```
In [ ]: import pandas as pd
        import threadpoolctl
        import StandardScaler
        import matplotlib.pyplot as plt
        from statsmodels.stats.multicomp import pairwise tukeyhsd
        import matplotlib
        from sklearn.cluster import KMeans
        import seaborn as sns
        from sklearn.preprocessing import StandardScaler
        from scipy.stats import f oneway
        import statsmodels.api as sm
        from statsmodels.formula.api import ols
        import itertools
        import statsmodels.formula.api as smf
        from statsmodels.stats.multitest import multipletests
        from statsmodels.stats.anova import anova lm
        from itertools import combinations
        from statsmodels.tsa.arima.model import ARIMA
        from sklearn.metrics import mean absolute error, mean squared error
        import numpy as np
        from sklearn.linear model import LinearRegression
#Data set Bookl. is a data set about 18 diferent sites (plots) from the Amaz
        #These 18 transects are the same size, a radius of 2km, but each have a diff
        #Each of them can have a different combination between 11 habitat types. Have
        #The measurements from the different habitat types in each transect was obta
        df = pd.read excel(r"C:\Users\vs24904\OneDrive - University of Bristol\Docum
        ##################################
                                                   First, I am going to use some of
        # Group by BufferID and calculate the average area
        df avg area = df.groupby('BufferID')['Area m2'].mean().reset index()
        # Standardize the data
        scaler = StandardScaler()
        df avg area scaled = scaler.fit transform(df avg area[['Area m2']])
        # Apply K-Means clustering
        kmeans = KMeans(n clusters=4, random state=0)
        df avg area['Cluster'] = kmeans.fit predict(df avg area scaled)
        # Plot the clusters
        plt.figure(figsize=(10, 6))
        sns.scatterplot(x='BufferID', y='Area_m2', hue='Cluster', data=df_avg_area,
```

plt.title('K-Means Clustering of each Plot by Average Area')

plt.savefig('K-Means Clustering of Buffer Zones by Average Area (18plots).pr

plt.xlabel('Plot')

plt.ylabel('Average Area (m²)')
plt.legend(title='Cluster')
plt.xticks(rotation=45)
plt.tight layout()

```
plt.show()
#This plot should plot the 4 clusters of the Area in squared meters of each
#But since each of the transects have the same Area and only changes the typ
#homogenity or heterogenity of the plot.
#Cluster 1 are the more homogenous so they have more area because its only \epsilon
#Cluster 0 are plots that have their area divided in 5 or 6 habitat types
#Cluster 2, 3-4 habitat types
#Cluster 3, 2-3 habitat types
HEATMAP
#Actually the cluster plot is not very specific, so it would be better to ha
######## HEAT MAP FOR HABITAT TYPE PER PLOT
# Aggregate by BufferID and Areas to calculate the average proportion across
df avg proportion = df.groupby(['BufferID', 'Type'])['Area m2'].sum().reset
# Calculate the proportion of Area_m2 for each Area within each Plot
df avg proportion['Proportion'] = df avg proportion.groupby('BufferID')['Are
# Pivot the data for heatmap
df pivot avg = df avg proportion.pivot table(values='Proportion', index='Buf
#Plot the heatmap
#In the heatmap we can see that our main habitat type is "Forest formation"
#We can also observed than a lot of the other habitat types contribute with
plt.figure(figsize=(12, 8))
sns.heatmap(df pivot avg, cmap='PiYG', annot=True, fmt='.2f', linewidths=0.5
plt.title('Average Proportion of Total Area by Habitat Type for Each Plot')
plt.xlabel('Habitat Type')
plt.ylabel('Plot')
plt.xticks(rotation=45)
plt.tight layout()
plt.savefig('HEAT MAP FOR HABITAT TYPE PER PLOT (18plots).png')
plt.show()
######## HEAT MAP FOR HABITAT TYPE PER YEAR
# Aggregate by BufferID and Areas to calculate the average proportion across
df_avg_proportion = df.groupby(['Date', 'Type'])['Area_m2'].sum().reset_inde
# Calculate the proportion of Area m2 for each Area within each Plot
df avg proportion['Proportion'] = df avg proportion.groupby('Date')['Area m2
# Pivot the data for heatmap
df pivot avg = df avg proportion.pivot table(values='Proportion', index='Dat
#Plot the heatmap
#In the heatmap we can see that our main habitat type is "Forest formation"
#The percentages dont really change across the years.
plt.figure(figsize=(12, 8))
sns.heatmap(df pivot avg, cmap='PiYG', annot=True, fmt='.2f', linewidths=0.5
plt.title('Average Proportion of Total Area by Habitat Type for Each Year')
plt.xlabel('Habitat Type')
plt.ylabel('Year')
plt.xticks(rotation=45)
```

```
plt.tight layout()
plt.savefig('HEAT MAP FOR HABITAT TYPE PER YEAR (18plots).png')
plt.show()
                                             ARE THE DIFFERENCES IN TH
buffer groups = [df[df['BufferID'] == buffer]['Area m2'].values for buffer i
anova buffer = f oneway(*buffer groups)
print("ANOVA for BufferID:")
print(f"F-statistic: {anova buffer statistic}, p-value: {anova buffer pvalue
# Perform Tukey's HSD test for BufferID
tukey type = pairwise tukeyhsd(endog=df['Area m2'], groups=df['BufferID'], a
# Display the results
print("\nTukey HSD Test for PLot:")
print(tukey type)
# Visualize the Tukey HSD results
tukey type.plot simultaneous()
plt.title("Tukey HSD Test for Plot")
plt.xlabel('Mean Difference')
plt.grid(True)
plt.savefig('Tukey plot (18plots).png')
plt.show()
#There is a significant difference between the plots, being plot TAI 02 and
#Plot TAI 02 and TAI 09 are the plots that are compound by only one habitat
################
                      ANOVA for Type
type groups = [df[df['Type'] == buffer]['Area m2'].values for buffer in df['
anova type = f oneway(*type groups)
print("ANOVA for Type:")
print(f"F-statistic: {anova type.statistic}, p-value: {anova type.pvalue}")
# Perform Tukey's HSD test for Type
tukey type = pairwise tukeyhsd(endog=df['Area m2'], groups=df['Type'], alpha
# Display the results
print("\nTukey HSD Test for Type:")
print(tukey type)
# Visualize the Tukey HSD results
tukey type.plot simultaneous()
plt.title("Tukey HSD Test for Habitat Type")
plt.xlabel('Mean Difference')
plt.grid(True)
plt.savefig('Tukey type (18plots).png')
plt.show()
#There is a significant difference between the Habitat types, being ForestF\epsilon
#Both types are the one with the largest area m2
```

```
############## ANOVA for Year
year groups = [df[df['Date'] == year]['Area m2'].values for year in df['Date
anova year = f oneway(*year groups)
print("\nANOVA for Year:")
print(f"F-statistic: {anova year.statistic}, p-value: {anova year.pvalue}")
# Perform Tukey's HSD test for Year
tukey type = pairwise tukeyhsd(endog=df['Area m2'], groups=df['Date'], alpha
# Display the results
print("\nTukey HSD Test for Year:")
print(tukey type)
# Visualize the Tukey HSD results
tukey type.plot simultaneous()
plt.title("Tukey HSD Test for Year")
plt.xlabel('Mean Difference')
plt.grid(True)
plt.savefig('Tukey date (18plots).png')
plt.show()
#There was no a significant in the area differences between the 11 years
#############
                                                          TIME SERIES
# Load the dataset
df = pd.read excel(r"C:\Users\vs24904\OneDrive - University of Bristol\Docum
#Identify unique BufferIDs and Area
unique dates = df['Date'].unique()
unique buffer ids = df['BufferID'].unique()
unique areas = df['Type'].unique()
#Create a complete DataFrame with all combinations
all combinations = pd.DataFrame(
   list(itertools.product(unique dates, unique buffer ids, unique areas)),
   columns=['Date', 'BufferID', 'Type'])
# Merge with the original DataFrame and fill missing values with 0 \,
df complete = pd.merge(all combinations, df, on=['Date', 'BufferID', 'Type']
# Time series analysis for a specific BufferID
buffer id = 'TAI 01' # Example BufferID
area = 'ForestFormation' # Example Area
# Convert Date to numeric index for time series modeling
#df filtered['Date'] = pd.to datetime(df filtered['Date'], errors='coerce')
df filtered['Date'] = pd.to numeric(df filtered['Date'])
df filtered.sort values('Date', inplace=True)
df filtered.set index('Date', inplace=True)
# Define the model with specified order (p, d, g)
model = ARIMA(df filtered['Area m2'], order=(1, 2, 1))
# Fit the model
model fit = model.fit()
#Forecasting
steps = 5
```

```
forecast = model fit.forecast(steps=steps)
forecast years = range(df filtered.index[-1] + 1, df filtered.index[-1] + 1
forecast df = pd.DataFrame({'Date': forecast years, 'Forecasted Area m2': fc
plt.figure(figsize=(12, 6))
plt.plot(df filtered.index, df_filtered['Area_m2'], label='Observed', color=
plt.plot(forecast df['Date'], forecast df['Forecasted Area m2'], label='Fore
plt.xlabel('Date')
plt.ylabel('Area m2')
plt.title(f'Time Series Forecast for Plot: {buffer_id}, Area: {area}')
plt.legend()
plt.grid(True)
plt.savefig('Time Series Forecast for BufferID (18plots) TAI 01.png')
plt.show()
print(forecast df)
##### test if forecast is correct or good
# Split data into training and testing sets (e.g., last 5 years for testing)
train size = int(len(df filtered) * 0.6)
train data, test data = df filtered.iloc[:train size], df filtered.iloc[trai
# Fit SARIMA model on the training data
arima model train = ARIMA(train data['Area m2'], order=(1, 2, 1))
arima fit train = arima_model_train.fit()
# Forecast for the test period
forecast test = arima fit train.get forecast(steps=len(test data))
forecasted values = forecast test.predicted mean
confidence intervals = forecast test.conf int()
# Evaluation metrics
mae = mean absolute error(test data['Area m2'], forecasted values)
mse = mean squared error(test data['Area m2'], forecasted values)
rmse = np.sqrt(mse)
mape = np.mean(np.abs((test data['Area m2'] - forecasted values) / test data
# Print evaluation metrics
print(f"MAE: {mae}")
print(f"MSE: {mse}")
print(f"RMSE: {rmse}")
print(f"MAPE: {mape}%")
# Plot the forecast with confidence intervals
plt.figure(figsize=(12, 6))
plt.plot(train data.index, train data['Area m2'], label='Training Data', col
plt.plot(test data.index, test data['Area m2'], label='Actual Test Data', cd
plt.plot(test_data.index, forecasted_values, label='Forecast', color='red',
plt.fill between(test data index, confidence intervals iloc[:, 0], confidence
plt.xlabel('Year')
plt.ylabel('Area (m²)')
plt.title('ARIMA Forecast vs Actuals with Confidence Intervals')
plt.legend()
plt.grid(True)
```

plt.savefig('ARIMA book1 Forecast vs Actuals with Confidence Intervals.png')
plt.show()

C:\Users\vs24904\AppData\Local\anaconda32\Lib\site-packages\sklearn\cluster
_kmeans.py:1411: UserWarning: KMeans is known to have a memory leak on Wind
ows with MKL, when there are less chunks than available threads. You can avo
id it by setting the environment variable OMP_NUM_THREADS=1.
 warnings.warn(

Habitat Type

F-statistic: 9.00751058069251, p-value: 1.3372846720700188e-21

Tukey HSD Test for PLot:

Multiple Comparison of Means - Tukey HSD, FWER=0.05

Mu C			======================================		
group1 group2	meandiff	p-adj	lower	upper	reject
TAI 01 TAI 02	9952017.1729	0.0	5388010.0773	14516024.2686	True
TAI 01 TAI 03	1419641.5462	0.9727	-1568202.4521	4407485.5445	False
TAI_01 TAI_04	1787849.2717	0.8503	-1284392.0272	4860090.5705	False
TAI_01 TAI_05	-87312.9164	1.0	-2699127.0593	2524501.2265	False
TAI_01 TAI_06	1111634.6378	0.9975	-1803243.2233	4026512.4989	False
TAI_01 TAI_07	-169888.1874	1.0	-2759872.3331	2420095.9582	False
TAI_01 TAI_08	621840.5455	1.0	-2173031.5962	3416712.6871	False
TAI_01 TAI_09	9951530.1225	0.0	5387523.0268	14515537.2181	True
TAI_01 TAI_10	-350639.2941	1.0	-2891343.9267	2190065.3384	False
TAI_01 TAI_11	423092.1702	1.0	-2321778.2219	3167962.5623	False
TAI_01 TAI_12	769307.6807	1.0	-2062292.3456	3600907.7069	False
TAI_01 TAI_13	-505275.0997	1.0	-3003071.1985	1992520.999	False
TAI_01 TAI_14	-169099.8126	1.0	-2759083.9582	2420884.3331	False
TAI_01 TAI_15	1658171.2941		-1384500.103	4700842.6912	False
TAI_01 TAI_16	620587.7647	1.0	-2174284.377	3415459.9064	False
TAI_01 TAI_17	-281493.3359	1.0	-2841067.8185	2278081.1468	False
TAI_01 TAI_18		0.909	-1385798.9265	4699543.8677	False
TAI_02 TAI_03		0.0	-13308774.438		True
TAI_02 TAI_04	-8164167.9013	0.0	-12993809.7559		True
	-10039330.0893		-14589972.5674		True
TAI_02 TAI_06	-8840382.5352		-13571480.3772		True
	-10121905.3604		-14660053.8507	-5583756.87	True
TAI_02 TAI_08			-13988296.8636		True
TAI_02 TAI_09	-487.0505	1.0	-5892594.8749	5891620.7739	False
	-10302656.4671		-14812861.9918		True
TAI_02 TAI_11			-14157217.0544		True
TAI_02 TAI_12			-13862958.6902		True
	-10457292.2727		-14943466.4999		True
TAI_02 TAI_14 TAI 02 TAI 15	-10121116.9855		-14659265.4759 -13104731.7719		True True
TAI_02 TAI_15			-13104731.7719		True
	-9331429.4082				
TAI_02 TAI_17 TAI 02 TAI 18	-10233510.5088		-14754372.7471 -13106030.5955		True True
TAI_02 TAI_10 TAI 03 TAI 04			-3011509.9304		
TAI 03 TAI 05			-4474343.5427		
TAI 03 TAI 06					
TAI 03 TAI 07			-4537722.8599		False
TAI 03 TAI 08		1.0	-3927519.0589		False
TAI 03 TAI 09				13308287.3875	True
TAI 03 TAI 10			-4675277.3748	1134715.6941	False
TAI 03 TAI 11	-996549.376		-4081697.3959		False
TAI 03 TAI 12	-650333.8655	1.0	-3812893.5162		False
TAI 03 TAI 13			-4792460.9239	942627.632	False
TAI 03 TAI 14			-4536934.4851	1359451.7675	False
TAI 03 TAI 15	238529.7479		-3114330.8316	3591390.3274	False
TAI 03 TAI 16			-3928771.8396	2330664.2766	False
TAI 03 TAI 17			-4622649.2783		False
TAI 03 TAI 18	237230.9244		-3115629.6551		False

```
TAI 04 TAI 05
              -1875162.1881 0.7853 -4927514.1981 1177189.8219 False
TAI 04 TAI 06
               -676214.6339
                                   -3991601.8844
                                                  2639172.6166
TAI 04 TAI 07
              -1957737.4591 0.7127
                                   -4991431.1731
                                                  1075956.2548 False
TAI 04 TAI 08
              -1166008.7262 0.9986
                                  -4376396.5476 2044379.0952 False
TAI 04 TAI 09
              8163680.8508
                               0.0
                                    3334038.9961 12993322.7054
                                                               True
TAI 04 TAI 10
              -2138488.5658 0.5293 -5130220.4564
                                                   853243.3248 False
TAI 04 TAI 11
              -1364757.1015 0.9899
                                   -4531710.3921 1802196.1891 False
TAI 04 TAI 12
               -1018541.591 0.9998
                                   -4260954.0238 2223870.8417 False
TAI 04 TAI 13
              -2293124.3714 0.3708
                                   -5248503.3702
                                                 662254.6274 False
TAI 04 TAI 14
              -1956949.0843 0.7133
                                   -4990642.7982 1076744.6297 False
TAI 04 TAI 15
              -129677.9776
                              1.0 -3557961.6452 3298605.6901 False
TAI 04 TAI 16
              -1167261.507 0.9986
                                  -4377649.3284 2043126.3144 False
TAI 04 TAI 17
              -2069342.6076 0.6017
                                    -5077116.071
                                                  938430.8559 False
TAI 04 TAI 18
                                   -3559260.4688 3297306.8666 False
               -130976.8011
                               1.0
TAI 05 TAI 06
               1198947.5542 0.9935
                                   -1694959.6903 4092854.7986 False
TAI 05 TAI 07
                                   -2648935.3527 2483784.8107 False
                -82575.271
                              1.0
TAI 05 TAI 08
                709153.4619
                               1.0 -2063840.6749 3482147.5986 False
TAI 05 TAI 09
              10038843.0389
                               0.0
                                    5488200.5608 14589485.5169
                                                               True
TAI 05 TAI 10
              -263326.3777
                               1.0 -2779944.3909 2253291.6355 False
TAI 05 TAI 11
                510405.0866
                              1.0 -2212185.5297
                                                  3232995.7029 False
TAI 05 TAI 12
                856620.5971 0.9999
                                   -1953387.3928 3666628.5869 False
TAI 05 TAI 13
                               1.0 -2891253.8251 2055329.4585 False
               -417962.1833
TAI 05 TAI 14
              -81786.8962
                               1.0 -2648146.9779 2484573.1856 False
TAI 05 TAI 15
               1745484.2105 0.8582
                                   -1277103.3275 4768071.7485 False
TAI 05 TAI 16
              707900.6811
                              1.0
                                   -2065093.4557 3480894.8179 False
TAI 05 TAI 17
              -194180.4195
                               1.0 -2729847.5361 2341486.6972 False
TAI_05 TAI 18
              1744185.387 0.859
                                    -1278402.151
                                                 4766772.925 False
TAI 06 TAI 07
              -1281522.8252 0.9856
                                   -4155743.3973 1592697.7469 False
TAI 06 TAI 08
              -489794.0923
                               1.0 -3549930.7413 2570342.5567 False
TAI 06 TAI 09
              8839895.4847
                               0.0
                                   4108797.6426 13570993.3267
                                                               True
TAI 06 TAI 10
              -1462273.9319 0.9411
                                   -4292168.9922 1367621.1284 False
TAI 06 TAI 11
              -688542.4676
                               1.0
                                   -3703080.4905
                                                  2325995.5554 False
TAI 06 TAI 12
               -342326.9571
                               1.0 -3436043.9336 2751390.0194 False
TAI 06 TAI 13
              -1616909.7375 0.8551
                                   -4408345.0983 1174525.6232 False
TAI 06 TAI 14
              -1280734.4503 0.9857
                                   -4154955.0224 1593486.1217 False
TAI 06 TAI 15
              546536.6563
                               1.0 -2741468.0962 3834541.4089 False
TAI 06 TAI 16
               -491046.8731
                               1.0
                                   -3551183.5221 2569089.7759 False
TAI 06 TAI 17
              -1393127.9736 0.9639
                                   -4239976.6795 1453720.7323 False
TAI_06 TAI 18
                545237.8328
                                   -2742766.9197
                                                  3833242.5854 False
                              1.0
TAI 07 TAI 08
                791728.7329 0.9999
                                    -1960714.044 3544171.5098 False
                                    5583269.8195 14659566.8003
TAI 07 TAI 09
              10121418.3099
                               0.0
                                                               True
TAI 07 TAI 10
               -180751.1067
                               1.0
                                   -2674705.9943
                                                   2313203.781 False
TAI 07 TAI 11
                592980.3577
                               1.0
                                   -2108675.5089
                                                  3294636.2242 False
TAI 07 TAI 12
                939195.8681 0.9995
                                   -1850533.4486 3728925.1848 False
TAI 07 TAI 13
               -335386.9123
                               1.0
                                   -2785614.7186
                                                  2114840.894 False
TAI 07 TAI 14
                   788.3749
                               1.0
                                   -2543351.7208 2544928.4706 False
               1828059.4816 0.7977
                                   -1175684.8788 4831803.8419 False
TAI 07 TAI 15
TAI 07 TAI 16
               790475.9521 0.9999
                                   -1961966.8247
                                                   3542918.729 False
TAI 07 TAI 17
                                    -2624780.925
               -111605.1484
                              1.0
                                                  2401570.6281 False
TAI 07 TAI 18
              1826760.658 0.7986
                                   -1176983.7023 4830505.0184 False
              9329689.577
                                    4671569.3409 13987809.8131
TAI 08 TAI 09
                               0.0
                                                                True
TAI 08 TAI 10
               -972479.8396 0.9988
                                   -3678603.1544 1733643.4753 False
TAI_08 TAI_11
                               1.0 -3097409.5895
                                                  2699912.839 False
              -198748.3752
TAI 08 TAI 12
               147467.1352
                               1.0 -2833452.5339 3128386.8044 False
TAI 08 TAI 13
              -1127115.6452 0.9918 -3792994.2464
                                                 1538762.956 False
                -790940.358 0.9999 -3543383.1349 1961502.4189 False
TAI 08 TAI 14
```

```
TAI 08 TAI 15
            1036330.7487 0.9997 -2145771.1661 4218432.6634 False
TAI 08 TAI 16
            -1252.7807 1.0 -2947306.693 2944801.1315 False
TAI 08 TAI 17 -903333.8813 0.9996 -3627181.3252 1820513.5626 False
TAI_09 TAI_11 -9528437.9522 0.0 -14156730.0039 -4900145.9006 True
TAI 09 TAI 12 -9182222.4418 0.0 -13862471.6397 -4501973.2439 True
True
                                                         True
TAI 09 TAI 17 -10233023.4583 0.0 -14753885.6967 -5712161.22 True
TAI 09 TAI 18 -8294657.6519 0.0 -13105543.545 -3483771.7588 True
TAI 10 TAI 11 773731.4643 0.9999 -1880718.8698 3428181.7985 False
TAI 10 TAI 12 1119946.9748 0.9945 -1624092.3499 3863986.2995 False
TAI_10 TAI_13 -154635.8056 1.0 -2552713.8815 2243442.2703 False
TAI 10 TAI 14 181539.4816 1.0 -2312415.4061 2675494.3692 False
TAI 10 TAI 15 2008810.5882 0.6275 -952547.6031 4970168.7796 False
TAI 10 TAI 16 971227.0588 0.9988 -1734896.256 3677350.3737 False
TAI 10 TAI 17 69145.9583 1.0 -2393213.6091 2531505.5256 False
TAI 10 TAI 18 2007511.7647 0.6287 -953846.4267 4968869.9561 False
TAI_11 TAI_12 346215.5105 1.0 -2587874.6816 3280305.7025 False TAI_11 TAI_13 -928367.27 0.9989 -3541777.2833 1685042.7434 False
TAI 11 TAI 14 -592191.9828 1.0 -3293847.8493 2109463.8838 False
TAI 11 TAI 15
            1235079.1239 0.9964 -1903196.8004 4373355.0482 False
TAI 11 TAI 16
            197495.5945 1.0 -2701165.6197 3096156.8087 False
TAI 11 TAI 17 -704585.5061
                          1.0 -3377102.6863 1967931.6742 False
TAI 11 TAI 18 1233780.3004 0.9964 -1904495.624 4372056.2247 False
TAI 12 TAI 13 -1274582.7804 0.9748 -3978941.6946 1429776.1338 False
TAI 12 TAI 14
            -938407.4932 0.9995 -3728136.8099 1851321.8235 False
TAI_12 TAI_15 888863.6134 1.0 -2325544.7328 4103271.9597 False TAI_12 TAI_16 -148719.916 1.0 -3129639.5851 2832199.7532 False
TAI 12 TAI 17 -1050801.0165 0.9976 -3812321.1265 1710719.0934 False
TAI_12 TAI_18 887564.7899 1.0 -2326843.5563 4101973.1361 False TAI_13 TAI_14 336175.2872 1.0 -2114052.5191 2786403.0935 False
TAI 13 TAI 15 2163446.3939 0.4627 -761181.3874 5088074.1751 False
TAI 13 TAI 16 1125862.8645 0.9919 -1540015.7368 3791741.4657 False
TAI 13 TAI 17 223781.7639
                           1.0 -2194279.4347 2641842.9625 False
TAI 13 TAI 18 2162147.5703 0.4638 -762480.2109 5086775.3516 False
TAI 14 TAI 15
            1827271.1067 0.7982 -1176473.2537 4831015.467 False
TAI 14 TAI 16
            789687.5773 0.9999 -1962755.1996 3542130.3542 False
            -112393.5233 1.0 -2625569.2999 2400782.2533 False
TAI 14 TAI 17
TAI 15 TAI 16 -1037583.5294 0.9997 -4219685.4442 2144518.3854 False
TAI_15 TAI_17 -1939664.63 0.6974 -4917228.0365 1037898.7765 False TAI_15 TAI_18 -1298.8235 1.0 -3403108.8621 3400511.215 False
TAI 16 TAI 17 -902081.1006 0.9996 -3625928.5444 1821766.3433 False
TAI 17 TAI 18 1938365.8065 0.6985 -1039197.6001 4915929.213 False
```


Mean Difference

1e7

ANOVA for Type:

F-statistic: 464.7582383256251, p-value: 1.64e-321

Tukey HSD Test for Type:

Multiple Comparison of Means - Tukey HSD, FWER=0.05

			-	
groupl upper reject	group2	meandiff	p-adj	lower
Floodplains	ForestFormation	8977324.9034	0.0	8398617.0403
9556032.7665 True				
Floodplains	ForestPlantation	-901621.7277	0.1387	-1920011.7905
116768.3351 False				
Floodplains	Grassland	-888500.2429	0.1412	-1894648.4639
117647.978 False	M	000124 2005	0 4606	2105777 2522
Floodplains	MosaicofCrops	-898134.2805	0.4686	-2185777.3532
389508.7923 False	0;1Dolm	010244 7240	0 0002	202140 1607
Floodplains 1538349.28 True	OilPalm	910244.7248	U.UUU2	282140.1697
Floodplains	Pasture	-240545.7901	0.968	-835755.2101
354663.63 False	rastule	- 240040./901	0.900	-055/55.2101
Floodplains	RiverLakeandOcean	-865295.8052	0.3669	-2028530.6518
297939.0413 False	NIVET Lancarra occur	00323310032	015005	202033010310
Floodplains	Soybeans	-908085.364	0.9971	-3984398.8511
2168228.123 False	, , , , , ,			
Floodplains U	JrbanInfrastructure	-907238.3052	0.7947	-2557218.787
742742.1765 False				
Floodplains	Wetland	-888098.9281	0.5638	-2240951.0265
464753.1703 False				
ForestFormation	ForestPlantation	-9878946.6311	0.0	-10870461.5028
-8887431.7593 True				
ForestFormation	Grassland	-9865825.1463	0.0	-10844762.1532
-8886888.1395 True				
ForestFormation	MosaicofCrops	-9875459.1838	0.0	-11141953.599
-8608964.7687 True	0175.7			
ForestFormation	OilPalm	-8067080.1786	0.0	-8650602.8885
-7483557.4686 True	Daatoon	0217070 6025	0.0	0765020 4241
ForestFormation	Pasture	-9217870.6935	0.0	-9765828.4241
-8669912.9628 True ForestFormation	RiverLakeandOcean	0042620 7006	0.0	-10982400.8317
-8702840.5855 True	WINE! Fakeaiianceaii	- 5042020./000	0.0	-10902400.031/
ForestFormation	Sovheans	-9885410.2674	0.0	-12952931.7574
-6817888.7775 True	Soybeans	- 3003410.2074	0.0	-12932931.7374
	JrbanInfrastructure	-9884563.2086	0.0	-11518092.826
-8251033.5912 True	3. 54.1211. 1 45 € 1 4 € € 41 €	300 1303 12000	0.0	11310032.020
ForestFormation	Wetland	-9865423.8315	0.0	-11198162.4483
-8532685.2146 True				
ForestPlantation	Grassland	13121.4847	1.0	-1275495.2902
1301738.2597 False				
ForestPlantation	MosaicofCrops	3487.4472	1.0	-1515138.1264
1522113.0208 False				
ForestPlantation	OilPalm	1811866.4525	0.0	790732.6306
2833000.2744 True				
ForestPlantation	Pasture	661075.9376	0.5549	-340159.9006

1662311.7759 False				
ForestPlantation	RiverLakeandOcean	36325.9225	1.0	-1378352.2241
1451004.069 False				
ForestPlantation	Soybeans	-6463.6364	1.0	-3186385.5883
3173458.3156 False	UrbanInfrastructure	-5616.5775	1.0	- 1841545 . 3725
1830312.2174 False	Ul Dalizii i l'astructure	-3010.3773	1.0	-1041343.3723
ForestPlantation	Wetland	13522.7996	1.0	-1560773.1542
1587818.7534 False				
Grassland	MosaicofCrops	-9634.0375	1.0	-1520077.5337
1500809.4587 False	0.175.7			
Grassland 2807670.2399 True	0ilPalm	1798744.9678	0.0	789819.6956
2807670.2399 True Grassland	Pasture	647954.4529	0 5665	-340827.1844
1636736.0902 False	rasture	047954.4529	0.3003	-340027.1044
Grassland	RiverLakeandOcean	23204.4377	1.0	-1382686.803
1429095.6784 False				
Grassland	Soybeans	-19585.1211	1.0	-3195607.7191
3156437.4769 False		10700 0000		1047004 6656
Grassland 1810428.541 False	UrbanInfrastructure	-18738.0623	1.0	-1847904.6656
Grassland	Wetland	401.3149	1.0	-1566003.3814
1566806.0112 False	weetana	401.5145	1.0	150000515014
MosaicofCrops	OilPalm	1808379.0053	0.0004	518564.8152
3098193.1953 True				
MosaicofCrops	Pasture	657588.4904	0.8524	-616530.6431
1931707.6239 False	D' 1 1 10	22222 4752		1506400 7070
MosaicofCrops	RiverLakeandOcean	32838.4752	1.0	-1586488.7372
1652165.6877 False MosaicofCrops	Soybeans	-9951.0836	1.0	-3286047.844
3266145.6768 False	Joybeans	-9951.0050	1.0	-3200047.044
	UrbanInfrastructure	-9104.0248	1.0	-2006988.1312
1988780.0817 False				
MosaicofCrops	Wetland	10035.3524	1.0	-1750451.5441
1770522.2489 False	5 .	1150700 5140	0 0	1750600 0517
OilPalm	Pasture	-1150/90.5149	0.0	-1750682.3517
-550898.6781 True OilPalm	RiverLakeandOcean	-1775540 53	0 0001	-2041178 2308
-609902.8203 True	NIVET Lancandocean	1775540.55	0.0001	2541170.2550
OilPalm	Soybeans	-1818330.0889	0.7123	-4895552.9656
1258892.7878 False				
	UrbanInfrastructure	-1817483.03	0.0176	-3469158.4075
-165807.6526 True	Wa+1 and	1700242 6520	0 001	2152262 2010
0ilPalm -443424.9239 True	wettand	-1798343.6529	0.001	-3153262.3819
Pasture	RiverLakeandOcean	-624750.0152	0.8052	-1772996.5879
523496.5576 False				
Pasture	Soybeans	-667539.574	0.9998	-3738216.9511
2403137.8031 False				
	UrbanInfrastructure	-666692.5152	0.9666	-2306140.7375
972755.7072 False Pasture	Wetland	-647553.138	0 0004	-1987539.5871
692433.3111 False	wertand	-04/333.130	0.0904	- 190/128.70/1
RiverLakeandOcean	Soybeans	-42789.5588	1.0	-3272015.5665
3186436.4489 False	•			
RiverLakeandOcean	${\tt UrbanInfrastructure}$	-41942.5	1.0	-1962002.7929

1878117.7929 False				
RiverLakeandOcean	Wetland	-22803.1228	1.0	-1694450.4356
1648844.1899 False				
Soybeans	UrbanInfrastructure	847.0588	1.0	-3433861.2098
3435555.3275 False				
Soybeans	Wetland	19986.436	1.0	-3282284.616
3322257.488 False				
UrbanInfrastructure	Wetland	19139.3772	1.0	-2021381.3947
2059660.149 False				

.

F-statistic: 0.04438257860079598, p-value: 0.9999961834517294

Tukey HSD Test for Year:

Multiple Comparison of Means - Tukey HSD, FWER=0.05

				ans - Tukey HSL		
	group2		===== p-adj 	lower	upper	reject
2013	2014	-43796.5437	1.0	-2364596.2714	2277003.184	False
2013	2015	45047.8736		-2292155.1025		False
2013	2016	0.0		-2328900.2749	2328900.275	False
2013	2017	-86393.1822	1.0	-2399287.08	2226500.7157	False
2013	2018	-168178.728	1.0	-2465817.1789	2129459.7229	False
2013	2019	-245231.778	1.0	-2528313.1439	2037849.588	False
2013	2020	-86393.1822	1.0	-2399287.08	2226500.7157	False
2013	2021	-127838.5601	1.0	-2433014.2748	2177337.1545	False
2013	2022	0.0001	1.0	-2328900.2749	2328900.275	False
2013	2023	139118.4332	1.0		2493564.9965	False
2014	2015	88844.4173		-2240286.8879		False
2014	2016	43796.5437	1.0		2364596.2715	False
2014	2017	-42596.6384		-2347333.7315		False
2014	2018	-124382.1843		-2413809.4787		False
2014		-201435.2342		-2476252.8992		False
2014	2020	-42596.6384		-2347333.7315		False
2014	2021	-84042.0164		-2381033.5185		False
2014	2022	43796.5438		-2277003.1839		False
2014	2023	182914.977		-2163519.2336		False
2015	2016	-45047.8736		-2382250.8497		False
2015		-131441.0558		-2452694.9073		False
2015		-213226.6016		-2519280.3112	2092827.108	False
2015		-290279.6516		-2581829.7349		False
2015		-131441.0558		-2452694.9073		False
2015		-172886.4337		-2486449.9915		False
2015	2022 2023	-45047.8735		-2382250.8496		False
2015 2016	2023	94070.5596 -86393.1822	1.0	-2268588.9334	2226500.7157	False False
2016	2017	-168178.728		-2465817.1789		False
2016	2019	-245231.778		-2528313.1439	2037849.588	False
2016	2019	-86393.1822	1.0		2226500.7157	False
2016		-127838.5601		-2433014.2748		False
2016	2021	0.0001		-2328900.2749		False
2016	2023		1.0		2493564.9965	False
2017	2018	-81785.5459		-2363198.2974		False
2017		-158838.5958		-2425590.0633		False
2017	2020	0.0		-2296775.9739		False
2017	2021	-41445.378		-2330448.8221		False
2017	2022	86393.1822		-2226500.7156		False
2017	2023	225511.6154		-2113103.4258		False
2018	2019	-77053.05		-2328236.4018		False
2018	2020	81785.5459		-2199627.2057		False
2018	2021	40340.1679		-2233247.5334		False
2018	2022	168178.7281		-2129459.7228		False
2018	2023	307297.1612		-2016231.3149		False
2019	2020	158838.5958		-2107912.8717		False
2019	2021	117393.2178	1.0	-2141482.4113	2376268.847	False
2019	2022	245231.778	1.0	-2037849.5879	2528313.144	False

2019 2020 2020 2020 2021 2021 2021	2022 2023	384350.2112 -41445.378 86393.1822 225511.6154 127838.5602 266956.9934	1.0 -1924784.3999 2693484.8223 1.0 -2330448.8221 2247558.0662 1.0 -2226500.7156 2399287.0801 1.0 -2113103.4258 2564126.6566 1.0 -2177337.1544 2433014.2748 1.0 -2064025.0323 2597939.019	False False False False False
2022	2023	139118.4332	1.0 -2215328.1301 2493564.9964	False

Tukey HSD Test for Year

C:\Users\vs24904\AppData\Local\anaconda32\Lib\site-packages\statsmodels\tsa\base\tsa_model.py:473: ValueWarning: An unsupported index was provided. As a result, forecasts cannot be generated. To use the model for forecasting, u se one of the supported classes of index.

self. init dates(dates, freq)

C:\Users\vs24904\AppData\Local\anaconda32\Lib\site-packages\statsmodels\tsa\base\tsa_model.py:473: ValueWarning: An unsupported index was provided. As a result, forecasts cannot be generated. To use the model for forecasting, u se one of the supported classes of index.

self. init dates(dates, freq)

C:\Users\vs24904\AppData\Local\anaconda32\Lib\site-packages\statsmodels\tsa\base\tsa_model.py:473: ValueWarning: An unsupported index was provided. As a result, forecasts cannot be generated. To use the model for forecasting, u se one of the supported classes of index.

self. init dates(dates, freq)

C:\Users\vs24904\AppData\Local\anaconda32\Lib\site-packages\statsmodels\tsa
\base\tsa_model.py:837: ValueWarning: No supported index is available. Prediction results will be given with an integer index beginning at `start`.

return get_prediction_index(

C:\Users\vs24904\AppData\Local\anaconda32\Lib\site-packages\statsmodels\tsa\base\tsa_model.py:837: FutureWarning: No supported index is available. In the next version, calling this method in a model without a supported index will result in an exception.

return get prediction index(

MAE: 22952.759128947928 MSE: 786893609.4934272 RMSE: 28051.624008128783

MAPE: nan%

C:\Users\vs24904\AppData\Local\anaconda32\Lib\site-packages\statsmodels\tsa \base\tsa_model.py:473: ValueWarning: An unsupported index was provided. As a result, forecasts cannot be generated. To use the model for forecasting, u se one of the supported classes of index.

self. init dates(dates, freq)

C:\Users\vs24904\AppData\Local\anaconda32\Lib\site-packages\statsmodels\tsa \base\tsa_model.py:473: ValueWarning: An unsupported index was provided. As a result, forecasts cannot be generated. To use the model for forecasting, u se one of the supported classes of index.

self. init dates(dates, freq)

C:\Users\vs24904\AppData\Local\anaconda32\Lib\site-packages\statsmodels\tsa \base\tsa_model.py:473: ValueWarning: An unsupported index was provided. As a result, forecasts cannot be generated. To use the model for forecasting, u se one of the supported classes of index.

self. init dates(dates, freq)

C:\Users\vs24904\AppData\Local\anaconda32\Lib\site-packages\statsmodels\tsa
\statespace\sarimax.py:966: UserWarning: Non-stationary starting autoregress
ive parameters found. Using zeros as starting parameters.

warn('Non-stationary starting autoregressive parameters'

C:\Users\vs24904\AppData\Local\anaconda32\Lib\site-packages\statsmodels\tsa
\base\tsa_model.py:837: ValueWarning: No supported index is available. Prediction results will be given with an integer index beginning at `start`.

return get prediction index(

C:\Users\vs24904\AppData\Local\anaconda32\Lib\site-packages\statsmodels\tsa\base\tsa_model.py:837: FutureWarning: No supported index is available. In the next version, calling this method in a model without a supported index will result in an exception.

return get prediction index(

I used a second data base to explore a bigger area than contains all 18 pl # I found important to also analize this data base, because it can contain i # in the whole area and not only snips of it

```
center = pd.read excel(r"C:\Users\vs24904\OneDrive - University of Bristol\[
#################################
                                            First, I am going to use some of
# Group by BufferID and calculate the average area
center avg area = center.groupby('Type')['Area m2'].mean().reset index()
# Standardize the data
scaler = StandardScaler()
center avg area scaled = scaler.fit transform(center avg area[['Area m2']])
# Apply K-Means clustering
kmeans = KMeans(n clusters=4, random state=0)
center avg area['Cluster'] = kmeans.fit predict(center avg area scaled)
# Plot the clusters
# Here the cluster plot indicates which habitat type has more area in total,
# We can see that in the big area "ForestFormation" has the biggest squared
plt.figure(figsize=(10, 6))
sns.scatterplot(x='Type', y='Area m2', hue='Cluster', data=center avg area,
plt.title('K-Means Clustering of Habitat Type by Average Area m2')
plt.xlabel('Type')
plt.ylabel('Average Area (m<sup>2</sup>)')
plt.legend(title='Cluster')
plt.xticks(rotation=90)
plt.tight layout()
plt.savefig('K-Means Clustering of Habitat Type by Average Area m2 center.pr
plt.show()
          HEAT MAP FOR HABITAT TYPE PER YEAR
########
# Aggregate by BufferID and Areas to calculate the average proportion across
center avg proportion = center.groupby(['Date', 'Type'])['Area m2'].sum().re
# Calculate the proportion of Area m2 for each Area within each Plot
center avg proportion['Proportion'] = center avg proportion.groupby('Date')[
# Pivot the data for heatmap
center pivot avg = center avg proportion.pivot table(values='Proportion', ir
#Plot the heatmap
#In the heatmap we can see that our main habitat type is "Forest formation"
#The percentages dont really change across the years.
plt.figure(figsize=(12, 8))
sns.heatmap(center pivot avg, cmap='PiYG', annot=True, fmt='.2f', linewidths
plt.title('Average Proportion of Total Area by Habitat Type for Each Year')
plt.xlabel('Habitat Type')
plt.ylabel('Year')
plt.xticks(rotation=80)
plt.tight layout()
plt.savefig('Average Proportion of Total Area by Habitat Type for Each Year.
plt.show()
###################################
                                   ARE THE DIFFERENCES IN THE HEAT
################
                      ANOVA for Type
```

```
Type cent groups = [center[center['Type'] == Type]['Area m2'].values for Type
anova cent Type = f oneway(*Type cent groups)
print("ANOVA for Type:")
print(f"F-statistic: {anova cent Type.statistic}, p-value: {anova cent Type.
# Perform Tukey's HSD test for Type
tukey type = pairwise tukeyhsd(endog=center['Area m2'], groups=center['Type'
# Display the results
print("\nTukey HSD Test for PLot:")
print(tukey type)
# Visualize the Tukey HSD results
tukey type.plot simultaneous()
plt.title("Tukey HSD Test for Habitat Type")
plt.xlabel('Mean Difference')
plt.grid(True)
plt.savefig('Tukey HSD Test for Type center.png')
plt.show()
#There is a significant difference between the Habitat types, being ForestFd
#These types are the one with the largest area m2
# A difference can be noted between the whole area of the experiment and the
# If only we take only the plots under accountance we get a false overview of
# But ForestFormation has by far the largest area. If we take also the whole
# heterogenic, having a high area disturbance type habitats, like Pasture ar
################
                    ANOVA for Year
year groups = [center[center['Date'] == year]['Area m2'].values for year in
anova year = f oneway(*year groups)
print("\nANOVA for Year:")
print(f"F-statistic: {anova year.statistic}, p-value: {anova year.pvalue}")
# Perform Tukey's HSD test for Year
tukey Year = pairwise tukeyhsd(endog=center['Area m2'], groups=center['Date'
# Display the results
print("\nTukey HSD Test for Year:")
print(tukey Year)
# Visualize the Tukey HSD results
tukey Year.plot simultaneous()
plt.title("Tukey HSD Test for Year")
plt.xlabel('Mean Difference')
plt.grid(True)
plt.savefig('Tukey HSD Test for Year center.png')
#There was no a significant in the area differences between the 11 years
#####
                                                   TIME SERIES AND FOR
#### PASTURES
# Load the dataset
df = pd.read excel(r"C:\Users\vs24904\OneDrive - University of Bristol\Docum
# Identify unique BufferIDs and Area
unique dates = df['Date'].unique()
unique buffer ids = df['BufferID'].unique()
```

```
unique areas = df['Type'].unique()
# Create a complete DataFrame with all combinations
all combinations = pd.DataFrame(
   list(itertools.product(unique dates, unique buffer ids, unique areas)),
   columns=['Date', 'BufferID', 'Type'])
# Step 3: Merge with the original DataFrame and fill missing values with 0
df complete = pd.merge(all combinations, df, on=['Date', 'BufferID', 'Type']
# Time series analysis for a specific BufferID
area = 'Pasture'# Example Area
df filtered = df[(df['Type'] == area)].copy()
# Convert Date to numeric index for time series modeling
df filtered['Date'] = pd.to numeric(df filtered['Date'])
df filtered.sort values('Date', inplace=True)
df filtered.set index('Date', inplace=True)
# Define the model with specified order (p, d, q)
model = ARIMA(df filtered['Area m2'], order=(1, 2, 1))
# Fit the model
model fit = model.fit()
#print(model fit.summary())
#Forecast
steps = 5
forecast = model fit.forecast(steps=steps)
forecast years = range(df filtered.index[-1] + 1, df filtered.index[-1] + 1
forecast df = pd.DataFrame({'Date': forecast years, 'Forecasted Area m2': fc
#Plot and forecast
plt.figure(figsize=(12, 6))
plt.plot(df filtered.index, df filtered['Area m2'], label='Observed', color=
plt.plot(forecast df['Date'], forecast df['Forecasted Area m2'], label='Fore
plt.xlabel('Date')
plt.ylabel('Area (m2)')
plt.title(f'Time Series Forecast for Area: {area} in the Tailandia(Pará, Bra
plt.legend()
plt.grid(True)
plt.savefig('time series forecast pasture tailandia.png')
plt.show()
print(forecast df)
# The area m2 of Pasture habitat type in the site (Tailandia-Brazil), are ex
#I Checked the forecast using "ARIMA" and the forecast looks plausible
#####
                                                      test if forecast is
# Split data into training and testing sets (e.g., last 5 years for testing)
train size = int(len(df filtered) * 0.6)
```

```
train data, test data = df filtered.iloc[:train size], df filtered.iloc[trai
# Fit ARIMA model on the training data
arima model train = ARIMA(train data['Area m2'], order=(1, 2, 1))
arima fit train = arima model train.fit()
# Forecast for the test period
forecast test = arima fit_train.get_forecast(steps=len(test_data))
forecasted values = forecast test.predicted mean
confidence intervals = forecast test.conf int()
# Evaluation metrics
mae = mean absolute error(test data['Area m2'], forecasted values)
mse = mean squared error(test data['Area m2'], forecasted values)
rmse = np.sqrt(mse)
mape = np.mean(np.abs((test data['Area m2'] - forecasted values) / test data
# Print evaluation metrics
print(f"MAE: {mae}")
print(f"MSE: {mse}")
print(f"RMSE: {rmse}")
print(f"MAPE: {mape}%")
# Plot the forecast with confidence intervals
plt.figure(figsize=(12, 6))
plt.plot(train data.index, train data['Area m2'], label='Training Data', col
plt.plot(test data.index, test data['Area m2'], label='Actual Test Data', cc
plt.plot(test data.index, forecasted values, label='Forecast', color='red',
plt.fill between(test data index, confidence intervals iloc[:, 0], confidence
plt.xlabel('Year')
plt.ylabel('Area (m<sup>2</sup>)')
plt.title('ARIMA Pastures Forecast vs Actuals with Confidence Intervals')
plt.legend()
plt.grid(True)
plt.savefig('ARIMA Pastures Forecast vs Actuals with Confidence Intervals.pr
plt.show()
#### ForestFormation
# Load the dataset
df = pd.read excel(r"C:\Users\vs24904\OneDrive - University of Bristol\Documenter
print(df)
# Step 1: Identify unique BufferIDs and Area
unique dates = df['Date'].unique()
unique buffer ids = df['BufferID'].unique()
unique areas = df['Type'].unique()
# Step 2: Create a complete DataFrame with all combinations
import itertools
all combinations = pd.DataFrame(
   list(itertools.product(unique dates, unique buffer ids, unique areas)),
   columns=['Date', 'BufferID', 'Type'])
```

```
# Step 3: Merge with the original DataFrame and fill missing values with 0
df complete = pd.merge(all combinations, df, on=['Date', 'BufferID', 'Type']
# Time series analysis for a specific BufferID
area = 'ForestFormation'# Example Area
df filtered = df[(df['Type'] == area)].copy()
# Convert Date to numeric index for time series modeling
df filtered['Date'] = pd.to numeric(df filtered['Date'])
df filtered.sort values('Date', inplace=True)
df filtered.set index('Date', inplace=True)
# Define the model with specified order (p, d, q)
model = ARIMA(df filtered['Area m2'], order=(1, 2, 1))
# Fit the model
model fit = model.fit()
#print(model fit.summary())
#Forecast
steps = 5
forecast = model fit.forecast(steps=steps)
forecast years = range(df filtered.index[-1] + 1, df filtered.index[-1] + 1
forecast df = pd.DataFrame({'Date': forecast years, 'Forecasted Area m2': fc
#Plot and forecast
plt.figure(figsize=(12, 6))
plt.plot(df filtered.index, df filtered['Area m2'], label='Observed', color=
plt.plot(forecast df['Date'], forecast df['Forecasted Area m2'], label='Fore
plt.xlabel('Date')
plt.ylabel('Area (m2)')
plt.title(f'Time Series Forecast for Area: {area} in the Tailandia(Pará, Bra
plt.legend()
plt.grid(True)
plt.savefig('Forest formation Forecast tailandia.png')
plt.show()
print(forecast df)
# The area m2 of ForestFormation habitat type in the site (Tailandia-Brazil)
#I Checked the forecast using "ARIMA" and the forecast looks plausible, bead
#####
                                                      test if forecast is
# Split data into training and testing sets (e.g., last 5 years for testing)
train size = int(len(df filtered) * 0.5)
train data, test data = df filtered.iloc[:train size], df filtered.iloc[trai
# Fit SARIMA model on the training data
arima model train = ARIMA(train data['Area m2'], order=(1, 2, 1))
arima fit train = arima model train.fit()
# Forecast for the test period
forecast test = arima fit train.get forecast(steps=len(test data))
forecasted_values = forecast_test.predicted mean
```

```
confidence intervals = forecast test.conf int()
# Evaluation metrics
mae = mean absolute error(test data['Area m2'], forecasted values)
mse = mean squared error(test data['Area m2'], forecasted values)
rmse = np.sqrt(mse)
mape = np.mean(np.abs((test data['Area m2'] - forecasted values) / test data
# Print evaluation metrics
print(f"MAE: {mae}")
print(f"MSE: {mse}")
print(f"RMSE: {rmse}")
print(f"MAPE: {mape}%")
# Plot the forecast with confidence intervals
plt.figure(figsize=(12, 6))
plt.plot(train data.index, train data['Area m2'], label='Training Data', col
plt.plot(test data.index, test data['Area m2'], label='Actual Test Data', cd
plt.plot(test data.index, forecasted values, label='Forecast', color='red',
plt.fill between(test data index, confidence intervals iloc[:, 0], confidence
plt.xlabel('Year')
plt.ylabel('Area (m²)')
plt.title('ARIMA ForestFormation Forecast vs Actuals with Confidence Interva
plt.legend()
plt.arid(True)
plt.savefig('ARIMA ForestFormation Forecast vs Actuals with Confidence Inter
plt.show()
####
     OilPalm
# Load the dataset
df = pd.read excel(r"C:\Users\vs24904\OneDrive - University of Bristol\Documenter
print(df)
# Identify unique BufferIDs and Area
unique dates = df['Date'].unique()
unique buffer ids = df['BufferID'].unique()
unique areas = df['Type'].unique()
# Create a complete DataFrame with all combinations
import itertools
all combinations = pd.DataFrame(
   list(itertools.product(unique dates, unique buffer ids, unique areas)),
    columns=['Date', 'BufferID', 'Type'])
# Merge with the original DataFrame and fill missing values with oldsymbol{0}
df complete = pd.merge(all combinations, df, on=['Date', 'BufferID', 'Type']
# Time series analysis for a specific BufferID
area = 'OilPalm'# Example Area
df filtered = df[(df['Type'] == area)].copy()
# Convert Date to numeric index for time series modeling
df filtered['Date'] = pd.to numeric(df filtered['Date'])
```

```
df filtered.sort values('Date', inplace=True)
df filtered.set index('Date', inplace=True)
# Define the model with specified order (p, d, q)
model = ARIMA(df filtered['Area m2'], order=(1, 2, 1))
# Fit the model
model fit = model.fit()
#print(model fit.summary())
#Forecast
steps = 5
forecast = model fit.forecast(steps=steps)
forecast years = range(df filtered.index[-1] + 1, df filtered.index[-1] + 1
forecast df = pd.DataFrame({'Date': forecast years, 'Forecasted Area m2': fc
#Plot and forecast
plt.figure(figsize=(12, 6))
plt.plot(df filtered.index, df filtered['Area m2'], label='Observed', color=
plt.plot(forecast_df['Date'], forecast_df['Forecasted_Area_m2'], label='Fore
plt.xlabel('Date')
plt.ylabel('Area (m2)')
plt.title(f'Time Series Forecast for Area: {area} in the Tailandia(Pará, Bra
plt.legend()
plt.grid(True)
plt.savefig('OilPalm Forecast tailandia.png')
plt.show()
print(forecast df)
# The area m2 of OilPalm habitat type in the site (Tailandia-Brazil), is exp
# the forecast using "ARIMA" it seems to be increasing, I think that the dis
# so the train data only shows an increasing (80%) and the test data is decr
# a expected increase
#####
                                                      test if forecast is
# Split data into training and testing sets (e.g., last 5 years for testing)
train size = int(len(df filtered) * 0.8)
train data, test data = df filtered.iloc[:train size], df filtered.iloc[trai
# Fit SARIMA model on the training data
arima model train = ARIMA(train data['Area m2'], order=(1, 2, 1))
arima fit train = arima model train.fit()
# Forecast for the test period
forecast test = arima fit train.get forecast(steps=len(test data))
forecasted values = forecast test.predicted mean
confidence intervals = forecast test.conf int()
# Evaluation metrics
mae = mean absolute error(test data['Area m2'], forecasted values)
mse = mean squared error(test data['Area m2'], forecasted values)
rmse = np.sqrt(mse)
```

```
mape = np.mean(np.abs((test data['Area m2'] - forecasted values) / test data
# Print evaluation metrics
print(f"MAE: {mae}")
print(f"MSE: {mse}")
print(f"RMSE: {rmse}")
print(f"MAPE: {mape}%")
# Plot the forecast with confidence intervals
plt.figure(figsize=(12, 6))
plt.plot(train data.index, train data['Area m2'], label='Training Data', col
plt.plot(test data index, test data['Area m2'], label='Actual Test Data', co
plt.plot(test data.index, forecasted values, label='Forecast', color='red',
plt.fill between(test data index, confidence intervals iloc[:, 0], confidence
plt.xlabel('Year')
plt.ylabel('Area (m²)')
plt.title('ARIMA Oilpalm Forecast vs Actuals with Confidence Intervals')
plt.legend()
plt.grid(True)
plt.savefig('ARIMA Oilpalm Forecast vs Actuals with Confidence Intervals cer
plt.show()
####
       Floodplains
# Load the dataset
df = pd.read excel(r"C:\Users\vs24904\OneDrive - University of Bristol\Docum
# Identify unique BufferIDs and Area
unique dates = df['Date'].unique()
unique buffer ids = df['BufferID'].unique()
unique areas = df['Type'].unique()
# Create a complete DataFrame with all combinations
import itertools
all combinations = pd.DataFrame(
   list(itertools.product(unique dates, unique buffer ids, unique areas)),
   columns=['Date', 'BufferID', 'Type'])
# Merge with the original DataFrame and fill missing values with oldsymbol{0}
df complete = pd.merge(all combinations, df, on=['Date', 'BufferID', 'Type']
# Time series analysis for a specific BufferID
area = 'Floodplains'# Example Area
df filtered = df[(df['Type'] == area)].copy()
# Convert Date to numeric index for time series modeling
df filtered['Date'] = pd.to numeric(df filtered['Date'])
df filtered.sort values('Date', inplace=True)
df filtered.set index('Date', inplace=True)
# Define the model with specified order (p, d, q)
model = ARIMA(df filtered['Area m2'], order=(1, 2, 1))
# Fit the model
model fit = model.fit()
```

```
#print(model fit.summary())
#Forecast
steps = 5
forecast = model fit.forecast(steps=steps)
forecast years = range(df filtered.index[-1] + 1, df filtered.index[-1] + 1
forecast df = pd.DataFrame({'Date': forecast years, 'Forecasted Area m2': fc
#Plot and forecast
plt.figure(figsize=(12, 6))
plt.plot(df filtered.index, df filtered['Area m2'], label='Observed', color=
plt.plot(forecast df['Date'], forecast df['Forecasted Area m2'], label='Fore
plt.xlabel('Date')
plt.ylabel('Area (m2)')
plt.title(f'Time Series Forecast for Habitat: {area} in the Tailandia(Pará,
plt.legend()
plt.grid(True)
plt.savefig('Floodplains Forecast tailandia.png')
plt.show()
print(forecast df)
# The area m2 of Floodplains habitat type in the site (Tailandia-Brazil), is
# the forecast using "ARIMA" I can conlude is accurate, since the forecast i
#####
                                                      test if forecast is
# Split data into training and testing sets (e.g., last 5 years for testing)
train size = int(len(df filtered) * 0.8)
train data, test data = df filtered.iloc[:train size], df filtered.iloc[trai
# Fit SARIMA model on the training data
arima model train = ARIMA(train data['Area m2'], order=(1, 2, 1))
arima fit train = arima model train.fit()
# Forecast for the test period
forecast test = arima fit train.get forecast(steps=len(test data))
forecasted values = forecast test.predicted mean
confidence intervals = forecast test.conf int()
# Evaluation metrics
mae = mean absolute error(test_data['Area_m2'], forecasted_values)
mse = mean squared error(test data['Area m2'], forecasted values)
rmse = np.sqrt(mse)
mape = np.mean(np.abs((test data['Area m2'] - forecasted values) / test data
# Print evaluation metrics
print(f"MAE: {mae}")
print(f"MSE: {mse}")
print(f"RMSE: {rmse}")
print(f"MAPE: {mape}%")
# Plot the forecast with confidence intervals
plt.figure(figsize=(12, 6))
```

```
plt.plot(train_data.index, train_data['Area_m2'], label='Training Data', col
plt.plot(test data.index, test data['Area m2'], label='Actual Test Data', cd
plt.plot(test data.index, forecasted values, label='Forecast', color='red',
plt.fill between(test data.index, confidence intervals.iloc[:, 0], confidence
plt.xlabel('Year')
plt.ylabel('Area (m²)')
plt.title('ARIMA Floodplains Forecast vs Actuals with Confidence Intervals')
plt.legend()
plt.grid(True)
plt.savefig('ARIMA Floodplains Forecast vs Actuals with Confidence Intervals
plt.show()
#########
                                                 LINEAR REGRESSION
# ForestFormation
# Load the data
data = pd.read excel(r"C:\Users\vs24904\OneDrive - University of Bristol\Doc
# Filter data for 'ForestFormation'
forest data = data[data['Type'] == 'ForestFormation'].copy()
# Encode 'BufferID' as numerical for plotting and regression
forest data.loc[:, 'BufferID encoded'] = pd.factorize(forest data['Date'])[@
# Prepare data for regression
X = sm.add constant(forest data['BufferID encoded']) # Add constant for int
y = forest data['Area m2']
# Fit the regression model using statsmodels
model = sm.OLS(y, X).fit()
# Get the model summary
model summary = model.summary()
# Predict area for plotting the regression line
forest data.loc[:, 'Predicted Area'] = model.predict(X)
# Plot the scatter plot with regression line
plt.figure(figsize=(12, 6))
sns.scatterplot(x='BufferID encoded', y='Area m2', data=forest data, label='
plt.plot(forest data['BufferID encoded'], forest data['Predicted Area'], col
plt.xticks(np.arange(len(forest data['Date'].unique())), forest data['Date']
plt.xlabel('Year')
plt.ylabel('Area (m²)')
plt.title("Scatter Plot with Regression Line: Area by Year for 'ForestFormat
plt.legend()
plt.grid(True)
plt.savefig("Scatter Plot with Regression Line: Area by Year for 'ForestForm
plt.show()
print(model summary)
# The linear regression indicates a signficative increase of 1.528e+07 m2 ev
# The R-squared is high, so the variance can be explain by this model
```

```
# OilPalm
# Load the data
data = pd.read excel(r"C:\Users\vs24904\OneDrive - University of Bristol\Doc
# Filter data for 'ForestFormation'
forest data = data[data['Type'] == 'OilPalm'].copy()
# Encode 'BufferID' as numerical for plotting and regression
forest data.loc[:, 'BufferID encoded'] = pd.factorize(forest data['Date'])[@]
# Prepare data for regression
X = sm.add constant(forest data['BufferID encoded']) # Add constant for int
y = forest data['Area m2']
# Fit the regression model using statsmodels
model = sm.OLS(y, X).fit()
# Get the model summary
model summary = model.summary()
# Predict area for plotting the regression line
forest data.loc[:, 'Predicted Area'] = model.predict(X)
# Plot the scatter plot with regression line
plt.figure(figsize=(12, 6))
sns.scatterplot(x='BufferID encoded', y='Area m2', data=forest data, label='
plt.plot(forest data['BufferID encoded'], forest data['Predicted Area'], col
plt.xticks(np.arange(len(forest data['Date'].unique())), forest data['Date']
plt.xlabel('Year')
plt.ylabel('Area (m²)')
plt.title("Scatter Plot with Regression Line: Area by Year for 'Oilpalm' hab
plt.legend()
plt.grid(True)
plt.savefig("Scatter Plot with Regression Line: Area by Year for 'Oilpalm' h
plt.show()
print(model summary)
# The linear regression indicates a signficative increase of 9.968e+06 m2 eV
# The R-squared is not that high, so the variance cannot be fully explain oldsymbol{t}
# Pasture
# Load the data
data = pd read excel(r"C:\Users\vs24904\OneDrive - University of Bristol\Doc
# Filter data for 'ForestFormation'
forest data = data[data['Type'] == 'Pasture'].copy()
# Encode 'BufferID' as numerical for plotting and regression
forest data.loc[:, 'BufferID encoded'] = pd.factorize(forest data['Date'])[@
# Prepare data for regression
X = sm.add constant(forest data['BufferID encoded']) # Add constant for int
```

```
y = forest data['Area m2']
# Fit the regression model using statsmodels
model = sm.OLS(y, X).fit()
# Get the model summary
model summary = model.summary()
# Predict area for plotting the regression line
forest data.loc[:, 'Predicted Area'] = model.predict(X)
# Plot the scatter plot with regression line
plt.figure(figsize=(12, 6))
sns.scatterplot(x='BufferID encoded', y='Area m2', data=forest data, label='
plt.plot(forest data['BufferID encoded'], forest data['Predicted Area'], col
plt.xticks(np.arange(len(forest data['Date'].unique())), forest data['Date']
plt.xlabel('Year')
plt.ylabel('Area (m²)')
plt.title("Scatter Plot with Regression Line: Area by Year for 'Pasture' hab
plt.legend()
plt.grid(True)
plt.savefig("Scatter Plot with Regression Line: Area by Year for 'Pasture' h
plt.show()
print(model summary)
# The linear regression indicates a signficative increase of 9.929e+06 m2 ev
# The R-squared is not that high, so \, the variance cannot be fully explain \, b
# Floodplain
# Load the data
data = pd.read excel(r"C:\Users\vs24904\OneDrive - University of Bristol\Doc
# Filter data for 'ForestFormation'
forest data = data[data['Type'] == 'Floodplains'].copy()
# Encode 'BufferID' as numerical for plotting and regression
forest data.loc[:, 'BufferID encoded'] = pd.factorize(forest data['Date'])[@]
# Prepare data for regression
X = sm.add constant(forest data['BufferID encoded']) # Add constant for int
y = forest data['Area m2']
# Fit the regression model using statsmodels
model = sm.OLS(y, X).fit()
# Get the model summary
model summary = model.summary()
# Predict area for plotting the regression line
forest_data.loc[:, 'Predicted_Area'] = model.predict(X)
# Plot the scatter plot with regression line
plt.figure(figsize=(12, 6))
sns.scatterplot(x='BufferID_encoded', y='Area_m2', data=forest_data, label='
plt.plot(forest data['BufferID encoded'], forest data['Predicted Area'], col
plt.xticks(np.arange(len(forest data['Date'].unique())), forest data['Date']
plt.xlabel('Year')
plt.ylabel('Area (m²)')
```

```
plt.title("Scatter Plot with Regression Line: Area by Year for 'FloodPlains'
plt.legend()
plt.grid(True)
plt.savefig("Scatter Plot with Regression Line: Area by Year for 'Floodplair
plt.show()
print(model_summary)

# The linear regression indicates a signficative decrease of Floofplains are
#The high R-squared indicates that the variance can be explain by this model
```

C:\Users\vs24904\AppData\Local\anaconda32\Lib\site-packages\sklearn\cluster
_kmeans.py:1411: UserWarning: KMeans is known to have a memory leak on Wind
ows with MKL, when there are less chunks than available threads. You can avo
id it by setting the environment variable OMP_NUM_THREADS=1.
 warnings.warn(

Average Proportion of Total Area by Habitat Type for Each Year 2013 0.13 0.00 0.15 0.22 2014 0.16 0.13 0.21 - 0.4 2015 0.12 0.17 0.21 2016 0.12 0.18 0.20 - 0.3 2017 0.18 0.21 0.12 Year 2018 0.12 0.19 0.22 2019 - 0.2 0.12 0.19 0.22 2020 0.12 0.19 0.22 2021 0.19 0.23 - 0.1 2022 0.19 0.24 2023 0.25 0.19 ForestFormation __ ForestPlantation -Soybeans -Floodplains -MosaicofCrops Grassland . OtherNonVegetatedArea -UrbanInfrastructure Wetland OilPalm Pasture SavannaFormation

Habitat Type

ANOVA for Type:

F-statistic: 3518.154323541889, p-value: 5.477677187641807e-157

Tukey HSD Test for PLot:

Multiple Comparison of Means - Tukey HSD, FWER=

0.05

=======================================		 		======	
g	jroup1	group2	meandiff	p-adj	low
er	upper	reject			
	Floodplains	ForestFormation	931911605.1337	0.0	901097
892.8823	962725317.3851	True			
	Floodplains	ForestPlantation	-337407734.4385	0.0	-368221
446.6899	-306594022.1871	True			
140 5776	Floodplains	Grassland	-331212437.3262	0.0	-362026
149.5776	-300398725.0748	True	225764070 5002	0 0	266570
582.8396	Floodplains -304951158.3369	MosaicofCrops True	-335764870.5882	0.0	-366578
302.0390	Floodplains	OilPalm	162326971.4439	0.0	131513
259.1925	193140683.6952	True	102320971.4439	0.0	131313
233.1323		erNonVegetatedArea	-337603459.2513	0.0	-368417
171.5027	-306789747.0	True	33700313312313	010	300117
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Floodplains	Pasture	278428724.5989	0.0	247615
012.3476	309242436.8503	True			
	Floodplains	RiverLakeandOcean	-330588565.6684	0.0	-361402
277.9198	-299774853.4171	True			
	Floodplains	SavannaFormation	-338442160.7487	0.0	-369
255873.0	-307628448.4973	True			
	Floodplains	Soybeans	-338372746.8449	0.0	-369186
459.0963	-307559034.5935	True			
		rbanInfrastructure	-333717815.2941	0.0	-364531
527.5455	-302904103.0427	True	200465026 0062	0.0	220270
720 2476	Floodplains	Wetland	-289465026.0963	0.0	-320278
738.3476	-258651313.8449 restFormation	True	-1269319339.5722	0 0	- 1300133
	-1238505627.3208	True	-1209319339.3722	0.0	-1300133
	restFormation		-1263124042.4599	0 0	-1293937
	-1232310330.2085	True	-1203124042.4399	0.0	-1293937
	restFormation		-1267676475.7219	0.0	-1298490
_	-1236862763.4705	True	120707017317213	010	1230130
	restFormation	OilPalm	-769584633.6898	0.0	-800398
	-738770921.4385	True			
For	restFormation Othe	erNonVegetatedArea	-1269515064.385	0.0	-1300328
776.6364	-1238701352.1337	True			
For	restFormation	Pasture	-653482880.5348	0.0	-684296
	-622669168.2834	True			
	restFormation	RiverLakeandOcean	-1262500170.8021	0.0	-1293313
	-1231686458.5508	True			
	restFormation		-1270353765.8823	0.0	-1301167
	-1239540053.631	True	1070004051 0700	0.0	12010
	restFormation	_	-1270284351.9786	0.0	-13010
	-1239470639.7272	True rbanInfrastructure	1265620420 4270	0.0	1206442
	restFormation U -1234815708.1764	rbanintrastructure True	-1203029420.42/8	0.0	-1296443
132.0/92	-1234013/00.1/04	rrue			

Fore	estFormation		Wetland	-1221376631.2299	0.0	-1252190
	-1190562918.9786 stPlantation	True	Grassland	6195297.1123	1.0	-24618
415.1391	37009009.3637					
	stPlantation		saicofCrops	1642863.8503	1.0	-29170
848.4011	32456576.1016 stPlantation	False	0ilPalm	499734705.8824	0.0	46892
0993.631	530548418.1337	True	UITPATIII	499734703.0024	0.0	40092
	stPlantation Othe		getatedArea	-195724.8128	1.0	-31009
437.0642	30617987.4385	False				
	stPlantation		Pasture	615836459.0374	0.0	585022
	646650171.2888					
	stPlantation		akeand0cean	6819168.7701	0.9999	-23994
	37632881.0214 stPlantation		naFormation	-1034426.3102	1.0	-31848
138.5615	29779285.9412		iai orillactori	-1034420.3102	1.0	-31040
	stPlantation	1 4 1 5 0	Soybeans	-965012.4064	1.0	-31778
724.6578	29848699.845	False	,			
Fores	stPlantation U	rbanInfr	rastructure	3689919.1444	1.0	-2712
3793.107	34503631.3958	False				
	stPlantation	_	Wetland	47942708.3422	0.0	17128
996.0909	78756420.5936			4552422 262	1.0	25266
145.5134	Grassland 26261278.9893		saicofCrops	-4552433.262	1.0	-35366
143.3134	Grassland	Tatse	OilPalm	493539408.7701	0.0	462725
696.5187	524353121.0214	True	orer dem	43333340017701	0.0	402723
	Grassland Othe		getatedArea	-6391021.9251	1.0	-37204
734.1765	24422690.3262	False				
	Grassland		Pasture	609641161.9251	0.0	578827
449.6738	640454874.1765					
040 5036	Grassland		akeand0cean	623871.6578	1.0	-30189
840.5936	31437583.9091 Grassland		naFormation	-7229723.4225	A 0000	-38043
435.6738	23583988.8289	False	iai orillactori	-1223123.4223	0.9999	-30043
.5510750	Grassland		Soybeans	-7160309.5187	0.9999	-37974
021.7701	23653402.7327					
	Grassland U		rastructure	-2505377.9679	1.0	-33319
090.2193	28308334.2835	False				
600 0706	Grassland	Т ю о	Wetland	41747411.2299	0.0008	10933
698.9786	72561123.4813 osaicofCrops	True	0ilPalm	498091842.0321	0.0	467278
129.7807	528905554.2835	True	OICI aciii	490091042.0321	0.0	407270
	osaicofCrops Othe		getatedArea	-1838588.6631	1.0	-32652
300.9145	28975123.5883	-				
Mo	osaicofCrops		Pasture	614193595.1872	0.0	583379
882.9358						
	osaicofCrops		akeand0cean	5176304.9198	1.0	-25637
407.3316	35990017.1712 osaicofCrops		naFormation	-2677290.1604	1.0	-33491
002.4118	•		iai orillactori	-20//290.1004	1.0	-33491
	osaicofCrops	1 4 1 5 0	Soybeans	-2607876.2567	1.0	-33421
588.5081	·	False	,			
Мо	osaicofCrops U		rastructure	2047055.2941	1.0	-28766
656.9573	32860767.5455	False				
	osaicofCrops	_	Wetland	46299844.492	0.0001	15486
132.2406	77113556.7434	True				

	0:10-1 0+1-	N V		400020420 6052	0.0	F20744
142 0466	OilPalm Othe	_	етатедигеа	-499930430.6952	0.0	-530744
142.9466	-469116718.4438 OilPalm	True	Pasture	116101753.1551	0.0	85288
040.9037	146915465.4065	True	rasture	110101/33.1331	0.0	03200
040.9057	0ilPalm		keand0cean	-492915537.1123	0.0	-523729
249.3637	-462101824.8609	True	incandocean	432313337 11123	0.0	323723
	OilPalm		aFormation	-500769132.1925	0.0	-531582
844.4439	-469955419.9411	True				
	0ilPalm		Soybeans	-500699718.2888	0.0	-531513
430.5401	-469886006.0374	True				
	OilPalm Ur	banInfr	astructure	-496044786.738	0.0	-526858
498.9893	-465231074.4866	True				
	OilPalm		Wetland	-451791997.5401	0.0	-482605
709.7915	-420978285.2887	True				
	egetatedArea		Pasture	616032183.8503	0.0	585218
471.5989	646845896.1016	True				
	egetatedArea		keand0cean	7014893.5829	0.9999	-23798
818.6685	37828605.8343	False				
	egetatedArea		aFormation	-838701.4973	1.0	-31652
413.7487	29975010.754	False				
	egetatedArea	- 1	Soybeans	-769287.5936	1.0	-3158
2999.845	30044424.6578	False		2005642 0572	1.0	2622
	9		astructure	3885643.9572	1.0	-26928
068.2942	34699356.2086	False		40120422 1551		17004
	egetatedArea	-	Wetland	48138433.1551	0.0	17324
720.9037	78952145.4065	True	l 10	600017200 2674	0 0	620021
002 5100	Pasture		keand0cean	-609017290.2674	0.0	-639831
002.5188	-578203578.016	True		C1C07000F 247C	0 0	64760
4507 500	Pasture		aFormation	-616870885.3476	0.0	-64768
4597.599	-586057173.0962	True	Caulaaana	C1C001471 4420	0 0	C 47C1F
183.6952	Pasture	True	Soybeans	-616801471.4438	0.0	-647615
103.0932	-585987759.1925 Pasture Ur		astructure	-612146539.893	0.0	-642960
252.1444	-581332827.6417	True	astructure	-012140339.093	0.0	-042900
232.1444		True	Wetland	-567893750.6952	0.0	-598707
462 0466	Pasture -537080038.4438	Truo	wertand	-307693730.0932	0.0	-396707
	LakeandOcean		aFormation	-7853595.0802	0.007	-38667
307.3316	22960117.1712		iai Oi ilia CIOII	-7033393.0002	0.9997	-30007
	LakeandOcean	1 4 6 3 6	Soybeans	-7784181.1765	n 0007	-38597
893.4278	23029531.0749	False	Soybeans	7704101.1703	0.3337	30337
			astructure	-3129249.6257	1.0	-3394
2961.877	27684462.6257		aser aceare	31232 1310237	110	3331
	Lakeand0cean	1 4 6 5 6	Wetland	41123539.5722	0.001	10309
827.3208	71937251.8236	True	wo c cana	1112333313722	0.001	10303
	nnaFormation		Soybeans	69413.9037	1.0	-30744
298.3476	30883126.1551	False				
Sava		banInfr	astructure	4724345.4545	1.0	-26089
366.7968	35538057.7059	False				
Sava	nnaFormation		Wetland	48977134.6524	0.0	1816
3422.401	79790846.9038	True				
	Soybeans Ur	banInfr	astructure	4654931.5508	1.0	-26158
780.7006	35468643.8022	False				
	Soybeans		Wetland	48907720.7487	0.0	18094
008.4973	79721433.0	True				
UrbanIn	frastructure		Wetland	44252789.1979	0.0003	13439
076.9465	75066501.4492	True				

ANOVA for Year:

F-statistic: 4.867223506960202e-30, p-value: 1.0

Tukey HSD Test for Year:
Multiple Comparison of Means - Tukey HSD, FWER=0.05

======	=======	========	======		============	======
			p-adj	lower	upper	reject
2013	2014	0.0	1.0	-492736391.7088	492736391.7088	False
2013	2015	0.0		-492736391.7088		False
2013	2016	-0.0	1.0	-492736391.7088	492736391.7088	False
2013	2017	-0.0	1.0	-492736391.7088	492736391.7088	False
2013	2018	0.0	1.0	-492736391.7088	492736391.7088	False
2013	2019	-0.0	1.0	-492736391.7088	492736391.7088	False
2013	2020	-0.0	1.0	-492736391.7088	492736391.7088	False
2013	2021	-0.0	1.0	-492736391.7088	492736391.7088	False
2013	2022	-0.0		-492736391.7088		False
2013	2023	0.0		-492736391.7088		False
2014	2015	0.0		-492736391.7088		False
2014	2016	-0.0		-492736391.7088		False
2014	2017	-0.0		-492736391.7088		False
2014	2018	0.0		-492736391.7088		False
2014	2019	-0.0		-492736391.7088		False
2014	2020	-0.0		-492736391.7088		False
2014	2021	-0.0		-492736391.7088		False
2014	2022	-0.0		-492736391.7088		False
2014	2023	0.0		-492736391.7088		False
2015	2016	-0.0		-492736391.7088		False
2015	2017	-0.0		-492736391.7088		False
2015	2018	0.0		-492736391.7088		False
2015	2019	-0.0		-492736391.7088 -492736391.7088		False
2015 2015	2020 2021	-0.0 -0.0		-492736391.7088		False False
2015	2021	-0.0		-492736391.7088		False
2015	2022	-0.0		-492736391.7088		False
2015	2023	-0.0		-492736391.7088		False
2016	2017	0.0		-492736391.7088		False
2016	2019	-0.0		-492736391.7088		False
2016	2020	-0.0		-492736391.7088		False
2016	2021	-0.0		-492736391.7088		False
2016	2022	0.0		-492736391.7088		False
2016	2023	0.0		-492736391.7088		False
2017	2018	0.0		-492736391.7088		False
2017	2019	0.0	1.0	-492736391.7088	492736391.7088	False
2017	2020	0.0	1.0	-492736391.7088	492736391.7088	False
2017	2021	0.0	1.0	-492736391.7088	492736391.7088	False
2017	2022	0.0	1.0	-492736391.7088	492736391.7088	False
2017	2023	0.0	1.0	-492736391.7088	492736391.7088	False
2018	2019	-0.0	1.0	-492736391.7088	492736391.7088	False
2018	2020	-0.0		-492736391.7088		False
2018	2021	-0.0		-492736391.7088		False
2018	2022	-0.0		-492736391.7088		False
2018	2023	-0.0		-492736391.7088		False
2019	2020	-0.0		-492736391.7088		False
2019	2021	0.0		-492736391.7088		False
2019	2022	0.0	1.0	-492736391.7088	492736391.7088	False

2019 2020 2020 2020 2021 2021	2023 2021 2022 2023 2022 2023	0.0 0.0 0.0 0.0 0.0	1.0 1.0 1.0 1.0	-492736391.7088 -492736391.7088 -492736391.7088 -492736391.7088 -492736391.7088	492736391.7088 492736391.7088 492736391.7088 492736391.7088 492736391.7088	False False False False False
2022	2023	0.0	1.0	-492736391.7088	492736391.7088	False

Tukey HSD Test for Year

C:\Users\vs24904\AppData\Local\anaconda32\Lib\site-packages\statsmodels\tsa\base\tsa_model.py:473: ValueWarning: An unsupported index was provided. As a result, forecasts cannot be generated. To use the model for forecasting, u se one of the supported classes of index.

self. init dates(dates, freq)

C:\Users\vs24904\AppData\Local\anaconda32\Lib\site-packages\statsmodels\tsa \base\tsa_model.py:473: ValueWarning: An unsupported index was provided. As a result, forecasts cannot be generated. To use the model for forecasting, u se one of the supported classes of index.

self._init_dates(dates, freq)

C:\Users\vs24904\AppData\Local\anaconda32\Lib\site-packages\statsmodels\tsa\base\tsa_model.py:473: ValueWarning: An unsupported index was provided. As a result, forecasts cannot be generated. To use the model for forecasting, u se one of the supported classes of index.

self. init dates(dates, freq)

C:\Users\vs24904\AppData\Local\anaconda32\Lib\site-packages\statsmodels\tsa
\base\tsa_model.py:837: ValueWarning: No supported index is available. Prediction results will be given with an integer index beginning at `start`.

return get_prediction_index(

C:\Users\vs24904\AppData\Local\anaconda32\Lib\site-packages\statsmodels\tsa\base\tsa_model.py:837: FutureWarning: No supported index is available. In the next version, calling this method in a model without a supported index will result in an exception.

Date Forecasted Area m2 11 2024 7.484357e+08 12 2025 7.928831e+08 13 2026 8.371145e+08 14 2027 8.811696e+08 15 2028 9.250809e+08

MAE: 110300072.24824476 MSE: 1.3826009542965576e+16 RMSE: 117584053.09805228

MAPF: nan%

C:\Users\vs24904\AppData\Local\anaconda32\Lib\site-packages\statsmodels\tsa \base\tsa_model.py:473: ValueWarning: An unsupported index was provided. As a result, forecasts cannot be generated. To use the model for forecasting, u se one of the supported classes of index.

self. init dates(dates, freq)

C:\Users\vs24904\AppData\Local\anaconda32\Lib\site-packages\statsmodels\tsa\base\tsa_model.py:473: ValueWarning: An unsupported index was provided. As a result, forecasts cannot be generated. To use the model for forecasting, u se one of the supported classes of index.

self. init dates(dates, freq)

C:\Users\vs24904\AppData\Local\anaconda32\Lib\site-packages\statsmodels\tsa \base\tsa_model.py:473: ValueWarning: An unsupported index was provided. As a result, forecasts cannot be generated. To use the model for forecasting, u se one of the supported classes of index.

self._init_dates(dates, freq)

C:\Users\vs24904\AppData\Local\anaconda32\Lib\site-packages\statsmodels\tsa \base\tsa_model.py:837: ValueWarning: No supported index is available. Prediction results will be given with an integer index beginning at `start`.

return get prediction index(

C:\Users\vs24904\AppData\Local\anaconda32\Lib\site-packages\statsmodels\tsa \base\tsa_model.py:837: FutureWarning: No supported index is available. In t he next version, calling this method in a model without a supported index wi ll result in an exception.

[143 rows x 4 columns]

C:\Users\vs24904\AppData\Local\anaconda32\Lib\site-packages\statsmodels\tsa \base\tsa_model.py:473: ValueWarning: An unsupported index was provided. As a result, forecasts cannot be generated. To use the model for forecasting, u se one of the supported classes of index.

self. init dates(dates, freq)

C:\Users\vs24904\AppData\Local\anaconda32\Lib\site-packages\statsmodels\tsa \base\tsa_model.py:473: ValueWarning: An unsupported index was provided. As a result, forecasts cannot be generated. To use the model for forecasting, u se one of the supported classes of index.

self. init dates(dates, freq)

C:\Users\vs24904\AppData\Local\anaconda32\Lib\site-packages\statsmodels\tsa\base\tsa_model.py:473: ValueWarning: An unsupported index was provided. As a result, forecasts cannot be generated. To use the model for forecasting, u se one of the supported classes of index.

self._init_dates(dates, freq)

C:\Users\vs24904\AppData\Local\anaconda32\Lib\site-packages\statsmodels\tsa \statespace\sarimax.py:978: UserWarning: Non-invertible starting MA paramete rs found. Using zeros as starting parameters.

warn('Non-invertible starting MA parameters found.'

C:\Users\vs24904\AppData\Local\anaconda32\Lib\site-packages\statsmodels\tsa \base\tsa_model.py:837: ValueWarning: No supported index is available. Prediction results will be given with an integer index beginning at `start`.

return get prediction index(

C:\Users\vs24904\AppData\Local\anaconda32\Lib\site-packages\statsmodels\tsa\base\tsa_model.py:837: FutureWarning: No supported index is available. In the next version, calling this method in a model without a supported index will result in an exception.

MAE: 31/08128.052/38428 MSE: 1251817592692463.8 RMSE: 35381034.364366226

MAPE: nan%

C:\Users\vs24904\AppData\Local\anaconda32\Lib\site-packages\statsmodels\tsa \base\tsa_model.py:473: ValueWarning: An unsupported index was provided. As a result, forecasts cannot be generated. To use the model for forecasting, u se one of the supported classes of index.

self. init dates(dates, freq)

C:\Users\vs24904\AppData\Local\anaconda32\Lib\site-packages\statsmodels\tsa \base\tsa_model.py:473: ValueWarning: An unsupported index was provided. As a result, forecasts cannot be generated. To use the model for forecasting, u se one of the supported classes of index.

self. init dates(dates, freq)

C:\Users\vs24904\AppData\Local\anaconda32\Lib\site-packages\statsmodels\tsa \base\tsa_model.py:473: ValueWarning: An unsupported index was provided. As a result, forecasts cannot be generated. To use the model for forecasting, u se one of the supported classes of index.

self._init_dates(dates, freq)

C:\Users\vs24904\AppData\Local\anaconda32\Lib\site-packages\statsmodels\tsa \statespace\sarimax.py:866: UserWarning: Too few observations to estimate st arting parameters for ARMA and trend. All parameters except for variances will be set to zeros.

warn('Too few observations to estimate starting parameters%s.'

C:\Users\vs24904\AppData\Local\anaconda32\Lib\site-packages\statsmodels\tsa
\base\tsa_model.py:837: ValueWarning: No supported index is available. Prediction results will be given with an integer index beginning at `start`.

return get prediction index(

C:\Users\vs24904\AppData\Local\anaconda32\Lib\site-packages\statsmodels\tsa \base\tsa_model.py:837: FutureWarning: No supported index is available. In t he next version, calling this method in a model without a supported index wi ll result in an exception.

Floodplains 3.191143e+08

ForestPlantation 1.186906e+06

[143 rows x 4 columns]

center

center

141

142

2023

2023

C:\Users\vs24904\AppData\Local\anaconda32\Lib\site-packages\statsmodels\tsa \base\tsa_model.py:473: ValueWarning: An unsupported index was provided. As a result, forecasts cannot be generated. To use the model for forecasting, u se one of the supported classes of index.

self. init dates(dates, freq)

C:\Users\vs24904\AppData\Local\anaconda32\Lib\site-packages\statsmodels\tsa \base\tsa_model.py:473: ValueWarning: An unsupported index was provided. As a result, forecasts cannot be generated. To use the model for forecasting, u se one of the supported classes of index.

self. init dates(dates, freq)

C:\Users\vs24904\AppData\Local\anaconda32\Lib\site-packages\statsmodels\tsa \base\tsa_model.py:473: ValueWarning: An unsupported index was provided. As a result, forecasts cannot be generated. To use the model for forecasting, u se one of the supported classes of index.

self. init dates(dates, freq)

C:\Users\vs24904\AppData\Local\anaconda32\Lib\site-packages\statsmodels\tsa \statespace\sarimax.py:966: UserWarning: Non-stationary starting autoregress ive parameters found. Using zeros as starting parameters.

warn('Non-stationary starting autoregressive parameters'

C:\Users\vs24904\AppData\Local\anaconda32\Lib\site-packages\statsmodels\tsa \statespace\sarimax.py:978: UserWarning: Non-invertible starting MA paramete rs found. Using zeros as starting parameters.

warn('Non-invertible starting MA parameters found.'

C:\Users\vs24904\AppData\Local\anaconda32\Lib\site-packages\statsmodels\tsa \base\tsa_model.py:837: ValueWarning: No supported index is available. Prediction results will be given with an integer index beginning at `start`.

return get prediction index(

C:\Users\vs24904\AppData\Local\anaconda32\Lib\site-packages\statsmodels\tsa \base\tsa_model.py:837: FutureWarning: No supported index is available. In t he next version, calling this method in a model without a supported index wi ll result in an exception.

Date Forecasted_Area_m2
11 2024 5.131608e+08
12 2025 5.044460e+08
13 2026 4.957316e+08
14 2027 4.870173e+08
15 2028 4.783029e+08

MAE: 8671598.79203401 MSE: 131579802076476.12 RMSE: 11470823.94932797

MAPE: nan%

C:\Users\vs24904\AppData\Local\anaconda32\Lib\site-packages\statsmodels\tsa \base\tsa_model.py:473: ValueWarning: An unsupported index was provided. As a result, forecasts cannot be generated. To use the model for forecasting, u se one of the supported classes of index.

self. init dates(dates, freq)

C:\Users\vs24904\AppData\Local\anaconda32\Lib\site-packages\statsmodels\tsa \base\tsa_model.py:473: ValueWarning: An unsupported index was provided. As a result, forecasts cannot be generated. To use the model for forecasting, u se one of the supported classes of index.

self. init dates(dates, freq)

C:\Users\vs24904\AppData\Local\anaconda32\Lib\site-packages\statsmodels\tsa \base\tsa_model.py:473: ValueWarning: An unsupported index was provided. As a result, forecasts cannot be generated. To use the model for forecasting, u se one of the supported classes of index.

self. init dates(dates, freq)

C:\Users\vs24904\AppData\Local\anaconda32\Lib\site-packages\statsmodels\tsa
\statespace\sarimax.py:966: UserWarning: Non-stationary starting autoregress
ive parameters found. Using zeros as starting parameters.

warn('Non-stationary starting autoregressive parameters'

C:\Users\vs24904\AppData\Local\anaconda32\Lib\site-packages\statsmodels\tsa \statespace\sarimax.py:978: UserWarning: Non-invertible starting MA paramete rs found. Using zeros as starting parameters.

warn('Non-invertible starting MA parameters found.'

C:\Users\vs24904\AppData\Local\anaconda32\Lib\site-packages\statsmodels\tsa\base\tsa_model.py:837: ValueWarning: No supported index is available. Prediction results will be given with an integer index beginning at `start`.

return get_prediction_index(

C:\Users\vs24904\AppData\Local\anaconda32\Lib\site-packages\statsmodels\tsa\base\tsa_model.py:837: FutureWarning: No supported index is available. In the next version, calling this method in a model without a supported index will result in an exception.

C:\Users\vs24904\AppData\Local\anaconda32\Lib\site-packages\statsmodels\tsa\base\tsa_model.py:473: ValueWarning: An unsupported index was provided. As a result, forecasts cannot be generated. To use the model for forecasting, u se one of the supported classes of index.

self. init dates(dates, freq)

C:\Users\vs24904\AppData\Local\anaconda32\Lib\site-packages\statsmodels\tsa\base\tsa_model.py:473: ValueWarning: An unsupported index was provided. As a result, forecasts cannot be generated. To use the model for forecasting, u se one of the supported classes of index.

self. init dates(dates, freq)

C:\Users\vs24904\AppData\Local\anaconda32\Lib\site-packages\statsmodels\tsa \base\tsa_model.py:473: ValueWarning: An unsupported index was provided. As a result, forecasts cannot be generated. To use the model for forecasting, u se one of the supported classes of index.

self._init_dates(dates, freq)

C:\Users\vs24904\AppData\Local\anaconda32\Lib\site-packages\statsmodels\tsa
\base\tsa_model.py:837: ValueWarning: No supported index is available. Prediction results will be given with an integer index beginning at `start`.

return get prediction index(

C:\Users\vs24904\AppData\Local\anaconda32\Lib\site-packages\statsmodels\tsa \base\tsa_model.py:837: FutureWarning: No supported index is available. In t he next version, calling this method in a model without a supported index wi ll result in an exception.

Date Forecasted_Area_m2 11 2024 3.137402e+08 12 2025 3.083666e+08 13 2026 3.029931e+08 14 2027 2.976197e+08 15 2028 2.922462e+08

MAE: 5666639.169054608 MSE: 33763819493611.793 RMSE: 5810664.2902177535

MAPE: nan%

C:\Users\vs24904\AppData\Local\anaconda32\Lib\site-packages\statsmodels\tsa\base\tsa_model.py:473: ValueWarning: An unsupported index was provided. As a result, forecasts cannot be generated. To use the model for forecasting, u se one of the supported classes of index.

self. init dates(dates, freq)

C:\Users\vs24904\AppData\Local\anaconda32\Lib\site-packages\statsmodels\tsa\base\tsa_model.py:473: ValueWarning: An unsupported index was provided. As a result, forecasts cannot be generated. To use the model for forecasting, u se one of the supported classes of index.

self. init dates(dates, freq)

C:\Users\vs24904\AppData\Local\anaconda32\Lib\site-packages\statsmodels\tsa \base\tsa_model.py:473: ValueWarning: An unsupported index was provided. As a result, forecasts cannot be generated. To use the model for forecasting, u se one of the supported classes of index.

self._init_dates(dates, freq)

C:\Users\vs24904\AppData\Local\anaconda32\Lib\site-packages\statsmodels\tsa \statespace\sarimax.py:978: UserWarning: Non-invertible starting MA paramete rs found. Using zeros as starting parameters.

warn('Non-invertible starting MA parameters found.'

C:\Users\vs24904\AppData\Local\anaconda32\Lib\site-packages\statsmodels\tsa \base\tsa_model.py:837: ValueWarning: No supported index is available. Prediction results will be given with an integer index beginning at `start`.

return get prediction index(

C:\Users\vs24904\AppData\Local\anaconda32\Lib\site-packages\statsmodels\tsa\base\tsa_model.py:837: FutureWarning: No supported index is available. In the next version, calling this method in a model without a supported index will result in an exception.

return get prediction index(

C:\Users\vs24904\AppData\Local\anaconda32\Lib\site-packages\scipy\stats_axi
s_nan_policy.py:430: UserWarning: `kurtosistest` p-value may be inaccurate w
ith fewer than 20 observations; only n=11 observations were given.
 return hypotest fun in(*args, **kwds)

=======================================	========		========	=======		
== Dep. Variable:		Area_m2	R-squared:			0.9
39 Model:		0LS	Adj. R-squar	0.9		
32 Method:	Least Squares		F-statistic:		13	
8.8 Date:	Tue, 14	Jan 2025	Prob (F-stat	istic):	9.02e-	
07 Time:		12:51:59	Log-Likeliho	-195.		
<pre>19 No. Observations:</pre>		11	AIC:			39
4.4 Df Residuals:		9	BIC:			39
5.2 Df Model:		1				
Covariance Type:		nonrobust ======				===
======						
0.975]		std err		P> t		
const			175.484		1.33e+09	
1.36e+09 BufferID_encoded	-1.528e+07	1.3e+06	-11.780	0.000	-1.82e+07	-
1.23e+07		-======	========	=======	========	
== Omnibus:		5.232	Durbin-Watso	n:		1.3
40 Prob(Omnibus):		0.073	Jarque-Bera	(JB):		2.3
80 Skew:		-1.125	Prob(JB):			0.3
04 Kurtosis: 1.3		3.357	Cond. No.			1
=======================================			========	=======		====

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

C:\Users\vs24904\AppData\Local\anaconda32\Lib\site-packages\scipy\stats_axi
s_nan_policy.py:430: UserWarning: `kurtosistest` p-value may be inaccurate w
ith fewer than 20 observations; only n=11 observations were given.
 return hypotest_fun_in(*args, **kwds)

						=
== Dep. Variable: 72	Area_m2		R-squared:	0.7		
Model:	0LS		Adj. R-squared:		0.7	
47 Method:	Least	Squares	F-statistic:		30.	
53 Date:	Tue, 14	Jan 2025	Prob (F-statistic):		0.0003	
68 Time:		12:51:59	Log-Likelihood:		-198.	
82		12.31.33	Log Linetino	001	-190.	
No. Observations:		11	AIC:		40	
Df Residuals:		9	BIC:		40	
2.4 Df Model:		1				
Covariance Type:		nonrobust				
=======================================				=======		=
0.975]	coef		t			
const	4.511e+08		42.268		4.27e+08	-
4.75e+08 BufferID_encoded 1.4e+07			5.526		5.89e+06	
==						
Omnibus: 03		1.989	Durbin-Watso	n:	0.4	4
Prob(Omnibus): 51		0.370	Jarque-Bera	(JB):	1.0	0
Skew:		-0.408	Prob(JB):		0.5	5
91 Kurtosis: 1.3		1.725	Cond. No.		1	
==	========		========	=======		=

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

C:\Users\vs24904\AppData\Local\anaconda32\Lib\site-packages\scipy\stats_axi
s_nan_policy.py:430: UserWarning: `kurtosistest` p-value may be inaccurate w
ith fewer than 20 observations; only n=11 observations were given.
 return hypotest_fun_in(*args, **kwds)

				=======		
== Dep. Variable:		Area_m2	R-squared:	0.6		
64 Model:	OL		Adj. R-squar	0.6		
27 Method:	Least	: Squares	F-statistic:		17.	
78		•				
Date: 25	Tue, 14	Jan 2025	Prob (F-stat	istic):	0.002	
Time: 75		12:51:59	Log-Likeliho	od:	-201.	
No. Observations:		11	AIC:		40	
7.5 Df Residuals:		9	BIC:		40	
8.3 Df Model:		1				
Covariance Type:	r	nonrobust				
					=========	
0.975]	coef	std err	t	P> t	[0.025	
const 5.99e+08	5.674e+08	1.39e+07	40.728	0.000	5.36e+08	
BufferID_encoded 1.53e+07	9.929e+06	2.35e+06	4.217	0.002	4.6e+06	
==				=======		
Omnibus:		0.401	Durbin-Watso	n:	0.8	
Prob(Omnibus):		0.818	Jarque-Bera	(JB):	0.4	
92 Skew:		0.278	Prob(JB):		0.7	
82 Kurtosis:		2.126	Cond. No.		1	
1.3		2:120	201141 1101		1	
==			========			

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

C:\Users\vs24904\AppData\Local\anaconda32\Lib\site-packages\scipy\stats_axi
s_nan_policy.py:430: UserWarning: `kurtosistest` p-value may be inaccurate w
ith fewer than 20 observations; only n=11 observations were given.
 return hypotest_fun_in(*args, **kwds)

=======================================						===
Dep. Variable:	Area_m2		R-squared:		0.9	
42 Model:	0LS		Adj. R-squared:		0.9	
35 Method:					1.4	
5.8	Leas	i Squares	F-statistic:		14	
Date: 07	Tue, 14	Jan 2025	Prob (F-stat	istic):	7.30e-	
Time:		12:52:00	Log-Likeliho	od:	-178.	
82 No. Observations:		11	AIC:		36	
1.6 Df Residuals:		9	BIC:		36	
2.4		9	DIC.		,	30
<pre>Df Model: Covariance Type:</pre>	1	1 nonrobust				
=======================================	========		========	=======		===
0.975]	coef	std err	t	P> t	[0.025	
const 3.6e+08	3.563e+08	1.73e+06	205.574	0.000	3.52e+08	
BufferID_encoded 2.87e+06	-3.537e+06	2.93e+05	-12.074	0.000	-4.2e+06	-
===	========	=======		=======	=======	===
Omnibus:		0.179	Durbin-Watso	n:		1.0
Prob(Omnibus):		0.914	Jarque-Bera	(JB):		0.2
58 Skew:		0.228	Prob(JB):			0.8
79 Kurtosis: 1.3		2.403	Cond. No.			1
=======================================	=======			=======		===

Notes:

 $\[1\]$ Standard Errors assume that the covariance matrix of the errors is correctly specified.

This notebook was converted with convert.ploomber.io