Image Classification Networks: classical architectures and common design patterns

Jonathon Hare

Vision, Learning and Control University of Southampton

Motivation: Image Classification

Image Classification Competitions

- Corel Dataset, early 2000's
 - Annotation/multi-label classification
 - ~4500/500 small images
- PASCAL VOC Challenges ~2007
 - Object detection and classification

The ImageNet Challenge

- Circa 2009/2010
- ILSVRC Challenge Dataset: 1.3 Million Images in 1000 classes from a larger superset

ILSVRC Top 5 Error on ImageNet

Classic Architectures

AlexNet

ImageNet Classification with Deep Convolutional Neural Networks. https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts at the bottom. The GPUs communicate only at certain layers. The network's input is 150,528-dimensional, and the number of neurons in the network's remaining layers is given by 253,440–186,624–64,896–64,896–43,264–4096–4096–1000.

LRN Layers

- The original AlexNet (and the VGG & GoogleLetNet) contained networks "Local Response Normalisation" layers
 - The motivation was to provide locally higher contrast in feature maps

The All CNN

Striving for Simplicity: The All Convolutional Net. https://arxiv.org/pdf/1412.6806.pdf

Model

A	В	С			
Input 32 × 32 RGB image					
5×5 conv. 96 ReLU	5×5 conv. 96 ReLU	3×3 conv. 96 ReLU			
	1×1 conv. 96 ReLU	3×3 conv. 96 ReLU			
	3×3 max-pooling stride 2				
5×5 conv. 192 ReLU	5×5 conv. 192 ReLU	3×3 conv. 192 ReLU			
	1×1 conv. 192 ReLU	3×3 conv. 192 ReLU			
3×3 max-pooling stride 2					
3×3 conv. 192 ReLU					
1 × 1 conv. 192 ReLU					
1×1 conv. $10~\text{ReLU}$					
global averaging over 6×6 spatial dimensions					
10 or 100-way softmax					

The VGG Networks

Very Deep Convolutional Networks for Large-Scale Image Recognition. https://arxiv.org/pdf/1409.1556.pdf

ConvNet Configuration						
A	A-LRN	В	C	D	Е	
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight	
layers	layers	layers	layers	layers	layers	
input (224 \times 224 RGB image)						
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	
	LRN	conv3-64	conv3-64	conv3-64	conv3-64	
		max	pool			
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	
		conv3-128	conv3-128	conv3-128	conv3-128	
		max	pool			
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	
			conv1-256	conv3-256	conv3-256	
					conv3-256	
maxpool						
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	
			conv1-512	conv3-512	conv3-512	
					conv3-512	
		max	pool			
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	
			conv1-512	conv3-512	conv3-512	
					conv3-512	
maxpool						
FC-4096						
FC-4096						
FC-1000						
soft-max						

GoogLeNet and the Inception Module

(a) Inception module, naïve version

(b) Inception module with dimension reductions

58.9M params

Deep Residual Networks / ResNet

Deep Residual Learning for Image Recognition. https://arxiv.org/pdf/1512.03385.pdf

Do deeper ResNets get you better performance?

method			error (%)
Maxout [10]			9.38
NIN [25]			8.81
DSN [24]			8.22
	# layers	# params	
FitNet [35]	19	2.5M	8.39
Highway [42, 43]	19	2.3M	$7.54 (7.72\pm0.16)$
Highway [42, 43]	32	1.25M	8.80
ResNet	20	0.27M	8.75
ResNet	32	0.46M	7.51
ResNet	44	0.66M	7.17
ResNet	56	0.85M	6.97
ResNet	110	1.7M	6.43 (6.61±0.16)
ResNet	1202	19.4M	7.93

Table 6. Classification error on the **CIFAR-10** test set. All methods are with data augmentation. For ResNet-110, we run it 5 times and show "best (mean±std)" as in [43].

Are ResNets really deep?

Training Classification Networks

Overfitting is a serious concern

- Early nets used dropout extensively
 - BatchNorm has replaced this in more recent architectures
- Significant amounts of data augmentation (the original AlexNet had 2048 augmentations for each training image!)

Competing in ImageNet

- Almost all the winners use a form of test-time augmentation
 - Take multiple views of the input image (e.g. AlexNet took 10 augmentations) and average over the classifications.