Developers Guide to the NASA Libraries

Ricky Butler

Assessment Technology Branch Mail Stop 130 NASA Langley Research Center Hampton, VA 23681-2199 e-mail: r.w.butler@larc.nasa.gov.

September 28, 2009

DRAFT

1 Naming Conventions

A uniform naming convention can greatly aid the prover in remembering the names of lemmas and theorems.

1.1 Functions: Definition and Property

Lemmas should begin with the function name. The key defining property should be labeled _def. Although this may be just a duplication of the body, it is convenient to have a lemma as well. If there is a very common useful rewrite label it _rew. If there is a common alternate or simpler version label it _lem.

_def	definitional
_lem	common simplification of alternate def
_rew	common useful rewrite:

Typical abbreviations include:

abbrev	meaning
_0	value of function at 0
_eq_0	function equals 0: f(x) = 0 IFF
_eq_args	f(a,a) =
_neg	value of function for negated argument f(-x)
_plus	value of function for sum of arguments f(x+y)
_plus1	value of function for f(x+1)
_minus	value of function for difference of arguments f(x-y)
_disj	disjoint
_dist	distributive
_comm	commutative: $f(a,b) = f(b,a)$
_assoc	associative: $f(a,f(b,c))) = f(f(a,b),c)$
_sym	symmetry: $f(-a) = f(a)$
_incr	$f(a) \le f(b)$ IFF $a \le b$
_decr	$f(a) >= f(b)$ IFF $a \le b$
_strict_incr	f(a) < f(b) IFF $a < b$
_strict_decr	
_fix_pt	value of the defined function is a fixed point
_card	cardinality value
_lb	lower bound
_ub	upper bound
_lub	least upper bound
_glb	greatest lower bound

1.2 Inequalities

_gt_0	function gt 0: IMPLIES $f(x) > 0$
_ge_0	function gt 0: IMPLIES $f(x) >= 0$
_lt_0	function lt 0: IMPLIES $f(x) < 0$
_le_0	function lt 0: IMPLIES f(x) <= 0

1.3 Types and Constants

nz_	non zero
zero	a constant of the type which is the addition identity

_refl	reflexive: R(a,a)
_trans	transitive: $R(x, y) & R(y, z) \Rightarrow R(x, z)$
_sym	symmetry property: f(-a) = f(a)

1.4 Speculative

:

_diff	$f(x) - f(y) = \dots$
_diff_lt	$f(x) - f(y) < \dots$
_diff_ge	$f(x) - f(y) >= \dots$
_scal	f(a*x) = a * f(x)
_pos	$IMPLIES f(x) > 0$

2 Examples

```
sqrt_def : LEMMA sqrt(nnx) * sqrt(nnx) = nnx
```

 sq_rew : LEMMA a*a = sq(a)

 sin_0 : LEMMA sin(0) = 0

 cos_plus : LEMMA cos(a + b) = cos(a)*cos(b) - sin(a)*sin(b)

sin_eq_0 : LEMMA sin(a) = 0 IFF EXISTS (i: int): a = i * pi

 abs_diff : LEMMA $abs(x) - abs(y) \le abs(x - y)$

```
sigma_eq_arg : LEMMA sigma(low, low, F) = F(low)
```

 sq_pos : LEMMA sq(a) >= 0

sqrt_newton_ub(a,n) : posreal = sqrt_newton(a,n)

3 Theory Names

One theory per file and exactly the same name as the file.