

NEURAL NETWORK(s)

PRUNING: ONE AND

ENSEMBLES

Sumanth Manduru G01380318

Dileep Kumar Latchireddi G01389937

AGENDA

PROBLEM DEFINITION

Motivation

- Reduce the complexity of DNNs and E-DNNs.
- Maintain performance while reducing complexity.

Goals

- Find a subnetwork that has fewer parameters with a similar accuracy.
- Find a smaller high quality deep ensembles of size S (≪ M) with higher ensemble accuracy than the entire deep ensemble of all M models.

8

DATASETS

NETWORK PRUNING APPLICATIONS

NETWORK PRUNING PIPELINE

DROPNET - ITERATIVE PRUNING

Larger Networks ResNet, VGG

CNNs - Model B, C

> Dense Layers Model A

Pruning Metrics	Importance Score	
Minimum and Min Layer	$E[a_{i}] \text{ or } E[f_{i}]$	
Maximum and Max Layer	-ve $E[a_i]$ or -ve $E[f_i]$	
Random and Random Layer	0	

VGG19, VGG16 and ResNet

Model C - 64x2- 128x2, 128x2 - 128x2, 128x2 - 256x2

EARLY STOPPING, COMPARE RANDOM AND ORACLE

Model B (Conv64-64), Model A (FC40 -FC40), Model B (Conv64-32)

HQ ENSEMBLE PRUNING

Focal Diversity Metrics

- Cohen's Kappa (CK)
- Binary Disagreement(BD)
- Kohavi-Wolpert Variance (KW)
- Generalized Diversity (GD)

B Hyperparameter:

Controls the percentage of ensemble to be pruned

Results

Global Metric	Ensemble	Pruning Percentage	Cost	Accuracy
Minimum	0234	50%	80%	+2.04
	023	0%	60%	+0.56
	02	20%	40%	- 0.96
Maximum	01	20%	40%	+2.04
	01	0%	40%	+0.14
	124	50%	60%	-0.4
Random	12	50%	40%	+2.74
	0123	0%	80%	+0.7
	0123	20%	80%	+0.35

Results

Layerwise Pruning	Ensemble	Pruning Percentage	Cost	Accuracy
Minimum	01	0%	40%	+2.39
	0123	20%	80%	+0.22
	12	50%	40%	+0.5
Maximum	0123	0%	80%	+0.14
	02	20%	40%	+2.04
	04	50%	40%	-0.4
Random	0123	0%	80%	+1.6
	012	20%	60%	+4.23
	012	50%	60%	+1.47

Network Pruning Challenges

Future Work

01

Activation Functions

Similar to ReLU -SoftPlus

04

Interpretation of Pruned Models

03

Pruning Percentiles

05

Larger pools of Pruned Models

References

[1] Chong Min John Tan and Mehul Motani. 2020. DropNet: Reducing Neural Network Complexity via Iterative Pruning. InProceedings of the 37th International Conference on Machine Learning (Proceedings of Machine Learning Research, Vol. 119), Hal Daumé III and Aarti Singh (Eds.). PMLR, 9356–9366. https://proceedings.mlr.press/v119/tan20a.html

[2] Yanzhao Wu and Ling Liu. 2021. Boosting Deep Ensemble Performance with Hierarchical Pruning. (Dec. 2021), 1433–1438.

