Sampling and Sampling Distributions

Statistics

Descriptive statistics

Collecting, presenting, and describing data

Inferential statistics

 Drawing conclusions and/or making decisions concerning a population based only on sample data

Populations and Samples

A Population is the set of all items or individuals of interest

Examples:	All likely voters in the next election	
	All parts produced today	
	All sales receipts for November	

A Sample is a subset of the population

Examples:	1000 voters selected at random for interview
	A few parts selected for destructive testing
	Random receipts selected for audit

Why Sample?

- Less time consuming than a census
- Less costly to administer than a census
- It is possible to obtain statistical results of a sufficiently high precision based on samples.

Simple Random Samples

- Every object in the population has an equal chance of being selected
- Objects are selected independently
- Samples can be obtained from a table of random numbers or computer random number generators

 A simple random sample is the ideal against which other sample methods are compared

Inferential Statistics

 Making statements about a population by examining sample results

Inferential Statistics

Drawing conclusions and/or making decisions concerning a population based on sample results.

Estimation

 e.g., Estimate the population mean weight using the sample mean weight

Hypothesis Testing

 e.g., Use sample evidence to test the claim that the population mean weight is 120 pounds

Sampling Distributions

 A sampling distribution is a distribution of all of the possible values of a statistic for a given size sample selected from a population

Sampling Distributions

Sampling
Distribution of
Sample
Mean

Sampling
Distribution of
Sample
Proportion

- Assume there is a population ...
- Population size N=4
- Random variable, X, is age of individuals
- Values of X:

18, 20, 22, 24 (years)

(continued)

Summary Measures for the Population Distribution:

$$\mu = \frac{\sum_{i} X_{i}}{N}$$

$$= \frac{18 + 20 + 22 + 24}{4} = 21$$

$$\sigma = \sqrt{\frac{\sum (X_i - \mu)^2}{N}} = 2.236$$

(continued)

Now consider all possible samples of size n = 2

1 st	2 nd Observation			ı
Obs	18	20	22	24
18	18,18	18,20	18,22	18,24
20	20,18	20,20	20,22	20,24
22	22,18	22,20	22,22	22,24
24	24,18	24,20	24,22	24,24

16 possible samples (sampling with replacement)

(continued)

Sampling Distribution of All Sample Means

16 Sample Means

2nd Observation Obs

Sample Means Distribution

(continued)

Summary Measures of this Sampling Distribution:

$$E(\overline{X}) = \frac{\sum \overline{X}_{i}}{N} = \frac{18 + 19 + 21 + [] + 24}{16} = 21 = \mu$$

$$\begin{split} \sigma_{\overline{x}} &= \sqrt{\frac{\sum (\overline{X}_i - \mu)^2}{N}} \\ &= \sqrt{\frac{(18 - 21)^2 + (19 - 21)^2 + [] + (24 - 21)^2}{16}} = 1.58 \end{split}$$

Comparing the Population with its Sampling Distribution

Population N = 4 u = 21 $\sigma = 2.236$

Sample Means Distribution n = 2

$$\mu_{\overline{X}} = 21 \quad \sigma_{\overline{X}} = 1.58$$

Expected Value of Sample Mean

- Let X₁, X₂, . . . X_n represent a random sample from a population
- The sample mean value of these observations is defined as

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_{i}$$

Standard Error of the Mean

- Different samples of the same size from the same population will yield different sample means
- A measure of the variability in the mean from sample to sample is given by the Standard Error of the Mean:

$$\sigma_{\overline{X}} = \frac{\sigma}{\sqrt{n}}$$

 Note that the standard error of the mean decreases as the sample size increases

If the Population is Normal

 If a population is normal with mean μ and standard deviation σ, the sampling distribution of X is also normally distributed with

$$\mu_{\overline{X}} = \mu$$
 and $\sigma_{\overline{X}} = \frac{\sigma}{\sqrt{n}}$

Z-value for Sampling Distribution of the Mean

• Z-value for the sampling distribution of $\overline{\chi}$:

$$Z = \frac{(\overline{X} - \mu)}{\sigma_{\overline{X}}} = \frac{(\overline{X} - \mu)}{\frac{\sigma}{\sqrt{n}}}$$

where: X = sample mean

 μ = population mean

 σ = population standard deviation

n = sample size

Sampling Distribution Properties

$$\mu_{\overline{x}} = \mu$$

(i.e. X is unbiased)

Sampling Distribution Properties

(continued)

For sampling with replacement:

If the Population is not Normal

- We can apply the Central Limit Theorem:
 - Even if the population is not normal,
 - ...sample means from the population will be approximately normal as long as the sample size is large enough.

Properties of the sampling distribution:

$$\mu_{\bar{x}} = \mu$$
 and $\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}}$

Central Limit Theorem

As the sample size gets large enough...

If the Population is not Normal

(continued)

Sampling distribution properties:

Central Tendency

$$\mu_{\bar{x}} = \mu$$

$$\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}}$$

How Large is Large Enough?

- For most distributions, n > 25 will give a sampling distribution that is nearly normal
- For normal population distributions, the sampling distribution of the mean is always normally distributed

Example

- Suppose a population has mean $\mu = 8$ and standard deviation $\sigma = 3$. Suppose a random sample of size n = 36 is selected.
- What is the probability that the sample mean is between 7.8 and 8.2?

Sampling Distributions of Sample Proportions

P = the proportion of the population having some characteristic

Sample proportion (p̂) provides an estimate of P:

$$\hat{P} = \frac{X}{n} = \frac{\text{number of items in the sample having the characteristic of interest}}{\text{sample size}}$$

- $0 \le \hat{p} \le 1$
- \hat{p} has a binomial distribution, but can be approximated by a normal distribution when nP(1 P) > 9

Sampling Distribution of P

Normal approximation:

Properties:

$$E(\hat{P}) = p$$
 and $\sigma_{\hat{P}}^2 = Var\left(\frac{X}{n}\right) = \frac{P(1-P)}{n}$

(where P = population proportion)

Z-Value for Proportions

Standardize P to a Z value with the formula:

$$Z = \frac{\hat{P} - P}{\sigma_{\hat{P}}} = \frac{\hat{P} - P}{\sqrt{\frac{P(1 - P)}{n}}}$$

Example

• If the true proportion of voters who support Proposition A is P = .4, what is the probability that a sample of size 200 yields a sample proportion between .40 and .45?

Point estimate and confidence interval estimate

Definitions

- An estimator of a population parameter is
 - a random variable that depends on sample information . . .
 - whose value provides an approximation to this unknown parameter
- A specific value of that random variable is called an estimate

Point and Interval Estimates

- A point estimate is a single number,
- a confidence interval provides additional information about variability

Width of confidence interval

Point Estimates

We can esting Population Para	with a Sample Statistic (a Point Estimate)	
Mean	μ	X
Proportion	Р	ĝ

Confidence Intervals

- How much uncertainty is associated with a point estimate of a population parameter?
- An interval estimate provides more information about a population characteristic than does a point estimate
- Such interval estimates are called confidence intervals

Confidence Interval Estimate

- An interval gives a range of values:
 - Takes into consideration variation in sample statistics from sample to sample
 - Based on observation from 1 sample
 - Gives information about closeness to unknown population parameters
 - Stated in terms of level of confidence
 - Can never be 100% confident

Confidence Interval and Confidence Level

- If P(a < θ < b) = 1 α then the interval from a to b is called a 100(1 α)% confidence interval of θ.
- The quantity (1 α) is called the confidence level of the interval (α between 0 and 1)
 - In repeated samples of the population, the true value of the parameter θ would be contained in 100(1 α)% of intervals calculated this way.
 - The confidence interval calculated in this manner is written as a $< \theta <$ b with 100(1 α)% confidence

Estimation Process

Confidence Level, $(1-\alpha)$

(continued)

- Suppose confidence level = 95%
- Also written $(1 \alpha) = 0.95$
- A relative frequency interpretation:
 - From repeated samples, 95% of all the confidence intervals that can be constructed will contain the unknown true parameter
- A specific interval either will contain or will not contain the true parameter
 - No probability involved in a specific interval

General Formula

 The general formula for all confidence intervals is:

Point Estimate ± (Reliability Factor)(Standard Error)

 The value of the reliability factor depends on the desired level of confidence

Confidence Intervals

Confidence Interval for μ (σ² Known)

Assumptions

$$Z = \frac{(\overline{X} - \mu)}{\sigma_{\overline{X}}} = \frac{(\overline{X} - \mu)}{\sigma_{\overline{X}}}$$

- Population variance σ² is known
- Population is normally distributed
- If population is not normal, use large sample
- Confidence interval estimate:

$$\overline{x} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}} < \mu < \overline{x} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

(where $z_{\alpha/2}$ is the normal distribution value for a probability of $\alpha/2$ in each tail)

Margin of Error

The confidence interval,

$$\overline{x} - z_{\alpha/2} \, \frac{\sigma}{\sqrt{n}} \; < \; \mu \; < \; \overline{x} + z_{\alpha/2} \, \frac{\sigma}{\sqrt{n}}$$

Can also be written as \$\overline{\chi} \pm \text{ME}\$
 where ME is called the margin of error

$$ME = z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

 The interval width, w, is equal to twice the margin of error

Reducing the Margin of Error

$$ME = z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

The margin of error can be reduced if

- the population standard deviation can be reduced (σ↓)
- The sample size is increased (n↑)
- The confidence level is decreased, $(1 \alpha) \downarrow$

Finding the Reliability Factor, $z_{\alpha/2}$

Consider a 95% confidence interval:

• Find $z_{.025} = \pm 1.96$ from the standard normal distribution table

Common Levels of Confidence

 Commonly used confidence levels are 90%, 95%, and 99%

Confidence Level	Confidence Coefficient, $1-\alpha$	Z _{α/2} value
80%	.80	1.28
90%	.90	1.645
95%	.95	1.96
98%	.98	2.33
99%	.99	2.58
99.8%	.998	3.08
99.9%	.999	3.27

Intervals

extend from

Intervals and Level of Confidence

Sampling Distribution of the Mean

100(1-α)% of intervals constructed contain μ;

100(α)% do not.

Example

- A sample of 11 circuits from a large normal population has a mean resistance of 2.20 ohms. We know from past testing that the population standard deviation is 0.35 ohms.
- Determine a 95% confidence interval for the true mean resistance of the population.

Example

(continued)

- A sample of 11 circuits from a large normal population has a mean resistance of 2.20 ohms. We know from past testing that the population standard deviation is .35 ohms.
- Solution:

$$\overline{x} \pm z \frac{\sigma}{\sqrt{n}}$$

$$= 2.20 \pm 1.96 \ (.35/\sqrt{11})$$

$$= 2.20 \pm .2068$$

$$1.9932 < \mu < 2.4068$$

Interpretation

- We are 95% confident that the true mean resistance is between 1.9932 and 2.4068 ohms
- Although the true mean may or may not be in this interval, 95% of intervals formed in this manner will contain the true mean

Confidence Intervals

Student's t Distribution

- Consider a random sample of n observations
 - with mean x̄ and standard deviation s
 - from a normally distributed population with mean µ
- Then the variable

$$t = \frac{x - \mu}{s / \sqrt{n}}$$

follows the Student's t distribution with (n - 1) degrees of freedom

Confidence Interval for μ (σ² Unknown)

- If the population standard deviation σ is unknown, we can substitute the sample standard deviation, s
- This introduces extra uncertainty, since s is variable from sample to sample
- So we use the t distribution instead of the normal distribution

Confidence Interval for μ (σ Unknown)

(continued)

- Assumptions
 - Population standard deviation is unknown
 - Population is normally distributed
 - If population is not normal, use large sample
- Use Student's t Distribution
- Confidence Interval Estimate:

$$\overline{x} - t_{n\text{-}1,\alpha/2} \, \frac{S}{\sqrt{n}} \; < \; \mu \; < \; \overline{x} + t_{n\text{-}1,\alpha/2} \, \frac{S}{\sqrt{n}}$$

where $t_{n-1,\alpha/2}$ is the critical value of the t distribution with n-1 d.f. and an area of $\alpha/2$ in each tail:

$$P(t_{n-1} > t_{n-1,\alpha/2}) = \alpha/2$$

Student's t Distribution

- The t is a family of distributions
- The t value depends on degrees of freedom (d.f.)
 - Number of observations that are free to vary after sample mean has been calculated

$$d.f. = n - 1$$

Student's t Distribution

Note: $t \rightarrow Z$ as n increases

Student's t Table

	Upper Tail Area			
df	.10	.05	.025	
1	3.078	6.314	12.706	
2	1.886	2.920	4.303	
3	1.638	2.353	3.182	

The body of the table contains t values, not probabilities

Let:
$$n = 3$$

 $df = n - 1 = 2$
 $\alpha = .10$
 $\alpha/2 = .05$

Confidence Intervals

Confidence Intervals for the Population Proportion, p

 An interval estimate for the population proportion (P) can be calculated by adding an allowance for uncertainty to the sample proportion (p̂)

Confidence Intervals for the Population Proportion, p

(continued)

 Recall that the distribution of the sample proportion is approximately normal if the sample size is large, with standard deviation

$$\sigma_P = \sqrt{\frac{P(1-P)}{n}}$$

• We will estimate this with sample data:

$$\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

Confidence Interval Endpoints

 Upper and lower confidence limits for the population proportion are calculated with the formula

$$\hat{p} - z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \ < \ P \ < \ \hat{p} + z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

- where
 - z_{α/2} is the standard normal value for the level of confidence desired
 - \hat{p} is the sample proportion
 - n is the sample size

Example

- A random sample of 100 people shows that 25 are left-handed.
- Form a 95% confidence interval for the true proportion of left-handers

