Calibration and uncertainty quantification using multivariate simulator output

LA-UR 06-2671

Dave Higdon, Statistical Sciences Group, LANL Jim Gattiker, Statistical Sciences Group, LANL Brian Williams, Statistical Sciences Group, LANL

A framework for model assessment, prediction and calibration using simulations and experimental data

Uncertainty quantification accounts for:

- uncertainty in experimental observations;
- model parameters first principle and phenomenological parameters;
- inadequacy in physics simulation models;
- multiple sources of data

Byproducts of this approach:

- predictions (with uncertainties);
- can assess value of different sources of experimental data
- determine which parameters are key drivers in uncertainty
- assessment of simulator adequacy.

Calibrating to multiple sources of data

- \bullet conditioning on more experiments \Rightarrow less parametric uncertainty
- prediction uncertainty becomes more affected by model inadequacies

Statistical formulation for combining simulations and experimental data for forecasting, calibration and uncertainty quantification

 $\begin{array}{ll} x & \text{model or system inputs} \\ \theta & \text{model calibration parameters} \\ \zeta(x) & \text{true physical system response given inputs } x \end{array}$

 $\eta(x,\theta)$ simulator response at x and θ .

simulator run at limited input settings

$$\eta = (\eta(x_1^*, \theta_1^*), \dots, \eta(x_m^*, \theta_m^*))^T$$

treat $\eta(\cdot,\cdot)$ as a random function use Gaussian process to model $\eta(\cdot,\cdot)$

y(x) experimental observation of the physical system

 $\delta(x)$ discrepancy between $\zeta(x)$ and $\eta(x,\theta)$

may be decomposed into numerical error and bias

e(x) observation error of the experimental data

$$y(x) = \zeta(x) + e(x)$$

$$y(x) = \eta(x, \theta) + \delta(x) + e(x)$$

 θ , $\eta(\cdot,\cdot)$, and $\delta(\cdot)$ unknowns to be estimated.

Standard Bayesian estimation gives:

$$\pi(\theta, \eta(\cdot, \cdot), \delta(\cdot)|y(x)) \propto L(y(x)|\eta(x, \theta), \delta(x)) \times \pi(\theta) \times \pi(\eta(\cdot, \cdot)) \times \pi(\delta(\cdot))$$

Basic elements of the model and analysis

Basic elements of model and analysis

Basic recipe

A simple example

input condition calibration parameters exprimental outputs x_1 x_2 θ_1 θ_2 θ_3 y_1 y_2 y_3 y_4 y_5

- 6 experiments at $(x_1, x_2) = \{(0, 0), (.2, .4), (.4, .4), (.4, .4), (.6, 1.0), (1.0, .9)\}$
- Run 30 simulations for each experimental configuration: $\Rightarrow 30 \times 5$ simulations
- Each experimental observation has noise and replicate variability
- Model

$$y(x) = \eta(x, \theta) + \delta(x) + \epsilon(x)$$

- ullet Calibration: finding range of heta consistent with experimental data
- ullet Prediction: best prediction and uncertainty for new y(x).

Simulation campaign design

30 point, space-filling, symmetric Latin hypercube design

Simulations and experimental observations

Modeling simulator response for experiment 1.

- predicted response of outputs 1 & 2 as a function of θ_1 and θ_2 ; (x_1, x_2, θ_3) held fixed at .5.
- Smooth and predictable response \Rightarrow fewer sims required.
- ullet If response is rough and unpredictable, MC-based approach may be required \Rightarrow many sims will be needed.

Use response surface to determine plausible θ 's

ullet Response surface allows the posterior distribution for the calibration parameters heta to be estimated.

Posterior distribution for calibration parameters

- Posterior distribution gives 3-d description of plausible θ 's.
- uncertainty in $\theta \Rightarrow$ some prediction uncertainty (but not all).

Posterior (calibrated) predictions

Accounting for inadequacies in the simulation model

- No value of θ matches the y_3 data.
- Calibration matches all other outputs fairly well.
- Must account for this in calibration and in prediction uncertainty.
- ignoring this leads to overly optimistic prediction uncertainties, and poor calibrations
- Potential discrepancy models: Independent terms:

$$\delta_j(x) \sim N(0, \sigma_j^2), j = 1, \dots, 5$$

Discrepancy depends on input conditions (x_1, x_2) :

$$\delta_j(x) \sim GP(0, R(\cdot, \cdot))$$

"Holdout" predictions (include model inadequacy)

Some (interim) summary points

- Not V&V certification is about making the best of current models (results will likely feed back into V&V needs).
- Need a variet of experiments (separate effects, pinshots, core punch, scaled hydros, NTS) to get a robust calibration. This requires a model that can simulate a wide range of experiments.
- Robust calibration may not be enough some model inadequacy is likely to persist.
- ullet Need carefully chosen hold out data to inform about model discrepancy $\delta(\cdot)$. Holdouts should be extrapolations similar to the extrapolation made in certification.

training/calibration data
$$\rightarrow \pi(\theta, \delta|y, \eta)$$

Holdout data to test predictions and refine discrepancy.