# Lagrange Polynomials

Simon Binder, Mihail Prudnikov

16 July 2024

## Definitions 1

#### Basis

let V be a vectorspace above a field K and  $v_1 \dots v_n \in V$   $\{v_1 \dots v_n\}$  are a Basis of V iff  $\forall v \in V : v = \sum_{i=1}^n \alpha v_i$  and  $\{v_1 \dots v_n\}$  are linearly indipendant. With  $\forall i \in 1 \dots n : \alpha_i \in K$ 

### lagrange poylnomials

let  $\{x_0 \dots x_n\}$  be a set of values with  $x_i \neq x_j$  if  $i \neq j$ . For this set of values we can define lagrange polynomials:  $\{\ell_0(x) \dots \ell_n(x)\}$  with  $\ell_j(x) = \prod_{\substack{i=0 \ i \neq j}}^n \frac{x-x_i}{x_j-x_i}$ 

# Definitions 2

#### Dimension

the cardinality of a basis. The maximal cardinality of a set, of vectors, that can be linearly indipendant.

## $P_n$

 $P_n$  is a vectorspace of polynomials defined as  $P_n = \{p \in R[X] : deg(p) \le n\}$  with  $n \in \mathbb{N}_0$  where R[X] is the ring of polynomials

### theorem 1

$$\ell_i(x_i) = \delta_{ij}$$

#### Proof.

let  $x_i \in \{x_0 \dots x_n\}$  and  $j \neq i$  then we conclde:

$$\ell_j(x_i) = \prod_{\substack{k=0 \ k \neq j}}^n \frac{x_i - x_k}{x_j - x_k} = \prod_{\substack{k=0 \ k \neq j}}^{i-1} \frac{x_i - x_k}{x_j - x_k} \cdot 0 \cdot \prod_{\substack{k=i+1 \ k \neq j}}^n \frac{x_i - x_k}{x_j - x_k} = 0$$

$$\ell_j(x_j) = \prod_{\substack{k=0\\k\neq j}}^n \frac{x_j - x_k}{x_j - x_k} = \prod_{\substack{k=0\\k\neq j}}^n 1 = 1$$



#### theorem 2

monoms from degree 0 to n make up the basis of the vectorspace of Polynomials of degree  $x \le n$ , also called  $P_n$ , with  $n \in \mathbb{N}_0$ 

#### Proof.

Because monoms have different degrees, and hence can't cancel eachother out. Therefore:

$$0 = \sum_{i=0}^{n} \alpha_i x^i \Leftrightarrow \alpha_i = 0 \ i \in 0 \dots n$$

using monoms we can also construct any polynomial up to the degree of n becuase

$$\forall p \in P_n : p = \sum_{i=0}^n \alpha_i x^i$$

because of how polynomials are definied. Hence the monoms form a basis of  $P_n$ 

because we require n+1 monoms we can say, that  $dim(P_n) = n+1$ 



### Theorem

for the set of values  $\{x_0,\dots x_n\}$  the according lagrange polynomials  $\{\ell_0,\dots \ell_n\}$  will be linearly indipendant in  $P_n$ 

## Proof.

• proof that  $\ell_j \in P_n$ :

$$\ell_j = \prod_{\substack{k=0 \\ k \neq j}}^n \frac{x - x_k}{x_j - x_k} \text{ hence the polynomial is defined by some constant } \prod_{\substack{k=0 \\ k \neq j}}^n \frac{1}{x_j - x_k}$$

and n linear factors  $(x-x_k)$  each multiplication of a linear factor with another raises the degree by one  $\Rightarrow deg(\ell_j(x)) = n \Rightarrow \ell_j \in P_n$ 

• proof linear indipendance: lets assume  $\{\ell_0, \dots \ell_n\}$  are linearly dipendant. and use the  $\delta_{ij}$  propertly of  $\ell_j$ 

$$\exists j \in \{1,\ldots,n\} : \ell_j(x) = \sum_{\substack{i=0 \ i \neq j}}^n \alpha_i \ell_i(x) \Rightarrow \ell_j(x_j) = \sum_{\substack{i=0 \ i \neq j}}^n \alpha_i \ell_i(x_j)$$

$$\Rightarrow 1 = \ell_j(x_j) = \sum_{\substack{i=0\\i\neq j}}^n \alpha_i \underbrace{\ell_i(x_j)}_{=0} = 0 \, 4$$

 $\Rightarrow$  lagrange polynomials are linearly indepandant



## Theorem

Let V be a vectorspace,  $\#\{v_1,\ldots,v_n\}=dim(V)\ \{v_1,\ldots,v_n\}\subset V$  and  $\{v_1,\ldots,v_n\}$  are linearly indipendant, then  $\{v_1,\ldots,v_n\}$  is a basis von V

# Proof.



### Theorem

Lagrange polynomials construct a basis of  $P_n$  lagrange polynomials  $\{\ell_0,\ldots,\ell_n\}$  construct a basis of  $P_n$  for a  $n\in\mathbb{N}_0$ :  $n<\infty$ 

### Proof.

we know that  $\#\{\ell_0,\ldots,\ell_n\}=n+1=\dim(P_n)$ . The Lagrange polynomials are linearly indipendant and  $\{\ell_0,\ldots,\ell_n\}\subset P_n$  and according to one of our previous theorems  $\{\ell_0,\ldots,\ell_n\}$  is a basis of  $P_n$ 

