# 1 Osnove

### 1.1 Ponovitev logaritmov

- $\bullet \ log_a x = \frac{log_b x}{log_b a}$
- $log_b(\frac{x}{y}) = log_b x log_b y$
- $x = b^y \implies log_b x = y$
- $log_2x = logx$
- 0log0 = 0

**1.2 Entropija** je povprecje vseh lastnih informacij:

$$H(X) = \sum_{i=1}^{n} p_i I_i = -\sum_{i=1}^{n} p_i log p_i$$

Lastnosti: je zvezna, simetricna funckija (vrsni red  $p_i$  ni pomemben, sestevanje je komutativno). Je vedno vecja od 0 ( $p_i \ge 0 \to -p_i \log p_i \ge 0 \to H(X) \ge 0$ ) in navzgor omejena z  $\log n$ .

Ce sta dogodka **neodvisna** velja aditivnost: H(X,Y) = H(X) + H(Y).

Vec zaporednih dogodkov neodvisnega vira:  $X^l = X \times \cdots \times X \to H(X^l) = lH(X)$ .

# 2 Kodi

#### 2.1 Uvod

 $\mathbf{Kod}$  sestavljajo kodne zamenjave, ki so sestavljene iz znakov  $\mathbf{kodne}$  abecede. Stevilo znakov v kodni abecedi oznacujemo z  $\mathbf{r}$ .

Ce so  $\{p_1, \ldots, p_n\}$  verjetnosti znakov  $\{s_1, \ldots, s_n\}$  osnovnega sporocila in  $\{l_1, \ldots, l_n\}$  dolzine prejetih kodnih zmanjav, je povprecna dolzina kodne zamenjave

$$L = \sum_{i=1}^{n} p_i l_i$$

# 2.2 Tipi kodov

- optimalen ce ima najmanjso mozno dolzino kodnih zamenjav
- idealen ce je povprecna dolzina kodnih zamenjav enaka entropiji
- enakomeren ce je dolzina vseh kodnih zamenjav enaka
- enoznacen ce lahko poljuben niz znakov dekodiramo na en sam nacin
- trenuten ce lahko osnovni znak dekodiramo takoj, ko sprejmemo celotno kodno zamenjavo
- **2.3** Kraftova neenakost Za dolzine kodnih zamenjav  $\{l_1, \ldots, l_n\}$  in r znaki kodne abecede obstaja trenutni kod, iff

$$\sum_{i=1}^{n} r^{-li} \le 1$$

# 2.4 Povprecna dolzina in ucinkovitost

Najkrajse kodne zamenjave imamo, ce velja:

$$H_r(X) = L \to l_i = \lceil -\log_r p_i \rceil$$

Ucinkovitost koda:

$$\eta = \frac{H(X)}{L \log_r}, \eta \in [0, 1]$$

Kod je **gospodaren**, ce je L znotraj:

$$H_r(X) \le L < H_r(X) + 1$$

kjer je  $H_r(X)$ :

$$H_r(X) = -\sum_{i=1}^n \frac{\log_{p_i}}{\log_r} = \frac{H(X)}{\log_r}$$

#### 2.5 Shannonov prvi teorem

Za nize neodvisnih znakov dozline n obstajajo kodi, za katere velja:

$$\lim_{n\to\infty} \frac{L_n}{n} = H(X)$$

pri cemer je H(X) entropija vira X. Postopek kodiranja po Shannonu:

- 1. znake razvrstimo po padajocih verjetnostih
- 2. dolocimo stevilo znakov v vsaki kodni zamenjavi  $(l_k)$
- 3. za vse simbole izracunamo komulativne verjetnosti  $(P_k = \sum_{i=1}^{k-1} p_i)$
- 4.  $P_k$  pretvorimo v bazo r. Kodno zamenjavo predstavlja prvih  $l_k$  znakov necelega dela stevila

#### 2.6 Fanojev kod

Postopek kodiranja:

- 1. znake razvrstimo po padajocih verjetnostih
- 2. znake razdelimo v $\boldsymbol{r}$ cim bolj enako verjetnih skupin
- 3. Vsaki skupini priredimo enega od r znakov kodne abecede
- 4. Deljenje ponovimo na vsaki od skupin. Postopek ponavljamo, dokler je mogoce

#### 2.7 Huffmanov kod

Huffmanov postopek kodiranja poteka od spodaj navzgor (Pri Fanoju je ravno obratno). Pri huffmanovem kodu imamo dve fazi:

#### 1. Zdruzevanje

(a) Posici r najmanj verjetnih znakov in jih zdruzi v sestavljeni znak, katerega verjetnost je vsota verjetnosti vseh znakov

- (b) Preostale znake skupaj z novo sestavljenim znakom spet razvrsti
- (c) Postopek ponavljaj dokler ne ostane samo r znakov

## 2. Razdruzevanje

- (a) Vsakemu od preostalih znakov priredi po en znak kodirne abecede
- (b) Vsak sestavljeni znak razstavi in mu priredi po en znak kodirne abecede
- (c) Ko zmanjka sestavljenih znakov, je postopek zakljucen

Pred kodiranjem, je vedno pametno preveriti, ce imamo zadostno stevilo znakov. Veljati mora:

$$n = r + k(r-1), k \ge 0$$

Ce imamo premalo znakov, jih po potrebi dodamo s verietnostjo p = 0.

Huffmanov kod lahko razsirimo tako, da vec osnovnih znakov zdruzujemo v sestavljene znake  $\rightarrow$  bolj ucinkoviti kodi. Vendar naletimo na nevarnost kombinacijske eksplozije.

# 2.9 Aritmeticni kod

Je hiter in blizu optimalnemu kodu. Je manj ucinkovit kot Huffmanov, vendar se izogne kombinacijski eksploziji. Vsak niz je predstavljen kot realno stevilo  $0 \le R < 1$ , kar nam pove, da daljsi kot bo niz, bolj natancno mora biti podano naravno stevilo R.

Postopek kodiranja(znakov ni potrebno razvrstiti):

- 1. Zacnemo z intervalom [0, 1]
- Izbrani interval razdelimo na n podintervalov, ki se ne prekrivajo. Sirine podintervalov ustrezajo verjetnostim znakov. Vsak podinterval predstavlja en znak
- 3. Izberemo podintrval, ki ustreza iskanemu znaku
- 4. Ce niz se ni koncan, izbrani podinterval ponovno razdelimo (bne 2.tocka)
- 5. Niz lahko predstavimo s poljubnim realnim stevilom v zadnjem podintervalu

Ko dobimo realni interal, ga samo se pretvorimo v binarnega s pomocjo klasicnega pretvarjanja iz dec v bin stevilski sistem.