Extreme Friendly Indices of $C_m \times C_n$

W.C. Shiu, M.H. Ling

Department of Mathematics, Hong Kong Baptist University, 224 Waterloo Road, Kowloon Tong, Hong Kong.

Abstract

Let G=(V,E) be a connected simple (p,q)-graph. A labeling $f:V\to\mathbb{Z}_2$ induces an edge labeling $f^*:E\to\mathbb{Z}_2$ defined by $f^*(xy)=f(x)+f(y)$ for each $xy\in E$. For $i\in\mathbb{Z}_2$, let $v_f(i)=|f^{-1}(i)|$ and $e_f(i)=|f^{*-1}(i)|$. A labeling f is called friendly if $|v_f(1)-v_f(0)|\leq 1$. For a friendly labeling f of a graph f, we define the friendly index of f under f by $f(f)=e_f(f)-e_f(f)$. The set f(f)=f(f) is a friendly labeling of f is called the full friendly index set of f. In this paper, we will present the maximum and minimum friendly indices of Cartesian product of two cycles.

Keywords: vertex labeling, friendly labeling, friendly index set, Cartesian product of two cycles

1 Introduction and Notations

In this paper, all graphs are assumed to be loopless and connected. All undefined symbols and concepts can be referred to [1]. Let G be a connected simple (p,q)-graph. A labeling $f:V\to\mathbb{Z}_2$ induces an edge labeling $f^*:E\to\mathbb{Z}_2$ defined by $f^*(xy)=f(x)+f(y)$ for each $xy\in E$. For $i\in\mathbb{Z}_2$, define $v_f(i)=|f^{-1}(i)|$ and $e_f(i)=|f^{*-1}(i)|$. A labeling f is called friendly if $|v_f(1)-v_f(0)|\leq 1$. For a friendly labeling f of a graph G, we define the friendly index of G under f by $i_f(G)=e_f(1)-e_f(0)$. The set

 $\{|i_f(G)|: f \text{ is a friendly labeling of } G\}$

is called the friendly index set of G [2, 3, 4]. The set

 $\{i_f(G)|f \text{ is a friendly labeling of } G\}$

is called the full friendly index set of G [5].

The friendly index set of cycles was determined by Kwong, Lee and Ng [3] and the full friendly index set of $P_2 \times P_n$ was determined by Shiu

and Kwong [5]. In this paper, we are interested in the bounds of the full friendly index set of $C_m \times C_n$.

Given cycles C_m and C_n with vertex sets $\{u_1, u_2, \ldots, u_m\}$ and $\{v_1, v_2, \ldots, v_n\}$, respectively, the Cartesian product $C_m \times C_n$ is a simple graph with vertex sets consisting of mn vertices labeled (i, j), where $1 \leq i \leq m$ and $1 \leq j \leq n$. Two vertices (i, j) and (h, k) are adjacent in $C_m \times C_n$ if either i = h and v_j is adjacent to v_k in graph C_n , or j = k and v_i is adjacent to v_h in graph C_m . Note that $C_m \times C_n$ is a graph of order mn and size 2mn. In this paper, the vertices (i, j) are denoted as u_{ij} , where $1 \leq i \leq m$ and $1 \leq j \leq n$.

Example 1.1 Both labelings f_1 and f_2 of the graph in Figure 1.1 are friendly. Friendly indices of the graph under f_1 and f_2 are shown in Figure 1.1.

Figure 1.1: Friendly labelings of a graph of order 5.

2 The upper bounds

For a fixed labeling f, a vertex v is called a k-vertex if f(v) = k and an edge e is called a k-edge if $f^*(e) = k$.

Lemma 2.1 If f is a friendly labeling of a (p,q)- graph G, then $i_f(G) \leq q$.

Proof: Since the size of the graph G is q, we have $e_f(1) \leq q$ and $e_f(0) \geq 0$. Hence, $i_f(G) \leq q$.

Corollary 2.2 If f is a friendly labeling of the graph $C_m \times C_n$, then $i_f(C_m \times C_n) \leq 2mn$.

Lemma 2.3 An odd cycle C in a graph with labeling f contains at least one 0-edge.

Proof: Since $\sum_{e \in E(C)} f^*(e) = 2 \sum_{v \in V(C)} f(v) \equiv 0 \pmod{2}$, there exists at least one 0-edge in the odd cycle C.

Theorem 2.4 If f is a friendly labeling of the graph $C_m \times C_n$, then $i_f(C_m \times C_n) \leq 2mn - 2m$ when m is even and n is odd.

Proof: The graph $C_m \times C_n$ contains at least m edge disjoint odd cycles. By Lemma 2.3, we have $e_f(0) \geq m$ and so $e_f(1) \leq 2mn - m$. Hence, $i_f(C_m \times C_n) \leq 2mn - 2m$.

Note that $i_f(C_m \times C_n) \leq 2mn - 2n$ when m is odd and n is even. Therefore, we consider the case when m is even and n is odd only.

Theorem 2.5 If f is a friendly labeling of the graph $C_m \times C_n$, then $i_f(C_m \times C_n) \leq 2mn - 2m - 2n$ when m and n are odd.

Proof: Using similar arguments above, the graph $C_m \times C_n$ contains at least m+n edge disjoint odd cycles. By Lemma 2.3, we have $e_f(0) \ge m+n$ and so $e_f(1) \le 2mn-m-n$. Hence, $i_f(C_m \times C_n) \le 2mn-2m-2n$.

From the above theorems, the upper bounds of friendly indices of $C_m \times C_n$ are respectively 2mn, 2mn - 2m and 2mn - 2m - 2n according to different combinations of the parity of m and n.

For $1 \le i \le m, 1 \le j \le n$, let $f(u_{ij}) = i + j \pmod{2}$. It is easy to see that f is a friendly labeling of $C_m \times C_n$. For each edge $u_{ab}u_{cd} \in E(C_m \times C_n)$, either a = c and $b \equiv d \pm 1 \pmod{n}$, or b = d and $a \equiv c \pm 1 \pmod{m}$.

$$f^*(u_{ab}u_{cd}) = f(u_{ab}) + f(u_{cd}) = a + b + c + d$$

$$\equiv \begin{cases} 0 \pmod{2} & \text{if } a = c, b = 1 \text{ and } d = n \text{ is odd,} \\ 0 \pmod{2} & \text{if } b = d, a = 1 \text{ and } c = m \text{ is odd,} \\ 1 \pmod{2} & \text{if otherwise.} \end{cases}$$

Then

$$e_f(0) = \left\{ \begin{array}{rcl} 0 & \text{if} & m,n \text{ are even,} \\ m & \text{if} & m \text{ is even and } n \text{ is odd,} \\ m+n & \text{if} & m,n \text{ are odd.} \end{array} \right.$$

and hence

$$i_f(C_m \times C_n) \equiv \left\{ \begin{array}{ccc} 2mn & \text{if} & m,n \text{ are even,} \\ 2mn-2m & \text{if} & m \text{ is even and } n \text{ is odd,} \\ 2mn-2m-2n & \text{if} & m,n \text{ are odd.} \end{array} \right.$$

Therefore, the maximum friendly indices of $C_m \times C_n$ is respectively 2mn when m and n are even, 2mn - 2m when m is even and n is odd, and 2mn - 2m - 2n when m and n are odd. Hence, the bounds of Corollary 2.2, Theorem 2.4 and Theorem 2.5 are sharp.

Example 2.1 Labelings f of $C_6 \times C_4$, $C_6 \times C_3$ and $C_5 \times C_3$ illustrate the proof of Corollary 2.2, Theorem 2.4 and Theorem 2.5.

Figure 2.2: Labelings of $C_6 \times C_4$, $C_6 \times C_3$ and $C_5 \times C_3$

3 The lower bounds

Let f be any labeling of a graph containing a cycle C as its subgraph. The cycle is called *mixing* (under f), if there is two vertices $u, v \in V(C)$ such that f(u) = 1 and f(v) = 0. Clearly, a mixing cycle contains at least one 1-edge. The cycle C is called 1-full cycle (under f), if f(u) = 1 for any

vertex $u \in V(C)$. The cycle C is called 0-full cycle (under f), if f(u) = 0 for any vertex $u \in V(C)$. Note that the content in the bracket will be omitted if there is no ambiguity.

Lemma 3.1 [5] For any labeling, the number of 1-edges in a mixing cycle is even.

Now we consider the graph $C_m \times C_n$. Due to isomorphic, we may assume that $n \leq m$. For $1 \leq i \leq m$, the cycle $u_{i1}u_{i2} \dots u_{in}u_{i1}$ is called *vertical cycle* and for $1 \leq j \leq n$, the cycle $u_{1j}u_{2j} \dots u_{mj}u_{1j}$ is called *horizontal cycle*.

Figure 3.3: vertical cycles and horizontal cycles

Theorem 3.2 Let f be a friendly labeling of the graph $C_m \times C_n$. If m is even, then $i_f(C_m \times C_n) \ge 4n - 2mn$.

Proof: Let r be the number of horizontal 1-full cycles and s be the number of horizontal 0-full cycles. By the property of friendly labeling, we have $0 \le r, s \le \frac{n}{2}$. If r = s = 0, then all horizontal cycles are mixing and hence the number of edge disjoint mixing cycles in $C_m \times C_n$ is at least n. If either r = 0 or s = 0, then, without loss of generality, we may assume $r \ne 0$ and s = 0. In this case, the number of horizontal mixing cycles is n - r, and hence there exist at least $\lceil \frac{mn/2}{(n-r)} \rceil$ vertical mixing cycles since $\frac{mn}{2}$ 0-vertices lie in n - r horizontal cycles. Therefore, there are at least $n - r + \lceil \frac{mn}{2(n-r)} \rceil$ edge disjoint mixing cycles in $C_m \times C_n$. Note that $n - r + \lceil \frac{mn}{2(n-r)} \rceil \ge n - \frac{n}{2} + \frac{m}{2} \frac{n}{(n-r)} \ge \frac{m+n}{2} \ge n$. If $r \ne 0$ and $s \ne 0$, then there exist m vertical mixing cycles. Hence, there are at least n edge disjoint mixing cycles in $C_m \times C_n$. For each case, the number of edge

disjoint mixing cycles in $C_m \times C_n$ is at least n. By Lemma 3.1, we get $e_f(1) \ge 2n$ and $e_f(0) \le 2mn - 2n$. Hence, $i_f(C_m \times C_n) \ge 4n - 2mn$.

Suppose m is even. Let $f(u_{ij}) = 0$ for $1 \le i \le \frac{m}{2}, 1 \le j \le n$ and $f(u_{ij}) = 1$ for $\frac{m}{2} + 1 \le i \le m, 1 \le j \le n$. It is easy to see that f is a friendly labeling of $C_m \times C_n$. For each edge $u_{ab}u_{cd} \in E(C_m \times C_n)$, either a = c and $b \equiv d \pm 1 \pmod{n}$, or b = d and $a \equiv c \pm 1 \pmod{m}$.

$$f^*(u_{ab}u_{cd}) = f(u_{ab}) + f(u_{cd}) = a + b + c + d$$

$$\equiv \begin{cases} 1 \pmod{2} & \text{if } b = d \text{ and } a = c - 1 = m/2, \\ 1 \pmod{2} & \text{if } b = d, a = 1 \text{ and } c = m, \\ 0 \pmod{2} & \text{if otherwise.} \end{cases}$$

Hence, $e_f(1) = 2n$ and the minimum friendly index of $C_m \times C_n$ is 4n - 2mn. That is, the bound of Theorem 3.2 is sharp.

Example 3.1 Labelings f of $C_6 \times C_4$ and $C_6 \times C_3$ illustrate the proof of Theorem 3.2.

Figure 3.4: Labelings of $C_6 \times C_4$ and $C_6 \times C_3$

Theorem 3.3 Let f be a friendly labeling of the graph $C_m \times C_n$. If m is odd, then $i_f(C_m \times C_n) \ge 4n + 4 - 2mn$.

Proof: We adopt the notations defined in the proof of Theorem 3.2. If r = s = 0, then all horizontal cycles are mixing and the number of horizontal mixing cycle is n. There is at least one vertical mixing cycle since m is odd and f is balanced. Therefore, the number of edge disjoint mixing cycles in $C_m \times C_n$ is at least n+1. If either r = 0 or s = 0, using the same argument of the proof of Theorem 3.2, there are $n-r+\lceil \frac{mn}{2(n-r)} \rceil$ edge disjoint mixing

cycles in $C_m \times C_n$. Note that $n-r+\lceil \frac{mn}{2(n-r)} \rceil \geq \frac{n}{2}+\lceil \frac{m}{2} \rceil \geq \frac{n}{2}+\frac{m+1}{2} \geq n+\frac{1}{2} > n$. If $r \neq 0$ and $s \neq 0$, then there exist m vertical mixing cycles. Hence, there are at least n+1 edge disjoint mixing cycles in $C_m \times C_n$. For each case, the number of edge disjoint mixing cycles in $C_m \times C_n$ is at least n+1. By Lemma 3.1, we get $e_f(1) \geq 2n+2$ and $e_f(0) \leq 2mn-2n-2$, and $i_f(C_m \times C_n) \geq 4n+4-2mn$.

Suppose m is odd. Let

$$f(u_{ij}) = \begin{cases} 0 & \text{if } 1 \le i \le \lfloor \frac{m}{2} \rfloor, 1 \le j \le n, \\ 1 & \text{if } \lceil \frac{m}{2} \rceil \le i \le m - 1, 1 \le j \le n, \\ 0 & \text{if } i = m, 1 \le j \le \lfloor \frac{n}{2} \rfloor, \\ 1 & \text{if } i = m, \lfloor \frac{n}{2} \rfloor + 1 \le j \le n. \end{cases}$$

For each edge $u_{ab}u_{cd} \in E(C_m \times C_n)$, either a = c and $b \equiv d \pm 1 \pmod{n}$, or b = d and $a \equiv c \pm 1 \pmod{m}$. $f^*(u_{ab}u_{cd}) = f(u_{ab}) + f(u_{cd}) = a + b + c + d$

$$\equiv \left\{ \begin{array}{ll} 1 \pmod{2} & \text{if} \quad b=d \text{ and } a=c-1=\left\lfloor \frac{m}{2} \right\rfloor, \\ 1 \pmod{2} & \text{if} \quad 1 \leq b=d \leq \left\lfloor \frac{n}{2} \right\rfloor \text{ and } a=c-1=m-1, \\ 1 \pmod{2} & \text{if} \quad \left\lfloor \frac{n}{2} \right\rfloor + 1 \leq b=d \leq n, a=1 \text{ and } c=m, \\ 1 \pmod{2} & \text{if} \quad a=c=m \text{ and } b=d-1=\left\lfloor \frac{n}{2} \right\rfloor, \\ 1 \pmod{2} & \text{if} \quad a=c=m, b=1 \text{ and } d=n, \\ 0 \pmod{2} & \text{if} \quad \text{otherwise.} \end{array} \right.$$

Hence, $e_f(1) = 2n + 2$ and the minimum friendly index of $C_m \times C_n$ is 4n + 4 - 2mn. That is, the bound of Theorem 3.3 is sharp.

Example 3.2 Labelings f of $C_5 \times C_4$ and $C_5 \times C_3$ illustrate the proof of Theorem 3.3.

Figure 3.5: Labelings of $C_5 \times C_4$ and $C_5 \times C_3$

References

- [1] J.A. Bondy and U.S.R. Murty, *Graph Theory with applications*, Macmillan, 1976.
- [2] G. Chartrand, S-M. Lee and P. Zhang, On uniformly cordial graph, Discrete Math. 306 (2006), 726-737.
- [3] H. Kwong, S-M. Lee and H.K. Ng, On friendly index sets of 2-regular graphs, manuscript.
- [4] S-M. Lee and H K. Ng, On friendly index sets of bipartite graphs, to appear in *Ars Combin*.
- [5] W.C. Shiu and H. Kwong, Full friendly index sets of $P_2 \times P_n$, manuscript.