Notación asintótica

Análisis de algoritmos

Leonardo Flórez-Valencia

Pontificia Universidad Javeriana Departamento de Ingeniería de Sistemas Bogotá

Sesión 2

Ordenamiento burbuja (1)

```
1: procedure BubbleSort(S)
        for i \leftarrow 1 to |S| do
            for i \leftarrow 1 to |S| - 1 do
3:
                if S[j+1] < S[j] then
4:
                    aux \leftarrow S[j]
5:
                    S[j] \leftarrow S[j+1]
6:
                    S[j+1] \leftarrow aux
7:
                end if
8.
9.
            end for
        end for
10:
11: end procedure
```

6 5 3 1 8 7 2 4

6 5 3 1 8 7 2 4

5 6 3 1 8 7 2 4

5 6 3 1 8 7 2 4

5 3 6 1 8 7 2 4

5 3 6 1 8 7 2 4

5 3 1 6 8 7 2 4

5 3 1 6 8 7 2 4

5 3 1 6 8 7 2 4

5 3 1 6 7 8 2 4

5 3 1 6 7 8 2 4

5 3 1 6 7 2 8 4

5 3 1 6 7 2 8 4

5 3 1 6 7 2 4 8

5 3 1 6 7 2 4 8

5 3 1 6 7 2 4 8

3 5 1 6 7 2 4 8

3 5 1 6 7 2 4 8

3 1 5 6 2 7 4 8

3 1 5 6 2 7 4 8

1 3 5 2 6 4 7 8

1 3 5 2 6 4 7 8

1 3 5 2 4 6 7 8

1 3 5 2 4 6 7 8

1 3 5 2 4 6 7 8

1 3 5 2 4 6 7 8

1 3 2 5 4 6 7 8

1 3 2 5 4 6 7 8

1 3 2 4 5 6 7 8

1 3 2 4 5 6 7 8

1 3 2 4 5 6 7 8

Ordenamiento burbuja (2)

```
1: procedure BubbleSort(S)
        for i \leftarrow 1 to |S| do
            for i \leftarrow 1 to |S| - i do
3:
                if S[j+1] < S[j] then
4:
                    aux \leftarrow S[j]
5:
                    S[j] \leftarrow S[j+1]
6:
                    S[j+1] \leftarrow aux
7:
                end if
8.
g.
            end for
        end for
10:
11: end procedure
```

• Un buen diseño, debe llevar a escoger entre un conjunto de soluciones.

- Un buen diseño, debe llevar a escoger entre un conjunto de soluciones.
- El problema P tiene un conjunto de x soluciones algorítmicas numeradas A_1, A_2, \cdots, A_x . ¿Cuál es el mejor?

- Un buen diseño, debe llevar a escoger entre un conjunto de soluciones.
- El problema P tiene un conjunto de x soluciones algorítmicas numeradas A_1, A_2, \cdots, A_x . ¿Cuál es el mejor?
 - ¿La más pequeña?
 - ¿La más fácil de implementar?
 - ¿La más rápida?
 - ¿La más barata?
 - ¿La de microsoft?
 - ¿La de linux?
 - ¿La de mac?
 - ...

- Un buen diseño, debe llevar a escoger entre un conjunto de soluciones.
- El problema P tiene un conjunto de x soluciones algorítmicas numeradas A_1, A_2, \cdots, A_x . ¿Cuál es el mejor?
 - ¿La más pequeña?
 - ¿La más fácil de implementar?
 - ¿La más rápida?
 - ¿La más barata?
 - ¿La de microsoft?
 - ¿La de linux?
 - ¿La de mac?
 - · ·

Respuesta:

La de complejidad adecuada

¿Complejidad?

- ¿Quién ejecuta un algoritmo?
 - ¿Cómo se "pega" el "modelo" con la "tecnología"?

¿Complejidad?

- ¿Quién ejecuta un algoritmo?
 - ¿Cómo se "pega" el "modelo" con la "tecnología"?
- Espacial S(n)
 - El espacio no es muy importante hoy en día (históricamente lo era, y lo va a volver a ser).
 - RAM, cache, virtualización, paginación.
- Temporal T(n)
 - Depende del tamaño de los datos de entrada (n).
 - ¡El tiempo real depende de la máquina!

Escritura básica de un algoritmo

- Describir (analizar y diseñar) formalmente el "problema".
- ② Describir formalmente el "algoritmo" que lo resuelve en términos de una caja negra:
 - Diseño del algoritmo (contrato)
 - Entradas.
 - Salidas.
 - 2 Idea general de solución.
 - Secribir el algoritmo.
- 4 Analizar los órdenes de complejidad del algoritmo.
- O Describir la invariante del algoritmo.
 - Mostrar que la invariante se mantiene.

Problema del ordenamiento

- Problema: Ordenar una "lista" / "arreglo" / "vector" / "conjunto" / "montón" de números.
- Formalización: Dada una secuencia \mathcal{S} de elementos $a_i \in \mathbb{T}$, donde se define la relación de orden parcial \leq , producir una nueva secuencia \mathcal{S}' donde los elementos contiguos cumplan la relación de orden parcial \leq .
- Entradas: Una secuencia S de n números: $S = \langle a_1, a_2, \cdots, a_n \rangle$ donde $a_i \in \mathbb{T}$ y en \mathbb{T} está definida la relación de orden parcial \leq .
- Salidas: Una permutación $\mathcal{S}' = \langle a_1', a_2', \cdots, a_n' \rangle \mid a_1' \leq a_2' \leq \cdots \leq a_n' \wedge a_i' \in \mathcal{S} \forall i$

¿Cuántos algoritmos conoce usted que solucionan este problema?

Burbuja, Inserción, Mezclas, Montículos, Quicksort, ...

Ordenamiento por inserción

```
1: procedure InsertionSort(S)
          for j \leftarrow 2 to |S| do
              k \leftarrow \mathcal{S}[i]
 3:
              i \leftarrow i - 1
 4:
               while 0 < i \land k < \mathcal{S}[i] do
 5:
                    \mathcal{S}[i+1] \leftarrow \mathcal{S}[i]
 6:
                  i \leftarrow i - 1
 7:
               end while
 8.
               S[i+1] \leftarrow k
 9:
          end for
10:
11: end procedure
```

- ¿Qué propiedades de los datos (intermedios y resultados) son (deben) siempre ciertas?
 - Inicialización
 - Mantenimiento/Iteración/Actualización/Procesamiento
 - Terminación
- Prueba de escritorio para $\mathcal{S} = \langle 5, 2, 7, 3, 1, 9, 8 \rangle$

- ¿Qué propiedades de los datos (intermedios y resultados) son (deben) siempre ciertas?
 - Inicialización
 - Mantenimiento/Iteración/Actualización/Procesamiento
 - Terminación
- Prueba de escritorio para $S = \langle 5, 2, 7, 3, 1, 9, 8 \rangle$
- Al inicio de cada iteración for, se cumple $\mathcal{S}\left\langle 1..j-1\right\rangle \equiv \mathcal{S}'\left\langle 1..j-1\right\rangle$
 - "La subsecuencia entre 1 y j 1 estará ordenada"
- ¿Y el while?

- ¿Qué propiedades de los datos (intermedios y resultados) son (deben) siempre ciertas?
 - Inicialización
 - Mantenimiento/Iteración/Actualización/Procesamiento
 - Terminación
- Prueba de escritorio para $S = \langle 5, 2, 7, 3, 1, 9, 8 \rangle$
- Al inicio de cada iteración for, se cumple $\mathcal{S}\left\langle 1..j-1\right\rangle \equiv \mathcal{S}'\left\langle 1..j-1\right\rangle$
 - "La subsecuencia entre 1 y j 1 estará ordenada"
- ¿Y el while?
- Una primera prueba de correctitud: demostrar que la invariante se mantiene siempre.

- ¿Qué propiedades de los datos (intermedios y resultados) son (deben) siempre ciertas?
 - Inicialización
 - Mantenimiento/Iteración/Actualización/Procesamiento
 - Terminación
- Prueba de escritorio para $S = \langle 5, 2, 7, 3, 1, 9, 8 \rangle$
- Al inicio de cada iteración for, se cumple $\mathcal{S}\left\langle 1..j-1\right\rangle \equiv \mathcal{S}'\left\langle 1..j-1\right\rangle$
 - "La subsecuencia entre 1 y j 1 estará ordenada"
- ¿Y el while?
- Una primera prueba de correctitud: demostrar que la invariante se mantiene siempre.
- Parece inducción, ¿cierto?

Contemos instrucciones

```
1: procedure InsertionSort(S)
                                                                                                          \triangleright n = |\mathcal{S}|
           for j \leftarrow 2 to |S| do
                                                                                            \triangleright 1 + n + (n+1)
 2:
                 k \leftarrow \mathcal{S}[j]
 3:
                 i \leftarrow i-1
 4.
                 while 0 < i \land k < \mathcal{S}[i] do
 5:
                                                                                                                  > 4n
                       \mathcal{S}[i+1] \leftarrow \mathcal{S}[i]
                                                                                                                    \triangleright 4
 6:
                      i \leftarrow i - 1
                                                                                                                    \triangleright 2
 7:
                 end while
 8:
                 S[i+1] \leftarrow k
 9:
                                                                                                                    \triangleright 3
10:
           end for
11: end procedure
```

Contemos instrucciones

	I I	. [2]		
1: p	rocedure InsertionSort (\mathcal{S})	$\triangleright n = \mathcal{S} $		
2:	for $j \leftarrow 2$ to $ \mathcal{S} $ do	> 1 + n + (n+1)		
3:	$k \leftarrow \mathcal{S}\left[j\right]$	$\triangleright 2$		
4:	$i \leftarrow j-1$	$\triangleright 2$		
5:	while $0 < i \land k < \mathcal{S}\left[i\right]$ do	$\triangleright 4n$		
6:	$\mathcal{S}\left[i+1 ight]\leftarrow\mathcal{S}\left[i ight]$	$\triangleright 4$		
7:	$i \leftarrow i - 1$	$\triangleright 2$		
8:	end while			
9:	$\mathcal{S}\left[i+1 ight] \leftarrow k$	⊳ 3		
10:	end for			
11: e	11: end procedure			

$$T(n) = 10n^2 + 9n + 2$$
$$S(n) = ?$$

¿Por qué nos interesa el peor de los casos?

- Límite superior del algoritmo.
- Ocurre la mayoría de las veces en la mayoría de los algoritmos.
- El caso promedio es "casi" como el peor de los casos.

¿Por qué nos interesa el peor de los casos?

- Límite superior del algoritmo.
- Ocurre la mayoría de las veces en la mayoría de los algoritmos.
- El caso promedio es "casi" como el peor de los casos.

Peor de los casos

Una función de tiempo $T\left(n\right)=\sum_{i=0}a_{i}x^{i}$ tiene un orden de crecimiento (complejidad) $O\left(x^{n}\right)$ "O de x a la n".

Notación ⊖

$$\Theta(g(n)) = \begin{cases} f(n) : \\ \exists c_1, c_2, n_0 > 0 \mid \\ \forall n \ge n_0, \\ 0 \le c_1 g(n) \le \\ f(n) \le c_2 g(n) \end{cases}$$

Notación ⊖

$$\Theta(g(n)) = \begin{cases} f(n) : \\ \exists c_1, c_2, n_0 > 0 \mid \\ \forall n \ge n_0, \\ 0 \le c_1 g(n) \le \\ f(n) \le c_2 g(n) \end{cases}$$

Cota

 $g\left(n\right)$ es una cota ajustada asintótica de $f\left(n\right)$.

Tomado de [Cormen et al. 2009]

Notación Ω

$$\Omega(g(n)) = \{f(n) : \exists c, n_0 > 0 \mid \forall n \ge n_0, 0 \le cg(n) \le f(n)\}$$

Notación Ω

$$\Omega\left(g\left(n\right)\right) = \left\{f\left(n\right) : \exists c, n_0 > 0 \mid \forall n \geq n_0, 0 \leq cg\left(n\right) \leq f\left(n\right)\right\}$$

Cota inferior

 $g\left(n\right)$ es la cota inferior asintótica de $f\left(n\right) .$

Tomado de [Cormen et al. 2009]

Notación O

$$O(g(n)) = \{f(n) : \exists c, n_0 > 0 \mid \forall n \ge n_0, 0 \le f(n) \le cg(n)\}$$

Cota superior

 $g\left(n\right)$ es la cota superior asintótica de $f\left(n\right) .$

Tomado de [Cormen et al. 2009]

Aritmética

Tres reglas aritméticas de la complejidad $O(\cdot)$:

- T(n) es $O(kf(n)) \to T(n)$ es O(f(n))
- $T_1(n)$ es $O(f_1(n)) \wedge T_2(n)$ es $O(f_2(n)) \rightarrow T_{1;2}(n)$ es $O(\max(f_1(n), f_2(n)))$
- $T_1\left(n\right)$ es $O\left(f_1\left(n\right)\right) \wedge T_2\left(n\right)$ es $O\left(f_2\left(n\right)\right) \rightarrow T_{1(2)}\left(n\right)$ es $O\left(f_1\left(n\right)f_2\left(n\right)\right)$

1 ins $2.85 \times 10^{-10} s$, procesador de 3.5GHz.

$f\left(n=256\right)$	Tiempo (ins)
$\Omega\left(\log_2\left(n\right)\right)$	8ins
$\Omega\left(n\right)$	256ins
$\Omega\left(n\log_2\left(n\right)\right)$	2048ins
$\Omega\left(n^2\right)$	65536ins
$\Omega\left(n^3\right)$	16777216ins
$\Omega\left(2^{n}\right)$	$1.15 \times 10^{77} ins$
$\Omega\left(n!\right)$	$8.57 \times 10^{507} ins$

1 ins $2.85 \times 10^{-10} s$, procesador de 3.5GHz.

$f\left(n=256\right)$	Tiempo (s)
$\Omega\left(\log_2\left(n\right)\right)$	2.28ns
$\Omega\left(n\right)$	72.96ns
$\Omega\left(n\log_2\left(n\right)\right)$	583.58ns
$\Omega\left(n^2\right)$	$18.67 \mu s$
$\Omega\left(n^3\right)$	4.78ms
$\Omega\left(2^{n}\right)$	$3.2 \times 10^{67} s$
$\Omega\left(n!\right)$	$2.44 \times 10^{498} s$

1 ins $2.85 \times 10^{-10} s$, procesador de 3.5GHz.

$f\left(n=256\right)$	Tiempo (s)
$\Omega\left(\log_2\left(n\right)\right)$	2.28ns
$\Omega\left(n\right)$	72.96ns
$\Omega\left(n\log_2\left(n\right)\right)$	583.58ns
$\Omega\left(n^2\right)$	$18.67 \mu s$
$\Omega\left(n^3\right)$	4.78ms
$\Omega\left(2^{n}\right)$	$3.2 \times 10^{67} s$
$\Omega\left(n!\right)$	$2.44 \times 10^{498} s$

Edad estimada del universo: $4 \times 10^{27} s$.

1 ins $2.85 \times 10^{-10} s$, procesador de 3.5GHz.

f(n = 256)	Tiempo (s)
$\frac{\int (\log_2(n))}{\Omega(\log_2(n))}$	2.28ns
$\frac{\Omega\left(\log_2\left(n\right)\right)}{\Omega\left(n\right)}$	72.96ns
$\frac{\Omega\left(n\log_2\left(n\right)\right)}{\Omega\left(n\log_2\left(n\right)\right)}$	583.58ns
$\frac{\Omega\left(n\log_2\left(n\right)\right)}{\Omega\left(n^2\right)}$	$18.67\mu s$
$\frac{\Omega\left(n^3\right)}{\Omega\left(n^3\right)}$	4.78ms
$\frac{\Omega\left(2^{n}\right)}{\Omega\left(2^{n}\right)}$	$8 \times 10^{39} U$
()	
$\Omega\left(n!\right)$	$6.1 \times 10^{470} U$