Exercice 1 : Les questions 1 et 2 sont indépendantes

Soit
$$P = X^5 - X^4 - 6X^3 + 14X^2 - 11X + 3$$
 et $Q = X^3 - 7X^2 + 11X - 5$.

- 1. (a) Montrer que P et Q ont une racine évidente en commun et déterminer son ordre de multiplicité comme racine de P, puis comme racine de Q.
 - (b) Factoriser P et Q dans $\mathbb{C}[X]$. Q divise-t-il P?
- 2. Soit $(n, p, q) \in \mathbb{N}^3$. Montrer que $1 + X + X^2$ divise $X^{3n+2} + X^{3p+1} + X^{3q}$.

Exercice 2:

Soit f la fonction définie sur $I = \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[par : f(x) = \frac{1}{\cos x}.$

1. Montrer que, pour tout entier naturel n, la dérivée n-ième de f est bien définie sur $\left]-\frac{\pi}{2}, \frac{\pi}{2}\right[$ et qu'il existe un polynôme P_n tel que :

$$\forall x \in I, \quad f^{(n)}(x) = \frac{P_n(\sin x)}{(\cos(x))^{n+1}}$$

avec, pour tout entier naturel n, la relation $P_{n+1} = (1 - X^2)P'_n + (n+1)XP_n$.

- 2. Déterminer les polynômes P_0 , P_1 , P_2 , P_3 et P_4 (on trouvera $P_4=5+18X^2+X^4$).
- 3. Pour tout entier naturel n non nul, déterminer le degré et le coefficient dominant du polynôme P_n .
- 4. Montrer: $\forall n \in \mathbb{N}, P_n(1) = n!$.

Exercice 3:

Soit $P = X^5 - 1$. On souhaite factoriser P par deux méthodes.

1. Montrer qu'il existe 5 complexes z (qu'on déterminera et écrira sous forme exponentielle) solutions de $z^5 = 1$.

En déduire la factorisation de P dans $\mathbb{C}[X]$.

- 2. (a) Soit $z \in \mathbb{C} \setminus \{1\}$. Que vaut $\sum_{k=0}^{4} z^k = 1 + z + z^2 + z^3 + z^4$? En déduire une expression de $z^5 1$ sous forme d'un produit de deux termes.
 - (b) Factoriser $1+X+X^2+X^3+X^4$ dans $\mathbb{C}[X]$ puis faire de même avec P.