

R - projekt - prezentacja

2018-06-03

Kurs Junior Data Scientist Zaoczne 1 (JDSZ1)

Raczki

Bartosz, Filip, Monika Kucal, Piotr

- 1. Aplikacja R Shiny
- 2. Regresja liniowa
- 3. Regresja logistyczna

1. Aplikacja R Shiny

Aplikacja R Shiny

- Sondaże wyborcze
- Text mining
- Tweet'y o partii

2. Regresja liniowa

Regresja liniowa

- Zbiór danych z Kaggle: Weather in Szeged 2006-2016
- Dane 96 453 obserwacji
- Jaka jest zależność temperatury od pozostałych parametrów pogodowych?

Zmienna	Przykładowa wartość	Zmienna	Przykładowa wartość
Formatted date	2006-04-01 00:00:00.000 +0200	Wind Speed [km/h]	14.1197
Summary	Partly Cloudy	Wind Bearing [°]	251.0
Precip type	rain	Visibility [km]	15.83
Temperature [ºC]	9.47	Loud Cover	0
Apparent temperature [°C]	7.39	Pressure [millibars]	1015.13
Humidity	0.89	Daily Summary	Partly cloudy throughout the day.

Regresja liniowa - Pogoda w Szeged (BG)

Model liniowy 1:

- Założenie mediany dla NA

Model liniowy 2:

- Założenie mediany dla NA

Model liniowy 3:

- Założenie mediany dla NA
- Uwzględnienie miesiąca
- Dane liczbowe bez odczuwalnej temperatury
- Iteracyjne usuwanie nieistotnych zmiennych niezależnych

T = 34.76 - 31.00h R^2 = 0.40 RMSE = 7.36 at = 33.24 - 33.19h R^2 = 0.36 RMSE = 8.49 T = 35.34 - 0.47d(mth) -32.95h - 0.17ws R^2 = 0.46 RMSE = 7.03

Regresja liniowa - Pogoda w Szeged (MK)

Model liniowy 1.

Wpływ wilgotności powietrza na temperaturę rzeczywistą Temp = 34.8 - 31,1 humidity

 $R^2 = 40\%$ RMSE = 7.4

Model liniowy 2.

Wpływ wilgotności powietrza na temperaturę odczuwalną App temp = 35.3 - 33.1 humidity R² = 36% RMSE = 8.6

Macierz korelacji

Model liniowy 3.

Wpływ wielu parametrów pogodowych na temperaturę rzeczywistą w zależności od miesiąca w roku

Temp = 199 - 19.6 humidity

- 0.006 wind speed 0.002 wind bearing
- 0.11 visibility 0.17 pressure
- + 0.81 monthly avg temp

 $R^2 = 82\%$ RMSE = 4.1

Prognoza pogody na 20.05.2018

Temp = 199 - 19.6 * 0.40

- 0.006 * 10 - 0.002 * 28

- 0.11 * 50 - 0.17 * 1010

+ 0.81 * 16.87 = **19.56**

Rzeczywista temperatura 20.05.2018

Temp = **21**

Regresja liniowa - Pogoda w Szeged (PS)

- Eksploracja danych (rozkład, gęstość, skośność itd.)
- Normalizacja cech o wysokiej skośności (abs(density)>2)
- Zastąpienie podejrzanych wartości oraz nulli (średnia, dla precip_type ratio)
- Usuni

 çcie Loud Cover (zawierało same 0)
- Sprawdzenie macierzy korelacji (jako wynik usunięcie App. Temp.)
- Usunięcie danych godzinowych z daty
- Pokubełkowanie zmiennych kategorycznych względem temperatury (summary-5, daily summary-7)
- One-hot encoding dla PrecipType
- Podział na zbiór testowy/trenujący
- Znalezienie optymalnej wartości ilości iteracji dla XGBoosta (parametr nrounds -> 1000)
- Uruchomienie XGBoosta dla przykładowych wartości (RMSE około 3,6, R_squared około 75%)
- Optymalizacja hiperparametrów dla XGBoost (RMSE około 1,51, R_squared około 98%)

Regresja liniowa - porównanie modeli

MK

4,1 / 82%

Model

RMSE / R²

BG

7,0 / 46%

	T ~ d(month) + h + ws + p	T ~ h + ws + wb + v + p + monthly avg temp.	T ~ d(day) + pt + h + ws + v + wb + p + s_bin + ds_bin
Założenia	 eksploracja danych NA → mediana outliers → no change usunięcie odczuwalnej temperatury (silna korelacja) usunięcie danych tekstowych 	 statystyki zmiennych wykresy rozrzutu porównanie rozkładów zmiennych outliers → mediana macierz korelacji - usunięcie temperatury odczuwalnej weryfikacja istotności parametrów modelu (p-value < 0,05) 	 NA → średnia usunięcie zmiennych silnie skorelowanych normalizacja dla dużej skośności grupowanie dla zmiennych kategorycznych (binning) one-hot encoding optymalizacja hiperparametrów (xgboost) optymalizacja liczby iteracji (xgboost) użycie walidacji krzyżowej zmiana daty na przedział dzienny
	train/test: 80/20 (seed 789)	train/test: 80/20 (seed 789)	train/test: 80/20 (seed 789)

PS

1,5 / 98%

d - Time, s - Summary, pt - Precip Type, **T** - Temperature, at - Apparent Temperature, h - humidity, ws - wind speed, wb - wind bearing, v - visibility, lc - loud cover, p - pressure, ds - daily summary

3. Regresja logistyczna

Regresja logistyczna

- Zbiór danych z Kaggle: <u>The Ultimate Halloween Candy Power Ranking</u>
- Dane 85 obserwacji
- Czy cukierek jest czekoladowy?

Zmienna	Przykładowa wartość	Zmienna	Przykładowa wartość
competitorname	100 Grand	hard	0
chocolate	1	bar	1
fruity	0	pluribus	0
caramel	1	sugarpercent	.73199999
peanutyalmondy	0	pricepercent	.8600001
nougat	0	winpercent	66.971725
crispedricewafer	1		

Regresja logistyczna - Cukierki czekoladowe (BG)

<academy/>

Model 1:

Obecność czekolady w zależności od zawartości cukru, ceny i popularności ch ~ sug_prc + prc_prc +win_prc

	TF		
PRED	10	1	0
	0	6	1
	0	1	

Model 2:

Obecność czekolady w zależności od kształtu, zawartości cukru, ceny i popularności ch ~ crw + hd + bar + plb + sg_prc + prc_prc + win_prc

	TRUE		
PRED	11	0	0
	1	5	1
	0	1	

Regresja logistyczna - Cukierki czekoladowe (PS)

info Share (academy/)

- Eksploracja danych
- Sprawdzenie ważności cech i usunięcie zmiennych mało istotnych (cumulative p-value > 80%)
- Przeskalowanie winpercent na liczbę
- Podział na zbiór testowy/trenujący
- Znalezienie optymalnej wartości ilości iteracji dla XGBoosta (parametr nrounds -> 10)
- Uruchomienie XGBoosta dla przykładowych wartości (Accuracy około 82%)
- Optymalizacja hiperparametrów dla XGBoost (Accuracy około 94%)

Metryki dla ostatecznego modelu:

- Accuracy 94%
- AUC 93%
- Precision 92%
- Recall 100%

Regresja logistyczna - Cukierki czekoladowe (MK)

Jak rozpoznać cukierki czekoladowe? Model logistyczny: choco ~ fruit + price

Cukierki czekoladowe vs. cukierki owocowe

- Większość cukierków czekoladowych nie jest cukierkami owocowymi.
- Istnieją cukierku nieowocowe, które nie są czekoladowe.

Liczba cukierków (próba ucząca)		Owocowe	
		0	1
Czakaladowa	0	8	29
Czekoladowe	1	30	1

Cukierki czekoladowe vs. cena

Cukierki czekoladowe są droższe

Cukierki czekoladowe (próba ucząca)	Średnia cena
0	0.32
1	0.60

Weryfikacja modelu logistycznego - próba ucząca Confusion matrix

	Liczba cukierków (próba testowa) dla prob > 0.8		Czekoladowe Rzeczywistość	
			0	1
	Czekoladowe Predykcja	0	11	0
		1	0	6

Precision = 6/6 = 100% Recall = 6/6 = 100% F1 Score = 100% **Accuracy = 17/17 = 100%**

Krzywa ROC

(xgboost)

ch ~ bar + win prc + ft + hd

- usunięcie zmiennych nieistotnych

- walidacja modelu na próbie testowej

optymalizacja liczby iteracji (xgboost)

przy założenia prawdopodobieństwa

(skumulowane p-value > 80%)

cukierka czekoladowego > 0.5

train/test: 80/20 (seed 789)

94% / 93% / 92% / 100%

cn - competitorname, ch - chocolate, ft - fruity, cr - caramel, pna - peanutyalmondy, ngt - nougat, crw - crispedricewafer, hd - hard, bar - bar, plb - pluribus, sq_prc - sugarpercent, prc_prc -

optymalizacja hiperparametrów

	Regresja	iogistyczna - porownai	ne moden
Model	BG	PS	MK

ch ~ sg_prc + prc_prc + win prc

train/test: 80/20 (seed 789)

94% / 97% / 87% / 100%

> 0.67

Założenia

Accuracy /

pricepercent, win prc - winpercent

AUC / Precision / Recall

- założenie cukierka czekoladowego

 $ch \sim fr + prc prc$

(p-value > 0.05)

czekoladowego > 0.8

train/test: 80/20 (seed 789)

100% / 100% / 100% / 100%

krvterium AIC

- iteracyjne usuwanie zmiennych nieistotnych

- wybór najlepszego modelu na podstawie

- walidacja modelu na próbie testowej przy

założenia prawdopodobieństwa cukierka

Dziękujemy!

Pytania? Slack / email