Concours National Commun - Session 2002

Corrigé de l'épreuve de mathématiques I Filière MP

Quelques propriétés des fonctions presque-périodiques

Corrigé par M.TARQI

I. VALEUR MOYENNE D'UNE FONCTION

1. Valeur moyenne d'une fonction périodique

(a) Nous avons $\int_{-A}^{A} \cos t dt = [-\sin t]_{-A}^{A} = -2\sin A$, d'où $\lim_{A \to +\infty} \frac{1}{2A} \int_{-A}^{A} \cos t dt = 0$ et donc $\mu(C_1) = 0$.

De même
$$\mu(S_2) = 0$$
 et $\mu(C_0) = \lim_{A \to +\infty} \frac{1}{2A} \int_{-A}^{A} dt = 1$.

(b) En utilisant la relation de Chasles, on obtient, pour tout $n \in \mathbb{N}^*$ l'égalité

$$u_n = \frac{1}{n} \int_0^{n\omega} f(t)dt = \frac{1}{n} \sum_{k=0}^{n-1} \int_{k\omega}^{(k+1)\omega} f(t)dt$$

et par le changement de variable $t = u + k\omega$, on obtient :

$$u_n = \frac{1}{n} \sum_{k=0}^{n-1} \int_0^{\omega} f(u + k\omega) du = \int_0^{\omega} f(u) du,$$

donc pour tout $n \in \mathbb{N}^*$, $u_n = \int_0^{\omega} f(t) du$.

(c) Soit A un réel strictement positif, notons $n=E(\frac{A}{\omega})$, donc $n\omega \leq A < (n+1)\omega$. (E(x) désigne la partie entière de x). D'autre part :

$$\int_{-A}^{A} f(t)dt = \int_{-A}^{-n\omega} f(t)dt + \int_{-n\omega}^{n\omega} f(t)dt + \int_{n\omega}^{A} f(t)dt$$
$$= \int_{-A}^{-n\omega} f(t)dt + 2n \int_{0}^{\omega} f(t)dt + \int_{n\omega}^{A} f(t)dt$$

f étant continue sur $\mathbb R$ et ω -périodique, donc il est bornée sur $\mathbb R$ et pour tout $t\in\mathbb R$, $|f(t)|\leq M$, avec $M=\sup_{t\in[0,\omega]}|f(t)|$, donc :

$$\left|\frac{1}{2A}\int_{-A}^{A}f(t)-\frac{1}{\omega}\int_{0}^{\omega}f(t)dt\right|=\left|\frac{1}{2A}\int_{-A}^{-n\omega}f(t)dt+\left(\frac{n}{A}-\frac{1}{\omega}\right)\int_{0}^{\omega}f(t)dt+\frac{1}{2A}\int_{n\omega}^{A}f(t)dt\right|.$$

Or

$$\left| \frac{1}{2A} \int_{-A}^{-n\omega} f(t)dt \right| \le \frac{M(A - n\omega)}{2A} \le \frac{M\omega}{2A},$$

et

$$\left| \frac{1}{2A} \int_{n\omega}^{A} f(t)dt \right| \leq \frac{M(A - n\omega)}{2A} \leq \frac{M\omega}{2A},$$

et comme $\lim_{A \to +\infty} \left(\frac{n}{A} - \frac{1}{\omega} \right) = 0$, car $\left| \frac{n\omega - A}{A\omega} \right| \leq \frac{1}{A}$, donc f admet une valeur moyenne et

$$\mu(f) = \lim_{A \to +\infty} \frac{1}{2A} \int_{-A}^{A} f(t)dt = \frac{1}{\omega} \int_{0}^{\omega} f(t)dt.$$

2. Transformations

(a) Soit $E = \{ f \in \mathcal{C}^0(\mathbb{R})/\mu(f) \text{ existe} \}$. Il est clair que la fonction nulle est un élément de E, et si f et g sont dans E, alors pour tout $\lambda \in \mathbb{R}$,

$$\frac{1}{2A}\int_{-A}^{A}(f+\lambda g)(t)dt = \frac{1}{2A}\int_{-A}^{A}f(t)dt + \frac{\lambda}{2A}\int_{-A}^{A}g(t)dt,$$

donc $f + \lambda g$ admet une valeur moyenne, c'est-à-dire $f + \lambda g \in E$ et $\mu(f + \lambda g) = \mu(f) + \lambda \mu(g)$. Donc E est un sous-espace vectoriel de $\mathcal{C}^0(\mathbb{R})$ et l'application μ est une forme linéaire sur E.

(b) Soient $a \in \mathbb{R}$ fixé et A > 0, alors

$$\frac{1}{2A} \int_{-A}^{A} \tau_a f(t) dt = \frac{1}{2A} \int_{-A}^{A} f(t+a) dt = \frac{1}{2A} \int_{-a-A}^{-a+A} f(t) dt$$
$$= \frac{1}{2A} \int_{-a-A}^{-A} f(t) dt + \frac{1}{2A} \int_{-A}^{A} f(t) dt + \frac{1}{2A} \int_{A}^{-a+A} f(t) dt.$$

Mais

$$\left| \frac{1}{2A} \int_{-a-A}^{-A} f(t)dt \right| \le \frac{M|a|}{2A}$$

et

$$\left| \frac{1}{2A} \int_{A}^{-a+A} f(t)dt \right| \le \frac{M|a|}{2A},$$

avec $M = \sup_{t \in \mathbb{R}} |f(t)|$, donc $\tau_a(f)$ admet une valeur moyenne et $\mu(\tau_a(f)) = \mu(f)$.

(c) Soit A > 0, alors pour tout $a \neq 0$, on a :

$$\frac{1}{2A} \int_{A}^{A} f(at)dt = \frac{1}{2aA} \int_{-aA}^{aA} f(t)dt = \frac{1}{2B} \int_{-B}^{B} f(t)dt$$

Avec B=aA, donc si a>0 $\mathcal{N}_a(f)$ admet une valeur moyenne et $\mu(\mathcal{N}_a(f))=\mu(f)$. De même , si a<0

$$\frac{1}{2A} \int_{A}^{A} f(at)dt = \frac{1}{2(-a)A} \int_{aA}^{-aA} f(t)dt = \frac{1}{2B} \int_{-B}^{B} f(t)dt$$

Avec B=-aA, donc dans ce cas aussi $\mathcal{N}_a(f)$ admet une valeur moyenne et $\mu(\mathcal{N}_a(f))=\mu(f)$.

Si a = 0, $\mu(N_0(f)) = \mu(f) = f(0)$.

- (d) Si f est une fonction impaire, alors pour tout A > 0, $\int_{-A}^{A} f(t)dt = 0$ et donc $\mu(f) = 0$.
- (e) Pour une fonction paire, on a, pour tout A>0, $\int_{-A}^A f(t)dt=2\int_0^A f(t)dt$, et par conséquent $\mu(f)=\lim_{A\to +\infty}\frac{1}{A}\int_0^A f(t)dt$.
- 3. Valeur moyenne d'une fonction convergente
 - (a) Soit A > 0, comme g est paire, alors :

$$\int_{-A}^{A} g(t)dt = 2 \int_{0}^{A} \frac{dt}{1+t} dt = \left[\ln(1+t)\right]_{0}^{A} = \ln(1+A),$$

$$\operatorname{donc} \mu(g) = \lim_{A \to \infty} \frac{\ln(1+A)}{A} = 0.$$

(b) Soit $\varepsilon > 0$. Puisque $\lim_{t \to \pm \infty} f(t) = 0$, alors il existe $A_0 > 0$ tel que $\forall A \geq A_0$, $|f(t)| \leq \varepsilon$. Soit maintenant $A \geq A_0$, alors

$$\begin{split} \frac{1}{2A} \left| \int_{-A}^{A} f(t) dt \right| & \leq & \frac{1}{2A} \int_{-A}^{-A_0} |f(t)| dt + \frac{1}{2A} \left| \int_{-A_0}^{A_0} f(t) dt \right| + \frac{1}{2A} \int_{A_0}^{A} |f(t)| dt \\ & \leq & \frac{A - A_0}{A} \varepsilon + \frac{1}{2A} \left| \int_{-A_0}^{A_0} f(t) dt \right| \end{split}$$

Donc $\mu(f)$ existe et vaut 0.

- (c) La fonction g=f-l vérifie la condition de la question précédente, et donc $\mu(g)=\mu(f)-l=0$, c'est-à-dire $\mu(f)=l$.
- (d) On a $f = \varphi + \phi$ avec $\forall t \in \mathbb{R}$, $\varphi(t) = \frac{f(t) + f(-t)}{2}$ et $\varphi(t) = \frac{f(t) f(-t)}{2}$. La fonction φ est paire de limite $\frac{l_- + l_+}{2}$ en $+\infty$ et φ est impaire, donc

$$\mu(f) = \mu(\varphi + \phi) = \frac{l_- + l_+}{2}.$$

4. Valeur moyenne d'une fonction intégrable

Si f est intégrable sur \mathbb{R} , alors $\lim_{A \to +\infty} \int_{-A}^{A} f(t) dt$ existe et finie, et par conséquent $\mu(f)$ existe et $\mu(f) = \lim_{A \to +\infty} \frac{1}{2A} \int_{-A}^{A} f(t) dt = 0$.

- 5. Valeur moyenne et fonctions bornées
 - (a) Notons $f(t) = \sqrt{|t|} \cos t$. La suite $(2n\pi)_{n \in \mathbb{N}^*}$ tend vers $+\infty$ et la suite $(f(2n\pi))_{n \in \mathbb{N}^*}$ tend vers $+\infty$, donc f ne peut pas être bornée sur \mathbb{R} . Soit A > 0,

$$\frac{1}{A} \int_{-A}^{A} f(t)dt = 2 \int_{0}^{A} f(t)dt = \frac{1}{A} [\sqrt{t} \sin t]_{0}^{A} - \frac{1}{A} \int_{0}^{A} \frac{\sin t}{2\sqrt{t}}dt = \frac{\sin A}{\sqrt{A}} - \frac{1}{A} \int_{0}^{A} \frac{\sin t}{2\sqrt{t}}dt$$

On a
$$\lim_{A\to +\infty} \frac{\sin A}{\sqrt{A}}=0$$
, puisque $\left|\frac{\sin A}{\sqrt{A}}\right|\leq \frac{1}{\sqrt{A}}$ et l'inégalité

$$\frac{1}{A} \left| \int_0^A \frac{\sin t}{2\sqrt{t}} dt \right| \le \frac{1}{A} \int_0^A \frac{dt}{2\sqrt{t}} = \frac{1}{\sqrt{A}},$$

montre que $\lim_{A\to +\infty} \frac{1}{A} \int_0^A \frac{\sin t}{2\sqrt{t}} dt = 0$. Donc f admet une valeur moyenne et $\mu(f) = 0$.

(b) Soit n un entier naturel non nul, alors on a :

$$\int_0^{3^{2n}} \chi(t)dt = \sum_{p=0}^{n-1} \int_{3^{2p}}^{3^{2p+1}} \chi(t)dt = \sum_{p=0}^{n-1} (3^{2p+1} - 3^{2p})$$
$$= 2\sum_{p=0}^{n-1} 3^{2p} = \frac{1}{4} (3^{2n} - 1).$$

et donc
$$\lim_{n\to\infty}\frac{1}{3^{2n}}\int_0^{3^{2n}}\chi(t)dt=\frac{1}{4}.$$

De même

$$\int_0^{3^{2n+1}} \chi(t)dt = \int_0^{3^{2n}} \chi(t)dt + \int_{3^{2n}}^{3^{2n+1}} \chi(t)dt$$
$$= \frac{1}{4}(3^{2n} - 1) + (3^{2n+1} - 3^{2n})$$
$$= 3^{2n+1} - \frac{3}{4}3^{2n},$$

et donc $\lim_{n\to\infty}\frac{1}{3^{2n+1}}\int_0^{3^{2n+1}}\chi(t)dt=\frac{3}{4}.$ Donc χ n'a pas de valeur moyenne.

II. UN PRODUIT SCALAIRE

1. Exemples

- (a) Nous avons $C_{\alpha}C_{\beta}=\frac{1}{2}(C_{\alpha-\beta}+C_{\alpha+\beta})$, d'où :
 - Si $\alpha \neq 0$ ou $\beta \neq 0$, alors $(C_{\alpha}|C_{\beta}) = \mu(C_{\alpha}C_{\beta}) = \begin{cases} 0, & \text{si } \alpha \neq \beta \\ \frac{1}{2}, & \text{si } \alpha = \beta \end{cases}$
 - Si $\alpha = \beta = 0$, $(C_{\alpha}|C_{\beta}) = 1$.

(b)
$$(S_{\alpha}|S_{\beta}) = \begin{cases} 0, & \text{si } \alpha \neq \beta \\ \frac{1}{2}, & \text{si } \alpha = \beta \end{cases}$$
 et $(C_{\alpha}|S_{\beta}) = 0$

2. Sommes finies de fonctions périodiques

- (a) Supposons qu'il existe T>0 tel que h(t)=h(t+T) pour tout $t\in\mathbb{R}$, alors en particulier $2=h(0)=h(T)=\cos T+\cos(\pi T)$, donc nécessairement $\cos T=\cos(\pi T)=1$ et par suite il existe des entiers relatifs k et k' tel que $T=2k\pi$ et $\pi T=2k'\pi$, ceci est absurde puisque $\pi\notin\mathbb{Q}$.
- (b) $h = C_1 + C_{\pi}$, donc $h \in \mathcal{F}$.

Puisque $\forall t \in \mathbb{R}, \ \left| 2^{-n} \cos(3^n t) \right| \leq \left(\frac{1}{2} \right)^n$, alors la fonction $f(t) = \sum_{n=1}^{\infty} 2^{-n} \cos(3^n t)$

est bien définie sur $\mathbb R$. Les éléments de $\mathcal F$ sont de classes $\mathcal C^\infty$, en particulier ils sont dérivables sur $\mathbb R$. On va montrer que f n'est pas dérivable en $\frac{\pi}{2}$, ce qui permet de conclure que $f \not\in \mathcal F$. En effet, supposons que f est dérivable en $\frac{\pi}{2}$, alors pour tout $\varepsilon > 0$, il existe $\alpha > 0$ tel que

$$\forall t \in \left] \frac{\pi}{2} - \alpha, \frac{\pi}{2} + \alpha \right[, \quad l - \varepsilon \le \frac{f(t)}{t - \frac{\pi}{2}} \le l + \varepsilon,$$

donc

$$\forall t \in \left] \frac{\pi}{2} - \alpha, \frac{\pi}{2} + \alpha \right[, \quad l - \varepsilon \le \lim_{n \to \infty} \sum_{k=1}^{n} 2^{-k} \frac{\cos(3^k t)}{t - \frac{\pi}{2}} \le l + \varepsilon.$$

Donc il existe un entier naturel n_0 tel que

$$\forall t \in \left] \frac{\pi}{2} - \alpha, \frac{\pi}{2} + \alpha \right[, \forall n \ge n_0, \quad l - \varepsilon \le \sum_{k=1}^n 2^{-k} \frac{\cos(3^k t)}{t - \frac{\pi}{2}} \le l + \varepsilon,$$

et comme $\lim_{t\to \frac{\pi}{2}}\frac{\cos\left(3^kt\right)}{t-\frac{\pi}{2}}=-3^n\sin\left(3^n\frac{\pi}{2}\right)=-3^n$, alors quand t tend vers $\frac{\pi}{2}$, on obtient l'inégalité

$$\forall n \ge n_0, \quad l - \varepsilon \le -\sum_{k=1}^n \left(\frac{3}{2}\right)^k \le l + \varepsilon,$$

inégalité qui montre que la série $\sum_{n\in\mathbb{N}}\left(\frac{3}{2}\right)^n$ est convergente, ce qui est absurde. En conclusion, la fonction $f\not\in\mathcal{F}$

(c) Il est clair que l'application $(f,g) \longmapsto (f|g)$ est une forme bilinéaire symétrique et positive (propriétés de l'intégrale). Soit maintenant $f = \alpha_0 + \sum_{i=1}^p \alpha_i C_{\omega_i} + \sum_{j=1}^q \beta_j S_{\eta_j}$

un élément de $\mathcal F$ tel que $\mu(f^2)=0$, où les $\alpha_i,\,\beta_i$ sont non nuls. Mais

$$\mu(f^2) = \alpha_0^2 + \frac{1}{2} \sum_{i=1}^p \alpha_i^2 + \frac{1}{2} \sum_{j=1}^q \beta_j^2,$$

donc $\alpha_i = \beta_j = 0$ pour tout i et j, donc f est la fonction nulle. D'où le résultat.

3. Continuité

On a pour tout $n \in \mathbb{N}$ et pour tout A > 0,

$$\frac{1}{2A} \int_{-A}^{A} f_n^2(t) dt \le ||f_n||_{\infty}^2,$$

donc

$$\mu(f_n^2) \le \|f_n\|_{\infty}^2,$$

et par conséquent $\lim_{n\to\infty}(f_n|f_n)=\lim_{n\to\infty}\mu(f_n^2)=0.$

En utilisant l'inégalité de Caucyh-Schwarz $|(f_n|g)| \leq \sqrt{(f_n|f_n)}\sqrt{(g|g)}$, en déduit que si $\lim_{n\to\infty}(f_n|f_n)=0$, alors $\lim_{n\to\infty}(f_n|g)=0$.

4. Limites uniformes

(a) Les suites $(f_n)_{n\in\mathbb{N}}$ et $(g_n)_{n\in\mathbb{N}}$ sont bornées dans $(\mathcal{F}, \|.\|_{\infty})$; soit M>0 tel que pour tout $n\in\mathbb{N}$, $\|f_n\|_{\infty}\leq M$ et $\|g_n\|_{\infty}\leq M$.

D'autre part, les deux suites sont de Cauchy dans $(\mathcal{F}, \|.\|_{\infty})$, donc pour tout $\varepsilon > 0$, il existe n_0 tel que pour tout $n, m \ge n_0$, on a :

$$||f_n - f_m||_{\infty} \le \varepsilon \text{ et } ||g_n - g_m||_{\infty} \le \varepsilon$$

Nous avons pour tout $n \in \mathbb{N}$,

$$(f_n|g_n) - (f_m|g_m) = (f_n - f_m|g_n) + (f_m|g_n - g_m)$$

Donc pour tout $n, m \ge n_0$, on a

$$|(f_n|g_n) - (f_m|g_m)| \leq ||f_n - f_m||_{\infty} ||g_n||_{\infty} + ||f_m||_{\infty} ||g_n - g_m||_{\infty}$$

$$\leq 2M\varepsilon.$$

Donc la suite $(f_n|g_n)_{n\in\mathbb{N}}$ est de Cauchy dans $(\mathbb{R},|.|)$, donc elle est convergente et par conséquent $\lim_{n\to\infty}(f_n|g_n)$ existe.

(b) Théorème de Weirstrass : Soit f une fonction numérique et ω -périodique sur \mathbb{R} . Alors quel que soit le nombre $\varepsilon>0$ donné, il existe un polynôme trigonométrique $P_{\varepsilon}=a_0+\sum_{k=0}^n\left(a_k\cos\frac{2\pi}{\omega}x+b_k\sin\frac{2\pi}{\omega}x\right) \text{ vérifiant } |f(x)-P_{\varepsilon}(x)|\leq \varepsilon \text{ pour tout } x\in\mathbb{R}.$

5. *Une extension de* (.|.)

(a) D'après ce qui précède (Théorème de Weirstrass et la question 4.(a)) $\lim_{n\to\infty} (f_n|g_n)$ existe. Maintenant soient $(h_n)_{n\in\mathbb{N}}$ et $(k_n)_{n\in\mathbb{N}}$ d'autres suites qui convergent uniformément vers f et g respectivement, alors les suites $(f_n-h_n)_{n\in\mathbb{N}}$ et $(g_n-k_n)_{n\in\mathbb{N}}$ convergent uniformément vers g0, et donc l'inégalité

$$|(f_n|g_n) - (h_n|k_n)| = |(f_n - h_n|g_n) + (h_n|g_n - k_n)|$$

$$\leq ||f_n - h_n||_{\infty} ||g_n||_{\infty} + ||g_n - k_n||_{\infty} ||h_n||_{\infty}$$

montre que $\lim_{n\to\infty}[(f_n|g_n)-(h_n|k_n)]=0$, car $(g_n)_{n\in\mathbb{N}}$ et $(h_n)_{n\in\mathbb{N}}$ sont bornées pour la norme $\|.\|_\infty$. Donc $\lim_{n\to\infty}(f_n|g_n)$ ne depend pas du choix des suites $(f_n)_{n\in\mathbb{N}}$ et $(g_n)_{n\in\mathbb{N}}$, autrement dit l'application $(f,g)\longmapsto (f|g)$ est bien définie dans l'ensemble des fonctions continues périodiques.

(b) Il est clair que l'application $(f,g) \longmapsto (f|g)$ est symétrique et positive ou nulle. Soient f,g,h des suites continues périodiques sur $\mathbb R$ et $\lambda \in \mathbb R$. Considérons des suites d'éléments de $\mathcal F$, $(f_n)_{n\in\mathbb N}$, $(g_n)_{n\in\mathbb N}$ et $(h_n)_{n\in\mathbb N}$, qui convergent uniformément vers f, g et h respectivement, alors $(f+\lambda g)_{n\in\mathbb N}$ converge uniformément vers $f+\lambda g$ et pour tout $n\in\mathbb N$, on a :

$$(f_n + \lambda g_n | h_n) = (f_n | h_n) + \lambda (g_n | h_n),$$

d'où, par passage à la limite, $(f + \lambda g|h) = (f|h) + \lambda(g|h)$.

(c) D'après la question I.1.(b), on a pour tout $n \in \mathbb{N}$, $(f_n|f_n) = \mu(f_n^2) = \frac{1}{w} \int_0^{\omega} f_n^2$. D'autre part, l'inégalité

$$\forall t \in \mathbb{R}, |f_n^2(t) - f^2(t)| \le ||f_n - f||_{\infty} (||f_n||_{\infty} + ||f||_{\infty})$$

montre que la suite $(f_n^2)_{n\in\mathbb{N}}$ converge uniformément vers f^2 sur \mathbb{R} , car $(f_n)_{n\in\mathbb{N}}$ est bornée pour la norme $\|.\|_{\infty}$, et donc

$$(f|f) = \lim_{n \to \infty} \frac{1}{w} \int_0^\omega f_n^2(t) dt = \frac{1}{w} \int_0^\omega \lim_{n \to \infty} f_n^2(t) dt = \frac{1}{\omega} \int_0^\omega f^2(t) dt.$$

- (d) Soit f une fonction continue et w-périodique tel que (f|f)=0, alors d'après la question précédente $\int_0^w f^2(t)dt=0$ et donc f=0 sur [0,w] et comme elle est périodique, f est nulle sur \mathbb{R} .
- 6. Groupe des périodes d'une fonction
 - (a) Si $\alpha > 0$, il résulte de la caractérisation de la borne supérieure qu'il existe $x \in G \cap \mathbb{R}_+^*$ tel que $\alpha \le x \le \alpha + \frac{\alpha}{2} < 2\alpha$. Si $\alpha < x$, alors il existe $b \in G \cap \mathbb{R}_+^*$ tel que $\alpha \le b < x < 2\alpha$.

Donc, si on pose y = x - b, alors $y \in G$ et $0 < y < 2\alpha - b < \alpha$, et ceci contredit la définition de α et par suite, $\alpha = x \in G$, et donc $\alpha \mathbb{Z} \subset G$.

Soit $x \in G$; posons $n = E(\frac{x}{\alpha})$, on a : $n\alpha \le x < (n+1)\alpha$ et donc $0 \le x - n\alpha < \alpha$. Puisque $x - n\alpha \in G$ et $\alpha = \inf G \cap \mathbb{R}_+^*$, alors $x - n\alpha = 0$, c'est-à-dire $x = n\alpha \in \alpha \mathbb{Z}$. Ceci montre que $G = \alpha \mathbb{Z}$.

• Si $\alpha=0$, montrons que G est dense dans \mathbb{R} . En effet, soit $]a,b[\subset \mathbb{R}\ (a < b)$ un intervalle de \mathbb{R} , montrons que $]a,b[\cap G \neq \emptyset$. puisque b-a>0, alors il existe $x\in G$ tel que 0< x< b-a.

Posons $n=E(\frac{a}{x})$, on a $nx \leq a < (n+1)x$, donc

$$0 < (n+1)x - a = (nx - a) + x < x < b - a$$

et par conséquent a < (n+1)x < b. Comme $(n+1)x \in G$, alors $(n+1)x \in]a,b[\cap G]$. On en déduit que $]a,b[\cap G \neq \emptyset$, c'est-à-dire G est dense dans $\mathbb R$.

- (b) $0 \in G_f$ et si w et w' sont périodes de f, alors w w' est une période de f. Donc G_f est un sous-groupe de $(\mathbb{R}, +)$.
 - Soit $w = \inf G_f \cap \mathbb{R}_+^*$
 - Si w > 0, alors $w = \lim_{n \to \infty} w_n$ où $(w_n)_{n \in \mathbb{N}}$ est une suite d'éléments de G_f . Donc pour tout $t \in \mathbb{R}$,

$$f(t+w) = f(t + \lim_{n \to \infty} w_n) = \lim_{n \to \infty} f(t+w_n) = \lim_{n \to \infty} f(t) = f(t),$$

ainsi f est w-périodique.

– Si w=0, alors G est dense dans $\mathbb R$, et donc pour tout $t\in\mathbb R$, il existe une suite $(w_n)_{n\in\mathbb N}$ d'éléments de G_f telle que $t=\lim_{n\to\infty}w_n$.

Donc pour tout $t \in \mathbb{R}$,

$$f(t) = f(\lim_{n \to \infty} w_n) = \lim_{n \to \infty} f(w_n) = \lim_{n \to \infty} f(0) = f(0),$$

ainsi f est constante sur \mathbb{R} .

7. Théorème de mélange

(a) Soit $r=\frac{p}{q}\in\mathbb{Q}$ tel que $\frac{w}{\eta}=r$, donc $qw=r\eta$ et par conséquent pour tout $t\in\mathbb{R}$, f(t)=f(t+qw) et $g(t)=g(t+p\eta)=g(t+qw)$. Donc $\tau=qw=p\eta$ est une période commune de f et g.

Maintenant soient $(f_n)_{n\in\mathbb{N}}$ et $(g_n)_{n\in\mathbb{N}}$ deux suites de fonctions τ -périodiques, qui convergent uniformément vers f et g respectivement, alors pour tout $n\in\mathbb{N}$, on a :

$$(f_n|g_n) = \frac{1}{\tau} \int_0^\tau f_n(t)g_n(t)dt,$$

et par conséquent (la suite $(f_ng_n)_{n\in\mathbb{N}}$ converge uniformément vers fg sur \mathbb{R} .)

$$(f|g) = \lim_{n \to \infty} (f_n|g_n) = \frac{1}{\tau} \int_0^\tau f(t)g(t)dt.$$

(b) Soient $(f_n)_{n\in\mathbb{N}}$ et $(g_n)_{n\in\mathbb{N}}$ deux suites de \mathcal{F} qui convergent uniformément vers f et g respectivement.

Posons

$$f_n(x) = a_0(n) + \sum_{k=1}^{\varphi(n)} \left(a_k(n) \cos \frac{2\pi k}{\omega} x + b_k(n) \sin \frac{2\pi k}{\omega} x \right)$$

et

$$g_n(x) = c_0(n) + \sum_{k=1}^{\phi(n)} \left(c_k(n) \cos \frac{2\pi k}{\eta} x + d_k(n) \sin \frac{2\pi k}{\eta} x \right).$$

On a $\mu(f_n)=a_0(n)$ et $\mu(f_n)=c_0(n)$. D'autre part :

$$f_{n}(x)g_{n}(x) = a_{0}(n)c_{0}(n) + a_{0}(n) \sum_{k=1}^{\phi(n)} \left(c_{k}(n)\cos\frac{2\pi k}{\eta}x + d_{k}(n)\sin\frac{2\pi k}{\eta}x\right)$$

$$+ c_{0}(n) \sum_{k=1}^{\varphi(n)} \left(a_{k}(n)\cos\frac{2\pi k}{\omega}x + b_{k}(n)\sin\frac{2\pi k}{\omega}x\right)$$

$$+ \sum_{k=1}^{\phi(n)} \sum_{l=1}^{\varphi(n)} \left[a_{k}(n)c_{l}(n)\cos\frac{2\pi k}{\omega}x\cos\frac{2\pi l}{\eta}x + a_{k}(n)d_{l}(n)\cos\frac{2\pi k}{\omega}x\sin\frac{2\pi l}{\eta}x\right]$$

$$+ b_{k}(n)c_{l}(n)\sin\frac{2\pi k}{\omega}x\cos\frac{2\pi l}{\eta}x + b_{k}(n)d_{l}(n)\sin\frac{2\pi k}{\omega}x\sin\frac{2\pi l}{\eta}x$$

Puisque $\dfrac{\omega}{\eta}
ot\in \mathbb{Q}$, alors $(f_n|g_n)=a_0(n)c_0(n)=\mu(f_n)\mu(g_n)$, donc

$$(f|g) = \lim_{n \to \infty} (f_n|g_n) = \lim_{n \to \infty} \mu(f_n)\mu(g_n) = \mu(f)\mu(g).$$

III. UNE ALGÈBRE DE FONCTIONS PRESQUE-PÉRIODIQUES

1. (a) Soit $f(t) = \alpha_0 + \sum_{n=1}^{\infty} (\alpha_n \cos(w_n t) + \beta_n \sin(w_n t))$ un élément de \mathcal{A} . Nous avons pour tout $n \in \mathbb{N}^*$ et pour tout $x \in \mathbb{R}$, $|\alpha_n \cos(w_n t) + \beta_n \sin(w_n t)| \leq |\alpha_n| + |\beta_n|$, donc la série $\sum_{n\in\mathbb{N}}(\alpha_n\cos(x_nt)+\beta_n\sin(w_nt))$ converge uniformément vers f sur \mathbb{R} . D'autre les fonctions $t \longmapsto \alpha_n \cos(x_n t) + \beta_n \sin(w_n t)$ sont continues sur \mathbb{R} , donc $f \in \mathcal{C}^0(\mathbb{R})$ et par

Soient $f(t) = \sum_{n=0}^{\infty} (\alpha_n \cos(w_n t) + \beta_n \sin(w_n t))$ et $g(t) = \sum_{n=0}^{\infty} (\gamma_n \cos(\eta_n t) + \delta_n \sin(\eta_n t))$

deux éléments de A et λ un nombre réel. Alors

$$(f + \lambda g)(t) = \sum_{n=0}^{\infty} (\alpha_n \cos(w_n t) + \lambda \gamma_n \cos(\eta_n t) + \beta_n \sin(w_n t) + \lambda \delta_n \sin(\eta_n t))$$

cette somme s'écrit sous la forme $\sum_{n=0}^{\infty} (a_n \cos(\varphi_n t) + b_n \sin(\varphi_n t))$ avec

$$\begin{cases} a_{2n} = \alpha_n, \\ a_{2n+1} = \lambda \gamma_n. \end{cases}, \begin{cases} b_{2n} = \beta_n, \\ b_{2n+1} = \lambda \delta_n. \end{cases} \text{ et } \begin{cases} \varphi_{2n} = w_n, \\ \varphi_{2n+1} = \eta_n. \end{cases}$$

On vérifie aussi que les suites $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ sont des familles sommables et quitte à regrouper les termes ayant la même fréquence, on peut supposer que les φ_n sont distincts deux à deux. Ainsi on a montré que A est un sous-espace vectoriel de $\mathcal{C}^0(\mathbb{R}).$

(b) Soient $f(t) = \sum_{n=0}^{\infty} (\alpha_n \cos(w_n t) + \beta_n \sin(w_n t))$ et $g(t) = \sum_{n=0}^{\infty} (\gamma_n \cos(\eta_n t) + \delta_n \sin(\eta_n t))$ deux éléments de A. Les deux séries définissant f et g sont absolument convergentes, donc leur produit (produit de Cauchy) f(t)g(t) existe et $\forall t \in \mathbb{R}$,

$$f(t)g(t) = \sum_{n=0}^{\infty} W_n(t)$$

où

$$W_n(t) = \sum_{k=0}^{n} (\alpha_k \cos(w_k t) + \beta_k \sin(w_k t))(\gamma_{n-k} \cos(\eta_{n-k} t) + \delta_{n-k} \sin(\eta_{n-k} t))$$

Mais

$$W_{n} = \sum_{k=0}^{n} (\alpha_{k} C_{w_{k}} + \beta_{k} S_{w_{k}}) (\gamma_{n-k} C_{\eta_{n-k}} + \delta_{n-k} S_{\eta_{n-k}})$$

$$= \sum_{k=0}^{n} [\alpha_{k} \gamma_{n-k} C_{w_{k}} C_{\eta_{n-k}} + \alpha_{k} \delta_{n-k} C_{w_{k}} S_{\eta_{n-k}} + \beta_{k} \gamma_{n-k} S_{w_{k}} C_{\eta_{n-k}} + \beta_{k} \delta_{n-k} S_{w_{k}} S_{\eta_{n-k}}]$$

$$= \sum_{k=0}^{n} [\frac{\alpha_{k} \gamma_{n-k}}{2} C_{w_{k} + \eta_{n-k}} + \frac{\alpha_{k} \gamma_{n-k}}{2} C_{w_{k} - \eta_{n-k}} + \frac{\alpha_{k} \delta_{n-k}}{2} S_{w_{k} + \eta_{n-k}} + \frac{\beta_{k} \gamma_{n-k}}{2} S_{w_{k} - \eta_{n-k}} + \frac{\beta_{k} \gamma_{n-k}}{2} S_{w_{k} + \eta_{n-k}} + \frac{\beta_{k} \delta_{n-k}}{2} C_{w_{k} + \eta_{n-k}}]$$

$$= \sum_{k=0}^{n} [(\frac{\alpha_{k} \gamma_{n-k}}{2} - \frac{\beta_{k} \delta_{n-k}}{2}) C_{w_{k} + \eta_{n-k}} + (\frac{\alpha_{k} \gamma_{n-k}}{2} + \frac{\beta_{k} \delta_{n-k}}{2}) C_{w_{k} - \eta_{n-k}} + (\frac{\alpha_{k} \delta_{n-k}}{2} + \frac{\beta_{k} \delta_{n-k}}{2}) S_{w_{k} - \eta_{n-k}} + (\frac{\alpha_{k} \delta_{n-k}}{2} - \frac{\alpha_{k} \delta_{n-k}}{2}) S_{w_{k} - \eta_{n-k}}$$

Les familles $\left(\sum_{k=0}^n \frac{\alpha_k \gamma_{n-k}}{2}\right)_{n \in \mathbb{N}}$, $\left(\sum_{k=0}^n \frac{\alpha_k \delta_{n-k}}{2}\right)_{n \in \mathbb{N}}$, $\left(\sum_{k=0}^n \frac{\beta_k \gamma_{n-k}}{2}\right)_{n \in \mathbb{N}}$ et $\left(\sum_{k=0}^n \frac{\beta_k \delta_{n-k}}{2}\right)_{n \in \mathbb{N}}$ sont semmables, donc en regroupant les termes ayant la même fréquence, on obtient un élément de \mathcal{A} , ainsi $fg \in \mathcal{A}$.

2. (a) Tout élément f de \mathcal{A} est limite uniforme d'une suite d'éléments de \mathcal{F} , donc on peut prolonger le produit scalaire de \mathcal{F} à \mathcal{A} , en posant :

avec
$$f = \lim_{n \to \infty} f_n = \lim_{n \to \infty} \sum_{k=0}^n (\alpha_n C_{w_n} + \beta S_{w_n})$$
 et $g = \lim_{n \to \infty} g_n = \lim_{k \to n} \sum_{k=0}^n (\gamma_n C_{\eta_n} + \delta_n S_{\eta_n})$
Soit $f = \lim_{n \to \infty} (\alpha_0 + \sum_{k=1}^n (\alpha_n C_{w_n} + \beta_n S_{w_n}))$ avec $w_n \neq 0$ pour tout $n \in \mathbb{N}^*$. Donc $(f_n | f_n) = \alpha_0^2 + \frac{1}{2} \sum_{k=1}^n (\alpha_k^2 + \beta_k^2)$, d'où

 $(f|g) = \lim_{n \to \infty} (f_n|g_n)$

$$(f|f) = \alpha_0^2 + \frac{1}{2} \sum_{n=1}^{\infty} (\alpha_n^2 + \beta_n^2)$$

(b) Soit $f = \lim_{n \to \infty} f_n = \lim_{n \to \infty} \sum_{k=0}^n (\alpha_n C_{w_n} + \beta S_{w_n})$ un élément de \mathcal{A} , alors

$$(f|C_{-w}) = \lim_{n \to \infty} \sum_{k=0}^{n} (\alpha_k(C_{w_k}|C_{-w}) + \beta(S_{w_k}|C_{-w}))$$

D'où

- $(f|C_{-w})=0$ si pour tout $n\in\mathbb{N}$, $|w|\neq |w_n|$,
- si'il existe n tel que $|w_n|=|w|$, $(f|C_{-w})=\left\{ \begin{array}{ll} \alpha_n, & \text{si } w=0, \\ \frac{\alpha_n}{2}, & \text{si } w\neq 0. \end{array} \right.$

De même si w = 0, $(f|S_0) = 0$ et si $w \neq 0$,

- $(f|S_{-w}) = 0$ si pour tout $n \in \mathbb{N}$, $|w| \neq |w_n|$,
- si'il existe n tel que $|w_n|=|w|$, $(f|S_{-w})=\left\{\begin{array}{ll} \dfrac{\alpha_n}{2}, & \text{si } w=-w_n, \\ \dfrac{-\alpha_n}{2}, & \text{si } w=w_n. \end{array}\right.$
- (c) Soient $f = \alpha_0 + \sum_{k=1}^{\infty} (\alpha_n C_{w_n} + \beta_n S_{w_n})$ et $g = \gamma_0 + \sum_{n=1}^{\infty} (\gamma_n C_{w_n} + \delta_n S_{w_n})$ deux éléments de \mathcal{A} , alors on peut vérifie que

$$(f|g) = \alpha_0 \gamma_0 + \frac{1}{2} \sum_{n=1}^{\infty} (\alpha_n \gamma_n + \beta_n \delta_n).$$

IV. LA FONCTION $\cos x + \cos(x\sqrt{2})$

1. Près de $\sqrt{2}$

(a) Pour $n=0, p_0=1$ et $q_0=0,$ supposons la propriété est vraie pour n et montrons la pour n+1.

On a:

$$(3+2\sqrt{2})^{n+1} = (3+2\sqrt{2})(p_n + q_n\sqrt{2}) = p_{n+1} + q_{n+1}\sqrt{2},$$

avec $p_{n+1} = 3p_n + 4q_n$ et $q_{n+1} = 2p_n + 3q_n$, donc la propriété est vraie pour tout $n \in \mathbb{N}$.

- (b) De même on peut montrer que $(3-2\sqrt{2})^n=p_n-q_n\sqrt{2}$ avec p_n et q_n sont des entiers naturels.
- (c) Nous avons

$$p_n = \frac{1}{2}((3+2\sqrt{n})^n + (3-2\sqrt{n})^n) \quad \text{et} \quad q_n = \frac{1}{2\sqrt{2}}((3+2\sqrt{n})^n - (3-2\sqrt{n}))^n,$$

donc

$$p_n \simeq \frac{1}{2}(3+2\sqrt{2})^n \text{ et } q_n \simeq \frac{1}{2\sqrt{2}}(3+2\sqrt{2})^n.$$

La relation

$$(3+2\sqrt{2})^n = \frac{1}{(3-2\sqrt{2})^n} = p_n + q_n\sqrt{2},$$

montre que $p_n^2 - 2q_n^2 = 1$.

2. Approximation rationnelle de $\sqrt{2}$

Les deux suites $(p_n)_{n\in\mathbb{N}}$ et $(q_n)_{n\in\mathbb{N}}$ tendent vers l'infini, donc on peut les supposer non nulles à partir d'un certain rang n_0 . Donc pour tout entier naturel $n \geq n_0$, on a :

$$\left| p_n - q_n \sqrt{2} \right| = \frac{1}{p_n + \sqrt{2}q_n} \le \frac{1}{q_n \sqrt{2}}$$

et donc

$$\left| \frac{p_n}{q_n} - \sqrt{2} \right| \le \frac{1}{q_n^2 \sqrt{2}} \le \frac{1}{q_n^2}$$

On prend par exemple $p = p_{n_0}$ et $q = q_{n_0}$.

3. Maxima de B

Posons $G=\left\{2k\pi\sqrt{2}-2k'\pi/(k,k')\in\mathbb{Z}^2\right\}$. Il est clair que G est un sous-groupe non trivial de $(\mathbb{R},+)$, donc $G=\alpha\mathbb{Z}$ $(\alpha>0)$ ou bien G est dense dans \mathbb{R} .

Supposons $G = \alpha \mathbb{Z}$, alors, puisque $2\pi\sqrt{2} \in \alpha \mathbb{Z}$, $2\pi\sqrt{2} = n\alpha$, de même $2\pi = m\alpha$, donc

 $\sqrt{2}=\frac{n}{m}\in\mathbb{Q}$, et ceci est absurde. Donc G est dense dans \mathbb{R} et par conséquent il existe une suite $(x_n)_{n\in\mathbb{N}}$ d'éléments de G de limite nulle, ainsi si on pose $x_n=2k_n\pi\sqrt{2}-2k_n'\pi$, alors pour $\varepsilon>0$, il existe $n_0\in\mathbb{N}$ tel que $\forall n\geq n_0$, on a :

$$|2k_n\pi\sqrt{2}-2k_n'\pi|\leq \varepsilon$$

La suite $(k_n)_{n\in\mathbb{N}}$ d'éléments de \mathbb{Z} , ne peut pas être bornée, car sinon $(k'_n)_{n\in\mathbb{N}}$ sera borné et dans ce cas $(x_n)_{n\in\mathbb{N}}$ prendra un nombre fini de valeurs et ceci est absurde car $\lim_{n\to\infty}x_n=0$. On remarque aussi que, pour chaque n,k_n et k'_n sont de même signe, donc en remplaçant le couple (k_n,k'_n) par le couple $(-k_n,-k'_n)$, on peut supposer $k_n>0$ et $k'_n>0$ pour tout $n\in\mathbb{N}$. Finalement on peut prendre par exemple $k=k_{n_0}$ et $k'=k'_{n_0}$. On a :

$$\cos(2k_n\pi) = 1 + \cos(2k_n\pi\sqrt{2}) = 1 + \cos(2k_n\pi\sqrt{2} - 2k'_n\pi) = 1 + \cos(x_n),$$

donc $\lim_{n\to\infty} B(2k_n\pi) = 2$, donc il existe $n_0 \in \mathbb{N}$ tel que pour tout $n \ge n_0$, $B(2k_n\pi) \ge 2 - \varepsilon$, et comme $\{2k_n\pi/n \in \mathbb{N}\}$ est infini, alors B prend une infinité de fois des valeurs supérieures à $2 - \varepsilon$.

4. Presque périodicité-la définition de BOHR

Soient
$$\varepsilon>0$$
 et $(p,q)\in\mathbb{N}^2$ tel que $\left|\frac{p}{q}-\sqrt{2}\right|\leq\frac{1}{q^2\sqrt{2}}.$ Soit $x\in\mathbb{R}$, alors

$$|B(x) - B(x + 2p\pi)| = \left| \cos(x\sqrt{2}) - \cos(x\sqrt{2} + 2p\pi\sqrt{2}) \right|$$

$$= \left| \cos(x\sqrt{2}) - \cos(x\sqrt{2} + 2(p - q\sqrt{2})\pi\sqrt{2}) \right|$$

$$\leq 2\pi\sqrt{2} \left| p - q\sqrt{2} \right| \leq \frac{2\pi}{q},$$

car la fonction cos est 1-lipschitizienne

••••••

M.Tarqi-Centre Ibn Abdoune des classes préparatoires-Khouribga. Maroc E-mail : medtarqi@yahoo.fr