(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-74871 (P2002-74871A)

(43)公開日 平成14年3月15日(2002.3.15)

(51) Int.Cl.7	識別記号	FΙ	テーマコード(参考)
G11B 21/10		G 1 1 B 21/10	N 5D042
5/596		5/596	5D059
21/21		21/21	C 5D096

審査請求 未請求 請求項の数15 OL (全 13 頁)

(21)出願番号	特顧2000-262561(P2000-262561)	(71)出顧人 000003067
		ティーディーケイ株式会社
(22)出顧日	平成12年8月31日(2000.8.31)	東京都中央区日本橋1丁目13番1号
		(72)発明者 笠島 多聞
		東京都中央区日本橋一丁目13番1号ティー
		ディーケイ株式会社内
		(72)発明者 白石 一雅
		東京都中央区日本橋一丁目13番1号ティー
		ディーケイ株式会社内
		(74)代理人 100074930
		弁理士 山本 惠一
		Fターム(参考) 5D042 LA01 MA15
		5D059 AA01 BA01 CA30 DA33 FA03
		5D096 NN03 NN07
		100 14.01

(54) 【発明の名称】 微小位置決め用アクチュエータを備えたヘッドジンパルアセンブリ、該ヘッドジンパルアセンブ リを備えたディスク装置及び該ヘッドジンパルアセンブリの製造方法

(57) 【要約】

【課題】 圧電材料の脱粒を防止でき、アクチュエータの動作を阻害することなくしかも製造工程が簡易化でき、さらにアクチュエータの接着強度の低下がないる微小位置決め用アクチュエータを備えたHGA、このHGAを備えたディスク装置及びこのHGAの製造方法を提供する。

【解決手段】 少なくとも1つのヘッド素子を有するヘッドスライダをヘッド素子の微小位置決めを行う圧電現象を利用したアクチュエータに固着すると共にこのアク 10 チュエータを支持機構に固着してHGAを形成した後、このHGA全体に例えばフッ素系コーティング剤である低表面エネルギーコーティング剤による被覆膜を形成する。

【特許請求の範囲】

【請求項1】 少なくとも1つのヘッド素子を有するヘッドスライダと、該ヘッドスライダが固着されており前記ヘッド素子の微小位置決めを行う圧電現象を利用したアクチュエータと、該アクチュエータが固着されており該アクチュエータを支持するための支持機構とを備えており、全体が低表面エネルギーコーティング剤による被覆膜で覆われていることを特徴とする微小位置決め用アクチュエータを備えたヘッドジンバルアセンブリ。

【請求項2】 前記アクチュエータが、一方の端部に形 10 成された固定部と他方の端部に形成された可動部と該固 定部及び可動部を接続する変位発生アーム部とを有して おり、前記支持機構が前記アクチュエータの一方の面に おける前記固定部に固着されており、前記ヘッドスライ ダが前記アクチュエータの他方の面における前記可動部 に固着されていることを特徴とする請求項1に記載のヘッドジンバルアセンブリ。

【請求項3】 前記アクチュエータが、前記支持機構に 固着されている基部と、該基部から突出しており駆動信 号に従って変位可能な1対の可動アーム部とを備えてお 20 り、該可動アーム部間に前記ヘッドスライダが挟設され ていることを特徴とする請求項1に記載のヘッドジンバ ルアセンブリ。

【請求項4】 前記低表面エネルギーコーティング剤がフッ素系コーティング剤であることを特徴とする請求項1から3のいずれか1項に記載のヘッドジンバルアセンブリ。

【請求項5】 前記被覆膜の膜厚が1.8 nm以下であることを特徴とする請求項1から4のいずれか1項に記載のヘッドジンバルアセンブリ。

【請求項6】 前記被覆膜の膜厚が1.2 nm以下であることを特徴とする請求項5に記載のヘッドジンバルアセンブリ。

【請求項7】 前記ヘッド素子が薄膜磁気ヘッド素子であることを特徴とする請求項1から6のいずれか1項に記載のヘッドジンバルアセンブリ。

【請求項8】 請求項1から7のいずれか1項に記載の ヘッドジンバルアセンブリを少なくとも1つ備えたこと を特徴とするディスク装置。

【請求項9】 少なくとも1つのヘッド素子を有するへ 40ッドスライダを、該ヘッド素子の微小位置決めを行う圧電現象を利用したアクチュエータを介して支持機構に固着してヘッドジンバルアセンブリを形成した後、該ヘッドジンバルアセンブリ全体に低表面エネルギーコーティング剤による被覆膜を形成することを特徴とするヘッドジンバルアセンブリの製造方法。

【請求項10】 一方の端部に形成された固定部と他方の端部に形成された可動部と該固定部及び可動部を接続する変位発生アーム部とを有しており、ヘッド素子の微小位置決めを行う圧電現象を利用したアクチュエータを 50

2

用意し、該アクチュエータの前記固定部を支持機構に固着し、少なくとも1つのヘッド素子を有するヘッドスライダを該支持機構に固着した前記アクチュエータの前記可動部に固着してヘッドジンバルアセンブリを形成した後、該ヘッドジンバルアセンブリ全体に低表面エネルギーコーティング剤による被覆膜を形成することを特徴とするヘッドジンバルアセンブリの製造方法。

【請求項11】 駆動信号に従って変位可能な1対の可動アーム部を備えたヘッド素子微小位置決め用のアクチュエータを用意し、該アクチュエータの前記可動アーム部間に少なくとも1つのヘッド素子を有するヘッドスライダを挟設し、該ヘッドスライダを取り付けた前記アクチュエータを支持機構に固着してヘッドジンバルアセンブリを形成した後、該ヘッドジンバルアセンブリ全体に低表面エネルギーコーティング剤による被覆膜を形成することを特徴とするヘッドジンバルアセンブリの製造方法。

【請求項12】 前記被覆膜の形成が、前記ヘッドジン バルアセンブリを低表面エネルギーコーティング剤溶液 内に浸漬した後、乾燥して行われることを特徴とする請 求項9から11のいずれか1項に記載の製造方法。

【請求項13】 前記低表面エネルギーコーティング剤がフッ素系コーティング剤であることを特徴とする請求項9から12のいずれか1項に記載の製造方法。

【請求項14】 前記被覆膜の膜厚を1.8 nm以下とすることを特徴とする請求項9から13のいずれか1項に記載の製造方法。

【請求項15】 前記被覆膜の膜厚を1.2nm以下とすることを特徴とする請求項14に記載の製造方法。

30 【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、薄膜磁気ヘッド素子又は光ヘッド素子等のヘッド素子の微小位置決め用アクチュエータを備えたヘッドジンバルアセンブリ(HGA)、このHGAを備えたディスク装置及びこのHGAの製造方法に関する。

[0002]

【従来の技術】磁気ディスク装置では、HGAのサスペンションの先端部に取り付けられた磁気ヘッドスライダを、回転する磁気ディスクの表面から浮上させ、その状態で、この磁気ヘッドスライダに搭載された薄膜磁気ヘッド素子により磁気ディスクへの記録及び/又は磁気ディスクからの再生が行われる。

【0003】近年、磁気ディスク装置の大容量化及び高密度記録化に伴い、ディスク半径方向(トラック幅方向)の密度の高密度化が進んできており、従来のごときボイスコイルモータ(以下VCMと称する)のみによる制御では、磁気ヘッドの位置を正確に合わせることが難しくなってきている。

【0004】磁気ヘッドの精密位置決めを実現する手段

3

の一つとして提案されているのが、従来のVCMよりさらに磁気ヘッドスライダ側にもう1つのアクチュエータ機構を搭載し、VCMで追従しきれない微細な精密位置決めを、そのアクチュエータによって行なう技術である(例えば、特開平6-259905号公報、特開平6-309822号公報、特開平8-180623号公報参照)。

[0005]

【発明が解決しようとする課題】圧電素子を利用したこの種のアクチュエータを用いた場合、圧電素子の粒子が 10 脱落する(脱粒する)問題がある。即ち、圧電材料自体が脆弱な材料であるため、通常の使用状態であっても素子自身の欠けやクラックが発生する確率が高く、ましてや長期間の動作により結晶等の粒界が剥離して脱粒が発生し易くなる。磁気ディスク上に配置されるこの種のアクチュエータにおいては、いかなる脱粒をも許されるものではない。

【0006】このような圧電材料は、脱粒が少なくなるように素材自身の性質を変化させることが難しい。このため、本出願人は、アクチュエータの表面にコーティングを施すことにより脱粒防止を図る技術を既に提案している(特願平11-296597号)。

【0007】一般に、アクチュエータを備えたHGAにおいては、アクチュエータの動きを阻害しないために、磁気ヘッドスライダ及びアクチュエータ間、場合によってはアクチュエータ及びサスペンション間に間隙を置いて組み立てる必要がある。しかしながら、アクチュエータの表面にコーティングを施すと、このような間隙がなくなり、磁気ヘッドスライダ及びアクチュエータ間、及び/又はアクチュエータ及びサスペンション間で摩擦が30生じてアクチュエータのストローク(変位)が低下し、スライダの動きが阻害されてしまう。

【0008】さらに、コーティングを施すとそのコーティング面における接着強度を維持することが難しくなり、どうしても強度劣化が生じる。

【0009】従って本発明は、従来技術の上述した問題点を解消するものであり、その目的は、圧電材料を用いた場合にも脱粒を確実に防止できる微小位置決め用アクチュエータを備えたHGA、このHGAを備えたディスク装置及びこのHGAの製造方法を提供することにある

【0010】本発明の他の目的は、アクチュエータの変位を阻害することなくしかも製造工程を簡易化できる微小位置決め用アクチュエータを備えたHGA、このHGAを備えたディスク装置及びこのHGAの製造方法を提供することにある。

【0011】本発明のさらに他の目的は、アクチュエータの接着強度の低下がない微小位置決め用アクチュエータを備えたHGA、このHGAを備えたディスク装置及びこのHGAの製造方法を提供することにある。

[0012]

【課題を解決するための手段】本発明によれば、少なくとも1つのヘッド素子を有するヘッドスライダと、このヘッドスライダが固着されておりヘッド素子の微小位置決めを行う圧電現象を利用したアクチュエータと、このアクチュエータが固着されておりアクチュエータを支持するための支持機構とを備えており、全体が例えばフッ素系コーティング剤である低表面エネルギーコーティング剤による被覆膜で覆われている微小位置決め用アクチュエータを備えたHGA及び少なくとも1つのHGAを備えたディスク装置が提供される。

【0013】さらに本発明によれば、少なくとも1つのヘッド素子を有するヘッドスライダを、ヘッド素子の微小位置決めを行う圧電現象を利用したアクチュエータを介して支持機構に固着してHGAを形成した後、このHGA全体に例えばフッ素系コーティング剤である低表面エネルギーコーティング剤による被覆膜を形成するHGAの製造方法が提供される。

【0014】またさらに、本発明によれば、一方の端部に形成された固定部と他方の端部に形成された可動部とこれら固定部及び可動部を接続する変位発生アーム部とを有しており、ヘッド素子の微小位置決めを行う圧電現象を利用したアクチュエータを用意し、このアクチュエータの固定部を支持機構に固着し、少なくとも1つのヘッド素子を有するヘッドスライダを支持機構に固着したアクチュエータの可動部に固着してHGAを形成した後、このHGA全体に例えばフッ素系コーティング剤である低表面エネルギーコーティング剤による被覆膜を形成するHGAの製造方法が提供される。

【0015】さらに、本発明によれば、駆動信号に従って変位可能な1対の可動アーム部を備えたヘッド素子微小位置決め用のアクチュエータを用意し、このアクチュエータの可動アーム部間に少なくとも1つのヘッド素子を有するヘッドスライダを挟設し、ヘッドスライダを取り付けたアクチュエータを支持機構に固着してHGAを形成した後、このHGA全体に例えばフッ素系コーティング剤である低表面エネルギーコーティング剤による被覆膜を形成するHGAの製造方法が提供される。

【0016】HGA全体が例えばフッ素系コーティング 40 剤である低表面エネルギーコーティング剤による被覆膜で覆われているので、アクチュエータの圧電材料部分も全て被覆されることとなるから、脱粒が皆無となる。 低表面エネルギーコーティング剤は、揮水性があるため、高温度、高湿度の環境下においてもコーティング剤の吸水によるマイグレーションが生じない。

【0017】また、圧電材料のみならずアクチュエータ 及びヘッドスライダの電極端子部まで被覆されるので、 接続の信頼性向上をも図ることができる。加えて、ヘッ ドスライダの浮上面(ABS)も同時に被覆されるた め、ABSへのコンタミネーション付着をも防止でき

5

・る。

【0018】さらに、HGAを形成した後、このHGA全体に例えばフッ素系コーティング剤である低表面エネルギーコーティング剤による被覆膜を形成しているので、即ち、接着後にコーティングしているので、接着強度が低下することは全くない。

【0019】アクチュエータが、一方の端部に形成された固定部と他方の端部に形成された可動部とこれら固定部及び可動部を接続する変位発生アーム部とを有しており、支持機構がアクチュエータの一方の面における固定 10部に固着されており、ヘッドスライダがアクチュエータの他方の面における可動部に固着されていることが好ましい。

【0020】アクチュエータが、支持機構に固着されている基部と、基部から突出しており駆動信号に従って変位可能な1対の可動アーム部とを備えており、可動アーム部間にヘッドスライダが挟設されていることも好ましい。

【0021】被覆膜の膜厚が1.8nm以下であることが好ましく、1.2nm以下であることがより好ましい。被覆膜の膜厚をこの程度に制御することによって、アクチュエータのストローク(変位)が低下することがなく、ヘッドスライダの動きが阻害されることはなくなる。

【0022】ヘッド素子が薄膜磁気ヘッド素子であることも好ましい。

【0023】被覆膜の形成が、HGAを例えばフッ素系コーティング剤である低表面エネルギーコーティング剤溶液内に浸漬した後、乾燥して行われることが好ましい。このように、浸漬によりHGA全体に被覆膜を形成 30しているので、HGAの各部材間の間隙を埋めることなく薄膜コーティングが行えるから、アクチュエータの動作が阻害されない。しかも、浸漬のみでHGAのコーティングができるので、製造工程を大幅に簡易化できる。【0024】

【発明の実施の形態】図1は本発明の一実施形態として、磁気ディスク装置の要部の構成を概略的に示す斜視図であり、図2は図1の実施形態におけるヘッドジンバルアセンブリ(HGA)全体をスライダ側から見た平面図であり、図3は図1の実施形態におけるアクチュエー 40夕及び磁気ヘッドスライダのフレクシャへの取り付け構造を示す分解斜視図である。なお、本実施形態は、アクチュエータとして、ビギーバック構造と称されるものを用いた場合である。

【0025】図1において、10は軸11の回りを回転する複数の磁気ディスク、12は磁気ヘッドスライダをトラック上に位置決めするためのアセンブリキャリッジ装置をそれぞれ示している。アセンブリキャリッジ装置12は、軸13を中心にして角揺動可能なキャリッジ14と、このキャリッジ14を角揺動駆動する例えばボイ 50

6

スコイルモータ (VCM) からなる主アクチュエータ 1 5 とから主として構成されている。

【0026】キャリッジ14には、軸13の方向にスタックされた複数の駆動アーム16の基部が取り付けられており、各駆動アーム16の先端部にはHGA17が固着されている。各HGA17は、その先端部に設けられている磁気ヘッドスライダが、各磁気ディスク10の表面に対して対向するように駆動アーム16の先端部に設けられている。

【0027】図2及び図3に示すように、HGAは、サスペンション20の先端部に磁気ヘッド素子の精密位置 決めを行うためのアクチュエータ22を取り付け、そのアクチュエータ22に磁気ヘッド素子を有するスライダ 21を固着して構成される。

【0028】図1に示す主アクチュエータ15はHGA17を取り付けた駆動アーム16を変位させてアセンブリ全体を動かすために設けられており、アクチュエータ22はそのような主アクチュエータ15では駆動できない微細な変位を可能にするために設けられている。

【0029】サスペンション20は、図2及び図3に示すように、アクチュエータ22を介してスライダ21を担持する弾性を有するフレクシャ26と、フレクシャ26を支持固着しておりこれも弾性を有するロードビーム23と、ロードビーム23の基部に設けられたベースプレート27とから主として構成されている。

【0030】フレクシャ26は、ロードビーム23に設けられたディンプルに押圧される軟らかい舌部26aを一方の端部に有しており、この舌部26aでアクチュエータ22を介してスライダ21を柔軟に支えるような弾性を持っている。本実施形態のように、フレクシャ26とロードビーム23とが独立した部品である3ビース構造のサスペンションでは、フレクシャ26の剛性はロードビーム23の剛性より低くなっている。

【0031】フレクシャ26は、本実施形態では、厚さ約25μmのステンレス鋼板(例えばSUS304TA)によって構成されている。

【0032】ロードビーム23は、先端に向けて幅が狭くなる形状の約 $60\sim65\mu$ m厚の弾性を有するステンレス鋼板で構成されており、フレクシャ26をその全長に渡って支持している。ただし、フレクシャ26とロードビーム23との固着は、複数の溶接点によるピンポイント固着によってなされている。

【0033】ベースプレート27は、ステンレス鋼又は 鉄で構成されており、ロードビーム23の基部に溶接に よって固着されている。このベースプレート27を取り 付け部27aで固定することによって、サスペンション 20の駆動アーム16(図1)への取り付けが行われ る。なお、フレクシャ26とロードビーム23とを別個 に設けず、ベースプレートとフレクシャーロードビーム との2ピース構造のサスペンションとしてもよい。 【0034】フレクシャ26上には、積層薄膜パターンによる複数のリード導体を含む可撓性の配線部材28が形成されている。即ち、配線部材28は、フレクシブルプリント回路(Flexible Print Circuit、FPC)のごとく金属薄板上にプリント基板を作成するのと同じ公知のパターニング方法で形成されている。例えば、厚さ約 5μ mのポリイミド等の樹脂材料による第1の絶縁性材料層、パターン化された厚さ約 4μ mのCu層(リード導体層)及び厚さ約 5μ mのポリイミド等の樹脂材料による第2の絶縁性材料層をこのパイミド等の樹脂材料による第2の絶縁性材料層をこの順序でフレクシャ26側から順次積層することによって形成される。ただし、磁気ヘッド素子及び外部回路と接続するための接続パッドの部分は、Cu層上にAu層が積層形成されており、その上に絶縁性材料層は形成されていない。

【0035】本実施形態においてこの配線部材28は、磁気ヘッド素子に接続される片側2本、両側で計4本のリード導体を含む第1の配線部材28aと、アクチュエータ22に接続される片側2本、両側で計4本のリード導体を含む第2の配線部材28bとから構成されている。

【0036】第1の配線部材28aのリード導体の一端は、フレクシャ26の先端部に設けられた磁気ヘッド素子用接続パッド29に接続されている。接続パッド29は、磁気ヘッドスライダ21の端子電極に金ボンディング、ワイヤボンディング又はステッチボンディング等により接続されている。第1の配線部材28aのリード導体の他端は外部回路と接続するための外部回路用接続パッド30に接続されている。

【0037】第2の配線部材28bのリード導体の一端は、フレクシャ26の舌部26aに形成されたアクチュエータ用接続パッド(図示なし)に接続されており、この接続パッドはアクチュエータ22の端子電極に接続されている。第2の配線部材28bのリード導体の他端は外部回路と接続するための外部回路用接続パッド30に接続されている。

【0038】アクチュエータ22は、固定部22a及び可動部22bを有し、さらに、これらを接続する2本の棒状の変位発生アーム部22c及び22dを有する。変位発生アーム部22c及び22dには、両側に電極層が40存在する圧電・電歪材料層が少なくとも1層設けられており、電極層に電圧を印加することにより伸縮を発生する構成となっている。圧電・電歪材料層は、逆圧電効果又は電歪効果により伸縮する圧電・電歪材料からなる。固定部22aには、上述の電極層に接続されている3つの端子電極が形成されている。

【0039】図3に示すように、フレクシャ26の舌部 26aには、アクチュエータ22の固定部22aにおけ る上面が接着剤によって接着されている。アクチュエー タ22の可動部22bは、磁気ヘッドスライダ21の後 50 8

端側(磁気ヘッド素子21bの形成端側)の所定部22 aに固着面が接着剤により接着されることによって固着 されている。

【0040】このように、変位発生アーム部22c及び 22dの一端は固定部22aを介してフレクシャ26に 連結され、変位発生アーム部22c及び22dの他端は 可動部22bを介してスライダ21に連結されている。 従って、変位発生アーム部22c及び22dの伸縮によ りスライダ21が変位して、磁気ヘッド素子が磁気ディ スクの記録トラックと交差するように弧状に変位する。 【0041】変位発生アーム部22c及び22dにおけ る圧電・電歪材料層がPZT等のいわゆる圧電材料から 構成されている場合、この圧電・電歪材料層には、通 常、変位性能向上のための分極処理が施されている。こ の分極処理による分極方向は、アクチュエータ22の厚 さ方向である。電極層に電圧を印加したときの電界の向 きが分極方向と一致する場合、両電極間の圧電・電歪材 料層はその厚さ方向に伸長(圧電縦効果)し、その面内 方向では収縮(圧電横効果)する。一方、電界の向きが 分極方向と逆である場合、圧電・電歪材料層はその厚さ 方向に収縮(圧電縦効果)し、その面内方向では伸長 (圧電横効果) する。そして、一方の変位発生アーム部 と他方の変位発生アーム部とに、収縮を生じさせる電圧 を交互に印加すると、一方の変位発生アーム部の長さと 他方の変位発生アーム部の長さとの比率が変化し、これ によって両変位発生アーム部はアクチュエータ22の面 内において同方向に撓む。この撓みによって、固定部2 2 a に対し可動部 2 2 b が、電圧無印加時の位置を中央 として図3の矢印31の方向に揺動することになる。こ の揺動は、可動部22bが、変位発生アーム部22c及 び22 d の伸縮方向に対しほぼ直交する方向に弧状の軌 跡を描く変位であり、揺動方向はアクチュエータの面内 に存在する。従って、磁気ヘッド素子も弧状の軌跡を描 いて揺動することになる。このとき、電圧と分極とは向 きが同じなので、分極減衰のおそれがなく、好ましい。 なお、両変位発生アーム部に交互に印加する電圧が変位 発生アーム部を伸長させるものであっても、同様な揺動 が生じる。

【0042】アクチュエータ22としては、両変位発生アーム部に、互いに逆の変位が生じるような電圧を同時に印加してもよい。即ち、一方の変位発生アーム部と他方の変位発生アーム部とに、一方が伸長したとき他方が収縮し、一方が収縮したとき他方が伸長するような交番電圧を同時に印加してもよい。このときの可動部22bの揺動は、電圧無印加時の位置を中央とするものとなる。この場合、駆動電圧を同じとしたときの揺動の振幅は、電圧を交互に印加する場合の約2倍となる。ただし、この場合、揺動の一方の側では変位発生アーム部を伸長させることになり、このときの駆動電圧は分極の向きと逆となる。このため、印加電圧が高い場合や継続的

に電圧印加を行う場合には、圧電・電歪材料の分極が減衰するおそれがある。従って、分極と同じ向きに一定の直流バイアス電圧を加えておき、このバイアス電圧に前記交番電圧を重畳したものを駆動電圧とすることにより、駆動電圧の向きが分極の向きと逆になることがないようにする。この場合の揺動は、バイアス電圧だけを印加したときの位置を中央とするものとなる。

【0043】なお、圧電・電歪材料とは、逆圧電効果または電歪効果により伸縮する材料を意味する。圧電・電 歪材料は、上述したようなアクチュエータの変位発生アーム部に適用可能な材料であれば何であってもよいが、 剛性が高いことから、通常、PZT [Pb (Zr, Ti) O_3]、PT ($PbTiO_3$)、PLZT [(Pb, La) (Zr, Ti) O_3]、F0 (Zr, Zr) (Zr) (Zr

【0044】本実施形態において重要なポイントは、図には示されていないが、HGA全体が例えばフッ素系コーティング剤である低表面エネルギーコーティング剤による被覆膜で覆われていることである。フッ素系コーテ 20ィング剤としては、例えば、住友スリーエム株式会社のフロラードFC-722が用いられる。

【0045】このように、HGA全体を被覆膜で覆うことにより、アクチュエータ22のPZT部分も全て被覆されることとなるから、脱粒が皆無となる。FC-722等のフッ素系コーティング剤は、揮水性があるため、高温度、高湿度の環境下においてもコーティング剤の吸水によるマイグレーションが生じない。

【0046】また、PZTのみならずアクチュエータ22及びヘッドスライダ21の電極端子部まで被覆される30ので、接続の信頼性向上をも図ることができる。加えて、ヘッドスライダ21のABSも同時に被覆されるため、ABSへのコンタミネーション付着をも防止できる。

【0047】本発明のHGAにおけるサスペンションの構造は、以上述べた構造に限定されるものではないことは明らかである。なお、図示されていないが、サスペンション20の途中にヘッド駆動用ICチップを装着してもよい。

【0048】図4は、本実施形態におけるHGAの一製 40 造過程を説明するためのフローチャートである。

【0049】まず、前述のごときアクチュエータ22及び磁気ヘッドスライダ21を用意する(ステップS1)。

【0050】サスペンション側においては、用意されたサスペンション20 (ステップS2)のフレクシャ26の舌部26aの接着部に接着剤を塗布する (ステップS3)。

【0051】次いで、アクチュエータ22とサスペンションとの組み付けを行い(ステップS4)、その後、紫 50

10

外線を照射して接着剤をある程度硬化させ、仮接着を行う(ステップS5)。

【0052】次いで、アクチュエータ22の端子電極をフレクシャ26の舌部26aに形成された接続パッドに接続すべく、対応する部分に銀ペーストを塗布し(ステップS6)、加熱して銀ペーストを焼成すると共に接着剤を完全に熱硬化させる(ステップS7)。

【0053】その後、このようにして組み立てたアクチュエーターサスペンションアッシーにおけるアクチュエータ22の固着面上に接着剤を塗布する(ステップS8)。

【0054】次いで、これらアクチュエーターサスペンションアッシー上に磁気ヘッドスライダ21を組み付けてHGAの形成を行い(ステップS9)、その後、紫外線を照射して接着剤をある程度硬化させ、仮接着を行った(ステップS10)後、さらに、加熱して接着剤を完全に熱硬化させる(ステップS11)。

【0055】次いで、磁気ヘッドスライダ21の端子電極をフレクシャ26の先端部に設けられた接続パッド29に接続する処理を行う(ステップS12)。

【0056】その後、このようにして組み立てたHGAを、丸ごと、フッ素系コーティング剤である例えば、住友スリーエム株式会社のフロラードFC-722の溶液内にディップする(ステップS13)。具体的には、単なる一例であるが、FC-722(2%)を、溶剤である住友スリーエム株式会社のPF5060(98%)で溶解して得た溶液中に浸漬(ディップ)する。

【0057】次いで、HGAをこの溶液から引き上げて 乾燥させる(ステップS14)。この乾燥は、オープン 内にHGAを入れ、例えば120℃、約30分の熱硬化 を行うことによりなされる。紫外線又は赤外線を照射し て熱硬化させてもよい。

【0058】これにより、HGA全体が被覆膜で覆われているので、アクチュエータのPZT部分も全て被覆されることとなるから、脱粒が皆無となる。FC-722等のフッ素系コーティング剤は、揮水性があるため、高温度、高湿度の環境下においてもコーティング剤の吸水によるマイグレーションが生じない。

【0059】また、PZTのみならずアクチュエータ22及びヘッドスライダ21の電極端子部まで被覆されるので、接続の信頼性向上をも図ることができる。加えて、ヘッドスライダ21のABSも同時に被覆されるため、ABSへのコンタミネーション付着をも防止できる。さらに、接着等の工程を経てHGAを形成した後、このHGA全体にフッ素系コーティング剤による被覆膜を形成しているので、接着強度が低下することは全くない。しかも、ディップのみでHGAのコーティングができるので、製造工程を大幅に簡易化できる。

【0060】HGA全体を覆う被覆膜の膜厚は、ディップ時の溶液の濃度、ディップしてHGAをディップ槽か

ら引き上げる時の速度(一般に、引き上げ速度が速いと 膜厚は厚くなり、遅いと薄くなる)、ディップ温度等に よって制御可能であるが、あまり厚くなるとアクチュエ ータ22の動きが阻害されてストローク(変位)が低下 してしまう。図5は被覆膜の膜厚に対するストロークの 低下特性を表す図である。同図から分かるように、被覆 膜の膜厚は、1.8nm以下であることがHGAの各部 材間の間隙を埋めることなく薄膜コーティングが行える 点から好ましく、1.2nm以下であることがより好ま しい。

【0061】なお、HGAをディップさせる溶液は、フッ素系コーティング剤溶液に限定されることなく、低表面エネルギーコーティング剤溶液であればいかなるものであってもよい。

【0062】図6は本発明の他の実施形態におけるHGA全体を表す斜視図であり、図7及び図8は図6の実施 形態におけるHGAの先端部を互いに異なる方向から見 た斜視図である。なお、本実施形態は、アクチュエータ として、スライダ挟設型のものを用いた場合である。

【0063】図6~図8に示すように、本実施形態にお 20 けるHGAは、サスペンション60の先端部に、磁気へッド素子を有する磁気ヘッドスライダ61の側面を挟持している精密位置決めを行うためのアクチュエータ62 を固着して構成される。

【0064】図1に示す主アクチュエータ15はHGA17を取り付けた駆動アーム16を変位させてアセンブリ全体を動かすために設けられており、このアクチュエータ62はそのような主アクチュエータ15では駆動できない微細な変位を可能にするために設けられている。

【0065】サスペンション60は、図6~図8に示す 30 ように、第1及び第2のロードビーム63及び64と、これら第1及び第2のロードビーム63及び64を互いに連結する弾性を有するヒンジ65と、第2のロードビーム64及びヒンジ65上に固着支持された弾性を有するフレクシャ66と、第1のロードピーム63の取り付け部63aに設けられた円形のペースプレート67とから主として構成されている。

【0066】フレクシャ66は、第2のロードビーム64に設けられたディンプル(図示なし)に押圧される軟らかい舌部66aを一方の端部に有しており、この舌部66a上には、ポリイミド等による絶縁層66bを介してアクチュエータ62の基部62aが固着されている。このフレクシャ66は、この舌部66aでアクチュエータ62を介して磁気ヘッドスライダ61を柔軟に支えるような弾性を持っている。フレクシャ66は、本実施形態では、厚さ約20 μ mのステンレス鋼板(例えばSUS304TA)によって構成されている。なお、フレクシャ66と第2のロードビーム64及びヒンジ65との固着は、複数の溶接点によるピンポイント固着によってなされている。

12

【0067】ヒンジ65は、第2のロードビーム64に アクチュエータ62を介してスライダ61を磁気ディス ク方向に押えつける力を与えるための弾性を有している。このヒンジ65は、本実施形態では、厚さ約 40μ mのステンレス鋼板によって構成されている。

【0068】第1のロードビーム63は、本実施形態では、約100μm厚のステンレス鋼板で構成されており、ヒンジ65をその全面に渡って支持している。ただし、ロードビーム63とヒンジ65との固着は、複数の溶接点によるピンポイント固着によってなされている。また、第2のロードビーム64も、本実施形態では、約100μm厚のステンレス鋼板で構成されており、ヒンジ65にその端部において固着されている。ただし、ロードビーム64とヒンジ65との固着も、複数の溶接点によるピンポイント固着によってなされている。なお、この第2のロードビーム64の先端には、非動作時にHGAを磁気ディスク表面から離しておくためのリフトタブ64aが設けられている。

【0069】ベースプレート67は、本実施形態では、約 150μ m厚のステンレス鋼又は鉄で構成されており、第100ードピーム63の基部の取り付け部63aに溶接によって固着されている。このベースプレート67が駆動アーム16(図1)に取り付けられる。

【0070】フレクシャ66上には、積層薄膜パターンによる複数のリード導体を含む可撓性の配線部材68が形成又は載置されている。配線部材68は、FPCのごとく金属薄板上にプリント基板を作成するのと同じ公知のパターニング方法で形成されている。この配線部材68は、例えば、厚さ約 5μ mのポリイミド等の樹脂材料による第1の絶縁性材料層、パターン化された厚さ約 4μ mのCu層(リード導体層)及び厚さ約 5μ mのポリイミド等の樹脂材料による第2の絶縁性材料層をこの順序でフレクシャ66側から順次積層することによって形成される。ただし、磁気ヘッド素子、アクチュエータ及び外部回路と接続するための接続パッドの部分は、Cu層上にAu層が積層形成されており、その上に絶縁性材料層は形成されていない。

【0071】本実施形態においてこの配線部材68は、磁気ヘッド素子に接続される片側2本、両側で計4本のリード導体を含む第1の配線部材68aと、アクチュエータ62に接続される片側1本、両側で計2本のリード導体を含む第2の配線部材68bとから構成されている。

【0072】第1の配線部材68aのリード導体の一端は、フレクシャ66の先端部において、このフレクシャ66から切り離されており自由運動できる分離部66c上に設けられた磁気ヘッド素子用接続パッド69に接続されている。接続パッド69は、磁気ヘッドスライダ61の端子電極61aに金ポンディング、ワイヤポンディング又はステッチポンディング等により接続されてい

50

30

40

50

る。第1の配線部材68aのリード導体の他端は外部回路と接続するための外部回路用接続パッド70に接続されている。

【0073】第2の配線部材68bのリード導体の一端は、フレクシャ66の舌部66aの絶縁層66b上に形成されたアクチュエータ用接続パッド71に接続されており、この接続パッド71はアクチュエータ62の基部62aに設けられたAチャネル及びBチャネル信号端子電極62b及び62cにそれぞれ接続されている。第2の配線部材68bのリード導体の他端は外部回路と接続10するための外部回路用接続パッド70に接続されている。

【0074】本発明のHGAにおけるサスペンションの構造は、以上述べた構造に限定されるものではないことは明らかである。なお、図示されていないが、サスペンション60の途中にヘッド駆動用ICチップを装着してもよい。

【0075】図9は本実施形態におけるアクチュエータの構造を示す平面図である。

【0076】同図に示すように、アクチュエータ62 は、その平面形状が略コ字状となっており、サスペンシ ョンに固着される基部90(62a)の両端から1対の 可動アーム部91及び92が垂直に伸びている。可動ア ーム部91及び92の先端部には、磁気ヘッドスライダ 61の側面に固着されるスライダ固着部93及び94が それぞれ設けられている。スライダ固着部93及び94 間の間隔は、挟設すべき磁気ヘッドスライダの幅よりや や小さくなるように設定されている。アクチュエータ6 2の厚さは、アクチュエータ実装によりHGAの厚さを 増大させないように、挟設すべき磁気ヘッドスライダの 厚さ以下に設定されている。逆にいえば、アクチュエー タ62の厚さを挟設すべき磁気ヘッドスライダの厚さま で大きくすることによって、HGAの厚さを増大させる ことなくアクチュエータ自体の強度を上げることができ る。

【0077】スライダ固着部93及び94は、磁気ヘッドスライダ61方向に突出しており、これによって、この部分のみが磁気ヘッドスライダ61の側面と固着され、磁気ヘッドスライダ側面と可動アーム部91及び92との間の残りの部分が空隙となるようになされている。

【0078】可動アーム部91及び92は、それぞれ、アーム部材91a及び92aとこれらアーム部材91a及び92aとの側面に形成された圧電素子91b及び92bとから構成されている。

【0079】基部90並びにアーム部材91a及び92 aは、弾性を有するセラミック焼結体、例えばZrO2 で一体的に形成されている。このように、アクチュエー タの主要部を剛性の高い即ち撓みに対して強いZrO2 等のセラミック焼結体とすることにより、アクチュエー 14

夕自体の耐衝撃性が向上する。

【0080】圧電素子91b及び92bの各々は、逆圧電効果又は電歪効果により伸縮する圧電・電歪材料層と信号電極層とグランド電極層とが交互に積層された多層構造となっている。信号電極層は図7及び図8に示すAチャネル又はBチャネル信号端子電極62b又は62cに接続されており、グランド電極層はグランド端子62d又は62eに接続されている。

【0081】圧電・電歪材料層がPZT等のいわゆる圧電材料から構成されており、通常、変位性能向上のための分極処理が施されている。この分極処理による分極方向は、圧電素子の積層方向である。電極層に電圧を印加したときの電界の向きが分極方向と一致する場合、両電極間の圧電・電歪材料層はその厚さ方向に伸長(圧電縦効果)し、その面内方向では収縮(圧電縦効果)する。一方、電界の向きが分極方向と逆である場合、圧電・電 歪材料層はその厚さ方向に収縮(圧電縦効果)し、その面内方向では伸長(圧電横効果)する。

【0082】圧電素子91b及び92bに、収縮又は伸長を生じさせる電圧を印加すると、各圧電素子部分がその都度収縮又は伸長し、これによって可動アーム部91及び92の各々は、S字状に撓みその先端部が横方向に直線的に揺動する。その結果、磁気ヘッドスライダ61も同様に横方向に直線的に揺動する。このように、角揺動ではなく、直線揺動であるため、磁気ヘッド素子のより精度の高い位置決めが可能となる。

【0083】両圧電素子に、互いに逆の変位が生じるよ うな電圧を同時に印加してもよい。即ち、一方の圧電素 子と他方の圧電素子とに、一方が伸長したとき他方が収 縮し、一方が収縮したとき他方が伸長するような交番電 圧を同時に印加してもよい。このときの可動アーム部の 揺動は、電圧無印加時の位置を中央とするものとなる。 この場合、駆動電圧を同じとしたときの揺動の振幅は、 電圧を交互に印加する場合の約2倍となる。 ただし、こ の場合、揺動の一方の側では圧電素子を伸長させること になり、このときの駆動電圧は分極の向きと逆となる。 このため、印加電圧が高い場合や継続的に電圧印加を行 う場合には、圧電・電歪材料の分極が減衰するおそれが ある。従って、分極と同じ向きに一定の直流バイアス電 圧を加えておき、このバイアス電圧に上述の交番電圧を 重畳したものを駆動電圧とすることにより、駆動電圧の 向きが分極の向きと逆になることがないようにする。こ の場合の揺動は、バイアス電圧だけを印加したときの位 置を中央とするものとなる。

【0084】なお、圧電・電歪材料とは、逆圧電効果または電歪効果により伸縮する材料を意味する。圧電・電 歪材料は、上述したようなアクチュエータの可動アーム 部に適用可能な材料であれば何であってもよいが、剛性 が高いことから、通常、PZT [Pb(Zr, Ti)O3]、PT(PbTiO3)、PLZT [(Pb, L

a) $(Zr, Ti)O_3$]、チタン酸パリウム($BaTiO_3$)等のセラミックス圧電・電歪材料が好ましい。

【0085】本実施形態において重要なポイントは、図には示されていないが、HGA全体が例えばフッ素系コーティング剤である低表面エネルギーコーティング剤による被覆膜で覆われていることである。フッ素系コーティング剤としては、例えば、住友スリーエム株式会社のフロラードFC-722が用いられる。

【0086】このように、HGA全体を被覆膜で覆うことにより、アクチュエータ62のP2T部分も全て被覆されることとなるから、脱粒が皆無となる。FC-722等のフッ素系コーティング剤は、揮水性があるため、高温度、高湿度の環境下においてもコーティング剤の吸水によるマイグレーションが生じない。

【0087】また、P2Tのみならずアクチュエータ62及びヘッドスライダ61の電極端子部まで被覆されるので、接続の信頼性向上をも図ることができる。加えて、ヘッドスライダ61のABSも同時に被覆されるため、ABSへのコンタミネーション付着をも防止できる。

【0088】本発明のHGAにおけるサスペンションの構造は、以上述べた構造に限定されるものではないことは明らかである。なお、図示されていないが、サスペンション60の途中にヘッド駆動用ICチップを装着してもよい。

【0089】図10は、本実施形態におけるHGAの一製造過程を説明するためのフローチャートである。

【0090】まず、前述のごときアクチュエータ62を 用意する(ステップS101)。

【0091】磁気ヘッドスライダ61側においては、用意された磁気ヘッドスライダ61(ステップS102)の両側面に接着剤を塗布する(ステップS103)。

【0092】次いで、この磁気ヘッドスライダ61を、同じく平面板上に載置されているアクチュエータ62の可動アーム部91及び92間に挿入し(ステップS104)、その後、紫外線を照射して接着剤をある程度硬化させ、仮接着を行う(ステップS105)。なお、アクチュエータ62の可動アーム部91及び92におけるスライダ固着部93及び94間の間隔が磁気ヘッドスライダ61の幅よりやや小さくなるように設定しておけば、可動アーム部91及び92の把持力で磁気ヘッドスライダ61は、ホルダ等を用いることなく仮固定される。

【0093】次いで、加熱して接着剤を完全に熱硬化させる(ステップS106)。これにより、磁気ヘッドスライダ61とアクチュエータ62との複合体であるスライダーアクチュエータアッシーが形成される。

【0094】一方、前述したようなサスペンションを用意し(ステップS107)、そのフレクシャ66の舌部66aにおける絶縁層66b上とフレクシャ66の分離部66c上に接着剤をそれぞれ塗布しておき(ステップ50

16

S108)、スライダーアクチュエータアッシーをサスペンション上に接着固定する。これにより、スライダーアクチュエータアッシーのサスペンションへの組み付けが行われてHGAが形成される(ステップS109)。

【0095】次いで、紫外線を照射して接着剤をある程度硬化させ、仮接着を行った(ステップS110)後、さらに、加熱して接着剤を完全に熱硬化させる(ステップS111)。

【0096】次いで、磁気ヘッドスライダ61及びアク 10 チュエータ62の端子電極を接続パッドに接続する処理 を行う(ステップS112)。

【0097】その後、このようにして組み立てたHGAを丸ごと、フッ素系コーティング剤である例えば、住友スリーエム株式会社のフロラードFC-722の溶液内にディップする(ステップS113)。具体的には、単なる一例であるが、FC-722(2%)を、溶剤である住友スリーエム株式会社のPF5060(98%)で溶解して得た溶液中に浸漬(ディップ)する。

【0098】次いで、HGAをこの溶液から引き上げて 20 乾燥させる(ステップS114)。この乾燥は、オーブ ン内にHGAを入れ、例えば120℃、約30分の熱硬 化を行うことによりなされる。紫外線又は赤外線を照射 して熱硬化させてもよい。

【0099】これにより、HGA全体が被覆膜で覆われているので、アクチュエータのPZT部分も全て被覆されることとなるから、脱粒が皆無となる。FC-722等のフッ素系コーティング剤は、揮水性があるため、高温度、高湿度の環境下においてもコーティング剤の吸水によるマイグレーションが生じない。

【0100】また、PZTのみならずアクチュエータ62及びヘッドスライダ61の電極端子部まで被覆されるので、接続の信頼性向上をも図ることができる。加えて、ヘッドスライダ61のABSも同時に被覆されるため、ABSへのコンタミネーション付着をも防止できる。さらに、接着等の工程を経てHGAを形成した後、このHGA全体にフッ素系コーティング剤による被覆膜を形成しているので、接着強度が低下することは全くない。しかも、ディップのみでHGAのコーティングができるので、製造工程を大幅に簡易化できる。

40 【0101】 HGA全体を覆う被覆膜の膜厚に付いては、図1の実施形態の場合と同様に、1.8 nm以下であることがHGAの各部材間の間隙を埋めることなく薄膜コーティングが行える点から好ましく、1.2 nm以下であることがより好ましい。

【0102】なお、HGAをディップさせる溶液は、フッ素系コーティング剤溶液に限定されることなく、低表面エネルギーコーティング剤溶液であればいかなるものであってもよい。

【0103】本実施形態のその他の構成及び作用効果は、図1の実施形態の場合と全く同様であるため、説明

を省略する。

【0104】以上、薄膜磁気ヘッド素子の微小位置決め 用アクチュエータを備えたHGAを用いて本発明を説明 したが、本発明は、このようなアクチュエータを備えた HGAにのみ限定されるものではなく、薄膜磁気ヘッド 素子以外の例えば光ヘッド素子等のヘッド素子の微小位 置決め用アクチュエータを備えたHGAにも適用可能で ある。

【0105】以上述べた実施形態は全て本発明を例示的 に示すものであって限定的に示すものではなく、本発明 10 を示す平面図である。 は他の種々の変形態様及び変更態様で実施することがで きる。従って本発明の範囲は特許請求の範囲及びその均 等範囲によってのみ規定されるものである。

[0106]

【発明の効果】以上詳細に説明したように本発明によれ ば、HGA全体が例えばフッ素系コーティング剤である 低表面エネルギーコーティング剤による被覆膜で覆われ ているので、アクチュエータの圧電材料部分も全て被覆 されることとなるから、脱粒が皆無となる。低表面エネ ルギーコーティング剤は、揮水性があるため、高温度、 高湿度の環境下においてもコーティング剤の吸水による マイグレーションが生じない。

【0107】また、圧電材料のみならずアクチュエータ 及びヘッドスライダの電極端子部まで被覆されるので、 接続の信頼性向上をも図ることができる。加えて、ヘッ ドスライダの浮上面(ABS)も同時に被覆されるた め、ABSへのコンタミネーション付着をも防止でき

【0108】さらに、HGAを形成した後、このHGA 全体に例えばフッ素系コーティング剤である低表面エネ 30 ルギーコーティング剤による被覆膜を形成しているの で、即ち、接着後にコーティングしているので、接着強 度が低下することは全くない。

【0109】被覆膜の形成を、HGAを例えばフッ素系 コーティング剤である低表面エネルギーコーティング剤 溶液内に浸漬した後、乾燥して行えば、HGAの各部材 間の間隙を埋めることなく薄膜コーティングが行えるか ら、アクチュエータの動作が阻害されない。しかも、浸 漬のみでHGAのコーティングができるので、製造工程 を大幅に簡易化できる。

【図面の簡単な説明】

【図1】本発明の一実施形態として、磁気ディスク装置 の要部の構成を概略的に示す斜視図である。

【図2】図1の実施形態におけるヘッドサスペンション アセンブリの全体をスライダ側から見た平面図である。

【図3】図1の実施形態におけるアクチュエータ及び磁 気ヘッドスライダのフレクシャへの取り付け構造を示す 分解斜視図である。

【図4】図1の実施形態におけるHGAの一製造過程を 説明するためのフローチャートである。

【図5】被覆膜の膜厚に対するストロークの低下特性を 表す図である。

【図6】本発明の他の実施形態におけるHGA全体を表 す斜視図である。

【図7】図6の実施形態におけるHGAの先端部の斜視 図である。

【図8】図6の実施形態におけるHGAの先端部を図3 とは異なる方向から見た斜視図である。

【図9】図6の実施形態におけるアクチュエータの構造

【図10】図6の実施形態におけるHGAの一製造過程 を説明するためのフローチャートである。

【符号の説明】

1.0 磁気ディスク

11、13 軸

12 アセンブリキャリッジ装置

14 キャリッジ

15 主アクチュエータ

16 駆動アーム

20 17 HGA

20、60 サスペンション

21、61 磁気ヘッドスライダ

21a 所定部

21b 磁気ヘッド素子

22、62 アクチュエータ

22a 固定部

22b 可動部

22 c 、 22 d 変位発生アーム部

23 ロードビーム

23a、63a 取り付け部

26、66 フレクシャ

26a、66a 舌部

27、67 ベースプレート

28、68 配線部材

28a、68a 第1の配線部材

28b、68b 第2の配線部材

29、69 磁気ヘッド素子用接続パッド

30、70 外部回路用接続パッド

61a 端子電極

40 62a、90 基部

62b、62c 信号端子電極

62 d、62 e グランド端子電極

63 第1のロードビーム

64 第2のロードビーム

64a リフトタブ

65 ヒンジ

66b 絶縁層

66c 分離部

71 アクチュエータ用接続パッド

50 91、92 可動アーム部

91a、92a アーム部材 91b、92b 圧電素子

93、94 スライダ固着部

【図2】

【図3】

【図7】

【図4】

【図6】

【図10】

\

THIS PAGE BLANK (USPTO)