和 C_{ox} 為已知),我們可根據平帶電壓的實驗值(由圖3-21),代入公式(3.40) 求 Q_{ox} 。換言之,一旦 ϕ_{ms} 固定,由式(3.40)可知當 C-V 曲線向右平移代表 Q_{ox} 為負電荷,且由式 (3.42) 知其有一較正的 V_T 值;反之,向左平移的 C-V 曲線意味著 Q_{α} 為正電荷且其有一較負的 V_{T} 值。再次地,雖然圖 3-22 顯示 Q_{α} 對 n-MOS 的影響,但上面的結論亦適用於 p-MOS。以下舉一例說明其應用。 若我們懷疑某後段製程(back-end of line, BEOL)中的反應性離子蝕刻(reactive ion etch, RIE) 製程(註:關於製程的介紹,請見第六章)會使聞極氧化層 產生陷阱電荷,則可藉由比較此 RIE 製程前後的 MOS C-V 特性曲線是否發生 偏移來判斷。