VIETNAM NATIONLA UNIVERSITY, HO CHI MINH CITY UNIVERSITY OF INFORMATION TECHNOLOGY FACULTY OF COMPUTER ENGINEERING

---oOo----

THIẾT KẾ VI MẠCH TƯƠNG TỰ

CE334.O21.MTCL

BÀI THỰC HÀNH SỐ 4

ỨNG DỤNG CỦA OP-AMP THỰC HIỆN TRÊN LTSPICE

STUDENT NAME: Trương Duy Đức

STUDENT ID: 21521970 Lecturer: Ths. Ta Trí Đức

Nội dung

CHU	TONG 1. THIẾT KẾ OP - AMP	3
CHU	TƠNG 2. CÁC MẠCH CƠ BẢN CỦA OP-AMP	8
1.	Mạch khuếch đại không đảo	8
2.	Mạch khuếch đại đảo	10
3.	Mạch buffer	12
4.	Mạch so sánh	14
5.	Mạch cộng đảo	16
6.	Mạch cộng không đảo	18
7.	Mạch khuếch đại vi sai (Mạch trừ)	20
CHU	TONG 3. MẠCH ỨNG DỤNG TẠO HÀM	22
1.	Mạch vi phân	22
2.	Mạch tích phân	24
CHU	ONG 4. MACH TRIGGER SMITH	26

Pictures	
Figure 1. Mạch thiết kế trên LTSPICE	3
Figure 2. Symbol của Opamp	3
Figure 3. Thông số của M3 và M4	4
Figure 4. Thông số của M1 và M2	4
Figure 5. Thông số của M5 và M8	5
Figure 6. Thông số của M6	5
Figure 7. Thông số của M7	6
Figure 8. Mạch thiết kế của mạch khuếch đại không đảo	8
Figure 9. Kết quả khảo sát của mạch khuếch đại không đả	9
Figure 10. Công thức mạch khuếch đại không đảo	9
Figure 11. Mạch thiết kế của mạch khuếch đại đảo	10
Figure 12. Kết quả khảo sát mạch khuếch đại đảo	11
Figure 13. Công thức của mạch khuếch đại đảo	11
Figure 14. Mạch thiết kế mạch buffer	
Figure 15. Kết quả khảo sát của mạch buffer	13
Figure 16. Mạch thiết kế của mạch so sánh	14
Figure 17. Kết quả khảo sát của mạch so sánh	15
Figure 18. Mạch thiết kế của mạch cộng	16
Figure 19. Kết quả khảo sát của mạch cộng	17
Figure 20. Mạch thiết kế của mạch cộng đảo	18
Figure 21. Kết quả khảo sát của mạch cộng đảo	19
Figure 22. Mạch thiết kế của Mạch khuếch đại vi sai (Mạch trừ)	20
Figure 23. Kết quả khảo sát của Mạch khuếch đại vi sai (Mạch trừ)	21
Figure 24. Mạch thiết kế của mạch vi phân	22
Figure 25. Kết quả khảo sát của mạch vi phân	
Figure 26. Kết quả tính toán	23
Figure 27. Kết quả mô phỏng	
Figure 28. Mạch thiết kế của mạch tích phân	24
Figure 29. Kết quả khảo sát mạch tích phân	24
Figure 30. Mạch thiết kế của mạch Trigger Smith	26
Figure 31.Kết quả khảo sủa của mạch Trigger smith	26
Tables	
Table 1. Thông số của Opamp	6
Table 2. Kết quả thiết kế	
Table 3. Kết quả khảo sủa của mạch Trigger smith Error! Bookmark	
Table 4. So sánh mạch Trigger Smith và Mạch So Sánh (Comparator)	27

CHƯƠNG 1. THIẾT KẾ OP - AMP

Các mạch và thông số dưới đây đã được trình bày ở lab3 nên chỉ có tác dụng hiển thị thông số thiết kế.

Figure 1. Mạch thiết kế trên LTSPICE

Figure 2. Symbol của Opamp

Figure 3. Thông số của M3 và M4

Figure 4. Thông số của M1 và M2

Figure 5. Thông số của M5 và M8

Figure 6. Thông số của M6

Figure 7. Thông số của M7

Thông số	Giá trị
Av	>5000 V/V
Vdd	2.5V
Vss	-2.5V
Phase margin	60°
GBW	>5Mhz
C_{L}	10pF
SR	>10V/uS
Pd	<2mW
ICMR	-1 to 2V
K'p	32.69uA/V ²
K'n	86.75uA/V ²
V _{TO(Max)}	0.56V
V _{TO(Min)}	0.33V
Cox	86.325uF/um
λ2	0.04
λ3	0.05

Table 1. Thông số của Opamp

Thông số	Gía trị cần đạt	Gía trị mô phỏng/tính toán
Av	>5000 V/V	6053(tính)
Av gain		78.5 db
Phase margin	60°	20°
GBW	>5Mhz	5.29Mhz
SR	>10v/uS	SR + = 8.653 V/us
		SR - = 8.823 V/us
Pd	<2mW	0.397 mW
ICMR	-1 đến 2 V.	-0.33V to 0.415V
Vout range	0.5V đến 2V	$0 \rightarrow 1.94 V$
Offset		Vout offset=-0.6V
		Vin offset=0.48V
CMRR		81.9dB
PSRR		PSRR+=86.9dB
		- PSRR-=115.37dB
Settling time		182ns

Table 2. Kết quả thiết kế

CHƯƠNG 2. CÁC MẠCH CƠ BẢN CỦA OP-AMP

1. Mạch khuếch đại không đảo

Chức năng: Khuếch đại tín hiệu đầu vào mà không đảo pha của tín hiệu. Đầu ra cùng pha với đầu vào.

Figure 8. Mạch thiết kế của mạch khuếch đại không đảo

Figure 9. Kết quả khảo sát của mạch khuếch đại không đả

Ta có công thức:

$$V_{\rm out} = V_{\rm in} \left(1 + \frac{R_2}{R_1} \right)$$

Figure 10. Công thức mạch khuếch đại không đảo

Dựa vào công thức trên ta sẽ có : Vout=Vin($1+\frac{5k}{1k}$)=6Vin=6*50mV=300mV.

Ta thấy kết quả tính toán và kết quả mô phỏng giống nhau,pha của 2 mạch giống nhau.=> Mạch chạy đúng chức năng.

2. Mạch khuếch đại đảo

Chức năng: Khuếch đại tín hiệu đầu vào và đảo ngược pha của tín hiệu. Đầu ra ngược pha với đầu vào.

Figure 11. Mạch thiết kế của mạch khuếch đại đảo

Figure 12. Kết quả khảo sát mạch khuếch đại đảo

Ta có công thức:

$$V_{\text{out}} = -V_{\text{in}} \left(\frac{R_f}{R_1} \right)$$

Figure 13. Công thức của mạch khuếch đại đảo

Dựa vào công thức trên ta sẽ có : Vout=-Vin $\left(\frac{3k}{1k}\right)$ =-3Vin=-3*50mV=-150mV.

Ta thấy kết quả tính toán và kết quả mô phỏng giống nhau, pha của 2 mạch ngược pha với nhau=> Mạch chạy đúng chức năng.

3. Mạch buffer

Chức năng: Cách ly các mạch với nhau, cung cấp trở kháng đầu vào cao và trở kháng đầu ra thấp mà không khuếch đại tín hiệu (hệ số khuếch đại bằng 1).

Figure 14. Mạch thiết kế mạch buffer

Figure 15. Kết quả khảo sát của mạch buffer

Công thức:

$$V_{\mathrm{out}} = V_{\mathrm{in}}$$

Dựa vào waveform ta thấy mạch hoạt động đúng với chức năng của mạch

4. Mạch so sánh

Chức năng: So sánh hai tín hiệu đầu vào và tạo ra tín hiệu đầu ra ở mức cao hoặc thấp tùy thuộc vào tín hiệu nào lớn hơn.

- Nếu V1 > V2 \rightarrow Vout = 1
- Nếu V1 < V2 \rightarrow Vout = 0

Figure 16. Mạch thiết kế của mạch so sánh

Figure 17. Kết quả khảo sát của mạch so sánh

Nhìn vào các dạng sống trên: Khi V1>V2 tức đường xanh dương nằm trên đường màu đỏ thì dường màu xanh lá sẽ có giá trị là 2.5V. Ngược lại nếu đường màu xanh dương nằm dưới dường màu đỏ (tức V1<V2) thì dường màu xanh lá sẽ có giá trị là -2.5V.

=> Nhìn vào dạng sóng ta thấy mạch hoạt động đúng.

5. Mạch cộng đảo

Chức năng: Cộng các tín hiệu đầu vào lại với nhau và xuất ra một tín hiệu tổng, có thể được khuếch đại.

Figure 18. Mạch thiết kế của mạch cộng

Figure 19. Kết quả khảo sát của mạch cộng

Ta có công thức:

$$V_{\text{out}} = -R_{\text{f}} \left(\frac{V_1}{R_1} + \frac{V_2}{R_2} + \dots + \frac{V_n}{R_n} \right)$$

$$V_{\text{out}} = -R_{\text{f}} \frac{V_1 + V_2 \dots + V_n}{R}$$

Ta có: V1=10mV, V2=20mV, V3=30mV

$$Vout = -1k \frac{10 + 20 + 30}{1k} = 60 \text{mV}$$

Ta thấy kết quả tính toán và kết quả mô phỏng giống nhau=> Mạch chạy đúng chức năng.

6. Mạch cộng không đảo

Figure 20. Mạch thiết kế của mạch cộng đảo

Figure 21. Kết quả khảo sát của mạch cộng đảo

Ta có công thức:

$$Vout = (1 + \frac{Rf}{Ri}) * Rtd \frac{V1 + V2..+Vn}{R}$$

Tron đó Rtd là Rtd của các điện trở mắc song song.

Ta có: V1=20mV, V2=30mV, V3=50mV, Rtd=333.3 mA

$$Vout = (1 + \frac{1k}{1k}) * 333.3 * \frac{20 + 30 + 50}{1000} = 66.66 Mv$$

Ta thấy kết quả tính toán và kết quả mô phỏng giống nhau=> Mạch chạy đúng chức năng.

7. Mạch khuếch đại vi sai (Mạch trừ)

Chức năng: Khuếch đại hiệu điện thế giữa hai tín hiệu đầu vào và lọc bỏ những thành phần chung của hai tín hiệu.

Figure 22. Mạch thiết kế của Mạch khuếch đại vi sai (Mạch trừ)

Figure 23. Kết quả khảo sát của Mạch khuếch đại vi sai (Mạch trừ)

Ta có công thức :Vo = V2 - V1

Ta lại có V1=0.6V , V1=1V

=>Vo=1-0.6=0.4V

Ta thấy kết quả tính toán và kết quả mô phỏng giống nhau=> Mạch chạy đúng chức năng.

CHƯƠNG 3. MẠCH ỨNG DỤNG TẠO HÀM

1. Mạch vi phân

Figure 24. Mạch thiết kế của mạch vi phân

Figure 25. Kết quả khảo sát của mạch vi phân

Ta có công thức:

$$V_{\text{out}} = -RC \left(\frac{dV_{\text{in}}}{dt} \right)$$

Ta có: R=3k, C=0.001 μ , Vin=2sin($\frac{2\pi}{100\mu}t$)

$$\Rightarrow \text{ Vout=-3k*0.001} \mu *2* \frac{2\pi}{100\mu} cos(\frac{2\pi}{100\mu}t)$$

Time	25us	30us	50us	75us	100us
Vin	2V	1.88V	0	-2V	0V
Vout	0V	125mV	375mV	0V	375mV

Figure 26. Kết quả tính toán

Time	25us	30us	50us	75us	100us
Vin	2V	1.88V	0	-2V	0V
Vout	0V	125mV	375mV	0V	375mV

Figure 27. Kết quả mô phỏng

Ở 25 us đầu tiên có sự nhiễu tín hiệu,nguyên nhân là do các tụ điên mới bắt đầu sạc nên chưa ổn định. Cách giải quyết:

- Giảm điện dung của tụ điện.
- Tăng nguồn đầu vào.

Figure 28. Sau khi thay đổi điện dung và nguồn đầu vào của mạch vi phân

Ta thấy được Vout(đường màu xanh dương) đã đỡ nhiễu hơn nhưng bù lại giá trị Vout sẽ nhỏ lại do Vout theo công thức tỉ lệ thuận với 2 giá trị điện dung và nguồn đầu vào.

Ta thấy kết quả tính toán và kết quả mô phỏng giống nhau=> Mạch chạy đúng chức năng.

2. Mạch tích phân

Figure 29. Mạch thiết kế của mạch tích phân

Figure 30. Kết quả khảo sát mạch tích phân

Ta có công thức:

$$V_{\rm out} = \int_0^t -\frac{V_{\rm in}}{RC} \, dt$$

Với Vin=-50mV => Vout=
$$\frac{50x*10^{-3}}{100*10^{-9}*1000} |_{t1}^{t2} = \frac{50(t2-t1)*10^{-3}}{100*10^{-9}*1000}$$

Với Vin=50mV => Vout=
$$-\frac{50*10^{-3}}{100*10^{-9}*1000}|_{t1}^{t2} = -\frac{50(t2-t1)*10^{-3}}{100*10^{-9}*1000}$$

Do còn ảnh hưởng bởi offset và các yếu tố khác nên ta chỉ kiểm tra dạng sóng xem đúng hình dạng không. Cụ thể nếu Vin=-50mV thì Vout sẽ có hướng đi lên, ngược lại Vin=50mV thì Vout có hướng đi xuống.

Ta thấy dạng sóng như mong muốn => Mạch chạy đúng chức năng.

CHUONG 4. MACH TRIGGER SMITH

Trigger Smith là một mạch so sánh có phản hồi dương (positive feedback). Nó được sử dụng để loại bỏ hiện tượng dao động (chattering) khi tín hiệu đầu vào thay đổi chậm qua ngưỡng so sánh.

Figure 31. Mạch thiết kế của mạch Trigger Smith

Figure 32.Kết quả khảo sủa của mạch Trigger smith

Nhìn vào waveform ta thấy mạch hoạt động đúng yêu cầu là chuyển từ sóng sin(thành sóng vuông.

=> Mạch chạy đúng chức năng.

So sánh mạch Trigger Smith và Mạch So Sánh (Comparator):

Đặc điểm	Trigger Smith	Mạch So Sánh (Comparator)
Chức năng chính	Ôn định tín hiệu đầu ra khi tín hiệu đầu vào thay đổi chậm hoặc có nhiễu	So sánh hai điện áp và thay đổi đầu ra dựa trên sự chênh lệch giữa chúng
Phản hồi	Có phản hồi dương (positive feedback)	Không có phản hồi (no feedback)
Ngưỡng kích hoạt	Có hai ngưỡng khác nhau: ngưỡng bật (upper threshold) và ngưỡng tắt (lower threshold)	Một ngưỡng duy nhất
Hiện tượng dao động	Tránh hiện tượng dao động (hysteresis)	Có thể bị dao động nếu tín hiệu đầu vào thay đổi chậm
Ứng dụng chính	Xử lý tín hiệu đầu vào nhiễu, tạo xung, chuyển đổi tín hiệu analog sang digital	Các mạch so sánh đơn giản, bộ chuyển đổi tín hiệu, mạch ngắt
Điện áp đầu ra	Đầu ra ổn định, tránh nhiễu do tín hiệu đầu vào	Đầu ra thay đổi tức thì, có thể không ổn định nếu tín hiệu đầu vào nhiễu
Thay đổi đầu ra	Chỉ thay đổi khi tín hiệu đầu vào vượt qua ngưỡng bật hoặc ngưỡng tắt	Thay đổi ngay lập tức khi tín hiệu đầu vào vượt qua ngưỡng

Table 3. So sánh mạch Trigger Smith và Mạch So Sánh (Comparator)

