Московский физико-технический институт Физтех-школа прикладной математики и информатики

Лектор: Генерал теории Меры, Александр Иванович Тюленев

Для вас техали: Потапов Станислав, Сысоева Александра, Цеденов Артем, Бадоля Пётр, Баронов Михаил, Шуминов Эзра Петракова Анастасия

Содержание

1	Введение	2
	1.1 Полнота пространств L_p	. 2
	1.2 Неполнота $\mathbb{R}\mathbf{L}_p$	
	1.3 Функции ограниченной вариации	
	1.4 Абсолютно непрерывные функции	
2	Ряды Фурье	9
	2.1 Неформальная идея	. 9
	2.2 Строгая теория	
	2.3 Компактная форма записи	
	2.4 Теорема Римана–Лебега	
	2.5 Вторая теорема о среднем	
3	Лекции 3, 4	13
4	Лекция 5	13
	4.1 Теорема Фейера	. 14
	4.2 Скорость убывания коэффициентов Фурье	
5	Лекция 6	17
	Аппроксимация функций	17
	6.1. Анпрокеиматирная алининга	20

1 Введение

1.1 Полнота пространств L_p

 (X,\mathfrak{M},μ) — пространство с мерой.

$$p \in [1, +\infty]$$

 $L_p(\mu)$ — полунормированное линейное пространство. Лишь *полу*нормированное потому, что равенство 0 интеграла в *p*-ой степени от функции не означает равенство 0 этой функции, а лишь равенство этой функции нулю почти всюду.

 $L_p(\mu)$ — нормированное линейное пространство.

Это всё было в прошлом семестре, теперь же мы докажем полноту пространства L_p .

Определение 1.1. Пусть $E = (E, \|\cdot\|)$ — линейное нормированое пространсвто (л.н.п.) Оно называется *полным*, если

 \forall фундаментальная (по норме $\|\cdot\|$) последовательность $\{x^n\}$ пространства E сходится по норме пространства E к некоторому элементу $x \in E$.

Определение 1.2. Дано $E=(E,\|\cdot\|)$ — л.н.п. Пара последовательностей $\{x^n\}_{n=1}^{\infty}$ и $\{S^k\}_{k=1}^{\infty}$, где

$$S^k := \sum_{n=1}^k x^n,$$

называется формальным рядом в E. При этом $\{S^k\}_{k=1}^\infty$ называется последовательностью частичных сумм ряда, а $\{x^n\}_{n=1}^\infty$ — членами ряда. Часто пишут просто

$$\sum_{k=1}^{\infty} x^k - \text{формальный ряд.}$$

Примечание. В определении выше ряд мы называем *формальным* потому, что ещё не было ничего сказано про его сходимость.

Определение 1.3. Ряд $\sum_{k=1}^{\infty} x^k$ называется сходящимся в л.н.п. E, если

$$\exists x \in E: \left\| x - \sum_{k=1}^{n} x^k \right\| \to 0, n \to \infty$$

Определение 1.4. Ряд $\sum_{k=1}^{\infty} x^k$ называется абсолютно сходящимся в л.н.п. E, если:

$$\sum_{k=1}^{\infty} \|x^k\| - \text{сходится}$$

Напоминание. Последовательность $\{x_n\}$ называется $\phi y n damenmaльной$, если выполнено y c no sue Kouu:

$$\forall \varepsilon > 0 \ \exists N(\varepsilon) \in \mathbb{N} : \forall n \geqslant N, \forall m \geqslant N \hookrightarrow |x_n - x_m| < \varepsilon.$$

- 1. Каждая сходящаяся последовательность является фундаментальной, но не каждая фундаментальная последовательность сходится к элементу из своего пространства.
- 2. Метрическое пространство, в котором каждая фундаментальная последовательность сходится к элементу этого же пространства, называется полным.

3. Числовая последовательность сходится тогда и только тогда, когда она фундаментальна.

Теорема 1.1. (Критерий полноты) $E - \Lambda.н.п.$ полно $\iff \forall abconomic cxodsщийся в <math>E$ ряд является сходящимся.

Доказательство.

 (\Longrightarrow)

Пусть E полно и $\sum_{k=1}^{\infty} x^k$ — сходится абсолютно $\implies \sum_{k=1}^{\infty} \|x^k\|$ — сходящийся числовой ряд, а значит последовательность частичных сумм фундаментальна:

$$\forall \varepsilon > 0 \; \exists N(\varepsilon) \in \mathbb{N} : \forall n, m \geqslant N(\varepsilon) \hookrightarrow \sum_{k=n}^{m} ||x^{k}|| < \varepsilon.$$

В силу неравенства треугольника: $\left\|\sum_{k=n}^{m}x^{k}\right\| \leqslant \sum_{k=n}^{m}\|x^{k}\| < \varepsilon$. Тогда $\{S^{n}\}_{n=1}^{\infty}$ — поседовательность частичных сумм исходной последовательности фундаментальна в E.

Но
$$E$$
 — полно $\Longrightarrow \exists x \in E: \|x - S^n\| \to 0, n \to \infty \Longrightarrow$ ряд $\sum_{k=1}^{\infty} x^k$ — сходится в E (\Longleftarrow)

Пусть $\{x^n\}$ — фундаментальная последовательноть в E. Это означает, что

$$\forall \varepsilon > 0 \ \exists N(\varepsilon) \in \mathbb{N} : \forall n, m \geqslant N(\varepsilon) \hookrightarrow ||x^n - x^m|| < \varepsilon.$$

Берём $\forall k \in \mathbb{N} \quad \varepsilon_k = 2^{-k}$.

 $\exists \{N_k\}$ — строго возрастающая последовательность натуральных чисел такая, что

$$\forall k \in \mathbb{N} \ \forall n, m \geqslant N_k \hookrightarrow ||x^n - x^m|| \leqslant 2^{-k}$$

Рассмотрим $\{x^{N_k}\}_{k=1}^{\infty}$ — подпоследовательность п-ти $\{x^n\}$. Возьмём $y_k:=x^{N_{k+1}}-x^{N_k}$ $\forall k\in\mathbb{N}.$ Положим $y_0:=x^{N_1}.$

Рассмотрим формальный ряд $\sum_{k=0}^{\infty} y_k$. В силу выбора подпоследовательности, если в качестве nвыбрать N_k , а в качестве m выбрать N_{k+1} , то неравенство $\|x^n-x^m\|\leqslant 2^{-k}$ будет выполнено $\implies ||y_k|| \leqslant 2^{-k} \implies \sum_{k=0}^{\infty} y_k$ абсолютно сходится в E.

Но по условию доказываемого утверждения, любой абсолютно сходящийся в Е ряд сходится в

ряд
$$\sum_{k=0}^{\infty} y_k$$
 сходится $\implies \exists x \in E : \left\| x - \sum_{k=0}^l y_k \right\| \to 0, l \to \infty.$

При этом

$$\sum_{k=0}^{l} y_k = y_0 + y_1 + \dots + y_l = x^{N_1} + x^{N_2} - x^{N_1} + \dots + x^{N_{l+1}} - x^{N_l} = x^{N_l}.$$

Объединив два последних результата, получим

$$\exists x \in E : ||x - x^{N_l}|| \to 0, l \to \infty.$$

В итоге доказали существование элемента $x \in E$ т.ч. к нему сходится подпоследовательности

Теперь остаётся воспользоваться условием фундаментальности и получить сходимость всей последовательности.

$$\forall \varepsilon > 0 \; \exists L \in \mathbb{N} : \forall l \geqslant L \hookrightarrow ||x - x^{N_l}|| < \frac{\varepsilon}{2}.$$

$$\forall \varepsilon > 0 \; \exists M \in \mathbb{N} : \forall n, m \geqslant M \hookrightarrow \|x^n - x^m\| < \frac{\varepsilon}{2}.$$

$$\forall \varepsilon > 0 \; \exists N := \max\{L, M\} \in \mathbb{N} : \forall n \geqslant N \hookrightarrow \|x - x^n\| \leqslant \|x - x^{N_m}\| + \|x^{N_m} - x^n\| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Теорема 1.2. Пусть $p \in [1, +\infty]$. Тогда $L_p(\mu)$ полно.

Доказательство. Разберём случай $p \in [1, +\infty)$. В силу предыдущей теоремы достаточно доказать, что любой абсолютно сходящийся ряд в $L_p(\mu)$ сходится в $L_p(\mu)$.

Пусть $\sum_{k=1}^{\infty} f_k$ — абсолютно сходящийся ряд в $L_p(\mu)$. То есть $\sum_{k=1}^{\infty} \|f_k\|_p$ сходится как числовой ряд. Используем неравенство Минковского:

$$\forall N \in \mathbb{N} \hookrightarrow \left(\int_X \left(\sum_{k=1}^N |f_k| \right)^p \right)^{1/p} \leqslant \sum_{k=1}^N ||f_k||_p \leqslant \sum_{k=1}^\infty ||f_k||_p < +\infty.$$

Определим $F_n := \left(\sum_{k=1}^N |f_k|\right)^p$. Тогда $\{F_N\}_{N=1}^\infty$ — монотонная (неубывающая) функциональная последовательность.

Напоминание. Монотонность функциональной последовательности — это монотонность последовательность по n при каждом фиксированом x.

Тогда по теореме Леви

$$\exists \lim_{N \to \infty} \left(\int_X F_n(x) d\mu(x) \right)^{1/p} = \left(\int_X \lim_{N \to \infty} F_n(x) d\mu(x) \right)^{1/p}$$

$$\implies \left(\int_X \left(\sum_{k=1}^\infty |f_k| \right)^p d\mu(x) \right)^{1/p} \leqslant \sum_{k=1}^\infty \|f_k\|_p < +\infty.$$

$$\implies \sum_{k=1}^\infty |f_k(x)| \text{ конечна при μ-п.в. } x \in X.$$

При фиксированном x имеем $\sum\limits_{k=1}^{\infty}f_k(x)$ — обычный числовой ряд, а для него из абсолютной сходимости следует сходимость.

$$\Longrightarrow$$
 при μ -п.в. $x \in X$ $\sum_{k=1}^{\infty} f_k(x)$ конечна.

Положим $F(x) := \sum_{k=1}^{\infty} f_k(x)$, эта функция корректно определена μ -п.в. При этом μ — полная мера (меру считаем полной, если не было оговорено обратного).

$$F(x) = \lim_{n \to \infty} \sum_{k=1}^n f_k(x)$$
, этот предел существует для μ -п.в. $x \in X$.

Остаётся доказать, что $\left\|F-\sum\limits_{k=1}^{\infty}f_k\right\|_p \to 0, n\to\infty.$ Обозначим n-ый член этой последовательности как J_n .

$$J_n = \left(\int\limits_X \left| \sum_{k=n+1}^\infty f_k(x) \right|^p d\mu(x) \right)^{1/p} \leqslant \left(\int\limits_X \left(\sum_{k=n+1}^\infty |f_k(x)| \right)^p d\mu(x) \right)^{1/p} \leqslant \left(\int\limits_X \left(\sum_{k=n+1}^\infty |f_k(x)| \right)^p d\mu(x) \right)^{1/p} \leqslant \left(\int\limits_X \left(\sum_{k=n+1}^\infty |f_k(x)| \right)^p d\mu(x) \right)^{1/p} \leqslant \left(\int\limits_X \left(\sum_{k=n+1}^\infty |f_k(x)| \right)^p d\mu(x) \right)^{1/p} \leqslant \left(\int\limits_X \left(\sum_{k=n+1}^\infty |f_k(x)| \right)^p d\mu(x) \right)^{1/p} \leqslant \left(\int\limits_X \left(\sum_{k=n+1}^\infty |f_k(x)| \right)^p d\mu(x) \right)^{1/p} \leqslant \left(\int\limits_X \left(\sum_{k=n+1}^\infty |f_k(x)| \right)^p d\mu(x) \right)^{1/p} \leqslant \left(\int\limits_X \left(\sum_{k=n+1}^\infty |f_k(x)| \right)^p d\mu(x) \right)^{1/p} \leqslant \left(\int\limits_X \left(\sum_{k=n+1}^\infty |f_k(x)| \right)^p d\mu(x) \right)^{1/p} \leqslant \left(\int\limits_X \left(\sum_{k=n+1}^\infty |f_k(x)| \right)^p d\mu(x) \right)^{1/p} \leqslant \left(\int\limits_X \left(\sum_{k=n+1}^\infty |f_k(x)| \right)^p d\mu(x) \right)^{1/p} \leqslant \left(\int\limits_X \left(\sum_{k=n+1}^\infty |f_k(x)| \right)^p d\mu(x) \right)^{1/p} \leqslant \left(\int\limits_X \left(\sum_{k=n+1}^\infty |f_k(x)| \right)^p d\mu(x) \right)^{1/p} \leqslant \left(\int\limits_X \left(\sum_{k=n+1}^\infty |f_k(x)| \right)^p d\mu(x) \right)^{1/p} \leqslant \left(\int\limits_X \left(\sum_{k=n+1}^\infty |f_k(x)| \right)^p d\mu(x) \right)^{1/p} \leqslant \left(\int\limits_X \left(\sum_{k=n+1}^\infty |f_k(x)| \right)^p d\mu(x) \right)^{1/p} \leqslant \left(\int\limits_X \left(\sum_{k=n+1}^\infty |f_k(x)| \right)^p d\mu(x) \right)^{1/p} \leqslant \left(\int\limits_X \left(\sum_{k=n+1}^\infty |f_k(x)| \right)^p d\mu(x) \right)^{1/p} \leqslant \left(\int\limits_X \left(\sum_{k=n+1}^\infty |f_k(x)| \right)^p d\mu(x) \right)^{1/p} \leqslant \left(\int\limits_X \left(\sum_{k=n+1}^\infty |f_k(x)| \right)^p d\mu(x) \right)^{1/p} \leqslant \left(\int\limits_X \left(\sum_{k=n+1}^\infty |f_k(x)| \right)^p d\mu(x) \right)^{1/p} \leqslant \left(\int\limits_X \left(\sum_{k=n+1}^\infty |f_k(x)| \right)^p d\mu(x) \right)^{1/p} \leqslant \left(\int\limits_X \left(\sum_{k=n+1}^\infty |f_k(x)| \right)^p d\mu(x) \right)^{1/p} \leqslant \left(\int\limits_X \left(\sum_{k=n+1}^\infty |f_k(x)| \right)^p d\mu(x) \right)^{1/p} \leqslant \left(\int\limits_X \left(\sum_{k=n+1}^\infty |f_k(x)| \right)^p d\mu(x) \right)^{1/p} \leqslant \left(\int\limits_X \left(\sum_{k=n+1}^\infty |f_k(x)| \right)^p d\mu(x) \right)^{1/p} \leqslant \left(\int\limits_X \left(\sum_{k=n+1}^\infty |f_k(x)| \right)^p d\mu(x) \right)^{1/p} \leqslant \left(\int\limits_X \left(\sum_{k=n+1}^\infty |f_k(x)| \right)^p d\mu(x) \right)^{1/p} \leqslant \left(\int\limits_X \left(\sum_{k=n+1}^\infty |f_k(x)| \right)^p d\mu(x) \right)^{1/p} \leqslant \left(\int\limits_X \left(\sum_{k=n+1}^\infty |f_k(x)| \right)^p d\mu(x) \right)^{1/p} \leqslant \left(\int\limits_X \left(\sum_{k=n+1}^\infty |f_k(x)| \right)^p d\mu(x) \right)^{1/p} \leqslant \left(\int\limits_X \left(\sum_{k=n+1}^\infty |f_k(x)| \right)^p d\mu(x) \right)^{1/p} \leqslant \left(\int\limits_X \left(\sum_{k=n+1}^\infty |f_k(x)| \right)^p d\mu(x) \right)^{1/p} \leqslant \left(\int\limits_X \left(\sum_{k=n+1}^\infty |f_k(x)| \right)^p d\mu(x) \right)^{1/p} \leqslant \left(\int\limits_X \left(\sum_{k=n+1}^\infty |f_k(x)| \right)^p d\mu(x) \right)^{1/p} \leqslant \left(\int\limits_X \left(\sum_{k=n+1}^\infty |f_k(x)| \right)^p d\mu(x) \right)^p d\mu(x) \right)^{1/p} \leqslant \left(\int\limits_X \left(\sum_{k=n+1}^\infty |f_k(x)|$$

Рассмотрим сумму ряда, как предел:

$$\sum_{k=n+1}^{\infty} |f_k(x)| = \lim_{m \to \infty} \sum_{k=n+1}^{m} |f_k(x)|.$$

Вспомним лемму Фату:

При
$$g_k\geqslant 0$$
 верно $\int\limits_X\lim_{k\to\infty}g_k(x)d\mu(x)\leqslant \varliminf_{k\to\infty}\int\limits_Xg_k(x)d\mu(x).$

Тогда по лемме Фату:

$$\left(\int\limits_X \left(\sum_{k=n+1}^\infty |f_k(x)|\right)^p d\mu(x)\right)^{1/p} \bigotimes \sum_{k=n+1}^\infty \left(\int\limits_X |f_k(x)|^p d\mu(x)\right)^{1/p} \to 0, n \to \infty.$$

Итого $J_n \to 0, n \to \infty$.

1.2 Неполнота $\mathbb{R}L_p$

Определение 1.5. Пусть $\mathbb{R}L_p([a,b])$ — лин. пространство функций, p-ая степень модуля которых интегрируема по Риману.

Замечание. С таким определением это не является нормированным пространством. Чтобы сделать его нормированным, нужно аккуратно ввести класс эквивалентности.

Теорема 1.3. Пространство $\mathbb{R}L_p([a,b])$ неполно.

Доказательство.

Без ограничения общности, [a, b] = [0, 1].

Пусть $\varepsilon \in (0, \frac{1}{2})$.

Перенумеруем рациональные точки отрезка [0,1]: $\mathbb{Q} \cap [0,1] = \{r_k\}$.

$$G_n := \bigcup_{k=1}^n \left(r_k - \frac{\varepsilon}{2^{k+2}}, r_k + \frac{\varepsilon}{2^{k+2}} \right) \cap [0, 1].$$

$$G := \bigcup_{n=1}^\infty G_n.$$

Тогда χ_{G_n} интегрируема по Риману по критерию Лебега, потому что как характеристическая фия объединения конечного набора интервалов, пересечённых с отрезком, она обладает конечным числом разрывов.

Докажем, что χ_G имеет мн-во точек разрыва положительной меры Лебега. Для этого рассмотрим $F = [0,1] \setminus G$. Тогда $\chi_G(F) = 0$, но так как $\mathbb Q$ плотно в $\mathbb R$, во всех точках F ф-ия χ_G разрывна. При этом по счётной полуаддитивности меры Лебега $\mathcal L^n(G) \leqslant \frac{1}{2}$, а значит $\mathcal L^n(F) \geqslant \frac{1}{2} > 0$.

Введём обозначения

$$E_k := \left(r_k - \frac{\varepsilon}{2^{k+2}}, r_k + \frac{\varepsilon}{2^{k+2}}\right) \cap [0, 1]$$
$$G_m^n := \bigcup_{k=n}^m E_k$$

(в новых обозначениях $G_n = G_n^1$) и покажем фундаментальность последовательности $\{\chi_{G_n}\}$:

$$\int_0^1 |\chi_{G_m}(x) - \chi_{G_n}(x)| dx = \text{так как } G_n \subseteq G_m = \int_0^1 \chi_{G_m \backslash G_n}(x) dx \leqslant \int_0^1 \chi_{G_m^n}(x) dx \leqslant$$

$$\leqslant \sum_{k=n+1}^m \int_0^1 \chi_{E_k}(x) dx = \sum_{k=n+1}^m \frac{\varepsilon}{2^k} \to 0, \text{ при } n, m \to \infty.$$

Итого, последовательность $\{\chi_{G_n}\}\subset \mathbb{R}L_p([0,1])$ фундаментальна, но её предел χ_G не лежит в пространстве $\mathbb{R}L_p([0,1])$, значит это пространство не полно.

1.3 Функции ограниченной вариации

Определение 1.6. Пусть T — разбиение отрезка [a,b], т.е.

$$T = \{x_i\}_{i=0}^{N_T}, \quad N_T \in \mathbb{N}$$

 $a = x_0 < x_1 < \dots < x_{N_T} = b.$

Пусть $f:[a,b] \to \mathbb{R}$.

 $V_T(f)$ — вариация ф-ии f по разбиению T

$$V_T(f) := \sum_{k=0}^{N_T-1} |f(x_{k+1}) - f(x_k)|$$

$$V_a^b(f) := \sup_{T \text{ - pas6. } [a,b]} V_T(f)$$

Определение 1.7. f называется ф-ией ограниченной вариации на [a,b], если

$$V_a^b(f) < +\infty.$$

Обозначается $f \in BV([a,b])$

Теорема 1.4. BV([a,b]) — линейное пространство.

Доказательство.

Покажем, что $f_1, f_2 \in BV([a,b]) \implies \alpha f_1 + \beta f_2 \in BV([a,b]).$

Пусть T — произвольное разбиение [a,b]. Тогда по неравенству треугольника

$$V_T(\alpha f_1 + \beta f_2) \leqslant |\alpha| V_T(f_1) + |\beta| V_T(f_2).$$

 Π емма 1.1. Eсли $\forall f:[a,b] \rightarrow \mathbb{R}$ монотонна на $[a,b],\ mo\ f\in BV([a,b])$ и $e\ddot{e}\ V_a^b(f)=|f(b)-f(a)|.$

Доказательство. Очевидно.

Лемма 1.2. Пусть $-\infty < a < c < b < +\infty$. Тогда

$$f \in BV([a,b]) \Longleftrightarrow \begin{cases} f \in BV([a,c]) \\ f \in BV([c,b]) \end{cases}$$

B случае, если $f \in BV([a,b])$, тогда

$$V_a^b(f) = V_a^c(f) + V_c^b(f).$$

Доказательство.

1. ⇒ и ≥

Пусть
$$f \in BV([a,b]), T_1$$
 — произв. разб. $[a,c], T_2$ — произв. разб. $[c,b]$. $T=T_1\cup T_2$ — разб. о-ка $[a,b]$. $V_{T_1}(f)+V_{T_2}(f)\leqslant V_T(f)\leqslant V_a^b(f)$.

Взяв sup сначала по T_1 , а потом по T_2 , получим $V_a^c(f) + V_c^b(f) \leqslant V_a^b(f)$.

2. ⇐ и ≼

Пусть
$$\begin{cases} f \in BV([a,c]) \\ f \in BV([c,b]) \end{cases}$$

Пусть $T = \{x_i\}_{i=0}^N$ — произв. разб. отрезка [a, b].

Если $c=x_i$ при некотором i, то это простой случай, так как тогда можно $\{x_j\}_{j=0}^i$ выбрать в качестве T_1 , а $\{x_j\}_{j=i}^N$ выбрать в качестве T_2 . И тогда очевидным образом $V_T(f)=V_{T_1}(f)+V_{T_2}(f)\leqslant V_a^c(f)+V_c^b(f)<+\infty$, а взяв sup по всем T получим $V_a^b(f)\leqslant V_a^c(f)+V_c^b(f)<+\infty$.

Теперь рассмотрим более интересный случай, когда ни при каком i x_i не равно c. Тогда $c \in (x_i, x_i + 1)$ при некотором i.

$$V_{T}(f) = \sum_{k=0}^{N-1} |f(x_{k+1}) - f(x_{k})| =$$

$$= \sum_{k=0}^{i-1} |f(x_{k+1}) - f(x_{k})| + |f(x_{i}) - f(x_{i+1})| + \sum_{k=i+1}^{N-1} |f(x_{k+1}) - f(x_{k})| \le$$

$$\le \sum_{k=0}^{i-1} |f(x_{k+1}) - f(x_{k})| + |f(x_{i}) - f(c)| + |f(c) - f(x_{i+1})| + \sum_{k=i+1}^{N-1} |f(x_{k+1}) - f(x_{k})| \le$$

Обозначим разбиения:

$$T_1 = \{x_0, x_1, \dots, x_i, c\},\$$

 $T_2 = \{c, x_{i+1}, \dots, x_N\}.$

Тогда полученный ранее результат можно оценить как

$$\bigotimes V_{T_1}(f) + V_{T_2}(f) \leqslant V_a^c(f) + V_c^b(f)$$

Итого $V_T(f) \leq V_a^c(f) + V_c^b(f)$. Взяв sup по всем T, получим:

$$\sup_{T} V_T(f) \leqslant V_a^c(f) + V_c^b(f)$$

$$V_a^b(f) \leqslant V_a^c(f) + V_c^b(f)$$

Если оба слагаемых в правой части конечны, то и V_a^b конечна.

Итого из первого и второго пункта

$$V_a^b(f) = V_a^c(f) + V_c^b(f)$$

Теперь воспользуемся этой леммой для доказательства следующей теоремы.

Теорема 1.5. Пусть $f \in BV([a,b])$. Тогда ф-ия $g(x) := V_a^x$ монотонно не убывает на [a,b]

Доказательство. Пусть $x_2 > x_1$. Тогда применим только что доказанную лемму, выбрав $a = a, c = x_1, b = x_2$.

$$V_a^{x_2}(f) = V_a^{x_1}(f) + V_{x_1}^{x_2}(f)$$

$$V_a^{x_2}(f) - V_a^{x_1}(f) = V_{x_1}^{x_2}(f) \ge 0$$

$$g(x_2) - g(x_1) \ge 0$$

$$g(x_2) \ge g(x_1)$$

Теорема 1.6. Пусть $f \in BV([a,b])$. Тогда $\exists f_1 \ u \ f_2$ монотонно неубывающие на [a,b] такие, что $f = f_1 - f_2$.

Доказательство. Определим $f_1(x) := V_a^x(f) \quad \forall x \in [a,b]$. По только что доказанной теореме это монотонно неубывающая функция.

Докажем, что ф-ия $f_2(x) = f_1(x) - f(x)$ монотонно не убывает.

$$a \leqslant x \leqslant y \leqslant b$$
.

 $f_2(y) - f_2(x) = [f_1(y) - f(y)] - [f_1(x) - f(x)] = [f_1(y) - f_1(x)] - [f(y) - f(x)] \stackrel{(1)}{=} V_x^y(f) - [f(y) - f(x)].$

(1) В силу аддитивности вариации по отрезкам

Заметим, что $V_x^y(f)=\sup_T V_T(f)\geqslant V_{\{x,y\}}(f)=|f(y)-f(x)|$. Тогда предыдущее выражение не меньше 0, а значит f_2 не убывает.

Следствие. $\forall f \in BV([a,b])$ имеет не более чем счётное множество т. разрыва 1-го рода.

1.4 Абсолютно непрерывные функции

Определение 1.8. Ф-ия $f:[a,b] \to \mathbb{R}$ называется абсолютно непрерывной на [a,b], если

$$\forall \varepsilon \; \exists \delta(\varepsilon) > 0 : \forall \;$$
дизъюнктивной системы $\{(a_k, b_k)\}_{k=1}^N : \sum_{k=1}^N |a_k - b_k| < \delta(\varepsilon)$
$$\hookrightarrow \sum_{k=1}^n |f(b_k) - f(a_k)| < \varepsilon. \tag{1.4.1}$$

AC([a,b]) — мн-во всех абсолютно непрерывных на [a,b] функций.

Замечание. $f \in AC([a,b])$ является непрерывной на [a,b]. Обратное неверно

Контрпример.

$$f(x) = \begin{cases} x \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}.$$

 $f \in C([0,1])$, но $f \notin BV([0,1])$, а значит по теореме, которая будет доказана ниже, $f \notin AC([0,1])$.

Теорема 1.7. Если $f \in AC([a,b])$, то $f \in BV([a,b])$.

Доказательство. Запишем (1.4.1) при $\varepsilon=1$. Тогда $\exists \delta=\delta(1)>0: \forall$ конечного попарно непересекающегося набора интервалов $\{(a_k,b_k)\}_{k=1}^N: \sum\limits_{k=1}^N |b_k-a_k|<\delta\hookrightarrow \sum_{k=1}^N |f(b_k)-f(a_k)|<1$. Теперь разобъём отрезок [a,b]. Пусть $\mathbb{N}\ni M:=\left\lceil \frac{|b-a|}{\delta}\right\rceil+1$.

$$x_0 = a$$

$$x_1 = a + \frac{b - a}{M}$$

$$\vdots$$

$$x_M = a + b - a = b.$$

То есть поделили отрезок [a,b] на одинаковые куски.

Так как $x_{i+1} - x_i < \delta$ (специально для выполнение этого было взято достаточно большое M), то \forall разб. о-ка $[x_i, x_{i+1}]$ образует естественным образом конечным набор дизъюнктных интервалов суммарной длины меньше δ , а значит по абсолютной непрерывности $V_{x_i}^{x_{i+1}}(f) < 1 \quad \forall i$ Тогда в силу аддитивности вариации

$$V_a^b(f) = \sum_{i=0}^{M-1} V_{x_i}^{x_{i+1}}(f) < \sum_{i=0}^{M-1} 1 = M < +\infty.$$

2 Ряды Фурье

Идея представления функции тригонометрическим рядом являлась одной из центральных на рубеже 18-19 веков. Однако, строгая теория оформилась лишь к началу 20-века.

2.1 Неформальная идея

Прежде чем переходить к строгим формулировкам, поясним неформально корни идей, лежащих в основе теории рядов Фурье.

Если $V:=(V,<\cdot,\cdot>)$ – конечномерное евклидово пространство, а $\{e_n\}_{n=1}^N$ – ортогональный базис в V, то любой вектор $x\in V$ имеет следующее разложение по базису $\{e_n\}_{n=1}^N$:

$$x = \sum_{n=1}^{N} \frac{\langle x, e_n \rangle}{\langle e_n, e_n \rangle} e_n. \tag{2.1.1}$$

Естественно поставить вопрос, имеется ли аналог (2.1.1) для бесконечномерных евклидовх пространств?

Оказывается, в некоторых важных случаях ответ на этот вопрос положительный. Более точно, если $H:=(H,<\cdot,\cdot>)$ – бесконечномерное гильбертово пространство (то есть евклидово пространство, полное относительно нормы, порожденной скалярным произведением), а $\{e_n\}_{n=1}^{\infty}$ – ортонормированный базис в нем, то для всякого $x\in H$ имеем

$$x = \sum_{n=1}^{\infty} \frac{\langle x, e_n \rangle}{\langle e_n, e_n \rangle} e_n. \tag{2.1.2}$$

При этом числа

$$c_n(x) := \frac{\langle x, e_n \rangle}{\langle e_n, e_n \rangle}, \quad n \in \mathbb{N}$$
(2.1.3)

называются коэффициентами Фурье элемента x по системе $\{e_n\}_{n=1}^{\infty}$, а ряд в правой части (2.1.2) – рядом Фурье элемента x по системе $\{e_n\}_{n=1}^{\infty}$.

Частный случай гильбертова пространства – $L_2([-l,l])$, где l>0 – фиксированное число. Действительно, скалярное произведение, порождающее L_2 -норму, задается формулой (мы рассматриваем случай комплексного пространства)

$$\langle f,g \rangle := \int_{l}^{l} f(x)\overline{g}(x) dx.$$

Можно показать, что система функций

$$1, \sin(\frac{\pi x}{l}), \cos(\frac{\pi x}{l}), \dots, \sin(\frac{\pi nx}{l}), \cos(\frac{\pi nx}{l}), \dots$$

$$(2.1.4)$$

является ортогональным базисом в пространстве $L_2([-l,l])$. Иными словами, для любой функции $f \in L_2([-l,l])$ ее ряд Фурье сходится к ней в смысле среднего квадратичного. Кроме того, ортогональным базисом является также система комплексных экспонент

$$\left\{e^{\frac{i\pi kx}{l}}\right\}_{k\in\mathbb{Z}}.\tag{2.1.5}$$

Отметим, однако, что формально, при $k \in \mathbb{N}$ коэффициенты

$$a_k(f) := \frac{1}{l} \int_{-l}^{l} f(x) \sin(\frac{\pi kx}{l}) dx, \quad b_k(f) := \frac{1}{l} \int_{-l}^{l} f(x) \cos(\frac{\pi kx}{l}) dx$$

имеют смысл для $f \in L_1([-l,l])$.

2.2 Строгая теория

Без ограничения общности будем работать с элементами $f \in L_1([-\pi,\pi])$. Каждому такому элементу можно сопоставить формальный ряд Фурье по стандартной тригонометрической системе

$$f \sim a_0(f) + \sum_{k=1}^{\infty} a_k(f) \cos(kx) + b_k(f) \sin(kx),$$

а также по системе комплексных экспонент

$$f \sim \sum_{k \in \mathbb{Z}} c_k(f) e^{ikx}.$$

При $n\in\mathbb{N}$ рассмотрим оператор n-ой частичной суммы ряда Фурье $S_n:L_1([-\pi,\pi])\to C([-\pi,\pi])$. При $f\in L_1([-\pi,\pi])$ положим

$$S_n[f](x) := a_0(f) + \sum_{k=1}^n a_k(f)\cos(kx) + b_k(f)\sin(kx).$$

2.3 Компактная форма записи

Заметим, что

$$S_n[f](x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) dt + \frac{1}{\pi} \sum_{k=1}^{n} \int_{-\pi}^{\pi} f(t) \cos(kt) \cos(kx) dt + \frac{1}{\pi} \sum_{k=1}^{n} \int_{-\pi}^{\pi} f(t) \sin(kt) \sin(kx) dt$$

$$= \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) (\frac{1}{2} + \sum_{k=1}^{n} \cos(k(t-x))) dt = \int_{-\pi}^{\pi} f(t) D_n(t-x) dt,$$
(2.3.1)

где D_n – ядро Дирихле, то есть

$$D_n(x) := \frac{1}{2} + \sum_{k=1}^n \cos(kx) = \frac{1}{2\sin(\frac{x}{2})} \left[\sin(\frac{x}{2}) + \sum_{k=1}^n \sin(k(x+\frac{1}{2})) - \sin(k(x-\frac{1}{2})) \right]$$

$$= \frac{\sin(n+\frac{1}{2})x}{2\pi\sin(\frac{x}{2})}.$$
(2.3.2)

Свойства ядра Дирихле:

- $1) \int_{0}^{\pi} D_n(x) dx = 1;$
- $\stackrel{-\pi}{D_n}$ четная 2π -периодическая функция.

2.4 Теорема Римана-Лебега

Докажем теперь важную теорему Римана-Лебега об осцилляции.

Теорема 2.1. Пусть $E \subset \mathbb{R}^n$ -измеримое по Лебегу множество и $f \in L_1(E)$. Тогда

$$I(y) := \int_{E} f(x)e^{i\langle x,y\rangle} dx \to 0, \quad ||y|| \to +\infty.$$
 (2.4.1)

 \mathcal{A} оказательство. Будем считать функцию f продолженной нулем вне множества E. При $y \neq 0$ рассмотрим вектор $h = h(y) := \frac{\pi y}{\|y\|^2}$. Тогда сделав замену переменной x = x' - h имеем

$$I(y) = \int_{\mathbb{R}^n} f(x)e^{i\langle x,y\rangle} dx = \int_{\mathbb{R}^n} f(x'-h)e^{-i\pi}e^{i\langle x',y\rangle} dx' = -\int_{\mathbb{R}^n} f(x-h)e^{i\langle x,y\rangle} dx.$$

Таким образом, поскольку $h(y) \to 0, \|y\| \to \infty$, получим

$$2|I(y)| = \left| \int_{\mathbb{R}^n} (f(x) - f(x - h(y)))e^{i\langle x, y \rangle} dx \right| \le \int_{\mathbb{R}^n} |f(x) - f(x - h(y))| dx \to 0, \quad ||y|| \to +\infty. \quad (2.4.2)$$

Теорема доказана.

Следствие. Если $f \in L_1([-\pi,\pi])$, то

$$\lim_{k \to \infty} a_k(f) = \lim_{k \to \infty} b_k(f) = \lim_{k \to \infty} c_k(f) = 0.$$

2.5 Вторая теорема о среднем

В этом пункте мы докажем одно вспомогательное утверждение из теории интеграла Римана, которое будет очень важно при доказательстве достаточных условий сходимости ряда Фурье в точке.

Теорема 2.2. Пусть $g \in R([a,b])$, а f нестрого монотонна на [a,b]. Тогда существует точка $\xi \in [a,b]$ такая, что

$$\int_{a}^{b} f(x)g(x) dx = f(a) \int_{a}^{\xi} g(x) dx + f(b) \int_{\xi}^{b} g(x) dx.$$
 (2.5.1)

Если, кроме того, f неотрицательна на [a,b], то справедливы более простые формулы: a) если f нестрого убывает, то при некотором $\xi \in [a,b]$

$$\int_{a}^{b} f(x)g(x) dx = f(a) \int_{a}^{\xi} g(x) dx;$$
 (2.5.2)

б) если f нестрого возрастает, то при некотором $\xi \in [a,b]$

$$\int_{a}^{b} f(x)g(x) dx = f(b) \int_{\xi}^{b} g(x) dx.$$
 (2.5.3)

Доказательство. Отметим, что $fg \in R([a,b])$, что легко следует из критерия Лебега. Поэтому, левые части формул (2.5.1)–(2.5.3) имеют смысл.

Мы докажем лишь формулу (2.5.2), поскольку (2.5.3) доказывается аналогично, а равенство (2.5.1) легко вытекает из (2.5.2) и (2.5.3).

 $Step\ 1.$ Итак, пусть f неотрицательна и нестрого убывает на [a,b]. Пусть $T=\{x_i\}_{i=0}^n,\ n\in\mathbb{N}$ – произвольное разбиение отрезка [a,b]. То есть $a=x_0< x_1< ...< x_n=b.$ Тогда, очевидно, в силу линейности интеграла Римана имеем

$$\int_{a}^{b} f(x)g(x) dx = \sum_{i=0}^{n-1} \int_{x_{i}}^{x_{i+1}} f(x)g(x) dx$$

$$= \sum_{i=0}^{n-1} f(x_{i}) \int_{x_{i}}^{x_{i+1}} g(x) dx + \sum_{i=0}^{n-1} \int_{x_{i}}^{x_{i+1}} (f(x) - f(x_{i}))g(x) dx =: \Sigma_{1}(T) + \Sigma_{2}(T).$$
(2.5.4)

 $Step\ 2$. Поскольку $g\in R([a,b]),$ она ограничена на [a,b]. Следовательно, $\sup_{x\in [a,b]}|g(x)|<+\infty$. Легко видеть, что

$$\left| \sum_{i=0}^{n-1} \int_{x_i}^{x_{i+1}} (f(x) - f(x_i))g(x) \, dx \right| \leqslant \sup_{x \in [a,b]} |g(x)| \sum_{i=0}^{n-1} \omega_i(f) |x_i - x_{i+1}|,$$

где $\omega_i := \sup_{x',x'' \in [x_i,x_{i+1}]} |f(x') - f(x'')|$ – колебание функции f на отрезке $[x_i,x_{i+1}]$. Таким образом, в силу критерия интегрируемости, имеем (здесь и далее через l(T) обозначена мелкость разбиения T)

$$\Sigma_1(T) \to 0, \quad l(T) \to 0.$$
 (2.5.5)

 $Step\ 3$. Рассмотрим функцию $G(x):=\int\limits_a^xg(t)\,dt$. Очевидно, что G непрерывна на [a,b]. Используя преобразование Абеля, имеем (здесь использовано, что $G(x_0)=G(a)=0$)

$$\Sigma_{2}(T) = \sum_{i=0}^{n-1} f(x_{i})(G(x_{i+1}) - G(x_{i})) = \sum_{i=1}^{n} f(x_{i-1})G(x_{i}) - \sum_{i=0}^{n-1} f(x_{i})G(x_{i})$$

$$= f(x_{n-1})G(b) + \sum_{i=1}^{n-1} (f(x_{i-1}) - f(x_{i}))G(x_{i}).$$
(2.5.6)

В силу непрерывности G на [a,b] найдутся константы m,M, для которых $m \leqslant G(x) \leqslant M$ при всех $x \in [a,b]$. Ключевое наблюдение состоит в том, что в силу невозрастания f, имеем $f(x_{i-1}) - f(x_i) \geqslant 0$ при всех i. Суммируя сделанные наблюдения, имеем

$$mf(a) = m \sum_{i=1}^{n-1} (f(x_{i-1}) - f(x_i)) + mf(x_{n-1})$$

$$\leq \Sigma_2(T) \leq M \sum_{i=1}^{n-1} (f(x_{i-1}) - f(x_i)) + Mf(x_{n-1}) = Mf(a).$$
(2.5.7)

Из (2.5.4), (2.5.5) и (2.5.7) следует, что $\exists \lim_{l(T)\to 0} \Sigma_1(T) = \int_a^b f(x)g(x)\,dx$ и, кроме того,

$$mf(a) \leqslant \int_{a}^{b} f(x)g(x) dx \leqslant Mf(a). \tag{2.5.8}$$

 $Step\ 4$. Если f(a)=0, то в силу (2.5.8) в качестве ξ можно взять любую точку отрезка [a,b]. Если $f(a)\neq 0$, то в силу теоремы о промежуточном значении, примененной к непрерывной функции G, из (2.5.8) выводим, что найдется точка $\xi\in [a,b]$, для которой

$$G(\xi) = \frac{1}{f(a)} \int_{a}^{b} f(x)g(x) dx.$$
 (2.5.9)

Теорема полностью доказана.

3 Лекции 3, 4

В светлом будущем

4 Лекция 5

Замечание. Рассуждая аналогично, в случае $\alpha = 1$ можно получить более грубую оценку:

$$||S_n[f] - f||_{C([-\pi,\pi])} \le \frac{C \ln^2 n}{n}.$$

Но на самом деле можно при условии $f \in LIP(\mathbb{R})$ справедлива более сильная оценка:

$$||S_n[f] - f||_C \leqslant \frac{C \ln n}{n}.$$

4.1 Теорема Фейера

Теорема 4.1. Пусть $f \in C([-\pi,\pi])$ и $f-2\pi$ - периодична. Тогда $\sigma_n[f] \underset{\mathbb{R}}{\Longrightarrow} f, \ n \to \infty$.

Доказательство. В силу периодичности $\sigma_n[f]$ и f достаточно доказать, что $\sigma_n[f] \underset{[-\pi,\pi]}{\Rightarrow} f, \ n \to \infty$.

Поскольку $f \in C([-\pi, \pi]])$, то по теореме Кантора она равномерно непрерывна. Значит её модуль непрерывности стремится к нулю:

$$\omega(\delta) = \sup_{\substack{x', x'' \in [-2\pi, 2\pi] \\ |x'-x''| < \delta}} |f(x') - f(x'')| \to 0, \delta \to +0.$$

Формально, описанное выше выражение определено для $\delta \in (0, 4\pi)$. Запишем по определению сумму Фейера:

$$\sigma_n[f](x) = \int_{-\pi}^{\pi} f(x-t)\Phi_n(t)dt = \int_{-\pi}^{\pi} f(t)\Phi_n(x-t)dt$$
, где $\Phi_n(t)$ — ядро Фейера.

Тогда:

$$|\sigma_n[f](x) - f(x)| = \left| \int_{-\pi}^{\pi} f(x - t) \Phi_n(t) dt - \int_{-\pi}^{\pi} \Phi_n(t) f(x) dt \right| \leqslant I_n = \int_{-\pi}^{\pi} \Phi_n(t) |f(x - t) - f(t)| dt = I_1(\delta) + I_2(\delta).$$

$$I_1(\delta) = \int_{-\delta}^{\delta} \Phi_n(t) |f(x-t) - f(x)| dt \leqslant \omega_{\delta}[f] \int_{-\delta}^{\delta} \Phi_n(t) dt \leqslant \omega_{\delta}[f].$$

В этой оценке мы ограничиваем сверху |f(x-t)-f(t)| через модуль непрерывности, а $\int\limits_{-\delta}^{\delta}\Phi_n(t)dt\leqslant 1.$

$$I_2(\delta) = \int_{[-\pi,\pi]\setminus[-\delta,\delta]} \Phi_n(t)|f(x-t) - f(x)|dt.$$

Так как f — непрерывна на $[-2\pi, 2\pi]$, то $\exists M > 0$ такое, что $|f(x)| \le M \ \forall x \in [-2\pi, 2\pi]$. Тогда можем оценить $|f(x-t) - f(x)| \le |f(x)| + |f(x-t)| \le 2M$.

Из вышеприведенного утверждения и того, что $\forall \delta > 0 \sup_{\delta < |u| < \pi} \Phi_n(u) \to 0, n \to \infty$ и ограничения, описанного выше, получаем:

$$I_2(\delta) \leqslant 2M \int_{[-\pi,\pi]\setminus[-\delta,\delta]} \Phi_n(t)dt \leqslant 2M \sup_{\delta \leqslant |t| \leqslant \pi} \Phi_n(t) \to 0, n \to \infty.$$

 $\forall \varepsilon > 0$ найдем $\delta(\varepsilon)$ такое, что $I_1(\delta) < \frac{\varepsilon}{2}$. Затем, при фиксированном $\delta(\varepsilon)$ выберем $N(\varepsilon) \in \mathbb{N}$ таким, что $\forall n > N(\varepsilon) \ I_2(\delta) \leqslant \frac{\varepsilon}{2}$.

Итого, получается, $\forall \varepsilon > 0 \; \exists N(\delta(\varepsilon)) = \tilde{N}(\varepsilon) \; \text{такой, что} \; \forall n > \tilde{N}(\varepsilon) \hookrightarrow I_n < \varepsilon.$

Определение 4.1. Функция $T_n(x) = c_0 + \sum_{k=0}^n a_k \cos(kx) + \sum_{k=0}^n \sin(kx)$ называется тригонометрическим полиномом степени n, если $|a_n| + |b_n| \neq 0$.

Следствие (Первая теорема Вейерштрасса). Пусть $f \in C([-\pi,\pi]])$ и $f(-\pi) = f(\pi)$. Тогда, $\forall \varepsilon > 0$ \exists тригонометрический полином T_{ε} такой, что $||f - T_{\varepsilon}||_{C([-\pi,\pi])} \leqslant \varepsilon$.

Следствие (Теорема Вейерштрасса). Пусть $-\infty < a < b < \infty$ и $f \in C([a,b])$. Тогда $\forall \varepsilon > 0$ \exists полином $P_{\varepsilon}[f]$ такой, что $||f - P_{\varepsilon}[f]||_{C([a,b])} < \varepsilon$.

Доказательство. Для удобства доказательства перенесем отрезок [a,b] в отрезок $[0,\pi]$. Пусть $x \in [a,b]$, а $t \in [0,\pi]$. Обозначим $\varphi(x)$ — взаимно однозначная функция, преобразующая точку из первого отрезка в точку из второго отрезка. Тогда $x(t) = \varphi^{-1}(t) = a + \frac{b-a}{\pi}t$.

Заметим, что $f \circ \varphi \in C([0,\pi])$. Продолжим f чётным образом. Получим функцию $\tilde{f} \in C([-\pi,\pi])$ и $\tilde{f}(-\pi) = \tilde{f}(\pi)$.

Применим теорему Фейера к функции \tilde{f} .

$$\forall \varepsilon > 0 \ \exists N(\varepsilon) \in \mathbb{N} \ \forall n \geqslant N(\varepsilon) \hookrightarrow \sigma_n[\tilde{f}] \ \text{takar}, \ \text{что} \ ||\tilde{f} - \sigma_n[\tilde{f}]||_{C([-\pi,\pi])} < \varepsilon.$$

$$\sigma_n[f] = \frac{1}{n} \sum_{k=1}^{n-1} S_k[\tilde{f}]$$
, где $S_k[\tilde{f}] = \frac{a_0}{2} + \sum_{j=1}^k a_j(\tilde{f}) \cos(jx) + \sum_{j=1}^k b_j(\tilde{f}) \sin(jx)$

Вспомним, что $\cos(jx)$ и $\sin(jx)$ — аналитические $\forall j \in \mathbb{N}$. Следовательно, на любом отрезке $[-A,A] \subset \mathbb{R}$ к ним равномерно сходятся их ряды Тейлора. Тогда мы можем приблизить $\cos(jx)$ и $\sin(jx)$ полиномами Тейлора настолько, чтобы после сложения получилось что-то «небольшое». Обозначим $P_j(x)$ — полином Тейлора для $\sin(jx)$, а $Q_j(x)$ — полином Тейлора для $\cos(jx)$. Можно выбрать полиномы Тейлора так, чтобы существовали ε_j и $\tilde{\varepsilon_j}$ такие, что:

$$\sup_{x \in [-\pi,\pi]} |P_j(x) - \sin(jx)| < \varepsilon_j$$

$$\sup_{x \in [-\pi,\pi]} |Q_j(x) - \cos(jx)| < \tilde{\varepsilon_j}$$

И при этом выполнялось:

$$\frac{1}{n}\sum_{k=0}^{n-1}\left(\frac{a_0}{2} + \sum_{j=1}^{k}|a_j|\varepsilon_j + |b_j|\tilde{\varepsilon_j}\right) < \varepsilon$$

Тогда, полагая

$$P_{\varepsilon}[\tilde{f}] := \frac{1}{n} \sum_{k=0}^{n-1} (\frac{a_0}{2} + \sum_{j=1}^{k} a_j(\tilde{f}) Q_j + b_j(\tilde{f}) P_j)$$

 $P_{arepsilon}[f](t)$ «живет» на отрезке $[-\pi,\pi]$. Теперь мы хотим перенести его на [0,1]. Положим $t(x)=rac{x-a}{b-a}\pi$. Тогда $P_{arepsilon}[f]=P_{arepsilon}[ilde{f}](t(x))$ — искомый полином, так как $ilde{f}(t(x))=f(x)$. Тогда заметим, что $\sup_{t\in [-\pi,\pi]}| ilde{f}(t)-P_{arepsilon}[ilde{f}](t)|=\sup_{x\in [a,b]}|f(x)-P_{arepsilon}[f](x)|<arepsilon$.

4.2 Скорость убывания коэффициентов Фурье

Общая концепция: чем более гладкая функция, тем быстрее убывают коэффициенты Фурье.

Лемма 4.1 (Основная). Пусть $f \in \tilde{L}_1(\mathbb{R}) \cap BV(\mathbb{R})$. Тогда $c_f(y) = f(x)e^{-ixy} = O(\frac{1}{n}), y \to \infty$.

Доказательство. Так как $f \in BV(\mathbb{R})$, то f(x) = u(x) + v(x), $x \in \mathbb{R}$, где u(x) — нестрого возрастающая функция на \mathbb{R} , а v(x) — нестрого убывающая функция на \mathbb{R} . Тогда можно записать $\forall a,b:-\infty < a < b < \infty$:

$$c_{[a,b]}(y) = \int_{a}^{b} f(x)e^{-ixy}dx = \int_{a}^{b} u(x)e^{-ixy}dx + \int_{a}^{b} v(x)e^{-ixy}dx \Rightarrow$$

$$\exists \ \xi \in [a,b], \zeta \in [a,b] : c_{[a,b]}(y) = u(a+0) \int_{a}^{\xi} e^{-ixy} dx + u(b-0) \int_{\xi}^{b} e^{-ixy} dx + v(a+0) \int_{a}^{\xi} e^{-ixy} dx + v(b-0) \int_{\xi}^{b} e^{-ixy} dx.$$

Ключевое наблюдение: если $f \in BV(\mathbb{R})$ и интрегрируема, то $f(x) \to 0, x \to \infty$.

Пусть $f \to 0$. Тогда $\exists > 0$ такой, что $\forall \delta > 0 \; \exists \; x : |f(x)| > C$. Но при этом, $f \in L_1(\mathbb{R})$, так как интегрируема. Тогда, $\exists \ \tilde{x}: |\tilde{x}| > \delta \ |f(\tilde{x})| < \frac{C}{2}$. Получаем противоречие, так как можно получить бесконечный набор точек $\{x_n\}$ и $\{\tilde{x}_n\}$, которые мы набираем по описанному выше условию. Ограничим:

$$\left| \int_{a}^{\xi} e^{-ixy} dx \right| < \frac{2}{|y|} \qquad \left| \int_{\xi}^{b} e^{-ixy} dx \right| < \frac{2}{|y|}$$

$$\left| \int_{a}^{\zeta} e^{-ixy} dx \right| < \frac{2}{|y|} \qquad \left| \int_{\zeta}^{b} e^{-ixy} dx \right| < \frac{2}{|y|}$$

$$u(a+0) \leqslant V_{\mathbb{R}}(f) \qquad u(b-0) \leqslant V_{\mathbb{R}}(f)$$

$$v(a+0) \leqslant V_{\mathbb{R}}(f) \qquad v(b-0) \leqslant V_{\mathbb{R}}(f)$$

Получаем: $|c_{[a,b]}(y)| \leqslant \frac{8V_{\mathbb{R}}(f)}{|y|}$ — оценка не зависит от выбора интервала [a,b]. Устремляя $a \to -\infty,\ b \to +\infty,$ получаем требуемое.

Теорема 4.2 (б/д). Пусть $F \in AC([a,b])$. Тогда F почти всюду имеет классическую производную и, более того, восстанавливается через свою производную по формуле Ньютона - Лейбница.

Теорема 4.3 (Интегрирование по частям, б/д). Пусть $F \in AC([a,b]), g \in L_1([a,b])$. Тогда верна формула интегрирования по частям: $\int_a^b F(x)g(x)dx = F(x)G(x)\Big|_a^b - \int_a^b F'(x)G(x)dx$,

$$ede G(x) = \int_{a}^{x} g(t)dt$$

Следствие. Пусть функция $f: \mathbb{R} \to \mathbb{R} - 2\pi$ -периодическая, такая, что $f^{(k-1)} \in AC([-\pi,\pi])$. Пусть $f^{(k)}$ почти всюду может быть изменена на множестве меры ноль таким образом, что $f^{(k)} \in$ $BV([-\pi,\pi])$. Тогда $c_n(f) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^{-inx} dx = O\left(\frac{1}{n^{k+1}}\right)$.

Доказательство.

$$\int_{-\pi}^{\pi} f'(x)e^{inx}dx = f(x)e^{-inx}\Big|_{-\pi}^{\pi} + in\int_{-\pi}^{\pi} f(x)e^{-inx}dx.$$

Проделаем эту операцию k раз. Так как $f-2\pi$ -периодична и $f^{(k)}\in AC([-\pi,\pi])$ — 2π -периодична:

$$\int_{-\pi}^{\pi} f^{(k)} e^{-inx} dx = (in)^k \int_{-\pi}^{\pi} f(x) e^{-inx} dx.$$

Но $f^{(k)}$ можно считать $BV([-\pi,\pi])$. Рассмотрим функцию $F=\begin{cases} f^{(k)}(x), x\in [-\pi,\pi] \\ 0, \text{ иначе} \end{cases}$. Тогда $F\in BV([-\pi,\pi])$ и $\int\limits_{-\pi}^{\pi}f(x)e^{-inx}dx=$

 $\int\limits_{\mathbb{R}} F(x)e^{-inx}dx = O\left(\frac{1}{n}\right), n \to \infty$ в силу леммы. С учетом того, что $\int\limits_{-\pi}^{\pi} f(x)e^{-inx}dx = \frac{1}{(in)^k}\int\limits_{-\pi}^{\pi} f^{(k)}(x)e^{inx}dx$ получаем требуемое.

5 Лекция 6

В светлом будущем

6 Аппроксимация функций

Для наших целей понадобится приближать наши функции другими, более понятными.

Определение 6.1. Функция $f: \mathbb{R}^n \to \mathbb{R}$ называется ступенчатой, если она является линейной комбинацией индикаторов ячеек.

Теперь докажем, что такое функции приближают по норме L_p .

Теорема 6.1. Пусть множество $E \subseteq \mathbb{R}^n$ измеримо, $f \in L_p(E)$, где $p \in [1, +\infty)$. Тогда верно следующее:

$$\forall \varepsilon > 0 \; \exists \; cmyneнчатая функция h_{\varepsilon} : ||f - h_{\varepsilon}||_{L_p(E)} < \varepsilon.$$

<u>Идея доказательства:</u> как обычно мы доказываем это сначала для простых функций, а позже для всех, сводя к уже доказанному с помощью приближений.

Доказательство. Разобьем доказательство на шаги

1. Пусть $f = I_G$, где множество G имеет конечную меру. Тогда из определения верхней меры следует:

$$\forall \varepsilon > 0 \ \exists \{P_k\}_{k=1}^{\infty} : \ \lambda^n(G) + \varepsilon \geqslant \sum_{k=1}^{\infty} \lambda(P_k).$$

Теперь из сходимости ряда мер ячеек следует, что можно взять такой большой номер N:

$$\sum_{k=N+1}^{\infty} \lambda^n(P_k) < \varepsilon.$$

По теореме о дизъюнктном представлении в полукольце существует набор непересекающихся $\{Q_l\}_{l=1}^m:\ P_1\cup\ldots\cup P_N=\bigsqcup_{l=1}^mQ_l.$ Обозначим за $A=\bigcup_{i=1}^\infty P_k, B=P_1\cup\ldots\cup P_N.$ Тогда

$$I_B = \sum_{l=1}^m I_{Q_l}.$$

Возьмем в качестве приближающей ступенчатой функции I_B . Осталось доказать, что она приближает с точностью до ε по норме.

$$||f - h||_{L_p} = \left(\int_{\mathbb{R}^n} |I_G(x) - I_B(x)|^p dx \right)^{\frac{1}{p}} \leqslant$$

$$\leqslant \left(\int_{\mathbb{R}^n} |I_G(x) - I_A(x)|^p dx \right)^{\frac{1}{p}} + \left(\int_{\mathbb{R}^n} |I_A(x) - I_B(x)|^p dx \right)^{\frac{1}{p}} =$$

$$= \left(\lambda^n (A \setminus G) \right)^{\frac{1}{p}} + \left(\lambda^n (A \setminus B) \right)^{\frac{1}{p}} \leqslant 2\varepsilon^{\frac{1}{p}}$$

ФПМИ МФТИ, 2 апреля 2025 г.

- 2. Если f простая, то есть линейная комбинация индикаторов множеств конечной меры, явно сводится к пункту 1 с помощью неравенства треугольника.
- 3. $f \in L_p(E)$ произвольная, тогда из определения интеграла Лебега можно ее приблизить простой с точностью до $\varepsilon/2$,а простые мы уже умеем приближать ступенчатыми с точностью до $\varepsilon/2$. Осталось применить неравенство треугольника и требуемое будет доказано

Теперь, благодаря доказанной технике можем доказать следующую теорему:

Теорема 6.2. Пусть $f \in L_p(\mathbb{R}^n)$, где $p \in [1, +\infty)$. Тогда верно следующее:

$$||f(x) - f(x-h)||_{L_p} \to 0, h \to 0$$

<u>Идея доказательства:</u> Обозначим за $f_h(x) = (x - h)$, заметим, что в силу неравенства треугольника:

$$||f - f_h|| \le ||f - g|| + ||g - g_h|| + ||f_h - g_h|| \ \forall g \in L_p(\mathbb{R}^n)$$

Ясно, что можно g можно подобрать, чтобы 1 и 3 слагаемые были маленькими, проблема лишь в том, чтобы уменьшить второе слагаемое.

Доказательство. Заметим, что для любой функции $g \in L_p(\mathbb{R}^n)$:

$$||f_h-g_h||=\int_{\mathbb{R}^n}|f(x-h)-g(x-h)|dx=\{$$
выполним замену переменной $t=x-h\}=$
$$=\int_{\mathbb{R}^n}|f(t)-g(t)|dt=||f-g||$$

Тогда в качестве g возьмем ступенчатую функцию, которая приближает f. Осталось теперь доказать, что g можно приблизить g_h . Из теоремы о дизъюнктном представлении следует, что g можно представить в виде:

$$g(x) = \sum_{k=1}^n a_k I_{Q_k}(x), \ Q_k$$
 — ячейка

$$||g - g_h||_p \leqslant \sum_{k=1}^n |a_k| \cdot ||I_{Q_k} - I_{Q_k+h}||$$

Что стремится к нулю при $h \longrightarrow 0$.

Лемма 6.1. Пусть $f: \mathbb{R}^n \to \mathbb{R}$ измеримая функция, тогда отображения

$$(x,y) \to f(x-y)$$

$$(x,y) \to f(x+y)$$

измеримы.

Доказательство. Докажем первое утверждение, второе доказывается аналогично. Обозначим за $E_c = \{x | f(x) > c\}$, оно является измеримым из условия леммы. Теперь рассмотрим следующее линейное отображение:

$$T:(x,y)\longrightarrow (x-y,y).$$

Оно обратимо, так как определено обратное отображение $T^{-1}((x,y)) = (x+y,y)$. Осталось лишь заметить, что верно:

$$\{(x,y)|x-y\in E_c\}=T^{-1}(E_C\times\mathbb{R}^n)=\{(x,y)|\ f(x-y)>c\}.$$

Отсюда следует требуемое.

Теперь мы готовы к определению свертки функций и к доказательству корректности этого определения.

Теорема 6.3. Пусть $f, g \in L_1(\mathbb{R}^n)$. Тогда

- 1. Для λ -почти всех $x\in\mathbb{R}^n$ корректно определена функция (будет называть ее сверткой) $f*g(x):=\int_{\mathbb{R}^n}f(x-y)g(y)dy.$
- 2. f * g измерима в широком смысле.
- 3. $f * g \in L_1(\mathbb{R}^n)$
- 4. $||f * g||_{L_1} \leq ||f||_{L_1} \cdot ||g||_{L_1}$

Доказательство. Рассмотрим следующую функцию:

$$H(x,y) = |f(x-y)| \cdot |g(y)|.$$

Ясно, что это неотрицательная, измеримая функция, тогда по теореме Тонелли:

$$\iint_{\mathbb{R}^{2n}} H(x,y) dx dy = \int_{\mathbb{R}^n} \left(\int_{\mathbb{R}^n} H(x,y) dy \right) dx = \int_{\mathbb{R}^n} \left(\int_{\mathbb{R}^n} H(x,y) dx \right) dy.$$

Подробнее остановимся на втором интеграле, внутренний интеграл преобразуется так:

$$\int_{\mathbb{R}^n} H(x,y) dx = \int_{\mathbb{R}^n} |f(x-y)| \cdot |g(y)| dx = |g(y)| \int_{\mathbb{R}^n} |f(x-y)| dx = |g(y)| \cdot ||f||_{L_1}$$

Тогда весь интеграл:

$$\int_{\mathbb{R}^n} \left(\int_{\mathbb{R}^n} H(x, y) dx \right) dy = ||f||_{L_1} \cdot \int_{\mathbb{R}^n} |g(y) dy = ||f||_{L_1} \cdot ||g||_{L_1} < +\infty$$

Теперь применим теорему Фубини для F(x,y) = f(x-y)g(y), так как выше мы показали, что $F(x,y) \in L_1(\mathbb{R}^{2n})$. Тогда пункты 1,2 из нее сразу следуют. Покажем оставшиеся:

$$\int_{\mathbb{R}^n} |f * g|(x) dx \le \int_{\mathbb{R}^n} \left(\int_{\mathbb{R}^n} |f(x - y)| \cdot |g(y)| dy \right) dx = ||f||_{L_1} \cdot ||g||_{L_1}$$

Сформулируем еще одну теорему

Теорема 6.4. Пусть $p \in [1, +\infty)$, $f \in L_p(\mathbb{R}^n)$, $g \in L_{p'}(\mathbb{R}^n)$, $\epsilon \partial e^{\frac{1}{p}} + \frac{1}{p'} = 1$. Тогда:

- 1. f * g(x) корректно определена для всех $x \in \mathbb{R}^n$.
- 2. f * g(x) равномерно непрерывна на \mathbb{R}^n .

Доказательство. Докажем последовательно

1. По неравенству Гельдера получаем:

$$|f * g(x)| \le \int_{\mathbb{R}^n} |f(x-y)| \cdot |g(y)| dy \le ||f||_{L_p} \cdot ||g||_{L_{p'}} < +\infty$$

2. Обозначим за $(f * g)_h(x) = f * g(x - h), f_h(x) = f(x - h)$. Верно равенство:

$$(f * g)_h(x) - f * g(x) = \int_{\mathbb{R}^n} f(x - y - h)g(y)dy - f * g(x) = f_h * g(x) - f * g(x)$$

Теперь оценим отклонение свертки при сдвиге:

$$|(f * g)_h(x) - f * g(x)| = |f_h * g(x) - f * g(x)| \le ||f_h - f| * g(x)| \le ||f - f_h||_{L_p} \cdot ||g||_{L_n'}$$

Теперь по уже доказанному утверждению, получаем, что правая часть стремится к 0 и при этом оценка не зависит от x. Таким образом, требуемое доказано.

3. Осталось рассмотреть случаи, когда одно из p, p' равно $+\infty$. А именно рассмотрим случай, когда $p = \infty, p' = 1$. Для этого случая достаточно лишь заметить, что совершенно аналогично доказывается неравенство:

$$|f * g(x)| \le ||f||_{L_1} \cdot ||g||_{L_\infty}$$

6.1 Аппроксимативная едининца

Определение 6.2. Назовем семейство функций $\{w_t(x)\}_{t\in(0,+\infty)}$ аппроксимативной единицей, если $\forall t>0$:

1.

$$w_t(x) \geqslant 0, \forall x \in \mathbb{R}^n$$

2.

$$\int_{\mathbb{D}^n} w_t(x) dx = 1$$

3.

$$\forall \delta > 0 \lim_{t \to +0} \int_{\mathbb{R}^n \backslash B_s(0)} w_t(x) dx = 0$$

Пример. Соболевской шапкой назовем следующую функцию:

$$\psi(x) = \begin{cases} e^{-\frac{1}{1-||x||^2}}, & x \in (-1,1) \\ 0, & x \notin (-1,1) \end{cases}$$