En este apéndice se tratará la resolución de las ecuaciones diferenciales que nos darán como resultado las ecuaciones que modelan el circuito RL y que posteriormente, serán utilizadas en la implementación de dicha simulación.

0.1. Constitución de corriente en un circuito RL

(a) Instante inicial. Intensidad nula. (b) Autoinducción de corriente (carga)

Figura 1: Constitución de corriente en un circuito RL.

0.1.1. Intensidad de corriente

Partimos de la ecuación planteada por el balance energético del circuito RL (??). Utilizando la *ley de Ohm* y la definición de potencial entre los terminales de una bobina, obtenemos la siguiente expresión

$$\varepsilon = L \frac{\partial I(t)}{\partial t} + R \cdot I(t)$$

, la cúal podemos reescribir de la siguiente manera:

$$\frac{\partial I(t)}{\frac{\varepsilon}{R} - I(t)} = \frac{R}{L} \partial t$$

Puesto que inicialmente supondremos que la intensidad en el circuito es cero

$$I(0) = 0$$

, integramos a ambos lados y resolvemos la ecuación diferencial mediante el método de separación de variables.

$$\int_0^{I(t)} \frac{\partial I(t)}{\frac{\varepsilon}{R} - I(t)} = \int_0^t \frac{R}{L} \partial t$$

,de dónde obtenemos:

$$e^{-\ln \varepsilon - I(t) + \ln \frac{\varepsilon}{R}} = e^{\frac{Rt}{L}}$$

Tras simplificar y despejar el término I(t) de la expresión anterior obtenemos que

$$I(t) = \frac{\varepsilon}{R} \left(1 - e^{-Rt/L} \right) \tag{1}$$

Además, es posible hallar que la intensidad máxima inducida vendrá dada por:

$$I_{max} = \lim_{t \to \infty} I(t) = \frac{\varepsilon}{R}$$

0.1.2. Diferencia de potencial en la resistencia

Para calcular la diferencia de potencial en la resistencia, basta con hacer uso de la *Ley de Ohm*.

$$V_R(t) = \varepsilon \left(1 - e^{-Rt/L} \right) \tag{2}$$

0.1.3. Diferencia de potencial en la bobina

Para hallar la expresión de la diferencia de potencial en los terminales de la bobina podemos hacer uso de la *Ley de Faraday-lenz*

$$\varepsilon = -L \frac{\partial I(t)}{\partial t}$$

, en la que usaremos la expresión de intensidad de corriente que hemos obtenido anteriormente en ??.

$$V_L(t) = \varepsilon \cdot e^{-Rt/L} \tag{3}$$

- (a) Instante inicial. Intensidad máxima.
- (b) Intensidad nula.

Figura 2: Disminución de corriente en un circuito RL.

0.2. Disminución de corriente en un circuito RL

0.2.1. Intensidad de corriente

Partiendo del balance energético planteado para el circuito RL en estado de disipación de energía

$$0 = V_L(t) + V_R(t)$$

obtenemos la siguiente ecuación diferencial, al aplicar *Ley de Faraday-Lenz* y la *Ley de Ohm* en la expresión anterior

$$0 = L \frac{\partial I(t)}{\partial t} + R \cdot I(t)$$
$$\frac{\partial I(t)}{I(t)} = -\frac{R}{L} \partial t$$

Suponiendo, que partimos de una posición dónde la intensidad de corriente es máxima (denotaremos por I_0 para simplificar), resolvemos la ecuación diferencial anterior utilizando el método de separación de variables. Integrando en ambos lados y resolviendo

$$\int_{I_0}^{I(t)} \frac{\partial I(t)}{I(t)} = \int_0^t -\frac{R}{L} \partial t$$

$$\left[\ln I(t) \right]_{I_0}^{I(t)} = \frac{-R}{L} [t]_0^t$$

$$\ln I(t) - \ln I_0 = -\frac{R}{L} t$$

Si despejamos el término I(t) de la expresión anterior, obtendremos la siguiente ecuación que modela la intensidad de corriente en el circuito (sabiendo que $I_0 = \frac{\varepsilon}{R}$):

$$I(t) = \frac{\varepsilon}{R} \cdot e^{-Rt/L} \tag{4}$$

0.2.2. Diferencia de potencial en la resistencia

Usando la *Ley de Ohm*, y la expresion que modela la intensidad de corriente en estado de disipación de energía, obtenemos que

$$V_R(t) = \varepsilon \cdot e^{-Rt/L} \tag{5}$$

0.2.3. Diferencia de potencial en la bobina

Por otro lado, para hallar la diferencia de potencial en el inductor, hacemos uso de la *Ley de Faraday-Lenz*. Puesto que el signo nos indica el sentido de la corriente, podemos ignorarlo. La ecuación que modela este parámetro del circuito es:

$$V_L(t) = -\varepsilon \cdot e^{-Rt/L} \tag{6}$$

0.3. Energía almacenada

Para hallar la energía que almacena un condensador, utilizaremos la definición de potencia almacenada en el inductor, usando para ello, la *diferencia de potencial* en este dispositivo así como la intensidad de corriente eléctrica del circuito.

$$p(t) = V_L(t) \cdot I(t)$$

que esta ddp puede reescribirse como

$$V_L(t) = L \frac{\partial I(t)}{\partial t}$$

, luego

$$p(t) = L \frac{\partial I(t)}{\partial t} I(t)$$

Sabiendo que, la energía consumida se expresa como

$$\partial E(t) = p(t)\partial t$$

Tenemos que

$$\partial E(t) = LI(t)\partial I(t)$$

Integramos a ambos lados, tomando como instante inicial un circuito donde la corriente eléctrica que atraviesa sus componentes es nula y, por consiguiente, la energía almacenada en el inductor también lo es

$$\int_0^{E(t)} \partial E(t) = \int_0^{I(t)} LI(t) \partial I(t)$$
$$E(t) = L \left[\frac{I(t)^2}{2} \right]_0^{I(t)}$$

Siendo la expresión que modela la energía almacenada en la bobina

$$E(t) = \frac{1}{2}LI(t)^2 \tag{7}$$

0.4. Flujo magnético

Para obtener un modelo que exprese el *flujo magnético* el función del tiempo, hacemos uso de la *Ley de Faraday-Lenz* .

$$\partial \phi(t) = L \partial I(t)$$

Partimos de igual manera de un circuito por el que no circula corriente eléctrica, así que resolvemos la ecuación diferencial anterior integrando a ambos lados, resultando que, la ecuación que modela el comportamiento del flujo magnético del inductor es:

$$\phi(t) = L \cdot I(t) \tag{8}$$