SUPPLEMENTARY MATERIAL: CHEM: CAUSALLY AND HIERARCHICALLY EXPLAINING MOLECULES

Additional Results

Table 1: Classification performance on molecular property prediction task (PRAUC).

Model	MUTAG	BBBP	BACE	ClinTox	Tox21	SIDER	SynM-0.5	SynM-0.7	SynM-0.9
GCN GIN GAT	$\begin{array}{ c c c c c c }\hline 96.07_{\pm 7.25} \\ 97.32_{\pm 3.21} \\ \hline 96.71_{\pm 4.84} \\ \hline \end{array}$	$68.28_{\pm 2.67}$ $66.64_{\pm 3.07}$ $67.23_{\pm 3.58}$	$77.00_{\pm 2.22} \\ 78.32_{\pm 1.56} \\ 78.27_{\pm 2.01}$	$\frac{68.26_{\pm 3.89}}{67.05_{\pm 3.46}}$ $68.11_{\pm 3.73}$	$\frac{35.50}{35.11}_{\pm 1.30}$ $35.39_{\pm 1.18}$	$\begin{array}{c} \textbf{64.28}_{\pm 0.50} \\ 63.52_{\pm 0.51} \\ \underline{63.92}_{\pm 0.63} \end{array}$	$\begin{array}{ c c }\hline 77.44_{\pm 5.28}\\ \underline{84.44}_{\pm 9.35}\\ 53.14_{\pm 13.29}\\ \end{array}$	$76.81_{\pm 4.84}$ $79.85_{\pm 8.34}$ $55.85_{\pm 19.33}$	$74.72_{\pm 8.64} \\72.39_{\pm 8.82} \\49.52_{\pm 10.26}$
ICL	94.86 _{±7.80}	$64.04_{\pm 3.95}$	$76.76_{\pm 3.05}$	$70.51_{\pm 4.20}$	$34.67_{\pm 1.29}$	$62.91_{\pm 0.55}$	$75.66_{\pm 9.97}$	$78.19_{\pm 9.18}$	$65.96_{\pm 13.29}$
CIGA	$94.34_{\pm 6.27}$	$68.38_{\pm 4.51}$	$73.59_{\pm 5.88}$	$64.26_{\pm 4.61}$	$37.44_{\pm 1.67}$	$60.76_{\pm0.63}$	$60.33_{\pm 12.65}$	$63.75_{\pm 14.31}$	$60.73_{\pm 10.70}$
DIR	$94.51_{\pm 4.65}$	$68.43_{\pm 3.03}$	$73.34_{\pm 2.19}$	$64.99_{\pm 4.48}$	$30.44_{\pm 1.83}$	$61.99_{\pm 0.68}$	$72.99_{\pm 11.44}$	$63.42_{\pm 14.10}$	$50.52_{\pm 9.53}$
DisC	$95.19_{\pm 5.83}$	$69.53_{\pm 1.71}$	$78.39_{\pm 3.68}$	$65.11_{\pm 3.42}$	$34.61_{\pm 1.11}$	$60.79_{\pm 0.55}$	$75.39_{\pm 6.67}$	$79.94_{\pm 9.78}$	$65.61_{\pm 13.40}$
CAL	$97.07_{\pm 2.25}$	$68.92_{\pm 2.18}$	$76.95_{\pm 3.67}$	$68.20_{\pm 1.91}$	$38.04_{\pm 1.23}$	$63.38_{\pm0.60}$	$82.12_{\pm 2.60}$	$82.63_{\pm 4.75}$	$\bf 82.06_{\pm 4.17}$
CHEM(Ours)	97.70 _{±1.90}	$71.16_{\pm 4.85}$	$80.14_{\pm 2.27}$	$69.41_{\pm 2.23}$	$34.35_{\pm 1.47}$	$63.13_{\pm0.63}$	87.37 _{±5.42}	$83.50_{\pm 5.39}$	$80.65_{\pm 7.79}$

Figure 1: Result of causal subgraph analysis in NCGC00258540-01.

Figure 2: Result of causal subgraph analysis in NCGC00258093-01.