
| 3  | 2400.00 | 42.92   | 31.74  | 74.66  | 82.34  | -7.68         | Peak    | VERTICAL   |
| 4  | 2405.54 | 70.59   | 31.75  | 102.34 | F      | 1             | Peak    | VERTICAL   |
|    |         |         |        |        |        |               |         |            |
| 1  | 2390.00 | 16.01   | 31.71  | 47.72  | 54.00  | -6.28         | Average | HORIZONTAL |
| 2  | 2390.00 | 27.43   | 31.71  | 59.14  | 74.00  | -14.86        | Peak    | HORIZONTAL |
| 3  | 2400.00 | 37.17   | 31.74  | 68.91  | 78.40  | -9.49         | Peak    | HORIZONTAL |
| 4  | 2405.42 | 66.65   | 31.75  | 98.40  | F      |               | Peak    | HORIZONTAL |

#### Remark:

- Measuring frequencies from the lowest internal frequency to the 10th of fundamental frequency
- Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- Spectrum Peak mode IF bandwidth Setting: 1GHz- 26GHz, RBW= 1MHz, Sweep time= 200 ms., the VBW setting was 3 MHz.
- 5 Spectrum AV mode if bandwidth Setting: 1GHz- 26GHz, RBW= 1MHz, VBW= 10Hz, Sweep time= 200 ms.

Note: "F" denotes fundamental frequency



33 of 55- FCC ID: 2AETS-PPC12CL

**Report Number: ISL-15LR338FCDTS** 

| No | Freq    | Reading | Factor | Level  | Limit  | Over<br>Limit | Remark  | Pol        |
|----|---------|---------|--------|--------|--------|---------------|---------|------------|
|    | MHz     | dBuV    | dB     | dBuV/m | dBuV/m | dB            |         | V/H        |
| 1  | 2483.50 | 14.98   | 31.98  | 46.96  | 54.00  | -7.04         | Average | VERTICAL   |
| 2  | 2483.50 | 27.23   | 31.98  | 59.21  | 74.00  | -14.79        | Peak    | VERTICAL   |
|    |         |         |        |        |        |               |         |            |
| 1  | 2483.50 | 14.75   | 31.98  | 46.73  | 54.00  | -7.27         | Average | HORIZONTAL |
| 2  | 2483.50 | 26.96   | 31.98  | 58.94  | 74.00  | -15.06        | Peak    | HORIZONTAL |

#### Remark:

- 1 Measuring frequencies from the lowest internal frequency to the 10th of fundamental frequency
- 2 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- Spectrum Peak mode IF bandwidth Setting: 1GHz- 26GHz, RBW= 1MHz, Sweep time= 200 ms., the VBW setting was 3 MHz.
- 5 Spectrum AV mode if bandwidth Setting : 1GHz- 26GHz, RBW= 1MHz, VBW= 10Hz, Sweep time= 200 ms.



**Report Number: ISL-15LR338FCDTS** 

Radiated Emission: 802.11 n\_20M mode

Operation Mode TX CH Low Test Date 2015/12/18

Fundamental Frequency 2412 MHz Test By Dino Temperature 25  $^{\circ}\mathrm{C}$  Humidity 60  $^{\circ}\mathrm{W}$ 

| No | Freq    | Reading | Factor | Level  | Limit  | Over<br>Limit | Remark  | Pol        |
|----|---------|---------|--------|--------|--------|---------------|---------|------------|
|    | MHz     | dBuV    | dB     | dBuV/m | dBuV/m | dB            |         | V/H        |
| 1  | 2390.00 | 18.30   | 31.71  | 50.01  | 54.00  | -3.99         | Average | VERTICAL   |
| 2  | 2390.00 | 37.86   | 31.71  | 69.57  | 74.00  | -4.43         | Peak    | VERTICAL   |
| 3  | 2400.00 | 38.08   | 31.74  | 69.82  | 81.48  | -11.66        | Peak    | VERTICAL   |
| 4  | 2404.86 | 69.73   | 31.75  | 101.48 | F      |               | Peak    | VERTICAL   |
|    |         |         |        |        |        |               |         |            |
| 1  | 2390.00 | 16.54   | 31.71  | 48.25  | 54.00  | -5.75         | Average | HORIZONTAL |
| 2  | 2390.00 | 30.76   | 31.71  | 62.47  | 74.00  | -11.53        | Peak    | HORIZONTAL |
| 3  | 2400.00 | 35.42   | 31.74  | 67.16  | 77.34  | -10.18        | Peak    | HORIZONTAL |
| 4  | 2404.53 | 65.59   | 31.75  | 97.34  | F      |               | Peak    | HORIZONTAL |

#### Remark:

- Measuring frequencies from the lowest internal frequency to the 10th of fundamental frequency
- Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- Spectrum Peak mode IF bandwidth Setting: 1GHz- 26GHz, RBW= 1MHz, Sweep time= 200 ms., the VBW setting was 3 MHz.
- Spectrum AV mode if bandwidth Setting: 1GHz- 26GHz, RBW= 1MHz, VBW= 10Hz, Sweep time= 200 ms.

Note: "F" denotes fundamental frequency



**35 of 55-** FCC ID: 2AETS-PPC12CL

| No | Freq    | Reading | Factor | Level  | Limit  | Over<br>Limit | Remark  | Pol        |
|----|---------|---------|--------|--------|--------|---------------|---------|------------|
|    | MHz     | dBuV    | dB     | dBuV/m | dBuV/m | dB            |         | V/H        |
| 1  | 2483.50 | 15.10   | 31.98  | 47.08  | 54.00  | -6.92         | Average | VERTICAL   |
| 2  | 2483.50 | 26.42   | 31.98  | 58.40  | 74.00  | -15.60        | Peak    | VERTICAL   |
|    |         |         |        |        |        |               |         |            |
| 1  | 2483.50 | 14.82   | 31.98  | 46.80  | 54.00  | -7.20         | Average | HORIZONTAL |
| 2  | 2483.50 | 27.07   | 31.98  | 59.05  | 74.00  | -14.95        | Peak    | HORIZONTAL |

#### Remark:

- Measuring frequencies from the lowest internal frequency to the 10th of fundamental frequency
- 2 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- Spectrum Peak mode IF bandwidth Setting: 1GHz- 26GHz, RBW= 1MHz, Sweep time= 200 ms., the VBW setting was 3 MHz.
- 5 Spectrum AV mode if bandwidth Setting : 1GHz- 26GHz, RBW= 1MHz, VBW= 10Hz, Sweep time= 200 ms.

**International Standards Laboratory** 

**Report Number: ISL-15LR338FCDTS** 



**36 of 55-** FCC ID: 2AETS-PPC12CL

**Report Number: ISL-15LR338FCDTS** 

Radiated Emission: 802.11n\_40M mode

Operation Mode TX CH Low Test Date 2015/12/18

Fundamental Frequency 2422 MHz Test By Dino Temperature 25  $^{\circ}\mathrm{C}$  Humidity 60  $^{\circ}\mathrm{W}$ 

| No | Freq    | Reading | Factor | Level  | Limit  | Over<br>Limit | Remark  | Pol        |
|----|---------|---------|--------|--------|--------|---------------|---------|------------|
|    | MHz     | dBuV    | dB     | dBuV/m | dBuV/m | dB            |         | V/H        |
| 1  | 2390.00 | 20.13   | 31.71  | 51.84  | 54.00  | -2.16         | Average | VERTICAL   |
| 2  | 2390.00 | 31.68   | 31.71  | 63.39  | 74.00  | -10.61        | Peak    | VERTICAL   |
| 3  | 2400.00 | 34.83   | 31.74  | 66.57  | 78.27  | -11.70        | Peak    | VERTICAL   |
| 4  | 2406.76 | 66.52   | 31.75  | 98.27  | F      | 1             | Peak    | VERTICAL   |
|    |         |         |        |        |        |               |         |            |
| 1  | 2390.00 | 17.67   | 31.71  | 49.38  | 54.00  | -4.62         | Average | HORIZONTAL |
| 2  | 2390.00 | 29.28   | 31.71  | 60.99  | 74.00  | -13.01        | Peak    | HORIZONTAL |
| 3  | 2400.00 | 30.02   | 31.74  | 61.76  | 74.08  | -12.32        | Peak    | HORIZONTAL |
| 4  | 2407.02 | 62.33   | 31.75  | 94.08  | F      |               | Peak    | HORIZONTAL |

#### Remark:

- 1 Measuring frequencies from the lowest internal frequency to the 10th of fundamental frequency
- <sup>2</sup> Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4 Spectrum Peak mode IF bandwidth Setting: 1GHz- 26GHz, RBW= 1MHz, Sweep time= 200 ms., the VBW setting was 3 MHz.
- 5 Spectrum AV mode if bandwidth Setting : 1GHz- 26GHz, RBW= 1MHz, VBW= 10Hz, Sweep time= 200 ms.

Note: "F" denotes fundamental frequency



**37 of 55-** FCC ID: 2AETS-PPC12CL

**Report Number: ISL-15LR338FCDTS** 

Operation Mode TX CH High Test Date 2015/12/18 Fundamental Frequency 2452 MHz Test By Dino Temperature 25  $^{\circ}$ C Humidity 60 %

| No | Freq    | Reading | Factor | Level  | Limit  | Over<br>Limit | Remark  | Pol        |
|----|---------|---------|--------|--------|--------|---------------|---------|------------|
|    | MHz     | dBuV    | dB     | dBuV/m | dBuV/m | dB            |         | V/H        |
| 1  | 2483.50 | 15.54   | 31.98  | 47.52  | 54.00  | -6.48         | Average | VERTICAL   |
| 2  | 2483.50 | 27.43   | 31.98  | 59.41  | 74.00  | -14.59        | Peak    | VERTICAL   |
|    |         |         |        |        |        |               |         |            |
| 1  | 2483.50 | 14.97   | 31.98  | 46.95  | 54.00  | -7.05         | Average | HORIZONTAL |
| 2  | 2483.50 | 26.61   | 31.98  | 58.59  | 74.00  | -15.41        | Peak    | HORIZONTAL |

- 1 Measuring frequencies from the lowest internal frequency to the 10th of fundamental frequency
- <sup>2</sup> Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4 Spectrum Peak mode IF bandwidth Setting : 1GHz- 26GHz, RBW= 1MHz, Sweep time= 200 ms., the VBW setting was 3 MHz.
- 5 Spectrum AV mode if bandwidth Setting: 1GHz- 26GHz, RBW= 1MHz, VBW= 10Hz, Sweep time= 200 ms.

FCC ID: 2AETS-PPC12CL



#### 9 SPURIOUS RADIATED EMISSION TEST

### 9.1 Standard Applicable

According to §15.247(c), all other emissions outside these bands shall not exceed the general radiated emission limits specified in §15.209(a). And according to §15.33(a)(1), for an intentional radiator operates below 10GHz, the frequency range of measurements: to the tenth harmonic of the highest fundamental frequency or to 40GHz, whichever is lower.

### 9.2 Measurement Equipment Used:

#### 9.2.1 Conducted Emission at antenna port:

Refer to section 6.2 for details.

#### 9.2.2 Radiated emission:

Refer to section 7.2 for details.

#### 9.3 Test SET-UP:

#### 9.3.1 Conducted Emission at antenna port:

Refer to section 6.3 for details.

#### 9.3.2 Radiated emission:

Refer to section 7.3 for details.

#### 9.4 Measurement Procedure:

- 1. The EUT was placed on a turn table which is 1.5m above ground plane.
- 2. The turn table shall rotate 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna which varied from 1m to 4m to find out the highest emissions.
- 4. When measurement procedures for electric field radiated emissions above 1 GHz the EUT measurement is to be made "while keeping the antenna in the 'cone of radiation' from that area and pointed at the area both in azimuth and elevation, with polarization oriented for maximum response." is still within the 3dB illumination BW of the measurement antenna.
- 5. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 6. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 7. Repeat above procedures until all frequency measured were complete.

Refer to section 11 and 12 emissions in restricted and non-restricted frequency bands Measurement Procedure of KDB Document: 558074 D01 DTS Meas Guidance v03r02

International Standards Laboratory Report Number: ISL-15LR338FCDTS





# 9.5 Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

$$FS = RA + AF + CL - AG$$

| Where | FS = Field Strength    | CL = Cable Attenuation Factor (Cable Loss) |
|-------|------------------------|--------------------------------------------|
|       | RA = Reading Amplitude | AG = Amplifier Gain                        |
|       | AF = Antenna Factor    |                                            |

#### 9.6 Measurement Result:

Note: Refer to next page spectrum analyzer data chart and tabular data sheets.





### Radiated Spurious Emission Measurement Result (below 1GHz) (worst case)

Over No Reading Factor Level Limit Remark Pol Freq Limit MHz dBuV dB dBuV/m dB V/H dBuV/m 1 106.63 45.38 -15.99 29.39 43.50 -14.11 Peak **VERTICAL** 275.41 42.90 -11.68 31.22 46.00 -14.78 Peak VERTICAL 3 40.92 335.55 -10.3230.60 46.00 -15.40 **VERTICAL** Peak 4 431.58 36.82 -8.31 28.51 46.00 -17.49 Peak VERTICAL 5 551.86 37.05 -6.49 30.56 46.00 -15.44 VERTICAL Peak 6 833.16 33.27 -1.63 31.64 46.00 -14.36 Peak VERTICAL 1 99.84 46.62 -17.13 29.49 43.50 -14.01 Peak **HORIZONTAL** 2 40.43 46.00 275.41 -11.68 28.75 -17.25Peak HORIZONTAL 3 335.55 44.16 -12.16 Peak -10.32 33.84 46.00 HORIZONTAL 4 399.57 41.87 -9.03 32.84 46.00 -13.16 Peak HORIZONTAL -5.39 -11.84 5 600.36 39.55 34.16 46.00 Peak **HORIZONTAL** 34.68 6 719.67 -3.56 31.12 46.00 -14.88 Peak HORIZONTAL

#### Remark:

- 1 No further spurious emissions detected from the lowest internal frequency and 30MHz.
- 2 Measuring frequencies from the lowest internal frequency to the 1GHz.
- 3 Radiated emissions measured in frequency range from 9MHz to 1000MHz were made with an instrument detector setting 9-90KHz/110-490KHz using PK/AV and other Frequency Band using PK/QP
- 4 Measurement result within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5 The IF bandwidth of SPA between 9kHz to 30MHz was 10kHz, VBW= 30kHz; between 30MHz to 1GHz was 100KHz, VBW=300KHz.





### **Radiated Spurious Emission Measurement Result (below 1GHz)**

Humidity 60 %

| No | Freq   | Reading | Factor | Level  | Limit  | Over<br>Limit | Remark | Pol        |
|----|--------|---------|--------|--------|--------|---------------|--------|------------|
|    | MHz    | dBuV    | dB     | dBuV/m | dBuV/m | dB            |        | V/H        |
| 1  | 106.63 | 44.10   | -15.99 | 28.11  | 43.50  | -15.39        | Peak   | VERTICAL   |
| 2  | 302.57 | 43.47   | -10.91 | 32.56  | 46.00  | -13.44        | Peak   | VERTICAL   |
| 3  | 431.58 | 37.18   | -8.31  | 28.87  | 46.00  | -17.13        | Peak   | VERTICAL   |
| 4  | 551.86 | 36.20   | -6.49  | 29.71  | 46.00  | -16.29        | Peak   | VERTICAL   |
| 5  | 600.36 | 35.20   | -5.39  | 29.81  | 46.00  | -16.19        | Peak   | VERTICAL   |
| 6  | 833.16 | 34.07   | -1.63  | 32.44  | 46.00  | -13.56        | Peak   | VERTICAL   |
|    |        |         |        |        |        |               |        |            |
| 1  | 96.93  | 46.93   | -17.59 | 29.34  | 43.50  | -14.16        | Peak   | HORIZONTAL |
| 2  | 210.42 | 42.20   | -14.61 | 27.59  | 43.50  | -15.91        | Peak   | HORIZONTAL |
| 3  | 335.55 | 44.15   | -10.32 | 33.83  | 46.00  | -12.17        | Peak   | HORIZONTAL |
| 4  | 399.57 | 41.77   | -9.03  | 32.74  | 46.00  | -13.26        | Peak   | HORIZONTAL |
| 5  | 600.36 | 39.55   | -5.39  | 34.16  | 46.00  | -11.84        | Peak   | HORIZONTAL |
| 6  | 815.70 | 31.27   | -1.93  | 29.34  | 46.00  | -16.66        | Peak   | HORIZONTAL |

#### Remark:

- 1 No further spurious emissions detected from the lowest internal frequency and 30MHz.
- 2 Measuring frequencies from the lowest internal frequency to the 1GHz.
- 3 Radiated emissions measured in frequency range from 9MHz to 1000MHz were made with an instrument detector setting 9-90KHz/110-490KHz using PK/AV and other Frequency Band using PK/QP
- 4 Measurement result within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5 The IF bandwidth of SPA between 9kHz to 30MHz was 10kHz, VBW= 30kHz; between 30MHz to 1GHz was 100KHz, VBW=300KHz.





# Radiated Spurious Emission Measurement Result (below 1GHz)

Operation Mode 802.11g TX Test Date 2015/12/18 Channel Number CH High Test By Dino Temperature 25  $^{\circ}$ C Pol Ver./Hor

Humidity 60 %

| No | Freq   | Reading | Factor | Level  | Limit  | Over<br>Limit | Remark | Pol        |
|----|--------|---------|--------|--------|--------|---------------|--------|------------|
|    | MHz    | dBuV    | dB     | dBuV/m | dBuV/m | dB            |        | V/H        |
| 1  | 106.63 | 44.32   | -15.99 | 28.33  | 43.50  | -15.17        | Peak   | VERTICAL   |
| 2  | 303.54 | 41.99   | -10.90 | 31.09  | 46.00  | -14.91        | Peak   | VERTICAL   |
| 3  | 431.58 | 36.28   | -8.31  | 27.97  | 46.00  | -18.03        | Peak   | VERTICAL   |
| 4  | 600.36 | 34.96   | -5.39  | 29.57  | 46.00  | -16.43        | Peak   | VERTICAL   |
| 5  | 833.16 | 33.88   | -1.63  | 32.25  | 46.00  | -13.75        | Peak   | VERTICAL   |
| 6  | 983.51 | 30.40   | 0.76   | 31.16  | 54.00  | -22.84        | Peak   | VERTICAL   |
|    |        |         |        |        |        |               |        |            |
| 1  | 99.84  | 46.42   | -17.13 | 29.29  | 43.50  | -14.21        | Peak   | HORIZONTAL |
| 2  | 210.42 | 41.82   | -14.61 | 27.21  | 43.50  | -16.29        | Peak   | HORIZONTAL |
| 3  | 335.55 | 43.68   | -10.32 | 33.36  | 46.00  | -12.64        | Peak   | HORIZONTAL |
| 4  | 399.57 | 42.16   | -9.03  | 33.13  | 46.00  | -12.87        | Peak   | HORIZONTAL |
| 5  | 600.36 | 39.76   | -5.39  | 34.37  | 46.00  | -11.63        | Peak   | HORIZONTAL |
| 6  | 719.67 | 35.16   | -3.56  | 31.60  | 46.00  | -14.40        | Peak   | HORIZONTAL |

#### Remark:

- 1 No further spurious emissions detected from the lowest internal frequency and 30MHz.
- 2 Measuring frequencies from the lowest internal frequency to the 1GHz.
- 3 Radiated emissions measured in frequency range from 9MHz to 1000MHz were made with an instrument detector setting 9-90KHz/110-490KHz using PK/AV and other Frequency Band using PK/QP
- 4 Measurement result within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5 The IF bandwidth of SPA between 9kHz to 30MHz was 10kHz, VBW= 30kHz; between 30MHz to 1GHz was 100KHz, VBW=300KHz.





### Radiated Spurious Emission Measurement Result (above 1GHz) (worst case)

Humidity 60 %

| No | Freq    | Reading | Factor | Level  | Limit  | Over<br>Limit | Remark | Pol        |
|----|---------|---------|--------|--------|--------|---------------|--------|------------|
|    | MHz     | dBuV    | dB     | dBuV/m | dBuV/m | dB            |        | V/H        |
| 1  | 2225.00 | 56.13   | -11.35 | 44.78  | 74.00  | -29.22        | Peak   | VERTICAL   |
| 2  | 4824.00 | 46.79   | -3.24  | 43.55  | 74.00  | -30.45        | Peak   | VERTICAL   |
|    |         |         |        |        |        |               |        |            |
| 1  | 1994.00 | 52.01   | -12.22 | 39.79  | 74.00  | -34.21        | Peak   | HORIZONTAL |
| 2  | 4824.00 | 44.93   | -3.24  | 41.69  | 74.00  | -32.31        | Peak   | HORIZONTAL |

- 1 Measuring frequencies from the lowest internal frequency to the 10th of fundamental frequency
- 2 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- $_{\rm 4}$  Spectrum Peak mode IF bandwidth Setting : 1GHz- 26GHz, RBW= 1MHz, Sweep time= 200 ms., the VBW setting was 3 MHz.
- 5 Spectrum AV mode if bandwidth Setting : 1GHz- 26GHz, RBW= 1MHz, VBW= 10Hz, Sweep time= 200 ms.



**Report Number: ISL-15LR338FCDTS** 



### Radiated Spurious Emission Measurement Result (above 1GHz)

Humidity 60 %

| No | Freq    | Reading | Factor | Level  | Limit  | Over<br>Limit | Remark | Pol        |
|----|---------|---------|--------|--------|--------|---------------|--------|------------|
|    | MHz     | dBuV    | dB     | dBuV/m | dBuV/m | dB            |        | V/H        |
| 1  | 2190.00 | 55.72   | -11.48 | 44.24  | 74.00  | -29.76        | Peak   | VERTICAL   |
| 2  | 4874.00 | 47.21   | -3.13  | 44.08  | 74.00  | -29.92        | Peak   | VERTICAL   |
|    |         |         |        |        |        |               |        |            |
| 1  | 4874.00 | 43.99   | -3.13  | 40.86  | 74.00  | -33.14        | Peak   | HORIZONTAL |
| 2  | 7041.00 | 44.13   | 3.70   | 47.83  | 74.00  | -26.17        | Peak   | HORIZONTAL |

- 1 Measuring frequencies from the lowest internal frequency to the 10th of fundamental frequency
- 2 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- 3 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4 Spectrum Peak mode IF bandwidth Setting : 1GHz- 26GHz, RBW= 1MHz, Sweep time= 200 ms., the VBW setting was 3 MHz.
- $_{5}$  Spectrum AV mode if bandwidth Setting : 1GHz- 26GHz, RBW= 1MHz, VBW= 10Hz, Sweep time=  $200\ ms.$



#### FCC ID: 2AETS-PPC12CL

**Report Number: ISL-15LR338FCDTS** 

#### **Radiated Spurious Emission Measurement Result (above 1GHz)**

Humidity 60 %

| No | Freq    | Reading | Factor | Level  | Limit  | Over<br>Limit | Remark | Pol        |
|----|---------|---------|--------|--------|--------|---------------|--------|------------|
|    | MHz     | dBuV    | dB     | dBuV/m | dBuV/m | dB            |        | V/H        |
| 1  | 1994.00 | 64.22   | -12.22 | 52.00  | 74.00  | -22.00        | Peak   | VERTICAL   |
| 2  | 4924.00 | 47.06   | -3.02  | 44.04  | 74.00  | -29.96        | Peak   | VERTICAL   |
|    |         |         |        |        |        |               |        |            |
| 1  | 4924.00 | 45.05   | -3.02  | 42.03  | 74.00  | -31.97        | Peak   | HORIZONTAL |
| 2  | 7342.00 | 43.03   | 4.26   | 47.29  | 74.00  | -26.71        | Peak   | HORIZONTAL |

- 1 Measuring frequencies from the lowest internal frequency to the 10th of fundamental frequency
- 2 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- 3 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4 Spectrum Peak mode IF bandwidth Setting : 1GHz- 26GHz, RBW= 1MHz, Sweep time= 200 ms., the VBW setting was 3 MHz.
- $_{5}$  Spectrum AV mode if bandwidth Setting : 1GHz- 26GHz, RBW= 1MHz, VBW= 10Hz, Sweep time=  $200\ ms.$

FCC ID: 2AETS-PPC12CL



# 10 Peak Power Spectral Density

### 10.1 Standard Applicable:

According to §15.247(e) For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

## 10.2 Measurement Equipment Used:

Refer to section 6.2 for details.

#### 10.3 Test Set-up:

Refer to section 6.3 for details.

#### 10.4 Measurement Procedure:

# Refer to section 10.2 Peak Power Density(PKPPSD) Measurement Procedure of KDB Document: 558074 D01 DTS Meas Guidance v03r02

- 1. Set analyzer center frequency to DTS channel frequency
- 2. Set the span to 1.5 times the DTS bandwidth.
- 3. Set resolution bandwidth 3KHz ≤RBW ≤100KHz.
- 4. Set the video bandwidth VBW≥3×RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

**International Standards Laboratory** 



# 10.5 Measurement Result:

### 802.11b Mode

|      | Power Density  | <b>Maximum Limit</b> |
|------|----------------|----------------------|
| СН   | Level dBm/3KHz | (dBm)                |
| Low  | -17.876        | 8                    |
| Mid  | -19.017        | 8                    |
| High | -20.101        | 8                    |

# 802.11g Mode

|      | Power Density  | Maximum Limit |
|------|----------------|---------------|
| СН   | Level dBm/3KHz | (dBm)         |
| Low  | -14.72         | 8             |
| Mid  | -16.953        | 8             |
| High | -17.979        | 8             |

# 802.11N HT20

|      | Power Density  | <b>Maximum Limit</b> |
|------|----------------|----------------------|
| СН   | Level dBm/3KHz | (dBm)                |
| Low  | -15.757        | 8                    |
| Mid  | -17.02         | 8                    |
| High | -18.22         | 8                    |

# 802.11N HT40

| СН   | Power Density<br>Level dBm/3KHz | Maximum Limit (dBm) |
|------|---------------------------------|---------------------|
| Low  | -15.617                         | 8                   |
| Mid  | -16.574                         | 8                   |
| High | -16.942                         | 8                   |



802.11b Power Spectral Density Test Plot (CH-Low)



**Power Spectral Density Test Plot (CH-Mid)** 







802.11g Power Spectral Density Test Plot (CH-Low)









**#VBW 10 kHz** 





# 802.11n\_20M

# **Power Spectral Density Test Plot (CH-Low)**



**Power Spectral Density Test Plot (CH-Mid)** 







# 802.11n\_40M Power Spectral Density Test Plot (CH-Low)













# 11 ANTENNA REQUIREMENT

### 11.1 Standard Applicable

According to §15.203, Antenna requirement.

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of Sections 15.211, 15.213, 15.217, 15.219, or 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with Section 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this Part are not exceeded.

According to RSS-GEN 7.1.2, a transmitter can only be sold or operated with antennas with which it was certified. A transmitter may be certified with multiple antenna types. An antenna type comprises antennas having similar in-band and out-of-band radiation patterns. Testing shall be performed using the highest-gain antenna of each combination of transmitter and antenna type for which certification is being sought, with the transmitter output power set at the maximum level. Any antenna of the same type and having equal or lesser gain as an antenna that had been successfully tested for certification with the transmitter, will also be considered certified with the transmitter, and may be used and marketed with the transmitter. The manufacturer shall include with the application for certification a list of acceptable antenna types to be used with the transmitter.

When a measurement at the antenna connector is used to determine RF output power, the effective gain of the device's antenna shall be stated, based on measurement or on data from the antenna manufacturer. Any antenna gain in excess of 6 dBi (6 dB above isotropic gain) shall be added to the measured RF output power before using the power limits specified in RSS-210 or RSS-310 for devices of RF output powers of 10 milliwatts or less. For devices of output powers greater than 10 milliwatts, except devices subject to RSS-210 Annex 8 (Frequency Hopping and Digital Modulation Systems Operating in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz Bands) or RSS-210 Annex 9 (Local Area Network Devices), the total antenna gain shall be added to the measured RF output power before using the specified power limits. For devices subject to RSS-210 Annex 8 or Annex 9, the antenna gain shall not be added.



**Report Number: ISL-15LR338FCDTS** 



### 11.2 Antenna Connected Construction

The directional gins of antenna used for transmitting is below table, and the antenna connector is designed with unique type RF connector and no consideration of replacement. Please see EUT photo and antenna spec. for details.

Antenna Designation:

|     | Manufacturer                        | Туре               | Gain (2.4GHz) |
|-----|-------------------------------------|--------------------|---------------|
| Ant | Master Wave Technology<br>Co., Ltd. | Fixed PIFA Antenna | -0.33dBi      |