# **Vaccine Project**

## **Business Understanding**

The client is a leader in the field of health care. The client has resources at their disposal that can be used to encourage non-vaccinated persons to become vaccinated. It would be beneficial to the client to know what groups of persons are less likely to be vaccinated in order to make the best use of the client's resources. Therefore, it would be helpful for the client to have a model that could predict which persons are less likely to be vaccinated based on various known factors, related to the person's background, views and behaviors, and also it would be helpful to know more generally which of these factors leads a group to be less or more likely to be vaccinated. This model and knowledge would facilitate efforts to reach persons individually and as groups in order to efficiently encourage vaccination.

## **Data Understanding**

The data comes from the National 2009 H1N1 Flu Survey conducted by the United States after the outbreak of the virus in 2009. The survey covers various topics included one's background, views and behaviors. The survey also covers whether one has been vaccinated against the H1N1 virus, which will be the target variable for this project. More specifically, the potential predictor variables include socio-economic related factors, views about vaccines, and health-related behaviors and statuses (e.g., health insurance and doctor recommendation.) Given that H1N1 can be categorized as a risky virus, the data, though H1N1 specific, can be thought of as analagous to any risky virus such that insights from the data will be applicable to future viral outbreaks.

About half the features are categorical in nature as opposed to numerical. (Of the float and integer type features, about half are binary/categorical.) The columns with most missing data have about 10,000 of 27,000 missing. About 21% of respondents received the H1N1 vaccine.

Features with signficant correlation to the target variable are doctor reccomendation, opinion of virus risk, and opinion of vaccine effective.

See the data (./data).

```
In [1]: ▶ import pandas as pd
             import numpy as np
             import seaborn as sns
             import sklearn
             import matplotlib.pyplot as plt
             %matplotlib inline
In [2]: M dataX = pd.read_csv('./data/training_set_features.csv')
             datay = pd.read_csv('./data/training_set_labels.csv')
             dataX.head()
   Out[2]:
                respondent_id h1n1_concern h1n1_knowledge behavioral_antiviral_meds behavioral_avoidance behavioral_face_mask behavioral_wash_hands behavioral
                           0
                                      1.0
                                                     0.0
                                                                             0.0
                                                                                                                   0.0
                                                                                                0.0
                                                                                                                                        0.0
              1
                           1
                                      3.0
                                                      2.0
                                                                             0.0
                                                                                                1.0
                                                                                                                   0.0
                                                                                                                                        1.0
                           2
                                       1.0
                                                      1.0
                                                                             0.0
                                                                                                1.0
                                                                                                                   0.0
                                                                                                                                        0.0
                           3
                                       1.0
                                                      1.0
                                                                             0.0
                                                                                                1.0
                                                                                                                   0.0
                                                                                                                                        1.0
                                      2.0
                                                      1.0
                                                                             0.0
                                                                                                1.0
                                                                                                                   0.0
                                                                                                                                         1.0
             5 rows × 36 columns
Out[3]:
                respondent id h1n1 vaccine seasonal vaccine
             0
                           0
                                       0
                                                       0
              1
                                       0
                           2
                                                       0
              2
                                       0
             3
                           3
                                       0
                                                       1
                           4
                                       0
                                                       0
In [4]: 📦 ata = pd.concat([datay, dataX], axis = 1) #Combining the feature and label data into one dataframe to faciliate preparation:
```

```
Drop unneeded columns including those specific to the seasonal flu.
                 M eas_vacc_effective', 'opinion_seas_risk', 'opinion_seas_sick_from_vacc', 'doctor_recc_seasonal', 'seasonal_vaccine'], axis=1)
In [6]:

▶ data.head()
       Out[6]:
                             h1n1_vaccine h1n1_concern h1n1_knowledge behavioral_antiviral_meds behavioral_avoidance behavioral_face_mask behavioral_wash_hands behavioral_face_mask behavioral_f
                         1
                                               0
                                                                    3.0
                                                                                               2.0
                                                                                                                                       0.0
                                                                                                                                                                         1.0
                                                                                                                                                                                                            0.0
                                                                                                                                                                                                                                                 1.0
                                               0
                                                                    1.0
                                                                                               1.0
                                                                                                                                       0.0
                                                                                                                                                                         1.0
                                                                                                                                                                                                            0.0
                                                                                                                                                                                                                                                 0.0
                                               0
                                                                    1.0
                                                                                               1.0
                                                                                                                                       0.0
                                                                                                                                                                         1.0
                                                                                                                                                                                                            0.0
                                                                                                                                                                                                                                                 1.0
                                                                    2.0
                                                                                               1.0
                                                                                                                                       0.0
                                                                                                                                                                         1.0
                                                                                                                                                                                                            0.0
                                                                                                                                                                                                                                                 1.0
                       5 rows × 32 columns
<class 'pandas.core.frame.DataFrame'>
                       RangeIndex: 26707 entries, 0 to 26706
                       Data columns (total 32 columns):
                                Column
                                                                                        Non-Null Count Dtype
                                                                                        -----
                                h1n1_vaccine
                         a
                                                                                        26707 non-null int64
                         1
                                h1n1_concern
                                                                                        26615 non-null
                                                                                                                      float64
                                h1n1_knowledge
                                                                                        26591 non-null float64
                                 behavioral antiviral meds
                                                                                        26636 non-null float64
                                behavioral_avoidance
                                                                                        26499 non-null float64
                         5
                                behavioral_face_mask
                                                                                        26688 non-null float64
                                 behavioral_wash_hands
                                                                                        26665 non-null
                                                                                                                      float64
                                behavioral_large_gatherings 26620 non-null float64
                                                                                        26625 non-null
                                 behavioral outside home
                                                                                                                      float64
                         8
                                 behavioral_touch_face
                                                                                        26579 non-null
                                                                                                                     float64
                         10
                               doctor_recc_h1n1
                                                                                        24547 non-null float64
                                chronic_med_condition
                                                                                        25736 non-null
                         11
                                                                                                                      float64
                                child_under_6_months
                                                                                        25887 non-null float64
                         12
                                                                                        25903 non-null
                         13
                                health_worker
                                                                                                                     float64
                         14
                                health_insurance
                                                                                        14433 non-null
                                                                                                                      float64
                                opinion_h1n1_vacc_effective 26316 non-null float64
                                opinion_h1n1_risk
                                                                                        26319 non-null
                                                                                                                      float64
                         16
                         17
                                opinion_h1n1_sick_from_vacc 26312 non-null
                                                                                                                     float64
                         18
                                age_group
                                                                                        26707 non-null
                                                                                                                      object
                         19
                                education
                                                                                        25300 non-null
                                                                                                                      object
                                                                                        26707 non-null
                               race
                                                                                                                      object
                         21
                                sex
                                                                                        26707 non-null
                                                                                                                      object
                         22
                                income_poverty
                                                                                        22284 non-null
                                                                                                                      obiect
                         23
                                marital_status
                                                                                        25299 non-null
                                                                                                                      object
                         24
                                rent_or_own
                                                                                        24665 non-null
                         25
                                employment status
                                                                                        25244 non-null
                                                                                                                      obiect
                                                                                        26707 non-null
                         26
                                hhs_geo_region
                                                                                                                      object
                                                                                        26707 non-null
                         27
                                census_msa
                                                                                                                      object
                         28
                               household_adults
                                                                                        26458 non-null
                         29
                                household_children
                                                                                        26458 non-null
                                                                                                                      float64
                               employment_industry
                                                                                        13377 non-null object
                         30
                         31 employment_occupation
                                                                                       13237 non-null object
                       dtypes: float64(19), int64(1), object(12)
                       memory usage: 6.5+ MB
Out[8]:
```

|       | h1n1_vaccine | h1n1_concern | h1n1_knowledge | behavioral_antiviral_meds | behavioral_avoidance | behavioral_face_mask | behavioral_wash_hands | beha |
|-------|--------------|--------------|----------------|---------------------------|----------------------|----------------------|-----------------------|------|
| count | 26707.000000 | 26615.000000 | 26591.000000   | 26636.000000              | 26499.000000         | 26688.000000         | 26665.000000          |      |
| mean  | 0.212454     | 1.618486     | 1.262532       | 0.048844                  | 0.725612             | 0.068982             | 0.825614              |      |
| std   | 0.409052     | 0.910311     | 0.618149       | 0.215545                  | 0.446214             | 0.253429             | 0.379448              |      |
| min   | 0.000000     | 0.000000     | 0.000000       | 0.000000                  | 0.000000             | 0.000000             | 0.000000              |      |
| 25%   | 0.000000     | 1.000000     | 1.000000       | 0.000000                  | 0.000000             | 0.000000             | 1.000000              |      |
| 50%   | 0.000000     | 2.000000     | 1.000000       | 0.000000                  | 1.000000             | 0.000000             | 1.000000              |      |
| 75%   | 0.000000     | 2.000000     | 2.000000       | 0.000000                  | 1.000000             | 0.000000             | 1.000000              |      |
| max   | 1.000000     | 3.000000     | 2.000000       | 1.000000                  | 1.000000             | 1.000000             | 1.000000              |      |

#### In [9]: | data.iloc[:,8:17].describe()

Out[9]:

|       | behavioral_outside_home | behavioral_touch_face | doctor_recc_h1n1 | chronic_med_condition | child_under_6_months | health_worker | health_insurance |
|-------|-------------------------|-----------------------|------------------|-----------------------|----------------------|---------------|------------------|
| count | 26625.000000            | 26579.000000          | 24547.000000     | 25736.000000          | 25887.000000         | 25903.000000  | 14433.00000      |
| mean  | 0.337315                | 0.677264              | 0.220312         | 0.283261              | 0.082590             | 0.111918      | 0.87972          |
| std   | 0.472802                | 0.467531              | 0.414466         | 0.450591              | 0.275266             | 0.315271      | 0.32530          |
| min   | 0.000000                | 0.000000              | 0.000000         | 0.000000              | 0.000000             | 0.000000      | 0.00000          |
| 25%   | 0.000000                | 0.000000              | 0.000000         | 0.000000              | 0.000000             | 0.000000      | 1.00000          |
| 50%   | 0.000000                | 1.000000              | 0.000000         | 0.000000              | 0.000000             | 0.000000      | 1.00000          |
| 75%   | 1.000000                | 1.000000              | 0.000000         | 1.000000              | 0.000000             | 0.000000      | 1.00000          |
| max   | 1.000000                | 1.000000              | 1.000000         | 1.000000              | 1.000000             | 1.000000      | 1.00000          |
| 4     |                         |                       |                  |                       |                      |               |                  |

Of the float and integer type features, about half are binary/categorical. The columns with most missing data have about 10,000 of 27,000 missing. About 21% of respondents received the H1N1 vaccine.

Some of the columns are not self-explanatory: census\_msa, hhs\_geo\_region.

### In [10]: | data.census\_msa.value\_counts()

Out[10]: MSA, Not Principle City 11645
MSA, Principle City 7864
Non-MSA 7198
Name: census\_msa, dtype: int64

Metropolitan Statistical Area, it seems that these designation roughly mean: {MSA, Not Principle City: suburban; MSA, Principle City: urban; Non-MSA: rural }

hhs\_geo\_region, employment\_industry, and employment\_occupation are coded as random strings. Thus without decoding, they will provide little information.

## In [11]: $\mathbf{M}$ data.hhs\_geo\_region.value\_counts()

Out[11]: lzgpxyit 4297 3265 fpwskwrf qufhixun 3102 oxchjgsf 2859 kbazzjca 2858 2846 bhuqouqj mlyzmhmf 2243 lrircsnp 2078 atmpevgn 2033 1126 dqpwygqj

Name: hhs\_geo\_region, dtype: int64

#### In [12]: | data.employment\_industry.value\_counts()

Out[12]: fcxhlnwr 2468 wxleyezf 1804 ldnlellj 1231 pxcmvdjn 1037 atmlpfrs 926 arjwrbjb 871 xicduogh 851 mfikgejo 614 vjjrobsf 527 rucpziij 523 xqicxuve 511 saaquncn 338 cfqqtusy 325 nduyfdeo 286 mcubkhph 275 wlfvacwt 215 dotnnunm 201 haxffmxo 148 msuufmds 124 phxvnwax qnlwzans 13 Name: employment\_industry, dtype: int64

```
Out[13]: xtkaffoo
                        1778
                        1509
            mxkfnird
            emcorrxb
                        1270
            cmhcxjea
                        1247
                        1082
            xgwztkwe
            hfxkjkmi
                         766
            qxajmpny
                         548
             xqwwgdyp
                         485
            kldqjyjy
                         469
                         452
            uqqtjvyb
            tfqavkke
                         388
            ukymxvdu
                         372
             vlluhbov
                         354
            oijqvulv
                         344
                         341
            ccgxvspp
            bxpfxfdn
                         331
            haliazsg
                         296
            rcertsgn
                         276
            xzmlyyjv
                         248
                         227
            dlvbwzss
            hodpvpew
                         208
            dcjcmpih
                         148
            pvmttkik
                          98
            Name: employment_occupation, dtype: int64
In [14]: | data.education.value_counts()
   {\tt Out[14]:} \ \ {\tt College} \ \ {\tt Graduate}
                                 7043
            Some College
            12 Years
                                 5797
             < 12 Years
                                 2363
            Name: education, dtype: int64
In [15]: | data.sex.value_counts()
   Out[15]: Female
                      15858
            Male
                      10849
            Name: sex, dtype: int64
In [16]:  data.race.value_counts()
   Out[16]: White
            Black
                                  2118
            Hispanic
                                 1755
            Other or Multiple
                                 1612
            Name: race, dtype: int64
In [17]: | data.age_group.value_counts()
   Out[17]: 65+ Years
                             6843
            55 - 64 Years
                             5563
            45 - 54 Years
                             5238
            18 - 34 Years
                             5215
            35 - 44 Years
                             3848
            Name: age_group, dtype: int64
In [18]: | data.income_poverty.value_counts()
   Out[18]: <= $75,000, Above Poverty
                                         12777
            > $75,000
                                         6810
            Below Poverty
                                          2697
            Name: income_poverty, dtype: int64
         Above, the survey seems to be fairly cross-sectional in terms of various background factors.
         Check correlations with target variable and for multicollinearity.
```

Out[19]: <AxesSubplot:>



The potential predictor variables don't appear highly correlated amonst each other. Significant correlations appear to be: Doctor reccomendation, opinion of virus risk, opinion of vaccine effective.

Create dummy variables for each categorical variable so correlations/other calculations can be made.

In [20]: datawd = pd.get\_dummies(data) In [ ]:

Out[21]:

|   | h1n1_vaccine | h1n1_concern | h1n1_knowledge | behavioral_antiviral_meds | behavioral_avoidance | behavioral_face_mask | behavioral_wash_hands | behaviora |
|---|--------------|--------------|----------------|---------------------------|----------------------|----------------------|-----------------------|-----------|
| 0 | 0            | 1.0          | 0.0            | 0.0                       | 0.0                  | 0.0                  | 0.0                   |           |
| 1 | 0            | 3.0          | 2.0            | 0.0                       | 1.0                  | 0.0                  | 1.0                   |           |
| 2 | 0            | 1.0          | 1.0            | 0.0                       | 1.0                  | 0.0                  | 0.0                   |           |
| 3 | 0            | 1.0          | 1.0            | 0.0                       | 1.0                  | 0.0                  | 1.0                   |           |
| 4 | 0            | 2.0          | 1.0            | 0.0                       | 1.0                  | 0.0                  | 1.0                   |           |
|   |              |              |                |                           |                      |                      |                       |           |

5 rows × 102 columns

Out[22]: <AxesSubplot:>



Above, most dummy variables don't seem highly correlated to target.

```
Find all correlations over .25:
In [23]:
             | datawdcor = datawd.corr()
for i in range(len(datawdcor)):#iter over rows
                      for j in range(len(datawdcor)):#iter over cols
                            if abs((datawdcor[datawdcor.columns[i]]][datawdcor.columns[j]])>.25) & (datawdcor[datawdcor.columns[i]][datawdcor.colu
                                 tup = datawdcor(datawdcor.columns[i]][datawdcor.columns[j]],datawdcor.columns[i], datawdcor.columns[j]
                                 corrs.append(tup)
                 corrs
    Out[24]: [(0.39389048123870213, 'h1n1_vaccine', 'doctor_recc_h1n1'),
                   (0.26934700167297715, 'hln1_vaccine', 'opinion_hln1_vac_effective'), (0.32326466034778245, 'hln1_vaccine', 'opinion_hln1_risk'), (0.2935651485017993, 'hln1_concern', 'behavioral_wash_hands'), (0.2550310154400835, 'hln1_concern', 'behavioral_large_gatherings'),
                   (0.3770328126230567, 'h1n1_concern',
                                                                    'opinion_h1n1_risk'),
                   (0.3600697383652842, 'h1n1_concern', 'opinion_h1n1_sick_from_vacc'),
                   (0.26208698574014516, 'h1n1_knowledge', 'education_College Graduate'),
                   (0.3381295192965343, 'behavioral_avoidance', 'behavioral_wash_hands'),
                   (0.3353354496707589, 'behavioral_avoidance', 'behavioral_touch_face'), (0.2935651485017993, 'behavioral_wash_hands', 'h1n1_concern'),
                   (0.3381295192965343, 'behavioral_wash_hands', 'behavioral_avoidance'), (0.36506407130000645, 'behavioral_wash_hands', 'behavioral_touch_face'), (0.2550310154400835, 'behavioral_large_gatherings', 'h1n1_concern'),
                   (0.5840845791409999,
                     'behavioral_large_gatherings',
                     'behavioral_outside_home'),
                                               'behavioral_large_gatherings', 'behavioral_touch_face'),
                   (0.2536834927481906,
                   (0.5840845791409999,
```

Find signficant correlations with target variable.

```
In [26]: M corrdf.loc[(corrdf[1]=='h1n1_vaccine')|(corrdf[2]=='h1n1_vaccine')]
```

Out[26]:

|    | 0        | 1                           | 2                           |
|----|----------|-----------------------------|-----------------------------|
| 0  | 0.39389  | h1n1_vaccine                | doctor_recc_h1n1            |
| 1  | 0.269347 | h1n1_vaccine                | opinion_h1n1_vacc_effective |
| 2  | 0.323265 | h1n1_vaccine                | opinion_h1n1_risk           |
| 22 | 0.39389  | doctor_recc_h1n1            | h1n1_vaccine                |
| 27 | 0.269347 | opinion_h1n1_vacc_effective | h1n1_vaccine                |
| 29 | 0.323265 | opinion_h1n1_risk           | h1n1_vaccine                |

Significant correlations are: Doctor reccomendation, opinion of virus risk, opinion of vaccine effective.

Check these potential predictors correlations amongst each other

## 

Out[27]:

| :  | 0        | 1                              | 2                              |
|----|----------|--------------------------------|--------------------------------|
| 66 | 0.254746 |                                |                                |
| 67 | 0.29149  | employment_industry_ldnlelli   | employment_occupation_kldqjyjy |
|    |          | employment_industry_ldnlellj   | employment_occupation_xzmlyyjv |
| 68 | 0.313859 | employment_industry_mcubkhph   | employment_occupation_ukymxvdu |
| 69 | 0.547199 | employment_industry_nduyfdeo   | employment_occupation_pvmttkik |
| 70 | 0.57704  | employment_industry_pxcmvdjn   | employment_occupation_xgwztkwe |
| 71 | 0.676177 | employment_industry_rucpziij   | employment_occupation_tfqavkke |
| 72 | 0.352989 | employment_industry_saaquncn   | employment_occupation_vlluhbov |
| 73 | 0.270303 | employment_industry_vjjrobsf   | employment_occupation_oijqvulv |
| 74 | 0.265018 | employment_industry_wxleyezf   | employment_status_Employed     |
| 75 | 0.765692 | employment_industry_wxleyezf   | employment_occupation_emcorrxb |
| 76 | 0.68051  | employment_industry_xicduogh   | employment_occupation_qxajmpny |
| 77 | 0.460559 | employment_industry_xqicxuve   | employment_occupation_uqqtjvyb |
| 78 | 0.566283 | employment_occupation_cmhcxjea | health_worker                  |
| 79 | 0.598581 | employment_occupation_cmhcxjea | employment_industry_fcxhlnwr   |
| 80 | 0.343521 | employment_occupation_dlvbwzss | employment_industry_arjwrbjb   |
| 81 | 0.765692 | employment_occupation_emcorrxb | employment_industry_wxleyezf   |
| 82 | 0.263106 | employment_occupation_haliazsg | health_worker                  |
| 83 | 0.304601 | employment_occupation_haliazsg | employment_industry_fcxhlnwr   |
| 84 | 0.254746 | employment_occupation_kldqjyjy | employment_industry_ldnlellj   |
| 85 | 0.270303 | employment_occupation_oijqvulv | employment_industry_vjjrobsf   |
| 86 | 0.547199 | employment_occupation_pvmttkik | employment_industry_nduyfdeo   |
| 87 | 0.68051  | employment_occupation_qxajmpny | employment_industry_xicduogh   |
| 88 | 0.676177 | employment_occupation_tfqavkke | employment_industry_rucpziij   |
| 89 | 0.313859 | employment_occupation_ukymxvdu | employment_industry_mcubkhph   |
| 90 | 0.460559 | employment_occupation_uqqtjvyb | employment_industry_xqicxuve   |
| 91 | 0.352989 | employment_occupation_vlluhbov | employment_industry_saaquncn   |
| 92 | 0.57704  | employment_occupation_xgwztkwe | employment_industry_pxcmvdjn   |
| 93 | 0.473896 | employment_occupation_xqwwgdyp | employment_industry_atmlpfrs   |
| 94 | 0.262964 | employment_occupation_xtkaffoo | employment_status_Employed     |
| 95 | 0.29149  | employment_occupation_xzmlyyjv | employment_industry_ldnlellj   |
| 93 | 0.23149  | employment_occupation_xzmiyyjv | employment_madeiry_lumenj      |

The potential predictor variables are not highly correlated amonst each other.

## # Data preparation

In [28]: ▶ from sklearn.model\_selection import train\_test\_split

Separate predictor variables and target variables from unused data, drop rows with missing values and then split both into train and test sets.

```
In [29]: ▶
              dataPT= datawd.loc[:,['doctor_recc_h1n1', 'opinion_h1n1_risk', 'opinion_h1n1_vacc_effective', 'h1n1_vaccine']]
In [30]:

▶ dataPT.describe()

   Out[30]:
                     doctor_recc_h1n1 opinion_h1n1_risk opinion_h1n1_vacc_effective h1n1_vaccine
                        24547.000000
                                         26319.000000
                                                                 26316.000000
                                                                             26707.000000
               count
                            0.220312
                                            2.342566
                                                                     3.850623
                                                                                 0.212454
               mean
                            0.414466
                                            1.285539
                                                                     1.007436
                                                                                 0.409052
                min
                            0.000000
                                            1.000000
                                                                     1.000000
                                                                                 0.000000
                25%
                            0.000000
                                            1.000000
                                                                     3.000000
                                                                                 0.000000
                50%
                            0.000000
                                            2.000000
                                                                     4.000000
                                                                                 0.000000
                75%
                            0.000000
                                            4.000000
                                                                     5.000000
                                                                                 0.000000
                            1.000000
                                            5.000000
                                                                     5 000000
                                                                                 1.000000
                max
In [32]: | dataPT = dataPT.dropna(axis=0)
In [33]: ▶ dataPT.info()
              <class 'pandas.core.frame.DataFrame'>
              Int64Index: 24246 entries, 0 to 26706
              Data columns (total 4 columns):
                                                 Non-Null Count Dtype
                  Column
                  doctor_recc_h1n1
                                                  24246 non-null
                                                                  float64
                  opinion h1n1 risk
                                                  24246 non-null float64
                   {\tt opinion\_h1n1\_vacc\_effective}
                                                 24246 non-null float64
                  h1n1_vaccine
                                                  24246 non-null int64
              dtypes: float64(3), int64(1)
              memory usage: 947.1 KB
In [34]:  y = dataPT['h1n1_vaccine']
              X= dataPT.drop('h1n1_vaccine',axis=1)
In [35]: ▶ np.shape(y), np.shape(X)
   Out[35]: ((24246,), (24246, 3))
In [36]: N X_train, X_test, y_train, y_test = train_test_split(X, y)
In [37]:  np.shape(X_test), np.shape(y_train)
   Out[37]: ((6062, 3), (18184,))
          # Data Modeling
```

In the data modeling section, I start from a baseline logistic regression using three features and the response variable (whether the person has received the H1N1 vaccine). From there, I explore non-parametric models, starting with a fairly simple decision tree model. Based on the the results from this model, a more complex tree model is fitted and evaluated to achieve better results.

```
In [39]:  reg = LogisticRegression(C=1e5, solver = "liblinear")
Out[40]: LogisticRegression(C=100000.0, solver='liblinear')
```

```
Check accuracies below:
In [41]: N reg.score(X_train, y_train)
   Out[41]: 0.8197866256049274
In [42]:  reg.score(X_test, y_test)
   Out[42]: 0.81326294952161
In [43]:  M reg.decision_function(X_test)
   \texttt{Out[43]: array([-2.46924764, -1.20906706, -1.40036619, \dots, -2.27794851, \dots)}
                 -0.56024581, -2.46924764])
Out[44]: array([[1.64255822, 0.42006019, 0.64882125]])
        Doctor recommendation appears to be the most important feature
In [46]: ▶ y_test_preds = reg.predict(X_test)
           cm = confusion_matrix(y_test, y_test_preds)
In [47]: ▶ cm
   Out[47]: array([[4415, 252], [ 880, 515]], dtype=int64)
        The number of false positives, 259, seems material but low, given the roughly 27,000 predicitions.
        ## Non-parametric model : Decision Tree
In [48]: ▶ from sklearn.tree import DecisionTreeClassifier
In [50]:  tree = tree.fit(X_train, y_train)
In [51]: ► tree.score(X train, y train)
   Out[51]: 0.8199516058073031
Out[52]: 0.8150775321676015
        Accuracy scores are very similar for test and train set (also to logistic regression). Since there does not appear to be any
        overfitting, it may make sense to build a more complex tree to try to pick up on more patterns in the training set.
In [53]:  y_tepreds_t = tree.predict(X_test)
           cm_t = confusion_matrix(y_test, y_tepreds_t)
           cm_t
   Out[53]: array([[4398, 269], [852, 543]], dtype=int64)
        ## Final model (tree and tuned)
        Since there does not appear to be any overfitting, and possible underfitting, a more complex tree is used to produce better results.
In [54]: M tree_big = DecisionTreeClassifier(criterion = 'entropy', max_depth = 10) # The maximum depth of the tree is increased from 5
In [55]: | tree_big = tree_big.fit(X_train, y_train)
```

Out[56]: 0.8202265728112627

Out[57]: 0.8155724183437809

The accuracy scores in this more complex tree are highly similar to the initial tree, however the training and test scores have slightly improved and converged. This suggests that we now have a marginally improved model.

In [59]: ▶ plt.bar(['doctor reccomendation', 'opin. virus risk', 'opin. effectiveness'], [0.55599157, 0.24206617, 0.20194226])

Out[59]: <BarContainer object of 3 artists>



Doctor recommendation appears to be the most important feature

Type  $\mathit{Markdown}$  and  $\mathsf{LaTeX}$ :  $\alpha^2$ 

Out[63]: <sklearn.metrics. plot.confusion matrix.ConfusionMatrixDisplay at 0x212c777fc40>



The confusion matrix is similar for both iterations of the tree model (293 false positives vs. 286 in final), as expected given there was only a slight improvement in training accuracy. Compared to the baseline model, even though there are greater false positives, our greatest concern, our total correct predictions have increased. Thus even though the tree models would incorrectly classify more unvaccinated persons and therefore result in less resources for that population, given the higher accuracy on the test set of the big\_tree model and the higher number of correct predictions (and lower false negatives) in our confusion matrix, resources would be better conserved and allocated by relying on the big\_tree model.

# Results, Recommendations, Limitations.

The results show that the big\_tree model is the preferred model given its higher accuracy on the training and test sets compared to both the first tree iteration and the baseline logistic regression model. Given that this model performs better than the other models and better than the simple strategy of guessing the majority class for each prediction, it is recommended that this model be used to predict whether or not individuals have been given the a vaccine for any virus similar to H1N1, so that resources can be allocated efficiently based on one's vaccine status. More generally, the models show us that the three factors, presence of a doctor recommendation, opinion of virus risk, and opinion of vaccine effectiveness, are significantly related to whether one has received the vaccine. This suggest that it would be beneficial to both increase outreach to those with low presence of these factors and to provide outreach that may could educate and provide resources so that such persons may become more likely to receive a vaccine.

The core limitation is that there is much room for improvement in the accuracy level of the final model. While the accuracy of the final model is 82%, a strategy of simply guessing that all persons have not received the vaccine would result in a similar 79% accuracy. Also note that iteratively, only slight improvement on models was made, given similar accuracies and only 1 more correct prediction in final model as compared to baseline.