services to be commoditized, and thus will pave the way for creation of dynamic market infrastructure for trading based on SLAs. An SLA specifies the details of the service to be provided in terms of metrics agreed upon by all parties, and incentives and penalties for meeting and violating the expectations, respectively. The availability of a banking system within the market ensures that financial transactions pertaining to SLAs between participants are carried out in a secure and dependable environment.

4.6 CLOUD SECURITY AND TRUST MANAGEMENT

Lacking trust between service providers and cloud users has hindered the universal acceptance of cloud computing as a service on demand. In the past, trust models have been developed to protect mainly e-commerce and online shopping provided by eBay and Amazon. For web and cloud services, trust and security become even more demanding, because leaving user applications completely to the cloud providers has faced strong resistance by most PC and server users. Cloud platforms become worrisome to some users for lack of privacy protection, security assurance, and copyright protection. Trust is a social problem, not a pure technical issue. However, the social problem can be solved with a technical approach.

Common sense dictates that technology can enhance trust, justice, reputation, credit, and assurance in Internet applications. As a virtual environment, the cloud poses new security threats that are more difficult to contain than traditional client and server configurations. To solve these trust problems, a new data-protection model is presented in this section. In many cases, one can extend the trust models for P2P networks and grid systems to protect clouds and data centers.

4.6.1 Cloud Security Defense Strategies

A healthy cloud ecosystem is desired to free users from abuses, violence, cheating, hacking, viruses, rumors, pornography, spam, and privacy and copyright violations. The security demands of three cloud service models, IaaS, PaaS, and SaaS, are described in this section. These security models are based on various SLAs between providers and users.

4.6.1.1 Basic Cloud Security

Three basic cloud security enforcements are expected. First, facility security in data centers demands on-site security year round. Biometric readers, CCTV (close-circuit TV), motion detection, and man traps are often deployed. Also, network security demands fault-tolerant external firewalls, intrusion detection systems (IDSes), and third-party vulnerability assessment. Finally, platform security demands SSL and data decryption, strict password policies, and system trust certification. Figure 4.31 shows the mapping of cloud models, where special security measures are deployed at various cloud operating levels.

Servers in the cloud can be physical machines or VMs. User interfaces are applied to request services. The provisioning tool carves out the systems from the cloud to satisfy the requested service. A security-aware cloud architecture demands security enforcement. Malware-based attacks such as network worms, viruses, and DDoS attacks exploit system vulnerabilities. These attacks compromise system functionality or provide intruders unauthorized access to critical information.

FIGURE 4.31

Cloud service models on the left (a) and corresponding security measures on the right (b); the laaS is at the innermost level, PaaS is at the middle level, and SaaS is at the outermost level, including all hardware, software, datasets, and networking resources.

(Courtesy of Hwang and Li [36])

Thus, security defenses are needed to protect all cluster servers and data centers. Here are some cloud components that demand special security protection:

- Protection of servers from malicious software attacks such as worms, viruses, and malware
- Protection of hypervisors or VM monitors from software-based attacks and vulnerabilities
- Protection of VMs and monitors from service disruption and DoS attacks

- Protection of data and information from theft, corruption, and natural disasters
- Providing authenticated and authorized access to critical data and services

4.6.1.2 Security Challenges in VMs

As we discussed earlier in this chapter, traditional network attacks include buffer overflows, DoS attacks, spyware, malware, rootkits, Trojan horses, and worms. In a cloud environment, newer attacks may result from hypervisor malware, guest hopping and hijacking, or VM rootkits. Another type of attack is the man-in-the-middle attack for VM migrations. In general, passive attacks steal sensitive data or passwords. Active attacks may manipulate kernel data structures which will cause major damage to cloud servers. An IDS can be a NIDS or a HIDS. Program shepherding can be applied to control and verify code execution. Other defense technologies include using the RIO dynamic optimization infrastructure, or VMware's vSafe and vShield tools, security compliance for hypervisors, and Intel vPro technology. Others apply a hardened OS environment or use isolated execution and sandboxing.

4.6.1.3 Cloud Defense Methods

Virtualization enhances cloud security. But VMs add an additional layer of software that could become a single point of failure. With virtualization, a single physical machine can be divided or partitioned into multiple VMs (e.g., server consolidation). This provides each VM with better security isolation and each partition is protected from DoS attacks by other partitions. Security attacks in one VM are isolated and contained from affecting the other VMs. Table 4.9 lists eight protection schemes to secure public clouds and data centers. VM failures do not propagate to other VMs. The

Table 4.9 Physical and Cyber Security Protection at Cloud/Data Centers	
Protection Schemes	Brief Description and Deployment Suggestions
Secure data centers and computer buildings	Choose hazard-free location, enforce building safety. Avoid windows, keep buffer zone around the site, bomb detection, camera surveillance, earthquake-proof, etc.
Use redundant utilities at multiple sites	Multiple power and supplies, alternate network connections, multiple databases at separate sites, data consistency, data watermarking, user authentication, etc.
Trust delegation and negotiation	Cross certificates to delegate trust across PKI domains for various data centers, trust negotiation among certificate authorities (CAs) to resolve policy conflicts
Worm containment and DDoS defense	Internet worm containment and distributed defense against DDoS attacks to secure all data centers and cloud platforms
Reputation system for data centers	Reputation system could be built with P2P technology; one can build a hierarchy of reputation systems from data centers to distributed file systems
Fine-grained file access control	Fine-grained access control at the file or object level; this adds to security protection beyond firewalls and IDSes
Copyright protection and piracy prevention	Piracy prevention achieved with peer collusion prevention, filtering of poisoned content, nondestructive read, alteration detection, etc.
Privacy protection	Uses double authentication, biometric identification, intrusion detection and disaster recovery, privacy enforcement by data watermarking, data classification, etc.

hypervisor provides visibility of the guest OS, with complete guest isolation. Fault containment and failure isolation of VMs provide a more secure and robust environment. Malicious intrusions may destroy valuable hosts, networks, and storage resources. Internet anomalies found in routers, gateways, and distributed hosts may stop cloud services. Trust negotiation is often done at the SLA level. Public Key Infrastructure (PKI) services could be augmented with data-center reputation systems. Worm and DDoS attacks must be contained. It is harder to establish security in the cloud because all data and software are shared by default.

4.6.1.4 Defense with Virtualization

The VM is decoupled from the physical hardware. The entire VM can be represented as a software component and can be regarded as binary or digital data. The VM can be saved, cloned, encrypted, moved, or restored with ease. VMs enable HA and faster disaster recovery. Live migration of VMs was suggested by many researchers [36] for building distributed intrusion detection systems (DIDSes). Multiple IDS VMs can be deployed at various resource sites including data centers. DIDS design demands trust negation among PKI domains. Security policy conflicts must be resolved at design time and updated periodically.

4.6.1.5 Privacy and Copyright Protection

The user gets a predictable configuration before actual system integration. Yahoo!'s Pipes is a good example of a lightweight cloud platform. With shared files and data sets, privacy, security, and copyright data could be compromised in a cloud computing environment. Users desire to work in a software environment that provides many useful tools to build cloud applications over large data sets. Google's platform essentially applies in-house software to protect resources. The Amazon EC2 applies HMEC and X.509 certificates in securing resources. It is necessary to protect browser-initiated application software in the cloud environment. Here are several security features desired in a secure cloud:

- Dynamic web services with full support from secure web technologies
- Established trust between users and providers through SLAs and reputation systems
- Effective user identity management and data-access management
- Single sign-on and single sign-off to reduce security enforcement overhead
- Auditing and copyright compliance through proactive enforcement
- Shifting of control of data operations from the client environment to cloud providers
- Protection of sensitive and regulated information in a shared environment

Example 4.7 Cloud Security Safeguarded by Gateway and Firewalls

Figure 4.32 shows a security defense system for a typical private cloud environment. The gateway is fully secured to protect access to commercial clouds that are wide open to the general public. The firewall provides an external shield. The gateway secures the application server, message queue, database, web service client, and browser with HTTP, JMS, SQL, XML, and SSL security protocols, etc. The defense scheme is needed to protect user data from server attacks. A user's private data must not be leaked to other users without permission.

The typical security structure coordinated by a secured gateway plus external firewalls to safeguard the access of public or private clouds.

(Courtesy of Vordel Company)

4.6.2 Distributed Intrusion/Anomaly Detection

Data security is the weakest link in all cloud models. We need new cloud security standards to apply common API tools to cope with the data lock-in problem and network attacks or abuses. The IaaS model represented by Amazon is most sensitive to external attacks. Role-based interface tools alleviate the complexity of the provisioning system. For example, IBM's Blue Cloud provisions through a role-based web portal. A SaaS bureau may order secretarial services from a common cloud platform. Many IT companies are now offering cloud services with no guaranteed security.

Security threats may be aimed at VMs, guest OSes, and software running on top of the cloud. IDSes attempt to stop these attacks before they take effect. Both signature matching and anomaly detection can be implemented on VMs dedicated to building IDSes. Signature-matching IDS

technology is more mature, but require frequent updates of the signature databases. Network anomaly detection reveals abnormal traffic patterns, such as unauthorized episodes of TCP connection sequences, against normal traffic patterns. Distributed IDSes are needed to combat both types of intrusions.

4.6.2.1 Distributed Defense against DDoS Flooding Attacks

A DDoS defense system must be designed to cover multiple network domains spanned by a given cloud platform. These network domains cover the edge networks where cloud resources are connected. DDoS attacks come with widespread worms. The flooding traffic is large enough to crash the victim server by buffer overflow, disk exhaustion, or connection saturation. Figure 4.33(a) shows a flooding attack pattern. Here, the hidden attacker launched the attack from many zombies toward a victim server at the bottom router R_0 .

The flooding traffic flows essentially with a tree pattern shown in Figure 4.33(b). Successive attack-transit routers along the tree reveal the abnormal surge in traffic. This DDoS defense system is based on change-point detection by all routers. Based on the anomaly pattern detected in covered network domains, the scheme detects a DDoS attack before the victim is overwhelmed. The

FIGURE 4.33

DDoS attacks and defense by change-point detection at all routers on the flooding tree.

(Courtesy of Chen, Hwang, and Ku [15])

detection scheme is suitable for protecting cloud core networks. The provider-level cooperation eliminates the need for intervention by edge networks.

Example 4.8 Man-in-the-Middle Attacks

Figure 4.34 shows VM migration from host machine VMM A to host machine VMM B, via a security vulnerable network. In a man-in-the-middle attack, the attacker can view the VM contents being migrated, steal sensitive data, or even modify the VM-specific contents including the OS and application states. An attacker posing this attack can launch an active attack to insert a VM-based rootkit into the migrating VM, which can subvert the entire operation of the migration process without the knowledge of the guest OS and embedded application.

4.6.3 Data and Software Protection Techniques

In this section, we will introduce a data coloring technique to preserve data integrity and user privacy. Then we will discuss a watermarking scheme to protect software files from being widely distributed in a cloud environment.

4.6.3.1 Data Integrity and Privacy Protection

Users desire a software environment that provides many useful tools to build cloud applications over large data sets. In addition to application software for MapReduce, BigTable, EC2, 3S, Hadoop, AWS, GAE, and WebSphere2, users need some security and privacy protection software for using the cloud. Such software should offer the following features:

- Special APIs for authenticating users and sending e-mail using commercial accounts
- Fine-grained access control to protect data integrity and deter intruders or hackers
- Shared data sets protected from malicious alteration, deletion, or copyright violation

FIGURE 4.34

A VM migrating from host A to host B through a vulnerable network threatened by a man-in-the-middle attack to modify the VM template and OS state.

- Ability to secure the ISP or cloud service provider from invading users' privacy
- Personal firewalls at user ends to keep shared data sets from Java, JavaScript, and ActiveX applets
- A privacy policy consistent with the cloud service provider's policy, to protect against identity theft, spyware, and web bugs
- VPN channels between resource sites to secure transmission of critical data objects

4.6.3.2 Data Coloring and Cloud Watermarking

With shared files and data sets, privacy, security, and copyright information could be compromised in a cloud computing environment. Users desire to work in a trusted software environment that provides useful tools to build cloud applications over protected data sets. In the past, watermarking was mainly used for digital copyright management. As shown in Figure 4.35, the system generates special colors for each data object. Data coloring means labeling each data object by a unique color. Differently colored data objects are thus distinguishable.

The user identification is also colored to be matched with the data colors. This color matching process can be applied to implement different trust management events. Cloud storage provides a process for the generation, embedding, and extraction of the watermarks in colored objects. Interested readers may refer to the articles by Hwang and Li [36] for details on the data coloring and matching process. In general, data protection was done by encryption or decryption which is

FIGURE 4.35

Data coloring with cloud watermarking for trust management at various security clearance levels in data centers.

computationally expensive. The data coloring takes a minimal number of calculations to color or decolor the data objects. Cryptography and watermarking or coloring can be used jointly in a cloud environment.

4.6.3.3 Data Lock-in Problem and Proactive Solutions

Cloud computing moves both the computation and the data to the server clusters maintained by cloud service providers. Once the data is moved into the cloud, users cannot easily extract their data and programs from cloud servers to run on another platform. This leads to a data lock-in problem. This has hindered the use of cloud computing. Data lock-in is attributed to two causes: lack of interoperability, whereby each cloud vendor has its proprietary API that limits users to extract data once submitted; and lack of application compatibility, in that most computing clouds expect users to write new applications from scratch, when they switch cloud platforms.

One possible solution to data lock-in is the use of standardized cloud APIs. This requires building standardized virtual platforms that adhere to OVF, a platform-independent, efficient, extensible, and open format for VMs. This will enable efficient, secure software distribution, facilitating the mobility of VMs. Using OVF one can move data from one application to another. This will enhance QoS, and thus enable cross-cloud applications, allowing workload migration among data centers to user-specific storage. By deploying applications, users can access and intermix applications across different cloud services.

4.6.4 Reputation-Guided Protection of Data Centers

Trust is a personal opinion, which is very subjective and often biased. Trust can be transitive but not necessarily symmetric between two parties. Reputation is a public opinion, which is more objective and often relies on a large opinion aggregation process to evaluate. Reputation may change or decay over time. Recent reputation should be given more preference than past reputation. In this section, we review the reputation systems for protecting data centers or cloud user communities.

4.6.4.1 Reputation System Design Options

Figure 4.36 provides an overview of reputation system design options. Public opinion on the character or standing (such as honest behavior or reliability) of an entity could be the reputation of a person, an agent, a product, or a service. It represents a collective evaluation by a group of people/ agents and resource owners. Many reputation systems have been proposed in the past mainly for P2P, multiagent, or e-commerce systems.

To address reputation systems for cloud services, a systematic approach is based on the design criteria and administration of the reputation systems. Figure 4.36 shows a two-tier classification of existing reputation systems that have been proposed in recent years. Most of them were designed for P2P or social networks. These reputation systems can be converted for protecting cloud computing applications. In general, the reputation systems are classified as *centralized* or *distributed* depending on how they are implemented. In a centralized system, a single central authority is responsible for managing the reputation system, while the distributed model involves multiple control centers working collectively. Reputation-based trust management and techniques for securing P2P and social networks could be merged to defend data centers and cloud platforms against attacks from the open network.

Design options of reputation systems for social networks and cloud platforms.

A centralized reputation system is easier to implement, but demands more powerful and reliable server resources; a distributed reputation system is much more complex to build. Distributed systems are more scalable and reliable in terms of handling failures. At the second tier, reputation systems are further classified by the scope of reputation evaluation. *User-oriented* reputation systems focus on individual users or agents. Most P2P reputation systems belong to this category. In data centers, reputation is modeled for the resource site as a whole. This reputation applies to products or services offered by the cloud. Commercial reputation systems have been built by eBay, Google, and Amazon in connection with the services they provide. These are centralized reputation systems.

Distributed reputation systems are mostly developed by academic research communities. Aberer and Despotovic have proposed a model to manage trust in P2P systems. The Eigentrust reputation system was developed at Stanford University using a trust matrix approach. The PeerTrust system was developed at Georgia Institute of Technology for supporting e-commerce applications. The PowerTrust system was developed at the University of Southern California based on Power law characteristics of Internet traffic for P2P applications. Vu, et al. proposed a QoS-based ranking system for P2P transactions.

4.6.4.2 Reputation Systems for Clouds

Redesigning the aforementioned reputation systems for protecting data centers offers new opportunities for expanded applications beyond P2P networks. Data consistency is checked across multiple databases. Copyright protection secures wide-area content distributions. To separate user data from specific SaaS programs, providers take the most responsibility in maintaining data integrity and consistency. Users can switch among different services using their own data. Only the users have the keys to access the requested data.

The data objects must be uniquely named to ensure global consistency. To ensure data consistency, unauthorized updates of data objects by other cloud users are prohibited. The reputation system

can be implemented with a trust overlay network. A hierarchy of P2P reputation systems is suggested to protect cloud resources at the site level and data objects at the file level. This demands both coarse-grained and fine-grained access control of shared resources. These reputation systems keep track of security breaches at all levels.

The reputation system must be designed to benefit both cloud users and data centers. Data objects used in cloud computing reside in multiple data centers over a SAN. In the past, most reputation systems were designed for P2P social networking or for online shopping services. These reputation systems can be converted to protect cloud platform resources or user applications in the cloud. A centralized reputation system is easier to implement, but demands more powerful and reliable server resources. Distributed reputation systems are more scalable and reliable in terms of handling failures. The five security mechanisms presented earlier can be greatly assisted by using a reputation system specifically designed for data centers.

However, it is possible to add social tools such as reputation systems to support safe cloning of VMs. Snapshot control is based on the defined RPO. Users demand new security mechanisms to protect the cloud. For example, one can apply secured information logging, migrate over secured virtual LANs, and apply ECC-based encryption for secure migration. Sandboxes provide a safe execution platform for running programs. Further, sandboxes can provide a tightly controlled set of resources for guest operating systems, which allows a security test bed to test the application code from third-party vendors.

4.6.4.3 Trust Overlay Networks

Reputation represents a collective evaluation by users and resource owners. Many reputation systems have been proposed in the past for P2P, multiagent, or e-commerce systems. To support trusted cloud services, Hwang and Li [36] have suggested building a *trust overlay network* to model trust relationships among data-center modules. This trust overlay could be structured with a *distributed hash table (DHT)* to achieve fast aggregation of global reputations from a large number of local reputation scores. This trust overlay design was first introduced in [12]. Here, the designer needs to have two layers for fast reputation aggregation, updating, and dissemination to all users. Figure 4.37 shows construction of the two layers of the trust overlay network.

At the bottom layer is the trust overlay for distributed trust negotiation and reputation aggregation over multiple resource sites. This layer handles user/server authentication, access authorization, trust delegation, and data integrity control. At the top layer is an overlay for fast virus/worm signature generation and dissemination and for piracy detection. This overlay facilitates worm containment and IDSes against viruses, worms, and DDoS attacks. The content poisoning technique [6] is reputation-based. This protection scheme can stop copyright violations in a cloud environment over multiple data centers.

The reputation system enables trusted interactions between cloud users and data-center owners. Privacy is enforced by matching colored user identifications with the colored data objects. The use of content poisoning was suggested to protect copyright of digital content [46]. The security-aware cloud architecture (see Figure 4.14) is specially tailored to protect virtualized cloud infrastructure. The trust of provided cloud platforms comes from not only SLAs, but also from effective enforcement of security policies and deployment of countermeasures to defend against network attacks. By varying security control standards, one can cope with the dynamic variation of cloud operating

FIGURE 4.37

DHT-based trust overlay networks built over cloud resources provisioned from multiple data centers for trust management and distributed security enforcement.

(Courtesy of Hwang and Li [36])

conditions. The design is aimed at a trusted cloud environment to ensure high-quality services, including security.

The cloud security trend is to apply virtualization support for security enforcement in data centers. Both reputation systems and data watermarking mechanisms can protect data-center access at the coarse-grained level and to limit data access at the fine-grained file level. In the long run, a new *Security as a Service* is desired. This "SaaS" is crucial to the universal acceptance of web-scale cloud computing in personal, business, community, and government applications. Internet clouds are certainly in line with IT globalization and efficient computer outsourcing. However, interoperability among different clouds relies on a common operational standard by building a healthy cloud ecosystem.