

SC2207: Introduction to Databases Lab 3 Report

Name	Email	Matric Number
Pu Fanyi	FPU001@e.ntu.edu.sg	U2220175K
Jin Qingyang	JINQ0003@e.ntu.edu.sg	U2220239A
Tang Yutong	TANG0513@e.ntu.edu.sg	U2220495H
Ye Yuhan	YYE016@e.ntu.edu.sg	U2220885J
Ting Ruo Chee	RTING002@e.ntu.edu.sg	U2220572C
Soo Ying Xi	D220001@e.ntu.edu.sg	U2220021D
Qian Jianheng Oscar	QIAN0081@e.ntu.edu.sg	U2220109K

Tutorial Group: SCSD Group Number: #5

Lab Supervisor: Sourav Saha Bhowmick Teaching Assistant: Yu Weiping

School of Computer Science and Engineering Nanyang Technological University

2023/2024 Semester 2

Conventions:

Since there are multiple "HAS" and "USE" relationships in the ER diagram, we will differentiate their respective relations using the following format.

- If there is a "USE" relationship between "A" and "B", the relation is "A-USE-B".
- If there is a "HAS" relationship between "A" and "B", the relation is "A-HAS-B".

Updated ER Diagram

COMPLAINT(CID, Text, Status, Filed-date-time, UID) /

Keys: CID

Primary Key: CID

FDs:

CID → Text, Status, Filed-dated-time, UID

The table is in 3NF.
The table is in BCNF.

COMPLAINTS-ON-SHOP(CID, SID) //

Keys: CID

Primary Key: CID

FDs:

- $CID \rightarrow SID$

The table is in 3NF.
The table is in BCNF.

COMPLAINTS-ON-RESTAURANT(CID, OID) //

Keys: CID

Primary Key: CID

FDs:

- CID → OID

The table is in 3NF.

The table is in BCNF.

SHOP(SID, Type, MID) //

Keys: SID

Primary Key: SID

FDs:

- SID \rightarrow {Type, MID}

The table is in 3NF.

The table is in BCNF.

SHOP-RECORD(SID, UID, Date-time-in, Amount-spent, Date-time-out) //

Keys: {SID, UID, Date-time-in}, {SID, UID, Date-time-out}

Primary Key: {SID, UID, Date-time-in}

Assumption: The same user can visit the same store at different times. Therefore SID and UID alone cannot determine all other attributes, and we need a Date-time-in to identify each shopping instance.

FDs:

- {SID, UID, Date-time-in} → Amount-spent, Date-time-out

- {SID, UID, Date-time-out} → Amount-spent, Date-time-in

The table is in 3NF.

The table is in BCNF.

USER-RELATIONSHIP(P1_UID, P2_UID, Type) //

Keys: {P1_UID, P2_UID}

Primary Key: {P1_UID, P2_UID}

FDs:

- {P1_UID, P2_UID} → Type

The table is in 3NF.
The table is in BCNF.

USER-ACCOUNT(UID, Gender, DOB, Name) /

Keys: UID

Primary Key: UID

FDs:

UID → {Gender, DOB, Name}

The table is in 3NF.

The table is in BCNF.

DINE-RECORD(UID, OID, Date-time-In, AmountSpent, Date-time-Out) //

Keys: {UID, OID, Date-time-In}, {UID, OID, Date-time-Out}

Primary Key: {UID, OID, Date-time-In}

Assumption: The same user can visit the same restaurant at different times.

Therefore UID and OID alone cannot determine all other attributes, and we need a Date-time-in to identify each dining instance.

FDs:

- {UID, OID, Date-time-In} → {AmountSpent, Date-time-Out}
- {UID, OID, Date-time-Out} → {AmountSpent, Date-time-In}

The table is in 3NF.

The table is in BCNF.

RESTAURANT-OUTLET(OID, MID, RID) //

Keys: OID

Primary Key: OID

FDs:

- $OID \rightarrow \{MID, RID\}$

The table is in 3NF.

The table is in BCNF.

USER-USE-RECOMMENDATION(UID, NID) //

Keys: {UID, NID}

Primary Key: {UID, NID}

FDs:

- $\{UID, NID\} \rightarrow \{UID, NID\}$

The table is in 3NF.
The table is in BCNF.

RECOMMENDATION(NID, Valid-period, Date-Issued, MID, DID, OID, UID, VID) //

Keys: NID

Primary Key: NID

Assumption: Each recommendation can only use one voucher at a time.

FDs:

- NID → {Valid-period, Date-Issued, MID, DID, OID, UID, VID}

The table is in 3NF.
The table is in BCNF.

MALL(MID, Address, NumShops, CID) /

Keys: MID, Address Primary Key: MID

FDs:

- MID → {Address, NumShops, CID}
- Address → MID

The table is in 3NF.

The table is in BCNF.

MALL-MGMT-COMPANY(CID, Address) /

Keys: CID, Address Primary Key: CID

FDs:

- CID → Address

Address → CID

The table is in 3NF.

The table is in BCNF.

RESTAURANT-CHAIN(RID, Address) /

Keys: RID, Address Primary Key: RID

FDs:

- RID \rightarrow Address

- Address → RID

The table is in 3NF.
The table is in BCNF.

DAY-PACKAGE(DID, Description, VID, UID) //

Keys: DID

Primary Key: DID

FDs:

DID → {Description, VID, UID}

The table is in 3NF.
The table is in BCNF.

RESTAURANT-OUTLET-HAS-DAY-PACKAGE(DID, OID)//

Key: {DID, OID}

Primary Key: {DID, OID}

FDs:

- $\{DID, OID\} \rightarrow \{DID, OID\}$

The table is in 3NF.
The table is in BCNF.

MALL-HAS-DAY-PACKAGE(DID, MID) //

Key: {DID, MID}

Primary Key: {DID, MID}

FDs:

- $\{DID, MID\} \rightarrow \{DID, MID\}$

The table is in 3NF.
The table is in BCNF.

VOUCHER(<u>VID</u>, Description, Expiry-date, Status, Date-issued) /

Keys: VID

Primary Key: VID

FDs:

VID → {Description, Expiry-date, Status, Date-issued}

The table is in 3NF.
The table is in BCNF.

PURCHASE-VOUCHER(VID, Purchase-discount, UID, Date-time) /

Keys: VID

Primary Key: VID

FDs:

- VID → {Purchase-discount, UID, Date-time}

The table is in 3NF.
The table is in BCNF.

DINE-VOUCHER(VID, Cash-discount, UID, Date-time) /

Keys: VID

Primary Key: VID

FDs:

- VID → {Cash-discount, UID, Date-time}

The table is in 3NF.
The table is in BCNF.

PACKAGE-VOUCHER(VID, Package-discount) /

Keys: VID

Primary Key: VID

FDs:

- VID → Package-discount

The table is in 3NF.
The table is in BCNF.

GROUP-VOUCHER(<u>VID</u>, Group-size, Group-discount, UID, Date-time)

Keys: VID

Primary Key: VID

Assumption: Every group-size has a corresponding fixed group-discount, eg: group-size of 2 will always get a 20% discount, group-size of 3 will always get 25% discount, etc.

FDs:

- VID → {Group-size, Group-discount, UID, Date-time}
- Group-size \rightarrow Group-discount

The FD Group-size \rightarrow Group-discount violates 3NF as Group-size is not a key and Group-discount is not contained in any key.

The table is not in BCNF.

<u>Decomposing Group-Voucher:</u>

Step 1: Minimal basis for Group-Voucher: $\{VID \rightarrow Group\text{-size}; VID \rightarrow UID; VID \rightarrow Date\text{-time}; Group\text{-size} \rightarrow Group\text{-discount}\}$

Step 2: Combine the FDs whose left-hand sides are the same.

S = {VID → Group-size, Group-discount, UID, Date-time; Group-size → Group-discount}

Step 3: Create a table for each FD remained:

Group-Voucher-1(Group-size, Group-discount)

Keys: Group-size

Primary key: Group-size

FDs: Group-size → Group-discount

The table is in 3NF.
The table is in BCNF.

Group-Voucher-2(<u>VID</u>, Group-size, UID, Date-time)

Keys: VID

Primary key: VID

FDs: VID → Group-size, UID, Date-time

The table is in 3NF.
The table is in BCNF.

Step 4: Check: Group-Voucher-2 contains a key from the original relation.

Step 5: Check: There's no redundant table.

Appendixes

Appendix A: Individual Contribution Form

Full Name	Individual Contribution to Lab 2 Submission	Percentage of Contribution	Signature
Pu Fanyi			濮凡架
Jin Qingyang			晋清扬
Qian Jianheng Oscar			Clant
Soo Ying Xi	Relational Schema	14.29%	W
Ting Ruo Chee			Rule Try
Ye Yuhan			was En
Tang Yutong			Tony Tony

Appendix B: Individual Contribution Form

Team member	Signature	Date	A or B*
Pu Fanyi	濮凡铁		
Jin Qingyang	晋清扬		
Qian Jianheng Oscar	Clay		
Soo Ying Xi	W	13/Mar/2024	A
Ting Ruo Chee	Rule Try		
Ye Yuhan	n fastin		
Tang Yutong	Tony Tony		

^{*} Each team member should indicate either A or B:

- A. I affirm that my contribution(s) to the lab work is my own, produced without help from any AI tool(s).
- B. I affirm that my contribution(s) to the lab work has been produced with the use of AI tool(s).