

AN2582

应用笔记

STM32F10xxx USART应用示例

介绍

本篇介绍STM32F10XXX USART外设的实际使用示例。

这篇文档,它相关的固件库,和其他这样的应用笔记是为和STM32F10xxx 固件库配套而写的。 可从意法半导体的网站上下载: www.st.com.

	AN2582		1
应月	用笔记		1
STI	//32F10xxx	(USART应用示例	1
1	STM3	32F10XXX USART硬件流控制通讯	5
	1.1	概述	5
	1.2	硬件描述	5
	1.3	固件描述	6
	1.4	总结	6
2	STM3	32F10xxx通过超级终端实现USART中断通讯	7
	2.1	概述	7
	2.2	硬件描述	7
	2.3	固件描述	7
	2.4	总结	8
3	STM3	32F10XXX USART-USART间使用标志位实现通讯	8
	3.1	概述	8
	3.2	硬件描述	8
	3.3	固件描述	9
	3.4	总结	9
4	STM3	32F10xxx USART-USART间使用中断进行通讯	10
	4.1	概述	10
	4.2	硬件描述	10

©2007 MXCHIP Corporation. All rights reserved.

	4.3	固件描述	10
	4.4	总结	11
5	STM	32F10xxx USART-USART间使用DMA通讯	11
	5.1	概述	11
	5.2	硬件描述	11
	5.3	固件描述	12
	5.4	总结	12
6	USAF	RT-USART使用DMA,标志位和中断通讯	13
	6.1	概述	13
	6.2	硬件描述	13
	6.3	固件描述	13
	6.4	总结	14
7	STM	32F10xxx USART 重定向C语言的printf功能	14
	7.1	概述	14
	7.2	硬件描述	14
	7.3	固件描述	15
	7.4	总结	15
8	STM	32F10xxx USART同步模式(SPI模式)	16
	8.1	概述	16
	8.2	硬件描述	16
	8.3	固件描述	16

	8.4	总结	17
9	STM32	F10xxx USART半双工模式	17
	9.1 柞	既述	17
	9.2 d	硬件描述	17
	9.3	固件描述	18
	9.4 £	总结	18
10	STM	32F10xxx USART IrDA模式	19
	10.1	STM32F10xxx USART IrDA发送模式	19
	10.1.1	概述	19
	10.1.2	硬件描述	19
	10.1.3	固件描述	20
	10.1.4	总结	21
	10.2	STM32F10xxx USART IrDA接收模式	21
	10.2.1	概述	21
	10.2.2	硬件描述	21
	10.2.3	固件描述	22
	10.3	总结	22
11	STM	32F10xxx USART多处理器通讯	23
	11.1	概述	23
	11.2	硬件描述	23
	11.3	固件描述	24

	11.4	总结	24
12		STM32F10xxx USART 智能卡模式	24
	12.1	概述	24
	12.2	硬件描述	25
	12.3	固件描述	27
13		修订记录	27
14		版权声明:	28

1 STM32F10XXX USART硬件流控制通讯

1.1 概述

这一节描述了如何使用带硬件流控制(RTS CTS)的USART,和如何与超级终端通讯

1.2 硬件描述

下图展示了STM32F10xxxUSART和PC超级终端之间的典型的互联结构。所有的USART2信号 (RX,TX,RTS和CTS)使用RS232转换器连接到DB9连接器。然后再用一个null调制套筒(female)/套筒(female)RS232线将PC串口和DB9连接器(STM3210B-EVAL板上的CN5)相连接。

提供的固件包含有USART驱动,该驱动通过一系列函数来支持所有的USART通讯。也提供了一个使用了大部分功能的示例。

USART2发送一个预定义缓冲区到超级终端,然后等待超级终端放回一个字符串。字符串由用户输入并且必须以\r(键盘的ENTER键)结尾。字符串存储在接收缓冲区数组中。最大的接收缓冲区的大小由RxBufferSize决定,以字节为单位,并且可由用户配置。

每次接收字节都需要重传到超级终端。

参考STM32F10xxx固件库中的USART示例一,可以从ST官方网站上下载。

1.4 总结

STM32F10xxxUSART具有调制解调的功能(CTS和RTS),它改进了应用程序数据传输的安全,并且需要更少的软件来控制数据流。

ai14348

2 STM32F10xxx通过超级终端实现USART中断通讯

2.1 概述

这一节介绍了USART如何使用USART中断实现与超级终端通讯。

2.2 硬件描述

下图显示了STM32F10xxx和PC机超级终端之间的典型连接。USART1信号(Rx,Tx)必须使用RS232转换器连接到DB9连接器。然后再用一个交叉的母对母的RS232线将PC串口和DB9连接器(STM3210B-EVAL板上的CN6)相连接。

USART1_TX
USART transceiver DB9 connector to PC HyperTerminal

Figure 2. STM32F10xxx USART and HyperTerminal interface

2.3 **固件描述**

STM32F10xxx

提供的固件包含有USART驱动,该驱动通过一系列函数来支持所有的USART通讯。也提供了一个使用了大部分功能的示例。

USART2发送一个预定义缓冲取数据到超级终端,然后等待超级终端放回一个字符串。字符串的长度由用户可配置的RxBufferSize变量决定。通讯是由发送和接收中断来管理的。用户输入的数据存 ©2007 MXCHIP Corporation. All rights reserved.

www.mxchip.com 021-52655026/025

储在接收缓冲区中。接收缓冲区最大大小为RxBufferSize字节。

参考STM32F10xxx固件库中的USART示例二,可以从ST官方网站上下载。

2.4 总结

在发送和接收数据时,STM32F10XXX USART中断提供了一种更加灵活的方式。与超级终端通 讯只是为了演示的目的。

3 STM32F10XXX USART-USART间使用标志 位实现通讯

概述 3.1

这一节介绍了如何使用flags在USART1和USART2间构建一个基本的通讯

硬件描述 3.2

下图展示了USART1 和USART2间的基本连接, USART1信号Tx, Rx必须使用RS232转换器连接 到DB9连接器, USART2也同样的方式连接。而且,两个DB9连接器(STM3210B-EVAL板上的CN6和CN5) 之间也通过一个交叉的母对母的 RS232线连接起来。

Figure 3. STM32F10xxx USART-USART interface

提供的固件包含有USART驱动,该驱动通过一系列函数来支持所有的USART通讯。也提供了一个使用了大部分功能的示例。

USART1发送预定义的缓冲取数据到USART2。USART2读取接收的数据并且存储到接受缓冲区中。接收的数据和发送的数据相比较,比较的结果存储在TransferStatus变量中。
参见固件库中的USART示例三,可从ST官方网站下载。

3.4 总结

STM32F10xxxUSART的标志能够很容易地控制两个USART的通讯。

4 STM32F10xxx USART-USART间使用中断 进行通讯

概述 4.1

这一节描述了USART1和USART2间通过终端如何构建一个基本通讯。

4.2 硬件描述

下图展示了USART1 和USART2间的基本连接, USART1信号Tx, Rx必须使用RS232转换器连接 到DB9连接器,USART2也同样的方式连接。而且,两个DB9连接器(STM3210B-EVAL板上的CN6和CN5) 之间也通过一个交叉的母对母的RS232线连接起来。

USART1_TX USART DB9 transceiver connector USART1_RX USART2_TX USART DB9 transceiver connector USART2 RX STM32F10xxx ai14349

Figure 3. STM32F10xxx USART-USART interface

4.3 固件描述

提供的固件包含有USART驱动,该驱动通过一系列函数来支持所有的USART通讯。也提供了一 个使用了大部分功能的示例。

©2007 MXCHIP Corporation. All rights reserved.

www.mxchip.com

021-52655026/025

USART1发送缓冲区数据到USART2,USART2也发送缓冲取数据到USART1。接收的数据分别存放在USART2和USART1的接受缓冲区。数据传输由stm32f10x.c文件中的USART1和USART2的中断服务程序管理。接收和发送的数据然后相比较。

参见固件库中的USART示例四,可从ST官方网站下载。

4.4 总结

使用中断的通讯可以进一步减少代码密度,而且使得传输和接收数据更加容易。

5 STM32F10xxx USART-USART间使用 DMA通讯

5.1 概述

这一节介绍了如何USART1 USART2间使用DMA构建基本通讯。

5.2 硬件描述

下图展示了USART1 和USART2间的基本连接,USART1信号Tx,Rx必须使用RS232转换器连接到DB9连接器,USART2也同样的方式连接。而且,两个DB9连接器(STM3210B-EVAL板上的CN6和CN5)之间也通过一个交叉的母对母的RS232线连接起来。

©2007 MXCHIP Corporation. All rights reserved.

www.mxchip.com 021-52655026/025

Figure 3. STM32F10xxx USART-USART interface

提供的固件包含有USART驱动,他通过一系列函数来支持所有的USART通讯。也提供了一个使用了大部分功能的示例。

首先,DMA用来从预定义的缓冲区传输数据到USART2发送数据寄存器。然后数据发送到USART1。USART1接收到的数据也是通过DMA传输,并且存储在预定义的接收缓冲区中。然后比较发送的数据,并把比较结果保存在TransferStatus1变量中。

然后,DMA用来从预定义的缓冲区传输数据到USART1发送数据寄存器。然后数据发送到USART2。USART2接收到的数据也是通过DMA传输,并且存储在预定义的接收缓冲区中。然后比较发送的数据,并把比较结果保存在TransferStatus2变量中。

参见固件库中的USART示例五,可以从ST官方网站下载。

5.4 总结

使用中断的通讯可以进一步减少代码密度和执行时间,而且使得传输和接收数据更加容易。

ai14349

6 USART-USART使用DMA,标志位和中断通

讯

6.1 概述

这一节介绍了USART-USART间如何使用DMA, flags和中断构建基本通讯

6.2 硬件描述

下图展示了USART1 和USART2间的基本连接,USART1信号(Tx,Rx)必须使用RS232转换器连接到DB9连接器,USART2也同样的方式连接。而且,两个DB9连接器(STM3210B-EVAL板上的CN6和CN5)之间也通过一个交叉的母对母的RS232线连接起来。

USART1_TX
USART1_RX
USART2_TX
USART

Figure 3. STM32F10xxx USART-USART interface

6.3 **固件描述**

提供的固件包含有USART驱动,该驱动通过一系列函数来支持所有的USART通讯。也提供了一个使用了大部分功能的示例。

首先,DMA用来从一预定义的发送缓冲区传输数据到USART2的发送数据寄存器,然后这些数据

©2007 MXCHIP Corporation. All rights reserved.

STM32F10xxx

发送到USART1。USART1接收到的数据是使用RxNE flags来传输的,并且存储在预定义的接收缓冲区内。然后和发送的数据比较,比较的结果保存在TransferStatus1变量中。

接下来,DMA用来从一预定义的发送缓冲区传输数据到USART1的发送数据寄存器,然后这些数据发送到USART2。USART1接收到的数据是使用接收中断来传输的,并且存储在预定义的接收缓冲区内。然后和发送的数据比较,比较的结果保存在TransferStatus2变量中。

参见STM32F10xxx固件库中的USART示例六,可从ST的官方网站下载。

6.4 总结

在多缓冲区的通讯中,STM32F10xxx USART触发DMA发送/接收请求,这样能够用来数据传输。可以把CPU释放用来完成其他的任务。

7 STM32F10xxx USART 重定向C语言的 printf功能

7.1 概述

这一节介绍如何使用USART的c库函数printf的重定向

7.2 硬件描述

下图展示了STM32F10xxxUSART和PC超级终端之间的典型的互联结构。USART1信号(RX,TX)

©2007 MXCHIP Corporation. All rights reserved.

www.mxchip.com 021-52655026/025

必须使用RS232转换器连接到DB9连接器。然后再用一个交叉的母对母的RS232线将PC串口和DB9连接器相连接。

Figure 7. STM32F10xxx USART and HyperTerminal interface

7.3 **固件描述**

提供的固件包含有USART驱动,该驱动通过一系列函数来支持所有的USART通讯。也提供了一个使用了大部分功能的示例。

在超级终端上使用USARTx实现printf消息输出 ,USARTx可以是USART1 ,USART2和USART3。 使用main.h中的#define USE_USARTx来选择USART的接口。

参见USART示例七,可从ST的官方网站下载。

7.4 总结

STM32F10xxx可以用来实现printf函数的重定向功能。使用者可以在超级终端上显示消息。

8 STM32F10xxx USART同步模式(SPI模式)

8.1 概述

这一节介绍在USART1(同步模式)和SPI1间使用flags构建基本的通讯。

8.2 硬件描述

如下图所示 ,USART1_Tx(PA9)连接到SPI1_MOSI(PA7) ,USART1_Rx(PA10)连接到SPI1_MISO (PA6) , USART1_CK (PA8) 连接到SPI1_SCK(PA5)

Figure 8. STM32F10xxx USART-SPI interface

8.3 **固件描述**

提供的固件包含有USART驱动,该驱动通过一系列函数来支持所有的USART通讯。也提供了一个使用了大部分功能的示例。

首先, USART1从预定义传输缓冲区使用TxE标志发送数据到SPI1。这些数据被SPI1接收存储在

©2007 MXCHIP Corporation. All rights reserved.

www.mxchip.com 02

021-52655026/025

预定义的接受缓冲区内(使用RxNE标志)。然后和发送的数据相比较,将比较的结果放在TransferStatus1变量中。

然后, SPI1从预定义传输缓冲区使用TxE flag发送数据到USART1。这些数据被USART1接收存储在预定义的接受缓冲区内(使用RxNE标志)。和发送的数据相比较,将比较的结果放在TransferStatus2变量中。

参见USART示例八。

8.4 总结

在同步模式下使用它的时钟输出,STM32F10xxx USART可以和SPI接口通讯。USART只能够为主模式(master)。

9 STM32F10xxx USART半双工模式

9.1 概述

这一节介绍了如何在半双工模式下使用标志来在USART1和USART2间构建基本的通讯。

9.2 硬件描述

下图展示了USART1 和USART2间半双工模式的典型连接。USART1_TX(PA9)连接到USART-Tx (PD5),在连接线上接上一个上拉电阻。

©2007 MXCHIP Corporation. All rights reserved. www.mxchip.com 021-52655026/025

提供的固件包含有USART驱动,该驱动通过一系列函数来支持所有的USART通讯。也提供了一个使用了大部分功能的示例。

USART1从预定义发送缓冲区使用TxE标志发送数据到USART2。USART2使用RxNE 标志接收数据并存储在预定义的接受缓冲区。然后和比较发送的数据比较,并把比较的结果存储在TransferStatus1变量中。

接下来,USART2从预定义发送缓冲区使用TxE flag发送数据到USART1。USART2使用RxNE flag接收数据并存储在预定义的接受缓冲区。然后和比较发送的数据比较,并把比较的结果存储在TransferStatus2变量中。

参见USART示例九,可从ST的官方网站下载。

9.4 总结

STM32F10xxx USART能够在半双工模式下通讯。在这种模式下USARTx_Rx引脚没有使用到。

©2007 MXCHIP Corporation. All rights reserved.

www.mxchip.com

021-52655026/025

10 STM32F10xxx USART IrDA模式

示例程序10提供了两个IrDA程序:发送者和接受者。为了运行这个演示程序,需要两块板子:

- ●一块作为IrDA发送者的板子。
- ●一块作为IrDA接收者的板子。

10.1 STM32F10xxx USART IrDA发送模式

10.1.1 概述

该节介绍USART3在IrDA发送模式下如何构建基本通讯。、

10.1.2 硬件描述

下图展示了STM32F10xxx IrDA接口

Figure 10. STM32F10xxx USART IrDA interface

10.1.3 固件描述

提供的固件包含有USART驱动,该驱动通过一系列函数来支持所有的USART通讯。也提供了一个使用了大部分功能的示例。

五个引脚用来选择要发送的字节,每个按键按下在USART3-Tx引脚传输相应的字节

这些字节为:

没有键按下时 0x00

PD12引脚状态变化时 0x01

PE0引脚状态变化时 0x02

PE1 引脚状态变化时 0x03

PD8 引脚状态变化时 0x04

PD14 引脚状态变化时0x05

©2007 MXCHIP Corporation. All rights reserved.

www.mxchip.com C

021-52655026/025

参见USART示例十,可从ST的官方网站下载。

10.1.4 总结

STM32F10xxx USART IrDA模式能够发送数据的最大波特率为115200,这与标准的IrDA相一致。 USART也支持IrDA低功耗模式。

10.2 STM32F10xxx USART IrDA接收模式

10.2.1 概述

该节描述了USART3在IrDA接收模式下如何构建基本的通讯。

10.2.2 硬件描述

下图为STM32F10xxx IrDA接口

Figure 11. STM32F10xxx USART IrDA interface

10.2.3 固件描述

提供的固件包含有USART驱动,该驱动通过一系列函数来支持所有的USART通讯。也提供了一个使用了大部分功能的示例。

USART等待一个字节,通过4个LED的翻转来显示接收到的是哪个字节

接收0x04 连接到PC6的LED点亮

接收0x05 连接到PC7的LED点亮

接收0x03 连接到PC8的LED点亮

接收0x02 连接到PC9的LED点亮

接收0x01 连接到PC6, PC7, PC8, PC9的LED点亮

参见USART示例10,可从ST的官方网站下载。

10.3 总结

STM32F10xxx USART IrDA模式能够接收数据的最大波特率为115200,这与标准的IrDA相一致。

©2007 MXCHIP Corporation. All rights reserved.

www.mxchip.com 021-52655026/025

USART也支持IrDA低功耗模式。

11 STM32F10xxx USART多处理器通讯

11.1 概述

该节介绍了如何在多处理器模式下使用USART。

11.2 硬件描述

下图展示了STM32F10xxxUSART1和USART2之间的典型的互联结构。USART1信号(RX,TX)必须使用RS232转换器连接到DB9连接器,USART2也必须进行同样的连接。然后,再用一个交叉的母对母的RS232线将这两个DB9连接器(STM3210B-EVAL板上的CN6和CN5)连接。

Figure 12. STM32F10xxx USART-USART interface

©2007 MXCHIP Corporation. All rights reserved.

提供的固件包含有USART驱动,该驱动通过一系列函数来支持所有的USART通讯。也提供了一个使用了大部分功能的示例。

USART1和USART2的地址设置为0X1 ,0x2。USART1持续发送0x33字符到USART2 ,当USART2 接收到0x33时 ,翻转连接到PC6的LED

当一个下降沿作用在EXTI Line9(PB9)时,产生了一个中断,在EXTI9_5_IRQ处理程序中,USART2进入静止模式(mute mode)并且保存这个模式(无LED翻转)直到EXTI line0(PA0)接收到一个上升沿。在这个中断处理程序中,USART1发送地址标志符0x102来唤醒USART2,然后LED灯重新开始翻转。

可参见USART示例11。

11.4 总结

在多处理器配置下,通常希望仅有想要的信息容器才能够积极的接收完整的信息内容,这样减少了多余的USART服务(用于未被寻址的接收器)。

12 STM32F10xxx USART 智能卡模式

12.1 概述

这一节介绍了如何使用USART的智能卡模式。这个示例仅给出了读取ATR (answer to reset) & copy;2007 MXCHIP Corporation. All rights reserved. www.mxchip.com 021-52655026/025

并将其解码到一个预定义的缓冲区的可能性。

12.2 硬件描述

下图展示了STM32F10xxx和一智能卡典型的连接,支持ISO 7816-3 面向字符协议(T=0)

提供的固件包含有USART驱动,该驱动通过一系列函数来支持所有的USART通讯。也提供了一个使用了大部分功能的示例。

首先,程序等待智能卡的插入,如何通过EXTI Line中断检测到智能卡,通过Reset引脚发送复位信号到智能卡上。智能卡收到复位信号后传输一个ATR。一旦接受到了ATR信号,将它解码并存储在特殊的结构(SC_A2R),协议类型存储在一个变量中。

然后测试下是否插入的卡的协议兼容 ISO 7816-3 T=0 参见USART示例12,可从ST的官方网站下载。

13 修订记录

表1 修订记录

日期	修订	改变
2007-6-14	1	初次发布

14 版权声明:

MXCHIP Corporation拥有对该中文版文档的所有权和使用权

意法半导体(ST)拥有对英文原版文档的所有权和使用权

本文档上的信息受版权保护。 除非经特别许可,否则未事先经过MXCHIP Corporation书面许可,不得以任何方式或形式来修改、分发或复制本文档的任何部分。