Transportation Problems

Transportation Problems

- Transportation Problems: A special class of Linear Programming Problems.
 - Assignment: Special Case of Transportation Problems
- Most of the constraint coefficients (a_{ii}) are zero.
- Thus, it is possible to develop special streamlined algorithms.
 TABLE 8.1 Table of

constraint coefficients for linear programming

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$

- P&T Company producing canned peas.
- Peas are prepared at three canneries, then shipped by truck to four distributing warehouses.
- Management wants to minimize total transportation cost.

The Transportation Problem

- Objective: minimum total shipping cost.
- Decisions: Determine the assignments (shipments from canneries to warehouses), i.e. How much to ship from each cannery to each warehouse.

TABLE 8.2 Shipping data for P & T Co.

		SI						
			Warehouse					
		1	2	3	4	Output		
	1	464	513	654	867	75		
Cannery	2	352	416	690	791	125		
	3	995	682	388	685	100		
Allocation	n	80	65	70	85			

- Network representation
- Arcs (arrows, branches) show possible routes for trucks, numbers on arcs are unit cost of shipment on that route.
- Square brackets show supply (output) and demand (allocation) at each node (circle, vertex)

FIGURE 8.2 Network representation of the P & T Co. problem.

The Transportation Problem

• Linear programming problem of the *transportation problem type*.

let x_{ij} (i = 1, 2, 3; j = 1, 2, 3, 4) be the number of truckloads to be shipped from cannery i to warehouse j. Thus, the objective is to choose the values of these 12 decision variables (the x_{ij}) so as to

Minimize
$$Z = 464x_{11} + 513x_{12} + 654x_{13} + 867x_{14} + 352x_{21} + 416x_{22} + 690x_{23} + 791x_{24} + 995x_{31} + 682x_{32} + 388x_{33} + 685x_{34},$$

subject to the constraints

$$x_{11} + x_{12} + x_{13} + x_{14} = 75$$

$$x_{21} + x_{22} + x_{23} + x_{24} = 125$$

$$x_{31} + x_{32} + x_{33} + x_{34} = 100$$

$$x_{11} + x_{21} + x_{21} + x_{31} = 80$$

$$x_{12} + x_{22} + x_{23} + x_{32} = 65$$

$$x_{13} + x_{23} + x_{24} + x_{33} = 70$$

$$x_{14} + x_{24} + x_{24} + x_{34} = 85$$

and

$$x_{ij} \ge 0$$
 $(i = 1, 2, 3; j = 1, 2, 3, 4).$

- The problem has a special structure of its constraint coefficients.
- This structure distinguishes this problem as a transportation problem.

TABLE 8.3 Constraint coefficients for P & T Co.

7

The Transportation Problem

 Generally, a transportation problem is concerned with distributing any commodity from any group of supply centers (sources) to any group of receiving centers (destinations) in a way to minimize the total transportation cost.

TABLE 8.4 Terminology for the transportation problem

Prototype Example	General Problem
Truckloads of canned peas	Units of a commodity
Three canneries	m sources
Four warehouses	n destinations
Output from cannery i	Supply s_i from source i
Allocation to warehouse j	Demand d_i at destination j
Shipping cost per truckload from cannery i to warehouse j	Cost c_{ij} per unit distributed from source i to destination j

The requirements assumption: Each source has a fixed *supply* of units, where this entire supply must be distributed to the destinations. (We let s_i denote the number of units being supplied by source i, for i = 1, 2, ..., m.) Similarly, each destination has a fixed *demand* for units, where this entire demand must be received from the sources. (We let d_j denote the number of units being received by destination j, for j = 1, 2, ..., n.)

→ There needs to be a balance between the **total supply** and **total demand** in the problem.

The feasible solutions property: A transportation problem will have feasible solutions if and only if

$$\sum_{i=1}^m s_i = \sum_{j=1}^n d_j.$$

9

The Transportation Problem

TABLE 8.2 Shipping data for P & T Co.

		SI							
			Warel	nouse					
		1	2	3	4	Output			
	1	464	513	654	867	75			
Cannery	2	352	416	690	791	125			
,	3	995	682	388	685	100			
Allocation	n	80	65	70	85				

The feasible solutions property: A transportation problem will have feasible solutions if and only if

$$\sum_{i=1}^m s_i = \sum_{j=1}^n d_j.$$

- When the problem is unbalanced, we reformulate the problem by defining a **dummy source** or a **dummy destination** for taking up the slack.
- Cost assumption: Costs in the model are unit costs.
- **Any problem** that can be described as in the below table, and that satisfies the requirements assumption and cost assumption is a transportation problem. The problem may not actually involve transportation of commodities.

TABLE 8.5	Parameter	table	for the	transportation	problem
-----------	------------------	-------	---------	----------------	---------

		Destin	ation		
	1	2		n	Supply
1	c ₁₁	c ₁₂		c _{1n}	s ₁
Source 2	c ₂₁	c ₂₂		c _{2n}	s ₂ ⋮
m	c _{m1}	<i>c</i> _{m2}		c _{mn}	S _m
Demand	<i>d</i> ₁	d ₂		d _n	

The Transportation Problem General Mathematical Model

Letting Z be the total distribution cost and x_{ij} (i = 1, 2, ..., m; j = 1, 2, ..., n) be the number of units to be distributed from source i to destination j, the linear programming formulation of this problem is

Minimize
$$Z = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij}$$
,

subject to

$$\sum_{i=1}^{n} x_{ij} = s_i \quad \text{for } i = 1, 2, \dots, m,$$

$$\sum_{i=1}^{m} x_{ij} = d_{j} \quad \text{for } j = 1, 2, \dots, n,$$

and

$$x_{ii} \ge 0$$
, for all i and j .

The Transportation Problem General Network Representation

The Transportation Problem

Integer solutions property: For transportation problems where every s_i and d_j have an integer value, all the basic variables (allocations) in *every* basic feasible (BF) solution (including an optimal one) also have *integer* values.

The Transportation Problem Dummy Destination Example

- NORTHERN AIRLINE produces airplanes.
- Last stage in production: Produce jet engines and install them in the completed airplane frame.
- The production of jet engines for planes should be scheduled for the next four months at total minimum cost.

TABLE 8.7 Production scheduling data for Northern Airplane Co.

Month	Scheduled Installations	Maximum Production	Unit Cost* of Production	Unit Cost* of Storage	
1	10	25	1.08	0.015	
2	15	35	1.11	0.015	
3	25	30	1.10	0.015	
4	20	10	1.13		

^{*}Cost is expressed in millions of dollars.

CI

The Transportation Problem Dummy Destination Example

- One way to formulate:
 - Define x_j: jet engines produced in month j, j=1,2,3,4
 →But this will not be a transportation type formulation, therefore will be harder to solve.
- Transportation formulation:

```
Source i = production of jet engines in month i (i = 1, 2, 3, 4)

Destination j = installation of jet engines in month j (j = 1, 2, 3, 4)

x_{ij} = number of engines produced in month i for installation in month j

c_{ij} = cost associated with each unit of x_{ij}

= \begin{cases} \text{cost per unit for production and any storage} & \text{if } i \leq j \\ ? & \text{if } i > j \end{cases}

s_i = ?

d_i = number of scheduled installations in month j.
```

The Transportation Problem Dummy Destination Example

TABLE 8.8 Incomplete parameter table for Northern Airplane Co.

			Desti	nation					
		1	1 2 3 4						
	1	1.080	1.095	1.110	1.125	?			
C	2	?	1.110	1.125	1.140	?			
Source	3	?	?	1.100	1.115	?			
	4	?	?	?	1.130	?			
Deman	nd	10	15	25	20				

17

The Transportation Problem Dummy Destination Example

• We don't know the exact supplies (exact production quantities for each month), but we know what can be upper bounds on the amount of supplies for each month.

$$x_{11} + x_{12} + x_{13} + x_{14} \le 25,$$

 $x_{21} + x_{22} + x_{23} + x_{24} \le 35,$
 $x_{31} + x_{32} + x_{33} + x_{34} \le 30,$
 $x_{41} + x_{42} + x_{43} + x_{44} \le 10.$

 To convert these equalities into equalities, we use slack variables. These are allocations to a single dummy destination that represent total unused production capacity. The demand of this destination:

$$(25 + 35 + 30 + 10) - (10 + 15 + 25 + 20) = 30.$$

The Transportation Problem Dummy Destination Example

TABLE 8.9 Complete parameter table for Northern Airplane Co.

			Cost per Unit Distributed							
				Destination						
		1	2	3	4	5(D)	Supply			
	1	1.080	1.095	1.110	1.125	0	25			
C	2	M	1.110	1.125	1.140	0	35			
Source	3	M	М	1.100	1.115	0	30			
	4	М	М	М	1.130	0	10			
Demand		10	15	25	20	30				

19

The Transportation Problem Dummy Source Example

- METRO WATER DISTRICT: An agency that handles water distribution in a large geographic region.
- Sources of water: Colombo, Sacron and Calorie rivers.
- Destinations: Berdoo, Los Devils, San Go, Hollyglass.
- No water should be distributed to Hollyglass from Claorie river.
- Allocate all available water to at least meet minimum needs at minimum cost.

TABLE 8.10 Water resources data for Metro Water District

	Cos				
	Berdoo	Los Devils	San Go	Hollyglass	Supply
Colombo River	16	13	22	17	50
Sacron River	14	13	19	15	60
Calorie River	19	20	23	—	50
Minimum needed	30	70	0	10	(in units of 1
Requested	50	70	30	∞	million acre feet)

The Transportation Problem Dummy Source Example

 After allocating the minimum amounts for other cities, how much extra can we supply for Hollyglass? (Upper bound)

$$(50 + 60 + 50) - (30 + 70 + 0) = 60.$$

• Define a **dummy source** to send the extra demand. The supply quantity of this source should be:

$$(50 + 70 + 30 + 60) - (50 + 60 + 50) = 50.$$

TABLE 8.10 Water resources data for Metro Water District

	Cos				
	Berdoo	Los Devils	San Go	Hollyglass	Supply
Colombo River	16	13	22	17	50
Sacron River	14	13	19	15	60
Calorie River	19	20	23	—	50
Minimum needed	30	70	0	10	(in units of 1
Requested	50	70	30	∞	million acre feet)

The Transportation Problem Dummy Source Example

TABLE 8.11 Parameter table without minimum needs for Metro Water District

		Cost (Tens	of Millions of D	ollars) per U	nit Distributed			
			Destination					
		Berdoo	Berdoo Los Devils San Go Hollyglass					
	Colombo River	16	13	22	17	50		
C	Sacron River	14	13	19	15	60		
Source	Calorie River	19	20	23	М	50		
	Dummy	0	0	0	0	50		
Demand		50	70	30	60			

The Transportation Problem Dummy Source Example

- How can we take the minimum need of each city into account?
 - Los Devils: Minimum=70 =Requested=70. All should be supplied from actual sources. Put M cost in dummy sources row.
 - San Go: Minimum=0, Requested=30. No water needs to be supplied from actual sources. Put 0 cost in dummy sources row.
 - Hollyglass: Minimum=10, Requested (UB)=60. Since the dummy source's supply is 50, at least 10 will be supplied from actual sources anyway. Put 0 cost in dummy sources row.
 - Berdoo: Minimum=30, Requested=50. Split Berdoo into two destinations, one with a demand of 30, one with 20. Put M and 0 in the dummy row for these two destinations.

The Transportation Problem Dummy Source Example

TABLE 8.12 Parameter table for Metro Water District

			Cost (Tens of Millions of	Dollars) per Ur	nit Distribut	ed	
				Dest	ination			
			Berdoo (min.) 1	Berdoo (extra) 2	Los Devils 3	San Go 4	Hollyglass 5	Supply
	Colombo River	1	16	16	13	22	17	50
Course	Sacron River	2	14	14	13	19	15	60
Source	Calorie River	3	19	19	20	23	М	50
	Dummy	4(<i>D</i>)	М	0	М	0	0	50
Demand		30	20	70	30	60		

Transportation Simplex Recall: Mathematical Model

Letting Z be the total distribution cost and x_{ij} (i = 1, 2, ..., m; j = 1, 2, ..., n) be the number of units to be distributed from source i to destination j, the linear programming formulation of this problem is

Minimize
$$Z = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij}$$
,

subject to

$$\sum_{j=1}^{n} x_{ij} = s_i \quad \text{for } i = 1, 2, \dots, m,$$

$$\sum_{i=1}^{m} x_{ij} = d_j \quad \text{for } j = 1, 2, \dots, n,$$

and

$$x_{ij} \ge 0$$
, for all i and j .

25

Transportation Simplex

- Traditional simplex tableau for a transportation problem:
 - Convert the objective function to minimization
 - Introduce artificial variables for = constraints
- Entities not shown are zeros.

TABLE 8.13 Original simplex tableau before simplex method is applied to transportation problem

Basic	Coefficient of:										
Variable	Eq.	Z		x _{IJ}		z _i		z_{m+j}		Right side	
Z	(0) (1)	-1		C _{IJ}		М		М		0	
Z_I	(i)	0		1		1				Sı	
z_{m+j}	: (m + j) : (m + n)	0		1				1		d _J	

At any iteration of traditional simplex:

TABLE 8.14 Row 0 of simplex tableau when simplex method is applied to transportation problem

Basic				Dight				
Variable	Eq.	Z		ХIJ	 z _i	 z _{m+j}		Right Side
Z	(0)	-1		$c_{ij}-u_i-v_j$	$M - u_l$	$M - v_j$		$-\sum_{i=1}^m s_i u_i - \sum_{j=1}^n d_j v_j$

- u_i and v_i: dual variables representing how many times the corresponding rows are multiplied and subtracted from row 0.
- If x_{ij} is nonbasic, (c_{ij}-u_i-v_j) is the rate at which Z will change as x_{ij} is increased.

27

Transportation Simplex

- Regular Simplex:
 - Find an initial BFS by introducing artificial variables
 - Test for optimality
 - Determine the entering variable
 - Determine the leaving variable
 - Find the new BFS
- Transportation Simplex
 - No artificial variables needed to find an initial BFS
 - The current row can be calculated by calculating the current values of u_i and v_j
 - The leaving variable can be identified in a simple way
 - The new BFS can be identified without any algebraic manipulations on the rows of the tableau.

TABLE 8.15 Format of a transportation simplex tableau

			Destii				
		1	2		n	Supply	u _I
	1	C ₁₁	C ₁₂		C ₁ n	s ₁	
	2	C ₂₁	C ₂₂		C _{2n}	s ₂	
Source	:					:	
	m	c _{m1}	C _{m2}		C _{mn}	s _m	
Demand		<i>d</i> ₁	d ₂		d _n	Z =	
	v_{I}						

Additional information to be added to each cell:

 $c_{II} - u_I - v_I$

Transportation Simplex: Initialization

- In an LP with *n* variables and *m* constraints :
 - Number of basic variables = m+n
- In a transportation problem with *n* destinations and *m* sources:
 - Number of basic variables = m+n-1
 - This is because one constraint is always redundant in a transportation problem, i.e. if all m-1 constraints are satisfied, the remaining constraint will be automatically satisfied.
 - Any BF solution on the transportation tableau will have exactly m+n-1 circled nonnegative allocations (BVs), where the sum of the allocations for each row or column equals its supply or demand.

Transportation Simplex Initial BFS

- 1. From the rows and columns still under consideration, select the next BV according to some criterion.
- 2. Allocate as much as possible considering the supply and demand for the related column and row.
- Eliminate necessary cells from consideration (column or row).
 If both the supply and demand is consumed fully, arbitrarily select the row. Then, that column will have a degenerate basic variable.
- 4. If only one row or column remains, complete the allocations by allocating the remaining supply or demand to each cell.

 Otherwise return to Step 1.

31

The Transportation Problem Metro Water District Problem

TABLE 8.12 Parameter table for Metro Water District

			Cost (Tens of Millions of Dollars) per Unit Distributed								
			Destination								
			Berdoo (min.) 1	Berdoo (extra) 2	Los Devils 3	San Go 4	Hollyglass 5	Supply			
	Colombo River	1	16	16	13	22	17	50			
C	Sacron River	2	14	14	13	19	15	60			
Source	Calorie River	3	19	19	20	23	М	50			
	Dummy	4(<i>D</i>)	М	0	М	0	0	50			
Deman	Demand		30	20	70	30	60				

Transportation Simplex Initial BFS – Alternative Criteria

1. Northwest Corner Rule: Start by selecting x_{11} (the northwest corner of the tableau). Go on with the one neighboring cell.

TABLE 8.16 Initial BF solution from the Northwest Corner Rule

		1	2	3	4	5	Supply	u _i
	1	30—	20	13	22	17	50	
	2	14	14 0	13 60	19	15	60	
Source	3	19	19	20 10—	23 30	<u>M</u> 10	50	
	4(<i>D</i>)	М	0	М	0	0 50	50	
Demand		30	20	70	30	60	Z = 2,470 -	+ 10 <i>M</i>
	v_{j}		•					

Transportation Simplex Initial BFS – Alternative Criteria

2. Vogel's Approximation Method (VAM):

- Calculate penalty costs for each row (and column) as the difference between the minimum unit cost and the next minimum unit cost in the row (column).
- II. Select the row or column with the **largest penalty**. Break ties arbitrarily.
- III. Allocate as much as possible to the **smallest-cost-cell** in that row or column. Break ties arbitrarily.
- IV. Eliminate necessary cells from consideration. Return to Step I.

Transportation Simplex Initial BFS – Alternative Criteria - VAM

TABLE 8.17 Initial BF solution from Vogel's approximation method

				De	estinati	on		8	Row
			1	2	3	4	5	Supply	Difference
		1	16	16	13	22	17	50	3
•		2	14	14	13	19	15	60	1
Source		2	19	19	20	23	M	50	0
		4(D)	M	0	M	0	0	50	0
Demand Column diff	ference		30 2	20 14	70 0	30 (19)	60 15	Select x ₄₄ Eliminate	
		Î		Destin	ation	0			
		1		2	3	5		Supply	Row Difference
	1	16	5	16	13	17		50	3
	2	14	1	14	13	15		60	1
Source	2	19	9	19	20	M		50	0
	4(D)	M	1	0	M	0		20	0
Demand		30)	20	70	60		Select $x_{45} = 1$	20
Column difference		2	2	14	0	(15		Eliminate rov	

Transportation Simplex Initial BFS – Alternative Criteria - VAM

Destination

1

					I		
Source	1 2 3	16 14 19	16 14 19	13 13 20	17 15 <i>M</i>	50 60 50	3
Demand Column difference		30 2	20 2	70 0	40 2	Select x ₁₃ = Eliminate ro	
	8		Dest	tination	Ĺ	Row	
	40	1	2	3	5	Supply	Difference
Source	2 3	14 19	14 19	13 20	15 M	60 50	1 0
Demand Column dif	ference	30 5	20 5	20 7	40 (M - 15)	Select x ₂₅ = Eliminate co	= 40 olumn 5

Difference

Transportation Simplex Initial BFS – Alternative Criteria - VAM

			Destinati	on		D
		1	2	3	Supply	Row Difference
Source	2 3	14 19	14 19	13 20	20 50	1 0
Demand Column diffe	erence	30 5	20 5	20 7	Select $x_{23} = 20$ Eliminate row	
			Destination			
		1	2	3	Supply	
Source	3	19	19	20	50	
Demand		30	20	0	Select $x_{31} = 30$ $x_{32} = 20$ $x_{33} = 0$	Z = 2,460

37

Transportation Simplex Initial BFS – Alternative Criteria

3. Russell's Approximation Method (RAM):

- I. For each source row still under consideration, determine its \overline{u}_i as the largest unit cost (c_{ij}) remaining in that row.
- II. For each destination column still under consideration, determine its $\overline{\mathbf{v}}_{j}$ as the largest unit cost (\mathbf{c}_{ij}) remaining in that column.
- III. For each variable not previously selected in these rows and columns, calculate:

$$\Delta_{ii} = \mathbf{c}_{ii} - \overline{\mathbf{u}}_{i} - \overline{\mathbf{v}}_{i}$$

IV. Select the variable having the most negative delta value. Break ties arbitrarily. Allocate as much as possible. Eliminate necessary cells from consideration. Return to Step I.

The Transportation Problem RAM – Metro Water District

TABLE 8.12 Parameter table for Metro Water District

			Cost (Tens of Millions of Dollars) per Unit Distributed								
			Destination								
			Berdoo (min.) 1	Berdoo (extra) 2	Los Devils 3	San Go 4	Hollyglass 5	Supply			
	Colombo River	1	16	16	13	22	17	50			
C	Sacron River	2	14	14	13	19	15	60			
Source	Calorie River	3	19	19	20	23	М	50			
	Dummy	4(D)	М	0	М	0	0	50			
Deman	nd		30	20	70	30	60				

TABLE 8.18 Initial BF solution from Russell's approximation method

Iteration	\overline{u}_1	\overline{u}_2	\overline{u}_3	\overline{u}_4	<u>v</u> 1	\overline{v}_2	\overline{v}_3	\overline{v}_4	\overline{v}_5	Largest Negative Δ_{ij}	Allocation
1 2 3 4 5 6	22 22 22 22	19 19 19 19 19	M M 23 23 23	М	M 19 19 19 19	19 19 19 19 19	M 20 20 20	23 23 23 23 23 23	M M	$\Delta_{45} = -2M$ $\Delta_{15} = -5 - M$ $\Delta_{13} = -29$ $\Delta_{23} = -26$ $\Delta_{21} = -24*$ Irrelevant	$x_{45} = 50$ $x_{15} = 10$ $x_{13} = 40$ $x_{23} = 30$ $x_{21} = 30$ $x_{31} = 0$ $x_{32} = 20$ $x_{34} = 30$ $Z = 2,570$

^{*}Tie with $\Delta_{22} = -24$ broken arbitrarily.

Transportation Simplex Initial BFS – Alternative Criteria - RAM

TABLE 8.18 Initial BF solution from Russell's approximation method

Iteration	\overline{u}_1	\overline{u}_2	\overline{u}_3	\overline{u}_4	\overline{v}_1	\overline{v}_2	\overline{v}_3	\overline{v}_4	\overline{v}_5	Largest Negative Δ_{ij}	Allocation
1 2 3 4 5 6	22 22 22	19 19 19 19	M M 23 23 23	М	M 19 19 19	19 19 19 19	M 20 20 20	23 23 23 23 23	M M	$\Delta_{45} = -2M$ $\Delta_{15} = -5 - M$ $\Delta_{13} = -29$ $\Delta_{23} = -26$ $\Delta_{21} = -24*$ Irrelevant	$x_{45} = 50$ $x_{15} = 10$ $x_{13} = 40$ $x_{23} = 30$ $x_{21} = 30$ $x_{31} = 0$ $x_{32} = 20$ $x_{34} = 30$ $Z = 2,570$

^{*}Tie with $\Delta_{22} = -24$ broken arbitrarily.

Transportation Simplex Initial BFS – Alternative Criteria - RAM

Itor	ation			Destinatio	on			
iter	0		2	3	4	5	Supply	u _i
	1	16	16	13 40	22	17 10	50	
	2	14 30	14	13 30	19	15	60	
Source	3	19 0	19 20	20	23 30	М	50	
	4(<i>D</i>)	М	0	М	0	0 50	50	
Demand		30	20	70	30	60	Z = 2,5	70
	v_{j}							

41

Transportation Simplex Initial BFS – Alternative Criteria

Comparison:

- I. Northwest: Quick and easy, usually far from optimal.
- II. VAM: Popular, easy to implement by hand, yields nice solutions considering penalties.
- III. RAM: Still easy by computer, frequently better than VAM. Which is better on the average is unclear.
- → For this problem VAM gave the optimal solution.
- → For a large problem, use all to find the best initial BFS.
- → Let's use the RAM BFS to start transportation simplex.

Transportation Simplex Initial BFS

TABLE 8.19 Initial transportation simplex tableau (before we obtain $c_{ij} - u_i - v_j$) from Russell's approximation method

Ito	lteration -		ı	Destinatio	on			
0		1	2	3	4	5	Supply	u,
	1	16	16	13 40	22	17 10	50	
	2	30	14	30	19	15	60	
Source	3	19 0	19 20	20	23 30	М	50	
	4(<i>D</i>)	М	0	М	0	50	50	
Demand		30	20	70	30	60	Z = 2,5	70
	v_{j}							

Transportation Simplex

Optimality test: A BF solution is optimal if and only if $c_{ij} - u_i - v_j \ge 0$ for every (i, j) such that x_{ij} is nonbasic.¹

Since $c_{ij} - u_i - v_j$ is required to be zero if x_{ij} is a basic variable, u_i and v_j satisfy the set of equations

 $c_{ij} = u_i + v_j$ for each (i, j) such that x_{ij} is basic.

There are m + n - 1 basic variables, and so there are m + n - 1 of these equations. Since the number of unknowns (the u_i and v_j) is m + n, one of these variables can be assigned a value arbitrarily without violating the equations. The choice of this one variable and its value does not affect the value of any $c_{ij} - u_i - v_j$, even when x_{ij} is nonbasic, so the only (minor) difference it makes is in the ease of solving these equations. A convenient choice for this purpose is to select the u_i that has the *largest number of allocations in its row* (break any tie arbitrarily) and to assign to it the value zero. Because of the simple structure of these equations, it is then very simple to solve for the remaining variables algebraically.

$$x_{31}$$
: $19 = u_3 + v_1$. Set $u_3 = 0$, so $v_1 = 19$,

$$x_{32}$$
: $19 = u_3 + v_2$. $v_2 = 19$,

$$x_{34}$$
: $23 = u_3 + v_4$. $v_4 = 23$.

$$x_{21}$$
: $14 = u_2 + v_1$. Know $v_1 = 19$, so $u_2 = -5$.

$$x_{23}$$
: $13 = u_2 + v_3$. Know $u_2 = -5$, so $v_3 = 18$.

$$x_{13}$$
: $13 = u_1 + v_3$. Know $v_3 = 18$, so $u_1 = -5$.

$$x_{15}$$
: $17 = u_1 + v_5$. Know $u_1 = -5$, so $v_5 = 22$.

$$x_{45}$$
: $0 = u_4 + v_5$. Know $v_5 = 22$, so $u_4 = -22$.

TABLE 8.19 Initial transportation simplex tableau (before we obtain $c_{ij} - u_i - v_j$) from Russell's approximation method

Itou	Iteration							
0		1	2	3	4	5	Supply	uı
	1	16	16	13 40	22	17 10	50	
	2	14 30	14	30	19	15	60	
Source	3	19 0	19 20	20	23 30	М	50	
	4(D)	М	0	М	0	0 50	50	
Demand		30	20	70	30	60	Z = 2,5	70
	v_{j}		•	•				

Transportation Simplex

TABLE 8.20 Completed initial transportation simplex tableau

1+	eration		D					
0		1	2	3	4	5	Supply	uı
	1	+2	16 +2	13 40	+4	17 10	50	-5
_	2	30	0	30	19 +1	15 -2	60	-5
Source	3	0	20	20 +2	30	M - 22	50	0
	4(D)	M + 3	+3	M + 4	0 -1	50	50	-22
Demand		30	20	70	30 \	60	Z = 2,5	70
	v_{j}	19	19	18	23	22		

Compute $c_{ij} - u_i - v_j$

Step 1: Negative, not optimal Select x₂₅ as entering

Step 2. Increasing the entering basic variable from zero sets off a *chain reaction* of compensating changes in other basic variables (allocations), in order to continue satisfying the supply and demand constraints. The first basic variable to be decreased to zero then becomes the leaving basic variable.

TABLE 8.21 Part of initial transportation simplex tableau showing the chain reaction caused by increasing the entering basic variable x_{25}

		Destination						
		3	4	5	Supply			
Source	1	 13 40+	+4	17 10-	50			
Source	2	 30-	19 +1	15 + -2	60			
Demand		70	30	60				

There is always one chain reaction.

47

Transportation Simplex

TABLE 8.22 Part of second transportation simplex tableau showing the changes in the BF solution

			3	4	5	Supply
	1		50	22	17	50
Source	2		13 20	19	15 10	60
Demand			70	30	60	

We can now highlight a useful interpretation of the $c_{ij} - u_i - v_j$ quantities derived during the optimality test. Because of the shift of 10 allocation units from the donor cells to the recipient cells (shown in Tables 8.21 and 8.22), the total cost changes by

$$\Delta Z = 10(15 - 17 + 13 - 13) = 10(-2) = 10(c_{25} - u_2 - v_5).$$

TABLE 8.23 Complete set of transportation simplex tableaux for the Metro Water District problem

1+	teration		D	estinatio)	n			
0		1	2	3	4	5	Supply	uı
	1	+2	+2	40+	+4	17	50	-5
	2	30	0	30-	19 +1	15 + 2	60	-5
Source	3	19 0	19 20	20 +2	30	<i>M</i> − 22	50	0
	4(D)	M + 3	+3	M + 4	0 -1	50	50	-22
Demand		30	20	70	30	60	<i>Z</i> = 2,5	70
	v_{j}	19	19	18	23	22		

49

Transportation Simplex

TABLE 8.23 (Continued)

lteration -			D					
itei	1		2	3	4	5	Supply	u _I
	1	16 +2	16 +2	50	+4	+2	50	-5
	2	30-	14 0-	20	19 +1	15	60	-5
Source	3	19 0+	20	20 +2	30	M – 20	50	0
	4(<i>D</i>)	M + 1	+1	M + 2	0 + 3	50-	50	-20
Demand		30	20	70	30	60	Z = 2,5	50
	v_{j}	19	19	18	23	20		

TABLE 8.23 (Continued)

Ito	Iteration		D	estinatio	n			
2		1	2	3	4	5	Supply	u _i
	1	16 +5	+5	50	+7	+2	50	-8
_	2	+3	+3	20-	19 +4	15 40+	60	-8
Source	3	30	20	20 + 1	0	M – 23	50	0
	4(<i>D</i>)	M + 4	+4	M + 2	30+	0 20-	50	-23
Demand		30	20	70	30	60	Z = 2,4	60
	v_{I}	19	19	21	23	23		

51

Transportation Simplex

TABLE 8.23 (Continued)

Iteration 3			D					
		1	2	3	4	5	Supply	u _I
	1	+4	16 +4	50	+7	+2	50	-7
	2	14 +2	+2	20	19 +4	15 40	60	-7
Source	3	30	19 20	0	23 +1	<i>M</i> − 22	50	0
	4(<i>D</i>)	M + 3	+3	M + 2	30	20	50	-22
Demand		30	20	70	30	60	Z = 2,4	60
	v_{j}	19	19	20	22	22		