# Project C: <u>Coronary Heart Disease Predictor</u> With Azure Deployment

Owner: Reema Lad

IMS ID No.: IMSPRO143500 Monday, May 19, 2021

#### **Project Case**



#### **Problem Statement**

A healthcare organization together with a couple of government hospitals in a city has collected information about the vitals that would reveal if the person might have a coronary heart disease in the next ten years or not.

#### **Case Study Background**

This study is useful in early identification of disease and have medical intervention if necessary. This would help not only in improving the health conditions but also the economy as it has been identified that health performance and economic performance are interlinked.



#### **EDA And Data Preprocessing: Python**

### Original Data

ID 0 IV 0 A1 0 A2 1743 А3 0 0 Α4 Δ5 0 Α6 A7 0 Α8 0 Α9 0 A10 A11 0 0 A12 A13 A14 A15 0 A16 0 0 A17 A18 A19 0 A20 0 0 A21 A22 Target

## Data Post Imputing Negative Values

ID 0 ΤV 971 A1 0 A2 1743 Δ3 0 Δ4 0 0 A5 Α6 0 A7 0 0 Α8 A9 0 0 A10 A11 A12 0 A13 0 0 A14 A15 2233 A16 2103 A17 0 A18 0 0 A19 A20 0 A21 0 A22 0 Target

#### Data Post Manipulation

0 ID 0 TV A2 Δ3 A5 A6 0 A7 Α8 A9 A10 A11 0 A12 0 Δ13 A14 A15 0 0 A16 A17 A18 A19 0 A20 0 A21 A22 0 Target

#### Data Post Cleaning

RangeIndex: 34281 entries, 0 to 34280 Data columns (total 23 columns): Column Non-Null Count Dtype 34281 non-null float64 34281 non-null float64 1 A1 2 A2 34281 non-null float64 3 34281 non-null float64 4 Α4 34281 non-null float64 5 A5 34281 non-null float64 6 A6 34281 non-null float64 7 34281 non-null float64 8 34281 non-null float64 9 Δ9 34281 non-null float64 34281 non-null float64 10 A10 11 A12 34281 non-null float64 12 A13 34281 non-null float64 34281 non-null float64 13 A14 A15 34281 non-null float64 14 15 A16 34281 non-null float64 34281 non-null float64 A17 16 A18 34281 non-null float64 18 A19 34281 non-null float64 19 A20 34281 non-null float64 A21 34281 non-null float64 20 A22 34281 non-null float64 22 Target 34281 non-null float64

dtypes: float64(23)

#### **Data Post PCA**

RangeIndex: 34281 entries, 0 to 34280
Data columns (total 5 columns):

# Column Non-Null Count Dtype
-------0 PC\_1 34281 non-null float64
1 PC\_2 34281 non-null float64
2 PC\_3 34281 non-null float64
3 PC\_4 34281 non-null float64
4 Target 34281 non-null float64
dtypes: float64(5)

#### $PCA(n_{components} = 4)$



#### **Data Preprocessing Summary & Observations**

#### **Missing Value**

Imputation of all "NAs", <0 values, with Mean for : A2, IV, A15 & A16

#### **Dropping Features**

ID: as it's a unique identity for each row AND A11: as it has a constant value

#### **High Corelation in Data**

There is high corelation between: >>> A5, A6, A7 >>> A9, A10, A12 >>> A15, A16

#### Target Variable

Imbalanced Target Variable – "Target" >>> 0 : No : 22,988 >>> 1 : Yes : 11,293

Basis pre-processing, identified optimal **4 PC's**, models will be deployed also using 4 PC's along with all predictor variables

#### **Predictor Variables**

The data range of most features are too wide also there are outliers

#### **Data Challenges & Resolution**

- As there is high corelation between certain predictor variables and the data is without clear feature definition / headers (explanation) hence would be assumed as unsupervised data, so attempted to create PC's and check the model performance using these components.
- Proposing to use Logistic, Random Forest (Bagging), GBM (Boosting). Will deploy using All Features as well as PC's, this might help in **improving model performance**.
- As Target variable is imbalanced will used stratified Split while deployment in Azure
- The predictor variables (most of them) have a **very wide range** as well as have **outliers**. For range variance in Azure pre-processed by Scaling and outliers treated with median value basis cut-off percentile





#### **Azure Model Building : All Predictors** Project\_CleanData.csv Missing Values Scrubber ∑ij Summarize Data Clip Values Normalize Data Split Data Two-Class Support Vector M Continued from Previous Slide Train Model Train Model Train Model Score Model Score Model Train Model Train Model Score Model Score Model Score Model

Evaluate Model

Evaluate Model

Evaluate Model

V

#### **Azure Model Building: Principal Components Only**



#### Logistic Regression With All Features: Train - Test Evaluation



#### Random Forest With All Features: Train – Test Evaluation



#### Light GBM With All Features: Train – Test Evaluation



#### SVM With All Features: Train - Test Evaluation



#### Logistic Regression With PC's Only: Train – Test Evaluation



#### Random Forest With PC's Only: Train – Test Evaluation



#### Light GBM With PC's Only: Train – Test Evaluation



#### SVM With PC's Only: Train - Test Evaluation



| Azure |  |  |
|-------|--|--|
|       |  |  |

| Model Name    | True<br>Positive | False<br>Negative | False<br>Positive | True<br>Negative | Accuracy | Precision | Recall | F1 Score | Threshold | AUC   | Positive<br>Label | Negative<br>Label |
|---------------|------------------|-------------------|-------------------|------------------|----------|-----------|--------|----------|-----------|-------|-------------------|-------------------|
| RF Test       | 3280             | 108               | 24                | 6872             | 0.987    | 0.993     | 0.968  | 0.98     | 0.5       | 0.999 | 1                 | 0                 |
| RF Train      | 7752             | 153               | 62                | 16030            | 0.991    | 0.992     | 0.981  | 0.986    | 0.5       | 1     | 1                 | 0                 |
| RF Test_PC    | 3213             | 175               | 40                | 6856             | 0.979    | 0.988     | 0.948  | 0.968    | 0.5       | 0.999 | 1                 | 0                 |
| RF Train_PC   | 7587             | 318               | 90                | 16002            | 0.983    | 0.988     | 0.96   | 0.974    | 0.5       | 0.999 | 1                 | 0                 |
| LGBM Test     | 2867             | 521               | 2101              | 4795             | 0.745    | 0.577     | 0.846  | 0.686    | 0.5       | 0.831 | 1                 | 0                 |
| LGBM Train    | 6771             | 1134              | 4784              | 11308            | 0.753    | 0.586     | 0.857  | 0.696    | 0.5       | 0.833 | 1                 | 0                 |
| LR Test       | 1296             | 2092              | 371               | 6525             | 0.761    | 0.777     | 0.383  | 0.513    | 0.5       | 0.838 | 1                 | 0                 |
| SVM Test      | 1084             | 2304              | 298               | 6598             | 0.747    | 0.784     | 0.32   | 0.455    | 0.5       | 0.834 | 1                 | 0                 |
| LGBM Test_PC  | 1019             | 2369              | 530               | 6366             | 0.718    | 0.658     | 0.301  | 0.413    | 0.5       | 0.697 | 1                 | 0                 |
| LR Test_PC    | 692              | 2696              | 187               | 6709             | 0.72     | 0.787     | 0.204  | 0.324    | 0.5       | 0.73  | 1                 | 0                 |
| SVM Test_PC   | 666              | 2722              | 167               | 6729             | 0.719    | 0.8       | 0.197  | 0.316    | 0.5       | 0.739 | 1                 | 0                 |
| LR Train      | 3269             | 4636              | 875               | 15217            | 0.77     | 0.789     | 0.414  | 0.543    | 0.5       | 0.849 | 1                 | 0                 |
| SVM Train     | 3072             | 4833              | 1204              | 14888            | 0.748    | 0.718     | 0.389  | 0.504    | 0.5       | 0.801 | 1                 | 0                 |
| LGBM Train_PC | 2277             | 5628              | 1257              | 14835            | 0.713    | 0.644     | 0.288  | 0.398    | 0.5       | 0.686 | 1                 | 0                 |
| LR Train_PC   | 1484             | 6421              | 452               | 15640            | 0.714    | 0.767     | 0.188  | 0.302    | 0.5       | 0.736 | 1                 | 0                 |
| SVM Train_PC  | 1368             | 6537              | 395               | 15697            | 0.711    | 0.776     | 0.173  | 0.283    | 0.5       | 0.747 | 1                 | 0                 |

#### **Model Selection**

Concluded to select Boosting Model, Light GBM, with all Features; siting the following reason:

- Highest accuracy is in Random Forest, using all Features as well as principal components, however considering the possibility of overfitting, considering the next best model.
- 'False Negative' score of each model is given the highest priority while selecting the model, as given the problem statement, where we want to identify the possibility of 'Coronary Heart Disease', Type 2 error needs to be avoided, hence minimal 'False Negative' predictor is considered, followed by model accuracy, consistency across Train & Test models and lastly AUC.



#### **Azure Model Deployment: Predictive Experiment: Excel Prediction**



# Thank You