Department of Mathematics & Statistics

MTH-102A Ordinary Differential Equations

Assignment V

- 1. \star Show that the substitution $x = e^t$ transforms the Euler's equation $ax^2y'' + bxy' + cy = 0$ for x > 0, in to constant coefficient differential equation.
- 2. \star Find the power series
 - (a) in x for the general solution of $(1+2x^2)y'' + 6xy' + 2y = 0$
 - (b) in x 1 for the general solution of $(2 + 4x 2x^2)y'' 12(x 1)y' 12y = 0$.
- 3. \star Find the power series in $x-x_0$ for the general solution of the differential equations
 - (a) y'' y = 0, $x_0 = 3$.
 - (b) $(1-4x+2x^2)y'' + 10(x-1)y' + 6y = 0, \quad x_0 = 1.$
- 4. \star Find a_0, \ldots, a_n for at least 7 terms in the power series $y = \sum_{n=0}^{\infty} a_n (x x_0)^n$ for the solution of the initial value problems
 - (a) y'' + (x-3)y' + 3y = 0, y(3) = -2, y'(3) = 3.
 - (b) $(4x^2 24x + 37)y'' + y = 0$, y(3) = 4, y'(3) = -6.
- 5. \star Find a fundamental set of Frobenius solutions of

$$x^{2}(3+x)y'' + 5x(x+1)y' - (1-4x)y = 0.$$

- 6. Find a fundamental set of Frobenius solutions of
 - (a) $4x^2y'' + x(7 + 2x + 4x^2)y' (1 4x 2x^2)y = 0$,
 - (b) $x^2(5+x+10x^2)y'' + x(4+3x+8x^2)y' + (x+36x^2)y = 0$,
 - (c) $2x^2y'' + x(3+2x)y' (1-x)y = 0$, and
 - (d) $x^2(8+x)y'' + x(2+3x)y' + (1+x)y = 0$.